Computer Architecture

Course Title: Computer Architecture Full Marks: 60+ 20+20

Course No: CSC208 Pass Marks: 24+8+8

Nature of the Course: Theory + Lab Credit Hrs: 3

Course Description: This course includes concepts of instruction set architecture, organization or micro-architecture, and system architecture. The instruction set architecture includes programmer's abstraction of computer. The micro-architecture consist internal representation of computers at register and functional unit level. The system architecture includes organization of computers at the cache and bus level.

.

Course Objectives

- Discuss representation of data and algorithms used to perform operations on data
- Demonstrate different operations in terms of Micro-operations
- Explain architecture of basic computer and micro-programmed control unit
- Understand and memory and I/O organization of a typical computer system
- Demonstrate benefits of pipelined systems

Course Contents:

Unit	Teaching Hour
Unit 1: Data Representation (4 Hrs.)	
1.1 Data Representation: Binary Representation, BCD,	2 Hour
Alphanumeric Representation, Complements ((r-1)'s	
Complement and r's complement), Fixed Point representation,	
Representing Negative Numbers, Floating Point Representation,	
Arithmetic with Complements (Subtraction of Unsigned	
Numbers, Addition and Subtraction of Signed Numbers)	
Overflow, Detecting Overflow	
1.2 Other Binary Codes: Gray Code, self Complementing Code,	1 Hour
Weighted Code (2421 and 8421 codes), Excess-3 Code,	
EBCDIC	
1.3 Error Detection Codes: Parity Bit, Odd Parity, Even parity,	1 Hour
Parity Generator & Checker	

Unit 2: Register Transfer and Microoperations (5)			
2.1 Register Transfer Language: Microoperation, Register	0.5 Hour		
Transfer Language, Register Transfer, Control Function			
2.2 Arithmetic Microoperations : List of Arithmetic	2 Hour		
Microoperations, Binary Adder, Binary Adder-subtractor,			
Binary Incrementer, Arithmetic Circuit			
2.3 Logic Microoperations: List of Logic Microoperations,	1.5 Hour		
Hardware Implementation, Applications of Logic			
Microoperations.			
2.1 Shift Microoperations : Logical Shift, Circular shift, Arithmetic	1 Hour		
Shift, Hardware Implementation of Shifter.			
Unit 3: Basic Computer Organization and Design (8)	ı		
3.1 Basic Concepts : Instruction Code, Operation Code, <i>Concept of</i>	0.5 Hour		
Instruction Format, Stored Program Concept.			
3.2 Basic Computer Registers and Memory: List of Registers,	1 Hour		
Memory of Basic Computer, Common Bus System for Basic			
Computer.			
3.3 Basic Computer Instructions: Instruction Format, Instruction	1.5 Hour		
Set Completeness, Control Unit of Basic Computer, Control			
Timing Signals			
3.4 Instruction Cycle of Basic Computer: Fetch and Decode,	4 Hour		
Determining Type of Instruction, Memory Reference			
Instructions, Input-Output Instructions, IO Interrupt, Program			
Interrupt, Interrupt Cycle.			
3.5 Description and Flowchart of Basic Computer	1 Hour		

Unit 4: Microprogrammed Control (4)	
4.1 Introduction: Hardwired and Microprogrammed Control Unit,	0.5 Hour
Control Word, Microprogram, Control Memory, Control	
Address Register, Sequencer,	
4.2 Address Sequencing: Conditional Branch, Mapping of	
Instructions, Subroutines, Microinstruction Format, Symbolic	2 Hour
Microinstructions	
4.3 Design of Control Unit: Decoding, Microprogram Sequencer.	
	1.5 Hour
Unit 5: Central Processing Unit (4)	1
5.1 Introduction: Major Components of CPU, CPU Organizations	0.5 Hour
(Accumulator Based Organization, General Register	
Organization, Stack Based Organization)	
5.2 CPU Instructions : Instruction Formats, Addressing Modes,	
Types of Instructions (on the basis of numbers of addresses, on	2.5 Hour
the basis of type of operation: data transfer instructions, data	
manipulation instructions, program control instructions),	
Program Control, Subroutine Call and Return, Types of Interrupt	
5.3 RISC and CISC: RISC vs CISC, Pros and Cons of RISC and	
CISC, Overlapped Register Windows	
	1 Hour
Unit 6: Pipelining (6)	l
6.1 Introduction: Parallel Processing, Multiple Functional Units,	0.5 Hour
Flynn's Classification	
6.2 Pipelining: Concept and Demonstration with Example,	1.5 Hour
Speedup Equation, Floating Point addition and Subtraction with	
Pipelining	

6.3 Instruction Level Pipelining : <i>Review of</i> Instruction Cycle, Three & Four-Segment Instruction Pipeline, Pipeline Conflicts and Solutions (<i>Resource Hazards</i> , <i>Data Hazards</i> , <i>Branch Hazards</i>)	3 Hour
6.4 Vector Processing: Concept and Applications, Vector Operations, Matrix Multiplication	1 Hour
Unit 7: Computer Arithmetic (6)	
7.1 Addition and Subtraction: Addition and Subtraction with Signed Magnitude Data (Algorithm and Hardware Implementation), Addition and Subtraction with Signed 2's Complement Data (Algorithm and Hardware Implementation)	2 Hour
7.2 Multiplication and Division: Multiplication of Signed Magnitude Data, Booth Multiplication (Algorithm and Hardware Implementation), Restoring and Non-restoring Division Algorithm, Divide Overflow (Algorithm and Hardware Implementation).	4 Hour
Unit 8: Input Output Organization (4)	
8.1 Input-Output Interface : Why IO Interface?, I/O Bus and Interface Modules, I/O vs Memory Bus, Isolated vs Memory-Mapped I/O	1 Hour
8.2 Asynchronous Data Transfer: Strobe, Handshaking	0.5 Hour
8.3 Modes of Transfer: Programmed I/O, Interrupt-Initiated I/O, Direct memory Access8.4 Priority Interrupt: Polling, Daisy-Chaining, Parallel Priority	0.5 Hour
Interrupt	1 Hour
8.5 DMA and IOP: Direct Memory Access, Input-Output	1 11001
Processor, DMA vs IOP	1 Hour
Unit 9: Memory Organization (4)	11001
9.1 Introduction: Memory Hierarchy, Main Memory, RAM and	1 Hour
ROM Chips, Memory address Map, Memory Connection to	2 22 42 42

1.5 Hour
1.5 Hour

Text Book

 M. Morris Mano, "Computer System Architecture", Prentice-Hall of India, Pvt. Ltd., Third edition, 2007

References

- William Stallings, "Computer Organization and Architecture", Prentice-Hall of India, Pvt. Ltd., Seventh edition, 2005.
- Vincent P. Heuring and Harry F. Jordan, "Computer System Design and Architecture", Prentice-Hall of India, Pvt. Ltd., Second edition, 2003.

Laboratory Work

Student should be able to implement and simulate the algorithms by using high level languages like C/Matlab and/or VHDL/Verilog. Laboratory work must include following exercises:

- 1 Laboratory work for familiarizing with the syntax, data types, and operators of Verilog/VHDL
- 2 Design of n-bit 2's complement adder/subtractor
- 3 Design of Overflow detector in signed number addition
- 4 Design of parity generator and parity checker
- 5 Design of encoder and decoders
- 6 Design of multiplexer
- 7 Design of registers and memory
- 8 Memory Mapping
- 9 Design of control unit
- 10 Design of ALU

- 11 Design of CPU
- 12 Simulation of 5 stage or 4 stage or 3 stage pipelining
- 13 Simulation of addition and subtraction of signed 2's complement data
- 14 Simulation of multiplication and division algorithms

Model Questions

Long Answer Questions

- 1 What is meant by instruction set completeness? Is instruction set of basic computer complete? Discuss instruction cycle of basic computer with suitable flowchart.
- 2 What is the concept behind pipelining? Discuss different types of pipeline conflicts and their possible solutions briefly
- 3 Multiply (-13) x (+40) using Booth multiplication algorithm.

Short Answer Questions

- 4 What is overflow? Explain overflow detection process with signed and unsigned number addition with suitable example.
- 5 Write down different arithmetic Microoperations and design a 4-bit binary addersubtractor.
- 6 What is the purpose and advantage of common bus system? Explain common bust system of basic computer.
- 7 What is meant by address sequencing? Draw diagram of address sequencer and Explain in detail about mapping of instruction.
- 8 Consider that we are provided with following memory content. What will be the value loaded in AC if addressing mode is direct, indirect, immediate, PC-relative and index relative.

	Addres	ss Memory
	200	Load to AC Mode
PC = 200	201	Address = 500
	202	Next instruction
R1 = 400		
VD = 400	399	450
XR = 100	400	700
AC		
	500	800
	600	900
	702	325
	800	300

- 9 Define priority interrupt. Explain Daisy-chaining method of handling interrupt priority.
- 10 What is cache mapping? Explain direct mapping with suitable example.
- 11 What is space-time diagram? Discuss pipeline speedup equation with suitable example
- 12 Write short notes on
 - a) Excess-3 code
 - b) Input-output processor