DESARROLLO DE CÓDIGOS PARA EL DISEÑO DE MALLAS PARA EL ANÁLISIS DE PERFILES AERODINÁMICOS CON SUPERFICIES HIPERSUSTENTADORAS TIPO FLAPS

ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA U.P. TICOMÁN

Presentador: Marco Antonio Cardoso Moreno

Índice

- Introducción
- Objetivos
- Desarrollo del proyecto
- Resultados
- Conclusiones
- Trabajos futuros

Introducción

- Ramas de dinámica de fluidos: experimental, análisis, simulación computatcional.
- DFC, ventajas con respecto a otras ramas:
 - Tiempos de ejecución
 - Costos
 - Excelente en diseño preliminar
- Uso en industria e investigación científica
- México, consumidor sin participación en el desarrollo

Objetivos Generales

- Desarrollo de software para la generación de mallas estructuradas
- Uso de herramientas de código libre y abierto
- Generar malla estructuradas, ecuaciones algebráicas y EDP.
- Cualquier frontera interna.

Objetivos Particulares

- Módulo para generación de perfiles NACA 4
 - Modificaciones a la nube de puntos
 - Múltiples geometrías
- Módulo para generación de mallas tipo O y C
 - Diferentes metodologías teóricas
 - Diferentes metodologías prácticas

Objetivos Particulares

- Capacidad de presentar las mallas en un formato óptimo para su análisis
- Comprobación mediante simulación interna y externa

DESARROLLO

Desarrollo – Generación de Perfiles

Desarrollo – Generación de Perfiles

Desarrollo – Modificaciones a FI

Desarrollo – Generación de Mallas

Desarrollo - Generación de Mallas

Normal, Vectorizado, Numba

Desarrollo – Estructura del software

Desarrollo – Estructura del software

airfoil

c : float
number: int
x : numpy.ndarray
y : numpy.ndarray
alone : bool
is_boundary : numpy.n

is_boundary : numpy.ndarray

union : int

get_chord()
get_number()
get_x()
get_y()
get_union()
is_alone()
is_boundary_()
size()
plot()
create()
rotate()

join()

to_csv()

NACA4

points : int
m : int
p : int
t : int

create_linear()
create_sin()

mesh_c

boundaries()
gen_Laplace()
gen_Laplace_v()
gen_Laplace_n()
gen_Poisson()
gen_Poisson_v()
gen_Poisson_n()
tensor()
to_su2()

mesh

```
tipo : char
d eta : float
d xi : float
R : float
M : int
N : int
airfoil : airfoil (clase)
X : numpy.ndarray
Y : numpy.ndarray
 get_tipo()
 get_d_eta()
 get_d_xi()
 get_R()
 get_M()
 get_N()
 is_airfoil_alone()
 get_airfoil_join()
 get_airfoil_boundary()
 get_X()
 get_Y()
 plot()
 to_txt_mesh()
 gen_inter_pol()
```

gen_TFI()

gen_inter_Hermite()

mesh_o

boundaries()
gen_Laplace()
gen_Laplace_v()
gen_Laplace_n()
gen_Poisson()
gen_Poisson_v()
gen_Poisson_n()
tensor()
to_su2()

RESULTADOS

Resultados – Generación de Mallas O

Resultados – Generación de Mallas O

Resultados – Generación de Mallas O

Malla O – Ecuación de Poisson		
<u>Método</u>	Tiempo de Ejecución	<u>Iteraciones</u>
Normal	78 min 18.85 s	7635
Vectorizado	11 min 34.5 s	35291
Numba	8.84 s	7635

Resultados – Generación de Mallas C

Resultados – Generación de Mallas C

Resultados – Generación de Mallas C

Malla C – Ecuación de Poisson		
<u>Método</u>	<u>Tiempo de Ejecución</u>	<u>Iteraciones</u>
Normal	87 min 45.6 s	10558
Vectorizado	15 min 29.7 s	17114
Numba	10.87 s	10558

Resultados – Flujo Potencial

Resultados – SU2

Conclusiones

- Software en lenguaje Python 3
- Modulo de generación de perfiles
 - Diversas configuraciones
- Generación de mallas mediante EA y EDP
 - Tipologías O y C
- Compatibilidad con SU2

Trabajos Futuros

- Mallas adaptativas y no estructuradas
- Aprendizaje automatizado y algoritmos cuánticos
- Técnicas de programación de alto performance
- Compatibilidad con otros desarrollos (ej. OpenFOAM)

PREGUNTAS

Gracias por su atención.