2021 级经管类微积分 IB 期中练习 2021-11

班级
一. 填空题或选择题: (选择题正确选项唯一)
1. 若 $\lim_{x \to \infty} f(x)$ 不存在, $\lim_{x \to \infty} g(x)$ 存在,则必定有
$(A).\lim_{x\to\infty} [f(x)\cdot g(x)]$ 不存在; $(B).\lim_{x\to\infty} [f(x)+g(x)]$ 不存在;
$(C).\lim_{x\to\infty} [f(x)\cdot g(x)]$ 存在; $(D).\lim_{x\to\infty} [f(x)+g(x)]$ 存在.
$2. \lim_{x\to 1} (1-x) \tan\left(\frac{\pi}{2}x\right) = \underline{\qquad}.$
3. 设函数 $f(x)$ 在 $\left(-\infty,+\infty\right)$ 上有定义,且 $\forall x,y \in \left(-\infty,+\infty\right)$ 有 $f(x+y)=f(x)+f(y)$.
并可猜想 $f(x)$ 的表达式为 $f(x) =(即不必说明理由).$
4. 函数 $f(x) = \frac{1}{\frac{x^2 - 1}{x - 1} - 3}$ 的定义域为
5. $\forall y = -(x+1)e^{-x}$, $\# \Delta dy = \underline{\hspace{1cm}}$, $y'' = \underline{\hspace{1cm}}$.
6. 下列命题中正确的命题是
(A) . 在 $x \in (a,b)$ 时曲线 $y = f(x)$ 处处有唯一的切线,则函数 $y = f(x)$ 在 (a,b) 内点点可导.
(B) . 若极限 $\lim_{x\to\infty} \frac{f'(x)}{g'(x)}$ 存在,那么 $\lim_{x\to\infty} \frac{f(x)}{g(x)}$ 也存在,并且 $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \lim_{x\to\infty} \frac{f'(x)}{g'(x)}$.
(C) . $\forall x \in (-\infty, +\infty)$, 有 $\arcsin(\sin x) = x$.
$(\textbf{\textit{D}})$. 如果函数 $f(x)$ 在点 x_0 处的左右导数都存在,则函数 $f(x)$ 在 x_0 点处连续 .
7. 半径为 r 的圆面积 $A = \pi r^2$, $\Delta r = dr \rightarrow 0$ 时, $\Delta A =$, $dA =$, $\frac{dA}{dr} =$
8. 若 $x \to 0$,则 $n = $ 时 $e^{x \cos(x^2)} - e^x$ 与 x^n 为同阶无穷小量 .
$9. \ d\left(\underline{}\right) = \frac{x}{1+x^2} dx \ .$
一級答題

11.求极限
$$\lim_{x\to\infty} \left(\sqrt{x^2 + 2x} - \sqrt{x^2 - 2x} \right)$$
.

12. 求极限
$$\lim_{x\to 0} \frac{e - (1+x)^{\frac{1}{x}}}{x}$$
.

13. 光的反射遵循反射定律:光的反射角等于入射角。 通过计算抛物线的切线与法线方程, 我们可以证明抛物线的光学性质: 一束平行于对称轴的光线经过抛物线的反射一定通过焦点; 反之, 从焦点出发的光线经过抛物线的反射必定成为一束平行于对称轴的平行光线。

试给出抛物线 $y^2 = 2px (p > 0)$ 上点 (x_0, y_0) 处的切线与法线方程.

14. 设 $f(x) = \lim_{n \to \infty} \left(\cos \frac{x}{2} \cos \frac{x}{4} \cdots \cos \frac{x}{2^n} \right)$,试给出函数f(x)不带数列极限符号的表达式,进而讨论函数f(x)在x = 0处的连续性,可导性.

15. 设函数 f(x) 是 $\left(-\infty, +\infty\right)$ 上处处可导的偶 $\left(\frac{\pi}{3}\right)$ 函数,证明 f'(x) 是 $\left(-\infty, +\infty\right)$ 上的奇 $\left(\frac{\pi}{3}\right)$ 函数. 由此,对于函数 $f(x) = \ln \sqrt{1+x^2}$,求 $f^{(2021)}(0)$.

16. 求极限
$$\lim_{n\to\infty} \sqrt[n]{\left(1+2^n+3^n+\cdots+2021^n\right)}$$

- 17. 证明题
- (1). 求证: x > 0, $4x^3 + 1 ≥ 3x$.
- (2). 求证Jordan不等式: $x \in \left[0, \frac{\pi}{2}\right]$ 时,有 $\frac{2}{\pi}x \le \sin x \le x$.

- 17. 证明题 (3). 求证: $\forall x \ge 1$, $\arctan x \frac{1}{2} \arccos \frac{2x}{1+x^2} = \frac{\pi}{4}$. (" = "表示"恒等于")
- (4). 设函数f(x)在 $\left(-\infty, +\infty\right)$ 上有定义,且 $\forall x, y \in \left(-\infty, +\infty\right)$ 有f(x+y) = f(x)f(y). 若f(0) = 1, 证明函数f(x)在 $\left(-\infty, +\infty\right)$ 上点点可导,且有f'(x) = f(x) ,并由此证明 $f(x) = e^{x}$.