Application Development Laboratory (CS 33002)

KALINGA INSTITUTE OF INDUSTRIAL TECHNOLOGY

School of Computer Engineering

Strictly for internal circulation (within KIIT) and reference only. Not for outside circulation without permission

5

6

Lab Contents

Sr#	Major and Detailed Coverage Area	Lab#
Predic	tive Analytics	10
1	Decision Tree	
2	KNN	
3	K-Means	
4	Random Forest	

Principal Component Analysis (PCA)

Linear Discriminant Analysis (LDA)

Decision Tree

KNN

K-Means

Random Forest

Principal Component Analysis

Linear Discriminant Analysis

Thank You End of Lab 10

Lab Experiments

- 1. Search and download at least 2 datasets related to Decision Tree. Define the problem statement. WAP to demonstrate it.
- 2. Search and download at least 2 datasets related to KNN. Define the problem statement. WAP to demonstrate it.
- 3. Search and download at least 2 datasets related to K-Means. Define the problem statement. WAP to demonstrate it.
- 4. Search and download at least 2 datasets related to Random Forest. Define the problem statement. WAP to demonstrate it.
- 5. Search and download at least 2 datasets related to Principal Component Analysis. Define the problem statement. WAP to demonstrate it.
- 6. Search and download at least 2 datasets related to Linear Discriminant Analysis. Define the problem statement. WAP to demonstrate it.