Proposição: Seja (S, \leq) , um conjunto PO.

- a) Se (S, \leq) possui um mínimo, então ele é único.
- b) Se (S, \leq) possui um máximo, então ele é único.
- c) Se (S, \leq) é um conjunto PO, $S \neq \emptyset$ e finito, então existe pelo menos um elemento minimal e um elemento maximal em S.

Em particular, se além das hipóteses acima temos também que S é uma cadeia, então S possui máximo e mínimo.

Justificativa da Proposição:

a) Suponhamos que existam m_1 e m_2 mínimos de S.

 m_1 é mínimo de S e $m_2 \in S \Longrightarrow m_1 \le m_2$ (1)

 m_2 é mínimo de S e $m_1 \in S \Longrightarrow m_2 \le m_1$ (2)

Portanto, de (1) e (2), pela transitividade da relação de ordem, temos $m_1 = m_2$.

Assim, concluímos que o mínimo, caso exista, é único.

- b) Análogo ao item a.
- c) Obs: Dado um conjunto A qualquer, notaremos por #A o número de elementos do conjunto A. Nesta justificativa, como usaremos tanto a ordem usual em \mathbb{N} , que representamos por \leq , como a ordem do conjunto S, para evitar confusões usaremos o símbolo \leq para a ordem de S.

Seja $(S, \underline{\prec})$ um conjunto PO, $S \neq \emptyset$ e finito. Queremos mostrar que S possui um elemento maximal. A prova de que possui também um elemento minimal é análoga e será deixada como exercício.

Para cada $s \in S$, consideremos o número natural, que representaremos por u(s), dado por $u(s) = \#\{x \in S/s \leq x\}$, isto é, u(s) é o número de elementos $x \in S$ para os quais $s \leq x$. Certamente $u(s) \in \mathbb{N}$ pois, como S é finito, u(s) será, no máximo, igual ao número de elementos de S, ou seja, $u(s) \leq \#(S)$.

Consideremos o conjunto $U=\left\{ u\left(s\right) /s\in S\right\}$. Sobre o conjunto U, sabemos que:

 $U \neq \emptyset$, pois $S \neq \emptyset$;

 $U \subseteq \mathbb{N}$, pois todos os seus elementos são números inteiros;

U é finito, pois terá, no máximo, o número de elementos de S.

Portanto, U possui um mínimo. Seja $u(s_0) \in S$ o elemento mínimo de U.

Mostremos que s_0 é um elemento maximal de S.

Se tal não ocorresse, deveria existir $y \in S$ tal que $s_0 \preceq y$, com $s_0 \neq y$. Mas, daí decorreria que u(y) seria um número inteiro estritamente menor que $u(s_0)$. De fato, se $s \in u(y)$ então $y \preceq s$ logo, $s_0 \preceq s$, uma vez que $s_0 \preceq y$ e R é transitiva. Portanto, $s \in u(s_0)$. Assim, como todos os elementos de u(y) estão em $u(s_0)$, $s_0 \in u(s_0)$ e $s_0 \notin u(y)$, segue que u(y) possui pelo menos

um elemento a menos que $u(s_0)$. Então, $u(s_0)$ não seria mínimo do conjunto U. O que nos levou a esta contradição, foi supor que s_0 não seria um elemento maximal de S. Portanto, isto não pode ocorrer e concluímos que s_0 é um elemento maximal de S.

Suponhamos que, além de finito e não vazio, S seja uma cadeia, isto é, dois elementos quaisquer de S sempre são comparáveis. Pelo que vimos acima, S possui um elemento maximal, digamos m. Mostremos que este é o máximo de s. De fato, se $s \in S$, então s e m são comparáveis, logo, como não pode ocorrer $m \leq s$, deve ocorrer $s \leq m$. Portanto, m é o máximo de S.