Московский физико-технический институт

Лабораторная работа по общей физике

$4.2~{ m Mcc}$ ледование энергетического спектра eta-частиц и определение их максимальной энергии при помощи магнитного спектрометра

выполнил студент Б04-852 группы ФЭФМ Яромир Водзяновский

Содержание

1	Цель работы	2
2	Оборудование	2
3	Теория	2
4	Экспериментальная установка	3
5	Ход работы	3
6	Обработка результатов	4
7	Вывол	5

1 Цель работы

С помощью магнитного спектрометра исследовать энергетический спектр β -частиц при распаде ядер ^{137}Cs и определение их максимальной энергии. Калибровка спектрометра осуществляется по энергии электронов внутренней конверсии ^{137}Cs .

2 Оборудование

- 1. Магнитный спектрометр с "короткой линзой"
- 2. Высоковольтный и низковольтный выпрямители
- 3. Форвакуумный насос и вакууметр
- 4. 9BM

3 Теория

β-распадом называется самопроизвольное превращение ядер, при котором их массовое число не меняется, а заряд увеличивается или уменьшается на единицу. В нашем случае имеем дело с электронным распадом:

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X + e^{-} + \tilde{\nu}$$

Освобождающаяся энергия делится между электроном и антинейтрино, дочернему ядру достается очень мало.

Вид спектра β -частиц показан на рис.1. $W(p_e)$ есть плотность вероятности. А $W(p_e)dp_e$ есть вероятность того, что β -частица получит импульс в интервале $(p_e, p_e + dp_e)$.

Рис. 1: Форма спектра β -частиц при разрешенных переходах

Вероятность β -распада пропорциональна фазовому объему в векторном пространстве имупульсов электронов и антинейтрино. Интервалу $(p_e, p_e + dp_e)$ соответсввет шаровой слой объема $4\pi p_e^2 dp_e$. В пространстве импульсов, уносимых антинейтрино, выделятеся шаровой слой площадью $4\pi p_{\nu}^2$, значит:

$$W(p_e)dp_e \propto p_e^2 p_\nu^2 dp_e \tag{1}$$

Выразим в этом соотношении p_{ν} через p_e . Масса антинейтрино равна нулю, начит:

$$p_{\nu} = E_{\nu}/c = (T_{max} - T_e)/c$$
 (2)

 E_{ν} - кинетическая энергия антинейтрино, T_{max} - масимально возможная кнетическая энергия электрона. T_e - фактическая энергия электрона. Подставляя 2 в 1 получим:

$$W(p_e)dp_e \propto p_e^2 (T_{max} - T_e)^2 dp_e \tag{3}$$

Кинетическая энергия электрона и его импульс связаны следующим:

$$T_e = \sqrt{p_e^2 c^2 + m_e^2 c^4} - m_e c^2 \tag{4}$$

Следует:

$$T_{max} - T_e = c(\sqrt{p_{max}^2 + m_e^2 c^2} - \sqrt{p_e^2 + m_e^2 c^2})$$
 (5)

Уравнение (5) описывает спектр как широкий колокол (рис.1)

Дочерние ядра нередко бывают возбужденными, поэтому они могут излучать γ -квант или передавать избыток электрону на внутренней оболочке. Такие излучаемые электроны называются **конверсионными**. На спектре (рис.1) видна монохроматическая линия, ширина которой обусловлена лишь разрешающей способностью спектрометра.

4 Экспериментальная установка

Энергию частиц определяют с помощью β -спектрометра. В работе используется магнитный спеткрометр с "короткой линзой сцинтиллятором и ФЭУ. По расчету, тонкая катушка эквивалент на линзе:

$$\frac{1}{f} \approx \frac{I^2}{p_e^2} \tag{6}$$

линза счетчика линза Рис. 2: Схема β -спектрометра с короткой магнитной линзой

Рис. 3: Блок-схема измерительного комлпекса

При заданной силе тоув на входное окно счетчика фокусируются электоны с определенным значением импульса. Импульс сфокусированнх электонов пропорционален величине тока I:

$$p_e = k \cdot I \tag{7}$$

Константа прибора к определяется по известной конверсионной линии.

Линза обладает абберацией, поэтому установлены кольцевые диафрагмы, ограничивающие углы вылетов электронов. Также установлен свинцовый фильтр, сдерживающий γ -кванты и электроны, летящие прямо. Величина Δp_e - разрешающая способность.

Рассмотрим связь между числом частиц, регистрируемых установкой, и функцией $W(p_e)$, определяемой формулой (3):

$$N(p_e) \approx W(p_e) \Delta p_e \tag{8}$$

Фокус линзы зависит от импульса, частицы проходят мимо при больших Δf , продиффиренцируем (6)

$$\Delta p_e = \frac{1}{2} \frac{\Delta f}{f} p_e \tag{9}$$

Таким образом, ширина интервала Δp_e пропорциональна импульсу. Подставим (9) в (8):

$$N(p_e) = C \cdot W(p_e)p_e \tag{10}$$

где С - некоторая константа.

Давление в спектрометре поддерживается на уровне 0.1 Торр и измеряется вакууметром. Откачка освществляется форвакуумным насосом. Высокое напряжение на ФЭУ подается от стабилизированного выпрямителя.

5 Ход работы

- 1. Включаем пересчетный прибор, высоковольтный выпрямитель и вакууметр. Откачиваем давление до 0.1 Торр форвакуумным насосом.
- 2. Включаем рабочее напряжение на ФЭУ
- 3. Убеждаемся, что спектрометр корректно работает, для этого меняем ток в катушке от 1 до 4 A, мы должны наблюдать силный рост счетов с повышением тока.
- 4. Проведем измерения, увеличивая силу тока на 0.2 А в интервале от 0 до 5 А.
- 5. Выключим ток в линзе и измерим фоновый счет спектрометра $\sim 0.8 \pm 2\%$

6. Занесем данные в таблицу 1.

Таблица 1

I, A	N	N-Nф	Νф	р, кэВ/с	Т, кэВ	mkFermi
0	0.75	-0.05	0.8	0	0	0
0.2	0.737	-0.063	0.8	48.2	2.3	0
0.4	0.712	-0.088	0.8	96.4	9	0
0.6	0.825	0.025	0.8	144.5	20	90.417
0.8	0.987	0.187	0.8	192.7	35.1	161.7047
1	1.437	0.637	0.8	240.9	53.9	213.4799
1.2	1.424	0.624	0.8	289.1	76.1	160.7966
1.4	2.437	1.637	0.8	337.2	101.2	206.5732
1.6	2.549	1.749	0.8	385.4	129	174.7902
1.8	2.949	2.149	0.8	433.6	159.2	162.3662
2	3.249	2.449	0.8	481.8	191.3	147.9894
2.2	3.536	2.736	0.8	529.9	225.2	135.5923
2.4	3.386	2.586	0.8	578.1	260.6	115.6948
2.6	3.261	2.461	0.8	626.3	297.3	100.0961
2.8	2.861	2.061	0.8	674.5	335.2	81.9679
3	2.736	1.936	0.8	722.6	374.1	71.6349
3.2	2.037	1.237	0.8	770.8	413.8	51.9648
3.4	1.399	0.599	0.8	819.0	454.3	33.0340
3.6	1.212	0.412	0.8	867.2	495.5	25.1369
3.8	1.349	0.549	0.8	915.3	537.3	26.7670
4	2.649	1.849	0.8	963.5	579.6	45.4653
4.2	3.661	2.861	0.8	1011.7	622.4	52.5644
4.4	1.824	1.024	0.8	1059.9	665.6	29.3315
4.6	0.525	-0.275	0.8	1108.0	709.2	0
4.8	0.337	-0.463	0.8	1156.2	753.1	0
5	0.487	-0.313	0.8	1204.4	797.3	0

6 Обработка результатов

1. Вычтем из результатов измеренный фон и построим график остчетов от тока в катушке.

Рис. 4

По значению $T_{\text{конв}}=0.624\text{МэВ}$ по формуле (7) определим константу прибора $k\approx 240.9$ Построим графики N(T) и $N(p_e)$

Рис. 5

Рис. 6

2. Определим T_{max} с помощью графика Ферми. Подставим в (3) значение $W(p_e)$ из (10) и разделим на Δp_e :

$$\sqrt{N(p_e)} / p^{3/2} \propto T_{max} - T \tag{11}$$

Рис. 7: График Ферми

По графику определим значение $T_{max} = 542.44 \pm 35.05$ эВ (6.46%)

7 Вывод

В ходе работы было исследовано явление β -распада ^{137}Cs . В спектр попали электроны, образованные в паре с антинейтрино при распаде, так же конверсионные электроны, испускаемые возбужденными вторичными ядрами. С помощью графика Ферми $\sqrt{N(p_e)} / p^{3/2} \propto T_{max} - T$ было определено максимальное значение кинетической энергии $T_{max} = 542.44 \pm 35.05$ эВ (6.46%).