Teorema de Kleene II

Clase 08

IIC2223 / IIC2224

Prof. Cristian Riveros

Teorema

Para todo NFA ${\mathcal A}$, existe una expresión regular $R_{\mathcal A}$ tal que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(R_{\mathcal{A}})$$

Dos posibles algoritmos para demostrar este resultado:

- Estrategia "bottom-up"

 Algoritmo de McNaughton-Yamada
- Estrategia "top-down"

 Método de eliminación de estados

Teorema

Para todo NFA ${\mathcal A}$, existe una expresión regular $R_{\mathcal A}$ tal que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(R_{\mathcal{A}})$$

Dos posibles algoritmos para demostrar este resultado:

Estrategia "bottom-up"

Algoritmo de McNaughton-Yamada

No lo veremos en clases (Ver libros o slides al final)

2. Estrategia "top-down"

Método de eliminación de estados

Método de eliminación de estados

Presentación en dos etapas:

- 1. Autómatas finitos no-deterministas generalizados (GNFA).
- 2. Método de eliminación de estados de un GNFA.

Outline

NFAs generalizados

Eliminación de estados

Outline

NFAs generalizados

Eliminación de estados

Autómatas finitos no-deterministas generalizados (GNFA)

GNFAs pueden leer varias letras en una sola transición.

Autómatas finitos no-deterministas generalizados (GNFA)

Definición

Un autómata finito no-determinista generalizado (GNFA) es:

$$\mathcal{G} = (Q, \Sigma, \delta, q_0, q_f)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.

+

- $q_0 \in Q$ es el único estado inicial.
- $q_f \in Q$ es el único estado final y $q_f \neq q_0$.
- $\delta: (Q \{q_f\}) \times (Q \{q_0\}) \rightarrow \mathsf{Regex}_{\Sigma}$ es la función de transición.

¿cómo ejecuto mi GNFA?

Sea $\mathcal{G} = (Q, \Sigma, \delta, q_0, q_f)$ un GNFA.

Definiciones

- Un par $(q, w) \in Q \times \Sigma^*$ es una configuración de \mathcal{G} .
- Una configuración (q_0, w) es inicial.
- Una configuración (q_f, ϵ) es **final**.

¿cómo ejecuto mi GNFA?

Sea $\mathcal{G} = (Q, \Sigma, \delta, q_0, q_f)$ un GNFA.

Definiciones

- Un par $(q, w) \in Q \times \Sigma^*$ es una configuración de \mathcal{G} .
- Se define la relación $\vdash_{\mathcal{G}}$ de siguiente-paso entre configuraciones de \mathcal{G} :

$$(p,u) \vdash_{\mathcal{G}} (q,v)$$

si, y solo si, $\delta(p,q) = R$ y $u = w \cdot v$ con $w \in \mathcal{L}(R)$.

■ Se define $\vdash_{\mathcal{G}}^*$ como la clausura refleja y transitiva de $\vdash_{\mathcal{G}}$:

para toda configuración
$$(p,u)$$
: $(p,u) \vdash_{\mathcal{G}}^{*} (p,u)$

si
$$(p, u) \vdash_{\mathcal{G}} (q, v)$$
 y $(q, v) \vdash_{\mathcal{G}}^{*} (r, w)$: $(p, u) \vdash_{\mathcal{G}}^{*} (r, w)$

 $(p,u) \vdash_{\mathcal{G}}^* (q,v)$ si uno puede ir de (p,u) a (q,v) en $\mathbf{0}$ o más pasos.

Lenguaje aceptado por un GNFA

Sea
$$\mathcal{G} = (Q, \Sigma, \delta, q_0, q_f)$$
 un GNFA y $w \in \Sigma^*$.

Definiciones

■ \mathcal{G} acepta w si existe una configuración inicial (q_0, w) y una configuración final (q_f, ϵ) tal que:

$$(q_0, w) \vdash_{\mathcal{G}}^* (q_f, \epsilon)$$

■ El lenguaje aceptado por G se define como:

$$\mathcal{L}(\mathcal{G}) = \{ w \in \Sigma^* \mid \mathcal{G} \text{ acepta } w \}$$

La misma definición de aceptación y lenguaje de un NFA o ϵ -NFA

Lenguaje aceptado por un GNFA

GNFA es otra forma de definir lenguajes regulares

Teorema

Para todo GNFA ${\mathcal G}$, existe un ϵ -NFA ${\mathcal A}$ tal que:

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{A})$$

En otras palabras, GNFA $\equiv \epsilon$ - NFA \equiv NFA \equiv DFA.

Demostración: ejercicio.

Outline

NFAs generalizados

Eliminación de estados

Método de eliminación de estados de un GNFA

input: Autómata no-determinista $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ con k estados. **output**: Expresión regular equivalente a \mathcal{A} .

Convertir A en un GNFA G con k + 2 estados.

let
$$i := k + 2$$

while i > 2 do

Escoger un estado q de \mathcal{G} distinto al inicial o al final.

Construir el GNFA \mathcal{G}^{-q} , eliminando q de \mathcal{G} .

let $\mathcal{G} := \mathcal{G}^{-q}$

let i := i - 1

return expresión regular entre el estado inicial y final de ${\cal G}$

¿cómo convertimos un NFA en un GNFA?

Dado un autómata no-determinista $A = (Q, \Sigma, \Delta, I, F)$, definimos el GNFA:

$$\mathcal{G} = (Q \cup \{q_0, q_f\}, \Sigma, \delta, q_0, q_f)$$

- $q_0 \notin Q$, $q_f \notin Q$ y $q_0 \neq q_f$.
- para todo $q \in I$, $\delta(q_0, q) = \epsilon$.
- para todo $q \in F$, $\delta(q, q_f) = \epsilon$.
- para todo $p, q \in Q$:

$$\delta(p,q)=\varnothing+a_1+\ldots+a_n$$

donde a_1, \ldots, a_n son todas las letras en Σ tal que $(p, a_i, q) \in \Delta$.

Ejercicio: demuestre que $\mathcal{L}(\mathcal{G})$ = $\mathcal{L}(\mathcal{A})$

¿cómo convertimos un NFA en un GNFA?

Construya un GNFA a partir del siguiente NFA

¿cómo convertimos un NFA en un GNFA?

¿cómo eliminamos un estado de un GNFA?

¿cómo eliminamos un estado de un GNFA?

¿cómo eliminamos un estado de un GNFA?

Dado:

- un GNFA $\mathcal{G} = (Q, \Sigma, \delta, q_0, q_f)$ con |Q| > 2 y
- $q \in Q \{q_0, q_f\}$

definimos el GNFA:

$$\mathcal{G}^{-q} = (Q - \{q\}, \Sigma, \delta^{-q}, q_0, q_f)$$

tal que para todo $p_1, p_2 \in Q - \{q\}$ se define δ^{-q} como:

$$\delta^{-q}(p_1, p_2) = \delta(p_1, p_2) + \delta(p_1, q) \cdot (\delta(q, q))^* \cdot \delta(q, p_2)$$

Demuestre que
$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}^{-q})$$
.

Método de eliminación de estados de un GNFA

input: Autómata no-determinista $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ con k estados. **output**: Expresión regular equivalente a \mathcal{A} .

Convertir A en un GNFA G con k + 2 estados.

let
$$i := k + 2$$

while i > 2 do

Escoger un estado q de $\mathcal G$ distinto al inicial o al final.

Construir el GNFA \mathcal{G}^{-q} , eliminando q de \mathcal{G} .

let
$$\mathcal{G} := \mathcal{G}^{-q}$$

let
$$i := i - 1$$

 ${f return}$ expresión regular entre el estado inicial y final de ${\cal G}$

Demuestre que el algoritmo es correcto

Método de eliminación de estados de un GNFA

Cierre de clase

En esta clase vimos:

- 1. Teorema de Kleene: desde autómatas a regex.
- 2. Autómatas finitos no-deterministas generalizados.
- 3. Método de eliminación de estados.

Próxima clase: Lema de bombeo.

MATERIAL ADICIONAL:

Algoritmo de McNaughton-Yamada

Dado un autómata finito no-determinista (spdg. con un estado inicial):

$$\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$$

Para $X \subseteq Q$ y $p, q \in Q$, considerar el conjunto:

$$\alpha_{p,q}^X \subseteq \Sigma^*$$

 $w = a_1 \dots a_n \in \alpha_{p,q}^X$ si, y solo si, existe una ejecución:

$$\rho: p_0 \stackrel{a_1}{\to} p_1 \stackrel{a_2}{\to} \dots \stackrel{a_n}{\to} p_n$$

- 1. $(p_i, a_{i+1}, p_{i+1}) \in \Delta$ para todo $i \in [0, n-1]$,
- 2. $p_0 = p$,
- 3. $p_n = q$, y
- 4. $p_i \in X$ para todo $i \in [1, n-1]$.

Dado un autómata finito no-determinista (spdg. con un estado inicial):

$$A = (Q, \Sigma, \Delta, q_0, F)$$

Para $X \subseteq Q$ y $p, q \in Q$, considerar el conjunto:

$$\alpha_{p,q}^X \subseteq \Sigma^*$$

"el conjunto de todas las palabras w tal que existe un camino (i.e. ejecución) desde p a q etiquetado por w y todos los estados en este camino están en X, con la posible excepción de p y q."

Dado un autómata finito no-determinista (spdg. con un estado inicial):

$$\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$$

Para $X \subseteq Q$ y $p, q \in Q$, considerar el conjunto:

$$\alpha_{p,q}^X \subseteq \Sigma^*$$

¿cómo podemos definir $\mathcal{L}(\mathcal{A})$ en términos de $\alpha_{p,q}^X$?

Lema

$$\mathcal{L}(\mathcal{A}) = \bigcup_{q \in F} \alpha_{q_0,q}^Q$$

Dado un autómata finito no-determinista (spdg. con un estado inicial):

$$A = (Q, \Sigma, \Delta, q_0, F)$$

Estrategia (algoritmo de McNaughton-Yamada)

1. Para cada $lpha_{p,q}^X$, definir inductivamente una expresión regular $R_{p,q}^X$:

$$\mathcal{L}(R_{p,q}^X) = \alpha_{p,q}^X$$

2. Para $F = \{p_1, \dots, p_k\}$ definir la expresión regular:

$$R_{\mathcal{A}} = R_{q_0,p_1}^Q + R_{q_0,p_2}^Q + \ldots + R_{q_0,p_k}^Q$$

3. Demostrar que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(R_{\mathcal{A}})$$

Definición inductiva de $R_{p,q}^X$

Caso base: $X = \emptyset$

Sea $a_1, \ldots, a_k \in \Sigma$ todos las letras tal que:

$$(p, a_i, q) \in \Delta$$

Si $p \neq q$, entonces:

$$R_{p,q}^{\varnothing} \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} a_1 + \dots + a_k & \text{ si } k \ge 1 \\ \varnothing & \text{ si } k = 0 \end{array} \right.$$

Si p = q, entonces:

$$R_{p,q}^{\varnothing} \stackrel{\text{def}}{\equiv} \left\{ egin{array}{ll} a_1 + \cdots + a_k + \epsilon & \text{ si } k \geq 1 \\ \epsilon & \text{ si } k = 0 \end{array} \right.$$

Definición inductiva de $R_{p,q}^X$

Caso general: $X \neq \emptyset$

Por inducción, suponemos que para todo $r, s \in Q$ y para todo $Y \subset X$, $R_{r,s}^Y$ es una expresión regular tal que:

$$\mathcal{L}(R_{r,s}^Y) = \alpha_{r,s}^Y$$

Demostramos la construcción para $R_{p,q}^X$ con $p,q \in Q$. Sea $r \in X$ cualquiera:

$$R_{p,q}^{X} \stackrel{\text{def}}{=} R_{p,q}^{X-\{r\}} + R_{p,r}^{X-\{r\}} \cdot \left(R_{r,r}^{X-\{r\}}\right)^* \cdot R_{r,q}^{X-\{r\}}$$

Proposición

Para todo $X \subseteq Q \lor p, q \in Q$:

$$\mathcal{L}(R_{p,q}^X) = \alpha_{p,q}^X$$

Corolario

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(R_{\mathcal{A}})$$

Ejemplo de Algoritmo MNY

Considere el autómata:

Ejemplo de Algoritmo MNY

Considere el autómata:

$$\begin{array}{c|cccc}
 & b & & \\
\hline
 & 1 & & 2 & \\
\hline
 & 1 & a^* & a^*b & \\
 & 2 & a^+ & \epsilon + a^+b & \\
\end{array}$$

Ξ

$$\begin{array}{c|cccc}
R^{\{1,2\}} & 1 & 2 \\
1 & a^*(ba^+)^* & (a^*b)(a^+b)^* \\
2 & (a^+b)^*a^+ & (a^+b)^*
\end{array}$$