Sistema de Aquisição de Dados e Interfaces

Microsensores

Resumo

- Sensores & microsensores
- ✓ Microsensores de força e pressão
- ✓ Microsensores de posição e velocidade
- ✓ Microsensores de aceleração
- Microsensores químicos
- Biosensores
- Sensores de temperatura

Sensor – Transdutor

Dispositivo que converte uma quantidade física não elétrico ou química em um sinal elétrico.

Classificação dos Sensores

Forma do sinal	Medição
Térmico	Temperatura, calor, fluxo de calor, entropia, capacidade de calor, etc
Radiação	Raios gama, raios-X, ultra-violeta, luz visível e infravermelha, microondas, ondas de rádio, etc.
Mecânico	Posição, velocidade, aceleração, força, pressão, fluxo de massa, acústico, comprimento de onda, amplitude, etc
Magnético	Campo magnético, fluxo, momento magético, magnetização, permeabilidade magnética, etc.
Químico	Umidade, nível de pH e íons, concentração de gás, materiais tóxicos e inflamáveis, concentração de vapor e odor, poluentes, etc.
Biológico	Açucares, proteínas, hormônios, antígenos, etc.

- ✓ Neste curso a classificação é baseada na função que o sensor realiza
 - ✓ Pressão
 - ✓ Posição
 - ✓ Acelaração
 - ✓etc

Mercado de sensores

- ✓ Pressão 40 %
- ✓ Temperatura 25 %
- ✓ Aceleração 13 %
- ✓ Fluxo 9 %
- ✓ Força 5 %

Tendências na tecnologia de sensores

- ✓ Miniaturização
- ✓ Integração (sensor, processador de sinal e atuador)
 - ✓ sensor com circuitos processadores de sinais para linearização do sinal de saída, etc.
 - ✓ sensor com atuador embutido para calibração automática, mudança de sensibilidade, etc.
- ✓ Cadeia de Sensores
 - unidades com uma função (para melhorar confiabilidade)
 - Unidades de múltiplas funções

Microsensores

- Mercado global de sensores em 2003 era de US\$ 9.5 bilhões, 25 % de dispositivos baseados MEMS
- Crescimento anual de mercado de 20%
- Porque microsensores
 - Menor custo de fabricação (produção em massa, menos material)
 - ✓ Maior exploração da tecnologia de CI (integração)
 - ✓ Ampla aplicabilidade em cadeia de sensores
 - Menor peso (maior portabilidade)

Principais fabricantes da industrial

- Honeywell
- Delphi
- ✓ Emerson Electric
- Motorola
- Rockwell Automation
- ✓ Eaton
- Robert Bosch
- Siemens
- ✓ Texas Instruments
- Raytheon, etc

Aplicações

- ✓ Industria Automotiva
 - Média de componentes eletrônicos de um carro é hoje de 20%
 - ✓ Para melhorar segurança (controle de air bag, ABS), redução do consumo de combustível e poluição
- ✓ Aplicações médicas
 - ✓ Medição de parâmetros físico/químicos do sangue (temperatura, pressão, pH)
 - Sensores integrados em catéteres
- Eletrônicos de consumo

Aplicações

- ✓ Aplicações Ambientais
 - determinação da concentração de substâncias (monóxido de carbono, metais pesados, etc.)
- Indústria alimentícia
 - contaminantes e impurezas
- Processos industriais
- Robótica
 - ✓ distância, aceleração, força, pressão, temperatura

Sensores de Pressão

- Primeiros microsensores desenvolvidos e usados pela industria
- Sensor de pressão piezoresistivo para reduzir o consumo de combustível através do controle da razão entre o ar e o combustível
- Dispositivo sensor para medir a pressão sanguínea e monitorar o estado do paciente durante a operação
- ✓ Baixo custo de produção, alta sensibilidade e baixa histese
- Produtos comerciais são geralmente piezoresistivos ou capacitivos

Sensores de pressão: exemplos do princípio de operação

- Sensores de membranas
- ✓ Deflecção de uma membrana
- Mudança na frequência de resonância
- Estruturas planares paralela
- Métodos ópticos (Interferometro de Mach-Zehnder)

Sensor de pressão piezoresistivo

- Piezoresistivos integrados na membrana
- Pressão deflete a membrana
- Mudança da resistência proporcional a deflexão e consequentemente a pressão
- Mudança de resistência medida através de ponte de Wheatstone

Sensor de pressão com membrana capacitiva

- Membrana deflete quando uma pressão é aplicada
 - Distância entre os eletrodos muda
 - Capacitância muda
- Sensores capacitivos tem
 - Nenhuma histerese
 - Melhor estabilidade a longo prazo
 - ✓ Alta sensibilidade
 - Maior custo de produção

Dimensões do chip: 8.4 mm x 6.2 mm **Fabricação**: anisotropic etching

Sensor de pressão capacitivo baseado na estrutura de pente

$$V_O = V_I \frac{C_1 - C_2}{C_1 + C_2}$$
 Fabrication: anisotropic etching

- Utiliza estrutura de pente paralela
- Força é aplicada em paralelo ao sensor de superfície
- ✓ Força é transformada em deslocamento => mudança da capacitância
 - Em um lado a capacitância aumenta e no outro lado diminui => maior linearidade e sensitividade

Interferômetro de Mach-Zehnder

Tamanho chip: 0.3 mm x 5 mm

Saída: 14 µV/mbar

- Luz do laser é introduzida no sensor por uma fibra óptica
- ✓ Luz é dividida em dois feixes
- Um feixe cruza uma micromembrana que sofre deformação pela pressão
- A deformação muda as propriedades da luz
- Os feixes são combinados e chegam no fotodiodo
- Velocidades diferentes de propagação resulta em deslocamento de fase

Microsensores de posição e velocidade

- Aplicações
 - Automóveis
 - ✓ Robôs
 - ✓ Instrumentos médicos
- ✓ Métodos óptico e magnético sem contato são os mais significativos para MST – Tecnologia de Microestruturas

Sensor magnético para medição de deslocamento angular

Comprimento: 4 mm Resolução: 0.028 graus

- Medição do ângulo de junção em robôs
- Medição baseada no sensor Hall de deslocamento angular
- Rotor com linha dentada
- Estator contém sensores Hall
- ✓ Imã permanente localizado sob os sensores
- Dentes passando pelo sensor
 Hall muda o campo
 magnético

Sensor de velocidade angular capacitivo

Size: 20 mm x 20 mm Sensitivity: 0.5 mV s/deg

- O arranjo bifurcado é usado como um ressonador
- O ressonador começa a oscilar quando o campo magnético e a corrente alternada são aplicadas (força de Lorentz)
- A amplitude do ângulo de comutação é detectado pela mudança da capacitância entre os eletrodos fixos e móveis

Microsensores de aceleração

- Tem sido bastante utilizado na industria automotiva
- Geralmente detectados com métodos capacitivos e piezoresistivos
- Uma haste flexível onde a massa é fixada é muito usado
- Sob aceleração a massa desloca a haste
- Deflecção da haste é detectada
- Pelo aumento da massa a sensibilidade pode ser aumentada

Examples do princípio piezoresistivo e capacitivo

Um acelerômetro capacitivo da Analog Devices

- Um acelerômetro capacitivo produzido em massa foi apresentado em 1991
- Integravam este sensor circuitos microeletrônicos para pré-amplificação de sinal, compensação de temperatura e sistema de auto-teste
- Um dos primeiros acelerômetros com sucesso comercial
- Atualmente usado em sistemas de airbags
- ✓ Faixa de ±5 g, resolução 0.005 g

Microsensor cantilever capacitivo

Cantilever length: 120 - 500 µm

Sensitivity: 0.6 - 100 mV/g Fabrication: dry etching

- Sensor consiste de hastes
- Atuando como um eletrodo
- ✓ Voltagem dente-de-serra é aplicada para aumentar gradativamente a força eletrostática
- Finalmente a haste toca o contato
- Aceleração afeta a magnitude da tensão requerida para estabelecer o contato

Microsensor piezoresistivo com amortecedor a óleo

- Sensor consiste de cantilever beams, uma massa sismica e óleo
- O óleo amortece a ressonância da massa suspensa

Cantilever length: 480 µm

Seismic mass: 2 mg

Fabrication: wet etching

Sensores químicos

- Detecção da presença ou concentração de uma substância química
- ✓ Aplicações
 - diagnósticos médicos
 - ciência nutricional
 - Proteção da natureza
 - ✓ Industria automobilísitca
- Aproximadamente 60 % dos sensores químicos são sensores de gás

Sensores químicos ...

- Métodos de medição convencionais geralmente são muito complicados e caros, requerendo condições de laboratório, etc.
- Objetivos dos microsensores:
 - Pequenos e baratos
 - Produzidos em massa
 - Precisos e robustos
 - Uso de pequenas quantidade de reagentes
 - ✓ Tempo de resposta curto

Sensores químicos ...

- Tendêncas de pesquisa (além do desenvolvimento de unidades de sensores):
 - ✓ Integração dos sensores com os sistemas de medição (processamento de sinal)
 - ✓ Integração de diversos tipos de sensores (para testar concentrações n)
 - Microsistemas com vários sensores idênticos (análise loca de uma substância, distribuição de um parâmetro sobre um certo domïnio)
- ✓ Princípio dos sensores
 - Princípio do potenciômetro conectado com um FET
 - Sensores acústico
 - Sensores ópticos