```
In [2]: import pandas as pd
          import warnings
          import matplotlib.pyplot as plt
          import warnings
          warnings.filterwarnings("ignore")
In [3]: data=pd.read_csv("/home/placement/Downloads/Advertising.csv")
In [4]: data.describe()
Out[4]:
                 Unnamed: 0
                                   TV
                                            radio newspaper
                                                                  sales
                  200.000000
                            200.000000
                                       200.000000
                                                 200.000000
                                                            200.000000
           count
                  100.500000
                            147.042500
                                        23.264000
                                                   30.554000
                                                             14.022500
           mean
                   57.879185
                             85.854236
                                        14.846809
                                                   21.778621
             std
                                                              5.217457
                              0.700000
                                                    0.300000
            min
                    1.000000
                                         0.000000
                                                              1.600000
            25%
                   50.750000
                             74.375000
                                         9.975000
                                                   12.750000
                                                             10.375000
            50%
                            149.750000
                                                   25.750000
                  100.500000
                                        22.900000
                                                             12.900000
                            218.825000
            75%
                  150.250000
                                        36.525000
                                                   45.100000
                                                             17.400000
                  200.000000 296.400000
                                        49.600000 114.000000
                                                              27.000000
In [5]: data1=data.drop(['Unnamed: 0'],axis=1)
```

localhost:8888/notebooks/LASSO.ipynb

```
In [6]: data1
```

Out[6]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

```
In [7]: y=data1['sales']
x=data1.drop(['sales'],axis=1)
```

```
In [8]: y
Out[8]: 0
               22.1
               10.4
                9.3
        2
        3
               18.5
               12.9
               7.6
        195
        196
                9.7
        197
               12.8
               25.5
        198
        199
               13.4
        Name: sales, Length: 200, dtype: float64
```

In [9]: x

Out[9]:

	TV	radio	newspaper
0	230.1	37.8	69.2
1	44.5	39.3	45.1
2	17.2	45.9	69.3
3	151.5	41.3	58.5
4	180.8	10.8	58.4
195	38.2	3.7	13.8
196	94.2	4.9	8.1
197	177.0	9.3	6.4
198	283.6	42.0	66.2
199	232.1	8.6	8.7

200 rows × 3 columns

localhost:8888/notebooks/LASSO.ipynb

```
In [10]: data1=data.drop(['sales'],axis=1)
```

In [11]: data1

Out[11]:

	Unnamed: 0	TV	radio	newspaper
0	1	230.1	37.8	69.2
1	2	44.5	39.3	45.1
2	3	17.2	45.9	69.3
3	4	151.5	41.3	58.5
4	5	180.8	10.8	58.4
•••				
195	196	38.2	3.7	13.8
196	197	94.2	4.9	8.1
197	198	177.0	9.3	6.4
198	199	283.6	42.0	66.2
199	200	232.1	8.6	8.7

200 rows × 4 columns

```
In [12]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
```

```
In [13]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import Lasso
         lasso = Lasso()
         parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         lasso regressor = GridSearchCV(lasso, parameters)
         lasso regressor.fit(x train, y train)
Out[13]:
          ▶ GridSearchCV
          ▶ estimator: Lasso
                ▶ Lasso
In [14]: lasso_regressor.best_params_
Out[14]: {'alpha': 1}
In [15]: lasso=Lasso(alpha=30)
         lasso.fit(x_train,y_train)
         y pred lasso=lasso.predict(x test)
In [16]: from sklearn.metrics import r2 score
         r2 score(y test,y pred lasso)
Out[16]: 0.7659327162791038
In [ ]:
In [ ]:
```

localhost:8888/notebooks/LASSO.ipynb 5/6