

(Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name		Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	T	P	О	E	L	T	P	Total
		3	0	2	4	9	3	0	1	4
(PC)	Computer				Exan	ninatio	on Scheme			
	Architecture Organization	Component]	SE]]	MSE	E	SE	Total
CS203		The	eory		20		20		60	100
		Labor	ratory		80				20	100

Pre-requisit	e Course Codes, if any. Digital Systems							
Course Obje	Course Objective: Imparting concepts of each component of computer architecture thoroughly with							
practical asp	ects including memory systems and I/O communications with interfacing							
Course Out	comes (CO): At the End of the course students will be able to							
CO.1	Conceptualize basic computer structure with its models and compute performance metrics.							
CO.2	Design algorithms to solve ALU operations							
CO.3	Comprehend processor organization with various design methods of CPU with comparative analysis							
CO.4	Design memory systems with analysis of mapping techniques for cache and virtual memory							
CO.5	Comprehend different types of I/O buses, compare and contrast different types of data transfer methods and arbitration techniques							
CO.6	Analyze different parallel organizations that includes pipelined and parallel processors							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO.1	3				2							
CO.2	3	3			2							
CO.3	3	2	2		2							
CO.4	3											
CO.5		2	2		2							
CO.6	3											

(Autonomous Institute Affiliated to University of Mumbai)

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
CO.1	2	2	-	-	-	-
CO.2	2	2	-	-	-	-
CO.3	2	2	-	-	-	-
CO.4	2	2	-	-	-	-
CO.5	2	2	-	-	-	-
CO.6	2	2	-	-	-	-

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
			•		

(Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Overview of Computer Architecture and Organization		
	1.1	Introduction of Computer Organization and Architecture, Basic organization of computer and block level description of the functional units, Evolution of x86 Computers, Von Neumann model, Harvard Model, Embedded system	1,2	5
	1.2	Performance Issues: Designing for performance, Amdahl's Law, Multi-core, GPGPU	1,2	
2	Title	ALU, Processor Organization and Control Unit Design		10
	2.1	ALU: Integer and Floating Point Operation CPU Architecture, Register Organization, Instruction formats, basic instruction cycle. Instruction interpretation and sequencing, Case Study of 80386 architecture and Register Organization	2,3	
	2.2	Control Unit: Soft wired (Micro-programmed) and hardwired control unit design methods. Microinstruction sequencing and execution. Micro operations	2,3	
	2.3	RISC and CISC: Introduction to RISC and CISC architectures and design issues.	2,3	
3	Title	Memory Systems Organization		12
	3.1	Introduction to Memory and Memory parameters. Classifications of primary and secondary memories. Types of RAM and ROM, Allocation policies, Memory hierarchy and characteristics.	2	
	3.2	Cache memory: Concept, architecture (L1, L2, L3), mapping techniques. Cache Coherency, Interleaved and Associative memory. Case study of Pentium Processor Cache Memory Model (MESI Protocol)	2,4	
	3.3	Virtual Memory: Concept, Segmentation and Paging, Page replacement policies. Case study of 80386 Virtual Memory Concepts	2,3	
4	Title	I/O Organization		5
	4.1	Buses: Types of Buses, Bus Arbitration, BUS standards	1,2 1,2	_
	4.2	I/O Interface, I/O channels, I/O modules and IO processor, Types of data transfer techniques: Programmed I/O, Interrupt driven I/O and DMA.	1,2	
5	Title	Parallel Processing		11
	5.1	Advanced Processor Models: Real Model, Protected Model, Virtual Model (x86 Processors)	3	
	5.2	Superscalar Architecture: Case study of Pentium processor	4	
	5.3	Pipelined Architecture: Pipleine Stages, Pipeline Hazards, Mitigation of Hazards with branch prediction and data forwarding techniques	1,2,4	

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	5.4	Introduction to parallel processing concepts, Flynn's classifications,	2	
6	Self-	Comparative Study of microprocessors and micro architectures with		
	Study	respect to their important features. Detailed analysis of Multicore and		
		GPGPU Architectures. Vector and Array Processors with VLIW		
		architecture. 8086 instructions set with assembler directives		
			Total	42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected) [Only for CE/CSE]

Sr. No	Title of the Experiment
1	Installation and configure: DOS, MASM, Debug and X86 Mode
2	Implementation of various arithmetic operations through assembly language
	programming for 8086 using MASM and Debug.
3	Implement various String Operations in 8086 through the utilities provided by DOS and
	BIOS interrupts (MASM)
4	Block Transfer and Block Exchange using Index Registers
5	Drawing basic shapes like triangle, etc. using BIOS services [Use C/MASM]
6	Design Password Detection Application using BIOS and DOS interrupts along with
	8086 instructions.
7	Implement file operations [DOS Interrupts in C/MASM]
8	Implement I/O interfacing using inbuilt speakers of IBM PC
9	Implement Booth's Multiplication Algorithm
10	Implement Division Algorithm (Non-Restoring and Restoring)
11	Implementation of Mapping techniques of Cache memory
12	Implementation of Page Replacement Policies

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Computer Organization	Fifth	Carl Hamacher, Zvonko Vranesic and Safwat Zaky	Tata McGraw- Hill	2002
2	Computer Organization and Architecture: Designing for Performance	Eighth	William Stallings	Pearson	2010
3	The 80386, 80486, and Pentium Microprocessor: Hardware, Software, and	Third	Walter Triebel	Pearson	1997

(Autonomous Institute Affiliated to University of Mumbai)

	Interfacing				
4	Pentium Pro	Third	Tom Shanely	Addison	1996
	Processor			Wesley	
	System			·	
	Architecture				

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Structured Computer Organization	Sixth	Andrew S. Tanenbaum	Pearson	2013
2	Microprocessor and Interfacing: Programming & Hardware	Third	Douglas V Hall	Tata- McGraw Hill	2012
3	Computer Architecture and Organization: Design Principles and Applications	Second	B. Govindarajulu	McGraw Hill	Paperback- 2017
4	Advance Computer Architecture: Parallelism, Scalability, Programmability	Third	Kai Hwang	Tata- McGraw Hill	2017
5	Programmer's reference Manual for IBM Personal Computers	First	Steven Armburst	Tata- McGraw Hill	1986