

# Lexicon Integrated CNN Models with Attention for Sentiment Analysis

- Bonggun Shin, Timothy Lee, Jinho D. Choi



**Deep Learning**professor **Dongsuk Yook** 

Korea University, 2016010662 JooSung Yoon





본 연구는 Sentiment Analysis를 하기 위해 Lexicon embedding과 Attention mechanism을 CNN에 적용한 Novel Approach에 관한 것이다

#### Keywords

Sentiment analysis, Word embedding, Lexicon, Attention, CNN, SemEval'16 Task 4







Sentiment Analysis

Sentiment Analysis is a task of identifying sentiment polarities

expressed in documents, typically positive, neutral, or negative.

Statistical models based on sparse features

Lexicons' sentiment scores are shown to be highly effective

---- Word embedding

The use of lexicons is getting faded away.
(WE are believed to capture the sentiment aspects of those words)

Deep Learning

### Introduction



#### **Research Question**

- 1. Can lexicons be still useful for sentiment analysis when coupled with WE?
- 2. If yes, what is the most effective way of incorporating lexicons with WE?

#### 37lXl Approach -----

- 1. Naïve concatenation
- 2. Multichannel
- 3. Separate convolution

#### Embedding Attention

Word embedding으로 이루어진 Document matrix를 Length=1의 Filter로 Attention Matrix를 생성 후

Filter도 Attention Matrix을 생성 우

Max pooling을 통해 Attention vector 계산





#### **Notation**

Input document matrix

Num of words

Dim of word embedding

i'th word in document

Weights of filter

Length of the filter

Num of the filter

 $s \in \mathbb{R}^{n \times d}$ 

n

 $w_i \in \mathbb{R}^d$   $c \in \mathbb{R}^{l \times d}$ 

m

Activation map of Conv (filter 마다 생기는)

Output of max pooling

I-gram features

 $v_m \in \mathbb{R}^{(n-l+1)\times m}$ (m 차원이 아닐까)

Yoon 논문도 m





#### **Lexicon Integration**



(a) Naive concatenation (Section 3.2.1). The lexicon embeddings (on the right) are concatenated to the word embeddings (on the left).



#### **Lexicon Integration**



(b) Multichannel (Section 3.2.2). The lexicon embeddings are added to the second channel whereas the word embeddings are added to the first channel.



#### **Lexicon Integration**

Size of 2<sup>nd</sup> layer:  $[(n-l_w+1)\times m_w]+[(n-l_x+1)\times m_x]$ 



(c) Separate convolution (Section 3.2.3). The lexicon embeddings are processed by a separate convolution (on the right) from the word embeddings (on the left).

#### **Separate Convolution**

Word embedding, Lexicon embedding을 각각 따로 Convolution, max pooling 한 후 합쳐서 Softmax layer에 넣음

왜 Attention을 도입했나?

현재는 I-gram feature를 잡아내는 형태의 구조

즉, "account only for local views,

not the global view of the document" 라 할 수 있음

현 구조의 단점

Negation이 있는 경우 local view만으로는 정확한 의미를 판별할 수 없음



#### **Embedding Attention**



(a) Give a document matrix, the attention matrix is first created by performing multiple convolutions. The attention vector is then created by performing max pooling on each row of the attention matrix.

**Embedding Attention Vector** 

the EAV in the word embedding space is calculated as a weighted sum of each column in the document matrix

 $s \in \mathbb{R}^{n imes d}$ 

Lexicon Integration 방법에 맞게 EAV도 WE.
LE 각각에 대해서 두 개씩 생성

#### **Embedding Attention**



(a) Give a document matrix, the attention matrix is first created by performing multiple convolutions. The attention vector is then created by performing max pooling on each row of the attention matrix.

#### **Embedding Attention Vector**

- 1. Filter length = 1로 Convolve
- 2. Aggregate all conv outputs
- –) Attention matrix  $s_a \in \mathbb{R}^{n imes m}$
- 3. Execute max pooling for each row of attention matrix  $s_a \in \mathbb{R}^{n \times m}$
- -) Attention vector  $v_a \in \mathbb{R}^n$

#### **Embedding Attention**



(b) The embedding attention vector is created by multiplying the transposed document matrix to the attention vector.

#### **Embedding Attention Vector**

4. Transpose the document matrix s

$$s^T \in \mathbb{R}^{d \times n}$$
 and multiply it with

$$v_a \in \mathbb{R}^n$$

= Embedding attention vector

$$v_e \in \mathbb{R}^d$$

-> Penultimate layer(끝에서 두번째)에 Additional information으로 추가



|     | +     | 0      | -     | All    |
|-----|-------|--------|-------|--------|
| TRN | 6,480 | 6,577  | 2,328 | 15,385 |
| DEV | 786   | 548    | 254   | 1,588  |
| TST | 7,059 | 10,342 | 3,231 | 20,632 |

Table 1: Statistics of the SemEval' 16 Task 4 dataset. +/0/-: positive/neutral/negative.





|     | ++   | +    | 0    | -    | _    | All   |
|-----|------|------|------|------|------|-------|
| TRN | 1288 | 2322 | 1624 | 2218 | 1092 | 8,544 |
| DEV | 165  | 279  | 229  | 289  | 139  | 1,101 |
| TST | 399  | 510  | 389  | 633  | 279  | 2,210 |

Table 2: Statistics of the Stanford Sentiment Treebank dataset. ++/+/0/-/-: very positive/positive/ neutral/negative/very negative. **Dataset - Stanford Sentiment Treebank** 

Movie reviews from Rotten Tomatoes

-> Evaluating the robustness across different genres

Five classes: very positive, positive, neutral, negative, very negative.

Word Embeddings -----

Word2vec (skip-gram, negative sampling) 사용

WE은 Domain에 영향을 받음

그렇기 때문에 pretrained model이 아닌

SemEval'16, SST Datasets으로 training

(3.67M word types),(2.67M word types)

Pre-tokenize는 NLP4J (Open source) 사용

#### Lexicon Embeddings ----

6 types of sentiment lexicons 사용

- National Research Council Canada (NRC)
- NRC Hashtag Sentiment Lexicon
- NRC Sentiment140 Lexicon
- Sentiment140 Lexicon
- MaxDiff Twitter Sentiment Lexicon
- Bing Liu Opinion Lexicon

(missing words는 neutral score로 0 부여)

**Embedding Construction** 

Word Embeddings

Word2vec (skip-gran

WE은 Domain에 영

그렇기 때문에 pretr

SemEval'16, SST

Pre-tokenize는 NLP4、

|     | Word  | Emb   | Lexicon Emb |      |  |
|-----|-------|-------|-------------|------|--|
|     | S16   | SST   | S16         | SST  |  |
| TRN | 70.12 | 97.66 | 11.53       | 9.20 |  |
| DEV | 81.90 | 98.91 | 3.29        | 3.32 |  |
| TST | 68.57 | 98.58 | 12.40       | 4.98 |  |

Table 3: The percentage of word types covered by our word and lexicon embeddings for each dataset.

ent lexicons 사용 Council Canada (NRC) iment Lexicon Lexicon

entiment Lexicon

(missing words는 neutral score로 0 부여)

icon

Lexicon Embeddings

#### Models & Configuration

### Evaluation

#### 7 models \_\_\_\_\_

- 1. Naïve concatenation(NC)
- 2. Multichannel(MC)
- 3. Separate(SC)
- 4. EAV
- 5. NC+EAV
- 6. MC+EAV
- 7. SE+EAV

#### Configuration -----

- Filter size = (2, 3, 4,5) for both word and lexicon
- Num of filters = (64 and 9)
  for both word and lexicon, respectively
- Num of filters = (50 and 20)

  for EAV in word and lexicon embedding
  space, respectively

#### KOREA UNIVERSITY

### Evaluation

#### F1 measure & Accuracy



### Evaluation





49.5 49 48.5 Accuracy 46 45.5 45 44.5 NC-EAY MC-EAY SC-EAY NC МС SC EAY Baseline Model **SST Task** 

SemEval'16 Task

### **Evaluation**





#### Negative / Positive

Figure 5: Five selected negative tweets with the attention heatmap. Examples are from the set where the baseline gives wrong answers but SC-EAV predicts correctly. Intensity of each word roughly ranges from 1 to 1. This weights (intensities) are the values of the attention vector of the word embeddings in the SC-EAV model. While negative words get more attention (dark reds), non-sentimental words such as stop words get less attention (greens and light blues).

Attention vector가 death, attack, sick등 부정적인 단어 잘 잡아냄

# Conclusion & Future work



- Lexicon integration은 accuracy, stability, 관점에서 유용
- Attention mechanism을 통한 Attention heatmap 은 Explanatory feature 제공하며 accuracy 향상에 도움을 줌

- Attention model을 each single word 외에 multiple words에 적용
- More lexicon dataset 사용해서 coverage 개선
- Ensemble of multi layer CNN models



# Thank you ©

