Dependência e independência linear

$$B = \{(1, 0), (0,1), (2, -3)\}.$$

Perceba que no conjunto B o vetor (2, –3) é combinação linear dos outros dois, pois:

$$(2, -3) = 2(1, 0) - 3(0, 1)$$

Ou ainda,

$$(2, -3) - 2(1, 0) - 3(0, 1) = (0, 0)$$

Assim, dizemos que o vetor (2, -3) depende linearmente dos vetores (1,0) e (0,1), ou seja, o conjunto B é um conjunto linearmente dependente. Já o conjunto A é um conjunto A = $\{(1,0), (0,1)\}$

linearmente independente, pois não é possível escrever um deles como combinação do outro. Veja que no conjunto B conseguimos combinar os três vetores de maneira que o resultado fosse o vetor nulo (0,0), mas não necessitamos multiplicar nenhum deles por zero.

Já no conjunto A, a única possibilidade de combinarmos os vetores e ter como resultado o vetor nulo é ambos serem multiplicados por zero, ou seja, $0\cdot(1,0) + 0\cdot(0,1) = (0,0)$. Esta é a ideia preliminar de vetores linearmente dependentes e independentes. Necessitamos apenas formalizar a ideia matematicamente. Veja a definição abaixo:

Seja V um espaço vetorial e sejam $v_1, v_2, ..., v_n \in V$. O conjunto $A = \{v_1, v_2, ..., v_n\}$ é dito ser linearmente dependente (LD), se existem escalares $a_1, a_2, ..., a_n \in \mathbb{R}$, não todos nulos, tais que $a_1v_1 + a_2v_2 + ... + a_nv_n = 0$. Caso contrário, se a equação $a_1v_1 + a_2v_2 + ... + a_nv_n = 0$ admitir apenas a solução trivial, isto é, $a_1 = a_2 = ... = a_n = 0$, então dizemos que o conjunto A é linearmente independente (LI).

Observação 2.8: Note que a solução trivial é sempre válida. Assim, se esta for a única, os vetores são LI, porém, se existir qualquer $a_i \neq 0$ como solução, então os vetores são LD.

Teorema 2.4: o conjunto $A = \{v_1, v_2, ..., v_n\}$ é LD se, e somente se, um destes vetores for uma combinação linear dos outros.

2.24. Verifique se o conjunto $A = \{(1, 0), (0,1)\}$ é linearmente dependente (LD) ou linearmente independente (LI).

$$a(1,0) + e(0,1) = (0,0)$$

 $a = 0$; $e = 0$
 $a = e$ odmite so solução fivial $(a_1e_1) = (0,0)$
 $a = 0$; $a = 0$
 $a = 0$; $a = 0$; $a = 0$
 $a = 0$; a

2.25). Mostre, usando a definição, que o conjunto $B = \{(1, 0), (0,1), (2, -3)\}$ é linearmente dependente (LD).

$$a(10) + a(01) + c(1-3) = (00)$$

 $a + 2c = 0 \Rightarrow c = \lambda, a = -2\lambda, a = -3\lambda.$
 $2c = 0 \Rightarrow c = \lambda, a = -2\lambda, a = -3\lambda.$
 $2c = 0 \Rightarrow c = \lambda, a = -2\lambda, a = -3\lambda.$
 $2c = 0 \Rightarrow c = \lambda, a = -2\lambda, a = -3\lambda.$
 $2c = 0 \Rightarrow c = \lambda, a = -2\lambda, a = -3\lambda.$
 $2c = 0 \Rightarrow c = \lambda, a = -2\lambda, a = -3\lambda.$
 $2c =$

- 2.26. Verifique se os conjuntos a seguir são LI ou LD.
- a) $A = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\} \in LI \text{ ou LD}.$

$$a(1,0,0)+e(0,1,0)+c(0,0,1)=(0,0,0)$$

 $a=0, e=0, c=0$
 $LI, pois so tem solvatos timal$
 $(a_1e_1c)=(0,0,0)$

b) B = {
$$(1, -1, 3), (\frac{1}{2}, -\frac{1}{2}, \frac{3}{2})$$
}.

$$a(1,1,3) + e(1,1,-1,3) = (e,0,0)$$

$$a+3_{1}e=0 \Rightarrow (1 & 1/2 & 0) & L_{1}=L_{1}L_{1}$$

$$-a-1_{2}b=0 \Rightarrow (-1 & -1/2 & 0) & -3$$

$$3a+3_{2}b=0 & (3 & 3/2 & 0) & L_{3}=L_{3}-3L_{1}$$

$$\begin{pmatrix} 1 & 1/2 & 0 \\ 0 & 0 & 0 \end{pmatrix} & a+1/2 & b=0 \\ a=-1/2 & b$$

$$9v & b=-2a$$

$$Solv4aes Infinitus, & a=1, & p=-11$$

$$Lego, & e' & L. & D.$$

c) $C = \{(-1, 0, -5, 4), (0, 0, 1, 3), (0, 0, 0, 1)\}.$

$$a(-1,0,-5,4)+e(0,0,1,3)+c(0,0,0)=\overline{o}$$

 $-a=0$; $-5a+e=0$; $4a+3k+c=0$
 $a=0$; $-5a+e=0$; $4a+3k+c=0$
 $c=0$
Somewhere Solution (Livial)
 $(a_1e,c)=(0,0,0) \Rightarrow L.T.$

d) D = $\{(1, 2, 3), (4, 3, 2), (6, 4, 2)\}$

$$a(1_{12,3}) + e(4_{13,3}) + c(6_{14,2}) = (0_{10,0})$$

$$a + 44e + 6c = 0$$

$$2a + 3e + 4c = 0 \Rightarrow (1 + 4 + 6) = (1 + 6)$$

$$3a + 1e + 1c = 0 \Rightarrow (3 + 1 + 4 + 6) = (1 + 6)$$

$$(1 + 4 + 6) = (1 + 6) = (1 + 6) = (1 + 6)$$

$$(1 + 4 + 6) = (1 + 6) = (1 + 6) = (1 + 6)$$

$$(1 + 4 + 6) = (1 + 6) = (1 + 6) = (1 + 6)$$

$$(1 + 4 + 6) = (1 + 6) = (1 + 6) = (1 + 6)$$

$$(1 + 4 + 6) = (1 + 6) = (1 + 6) = (1 + 6)$$

$$(1 + 4 + 6) = (1 + 6) = (1 + 6) = (1 + 6)$$

$$(1 + 4 + 6) = (1 + 6) = (1 + 6) = (1 + 6)$$

$$(1 + 4 + 6) = (1 + 6) = (1 + 6) = (1 + 6)$$

$$(1 + 4 + 6) = (1 + 6) = (1 + 6) = (1 + 6)$$

$$(1 + 4 + 6) = (1 + 6) = (1 + 6) = (1 + 6)$$

$$(1 + 4 + 6) = (1 + 6) = (1 + 6) = (1 + 6)$$

$$(1 + 4 + 6c = 0 \Rightarrow (1 + 4 + 6) \Rightarrow (1 + 6) = (1 + 6)$$

$$(1 + 4 + 6c = 0 \Rightarrow (1 + 4 + 6) \Rightarrow (1 + 6) \Rightarrow (1$$

2.27. Prove que o conjunto $A = \{(-1, 3, -1), (1, -2, 4)\}$ é LI.

$$\begin{array}{l}
\alpha(-1,3,-1) + e(1,-2,14) = (0,0,0) \\
-\alpha + e = 0 \Rightarrow (-1 & 1 & 0) & L_1 = -11 \\
3\alpha - 3e = 0 \Rightarrow (-1 & 4 & 0) & L_2 = 1,+311 \\
-\alpha + 4\mu = 0 & (-1 & 4 & 0) & L_3 = 1,+311 \\
(1 & -1) & L_1 = L_1 + L_1 & 1 & 0 & 0 & 0 \\
0 & 3 & 1 & 1 & 2 & 3 & 1 & 0
\end{array}$$

$$\begin{array}{l}
(1 & -1) & L_1 = L_1 + L_1 & 1 & 0 & 0 & 0 \\
0 & 3 & 1 & 2 & 3 & 1 & 0 & 0
\end{array}$$

$$\begin{array}{l}
(1 & -1) & L_3 = 1, -31 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 2 & 3 & 1 & 0 & 0
\end{array}$$

$$\begin{array}{l}
(1 & -1) & L_3 = 1, -31 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 2 & 3 & 1 & 0 & 0
\end{array}$$

$$\begin{array}{l}
(1 & -1) & L_3 = 1, -31 & 0 & 0 & 0 & 0 & 0
\end{array}$$

$$\begin{array}{l}
(1 & -1) & L_3 = 1, -31 & 0 & 0 & 0 & 0
\end{array}$$

$$\begin{array}{l}
(1 & -1) & L_3 = 1, -31 & 0 & 0 & 0 & 0
\end{array}$$

$$\begin{array}{l}
(1 & -1) & L_3 = 1, -31 & 0 & 0 & 0 & 0
\end{array}$$

$$\begin{array}{l}
(1 & -1) & L_3 = 1, -31 & 0 & 0 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0 & 0 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0 & 0 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0
\end{array}$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -31 & 0$$

$$\begin{array}{l}
(2 & -1) & L_3 = 1, -$$

2.28. Encontre o valor de k para que o conjunto $\{(2, 4), (6, k)\}$ seja LI e o valor de k para que o mesmo conjunto seja LD.

$$a (214) + b (614) = (010)$$

$$2a + 6b = 0 = 7 (2 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 = 7 (4 6 6)$$

$$4a + 6b = 0 =$$

11) Quais dos seguintes conjuntos são LD ou LI?

a)
$$B = \{(-1, 2, 4)\}$$

b)
$$B = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \right\}$$

$$a(11) + e(1-1) + c(20) = (00)$$

$$ate+2c = 0 \quad c = 0 \quad etc = 0 \quad atc = 0$$

$$a = etc \quad c = -etc \quad c = -a$$

$$a = -c$$

$$a = -c$$

$$a = -c$$

$$c = -c$$

c) $B = \{(1, -2, 0, 0), (0, 3, 1, -1), (1, 0, 1, 2), (3, 2, 0, 3)\}$

d) $B = \{(1, 0, -1), (1, 2, 1), (0, -1, 0)\}$

12) Encontre o valor de k para que o conjunto $A = \{(1, -1, -2), (2, k, 1), (-1, 0, 3)\}$ seja LI. Qual o valor de k para o conjunto ser LD?

$$\begin{array}{c} Q(1,-1,-1)+e(1,K,1)+c(-1,0,3)=l_{0,0,0})\\ Q(1,-1,-1)+e(1,K,1)+c(-1,0,3)=l_{0,0,0})\\ Q(1,2)-c=0\\ Q(1,2)-c=0\\$$

Base e dimensão

Um conjunto $A = \{v_1, v_2, ..., v_n\}$ de um espaço vetorial V é chamado de base de V se:

- a) A é LI
- b) A gera V, ou seja, G(A) = V.

Por exemplo, no R^2 um gerador mínimo deve ter, no máximo, dois vetores. A base mais usada para o R^2 é o conjunto $A = \{(1, 0), (0, 1)\}$, que já provamos em exemplos anteriores que gera o R^2 e é LI. Portanto, pela definição, o conjunto A é uma base de R^2 . Esta base é conhecida como **base canônica**.

É comum encontrar em muitos livros a letra grega beta (β) para indicar uma base [ou uma outra letra grega qualquer].

Existem muitas outras bases para o R^2 , assim como o R^3 , que tem base canônica dada por $\beta = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$, também tem outras bases. De maneira geral, qualquer espaço vetorial V tem infinitas bases, algumas mais simples de trabalhar, outras nem tanto. Veja alguns exemplos:

2.29. Mostre que o conjunto $A = \{(1, 1), (0, -1)\}$ é uma base do R^2 .

2.30. Mostre que $\beta = \{a(1, 1, 1), (0, 1, 1), (2, 0, 1)\}$ é uma base do R³.

```
a) Mostral que Bé L.I.
 Date = 0 Batsc=0 Batetc=0

a=-b C=-ja

c=-b C=-ja

a=0=>
    Solvação Única, (a,e,c) = (0,0,0) Thinal
2) Begen OR3?
   ) a + e = x
a + e = x
a + e + s = z
 a+e=Y
e=Y-a
c=X-a
c=X-a
c=X-a
c=X-Y-a
c=X+Y-2
c=X+Y-2
c=X+Y-2
c=X+Y-2
c=X+Y-2
   : 18 pade Set eschito como Combinação
   Basta tomas a=- 1+2, l=27-2 e c= 5(x+x-2)
   dos Vesaes de B.
   i. de (ale (e); B é base do 183
```

2.31. O conjunto $B = \{(1, 0), (0, 1), (2, -3)\}$ é uma base de R^2 ?

```
a) B \in L.I.?

a(1.0) + 2(0.0) + c(2.-3) = (0.0)

a + 3c = 0

a = -3c

a = -3c

a = -3c

a(1.0) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3) = (-3
```


Se V é um espaço vetorial, dizemos que V tem dimensão finita n se V tem uma base com n vetores e denota-se por dim V = n.

Deste modo, temos então que dim $R^2 = 2$, pois uma base do R^2 tem sempre dois vetores. Do mesmo modo, dim $R^3 = 3$, e de maneira geral, dim $R^n = n$.

Propriedades de base e dimensão

1. Qualquer conjunto LI de um espaço vetorial V é base do subespaço por ele gerado.

Tome como exemplo o conjunto $A = \{(-1, 3, -1), (1, -2, 4)\}$ que é LI (exemplo 2.27, seção 5). Já provamos também, no final da Seção 3, que esse conjunto gera o subespaço vetorial do R^3 , dado por $W = \{(x, y, z) \in R^3; 10x + 3y - z = 0\}$. Assim, segundo a propriedade 1, segue que A é uma base do subespaço W.

2. Seja A = $\{v_1, v_2, ..., v_n\}$ uma base de um espaço vetorial V, então, todo conjunto com mais de n vetores será linearmente dependente.

Tome como exemplo o conjunto $A = \{(1, 0), (0, 1)\}$, que já provamos ser uma base do R^2 . Portanto, pela propriedade 2, qualquer conjunto com mais de 2 vetores é linearmente dependente. De fato, o conjunto $B = \{(1, 0), (0, 1), (2, -3)\}$ é um conjunto linearmente dependente.

 Duas bases quaisquer de um espaço vetorial têm sempre o mesmo número de elementos.

De fato, sejam $A = \{v_1, v_2, ..., v_n\}$ e $B = \{w_1, w_2, ..., w_m\}$ duas bases de um espaço vetorial V qualquer.

- a) Como A é uma base e B é LI, segue que o número de elementos de A é maior ou igual ao número de elementos de B, pela propriedade anterior, ou seja, n ≥ m.
- b) De modo análogo, como B é base e A é LI, então o número de elementos de B é maior ou igual ao número de elementos de A, isto é, m ≥ n.

Assim, como ao mesmo tempo $n \ge m$ e $m \ge n$, somente pode ocorrer que n = m, logo duas bases de um mesmo espaço vetorial têm o mesmo número de elementos.

Por exemplo, como a base canônica de R² tem dois elementos, então qualquer outra base de R² também tem dois elementos.

- Todo espaço V que não possui uma base tem dimensão zero, ou seja, dim V = 0.
- Se V é um espaço vetorial e W é um subespaço de V, então dim W ≤ dim V. Se as dimensões forem iguais, então V = W.

Como exemplo, tomemos novamente o subespaço $W = \{(x, y, z) \in \mathbb{R}^3; 10x + 3y - z = 0\}$ de \mathbb{R}^3 , que já provamos ter uma base formada por dois vetores, a saber, $\beta = \{(-1, 3, -1), (1, -2, 4)\}$, então dim $W = 2 \le 3 = \dim \mathbb{R}^3$.

 Qualquer conjunto de vetores LI de um espaço vetorial V pode ser completado até formar uma base de V.

Tome como exemplo o conjunto $A = \{(1, 0, 0), (1, 1, 0)\}$, que é LI. Este conjunto não forma uma base do R^3 , pois sabemos pela propriedade 3, que uma base do R^3 deve conter três vetores. Pela propriedade 6, podemos completar o conjunto A e formar uma base. Por exemplo, tome o vetor w = (1, 1, 1). Assim, o conjunto $A' = \{(1, 0, 0), (1, 1, 0), (1, 1, 1)\}$ é uma base do R^3 , pois é um conjunto LI e gera o R^3 , como provamos na Seção 4.

2.32. Mostre que o conjunto $A = \{(1, 3, 1), (5, 1, 0), (1, 0, 0)\}$ é uma base do R^3 .

a) al
$$1/3/1$$
) $+2(5/1/0)+c(1/0/0)=(0/0,0)$
 $\begin{pmatrix} 1 & 5 & 1 & 0 & 0 \\ 3 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}$
 $c=0$ $3+42:0$ $4+5x+c=0$
 $c=0$

A e' L. I .

2) $(x_1y_1z)=a(1/3/1)+2(5/1/0)+c(1/0/0)$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 2 & 1 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$
 $\begin{pmatrix} 1 & 5 & 1 & 1 & x \\ 3 & 1 & 0 & 1 & x \end{pmatrix}$

2.33. Considere o subespaço vetorial:

$$W = \{(x, y, z) \in \mathbb{R}^3; x = y \in z = 0\}.$$

```
W={(x,x,0); XERS
  Temos (x1x10) = x(1,110)
   :. W= { x(1,1,0); XERS
     w é gelado pelo veta (11110)
a) (1,1,0) e L. I.?
      a(1,1,0)=(0,0,0)
         Cc = 0 => Soluge Unica.
       : (1,1,0) e L.I.
 e) se a=x; (1,1,0) gerc W.
    A é base de W com apenas um
   1/e+ob.
     dimW=1.
```

2.34. Seja U = $\{(x, y, z, t) \in \mathbb{R}^4; 2x + y = 0 \text{ e } z = 2t\}$. Encontre uma base e a dimensão de U.

U= 1(x,-x, at, t); x, t ERS Pedernos fazel direto. (X,-x, 2+,+)= x(1,-1,0,0)++(0,0,2,1) ou sejo, todos es elementos de U Pedem set gerados pelos Vetotes (1,-1,0,0) e (0,0,2,1) Faltu mostral que ostes dois vetores Sto L.I. a(1,-1,0,0)+e-(0,0,2,1)=(0,0,0,0) 200 00 0=0 -0=0 : (Q10)=(00) 0 a vnica 50/0600. i. (1,-1,019) e (0,0,2,1) são C.I. Bue de V: ?(1,-1,0,0), (0,0,2,1)} DIMIU= 2

2.35. Seja o sistema homogêneo

$$\begin{cases} x - y + 4z = 0 \\ 2x + 4y - 6z = 0 \\ 6y - 14z = 0 \end{cases}$$

Encontre a dimensão e a base do espaço solução deste sistema.

- 13) Sejam os vetores u = (1, -2, 3) e v = (3, 1, 2).
 - a) Determine [u, v] (subespaço gerado por $u \in v$).
 - b) O vetor $(-2, 5, -3) \in [u, v]$?
 - c) Exiba uma base para [u, v]. Qual é a dimensão?
 - d) $[u, v] = R^3$? Por quê?

$$(x_{1}y_{1}z) = (y_{1}z, y_{1}z)$$

$$(x_{1}y_{1}z) = (x_{1}y_{1}x_{1}) x_{1} x_{1} x_{2} x_{1} x_{1} x_{1} x_{1} x_{1} x_{2} x_{1} x_{2} x_{1} x_{2} x_{1} x_{2} x$$

14) Determine uma base e a dimensão do subespaço vetorial seguinte:

W = {
$$(x, y, z) \in \mathbb{R}^3$$
; $x = -y \in z = 3y$ }

$$W = \{(x_1 - x_1 - 3x), x \in R\}$$
 $X = -y$ $Z = 3y$ $Y = -x$ $Z = -3x$ $Y = -x$ $Z = -3x$ $Y = -x$ $Z = -3x$ $Z = -3$

15) Encontre uma base e a dimensão para o espaço-solução do sistema homogêneo abaixo:

$$\begin{cases} x & - 2z + t = 0 \\ -x & + 2z & = 0 \\ y + z & = 0 \\ y + z & = 0 \end{cases}$$

Resolver 0 5 L.

$$\begin{vmatrix}
1 & 0 & -2 & 1 & 1 & 0 \\
-1 & 0 & 2 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{vmatrix}$$
 $\begin{vmatrix}
1 & 0 & -2 & 1 & 0 \\
0 & 1 & 1 & 0 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 & 0 \\
0 & 1 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & 0
\end{vmatrix}$
 $\begin{vmatrix}
1 & 0 & -2 &$

Se z = r. $(x, y, z, t) = (2\lambda, -\lambda, \lambda, 0)$ entio, $(x, y, z, t) = (2\lambda, -\lambda, \lambda, 0)$ gue depende de 50 une variable λ , Lego dim S = 1. λ , Lego dim S = 1.

1. 0 sistema line4 5. Lem base: B=2(2,-1,1,0)3 e Dim (5)=1.