McKinsey & Company

Hack the Crash!

Hackers handbook

11-13 Oct – HackUPC

Problem statement

Data Dictionary

Problem statement

Data Dictionary

Problem statement

Road transport in UK is very popular for various reasons, but the rate of road-accidents and fatality in the country is high. Pressure on roads has been on increase and the number of vehicles is increasing by leaps and bounds

McKinsey, as a trusted advisor for both private and public sector, was asked to help solving the problem by predicting accident severity. For that task, they need the best team of data scientists – that is you

Problem statement

As data scientists, you are now responsible for developing a **model predicting accident severity** based on:

Road location

Road type and its speed limit

Weather conditions

Details of vehicles involved in the accident

Predicting accident severity will help the authorities closely monitor accident prone road segments and do a root cause analysis for such mishaps. This will also help them in planning the setup of emergency infrastructure such as hospitals, police stations etc.

Evaluation metrics

The solution will be evaluated in the following dimensions

F1-score

How accuracy does the model perform on private test dataset, according to F1-score?

Clarity

Is the source code and documentation structured in a concise and readable way?

Novelty

How novel is the solution in terms of feature engineering, modelling, validation, etc?

Insights & business plan

What insights are discovered during the hackathon? What are the actionable points to make the model useful in production? What business plan would you propose in order to solve this challenge in real life? How would you translate your results into an actionable plan? How would you include software and IT infrastructure to create an automated solution?

Prize

Nintendo® Switch lite per participant of the team

Problem statement

Data Dictionary

Data dictionary – Accident data

Variable			

Accident Index Unique ID for accident

Number of Vehicles Number of vehicles involved in accident

Number of Casualties Number of casualties involved in accident

Light Conditions Lighting conditions at the junction during accident

1st Road Class Category of 1st road of junction

Road Type Type of road

Junction Detail Details of Junction

Junction Control Traffic control facilities at the junction

2nd Road Class Category of 2nd road of junction

Pedestrian Crossing-Human Control Status of human-controlled pedestrian crossing

Pedestrian Crossing-Physical Facilities Facilities Facilities Facilities

Road Surface Conditions Road surface conditions

Special Conditions at Site Other conditions at the site of accident

Carriageway Hazards Obstacles on road

Police Force Force for the area (eg. Essex, South Wales, Metropolitan Police, etc)

Definition

Location Easting OSGR (Null if not known)

Location variable

Data dictionary – Accident data (Cont'd)

Variable	Definition
Location Northing OSGR (Null if not known)	Location variable
Longitude (Null if not known)	Location variable
Latitude (Null if not known)	Location variable
Local Authority (District)	Local authority for the district
Local Authority (Highway Authority – ONS code)	Local authority for the highway
Urban or Rural Area	Area of accident
Speed limit	Vehicle speed lmit
LSOA of Accident Location	Location variable, Lower Layer Super Output Areas of accidents
1st Road Number	Code for the 1st road of junction
2nd Road Number	Code for the 2nd road of junction
Date (YYYY-MM-DD)	Date of accident
Time (HH:MM)	Time of Accident
Weather Conditions	Weather conditions during accident
Target	(Target) Severity of accident

Data dictionary – Vehicle data

Variable	Definition
Accident Index	Unique ID for vehicle
Vehicle Manoeuvre	Vehicle manoeuvre during accident
Skidding and Overturning	Skidding or overturning of vehicle during accident
Hit Object in Carriageway	Vehicle hit any object in the road
Hit Object off Carriageway	Vehicle hit any object off the road
Journey Purpose of Driver	Journey Purpose of Driver
Sex of Driver	Sex of driver
Age of Driver	Age of driver
Vehicle IMD Decile	The English Index of Multiple Deprivation (IMD) for the vehicle
Driver IMD Decile	The English Index of Multiple Deprivation (IMD) for the driver
Driver Home Area Type	Type of driver's native area
Vehicle Location-Restricted Lane	Location of vehicle on restricted lanes
Junction Location	Location of vehicle at junction
Vehicle Leaving Carriageway	Vehicle Leaving Carriageway

Data dictionary – Vehicle data (Cont'd)

Variable	Definition
Vehicle Type	Type of vehicle
Towing and Articulation	Type of tow/articulation
1st Point of Impact	Point of impact for vehicle
Was Vehicle Left Hand Drive	Binary variable (Yes/No)
Engine Capacity	Vehicle's engine capacity in cubic centimetes
Vehicle Propulsion Code	Fuel type of vehicle
Age of Vehicle (manufacture)	Age of vehicle in years
Vehicle Reference	Reference number for vehicles

Problem statement

Data Dictionary

Submit the hack

Registration

- 1. Set up an account with the information you will receive on your email
- 2. Sign-up on the Box folder
- 3. Access all information there. You will find the following files:
- Training:
 - » accidents.csv
 - » vehicles.csv
- Test: test.csv
- Booklet with problem statement this document

Access Problem Statement/ dataset and build solution

You can submit your solutions multiple times via the file sharing platform

Name your final submission as Final Version and your team members

Assessment

We will run a script that will assess your F1 scores

Your business case will also be assessed on both format and content

Submit the hack (Cont'd)

Type of Files required in a regular submission

A valid submission contains predicted values for the test set. It is a csv file

Participants can make multiple submissions during the contest

What is a Final Submission and how to set it?

Final submission must contain the files mentioned below:

- Final submission file in csv format that contains predicted values of test set
- Zip file containing (Upload under code file section)
 - » Code file to generate the same results as submission.csv file
 - » A Presentation/Document explaining the approach
 - A brief on the approach, which you used to solve the problem.
 - > What data-preprocessing / feature engineering ideas really worked? How did you discover them?
 - What does your final model look like? How did you reach it?
 - > What are your takeaways from the challenge?
 - > What actions would you propose in order to solve the problem you are facing?
 - What would be a tentative business plan?
 - > How would you include the use of software and IT infrastructure in your solution?
 - What would be the economic impact of your solution?
 - > What other applications do you think these results/date could serve to?
 - > How would you translate these insights into technology improvements?

Scratch paper	

Scratch paper	

Scratch paper	

Scratch paper	

Scratch paper	

Scratch paper		