

Box drawings

for learning with imbalanced data

KDD 2014

Think of...

A few positive examples in a sea of negative examples. For modeling rare events: Machine breakdown, etc.

A box drawing classifier is a union of axis-parallel rectangles.

The usual way to do this...

Greedy

- Decision Tree (CART, C4.5 Breiman 1984, Quinlan 1993)
 - Top down greedy: pick a features based on Gini Index or Information Gain, split data into two pieces, repeat. Prune afterwards.
- PRIM (Friedman, Fisher 1999)
 - Peel off subsets of data greedily, and if there is improvement, keep peeling off data. Occasionally put the data back.

This is too greedy for us

Better solutions

- Approach 1: The Exact Boxes algorithm
 - Optimize weighted accuracy, regularize by number of boxes
 - Mixed-Integer Programming formulation
 - Useful for not-huge problems, but solves exactly the problem we care about
 - Acts as a gold standard to compare with because it solves exactly the problem we want.
- Approach 2:The Fast Boxes algorithm
 - Approximates the solution of Exact Boxes
 - Characterize (one class learning) before discriminating
 - Requires that features are continuous.

Experiments

Data	Logistic	SVM	CART	C4.5	Ada- Boost	RF	C5.0	HDDT	Fast Boxes
pima	(0.0112)	(0.0126)	(0.0123)	(0.0347)	(0.0218)	(0.0126)	(0.0353)	(0.0274)	(0.0241)
castle	(0)	(0)	(0.0068)	(0.0060)	(0.0046)	(0.0079)	(0.0060)	(0.0062)	(9)
corner	(0.0129)	(0.0005)	(0.2717)	0.5997 (0.1482)	(0.0449)	(0.0265)	(0.1110)	(0.0365)	(0.0001)
diamond	0.5	(0.0004)	(0.0129)	(0.0181)	(0.9460 (0.0117)	(0.0121)	(0.0208)	0.9364 (0.0180)	(0.0062)
square	(0.0718)	(0.0001)	(0.0051)	(0.0043)	(0.0033)	(0.0033)	(0.0043)	(0.0027)	(0.0015)
flooded	(0)	(0.0010)	0.9466 (0.0157)	(0.1074)	(0.0231)	(0.0252)	(0.1077)	(0.0208)	(0.0091)
fourclass	(0.0195)	(0.0176)	(0.0176)	(0.0296)	(0.0265)	(0.0053)	(0.0130)	(0.0116)	(0.0174)
castle3D	(0.0324)	(0)	(0.0347)	(0.0374)	(0.9272 (0.0499)	0.9455	(0.0615)	(0.0374)	(0)
corner3D	(0.0316)	(0.0463)	(0.0504)	(0.0729)	0.6245 (0.03927)	(0.0309)	(0.0778)	(0.0457)	(0.0091)
diamond3D	(0.0324)	(0.7962	(0.0347)	(0.0374)	(0.0492)	(0.0309)	(0.0778)	(0.0542)	(0.0119)
aquare3D	0.5	(0.0156)	(0.0306)	(0.1224)	(0.01451)	(0.0234)	(0.1712)	(0.0322)	(0.0090)
flooded3D	0.5	0.7912 (0.0781)	(0.0902)	0.5	(0.0329)	(0.0440)	0,5	(0.0749)	(0.0307)
breast	(0.0230)	(0.0079)	0.9516	(0.0138)	(0.0329)	(0.0102)	(0.0135)	(0.0180)	(0.0313)
	(D.0200)	100000	O KANA	The state of	To to take of	10,010,01		0.8115	O BUILD

Summary

- Exact Boxes
 - Mixed integer Programming
- Fast Boxes
 - Characterize-then-discriminate approach.
- Take away: Aim for both interpretability and accuracy, because you can often get both.

Thank You!