# โครงสร้างป้องกันน้ำท่วมแบบชั่วคราวและถอดเก็บได้

รองศาสตราจารย์ ชูโชค อายุพงศ์

หน่วยวิจัยภัยพิบัติทางธรรมชาติ ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่

#### 1. บทน้ำ

การบริหารจัดการภัยน้ำท่วมเป็นยุทธศาสตร์สำคัญในการจัดการด้าน ทรัพยากรน้ำซึ่งเป็นปัญหาสำคัญ ของประเทศ โดยการบริหารจัดการภัยน้ำท่วมประกอบด้วยมาตรการสำคัญหลายอย่าง ได้แก่ มาตรการใช้ สิ่งก่อสร้าง (Structural measures) มาตรการไม่ใช้สิ่งก่อสร้าง (Non-structural measures) และมาตรการกอบ กู้ภัย (Flood Recovery measures) รวมทั้งการจัดทำแผนแม่บทด้านการควบคุมน้ำท่วมด้วย ดังแสดงในแผนภูมิ รูปที่ 1-1 ถึง 1-3 ซึ่งจะ กล่าวถึงมาตรการใช้สิ่งก่อสร้างประเภทโครงสร้างป้องกันน้ำท่วม การเกิดน้ำท่วมรุนแรงในพื้นที่ชุมชนเมืองมักมีสาเหตุมาจากการเอ่อ ล้นจากล้าน้ำเข้าสู่พื้นที่ลุ่ม จึงนิยมใช้มาตรการ ใช้สิ่งก่อสร้างแบบพนังกันน้ำ เพื่อเพิ่มศักยภาพการรองรับน้ำของแม่น้ำได้มากขึ้น โดยลักษณะเงื่อนไขของการ ป้องกันโดยใช้พนังกันน้ำกับภาวะเกิดน้ำท่วมแสดงในรูป 1-4

เมื่อเกิดภัยน้ำท่วมจากการล้นตลิ่งแม่น้ำ มักใช้ถุงทรายวางเป็นคั่นกันน้ำท่วม ซึ่งนับเป็นอุปกรณ์ชั่วคราวที่ ได้รับความนิยมและไว้วางใจให้ใช้ใน การป้องกันหรือลดความเสี่ยงจากภัยน้ำท่วม โดยทดแทนการใช้โครงสร้าง ถาวร เช่น พนังกั นน้ำแบบถาวร เชื่อนกั้นน้ำ และประตูกั้นน้ำขนาดใหญ่ ที่เป็นโครงสร้างแบบถาวรซึ่งมีปัญหาให้ ถกเถียงกับองค์กรด้านสิ่งแวดล้อม ซึ่งค่อนข้างเสี่ยงต่อผลกระทบสิ่งแวดล้อมและสภาพภูมิทัศน์ ขณะ ที่โครงสร้าง ป้องกันน้ำท่วม เช่น พนังกั้นน้ำแบบชั่วคราวและถอดเก็บได้ ก็ถูกน้ำมาใช้โดยสามารถลดผลกระทบด้านสิ่งแวดล้อม และด้านทัศนียภาพ ได้ นอกจากนี้ความยืดหยุ่นของโครงสร้างป้องกันท่วมแบบชั่วคราวและถอดโครงสร้างป้องกัน น้ำท่วมแบบชั่วคราวและถอดโอกบได้ 2 เก็บได้ส่งผลดีให้กับพื้นที่ที่การป้องกันน้ำท่วมแบบถาวรไม่สามารถป้องกัน และเข้าถึงได้ ดังนั้นการใช้โครงสร้างป้องกันน้ำท่วมแบบชั่วคราวสามารถตอบสนองความต้องการในเรื่องความ ยืดหยุ่นและเป็นการเพิ่มโอกาสในการจัดการปัญหาน้ำท่วมให้มีประสิทธิภาพ จึงน้าไปสู่การนำไปใช้งานที่เพิ่มมาก ขึ้น รวมทั้งมีการพัฒนาโครงสร้างป้องกันแบบชั่วคราวและถอดเก็บได้แบบใหม่ๆ โครงสร้างป้องกันแบบลอดเก็บได้ เป็นโครงสร้างที่เคลื่อนย้ายได้ ติดตั้งล่วงหน้าได้อย่างสมบูรณ์และดำเนินการได้ในระหว่างเหตุการณ์น้ำท่ว ม สามารถประกอบอุปกรณ์บางส่วนเข้าด้วยกันก่อนำมาติดตั้งในสถานที่จริง



รูปที่ 1-1 แผนภูมิการบริหารจัดการน้ำท่วม



รูปที่ 1-2 แผนภูมิการบริหารจัดการน้ำท่วมโดยมาตรการใช้สิ่งก่อสร้าง

โครงสร้างป้องกันน้ำท่วมแบบชั่วคราวนับเป็นโครงสร้างป้องกันที่สามารถปรับเปลี่ยนการติดตั้งทั้งหมดใน ระหว่างเหตุการณ์น้ำท่วมและถอดโครงสร้างป้องกันน้ำท่วมแบบชั่วคราวและถอดเก็บได้ 4 อุปกรณ์ออกได้เมื่อ ระดับน้ำลดลง นอกจากนี้พนังป้องกันน้ำท่วมแบบถอดเก็บได้รวมส่วนประกอบของโครงสร้างป้องกันแบบชั่วคราว และถาวรเอาไว้ ในทางวิศวกรรมการเกิดความสำเร็จทั้งในด้านการออกแบบและการ ดำเนินการจำเป็นต้องมีข้อ แนะน้า สำหรับการออกแบบและผู้นำไปใช้งานให้ มีศักยภาพอย่างดี เพื่อให้เกิดการพัฒนาและใช้งานที่ถูกต้อง เหมาะสมจึงนำเสนอคุณลักษณะและการจัดประเภทของโครงสร้างป้องกันน้ำท่วมของพนังกั้นน้ำที่มีใช้ในปัจจุบัน รวมทั้งแนะน้ำการเลือกโครงสร้างที่เหมาะสมและวิธีการตรวจสอบความปลอดภัยในการใช้งาน



รูปที่ 1-3 แผนภูมิการบริหารจัดการน้ำท่วมโดยมาตรการไม่ใช้สิ่งก่อสร้าง



รูปที่ 1-4 แสดงเงื่อนไขการควบคุมการไหลของนน้ำในภาวะต่างๆ

### 2. โครงสร้างป้องกันน้ำ

ประเภทของโครงสร้างป้องกันน้ำท่วมมี 3 รูปแบบคือ แบบถาวร (Permanent) ชั่วคราว (Temporary) และถอดเก็บได้ (Demountable) ในที่นี้จะกล่าวถึงคุณลักษณะเฉพาะของโครงสร้างป้องกันแบบชั่วคราวและถอด เก็บได้ เช่น พนังกั้นน้ำ เป็นต้น โดยแยกจากกันอย่างชัดเจนและอธิบายแผนการ ดำเนินงานเอาโครงสร้างทั้งสอง มาใช้ร่วมกับโครงสร้างแบบถาวร

### 2.1 โครงสร้างป้องกันน้ำท่วมแบบถาวร

โครงสร้างป้องกันน้ำท่วมแบบถาวรเป็นโครงสร้างที่มีประสิทธิภาพ ในการใช้งานได้ดีตามการออกแบบที่มี มาตรฐานโครงสร้างกั้นน้ำแบบถาวร ประกอบด้วยกำแพงกั นน้ำเหนือระดับพื้นดินและมีฐานรากรองรับพนังกั น มี การสร้างแผงหรือเข็มพืดกั้นน้ำซึมลอดในดินไปถึงชั้นดินที่น้ำไม่สามารถซึมผ่านได้ นอกจากนี้ยังอาจสร้างเป็นคัน ดินถมโดยความกว้างส่วนฐานของคันดินจะต้องเพียงพอเหมาะกับการป้องกันการรั่วซึมและความดันของน้ำ แสดง ในรูปที่ 2-1 และตัวอย่างโครงสร้างในรูปที่ 2-3 และ 2-4

## 2.2 โครงสร้างป้องกันน้ำท่วมแบบถอดเก็บได้

โครงสร้างป้องกันน้ำท่วมแบบถอดเก็บได้ เป็นโครงสร้างแบบถอด อุปกรณ์ออกได้โดยมีความพร้อมก่อนการติดตั้ง และสามารถดำเนินการได้ ทันทีในระหว่างเหตุการณ์น้ำท่วม หรือท้าการประกอบอุปกรณ์บางส่วนเข้า ด้วยกันใน ขั้นตอนการสร้างก่อนน้ำมาติดตั้งในบริเวณจริงโดยเป็นตัวเสริมที่ทำงานร่วมกับฐานที่ได้สร้างขึ้นบนส่วนที่เป็นแบบ ถาวร ดังแสดงในรูปที่ 2-2





รูปที่ 2-1 แสดงตัวอย่างของโครงสร้างการป้องกัน้ำท่วมแบบถาวร



รูปที่ 2-2 แสดงตัวอย่างของโครงสร้างการป้องกัน้ำท่วมแบบถอดเก็บได้



ร**ูปที่ 2-3** ตัวอย่างพนังกั้นน้ำท่วมแบบถาวร(ที่มา:กรมโยธาธิการและผังเมือง)



รูปที่ 2-4 ก ตัวอย่างผนังกั้นน้ำท่วมแบบถาวร



รูปที่ 2-4 ข ตัวอย่างผนังกั้นน้ำท่วมแบบถาวร

โครงสร้างป้องกันน้ำท่วมแบบถอดเก็บได้ประกอบด้วยชิ้นส่วนถาวรและชั่วคราวฐานราก ตัวยึดเกาะ โครงสร้างภายในอุปกรณ์เชื่อมต่อระหว่างตัวโครง สร้างกับพื้นผิวดิน และอุปกรณ์เบ็ดเตล็ด การใช้โครงสร้างป้องกันแบบถอดเก็บได้จะสมบูรณ์ได้ขึ้นอยู่กับการทำงานของพนังกั นน้ำ ความสัมพันธ์กันของ โครงสร้างและพื้นผิวดิน รวมทั้ง การเชื่อมต่อและจุดสิ้นสุดการเชื่อมต่อ โดยส่วนต่างๆ เหล่านี้จำเป็นที่จะต้องมีการ ออกแบบอย่างระมัดระวัง เพื่อความสมบูรณ์ของโครงสร้าง

### 2.3 โครงสร้างป้องกันน้ำท่วมแบบชั่วคราว

ในพื้นที่ที่ไม่สามารถดำเนินการใช้โครงสร้างป้องกันแบบถาวรและถอดเก็บได้อย่างเต็มที่ต้องใช้โครงสร้าง ป้องกันน้ำท่วมที่สามารถติดตั้งได้ทันทีก่อนการไหลทะลักของน้ำ โดยปรับเปลี่ยนการติดตั้งทั้งหมดในระหว่าง น้ำ ท่วมและสามารถรื้อถอนได้ทั้งหมดเมื่อน้ำลดลง โดยความจำเป็นในการใช้งานโครงสร้างการป้องกันน้ำท่วมแบบ ชั่วคราวมีสาเหตุดังนี้

- งบประมาณไม่เพียงพอสำหรับโครงสร้างแบบถาวรและถอดเก็บได้
- การจัดการความเสี่ยงจากน้ำท่วมนอกเหนือความสามารถพื้นฐาน ของโครงสร้างการป้องกันน้ำท่วมแบบ ถาวร
  - ใช้ป้องกันน้ำท่วมชั่วคราวในระหว่างการก่อสร้างโครงสร้างแบบ ถาวรและถอดเก็บได้
  - การใช้งานแบบ 2 หน้าที่ เช่นความจ้าเป็นในการเข้าถึงพื้นที่ไปพร้อมกับการป้องกัน
  - ใช้แทนโครงสร้างแบบถาวรที่ไม่สามารถสร้างได้เนื่องจากผล กระทบด้านสิ่งแวดล้อม

โครงสร้างป้องกันน้ำท่วมแบบชั่วคราวประกอบด้วยส่วนประกอบที่ เป็นแบบชั่วคราวฐานรากตัวยึดเกาะ โครงสร้างภายในการเชื่อมต่อระหว่าง ตัวโครงสร้างกับพื้นผิวดินและอุปกรณ์เบ็ดเตล็ด ฐานรากของโครงสร้าง ป้องกันแบบถาวรและถอดเก็บได้ ออกแบบ ให้เป็นชิ้นส่วนที่ติดตั้งถาวร ในขณะที่โครงสร้างแบบชั่วคราวสามารถ วางบนพื้นผิวเดิม หรือที่มีฐานรากอยู่ก่อนแล้วก็ได้ ดังนั้นพื้นผิวที่วางต้องมีการ ปรับเตรียมและจัดวางตำแหน่งที่ เหมาะสมเป็นสิ่งจำเป็นต่อโครงสร้างป้องกัน แบบชั่วคราวเพราะความสามารถในการป้องกันการรั่วซึมและแรงดัน ของน้ำ การใช้โครงสร้างแบบชั่วคราวจะสมบูรณ์ได้ขึ้นอยู่กับการทำงานของ พนังกั้นน้ำ ความสัมพันธ์กันของการ เชื่อมต่อและพื้นผิว ดังนั้นความสามารถในการป้องกันของโครงสร้างแบบชั่วคราวจำเป็นต้องพิจารณาถึงลักษณะ ของ พื้นผิวชันดินและดินชันล่างที่เหมาะสมกับการวางพนังชั่วคราว เช่นเดียวกับลักษณะเฉพาะของการซึมลอดใน ดินที่สามารถจ้ากัดระดับน้ำท่วมที่พนังกันชั่วคราวป้องกันได้ ตัวอย่างโครงสร้างแบบชั่วคราวแสดงในรูปที่ 2-5 ถึง 2-7



รูปที่ 2-5 แสดงตัวอย่างของโครงสร้างป้องกันน้ำท่วมแบบชั่วคราว



รูปที่ 2-6 แสดงการใช้กระสอบทรายเป็นโครงสร้างป้องกันแบบชั่วคราว



รูปที่ 2-7 แสดงการปิดทับกระสอบทรายด้วยแผ่นพลาสติกกันน้ำ

## 3. ข้อพิจราณาในการใช้โครงสร้างป้องกันน้ำท่วมแบบชั่วคราวและถอดเก็บได้

## 3.1 ปัจจัยที่ส่งผลให้เกิดความล้มเหลวในการป้องกันน้ำท่วม

เป้าหมายของระบบโครงสร้างป้องกันน้ำท่วมคือทำให้พื้นที่ซึ่งมีการเตรียมการป้องกันล่วงหน้าสามารถ ป้องกันน้ำท่วมได้ตามกำหนดความเสี่ยงจากภัยน้ำท่วมของแต่ละพื้นที่ขึ้นอยู่กับระดับความเสียหายที่เกิดในพื้นที่ นั้นๆ และความถี่ในการเกิดเหตุน้ำท่วม หรือความเป็นไปได้ในการเกิดเหตุการณ์ ความล้มเหลวของโครงสร้าง ป้องกันน้ำท่วมเกิดขึ้นได้เมื่อโครงสร้างไม่สามารถใช้การได้ตามเป้าหมายที่คาดการณ์ไว้ล่วงหน้า โดยโครงสร้าง ป้องกันน้ำท่วมแบบถาวรเกิดความล้มเหลวได้ 2 รูปแบบ ดังแสดงในรูปที่ 3-1

รูปแบบที่ 1 โครงสร้างพนังกันน้ำขาดความสามารถในการควบคุม เนื่องจากน้ำเอ่อล้นหรือเกิดการซึมลอด ผ่านใต้โครงสร้างที่มากเกินกว่าเกณฑ์ที่คาดการณ์ไว้

รูปแบบที่ 2 ความล้มเหลวทางโครงสร้าง เช่นการเว้นช่อง การกัดเซาะ ฐานรากเสียหาย การทรุดตัว การ พลิกคว้ำ การกลิ้งตัว หรือการเลื่อนไถล ความล้มเหลวเหล่านี้ เป็นผลต่อเนื่องจากเหตุการณ์ที่ไม่คาดคิด โดย โครงสร้าง ไม่สามารถดำเนินการให้เป็นไปตามเป้าหมายการปฏิบัติการที่ตั้งไว้

ส่วนรูปแบบความล้มเหลวที่จะเกิดขึ้นกับโครงสร้างป้องกันน้ำท่วม แบบชั่วคราวและถอดเก็บได้ เป็น ความล้มเหลวในการดำเนินการ เช่นความ ล้มเหลวในการสร้างหรือประกอบโครงสร้างไม่ทันกับภาวะน้ำท่วม ความล้มเหลวนี้ เป็นความล้มเหลวในการป้องกัน ดังแสดงในรูปที่ 3-2



รูปที่ 3-1 แผนภูมิแสดงความล้มเหลวของโครงสร้างป้องกันแบบถาวร



รูปที่ 3-2 แผนภูมิความล้มเหลวของโครงสร้างแบบชั่วคราวและถอดเก็บได้

มีการวิเคราะห์ความเสี่ยงขององค์ประกอบในโครงสร้างการป้องกันน้ำท่วมโดย Kampen Flood Defences (1997) ประเทศเนเธอร์แลนด์ ได้ระบุระดับความเสี่ยงของความล้มเหลวทั้ง 3 รูปแบบ ได้แก่ 89% เป็น ความเสี่ยงของความล้มเหลวเนื่องจากระดับน้ำเอ่อล้นหรือการซึมลอดผ่านใต้โครงสร้าง 1% เป็นความเสี่ยงของ ความล้มเหลวจากความแข็งแรงหรือความมั่นคง และ 10% เป็นความเสี่ยงของความล้มเหลวจากความล้มเหลวใน การปิดกันของพนังกั้นน้ำ

## 3.2 ความล้มเหลวเนื่องจำกระดับนำเอ่อล้นข้ามหรือซึมลอดผ่านใต้โครงสร้าง

การเอ่อล้นข้ามพนังกั้นน้ำเกิดขึ้นเมื่อมีการเพิ่มระดับน้าสูงกว่าระดับสันพนัง มีสาเหตุมาจากการพยากรณ์ ระดับน้ำท่วมที่คาดเคลื่อนหรือปริมาณน้ำท่วมมีค่ามากกว่าปริมาณน้ำท่วมที่การออกแบบไว้ โดยการหาระดับน้ำใช้ เพื่อออกแบบโครงสร้างป้องกันน้ำท่วม อาศัยการวิเคราะห์ทางสถิติปริมาณน้ำฝน ปริมาณน้ำ และปริมาณการกัก เก็บน้าที่คาดการณ์ไว้ ซึ่งพบว่ามีความคลาดเคลื่อนในด้านข้อมูลอุทกวิทยา ชลศาสตร์ อิทธิพลของสภาพอากาศ และแนวโน้มในอนาคต ทำให้การคาดคะเนมีความผิดพลาดได้การซึมผ่านเกิดขึ้นเมื่อน้ำไหลซึมผ่านพนังกั้นน้ำข้อ ต่อตัวเชื่อมต่อหรือดินใต้พื้นผิว โดยความสามารถการซึมผ่านได้ซึ่งขึ้นอยู่กับโครงสร้างและลักษณะเฉพาะของดินใต้ พื้นผิว หากปริมาณน้ำไหลผ่านมากกว่าค่าที่สามารถรองรับได้ จะน้ำไปสู่ความล้มเหลวของโครงสร้างป้องกันโดย ปัจจัยที่ส่งผลต่อการซึมผ่านที่มากเกินไปและการไหลข้ามของโครงสร้างแบบชั่วคราวและถอดเก็บได้มีความ คล้ายคลึงกับโครงสร้างแบบถาวร

# 3.3 ความล้มเหลวจำกการขำดความแข็งแรงหรือความมั่นคง ความล้มเหลวของโครงสร้างป้องกันแบบปิดสามารถเกิดขึ้นเหลายรูปแบบ ดังนี้

- การเลื่อนไถลหรือกลิ้ง
- การพลิกคว้ำ
- ความสามารถในการรับแรงไม่พอ
- การทรุดตัว
- การกัดเซาะภายในและเกิด piping

การเลื่อนไถลกลิ้งหรือทรุดตัวไม่สามารถทำการวิเคราะห์ได้โดยง่าย ในการออกแบบต้องทดสอบทั้งใน ห้องปฏิบัติการและภาคสนาม เพื่อรับประกันความสมบูรณ์ รวมทั้งการใช้วัสดุด้วย การซึมผ่านหรือใต้พื้นผิวที่มากเกินไปอาจเป็นสาเหตุให้เกิดการสึกกร่อนภายในและมีผลทำให้ความดัน จากการซึมผ่านของน้ำที่ไหลลอดมีสูงขึ้นกว่าน้ำหนักของหน้าฐานพนังกั้นที่แห้ง ซึ่งจะทำให้เกิดเงื่อนไขการไหล ภายในดินที่สามารถเคลื่อนย้ายดินออกไปด้านหลังของพนังได้และเกิดความเสี่ยงในการเสียหายต่อฐานราก ปรากฏการณ์นี้เรียกว่า Piping

ปัญหาการกัดเซาะในมวลดิน Piping และความล้มเหลวด้านความสามารถในการรับแรง สามารถ หลีกเลี่ยงได้ โดยการออกแบบโครงสร้างแบบถอดเก็บได้อย่างถูกต้อง และเลือกดินใต้พื้นผิว พื้นผิว ฐานรากและ สภาพผิวหนาที่ใช้วางให้เหมาะสมกับโครงสร้างชั่วคราว นอกจากนี้การพิจารณาโดยใช้วิธีวิเคราะห์ความมั่นคงที่ถูก หลักวิชาการได้มาตรฐานต่อความมั่นคงของพนังกั้นและเงื่อนไขของฐานรากจะช่วยต้านทานปัญหาการเลื่อนไหล หรือพลิกคว่ำของพนังกั้นได้

ในกรณีของโครงสร้างแบบชั่วคราว การสำรวจพื้นที่ล่วงหนาหรือการออกแบบพื้นที่มักไม่สามารถกระทำ ได้ ทำให้เป็นการยากที่จะเลือกชนิดของโครงสร้างให้เหมาะสมกับข้อมูลของดินหรือพื้นที่ใช้วางในบริเวณนั้นๆ จึงมี ความจำเป็นต้องทำการทดสอบด้านกลศาสตร์ดิน ความเสี่ยงของความล้มเหลวสามารถลดลงได้โดยการออกแบบและทดสอบที่ดีเพียงพอโดยความเสี่ยงของ ความล้มเหลวทางโครงสร้างป้องกันแบบชั่วคราวและถอดเก็บได้มีความคล้ายคลึงกับแบบถาวร

# 3.4 ความล้มเหลวเนื่องจากการปิดกันของพนังกั้นน้ำไม่สมบูรณ์

ความล้มเหลวในการปิดกันของพนังกั้นน้ำไม่สมบูรณ์เกิดขึ้นเฉพาะกับโครงสร้างชั่วคราวและถอดเก็บได้ เท่านั้นโดยมาจากความล้มเหลวในการดำเนินการที่ต้องการในการปิดหรือสร้างพนังกั้นน้ำ ดังนั้นการปิดกันพนังกั้น เสร็จสมบูรณ์ก่อนที่ระดับน้ำท่วมถึงระดับกำหนดจะเป็นการช่วยรับประกันความสำเร็จของโครงสร้างชั่วคราวและ ถอดเก็บได้ให้เท่ากับโครงสร้างถาวรในการลดความเสี่ยงจากน้ำท่วม

ขั้นตอนการดำเนินการที่จำเป็นเพื่อประกันความสำเร็จสำหรับการใช้พนังกั้นน้ำแบบชั่วคราวและถอดเก็บ ได้แสดงในรูปที่ 3-3

สำหรับในการเตรียมโครงสร้างแบบชั่วคราวหรือส่วนที่ถอดเก็บได้ของโครงสร้างให้พร้อมสมบูรณ์เพื่อการ สร้างพนังกั้นแบบปิดได้ก่อนเวลา  $T_2$ โดย  $T_2$  เป็นเวลาที่ระดับน้ำขึ้นสูงถึงระดับปลอดภัยของริมฝั่งแม่น้ำหรือส่วน การป้องกันถาวร หมายความว่าเป็นระดับน้ำที่ไม่ก่อให้เกิดความเสี่ยงของการท่วมล้นแนวกัน โดยระดับน้ำนี้ต่ำกว่า ระดับต่ำสุดของการป้องกันของส่วนติดตั้งถาวร ซึ่งผ่านการคำนวณอิทธิพลจากการกระทบของคลื่น



รูปที่ 3-3 กระบวนการเชิงปฏิบัติในระหว่างเหตุการณ์น้ำท่วม

ค่า  $T_1$  คือเวลาที่เริ่มการปิดพนังกั้น โดยประมาณจากเวลาที่ใช้ในการปิดกันกับระดับน้ำที่เพิ่มขึ้น ในเวลา  $T_1$  ต้องมีการเตรียมทรัพยากรทุกอย่างที่จำเป็นในการปิดกันให้พร้อมและเพียงพอใน ในการปฏิบัติการบริเวณนั้น ระยะเวลาในการปิดกันขึ้นอยู่กับประเภทการดำเนินการที่จำเป็นต่อการปิดกันและขอบเขตการติดตั้งของชิ้นส่วน ชั่วคราวและถอดเก็บได้โดยจะแตกต่างกันไปบ้าง โดยอาจใช้เวลาเพียงเล็กน้อยในการติดตั้งหากมีการดำเนินการที่ เป็นอัตโนมัติ หรืออาจใช้เวลามากในการสร้างพนังที่มีความยาว ซึ่งจำเป็นต้องใช้วัสดุและเครื่องจักรขนาดใหญ่



รูปที่ 3-4 แผนผังความล้มเหลวในการปิดล้อมของโครงสร้างป้องกัน

ค่า  $T_0$  เป็นระยะเวลาที่เป็นจุดในการเริ่มเตรียมทรัพยากรต่างๆให้พร้อม โดยการกำหนดเวลา  $T_0$  คำนวณ ค่าจากการดำเนินการในเวลา  $T_1$  และระยะเวลาในการระดมปัจจัย ซึ่งเวลาในการปฏิบัติการจะขึ้นอยู่กับระยะเวลา ที่ใช้ในการเตรียมปัจจัยต่างๆ และความเสี่ยงขั้นต่ำที่สุดในการเคลื่อนย้ายและแบบฉุกเฉิน ซึ่งการเตือนภัยและการ เคลื่อนย้ายจะต้องไม่ก่อให้เกิดความเสียหาย ส่วนช่วงเวลาในการระดมปัจจัยขึ้นอยู่กับการเรียกหน่วยงานทุกฝ่ายที่ เกี่ยวข้องเพื่อมาปฏิบัติการและการขนส่ง รวมทั้งการเตรียมปัจจัยต่างๆให้พร้อมและนำไปยังบริเวณปฏิบัติการ ระยะเวลาในช่วง  $T_2$ - $T_0$ เป็นช่วงตั้งแต่ระดับเตือนภัยน้ำท่วมไปจนถึงการปิดล้อมที่ระดับน้ำท่วมเต็มที่ นับเป็นปัจจัย สำคัญในการประเมินความเสี่ยงของโครงสร้างป้องกันชั่วคราวหรือถอดเก็บได้ว่าแบบใดที่สามารถป้องกันได้อย่าง

เหมาะสม ในขณะที่โครงสร้างชั่วคราวหรือถอดเก็บได้นั้นจำเป็นต้องใช้ระยะเวลาในการเตรียมการและเรียกระดม กำลังและปัจจัย

หลังจากที่ระดับน้ำขึ้นสูงสุดจนกระทั่งลดระดับลงถึงค่า  $T_3$  โดยปกติแล้วจุด  $T_3$  เทียบเวลาเท่ากับจุด  $T_2$  โดยเมื่อถึงค่า  $T_3$  แล้วสามารถปลดส่วนป้องกันชั่วคราวออกได้ เว้นแต่ว่าจะมีการพยาการณ์ระดับน้ำสูงสุดที่จะ เกิดขึ้นอีกครั้งในเวลาอันใกล้

ความล้มเหลวในการปิดล้อมของโครงสร้างป้องกันเกิดขึ้นเมื่อระดับน้ำสูงกว่าระดับที่ทำการป้องกันหรือ โครงสร้างชั่วคราวและถอดเก็บได้ไม่อยู่ในต้าแหน่งที่สามารถป้องกันได้อย่างเต็มที่ โดยสามารถสรุปเป็นแผนผังใน รูปที่ 3-4

## 3.4.1 ความล้มเหลวของระบบเตือนภัยน้ำท่วม

ความล้มเหลวของระบบการเตือนภัยล่วงหนาเกิดจากความผิดพลาดทางเทคนิคของโครงสร้าง อาทิ เครื่องมืออ่านระดับน้ำเสียหาย หรือการแปลผลผิดพลาด ความน่าเชื่อถือของระบบเตือนภัยเกิดจากการ เปรียบเทียบค่าที่พยากรณ์และค่าที่เกิดขึ้นจริงและการทำงานของหน่วยงานสามารถตอบสนองสถานการณ์ ทันท่วงที ดังนั้นระบบการเตือนภัยน้ำท่วมถือเป็นระบบพื้นฐานสำคัญที่จะทำให้การป้องกันแบบชั่วคราวและถอด เก็บได้ประสบผลสำเร็จ



รูปที่ 3-5 แผนภูมิแสดงขั้นตอนการเตือนภัยน้ำท่วม

การเตือนภัยน้ำท่วมมีขั้นตอนการดำเนินงานตั้งแต่การรวบรวมข้อมูลที่เกี่ยวข้อง เช่น น้ำฝน น้ำท่า ของ สถานีวัดน้ำที่กระจายอยู่ในพื้นที่ลุ่มน้ำ มาตรวจสอบความน่าเชื่อถือของข้อมูลด้วยวิธีการด้านอุทกวิทยา แล้วทำ การแปลงค่าน้ำไปเป็นข้อมูลสำหรับแบบจำลองการพยากรณ์น้ำท่วม เพื่อได้ผลลัพท์ใช้ในการตัดสินใจเตือนภัย เมื่อ ได้เตือนภัยออกไปแล้วต้องตรวจสอบการปฏิบัติและผลตอบรับจากพื้นที่เพื่อน้ำมาปรับปรุง ดังแสดงขั้นตอนในรูปที่ 3-5

# 3.4.2 การระดมปัจจัยต่างๆ

การระดมปัจจัยเกี่ยวกับทรัพยากรต่างๆ เช่น บุคคล เครื่องมือ วัสดุอุปกรณ์ ที่จะใช้ในการสร้างให้พร้อมที่ จะปฏิบัติงานและเริ่มกระบวนการต่างๆได้ สำหรับโครงสร้างป้องกันแบบชั่วคราวและถอดเก็บได้ จำเป็นจะต้องมี การปฏิบัติการโดยบุคคลเพื่อให้การปิดกันเสร็จสมบูรณ์ ระยะเวลาที่เริ่มการระดมปัจจัยต่างๆขึ้นอยู่กับระยะเวลา ของกราฟน้ำหลาก

ความล้มเหลวในขั้นตอนนี้เกิดจากคลาดเคลื่อนของระบบการสื่อสารหรือทรัพยากรต่างๆ เช่น คำสั่ง เครื่องมือและอุปกรณ์ ไม่สามารถส่งไปถึงพื้นที่ปฏิบัติการทันเวลา การระดมปัจจัยสามารถลดระยะเวลาดำเนินการ ได้โดยกระบวนการต่อไปนี้

- การใช้อุปกรณ์อัตโนมัติในการระดมปัจจัย
- การเก็บหรือเตรียมชิ้นส่วนแบบชั่วคราวและถอดเก็บได้ไว้พร้อมในบริเวณที่ปฏิบัติการ
- มีการฝึกซ้อมการเตรียมการและงานฉุกเฉินเป็นประจำ
- เพิ่มศักยภาพในระบบสื่อสาร

### 3.4.3 ความล้มเหลงจากการดำเนินการปิดกัน

การเตือนภัยและการระดมปัจจัยต่างๆ ต้องเสร็จสมบูรณ์ก่อนจะเริ่มการปิดกัน ซึ่งเป็นการเริ่มติดตั้ง
อุปกรณ์ป้องกันแบบชั่วคราวหรือถอดเก็บได้ ในขั้นตอนนี้จะต้องทรัพยากรต่างๆครบพร้อมในการปฏิบัติการ ซึ่ง
ระยะเวลาที่จะดำเนินการขึ้นอยู่กับระยะเวลาของกราฟอุทกวิทยา โดยสามารถย่นระยะเวลาในการดำเนินการได้
ดังนี้

- เพิ่มทรัพยากรที่ใช้ในการปิดกัน
- การเพิ่มระดับหรือขยายส่วนป้องกันถาวร
- มีการฝึกซ้อมและเตรียมการอพยพเป็นประจำ
- มีการบำรุงรักษาและทดสอบอุปกรณ์ต่างๆอย่างสม่ำสมอ

ความล้มเหลวในขั้นตอนนี้มักเกิดจากขั้นตอนทางเทคนิคต่างๆ โดยความผิดพลาดจากบุคคลในการจัดการ การล้าดับขั้นตอนที่ไม่ถูกต้อง รวมทั้งความไม่พร้อมของอุปกรณ์เครื่องมือต่างๆ โดยสามารถแก้ไขความผิดพลาด เหล่านี้ได้หากมีการปรับปรุงและฝึกฝนแผนการอย่างสม่ำเสมอ ส่วนสาเหตุที่เกิดจากกระบวนการทางเทคนิคเกิดได้ ทั้งจากเหตุการณ์ภายนอกและความไม่พร้อมทำงานของส่วนติดตั้งชั่วคราวหรือส่วนถอดเก็บได้ ในการใช้เครื่องมือ อัตโนมัติหรือกึ่งอัตโนมัติความผิดพลาดมักจะเกิดจากระบบของเครื่องจักร เช่นระบบการขับเคลื่อน ระบบไฟฟ้า ส่วนเครื่องมือแบบธรรมดามักเกิดจากความประมาทหรือการใช้อุปกรณ์ เครื่องมือไม่ถูกต้อง

# 3.5 การเลือกใช้โครงสร้างป้องกันแบบชั่วครำวและถอดเก็บได้

กรณีที่ไม่มีความเป็นไปได้ในการสร้างโครงสร้างแบบถาวรให้ระดับความสูงเพียงพอต่อการป้องกันน้ำท่วม เนื่องจากเหตุผลทางเทคนิค เศรษฐกิจ กฎหมายและสิ่งแวดล้อม จึงต้องใช้การป้องกันด้วยโครงสร้างแบบชั่วคราว และถอดเก็บได้ เพื่อตอบสนองในการผจญน้ำท่วมร่วมกับการเตือนภัย การปฏิบัติตามแผนการต่างๆและมีปัจจัย ส่งเสริม อาทิ ความเหมาะสมต่อการใช้งานในสถานที่นั้นๆ ความปลอดภัย ข้อกฎหมาย ความพร้อมของทรัพยากร จะช่วยในการตัดสันใจเลือกใช้โครงสร้างป้องกันแบบชั่วคราวและถอดเก็บได้อย่างเหมาะสม โดยสรุปเป็นแผนผังใน รูปที่ 3-6

กระบวนการตัดสินใจต่างๆเป็นการบริหารความเสี่ยงที่เกิดขึ้นตั้งแต่การประเมินความเสี่ยงในการใช้ โครงสร้างป้องกันแบบชั่วคราวและถอดเก็บได้ ในขั้นแรกจะเป็นการเลือกใช้โครงสร้างป้องกันแบบถาวรถือเป็น วิธีการที่ดีที่ แต่ในสถานการณ์อื่นๆ เช่น การเข้าถึงและรูปแบบของโครงสร้างป้องกันแบบถาวร เหตุผลทาง เศรษฐกิจ ความเสี่ยงทางเทคนิค เศรษฐกิจ กฎหมายและสิ่งแวดล้อม รวมทั้งความไม่สามารถที่จะสร้างโครงสร้าง ป้องกันแบบถาวรได้ตามมาตรฐาน ด้วยเหตุผลเหล่านี้จึงต้องมีการพิจารณาการนำโครงสร้างป้องกันแบบชั่วคราว และถอดเก็บได้มาใช้งานทดแทน

การเลือกใช้โครงสร้างป้องกันแบบชั่วคราวและถอดเก็บได้ถือเป็นวิธี การเสริมที่มีศักยภาพ ในขั้นตอน ต่อไปต้องสร้างความน่าเชื่อถือให้มีการยอมรับในการใช้งานจากสถานที่ต่างๆ โดยรวมถึงการเตรียมความพร้อม และการเข้าถึงหากมีกรณีฉุกเฉิน โครงสร้างดังกล่าวจะต้องได้รับการยอมรับจากประชาชนเป็นพื้นฐาน เพราะ ประชาชนสามารถมีส่วนร่วมในการวางแผนและต้องใช้งานได้ ซึ่งปัจจัยหลักในการให้การยอมรับคือการสร้าง ความรู้สึกปลอดภัยและประสบผลสำเร็จในการใช้งาน

หากโครงสร้างป้องกันแบบชั่วคราวและถอดเก็บได้ สามารถได้รับการยอมรับจากประชาชนแล้ว ขั้นต่อไป คือการสร้างความน่าเชื่อถือในการพยากรณ์น้ำท่วมและการเตือนภัย โดยเมื่อน้ำท่วมถึงจุดวิกฤติที่ต้องมีการเสริม โครงสร้างป้องกันแบบชั่วคราวและถอดเก็บได้ เมื่อระบบการพยากรณ์และการเตือนภัยมีความน่าเชื่อถือเพียงพอ แล้ว จึงให้ทำการสาธิตและทดสอบโครงสร้างซึ่งจะต้องมีความชัดเจนทั้งในด้านการออกแบบ การก่อสร้าง การใช้ งานได้จริง และการบำรุงรักษา ทั้งนี้จะต้องผ่านการตรวจสอบจากองค์กรที่เกี่ยวข้องทั้งภาครัฐและเอกชน รวมทั้ง องค์กรด้านสิ่งแวดล้อม



รูปที่ 3-6 แผนภูมิในการตัดสินใจเลือกใช้โครงสร้างแบบต่างๆ

## 4. คุณสมบัติของโครงสร้างป้องกันน้ำท่วมแบบชั่วคราวและถอดเก็บได้

โครงสร้างป้องกันน้ำท่วมแบบถาวรชั่วคราวและถอดเก็บได้มีความเหมาะสมที่จะใช้ในกิจกรรมป้องกันน้ำ ท่วมแตกต่างกันโดยขึ้นกับคุณสมบัติของโครงสร้างแต่ละชนิด ดังนั้นผู้ที่ต้องการประยุกต์ใช้ควรมีความเข้าใจและ ตะหนักถึงผลดีและผลเสียของโครงสร้างป้องกันน้ำท่วม

## 4.1 โครงสร้างป้องกันน้ำท่วมแบบชั่วคราว

โครงสร้างป้องกันน้ำท่วมแบบชั่วคราว สามารถแยกแยะออกได้ตามหน้าที่การทำงานเป็น 6 ประเภทได้แก่

- แบบใช้วัสดุถมชนิดน้ำซึมผ่านได้ (Filled containers permeable)
- แบบใช้วัสดุถมชนิดน้ำซึมผ่านไม่ได้ (Filled containers impermeable)
- แบบท่อลมหรือท่อน้ำ (Air and water filled tubes)
- แบบแผงกั้นน้ำวางอิสระ (Flood barriers free standing)
- แบบแผงกั้นน้ำมีโครง (Flood barriers with frame)
- แบบกำแพงกั้นน้ำ (Panel barriers)

รูปแบบอาจปรับเปลี่ยนให้ตามความเหมาะสมได้บ้างตามลักษณะของพื้นผิวและชนิดดินที่ใช้ในการติดตั้ง เพื่อให้เกิดประสิทธิภาพสูงสุด

# 4.1.1 <u>โครงสร้างแบบใช้วัสดุถมชนิดน้ำซึมผ่านได้</u>

เป็นโครงสร้างกำแพงที่มีลักษณะเป็นช่อง ภายในบรรจุด้วยหินหรือดินชนิดต่างๆ เพื่อน้ำหนักต้านทานกับ ระดับน้ำท่วม และมีการหุ้มกำแพงด้วยแผ่นใยสังเคราะห์ไว้ภายนอก และในบางแห่งอาจเพิ่มความแข็งแกร่งด้วย การหุ้มตะแกรงเหล็ก, หมุด ต่างๆ หรือโครงเหล็กภายนอกอีกชั้น โดยชั้นของแผ่นใยสังเคราะห์นั้นตัวมันไม่ยอมให้ น้ำซึมผ่านได้ ความสามารถในการต้านทานน้ำนั้นขึ้นอยู่กับปริมาณของวัสดุถมที่เติมลงไป ในบางระบบนั้นสามารถ จัดเรียงให้สูงขึ้นได้เพื่อให้ตอบรับต่อความสูงของระดับน้ำ หน้าที่การทำงานนั้นอาศัยหลักแรงโน้มถ่วงช่วยกันและ สร้างความแข็งแกร่ง รวมทั้งป้องกันการรั่วซึมด้วย ส่วนในบางกรณีมีการปรับเปลี่ยนในกรณีพื้นที่ไม่เรียบ

นอกจากนี้การใช้กระสอบทรายเรียงกันเป็นพนังกั้นน้ำถือว่าอยู่ในโครงสร้างประเภทนี้ เช่นกัน ดังแสดงใน รูปที่ 4-1

#### ข้อดี

- สามารถปรับความสูงให้เหมาะสมโดยการจัดเรียงวัสดุถม
- สามารถติดตั้งได้โดยช่างทั่วไป
- ใช้พื้นที่การเก็บทรัพยากรต่างๆ น้อย
- สามารถประยุกต์โดยใช้กระสอบทรายทดแทนได้
- สามารถใช้วัสดุถมทุกประเภท

#### ข้อเสีย

- วัสดุที่น้ำมาถมบางชนิดทำความสะอาดยาก อาจเป็นภาระมากในช่วงเลิกใช้
- ต้องใช้ฐานที่กว้างเพื่อการจัดเรียง
- วัสดุพวกโลหะหรือหมุดที่ใช้เสริมอาจเกิดการกร่อนหรือโค้งงอเมื่อมีการเติมวัสดุถมหลายครั้ง
- ใช้พื้นที่ในการจัดการและวัสดุจำนวนมาก
- สามารถเกิดการรั่วซึมได้ แต่จะเกิดน้อยลงหากใช้แผ่นใยสังเคราะห์และเลือกใช้วัสดุถมให้เหมาะสม
- เกิดแรงกดจำนวนมากบนพื้นผิวหากใช้การจัดเรียงวัสดุขึ้นสูง



รูปที่ 4-1 แสดงตัวอย่างโครงสร้างแบบใช้วัสดุถมชนิดน้ำซึมผ่านได้

# 4.1.2 โครงสร้างแบบใช้วัสดูถมชนิดน้ำซึมผ่านไม่ได้

เป็นโครงสร้างที่มีลักษณะคล้ายกับแบบแรก แต่วัสดุที่ใช้ในการห่อหุ้มจะเป็นพวกแผ่นกันน้ำ เช่น Polyester, Polyethylene และพลาสติก เป็นต้น ซึ่งวัสดุเหล่านี้ สามารถป้องกันการซึมผ่านของน้ำได้ โดยจะ อาศัยน้ำหนักของวัสดุถมที่เติมลงไปและรูปร่างของมัน ส่วนวัสดุที่ยืดหยุ่นเหล่านี้ ควรระวังการฉีกขาดจากวัตถุ แหลมคม พื้นที่ที่จะใช้ติดตั้งควรมีการเตรียมให้อยู่ในสภาพเรียบร้อย หากเกิดรอยรั่วไม่มากสามารถซ่อมแซมได้ ใน ระบบนี้ มีความแข็งมากกว่าชนิดแรกและควรใช้วางบนพื้นผิวเรียบ แสดงในรูปที่ 4-2

### ข้อดี

- บางระบบสามารถเพิ่มความสูงได้โดยการจัดเรียง
- ไม่เกิดการรั่วซึมของน้ำแม้ว่าวัสดุที่เติมลงไปเป็นแบบใด
- สามารถเติมวัสดุถมได้ทุกชนิด รวมถึงน้ำด้วย
- วัสดุสามารถล้างทำความสะอาดง่าย และน้ำกลับมาใช้ใหม่ได้ดี
- หากเกิดรอยฉีกหรือรั่วไม่มากนักสามารถซ่อมแซมได้ทันที

#### ข้อเสีย

- ระบบส่วนมากยังไม่ได้ทดสอบในเงื่อนไขน้ำท่วมต่างๆ
- น้ำสามารถรั่วซึมใต้ฐานกำแพงเนื่องจากความไม่ยืดหยุ่นของมัน
- ต้องการพื้นที่การเก็บและการขนส่งอย่างมาก
- ต้องการระดมกำลังมากในการติดตั้งและเก็บกลับเมื่อใช้งานเสร็จ
- เกิดแรงกดจำนวนมากบนพื้นผิวหากใช้การจัดเรียงวัสดุขึ้นสูง

#### 4.1.3 โครงสร้างแบบท่อลมหรือท่อน้ำ

โครงสร้างประเภทนี้ เป็นท่อที่ทำจากวัสดุพวก Pre-fabricated geomembrane แล้วบรรจุอากาศหรือ น้ำภายในเพื่อให้มันกลายเป็นเขื่อนขึ้นมา ซึ่งเป็นระบบที่ใช้น้ำหรืออากาศซึ่งมีมากในช่วงที่เกิดน้ำท่วมอยู่แล้ว ส่วนตัวท่อนั้นสามารถเคลื่อนย้ายได้และใช้ปั๊มช่วยในการเติมลม โดยควรระวังไม่ให้ท่อติดและซ้อนกันเพราะจะมี ผลต่อพื้นที่ฐาน โดยท่อจะมีสัดส่วนของความสูงและความยาวแน่นอนเมื่อพร้อมทำงาน วิธีนี้สามารถจัดเตรียมได้ รวดเร็วและง่ายโดยอาศัยปั๊มเพียง 1 ถึง 2 ตัว แต่หากท่อขนาดใหญ่อาจต้องใช้



รูปที่ 4-3 แสดงตัวอย่างโครงสร้างแบบท่อลมหรือท่อน้ำ

เพิ่มถึง 4 ตัวหรือมากกว่าได้ และเมื่อบรรจุน้ำลงก็อาศัยแรงโน้มถ่วงในการต้านทาน ส่วนการกลิ้งของท่อสามารถ ป้องกันได้โดยอาศัยสมอยึดภายนอกหรืออาจใช้ตัวกันการหมุนไว้ภายในท่อโดยท่อที่มีใช้ลมบรรจุภายในควรต้องมี สมอยึดไว้ภายนอกด้วยเนื่องจากน้ำหนักที่เบาของมัน ลักษณะเครื่องป้องกันชนิดนี้ เหมาะกับสถานที่ที่ต้องการการ ป้องกันน้ำท่วมในด้านยาว แต่ไม่เหมาะกับสถานที่ที่แคบๆ นอกจากนั้นควรระวังการฉีกขาดของท่อซึ่งหากเกิดขึ้น ภายนอกและไม่มากนักสามารถซ่อมแซมได้ ดังแสดงในรูปที่ 4-3

#### ข้อดี

- มีแรงกดทับบนฐานของพื้นผิวน้อย
- สามารถใช้ได้หลายรูปแบบ ในสถานการณ์และรูปแบบฉุกเฉิน
- ติดตั้งง่ายและรวดเร็วและใช้พื้นที่ในการเก็บน้อย
- การติดตั้งอาศัยการดำเนินการและปั๊มเคลื่อนที่
- หากมีการฉีกขาดสามารถซ่อมแซมได้
- สามารถใช้ได้กับบริเวณที่พื้นผิวดินที่ไม่เรียบ

#### ข้อเสีย

- ท่อที่ใหญ่ทำให้มีความสูงมากทำให้พื้นที่คับแคบ
- หากมีการฉีกขาดมากภายในท่อจะซ่อมแซมยาก
- การทำงานจำเป็นต้องใช้พื้นที่ผิวที่เป็นแนวราบ

# 4.1.4 โครงสร้างแบบแผงกั้นน้ำวางอิสระ

โครงสร้างป้องกันชนิดนี้มีลักษณะเป็นแผงวางอิสระ มีหน้าตัดที่ทนทานและมีการออกแบบให้สนับสนุน ตัวเอง ซึ่งแผงกั้นน้ำเป็นวัสดุที่มีความยืดหยุ่นสูงและน้ำซึมผ่านไม่ได้ ความมั่นคงของโครงสร้างจะขึ้นกับแรงกดของ น้ำที่ลงบนแผงยาวตามแนวนอนที่ฐานด้านติดน้ำ ซึ่งต้องเพียงพอในการกดโครงสร้างให้อยู่กับที่และแผงยาวตาม แนวนอนที่ฐานต้องมีความยาวเพียงพอด้วย ดังนั้นหากระดับน้ำไม่มาก อาจทำให้เกิดการรั่วซึมได้บ้าง ซึ่งอาจแก้ไข ด้วยการเสริมกระสอบทรายวางทับลงบนแผง ดังกล่าว ส่วนวัสดุนั้นมีโอกาสที่จะเกิดการฉีกขาดได้บ้างแต่ก็ ซ่อมแซมได้ ดังแสดงในรูปที่ 4-4



รูปที่ 4-4 แสดงตัวอย่างโครงสร้างแบบแผงกั้นน้ำวางอิสระ

#### ข้อดี

- ติดตั้งง่ายและรวดเร็ว ใช้พื้นที่ไม่มากในการเก็บ
- ไม่จำเป็นต้องอาศัยเครื่องมือในการติดตั้ง
- สามารถเคลื่อนย้ายได้ง่ายโดยอาศัยเพียงรถบรรทุกขนาดเล็ก
- มีแรงกดทับบนพื้นผิวที่วางโครงสร้างน้อย
- ต้องการแรงงานน้อยในการติดตั้งและเก็บกลับเมื่อใช้งานเสร็จ

### ข้อเสีย

- อาจเกิดการรั่วได้ที่ระดับน้ำไม่สูง
- ตัวแผงอาจเกิดบิดหรือพับหักได้จากกระแสน้ำและลม
- เสียหายจากการทำลายโดยอุบัติเหตุและเจตนาได้ง่าย

## 4.1.5 โครงสร้างแบบแผงกั้นน้ำมีโครง

โครงสร้างมีชิ้นส่วนโครงเป็นพวกโลหะหรือกึ่งแข็งร่วมกับแผ่นกันน้ำที่ยืดหยุ่นได้วางพาดไว้ โดยแผ่นวางไว้ เพื่อสร้างความแข็งแรงและห่อหุ้มโครงสร้างโลหะ โดยวางยาวออกไปด้านติดน้ำและมีการยึดหรือทับไว้ด้วยถุง พราย โครงสร้างมีแรงกดบนพื้นผิวฐานที่ใช้วางมาก ทำให้การใช้งานโครงสร้างแบบนี้ ไม่เหมาะกับพื้นที่ที่มีดินอ่อน ดังแสดงในรูปที่ 4-5 และ 4-6



รูปที่ 4-5 แสดงตัวอย่างโครงสร้างแบบแผงกั้นน้ำ เื้โครง



รูปที่ 4-6 ก แสดงการติดตั้งโครงสร้างแบบแผนกั้นน้ำมีโครง



รูปที่ 4-6 ข แสดงการติดตั้งโครงสร้างแบบแผงกั้นน้ำมีโครง

### ข้อดี

- สามารถปรับใช้กับพื้นผิวได้หลายแบบยกเว้นพื้นผิวที่แข็งเกินไป
- โครงสร้างบางชนิดสามารถเพิ่มระดับความสูงได้
- ทำความสะอาดง่ายและนำกลับมาใช้ใหม่ได้
- แผ่นกั้นน้ำสามารถนำมาซ่อมแซมได้

#### ข้อเสีย

- แผ่นกั้นน้ำอาจเสียหายจากลมพายุโดยเฉพาะก่อนน้ำท่วมสูงสุด
- เกิดแรงกดมากบนดินและอาจเกิดการรั่วได้ที่ระดับน้ำไม่สูง
- เสียหายจากการทำลายทั้งโดยอุบัติเหตุและเจตนาได้ง่าย

**4.1.6 โครงสร้างแบบกำแพงกั้นน้ำ** โครงสร้างเป็นแบบกำแพงเป็นคอนกรีตหล่อสำเร็จ โลหะหรือวัสดุแข็ง ทำเป็น ชิ้นแล้วมาประกอบเป็นกำแพงต่อเนื่อง เป็นโครงสร้างอาศัยน้ำหนักของตัวมันที่กดทับลงไปบนพื้นวางเพื่อความ มั่นคง มีความทนทานต่อแรงกระแทกและทำลาย แต่ต้องอาศัยเครื่องจักรในการยกและขนส่งเพราะมีน้ำหนักมาก

รวมทั้งการเก็บยังใช้พื้นที่มากอีกด้วย นอกจากนี้โครงสร้างทำให้เกิดแรงกดไปที่พื้นที่วางจึงไม่เหมาะกับดินอ่อน และยังอาจเกิดการรั่วซึมด้านใต้โครงสร้างเพราะเป็นวัสดุแข็งดังแสดงในรูปที่ 4-7

### ข้อดี

- สามารถเพิ่มความสูงระหว่างการใช้งานโดยการจัดเรียงวัสดุ
- มีความทนทานต่อแรงกระแทกและทำลาย
- แข็งแรงและนำกลับมาใช้ใหม่ได้

#### ข้อเสีย

- ต้องใช้เครื่องจักรหนักในการขนย้ายและยกโครงสร้าง
- มีโอกาสที่น้ำจะซึมด้านใต้และรอยต่อของชิ้นส่วนโครงสร้าง
- ไม่สามารถปรับแก้โครงสร้างให้เหมาะสมกับสถานการณ์ได้ง่าย
- เกิดแรงกดต่อบริเวณพื้นที่วางโครงสร้างมาก



รูปที่ 4-7 แสดงตัวอย่างโครงสร้างแบบกำแพงกั้นน้ำ

# 4.2 โครงสร้างป้องกันน้ำท่วมแบบถอดเก็บได้

โครงสร้างป้องกันแบบถอดเก็บได้ แยกได้เป็น 3 ประเภทได้แก่

- โครงสร้างพนังกั้นน้ำแบบยืดหยุ่น (Flood barriers flexible)
- โครงสร้างพนังกั้นน้ำแบบแข็ง (Flood barriers rigid)
- โครงสร้างพนังกั้นน้ำแบบประกอบ (Panel barriers)

พนังกั้นน้ำแบบถอดเก็บได้มีการออกแบบส่วนพนังหรือแผงกั้นน้ำให้เชื่อมต่อเข้ากับส่วนฐานที่สร้างติดตั้ง อย่างถาวรไว้แล้ว ซึ่งช่วยเพิ่มความ สามารถในการรับแรงกด การซึมลอดในชั้นดิน

# 4.2.1 พนังกั้นน้ำแบบยืดหยุ่น

โครงสร้างประกอบด้วยส่วนที่เป็นแผงกั้นน้ำซึ่งสร้างจากวัสดุที่ทนทานกันน้ำและยืดหยุ่นได้ โดยแผงกั้นน้ำ เสียบยึดติดกับช่องที่ติดตั้งไว้อย่างถาวร พนังกั้นน้ำแบบนี้มีลักษณะคล้ายโครงสร้างแบบแผงกั้นน้ำวางอิสระ ยกเว้น มีการเชื่อมกับช่องที่ติดตั้งไว้ในฐานรากแผงกั้นน้ำอาจมีการฉีกขาดหรือเสียหายได้แต่สามารถซ่อมแซมได้โดยทำ ความสะอาดและน้ำกลับมาใช้ได้ การวางพนังกั้นน้ำทำได้ง่ายและรวดเร็ว ดังแสดงในรูปที่ 4-8



รูปที่ 4-8ก แสดงตัวอย่างโครงสร้างแบบกำแพงกั้นน้ำ



รูปที่ 4-8ข แสดงตัวอย่างโครงสร้างแบบยืดหยุ่นในภาวะน้ำท่วม

### ข้อดี

- สามารถติดตั้งได้ง่ายและรวดเร็ว ไม่จำเป็นต้องใช้เครื่องมือมาก
- ใช้พื้นที่เก็บน้อย
- สามารถเคลื่อนย้ายได้ง่ายโดยอาศัยเพียงรถกระบะ
- สามารถทำความสะอาดและน้ำกลับมาใช้ได้

#### ข้อเสีย

- เสียหายจากการทำลายทั้งจากอุบัติเหตุและเจตนาได้ง่าย
- โครงสร้างบางแบบไม่สามารถปรับแต่งความสูงได้

# 4.2.2 โครงสร้างพนังกั้นน้ำแบบแข็ง

โครงสร้างแบบนี้ทำจากวัสดุแข็ง เช่น ไฟเบอร์กลาส หรือเหล็ก โดยทั่วไปพนังแบบนี้ถูกติดตั้งไว้ก่อนแล้วและใช้ใน ระหว่างน้ำท่วมฉุกเฉิน การดำเนินการทำได้ทั้งแบบใช้คนหรือแบบอัตโนมัติ โดยมีโครงสร้างบานประตูถูกพับเก็บไว้ ใต้ดินในช่องเก็บที่ทำไว้ถาวร การดำเนินงานแบบใช้คนจะอาศัยการดึงส่วนบานป้องกันขึ้นมาและกลายเป็นพนังกั้น น้ำ แต่ในระบบอัตโนมัติจะอาศัยเซ็นเซอร์และแรงดันช่วยดึงโครงสร้างป้องกันน้ำแบบนี้เป็นวิธีที่ได้รับความนิยม และมีการพัฒนาอย่างต่อเนื่อง ดังแสดงในรูปที่ 4-9

# ข้อดี

- ไม่ต้องมีการติดตั้งและก่อสร้างระหว่างภาวะน้ำท่วม
- ใช้งานได้ง่ายและเร็ว
- ไม่จำเป็นต้องมีการเก็บหรือขนย้ายเครื่องมือ
- ทนต่อแรงต้านทานและแรงกระแทก

### ข้อเสีย

- ไม่สามารถปรับแต่ความสูงเพิ่มเติมได้
- ชิ้นส่วนจักรกลหรืออิเล็กทรอนิกส์อาจเสียหายได้
- ฝาปิดหรือโครงสร้างอาจเกิดการติดขัดเนื่องจากขยะและตะกอน



รูปที่ 4-9ก แสดงตัวอย่างโครงสร้างแบบแข็งในภาวะปกติ



รูปที่ 4-9ข แสดงตัวอย่างโครงสร้างแบบแข็งในภาวะน้ำท่วม

# 4.2.3 โครงสร้างพนังกั้นน้ำแบบประกอบ

โครงสร้างแบบนี้ มีแผงวางในแนวดิ่งบนแท่นที่รองรับด้วยฐานรากที่ติดตั้งถาวร ส่วนประกอบทั้งสองเชื่อม กันสนิทและกันน้ำซึมผ่านได้โดยมีแผ่นยางปูบนแท่นฐานรากของระบบต้องมีการวางบนพื้นที่ซึ่งรับน้ำหนักที่กระทำ ได้ แผ่นยาง (seal) ที่ใช้เชื่อมระหว่างแผงกั้นและวางบนแท่นควรใช้ของที่มีคุณภาพสูง การติดตั้งเพื่อป้องกันน้ำ ท่วมใช้เวลาและขั้นตอนไม่นาน ดังแสดงในรูปที่ 4-10 และตัวอย่างการติดตั้งแสดงในรูปที่ 4-11 และ 4-12

### ข้อดี

- มีความแข็งแรงและการออกแบบที่ดี
- ทนต่อแรงต้านทานและแรงกระแทกได้ดี
- สามารถปรับแต่งความสูงได้
- มีการรั่วซึมน้อย

### ข้อเสีย

- ต้องการพื้นที่ในการจัดเก็บมาก
- อาศัยเครื่องมือหนักในการยกและการขนส่ง
- ใช้ระยะเวลาการติดตั้งและระดมกำลังนาน



รูปที่ 4-10ก แสดงตัวอย่างพนังกั้นน้ำแบบประกอบในภาวะปกติ



รูปที่ 4-10ข แสดงตัวอย่างพนังกั้นน้ำแบบประกอบในภาวะน้ำท่วม



รูปที่ 4-10ค แสดงตัวอย่างพนังกั้นน้ำแบบประกอบในภาวะน้ำท่วม



รูปที่ 4-10ง แสดงตัวอย่างพนังกั้นน้ำแบบประกอบในภาวะน้ำท่วม



รูปที่ 4-11 แสดงการติดตั้งพนังกั้นน้ำแบบประกอบ



ร**ูปที่ 4-12ก** แสดงตัวอย่างการติดตั้งพนังกั้นน้ำแบบประกอบ



ร**ูปที่ 4-12ข** แสดงตัวอย่างการติดตั้งพนังกั้นน้ำแบบประกอบ

### 5. การเลือกโครงสร้างป้องกันน้ำท่วมที่เหมาะสม

การเลือกโครงสร้างที่เหมาะสมกับการป้องกันน้ำท่วม เป็นกระบวน การตัดสินใจขั้นต้นและทางเลือกเพื่อ พิจารณาโครงสร้างป้องกันแบบชั่วคราวและแบบถอดออกมาได้

แนวทางการเลือกโครงสร้างที่เหมาะสมอาศัยการประเมินความเสี่ยง ซึ่งเกี่ยวข้องกับระยะเวลาและแหล่ง วัสดุ เมื่อการปิดกั้นประสบความสำเร็จ ประสิทธิภาพในการป้องกันพื้นที่จากความเสียหายจึงถูกพิจารณา โดย ระดับการป้องกันที่เหมาะสมและการประมวลผลของโครงสร้างป้องกัน ส่วนเรื่องเกี่ยวกับเศรษฐกิจที่เกี่ยวข้อง สิ่งแวดล้อม หรือ การจัดการเกี่ยวกับชีวิตความเป็นอยู่จะน้ำเข้ามาร่วมในการตัดสินใจครั้งสุดท้าย ระหว่างการเพิ่มจำนวนของโครงสร้างที่ใช้และช่วงที่กว้างมากของศักยภาพในเหตุการณ์ที่ต้องการโครงสร้าง ป้องกันน้ำท่วมจึงต้องทำการคัดโครงสร้างที่ไม่เหมาะสมออก โดยกระบวนการคัดเกิดขึ้นโดยมีรูปแบบที่สำคัญของ การป้องกันตั้งแต่รูปแบบทั่วไปจนไปถึงรูปแบบเฉพาะ ในแต่ละขั้นตอนมีการทบทวนความสามารถของโครงสร้าง อย่างสม่ำเสมอเพื่อให้ได้การป้องกันในที่ตั้งที่ต้องการ แหล่งวัสดุที่ต้องการ และเวลาที่มีประสิทธิภาพ ความ ต้องการทั้งหมดนี้ จะต้องสัมพันธ์กันและเหมาะสมกับโครงสร้าง ดังที่ได้แสดงในรูปที่ 5-1



รูปที่ 5-1 แผนภูมิแสดงขั้นตอนการเลือกโครงสร้างแบบต่างๆ

การตัดสินใจเลือกชนิดของโครงสร้างป้องกันน้ำท่วมแบบชั่วคราวและถอดออกได้ทำได้โดยแบ่งออกได้ดังนี้

#### 5.1 <u>การเลือกโดยใช้ช่วงเวลา</u>

การเลือกชนิดของโครงสร้างป้องกันน้ำท่วมแบบชั่วคราวและถอดเก็บได้ทำได้โดยใช้ช่วงเวลาที่มีสำหรับการ ดำเนินงานมาพิจารณา ดังแสดงในแผนภูมิรูปที่ 5-2



ร**ูปที่ 5-2** แผนภูมิแสดงการตัดสินใจในการเลือกโครงสร้างป้องกันน้ำท่วมแบบชั่วคราวและถอดเก็บได้

## 5.2 <u>การเลือกโดยใช้คุณลักษณะทั่วไป</u>

การเลือกชนิดของโครงสร้างป้องกันน้ำท่วมแบบชั่วคราวและถอดได้ทำโดยใช้หน้าที่ลักษณะโครงสร้างและ โครงสร้างวัตถุดิบ โดยคุณลักษณะทางหน้าที่ทั่วไปซึ่งประกอบด้วย

- ความสูงในการป้องกันที่ต้องการกับช่วงความสูงที่มีได้
- ความสามารถในการเพิ่มความสูงในขณะปฏิบัติการ
- ความกว้างที่หาได้กับความกว้างที่โครงสร้างต้องการ รวมถึงพื้นที่ติดตั้งหรือการเชื่อมเครื่องกั้น
- เงื่อนไขของดินและภูมิประเทศที่เหมาะสมกับแผงกั้นทั่วไป
- โครงสร้างป้องกันที่เหมาะสมทั้งแนวตั้งและแนวนอน
- คุณสมบัติของดินโดยเฉพาะการซึมลอดของน้ำ

การพิจารณาการดำเนินงานเป็นการสรุปเวลา แหล่งวัตถุดิบที่หาได้ที่จำเป็นต่อการสร้างหรือการปิดกั้นใน ส่วนของชิ้นส่วนป้องกันที่เคลื่อนที่ได้ ซึ่งทำให้แน่ใจว่าไม่ได้เลือกโครงสร้างที่ไม่สามารถรับรองการติดตั้งได้อย่าง สมบูรณ์ภายในเวลาที่มี นอกจากนี้ยังรวมถึง

- ระยะเวลาของการระดมปัจจัยและการปิดกั้นที่หาได้กับระยะเวลาที่ ต้องการในการดำเนินงานติดตั้ง โครงสร้างกับแหล่งวัตถุดิบที่หาได้
  - แหล่งวัตถุดิบที่ต้องการ เช่นแรงงาน เครื่องจักรวัตถุดิบ สำหรับ รูปแบบโครงสร้างที่ต่างกันไป
  - การเก็บรักษา การเคลื่อนย้ายและการใช้เครื่องมือยก
  - การเตรียมและทำความสะอาดพื้นที่
  - ความยากง่ายในการติดตั้ง

การพิจารณาที่เกี่ยวข้องกับการรับน้ำหนักของโครงสร้างและการเข้าถึงความสามารถที่จะปิดกั้นและรักษา ความมั่นคงของโครงสร้าง คุณลักษณะที่จะพิจารณามีดังนี้

- ความต้านทานต่อความล้มเหลวจากการเคลื่อนตัว การพลิกคว่ำ ความล้มเหลวเนื่องจากแรงกดและ การ รั่วซึมที่มากเกินไป
- ความสามารถในการซ่อมแซมความเสียหายระหว่างการดำเนินการ ตารางที่ 5.1 ถึง 5.6 แสดงคุณลักษณะทั่วไปของโครงสร้างป้องกันน้ำท่วมแบบชั่วคราวและถอดเก็บได้ ซึ่งสามารถ น้ำมาพิจารณาเลือกชนิดของโครงสร้างได้

#### 5.3 การเลือกโดยใช้ลักษณะเฉพาะ

ทำการเลือกชนิดของโครงสร้างป้องกันน้ำท่วมแบบชั่วคราวและถอดออกได้ทำโดยใช้ลักษณะเฉพาะของ ผลิตภัณฑ์จากผู้ผลิต เนื่องจากลักษณะทั่วไปที่แสดงในตาราง 5.1 ถึง 5.6 ช่วงของค่ากว้างมากทำให้บางกรณีการ พิจารณาทำได้ยากที่จะแสดงความเหมาะสมของลักษณะของแต่ละแบบ จึงควรน้ำข้อมูลลักษณะเฉพาะของ ผลิตภัณฑ์มาร่วมพิจารณาด้วย อาทิ

- ราคา รวมถึงต้นทุน การบำรุงรักษา การเก็บและติดตั้ง
- อายุการใช้งานและการน้ำกลับมาใช้ใหม่
- คุณลักษณะด้านสิ่งแวดล้อม เช่น ทัศนี้ยภาพหรือการก่อมลภาวะ
- การใช้ประโยชน์ โดยเฉพาะโครงสร้างที่มีใช้งานได้หลายอย่าง
- ข้อมูลในการทดสอบการใช้งานในสภาวะน้ำท่วม
- ความยากง่ายในการใช้โครงสร้าง ค้าแนะน้ำในการติดตั้ง การอบรม และบริการหลังการขายผลิตภัณฑ์

ตาราง 5-1 คุณลักษณะหน้าที่โครงสร้างป้องกันน้ำท่วมแบบชั่วคราว

|                                 | ความสามารถ<br>ในการป้องกัน                       | เพิ่มความสูง<br>ระทว่าง<br>ตำเนินคาร | ช่วงความสูง     | 8 8                        | ควา | มสามารถในการปรับต่   | อสภาพพื้นผิวแ    | a:A15214                                         | N:                                               | ดัดแปลง<br>สำหรับทาง<br>โค้งหรือมุม |
|---------------------------------|--------------------------------------------------|--------------------------------------|-----------------|----------------------------|-----|----------------------|------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------|
| ชนิด                            | ระดับน้ำสูงสุดเหนือระดับกา<br>ป้องกันถาวร (เมตร) | ใช้/ไม่                              | จาก-อึ่ง (เมตร) | ลารขย <mark>ายลำแพง</mark> | ดิน | คอนครีต/ยาง<br>มะตอย | พื้นลาด<br>เอียง | ความคว้างฝั่ง<br>2.5 เมตร                        | ความคว้างผึ้ง<br>4.0 เมตร                        | ใช <i>่ /</i> ใม่                   |
| วัสคุณมชนิดน้ำขึ้ม<br>ผ่านใต้   | 1.5                                              | ใช่                                  | 0.375-1.5       | ไม่                        | ીજ  | ીવં                  | ไม่              | ใช่<br>(บางระบบ)                                 | ીક                                               | 18                                  |
| วัสคุณมชนิคน้ำซึม<br>ผ่านไม่ใค้ | 2.0                                              | ીજં                                  | 0.3-2.0         | ไม่                        | ใช่ | ીક                   | ใช่              | ใช่<br>(บางระบบ)                                 | lsi                                              | lsi                                 |
| แบบท่อลม<br>หรือท่อน้ำ          | 1.75                                             | ใช่<br>(บางระบบ)                     | 0.3-3.0         | ไม่                        | ใช่ | ใช่                  | ไม่              | ใช่<br>(บางระบบ ที่สูง<br>น้อยคว่า 0.75<br>เมตร) | ใช่<br>(บางระบบ ที่<br>สูงน้อยคว่า<br>1.25 เมตร) | ใช่                                 |
| แผงกั้นน้ำ<br>วางอิสระ          | 2.0                                              | ไม่                                  | 0.38-2.0        | ไม่                        | ใช่ | ใช่                  | ใช่              | lsi                                              | ไม่                                              | ls:                                 |
| แผงกั้นน้ำมีโครง                | 2.5                                              | ใช่<br>(บางระบบ)                     | 1.8-2.5         | ไม่                        | ใช่ | Tai                  | ใช่              | Tai                                              | ไม่                                              | าร่                                 |
| กำแพงกั้นน้ำ                    | 1.5                                              | ીજં                                  | 0.5-1.5         | ไม่                        | ใช่ | ไม่                  | ไม่              | ીકાં                                             | ીક                                               | ใช่<br>(บางระบบ)                    |

**ตาราง 5-2** คุณลักษณะการดำเนินงานโครงสร้างป้องกันน้ำท่วมแบบชั่วคราว

| ชนิด                             | เวลาในการติดตั้ง<br>ความยาว 100 เมตร<br>และ สูง 1 เมตร | จำนวา  | เน้อยที่สุดของแหล่งวัด<br>สำหรับการติดตั้ง |                           | ความต้อ                      | งการพื้นที่ในการเก็บแ <b>ล</b> ะเ | ความต้องการในการ<br>เตรียมสถานที่ | ระดับทักษะที่<br>ต้องการในการ<br>ติดตั้ง |              |
|----------------------------------|--------------------------------------------------------|--------|--------------------------------------------|---------------------------|------------------------------|-----------------------------------|-----------------------------------|------------------------------------------|--------------|
|                                  | (ชั่วในง)                                              | แรงงาน | เครื่องจักร                                | วัสดุ                     | พื้นที่เก็บของ               | รถผู้เบา/รถ<br>ขับเคลื่อน 4 ล้อ   | เครื่องจักรหนัก                   | คำอริบาย                                 | ต่ำ/กลาง/สูง |
| วัสคุณมชนิดน้ำขึ้ม<br>ผ่านได้    | 2-6 *                                                  | 2-6 คน | เครื่องสูบน้ำ<br>หรือที่เดิมวัสดุ          | กรวด หิน ทราย<br>หรือ น้ำ | เล็กถึงใหญ่<br>(แล้วแต่ระบบ) | ไม่                               | lei                               | หลุมใหญ่ และ กำจัด<br>เศษของแหลมคม       | ต่ำถึงกลาง   |
| วัสคุณมชนิดน้ำขึ้ม<br>ผ่านไม่ได้ | 2-6 *                                                  | 2-6 คน | ที่เดิมวัสคุ                               | กรวด หิน ทราย             | เล็ก                         | ใช่<br>(เฉพาะ ผลิตภัณฑ์)          | ใช่<br>กรวดหในพราย                | หลุมขนาคใหญ่                             | ต่ำถึงกลาง   |
| แบบท่อลม<br>หรือท่อน้ำ           | 2-3 *                                                  | 2-5 คน | ปั้ม                                       | น้ำ                       | เล็ก                         | ીક                                | ไม่                               | หลุมใหญ่ และ กำจัด<br>เศษแหลมคม          | กลาง         |
| แผงกั้นน้ำ<br>วางอิสระ           | 2-3 *                                                  | 2 คน   | ใม่มี                                      | ใม่มี                     | เล็ก                         | ીજં                               | ไม่                               | กำจัดเศษแหลมคม                           | กลาง         |
| แผงกับน้ำมีโครง                  | มากกว่า 6 *                                            | 2-3 คน | ใม่มี                                      | ไม่มี                     | คลาง - ใหญ่                  | ใช่<br>(เฉพาะ ผลิตภัณฑ์)          | ใช่<br>(บางระบบ)                  | กำจัดเศษแหลมคม                           | กลาง-สูง     |
| กำแพงกับน้ำ                      | มากกว่า 6 +                                            | 3-6 คน | อุปกรณ์ยกของ                               | ไม่มี                     | ใหญ่                         | Tai                               | ใช่                               | ระดับพื้น                                | กลาง-สูง     |

**ตาราง 5-3** คุณลักษณะทางโครงสร้างของโครงสร้างป้องกันน้ำท่วมแบบชั่วคราว

| ĺ                                   |                              | วิธีการของค           | าวามล้มเหลว                   |                              |                  | การซึมที่<br>ระดับน้ำ | น้ำ ระดับน้ำ                | 5035000                    | เด้านทานของท<br>ต่อความเสียหา |            | เสียหายระหว่าง เสี | โอกาสที่<br>เกิดความ<br>ล้มเหลว | ความ<br>ต้านทาน             |
|-------------------------------------|------------------------------|-----------------------|-------------------------------|------------------------------|------------------|-----------------------|-----------------------------|----------------------------|-------------------------------|------------|--------------------|---------------------------------|-----------------------------|
|                                     |                              | (เจื้อนไ              | ขสูงสุด )                     |                              | กดลงบน<br>ที่วาง | ระดบนา<br>สูงสุด      |                             |                            | ต่า/กลาง/สูง                  | Ď          |                    |                                 | แรงลม                       |
| ชนิด                                | การ<br>เลื้อน<br><b>ไ</b> ถล | การซึ่มเกิน<br>ยอมรับ | ล้มเหลว<br>จากแรง<br>กดบนพื้น | การคว่า<br>และการ<br>ทรุดตัว | ต่า/กลาง/<br>สูง | ต่า/กลาง/<br>สูง      | ต่า/กลาง/<br>สูง            | การจีก<br>ขาด /การ<br>เจาะ | กระแทก                        | การ        | ใช่/ไม่            | ต่ำ/กลาง/<br>สูง                | ต่ำ/กลาง/<br>สูง            |
| วัสคุถมชนิด<br>น้ำซึมผ่านใด้        | ใช่                          | ใช่<br>(ใต้แผงกั้น)   | <sup>1</sup> si               | ીક                           | ต่ำ-กลาง         | ด้า- สูง              | ค่า                         | ต่ำ – กลาง                 | กลาง-สูง                      | ค่ำ – กลาง | ીજં                | กลาง - สูง                      | กลาง                        |
| วัสดุถมชนิด<br>น้ำชืมผ่าน<br>ใม่ได้ | ไช่                          | ใช่<br>(ผ่านเผงกั้น)  | ไม่                           | ใช่                          | ด้ำ-กลาง         | กลาง- สูง             | ด้ำ – กลาง                  | กลาง                       | กลาง - สูง                    | ด้ำ – กลาง | ไม่                | กลาง                            | กลาง                        |
| แบบท่อลม<br>หรือท่อน้ำ              | ใช่                          | lai                   | ไม่                           | ไม่                          | ค่ำ              | ค่า                   | ต่ำ<br>(กลาง-สูง<br>เติมลม) | ท่ำ – กลาง                 | ต่ำ – กลาง                    | ด้ำ – กลาง | ใช่                | กลาง - สูง                      | กลาง<br>(ต่ำ แบบ<br>เดิมลม) |
| แผงกั้นน้ำ<br>วางอิสระ              | ીસં                          | ใช่<br>(ใต้แผงกั้น)   | ไม่                           | ใช่                          | ค่ำ              | ท่ำ – กลาง            | กลาง – สู่ง                 | ต่ำ – กลาง                 | ต่ำ - กลาง                    | ท่ำ        | ીઇ                 | กลาง - สูง                      | ์ท่ำ                        |
| แผงกับน้ำมื<br>โครง                 | ใช่                          | ใช่<br>(ผ่านเผงกัน)   | ใช่                           | ใช่                          | तुः।             | ์ด่ำ – กลาง           | กลาง – สู่ง                 | ต่ำ – กลาง                 | ด่ำ – กลาง                    | ต่ำ-กลาง   | ใช่                | ค่ำ - สูง                       | ์ต่ำ – กลา                  |
| แผงดั้นน้ำ                          | 1-6                          | 14                    | 1si                           | ીજ                           | คลาง-สูง         | ต่ำ - กลาง            | ต่ำ – กลาง                  | লুব                        | aja<br>a                      | aga        | ไม่                | ค่า                             | ક્ષુય                       |

# **ตาราง 5-4** คุณลักษณะหน้าที่โครงสร้างป้องกันน้ำท่วมที่สามารถถอดเก็บได้

| ชนิด                       | ความสามารถ<br>ในการป้องกัน                               | เพิ่มความสูง<br>ระหว่าง<br>ดำเนินการ | ช่วงความ<br>สูง   |                  | ความ | มสามารถในการปรั       | ับต่อสภาพพื้น    | ผิวและการวาง               |                            | ดัดแปลงสำหรับ<br>ทางโค้งหรือมุม       | การติดตั้ง<br>สุดท้าย<br>เชื่อมต่อตลิ่ง<br>กับผหัง |
|----------------------------|----------------------------------------------------------|--------------------------------------|-------------------|------------------|------|-----------------------|------------------|----------------------------|----------------------------|---------------------------------------|----------------------------------------------------|
|                            | ระดับน้ำสูงสุด<br>เหนือระดับการ<br>ป้องกันถาวร<br>(เมตร) | ใช่/ไม่                              | จาก-ถึง<br>(เมตร) | การขยาย<br>กำแพง | ดิน  | กอนกรีต /<br>ยางมะตอย | พื้นลาด<br>เอียง | ความกว้าง<br>ฝั่ง 2.5 เมตร | ความกว้าง<br>ฝั่ง 4.0 เมตร | ใช่/ไม่                               | ใช่/ไม่                                            |
| พนังกั้นน้ำ<br>แบบประกอบ   | 0.5                                                      | 18                                   | 0.1 – 5.0         | ใช่              | ไม่  | ੀਬੰ                   | lsi              | ใช่                        | ીક                         | ใช่<br>(แต่ต้องสร้างใน<br>พื้นที่ราบ) | 14                                                 |
| พนังกั้นน้ำ<br>แบบยึดหยุ่น | 1.0                                                      | ไม่                                  | 1.0               | ไม่              | ใช่  | ใช่                   | ીજં              | ใช่                        | ીકં                        | lai .                                 | ไล่                                                |
| พนังกั้นน้ำ<br>แบบแข็ง     | 2.5                                                      | ไม่                                  | ไม่เก็น 3         | lsi              | ไม่  | ીલં                   | ใช่              | ใช่                        | ใช่                        | ไม่                                   | ใช่                                                |

## **ตาราง 5-5** คุณลักษณะความสัมพันธ์ของระบบป้องกันน้ำท่วมที่สามารถถอดออกได้

| ชนิด                       | เวลาในการติดตั้ง<br>ความยาว 100 เมตร<br>และ สูง 1 เมตร | จำนวนน้  | ้อยที่สุดของแหล่งวัตถุ<br>สำหรับการติดตั้ง |          | <mark>ความต้องก</mark> า               | รพื้นที่ในการเก็บและ             | การขนส่ง            | ความต้องการ<br>ในการเตรียม<br>สถานที่  | แท่นวางเกิด<br>ความเสียหาย<br>(ตะกอน<br>ขยะ) | ระดับ<br>ทักษะที่<br>ต้องการใน<br>การติดตั้ง<br>ต่ำ/กลาง/<br>สูง |
|----------------------------|--------------------------------------------------------|----------|--------------------------------------------|----------|----------------------------------------|----------------------------------|---------------------|----------------------------------------|----------------------------------------------|------------------------------------------------------------------|
|                            | (ชั่วโมง)                                              | แรงงาน   | ด้นไม้                                     | วัตถุดิบ | พื้นที่ใช้สอย                          | รถคู่เบา/ รถ<br>ขับเคลื่อน 4 ล้อ | เครื่องจักร<br>หนัก | คำอธิบาย                               | ใช่/ไม่                                      |                                                                  |
| พนังกั้นน้ำ<br>แบบประกอบ   | 2 – 5                                                  | 2 – 3 คน | ใช่<br>(ใช้เครื่องมือยก)                   | ไม่มี    | ใหญ่                                   | ไม่                              | ใช่                 | ทำความสะอาด<br>และปรับระคับ<br>พื้นผิว | ใช่                                          | กลาง – สู่ง                                                      |
| พนังกั้นน้ำ<br>แบบอีดหยุ่น | 2 – 3                                                  | 2 คน     | ไม่มี                                      | ให้มี    | រតិ៍ក                                  | ใช่                              | ไม่                 | กำจัดสิ่งมีคม<br>และ ถมหลุม            | lei .                                        | กลาง                                                             |
| พนังกับน้ำ<br>แบบแจ็ง      | 2-4                                                    | 2 คน     | ให่มี                                      | ไม่มี    | ใม่มี<br>(เครียมคิดตั้ง<br>เต็มรูปแบบ) | ไม่                              | ไม่                 | ทำสถานที่ให้<br>ว่าง                   | ใช่<br>(แต่นยาง)                             | ต่ำ – กลาง                                                       |

## ตาราง 5-6 ลักษณะตามโครงสร้างของระบบป้องกันน้ำท่วมที่สามารถถอดออกได้

| ชนิด                           |                    |                       | รของความลั้มเห<br>จื่อนไขสูงสุด) |                              |                      | ความดัน<br>กดลงบน<br>ที่วาง             | การซึมที่<br>ระดับน้ำ<br>สูงสุด<br>ต่า/กลาง/<br>สูง | การซึมที่<br>ระดับน้ำ<br>ต่ำที่สุด<br>การลีกขาด<br>/การเอาะ | ต่                    | ักนทานของ<br>อความเสียห<br>ถ้า / กลาง / สุ | าย                         | ข่อมแขมความ<br>เสียหายระหว่าง<br>ดำเหินงาน<br>ตำ/กลาง/สูง | โอกาสเกิด<br>ความ<br>ล้มเหลว<br>ต่า/คลาง/<br>สูง | ความ<br>ต้านทาน<br>แรงสม<br>ต่า/คลาง/<br>สูง |
|--------------------------------|--------------------|-----------------------|----------------------------------|------------------------------|----------------------|-----------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|-----------------------|--------------------------------------------|----------------------------|-----------------------------------------------------------|--------------------------------------------------|----------------------------------------------|
|                                | การไถล<br>และคลิ้ง | การซึ่มเกิน<br>ยอมรับ | ล้มเหลว<br>จากแรงกด<br>พื้น      | การคว่ำ<br>และการ<br>ทรุดตัว | ต่ำ/<br>กลา<br>ง/สูง | ต่√กลาง/<br>สูง                         |                                                     |                                                             | ลระ <mark>แท</mark> ล | การ<br>ทำลาย                               | ใช่/ใน่                    |                                                           |                                                  |                                              |
| พนังกั้นน้ำ<br>แบบ<br>ประกอบ   | ไม่                | ไม่                   | ใช่                              | Tai                          | lsi                  | สูง<br>(แต่ลคลง<br>ได้จากการ<br>ฐานราก) | ด้ำ                                                 | ค่ำ                                                         | ্ধ্র                  | ह्य                                        | สูง(ยกเว้น<br>แผ่นธาง)     | ไม่                                                       | ค่ำ                                              | ไม่                                          |
| พนังกั้นน้ำ<br>แบบ<br>ยึดหยุ่น | Tai                | ીજં                   | ไม่                              | ીજં                          | lai                  | ต่ำ                                     | ค่ำ                                                 | ต่ำ - กลาง                                                  | ด้า – กลาง            | ต่ำ –<br>กลาง                              | ต่ำ                        | ใช่                                                       | กลาง – สู่ง                                      | ไม่                                          |
| พนังกันน้ำ<br>แบบแจ็ง          | ไม่                | ીક                    | ใช่                              | ไม่                          | ીઇ                   | กลาง- สู่ง                              | ค่ำ                                                 | ค่ำ                                                         | ङ्ग्य                 | ह्य -                                      | สูง<br>(ยกเว้น<br>แผ่นยาง) | ไม่                                                       | ด้ำ                                              | ใช่                                          |

#### 6. ข้อแนะนำการใช้งานโครงสร้างป้องกันนำท่วม

การจัดการกับรูปแบบความล้มเหลวทั้งสามรูปแบบดังกล่าวข้างต้นอย่างได้ผล เป็นการประกันความ ปลอดภัยและประสบผลสำเร็จในการใช้งานโครงสร้างป้องกันแบบชั่วคราวและถอดเก็บได้อย่างมีประสิทธิภาพ

#### 6.1 องค์กร

ความรับผิดชอบในการออกแบบ การติดตั้ง การดำเนินงาน และการบำรุงรักษาของโครงสร้างควรมีความ ชัดเจน ความรับผิดชอบขององค์กรหรือชุมชนในการดำเนินงานและการบำรุงรักษาโครงสร้างนั้นต้องมีกระบวนการ ที่เพียงพอและมีวิธีการที่จะรับรองความปลอดภัยในการระดมปัจจัยต่างๆ และดำเนินงานโครงสร้างป้องกัน รายละเอียดสำคัญของการจัดการองค์กรที่จำเป็นมีดังนี้

#### 6.1.1 ความเพียงพอของแหล่งทรัพยากรเหมาะสม

ความรู้และประสบการณ์ของบุคลากรบุคคลที่มีอยู่เป็นส่วนสำคัญต่อความน่าเชื่อถือในโครงสร้างป้องกัน ระดับทักษะความสามารถที่จำเป็นต้องมีขึ้นอยู่กับประเภทของโครงสร้างและความต้องการในการดำเนินงาน อีก ทั้งการดำเนินงานของช่างฝีมือและบุคคลากรอื่นที่ควรมีผู้ควบคุมการทำงานที่มีทักษะความสามารถส่วนบุคคลที่ เหมาะสม ผู้ควบคุมการทำงานที่มีทักษะสูงจะสามารถคิดวิธีการแก้ไขที่ปลอดภัยได้ดีกว่า เมื่อมีสิ่งที่ไม่ได้เป็นไป ตามแผนการฉุกเฉินเกิดขึ้น

ประเภทของวัสดุอุปกรณ์ที่ใช้ในแต่ละขั้นตอนของการระดมปัจจัยต่างๆและการดำเนินงานควรมีการ ตรวจเช็คให้ถูกต้อง การใช้งานประเภทวัสดุอุปกรณ์ที่ผิดๆ ทำให้เกิดความไม่ปลอดภัยในการติดตั้ง หรือเป็น อันตรายต่อบุคลากรผู้ทำงาน จึงไม่สมควรให้เกิดขึ้น

#### 6.1.2 <u>การฝึกอบรม</u>

ระดับทักษะความสามารถที่เหมาะสมสามารถสร้างขึ้นใหม่ได้ โดยการฝึกอบรมที่เพียงพอ รูปแบบการ ฝึกอบรมที่จำเป็น 2 รูปแบบ คือ

- การฝึกอบรมทักษะพื้นฐานที่จำเป็นในการดำเนินงาน
- การฝึกปฏิบัติในสถานการณ์ฉุกเฉิน

รูปแบบการฝึกอบรมจะช่วยสร้างความน่าเชื่อถือแก่ตัวบุคคลากร ในการสร้างความคุ้นเคย รวมทั้ง ตรวจสอบความเพียงพอและสภาพของพนังกั้นน้ำและกระบวนการฉุกเฉิน ซึ่งควรมีการดำเนินการฝึกปฏิบัติใน สถานการณ์ฉุกเฉินอย่างเต็มรูปแบบอย่างน้อยหนึ่งครั้งต่อปีก่อนถึงฤดูน้ำหลาก

#### 6.1.3 <u>แผนการจัดการน้ำท่วม</u>

ความน่าเชื่อถือต่อพนังกั้นน้ำจะเพิ่มขึ้นเมื่อการระดมปัจจัยต่างๆ และกระบวนการดำเนินงาน มีการ จัดการและวางแผนไว้ในแผนจัดการน้ำท่วม แผนการจัดการจะทำให้ผู้ทำงานแต่ละคนทราบหน้าที่ที่ตนจะต้อง ปฏิบัติและช่วงเวลาที่จะต้องปฏิบัติงาน และที่สำคัญที่สุดจะเป็นการรับรองว่าเวลาในการระดมปัจจัยและการ ดำเนินการปิดกั้นจะเป็นไปตามที่คาดไว้ กระบวนการของการดำเนินการฉุกเฉินทั้งหมดตั้งแต่การได้รับการเตือนภัย น้ำท่วมไปจน ถึงการทำความสะอาดหลังเหตุการณ์น้ำท่วมควรมีการสรุปอย่างชัดเจนในแผนการจัดการน้ำท่วม ควรมีการกล่าวถึงรหัสของการเตือนภัยระดับน้ำท่วมที่เป็นจุดวิกฤติ การชี แจงและการสื่อสารรวมทั้งการ ปฏิบัติงานของผู้ร่วมงานทุกคนที่จำเป็นต่อขั้นตอนการระดมปัจจัย การติดตั้ง การปิดกั้นระยะเวลาในการป้องกัน การลดกำลังคนและการทำความสะอาด แผนการจัดการน้ำท่วมควรมีการทบทวนถึงการเปลี่ยนแปลงที่อาจเกิดขึ้น ต่อบุคคลสำคัญ พื้นที่รับน้ำหรือโครงสร้างการป้องกันน้ำท่วม หรือการดำเนินการใดๆ ที่อาจส่งผลต่อกระบวนการ ฉุกเฉิน

แผนการจัดการน้ำท่วมควรมีข้อปฏิบัติสำรองหรือแก้ปัญหาในแต่ละขั้นตอนการดำเนินงาน เพื่อเพิ่มความ น่าเชื่อถือให้มากขึ้น ทุกๆ ขบวนการก็ต้องมีการยืนยันซ้ำ เพื่อรับรองความผิดพลาดที่อาจเกิดขึ้น โดยตระหนักว่า การป้องกันนั้นมีทั้งข้อดีและข้อด้อย ตัวอย่างองค์ประกอบควรที่มีในแผนการจัดการน้ำท่วม ได้แก่

- ข้อมูลติดต่อของบุคลากร ข้อมูลส่วนบุคคลสำรอง และหน่วยงานอื่นที่เกี่ยวข้อง
- ค้าสั่งในการดำเนินงาน
- ระดับน้ำที่เป็นจุดวิกฤติ และการปฏิบัติการที่จำเป็น
- วัสดุและเครื่องจักรที่เหมาะสมกับสถานที่
- แผนงานระดมปัจจัยต่างๆ
- แผนการดำเนินการปิดกั้น
- ขั้นตอนการทำความสะอาด

#### 6.2 การเก็บและบำรุงรักษา

## 6.2.1 <u>การเก็บ</u>

โครงสร้างชั่วคราวและถอดเก็บติดตั้งเป็นส่วนหนึ่งในการดำเนินการฉุกเฉิน ส่วนที่เป็นแบบชั่วคราวและ ถอดเก็บได้จึงต้องมีการเก็บชิ้นส่วนอย่างเพียงพอเมื่อไม่มีการใช้งาน จึงมีข้อแนะน้ำในการเก็บส่วนที่สามารถถอด เก็บและเคลื่อนย้ายได้ ดังต่อไปนี้

- หากเป็นไปได้ ทำเลในการเก็บสะสมควรอยู่ใกล้กับบริเวณที่ต้องการระดมกำลัง และควรอยู่ใกล้กับ บริเวณที่ติดตั้ง

- ลักษณะการเก็บควรมีการป้องกันที่เหมาะสมจากสิ่งแวดล้อมที่เป็นอันตรายให้สอดคล้องกับประเภทของ โครงสร้าง
- การตั้งและจัดวางหน่วยต่างๆ ควรให้มีความสอดคล้องตามค้าแนะน้ำของผู้ออกแบบและไม่ควรปล่อย ให้มีน้ำขัง ควรจัดวางให้สะดวกในการควบคุมดูแลและบำรุงรักษา รวมทั้งง่ายต่อการเคลื่อนย้ายเมื่อเกิดเหตุฉุกเฉิน
  - ความสะดวกส่งผลดีต่อการระดมกำลังที่รวดเร็วและปลอดภัย
- หากเป็นไปได้ การเก็บชิ้นส่วนแบบชั่วคราวและถอดเก็บได้ของโครงสร้างควรเป็นไปตามจุดประสงค์ และ หลีกเลี่ยงความเสียหายต่อกิจกรรมอื่นและความเสียหายของส่วนประกอบต่างๆ

#### 6.2.2 การบำรุงรักษา

โครงสร้างป้องกันน้ำท่วมอาศัยการบำรุงรักษาที่เพียงพอของชิ้นส่วนถาวรและเคลื่อนย้ายได้ทั้งหมด เพื่อ รับรองความน่าเชื่อถือในการให้บริการ ส่วนถาวรและเคลื่อนย้ายได้ควรทำความสะอาดและตรวจสอบอย่าง ละเอียดหลังการใช้งานในแต่ละครั้ง ส่วนที่ฉีกขาดเสียหายควรได้รับการซ่อมแซมหรือเปลี่ยนใหม่ และเก็บไว้ใช้ใน ครั้งต่อไป ส่วนที่เคลื่อนย้ายได้ทั้งหมดควรได้รับความสนใจเป็นพิเศษ โดยตรวจสอบและบำรุงรักษาเป็นประจำตาม ระยะเวลาที่กำหนด การตรวจสอบอย่างรวดเร็วควรปฏิบัติก่อนการใช้งานไปพร้อมกับการจัดเตรียมวัสดุสำรองที่ เพียงพอ

หากเป็นไปได้ ควรมีสมุดบันทึกที่แสดงรายการการบำรุงรักษาและการตรวจสอบไว้ประกอบการป้องกัน โดยรายการบันทึกจะช่วยน้ำเสนอข้อมูลที่มีประโยชน์ในการป้องกัน ส่วนประกอบที่ต้องน้ำออกไปซ่อมแซมหรือ กำลังรอการซ่อมแซมควรให้ความสนใจเป็นพิเศษเพื่อรับประกันว่าจะไม่มีการน้ำไปใช้งานในสถานการณ์ฉุกเฉิน

#### 6.3 การระดมปัจจัยต่างๆ

ขั้นตอนการระดมปัจจัยต่างๆเริ่มต้นจากการรับข้อมูลการเตือนภัยน้ำท่วมไปจนถึงการดำเนินการกำหนด ลุ่มบุคคล วัสดุและเครื่องจักรที่จำเป็นต่อการเริ่มต้นการติดตั้งหรือปิดกั้นให้เสร็จสมบูรณ์

#### 6.3.1 <u>การสั่งงาน</u>

ขั้นตอนการสั่งงานควรมีเอกสารการดำเนินงานและการปฏิบัติที่ดี โครงสร้างการสั่งงานที่น่าเชื่อถือขึ้นอยู่ กับความพร้อมในการปฏิบัติการตลอด 24 ชั่วโมงของผู้ทำงาน เพื่อเป็นการรับประกันการทำงานของระบบจึงมี ความจำเป็นที่จะต้องผลัดเปลี่ยนกลุ่มผู้ทำงาน โดยทุกคนต้องมีความพร้อมและสามารถติดต่อได้ตลอด จำเป็นที่ จะต้องมีรายชื่อของบุคคลสำรองเสมอในสถานการณ์ที่ขาดคนอย่างหลีกเลี่ยงไม่ได้ ครงสร้างการสั่งงานจำเป็นต้องมีการจัดการจากส่วนกลางเพื่อยืนยันการจัดการข้อมูลแก่ส่วนย่อยและเพื่อระบุ ปัญหาในการระดมปัจจัย รวมทั้งการแก้ปัญหาอื่นๆ ส่วนการจัดการนี้ สามารถส่งต่อให้กับฝ่ายบุคคลหรือหัวหน้ำ งานในขั้นตอนสุดทำยของการระดมปัจจัย การสั่งงานจะสำเร็จได้ต้องมีการสื่อสารและตอบรับที่ดี

#### 6.3.2 การเข้าถึง

การระดมปัจจัยที่ประสบความสำเร็จต้องอาศัยการเข้าถึงของข้อมูลที่ดี การเข้าถึงในระหว่างเหตุการณ์ น้ำท่วมของบุคคลและเครื่องจักรที่น่าเชื่อถือจะต้องมีการวางแผนล่วงหน้ำไว้ในแผนการจัดการน้ำท่วม อีกทั้งทุกคน ในทีมฉุกเฉินต้องรับรู้แผนการต่างๆด้วย ข้อมูลสำรองสำหรับการเข้าถึงที่สำคัญควรเตรียมพร้อมไว้ในกรณีที่มีเหตุ ติดขัดฉุกเฉิน เมื่อจำนวนความต้องการในการขนส่งส่วนประกอบและวัสดุในการป้องกันมีมากจะทำให้ความ น่าเชื่อถือในการเข้าถึงอยู่ในระดับต่ำมาก ดังนั้นจึงควรมีการตรวจสอบความสามารถในการเข้าถึงล่วงหน้ำในเรื่อง ยานพาหนะทั้งหมด (น้ำหนักที่บรรทุก) ที่จำเป็นสำหรับการติดตั้งโครงสร้างป้องกันการตากการติดตั้งโครงสร้างป้องกันแบบชั่วคราวและถอดเก็บได้ เช่นทำเป็นที่จอดรถ ทางเข้า หรือใช้เป็นที่ตั้งอาคารที่พักคนงาน พื้นที่เหล่านี้ จำเป็นจะต้องมีการตรวจสอบเป็นประจำเพื่อรับประกันความพร้อมในระหว่างเหตุการณ์น้ำท่วม ยิ่งไป กว่านั้นรายการการติดต่อตลอด 24 ชั่วโมงควรมีเตรียมไว้ให้กับหน่วยงานอื่นๆที่สนใจด้วยเช่นกัน ความรับผิดชอบในการเข้าถึงบริเวณปิดที่ต้องการควรมีการแก้ไขปัญหาหรือวิธการทำงานที่ชัดเจน การแก้ไขปัญหา ต่างๆควรเกิดจากความร่วมมือของบุคคลหลายฝ่ายเพื่อจะได้มีฝ่ายสำรอง และควรมีการตรวจสอบโครงสร้างเพราะ อาจเป็นปัจจัยที่ทำให้การระดมปัจจัยเกิดความล่าช้า

#### 6.3.3 วัสดุอุปกรณ์

วัสดุอุปกรณ์ทั้งหมดที่จำเป็นต่อการปิดโครงสร้างควรมีการระบุและบันทึกไว้ในแผนการจัดการน้ำท่วม ต้องมีเครื่องมือและอุปกรณ์ที่ถูกต้องและน้ำไปใช้โดยผู้ได้รับการฝึกอบรมการใช้งานเครื่องมือต่างๆในสภาวะฉุกเฉิน สถานที่ที่เก็บอุปกรณ์ควรมีการจดบันทึกและได้รับการตรวจสอบเป็นประจำเพื่อรับประกันการใช้งานครั้งต่อๆไป ควรมีรายละเอียดการติดต่อเพื่อรับวัสดุอุปกรณ์มาใช้กล่าวไว้ในแผนการจัดการน้ำท่วมด้วยการสำรองวัสดุอุปกรณ์ ควรมีไว้เสมอ เพราะวัสดุอุปกรณ์อาจมีใช้ไม่เพียงพอในคราวเดียว

### 6.3.4 แผนการระดมปัจจัยต่างๆ

แผนการระดมปัจจัยต่างๆเป็นส่วนหนึ่งในแผนการจัดการน้ำท่วมที่มีหัวข้อเกี่ยวกับการระดมปัจจัยและ การตรวจสอบสภาพความพร้อมขององค์กร โดยควรจะมีค้าอธิบายขั้นตอนทั้งหมด รวมทั้งการระดมปัจจัย ความ รับผิชอบของบุคคลทั้งหมดและการตรวจสอบกระบวนการ ในระหว่างการระดมปัจจัยต่างๆ มีความจำเป็นมากๆที่จะต้องตรวจสอบระดับน้ำอยู่ตลอดเพื่อเป็นการ แสดงข้อมูล ณ เวลาจริงและใช้ในการตัดสินใจให้ความช่วยเหลือ แผนการระดมปัจจัยต่างๆควรมีความชัดเจนเพื่อ เชื่อมโยการระดมปัจจัยต่างๆเข้ากับการดำเนินการปิดกั้น ตามพื้นฐานการตรวจสอบความรุดหน้ำและกระบวนการ ระดมปัจจัยแล้วจำเป็นที่จะต้องมีการตัดสินใจก่อนเริ่มดำเนินการปิดกั้น โดยการตัดสินใจที่จะยกเลิกหรือเริ่มต้น การปิดกั้นขึ้นอยู่กับคุณภาพของข้อมูลที่คาดการณ์เวลาที่มีอยู่ ควรมีความรับผิดชอบที่ชัดเจนในการตัดสินใจใดๆ และการติดต่อสื่อสารที่จำเป็น รวมทั้งมีความรับผิดชอบในการตรวจสอบทรัพยากรที่จำเป็นอย่างชัดเจนเพื่อ รับประกันการน้ำไปใช้ที่เพียงพอ

#### 6.4 <u>การดำเนินการปิดกั้น</u>

ขั้นตอนการดำเนินการปิดกั้นเริ่มขึ้นเมื่อขั้นตอนการระดมปัจจัยต่างเสร็จสมบูรณ์และมีการตัดสินใจเริ่มการปิดกั้น โครงสร้างการป้องกันน้ำท่วม

#### 6.4.1 การจัดเตรียมพื้นที่

ไม่ว่ากรณีใดก็ตาม การรับประกันว่าพื้นที่ที่จะมีการสร้างพนังกั้นน้ำนั้นมีความสมบูรณ์และเหมาะสมเป็น สิ่งสำคัญมากนี้ เป็นความสำคัญเฉพาะเนื่องจากการปิดผนึกพนังกั้นน้ำขึ้นอยู่กับการเชื่อมต่อของพนังกั้นกับพื้นผิว หลุมหรือเนินขนาดใหญ่สามารถลดความหนาแน่นของน้ำได้ โดยเฉพาะท่อระบายน้ำหรือโครงสร้างส่งน้ำใต้ดินที่มี อ ยู่ ใ น พื้ น ที่ ป้ อ ง กั น ค ว ร มี ก า ร ปิ ด กั้ น ชั่ ว ค ร า ว เ พี่ อ ใ ห้ เ ป็ น เ ส้ น ท า ง ใ น ก า ร ซึ ม ผ่ า น ข อ ง น้ำ ในบริเวณที่มีการแบ่งใช้งานเป็นพิเศษ อาจจะต้องมีการลากหรือชักรอกวัตถุขนาดใหญ่ออกจากพื้นที่ขยายกำลัง การป้องกัน ควรมีความพร้อมของการเข้าถึงในการเคลื่อนย้ายอุปกรณ์ และควรมีการตรวจสอบการติดตั้งทั้งหมด รวมทั้งในชั้นผิวใต้ดิน ช่องและส่วนป้องกันให้พร้อมในการใช้งาน การตรวจสอบควรมีเป็นประจำตลอดระยะเวลา ก า ร ป้ อ ง กั น เ พื่ อ รั บ ป ร ะ กั น ว่ า จ ะ ไ ม่ เ กิ ด ก า ร อุ ด ตั น พัง ท ล า ย ห รื อ ก า ร รั่ ว ซึ ม หากมีบุคคลเพียงพอหรือพื้นที่ป้องกันมีขนาดเล็ก ควรเริ่มต้นการจัด เตรียมพื้นที่ในระหว่างขั้นตอนการระดมปัจจัย โด ย ต้ อ ง ดำ เ นิ น การ จั ด เตรียม พื้น ที่ให้ เสร็จก่ อ น การ ส ร้าง โครงสร้าง หรือการสร้างพนังกั น

#### 6.4.2 การควบคุมดูแลและควบคุมคุณภาพ

การควบคุมคุณภาพของโครงสร้างนั้นอาศัยแผนการดำเนินการเพื่อรับประกันว่ามีการตรวจสอบที่เพียงพอ และมีการควบคุมดูแลในทุกขั้นตอนของการดำเนินการ ทุกส่วนของโครงสร้างควรรับการตรวจสอบว่าการติดตั้งที่ ถูกต้องโดยผู้เชี่ยวชาญและในระยะเวลาที่เพียงพอสำหรับการแก้ไข มีการตรวจสอบเวลาที่เหลืออยู่ก่อนที่ระดับน้ำจะเพิ่มสูงถึงระดับเริ่มปิดกั้น เพื่อประกันว่าสามารถติดตั้ง พนังกั นหรือส่วนเคลื่อนย้ายได้ทันการณ์ หรือมีโครงสร้างปิดที่สมบูรณ์ และตรวจสอบได้ก่อนเกิดเหตุการณ์ขึ้น

#### 6.4.3 สุขภาพและความปลอดภัย

มีการบันทึกวิธีการที่ปลอดภัยในการปฏิบัติขั้นตอนการดำเนินการไว้อย่างชัดเจน และบุคลากรควรได้รับ การฝึกอบรมที่หลายสถานการณ์ เมื่อเกิดเหตุการณ์น้ำท่วมฉุกเฉินในช่วงกลางดึกที่มีสภาพมืด ฝนตก และลื่น จะ ทำให้เพิ่มความเสี่ยงของการเกิดอุบัติเหตุ ซึ่งเกิดเหน็ดเหนื่อยจากการทำงานในช่วงกลางวันต้องมาปฏิบัติการใน สภาวะฉุกเฉินเป็นระยะเวลานาน เพื่อหลีกเลี่ยงปัญหานี้ ควรมีการวางแผนการปฏิบัติงานฉุกเฉินโดยมีการจัดการ บุคลากรที่เหมาะสม และมีการทำงานเป็นกะในการติดตั้งโครงสร้างเป็นเวลานาน ควรมีการเตรียมเครื่องแต่งกายที่ เหมาะสมและปลอดภัยในการทำงานเพื่อลดความเสี่ยงในการเกิดอุบัติเหตุ

## 6.4.4 <u>การตรวจตราโครงสร้างป้องกัน</u>

การสร้างข้อกำหนดเพื่อการตรวจตราโครงสร้างให้อยู่ในสภาพการการได้อย่างต่อเนื่องจนกระทั่งระดับน้ำ ลดลงไปอยู่ในระดับที่ต้องการ นับว่ามีความจำเป็นโดยเฉพาะโครงสร้างป้องกันที่มีความยืดหยุ่นที่ง่ายต่อการเกิด ความเสียหายจากการทำลายหรือผลกระทบที่ไม่คาดคิด โดยความรับผิดชอบในการตรวจตรานี้ ควรมีความชัดเจน อย่างมากโดยปฏิบัติและควรมีการบันทึกการกระทำทั้งหมดไว้ในแผนการจัดการน้ำท่วม เมื่อพบความเสียหายต่อ ขึ้นส่วนโครงสร้าง ต้องสามารถซ่อมแซมความเสียหายในส่วนที่มีความยืดหยุ่นของโครงสร้างได้โดยใช้วัสดุซ่อมแซม ในขณะที่วัสดุแบบแข็ง เช่น ค้ายัน จะใช้กับอยู่ด้านหลังส่วนที่เสียหายเพื่อเพิ่มความแข็งแรงให้กับโครงสร้าง โครงสร้างป้องกันที่สร้างขึ้นจากวัสดุใดก็ตามควรมีวิธีการซ่อมแซมความเสียหายกำหนดไว้ล่วงหน้ำ หรืออธิบายไว้ ในแผนการจัดการน้ำท่วม และต้องมีความพร้อมในด้านวัสดุและอุปกรณ์ที่จะใช้ในการซ่อมแซมอย่างเพียงพอใน สถานที่ติดตั้ง

#### 6.5 การเลิกการระดมและประเมินผลการปฏิบัติ

### 6.5.1 การเลิกการระดมปัจจัย

เมื่อระดับน้ำท่วมลดลงถึงระดับที่ไม่ต้องการปิดกั้นและมีการยืนยันว่าเหตุการณ์น้ำท่วมสิ้นสุดให้ทำการ เลิกการระดมปัจจัย จึงควรทำการอธิบายกระบวนการการทำความสะอาดและจัดเก็บส่วนที่ถอดเก็บได้และ ชั่วคราวของโครงสร้างไว้ในแผนการจัดการน้ำท่วม ควรให้ความสำคัญกับการขนย้ายเพื่อหลีกเลี่ยงความเสียหายใน ระหว่างการปฏิบัติการ

ชิ้นส่วนของโครงสร้างที่ติดตั้งถาวรและส่วนที่สามารถเคลื่อนย้ายได้ทั้งหมดควรได้รับตรวจสอบและบันทึก ความเสียหาย โดยส่วนที่เสียหายควรคัดแยกและน้ำไปซ่อมแซมหรือเปลี่ยนใหม่โดยเร็วในการรื้อถอนส่วนชั่วคราว และถอดเก็บได้ทั้งหมดออกจากแนวการป้องกัน ควรทำความสะอาดพื้นที่และปรับสภาพให้เหมือนก่อนเกิด เหตุการณ์ น้ำท่วม รวมไปถึงการน้ำซากปรักหักพังออก การปรับระดับพื้นผิว การเปิดทางเข้าออก และการป้องกัน พื้นที่ส่วนถาวรของโครงสร้างไม่ให้เกิดการรุกล้ำ

#### 6.5.2 การประเมินผลการดำเนินการ

มีการตรวจข้อมูลทั้งหมดที่เกี่ยวกับการทำงานของพนังกั้นน้ำและผลการใช้งานทันทีหลังการเลิกระดม ปัจจัย ซึ่งประกอบด้วย

- กราฟแสดงระดับน้ำท่วมที่คาดคะเนและที่เกิดขึ้นจริง
- เวลาที่มีหลังจากได้รับการเตือนภัย
- บันทึกการรั่วซึมและความเสียหาย
- ผลการดำเนินการโครงสร้างป้องกันภายใต้น้ำหนักกด
- ประสิทธิภาพของการสั่งงาน
- เวลาที่ใช้ในขั้นตอนการระดมปัจจัยและการดำเนินงาน
- ความยากง่ายในการสร้างการปิดกั้นและซ่อมแซมความเสียหาย
- การใช้แหล่งทรัพยากร
- ความเพียงพอในการจัดเก็บ การเข้าถึงและการสื่อสาร
- ประเด็นการเลิกระดมปัจจัย

ประเด็นข้างต้นควรมีการทบทวนสอบถามกับทีมงานฉุกเฉินโดยการประชุมสรุปภารกิจที่เพิ่งดำเนินการ เสร็จสิ้น วัตถุประสงค์เพื่อเปรียบเทียบผลการดำเนินการของโครงสร้างป้องกันที่คาดคะเนไว้เทียบกับผลที่เกิดขึ้น จริง เพื่อสรุปหาข้อแก้ไข ปรับปรุง หรือพิสูจน์ว่าโครงสร้างป้องกันและแผนการจัดการน้ำท่วมที่ใช้อยู่สามารถใช้ได้ จริง

#### 6.6 การทดสอบและประเมินผลการดำเนินการ

โครงสร้างป้องกันน้ำท่วมแบบชั่วคราวและถอดเก็บได้ ได้รับการออกแบบและถูกสร้างให้สอดคล้องกับคุณลักษณะ เฉพาะที่ได้รับการกำหนดมาเป็นอย่างดี ในการพัฒนาโครงสร้างอาจใช้เทคนิคที่หลากหลายในการประเมินผลการ ดำเนินงานของโครงสร้างไม่ว่าจะเป็นในส่วนของรายละเอียดและการจัดอันดับการใช้งานประกอบด้วยการประเมิน จากเอกสารประกอบจากผู้ผลิต การทดลองในห้องปฏิบัติการ และการทดลองในภาคสนาม



รูปที่ 6-1 แผนภูมิการพัฒนาผลิตภัณฑ์

ขั้นตอนในการทดสอบและประเมินผลดำเนินการ มีดังต่อไปนี้

ขั้นตอนที่ 1 การศึกษาทบทวนเอกสาร เพื่อทำความเข้าใจและพิจารณาวิธีการทำงานของผลิตภัณฑ์รวมถึงการ ทบทวนด้านการค้านวณความมั่นคง

ขั้นตอนที่ 2 การทดสอบในห้องปฏิบัติการเพื่อทดสอบและทำความเข้าใจผลการดำเนินการของผลิตภัณฑ์ในสภาวะ แวดลอมที่ถูกควบคุม และใช้ความเข้าใจในขั้นตอนการศึกษาเอกสารโดยการทดสอบในห้องปฏิบัติการมี จุดประสงค์เพื่อทดสอบความสามารถในการต้านทานของโครงสร้างป้องกัน แต่เนื่องจากสภาพของพื้นผิว ดินหรือ ฐานรากไม่สามารถสร้างขึ้นได้โดยง่ายภายในห้องปฏิบัติการ ซึ่งหากสภาพดังกล่าวไม่ได้พิจารณาอย่างถี่ถ้วนและผล ของการทดลองในห้องปฏิบัติการไม่สามารถดัดแปลงให้เข้ากับพฤติกรรมที่ถูกกำหนดในสภาพการดำเนินการจริงที่ ต้องการได้ ควรที่จะต้องทำการทดลองภาคสนามต่อไป

ขั้นตอนที่ 3 การทดสอบภาคสนาม เพื่อตรวจสอบโครงสร้างที่สมบูรณ์ รวมทั้งประเด็นการติดตั้งในสถานการณ์จริง โดยในขั้นตอนนี้ จะดำเนินการเพื่อหาสถานที่ก่อสร้างที่เหมาะสมเพื่อสาธิตและประเมินผลการดำเนินการของ โครงสร้างป้องกันในด้านต่างๆที่ไม่สามารถประเมินได้จากขั้นตอนการทดสอบในห้องปฏิบัติการ ขั้นตอนนี้ มุ่ง ประเด็นเฉพาะที่ทดสอบลักษณะของการป้องกันที่สภาพฐานรากและพื้นผิวในรูปแบบต่างๆ รวมทั้งความสามารถ ในการก่อสร้าง