FORMULA SHEET

STAT 620 – Dr. Myung

Continuous R.V.

X	PDF	CDF	E(X)	Var(X)	MGF
$\mathrm{U}(a,b)$	$\frac{1}{b-a}, a \leqslant x \leqslant b, a < b$	$\begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \leqslant x \leqslant b \\ 1, & x > b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}, \ t \neq 0$
$\operatorname{Exp}(\theta)$	$\frac{1}{\theta}e^{-\frac{x}{\theta}}, \ x \geqslant 0$	$\begin{cases} 0, & x < 0 \\ 1 - e^{-\frac{x}{\theta}}, & x \geqslant 0 \end{cases}$	θ	θ^2	$(1-t\theta)^{-1}, \ t<1/\theta$
$\boxed{\operatorname{Gamma}(\alpha,\theta)}$	$\frac{1}{\theta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-x/\theta}, x \geqslant 0$		$\alpha\theta$	$\alpha\theta^2$	$(1-t\theta)^{-\alpha}, \ t<1/\theta$
$\chi^2(r)$	$\frac{1}{\Gamma(r/2)2^{r/2}}x^{\frac{r}{2}-1}e^{-\frac{x}{2}}, x > 0$		r	2r	$(1-2t)^{-r/2}, \ t<1/2$
$N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$		μ	σ^2	$e^{\mu t + \frac{1}{2}\sigma^2 t^2}$
Beta (α, β)	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}, 0 < x < 1$		$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}$	