ВМК МГУ

Отчет о выполнении задания по курсу «Суперкомпьютерное моделирование и технологии»

Исполнитель: студент факультета ВМК МГУ кафедры АСВК группы 620 А.А. Ковальчук

Содержание отчета

МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ	3
ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ	3
ОПИСАНИЕ ГИБРИДНОЙ РЕАЛИЗАЦИИ MPI/OPENMP	3
РЕЗУЛЬТАТЫ РАСЧЕТОВ	4
РИСУНКИ И ГРАФИКИ	5
ПРИЛОЖЕНИЕ К ОТЧЕТУ	9

Математическая постановка задачи

Вариант 10, набор 3, равномерная сетка, максимум-норма.

Задача Дирихле для уравнения Пуассона в прямоугольной области:

В прямоугольной области $\Pi = [-2,2] \times [-2,2]$ требуется найти дважды гладкую функцию u = u(x,y), удовлетворяющую дифференциальному уравнению

$$-\Delta u = (x^2 + y^2)\sin(xy)$$
, $-2 < x < 2, -2 < y < 2$

и дополнительному условию

$$u(x, y) = 1 + \sin(x, y)$$

во всех граничных точках (x, y) прямоугольника.

Оператор Лапласа Δ определен равенством: $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$.

Численные методы решения

Для аппроксимации дифференциальной задачи используется равномерная прямоугольная сетка с максимум-нормой.

Приближенное решение задачи разностной схемы вычисляется методом сопряженных градиентов. Для остановки итерационного процесса используется $\varepsilon=10^{-4}$ в качестве оценки разности итераций.

При распараллеливании программы используется двумерное разбиение области на подобласти прямоугольной формы, в каждой их которых отношение θ количества узлов по ширине и длине удовлетворяет неравенствам $0.5 \le \theta \le 2$.

Описание гибридной реализации MPI/OpenMP

Для решения задачи с использованием технологии MPI рассматриваемая область разбивается на подобласти (число подобластей равно числу процессов). Для этого используется вызов функции MPI_Cart_create, которая возвращает новый коммуникатор. Далее, каждый процесс, используя функции MPI_Cart_coords и MPI_Cart_shift может получить свое положение в сетке процессов и ранки соседних процессов, а также рассчитать тот диапазон точек матрицы, которые ему необходимо рассчитать.

В процессе работы алгоритма процессам необходимо знать значения из областей, рассчитываемых другими процессами. Для этого процессы обмениваются граничными областями с использованием функции MPI_Sendrecv. Для пересылки строк создается тип данных MPI_Type_contiguous. Для пересылки столбцов используется тип данных MPI_Type_vector.

Для подсчета скалярного произведения необходимо вычислять сумму по всей области. Данный шаг состоит из того, что каждый процесс рассчитывает локальную сумму в своей области, а затем используется операция MPI_Allreduce с функцией аггрегации MPI_SUM для того, чтобы все процессы получили общую сумму. Аналогичные операции производятся и при расчете величины невязки, однако там используется функция аггрегации MPI_MAX (максимум-норма).

С помощью технологии openmp производилось распараллеливание циклов с помощью директив:

#pragma omp parallel for private(i,j)

В случае, когда вычисляется сумма используется директива вида:

#pragma omp parallel for private(i,j) reduction(+:tmp | l)

При вычислении максимума предполагалось использование директивы

#pragma omp parallel for private(i,j) reduction(max:tmp_l) однака данная команда судя по всему поддерживается только более новым стандартом OpenMP, из-за чего на данном шаге она использовалась.

Результаты расчетов

Ускорение рассчитывается по формуле $S=rac{{
m Время}\ {
m решения}\ {
m на}\ {\it N}_p\ {
m процессоров}}{{
m Время}\ {
m решения}\ {
m на}\ {
m 1}\ {
m процессоре}}.$

Таблица с результатами расчетов на ПВС IBM Blue Gene/Р для MPI программы

Число процессоров	Число точек сетки	Время решения Т	Ускорение S
N _p	N^2	(секунды)	
1	1000 x 1000	203.556217	-
128	1000 x 1000	3.506901	58.044472
256	1000 x 1000	2.687150	75.751713
512	1000 x 1000	3.188511	63.840525
1	2000 x 2000	1592.240185	-
128	2000 x 2000	18.866071	84.397020
256	2000 x 2000	10.768313	147.863475
512	2000 x 2000	10.263271	155.139641

Погрешность приближенного решения:

- на сетке 1000 х 1000 $\psi = 0.000086799045$
- на сетке 2000 х 2000 $\psi = 0.000099594785$

Таблица с результатами расчетов на ПВС IBM Blue Gene/Р для гибридной программы MPI/OpenMP

Число процессоров	Число точек сетки	Время решения Т	Ускорение S
N _p	N ²	(секунды)	
1	1000 x 1000	69.479082	-
128	1000 x 1000	2.799476	24.818602
256	1000 x 1000	2.529895	27.463227
512	1000 x 1000	3.389418	20.498823
1	2000 x 2000	544.006508	-
128	2000 x 2000	11.397144	47.731827

256	2000 x 2000	7.348107	74.033558
512	2000 x 2000	8.849079	61.476059

Погрешность приближенного решения:

- на сетке 1000 х 1000 $\psi = 0.000086799045$
- на сетке 2000 х 2000 $\psi = 0.000099594785$

Таблица с результатами расчетов на ПВС «Ломоносов» для МРІ программы

Число процессоров	Число точек сетки	Время решения Т	Ускорение S
N _p	N^2	(секунды)	
1	1000 x 1000	203.347533	-
8	1000 x 1000	27.286417	7.452335
16	1000 x 1000	13.033605	15.601787
32	1000 x 1000	6.624935	30.694268
128	1000 x 1000	2.065537	98.447780
1	2000 x 2000	1594.672925	-
8	2000 x 2000	213.617632	7.465080
16	2000 x 2000	107.695442	14.807246
32	2000 x 2000	54.451720	29.285997
128	2000 x 2000	13.621445	117.07076

Погрешность приближенного решения:

- на сетке 1000 x 1000 $\psi = 0.000086799045$
- на сетке 2000 х 2000 $\psi = 0.000099594785$

Рисунки и графики

Рисунок точного решения

Рисунок приближенного решения на сетке 2000х2000 узлов

График абсолютной погрешности в каждой точке сетки 2000х2000 (графики на Blue Gene/Р для MPI-программы, на Blue Gene/Р для гибридной программы MPI/OpenMP и ПВС «Ломоносов» для MPI программы аналогичны)

 $Max_value = 0.0049536301472701272$, $Min_value = 5.3321347337487175e - 11$.

Графики относительной погрешности в каждой точке сетки 2000х2000, за вычетом граничных областей, если функция там принимает значение 0 (графики на Blue Gene/Р для MPI-программы, на Blue Gene/Р для гибридной программы MPI/OpenMP и ПВС «Ломоносов» для MPI программы аналогичны)

 $Max_value = 27936492110.12513$, $Min_value = 2.6660673669454375e - 11$.

Графические изображения скорости сходимости (графики на Blue Gene/Р для МРІпрограммы, на Blue Gene/Р для гибридной программы МРІ/ОрепМР и ПВС «Ломоносов» для МРІ программы аналогичны)

Результаты тестирования на суперкомпьютерах (зависимость времени выполнения от количества процессов)

Приложение к отчету

К отчету прилагается архив с исходными кодами: MPI — версия и гибридная версия MPI/OpenMP.