SI231b: Matrix Computations

Lecture 9: Least Squares and Orthogonal Projection

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Oct. 10, 2022

MIT Lab, Yue Qiu Si2315. Matrix Computations, Shanghallech Oct. 10, 2022

Brief Overview

Overdetermined System: Ax = b, $A \in \mathbb{R}^{m \times n}$ (m > n), the equation

▶ often has no solution, since

$$\mathbf{b} \in \mathbb{R}^m$$
, while $\mathcal{R}(\mathbf{A})$ is a subspace (at most of dimensional n) of \mathbb{R}^m

has unique solution when

$$\mathbf{b} \in \mathcal{R}(\mathbf{A})$$
 and $\operatorname{rank}(\mathbf{A}) = n$

has infinite solutions when

$$\mathbf{b} \in \mathcal{R}(\mathbf{A})$$
 and rank $(\mathbf{A}) < n$

In practice, we need to find the full rank least square (LS) solution x_{LS} ,

$$\mathbf{x}_{LS} = \arg\min \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2},$$

where $\|\cdot\|_2$ represents the vector 2-norm and **A** is full rank.

4 ロ ト 4 回 ト 4 豆 ト 4 豆 ト 9 Q (や)

Outline

- ► Motivation Applications
- ► Geometric Interpretation of Least Square
- ► Projection onto Subspaces
- ► Orthogonal Projection

Linear Representation

In many applications, we can use the following representation

$$y = Ax$$

or

$$y = Ax + v$$

where

- ▶ y is known (given data);
- ► A is given or stipulated;
- **x** is to be determined;
- v models the noise or error.

Motivation Applications

Data Fitting

Given a set of input-output data pairs $(x_i, y_i) \in \mathbb{R}^2$, i = 1, ..., m, find a function f(x) that fits the data well.

Motivation Applications

Data Fitting Using Polynomials

Applying a polynomial model $f(x) = \sum_{i=0}^{p} a_i x^i$ and use LS

"True" curve: the true f(x), p = 5.

Fitted curve: estimated f(x), a obtained by LS with p = 5.

MIT Lab, Yue Qiu Sl231b: Ma

Geometric Interpretation of Least Square

$$\mathbf{x}_{LS} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2$$

- 1. find $\tilde{\mathbf{b}} \in \mathcal{R}(\mathbf{A})$ such that $\|\mathbf{b} \tilde{\mathbf{b}}\|_2$ is minimized
 - recall the distance between two vectors using vector norms
- 2. solve $\mathbf{A}\mathbf{x}_{LS} = \tilde{\mathbf{b}}$ to obtain \mathbf{x}_{LS}

Question: how to obtain $\tilde{\mathbf{b}} \in \mathcal{R}(\mathbf{A})$?

MIT Lab, Yue Qiu SI231b: Matrix Computations, Shanghai Tech

Projection

Projectors

A projector is a square matrix that satisfies

$$P^2 = P$$
.

- such a matrix is called idempotent
- geometric interpretation?

Note: this definition of projectors include both

- orthogonal projectors (key in our course)
- oblique projectors (will not be addressed)

Question: onto which subspace does P project?

Answer: $\mathcal{R}(P)$

MIT Lab, Yue Qiu

Projection Direction

How to distinguish orthogonal and oblique projection?

Figure 1: orthogonal projection

Figure 2: oblique projection

Answer: the projection direction Pv - v

Note: P(Pv - v) = 0, which means $(Pv - v) \in \mathcal{N}(P)$.

4□ > 4問 > 4 = > 4 = > = 900

Complementary Projector

If **P** is a projector, then I - P is also a projector (why?)

$$(I - P)^2 = I - 2P + P^2 = (I - P)$$

The projector I - P is called the complementary projector of P.

Question: onto which subspace does I - P project?

Answer: $\mathcal{N}(\mathbf{P}) = \mathcal{R}(\mathbf{I} - \mathbf{P})$

First, $\mathcal{N}(\mathbf{P}) \subset \mathcal{R}(\mathbf{I} - \mathbf{P})$ (give your explanation here)

Second, $\mathcal{R}(\textbf{I}-\textbf{P})\subset\mathcal{N}(\textbf{P})$ (you are supposed to work it out indepently)

Then,

$$\mathcal{R}(\mathbf{I} - \mathbf{P}) = \mathcal{N}(\mathbf{P}) \text{ and } \mathcal{R}(\mathbf{P}) = \mathcal{N}(\mathbf{I} - \mathbf{P})$$

$$\mathcal{R}(\mathbf{P}) \cap \mathcal{N}(\mathbf{P}) = \{\mathbf{0}\}$$

Projection onto Subspaces

Suppose $\mathcal{V} = \mathcal{U} \oplus \mathcal{W}$, then there is a projector **P** such that $\mathcal{R}(\mathbf{P}) = \mathcal{U}$ and $\mathcal{N}(\mathbf{P}) = \mathcal{W}$, we say that **P** is a projector onto \mathcal{U} along \mathcal{W} .

Previous analysis show that the projector $\mathbf{P} \in \mathbb{R}^{m \times m}$ separates \mathbb{R}^m into two subspaces

- ▶ **R**(**P**)
- ▶ *N*(**P**)

and

$$\mathbb{R}^m = \mathcal{R}(\mathbf{P}) \oplus \mathcal{N}(\mathbf{P})$$
 can you prove this?

 ${\sf P}$ projects \mathbb{R}^m onto $\mathcal{R}({\sf P})$ along $\mathcal{N}({\sf P})$.

Orthogonal Projection

Orthogonal projector

An orthogonal projector ${\bf P}$ is the one that projects onto a subspace ${\cal U}$ along a subspace ${\cal W}$ when ${\cal U}$ and ${\cal W}$ are orthogonal.

Warning: orthogonal projectors are not orthogonal matrices.

Theorem

A projector **P** is orthogonal if and only if $\mathbf{P} = \mathbf{P}^T$.

Proof?