

7 Series FPGA Overview

7 Series FPGA Families

	ARTIX.7	KINTEX.7	VIRTEX.7
Maximum Capability	Lowest Power and Cost	Industry's Best Price/Performance	Industry's Highest System Performance
Logic Cells	20K – 355K	70K – 480K	285K – 2,000K
Block RAM	12 Mb	34 Mb	65 Mb
DSP Slices	40 – 700	240 – 1,920	700 – 3,960
Peak DSP Perf.	504 GMACS	2,450 GMACs	5,053 GMACS
Transceivers	4	32	88
Transceiver Performance	3.75Gbps	6.6Gbps and 12.5Gbps	12.5Gbps, 13.1Gbps and 28Gbps
Memory Performance	1066Mbps	1866Mbps	1866Mbps
I/O Pins	450	500	1,200
I/O Voltages	3.3V and below	3.3V and below 1.8V and below	3.3V and below 1.8V and below

Virtex-7 Devices

The Virtex-7 family has several devices

Virtex-7: General logic

Virtex-7XT: Rich DSP and block RAM, higher serial bandwidth

Virtex-7HT: Highest serial bandwidth

Virtex-7HT Virtex-7 Virtex-7XT Logic **Block RAM** DSP Parallel I/O Serial I/O High Logic Density High Logic Density High Logic Density High-Speed Serial High-Speed Serial Ultra High-Speed Connectivity Connectivity **Serial Connectivity** Enhanced DSP

Architecture Alignment

- Common elements enable easy IP reuse for quick design portability across all 7 series families
 - Design scalability from low-cost to high-performance
 - Expanded eco-system support
 - Ouickest TTM
 - Logic Fabric LUT-6 CLB

- Precise, Low Jitter Clocking MMCMs
- On-Chip Memory 36Kbit/18Kbit Block RAM
- Enhanced Connectivity
 PCIe® Interface Blocks

DSP Engines
DSP48E1 Slices

- Hi-perf. Parallel I/O Connectivity
 SelectIO™ Technology
- Hi-performance Serial I//O Connectivity
 Transceiver Technology

Artix™-7 FPGA

Kintex[™]-7 FPGA

Virtex®-7 FPGA

Strong Focus on Power Reduction

7 Series Lower Power Differentiation

- 50% lower total power
 - 65% lower static power enabled by 28nm High-Performance, Low-Power (HPL) **HKMG** process

25%+ lower dynamic power via architectural evolution

- 30% lower I/O power with enhanced capability

- System design flexibility
 - 50% lower power budget OR
 - Take advantage of additional usable performance and capacity at the previous power budget

Increase Usable

Fourth-Generation ASMBL Architecture

- Optimized FPGA feature mix for different families/members
 - FPGA comprises columns of different resources
 - Clocking, I/O, BRAM, DSP, HSSIO
- Enables the unified architecture between the different 7 series families
- Enables different resource ratios within the different devices

7 Series FPGA Layout

- All devices contain two I/O columns
 - Contains parallel I/O resources
- Clock Management Tile (CMT)
 columns are adjacent to I/O columns
 - Enables high speed I/O interfaces
- Clock routing resources are in the center column

 High-speed serial I/O replace I/O banks in smaller devices or are contained in additional columns in larger devices

Clock Regions and I/O Banks

- Each clock region is 50 CLBs tall
 - An increase from 40 CLBs in previous technologies
 - Regional clock resources remain in the center of the clock region
 - 25 rows of CLBs above and below the clock routing

- I/O banks are 50 IOBs tall
 - An increase from 40 IOBs in previous technologies
 - I/O banks and clock regions are aligned, like in previous technologies

CLB Structure

- Two side-by-side slices per CLB
 - Slice_M are memory-capable
 - Slice_L are logic and carry only
- Four 6-input LUTs per slice
 - Consistent with previous architectures
 - Single LUT in Slice_M can be a 32-bit shift register or 64 x 1 RAM
- Two flip-flops per LUT
 - Excellent for heavily pipelined designs

Block RAM

- 36K/18K block RAM
 - All Xilinx 7 series FPGA families use same block RAM as Virtex-6 FPGAs
- Configurations same as Virtex-6 FPGAs
 - 32k x 1 to 512 x 72 in one 36K block
 - Simple dual-port and true dual-port configurations
 - Built-in FIFO logic
 - 64-bit error correction coding per 36K
 block
 - Adjacent blocks combine to 64K x 1 without extra logic

DSP Slice

- All 7 series FPGAs share the same DSP slice
 - 25x18 multiplier
 - 25-bit pre-adder
 - Flexible pipeline
 - Cascade in and out
 - Carry in and out
 - 96-bit MACC
 - SIMD support
 - 48-bit ALU
 - Pattern detect
 - 17-bit shifter
 - Dynamic operation (cycle by cycle)

Clocking Resources

- Based on the established Virtex-6 FPGA clocking structure
 - All 7 series FPGAs use the same unified architecture
- Low-skew clock distribution
 - Combination of paths for driving clock signals to and from different locations
- Clock buffers
 - High fanout buffers for connecting clock signals to the various routing resources
- Clock regions
 - Device divided into clock regions with dedicated resources
- Clock management tile (CMT)
 - One MMCM and one PLL per CMT
 - Up to 24 CMTs per device

Input/Output Blocks

- Two distinct I/O types
 - High range: Supports standards up to 3.3V
 - High performance: Higher performance with more I/O delay capability
 - Supports I/O standards up to 1.8V
- Extension of logic layer functionality
 - Wider input/output SERDES
 - Addition of independent ODELAY
- New hardware blocks to address highest I/O performance
 - Phaser, IO FIFO, IO PLL

Stacked Silicon Interconnect Technology

- Largest Virtex-7 device is almost three times the size of the largest Virtex-6 device
 - Growth is higher than Moore's Law dictates
- Enabled by Stacked Silicon Interconnect (SSI) technology
 - Multiple FPGA die on a silicon interposer
 - Each die is referred to as a Super Logic Region (SLR)
 - Vast quantity of interconnect between adjacent SLRs are provided by the interposer

Stacked Silicon Implications

- Enables substantially larger devices
- Device is treated as a single monolithic device
 - Tool chains place and route complete device as if it was one die
- Minor design considerations around clocking and routing

High-Speed Serial I/O Transceivers

- Available in all families.
- GTP transceivers up to 3.75 Gbps
 - Ultra high volume transceiver
 - Wire bond package capable
- GTX transceivers up to 12.5 Gbps
 - Support for the most common 10 Gbps protocols
- GTH transceivers up to 13.1 Gbps
 - Support for 10 Gbps protocols with high FEC overhead
- GTZ transceivers up to 28 Gbps
 - Enables next generation 100–400Gbps system line cards

PCI Express

Features

- Compliant to PCIe Revision 2.1
- Endpoint & root port
- AXI user interface
- <100 ms configuration*</p>
- FPGA configuration over PCI Express*
- End-to-end CRC*
- Advanced error reporting*
- 100-MHz clocking

New wrappers

- Multi-function*
- Single-root I/O virtualization*

Configurations

- Lane widths: x1-8
- Data rates: Gen1 & Gen2 (2.5/5.0 Gbps)
- Dependent on GT and fabric speed

*New features in 7 series

XADC: Dual 12-Bit 1-MSPS ADCs

Cost, Power, and Performance

- The different families in the 7 series provide solutions to address the different price/performance/power requirements of the FPGA market
 - Artix-7 family: Lowest price and power for high volume and consumer applications
 - Battery powered devices, automotive, commercial digital cameras
 - Kintex-7 family: Best price/performance
 - Wireless and wired communication, medical, broadcast
 - Virtex-7 family: Highest performance and capacity
 - High-end wired communication, test and measurement, advanced RADAR, high performance computing

XILINX UNIFIED FPGA SERIES

I/O Composition

- Each 7 series I/O bank contains one type of I/O
 - High Range (HR)
 - High Performance (HP)
- Different devices have different mixtures of I/O banks

I/O Types	Artix-7 Family	Kintex-7 Family	Virtex-7 Family	Virtex-7 XT/HT Family
High Range	All	Most	Some	
High Performance		Some	Most	All

Multi-Gigabit Transceiver

- Different families have different MGT devices
 - Artix-7 family: GTP
 - Kintex-7/Virtex-7 family: GTX
 - Virtex-7 XT family: Mixture of GTX and GTH
 - Virtex-7 HT family: Mixture of GTH and GTZ

Speed	Artix GTP		Kintex GTX		Virtex GTX		Virtex GTH		Virtex GTZ		
Grade	min	max	min	max	max (FF)	min	max	min	max	min	max
1LC/I	0.612	3.125	0.612	5.0	6.6	0.612	6.6	0.612	10.3125	N/A	N/A
1C/I	0.612	3.125	0.612	5.0	6.6	0.612	6.6	0.612	10.3125	TBD	TBD
2C/I	0.612	3.75	0.612	6.6	10.3125	0.612	10.3125	0.612	13.1	28.05	28.05
3C	N/A	N/A	0.612	6.6	12.5	0.612	12.5	0.612	13.1	28.05	28.05

Packaging – Artix-7 Family

- Ultra low-cost wire bond technology
- Small form factor
- Fourth generation sparse chevron pin pattern
- Speeds up to 1.066 Gbps for parallel I/O
- Speeds up to 3.75 Gbps for MGT

Packaging – Kintex-7 Family

- Kintex-7 devices are available in two different packages
 - Low cost bare die flip chip (FB) and conventional flip chip (FF)
 - Small form factor packaging available
- Fourth generation sparse chevron pin pattern
- Speeds up to 2.133 Gbps for parallel I/O
- Speeds up to 12.5 Gbps for MGT in FF package, and 6.6 Gbps in FB package
- FB package has discrete substrate decoupling capacitors for MGT power supplies

Packaging – Virtex-7 Family

- High performance flip chip (FF) package
- Fourth generation sparse chevron pin pattern
- Speeds up to 2.133 Gbps for parallel I/O
- Speeds up to 28.05 Gbps for MGT
- Discrete substrate decoupling capacitors:
 - MGT power supplies
 - Block RAM power supplies
 - I/O pre-driver power supplies

Where Can I Learn More?

Xilinx Education Services courses <u>www.xilinx.com/training</u>

- <u>Designing with 7-Series Device Families</u> course
 - How to get the most out of both device families
 - How to build the best HDL code for your FPGA design
 - How to optimize your design for Spartan-6 and/or Virtex-6
 - How to take advantage of the newest device features

Free Video Based Training

- Part 1,2, and 3 of the 7 Series FPGA Overview
- How Do I Plan to Power My FPGA?
- What are the Spartan-6 Power Management Features?
- What are the Virtex-6 Power Management Features?
- Basic FPGA Configuration, Parts 1 and 2

