

Explainable SVM Digitalization Project "Webtools for teaching"

H. Pfaff, L. Atkinson, L. Jordan & Y. Er Frankfurt University of Applied Sciences Faculty of Computer Science and Engineering

Wissen durch Praxis stärkt

Agenda

Introduction

Support Vector Machines

Used Technologies

Live Demo

Solved Challenges

Conclusion

Introduction

- SVMs important machine learning algorithm
- support web-based teaching via interactive visualizations
- distance learning more important due to Corona

Image by Jan Babroák, unsplash.com

- supervised learning
- commonly used for classification, also regression
- learning means finding a separating boundary (hyperplane)
- Vapnik & Chervonenkins 1963

Used Technologies

Sources: HTML5, CSS3 CC-BY 3.0, jQuery, Bootstrap, MathJax, Plotly.

Solved Challenges: D3 vs Plotly

- d3 is very flexible
- d3 is very low-level, SVG-oriented
- Plotly has standard pipelines for common plot types
- Plotly is still very customizable (builds upon d3)

Solved Challenges: Plotting

- smoothing
 - use sigmoid function instead of sign
- drawing the separating boundary
 - drawing a line doesn't work for all kernels
 - calculating line equation is difficult
 - simple trick: use a 2-level contour plot

Solved Challenges: Data Sets

*implemented Python script to generate new data sets

Solved Challenges: SVM Implementation

Implemented API:

- \blacksquare svm = new SVM({ X, y, C, tol, kernel })
 - kernel can be any function (x, y) -> float
- classification = svm.output(point)
- svm.main_routine()
- svm.main_routine_step({examine_all})

based on Support Vector Machines Succinctly by Alexandre Kowalczyk

Conclusion

- built a wonderful SVM visualization
- great teamwork, complementary skills
- future work
 - step through SVM convergence
 - drawing margins around the hyperplane
 - more complex visualizations
 - more kernel functions

