

REVEALING CONTEXTUALITY OF QUANTUM CONFIGURATIONS WITH A SAT SOLVER

Axel Muller¹, Metod Saniga², Alain Giorgetti¹, Henri de Boutray³, Frédéric Holweck^{4,5}

Journées nationales du GDR GPL (Génie de la Programmation et du Logiciel), CNRS, groupe de travail LVP (Langages et Vérification de Programmes), 5-8 juin 2023, Rennes, France

¹ Université de Franche-Comté, CNRS, institut FEMTO-ST, F-25000 Besançon, France ² Astronomical Institute of the Slovak Academy of Sciences, 059 60 Tatranska Lomnica, Slovakia ³ ColibrITD, France

⁴ ICB, UMR 6303, CNRS, University of Technology of Belfort-Montbéliard, UTBM, 90010 Belfort, France ⁵ Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA

Quantum state measure

ket notation

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \qquad |q\rangle = \begin{pmatrix} a\\b \end{pmatrix}$$

$$|q\rangle = \begin{pmatrix} a \\ b \end{pmatrix}$$

$$\operatorname{qubit} \qquad |q\rangle = a\,|0\rangle + b\,|1\rangle \qquad a,b \in \mathbb{C} \qquad |a|^2 + |b|^2 = 1$$

$$=a|0\rangle+b|1\rangle$$

$$a,b \in \mathbb{C}$$

$$|a|^2 + |b|^2 = 1$$

Measure with the Pauli matrix $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

$$|q\rangle = \begin{pmatrix} a \\ b \end{pmatrix} \underbrace{\begin{array}{c} |a|^2 \\ \text{eigenvectors and} \\ |b|^2 \end{array}}_{|1\rangle} \underbrace{\begin{array}{c} +1 \\ \text{eigenvalues} \\ -1 \end{array}}_{|1\rangle}$$

Observables

Pauli matrices (1-qubit *observables*): $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

matrix product: $X \mid X \mid I \quad iZ \quad -iY$ $Z \mid Z \mid iY \mid -iX \mid I$

N-qubit Pauli operator (N-qubit observable): $G_1 \otimes G_2 \otimes \cdots \otimes G_N$, with $G_i \in \{I, X, Y, Z\}$ generalized Pauli group: $\mathcal{P}_N = (\{1, -1, i, -i\} \times \{I, X, Y, Z\}^N, .)$

Contextuality

A *context* is a finite subset c of mutually commuting N-qubit observables (eigenvalues in $\{-1,1\}$, i.e. $(-1)^b$ for a Boolean variable $b \in \{0,1\}$) whose matrix product $\prod_{o \in c} o$ is $\pm I \otimes \ldots \otimes I$. A quantum configuration [1] is a finite set of contexts.

$$(-1)^{\mathbf{b}\mathbf{1}} \qquad (-1)^{\mathbf{b}\mathbf{2}} \qquad (-1)^{\mathbf{b}\mathbf{3}} \\ X \otimes I & \longrightarrow I \otimes X & \longrightarrow X \otimes X \qquad (1)I \otimes I \\ \\ (-1)^{\mathbf{b}\mathbf{4}} \qquad (-1)^{\mathbf{b}\mathbf{5}} \qquad (-1)^{\mathbf{b}\mathbf{6}} \qquad \\ I \otimes Y & \longrightarrow Y \otimes I & \longrightarrow Y \otimes Y \qquad (1)I \otimes I \\ \\ (-1)^{\mathbf{b}\mathbf{7}} \qquad (-1)^{\mathbf{b}\mathbf{8}} \qquad (-1)^{\mathbf{b}\mathbf{9}} \qquad \\ X \otimes Y & \longrightarrow Y \otimes X & \longrightarrow Z \otimes Z \qquad (1)I \otimes I \\ \\ (1)I \otimes I \qquad (1)I \otimes I \qquad (-1)I \otimes I$$

Example: Mermin-Peres quantum configuration [2, 3], with 9 two-qubit observables and 6 contexts, either positive $(o_1-o_2-o_3)$ or negative $(o_1=o_2=o_3)$, for instance $(X \otimes X).(Y \otimes Y).(Z \otimes Z) = (X.Y.Z) \otimes (X.Y.Z) = i.I \otimes i.I = -I \otimes I.$

The Mermin-Peres configuration is *contextual*: no value for $(b1, ..., b9) \in \{0, 1\}^9$ is consistent with the eigenvalue ± 1 of the matrix products of each context.

Process

Results [4, 5, 8]

Contextuality checked* for several configurations

N-qubit doilies ($2 \le N \le 5$), 12 configurations, less than 1 second N-qubit 2-spreads ($2 \le N \le 5$), 72 configurations, 1 second

elliptic and hyperbolic quadrics ($2 \le N \le 6$), 5456 configurations, 33 minutes

N-qubit perpsets ($2 \le N \le 7$), $21\,834$ configurations, 17 minutes

 $(k = 1, 2 \land N \le 5, 3 \le k \land N = 6, (k, N) = (6, 7)), 14$ configurations, less than 24 hours per configuration

* computed with a PC equipped with an Intel(R) Core(TM) i7-12700H and 16 GB RAM

Proofs and conjectures, for an arbitrary of qubits N

All multi-qubit doilies are contextual, and their *contextuality degree* (minimal number of unsatisfied constraints) is 3 ($N \ge 2$)

All 2-spreads are contextual, and their contextuality degree is 1 ($N \ge 2$)

Conjecture: All elliptic and hyperbolic quadrics are contextual ($N \ge 2$), when the contexts are their lines All perpsets are non-contextual ($N \ge 2$)

totally isotropic subspaces of dimension $1 \le k < N$ of the symplectic space W(2N-1,2) The configuration whose contexts are all the lines is contextual $(k=1,N\ge 2)$

Conjecture: The configuration whose contexts are all the planes is non-contextual $(k = 2, N \ge 3)$

The configuration whose contexts are all the subspaces of some dimension $k \ge 3$ is non-contextual (N > k)

Bibliography

- [1] F. Holweck. "Testing Quantum Contextuality of Binary Symplectic Polar Spaces on a Noisy Intermediate Scale Quantum Computer". In: Quantum Information Processing (2021). DOI: 10.1007/s11128-021-03188-9.
- [2] A. Peres. "Incompatible results of quantum measurements". In: *Physics Letters A* 151.3 (1990), pp. 107–108. ISSN: 0375-9601. DOI: 10.1016/0375-9601 (90) 90172-K.
- [3] N. D. Mermin. "Hidden variables and the two theorems of John Bell". In: Rev. Mod. Phys. 65 (3 July 1993), pp. 803-815. DOI: 10.1103/RevModPhys. 65.803. [4] A. Muller et al. New and improved bounds on the contextuality degree of multi-qubit configurations. May 2023. DOI: 10.48550/arXiv.2305.10225.
- [5] A. Muller et al. "Multi-qubit doilies: Enumeration for all ranks and classification for ranks four and five". In: Journal of Computational Science 64 (Oct. 2022), p. 101853. DOI: 10.1016/j.jocs.2022.101853.
- [6] T. A. Junttila and I. Niemelä. "Towards an Efficient Tableau Method for Boolean Circuit Satisfiability Checking". In: Computational Logic CL 2000. Springer Berlin Heidelberg, 2000, pp. 553–567. ISBN: 978-3-540-44957-7. DOI: 10.1007/3-540-44957-4_37.
- [7] M. S. Chowdhury, M. Müller, and J. You. A Deep Dive into Conflict Generating Decisions. en. May 2021. DOI: 10.48550/arXiv.2105.04595.
- [8] H. de Boutray et al. "Contextuality degree of quadrics in multi-qubit symplectic polar spaces". In: Journal of Physics A: Mathematical and Theoretical 55.47 (Nov. 2022), p. 475301. DOI: 10.1088/1751-8121/aca36f.

Acknowledgments

This project is supported by the PEPR integrated project EPiQ ANR-22-PETQ-0007 part of Plan France 2030, and by the EIPHI Graduate School (contract ANR-17-EURE-0002). This work also received a partial support from the Slovak VEGA grant agency, Project 2/0004/20.

