Computer Vision (10224)

Goals

Motivation to use nn frameworks such as pytorch, tensorflow etc.

Lab Session

- what is pytorch
 Basic Deep learning
 Fully Connected layers
 Activation functions

- a Activation functions

 NMIST

 Dominical the MNIST Dataset

 Initiatize a torchvision pre-defined MNIST dataset class

 Single Fully connected model

 Build a model using single fully connected layer

 Demo evaluation of the randomly initialized weights

 A little bit about softmax activation function

 Three FC-Layer model

 Concatinate 3 FC layer with the following dimensions:

 FC-1: input: 51ze of the image in pixels, output: 128

 FC-2: input: 128, output: 64

 FC-1: input: 64, output: 04

 FC-1: input: 64, output: 04

 MNIST Model with convolution layers

 MNIST Model with convolution layers

 Class Exercise build LeNet Architectue:

Final Report

- Complete the unfinished lab session tasks.
 Write a short TL;DR (too long didn't read) summary and describe your work and what you understood in the lab.

Guidelines

- 1. Code written in the assignments MUST follow the PEP-8 quidelines, we will deduct points of code not following this quideline, points will be accumulated

- Code written in the assignments MUS1 follow the PEP-8 guidelines, we will deduct points of code not following this guideline, points will be accumulated.
 You may use either Google Colab or Local Jupyfer notebook session.
 Use Markdown cells in-between your code cells to explain what you've done.
 Assignments must be submitted as. html with all the required plots. Some exercises will require online reading, you may use Google and stackoverflow for inspiration, although if you use it make sure to attach the reference link.
 Add as much comments you need to explain yourself, you wouldn't want to assume we fully understand your intuition.
 Code should be well ordered, formatted and readable.

Further Reading:

DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ