25

SUBJECT PROGRAM

I. IDENTIFICATION OF THE SUBJECT

Subject: Theoretical Computing		Acronym: INF-155	Approval date 10/11/2016 (CC.DD. Agreement 13/2016)		10/11/2016
UTFSM Credits : 3	Prerequisites:	Exam:	Faculty	/	
SCT Credits : 5	INF-134 + INF-152	Does not have	Computer S		Science Department
Lecture Hours	Weekly	Hours	Semester in which it is taught		
Weekly : 3	Assistantship Hours: 1.5	Weekly Lab: 0	Odd	Pair X	Both
Formative axis : Engineering Sciences - Computer Science for complex problems in Industry					
Total time dedicated to the subject : 150 chronological hours					

Subject Description

The student identifies the theoretical foundations of computer science, becoming familiar with abstract notions such as: machine, computation, language, and algorithm. The student distinguishes the different levels of complexity that a computing problem can have, including the extreme case of formally insoluble problems. In the case of solvable problems, design a finite state automaton, a context-free grammar, or a Turing machine, as appropriate.

Entry requirements

- Apply demonstration techniques.
- Apply logic, set theory and relationships.
- · Understand basic algorithms related to graphs.

Contribution to the graduation profile

Specific Competence

Apply theoretical and algorithmic foundations to develop efficient ways to solve computational problems.

Transversal Competencies

Develop their work with solid criteria that allow ensure quality from a systemic perspective.

Learning outcomes expected to be achieved in this subject

- **Design** a finite state machine that accepts a specified language, **using** schematics, diagrams, and language types.
- Represents a specified language, designing a regular expression
- **Generates** a specified language, **designing** a context-free grammar.
- Identify the class of a language in Chomsky's hierarchy.
- Converts equivalent descriptions for a language, including automata, regular expressions, and contextfree grammars, as appropriate.
- **Prove** that a problem is algorithmically insoluble, **applying** the strategy of reducing a known insoluble problem to it.
- It identifies that a problem is intractable (NP hard and NP complete), reducing a known intractable problem to it.

Thematic contents

- · Alphabets and languages.
- · Regular expressions.
- Regular sets.
- · Finite state machines.
- Free context grammars.
- Stack automata.
- Turing machines.
- Church Turing thesis.
- · Chomsky's hierarchy.
- Non-computable problems.
- · Rice's computability theorem.
- Problems in P and in NP, NP-complete problems.

Teaching and learning methodology.

- Expository classes with audiovisual support.
- · Individual and group work in solving computational problems of different levels of complexity.

Evaluation and grading of the subject. (Adjusted to Institutional Regulations-Regulation No. 1)

Approval requirements and qualification	This subject is evaluated with: 2 exams (65%) and work (or tasks) in problem solving (35%).		
	Final Note (NF):		
I			

Resources for learning.

Virtual platform

Bibliography:

bilography.		
Guide Texts	• J. Hopcroft, R. Motwani, J. Ullman. (2008). Automata Theory, Languages and Computing, Prentice Hall, 3rd Ed.	
Complementary or Optional	 M. Sipser. (2012).Introduction to the Theory of Computation, Cengage Learning; 3rd. Ed. J. Hromkovic (2011).Theoretical Computer Science, Springer. 	

CALCULATION OF NUMBER OF HOURS OF DEDICATION - (SCT-Chile) - SUBJECT SUMMARY TABLE

	Number of hours of dedication							
ACTIVITY								
	Number of hours per	Number of weeks	Total number of hours					
	week							
PRESENCE								
Lecture or theoretical classes	3	17	51					
Assistantship/Exercises	1.5	fifteen	23					
Industrial visits (from Field)								
Laboratories / Workshop								
Evaluations (exams, others)	2	2	4					
Others (specify)								
NO PRESENCE								
Assistantship								
Mandatory tasks	7	4	28					
Individual and Group Work	3	4	12					
Others: Personal Study	2	16	32					
TOTAL (HOURS)			150					
	Total number of TRANSF	ERABLE CREDITS	5					