CS 11 Exercise 1 1st Semester, AY2018-2019

August 13, 2018

1 Instructions

- Work on this assignment with your group. Group assignments are available in UVLe.
- Your solution must be in PDF format. Submit your solutions via UVLe. Only one of the group members must submit the solution.
- The solution for each item must start on a new page.
- Make sure that your algorithm works given the sample input and output. You must also check if your algorithm can also handle input other than the ones given.
- Submit your solutions on or before Saturday, August 18 at 11:59pm.

2 Problems

- 1. **Fibonacci Numbers (4 points)** Given an integer $n \geq 0$, draw a flowchart for printing the Fibonacci numbers from F_0 to F_n . For $i \geq 2$, the *i*th Fibonacci number F_i is $F_{i-1} + F_{i-2}$, with $F_0 = 0$, and $F_1 = 1$.
- 2. **Approximating** e (4 **points**) Given a real number x, the value of e^x is equal to the following summation:

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = \frac{x^0}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots$$

Draw a flowchart for approximating e^x by adding the terms of the summation. Add all the terms $\frac{x^i}{i!}$ such that $\left|\frac{x^i}{i!}\right| > 0.000001$

- 3. Largest Element (4 points) Given $n \geq 0$ and a list of n numbers $A_0, A_1, A_2, \ldots, A_{n-1}, A_n$, write an algorithm for getting the largest element in the list.
- 4. **Prime Numbers (4 points)** Given $n \ge 0$, draw a flowchart for printing the prime numbers in the interval [0, n].

(Hint: you can use the *modulo* operator (denoted by %) to get the remainder when two numbers are divided. For example, 5%2 = 1 since dividing 5 by 2 will give you a remainder of 1. Another example is 13%5 = 3, since you will get a remainder of 3 when you divide 13 by 5.)

- 5. Sum of Digits (4 points) Given a positive integer N with an arbitrary number of digits, reduce N by repeatedly computing the sum of its digits until arriving at a single-digit number. For example, if our input N is 1234567, its reduction will be equal to 1 since
 - (a) 1+2+3+4+5+6+7=28
 - (b) 2 + 8 = 10
 - (c) 1 + 0 = 1

3 Sample Input and Output

1. Fibonacci Numbers

Input	Output			
0	0			
1	0 1			
2	0 1 1			
10	0 1 1 2 3 5 8 13 21 34 55			
-1	(no output must be printed)			

2. Approximating e

Input	Output
0	1.0
1	2.718281
2	7.38905
3	20.085536
-1	0.367879

3. Largest Element

Input	Output
1; -100	-100
5; 1 2 3 4 5	5
10; 27 23 44 44 21 91 69 97 43 3	97
0;	(no output must be printed)
-1;	(no output must be printed)

4. Prime Numbers

	Input	Output
	0	(no output must be printed)
	1	(no output must be printed)
	2	2
	10	2 3 5 7
İ	30	2 3 5 7 11 13 17 19 23 29
İ	-1	(no output must be printed)

5. Sum of Digits

Input	Output
0	0
123	6
2018	2
1234567	1
43674566234	5
-1	(no output must be printed)
-199	(no output must be printed)