Arquitetura de redes

Rafael Viana de Carvalho

Introdução

- Redes são complexas com muitos componentes
 - Máquinas (hosts)
 - Equipamentos de interconexão
 - Hubs, switches, roteadores, pontos de acesso sem fio
 - Enlaces (meios físicos) de vários tipos
 - Hardware, Software, Aplicações, Protocolos
- Como organizar toda esta arquitetura (estrutura) de forma eficiente e satisfatória?
 - Solução: Dividir os "esforços" para realizar a comunicação em camadas, com funções e regras bem definidas

Organização e arquitetura de redes

- Para viabilizar a comunicação entre dois pontos é necessário um alto grau de cooperação entre os sistemas comunicantes
- Existe a necessidade de se organizar a tarefa de comunicação, é necessário definir uma arquitetura de redes de comunicação.

Organização e arquitetura de redes

- A arquitetura de comunicação define o comportamento funcional do sistema de comunicação.
- Leva em conta apenas aspectos relativos a comunicação entre hospedeiros. A arquitetura de hardware e sistema operacional não são levados em consideração.

 Analogia da organização de uma viagem aérea, vista como uma série de passos:

passagem (compra) passagem (reclamação)

bagagem (despachar) bagagem (recuperar)

portões (embarcar) portões (desembarcar)

decolagem aterrisagem

roteamento da aeronave roteamento da aeronave

roteamento da aeronave

Analogia da organização de uma viagem aérea

7623	agem aérea omprar)		andrian in the same	Passagem (reclamar)	Passagem
	agagem espachar)			Bagagem (recuperar)	Bagagem
	Portões mbarcar)			Portões (desembarcar)	Portão
De	colagem			Aterrissagem	Decolagem/Aterrissagem
	teamento aeronave	Roteamento de aeronave	Roteamento de aeronave	Roteamento de aeronave	Roteamento de aeronave
Aeroporto de origem		n Centrais intermediárias , de controle de tráfego aéreo		Aeroporto de destino	

- A melhor forma de organizar o plano é dividir em camadas
 - Permite a identificação e relacionamento entre as partes do sistema
 - Mudanças são transparentes para o sistema

Viagem aérea: serviços para cada camada

transporte de pessoas e bagagem de balcão a balcão

entrega entre centros de despacho de bagagem

transporte de pessoas entre portões de embarque

encaminhamento do avião de aeroporto a aeroporto

roteamento da aeronave da origem ao destino

Implementação distribuída das funcionalidades das camadas

Arquiteturas de redes em camadas

- Objetivo: estruturar a rede como um conjunto de camadas (ou níveis) hierárquicas, de forma a reduzir a complexidade do projeto como um todo
 - Cada camada pode ser entendida como um programa ou processo, que pode ser implementada por hardware ou software
 - Cada camada utiliza as funções e serviços oferecidos pelas camadas inferiores
 - Cada camada se comunica com a camada remota correspondente
 - As regras que governam a conversação de cada camada são denominadas protocolos
 - Os limites entre as camadas são denominados interfaces

Componentes de um arquitetura

Entidade

- elemento ativo em cada camada (ex.: processo ou placa de interface de rede)

Serviço

- indica o que a camada faz

Protocolos

- regras e convenções usadas na conversação entre uma camada de uma máquina e a mesma camada de outra

Em uma arquitetura, os dados não são passados diretamente de uma camada (N) para outra

Componentes de um arquitetura

- Conjunto de camadas (níveis), que contém protocolos (regras específicas)
- Camadas adjacentes se comunicam através de uma interface
 - Define operações e serviços que a camada inferior deve oferecer à camada superior
 - Usa funções realizadas no próprio nível e serviços disponíveis nos níveis inferiores
- Um protocolo de nível N é um conjunto de regras e formatos (semântica e sintaxe)
 - Permite que informações do nível N sejam trocadas entre as entidades daquele nível, localizadas em sistemas distintos

Relação entre camadas, protocolos e interfaces

Transmissão de dados

Modelo em camadas

Funções

- Controle de erro
- Controle de fluxo
- Segmentação e remontagem Multiplexação
- Estabelecimento de conexão
- Uma única função pode estar em mais de uma camada

Serviço

- Conjunto de primitivas (operações) que uma camada provê à camada superior
- Tipos de primitivas de serviço
- Pedido (Request), Indicação (Indication), Resposta (Response),
 Confirmação (Confirm)
- Nome de uma primitiva: X-nome.tipo, X indica a camada
- Camada genérica (N)
 - Oferece serviço (N) à camada (N+1) e usa o serviço (N-1)

Modelo em camadas

Protocolo

 Conjunto de regras que governam o formato e o significado de quadros, pacotes ou mensagens trocadas entre entidades pares de uma camada

Interação entre camadas

- PDU (Protocol Data Unit)
 - Troca de informações entre entidades pares
 - Contém informações de controle do protocolo e possivelmente dados do usuário
- SDU (Service Data Unit)
 - Troca de informações entre duas entidades adjacentes
- PCI (Protocol Control Information)
 - Bloco de informações de controle do protocolo de uma camada

Camadas: comunicação lógica

Cada camada:

- Distribuí as "entidades" implementam as funções das camadas em cada nó

- As entidades executam ações, trocam mensagens entre

parceiras

Camadas: comunicação lógica

Ex.: Transporte

- Recebe dados da aplicação

Adiciona endereço e verificação de erro para formar o

"datagrama"

 Envia o datagrama para a parceira

- espera que a parceira acuse o recebimento (ack)
- Análogo aos Correios

Camadas: comunicação física

Camadas: emcapsulamento

Organização e arquitetura de redes

Vantagens

- Modularização dos softwares de comunicação
- Preservação de tecnologia
- Independência em pesquisa e desenvolvimento

Desvantagens

- Overhead de implementação
- Duplicação de funcionalidades

Organização e arquitetura de redes

- Os seguintes princípios são considerados ao se estabelecer as camadas de um modelo:
 - Cada camada deve executar uma função bem definida
 - A função de cada camada deve ser escolhida tendo em vista a definição de protocolos padronizados internacionalmente
 - As fronteiras entre camadas devem ser escolhidas de forma consistente com a experiência passada bem sucedida
 - Os limites da camada devem ser escolhidos para reduzir o fluxo de informações transportado entre as interfaces
 - O número de camadas deve ser suficientemente grande para que funções distintas não precisem ser colocadas na mesma camada e suficientemente pequeno para que a arquitetura não se torne difícil de controlar.

Principais modelos de arquiteturas

- RM OSI
 - Propõe um modelo de referência padrão para a arquitetura dos protocolos de redes
 - Aplicável em redes de longa distância e locais
 - Idealizado para uso em redes de longa distância
- Internet (TCP/IP)
 - Define uma arquitetura voltada para a interconexão de redes
- IEEE 802
 - Define padrões para redes locais
 - Contém informações de controle do protocolo e possivelmente dados do usuário
- SNA IBM
- Apple Talk Apple Computer Corporation
- Netware Novell Corporation

Modelo OSI

- Arquitetura RM-OSI (Reference Model for Open Systems Interconnection) criada pela ISO (international standards organization)
 - Finalidade de padronizar desenvolvimento de protocolos para redes de comunicação de dados.
- Trata-se de uma descrição ou modelo de referência do modo como a informação deve ser transmitida entre dois pontos de uma rede, independente do hardware utilizado.

Modelo OSI

- Cada camada é responsável por algum tipo de processamento
- Cada camada apenas se comunica com a camada imediatamente inferior ou superior
- Exemplo: a camada 6 só poderá se comunicar com as camadas 7 e 5, nunca diretamente com a camada 1

Funcionamento do modelo OSI

- Na transmissão de dados:
 - Cada camada pega as informações passadas pela camada superior
 - Acrescenta informações de controle
 - Passa os dados para a camada imediatamente inferior.
- Na recepção de dados ocorre o processo inverso:
 - Cada camada remove informações de controle
 - Passa para a camada imediatamente superior.
- Cada camada entende apenas as informações de controle da sua responsabilidade
 - Quando uma camada recebe dados da camada superior ela n\u00e3o entende as informa\u00f3\u00e3es de controle adicionadas pela camada superior
 - Trata os dados e as informações de controle como se tudo fosse um único pacote de dados

Funcionamento do modelo OSI

SDU – Unidade de dados do serviço

PDU – Unidade de dados do Protocolo

- Camada 1: A camada física
 - Trata tensões e impulsos elétricos
 - Responsável pela transmissão de bits em um canal de comunicação
 - Especifica cabos, conectores e interfaces
 - Providencia o fluxo de bits através do meio de transmissão

- Camada 2: A camada de enlace de dados
 - Detecta e opcionalmente corrige erros
 - Transmite os dados livres de erros para a camada superior
 - Divide a cadeia de bits em quadros
 - Bits de redundância usados na verificação de erros
 - Delimita e reconhece quadros
 - Realiza controle de fluxo
 - Controle de acesso ao meio

- Camada 3: A camada de rede
 - Identifica os endereços dos sistemas na rede
 - Permite a interconexão de redes
 - Seleção do melhor caminho entre duas entidades fins (roteamento)
 - Realiza o roteamento de pacotes
 - Fragmentação e remontagem de pacotes
 - Controle de congestionamento
 - Compatibilização entre redes de tecnologias diferentes
 - Tipos de Serviço
 - Datagrama: Pacotes roteados de forma independente e possuem informações de endereçamento
 - Circuito Virtual: Pacotes associados ao circuito não são independente

- Camada 4: A camada de transporte
 - Fornece conectividade fim-a-fim
 - Especificam como tratar os detalhes de transferência confiável
 - Multiplexação de processos
 - Controle de fluxo
 - Controle de erro
- Camada 5: A camada de sessão
 - Estabelece e termina conexões entre sistemas, aplicações e usuários
 - Recupera a sessão em caso de interrupção
 - Especificações para detalhes de segurança como autenticação usando senhas

- Camada 6: A camada de apresentação
 - Trata da representação dos dados
 - Realiza transformações adequadas nos dados
 - Compressão, Criptografia, Conversão de Sintaxe
- Camada 7: A camada de aplicação
 - Interface às aplicações a nível de usuário final
 - Permite aplicações utilizarem o ambiente de comunicação
 - Transferência de arquivos (FTP), acesso remoto (HTTP), correio eletrônico, etc

Estrutura do Modelo OSI

- Cada nível apresenta um cabeçalho (PCI), e contém como dados, o cabeçalho da camada superior e seus dados
- Dados da camada são chamados SDU (Unidade de Dados do Serviço)
- PCI (Protocol Control Information) + SDU são chamados PDU (Unidade de Dados do Protocolo)
- Camada de enlace contém um "fecho" chamado Frame
 Check Sequence (FCS) para detecção de erros

Estrutura do Modelo OSI

Arquitetura de Protocolo TCP/IP

- Elaborada com o objetivo de definir a interconexão de diferentes tecnologias de redes (internetworking)
- Desenvolvida pelo Departamento de Defesa dos EUA para sua rede ARPANET
- Usado para a Internet Global
- Regido pelo IETF (Internet Engineering Task Force)
- Protocolo torna-se um padrão Internet através de uma RFC (Request for Comment)
- Não é um modelo oficial, mas um padrão de fato