

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS ENGENHARIA DA COMPUTAÇÃO

SIMULAÇÃO DO FUNCIONAMENTO DO MODELO DE PROTOCOLOS TCP/IP

THAIS DINIZ BRAZ

Orientador: Sandro Renato Dias Centro Federal de Educação Tecnológica de Minas Gerais

> Belo Horizonte Março de 2016

Sumário

1 – Pré	relatório	İİ
1.1	Introdução	ii
1.2	Motivação e objetivo	iii
1.3	Relevância	iii
1.4	Metodologia	iii
1.5	Infraestrutura necessária	iii
1.6	Resultados esperados	۷
1.7	Cronograma	۷
Referêr	icias	v

1 Pré relatório

1.1 Introdução

O impacto da internet no cotidiano do ser humano hoje, pode ser considerado imensurável, está presente em nossas vidas de várias formas e intensidades. (??) define a internet como a composição de duas ou mais redes (grupo de dispositivos conectados que se comunicam) que podem, por sua vez, comunicar entre si. Em outras palavras: a Internet é um método de interconexão de redes físicas e um conjunto de convenções para uso de redes que permite a interação dos computadores que elas alcançam (COMER, 2006) (no contexto atual, podemos considerar computadores como qualquer dispositivo final que tenha capacidade de acesso à internet).

Todas as atividades na internet que envolvem duas ou mais entidades remotas comunicantes são governadas por um protocolo, o qual define um formato e a ordem das mensagens trocadas entre estas entidades, bem como as ações realizadas na transmissão e/ou no recebimento de uma mensagem ou outro evento (KUROSE; ROSS, 2013).

Em 1973, Cerf e Kahn, delinearam estes protocolos, considerados uma nova versão do NCP (Network Control Protocol, software que fornecia a comunicação entre hosts). O artigo publicado sobre o protocolo de controle de transmissão (TCP) incluía conceitos como encapsulamento, datagrama e funções de gateway (FOROUZAN; FEGAN, 2008). O modelo de protocolos TCP/IP é constituído de cinco camadas: física, enlace de dados, rede, transporte e aplicação.

Posteriormente os protocolos de controle de transmissão TCP foi dividido em dois protocolos distintos: TCP (Transmission Control Protocol) e IP (Internetworking Protocol). O IP traria o roteamento de datagramas enquanto o TCP seria responsável pelas funções de níveis mais altos, como segmentação, remontagem e detecção de erros. O protocolo de interligação em rede tornou-se então conhecido como TCP/IP (FOROUZAN; FEGAN, 2008).

Em 1983, o TCP/IP tornou-se o protocolo oficial (em detrimento dos protocolos originais da ARPANET). Ou seja, a partir de então, para usar a Internet para acessar um computador em uma rede diferente, tornou-se necessário executar o TCP/IP. Ele é oficalmente definido pelo RFC 1180 (IETF, 1991): RFCs são documentos técnicos desenvolvidos e mantidos pelo IETF (Internet Enginnering Task Force), instituição que especifica os padrões que serão implementados e utilizados em toda a internet.

Hoje em dia temos á nossa disposição alguns softwares com o objetivo de simular o funcionamento completo de uma rede, como exemplo o Cisco Packege Tracer (SYSTEMS,

2016) e o GNS3 (TECHNOLOGIES, 2016). Ambos são softwares disponíveis gratuitamente e direciocionados para principalmente para o meio acadêmico. O Cisco Packege Tracer (SYSTEMS, 2016) vai além e permite simular protocolos e visualizá-los. No trabalho de conclusão de curso Poletti (POLETTI, 2013) utilizou como base um simulador e implementou novas funcionalidades e aperfeiçoamento de recursos enfatizando as etapas que ocorrem no estabelecimento de conexão TCP.

1.2 Motivação e objetivo

Dada tal importância ao modelo TCP/IP é de grande relevância o entendimento deste e seu funcionamento em cursos voltados para área de tecnologia que tem a disciplina de rede em seu currículo, como Engenharia da Computação, Engenharia Elétrica, Sistemas de Informação e etc. Com o objetivo de facilitar o aprendizado e o conhecimento de como este modelo se comporta foi idealizado neste trabalho a construção de aplicações que simulem cada camada presentes no modelo TCP/IP separadamente, permitindo que essa comunicação flua em uma rede normal.

1.3 Relevância

A contribuição pretendida por esta proposta encontra-se no contexto educacional: criar uma ferramenta de ensino capaz de aprofundar o aprendizado dando uma visão mais aprofundada sobre a pilha de protocolos do modelo TCP/IP.

1.4 Metodologia

- 1. Revisar literatura e pesquisa de artigos publicados que contemplem a área.
- 2. Contemplar possíveis soluções para o problema e avaliar linguagens de programação mais adequada para a implementação.
- 3. Planejar a arquitetura do software e desenvolvimento.
- 4. Realizar sistemática de testes comparando resultados obtidos e desejados.
- 5. Analisar os resultados, elaborar a conclusão e documentação.

1.5 Infraestrutura necessária

Para o desenvolvimento deste trabalho será necessário dois computadores, com sistema operacional Linux, conectados em uma mesma rede.

1.6 Resultados esperados

Este trabalho deve desenvolver quatro aplicações distintas, que representem as camadas de aplicação, transporte, rede e enlace de dados. A comunicação ponto a ponto deverá ocorrer por meio do modelo cliente servidor sobre uma rede existente.

A proposta é que haja um monitoramento do funcionamento em camadas a apartir de uma implementação (a ser definida no projeto) para a validação das PDU's que foram trocadas entre camadas.

1.7 Cronograma

	Março	Abril	Maio	Junho	Julho	Agosto	Setembro	Outubro	Novembro
Definição do Tema									
Elaboração e entrega do pré projeto									
Revisão de Literatura									
Avaliar possíveis soluções para o projeto									
Planejamento da arquitetura do software									
Elaboração e entrega do TCC1									
Desenvolvimento									
Testes									
Análise dos resultados									
Elaboração e entrega do TCC2									

Referências

COMER, D. E. **A interligação de redes com TCP/ip**. 5. ed. Rio de Janeiro: Elsevier, 2006. Citado na página ii.

FOROUZAN, B. A.; FEGAN, S. C. **Protocolo TCP/IP**. 3. ed. São Paulo: McGrow-Hill, 2008. Citado na página ii.

IETF. **A TCP/IP Tutorial**. 1991. Disponível em: https://tools.ietf.org/html/rfc1180>. Acesso em: 9 de março de 2016. Citado na página ii.

KUROSE, J. F.; ROSS, K. W. Redes de Computadores e a internet: uma abordagem top-down. 6. ed. São Paulo: Pearson, 2013. Citado na página ii.

POLETTI, C. Aprimoramento de um simulador didático de redes de computadores. 2013. Disponível em: https://intranet.univates.br/bdu/bitstream/10737/381/1/CristianoPoletti.pdf>. Acesso em: 10 de março de 2016. Citado na página iii.

SYSTEMS, C. What is Cisco Packet Tracer ? 2016. Disponível em: http://www.packettracernetwork.com/>. Acesso em: 10 de março de 2016. Citado na página iii.

TECHNOLOGIES, G. **GNS3^R: The software that empowers network professionals.** 2016. Disponível em: https://www.gns3.com/>. Acesso em: 10 de março de 2016. Citado na página iii.