CSE 431/531: Algorithm Analysis and Design

Fall 2022

Homework 4

Instructor: Shi Li Deadline: 11/13/2022

Your Name: Zheynan Ma Your Student ID: 321597

Problems	1	2	3	Total
Max. Score	20	30	30	80
Your Score				

The best way to solve Problems 2 and 3 is to use the following steps:

- 1. Give the definition of the cells in the dynamic programming table.
- 2. Show the recursions for computing the cells.
- 3. Give the order in which you compute the cells.
- 4. Briefly state why the algorithm achieves the desired running time.

Problem 1 Solve the matrix-chain-multiplication instance with the following sizes.

You need to fill the following two tables for the opt and π values, give the minimum cost of the instance (i.e., the number of multiplications), and describe the best way to multiply the matrices (using either a tree, or a formula with parenthesis).

$ \underbrace{ opt[i,j] \backslash j}_{i} $	1	2	3	4	5
1	0	120	300	444	612
2		0	240		656
3			0	480	756
4				0	336
5					0

$\boxed{\pi[i,j] \setminus j}$	1	2	3	4	5
1		1	2	3	4
2			2	3	4
3				3	3
4					4

Table 1: opt and π values for the matrix chain multiplication instance.

The minimum cost for the instance is 612. Describe the best way to multiple the matrices:

(((A,A2)A3)A4)A5

Problem 2 An independent set of a graph G = (V, E) is a set $U \subseteq V$ of vertices such that there are no edges between vertices in U. Given a graph with node weights, the maximum-weight independent set problem asks for the independent set of a given graph with the maximum total weight. In general, this problem is very hard. Here we want to solve the problem on trees: given a tree with node weights, find the independent set of the tree with the maximum total weight. For example, the maximum-weight independent set of the tree in Figure 1 has weight 47.

Figure 1: The maximum-weight independent set of the tree has weight 47. The red vertices give the independent set.

Design an O(n)-time algorithm for the problem, where n is the number of vertices in the tree. We assume that the nodes of the tree are $\{1, 2, 3, \dots, n\}$. The tree is rooted at vertex 1, and for each vertex $i \in \{2, 3, \dots, n\}$, the parent of i is a vertex j < i. In the input, we specify the weight w_i for each vertex $i \in \{1, 2, 3, \dots, n\}$ and the parent of i for each $i \in \{2, 3, \dots, n\}$.

Problem 3 Given a sequence $A = (a_1, a_2, \dots, a_n)$ of n numbers, we need to find the longest increasing sub-sequence of A. That is, we want to find a maximum-length sequence (i_1, i_2, \dots, i_t) of integers such that $1 \le i_1 < i_2 < i_3 < \dots < i_t \le n$ and $a_{i_1} < a_{i_2} < a_{i_3} < \dots < a_{i_t}$.

For example, if the input n = 11, A = (30, 60, 20, 25, 75, 40, 10, 50, 90, 70, 80), then the longest increasing sub-sequence of A is (20, 25, 40, 50, 70, 80), which has length 6. The correspondent sequence of indices is (3, 4, 6, 8, 10, 11).

Again, you only need to output the length of the longest increasing sub-sequence. Design an $O(n^2)$ -time dynamic programming algorithm to solve the problem.

- Problem 2
 - 2 1) the table has I now and each cell is opt [j], maximum total weight of the indpendent set of the subtree nooted at vertex j
 - opt [j] = mcx $\sum_{i \text{ childs of } j \text{ Opt}[i]}$ $\sum_{i \text{ grand childs of } j \text{ Opt}[i] + W_{j}$ (mark the node j for retrival)

Tree is rocted at vertex 1

Opt [1] is the maximum total weight

of the independent set of thee

- 3) We need to compute the tree bottom-up. That is, we first compute opt[n], then opt[n-1] ... (post-order traversal)
- 4) There are n iterations (from n to 1), and a child value opt[i] is accessed only by its parent and grandparent. It takes O(n) time since we visit nodes in postorder and examine each edge exactly once.
- Problem 3
- 1) for every $i \in [1,n]$, opt [i] is the length of the largest increasing subsequence of A that ends at ACiJ
- 2) $opt[i] = \max_{j \in i, A[j] < A[i]} opt[j] + 1$, and if there is no A[j] < A[j] for every j < i, opt[i] = 1the final result is $\max_{i \in [i,n]} opt[i]$
- 3) We need to compute optGiJ from I to n
- 4) There are n iterations, and in each iteration, it takes O(n) time to traverse back to find the max opt(j) value, so total running time is O(v)