

DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL

MTH2302D - PROBABILITÉS ET STATISTIQUE

TD nº 12

Exercice 1

Une ingénieure a relevé 10 mesures sur le rendement Y de la production d'un produit chimique en fonction de la température X de fonctionnement du procédé de fabrication. Les 10 mesures ont donné les valeurs suivantes pour la température X_i et le rendement correspondant Y_i :

Température °C	Rendement %	Température °C	Rendement %	
100	44	150	69	
110	52	160	76	
120	54	170	78	
130	59	180	84	
140	68	190	91	

L'ingénieure décide d'utiliser le modèle de régression linéaire simple :

$$Y = \beta_0 + \beta_1 X + \varepsilon$$
 avec $\varepsilon \sim N(0, \sigma^2)$.

On donne les quantités suivantes :

$$\sum_{i=1}^{10} X_i^2 = 218500, \ \sum_{i=1}^{10} Y_i^2 = 47619, \text{ et } \sum_{i=1}^{10} X_i Y_i = 101970.$$

- a) Calculer la valeur des estimateurs $\hat{\beta}_0$, $\hat{\beta}_1$ et $\hat{\sigma}^2$ de β_0 , β_1 et σ^2 , respectivement. Calculer aussi le pourcentage R^2 de variation expliqué par le modèle.
- **b)** Donner le tableau d'analyse de la variance du modèle et tester si le modèle est significatif au seuil de 5%.
- c) L'ingénieure veut prédire le rendement Y si la température du procédé est mise à 200° C. Donner un intervalle de confiance pour le rendement moyen à cette température ainsi qu'un intervalle de prédiction pour Y. Utiliser un niveau de confiance de 95% pour les deux intervalles.

Exercice 2

Les données suivantes avaient été obtenues lors d'une étude portant sur l'évaluation des effets du chlorure de sodium sur des structures en acier peint. La variable X représente le taux de dépôts de l'anhydride sulfureux (SO_2) mesuré en $mg/m^2/j$, et la variable Y désigne la perte de poids de l'acier mesurée en g/m^2 .

X	14	18	40	43	45	112
γ	280	350	470	500	560	1200

On envisage un modèle de régression linéaire simple d'équation

$$Y = \beta_0 + \beta_1 X + \varepsilon,$$

où β_0 et β_1 sont des paramètres et ε , une erreur aléatoire. On suppose que $\varepsilon \sim N(0, \sigma^2)$. Des calculs ont permis d'obtenir les résultats préliminaires suivants :

$$S_{xx} = 6207,33$$
; $S_{xy} = 57800$; et $S_{yy} = 543800$.

- a) Donner l'équation de la droite des moindres carrés. Donner le tableau d'analyse de la variance et calculer \mathbb{R}^2 .
- b) Tester si le modèle est significatif en utilisant un seuil critique de 5%.
- c) Calculer un intervalle de confiance pour la pente de la droite au niveau de confiance 95% et interpréter le résultat.
- d) Au niveau de confiance 95%, à quelle perte de poids en moyenne devrait-on s'attendre lorsque le taux de dépôts de l'anhydride sulfureux est de $100 \text{ } mg/m^2/j$?

Exercice 3:12.1 p. 421. [13.1 p. 399 dans la 2ème édition]

Exercice 4: 12.4 p. 422. [13.4 p. 401 dans la 2ème édition]