Slide 11-12: Elementary Row Operations

What are Row Operations?

Row operations are tools used to simplify matrices and solve systems of linear equations. By manipulating the rows of a matrix, we can transform it into simpler forms like Row Echelon Form (REF) or Reduced Row Echelon Form (RREF), which make solving equations much easier.

Types of Row Operations

1. Row Swap (Swapping Rows)

This operation exchanges two rows in the matrix.

Example:

Start with matrix A:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Swap R_1 and R_2 :

$$A = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$$

Why is this useful?

Sometimes, we need to position a row with a leading 1 (pivot) at the top to simplify the matrix.

2. Row Scaling (Multiplying a Row by a Non-Zero Constant)

Multiply all elements of a row by a constant.

Example:

Start with:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Multiply R_1 by 2:

$$R_1 \to 2 \cdot R_1 = \begin{bmatrix} 2 & 4 \\ 3 & 4 \end{bmatrix}$$

Why is this useful?

Scaling a row can help us create a pivot (1) or align elements for elimination.

3. Row Addition/Subtraction (Adding/Subtracting a Multiple of One Row to Another)
Replace one row with the sum or difference of itself and a multiple of another row.

Example:

Start with:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Subtract $3 \cdot R_1$ from R_2 :

$$R_2 \rightarrow R_2 - 3 \cdot R_1 = \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix}$$

Why is this useful?

Row addition/subtraction is used to eliminate variables or simplify matrices into triangular forms.

Why Are These Operations Important?

- 1. Solving Linear Equations: Simplify matrices to forms that make solving equations straightforward.
- 2. Finding Determinants: Transform matrices into triangular forms to compute determinants efficiently.
- 3. Computing Inverses: Use row operations to reduce a matrix to its identity matrix while transforming another matrix into its inverse.

Slide 13-15: Row Echelon Form (REF)

Definition: A matrix is in Row Echelon Form if:

- 1. All rows with only zeros are at the bottom.
- 2. The first non-zero number in each row (pivot) is to the right of the pivot in the row above.
- 3. All entries below each pivot are zeros.

Example: Convert a Matrix to REF

Start with:

$$A = \begin{bmatrix} 2 & 4 & 6 \\ 1 & 3 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

Step 1: Make the first pivot 1

Divide R_1 by 2:

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

Step 2: Eliminate the first column from R_2

Subtract R_1 from R_2 :

$$R_2 \to R_2 - R_1 = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

Step 3: Eliminate the second column from R_3

Subtract R_2 from R_3 :

$$R_3 \to R_3 - R_2 = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Final Result:

This is the Row Echelon Form (REF):

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Importance of REF:

- 1. It simplifies solving systems of linear equations using back-substitution.
- 2. It's the first step in computing matrix rank or inverses.

Slide 16-17: Rank of a Matrix

Definition:

The rank of a matrix is the number of non-zero rows in its Row Echelon Form (REF).

- Rank tells us the number of linearly independent rows or columns in the matrix.
- It shows how much "independent information" is contained in the matrix.

Example: Find the Rank of a Matrix

Start with:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Step 1: Convert to REF

Perform row operations:

1. Subtract $4 \cdot R_1$ from R_2 :

$$R_2 \to R_2 - 4 \cdot R_1 = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9 \end{bmatrix}$$

2. Subtract $7 \cdot R_1$ from R_3 :

$$R_3 \rightarrow R_3 - 7 \cdot R_1 = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix}$$

3. Eliminate the second column from R_3 :

$$R_3 \to R_3 - 2 \cdot R_2 = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 2: Count Non-Zero Rows

The REF is:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{bmatrix}$$

Non-zero rows: 2.

Rank = 2.

Why Is Rank Important?

- 1. Rank tells us if the system of linear equations is consistent (has solutions).
- 2. It determines if a matrix is invertible:
 - If Rank = Number of Rows, the matrix is invertible.