Contents Page No.

1	Introduction					
	1.1	Preluc	le	1		
	1.2	Data	Integration, Hypergraphs, and Type Theory	2		
	1.3	Philos	sophy and the Semantic Web	4		
	1.4	Navig	ating the Proliferation of Research Data	6		
\mathbf{P}	art I	I: Bio	omedical Data Formats and Data Integration			
2	Dat	a Stru	actures Associated with Biomedical Research			
	2.1	Introd	luction	1		
	2.2	Person	nalized Medicine in the Context of Covid-19	2		
		2.2.1	Precision Medicine as a Catalyst for Biomedical Data Sharing	3		
		2.2.2	Software Alignment for Covid Phylogeny Studies	4		
		2.2.3	Personalized Medicine and Immuno-Profiling	5		
	2.3	A Rev	view of Certain Commonly-Used Biomedical Data Formats	6		
		2.3.1	DICOM (Digital Imaging and Communications in Medicine)	6		
		2.3.2	Next Generation Sequencing and other Genomics Formats	7		
		2.3.3	The Flow Cytometry Standard (FCS) File Format	9		
		2.3.4	Image Segmentation, Contours, and Regions of Interest	10		
		2.3.5	Common Data Models for Clinical Research	11		
3	Dat	a Min	ing and Predictive Analytics for Cancer and Covid-19			
	3.1		luction	1		
	3.2		ion Medicine and Bioimaging	1		
		3.2.1	The Basic Synthesis Between Bioimaging and Precision Medicine	2		
		3.2.2	Multi-Application Networks in the Context of Scientific Research Data	3		
	3.3	Precis	ion Medicine in Trial Design	4		
		3.3.1	Customizing Clinical Trial Management Software	5		
			3.3.1.1 Toward Fine-Grained Sociodemographic Models	6		
			3.3.1.2 Measuring Cognitive and Neurological Effects	6		
			3.3.1.3 Aggregating Trial Data via Graph Models	7		
		3.3.2	Representing Trial Data via Object Models	8		
	3.4	Text a	and Data Mining via CORD-19	8		
		3.4.1	Overview of CORD-19	9		
		3.4.2	Data Integration within CORD-19	10		
		3.4.3	Reviewing the CORD-19 Document Model	12		

4	Modular Design, Image Biomarkers, and Radiomics								
	4.1	Introd	luction	1					
	4.2	Image	e Biomarkers (and Others) for Cardiac and Oncology Diagnostics	1					
		4.2.1	Image Registration and Radiomics for Cardiac Diagnosis	2					
		4.2.2	From Image-Annotations to Image Biomarkers	6					
		4.2.3	Tumor Histopathology and Simulation	9					
	4.3	Multi-	-Aspect Modular Design in a Heterogeneous Data Space	12					
		4.3.1	The Overlap Between Research and Clinical Data	13					
		4.3.2	The Problem of Software Ecosystem Fragmentation	15					
	4.4	Data-	Integration via Multi-Aspect Modules	17					
		4.4.1	Research Dissemination and Incremental Replicability	18					
		4.4.2	Heterogeneous Health Data and Data Curation	20					
		4.4.3	Modularity and the Clinical/Research Overlap	22					
P	art i	II: Ty	ype Theory and Conceptual Spaces						
5	Typ	oes' In	ternal Structure and "Non-Constructive" ("NC4") Type Theory						
	5.1	Introd	luction	1					
		5.1.1	Cocyclic Types, Precyclic and Endocyclic Tuples	1					
		5.1.2	Cocyclic Types for Hypernodes	1					
		5.1.3	Channelized Types and Channel Algebra	2					
		5.1.4	Constructors and Carrier States	3					
		5.1.5	Nonconstructive Type Theory	6					
	5.2	Types	s as Conceptual Structures	8					
		5.2.1	Dimensional Analysis and Axiations	9					
	5.3	Hyper	rgraph Ontologies	11					
		5.3.1	Type Theoretic Foundations for Hypergraph-Based Data Sharing	14					
		5.3.2	Hypergraphs as a Meta-Model for Data Sharing	15					
6	Usi	Using Code Models to Instantiate Data Models							
	6.1	Introd	duction	1					
	6.2	Synta	gmatic Graphs and Pointcut Expression Semantics	2					
		6.2.1	Query-Evaluation Foundations for Syntagmatic Graphs	7					
		6.2.2	Use-Cases for Source-Code Graphs	8					
	6.3	Applying Pointcut Expressions for Data Modeling		9					
		6.3.1	Code Annotation with Units of Measurement	11					
		6.3.2	Documentation by Implementation	12					
		6.3.3	Annotation-Based Reflection and Procedural Binary Equivalence	13					
		6.3.4	Meta-Procedural, Procedural, and Sub-Procedural Syntagmatic Scales	16					
		6.3.5	Case Study: Annotation and Image Markup	16					
	6.4		rgraph Representations for Data-Persistence Bridge Code	17					
		6.4.1	Multipart Relations with Roles	20					
		6.4.2	Syntagmatic Graphs and Conceptual Spaces	22					

Part III: Bioimage Annotations and Radiomics

1	Multi-Aspect Modules and Image Annotation					
	7.1	Introdu	uction	1		
		7.1.1	Comments on Procedural and Database Aspectss	1		
		7.1.2	Assessing the Proper Scope of an Image-Annotation Module	2		
	7.2	Image	Annotations: Core Data Models	4		
		7.2.1	Magnitudes and Coordinates	Ę		
		7.2.2	Annotations with Curved Geometries or Cross-References	8		
		7.2.3	Annotations and Image Features	8		
		7.2.4	Specifying Annotations' Roles and Origins	10		
8	Ima	age Anı	notation as a Multi-Aspect Case-Study			
	8.1	Introdu	uction	1		
		8.1.1	Design Questions for Image-Annotation Modules	1		
		8.1.2	Procedural Data Modeling (and the limitations of Ontologies)	3		
		8.1.3	Different Aspects of Image-Annotation Data	5		
	8.2	8.2 Annotations and Radiomics				
		8.2.1	GUI Operations Involving Images and Image-Annotations	7		
		8.2.2	Image Processing in the Context of Broader-Scale Workflows	Ć		
		8.2.3	Data Profiles for Annotation and Image Markup	11		
		8.2.4	Tradeoffs Between Data Models' Narrower and Wider Scope	13		
9	Cor	nceptua	al Spaces and Scientific Data Models			
	9.1	Introdu	uction	1		
	9.2	Verb-C	Centric Grammars and Information-Delta Paths	2		
		9.2.1	The Emergent Syntax/Semantics Interface	7		
	9.3	9.3 Conceptual and Thematic Roles				
		9.3.1	Disjoint Conceptual Spaces	Ć		
		9.3.2	Conceptual Spaces and Scientific Data	14		
	9.4	Delta l	Roles and Conceptual Space Markup Language	15		
		9.4.1	Information Delta and Data Modeling	15		
		9.4.2	The Artificiality of Data Semantics	17		
	9.5	Conclu	sion: Toward a Scientific Data Semantics	18		
		9.5.1	Research Data and Data Integration	19		
		9.5.2	Toward a Procedural Conceptual-Space Semantics	20		