1. Introduction

Background

Opioids are a drug class that are primarily used for pain relief, but are highly addictive and can result in fatal overdose. Opioids are "controlled substances", meaning that they are regulated by the government. However, due to addiction and illicit use coupled with malfeasance from drug manufacturers, distributors, and doctors there have been 399,212 opioid related deaths in the US between the years of 1999 and 2017 [1]. These deaths are related to the overprescription of medication and are arguably for the sake of increased profits of pharmaceutical companies, at the cost of human life. This has to a declaration of an opioid "epidemic" and the implementation of public policies aimed at reducing the amount of opioid-related deaths by controlling over-prescription.

The motivation for the project

A database maintained by the Drug Enforcement Administration that tracks pain pills was recently made available as a result of a court order from the Washington Post and HD Media, who publishes the Charleston Gazette-Mail in West Virginia.

From the Automation of Reports and Consolidated Orders System (ARCOS), all opioid pills that were distributed from 2006 to 2012 were recorded. Using this data in comparison with other metrics, causal analysis will be performed to evaluate the effectiveness of opioid policies implemented in three states: Florida (implemented in 2010), Texas (2007), Washington State (2012).

2. Data

Data Handling

Three datasets were combined in preparation for analysis: the ARCOS drug tracking database, mortality data to identify causes of death, and population data from the U.S. Census Bureau. These datasets were cleaned and merged together, with the intermediate goal for each dataset to be merged onto a schema crosswalk to provide a uniform unique identifier. In the case for these three datasets, each county in the US has a FIPS (Federal Information Processing Standards) Code [3], which was merged onto each table prior to all three tables being merged together using their FIPS code.

(a) ARCOS Dataset

This data was downloaded by State from the Washington Post. Each file was reduced down to the following columns:

State	County	Transaction Date	Calc Base Weight in Grams	MME Conversion
				Factor

"Calc Base Weight in Gram" is a value that is generated by ARCOS database that is a value that identifies the final gram conversion of the controlled drug substance, taking into effect of Quantity, Dosage Unit and Dosage Strength information. Each opioid was scaled to a Morphine Milligram Equivalent using its "MME Conversion Factor". A new value, "MME Strength" was calculated by multiplying "Calc Base Weight in Gram" and "MME Conversion Factor" [2].

After calculating MME Conversion Factor, the Transaction Date was converted to the transaction year, and finally a groupby function was applied on State, County, and Year to have an output table "State", "County", "Year", and "MME Strength".

These files were concatenated together and then merged with the FIPS table on the "State" and "County" columns for later analysis. The merge was validated using an outer join and 1:1 matching. The final ARCOS Table was:

FIPS	State	County	Year	MME Strength

(b) Mortality

Mortality data was gathered from 2003 to 2015. The data came in 13 files, one for each year and was merged into one dataframe. The important columns in the source file is shown in the table below:

County State	Year	Drug/Alcohol Induced Cause	Deaths
--------------	------	-------------------------------	--------

All non-drug related deaths were filtered out of the dataframe because this study was interested in only deaths due to drug-related causes. A group-by operation was performed

to aggregate the data by "County", "State", and "Year" to generate the total number of deaths due to all drug-related causes. This table was then merged onto the related FIPS code. We performed a validation test by performing checking that the number of rows of the new table after joining the aggregated mortality table with the FIPS codes would be the same as the number of rows we had in the aggregated mortality table.

(c) Population

The population data was used to generate per capita data. The two original data frames contained population data on a county level from 2000 to 2010 and 2010 to 2018. The important columns in the source file is shown in the table below:

County State State Code Name	County Name	Census 2000/2010	Pop Estimate 2001/201	:
------------------------------	----------------	---------------------	-----------------------------	---

The U.S. Census Bureau conducts the census every 10 years. The last census was conducted in 2010. Based on the 2000 Census and 2010 Census, the Census Bureau estimates the population data from 2001 to 2009 and 2011 to 2018. Thus we used the official census and estimations as population data [4]. Unrelated columns for years not in the 2003 to 2015 time frame were removed. The FIPS code was included in the Census data.

To make merging and analysis process easier for other datasets, we rearranged, renamed some columns and melted the data according to "FIPS", "County Name" and "State Name". This allowed us to reshape the data frame by pivoting objects and make an index of years identify individual observations

3. Methods and Metrics

Pre-post Comparison

Pre-post comparison aims to achieve summary statistics for two different time periods. Since we want to see how the opioid policy affected the prescription and overdose death, pre-post analysis shows us a general intuitive change in state. Take Florida as an example: if the prescription and overdose death decreases after applying the policy in

2010, this opioid policy is more likely to be determined successful. If the trend of prescription and overdose death remain unchanged, the policy is possibly ineffective.

We completed the pre-post comparison analysis for overdose deaths were performed for Washington and Texas, and pre-post comparisons for both overdose deaths and for prescriptions were performed for Florida. Analysis for prescriptions were not performed for Washington and Texas due to the lack of opioid shipment data. The analysis aims to directly show the changes of overdose deaths and prescription in the pre-post graphs.

Difference-in-difference

Samples of different groups may have prior differences before the implementation of the policy. A single pre-post comparison may ignore these differences, which lead to a biased estimation of the effect of the policy implementation. The DID model is based on data obtained from natural experiments. It effectively controls the pre-existing differences between the research objects through modeling, and effectively separates the true results of policy influences. Still take Florida as an example, we assume there would be a decrease in prescription and overdose deaths in Florida after policy change. We also want to estimate if there also exist large difference after that period of policy change in other states, which have a similar trend before but with no policy change.

In this project, we chose the whole USA as control group to complete the DID analysis, which indicates the average level and has almost parallel trends before policy year. Also, we completed the DID analysis for overdose deaths in Washington, Texas and Florida, and only for prescription in Florida, based on both graphs and regressions.

The assumptions of DID model:

- 1) The releasing of policy was not determined by overdose deaths and prescription.
- 2) The treatment groups (Florida, Texas and Washington) and control group (the USA) have parallel trends in outcome (have similar trend in overdose deaths and prescription before policy year).
- 3) The composition of both treatment groups and control group is stable.
- 4) The policy changes for all the three states have no spillover effects (the policy would only produce the expected effect, no other effects on the people or society outside the states).

The DID model only allowing for level changes:

$$Y_{c,t} = \alpha + \varphi_c + \beta_1 post_t + \beta_2 post_t policy_state_c + \varepsilon_{c,t}$$

Y_{ct}: overdose deaths or opioid shipment per capita

 φ_c : county fixed effect

 $post_t$: an indicator for whether we are in a period of after implementation of the policy change

 $policy_state_c$: an indicator for whether a given county is in a state that experienced a policy change

In this regression model ,we would like to interpret the coefficient β_2 to show the effect of policy change. The coefficient β_2 includes two levels of difference. This first one is the difference of whether the group is the state of a policy implementation, which could be calculated by $\beta_2 - \beta_1$ mathematically. The second one is the difference of whether the group is after the year of policy change, which could be indicated by β_1 - 0. If we calculate these two differences together, it will give us a 'difference-in-difference' estimate including both of them, which could be calculated by $\beta_2 - \beta_1 + \beta_1 - 0 = \beta_2$.

The DID model allowing for both changes in levels and for changes in trends:

$$Y_{c,t} = \alpha + \varphi_c + \beta_1 year_t + \beta_2 post_t + \beta_3 post_t year_t + \beta_4 post_t policy_state_c$$
$$+ \beta_5 post_t year_t policy_state_c + \varepsilon_{c,t}$$

year,: adjust year, which has a value of 0 in the year the policy goes into effect

In this regression model ,we would like to interpret $\beta_4 - \beta_2$ and $\beta_6 - \beta_3$. Similar as the regression model before, $\beta_4 - \beta_2$ just shows us the difference of whether the group is the state of a policy implementation. $\beta_6 - \beta_3$ tells us the changes of outcome after the policy year through the time trend.

For example:

Firstly, $\beta_6 - \beta_3$ can give us the difference after the policy year, where the dummy variable 'post' equals to one instead of zero. What's more, the interaction post*year*state and the interaction post* year could provide the difference between control group and treatment group. As shown in the pictures above, these differences could be larger or smaller through the time trend. We calculate $\beta_6 - \beta_3$ to get the slope difference between the groups, which could be used to return changes after years.

4. Findings

Texas:

Pre-post Comparison and DID graphs for overdose deaths

In Texas we see that there is a change. The slope changes after the policy (indicated by the black line). In the Difference in Difference graph we can see that the US has a clear upward trend while Texas shows a downward trend after the policy.

This means we can interpret these results as evidence for the policy having a causal effect in the decrease of these drug-related deaths in Texas.

DID Regression Analysis for overdose deaths

OLS Regression Results

	DeathsPC	R-squared:		0.	004
	OLS	Adj. R-squar	ed:	0.	003
Least	Squares	F-statistic:		14	.29
Sun, 10	Nov 2019	Prob (F-stat	istic):	6.40e	-07
	15:19:18	Log-Likeliho	ood:	-118	338.
	7917	AIC:		2.368e	+04
	7914	BIC:		2.370e	+04
	2				
r	onrobust				
=======	.=======	========	.=======	.========	
				_	-
0.0087	0.029	0.302	0.763	-0.048	0.065
0.3528	0.067	5.276	0.000	0.222	0.484
					=== 672
	0.000	Jarque-Bera	(JB):	104455.	185
	3.129	And the second s		6	0.00
	19.658			7	1.10
	Least Sun, 10 r coef 1.5137 0.0087 0.3528	OLS Least Squares Sun, 10 Nov 2019 15:19:18 7917 7914 2 nonrobust coef std err 1.5137 0.025 0.0087 0.029 0.3528 0.067 5512.832 0.000 3.129	OLS Adj. R-squar Least Squares F-statistic: Sun, 10 Nov 2019 Prob (F-stat 15:19:18 Log-Likeliho 7917 AIC: 7914 BIC: 2 nonrobust	OLS Adj. R-squared: Least Squares F-statistic: Sun, 10 Nov 2019 Prob (F-statistic): 15:19:18 Log-Likelihood: 7917 AIC: 7914 BIC: 2 nonrobust coef std err t P> t 1.5137 0.025 60.731 0.000 0.0087 0.029 0.302 0.763 0.3528 0.067 5.276 0.000 5512.832 Durbin-Watson: 0.000 Jarque-Bera (JB): 3.129 Prob(JB):	OLS Adj. R-squared: 0. Least Squares F-statistic: 14 Sun, 10 Nov 2019 Prob (F-statistic): 6.406 15:19:18 Log-Likelihood: -118 7917 AIC: 2.3686 7914 BIC: 2.3706 2 nonrobust coef std err t P> t [0.025 1.5137 0.025 60.731 0.000 1.465 0.0087 0.029 0.302 0.763 -0.048 0.3528 0.067 5.276 0.000 0.222 5512.832 Durbin-Watson: 0. 0.000 Jarque-Bera (JB): 104455. 3.129 Prob(JB): 6

OLS Regression Results							
=======================================		========	=======	========	=====		
Dep. Variable:	DeathsPC	R-squared:			0.008		
Model:	OLS	Adj. R-squ	ared:	:	0.007		
Method:	Least Squares	F-statisti	c:		10.02		
Date:	Sun, 10 Nov 2019	Prob (F-st	atistic):	4.7	0e-11		
Time:	15:21:31	Log-Likeli	hood:	-1	1823.		
No. Observations:	7917	AIC:		2.36	6e+04		
Df Residuals:	7910	BIC:		2.37	1e+04		
Df Model:	6						
Covariance Type:	nonrobust						
=======================================		========	=======	========	========	=======	
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	1.5175	0.060	25.475	0.000	1.401	1.634	
adj_year_T	-0.0048	0.023	-0.214	0.831	-0.049	0.039	
Policy_T	0.0703	0.065	1.074	0.283	-0.058	0.199	
Policy_T:State_T	0.6792	0.122	5.551	0.000	0.439	0.919	
Policy_T:adj_year_T	-0.0108	0.023	-0.467	0.640	-0.056	0.035	
State_T:adj_year_T	0.1252	0.044	2.828	0.005	0.038	0.212	
Policy_T:State_T:adj	_year_T -0.2076	0.051	-4.060	0.000	-0.308	-0.107	
=======================================		========	========	========	=====		
Omnibus:	5509.892	Durbin-Wat	son:		0.674		
Prob(Omnibus):	0.000	Jarque-Ber	a (JB):	10472	8.294		
Skew:	3.125	Prob(JB):			0.00		
Kurtosis:	19.686	Cond. No.			64.1		
=======================================		========	=======	=======	====		

Washington:

Pre-post Comparison and DID graphs for overdose deaths

Since we have little proof for the policy effect according to the DID graph, the difference in level change could not be explained by regression.

Before the policy, Washington shows different behavior than the rest of the country. Due to the nature of scale in the graph we see a little shift in the two graphs but this is not as important. With the confidence or error margins we can see that there is a good chance that there is no difference between the Washington trend before and after the policy. The fact that we can draw a line that can go straight through both intervals indicates that there is a reasonable chance that there is no difference from the policy.

OLS Regression Results								
Dep. Variable:	DeathsPC				.003			
Model:	OLS	Adj. R-squa	red:	0	.002			
Method:	Least Squares	F-statistic	:	4	.241			
Date: S	Sun, 10 Nov 2019	Prob (F-sta	tistic):	0.00	0287			
Time:	15:25:12	Log-Likelih	nood:	-11	840.			
No. Observations:	7917	AIC:		2.369	e+04			
Df Residuals:	7910	BIC:		2.374	e+04			
Df Model:	6							
Covariance Type:	nonrobust							
=======================================				========	========	=======		
	coef	std err	t	P> t	[0.025	0.975]		
Intercept	1.5951	0.031	51.041	0.000	1.534	1.656		
adj_year_W	0.0069	0.006	1.157	0.247	-0.005	0.019		
Policy_W	-0.1021	0.047	-2.167	0.030	-0.194	-0.010		
/	-0.8421							
Policy_W:adj_year_W	-0.0094	0.019	-0.486	0.627	-0.047	0.029		
State_W:adj_year_W	0.0680	0.024	2.792	0.005	0.020	0.116		
Policy_W:State_W:adj_y	ear_W 0.1776	0.185	0.960	0.337	-0.185	0.540		
					====			
Omnibus:	5514.488			_	.671			
Prob(Omnibus):	0.000	,	ı (JB):	103743				
Skew:	3.133	, ,			0.00			
Kurtosis:	19.590	Cond. No.			136.			
=======================================					====			

Florida:

Pre-post Comparison and DID graphs for overdose deaths

Here we can see that Florida seems to have turned an upward trend to a downward one after the policy enactment. It becomes even clearer in the DID graph. With the Florida counties and USA counties seemingly following the same trend before the policy we can reasonably assume that they have matching behavior in a lot of respects. After the policy, it seems that the USA trend continues while Florida has a complete change. The difference in differences is very stark here. This graph is strong evidence that the policy caused there to be less of these specific kinds of drug-related deaths in Florida.

DID Regression Analysis for overdose deaths

OLS Regression Results								
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	Sun,	d: quared: tic: statistic): lihood:	2.	0.001 0.001 3.331 0.0358 -11849. 370e+04				
=========	coef	std err			======= [0.025	0.975]		
Intercept Policy Policy:State	-0.0567		-2.308	0.000 0.021	-0.105	-0.009		
Omnibus: Prob(Omnibus): Skew: Kurtosis:		5512.206 0.000 3.131 19.601		era (JB): :	103	0.670 839.972 0.00 8.30		

OLS Regression Results

=======================================		=====	=====	=========	======	========	
Dep. Variable:	Deat	hsPC	R-sq	uared:		0.004	
Model:		OLS	Adj.	R-squared:		0.003	
Method:	Least Squ	ares	F-st	atistic:		5.061	
Date:	Sun, 10 Nov	2019	Prob	(F-statistic)	:	3.42e-05	
Time:	15:1	4:45	Log-	Likelihood:		-11837.	
No. Observations:		7917	AIC:			2.369e+04	
Df Residuals:		7910	BIC:			2.374e+04	
Df Model:		6					
Covariance Type:	nonro	bust					
=======================================		=====	=====	=========			
	coef	std	err	t	P> t	[0.025	0.975]
Intercept	1.6393	0	.038	43.432	0.000	1.565	1.713
adj_year	0.0186	0	.009	2.049	0.041	0.001	0.036
Policy	-0.0946	0	.049	-1.945	0.052	-0.190	0.001
Policy:State	0.3842	0	.156	2.460	0.014	0.078	0.690
Policy:adj_year	-0.0347	0	.013	-2.582	0.010	-0.061	-0.008
State:adj_year	0.0588	0	.019	3.071	0.002	0.021	0.096
Policy:State:adj_year	-0.1593	0	.054	-2.944	0.003	-0.265	-0.053
		=====	=====	=========		========	
Omnibus:	5491	.417	Durb	in-Watson:		0.672	
Prob(Omnibus):	6	.000	Jarq	ue-Bera (JB):		102512.515	
Skew:	3	.117	Prob	(JB):		0.00	
Kurtosis:	19	.489	Cond	. No.		53.4	
=======================================		=====	=====	=========	======		

Pre-post comparison and DID graphs for prescription

With prescriptions we see similar behavior than the deaths. In the PrePost graph we can identify the same switch in slope, where after the policy it becomes negative. When we continue to the DID graph we have a similar comparison but it seems that Florida counties have a much more exaggerated behavior than that of the rest of the US. When we consider the post-policy years, Florida has a negative slope while the US slope seems

to be somewhat flat. This means that the policy managed to change the trend to negative. We cannot know yet, however, whether this effect is sustainable or if Florida is approaching USA levels of prescribed opioids.

DID Regression Analysis for prescription

		OLS Regre	ssion Resul	ts		
=========		========		========		======
Dep. Variable:		PrescribePC	R-square	d:		0.019
Model:		OLS	Adj. R-s	quared:		0.019
Method:	L	east Squares	F-statis	tic:		543.2
Date:	Sun,	10 Nov 2019	Prob (F-	statistic):	2.	34e-234
Time:		15:30:47	Log-Like	lihood:		-5490.0
No. Observation	s:	55419	AIC:		1.	099e+04
Of Residuals:		55416	BIC:		1.	101e+04
Of Model:		2				
Covariance Type	:	nonrobust				
	=======	========	========	========	=======	=======
	coef	std err	t	P> t	[0.025	0.975
Intercept	0.4417	0.002	263.774	0.000	0.438	0.445
Policy	-0.0319	0.002	-13.850	0.000	-0.036	-0.027
Policy:State	0.2216	0.007	31.703	0.000	0.208	0.235
======== Omnibus:	=======	28868.651	======= Durbin-W	======================================	=======	0.265
Prob(Omnibus):		0.000	Jarque-B	era (JB):	249	011.523
Skew:		2.370		, ,		0.00
<pre><urtosis:< pre=""></urtosis:<></pre>		12.240	Cond. No			7.19
	=======	========		=======		======

OLS Regression	Results
----------------	---------

Dep. Variable: PrescribePC R-squared: 0.043 Model: 0LS Adj. R-squared: 0.043 Method: Least Squares F-statistic: 417.3 Date: Sun, 10 Nov 2019 Prob (F-statistic): 0.00 Time: 15:31:34 Log-Likelihood: -4803.3 No. Observations: 55419 AIC: 9621. Df Residuals: 55412 BIC: 9683. Df Model: 6 Covariance Type: nonrobust	=======================================	============			=======		
Method: Least Squares F-statistic: 417.3 Date: Sun, 10 Nov 2019 Prob (F-statistic): 0.00 Time: 15:31:34 Log-Likelihood: -4803.3 No. Observations: 55419 AIC: 9621. Df Residuals: 55412 BIC: 9683. Df Model: Coef std err t P> t [0.025 0.975] Intercept 0.4231 0.004 119.062 0.000 0.416 0.430 adj_year -0.0012 0.001 -1.394 0.163 -0.003 0.000 Policy 0.0001 0.005 0.029 0.977 -0.009 0.009 Policy:State 0.2413 0.012 19.716 0.000 0.217 0.265 Policy:adj_year -0.0040 0.001 -3.181 0.001 -0.002 State:adj_year -0.0544 0.002 -36.069 0.000 -0.057 -0.051 Policy:State:adj_year -0.0463 0.004 10.775 0.000 0.038 0.055 Omnibus:<	Dep. Variable:	PrescribePC	R-sc	uared:		0.043	
Date: Sun, 10 Nov 2019 Prob (F-statistic): 0.00 Time: 15:31:34 Log-Likelihood: -4803.3 No. Observations: 55419 AIC: 9621. Df Residuals: 55412 BIC: 9683. Off Model: 6 Covariance Type: nonrobust Tintercept 0.4231 0.004 119.062 0.000 0.416 0.430 adj_year -0.0012 0.001 -1.394 0.163 -0.003 0.000 Policy:State 0.2413 0.012 19.716 0.000 0.217 0.265 Policy:adj_year -0.0040 0.001 -3.181 0.001 -0.006 -0.002 State:adj_year -0.0544 0.002 -36.069 0.000 -0.057 -0.051 Policy:State:adj_year 0.0463 0.004 10.775 0.000 0.038 0.055 Omnibus: 28815.198 Durbin-Watson: 0.272 253345.452 253345.452 Skew:	Model:	OLS	Adj.	R-squared:		0.043	
Time: 15:31:34 Log-Likelihood: -4803.3 No. Observations: 55419 AIC: 9621. Df Residuals: 55412 BIC: 9683. Df Model: 6 Covariance Type: nonrobust	Method:	Least Squares	F-st	atistic:		417.3	
No. Observations: 55419 AIC: 9621. Df Residuals: 55412 BIC: 9683. Df Model: 6 Covariance Type: nonrobust	Date:	Sun, 10 Nov 2019	Prob	(F-statistic):	0.00	
Df Residuals: 55412 BIC: 9683. Df Model: 6 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] Intercept 0.4231 0.004 119.062 0.000 0.416 0.430 adj_year -0.0012 0.001 -1.394 0.163 -0.003 0.000 Policy:State 0.2413 0.012 19.716 0.000 0.217 0.265 Policy:adj_year -0.0040 0.001 -3.181 0.001 -0.006 -0.002 State:adj_year -0.0544 0.002 -36.069 0.000 -0.057 -0.051 Policy:State:adj_year 0.0463 0.004 10.775 0.000 0.038 0.055 Omnibus: 28815.198 Durbin-Watson: 0.272 Prob(Omnibus): 0.000 Jarque-Bera (JB): 253345.452 Skew: 2.356 Prob(JB): 0.00 <td>Time:</td> <td>15:31:34</td> <td>Log-</td> <td>Likelihood:</td> <td></td> <td>-4803.3</td> <td></td>	Time:	15:31:34	Log-	Likelihood:		-4803.3	
Df Model: Covariance Type: nonrobust Coef std err t P> t [0.025 0.975]	No. Observations:	55419	AIC:			9621.	
Covariance Type: nonrobust Coef std err t P> t [0.025 0.975]	Df Residuals:	55412	BIC:			9683.	
coef std err t P> t [0.025 0.975] Intercept 0.4231 0.004 119.062 0.000 0.416 0.430 adj_year -0.0012 0.001 -1.394 0.163 -0.003 0.000 Policy 0.0001 0.005 0.029 0.977 -0.009 0.009 Policy:State 0.2413 0.012 19.716 0.000 0.217 0.265 Policy:adj_year -0.0040 0.001 -3.181 0.001 -0.006 -0.002 State:adj_year -0.0544 0.002 -36.069 0.000 -0.057 -0.051 Policy:State:adj_year 0.0463 0.004 10.775 0.000 0.038 0.055	Df Model:	6					
coef std err t P> t [0.025 0.975] Intercept 0.4231 0.004 119.062 0.000 0.416 0.430 adj_year -0.0012 0.001 -1.394 0.163 -0.003 0.000 Policy 0.0001 0.005 0.029 0.977 -0.009 0.009 Policy:State 0.2413 0.012 19.716 0.000 0.217 0.265 Policy:adj_year -0.0040 0.001 -3.181 0.001 -0.006 -0.002 State:adj_year -0.0544 0.002 -36.069 0.000 -0.057 -0.051 Policy:State:adj_year 0.0463 0.004 10.775 0.000 0.038 0.055 Omnibus: 28815.198 Durbin-Watson: 0.272 Prob(Omnibus): 0.000 Jarque-Bera (JB): 253345.452 Skew: 2.356 Prob(JB): 0.00	Covariance Type:	nonrobust					
Intercept 0.4231 0.004 119.062 0.000 0.416 0.430 adj_year -0.0012 0.001 -1.394 0.163 -0.003 0.000 Policy 0.0001 0.005 0.029 0.977 -0.009 0.009 Policy:State 0.2413 0.012 19.716 0.000 0.217 0.265 Policy:adj_year -0.0040 0.001 -3.181 0.001 -0.006 -0.002 State:adj_year -0.0544 0.002 -36.069 0.000 -0.057 -0.051 Policy:State:adj_year 0.0463 0.004 10.775 0.000 0.038 0.055	=======================================	==========		:========	=======	========	=======
Intercept 0.4231 0.004 119.062 0.000 0.416 0.430 adj_year -0.0012 0.001 -1.394 0.163 -0.003 0.000 Policy 0.0001 0.005 0.029 0.977 -0.009 0.009 Policy:State 0.2413 0.012 19.716 0.000 0.217 0.265 Policy:adj_year -0.0040 0.001 -3.181 0.001 -0.006 -0.002 State:adj_year -0.0544 0.002 -36.069 0.000 -0.057 -0.051 Policy:State:adj_year 0.0463 0.004 10.775 0.000 0.038 0.055		coef st	td err	t	P> t	[0.025	0.975]
adj_year							
Policy 0.0001 0.005 0.029 0.977 -0.009 0.009 Policy:State 0.2413 0.012 19.716 0.000 0.217 0.265 Policy:adj_year -0.0040 0.001 -3.181 0.001 -0.006 -0.002 State:adj_year -0.0544 0.002 -36.069 0.000 -0.057 -0.051 Policy:State:adj_year 0.0463 0.004 10.775 0.000 0.038 0.055 ====================================	Intercept	0.4231	0.004	119.062	0.000	0.416	0.430
Policy:State 0.2413 0.012 19.716 0.000 0.217 0.265 Policy:adj_year -0.0040 0.001 -3.181 0.001 -0.006 -0.002 State:adj_year -0.0544 0.002 -36.069 0.000 -0.057 -0.051 Policy:State:adj_year 0.0463 0.004 10.775 0.000 0.038 0.055	adj_year	-0.0012	0.001	-1.394	0.163	-0.003	0.000
Policy:adj_year -0.0040 0.001 -3.181 0.001 -0.006 -0.002 State:adj_year -0.0544 0.002 -36.069 0.000 -0.057 -0.051 Policy:State:adj_year 0.0463 0.004 10.775 0.000 0.038 0.055	Policy	0.0001	0.005	0.029	0.977	-0.009	0.009
State:adj_year -0.0544 0.002 -36.069 0.000 -0.057 -0.051 Policy:State:adj_year 0.0463 0.004 10.775 0.000 0.038 0.055 Omnibus: 28815.198 Durbin-Watson: 0.272 Prob(Omnibus): 0.000 Jarque-Bera (JB): 253345.452 Skew: 2.356 Prob(JB): 0.00	Policy:State	0.2413	0.012	19.716	0.000	0.217	0.265
Policy:State:adj_year 0.0463 0.004 10.775 0.000 0.038 0.055 Omnibus: 28815.198 Durbin-Watson: 0.272 Prob(Omnibus): 0.000 Jarque-Bera (JB): 253345.452 Skew: 2.356 Prob(JB): 0.00	Policy:adj_year	-0.0040	0.001	-3.181	0.001	-0.006	-0.002
Omnibus: 28815.198 Durbin-Watson: 0.272 Prob(Omnibus): 0.000 Jarque-Bera (JB): 253345.452 Skew: 2.356 Prob(JB): 0.00	State:adj_year	-0.0544	0.002	-36.069	0.000	-0.057	-0.051
Prob(Omnibus): 0.000 Jarque-Bera (JB): 253345.452 Skew: 2.356 Prob(JB): 0.00	Policy:State:adj_yea	r 0.0463	0.004	10.775	0.000	0.038	0.055
Prob(Omnibus): 0.000 Jarque-Bera (JB): 253345.452 Skew: 2.356 Prob(JB): 0.00					=======		
Skew: 2.356 Prob(JB): 0.00	Omnibus:	28815.198	Durb	in-Watson:		0.272	
2.000	Prob(Omnibus):	0.000	Jaro	ue-Bera (JB):		253345.452	
Kurtosis: 12.355 Cond. No. 45.9	Skew:	2.356	Prob	(JB):		0.00	
	Kurtosis:	12.355	Conc	l. No.		45.9	
	=======================================				=======		

References

- [1] "Overdose Death Rates." *NIDA*, National Institute on Drug Abuse, 29 Jan. 2019, www.drugabuse.gov/related-topics/trends-statistics/overdose-death-rates.
- [2] "ARCOS Registrant Handbook." *ARCOS Registrant Handbook Appendix 5*, www.deadiversion.usdoj.gov/arcos/handbook/appendix5.htm.
- [3] "FIPS Code." *NRCS*, www.nrcs.usda.gov/wps/portal/nrcs/detail/national/home/?&cid=nrcs143_013697.
- [4] "US Census Population Data." *Index of /Programs-Surveys/Popest/Datasets*, www2.census.gov/programs-surveys/popest/datasets/.