Úvod do robotiky a mechatroniky (URM)

Přednáška č. 5:

Přímý a inverzní kinematický model sériových manipulátorů, singulární polohy

M. Švejda

FAV, ZČU v Plzni, Katedra kybernetiky

poslední revize: 10. 12. 2013

Úvod - využití

- dosud uvažovány pouze polohové závislosti mezi kloubovými Q a zobecněnými X souřadnicemi (DGM, IGM)
- kompletní kinematický popis vyžaduje znát i závislosti mezi rychlostmi a zrychleními těchto souřadnic
- problematika závislostí mezi rychlostmi a zrychleními je nazývána často jako:
 - přímá/inverzní kinematická úloha (direct and inverse kinematics)
 - přímá/inverzní okamžitá kinematická úloha (direct/inverse instantaneous kinematics)
 - (velocity kinematics)
- možnosti využití závislostí rychlostí/zrychlení mezi Q a X
 - kaskádní algoritmy řízení s dopřednou vazbou (regulátor polohy-rychlosti-zrychlení)
 - analýzy plánované trajektorie pohybu (stanovení omezení na pohyb aktuátorů)
 - kinetostatická dualita ⇒ závislosti mezi silami/momenty konc. efektoru a aktuátorů
 - vyšetřování singulárních poloh manipulátorů
 - numerické algoritmy řešení IGM

Definice závislostí rychlostí a zrychlení (1/3)

ullet předpokládejme řešení DGM (formálně vynechána závislost na ξ):

$$T_n^0 = \prod_{i=1}^n T_i^{i-1}(q_i)$$
, (skládání transformací, $n \dots \# DoF$)

rychlostní závislosti lze získat přímou čas. derivací DGM ve tvaru:

$$\boldsymbol{T}_{n}^{0} = \prod_{i=1}^{n} \boldsymbol{T}_{i}^{i-1}(q_{i}) \rightarrow \frac{d}{dt} \rightarrow \boldsymbol{T}_{n}^{0} = \underbrace{\frac{d}{dt} \left(\prod_{i=1}^{n} \boldsymbol{T}_{i}^{i-1}(q_{i}) \right)}_{\text{funkce } q_{i}, \ \dot{q}_{i}}$$

- předpokládejme min. reprezentaci zobecněných souřadnic X, tzn.:
 - pozici (3 nezávislé proměnné): O_n
 - orientaci (3 nezávislé proměnné): α , β , γ Eulerovy úhly (v daném schématu, např. XYZ, atd.)

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{O}_{n}^{0} \\ \alpha \\ \beta \\ \gamma \end{bmatrix}, \quad \boldsymbol{R}_{n}^{0} \Rightarrow \alpha, \ \beta, \ \gamma \ \text{(viz Přednáška č. 2)} \quad \Rightarrow \text{DGM: } \boldsymbol{X} = \boldsymbol{F}(\boldsymbol{Q})$$

Definice závislostí rychlostí a zrychlení (2/3)

Přímá okamžitá kinematická úloha (POKÚ) lze psát:

Pro rychlosti:
$$\dot{\mathbf{X}} = \frac{\partial \mathbf{F}(\mathbf{Q})}{\partial \mathbf{Q}}\Big|_{\mathbf{Q} = \mathbf{Q}_0} \cdot \dot{\mathbf{Q}} = \mathbf{J}_A(\mathbf{Q}_0) \cdot \dot{\mathbf{Q}}$$
 (1)

Pro zrychlení:
$$\ddot{\boldsymbol{X}} = \dot{\boldsymbol{J}}_{A}(\boldsymbol{Q}_{0}, \dot{\boldsymbol{Q}}_{0}) \cdot \dot{\boldsymbol{Q}} + \boldsymbol{J}_{A}(\boldsymbol{Q}_{0}) \cdot \ddot{\boldsymbol{Q}}$$
 (2)

kde \mathbf{Q}_0 reprezentuje aktuální polohu manip. v prostoru kloubových souř.

Inverzní okamžitá kinematická úloha (IOKÚ) lze psát:

Pro rychlosti:
$$\dot{\boldsymbol{Q}} = \frac{\partial \mathbf{F}^{-1}(\boldsymbol{X})}{\partial \boldsymbol{X}}\Big|_{\boldsymbol{X} = \boldsymbol{X}_0} \cdot \dot{\boldsymbol{X}} = \boldsymbol{J}_A^{-1}(\boldsymbol{X}_0) \cdot \dot{\boldsymbol{X}}$$
 (3)

Pro zrychlení:
$$\ddot{\boldsymbol{Q}} = \frac{d}{dt} \left(\boldsymbol{J}_A^{-1}(\boldsymbol{X}_0, \dot{\boldsymbol{X}}_0) \right) \cdot \dot{\boldsymbol{X}} + \boldsymbol{J}_A^{-1}(\boldsymbol{X}_0) \cdot \ddot{\boldsymbol{X}}$$
 (4)

Alternativně:
$$\ddot{\boldsymbol{Q}} = \boldsymbol{J}_{A}^{-1}(\boldsymbol{Q}) \cdot \left(\ddot{\boldsymbol{X}} - \dot{\boldsymbol{J}}_{A}(\boldsymbol{Q}, \dot{\boldsymbol{Q}}) \cdot \dot{\boldsymbol{Q}} \right)$$
 (5)

kde X_0 reprezentuje aktuální polohu manip. v prostoru zobecněných souř.

Pozn.: aktuální poloha manip. v kloubových a zobecněných souř. je vázána známými vztahy DGM a IGM, tzn. $\mathbf{X}_0 = \mathbf{F}(\mathbf{Q}_0)$ resp. $\mathbf{Q}_0 = \mathbf{F}^{-1}(\mathbf{X}_0)$

Definice závislostí rychlostí a zrychlení (3/3)

matici

$$m{J}_A(m{Q}_0) = rac{\partial m{F}(m{Q})}{\partial m{Q}}igg|_{m{Q}=m{Q}_0} \quad ext{resp.} \quad m{J}_A^{-1}(m{X}_0) = rac{\partial m{F}^{-1}(m{X})}{\partial m{X}}igg|_{m{X}=m{X}_0}$$

nazýváme

analytickým jakobiánem resp. inverzním analytickým jakobiánem

v bodě (poloze manipulátoru) X_0 resp. Q_0 (někdy označeno jen X, Q).

- analytický jakobián $J_A(Q)$ lze tedy získat formálním derivováním funkce DGM F(Q) podle času
- DGM pro sériové manipulátory, fce F(Q), lze nalézt vždy analyticky a je jednoznačná ⇒ analytický jakobián lze nalézt vždy analyticky a je jednoznačný (vyjma bodových singularit v převodu R⁰_n → α, β, γ)

Definice závislostí rychlostí a zrychlení

Příklad: 2DoF planární manipulátor (1/3)

známe DGM, viz Přednáška č. 3

$$\boldsymbol{T}_2^0(\boldsymbol{Q}) = \boldsymbol{T}_1^0(\theta_1) \cdot \boldsymbol{T}_2^1(\theta_2) = \begin{bmatrix} c_{12} & -s_{12} & 0 & L_2c_{12} + L_1c_1 \\ s_{12} & c_{12} & 0 & L_2s_{12} + L_1s_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{R}_2^0 & \boldsymbol{O}_2^0 \\ -\bar{0} & \bar{0} & \bar{0} & 1 \end{bmatrix}$$

• převod na minimální reprezentaci (α , β , γ ... XYZ Euler. úhly)

$$m{X}^{ ext{full}} = egin{bmatrix} m{Q}_2^0 \ eta \ eta \ eta \end{bmatrix} = egin{bmatrix} L_2 c_{12} + c_1 L_1 \ L_2 s_{12} + s_1 L_1 \ 0 \ 0 \ 0 \ \theta_1 + heta_2 \end{bmatrix}, \quad m{Q} = egin{bmatrix} heta_1 \ heta_2 \end{bmatrix}$$

- X^{full} označuje **úplnou 6DoF** polohu konc. ef.
- jelikož manipulátor má pouze 2DoF, lze nezávisle polohovat pouze 2 souřadnice z \mathbf{X}^{full} ($\mathbf{X} = \mathbf{X}^{\text{full}}[1:2]$, tzv. restrikce \mathbf{X}^{full})

Definice závislostí rychlostí a zrychlení

Příklad: 2DoF planární manipulátor (2/3)

formální derivace F(Q) podle času ⇒ rychlostní závislosti:

$$\dot{\mathbf{X}}^{\text{full}} = \begin{bmatrix} \dot{\mathbf{O}}_{2}^{0} \\ \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{bmatrix} = \begin{bmatrix} -L_{2}s_{12}(\dot{\theta}_{1} + \dot{\theta}_{2}) - s_{1}L_{1}\dot{\theta}_{1} \\ L_{2}c_{12}(\dot{\theta}_{1} + \dot{\theta}_{2}) + c_{1}L_{1}\dot{\theta}_{1} \\ 0 \\ 0 \\ \dot{\theta}_{1} + \dot{\theta}_{2} \end{bmatrix} = \underbrace{\begin{bmatrix} -s_{1}L_{1} - L_{2}s_{12} & -L_{2}s_{12} \\ c_{1}L_{1} + L_{2}c_{12} & L_{2}c_{12} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}}_{\mathbf{J}^{\text{ull}}(\mathbf{Q})} \cdot \underbrace{\begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \end{bmatrix}}_{\dot{\mathbf{Q}}}$$

 stejně jako v předešlém případě lze získat nezávislé zobecněné rychlosti $\dot{\boldsymbol{X}}$ restrikcí $\dot{\boldsymbol{X}} = \dot{\boldsymbol{X}}^{\text{full}}[1:2]$, tzn.:

$$\dot{\mathbf{X}} = \dot{\mathbf{O}}_{2}^{0}[1:2] = \underbrace{\begin{bmatrix} -s_{1}L_{1} - L_{2}s_{12} & -L_{2}s_{12} \\ c_{1}L_{1} + L_{2}c_{12} & L_{2}c_{12} \end{bmatrix}}_{\mathbf{J}_{A}(\mathbf{O})} \cdot \underbrace{\begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \end{bmatrix}}_{\mathbf{O}} \Rightarrow \mathbf{POK\acute{U}} \text{ pro rychlosti}$$

• **Pozn.**: obecně J_A^{full} není invertovatelný pro n < 6 (*DoF*) (nelze volit rychlosti ∀ 6DoF manipulátoru pouze 2 kloubovými souřadnicemi)

Definice závislostí rychlostí a zrychlení

Příklad: 2DoF planární manipulátor (3/3)

 časovou derivaci analytického jakobiánu J^{full} lze opět získat formální derivací

$$\dot{\boldsymbol{J}}_{A}^{\text{full}}(\boldsymbol{Q},\dot{\boldsymbol{Q}}) = \begin{bmatrix} (-L_{2}c_{12}-c_{1}L_{1})\dot{\theta_{1}}-L_{2}c_{12}\dot{\theta_{2}} & -L_{2}c_{12}\dot{\theta_{1}}-L_{2}c_{12}\dot{\theta_{2}} \\ (-L_{2}s_{12}-s_{1}L_{1})\dot{\theta_{1}}-L_{2}s_{12}\dot{\theta_{2}} & -L_{2}s_{12}\dot{\theta_{1}}-L_{2}s_{12}\dot{\theta_{2}} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

⇒ závislosti zrychlení:

$$\ddot{\pmb{\mathcal{X}}}^{\text{full}} = \dot{\pmb{J}}_{A}^{\text{full}}(\pmb{Q}, \dot{\pmb{Q}}) \cdot \dot{\pmb{Q}} + \pmb{J}_{A}^{\text{full}}(\pmb{Q}) \cdot \ddot{\pmb{Q}}$$

• a příslušnou restrikcí $\ddot{\mathbf{X}} = \ddot{\mathbf{X}}^{\text{full}}[1:2]$, dostáváme:

$$\ddot{\pmb{X}} = \dot{\pmb{J}}_A(\pmb{Q}, \dot{\pmb{Q}}) \cdot \dot{\pmb{Q}} + \pmb{J}_A(\pmb{Q}) \cdot \ddot{\pmb{Q}} \quad \Rightarrow \quad \textbf{POKÚ} \text{ pro zrychlení}$$

$$\dot{\boldsymbol{J}}_{A}(\boldsymbol{Q}, \dot{\boldsymbol{Q}}) = \begin{bmatrix} (-L_{2}c_{12} - c_{1}L_{1})\dot{\theta}_{1} - L_{2}c_{12}\dot{\theta}_{2} & -L_{2}c_{12}\dot{\theta}_{1} - L_{2}c_{12}\dot{\theta}_{2} \\ (-L_{2}s_{12} - s_{1}L_{1})\dot{\theta}_{1} - L_{2}s_{12}\dot{\theta}_{2} & -L_{2}s_{12}\dot{\theta}_{1} - L_{2}s_{12}\dot{\theta}_{2} \end{bmatrix}$$

Pro libovolný sériový manipulátor nyní známe:

DGM: X = F(Q)

 $\mathbf{Q} = \mathbf{F}^{-1}(\mathbf{X})$ IGM: POKÚ:

 $\dot{\mathbf{X}} = \mathbf{J}_A(\mathbf{Q}) \cdot \dot{\mathbf{Q}}, \qquad \ddot{\mathbf{X}} = \dot{\mathbf{J}}_A(\mathbf{Q}, \dot{\mathbf{Q}}) \cdot \dot{\mathbf{Q}} + \mathbf{J}_A(\mathbf{Q}) \cdot \ddot{\mathbf{Q}}$

 $\ddot{\boldsymbol{Q}} = \boldsymbol{J}_{A}^{-1}(\boldsymbol{X}) \cdot \dot{\boldsymbol{X}}, \quad \ddot{\boldsymbol{Q}} = \dot{\boldsymbol{J}}_{A}^{-1}(\boldsymbol{X}, \dot{\boldsymbol{X}}) \cdot \dot{\boldsymbol{X}} + \dot{\boldsymbol{J}}_{A}^{-1}(\boldsymbol{X}) \cdot \ddot{\boldsymbol{X}}$ IOKÚ:

Plánování trajektorie (1/13)

- jak budou vypadat časové průběhy polohy, rychlosti a zrychlení kloubových souřadnic (Q, Q, Q) - nutné pro setpointy regulátorů
- plánování trajektorie v prostoru zobecněných souřadnic (poloha, rychlost a zrychlení konc. efektoru, X, X, X) - přirozené

Formulace problému: (Plánování trajektorie v prostoru zobecněných souř.)

 parametrické vyjádření trajektorie pohybu konc. efektoru (pozice, orientace) ⇒ parametr φ

$$\mathbf{X} = \Phi(\varphi) = \begin{bmatrix} \Phi_1(\varphi) \\ \Phi_2(\varphi) \\ \vdots \end{bmatrix} \qquad \varphi = \varphi(t) \tag{6}$$

- jak volit časové průběhy parametru $\varphi(t)$?
 - parametr $\varphi(t)$ nám jednoznačně určuje polohu bodu \pmb{X} na plánované (parametrizované) trajektorii
 - jak měnit $\varphi(t)$ (rychlos, zrychlení) aby tečná rychlost, zrychlení bodu \mathbf{X} po trajektorii odpovídala požadovaným předpokladům (profilům)

Plánování trajektorie (2/13)

Uvažujme, že budeme parametrizovat trajektorii polohy (pouze translace) koncového efektoru.

$$\mathbf{X} = \begin{bmatrix} \Phi_1(\varphi(t)) \\ \Phi_2(\varphi(t)) \\ \Phi_3(\varphi(t)) \end{bmatrix} \tag{7}$$

Délka oblouku parametrické křivky lze vyjádřit (obecně):

$$s(\varphi(t)) = \int_0^{\varphi(t)} \sqrt{\left(\frac{\partial \Phi_1(\varphi(t))}{\partial \varphi(t)}\right)^2 + \left(\frac{\partial \Phi_2(\varphi(t))}{\partial \varphi(t)}\right)^2 + \left(\frac{\partial \Phi_3(\varphi(t))}{\partial \varphi(t)}\right)^2} d\varphi(t)$$

- délka oblouku $s(\varphi(t))$
- tečná rychlost podél trajektorie

$$\frac{d}{dt}s(\varphi(t))=v\left(\varphi(t),\dot{\varphi}(t)\right)$$

tečné zrychlení podél trajektorie

$$\frac{d^2}{dt^2}s(\varphi(t)) = a\left(\varphi(t), \dot{\varphi}(t), \ddot{\varphi}(t)\right)$$

Plánování trajektorie (3/13)

Tečné zrychlení a a tečná rychlost v hraje klíčovou roli při pohybu manipulátoru po trajektorii:

- plynulost chodu
- časově optimální (minimální) přejez po zadané trajektorii
- omezení na max. rychlost v_{max} a zrychlení a_{max} konc. ef.
- zavedení omezení ⇒ plynulost pohybu, potlačení možnosti vybuzení nežádoucích vibrací
- **Problém 1:** znalost relace mezi parametrem φ a ujetou dráhou po trajektorii s (a jejich vyšších čas. derivací)
- **Problém 2:** generování časových průběhů parametru φ

Plánování trajektorie (4/13)

Problém 1: relace $s(t) \leftrightarrow \varphi(t)$ (a vyšších derivací)

- $s(t) \mapsto \varphi(t)$ dána vztahem pro výpočet délky par. křivky (??) \Rightarrow formální derivací dostáváme $\dot{s}(t) \mapsto \dot{\varphi}(t)$ a $\ddot{s}(t) \mapsto \ddot{\varphi}(t)$
- bohužel relace $s(t)\mapsto \varphi(t)$ nemusí být analyticky nalezitelná, nelze vypočítat integrál

Př.: (délka oblouku elipsy s hlavní osou *a* a vedlejší osou *b*)

Parametrizace :
$$\mathbf{X} = \begin{bmatrix} a \cdot \cos(\varphi(t)) \\ b \cdot \sin(\varphi(t)) \end{bmatrix}$$

$$s(\varphi(t)) = \int_0^{\varphi(t)} \sqrt{a^2 + (b^2 - a^2)\sin(\varphi(t))} \, d\varphi(t) = ???$$

Neexistuje analytické řešení!

• pro přímku a kružnici jsou relace triviální tzv. *přirozená parametrizace*: v(t) a a(t) jsou lineární funkce parametru $\dot{\varphi}(t)$, $\ddot{\varphi}(t)$

Plánování trajektorie (5/13)

Přímka z bodu A do bodu B (v rovině):

parametrizace:

$$\mathbf{X} = \begin{bmatrix} \mathbf{A}[1] + k_1 \varphi(t) \\ \mathbf{A}[2] + k_2 \varphi(t) \end{bmatrix}, \quad k_1 = (\mathbf{B} - \mathbf{A})[1] \\ k_2 = (\mathbf{B} - \mathbf{A})[2] , \quad \varphi(t) \in \langle 0, 1 \rangle$$
 (8)

• relace $s(t) \leftrightarrow \varphi(t)$:

$$s(t) = \sqrt{k_1^2 + k_2^2} \cdot \varphi(t), \ v(t) = \sqrt{k_1^2 + k_2^2} \cdot \dot{\varphi}(t), \ a(t) = \sqrt{k_1^2 + k_2^2} \cdot \ddot{\varphi}(t)$$
(9)

Kružnice o poloměru R se středem O (v rovině):

parametrizace:

$$\mathbf{X} = \begin{bmatrix} \mathbf{O}[1] + R\cos(\varphi(t)) \\ \mathbf{O}[2] + R\sin(\varphi(t)) \end{bmatrix}, \ \varphi(t) \in \langle 0, 2\pi \rangle$$
 (10)

• relace $s(t) \leftrightarrow \varphi(t)$

$$s(t) = R \cdot \varphi(t), \ v(t) = R \cdot \dot{\varphi}(t), \ a(t) = R \cdot \ddot{\varphi}(t) \tag{11}$$

Plánování trajektorie (6/13)

Problém 2: generování časových průběhů ujeté dráhy s(t) po trajektorii a parametru $\varphi(t)$

- Nechť požadujeme:¹
 Časově optimální pohyb konc. ef. po trajektorii o vzdálenost s_{max}[m]
 (ujetá dráha) s omezením na:
 - maximální tečnou rychlost $v_{max}[\frac{m}{s}]$
 - maximální tečné zrychlení $a_{max} \left[\frac{m}{s^2} \right]$
- časově optimální průběh trajektorie předpokládá, že bude využíváno maximální možné zrychlení (zpomalení) a_{max} (vychází z tzv. Pontryaginova principu minima - optimalizační úloha)
- z relací (9, 11) plyne výsledná celková ujetá dráha po trajektorii:

Přímka:
$$s_{max} = \sqrt{k_1^2 + k_2^2}$$
, Kružnice: $s_{max} = R \cdot 2\pi$

¹Lze pochopitelně požadovat i jiný průběh vývoje ujeté d<u>r</u>áhy s(t)

Plánování trajektorie (7/13)

Generátor časově optimální trajektorie ujeté dráhy s(t) a jejích časových derivací

 2 varianty typického časově optimálního průběhu vývoje s(t) (uspořádání časových okamžiků t_1 , t_2 , t_3 přepnutí $a_{max} \rightarrow 0 \rightarrow -a_{max}$)

Varianta 1

Zrychlení a_{max} je dostatečné, aby v(t)dosáhlo maximální rychlosti vmax

Varianta 2

Zrychlení a_{max} **není** dostatečné, aby v(t)dosáhlo maximální rychlosti v_{max}

Plánování trajektorie (8/13)

Varianta 1 \Rightarrow $t_1 < t_2 < t_3$

Časové průběhy s(t), v(t), a(t):

• Pro $t \in \langle 0, t_1 \rangle$:

$$a(t) = a_{max}, \quad v(t) = a_{max}t, \quad s(t) = \frac{1}{2}a_{max}t^2$$
 (12)

• Pro $t \in \langle t_1, t_2 \rangle$:

$$a(t) = 0, \quad v(t) = a_{max}t_1, \quad s(t) = a_{max}t_1t - \frac{1}{2}a_{max}t_1^2$$
 (13)

• Pro $t \in \langle t_2, t_3 \rangle$:

$$a(t) = -a_{max}, \quad v(t) = -a_{max}t + a_{max}(t_1 + t_2),$$

$$s(t) = -\frac{1}{2}a_{max}t^2 + a_{max}(t_1 + t_2)t - a_{max}\frac{1}{2}(t_1^2 + t_2^2) \quad (14)$$

polynomy 0. resp. 1. resp 2. stupně pro s(t) resp. v(t) resp. a(t)

Plánování trajektorie (9/13)

Určení okamžiků přepnutí t_1 , t_2 , t_3 :

Z (12):
$$\underbrace{v(t_{1})}_{v_{max}} = a_{max}t_{1} \Rightarrow t_{1} = \frac{v_{max}}{a_{max}}$$
Z (14):
$$\underbrace{v(t_{3})}_{=0} = -a_{max}t_{3} + a_{max}(t_{1} + t_{2}) \Rightarrow t_{3} = t_{1} + t_{2}$$
Z (14):
$$\underbrace{s(t_{3})}_{=s_{max}} = a_{max}\left(-\frac{1}{2}t_{3}^{2} + (t_{1} + t_{2})t_{3} - \frac{1}{2}(t_{1}^{2} + t_{2}^{2})\right) \Rightarrow t_{2} = \frac{s_{max}}{a_{max}t_{1}} \Rightarrow t_{2} = \frac{s_{max}}{v_{max}}$$

$$\Rightarrow t_{3} = \frac{v_{max}}{a_{max}} + \frac{s_{max}}{v_{max}}$$

$$\Rightarrow t_{3} = \frac{v_{max}}{a_{max}} + \frac{s_{max}}{v_{max}}$$

Plánování trajektorie (10/13)

Varianta 2
$$\Rightarrow t_1 = t_2 < t_3$$

Časové průběhy s(t), v(t), a(t):

• Pro $t \in \langle 0, t_1 = t_2 \rangle$:

$$a(t) = a_{max}, \quad v(t) = a_{max}t, \quad s(t) = \frac{1}{2}a_{max}t^2$$
 (15)

• Pro $t \in \langle t_1 = t_2, t_3 \rangle$:

$$a(t) = -a_{max}, \quad v(t) = -a_{max}t + 2a_{max}t_1,$$

$$s(t) = -\frac{1}{2}a_{max}t^2 + 2a_{max}t_1t - a_{max}t_1^2 \quad (16)$$

• polynomy 0. resp. 1. resp 2. stupně pro s(t) resp. v(t) resp. a(t)

Plánování trajektorie (11/13)

Určení okamžiků přepnutí $t_1 = t_2$, t_3 :

Z (16):
$$v(t_{3}) = -a_{max}t_{3} + 2a_{max}t_{1} \implies t_{3} = 2t_{1}$$
Z (16):
$$s(t_{3}) = -\frac{1}{2}a_{max}t_{3}^{2} + 2a_{max}t_{1}t_{3} - a_{max}t_{1}^{2} \implies s_{max} = a_{max}t_{1}^{2} \implies t_{1} = \sqrt{\frac{s_{max}}{a_{max}}}$$

$$\Rightarrow t_{3} = 2\sqrt{\frac{s_{max}}{a_{max}}}$$

Plánování trajektorie (12/13)

Rozhodnutí o variantě:

- Pro $rac{\dot{s}_{max}}{a_{max}} < \sqrt{rac{s_{max}}{a_{max}}}$ (rychlost v(t) dojede na \dot{s}_{max}) \Rightarrow **Varianta 1**
- Pro $rac{\dot{s}_{max}}{a_{max}} \geq \sqrt{rac{s_{max}}{a_{max}}}$ (rychlost v(t) nedojede na \dot{s}_{max}) \Rightarrow **Varianta 2**
- nyní známe časově optimální průběh ujeté dráhy s(t) po trajektorii a její časové derivace v(t), a(t) s ohledem na omezení max. rychlost v_{max} a zrychlení a_{max}
- časový vývoj parametru $\varphi(t)$ a jeho derivací $\dot{\varphi}(t)$, $\ddot{\varphi}(t)$ lze snadno určit z relací (9, 11) ... pouze **lineární** závislost!

$$\begin{split} \varphi(t) &= \frac{s(t)}{\sqrt{k_1^2 + k_2^2}} \\ \textbf{Přímka:} \quad \dot{\varphi}(t) &= \frac{v(t)}{\sqrt{k_1^2 + k_2^2}} \\ & \ddot{\varphi}(t) &= \frac{a(t)}{\sqrt{k_1^2 + k_2^2}} \end{split}, \quad \textbf{Kružnice:} \quad \begin{array}{l} \varphi(t) &= \frac{s(t)}{R} \\ \dot{\varphi}(t) &= \frac{v(t)}{R} \\ \ddot{\varphi}(t) &= \frac{a(t)}{R} \end{split}$$

Plánování trajektorie (13/13)

 výsledné hodnoty zobecněných souřadnic manipulátoru a jejích čas. derivací (X, X, X) lze získat formální časovou derivací parametrizačních vztahů (8, 10):

Přímka:

$$\mathbf{X} = \begin{bmatrix} \mathbf{A}[1] + k_1 \\ \mathbf{A}[2] + k_2 \end{bmatrix} \cdot \varphi(t), \quad \dot{\mathbf{X}} = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} \cdot \dot{\varphi}(t), \quad \ddot{\mathbf{X}} = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} \cdot \ddot{\varphi}(t)$$

Kružnice:

$$\mathbf{X} = \begin{bmatrix} \mathbf{O}[1] + R\cos(\varphi(t)) \\ \mathbf{O}[2] + R\sin(\varphi(t)) \end{bmatrix}, \quad \dot{\mathbf{X}} = \begin{bmatrix} -R\sin(\varphi(t)) \cdot \dot{\varphi}(t) \\ R\cos(\varphi(t)) \cdot \dot{\varphi}(t) \end{bmatrix}, \\
\ddot{\mathbf{X}} = \begin{bmatrix} -R\cos(\varphi(t)) \cdot (\dot{\varphi}(t))^2 - R\sin(\varphi(t)) \cdot \ddot{\varphi}(t) \\ -R\sin(\varphi(t)) \cdot (\dot{\varphi}(t))^2 + R\cos(\varphi(t)) \cdot \ddot{\varphi}(t) \end{bmatrix}$$

kde $\varphi(t)$, $\dot{\varphi}(t)$, $\ddot{\varphi}(t)$ jsou nyní již známé průběhy

generování požadovaných poloh, rychlostí a zrychlení aktuátorů

$$m{X},\ m{\dot{X}},\ m{\ddot{X}}\
ightarrow\ ext{IGM, IOK\'U}\
ightarrow\ m{Q},\ m{\ddot{Q}}$$

Příklad: 2DoF planární manip. - trajektorie přímka a kružnice

Pro 2DoF planární manip. známe **DGM** (Přednáška č. 3), **IGM** (Přednáška č. 4), **POKÚ**, **IOKÚ** (viz výše)

Pohyb manipulátoru po přímce

Pohyb manipulátoru po kružnici

Shrnutí (1/3)

Uvedený případ plánování čas. opt. trajektorie s(t) lze dále zobecňovat

- akcelerace a decelerace uvažovány stejně velké opačně orientované (obecně můžeme chtít brzdit jinak než zrychlovat)
- uvažován pohyb z klidu do klidu (obecně můžeme požadovat pohyb z nenulové polohy/rychlosti do nenulové polohy/rychlosti)
- uvažovány skokové změny zrychlení ⇒ skokové změny síly, které musí vyvinout konc. ef. manip ⇒ potenciální možnost vybuzení nemodelované dynamiky (vibrace)
 Obecně lze model rozšířit o tzv. jerk (derivace zrychlení) a uvažovat skokovou změnu jerku ⇒ lineární změna zrychlení (síly) ⇒ plynulejší (ale pomalejší i když čas. opt.) pohyb
- ⇒ komplikace řešení

Shrnutí (2/3)

Kompletní řídící systém manipulátoru sestává z následujících částí:

- Algoritmy plánování trajektorie pohybu koncového efektoru
 - parametrizace trajektorie pohybu konc. efektoru (např. parametrem φ)
 - generování požadovaného parametru φ a jeho příslušných čas. derivací k zajištění pohybu konc. efektoru s ohledem na uvažovaná omezení (max. rychlost, zrychlení, jerk, atd. konc. efektoru)²
- řešení IGM, IOKÚ ⇒ zobecněné souřadnice → kloubové souřadnice (a
 jejich čas. derivace) ⇒ generování požadovaných setpointů
 polohy/rychlosti a zrychlení pro regulátory aktuátorů
- návrh (syntéza) regulátorů
- řešení DGM, POKÚ ⇒ kloubové souřadnice → zobecněné souřadnice ⇒ odečtení skutečné polohy konc. efektoru z měřených poloh aktuátorů (chyb regulace v prostoru zobecněných souřadnic)

 $^{^2}$ U komplikovaných trajektorií často obtížné stanovit transformaci $s(t) \leftrightarrow \varphi(t)$

Shrnutí (3/3)

Zařazení a klíčový význam DGM, IGM, POKÚ, IOKÚ v řídícím systému průmyslového manipulátoru

Dosud výpočet POKÚ, IOKÚ vycházel z explicitní 1. a 2. časové derivace polohových závislostí (DGM, IGM) $\Rightarrow J_A(Q), J_A(X)$, to však přináší následující:

- nutno symbolicky derivovat složité nelineární vztahy X = F(Q) resp. $\mathbf{Q} = \mathbf{F}^{-1}(\mathbf{X})$
- relativně jednoduché pro jednoduché manipulátory (viz výše) ALE obecně složité, mnohačlenné vztahy
- sice existují možnosti symbolického derivování (software Maple, Mathematica....)

M. Švejda

 ALE výsledné vztahy jsou téměř nepoužitelné (zejména v implementaci do řídících algoritmů)

$$m{T}_6^0
ightarrow \, ext{min. reprezentace}
ightarrow m{X} = egin{bmatrix} m{Q}_6^0 \\ m{lpha} \\ m{\gamma} \end{bmatrix}
ightarrow \, rac{d}{dt}
ightarrow \
ightarrow \, ext{vyjádření} \, \dot{m{X}} = m{J}_A(m{Q}) \, \dot{m{Q}}
ightarrow \, \dot{m{Q}} + m{J}_A(m{Q}) \, \dot{m{Q}} \
ightarrow \, \dot{m{Q}} + m{J}_A(m{Q}) \, \dot{m{Q}} \
ightarrow \, \dot{m{Q}} + m{J}_A(m{Q}) \, \dot{m{Q}} \
ightarrow \, \dot{m{Q}} \ \ \dot{m{Q}} \$$

Příklad: Pouze první 3 řádky $J_A(Q)$ antropomorfního manipulátoru se sférickým zápěstím, tzn.: $\dot{Q}_6^0 = J_A(Q)[1:3,:] \cdot \dot{Q}$

 $\left[\left[\left(- 4_{cc}(q(t)) \sin(q_{i}(t)) \cos(q_{i}(t)) + (-\cos(q_{i}(t)) + 2_{c} - 4_{c}) \sin(q_{i}(t)) - (\cos(q_{i}(t)) + (\cos(q_{i}(t)) - 4_{c} - \cos(q_{i}(t)) \sin(q_{i}(t)) \cos(q_{i}(t)) + 2_{c} \sin(q_{i}(t)) \cos(q_{i}(t)) \right] \\ - \cos(q_{i}(t)) \left(\left(2_{cc}(a_{i}(t)) \sin(q_{i}(t)) \cos(q_{i}(t)) + (\cos(q_{i}(t)) + 2_{c} + 3_{c} \sin(q_{i}(t)) \cos(q_{i}(t)) + 2_{c} \cos(q_{i}(t)) \cos(q_{i}(t)) \right) \\ - - \cos(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) \cos(q_{i}(t)) - (2_{cc}(a_{i}(t)) \sin(q_{i}(t)) \cos(q_{i}(t)) + 2_{c} \cos(q_{i}(t)) \cos(q_{i}(t)) \\ - - \cos(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) \cos(q_{i}(t)) - (2_{cc}(a_{i}(t)) \sin(q_{i}(t)) \cos(q_{i}(t)) + 2_{c} \cos(q_{i}(t)) \cos(q_{i}(t)) \\ - - \cos(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) + 2_{c}(\cos(q_{i}(t)) \cos(q_{i}(t)) \cos(q_{i}(t)) \cos(q_{i}(t)) \\ - \cos(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) + (2_{cc}(a_{i}(t)) \sin(q_{i}(t)) \cos(q_{i}(t)) + 2_{c}(a_{i}(t)) \sin(q_{i}(t)) \cos(q_{i}(t)) \\ - \cos(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) \cos(q_{i}(t)) + (2_{c}(a_{i}(t)) \sin(q_{i}(t)) \cos(q_{i}(t)) + 2_{c}(a_{i}(t)) \sin(q_{i}(t)) \cos(q_{i}(t)) \\ - \cos(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) \cos(q_{i}(t)) + (2_{cc}(a_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) \cos(q_{i}(t)) \\ - \cos(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) \cos(q_{i}(t)) \\ - \cos(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t)) \cos(q_{i}(t)) \\ - \cos(q_{i}(t)) \sin(q_{i}(t)) \sin(q_{i}(t$

a co teprve druhá časová derivace, atd.

Hlavní idea (1/6)

- předpokládejme minimální reprezentaci rychlosti a zrychlení konc. ef. manipulátoru s pomocí vektoru úhlové rychlosti ω⁰_n, n... # DoF
- transformace mezi vektorem úhlové rychlosti ω_n^0 a derivací Eulerových úhlů $\dot{\alpha}, \dot{\beta}, \dot{\gamma}$ je dán **Eulerovými kinematickými rovnicemi**, viz Přednáška č. 2
- Pro rychlosti a zrychlení koncového efektoru tedy uvažujme:

$$\dot{\pmb{X}} = egin{bmatrix} \dot{\pmb{O}}_n^0 \ \omega_n^0 \end{bmatrix}, \quad \ddot{\pmb{X}} = egin{bmatrix} \ddot{\pmb{O}}_n^0 \ \dot{\omega}_n^0 \end{bmatrix}$$

POKÚ a IOKÚ lze potom psát jako:

$$\dot{\boldsymbol{X}} = \boldsymbol{J}(\boldsymbol{Q}) \cdot \dot{\boldsymbol{Q}}$$

$$\dot{\boldsymbol{Q}} = \boldsymbol{J}^{-1}(\boldsymbol{X}) \cdot \dot{\boldsymbol{X}}$$

$$\ddot{\boldsymbol{X}} = \dot{\boldsymbol{J}}(\boldsymbol{Q}, \dot{\boldsymbol{Q}}) \cdot \boldsymbol{Q} + \boldsymbol{J}(\boldsymbol{Q}) \cdot \dot{\boldsymbol{Q}}$$

$$\ddot{\boldsymbol{Q}} = \boldsymbol{J}^{-1}(\boldsymbol{Q}) \cdot \left(\ddot{\boldsymbol{X}} - \dot{\boldsymbol{J}}(\boldsymbol{Q}, \dot{\boldsymbol{Q}}) \cdot \boldsymbol{Q} \right)$$

$$(17)$$

• matici J(Q) resp. $J^{-1}(X)$ nazýváme

kinematickým jakobiánem resp. inverzním kinematickým jakobiánem

• anal. a kin. jakobián se liší pouze v reprezentaci rychlosti orientace!

Hlavní idea (2/6)

POKÚ pro rychlosti lze rozepsat s respektování maticového násobení jako (předpokládejme n DoF a i=n, platí: $\boldsymbol{J}_n(\boldsymbol{Q})=\boldsymbol{J}(\boldsymbol{Q})$):

$$\begin{bmatrix} \dot{\boldsymbol{O}}_{i}^{0} \\ \boldsymbol{\omega}_{i}^{0} \end{bmatrix} = \underbrace{\begin{bmatrix} \boldsymbol{j}_{1}^{P} & \boldsymbol{j}_{2}^{P} & \cdots & \boldsymbol{j}_{j}^{P} & \cdots & \boldsymbol{j}_{i}^{P} \\ \boldsymbol{j}_{1}^{O} & \boldsymbol{j}_{2}^{O} & \cdots & \boldsymbol{j}_{j}^{O} & \cdots & \boldsymbol{j}_{i}^{O} \end{bmatrix}}_{\boldsymbol{J}_{i}(\boldsymbol{a})} \cdot \begin{bmatrix} \dot{\boldsymbol{q}}_{1} \\ \vdots \\ \dot{\boldsymbol{q}}_{j} \\ \vdots \\ \dot{\boldsymbol{q}}_{i} \end{bmatrix}$$
(18)

Tedy zřejmě platí:

$$\dot{\mathbf{O}}_{i}^{0} = \mathbf{j}_{1}^{P} \cdot \dot{\mathbf{q}}_{1} + \mathbf{j}_{2}^{P} \cdot \dot{\mathbf{q}}_{2} + \dots + \mathbf{j}_{j}^{P} \cdot \dot{\mathbf{q}}_{j} + \dots + \mathbf{j}_{i}^{P} \cdot \dot{\mathbf{q}}_{i}, \quad \mathbf{j}_{j}^{P} \in \mathbb{R}^{3 \times 1}$$

$$\omega_{i}^{0} = \mathbf{j}_{1}^{O} \cdot \dot{\mathbf{q}}_{1} + \mathbf{j}_{2}^{O} \cdot \dot{\mathbf{q}}_{2} + \dots + \mathbf{j}_{j}^{O} \cdot \dot{\mathbf{q}}_{j} + \dots + \mathbf{j}_{i}^{O} \cdot \dot{\mathbf{q}}_{i}, \quad \mathbf{j}_{j}^{O} \in \mathbb{R}^{3 \times 1}$$
(19)

- $m{o}$ $m{j}_{j}^{P}$... mapuje příspěvek rychlosti $m{j}$ -tého kl. do celk. trans. rychlosti $m{O}_{i}^{0}$
- \mathbf{j}_{j}^{O} ... mapuje příspěvek rychlosti j-tého kl. do celk. úhlové rychlosti ω_{i}^{0}

Systematická geometrická met. výpočtu POKÚ, IOKÚ Hlavní idea (3/6)

- předpokládejme D-H úmluvu pro zavedení s.s.
- příspěvek trans. rychlosti $\mathbf{v}_{j,i}^0$ a úhlové rychlosti $\boldsymbol{\omega}_{j,i}^0$ do s.s. F_i (s.s. konc. efektoru) lze vyjádřit z obrázku

D-H úmluva pro popis kinematických řetězců

Hlavní idea (4/6)

• translační $v_{j-1,j}$ a úhlová $\omega_{j-1,j}$ rychlost s.s. F_j vzhledem k s.s. F_{j-1} vyjádřené v s.s. F_0 !

Joint j je typu P:

$$m{v}_{j-1,j}^0 = m{z}_{j-1}^0 \cdot \dot{d}_j$$
 $m{\omega}_{j-1,j}^0 = m{0}$

Joint j je typu R:

$$m{v}_{j-1,j}^0 = m{z}_{j-1}^0 \cdot \dot{ heta}_j imes m{r}_{j-1,j}^0 \ m{\omega}_{j-1,j}^0 = m{z}_{j-1}^0 \cdot \dot{ heta}_j$$

 protože ∀ klouby vyjma uvažovaného Joint j jsou v klidu, lze předchozí vztahy využít k popisu příspěvku tohoto kloubu do trans. a úhl. rychlosti s.s. F_i konc. ef.:

Joint j je typu P:

$$\mathbf{v}_{j-1,i}^0 = \mathbf{z}_{j-1}^0 \cdot \dot{d}_j$$
 $\boldsymbol{\omega}_{i-1,i}^0 = \mathbf{0}$

Joint j je typu R:

$$m{v}_{j-1,i}^0 = m{z}_{j-1}^0 \cdot \dot{ heta}_j imes m{r}_{j-1,i}^0 \ m{\omega}_{i-1,i}^0 = m{z}_{i-1}^0 \cdot \dot{ heta}_i$$

Hlavní idea (5/6)

 příspěvek translační a úhlové rychlosti do s.s. konc. efektoru způsobený rychlostí kl. souřadnice q_i lze tedy psát:

$$\begin{bmatrix} \mathbf{v}_{j-1,i}^{0} \\ \boldsymbol{\omega}_{j-1,i}^{0} \end{bmatrix} = \begin{bmatrix} (\mathbf{z}_{j-1}^{0} \cdot \sigma_{j} + (\mathbf{z}_{j-1}^{0} \times \mathbf{r}_{j-1,i}^{0}) \cdot \bar{\sigma}_{j}) \\ \mathbf{z}_{j-1}^{0} \cdot \bar{\sigma}_{j} \end{bmatrix} \cdot \dot{q}_{j} \qquad (20)$$

$$\sigma_{j} = 0 \dots \text{pokud } Joint \ j \text{ je typu } \mathbf{R} \ (q_{j} = \theta_{j})$$

$$\sigma_{j} = 1 \dots \text{pokud } Joint \ j \text{ je typu } \mathbf{P} \ (q_{j} = d_{j})$$

$$\bar{\sigma}_{j} = 1 - \sigma_{j}$$

 porovnáním příspěvku (20) a po složkách rozepsaného vztahu (19) dostáváme přímo sloupce kin. jakobiánu J_i(Q)

$$\begin{bmatrix} \mathbf{j}_{j}^{P} \\ \mathbf{j}_{j}^{O} \\ \end{bmatrix} = \begin{bmatrix} \mathbf{z}_{j-1}^{0} \cdot \sigma_{j} + (\mathbf{z}_{j-1}^{0} \times \mathbf{r}_{j-1,i}^{0}) \cdot \bar{\sigma}_{j} \\ \mathbf{z}_{j-1}^{0} \cdot \bar{\sigma}_{j} \end{bmatrix}, \quad j = 1 \dots i$$
 (21)

Hlavní idea (6/6)

• proměnné vystupující v takto vyjádřeném sloupci kin. jakobiánu $J_i(\mathbf{Q})$ lze snadno získat přímo z homogenních transform. matic:

Výhody:

- kin. jakobián J_i(Q) lze získat přímým analytickým výpočtem z prvků známých hom. transform. matic (získaných při řešení DGM)
- není vyžadována exaktní časová derivace polohových závislostí
- výrazné zjednodušení výpočtu pro složité architektury manip.
- jednoduše algoritmizovatelný postup
- výpočet lze převézt na rekurzivní algoritmus (postupný výpočet)

$$\omega_j^0 = \omega_{j-1}^0 + \mathbf{z}_{j-1}^0 \bar{\sigma}_j \dot{q}_j$$

$$\dot{\mathbf{O}}_j^0 = \dot{\mathbf{O}}_{j-1}^0 + \omega_j^0 \times \mathbf{r}_{j-1,j}^0 + \mathbf{z}_{j-1}^0 \sigma_j \dot{q}_j$$

analogicky lze rychlostní vztahy odvodit pro K-K úmluvu

Příklad: 2DoF planární manipulátor

Na tabuli.

Rozšíření na výpočet čas. derivace kin. jakobiánu (1/2)

- časovou derivací vztahu (18) získáváme nutnost znát čas. derivaci kin. jakobiánu $J_n(\mathbf{Q})$ (i=n DoF), tedy čas. derivace prvků (sloupců) matice $J_n(\mathbf{Q})$.
- z (21) plyne:

$$\begin{bmatrix} \dot{\boldsymbol{j}}_{j}^{P} \\ \dot{\boldsymbol{j}}_{j}^{O} \end{bmatrix} = \begin{bmatrix} \dot{\boldsymbol{z}}_{j-1}^{0} \cdot \sigma_{j} + \begin{bmatrix} (\dot{\boldsymbol{z}}_{j-1}^{0} \times \boldsymbol{r}_{j-1,i}^{0}) + (\boldsymbol{z}_{j-1}^{0} \times \dot{\boldsymbol{r}}_{j-1,i}^{0}) \end{bmatrix} \cdot \bar{\sigma}_{j} \\ \dot{\boldsymbol{z}}_{j-1}^{0} \cdot \bar{\sigma}_{j} \end{bmatrix}, \quad j = 1 \dots i$$

kde
$$\dot{r}_{j-1,i}^0 = \dot{O}_i^0 - \dot{O}_{j-1}^0$$

• translační rychlosti $\dot{\mathbf{O}}_{i}^{0}$ počátků s.s. jejich úhlové rychlosti ω_{i}^{0} lze získat z relace (19) pro $i=1\ldots n$ (postupné vyjádření rychlostí s.s.)

Čas. derivaci \mathbf{z}_{i}^{0} lze vyjádřit jako:

$$\dot{oldsymbol{z}}_i^0 = oldsymbol{v}_2 - oldsymbol{v}_1 = \dot{oldsymbol{O}}_i^0 + oldsymbol{\omega}_i^0 imes oldsymbol{z}_i^0 - \dot{oldsymbol{O}}_i^0 = \ oldsymbol{\omega}_i^0 imes oldsymbol{z}_i^0$$

Systematická geometrická met. výpočtu POKÚ, IOKÚ

Rozšíření na výpočet čas. derivace kin. jakobiánu (2/2)

POKÚ pro zrychlení tedy bude (i = n):

$$egin{bmatrix} egin{bmatrix} \ddot{oldsymbol{Q}}_i^0 \ \dot{oldsymbol{\omega}}_i^0 \end{bmatrix} = oldsymbol{J}_i(oldsymbol{Q}, oldsymbol{\dot{Q}}) \cdot egin{bmatrix} egin{bmatrix} \dot{\dot{q}}_1 \ \dot{\dot{q}}_2 \ \dot{\dot{c}} \ \dot{\dot{q}}_i \end{bmatrix} + oldsymbol{J}_i(oldsymbol{Q}) \cdot egin{bmatrix} egin{bmatrix} \ddot{\dot{q}}_1 \ \ddot{\dot{q}}_2 \ \dot{\dot{c}} \ \ddot{\dot{q}}_i \end{bmatrix}$$

- $\hat{\boldsymbol{J}}(\boldsymbol{Q},\hat{\boldsymbol{Q}})$ lze opět sestavit přímo z prvků hom. trans. matic
- opět existuje rekurzivní varianta výpočtu

$$\begin{split} &\dot{\boldsymbol{\omega}}_{j}^{0} = \dot{\boldsymbol{\omega}}_{j-1}^{0} + \boldsymbol{\omega}_{j-1}^{0} \bar{\sigma}_{j} \dot{q}_{j} \times \boldsymbol{z}_{j-1}^{0} + \boldsymbol{z}_{j-1}^{0} \bar{\sigma}_{j} \ddot{q}_{j} \\ &\ddot{\boldsymbol{O}}_{j}^{i} = \ddot{\boldsymbol{O}}_{j-1}^{0} + \dot{\boldsymbol{\omega}}_{j}^{0} \times \boldsymbol{r}_{j-1,j}^{0} + \boldsymbol{\omega}_{j}^{0} \times (\boldsymbol{\omega}_{j}^{0} \times \boldsymbol{r}_{j-1,j}^{0}) + \boldsymbol{\omega}_{j}^{0} \times \boldsymbol{z}_{j-1}^{0} \sigma_{j} \dot{q}_{j} + \\ &+ (\boldsymbol{\omega}_{j-1}^{0} \times \boldsymbol{z}_{j-1}^{0}) \sigma_{j} \dot{q}_{j} + \boldsymbol{z}_{j-1}^{0} \sigma_{j} \ddot{q}_{j} \end{split}$$

Systematická geometrická met. výpočtu POKÚ, IOKÚ

Příklad: 2DoF planární manipulátor

Na tabuli.

Singulární poloha n DoF manipulátoru:

- poloha koncového efektoru ("vnitřní" uspořádání manipulátoru závislé na Q)
- Ize vyhodnotit prostřednictvím analytického resp. kinematického jakobiánu:

Analytický jakobián J_A :

$$\dot{\mathbf{X}} = \begin{bmatrix} \dot{\mathbf{O}}_n^0 \\ \dot{\mathbf{E}} \dot{\mathbf{A}} \end{bmatrix} = \mathbf{J}_A \cdot \dot{\mathbf{Q}}, \ \mathbf{E} \mathbf{A} \dots \text{ min. repre. orientace Euler. úhly, např. XYZ}$$

Kinematický jakobián J:

$$\dot{\pmb{X}} = \begin{bmatrix} \dot{\pmb{O}}_n^0 \\ \omega_n^0 \end{bmatrix} = \pmb{J} \cdot \dot{\pmb{Q}}, \ \omega_n^0 \dots$$
 vektor úhlové rychlosti

• relace mezi J_A a J lze získat prostřednictvím Eulerových kinematických rovnic, viz Přednáška č. 2

Např. pro schéma rotace XYZ,
$$\textbf{\textit{EA}} = \begin{bmatrix} \alpha & \beta & \gamma \end{bmatrix}^T$$

$$\boldsymbol{\omega}_n^0 = \boldsymbol{H(EA)} \cdot \dot{EA}, \quad \boldsymbol{H(EA)} = \begin{bmatrix} 1 & 0 & \sin\beta \\ 0 & \cos\alpha & -\sin\alpha\cos\beta \\ 0 & \sin\alpha & \cos\alpha\cos\beta \end{bmatrix}$$

tedy určitě platí:

$$\underbrace{\begin{bmatrix} \dot{\boldsymbol{O}}_{n}^{0} \\ \boldsymbol{\omega}_{n}^{0} \end{bmatrix}}_{\boldsymbol{J} \cdot \dot{\boldsymbol{o}}} = \begin{bmatrix} \boldsymbol{I}_{3 \times 3} & \boldsymbol{0}_{3 \times 3} \\ \boldsymbol{0}_{3 \times 3} & \boldsymbol{H}(\boldsymbol{E}\boldsymbol{A}) \end{bmatrix}}_{\boldsymbol{J}_{A} \cdot \dot{\boldsymbol{o}}} \underbrace{\begin{bmatrix} \dot{\boldsymbol{O}}_{n}^{0} \\ \dot{\boldsymbol{E}}\boldsymbol{A} \end{bmatrix}}_{\boldsymbol{J}_{A} \cdot \dot{\boldsymbol{o}}} \quad \Rightarrow \quad \boldsymbol{J} = \begin{bmatrix} \boldsymbol{I}_{3 \times 3} & \boldsymbol{0}_{3 \times 3} \\ \boldsymbol{0}_{3 \times 3} & \boldsymbol{H}(\boldsymbol{E}\boldsymbol{A}) \end{bmatrix} \cdot \boldsymbol{J}_{A}$$

- J_A či J singulární matice ⇒ singulární poloha manipulátoru
- protože:

$$m{J}_{A} = egin{bmatrix} m{I}_{3 imes 3} & m{0}_{3 imes 3} \ m{0}_{3 imes 3} & m{H}^{-1}(m{E}m{A}) \end{bmatrix} \cdot m{J}$$

- J_A zahrnuje singularity způsobené J (násobení matic) ⇒ sing.
 polohy manip. lze počítat vyšetřováním J i J_A
- pokud ${\it H(EA)}$ je singulární (pro Euler. úhly XYZ tzn. $\beta=\pm\frac{\pi}{2}$) nastávají singularity v min. reprezentaci (viz Přednáška č. 2) \Rightarrow nelze vyjádřit ${\it J}_A$ z ${\it J}$

• jakobián (kinematický) \boldsymbol{J} (obecně matice $6 \times n$) mapuje rychlosti kl. souřadnic $\dot{\boldsymbol{Q}}$ do rychlostí konc. efektoru $\dot{\boldsymbol{X}} = \begin{bmatrix} (\boldsymbol{O}_n^0)^T & (\boldsymbol{\omega}_n^0)^T \end{bmatrix}^T$

$$\begin{bmatrix} \dot{\boldsymbol{O}}_{n}^{0} \\ \omega_{n}^{0} \end{bmatrix} = \boldsymbol{J} \cdot \dot{\boldsymbol{Q}} = \boldsymbol{j}_{1} \dot{q}_{1} + \boldsymbol{j}_{2} \dot{q}_{2} + \cdots + \boldsymbol{j}_{n} \dot{q}_{n}$$

- hodnost J, rank(J) = # lin. nezávislých sloupců j_i
 - $rank(\mathbf{J}) \leq min(6, n), n \dots \# DoF manipulátoru$
 - rank(J) = min(6, n) ... rank(J) má plnou hodnost je regulární, tzn. např. $det(J) \neq 0$
 - rank(J) < min (6, n) ... rank(J) nemá plnou hodnost
 je singulární, tzn. např. det(J) = 0
- rank(J) určuje okamžitý (závislý na akt. poloze) počet DoF
 ∀Q: rank(J) = min (6, n) ⇒ J má plnou hodnost ⇒ manip. má n DoF
 koncového efektoru na pracovním prostoru určeným kl. souřadnicemi Q
- pokud ∃Q: rank(J) ≤ min (6, n) ⇒ J nemá plnou hodnost ⇒ manip. má singulární polohu v Q

Příklad: 2DoF planární manipulátor (1/8)

• shodný analytický i kinematický jakobián, viz výše (neboť $\alpha = \beta = 0$, XYZ Euler. úhly)

$$\mathbf{J}^{\text{full}} = \begin{bmatrix} -s_1 L_1 - L_2 s_{12} & -L_2 s_{12} \\ c_1 L_1 + L_2 c_{12} & L_2 c_{12} \\ \mathbf{0}_{3 \times 1} & \mathbf{0}_{3 \times 1} \\ 1 & 1 \end{bmatrix}$$

• n = 2, $rank(J^{full}) = min(6, n) = 2 \Rightarrow genericky má manip. max. 2DoF$ Zvoleno polohování v rovině xv:

$$\dot{\boldsymbol{X}} = \dot{\boldsymbol{O}}_{2}^{0}[1:2] = \underbrace{\begin{bmatrix} -s_{1}L_{1} - L_{2}s_{12} & -L_{2}s_{12} \\ c_{1}L_{1} + L_{2}c_{12} & L_{2}c_{12} \end{bmatrix}}_{\boldsymbol{J}} \cdot \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \end{bmatrix}, \quad \boldsymbol{J} = \begin{bmatrix} \boldsymbol{j}_{1} & \boldsymbol{j}_{2} \end{bmatrix}$$
Tedy platí:
$$\dot{\boldsymbol{X}} = \boldsymbol{j}_{1} \cdot \dot{\theta}_{1} + \boldsymbol{j}_{2} \cdot \dot{\theta}_{2}$$

- Pokud **J** je **regulární**, potom:
 - **j**₁, **j**₂ jsou lin. nezávislé sloupce
 - j₁, j₂ tvoří 2 nezávislé generátory (bázi dimenze 2) prostoru rychlostí zobecněných souřadnic X
 - rank(\mathbf{J}) = 2 \Rightarrow konc. efektor má 2DoF

Příklad: 2DoF planární manipulátor (2/8)

Bázové vektory \mathbf{j}_1 , \mathbf{j}_2 (lin. nezávislé sloupce \mathbf{J}) generující rychlost koncového efektoru pro manipulátor mimo singulární polohu \mathbf{Q}

$$\dot{\mathbf{X}} = \mathbf{j}_1 \cdot \dot{\theta}_1 + \mathbf{j}_2 \cdot \dot{\theta}_2$$
 $\Rightarrow 2 \text{DoF}$

Příklad: 2DoF planární manipulátor (3/8)

Inverze J:

$$\mathbf{J}^{-1} = \frac{1}{L_1 L_2 s_2} \begin{bmatrix} L_2 c_{12} & L_2 s_{12} \\ -c_1 L_1 - L_2 c_{12} & -s_1 L_1 - L_2 s_{12} \end{bmatrix}$$

Inverze \mathbf{J}^{-1} neexistuje pokud $\theta_2 = \begin{cases} 0 \\ \pi \end{cases} \Rightarrow \mathbf{J}$ je v tomto bodě **singulární**

Např. pro
$$\mathbf{Q} = \begin{bmatrix} \theta_1 \\ 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{J} = \begin{bmatrix} -s_1(L_2 + L_1) & -L_2s_1 \\ c_1(L_2 + L_1) & L_2c_1 \end{bmatrix}$$

- pokud J je singulární, potom:
 - j_1 , j_2 jsou lin. závislé sloupce, tzn. pro $a \in \mathbb{R}$:

$$\mathbf{j}_{2} = \mathbf{a} \cdot \mathbf{j}_{1} \implies \dot{\mathbf{X}} = \dot{\theta}_{1} \cdot \mathbf{j}_{1} + \mathbf{a} \cdot \dot{\theta}_{2} \cdot \mathbf{j}_{1} = (\dot{\theta}_{1} + \mathbf{a} \cdot \dot{\theta}_{2}) \cdot \mathbf{j}_{1}$$

$$\mathbf{a} = \frac{L_{2}}{L_{1} + L_{2}}$$

- j₁ tvoří jeden generátor (báze dimenze 1) prostoru rychlostí zobecněných souřadnic Q
- $rank(\mathbf{J}) = 1 < 2 \Rightarrow konc.$ efektor má 1DoF (lokálně v poloze \mathbf{Q})

Příklad: 2DoF planární manipulátor (4/8)

Bázové vektory $\boldsymbol{j}_1, \, \boldsymbol{j}_2$ (lin. závislé sloupce \boldsymbol{J})

$$\boldsymbol{j_2} = \frac{L_2}{L_1 + L_2} \boldsymbol{j_1}$$

generující rychlost koncového efektoru pro manipulátor v singulární poloze Q

$$\dot{\boldsymbol{X}} = (\dot{\theta}_1 + \frac{L_2}{L_1 + L_2}\dot{\theta}_2) \cdot \boldsymbol{j}_1$$

 \Rightarrow 1DoF

(manipulátor ztrácí lokálně 1DoF)

Příklad: 2DoF planární manipulátor (5/8)

navíc pro singulární matici J platí:

$$\exists \dot{\mathbf{Q}} \neq \mathbf{0}_{2 \times 1}: \ \mathbf{J} \cdot \dot{\mathbf{Q}} = \mathbf{0}_{2 \times 1}$$

- ⇒ pro danou polohu manip. Q existuje nenulový pohyb kloubů
 Q, které způsobí nulový pohyb konc. ef. X
- tento nenulový pohyb kloubů Q lze určit z podmínky:

$$\boldsymbol{J} \cdot \dot{\boldsymbol{Q}} = \boldsymbol{0}_{2 \times 2} \ \Rightarrow \ \begin{bmatrix} -s_1(L_2 + L_1) & -L_2 s_1 \\ c_1(L_2 + L_1) & L_2 c_1 \end{bmatrix} \cdot \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

tedy kl. rychlosti splňující podmínku

$$\dot{\theta}_1 = -\frac{L_2}{L_1 + L_2} \cdot \dot{\theta}_2$$

pro manipulátor v singulární poloze nevyvodí **žádnou** rychlost konc. efektoru

Příklad: 2DoF planární manipulátor (6/8)

Manipulátor v sing. poloze:

$$\mathbf{j_2} = \frac{L_2}{L_1 + L_2} \mathbf{j_1}$$

Za podmínky:

$$\dot{\theta}_1 = -\frac{L_2}{L_1 + L_2} \cdot \dot{\theta}_2$$

Tedy:

$$\dot{\mathbf{X}} = \mathbf{j}_1 \cdot \dot{\theta_1} + \mathbf{j}_2 \cdot \dot{\theta_2} = \mathbf{0}_{2 \times 1}$$

Příklad: 2DoF planární manipulátor (7/8)

- singulární polohy manipulátoru mají klíčový vliv na řízení manipulátoru s ohledem na řešení IOKÚ!
- pro inverzi jakobiánu J platí:

$$\boldsymbol{J}^{-1} = \frac{1}{L_1 L_2 s_2} \begin{bmatrix} L_2 c_{12} & L_2 s_{12} \\ -c_1 L_1 - L_2 c_{12} & -s_1 L_1 - L_2 s_{12} \end{bmatrix}$$

IOKÚ:

$$\dot{\boldsymbol{Q}} = \boldsymbol{J}^{-1} \cdot \dot{\boldsymbol{X}}$$

Tedy pro **malé** požadované rychlosti konc. efektoru \dot{X} v blízkosti sing. polohy můžeme dostávat **obrovské** hodnoty požadovaných rychlostí kl. souřadnic \dot{Q}

Příklad: 2DoF planární manipulátor (8/8)

Průběh rychlostí kloub. souřadnic **Q** při pohybu manipulátoru do blízkosti singulární polohy

 $(\dot{\theta}_1 \dots \check{z}lut\acute{a}, \dot{\theta}_2 \dots fialov\acute{a})$

Příklad: 3DoF cylindrický manipulátor (1/4)

Přímou aplikací výpočtu (21) dostáváme kinematický jakobián 3DoF cylindrického manipulátoru (restrikce na 3DoF):

$$\mathbf{J} = \begin{bmatrix} -c_1 d_3 & 0 & -s_1 \\ -s_1 d_3 & 0 & c_1 \\ 0 & 1 & 0 \end{bmatrix} \Rightarrow \text{Mimo sing. polohu } \mathbf{j}_i \text{ lin. nezávislé:} \\ \dot{\mathbf{X}} = \mathbf{j}_1 \cdot \dot{\theta}_1 + \mathbf{j}_2 \cdot \dot{d}_2 + \mathbf{j}_3 \cdot \dot{d}_3$$

Inverze kinematického jakobiánu:

$$\mathbf{J}^{-1} = \frac{1}{d_3} \begin{bmatrix} -c_1 & -s_1 & 0\\ 0 & 0 & d_3\\ -d_3s_1 & d_3c_1 & 0 \end{bmatrix}$$

Pro $d_3 = 0$ inverze J^{-1} neexistuje \Rightarrow singulární poloha manipulátoru:

$$\mathbf{J} = \begin{bmatrix} 0 & 0 & -\mathbf{s}_1 \\ 0 & 0 & \mathbf{c}_1 \\ 0 & 1 & 0 \end{bmatrix} \Rightarrow \mathbf{V} \text{ sing. poloze } \mathbf{j}_i \text{ lin. závislé:} \\
\dot{\mathbf{X}} = \mathbf{0}_{2 \times 1} \cdot \dot{\theta}_1 + \mathbf{j}_2 \cdot \dot{d}_2 + \mathbf{j}_3 \cdot \dot{d}_3$$

⇒ pouze 2 DoF (2 lin. nezávislé vektory - generátory prostoru rychlostí konc. ef.)

Příklad: 3DoF cylindrický manipulátor (2/4)

Bázové vektory $\mathbf{j_1}$, $\mathbf{j_2}$, $\mathbf{j_3}$ (lin. nezávislé sloupce \mathbf{J} , $\mathrm{rank}(\mathbf{J})=3$) generující rychlost koncového efektoru pro manipulátor

mimo singulární polohu Q

$$\dot{\mathbf{X}} = \mathbf{j}_1 \cdot \dot{\theta}_1 + \mathbf{j}_2 \cdot \dot{\mathbf{d}}_2 + \mathbf{j}_3 \cdot \dot{\mathbf{d}}_3$$

$$\Rightarrow 3 \text{DoF}$$

Příklad: 3DoF cylindrický manipulátor (3/4)

Bázové vektory j_1 , j_2 , j_3 (lin. závislé sloupce J) generující rychlost koncového efektoru pro manipulátor v singulární poloze Q

$$\dot{\boldsymbol{X}} = \boldsymbol{0}_{3\times1} \cdot \dot{\boldsymbol{\theta}}_1 + \boldsymbol{j}_2 \cdot \dot{\boldsymbol{d}}_2 + \boldsymbol{j}_3 \cdot \dot{\boldsymbol{d}}_3$$

 \Rightarrow 2DoF

(manipulátor ztrácí **lokálně** 1DoF)

Navíc opět platí:

$$\exists \dot{\boldsymbol{Q}} \neq \boldsymbol{0}_{3\times 1} : \boldsymbol{J} \cdot \dot{\boldsymbol{Q}} = \boldsymbol{0}_{3\times 1}$$

Např. pro $\dot{\theta}_1 \neq 0 \ \land \ \dot{d}_2 = \dot{d}_3 = 0$ platí:

$$\mathbf{J} \cdot \dot{\mathbf{Q}} = \mathbf{0}_{3 \times 1}$$

Opět pozor na vysoké požadavky na kl. rychlosti v blízkosti singularit

Příklad: 3DoF cylindrický manipulátor (4/4)

Průběh rychlostí kloub. souřadnic **Q** při pohybu manipulátoru do blízkosti singulární polohy

 $(\dot{\theta}_1 \dots \check{z}lut\acute{a}, \dot{d}_2 \dots fialov\acute{a}, \dot{d}_3 \dots modr\acute{a})$

Příklad: 3DoF manipulátor typu sférického zápěstí (1/2)

Přímou aplikací výpočtu (21) dostáváme kinematický jakobián 3DoF manipulátoru typu sférického zápěstí (restrikce na 3DoF):

$$\mathbf{J} = \begin{bmatrix}
0 & -\mathbf{s}_1 & c_1 \mathbf{s}_2 \\
0 & c_1 & \mathbf{s}_1 \mathbf{s}_2 \\
1 & 0 & c_2
\end{bmatrix} \Rightarrow \mathbf{Mimo sing. polohu } \mathbf{j}_i \text{ lin. nezávislé:} \\
\dot{\mathbf{X}} = \boldsymbol{\omega}_3^0 = \mathbf{j}_1 \cdot \dot{\theta}_1 + \mathbf{j}_2 \cdot \dot{\theta}_2 + \mathbf{j}_3 \cdot \dot{\theta}_3$$

Inverze kinematického jakobiánu:

$$\mathbf{J}^{-1} = \frac{1}{s_2} \begin{bmatrix} -c_1 c_2 & -s_1 c_2 & s_2 \\ -s_1 s_2 & c_1 s_2 & 0 \\ c_1 & s_1 & 0 \end{bmatrix}$$

Pro $s_2=0$, tedy $\theta_2=k\cdot\pi,\ k=0,1,2,\ldots$, inverze ${\it J}^{-1}$ neexistuje \Rightarrow singulární poloha manipulátoru:

⇒ pouze 2 DoF (2 lin. nezávislé vektory - generátory prostoru úhlových rychlostí konc. ef.)

Příklad: 3DoF manipulátor typu sférického zápěstí (2/2)

- výsledná úhlová rychlost konc. efektoru je opět lineární kombinací bázových vektorů
- opět pozor na vysoké požadavky na kloubové rychlosti v blízkosti singularit
- analýza singulárních poloh pro 3DoF antropomorfní manipulátor bude analogická
- stejným způsobem, jako u řešení IGM pro 6DoF cylindrický (antropomorfní) manipulátor se sférickým zápěstím lze hledání singularit pro tyto manipulátory také řešit zvlášť pro 3DoF cylindrický (antropomorfní) manipulátor a 3DoF manipulátor typu sférického zápěstí

Děkuji za pozornost.

Dotazy?