课程名称:	实验名称: 声度况:	业 了 工 工 工 工 工 工 工 工 工 工 工 工 工 工 工 工 工 工			29_日 F ⁴ 23号
班级:	47-91-97:				
	法,相位法测量超	声波在空气中的	均传波播建	度	
- , 实验仪器	-1 P 1 1 1 2 1 1 9	1 20 84 千 波 等	间:	年月	目
P & B	测量仪,信号发生器		上午		上
天冠厚理 超声波在引	性煤竹中以纵波产	6式传播, 传书	金速度 ル与き	夜率于及股1	长人之间包
关条为 u= fx					

1. 共振干涉法

发射器发射出的平面超声波,入射到接收器的平面上被反射,在发射器心与 接收器之间入射波与反射波叠加形成驻波。相邻两次出现强信号的位置之间 距离为会

在波的传播方向上,两个相邻的振动状态完全相同的位置之间距离为一个 2. 相位比较法 波长人。通过观察如图所示的李萨茹图形, 黑判断同相位总位置, 测得波长入

 $\Delta \phi = 0$

ムタニテ

ムタニス

49= 3石

D9=222

四.实验步骤与内容

1. 仪器介绍

(1)超声声度测定仪由支架,游标长尺及两只超声压电换能器组成

指导教师签字:

课程	名称:	实验名称:				
班	lan		实验日期:	年	月	E
'AI	级:	教学班级:	学 号:	姓	名:	

(2) 两只按能器的输入和输出插口,均为红色接信号,黑色接地,将发射换能器的输入端连接到信号发生器输出的T型BNC输出端,而使接收换能器的输出连接到二踪示波器的Y2(Y)输入端。示波器的工作方式选择波段开关置于Y2,档, T/div. V/div选择波段开关分别置于合适位置,例如20/45 和20mV档

(3) 调节函数信号发生器的发射频率,当示波器有接收信号显示之后,仔细调整信号发生器的输出信号频率,使发射换能器处于谐振状态。此时,示波器显示的接收信号的幅度最大,此时的共振频率,即为超声波频率f

2. 共振干涉法测波长

在换能器手统共振的争件下,从靠近发射换能处,使接收换能器由近及远地移动。当示波器上出现较大振幅的信号时,利用游标尺上的细调机构,找到并记录产生最大共振信号的位置、逐点记下各振幅最大时的位置读数×1,×2,…×10,×11,×12,…,×20,然后利用逐差法处理数据、得到起声波的平均波长入10,×11,×12,…,×20,然后利用逐差法处理数据、得到起声波的平均波长入10,×11,×12,…,×20,然后利用逐差法处理数据、得到起声波的平均波长入10,×11,×12,…,×20,

3. 相位比较法测波长

(1)把函数信号发生器输出的T型接头的另一BNG输出端连接到双踪示波器的Y,输入,使信号源、输出的正弦波直接加到示波器X的两端输入端、接收换能器输出接线位置不变

(2) 在共振频率条件下,再将接收换能器平面端面调整到箱箱偏离垂直方向,以利于示波器观察合成图象

1/47 7 1/2 20 MAY 11/4 11/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4	指导教师签字:
联系方式:	1日 17 4大小上2 1
4人不刀又:	

进程	名称:	实验名称:	40°30 EJ 901	. Dec	13	12
雞	591.		实验日期:	_ +_		
		教学班级:	偿 号,	22	7.	

注意:

- (1) 实验时应首先确定压电换能器的谐振频率
- C2)实验中, 应随时调节示波器的下, 轴灵敏步进凝钮, 以提高测量 灵敏度

当号数师至于

实	验	口十	出
7	44	报	100
	711	111	口

课程名称:	7	11/	1-1				
班 级:	实验名称:	实验	过日期:	年	月		日
	教学班级:	学	号:	姓	名:		
第2:21-5°C	国有频率: 37.041 kHz		- J:	38	-1-		
一本被干			1间:	年	月	日	
越	沙江		上午	下午		E	

2-祖位比较法

波节	×ı	Xz	× ₃	X4	Xs	X6	X ₁	Xg	×٩	× _{I*}
位置Gm) 0	4.59	924	13.80	18.17	22.95	27-19	31.95	36.60	41-28
	XII	X+2	X ₁₃	X14	XIX	X16	X11	Xis	X19	X20
位置(mm)	45.99	50.71	44.63	60.15	64.79	69.33	13.99	18.64	83.17	87-74
	X ₂₁	X22	X23	X24	X25	X26	Xe7	Xz8	Xu	X,,,
位置(mm)	92.57	97-20	101-90	106.39	111.00	115.60	120.20	124-98	129.78	134.26

联系方式: _____

指导教师签字:____

课程名称:	大力	业1区口			
班 级:	实验名称:	实验日期:	年	月	目
1. # +=	教学班级:	学 号:	姓	名:	

1.	艾	te	T	
	'	VE	T	涉法

波节	位置(mm)	1 th 4	1:10	1	1
1	IZE (mm)	波节	1上直(mm)波节整~~)	位置差(mm)
X	0	×16	69-33	X16-X1	69.33
Xz	4.20	X17	13.13	X77-X2	69.83
X_3	9.06	XIS	78.42	X18-X3	69.36
X4	13.44	X19	83.79	X19 - X4	70.35
Xs	17.99	X2.	87.68	X20-X5	69.69
X6	22.44	X21	92.43	X21-X6	70.01
X ₇	27.00	X22	96.98	X22-X7	69-98
X8	31-65	X23	101.85	X23-X8	70.2
X9	36.33	X24	106.03	X24-X4	69.7
X ₁₀	40.86	Xzk	11147	X25-X10	70.61
XII	45.47	X26	116.33	X26-X11	70.86
X12	50.04	X27	120.56	X27-X12	70.52
X13	\$5.02	Xu8	125.33	X18-X13	70.31
X14	59.70	X29 .	130.20	X29-X14	70.5
×Is	64.50	X.	134.99	X20 - X14	

频率: 37.041 kHz, 室温t: 21.5°C.

趙理论值: V= V。√T。= 344.24738 m/s

声速理论值: 344.25 m/s

 教学班级:

姓名:

学号:

大=
$$\frac{15}{15}$$
 (Xi+Us-XI)/IS
$$V = f = \frac{346.19}{15}$$
 かん

$$\lambda_{B} = \frac{\Delta ins}{\sqrt{3}} = 0.0115 \text{ mm}$$

$$\lambda_c = \sqrt{\lambda_a^2 + \lambda_b^2} = 0.0202 \text{ mm}$$

$$f_B = \frac{\Delta ins}{\sqrt{3}} = 0.1155 \frac{\Delta ins}{\Delta mas} kHz$$

$$E = \int (x)^2 (f_B)^2 + f_K(\lambda_c)^2 = 1.31 \text{ m/s}$$

--
$$UV = 1.31 \, m/s$$

 $\frac{V(V)}{V(UV)} = 346.19 \, (1.31) \, m/s$

大短报告

课程	名称:	工工工实验名称:	实验日期:	年 月	日
班	级:	数学班级:		姓 名:	

2. 租位比较法

波节	位置(mm)	波节	位置(mm)	波节差	位置差(min)
×,	0	X16	69.33	X16-X1	69.33
X ₂	4.19	XiT	673.99	X17-X2	69.40
×3	9-24	X18	78.64	X18-X3	69.340
X ₄	13.80	X19	83.17	X19-X4	69.37
Xx	18-17	X 2.	87.74	X20-X5	69.57
. ×6	22.95	X21	92.57	X21-X6	69.62
X ₇	27.19	X22	97.20	X22-X7	70.01
Xg	31-95	X23	101.90	X23-X8	69.93
Xq.	36.60	X24	106.39	X24-X9	65.79
X1.	41.28	X25	111.00	X28-X1	69.72
×II	45.99	X26	115.60	X28-X11	69-61
X(2	50.71	X27	120.20	X27-X1	2 69.49
, X13	45.63	X28	124-98	X28-X1	3 69.35
X14	60.15	X29	129.78	X29-X	69.63
XIS	64-79	X 30	134-26	X30-X1	\$ 69.47

频率: 37.041 kHz. 室温t: 21.5°C 声速理论值: 344.25 m/s

	指导教师签字:	
	JH J 4XXI	
联系方式:	- 2129	22088

111		

-1-1-1-	-11737:		实验名称:					
班	级:		_	实	验日期:			
			教学班级:	314		—— 年	月	日
	4	13		一	号:	tul- 1st		

$$\lambda_3 = \frac{\Delta inc}{\sqrt{3}} = 0.011 \pm mm$$

$$\lambda_c = \sqrt{1}$$

$$f_B = \frac{\Delta ins}{\sqrt{3}} = 0.1155 \text{ kHz}$$

$$E = \sqrt{(\pi)^2 (f_8)^2 + f_8 f_2^2 (\lambda_c)^2} = 1.18 \cdot m/s$$

$$-1.18 \text{ m/s}$$

 $V(U_V) = 343.65 (1.18) \text{ m/s}$

联系方式:

指导教师签字:_____

思考题:

- 1. 当驻波偏离共振状态时,驻波形状不稳定,同时波腹的振幅比共振时的振幅小,当驻波处于共振时,驻波腹出现稳定的最大振幅, 易于邓寧测量
- 2. 发射器与接收 换能器与接收换能器间不是严格驻波场用接收换能器 飲反射面 时,存在误差 仪器的频率有略微变知动 发射的波可能是球面波

指导教师签字:____

4-14 81°