Las ecuaciones (2.6.1), (2.6.2) y (2.6.3) indican que toda matriz elemental es invertible y que su inversa es del mismo tipo (tabla 2.4). Estos datos se deducen a partir del teorema 2.6.1. Es obvio que si se realizan las operaciones $R_j \to R_j + cR_i$ seguida de $R_j \to R_j - cR_i$ sobre la matriz A, la matriz A no cambia. También $R_i \to cR_i$ seguida de $R_i \to \frac{1}{c}R_i$, y la permuta de los mismos dos renglones dos veces deja la matriz A sin cambio. Se tiene

$$(cR_i)^{-1} = \frac{1}{c}R_i \tag{2.6.4}$$

$$(R_j + cR_i)^{-1} = R_j - cR_i$$
 (2.6.5)

$$(P_{ii})^{-1} = P_{ii} {(2.6.6)}$$

La ecuación (2.6.6) indica que

Toda matriz de permutación elemental es su propia inversa.

Resumiendo los resultados:

Tabla 2.4 Matrices elementales y sus inversas

Matriz elemental tipo E	Efecto de multiplicar <i>A</i> por la izquierda por <i>E</i>	Representación simbólica de las operaciones elementales	Al multiplicar por la izquierda, E^{-1} hace lo siguiente	Representación simbólica de la operación inversa
Multiplicación	Multiplica el renglón i de A por $c \neq 0$	cR_i	Multiplica el renglón i de A por $\frac{1}{c}$	$\frac{1}{c} R_i$
Suma	Multiplica el renglón <i>i</i> de <i>A</i> por <i>c</i> y lo suma al renglón <i>j</i>	$R_j + cR_i$	Multiplica el renglón <i>i</i> de <i>A</i> por – <i>c</i> y lo suma al renglón <i>j</i>	$R_j - cR_i$
Permutación	Permuta los renglones i y j de A	P_{ij}	Permuta los renglones i y j de A	P_{ij}

Nota

El inverso de una matriz elemental se puede encontrar por inspección. No es necesario realizar cálculos.

Teorema 2.6.2

Toda matriz elemental es invertible. El inverso de una matriz elemental es una matriz del mismo tipo.

Teorema 2.6.3

Una matriz cuadrada es invertible si y sólo si es el producto de matrices elementales.

Demostración

Sea $A = E_1, E_2, \ldots, E_m$ donde cada E_i es una matriz elemental. Por el teorema 2.6.2, cada E_i es invertible. Más aún, por el teorema 2.4.3, A es invertible ⁹ y

Aquí se usó la generalización del teorema 2.4.3 para más de dos matrices. Vea, por ejemplo, el problema 2.4.23.