Introduction to Data Mining

Outline

- What motivated data mining?
- What is data mining?
- Data mining on what kind of data?
- Data mining functionalities
- Are all of the patterns interesting?
- Classification of data mining systems
- Major issues in data mining
- Summary

What Motivated Data Mining?

- Data explosion problem
 - Automated data collection tools and mature database technology lead to tremendous amounts of data stored in databases, data warehouses and other information repositories
- We are drowning in data, but starving for knowledge!
- Solution: Data warehousing and data mining
 - Data warehousing and on-line analytical processing (OLAP).
 - Extraction of interesting knowledge (rules, regularities, patterns, constraints) from data in large databases.

Evolution of Database Technology

- 1960s and earlier:
 - Data collection, database creation
- > 1970s early 1980s:
 - Hierarchical and network database systems
 - Relational database systems, SQL language.
- Mid 1980s present:
 - Advanced data models (extended-relational, OO, deductive, etc.)
 - Application-oriented DBMS (spatial, scientific, engineering, etc.)
- Late 1980s present:
 - Data warehousing and data mining
- 1990s present:
 - Web database, XML-based Database Systems
 - Web mining
- **▶** 2000 − ...:
 - New Generation of Integrated Information Systems

What Is Data Mining?

- Data mining (knowledge discovery in databases):
 - Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) information or patterns from data in large databases
- Alternative names:
 - Data mining: a misnomer?
 - Knowledge discovery(mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
- What is not data mining?
 - Deductive) query processing.
 - Expert systems or small statistical programs

Why Data Mining? Potential Applications

- Database analysis and decision support
 - Market analysis and management
 - target marketing, customer relation management, market basket analysis, cross selling, market segmentation
 - Risk analysis and management
 - Forecasting, customer retention, improved underwriting, quality control, competitive analysis
 - Fraud detection and management
- Other Applications
 - Text mining (news group, email, documents) and Web analysis.
 - Intelligent query answering.

Market Analysis and Management (1)

- Data sources for analysis:
 - Credit card, loyalty cards, discount coupons, customer complaint calls, public lifestyle studies
- Target marketing:
 - Find clusters of "model" customers who share the same characteristics: interest, income level, spending habits, etc.
- Determine customer purchasing patterns over time
 - Conversion of single to a joint bank account: marriage, etc.
- Cross-market analysis
 - Associations/co-relations between product sales.
 - Prediction based on the association information.

Market Analysis and Management (2)

- Customer profiling
 - What types of customers buy what products (clustering or classification).
- Identifying customer requirements
 - Identifying the best products for different customers.
 - Use prediction to find what factors will attract new customers.
- Provides summary information
 - Various multidimensional summary reports.
 - Statistical summary

Corporate Analysis and Risk Management

- Finance planning and asset evaluation
 - Cash flow analysis and prediction.
 - Cross-sectional and time series analysis (financialratio, trend analysis, etc).
- Resource planning
 - Summarize and compare the resources and spending.
- Competition
 - Monitor competitors and market directions.
 - Group customers into classes and a class-based pricing procedure.
 - Set pricing strategy in a highly competitive market.

Fraud Detection and Management (1)

Applications

Widely used in health care, retail, credit card services, telecommunications (phone card fraud), etc.

Approach

Use historical data to build models of fraudulent behavior and use data mining to help identify similar instances.

Examples:

- auto insurance: detect a group of people who stage accidents to collect on insurance.
- money laundering: detect suspicious money transactions (US Treasury's Financial Crimes Enforcement Network).
- medical insurance: detect professional patients and ring of doctors and ring of references.

Fraud Detection and Management (2)

- Detecting inappropriate medical treatment
 - Australian Health Insurance Commission identifies that in many cases blanket screening tests were requested (save Australian \$1m/yr).
- Detecting telephone fraud
 - Telephone call model: destination of the call, duration, time of day or week. Analyze patterns that deviate from an expected norm.
 - British Telecom identified discrete groups of callers with frequent intra-group calls, especially mobile phones, and broke a multimillion dollar fraud.

Retail

Analysts estimate that 38% of retail shrink is due to dishonest employees.

Other Applications

Sports

▶ IBM Advanced Scout analyzed NBA game statistics (shots blocked, assists, and fouls) to gain competitive advantage for New York Knicks and Miami Heat.

Astronomy

JPL and the Palomar Observatory discovered 22 quasars with the help of data mining.

Internet Web Surf-Aid

IBM Surf-Aid applies data mining algorithms to Web access logs for market-related pages to discover customer preference and behavior pages, analyzing effectiveness of Web marketing, improving Web site organization, etc.

Data Mining: A KDD Process

Knowledge Data mining: the core of knowledge discovery **Evaluation and Presentation** process. **Data Mining Patterns** Selection and **Transformation** Task-relevant Data Data **Data Cleaning** warehouse **Data Integration** Flat files **Databases**

Steps of a KDD Process

- Learning the application domain:
 - relevant prior knowledge and goals of application.
- Creating a target data set: data selection.
- Data cleaning and preprocessing: (may take 60% of effort!)
- Data reduction and transformation:
 - Find useful features, dimensionality/variable reduction, invariant representation.
- Choosing functions of data mining.
 - summarization, classification, regression, association, clustering.
- Choosing the mining algorithm(s)
- Data mining: search for patterns of interest.
- Pattern evaluation and knowledge presentation:
 - visualization, transformation, removing redundant patterns, etc.
- Use of discovered knowledge.

Data Mining and Business Intelligence

Architecture: Typical Data Mining System

Data Mining: On What Kind of Data?

- Relational databases
- Data warehouses
- Transactional databases
- Advanced DB and information repositories
 - Object-oriented and object-relational databases
 - Spatial databases
 - Time-series data and temporal data
 - Text databases and multimedia databases
 - Heterogeneous and legacy databases
 - The WWW

> Relational Databases

Cust_ID	Name	Address	Age	Income	Category
123	M.Kannan	123, south st,	34	34000	2

Data Warehouses

A data warehouse is a repository of information collected from multiple sources, stored under a unified schema, and usually resides at a single site.

Data warehouses are constructed via a process of data cleaning, data integration, data transformation, data loading, and periodic data refreshing.

Transactional Databases

A transactional database consists of a file where each record represents a transaction. A transaction typically includes a unique transaction identity number (trans_ID) and a list of the items making up the transaction.

Advanced Data and Information Systems and Advanced Applications

- Object-Relational Databases
- A set of **variables** that describe the object (also called attributes)
- A set of **messages** that the object can use to communicate with other objects
- A set of **methods**, where each method holds the code to implement a message.
- > Temporal Databases, Sequence Databases, and Time-Series Databases
- Temporal database typically stores relational data that including time-related attributes.
- Data mining techniques can be used to find the characteristics of object, evolution or the trend of changes for objects in the database.
- > Spatial Databases and Spatiotemporal Databases
- Spatial database contain spatial-related information
- Geographic database, very large-scale integration or computed-aided design databases, and medical and satellite image databases.
- Geographic databases are commonly used in vehicle navigation and dispatching systems.

Text Databases and Multimedia Databases

- Text databases are databases that contain word descriptions for objects
- These word descriptions are usually not simple keywords
- By mining text data, one may uncover general and concise descriptions of the text documents, keyword or content associations
- Multimedia databases store image, audio, and video data
- Content-based retrieval, voice-mail systems, video-on-demand systems, the World Wide Web, and speech-based user interfaces recognize spoken commands

Heterogeneous Databases and Legacy Databases

• A heterogeneous database consists of a set of interconnected, autonomous component database

Data Streams

- Data flow in and out of an observation platform (or window) dynamically
- Power supply, network traffic, stock exchange, telecommunication, web click streams video surveillance, and weather or environment monitoring

> The World Wide Web

- Capturing user access patterns in a distributed information environment is called Web usage mining (or Weblog mining).
- Automated Web page clustering and classification help group and arrange web pages in a multidimensional manner based on their contents.
- Web community analysis helps to identify hidden Web social networks and communities and observe their evolution.

