A Short Course on Bayesian Nonparametrics Lecture 3 - Computation for Dirichlet process mixture models

Abel Rodriguez - UC, Santa cruz

Universidade Federal Do Rio de Janeiro March, 2011

Challenges in working with posterior samples from a DPM

- Identifiability (label switching).
 - Computation: Multimodality.
 - Interpretation: Focus on inferences on identifiable parameters.
- How to summarize the information in the posterior:
 - Posterior inference for functionals of G, including $F(x) = \int \psi(x|\theta) dG(\theta)$.
 - Clustering structure ⇒ What is a cluster?

Label switching

- The likelihood is invariant to the labels used for the components. Stephens (2000) provides an excellent review in the context of finite mixtures.
 - For example, if n=5, $\xi_1=1$, $\xi_2=1$, $\xi_3=2$, $\xi_4=2$, $\xi_5=3$ implies exactly the same model as $\xi_1=2$, $\xi_2=2$, $\xi_3=3$, $\xi_4=3$, $\xi_5=1$.
 - For fixed K, the posterior has K! identical modes, corresponding to each of the K! copies of the space (one for each order of the labels).

Label switching

- Computational implications: Are we exploring all these modes? A two-part answer:
 - The collapsed Gibbs sampler (and some of the other samplers we will discuss today) act on the equivalence classes associated with the label switching \Rightarrow Two labelings $\{\xi_i\}$ and $\{\xi_i^*\}$ belong to the equivalence class if the induce the same partition of the observations.
 - Even if we are not, who cares? (as long as inference is made on identifiable functions of the parameters).
- In general, the interpretation of the parameters is not consistent from one iteration of the MCMC to the next ⇒ This is true even if "identifiability" constrains are introduced in the mixture!!!

Summarizing the posterior

- The collapsed Gibbs sampler integrates G out of the model.
- If we need to do inferences for functionals of G (which are identifiable!!!), note that G follows a mixture of Dirichlet processes (MDP) (Antoniak, 1974)

$$G|y_1, \dots, y_n \sim \int \mathsf{DP}\left(\alpha + n, \frac{\alpha}{\alpha + n} H_{\eta} + \sum_{k=1}^{K} \frac{m_k}{\alpha + n} \delta_{\vartheta_k}\right)$$

$$dP(\{\xi_i\}, \{\vartheta_k\}, \alpha, \eta | y_1, \dots, y_n)$$

The DPM and the MDP are different!!!

DPM	MDP		
$y_i \sim \int \psi(y_i \theta) dG(\theta) G \sim DP(\alpha, H)$	$y_i \sim G G \sim \int DP(\alpha, H_\eta) dP(\alpha, \eta)$		
. ↓	↓ ↓		
G models the parameters	G models the observations		
	·		

Linear functionals of G

 Consider first computing summaries for linear functionals of G. For example, using Fubinni's rule

$$\begin{split} \hat{f}(y) &= \mathsf{E}_{G|y_1,\dots,y_n} \left\{ \int \psi(y|\theta) dG(\theta) \right\} \\ &= \int \int_{\Theta} \psi(y|\theta) \left\{ \frac{\alpha}{\alpha+n} H_{\eta}(d\theta) + \sum_{k=1}^{K} \frac{m_k}{\alpha+n} \delta_{\vartheta_k}(d\theta) \right\} \\ &\quad dP(\{\xi_i\}, \{\vartheta_k\}, \alpha, \eta | y_1, \dots, y_n) \\ &= \int \left\{ \sum_{k=1}^{K} \frac{m_k}{\alpha+n} \psi(y|\vartheta_k) + \frac{\alpha}{\alpha+n} \int \psi(y|\vartheta_k) H_{\eta}(d\theta) \right\} \\ &\quad dP(\{\xi_i\}, \{\vartheta_k\}, \alpha, \eta | y_1, \dots, y_n) \end{split}$$

• Same expression we obtained for $p(y_{n+1}|y_1,...,y_n)!!!$

Non-linear functionals of G

- Hence, point estimates for F(y) can be easily obtained without any need to explicitly sample G.
- Similar story for (for example) $E(y) = \int y dF(y)$ or, more generally, $E(y^d) = \int y^d dF(y)$
- How about non-linear functionals (for example, $F^{-1}(\gamma)$ the $\gamma \in (0,1)$ quantile)?
 - Note that $E_{G|y_1,...,y_n}\{F^{-1}(\gamma)\} \neq \hat{F}^{-1}(\gamma)!!!$
 - If we had samples from $p(G|y_1, \ldots, y_n)$, we could transform them into samples from $p(\lambda_{\gamma}|y_1, \ldots, y_n)$ where $\lambda_{\gamma} = F^{-1}(\gamma|G)$

Non-linear functionals of G

ullet Samples from G can in principle be obtained by using the stick-breaking construction and the fact that

$$G|y_1, \dots, y_n \sim \int \mathsf{DP}\left(\alpha + n, \frac{\alpha}{\alpha + n} H_{\eta} + \sum_{k=1}^{K} \frac{m_k}{\alpha + n} \delta_{\vartheta_k}\right)$$
$$dP(\{\xi_i\}, \{\vartheta_k\}, \alpha, \eta | y_1, \dots, y_n)$$

• Since G involves an infinite number of atoms, use instead a finite approximation $G_{N_{\epsilon}}$ for small ϵ (Kottas & Gelfand, 2002).

$$G_{N_{\epsilon}}^{(b)} = \sum_{k=1}^{N_{\epsilon}^{(b)}} \omega_{k}^{*(b)} \delta_{\vartheta_{k}^{*(b)}} \quad \vartheta_{k}^{*(b)} \sim_{\textit{iid}} \frac{\alpha^{(b)}}{\alpha^{(b)} + n} H_{\eta^{(b)}} + \sum_{k=1}^{K^{(b)}} \frac{m_{k}^{(b)}}{\alpha^{(b)} + n} \delta_{\vartheta_{k}^{(b)}}$$

$$(\omega_1^{(b)}, \omega_2^{(b)}, \ldots) \sim \mathsf{SB}(\alpha^{(b)} + n)$$
, and $N_{\epsilon}^{(b)}$ is such that it satisfies $\sum_{i=1}^{N_{\epsilon}^{(b)}} \omega_i^{*(b)} > 1 - \epsilon$.

Clustering structure

- Summaries for $p(\{\xi_i\}|y) \Rightarrow$ Non-euclidean space.
- The vector $\{\xi_i\}$ can alternatively be represented by a $n \times n$ matrix T such that $T_{i,j} = 1$ iif $\xi_i = \xi_j$ and $T_{i,j} = 0$ otherwise $(T_{i,i} = 1 \text{ by convention})$.
- T ⇒ Incidence Matrix. Invariant to label switching (and hence, identifiable).
- $\hat{T} = E(T|y_1, ..., y_n) \Rightarrow \hat{T}_{i,j}$ is the marginal posterior probability that y_i and y_j are assigned to the same cluster.

Clustering structure

- T can be represented as an image plot.
- Gives an idea of both a point estimator and uncertainty.
- Reordering the observations to get a readable picture is important.

Point estimator

- A utility based approach to clustering (Lau & Green, 2007).
- Start with a utility function:

$$U(\hat{\xi},\xi) = \sum_{i} \sum_{j < i} \left\{ a \mathbf{1}_{(\hat{\xi}_i \neq \hat{\xi}_i, \xi_i = \xi_j)} + b \mathbf{1}_{(\hat{\xi}_i = \hat{\xi}_i, \xi_i \neq \xi_j)} \right\}$$

- a and b are the costs of "Type I" and "Type II" errors.
- Maximizing the expected utility is equivalent to maximizing

$$\hat{U}(\hat{\xi}) = \sum_{i} \sum_{i < i} \mathbf{1}_{(\hat{\xi}_i \neq \hat{\xi}_j)} \left\{ \hat{T}_{i,j} - \frac{b}{a+b} \right\}$$

• $b/(a+b)=0 \Rightarrow$ one cluster, $b/(a+b)=1 \Rightarrow n$ clusters.

The DPM as a clustering algorithm

- We originally motivated the DPM as a prior on random distributions.
- However, due to the a.s. nature of G, it allows for flexible clustering and automatic selection of the number of clusters.
- Some caveats:
 - For fixed K, the DP favors a priori partitions with uneven-sized clusters ⇒ A few big clusters together with many very small clusters.
 - The "shape" of the clusters is determined by the kernel ⇒
 Multivariate normal kernels imply spherical clusters ⇒ This
 problem is shared by all model-based clustering algorithms, but
 exacerbated for the DPM!

Homework

- Modify the collapsed sampler you already implemented to work with a Poisson kernel $\psi(y_i|\theta) = \operatorname{Poi}(y_i|\theta)$ and $H(\theta) = \operatorname{Gam}(\nu, \theta_0)$. Also, use a Gamma hyperprior on θ_0 and a $\Gamma(1,1)$ prior on α .
- **②** What is the limiting behavior of this model when $\alpha \to \infty$?
- **3** To highlight possible problems with the DPM as a clustering mechanism, simulate an iid sample y_1, \ldots, y_{50} with $y_i \sim \text{NegBin}(20, 1/3)$. Fit the Poisson mixture model to this data. How would you choose the parameters of the baseline measure? What would you expect to get?
- Find the optimal clustering structure induced by this model if a = b = 1. How would you interpret these results? Can you describe a more appropriate model for this problem?
- (This example was originally suggested by Mike Escobar).

Why other samplers?

- Sample ξ_i s from full conditionals:
 - Collapsed samplers tend have high autocorrelations.
 - Slow in creating new components.
- The collapsed sampler we described works only for conjugate models.
- Some extensions of the DP do not have simple Pólya urn representations.
- We work with the basic mixture

$$y_i|\theta_i \sim \psi(y_i|\theta_i)$$
 $\theta_i|G \sim G$ $G \sim \mathsf{DP}(\alpha, H)$

Split-Merge Metropolis Hastings

- Key references: Jain & Neal, 2004, 2007; Dahl, 2003.
- Motivation ⇒ Improve mixing by moving multiple observations at a time when creating new components.
- We focus only on conjugate models.
- Let $\mathcal{S}_{n,K} = \{S_1, \dots, S_K\}$ be a partition of $\{1, \dots, n\}$, i.e.,
 - $\bigcup_{k=1}^K S_k = \{1, \ldots, n\}.$
 - $S_k \cap S_j = \emptyset$ for $k \neq j$.
- You can recover $S_{n,K}$ from $\{\xi_i\}$ (but, because of label switching, there are many sets $\{\xi_i\}$ that lead to the same $S_{n,K}$).

Split-Merge Metropolis Hastings

The prior on partitions implied by the CRP is:

$$\Pr(\mathcal{S}_{n,K}) = \frac{\alpha^K}{\prod_{i=1}^n (\alpha+i-1)} \prod_{k=1}^K (|\mathcal{S}_k|-1)!$$

• With a conjugate model, we can integrate out the θ_i s, so that

$$p(y_1,\ldots,y_n|S_{n,K}) = \prod_{k=1}^K \int \left\{ \prod_{j\in S_k} \psi(y_j|\theta) \right\} dH(\theta)$$

Hence, the posterior is

$$\Pr(\mathcal{S}_{n,K}|y_1,\ldots,y_n) \propto \left\{ \prod_{k=1}^K \int \left[\prod_{j \in \mathcal{S}_k} \psi(y_j|\theta) \right] dH(\theta) \right\} \alpha^{K-1} \prod_{k=1}^K (|\mathcal{S}_k|-1)!$$

Split-Merge Metropolis Hastings

- This posterior is defined on a HUGE discrete space. How can we explore it? ⇒ Metropolis-Hastings: propose a change in the partition, and accept or reject it.
 - Move one observation at a time \Rightarrow We only have K+1 choices, so we can compute the probabilities associated with each new placement \Rightarrow Collapsed Gibbs sampler!!!!
 - More than one observation at atime: Split-Merge moves ⇒
 Either take an existing group and split it, or take two an merge
 them.
 - There are MANY ways in which this can be done, from the very naive, to the smart. We focus on Dahl, 2003.

Sequentially allocated split-mergue

- Uniformly select a pair of indices i and j.
- If i, j are in the same component of $\mathcal{S}_{n,K}$ (say \mathcal{S}_k) then split
 - Remove indices i and j from S and form $S_{k'} = \{i\}$ and $S_{k''} = \{j\}$.
 - Do random permutation of the indexes remaining in S_k .
 - Sequentially add index $r \in S_k$ to sets $S_{k'}$ or $S_{k''}$ with probabilities

$$\Pr(r \in S_{k'}|S_{k'}, S_{k''}, y) \propto |S_{k'}| \int \psi(y_r|\theta) p(\theta|y_{S_{k'}}) d\theta$$

$$\Pr(r \in S_{k''}|S_{k'}, S_{k''}, y) \propto |S_{k''}| \int \psi(y_r|\theta) p(\theta|y_{S_{k''}}) d\theta$$

• Eliminate component S_k .

Sequentially allocated split-mergue

- If i and j are in different components of $S_{n,K}$ (say $S_{k'}$ and $S_{k''}$), mergue:
 - Form a merged component $S_k = S_{k'} \cup S_{k''}$ and eliminate $S_{k'}$ and $S_{k''}$.
- To compute the acceptance ratio, note that the split and the merge steps are the corresponding reversible steps.
- The probability of proposing the mergue step is proportional to 1, the probability of proposing a split is proportional to the product of the proposal probabilities corresponding to the sequential allocations.

Collapsed samplers for non-conjugate models

- Neal (2000) provides an excellent review.
- ullet Use same ideas as for split-mergue algorithms. If the ϑ_k s are not integrated out of the model the posterior looks like

$$p(\{\xi_i\}, \{\vartheta_k\}|\mathbf{y}) \propto p(\xi_1, \dots, \xi_n) \prod_{k=1}^K G_0(\vartheta_k) \prod_{i=1}^n \psi(y_i|\vartheta_{\xi_i})$$

where
$$p(\xi_1, ..., \xi_n) \propto \alpha^{K-1} \prod_{k=1}^K (m_k - 1)!$$
 just as before.

• A variety of samplers can be obtained by using different proposals that simultaneously change $\{\xi_i\}$ and $\{\vartheta_k\}$.

Collapsed samplers for non-conjugate models

• A simple example: For each i, propose $\vartheta_k^{(p)} = \vartheta_k^{(c)}$ for $k \leq K^{(c)}$, $\vartheta_{K^{(c)}+1}^{(p)} \sim H$, and $\xi_i^{(p)}$ from

$$\Pr(\xi_i^{(p)} = k | \xi_i^{(c)} = k', \{\vartheta_k^{(p)}\}) \propto \begin{cases} m_k \psi(y_i | \vartheta_k) & k \neq k', k \leq K \\ (m_{k'} - 1) \psi(y_i | \vartheta_{k'}) & k = k', k \leq K \\ \alpha \psi(y_i | \vartheta_{K+1}^{(p)}) & k = K + 1 \end{cases}$$

- The acceptance probability is 1!!!!.
- This looks a lot like the collapsed sampler for the conjugate case, but we use the likelihood evaluated on samples of the θ_k s (rather than the marginal likelihoods) to construct the probability of each component.
- Better mixing if multiple new components are used!

Blocked Gibbs samplers

- Introduced by Ishwaran & James, 2001.
- Approximate $G = \sum_{k=1}^{\infty} \omega_k \delta_{\vartheta_k}$ with $G^N = \sum_{k=1}^N \omega_k \delta_{\vartheta_k}$ for large enough N.
- The weights for G^N are constructed just like G, but letting $z_N = 1$.
- For a sample $y = (y_1, \ldots, y_n)$, we have

$$\int \left| \int \psi(y|\theta) dG(\theta) - \int \psi(y|\theta) dG^{N}(\theta) \right| dy \le$$

$$\int |dG(\theta) - dG^{N}(\theta)| \le 4 \left\{ 1 - \left[1 - \left(\frac{\alpha}{\alpha + 1} \right)^{N-1} \right]^{n} \right\}$$

Blocked Gibbs samplers

• The prior on $(\omega_1, \ldots, \omega_N)$ implied by the truncation is

$$p(\omega_1,\ldots,\omega_N|\alpha) = \alpha^{N-1}\omega_N^{\alpha-1}(1-\omega_1)^{-1}$$

$$(1-\{\omega_1+\omega_2\})^{-1}\cdots\left(1-\sum_{k=1}^{N-2}\omega_k\right)^{-1}$$

- Finite mixture model with a Generalized Dirichlet prior on the weights ⇒ We can use samplers for finite mixture models.
- By conditioning on the θ_i s, the ξ_i s become conditionally independent \Rightarrow Better mixing (!?)
- Easy(!?) to sample when ψ and H are not conjugate \to Gibbs/Metropolis steps (no need for a direct sampler for H).
- Much simpler to implement, and no need to do anything fancy for inferences on G!!!

Blocked Gibbs samplers

• Sample ξ_i from

$$\Pr(\xi_i = k | \cdots) \propto \omega_k \psi(y_i | \vartheta_k)$$
 $k = 1, \dots, N$

• Sample ϑ_k from

$$p(\vartheta_k|\cdots) \propto \left\{\prod_{\{i:\xi_i=k\}} \psi(y_i|\vartheta_k)\right\} H(\vartheta)$$

• Sample $(\omega_1, \ldots, \omega_N)$ by first sampling $\{z_k\}$

$$|z_k| \cdots \sim \mathsf{beta}\left(1 + m_k, lpha + \sum_{l=k+1}^N m_l
ight) \qquad m_k = \sum_{i=1}^n \mathbf{1}_{(\xi_i = k)}$$

and setting $\omega_k = z_k \prod_{l < k} \{1 - z_l\}$.

- Introduced in Walker, (2007).
- Start with the representation of the DPM as an uncountable mixture

$$y_i|\{\omega_k\},\{\vartheta_k\}\sim_{iid}\sum_{k=1}^{\infty}\omega_k\psi(y_i|\vartheta_k)$$

• Data augmentation \Rightarrow Introduce uniform random variables u_1, \ldots, u_n and define

$$y_i, u_i | \{\omega_k\}, \{\vartheta_k\} \sim_{iid} \sum_{k=1}^{\infty} \mathbf{1}_{(u_i \leq \omega_k)} \psi(y_i | \vartheta_k)$$

If you marginalize u_i you recover the first expression!!

• Data augmentation (again) \Rightarrow Introduce indicators ξ_1, \dots, ξ_n and define

$$y_i, u_i, \xi_i | \{\omega_k\}, \{\vartheta_k\} \sim_{iid} \mathbf{1}_{(u_i \leq \omega_{\xi_i})} \psi(y_i | \vartheta_{\xi_i})$$

If you marginalize both ξ_i and u_i you recover the countable mixture representation.

Joint distribution

$$p(\{y_i\}, \{u_i\}, \{\xi_i\} | \{\omega_k\}, \{\vartheta_k\}) = \prod_{i=1}^n \left\{ \mathbf{1}_{(u_i \le \omega_{\xi_i})} \psi(y_i | \vartheta_{\xi_i}) \right\}$$

• Full conditionals on this extended model are easy to obtain.

• The samplers for $\{\omega_k\}$ and $\{\theta_k\}$ are the same as for the blocked Gibbs sampler.

$$p(\vartheta_k|\cdots) \propto \left\{\prod_{\{i: \xi_i = k\}} \psi(y_i|\vartheta_k) \right\} H(\vartheta)$$
 $z_k|\cdots \sim \mathrm{beta}\left(1 + m_k, \alpha + \sum_{l=k+1}^N m_l \right) \qquad m_k = \sum_{i=1}^n \mathbf{1}_{(\xi_i = k)}$

with
$$\omega_k = z_k \prod_{l < k} \{1 - z_l\}$$
.

• For the "slice" variables $u_i | \cdots \sim \mathsf{Uni}[0, \omega_{\xi_i}]$

• For the indicator variables $\{\xi_i\}$.

$$\Pr(\xi_i = k | \cdots) \propto \mathbf{1}_{w_k > u_i} \psi(y_i | \vartheta_k)$$

• In principle, this implies an infinite number of terms. However, for each i, only a finite number of the ω_k s are such that $\omega_k > u_i$. Hence,

$$\Pr(\xi_i = k | \cdots) = \frac{\{\mathbf{1}_{w_k > u_i}\} \psi(y_i | \vartheta_k)}{\sum_{\{l: \omega_l > u_i\}} \psi(y_i | \vartheta_l)}$$

• In general, we need to represent explicitly only a finite number of components N such that $1 - \sum_{k=1}^N \omega_k < \min\{u_i\} \Rightarrow$ Adaptive truncation of the mixture.

Comparison among samplers

	$\Pr(\xi_i = k \cdots) \propto$	$p(\vartheta_k \cdots) \propto$	$p(\omega \cdots)$
Trunc	(Fixed size)	$\left\{\prod_{\{j:\xi_j=k\}}\psi(y_j \vartheta_k,\phi)\right\}h_\eta(\vartheta_k)$	$\omega_k = z_k \prod_{I < k} \{1 - z_I\}$
	$\omega_k \psi(y_i \vartheta_k)$		$z_k \sim \mathrm{beta}(1+m_k, \alpha+s_{k+1})$
Slice	$\begin{array}{l} \text{(Variable size)} \\ 1_{\omega_k > u_i} \psi(y_i \vartheta_k) \end{array}$	Same	Same
Colla	(Variable size)	Same	Not needed
			(integrated out)
Sp-Me	Sampled in block (varies)	Same	Not needed (integrated out)

Comparison among samplers

	A.S. Trunc	Slice	Collapsed	Split-Merge
Easy to code	Easy	Easy to Moder	Moder	Moder to Hard
Mixing	Moder to Good	Moder to Good	Moder	Good
Inference on G	Easy	Easy	Moder	Moder
Approx (beyond MC)	Yes	No	No	No
Memory requir	Large	Large	Moder	Moder

Some general comments

- A sceptic's view

 The truncated version of the MDP suggests that there is nothing really new about DPs that had not been discovered with finite mixtures.
- This is not quite fair
 - The link highlights that we need to be careful with how we pick the prior on the ω_k s if we want the model to automatically select the number of mixture components.
 - What if you want a large number of components? (Poisson / Neg Binomial example).
- Also there is a difference between the theoretical properties of an infinite model which is only truncated for computational reasons, and one that is truncated from the start.
- For the algorithms that truncate the model (either almost surely or adaptively), it is better if ϕ , α and η are sampled as if the parameters from the occupied components came from a collapsed Gibbs sampler.

Other options

- Retrospective samplers (Roberts and Papaspiliopoulos, 2008)
 ⇒ Another form of adaptive truncation.
- Variational algorithms (Blei and Jordan, 2006) ⇒ Replace the intractable posterior by a simpler form that is tractable, and optimize its parameters to minimize KL distance.
- Sequential Monte Carlo and particle filters (MacEachern et al, 1999; Carvalho et al, 2009).

Homework

- O Divide the class en three groups.
- For the location mixture of normals that has been the running example, have each group implement one of the following:
 - Blocked Gibbs sampler.
 - Slice Sampler.
 - **3** Non-conjugate collapsed sampler (work as if ψ and H were not conjugate).
- Ompare the performance of the algorithms against that of the collapsed Gibbs sampler on the galaxy dataset (available as part of DPpackage).