

Asymptotique 1

1.1

Développement asymptotique à trois termes de a) $(1+x)^{1/x^2}$, $\ln(\ln(1+x))$, $(x+1)^{1/(x+1)} - x^{1/x}$

b) $(1 + \frac{1}{\sqrt{x}})^x$,

1.2

(16-17) Soit *P* dans R[X] tel que P(1) > 1. On pose $P_n(X) = X^n - P(X)$.

- a) Montrer que, pour n suffisamment grand, P_n possède exactement une racine dans $]1,+\infty[$ que l'on note x_n .

1.4 Puissance *n*-ième.

Soit a_n une suite réelle de termes > -1.

a) Montrer que $a_n - \ln(1 + a_n)$ tend vers 0 ssi a_n tend vers 0.

b) Montrer que $\frac{a_n}{\sqrt{n}}$ tend vers 0 ssi e^{a_n} est équivalente à $(1 + \frac{a_n}{n})^n$. (Comportement de a_n/n d'abord).

2 Intégrales simples

2.1Rappel

Montrer qu'il existe des constantes A et B positives telles que, pour toute fonction f de R dans R, de classe C^1 et 2π périodique on ait

$$\sup_{t \in \mathbf{R}} |f(t)| \le A \int_0^{2\pi} |f'(t)| dt + B(\int_0^{2\pi} |f(t)|^2 dt)^{1/2}$$

2.2

Etudier $x \longmapsto \int_x^{3x} \frac{\cos t}{t} dt$ en 0 et $+\infty$.

1-2 < WALLE, how IPP

2.3 Soit $f \in C([0, 1], \mathbb{R})$. a) Montrer $\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx$ b) Calculer $\int_0^{\pi} \frac{x \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x}$. 3 Intégrales généralisées 3.1 Convergence et calcul de $\int_0^{+\infty} (Arctg(1+t) - Arctg(t))dt$, $\int_0^{+\infty} \log(1+\frac{1}{y^2})dt$. $\int_0^{\pi/2} \sqrt{\tan t} dt.$ 3.2

Soit r > 0. Donner un équivalent, lorsque h > 0 tend vers 0, de $\sum_{n=1}^{+\infty} n^r e^{-nh}$.

3.3

- On considère $f: x \to \int_x^{x^2} \frac{dt}{\ln t}$. a) Donner le domaine de définition de f; est-elle prolongeable par continuité? En donner un équivalent en $+\infty$.
- b) En déduire $\int_0^1 \frac{t-1}{\ln t} dt$.

3.4

Soit $f: \mathbf{R}^{\frac{\gamma}{+}} \mapsto]0, +\infty[$ une application de classe C^1 . On suppose que, en $+\infty$, $\frac{f'}{f} \sim \frac{2}{x}$. Montrer que $\int_0^x f(t)dt \sim \frac{xf(x)}{3}$ en $+\infty$.