comparing two paired means using Bayes factors

Dr. Merlise Clyde

zinc in drinking water

location	surface	bottom	difference
	0.43	0.415	0.015
2	0.266	0.238	0.028
3	0.567	0.39	0.177
4	0.531	0.41	0.121
5	0.707	0.605	0.102
• • •			
10	0.723	0.612	0.111

hypotheses

parameter of interest $\mu_B - \mu_S \equiv \mu_{diff}$

no differences $H_1: \mu_B = \mu_S \Leftrightarrow \mu_{diff} = 0$

means are different $H_2: \mu_B \neq \mu_S \Leftrightarrow \mu_{diff} \neq 0$

sub-hypotheses $H_3: \mu_B > \mu_S \Leftrightarrow \mu_{diff} > 0$

 $H_4: \mu_B < \mu_S \Leftrightarrow \mu_{diff} < 0$

assumptions for likelihood

$$D_i \stackrel{\mathrm{iid}}{\sim} N(\mu_{diff}, \sigma^2)$$

priors with unknown σ^2

$$\mu_{diff} \mid \sigma^2, H_2 \sim N(0, \sigma^2/n_0)$$

$$1/\sigma^2 \mid H_2 \sim Ga\left(\nu_0/2, \sigma_0^2 \nu_0/2\right)$$

$$\Leftrightarrow \bar{D} \mid H_2 \sim \mathsf{t}_{\nu_0} \left(0, \sigma_0^2 \left(\frac{1}{n} + \frac{1}{n_0} \right) \right)$$

priors with unknown σ^2

Bayes factor with unknown σ^2 and reference prior

a limiting case with $\nu_0 \to 0$

$$BF[H_1:H_2] = \left(\frac{n+n_0}{n_0}\right)^{1/2} \left(\frac{t^2 \frac{n_0}{n+n_0} + \nu}{t^2 + \nu}\right)^{\frac{\nu+1}{2}}$$

- sample standard deviation s
- \blacktriangleright degrees of freedom $\nu=n-1$

zinc concentration example

- \rightarrow p-value ≈ 0.00089
- Bayes factor for comparing H_1 to H_2 is 0.0154
- \blacktriangleright evidence against H_1
- evidence in favor of H_2 is 64.86
- \blacktriangleright posterior probability of H_1 with equal prior odds

$$P(H_1 \mid \text{data}) = \frac{0.0154}{1 + 0.0154} = 0.0152$$