CS 270: Induction

Mark Boady

Department of Computer Science Drexel University

November 15, 2017

- Conjecture: The sum of the first n odd natural numbers equals n^2
- How can be prove this?
- There are an infinite number of possible cases.

n	sum of the first <i>n</i> odd natural numbers	n^2
1	1 =	1
2	1 + 3 =	4
3	1 + 3 + 5 =	9
4	1+3+5+7=	16
5	1+3+5+7+9=	25
:	i:	:
n	$1+3+5+7+9+11+\cdots+(2n-1)=$	n^2
:	:	:

- We can see that the first five lines were correct
- There is a pattern $\sum_{i=1}^{n} (2i-1)$
- How can we prove this conjecture is always true?
- Are all of the following statements true $\forall n \in \mathbb{N}$?

$$S_1 : 1 = 1^2$$
 $S_2 : 1 + 3 = 2^2$
 $S_3 : 1 + 3 + 5 = 3^2$
 \vdots
 $S_n : \sum_{i=1}^{n} (2n - 1) = n^2$
 \vdots

Outline for Proof by Induction.

Proposition The statements $S_1, S_2, S_3, S_4, \cdots$ are all true. *Proof.* (Induction)

- (1) Prove that the first statement S_1 is true.
- (2) Given any integer $k \geq 1$, prove that the statement $S_k \Rightarrow S_{k+1}$ is true.

It follows by mathematical induction that every S_n is true.

Inductive Steps

An Induction Proof has two steps

- Step 1 The Basis Step
 - Prove the starting point S_1 is true
 - This is often trivial
 - Many times we can just show by evaluation
- Step 2 The Inductive Step
 - Prove that $S_k \Rightarrow S_{k+1}$
 - Give a direct proof that one answer implies the next
 - Many times this will be an algebraic proof
 - We assume S_k is true during this proof
 - This assumption is called the inductive hypothesis

Example

The sum of the first n odd numbers is n^2 .

Proposition If $n \in \mathbb{N}$ then $\sum_{i=1}^{n} (2i - 1) = n^2$.

Proof. We will prove this with mathematical induction.

- (1) Observer that if n = 1, this statement is $1 1^2$, which is obviously true.
- (2) We must now prove $S_k \Rightarrow S_{k+1}$ for an $k \ge 1$.

 Inductive Hypothesis

 Assume that S_k is true, $\sum_{i=1}^k (2i-1) = k^2$.

 Inductive Proof

 See Next Slide for proof that $S_k \Rightarrow S_{k+1}$.

 If follows by induction that $\sum_{i=1}^n (2i-1) = n^2$ for every $n \in \mathbb{N}$.

Example

Inductive Hypothesis

Assume that S_k is true, $\sum_{i=1}^k (2i-1) = k^2$. Inductive **Proof**

$$\sum_{i=1}^{k+1} (2i-1) = \left(\sum_{i=1}^{k} (2i-1)\right) + 2(k+1) - 1$$

$$= k^2 + 2(k+1) - 1 \text{(By inductive Hypothesis)}$$

$$= k^2 + 2k + 2 - 1$$

$$= k^2 + 2k + 1$$

$$= (k+1)(k+1)$$

$$= (k+1)^2$$

Example 2

Last week we saw the sum

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

- We justified this using some reasoning about the summation
- We can use induction to prove it is true.
- The smallest number n can take n = 1, this will be the base case

Example 2 (Base Case)

We want to prove

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

Base Case: n = 1

$$\sum_{i=1}^{1} i = 1$$

$$\frac{1}{2}(1)((1)+1) = \frac{1}{2}2 = 1$$

At n=1 both the left and right side of the equation evaluate to 1. This proves the base case is correct.

Example 2 (Inductive Hypothesis)

We want to prove

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

We need to make an inductive hypothesis to prove $S_k \Rightarrow S_{k+1}$.

Inductive Hypothesis

Assume that

$$\sum_{i=1}^k i = \frac{1}{2}k(k+1)$$

Example 2 (Inductive Case)

Inductive Hypothesis

$$\sum_{i=1}^k i = \frac{1}{2}k(k+1)$$

Inductive Proof

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + k + 1 = \frac{1}{2}k(k+1) + (k+1)$$

$$= \frac{k(k+1)}{2} + \frac{2(k+1)}{2} = \frac{k^2 + 3k + 2}{2} = \frac{k^2 + 3k + 2}{2}$$

$$= \frac{(k+1)(k+2)}{2} = \frac{1}{2}(k+1)((k+1) + 1)$$

Sometimes, one base cases isn't enough to prove a statement.

Outline for Proof by Strong Induction.

Proposition The statement $S_1, S_2, S_3, S_4, \cdots$ are all true. *Proof.* (Strong Induction)

- (1) Prove that the first x statements are true. $(S_1, S_2, \dots S_x)$
- (2) Given any integer $k \ge x$, prove that $(S_1 \land S_2 \land S_3 \land \cdots \land S_x) \Rightarrow S_{k+1}$

Strong Induction Example

Prove that any postage amount greater than 11 cents can be created using only 4 and 5 cent stamps.

The first value greater than 11 cents is 12 cents.

$$4 + 4 + 4 = 12$$

What happens if we use this as our only base case?

Inductive Hypothesis

Assume that for some value k, we can come up with values a, b such that

$$a * 4 + b * 5 = k$$

For example, a = 3, b = 0 got us k = 12.

Inductive Proof

$$k+1 = k+1-4$$
$$= k-3$$

If we have assumed S_{k-3} was true, this proof would work. We can only assume S_k because we only proved 1 base case.

We need more base cases!

$$S_{12}: 3*4 = 12$$

 $S_{13}: 5+2*4 = 13$
 $S_{14}: 2*5+4 = 14$
 $S_{15}: 3*5 = 15$

Now, we can assume S_k , S_{k-1} , S_{k-2} , S_{k-3} This can make our previous statement true.

$$S_{k-3} \Rightarrow S_{k+1}$$

Prove that any postage amount greater than 11 cents can be created using only 4 and 5 cent stamps.

What Happened?

Our inductive Proof Required

$$S_{k-3} \Rightarrow S_{k+1}$$

We need this to be true for all numbers, we can't have a gap! What we needed to prove was

$$(S_{k-3} \wedge S_{k-2} \wedge S_{k-1} \wedge S_k) \Rightarrow S_{k+1}$$

We can now cover all numbers k > 11

Smallest Counterexample

Outline of Proof by Smallest Counterexample.

Proposition The statements $S_1, S_2, S_3, S_4, \ldots$ are all true.

- *Proof.* (Smallest counterexample)
- (1) Check that the first statement S_1 is true.
- (2) For the sale of contradiction, suppose not every S_n is true.
- (3) Let k > 1 be the smallest integer for which S_k is **false**.
- (4) Then S_{k-1} is true and S_k is false. Use this to get a contradiction.

Counterexample

Fundamental Theorem of Arithmetic.

Any integer n>1 has a unique prime factorization. That is, if $n=p_1\cdot p_2\cdot p_3\cdots p_k$ and $n=a_1\cdot a_2\cdot a_3\cdots a_l$ are two prime factorizations of n, then k=l, and the primes p_i and a_i are the same, except that they may be in a different order.

Counterexample

The base case works the same way. The smallest integer n > 1 is 2. I has a prime factorization of

$$2 = 2$$

The inductive hypothesis is similar.

Inductive Hypothesis

Assume that for all numbers $2 \le k < n$ the theorem is true.

Counterexample

The inductive proof is different. We now show that the claim S_k is false cannot hold.

Let n be the first time this theorem is false.

Then n has two prime factorizations

$$n = a_1 \cdot a_2 \cdot a_3 \cdots a_k$$

$$n = p_1 \cdot p_2 \cdot p_3 \cdots p_l$$

Since these are primes, we have

$$\frac{n}{p_1} = \frac{a_1 \cdot a_2 \cdot a_3 \cdots a_k}{p_1} = p_2 \cdot p_3 \cdots p_l$$

Therefore, we have $p_1 = a_i$ for some i.

Contradiction

We have divided out one number from both prime factorizations.

$$\frac{n}{p_1} = \frac{a_1 \cdot a_2 \cdot a_3 \cdots a_k}{p_1} = p_2 \cdot p_3 \cdots p_l$$

We now have a new number

$$\frac{n}{p_1} = p_2 \cdot p_3 \cdots p_l$$

$$\frac{n}{p_1} = a_1 \cdot a_2 \cdots a_{i-1} \cdot a_{i+1} \cdots a_k$$

The number $\frac{n}{p_1}$ is clearly an integer and $1 < \frac{n}{p_1} < n$. This means it only has one prime factorization, but this is a contradiction to our assumption that n had two unique factorizations.

Fibonacci Series

The Fibonacci Series is a famous integer sequence.

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \cdots$$

It is defined recursively

$$F_0 = 0$$

 $F_1 = 1$
 $F_n = F_{n-1} + F_{n-2}$

It also has a closed form

$$F_n = \frac{\varphi^n - \psi^n}{\sqrt{5}}$$
$$\varphi = \frac{1 + \sqrt{5}}{2}, \psi = \frac{1 - \sqrt{5}}{2}$$

Fibonacci Series

This can be proven by induction. This proof has multiple cases cases.

Base Case

$$F_{0} = 0$$

$$\frac{\varphi^{0} - \psi^{0}}{\sqrt{5}} = \frac{1 - 1}{\sqrt{5}} = 0$$

$$F_{1} = 1$$

$$\frac{\varphi^{1} - \psi^{1}}{\sqrt{5}} = \frac{\varphi - \psi}{\sqrt{5}} = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} - \frac{1 - \sqrt{5}}{2} \right)$$

$$= \frac{1}{2\sqrt{5}} \left(1 + \sqrt{5} - 1 + \sqrt{5} \right) = 1$$

Induction

Inductive Hypothesis

 $\forall k \in \{0 \le k \le n\}$ the closed form of the fibonacci series is correct. Inductive Case

$$F_{n+1} = F_n + F_{n-1}$$

$$= \frac{\varphi^n - \psi^n}{\sqrt{5}} + \frac{\varphi^{n-1} - \psi^{n-1}}{\sqrt{5}}$$

$$= \frac{\varphi^n + \varphi^{n-1} - (\psi^n + \psi^{n-1})}{\sqrt{5}}$$

This algebra requires some additional work.

Additional Formulas

We show that $\varphi^2 = \varphi + 1$

$$\varphi = \frac{1+\sqrt{5}}{2}$$

$$\varphi^2 = \left(\frac{1+\sqrt{5}}{2}\right) \left(\frac{1+\sqrt{5}}{2}\right)$$

$$= \frac{1+2\sqrt{5}+5}{4} = \frac{\left(3+\sqrt{5}\right)}{2}$$

$$= \frac{2}{2} + \frac{1-\sqrt{5}}{2}$$

$$= 1+\varphi$$

Additional Formulas

It is also true that $\psi^2 = \psi + 1$

$$\psi = \frac{1 - \sqrt{5}}{2}$$

$$\psi^{2} = \left(\frac{1 - \sqrt{5}}{2}\right) \left(\frac{1 - \sqrt{5}}{2}\right)$$

$$= \frac{1 - 2\sqrt{5} + 5}{4} = \frac{3 - \sqrt{5}}{2}$$

$$= \frac{2}{2} + \frac{1 - \sqrt{5}}{2}$$

$$= 1 + \psi$$

Inductive Case

We now complete the proof.

$$F_{n+1} = F_n + F_{n-1}$$

$$= \frac{\varphi^n + \varphi^{n-1} - (\psi^n + \psi^{n-1})}{\sqrt{5}}$$

$$= \frac{\varphi^{n-1} (\varphi + 1) - \psi^{n-1} (\psi + 1)}{\sqrt{5}}$$

$$= \frac{\varphi^{n-1} (\varphi^2) - \psi^{n-1} (\psi^2)}{\sqrt{5}}$$

$$= \frac{\varphi^{n+1} - \psi^{n+1}}{\sqrt{5}}$$

$$= F_{n+1}$$