COMS22202: 2015/16

Language Engineering

Dr Oliver Ray

(csxor@Bristol.ac.uk)

Department of Computer Science University of Bristol

Tuesday 23rd February, 2016

5. Prove the so-called *substitution lemma* for arithmetic expressions, which states that $\mathcal{A}[\![a[y \mapsto a']]\!] s = \mathcal{A}[\![a]\!] (s[y \mapsto \mathcal{A}[\![a']\!] s])$ for all a, a', y, s.

By structural induction on the arithmetic a.

Basis Cases:

If a is a numeral n representing the integer i then $a[y \mapsto a'] = n$ and $\mathcal{A}[n]s = i$. Thus $\mathcal{A}[a[y \mapsto a']]s = \mathcal{A}[n]s = i = \mathcal{A}[n]s' = \mathcal{A}[a](s[y \mapsto \mathcal{A}[a']s])$.

If a is a variable x then there are two sub-cases: either it holds that x = y - in which case $a[y \mapsto a'] = a'$ and $\mathcal{A}[\![a]\!]s' = s'y$ so that $\mathcal{A}[\![a[y \mapsto a']\!]]s = \mathcal{A}[\![a']\!]s = \mathcal{A}[\![a]\!](s[y \mapsto \mathcal{A}[\![a']\!]s])$ - or it does not - in which case $a[y \mapsto a'] = x$ and $sx = (s[y \mapsto i])x$ so that $\mathcal{A}[\![a[y \mapsto a']\!]]s = \mathcal{A}[\![x]\!]s = sx = (s[y \mapsto \mathcal{A}[\![a']\!]s])x = \mathcal{A}[\![a]\!](s[y \mapsto \mathcal{A}[\![a']\!]s])$.

Composite Cases:

If a is a sum a_1+a_2 then $\mathcal{A}[\![a[y\mapsto a']\!]]s = (by defn of []) \mathcal{A}[\![a_1[y\mapsto a']\!]+ a_2[y\mapsto a']\!]]s = (by defn of <math>\mathcal{A}[\![]\!]) \mathcal{A}[\![a_1[y\mapsto a']\!]]s + \mathcal{A}[\![a_2[y\mapsto a']\!]]s = (by ind hyp) \mathcal{A}[\![a_1]\!](s[y\mapsto \mathcal{A}[\![a']\!]s]) + \mathcal{A}[\![a_2]\!](s[y\mapsto \mathcal{A}[\![a']\!]s]) = (by defn of <math>\mathcal{A}[\![]\!]) \mathcal{A}[\![a_1+a_2]\!](s[y\mapsto \mathcal{A}[\![a']\!]s]) = \mathcal{A}[\![a]\!](s[y\mapsto \mathcal{A}[\![a']\!]s])$

If a is a product $a_1 * a_2$ then an analogous argument holds.

If a is a subtraction $a_1 - a_2$ then an analogous argument also holds.