Marketing And Sales Data Linear Regression

August 5, 2023

1 Marketing And Sales Data Linear Regression

1.1 Step 1: Imports

```
[1]: # Import relevant libraries and packages.
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.formula.api import ols
```

1.1.1 Load the dataset

```
[2]: data = pd.read_csv('marketing_and_sales_data.csv')

# Display the first five rows.
data.head()
```

```
[2]:
         TV
                 Radio Social_Media
                                          Sales
    0 16.0
              6.566231
                           2.907983
                                      54.732757
    1 13.0
              9.237765
                           2.409567
                                      46.677897
    2 41.0 15.886446
                           2.913410 150.177829
    3 83.0 30.020028
                           6.922304 298.246340
    4 15.0
              8.437408
                           1.405998
                                      56.594181
```

1.2 Step 2: Data exploration

```
[3]: # Display the shape of the data.
data.shape
```

[3]: (4572, 4)

1.2.1 Explore the independent variables

```
[4]: # Generate descriptive statistics about independent variables.
data[["TV", "Radio", "Social_Media"]].describe()
```

```
[4]:
                     TV
                                Radio
                                       Social Media
                                        4566.000000
     count
            4562.000000
                         4568.000000
              54.066857
                            18.160356
                                            3.323956
    mean
     std
              26.125054
                             9.676958
                                            2.212670
    min
              10.000000
                             0.000684
                                            0.000031
     25%
              32.000000
                            10.525957
                                           1.527849
    50%
              53.000000
                            17.859513
                                           3.055565
    75%
              77.000000
                            25.649730
                                           4.807558
             100.000000
                            48.871161
    max
                                          13.981662
```

1.2.2 Explore the dependent variable

```
[5]: # Calculate the total number of missing values in the sales column.
data["Sales"].isna().sum()
```

[5]: 6

1.2.3 Remove the missing data

```
[6]: # Subset the data to include rows where Sales is present.
data.dropna(subset=["Sales"], axis=0, inplace=True)
```

1.2.4 Visualize the sales distribution

```
[7]: # Create a histogram of the Sales.
fig=sns.histplot(data["Sales"])

# Add a title
fig.set_xlabel("Sales in millions")
fig.set_ylabel("Number of Sales")
plt.show()
```


1.3 Step 3: Model building

```
[8]: # Create a pairplot of the data.
sns.pairplot(data)
```

[8]: <seaborn.axisgrid.PairGrid at 0x7f1bba294c50>

1.3.1 Build and fit the model

```
[9]: # Define the OLS formula.
  ols_formula="Sales ~ TV"

# Create an OLS model.
  OLS=ols(data=data, formula=ols_formula)

# Fit the model.
  model=OLS.fit()

# Save the results summary.
```

```
model_result=model.summary()

# Display the model results.
model_result
```

[9]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	Sales	R-squared:	0.999
Model:	OLS	Adj. R-squared:	0.999
Method:	Least Squares	F-statistic:	4.527e+06
Date:	Sat, 05 Aug 2023	Prob (F-statistic):	0.00
Time:	14:58:58	Log-Likelihood:	-11393.
No. Observations:	4556	AIC:	2.279e+04
Df Residuals:	4554	BIC:	2.280e+04
Df Model:	1		
a · m			

Covariance Type: nonrobust

=======	coef	std err	======== t	P> t	[0.025	0.975]
Intercept TV	-0.1263 3.5614	0.101 0.002	-1.257 2127.776	0.209 0.000	-0.323 3.558	0.071 3.565
Omnibus: Prob(Omnibus Skew: Kurtosis:	3):	0	.975 Jaro .001 Prob	oin-Watson: que-Bera (JB) o(JB): 1. No.	:	2.002 0.030 0.985 138.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

1.3.2 Check model assumptions

To justify using simple linear regression, we should check that the four linear regression assumptions are not violated.

These assumptions are: - Linearity requires a linear relationship between the independent and dependent variables. - Independent Observations states that each observation in the dataset is independent. - Normality states that the errors are normally distributed. - Homoscedasticity is that the residuals have a constant variance for all values of independent variables.

1.3.3 Model assumption: Linearity

```
[10]: # Create a scatterplot comparing X and Sales (Y).
    fig=sns.scatterplot(x=data["TV"], y=data["Sales"])
    fig.set_xlabel("TV promotion in millions")
    fig.set_ylabel("Sales in millions")
    plt.show()
```


1.3.4 Model assumption: Independence

As each marketing promotion (i.e., row) is independent from one another, the independence assumption is not violated.

1.3.5 Model assumption: Normality

```
[11]: # Calculate the residuals.
residuals= model.resid

# Create a 1x2 plot figures.
fig, axes = plt.subplots(1,2, figsize=(8,4))

# Create a histogram with the residuals.
sns.histplot(residuals, ax=axes[0])
```

```
# Set the x label of the residual plot.
axes[0].set_xlabel("Residuals")

# Set the title of the residual plot.
axes[0].set_title("The distribution of residuals")

# Create a Q-Q plot of the residuals.
sm.qqplot(model.resid, line="s", ax=axes[1])

# Set the title of the Q-Q plot.
axes[1].set_title("QQ Plot for Residuals")

# Use tight_layout() function to add space between plots.
plt.tight_layout()

# Show the plot.
plt.show()
```


1.3.6 Model assumption: Homoscedasticity

```
[12]: # Create a scatterplot with the fitted values from the model and the residuals.
fitted_values=model.predict(data["TV"])
fig=sns.scatterplot(x=fitted_values, y=residuals)

# Set the x-axis label.
fig.set_xlabel("Fitted Values")
```

```
# Set the y-axis label.
fig.set_ylabel("Residuals")

# Set the title.
fig.set_title("Fitted Values v. Residuals")

# Add a line at y = 0 to visualize the variance of residuals above and below 0.
fig.axhline(0)

# Show the plot.
plt.show()
```


1.4 Step 4: Results and evaluation

1.4.1 Display the OLS regression results

```
[13]: # Display the model_results defined previously.
model_result
```

[13]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================	=========					========
Dep. Variable:	Ş	Sales R-squared:			0.999	
Model:		OLS	Adj.	R-squared:		0.999
Method:	Least Squ	ıares	F-sta	tistic:		4.527e+06
Date:	Sat, 05 Aug	2023	Prob	(F-statistic)		0.00
Time:	14:5	58:58	Log-I	ikelihood:		-11393.
No. Observations:		4556	AIC:			2.279e+04
Df Residuals:		4554	BIC:			2.280e+04
Df Model:		1				
Covariance Type:	nonro	bust				
			======			
со	ef std err		t	P> t	[0.025	0.975]
Intercept -0.12	63 0.101	 -1	 1.257	0.209	-0.323	0.071
TV 3.56	14 0.002	2127	7.776	0.000	3.558	3.565
Omnibus:)).051	 Durbi	n-Watson:		2.002
Prob(Omnibus):	(0.975	Jarqu	ue-Bera (JB):		0.030
Skew:	(0.001	Prob(JB):		0.985
Kurtosis:	3	3.012	Cond.	No.		138.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

1.5 Conclusions

- Sales are evenly distributed between 25 and 350 million.
- TV has the strongest positive linear relationship with sales compared to radio and social media.
- The model has a high R-squared value of 0.999, indicating that 99.9% of the variation in sales can be explained by the TV promotional budget.
- The p-value for the TV coefficient is 0.0000, and the 95% confidence interval is [3.558, 3.565], indicating high confidence in the impact of TV on sales.
- The coefficients for Intercept and TV are -0.1263 and 3.5614, respectively, meaning an increase of one million dollars in the TV promotional budget leads to an estimated increase of 3.5614 million dollars in sales.
- Increasing the TV promotional budget should be prioritized to boost sales.