Dynamic-SUPERB Tutorial

Chien-yu Huang
Speech Processing Lab., National Taiwan University

- Framework overview
- Benchmark tasks
- Evaluations
- Baseline models
- Score submission
- Task contribution

- Framework overview
- Benchmark tasks
- Evaluations
- Baseline models
- Score submission
- Task contribution

Framework Overview

- Framework overview
- Benchmark tasks
- Evaluations
- Baseline models
- Score submission
- Task contribution

Benchmark Tasks

Content

Spoken Term Detection Speech-Text Matching Command Recognition

Semantics

Act Classification Intent Classification Sarcasm Detection

Paralinguistics

Accent Classification Stress Detection Spoof Detection

Speaker

Speaker Verification
Multi-Speaker Detection
Speaker Counting

Degradation

Noise Detection
Reverberation Detection
SNR Level Prediction

Audio

Bird Sound Detection Chord Classification Environmental Sound Cls.

- Covers 6 dimensions, 33 tasks, and 55 evaluation instances.
- They are all <u>classification tasks</u>.

Task Format

Tasks

Evaluation Instances

NoiseSNRLevelPrediction_VCTK_MUSAN-Gaussian
 NoiseSNRLevelPrediction_VCTK_MUSAN-Music
 NoiseSNRLevelPrediction_VCTK_MUSAN-Noise
 NoiseSNRLevelPrediction_VCTK_MUSAN-Speech
 README.md

Noise Detection @

Noise Detection aims to idenetify if the speech audio is clean or mixe <u>LJSpeech dataset</u> [1] and <u>VCTK Dataset</u> [2], and <u>Musan Dataset</u> [3] pro the instance.json file or through this <u>link</u>.

Task Objective ∂

The objective of noise detection is to ascertain if an audio file has been are many types of noises - like music, speech, gaussian or others. The must not only process the content of the speech but also understand

Evaluation Results @

Task Format

```
README.md
instance.json
```

```
"name": "NoiseSNRLevelPrediction_VCTK_MUSAN-Music",
   "description": "",
   "keywords": "",
   "metrics": [
        "accuracy"
],
   "path": "DynamicSuperb/NoiseSNRLevelPrediction_VCTK_MUSAN-Music",
   "version": "b889b2d5079d40ae085e00784885938881d8118b"
}
```

- Access all information in "instance.json".
- Download data with "path" and "version" from Huggingface.

- Framework overview
- Benchmark tasks
- Evaluations
- Baseline models
- Score submission
- Task contribution

Evaluation - Integrating Huggingface API

 Download data from Huggingface with <u>datasets</u> package (no explicit download).

```
import json
from pathlib import Path

from datasets import load_dataset

json_path = Path("instance.json")
info = json.load(json_path.open(mode="r"))

dataset = load_dataset(info["path"], split="test", revision=info["version"])
```

Iterate with a very simple <u>for loop</u>.

```
for example in dataset:
    speech_arr = example["audio"]["array"]
    speech_sr = example["audio"]["sampling_rate"]
    instr = example["instruction"]
    label = example["label"]
```

Evaluation - Save to Local Files

- Save files to local storage explicitly for easy modification.
- Scripts in <u>api/preprocess</u>.

```
save_dir
|-- instance1
| -- instance1_001.wav
| -- instance1_002.wav
| -- instance1_003.wav
| -- metadata.json
|-- instance2
|-- instance3
```

```
"NoiseDetection_VCTK-MUSAN-Gaussian_test_clean_VCTK-Corpus_16k_p225_218.wav": {
    "file": "NoiseDetection_VCTK-MUSAN-Gaussian_test_clean_VCTK-Corpus_16k_p225_
    "instruction": "Ascertain whether the speech utterance is a clear or noisy use "label": "clean"
},

"NoiseDetection_VCTK-MUSAN-Gaussian_test_clean_VCTK-Corpus_16k_p295_282.wav": {
    "file": "NoiseDetection_VCTK-MUSAN-Gaussian_test_clean_VCTK-Corpus_16k_p295_
    "instruction": "Verify if the speech utterance is a pure or noisy utterance "label": "clean"
},

"NoiseDetection_VCTK-MUSAN-Gaussian_test_clean_VCTK-Corpus_16k_p279_300.wav": {
    "file": "NoiseDetection_VCTK-MUSAN-Gaussian_test_clean_VCTK-Corpus_16k_p279_
    "instruction": "Ascertain whether the speech utterance is a clear or noisy use "label": "clean"
},
```

Evaluation - Metrics

Accuracy for classification tasks (string matching, case-insensitive).

Groundtruth: clea	oundtruth: clean		redundant comma	synonyms	
Prediction	clean	Clean	clean,	clear	
Matched	✓	✓	×	×	

- Not the best choice for free-form responses from LLMs.
- Working on more flexible measures (e.g., sentence embeddings).

- Framework overview
- Benchmark tasks
- Evaluations
- Baseline models
- Score submission
- Task contribution

Baseline Models - Implementations

- Open-sourced all baselines used in the Dynamic-SUPERB paper.
- Detailed guideline for running inference with pre-trained weights.

Baseline Models - Performance

Leaderboard 2

This leaderboard provides a comprehensive summary of how all models have performed across every instance.

Instance	BERT- GSLM	Whisper	ImageBind- LLM	Whisper- LLM	ASR- ChatGPT
BirdSoundDetection_Warblrb10k	0.00%	0.00%	28.29%	14.67%	14.71%
ChordClassification_AcousticGuitarAndPiano	0.00%	0.00%	44.35%	58.44%	2.79%
EnvironmentalSoundClassification_ESC50-Animals	0.00%	4.00%	73.75%	11.75%	15.50%
EnvironmentalSoundClassification_ESC50- ExteriorAndUrbanNoises	0.00%	0.00%	48.75%	3.50%	7.00%
EnvironmentalSoundClassification_ESC50- HumanAndNonSpeechSounds	0.00%	1.75%	12.00%	6.00%	19.50%
Environmental Sound Classification_ESC 50- Interior And Domestic Sounds	0.00%	0.00%	20.25%	7.75%	4.00%
Environmental Sound Classification_ESC 50- Natural Sounds capes And Water Sounds	0.00%	0.00%	22.75%	9.25%	4.75%

- Framework overview
- Benchmark tasks
- Evaluations
- Baseline models
- Score submission
- Task contribution

Score Submission

- Pack all scores into a <u>JSON file</u> & submit via pull requests.
- No need to evaluate on all instances.

- Framework overview
- Benchmark tasks
- Evaluations
- Baseline models
- Score submission
- Task contribution

Task Contribution

Task Contribution

- Only single-label classification tasks in benchmark now.
- Generative tasks are also important.
 - Speech recognition
 - Text-to-speech
 - Voice conversion
 - Speech enhancement
 - Speech translation
- Welcome contributions on various metrics (also through PRs).