## The Representer Theorem

David S. Rosenberg

New York University

February 13, 2018

### Contents

1 Inner Product Spaces and Projections (Hilbert Spaces)

Representer Theorem

Inner Product Spaces and Projections (Hilbert Spaces)

# Inner Product Space (or "Pre-Hilbert" Spaces)

An inner product space (over reals) is a vector space V and an inner product, which is a mapping

$$\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbf{R}$$

that has the following properties  $\forall x, y, z \in \mathcal{V}$  and  $a, b \in \mathbf{R}$ :

- Symmetry:  $\langle x, y \rangle = \langle y, x \rangle$
- Linearity:  $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$
- Positive-definiteness:  $\langle x, x \rangle \ge 0$  and  $\langle x, x \rangle = 0 \iff x = 0$ .

## Norm from Inner Product

For an inner product space, we define a norm as

$$||x|| = \sqrt{\langle x, x \rangle}.$$

## Example

 $R^d$  with standard Euclidean inner product is an inner product space:

$$\langle x, y \rangle := x^T y \qquad \forall x, y \in \mathbf{R}^d.$$

Norm is

$$||x|| = \sqrt{x^T x}$$
.

## What norms can we get from an inner product?

## Theorem (Parallelogram Law)

A norm  $\|\cdot\|$  can be written in terms of an inner product on V iff  $\forall x, x' \in V$ 

$$2||x||^2 + 2||x'||^2 = ||x + x'||^2 + ||x - x'||^2,$$

and if it can, the inner product is given by the polarization identity

$$\langle x, x' \rangle = \frac{\|x\|^2 + \|x'\|^2 - \|x - x'\|^2}{2}.$$

## Example

 $\ell_1$  norm on  $\mathsf{R}^d$  is NOT generated by an inner product. [Exercise]

Is  $\ell_2$  norm on  $\mathbb{R}^d$  generated by an inner product?

# Orthogonality (Definitions)

#### Definition

Two vectors are **orthogonal** if  $\langle x, x' \rangle = 0$ . We denote this by  $x \perp x'$ .

#### Definition

x is orthogonal to a set S, i.e.  $x \perp S$ , if  $x \perp s$  for all  $x \in S$ .

# Pythagorean Theorem

### Theorem (Pythagorean Theorem)

If 
$$x \perp x'$$
, then  $||x + x'||^2 = ||x||^2 + ||x'||^2$ .

### Proof.

We have

$$||x+x'||^2 = \langle x+x', x+x' \rangle$$

$$= \langle x, x \rangle + \langle x, x' \rangle + \langle x', x \rangle + \langle x', x' \rangle$$

$$= ||x||^2 + ||x'||^2.$$



# Projection onto a Plane (Rough Definition)

- Choose some  $x \in \mathcal{V}$ .
- Let M be a subspace of inner product space  $\mathcal{V}$ .
- Then  $m_0$  is the projection of x onto M,
  - if  $m_0 \in M$  and is the closest point to x in M.
- In math: For all  $m \in M$ ,

$$||x-m_0|| \leqslant ||x-m||.$$

## Hilbert Space

- Projections exist for all finite-dimensional inner product spaces.
- We want to allow infinite-dimensional spaces.
- Need an extra condition called completeness.
- A space is **complete** if all Cauchy sequences in the space converge.

#### **Definition**

A **Hilbert space** is a complete inner product space.

## Example

Any finite dimensional inner product space is a Hilbert space.

## The Projection Theorem

### Theorem (Classical Projection Theorem)

- H a Hilbert space
- ullet M a closed subspace of  ${\mathfrak H}$  (picture a hyperplane through the origin)
- For any  $x \in \mathcal{H}$ , there exists a unique  $m_0 \in M$  for which

$$||x-m_0|| \leq ||x-m|| \ \forall m \in M.$$

- This  $m_0$  is called the **[orthogonal]** projection of x onto M.
- Furthermore,  $m_0 \in M$  is the projection of x onto M iff

$$x-m_0\perp M$$
.

## Projection Reduces Norm

#### Theorem

Let M be a closed subspace of  $\mathfrak{H}$ . For any  $x \in \mathfrak{H}$ , let  $m_0 = \operatorname{Proj}_{M} x$  be the projection of x onto M. Then

$$||m_0|| \leqslant ||x||,$$

with equality only when  $m_0 = x$ .

### Proof.

$$||x||^2 = ||m_0 + (x - m_0)||^2$$
 (note:  $x - m_0 \perp m_0$  by Projection theorem)  
 $= ||m_0||^2 + ||x - m_0||^2$  by Pythagorean theorem  
 $||m_0||^2 = ||x||^2 - ||x - m_0||^2$ 

Then  $||x - m_0||^2 \ge 0$  implies  $||m_0||^2 \le ||x||^2$ . If  $||x - m_0||^2 = 0$ , then  $x = m_0$ , by definition of norm.

Representer Theorem

# Generalize from SVM Objective

SVM objective:

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max(0, 1 - y_i [\langle w, x_i \rangle]).$$

Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

#### where

- $R: \mathbb{R}^{\geqslant 0} \to \mathbb{R}$  is nondecreasing (**Regularization term**)
- and  $L: \mathbb{R}^n \to \mathbb{R}$  is arbitrary. (Loss term)

# General Objective Function for Linear Hypothesis Space (Details)

### Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

#### where

- $w, x_1, ..., x_n \in \mathcal{H}$  for some Hilbert space  $\mathcal{H}$ . (We typically have  $\mathcal{H} = \mathbf{R}^d$ .)
- $\|\cdot\|$  is the norm corresponding to the inner product of  $\mathcal{H}$ . (i.e.  $\|w\| = \sqrt{\langle w, w \rangle}$ )
- $R:[0,\infty)\to \mathbf{R}$  is nondecreasing (**Regularization term**), and
- $L: \mathbb{R}^n \to \mathbb{R}$  is arbitrary (Loss term).

# General Objective Function for Linear Hypothesis Space (Details)

• Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

- What's "linear"?
- The prediction/score function  $x \mapsto \langle w, x_i \rangle$  is linear in what?
  - in parameter vector w, and
  - in the feature vector  $x_i$ .
- Why? [Real-valued] inner products are linear in each argument.
- The important part is the linearity in the parameter w.

# General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

- Ridge regression and SVM are of this form.
- What if we penalize with  $\lambda ||w||_2$  instead of  $\lambda ||w||_2^2$ ? Yes!.
- What if we use lasso regression? No!  $\ell_1$  norm does not correspond to an inner product.

## The Representer Theorem

## Theorem (Representer Theorem)

Let

$$J(w) = R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

where

- $w, x_1, ..., x_n \in \mathcal{H}$  for some Hilbert space  $\mathcal{H}$ . (We typically have  $\mathcal{H} = \mathbb{R}^d$ .)
- $\|\cdot\|$  is the norm corresponding to the inner product of  $\mathfrak{R}$ . (i.e.  $\|w\| = \sqrt{\langle w, w \rangle}$ )
- $R: \mathbb{R}^{\geqslant 0} \to \mathbb{R}$  is nondecreasing (Regularization term), and
- $L: \mathbb{R}^n \to \mathbb{R}$  is arbitrary (Loss term).

If J(w) has a minimizer, then it has a minimizer of the form  $w^* = \sum_{i=1}^n \alpha_i x_i$ . [If R is strictly increasing, then all minimizers have this form. (Proof in homework.)]

# The Representer Theorem (Proof)

- Let  $w^*$  be a minimizer.
- 2 Let  $M = \text{span}(x_1, ..., x_n)$ . [the "span of the data"]
- **3** Let  $w = \operatorname{Proj}_{M} w^{*}$ . So  $\exists \alpha$  s.t.  $w = \sum_{i=1}^{n} \alpha_{i} x_{i}$ .
- **1** Then  $w^{\perp} := w^* w$  is orthogonal to M.
- **5** Projections decrease norms:  $||w|| \leq ||w^*||$ .
- **o** Since R is nondecreasing,  $R(||w||) \leq R(||w^*||)$ .

- ① Therefore  $w = \sum_{i=1}^{n} \alpha_i x_i$  is also a minimizer.

Q.E.D.