Qualifying Exam Cram Sheet

John Mastroberti

August 13, 2021

Contents

1 Electromagnetism			gnetism	3
	1.1	Basics	_	3
		1.1.1	Maxwell's equations	3
		1.1.2	Lorentz Force Law	3
		1.1.3	Definition of $\mathbf D$ and $\mathbf H$	3
		1.1.4	Potentials	3
		1.1.5	Charge Density	3
	1.2	Laplac	ee's Equation and Solutions	4
		1.2.1	2D Rectangular Coordinates	4
		1.2.2	2D Polar Coordinates	4
		1.2.3	3D Spherical with Azimuthal Symmetry	4
		1.2.4	3D Spherical without Azimuthal Symmetry	4
	1.3	The A	ddition Theorem	4
	1.4	The M	Iultipole Expansion	4
		1.4.1	Spherical Coordinates	4
		1.4.2	Rectangular Dipole and Quadrupole Moments	5
	1.5	Magne	tism	5
		1.5.1	Magnetic Field Due to Current Distribution	5
		1.5.2	Magnetic Dipole Moment	5
		1.5.3	Magnetostatic Boundary Value Problems	5
	1.6	Bound	ary Value Problem Matching Conditions	6
	1.7	Field I	Energy and Momentum	6
		1.7.1	Energy Density	6
		1.7.2	Momentum Density	6
		1.7.3	Energy Conservation	6
	1.8	Electro	omagnetic Waves	6
		1.8.1	Equations	6
		1.8.2	Reflection/Refraction	6

	1.9	Radiation				
		1.9.1 Power Radiated				
	1.10	Relativity				
2	Med	Techanics 8				
	2.1	Basics				
	2.2	Orbital Motion				
	2.3	Non-inertial Coordinate Systems				
	2.4	Lagrangian Dynamics				
	2.5	Small Oscillations				
	2.6	Rigid Body Rotations				
3	Qua	intum Mechanics 10				
	3.1	Basics				
	3.2	Common Potentials				
		3.2.1 Particle in a Box				
		3.2.2 Simple Harmonic Oscillator				
		3.2.3 Hydrogen Atom				
	3.3	Angular Momentum				
		3.3.1 Basics				
		3.3.2 Addition of Angular Momentum				
	3.4	Approximation Methods				
		3.4.1 Perturbation Theory				
		3.4.2 Variational Principle				
		3.4.3 WKB				
	3.5	Scattering (Born Approximation)				
	3.6	Many Body Theory				
4	Statistical Physics 15					
_	4.1	Basics				
	4.2	Canonical Ensemble				
	4.3	Grand Canonical Ensemble				
	4.4	Quantum Statistical Mechanics				
		4.4.1 Bose Systems				
		4.4.2 Fermi Systems				

1 Electromagnetism

1.1 Basics

1.1.1 Maxwell's equations

$$\nabla \cdot \mathbf{D} = \rho$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

1.1.2 Lorentz Force Law

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

1.1.3 Definition of D and H

In terms of \mathbf{P} and \mathbf{M} ,

$$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P}$$
$$\mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}$$

In linear media,

$$\mathbf{D} = \epsilon \mathbf{E}$$

$$\mathbf{H} = \frac{1}{\mu} \mathbf{B}$$

1.1.4 Potentials

$$\mathbf{E} = -\nabla \Phi \qquad \qquad \Phi(\mathbf{x}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3 x' + \frac{1}{4\pi\epsilon_0} \oint \frac{\sigma(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} da$$

$$\mathbf{B} = \nabla \times \mathbf{A} \qquad \qquad \mathbf{A}(\mathbf{x}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3 x'$$

1.1.5 Charge Density

$$\sigma = -\epsilon_0 \frac{\partial \Phi}{\partial \hat{n}}$$

1.2 Laplace's Equation and Solutions

In a source free region, both \mathbf{E} and \mathbf{H} can be written as the gradient of a scalar potential which satisfies Laplace's equation,

$$\nabla^2 \Phi = 0$$

1.2.1 2D Rectangular Coordinates

$$\Phi(x,y) = \sum_{k} (A_k \sinh(kx) + B_k \cosh(kx))(C_k \sin(ky) + D_k \cos(ky))$$

Coefficients and allowed values of k are determined by boundary conditions

1.2.2 2D Polar Coordinates

$$\Phi(r,\phi) = \sum_{n} (A_n r^n + B_n r^{-n}) (C_n \cos n\phi + D_n \sin n\phi)$$

1.2.3 3D Spherical with Azimuthal Symmetry

$$\Phi(r,\theta) = \sum_{l} \left(A_{l} r^{l} + \frac{B_{l}}{r^{l+1}} \right) P_{l}(\cos \theta)$$

1.2.4 3D Spherical without Azimuthal Symmetry

$$\Phi(r,\theta) = \sum_{l,m} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) Y_{lm}(\theta,\phi)$$

1.3 The Addition Theorem

$$\frac{1}{|\mathbf{x} - \mathbf{x}'|} = 4\pi \sum_{l} \sum_{m} \frac{1}{2l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{lm}^{*}(\theta', \phi') Y_{lm}(\theta, \phi)$$

1.4 The Multipole Expansion

1.4.1 Spherical Coordinates

$$\Phi(\mathbf{x}) = \frac{1}{4\pi\epsilon_0} \sum_{l} \sum_{m} \frac{4\pi}{2l+1} q_{lm} \frac{Y_{lm}(\theta, \phi)}{r^{l+1}}$$
$$q_{lm} = \int Y_{lm}^*(\theta', \phi') r'^{l} \rho(\mathbf{x}') d^3 x'$$

1.4.2 Rectangular Dipole and Quadrupole Moments

$$\mathbf{p} = \int \mathbf{x}' \rho(\mathbf{x}') d^3 x'$$

$$Q_{ij} = \int (3x_i' x_j' - r'^2 \delta_{ij}) \rho(\mathbf{x}') d^3 x'$$

$$\Phi(\mathbf{x}) = \frac{1}{4\pi\epsilon_0} \left[\frac{q}{r} + \frac{\mathbf{p} \cdot \mathbf{x}}{r^3} + \frac{1}{2} \sum_{i,j} Q_{ij} \frac{x_i x_j}{r^5} \right]$$

1.5 Magnetism

1.5.1 Magnetic Field Due to Current Distribution

$$\mathbf{B} = \frac{\mu_0}{4\pi} \int \mathbf{J}(\mathbf{x}') \frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|} d^3 x'$$

1.5.2 Magnetic Dipole Moment

$$\mathbf{m} = \frac{1}{2} \int \mathbf{x}' \times \mathbf{J}(\mathbf{x}') d^3 x'$$

$$m = IA \qquad \text{(for a loop)}$$

$$\mathbf{B} = \frac{\mu_0}{4\pi} \frac{3\hat{\mathbf{n}}(\hat{\mathbf{n}} \cdot \mathbf{m}) - \mathbf{m}}{r^3}$$

1.5.3 Magnetostatic Boundary Value Problems

1. Source Free

$$\mathbf{H} = -\boldsymbol{\nabla}\Phi_M$$
$$\nabla^2 \Phi_M = 0$$

2. Hard Ferromagnets (M given)

$$\rho_M = -\nabla \cdot \mathbf{M}$$

$$\sigma_M = \hat{\mathbf{n}} \cdot \mathbf{M}$$

$$\Phi_M(\mathbf{x}) = \frac{1}{4\pi} \int \frac{\rho_M(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3 x' + \frac{1}{4\pi} \oint \frac{\sigma_M(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} da$$

1.6 Boundary Value Problem Matching Conditions

$$\begin{aligned} & (\mathbf{D}_2 - \mathbf{D}_1) \cdot \hat{\mathbf{n}} = \sigma \\ & (\mathbf{E}_2 - \mathbf{E}_1) \times \hat{\mathbf{n}} = 0 \\ & (\mathbf{B}_2 - \mathbf{B}_1) \cdot \hat{\mathbf{n}} = 0 \\ & (\mathbf{H}_2 - \mathbf{H}_1) \times \hat{\mathbf{n}} = -\mathbf{K} \text{ (surface current density)} \end{aligned}$$

1.7 Field Energy and Momentum

1.7.1 Energy Density

$$u = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H})$$

1.7.2 Momentum Density

$$\mathbf{g} = \frac{1}{c^2} \mathbf{S}$$
$$\mathbf{S} = \mathbf{E} \times \mathbf{H}$$

1.7.3 Energy Conservation

$$\frac{\partial u}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{S} = -\mathbf{J} \cdot \mathbf{E}$$

1.8 Electromagnetic Waves

1.8.1 Equations

$$\mathbf{E} = \mathbf{E}_0 e^{i(k\hat{\mathbf{n}} \cdot \mathbf{x} - \omega t)}$$
$$\mathbf{H} = \hat{\mathbf{n}} \times \mathbf{E}/Z$$

1.8.2 Reflection/Refraction

1. Index of Refraction

$$n = \sqrt{\frac{\mu \epsilon}{\mu_0 \epsilon_0}}$$

- 2. Normal Incidence
 - ullet Transverse components of ${f E}$ and ${f H}$ are continuous

• Reflection and transmission coefficients:

$$T = \frac{2n}{n'+n}$$
$$R = \pm \frac{n-n'}{n+n'}$$

1.9 Radiation

1.9.1 Power Radiated

$$\frac{dP}{d\Omega} = \frac{1}{2} \text{Re}[r^2 \hat{\mathbf{n}} \cdot \mathbf{E} \times \mathbf{H}^*]$$
$$= \frac{c^2 Z_0}{32\pi^2} k^4 |(\hat{\mathbf{n}} \times \mathbf{p}) \times \hat{\mathbf{n}}|^2 \text{ (for dipole radiation)}$$

1.10 Relativity

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

$$\Gamma = \begin{pmatrix} \gamma & \pm \gamma \beta & 0 & 0 \\ \pm \gamma \beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$p_{\mu}p^{\mu} = m^2$$

$$E = \gamma mc^2$$

$$\mathbf{p} = \gamma m\mathbf{u}$$

$$U_{\mu} = (\gamma c, \gamma \mathbf{u})$$

$$p_{\mu} = mU_{\mu}$$

2 Mechanics

2.1 Basics

$$\mathbf{F} = \dot{\mathbf{p}}$$

 $\mathbf{\Gamma} = \mathbf{r} \times \mathbf{F}$
 $\mathbf{L} = \mathbf{r} \times \mathbf{p}$

2.2 Orbital Motion

$$V_{eff}(r) = V(r) + \frac{\ell^2}{2mr^2}$$

- Circular orbits \rightarrow minimum of V_{eff}
- Minimum and maximum r values for a non-circular orbit \rightarrow solutions of $V_{eff}=E$

$$\phi = \pm \frac{\ell}{\sqrt{2m}} \int dr \, r^{-2} [E - V_{eff}(r)]^{-1/2}$$

2.3 Non-inertial Coordinate Systems

$$\ddot{\mathbf{r}}_{body} = \frac{\mathbf{F}^{(e)}}{m} - \ddot{\mathbf{a}}_{inertial} - 2\boldsymbol{\omega} \times \dot{\mathbf{r}}_{body} - \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{\hat{r}}) - \dot{\boldsymbol{\omega}} \times \mathbf{r}$$

2.4 Lagrangian Dynamics

$$\mathcal{L} = T - V$$

$$\frac{\partial \mathcal{L}}{\partial q} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}}$$

With constraints

$$f_j(q_1,\ldots,q_n,t) = c_j, j = 1,\ldots,k$$

the Euler-Lagrange equation becomes

$$\frac{d\mathcal{L}}{d\dot{q}_{\sigma}} - \frac{\partial \mathcal{L}}{\partial q_{\sigma}} = \sum_{j=1}^{k} \lambda_{j} \frac{\partial f_{j}}{\partial q_{\sigma}}, \, \sigma = 1, \dots, n$$

where the constraint forces are given by the right hand side,

$$Q_{\sigma} = \sum_{j=1}^{k} \lambda_j \frac{\partial f_j}{\partial q_{\sigma}}$$

2.5 Small Oscillations

First, expand the coordinates around their equilibrium values:

$$q_{\sigma} = q_{\sigma}^{0} + \eta_{\sigma}$$
$$\dot{q}_{\sigma} = \dot{\eta}_{\sigma}$$

Then, working to quadratic order in η , write T and V as

$$T = \frac{1}{2} \sum_{\sigma} \sum_{\lambda} m_{\sigma\lambda} \dot{\eta}_{\sigma} \dot{\eta}_{\lambda}$$
$$V = \frac{1}{2} \sum_{\sigma} \sum_{\lambda} v_{\sigma\lambda} \eta_{\sigma} \eta_{\lambda}$$

This determines the \underline{m} and \underline{v} matrices. Finally, the normal mode frequencies are found via

$$0 = \det[\underline{v} - \omega^2 \underline{m}]$$

and the normal mode eigenvectors ρ via

$$0 = (\underline{v} - \omega^2 \underline{m}) \boldsymbol{\rho}$$

2.6 Rigid Body Rotations

$$\begin{split} \mathbf{L} &= \underline{I}\boldsymbol{\omega} \\ T &= \frac{1}{2}\mathbf{L}\cdot\boldsymbol{\omega} \\ I_1\dot{\omega}_1 &= \omega_2\omega_3(I_2-I_3) + \Gamma_1^{(e)} \text{ (and cyclic permutations)} \end{split}$$

3 Quantum Mechanics

3.1 Basics

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{x}, t) = H\Psi(\mathbf{x}, t)$$

$$H\psi(\mathbf{x}) = E\psi(\mathbf{x})$$

$$\psi(\mathbf{x}, t) = \sum_{n} c_{n} \psi_{n}(\mathbf{x}) e^{-iEt/\hbar}$$

$$H = \frac{p^{2}}{2m} + V$$

$$p = -i\hbar \frac{\partial}{\partial x}$$

$$[x, p] = i\hbar$$

$$\sigma_{A}\sigma_{B} \ge \left| \frac{1}{2i} \langle [A, B] \rangle \right|$$

- Matching conditions: $\psi(x)$ and $\psi'(x)$ are continuous
 - $-\psi'(x)$ is discontinuous in the presence of a delta function potential
 - In that case, determine the discontinuity in $\psi'(x)$ by integrating the Schrodinger equation over a small interval surrounding the delta function

3.2 Common Potentials

3.2.1 Particle in a Box

$$V(x) = \begin{cases} 0 & x \in [0, a] \\ \infty & \text{otherwise} \end{cases}$$
$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$$
$$E_n = \frac{\hbar^2 n^2 \pi^2}{2ma^2}$$

3.2.2 Simple Harmonic Oscillator

$$V(x) = \frac{1}{2}m\omega^2 x^2$$
$$a = \frac{1}{\sqrt{2\hbar m\omega}}(m\omega x + ip)$$

$$[a, a^{\dagger}] = 1$$

$$N = a^{\dagger} a$$

$$H = \hbar \omega \left(N + \frac{1}{2} \right)$$

$$E_n = \hbar \omega \left(n + \frac{1}{2} \right)$$

$$\psi_0(x) = \left(\frac{m\omega}{\pi \hbar} \right)^{1/4} \exp\left(-\frac{m\omega}{2\hbar} x^2 \right)$$

$$\psi_n(x) = \frac{1}{\sqrt{n!}} (a^{\dagger})^n \psi_0(x)$$

$$a^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$$

$$a |n\rangle = \sqrt{n} |n-1\rangle$$

$$x \propto a + a^{\dagger}$$

$$p \propto a - a^{\dagger}$$

3.2.3 Hydrogen Atom

$$V(\mathbf{x}) = -\frac{Ze^2}{r}$$

$$\psi_{nlm}(\mathbf{x}) = R_{nl}(r)Y_{lm}(\theta, \phi)$$

$$E_n = -\frac{Z^2e^2}{2n^2a_0}$$

$$E_1 = -13.6\text{eV}$$

3.3 Angular Momentum

3.3.1 Basics

$$\begin{split} [L_x,L_y] &= i\hbar L_z \\ L_z \, |l,m\rangle &= \hbar m \, |l,m\rangle \\ L^2 \, |l,m\rangle &= \hbar^2 l(l+1) \, |l,m\rangle \\ L_\pm &= L_x \pm i L_y \\ L_\pm \, |l,m\rangle &= \hbar \sqrt{(l\mp m)(l\pm m+1)} \, |l,m\pm 1\rangle \\ \sigma_x &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ \sigma_y &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \end{split}$$

$$\sigma_z = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

• Allowed values of $m: -l, -l+1, \ldots, +l$

3.3.2 Addition of Angular Momentum

$$\mathbf{J} = \mathbf{L}_1 + \mathbf{L}_2$$

$$J^2 = L_1^2 + L_2^2 + 2\mathbf{L}_1 \cdot \mathbf{L}_2$$

$$\mathbf{L}_1 \cdot \mathbf{L}_2 = \frac{1}{2}(J^2 - L_1^2 - L_2^2)$$

$$|j, j_z\rangle = \sum C_{l_1, l_2, m_1, m_2} |l_1, m_1; l_2, m_2\rangle$$

$$j_z = m_1 + m_2$$

$$j = l_1 + l_2, l_1 + l_2 - 1, \dots, |l_1 - l_2|$$

$$|l_1 + l_2, l_1 + l_2\rangle = |l_1, l_1; l_2, l_2\rangle$$

- $|l_1 + l_2, j_z\rangle$ is constructed by repeatedly applying J_- to $|j,j\rangle$.
- $|j,j_z\rangle$ is constructed by walking down the allowed values of j starting from l_1+l_2
 - Construct $|j-1,j-1\rangle$ from $|j,j-1\rangle$ by finding the linear combination of allowed m_1 and m_2 that is orthogonal to $|j,j-1\rangle$
 - Construct $|j-1,j_z\rangle$ by applying the lowering operator

3.4 Approximation Methods

3.4.1 Perturbation Theory

$$H = H_0 + V$$

$$V_{mn} = \left\langle m^{(0)} \mid V \mid n^{(0)} \right\rangle$$

$$E_n^{(1)} = V_{nn}$$

$$\left| n^{(1)} \right\rangle = \sum_{m \neq n} \frac{V_{mn}}{E_n^{(0)} - E_m^{(0)}} \left| m^{(0)} \right\rangle$$

$$E_n^{(2)} = \sum_{m \neq n} \frac{\left| V_{nm} \right|^2}{E_n^{(0)} - E_m^{(0)}}$$

• In a degenerate subspace where all states have energy E_D under H_0 , the first order correction to the energy is found via

$$0 = \det[V - (E - E_D)]$$

3.4.2 Variational Principle

$$E_0 \le \frac{\langle \psi \mid H \mid \psi \rangle}{\langle \psi \mid \psi \rangle}$$

3.4.3 WKB

$$p(x) = \sqrt{2m(E - V(x))}$$

$$\psi(x) \sim \frac{C}{\sqrt{p(x)}} e^{\pm \frac{i}{\hbar} \int p(x) dx}$$

$$\int_{x_1}^{x_2} p(x') dx' = \begin{cases} \left(n + \frac{1}{2}\right) \hbar \pi & \text{no hard walls} \\ \left(n + \frac{3}{4}\right) \hbar \pi & \text{one hard wall} \\ (n+1) \hbar \pi & \text{two hard walls} \end{cases}$$

where x_1 and x_2 are the classical turning points (roots of p(x))

3.5 Scattering (Born Approximation)

$$f^{(1)}(\mathbf{k}, \mathbf{k}') = -\frac{m}{2\pi\hbar^2} \int d^3x' \, e^{i(\mathbf{k} - \mathbf{k}') \cdot \mathbf{x}'} V(\mathbf{x}')$$

$$q = |\mathbf{k} - \mathbf{k}'| = 2k \sin\frac{\theta}{2}$$

$$f^{(1)}(\theta) = -\frac{2m}{\hbar^2} \frac{1}{q} \int_0^\infty rV(r) \sin qr \, dr$$

$$\frac{d\sigma}{d\Omega} = |f(\mathbf{k}', \mathbf{k})|^2$$

$$\operatorname{Im} f(\mathbf{k}, \mathbf{k}) = \frac{k}{4\pi} \sigma_{tot}$$

3.6 Many Body Theory

- Boson wave functions are symmetric under any particle exchange
- Fermion wave functions are antisymmetric under any particle exchange

- For wave-functions with a spatial component and a spin component,
 - Boson: symmetric in both or antisymmetric in both
 - Fermion: symmetric in one and antisymmetric in the other

4 Statistical Physics

4.1 Basics

$$S = k_B \log \Omega$$

$$\left(\frac{\partial S}{\partial E}\right)_{N,V} = \frac{1}{T}$$

$$dE = -PdV + TdS + \mu dN$$

$$C_V = \left(\frac{\partial U}{\partial T}\right)_{V,N}$$

• Isothermal: dT = 0

• Adiabatic: dS = 0

4.2 Canonical Ensemble

$$Z = \sum_{states} e^{-\beta E}$$

$$\langle O \rangle = \frac{1}{Z} \sum_{s} O(s) e^{-\beta E}$$

$$\sum_{s} \to \int \frac{d^{3}x \, d^{3}p}{h^{3}}$$

$$U = -\frac{\partial}{\partial \beta} \log Z$$

$$A = U - TS = -k_{B}T \log Z$$

$$dA = -PdV - SdT$$

• Partition function for an ideal gas molecule:

$$Z_1 = \frac{V}{\lambda^3}$$

$$\lambda = \sqrt{\frac{h^2}{2\pi m k_B T}}$$

• In general, for a system of non-interacting particles, the total partition function obeys

$$Z = \frac{1}{N!} Z_1^N$$

where Z_1 is the partition function for one particle, and the 1/N! factor is necessary if the particles are indistinguishable

4.3 Grand Canonical Ensemble

$$Z_G = \sum_{states} e^{-\alpha N - \beta E}$$

$$U = -\frac{\partial}{\partial \beta} \log Z_G$$

$$\mathcal{N} = -\frac{\partial}{\partial \alpha} \log Z_G$$

$$\alpha = -\beta \mu$$

$$y = e^{-\alpha} = e^{\mu/k_B T}$$

$$Z_G = \sum_N y^N Z(N, \beta)$$

$$\Phi_G = -k_B T \log Z_G = U - TS - \mu \mathcal{N} = -PV$$

4.4 Quantum Statistical Mechanics

$$Z_G = \prod_n [1 - \eta e^{-\beta(E_n - \mu)}]^{-\eta}$$

$$\langle N_n \rangle = \frac{1}{y^{-1} e^{\beta E_n} - \eta}$$

$$D(E) = \frac{g(E)}{V} = \frac{1}{V} \sum_{\mathbf{k}} (E - E_{\mathbf{k}})$$

$$\varrho = \int \frac{D(E)}{y^{-1} e^{\beta E} - 1} dE$$

$$\log Z_G = -\eta V \int_0^\infty \log(1 - \eta y e^{-\beta E}) D(E) dE$$

• $\eta = +1$ for bosons, -1 for fermions

4.4.1 Bose Systems

• y = 1 at Bose-Einstein Condensation, and in all cases for photons

4.4.2 Fermi Systems

$$\varrho = \int_0^{E_F} D(E) \, dE$$

• Any other Fermi parameter (Fermi temperature, Fermi momentum, etc) is determined from the relationship between energy and that parameter (E.g. $T_F = E_F/k_B$)