Topics in Algebra

David Cardozo

December 8, 2014

These are few notes and compilation of exercises of the book *Topics in Algebra*. by I. N. Herstein.

1 Preliminary notions

1.1 Set Theory

Given a set S we shall use the notation throughout $a \in S$ to read "a is an element of S". The set A will be said to be a subset of S if every element in A is an element of S, We shall write $A \subset S$. Two sets A and B are equal, if both $A \subset B$ and $B \subset A$. A set D will be called proper subset of S if $D \subset S$ but $D \neq S$. The null set is the set having no elements; it is a subset of every set. Given a set S we shall use the notation $A \{a \in S | P(a)\}$ to read " A is the set of all elements in S for which the property P holds.

Definition 1. The union of the two sets A and B, written as $A \cup B$, is the set $\{x | x \in A \text{ or } \in B\}$

Remark when we say that x is in A or x is in B, we mean x is in at least one of A or B, and may be in both.

Definition 2. The intersection of the two sets A and B, written as $A \cap B$, is the set $\{x | x \in A \text{ and } x \in B\}$

Two sets are said to be disjoint if their intersection is empty.

Proposition 1. For any three sets, A, B, C we have

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Proof. We will prove first $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$. Observe $B \subset B \cup C$, so that $A \cap B \subset A \cap (B \cup C)$, in the same line of reasoning, $C \subset B \cap C$, so that $A \cap C \subset A \cap (B \cap C)$, and we conclude $(A \cap B) \cup (A \cap C) \subset (A \cap (B \cup C)) \cup (A \cap (B \cup C)) = A \cap (B \cup C)$. Now for the other direction, let $x \in A \cap (B \cup C)$, so that $x \in A$, and $x \in B \cup C$; suppose the former, and we have that $x \in (A \cap B)$. The second possibility, namely, $x \in C$,

implies that $x \in A \cap C$. Thus in either case, $x \in (A \cap C) \cup (A \cap B)$, whence $A \cap (B \cup C) \subset (A \cap B) (A \cap C)$. Combining the two concluding assertions, they give us the equality of both sets

Given a set T, we say that T serves as an *index set* for the family $F = \langle A_{\alpha} \rangle$ of sets if for every $\alpha \in T$, there exist a set of A_{α} in the family F. By the iunion of the set A_{α} , where α is in T, we mean the set $\{x|x \in A_{\alpha} \text{ for at least one } \alpha \in T\}$. We denote it by $\bigcup_{\alpha \in T} A_{\alpha}$. Similarly, we denote the intersection of the sets A_{α} by $\bigcap_{\alpha \in T} A_{\alpha}$. The sets A_{α} are mutually disjoint if for $\alpha \neq \beta$, $A_{\alpha} \cap A_{\beta}$ is the null set.

Definition 3. Given the two sets A, B then the **difference set**, A - B, is the set $\{x \in A | x \notin N\}$

Proposition 2. For any set B, the set A satisfies

$$A = (A \cap B) \cup (A - B).$$

Proof. Again, using the same strategy used before, we will show first $(A \cap B) \cup (A - B) \subset A$, Observe that $A \cap B \subset A$, and $A - B \subset A$ so that $(A \cap B) \cup (A - B) \subset A$ Now, for the converse, we want to see $A \subset (A \cap B)$, first observe that if we suppose that $x \in A$, then either $x \in (A - B)$ or $x \in A \cap B$, so that in either case, eventually $x \in ((A \cap B) \cup (A - B))$, so we conclude $A \subset (A \cap B)$. Finally, combining the concluding assertions we have $A = (A \cap B)$ which proves our proposition.

Observe $B \cap (A - B)$ is the null set. Observe than when $B \subset A$, we call A - B the complement of B in A.

Definition 4. The binary relation \sim on A is said to be an equivalence relation on A if for all a, b, c in A

- $a \sim a$
- $a \sim b$ implies $b \sim a$
- $a \sim b$ and $b \sim c$ imply $a \sim c$

The first of these properties is called reflexivity, the second, symmetry, and the third, transitivity

Definition 5. If A is a set and if \sim is an equivalence relation on A, then the equivalence class of $a \in A$ is the set $\{x \in A | a \sim x\}$. We write it as cl(a).

Now it comes the first big result.

Theorem 1. The distinct equivalence classes of an equivalence relation on A provide us with a decomposition of A as a union of mutually disjoint subsets. Conversely, given a decomposition of A as a union of mutually disjoint, nonempty subsets, we can define an equivalence relation on A for which these subsets are the distinct equivalence classes.

Proof. Let the equivalence relation on A denoted by \sim . Observe first that $a \sim s$, so that $a \in \operatorname{cl}(a)$, whence the union of all $\operatorname{cl}(a)$'s is all of A. We will now prove that two equivalence classes are either equal or disjoint, so suppose for the contrary that two distinct classes $\operatorname{cl}(a)$ and $\operatorname{cl}(b)$ their intersection is nonempty; then there exist an element $x \in \operatorname{cl}(a)$ and $x \in \operatorname{cl}(b)$, that is, $x \sim a$ and $x \sim b$, and by transitivity property of the equivalence relationship, we have $a \sim b$, now let $y \in \operatorname{cl}(b)$; thus we have $b \sim y$. But, from $a \sim b$, and $b \sim y$, we have then $a \sim y$, so that, $y \in \operatorname{cl}(a)$, and we conclude $\operatorname{cl}(b) \subset \operatorname{cl}(a)$, we observe also that the argument for $y \in \operatorname{cl}(a)$ is symmetric, so that $\operatorname{cl}(a) \subset \operatorname{cl}(b)$, and we have the contradiction that we took two distinct classes, but $\operatorname{cl}(a) = \operatorname{cl}(b)$. We conclude then that the distinct $\operatorname{cl}(a)$'s are mutually disjoint and their union is A. Now for the other part of the theorem.

Suppose that $A = \cup A_{\alpha}$, where the a_{α} are mutually disjoint, nonempty sets. We define an equivalence relation \sim as: given $a \in A$ (since a is in exactly one of the A_{α}), we define $a \sim b$ if and only if a and b are in the same A_{α} , we need to check if \sim is an equivalence relation. First, observe $a \sim a$ since, again a is in exactly one of the A_{α} . Second, suppose $a \sim b$, that is $a, b \in A_{\alpha}$ for some unique α , which is the same as $b \sim a$. Finally, suppose $a \sim b$, and $b \sim c$ so that $a, b, c \in A_{\alpha}$ for some unique α , and we can see that $a \sim c$.

Finally, let us observe that for any $a \in A$, cl(a) is a subset of A, so that $cl(a) \subset A$, and $\bigcup_{\alpha \in A} cl(a) \subset A$; and let for $b \in A$, there exist a unique set cl(b) up to equivalence classes, so that $A \subset \bigcup_{\alpha \in A} cl(\alpha)$

1.2 Problems of Set Theory

5. For a finite set C let |C| indicate the number of elements in C. If A and B are finite sets prove $|A \cup B| = |A| + |B| - |A \cap B|$

Solution Suppose A and B are finite sets, so that there exist $n, m \in \mathbb{N}$ for which |A| = n, and |B| = m. Let us remark that if D, C are finite set which are disjoint, $|D \cup C|$ is |D| + |C|. Given this two facts, observe $A \cup B = (A - (A \cap B)) \cup B$, and $A - (A \cap B) \cap B = \emptyset$, so that $|A \cup B| = |A| - |A \cap B| + |B|$.

6. If A is a finite set having n elements, prove that A has exactly 2^n distinct subsets.

Solution The proof is by induction. First, observe that if a set A has one element, the subset of A are $\{\emptyset, A\}$ which has 2^1 elements, so that the assertion is true for n=1, now suppose that if a set A has n elements, then there are exactly 2^n distinct subsets. Now consider the set with n+1 elements given by $\{a\} \cup A$, with $a \notin A$. So that the subsets of $\{a\} \cup A$ are given by first taking the subsets of A, which we know have 2^n elements, and then taking a copy of these subset and adding the element a, so that there

exist:

$$2^{n} + 2^{n} = 2^{n}(1+1) = 2^{n}2 = 2^{n+1}$$

so that for a set with n+1 element, there are exactly 2^{n+1} subsets. Then, by the principle of mathematical induction, we have shown that If A is a finite set having n elements, prove that A has exactly 2^n distinct subsets.

10 Let S be a set and let S^* be the set whose elements are the various subsets of S. In S^* we define an addition and multiplication as follows: If $A, B \in S^*$:

- $A + B = (A B) \cup (B A)$
- $A \cdot B = A \cap B$

Prove the following laws:

$$(A+B) + C = A + (B+C)$$

Proof Observe that $x \in A + B$ if and only if, $x \notin A \cap B$, so that $x \in ((A+B)+C)$ if and only if $x \notin (A+B)\cap C$, or in other words, $x \notin (A\cap B\cap C)$, which by the property that \cap is associative, we have then $x \in (A+(B+C))$. So we conclude then (A+B)+C=A+(B+C).

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

Proof Observe:

$$A \cdot B + A \cdot C = A \cap B + A \cap C$$

$$A \cap B + A \cap C = (A \cap B - A \cap C) \cup (A \cap C - A \cap B)$$

$$(A \cap B - A \cap C) \cup (A \cap C - A \cap B) = A \cap (B - C) \cup A \cap (C - B)$$

$$A \cap (B - C) \cup A \cap (C - B) = A \cap ((B - C) \cup (C - B))$$

$$A \cap (B - C) \cup A \cap (C - B) = A \cdot (B + C)$$

$$A \cdot A = A$$

Proof By definition. $A \cdot A = A \cap A = A$

$$A + A = \emptyset$$

Proof By definition. $A + A = (A - A) \cup (A - A) = \emptyset \cup \emptyset = \emptyset$

If A + B = A + C, then B = C **Proof** Suppose is false that B = C, without loss of generalization, say that $x \in B$, but $x \notin C$. So two cases can happen:

- i) if $x \in A + B$, observe that $x \notin A$. Note that $x \in A + B$ is equivalent to $x \in A + C$, so that $x \in C$. A contradiction.
- ii) if $x \notin A + B$, we have that $x \notin A + C$, so that $x \in A \cap C$, which implies again $x \in C$. A contradiction.

We conclude then, if A + B = A + C, then B = C. (The system just described is an example of a *Boolean Algebra*.) **12.** Let S be the set of all integers an let n > 1 be a fixed integer. Define for $a, b \in S$, $a \sim b$ if a - b is a multiple of n.

Proposition 3. \sim is an equivalence relation

Proof First, observe that $a \sim a$ since a - a = 0 ad $0 \cdot n = 0$, second, suppose $a \sim b$, or in other words, kn = a - b for some integer k, observe -kn = b - a, and we have then $b \sim a$. Finally, suppose $a \sim b$ and $b \sim c$, more explicitly, kn = a - b and gn = b - c for some integers k and g, take note that kn + gn = (k + g)n = a - c, so that $a \sim c$.

Proposition 4. There are exactly n distinct classes

Proof Let cl(0), ...,cl(n-1), be the n different equivalence classes, defined by \sim as above, observe that for an integer $x \geq n$, cl(x) is: $\{m \in \mathbb{Z} | x \sim m\}$, note that if $x \geq n$ is equivalent to say that, there exist integers E = 0, 1, ... and K = 0, ..., n-1 such that x = En + K. Since $x \sim m$, $En + K \sim m$, which by definition is: there exist an integer R for which Rn = (En+K)-m, or (R-E)n = K-m, so that $K \sim m$, and since K = 0, ..., n-1, w have shown for $x \geq n$, x is in the any of the equivalence classes of cl(0), cl(1), ... cl(n-1).

1.3 Mappings

We introduce the concept of a mapping of one set into another. Informally, a mapping from one set, S, into another, T, is a ruler that associates with each element in S a unique element t in T.

Definition 6. If S and T are nonempty sets, then a **mapping** from S to T is a subset, M, of $S \times T$ such that for every $s \in S$ there is a unique $t \in T$ such that the ordered pair (s,t) is in M.

Alternatively and for pedagogical reasons, we think of a mapping as a rule that associates any element $s \in S$ some element $t \in T$. We shall say that t is the image of s under the mapping. **Notation Remarks** Let σ be a mapping from S to T; we denote this by writing $\sigma: S \to T$ or $S \xrightarrow{\sigma} T$