Символ Якоби

Обобщением понятия символа Лежандра является символ Якоби.

Определение 2.7. Пусть $m, n \in \mathbb{Z}$, где $n = p_1 p_2 ... p_r$ и числа $p_i \neq 2$ простые (не обязательно различные). Символ Якоби $\left(\frac{m}{n}\right)$ определяется равенством

$$\left(\frac{m}{n}\right) = \left(\frac{m}{p_1}\right)\left(\frac{m}{p_2}\right)...\left(\frac{m}{p_r}\right).$$

Если число n — простое, то символ Якоби является символом Лежандра.

Символ Якоби обладает следующими свойствами.

1. $\left(\frac{a}{n}\right)$ принимает значения 0, 1 или –1, причем $\left(\frac{a}{n}\right) = 0$ тогда и

только тогда, когда НОД $(a, n) \neq 1$. Полагают $\left(\frac{a}{\pm 1}\right) = 1$.

$$2. \left(\frac{a+kn}{n}\right) = \left(\frac{a}{n}\right)$$
для всех $a, k \in \mathbb{Z}$.

$$3.\left(\frac{ab^2}{n}\right) = \left(\frac{a}{n}\right)$$
 для всех $a, b \in \mathbb{Z}$, НОД $(b, n) = 1$.

4.
$$\left(\frac{ab}{n}\right) = \left(\frac{a}{n}\right)\left(\frac{b}{n}\right)$$
 для всех $a, b \in \mathbb{Z}$.

5.
$$\left(\frac{1}{n}\right) = 1; \left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}}$$
. Следовательно, $\left(\frac{-1}{n}\right) = 1$ при $n = 1$

$$(\text{mod } 4); \left(\frac{-1}{n}\right) = -1 \text{ при } n \equiv -1 \text{ (mod } 4).$$

6.
$$\left(\frac{2}{n}\right) = (-1)^{\frac{n^2-1}{8}}$$
. Следовательно, $\left(\frac{2}{n}\right) = 1$ при $n \equiv \pm 1 \pmod{8}$;

$$\left(\frac{2}{n}\right) = -1 \text{ при } n \equiv \pm 3 \text{ (mod 8)}.$$

7. Для нечетных целых чисел m, n справедливо равенство $\left(\frac{m}{n}\right) = (-1)^{\frac{m-1}{2}\frac{n-1}{2}} \left(\frac{n}{m}\right)$.

Из свойств символа Якоби следует, что если n — нечетное целое число и $a=2^ka_1$, где число a_1 нечетное, то

$$\left(\frac{a}{n}\right) = \left(\frac{2^k}{n}\right)\left(\frac{a_1}{m}\right) = \left(\frac{2}{n}\right)^k \left(\frac{n \pmod{a_1}}{a_1}\right)(-1)^{\frac{(a_1-1)(n-1)}{4}}.$$

Отсюда получаем алгоритм вычисления символа Якоби [4].

Алгоритм 2.1. Вычисление символа Якоби.

 $Bxo\partial$. Нечетное целое число $n \ge 3$, целое число $a, 0 \le a < n$.

Bыход. Символ Якоби $\left(\frac{a}{n}\right)$.

- 1. Положить $g \leftarrow 1$.
- 2. При a = 0 результат: 0.
- 3. При a = 1 результат: g.
- 4. Представить a в виде $a = 2^k a_1$, где число a_1 нечетное.
- 5. При четном k положить $s \leftarrow 1$. При нечетном k положить $s \leftarrow 1$, если $n \equiv \pm 1 \pmod 8$; положить $s \leftarrow -1$, если $n \equiv \pm 3 \pmod 8$.
- 6. При $a_1 = 1$ результат: $g \cdot s$.

- 7. Если $n \equiv 3 \pmod{4}$ и $a_1 \equiv 3 \pmod{4}$, то $s \leftarrow -s$.
- 8. Положить $a \leftarrow n \pmod{a_1}$, $n \leftarrow a_1$, $g \leftarrow g \cdot s$ и вернуться на шаг 2. \square Сложность алгоритма равна $O(\log^2 n)$.

Пример 2.25. Вычислим символ Якоби $\left(\frac{532}{2739}\right)$. Полагаем g=1.

Первая итерация. Находим представление числа a: $532 = 2^2 \cdot 133$, $a_1 = 133$. Число k = 2 четное, поэтому s = 1. Полагаем $a = 2739 \equiv 79$ (mod 133), n = 133, $g = 1 \cdot 1 = 1$.

Вторая итерация. Находим представление числа a: $79 = 2^0 \cdot 79$, $a_1 = 79$. Число k = 0 четное, поэтому s = 1. Полагаем $a = 133 \equiv 54$ (mod 79), n = 79, $g = 1 \cdot 1 = 1$.

Третья итерация. Находим представление числа a: $54 = 2^1 \cdot 27$, $a_1 = 27$. Число k = 1 нечетное и $n = 79 \equiv -1 \pmod 8$, поэтому s = 1. Кроме того, $n \equiv 3 \pmod 4$ и $a_1 \equiv 3 \pmod 4$, поэтому s = -1. Полагаем $a = 79 \equiv 25 \pmod {27}$, n = 27, $g = 1 \cdot (-1) = -1$.

Четвертая итерация. Находим представление числа a: $25 = 2^0 \cdot 25$, $a_1 = 25$. Число k = 0 четное, поэтому s = 1. Полагаем $a = 27 \equiv 2 \pmod{25}$, n = 25, $g = (-1) \cdot 1 = -1$.

Пятая итерация. Находим представление числа a: $2 = 2^1 \cdot 1$, $a_1 = 1$. Число k = 1 нечетное и $n \equiv 1 \pmod 8$, поэтому s = 1.

Поскольку $a_1 = 1$, алгоритм заканчивает работу на шаге 6 с результатом: $-1 \cdot 1 = -1$.