Derivatives of benzothiophenes, benzofurans and indoles, method for their preparation and pharmaceutical compositions containing them

Patent number:

EP1092716

Publication date:

2001-04-18

Inventor:

DE NANTEUIL GUILLAUME (FR); LILA CHRISTINE

(FR); VERBEUREN TONY (FR); RUPIN ALAIN (FR)

Applicant:

ADIR (FR)

Ciassification:

- international:

C07D409/06; C07D333/64; C07D409/14; C07D401/06;

A61K31/47; A61K31/44; A61K31/381; A61P7/02

- european:

C07D333/58; C07D333/60; C07D401/06; C07D409/06;

C07D409/14; C07D521/00B2E

Application number: EP20000402831 20001013 Priority number(s): FR19990012899 19991015

Also published as:

US6302837 (B1) JP2001122876 (A)

FR2799756 (A1) EP1092716 (A3) CA2323707 (A1)

more >>

Cited documents:

WO9325546 WO9412179 WO9203132 WO9408962

Report a data error here

Abstract of EP1092716

Benzothiophene, benzofuran and indole derivatives (I), their isomers and salts with acids and bases, their preparation, and pharmaceutical compositions containing them. Benzothiophene, benzofuran and indole derivatives of formula (I) are new: X = O, S, or NR3; R3 = H, 1-6C alkyl or acyl, aryl, aryl 1-6C alkyl, or heteroaryl 1-6C alkyl; Y' = O, S, NR3 or when X is N-heteroaryl alkyl, it may be a single bond; when T' is linked by a single bond it = N or C; when it is linked by a double bond, T' = C; A = a single bond, 1-6C alkylene optionally substituted as defined below, arylene, cycloalkylene, heterocycloalkylene, heteroarylene, -SO2-R4- linked to T' through the S atom; R4 = 1-6C alkylene, arylene, aralkylene, cycloalkylene, heterocycloalkylene, or heteroarylene; W = OH, 1-6C alkoxy, aryloxy, aryl 1-6C alkoxy, cycloalkoxy, heterocycloalkoxy, heteroaryloxy, amino, hydroxyamino, or amino mono- or di substituted by alkyl, aryl, aralkyl, or cycloalkyl; U1 = O, S, or 1-6C alkylene in which 1 or more C atoms may be replaced by O, N, or S heteroatoms, and optionally substituted as defined below; V1 = arylene, heteroarylene, or heterocycloalkylene; U2 = a single bond, O, S, N, SO2, 1-6C alkylene in which 1 or more C atoms may be replaced by O, N, or S heteroatoms, and the N may be substituted by H or 1-6C alkyl; V2 = aryl, heteroaryl, or heterocycloalkyl, Ra, Rb, and Rc = H, halogen, OH, CN, NO2, 1-6C alkyl, alkoxy, or acyl, carboxy, alkoxycarbonyl, 1-6C trihaloalkyl, amino optionally substituted by 1 or 2 alkyl, aryl, or aralkyl groups, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, or a group of formula -U1-V1-U2-V2, or two of these groups together form methylenedioxy or ethylenedioxy optionally substituted; R1 = aryl optionally substituted as defined below, 1,3-dihydro-2H-indol-2-one, 3,4-dihydro-2(1H)-quinolone, 1-hydroxy-2(1H) pyridinone, or an optionally substituted heterocyclic group; R2 = H, 1-6C alkyl, aryl, aryl 1-6C alkyl, cycloalkyl, heterocycloalkyl, heterocycloalkyl alkyl, heteroaryl, or heteroaryl alkyl.

Data supplied from the esp@cenet database - Worldwide

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: 18.04.2001 Bulletin 2001/16

(21) Numéro de dépôt: 00402831.2

(22) Date de dépôt: 13.10.2000

(51) Int Cl.7: C07D 409/06, C07D 333/64. C07D 409/14, C07D 401/06, A61K 31/47, A61K 31/44, A61K 31/381, A61P 7/02

(84) Etats contractants désignés:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Etats d'extension désignés: AL LT LV MK RO SI

(30) Priorité: 15.10.1999 FR 9912899

(71) Demandeur: ADIR ET COMPAGNIE 92415 Courbevole Cédex (FR)

(72) Inventeurs:

· de Nanteuil, Guillaume 92150 Suresnes (FR)

(11)

- · Lila, Christine 91190 Gif Sur Yvette (FR)
- Verbeuren, Tony 78540 Vernouillet (FR)
- Rupin, Alain 37510 Savonnieres (FR)
- (54)Dérivés benzothiophéniques, benzofuraniques et indoliques, leur procédé de préparation et les compositions pharmaceutiques qui les contiennent
- (57)Composés de formule (I):

$$\begin{array}{c|c}
Rb & Ra & Y-R_1 \\
Rc & X & X & X \\
V_2-U_2-V_1-U_1 & X & X & X \\
\hline
R_2 & X-C-W & X & Y-R_1 \\
\hline
R_2 & X-C-W & X & X & Y-R_1 \\
\hline
R_2 & X-C-W & X & Y-R_1 & Y-R_1 \\
\hline
R_2 & X-C-W & Y-R_1 & Y-R$$

dans laquelle:

Х

représente un atome d'oxygène, de soufre, ou un groupement NR3 dans lequel R3 est tel que défini dans la description,

Υ

représente un atome d'oxygène, de soufre, un groupement NR3, ou peut représenter une liaison simple dans certains cas,

Т

représente un atome d'azote, un atome de carbone ou un groupement CH,

Α

représente une liaison simple, un groupement alkylène, arylène, cycloalkylène, hétérocycloalkylène, hétéroarylène, ou un groupement -SO2-R4- dans lequel R4 est tel que défini dans la description,

W

représente un groupement hydroxy, alkoxy, aryloxy, arylalkoxy, cycloalkyloxy, hétérocycloalkyloxy, hétéroaryloxy, ou un groupement hydroxyamino,

U

représente un hétéroatome ou une chaîne alkylène, dont un ou plusieurs des atomes de carbone peuvent éventuellement être remplacé par un ou plusieurs hétéroatomes, représente un groupement arylène, hétéroarylène ou hétérocycloalkylène,

٧ı U_2

représente une liaison simple, un hétéroatome, ou une chaîne alkylène, dont un ou plusieurs atomes de carbone peuvent éventuellement être remplacé par un ou plusieurs hétéroatomes,

représente un groupement aryle, hétéroaryle ou hétérocycloalkyle,

Ra, Rb, Rc, identiques ou différents, indépendamment l'un de l'autre, représentent un groupement tel que défini dans la description,

R₁ représente un groupement aryle substitué par un à cinq substituants, un groupement 1,3-dihydro-2*H*-indol-2-one, 3,4-dihydro-2(1*H*)-quinolinone, 1-hydroxy-2(1*H*)-pyridinone, ou un groupement hétéroaryle,

R₂ représente un atome d'hydrogène, un groupement alkyle, aryle, arylalkyle, cycloalk-

yle, hétérocycloaikyle, hétérocycloaikylalkyle, hétéroaryle, ou hétéroarylalkyleé,

leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.

Description

10

20

30

35

40

45

50

Y

T

[0001] La présente invention concerne de nouveaux dérivés benzothiophèniques, benzofuraniques et indoliques, leur procédé de préparation et les compositions pharmaceutiques qui les contiennent. Ces nouveaux composés sont utiles pour leur activité thérapeutique dans le domaine de la fibrinolyse et de la thrombose, grâce à leur propriété inhibitrice de l'activité du PAI-1.

[0002] Le PAl-1 est un inhibiteur puissant des activateurs du plasminogène (activateur tissulaire du plasminogène et urokinase). Il provoque, in-vitro et in-vivo, l'inhibition de la lyse des caillots fibrineux formés par l'action de la thrombine sur le fibrinogène. De nombreuses études épidémiologiques ont montré que chez l'homme, des taux élevés de PAl-1 sont associés à la survenue plus fréquente de maladies thromboemboliques. De plus, dans des modèles expérimentaux de thrombose et de thrombolyse, l'inhibition de l'activité du PAl-1 par des anticorps monoclonaux anti-PAl-1 diminue l'incidence des thromboses ou des réocclusions. L'intérêt thérapeutique de molécules possédant la propriété d'inhiber l'activité du PAl-1 au sein du caillot fibrineux formé ou en formation est donc de permettre sa lyse précoce avant sa complexation avec le facteur XIIIa et ainsi de diminuer l'incidence des accidents thromboemboliques chez les patients possédant des taux élevés de PAl-1. De tels composés présentent un intérêt thérapeutique dans toutes les pathologies dont l'origine est la thrombose (tel que l'infarctus du myocarde, l'angor, la claudication intermittente, les accidents vasculaires cérébraux, la thrombose veineuse profonde, ou l'embolie pulmonaire) ainsi que pour les pathologies dans lesquelles les risques thrombotiques sont augmentés (telles que l'hypertension, l'hypercholestérolémie, le diabète, l'obésité, les anomalies génétiques de la coagulation (facteur V leiden, déficit en protéines C et S) ou les anomalies acquises de la coagulation).

[0003] Les composés de la présente invention, outre le fait qu'ils soient nouveaux, se sont révélés être des inhibiteurs du PAI-1 plus puissants que ceux décrits dans la littérature, ce qui les rend donc potentiellement utiles pour le traitement de la thrombose, des pathologies dont l'origine est la thrombose, et des pathologies entraînant une augmentation des risques thrombotiques.

[0004] Un certain nombre d'antithrombotiques ont été décrits dans la littérature. C'est le cas, plus particulièrement, des composés décrits dans les brevets WO 97/45424, WO 94/08962, EP 540051 ou GB 2225012.

[0005] Plus spécifiquement, la présente invention concerne les composés de formule (I):

dans laquelle :

X représente un atome d'oxygène, de soufre, ou un groupement NR_3 dans lequel R_3 représente un atome d'hydrogène, un groupement alkyle (C_1-C_6) linéaire ou ramifié, acyle (C_1-C_6) linéaire ou ramifié, aryle, arylalkyle (C_1-C_6) linéaire ou ramifié, ou hétéroarylalkyle (C_1-C_6) linéaire ou ramifié,

représente un atome d'oxygène, de soufre, un groupement NR₃, le groupement R₃ ayant la même définition que précédemment, ou peut représenter une liaison simple quand X représente un groupement NR'₃ dans lequel R'₃ représente un groupement hétéroarylalkyle (C₁-C₆) linéaire ou ramifié,

représente un atome d'azote quand la liaison qui le relie avec l'atome de carbone voisin est simple (—), un atome de carbone ou un groupement CH selon que la liaison qui le relie avec l'atome de carbone voisin est simple (—) ou double (----)

représente une liaison simple ou un groupement choisi parmi alkylène (C₁-C₆) (éventuellement substitué par un ou plusieurs groupements alkyle (C₁-C₆) linéaire ou ramifié, aryle, arylalkyle (C₁-C₆) linéaire ou ramifié, cycloalkyle, hétérocycloalkyle, ou hétéroaryle), arylène, cycloalkylène, hétérocycloalkyle, ou hétéroarylène, cycloalkylène, hétérocycloalkyle, ou hétéroarylène, et un groupement -SO₂-R₄- (la partie SO₂ étant reliée à T) dans lequel R4

représente un groupement choisi parmi alkylène (C1-C6) linéaire ou ramifié, arylène, arylalkylène (C1-C₆) linéaire ou ramifié, cycloalkylène, hétérocycloalkylène, et hétéroarylène,

W

5

10

représente un groupement choisi parmi hydroxy, alkoxy (C1-C6) linéaire ou ramifié, aryloxy, arylalkoxy (C₁-C₆) linéaire ou ramifié, cycloalkyloxy, hétérocycloalkyloxy, hétéroaryloxy, amino (lui-même pouvant être substitué par un ou deux groupements, identiques ou différents, indépendamment l'un de l'autre, choisis parmi alkyle (C₁-C₆) linéaire ou ramifié, aryle, arylalkyle (C₁-C₆) linéaire ou ramifié, ou cycloalkyle), et hydroxyamino,

 U_1

représente un atome d'oxygène, de soufre ou une chaîne alkylène (C1-C6) linéaire ou ramifié, dont un ou plusieurs des atomes de carbone peuvent éventuellement être remplacés par un ou plusieurs hétéroatomes choisis parmi oxygène, azote et soufre, ladite chaîne alkylène étant éventuellement substituée par un ou plusieurs groupements, identiques ou différents, choisis parmi atomes d'halogène, groupements hydroxy, alkyle (C₁-C₆) linéaire ou ramifié, et alkoxy (C₁-C₆) linéaire ou ramifié,

15

20

25

représente un groupement arylène, hétéroarylène ou hétérocycloalkylène,

 U_2

V₁

représente une liaison simple, un atome d'oxygène, d'azote, de soufre ou une chaîne alkylène (C₁-C₆) linéaire ou ramifié dont un ou plusieurs atomes de carbone peuvent éventuellement être remplacés par un ou plusieurs groupements, identiques ou différents, choisis parmi atomes d'oxygène, de soufre, d'azote (l'atome d'azote étant substitué par un groupement choisi parmi hydrogène et alkyle (C₁-C₆) linéaire ou ramifié), et un groupement SO₂,

représente un groupement aryle, hétéroaryle ou hétérocycloalkyle,

Ra. Rb. Rc.

V₂

identiques ou différents, indépendamment l'un de l'autre, représentent chacun un groupement choisi parmi:

atome d'hydrogène, d'halogène,

30

35

40

- groupement hydroxy, cyano, nitro,
- alkyle (C₁-C₆) linéaire ou ramifié, alkoxy (C₁-C₆) linéaire ou ramifié, acyle (C₁-C₆) linéaire ou ramifié, carboxy, alkoxycarbonyle (C₁-C₆) linéaire ou ramifié, trihalogénoalkyle (C₁-C₆) linéaire ou
- amino (éventuellement substitué par un ou deux groupements, identiques ou différents, indépendamment l'un de l'autre, alkyle (C_1-C_6) linéaire ou ramifié, aryle, ou arylalkyle (C_1-C_6) linéaire ou
- aryloxy, arylalkoxy (C₁-C₆) linéaire ou ramifié, hétéroaryloxy, hétéroarylalkoxy (C₁-C₆) linéaire ou
- et un groupement de formule -U1-V1-U2-V2 dans laquelle U1, U2, V1 et V2 sont tels que définis précédemment,
- ou pris par deux forment ensemble un groupement méthylènedioxy, ou éthylènedioxy (chacun de ces groupements étant éventuellement substitués par un ou deux groupements alkyle (C1-C6) linéaire ou ramifié, aryle, ou arylalkyl (C1-C6) linéaire ou ramifié),

45 R₁

représente :

50

un groupement aryle substitué par un à cinq substituants, identiques ou différents, indépendamment l'un de l'autre, choisis parmi halogène, hydroxy, cyano, nitro, carboxy, alkyle (C1-C6) linéaire ou ramifié, alkoxy (C_1 - C_6) linéaire ou ramifié, acyle (C_1 - C_6) linéaire ou ramifié, alkoxycarbonyle (C₁-C₆) linéaire ou ramifié, trihalogénoalkyle (C₁-C₆) linéaire ou ramifié (éventuellement substitué par un groupement hydroxy), trihalogénoalkoxy (C_1 - C_6) linéaire ou ramifié, amino (éventuellement substitué par un ou deux groupements alkyle (C1-C6) linéaire ou ramifié, un desdits groupements alkyles étant éventuellement substitué par un groupement choisi parmi amino, alkylamino (C_1 - C_6) linéaire ou ramifié, et dialkylamino (C_1 - C_6) linéaire ou ramifié), aminoalkoxy (C_1 - C_6) linéaire ou ramifié (la partie amino étant éventuellement substituée par un ou deux groupements, identiques ou différents, alkyle (C_1-C_6) linéaire ou ramifié), alkoxycarbonylalkyle (C_1-C_6) linéaire ou ramifié, alkyl(C₁-C₆)carbonylamino linéaire ou ramifié, arylakyle (C₁-C₆) linéaire ou ramifié, aryloxy, arylalkoxy (C1-C6) linéaire ou ramifié, arylamino, arylalkylamino (C1-C6) linéaire ou ramifié, aryl-

sulfanyle, arylalkyl(Ci-C6)sulfanyle linéaire ou ramifié, hétéroaryle, hétéroarylalkyle (C_1 - C_6) linéaire ou ramifié, hétéroarylay, hétéroarylalkoxy (C_1 - C_6) linéaire ou ramifié, hétéroarylalkyl(C_1 - C_6)amino linéaire ou ramifié, hétéroarylsulfanyle, hétéroarylalkyl(C_1 - C_6)sulfanyle linéaire ou ramifié,

- un groupement 1,3-dihydro-2H-indol-2-one, 3,4-dihydro-2(1H)-quinolinone, 1-hydroxy-2(1H)-py-ridinone,
- ou un groupement hétéroaryle éventuellement substitué,

R₂ représente un groupement choisi parmi atome d'hydrogène, groupement alkyle (C₁-C₆) linéaire ou ramifié, aryle, arylalkyle (C₁-C₆) linéaire ou ramifié, cycloalkyle, hétérocycloalkyle, hétérocycloalkyle (C₁-C₆) linéaire ou ramifié, hétéroaryle, et hétéroarylalkyle (C₁-C₆) linéaire ou ramifié,

étant entendu que par :

5

10

35

- groupement aryle, on comprend un groupement phényle, biphényle, naphtyle, tétrahydronaphtyle, ou dihydronaphtyle, chacun de ces groupements étant éventuellement substitué de façon identique ou différente, par un ou plusieurs groupements choisis parmi atome d'halogène, groupement hydroxy, cyano, nitro, alkyle (C₁-C₆) linéaire ou ramifié (éventuellement substitué par un ou plusieurs groupements choisis parmi hydroxy, amino, mono ou dialkylamine (C₁-C₆) linéaire ou ramifié), trihalogénoalkyle (C₁-C₆) linéaire ou ramifié, alkoxy (C₁-C₆) linéaire ou ramifié, aryloxy, acyle (C₁-C₆) linéaire ou ramifié, carboxy, alkoxycarbonyle (C₁-C₆) linéaire ou ramifié, et amino (substitué éventuellement par un ou deux groupements, identiques ou différents, alkyle (C₁-C₆) linéaire ou ramifié),
 - groupement cycloalkyle, on comprend un groupement mono ou bicyclique, comportant de 3 à 8 atomes de carbone,
- hétérocycloalkyle, on comprend un groupement mono ou bicyclique, saturé ou insaturé, à caractère non aromatique, de 5 à 12 chaînons contenant un, deux ou trois hétéroatomes, identiques ou différents, choisis parmi oxygène, azote et soufre, étant entendu que l'hétérocycloalkyle peut être éventuellement substitué, de façon identique ou différente, par un ou plusieurs groupements choisis parmi atome d'halogène, groupement hydroxy, alkyle (C₁-C₆) linéaire ou ramifié, trihalogénoalkyle (C₁-C₆) linéaire ou ramifié, alkoxy (C₁-C₆) linéaire ou ramifié, aryloxy, arylalkoxy (C₁-C₆) linéaire ou ramifié, amino (substitué éventuellement par un ou deux groupements alkyle (C₁-C₆) linéaire ou ramifié, nitro, et oxo,
 - hétéroaryle, on comprend un hétérocycloalkyle tel que défini précédemment, mono ou bicyclique, dont au moins un des cycles possède un caractère aromatique, le ou lesdits hétéroatomes pouvant se situer, dans le cas d'un système bicyclique, sur le cycle à caractère aromatique ou sur le cycle partiellement insaturé, étant entendu que l'hétéroaryle peut éventuellement être substitué par un ou plusieurs groupements, identiques ou différents, tels que définis dans la définition des substituants de l'hétérocycloalkyle,

leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.

- [0006] Parmi les acides pharmaceutiquement acceptables, on peut citer à titre non limitatif les acides chlorhydrique, bromhydrique, sulfurique, phosphonique, acétique, trifluoroacétique, lactique, pyruvique, malonique, succinique, glutarique, fumarique, tartrique, maléïque, citrique, ascorbique, oxalique, méthane sulfonique, camphorique, etc...
 - [0007] Parmi les bases pharmaceutiquement acceptables, on peut citer à titre non limitatif l'hydroxyde de sodium, l'hydroxyde de potassium, la triéthylamine, la tertbutylamine, etc...
- [0008] Parmi les hétérocycloalkyles, on peut citer à titre non limitatif les hétérocycloalkyles tels que pipéridine, pipérazine ou morpholine.
 - [0009] Parmi les hétéroaryles, on peut citer à titre non limitatif les hétéroaryles tels que pyridine, pyrimidine, quinoline, isoquinoline, 1,3-dihydro-2*H*-pyrrolopyridine-2-one, 3*H*-imidazopyridine, 1*H*-pyrrolopyridine, 1,2,3,4-tétrahydro-naphtpyridine ou 2,3-dihydro-1*H*-pyrrolopyridine.
- [0010] Les composés préférés de l'invention sont ceux pour lesquels X représente un atome de soufre ou un groupement NR₃ avec R₃ tel que défini dans la formule (I).
 - [0011] Les composés préférés de l'invention sont ceux pour lesquels Y représente un atome d'oxygène.
 - [0012] Les substituants R₁ préférés selon l'invention sont les groupements choisis parmi phényle éventuellement substitué par un groupement tel que défini dans la formule (I), quinolyle éventuellement substitué, et pyridinyle éventuellement substitué.
 - [0013] Les substituants R_2 préférés selon l'invention sont les groupements choisis parmi aryle et hétéroaryle, chacun de ces groupements étant éventuellement substitué. Selon une variante avantageuse, le substituant R_2 préféré est le groupement pyridinyle.

[0014] Les substituants $-U_1-V_1-U_2-V_2$ préférés selon l'invention sont les substituants dans lesquels U_1 représente une chaîne alkylène (C_1 - C_4) linéaire dont l'un des atomes de carbone est remplacé par un atome d'oxygène, V_1 représente un groupement arylène, U_2 représente une liaison simple et V_2 représente un groupement aryle éventuellement substitué par un des groupements tels que définis dans la formule (I).

[0015] D'une façon particulièrement avantageuse, le substituant -U₁-V₁-U₂-V₂ préféré est le groupement [1,1 '-bi-phényl]-4-ylméthoxy.

[0016] Selon une variante préférentielle de l'invention, les composés préférés sont ceux pour lesquels un des groupements Ra, Rb, ou Rc représente un groupement de formule $-U_1-V_1-U_2-V_2$ telle que définie dans la formule (I).

[0017] Selon une variante avantageuse de l'invention, les composés préférés sont ceux pour lesquels X représente un atome de soufre et Y représente un atome d'oxygène.

[0018] Selon une autre variante particulièrement avantageuse de l'invention, les composés préférés sont ceux pour lesquels :

- X représente un atome de soufre,
- Y représente un atome d'oxygène,

15

25

35

40

45

55

- R₁ représente un groupement phényle éventuellement substitué ou un groupement pyridinyle éventuellement substitué.
- A représente une liaison simple quand T représente un atome de carbone ou un groupement CH.
- 20 [0019] Selon une troisième variante avantageuse, les composés préférés de l'invention sont ceux pour lesquels :
 - X représente un atome de soufre,
 - Y représente un atome d'oxygène,
 - R₁ représente un groupement phényle éventuellement substitué par un groupement tel que défini dans la formule (I).
 - A représente un groupement alkylène (éventuellement substitué par un groupement alkyle (C₁-C₆) linéaire ou ramifié, aryle, ou arylalkyle (C₁-C₆) linéaire ou ramifié) ou un groupement arylène quand T représente un atome d'azole
- 30 [0020] Selon une quatrième variante avantageuse, les composés préférés de l'invention sont les composés de formule (lbis):

$$V_2 - U_2 - V_1 - U_1$$

$$Rb$$

$$X$$

$$Rc$$

$$X$$

$$Rc$$

$$T$$

$$R_2$$

$$A - C - W$$

$$O$$

dans laquelle:

X représente un atome de soufre,

Y représente un atome d'oxygène,

Fig. 18 représente un groupement phényle éventuellement substitué ou un groupement pyridinyle éventuellement substitué.

A représente une liaison simple,
T représente un atome de carbone.

Ra et Rc représentent chacun un atome d'hydrogène,

 U_1 représente une chaîne alkylènoxy (C_1 - C_4) linéaire,

V₁ représente un groupement arylène, U₂ représente une liaison simple,

V₂ représente un groupement aryle,

Rb représente un groupement U₁-V₁-U₂-V₂ tel que défini précédemment,

R₂ représente un groupement hétéroaryle,

W représente un groupement tel que défini dans la formule (I).

5 [0021] D'une façon très avantageuse, les composés préférés de l'invention sont les composés de formule (Ibis) dans laquelle Rb et -U₁-V₂-U₂-V₂ représentent chacun un groupement [1,1'-biphényl]-4-ylméthoxy.

[0022] D'une autre façon très avantageuse, les composés préférés de l'invention sont les composés de formule (lbis) dans laquelle R₂ représente un groupement pyridinyle.

[0023] D'une troisième façon très avantageuse, les composés préférés de l'invention sont les composés de formule (lbis) dans laquelle R₁ représente :

- un groupement phényle éventuellement substitué par un à trois groupements choisis parmi atome d'halogène, groupement alkyle (C₁-C₆) linéaire ou ramifié, hétéroaryle, hétéroarylalkoxy (C₁-C₆) linéaire ou ramifié, alkoxy (C₁-C₆) linéaire ou ramifié, amino, et aminoalkoxy (C₁-C₆) linéaire ou ramifié, la partie amino pouvant être substituée (dans chacun de ces deux groupements) par un ou deux groupements, identiques ou différents, alkyles (C₁-C₆) linéaire ou ramifié,
- ou un groupement hétéroaryle choisi parmi pyridinyle et quinolinyle éventuellement substituée par un atome d'halogène ou un groupement alkyle (C₁-C₆) linéaire ou ramifié.

20 [0024] Les composés préférés selon l'invention sont :

15

25

35

40

45

- l'acide (E)-3-[5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-(4-chlorophénoxy)benzo[b]thiophène-2-yl]-2-(4-pyridinyl)-2-propènoïque,
- le (*E*)-3-[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-(4-chlorophénoxy)benzo[*b*]thiophène-2-yl]-2-(4-pyridinyl)-2-propènoate d'éthyle,
- l'acide (E)-3-[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-(3-pyridinyloxy)benzo[b]thiophène-2-yl]-2-(4-pyridinyl)-2-propènoïque,
- l'acide 3-(E)-{5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-[6-(méthyl)pyridinyl-3-oxy]benzo[b] thiophène-2-yl} -2-(4-py-ridinyl)-2-propènoïque,
- l'acide 3-(E)-[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-(6-quinolinyloxy)benzo[b]thiophène-2-yl]-2-(4-pyridinyl) 2-propènoïque,
 - l'acide (E)-3-[5,6-bis-([1,1'-biphényl]-2-ylméthoxy)-3-(4-chlorophénoxy)benzo[b]thiophène-2-yl]-2-(4-pyridinyl)-2-propènoïque,
 - l'acide (E)-3-[5,6-bis([1,1'-biphényl]-3-ylméthoxy)-3-(4-chlorophénoxy)benzo[b]thiophène-2-yl]-2-(4-pyridinyl)-2-propénoïque,
 - l'acide (E)-3-[5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-(4-chloro-3-fluorophénoxy)benzo[b] thiophène-2-yl]-2-(4-pyri-dinyl)-2-propénoïque,
 - l'acide (E)-3-[5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-(4-chloro-3,5-diméthylphénoxy)benzo [b]thiophène-2-yl]-2-(4-pyridinyl)-2-propénoïque,
 - l'acide (E)-3-[5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-(4-chloro-3-méthylphénoxy)benzo[b] thiophène-2-yl]-2-(4-py-ridinyl)-2-propénoïque,
 - l'acide (E)-3-{5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-[4-(4-pyridinyloxy)phénoxy]benzo[b] thiophène-2-yl} -2-(4-pyridinyl)-2-propénoïque,
 - l'acide (E)-3-{5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-[4-(1*H*-imidazol-1-yl)phénoxy]benzo [b]thiophène-2-yl}-2- (4-pyridinyl)-2-propénoïque,
 - l'acide (E)-3-[5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-phénoxybenzo[b]thiophène-2-yl]-2-(4-pyridinyl)-2-propénoïque,
 - l'acide (E)-3-[5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-(3-fluorophénoxy)benzo[b]thiophène-2-yl]-2-(4-pyridinyl)-2-propénoïque,
- l'acide (E)-3-[5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-(3,4-difluorophénoxy)benzo[b] thiophène-2-yl]-2-(4-pyridinyl)-2-propénoïque,
 - l'acide (E)-3-{5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-[(6-chloro-3-pyridinyl)oxy]benzo[b] thiophène-2-yl}-2-(4-pyridinyl)-2-propénoïque.
- 55 [0025] Les isomères, ainsi que les sels d'addition à un acide ou à une base pharmaceutiquement acceptable, des composés préférés font partie intégrante de l'invention.

[0026] L'invention s'étend également au procédé de préparation des composés de formule (I), caractérisé en ce qu'on utilise comme produit de départ un composé de formule (II):

dans laquelle Ra, Rb, Rc et X ont la même signification que dans la formule (I), G représente un groupement hydroxy protégé par un groupement protecteur classiquement utilisé en synthèse organique et Q représente un atome d'halogène ou un groupement hydroxy et de façon préférée, Q représente un atome d'halogène quand X représente un atome de soufre ou un groupement NR₃ avec R₃ tel que défini dans la formule (I) et Q représente un groupement hydroxy quand X représente un atome d'oxygène, composé de formule (II) que l'on fait réagir, en condition basique,

soit quand Q représente un atome d'halogène :

5

15

25

30

35

40

45

50

55

♦ avec un composé de formule (III),

$$H - Y_1 - R_1 \qquad (III)$$

dans laquelle R_1 a la même signification que dans la formule (I) et Y_1 représente un atome d'oxygène, de soufre, ou un groupement NR_3 avec R_3 ayant la même signification que dans la formule (I), pour conduire aux composés de formule (IV/a):

dans laquelle Ra, Rb, Rc, G, R₁, X et Y₁ sont tels que définis précédemment, ♦ ou avec un composé de formule (V):

$$(HO)_2B-R_1 \qquad (V)$$

dans laquelle R₁ a la même signification que dans la formule (I), pour conduire aux composés de formule (IV/b):

dans laquelle Ra, Rb, Rc, G et R_1 sont tels que définis précédemment et X_1 représente un groupement NR_3 dans lequel R_3 représente un groupement hétéroarylalkyle (C_1 - C_6) linéaire ou ramifié,

- soit quand Q représente un groupement hydroxy, avec un composé de formule (VI),

dans laquelle Hal représente un atome d'halogène et R₁ est tel que défini précédemment, pour conduire aux composés de formule (IV/c) :

dans laquelle Ra, Rb, Rc, G, X et R₁ sont tels que définis précédemment,

5

10

15

20

25

30

40

45

50

l'ensemble des composés de formule (IV/a), (IV/b) et (IV/c) forment les composés de formule (IV) :

dans laquelle Ra, Rb, Rc, G, R₁, X et Y ont la même définition que dans la formule (I), composés de formule (IV) :

• que l'on condense, en présence d'anhydride acétique, avec un composé de formule (VII),

$$R'_{2}$$
 COW₁ (VII)

dans laquelle R'_2 a la même signification que R_2 dans la formule (I), excepté que R'_2 ne peut pas représenter un atome d'hydrogène, et W_1 représente un groupement choisi parmi alkoxy (C_1 - C_6) linéaire ou ramifié, aryloxy, arylalkoxy (C_1 - C_6) linéaire ou ramifié, cycloalkyloxy, hétérocycloalkoxy, hétéroaryloxy, et un groupement amino (lui-même étant éventuellement substitué par un ou deux groupements, identiques ou différents, indépendamment l'un de l'autre, choisis parmi alkyle (C_1 - C_6) linéaire ou ramifié, aryle, arylalkyle (C_1 - C_6) linéaire ou ramifié, et cycloalkyle),

pour conduire aux composés de formule (VIII):

$$\begin{array}{c|c}
Rb & Ra & Y-R_1 \\
Rc & X & (VIII) \\
\hline
 & & & & \\
R'_2 & CO-W_1
\end{array}$$

dans laquelle Ra, Rb, Rc, G, R₁, R'₂, X, Y et W₁ ont la même définition que précédemment, composés de formule (VIII) dont on déprotège la fonction hydroxy selon des conditions classique de la synthèse organique, puis que l'on fait réagir en milieu basique avec un composé de formule (IX):

$$V_2 - U_2 - V_1 - U_1 - Hat$$
 (IX)

dans laquelle U_1 , V_1 , U_2 et V_2 sont tels que définis dans la formule (I) et Hal représente un atome d'halogène, pour conduire aux composés de formule (I/a), cas particulier des composés de formule (I):

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R'₂, X, Y et W₁ ont la même définition que précédemment, composés de formule (l/a) que l'on soumet, si on le désire :

* soit à des conditions d'hydrogénation catalytique, en présence de Palladium, pour conduire aux composés de formule (I/b), cas particulier des composés de formule (I):

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R'₂, X, Y et W₁ sont tels que définis précédemment,

* soit à des conditions d'hydrolyse, en milieu basique, pour conduire aux composés de formule (I/c), cas particulier des composés de formule (I):

$$\begin{array}{c|c}
Rb & Ra & Y-R_1 \\
Rc & X & Y-R_1 \\
\hline
V_2-U_2-V_1-U_1 & X & CO_2 H
\end{array}$$

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R'₂, X et Y ont la même définition que précédemment, composés de formule (I/c), dont on réduit, si on le souhaite, la double liaison par hydrogénation catalytique, pour conduire aux composés de formule (I/d), cas particulier des composés de formule (I):

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R'₂, X et Y sont tels que définis précédemment,

♦ ou que l'on soumet, à l'action d'un ylure de phosphore de formule (X),

$$(R')_3 P - CH - A_1 - CO - W_1$$
 (X)
 R_2

dans laquelle R' représente un groupement alkyle (C_1-C_6) linéaire ou ramifié, ou un groupement phényle, R_2 a la même définition que dans la formule (I), W_1 a la même définition que précédemment et A_1 représente une liaison simple, un groupement alkylène (éventuellement substitué par un ou plusieurs groupements choisis parmi alkyle (C_1-C_6) linéaire ou ramifié, aryle, arylalkyle (C_1-C_6) linéaire ou ramifié, cycloalkyle, hétérocycloalkyle, ou hétéroaryle), un groupement arylène, cycloalkylène, hétérocycloalkylène, ou hétéroarylène, pour conduire aux composés de formule (XI) :

$$R_{c}$$
 R_{c}
 R_{c

dans laquelle Ra, Rb, Rc, G, R₁, R₂, X, Y, A₁ et W₁ ont la même définition que précédemment, composés de formule (XI) dont on déprotège la fonction hydroxy selon des conditions classiques de la synthèse organique, puis que l'on fait réagir en milieu basique avec un composé de formule (IX):

$$V_2 - U_2 - V_1 - U_1 - Hal$$
 (IX)

dans laquelle U_1 , V_1 , U_2 et V_2 sont tels que définis dans la formule (I) et Hal représente un atome d'halogène, pour conduire aux composés de formule (I/e), cas particulier des composés de formule (I):

dans laquelle Ra, Rb, Rc, U_1 , V_1 , U_2 , V_2 , R_1 , R_2 , R_1 , R_2 , R_3 , R_4 , R_5 , R_5 , R_6 , R_6 , R_7 , R_8 , R_8 , R_8 , R_8 , R_8 , R_9 , $R_$

* soit à des conditions d'hydrolyse, en condition basique, pour conduire aux composés de formule (I/f), cas particulier des composés de formule (I):

Rb Ra $Y - R_1$ Rc $Y - R_1$ $V_2 - U_2 - V_1 - U_1$ R_2 $A_1 - CO_2H$

15

20

25

30

35

40

50

55

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R₂, X, Y et A₁ sont tels que définis précédemment,

* soit à des conditions d'hydrogénation catalytique, pour conduire aux composés de formule (l/g), cas particulier des composés de formule (l):

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R₂, X, Y, A₁ et W₁ sont tels que définis précédemment, composés de formule (l/g) que l'on peut traiter dans des conditions d'hydrolyse basique, pour conduire aux composés de formule (l/h), cas particulier des composés de formule (l):

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R₂, X, Y et A₁ sont tels que définis précédemment,

$$V_2 - U_2 - V_1 - U_1 - Hal$$
 (IX)

dans laquelle U_1 , V_1 , U_2 et V_2 sont tels que définis dans la formule (I) et Hal représente un atome d'halogène, pour conduire aux composés de formule (XII):

dans laquelle Ra, Rb, Rc, U₁, V₂, R₁, X et Y ont la même définition que précédemment, composés de formule (XII), dont on réduit la fonction aldéhyde en alcool primaire, pour conduire aux composés de formule (XIII):

Rb Ra
$$Y - R_1$$
 (XIII)
$$V_2 - U_2 - V_1 - U_1$$
 OH

5

25

30

35

40

45

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, X et Y ont la même définition que dans la formule (I), composés de formule (XIII) dont on substitue l'hydroxy terminal par un halogène, selon des conditions classiques, pour conduire aux composés de formule (XIV):

dans laquelle Ra, Rb, Rc, U_1 , V_1 , U_2 , V_2 , R_1 , X et Y sont tels que définis précédemment, et Hal représente un atome de chlore ou de brome, composés de formule (XIV):

* dont on substitue l'atome d'halogène, en condition basique, par un dérivé aminé de formule (XV):

$$R_2 - NH - A_1 - CO - W_1$$
 (XV)

dans laquelle R₂ a la même définition que dans la formule (I) et, A₁, W₁ ont la même signification que précédemment,
pour conduire aux composés de formule (I/i), cas particulier des composés de formule (I):

Real
$$Y - R_1$$

Real $Y - R_1$
 $V_2 - U_2 - V_1 - U_1$
 R_2
 $A_1 - CO - W_1$

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R₂, X, Y, A₁ et W₁ sont tels que définis précédemment, composés de formule (I/i), dont on hydrolyse en condition basique le groupement carbonyle terminal, pour conduire aux composés de formule (I/j), cas particulier des composés de formule (I):

5

10

$$\begin{array}{c|c}
Rb & Ra & Y-R_1 \\
Rc & X & (I/j) \\
V_2-U_2-V_1-U_1 & X & \\
R_2 & N & \\
R_1-CO_2H
\end{array}$$

15

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R₂, X, Y et A₁ sont tels que définis précédemment,

* ou que l'on traite par de l'azidure de sodium dans un premier temps, et dont on réduit l'azide obtenue en amine primaire dans des conditions d'hydrogénation catalytique, pour conduire aux composés de formule (XVI):

20

$$\begin{array}{c}
Rb \\
Rc \\
V_2 - U_2 - V_1 - U_1
\end{array}$$

$$\begin{array}{c}
Ra \\
Y - R_1 \\
X \\
NH_2
\end{array}$$
(XVI)

25

dans laquelle Ra, Rb, Rc, U_1 , V_1 , U_2 , V_2 , R_1 , X et Y ont la même définition que dans la formule (I), composés de formule (XVI) que l'on condense, en condition basique, sur un dérivé chlorosulphonyle de formule (XVII):

35

30

dans laquelle R_4 a la même définition que dans la formule (I), et W_1 est tel que défini précédemment, pour conduire aux composés de formule (I/k), cas particulier des composés de formule (I),

40

$$\begin{array}{c|c}
Rb & Ra & Y-R_1 \\
Rc & X & (I/k) \\
V_2-U_2-V_1-U_1 & HN & SO_2-R_4-CO-W_1
\end{array}$$

50

45

dans laquelle Ra, Rb, Rc, U_1 , V_1 , U_2 , V_2 , R_1 , R_4 , X, Y et W_1 sont tels que définis précédemment, composés de formule (I/k):

55

- que l'on soumet, si on le souhaite, à des conditions d'hydrolyse en condition basique, pour conduire aux composés de formule (I/I), cas particulier des composés de formule (I):

$$\begin{array}{c|c}
Rb & Ra & Y-R_1 \\
Rc & X & (I/I) \\
V_2-U_2-V_1-U_1 & HN & SO_2-R_4-CO_2H
\end{array}$$

10

5

dans laquelle Ra, Rb, Rc, U_1 , V_1 , U_2 , V_2 , R_1 , R_4 , X et Y sont tels que définis précédemment, ou que l'on condense, en milieu basique, avec un composé de formule (XVIII) :

15

dans laquelle Hal représente un atome d'halogène tel que l'iode, et R'_2 a la même définition que précédemment,

pour conduire aux composés de formule (I/m), cas particulier des composés de formule (I):

20

25

$$\begin{array}{c|c}
Rb & Ra & Y-R_1 \\
Rc & X & (I/m) \\
V_2-U_2-V_1-U_1 & X & SO_2-R_4-CO-W_1
\end{array}$$

30

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R'₂, R₄, X, Y et W₁ sont tels que définis précédemment, composés de formule (I/m) que l'on traite par des conditions d'hydrolyse en milieu basique, pour conduire aux composés de formule (I/n), cas particulier des composés de formule (I):

35

45

40

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R'₂, R₄, X et Y sont tels que définis précédemment,

l'ensemble des composés de formule (l/c), (l/d), (l/f), (l/h), (l/j), (l/l) et (l/n) formant les composés de formule (l')

750

Rb

Rc

$$X - U_2 - U_1 - U_1$$
 X
 $X - CO_2H$

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R₂, X, Y, Z et A sont tels que définis dans la formule (I), composés de formule (I') que l'on met en réaction avec une hydroxylamine-O-substituée, pour conduire, après déprotection de la fonction hydroxylamine, aux composés de formule (I/o), cas particulier des composés de formule (I):

5

10

35

40

45

50

- dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R₂, X, Y, Z et A sont tels que définis précédemment, les composés (I/a) à (I/o) formant l'ensemble des composés de l'invention, que l'on purifie, le cas échéant, selon une technique classique de purification, qui peuvent, si on le désire, être séparés en leurs différents isomères selon une technique classique de séparation, et que l'on transforme, le cas échéant, en leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.
- 20 [0027] Les composés de formule (II) sont obtenus selon des méthodes classiques de synthèse organique. Notamment les composés de formule (II) dans laquelle X représente un atome d'oxygène et Q un groupement hydroxy, sont obtenus à partir de composés de formule (II/A):

Rb Ra OH Rc
$$G$$
 G OR' (II/A)

dont le schéma de synthèse est décrit dans *J. Med. Chem.*, 1992, <u>35</u>, 958-965, et dans laquelle Ra, Rb, Rc, G ont les mêmes définitions que précédemment et R' représente un groupement alkyle (C₁-C₆) linéaire ou ramifié,

et dont on protège la fonction hydroxy, en condition basique, par un groupement trialkylsilyle, puis dont on réduit la fonction ester en fonction alcool primaire par action de LiAlH₄ par exemple, cette dernière étant ensuite oxydée en fonction aldéhyde, puis dont on déprotège la fonction alcool sous l'action de nBu₄NF, permettant d'obtenir les composés particuliers de formule (II) dans laquelle X représente un atome d'oxygène et Q représente un groupement hydroxy. [0028] Les composés particuliers de formule (II) dans laquelle X représente un groupement NR₃ sont obtenus à partir de composés de formule (II/B):

$$\begin{array}{c|c}
Rb & Ra & Br \\
Rc & N & OR' \\
G & R_3 & O
\end{array} (II/B)$$

- dont le schéma de synthèse est décrit dans *Heterocycles*, 1992, $\underline{34}$ (12), 2349-62 et *Synthesis*, 1984, 862-865, et dans laquelle Ra, Rb, Rc, G, R₃ ont les mêmes définitions que précédemment et R' représente un groupement alkyle (C₁-C₆) linéaire ou ramifié,
- et dont la fonction ester est réduite en fonction alcool primaire, celle-ci étant ensuite oxydée sous l'action du dioxyde de Manganèse en fonction aldéhyde, pour conduire aux composés de formule (II) dans laquelle X représente un groupement NR₃ et Q un atome d'halogène.
 - [0029] Les composés particuliers de formule (II) dans laquelle X représente un atome de soufre sont obtenus à partir de composés de formule (II/C) :

dont le schéma de synthèse est décrit dans *J. Heterocyclic. Chem.*, 1971, <u>8</u>, 711-714, et dans laquelle Ra, Rb, Rc, et G ont les mêmes définitions que précédemment, et dont la fonction acide carboxylique est d'abord réduite en alcool primaire puis oxydée en aldéhyde pour conduire aux composés de formule (II) dans laquelle X représente un atome de soufre et Q un atome d'halogène.

[0030] Les composés de formule (III), (V), (VI), (VII), (IX), (XV), (XVII) et (XVIII) sont soit des composés commerciaux, soit obtenus selon les méthodes classiques de synthèse organique.

[0031] La présente invention a également pour objet les compositions pharmaceutiques renfermant comme principe actif au moins un composé de formule (I), ses isomères optiques ou un de ses sels d'addition à une base ou un acide pharmaceutiquement acceptable, seul ou en combinaison avec un ou plusieurs excipients ou véhicules inertes non toxiques, pharmaceutiquement acceptable.

[0032] Parmi les compositions pharmaceutiques selon l'invention, il sera cité plus particulièrement celles qui conviennent pour l'administration orale, parentérale (intraveineuse, intramusculaire ou sous-cutanée), per ou transcutanée, nasale, rectale, perlinguale, oculaire ou respiratoire, et notamment les comprimés simples ou dragéifiés, les comprimés sublinguaux, les sachets, les gélules, les tablettes, les suppositoires, les crèmes, les pommades, les gels dermiques, les préparations injectables ou buvables, les aérosols, les gouttes oculaires ou nasales, etc...

[0033] La posologie utile varie selon l'âge et le poids du patient, la voie d'administration, la nature et la sévérité de l'affection et la prise de traitements éventuels associés et s'échelonne de 0,1 mg à 1 g en une ou plusieurs prises par jour.

[0034] Les exemples suivants illustrent l'invention mais ne la limitent en aucune façon.

5

25

35

40

45

[0035] Les produits de départ utilisés sont des produits connus ou préparés selon des modes opératoires connus.

[0036] Les différents stades de synthèse conduisent à des intermédiaires de synthèse, utiles pour la préparation des composés de l'invention.

[0037] Les structures des composés décrits dans les exemples et les stades de synthèse ont été déterminées selon les techniques spectrophotométriques usuelles (infrarouge, RMN, spectromètre de masse, ...).

EXEMPLE 1: (E)-3-[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)3-(4-chlorophénoxy) benzo[b]thiophène-2-yl]-2-(4-py-ridinyl)-2-propènoate d'éthyle

Stade A: Chlorure de 3-chloro-5,6-(méthylènedioxy)-benzo [b]thlophène-2-carbonyl

[0038] A une suspension de 0,26 mol d'acide 3,4-(méthylènedioxy)cinnamique dans 365 ml de chlorobenzène, sont additionnés successivement à température ambiante 0,026 mol de pyridine, et goutte à goutte 1,33 mol de SOCl₂. Le milieu réactionnel est ensuite porté au reflux pendant 2 jours. Après retour à température ambiante, un précipité se forme. Après filtration, rinçage à l'hexane et séchage, on obtient 51,2 g du produit attendu.

Stade B: Acide 3-chloro-5,6-(méthylènedioxy)-benzo [b]thiophène-2-carboxylique

[0039] A une solution de 70 mmol du composé du stade A dans 250 ml de dioxanne, est ajouté 40 ml d'eau. Après 20 heures de reflux, puis retour à température ambiante, un précipité se forme. Après filtration, rinçage à l'eau jusqu'à neutralité, le précipité est séché sur P_2O_5 sous pression réduite permettant d'isoler le produit attendu.

50 <u>Stade C</u>: (3-Chloro-5,6-(méthylènedioxy)-benzo[b]thiophène-2-yl)méthanol

[0040] A une solution de 0,15 mol de LiAlH₄ dans 450 ml de tétrahydrofurane, sous atmosphère inerte, est additionné, à 5°C, 0,14 mol du composé obtenu dans le stade B. Après 2 heures de réaction à température ambiante, la réaction est hydrolysée par addition de 85 ml d'isopropanol et 31 ml d'une solution saturée en chlorure de sodium. Après 12 heures d'agitation à température ambiante, le mélange réactionnel est filtré sur célite. La phase organique est alors concentrée sous pression réduite, reprise par du dichlorométhane, lavée à l'eau puis par une solution saturée en NaCl. Après séchage de la phase organique sur sulfate de calcium, la solution est concentrée sous pression réduite permettant d'obtenir le produit attendu.

Stade D: 3-Chloro-5,6-(méthylènedioxy)-benzo[b]thiophène-2-carbaldéhyde

[0041] A une suspension de 0,12 mol du composé obtenu dans le stade C dans 925 ml de dioxane anhydre, est additionné à température ambiante sous atmosphère inerte 3,5 équivalents de MnO₂. Après 3,5 heures de réaction au reflux, le milieu réactionnel est filtré à chaud sur célite, rincé au dioxane, puis le filtrat est concentré sous pression réduite. Le résidu obtenu est repris par 100 ml d'acétate d'éthyle et la solution obtenue est portée au reflux puis ramenée à température ambiante. Un précipité se forme, celui-ci est filtré, rincé à l'acétate d'éthyle, puis à l'eau et au pentane, et enfin séché sous vide permettant d'isoler le produit attendu.

10 Stade E: 3-(4-Chlorophénoxy)-5,6-(méthylènedioxy)benzo[b]thiophène-2-carbaldéhyde

[0042] A une solution de 0,10 mol de 4-chlorophénol dans 250 ml de diméthylformamide, sont additionnés à température ambiante et sous atmosphère inerte 1 équivalent d'hydrure de sodium, puis 0,094 mol du produit obtenu dans le stade D. Après 12 heures de réaction à 80°C, le milieu réactionnel est concentré sous pression réduite. Le résidu est alors dilué dans l'acétate d'éthyle, lavé à l'eau puis par une solution aqueuse de NaOH puis de NaCl, séché sur sulfate de calcium, filtré et concentré sous pression réduite. Une chromatographie sur gel de silice (Dichlorométhane/ Acétate d'éthyle : 98/2) permet d'isoler le produit attendu.

Stade F: (E)-3-[3-(4-Chlorophénoxy)-5,6-(méthylènedioxy)benzo [b]thiophéne-2-yl]-2-(4-pyridinyl)-2-propènoate d'éthyle

[0043] Une solution contenant 85 mmol du produit obtenu dans le stade E, 127 mmol de 4-pyridylacétate d'éthyle et 75 ml d'anhydride acétique est portée à 100°C pendant 18 heures. Après retour à température ambiante, la réaction est hydrolysée par une solution saturée en NaHCO₃, extraite à l'acétate d'éthyle. Les phases organiques sont ensuite lavées à l'eau, puis par une solution de NaCl, séchées sur sulfate de calcium, filtrées et concentrées sous pression réduite. Une chromatographie sur gel de silice (dichlorométhane/éthanol: 98/2) permet d'isoler le produit attendu.

$\underline{Stade\ G}: (E)-3-[3-(4-chlorophénoxy)-5,6-(dihydroxy)-benzo\ [b]thiophène-2-yl]-2-(4-pyridinyl)-2-propénoate\ d'éthyle$

[0044] A une solution de 0,025 mol du produit obtenu dans le stade F dans 170 ml de dichlorométhane anhydre est additionné goutte à goutte à 5°C, sous argon, 0,1 mol de BBr₃ en solution 1M dans du dichlorométhane. Après 2 heures d'agitation, 125 ml d'alcool sont additionnés goutte à goutte au milieu réactionnel puis celui-ci est concentré sous pression réduite. Le résidu est repris à l'acétate d'éthyle et agité pendant 30 minutes. Le précipité formé est filtré, rincé à l'acétate d'éthyle puis séché sous vide, permettant d'isoler le produit attendu.

$\underline{Stade\ H}: (E)-3-[5,6-bls([1,1'-blphényi]-4-ylméthoxy)-3-(4-chlorophénoxy)\ benzo\ [b]thiophène-2-yl]-2-(4-pyridinyl)-2-propénoate\ d'éthyle$

[0045] A une solution de 2,1 mmol du produit obtenu dans le stade G, 4,6 mmol de 4-(chlorométhyl)-1,1'-biphényle dans 30 ml de diméthylformamide anhydre sont ajoutés 7,5 mmol de K₂CO₃. Après 12 heures à 80°C, le milieu réactionnel est ramené à température ambiante et 30 ml d'eau sont ajoutés entraînant la formation d'un précipité. Celui-ci est filtré, rincé à l'eau puis séché sous vide. Une chromatographie sur gel de silice (dichlorométhane/acétate d'éthyle : 95/5) permet d'isoler le produit attendu.

45 Point de fusion: 212°C

20

30

35

50

55

Microanalyse élémentaire:					
	%C	%Н	%S	%CI	%N
calculé	75,03	4,79	4,01	4,43	1,75
trouvé	75,34	4,97	3,62	4,69	1,81

EXEMPLE 2: Acide (E)-3-[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-(4-chlorophénoxy) benzo[b]thiophène-2-yl]-2-(4-pyridinyl)-2-propènoïque

[0046] Une solution contenant 1,5 mmol du produit de l'exemple 1, 3 ml d'une solution aqueuse 1N de soude et 30 ml d'éthanol est portée au reflux pendant 12 heures. Après retour à température ambiante, la réaction est concentrée

sous pression réduite, puis le résidu est dilué dans de l'eau, puis repris à l'éther éthylique. La phase organique est alors acidifiée par addition de 6 ml d'une solution d'HCl 1N. Un précipité se forme, celui-ci étant filtré, rincé à l'eau, puis séché sous pression réduite, permettant d'obtenir le composé attendu.

Microanalyse élémentaire :					
	%C	%Н	%CI	%N	%S
calculé trouvé	74,65 74,69	4,44 4,46	4,59 4,50	1,81 1,90	4,15 4,04

5

10

25

30

55

EXEMPLE 3: (E)-3-[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-(4-chlorophénoxy) benzo[b]thiophéne-2-yl]-2-(4-pyridinyl)-2-propènoate de sodium

[0047] A une suspension de 1 g du produit de l'exemple 2 dans 2,5 ml de soude 1N est ajoutée de l'eau jusqu'à dilution totale. Une lyophilisation permet d'isoler le produit attendu.

EXEMPLE 4: Acide (E)-3-[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-(4-chlorophénoxy)-benzo[b]thiophène-2-yl]-2-phényl-2-propènoïque

[0048] On procède comme dans l'exemple 1 des stades A à H en utilisant au stade F, comme réactif, l'acide phényl éthanoïque.

EXEMPLE 5: (E)-3-[5,6-bis-([1,1-biphényl]-4-ylméthoxy)-3-(4-chlorophénoxy)-benzo[b]thiophéne-2-yl]-propènoate d'éthyle

[0049] A une suspension de 0,02 mol de bromure de (carboéthoxyméthyl)triphénylphosphonium dans 90 ml de tétrahydrofurane, sous atmosphère inerte, est additionnée goutte à goutte, à 0°C, 20 ml d'une solution de tertio-butylate de potassium 1M dans le tétrahydrofurane. Après addition complète et retour à température ambiante, on ajoute 0,01 mol du composé obtenu dans le stade E de l'exemple 1 dilué dans 30 ml de tétrahydrofurane. Après 12 heures, le milieu réactionnel est hydrolysé par addition de 100 ml d'une solution HCl 1N, puis extrait à l'acétate d'éthyle ; les phases organiques rassemblées sont lavées à l'eau, puis par une solution saturée en NaCl, séchées sur sulfate de sodium, filtrées et concentrées sous pression réduite. Une chromatographie sur gel de silice (Pentane/Acétate d'éthyle : 90/10) permet d'isoler le produit attendu.

EXEMPLE 6: 2-({[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-(4-chlorophénoxy) benzo[b]thiophène-2-yl] méthyl} anilino)acétate d'éthyle

Stade 1: [5,6-(Méthylènedioxy)-3-(4-chlorophénoxy)-benzo[b]thiophène-2-yl]méthanol

[0050] A une solution de 24 mmol du composé obtenu dans le stade E de l'exemple 1 dans 100 ml de méthanol est additionné à température ambiante 26 mmol de NaBH₄. Après 2 heures de réaction, un équivalent de NaBH₄ est ajouté au milieu réactionnel. Après 12 heures de réaction, la solution est concentrée, puis diluée à l'acétate d'éthyle, lavée par une solution HCl 1N, puis par de l'eau, puis par une solution saturée en NaCl, puis séchée sur sulfate de calcium, filtrée et concentrée sous pression réduite. Une chromatographie sur gel de silice (Dichlorométhane/Acétate d'éthyle : 95/5) permet d'isoler le produit attendu.

Stade 2 : [2-Chlorométhyl-3-(4-chlorophénoxy)-5,6-(méthylènedioxy)]-benzo[b]thiophène

[0051] A 4 mmol du composé du stade 1 dilué dans 10 ml de dichlorométhane est additionné, goutte à goutte et à 0°C, 0,63 ml de SOCl₂. Après retour à température ambiante, puis chauffage au reflux du dichlorométhane pendant 6 heures, le milieu réactionnel est concentré sous pression réduite, permettant d'obtenir le produit attendu.

Stade 3: 2-({[3-(4-Chlorophénoxy)-5,6-(méthylènedioxy)benzo[b]thiophène-2-yl] méthyl}anilino) acétate d'éthyle

[0052] Une solution contenant 6,5 mmol du composé obtenu dans le stade 2, dans 16 ml de diméthylformamide, 1,5 équivalents de N-phénylglycine éthyl ester et 1,5 équivalents de K_2CO_3 est portée à 80°C pendant 18 heures. Après

évaporation du solvant, le résidu est dilué à l'acétate d'éthyle et la phase organique est lavée à l'eau, puis par une solution saturée en NaCl, séchée sur sulfate de calcium, filtrée et évaporée sous pression réduite. Une chromatographie sur gel de silice (Toluène/Acétate d'éthyle : 98/2) permet d'isoler 2,56 g du produit attendu sous forme d'huile.

5 Stade 4 : 2-({[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-(4-chlorophénoxy)benzo [b]thiophène-2-yl]méthyl}anilino)acétate d'éthyle

[0053] On procède comme dans l'exemple 1 des stades G à H en utilisant comme substrat le produit obtenu dans le stade 3 précédent.

EXEMPLE 7: 2-({[5,6-bis-([1,1'-blphényl]-4-ylméthoxy)-3-(4-chlorophénoxy) benzo[b]thlophène-2-yl]méthyl} amino)benzoate d'éthyle

[0054] On procède comme dans l'exemple 6, en utilisant au stade 3, comme réactif, l'anthranilate d'éthyle.

EXEMPLE 8: 2-[([5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-(4-chlorophénoxy) benzo[b]thiophène-2-yl]méthyl} amino)sulfonyl]benzoate de méthyle

Stade 1: [2-Azldométhyl-3-(4-chlorophénoxy)-5,6-(méthylènedioxy)]-benzo[b]thiophène

10

15

20

30

35

40

50

[0055] Une solution contenant 41 mmol du composé obtenu dans le stade 2 de l'exemple 6 et 78 mmol d'azidure de sodium dans 80 ml de diméthylformamide est agitée à température ambiante pendant 48 heures. Le milieu réactionnel est ensuite concentré sous pression réduite. Le résidu est dilué à l'acétate d'éthyle, lavé à l'eau puis par une solution saturée en NaCl. La phase organique est ensuite séchée sur sulfate de calcium, filtrée et évaporée, permettant d'obtenir le produit attendu.

Stade 2: [2-Aminométhyl-3-(4-chlorophénoxy)-5,6-(méthylènedioxy)]-benzo[b]thiophène

[0056] Une solution contenant 41 mmol du composé obtenu dans le stade 1 précédent et 1 g de Pd/C dans 6,5 ml de chloroforme et 300 ml de méthanol anhydre est placée sous atmosphère d'hydrogène à température ambiante. Après 12 heures, la réaction est filtrée puis concentrée sous pression réduite permettant d'obtenir le produit attendu.

Stade 3: 2-[({[-3-(4-Chlorophénoxy)-5,6-(méthylènedioxy)-benzo[b]thiophène-2-yl] méthyl}amino)sulfonyl] benzoate de méthyle

[0057] Une solution contenant 6,5 mmol du composé obtenu dans le stade 2 précédent, 6,5 mmol de 2-(chlorosul-fonyl)-benzoate de méthyle, 15,7 mmol de N-méthyl-morpholine, dans 50 ml de dichlorométhane est agitée à température ambiante. Après 12 heures, la réaction est lavée à l'eau, puis par une solution saturée en NaCl, séchée sur sulfate de sodium et concentrée sous pression réduite. Une chromatographie sur gel de silice (Dichlorométhane/Acétate d'éthyle : 98/2) permet d'isoler le produit attendu.

Stade 4: 2-[([[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-(4-chlorophénoxy)benzo [b]thiophène-2-yl]méthyl}amino)sulfonyl]benzoate de méthyle

⁵ [0058] On procède comme dans l'exemple 1 des stades G à H en utilisant comme substrat le produit obtenu dans le stade 3 précédent.

EXEMPLE 9 : Acide 2-[([[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-(4-chlorophénoxy) benzo[b]thlophène-2-yl] méthyl}amino)sulfonyl]benzoïque

[0059] On procède comme dans l'exemple 2, en utilisant comme substrat, le composé obtenu dans le stade 4 de l'exemple 8.

EXEMPLE 10: Acide (E)-3-[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-(3-pyridinyloxy)-benzo[b]thiophéne-2-yl]-2[4-pyridinyl)-2-propènoïque

[0060] On procède comme dans l'exemple 1, en utilisant comme réactif au stade E, la 3-hydroxypyridine, puis on suit le protocole décrit dans l'exemple 2.

Point de fusion : 237° C

5

20

35

40

45

50

Microanalyse élémentaire :					
	%C	%Н	%N	%S	
calculé trouvé	76,40 76,69	4,64 4,63	3,79 3,83	4,34 4,28	

EXEMPLE 11: Acide (E)-3-[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-(4-chlorophénoxy)-1*H*-2-indolyl]-2-(4-pyridinyl)-2-propènoïque

[0061] On procède comme dans l'exemple 1, du stade E au stade H, en utilisant comme substrat au stade E le 3-bromo-5,6-diméthoxy-1*H*-2-indolecarbaldéhyde, puis on suit le protocole décrit dans l'exemple 2.

EXEMPLE 12: Acide (E)-3-[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-[(4-méthoxy-phényl)sulfanyl] benzo[b]thio-phène-2-yl]-2-(4- pyridinyl)-2-propènoïque

[0062] On procède comme dans l'exemple 1, en utilisant comme réactif au stade E, le 4-méthoxybenzènethiol, puis on suit le protocole décrit dans l'exemple 2.

<u>EXEMPLE 13</u>: Acide 3-(E)-{3-[4-(2-(diméthylamino)éthoxy)-phénoxy]-5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-benzo[b]thiophène-2-yl}-2-phényl-2-propènoïque

[0063] On procède comme dans l'exemple 1 en utilisant comme réactif au stade E, le 2-(diméthylamino)éthoxyphénol, et au stade F l'acide phényl éthanoïque puis on suit le protocole décrit dans l'exemple 2.

<u>EXEMPLE 14</u>: Acide (E)-3-[5,6-bis-([1,1-biphényl]-4-ylméthoxy)-3-(3,4-dichlorophénoxy) benzo[b]thiophène-2-yl]-2-(4-pyridinyl)2-propènoïque

[0064] On procède comme dans l'exemple 1, en utilisant comme réactif au stade E le 3,4-dichloro-phénol, puis on suit le protocole décrit dans l'exemple 2.

<u>EXEMPLE 15</u>: Acide 3-(E)-{5,6-bis-([1,1-biphényl]-4-ylméthoxy)-3-[6-(méthyl)pyridinyl-3-oxy]-benzo[b]thio-phéne-2-yl}-2-(4-pyridinyl)-2-propènoïque

[0065] On procède comme dans l'exemple 1 en utilisant comme réactif au stade E, la 2-méthyl-5-hydroxy-pyridine, puis on suit le protocole décrit dans l'exemple 2.

Microanalyse élémentaire :					
	%C	%Н	%N	%S	
calculé trouvé	76,58 76,84	4,82 4,72		4,26 4,15	

EXEMPLE 16: Acide 3-(E)[5,6-bis-([1,1'-biphényl]-4-ylméthoxy) -3-(6-quinolinyloxy) benzo[b]thiophène-2-yl]-2-(4-pyridinyl)-2-propènoïque

[0066] On procède comme dans l'exemple 1 en utilisant comme réactif au stade E la 6-hydroxy-quinoléine, puis on suit le protocole décrit dans l'exemple 2.

Microanalyse élémentaire :					
	% C	%Н	%N	%S	
calculé	77,65	4,60	3,55	4,06	
trouvé	78,00	4,75	3,59	3,71	

55

 $\underline{\mathsf{EXEMPLE}\,17}: \mathsf{Acide}\,(\mathsf{E})\text{-}3\text{-}[5,6\text{-}\mathsf{bls}\text{-}([1,1'\text{-}\mathsf{biph\acute{e}nyl}]\text{-}2\text{-}\mathsf{ylm\acute{e}thoxy})\text{-}3\text{-}(4\text{-}\mathsf{chloroph\acute{e}noxy})\,\mathsf{benzo}[b]\mathsf{thioph\acute{e}ne}\text{-}2\text{-}\mathsf{yl}]\text{-}2\text{-}(4\text{-}\mathsf{pyridinyl})\text{-}2\text{-}\mathsf{prop\grave{e}no}\ \mathsf{que}$

[0067] On procède comme dans l'exemple 1 en utilisant comme réactif au stade H le 2-(bromométhyl)-1,1'-biphényle, puis on suit le protocole décrit dans l'exemple 2.

Microanalyse élémentaire :					
	%C	%Н	%N	%S	%CI
calculé trouvé	74,65 74,97	4,44 4,55	1,81 1,88	4,15 4,06	4,59 4,57

 $\underline{\texttt{EXEMPLE.18}}: A \textit{cide (E)-3-[5,6-bis(4-phénoxy)hénoxy)-3-(4-chlorophénoxy)} \ benzo[\textit{b}] thiophène-2-yl]-2-(4-py-ridinyl)-2-propènoïque$

[0068] On procède comme dans l'exemple 1, en utilisant comme réactif au stade H le 1-bromo-4-phénoxybenzène, puis on suit le protocole décrit dans l'exemple 2.

EXEMPLE 19: Acide (E)-3-{3-(4-chlorophénoxy)-5,6-bis-[4-(4-pyridlnylméthyl)phénoxy] benzo[b]thlophéne-2-yl}-2-(4-pyridlnyl)-2-propènoïque

[0069] On procède comme dans l'exemple 1 en utilisant comme réactif au stade H la 4-(4-chlorobenzyl)pyridine, puis on suit le protocole décrit dans l'exemple 2.

EXEMPLE 20 : Acide (E)-3-[5,6-bis([1,1'-blphényl]-3-ylméthoxy)-3-(4-chlorophénoxy)-benzo[b]thiophène-2-yl]-2-(4-pyrldlnyl)-2-propénoïque

[0070] On procède comme dans l'exemple 1 en utilisant comme réactif au stade H le 3-(bromométhyl)-1,1'-biphényle, puis on suit la procédure décrit dans l'exemple 2.

Point de fusion : 205-210°C

5

10

15

30

40

45

50

55

<u>EXEMPLE 21</u>: Acide (*E*)-3-[5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-(4-chloro-3-fluorophénoxy)-benzo[*b*]thio-phène-2-yl]-2-(4-pyridinyl)-2-propénoïque

[0071] On procède comme dans l'exemple 1 en utilisant comme réactif au stade E le 4-chloro-3-fluoro-phénol, puis on suit le protocole décrit dans l'exemple 2.

Microanalyse élémentaire :					
	%C	%Н	%N	%S	
calculé	72,95	4,21	1,77	4,06	
trouvé	72,85	4,27	1,79	3,65	

<u>EXEMPLE 22</u>: Acide (*E*)-3-[5,6-bls([1,1'-biphényl]-4-ylméthoxy)-3-(4-chloro-3,5-diméthylphénoxy)-benzo[*b*] thlophène-2-yl]-2-(4-pyridinyl)-2-propénoīque

[0072] On procède comme dans l'exemple 1 en utilisant comme réactif au stade E le 4-chloro-3,5-diméthyl-phénol, puis on suit le protocole décrit dans l'exemple 2.

Microanalyse élémentaire :					
	%C	%Н	%N	%S	%CI
calculé	75,03	4,79	1,75	4,01	4,43
trouvé	74,45	4,91	1,80	3,51	4,19

[0073] On procède comme dans l'exemple 1 en utilisant comme réactif au stade E le 4-chloro-3-méthyl-phénol, puis on suit le protocole décrit dans l'exemple 2.

Microanalyse élémentaire :					
	%C	%Н	%N	%S	%CI
calculé trouvé	74,85 74,64	4,61 4,77	1,78 1,83	4,08 4,00	4,51 4,39

 $\underline{\mathsf{EXEMPLE}\ 24}: \mathsf{Acide}\ (E)\text{-}3\text{-}\{5,6\text{-}\mathsf{bis}([1,1'\text{-}\mathsf{biphényl}]\text{-}4\text{-}\mathsf{ylm\acute{e}thoxy})\text{-}3\text{-}[4\text{-}(4\text{-}\mathsf{pyridinyloxy})\ \mathsf{ph\acute{e}noxy}]\text{-}\mathsf{benzo}[b]\mathsf{thioph\acute{e}ne}\text{-}2\text{-}\mathsf{yl}\}\text{-}2\text{-}(4\text{-}\mathsf{pyridinyl})\text{-}2\text{-}\mathsf{prop\acute{e}no\~ique}$

[0074] On procède comme dans l'exemple 1 en utilisant comme réactif au stade E le 4-pyridinyloxy-phénol, puis on suit le protocole décrit dans l'exemple 2.

Point de fusion : 265° C

5

10

15

20

25

35

45

50

Microanalyse élémentaire :					
	%C	%Н	%N	%S	
calculé trouvé	76,61 76,66	4,61 4,72	3,37 3,40	3,86 3,46	

EXEMPLE 25: Acide (E)-3-{5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-[4-(1H-imidazol-1-yl) phénoxy]-benzo[b] thiophéne-2-yl} -2-(4-pyridinyl)-2-propénoïque

30 [0075] On procède comme dans l'exemple 1 en utilisant comme réactif au stade E le 4-(1*H*-imidazol-1-yl)-phénol, puis on suit le protocole décrit dans l'exemple 2.

Microanalyse élémentaire :					
	%C	%Н	%N	<i>%S</i>	
calculé trouvé	76,20 75,97	4,64 4,68	5,23 5,17	3,99 3,92	

<u>EXEMPLE 26</u>: Acide (E)-3-[5,6-bis([1,1'-blphényl]-4-ylméthoxy)-3-phénoxy-benzo[b] thlophène-2-yl]-2-(4-pyrl-dinyl)-2-propénoïque

[0076] On procède comme dans l'exemple 1 en utilisant comme réactif au stade E le phénol, puis on suit le protocole décrit dans l'exemple 2.

Microanalyse élémentaire :					
	%C	%Н	%N	%S	
calculé	78,13	4,78	1,90	4,35	
trouvé	78,30	4,88	1,94	4,16	

[0077] On procède comme dans l'exemple 1 en utilisant comme réactif au stade E le 3-fluoro-phénol, puis on suit le protocole décrit dans l'exemple 2.

Microana	alyse élén	nentaire	:	
	%C	%Н	%N	%S
calculé trouvé	76,27 76,37	4,53 4,56	1,85 1,90	4,24 4,05

EXEMPLE 28: Acide (E)-3-[5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-(3,4-difluoro-phénoxy)benzo[b]thiophène-2-yl]-2-(4-pyridinyl)-2-propénoïque

10

15

20

25

30

35

40

45

50

[0078] On procède comme dans l'exemple 1 en utilisant comme réactif au stade E le 3,4-difluoro-phénol, puis on suit le protocole décrit dans l'exemple 2.

Microana	alyse élén	nentaire	:	
	%C	%Н	%N	%S
calculé trouvé	74,50 74,48	4,30 4,24	1,81 1,88	4,14 3,98

 $\underline{\text{EXEMPLE 29}}: A \text{cide } (\textit{E})\text{-}3\text{-}\{5,6\text{-bis}([1,1'\text{-biphényl}]\text{-}4\text{-ylméthoxy})\text{-}3\text{-}[(6\text{-chloro-}3\text{-pyridinyl})\text{oxy}]\text{-benzo}[\textit{b}]\text{thiophéne-}2\text{-yl}]\text{-}2\text{-}(4\text{-pyridinyl})\text{-}2\text{-propénoïque}$

[0079] On procède comme dans l'exemple 1 en utilisant comme réactif au stade E la 2-chloro-5-hydroxy-pyridine, puis on suit le protocole décrit dans l'exemple 2.

Microana	alyse élén	nentaire	:		
	%C	%Н	%N	%S	%CI
calculé	70,98	4,06	3,52	4,03	4,46
trouvé	71,27	4,44	3,53	3,51	4,30

 $\underline{\text{EXEMPLE 30}}: \text{Acide (E)-3-{3-(4-chlorophénoxy)-5,6-bis[(4'-méthoxy[1,1'-biphényl]-4-yl)méthoxyl]-benzo[b]} \\ \text{thiophèn-2-yl} -2-(4-pyridinyl)-2-propénoïque}$

[0080] On procède comme dans l'exemple 1 en utilisant comme réactif au stade H le 4-(bromométhyl)-4'-méthoxy-1,1'-biphényl, puis on suit la procédure décrit dans l'exemple 2. Point de fusion : 235° C

Microana	alyse élén	nentaire	:		
	%C	%Н	%N	%S	%CI
calculé trouvé	72,15 71,97	4,60 4,55	1,68 1,82	3,85 4,03	4,26 4,33

[0081] On procède comme dans l'exemple 1 en utilisant comme réactif au stade H le 4-(2-bromoéthyl)-1,1'-biphényl, puis on suit la procédure décrit dans l'exemple 2.

EXEMPLE 32: Acide (E)-3-[5,6-bis[(4-benzylbenzyl)oxy]-3-(4-chlorophénoxy)-benzo[b] thiophèn-2-yl]-2-(4-pyridinyl)-2-propénoïque

⁵⁵ [0082] On procède comme dans l'exemple 1 en utilisant comme réactif au stade H le 1-benzyl-4-(bromométhyl) benzène, puis on suit la procédure décrit dans l'exemple 2.

 $\underline{EXEMPLE~33:}~Acide~(\textit{E})-3-\{3-(4-chlorophénoxy)-5,6-bis[(4-phénoxybenzyl)oxy]-benzo~[\textit{b}]thiophèn-2-yl}-2-(4-pyridinyl)-2-propéno<math>\overline{q}$ que

[0083] On procède comme dans l'exemple 1 en utilisant comme réactif au stade H le 1-(bromométhyl)-4-phénoxybenzène, puis on suit la procédure décrit dans l'exemple 2.

<u>EXEMPLE 34:</u> Acide (*E*)-3-(3-(4-chlorophénoxy)-5,6-bis{[4-(phénylsulfanyl)benzyl]oxy}-benzo[*b*]thiophèn-2-yl)-2-(4-pyridinyl)-2-propénoïque

10 [0084] On procède comme dans l'exemple 1 en utilisant comme réactif au stade H le 1-(bromométhyl)-4-(phényl-sulfanyl)benzène, puis on suit la procédure décrit dans l'exemple 2.

<u>EXEMPLE 35:</u> Acide (*E*)-3-(3-(4-chlorophénoxy)-5,6-bis{[4-(phénylsulfonyl)benzyl]oxy}-benzo[*b*]thiophèn-2-yl)-2-(4-pyridinyl)-2-propénoïque

15

20

30

40

45

50

[0085] On procède comme dans l'exemple 1 en utilisant comme réactif au stade H le 1-(bromométhyl)-4-(phényl-sulfonyl)benzène, puis on suit la procédure décrit dans l'exemple 2.

EXEMPLE 36: Acide (E)-3-[3-(4-chlorophénoxy)-5,6-bis({4-[(4-phénoxyphényl)sulfonyl] benzyl}oxy)-benzo[b] thiophèn-2-yll-2-(4-pyridinyl)-2-propénoïque

[0086] On procède comme dans l'exemple 1 en utilisant comme réactif au stade H le 1-(bromométhyl)-4-[(4-phénoxyphényl)sulfonyl]benzène, puis on suit la procédure décrit dans l'exemple 2.

25 <u>EXEMPLE 37:</u> Acide (*E*)-3-[6-(benzyloxy)-5-([1,1'-biphényl)-4-ylméthoxy)-3-(4-chlorophénoxy)-benzo[*b*]thio-phèn-2-yl]-2-(4-pyridlnyl)2-propénoïque

Stade 1: Acide (E)-3-[6-(bezyloxy)-3-(4-chlorophénoxy)-5-hydroxy-benzo[b]thiophèn-2-yl]-2-(4-pyridinyl)-2-propénoïque

[0087] On procède comme dans l'exemple 1 des stades A à H, en utilisant comme réactif au stade H le chlorométhylphényle.

Stade 2: Acide (*E*)-3-[6-(benzyloxy)-5-([1,1'-biphényl]-4-ylméthoxy)-3-(4-chloro-phénoxy)-benzo[*b*]thiophèn-2-yl]-2-(4-pyridinyl)-2-propénoïque

[0088] On procède comme dans le stade H de l'exemple 1, puis on suit la procédure décrite dans l'exemple 2.

Microana	alyse élén	nentaire	:		
	%C	%Н	%N	%S	%CI
calculé trouvé	72,46 73,39	4,34 4,38	2,01 2,14	4,61 4,34	5,09 5,08

EXEMPLE 38: Acide (E)-3-[6-([1,1'-biphényl]-4-ylméthoxy)-3-(4-chlorophénoxy)-5-phénoxy-benzo[b]thiophèn-2-yl]-2-(4-pyridinyl)-2-propénoïque

[0089] On procède comme dans l'exemple 1 en utilisant comme réactif au stade H le 4-chlorométhyl-(1,1'-biphényl) puis le chlorométhyl-phényle.

EXEMPLE 39: Acide 3-[6-([1,1'-biphényi]-4-ylméthoxy)-5-([1,1'-biphényi]-4-yloxy)-3-(4-chlorophénoxy)-benzo [b]thiophèn-2-yl]-2-phényipropanoïque

[0090] On procède comme dans l'exemple 1 des stades A à F, en utilisant comme réactif au stade F l'acide phényl éthanoïque à la place du 4-pyridylacétate d'éthyle, puis des stades G à H décrits dans l'exemple 1. Le produit ainsi obtenu est ensuite traité par un courant d'hydrogène en présence de Pd/C à 10 % dans le méthanol pendant 24 heures. Une filtration sur célite en fin de réaction, suivie d'une chromatographie sur gel de silice permet d'isoler le produit

attendu.

5

10

20

<u>EXEMPLE 40</u>: Acide 2-({[6-([1,1'-biphényl]-4-yiméthoxy)-5-([1,1'biphényl]-4-yloxy)-3-(4-chlorophénoxy)-benzo [b]thiophèn-2-yl]méthyl}amino)benzoïque

[0091] On procède comme dans l'exemple 2 en utilisant comme produit de départ le composé obtenu dans l'exemple 7.

ETUDE PHARMACOLOGIQUE DES COMPOSES DE L'INVENTION

EXEMPLE 41 : inhibition de l'activité du PAI-1

[0092] L'inhibition de l'activité du PAI-1 a été réalisée in-vitro dans des puits de microplaque dans lesquels la formation puis la lyse d'un caillot de fibrine est suivie en continu en turbidimétrie grâce à un spectrophotomètre. Pour ce faire, en utilisant comme diluant un tampon phosphate 50 mM pH 7,4 contenant 0,05% de sérum albumine bovine, 50 μ l de l'inhibiteur est mis en présence avec 50 μ l d'une solution de PAI-1 actif recombinant humain à 2 nM pendant 5 minutes à température ambiante. 50 μ l d'une solution d'activateur tissulaire du plasminogène à 0,42 nM, 50 μ l d'une solution de plasminogène humain à 800 nM et 50 μ l d'une solution de fibrinogène à 2 g/l sont ensuite additionnés et la fibrinoformation est déclenchée par l'ajout de 50 μ l de thrombine humaine purifiée à 14 nM. En l'absence de produit, l'inhibition de la lyse deux heures après le début de la fibrinoformation, est mesurée par l'absorbance du caillot et représente 100 % de l'activité PAI-1. En l'absence de produit et de PAI-1, la lyse est mesurée par l'absorbance du caillot lysé et représente 0 % de l'activité PAI-1. La concentration du produit inhibant 50 % de l'activité du PAI-1 est recherchée en mesurant l'absorbance du caillot deux heures après la fibrinoformation en présence de PAI-1 et de concentration croissante du produit. A titre d'exemple, les composés des exemples 2, 10 et 26 montrent respectivement un IC_{50} de 0,13 μ M, 0,53 μ M et 0,06 μ M. Ce résultat démontre l'activité fibrinolytique très supérieure des composés de l'invention, le produit de référence, le XR 5082, présentant un IC_{50} de 190 μ M.

EXEMPLE 42: Composition pharmaceutique

30 [0093]

35

40

45

50

55

Formule de préparation pour 1000 comprime	és dosés à 10 mg :
Composé de l'exemple 2	10 g
Hydroxypropylcellulose	2 g
Polyvinylpyrrolidone	2 g
Amidon de blé	10 g
Lactose	100 g
Stéarate de magnésium	3 g

Revendications

Composés de formule (I):

dans laquelle :

	X	représente un atome d'oxygène, de soufre, ou un groupement NR_3 dans lequel R_3 représente un atome d'hydrogène, un groupement alkyle (C_1 - C_6) linéaire ou ramifié, aryle, arylalkyle (C_1 - C_6) linéaire ou ramifié, ou hétéroarylalkyle (C_1 - C_6) linéaire ou ramifié,
5	Y	représente un atome d'oxygène, de soufre, un groupement NR_3 , le groupement R_3 ayant la même définition que précédemment, ou peut représenter une liaison simple quand X représente un groupement NR'_3 dans lequel R'_3 représente un groupement hétéroarylalkyle (C_1 - C_6) linéaire ou ramifié,
10	Т	représente un atome d'azote quand la liaison qui le relie avec l'atome de carbone voisin est simple $(-)$, un atome de carbone ou un groupement CH selon que la liaison qui le relie avec l'atome de carbone voisin est simple $(-)$ ou double $()$,
15	Α	représente une liaison simple ou un groupement choisi parmi alkylène (C_1-C_6) (éventuellement substitué par un ou plusieurs groupements alkyle (C_1-C_6) linéaire ou ramifié, aryle, arylalkyle (C_1-C_6) linéaire ou ramifié, cycloalkyle, hétérocycloalkyle, ou hétéroaryle), arylène, cycloalkylène, hétérocycloalkylène, hétéroarylène, et un groupement $-SO_2-R_4$ - (la partie SO_2 étant reliée à T) dans lequel R_4 représente un groupement choisi parmi alkylène (C_1-C_6) linéaire ou ramifié, arylène, arylalkylène (C_1-C_6) linéaire ou ramifié, cycloalkylène, hétérocycloalkylène, et hétéroarylène,
20	W	représente un groupement choisi parmi hydroxy, alkoxy (C_1 - C_6) linéaire ou ramifié, aryloxy, arylalk-
25	••	oxy (C_1 - C_6) linéaire ou ramifié, cycloalkyloxy, hétérocycloalkyloxy, hétéroaryloxy, amino (lui-même pouvant être substitué par un ou deux groupements, identiques ou différents, indépendamment l'un de l'autre, choisis parmi alkyle (C_1 - C_6) linéaire ou ramifié, aryle, arylalkyle (C_1 - C_6) linéaire ou ramifié, ou cycloalkyle), et hydroxyamino,
	U ₁	représente un atome d'oxygène, de soufre ou une chaîne alkylène (C ₁ -C ₆) linéaire ou ramifié, dont un ou plusieurs des atomes de carbone peuvent éventuellement être remplacés par un ou
30		plusieurs hétéroatomes choisis parmi oxygène, azote et soufre, ladite chaîne alkylène étant éventuellement substituée par un ou plusieurs groupements, identiques ou différents, choisis parmi atomes d'halogène, groupements hydroxy, alkyle (C_1-C_6) linéaire ou ramifié, et alkoxy (C_1-C_6) linéaire ou ramifié,
35	V ₁	représente un groupement arylène, hétéroarylène ou hétérocycloalkylène,
40	U ₂	représente une liaison simple, un atome d'oxygène, d'azote, de soufre, ou une chaîne alkylène (C ₁ -C ₆) linéaire ou ramifiée dont un ou plusieurs atomes de carbone peuvent éventuellement être remplacé par un ou plusieurs groupements, identiques ou différents, choisis parmi atomes d'oxygène, de soufre, d'azote, (l'atome d'azote étant substitué par un groupement choisi parmi hydrogène et elleule (C, C,) linéaire ou ramifié), et un groupement SO
40		gène et alkyle (C ₁ -C ₆) linéaire ou ramifié), et un groupement SO ₂ ,
	V ₂	représente un groupement aryle, hétéroaryle ou hétérocycloalkyle,
45	Ra, Rb, Rc,	identiques ou différents, indépendamment l'un de l'autre, représentent chacun un groupement choisi parmi :
		- atome d'hydrogène, d'halogène,
		- groupement hydroxy, cyano, nitro,
50		 alkyle (C₁-C₆) linéaire ou ramifié, alkoxy (C₁-C₆) linéaire ou ramifié, carboxy, alkoxycarbonyle (C₁-C₆) linéaire ou ramifié, trihalogénoalkyle (C₁-C₆) linéaire ou ramifié,
		 amino (éventuellement substitué par un ou deux groupements, identiques ou différents, in- dépendamment l'un de l'autre, alkyle (C₁-C₆) linéaire ou ramifié, aryle, ou arylalkyle (C₁-C₆)
55		linéaire ou ramifié), - aryloxy, arylalkoxy (C ₁ -C ₆) linéaire ou ramifié, hétéroaryloxy, hétéroarylalkoxy (C ₁ -C ₆) linéaire
		ou ramifié, et un groupement de formule -U ₁ -V ₁ -U ₂ -V ₂ dans laquelle U ₁ , U ₂ , V ₁ et V ₂ sont tels que définis
		précédemment,

ou pris par deux forment ensemble un groupement méthylènedioxy, ou éthylènedioxy (chacun de ces groupements étant éventuellement substitués par un ou deux groupements alkyle (C₁-C₆) linéaire ou ramifié, aryle, ou arylalkyl (C₁-C₆) linéaire ou ramifié),

R₁ représente :

10

15

20

25

30

35

40

45

50

 R_2

- un groupement aryle substitué par un à cinq substituants, identiques ou différents, indépendamment l'un de l'autre, choisis parmi halogène, hydroxy, cyano, nitro, carboxy, alkyle (C₁-C₆) linéaire ou ramifié, alkoxy (C₁-C₆) linéaire ou ramifié, acyle (C₁-C₆) linéaire ou ramifié, alkoxycarbonyle (C₁-C₆) linéaire ou ramifié, trihalogénoalkyle (C₁-C₆) linéaire ou ramifié (éventuellement substitué par un groupement hydroxy), trihalogénoalkoxy (C₁-C₆) linéaire ou ramifié, amino (éventuellement substitué par un ou deux groupements alkyle (C_1 - C_6) linéaire ou ramifié, un desdits groupements alkyles étant éventuellement substitué par un groupement choisi parmi amino, alkylamino (C_1 - C_6) linéaire ou ramifié, et dialkylamino (C_1 - C_6) linéaire ou ramifié), aminoalkoxy (C1-C6) linéaire ou ramifié (la partie amino étant éventuellement substituée par un ou deux groupements, identiques ou différents, alkyle (C_1-C_6) linéaire ou ramifié), alkoxycarbonylalkyle (C1-C6) linéaire ou ramifié, alkyl(C1-C6)carbonylamino linéaire ou ramifié, arylakyle (C₁-C₆) linéaire ou ramifié, aryloxy, arylalkoxy (C₁-C₆) linéaire ou ramifié, arylamino, arylalkylamino (C1-C6) linéaire ou ramifié, arylsulfanyle, arylalkyl(Ci-C6) sulfanyle linéaire ou ramifié, hétéroaryle, hétéroarylalkyle (C₁-C₆) linéaire ou ramifié, hétéroaryloxy, hétéroarylalkoxy (C1-C6) linéaire ou ramifié, hétéroarylamino, hétéroarylalkyl(Ci-C6)amino linéaire ou ramifié, hétéroarylsulfanyle, hétéroarylalkyl(C1-C6)sulfanyle linéaire ou ramifié,
- un groupement 1,3-dihydro-2H-indol-2-one, 3,4-dihydro-2(1H)-quinolinone, 1-hydroxy-2(1H)-pyridinone,
- ou un groupement hétéroaryle éventuellement substitué,

représente un groupement choisi parmi atome d'hydrogène, groupement alkyle (C_1-C_6) linéaire ou ramifié, aryle, arylalkyle (C_1-C_6) linéaire ou ramifié, cycloalkyle, hétérocycloalkyle (C_1-C_6) linéaire ou ramifié, hétéroaryle, et hétéroarylalkyle (C_1-C_6) linéaire ou ramifié

étant entendu que par :

- groupement aryle, on comprend un groupement phényle, biphényle, naphtyle, tétrahydronaphtyle, ou dihydronaphtyle, chacun de ces groupements étant éventuellement substitué de façon identique ou différente, par un ou plusieurs groupements choisis parmi atome d'halogène, groupement hydroxy, cyano, nitro, alkyle (C₁-C₆) linéaire ou ramifié (éventuellement substitué par un ou plusieurs groupements choisis parmi hydroxy, amino, mono ou dialkylamino (C₁-C₆) linéaire ou ramifié), trihalogénoalkyle (C₁-C₆) linéaire ou ramifié, alkoxy (C₁-C₆) linéaire ou ramifié, aryloxy, acyle (C₁-C₆) linéaire ou ramifié, carboxy, alkoxycarbonyle (C₁-C₆) linéaire ou ramifié, et amino (substitué éventuellement par un ou deux groupements, identiques ou différents, alkyle (C₁-C₆) linéaire ou ramifié),
- groupement cycloalkyle, on comprend un groupement mono ou bicyclique, comportant de 3 à 8 atomes de carbone,
- hétérocycloalkyle, on comprend un groupement mono ou bicyclique, saturé ou insaturé, à caractère non aromatique, de 5 à 12 chaînons contenant un, deux ou trois hétéroatomes, identiques ou différents, choisis parmi oxygène, azote et soufre, étant entendu que l'hétérocycloalkyle peut être éventuellement substitué, de façon identique ou différente, par un ou plusieurs groupements choisis parmi atome d'halogène, groupement hydroxy, alkyle (C₁-C₆) linéaire ou ramifié, trihalogénoalkyle (C₁-C₆) linéaire ou ramifié, alkoxy (C₁-C₆) linéaire ou ramifié, aryloxy, arylalkoxy (C₁-C₆) linéaire ou ramifié, amino (substitué éventuellement par un ou deux groupements alkyle (C₁-C₆) linéaire ou ramifié), acyle (C₁-C₆) linéaire ou ramifié, alkoxycarbonyle (C₁-C₆) linéaire ou ramifié, nitro, et oxo,
- hétéroaryle, on comprend un hétérocycloalkyle tel que défini précédemment, mono ou bicyclique, dont au moins un des cycles possède un caractère aromatique, le ou lesdits hétéroatomes pouvant se situer, dans le cas d'un système bicyclique, sur le cycle à caractère aromatique ou sur le cycle partiellement insaturé, étant entendu que l'hétéroaryle peut éventuellement être substitué par un ou plusieurs groupements identiques ou

différents, tels que définis dans la définition des substituants de l'hétérocycloalkyle,

leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.

- 2. Composés de formule (I) selon la revendication 1 caractérisés en ce que X représente un atome de soufre ou un groupement NR₃ avec R₃ tel que défini dans la formule (I), leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.
- 3. Composés de formule (I) selon la revendication 1 caractérisés en ce que Y représente un atome d'oxygène, leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.
 - 4. Composés de formule (I) selon la revendication 1 caractérisés en ce que R₁ représente un groupement choisi parmi phényle éventuellement substitué par un groupement tel que défini dans la formule (I), quinolyle éventuellement substitué, et pyridinyle éventuellement substitué, leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.
 - 5. Composés de formule (I) selon la revendication 1 caractérisés en ce que R₂ représente un groupement choisi parmi aryle et hétéroaryle, chacun de ces groupements étant éventuellement substitué, leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.
 - 6. Composés de formule (I) selon l'une quelconque des revendications 1 et 5 caractérisés en ce que R₂ représente un groupement pyridinyle, leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.
- 7. Composés de formule (I) selon la revendication 1 caractérisés en ce que U₁ représente une chaîne alkylène (C₁-C₄) linéaire dont l'un des atomes de carbone est remplacé par un atome d'oxygène, V₁ représente un groupement arylène, U₂ représente une liaison simple et V₂ représente un groupement aryle éventuellement substitué par un des groupements tels que définis dans la formule (I), leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.
 - 8. Composés de formule (I) selon l'une quelconque des revendications 1 et 7 caractérisés en ce que -U₁-V₁-U₂-V₂ représente un groupement [1,1'-biphényl]-4-ylméthoxy, leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.
- 9. Composés de formule (I) selon la revendication 1 caractérisés en ce que au moins un des groupements Ra, Rb ou Rc représente un groupement de formule -U₁-V₁-U₂-V₂ telle que définie dans la formule (I), leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.
- 10. Composés de formule (I) selon l'une quelconque des revendications 1 à 3 caractérisés en ce que X représente un atome de soufre et Y représente un atome d'oxygène, leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.
 - 11. Composés de formule (I) selon la revendication 1 caractérisés en ce que X représente un atome de soufre, Y représente un atome d'oxygène, R₁ représente un groupement phényle éventuellement substitué ou un groupement pyridinyle éventuellement substitué, et A représente une liaison simple quand T représente un atome de carbone ou un groupement CH, leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.
 - 12. Composés de formule (I) selon la revendication 1 caractérisés en ce que X représente un atome de soufre, Y représente un atome d'oxygène, R₁ représente un groupement phényle éventuellement substitué par un groupement tel que défini dans la formule (I), et A représente un groupement alkylène (éventuellement substitué par un groupement alkyle (C₁-C₆) linéaire ou ramifié, aryle, ou arylalkyle (C₁-C₆) linéaire ou ramifié) ou un groupement arylène quand T représente un atome d'azote, leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.
 - 13. Composés de formule (I) selon la revendication 1 caractérisés en ce qu'ils représentent des composés de formule (Ibis):

45

50

15

20

30

70

Rb

Ra

$$Y - R_1$$
 $V_2 - U_2 - V_1 - U_1$
 Rc
 R_2
 $A - C - W$
 R_3

dans laquelle:

15

20

25

30

35

45

55

X représente un atome de soufre,Y représente un atome d'oxygène,

R₁ représente un groupement phényle éventuellement substitué ou un groupement hétéroaryle choisi parmi pyridinyle éventuellement substitué et quinolinyle éventuellement substitué,

A représente une liaison simple,

T représente un atome de carbone,

Ra et Rc représentent chacun un atome d'hydrogène, U_1 représente une chaîne alkylènoxy (C_1-C_4) linéaire,

U₁ représente une chaîne alkylènoxy (C₁-C₄) V₁ représente un groupement arylène,

U₂ représente une liaison simple,

V₂ représente un groupement aryle,

Rb représente un groupement U₁ -V₁-U₂-V₂ tel que défini précédemment,

R₂ représente un groupement hétéroaryle,

W représente un groupement tel que défini dans la formule (I), leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.

- 14. Composés de formule (I) selon la revendication 13 caractérisés en ce qu'ils représentent des composés de formule (Ibis) dans laquelle Rb et -U₁-V₁-U₂-V₂ représentent chacun un groupement [1,1'-biphényl]-4-ylméthoxy, leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.
- 15. Composés de formule (I) selon la revendication 13 caractérisés en ce qu'ils représentent des composés de formule (Ibis) dans laquelle R₂ représente un groupement pyridinyle, leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.
- 16. Composés de formule (I) selon la revendication 13 caractérisés en ce qu'ils représentent des composés de formule (Ibis) dans laquelle R₁ représente :
 - un groupement phényle éventuellement substitué par un à trois groupements choisis parmi atome d'halogène, groupement alkyle (C₁-C₆) linéaire ou ramifié, hétéroaryle, hétéroarylalkoxy (C₁-C₆) linéaire ou ramifié, alkoxy (C₁-C₆) linéaire ou ramifié, amino, et aminoalkoxy (C₁-C₆) linéaire ou ramifié, la partie amino pouvant être substituée par un ou deux groupements, identiques ou différents, alkyles (C₁-C₆) linéaire ou ramifié,
 - ou un groupement hétéroaryle choisi parmi pyridinyle et quinolinyle éventuellement substituée par un atome d'halogène ou un groupement alkyle (C₁-C₆) linéaire ou ramifié,
- 50 leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.
 - 17. Composé de formule (I) selon la revendication 1 qui est l'acide (E)-3-[5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-(4-chlorophénoxy)benzo[b]thiophène-2-yl]-2-(4-pyridinyl)-2-propènoïque, ses isomères ainsi que ses sels d'addition à un acide ou à une base pharmaceutiquement acceptable.
 - 18. Composés de formule (I) selon la revendication 1 qui sont :
 - le (E)-3-[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-(4-chlorophénoxy)-benzo[b]thiophène-2-yl]-2-(4-pyridinyl)-

2-propènoate d'éthyle,

10

15

20

25

30

35

40

45

50

- l'acide (E)-3-[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-(3-pyridinyloxy)-benzo[b]thiophène-2-yl]-2-(4-pyridinyl)-2-propènoïque,
- l'acide 3-(E)-{5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-[6-(méthyl)pyridinyl-3-oxy]-benzo[b] thiophène-2-yl}-2- (4-pyridinyl)-2-propènoïque,
- l'acide 3-(E)-[5,6-bis-([1,1'-biphényl]-4-ylméthoxy)-3-(6-quinolinyloxy)benzo[b]thiophène-2-yl]-2-(4-pyridinyl) 2-propènoïque.
- l'acide (E)-3-[5,6-bis-([1,1'-biphényl]-2-ylméthoxy)-3-(4-chlorophénoxy)benzo[b]thiophène-2-yl]-2-(4-pyridinyl)-2-propènoïque,
- l'acide (E)-3-[5,6-bis([1,1'-biphényl]-3-ylméthoxy)-3-(4-chlorophénoxy)-benzo[b]thiophène-2-yl]-2-(4-pyridinyl)-2-propénoïque.
- l'acide (E)-3-[5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-(4-chloro-3-fluorophénoxy)-benzo[b] thiophène-2-yl]-2-(4-pyridinyl)-2-propénoïque,
- l'acide (*E*)-3-[5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-(4-chloro-3,5-diméthylphénoxy)-benzo [b]thiophène-2-yl]-2-(4-pyridinyl)-2-propénoïque,
- l'acide (E)-3-[5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-(4-chloro-3-méthylphénoxy)-benzo[b] thiophène-2-yl]-2- (4-pyridinyl)-2-propénoïque,
- l'acide (E)-3-{5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-[4-(4-pyridinyloxy)phénoxy]-benzo[b] thiophène-2-yl}-2- (4-pyridinyl)-2-propénoïque,
- l'acide (E)-3-{5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-[4-(1H-imidazol-1-yl)phénoxy]-benzo [b]thiophène-2-yl}-2-(4-pyridinyl)-2-propénoïque,
- l'acide (E)-3-[5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-phénoxy-benzo[b]thiophène-2-yl]-2-(4-pyridinyl)-2-propénoïque,
- l'acide (E)-3-[5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-(3-fluorophénoxy)-benzo[b]thiophène-2-yl]-2-(4-pyridinyl)-2-propénoïque,
- l'acide (E)-3-[5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-(3,4-difluorophénoxy)-benzo[b] thiophène-2-yl]-2-(4-pyridinyl)-2-propénoïque,
- l'acide (E)-3-{5,6-bis([1,1'-biphényl]-4-ylméthoxy)-3-[(6-chloro-3-pyridinyl)oxy]-benzo[b] thiophène-2-yl}-2- (4-pyridinyl)-2-propénoïque,

leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.

- 19. Procédé de préparation des composés de formule (I), caractérisé en ce qu'on utilise comme produit de départ un composé de formule (II):

 - dans laquelle Ra, Rb, Rc et X ont la même signification que dans la formule (I), G représente un groupement hydroxy protégé par un groupement protecteur classiquement utilisé en synthèse organique et Q représente un atome d'halogène ou un groupement hydroxy et de façon préférée, Q représente un atome d'halogène quand X représente un atome de soufre ou un groupement NR3 avec R₃ tel que défini dans la formule (I) et Q représente un groupement hydroxy quand X représente un atome d'oxygène, composé de formule (II) que l'on fait réagir, en condition basique,
 - soit quand Q représente un atome d'halogène :
 - ♦ avec un composé de formule (III),
- ⁵⁵ $H Y_1 R_1$ (III)

dans laquelle R₁ a la même signification que dans la formule (I) et Y₁ représente un atome d'oxygène,

de soufre, ou un groupement NR₃ avec R₃ ayant la même signification que dans la formule (I), pour conduire aux composés de formule (IV/a) :

Rb Ra $Y_1 - R_1$ Rc H (IV/a)

15

20

25

30

35

40

45

50

55

dans laquelle Ra, Rb, Rc, G, R₁, X et Y₁ sont tels que définis précédemment, ♦ ou avec un composé de formule (V):

$(HO)_2B - R_1$ (V)

dans laquelle R_1 a la même signification que dans la formule (I), pour conduire aux composés de formule (IV/b) :

dans laquelle Ra, Rb, Rc, G et R_1 sont tels que définis précédemment et X_1 représente un groupement NR3 dans lequel R3 représente un groupement hétéroarylalkyle (C_1 - C_6) linéaire ou ramifié,

soit quand Q représente un groupement hydroxy, avec un composé de formule (VI),

dans laquelle Hal représente un atome d'halogène et R₁ est tel que défini précédemment, pour conduire aux composés de formule (IV/c) :

dans laquelle Ra, Rb, Rc, G, X et R1 sont tels que définis précédemment,

l'ensemble des composés de formule (IV/a), (IV/b) et (IV/c) forment les composés de formule (IV) :

10

5

dans laquelle Ra, Rb, Rc, G, R $_1$, X et Y ont la même définition que dans la formule (I), composés de formule (IV) :

15

♦ que l'on condense, en présence d'anhydride acétique, avec un composé de formule (VII),

$$R'_2$$
 COW₁ (VII)

20

dans laquelle R'_2 a la même signification que R_2 dans la formule (I), excepté que R'_2 ne peut pas représenter un atome d'hydrogène, et W_1 représente un groupement choisi parmi alkoxy (C_1-C_6) linéaire ou ramifié, aryloxy, arylalkoxy (C_1-C_6) linéaire ou ramifié, cycloalkyloxy, hétérocycloalkoxy, hétéroaryloxy et un groupement amino (lui-même étant éventuellement substitué par un ou deux groupements, identiques ou différents, indépendamment l'un de l'autre, choisis parmi alkyle (C_1-C_6) linéaire ou ramifié, aryle, arylalkyle (C_1-C_6) linéaire ou ramifié, et cycloalkyle),

25

pour conduire aux composés de formule (VIII):

30

35

40

dans laquelle Ra, Rb, Rc, G, R₁, R'₂, X, Y et W_1 ont la même définition que précédemment, composés de formule (VIII) dont on déprotège la fonction hydroxy selon des conditions classique de la synthèse organique, puis que l'on fait réagir en milieu basique avec un composé de formule (IX):

$$V_2 - U_2 - V_1 - U_1 - Hal$$
 (IX)

45

dans laquelle U_1 , V_1 , U_2 et V_2 sont tels que définis dans la formule (I) et Hal représente un atome d'halogène, pour conduire aux composés de formule (I/a), cas particulier des composés de formule (I):

50

$$\begin{array}{c|c}
Rb & Ra & Y-R_1 \\
Rc & X & Y-R_1 \\
V_2-U_2-V_1-U_1 & X & CO-W_1
\end{array}$$

55

dans laquelle Ra, Rb, Rc, U1, V1, U2, V2, R1, R2, X, Y et W1 ont la même définition que précédemment,

composés de formule (l/a) que l'on soumet, si on le désire :

5

10

15

20

25

30

35

40

45

50

55

* soit à des conditions d'hydrogénation catalytique, en présence de Palladium, pour conduire aux composés de formule (I/b), cas particulier des composés de formule (I):

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R'₂, X, Y et W₁ sont tels que définis précédemment,

* soit à des conditions d'hydrolyse, en milieu basique, pour conduire aux composés de formule (I/c), cas particulier des composés de formule (I):

$$\begin{array}{c|c}
Rb & Ra & Y-R_1 \\
Rc & X & Y-R_1 \\
V_2-U_2-V_1-U_1 & X & CO_2 H
\end{array}$$

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R'₂, X et Y ont la même définition que précédemment, composés de formule (I/c), dont on réduit, si on le souhaite, la double liaison par hydrogénation catalytique, pour conduire aux composés de formule (I/d), cas particulier des composés de formule (I):

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R'₂, X et Y sont tels que définis précédemment,

♦ ou que l'on soumet, à l'action d'un ylure de phosphore de formule (X),

$$(R')_3 P - CH - A_1 - CO - W_1$$
 (X)

dans laquelle R' représente un groupement alkyle (C_1-C_6) linéaire ou ramifié, ou groupement phényle, R_2 a la même définition que dans la formule (I), W_1 a la même définition que précédemment et A_1 représente une liaison simple, un groupement alkylène (éventuellement substitué par un ou plusieurs groupements choisis

parmi alkyle (C₁-C₆) linéaire ou ramifié, aryle, arylalkyle (C₁-C₆) linéaire ou ramifié, cycloalkyle, hétérocycloalkyle, et hétéroaryle), un groupement arylène, cycloalkylène, hétérocycloalkylène, ou hétéroarylène, pour conduire aux composés de formule (XI):

5

10

15

dans laquelle Ra, Rb, Rc, G, R₁, R₂, X, Y, A₁ et W₁ ont la même définition que précédemment, composés de formule (XI) dont on déprotège la fonction hydroxy selon des conditions classiques de la synthèse organique, puis que l'on fait réagir en milieu basique avec un composé de formule (IX) :

20

dans laquelle U_1 , V_1 , U_2 et V_2 sont tels que définis dans la formule (I) et Hal représente un atome d'halogène, pour conduire aux composés de formule (I/e), cas particulier des composés de formule (I):

25

30

dans laquelle Ra, Rb, Rc, U_1 , V_1 , U_2 , V_2 , R_1 , R_2 , A_1 , X, Y et W_1 ont la même définition que précédemment, composés de formule (I/e) que l'on soumet, si on le désire :

35

* soit à des conditions d'hydrolyse, en condition basique, pour conduire aux composés de formule (l/f), cas particulier des composés de formule (l):

40

50

45

dans laquelle Ra, Rb, Rc, U1, V1, U2, V2, R1, R2, X, Y et A1 sont tels que définis précédemment,

* soit à des conditions d'hydrogénation catalytique, pour conduire aux composés de formule (I/g), cas particulier des composés de formule (I):

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R₂, X, Y, A₁ et W₁ sont tels que définis précédemment, composés de formule (I/g) que l'on peut traiter dans des conditions d'hydrolyse basique, pour conduire aux composés de formule (I/h), cas particulier des composés de formule (I):

$$Rb$$

$$Rc$$

$$Rc$$

$$V_2 - U_2 - V_1 - U_1$$

$$R_2$$

$$R_2$$

$$A_1 - CO_2H$$

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R₂, X, Y et A₁ sont tels que définis précédemment,

♦ ou dont on déprotège la fonction hydroxy selon des conditions classiques de la synthèse organique, puis que l'on fait réagir en milieu basique avec un composé de formule (IX) :

$$V_2 - U_2 - V_1 - U_1 - Hal$$
 (IX)

dans laquelle U_1 , V_1 , U_2 et V_2 sont tels que définis dans la formule (i) et Hal représente un atome d'halogène, pour conduire aux composés de formule (XII) :

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, X et Y ont la même définition que précédemment, composés de formule (XII), dont on réduit la fonction aldéhyde en alcool primaire, pour conduire aux composés de formule (XIII) :

dans laquelle Ra, Rb, Rc, U_1 , V_1 , U_2 , V_2 , R_1 , X et Y ont la même définition que dans la formule (I), composés de formule (XIII) dont on substitue l'hydroxy terminal par un halogène, selon des conditions classiques, pour conduire aux composés de formule (XIV):

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, X et Y sont tels que définis précédemment, et Hal représente un atome de chlore ou de brome, composés de formule (XIV):

* dont on substitue l'atome d'halogène, en condition basique, par un dérivé aminé de formule (XV):

 $R_2 - NH - A_1 - CO - W_1$ (XV)

dans laquelle R₂ a la même définition que dans la formule (I) et, A₁, W₁ ont la même signification que précédemment,

pour conduire aux composés de formule (I/i), cas particulier des composés de formule (I):

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R₂, X, Y, A₁ et W₁ sont tels que définis précédemment, composés de formule (I/i), dont on hydrolyse en condition basique le groupement carbonyle terminal, pour conduire aux composés de formule (I/j), cas particulier des composés de formule (I):

$$\begin{array}{c|c}
Rb & Ra & Y-R_1 \\
Rc & X & (I/j) \\
V_2-U_2-V_1-U_1 & X & \\
R_2 & N & \\
R_2 & N & \\
A_1-CO_2H
\end{array}$$

dans laquelle Ra, Rb, Rc, U1, V1, U2, V2, R1, R2, X, Y et A1 sont tels que définis précédemment,

 ou que l'on traite par de l'azidure de sodium dans un premier temps, et dont on réduit l'azide obtenue en amine primaire dans des conditions d'hydrogénation catalytique, pour conduire aux composés de formule (XVI):

5

10

15

20

25

30

*3*5

40

45

50

5

10

15

20

25

30

35

40

45

50

55

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, X et Y ont la même définition que dans la formule (I), composés de formule (XVI) que l'on condense, en condition basique, sur un dérivé chlorosulphonyle de formule (XVII):

$$CI - SO_2 - R_4 - CO - W_1$$
 (XVII)

dans laquelle R₄ a la même définition que dans la formule (I), et W₁ est tel que défini précédemment, pour conduire aux composés de formule (I/k), cas particulier des composés de formule (I),

$$Rb$$
 Rc
 Rc
 $Y-R_1$
 $V_2-U_2-V_1-U_1$
 HN
 SO_3-R_4-CO-W

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R₄, X, Y et W₁ sont tels que définis précédemment, composés de formule (I/k):

 que l'on soumet, si on le souhaite, à des conditions d'hydrolyse en condition basique, pour conduire aux composés de formule (I/I), cas particulier des composés de formule (I):

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R₄, X et Y sont tels que définis précédemment, ou que l'on se condense, en milieu basique, avec un composé de formule (XVIII):

dans laquelle Hal représente un atome d'halogène tel que l'iode, et R'2 a la même définition que précédemment,

pour conduire aux composés de formule (I/m), cas particulier des composés de formule (I):

$$\begin{array}{c|c}
Rb & Ra & Y-R_1 \\
Rc & X & (I/m) \\
V_2-U_2-V_1-U_1 & X & SO_2-R_4-CO-W_1
\end{array}$$

dans laquelle Ra, Rb, Rc, U_1 , V_1 , U_2 , V_2 , R_1 , R_2 , R_4 , X, Y et W_1 sont tels que définis précédemment, composés de formule (I/m) que l'on traite par des conditions d'hydrolyse en milieu basique, pour conduire aux composés de formule (I/n), cas particulier des composés de formule (I):

dans laquelle Ra, Rb, Rc, U₁, V₁, U₂, V₂, R₁, R'₂, R₄, X et Y sont tels que définis précédemment,

l'ensemble des composés de formule (I/c), (I/d), (I/f), (I/h), (I/j), (I/l) et (I/n) formant les composés de formule (I')

$$\begin{array}{c|c}
Rb & Ra & Y-R_1 \\
Rc & X & Y-R_1 \\
V_2-U_2-V_1-U_1 & X & R_2 & A-CO_2H
\end{array}$$

dans laquelle Ra, Rb, Rc, U₁, V₂, U₂, R₁, R₂, X, Y, Z et A sont tels que définis dans la formule (I), composés de formule (I') que l'on met en réaction avec une hydroxylamine-O-substituée, pour conduire, après déprotection de la fonction hydroxylamine, aux composés de formule (I/o), cas particulier des composés de formule (I):

$$Rb$$
 Rc
 Rc
 $Y-R_1$
 $V_2-U_2-V_1-U_1$
 R_2
 T
 $A-CONHOH$

dans laquelle Ra, Rb, Rc, U₁, V₂, U₂, R₁, R₂, X, Y, Z et A sont tels que définis précédemment, les composés (l/a) à (l/o) formant l'ensemble des composés de l'invention, que l'on purifie, le cas échéant, selon une technique classique de purification, qui peuvent, si on le désire, être séparés en leurs différents isomères selon une technique classique de séparation, et que l'on transforme, le cas échéant, en leurs sels d'addition à un

acide ou à une base pharmaceutiquement acceptable.

5

15

20

25

30

35

40

45

50

55

- 20. Compositions pharmaceutiques contenant comme principe actif au moins un composé de formule (I) selon l'une quelconque des revendications 1 à 18, seul ou en combinaison avec un ou plusieurs excipients ou véhicules inertes, non toxiques, pharmaceutiquement acceptables.
- 21. Compositions pharmaceutiques selon la revendication 20 contenant au moins un principe actif selon l'une quelconque des revendications 1 à 18, utiles en tant qu'inhibiteur du PAI-1.
- 22. Compositions pharmaceutiques selon la revendication 20 contenant au moins un principe actif selon l'une quelconque des revendications 1 à 18, utiles dans le traitement de la thrombose, des pathologies dont l'origine est la thrombose et des pathologies entraînant une augmentation des risques thrombotiques.

40

(12)

DEMANDE DE BREVET EUROPEEN

- (88) Date de publication A3: 08.08.2001 Bulletin 2001/32
- (43) Date de publication A2: 18.04.2001 Bulletin 2001/16

(21) Numéro de dépôt: 00402831.2

(22) Date de dépôt: 13.10.2000

(51) Int CI.7: **C07D 409/06**, A61K 31/47, A61K 31/44, C07D 333/64, C07D 409/14, C07D 401/06, A61P 7/04, A61P 7/02

(84) Etats contractants désignés:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Etats d'extension désignés: AL LT LV MK RO SI

- (30) Priorité: 15.10.1999 FR 9912899
- (71) Demandeur: ADIR ET COMPAGNIE 92415 Courbevoie Cédex (FR)

- (72) Inventeurs:
 - de Nanteuil, Guillaume 92150 Suresnes (FR)
 - Lila, Christine
 91190 Gif Sur Yvette (FR)
 - Verbeuren, Tony
 78540 Vernouillet (FR)
 - Rupin, Alain
 37510 Savonnieres (FR)
- (54) Dérivés benzothiophéniques, benzofuraniques et indoliques, leur procédé de préparation et les compositions pharmaceutiques qui les contiennent
- (57) Composés de formule (I):

$$\begin{array}{c|c}
Rb & Ra & Y-R_1 \\
Rc & X & X & X \\
V_2-U_2-V_1-U_1 & X & X \\
R_2 & A-C-W & O
\end{array}$$

dans laquelle :

X

Υ

T

Α

W

 U_1

V₁ U₂ représente un atome d'oxygène, de soufre, ou un groupement NR_3 dans lequel R_3 est tel que défini dans la description,

représente un atome d'oxygène, de soufre, un groupement NR₃, ou peut représenter une liaison simple dans certains cas,

représente un atome d'azote, un atome de carbone ou un groupement CH,

représente une liaison simple, un groupement alkylène, arylène, cycloalkylène, hétérocycloalkylène, hétéroarylène, ou un groupement -SO₂-R₄- dans lequel R₄ est tel que défini dans la description,

représente un groupement hydroxy, alkoxy, aryloxy, arylalkoxy, cycloalkyloxy, hétérocycloalkyloxy, hétéroaryloxy, ou un groupement hydroxyamino,

représente un hétéroatome ou une chaîne alkylène, dont un ou plusieurs des atomes de carbone peuvent éventuellement être remplacé par un ou plusieurs hétéroatomes, représente un groupement arylène, hétéroarylène ou hétérocycloalkylène,

représente une liaison simple, un hétéroatome, ou une chaîne alkylène, dont un ou

plusieurs atomes de carbone peuvent éventuellement être remplacé par un ou plusieurs hétéroatomes,

représente un groupement aryle, hétéroaryle ou hétérocycloalkyle,

V₂ Ra, Rb, Rc, identiques ou différents, indépendamment l'un de l'autre, représentent un groupement

tel que défini dans la description,

représente un groupement aryle substitué par un à cinq substituants, un groupement R₁

1,3-dihydro-2H-indol-2-one, 3,4-dihydro-2(1H)-quinolinone, 1-hydroxy-2(1H)-pyridi-

none, ou un groupement hétéroaryle,

représente un atome d'hydrogène, un groupement alkyle, aryle, arylalkyle, cycloalk- R_2

yle, hétérocycloalkyle, hétérocycloalkylalkyle, hétéroaryle, ou hétéroarylalkyleé,

leurs isomères ainsi que leurs sels d'addition à un acide ou à une base pharmaceutiquement acceptable.

RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande EP 00 40 2831

atégorie	Citation du document avec des parties pertir	indication, en cas de besoin, nantes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int.CI.7)
A	WO 93 25546 A (MERC CAN.) 23 décembre 1 * page 2, ligne 20 * revendications 1,	993 (1993-12-23) - page 3, ligne 28		C07D409/06 A61K31/47 A61K31/44 C07D333/64 C07D409/14
A	WO 94 12179 A (ABBO 9 juin 1994 (1994-0 * page 15 - page 16 * page 16 - page 20 * revendications 7,	6-09) * ; exemple 1 *	SA) 1,20	C07D401/06 A61P7/04 A61P7/02
A	WO 92 03132 A (ABBO 5 mars 1992 (1992-0 * page 25; exemple * revendications 1,	3-05) 1 *	SA) 1,20	
D,A	WO 94 08962 A (MERC GEORGE D (US); EGBE H) 28 avril 1994 (1 * abrégé; revendica * page 23; figure 1 * page 27; figure 2	RTSON MELISSA S (U 994-04-28) tions * *	N 1,20 S);	DOMAINES TECHNIQUES RECHERCHES (Int.Cl.7)
	* page 27, figure 2 * page 31; figure 3 * page 34; figure 4 * page 1, ligne 11 * page 20 - page 22	* * - ligne 33 *		C07D A61K A61P
				
Le nr	ésent rapport a été établi pour to	utes les revendications		
	Lieu de la recherche	Date d'aghèvement de la rech	rahe	Examinetour
	LA HAYE	15 juin 200	1 Pa1	sdor, B
X : part Y : part autr	ATEGORIE DES DOCUMENTS CITE iculièrement pertinent è lui seul iculièrement pertinent en combinaisor e décument de la même catégorie ete-plen technologique	S T: théorie E: docum date di n avec un D: cité da L: cité po	ou principe à la base de l' eent de brevet antérieur, m e dépôt ou après cette date une la demande ur d'autres raisons	irrvention ais publié à la

3

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 00 40 2831

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé di-dessus.

Lesdits members sont contanus au fichier informatique de l'Office européen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

15-06-2001

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la amilie de brevet(s)	Date de publication	
WO	9325546	A	23-12-1993	US	5334719 A	02-08-199
				AU	4304693 A	04-01-199
				CA	2136240 A	23-12-199
WO	9412179	Α	09-06-1994	US	5288743 A	22-02-199
				MX	9307185 A	31-08-199
WO	9203132	A	05-03-1992	US	5095031 A	10-03-199
				AT	131051 T	15-12-199
				CA	2090006 A	21-02-199
				DE	69115280 D	18-01-199
				DE	69115280 T	13-06-199
				DK	544819 T	09-04-199
				EP	0544819 A	09-06-199
				ES	2083595 T	16-04-199
				GR	3019198 T	30-06-199
				ΙE	912855 A	26-02-199
				JP	6500557 T	20-01-199
				PT	98710 A.B	31-07-199
				US	5459150 A	17-10-199
WO	9408962	A	28-04-1994	AT	188379 T	15-01-200
				AU	5357494 A	09-05-199
				CA	2144763 A	28-04-199
				DE	69327536 D	10-02-200
				DE	69327536 T	06-07-200
				EP	0664792 A	02-08-199
				JP	8502484 T	19-03-199
				US	5559127 A	24-09-199
				US	5721253 A	24-02-199

EPO FORM PO480

Pour tout renseignement concernant cetts annexe ; voir Journal Officiel de l'Office européen des brevets, No. 12/82