Vocabulary Review

Short-answer, multiple-choice, and select-all questions about key vocabulary.

1 A linear system of equations that has no solutions is said to be inconsistent. With one or more solutions, the system is consistent. **Question 2** Suppose that for matrix E, two conditions hold: (a) The first nonzero entry in each row of E is equal to 1. This leading entry 1 is called a pivot | (b) The leading entry in the $(i+1)^{st}$ row of E occurs in a column to the right of the column where the leading entry in the i^{th} row occurs. Then the matrix E is (row) echelon form . (Hint: two words.) Note: A consequence of this definition is that all rows that are identically zero occur at the $(top/bottom \checkmark)$ of the matrix. **Question** 3 If an $m \times n$ matrix can be transformed into another by a sequence of elementary row operations, the two matrices are said to be rowequivalent (Hint: two words.) **Question 4** Suppose that for matrix E, two conditions hold: (a) E is in echelon form, and (b) in every column of E having a pivot, every entry in that column other than the pivot is 0. Then E is said to be in reduced echelon form. (Hint: three words.) Author(s): Martin Golubitsky

Question 5 Let A be an $m \times n$ matrix that is row equivalent to a reduced echelon form matrix E. The number of nonzero rows in E is called the a of A.

Question 6 A mapping $L: \mathbb{R}^n \to \mathbb{R}^m$ is linear if

- (a) L(x+y) = L(x) + L(y) for all $x, y \in \mathbb{R}^n$.
- (b) L(cx) = cL(x) for all $x \in \mathbb{R}^n$ and all scalars $c \in \mathbb{R}$.

Question 7 Let j be an integer between 1 and n. The n-vector e_j is the vector that has a $\boxed{1}$ in the j^{th} entry and a $\boxed{0}$ in every other entry.

Question 8 Given an $n \times n$ matrix A, if there is an $n \times n$ matrix B such that $AB = I_n$ and $BA = I_n$, then A is said to be $\boxed{invertible}$, and the matrix B is called the $\boxed{inverse}$ of A. If there is no such matrix B, the A is said to be noninvertible, or $\boxed{singular}$.

Question 9 If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then the determinant of A, $det(A) = \boxed{ad - bc}$.