Section 1:

1. Bag of Words Model.

```
from keras.preprocessing.text import Tokenizer

text = [
    'There was a man',
    'The man had a dog',
    'The dog and the man walked',
]
# using tokenizer
model = Tokenizer()
model.fit_on_texts(text)

#print keys
print(f'Key : {list(model.word_index.keys())}')

#create bag of words representation
rep = model.texts_to_matrix(text, mode='count')
print(rep)
```

Output:

```
Key: ['man', 'the', 'a', 'dog', 'there', 'was', 'had', 'and',
'walked']
[[0. 1. 0. 1. 0. 1. 1. 0. 0. 0.]
  [0. 1. 1. 1. 1. 0. 0. 1. 0. 0.]
  [0. 1. 2. 0. 1. 0. 0. 0. 1. 1.]]
```

2. Create a Bag of Words Model with Sklearn

```
good job miss
0 1 1 1
1 1 0 0
```

3. Feature Extraction with Tf-Idf vectorizer

We can use the TfidfVectorizer() function from the Sk-learn library to easily implement the above BoW(Tf-IDF), model.

```
| ↑ ↓ ⊖ ‡ [
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
sentence_1="This is a good job.I will not miss it for anything"
sentence_2="This is not good at all"
#without smooth IDF
print("Without Smoothing:")
#define tf-idf
tf_idf_vec = TfidfVectorizer(use_idf=True,
                       smooth idf=False,
                        ngram_range=(1,1),stop_words='english') # to use only bigrams ngram_range=(2,2)
#transform
tf_idf_data = tf_idf_vec.fit_transform([sentence_1,sentence_2])
#create dataframe
tf_idf_dataframe=pd.DataFrame(tf_idf_data.toarray(),columns=tf_idf_vec.get_feature_names())
print(tf idf dataframe)
print("\n")
#with smooth
tf_idf_vec_smooth = TfidfVectorizer(use_idf=True,
                       smooth_idf=True,
                        ngram_range=(1,1),stop_words='english')
tf_idf_data_smooth = tf_idf_vec_smooth.fit_transform([sentence_1,sentence_2])
print("With Smoothing:")
tf_idf_dataframe_smooth=pd.DataFrame(tf_idf_data_smooth.toarray(),columns=tf_idf_vec_smooth.get_feature_names())
print(tf_idf_dataframe_smooth)
```

Output:

```
Without Smoothing:
    good job miss
0 0.385372 0.652491 0.652491
1 1.000000 0.000000 0.000000

With Smoothing:
    good job miss
0 0.449436 0.631667 0.631667
1 1.000000 0.000000 0.000000
```

4. Supervised Classification

1. EDA

Sample data:

Out[5]:

		id	comment_text	toxic	severe_toxic	obscene	threat	insult	identity_hate
(0	0000997932d777bf	Explanation\nWhy the edits made under my usern	0	0	0	0	0	0
•	1	000103f0d9cfb60f	D'aww! He matches this background colour I'm s	0	0	0	0	0	0
7	2	000113f07ec002fd	Hey man, I'm really not trying to edit war. It	0	0	0	0	0	0
:	3	0001b41b1c6bb37e	"\nMore\nl can't make any real suggestions on	0	0	0	0	0	0
4	4	0001d958c54c6e35	You, sir, are my hero. Any chance you remember	0	0	0	0	0	0

1.1. Checking for missing values

toxic 0
severe_toxic 0
obscene 0
threat 0
insult 0
identity_hate 0
dtype: int64

1.2. Calculating number of comments under each label

```
In [7]: # Comments with no label are considered to be clean comments.
        # Creating seperate column in dataframe to identify clean comments.
         # We use axis=1 to count row-wise and axis=0 to count column wise
        rowSums = data_raw.iloc[:,2:].sum(axis=1)
        clean comments count = (rowSums==0).sum(axis=0)
        print("Total number of comments = ",len(data_raw))
        print("Number of clean comments = ",clean_comments_count)
        print("Number of comments with labels =",(len(data_raw)-clean_comments_count))
        Total number of comments = 159571
        Number of clean comments = 143346
        Number of comments with labels = 16225
In [8]: categories = list(data raw.columns.values)
         categories = categories[2:]
        print(categories)
        ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
In [9]: # Calculating number of comments in each category
         counts = []
         for category in categories:
            counts.append((category, data_raw[category].sum()))
        df_stats = pd.DataFrame(counts, columns=['category', 'number of comments'])
        df stats
Out[9]:
         category
                    number of comments
        0 toxic
                    15294
         severe toxic
                    1595
        2 obscene
                    8449
        3 threat
                    478
        4 insult
                    7877
        5 identity_hate 1405
```

```
[n [10]: sns.set(font_scale = 2)
         plt.figure(figsize=(15,8))
         ax= sns.barplot(categories, data_raw.iloc[:,2:].sum().values)
         plt.title("Comments in each category", fontsize=24)
         plt.ylabel('Number of comments', fontsize=18)
         plt.xlabel('Comment Type ', fontsize=18)
         #adding the text labels
         rects = ax.patches
         labels = data_raw.iloc[:,2:].sum().values
         for rect, label in zip(rects, labels):
            height = rect.get_height()
             ax.text(rect.get_x() + rect.get_width()/2, height + 5, label, ha='center', va='bottom', fontsize=18)
         plt.show()
```


1.3. Calculating number of comments having multiple labels

```
In [11]: rowSums = data_raw.iloc[:,2:].sum(axis=1)
         multiLabel_counts = rowSums.value_counts()
         multiLabel counts = multiLabel counts.iloc[1:]
         sns.set(font_scale = 2)
         plt.figure(figsize=(15,8))
          ax = sns.barplot(multiLabel_counts.index, multiLabel_counts.values)
         plt.title("Comments having multiple labels ")
         plt.ylabel('Number of comments', fontsize=18)
         plt.xlabel('Number of labels', fontsize=18)
          #adding the text labels
          rects = ax.patches
          labels = multiLabel counts.values
          for rect, label in zip(rects, labels):
             height = rect.get_height()
             ax.text(rect.get_x() + rect.get_width()/2, height + 5, label, ha='center', va='bottom')
         plt.show()
```


1.4. WordCloud representation of most used words in each category of comments

```
In [12]: from wordcloud import WordCloud, STOPWORDS
         plt.figure(figsize=(40,25))
         # toxic
         subset = data_raw[data_raw.toxic==1]
         text = subset.comment_text.values
         cloud toxic = WordCloud(
                                    stopwords=STOPWORDS,
                                    background color='black',
                                    collocations=False,
                                    width=2500,
                                    height=1800
                                   ).generate(" ".join(text))
         plt.subplot(2, 3, 1)
         plt.axis('off')
         plt.title("Toxic",fontsize=40)
         plt.imshow(cloud_toxic)
         # severe_toxic
          subset = data_raw[data_raw.severe_toxic==1]
         text = subset.comment_text.values
          cloud severe toxic = WordCloud(
                                    stopwords=STOPWORDS,
                                    background color='black',
                                    collocations=False,
                                    width=2500,
                                    height=1800
                                   ).generate(" ".join(text))
         plt.subplot(2, 3, 2)
         plt.axis('off')
         plt.title("Severe Toxic",fontsize=40)
         plt.imshow(cloud_severe_toxic)
```

```
# obscene
subset = data_raw[data_raw.obscene==1]
text = subset.comment text.values
cloud obscene = WordCloud(
                          stopwords=STOPWORDS,
                          background color='black',
                          collocations=False,
                          width=2500,
                          height=1800
                         ).generate(" ".join(text))
plt.subplot(2, 3, 3)
plt.axis('off')
plt.title("Obscene", fontsize=40)
plt.imshow(cloud_obscene)
# threat
subset = data raw[data raw.threat==1]
text = subset.comment text.values
cloud_threat = WordCloud(
                          stopwords=STOPWORDS,
                          background color='black',
                          collocations=False,
                          width=2500,
                          height=1800
                         ).generate(" ".join(text))
plt.subplot(2, 3, 4)
plt.axis('off')
plt.title("Threat",fontsize=40)
plt.imshow(cloud_threat)
```

```
# insult
subset = data_raw[data_raw.insult==1]
text = subset.comment text.values
cloud_insult = WordCloud(
                           stopwords=STOPWORDS,
                          background_color='black',
                          collocations=False,
                          width=2500,
                          height=1800
                         ).generate(" ".join(text))
plt.subplot(2, 3, 5)
plt.axis('off')
plt.title("Insult", fontsize=40)
plt.imshow(cloud insult)
# identity hate
subset = data raw[data raw.identity hate==1]
text = subset.comment_text.values
cloud_identity_hate = WordCloud(
                          stopwords=STOPWORDS,
                          background_color='black',
                          collocations=False,
                          width=2500,
                          height=1800
                         ).generate(" ".join(text))
plt.subplot(2, 3, 6)
plt.axis('off')
plt.title("Identity Hate",fontsize=40)
plt.imshow(cloud_identity_hate)
plt.show()
```


2. Data Pre-Processing

```
In [13]: data = data_raw
    data = data_raw.loc[np.random.choice(data_raw.index, size=2000)]
    data.shape

Out[13]: (2000, 8)

In [14]: import nltk
    from nltk.corpus import stopwords
    from nltk.stem.snowball import SnowballStemmer
    import re
    import sys
    import warnings
    if not sys.warnoptions:
        warnings.simplefilter("ignore")
```

2.1. Cleaning Data

```
In [15]: def cleanHtml(sentence):
                cleanr = re.compile('<.*?>')
                cleantext = re.sub(cleanr, ' ', str(sentence))
                return cleantext
           def cleanPunc(sentence): #function to clean the word of any punctuation or special characters
                 \begin{array}{lll} \text{cleaned} &= \text{re.sub}(\text{r'[?|!|\'|"|\#]',r'',sentence}) \\ \text{cleaned} &= \text{re.sub}(\text{r'[.|,|)}|(|\|/|]',\text{r'',cleaned}) \\ \end{array} 
                cleaned = cleaned.strip()
                cleaned = cleaned.replace("\n"," ")
                return cleaned
           def keepAlpha(sentence):
                alpha_sent = ""
                for word in sentence.split():
                    alpha_word = re.sub('[^a-z A-Z]+', ' ', word)
                     alpha_sent += alpha_word
                     alpha_sent += "
                alpha_sent = alpha_sent.strip()
                return alpha_sent
```

```
In [16]: data['comment_text'] = data['comment_text'].str.lower()
   data['comment_text'] = data['comment_text'].apply(cleanHtml)
   data['comment_text'] = data['comment_text'].apply(cleanPunc)
   data['comment_text'] = data['comment_text'].apply(keepAlpha)
   data.head()
```

Out[16]:

۱		id	comment_text	toxic	severe_toxic	obscene	threat	insult	identity_hate
	108305	42fdb3027a4ca9f5	apart from adding the odd word here and there	0	0	0	0	0	0
	65705	afbec12bbe7d9fda	no consensus take it to the npov noticeboard a	0	0	0	0	0	0
	137312	deaa002fef0e89c0	actually most of it is quite good there are a	0	0	0	0	0	0
	48543	81d57be4398b9b1c	requested move dialect levelling dialect lev	0	0	0	0	0	0
	121368	896a0148135147b5	the rewrite is in used a lot of the same conte	0	0	0	0	0	0

```
['zero','one','two','three','four','five','six','seven','eight','nine','ten','
may','also','across','among','beside','however','yet','within']
```

2.2. Removing Stop Words

Out[17]: id toxic severe_toxic obscene threat insult identity_hate comment text 108305 42fdb3027a4ca9f5 0 apart adding odd word hadnt touched ne. 0 0 0 0 65705 afbec12bbe7d9fda 0 0 0 0 consensus take npov noticeboard youll see... 0 0 137312 deaa002fef0e89c0 0 0 actually quite good errors need fixin. 0 0 0 48543 81d57be4398b9b1c requested move dialect levelling dialect lev... 0 0 0 0 0 121368 896a0148135147b5 rewrite used lot content wikified res. 0 0 0 0 0 0

2.3. Stemming

```
In [18]:
    stemmer = SnowballStemmer("english")
    def stemming(sentence):
        stemSentence = ""
        for word in sentence.split():
            stem = stemmer.stem(word)
            stemSentence += stem
            stemSentence += ""
        stemSentence = stemSentence.strip()
        return stemSentence

    data['comment_text'] = data['comment_text'].apply(stemming)
    data.head()
```

Out[18]:

: [id	comment_text	toxic	severe_toxic	obscene	threat	insult	identity_hate
	108305	42fdb3027a4ca9f5	apart ad odd word hadnt touch near year	0	0	0	0	0	0
	65705	afbec12bbe7d9fda	consensus take npov noticeboard youll see happen	0	0	0	0	0	0
	137312	deaa002fef0e89c0	actual quit good error need fix includ critic	0	0	0	0	0	0
	48543	81d57be4398b9b1c	request move dialect level dialect level brita	0	0	0	0	0	0
	121368	896a0148135147b5	rewrit use lot content wikifi restructur neutr	0	0	0	0	0	0

2.4. Train-Test Split

2.5. TF-IDF

```
dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 3), norm='l2', preprocessor=None, smooth_idf=True,
stop_words=None, strip_accents='unicode', sublinear_tf=False,
token_pattern='(?u)\\b\\w\\w+\\b', tokenizer=None, use_idf=True,
vocabulary=None)
```

```
In [22]: x_train = vectorizer.transform(train_text)
y_train = train.drop(labels = ['id','comment_text'], axis=1)

x_test = vectorizer.transform(test_text)
y_test = test.drop(labels = ['id','comment_text'], axis=1)
```

3. Multi-Label Classification

3.1. Multiple Binary Classifications - (One Vs Rest Classifier)

```
In [23]: from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.metrics import accuracy_score from sklearn.multiclass import OneVsRestClassifier
```

Processing toxic comments...

Test accuracy is 0.9

Processing severe toxic comments...

Test accuracy is 0.9916666666666667

Processing obscene comments...

Test accuracy is 0.95

Processing threat comments...

Test accuracy is 0.995

Processing insult comments...

Test accuracy is 0.9516666666666667

Processing identity_hate comments...

3.2. Multiple Binary Classifications - (Binary Relevance)

Accuracy = 0.856666666666667

```
CPU times: user 7.64 s, sys: 5.92 s, total: 13.6 s Wall time: 13.6 s
```

3.3. Classifier Chains

```
In [26]: # using classifier chains
          from skmultilearn.problem transform import ClassifierChain
          from sklearn.linear model import LogisticRegression
In [27]: %%time
          # initialize classifier chains multi-label classifier
          classifier = ClassifierChain(LogisticRegression())
          # Training logistic regression model on train data
          classifier.fit(x train, y train)
          # predict
          predictions = classifier.predict(x test)
          # accuracy
          print("Accuracy = ",accuracy_score(y_test,predictions))
          print("\n")
          Accuracy = 0.8933333333333333
          CPU times: user 6.2 s, sys: 2.52 s, total: 8.72 s
          Wall time: 8.64 s
         3.4. Label Powerset
In [28]: # using Label Powerset
         from skmultilearn.problem transform import LabelPowerset
In [29]: | %%time
         # initialize label powerset multi-label classifier
         classifier = LabelPowerset(LogisticRegression())
         classifier.fit(x train, y train)
         # predict
         predictions = classifier.predict(x test)
         print("Accuracy = ",accuracy_score(y_test,predictions))
         print("\n")
         Accuracy = 0.8933333333333333
         CPU times: user 550 ms, sys: 209 ms, total: 759 ms
         Wall time: 662 ms
```

3.5. Adapted Algorithm

```
In [30]: # http://scikit.ml/api/api/skmultilearn.adapt.html#skmultilearn.adapt.MLkNN
         from skmultilearn.adapt import MLkNN
         from scipy.sparse import csr_matrix, lil_matrix
In [31]: %%time
         classifier new = MLkNN(k=10)
         # Note that this classifier can throw up errors when handling sparse matrices.
         x_train = lil_matrix(x_train).toarray()
         y_train = lil_matrix(y_train).toarray()
         x_test = lil_matrix(x_test).toarray()
         # train
         classifier_new.fit(x_train, y_train)
         predictions new = classifier new.predict(x test)
         print("Accuracy = ",accuracy_score(y_test,predictions_new))
         print("\n")
         Accuracy = 0.881666666666667
         CPU times: user 2min 28s, sys: 839 ms, total: 2min 29s
         Wall time: 2min 29s
```