UPPER BOUNDS AND THE COMPLETENESS AXIOM

Let S be a set of real numbers.

- A number b is an upper bound for S provided for all $x \in S$ we have $b \ge x$.
- The set S is bounded above provided there exists at least one upper bound for S.
- \bullet A number m is the maximum of S provided
 - (1) $m \in S$, and
 - (2) m is an upper bound of S.
- A number ℓ is a *supremum* of S provided
 - (1) ℓ is an upper bound of S, and
 - (2) for any upper bound b for S, we have $\ell \leq b$.
- (1) Write, in simplified form, the negation of the statement "b is an upper bound for S".
- (2) Write, in simplified form, the negation of the statement "S is bounded above".
- (3) Let S be a set of real numbers and suppose that $\ell = \sup(S)$.
 - (a) If $x > \ell$, what is the most concrete thing you can say about x and S?
 - (b) If $x < \ell$, what is the most concrete thing you can say about x and S?
- (4) Let S be a set of real numbers, and let $T = \{2s \mid s \in S\}$. Prove that if S is bounded above, then T is bounded above.
- (5) Let S be a set of real numbers. Show that if S has a supremum, then it is unique.
- (6) Let S be a set of real numbers, and let $T = \left\{ \frac{s}{2} \mid s \in S \right\}$. Directly⁴ prove⁵ that if S is unbounded above, then T is unbounded above.

¹Hint: Use one of the previous problems.

²For example, if $S = \{-1, 1, 2\}$, then $T = \{-2, 2, 4\}$.

³First, before all else, this is an if then statement: start by assuming the "if" part. We now need to show the "then" part, which is about the existence of an upper bound. Use your assumption about S to find an upper bound for T (and prove that it is indeed an upper bound for T).

⁴Don't try to apply (4), just prove it directly, perhaps using your simplified description of "unbounded above" from (2). This also means don't take the contrapositive and don't proceed by contradiction.

 $^{^5}$ First, before all else, this is an if then statement: start by assuming the "if" part. We now need to show that T is unbounded above, which before everything else, is a for all statement. Use the hypothesis to get the number that you want...

Well-Ordering Axiom: Every nonempty subset of $\mathbb N$ has a minimum.

COMPLETENESS AXIOM: Every nonempty bounded above set of real numbers has a supremum.

(1) Prove the following:

THEOREM: For every real number r, there is some natural number n such that n > r.

(2) Prove the following:

THEOREM: For every real number r, there exists a unique integer n such that $n-1 \le r < n$.

⁶Hint: First deal with the case $r \ge 0$.

COMPLETENESS AXIOM: Every nonempty bounded above set of real numbers has a supremum.

THEOREM 4.1: For every real number r, there is some natural number n such that n > r.

Proof of Theorem 4.1:	
(1)	Proceed by contradiction: if not, then the set of natural numbers $\mathbb N$ is
(2)	Since $1 \in \mathbb{N}$, \mathbb{N} is nonempty; thus, by the
1	the set \mathbb{N} has a
	call it ℓ . The real number $\ell-1$ is less than $\sup(\mathbb{N})$, so
(4)	Adding one,
(5)	This contradicts
(6)	Thus