. Basics of Number Theory Divisibility Rules Prime Numbers Composite Numbers Factorization GCD (Greatest Common Divisor) & LCM (Least Common Multiple) Euclidean Algorithm Extended Euclidean Algorithm 50 problem statement in one line for facebook hackeer cup

ChatGPT said:

Here are **50 one-line problem statements** based on the **Basics of Number Theory** topics (Divisibility, Primes, GCD/LCM, Euclidean Algorithm, etc.) — useful for **Facebook Hacker Cup-style practice**, especially with large inputs and numeric constraints:

★ Divisibility Rules

- 1. Check if a number is divisible by 2, 3, 5, or 11.
- 2. Find how many numbers \leq N are divisible by A or B.
- 3. Remove minimum digits to make a number divisible by 3.
- 4. Check if a string-represented number is divisible by 9.
- 5. Count integers from L to R divisible by D.
- 6. Find smallest number \geq N divisible by both A and B.
- 7. Check if a large number (as string) is divisible by 7.
- 8. Make a number divisible by 8 by removing at most one digit.
- 9. Count all substrings divisible by 5 in a numeric string.
- 10. Find smallest number with given sum of digits divisible by 6.

Prime Numbers

- 11. Check if a number $\leq 10^9$ is prime (multiple test cases).
- 12. Count primes in range [L, R] $(1 \le R \le 10^6)$.
- 13. Return the Nth prime number ($N \le 10^5$).
- 14. Count twin primes \leq N.
- 15. Find the largest prime factor of a number.
- 16. Given a number, make it a prime by changing at most one digit.
- 17. Generate all primes \leq N using Sieve of Eratosthenes.
- 18. Sum all prime digits in a number.
- 19. Find prime gaps \leq N (difference between consecutive primes).
- 20. Find the smallest prime $\geq N$.

***** Composite Numbers

- 21. Find the number of composite numbers in range [L, R].
- 22. Check if a number is a product of exactly two distinct primes.
- 23. Find smallest composite number greater than N.
- 24. Determine if a number can be written as sum of two composites.

- 25. Count composite divisors of a number.
- 26. Remove digits to convert a number to composite.
- 27. Count numbers < N which are not prime or 1.
- 28. For N queries, check if number is composite or not.
- 29. Find all numbers between 1 to N having exactly 4 divisors.
- 30. Construct smallest composite number with given number of digits.

★ Factorization

- 31. Find prime factorization of a number $\leq 10^{18}$.
- 32. Count number of distinct prime factors.
- 33. Count total number of divisors of N.
- 34. Sum of all divisors of a number.
- 35. Count integers \leq N with exactly K prime factors.
- 36. Find all pairs (a, b) such that a*b = N.
- 37. Check if a number can be expressed as product of three integers > 1.
- 38. Count number of ways to factor a number into 2 or more integers.
- 39. Print all factor combinations of N.
- 40. Find largest factor of N less than N.

★ GCD & LCM

- 41. Compute GCD of N numbers ($N \le 10^5$).
- 42. Compute LCM of an array of N integers.
- 43. Check if GCD of a pair is 1 or > 1.
- 44. For each query, find number of pairs with GCD = 1.
- 45. Given GCD and LCM, find possible number pairs.
- 46. Count common divisors of A and B.
- 47. For N queries, return GCD(A, B) and LCM(A, B).
- 48. Find all numbers that divide both A and B.
- 49. Check if LCM of array is divisible by K.
- 50. Count number of integers \leq N with GCD(A, i) = 1.

These types of problems are suitable for **Facebook Hacker Cup** practice, especially for:

- Large inputs
- String-based number parsing
- Optimized math algorithms
- Segmented sieve / Prime factor caching
- Multiple test cases

Let me know if you'd like C++/Java code or input/output examples for any of these.

You said:

Large inputs String-based number parsing Optimized math algorithms Segmented sieve / Prime factor caching

ChatGPT said:

Great! Since you're preparing for Facebook Hacker Cup-style problems, where large inputs, string-based number parsing, and optimized number theory algorithms are common, here's a breakdown of these advanced concepts with **examples and problem types**.

\checkmark 1. Large Inputs (up to 10^9 or 10^{18})

You can't brute force these — use optimized math.

♦ Sample Problems:

- 1. Count all primes $\leq 10^8 \rightarrow \text{Use Segmented Sieve}$.
- Find GCD of numbers up to 10¹⁸ → Use __int128 or string parsing.
 Sum of all divisors of numbers up to 10¹⁸ → Optimize with precomputed smallest prime factors.

♦ Techniques:

- Use scanf/printf in C++, BufferedReader in Java.
- Avoid vector resizing inside loops.
- Modular arithmetic (to avoid overflow).

2. String-based Number Parsing

Required when numbers are too big for int or long long.

♦ Sample Problems:

- 4. Check if a 500-digit number is divisible by 11.
- 5. Add two 300-digit numbers.
- 6. Check if a large number is divisible by 7 or 13.

♦ Techniques:

- Use mod rules: mod = (mod*10 + digit '0') % d.
- Store numbers as strings and use modular arithmetic digit-by-digit.

```
CopyEdit
// C++ Example: Check if string num is divisible by d
bool isDivisible(string num, int d) {
   int rem = 0;
   for (char ch : num)
       rem = (rem * 10 + (ch - '0')) % d;
   return rem == 0;
}
```

3. Optimized Math Algorithms

◆ Topics and Problems:

- 7. Fast GCD (Euclidean Algorithm) \rightarrow gcd (a, b) = gcd (b, a % b)
- 8. **Modular Exponentiation** → Compute a^b % m in O (log b)
- 9. **Totient Function** $\varphi(\mathbf{n})$ for all n up to 10^6 .
- 10. Number of divisors / sum of divisors using prime factorization.

```
cpp
CopyEdit
// Modular exponentiation
long long modpow(long long a, long long b, long long m) {
    long long res = 1;
    a %= m;
    while (b > 0) {
        if (b & 1) res = res * a % m;
        a = a * a % m;
        b >>= 1;
    }
    return res;
}
```

4. Segmented Sieve of Eratosthenes

Used when N > 10^7 but $\le 10^9$. You can't sieve the full array due to memory limits.

♦ Problem Example:

11. Print all primes between L and R where $R \le 10^{\circ}$, $R - L \le 10^{\circ}$

♦ Technique:

- 1. Generate all primes up to \sqrt{R} using standard sieve.
- 2. For each prime p, mark multiples of p in [L, R].

```
cpp
CopyEdit
// Segmented sieve outline
void segmentedSieve(long long L, long long R) {
    vector<bool> isPrime(R - L + 1, true);
```

```
vector<int> basePrimes = simpleSieve(sqrt(R));
for (int p : basePrimes) {
    long long start = max(p * p, (L + p - 1) / p * p);
    for (long long j = start; j <= R; j += p)
        isPrime[j - L] = false;
}
for (long long i = L; i <= R; ++i)
    if (isPrime[i - L] && i != 1)
        cout << i << "\n";
}</pre>
```

♦ 5. Prime Factor Caching / Sieve of Smallest Prime Factors (SPF)

Used for factorization in O(log N) per query after precomputation.

♦ Sample Problems:

- 12. Find number of distinct prime factors of each number up to N.
- 13. Precompute smallest prime factor (SPF) for all numbers up to 107.

```
срр
CopyEdit
// Sieve of smallest prime factors
vector<int> spf(N + 1);
void sieveSPF() {
    for (int i = 2; i \le N; i++) spf[i] = i;
    for (int i = 2; i * i <= N; i++) {
        if (spf[i] == i) {
            for (int j = i * i; j <= N; j += i)
                if (spf[j] == j) spf[j] = i;
        }
    }
}
// Factorization using SPF
vector<int> getFactors(int x) {
    vector<int> factors;
    while (x != 1) {
        factors.push back(spf[x]);
        x \neq spf[x];
    return factors;
}
```

☐ Facebook Hacker Cup Pattern Summary

Category	Techniques	Time Complexity
Large Input Handling	Fast I/O, Segment Tree, Bit Tricks	O(N log N) or better
Number Parsing	Modular arithmetic with strings	O(N)

Techniques	Time Complexity
Miller-Rabin (for 64-bit), Sieve, SPF	$O(\log n)$ to $O(n \log \log n)$
SPF, Trial Division, Pollard-Rho (adv.)	O(log n)
Euclidean Algorithm	O(log n)
Factor counting, precompute sums/divs	$O(\text{sqrt } n) \text{ or } O(n \log n)$
Modular inverse, ModExpo, Chinese Remainder	O(log n), varies
	Miller-Rabin (for 64-bit), Sieve, SPF SPF, Trial Division, Pollard-Rho (adv.) Euclidean Algorithm Factor counting, precompute sums/divs Modular inverse, ModExpo, Chinese

Would you like me to give:

- Full practice sheet with test cases
- or C++ templates for each concept
- or build Facebook Hacker Cup mock contest based on these?

Let me know!

You said:

□ 2. Modular Arithmetic Modular Addition, Subtraction, Multiplication Modular Exponentiation (Binary Exponentiation / Fast Power) Negative Modulo Handling Modular Inverse Using Extended Euclidean Algorithm Using Fermat's Little Theorem (when mod is prime) Modular Division 50 problem statement in one line

ChatGPT said:

Here are **50 one-line problem statements** focused on **Modular Arithmetic**, perfect for **Facebook Hacker Cup**, **competitive programming**, or **interview prep**:

☐ 2. Modular Arithmetic - 50 One-Line Problems

♦ Modular Addition, Subtraction, Multiplication

- 1. Compute $(A+B) \mod M(A+B) \mod M(A+B) \mod M$.
- 2. Compute (A-B)mod M(A B) \mod M(A-B)modM ensuring non-negative result.
- 3. Compute $(A \times B) \mod M(A \setminus times B) \mod M(A \times B) \mod M$ for large A, B (up to 10^{18}).
- 4. For given N, compute $(1+2+...+N) \mod M(1+2+...+N) \mod M(1+2+...+N) \mod M$.
- 5. For a list of N numbers, compute their sum modulo M.
- 6. Compute $(A \times B \times C) \mod M(A \setminus B \times C) \mod M(A \times B \times C) \mod M$.
- 7. Find product of all elements in array modulo M.
- 8. Compute the factorial of N modulo M.
- 9. Compute $A2+B2+C2 \mod MA^2 + B^2 + C^2 \mod MA^2 + B^2 + C2 \mod M$.

♦ Modular Exponentiation (Fast Power / Binary Exponentiation)

- 11. Compute ABmod MA^B \mod MABmodM (large B).
- 12. Compute XYZmod MX^{Y^Z} \mod MXYZmodM efficiently.
- 13. Compute 2Nmod M2^N \mod M2NmodM for large N.
- 14. Compute $(AB+CD) \mod M(A^B+C^D) \mod M(AB+CD) \mod M$.
- 15. Compute (ABC)mod $M(A^{B^C}) \mod M(ABC)$ mod M for small A, large B, C.
- 16. Compute abmod pa^b \mod pabmodp where p is prime.
- 17. Compute N!mod MN! \mod MN!modM using binary exponentiation.
- 18. Compute AB+Cmod MA^{B+C} \mod MAB+CmodM using mod rules.
- 19. For each number in array, compute x2mod Mx^2 \mod Mx2modM.
- 20. Compute (AB-CD)mod $M(A^B C^D)$ \mod M(AB-CD)mod M(AB-CD)mo

♦ Negative Modulo Handling

- 21. Compute (-Amod M)(-A \mod M)(-AmodM) such that result is non-negative.
- 22. Compute ((A-B)mod M)((A B) \mod M)((A-B)modM) with negative result correction.
- 23. Subtract elements in circular array modulo M (non-negative).
- 24. Normalize a number X to be in [0,M-1][0,M-1][0,M-1].
- 25. Compute difference between two timestamps modulo 24 hours.
- 26. Shift array elements by K positions modulo N (with negatives).
- 27. Given X, find equivalent value modulo M in [0, M).
- 28. Compute (A-B+M)%M(A-B+M)%M for positive result.
- 29. Apply modulo in a rolling hash with negative values.
- 30. Handle modular subtraction in prefix sum array.

♦ Modular Inverse (Using Fermat / Extended Euclidean)

- 31. Compute modular inverse of A mod P (P is prime).
- 32. Compute modular inverse of A mod M (M not necessarily prime).
- 33. Solve linear congruence equation Ax≡1mod MAx \equiv 1 \mod MAx≡1modM.
- 34. Given A and B, compute (A/B)mod M(A / B) \mod M(A/B)modM using inverse.
- 35. Find modular inverse for all numbers 1 to N modulo prime P.
- 36. Compute modular inverse using Extended Euclidean Algorithm.
- 37. Implement division modulo M using Fermat's Little Theorem.
- 38. Solve for xxx in $B \cdot x \equiv A \mod MB \setminus cdot x \setminus equiv A \setminus mod MB \cdot x \equiv A \mod M$.
- 39. Compute A/B+C/Dmod PA / B + C / D \mod PA/B+C/DmodP where P is prime.
- 40. Compute modular inverse of a factorial number modulo P.

◆ Modular Division

- 41. Compute (A/B)mod M(A / B) \mod M(A/B)modM using inverse, M is prime.
- 42. Find (X / Y) mod M where X and Y are coprime with M.
- 43. For multiple test cases, compute modular division of A by B mod M.
- 44. Compute $(A2/B2) \mod M(A^2/B^2) \mod M(A2/B2) \mod M$.
- 45. For each test case, solve $X \cdot Y 1 \mod PX \setminus Y^{-1} \setminus PX \cdot Y 1 \mod PX$.
- 46. Find smallest x such that $B \cdot x \equiv A \mod MB \setminus A \mod MB \cdot x \equiv A \mod M$.
- 47. Precompute inverse modulo for an array of N elements.
- 48. Find modular division result where numerator is a large factorial.
- 49. Compute division modulo M when mod is not prime (Extended GCD).
- 50. Validate modular division using inverse multiplication method.

These problems cover:

- All basic modular operations
- Advanced inverse/division handling
- Efficient power computation
- Negative number normalization in modulo
- Real-world applications like time shifts and circular arrays

Want **code templates in C++ or Java**, or **input/output test cases** for any of these problems? Just ask!

You said:

☼ 3. Prime Number Algorithms Sieve of Eratosthenes Segmented Sieve Sieve of Sundaram (optional/advanced) Sieve of Atkin (optional/advanced)

ChatGPT said:

Here are 50 one-line problem statements for **Prime Number Algorithms**, organized by algorithm type. These are ideal for **Facebook Hacker Cup**, **ICPC**, and **interview prep**, especially for large constraints:

② 3. Prime Number Algorithms − 50 One-Line Problems

⋄ A. Sieve of Eratosthenes (Basic Sieve)

- 1. Find all prime numbers \leq N.
- 2. Count number of primes between 1 and N.

- 3. Check if a number $\leq 10^7$ is prime using precomputed sieve.
- 4. Count primes in multiple queries: [L1, R1], [L2, R2], ...
- 5. Find the sum of all prime numbers $\leq N$.
- 6. Find the product of all prime numbers \leq N modulo 10^9+7 .
- 7. Precompute smallest prime factor (SPF) for all numbers up to N.
- 8. Count number of composite numbers \leq N using sieve.
- 9. Precompute number of prime factors for each number $\leq N$.
- 10. Find numbers with exactly K distinct prime factors.

B. Segmented Sieve (For large ranges)

- 11. Find all primes in the range [L, R] where $R \le 10^9$.
- 12. Count number of primes in range [L, R] using segmented sieve.
- 13. Check primality for all numbers in [L, R] using sieve of Eratosthenes.
- 14. Find smallest and largest prime in a range [L, R].
- 15. Find all twin primes in the range [L, R].
- 16. Count primes in range [L, R] for multiple test cases.
- 17. For Q queries, output number of primes in [L[i], R[i]].
- 18. Count all primes in a range where difference $\leq 10^6$ but R $\leq 10^9$.
- 19. Find all primes in [L, R] where L and R both can be $> 10^8$.
- 20. Count numbers with no prime divisors in range [L, R].

♥ C. Sieve of Sundaram (Optional, Advanced)

- 21. Generate all primes \leq N using Sieve of Sundaram.
- 22. Count primes \leq N using Sundaram's logic.
- 23. Prove that Sieve of Sundaram gives same output as Eratosthenes.
- 24. Modify Sundaram Sieve to return prime gaps.
- 25. Generate list of prime indices using Sieve of Sundaram.

♡ D. Sieve of Atkin (Optional, Advanced, Faster than Eratosthenes for large N)

- 26. Generate all primes \leq N using Sieve of Atkin.
- 27. Count primes \leq N using Atkin and compare with Eratosthenes.
- 28. Optimize Atkin for multi-threaded CPU.
- 29. Benchmark Sieve of Atkin vs Sieve of Eratosthenes for $N = 10^8$.
- 30. Use Sieve of Atkin to find all primes $\leq 10^7$ in under 1 second.

E. Prime Properties and Queries (With Sieve)

- 31. Count all primes less than N that are palindromes.
- 32. Find the Nth prime number using sieve array.
- 33. Count primes with digit sum divisible by 3.
- 34. Count circular primes \leq N (where all rotations are prime).
- 35. Count prime anagrams \leq N.
- 36. Find all primes $\leq N$ that are also Fibonacci numbers.
- 37. Count numbers \leq N which are prime and end with 3.
- 38. Count primes that are also perfect squares (output = 0).
- 39. Count primes in array A[] using sieve.
- 40. Count elements in A[] that have a prime number of divisors.

♥ F. Prime Factorization with Sieve

- 41. Precompute prime factors for numbers \leq N using SPF.
- 42. For each number in array, output its prime factor count.
- 43. For Q queries of number $X \le 10^7$, output its prime factors.
- 44. Find numbers \leq N that are product of exactly two distinct primes.
- 45. Find all integers \leq N that have only two unique prime factors.

ℰ G. Advanced & Miscellaneous

- 46. Count number of primes \leq N using Legendre's formula.
- 47. Find primes \leq N that are also Mersenne primes.
- 48. Count Sophie Germain primes \leq N.
- 49. Find prime-rich subarrays in an array of size N.
- 50. Count primes in a matrix region using preprocessed prime grid.

O Suitable Techniques per Problem

Technique	Problem Range	Use When
Sieve of Eratosthenes	$N \le 10^7$	Fast & Simple
Segmented Sieve	$R \le 10^9$, $R - L \le 10^6$	Memory efficient for large R
SPF (Smallest Prime Factor)	Factorization	Need fast factorization after sieve
Sieve of Atkin	$N \ge 10^7$	High performance with optimization
Sieve of Sundaram	$N \le 10^6$	Theory, rarely used in contests

Would you like:

- Code templates (C++/Java)?
- Test cases for selected problems?
- Full mock contest sheet?

♦ A. Fermat's Little Theorem

(For modulo with prime number)

Problems

- 1. Compute modular inverse of A mod P using Fermat's Theorem.
- 2. Compute $AP-2 \mod PA^{P-2} \mod PAP-2 \mod P$ where P is a prime.
- 3. Given a prime P, test whether $AP \equiv A \mod PA^P \neq A \mod PAP \equiv A \mod PA$
- 4. Find ABmod PA^B \mod PABmodP efficiently using Fermat.
- 5. Count integers A such that $AP-1\equiv 1 \mod PA^{P-1} \neq 1 \mod PAP-1\equiv 1 \mod PA$.
- 6. Compute (A/B)mod P(A / B) \mod P(A/B)modP using Fermat's inverse.
- 7. Check Fermat's Little Theorem fails for composite P (Carmichael check).
- 8. Compute modular inverse of all elements 1 to N modulo P.
- 9. For given P and N, find count of integers \leq N coprime to P.
- 10. Solve AX≡Bmod PA^X \equiv B \mod PAX≡BmodP where P is prime.

⊗ B. Euler's Theorem

(Generalization of Fermat's Little Theorem)

- 11. Compute $A\varphi(M) \mod MA^{\varphi}(M) \mod MA\varphi(M) \mod M$ where M is not prime.
- 12. Solve AKmod MA^K \mod MAKmodM using Euler's Theorem when A and M are coprime.
- 13. Find $\varphi(N)$ for $N \le 10^6$ using sieve.
- 14. Precompute $\varphi(N)$ for all $N \le 10^6$.
- 15. Solve for A-1mod MA^{-1} \mod MA-1modM using Euler's Theorem.
- 16. Verify Euler's theorem for given A, M.
- 17. Count $A \le N$ such that $A \circ \varphi(N) \equiv 1 \mod N$.
- 18. Compute modular power ABmod MA^B \mod MABmodM for non-prime M.
- 19. Count number of integers \leq N coprime to N (i.e. Euler's φ (N)).

20. Given A and M, find minimum positive X such that AX≡1mod MA^X \equiv 1 \mod MAX≡1modM.

C. Wilson's Theorem

 $(Prime\ P \rightarrow (P-1)! \equiv -1\ mod\ P)$

- 21. Verify if a given number P is prime using Wilson's Theorem.
- 22. Compute $(P-1)! \mod P(P-1)! \mod P(P-1)! \mod P(P-1)! \mod P(P-1)!$
- 23. Count primes P such that $(P-1)!+1\equiv 0 \mod P(P-1)!+1 \geq 0 \mod P(P-1)!+1\equiv 0 \mod P$.
- 24. Apply Wilson's theorem to prove primality for small P.
- 25. For given P, check if Wilson's congruence holds.

V D. Chinese Remainder Theorem (CRT)

(Solve system of modular congruences)

- 26. Solve: $x \equiv A1 \mod M1x \neq M_1x \equiv A1 \mod M_1$, $x \equiv A2 \mod M2x \neq M_2x \equiv A2 \mod M$ (M1, M2 coprime).
- 27. Solve 3 equations: x≡aimod mix \equiv a_i \mod m_ix≡aimodmi using CRT.
- 28. For large moduli, compute x satisfying multiple congruences.
- 29. Find smallest number such that $x \equiv 3 \mod 5$, $x \equiv 4 \mod 7$.
- 30. Solve CRT where moduli are not coprime using Extended GCD.
- 31. Solve birthday puzzle using modular equations (CRT).
- 32. Given n moduli and remainders, find solution using generalized CRT.
- 33. Implement CRT to solve linear Diophantine congruences.
- 34. Find earliest time when 3 repeating events occur together.
- 35. Solve scheduling problem using CRT and mod inverses.

ℰ E. Lagrange's Theorem

(Group theory: Order of element divides order of group)

- 36. Count number of elements in $Zn*Z_n^*Zn*$ with order dividing k.
- 37. Find order of an element A modulo M.
- 38. Given A and M, find smallest k such that $Ak \equiv 1 \mod MA^k \equiv 1 \mod MAk \equiv 1 \mod M$.
- 39. Check whether A is a generator of multiplicative group mod P.
- 40. List all values x such that $xk\equiv 1 \mod Px^k \equiv 1 \mod Pxk\equiv 1 \mod P$.
- 41. Given group size N, list all divisors of N as possible element orders.
- 42. Prove that $AN \equiv 1 \mod PA^N \equiv 1 \mod PAN \equiv 1 \mod P$ for generator A and prime P.
- 43. Count number of distinct elements of order d in modulo group.
- 44. Find number of primitive roots modulo P using Lagrange's Theorem.

45. Solve equation xk≡1mod px^k \equiv 1 \mod pxk≡1modp using group order.

♥ F. Bézout's Identity

(For integers $a, b \rightarrow ax + by = gcd(a, b)$)

- 46. Compute integers x and y such that ax+by=gcd(a,b)ax + by = gcd(a,b)ax+by=gcd(a,b).
- 47. Use Bézout to compute modular inverse via Extended Euclidean.
- 48. Find integer solution to ax+by=cax + by = cax+by=c using Bézout's identity.
- 49. Solve for integer x where $a \cdot x \equiv c \mod ba \cdot a \mod$
- 50. Determine whether equation ax+by=cax+by=c has integer solutions.

★ Summary by Theorem and Use Case

Theorem Use When...

Fermat's Little Modulo is prime, inverse via exponentiation

Euler's Theorem Modulo not prime but A, M coprime

Wilson's Theorem Prime checking (theoretical), not used for large P

Chinese Remainder Solve simultaneous congruences efficiently

Lagrange's Theorem Orders of elements in modulo groups (cyclic, generators)

Bézout's Identity Modular inverse with non-prime mod, Diophantine equations

Would you like:

- C++/Java code snippets for these theorems?
- Practice test cases or problem set for contests?

Let me know — happy to help!

You said:

In 5. Euler's Totient Function Definition and Properties Calculating $\phi(n)$ efficiently Euler's product formula

ChatGPT said:

Here are 50 one-line problem statements for M Euler's Totient Function — covering definition, properties, efficient computation, Euler's product formula, and their use in contests like Facebook Hacker Cup, ICPC, and Codeforces.

5. Euler's Totient Function – 50 One-Line Problems

⋄ A. Definition and Basic Usage

- 1. Compute $\varphi(N)$, the count of integers $\leq N$ coprime to N.
- 2. Given A and N, check if gcd(A, N) = 1 (i.e., $A \in coprime set$).
- 3. Count integers \leq N that are relatively prime to N.
- 4. Print all values $\leq N$ that are coprime to N.
- 5. Verify that $\varphi(P) = P 1$ for prime P.
- 6. For N test cases, compute $\varphi(N)$.
- 7. Find sum of all integers \leq N that are coprime to N.
- 8. Count integers \leq N with $\varphi(n) = K$.
- 9. Find smallest N such that $\varphi(N) = K$.
- 10. Find number of integers between A and B with $\varphi(n)$ even.

\checkmark B. Calculating $\varphi(n)$ Efficiently

- 11. Precompute $\varphi(n)$ for all $n \le 10^6$ using sieve.
- 12. Compute $\varphi(N)$ using its prime factorization.
- 13. Compute $\varphi(n)$ using $O(\log n)$ prime factor division.
- 14. Given N (up to 10^9), compute $\varphi(N)$ in $\leq O(\sqrt{n})$.
- 15. For Q queries of N, return $\varphi(N)$ quickly (with precomputation).
- 16. Compute $\varphi(N!)$ for $N \le 10^5$.
- 17. Find $\varphi(N)$ modulo M.
- 18. Find product of all $\varphi(n)$ for n = 1 to N.
- 19. Find number of values $N \le 10^6$ with $\varphi(N) = N / 2$.
- 20. Count how many $\varphi(N)$ values are prime for $N \le 10^6$.

♥ C. Euler's Product Formula

```
(If \ n=p1a1 \cdot p2a2 \cdot \dots \cdot pkakn = p\_1^{a_1} \cdot dot \ p\_2^{a_2} \cdot dot \cdot dots \cdot cdot \ p\_k^{a_k}n=p1a1 \cdot p2a2 \cdot \dots \cdot pkak, \ then:
```

 $\phi(n) = n \cdot \prod p \ln(1 - 1/p) \cdot phi(n) = n \cdot cdot \cdot prod_{p/n} \cdot (1 - 1/p) \cdot \phi(n) = n \cdot \prod p \ln(1 - 1/p))$

- 21. Compute $\varphi(N)$ using Euler's product formula.
- 22. Verify Euler's product formula for given N.
- 23. Given prime factorization of N, compute $\varphi(N)$.
- 24. For N = 210 (2×3×5×7), compute φ (N) using product rule.
- 25. Given $N = p^k$, compute $\varphi(N)$.
- 26. Compute $\varphi(N)$ without storing $\varphi[1...N]$ using product rule.
- 27. Given array of factored numbers, return their $\varphi(N)$.
- 28. Compute $\varphi(ab)$ given $\varphi(a)$ and $\varphi(b)$, when $\gcd(a, b) = 1$.

- 29. Use Euler's product formula to prove that $\varphi(N)$ is even for N > 2.
- 30. Find the ratio $\varphi(N)/N$ for multiple values of N.

V D. Totient Function Properties

- 31. Prove that $\varphi(p^k) = p^k p^k p^k$. for prime p.
- 32. Show that $\varphi(mn) = \varphi(m) \times \varphi(n)$ when $m \perp n$.
- 33. Compute sum of all $\varphi(d)$ such that $d \mid N$.
- 34. Count values of n where $\varphi(n)$ is a power of 2.
- 35. Find the smallest n for which $\varphi(n) = m$, for a given m.
- 36. Compute $gcd(\varphi(a), \varphi(b))$ for $a, b \le 10^5$.
- 37. Check if $\varphi(n)$ divides n.
- 38. Count values $n \le N$ such that $\varphi(n)$ is square-free.
- 39. Count values of n for which $\varphi(n)$ is odd.
- 40. Compute number of n such that $n/\varphi(n) > k$.

\forall E. Applications of $\varphi(n)$

- 41. Compute A^B mod N using $\varphi(N)$ when A, N are coprime.
- 42. Count reduced proper fractions with denominator $\leq N$.
- 43. Solve RSA-like encryption using $\varphi(N)$ for prime P, Q.
- 44. Use $\varphi(n)$ to determine order of element in multiplicative group mod n.
- 45. Use $\varphi(n)$ in solving ABmod NA^B \mod NABmodN when B is large.
- 46. Generate Farey sequence of order N using $\varphi(N)$.
- 47. Use $\varphi(n)$ to check if n has a primitive root.
- 48. Use $\varphi(n)$ to compute number of coprime pairs (a, b) with a + b = n.
- 49. Count number of integers n where $\varphi(n)$ divides n-1.
- 50. Solve Diophantine equations using $\varphi(N)$ to simplify mod constraints.

★ Summary of Techniques

Goal / Topic	Best Technique	Time Complexity
$\varphi(n)$ for single N	Factor and use product formula	$O(\sqrt{n})$ or $O(\log n)$
$\phi(n)$ for all $N \leq 10^6$	Modified sieve (Euler's Totient Sieve)	$O(n \log \log n)$
Multiple queries	Precompute φ[] array	O(1) per query
Totient of factorial / multiple	Precompute primes, factorize fast	Depends on use- case
Product formula / proof problems	Prime factor representation	Math + Code logic

Would you like:

- C++ or Java code for Euler's Totient Sieve?
- Practice test cases?
- A mock mini-contest based on $\varphi(N)$?

Let me know!	L	et	me	know	!
--------------	---	----	----	------	---

You said:

☐ 6. Counting and Combinatorics in Number Theory nCr % mod (with large n)
Precomputation of Factorials and Inverses Lucas Theorem Stars and Bars Theorem (optional)

ChatGPT said:

Here are **50 one-line problem statements** on **Counting and Combinatorics in Number Theory**, ideal for contests like Facebook Hacker Cup:

☐ Counting and Combinatorics (nCr, Factorials, Lucas Theorem)

♥ Factorial and Combinatorics Basics

- 1. Compute n!mod mn! \mod mn!mod mf given $n \le 106n \leq 106$.
- 2. Count the number of ways to choose rrr items from nnn (mod mmm).
- 3. Check if nCrmod mnCr \mod mnCrmodm is even or odd.
- 4. Compute $n!k! \cdot (n-k)! \mod m \cdot (n-k)! \pmod m \cdot (n-k)! \pmod m \cdot (n-k)! \mod m \cdot (n-k)! \mod m \cdot (n-k)!$
- 5. Find nCrnCrnCr for large nnn and small rrr, modulo mmm.
- 6. Determine the value of $(nk) \mod p \pmod{n}{k} \mod p(kn) \mod p$, where ppp is a prime.
- 7. Calculate $(2nn) \mod 109+7 \pmod{2n}{n} \mod 10^9+7(n2n) \mod 109+7$.
- 8. Compute the number of combinations where order does not matter, mod mmm.
- 9. Find number of subsets of a set of size nnn, modulo mmm.
- 10. Calculate the number of bitstrings of length nnn with exactly kkk ones.

Precomputation Techniques

- 11. Precompute all n!mod mn! \mod mn!modm for n≤106n \leq 10^6n≤106.
- 12. Precompute inverse factorials mod 109+710^9+7109+7.
- 13. Given many nCrnCrnCr queries, compute answers using precomputed factorials.
- 14. Find first kkk values of Catalan numbers modulo mmm.
- 15. Precompute nCrmod pnCr \mod pnCrmodp table for all n,r≤1000n,r \leq 1000n,r≤1000.

Modular Inverse for Combinations

- 16. Compute (nr) mod m binom $\{n\}\{r\}$ \mod m(rn) mod m using Fermat's little theorem.
- 17. Use extended Euclidean algorithm to find modular inverse of r!mod mr! \mod mr!modm.

- 18. Compute modular division in n!/r!mod mn! / r! \mod mn!/r!modm.
- 19. Compute $nCrr+1 \mod p \frac{nCr}{r+1} \mod pr+1 nCrmodp$.
- 20. Evaluate $n!ab \cdot k!mod m frac\{n!\}\{a^b \cdot k!\} \mod mab \cdot k!n!modm$.

♦ Lucas Theorem

- 21. Compute nCrmod pnCr \mod pnCrmodp for large n,rn, rn,r, ppp prime using Lucas Theorem.
- 22. Use Lucas theorem to find $(1018109) \mod 13 \pmod{10^{18}} {10^{9}} \mod 13(1091018) \mod 13$.
- 23. Handle nCrmod pnCr \mod pnCrmodp where p \leq 105p \leq 10^5p \leq 105, n \leq 1018n \leq 10^{18}n \leq 1018.
- 24. Solve nCrmod mnCr \mod mnCrmodm where mmm is not prime using Chinese Remainder Theorem + Lucas.
- 25. Use Lucas to compute number of subsets of size kkk from nnn elements modulo prime ppp.

Stars and Bars Theorem (Integer Solutions)

- 26. Count non-negative integer solutions to $x1+x2+...+xk=nx_1 + x_2 + ... + x_k = nx_1 + x_2 + ... + x_k = n$.
- 27. Count positive integer solutions to $x1+x2+...+xk=nx_1+x_2+...+x_k=nx_1+x_2+...+x_k=n$.
- 28. Compute number of integer partitions of nnn into kkk parts (modulo mmm).
- 29. Number of ways to distribute nnn identical balls into kkk distinct boxes.
- 30. Ways to distribute nnn identical balls into kkk boxes with each getting ≥ 1 ball.

V Large Input Combinatorics

- 31. For TTT test cases, compute nCrmod 109+7nCr \mod 10^9+7nCrmod109+7, n≤106n \leq 10^6n<106.
- 32. For n \leq 1018n \leq 10^{18}n \leq 1018, r \leq 106r \leq 10^6r \leq 106, compute nCrmod pnCr \mod pnCrmodp.
- 33. Compute nCrmod mnCr \mod mnCrmodm, where mmm is a product of primes.
- 34. Given array AAA of size nnn, find number of ways to choose 3 distinct elements.
- 35. Given a set of nnn pairs, count all 2-pair combinations mod mmm.

Applications and Variants

- 36. Find the number of triangle triplets (a,b,c)(a,b,c)(a,b,c) such that a+b>ca+b>ca+b>c, from array.
- 37. Number of paths from (0,0) to (n,k) in a grid using combinatorics mod mmm.
- 38. Compute number of derangements of nnn objects mod 109+710^9+7109+7.
- 39. Count number of permutations of length nnn with kkk inversions.
- 40. Number of binary strings of length nnn with no two consecutive 1s.

⋈ Mixed/Advanced

41. Compute nth Catalan number using nCr mod 109+710^9+7109+7.

- 42. Compute Bell numbers Bnmod mB n \mod mBnmodm using partition formula.
- 43. Calculate number of surjective functions from $A \rightarrow BA \setminus BA \rightarrow B$ where |A|=n, |B|=k|A|=n, |B|=k.
- 44. Compute total number of permutations of multiset mod 109+710^9+7109+7.
- 45. Number of integer solutions to equation ax+by+cz=nax + by + cz = nax+by+cz=n, $x,y,z \ge 0$, $y,z \ge 0$.
- 46. For given nnn, find $\sum r=0$ n(nr)2mod m\sum_{r=0}^n \binom{n}{r}^2 \mod m\sum_{r=0}n (rn)2modm.
- 47. Find number of valid bracket sequences of length 2n2n2n using Catalan.
- 48. Compute $\sum_{i=1}^{i=1} ni \cdot (ni) \mod m \sum_{i=1}^{n} i \cdot (in) \mod m \sum_{i=1}^{i=1} ni \cdot (in) \mod m$.
- 49. Compute multinomial coefficient (nk1,k2,...,kr)mod m\binom{n}{k_1,k_2,...,k_r} \mod m(k1,k2,...,krn)modm.
- 50. Count the number of labeled trees for nnn nodes using Cayley's formula mod mmm.

Let me know if you want full **code**, **explanations**, or **test cases** for any of these.

You said:

☐ 7. Diophantine Equations Linear Diophantine Equations Number of integer solutions Applications using Extended Euclidean Algorithm

ChatGPT said:

Here are **50 one-line problem statements** based on **Diophantine Equations** (Linear, Integer solutions, Applications using Extended Euclidean Algorithm), suitable for contests like Facebook Hacker Cup:

☐ Diophantine Equations – 50 Problem Statements

- 1. Find integer solutions to 7x+5y=17x+5y=17x+5y=1.
- 2. Determine if 14x+21y=7714x+21y=7714x+21y=77 has integer solutions.
- 3. Count all integer solutions for 4x+6y=244x+6y=24 within $0 \le x, y \le 100$ \le x, y \le 100 \le x, y \le 100.
- 4. Solve ax+by=cax + by = cax+by=c where a=35,b=64,c=7a=35,b=64,c=7.
- 5. Find all integer pairs (x,y)(x,y)(x,y) such that 3x-8y=13x-8y=1.
- 6. Determine minimum positive solution of 11x+13y=111x+13y=111x+13y=1.
- 7. Find one solution to $17x+23y=\gcd[f_0](17,23)17x + 23y = \gcd(17,23)17x+23y=\gcd(17,23)$.
- 8. Count number of solutions to 5x+9y=15x + 9y = 15x+9y=1 in range $x,y \in [-10,10]x$, $y \in [-10,10]x$, $y \in [-10,10]x$.
- 9. Find smallest positive solution xxx for 31x+19y=131x+19y=1.1
- 10. Does the equation 10x+15y=410x+15y=410x+15y=4 have integer solutions?
- 11. Find all non-negative solutions to 6x+9y=456x+9y=456x+9y=45.

- 12. For given a,b,ca, b, ca,b,c, print "YES" if ax+by=cax + by = cax+by=c is solvable in integers.
- 13. Given x+2y=5x+2y=5, find integer solutions with x>0,y>0x>0, y>0x>0,y>0.
- 14. Count integer solutions of 13x+17y=22113x + 17y = 22113x+17y=221.
- 15. Find smallest solution of 12x-5y=112x 5y = 112x-5y=1.
- 16. Determine integer solutions of 21x+14y=721x + 14y = 721x+14y=7.
- 17. Check if ax+by=cax + by = cax+by=c has infinitely many solutions.
- 18. Given $x=1 \mod 2x = 1 \mod 2x=1 \mod 2$ and $x=3 \mod 5x = 3 \mod 5x=3 \mod 5$, find smallest x.
- 19. Solve 9x+7y=19x + 7y = 19x+7y=1 using Extended Euclidean Algorithm.
- 20. Count number of integer pairs for 2x+3y=122x + 3y = 122x+3y=12.
- 21. Find integer solutions of 100x+25y=125100x+25y=125100x+25y=125.
- 22. Given nnn, solve x+y=nx+y=nx+y=n such that 5x+8y=m5x+8y=m.
- 23. Determine if x≡amod mx \equiv a \mod mx≡amodm and x≡bmod nx \equiv b \mod nx≡bmodn has a solution.
- 24. Find general solution of ax+by=dax + by = dax+by=d.
- 25. Find number of solutions to x+y+z=nx+y+z=n for integers.
- 26. Given kkk, find all $x,y\in Zx$, $y \in Zx$, $y \in Zx$, $y\in Zx$,
- 27. Find integer solutions of x+y=1000x + y = 1000x+y=1000 and 3x+2y=20003x + 2y = 20003x+2y=2000.
- 28. For a given nnn, check if it can be expressed as 3x+5y3x + 5y3x+5y.
- 29. Count how many xxx exist such that 3x+4y=1003x + 4y = 1003x+4y=100 has integer solution for y.
- 30. Check solvability of $a1x1+a2x2+...+anxn=ca_1x_1 + a_2x_2 + ... + a_nx_n = ca1x1 + a2x2+...+anxn=c$.
- 31. Solve 3x+4y=2z3x + 4y = 2z3x+4y=2z in integers.
- 32. Find smallest positive solution of 97x+83y=197x+83y=1.
- 33. Count integer solutions of 7x+11y=1007x + 11y = 1007x+11y=100.
- 34. Find all solutions xmod nx \mod nxmodn for ax≡bmod nax \equiv b \mod nax≡bmodn.
- 36. Given nnn, find integer x,yx, yx,y such that $x2-y2=nx^2 y^2 = nx^2 y^2 =$
- 37. Find number of integer solutions for $x2+y2=zx^2+y^2=zx^2+y^2=z$.
- 38. Check if ax+by+cz=dax + by + cz = dax+by+cz=d has integer solution.
- 39. Count all positive integer solutions of 15x+20y=10015x + 20y = 10015x+20y=100.
- 40. Solve $x2-2y2=1x^2 2y^2 = 1x2-2y2=1$ for smallest x,y>0x, y>0x,y>0.
- 41. Solve $x3+y3+z3=kx^3+y^3+z^3=kx^3+y^3+z^3=k$ for given kkk.
- 42. Given ppp, check if px+1px+1px+1 is divisible by qqq.
- 43. Solve $ax \equiv b \mod \max \neq 1 \pmod m$ where $gcd[fo](a,m) \neq 1 \pmod n$ \left(a, m) \left\right(a, m) \left(a, m) \left
- 44. Count integer points on line ax+by=cax + by = cax+by=c.
- 45. Find smallest x satisfying $2x \equiv 3 \mod 72x \neq 3 \mod 72x \equiv 3 \mod 7$.
- 46. Solve linear equation in three variables with integer solutions.
- 47. Find smallest solution to $ax+by=lcm(a,b)ax + by = \text{text}\{lcm\}(a,b)ax+by=lcm(a,b)$.
- 48. Does 9x+15y=309x+15y=309x+15y=30 have non-negative integer solutions?
- 49. For nnn, count solutions to ax+by=nax+by=nax+by=n with x, y > 0.
- 50. Construct integer solution to 99991x+99989y=199991x+99989y=199991x+99989y=1 efficiently.

Let me know if you'd like solutions, code templates (C++/Java/Python), or test cases for any of these.

You said:

☐ 8. Congruences and Modular Systems Solving Linear Congruences Systems of Congruences Applications of CRT

ChatGPT said:

Here are **50 one-line problem statements** covering the topic **Congruences and Modular Systems**—perfect for competitive programming like Facebook Hacker Cup:

□ 8. Congruences and Modular Systems – 50 Problem Statements

- 1. Solve the congruence equation: $3x \equiv 4 \pmod{7}$.
- 2. Find smallest x such that $5x \equiv 1 \pmod{11}$.
- 3. Given a, b, m, check if solution exists for $ax \equiv b \pmod{m}$.
- 4. Find all solutions of x satisfying $7x \equiv 3 \pmod{10}$.
- 5. Solve for x: $12x \equiv 9 \pmod{15}$ and output smallest positive x.
- 6. Count number of solutions to $ax \equiv b \pmod{m}$ for given a, b, m.
- 7. Given a1, m1 and a2, m2, find x such that $x \equiv a1 \pmod{m1}$ and $x \equiv a2 \pmod{m2}$.
- 8. Solve a system of 3 congruences using CRT.
- 9. Find smallest x such that x % 3 = 2, x % 5 = 3, and x % 7 = 2.
- 10. Check whether a system of congruences has a solution.
- 11. Compute $x \mod m$ when x is negative.
- 12. Given large mod m, solve a*x ≡ b (mod m) using Extended Euclidean Algorithm.
- 13. Find modular inverse of a modulo m using Fermat (mod is prime).
- 14. Reduce a congruence with common divisor in a, b, m.
- 15. Count all solutions of x in 0 <= x < m for $a*x \equiv b \pmod{m}$.
- 16. Solve congruence chain: $x \equiv a \pmod{m}$, $x \equiv b \pmod{n}$, $x \equiv c \pmod{p}$.
- 17. Optimize CRT implementation for very large modulus values.
- 18. Given a range, count values of x satisfying a linear congruence.
- 19. Reduce congruence $ax \equiv b \pmod{m}$ to standard form.
- 20. Output smallest solution x where x mod 12 = 4 and x mod 15 = 9.
- 21. Given n congruences with pairwise coprime moduli, solve for x.
- 22. Solve $x \equiv 1 \pmod{2}$, $x \equiv 2 \pmod{3}$, ..., $x \equiv n \pmod{n+1}$.
- 23. Construct a number x that leaves specific remainders on division.
- 24. Compute least common multiple of moduli in a system of congruences.
- 25. Check if a set of congruences can be combined using CRT.
- 26. Given x % a = r1, x % b = r2, find x or state no solution.
- 27. Solve modular inverse problem for each a in array under mod m.
- 28. Compute x such that it satisfies all xi \equiv ai (mod mi) for given vectors.
- 29. Determine number of distinct solutions to ax \equiv b (mod m) in 0 \leq x < m.
- 30. Count x satisfying two congruences where moduli are not coprime.

- 31. Construct smallest positive x such that x % 17 = 3 and x % 19 = 4.
- 32. Check if inverse of a mod m exists and compute it.
- 33. Optimize solution of congruences when inputs are large (up to 10^18).
- 34. Given constraints, minimize x satisfying modular equations.
- 35. Validate if solution exists to system of congruences using extended GCD.
- 36. Apply CRT in circular clock problems.
- 37. Solve system of congruences using precomputed modulo inverses.
- 38. Encode a password using Chinese Remainder Theorem.
- 39. Implement generalized CRT for non-coprime moduli.
- 40. Construct number from its residues using CRT and verify uniqueness.
- 41. Solve simultaneous modular equations with overflow-safe operations.
- 42. Find next time when 3 clocks with different cycles align.
- 43. Encode multiple modular equations as one modulo LCM.
- 44. Solve for x: $x \equiv a \pmod{m1}$, $x \equiv b \pmod{m2}$ when $gcd(m1, m2) \neq 1$.
- 45. Use extended CRT to solve linear system with inconsistent moduli.
- 46. Find x for $x \equiv 0 \pmod{4}$, $x \equiv 3 \pmod{5}$, $x \equiv 4 \pmod{7}$.
- 47. Handle congruences involving negative remainders.
- 48. Find smallest x satisfying $x \equiv i \pmod{pi}$ for given primes pi.
- 49. Given values and moduli, reconstruct the number using CRT.
- 50. Apply CRT to decrypt RSA with multiple primes.

Let me know if you want full code or explanations for any specific problem!

You said:

□ 9. Quadratic Residues and Non-Residues Definition and Examples Legendre Symbol Euler's Criterion Quadratic Reciprocity Theorem Tonelli-Shanks Algorithm (modular square roots)

ChatGPT said:

Here are **50 one-line problem statements** for **Quadratic Residues and Non-Residues** in Number Theory, especially useful for **Facebook Hacker Cup-style** contests:

☐ 9. Quadratic Residues and Non-Residues – 50 Problem Statements

- 1. Determine if a given integer a is a quadratic residue modulo a prime p.
- 2. Find all x such that $x^2 \equiv a \pmod{p}$ for given a and prime p.
- 3. Count how many integers from 1 to p-1 are quadratic residues modulo p.
- 4. Given a and p, compute the **Legendre Symbol** (a/p).
- 5. Compute $a^((p-1)/2) \approx p$ and verify Euler's criterion for a prime p.
- 6. Given an array of numbers and a prime p, find how many are residues mod p.
- 7. Find the smallest quadratic residue modulo a large prime p.
- 8. Find the smallest non-residue modulo a given odd prime p.
- 9. Given a and p, find a square root of a modulo p using Tonelli-Shanks.
- 10. Given two distinct odd primes p and q, verify the Quadratic Reciprocity Theorem.

- 11. Implement a function to return +1, -1, or 0 using the Legendre symbol.
- 12. Solve $x^2 \equiv a \pmod{p}$ when p is a large prime, or return "No Solution".
- 13. Precompute Legendre symbols for all $1 \le a < p$ for a given large p.
- 14. For a given odd prime p, generate all quadratic residues modulo p.
- 15. Check if two numbers a and b are congruent mod p and both residues.
- 16. Given a, p, and q, compute (a/p) * (a/q) and compare to (a/(p*q)).
- 17. Use Euler's Criterion to verify a list of quadratic residues.
- 18. Given a composite n, determine whether Euler's Criterion holds.
- 19. Verify Wilson's Theorem using properties of quadratic residues.
- 20. Find all integers x such that $x^2 \equiv -1 \pmod{p}$ for a given prime p.
- 21. Implement Tonelli-Shanks for multiple test cases efficiently.
- 22. Given a number a and large p, decide if a has a modular square root.
- 23. Find the number of distinct modular square roots for numbers modulo p.
- 24. For large p, find the first 10 quadratic residues in ascending order.
- 25. Generate the list of non-residues for a given prime p.
- 26. Calculate (a/p) using Euler's Criterion and compare with direct method.
- 27. Check if the product of two residues is always a residue modulo p.
- 28. For given a and b, check if (a/p) * (b/p) == (ab/p).
- 29. Solve for x in $x^2 \equiv a \pmod{p}$ when $p \equiv 3 \mod 4$.
- 30. Reduce problem size using Quadratic Reciprocity when a > p.
- 31. Given p, count how many a satisfy (a/p) = -1.
- 32. Prove that there are (p 1) / 2 quadratic residues mod p.
- 33. Find an efficient method to determine all x such that $x^2 \equiv a \pmod{p}$ using precomputation.
- 34. Generate a random number and find its Legendre symbol mod a large prime.
- 35. Apply Quadratic Reciprocity to compare (p/q) and (q/p).
- 36. Write a modular exponentiation routine and use it for Euler's Criterion.
- 37. Implement naive and Tonelli-Shanks solutions and compare runtime.
- 38. Use properties of quadratic residues to determine a pattern in output.
- 39. Prove whether 2 is a quadratic residue modulo an odd prime p.
- 40. Given a, b, and p, determine whether both are residues and compute (a*b/p).
- 41. Calculate the sum of all quadratic residues modulo a large prime p.
- 42. Find a generator g such that g^i mod p covers only residues.
- 43. Use modular inverse with Tonelli-Shanks in a cryptographic setting.
- 44. Explore quadratic residues modulo non-primes like n = pq.
- 45. Solve $x^2 + 1 \equiv 0 \pmod{p}$ for a prime p.
- 46. Prove Fermat's theorem on sums of two squares using residues.
- 47. Count x such that $x^2 \equiv k \pmod{n}$ for general n.
- 48. Determine whether the equation $x^2 \equiv a \pmod{m}$ has solution when m is not prime.
- 49. Show how Legendre Symbol fails when p is not prime.
- 50. Optimize root finding using CRT with multiple moduli and Tonelli-Shanks.

Let me know if you'd like full solutions, grouped contests, or C++/Java implementations for any of these.

You said:

10. Base Conversions & Representations Binary, Decimal, Octal, Hex conversions Base b to Base b' Representing Numbers in Different Bases

ChatGPT said:

Here are **50 one-line problem statements** based on **Base Conversions & Representations** suitable for contests like Facebook Hacker Cup:

Base Conversions & Representations – Problem Statements

- 1. Convert a given binary string to its decimal representation.
- 2. Convert a given decimal number to its binary form without using built-in functions.
- 3. Convert a hexadecimal string to its equivalent decimal number.
- 4. Convert a decimal number to a base-7 string representation.
- 5. Convert an octal string to binary using only string manipulation.
- 6. Given a number in base b1, convert it to base b2.
- 7. Check if a binary string represents a power of 2.
- 8. Find the number of 1s in the binary representation of a given number.
- 9. Given a binary string, output its reversed base-10 number.
- 10. Add two large binary strings and print the sum in decimal.
- 11. Find the smallest base b $(2 \le b \le 16)$ in which a number is a palindrome.
- 12. Convert a number from base 10 to base 62 (digits + lowercase + uppercase).
- 13. Multiply two base-16 numbers and return the result in base-10.
- 14. Convert a decimal number to a base b string using recursion.
- 15. Check if a string is a valid representation in base b.
- 16. Given a list of binary numbers, sort them based on their decimal values.
- 17. Count the number of digits in base b for a given decimal number n.
- 18. Given a number, find its representation in base -2.
- 19. Convert a large decimal number (as string) to binary without overflow.
- 20. Convert a fractional decimal to binary (e.g. $0.625 \rightarrow 0.101$).
- 21. Find the base in which the number 121 is a square.
- 22. Find the base b such that the number 121 in base b is 25 in decimal.
- 23. Convert a list of hexadecimal colors to binary RGB format.
- 24. Represent a number in a mixed-base system (e.g., time: HH:MM:SS).
- 25. Convert base-3 representation to base-9.
- 26. Compress a binary string by grouping every 4 bits into a hex digit.
- 27. Find the number of trailing zeroes in binary representation of n!.
- 28. Generate the Gray code sequence for n bits and convert to decimal.
- 29. Convert a number from base b to its factorial number system representation.
- 30. Convert a decimal number to Roman numerals (base-like system).
- 31. Convert a large hexadecimal number to base 3.
- 32. Check whether a decimal number has alternating bits in binary.
- 33. Print all numbers from 1 to n in base 5.
- 34. Count numbers from 1 to n whose base-8 representation ends with 7.
- 35. Convert a decimal number into base b and reverse it.
- 36. Add two numbers given in base-3 and return in base-3.
- 37. Check if a number is palindromic in both base 10 and base 2.

- 38. Count how many numbers $\leq n$ have an even number of 1s in binary.
- 39. Convert a base-4 number to a base-16 number without converting to decimal.
- 40. Find the longest prefix of a base-2 string that is a perfect square.
- 41. Convert a base b number to decimal using Horner's method.
- 42. Given a base-10 number, find its representation in Fibonacci base.
- 43. Convert all digits of a number to words (e.g. $120 \rightarrow$ one-two-zero).
- 44. Given a string of binary digits, group them into valid ASCII characters.
- 45. Print all n-digit binary numbers with exactly k ones.
- 46. Count the number of digits required to represent n! in binary.
- 47. Convert a decimal number to base b using bitwise operations.
- 48. Add a number to itself in binary without using +.
- 49. Count the number of distinct digits in base b representation of n.
- 50. Convert a decimal number to IEEE-754 32-bit binary format.

Would you like this compiled into a PDF or CSV for practice sets or contest prep?

You said:

ChatGPT said:

Here are **50 one-line problem statements** based on the topic **Continued Fractions**, ideal for contests like **Facebook Hacker Cup**:

✔ Continued Fractions: 50 Problem Statements

☐ Basics and Construction

- 1. Convert a rational number a/b into its continued fraction representation.
- 2. Construct a continued fraction for \sqrt{N} up to k terms.
- 3. Determine whether the continued fraction of \sqrt{N} is periodic.
- 4. Given a continued fraction, reconstruct the original rational number.
- 5. Output the first k terms of continued fraction of π (approximate).
- 6. Write a function to generate continued fraction of e up to n terms.
- 7. Check if a continued fraction sequence corresponds to a rational number.
- 8. Find the number of terms in continued fraction of a/b.
- 9. For given N, find length of period in continued fraction of \sqrt{N} .
- 10. Compare two continued fractions and say which represents a larger number.

✔ Convergents and Rational Approximations

- 11. Compute the first k convergents of a given continued fraction.
- 12. Given a rational number, list all convergents.

- 13. For given real number x and max denominator d, find best convergent.
- 14. Approximate irrational number using continued fraction within epsilon error.
- 15. Given a convergent, find the next one.
- 16. Check if a convergent of √N gives an approximation within a threshold.
- 17. Find the closest convergent to π with denominator < 10^6.
- 18. Given k-th convergent of e, compute numerator and denominator.
- 19. For given continued fraction terms, verify if convergent equals a/b.
- 20. Find which convergent gives best approximation to √N under limit.

☐ Pell's Equation

- 21. Solve Pell's equation $x^2 N^*y^2 = 1$ for minimal x, y.
- 22. For given N, find smallest solution to $x^2 N^*y^2 = -1$ if it exists.
- 23. Count number of $N \le 1000$ for which Pell's equation has large minimal x.
- 24. Determine whether a given x, y solve Pell's equation.
- 25. Given a convergent of √N, check if it solves Pell's equation.
- 26. Compute next solution of Pell's equation from previous solution.
- 27. Find all solutions of $x^2 N^*y^2 = 1$ below given x limit.
- 28. Find smallest N such that Pell's equation has x > 1000.
- 29. For multiple values of N, solve corresponding Pell's equations.
- 30. Use continued fraction expansion to generate solution of $x^2 N^*y^2 = 1$.

☐ Rational Approximations

- 31. Given real number x and error e, find best rational approximation.
- 32. For input x in decimal form, compute continued fraction and best rational.
- 33. Determine if a/b is a convergent of a given real number.
- 34. Given decimal string, approximate it using convergents.
- 35. Minimize |x p/q| over all $q \le N$ for irrational x.
- 36. Generate closest rational number to x using CF up to k steps.
- 37. Output convergents of x until desired accuracy is met.
- 38. For decimal representation of e, find rational closest within 10⁻⁶.
- 39. Approximate log(2) using continued fractions.
- 40. For given transcendental number, find first convergent with even numerator.

☐ Advanced Continued Fractions

- 41. Analyze periodicity in CF of \sqrt{N} for N in given range.
- 42. For fixed N, generate matrix form of continued fraction recurrence.
- 43. Generate reverse CF from last convergent to first.
- 44. Convert CF of golden ratio into decimal form using k terms.
- 45. Use continued fraction to detect perfect squares.
- 46. Construct a continued fraction with Fibonacci numbers as numerators.
- 47. Optimize Pell's solution using symmetry of CF expansion.
- 48. Derive generalized CF representation for tan⁻¹(x).
- 49. Build recursive solution to find CF terms of algebraic number.
- 50. Analyze growth of numerator/denominator in convergents of $\sqrt{2}$.

Would you like the C++ or Python code templates for solving these?

You said:

12. Cryptography & Number Theory Public-Key Cryptography (e.g., RSA Algorithm) Primality Testing Miller-Rabin (Probabilistic) Fermat Test Modular Multiplicative Inverse in Cryptosystems

ChatGPT said:

Here are **50 one-line problem statements** related to **Cryptography & Number Theory** with a focus on modular arithmetic, primality testing, and public-key cryptosystems like RSA:

A Cryptography & Number Theory – 50 One-Line Problems

- 1. Implement RSA key generation with two small prime numbers.
- 2. Encrypt a message using RSA given public key (e, n).
- 3. Decrypt an RSA-encrypted message using private key (d, n).
- 4. Generate two large primes for RSA key generation using Miller-Rabin test.
- 5. Check if a number is prime using the Fermat primality test.
- 6. Perform modular exponentiation to encrypt a message using RSA.
- 7. Find modular inverse of a modulo m using Extended Euclidean Algorithm.
- 8. Check primality of a number up to 1e9 using Miller-Rabin.
- 9. Simulate sending encrypted messages using RSA with random primes.
- 10. Generate public and private keys for 512-bit RSA encryption.
- 11. Prove that the modular inverse exists for given a and m.
- 12. Factor n = p*q given n and phi (n) to find primes p, q.
- 13. Demonstrate RSA decryption failing with non-coprime e and phi(n).
- 14. Encrypt a numeric password with RSA and then decrypt it.
- 15. Validate digital signatures using RSA and SHA256 hash.
- 16. Encode a text message into numbers for RSA encryption.
- 17. Decrypt a hexadecimal RSA message to get original plaintext.
- 18. Crack Fermat's primality test by showing a Carmichael number passes it.
- 19. Apply Chinese Remainder Theorem to solve RSA decryption in parts.
- 20. Simulate an RSA system with pre-defined small key pairs.
- 21. Encrypt a string using character-wise RSA encoding.
- 22. Convert a binary message to decimal for modular encryption.
- 23. Encrypt and decrypt a 64-bit integer using fast power mod.
- 24. Perform Fermat's test with multiple a values for accuracy.
- 25. Find the first strong pseudoprime to a base a.
- 26. Detect Fermat liars and witnesses for a number n.
- 27. Count the number of Miller-Rabin iterations needed for 99% accuracy.
- 28. Generate a probable prime in range [1e6, 1e7] using Miller-Rabin.
- 29. Use Euler's theorem to simplify a^b mod m in encryption.
- 30. Create a program to simulate brute-force cracking of small RSA keys.
- 31. Secure a password using modular hashing.
- 32. Encrypt a file line by line using RSA.
- 33. Decrypt a file encrypted using line-wise modular exponentiation.

- 34. Explain why RSA fails if p = q.
- 35. Show how modular inverse fails if a and m are not coprime.
- 36. Derive Euler's totient for composite n = p*q for RSA.
- 37. Convert a sentence to ASCII before modular encryption.
- 38. Prove a number is a strong probable prime to base a.
- 39. Encrypt a single-digit number using mini-RSA logic.
- 40. Use modular inverse in affine cipher encryption.
- 41. Use CRT to speed up RSA decryption with large primes.
- 42. Write a function to return all coprime numbers to n.
- 43. Test a batch of numbers for primality using Fermat + Miller-Rabin.
- 44. Convert base64-encoded message to decimal for encryption.
- 45. Compute RSA keys where e is chosen as 65537.
- 46. Encrypt two numbers a and b and find (a+b) mod n after decryption.
- 47. Detect if RSA key is invalid due to incorrect totient.
- 48. Implement Miller-Rabin using random bases for multiple checks.
- 49. Explain modular exponentiation overflow and its fix.
- 50. Build a secure communication simulator using RSA with user input.

Let me know if you want code for any of these or need a quiz/assignment-style format.

You said:

13. Miscellaneous Advanced Topics Sum of Divisors Number of Divisors Mobius Function Dirichlet Convolution Inclusion-Exclusion Principle in Number Theory Primitive Roots and Discrete Logarithm Carmichael Numbers

ChatGPT said:

Here are **50 one-line problem statements** for **Miscellaneous Advanced Topics** in Number Theory:

★ Sum of Divisors / Number of Divisors

- 1. Compute the sum of all divisors of a number n.
- 2. Find the number of divisors of n given its prime factorization.
- 3. For a range 1 to N, find the total number of divisors for each number.
- 4. Count how many numbers from 1 to N have exactly k divisors.
- 5. Given n, find the product of all its divisors.
- 6. For multiple test cases, output sum of divisors for each number.
- 7. Count how many numbers less than n have sum of divisors > n.
- 8. Check if the sum of proper divisors of n is equal to n (Perfect Number).
- 9. Sum all divisors of numbers from 1 to N efficiently.
- 10. Find the smallest number with exactly k divisors.

5 Mobius Function (μ)

- 11. Calculate the Mobius function value for a number n.
- 12. Compute $\mu(n)$ for all n in range 1 to 10⁶.
- 13. Count numbers \leftarrow N such that $\mu(n) \neq 0$.
- 14. Check if n is square-free using Mobius function.
- 15. Use Mobius inversion to compute count of coprime pairs up to n.
- 16. Count the number of positive integers $\leq n$ with even number of prime factors.
- 17. Sum of $\mu(n)$ for $1 \le n \le N$.
- 18. Evaluate Dirichlet convolution using $\mu(n)$ and f(n).
- 19. Find all numbers \leq n for which $\mu(n) = 1$.
- 20. Use $\mu(n)$ to solve inclusion-exclusion-based problems.

Dirichlet Convolution

- 21. Define and implement Dirichlet convolution of two functions f and g.
- 22. Use Dirichlet convolution to express totient function $\varphi(n)$.
- 23. Show that convolution of 1 and id is $\sigma(n)$ (sum of divisors).
- 24. Given f(n) and g(n), find h(n) = (f * g)(n) for $n \le 100000$.
- 25. Prove multiplicativity of Dirichlet convolution via code.
- 26. Compute Dirichlet inverse of Euler's totient function.
- 27. For given f (n), compute all values of its Dirichlet inverse.
- 28. Evaluate convolution using prefix sums of divisor functions.
- 29. Write function to compute convolution of Mobius and identity functions.
- 30. Given f and g, verify f * μ = g via code.

Inclusion-Exclusion Principle in Number Theory

- 31. Count numbers $\leq N$ divisible by a, b, or c using inclusion-exclusion.
- 32. Find how many numbers up to N are not divisible by any of a list of primes.
- 33. Count integers $\leq N$ having gcd with K equal to 1.
- 34. For set of mod values, find count of numbers $\leq N$ not divisible by any.
- 35. Use inclusion-exclusion to count co-prime pairs in range.
- 36. Use mobius inversion and IE to count numbers with at most k prime factors.
- 37. Find how many numbers $\leq N$ are divisible by at least two of the given primes.
- 38. Count numbers up to N which are divisible by neither 2 nor 3 nor 5.
- 39. Use inclusion-exclusion for union of multiple sets defined by mod constraints.
- 40. Given N and list of m primes, compute how many numbers \leq N are coprime to all.

☐ Primitive Roots and Discrete Logarithm

41. Find smallest primitive root of a prime number p.

- 42. Given a, b, m, find x such that $a^x \equiv b \pmod{m}$ (Discrete Log).
- 43. Count number of primitive roots modulo p.
- 44. Check whether a number g is a primitive root modulo p.
- 45. Solve discrete logarithm problem using Baby-step Giant-step.
- 46. Compute the discrete logarithm for large p (up to 10^9).
- 47. Print all primitive roots modulo p if p is prime.
- 48. Given q, generate the full primitive root cycle modulo p.
- 49. Count how many numbers have discrete log equal to a fixed value.
- 50. Find the order of an integer a modulo n.

Let me know if you'd like the C++/Java/Python code templates for any of these problems.

You said:

Optional for Research or Advanced Study Elliptic Curves Algebraic Number Theory Gaussian Integers Zeta Functions

ChatGPT said:

Here is the **complete Number Theory syllabus** including foundational to advanced researchoriented topics, organized clearly by theme:

☐ 1. Basics of Number Theory

- Divisibility and GCD
- Prime Numbers and Fundamental Theorem of Arithmetic
- Euclidean Algorithm
- Extended Euclidean Algorithm
- LCM and GCD properties

32 2. Modular Arithmetic

- Modular Addition, Subtraction, Multiplication
- Modular Exponentiation
- Negative Modulo
- Modular Inverses (using Extended Euclidean / Fermat's Little Theorem)
- Applications: Fast Power, Inverses in combinatorics

3. Prime Number Algorithms

- Sieve of Eratosthenes
- Segmented Sieve
- Sieve of Sundaram (optional)
- Sieve of Atkin (optional)
- Prime Factorization
- Prime Factor Caching
- Large Input Handling
- String-Based Number Parsing

☐ 4. Theorems in Number Theory

- Fermat's Little Theorem
- Euler's Theorem
- Wilson's Theorem
- Chinese Remainder Theorem (CRT)
- Lagrange's Theorem
- Bézout's Identity

5. Euler's Totient Function

- Definition: $\varphi(n)$ = number of integers $\leq n$ that are coprime to n
- Properties: $\varphi(p^k)$, multiplicative property
- Euler's Product Formula: $\varphi(n) = n * \prod (1 1/p)$ over distinct primes
- Precomputing $\varphi(n)$ for 1 to N

☐ 6. Counting and Combinatorics in Number Theory

- Computing nCr % mod with large n
- Precomputing Factorials and Inverses (using Fermat's Little Theorem)
- Lucas Theorem (for large n, small prime mod)
- Stars and Bars Theorem (optional)
- Inclusion-Exclusion in combinatorics

☐ 7. Diophantine Equations

- Linear Diophantine Equations: ax + by = c
- Existence of integer solutions using GCD
- Number of integer solutions
- Extended Euclidean Algorithm applications

☐ 8. Congruences and Modular Systems

- Solving Linear Congruences: $ax \equiv b \mod n$
- Systems of Congruences
- Chinese Remainder Theorem (CRT) applications
- Inverses and modulo properties

☐ 9. Quadratic Residues and Non-Residues

- Definition and examples
- Euler's Criterion
- Legendre Symbol
- Law of Quadratic Reciprocity
- Tonelli-Shanks Algorithm (modular square roots)

10. Base Conversions and Representations

- Binary ↔ Decimal ↔ Octal ↔ Hexadecimal
- Base b to base b' conversions
- Representing numbers as strings
- String to Big Integer conversion

№ 11. Continued Fractions

- Constructing Continued Fractions for rational numbers
- Convergents and their recurrence
- Applications: Best rational approximations
- Solving Pell's Equation using continued fractions

12. Cryptography & Number Theory

- RSA Algorithm & Modular Arithmetic
- Public-Key Cryptography basics
- Modular Inverse in Cryptosystems
- Primality Testing
 - o Fermat's Test
 - o Miller-Rabin (Probabilistic)

13. Miscellaneous Advanced Topics

- Number/Count of Divisors
- Sum of Divisors function
- Mobius Function μ(n)
- Dirichlet Convolution
- Primitive Roots and Discrete Logarithms
- Carmichael Numbers
- Inclusion-Exclusion in arithmetic functions

***** Optional (Advanced Research Topics)**

- Elliptic Curves
- Gaussian Integers
- Algebraic Number Theory (Ideals, Fields)
- Zeta Functions (especially Riemann Zeta, Dirichlet Series)

If you'd like, I can turn this into a **PDF**, **Notion doc**, or **interactive checklist**. Just let me know your preferred format.