ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK ANABİLİM DALI

ELEKTRONİĞE GİRİŞ

2006 -2007 BAHAR UYGULAMA 7

Örnek: Şekildeki NMOS kanal oluşturmalı MOSFET'li evirici devresinde M1 transistörü $KP_1 = 20 \frac{\mu A}{V^2}$; $V_{T1} = 0.5V$; $\left(\frac{W}{L}\right)_1 = 8$; $\lambda_1 = 0$; ile ve M2 transistörü $KP_2 = 20 \frac{\mu A}{V^2}$; $V_{T2} = 0.5V$; $\left(\frac{W}{L}\right)_2 = 1$; $\lambda_2 = 0$ ile tanımlanmıştır.

- a. Giriş geriliminin 1.5V olması durumunda devrenin çalışma noktasını bulunuz.
- **b.** Giriş geriliminin 0 5V arasında değişmesi durumunda devrenin çalışmasını inceleyiniz ve devrenin gerilim transfer eğrisini (v_{out} = f(v_{in})) veriniz.

a. $v_{in} = 1.5V$

M1 MOSFET'i doymada çalışıyor kabul edelim. Bu durumda:

$$\begin{split} &I_{_{D1}} = \frac{1}{2}\beta_{_{1}} \left(V_{_{GS1}} - V_{_{T1}}\right)^{_{2}} \; ; \quad V_{_{GS1}} = v_{_{in}} \; ; \; \beta_{_{1}} = KP_{_{1}} . \left(\frac{W}{L}\right)_{_{1}} = 20 \frac{\mu A}{V^{_{2}}}.8 = 160 \frac{\mu A}{V^{_{2}}} \\ &I_{_{D1}} = \frac{1}{2}160.10^{-6} \left(1,5-0,5\right)^{_{2}} = 80 \mu A = I_{_{D2}} = I_{_{D}} \end{split}$$

M2 MOSFET'inin G ve D uçları birbirine bağlı olduğundan daima $V_{GS2} = V_{DS2}$ olur ve $V_{DS2} > V_{GS2} - V_{T2}$ şartı her V_{GS} , V_{DS} için sağlanır. M2 MOSFET'i her zaman doymadadır.

$$\begin{split} I_{_{D2}} &= \frac{1}{2}\beta_{_{2}}\left(V_{_{GS2}} - V_{_{T2}}\right)^{2} = \frac{1}{2}\beta_{_{2}}\left(V_{_{DS2}} - V_{_{T2}}\right)^{2} \\ V_{_{DS2}} &= \sqrt{\frac{2I_{_{D2}}}{\beta_{_{2}}}} + V_{_{T2}} \end{split}$$

$$V_{DS2} = \sqrt{\frac{2.80.10^{-6}}{20.10^{-6}.1}} + 0.5 = 3.328V$$

$$V_{DS1} = V_{out} = V_{DD} - V_{DS2} = 5 - 3,328 = 1,672V$$

 $V_{DS1} > V_{GS1} - V_{T1}$ kontrolü yapılırsa 1,672V > 1V, başlangıçtaki kabulümüz doğrudur.

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK ANABİLİM DALI

b. Giriş gerilimi 0 – 5V arasında değişirken çıkış geriliminin durumunu inceleyelim.

$V_{in} < V_{T1}$ iken:

M1 kesimdedir, dolayısıyla $I_{D1} = I_{D2} = 0$ olmalıdır. I_{D2} akımını sıfır yapan V_{DS2} değeri:

$$I_{D2} = \frac{1}{2}\beta_2 (V_{DS2} - V_{T2})^2 = 0$$

$$V_{DS2} = V_{T2} = 0.5V$$

$$V_{DS1} = V_{DD} - V_{DS2} = 4.5V$$

$V_{T1} < V_{in}$ ve $v_{out} > v_{in} - V_{T1}$ iken:

M1 doymadadır:

$$\begin{split} &I_{_{D1}} = I_{_{D2}} = \frac{1}{2}\beta_{_{1}} \left(v_{_{in}} - V_{_{T1}}\right)^{2} \\ &V_{_{DS2}} = \sqrt{\frac{2I_{_{D2}}}{\beta_{_{2}}}} + V_{_{T2}} \\ &V_{_{DS1}} = V_{_{DD}} - V_{_{DS2}} \end{split}$$

$V_{T1} < V_{in}$ ve $v_{out} > v_{in} - V_{T1}$ iken:

M1 doğrusal bölgededir:

(1)
$$I_{D1} = \beta_1 \left[\left(v_{in} - V_{T1} \right) V_{DS1} - 0, 5.V_{DS1} \right]$$

(2)
$$I_{D2} = \frac{1}{2}\beta_2 (V_{DS2} - V_{T2})^2$$

(3)
$$I_{D1} = I_{D2}$$

$$(4) \quad V_{DS1} = V_{DD} - V_{DS2}$$

(1), (2), (3) ve (4)'ten

$$\begin{split} &\frac{1}{2}\beta_{2}\left(V_{DD}-V_{DS1}-V_{T2}\right)^{2}=\beta_{1}\Bigg[\left(v_{in}-V_{T1}\right)V_{DS1}-\frac{1}{2}V_{DS1}^{2}\Bigg]\\ &\frac{1}{2}\left(\beta_{1}+\beta_{2}\right)V_{DS1}^{2}-\Big[\beta_{2}\left(V_{DD}-V_{T2}\right)+\beta_{1}\left(v_{in}-V_{T1}\right)\Big]V_{DS1}+\frac{1}{2}\beta_{2}\left(V_{DD}-V_{T2}\right)^{2}=0 \end{split}$$

V_{DS1} değeri doyma şartını sağlayacak şekilde seçilir.

 v_{in} geriliminin 0-5V arasındaki değerleri için yukarıdaki üç bölümde açıklanan şekilde $v_{out} = V_{DS1}$ gerilimleri bulunur ve karşılıklı çizdirilirse aşağıdaki NMOS eviricinin gerilim transfer eğrisi elde edilir.

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK ANABİLİM DALI

Burada evirici devresi için önemli olan bileşenler gürültü marjı NMH + NML olarak tanımlanan (NMH = $V_{OH} - V_{IH}$ ve NML = $V_{IL} - V_{OL}$) büyüklüklerdir. M1 MOSFET'inin W/L oranı artırılarak gerilim transfer eğrisinin "lojik 1" seviyesinden "lojik 0" seviyesine daha keskin inmesi sağlanabilir.

Örnek: Şekilde $V_{T0} = 0.8V$; $\beta = 5 \text{mA/V}^2$; $\lambda = 0.02$ değerleri ile tanımlanan n-MOS transistörlü bir yükselteç devresi verilmektedir.

- c. Çalışma noktasını (V_{DSO}, I_{DO}) bulunuz.
- **d.** Transistörün verilen çalışma noktasındaki küçük genlikli alternatif işaretler için geçerli eşdeğer devre elemanlarını hesaplayınız.
- e. Devrenin k.g.a.i. için geçerli ED'sini çiziniz ve gerilim kazancını bulunuz.

a. Çalışma noktası için DC analiz:

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK ANABİLİM DALI

$$V_{GG} = \frac{R_2}{R_1 + R_2} V_{DD} = 3V; \quad R_G = R_1 // R_2 = 210 k\Omega$$

(1)
$$V_{GG} = V_{GS} + I_D R_S$$
; $V_{GS} = 3 - 100 I_D$

(2)
$$V_{DD} = I_D R_D + V_{DS} + I_D R_S = I_D (R_D + R_S) + V_{DS}; V_{DS} = 10 - 1100 I_D$$

$$I_{D} = -\frac{1}{R_{D} + R_{S}} V_{DS} + \frac{1}{R_{D} + R_{S}} V_{DD}$$
 SYD

FET doymada çalışıyor kabul edelim:

(3)
$$I_D = \frac{1}{2}\beta (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$

(1), (2) ve (3) denklemlerinden

$$I_{D} = \frac{1}{2}5.10^{-3} (3 - 100I_{D} - 0.8)^{2} [1 + 0.02(10 - 1100I_{D})]$$

$$2,5.10^{-3} \left(2,2-100 I_{_{\rm D}}\right)^2 \left(1,2+22 I_{_{\rm D}}\right)-I_{_{\rm D}}=0$$

$$I_{DO} = 6,422 \text{mA}$$

$$V_{GSO} = 3 - 100I_D = 3 - 0,6422 = 2,3578V$$

$$V_{DSQ} = 10 - 1100I_{D} = 10 - 1, 1.6, 422 = 2,936V$$

Devre doymada çalışıyor ise $V_{DS} \ge V_{GS} - V_{T}$ olmalı. 2,936V > 1,5578V o halde varsayımımız doğrudur.

b. K.g.a.i. için geçerli ED elemanları:

$$\begin{split} g_{m} &= \frac{\partial I_{D}}{\partial V_{GS}}\bigg|_{V_{DS} = sbt} = \beta \Big(V_{GS} - V_{T}\Big) \Big(1 + \lambda V_{DS}\Big) = \frac{2I_{D}}{\left(V_{GS} - V_{T}\right)} = \frac{2.6,422mA}{1,5578V} = 8,245 \frac{mA}{V} \\ g_{d} &= \frac{1}{r_{d}} = \frac{\partial I_{D}}{\partial V_{DS}}\bigg|_{V_{T} = sbt} = \frac{1}{2}\beta \Big(V_{GS} - V_{T}\Big)^{2} \lambda = \frac{1}{2}5.10^{-3} \Big(1,5578\Big)^{2} \, 0,02 = 0,12 \frac{mA}{V}; \quad r_{d} = 8,24k\Omega \end{split}$$

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK ANABİLİM DALI

c. Gerilim kazancı

$$\begin{split} &(1) \ v_L = -i_d.R_D /\!\!/ R_L = v_d + i_d.R_S \\ &(2) \ v_d = \left(i_d - g_m v_{gs}\right).r_d \\ &(1) \ ve \ (2) \ 'den \\ &\left(i_d - g_m v_{gs}\right).r_d + i_d R_S = -i_d R_D /\!\!/ R_L \\ &i_d \left(r_d + R_S + R_D /\!\!/ R_L\right) = g_m r_d v_{gs} \\ &v_{gs} = \frac{\left(r_d + R_S + R_D /\!\!/ R_L\right)}{g_m r_d} i_d \\ &v_S = v_{gs} + i_d R_S = \left[\frac{\left(r_d + R_S + R_D /\!\!/ R_L\right)}{g_m r_d} + R_S\right] i_d \\ &v_L = -i_d R_D /\!\!/ R_L \\ &k_U = \frac{v_L}{v_S} = -\frac{g_m r_d.R_D /\!\!/ R_L}{r_d + R_D /\!\!/ R_L + \left(1 + g_m r_d\right) R_S} \\ &k_U = -\frac{8,245.8,24.0,8k}{8,24k + 0,8k + \left(1 + 8,245.8,24\right).0,1k} = -3,411 \end{split}$$