FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. Våren 2014.

Veiledning: 3. og 6. mars. Innleveringsfrist: Fredag 7. mars kl 16.

Øving 8

Oppgave 1

To like store metallklosser har (hver for seg) varmekapasitet C, som antas å være konstant, uavhengig av temperaturen. Klossenes volumutvidelseskoeffisient er praktisk talt lik null. Temperaturen til de to klossene er i utgangspunktet T_1 og $T_2 > T_1$, og klossene er termisk isolert fra omgivelsene:

Dersom vi lar klossene utveksle varme med hverandre irreversibelt, og uten at vi tar ut noe nyttig arbeid, vil den totale entropien til systemet øke, felles slutt-temperatur blir $T_0 = (T_1 + T_2)/2$, og like mye varme $|Q_2|$ forlater den varmeste klossen som det som tilføres den kaldeste klossen (Q_1) , $Q_1 = -Q_2 = C(T_0 - T_1) = C(T_2 - T_1)/2$. (Se forelesningene, om irreversible prosesser.)

Alternativt kan vi tenke oss at vi lar de to klossene drive en varmekraftmaskin, slik at vi kan ta ut et nyttig arbeid W, som antydet i figuren. Vis at det maksimale arbeidet (eksergien) som kan tas ut i en tenkt reversibel prosess er

$$W_{\text{max}} = C \left(\sqrt{T_2} - \sqrt{T_1} \right)^2,$$

og at likevektstemperaturen i dette tilfellet blir

$$T_0 = \sqrt{T_1 T_2}.$$

Vis at denne likevektstemperaturen alltid er mindre enn for den irreversible temperaturutjevningen (der vi ikke tar ut nyttig arbeid).

Tips: Bestem T_0 ved å se på entropiendringen til hver av klossene, samt at du utnytter at $\Delta S = 0$ for reversible prosesser i et termisk isolert system. Videre er $W_{\text{max}} = -\Delta G = -\Delta (U + p_0 V - T_0 S)$.

Oppgave 2

a) En ideell gass kjøles fra temperaturen T til T_0 . Omgivelsenes temperatur er hele tiden T_0 . Start- og slutt-tilstanden har samme volum ($\Delta V = 0$). Vis at det maksimale arbeid som er mulig å få ut av gassen er

$$W_{\text{max}} = C_V(T - T_0) - C_V T_0 \ln \frac{T}{T_0}.$$

Tips: Entropi for ideell gass er $S = C_V \ln T + nR \ln V + \text{konst.}$

- b) Hvor mye varme avgis, og hva er det maksimale arbeidet når gassen er ett mol toatomig gass, og avkjølingen er fra 100° C til 20° C? (Svar: $W_{\text{max}} = 193$ J.)
- c) En måte å ta ut det maksimale arbeidet på er å la en Carnot-maskin virke mellom den øvre avtagende temperaturen og den faste T_0 . Vis at dette gir det samme arbeidet W_{max} .

Tips: La den ideelle gassen representere høytemperaturreservoaret, med varierende (avtagende) temperatur, fra T til T_0 . Virkningsgraden til Carnot-maskinen vil dermed også variere (avta), fra verdien $1 - T_0/T$ til verdien $1 - T_0/T_0 = 0$.

d) En annen måte å ta ut det maksimale arbeidet på er først å ekspandere gassen adiabatisk slik at temperaturen synker til T_0 . Deretter komprimeres den isotermt tilbake til opprinnelig volum. Vis at dette også gir samme arbeid $W_{\rm max}$.

Tips: For adiabat med ideell gass gjelder $pV^{\gamma} = \text{konstant og } TV^{\gamma-1} = \text{konstant (med } \gamma = C_p/C_V).$

Oppgave 3

I øving 4, oppgave 5, studerte vi en ideell paramagnet med N ikke-vekselvirkende kvantiserte spinn i et ytre magnetfelt B. Hvert spinn kunne peke "opp" eller "ned" relativt det ytre feltet, slik at partisjonsfunksjonen (pr spinn) ble $z=2\cosh(\mu_B B/kT)$, og magnetiseringen (magnetisk moment pr volumenhet) ble $M=(N\mu_B/V)\tanh(\mu_B B/kT)$. Hvis feltet er svakt, dvs $\mu_B B\ll kT$, gir dette lineær respons, $M\sim B/T$, dvs Curie's lov.

I denne oppgaven skal vi studere entropien til en slik ideell paramagnet. Siktemålet er deretter å kunne beskrive magnetisk kjøling (adiabatisk demagnetisering).

Som i øving 4 lar vi m angi midlere magnetisk moment pr spinn (eller pr partikkel, om du vil), men skalert med faktoren μ_B slik at et gitt magnetisk moment har verdien +1 eller -1, og m blir en dimensjonsløs størrelse. Videre lar vi $h = \mu_B B$ representere det ytre magnetfeltet, dvs h blir en størrelse med enhet som energi. Dermed har vi

$$m = \tanh \beta h$$
 , $z = 2 \cosh \beta h$ $(\beta \equiv 1/kT)$,

og arbeidet utført av spinnsystemet, pr
 spinn, når midlere magnetisk moment, pr
 spinn, endres fra m til m+dm blir $dw=-h\,dm$.

a) Vis at entropien σ kan uttrykkes ved partisjonsfunksjonen z, som $\sigma = k \partial (T \ln z)/\partial T$.

Oppgitt: $f = -kT \ln z$, $f = u - T\sigma$, $Td\sigma = du + p dv$ (med $f, z, u, \sigma, v =$ hhv Helmholtz fri energi, partisjonsfunksjon, indre energi, entropi og volum, alle størrelser pr spinn). Tips: Utnytt analogien $p dv \rightarrow -h dm$.

b) Med kjent partisjonsfunksjon z kan dermed entropien σ bestemmes. Vis at σ , i første omgang som funksjon av h og β , blir

$$\sigma = k \left[\ln 2 + \ln \cosh \beta h - \beta h \tanh \beta h \right].$$

Du observerer nå at σ kun avhenger av produktet βh , og siden midlere magnetiske moment m også er en funksjon av produktet βh , innser du at entropien må kunne skrives som en funksjon av m alene, $\sigma = \sigma(m)$. Eliminer βh fra $\sigma(\beta h)$ ved å invertere $m = \tanh(\beta h)$. Vis at dette gir $\beta h = \frac{1}{2} \ln \left[(1+m)/(1-m) \right]$. Vis deretter at entropien blir

$$\sigma(m) = k \left[\ln 2 - \frac{1}{2} (1+m) \ln(1+m) - \frac{1}{2} (1-m) \ln(1-m) \right].$$

c) Alternativt kan entropien bestemmes direkte fra Boltzmanns prinsipp, $S = N\sigma = k \ln W$. Anta at et antall N_+ og N_- spinn peker henholdsvis med og mot magnetfeltet. Totalt magnetisk moment blir dermed $Nm = N_+ - N_-$. Samtidig har vi selvsagt $N = N_+ + N_-$. Beregn antall mikrotilstander W som er forenlig med et gitt magnetisk moment Nm (dvs med $Nm = N_+ - N_-$ fast) og vis med det at entropien blir som i punkt b.

Oppgitt: $\ln N! = N \ln N - N$ når $N \to \infty$.

d) Et spinnsystem som dette kan benyttes til å oppnå svært lave temperaturer ved å bruke adiabatisk demagnetisering. Et kraftig magnetfelt h_2 settes på isotermt ved en (forholdsvis lav) starttemperatur T_2 . Deretter fjernes den termiske koblingen til omgivelsene (varmereservoaret med temperatur T_2), og magnetfeltet slås av adiabatisk. I praksis, på grunn av en svak kobling mellom spinnene, ender en opp med et effektivt magnetfelt $h_1 > 0$ (og ikke $h_1 = 0$). Hva blir resulterende temperatur T_1 ? [Vi antar at andre bidrag til entropien kan neglisjeres. For lave temperaturer T er spesifikk varme fra kvantiserte gittervibrasjoner $C \propto T^3$, slik at bidraget til entropien herfra, $\int (C/T) dT$ kan neglisjeres.]