Importando base de dados

In [9]:

In [10]:

sim nao = {'No':'Não', 'Yes':'Sim'}

```
In [2]:
import pandas as pd
In [3]:
dados = pd.read csv('tips.csv')
In [4]:
dados.head()
Out[4]:
  total_bill
          tip dessert day
                           time size
     16.99 1.01
0
                                  2
                  No Sun Dinner
     10.34 1.66
1
                  No Sun Dinner
                                  3
    21.01 3.50
                  No Sun Dinner
3
    23.68 3.31
                  No Sun Dinner
                                  2
     24.59 3.61
                  No Sun Dinner
Tradução
In [5]:
dados.columns
Out[5]:
Index(['total bill', 'tip', 'dessert', 'day', 'time', 'size'], dtype='object')
In [6]:
renomear = {
          'total_bill':'valor_da_conta',
          'tip':'gorjeta',
          'dessert':'sobremesa',
          'day':'dia da semana',
          'time':'hora',
          'size':'pessoas'
In [7]:
gorjetas = dados.rename(columns = renomear)
In [8]:
gorjetas.sobremesa.unique()
Out[8]:
array(['No', 'Yes'], dtype=object)
```

```
gorjetas.sobremesa.map(sim_nao)
Out[10]:
0
      Não
1
      Não
2
      Não
3
      Não
      Não
     . . .
239
      Não
240
      Sim
241
      Sim
242
      Não
243
      Não
Name: sobremesa, Length: 244, dtype: object
In [11]:
gorjetas.sobremesa = gorjetas.sobremesa.map(sim_nao)
In [12]:
```

gorjetas

Out[12]:

	valor_da_conta	gorjeta	sobremesa	dia_da_semana	hora	pessoas
0	16.99	1.01	Não	Sun	Dinner	2
1	10.34	1.66	Não	Sun	Dinner	3
2	21.01	3.50	Não	Sun	Dinner	3
3	23.68	3.31	Não	Sun	Dinner	2
4	24.59	3.61	Não	Sun	Dinner	4
239	29.03	5.92	Não	Sat	Dinner	3
240	27.18	2.00	Sim	Sat	Dinner	2
241	22.67	2.00	Sim	Sat	Dinner	2
242	17.82	1.75	Não	Sat	Dinner	2
243	18.78	3.00	Não	Thur	Dinner	2

244 rows × 6 columns

```
In [13]:
```

In [15]:

```
gorjetas.dia_da_semana = gorjetas.dia_da_semana.map(dias)
```

In [16]:

gorjetas

Out[16]: valor_da_conta gorjeta sobremesa dia_da_semana hora pessoas 0 1.01 16.99 Não **Domingo Dinner** 1 10.34 1.66 Não **Domingo Dinner** 3 21.01 3.50 Não **Domingo Dinner** 3 3 23.68 3.31 Não **Domingo Dinner** 2 24.59 3.61 Não **Domingo Dinner** 239 29.03 5.92 Não Sabado Dinner 3 240 27.18 2.00 Sim Sabado Dinner 2 241 22.67 2.00 Sim Sabado Dinner 2 242 2 17.82 1.75 Não Sabado Dinner 243 3.00 Não Quinta Dinner 2 18.78 244 rows × 6 columns In [17]: gorjetas.hora.unique() Out[17]: array(['Dinner', 'Lunch'], dtype=object) In [18]: hora = { 'Dinner': 'Jantar', 'Lunch': 'Almoço' In [19]: gorjetas.hora = gorjetas.hora.map(hora) In [20]: gorjetas Out[20]:

	valor_da_conta	gorjeta	sobremesa	dia_da_semana	hora	pessoas
0	16.99	1.01	Não	Domingo	Jantar	2
1	10.34	1.66	Não	Domingo	Jantar	3
2	21.01	3.50	Não	Domingo	Jantar	3
3	23.68	3.31	Não	Domingo	Jantar	2
4	24.59	3.61	Não	Domingo	Jantar	4
•••						
239	29.03	5.92	Não	Sabado	Jantar	3
240	27.18	2.00	Sim	Sabado	Jantar	2
241	22.67	2.00	Sim	Sabado	Jantar	2
242	17.82	1.75	Não	Sabado	Jantar	2
243	18.78	3.00	Não	Quinta	Jantar	2

244 rows × 6 columns

Seaborn

```
In [21]:
```

```
import seaborn as sns
```

Analise da conta e da gosteja

```
In [22]:
```

```
gorjetas.columns
```

Out[22]:

In [23]:

```
valor_gorjeta = sns.scatterplot(x = 'valor_da_conta', y = "gorjeta", data=gorjetas)
```


Criando campo porcentagem

In [24]:

```
gorjetas['porcentagem'] = gorjetas.gorjeta/gorjetas.valor_da_conta
```

In [25]:

gorjetas

Out[25]:

	valor_da_conta	gorjeta	sobremesa	dia_da_semana	hora	pessoas	porcentagem
0	16.99	1.01	Não	Domingo	Jantar	2	0.059447
1	10.34	1.66	Não	Domingo	Jantar	3	0.160542
2	21.01	3.50	Não	Domingo	Jantar	3	0.166587
3	23.68	3.31	Não	Domingo	Jantar	2	0.139780
4	24.59	3.61	Não	Domingo	Jantar	4	0.146808
239	29.03	5.92	Não	Sabado	Jantar	3	0.203927
240	27.18	2.00	Sim	Sabado	Jantar	2	0.073584
241	22.67	2.00	Sim	Sabado	Jantar	2	0.088222

242	valor_da_conta	gor <u>je</u> ta	sobremesa	dia_da_semana	Jahnera	pessoas	porcentagem
243	18.78	3.00	Não	Quinta	Jantar	2	0.159744

244 rows × 7 columns

In [26]:

```
gorjetas.porcentagem = gorjetas.porcentagem.round(2)
```

In [27]:

```
porcentagem_conta = sns.scatterplot(x='valor_da_conta',y='porcentagem',data=gorjetas)
```


Visualmente, o valor da gorjeta não é proporcional ao valor da conta

In [28]:

porcentagem_conta_linha = sns.relplot(x='valor_da_conta', y='porcentagem', kind='line', d
ata=gorjetas)

In [29]:

```
sns.lmplot(x='valor_da_conta', y='porcentagem', data=gorjetas)
```

Out[29]:

<seaborn.axisgrid.FacetGrid at 0x1d69acb82e0>

0.7 -

In [30]:

sns.lmplot(x='valor_da_conta', y='gorjeta',data=gorjetas)

Out[30]:

<seaborn.axisgrid.FacetGrid at 0x1d69ac48a30>

Análise Sobremesa

In [31]:

gorjetas[gorjetas.sobremesa == "Sim"].describe()

Out[31]:

	valor_da_conta	gorjeta	pessoas	porcentagem
count	93.000000	93.000000	93.000000	93.000000
mean	20.756344	3.008710	2.408602	0.163226
std	9.832154	1.401468	0.810751	0.085060
min	3.070000	1.000000	1.000000	0.040000
25%	13.420000	2.000000	2.000000	0.110000
50%	17.920000	3.000000	2.000000	0.150000
75%	26.860000	3.680000	3.000000	0.200000
max	50.810000	10.000000	5.000000	0.710000

In [32]:

gorjetas[gorjetas.sobremesa == "Não"].describe()

Out[32]:

	valor_da_conta	gorjeta	pessoas	porcentagem
count	151.000000	151.000000	151.000000	151.000000
mean	19.188278	2.991854	2.668874	0.159536
std	8.255582	1.377190	1.017984	0.039889
min	7.250000	1.000000	1.000000	0.060000
25%	13.325000	2.000000	2.000000	0.140000
50%	17.590000	2.740000	2.000000	0.160000
75%	22.755000	3.505000	3.000000	0.185000
max	48.330000	9.000000	6.000000	0.290000

In [33]:

sns.catplot(x='sobremesa',y='gorjeta',data = gorjetas)

Out[33]:

<seaborn.axisgrid.FacetGrid at 0x1d69e2a15b0>

In [34]:

sns.relplot(x='valor_da_conta', y='gorjeta', hue='sobremesa', data= gorjetas)

Out[34]:

<seaborn.axisgrid.FacetGrid at 0x1d69e4378e0>

In [35]:

sns.relplot(x='valor_da_conta', y='gorjeta', hue='sobremesa', col='sobremesa', data= gorjet
as)

Out[35]:

<seaborn.axisgrid.FacetGrid at 0x1d69e496d00>

In [36]:

sns.lmplot(x='valor_da_conta', y='gorjeta', col='sobremesa', hue='sobremesa', data=gorjetas)

Out[36]:

<seaborn.axisgrid.FacetGrid at 0x1d69e4fb400>

In [37]:

ene relplot (v='valor da conta! v='gorieta! hue='cohremeca! col='cohremeca! kind='line

```
data= gorjetas)
```

Out[37]:

<seaborn.axisgrid.FacetGrid at 0x1d69e4f83a0>

Teste de hipótese

```
In [38]:
```

```
from scipy.stats import ranksums
```

```
In [39]:
```

```
sobremesa = gorjetas.query("sobremesa == 'Sim'").porcentagem
```

```
In [40]:
```

```
sem_sobremesa = gorjetas.query("sobremesa == 'Não'").porcentagem
```

In [41]:

```
r = ranksums(sobremesa, sem_sobremesa)
```

In [42]:

Out[42]:

RanksumsResult(statistic=-0.6331073145314825, pvalue=0.5266635660124415)

Análise dia da semana

```
In [43]:
```

```
gorjetas.dia_da_semana.unique()
```

Out[43]:

```
array(['Domingo', 'Sabado', 'Quinta', 'Sexta'], dtype=object)
```

In [44]:

```
sns.catplot(x='dia_da_semana',y="valor_da_conta", data=gorjetas)
```

Out[44]:

<seaborn.axisgrid.FacetGrid at 0x1d69f871cd0>

In [47]:

sns.relplot(x='valor_da_conta', y="gorjeta", hue="dia_da_semana", kind="line", col="dia_da_s
emana", data = gorjetas)

Out[47]:

<seaborn.axisgrid.FacetGrid at 0x1d69f9a0370>

In [49]:

sns.lmplot(x='valor_da_conta', y="gorjeta", hue="dia_da_semana", col="dia_da_semana", data =
gorjetas)

Out[49]:

<seaborn.axisgrid.FacetGrid at 0x1d6a0018910>

Porcentagem

In [52]:

sns.lmplot(x='valor_da_conta', y="porcentagem", hue="dia_da_semana", col="dia_da_semana", da

```
ta = gorjetas)
Out[52]:
<seaborn.axisgrid.FacetGrid at 0x1d6a2510310>
                                                                                       dia_da_semana = Sexta
                                                              dia_da_semana = Quinta
 0.7
 0.6
 0.5
 0.1
                                                                             50
In [53]:
media geral gorjetas = gorjetas.gorjeta.mean()
In [54]:
media_geral_gorjetas
Out[54]:
2.9982786885245902
In [56]:
gorjetas.groupby(['dia_da_semana']).mean()[['valor_da_conta','gorjeta','porcentagem']]
Out[56]:
              valor_da_conta
                            gorjeta porcentagem
dia_da_semana
```

Domingo	21.410000 3.255132	0.166974
Quinta	17.682742 2.771452	0.161129
Sabado	20.441379 2.993103	0.153678
Sexta	17.151579 2.734737	0.169474

In [57]:

```
gorjetas.dia_da_semana.value_counts()
```

Out[57]:

87 Sabado 76 Domingo 62 Quinta 19

Name: dia_da_semana, dtype: int64

In [58]:

```
valor conta domingo = gorjetas.query("dia da semana == 'Domingo'").valor da conta
```

In [60]:

```
valor_conta_sabado = gorjetas.query("dia_da_semana == 'Sabado'").valor_da_conta
```

In [62]:

```
ranksums (valor conta sabado, valor conta domingo)
```

Out[62]:

A distribuição do valor da conta é igual no sabado e no domingo

Analise Hora do Dia

```
In [64]:
```

gorjetas.hora.unique()

Out[64]:

array(['Jantar', 'Almoço'], dtype=object)

In [65]:

```
sns.catplot(x='hora',y='valor_da_conta',data=gorjetas)
```

Out[65]:

<seaborn.axisgrid.FacetGrid at 0x1d6a3739940>

In [66]:

```
sns.catplot(x='hora',y='valor_da_conta',kind='swarm',data=gorjetas)
```

Out[66]:

<seaborn.axisgrid.FacetGrid at 0x1d6a2a932e0>

Jantar Almoço hora

In [67]:

sns.violinplot(x='hora',y='valor_da_conta',data=gorjetas)

Out[67]:

<AxesSubplot:xlabel='hora', ylabel='valor_da_conta'>

In [68]:

sns.boxplot(x='hora',y='valor_da_conta',data=gorjetas)

Out[68]:

<AxesSubplot:xlabel='hora', ylabel='valor_da_conta'>

In [70]:

almoco = gorjetas.query("hora == 'Almoço'").valor_da_conta

In [75]:

sns.displot(almoco, kde=True)

Out[75]:

<seaborn.axisgrid.FacetGrid at 0x1d6a4537b80>

In [76]:

```
jantar = gorjetas.query("hora == 'Jantar'").valor_da_conta
```

In [78]:

sns.displot(jantar, kde=True)

Out[78]:

<seaborn.axisgrid.FacetGrid at 0x1d6a46333d0>

In [80]:

gorjetas.groupby(['hora']).mean()[['valor_da_conta','gorjeta','porcentagem']]

Out[80]:

valor_da_conta gorjeta porcentagem

hora			
Almoço	17.168676	2.728088	0.163971
Jantar	20.797159	3.102670	0.159773

In [81]:

```
r = ranksums(jantar, almoco)
```

Out[81]:

RanksumsResult(statistic=3.2438872807262955, pvalue=0.0011791039723641672)

A Distribuição do valor da conta não é igual no jantar e no almoço

In []:

