0009937827 - Drawing available WPI ACC NO: 2000-239123/ 200021

Liquid crystal display luminous signal mechanism having rear reflector and modulated liquid crystal section having transmission strips and forward

Patent Assignee: SOC AUTOROUTES DU SUD FRANCE (AUTO-N); SOC AUTOROUTES SUD

FRANCE SA (AUTO-N)

Inventor: BLAY J P

Patent Family (2 patents, 25 countries)

Patent

Application

Number

Kind Date Number Kind Date Update

EP 986042

A1 20000315 EP 1999410109 A 19990908 200021 B

FR 2783076

A1 20000310 FR 199811379 A 19980908 200021 E

Priority Applications (no., kind, date): FR 199811379 A 19980908

Patent Details

Number

Kind Lan Pg Dwg Filing Notes

EP 986042

A1 FR

Regional Designated States, Original: AL AT BE CH CY DE DK ES FI FR GB GR

IE IT LI LT LU LV MC MK NL PT RO SE SI

Alerting Abstract EP A1

NOVELTY - The liquid crystal signaling mechanism has a back reflecting surface (14) with a forward liquid crystal unit (12) made up of interface sections (20,22) and the liquid crystal itself. The liquid crystal section can be modulated to be opaque or transmit light at rates between 0.2 and 5 Hz providing a blinking output to input light. There is an output filter (30) filtering the light.

USE - Luminous liquid crystal signaling mechanism.

ADVANTAGE - Long distance visibility having autonomy at a reduced cost. DESCRIPTION OF DRAWINGS - The figure shows a section through the signaling mechanism

14 Reflector element

12 Liquid crystal element

20.22 Transmission elements

30 Filter

32 Modulation

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: 15.03.2000 Bulletin 2000/11 (51) Int CL7: G09F 9/35

(21) Numéro de dépôt: 99410109.5

(22) Date de dépôt: 08.09,1999

(84) États contractants désignés:

AT SE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE

Etats d'extension désignés:

AL LT LV MK ROSI

(30) Priorité: 08.09.1998 FR 9811379

(71) Demandeur: Société des Autoroutes du sud de la France 75000 Paris (FR) (72) Inventeur Blay, Jean Pierre 11 100 Narbonne (FR)

(74) Mandataire: Hecké, Gérard Cabinet HECKE World Trade Center - Europole, 5, Place Robert Schuman, BP 1537 38025 Grenoble Cedex 1 (FR)

(54) Dispositif de signalisation à catadioptre et à cellule à cristaux liquides

(57)Un dispositif de signalisation lumineuse comprend un élément réflecteur 14 destiné à réfléchir des rayons lumineux pour les renvoyer vers une source d'éclairage d'émission, et une cellule transducteur à cristal liquide 12 placée devant l'élément réflecteur 14 pour constituer une valve optique à mode réflexif. Un circuit électronique 32 délivre un signal de commande variable à la cellule transducteur à cristal liquide 12, laquelle est susceptible de se trouver dans un état transparent ou dans un état opaque seion les modifications d'état du champ électrique engendré dans la cavité 24. Le passage d'un état à l'autre provoque une modulation du flux lumineux réfléchi par l'élément réflecteur 14. Pour les dispositifs clignotants, une horloge 36 permet d'ajuster la fréquence du signal de commande dans une fourchette de 0,2Hz à 5Hz. Un filtre d'entrée 30 polarisant est agencé sur la face externe de la lame support 22 antérieure à l'opposé de l'élément réflecteur 14.

81G 1

EP 0 986 042 A1

Description

Domaine technique de l'invention

[0001] L'invention est relative à un dispositif de signalisation lumineuse comprenant :

Ì

- un élément réflecteur destiné à réfléchir des rayons lumineux pour les renvoyer vers une source d'éclairage d'émission,
- une cellule transducteur à cristal liquide placée devant l'élément réflecteur pour constituer une valve optique à mode réflexif, ladite cellule étant composée de deux lames support planes en matériau transparent, ménageant entre elles ladite cavité remplie de cristal liquide, et d'une paire d'électrodes transparentes ou semi-transparentes, recouvrant la face interne des deux lames à l'intérieur de la cavité.
- un circuit électronique délivrant un signal de commande d'activation ou de déactivation à la cellule transducteur à cristal liquide, laquelle est susceptible de se trouver dans un état transparent ou dans un état opaque selon la nature du signal de commande qui engendre des modifications du champ électrique dans la cavité de ladite cellule, le passage d'un état à l'autre provoquant une modulation du flux lumineux réfléchi par l'élément réflecteur.

Etat de la technique

[0002] Les catadioptres classiques utilisés dans la signalisation routière de nuit renvoient la lumière dans la direction exacte d'où elle est émise par les phares des voitures. L'efficacité de ce type de signalisation routière reste néanmoins discutable à cause de l'accoutumance de l'oeil à l'environnement et à la multitude d'informations visuelles destinées à capter son attention, notamment la signalisation horizontale (indications peintes sur la chaussée), la signalisation verticale (panneaux divers, feux de croisement, etc..), et les panneaux d'affichage publicitaires et les enseignes lumineuses.

[0003] Les panneaux d'affichage et les dispositifs classiques de signalisation lumineuse sont généralement éclairés par une source lumineuse, laquelle paut être intégrée ou être placée à proximité du panneau ou du dispositif de signalisation. Cette source lumineuse est constituée par au moins une ampoule électrique, alimentée par le réseau de distribution à basse tension, ou par une batterie de secours. Le courant important consommé entraîne des frais d'exploitation importants. [0004] Le document US-A-4 893 903 décrit en référence à la figure 21 un dispositif à cristaux fiquides, où le materiau produisant l'effet d'occultation est pris en sandwich entre deux plaques transparentes recouvertes d'un dépôt servant d'électrode d'activation. Le dispositif ne comporte pas de filtre polarisant à l'entrée de la cellule, ce qui impose l'utilisation d'un certain type de tranducteur à cristal liquide, lequel consomme une énergie électrique relativement importante

Objet de l'invention

[0905] Le but de l'invention consiste à réaliser un dispositif de signalisation lumineuse à effet attractif et visible de loin, et bénéficiant d'autre part d'une grande autonomie pour un coût de fonctionnement réduit.

[0006] Selon l'invention, le dispositif de signalisation fumineuse comporte de plus:

- des moyens pour ajuster la fréquence du signal de commande dans une fourchette de 0,2Hz à 5Hz dans le cas d'un clignotement, ou pour activer cycliquement des modules synchronisés montés en cascade.
- et un filtre d'entrée polarisant agencé sur la face externe de la lame support antérieure à l'opposé de l'élément réflecteur.

[0007] Selon un mode de réalisation préférentiet, chaque électrode est obtenue au moyen d'un revêtement conducteur invisible. L'élément réflecteur peut être formé par un catadioptre accolé à la lame support postérieure de la cellule transducteur à cristal liquide, ou par un film réfléchissant à haute luminosité par concentration de lumière, et ayant une structure colorée en fonction de la couleur souhaitée.

[0008] Selon une caractéristique de l'invention, le circuit électronique comporte un hacheur alimenté par une source de courant continu, et piloté par une horloge, la sortie du hacheur étant connectée aux deux électrodes.

[0009] La source de courant continu d'alimentation du hacheur peut être constituée par une simple pile ou un accumulateur, conférant à l'ensemble une grande autonomie.

[0010] De préférence, le circuit électronique comporte un générateur de base de temps intégré dans un étage logique alimenté par une première tension d'alimentation, et raccordé par l'intermédiaire d'un diviseur capacitif à un circuit d'interface comprenant deux transistors montés en Push-Pull, ledit circuit d'interface étant alimenté par une deuxième tension d'alimentation correspondant à la tension nominale des cellules LCD.

[0011] D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre d'un mode de réalisation de l'invention donné à titre d'exemple non limitatif, et représenté aux dessins annexés, dans lesquels :

- la figure 1 est une vue schématique en coupe du dispositif de signalisation selon l'invention;
- la figure 2 montre le circuit électronique de commande du dispositif de signalisation à cristaux liquides.

Description d'un mode de réalisation préférentiel

[0012] Sur la figure 1, un dispositif de signalisation 10 comporte une cellule transducteur à cristal liquide 12, associée à un réflecteur 14 arrière pour constituer une valve optique à mode réflexif.

[9013] Le réflecteur 14 est formé avantageusement par un catadioptre 15 ou par tout autre dispositif optique à haute luminosité, réfléchissant les rayons lumineux vers la source d'émission. Le catadioptre 15 peut comporter une surface réfléchissante prismatique, ou une structure à microbilles. Il est également possible de faire usage d'un film réfléchissant à haute luminosité par concentration de lumière, et ayant une structure colorée en fonction de la couleur souhaitée.

[9014] Le dispositif de signalisation 10 permet une vision directe avec observation d'une image ou d'un message sur la cellule transducteur à cristal liquide 12. La source d'émission lumineuse se trouve à l'avant de la cellule transducteur, et à l'opposé du réflecteur 14.

[0015] La source d'émission lumineuse peut être une lampe 16 d'éclairage, notamment les phares d'un véhicule, ou un spot défivrant une lumière incidente en direction de la cellule transducteur à cristal liquide 12. La lumière incidente peut également être constituée par l'éclairage ambient si la luminosité est suffisante.

[0016] La vision directe sur la cellule transducteur à cristal liquide 12 est optimum lorsque l'oeil 18 de l'observateur est localisé dans le champ de la fumière réfléchie, et lorsque l'angle de vision par rapport à la direction verticale ou horizontale à la normale de la cellule est inférieur à 50°.

[0017] La cellule transducteur à cristal liquide 12 est composée de deux lames support 20, 22 planes en verre ou autre matériau transparent, ménageant entre elles une cavité 24 de faible épaisseur, remplie de cristal liquide. Une paire d'électrodes 26, 28 transparentes ou semi-transparentes, est déposée sur la face interne des deux lames 20, 22, à l'intérieur de la cavité 24. Chaque électrode 25, 28 est obtenue à titre d'exemple au moyen d'un revêtement d'une peinture conductrice invisible.

[0018] La cellule transducteur à cristal liquide 12 fonctionnant en valve optique est ainsi transparente au niveau de l'ensemble de ses constituants. La modification locale de la transmission de la lumière intervient au moyen d'un signal électrique de commande appliquée sur les deux électrodes 26, 28. La présence de ce signal électrique de commande engendre un champ électrique dans la cavité 24, lequel active le volume de cristal liquide en provoquant un effet électro-optique d'orientation des molécules pour moduler la transmission de la lumière par la cellule transducteur 12.

[0019] Un filtre d'entrée 30 polarisant est déposé sur la face externe de la lame support 22 antérieure pour polariser la lumière et rendre visible l'effet de modulation. Il est ainsi possible d'utiliser des occulteurs à cristaux liquides fonctionnant selon le principe de la rotation de la potarisation de la lumière. Ces cristaux liquides

nécessitent la présence à l'entrée du filtre polarisant pour transformer l'effet rotatoire des composantes lumineuses en effet d'occultation. Le coût de mise en œuvre de ce type d'occulteurs est relativement réduit.

[0020] Le signal électrique de commande de la cellule transducteur à cristal liquide 12 est fourni par un circuit électronique 32, lequel est alimenté par une source 34 de courant continu, et piloté par une horloge 36. Des moyens du circuit électronique 32 agissent sur le signal de sortie pour ajuster la fréquence de clignotement dans une fourchette comprise entre 0,2Hz et 5Hz dans le cas d'un dispositif clignotant, ou pour règler la vitesse de défilement dans le cas d'une centrale de pilotage de feux défilants. Pour les modules constituant un ensemble de feux défilants, il est possible de connecter chaque cellule à une centrale commune, ou d'équiper chaque module d'un circuit électronique de commande avec une synchronisation sur le module précédent. Le circuit électronique 32 comporte par exemple un hacheur ou tout autre convertisseur délivrant le signal de commande, par example un signal carré ayant une fréquence fixe dont la valeur est comprise dans la fourchette précitée. Le circuit électronique 32 pourra être réalisé avantageusement selon la technologie des circuits intégrés pour limiter l'énergie électrique fournie par la source 34 d'alimentation. Cette dernière peut être obtenue au moyen d'une simple pile ou d'un accumulateur de qualques Volts permettant d'obtenir une grande autonomie pour le fonctionnement du circuit électronique 32.

[0021] A titre d'exemple, un signal de commande de 2 Hz provoque un elignotement de la cellule transducteur à cristal liquide 12 qui s'effectue à une fréquence de deux éclairs à la seconde. La quasi-totalité de l'énergie est de l'énergie lumineuse produite par la lampe 16 extérieure, et le flux lumineux réfléchi par le catadioptre est modulé, en modifiant périodiquement la transmission de la lumière à travers la cellule transducteur à cristal liquide 12 constituant un masque.

[9022] La cellule transducteur à cristal liquide 12 se trouve respectivement dans un état opaque après l'application sur les électrodes 26, 28 d'une tension non nulle, ou d'un signal carré à 30Hz seton le type de cellule à cristaux liquides, et dans un état transparent en l'absence de tension ou en appliquant une tension fixe ou nulle pour les cellules LCD à rafraîchissement. Ce dernier type de cellules LCD à rafraîchissement doivent en effet être commandées en alternance par deux séquences, comprenant d'une part un signal carré à 30Hz pour activer l'effet de masque, et d'autre part un signal de tension constante (positive, négative ou nulle) pour le déactiver.

[0023] Pour les dispositifs clignotants, les durées respectives de ces séquences seront ajustées pour obtenir un clignotement effectif de la cellule LCD aliant de 0,2Hz à 5Hz

[0024] Les modifications résultantes du champ électrique dans la cavité 24 provoquent un passage rapide d'un état vers l'autre, entraînant un effet de clignofement du masque, lequel est parfaitement visible grâce à la très basse fréquence du signal de commande. Chaque état reste stable jusqu'au prochain changement du signal de commande.

[0025] La modulation de la transmission lumineuse par la cellule transducteur à cristal liquide 12 associé à l'effet réflectorisant du catadioptre 15 attire le regard de l'observateur. Il en résulte de ce fait diverses applications

[0026] En référence à la figure 2, le circuit électronique de commande 32 comporte un étage logique EL alimenté en 3 Volts, et comprenant un générateur de base de temps 40, chargé de produire des signaux régulièrement séquencés, pour la commande en clignoteur ou en feux défilants, suivi d'un étage de mise en forme (et éventuellement de production des différentes phases nécessaires à un système de feux défilants). Enfin, pour commander les cristaux liquides LCD, un circuit d'interface IN est adaptée à la tension d'alimentation des cristaux liquides LCD qui est communément de l'ordre de 12 Volts.

[0027] Le générateur de base de temps 40 est formé par une résistance R9 et un condensateur C1. Le diviseur résistif à résistances R5 et R6 associées aux composants MOS Q4 et Q5, est destiné à réduire le courant consommé par l'étage logique EL.

[0028] Le circuit d'interface IN comprend deux transistors MOS Q10 et Q11 montés en Push-Pull et pilotés par des impulsions courtes, obtenues en faisant passer le signal logique de l'étage EL à travers un diviseur capacitif à condensateurs C2 et C3 de très faibles capacités, ces condensateurs se rechargeant ensuite grâce à des résistances R7 et R8 de fortes valeurs. Le signal logique attaque directement les deux condensateurs C2 et C3 qui ont une double fonction :

- isoler les deux étages EL et IN ayant des tensions d'alimentation différentes;
- générer des signaux impulsionnels sur les grilles des transistors MOS Q10 et Q11. Le condensateur C2 iaisse passer des impulsions négatives vers le transistor Q10 sur les fronts descendants du signal issu des transistors Q8 et Q9. Le condensateur C3 laisse passer des impulsions positives vers le transistor Q11 sur les fronts montants de ce même signal.

[0029] Les électrodes 26, 28 de la celtule transducteur à cristal liquide 12 sont connectées à la sortie S3 et à la masse du circuit d'interlace IN.

[9030] La consommation totale d'un circuit LCD ayant une dimension de 30cm sur 20cm, est inférieure à 40 micro-Ampères, ce qui correspond à une autonomie de plusieurs années avec un bloc de piles sèches dont le volume est comparable à environ trois piles plates de 4,5 Volts, comme celtes qu'on utilise couramment dans les lampes de poche. Il est ainsi possible de connecter un tel matériel à un équipement isolé existant, doté

d'une alimentation à piles ou à capteurs solaires, sans que la consommation supplémentaire soit apparemment décetable.

[0031] Dans le domaine de la signalisation automobile, le dispositif de signalisation selon l'invention est particulièrement adapté pour attirer l'attention du conducteur sur une information de danger. Les panneaux STOP à des carrefours dangereux peuvent être équipés du dispositif clignotant de couleur rouge, ce qui correspond à l'indication ARRET IMMEDIAT. Toute autre signafisation de danger peut être renforcée de nuit par un dispositif clignotant de couleur adaptée, par exemple orange. Le dispositif de signalisation selon l'invention se prête particulièrement aux panneaux de signalisation temporaire, notamment les systèmes de balisage de chantiers et de travaux d'entretien (rétrécissement de chaussée, travaux de terrassement, arrêt momentané de la circulation, etc...), et à l'information des automobilistes en cas d'accident ou d'arrêt d'un véhicule sur la chaussée. Il pourrait également servir au ballsage sur route d'un ilinéraire provisoire ou d'une déviation, et en ville pour indiquer la direction conseillée vers un endroit prédéterminé.

[0032] Dans le domaine de la sécurité des personnes, le dispositif de signalisation selon l'invention peut être apposé sur des vêtements ou des cartables d'enfants, ainsi que sur des vêtements des personnes intervenant dans des lieux dangereux, notamment les autoroutes, les voies rapides urbaines ou les tunnels.

[9033] Il est également possible de réaliser des masques clignotants destinés à mettre en évidence des informations publicitaires ou commerciales. Dans une ambiance suffisamment éclairée où l'effet réflectorisant ne présente pas d'intérêt suite à l'absence d'une source de lumière individuelle, des informations écrites avec des encres fluorescentes sur un fond noir (couleur du cristal liquide dans l'état opaque) pourraient venir en remplacement du catadioptre

[0034] Il est clair que plusieurs masques peuvent être juxtaposés pour obtenir un dispositif de signalisation ayant une superficie désirés.

Revendications

- 1. Dispositif de signalisation lumineuse comprenant :
 - un élément réflecteur (14) destiné à réfléchir des rayons lumineux pour les renvoyer vers une source d'éclairage d'émission.
 - une cellule transducteur à cristal liquide (12) placée devant l'élément réflecteur (14) pour constituer une valve optique à mode réflexit, ladite cellule étant composée de deux lames support (20, 22) planes en matériau transparent, ménageant entre elles ladite cavité (24) remptie de cristal liquide, et d'une paire d'électrodes (26, 29) transparentes ou semi-transparentes.

50

5

10

recouvrant la face interne des deux lames (20, 22) à l'intérieur de la cavité (24).

- un circuit électronique (32) délivrant un signal de commande d'activation ou de déactivation à la cellule transducteur à cristal liquide (12), laquelle est susceptible de se trouver dans un état transparent ou dans un état opaque selon la nature du signal de commande qui engendre des modifications du champ électrique dans la cavité (24) de ladite cellule. le passage d'un état à l'autre provoquant une modulation du flux lumineux réfléchi par l'élément réflecteur (14), caractérisé en ce qu'il comporte de plus:
- des moyens pour ajuster la fréquence du signal de commande dans une fourchette de 0,2Hz à 15 5Hz dans le cas d'un clignotement, ou pour activer cycliquement des modules synchronisés montés en cascade,
- et un filtre d'entrée (30) polarisant agencé sur la lace externe de la larrie support (22) antérieure à l'opposé de l'élément réflecteur (14).
- Dispositif de signalisation lumineuse selon la revendication 1, caractérisé en ce que chaque électrode (26, 28) est obtenue au moyen d'un revêtement 25 conducteur invisible.
- 3. Dispositif de signalisation lumineuse selon la revendication 1, caractérisé en ce que le circuit électronique (32) comporte un hacheur ou séquenceur allmenté par une source de courant continu, et piloté par une horloge (36), la sortie du hacheur étant connectée à au moins une paire d'électrodes (26, 28).
- 4. Dispositif de signalisation lumineuse selon la revendication 1, caractérisé en ce que l'élément réflecteur (14) est formé par un catadioptre (15) accolé à la lame support (20) postérieure de la cellule transducteur à cristal liquide (12).
- 5. Dispositif de signalisation lumineuse selon la revendication 1, caractérisé en ce que l'élément réflecteur (14) est formé par un film réfléchissant à haute luminosité par concentration de lumière, et ayant une structure colorée en fonction de la couteur souhaitée.
- 6. Dispositif de signatisation lumineuse seion la revendication 3, caractérisé en ce que la source de courant continu d'alimentation du hacheur est constituée par au moins une pile.
- 7. Dispositif de signalisation lumineuse seion la revendication 1, caractérisé en ce que le circuit électronique (32) comporte un générateur de base de temps (40) intégré dans un étage logique (EL) alimenté par une première tension d'alimentation, et raccordé par l'intermédiaire d'un diviseur capacitif

(C2, C3) à un circuit d'interface (IN) comprenant deux transistors (Q10, Q11) montés en Push-Pull, ledit circuit d'interface (IN) étant alimenté par une deuxième tension d'alimentation correspondant à la tension nominale des cellules LCD.

FIG 1

FIG 2

Office européen RAPPORT DE RECHERCHE EUROPEENNE

Numero de la demande EP 99 41 0109

tégorie	Citation du document avec in des parties pertine	Reation, en cas de besoin, más	Flevendication concernee	CLASSEMENT DE LA DEMANDE (Int.CL7)
	US 4 893 903 A (THAK) 16 janvier 1990 (1990 * colonne 10, ligne 1 18; figures 19-21 *		1.5	G09F9/35
	US 5 153 760 A (AHME) 6 octobre 1992 (1992- * le document en ent	-10-06)	1,4,5	
***************************************	US 5 182 663 A (JONE: 26 janvier 1993 (1993 * revendication 1 *		4	
	6B 1 457 531 A (CLAUF 1 décembre 1976 (1976 * le document en ent	3-12-01)	1	
	FR 2 695 504 A (BEROU 11 mars 1994 (1994-0: * revendication 6 *		1	
				DOMAINES TECHNIQUES RECHERCHES (INLCLT)
Ì				G09F

	esent rapport a eté établi pour toute			
ì	ieu de la recharche	Date d'achevement de la secheche	0	Examplesour.
~~~~	LA HAYE	18 octobre 1999		1, Α
X pani Y pani Pilus	a TEGORIE DES DOCUMENTS CITES sufférentent perfinent filtel sont cultérantent perfinent en combination air coournent de la même catégorie re-clair technologique.	Ticheche ou pristore El cocciment de Ser dens de sépérico dens de sépérico de un Dicaté dens la dem Sincie pour d'autres	vet antereur, ma apiès catto distr ance Taisons	is public à la

P document intercelaire

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 99 41 0109

La présente annexé indique les membres de la famille de brevets relatifs aux documents prevets cités dans le rapport de recharche auropaenne visé di-dessus. Les dits mambers sont contenus au fichier informatique de l'Office européen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pes le responsabilité de l'Office européen des brevets.

18-10-1999

Document brevet cité au repport de recherche			Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
US	4893903	A	16-01-1990	CA 1314083 A EP 0202067 A JP 62161189 A	02-03-199; 20-11-1986 17-07-198;
US	5153760	A	06-10-1992	AUCUN	المتراجع الم
US	5182663	A.	26-01-1993	AT 155253 T CA 2114215 A DE 69220801 D DE 69220801 T EP 0600964 A JP 6510138 T WO 9305434 A	15-07-199 18-03-199 14-08-199 19-02-1998 15-06-1994 10-11-1994 18-03-1993
68	1457531	A	01-12-1976	AUCUN	مهري المناوية المناوية والمناوية والمناوية المناوية المناوية المناوية
FR	2695504	A	11-03-1994	AUCUN	

Pour tout renseignement concernant cette annexé : voir Journal Officiel de l'Office européen des brevets. No.12/82

EPOS FORM POASO