Chapter 18

Modulators

INTRODUCTION

We will present systematized design information on three types of modulators in this chapter. Each of these modulators requires a corresponding demodulator, detector, discriminator, or decoder at the other end of the system to restore the information to its original form. These other circuits are discussed in Chaps. 7, 8, 14, and 16.

The first circuit we present will be the amplitude modulator—sometimes called the linear modulator. This circuit is similar in function to that used by AM broadcast stations to superimpose an audio signal on a high-frequency carrier signal. Multipliers, discussed in Chap. 19, can also be used for AM modulation.

Frequency modulation, or voltage-to-frequency conversion, is covered in Chap. 21.

The second circuit to be presented is the pulse-amplitude modulator. This is similar to the amplitude modulator except that the circuit is optimized for pulse-handling efficiency. The last circuit will be a pulse-width modulator. This is a good modulator to use in digital systems which operate at fixed pulse voltages. It is also quite useful in high-power systems such as motor drives and switching power supplies.

18.1 AMPLITUDE MODULATOR

ALTERNATE NAMES AM modulator, linear modulator, linear amplitude modulator.

EXPLANATION OF OPERATION The carrier frequency is applied to the v_c terminal as shown in Fig. 18.1. The modulation input, at a lower frequency than v_c , is applied to v_m . An inverted replica of v_m appears at v_1 . Its amplitude and offset are controlled by R_2 and R_4 . The offset adjustment R_4 controls the modulation depth. The amplitude adjustment R_2 determines the final peak-to-peak amplitude of v_o .

On positive v_c cycles, switches S_1 and S_4 are turned on. In this state they look like a resistor (R_{00}) of 50 to 500 Ω , depending on the type of CMOS switch chosen. During this same time, switches S_2 and S_3 are off. In the off

state these devices look like a resistor (R_{ort}) of many megohms. On negative v_c cycles just the opposite occurs: S_1 and S_4 are off and S_2 and S_3 are on. Chopped versions of a papear of a papear of S_1 and S_2 are S_3 are on.

Chopped versions of v_1 appears at v_2 and v_3 . Figure 18.2 shows that v_2 and v_3 are chopped versions of v_1 appear at v_2 and v_3 . Figure 18.2 shows that v_2 and v_3 are chopped on opposite half cycles of v_c . The amplitudes of v_2 and v_3 are smaller than v_1 depending on the size of the $R_8/(R_6 + R_8)$ and $R_{11}/(R_7 + R_{11})$ ratios. Voltage waveform v_2 is then inverted to create v_4 . Waveforms v_3 and v_4 are combined in the summing amplifier A_4 . Figure 18.2 shows the final v_4 are combined in the summing amplifier A_4 . Figure 18.2 shows the final v_4 are combined in the summing amplifier A_4 . Figure 18.2 shows the final v_4 are combined in the summing amplifier A_4 . Figure 18.2 shows the final v_4 are combined in the summing amplifier A_4 .

The only significant error source in this circuit is the magnitudes of R_0 and R_{0ff} relative to R_6 , R_7 , R_8 , and R_{11} . For example, when S_1 is off and S_2 is on, the voltage at v_2 should be zero. Instead, it is approximately $v_2(\text{off}) \approx v_1 R_{\text{on}}/R_{\text{off}}$. Conversely, when S_1 is on and S_2 is off, the voltage at v_2 should be exactly $R_8/(R_6+R_8)$. In this case switch errors give us $v_2(\text{on}) \approx v_1 R_8/(R_{\text{on}}+R_8)$, If R_8 is small, the error is significant. The errors at v_3 are similar in nature and are listed in the design equations.

Fig. 18.1 A precision amplitude modulator which uses CMOS switches.

 $\begin{tabular}{ll} Fig.~18.2 & Voltage~waveforms~at~various~locations~in~Fig.~18.1. & A~sawtooth~modulation~waveform~is~assumed. \end{tabular}$

DESIGN PARAMETERS

Parameter	Description	
A_1	Buffer amplifier which sets modulation depth and system gain	
A_2	Comparator used to invert v_n	
A_3	Amplifier used to invert v_2	
A_{4}	Summing amplifier used to combine v_3 and v_4	
I_{b4}	Input bias current of A ₄	
R	Common value for R_6 to R_{11}	
R_1 to R_2	Determines system gain for v_m	
R_3 to R_4	Sets modulation depth	
R_5	Limits current into A ₂	
R_6 , R_8 to R_{10}	Establishes magnitude of negative portion of output waveform	
R_{7}, R_{11}	Establishes magnitude of positive portion of output waveform	
R_{12}	Can be used in conjunction with R ₂ to adjust system gain	
$R_{\rm on},R_{\rm off}$	S_1 to S_4 on and off resistances	
$R_{\rm in}$	Input resistance seen by v_m input	
S_1 to S_4	CMOS switches	
v_o	Circuit output-voltage waveform	
Δv_o	DC offset in v_a caused by A_4	
v_1 to v_4	Voltage waveforms as shown in Figs. 18.1 and 18.2	
v_c, \bar{v}_c	Carrier input voltage and its inverse	

Λ ₍₊₎	Reference voltage used to adjust modulation depth Power-supply voltages
$^{d}\Lambda$	Most positive value of $V_{ m R}$
NA	Most negative value of $V_{\rm g}$
w _O	Modulation input voltage
Parameter	Description

DESIGN EQUATIONS

		The state of the s
12	Output offset due to Iba	$\Delta v_o = I_{h_4} R_{12}$
ħΊ	R_{12}	$R_{12}=\Omega R_{11}$
EI	Re to R11	$R_6 = R_7 = R_8 = R_9 = R_{10} = R_{11} = (R_{0n} \ R_{off})^{1/2}$
12	$R_{\rm s}$	$R_{\mathrm{s}} = \mathrm{zero}$ to 100 kD (use manufacturer's recommendation for $A_{\mathrm{z}})$
II	R3, R4	$R_3=R_4=R_1$
10	H_2	$R_z < \frac{R_1(V^{(\pm)} -2)}{ v_m \max} \text{ or } < \frac{R_3(V^{(\pm)} -2)}{ V_R \max} \text{ whichever is smaller}$
6	Resistor values R ₁	$R_1 \ge R_{in}$ required
8	v agatioV	$v_o = -R_{12} \left(\frac{v_4}{R_{10}} + \frac{v_3}{R_{10}} \right)$
L	o egstoV	$a_{ m i}=-rac{R_{ m s} a_{ m s}}{H_{ m s}}$
9	no si ε S ahida ε σ alson Tho si ε S das	$v_3 = \frac{R_7 + R_{11}v_1}{R_{11}v_1}$
g	Voltage v_2 while S_1 is on the si $_2$ S ans	$a_z = rac{R_b + R_b}{R_b v_1}$
₽	Voltage $v_{_{\mathrm{I}}}$ as a function of $v_{_{\mathrm{R}}}$	$a_{\scriptscriptstyle m I} = -H_{\scriptscriptstyle m Z} \left(rac{M_{\scriptscriptstyle m I}}{V_{\scriptscriptstyle m I}} + rac{M_{\scriptscriptstyle m B}}{V_{\scriptscriptstyle m I}} ight)$
3	Peak-to-peak output voltage $v_{\rm e}$ when switch errors are included	$\left(\frac{R}{2}\frac{A}{A} + \frac{M^{\prime J}}{R}\right) \frac{R_{01}}{100} \frac{R_{01}}{R_{01}} \frac{R_{01}}{A} + \frac{M_{01}}{R_{01}} \frac{R_{01}}{A} + \frac{M_{01}}{R} \approx (\pm)_{0} \sigma$
7	Output voltage v _o when S ₂ is off of si Ac an a si facting switch errors (neglecting switch errors) and op amp errors)	$v_o(+) = \frac{\Lambda_2 \Lambda_{12}}{(\Lambda_7 + \Lambda_{11})} \left(\frac{v_m}{\Lambda_1} + \frac{V_n}{\Lambda_3} \right)$
I	Output voltage v_0 when S_1 is off or an action of sing switch errors (neglecting switch errors)	$(-)_o = \frac{\Pi_{10}(R_b + \Pi_8)}{\Pi_{10}(R_b + R_8)} \left(\frac{R_1}{R_1} + \frac{N_1}{R_2}\right)$
Eq.	Description	Едианоп

DESIGN PROCEDURE

We assume all op amps are operating from the same $V^{(\pm)}$ supplies. If a larger output is required, all stages or perhaps only A_4 can be connected to higher-

voltage supplies. Fewer power supplies are required if the comparator (A_2) , the four switches, and the three op amps can use the same voltages.

DESIGN STEPS

Step 1. Choose a comparator, switches, and op amps which utilize the same supply voltages. The \pm supply voltages must be at least 2 V higher than the \pm peak values expected at v_o .

Step 2. Choose R_1 to be greater than or equal to the minimum allowed

input resistance at v_m .

Step 3. Choose a range of values for V_R which is slightly larger than the expected positive and negative peaks of v_m . Set V_P and V_N equal to the two limits of this range.

Step 4. Use Eqs. 11 and 12 to obtain values for R_3 , R_4 , and R_5 . Resistor R_5 is usually between 1 and 5 k Ω , but the comparator (A_2) specification sheet

should be consulted.

Step 5. Solve both portions of Eq. 10 to determine an optimum value for B. Let B. be less than the smaller value calculated.

for R_2 . Let R_2 be less than the smaller value calculated.

Step 6. Use the CMOS switch specification to estimate $R_{\rm on}$ and $R_{\rm off}$ for these particular values of $V^{(\pm)}$, $v_1({\rm max})$, and $\pm v_c$. Calculate values for R_6 through R_{11} using Eq. 13.

Step 7. Rearrange Eq. 1 as follows to compute a value for R_{12} (let

 $R = R_6 = R_8 = R_9 = R_{10}$):

$$R_{12} = \frac{4 R R_1 v_o(\text{peak})}{3 R_2 v_m(\text{peak})}$$

To rearrange this equation, we assumed the nominal value for V_R would

be $v_m/2$.

If R_{12} is too large, the bias current of A_4 will cause an output offset. Calculate this offset using $\Delta v_o = I_{b4} R_{12}$. If the offset is more than can be tolerated, decrease R_{12} until a satisfactory offset is achieved. This change will lower the overall circuit gain, so an opposite change to the circuit transfer function must be made elsewhere. The best option is to lower all the R resistors by the same magnitude that R_{12} was lowered. This will slightly increase switching errors, but this is usually of less concern than a dc offset in v_o .

Step 8. Solve Eqs. 1 and 2 to make sure the correct positive and negative

peak output voltages will be achieved.

Step 9. Solve Eq. 3 to determine the worst-case expected errors in v_o .

EXAMPLE OF AN AM MODULATOR DESIGN Suppose we wish to modulate a 2-kHz carrier with transponder information between 3 and 100 Hz. The modulation signal has a maximum peak-to-peak amplitude of 4 V. The modulated carrier is required to have a peak-to-peak amplitude of 6 V.

Design Requirements

 $v_m = \pm 2 \text{ V}$ centered on zero

 $v_o = \pm 3 \text{ V}$ centered on zero

 $V^{(\pm)} = \pm 5 \text{ V}$

 $R_{\rm in} \geq 5,000 \ \Omega$

 $\Delta v_o(\text{max}) = \pm 0.1 \text{ V}$

Device Data (+25°C)

 $R_{\rm on} = 580 \ \Omega$

 $R_{\rm off} = 4 \times 10^8 \,\Omega \,(125 \text{-nA leakage with 5 V})$

 $I_{b4} = 500$ nA (out of device, since this op amp has a PNP input stage)

up and level shift the carrier input to the proper waveform. The 4016 quad available, the other three sections of the comparator can be utilized to square This device works quite well from supply voltages of ± 5 V. If $a \pm 5$ -V v_c is not Step I. We choose one-fourth of an LM339 quad comparator for Az.

CMOS switch is used for S_1 through S_4 . Three sections of the LM324 quad op amp are utilized for A_1, A_2 , and A_4 . Both these devices also operate fairly efficiently from ± 5 V. Slightly better performance can be achieved in switch performance using ±10 V, however.

Step 2. We will let $R_{in}=R_{1}=10~\mathrm{k\Omega}.$ This satisfies the 5-kD minimum

lated. Otherwise, the depth of modulation (percent modulation) will vary voltages can be used. This means, of course, that the ±5 V must now be regu-Step 3. We will let $V_p = +5$ V and $V_N = -5$ V so that the same supply

LM339 comparator we can let $R_5 = \text{zero}$. Step 4. Equation 11 provides us with $R_3 = R_4 = R_1 = 10 \text{ kp}$. For the

Step 5. The two portions of Eq. 10 are computed as follows:

$$R_{2} < \frac{R_{1}[|V^{(\pm)}| - 2]}{|v_{m}| \max} > 4$$

$$< \frac{|v_{m}| |v_{m}|}{2} > 5$$

$$< \frac{10^{4} (5 - 2)}{2} > 5$$

$$< |S_{2}(000 \Omega)| > 5$$

$$|S_{2}(1 - 2)| > 5$$

$$|S_{3}(1 - 2)| > 5$$

$$|S_{4}(1 - 2)| > 5$$

Step 6. The common value for R_6 through R_{11} is $R=(R_{on}R_{off})^{1/2}=$ 485 KD. We therefore let $R_2 = 5,000 \Omega$.

Step 7. A value for R12 is found from

 $R_{12} = \frac{4RR_1 \, v_o (\mathrm{peak})}{3R_{\odot} \, v_m (\mathrm{peak})} = \frac{4(482,000) \, \mathrm{IO^4(3)}}{3(5,000) \, \mathrm{IO^4(3)}} = 1.928 \, \, \mathrm{M}\Omega$

This resistance seems quite high, so we now calculate the dc offset in $v_{\rm o}$ due to A4 input bias current:

$$\rm V~269-0-801\times 928\times 10^{7-}~0.958\times 10^{6}-0.968~V$$

(these changes will lower $\Delta \upsilon_{\rm o}$ to 0.0964 V): This is about ten times too large, so we make the following resistor changes

$$H_{12} = H_6 = H_7 = H_8 = H_9 = H_{10} = H_{11} = 48 \text{ kg}$$

Eqs. I and 2 to find the peak-to-peak v_{o} (assume $V_{\rm R}=v_{\rm m}({\rm peak})/2)$ Step 8. As a double check on our calculations above, we put values into

$$v_{o}(-) = \frac{-K_{s}H_{e}\Pi_{s}^{-1}\Pi_{e}}{R_{s}(R_{e}+R_{s})} \left[\frac{v_{m}(\mathrm{pea}R)_{m}\sigma}{R_{s}(R_{e}+R_{s})}\right] \frac{v_{m}(\mathrm{pea}R)_{m}\sigma}{R_{s}(R_{e}+R_{s})} = -3.015625 \text{ V}$$

$$= \frac{2}{48,000} \frac{2}{48,000} \frac{2}{48,000} \frac{2}{10^{4}} + \frac{2}{100} \frac{2}{10^{4}} + \frac{2}{100} \frac{2}{100} \frac{2}{100} +$$

These peak voltages can be trimmed if R_2 or R_{12} is made adjustable.

Step 9. The peak-to-peak output voltage with switch errors accounted for is now calculated using Eq. 3:

$$\begin{split} v_o(\pm) &\approx \frac{\pm R_2 R_{12} R_{\rm off}}{(R+R_{\rm on})(R+R_{\rm off}) + R R_{\rm off}} \left[\frac{v_m({\rm peak})}{R_1} + \frac{v_m({\rm peak})}{2~R_3} \right] \\ &\approx \frac{\pm 5,000(193,000)~4 \times 10^8}{(48,000+580)(48,000+4 \times 10^8) + 48,000(4 \times 10^8)} \left[\frac{2}{10^4} + \frac{2}{2(10^4)} \right] \\ &\approx \pm 2.997334 \end{split}$$

Even though the R resistors had to be lowered by a factor of 10, the switch errors cause only an 18.2-mV error (3.015625 - 2.997334).

REFERENCES

- 1. Kelly, R. G.: Linear Modulator Has Excellent Temperature Stability, EEE, July 1968, p. 102.
- Althouse, J.: Linear Amplifier Circuit Eliminates Transformers, Electronics, Mar. 21, 1966, p. 99.

18.2 PULSE-AMPLITUDE MODULATOR

ALTERNATE NAMES Pulse-height modulator, PAM, analog gate, gated amplifier, single-channel multiplexer, sampling gate.

EXPLANATION OF OPERATION This circuit is quite similar to the amplitude modulator in the previous section. In this case, however, a unipolar output is required; so the circuit is about 50 percent the size of Fig. 18.1. The pulses are applied to v_c and the modulation waveform drives the circuit at v_m . For the circuit shown in Fig. 18.3, v_c must cross through zero. If a logic circuit such as a TTL device is driving v_c , the + input of A_2 should be biased to +1.4 V. The object, of course, is to switch A_2 on and off so that \bar{v}_c (an inverted v_c) appears at its output.

The modulation input v_m can be centered about zero, or it can be exclusively positive or negative. The modulation depth adjustment R_4 is used to

place v_1 at the correct bias point.

Each time v_c goes high, S_1 turns on and S_2 turns off. During this time the voltage at v_2 is $v_1R_6/(R_5+R_6)$. In between pulses, when v_c is low, S_1 is off and S_2 is on. During this time the voltage at v_2 is very small ($\approx v_1 R_{on}/R_{off}$). The voltage at v_0 is inverted with a magnitude of $v_0 = -v_2 R_7 / R_6$.

DESIGN PARAMETERS

Parameter	Description
A_1	Amplifier which controls the modulation gain and the depth of modulation
$egin{array}{c} A_1 \ A_2 \end{array}$	Comparator used to invert v_c
A_3	Buffer amplifier used to provide a low circuit output resistance and a con- stant load resistance to the switch circuit
I_{b3}	Input bias current of A_3