

A Survey of Blockchain Consensus Algorithms and attacks

By Ognyan Chikov

Senior Blockchain Developer @LimeChain

Table of contents

- What is Blockchain
- What is Consensus Algorithm
- Proof of Work (PoW)
- Proof of Stake (PoS)
- Proof of ... (whatever)

What is a Blockchain?

You can add a short description or leave it blank. It's up to you.

Centralized Network

Decentralized Network

Distributed Network

Blockchain - Decentralized Ledger Technology

How does a Blockchain work?

You can add a short description or leave it blank. It's up to you.

Blockchain == chain of data blocks

Mining the next block

What is a Consensus Algorithm?

You can add a short description or leave it blank. It's up to you.

- Consensus Algorithm / Consensus Protocol / Consensus Mechanism
- Algorithm to reach agreement among the blockchain nodes
- All nodes should agree about the changes in the distributed ledger
- Proof of Work (PoW) / Proof of Stake (PoS) / Others

Consensus Algorithms

You can add a short description or leave it blank. It's up to you.

Consensus Algorithm - Requirements

Fault tolerance

- Some nodes will be unavailable when the ledger is changes
- Consensus should be reached by part of the nodes (e.g MAJORITY)

Attack-resistance

- Some nodes will intentionally behave incorrectly
- Honest nodes should win in the consensus process
- Everyone in the network can verify the correctness of next block
- Too much resources should be required for successful attack

Proof of Work (PoW)

A "proof of work" is a piece of data which:

- Difficult to produce
- Easy for others to verify
- Producing proof of work can be a random guessing process
- Can be organized in mining pools

Example:

- Find a number X such that SHA256(text + x) has 10 leading zeros
- 10 zeros == network difficulty

Proof of Work Problems

Needs computing power

- Computationally expensive
- Energy expensive

51% Attack:

 Attackers holding more than 50% of the power could potentially reverse-back transactions (double spend money / deny service)

2/6/18

Hashing Algorithm Types:

- ASIC minable (CPU Mineable)
- GPU mineable

Proof of Work Problems (2)

Transaction Speed - Average Wait Time

- Bitcoin every new block is mined ~9 min
- Ethereum every new block is mined ~10 sec
- Business needs real-time transactions (milliseconds)

Transactions Throughput - Transactions per second (tps)

- Bitcoin 2000 3000 transactions per block 3-5 tps
- Ethereum 200 300 transactions per block 10-15 tps
- Business needs thousands of tps (VISA performs 2000 tps)

Proof of Capacity (PoC)

Similar to PoW but based on HDD, not CPU/GPU

- Pay for mining with Hard drive space
- More Hard drive space -> better chance to mine the next block

Calculating hashes is slow, so hashes are stored into HDD for faster access

- Plots large data files holding of precomputed hashes
- More plots -> better your chance finding the next block
- Plot size is similar to hash rate in PoW

Proof of Stake (PoS)

PoS is designed to increase network security and reduce resource wasting

The creator of the next block is chosen in:

- Combination of random selection and wealth
- E.g Holding 1% of the coins gives the chance to verify (mine) 1% of the "Proof of Stake blocks"

The Monopoly problem:

- A monopolist (holder of the most coins) could double spend or deny / filter others transactions.
- Executing a monopoly attack is much more expensive than in PoW

Delegated Proof-of-Stake (DPoS)

Stakeholders vote for delegates in democratic way

- Every wallet holding coins can vote for delegates
- Votes weight is proportional to the wallet's stake in the network

Delegates generate new blocks (like miners in PoW)

- Validate transactions and take the fees as profit
- Maintain the blockchain, e.g vote for changing the network parameters like block intervals, transaction fees,
 others
- Very fast confirmation of transactions (<1s)

Leased Proof-of-Stake (LPoS)

In Leased PoS users can choose:

- To be a full node or lease their stake
- Votes weight is proportional to the wallet's stake in the network

Full nodes maintain the network

- Process transactions and generate new blocks
- PoS based on own stake + leased stake
- Serve as mining pool collect fees and distribute profits
- Most users lease their stake to full nodes
- Users take a portion of the full node's profits just like in the pool mining

Proof of Burn (PoB)

Pob is similar to PoS, where stakes are based on burned coins

Burning coins gives the privilege to mine

- Burn coins by sending them to a burning address (where they are irretrievable)
- More coins you burn = better chance to be selected to mine the next block
- Random selection process (weighted)

Like traditional mining -> invest money to get mining power:

PoW -> invest in hardware; PoB -> invest in burning coins

www.limechain.tech | Proprietary and Confidential

2/6/18

Practical Byzantine Fault Tolerance (PBFT)

Nodes collecting transactions, selects a leader for the next block

- Can be random (deterministic) or random based on stake
- The leader orders the transaction + broadcast the ordered list
- Each nodes validates / executes the transactions + broadcast the calculated hash of the new block
- When ²/₃ of the nodes has the same hash the new block is published (mined)
- Transactions are fast

