ИНТЕНСИВ ПО ПАРАМЕТРАМ. ФУНКЦИИ. Вебинар №3

ightharpoonup Функция f(x) называется возрастающей на промежутке X, если для любых $x_1, x_2 \in X$, таких что $x_1 < x_2$, выполнено $f(x_1) < f(x_2)$.

Примеры: $y = \sqrt{x}$, $y = 2^x$, $y = \log_2 x$, $y = x^3$.

Функция называется **неубывающей** на промежутке X, если для любых $x_1, x_2 \in X$, таких что $x_1 < x_2$, выполнено $f(x_1) \leqslant f(x_2)$.

ightharpoonup Функция f(x) называется **убывающей** на промежутке X, если для любых $x_1, x_2 \in X$, таких что $x_1 < x_2$, выполнено $f(x_1) > f(x_2)$.

Примеры: $y = \log_{0.5} x$, $y = (0, 5)^x$, $y = \sqrt{-x}$.

Функция называется **невозрастающей** на промежутке X, если для любых $x_1, x_2 \in X$, таких что $x_1 < x_2$, выполнено $f(x_1) \geqslant f(x_2)$.

► Возрастающие и убывающие функции называют **строго монотонными**, а невозрастающие и неубывающие — просто **монотонными**.

Краткий справочник:

Если производная положительна на промежутке (a;b),

то функция возрастает на промежутке (a;b)

Если производная отрицательна на промежутке (a;b),

то функция убывает на промежутке (a;b)

Если производная равна нулю в точке x = a, причем меняет знак с "плюса" на "минус",

то точка x = a является точкой максимума функции

Если производная равна нулю в точке x = a, причем меняет знак с "минуса" на "плюс", если смотреть слева направо,

то точка x = a является точкой минимума функции

	T 0/	H (1/)
	Функция $f(x)$	Производная $f'(x)$
1	c = const	0
2	x^a	$a \cdot x^{a-1}$
3	$\ln x$	$\frac{1}{x}$
4	$\log_a x$	$\frac{1}{x \cdot \ln a}$
5	e^x	e^x
6	a^x	$a^x \cdot \ln a$
7	$\sin x$	$\cos x$
8	$\cos x$	$-\sin x$
9	$\operatorname{tg} x$	$\frac{1}{\cos^2 x}$
10	$\operatorname{ctg} x$	$-\frac{1}{\sin^2 x}$
11	$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
12	$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
13	$\operatorname{arctg} x$	$\frac{1}{1+x^2}$
14	$\operatorname{arcctg} x$	$-\frac{1}{1+x^2}$

Частные случаи

	Функция $f(x)$	Производная $f'(x)$
15	$\frac{1}{x} = x^{-1}$	$-\frac{1}{x^2}$
16	$\sqrt{x} = x^{\frac{1}{2}}$	$\frac{1}{2\sqrt{x}}$
17	$x\sqrt{x} = x^{\frac{3}{2}}$	$\frac{3}{2}\sqrt{x}$
18	e^{-x}	$-e^{-x}$

Виды функций	Правила	
Умножение на число	$(c \cdot f)' = c \cdot f'$	
Сумма/разность	$(f \pm g)' = f' \pm g'$	
Произведение	$f \cdot g = f' \cdot g + f \cdot g'$	
Частное	$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$	
Сложная функция	$(f(t(x)))' = f_t' \cdot t_x'$	

▶ Основные свойства:

I. Сумма двух возрастающих функций – возрастающая функция; если f(x) – возрастающая функция, то -f(x) – убывающая функция; если f(x) – возрастающая функция, то f(x)+c – возрастающая функция (c – некоторое число).

Если f(x), g(x) – возрастающие функции, h(x), p(x) – убывающие (на некотором множестве), то f(g(x)) – возрастающая, f(h(x)) – убывающая, h(f(x)) – убывающая, h(p(x)) – возрастающая. То есть композиция двух функций одинаковой монотонности – возрастающая, разной монотонности – убывающая.

Если f(x) – возрастающая и знакопостоянная на некотором множестве (либо положительна, либо отрицательна), то $\frac{1}{f(x)}$ – убывающая. Аналогично с убывающей.

Если f(x), g(x) – возрастающие неотрицательные функции, то $f(x) \cdot g(x)$ – возрастающая. Аналогично с убывающими.

II. Если функция f(x) — строго монотонна на X, то из равенства $x_1 = x_2 \ (x_1, x_2 \in X)$ следует $f(x_1) = f(x_2)$, и наоборот.

Пример: функция $f(x) = \sqrt{x}$ является строго возрастающей при всех $x \in [0; +\infty)$, поэтому из равенства $\sqrt{x} = \sqrt{4}$ следует x = 4.

III. Если функция f(x) — строго монотонна на X, то уравнение f(x) = c, где c — некоторое число, всегда имеет не более одного решения на X.

Пример:

- 1) функция $f(x) = x^2$ является строго убывающей при всех $x \in (-\infty; 0]$, поэтому уравнение $x^2 = 9$ имеет на этом промежутке не более одного решения, а точнее одно: x = -3.
 - 2) функция $f(x) = -\frac{1}{x+1}$ является строго возрастающей при всех $x \in (-1; +\infty)$,

поэтому уравнение $-\frac{1}{x+1} = 0$ имеет на этом промежутке не более одного решения, а точнее ни одного, т.к. числитель левой части никогда не может быть равен нулю.

IV. Если на [a;b] f(x) – возрастающая функция, а g(x) – убывающая функция, то уравнение f(x)=g(x) на [a;b] имеет не более одного корня.

Пример: функция $f(x) = x^2$ является возрастающей на $[0; +\infty)$, а функция g(x) = -x + 5 – убывающей, следовательно, уравнение $x^2 = -x + 5$ имеет на $[0; +\infty)$ не более одного корня. В данном случае – ровно один корень.

V. Если функция f(x) — неубывает (невозрастает) и непрерывна на отрезке [a;b], причем на концах отрезка она принимает значения f(a) = A, f(b) = B, то при $C \in [A;B]$ ($C \in [B;A]$) уравнение f(x) = C всегда имеет хотя бы одно решение.

Пример: функция $f(x) = x^3$ является строго возрастающей (то есть строго монотонной) и непрерывной при всех $x \in \mathbb{R}$, поэтому при любом $C \in (-\infty; +\infty)$ уравнение $x^3 = C$ имеет ровно одно решение: $x = \sqrt[3]{C}$.

Идея:
$$f(t) = f(z)$$

1. Найдите все значения параметра a, при каждом из которых уравнение

$$8x^6 + (a-x)^3 + 2x^2 + a = x$$

имеет хотя бы один корень.

 $a\in (-\infty;0,125]$

Идея: f(x) = 0, где f(x) — строго монотонна

2. Найдите все значения параметра a, при каждом из которых любой корень уравнения

$$3\sqrt[5]{6,2x-5,2} + 4\log_5(4x+1) + 5a = 0$$

принадлежит отрезку [1; 6].

 $a \in [-2, 8, -1, 4]$

Идея: свести уравнение к виду a = f(x)

3. При каких a уравнение $5\cos 2x + \frac{2a}{\sin x} = -29$ имеет решения?

 $a \in [-12;0) \cup (0;12]$

Идея: метод главного модуля/слагаемого

4. Найдите все значения параметра a, при каждом из которых уравнение

$$4x - |3x - |x + a|| = 9|x - 1|$$

имеет хотя бы один корень.

 $[9:8-] \ni v$

ightharpoonup Функция f(x) называется **четной**, если при всех x из ее области определения верно: f(-x) = f(x).

График четной функции симметричен относительно оси y:

Область определения четной функции f(x) симметрична относительно x=0.

Пример: функция $f(x) = x^2 + \cos x$ является четной, т.к. $f(-x) = (-x)^2 + \cos (-x) = x^2 + \cos x = f(x)$.

ightharpoonup Функция f(x) называется **нечетной**, если при всех x из ее области определения верно: f(-x) = -f(x).

График нечетной функции симметричен относительно начала координат:

Область определения нечетной функции f(x) симметрична относительно x=0.

Пример: функция $f(x)=x^3+x$ является нечетной, т.к. $f(-x)=(-x)^3+(-x)=-x^3-x=-(x^3+x)=-f(x).$

▶ Функции, не являющиеся ни четными, ни нечетными, называются функциями общего вида. Такую функцию можно всегда единственным образом представить в виде суммы четной и нечетной функции.

Например, функция $f(x) = x^2 - x$ является суммой четной функции $f_1 = x^2$ и нечетной $f_2 = -x$.

▶ Некоторые свойства:

1) Произведение и частное двух функций одинаковой четности — четная функция.

- 2) Произведение и частное двух функций разной четности нечетная функция.
- 3) Сумма и разность четных функций четная функция.
- 4) Сумма и разность нечетных функций нечетная функция.
- 5) Если f(x) четная функция, то уравнение f(x) = c ($c \in \mathbb{R}$) имеет единственный корень тогда и только когда, когда его корнем является x = 0 и этот корень единственный.
- 6) Если f(x) четная или нечетная функция, и уравнение f(x)=0 имеет корень x=b, то это уравнение обязательно будет иметь второй корень x=-b.
- 5. Найдите все значения параметра a, при каждом из которых уравнение $tg |a| = log_2(cos x |x|)$ имеет единственное решение.

 $\mathbb{Z} \ni u \cdot u u = v$

Факт: Если $f(x) \geqslant c, \ g(x) \leqslant c$ при любом x, то равенство

$$f(x) = g(x)$$

возможно тогда и только тогда, когда f(x) = g(x) = c.

Основные ограниченные функции и их области значений:

Функция	Область значений	Область определения
	(значение $y)$	(значение x)
$y = x^2$	$y \geqslant 0$	$x \in \mathbb{R}$
$y = x + \frac{1}{x}$	$y \geqslant 2$, если $x > 0$	$x \in \mathbb{R} \backslash \{0\}$
	$y \leqslant -2$, если $x < 0$	
y = x + 1 - x	$y \geqslant 1$, причем	$x \in \mathbb{R}$
	$y = 1, \text{ если } x \in [0; 1]$	
y = x - a + x + a	$y\geqslant 2 a $, причем	$x \in \mathbb{R}$
	$y=2 a ,$ если $x\in[- a ; a]$	
$y = \sin x$,	$-1 \leqslant y \leqslant 1$	$x \in \mathbb{R}$
$y = \cos x$		
$y = \arcsin x$	$-\frac{\pi}{2} \leqslant y \leqslant \frac{\pi}{2}$	$-1 \leqslant x \leqslant 1$
$y = \arccos x$	$0 \leqslant y \leqslant \pi$	$-1 \leqslant x \leqslant 1$
$y = \operatorname{arctg} x$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$	$x \in \mathbb{R}$
$y = \operatorname{arcctg} x$	$0 < y < \pi$	$x \in \mathbb{R}$

Важные неравенства:

1) Неравенство Коши (о средних) :

$$\sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}} \geqslant \frac{a_1 + a_2 + \dots + a_n}{n} \geqslant \sqrt[n]{a_1 a_2 \dots a_n} \geqslant \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}$$

ср. квадратичное ≥ ср. арифметического ≥ ср. геометрического ≥ ср. гармоническог

2) Неравенство треугольника:

$$|a| - |b| \leqslant |a \pm b| \leqslant |a| + |b|$$

Идея: метод оценки

6. Найдите все такие пары чисел a и b, при каждой из которых уравнение

$$(3x^2 - 2a^2 + ab)^2 + (3a^2 - ab + 2b^2 - 12x)^2 + 4 = 4x - x^2$$

имеет единственное решение.

$$(\underline{\zeta} \searrow -; \underline{\zeta} \searrow -); (\underline{\zeta} \searrow ; \underline{\zeta} \searrow); (\underline{\zeta} \searrow -; \underline{\zeta}); (\underline{\zeta} , \underline{\zeta}); (\underline{\zeta} , \underline{\zeta}); (\underline{\zeta} , \underline{\zeta})$$

Идея: неравенство Коши

7. Найдите a, при которых уравнение

$$|x - a^2 + 4a - 2| + |x - a^2 + 2a + 3| = 2a - 5$$

имеет хотя бы один корень на отрезке [5; 23].

 $L \geqslant v \geqslant V$