Автор: FlintWithBlackCrown aka Кирилл Болохов

Определение

X и Y. функция S из X в Y - это отношение между множествами X и Y такое что если x и y_1 находятся в отношении и x и y_2 , то $y_1=y_2$

Определение 2

Запись f:X o Y означает, что f - функция из X в Y и $\delta_f = X$

Принцип Архимеда

Для любого $x \in \mathbb{R}$ и y > 0 найдется такое $n \in \mathbb{N}$, такое что $x < n \cdot y$

Доказательство

 $A=\{u\in\mathbb{R}:$ найдется $n\in\mathbb{N},$ такое, что $u< ny\}$ Надо доказать, что $A=\mathbb{R}.$ Предположим противное, тогда $B:=\mathbb{R},$ $A\neq\emptyset.$ Очевидно, что $A\neq\emptyset(0\in A)$

Покажем, что $a \leq b, \forall a \in A$ и $\forall b \in B$

От противного. Пусть b < a, тогда a < ny для некоторго $n \in \mathbb{N} \Rightarrow b \in A$ противоречие.

Тогда по аксиоме полноты $c \in \mathbb{R}$, такое что $\forall a \in A, c \leq b \forall b \in B$

 $c-y < c \Rightarrow c-y \in A \Rightarrow c-y \leq ny$ для некоторого $n \in \mathbb{N}$, тогда $c+y < (n+2)y \Rightarrow c+y \in A \Rightarrow c+y \leq c$ противоречие

Следствие

Для любого E>0 найдется такое $n\in\mathbb{N}$, для которого $\frac{1}{n}< E$

Доказательство

 $x=1,y=E>0\Rightarrow$ найдется $n\in\mathbb{N}$, т.ч nE>1

Принцип мат. индукции

 $P_1, P_2, ...$ последовательность утверждений.

Если

- 1. P_1 верное. БАЗА индукции
- 2. из того, что верно утв P_n следует, что верно утверждение $P_{n+1} \forall n \in \mathbb{N},$ то все утв. P_1, P_2, \dots верные

Теорема

В любом конечном множестве есть наибольший и наименьший элемент

 $P_n \coloneqq$ в любом n-элементном множестве есть наибольший элемент

Доказательство

База: очев.

Переход: P_n - верно \Rightarrow ? P_{n+1} верно

В множестве $A_{n+1}\coloneqq \{a_1,a_2,...,a_{n+1}\}$ есть наибольший элемент

В множестве $A_n \coloneqq \{a_1, a_2, ..., a_n\}$ есть наибольший элемент. Пусть это a_k

- 1. $a_k \leq a_{n+1}$. Тогда a_{n+1} наибольший элемент в множестве A_{n+1}
- 2. $a_{n+1} < a_k$. Тогда a_k наибольший элемент в множестве A_{n+1}

Определение

 $A \subset \mathbb{R}, A$

1. A ограничено сверху, если найдется такое число $b\in\mathbb{R}$, такое что $a\leq b \forall a\in A$. Такие b называются верхними границами множества A

- 2. A ограничено снизу, если найдется такое число $c \in \mathbb{R}$, такое что $c \le a \forall a \in A$. Такие c называются нижними границами множества A
- 3. A ограничено если оно ограничено сверху и снизу

Пример: № ограничено снизу, но не ограничено сверху

Теорема

Во всяком непустом ограниченом сверху (снизу) множестве целых чисел есть наибольший (наим.) элемент.

Следствие

Во всяком непустом множестве натуральных чисел есть наименьший элемент

Доказательство

A - ограниченное сверху $\subset \mathbb{Z} \Rightarrow$ найдется $c \in \mathbb{R}$, такое что $a \leq c \forall a \in A$ непустое \Rightarrow найдется $b \in A$

Рассмотрим $B:=\{x\in A:x\geq b\}, B\neq\emptyset, B$ конечное непустое множество $(b\in B)$. Найдется $n\in\mathbb{N}$, такое что $n>c-b\Rightarrow B\subset\{b,b+1,b+2,...,b+n-1\}\Rightarrow$ в B не более n элементов. Тогда в B есть наибольший элемнент. Назовем его d. Тогда d - наибольший элементв в A, $d\in B\subset A$ и $d\geq b, d\geq x \forall x\in B$

Определение

 $x\in\mathbb{R},[x]$ - целая часть x - наибольшее целое число, не превосходящее x $A:=\{k\in\mathbb{Z}:k\leq x\},[x]$ - наибольший элемент A

Свойства

1. $[x] \le x < [x] + 1$ 2. $x - 1 < [x] \le x$

Теорема

Пусть x < y. Тогда найдется такое

- 1. Рациональное
- 2. Иррациональное

число r, что x < r < y

Доказательство

1. y-x>0. Тогда найдется $n\in\mathbb{N}$, такое что $\frac{1}{n}< y-x$

возьмем
$$m:=[nx]+1$$
. Проверим, что $x<\frac{m}{n}< y$ $m=[nx]+1>nx\Rightarrow \frac{m}{n}>x$ $nx+1\geq m$, тогда $\frac{m}{n}\leq x+\frac{1}{n}< x+(y-x)=y$ 2. $\sqrt{2}$ - иррациональное число.

2. V 2 - иррациональное число.

$$x-\sqrt{2} < y-\sqrt{2}$$
, найдется r - рациональное, такое что $x-\sqrt{2} < r < y-\sqrt{2} \Rightarrow x < \underbrace{r+\sqrt{2}}_{\text{иррациональное}} < y$

Определение

A - нупустое подмножество $\mathbb R$, A - ограничено снизу.

Наибольшая из ено нижних границ называестя инфимумом множества A

Определение

A - непустое подмножество \mathbb{R} , A - ограничено сверху.

Наименьшая из его верхних границ называется супремумом множества A

 $\sup A$

Пример
$$A\coloneqq\left\{\frac{1}{n}:n\in\mathbb{N}\right\}$$

Теорема существования

 $A \subset \mathbb{R}, A \neq \emptyset$

- 1. Если A ограничено снизу, то у A есть inf
- 2. Если A ограничено сверху, то у A есть \sup

Доказательство второго

B - множество верхних границ для $A, B \neq \emptyset, A \neq \emptyset$

Если $b \in B$, то $b > a \forall a \in A$.

Тогда из аксиомы полноты найдется такое вещественное число $c \in \mathbb{R}$, такое что $a \leq c \, \forall a \in \mathbb{R}$ $A, c < b \forall b \in B$

 $a \leq c \forall a \in A \Rightarrow c$ - верхняя граница множества $A \Rightarrow c \in B$ $c \leq b \forall b \in B \Rightarrow c$ - наименьший элемент множества B, то есть $c = \sup A$

Следствие

 $A \subset B \subset \mathbb{R}$, A - непустое. Тогда

- 1. Если B огр. снизу, то $\inf B \leq \inf A$
- 2. Если B огр. сверху, то $\sup A \leq \sup B$

Доказательство

Если x - нижняя граница для B, то x - нижняя граница для A, тогда $\inf B$ - какая-то нижняя граница для $A \Rightarrow$ какая-то граница наимбольшая

Теорема (характеристика inf **и** sup)

1.
$$a = \inf A \Leftrightarrow \begin{cases} a \leq x \forall x \in A \\ \forall \varepsilon \exists x \in A \text{ , r.y } x < a + \varepsilon \end{cases}$$

1.
$$a = \inf A \Leftrightarrow \begin{cases} a \leq x \forall x \in A \\ \forall \varepsilon \exists x \in A \text{, t.y } x < a + \varepsilon \end{cases}$$
2.
$$b = \sup A \Leftrightarrow \begin{cases} x \leq b \forall x \in A \\ \forall \varepsilon > 0 \exists x \in A \text{ t.y } x > b - \varepsilon \end{cases}$$

Доказательство

- 1. $a \leq x \forall x \in A \Leftrightarrow a$ нижняяя граница множества A
- 2. $\forall \varepsilon > 0 a + \varepsilon > x$ для некторого $x \in A \Leftrightarrow a + \varepsilon$ наиб нижняя граница множества A

Соотношение

Если A неогр. сверху $\sup A = +\infty$

Если A неогр. снизу $\sup A = -\infty$

Теорема о вложенных отрезках

 $[a_1,b_1]\supset [a_2,b_2]\supset ...$, невырожденные отрезки, тогда существует $c\in\mathbb{R}$, такая что $c\in\mathbb{R}$ $[a_n, b_n] \forall n \in \mathbb{N}$

Доказательство

$$\begin{split} &[a_n,b_n]\supset [a_{n+1},b_{n+1}]\\ &a_k\leq a_{k+1}\text{ и }b_k\leq b_{k+1}\\ &A=\{a_1,a_2,\ldots\}, B=\{b_1,b_2,\ldots\} \text{ проверим, что }a_k\leq b_n\forall k,n\in\mathbb{N}.\\ &1.\ \text{ случай }k\leq n\ a_k\leq a_{k+1}\leq a(k+2)\leq\ldots\leq a_n\leq b_n \end{split}$$

$$n = n + 1 = 0$$

2. случай
$$k>n$$
 $a_k\leq b_k\leq b_{k-1}\leq \ldots \leq b_n$

Замечания

- 1. Важно, что отрезки. Для инрервалов или полуинтервала неверно
- 2. Для лучей тоже неверно
- 3. Для ℚ теорема не работает $\sqrt{2} = 1.4142...$ - иррациональное $[1;2] \supset [1,4;1,5] \supset [1,41;1,42]$

Глава 2. Последовательные вещественные числа

Предел последовательности

Определние

Последовательность - это функция $f: \mathbb{N} \to \mathbb{R}, a_1, a_2...$

Как задавать последоватлеьность

- 1. Явная формула $a_n=n^2+1$
- 2. Формула с логическими операциями $a_n = \begin{cases} n^{2}, n \text{ нечетное} \\ \frac{n}{2}, n \text{:} 2 \end{cases}$
- 3. Описание
- 4. Рекурентная формула

Графическое предствавление

- 1. точки на прямой
- 2. График

Определение

l - предел последовательности $x_1, x_2, ...,$ если

Вне любого интервала, содержащего l, находится лишь конечное число членов последовательности

Определение

l - предел последовательности $x_1, x_2, ...,$ если

Вне любого интервала, содержащего l, находится лишь конечное число членов последовательности

$$\forall \varepsilon > 0 \exists N, \forall n \geq N: |x_n - l| < \varepsilon$$

Обозначения

$$l=\lim x_n$$