Kyungmin Lee

kyungmin.lee.42@gmail.com +1 (607) 379-4118 Sunnyvale, CA Green Card Holder kyungminlee.org linkedin.com/in/kyungminlee42 github.com/kyungminlee

PROFESSIONAL SUMMARY

Expert in numerical methodologies in theoretical physics of quantum materials. Studied novel phenomena in quantum systems using numerical techniques including spectral analyses, Monte Carlo simulations, and optimizations. Completed several large-scale numerical computation projects. Expert in C++, Python, and Julia. International Physics Olympiad Silver Medalist.

PROFESSIONAL/RESEARCH EXPERIENCE & PUBLICATIONS

2019-present Postdoctoral Scholar in Condensed Matter Theory, National High Magnetic Field Laboratory, Florida State University, FL

- Studied quantum thermalization using *matrix eigendecomposition with dimensional reduction using* space group (Abelian & non-Abelian) and developed a library for it (Julia)
 - K. Lee, R. Melendrez, A. Pal, H.J. Changlani, Phys. Rev. B 101, 241111(R) (2020). K. Lee, A. Pal, H.J. Changlani, Phys. Rev. B 103, 235133 (2021).
- Investigated properties of magnon quasiparticles in one-dimensional magnetic chains using tensor-network-based optimization / time-evolution techniques (C++, Julia)
 P. Sharma, K. Lee, H.J. Changlani, Phys. Rev. B 105, 054413 (2022).

2016–2019 Postdoctoral Researcher in Condensed Matter Theory, The Ohio State University, OH

- Identified topological phases of matter with *high-dimensional optimization using iterative methods* (Julia) K. Lee, T. Hazra, M. Randeria, N. Trivedi, Phys. Rev. B **99**, 184514 (2019).
- Simulated structural formations of adatoms with discrete optimization using simulated annealing (Julia) J. Choe, K. Lee, et al., Phys. Rev. B 99, 064420 (2019).

2010–2016 Research Assistant in Theoretical Physics, Cornell University, NY

- Investigated spontaneous rotation-symmetry breaking in interacting quantum mechanical systems using Krylov space techniques & determinant quantum Monte Carlo (Fortran, C++ with OpenMP & MPI)
- Studied superconducting vortex physics, topological superconductivity, and spontaneous symmetry breakings with *high-dimensional optimization using iterative methods* (C++ with TBB & MPI, Python)
 - K. Lee, M.H. Fischer, E.-A. Kim, New J. Phys. 15, 053048 (2013).
 - K. Lee, A. Vaezi, M.H. Fischer, E.-A. Kim, Phys. Rev. B 90, 214510 (2014).
 - K. Lee, S.A. Kivelson, E.-A. Kim., Phys. Rev. B 94, 014204 (2016).
- Numerically simulated experimental signatures of electron-boson coupling with massively parallel matrix spectral analysis using GPGPU programming (C++ with CUDA, Python)
 - M.P. Allan, K. Lee, A.W. Rost, et al., Nat. Phys. 11, 177-182 (2015).
- Discovered exotic phase of matter using *matrix eigendecomposition and dimensionality reduction using translation (Abelian) symmetry* (C++ with PETSc/SLEPc, Python)
 - Z. Liu, A. Vaezi, K. Lee, E.-A. Kim, Phys. Rev. B 92, 081102(R) (2015).
- Confirmed a mechanism of spontaneous rotation-symmetry breaking of 2D electron gas with *variational Monte Carlo* (~2 billion steps) *using Metropolis-Hastings algorithm* (C++ with TBB, Python, Cython)
 K. Lee, J. Shao, E.-A. Kim, F.D.M. Haldane, E.H. Rezayi, Phys. Rev. Lett. 121, 147601 (2018) [Editor's Suggestion].

EDUCATION

2009–2016 Ph.D. in Theoretical Physics, Cornell University, NY

- Advisor: Prof. Eun-Ah Kim
- Thesis: Theoretical Studies on Electronic Spectra of Heterogeneous Unconventional Superconductors

2002–2009 B.S. in Physics, B.S. in Computer Science and Engineering (Dual Major), Seoul National University, South Korea

- GPA: 4.06/4.30 (Graduated with summa cum laude)
- Dissertations:
 - Physics: Fractional Quantum Hall Effect and Composite Fermion Theory
 - CSE: Ground State of Edwards-Anderson Ising Spin Glass Model: Computational Complexity and Genetic Algorithmic Approach

TECHNICAL SKILLS

C++ Proficient. Developed 100k+ lines of code for high-performance numerical methods in

quantum mechanics to run on HPC clusters (spectral analysis, Monte Carlo, optimization)

Python Proficient. Developed 50k+ lines of code for various projects on numerical methods in

quantum mechanics. (prototyping for C++, statistical analysis)

Julia Proficient. Developed 100k+ line libraries for efficient representation of generic interacting

quantum mechanical Hamiltonian with nontrivial statistics (bosonic and fermionic) and

dimensionality reduction using group theoretical techniques.

CUDA Familiar. Developed code for parallelized spectral analysis of quantum mechanical systems.

MPI Familiar. Used with C++ for large-scale eigendecomposition on HPC clusters.

CERTIFICATIONS

2021 Deep Learning Specialization, offered by DeepLearning.Al on Coursera

Neural Networks and Deep Learning / Improving Deep Neural Networks: Hyperparameter

Tuning, Regularization and Optimization / Structuring Machine Learning Projects /

Convolutional Neural Networks / Sequence Models

2022 Natural Language Processing, offered by DeepLearning.Al on Coursera

Natural Language Processing with Classification and Vector Spaces / Natural Language Processing with Probabilistic Models / Natural Language Processing with Sequence

Models / Natural Language Processing with Attention Models

AWARDS

2015 Douglas Fitchen Memorial Award, Cornell University, NY

 Awarded to a students in support of travel abroad to study, pursue research, or participate in international physics-related events.

2009–2014 Overseas Ph.D. Scholarship, Korea Foundation for Advanced Studies, Korea

• Awarded to outstanding Ph.D. students enrolled in the world's top universities.

2003–2008 Undergraduate Student Scholarship Program, KFAS, Korea

• Awarded to undergraduate students for their excellence.

2001 32nd International Physics Olympiad – Silver Medal, Antalya, Turkey 2000 31st International Physics Olympiad – Honorary Mention, Leceister, UK

PERSONAL SOFTWARE PROJECTS

Numerical Method Packages used for Quantum Materials written in Julia (on github.com/kyungminlee)

- LatticeTools.jl Julia package that provides functionalities to define lattices and perform symmetry analyses useful for studying interacting quantum many-body Hamiltonians.
- QuantumHamiltonian.jl Julia package for constructing interacting quantum many-body Hamiltonians.
- QuantumHamiltonianParticle.jl Particle extension for QuantumHamiltonian.jl.
- HartreeFockBogoliubov.jl Hartree-Fock-Bogoliubov solver for generic interacting fermion Hamiltonians.
- MinimalPerfectHash.jl Implementation of Minimal Perfect Hashing using CHD algorithm.
- SuperLU.jl Julia interface to SuperLU.

Others

- PiTensor Python wrapper for ITensor, a tensor network library. (C++ using pybind11)
- unicode-widget Input helper for unicode characters. Essential for physics presentations. (JavaScript using Electron)