Why EE415?

Computers are everywhere

In datacenter

In your microwave

In your pocket

Up in space

- Computers are everywhere
- We take hardware and OS features for granted

- Computers are everywhere
- We take hardware and OS features for granted
- ... but very few people truly understand how computers really work at a low-level

- Computers are everywhere
- We take hardware and OS features for granted
- ... but very few people truly understand how computers really work at a low-level

So, the first goal of this course is...

Goal1: Why Hardware is The Matter?

Fundamental understanding about the connection of computer hardware and OS

How to load complex, threaded applications

How to manage devices and memory

How the PC boots up

Goal 2: Why Software is The Matter?

Goal 3: Learn From Experience

Apply What You Learned from Lectures to Projects

- You will build a simple
 OS in this class
- This will be a huge amount of work
- However, you will also learn a **huge** amount (don't worry, not that serious though)

At The End of This Course...

You will be able to understand

Low-level details of computer hardware and modern CPUs

Key functions of OSes

The fact that designing systems is an art, not a science

Contents

What will we learn to achieve the goals previously mentioned?

Topics in This Course

- Introduction
- Kernel structures

- Basic memory management
- Paging
- Page replacement
- Segmentation

Midterm exam

Operating system basics (2 weeks)

Processes & Threads (4 weeks) Memory
Management
(4 weeks)

File System & I/O System (4 weeks)

- Basics of process and thread
- Scheduling
- Synchronization
- Deadlocks

- File system
- File system implementation
- Storage structures
- I/O systems

Final exam

Textbook

- Operating Systems: Three Easy Pieces
 - Remzi and Andrea Arpaci-Dusseau
 - Very easy to go over (wellwritten)
- Free, PDFs available online at <u>http://pages.cs.wisc.edu/~re</u> mzi/OSTEP/

Lecture Plan

Period	Topics
Week 1	Introduction
Week 2	Kernel structures
Week 3	Processes and Threads
Week 4	Scheduling
Week 5	Synchronization
Week 6	Deadlocks
Week 7	Basic Memory Management
Week 8	Mid-term exam
Week 9	Paging
Week 10	Page Replacement
Week 11	Segmentation
Week 12	File System
Week 13	File System Implementation
Week 14	Storage Structures
Week 15	I/O Systems
Week 16	Final exam

Projects

- This course is **PROJECT-centric**
 - You will build an operating system. If you are not familiar with programming, what we recommend is to
 - start early!
 - seriously, start early!
- Projects
 - Due at 11:59:59pm on specified date
 - Use KLMS to submit your projects
 - If you do not have an appropriate programming environment, use EE415 server (Hae-dong lounge) for your projects

> xv6 Based Projects

xv6

- Built over ANSI C and designed towards Intel x86 Sixth Edition Unix (V6)
- A teaching OS for MIT OS course.
- https://pdos.csail.mit.edu/6.828/2018/x v6/book-rev10.pdf

Project 0: Introduction to xv6

- You will learn how to use xv6
- You need adding simple system calls to xv6

xv6 Based Projects

- Project 1: kernel threading
 - Create kernel thread
 - clone() and join()
 - Add user-level thread library
 - thread_create()
 - lock_acquire() and lock_release()

- Project 2: process scheduler
 - Create priority-based scheduler

xv6 Based Projects

- Project 3: nullptr dereferences and shared memory page
 - Add nullptr dereferences
 - Kill process when dereferences null pointer.
 - Add shared memory
 - System call for assign shared memory
 - System call for how many processes are sharing memory

- Project 4: filesystem optimization
 - Optimize filesystem for small-sized files

