

Evaluation Randomisiert-Kontrollierter Studien und Experimente mit ${\sf R}$

Effektstärken

Prof. Dr. David Ebert & Mathias Harrer Graduiertenseminar TUM-FGZ

Psychology & Digital Mental Health Care, Technische Universität München

Hintergrund

- Der Begriff "Effektstärke" (effect size) ist nicht klar definiert; manche verstehen darunter nur standardisierte Mittelwertsunterschiede (Cohen's d); andere bevorzugen breitere Definitionen.
- Die "engere" Definition ist nur schwer haltbar, da auch Korrelationen, Odds Ratios, z-Werte etc. Richtung und Stärke eines Effekt ausdrücken können (und teils auch ineinander transformierbar sind).
- Im Kontext von RCTs werden Effektstärken genutzt, um die Größe des Interventionseffekts zu quantifizieren und vergleichbar zu machen.
- Eine praktische Schwierigkeit stellt dabei die korrekte Berechnung von Konfidenzintervallen dar. Für viele Effekstärken existieren geschlossene Formeln zur Berechnung der sampling-Varianz; diese beziehen aber nicht die Imputationssicherheit mit ein!

Eine elegante Form der Berechnung von Effekstärken und deren 95%-Konfidenzintervalle bei MI stellt die Nutzung der "natürlichen" Interpretation des β -Gewichts der Treatmentvariable in (G)LM dar.

Es sei $f(\beta)$ eine je nach Linkfunktion variierende Transformationsfunktion (häufig die Exponentialfunktion), und $\hat{\theta}$ die zu berechnende Effektstärke:

$$\begin{split} \hat{\theta} &= f(\hat{\beta}_{\text{treat}}) \\ \hat{\theta}_{\text{lower}} &= f\left(\hat{\beta}_{\text{treat}} - t_{\nu_{\text{(MI)}},0.975} \times \text{S.E.}_{\hat{\beta}_{\text{treat}}}\right) \\ \hat{\theta}_{\text{upper}} &= f\left(\hat{\beta}_{\text{treat}} + t_{\nu_{\text{(MI)}},0.975} \times \text{S.E.}_{\hat{\beta}_{\text{treat}}}\right) \end{split}$$

Viele Effektstärken lassen sich direkt aus GLM ableiten!

Verteilung	Link-Typ	Linkfunktion	Support (y)	$\exp(\beta_{\rm treat})$	family
Normal	Identity	μ	\mathbb{R}	$\log_e(\mathrm{MD})$	gaussian("identity")
Binomial	Logit [*]	$\log_e\left(rac{\mu}{1-\mu} ight)$	$\frac{0,1,\ldots,m}{m}$	OR	binomial("logit")
	Log	$\log_e(\mu)$	$\frac{0,1,\ldots,m}{m}$	RR	<pre>binomial("log")</pre>
	Complem. Log-Log	$\log_e[-\log_e(1-\mu)]$	$\frac{0,1,\ldots,m}{m}$	HR	<pre>binomial("cloglog")</pre>
Negativ Binomial	Log	$\log_e\left(rac{\mu}{\mu+k} ight)$	\mathbb{N}_0	(I)RR	log(in MASS::glm.nb)
Poisson	Log	$\log_e(\mu)$	\mathbb{N}_0	(I)RR	poisson("log")
Gamma	Inverse	$-\mu^{-1}$	\mathbb{R}_{+}	-	gamma("inverse")

Beispiel: Standardisierte Mittelwertsunterschiede (Cohen's d)

$$d = \frac{\mu_1 - \mu_1}{s_{\mathrm{pooled}}} = \frac{\mu_1 - \mu_1}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_0 - 1)s_0^2}{(n_1 - 1) + (n_0 - 1)}}}$$

ightarrow Hier kann die gepoolte Standardabweichung als "Offset" genutzt werden, um d direkt aus einem linearen Model zu berechnen.

```
# Der Wert von s_pooled wurde mit 6.32 berechnet
with(implist, lm(I(pss.1/6.32) ~ 1 + group + pss.0)) %>%
  testEstimates() -> m

m; confint(m)
```


Ergebnis: *d*=-0.92, 95%CI: -1.16—-0.68.

```
#>
         Estimate Std.Error t.value df P(>|t|) RIV
                                                         FMT
#> (Intrcpt) 1.486 0.400 3.719 4878.106 0.000 0.075
                                                       0.071
#> group -0.918 0.122 -7.548 4141.218 0.000 0.082
                                                       0.077
#> pss.0 0.085 0.015 5.517 6989.062 0.000 0.062
                                                       0.059
#>
#> Unadjusted hypothesis test as appropriate in larger samples.
#>
#>
                 2.5 % 97.5 %
#> (Intercept) 0.70280613 2.2697069
#> group -1.15677072 -0.6797633
#> pss.0 0.05486783 0.1153496
```


Beispiel: Odds Ratio (OR)

Für eine logistische Regression mit dummy-kodierter Treatmentvariable gilt:

$$\exp(\hat{\beta}_{\rm treat}) = \widehat{\rm OR}$$

Wir können also in R die **Exponentialfunktion** exp nutzen, um direkt die **OR und das Konfidenzintervall** zu berechnen:

```
with(implist, glm(ri ~ 1 + group + pss.0, binomial("logit"))) %>%
  testEstimates() -> mi.logreg

c(mi.logreg$estimates[2,1], confint(mi.logreg)[2,]) %>% exp()
```

```
#> 2.5 % 97.5 %
#> 5.958 3.366 10.546
```