

National Forensic Sciences University

Knowledge | Wisdom | Fulfilment

An Institution of National Importance (Ministry of Home Affairs, Government of India)

Assignment:3 Cayley-Hamilton Theorem

School of Cyber Security and Digital Forensics

Sr. No.	Questions
1	Define types of matrices with examples.
2	Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 2 & -1 \\ 6 & 5 \end{bmatrix}$
3	Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} -3 & -4 \\ 7 & 9 \end{bmatrix}$
4	Verify Cayley-Hamilton theorem and find A^{-1} , A^{-2} for $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$
5	Verify Cayley-Hamilton theorem and find A^{-1} , A^{2} for $A = \begin{bmatrix} 2 & 4 \\ -3 & -7 \end{bmatrix}$
6	Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1 \end{bmatrix}$ and hence find A^4 .
7	Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ and hence find A^{-1} .