NoRML:No-Reward Meta Learning

presented by Jason TOKO

- Background & Motivation
- Review on MAML-RL
- No-Reward Meta Learning
 - Learned Advantage Function
 - Learned Offset
 - Algorithm
- Experiment
 - Point Agent
 - Continuous Control
- Conclusion

- Background & Motivation
- Review on MAML-RL
- No-Reward Meta Learning
 - Learned Advantage Function
 - Learned Offset
 - Algorithm
- Experiment
 - Point Agent
 - Continuous Control
- Conclusion

Background & Motivation

MAML

- MAML is successful at adapting policies to different tasks that are defined by reward changes.
- However, it is less effective when adapting to other changes, such as dynamics changes, sensor drifts, or missing reward signals.
- An agent should recognize dynamics change from the state-action transitions alone to adapt its behavior.

• Goal:

 To develop a model-free meta-RL algorithm that can learn to quickly adapt a policy to dynamics changes and sensor drifts without external rewards—— NoRML

- Background & Motivation
- Review on MAML-RL
- No-Reward Meta Learning
 - Learned Advantage Function
 - Learned Offset
 - Algorithm
- Experiment
 - Point Agent
 - Continuous Control
- Conclusion

Review on MAML-RL

Adaptation(Policy Gradient):

$$\theta_{i} = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{i}}(\theta, D_{i}^{\text{train}})$$

$$= \theta + \alpha \sum_{(s_{t}, a_{t}, r_{t}) \in D_{i}^{\text{train}}} A^{\pi}(s_{t}, a_{t}) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}).$$
(s_t, a_t, r_t) \in D_i^{train}

Meta-trainning:

$$\theta \leftarrow \theta - \beta \sum_{\mathcal{T}_i \sim \mathcal{T}} \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(\theta_i, D_i^{\text{test}}),$$

where

$$\mathcal{L}_{\mathcal{T}_i}(\theta_i, D_i^{\text{test}}) = \mathcal{L}_{\mathcal{T}_i}(\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(\theta, D_i^{\text{train}}), D_i^{\text{test}}).$$

Review on MAML-RL

Algorithm

```
Algorithm 1 MAML Training [10]
Require: p(\mathcal{T}): task distribution
Require: \alpha: adaptation learning rate
Require: \beta: meta learning rate
    Randomly initialize \theta
    while not done do
         Sample a batch of tasks \mathcal{T}_i \sim p(\mathcal{T})
         for all \mathcal{T}_i in batch do
              Sample K trajectories D_i^{\text{train}} using \pi_{\theta} on task \mathcal{T}_i.
             Compute adapted parameters using D_i^{\text{train}}:
             \theta_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(\theta, D_i^{\text{train}}).
              Sample K trajectories D_i^{\text{test}} using \pi_{\theta_i} on task \mathcal{T}_i.
         end for
        Update \theta using all D_i^{\text{train}}, and D_i^{\text{test}}:
        \theta \leftarrow \theta - \beta \sum_{\mathcal{T}_i \sim \mathcal{T}} \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(\theta_i, D_i^{\text{test}})
        with \mathcal{L}_{\mathcal{T}_i}(\theta_i, D_i^{\text{test}}) = \mathcal{L}_{\mathcal{T}_i}(\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(\theta, D_i^{\text{train}}), D_i^{\text{test}}).
    end while
```

Algorithm 2 MAML Fine-tuning [10]

Require: \mathcal{T}_i : a new test task

Require: θ , α : from MAML training

Sample K trajectories D using π_{θ} on task \mathcal{T}_i .

Compute fine-tuned policy:

 $\theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(\theta, D).$

- Background & Motivation
- Review on MAML-RL
- No-Reward Meta Learning
 - Learned Advantage Function
 - Learned Offset
 - Algorithm
- Experiment
 - Point Agent
 - Continuous Control
- Conclusion

No-Reward Meta Learning

- NoRML aims to address the challenge of MAML, consisting of two additional components:
 - A learned advantage function that internalizes the reward in a way that allows for reward-free adaptation.
 - A learned parameter offset that enables better exploration.

Learned Advantage Function

- Learned Avantage Function(LAF): $A_{\psi}(s_t, a_t, s_{t+1})$
- Difference from $A^{\pi}(s_t, a_t) = \sum_{t'=t}^{H} \gamma^{t'-t} r_{t'} V^{\pi}(s_t)$:
 - A_{ψ} is a feed-forward neural network that takes in consecutive states and action (st,at,st+1) and it's trained end-to-end.
 - A_{ψ} is only used during fine-tuning, while the A^{π} is still used to compute the outer gradient during meta training.
 - A_{ψ} is not a true advantage function, it is optimized to transform or reshape the policy gradient $\nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$ that achieves more effective adaptation in a single fine-tune step.

Learned Advantage Function

- The benefit of LAF:
 - Since A_{ψ} takes in (s_t, a_t, s_{t+1}) as input, this allows A_{ψ} to detect changes in the dynamics, and provide a more informed evaluation of the actions, compared to using only (s_t, a_t) .
 - We eliminate the need to estimate the value function to calculate the observed advantage(during meta-test fine-tuning)
 - A_{ψ} directly transforms the policy gradient and can provide accurate information to the fine-tune step.
 - A_{ψ} keeps fixed during meta-test fine-tuning.

Learned Offset

- One policy gradient step may be insufficient to adapt an exploratory meta-policy into a policy for the new task.
- A learned offset $\vartheta_{\text{offset}}$ that is added to the policy parameters ϑ when calculating an adapted policy:

$$\theta_i = \theta + \theta_{\text{offset}} - \alpha \sum_{D_i^{\text{train}}} A_{\psi}(s_t, a_t, s_{t+1}) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t).$$

Learned Offset

Geometric interpretations of MAML,

NoRML w/o Learned Advantage Function (LAF) and NoRML.

Algorithm

Algorithm 3 NoRML Training

end while

```
Differences between MAML and NoRML are highlighted.
Require: p(\mathcal{T}): distribution over tasks
Require: \alpha, \beta: step size hyperparameters
Require: \theta_{\sigma}: initial log standard deviation of meta-policy
     Randomly initialize \theta_{\mu} and set \theta = \begin{bmatrix} \theta_{\mu}^T & \theta_{\sigma}^T \end{bmatrix}^T
     Randomly initialize \psi
     Initialize \theta_{\text{offset}} to [0...0]^T
      while not done do
           Sample a batch of tasks \mathcal{T}_i \sim p(\mathcal{T})
           for all \mathcal{T}_i do
                 Sample K trajectories without rewards using \pi_{\theta} on task \mathcal{T}_i
                 and store all state transitions as a set D_i^{\text{train}} = \{(s_t, a_t, s_{t+1}): 
                 \forall k < K, \forall t \leq H.
                 Compute adapted parameters using D_i^{\text{train}}:
                \theta_i = \theta + \theta_{\text{offset}} - \alpha \sum_{D_i^{\text{train}}} A_{\psi}(s_t, a_t, s_{t+1}) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t).
                 Sample K trajectories D_i^{\text{test}} using \pi_{\theta_i} on task \mathcal{T}_i.
           end for
           Update m{	heta}, \, m{	heta}_{	ext{offset}}, \, 	ext{and} \, m{\psi} \, 	ext{using all} \, D_i^{	ext{train}}, \, 	ext{and} \, D_i^{	ext{test}}:
          \begin{bmatrix} \boldsymbol{\theta} \\ \boldsymbol{\theta}_{\text{offset}} \\ \boldsymbol{\psi} \end{bmatrix} \leftarrow \begin{bmatrix} \boldsymbol{\theta} \\ \boldsymbol{\theta}_{\text{offset}} \\ \boldsymbol{\psi} \end{bmatrix} - \beta \sum_{\mathcal{T}_{i} \sim \mathcal{T}} \nabla_{\left[\boldsymbol{\theta}^{T} \boldsymbol{\theta}_{\text{offset}}^{T} \boldsymbol{\psi}^{T}\right]^{T}} \mathcal{L}_{\mathcal{T}_{i}}(\boldsymbol{\theta}_{i}, D_{i}^{\text{test}})
with \nabla \mathcal{L}_{\mathcal{T}_{i}}(\boldsymbol{\theta}_{i}, D_{i}^{\text{test}}) = \sum_{D_{i}^{\text{test}}} A^{\pi}(\boldsymbol{s}_{t}, \boldsymbol{a}_{t}) \nabla \log \pi_{\boldsymbol{\theta}_{i}}(\boldsymbol{a}_{t} | \boldsymbol{s}_{t}).
```

Algorithm 4 NoRML Fine-tuning

Require: \mathcal{T}_i : a task

Require: θ , θ_{offset} , ψ , α : from NoRML training

Sample K trajectories without rewards using π_{θ} and store all state transitions as a set $D = \{(s_t, a_t, s_{t+1}) : \forall k < K, \forall t < H\}.$

Compute fine-tuned policy:

$$\theta \leftarrow \theta + \theta_{\text{offset}} - \alpha \sum_{D} A_{\psi}(s_t, a_t, s_{t+1}) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t).$$

Note r_t is only used to train A^{π} . During meta-test fine-tuning, we only apply learned offset and LAF without the requirement of reward.

- Background & Motivation
- Review on MAML-RL
- No-Reward Meta Learning
 - Learned Advantage Function
 - Learned Offset
 - Algorithm
- Experiment
 - Point Agent
 - Continuous Control
- Conclusion

Experiment

- Comparison objective:
 - vanilla MAML
 - Domain Randomization(DR): Implement DR by setting α and θ_{offset} to zero
 - NoRML w/o offset
 - NoRML w/o LAF
- Some details:
 - Policy: $\pi_{\theta}(a_t|s_t) = \mathcal{N}(f(s_t|\theta_{\mu}), \operatorname{diag}(e^{\theta_{\sigma}})^2) (\theta = \left[\theta_{\mu}^T \theta_{\sigma}^T\right]^T)$
 - Apply Meta-SGD extension to MAML:replace the fixed inner learning rate of MAML with a learned vector of the same dimension as the policy parameter.
 - Apply PPO for MAML's adaptation and meta objective to improve performance. For NoRML PPO is only used for the meta objective.
 - we use polynomial regression to fit the value function

Point Agent

- Purpose: Study the adaptation to dynamics change and reward change.
- Task: move a point agent from (0,0) to (1,0);
- State: (x_t, y_t) ; Action: (dx_t, dy_t) ;
- Dynamics: $\begin{bmatrix} x_{t+1} \\ y_{t+1} \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} dx_t \\ dy_t \end{bmatrix} + \begin{bmatrix} x_t \\ y_t \end{bmatrix}$ (one φ per task);
- Reward setting:
 - Shaped reward case: negative Euclidean distance to (1, 0)
 - Sparse reward case: -1 for each step

Point Agent

Figure 3: 10 rollout trajectories for NoRML policies trained with and without the offset. "Meta+Offset" means we only add the learned offset θ_{offset} to the meta-policy parameters θ without a gradient step and evaluate policy $\pi_{\theta+\theta_{\text{offset}}}$.

Without Offset

Meta+Offset

0

0

-1

-2

Finetune

With Offset

Figure 2

Point Agent

- Impact of LAF:
 - In the shaped-reward case, MAML and NoRML both perform well.(Fig.2a)
 - In the sparse-reward case, MAML's performance degrades dramatically but LAF in NoRML enables the agent to adapt in one policy gradient step.(Fig.2c)
- Impact of the learned offset:
 - Better fine-tuning performance(Fig2a&c)
 - Reduce variance(Fig.3)

Continuous Control

• Experiment 1: Cartpole with sensor bias.

Continuous Control

- Experiment 2: Half Cheetah with Swapped Actions
 - Allow the torque outputs of the two hip joints to be swapped
 - Remove the position and linear velocity from half cheetah's observation space.
 (makes it difficult to compute the distance-based reward function)

Continuous Control

• Exp1:

- NoRML converges faster despite having fewer assumptions——it does not require an external reward signal for adapation.
- Without the offset, NoRML could not converge to a high final reward, and without the learned advantage function, convergence is slower.

• Exp2:

NoRML outperforms MAML both in convergence speed and final return.

- Background & Motivation
- Review on MAML-RL
- No-Reward Meta Learning
 - Learned Advantage Function
 - Learned Offset
 - Algorithm
- Experiment
 - Point Agent
 - Continuous Control
- Conclusion

Conclusion

- MAML cannot address dynamics change, sensor drift and missing reward signal well.
- By incorporating both a learned advantage function and a learned offset, NoRML can adapt to all these types of changes.
- LAF mainly transforms the policy gradient with more informed evaluation, leading faster and robust adaptation.
- Offset provides an additional adjustment to get better fine-tuning performance.