Derived mRS distributions

				11
mRS	Pre- stroke	IVT at time zero	IVT at no- effect time	No treatment
0	0.583	0.445	0.196	0.198
1	0.163	0.197	0.259	0.262
2	0.104	0.110	0.119	0.120
3	0.101	0.110	0.127	0.128
4	0.042	0.079	0.146	0.148
5	0.007	0.026	0.061	0.062
6	0.000	0.033	0.092	0.082

Intravenous alteplase meta-analysis Lees et al. 2010

"placebo"
population mRS
distributions for
nLVO and LVO
patients
combined.

SSNAP

Pre-stroke patient mRS scores.

Alteplase metaanalysis Emberson et al. 2014

Decline of odds ratio of good outcome with time.

Mortality rates with and without IVT.

NIHSS < 11 probabilities of good outcome.

	mR
	0
T 7 70	1
LVU	2

mRS	Pre- stroke
0	0.408
1	0.144
2	0.120
3	0.166
4	0.118
5	0.044
6	0.000

IVT at time zero	IVT at no- effect time
0.140	0.048
0.093	0.076
0.128	0.131
0.161	0.159
0.208	0.239
0.108	0.130
0.162	0.217
	0.140 0.093 0.128 0.161 0.208 0.108

mRS	MT at time zero	MT at no- effect time
0	0.306	0.048
1	0.123	0.076
2	0.119	0.131
3	0.159	0.157
4	0.144	0.237
5	0.064	0.130
6	0.085	0.221

mRS	No treatment
0	0.050
1	0.079
2	0.136
3	0.164
4	0.247
5	0.135
6	0.189

"Our traditional meta-analysis yielded a pooled rate of successful recanalization for IVT+MT of 75% (95% CI, 65%-63%; Figure XIC in the Data Supplement)."

Recanalisation meta-analysis Hui et al. 2020

75% weight for pre-stroke mRS distribution.

Mortality rate with MT and average time to MT.

of control population.

HERMES thrombectomy meta-analysis Goyal et al. 2016

mRS distribution

Pre-stroke

Data sources

Method

SAMueL-1 survey

Data: pre-stroke patient mRS scores.

Location: SAMueL-1 online book, "Additional analysis (not in NIHR report) / Analysis of pre-stroke modified Rankin Scale"

https://samuel-book.github.io /samuel-1/descriptive_stats/ 08 prestroke mrs.html

RACE scale de la Ossa Herrero et al. 2013

Info: NIHSS <=10 for nLVO and NIHSS >= 11 for LVO.

Location: final sentence of "Results" section.

"Best overall accuracy [for LVO prediction] for the NIHSS scale was achieved for a score >=11, with a sensitivity 0.88, specificity 0.72, and overall accuracy 0.76."

1. Collect data.

Take SAMueL-1 survey data for patients with ischaemic stroke only.

The data includes pre-stroke mRS scores.

2. Split into nLVO and LVO.

Split the data into two groups using the NIHSS scale cutoff:

- LVO with NIHSS greater than 10 (>=11)
- nLVO with NIHSS of 10 or less (< 11)

3. Find the proportions of each group with each mRS score.

nLVO pre-stroke		
mRS	Probability	
0	0.583	
1	0.163	
2	0.104	
3	0.101	
4	0.042	
5	0.007	
6 0.000		

LVO pre-stroke		
mRS Probabilit		
0	0.408	
1	0.144	
2	0.120	
3	0.166	
4	0.118	
5	0.044	
6	0.000	

LVO - no treatment

Data sources

Method

HERMES thrombectomy meta-analysis Goyal et al. 2016

Data: mRS distribution of control population.

Location: Figure 1, Group A: Overall, bar labelled "Control Population").

1. Collect data.

Use the "Control population" set of data with no changes.

LVO no treatment			
mRS	Probability		
0	0.050		
1 0.079			
2	0.136		
3 0.164			
4 0.247			
5 0.135			
6 0.189			

nLVO - no treatment

Data sources

Method

Intravenous alteplase metaanalysis Lees et al. 2010

Data: "placebo" population mRS distributions for nLVO and LVO patients combined.

Location: Figure 2, all "placebo" bars.

RACE scale de la Ossa Herrero et al.

Info: NIHSS <= 10 for nLVO and NIHSS >= 11 for LVO.

Location: final sentence of "Results" section.

Alteplase metaanalysis Emberson et al. 2014

Data: NIHSS < 11 probabilities of good outcome.

Location: Figure 2, "Control" column, "Baseline NIHSS score" rows "0-4" and "5-10".

"Best overall accuracy [for LVO prediction] for the NIHSS scale was achieved for a score >=11, with a sensitivity 0.88, specificity 0.72, and overall accuracy 0.76."

mRS distribution as calculated earlier.

LVO no treatment		4
mRS	Probability	
0	0.050	
1	0.079	
2	0.136	
3	0.164	
4	0.247	
5	0.135	
6	0.189	

1. Collect data.

The sizes of the bars are not given in the text.

- 1) Measure the number of pixels in each section of each "Placebo" bar in the image.
- 2) Combine the bars and scale so that they sum to 1.

→ Result:

nLVO & LVO no treatment			
mRS	Probability		
0	0.149		
1	0.202		
2	0.125		
3	0.140		
4	0.181		
5	0.086		
6	0.118		

2. Find a reference probability.

Baseline NIHSS score	Number of patients with mRS 0 or 1	Total number of patients
0-4	189	321
5-10	538	1252
Total:	727	1573

The proportion 727 out of 1573 is 46%.

→ Probability P(mRS<=1)=0.46

3. Remove the LVO patients.

To reach P(mRS<=1)=0.46 in the nLVO-only distribution, use the following weighted distributions:

- 1) Scale the "nLVO & LVO" distribution up to 149%.
- 2) Scale the "LVO" distribution down to 49%.
- 3) Take the difference to leave only the "nLVO" patients.

nLVO no treatment			
mRS	Probability		
0	0.198		
1	0.262		
2	0.120		
3	0.128		
4	0.148		
5	0.062		
6	0.082		

Sanity check – nLVO / LVO split

Data sources

Method

Intravenous alteplase metaanalysis Lees et al. 2010

Data: "placebo" population mRS distributions for nLVO and LVO patients combined.

Location: Figure 2, all "placebo" bars.

IST-3 thrombolysis clinical trial Sandercock et al. 2012

Data: proportions of patients with nLVO and LVO. Location: Table 1, "NIHSS"

RACE scale de la Ossa Herrero et al. 2013

Info: NIHSS <= 10 for nLVO and NIHSS >= 11 for LVO.

Location: final sentence of "Results" section.

"Best overall accuracy [for LVO prediction] for the NIHSS scale was achieved for a score >=11, with a sensitivity 0.88, specificity 0.72, and overall accuracy 0.76."

Alteplase metaanalysis. Emberson et al. 2014

Data: numbers of patients by NIHSS score.

Location: Figure 2.

1. Check Lees et al 2010 data.

Number of patients in total is 3670. The nLVO/LVO split is not given.

2. Check IST-3 2012 data.

Number of patients in total is 3035.

Of these, 1464 have nLVO (NIHSS \leq 10) and 1571 have LVO (NIHSS \geq 11).

→ 51.7...% LVO, 48.2...% nLVO.

3. Check Emberson et al. 2014 data

Number of patients in total is 6756.

Of these, 3199 have nLVO (NIHSS \leq 10) and 3557 have LVO (NIHSS \geq 11).

→ 52.6...% LVO, 47.3...% nLVO.

The patients in Emberson are mostly made up of:

3035 from IST-3 + 3670 from Lees et al. 2010 = 6705 patients.

- → Expect the same nLVO/LVO split for Lees et al. 2010 as in IST-3.
- 4. Compare with derived split.

51% LVO, 49% nLVO – close enough to the above.

Excess deaths - IVT

Data sources

Method

Alteplase metaanalysis Emberson et al. 2014

Data: Mortality rates with and without IVT.

Location: Figure 4, "Alteplase" and "Control" columns, "Baseline NIHSS score" section, rows labelled "0-4" and "5-10".

RACE scale de la Ossa Herrero et al. 2013

Info: NIHSS <=10 for nLVO and NIHSS >= 11 for LVO.

Location: final sentence of "Results" section.

"Best overall accuracy
[for LVO prediction] for
the NIHSS scale was
achieved for a score
>=11, with a sensitivity
0.88, specificity 0.72, and
overall accuracy 0.76."

Alteplase metaanalysis Emberson et al. 2014

Data: Mortality rates with and without IVT.

Location: Figure 4, "Alteplase" and "Control" columns, "Baseline NIHSS score" section, rows labelled "11-15", "16-21" and ">=22".

SAMEST S		Afterplane	Control	Oldyratio
1400 1207 1208		11-33900	in-13652	08410
Section Sect	Total property da	ier	0.535/1.00	THE RESIDENCE OF THE PARTY OF T
450 \$4.00 \$2.00	+265	J10787 12-84	G 2762 90341	→ 10 R6 (3 (4 a6 a1)
Section Sect	43HH25h	35135 (75)	0 2734(07.005/4)	\$43(2.49.42(4))
abs \$1550.0739.9555.6401 \$9310.04439.9555.4401 \$9310.04439.9550 \$9410.04439.9550 \$9510.04439.9550 \$9510.04439.9550 \$9510.04439.9550 \$9510.04439.9550 \$9510.04439.9550 \$9510.04439.9550 \$9510.04439.9550 \$9510.04439.9550 \$9510.04550 \$9510	H455	SESTING OF PA	42166 (0.3%)	# # # # # # # # # # # # # # # # # # #
obs 1000 (14%) a felty fixed 39(13)-20 felt 1000 (14%) a felty fixed 39(13)-20 felty 39(13)-20 felty 4	Age (year)			1,000
Maria Mellin	+30	3805310239	9 9/35/5 (9-4%)	910 (B41-1470)
100, 1991 VIII 0992 M.	-00	33/909 (3.64	1 APRIL 195%	3 95 (2.79-32 %)
\$40 301381 (3013 (3013 (4013) 33914351-344 3391451-344 3391451-344 3391451-344 3391451-344 3391451-344 3391451-344 3391451	Davino 1025			
12-02 19/764 19/01 10/05 10/	2.4	306 199	0.023 (0.05)	14
16-21 26-52 (38-1) 5401 (97-1) 5001.07-11 5001.07-12 10-12-12-12-12-12-12-12-12-12-12-12-12-12-	9.00	Jestin Ives	U. 5/1052 (Fueto	5 90 (Va5-10.44)
27) 31/90 (68%) 2/33 (66%) **********************************	13-75	23/294 (2:51	1 1/505 (0.1%)	+ 2414(325-1793))
Figurients 91/395.027% 12/3965(0.4%) 2 Mail 98-1279	15/24	78/982 (18%	9 5971 (979)	540 (1 59 13 20)
	+75	31/309 (684	1723 10640	→ 10.54(2.5a-47.15)
	All patients	91/3991 (279	13/3395 (0-4%)	7 14 (3 95-12 79)
			4	
Albertan better Albertan women			Athenia in butto	
por 4: Effect of altegliser on fatal intracranial harmon/hage within 7 days by treatment delay, age, and				

1. Calculate excess deaths for nLVO patients.

	Given IVT			No treatment		
NIHSS →	0-4	5-10	0-10	0-4	5-10	0-10
Number of patients	345	1281	1626	321	1252	1573
Deaths	3	20	23	0	5	5
% deaths			1.41%			0.32%

Excess deaths is the difference in percentages.

→ Excess death is 1.1%.

2. Calculate excess deaths for LVO patients.

Given IVT

NIHSS	11-15	16-21	>=22	>=11
Number of patients	794	662	309	1765
Deaths	23	24	21	68
	3.85%			

No treatment

NIHSS	11-15	16-21	>=22	>=11
Number of patients	808	671	313	1792
Deaths	1	5	2	8
	% deaths			

Excess deaths is the difference in percentages.

→ Excess death is 3.4%.

nLVO – IVT at no-effect time

Data sources

Method

IVT excess deaths as calculated earlier.

1.1%

mRS distribution as calculated earlier.

nLVO	nLVO no treatment		
mRS	Probability		
0	0.198		
1	0.262		
2	0.120		
3	0.128		
4	0.148		
5	0.062		
6	0.082		

1. Apply excess deaths to "no treatment" distribution.

For a population treated at the time of no effect, expect no improvement compared with the no-treatment distribution but for some additional deaths.

Assume excess death is equally likely for all patients.

mRS	nLVO no treatment	1.1% deaths	nLVO no treatment with excess deaths
0	0.198	-0.002	0.196
1	0.262	-0.003	0.259
2	0.120	-0.001	0.119
3	0.128	-0.001	0.127
4	0.148	-0.002	0.146
5	0.062	-0.001	0.061
6	0.082	+0.010	0.092

→ Result:

nLVO IVT at no-effect time		
mRS	Probability	
0	0.196	
1	0.259	
2	0.119	
3	0.127	
4	0.146	
5	0.061	
6	0.092	

Patient transport model

Holodinsky et al. 2018

Data: decline of chance of good outcome (mRS <= 1) with time to thrombolysis.

Location: Table, "Non-Large-Vessel Occlusion" section Non-Large-Vessel Occlusion
P(mRS 0 - 1|alteplase and OTT = x)

0.6343-0.00000005 x² - 0.0005 x; minimum value = 0.4622

Sanity check

In the patient transport model, for IVT at the time of no effect the probability $P(mRS \le 1) = 0.4622$.

The equivalent measure from the above distribution is $P(mRS \le 1) = 0.196 + 0.259 = 0.455$.

LVO – IVT at no-effect time

Data sources

Method

IVT excess deaths as calculated earlier.

3.4%

mRS distribution as calculated earlier.

LVOr	LVO no treatment		
mRS	Probability		
0	0.050		
1	0.079		
2	0.136		
3	0.164		
4	0.247		
5	0.135		
6	0.189		

1. Apply excess deaths to "no treatment" distribution.

For a population treated at the time of no effect, expect no improvement compared with the no-treatment distribution but for some additional deaths.

Assume excess death is equally likely for all patients.

mRS	LVO no treatment	3.4% deaths	LVO no treatment with excess deaths
0	0.050	-0.002	0.048
1	0.079	-0.003	0.076
2	0.136	-0.004	0.131
3	0.164	-0.005	0.159
4	0.247	-0.008	0.239
5	0.135	-0.004	0.130
6	0.189	+0.027	0.217

LVO IVT at no-effect time		
mRS	Probability	
0	0.048	
1	0.076	
2	0.131	
3	0.159	
4	0.239	
5	0.130	
6	0.217	

Excess deaths - MT

Data sources

Method

HERMES thrombectomy meta-analysis Goyal et al. 2016

Data: Mortality rate with MT and average time to MT.

Locations:

Mortality rate: Table 4.

Time: Table 1.

Recanalisation meta-analysis Hui et al. 2020

Info: 75% weight for prestroke mRS distribution.

Location: "Secondary Outcome: Recanalization" section, final sentence. "Our traditional metaanalysis yielded a pooled rate of successful recanalization for IVT+MT of 75% (95% CI, 65%–83%; Figure XIC in the Data Supplement)."

mRS distributions

as calculated earlier.

LVO pre-stroke	LVO no treatment
Probability	Probability
0.408	0.050
0.144	0.079
0.120	0.136
0.166	0.164
0.118	0.247
0.044	0.135
0.000	0.189
	Probability 0.408 0.144 0.120 0.166 0.118 0.044

1. Find reference data point.

The average MT treatment time is 285 minutes and the death rate of patients given MT is 15.3%.

This gives a probability that mRS is less than 6 of 84.7%.

Convert this probability to log-odds. The log-odds of mRS being less than 6 when MT is given at 285 minutes is 1.709.

→ log-odds reference = 1.709

2. Define time-zero distribution.

Calculate two distributions:

- Full-effect data: pre-stroke data with excess deaths.
- No-effect data: no-treatment data with excess deaths.

Combine 75% of the full-effect data with 25% of the noeffect data to make the time-zero data.

3. Method for finding excess deaths:

- 1) Set the excess death value e.
- 2) As above, use these excess deaths to calculate:
 - 1) The full-effect data
 - 2) The no-effect-time data
 - 3) The time-zero data
- 3) Take the probability that mRS is less than 6 in the time-zero and the no-effect-time distributions.
- 4) Convert the probabilities to log-odds.
- 5) Plot the two log-odds values and treatment times and connect the points with a straight line.
- 6) How close is the straight line to the reference point?

These steps can be repeated with different values of excess death e until the line passes exactly through the reference data point.

Using an optimiser function, we find the best e=4.00%.

→ Excess death is 4.0%.

LVO – MT at no-effect time

Data sources

Method

MT excess deaths as calculated earlier.

4.0%

mRS distribution as calculated earlier.

LVO no treatment	
mRS	Probability
0	0.050
1	0.079
2	0.136
3	0.164
4	0.247
5	0.135
6	0.189

1. Apply excess deaths to "no treatment" distribution.

For a population treated at the time of no effect, expect no improvement compared with the no-treatment distribution but for some additional deaths.

Use the excess death rate of 4.0%.

Assume excess death is equally likely for all patients.

mRS	LVO no treatment	4.0% deaths	LVO no treatment with excess deaths
0	0.050	-0.002	0.048
1	0.079	-0.003	0.076
2	0.136	-0.005	0.131
3	0.164	-0.006	0.157
4	0.247	-0.009	0.237
5	0.135	-0.005	0.130
6	0.189	+0.040	0.221

LVO MT at no-effect time		
mRS	Probability	
0	0.048	
1	0.076	
2	0.131	
3	0.157	
4	0.237	
5	0.130	
6	0.221	

Chance decay over time

Data sources

Method

Alteplase metaanalysis Emberson et al. 2014

Data: decline of odds ratio of good outcome with time for all patients (i.e. any NIHSS score) treated with alteplase compared with a control group.

Location: Figure 1

(miss 0-1)
The solid line is the best linear fit between the log odds ratio for a good stroke outcome for patients given afterplace compared with those given control (vertica axes) and retreatment desky (hotiscental axis, p_m = 0.016). Estimates are derived from a regression model in which afterplace, time to treatment, age, and stroke severity flamelide in a quadratic manneral are included as must neither the service interaction included in with time to treatment. Doly 198 patients (155 from 157-3) and a time from stroke once to treatment of more than 61. The white box shows the point at which the estimated treatment effect crosses? The black box shows the point at which the lower 59 s.C. If or the estimated treatment effect from costs and the content in the cost of the content in the content effect crosses 2 to miss considered the content in the

1. Get reference data points

Take two odds ratio points from this chart and convert them to log(odds ratio), where "log" means "natural log":

Treatment delay (hours)	Odds ratio	log(odds ratio)
1.0	1.9	0.64185
6.3	1.0	0.00000

2. Straight line fit

Connect the two "log(odds ratio)" and time points with a straight line.

The slope of the line is:

$$b = (0.00000 - 0.64185) \div (6.3 - 1.0)$$

$$b = -0.1211...$$

The line hits time zero at a log(odds ratio) value: a=0.76296.

3. Convert to probability

If we use a reference probability value, then we can calibrate the straight line fit and use it to calculate a probability of mRS <= 1 at any time.

For a reference point at the no-effect time t_{ne} , the probability at time zero is:

$$P(ext{mRS} \leq 1 \mid t = 0) = rac{e^a \cdot \left\{rac{P_R}{1 - P_R}
ight\}}{1 + e^a \cdot \left\{rac{P_R}{1 - P_R}
ight\}}$$

where:

$$P_R = P(\text{mRS} \le 1 \mid t_{\text{ne}})$$

4. Usage

This straight line fit applies to mRS <= 1 data only.

The same value of *a* can be used to fit the decay with time for:

- nLVO and LVO patients combined
- nLVO patients only
- LVO patients only

Alteplase metaanalysis Emberson et al. 2014

Info: use same slope for all straight line fits.

Location: "Results" section, paragraphs 2 and 3.

"The effect of alteplase on a good outcome was chiefly driven by treatment delay; after controlling for treatment delay, neither age nor severity of stroke contributed significant additional predictive value (appendix p 5)."

nLVO – IVT at time zero

Data sources

Method

mRS distribution as calculated earlier.

IVT at	nLVO no-effect time	
mRS	Probability	
0	0.196	
1	0.259	
2	0.119	
3	0.127	
4	0.146	
5	0.061	
6	0.092	

Formula for probability at time zero as calculated earlier.

$$P(\text{mRS} \le 1 \mid t = 0) = \frac{e^{a} \cdot \left\{ \frac{P_R}{1 - P_R} \right\}}{1 + e^{a} \cdot \left\{ \frac{P_R}{1 - P_R} \right\}}$$

$$P_R = P(\text{mRS} \le 1 \mid t_{\text{ne}})$$

$$a = 0.76296$$

IVT excess deaths as calculated earlier.

mRS distribution as calculated earlier.

1.1%

nLVO pre-stroke	
mRS	Probability
0	0.583
1	0.163
2	0.104
3	0.101
4	0.042
5	0.007
6	0.000

1. Get reference probability at noeffect time.

Take the probability of mRS being less than or equal to 1. This matches the data that went into the formula for probability at time zero.

2. Calculate a reference probability at time zero.

Plug the values of a and P_R =45.5% into the formula.

$$\rightarrow$$
 P(mRS<=1 | t=0) = 64.2%

3. Combine mRS distributions.

To reach $P(mRS \le 1 \mid t=0) = 0.642$ in the time-zero distribution, use the following weighted distributions:

- 1) Apply the excess deaths to the pre-stroke data.
- 2) Multiply the "pre-stroke data with excess deaths" data by 0.643.
- 3) Multiply the "IVT at no-effect time" data by 0.357.
- 4) Add these two sets of data together.

→ Result:

nLVO IVT at time zero		
mRS	Probability	
0	0.445	
1	0.197	
2	0.110	
3	0.110	
4	0.079	
5	0.026	
6	0.033	

Patient transport model

Holodinsky et al. 2018

Data: decline of chance of good outcome (mRS <= 1) with time to thrombolysis.

Location: Table, "Non-Large-Vessel Occlusion" section

Sanity check

In the patient transport model, for IVT at time zero the probability $P(mRS \le 1) = 0.6343$.

The equivalent probability from the above distribution is $P(mRS \le 1) = 0.642$.

Data sources

Method

mRS distribution as calculated earlier.

LVO IVT at no-effect time		
mRS	Probability	
0	0.048	
1	0.076	
2	0.131	
3	0.159	
4	0.239	
5	0.130	
6	0.217	

Formula for probability at time zero as calculated earlier.

$$P(\text{mRS} \le 1 \mid t = 0) = \frac{e^{a} \cdot \left\{ \frac{P_{R}}{1 - P_{R}} \right\}}{1 + e^{a} \cdot \left\{ \frac{P_{R}}{1 - P_{R}} \right\}}$$

$$P_{R} = P(\text{mRS} \le 1 \mid t_{\text{ne}})$$

$$a = 0.76296$$

IVT excess deaths as calculated earlier.

mRS distribution as calculated earlier.

ŗ	LVO ore-stroke
mRS	Probability
0	0.408
1	0.144
2	0.120
3	0.166

0.118 0.044 0.000

4

6

3.4%

1. Get reference probability at noeffect time.

Take the probability of mRS being less than or equal to 1. This matches the data that went into the formula for probability at time zero.

2. Calculate a reference probability at time zero.

Plug the values of a and P_R =12.4% into the formula.

$$\rightarrow$$
 P(mRS<=1 | t=0) = 23.3%

3. Combine mRS distributions.

To reach $P(mRS \le 1 \mid t=0) = 0.233$ in the time-zero distribution, use the following weighted distributions:

- 1) Apply the excess deaths to the pre-stroke data.
- 2) Multiply the "pre-stroke data with excess deaths" data by 0.255.
- 3) Multiply the "IVT at no-effect time" data by 0.745.
- 4) Add these two sets of data together.

LVO IVT at time zero		
mRS	Probability	
0	0.140	
1	0.093	
2	0.128	
3	0.161	
4	0.208	
5	0.108	
6	0.162	

LVO – MT at time zero

Data sources

Method

Recanalisation meta-analysis Hui et al. 2020

Info: 75% weight for prestroke mRS distribution.

Location: "Secondary Outcome: Recanalization" section, final sentence.

MT excess deaths as calculated earlier.

mRS distribution as calculated earlier.

"Our traditional metaanalysis yielded a pooled rate of successful recanalization for IVT+MT of 75% (95% CI, 65%-83%; Figure XIC in the Data Supplement)."

4.0%

LVO pre-stroke	
mRS	Probability
0	0.408
1	0.144
2	0.120
3	0.166
4	0.118
5	0.044
6	0.000

mRS distribution as calculated earlier.

LVO MT at no-effect time		
mRS	Probability	
0	0.048	
1	0.076	
2	0.131	
3	0.157	
4	0.237	
5	0.130	
6	0.221	

1. Define time-zero distribution.

Combine 75% of the full-effect data with 25% of the noeffect data. The full-effect data is the pre-stroke data with the excess deaths as a result of MT.

2. Add excess deaths to prestroke distribution.

mRS	LVO pre- stroke	4.0% deaths	LVO pre-stroke with excess deaths
0	0.408	-0.016	0.392
1	0.144	-0.006	0.138
2	0.120	-0.005	0.115
3	0.166	-0.007	0.160
4	0.118	-0.005	0.113
5	0.044	-0.002	0.042
6	0.0000	+0.040	0.040

3. Combine the data for full effect and no effect of recanalisation.

- Multiply the "LVO pre-stroke with excess deaths" data by 0.75.
- Multiply the "LVO MT at no-effect time" data by 0.25.
- Add these two sets of data together.

LVO MT at time zero		
mRS	Probability	
0	0.306	
1	0.123	
2	0.119	
3	0.159	
4	0.144	
5	0.064	
6	0.085	

Sanity check – MT success rate

Data sources

Method

MR CLEAN Recanalisation clinical trial Fransen et al. 2016

Data: decline of chance of good outcome (mRS 0-2) with time to thrombectomy for successful reperfusion only.

Location: Figure C, end points of graph stated in "Tertiary analysis" subsection.

mRS distribution as calculated earlier.

LVO pre-stroke		
mRS	Probability	
0	0.408	
1	0.144	
2	0.120	
3	0.166	
4	0.118	
5	0.044	
6	0.000	

Recanalisation meta-analysis Hui et al. 2020

Info: 75% weight for prestroke mRS distribution.

Location: "Secondary Outcome: Recanalization" section, final sentence. "Our traditional metaanalysis yielded a pooled rate of successful recanalization for IVT+MT of 75% (95% CI, 65%–83%; Figure XIC in the Data Supplement)."

	~	
mRS	LVO MT at no- effect time	LVO MT at time zero
0	0.048	0.306
1	0.076	0.123
2	0.131	0.119
3	0.157	0.159
4	0.237	0.144
5	0.130	0.064
6	0.221	0.085

mRS distributions as calculated earlier.

1. Extrapolate the line back to time zero.

End points from the graph (given in "Tertiary analysis" section):

Time (hours)	Probability of mRS 0-2
3.0	55%
8.0	31%

Assume the decrease with time is constant and that the graph shows a straight line. This gives an average decrease in probability of 4.8% per hour.

At time zero, the probability would be $55\% + (3 \times 4.8\%) =$ **69.4%**.

Pre-stroke probability of mRS 0-2 is: 0.408+0.144+0.120 = **67.2%**.

→ for successful recanalisation, use the full recovery mRS distribution.

2. Check treatment at 8 hours.

From the graph, the end point is 31%. Scaling down by 0.75 successful recanalisation gives $31\% \times 0.75 = 23.25\%$.

Probability of mRS 0-2 given MT at time of no effect (8 hours) is 0.048 + 0.076 + 0.131 = 25.5%.

3. Check treatment at 0 hours.

From the graph, the extrapolated point at time zero is 69.4%. Scaling down by 0.75 successful recanalisation rate, $69.4\% \times 0.75 = 52.05\%$.

MT at time zero probability of mRS 0-2 is: 0.306 + 0.123 + 0.119 = **54.8%**.

→ 75% successful recanalisation gives a good enough match.