Uma abordagem híbrida para organização flexível de documentos

Apresentação de Monografia

Nilton Vasques Carvalho Junior

Universidade Federal da Bahia Departamento de Ciência da Computação **Orientadora:** Profa. Dra. Tatiane Nogueira Rios Contato: niltonvasques {arroba} dcc.ufba.br

2 de Junho de 2016

Conteúdo

- Introdução
- 2 Fundamentação Teórica
 - Pré-processamento
 - Agrupamento (FCM,PCM,PFCM)
 - Extração de descritores
- Trabalhos relacionados
- Abordagem proposta
 - Refinamento com PFCM
 - Método PDCL
 - Método Mixed-PFDCL
- Conclusão
- Trabalhos futuros

Conteúdo

- Introdução
- 2 Fundamentação Teórica
 - Pré-processamento
 - Agrupamento (FCM,PCM,PFCM)
 - Extração de descritores
- Trabalhos relacionados
- Abordagem proposta
 - Refinamento com PFCM
 - Método PDCL
 - Método Mixed-PFDCL
- Conclusão
- 6 Trabalhos futuros

- O avanço da tecnologia tem proporcionado um aumento gigantesco na quantidade de dados armazenados.
- A rede social Facebook produz mais de 25 terabytes/dia
- Governos e corporações também produzem milhares de pesquisas de opiniões e etc.
- Muggleton (2006) ressalta que este cenário está além dos limites humanos para o uso e compreensão.

- O avanço da tecnologia tem proporcionado um aumento gigantesco na quantidade de dados armazenados.
- A rede social Facebook produz mais de 25 terabytes/dia (Havens et al., 2012).
- Governos e corporações também produzem milhares de pesquisas de opiniões e etc.
- Muggleton (2006) ressalta que este cenário está além dos limites humanos para o uso e compreensão.

Introdução

- O avanço da tecnologia tem proporcionado um aumento gigantesco na quantidade de dados armazenados.
- A rede social Facebook produz mais de 25 terabytes/dia (Havens et al., 2012).
- Governos e corporações também produzem milhares de documentos todos os dias, tais como relatórios, formulários pesquisas de opiniões e etc.
- Muggleton (2006) ressalta que este cenário está além dos limites humanos para o uso e compreensão.

Trabalhos futuros

- O avanço da tecnologia tem proporcionado um aumento gigantesco na quantidade de dados armazenados.
- A rede social Facebook produz mais de 25 terabytes/dia (Havens et al., 2012).
- Governos e corporações também produzem milhares de documentos todos os dias, tais como relatórios, formulários pesquisas de opiniões e etc.
- Muggleton (2006) ressalta que este cenário está além dos limites humanos para o uso e compreensão.

Introdução

- Kobayashi e Aono (2008) enfatizam que instituições estão sobrecarregadas com o processamento desse montante de dados.
- Os dados possuem diversos tipos e formatos, sendo armazenados de forma estruturada ou não estruturada.

Exemplos

documentos de textos, planilhas, áudios, imagens, vídeos e documentos HTMI

Introdução

- Kobayashi e Aono (2008) enfatizam que instituições estão sobrecarregadas com o processamento desse montante de dados.
- Os dados possuem diversos tipos e formatos, sendo armazenados de forma estruturada ou não estruturada.

Exemplos

documentos de textos, planilhas, áudios, imagens, vídeos e documentos HTMI

- Kobayashi e Aono (2008) enfatizam que instituições estão sobrecarregadas com o processamento desse montante de dados.
- Os dados possuem diversos tipos e formatos, sendo armazenados de forma estruturada ou não estruturada.

Exemplos

documentos de textos, planilhas, áudios, imagens, vídeos e documentos HTML.

Introdução

- Dados estruturados já possuem mecanismos eficientes de armazenamento e recuperação.
- Documentos textuais são recuperados através de Sistemas de Recuperação da Informação (SRI), por conta da ausência de estruturas.

Exemplos

Duckduckgo, Jus Brasil, IEEExplore, ACM, Google e etc

Introdução

- Dados estruturados já possuem mecanismos eficientes de armazenamento e recuperação.
- Documentos textuais são recuperados através de Sistemas de Recuperação da Informação (SRI), por conta da ausência de estruturas.

Exemplos

Duckduckgo, Jus Brasil, IEEExplore, ACM, Google e etc

Introdução

As seguintes áreas vem explorando e propondo técnicas para otimizar esse processo:

- Mineração de Dados (MD)
- Aprendizado de Máquina
- Recuperação da Informação (RI)

- Demanda crescente para desenvolvimento e aprimoramento de métodos que possam processar e extrair padrões de dados textuais.
- A extração de padrões de documentos textuais é o principal objetivo da Mineração de Textos (MT).

Vários desafios estão presentes na processo de extração de padrões de documentos textuais, entre eles destaca-se:

- Não estruturados.
- Naturalmente imprecisos e incertos.
- Abordam um ou mais temas.
- Alta dimensionalidade.
- Dados esparsos.

Exemplos

Uma coleção de documentos pode conter 100.000 palavras, enquanto um documento pode conter apenas algumas centenas (Aggarwal e Zhai, 2012).

Definição

A organização flexível de documentos pode ser definida como o processo que compreende a estruturação dos dados, a adição de flexibilidade proporcionada pelo agrupamento fuzzy, a extração de descritores dos grupos de maneira flexível e a recuperação de informação através de um Sistema de Recuperação de Informação (SRI)

O agrupamento é muito importante neste processo e possui uma série de desafios:

- Agrupar de acordo com a similaridade.
- Grupos com significado relevante.
- Escalável para grandes coleções (Big Data).
- Baixo custo computacional.
- Estimar os parâmetros dos algoritmos.
- Considerar a imprecisão e a incerteza.
- Reduzir a influência de documentos ruidosos.

Citação

[...] não é esperado que um único método de agrupamento atenda todas as exigências para todos os conjuntos de dados [...] (Steinbach et al., 2003).

Existem diversos métodos de agrupamento na literatura, os quais destacam-se:

- Fuzzy C-Means (FCM) Graus de pertinência (Problemas com ruídos).
- Possibilistic C-Means (PCM) Graus de tipicidade (Pode gerar grupos coincidentes).
- Possibilistic Fuzzy C-Means (PFCM) Graus de pertinência e tipicidade (Híbrido).

Foi então formulada a seguinte hipótese:

Hipótese

A utilização de uma estratégia híbrida de agrupamento e extração de descritores, entre os graus de pertinência e tipicidade providos pelo método de agrupamento PFCM, permitem o aumento da robustez e resiliência contra ruídos na organização flexível de documentos, aumentando assim a relevância dos grupos obtidos.

Para validar a hipótese definiu-se o como objetivo desta monografia:

Objetivo

Conduzir uma investigação em torno dos métodos de agrupamento FCM, PCM e PFCM, para compreender e interpretar corretamente as peculiaridades de se extrair descritores a partir de um agrupamento híbrido.

Introdução

A partir das investigações conduzidas descobriu-se que os graus de tipicidade afetam a qualidade dos descritores dos grupos.

Essa descoberta motivou a proposição dos métodos de extração de descritores:

- Possibilistic Description Comes Last (PDCL)
- Mixed Possibilistic Fuzzy Description Comes Last (Mixed-PFDCL) (Híbrido)

Conteúdo

- Introdução
- 2 Fundamentação Teórica
 - Pré-processamento
 - Agrupamento (FCM,PCM,PFCM)
 - Extração de descritores
- Trabalhos relacionados
- 4 Abordagem proposta
 - Refinamento com PFCM
 - Método PDCL
 - Método Mixed-PFDCL
- Conclusão
- Trabalhos futuros

Pré-processamento

Introdução

•	Remoção	de	espacos.

- Expansão de abreviações.
- Remoção de stopwords (pronomes, artigos e etc.).
- Lematização (Casa \rightarrow Cas).
- Estruturação dos documentos (TF-IDF).

	termo ₁	termo ₂	termo ₃
doc_1	1	3	4
doc_2	9	2	0

Tabela: Exemplo matriz docs x termos

	$termo_1$	termo ₂	termo ₃
doc_1	0.1	0.6	1.0
doc ₂	0.9	0.4	0.0

Tabela: Exemplo matriz tf-idf

- Organizar objetos similares em um mesmo grupo.
- Grupos crisp x fuzzy
- Coeficiente de similaridade de cosseno.
- Validação do agrupamento com o método silhueta fuzzy.

Introdução

- Organizar objetos similares em um mesmo grupo.
- Grupos crisp x fuzzy
- Validação do agrupamento com o método silhueta fuzzy.

Imagem: Grupos crisp

Imagem: Grupos fuzzy

Introdução

- Organizar objetos similares em um mesmo grupo.
- Grupos crisp x fuzzy
- Coeficiente de similaridade de cosseno.
- Validação do agrupamento com o método silhueta fuzzy.

Imagem: Grupos crisp

Imagem: Grupos fuzzy

Introdução

- Organizar objetos similares em um mesmo grupo.
- Grupos crisp x fuzzy
- Coeficiente de similaridade de cosseno.
- Validação do agrupamento com o método silhueta fuzzy.

Imagem: Grupos crisp

Imagem: Grupos fuzzy

- Graus de pertinência.
- Restrição probabilística.
- Problema com ruídos.

	$grupo_1$	grupo ₂	total
doc_1	0,5	0,5	1,0
doc_2	0,5	0,5	1,0

Tabela: Pertinências FCM

Conclusão

Imagem: Problema dos ruídos

Agrupamento (PCM) (Krishnapuram e Keller, 1993)

- Graus de tipicidade.
- Remoção da restrição probabilística.
- Problema dos grupos coincidentes.

	$grupo_1$	grupo ₂	total
doc_1	0,7	0,7	1,4
doc_2	0,2	0,2	0,4

Tabela: Tipicidades PCM

Imagem: Grupos coincidentes

Agrupamento (PFCM) (Pal et al., 2005)

- Pertinências e tipicidades.
- Robustez.

Introdução

 Parâmetros de ponderação a e b.

	grupo ₁	grupo ₂	total
doc_1	0,5	0,5	1,0
doc ₂	0,5	0,5	1,0

Tabela: Pertinências PFCM

	$grupo_1$	grupo ₂	total
doc_1	0,7	0,7	1,4
doc ₂	0,2	0,2	0,4

Tabela: Tipicidades PFCM

Imagem: Agrupamento de pontos.

Extração de descritores

- Atribuir significados aos grupos.
- Manual ou **Automatizada**
- Abordagens de conhecimento interno e externo.
- Após o agrupamento (Description Comes Last DCL).
- Método Soft Organization Fuzzy Description Comes Last

Extração de descritores

- Atribuir significados aos grupos.
- Manual ou Automatizada.

- Após o agrupamento (Description Comes Last DCL).
- Método Soft Organization Fuzzy Description Comes Last

- Atribuir significados aos grupos.
- Manual ou Automatizada.
- Abordagens de conhecimento interno e externo.
- Após o agrupamento (Description Comes Last DCL).
- Método Soft Organization Fuzzy Description Comes Last

Extração de descritores

- Atribuir significados aos grupos.
- Manual ou Automatizada.
- Abordagens de conhecimento interno e externo.
- Durante o agrupamento (Description Comes First DCF)
- Após o agrupamento (Description Comes Last DCL).
- Método Soft Organization Fuzzy Description Comes Last (SoftO-FDCL) (Nogueira, 2013).

Extração de descritores

- Atribuir significados aos grupos.
- Manual ou Automatizada.
- Abordagens de conhecimento interno e externo.
- Durante o agrupamento (Description Comes First DCF)
- Após o agrupamento (Description Comes Last DCL).
- Método Soft Organization Fuzzy Description Comes Last (SoftO-FDCL) (Nogueira, 2013).

Conclusão

Organização Flexível de Documentos

Imagem: Organização flexível de documentos.

Conteúdo

- Introdução
- Pundamentação Teórica
 - Pré-processamento
 - Agrupamento (FCM,PCM,PFCM)
 - Extração de descritores
- Trabalhos relacionados
- 4 Abordagem proposta
 - Refinamento com PFCM
 - Método PDCL
 - Método Mixed-PFDCL
- Conclusão
- 6 Trabalhos futuros

Introdução

Conteúdo

- - Pré-processamento
 - Agrupamento (FCM,PCM,PFCM)
 - Extração de descritores
- Abordagem proposta
 - Refinamento com PFCM
 - Método PDCL
 - Método Mixed-PFDCL

Coleções textuais

Coleção	docs	termos	classes	% zeros	n-gramas
Opinosis	51	842	3	95,73%	1-grama
20newsgroups	2000	11028	4	99,11%	1-grama
Hitech	600	6925	6	97,93%	1-grama
NSF	1600	2806	16	99,76%	1-grama
WAP	1560	8070	20	98,51%	1-grama
Reuters-21578	1052	3925	43	98,55%	1-grama

Tabela: Características das coleções textuais utilizadas nesta pesquisa

Introdução

Introdução

You hopefully know this after the previous three talks. . .

Trabalhos futuros

Conteúdo

- - Pré-processamento
 - Agrupamento (FCM,PCM,PFCM)
 - Extração de descritores
- - Refinamento com PECM
 - Método PDCI
 - Método Mixed-PEDCI
- Conclusão

Introdução

Conteúdo

Introdução

- Introdução
- 2 Fundamentação Teórica
 - Pré-processamento
 - Agrupamento (FCM,PCM,PFCM)
 - Extração de descritores
- Trabalhos relacionados
- 4 Abordagem proposta
 - Refinamento com PFCM
 - Método PDCL
 - Método Mixed-PFDCL
- Conclusão
- Trabalhos futuros

Introdução

Introdução

AGGARWAL, C. C.; ZHAI, C. An introduction to text mining. In: *Mining Text Data*. Springer Science + Business Media, 2012. p. 1–10. Disponível em: http://dx.doi.org/10.1007/978-1-4614-3223-4 1>. BEZDEK, J. C.; EHRLICH, R.; FULL, W. Fcm: The fuzzy c-means clustering algorithm. Computers & Geosciences, v. 10, n. 2, p. 191 – 203, 1984. ISSN 0098-3004. Disponível em: <http://www.sciencedirect.com/science/article/pii/ 0098300484900207>

HAVENS, T. et al. Fuzzy c-means algorithms for very large data. IEEE Transactions on Fuzzy Systems, v. 20, n. 6, p.

1130-1146, 2012,

Referências II

Introdução

KOBAYASHI, M.; AONO, M. Vector space models for search and cluster mining. In: Survey of Text Mining II. Springer Science + Business Media, 2008. p. 109–127. Disponível em: http://dx.doi.org/10.1007/978-1-84800-046-9_6.

KRISHNAPURAM, R.; KELLER, J. M. A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems, v. 1, n. 2, p. 98–110, 1993. ISSN 1063-6706.

MUGGLETON, S. H. 2020 computing: Exceeding human limits. Nature, Nature Publishing Group, v. 440, n. 7083, p. 409–410, mar 2006. Disponível em: .

NOGUEIRA, T. M. Organização Flexível de Documentos. Tese (Doutorado) — ICMC-USP, 2013.

Referências III

Introdução

PAL, N. R. et al. A possibilistic fuzzy c-means clustering algorithm. *IEEE Transactions on Fuzzy Systems*, IEEE Press, v. 13, n. 4, p. 517–530, 2005. ISSN 1063-6706.

STEINBACH, M.; ERTÖZ, L.; KUMAR, V. The challenges of clustering high-dimensional data. In: *In New Vistas in Statistical Physics: Applications in Econophysics, Bioinformatics, and Pattern Recognition.* [S.I.]: Springer-Verlag, 2003. ISBN 978-3-642-07739-5.