METHOD OF MANUFACTURING FOR LIQUID CRYSTAL DISPLAY DEVICE

Patent Number: JP2001117105
Publication date: 2001-04-27

Inventor(s): TAKASE TAKESHI Applicant(s): TOSHIBA CORP

Application Number: JP19990295359 19991018

Priority Number(s):

IPC Classification: G02F1/1339; G02F1/1341

EC Classification: Equivalents:

Abstract

PROBLEM TO BE SOLVED: To shorten the time required for coating with liquid crystal members and to provide a method for manufacturing a liquid crystal display device with improved display quality by preventing shortage of the liquid crystal members and the air bubble generation at the central and corner parts in the case the liquid crystal members are sealed between the array and counter substrates placed opposite to each other.

SOLUTION: The liquid crystal members 23, 24 are dropped on a number of points on the respective planes of the array and counter substrates. The part between the array and counter substrates is adhered and hardened via a sealant 21. The display quality is improved by sealing the liquid crystal members 23, 24 between the array and counter substrates.

Data supplied from the esp@cenet database - I2

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-117105 (P2001-117105A)

(43)公開日 平成13年4月27日(2001.4.27)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

G 0 2 F 1/1339 1/1341 505:

G 0 2 F 1/1339 1/1341 505 2H089

300 2

審査請求 未請求 請求項の数4 OL (全 4 頁)

(21)出願番号

特願平11-295359

(22)出願日

平成11年10月18日(1999.10.18)

(71)出願人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72) 発明者 高瀬 剛

兵庫県姫路市余部区上余部50番地 株式会

社東芝姫路工場内

(74)代理人 100081732

弁理士 大胡 典夫 (外1名)

Fターム(参考) 2H089 LA20 MA07Y NA22 NA39

NA44 QA12 TA04 TA09 TA13

(54) 【発明の名称】 液晶表示装置の製造方法

(57)【要約】

【課題】 対向して配置されるアレイ基板と対向基板間 に液晶部材を封止させるのに際し、液晶部材の塗布にかかる時間の短縮を図り、且つ中間及び隅部分における液晶部材の不足や気泡の発生による表示品位を改善した液晶表示装置の製造方法を提供する。

【解決手段】 アレイ基板と対向基板の夫々の平面上の多数点に液晶部材23,24を滴下し、これらアレイ基板と対向基板間をシール材21を介して接着硬化させ、アレイ基板と対向基板間に液晶部材23,24を封止させることで、表示品位を向上させる。

【特許請求の範囲】

【請求項1】 一平面上に薄膜トランジスタ素子をマトリックス状に配したアレイ基板と、このアレイ基板に対向して配置される対向基板と、前記アレイ基板と対向基板とを所定の間隙を持って接着するシール材と、前記対向基板とアレイ基板間に封入される液晶部材とから構成される液晶表示装置の製造方法において、前記アレイ基板と対向基板の互いに対向する両基板面を複数のブロックに区分し、このブロックに液晶部材を夫々滴下させた後に、前記アレイ基板と対向基板とを対向しシール材によって接着させることを特徴とする液晶表示装置の製造方法。

【請求項2】 前記液晶部材は、前記アレイ基板と対向 基板のブロック内で、夫々アレイ基板と対向基板との互 いに異なる位置に滴下することを特徴とする請求項1記 載の液晶表示装置の製造方法。

【請求項3】 前記液晶部材は、前記アレイ基板と対向 基板との滴下位置を、区分されたブロックの1/2ピッ チずらせた位置に滴下することを特徴とする請求項1及 び2記載の液晶表示装置の製造方法。

【請求項4】 前記液晶部材は、前記一方の基板側ではブロックの中央部分に滴下し、前記他方の基板側のブロックでは、この一方の基板のブロック中央部分から1/2ピッチずれた個所に滴下することを特徴とする請求項1乃至3記載の液晶表示装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、薄膜トランジスタ 素子をスイッチング素子として用いた液晶表示装置の製 造方法に関する。

[0002]

【従来の技術】現在液晶表示装置は、その薄型、軽量及び低消費電力等の特徴を活かして、パーソナルワープロやパーソナルコンピュータ等のパーソナル〇A機器や、あるいはテレビジョン受像機のディスプレイ装置等として広く多用化されている。中でも各画素毎にスイッチング素子として薄膜トランジスタを一体に設けたアクティブマトリックス型液晶表示装置が、隣接画素間でのクロストークがなく、良好な表示画像の実現が可能であることから、現在主流となっている。

【〇〇〇3】このアクティブマトリックス型液晶表示装置は、一般的にはガラス材からなる基板上に、マトリックス状に複数の薄膜トランジスタ(TFT)に接続される透明画素電極を配置し、更にこの上に配向膜を形成したアレイ基板を含む。またこのアレイ基板と対向配置される同じくガラス材からなる対向基板には、透明電極と配向膜が順次形成され、更にカラー表示用の場合には、3原色RGBカラーフィルタが設けられている。このアレイ基板と対向基板間とは所定の間隙を持って対向配置され、シール剤を介して貼り合わされている。そしてこ

の間隙には液晶部材が注入口から注入され、更に注入口 は封止剤により封止されて構成されている。液晶部材の 厚さは、このアレイ基板及び対向基板間に介在されるスペーサによって規定されている。

【0004】そして、これらアレイ基板及び対向基板の外表面側には、位相差板もしくは偏光板が貼付され、更にアレイ基板の偏光板の外側にバックライトが配置されて透過型の液晶表示装置が構成される。このバックライトの代わりに偏光板を光反射フィルムとすれば、反射型の液晶表示装置を構成することができる。

【0005】ところで、このような液晶表示装置の製造方法は、次の工程を経て製造されるのが一般的である。即ち、複数のアレイ基板または対向基板が面付けされる大判の電極基板の主面上に、個々の基板に対応してシール材を額縁状に、且つ液晶注入口の部分を切欠いて枠状に塗布する。このシール材が塗布されていない他方の大判基板の主面上には、スペーサ材が散布される。そしてこれら両基板を対向させ位置合わせした後に貼り合わせ、シール材を硬化させることで所定の間隙を介して接着固定する。その後に基板を個々のパネル形態となるように分断し、この個々のパネルに液晶注入口から液晶部材を真空注入法にて注入し、液晶部材の注入後に注入口を封止して液晶表示装置を構成している。

【0006】この液晶表示装置の製造方法では、液晶部材の注入を真空下で行わなければならず、排気工程等に多大な時間を要し、特に画面サイズの大型化に伴い生産性が大幅に損なわれていた。これを解決する方法の一つとして、例えばシール材に紫外線を照射するのみで硬化する材料を使用し、予め液晶部材を一方の基板上に滴下し、しかる後に両基板を対向させてシール材を硬化させ、アレイ基板と対向基板を接着し、両基板間に液晶部材を封止させることで、真空中での液晶注入工程を省略した方法も開発されつつある。

[0007]

【発明が解決しようとする課題】このように予め基板上に液晶部材を滴下し、しかる後に両基板を貼り合わせるという滴下注入法は、真空注入法に比較すると、その生産性において多くの優れた面を有する液晶表示装置の製造方法ということができるが、塗布された液晶部材が延展していくのに比較的長時間が必要とされる。また、気泡の残留を十分に解消するに至っていないのが現状である。

【0008】本発明は、上記の課題に対処してなされた ものであり、製造歩留まりを低下させることなく高い生 産性を達成することができる液晶表示装置を製造する液 晶表示装置の製造方法を提供するにある。

[0009]

【課題を解決するための手段】本発明は、一平面上に薄膜トランジスタ素子をマトリックス状に配したアレイ基板と、このアレイ基板に対向して配置される対向基板

と、前記アレイ基板と対向基板とを所定の間隙を持って接着するシール材と、前記対向基板とアレイ基板間に封入される液晶部材とから構成される液晶表示装置の製造方法において、前記アレイ基板と対向基板の互いに対向する両基板面を複数のブロックに区分し、このブロックに液晶部材を夫々滴下させた後に、前記アレイ基板と対向基板とを対向しシール材によって接着させることを特徴とする液晶表示装置の製造方法である。

【0010】また前記液晶部材を、前記アレイ基板と対向基板のブロック内で、夫々アレイ基板と対向基板との 互いに異なる位置に滴下することを特徴とする。

【0011】更に前記液晶部材を、前記アレイ基板と対向基板との滴下位置を、区分されたブロックの1/2ピッチずらせた位置に滴下することを特徴とする。

【0012】更にまた、前記液晶部材を、前記一方の基板側ではブロックの中央部分に滴下し、前記他方の基板側のブロックでは、この一方の基板のブロックの中央部分から区分されたブロックの1/2ピッチずれた個所に滴下することを特徴とする。

[0013]

【発明の実施の形態】以下、本発明の実施の形態について説明する。図1は本発明の一実施例を適用した光透過型のアクティブマトリクス型液晶表示装置の製造方法の概略を示す構成図であって、ガラス材から構成される300×300×0.7mmの大きさの基板11の一面には、酸化インジウムスズ(ITO)等から構成される透明な画素電極12がマトリックス状に配列されており、この画素電極12と接続したTFT素子13、TFT素子に接続され走査信号あるいは映像信号等を供給する駆動線14が設けられてアレイ基板が構成されている。これらTFT素子13や電極12、駆動線14等の上面には、更にポリイミド等から構成される配向膜15が設けられる

【0014】またこのアレイ基板と対向する対向基板は、同様にガラス材にて300×300×0.7mmの大きさに形成された基板16と、この基板16のアレイ基板と対向する一平面上に設けられたITO等から構成される透明電極17及びアクリル材から構成される3原色カラーフィルタ18と通常光遮断のためのブラックマスク19が設けられて構成されている。この透明電極17の上面には、更にポリイミドから構成される配向膜20が設けられている。この配向膜20、15は、例えば各基板11、16にポリイミド溶液を塗布した後に、約250°Cで30分間熱処理を施し、乾燥後の膜厚を1000オングストロームとし、これを冷却した後にラビング処理を施すことによって形成することができる。

【0015】そしてこの両基板11,16のいずれか一方、例えば基板11主面上の周縁部にアクリル樹脂からなる紫外線硬化型のシール材21をシリンジで塗布する。更に何れか一方、もしくは両方の基板16の対向す

る面上には、液晶部材23,24の間隔を規定するスペーサ材22を200個数/mm²程度となるように散布しておく。このスペーサは一方の基板に一体的に形成することもできる。

【0016】次いでこのアレイ基板と対向基板の互いに対向する主面上を、所定の等面積の大きさとなるように等間隔にブロック区分する。この夫々の基板に区分されるブロックは、例えば144のブロックとなるように区分し、このブロック内に液晶部材23,24をディスペンサ等を用いて夫々滴下させる。例えばアレイ基板側においては、その各ブロックの中央部分に液晶部材23を1.55μ1ずつ滴下させる。他方の対向基板側においては、同様に各ブロックに液晶部材24を1.55μ1ずつ滴下させるが、この際にアレイ基板側の液晶部材23の滴下位置とブロックの1/2ピッチだけ直交する2方向に夫々ずらせた位置に滴下させる。

【0017】このように液晶部材23,24を載置したアレイ基板と対向基板とを、例えば真空中のチャンバーの中で、両基板11,16を位置規制しながら重ね合わせ加圧しつつ、両基板11,16間に延在するシール材21を、例えば紫外線を2000mj照射をすることで、シール材21を硬化させて両基板11,16を接着すると共に、液晶部材23,24を封止している。その後これらアレイ基板及び対向基板の外表面上に偏光板25,26を配置して液晶表示装置を製造する。

【0018】このようにして液晶表示装置を製造することにより、液晶部材23,24をアレイ基板と対向基板の両者に略等量ずつ分散させて塗布するので、一度に多量の液晶部材23,24が塗布されるので、塗布に要する時間も結果的に短縮することができる。また、液晶部材23,24はアレイ基板と対向基板の区分されたブロックの中で、両基板11,16に塗布された液晶部材23,24がお互いに混ざりながら、両基板11,16間の隙間の中を延展していくので、区分された部分の隅々まで短時間で均一に延展するため、気泡の発生も十分に抑えられ表示品位の高い液晶表示装置を得ることができた。

【0019】更にこの実施例によれば、この液晶部材23,24を塗布する位置は、アレイ基板側においては、各ブロックの中央部分に塗布し、対向基板側ではこの中央部分よりもずらせて塗布することにより、液晶部材23,24を短時間で、且つ確実に延展させることができる。特に対向基板側の塗布する位置を、ブロックのピッチの1/2ピッチだけずれた位置に塗布すると、特に良好な結果を得ることができた。

【0020】なお、上記実施例の説明では、アレイ基板 側のブロックの中央部分に液晶部材23を滴下し、対向 基板側では1/2ピッチずれた位置に滴下させた場合に ついて説明したが、滴下位置を反転させて対向基板側の

基板側の滴下位置を1/2ピッチずらせるように構成し ても差し支えない。また、ブロックの区分は、あたかも 基板11,16上に線引きされているように説明してい るが、実際に線引きされていない仮想線で区分される場 合も当然含まれるもので、通常は液晶部材23.24の 塗布機、即ちディスペンサノズル装置やインクジェット 装置のピッチ合わせで自動的に設定されるものである。 【0021】また上記した実施例では、一対の基板に略 同量の液晶部材を滴下するものとしたが、その比率は一 方が他方よりも多くてもかまわない。また、滴下される 液晶部材の位置は、面内で必ずしも一様である必要はな く、滴下される量とのバランスで決定されるものであ る。しかし滴下時の量の均一性を保つためには、等間隔 で滴下することが望ましい。その他にも種々の応用や変 形等が考えられるが、本発明はこの実施例に限定されな いことは、明らかである。

ブロックの中央部分に液晶部材24を滴下させ、アレイ

[0022]

【発明の効果】本発明によれば、アレイ基板と対向基板の両者に液晶部材23,24を塗布させて、この両者の液晶部材23,24をアレイ基板と対向基板とをシール材21で封止する際に、所定の面積まで延展させることで、夫々の液晶部材23,24がシール材21で囲まれ

た区域内の全域に満遍なく行き渡らせることができ、中間あるいは隅々における液晶部材23,24の不足や気泡の発生等のトラブルを防止でき、表示品位の優れた液晶表示装置を提供することができるものである。

【0023】また、液晶部材23,24の滴下位置を互いにずらせることで、この効果をより高めることができると共に、いずれか一方の基板11(16)に液晶部材23(24)を滴下する際の位置をブロックの中央部分とし、他方の基板16(11)側に液晶部材24(23)を滴下させる位置を、この一方の基板11(16)の滴下位置よりもブロック区分の1/2ピッチだけずらせた位置とすることで、この効果が更に向上させることができる。

【図面の簡単な説明】

【図1】本発明に係る液晶表示装置の製造方法を概略的 に示す説明図。

【符号の説明】

11:基板

13:薄膜トランジスタ (TFT) 素子

16:基板

21:シール材

23,24:液晶部材

【図1】

