Crossword Counts

Solution to the January 18, 2019 edition of The Riddler

http://fivethirtyeight.com/features/how-many-crossword-puzzles-can-you-make/

Jim Ferry February 7, 2019

Overview

- The Mathematica package CrosswordCounts computes the number of possible crossword grids of various sizes
- These slides supplement the package by providing
 - A gallery of solutions for various cases
 - Examples of calls to CrosswordCounts used to produce the plots
 - A description of the dynamic programming technique that provides counts for problems too large to make explicit lists of solutions
- The Riddler's question: how many symmetric, 15 x 15 crossword grids are there with minimum word length 3?
- Answer:
 - 404,139,015,237,875 (tight case: grids must be fully 15 x 15)
 - 409,764,131,469,788 (loose case: grids may have all-black rows and/or columns surrounding a smaller, tight grid)

Definitions

 Grid: an m x n rectangle of black and white squares

4 x 5 grid

 3×6 grid with all word lengths ≥ 2

- Word: a run of horizontal or vertical white squares
- Words extend until stopped by a black square or boundary
- We will consider grids with all word lengths ≥ w, for various values of w
- Symmetric grid: a grid invariant under 180° rotation
- Connected grid: a grid whose white squares form one cluster

Main case of interest: w = 3

Connected 4 x 7 grid

Symmetric 5 x 6 grid

Valid 6 x 8 grid with all word lengths \geq 3

Definitions

- Tight grid: grid with white squares touching every border
 - Loose case: non-tight grids okay

- See Slide 12 for precise defintion
- Symmetries: valid grids have 5 possible symmetry types
 - Color indicates symmetry types

Tight, valid 6 x 6 grid with word lengths ≥ 3

Maximal 8 x 9 grid with word lengths ≥ 3

(maximal grids are always tight)

(Loose) valid 6 x 8 grid with word lengths ≥ 3

symmetry only)

Plotting All Grids vs. Grid Classes Only

- Plots of all 12 valid 5 x 5 grids with word lengths ≥ 3
 - Note four "copies" of black grid

```
nValidGrids[5,3,1] = 12
plotGrids[allValidGrids[5,3,1]]
```


- Only need show examples from each "grid class"
 - Plots of all 6 valid 5 x 5 grid classes with word lengths ≥ 3
 - 2 red, 3 green, 1 black

```
nValidGridClasses[5,3,1] = 6
sizesValidGridClasses[5,3,1] =
{2,0,3,0,1}
plotGrids[allValidGridClasses[5,3,1]]
```


Valid Grids with w = 3

plotGrids[allValidGridClasses[4,3,1]]

Only showing examples from each grid class

plotGrids[allValidGridClasses[5,3,1]

plotGrids[allValidGridClasses[6,3,1]]

Valid 7x7 Grids with w = 3

plotGrids[allValidGridClasses[7,3,1]]

- Number of grids per class
 - Red: 1
 - Blue: 2
 - Green: 2
 - Purple: 2
 - Black: 4
- 106 grid classes
- 312 grids

```
nValidGridClasses[7,3,1] = 106 \qquad sizesValidGridClasses[7,3,1] = \{10,4,32,5,55\} nValidGrids[7,3,1] = 312 \ (= 10*1 + 4*2 + 32*2 + 5*2 + 55*4)
```

Valid 8x8 Grids with w = 3

- 629 valid 8x8 grids with w = 3
 - Figure omits 471 black cases

sizesValidGridClasses[8,3,1] = {10,19,124,5,471}
plotGrids[allValidGridClasses[8,3,1][[;;4]]]

All 629 valid 8x8 grids with w = 3

plotGrids[allValidGridClasses[8,3,1]]

- Next slide
 - 8239 valid 9x9 grids with w = 3
 - Figure omits 7377 black cases

sizesValidGridClasses[9,3,1] = {45,85,620,112,7377}
plotGrids[allValidGridClasses[9,3,1][[;;4]]]

Valid 5x5 Grids for w = 1 to 4

plotGrids[allValidGridClasses[5,1,1]]

plotGrids[allValidGridClasses[5,2,1]]

plotGrids[allValidGridClasses[5,3,1]]

Maximal Grids

- Let V(m,n,w) be all valid m x n grids with word lengths ≥ w
 - Most such grids have too many black squares to be good crosswords
- Define idea of a maximal grid based on a partial order ≤
 - For any two m x n grids G and H, define H ≤ G when
 - Every white square in H is a white square in G
 - Any two white squares in different words in H are in different words in G
 - Let M(m,n,w) be the maximal elements of V(m,n,w)
 - I.e., those H in V(m,n,w) for which no G in V(m,n,w) satisfies H ≤ G
- The maximal grids M(m,n,w)
 - Are always tight (even if V(m,n,w) includes non-tight grids)
 - Are a small subset of V(m,n,w)
 - Look like actual crossword puzzles

Maximal Grids with w = 3

Valid 7 x 7 grids

Loose: 398

• Tight: 312

Maximal: 10

Valid 8 x 8 grids

Loose: 2638

Tight: 2190

Maximal: 55

plotGrids[allMaximalGridClasses[7,3],30,7]

plotGrids[allMaximalGridClasses[8,3]]

Maximal 9×9 Grids with w = 3

Maximal 10 \times 10 Grids with w = 3

Maximal 10 x 10 Grids, w = 3, Black Omitted

Dynamic Programming Solution

- The Riddler asks for number of valid 15 x 15 grids with w = 3
- Answer:
 - 404,139,015,237,875 (tight case)
 - 409,764,131,469,788 (loose case)

- Warning: these take days to run count[15,3,1] = 404139015237875 count[15,3,0] = 409764131469788
- Code to produce explicit lists of grids
 - Good for generating pictures on previous slides
 - Does not scale up to generating 400+ trillion grids!
- For the 15 x 15 case we use dynamic programming
 - Dynamic programming involves combining "overlapping subproblems"
 - For crossword counting, we define certain "states" and count how many partial grids (first j rows of full 15 x 15 solutions) are represented by each state
 - Counts of j x 15 solutions per state are updated to (j+1) x 15 counts
 - Instead of listing trillions of grids, update counts on millions of states

States

- Example: compute number of 15 x 15 tight grids with w = 3
 - After row 5 there are
 - 5,219,674 states encompassing
 - 6,984,251,647 partial solutions (5 x 15 grids)
 - One state is s = ((0,0,0,1,3,2,3,0,1,1,1,0,3,3,2), (1,2,1), True)
 - There are 3360 row 5 partial solutions for this state
- Meaning of state
 - (0,0,0,1,3,2,3,0,1,1,1,0,3,3,2)000132301110332
 - Heights of white-square stacks
 - But "3" means "3 or more"
 - (1,2,1) labels clusters of white squares ■■■ 1 1 2 1
 - The state s represents partial grids with the first and last cluster connected
 - True: state s represents partial grids that have touched a side wall
 - This is needed to ensure that enumerated grids are tight

State Updates

- Generate all possible values of next row
 - Use temporary horizontal numbering
 - Convert each to vertical numbering


```
      0
      0
      0
      1
      3
      2
      3
      0
      1
      1
      1
      0
      3
      3
      2

      0
      0
      0
      1
      2
      3
      3
      3
      2

      0
      0
      1
      2
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3</td
```

- Update cluster labels: $(1,2,1) \rightarrow (1,1)$
 - Length 2 because 2 runs of positive numbers in new row
 - Same label (1) because both runs touch same cluster (1) in row above
- Update whether side wall has been touched (True → True)
- New state: ((1,1,1,2,3,3,0,0,2,2,2,1,3,3,3), (1,1), True)
 - Add 3360 to the row 6 count for this state
 - Add 3360 to the counts of all other states generated as above
 - From other red-numbered rows, provided they don't cut off a cluster

Final Step

- For each row 7 state s (representing many 7 x 15 partials G)
 - Think of forming C = G/R/G' for any partial grid G represented by s
 - I.e., G atop a symmetric row R (with word lengths ≥ 3) atop G rotated 180°
 - Check that all vertical words in C have length ≥ 3
 - We can discern this from R and the vertical numbering in s
 - Check that C is connected
 - We can do this using cluster label information
 - Check that C is tight
 - If the last entry in s is "False", require R to begin/end with white square
- Add up, over all row 7 states s,
 - The number of rows R that satisfy the above test, times
 - The count for state s
- This yields the total 404,139,015,237,875
 - Loose count can be obtained as sum over various tight cases

Number of Tight Valid n x n Grids for Various w

- Results of count[n,w,1]
 - Number of tight valid n x n grids with all word lengths ≥ w
 - Many values stored in CrosswordCounts package
 - Access precomputed values using tightSquareCount[n,w]
 - Cases that are not precomputed return the value −1

w	า 1	. 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	1	. 1	11	47	1411	21411	2123851	124 511 195	42 999 348 087	9 581 445 219 371	11 829 924 769 055 787	-1	-1	-1	-1	-1
2	0	1	3	10	59	484	7250	181 575	6826137	446 562 953	43 131 669 850	7 112 223 095 914	-1	-1	-1	-1
3	0	0	1	3	12	48	312	2190	31187	586 731	17 438 702	654 057 540	40 575 832 476	3 115 321 983 734	404 139 015 237 875	-1
4	0	0	0	1	3	12	50	208	1336	9119	113 415	1993875	37 724 992	1 290 193 576	45 949 047 420	-1
5	0	0	0	0	1	3	12	50	210	880	5971	38 421	487 427	7 583 483	126 501 143	-1
6	0	0	0	0	0	1	3	12	50	210	882	3694	25 455	165 436	2 079 601	-1
7	0	0	0	0	0	0	1	3	12	50	210	882	3696	15 442	109 248	-1
8	0	0	0	0	0	0	0	1	3	12	50	210	882	3696	15 444	64 348

Table[tightSquareCount[n,w],{w,8},{n,16}]//MatrixForm

 CrosswordCounts contains routines to check that efficient count[m,n,w,t] function agrees with simple, reliable nValidGrids[m,n,w,t]

Number of Tight Valid $m \times n$ Grids with w = 3

- Results of countMat[15,3,1]
 - Number of tight valid m x n grids with w = 3 for all $1 \le m, n \le 15$
 - Stored in CrosswordCounts package
 - Access precomputed values using countMat[3,1]
 - Only w = 3 case as been precomputed

m ¹¹ 1	2	2 3	4	5	6	7	8	9	10	11	12	13	14	15
1 0	(9 0	0	0	0	0	0	0	0	0	0	0	0	0
2 0	(9 6	0	0	0	0	0	0	0	0	0	0	0	0
3 0	(9 1	1	1	1	1	1	1	1	1	1	1	1	1
4 0	9	9 1	3	5	7	7	13	15	33	37	75	89	175	211
5 0	(9 1	5	12	22	34	64	115	259	468	980	1742	3606	6519
6 0	(9 1	7	22	48	86	178	367	973	2132	5456	11520	28 508	60 985
7 0	(9 1	7	34	86	312	626	1754	3990	12931	30741	100126	234 362	749 439
8 0	(9 1	13	64	178	626	2190	6746	21 972	66 411	234 143	738 990	2 613 144	8 061 187
9 0	(9 1	15	115	367	1754	6746	31 187	108 089	472 654	1599558	7 463 594	25 710 394	119 869 867
10 0	(9 1	33	259	973	3990	21972	108 089	586 731	2 542 446	13 038 460	57 394 116	298 289 312	1 325 038 289
11 0	(9 1	37	468	2132	12931	66 411	472 654	2 542 446	17 438 702	85 912 738	571 540 158	2 794 999 844	18 851 755 888
12 0	(9 1	75	980	5456	30741	234 143	1 599 558	13 038 460	85 912 738	654 057 540	4163555192	30 763 310 300	196 071 884 168
13 0	(9 1	89	1742	11 520	100126	738 990	7 463 594	57 394 116	571 540 158	4163555192	40 575 832 476	287 957 992 192	2772709489316
14 0	(9 1	175	3606	28 508	234 362	2613144	25 710 394	298 289 312	2 794 999 844	30763310300	287 957 992 192	3 115 321 983 734	28 813 678 808 484
15 0	(9 1	211	6519	60 985	749 439	8 061 187	119 869 867	1 325 038 289	18851755888	196 071 884 168	2 772 709 489 316	28 813 678 808 484	404 139 015 237 875

countMat15[3,1]//MatrixForm

Number of Loose Valid $m \times n$ Grids with w = 3

- Results of countMat[15,3,0]
 - Number of loose valid m x n grids with w = 3 for all $1 \le m,n \le 15$
 - Stored in CrosswordCounts package
 - Access precomputed values using countMat[3,0]
 - Only w = 3 case as been precomputed

m $1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1$	5
<u> </u>	
211111111111111111111111111111111111111	
3 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8	
4 1 1 2 4 7 11 14 24 29 57 66 132 155 307 36	6
5 1 1 3 7 16 30 51 95 167 355 636 1336 2379 4943 889	99
6 1 1 3 11 30 66 123 257 505 1263 2674 6794 14283 35477 754	79
7 1 1 4 14 51 123 398 814 2268 5064 15668 36786 117537 274755 873	196
8 1 1 4 24 95 257 814 2638 7942 25616 76522 265290 827121 2907117 8949	504
9 1 1 5 29 167 505 2268 7942 35325 120281 521379 1751561 8086842 27699924 12871	2 668
10 1 1 5 57 355 1263 5064 25616 120281 635325 2731307 13913459 60876022 314844598 13940	36 694
11 1 1 6 66 636 2674 15668 76522 521379 2731307 18446135 90275325 597551756 2911223532 195699	33 470
12 1 1 6 132 1336 6794 36786 265290 1751561 13913459 90275325 681249133 4311975232 31745490572 201717	920 072
13 1 1 7 155 2379 14 283 117 537 827 121 8 086 842 60 876 022 597 551 756 4 311 975 232 41 752 489 853 295 090 915 631 2 833 434	360 883
14 1 1 7 307 4943 35477 274755 2907117 27699924 314844598 2911223532 31745490572 295090915631 3178131715745 29306174	1768955
15 1 1 8 366 8899 75479 873496 8949504 128712668 1394036694 19569933470 201717020072 2833434360883 29306174768955 40976413	1 469 788

countMat15[3,0]//MatrixForm

Summary

- CrosswordCounts has simple routines for generating
 - All valid crossword grids of minimum word length w
 - The subset of these valid grids that are maximal
- It includes routines for plotting sets of grids
 - Typically show only one grid from each "grid class" for brevity
 - Grids are colored by symmetry type
- A more sophisticated dynamic programming approach
 - Provides counts for cases too large to list solutions explicitly
 - Only counts number of valid grids
 - Not the number of grid classes
 - Not the number of maximal grids
 - Has been verified in two ways
 - Self-consistency: m rows of width n agrees with n rows of width m
 - Consistency with simpler, explicit approach