CSE 280 Challenge Set 06 - Solutions

(c) BYU-Idaho - It is an honor code violation to post this file completed or uncompleted in a public file sharing site.

Instructions: Work on all questions as a group as instructed during class. We will review each answer during class.

Question 1

Use the Eulcid Algorithm to find the gcd for the following pairs of numbers. Use tables as we did in class.

- gcd(80, 32)
- gcd(560,792)

Answer:

x = r'	y=x'	$r = y \bmod x$
80	32	32
32	80	16
16	32	0
0	16	

GCD = 16

x = r'	y = x'	r=y mod x
560	792	232
232	560	96
96	232	40
40	96	16
16	40	8
8	16	0
0	8	

GCD = 8

Question 2

Use the Extended Euclid Algorithm to express the answers to question 1 as a linear combination.

Answer:

x = r'	y = x'	r=y mod x	$q = y \operatorname{div} x$	s = t' - qs'	t = s'
80	32	32	0	1	-2
32	80	16	2	-2	1
16	32	0	2	1	0
0	16			0	1

$$16 = 80 * 1 - 2 * 32$$

x = r'	y=x'	r=y mod x	$q = y \operatorname{div} x$	s=t'-qs'	t=s'
560	792	232	1	-41	29
232	560	96	2	29	-12
96	232	40	2	-12	5
40	96	16	2	5	-2
16	40	8	2	-2	1
8	16	0	2	1	0
0	8			0	1

$$8 = -41 * 560 + 29 * 792$$

Question 3

Part 1

Create public and private RSA keys. Use the two prime numbers: p=163 and q=431. Calculate N (public) and ϕ . Select the **smallest** value e (public) such than $gcd(e,\phi)=1$. Use the Extended Eulicd Algorithm to find the multiplicative inverse of $e \mod \phi$ and call the result d (private).

Determine the equations to encrypt and decrypt. Use the table below to execute the Euclid algorithm.

Answer:

Public:
$$N = 163 * 431 = 70253$$

$$\phi = 162 * 430 = 69660$$

Public:
$$e = 7$$
 NOTE: $gcd(e, \phi) = 1$,

x = r'	y=x'	r=y mod x	$q = y \operatorname{div} x$	s=t'-qs'	t=s'
7	69660	3	9951	19903	-2
3	7	1	2	-2	1
1	2	0	2	1	0
0	1			0	1

Linear Combination: 1 = 7 * 19903 - 69660 * 2

Private: $d = 19903 \mod 69660 = 19903$

Encryption Formula: $c=m^7 \bmod 70253$

Decryption Formula: $m=c^{19903} \bmod 70253$

Part 2

Use a python terminal (which is good at working with large numbers) to encrypt and decrypt the word "PIE" using the RSA keys obtained in Part 1 above. To convert the letters to numbers, use the ASCII code provided in the second column. Use the Python terminal to do the math.

Letter	ASCII	Encrypted	Decrypted	Letter
Р	80	10569	80	Р
1	73	37719	73	1
E	69	46437	69	Е