List 6

Łukasz Magnuszewski

29 marca 2023

6.1 Operations on structures

Exercise 6.1

Given two τ -structures $\mathfrak{A}, \mathfrak{B}$, their Cartesian product $\mathfrak{A} \times \mathfrak{B}$ is a τ -structure whose universe is $\mathfrak{A} \times \mathfrak{B}$, each constant symbol $c \in \tau$ is inerpreted as $(c^{\mathfrak{A}}, c^{\mathfrak{B}})$, and every k-ary predicate R is interpreted as $\{((a_1, b_1), \ldots, (a_k, b_k)) | (a_1, \ldots, a_k) \in R^{\mathfrak{A}}, (b_1, \ldots, b_k) \in R^{\mathfrak{B}}\}$

Assuming that $\mathfrak{A}_1 \equiv_m \mathfrak{B}_1$ and $\mathfrak{A}_2 \equiv_m \mathfrak{B}_2$ hold, show that $\mathfrak{A}_1 \times \mathfrak{B}_1 \equiv_m \mathfrak{A}_2 \times \mathfrak{B}_2$.

solution

We know that $\mathfrak{A}_1\equiv_m\mathfrak{B}_1$ and $\mathfrak{A}_2\equiv_m\mathfrak{B}_2$ hold, so there is winning strategy for duplicator in m-round Ehrenfeucht-Fraiisse game on structures $\mathfrak{A}_1,\mathfrak{B}_1$ and $\mathfrak{A}_2,\mathfrak{B}_2$.

To show that $\mathfrak{A}_1 \times \mathfrak{B}_1 \equiv_m \mathfrak{A}_2 \times \mathfrak{B}_2$ we will play m-round game as duplicator. Our strategy is following:

If spoiler picks elements $(a_1,b_1)\in\mathfrak{A}_1\times\mathfrak{B}_1$ then we can with tuple (a_2,b_2) where is a_2 is duplicator answer for spoiler play a_1 in game on $\mathfrak{A}_1,\mathfrak{B}_1$, and b_2 is decided in the same way

The same happens when spoiler picks $(a_2,b_2)\in\mathfrak{A}_2 imes\mathfrak{B}_2$

Exercise 6.2

Fix a finite purely-relational signature τ , a τ -strucutre \mathfrak{A} , and a non empty set of indices I. We define the structure $\mathfrak{A} \times I$ as follows: the domain of $\mathfrak{A} \times I$ is $A \times I$, and for each k-ary relational symbol R we put $((a_1,i_1),\ldots,(a_k,i_k)) \in R^{\mathfrak{A} \times I}$ if and only if $(a_1,\ldots,a_k) \in R^{\mathfrak{A}}$ holds. Show by structural induction that for all eqaulity-free $FO[\tau]$ -formulae $\psi(x_1,\ldots,x_k)$, all tuples $\bar{a} \in A^k$ and $\bar{i} \in I^k$ we have $\mathfrak{A} \times I \vdash \psi[(a_1,i_1),\ldots,(a_k,i_k)]$ if and only if $\mathfrak{A} \vdash \psi[a_1,\ldots a_k]$

Exercise 6.3

Let \mathfrak{A} , \mathfrak{B} be countably-infinite structures that are ω -elementary equivalent(i.e. duplicator can surwive ω rounds in any E-F game on \mathfrak{A} and \mathfrak{B}). Show that $\mathfrak{A} \cong \mathfrak{B}$.

During the game all elements of structure a and b can be selected, and duplicator surived so there is a isomorphism beetwen all elements of \mathfrak{A} and all elements of \mathfrak{B} . Which means that these structures are isomorphic.