

Exponential Distribution

Exponential Distributions

The family of exponential distributions provides probability models that are very widely used in engineering and science disciplines.

ตัวอย่างเช่น

- ปัญหาในระบบแถวคอย เวลาในการให้บริการและช่วงห่างระหว่างการเข้ามารับบริการของลูกค้า
- ความน่าจะเป็นที่ผลิตภัณฑ์ยังคงทำงานได้
- ความน่าจะเป็นที่ผลิตภัณฑ์จะเกิดการพังของอุปกรณ์หรือเครื่องจักรก่อนช่วงเวลาที่กำหนด
- อายุการใช้งานของอุปกรณ์

Definition

X is said to have an **exponential distribution** with parameter λ ($\lambda > 0$) if the pdf of X is

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & otherwise \end{cases}$$

164

(4.5)

Exponential Distributions

- ο Some sources write the exponential pdf in the form $(1/\beta)e^{-x/\beta}$, so that $\beta = 1/\lambda$.
- \circ Expected value of an exponentially distributed random variable X is

$$E(X) = \int_0^\infty x \lambda e^{-\lambda x} dx$$

 Obtaining this expected value necessitates doing an integration by parts.

The variance of X can be computed using the fact that

$$V(X) = E(X^2) - [E(X)]^2$$
.

 \circ The determination of $E(X^2)$ requires integrating by parts twice in succession.

		1
Proof E(X)		
	166	;

Proof V(X)

Proof V(X) (cont.)

168

Exponential Distributions

The results of these integrations are as follows:

$$\mu = \frac{1}{\lambda}$$
 $\sigma^2 = \frac{1}{\lambda^2}$

Both the mean and standard deviation of the exponential distribution equal $1/\lambda$.

Graphs of several exponential pdf's are illustrated in Figure 4.26.

Figure 4.26 Exponential density curves

ตัวอย่าง

ถ้าเวลาที่ลูกค้าแต่ละคนใช้ในการรอกอย เพื่อใช้บริการของธนาคารแห่ง หนึ่งมีการแจกแจงเอ็กซ์โพเนนเชียล โดยมีค่าเฉลี่ยเท่ากับ 10 นาที จงหา ความน่าจะเป็นที่ลูกค้าคนหนึ่งใช้เวลาในการรอกอย

- ก) มากกว่า 10 นาที
- ข) ตั้งแต่ 10 ถึง 20 นาที

172

ตัวอย่าง : วิธีทำ

ก) มากกว่า 10 นาที

ตัวอย่าง : วิธีทำ

ข) ตั้งแต่ 10 ถึง 20 นาที

176

Exponential Distributions

The exponential pdf is easily integrated to obtain the cdf.

$$F(x; \lambda) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\lambda x} & x \ge 0 \end{cases}$$

Proof F(x)

179

Example 4.21

MPa : MegaPascals

The article "Probabilistic Fatigue Evaluation of Riveted Railway Bridges" (*J. of Bridge Engr.*, 2008: 237–244) suggested the exponential distribution with mean value 6 MPa as a model for the distribution of stress range in certain bridge connections.

Let's assume that this is in fact the true model. Then

$$E(X) = 1/\lambda = 6$$
 implies that $\lambda = 0.1667$.

Example 4.21

Solution

 $\mathrm{P}(X \leq 10)$

182

Example 4.21

cont'd

The probability that stress range is at most 10 MPa is

$$P(X \le 10) = F(10; 0.1667)$$

$$= 1 - e^{-(0.1667)(10)} \qquad F(x; \lambda) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\lambda x} & x \ge 0 \end{cases}$$

$$= 1 - 0.189$$

$$= 0.811$$

Example 4.21
$$F(x; \lambda) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\lambda x} & x \ge 0 \end{cases}$$

The probability that stress range is between 5 and 10 MPa is

$$P(5 \le X \le 10) = F(10; 0.1667) - F(5; 0.1667)$$

$$= (1 - e^{-0.1667(10)}) - (1 - e^{-0.1667(5)})$$

$$= (1 - e^{-1.667}) - (1 - e^{-0.8335})$$

$$= 0.246$$

184

Exponential Distributions

- o Exponential distribution is frequently used as a model for distribution of times between occurrence of successive events, such as
 - customers arriving at a service facility or
 - calls coming in to a switchboard.

Exponential Distributions

Proposition

- o Suppose that the number of events occurring in any time interval of length t has a Poisson distribution with parameter αt (where α , rate of event process, is expected number of events occurring in 1 unit of time) and that numbers of occurrences in nonoverlapping intervals are independent of one another.
- o Then distribution of elapsed time between occurrence of two successive events is exponential with parameter $\lambda = \alpha$.

186

Exponential Distributions

$$p(x;\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$

Although a complete proof is beyond the scope of the text, the result is easily verified for the time X_1 until the first event occurs:

$$P(X_1 \le t) = 1 - P(X_1 > t) = 1 - P$$
 [no events in $(0, t)$]

$$= 1 - \frac{e^{-\alpha t} \cdot (\alpha t)^0}{0!} = 1 - e^{-\alpha t}$$

which is exactly the cdf of the exponential distribution.

$$F(x; \lambda) = \begin{cases} 0 & x < 0\\ 1 - e^{-\lambda x} & x \ge 0 \end{cases}$$

Example 4.22

- \circ Suppose that calls are received at a 24-hour "suicide hotline" according to a Poisson process with rate $\alpha = 0.5$ call per day.
- \circ Then the number of days X between successive calls has an exponential distribution with parameter value 0.5, so the probability that more than 2 days elapse between calls is

$$P(X>2) = 1 - P(X \le 2)$$

$$= 1 - F(2; 0.5)$$

$$= e^{-(0.5)(2)}$$

$$= 0.368$$

$$F(x; \lambda) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\lambda x} & x \ge 0 \end{cases}$$

The expected time between successive calls is 1/0.5 = 2 days.

188

ตัวอย่าง

ตำรวจทางหลวงจับความเร็วของรถยนต์บนถนนสายหนึ่ง กำหนด ความเร็วสูงสุด 120 กิโลเมตรต่อชั่วโมง พบว่า จำนวนรถที่วิ่งด้วย ความเร็วเกินที่กำหนดมีการแจกแจงปัวส์ซอง โดยมีค่าเฉลี่ยเท่ากับ 8.4 คันต่อครึ่งชั่วโมง

จงหาความน่าจะเป็นที่ตำรวจจะใช้เวลารอคอยน้อยกว่า 5 นาที ระหว่างรถยนต์ที่มีความเร็วเกินที่กำหนด

วิธีทำ	
	190

Exponential Distributions

Another important application of the exponential distribution is to model the distribution of component lifetime.

A partial reason for the popularity of such applications is the "memoryless" property of the exponential distribution.

194

Exponential Distributions

Suppose component lifetime is exponentially distributed with parameter λ .

After putting the component into service, we leave for a period of t_0 hours and then return to find the component still working; what now is the probability that it lasts at least an additional t hours?

In symbols, we wish $P(X \ge t + t_0 \mid X \ge t_0)$.

By the definition of conditional probability,

$$P(X \ge t + t_0 | X \ge t_0) = \frac{P[(X \ge t + t_0) \cap (X \ge t_0)]}{P(X \ge t_0)}$$

196

Exponential Distributions $F(x; \lambda) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\lambda x} & x \ge 0 \end{cases}$

But the event $X \ge t_0$ in the numerator is redundant, since both events can occur if $X \ge t + t_0$ and only if. Therefore,

$$P(X \ge t + t_0 | X \ge t_0) = \frac{P(X \ge t + t_0)}{P(X \ge t_0)} = \frac{1 - F(t + t_0; \lambda)}{1 - F(t_0; \lambda)} = e^{-\lambda t}$$

This conditional probability is identical to the original probability $P(X \ge t)$ that the component lasted t hours.

- o Thus distribution of additional lifetime is exactly the same as the original distribution of lifetime, so at each point in time the component shows no effect of wear.
- o In other words, the distribution of remaining lifetime is independent of current age.

ตัวอย่าง

ถ้าอายุการใช้งานของหลอดภาพโทรทัศน์ของบริษัทแห่งหนึ่ง มีการ แจกแจงเอ็กซ์โพเนนเชียล โดยมีค่าเฉลี่ยเท่ากับ 10 ปี ถ้าซื้อโทรทัศน์ ของบริษัทดังกล่าวมาแล้ว 10 ปี

จงหาความน่าจะเป็นที่หลอดภาพโทรทัศน์จะใช้งานได้ต่อไปอีกอย่าง น้อย 10 ปี

199

วิธีทำ

