

A Parallel Algorithm for MISTs in Bubble-Sort Networks

Presented by:

M. Huzaifa (22i-1220)

M. Sarmad (22i-0941)

M. Umar Hassan (22i-0942)

Selected Paper:

Title: A parallel algorithm for constructing multiple independent spanning trees in bubble-sort networks

Drive Link:

https://drive.google.com/file/d/1leYyetxK3SqK8abssBw3QsNsD-T_Xwn_/view?usp=sharing

Problem Statement

Challenge

Design fault-tolerant, secure networks with disjoint paths.

Solution

Requires Multi-path routing and Multiple Independent Spanning Trees (MISTs).

Limitations

Existing recursive MIST algorithms in B_n lack parallelization.

 Develop a parallelizable algorithm for constructing Multiple Independent Spanning Trees (MISTs).

 Proposed solution specifically designed for Bubble Sort Networks.

Terminology: Spanning Trees

Definition

A spanning tree connects all nodes with no cycles.

Properties

- Includes all vertices of graph
- No cycles, minimal edges

Uses

Routing backbones, broadcast trees, minimize communication cost.

Terminology: Spanning Trees

Terminology: Multiple Independent Spanning Trees (MISTs)

Definition

set of independent spanning trees constructed from the same connected graph G.

Properties

- Valid spanning trees of graph
- Edge-disjoint or vertex-disjoint paths
- Up to k trees in a k-connected graph

Terminology: Multiple Independent Spanning Trees (MISTs)

Uses

- Fault Tolerance: If a node or edge fails in one tree, others can still function — crucial in network reliability.
- Parallel Routing: Allows load balancing and reduced congestion by routing data over multiple trees simultaneously.
- **Security & Resilience:** Splitting messages across trees improves confidentiality and resistance to data loss.

Terminology: Bubble-Sort Network (B_n)

Definition

A graph where nodes are all permutations of n elements, and edges represent adjacent swaps (like bubble sort).

Properties

- Vertices: All n! permutations
- Edges: Adjacent transpositions
- Structure: Cayley graph
- Connectivity: n−1
- Diameter: n(n−1)/2

Uses

- Test routing algorithms
- Simulate broadcasting
- Study network resilience

Terminology: Bubble-Sort Network (B_n)

Example: Bubble sort graph of dimension 3

Permutations:

• Edges:

Each node is connected to others by swapping adjacent elements

 Each edge is an adjacent transposition (like how bubble sort makes swaps).

```
123 — 132

I I

213 — 231

I I

312 — 321
```

Algorithm Overview

1

Core Function

Parent(v, t, n) computes parent of vertex v in tree T_n^t .

2

Preprocessing

- Compute v⁻¹ (inverse permutation)
- Find r(v): first misplaced symbol position

3

Decision Rules

Swap based on conditions of t, rightmost incorrect symbol, or default position v t.

4

Parallelism

Each vertex's parent computed independently, suitable for parallelization.

Algorithm 1: Parent1(v, t, n)

```
Input: v: the vertex v = v_1 \dots v_n \in V(B_n) \setminus \{1_n\}
                 t: the t-th tree T_t^n in IST
                n: the dimension of B_n
    Output: p: p = Parent1(v, t, n) the parent of v in T_t^n
    if v_n = n then
          if t \neq n-1 then p = \text{FindPosition}(v)
          else p = \operatorname{Swap}(v, v_{n-1})
    end
    else
         if v_n = n - 1 and v_{n-1} = n and \operatorname{Swap}(v, n) \neq \mathbf{1}_n then
               if t = 1 then p = \text{Swap}(v, n)
(3)
               else p = \operatorname{Swap}(v, t - 1)
(4)
          end
          else
              if v_n = t then p = \operatorname{Swap}(v, n)
(5)
              else p = \operatorname{Swap}(v, t)
(6)
         end
    end
    return p
```

Function FindPosition(v)

```
Input: v: the vertex v = v_1 \cdots v_n in B_n
Output: p: the vertex adjacent to v in B_n

(1.1) if t = 2 and \operatorname{Swap}(v, t) = \mathbf{1}_n then p = \operatorname{Swap}(v, t - 1)

(1.2) else if v_{n-1} \in \{t, n-1\} then j = r(v), p = \operatorname{Swap}(v, j)

(1.3) else p = \operatorname{Swap}(v, t)
return p
```

Function Swap(v, x)

```
Input : v: the vertex v = v_1 \cdots v_n in B_n

x: the symbol in the vertex v_1 \cdots v_n

Output: p: the vertex adjacent to v in B_n

i = v^{-1}(x), p = v\langle i \rangle

return p
```

Table 1 The parent of every vertex $v \in V(B_4) \setminus \{\mathbf{1}_4\}$ in T_t^4 for $t \in \{1, 2, 3\}$ calculated by Algorithm 1

Results and Complexity

Time Complexity Analysis:

- Per Vertex: O(n) time to compute parent
- Total: $O(n \times n!)$ for all vertices in B_n

Parallelism:

Fully parallelizable — each vertex's parent computed independently

Upper Bound:

Asymptotically optimal for Bubble Sort Network of size n!

v	t	v_4	Rule	p	v	t	v_4	Rule	p
1234						1		(1.3)	3214
	-	-	-	-	3124	2	4	(1.2)	1324
						3		(2)	3142
1243	1		(6)	2143		1		(6)	3412
	2	3	(6)	1423	3142	2	2	(5)	3124
	3		(5)	1234		3		(6)	1342
1324	1		(1.3)	3124		1		(1.2)	2314
	2	4	(1.2)	1234	3214	2	4	(1.3)	3124
	3		(2)	1342		3		(2)	3241
1342	1		(6)	3142		1		(5)	3214
	2	2	(5)	1324	3241	2	1	(6)	3421
	3		(6)	1432		3		(6)	2341
1423	1		(6)	4123		1		(6)	3421
	2	3	(6)	1432	3412	2	2	(5)	3142
	3		(5)	1243		3		(6)	4312
1432	1		(6)	4132		1		(5)	3241
	2	2	(5)	1342	3421	2	1	(6)	3412
	3		(6)	1423		3		(6)	4321
2134	1		(1.2)	1234		1		(6)	4213
	2	4	(1.1)	2314	4123	2	3	(6)	4132
	3		(2)	2143		3		(5)	1423
2143	1		(3)	2134		1		(6)	4312
	2	3	(4)	2413	4132	2	2	(5)	1432
	3		(4)	1243		3		(6)	4123
2314	1		(1.2)	2134		1		(6)	4231
	2	4	(1.3)	3214	4213	2	3	(6)	4123
	3		(2)	2341		3		(5)	2413
2341	1		(5)	2314		1		(5)	2431
	2	1	(6)	3241	4231	2	1	(6)	4321
	3		(6)	2431		3		(6)	4213
2413	1		(6)	2431		1		(6)	4321
	2	3	(6)	4213	4312	2	2	(5)	3412
	3		(5)	2143		3		(6)	4132
2431	1		(5)	2341		1		(5)	3421
	2	1	(6)	4231	4321	2	1	(6)	4312
	3		(6)	2413		3		(6)	4231

Proposed Solution

No Need for METIS

- Parent computation is fully local, so graph partitioning is unnecessary.
- Embarrassingly Parallel Problem (No communication needed between machines)

MPICH – Inter-node Parallelism

- Distributes Spanning Tree Construction across machines
- Master assigns tree ranges to each machine
- Workers return constructed subtrees to master

Proposed Solution

OpenMP – Intra-node Parallelism

- Used within each machine for vertex-level parallelism
- Parent computation parallelized using OpenMP threads
- No synchronization needed due to independence of iterations

Mank