$\mathbf{Q}\mathbf{9}$

D'apres la question 6, on a

$$\frac{1}{e(n+1)} \le u_n \le \frac{1}{n+1}$$
, pour tout $n \in \mathbb{N}$.

 $\mathbf{2}$

Je ne sais pas d'ou sort l'exponentielle dont tu parles. C'est plutot que

$$0 \le \frac{u_n}{n} \le \frac{1}{n(n+1)} \le \frac{1}{n^2}.$$

Or la serie $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge, donc $\sum_{n=1}^{\infty} \frac{u_n}{n}$ aussi.

3

Ca diverge, par comparaison avec $\frac{1}{n}$. En effet,

$$u_n \ge \frac{1}{e(n+1)} \ge \frac{1}{10n}.$$

Puisque $\sum_{n\geq 1} \frac{1}{10n} = \frac{1}{10} \sum_{n\geq 1} \frac{1}{n}$ diverge, alors $\sum_{n\geq 1} u_n$ diverge aussi.

Le 10 ici est "arbitraire". j'ai juste mis un nombre grand, pour que l'inegalite soit vraie: l'idee est de dire que u_n est minore par (une constante) $\times \frac{1}{n}$. Meme le "(n+1)" n'est pas important, puisque $\frac{1}{n} \sim \frac{1}{n+1}$ quand $n \to \infty$. Il y a plein de moyens de s'en sortir, si on sait quoi faire :)

4

C'est encore pire que pour la 3... En fait,

$$\sqrt{u_n} \ge \frac{1}{\sqrt{e(n+1)}} \ge \frac{1}{\sqrt{10n}} \ge \frac{1}{5n}.$$

Or, la serie de $\sum_{n\geq 1} \frac{1}{7n}$ diverge.

De nouveau, le 7 est arbitraire, je pense que ca marche.

D'ailleurs, je pense que vous avez vu un critere qui determine la convergence/divergence d'une serie de la forme $\sum_{n\geq 1} n^{\alpha}$, en fonction de α . Apres, il s'agit juste de se ramener a ce cas la, en utilisant des equivalences.