

3ª Lista de exercícios para a OBA (Nível 4)

Gabarito Fotometria & Estrelas

Material elaborado por Iago Mendes

1. Questão (1 ponto)

A nossa estrela – o Sol – possui 6 camadas, 3 internas e 3 externas. Observe a seguinte representação com números de 1 a 6 em cada camada solar:

1.1. Pergunta (0,6 ponto) (0,1 cada acerto)

Abaixo, os 6 nomes das camadas solares estão em ordem aleatória. Insira o número correspondente ao representado na imagem.

(3) Zona convectiva

(1) Núcleo

(**6**) Coroa

(2) Zona radiativa

(4) Fotosfera

(5) Cromosfera

1.2. Pergunta (0,1 ponto)

Quais as formas de transmissão de calor nas camadas 2 e 3, respectivamente?

() Condução e Radiação

- (X) Radiação e Convecção
- () Convecção e Condução
- () Convecção e Radiação

1.3. Pergunta (0,3 ponto)

Algo que ainda intriga vários cientistas é o fato de a camada 6 possuir uma maior temperatura do que as camadas 4 e 5. O fator responsável por essa peculiaridade mais aceito atualmente também causa irregularidades na atmosfera solar, como os ventos solares. Qual é esse fator?

- () Equilíbrio entre força gravitacional e a pressão de radiação
- () Escapamento de neutrinos originados pelas reações nucleares
- () Movimento do Sol ao redor do baricentro do Sistema Solar
- (X) Variação dos campos magnéticos solares

2. Questão (1 ponto)

A energia proveniente do Sol é originada por meio do ciclo p-p, o qual pode ser simplificado para a seguinte reação nuclear:

$$H_1^2 + H_1^3 \longrightarrow He_2^4 + n_0^1 + \gamma$$

em que H_1^2 (deutério) e H_1^3 (trítio) são isótopos do hidrogênio, He_2^4 é um átomo de hélio, n_0^1 é um nêutron, e γ representa a energia liberada.

As massas atômicas envolvidas nessa reação são dadas a seguir:

$$> m(H_1^2) \simeq 2,014 \ uma$$

$$> m(He_2^4) \simeq 4,003 \ uma$$

$$> m(H_1^3) \simeq 3,016 \ uma$$

$$> m(n_0^1) \simeq 1,009 \ uma$$

2.1. Pergunta (0,4 ponto)

Calcule a taxa de massa perdida (t), em porcentagem, usando a reação nuclear dada.

Dica: $t = \left| \frac{m' - m_0}{m_0} \right|$, em que m_0 e m' são as massas antes e depois da reação, respectivamente.

• Primeiramente, precisamos calcular m_0 e m':

$$m_0 = m(H_1^2) + m(H_1^3) = 2,014 + 3,016 = 5,030 \ uma$$

 $m' = m(He_2^4) + m(n_0^1) = 4,003 + 1,009 = 5,012 \ uma$

• Assim, a variação de massa é:

$$\Delta m = m' - m_0 = 5,012 - 5,030 = -0,018 \ uma$$

• Finalmente, temos:

$$t = \left| \frac{\Delta m}{m_0} \right| = \left| -\frac{0,018}{5,030} \right|$$

$$t \simeq 0,004 = 0,4\%$$

Resposta 2.1): 0,4%

2.2. Pergunta (0,3 ponto)

Dados: $M_{Sol} \simeq 2 \cdot 10^{30} \ kg$

• Basta multiplicar M_{Sol} por t:

$$m = M_{Sol} \cdot t = 2 \cdot 10^{30} \cdot 4 \cdot 10^{-3}$$

 $\therefore m = 8 \cdot 10^{27} \ kg$

Resposta 2.2): $8 \cdot 10^{27} \ kg$

2.3. Pergunta (0,3 ponto)

Qual a quantidade de energia gerada pela massa calculada no item anterior? Dica: $E=mc^2$

• Sabendo que $c = 3 \cdot 10^8 \frac{m}{s}$, temos:

$$E = m \cdot c^2 = 8 \cdot 10^{27} \cdot (3 \cdot 10^8)^2$$

$$E = 7, 2 \cdot 10^{43} \approx 7 \cdot 10^{43} J$$

Resposta 2.3): $7 \cdot 10^{43} J$

3. Questão (1 ponto)

Na Astronomia, os conceitos de Luminosidade e Fluxo são frequentemente usados e, portanto, é importante saber diferenciá-los. Observe o esquema seguinte representando a emissão de energia do Sol:

Como você pode perceber, o "brilho" é reduzido à medida que a distância da fonte luminosa aumenta. Contudo, a energia emitida deve ser a mesma, visto que não se pode perder energia no universo.

Nesse contexto, precisamos fazer duas definições:

- 1. Luminosidade: é a quantidade de energia emitida a cada unidade de tempo (potência) e a sua unidade no S.I. é o watt $(W = \frac{J}{s})$
- 2. Fluxo: é a quantidade de potência recebida a cada unidade de área e a sua unidade no S.I. é watt por metro quadrado $(\frac{W}{m^2})$

Dito isso, é possível analisar que os melhores termos para "brilho" e "energia emitida" seriam fluxo e luminosidade, respectivamente. Como já discutimos, a luminosidade deve se manter constante na superfície da esfera luminosa emitida e o fluxo é inversamente proporcional à distância da fonte luminosa. Para encontrarmos uma fórmula que descreva essas quantidades, basta inserirmos a área superficial dessa esfera $(A = 4\pi r^2)$:

$$F = \frac{L}{4\pi r^2}$$

em que F é o fluxo, L é a luminosidade, e r é a distância à fonte (raio da esfera luminosa).

3.1. Pergunta (0,5 ponto)

A distância entre a Terra e o Sol é 1 $UA \approx 1, 5 \cdot 10^{11} \ m$. Sabendo disso e que $L_{Sol} \simeq 3, 8 \cdot 10^{26} \ W$, determine o fluxo solar que recebemos.

Dica: para facilitar as contas, considere $\pi \approx 3$

• Aplicando os valores na fórmula do fluxo, temos:

$$F_{Sol} = \frac{L_{Sol}}{4\pi r^2} = \frac{3.8 \cdot 10^{26}}{4 \cdot 3 \cdot (1.5 \cdot 10^{11})^2}$$

$$F_{Sol} \simeq 1, 4 \cdot 10^3 \, \frac{W}{m^2} = 1400 \, \frac{W}{m^2}$$

Resposta 3.1): $1400 \frac{W}{m^2}$

3.2. Pergunta (0,5 ponto)

O fluxo da estrela Sirius – alfa da constelação Cão Maior – recebido na Terra é $F_{Sirius} \simeq 1, 2 \cdot 10^{-7} \frac{W}{m^2}$ e a sua luminosidade é $L_{Sirius} \simeq 9, 7 \cdot 10^{27}$. Se a Terra estivesse a uma mesma distância do Sol e de Sirius, qual estrela possuiria o maior fluxo?

• Se as 2 estrelas estivessem a uma mesma distância do da Terra, teríamos a seguinte razão:

$$\frac{F_{Sirius}}{F_{Sol}} = \frac{L_{Sirius}}{4\pi r^2} \frac{4\pi r^2}{L_{Sol}} = \frac{L_{Sirius}}{L_{Sol}}$$

- Como $L_{Sirius} > L_{Sol}$, temos que $F_{Sirius} > F_{Sol}$.
- () Sol
- (X) Sirius
- () As duas estrelas teriam o mesmo fluxo
- () Impossível de determinar com as informações passadas

4. Questão (1 ponto)

A luminosidade das estrelas depende tanto em seu tamanho quanto em sua temperatura. Nesse sentido, podemos usar a Lei de Stefan-Boltzmann para mostrar matematicamente essa relação:

$$L = 4\pi R^2 \sigma T^4$$

em que L é a luminosidade, R é o raio, T é a temperatura, e σ é a constante de Stefan-Boltzmann $\left(\sigma \simeq 5,67\cdot 10^{-8}\,\frac{W}{m^2K^4}\right)$.

Mais importante do que memorizar essa equação, é preciso entender que a luminosidade é diretamente proporcional ao raio ao quadrado e à temperatura elevada à quarta pontência. Matematicamente, temos:

$$L \propto R^2 T^4$$

Além disso, podemos determinar a cor de uma estrela a partir de sua temperatura (e vice-versa). Para tanto, precisamos utilizar a Lei de Wien:

$$\lambda T = b$$

em que λ é o comprimento de onda em que a maior quantidade de energia é emitida pela estrela, T é a sua temperatura, e b é a constante de Wien $(b \simeq 2, 90 \cdot 10^{-3} \ mK)$.

4.1. Pergunta (0,1 ponto)

Se o raio de uma estrela for reduzido pela metade $\left(R' = \frac{R_0}{2}\right)$ e sua temperatura for multiplicada por 2 $\left(T' = 2T_0\right)$, o que acontecerá com a luminosidade?

• Usando a Lei de Stefan-Boltzmann, temos:

$$\frac{L'}{L_0} = \frac{4\pi R'^2 \sigma T'^4}{4\pi R_0^2 \sigma T_0^4} = \left(\frac{R'}{R_0}\right)^2 \cdot \left(\frac{T'}{T_0}\right)^4$$

$$\therefore \frac{L'}{L_0} = \left(\frac{1}{2}\right)^2 \cdot 2^4 = 2^2 = 4$$

$$\therefore L' = 4L_0$$

$$(\quad)\ L'=L_0$$

$$(\)\ L'=2L_0$$

$$(\quad) L' = \frac{L_0}{2}$$

$$(X) L' = 4L_0$$

$$(\quad) L' = \frac{L_0}{4}$$

4.2. Pergunta (0,4 ponto)

O raio do Sol é $R_{Sol} \approx 7 \cdot 10^8~m$ e sua temperatura é $T_{Sol} \approx 6.000~K$. Sabendo que essas mesmas características da estrela Sírius são $R_S \approx 1 \cdot 10^9~m$ e $T_S \approx 10.000~K$, encontre a razão $\frac{L_S}{L_{Sol}}$.

• Usando a Lei de Stefan-Boltzmann, temos:

$$\frac{L_S}{L_{Sol}} = \frac{4\pi R_S^2 \sigma T_S^4}{4\pi R_{Sol}^2 \sigma T_{Sol}^4} = \left(\frac{R_S}{R_{Sol}}\right)^2 \cdot \left(\frac{T_S}{T_{Sol}}\right)^4$$

$$\therefore \quad \frac{L_S}{L_{Sol}} = \left(\frac{1 \cdot 10^9}{7 \cdot 10^8}\right)^2 \cdot \left(\frac{1 \cdot 10^4}{6 \cdot 10^3}\right)^4 = \frac{10^6}{1.764}$$

$$\therefore \quad \frac{L_S}{L_{Sol}} \approx 6 \cdot 10^2 = 600$$

Resposta 4.2): $\frac{10^6}{1.764} \approx 600$

4.3. Pergunta (0,5 ponto)

Usando as temperaturas T_{Sol} e T_S e com a ajuda da tabela seguinte, marque com os números 1 (para o Sol) e 2 (para Sirius) os intervalos de cores mais próximos ao pico de emissão das estrelas.

Espaço para cálculos:

• Por meio da Lei de Wien, podemos calcular os comprimentos de onda do Sol e de Sirius:

$$\lambda_{Sol} = \frac{b}{T_{Sol}} = \frac{2,90 \cdot 10^{-3}}{6 \cdot 10^{3}} \approx 5 \cdot 10^{-7} m$$

$$\therefore \quad \lambda_{Sol} = 500 \ nm$$

$$\lambda_S = \frac{b}{T_S} = \frac{2,90 \cdot 10^{-3}}{1 \cdot 10^4} \approx 3 \cdot 10^{-7} m$$

$$\therefore \quad \lambda_S = 300 nm$$

- (2) Violeta Azul
- (1) Ciano Verde
- () Amarelo Vermelho

5. Questão (1 ponto)

Exoplanetas podem ser encontrados de 5 formas, mas a maneira mais eficaz até o momento é o *Método de Trânsito*. De maneira simplificada, esse método consiste em detectar a diminuição da luminosidade de uma estrela causada pela passagem do exoplaneta. Para entender melhor como isso acontece, observe o esquema seguinte:

5.1. Pergunta (0,5 ponto)

Um problema do *Método de Trânsito* é que a sua eficácia depende da órbita do planeta visualizada. Nesse sentido, marque o(s) exoplaneta(s) abaixo que poderiam ser descobertos por meio desse método.

Tempo

• Para que um exoplaneta possa ser descoberto pelo *Método de Trânsito*, sua órbita precisa passar em frente a sua estrela.

5.2. Pergunta (0,5 ponto)

Sabendo que R_e e R_p são respectivamente os raios da estrela e do exoplaneta, qual a razão das luminosidades L_2 (medida em t_2) e L_1 (medida em t_1)?

Dica: neste caso, podemos considerar que a luminosidade é proporcional à área da seção transversal.

Espaço para cálculos:

• A área da seção transversão em t_1 , é dada por:

$$At_1 = \pi R_e^2$$

 \bullet A área da seção transversão em $t_2,$ é dada por:

$$At_2 = \pi (R_e^2 - R_p^2)$$

(basta subtrair a área transversal correspondente ao exoplaneta, $A=\pi R_p^2$, da área transversal correspondente à estrela, $A=A_1=\pi R_e^2$)

• Como $L \propto A$, temos:

$$\frac{L_2}{L_1} = \frac{A_2}{A_1} = \frac{\pi (R_e^2 - R_p^2)}{\pi R_e^2}$$

$$L_2 = \frac{R_e^2 - R_p^2}{R_e^2 - R_p^2}$$

$$\therefore \quad \frac{L_2}{L_1} = \frac{R_e^2 - R_p^2}{R_e^2}$$

$$\left(\quad\right) \ \frac{L_2}{L_1} = \left(\frac{R_p}{R_e}\right)^2$$

$$(X)$$
 $\frac{L_2}{L_1} = \frac{R_e^2 - R_p^2}{R_e^2}$

$$\left(\quad\right) \ \frac{L_2}{L_1} = \left(\frac{R_e}{R_p}\right)^2$$

()
$$\frac{L_2}{L_1} = \frac{R_p^2 - R_e^2}{R_p^2}$$

Bons estudos!

