ST 705 Linear models and variance components Lab practice problem set 3

January 26, 2022

1. For matrices $A \in \mathbb{R}^{p \times q}$, the spectral norm is defined as,

$$||A||_2 := \sqrt{\sup_{x \neq 0} \frac{x'A'Ax}{x'x}}.$$

Further, the eigenvalues of A'A are the squares of the singular values of A, so sometimes the definition of the spectral norm is expressed as

$$||A||_2 := \sigma_{\max}(A),$$

where σ_{max} denotes the largest singular value of A.

- (a) Verify that the spectral norm is a norm. Recall that a norm must satisfy the following axioms for any $A, B, C \in \mathbb{R}^{p \times q}$ and any $\alpha \in \mathbb{R}$.
 - i. $\|\alpha A\| = |\alpha| \|A\|$
 - ii. $||A + B|| \le ||A|| + ||B||$
 - iii. $||A|| \ge 0$ with equality if and only if A = 0.
- (b) Show that the spectral norm is sub-multiplicative for square matrices. That is, for $A, B \in \mathbb{R}^{p \times p}$, $||AB||_2 \le ||A||_2 ||B||_2$.
- 2. Show that the R^2 value for a simple linear regression can never achieve 1 if the observed data consists of repeated (different) observations of the response, y, at the same value of the predictor, x.