A Pivot based approach to Vertex Enumeration of Polytopes and Polyhedra

Tilman Hinnerichs

Hauptseminar "Selected Topics in Logic and Verification" - TU Dresden

July 28, 2020

The paper

"A Pivoting Algorithm for Convex Hulls and Vertex **Enumeration of Arrangements and Polyhedra**"

Authors: David Avis and Komei Fukuda

Publication year: 1992

A Pivot based approach to Vertex Enumeration of Polytopes and Polyhedra

Journal: Discrete & Computational Geometry

The paper

"A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of Arrangements and Polyhedra"

Authors: David Avis and Komei Fukuda

Publication year: 1992

Journal: Discrete & Computational Geometry Cited 751 times (according to Google Scholar)

Outline

- 1. The Vertex Enumeration Problem
- 2. The SIMPLEX Algorithm
- From pivot step to VEP solution
 Degeneracy of Vertices
 Bland's rule
 Avis-Fukuda Algoritm

The Vertex Enumeration Problem

Definition (Convex Polyhedron)

Given a matrix $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$.

A convex polyhedron P is defined as

$$P = \{x \in \mathbb{R}^n : Ax + b \ge 0\} \tag{1}$$

The Vertex Enumeration Problem

Definition (Convex Polyhedron)

Given a matrix $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$.

A convex polyhedron P is defined as

$$P = \{x \in \mathbb{R}^n : Ax + b \ge 0\} \tag{1}$$

Definition (Polyhedron Vertex)

A point $x \in P$ is a vertex of P iff

A Pivot based approach to Vertex Enumeration of Polytopes and Polyhedra

it cannot be written as a convex combination of two other solutions iff it is the unique solution to a subset of m inequalities solved as equations.

The Vertex Enumeration Problem (VEP)

Definition (Vertex Enumeration Problem)

For a given polytope/polyhedron, hyperplane arrangement P return all vertices of P.

The Vertex Enumeration Problem (VEP)

Definition (Vertex Enumeration Problem)

For a given polytope/polyhedron, hyperplane arrangement P return all vertices of P.

Theorem¹

The VEP is NP-complete.

¹Khachiyan et al. [2008]

An Example Problem

Example: All meals for 1 Euro

Var	Food type	Energy	Protein	Calcium	Price	Maximum
		(kcal/100g)	(g)	(mg)	(Euro	
					cents)	
<i>x</i> ₁	Oatmeal ²	250	15	40	10	500g
<i>x</i> ₂	Milk ³	80	4	130	4	1000g
<i>X</i> 3	DD Stollen ⁴	340	7	30	20	200g
	Min. daily	2000	55	800		

Tilman Hinnerichs

²Regular LIDL oatmeal

³Regular Bio LIDL milk

⁴https://fddb.info

Putting data into inequalities

Example: Meals for 1 Euro

$$A = \begin{bmatrix} 350 & 80 & 340 \\ 15 & 4 & 7 \\ 40 & 130 & 30 \\ -10 & -4 & -20 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, -b = \begin{bmatrix} 2000 \\ 55 \\ 800 \\ -100 \\ -5 \\ -10 \\ -2 \end{bmatrix}, \begin{pmatrix} Energy \\ Protein \\ Calcium \\ Price \\ x_1 Max \\ x_2 Max \\ x_3 Max \end{pmatrix}$$

Polytope visualized

Example: All meals for 1 Euro

Figure: The exact shape is unknown/expensive

An Example Problem

▶ Use convex combination to yield infinitely many food combinations

An Example Problem

Use convex combination to yield infinitely many food combinations

Definition (Convex combination)

A convex combination is a linear combination of points.

Let x_1, x_2, \dots, x_n be a finite set of points. A convex combination is a point of the form

$$y = a_1x_1 + a_2x_2 + \cdots + a_nx_n$$

while $a_1, \ldots, a_n \in \mathbb{R}^+$, and

$$a_1+\cdots+a_n=1$$

Linear optimization problems

A Pivot based approach to Vertex Enumeration of Polytopes and Polyhedra

Definition

Let $G \subseteq \mathbb{R}^n$ be a polyhedron and $c \in \mathbb{R}^n$. Then a problem of the form

$$z = f(x) = c^T \cdot x \rightarrow min$$
 with $x \in G$

is called a *linear* optimization problem.

Linear optimization problems

Definition

Let $G \subseteq \mathbb{R}^n$ be a polyhedron and $c \in \mathbb{R}^n$. Then a problem of the form

$$z = f(x) = c^T \cdot x \rightarrow min$$
 with $x \in G$

is called a *linear* optimization problem.

Protein rich meals for 1 Euro

A Pivot based approach to Vertex Enumeration of Polytopes and Polyhedra

We are trying to maximize our protein intake:

$$c = \begin{bmatrix} 15 \\ 4 \\ 7 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$z = c^T x \rightarrow max$$

The SIMPLEX Algorithm

Figure: George Dantzig (1914 - 2005)

Algorithm 1 The SIMPLEX Algorithm

- 1: Find a first feasible vertex
- 2: Calculate the optimal vertex

From \geq to =

The inequalities

$$Ax + b \ge 0$$

describing P are transformed to the equivalent equality system

$$Mx + b = x_p$$

with
$$x \in \mathbb{R}^n_+$$
, $x_p \in \mathbb{R}^m_+$, and $M \in \mathbb{R}^{m \times n}$ (if $x \ge 0$)

From \geq to =

The inequalities

$$Ax + b \ge 0$$

describing P are transformed to the equivalent equality system

$$Mx + b = x_p$$

with $x \in \mathbb{R}^n_+$, $x_p \in \mathbb{R}^m_+$, and $M \in \mathbb{R}^{m \times n}$ (if $x \ge 0$)

Definition (Tableau form)

A linear program of the form

$$z = f'(x') = c'^T \cdot x' \rightarrow min$$
 with $Mx_N + b = x_B$ with $x' \leftrightarrow \begin{pmatrix} x_N \\ x_B \end{pmatrix}$
 $b > 0$

is said to be in tableau form.

Another example

$$-z = -30x_1 - 45x_2 \rightarrow min$$

with X_3, X_4

non-basic variables, with indices
$$N = \{1, 2\}, |N| = n$$
 basic variables, with indices $B = \{3, 4\}, |B| = m$

 $x_3 = \begin{vmatrix} -4 & -3 \\ x_4 = & -1 & -2 \end{vmatrix}$ 100 $x_B =$ SIMPLEX-Tableau: 50

 $ST_0 \mid x_1 \quad x_2 \mid 1 \quad ST_0 \mid$

Hauptseminar "Selected Topics in Logic and Verification" - TU Dresden

ST_0	ΧN	1
$x_B =$	М	р
z =	q^T	q_0

 x_N results from x and N x_B results from x and BM results from A

$$p := b$$
 $q := c'$

$$\dot{q}_0 := 0$$

Visualization of new polytope P

Evaluating the SIMPLEX tableau

ST_0	<i>x</i> ₁	<i>x</i> ₂	1
$x_3 =$	-4	-3	100
$x_4 =$	-1	-2	50
-z =	-30	-45	0

Phase 2: Determine optimal vertex

Algorithm 2 Phase 2: Determine optimal vertex

- 1: **while** $\tau \in N$ with $q_{\tau} < 0$ exists **do**
- 2: Choose PIVOT element $M_{\sigma\tau}$
- 3: Calculate the new tableau under usage of swapping rules
- 4: end while

Phase 2: Determine optimal vertex

Algorithm 3 Phase 2: Determine optimal vertex

- 1: **while** $\tau \in N$ with $q_{\tau} < 0$ exists **do**
- Choose PIVOT element $M_{\sigma\tau}$

A Pivot based approach to Vertex Enumeration of Polytopes and Polyhedra

- Calculate the new tableau under usage of swapping rules
- 4: end while

Theorem

The SIMPLEX tableau is optimal **iff** p > 0 and q > 0

Choosing a pivot element

$$\begin{array}{c|ccc} ST_0 & x_N & 1 \\ \hline x_B = & P & p \\ \hline z = & q^T & q_0 \end{array}$$

We choose an arbitrary $\tau \in N$ with $q_{\tau} < 0$, and calculate $-\frac{p_{\sigma}}{P_{\sigma\tau}} := \min \left\{ -\frac{p_{i}}{P_{i\tau}} | -\frac{p_{i}}{P_{i\tau}} < 0, i \in B \right\}$:

ST_0	x_1	<i>x</i> ₂	1
$x_3 =$	-4	-3	100
$x_4 =$	-1	-2	50
-z =	-30	-45	0

ST_0	<i>X</i> ₁	<i>X</i> ₂	1
$-x_3 =$			100
$x_4 =$	-1	_2	50
-z =	-30	-45	0

ST_0	<i>X</i> ₁	<i>X</i> ₂	1
$-x_3 =$			100
$x_4 =$	-1	_2	50
-z =	-30	-45	0

$$\begin{array}{c|ccccc} ST_1 & x_1 & x_4 & 1 \\ \hline x_3 = & -\frac{5}{2} & \frac{3}{2} & 25 \\ x_2 = & -\frac{1}{2} & -\frac{1}{2} & 25 \\ \hline -z = & -\frac{15}{2} & \frac{45}{2} & -1125 \\ \hline \end{array}$$

ST_0	<i>x</i> ₁	<i>x</i> ₂	1
$x_3 =$	-4	-3	100
$x_4 =$	-1	-2	50
-z =	-30	-45	0

ST_1	<i>x</i> ₁	<i>X</i> ₄	1
	71	7.4	
$x_3 =$	$-\frac{5}{2}$	$\frac{3}{2}$	25
$x_2 =$	$-\frac{1}{2}$	$-\frac{1}{2}$	25
-z =	$-\frac{15}{2}$	$\frac{45}{2}$	-1125

Hauptseminar "Selected Topics in Logic and Verification" - TU Dresden

Some thoughts

1. What if we choose a pair of indices different from the optimal one in a simplex step?

Some thoughts

- 1. What if we choose a pair of indices different from the optimal one in a simplex step?
- 2. How does this help to build a solution for the VEP?

Degeneracy of Vertices

Definition (Degeneracy)

Let $P \subseteq \mathbb{R}^d$.

We will call a vertex A that satisfies d+1 given inequalities with equality **degenerate**.

22 / 29

Degeneracy of Vertices

Degeneracy of Vertices

Definition (Degeneracy)

Let $P \subseteq \mathbb{R}^d$.

We will call a vertex A that satisfies d+1 given inequalities with equality degenerate.

Example

L Degeneracy of Vertices

A Visual Example

Example

Example: From Avis' lecture notes

Figure: P is a regular pyramid

∟ Bland's rule

Properties of the SIMPLEX algorithm

Does not always terminate

24 / 29

Bland's rule

Properties of the SIMPLEX algorithm

► Does not always terminate

Definition (Bland's rule)

During a Simplex step, if several options are available choose the lowest-numbered non-basic column with negative (reduced) cost and the lowest-numbered basic variable.

Properties of the SIMPLEX algorithm

Does not always terminate

Definition (Bland's rule)

A Pivot based approach to Vertex Enumeration of Polytopes and Polyhedra

During a Simplex step, if several options are available choose the lowest-numbered non-basic column with negative (reduced) cost and the lowest-numbered basic variable.

Theorem

For a given basic feasible solution (BFS) ν Bland's rule deterministically determines a path from ν along the vertices to the optimal vertex ν^* .

∟Bland's rule

Example: Meals for 1 Euro

Figure: The paths span a tree of all vertices

Idea:

reverse search this spanning tree starting from the root

└─ Bland's rule

Algorithm: Avis-Fukuda 1992

Idea:

reverse search this spanning tree starting from the root

Definition

Let A be a basic feasible solution (vertex).

Let (τ, σ) be the pivot obtained by applying Bland's rule to A yielding A'. We call (σ, τ) the *reverse pivot* for A'.

Idea:

reverse search this spanning tree starting from the root

Definition

Let A be a basic feasible solution (vertex). Let (τ, σ) be the pivot obtained by applying Bland's rule to A yielding A'. We call (σ, τ) the *reverse pivot* for A'.

Definition (Neighbour)

$$Adj(N,i,j) := egin{cases} \emptyset & M_{ij} = 0 \ \emptyset & (N \cup \{i\}) - \{j\} & ext{infeasible dictionary} \ (N \cup \{i\}) - \{j\} & ext{feasible dictionary} \end{cases}$$

Hauptseminar "Selected Topics in Logic and Verification" - TU Dresden

Problem

For any given vertex/BFS A we know its successor A'. When to introduce an edge in the tree between A and any other neighbour $Adj(A_N, i, j)$ for $i \in A_B, j \in A_N$?

Problem

For any given vertex/BFS A we know its successor A'. When to introduce an edge in the tree between A and any other neighbour $Adj(A_N, i, j)$ for $i \in A_B, j \in A_N$?

Perform conditional depth first search

Algorithm 4 Phase 2: Determine optimal vertex

```
1: SEARCH(B,N,M):
   for all i, j in NEIGHBOURS(B, N, M) do
     if REVERSE(B, N, M, i, j) then
3.
        PIVOT(B, N, M, i, j)
4:
        if LEX_MIN(B, N, M) then
5:
          print(B)
6:
        end if
7:
8:
        SEARCH(B, N, M)
        SELECT-PIVOT(M)
9:
        PIVOT(B, N, M, i, j)
10.
     end if
11.
12: end for
```

A Pivot based approach to Vertex Enumeration of Polytopes and Polyhedra

Complexity and features

The algorithm has the following properties:

- Virtually no additional storage is required beyond the input data
- ► The output list is free of duplicates
- ▶ The algorithm is extremely simple, requires no data structures, and handles all degenerate cases
- ▶ The running time is output sensitive for nondegenerate cases
- ► The algorithm is easy to parallelize efficiently

Complexity and features

The algorithm has the following properties:

- Virtually no additional storage is required beyond the input data
- ► The output list is free of duplicates
- ▶ The algorithm is extremely simple, requires no data structures, and handles all degenerate cases
- ▶ The running time is output sensitive for nondegenerate cases
- ► The algorithm is easy to parallelize efficiently

Complexity (v vertices of $P \subseteq \mathbb{R}^d$, n inequalities):

- \triangleright in time $\mathcal{O}(ndv)$
- ▶ in space $\mathcal{O}(nd)$

A Pivot based approach to Vertex Enumeration of Polytopes and Polyhedra

Sources

L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and V. Gurvich. Generating all vertices of a polyhedron is hard. Discrete and Computational Geometry, 39(1):174–190, 2008.

D. Avis, K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra . Discrete Comput. Geom., 8 (1992), pp. 295-313

Fukuda lecture nodes at Tokio University

Avis lecture nodes at Montreal University

Approaches to the VEP

- 1. Double-description/Motzkin-based method
- 2. Pivot-based methods

A Pivot based approach to Vertex Enumeration of Polytopes and Polyhedra

3. Newer methods

A visual example

Example: From Avis' lecture notes

$$A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, -b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{array}{l} 1 - x_1 + x_3 \ge 0 \\ 1 - x_2 + x_3 \ge 0 \\ 1 + x_1 + x_3 \ge 0 \\ 1 + x_2 + x_3 \ge 0 \\ -x_3 \ge 0 \end{array}$$

A visual example

Example

Example: From Avis' lecture notes

Figure: P is a regular pyramid

