(22) Filed 28 April 1975

(21) Application No. 17557/75

(31) Convention Application No. 49/050 663

(32) Filed 9 May 1974

(31) Convention Application No. 49/052 254

(32) Filed 13 May 1974

(31) Convention Application No. 49/060 787

(32) Filed 31 May 1974

(31) Convention Application No. 49/050 663

(32) Filed 24 July 1974

(31) Convention Application No. 49/052 254

(32) Filed 7 Aug. 1974

(31) Convention Application No. 49/091 995

(32) Filed 13 Aug. 1974

(31) Convention Application No. 49/109 954

(32) Filed 26 Sept. 1974

(31) Convention Application No. 49/052 254

(32) Filed 12 Oct. 1974

(31) Convention Application No. 49/091 996

(32) Filed 28 Oct. 1974

(31) Convention Application No. 49/050/663

(32) Filed 6 Dec. 1974

(31) Convention Application No. 49/142 499

(32) Filed 13 Dec. 1974....

(31) Convention Application No. 49/091 996

(32) Filed 17 Feb. 1975

(31) Convention Application No. 49/142 499

(32) Filed 26 March 1975

(31) Convention Application No. 50/037 207 (32) Filed 27 March 1975 in

(33) Japan (JP)

(44) Complete Specification published 19 April 1978

(51) INT CL2 CO7D 499/64; A61K 31/43, 31/545; C07D 501/20

(52) Index at acceptance

C2C 1175 1313 1314 1370 1371 1382 1384 1410 1432 1440 1450 1464 1474 1510 1530 1532 1562 1590 1600 1626 1651 200 211 213 214 215 220 221 225 226 22Y 246 247 250 251 252 253 254 255 256 25Y 280 282 28X 290 292 29X 29Y 305 30Y 313 316 31Y 324 334 338 339 33Y 342 34Y 351 352 355 35Y 360 361 364 365 366 367 368 36Y 373 375 37Y 386 387 390 396 401 40Y 43X 519 594 614 61X 625 628 62X 635 638 645 652 658 662 675 678 699 761 762 768 790 79Y KE KM RP TR TW

(72) Inventors ISAMU SAIKAWA, SHUNTARO TAKANO, CHOSAKU YOSHIDA, OKUTA TAKASHIMA, KAISHU MOMONOI, SEIETSU KURODA, MIWAKO KOMATSU, TAKASHI YASUDA and YUTAKA KODAMA

> (54) NOVEL PENICILLINS AND CEPHALOSPORINS AND PROCESS FOR PRODUCING THE SAME

10

. 15

20

25

30

35

40

45

50

10

15

20

25

30

35

40.

50 ≈

(71) We, TOYAMA CHEMICAL CO. LTD., a corporation organised under the laws of Japan, of 1—18, Kayabacho, Nihonbashi, Chuo-ku, Tokyo, Japan, do hereby declare the invention for which we pray that a patent may be granted to us and the method by which it is to be performed to be particularly described in and by the following statement:—

This invention relates to novel penicillins and cephalosporins and to a process for producing the same.

The compounds of the present invention have various characteristics including a broad antibacterial spectrum against Gram-positive and Gram-negative bacteria, and effective antibacterial activity particularly against Pseudomonas aeruginosa, Klebsiella

broad antibacterial spectrum against Gram-positive and Gram-negative bacteria, and effective antibacterial activity particularly against Pseudomonas aeruginosa, Klebsiella pneumoniae and Proteus species. Furthermore, the compounds of the present invention possess high resistance to β -lactamase produced from bacteria, and effective antibacterial activity even against clinical isolates of bacteria which are significant at present from the clinical standpoint. Accordingly, the compounds of the present invention are quite effective as therapeutic drugs for human and animal infectious diseases derived from the above-mentioned pathogenic microorganisms.

It has heretofore been known that 6-acylamino penicillanic acids and 7-acylamino-cephalosporanic acids having an amino group at the α -position of the acyl group show strong antibacterial activity not only against Gram-positive bacteria but also against Gram-negative bacteria. However, there are the disadvantages that the known compounds described above show substantially no effective antibacterial activity against not only Pseudomonas aeruginosa, Klebsiella pneumoniae and Proteus species, which have been known as causes for clinically serious infectious diseases but also resistant bacteria which are frequently isolated at present from many clinical hospitals. And they tend to be hydrolyzed with β -lactamase produced from many drug-resistant bacteria.

With an aim to obtain penicillins and cephalosporins having no disadvantages mentioned above, the present inventors conducted extensive studies to find that novel compounds of formula (I) which appears hereinafter, which are prepared by bonding the moiety,

A - N - C -

wherein A, X, Y, R², R³, n and m are as mentioned hereinafter, to the amino group in the acyl group of penicillins and cephalosporins, can sufficiently satisfy the above-mentioned aim and have extremely valuable therapeutic effects.

It is an object of this invention to provide novel penicillins and cephalosporins containing a mono- or di-oxo- or thioxo-piperazino(thio)carbonylamino group in molecule.

It is another object of this invention to provide novel penicillins and cephalosporins having a broad antibacterial spectrum.

It is a further object of the invention to provide novel penicillins and cephalosporins having high resistance to β -lactamase produced from bacteria.

It is a still further object of the invention to provide novel penicillins and cephalosporins having effective antibacterial activity against clinical isolates of bacteria.

It is a still further object of the invention to provide a process for producing the novel penicillins and cephalosporins.

It is a still further object of the invention to provide a pharmaceutical composition containing the novel penicillins or cephalosporins as active ingredient.

Other objects and advantages of this invention will become apparent from the following description.

The compounds of the present invention are penicillins and cephalosporins represented by the general formula (I),

$$A - N = \begin{bmatrix} X \\ 1 \\ 1 \end{bmatrix} + C - NH - R - CONH$$

$$(I)$$

$$(R^{2} R^{3}) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$COOR^{1}$$

ւ5

10

15

20

25

30

35

50

5

25

30

35

40

45

50

wherein R represents an amino acid residue; R1 represents a hydrogen atom, an ester-forming group capable of being removed by catalytic reduction, chemical reduction or hydrolysis under mild conditions, an ester-forming group capable of being easily removed by mamalium enzymic action, a silicon-, phosphorus- or tin-containing group which is capable of being easily removed by treatment with H₂O or an alcohol, or a conventional salt-forming cation, n represents 1 or 2; nX's, which may be the same or different, represent individually an oxygen or sulfur atom, and are linked in any combination at the 2-, 3- and 5- positions of the piperazine ring; m represents 4-n; each pair om R² and R³ is linked to the same carbon atom, and m pairs of R² and R³, which may be the same or different, represent individually a hydrogen atom, a halogen atom, a 10 carboxyl group or an unsubstituted or substituted alkyl, cycloalkyl, aryl, acyl, aralkyl, alkoxycarbonylalkyl, acyloxyalkyl, alkoxy, alkoxycarbonyl, cycloalkyloxycarbonyl, aralkoxycarbonyl, aryloxycarbonyl, amino or carbamoyl group, any pair of R2 and R3 together with a comon carbon atom may form a cycloalkyl ring; A represents a hydrogen atom, a hydroxy group, a nitro group, a cyano group, or an unsubstituted or substituted alkyl, 15 alkenyl, alkynyl, alkadienyl, cycloalkyl, cycloalkenyl, cycloalkadienyl, aryl, acyl, aralkyl, acyloxyalkyl, alkoxy, cycloalkyloxy, aryloxy, alkoxycarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, aralkoxycarbonyl, alkylsulfonyl, cycloalkylsulfonyl, arylsulfonyl, carbamoyl, thiocarbamoyl, acylcarbamoyl, acylthiocarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkylsulfonylthiocarbamoyl, arylsulfonylthiocarbamoyl, sulfamoyl, 20 alkoxycarbonylthioalkyl, alkoxythiocarbonylthioalkyl, amino or heterocyclic group; Y represents an oxygen or sulfur atom; and

where R4 represents a hydrogen atom, a hydroxy group, a cyano group, an azido group, a quaternary ammonium group, or an unsubstituted or substituted alkoxy, aryloxy, aralkoxy, acyloxy, carbamoyloxy, guanidino, amino, alkylthio, arylthio, aralkylthio, acylthio, thiocarbamoylthio, alkoxythiocarbonylthio, aryloxythiocarbonylthio, cycloalkyloxythiocarbonylthio, amidinothio or heterocyclylthio group.

In the above-mentioned general formula (I) R represents an amino acid residue. Examples of such amino acid residue include residues of amino acids derived from various aliphatic, araliphatic, aromatic, alicyclic and heterocyclic compounds, which amino acids may have the amino group at a position such as α -, β - or γ -position to the carboxyl group. Preferable as said R is an a-amino acid residue represented by the formula

wherein R5 is an alkyl group such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, or octyl; a cycloalkyl group such as cyclopentyl, cyclohexyl, or cycloheptyl; a cycloalkenyl group such as cyclopentenyl, or cyclohexenyl; a cycloalkadienyl group such as cyclopentadienyl, or cyclohexadienyl; an aryl group such as phenyl or naphthyl; an aralkyl group such as benzyl or phenetyl; an aryloxy group such as phenoxy or naphthoxy; an alkylthioalkyl group such as methylthiomethyl, ethylthiomethyl, methylthioethyl or ethylthioethyl; or a heterocyclic group such as furyl, thienyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, imidazolyl, pyrazolyl, pyridyl, pyrimidyl, pyridazyl, quinolyl, isoquinolyl, quinazolyl, indolyl, indazolyl, 1,3,4-oxadiazolyl, 1,3,4-thiadiazolyl or 1,2,4-thiadiazolyl; each group represented by said R³ may be substituted by various groups, for example, halogen, hydroxy, nitro, alkyl, alkoxy, alkylthio, acyl, or alkylsulfonylamino; Ro represents a hydrogen atom; and Ro and Ro together with a common carbon atom may form a cycloalkyl ring such as cyclohexyl or cycloheptyl; a cycloalkenyl ring such as cyclopentenyl or cyclohexenyl; or a cycloalkadienyl ring such as cyclopentadienyl or cyclohexadienyl.

In the general formula (I), R1 is a hydrogen atom, a blocking group or a saltforming cation. The blocking group may be any of those which have heretofore been

10

35

40

45

50

55

used in the field of penicillin or cephalosporin type compounds. Concretely, the blocking group includes (1) ester-forming groups capable of being removed by catalytic reduction, chemical reduction or hydrolysis under mild conditions e.g. arylsulfonylalkyl groups such as toluene-sulfonylethyl, substituted or unsubstituted aralkyl groups such as benzyl, 4-nitrobenzyl, diphenylmethyl, trityl and 3,5-di(tert.-butyl)-4-hydroxy-benzyl; substituted or unsubstituted alkyl groups such as tert.-butyl, trichloroethyl, phenacyl groups; alkoxyalkyl groups such as methoxymethyl; and unsubstituted or alkyl-substituted cyclic aminoalkyl groups such as piperidinoethyl, 4-methylpiperidinoethyl, morpholinoethyl or pyrrolidinoethyl, (2) ester-forming groups capable of being easily removed owing to enzymes in a living body, e.g. acyloxyalkyl groups such as pivaloyloxymethyl; phthalide group; and indanyl group; (3) silicon-containing groups, phosphorus-containing groups and tin-containing groups which are capable of being easily removed by treating with H₂O or an alcohol, such as

10

15

20

25

30

35

-50

55

$$\{CH_3\}_3Si-$$
, $\begin{bmatrix} 0 \\ P- \end{bmatrix}$, C_2H_5O , $P-$, or $\{C_4H_9\}_3Sn-$,

The examples of the blocking groups mentioned in above (1), (2) and (3) are merely typical, and other examples are disclosed in U.S. Patents 3,499,909; 3,573,296 and 3,641,018 and DOS 2,301,014; 2,253,287 and 2,337,105 and may be used in this invention. The salt-forming cation includes conventional cations which have heretofore 15 been known in the field of penicillin or cephalosporin type compounds, ad preferable are those capable of forming non-toxic salts. The salts include alkali metal salts such as 20 the sodium salt or the potassium salt; alkaline earth metal salts such as the calcium salt or the magnesium salt; ammonium salt; and salts with nitrogen-containing organic bases such as procaine, dibenzylamine, N-benzyl-\(\beta\)-phenethylamine, 1-ephenamine, or N,N-dibenzylethylenediamine. In addition to the above cations, there may be used 25 cations capable of forming the salts with other nitrogen-containing organic bases, such as trimethylamine, triethylamine, tributylamine, pyridine, dimethylaniline, N-methylpiper-idine, N-methylmorpholine, diethylamine, or dicyclohexylamine. Furthermore, the cation includes quaternary ammonium groups formed at the 3-position of cephem ring, such as pyridinium, quinolinium, isoquinolinium and pyrimidinium. In this case, a betaine structure is formed in the molecule. 30

In the general formula (I), m pairs of R2 and R3, which may be the same or different, represent individually, a hydrogen atom; a halogen atom such as fluorine, chlorine or bromine; a carboxyl group; an alkyl group such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl; a cycloalkyl group such as cyclopentyl, cyclohexyl or cycloheptyl; an aryl group such as phenyl or naphthyl; an acyl group such as acetyl, propionyl, butyryl or benzoyl; an aralkyl group such as benzyl or phenethyl; an alkoxycarbonylalkyl group such as methoxycarbonylmethyl or ethoxycarbonylmethyl; an acyloxyalkyl group such as acetyloxymethyl, propionyloxymethyl, pivaloyloxymethyl or benzoyloxymethyl; an alkoxy group such as methoxy, ethoxy, propoxy or butoxy; an alkoxycarbonyl group such as methoxycarbonyl, ethoxycarbonyl or propoxycarbonyl; a cycloalkyloxycarbonyl group such as cyclopentyloxycarbonyl, cyclohexyloxycarbonyl or cycloheptyloxycarbonyl; an aralkoxycarbonyl group such as benzyloxycarbonyl or phenethoxycarbonyl; an aryloxycarbonyl group such as phenoxycarbonyl or naphthoxycarbonyl; an amino group such as amino, N-alkylamino (e.g. N-methylamino, N-ethylamino, N-propylamino or N-butylamino), N-acylamino (e.g. N-memylamino, N-emylamino, N-diethylamino or N,N-diethylamino), N-acylamino (e.g. N-acetylamino, N-propionylamino, N-butyrylamino or N-benzoylamino), and cyclic amino (e.g. pyrrolidino, piperidino, or morpholino); and a carbamoyl group such as carbamoyl N-methylamino carbonyl, N-ethylaminocarbonyl, N,N-dimethylaminocarbonyl or N,N-diethylaminocarbonyl. Further, R² and R³ together with a common carbon atom may form a cycloalkyl ring such as a cyclopentyl, cyclohexyl or cycloheptyl group. Each of the groups mentioned above for said R2 and R3 may be substituted by various substituents, for

example, halogen atoms, or alkyl, alkoxy, alkylthio, acyl or nitro groups.

In the general formula (I), A represents a hydrogen atom; a hydroxy group; a nitro group, a cyano group; an alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl, heptyl, octyl, or dodecyl; an alkenyl group such as vinyl, propenyl or butenyl; an alkynyl group such as propargyl; an alkadienyl group such as 1,3-butadienyl or 1,3-pentadienyl; a cycloalkyl group such as cyclopentyl, cyclohexyl or cycloheptyl; a cycloalkenyl group such as cyclopentenyl or cyclohexenyl; a cycloalkenyl group such as cyclopentenyl or cyclohexenyl; a cycloalkenyl

Ī

N,N-dibutylamino), and cyclic amino (e.g. pyrrolidino, piperidino or morpholino); alkylthio groups such as methylthio, ethylthio or propylthio; arylthio groups such as phenylthio or (1- or 2-)naphthylthio; aralkylthio groups such as benzylthio or phenethylthio; acylthio groups such as acetylthio, propionylthio, butyrylthio, benzoylthio, (1- or 2-)naphthoylthio, cyclopentanecarbonylthio, cyclohexanecarbonylthio, furoylthio, thenoylthio, isothiazolecarbonylthio, isoxazolecarbonylthio, thiadiazolecarbonylthio or triazolecarbonylthio; thiocarbamoylthio groups such as thiocarbamoylthio, N-methylthiocarbamoylthio, northiocarbamoylthio, 1-piperidino-thiocarbonylthio, 1-morpholinothiocarbonylthio or 4-methyl-1-piperazinothiocarbonylthio; alkoxythiocarbonylthio groups such as methoxythiocarbonylthio, ethoxythiocarbonylthio, propoxythiocarbonylthio or butoxythiocarbonylthio; aryloxythiocarbonylthio groups such as phenoxythiocarbonylthio; cycloalkyloxythiocarbonylthio groups such as cyclohexyloxythiocarbonylthio; amidinothio groups such as amidinothio, N-methylamidinothio or N,N'-dimethylamidinothio; and heterocyclic thio groups such as oxazolylthio, thiazolylthio, isoxazolylthio, isothiazolylthio, imidazolylthio, pyriazolylthio, pyriazolylthio, pyriazolylthio, indazolylthio, oxadiazolylthio, thiadiazolylthio, triazolylthio, pyrazolylthio, triazolylthio, benzoniazolylthio, benzoniazolylthio, triazolylthio, triazolylthi

The above-mentioned compounds of formula (I) of the present invention have their optical isomers, and all of D-isomers, L-isomers and racemic compounds thereof

are involved in the scope of the present invention.

In the present invention, preferable compounds of the general formula (I) are as follows:

A-N N-C-NH-CH-CONH S
$$O(R^2 R^3)_2$$
 0 R5 (Ic) 30

$$A-N \longrightarrow N - C - NH - CH - CONH \longrightarrow S \longrightarrow Z$$

$$(R^2 R)_2 O R^5 \longrightarrow N \longrightarrow Z$$

$$COOR^1$$

-5

20

Z

are as defined above.

The compounds of formula (I) of the present invention are produced according to either the process (1), (2) or (3) described below.

5

Process (1):

A process comprising reacting a compound represented by the general formula (II),

$$R^7-NH-R-CONH$$

$$O$$

$$COOR_1$$
(II)

with a reactive derivative in the

—с—он

10

group (hereinafter refered to as "(thio)carboxyl group") of a compound represented by the general formula (III),

$$A - N = \begin{pmatrix} X \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} X \\ 1 \end{pmatrix} \begin{pmatrix} X \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} X \\$$

Process (2):
A process comprising reacting a compound represented by the general formula (IV),

15

with a compound represented by the general formula (V),

$$\begin{array}{c} (X)_{n} \\ A - N \\ (R^{2} \\ R^{3})_{N} \end{array} = \begin{array}{c} -NH - R - C - OH \\ 0 \end{array} \qquad (V)$$

or with a reactive derivative in the

group (hereinafter referred to as "carboxyl group") of the compound of formula (V).

Process (3):
A process comprising reacting a compound represented by the general formula (VI),

$$A - N = C - NH - R - CONH$$

$$(R^2 R^3)_m$$

$$COOR^3$$

$$(VI)$$

Ā

Ä

	R°M	(VII)
	or with a tertiary amine. In the above-mentioned formulas (II) to (VI), R, R ¹ , R	2. R ³ . R ⁴ . X. m. n. A. Y
5	and	5
	z	. · · · · · · · · · · · · · · · · · · ·
10	are as defined above; and R' represents a hydrogen atom, a si a phosphorus-containing group, these silicon-containing an groups having the same meanings as mentioned above for R'. In the aforesaid formula (VI), B represents a substituen replaced by a nucleophilic reagent, and includes, for example	d phosphorus-containing 10 It capable of being easily
15	chlorine or bromine; lower alkanoyloxy groups such as formy oxy, butyryloxy or pivaloyloxy; arylcarbonyloxy groups such thoyloxy; arylcarbonylthio groups such as benzoylthio or napl groups; heteroaromatic amine N-oxide thio groups having a atom adjacent to the N-oxide group in the molecule, such as	loxy, acetoxy, propionylas benzoyloxy or naphathoylthio; carbamoyloxy 15 thio-group on the carbon
20	or pyridazine-1-oxide-6-ylthio. Each of the groups mentioned stituted by any of such substituents as, halogen atoms, nitro gr groups, alkylthio groups or acyl groups. In formula (VII), R ⁸ represents a cyano group, an az group linked through O, N or S, and this organic group is the for R ⁴ .	above for B may be sub- oups alkyl groups, alkoxy 20 ido group or an organic
25	In the formula (VII), M represents a hydrogen atom, an earth metal. The tertiary amine used in the process (3) inclisoquinoline or pyrimidine. These tertiary amines may be substuents such as halogen, lower alkyl or carbamoyl. As the compound (II), there may be used any of D-isor	dudes pyridine, quinoline, 25 stituted by various substi-
30	compound. As the reactive derivative of the (thio)carboxyl group of (II), there is used a reactive derivative of a carboxylic employed for the synthesis of acid amide compounds. Exampl tive are acid halides, acid azides, acid cyanides, mixed acid are active amides. Particularly preferable examples thereof are	acid which is ordinarily es of the reactive deriva- phydrides, active esters or
35	chlorides or acid bromides, and active esters such as cyanon methyl ester. The reactive derivative of the (thio)carboxyl group of t (III) can be easily obtained by reacting, for example, an oxog azine of formula (VIII) synthesized according to the process of described below, with phosgene, thiophosgene, or trichloromet	nethyl ester or trichloro- 35 he compound of formula biperazine or thioxopiper- of the literature references
40	acid,	
	A-N NH (R2 R3) m	(Vnr)
	wherein A, X, R2, R3, m and n are as defined previously.	
45	Literature references: V. G. Granik, Khim-Farm. Zh., I(4), 16—19 (1967) (Ru Samuel R. Aspinall, J. An. Chem. Soc., 62, 1202—4 (1940 Kuniyoshi MASUZAWA, Pharm. Bull. (Japan), 38 207)); ₄₅
50	Arthur P. Phillips, Ger. 1135472, Aug. 30 (1962); J. L. Riebsomer, J. Org. Chem., 15 68—73 (1950); Jongkees, Rec. trav. Chim., 27 305; Patric T. Izzo, J. Am. Chem. Soc., 81 4668—4670 (1959)); and 50
	B. H. Chase & A. M. Downes, J. Chem. Soc., 3874—3877 Concrete examples of the compound of formula (VIII) a of (thio)carboxyl group of the compound of formula (III) and Table 2, respectively, but it is needless to say that these	(1953). nd the reactive derivative re as set forth in Table 1

Table 1

Compound	m.p. (recry- stallization solvent)	IR (cm ⁻¹)		
О НИ ИН	136°C ((0))	ν _{C=0} 1640 ν _{NH} 3450 – 3250		
O CH3 HN NH	b.p. 143 ⁰ C/l mmHg oily material	$V_{C=0}$ 1650 V_{NH} 3300 - 3200		
O HN NH CH ₃	b.p. 122 - 125°C/2 mmHg 140 - 141°C (IPA)			
O CH ₃ HN NH CH ₃	85 - 86°C (IPA - IPE)	ν _{C=0} 1660 - 1620		
O CH ₂ CO ₂ C ₂ H ₅ HN NH	105 - 106 ⁰ C (Ac0Et)	$\gamma_{\rm C=0}$ 1710, 1640 $\gamma_{\rm NH}$ 3300, 3190		
CH3CON NH	112 - 113°C (🔘)	$V_{C=0}$ 1645, 1625 V_{NH} 3380, 3220		
ClcH2CON NH	129 - 130 ⁰ C (IPA)	$\gamma_{\rm C=0}$ 1650, 1630 $\gamma_{\rm NH}$ 3270		

- cont'd -

្ឌ

Table 1 (Cont'd)

<u> </u>		
Cl ₂ CHCON NH	134 - 135°C (IPA)	ν _{C=0} 1660-1630 ν _{NH} 3280
CH ₃ (CH ₂) ₁₃ CH ₂ CON NH	96 – 97°C (CC1 ₄)	ν _{C=0} 1670, 1640 · ν _{NH} 3200
CH ₃ (CH ₂) ₅ CH ₂ CON NH	80 - 81°C (IPE)	ν _{C=0} 1660, 1620 ν _{NH} 3250
CH ₃ (CH ₂) ₄ CH ₂ CON NH	83 - 84°C (IPE)	ν _{C=0} 1660, 1620 ν _{NH} 3250
о сн ₃ (сн ₂) ₃ сн ₂ сои ин	99 – 100°C (CC1 ₄)	$V_{\rm C=0}$ 1660, 1620 $V_{ m NH}$ 3250
H CON NH	203 - 205°C (IPA)	γ _{C=0} 1670, 1620 γ _{NH} 3250
O ON NH	91 - 93 ⁰ C (IPA)	√ _{C=0} 1640, 1600 √ _{NH} 3250
c1-(O)-con_nh	146 - 148°C (IPA)	√ _{C=0} 1650, 1620 √ _{NH} 3200
o ch ₃ -(O)- con nh	118 - 120°C (IPA)	Y _{C=0} 1660, 1620 √ _{NH} 3200
CH ₃ O O O CH ₃ O O CH ₃ O	182 - 185 ⁰ C (IPA)	ν _{C=0} 1670, 1600 ν _{NH} 3200

Table 1 (Cont'd)

C1 O C1-O-CON NH	Oily material	ν _{C=O} 1650, 1620 ν _{NH} 3200
CH3 O CH3CON NH	124 - 126°C (O)	$V_{C=0}$ 1650, 1630 V_{NH} 3225
ó ch ₃ so ₂ n nh	167 - 168°C (EtOH)	V _{C=0} 1680 V _{NH} 3200 V _{SO2N<} 1310, 1140
CH3CONHCON NH	176 - 179°c (🔘)	$V_{C=0}$ 1680, 1650, 1620 V_{NH} 3300
О-инсои ин	85 - 88°C (AcOEt)	$ \sqrt[4]{_{\text{C=0}}} $ 1660, 1640 $ \sqrt[4]{_{\text{NH}}} $ 3300, 3200
CH3CH2OCON NH	81 - 82°C ((°))	$v_{C=0}$ 1690 - 1650 v_{NH} 3200, 3050
Сн ₃) ₃ со-осн ₂ -и мн	189 - 190°C (IPA)	$V_{C=0}$ 1650, 1620 V_{NH} 3250
o O	136 - 138 ⁰ C (Acetone)	γ _{C=O} 1660 γ _{NH} 3200
CH ₃ (CH ₂) ₄ CH ₂ -N NH	Oily material	$V_{C=0}$ 1650 - 1630 V_{NH} 3270
CH ₃ (CH ₂) ₂ CH ₂ -N NH	Oily material	γ _{NH} 3250 γ _{C=0} 1650 - 1630

Table I (Cont'd)

CH ₃ (CH ₂) ₂ CH ₂ -N NH	Oily material	ν _{C=0} 1650 - 1620
CH ₃ (CH ₂) ₆ CH ₂ -N NH	Oily material	V _{NH} 3270 V _{C=0} 1650 - 1630 Hydrochloride V _{C=0} 1680 V _{NH} 3200, 3080
O CH ₃ CH ₃ CON NH	Oily material	ν _{C=0} 1680 ν _{NH} 3300
O-NHCON_NH	Oily material	$V_{\rm C=0}$ 1720, 1640 $V_{\rm NH}$ 3300
о сн ₃ и ин	b.p. 104 ⁰ C/4 mmHg	V _{C=0} 1620 V _{NH} 3275
CH ₃ CH ₂ -N NH	Oily material	ν _{C=0} 1610 ν _{NH} 3250
CH ₃ (CH ₂) ₂ CH ₂ -NNH	Oily material	ν _{C=0} 1610 ν _{NH} 3250
о (сн ₃) ₂ сн-и ин	Oily material	ν _{C=0} 1610 ν _{NH} 3400 - 3200
о сн ₃ (сн ₂) ₃ сн ₂ -и ин	Oily material	ν _{C=0} 1620 ν _{NH} 3270
CH ₃ CHCH ₂ CH ₂ -N NH	Oily material	ν _{C=0} 1620 ν _{NH} 3270

Table 1 (Cont'd)

·		
CH ₃ (CH ₂) ₄ CH ₂ -N NH	Oily material	√ _{C=0} 1620 √ _{NH} 3270
CH ₃ (CH ₂) ₅ CH ₂ -N NH	Oily material	ν _{C=0} 1620 ν _{NH} 3270
CH ₃ (CH ₂) ₆ CH ₂ -N NH	Oily material	ν _{C=0} 1620 ν _{NH} 3270
СH ₃ (CH ₂) ₁₀ CH ₂ -и ин	Oily material	ν _{C=0} 1620 ν _{NH} 3270
н)-и мн	Oily material	γ _{C=0} 1620 γ _{NH} 3300
О СН ₃ СН ₃ (СН ₂) ₂ СН ₂ -N NH	Oily material	√ _{C=0} 1630 √ _{NH} 3300
CH ₃ (CH ₂) ₂ CH ₂ -N NH	Oily material	$ \sqrt[4]{_{\text{C=O}}} $ 1630 $ \sqrt[4]{_{\text{NH}}} $ 3300
СН ₃ (СН ₂) ₂ СН ₂ —N NH СН ₃	Oily material	ν _{C=0} 1630 ν _{NH} 3200
O-ch2-n nh	157 - 158°c ((<mark>0</mark>))	ν _{C=0} 1630 ν _{NH} 3300

Table 1 (Cont'd)

		5
O CH ₃ H ₂ NCO-N NH	Oily material	$V_{C=0}$ 1700 V_{NH} 3400 - 3250
HOCH ₂ CH ₂ -N NH	b.p. 183- 185 ⁰ C/2mmHg	ν _{C=0} 1620
O CH ₂ =CHCH ₂ -N NH	Oily material	V _{C=0} 1650 V _{NH} 3300
CH ₂ =CHCH-N NH CH ₃	Oily material	ν _{C=0} 1620 ν _{NH} 3300
CH ₂ =CCH ₂ -N NH CH ₃	Oily material	ν _{C=0} 1640 ν _{NH} 3300
CH=CHCH ₂ -N NH I CH ₃	Oily material	V _{C=0} 1660 V _{NH} 3350
O NCH ₂ -N NH	Oily material	ν _{C=0} 1630 ν _{NH} 3300
CH ₃ CO-N NH	184 - 185 ⁰ C (EtOH)	$V_{C=0}$ 1690 - 1650 V_{NH} 3190, 3050
O CON NH	177 - 178 ⁰ C (EtoH)	$V_{C=0}$ 1680 - 1650 V_{NH} 3190, 3050

- contid.

Table 1 (Cont'd)

·		
CH ₃ -N NH	142 - 143°C (IPA)	ν _{C=0} 1680 - 1620 ν _{NH} 3200
O-ch ₂ -N-NH	209°C (IPA)	$V_{\rm C=0}$ 1660 – 1630 $V_{\rm NH}$ 3230
O O CH3-N NH	158 ^O C (IPA)	√ _{C=O} 1695, 1660 √ _{NH} 3220
O O CH3COOCH2CH2-N NH	Oily material	$V_{C=0}$ 1730 - 1650 V_{NH} 3300 - 3200
O O CH3CH2-N NH	124°C ((0))	$V_{C=0}$ 1680, 1650 V_{NH} 3250
CH3CH2CH2-N NH	98 - 100°C ((°))	$V_{\rm C=0}$ 1680, 1650 $V_{\rm NH}$ 3200, 3100
0 0 сн ₃ (сн ₂) ₂ сн ₂ -и ин	111 - 113°C (CC1 ₁₊)	$\sqrt{c_{=0}}$ 1695, 1670 $\sqrt{c_{NH}}$ 3240, 3150
о о (сн ₃) ₂ сн-и ин	166 - 167°C ((0))	ν _{C=0} 1650 ν _{NH} 3300 - 3200
0 0 У—(СН ₃ (СН ₂) ₃ СН ₂ -N_NH	104 - 106 ⁰ C (IPE)	$V_{C=0}$ 1700, 1660 V_{NH} 3200, 3100
O O CH ₃ (CH ₂) ₄ CH ₂ -N NH	111 - 115°C (IPE)	V _{C=0} 1700, 1660 V _{NH} 3200, 3100

Table 1 (Cont'd)

	· · · · · · · · · · · · · · · · · · ·	·
CH ₃ (CH ₂) ₅ CH ₂ -N_NH	112 - 115 ⁰ C (IPE)	$V_{C=0}$ 1700, 1660 V_{NH} 3200, 3100
CH ₃ (CH ₂) ₆ CH ₂ -N NH	116 - 120°C (IPE)	$V_{C=0}$ 1700, 1660 V_{NH} 3225, 3100
O O CH ₂ =CHCH ₂ -N NH	136 - 137°C (Acetone)	$V_{C=0}$ 1680, 1655 V_{NH} 3200, 3100
O O NH	202 - 204 ⁰ C (IPA)	$V_{\rm C=0}$ 1690, 1645 $V_{\rm NH}$ 3260
ClcH ² CH ² N NH	128 - 129 ⁰ C (EtOH)	$V_{C=0}$ 1700 – 1650 V_{NH} 3200 – 3100
O O CH ₃ CH ₂ -N NH CH ₃	127 ~ 128 ⁰ C (Ac0Et)	ν _{C=O} 1660 ν _{NH} 3200, 3080
O O CH3-N NH CH3	146 - 147°C ((<mark>0</mark>))	$V_{C=0}$ 1660 V_{NH} 3200, 3100
O H NH	183 - 185 ⁰ С (Еtон)	ν _{C=0} 1720, 1660 ν _{NH} 3320, 3175, 3050
O-ch ₂ -n NH	96 - 99°C (IPA-n-Hexane)	ν _{C=0} 1720, 1660 ν _{NH} 3330

Table 1 (Cont'd)

C13CCH2OCO-N NH	143 - 146 ⁰ C (IPA)	ν _{C=0} 1765, 1720, 1680 ν _{NH} 3350
O HN NH O	210 - 212 ⁰ C (MeOH)	V _{C=0} 1680 V _{NH} 3380, 3290, 3070
O CH ₃ HN NH O	132 - 133 ^o c (EtOH)	$V_{C=0}$ 1715, 1685 V_{NH} 3275, 3170
OCH ₂ -N NH	98 - 100 ⁰ C (IPA)	V _{C=0} 1715, 1665 V _{NH} 3360

Note: IPA = $(CH_3)_2CHOH$

 $IPE = (CH_3)_2 CHOCH (CH_3)_2$

AcOEt = CH3COOCH2CH3

EtOH = CH3CH2OH

Table 2

Reactive derivatives of A-N N-COH (III)
$$(R^{2}R^{3})_{m}$$

Compound	Physical property	ı.	R. (cm ⁻¹)
o ch ₃ co-n n-cocl	Oily material	$V_{C=0}$	1790, 1710, 1640
O CICH ² CO-N N-COCI	11	ν _{C=0}	1790, 1730 - 1650
Cl ₂ CHCO-N N-COCl	U	. V _{C=0}	1790, 1730 - 1650
о сн ₃ (сн ₂) ₁₃ сн ₂ со-и и-сос	: :1 " 	$\gamma_{c=0}$	1740, 1660, 1640
CH ₃ (CH ₂) ₅ CH ₂ CO-N N-COC	li L	V _{C=0}	1740, 1680 - 1640
CH ₃ (CH ₂) ₄ CH ₂ CO-N N-COC	u u	√ _{C=0}	1740, 1680 - 1640
CH ₃ (CH ₂) ₃ CH ₂ CO-N N-COCI	"	√ _{C=0}	1790, 1710, 1640

Table 2 (Cont'd)

-		
O (H)-co-n n-coc1	Oily material	ν _{C=0} 1790, 1730,
O-co-n n-cocl	. 14	ν _{C=O} 1740, 1660, 1630
o c1<0>-c0-n n-coc1	tt	ν _{C=0} 1740, 1640
0 CH ₃ -{(()}-COC1		ν _{C=0} 1730, 1650
сн ₃ 0 0 сн ₃ 0 Со-и и-сос1	11	√ _{C=0} 1740, 1640
cl o	11	√ _{C=0} 1720, 1640
CH ₃ O CH ₃ CO-N N-COC1	n	ν _{C=0} 1790, 1710,
o ch ₃ so ₂ -n n-coc1		$ \sqrt[4]{c_{=0}} $ 1790, 1700 $ \sqrt[4]{so_2} $ 1320, 1140
ch3conhco-n_n-coc1	11	ν _{C=0} 1790, 1720 - 1660

Table 2 (Cont'd)

O-nhco-n_n-cocl	Oily material	ν _{C=0} 1740, 1720,
о сн ₃ сн ₂ осо-и и-сос1	11	ν _{C=0} 1750, 1720,
о (сн ₃) ₃ ссоосн ₂ -и	tt	√ _{C=0} 1740 - 1720, 1670
CH ₃ (CH ₂) ₄ CH ₂ -N N-COC1	11	√ _{C=0} 1790, 1720
CH ₃ (CH ₂) ₂ CH ₂ -N N-COC1	11	√ _{C=0} 1790, 1720
CH ₃ (CH ₂) ₂ CH ₂ -N N-COC1	tt	ν _{C=0} 1790, 1720
CH3(CH2)6CH2-N_N-COCI	11	ν _{C=0} 1790, 1720
O HN_N-COC1	m.p. 115 - 116°C (decomp.) (from ())	ν _{C=0} 1720, 1660
O CH ₃ HN N-COC1 CH ₃	Crystal	√ _{C=0} 1730, 1670

Table 2 (Cont'd)

4	·	
HN_N-COC1	Crystal	√ _{C=0} 1720, 1660
O CH2COOCH2CH3	m.p. 59 - 60 ⁰ C (from IPE)	ν _{C=0} 1710 - 1730,
O CH ₃ HN N-COC1	m.p. 98 - 100°C (from ())	ν _{C=0} 1725, 1650
O CH ₃ CH ₃ CO-N N-COC1	Oily material	√ _{C=O} 1720, 1690
O-NHCO-N N-COCI	II.	ν _{C=0} 1790, 1740 - 1700
CH3-N N-COC1	"	ν _{C=0} 1710, 1630
сн ₃ (сн ₂) ₂ сн ₂ -и и-сос1	tf	ν _{C=0} 1730, 1650
CH ₃ CH ₂ -N N-COC1	"	ν _{C=0} 1730, 1650
0 (CH ₃) ₂ CH-N N-COC1	11	√ _{C=0} 1720, 1640

Table 2 (Cont'd)

Oily material	√ _{C=O} 1730, 1640
II.	ν _{C=0} 1720, 1640
11	V _{C=0} 1730, 1640
11	√ _{C=0} 1730, 1640
11	√ _{C=0} 1720, 1640
11	ν _{C=0} 1720, 1640
11	Υ _{C=0} 1730, 1640
Ħ	√ _{C=0} 1730, 1640
es .	√ _{C=0} 1720, 1640
	11

Table 2 (Cont'd)

CH ₃ (CH ₂) ₂ CH ₂ -N N-COC1	Oily material	γ _{C=O} 1730, 1650
O O HN N-COCI	m.p. 105 - 107°C	√ _{C=O} 1730, 1650
O CH ₂ -N N-COC1	Oily material	ν _{C=0} 1720, 1645
O CH ₃ H ₂ NCO-N N-COC1		√ _{C=0} 1700 - 1740
O HOCH ₂ CH ₂ -N N-COC1	н ,	√ _{C=0} 1730, 1660 - 1630
CH2=CHCH2-N N-COC1	"	√ _{C=0} 1720, 1640
CH ₂ =CHCH-N N-COC1	11	√ _{C=0} 1730, 1650
CH ₂ =CCH ₂ -N N-COC1	ii ·	ν _{C=0} 1730, 1650

Table 2 (Cont'd)

CH ₃ CH O CHCH ₂ -N N-COC1 (trans-)	Oily material	ν _{C=0}	1730, 1650
ON-CH ₂ -NN-COC1	m.p. 150 ⁰ C (decomp.)	√ _{C=0}	1670, 1720
CH3CO-N N-COC1	Oily material	√ _{C=0}	1790, 1720 - 1670
O-co-n n-coc1	· 11	√ _{C=0}	1790, 1710, 1670
O CH ₃ -N N-COC1 O	t†	√ _{C=0}	1790, 1710 - 1660
O CH ₂ -N N-COC1	tt .	√ _{C=0}	1790, 1710 - 1660
O O CH3-N N-COC1	m.p. 94 - 95°C (decomp.) (from CH ₂ Cl ₂ - Et ₂ O)	Λ ^{C=0}	1790, 1680
O O CH3COOCH2CH2-N N-COC1	Oily material	Λ ^{C=0}	1790, 1720, 1670

Table 2 (Cont'd)

O O CH3CH2-N N-COC1	m.p. 95 - 96 ⁰ C (decomp.) (from AcOBu)	ν _{C=0} 1780, 1660
CH3CH2CH2-N N-COCI	Oily material	ν _{C=0} 1780, 1710 - 1640
O O CH ₃ (CH ₂) ₂ CH ₂ -N N-COC1	11	ν _{C=0} 1780, 1660
O O (CH ₃) ₂ CH-N N-COC1	m.p. 130 - 131 ⁰ C (decomp.)	ν _{C=0} 1780, 1660
о о сн ₃ (сн ₂) ₃ сн ₂ –и и-сосі	Oily material	ν _{C=0 1790} , 1720 - 1665
CH ₃ (CH ₂) ₄ CH ₂ -N N-COCL	tt	V _{C=0} 1780, 1720 → 1640
cH ₃ (CH ₂) ₅ CH ₂ -N N-COCL	tt	ν _{C=0} 1780, 1720 - 1640
CH ₃ (CH ₂) ₆ CH ₂ -N N-COC1	tt	ν _{C=0} 1780, 1720 - 1640
O O CH ₂ =CHCH ₂ -N_N-COC1	Crystal	√ _{C=0} 1775, 1660 - 1620

Table 2 (Cont'd)

O O O	Crystal	ν _{C=0} 1785, 1720 - 1650
O O N ClcH ₂ CH ₂ -N N-COCl	Oily material	ν _{C=0} 1790, 1720,
O O CH3CH2-N N-COCL CH3	m.р. 65 - 70 ⁰ С (decomp.)	ν _{C=0} 1785, 1680
O O CH3CH2-N N-CSC1	m.p. 100 - 101°C	√ _{C=0} 1725, 1675
O H) HN N-COC1	m.p. 180 - 181°C	ν _{C=0} 1740, 1695
O H O-CH ₂ -N N-COC1	m.p. 160 - 165 ⁰ C	ν _{C=0} 1740, 1670
Cl3CCH2OCO-N N-COC1	Oily material	√ _{C=0} 1800, 1750,

5

10

15

20

Table 2 (Cont'd)

O HN N-COCI	m.p. 185 - 187 ⁰ C (decomp.)	√ _{C=0} 1730, 1690
O CH3 HN N-COC1 O	Oily material	√ _{C=0} 1750, 1710 - 1685
O-CH ₂ -N N-COCL	11	V _{C=0} 1735, 1725, 1710, 1675

Note: $Et_2O = CH_3CH_2OCH_2CH_3$ $AcOBu = CH_3COO(CH_2)_3CH_3$

The compound represented by the general formula (V) can be easily obtained by reacting, for example, a salt with an alkali metal, an alkaline earth metal or a nitrogen-containing organic base of an amino acid (IX) (any of D-isomer, L-isomer and racemic compound) represented by the general formula (IX)

 H_2N —R—COOH (IX)

wherein R is as defined previously, with a reactive derivative in the (thio)carboxyl group of a compound represented by the general formula (III) in a solvent inert to the reaction in the presence of an acid-binding agent. Preferable examples of the compound of formula (V) are D-isomers, L-isomers and racemic compounds of the following compounds, though it is needless to say that the examples are not limitative:

a - (4 - Acetyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid
a - (4 - Chloroacetyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid
a - (4 - Palmitoyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid
a - (4 - Capryloyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid
a - (4 - Capryloyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid
a - (4 - Cyclohexanecarbonyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid
a - (4 - Cyclohexanecarbonyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid
a - (4 - Benzoyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid
a - (4 - Benzoyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid
a - (4 - Cyclohexanecarbonyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid
a - (4 - Cyclohexanecarbonyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid
a - (4 - Cyclohexanecarbonyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid
a - (4 - Cyclohexanecarbonyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid
a - (4 - Cyclohexanecarbonyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid
a - (4 - Cyclohexanecarbonyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid

α - (4 - p - Methoxybenzoyl - 2 - οxo - 1 - piperazinocarbonylamino)phenylacetic acid

	α - [4 - (3,4,5 - Trimethoxybenzoyl) - 2 - oxo - 1 - piperazinocarbonylamino]-		
	phenylacetic acid α - [4 - (2,4 - Dichlorobenzoyl) - 2 - οχο - 1 - piperazinocarbonylamino]phenyl-		į
E	acetic acid α - (4 - Acetyl - 3 - methyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic	5	
5	acid		*
	acid α - (4 - Acetylaminocarbonyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic	=	
10	acid	10	
	α - (4 - Phenylaminocarbonyl - 2 - oxo - 1 - piperazinocarbonylamino)phenyl- acetic acid		
	α - (4 - Ethoxycarbonyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid α - (4 - Pivaloyloxymethyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic		
15	acid a - (4 - n - Hexyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid	15	
	$\alpha = (4 - n - Butyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid \alpha = (4 - n - Butyl - 6 - methyl - 2 - oxo - 1 - piperazinocarbonylamino)phenyl-$		
	acetic acid $\alpha - (4 - n - Octyl - 2 - oxo - 1 - piperazinocarbonylamino)$ phenylacetic acid	20	
20	α - (3 - Oxo - 1 - piperazinocarbonylamino)phenylacetic acid	20	
•	α = (2,5 - Dimethyl - 3 - 0x0 - 1 - piperazinocarbonylamino)phenylacetic acid α = (5 - Methyl - 3 - 0x0 - 1 - piperazinocarbonylamino)phenylacetic acid		
25	α - (2 - Bthoxycarbonylmethyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid	25	
25	α - (2 - Methyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid α - (4 - Acetyl - 2 - methyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetic		
	acid \[\alpha - (4 - Phenylaminocarbonyl - 3 - \text{oxo} - 1 - piperazinocarbonylamino)phenyl-		
30	acetic acid $\alpha - (4 - Methyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid$	30	
	w = (4 - n - Butyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid		-
	α - (4 - Ethyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid α - (4 - Isopropyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid		
35	α - (4 - n - Pentyl - 3 - oxo - 1 - piperazinocarbonylamino) phenylacetic acid α - (4 - iso - Pentyl - 3 - oxo - 1 - piperazinocarbonylamino) phenylacetic acid	35	
	$\alpha - (4 - n - \text{Hexyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetic acid		
	α - (4 - n - Octyl - 3 - oxo - 1 - piperazinocarbonylamino) phenylacetic acid α - (4 - n - Dodecyl - 3 - oxo - 1 - piperazinocarbonylamino) phenylacetic acid	40	
40	α - (4 - Cyclopentyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid α - (2 - Methyl - 4 - n - butyl - 3 - oxo - 1 - piperazinocarbonylamino)phenyl-		
	acetic acid $\alpha - (4 - n - Butyl - 5 - methyl - 3 - oxo - 1 - piperazinocarbonylamino)phenyl-$		
45	acetic acid	45	
	α - (4 - n - Butyl - 6 - methyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid		
	α - (2 - Phenyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid α - (4 - Benzyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid		
50	α - (4 - Carbamoyl - 2 - methyl - 3 - oxo - 1 - piperazinocarbonylamino)phenyl-	50	\$
	α - (4 - β - Hydroxyethyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid		÷-
	α - (4 - Allyl - 3 - 0x0 - 1 - piperazinocarbonylamino)phenylacetic acid α - (4 - α - Methylallyl - 3 - 0x0 - 1 - piperazinocarbonylamino)phenylacetic acid	55	q
55	$\alpha - (4 - \beta - \text{Methylallyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetic acid $\alpha - [4 - (\text{Trans} - 2 - \text{butenyl}) - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino}]$ phenyl-	-	=
	acetic acid		
60	α - (4 - Morpholinomethyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetic acid	60	
	α - (4 - Ethyl - 3 - oxo - 1 - piperazinocarbonylamino) propionic acid α - (4 - Acetyl - 2,5 - dioxo - 1 - piperazinocarbonylamino) phenylacetic acid		
	$\alpha - (4 - \text{Benzoyl} - 2.5 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetic acid	٠.	
65	α - (4 - Benzyl - 2,5 - dioxo - 1 - piperazinocarbonylamino)phenylacetic acid	65	

```
α - (4 - Methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetic acid
               α - (4 - Acetoxyethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetic
        acid
              α - (4 - Ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetic acid
              α - (4 - n - Propyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetic acid
 5
              α - (4 - n - Butyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetic acid
              \alpha - (4 - Isopropyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetic acid \alpha - (4 - n - Pentyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetic acid \alpha - (4 - n - Hexyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetic acid \alpha - (4 - n - Hexyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetic acid
                                                                                                                           10
               α - (4 - n - Heptyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetic acid
10
              \alpha - (4 - n - Octyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetic acid \alpha - (4 - Allyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetic acid \alpha - (4 - Phenyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetic acid \alpha - (4 - Phenyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetic acid
               \alpha - (4 - \beta - Chloroethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetic
                                                                                                                           15
         acid
15
               \alpha - (4 - Pyrrolidinoethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetic
         acid
               \alpha - (4 - Methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - p - hydroxyphenyl-
         acetic acid
               \alpha - (4 - Ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - p - hydroxyphenyl-
                                                                                                                           20
20
         acetic acid
               \alpha - (6 - Methyl - 4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenyl-
         acetic acid
               \alpha - (4,6 - Dimethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetic acid \alpha - (4 - Ethyl - 2,3 - dioxo - 1 - piperazinothiocarbonylamino) phenylacetic acid
                                                                                                                           25
25
               α - (4 - Methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 1,4 - cyclohexa-
               \alpha - (4 - Ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 1,4 - cyclohexadienyl-
         acetic acid
               a - (4 - n - Propyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 1,4 - cyclohexa-
                                                                                                                            30
30
         dienylacetic acid
               \alpha - (4 - n - Butyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 1,4 - cyclohexa-
         dienylacetic acid
               \alpha - (4 - Methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 2 - thienylacetic
                                                                                                                            35
 35
              \alpha - (4 - Ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 2 - thienylacetic acid
              \alpha - (4 - n - Propyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 2 - thienylacetic
        acid
              α - (4 - n - Butyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 2 - thienylacetic
                                                                                                                            40
 40
              \alpha - (2,2 - Pentamethylene - 3,5 - dioxo - 1 - piperazinocarbonylamino)phenyl-
        acetic acid
              \alpha - (4 - Benzyl - 2,2 - pentamethylene - 3,5 - dioxo - 1 - piperazinocarbonyl-
        amino) phenylacetic acid
              \alpha - (4 - \beta, \beta, \beta - Trichloroethoxycarbonyl - 2,2 - pentamethylene - 3,5 - dioxo - 1-
                                                                                                                            45
 45
        piperazinocarbonylamino) phenylacetic acid
              \alpha - (3,5 - Dioxo - 1 - piperazinocarbonylamino) phenylacetic acid
              \alpha - (2 - Methyl - 2 - phenyl - 3,5 - dioxo - 1 - piperazinocarbonylamino)phenyl-
        acetic acid
                                                                                                                            50
              α - (4 - Benzyl - 2 - methyl - 3,5 - dioxo - 1 - piperazinocarbonylamino)phenyl-
 50
         acetic acid
              \alpha - (4 - Methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetic acid
               As the reactive derivative in the carboxyl group of the compound represented by
         the general formula (V), there is used a reactive derivative of a carboxylic acid which
         is ordinarily used in the synthesis of acid amides. Such reactive derivative includes, for
                                                                                                                            55
 55
         example, acid halides, acid anhydrides, mixed acid anhydrides with organic or inorganic
         acids, active acid amides, acid cyanides or active esters. Particularly, acid chlorides,
         mixed acid anhydrides and active acid amides are preferable. Examples of the mixed
         acid anhydrides are mixed acid anhydrides with substituted acetic acids, alkyl carbonic
         acids, aryl carbonic acids and aralkyl carbonic acids; examples of the active esters are
                                                                                                                            60
 60
         cyanomethyl esters, substituted phenyl esters, substituted benzyl esters or substituted thienyl esters; and examples of the active acid amides are N-acyl saccharins, N-acyl
                          N-acyl benzoylamides, N,N-dicyclohexyl-N-acylureas or N-acyl
         imidazoles,
         sulfonamides.
               Compounds of formula (VI) can be obtained by, for example, process (1) or (2).
                                                                                                                            65
 65
```

	Some of the compounds obtained by process (3) can further be used as the starting compounds in process (3). Any of D-, L- and racemic compounds of formula (VI) may be used.	
5	The modes of practice of the processes (1), (2) and (3) are explained below. The processes (1) and (2) may be carried out under substantially the same conditions. That is, the compound of formula (II) or (IV) is dissolved or suspended in at least one insert solvent selected from for example, water, acctone, tetrahydrofuran,	5
10	dioxane, acetonitrile, dimethylformamide, methanol, ethanol, methoxyethanol, diethyl ether, isopropyl ether, benzene, toluene, methylene chloride, chloroform, ethyl acetate and methyl isobutyl ketone. The resulting solution or suspension is reacted with a reactive derivative of the compound of formula (III), or with the compound of formula (V) or a reactive derivative in the carboxyl group of the compound of formula (V) in	10
15	the presence or absence of a base at a temperature in the range from —60 to 50 cs, preferably from —40° to 30°C. The reaction time is ordinarily 5 minutes to 5 hours. Examples of the base used in the above reaction are inorganic bases such as alkali hydroxides, alkali hydroxides, alkali hydroxides, alkali hydroxides, alkali carbonates, or alkali acetates; tertiary arrives such as trimethylamine, tributylamine, pyridine, N-methylpiper-	15
20	idine, N-methylmorpholine, lutidine and collidine; and secondary ainlies such as disciplination or diethylamine. When the compound of formula (V) is used in the form of a free acid or salt in the process (2), the reaction of the process (2) may be effected in the presence of a dehydrating condensing agent such as N,N-dicyclohexyl carbodiimide, N,N'-diethyl carbodiimide, N,N'-diethyl carbodi-	20
25	imide, N,N'-carbonyl (2-methylimidazole), a trialkyl ester of phosphorus acid, ethylester of polyphosphoric acid, phosphorus oxychloride, phosphorus trichloride, 2-chloro-1,3,2-dioxaphospholane or oxazolyl chloride. The salt of the compound of formula (V) includes alkali metal salts, alkaline earth metal salts, ammonium salts, and salts with	25
30	organic bases such as trimethylamine or dicyclonexylamine. The process (3) is carried out in the manner described below. When B in the formula (VI) is a group other than a hetero aromatic N-oxide thio group having a thio group on the carbon atom adjacent to the N-oxide group in the molecule, the compound of formula (VI) is reacted with the compound of formula (VII) or a tertiary amine in at least one solvent selected from, for example, water,	30
35	methanol, ethanol, propanol, isopropanol, butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, dioxane, acetonitrile, ethyl acetate, methoxyethanol, dimethoxyethane, dimethylformamide, dimethyl sulfoxide, dichloromethane, chloroform and a dichloroethane. The above-mentioned reaction is preferably effected in a strongly polar solvent such as water. In this case, the pH of the reaction solution is	35
40	advantageously maintained at 2 to 10, preferably 4 to 8. The desired pH may be attained by addition of a buffer solution such as sodium phosphate. The reaction conditions are not particularly limited, though the reaction is ordinarily conducted at 0° to 100°C. over a period of at least several hours. When B in the carbon atom adjacent to the aromatic N-oxide thio group having a thio group of the carbon atom adjacent to the	40
45	N-oxide group in the molecule, the compound of formula (VI) is reacted with the compound of formula (VII) in the above-mentioned solvent in the presence of a cupric compound. This reaction is particularly useful where an alcohol is used such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, n-butyl alcohol, benzyl alcohol or ethylene glycol as the compound of formula (VII). In this case, the reaction pro-	45
50	ceeds smoothly by using an excess of the alcohol per se to allow it to act as the reaction medium, too. The cupric compound used in this process includes organic and inorganic ones, such as cupric chloride, bromide, fluoride, nitrate, sulfate, borate, phosphate, create proping to complete accepte proping the citrate, tatarate, benzoate and salicylate. The	50
55	amount of the cupric compound used is preferably 1/2 more per more of the compound of formula (VI). The reaction temperature and the reaction time may be varied depending upon the kinds of compound of formula (VI), cupric compound and compound of formula (VII), though they are usually selected from the range of 0° to 100°C and	55
33	The reaction conditions to be adopted in the processes (1), (2) and (3) are not limited to those mentioned above, and can be properly varied depending upon the kinds of mention reagents.	
60	Further, the non-toxic salts of the general formula (I), in which R ¹ is a salt- forming cation, can be easily obtained according to an ordinary procedure from com- pounds of the general formula (I), in which R ¹ is a hydrogen atom or a blocking group. Thus, among the compounds of formula (I) of the present invention, the penicillins can be easily obtained according to any of the aforesaid processes (1) and (2), while	60

31

	$6 - [D(-) - \alpha - (4 - iso - pentyl - 3 - oxo - 1 - piperazinocarbonylamino) phenylacetamido] penicillanic acid,$	
	$6 - (\hat{\mathbf{D}}(-)) - \alpha - (2 - \text{methyl} - 4 - n - \text{butyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonyl}$	_
5	amino)phenylacetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - n - butyl - 5 - methyl - 3 - oxo - 1 - piperazinocarbonyl-$	5
	amino)phenylacetamido]penicillanic acid, $6 - [D(-) - \alpha - (4 - n - butyl - 6 - methyl - 3 - oxo - 1 - piperazinocarbonyl-$	=
	amino)phenylacetamido]penicillanic acid, 6 - $[D(-) - \alpha - (4 - benzyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacet-$	
10	amido] penicillanic acid, $6 - [D(-) - \alpha - (4 - \beta - \text{hydroxyethyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$	10
	phenylacetamido] penicillanic acid, 6 - [D(-) - α - (4 - acetyl - 2 - methyl - 3 - oxo - piperazinocarbonylamino)-	
	phenylacetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - carbamoyl - 2 - methyl - 3 - oxo - 1 - piperazinocarbonyl-$	15
15	amino) phenylacetamido) penicillanic acid.	
	6-[D(-) - α - (3 - oxo - 1 - piperazinocarbonylamino)phenylacetamido]penicillanic acid,	
20	$6 - [D(-) - \alpha - (2,5 - \text{dimethyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ acetamido penicillanic acid,	20
	$6 - [D(-) - \alpha - (5 - \text{methyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido) penicilanic acid,	
	$6 - (D(-) - \alpha - (2 - \text{ethoxycarbonylmethyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonyl}$	
25	amino)phenylacetamido]penicillanic acid, $6 - [D(-) - \alpha - (2 - methyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacet-$	25
	amido]penicillanic acid, 6 - [D() - α - (4 - ethyl - 3 - οχο - 1 - piperazinocarbonylamino)propion-	
	amido] penicillanic acid, $6 - [D(-) - \alpha - (4 - allyl - 3 - oxo - 1 - piperazinocarbonylamino) phenylacet-$	20
30	amido] penicillanic acid, $6 - [D(-) - \alpha - (4 - \alpha - methylallyl - 3 - oxo - 1 - piperazinocarbonylamino)-$	30
	phenylacetamido] penicillanic acid, $6 - [D(-)] - \alpha - (4 - \beta - methylallyl - 3 - oxo - 1 - piperazinocarbonylamino) -$	
35	phenylacetamido] penicillanic acid, $6 - \{D(-) - \alpha - [4 - (trans - 2 - butenyl) - 3 - oxo - 1 - piperazinocarbonyl-$	35
33	aminol phenylacetamido) penicillanic acid.	
	$6 - [D(-) - \alpha - (4 - n - hexyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetamido]penicillanic acid,$	
40	$6 - [\hat{D}(-) - \alpha - (4 - n - heptyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetamido] penicillanic acid,$	40
	$6 - [\hat{D}(-) - \alpha - (4 - n - \text{octyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido] penicillanic acid,	
	$6 - [D(-) - \alpha - (4 - n - dodecyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetamido]penicillanic acid,$	
45	$6 - [D(-) - \alpha - (4 - \text{cyclopentyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenyl-	45
	acetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - phenylaminocarbonyl - 3 - oxo - 1 - piperazinocarbonyl-$	
	amino) phenylacetamido] penicillanic acid, $6 - [D(-) - \alpha - (2 - phenyl - 3 - oxo - 1 - piperazinocarbonylamino) phenyl-$	50
50	acetamido]penicillanic acid, $6 - [D(-) - \alpha - (4 - morpholinomethyl - 3 - oxo - 1 - piperazinocarbonylamino)-$	
	phenylacetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - acetyl - 2,5 - dioxo - 1 - piperazinocarbonylamino) phenyl-$	-
55	acetamido]penicillanic acid, 6 - [D(-) - α - (4 - benzoyl - 2,5 - dioxo - 1 - piperazinocarbonylamino)phenyl-	55
33	acetamido I penicillanic acid.	
	$6 - [D(-) - \alpha - (4 - \text{methyl} - 2.5 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) \text{phenylacetamido}] penicillanic acid,$	
60	$6 - [D(-) - \alpha - (4 - benzyl - 2,5 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido]penicillanic acid,$	60
	6 - $[D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido]penicillanic acid,	
	6 - $[D(-) - \alpha - (4 - \text{methyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido]penicillanic acid,	

	$6 - [D(-) - \alpha - (4 - n - propyl - 2, 3 - dioxo - 1 - piperazinocarbonylamino)$	
	phenylacetamido l penicillanic acid.	
i Š	$6 - [D(-) - \alpha - (4 - n - butyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetamido penicillanic acid,$	
5	$6 - [\hat{\mathbf{D}}(-) - \alpha - (4 - iso - propyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - phenylacetamido] penicillanic acid,$	5
	$6 - [D(-) - \alpha - (4 - acetoxyethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) -$	
	phenylacetamidó] penicillanic acid, 6 - $[D(-) - \alpha - (4 - allyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenyl-$	
10	acetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - phenyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenyl-$	10
	acetamido]penicillanic acid,	
	6 - $[\hat{\mathbf{D}}(-) - \alpha - (4 - \beta - \text{chloroethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ - phenylacetamido] penicillanic acid,	
15	$6 - [D(-) - \alpha - (6 - methyl - 4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido]penicillanic acid,$	15
	$6 - [D(-) - \alpha - (4,6 - dimethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-$	
	phenylacetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - n - pentyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) -$	20
20	phenylacetamido] penicillanic acid, 6 - $[D(-)$ - α - $(4 - n$ - hexyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-	20
	phenylacetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - n - heptyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-$	
	nhanylacetamidal nenicillanic acid	25
25	$6 - [D(-) - \alpha - (4 - n - \text{octyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) - phenylacetamido] penicillanic acid,$	20
	$6 - [D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinothiocarbonylamino})$ - phenylacetamido] penicillanic acid,	
30	6 - $[D(-)$ - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - p-hydroxyphenylacetamido] penicillanic acid,	30
30	$6 - [D(-) - \alpha - (4 - \text{ethyl} - 2, 3 - \text{diox} - 1 - \text{piperazinocarbonylamino}) - p$	-
	hydroxyphenylacetamido] penicillanic acid, 6 - $[D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 1,4-$	
35	cyclohexadienylacetamido] penicillanic acid, 6 - $[D(-)$ - α - $(4$ - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 1,4-	35
33	cyclohexadienylacetamido] penicillanic acid, 6 - [D(-) - α - (4 - n - propyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-	
	1.4 - cyclohexadienylacetamido I penicillanic acid.	
40	$6 - [D(-) - \alpha - (4 - n - butyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 1,4-cyclohexadienylacetamido] penicillanic acid,$	40
	6 - [DL - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 2-	
	$6 - [DL - \alpha - (4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 2 - thienyl-$	
45	acetamido] penicillanic acid, o - [DL - α - (4 - n - propyl - 2,3 - dioxo - 1 - piperadinocarbonylamino) - 2-	45
	thienylacetamido] penicillanic acid, 6 - [DL - α - (4 - n - butyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 2-	
	thienylacetamido] penicillanic acid, $6 - [D(-) - \alpha - (2,2 - pentamethylene - 3,5 - dioxo - 1 - piperazinocarbonyl-$	
50	amino) phenylacetamido l penicillanic acid.	50
=	$6 - [D(-) - \alpha - (3,5 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) \text{phenylacetamido}]$ - penicillanic acid,	
	6 - [D() - α - (2 - methyl - 2 - phenyl - 3,5 - dioxo - 1 - piperazinocarbonyl-amino)phenylacetamido]penicillanic acid,	rr
<u>.</u> 55	$6 - [D(-) - \alpha - (4 - benzyl - 2,2 - pentamethylene - 3,5 - dioxo - 1 - piperazino-carbonylamino) phenylacetamido] penicillanic acid,$	55
	$6 - [D(-) - \alpha - (4 - \beta_1\beta_1\beta_2) - \text{trichloroethoxycarbonyl} - 2,2 - \text{pentamethylene} - 3,5 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido] penicillanic acid,	
	$6 - [D(-) - \alpha - (4 - benzyl - 2 - methyl - 2 - phenyl - 3,5 - dioxo - 1 - piper-$	60
60	azinocarbonylamino) phenylacetamido] penicillanic acid, pivaloyloxymethyl 6 - $[D(-)$ - α - $(2$ - methyl - 3 - oxo - 1 - piperazino-	00
	carbonylamino)phenylacetamido]penicillanate, phthalidyl 6 - [D(—) - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonyl-	
65	amino)phenylacetamido)penicillanate,	65
US	- -	• •

24	-33	
	phthalidyl 6 - $[D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonyl-amino})$ phenylacetamido]penicillanate,	
	phthalidyl 6 - $[D(-) - \alpha - (4 - iso - propyl - 2,3 - dioxo - 1 - piperazino-$	•
	carbonylamino)phenylacetamido]penicillanate, phthalidyl 6 - $[D(-) - \alpha - (4 - n - butyl - 2,3 - dioxo - 1 - piperazinocarbonyl-$	5 -
5	amino)phenylacetamido)penicillanate, methoxymethyl 6 - [D() - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocar-	
	bonylamino) phenylacetamido penicillanate,	=
	methoxymethyl 6 - $[D(-) - \alpha - (4 - \text{ethyl} - 2, 3 - \text{dioxo} - 1 - \text{piperazinocarbonyl-amino})$ phenylacetamido] penicillanate,	10
10	methoxymethyl $6 - [D(-) - \alpha - (4 - n - butyl - 2,3 - dioxo - 1 - piperazino-$	
	carbonylamino) phenylacetamido] penicillanate, methoxymethyl 6 - [D(-) - α - (4 - iso - propyl - 2,3 - dioxo - 1 - piperazino-	
	carbonylamino) phenylacetamido l penicillanate.	16
15	methoxymethyl 6 - $[D(-)]$ - α - $(4 - n)$ - octyl - 2,3 - dioxo - 1 - piperazino-carbonylamino)phenylacetamido]penicillanate,	15
	pivaloyloxymethyl 6 - $[D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazino-carbonylamino) phenylacetamido] penicillanate,$	
•	pivaloyloxymethyl 6 - $[D(-)]$ - α - (4 - ethyl - 2,3 - dioxo - 1 - piperazinocar-	
20	bonylamino) phenylacetamido] penicillanate, pivaloyloxymethyl 6 - $[D(-) - \alpha - (4 - n - \text{octyl} - 2,3 - \text{dioxo} - 1 - \text{piperazino-}$	20
	carbonylamino) phenylacetamido] penicillanate,	•
:	β - piperidinoethyl 6 - $[D(-) - \alpha - (4 - \text{methyl} - 2, 3 - \text{dioxo} - 1 - \text{piperazino-carbonylamino})$ phenylacetamido] penicillanate,	
25	β - piperidinoethyl 6 - [D(-) - α - (4 - n - octyl - 2,3 - dioxo - 1 - piperazino-carbonylamino)phenylacetamido]penicillanate,	25
	β - morpholinoethyl 6 - [D(-) - α - (4 - methyl - 2,3 - dioxo - 1 - piperazino-	
	carbonylamino)phenylacetamido]penicillanate and β - morpholinoethyl 6 - $[D(-) - \alpha - (4 - n - octyl - 2, 3 - dioxo - 1 - piperazino-$	
30	carbonylamino)phenylacetamido]penicillanate.	30
-	Cephalosporins:	
	7 - $[D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - methyl - \Delta^3 - cephem - 4 - carboxylic acid,$	•
35	7 (T) / // sal-1 72 diama 1 minorarino archanylamina \nhenyl-	35
	$7 - [D(-) - \alpha - (4 - n - propyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)$	•
	phenylacetamido] - 3 - methyl - Δ^3 - cephem - 4 - carboxylic acid, 7 - [D(-) - α - (4 - n - butyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-	
	phenylacetamido] - 3 - methyl - Δ^3 - cephem - 4 - carboxylic acid, 7 - $\{D(-)$ - α - $\{4$ - n - pentyl - 2 , 3 - dioxo - 1 - piperazinocarbonylamino)-	40
. 40	phenylacetamido] - 3 - methyl - Δ^3 - cephem - 4 - carboxylic acid,	40
	7 - $[D(-)]$ - α - $(4 - n - hexy\hat{1} - 2,3 - dioxo - 1 - piperazinocarbonylamino) - phenylacetamido] - 3 - methyl - \Delta^3 - cephem - 4 - carboxylic acid,$	
	$7 - (D(-) - \alpha - (4 - n - heptyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)$	
45	phenylacetamido] - 3 - methyl - Δ^3 - cephem - 4 - carboxylic acid, 7 - [D(-) - α - (4 - n - octyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-	45
	phenylacetamido] - 3 - methyl - Δ^3 - cephem - 4 - carboxylic acid, 7 - $[D(-)]$ - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenyl-	•
	acetamido] - 3 - acetoxymethyl - Δ^3 - cephem - 4 - carboxylic acid,	
50	7 - $[D(-)$ - α - $(4 - n - propyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-phenylacetamido] - 3 - acetoxymethyl - \Delta^3 - cephem - 4 - carboxylic acid,$	50
	7 - $[D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido] - 3 - acetoxymethyl - Δ^3 - cephem - 4 - carboxylic acid,	
	$7 - [D(-) - \alpha - (4 - iso - propyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) -$	
55	phenylacetamido] - 3 - acetoxymethyl - Δ^3 - cephem - 4 - carboxylic acid, 7 - [D(-) - α - (4 - ethyl - 2,3 - dioxo - 1 - piperazinothiocarbonylamino)-	55-
	phenylacetamido] - 3 - acetoxymethyl - Δ^3 - cephem - 4 - carboxylic acid, 7 - [D(-) - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinothiocarbonylamino)-	
60	phenylacetamidol - 3 - acetoxymethyl - Δ^3 - cephem - 4 - carboxylic acid,	
	7 - $[D(-)$ - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl)thiomethyl] - Δ^3 - cephem - 4-	. 60
	carboxylic acid.	
	7 - $[D(-)$ - α - (4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl)thiomethyl] - Δ^2 - cephem - 4-	65
65	carboxylic acid,	03

33	1,500,002	
	7 - $[D(-)$ - α - $(4 - n - propyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl)thiomethyl] - \Delta^3-cephem - 4 - carboxylic acid,$	•
5	7 - $[D(-)$ - α - $(4 - n$ - butyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - $[2 - (5 - methyl - 1,3,4 - thiadiazolyl)thiomethyl] - \Delta^3 - cephem - 4-$	5
	carboxylic acid, $7 - [D(-) - \alpha - (4 - phenyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl)thiomethyl] - \Delta^3 - cephem - 4-$	٠
10	carboxylic acid, $7 - [D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) thiomethyl] - \Delta^3 - cephem - 4-$.· 10
16	carboxylic acid, $7 - [D(-) - \alpha - (4 - \text{ethyl} - 6 - \text{methyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonyl-amino})$ amino)phenylacetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl]-	15
15	Δ^2 - cephem - 4 - carboxylic acid, 7 - [D(-) - α - (4,6 - dimethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - phenylacetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl)thiomethyl] - Δ^3 -	-
20	cephem - 4 - carboxylic acid, 7 - $[D(-) - \alpha - (4 - \text{phenyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenyl- acetamido] - 3 - $[5 - (1 - \text{methyl} - 1,2,3,4 - \text{tetrazolyl})$ thiomethyl] - Δ^3 - cephem - 4- carboxylic acid,	20
	7 - $[D(-) - \alpha - (4 - \text{methyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido] - 3 - $[5 - (1,3,4 - \text{thiadiazolyl})$ thiomethyl] - Δ^3 - cephem - 4 - carboxylic	
25	7 - $[D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ acetamido] - 3 - $[5 - (1,3,4 - \text{thiadiazolyl})$ thiomethyl] - Δ^3 - cephem - 4 - carboxylic	25
30	7 - [D() - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2 - (1 - methyl - 1,3,4 - triazolyl)thiomethyl] - Δ^3 - cephem - 4-carboxylic acid, 7 - [D() - α - (4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2 - (1 - methyl - 1,3,4 - triazolyl)thiomethyl] - Δ^3 - cephem - 4-	30
35	carboxylic acid, 7 - [D(-) - α - (4 - phenyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenyl- acetamido] - 3 - [2 - (1 - methyl - 1,3,4 - triazolyl)thiomethyl] - Δ^3 - cephem - 4- carboxylic acid,	35
40	$7 - [D(-) - \alpha - (4 - \text{methyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ propionamido] - 3 - acetoxymethyl - Δ^3 - cephem - 4 - carboxylic acid, $7 - [D(-) - \alpha - (4 - \text{methyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) - phydroxyphenylacetamido] - 3 - [5 - (1 - \text{methyl} - 1,2,3,4 - \text{tetrazolyl}) - \text{thiomethyl}] - \Delta^3 - cephem - 4 - carboxylic acid.$	40
45	7 - $[D(-) - \alpha - (4 - \text{methyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido] - 3 - azidomethyl - Δ^3 - cephem - 4 - carboxylic acid, 7 - $[D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido] - 3 - $[5 - (1 - \text{methyl} - 1,2,3,4 - \text{tetrazolyl})$ thiomethyl] - Δ^3 - cephem - 4-carboxylic acid,	45
50	7 - $[D(-)$ - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetamido] - 3 - $[5$ - (1 - methyl - 1,2,3,4 - tetrazolyl) thiomethyl] - Δ^3 - cephem - 4-carboxylic acid, 7 - $[D(-)$ - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetamido] - 3 - $[2$ - (1,3,4 - triazolyl) - thiomethyl] - Δ^3 - cephem - 4 - carboxylic	50
55	acid, $7 - [D(-) - \alpha - (4 - \text{methyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) \text{phenyl-acetamido}] - 3 - [5 - (1,2,3,4 - \text{tetrazolyl}) \text{thiomethyl}] - \Delta^3 - cephem - 4 - carboxylic acid, 7 - [D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) \text{phenyl-}$	55
60	acetamido] - 3 - [5 - (1,2,3,4 - tetrazolyl)thiomethyl] - Δ^3 - cephem - 4 - carboxylic acid, 7 - [D() - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - oxadiazolyl)thiomethyl] - Δ^3 - cephem - 4-carboxylic acid,	60
65	7 - $[D(-)$ - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetamido] - 3 - $[3$ - (2,6 - dimethyl - 5 - oxo - 2,5 - dihydro - 1,2,4 - triazinyl) thiomethyl] - Δ^3 - cephem - 4 - carboxylic acid, 7 - $[D(-)$ - α - (4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenyl-	65

36	1,500,8002	- 30
•	acetamido] - 3 - [2 - (4 - methyloxazolyl) - thiomethyl] - Δ^3 - cephem - 4 - carboxylic acid,	
	7 - [D(-) - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino] phenylacetamido] - 3 - [2 - (4 - methylthiazolyl)thiomethyl] - Δ^3 - cephem - 4 - carboxylic acid,	- 5
5	7 - $[D(-)$ - α - (4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2 - (pyridyl - 1 - oxide) - thiomethyl] - Δ^3 - cephem - 4 - carboxylic	- F
10	acid, $7 - [D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetamido] - 3 - (2 - thiazolinylthiomethyl) - \Delta^3 - cephem - 4 - carboxylic acid, 7 - [D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetamido] - 3 - [2 - (1 - methylimidazolyl) thiomethyl] - \Delta^3 - cephem - 4 - carboxylic$	10
15	acid, $7 - [D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - (2 - pyrimidinylthiomethyl) - \Delta^3 - cephem - 4 - carboxylic acid, 7 - [D(-) - \alpha - (4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [3 - (6 - methylpyridazinyl)thiomethyl] - \Delta^3 - cephem - 4 - carboxylic$	15
20	acid, $7 - [D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [1 - (4 - methylpiperazino)thiocarbonylthiomethyl] - \Delta^3 - cephem-4 - carboxylic acid,$	20
	7 - $[D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [5 - (3 - methylisoxazolyl)carbonylthiomethyl] - \Delta^3 - cephem - 4-carboxylic acid.$	•
25	7 - [D() - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - ethoxythiocarbonylthiomethyl - Δ^3 - cephem - 4 - carboxylic acid, 7 - [D() - α - (4 - ethoxycarbonyl - 2 - oxo - 1 - piperazinocarbonylamino)-phenylacetamido] - 3 - methyl - Δ^3 - cephem - 4 - carboxylic acid,	25
30	7 - $[D(-)] - \alpha - (4 - n - hexyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - methyl - \Delta^3 - cephem - 4 - carboxylic acid,7 - [D(-)] - \alpha - (4 - acetyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - \Delta^3 - cephem - 4-$	30
35	carboxylic acid, $7 - [D(-) - \alpha - (4 - methanesulfonyl - 2 - oxo - 1 - piperazinocarbonylamino) - phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - \Delta^3-cephem - 4 - carboxylic acid,$	-35
40	7. $[D(-) - \alpha - (4 - methyl - 2 - oxo - 1 - piperazinocarbonylamino) phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - \Delta^{\sigma} - cephem-4 - carboxylic acid, 7 - [D(-) - \alpha - (4 - ethyl - 2 - oxo - 1 - piperazinocarbonylamino) phenylacet-$	40
40	amido] $-3 - [2 - (5 - \text{methyl} - 1,3,4 - \text{thiadiazolyl}) - \text{thiomethyl}] - \Delta^8 - cephem - 4-carboxylic acid,7 - [D(-) - \alpha - (4 - \text{acetylaminocarbonyl} - 2 - \text{oxo} - 1 - \text{piperazinocarbonyl}]$	
45	amino)phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - Δ^3 - cephem - 4 - carboxylic acid, 7 - [D(-) - α - (4 - methyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - Δ^3 - cephem-	45
50	4 - carboxylic acid, 7 - $[D(-) - \alpha - (4 - \text{ethyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenylacet- amido] - 3 - $[2 - (5 - \text{methyl} - 1,3,4 - \text{thiadiazolyl})$ - thiomethyl] - Δ^3 - cephem - 4- carboxylic acid,	.50
	7 - $[D(-)$ - α - (3,5 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - $[2 - (5 - methyl - 1,3,4 - thiadiazolyl)$ - thiomethyl] - Δ^3 - cephem - 4 - carboxylic acid,	
55	7 - $[D(-) - \alpha - (4 - acetyl - 2,5 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - \Delta^3 - cephem-4 - carboxylic acid,$.55
60	7 - $[D(-)$ - α - (4 - acetyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^3 - cephem - 4-carboxylic acid, 7 - $[D(-)$ - α - (4 - methanesulfonyl - 2 - oxo - 1 - piperazinocarbonylamino)	60
	phenylacetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^3 - cephem - 4 - carboxylic acid, 7 - [D(-) - α - (4 - methyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacet-	

	amido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^3 - cephem - 4-carboxylic acid,	
	$7 - [D(-) - \alpha - (4 - \text{ethyl} - 2 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenylacet	
.	amido] - 3 - $[5 - (1 - \text{methyl} - 1,2,3,4 - \text{tetrazolyl}) - \text{thiomethyl}] - \Delta^3 - cephem - 4-$	
5	carboxylic acid,	5
-	7 - $[D(-)$ - α - (4 - acetylaminocarbonyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl]	
•	Δ^3 - cephem - 4 - carboxylic acid,	
10	$7 - [D(-) - \alpha - (4 - \text{methyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenylacet-	10
10	amido] - 3 - $[5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - \Delta^3 - cephem - 4-carboxylic acid,$	10
	7 - $[D(-)$ - α - (4 - ethyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacet-	
	amido] - 3 - $[5$ - $(1$ - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^3 - cephem - 4-carboxylic acid,	
15		15
13	7 - $[D(-)$ - α - (3,5 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^3 - cephem - 4 - carboxylic	13
	acid,	
	7 - $[D(-)$ - α - (4 - acetyl - 2,5 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - $[D - (1 - \text{methyl} - 1,2,3,4 - \text{tetrazolyl})$ - thiomethyl] - Δ^3 - cephem-	
20	4 - carboxylic acid, and	20
	methoxymethyl 7 - $[D(-) - \alpha - (4 - \text{methyl} - 2, 3 - \text{dioxo} - 1 - \text{piperazino-}]$	
	carbonylamino)phenylacetamido] - 3 - methyl - Δ ³ - cephem - 4 - carboxylate.	
	The susceptible test of typical compounds among the compounds of the present	
	invention are shown below.	
25	(1) The minimum inhibitory concentrations (MIC) of the compounds against	25
	different standard strains are shown in Tables 3 and 4.	
	The minimum inhibitory concentration (MIC) was determined by the plate method	
	disclosed in "Chemotherapy" (Japan), Vol. 16, (1968), pages 98-99. The culture	•
	medium used was a Heart infusion agar (pH 7.4). The number of the cells per plate	
30	used in the inoculum was 10 ⁴ (10 ⁶ cells/ml).	30
	· · · · · · · · · · · · · · · · · · ·	

ĸ	١
q	,
7	5
Ê	į

				 :
Proteus vulgaris 3027	> 200	< 1.57	0.79	3.13
Klebsiella pneunoniae	50	> 200	> 200	12.5
Preudomonas aeruginosa I.F.O.	> 200	50	. 20	. 25
Escherichia coil NIHJ	< 1.57	< 1.57	1.57	. 2.57
Staphylo- coccus aurens 209p	< 1.57	< 1.57	3.13	< 1.57
Compound	(C) CHCONH (S CH3 (Sodium Ampicillin) Ampicillin) (NH2 0 CH3)	CHCONF CH3 (Sodium Carbenicilin) (COONa O	CHCONH CH3 (Sodium SUlbenicillin) So ₃ Na O COONa	CH ₃ CON NCONHCHCONH
Com- pound No.		(Control)		- G

Table 3 (Cont'd)

2	C12CHCON NCONHCHCONH S CH3	< 1.57	< 1.57	50	12.5	6.25
۳	(H)-con NCONHCHCONH S CH3	< 1.57	< 1.57	100	3.13	3.13
4	CH ₃ CON NCONHCHCONH SCH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CONR	< 1.57	< 1.57	25	12.5	3.13
rv.	CH ₃ SO ₂ N NCONHCHCONH S CH ₃ CH ₃	< 1.57	< 1.57	25	12.5	< 1.57

Table 3 (Cont'd)

6 CH3(CH2)3CH2CON GONHCHCONH							•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	CH ₂ (CH ₂) ₃ CH ₂ CON NCONHCHCONH CH ₂ CH ₃ C	3.13	3.13		6.25	6.25
C1-©-CON NCONHGHCONH	7	O-con nconhchconh r s chi3	< 1.57	< 1.57	200	12.5	6.25
СН3-(○)-СОМ мСОИНСНСОИН	89	C1-CO-CON NCONHCHCONH T S CH3 CH3 CH3 CO-CON NCONHCHCONH T S CH3	< 1.57	< 1.57	00τ	6.25	3.13
	6	CH3-CO)-CON NCONHCHCONH	< 1.57	3.13	001	3.13	3.13

Table 3 (Cont'd)

 C1-{O}-CON NCONH CHCONH S CH3	< 1.57	> 1.57	100	6.25	3.13
 CH ₃ CONHCON NCONHCHCONH CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ COONA	< 1.57	< 1.57	50	. 50	6.25
 CH ₂ CH ₂ CCON NCONHCHCONH S CH ₂ O N COONa	< 1.57	3.13	. 50	6.25	12.5
 CH ₂ (CH ₂) ₄ CH ₂ N NCONHCHCONH	< 1.57	< 1.57	25	< 1.57 < 1.57	< 1.57

Table 3 (Cont'd)

14	CH ₃ (CH ₂) ₂ CH ₂ N NCONHCHCONH CH ₃ CH ₃	< 1.57	< 1.57	25	3.13	3.13 < 1.57
15	CH ₃ (CH ₂) ₂ CH ₂ N NCONHCHCONH SCH ₃ CH ₃	< 1.57	3.13		6.25	6.25
16	CH ₂ (CH ₂) ₆ CH ₂ N NCONHCHCONH S CH ₃	< 1.57	< 1.57	12.5	1.57	1.57 < 1.57
ב.	CH ₃ N NCONHCHCONH S CH ₃ COONB	< 1.57	, 1.57	12.5	20	6.25

Table 3 (Cont'd)

	The state of the s					
.18	CH ₂ (CH ₂) ₂ CH ₂ N CONHCHCONH CH ₃ SCH ₃	. 2.57	< 1.57	12.5	25	3.13
19	CH ₂ CH ₂ NCONHCHCONH SCH ₂ SCH ₂ CH ₂	< 1.57	< 1.57	12.5	50	5.13
20	(CH ₃) ₂ CHN NCONHCHCONH S CH ₃ O O COONB	3.13	< 1.57	12.5	25	3.13
23	(CH ₃) ₂ CHCH ₂ CH ₂ N NCONHCHCONH S CH ₃ O CONa	< 0.79	1.57	25 ·	25	3.13

Table 3 (Cont'd)

22	CH ₂ (CH ₂) ₂ CH ₂ N NCONHCHCONH T S CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ COONa	< 1.57	< 1.57		12.5	6.25
23	O CH2N NCONHCHCONH SCH3	< 1.57	< 1.57	25	6.25	3.13
. 24	HOCH2CH2N NCONHCHCONH T S CH3	3.13	< 1.57	20	50	25
25	CH2=CHCH2N NCONHCHCONH CH3	< 1.57	< 1.57	. 25	50	3.13
			7			

Table 3 (Cont'd)

56	CH ₂ =CHCHN NCONHCHCONH SCH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	< 1.57	< 1.57	25	25	12.5
27	CH ₂ =CCH ₂ N NCONHCHCONH SCH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	< 1.57	< 1.57	25	25	3.13
28	CH ₃ CH O CHCHCONH CHCONH CH ₃	< 1.57	< 1.57	25	. 25	3.13
29	CH ₃ (CH ₂) ₄ CH ₂ N NCONHCHCONH	3.13	< 1.57	12.5	3.13	3.13

- 5.7000

ซ
+2
o
ŭ
m
-
•
М
,a
E
_

-						
ОН	CH ₃ (CH ₂) ₆ CH ₂ NCONHCHCONH	< 1.57	< 1.57	25	6.25	3.13
8	CH ₃ (CH ₂) ₁₀ CH ₂ N NCONHCHCONH CH ₃ S CH ₃	< 1.57	< 1.57	12,5	6.25	< 1.57
	H-N NCONHCHCONH T S CH3	< 1.57	<1.57	12.5	12.5	6.25
	O-vhcon nconhchconh r sch3	. < 1.57	< 1.57	50	6.25	3.13

Table 3 (Cont'd)

34 © COM MCONNECHONNH SCH3 56 CH3CH2N MCONNECHONNH SCH3 57 CH3N MCONNECHONNH SCH3 58 CH3CH2N MCONNECHONNH SCH3 59 CH3CH2N MCONNECHONNH SCH3 50 CH3CH2N MCONNECHONNH SCH3 50 CH3CH2N MCONNECHONNH SCH3 51 CH3CH MCONNECHONNH SCH3 52 CH3CH MCONNECHONNH SCH3 53 CH3CH MCONNECHONNH SCH3 54 CH3CH MCONNECHONNH SCH3 56 CH3CH MCONNECHONNH SCH3 56 CH3CH MCONNECHONNH SCH3 57 CH3CH MCONNECHONNH SCH3 58 CH3CH MCONNECHONNH SCH3 59 CH3CH MCONNECHONNH SCH3 50 CH3CH MCONNECHONNH SCH3 50 CH3CH MCONNECHONNH SCH3 50 CH3CH MCONNECHONNH SCH3 50 CH3CH MCONNECHONNH SCH3CH 51 CH3CH MCONNECHONNH SCH3CH 52 CH3CH MCONNECHONNH SCH3CH 53 CH3CH MCONNECHONNH SCH3CH 54 CH3CH MCONNECHONNH SCH3CH 55 CH3CH MCONNECHONNH SCH3CH 56 CH3CH MCONNECHONNH SCH3CH 57 CH3CH MCONNECHONNH SCH3CH 58 CH3CH MCONNECHONNH SCH3CH 59 CH3CH MCONNECHONNH SCH3CH 50 CH3CH MCONNECH							
O CH2N WCONHCHCONH S CH3 CH3CH2N WCONHCHCONH S CH3 CH3CH2N WCONHCHCONH S CH3 CH3CH2N WCONHCHCONH S CH3 CH3CH2N WCONHCHCONH S CH3 CH3N WCONHCHCHCONH S CH3N WCONHCHCHCHCHCH S CH3N WCONHCHCHCONH S CH3N WCONHCHCHCHCH S CH3N WCONHCHCHCHCH S CH3N WCONHCHCHCHCH S CH3N WCONHCH S CH3N	ξ,	O-con nconechcone T S CH3	1.57	3.13	100	90	20
CH ₃ CH ₂ N NCONHCHCONH S CH ₃ CH ₃ CH ₂ N NCONHCHCONH S CH ₃ CH ₃ N NCONHCHCHCONH S CH ₃ CH ₃ N NCONH S	35	O-ch2N NCONHCHCONH SKCH3	1.57	6.25	100	\$2	25
CH ₂ N NCONHCHCONH S CH ₃ CH	36	CH ₂ CH ₂ N NCONHCHCONH S CH ₃ O CH ₂ CH ₂ S CH ₃	< 1.57	< 1.57	6.25	< 1.57	< 1.57
	37	N NCONHCHCONB-	< 1.57	< 1.57	6.25	6.25	< 1.57

Table 3 (Cont'd)

38	CH ₃ CH ₂ CH ₂ N NCONHCHCONH	0.4	< 0.1	6.25	5.13	0.4
39	CH ₂ (CH ₂) ₂ CH ₂ N NCONHCHCONH CH ₂ CH ₂ CH ₂ CH ₂	0.4	< 0.1	6.25	1.57	0.4
40	CHO COON CONHCHCONH COON CHO? (EHO)	0.4	τ.ο >	6.25	3.13	0.4
41	CH3COOCH2CH2N NCONHCHCONH SACH3	< 1.57	< 1.57	25	6.25	< 1.57

$\overline{}$
ซ
-
42
g
_
Ö
7
_
$\overline{}$
3
•
a
٠.
~
a,
ợ
e i

42	CH2=CHCH2N NCONHCHCONH SCH3	1.57	< 1.57	12.5	6.25	< 1.57
43	O-N NCONHCHCONH T S CH3	< 1.57	< 1.57	6.25	1.57	< 1.57
44	C1CH2CH2N NCONHCHCONH S CH3	< 1.57	.< 1.57	6.25	< 1.57	< 1.57
45	CH ₂ (CH ₂) ₃ CH ₂ N NCONHCHCONH SCH ₃ CH ₃	0.79	< 0.1	12.5	0.79	0.4

è		
٠		;

		÷
		•

		Ş

*		
=		

è		
		è

_
ਰ
ont
ğ (0)
3
Je B
[a]

. 46	CH ₂ (CH ₂) ₄ CH ₂ N CONHCHCONH	0.2	< 0.1	6.25	0.4	.0
47	CH ₂ (CH ₂) 6CH ₂ N NCONHCHCONH CH ₃ CH	. > 1.57	< 1.57	6.25	<1.57	< 1.57
. 48	CH ₂ N CONHCHCONH S CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ COONB	< 0.4	< o.4	6.25		, o A
49	CH2/CH2 HNOOHOHOON NCH2	< o.4	0.79	12.5	12.5	1.57

$\overline{}$
ซ
•
42
ជ
Š
_=
O
_
••
m
മ
- 7
ᅺ
0
ಹ
Ĕ

50	CH3N NCONHGHCONH SCH3	< 0.79	62.0 >	6.25	6.25	< 0.79
15	CH ₃ (CH ₂) ₆ CH ₂ N NCONHCHCONH S CH ₃ O COOCH ₂ OCH ₃	< 0.4	< 0.4	12.5	.< 0.4	< 0.4
52	CH ₃ N NCONHCHCONH S CH ₃ CH	0.79	0.79	25	25	1.57
53	CH ₃ N NCONHCHCONH	0.79	< 0.4	6.25	. 25	0.79

Table 3 (Cont'd)

	·	T	T
0.79	0.79	0.79	3.13
61.0	. 25	1.57	12.5
12.5	6.25	12.5	12.5
4.0	0.4	. 4.0	62.0>
62.0	0.79	۸ 4.0	62.0 >
CH ₃ (CH ₂) 6 CH ₂ N NCONHCHCONH CH ₃ CH ₃	CH3N NCONHCHCONH S CH3 COCH2CH2N O	CH ₂) ₆ CH ₂ N NCONHCHCONH TS CH ₃ O COOCH ₂ CH ₂ N	CH ₂ N NCONHCHCONH SCH ₃ COONa
. 54	55	56	57

Table 3 (Cont'd)

58	CH ₂ N NCONHCHCONH S CH ₂ CH ₂ CH ₃ CH	< 1.57	< 1.57	12.5	25	3.13	
59	HN NCONHCHCONH SCH3	< 1.57	< 1.57	25	500 .:	3.13	,

(Note) Sodium Carbenicillin and Sodium Sulbenicillin are regarded as preferable drugs at the level of this technical field, and hence are described for reference.

•	
_	3
7	3
,	į
0	0

		·		
Proteus vulgaris 3027	< 1.57	< 1.57	1.57	3.13
Klebsiella pneumoniae	100	100	500	200
Pseudomonas aeruginosa I.F.O.	> 200	> 200	> 200	200
Escherichia coli NIHJ	< 1.57	< 1.57	< 1.57	> 3.13
Staphylo- coccus aureus 209p	< 1.57	< 1.57	< 1.57	, 1.57
Compound	H2NCHCONH	S CH2CONH S CH2CCCH3 (Sodium Cephalothin)	N=N N-CH2CONH	S-CH2CONH S CH2NO (Cephaloridine) < 1.57
Com- pound No.		(τ	ortaod)	

$\overline{}$
ಶ
-
دد
c
8
೮
J
~
4
Φ
Ä
م
Ta
Fi

60 CH ₃ N CONHCHCONH S COONB 61 CH ₃ CH ₂ COONH CONHCHCONH S COONB 62 CH ₃ N NCONHCHCONH S COONB 63 CH ₃ N NCONHCHCONH S CH ₂ S S S S S S S S S S S S S S S S S S S				-		•	
CH ₃ CH ₂ N NCONHCHCONH	9	CH3N NCONHCHCONH S CH2OCOCH3	62.0	< 0.1	25	3.13	3.13
CH3N NCONHCHCONH TS N N N N N N CONHCHCONH TS N N N N N CONHCHCONH TS N N N N N N N N CONHCHCONH TS N N N N N N N CONHCHCONH TS N N N N N N N CONHCHCONH TS N N N N N N N N N N N N N N N N N N	61	CH ₃ CH ₂ N NCONHCHCONH S CH ₂ OCOCH ₃	. 0.79	< 0.79	. 52	3.13	3.13
CH3N NCONHCHCONH S N-N CH2S N-N CH2S N-N CH2S N-N CH3	62	CH ₃ N NCONHCHCONH S N-N CH ₂ S S CH ₃	0.79	۲.0 >	50	1.57	3.13
	63	CH3N NCONHCHCONH S CH2S N-N O COONA CH2S N-N	< 0.79	< 0.79	25	< 0.79	1.57

64	CH ₃ N NCONHCHCONH T S CH ₂ S N - N COONA	0.79	۲۰۵ >	.25.	1.57	5.13
65	CH ₃ N NCONHCHCONH	5.13	0.79	. 25	3.13	3.13
99	CH ₂ CH ₂ N NCONHCHCONH S N-N CH ₂ S N-N CH ₂ S N N-N CH ₂ S N N N CH ₂ S N N N N N N N N N N N N N N N N N N N	< 0.79	< 0.79	. 25	0.79	< 1.57

- cont'd

Table 4 (Cont'd)

67	CH ₃ CH ₂ N CSNHCHCONH S CH ₂ OCOCH ₃	6.25	< 0.79	100	3.13	12.5
89	CH ₃ N CONHCHCONH S GOOO COOO	1.57	< 0.79	12.5	< 0.79	1.57
69	CH ₂ CH ₂ N NCONHCHCONH S N-N CH ₂ S N-N CH	< 0.79	< 0.79	12.5	, o A	< 0.79

Table 4 (Cont'd)

70	CH ₂ CH ₂ N NCONHCHCONH S CH ₂ S (Q)	62.0 >	1.57	100	1,56	< 0.79
17	CH ₃ N MCONHCHCONH S CH ₂ S (N T CH ₃)	< 0.79	. 0.79	50	1.56	< 0.79

as preferable drugs at the level of this technical field, and hence are Sodium Cephalothin, Sodium Cephazolin and Cephaloridine are regarded set forth for reference. (Note)

(2) The minimum inhibitory concentrations (MIC) of the compounds against clinical isolates of bacteria are shown in Tables 5 and 6.

MIC was determined in the same manner as in the preceding paragraph (1).

Table 5-1

Γ	\top		T	T	<u> </u>	T	Т	T	T
	9	. S	> 200	7 200	> 200 200	800	8	.100	100
	A	12.5	12.5	6.25	6.25	6.25	6.25	6.25	3.13
	1 E		3.13	6.25					0.79
	P-2	0.79	3.13	3.13	3.13	1.57	1.57	0.79	0.79
	F-1	12.5	6.25	6.25	12.5	12.5	12.5	6.25	3.13
reus	MS 8684	1.56	6.25	3.13	3.13	3.13	3.13	3.13	1.57
Stanhvlococcus aureus	MS 8596	1.56	6.25	3.13	3.13	3.13	3.13	3.13	1.57
S	MS 8713	3.13	6.25	3.13	3.13	3.13	3.13	3.13	1.57
	MS 8588	6.25	6.25	3.13	6.25	3.13	3.13	3.13	1.57
	MS 8619	< 0.4	0.79	3.13	1.57	0.79	0.79	< 0.4	< 0.4
/	Compound	Sodium Ampiciliin	Sodium Carbenicillin	Sodium Sulbenicilin	Compound No. 1	13	" 14	16	30
<u></u>	ŭ		[ozţuc	າວ	8				

Table 5-1 (Cont'd)

				т		·	\neg
> 200	> 200	> 200	> 200	> 200	> 200	7 200	> 200
6.25 > 200	6.25	6.25	6.25	6.25	6.25	6.25	12.5
1.57	3.13	62.0	1.57	0.79	1.57	0.79	1.57
3.13	1.57	1.57	1.57	3.13	1.57	1.57	1.57
12.5	12.5	6.25	6.25	6.25	6.25	6.25	6.25
3.13	3.13	3.13	3.13	3.13	3.13	1.57	3.13
3.13	3.13	3.13	1.57	3.13	3.13	3.13	3.13
6.25	12.5	6.25	3.13	12.5	6.25	6.25	6.25
3.13	3:13	3.13.	1.57	3.13	3.13	1.57	3.13
0.79	0.79	0.79	0.79	0.79	0.79	×.0.4	< 0.4
36	37	38	39	64	45	46	47
Compound No. 36	=	=	=	=	.=	٤	=

Table 5-2

_					Escherichia coli					
Ö	Compound	GN 3481	GN 3435	GN 3452	GN 3465	LL96 ND	K-1	K-2	K-3	K-4
ОЈ	Sodium Ampicillin	6.25	3.13	6.25		> 200	6.25	6.25	> 200	12.5
Tuod	Sodium Carbenicillin	6.25	6.25	12.5	> 200	> 200	6.25	6.25 >200	> 200	12.5
	Sodium Sulbenicillin	12.5	6.25	12.5	> 200	> 200	6.25	12.5	>200	6.25
ŏ	Compound No. 1	12.5	6.25	12.5	200		6.25	25 .	> 200	12.5
	" 13	6.25	3.13	3.13	25		3.13	6.25	100	6.25
	" 14	6.25	6.25	6.25	50		3.13	12.5	200	6.25
	. 91 "	3.13	1.57	1.57	12.5	-	1.57	3.13	50	3.13
	" 30	25	12.5	25	50	> 200	12.5	25	>200	12.5

Table 5-2 (Cont'd)

1.57	3.13	0.79	0.79	0.79	0.79	<0.4	0.79
> 200	>200	>200	>200	>200	200	50	700
3.13 >200	6.25 >200	3.13 >200	1.57 >200	3.13 >200	1.57	0.79	1.57
3.13	12.5	3.13	1.57	1.57	0.79	0.79	1.57
> 200	> 200	> 200~	> 200	> 200	> 200	> 200	> 200
100	200	50	25	50	. 25	6.25	6.25
3.13	12.5	3.13	0.79	1.57	1.57	0.79	1.57
1.57	3.13	0,79	0.79	0.79	0.79	< 0.4	0.79
3.13	6.25	3.13	1.57	1.57	1.57	3.13	1.57
. 36	37	38	39	40	45	46	47
Compound No.	1	Ξ	=	=	1	2	z

__

Table 5-3

_		1		1			,			
	GN 383		20	50	50	22	S.	25	12.5	50
	GN 244	> 200	50	50	25	50	50	12.5	25	50
	GN 163	> 200	50	50	25	25	25	12.5	12.5	25
	GN 2987	> 200	50	25.	. 52	12.5	12.5	3.13	12.5	12.5
nosa	GN 2565	> 200	. 200	100	50.	50	50.	12.5	50	50
Pseudomonas aeruginosa	GN 1091	> 200	100	50	52	25	25	12.5	12.5	25
Pse	GN 221	> 200	25	25	25	50	25	25	12.5	50
	GN 82	> 200	100	90	52	05	25	6.25	12.5	25
	GN 376	> 200	50	50	25	50	. 50	. 25	12.5	50
	GN 1035	> 200	> 200	100	100	50	50	25	100	50 .
		llin	odium Carbenicillin	odium Sulbenicillin	ι .ον	13	14	16	19	30
	Compound	Sodium Ampicillin	01	0	Compound No.	=	Ξ	=	=	=
_		τ	ontro	o						

Nable 5-3 (Cont'd)

6.25	25	6.25	6.25	6.25	25	25	20
12.5	50	6.25	6.25	6.25	. 52	12.5	25
6.25	12.5	3.13	3.13	6.25	12.5	6.25	12.5
12.5	25	6.25	3.13	3.13	12.5	6.25	12.5
25	25	12.5	12.5	12.5	. 25	12.5	25
6.25	12.5	3.13	3.13	6.25	12.5	12.5	12.5
3.13	6.25	6.25	3.13	6.25	5.1.5	12.5	25
6.25	6.25	3.13	3.13	6.25	12.5	6.25	12.5
6.25	12.5	3.13	6.25	3.13	25	25	50
25	50	12.5	12.5	25	50 ,	50	25
0.36	37	38	39	40	. 45	46	47
Compound No. 36	=	=		=	=	=	=

Table 5-4

Pseudomonas aernginosa
> 200
200
100
50
100
700
50
. 50
00τ

cont.d -

Tables 5-4 (Cont'd)

<u>. </u>							
6.25	12.5	3.13	1.57	6.25	1.57	0.79	1.57
12.5	25	6.25	3.13	12.5	3.13	1.57	3.13
100	200	50	25	100	25	12.5	12.5
100	100	50	. 25	50	25	. 12.5	12.5
. 50	100	12.5	12.5	12.5	25	50	50
25	50	12.5	25	25	95	05	50
12.5	25	12.5	12.5	25	25	20	. 50
20	500	12.5	12.5	. 12.5	. 25	50	50
No. 36	37	38	39.	40	. 45	. 46	47
Compound No.	=	E	.	=	Ξ	£	=

Table 5-5

/	/	Shigella	Shigella sonnei	Shigella	Shigella flexneri	Salmonella typhi	ia typhi	Salmonella	ella
	/							iypni-m	mum
ပ	Compound	JS 11755	JS 11232	JB 11215	JS 11839	SL 2169	SI 819	SL 2136	SL 858
τ.	Sodium Ampicillin	6.25	> 200		1.57	0.78	1.56	> 200	3.13
ontro	Sodium Carbenicillin	12.5	> 200	> 200	12.5	3.13	6.25	> 200	12.5
	Sodium Sulbenicilin	> 200	>200	> 200	12.5	1.57	6.25	> 200	25
٥	Compound No. 1	12.5	> 200	100	3.13	6.25	6.25	> 200	12.5
- 1	" 13	3.13	12.5.	12.5	1.57	3.13	6.25	200	0.79
1	" 14	6.25	25	52	3.13	3.13	6.25	200	1.57
	" 16	τ.57	6.25	6.25	0.79	1,57	3.13	100	1.57

cont'd -

Table 5-5 (Cont'd)

	,	т-	,		<u>. </u>	,	
6.25	12.5	3.13	0.79	6.25	0.79	< 0.4	< 0.4
> 200	> 200	200	100	> 200	200	50	50
1.57	6.25	1.57	0.79	1.57	1.57	1.57	3.13
1.57	3.13	0.79	0.79	1.57	0.79	62.0	1.57
3.13	6.25	1.57	61.0	3.13	1.57	0.79	1.57
100.	> 200	25	25	. 50	. 25	6.25	6.25
50	100	50	25	. 95	25	12.5	6.25
3.13	6.25	3.13	1.57	3.13	1.57	0.79	64.0 .
No. 36	37	38	39	40	45	46	47
Compound No. 36	£	=	= .	=	=	=	:

,

ŕ

9

Ŧ

Table 5-6

V			Proteus		
-	Compound	mirabilis	morganii	vulgaris	retigeri
τ	Sodium Ampicillin	< 1.57	< 1.57	< 1.5	200
ontro	Sodium Carbenicillin	0.8	0.4	0.8	> 200
ລ	Sodium Sulbenicillin	0.79	< 0.4	< 0.4	> 200
ຽ	Compound No. 16	1.56	95*τ	0.8	6.25
	30	3.13	3.13	3.13	12.5
	36	< 0.4	<0.4	< 0.4	12.5
	11 37	61.0	0.79	4.0,>	25

cont'd -

1,508,062

Table 5-6 (Cont'd)

			٠.		
12.5	6.25	6.25	6.25	3.13	0.79
< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
< o.4 [']	< 0.4	0.79	62.0	< 0.4	< 0.4
< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
No. 38	39	40	45	. 46	4.7
Compound No. 38	Ξ	=	Ξ.	=	=

Table 6-1

<u> </u>					Staphylococcus aureus	aureus					
ŭ	Compound	MS 8619	MS 8588	6178 8M	MS 8596	MS 8684	F-1	F-2	· F-3	F-4	F-5
	Sodium Cephaloglycin	1.56	3.13	3.13	1.56	1.56	3.13	1.56	1.56	3.13	25
trol	Sodium Cephalothin	< 0.4	< 0.4	4.0>	6.0 >	< 0.4	<0.4 <0.4	<0.4	<0.4	< 0.4	1.56
.uoე	Sodium Cephazolin	< 0.4	4.0>	< 0.4	< 0.4	< o.4	0.78	0.78 < 0.4	<0.4	< 0.4	0.78
	Cephalorizine	,<0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	<0.4	< 0.4	0.78
ŭ	Compound No. 60	0.78	1.56	82.0	0.78	1.56	3.13	0.78	1.56	1.56	.50
	61	1.56	1.56	95°T	95•τ	1.56	3.13	95°τ	95°τ	3.13	50
]	# 62	0.78	1.56	1.56	0.78	1.56	3.13	0.78	1.56	1.56	12.5

Table 6-1 (Cont'd)

1.56	3.13 1.56 1.56 3.13 1.56 1.56	3.13 1.56	3.13 1.56
ļ		3.13	1.56 3.13
			•
	1.56 1.56		1.56

lable 6-;

<u>L</u>					Escherichia coli	11:				
	Compound	GN 3481	GN 3435	GN 3452	GN 3465	GN 3611	K-1	K-2	K-3	K-4
	Sodium Cephaloglycin	3.13.	9 5° T	3.13	12.5	25	1.56	1.56	25	12.5
Logit	Sodium Cephalothin	12.5	6.25	12.5	25	50	6.25	6.25	100	25
Cor	Sodium Cephazolin	1.56	1.56	36.τ	. 6.25	25	1.56	1.56	> 200	3.13
	Cephalorizine	3.13	3.13	3.13	. 05	00τ	3.13	3.13	200	6.25
<u> </u>	Compound No. 60	6.25	6.25	12.5	100	> 200	6.25	12.5	200	25
<u> </u>	61	3.13	3.13	6.25	50	200	3.13	6.25	100	6.25
	62	6.25	6.25	6.25	. 55	200	6.25	12.5	200	12.5
	. 63	3.13	3.13	12.5	25	00τ	3.13	6.25	50	6.25

/	/		•	-	Psem	Pseudomonas aeruginosa	iosa	-	•		
~	Compound	GN 1035	GN 376	GN 82	GN 221	1601 ND	GN 2565	GN 2987	GN 163	GN 244	GN 383
	Sodium Cephaloglycin	> 200	> 200	> 200	> 200	> 200	> 200	> 200	> 200	> 200	> 200
LOT	Sodium Cephalothin	> 200	> 200	> 200	> 200 .	. > 200	> 200	> 200	> 200	> 200	> 200
ταου	Sodium • Cephazolin	> 200	> 200	> 200	> 200	> 200	> 200	> 200	> 200	> 200	> 200
	Cephalorizine	> 200	> 200	> 200	> 200	> 200	007 <	> 200	> 200	> 200	> 200
	Compound No. 60	500	50	90	12.5	. 05	. οοτ	. 50	50	50	20
	τ9 "	100	12:5	52	6.25	25	50	. 25	25	25	12.5
	62.	200	001	001	50	oot	00τ	50	50	001	100

Table 6-3 (Cont'd)

25	12,5	25
90	25	25
25	12.5	12.5
25	12.5	12.5
50	50	50
50	12.5	12.5
25	3.13	6.25
50	6.25	12.5
50	12.5	12.5
001	90	50
No. 63	68	69
Compound N	=	E

4
7
்
w
ø,
♂
,Ω
₫
-

Klebstella pneumoniae	GN 4117 GN 4081 GN 917	3.13 3.13 1.56	6.25 12.5 3.13	3.13 3.13 1.56	12.5 12.5 3.13	25 25 6.25	12.5 12.5 6.25	25 12.5 6.25
	8-4	> 200	> 200	> 200 .	> 200	100	. 05	200
aeruginosa	8-3	> 200	> 200	> 200	> 200	00τ	50	200
Pseudomonas aeruginosa	8-2	> 200	> 200	> 200	> 200	100	50	300
	S-1	> 200	> 200	> 200	> 200	500	50	200
	Compound	Sodium Cephaloglycin	Sodium Cephalothin	Sodium Cephezolin	Cephalorizine	Compound No. 60	. 61	62
<u></u>	ರ		trol	uoე		ŏ	<u> </u>	<u> </u>

Table 6-4 (Cont'd)

3.13	1.56	0.78
6.25	•	ı
6.25	1	
300	25	50
00τ	25	50
100	25	25
100	25	25
No. 63	.89	69
Compound No. 63	ı	=

417.

Table 6-5

		Proteus	•	
Compound	mirabilis	morganil	vulgaris	retigeri
Sodium Cephaloglycin	3.13	1.56	. 50	50
Compound No. 60	3.13	3.13	1.56	6.25
. 61	1.56	1.56	0.8	3.13
62	6.25	3.13	51.8	6.25
. 69	3:13	3.13	1.56	5.13
		ļ		

(3) Resistant activity against β -lactamase, *Pseudomonas aeruginosa* GN 238: The resistant activity of each compound against β -lactamase was measured in the manner described below.

 β -Lactamase was prepared from Psuedomonas aeruginosa GN 238. This microorganism was cultured in 100 ml of a medium containing 2 g of yeast extract. 10 g of polypeptone, 2 g of glucose, 7 g of disodium hydrogen phosphate, 2 g of potassium dihydrogen phosphate, 1.2 g of ammonium sulfate and 0.4 g of magnesium sulfate, per liter, in a 500-ml Erlenmeyer flask for 6 hrs. at 37°C with shaking. The resulting cells were collected by centrifugation (5,000 r.p.m. × 10 min.), washed three times with 0.1 M phosphate buffer (pH 7.0). Subsequently, the cells were subjected to sonication (20 KH₂₀, 20 min.) and then centrifuged at 15,000 r.p.m. for 60 min. By using the supernatant of enzyme fluid, the resistance of each compound against β -lactamase was determined by the iodometric assay method. The results obtained were as set forth in Table 7. Each numeral shown in Table 7 is a relative activity value calculated by assuming as 100 the activity of the control Potassium Penicillin G.

Table 7

Comparison of resistant activity against β -lactamase

	Compound	Relative activity (%)
·	Potassium Penicillin G	100
덩	Sodium Ampicillin	115
Control	Sodium Carbenicillin	116
ဗိ	Sodium Sulbenicillin	50
C	Sompound No. 30	3
	" 36	14
	" 37 .	15
	" 38	15
	" 39	15
	40	15
	" 45	16
		12
	" 47	1

From Tables 3 to 6, it is understood that the compounds of the present invention have a broader antibacterial spectrum and more excellent antibacterial activity against not only *Pseudomonas aeruginosa*, *Klebsiella pneumoniae* and *Proteus* species but also many drug-resistant bacteria than the control ampicillin and cephaloglycin, i.e. compounds having an amino group at the α -position of the acyl group. It is also understood from Table 7 that the compounds of the present invention are far higher in resistance to β -lactamase than the control drugs.

80	1,500,002	
	As is clear from the above results, the compounds represented by the formula	
	(Ie), among the compounds of the present invention, show prominent effects, and par-	
	ticularly preferable compounds are those of the formula (Ie), in which A represents a	
	hydrogen atom, or an unsubstituted or substituted alkyl, alkenyl, aryl or aralkyl group;	5
5	and R ² and R ³ represent individually a hydrogen atom or an alkyl group.	3
	The present penicillins and cephalosporins have generally low toxicity. For	
	example, $6 - [D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-$	•
	phenylacetamido] penicillanic acid and 6 - $[D(-) - \alpha - (4 - \text{ethyl} - 2, 3 - \text{dioxo} - 1 -$	
	piperazinocarbonylamino)phenylacetamido]penicillanic acid have LDso (i.v. in mouse	
10	having a weight of 19±1 g) greater than 5 g/kg.	10
	The compounds of formula (I) of the present invention may be administered not	
	only in the form of free acids but also in the form of non-toxic salts or physiologically	
	acceptable esters. Further, the compounds, which are in the form of physiologically	
	unacceptable esters, are ordinarily put into uses after bringing them to the form of free	4.5
15	acids or non-toxic salts by removing the ester-forming group according to a conven-	15
	tional procedure known in this technical field.	
	The compounds of the present invention can be administered to humans and	
	animals after formulating them into a physiological form such as tablet, capsule, syrup,	
	injection or the like which is usually adopted in the case of penicillin and cephalosporin	
20	type drugs.	20
20	Procedures for producing the compounds of the present invention are shown below	
	with reference to examples.	
	Example 1.	
<i>:</i> .	(1) To a mixture comprising 2.5 g of 1-acetyl-3-oxo-piperazine, 3.45 g of tri-	
25	ethylamine and 20 ml of anhydrous dioxane was added a solution of 3.71 g of trimethyl-	25
23	chlorosilane in 10 ml of anhydrous dioxane. The resulting mixture was refluxed for 17	
	hours and cooled to deposit triethylamine hydrochloride, which was then removed by	
	filtration. The filtrate was dropped at -40° to -30°C into a solution of 1.8 g of phos-	
	gene in 30 ml of anhydrous methylene chloride. After the dropping, the resulting mix-	•
30	ture was elevated in temperature, and reacted at room temperature for 30 minutes. Sub-	30
30		30
	sequently, the excess phosgene and the solvent were removed by distillation under reduced pressure to obtain 3.5 g of pale brown, oily 4-acetyl-2-oxo-1-piperazino-	
	carbonyl chloride.	
	IR (film) cm ⁻¹ : ν ₀₌₀ 1790, 1710, 1640	
35	(2) A suspension of 1.0 g. of 6-[D(-)-\alpha-aminophenylacetamido]penicillanic	25
33	acid in 20 ml of tetrahydrofuran containing 20% by volume of water was adjusted to a	35
	pH of 8.0 to 8.5 by gradual addition of triethylamine with stirring, and then cooled to	
	0°C. Into the thus treated suspension was dropped a solution of 900 mg of the afore-	
	said 4-acetyl-2-oxo-1-piperazinocarbonyl chloride in 5 ml of tetrahydrofuran at said	
40	temperature over a period of 30 minutes. During this period, the pH of the suspension	. 40
40	was maintained at 7.5 to 8.0 by gradual addition of triethylamine. Subsequently, the	40
	temperature of resulting mixture was elevated to 5° to 10°C, and the mixture was	
	reacted at said temperature for 1 hour while maintaining the pH thereof at 7.5 to 8.0 by	
	addition of triethylamine. After the reaction, the tetrahydrofuran was removed by	
45	reduced pressure distillation, and the residue was dissolved in a mixed solvent com-	45
	prising 30 ml of ethyl acetate and 10 ml of water. The resulting solution was adjusted	
	to a pH of 1.5 to 2 by addition of dilute hydrochloric acid with ice-cooling, and then	
	the organic layer was separated off. The aqueous layer was re-extracted with 20 ml of	
	ethyl acetate, and the resulting organic layer was combined with the aforesaid organic	
50	layer. The combined organic layer was washed with water, dried over anhydrous mag-	50 -
	nesium sulfate, and then ice-cooled. Into this organic layer was dropped a solution of	-
	470 mg of a sodium salt of 2-ethylhexanoic acid in 20 ml of ethyl acetate to denosit	
	white crystals. The deposited crystals were collected by filtration, washed with ethyl	_
	acetate and then dried to obtain 1.4 g of a sodium salt of $6-[D(-)-\alpha-(4-acetyl-2-oxo-$	÷
55	1-piperazinocarbonylamino)phenylacetamido]penicillanic acid, m.p. 205°C (decomp.),	55
55	yield 94%.	33
	IR (KBr) cm ⁻¹ : $\nu_{C=0}$ 1760 (lactam), 1600—1700 (—COO®, —CON<)	
	NMR: [(CD ₈) ₂ SO+D ₂ O] τ values: 2.73 (5H), 4.35 (1H), 4.75 (2H), 5.75	
	(1H), 5.84 (2H), 6.42 (4H), 8.03 (3H), 8.52 (3H), 8.64 (3H)	
60		
60	The above-mentioned operation was repeated, except that the 4-acetyl-2-oxo-1-	60

piperazinocarbonyl chloride was replaced by each of the reactive derivatives of compounds of formula (III) shown in Table 8, to obtain the respective objective compounds as shown in Table 8. The structure of each objective compound was confirmed by IR and NMR.

Table 8

Reactive derivative of compound of formula (III)	Objective compound
Cl2CHCO-N N-COCl	D(-)- C12CHCO-N N-CONHCHCONH S CH3 CH2 CH2 CH2 CH2 CH3 CH3 M.P. (decomp.) 203 - 205°C, yield 73 %
сн ₃ (сн ₂) ₄ сн ₂ со-м л-сос1	D(-)- CH3(CH2)4CH2CO-N N-CONHCHCONH SCH3 CH3 (CH2)4CH2CO-N N-CONHCHCONH CH2 CH3 (CH2) CH3 (CH2) CH3 (CH2) CH3 (CH2) CH3 COONA m.p. (decomp.) 2020G, yield 85.5 %
(H)-co-n n-cocl	D(-)- (H)-co-N N-CONHCHCONH S CH3 (COONA) (O) 0 COONA (Gecomp.) 203 - 205°C, yield 87.7 %

Table 8 (Cont'd)

CH3CO-N N-COC1	D(-)-CH ₂ O CH ₃ CO-N N-CONHCHCONH S CH ₃ CH ₃ CH ₃ CO-N N-CONHCHCONH COH ₃ O O O O O O O O O O O O O O O O O O O
CH3SO2-N N-COC1	D(-)- CH ₃ SO ₂ -N N-CONHCHCONH SCH ₃ CH ₃ SO ₂ -N N-CONHCHCONH O O M.p. (decomp.) 199 ^o C, yield 80 %
сн ₃ (сн ₂)4сн ₂ -и м-сосл	D(-)- CH ₂ (CH ₂) ₄ CH ₂ -N N-CONHCHCONH SCH ₃ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃

Table 8 (Cont'd)

сн ₂ (сн ₂) ₂ сн ₂ -м м-сод1	D(-)- CH3(CH2)2CH2-N N-CONHCHCONH SCH3 CH3(CH2)2CH2-N N-CONHCHCONH COONB m.p. (decomp.) 158 - 161°C, yield 69 %
сн ₃ (сн ₂) ₂ сн ₂ -и и-сост	D(-)- $CH_{2}(CH_{2})_{2}CH_{2}-N$ $CH_{3}(CH_{2})_{2}CH_{2}-N$ $CH_{3}(CH_{2})_{2}CH_{2}-N$ $CH_{3}(CH_{2})_{2}CH_{3}-N$ $CH_{3}(CH_{3})_{2}CH_{3}-N$ $CH_{3}(CH_{3})_{2}CH_{3}-N$ $CH_{3}(CH_{3})_{2}CH_{3}-N$ $CH_{3}(CH_{3})_{3}CH_{3}-N$
сн3(сн2),6сн2-м м-сос1	D(-)- CH ₃ (CH ₂)6CH ₂ -M N-CONHCHCONH SCH ₃ CH ₃ (CH ₂) O O m.p. (decomp.) 132 - 134°C, yield 63 %

2

15

ឧ

S

(Cont'd) Table 8

(сн₃)₃ссоосн₂-м D(-)-(CH2)3CC00CH2-1 m.p. (decomp.) 218°C, yield 80

R

<u>O</u>

Example 2.

S

2

13

8

acid in 30 ml of tetrahydrofuran containing 20% by volume of water which had been cooled to 0°C, a solution of 2.5 g of 4-acetyl-2-oxo-1-piperazinocarbonyl chloride in perature of the resulting mixed solution was elevated to 5° to 10° C, and the solution was reacted at room temperature for 2 hours while maintaining the pH thereof at 10.0with ice-cooling. Subsequently, the organic layer was separated off, washed with water washed with ethyl acetate and then dried to obtain 1.89 g of a sodium salt of $D(--)-\alpha$ (4-acetyl-2-oxo-1-piperazinocarbonylamino)phenylacetic acid, m.p. 115°C (decomp.), in a mixed solvent comprising 20 ml of water and 50 ml of ethyl acetate, and the resulting solution was adjusted to a pH of 1.0 to 1.5 by addition of dilute hydrochloric acid and then dried over anhydrous magnesium sulfate. To this organic layer, a solution of 1.66 g of a sodium salt of 2-ethylhexanoic acid in 20 ml of ethyl acetate was added to Into a solution of 1.74 g of a sodium salt of $\mathrm{D}(-)$ - α -aminophenylacetic 5 ml of tetrahydrofuran was dropped at said temperature over a period of 30 minutes. During this period, the pH of the reaction solution was maintained at 1.0 to 12.0 by to 11.0 by addition of a 10% aqueous sodium hydroxide solution. After the reaction, the tetrahydrofuran was removed by reduced pressure distillation. The residue was dissolved deposit white crystals. The deposited crystals were collected by filtration, sufficiently gradual addition of a 10% aqueous sodium hydroxide solution. Subsequently, the tem-

IR (KBr) cm⁻¹: v_{Ge 0} 1690, 1650—1600

mentioned sodium salt of D(-)-\archive(4-acetyl-\frac{2}{-}\text{oxo-1-piperazinocarbonylamino}) phenylacetic acid was added 10 mg of N-methylmorpholine. The resulting mixture was colled to -20° to -15°C, and a solution of 286 mg of ethyl chlorocarbonate in 5 ml of anhydrous acetone was dropped into said mixture over a period of 5 minutes. Sub-To a suspension in 15 ml of anhydrous acetone of 833 mg of the above-

25

5

10

15

20

25

30

35

40

45

50

55

5

10

15

20

25

30

35

40

45

50

55

sequently, the mixture was stirred at said temperature for 60 minutes. Into the thus treated mixture, a solution of 646 mg of a triethylamine salt of 6-aminopenicillanic acid in 30 ml of anhydrous methylene chloride was dropped at -40° to -30°C over a period of 10 minutes. Thereafter, the mixture was reacted with stirring at -30° to -20°C for 60 minutes, at -20° to -10° C for 30 minutes, and at -10° to 0°C for 30 minutes. After the reaction, the organic solvent was removed by reduced pressure distillation. The residue was dissolved in a mixed solvent comprising 50 ml of ethyl acetate and 20 ml of water, and the resulting solution was adjusted to a pH of 1.5 to 2.0 by addition of dilute hydrochloric acid with ice-cooling. Subsequently, the organic layer was separated off, sufficiently washed with water and then dried over anhydrous magnesium sulfate, and the ethyl acetate was removed by reduced pressure distillation. The residue was dissolved in 50 ml of acetone, and the resulting solution was mixed with a solution of 340 mg of a sodium salt of 2-ethylhexanoic acid in 20 ml of acetone with ice-cooling to deposit white crystals. The deposited crystals were collected by filtration, sufficiently washed with acetone and then dried to obtain 1.16 g of a sodium salt of 6 - $[D(-) - \alpha - (4 - acetyl - 2 - oxo - 1 - piperazinocarbonylamino)$ phenylacetamido] - penicillanic acid, m.p. 205°C (decomp.), yield 94%.

Example 3.

(1) To a mixture comprising 1.0 g of 1-palmitoyl-3-oxo-piperazine, 0.6 g of triethylamine and 20 ml of anhydrous dioxane was added a solution of 0.65 g of trimethylchlorosilane in 10 ml of anhydrous dioxane. The resulting mixture was refluxed for 16 hours and cooled to deposit triethylamine hydrochloride, which was then removed by filtration. The filtrate was dropped at -40° to -30° C into a solution of 0.6 g of phosgene in 30 ml of anhydrous methylene chloride. After the dropping, the temperature of the resulting mixture was elevated and the mixture was reacted at room temperature for 30 minutes. Subsequently, the excess phosgene and the solvent were removed by reduced pressure distillation to obtain 1.1 g of pale yellow, oily 4-palmitoyl-2-oxo-1-piperazinocarbonyl chloride.

IR (film) cm⁻¹: v_{C=0} 1740, 1660, 1640

(2) A suspension of 1.0 g of 6-[D(-)-\alpha-aminophenylacetamido]penicillanic acid in 20 ml of tetrahydrofuran containing 20% by volume of water was adjusted to a pH of 8.0 to 8.5 by gradual addition of triethylamine with stirring, and then cooled to 0°C. Into the thus treated suspension, a solution of 1.27 g of the aforesaid 4-palmitoyl-2-oxo-1-piperazinocarbonyl chloride in 5 ml of tetrahydrofuran was dropped at said temperature over a period of 30 minutes. During this period, the pH of the suspension was maintained at 7.5 to 8.0 by gradual addition of triethylamine. Subsequently, the temperature of the resulting mixture was elevated to 5° to 10°C, and the mixture was reacted at said temperature for 1 hour while maintaining the pH thereof at 7.5 to 8.0 by addition of triethylamine. After the reaction, the tetrahydrofuran was removed by reduced pressure distillation, and the residue was dissolved in a mixed solvent comprising 30 ml of ethyl acetate and 10 ml of water. The resulting solution was adjusted to a pH of 1.0 to 2.0 by addition of dilute hydrochloric acid with ice-cooling, and then the organic layer was separated off. The aqueous layer was re-extracted with 20 ml of ethyl acetate, and the resulting organic layer was combined with the aforesaid organic layer. The combined organic layer was washed with water, and dried over anhydrous magnesium sulfate. This organic layer was concentrated under reduced pressure to remove the solvent, and the concentrate was charged into 10 ml of dissopropyl ether to deposit crystals. Thereafter, the crystals were collected by filtration to obtain 1.65 g of white crystals of 6- $[D(-)-\alpha-(4-palmitoyl-2-oxo-1-piperazinocarbonylamino)$ phenylacetamido) penicillanic acid, m.p. 121—123°C (decomp.), yield 80%.

IR (KBr) cm⁻¹: $\nu_{C=0}$ 1770 (lactam), 1730 (—COOH), 1660—1630 (—CON<).

The above-mentioned operation was repeated, except that the 4-palmitoyl-2-oxo-1-piperazinocarbonyl chloride was replaced by each of the reactive derivatives of compounds of formula (III) shown in Table 9, to obtain respective objective compounds as shown in Table 9. The structure of each objective compound was confirmed by IR and NMR.

Table 9

Reactive derivative of compound of formula (III)	Objective compound
сн ₃ (сн ₂) ₅ сн ₂ со-м м-сос1	D(-)- CH ₃ (CH ₂) ₅ CH ₂ CO-N N-CONHCHCONH SCH ₃ (O) m.p. (decomp.) 151 - 153°C, yield 82 %
CH3(CH2)3CH2CO-N N-COC1	D(-)- CH ₂ (CH ₂) ₃ CH ₂ CO-N N-CONHCHCONH SCH ₃ CH ₃ (CH ₂) ₃ CH ₂ CO-N N-CONHCHCONH SCH ₃ (O) m.p. (decomp.) 157 - 158°C, yield 83.3 %
о слсн ₂ со-м м-сосл	D(-)- ClCH2CO-N N-CONHCHCONH S CH2 CH2 O O COOH D.p. (decomp.) 215°C, yield 82.6 %

Table 9 (Cont'd)

, (<u>O</u>)-co-n (O-co-N N-CONHCHCONH CH3 O O COOH m.p. (decomp.) 120 - 124°C, yield 80 %
c1-{O}-c0-N N-coc1	D(-)- C1-(O)-C0-N N-CONHCHCONH S CH3 (O) 0 COOH m.p. (decomp.) 120 - 123°C, yield 91 %
о сн ₃ -{O}-со-и и-сос1	D(-)- CH ₃ - O-CO-N N-CONHCHCONH SCH ₃ O O O M.p. (decomp.) 105 - 108°C, yield 88.6 %

Table 9 (Cont'd)

сн ₃ 0 сн ₃ 0-со-и и-сос1 сн ₃ 0	D(-)- CH ₂ O O CH ₂ O O O CH ₂ O O O O O O O O O O O O O O O O O O O
C1 O C1-CO-10-10-10-10-10-10-10-10-10-10-10-10-10-	D(-)- C1 O CH2 C1-(O)-CO-N N-CONHCHCONH S CH3 (O) O COOH m.p. (decomp.) 130 - 133°C, yield 92 %
CH3CONHCO-N N-COC1	D(-)- CH ₃ CONHCO-N N-CONHCHCONH S CH ₃ CH ₃ CONHCO-N N-CONHCHCONH S CH ₃ COOH m.p. (decomp.) 172 - 176°C, yield 79.2 %

cont'd

8

Table 9 (Cont'd)

о пнсо-и и сост	D(-)- O-NHCO-N N-CONHCHCONH SCH3 O-NHCO-N N-COOH O-NHCO-N N-COOH O-NHCO-N N-COOH
٠	m.p. (aecomp.) rod - 1/0 C, yleia 85.5 %
CH3CH20CO-N N-COC1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Example 4.

dimethylformamide was added 2.7 g of a sodium hydride (purity 53%) with ice-cooling and the resulting mixture was reacted at room temperature for 1 hour. Subsequently, the mixture was incorporated with 7.1 g of methyl iodide and reacted for 10 hours. After the reaction, the dimethylformamide was removed by reduced pressure distillation to obtain 1-formyl-4-methyl-3-oxo-piperazine. This piperazine was dissolved in 70 ml of a 50% aqueous acetone solution containing 2.2 g of sodium hydroxide, and the resulting solution was reacted at room temperature for 3 hours. Thereafter, the solvent was removed by distillation under reduced pressure, and the residue was charged into acetone to deposit insolubles. The insolubles were separated by filtration, and the acetone was removed from the filtrate by distillation under reduced pressure. Subsequently, the residue was subjected to reduced pressure distillation to obtain 5.2 g of 1-methyl-2-oxo-piperazine, b.p. 104°C/4 mmHg, yield 91%.

2

'n

quently, the residue was subjected to reduced pressure distillation to obtain 5.2 g of 1-methyl-2-oxo-piperazine, b.p. 104°C/4 mmHg, yield 91%.

(2) Into a solution of 1.9 g of phosgene in 20 mi of anhydrous dioxane was dropped at 10°C 20 ml of an anhydrous dioxane solution containing 2.0 g of 1-methyl-2-oxo-piperazine and 1.95 g of triethylamine, upon which reaction took place to deposit white crystals of triethylamine hydrochloride. The deposited crystals were removed by filtration, and the filtrate was concentrated to dryness to obtain 3.0 g of pale yellow, oily 4-methyl-3-oxo-1-piperazinocarbonyl chloride.

15

IR (film) cm⁻¹: vo=01710, 1630

	The state of the s	
5	(3) A suspension of 4.0 g of 6-[D(-)-\alpha-aminophenylacetamido] penicillanic acid in 40 ml of tetrahydrofuran containing 20% by volume of water was adjusted to a pH of 8.0 to 8.5 by gradual addition of triethylamine with stirring, and then cooled to 0°C. Into the thus treated suspension, 10 ml of a tetrahydrofuran solution containing 2.2 g of the aforesaid 4-methyl-3-oxo-1-piperazinocarbonyl chloride was dropped. During this period, the pH of the suspension was maintained at 7.5 to 8.5 by gradual addition of triethylamine. Subsequently, the resulting mixture was reacted at said temperature for 30 minutes, and the temperature thereof was elevated to 10° to 15°C, after	· 5
10	which the mixture was further reacted at said temperature for 90 minutes while maintaining the pH thereof at 7.5 to 8.0 by addition of triethylamine. After the reaction, the tetrahydrofuran was removed by distillation under reduced pressure, and the residue was dissolved in 30 ml of water. The resulting solution was washed with ethyl acetate, and then the aqueous layer was separated off. This aqueous layer was ice-cooled and	10
. 15 20	then adjusted to a pH of 1.5 by addition of dilute hydrochloric acid to deposit white crystals. The deposited crystals were collected by filtration, washed several times with a small amount of water, dried, and then dissolved in 100 ml of acetone. To the resulting solution was added 1.9 g of a sodium salt of 2-ethylhexanoic acid with ice-cooling to deposit white crystals, which were then collected by filtration to obtain 5.4 g of a sodium salt of $6-[D(-)-\alpha-(4-\text{methyl-3-oxo-1-piperazinocarbonylamino})$ phenylacetamido] penicillanic acid, m.p. 195°C (decomp.), yield 92%.	15
20	IR (KBr) cm ⁻¹ : $\nu_{C=0}$ 1760 (lactam), 1600—1660 (—CON<, —COO ^{\ominus}) NMR [(CD ₃) ₂ SO+D ₂ O] τ values: 2.62 (5H), 4.48 (1H), 4.56 (2H), 5.97 (3H), 6.63—6.39 (4H), 7.13 (3H), 8.46 (3H), 8.55 (3H)	
25	The above-mentioned operation was repeated, except that the 4-methyl-3-oxo-1-piperazinocarbonyl chloride was replaced by each of the reactive derivatives of compounds of formula (III) shown in Table 10, to obtain respective objective compounds as shown in Table 10. The structure of each objective compound was confirmed by IR and NMR.	25

Table 10

$CH_{3}(CH_{2})_{2}CH_{2}-N \longrightarrow COCI$ $CH_{3}(CH_{2})_{2}CH_{2}-N \longrightarrow CONHCHCONH \longrightarrow S \xrightarrow{CH_{3}} CH_{3}$ $m.p. (decomp.) 206 - 207^{0}C, yield 90 \%$ $D(-)- O \longrightarrow CH_{3}CH_{2}-N \longrightarrow CONHCHCONH \longrightarrow S \xrightarrow{CH_{3}} CH_{3}$ $m.p. (decomp.) 207^{0}C, yield 96 \%$ $D(-)- O \longrightarrow CONHCHCONH \longrightarrow S \xrightarrow{CH_{3}} CH_{3}$ $(CH_{3})_{2}CH-N \longrightarrow CCONHCHCONH \longrightarrow S \xrightarrow{CH_{3}} CH_{3}$ $(CH_{3})_{2}CH-N \longrightarrow CCONHCHCONH \longrightarrow S \xrightarrow{CH_{3}} CH_{3}$
--

Table 10 (Cont'd)

он ₃ (сн ₂) ₃ сн ₂ -м м-сос1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
о (сн ₃) ₂ снсн ₂ сн ₂ –и м-сос1	D(-)- (CH ₃) ₂ CHCH ₂ CH ₂ -N N-CONHCHCONH S CH ₃ (CH ₃) ₂ CHCH ₂ CH ₂ -N CH ₃ (CH ₃) ₂ CHCH ₂ CH ₂ -N CH ₃ (CH ₃) ₂ CHCH ₂ CH ₂ -N CH ₃ (CH ₃) ₂ CHCH ₂ CH ₂ -N CH ₃ (CH ₃) ₂ CHCH ₂ CH ₂ -N CH ₃ (CH ₃) ₂ CHCH ₂ CH ₂ -N (CH ₃) ₂ CH ₃ (CH ₃) ₂ CHCH ₂ CH ₂ -N (CH ₃) ₂ CH ₃ (CH ₃) ₂ CHCH ₂ CH ₂ -N (CH ₃) ₂ CH ₃ (CH ₃) ₂ CHCH ₂ CH ₂ -N (CH ₃) ₂ CH ₃ (CH ₃) ₂ CHCH ₂ CH ₂ -N (CH ₃) ₂ CH ₃ (CH ₃) ₂ CHCH ₂ CH ₂ -N (CH ₃) (CH ₃) ₂ CHCH ₂ CH ₂ -N (CH ₃) (CH ₃) ₂ CHCH ₂ CH ₂ -N (CH ₃) (CH ₃) ₂ CHCH ₂ CH ₂ -N (CH ₃) (CH ₃) ₂ CHCH ₂ CH ₃ -N (CH ₃) (CH ₃) ₂ CHCH ₂ CH ₃ -N (CH ₃) (CH ₃) ₂ CHCH ₃ -N (CH ₃) (CH ₃) ₂ CHCH ₃ -N (CH ₃) (CH ₃) ₃ CHCH ₃ -N (CH ₃) (CH ₃) ₃ CHCH ₃ -N (CH ₃) (CH ₃) ₃ CHCH ₃ -N (CH ₃) (CH ₃) ₃ CHCH ₃ -N (CH ₃) (CH ₃) ₃ CHCH ₃ -N (CH ₃) (CH ₃) ₃ CHCH ₃ -N (CH ₃) (CH ₃) ₃ CHCH ₃ -N (CH ₃) (CH ₃) ₃ CHCH ₃ -N (CH ₃) (CH ₃) ₃ CHCH ₃ -N (CH ₃) (CH ₃) ₃ CHCH ₃ -N (CH ₃) (CH ₃) ₃ CHCH ₃ -N (CH ₃) (CH ₃) ₃ CHCH ₃ -N (CH ₃) (CH ₃) ₄ CHCH ₃ -N (CH ₃) (CH ₃) ₄ CHCH ₃ -N (CH ₃) (CH ₃) ₄ CHCH ₃ -N (CH ₃) (CH ₃) ₄ CHCH ₃ -N (CH ₃) (CH ₃) ₄ CHCH ₃ -N (CH ₃) (CH ₃) ₄ CHCH ₃ -N (CH ₃) (CH ₃) ₄ CHCH ₃ -N (CH ₃) (CH ₃) ₄ CHCH ₃ -N (CH ₃) (CH ₃) ₄ CHCH ₃ -N (CH ₃) (CH ₃) ₄ CHCH ₃ -N (CH ₃) (CH ₃) ₄ CHCH ₃ -N (CH ₃) (CH ₃) ₄ CHCH ₃ -N (CH ₃) (CH ₃) ₄ CHCH ₃ -N (CH ₃) (CH ₃) ₄ CHCH ₄ -N (CH ₃
СН ₃ (СН ₂) ₂ СН ₂ -N N-СОС1	D(-)- CH ₂ (CH ₂) ₂ CH ₂ -N N-CONHCHCONH CH ₃ CH ₂ CH ₃ CH ₂ O N-COH CH ₃ CH ₄ CH ₃

cont'd

Table 10 (Cont'd)

ont'd -

Table 10 (Cont'd)

носн2сн2-м м-сост	D(-)- HOCH2CH2-NN-CONFCHCONH SCH2 O O m.p. (decomp.) 100 - 105°C, yield 67 %
CH ₂ CO-N N-COCI	$D(-)-O_{CH_{3}}$ $CH_{3}CO-M$ $M-CONHCHCONH$ O_{O}
O CH ₃ H ₂ NCO-N N-COCL	$D(-)-0$ CH ₃ H_{2NCO-N} $N-CONHCHCONH$ $S \leftarrow CH_{3}$ CH_{2} O

cont'd

Table 10 (Cont'd)

HN N-COC1	HN N-CONHCHCONH SCH ₃ COON m.p. (decomp.) 213°C, yield 70 %
о сн ₃ ни и-сост сн ₃	D(-)- 0 CH3 HN N-CONHCHCONH S CH3 CH3 CH3 0 CH3 0 0 CH3 CH5 0 CH3 CH5 0 0 CH3 CH5 0 0 CH3 CH5 CH5 0 0 CH3 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH6 CONP.) 203 - 206°C, yield 82 %
o HN N-COC1 CH ₃	D(-)- 0 HN N-CONHCHCONH SCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ COONa

(Cont'd) Table 10

O CH2COOCH2CH3 HN N-COCL	D(-)- O CH2COOCH2CH3 HN N-CONHCHCONH O O O CH2COOCH2CH3 HN N-CONHCHCONH O O O CH2COONA O CH2COONA O CH2COONA O CH2COONA O O C
о снэ	D(-)- O CH ₃ HN N-CONHCHCONH S CH ₃ COONE O CH ₃ O O O O O O O O
	Example 5.

a period of 10 minutes. During this period, the pH of the solution was maintained at 11.0 to 12.0 by gradual addition of a 10% aqueous sodium hydroxide solution. The solution was reacted at said temperature for 1 hour, and the temperature thereof was elevated to 5° to 10°C, after which the mixture was further reacted at said temperature (1) A solution of 1.0 g of a sodium salt of D(-)-α-aminophenyl acetic acid in 20 ml of tetrahydrofuran containing 20% by volume of water was cooled to 0° to 5°C. To this solution was added 1.2 g of 2-methyl-3-oxo-1-piperazinocarbonyl chloride over adjusted to a pH of 1.5 by addition of dilute hydrochloric acid with ice-cooling, and then the organic layer was separated off. The aqueous layer was further extracted with 50 ml of ethyl acetate, and the resulting organic layer was combined with the aforesaid organic layer. The combined organic layer was washed with water and then dried over anhydrous magnesium sulfate. To this organic layer was added 0.9 g of a sodium salt for 2 hours, while maintaining the pH thereof at 10.0 to 11.0 by addition of a 10% aqueous sodium hydroxide solution. After the reaction, tetrahydrofuran was removed by distillation under reduced pressure, and the residue was dissolved in a mixed solvent comprising 20 ml of water and 50 ml of ethyl acetate. The resulting solution was

9

S

15

2

S

	of 2-ethylhexanoic acid to deposit white crystals. The deposited crystals were collected by filtration and then dried to obtain 1.26 g of white crystals of a sodium salt of $D(-) - \alpha - (2 - \text{methyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetic acid, m.p. 215°C (decomp.), yield 70%.	
5	IR (KBr) cm ⁻¹ : $\nu_{0=0}$ 1650—1590	5
	(2) To a suspension in 15 ml of anhydrous acetone of 1.0 g of the above-mentioned sodium salt of $D(-)-\alpha$ -(2-methyl-3-oxo-1-piperazinocarbonylamino)phenylacetic acid was added 10 mg of N-methylmorpholine. The resulting mixture was cooled to -20° to -15° C, and a solution of 380 mg of ethyl chlorocarbonate in 5 ml of	·
10	annydrous acetone was dropped into said mixture over a period of 5 minutes. Subsequently, the mixture was stirred at said temperature for 60 minutes, and then cooled to -40° to -30°C. Into the thus treated mixture was dropped a solution of 960 mg of a triethylamine salt of 6-aminopenicillanic acid in 10 ml of anhydrous methylene chloride over a period of 10 minutes. Thereafter, the mixture was reacted with stirring at -30°	. 10
15	to -20° C for 60 minutes, at -20° to -10° C for 30 minutes, and at -10° to 0° C for 30 minutes. After the reaction, the organic solvent was removed by distillation under reduced pressure. The residue was dissolved in a mixed solvent comprising 20 ml of water and 50 ml of ethyl acetate, and the resulting solution was adjusted to a pH of 1.5 by addition of dilute hydrochloric acid with ice-cooling. Subsequently, the organic	15
20	layer was separated off, sufficiently washed with water and then dried over anhydrous magnesium sulfate. To this organic layer was added 0.5 g of a sodium salt of 2-ethylhexanoic acid with ice-cooling to deposit white crystals. The deposited crystals were collected by filtration, and then dried to obtain 1.39 g of a sodium salt of $6-[D(-)-\alpha-(2-methyl-3-oxo-1-piperazinocarbonylamino) phenylacetamido penicillanic acid, m.p.$	20
	In the same manner as above, 2.0 g of a sodium salt of $6 - [D(-) - \alpha - (4 - \text{ethyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ propionamido] penicillanic acid, m.p. 195°C (decomp.), yield 86%, was obtained from 1.59 g of a sodium salt of $D(-) - \alpha - (4 - \text{ethyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ propionic acid and	25
30	1.39 g of a triethylamine salt of 6-aminopenicillanic acid.	30
	IR (KBr) cm ⁻¹ : $\nu_{0=0}$ 1760 (lactam), 1680—1600 (—CON<, —COO \ominus) Example 6.	
35 .	(1) Into a solution of 0.5 g of phosgene in 10 ml of anhydrous dioxane was dropped at 10°C 10 ml of anhydrous dioxane containing 0.56 g of 1-allyl-2-oxo-piper-azine and 0.5 g of triethylamine, upon which reaction took place to deposit white crystals of triethylamine hydrochloride. Subsequently, the deposited crystals were collected by filtration, and the filtrate was concentrated to dryness to obtain 800 mg of pale yellow, oily 4-allyl-3-oxo-1-piperazinocarbonyl chloride.	35
	IR (film) cm ⁻¹ : $v_{C=0}$ 1720, 1640	
40	(2) A suspension of 1.4 g of $6-[D(-)-\alpha$ -aminophenylacetamido] penicillanic acid in tetrahydrofuran containing 20% by volume of water was adjusted to a pH of 8.0 to 8.5 by gradual addition of triethylamine with stirring, and then cooled to 0°C. Into the thus treated suspension was dropped 10 ml of a tetrahydrofuran solution containing 800 mg of the aforesaid 4-allyl-3-oxo-1-piperazinocarbonyl chloride. During	40
45	of triethylamine. Subsequently, the resulting mixture was reacted at said temperature for 30 minutes, and the temperature thereof was then elevated to 10° to 15°C, after which the mixture was further reacted at said temperature for 90 minutes while main-	45
_ 50	taining the pH thereof at 7.5 to 8.0 by addition of triethylamine. After the reaction, the tetrahydrofuran was removed by distillation under reduced pressure, and the residue was dissolved in 20 ml of water. The resulting solution was washed with ethyl acetate, and the aqueous layer was then separated off. This aqueous layer was ice-cooled and adjusted to a pH of 1.5 by addition of dilute hydrochloric acid to deposit white crystals.	50
55	then deposited crystals were collected by filtration, sufficiently washed with water and then dried to obtain 1.8 g of $6-[D(-)-\alpha-(4-allyl-3-oxo-1-piperazinocarbonylamino)-phenylacetamido] penicillanic acid, m.p. 92°C (decomp.), yield 90%.$	55
60	IR (KBr) cm ⁻¹ : $\nu_{C=0}$ 1760 (lactam), 1720—1620 (—COOH, —CON<) The above-mentioned operation was repeated, except that the 4-allyl-3-oxo-1-piperazinocarbonyl chloride was replaced by each of the reactive derivatives of compounds of formula (III) shown in Table 11, to obtain respective objective compounds as shown in Table 11. The structure of each objective compound was confirmed by IR and NMR.	60

ċ	4
,	D
ì	4
į	o
	ď
-	-

Objective compound	D(-)- O CH2=CHCH-N N-CONHCHCONH S CH3 CH2=CHCH-N N-CONHCHCONH COOH CH2 CH2 CH2 COOH CH2 CH2 CH2 COOH CH2 CH2 CH2 CH2 COOH CH2 CH2 CH2 CH2 COOH CH2	D(-)- 0 CH2=CCH2-N N-CONHCHCONH SCH3 CH3 CH2=CCH2-N N-CONHCHCONH CH2 CH3 CH2	D(-)- CH3CH O
Reactive derivative of compound of formula (III)	СН2=СНСН-М М-СОС1 СН2=СНСН-М М-СОС1	сн ₂ =ссн ₂ -м м-сост сн ₃	CH3CH O HCCH2-N N-COC1 (trans-)

Table 11 (Cont'd)

сн ₃ (сн ₂) ₄ сн ₂ -м м-сос1	D(-)- CH ₃ (CH ₂) ₄ CH ₂ -N N-CONHCHCONH CH ₃ C
он ₃ (сн ₂) ₅ сн ₂ -ММ-сос1	D(-)- CH ₃ (CH ₂) ₅ CH ₂ -N N-CONHCHCONH SCH ₃ CH ₃
сн ₃ (сн ₂) ₆ сн ₂ -м м-сост	D(-)- CH ₃ (CH ₂)6CH ₂ -N N-CONHCHCONH 3 CH ₃ C

Table 11 (Cont'd)

сн ₃ (сн ₂) ₁₀ сн ₂ -м м-сос1	D(-)- CH ₂ (CH ₂) ₁₀ CH ₂ -N N-CONHCHCONH SCH ₃ CH ₃ (CH ₂) ₁₀ CH ₂ -N N-CONHCHCONH SCH ₃ COOH m.p. (decomp.) 106°C, yield 96 %
H-N-coci	D(-)- $(H)^{-1}$ $(H$
О-инсо-и и-сост	D(-)- O CONHCHCONH S CH2 CH3 COOH CH2 CH3 CH2 CH3 CH3 CH3 COOH CH2

S

Table 11 (Cont'd)

- 128°C, yield 79.5 (decomp.) 125 0 m.p. D(-)-

BE

Using 0.63 g of 6-[D(-)- α -aminophenylacetamido] penicillanic acid and 600 mg of a hydrochloride of 4-(N-morpholinomethyl)-3-oxo-1-piperazinocarbonyl chloride, the same operation as in Example 6 was repeated to obtain 0.63 g of 6- {D(-)- α -[4 - (N - morpholinomethyl) - 3 - oxo - 1 - piperazinocarbonylamino] phenylacetamido} penicillanic acid, m.p. 85°C (decomp.), yield 60%.

'n

IR (KBr) cm⁻¹: v₀₌₀: 1770 (lactam), 1600—1680 (—COO², —CON<)

Using 5.0 g of a hydrochloride of pivaloyloxymethyl ester of 6-[D(-)-\alpha-aminophenylacetamido]penicillanic acid and 1.94 g of 2-methyl-3-oxo-1-piperazinocarbonyl chloride, the same operation as in Example 6 was repeated to obtain 5.2 g of a pivaloyloxymethyl ester of 6-[D(-)-\alpha-(2-methyl-3-oxo-1-piperazinocarbonylamino)phenylacetamido]penicillanic acid, m.p. 140\circ (decomp.), yield 80\%.

2

15 IR (KBr) cm⁻¹: v₀₌₀ 1740—1770 (lactam, ester) 1630—1670 (—CON<) 15

Example 9.

(1) Into a mixture comprising 8.0 g of 4-acetyl-2,5-dioxo-piperazine, 5.0 g of triethylamine and 100 ml of anhydrous tetrahydrofuran was dropped 6.0 g of trimethyl-chlorosilane with stirring at room temperature. After the dropping, the resulting mixture was reacted at said temperature for 2 hours to deposit triethylamine hydrochloride. The deposited hydrochloride was separated by filtration, and the filtrate was dropped at 0° to 5°C into 100 ml of an anhydrous tetrahydrofuran solution containing 10.0 g of phosgene. After completion of the dropping, the resulting mixture was stirred at 10°

ឧ

	2,300,002	102
•	to 15°C for 3 hours to terminate the reaction. Subsequently, the tetrahydrofuran and the excess phosgene were removed by distillation under reduced pressure to obtain 11.0 g of oily 4-acetyl-2,5-dioxo-1-piperazinocarbonyl chloride.	
5	(2) A suspension of 17.5 g of $6 \cdot [D(-) - \alpha$ -aminophenylacetamido] penicillanic acid in 200 ml of tetrahydrofuran containing 20% by volume of water was adjusted to a pH of 8.0 to 8.5 by gradual addition of triethyl amine with stirring at 10° to 15°C to form a homogeneous solution. Into this solution was dropped a solution of 11.0 g of the	5
	at 0°C over a period of 30 minutes. During this period, the pH of the reaction solution	•
10	was maintained at 7.5 to 8.0 by gradual addition of triethylamine. Subsequently, the temperature of the resulting mixed solution was elevated to 5° to 10°C and the solution was further reacted for 1 hour while maintaining the pH thereof at 7.5 to 8.0 by addition of triethylamine. After completion of the reaction, the tetrahydrofuran was removed	10
15	by distillation under reduced pressure. To the residue was added 100 cc of N hydro- chloric acid at 0° to 10°C. and the resulting mixture was stirred for 30 minutes to deposit white crystals. The deposited crystals were collected by filtration, and again suspended in water. The resulting aqueous suspension was adjusted to a pH of 8.0 by	15
20	gradual addition of triethylamine at 5° to 10°C, and then freed from insolubles by filtration. The filtrate was adjusted to a pH of 1.5 by gradual addition of N-hydrochloric acid to deposit crystals. The deposited crystals were collected by filtration, washed with water and then dried to obtain 21.2 g of $6-[D(-)-\alpha-(4-acetyl-2,5-dioxo-1-piperazino-carbonylamino)$ phenylacetamido] penicillanic acid, b.p. 162—164°C (decomp.), yield 80%.	20
25	IR (KBr) cm ⁻¹ : $\nu_{G=0}$ 1770 (lactam), 1730—1660 (—COOH, —CON<) NMR ((CD ₈) ₂ CO) τ values: 0.23 (1H), 2.65 (5H), 4.26 (1H), 4.33—4.63 (2H), 5.38 (4H), 5.68 (1H), 7.55 (3H), 8.47 (3H), 8.53 (3H)	25 *
30	The above-mentioned operation was repeated, except that the 4-acetyl-2,5-dioxo-1-piperazinocarbonyl chloride was replaced by each of the reactive derivatives of compounds of formula (III) shown in Table 12, to obtain respective objective compounds as shown in Table 12. The structure of each objective compound was confirmed by IR and NMR.	30
	•	

Table 12

Objective compound	D(-)- O-co-N N-conhchconh SCH3 O-co-N N-conhchconh CH3 O O O O COOH m.p. (decomp.) 88°C, yield 60 %	D(-)- O CH3-N-CONHCHCONH S CH3 O O O COOH m.p. (decomp.) 179 - 181°C, yield 83 %	D(-)- O-CH2-N N-CONHCHCONH SCH3 OOOH OOOOH OOOOOOOOOOOOOOOOOOOOOOOOO
Reactive derivative of compound of formula (III)	O-co-M N-coc1	CH3-N N-COC1	O-CH2-N N-COC1

cont'd -

Table 12 (Cont'd)

HN N-COC1	D(-)- 0 H N-CONHCHCONH N-CONHCHCONH O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HIV N-COC1	D(-)- N N-CONHCHCONH S CH2 O O O O O O O O O O O O O O O O O O O
ост сн ₃	D(-)- 0 CH ₃ HN N-CONHCHCONH 0 O O O O O O O O O O O O O O O O O O O

Table 12 (Cont'd)

D(-)- 0 (H) O-CH2-N N-CONHCHCONH S (CH3 0 O O O O O O O O O O O O O O O O O O O	D(-)- Cl ₃ CCH ₂ OCO-N N-CONHCHCONH S CH ₃ Cl ₃ CCH ₂ OCO-N N-CONHCHCONH COOH M.p. (decomp.) 120 - 125°C, yield 92 %	D(-)- OCH2-N N-CONHCHCONH SCH3 OCH2-N N-CONHCHCONH COOH OCH2-N N-CONHCHCONH COOH OCH3
O (H) O-CH2-N N-COC1	C13CCH2OCO-N N-COC1	O-CH2-N N-COC1

Example 10. (1) A suspension of 8.0 g of D(-)- α -aminophenyl acetic acid in 80 ml of tetrahydrofuran was adjusted to a pH of 11.5 by gradual addition of a N sodium hydroxide solution with stirring to form a homogeneous solution. This solution was cooled to 0°C, and 15 ml of a tetrahydrofuran solution containing 11 g of 4-acetyl-2,5-dioxo-1-piper-5 azinocarbonyl chloride was dropped at said temperature into said solution over a period of 30 minutes. During this period, the pH of the reaction solution was maintained at 10.5 to 11.0 by gradual addition of a N sodium hydroxide solution. Subsequently, the temperature of the resulting mixed solution was elevated to 5° to 10°C, and the mixture was further reacted for 1 hour, upon which D(-)- α -aminophenylacetic acid 10 10 deposited. After completion of the reaction, the deposited acid was separated by filtration, and the filtrate was concentrated under reduced pressure to remove tetrahydrofuran. The residue was dissolved in a mixed solvent comprising 10 ml of water and 80 ml of ethyl acetate, and the resulting solution was adjusted to a pH of 1.0 by addition of dilute hydrochloric acid with ice-cooling. Subsequently, the organic layer was . 15 15 separated off, dried over anhydrous magnesium sulfate, and then charged into 100 ml of an ethyl acetate solution containing 8.3 g of sodium 2-ethylhexanoate to deposit crystals. The deposited crystals were collected by filtration, washed with acetone, and then dried over P_2O_5 to obtain 7.9 g of a sodium salt of $D(-)-\alpha$ -(4-acetyl-2,5-dioxo-1-piperazinocarbonylamino) phenylacetic acid, m.p. 104°C (decomp.), yield 42%. 20 20 IR (KBr) cm⁻¹: $\nu_{C=0}$ 1690—1650, 1600—1590 (2) To a suspension in 25 ml of anhydrous acetone of 1.75 g of the aforesaid sodium salt of $D(-)-\alpha-(4-acetyl-2,5-dioxo-1-piperazinocarbonylamino)$ phenylacetic acid was added 20 mg of N-methylmorpholine, and the resulting mixture was cooled to -20° to -15° C. Into this mixture was dropped a solution of 0.57 g of ethyl chloro-25 25 carbonate in 5 ml of anhydrous acetone over a period of 5 minutes, and the mixture was stirred at said temperature for 60 minutes. Subsequently, a solution of 1.29 g of a triethylamine salt of 6-aminopenicillanic acid in 30 ml of anhydrous methylenechloride was dropped into said mixture at -40° to -30°C over a period of 10 minutes. The temperature of the resulting mixture was elevated from -30°C to 0°C, and the mix-30 30 ture was then reacted at said temperature for about 2 hours. After the reaction, the solvent was removed by distillation under reduced pressure. The residue was charged into 30 ml of water, and the resulting mixture was freed from insolubles by filtration with ice-cooling. The filtrate was adjusted to a pH of 1.5 to 2.0 by addition of dilute hydro-35 chloric acid to deposit crystals. The deposited crystals were collected by filtration, suffi-35 ciently washed with water, and then dried to obtain 2.34 g of 6- $[D(-)-\alpha-(4-acetyl-$ 2,5-dioxo-1-piperazinocarbonylamino)phenylacetamido]penicillanic acid, m.p. 162---164°C (decomp.), yield 90%. In the same manner as above, 530 mg of 6- $[D(-)-\alpha-(4-benzyl-2,2-pentamethyl$ ene-3,5-dioxo-1-piperazinocarbonylamino)phenylacetamido]penicillanic acid, m.p. 95—100°C, yield 82.68%, was obtained from 450 mg of $D(-)-\alpha$ -(4-benzyl-2,2-penta-40 40 methylene-3,5-dioxo-1-piperazinocarbonylamino)phenylacetic acid and 320 mg of a triethylamine salt of 6-amino-penicillanic acid. IR (KBr) cm⁻¹: $\nu_{C=0}$ 1770 (lactam), 1700—1660 (—COOH, —CON<) 45 Example 11. 45 (1) Into a mixture comprising 8 g of a diethyl ester of oxalic acid and 8 ml of ethanol was dropped at room temperature 4.4 g of N-ethyl ethylenediamine. The resulting mixture was allowed to react for 3 hours, and then heated to remove the ethanol. Subsequently, the residue was recrystallized from 10 ml of dioxane to obtain 5.4 g of 1-ethyl-2,3-dioxo-piperazine, m.p. 124°C, yield 76.0%.
(2) To a suspension of 0.71 g of the above-mentioned 1-ethyl-2,3-dioxo-piper-50 50 azine in 15 ml of anhydrous dioxane were added with stirring 0.70 g of trimethylsilyl chloride and 0.83 ml of triethylamine. The resulting mixture was stirred at room temperature for 20 hours to deposit triethylamine hydrochloride. This hydrochloride was separated by filtration, and the filtrate was dropped at 5° to 10°C into a solution of 55 55 0.70 g of phosgene in 10 ml of anhydrous tetrahydrofuran. Subsequently, the resulting mixture was reacted at 5° to 10°C for 30 minutes and at room temperature for 2 hours, and then the solvent was removed by distillation under reduced pressure to obtain 1.0 g of pale yellow crystals of 4-ethyl-2,3-dioxo-1-piperazinocarbonyl chloride.

	(3) A suspension of 1.75 g of $6-[D(-)-\alpha$ -aminophenylacetamido] penicillanic acid in 50 ml of tetrahydrofuran containing 20% by volume of water was adjusted to a pH of 8.0 to 8.5 by addition of triethylamine with stirring to form a solution. This	·
<u>.</u> 5	solution was cooled to 0° to 5°C, and then 7 ml of an anhydrous tetrahydrofuran solution containing 1.0 g of the aforesaid 4-ethyl-2,3-dioxo-1-piperazinocarbonyl chloride	5
-	was dropped into the solution. During this period, the pH of the reaction solution was maintained at 7.5 to 8.0 by gradual addition of triethylamine. The resulting mixed solution are resulting mixed solutions and the solution of the solution of the solution was maintained at 7.5 to 8.0 by gradual addition of triethylamine. The resulting mixed solution are solved at solution was solved at the solution was maintained at 7.5 to 8.0 by gradual addition of triethylamine. The resulting mixed solution was maintained at 7.5 to 8.0 by gradual addition of triethylamine.	
10	tion was reacted at said temperature for 30 minutes and then at 5° to 10°C for 1 hour, while maintaining the pH thereof at 7.5 to 8.0. After the reaction, the tetrahydrofuran was removed by distillation under reduced pressure, and the residue was dissolved in	10
10	20 ml of water and then washed two times with 20 ml of ethyl acetate. To the aqueous layer was again added 50 ml of ethyl acetate, and the resulting mixture was adjusted to	
4.5	a pH of 1.5 by gradual addition of dilute hydrochloric acid with ice-cooling. Subsequently, the ethyl acetate layer was separated off, sufficiently washed with water, and then dried over anhydrous magnesium sulfate. Into the thus treated layer was dropped	15
15	10 ml of an ethyl acetate solution containing 0.83 g of sodium 2-ethyl-hexanoate to deposit white crystals. The deposited crystals were collected by filtration, sufficiently	13
	washed with ethyl acetate, washed with diethyl ether, and then dried to obtain 2.4 g of a sodium salt of $6-[D(-)-\alpha-(4-\text{ethyl-}2,3-\text{dioxo-}1-\text{piperazinocarbonylamino})$ phenyl-	20
20	acetamido]penicillanic acid, m.p. 183—185°C (decomp.), yield 89%.	20
	IR (KBr) cm ⁻¹ : $\nu_{0=0}$ 1765 (lactam), 1720—1670 (—CON<), 1600 (—COO ^{\ominus}) NMR ((CD ₃) ₂ SO+D ₂ O) τ values: 2.62 (5H), 4.31 (1H), 4.50 (1H), 4.70 (1H), 6.05 (1H), 6.35—6.65 (6H), 8.49 (3H), 8.60 (3H), 8.91 (3H)	*
25	The above-mentioned operation was repeated, except that the 4-ethyl-2,3-dioxo- 1-piperazinocarbonyl chloride was replaced by each of the reactive derivatives of com-	25
	pounds of formula (III) shown in Table 13, to obtain respective objective compounds as shown in Table 13. The structure of each objective compound was confirmed by IR and NMR.	-

Table 13

Reactive derivative of compound of formula (III)	Objective compound
CH3-N N-COC1	$D(-)-0$ $CH_{3}-M$ $CONHCHCONH$ CH_{2} CH_{3} $COONB$ $COONB$ $COONB$ $COONB$ $COONB$ $COONB$ $COONB$ $COONB$ $COONB$
о о о сн ₂ сн ₂ сн ₂ -м м-сост	D(-)- CH ₃ CH ₂ CH ₂ -N -CONHCHCONH S CH ₃ CH ₃ CH ₂ CH ₂ -N -CONHCHCONH CH ₃ O CH ₃ CH ₂ CH ₃ O CH ₃ CH ₂ CH ₃ O CH ₃ CH ₂ CH ₃
оо сн ₃ (сн ₂) ₂ сн ₂ -м м-сос1	D(-)- CH ₂ (CH ₂) ₂ CH ₂ -N N-CONHCHCONH S CH ₃

Table 13 (Cont'd)

CGH ₃) ₂ CH-N N-COC1	D(-)- 0 0 (CH ₃) ₂ CH-N N-CONHOHCONH CH ₃ CH ₃ (CH ₃ O) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
сн ₃ соосн ₂ сн ₂ -м м-сос1	D(-)- CH ₃ COOCH ₂ CH ₂ -N N-CONHCHCONH S CH ₃ (D) O m.p. (decomp.) 175°C, yield 79 %
0 0 СН2=СНСН2-М М-СОС1	D(-)- CH2=CHCH2-N N-CONHCHCONH S CH3 CH2=CHCH2-N N-CONHCHCONH CCONH M.p. (decomp.) 198 - 200°C, yield 75 %

Table 13 (Cont'd)

O-v v-coc1	D(-)- O-N N-CONHCHCONH SCH3 O-N N-COONA O 0 0 m.p. (decomp.) 185 - 187°C, yield 88 %
Clch2cH2-N-cocl	D(-)- ClCH2CH2-N N-CONHCHCONH SCH3 ClCH2CH2-N N-CONHCHCONH COONB O D.p. (decomp.) 210°C, yield 83 %
O O O O O O O O O O O O O O O O O O O	D(-)- OH3CH2-N N-CONHCHCONH S CH3 CH3 O O COONB m.p. (decomp.) 175 - 177°C, yield 76 %

2

S

5

Table 13 (Cont'd)	D(-)- OH2-N N-CONHCHCONH CH2 CH3 O CH3 m.p. (decomp.) 177 - 178°C, yield 79 %
-	СН3-М N-СОС1 СН3-М 2

A suspension of 1.4 g of 6-[D(—)-c-aminophenylacetamido] penicillanic acid in 30 ml of tetrahydrofuran containing 20% by volume of water was adjusted to a pH of 8.0 to 8.5 by addition of triethylamine with stirring to form a solution. This solution was cooled to 0° to 5°C, and 10 ml of a tetrahydrofuran solution containing 1.2 g of

S

2

15

was cooled to 0° to 5°C, and 10 ml of a terrahydrofuran solution containing 1.2 g. 4-n-pentyl-2,3-dioxo-1-piperazinocarbonyl chloride was dropped into said solution. During this period, the pH of the reaction solution was maintained at 7.5 to 8.5 by gradual addition of triethylamine. Subsequently, the resulting mixed solution was reacted at said temperature for 30 minutes and then at 10° to 15°C for 90 minutes, while maintaining the pH thereof at 7.5 to 8.5. After the reaction, the tetrahydrofuran was removed by distillation under reduced pressure, and the residue was dissolved in 20 ml of water and then washed two times with 20 ml of the resulting mixture was adjusted to a pH of 1.5 by addition of ethyl acctate, and the resulting mixture was adjusted to a pH of 1.5 by addition of dilute hydrochloric acid with ice-cooling. Thereafter, the ethyl acctate layer was separated off, sufficiently washed with water, dried over magnesium sulfate, and then freed from the solvent by distillation under reduced pressure. The residue was crystallized by addition of diisopropyl ether to obtain 1.8 g of crystals of 6 - [D(-) - α - (4 - n - pentyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetamido] penicillanic acid, m.p. 96°C (decomp.), yield 80.5%.

IR (KBr) cm⁻¹: v₀₌₀ 1770 (lactam), 1720—1660 (—CON<, —COOH) NMR ((CD₅)₂SO+D₂O) τ values: 2.62 (5H), 4.31 (1H), 4.51—4.69 (2H), 6.04 (1H), 6.20—6.90 (6H), 8.50 (3H), 8.60 (3H), 8.75 (6H), 8.90 (3H)

8

The above-mentioned operation was repeated, except that the 4-n-pentyl-2,3-dioxo-1-piperazinocarbonyl chloride was replaced by each of the reactive derivatives of compounds of formula (III) shown in Table 14, to obtain respective objective compounds as shown in Table 14. The structure of each objective compound was confirmed by IR and NMR.

Η.	
Φ	
Н	
Ω,	
Ø	
↤	

Reactive derivative of compound of formula (III)	Objective compound
	D(-)-
о о сн ₂ (сн ₂) ₄ сн ₂ -м м-сост	CH ₂ (CH ₂) ₄ CH ₂ -N N-CONHCHCONH
	m.p. (decomp.) 107°C, yield 89 %
-	D(-)-
о о о о о о о о о о о о о о о о о о о	CH ₂ (CH ₂) ₅ CH ₂ -N N-CONHCHCONH S CH ₂
	m.p. (decomp.) 92°C, yield 88.5 %
	D(-)-
CH ₂ (CH ₂) ₆ CH ₂ -N N-COC1	CH ₂ (CH ₂) ₆ CH ₂ -N N-CONHCHCONH CH ₂ CH ₃
•	m.p. (decomp.) 95°C, yield 79.8 %

S

(Cont'd) Table 14

	D(-)-
CH ₂ CH ₂ -N N-CSC1	CH ₂ CH ₂ -N -CSNHCHCONH - SCH ₃ CH ₂ CH ₂ -N - COOH
	m.p. (decomp.) 80 - 82°C, yield 95 %

the same operation as in Example 11 was repeated to obtain 1.2 g of a sodium salt of $6 - [D(-) - \alpha - (4 - methyl - 2.3 - dioxo - 1 - piperazinocarbonylamino) - phydroxyphenylacetamido] penicillanic acid, m.p. 170—172°C (decomp.), yield 75%.$ Using 1.7 g of a triethylamine salt of 6-[D(-)-a-amino-p-hydroxyphenylaceramido] penicillanic acid and 0.7 g of 4-methyl-2,3-dioxo-1-piperazinocarbonyl chloride,

IR (KBr) cm⁻¹: v₀₌₀ 1760 (lactam), 1710—1660 (—CON<), 1600 (—COO[⊕]) NMR ((CD₈)₂SO) τ values: 2.8—3.3 (4H), 4.45 (1H), 4.65 (2H), 6.05 (1H), 6.2 (4H), 6.97 (3H), 8.48 (3H), 8.60 (3H)

2

9

15

In the same manner as above, a sodium salt of 6-[D(—)-\alpha-(4-ethyl-2,3-dioxo-1-piperazinocarbonylamino)-p-hydroxyphenylacetamido]penicillanic acid, m.p. 175°C (decomp.), yield 72%, was obtained from 4-ethyl-2,3-dioxo-1-piperazinocarbonyl chloride and a triethylamine salt of $6-[D(-)-\alpha$ -amino-p-hydroxyphenylacetamido]penicillanic acid.

15

chloride with ice-cooling, and the mixture was reacted at room temperature for 2 hours. After the reaction, the solvent was removed by distillation under reduced pressure. The residue was dissolved in a mixed solvent comprising 20 ml of ethyl acetate and 20 ml of water, and the resulting solution was adjusted to a pH of 2 by addition of dilute hydrochloric acid. Subsequently, the organic layer was separated off, washed with water, washed with a 2% aqueous sodium hydrogenocarbonate solution, washed with water, To a solution of 0.8 g of a phthalide ester of 6-[D(-)-a-aminophenylacetamido]penicillanic acid in 10 ml of tetrahydrofuran was added 0.25 ml of triethylamine. Into the resulting mixture was dropped 0.32 g of 4-methyl-2,3-dioxo-1-piperazinocarbonyl Example 14. ន 23

ន

. 52

5

dried over magnesium sulfate, and then concentrated to a liquid amount of about 2 ml. To the concentrate was added 20 ml of diisopropyl ether to deposit crystals, which were then collected to obtain 0.95 g of crystals of a phthalide ester of $6-[D(-)-\alpha-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)$ phenylacetamido] penicillanic acid, m.p. 157—160°C (decomp.), yield 90.0%.

IR (KBr) cm⁻¹: $v_{G=0}$ 1780 (lactam), 1715 (ester), 1680 (—CON<) NMR ((CD₃)₂CO₁+D₂O) τ values: 2.12 (4H), 2.40 (1H), 2.58 (5H), 4.25—4.60 (3H), 5.45 (1H), 5.85—6.42 (4H), 6.90 (3H), 8.50 (6H)

The above-mentioned operation was repeated, except that the 4-methyl-2,3-dioxo1-piperazinocarbonyl chloride was replaced by each of the reactive derivatives of compounds of formula (III) shown in Table 15, to obtain respective objective compounds as shown in Table 15. The structure of each objective compound was confirmed by IR and NMR.

Table 15

Reactive derivative of compound of formula (III)	Objective compound
CH3CH2-N N-COC1	D(-)- CH ₃ CH ₂ -N N-CONHCHCONH SCH ₃ O O O O O O O O O O O O O O O O O O O
(CH ₃) ₂ CH-N N-COC1	D(-)- (CH ₃) ₂ CH-N N-CONHCHCONH SCH ₃ O O O O O O O O O O O O O O O O O O O
сн ₃ (сн ₂) 2 сн ₂ – м — сос1	D(-)- CH ₂ (CH ₂) ₂ CH ₂ -N N-CONHCHCONH SCH ₂ O CH ₃ O CH

Example 15. A solution of 0.86 g of a hydrochloride of methoxymethyl ester of 6-[D(-)-aaminophenylacetamido] penicillanic acid in 15 ml of tetrahydrofuran containing 20% by volume of water was adjusted to a pH of 8.0 to 8.5 by addition of triethylamine at 5 0° to 5°C. Into this solution, a solution of 0.38 g of 4-methyl-2,3-dioxo-1-piperazino-5 carbonyl chloride in 10 ml of tetrahydrofuran was dropped over a period of 10 minutes. During this period, the pH of the reaction solution was maintained at 7.5 to 8.0 by gradual addition of triethylamine. The resulting mixed solution was reacted for 30 minutes, while maintaining the pH thereof at 7.5 to 8.0. After completion of the reac-10 tion, the tetrahydrofuran was removed by distillation under reduced pressure. The 10 residue was dissolved in a mixed solvent comprising 50 ml of water and 50 ml of ethyl acetate, and the resulting solution was adjusted to a pH of 1.5 by addition of dilute hydrochloric acid with ice-cooling. Subsequently, the organic layer was separated off, washed with water, dried over anhydrous magnesium sulfate, and then freed from the solvent by distillation under reduced pressure to form crystals. The thus formed crystals 15-15 were washed with diethyl ether to obtain 0.9 g of a methoxymethyl ester of 6-[D(-)α-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino) phenylacetamido] penicillanic acid, m.p. 111-115°C (decomp.), yield 82.5%. IR (KBr) cm⁻¹: $\nu_{C=0}$ 1780 (lactam), 1740 (ester), 1700—1660 (—CON<) NMR ((CD_s)₂CO) τ values: 0.15 (1H), 2.0 (1H), 2.67 (5H), 4.3—4.5 (3H), 4.75 (2H), 5.7 (1H), 6.55 (4H), 6.97 (3H), 7.25 (3H), 8.84 (3H), 8.60 (3H) 20 20 The above-mentioned operation was repeated, except that the 4-methyl-2,3-dioxo-1-piperazinocarbonyl chloride was replaced by each of the reactive derivatives of com-25 25

pounds of formula (III) shown in Table 16, to obtain respective objective compounds as shown in Table 16. The structure of each objective compound was confirmed by IR and NMR.

Table 16

	Reactive derivative of compound (III)	D(-)- O CH3CH2-N N-CONHCHCONH S CH3 N-COC1 O CH3CH2-N N-CONHCHCONH O CH3CH2OCH3 m.p. (decomp.) 83 - 85°C, yield 80.2 %	CH ₃ (CH ₂) ₂ CH ₂ -N N-COCI	D(-)- O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₃ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₃ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₃ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₃ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₃ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₃ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₃ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₃ CH-N(N-CONHCHCONH SCH ₂ CH-N(N-CONHCHCONH SCH ₂ CCH ₃ O(CH ₃) ₃ CH-N(N-CONHCHCONH SCH ₂ CH-N(N-CONHCH SCH ₂ CH-N(N-CONHCHCONH SCH ₂ CH-N(N-CONHCH SCH ₂
-	Reactive d compound of	0 0 CH ₃ CH ₂ -N N-COC1	СН3 (СН2) 20Н2	(CH ₃) ₂ CH-N N-COC1

- contid -

Table 16 (Cont'd)

	D(-)-
O O O O O O O O O O O O O O O O O O O	CH ₃ (CH ₂) ₆ CH ₂ -N N-CONHCHCONH CH ₃ CH ₃
	m.p. (decomp.) 70 - 74°C, yield 74.4 %

Using 1.5 g of a hydrochloride of pivaloyloxymethyl ester of $6-[D(-)-\alpha$ -aminophenylacetamido]penicillanic acid and 0.6 g of 4-methyl-2,3-dioxo-1-piperazino-carbonyl chloride, the same operation as in Example 15 was repeated to obtain a pivaloyloxymethyl ester of $6-[D(-)-\alpha-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)-phenylacetamido]penicillanic acid, m.p. 108—111°C (decomp.), yield 75%.$

S

IR (KBr) cm⁻¹: v₀₌₀ 1780 (lactam), 1750 (ester), 1710-1660 (-CON<)

The above-mentioned operation was repeated, except that the 4-methyl-2,3-dioxo-1-piperazinocarbonyl chloride was replaced by each of the reactive derivatives of compounds of formula (III) shown in Table 17, to obtain respective objective compounds as shown in Table 17. The structure of each objective compound was confirmed by IR and NMR.

2

<u></u>
Н
a)
Н
Ω
Ø
≃

Objective compound	D(-)- $CH_{3}CH_{2}-N$ $CH_{3}CH_{2}-N$ $CH_{3}CH_{2}-N$ $CH_{3}CH_{2}-N$ $CH_{3}CH_{2}-N$ $CH_{3}CH_{2}$ $CH_{3}CH_{2}-N$ $CH_{3}CH_{3}-N$ $CH_{3}-N$ $CH_{3}CH_{3}-N$ $CH_{3}-N$ CH	D(-)- $CH_3(CH_2)_6CH_2-M$ $CH_3(CH_2)_6CH_2-M$ $COOCH_2OOCC(CH_3)_3$ $COOCH_2OOCC(CH_3)_3$ $COOCH_2OOCC(CH_3)_3$ $COOCH_2OOCC(CH_3)_3$
Reactive derivative of compound of formula (III)	CH3CH2-N N-COC1	сн ₃ (сн ₂) ₆ сн ₂ —м о о о

Example 17.

Using 0.81 g of a hydrochloride of β -piperidinoethyl ester of 6-[D(-)- α -aminophenylacetamido)penicillanic acid and 0.3 g of 4-methyl-2,3-dioxo-1-piperazinocarbonyl chloride, the same operation as in Example 15 was repeated to obtain 0.75 g of a β -piperidinoethyl ester of 6-[D(-)- α -(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)-phenylacetamido]penicillanic acid, m.p. 166—169°C (decomp.), yield 78%.

S

IR (KBr) cm⁻¹: v₀₌₀ 1780 (lactam), 1740 (ester), 1710—1670 (—CON<) NMR (CDCl₃) τ values: 2.7 (5H), 4.3—4.6 (3H), 5.7 (1H), 5.75 (2H), 6.0 (2H), 6.4 (2H), 6.9 (3H), 7.45 (2H), 7.6 (4H), 8.5 (12H)

2

ġ

The above-mentioned operation was repeated, except that the 4-methyl-2,3-dioxo-1-piperazinocarbonyl chloride was replaced by 4-n-octyl-2,3-dioxo-1-piperazinocarbonyl chloride, to obtain a β -piperidinoethyl ester of $6 \cdot [D(-) \cdot x \cdot (4-n-\text{octyl-2},3-\text{dioxo-1-piperazinocarbonylamino})$ phenylacetamido] penicillanic acid, m.p. 110—115°C (decomp.), yield 73.58%.

15

	Example 18.	. ,
5	Using 0.93 g of a hydrochloride of β -morpholinoethyl ester of $6-[D(-)-\alpha$ -aminophenylacetamido] penicillanic acid and 0.39 g of 4-methyl-2,3-dioxo-1-piperazino-carbonyl chloride, the same operation as in Example 15 was repeated to obtain 0.8 g of a β -morpholinoethyl ester of $6-[D(-)-\alpha-(4-methyl-2,3-dioxo-1-piperazinocarbonyl-p$	5
	amino)phenylacetamido]penicillanic acid, m.p. 150—153°C (decomp.), yield 73%.	ŝ
	IR (KBr) cm ⁻¹ : $\nu_{C=0}$ 1780 (lactam), 1740 (ester), 1710—1680 (—CON<) NMR (CDCl _s) τ values: 2.55 (5H), 4.3—4.55 (3H), 5.6 (1H), 5.7 (3H), 6.0 (2H), 6.3 (2H), 7.4 (2H), 7.5 (4H), 8.5 (6H)	5
10	The above-mentioned operation was repeated, except that the 4-methyl-2,3-dioxo-1-piperazinocarbonyl chloride was replaced by 4-n-octyl-2,3-dioxo-1-piperazinocarbonyl chloride, to obtain a β -morpholinoethyl ester of 6-[D(-)- α -(4-n-octyl-2,3-dioxo-1-piperazinocarbonylamino)phenylacetamido]penicillanic acid, m.p. 103—105°C (decomp.), yield 70%.	10
15	Example 19. (1) To a solution of 8.7 g of a sodium salt of D(-)-\alpha-phenylglycine in 50 ml of water were added 50 ml of ethyl acetate and 5.05 g of triethylamine. To the resulting mixture was gradually added 9.5 g of 4-methyl-2,3-dioxo-1-piperazinocarbonyl chloride at 0° to 5°C over a period of 15 minutes, and then the mixture was reacted at 5° to	15
20	15°C for 30 minutes. After the reaction, the aqueous layer was separated off, washed with diethyl ether, and then adjusted to a pH of 1.5 by addition of dilute hydrochloric acid to deposit crystals. The deposited crystals were collected by filtration, washed with water and dried to obtain 14.1 g of $D(-)-\alpha-(4-methyl-2,3-dioxo-1-piperazinocarbonyl-$	20
25	amino)phenylacetic acid, m.p. 138—141°C (decomp.), yield 87%. Recrystallization from hydrous butanol gave white crystals, m.p. 140—142°C (decomp.).	25
	Elementary analysis (for $C_{14}H_{15}N_8O_5$. H_2O): Calculated (%) C: 52.01 H: 5.30 N: 13.00 Found (%) C: 52.24 H: 5.32 N: 12.87 IR (KBr) cm ⁻¹ : $\nu_{C=0}$ 1710, 1700, 1660	#
30	(2) Into a solution of 10 g of the above-mentioned $D(-)-\alpha-(4-\text{methyl-}2,3-\text{dioxo-}1-\text{piperazinocarbonylamino})$ phenylacetic acid in 200 ml of acetone was dropped a solution of 5.2 g of a sodium salt of 2-ethylhexanoic acid in 50 ml of acetone with stirring to deposit crystals. The deposited crystals were collected by filtration and then washed with acetone to obtain 9.6 g of a sodium salt of $D(-)-\alpha-(4-\text{methyl-}2,3-\text{dioxo-}2)$	30
35	1-piperazinocarbonylamino)phenylacetic acid, m.p. 165°C (decomp.), yield 95%. (3) To a suspension of 8.8 g of the above-mentioned sodium salt of D(-)-a- (4-methyl-2,3-dioxo-1-piperazinocarbonylamino)phenylacetic acid in 80 ml of methyl- ene chloride was added 20 mg of N-methylmorpholine. Into the resulting mixture was	35
40	dropped a solution of 3.1 g of ethyl chlorocarbonate in 20 ml of methylene chloride at -20° to -15°C over a period of 5 minutes, and the mixture was reacted at said temperature for 1 hour. Into this reaction liquid was dropped a solution of 9.4 g of a triethylamine salt of 6-aminopenicillanic acid in 40 ml of methylene chloride at -40° to -30°C over a period of 10 minutes, and the resulting mixture was reacted at -40° to -20°C over a period of 1 hour. After the reaction, the temperature of the reaction	40
45	subjected to extraction with 100 ml of water. Subsequently, the aqueous layer was separated off, and the methylene chloride layer was further subjected to extraction with 50 ml of water, and the resulting aqueous layer was combined with the aforesaid aqueous	45
50	layer. The combined aqueous layer was adjusted to a pH of 2 by addition of dilute hydrochloric acid with ice-cooling to deposit crystals. The deposited crystals were collected by filtration, sufficiently washed with water, dried and then dissolved in 200 ml of acetone. Into the resulting solution was dropped a solution of 4 g of a sodium salt of 2-ethylhexanoic acid in 40 ml of acetone over a period of 10 minutes to deposit crystals.	50
55	The deposited crystals were collected by filtration, washed with acetone and then dried to obtain 11.4 g of a sodium salt of $6-[D(-)-\alpha-(4-\text{methyl-2,3-dioxo-1-piperazino-carbonylamino})$ phenylacetamido] penicillanic acid, m.p. 170°C (decomp.), yield 80.8%. The above-mentioned operation was repeated, except that the $D(-)-\alpha-(4-\text{methyl-2,3-dioxo-1-piperazinocarbonylamino})$ phenylacetic acid was replaced by each of the	55
60	compounds of formula (V) shown in Table 18, to obtain respective objective compounds as shown in Table 18. The structure of each objective compound was confirmed by IR and NMR.	60

Table 18

Compound of formula (V)	Objective compound
D(-)-	D(-)-
снэснз-и м-сомненсоон	CH ₂ CH ₂ -N N-CONHCHCONH S CH ₃
0	COONE COONE
D(-)-	D(-)-
CH3CH2CH2-N -CONHCHCOOH	CH ₂ CH ₂ CH ₂ -N N-CONHCHCONH S CH ₃
0	COONE COONE
D(-)-	D(-)-
сн3 (сн2) 2сн2-и и-соинсисоон	CH ₂ (CH ₂) ₂ CH ₂ -N N-CONHQHCONH CH ₂ CH ₃
<u></u>	O O COONA

	Example 20.	
5	(1) To a solution of 2.28 g of D(-)-\alpha-amino-1,4-cyclohexadienylacetic acid in 15 ml of N NaOH were added 20 ml of ethyl acetate and 2.1 ml of triethylamine, and the resulting mixture was cooled to 0°C. To this mixture was gradually added 1.69 g of 4-methyl-2,3-dioxo-1-piperazinocarbonyl chloride over a period of 10 minutes. Subsequently, the mixture was reacted for 30 minutes with ice-cooling, and then the aqueous layer was separated off. To the aqueous layer was further added 20 ml of ethyl acetate. The resulting mixture was adjusted to a pH of 2 by addition of 2N hydrochloric acid with ice-cooling, and the ethyl acetate layer was separated off. The organic layer was	5 5 10
10	sufficiently washed with water, dried over anhydrous magnesium sulfate, freed from the solvent by distillation under reduced pressure and then incorporated with isopropyl alcohol to deposit crystals. The deposited crystals were collected by filtration to obtain 2.5 g of white crystals of $D(-)-\alpha-(4-\text{methyl-}2,3-\text{dioxo-}1-\text{piperazinocarbonylamino})-1,4-cyclohexadienylacetic acid, m.p. 140—145°C (decomp.), yield 74%.$	
15	IR (KBr) cm ⁻¹ : ν_{NH} 3300, $\nu_{C=0}$ 1715, 1660 NMR (d _e -DMSO) τ values: 0.57 (1H, d), 4.26 (1H, s), 4.36 (2H, s), 5.29 (1H, d), 6.07—6.18 (2H, m), 6.38—6.49 (2H, m), 7.05 (3H, s), 7.35 (4H, s)	15
20	(2) To a suspension of 0.45 g of the above-mentioned $D()-\alpha-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)-1,4-cyclohexadienylacetic acid in 15 ml of anhydrous methylene chloride was added 0.24 ml of N-methylmorpholine with stirring to form a solution. After cooling the solution of -10^{\circ}C, 3 ml of an anhydrous methylene chloride solution containing 0.24 g of ethyl chlorocarbonate was dropped into the solution, and the resulting mixture was reacted at said temperature for 90 minutes. Subsequently, the$	20
25	reaction liquid was cooled to -20° C, and 5 ml of a methylene chloride solution containing 0.70 g of a triethylamine salt of 6-aminopenicillanic acid and 0.31 ml of triethylamine was gradually dropped into the reaction liquid. The resulting mixture was reacted at -20° C for 1 hour, at -20° to 0° C for 1 hour, and at 0° to 5° C for 1 hour. Thereafter, the reaction liquid was freed from the solvent by distillation under reduced	25
30	pressure. The residue was dissolved in 10 ml of water and then washed with 10 ml of ethyl acetate. The aqueous layer was again incorporated with 15 ml of ethyl acetate, and then adjusted to a pH of 2.0 by addition of 2N HCl with ice-cooling. Subsequently, the ethyl acetate layer was separated off, washed with water, dried over anhydrous magnesium sulfate, and freed from the solvent by distillation under reduced pressure to obtain 0.74 g of white crystals of $6-[D(-)-\alpha-(4-\text{methyl-}2,3-\text{dioxo-}1-\text{piperazino-carbonylamino})-1,4-cyclohexadienylacetamido] penicillanic acid, m.p. 84-87°C (decomp.), yield 87%.$	30 35
40	IR (KBr) cm ⁻¹ : $\nu_{c=0}$ 1780 (lactam), 1730—1660 (—COOH, —CON<) NMR (d_c -DMSO) τ values: 0.55 (1H, d), 0.95 (1H, d), 4.22 (1H, s), 4.35 (2H, s), 4.41—4.61 (2H, s), 4.92 (1H, d), 5.75 (1H, s), 6.05 (2H, bs), 6.40 (2H, bs), 7.03 (3H, s), 7.35 (4H, s), 8.40 (3H, s), 8.52 (3H, s)	40
45 _	The thus obtained product was adjusted to a pH of 7.0 by neutralization with an aqueous sodium hydrogenearbonate solution, and then subjected to filtration and freezedrying to obtain a sodium salt thereof. The above-mentioned operation was repeated, except that the D(-)-\alpha-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)-1,4-cyclohexadienylacetic acid was replaced by each of the compounds of formula (V) shown in Table 19, to obtain respective objective compounds as shown in Table 19. The structure of each objective compound was confirmed by IR and NMR.	45

Table 19

punodwo	COONA	CH2 CONH COONA	ECHCONH CH2
Objective compound	D(-)- CH ₃ CH ₂ -N N-CONHCHCONH SCH ₃ CH ₃ CH ₂ CH ₃ CH ₂ -N COONHCHCONH COONB	D(-)- CH ₃ CH ₂ CH ₂ -N N-CONHCHCONH S CH ₃ CH ₃ CH ₂ -N N-CONHCHCONH COONa	D(-)- CH ₃ (CH ₂) ₂ CH ₂ -N N-CONHCHCONH S CH ₃ CH ₃ CH ₃ (CH ₂) ₂ CH ₂ -N CONHCHCONH COONH
Compound of formula (V)	D(-)- 0 0 сн ₃ сн ₂ -м м-сомнснсоон	D(-)- CH3CH2CH2-N N-CONHCHCOOH	D(-)- сн ₃ (сн ₂) ₂ сн ₂ -и м-соинсисоон

•	Example 21.	
5	(1) To a solution of 2.2 g of DL- α -amino-2-thienylacetic acid in 14 ml of a N sodium hydroxide solution was added at 0°C 2.2 g of triethylamine. To the resulting mixture was further added 3.6 g of 4-methyl-2,3-dioxo-1-piperazinocarbonyl chloride little by little at said temperature. Subsequently, the mixture was reacted at 0°C for 30 minutes, and then at room temperature for 30 minutes. After the reaction, the reacion	5
10	liquid was adjusted to a pH of 1.0 by addition of dilute hydrochloric acid to deposit crystals. The deposited crystals were collected by filtration, washed with water and then dried to obtain 3.5 g of DL- α -(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)-2-thienylacetic acid, m.p. 214—215°C (decomp.), yield 80.5%.	. 10
15	IR (KBr) cm ⁻¹ : ν _{C=0} 1710, 1680—1660 (2) Into a solution of 3.5 g of the above-mentioned DL-α-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)-2-thienylacetic acid in 100 ml of acetone was dropped a solution of 1.86 g of a sodium salt of 2-ethylhexanoic acid in 50 ml of acetone, upon which are talk was a described. The described example are allowed by Slevet In	15
15	which crystals were deposited. The deposited crystals were collected by filtration and then washed with acetone to obtain 3.5 g of a sodium salt of DL-α-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)-2-thienylacetic acid, m.p. 175—176°C (decomp.). (3) To a suspension of 3.3 g of the above-mentioned sodium salt of DL-α-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)-2-thienylacetic acid in 50 ml of methyl-	
20	ene chloride was added 30 mg of N-methylmorpholine, and the resulting mixture was then cooled to -20° to -15°C. Into the resulting mixture was dropped a solution of 1.3 g of ethyl chlorocarbonate in 20 ml of methylene chloride over a period of 5 minutes, and the mixture was stirred at said temperature for 90 minutes. Subsequently, a solution of 3.3 g of a triethylamine salt of 6-aminopenicillanic acid in 50 ml of methylene	20
25	chloride was dropped into the mixture at -50° to -40° C over a period of 20 minutes, and the resulting mixture was reacted with stirring at -40° to -30° C for 30 minutes, at -30° to -20° C for 30 minutes, and then at -20° to 0° C for 30 minutes. After the reaction, the solvent was removed by distillation under reduced pressure, and the	25
30	residue was dissolved in water. The resulting aqueous solution was adjusted to a pH of 2.0 by addition of dilute hydrochloric acid with ice-cooling to deposit crystals. The deposited crystals were collected by filtration, sufficiently washed with water and then dried to obtain 4.1 g of 6-[DL-\alpha-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)-2-thienylacetamido]penicillanic acid, m.p. 185°C (decomp.), yield 80.5%.	30
35	IR (Nujol Registered Trade Mark) cm ⁻¹ : $\nu_{0=0}$ 1780 (lactam), 1715 (—COOH), 1685—1675 (—CON<) NMR ((CD ₃) ₂ CO) τ values: 0.5 (1H), 1.8 (1H), 2.6 (1H), 2.85—3.05 (2H), 4.0 (1H), 4.2—4.5 (2H), 5.7 (1H), 5.8—6.0 (2H), 6.2—6.4 (2H), 6.95 (3H), 8.4 (3H), 8.45 (3H)	35
40	The thus obtained product was adjusted to a pH of 7.0 by neutralization with an aqueous sodium hydrogencarbonate solution, and then subjected to filtration and freezedrying to obtain a sodium salt thereof. The above-mentioned operation was repeated, except that the sodium salt of DL-	40
45	a-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)-2-thienylacetic acid was replaced by each of the compounds of formula (V) shown in Table 20, to obtain respective objective compounds as shown in Table 20. The structure of each objective compound	45

Table 20

Compound of formula (V)	Objective compound
	TITO ATTO CONTROL
0, 0	DI- 0 0
CH3CH2-N N-CONHCHCOONB	CH ₂ CH ₂ -N N-CONHCHCONH SCH ₂
	S O COUNT
DI- Q O	DI 0 0
CH ₂ CH ₂ -N N-CONHCHCOONA	CH3CH2CH2-N N-CONHCHCONH S CH3
- S	S O COONA
o o	DI- 0 0
CH ₂ (CH ₂) ₂ CH ₂ -NN-CONHCHCOONa	CH ₂ (CH ₂) ₂ CH ₂ -N N-CONHCHCONH S CH ₃
ි හ	S 0 COONA

	Example 22.	
•	To a suspension of 0.9 g of 6- $[D(-)-\alpha$ -aminophenylacetamido] penicillanic acid	
	in 30 ml of anhydrous ethyl acetate were added at 5° to 10°C 0.55 g of triethylamine and 0.6 g of trimethylsilyl chloride. The resulting mixture was reacted at 15° to 20°C	÷
5	for 3 hours to form trimethylsilylated 6-[D(-)-α-aminophenylacetamido]penicillanic	- 5
	acid. To this acid was then added 1 g of 4-ethyl-2,3-dioxo-1-piperazinocarbonyl chloride, and the resulting mixture was reacted at 15° to 20°C for 2 hours. After the	#
	reaction, a deposited triethylamine hydrochloride was separated by filtration, and the	
10	filtrate was incorporated with 0.4 g of n-butanol to deposit crystals. The deposited crystals were collected by filtration to obtain 1.25 g of white crystals of 6-[D(-)-a-	10
10	(4-ethyl-2,3-dioxo-1-piperazinocarbonylamino)phenylacetamido]penicillanic acid. Into	
	a solution of said crystals in 30 ml of tetrahydrofuran was dropped a solution of 0.38 g of a sodium salt of 2-ethylhexanoic acid in 10 ml of tetrahydrofuran, upon which white	
	crystals were deposited. The deposited crystals were collected by filtration, sufficiently	
15	washed with tetrahydrofuran and then dried to obtain 1.25 g of a sodium salt of	15
	6 - $[D(-)$ - α - (4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido]penicillanic acid, m.p. 183—185°C (decomp.), yield 90%.	
	Example 23. To a suspension of 4 g of a trihydrate of $6-[D(-)-\alpha$ -aminophenylacetamido]-	
20	penicillanic acid in 40 ml of water was added 20 ml of ethyl acetate, and the resulting	20
	mixture was cooled to 2°C. Subsequently, the mixture was incorporated with 1.37 g of potassium carbonate, and then stirred at 2° to 3°C for 2 minutes. Thereafter, 1.89 g of	
	4-methyl-2.3-dioxo-1-piperazinocarbonyl chloride was added to the mixture at said	
25	temperature over a period of 10 minutes, and the resulting mixture was reacted at said temperature for 15 minutes. After the reaction, slight amounts of insolubles were separ-	25
20	ated by filtration, and the filtrate was charged into 80 ml of ethyl acetate. Into the	
	resulting mixture was dropped 5 ml of 2N HCl at 20° to 22°C over a period of 5 minutes, and the mixture was stirred at said temperature for 5 hours to deposit crystals.	9
	The deposited crystals were collected by filtration, washed two times with 4 ml of water,	30
30	further washed two times with 4 ml of isopropanol, and then dried to obtain 4.0 g of a dihydrate of $6-[D(-)-\alpha-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)phenylacet-$	30
	amido] penicillanic acid, m.p. 156—157°C (decomp.), yield 75.4%.	
	IR (KBr) cm ⁻¹ : $\nu_{C=0}$ 1775, 1740, 1695, 1670	
	NMR (d_s -DMSO) τ values: 0.18 (1H, d), 0.77 (1H, d), 2.66 (5H, s), 4.30	35
35	(1H, d), 4.40 (3H, br), 4.48 (1H, g), 4.65 (1H, d), 5.80 (1H, s), 6.12 (2H, bs), 6.45 (2H, bs), 7.06 (3H, s), 8.48 (3H, s), 8.60 (3H, s)	- 55
	The above-mentioned operation was repeated, except that the 4-methyl-2,3-dioxo-	
	1-piperazinocarbonyl chloride was replaced by 4-ethyl-2,3-dioxo-1-piperazinocarbonyl	
40	chloride, to obtain a monohydrate of $6-[D(-)-\alpha-(4-\text{ethyl-}2,3-\text{dioxo-}1-\text{piperazino-carbonylamino})$ phenylacetamido] penicillanic acid, m.p. 154—156°C (decomp.), yield	40
40	84.8%.	
	IR (KBr) cm ⁻¹ : v _{C=0} 1775, 1735, 1705, 1680, 1665	
	NMR (d_a -DMSO) τ values: 0.20 (1H, d), 0.76 (1H, d), 2.69 (5H, s), 4.32	
45	(1H, d), 4.53 (1H, q), 4.64 (1H, d), 5.00 (3H, br), 5.83 (1H, s), 6.13 (2H, bs), 6.49 (2H, bs), 6.62 (2H, q), 8.44 (3H, s), 8.58 (3H, s),	45
45	8.91 (3H, t)	•
	The thus obtained monohydrate was neutralized with an aqueous sodium hydrogen-	
	carbonate solution, and then subjected to filtration and freeze-drying to obtain a sodium	•
50	salt of $6-[D(-)-\alpha-(4-\text{ethyl-}2,3-\text{dioxo-}1-\text{piperazinocarbonylamino})$ phenylacetamido]-penicillanic acid.	50
50	Further, a solution in 10 ml of nitromethane of 2 g of the aforesaid dihydrate of	•
	6 - $[D(-)] - \alpha - (4 - \text{methyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido] penicillanic acid was allowed to stand overnight to deposit crystals, which were	-
_	then collected by filtration to obtain 2 g of a monohydrate of a nitromethane addition	55
55	product of $6-[D(-)-\alpha-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)$ phenylacetamido] penicillanic acid, m.p. 128—130°C (decomp.), yield 92.2%.	33
	•	
	Elementary analysis (for C ₂₂ H ₂₅ N ₅ O ₇ S. CH ₃ NO ₂ . H ₂ O):	

Elementary analysis (for C₂₂H₂₃N₃O₇S . CH₃NO₂ . H₂O):
Calculated (%) C: 47.42 H: 5.19 N: 14.43
Found (%) C: 47.94 H: 5.13 N: 14.53

	IR (KBr) cm ⁻¹ : ν _{C=0} 1770, 1735, 1700, 1680	
	NMR (d ₀ -DMSO) τ values: 0.22 (1H, d), 0.80 (1H, d), 2.69 (5H, s), 3.30 (3H, br), 4.30 (1H, d), 4.46—4.70 (2H), 5.67 (3H, s), 5.81 (1H, s),	•
<u>.</u>	6.13 (2H, bs), 6.46 (2H, bs), 7.07 (3H, s), 8.45 (3H, s), 8.58 (3H, s)	
5	Example 24.	_
	To a suspension of 1.6 g of a trihydrate of $D(-)-\alpha$ -aminobenzyl penicillin in 20	5
	ml of water was added at 2° to 3°C 0.54 g of potassium carbonate, and the resulting mixture was stirred for 3 minutes. To the mixture was gradually added 0.81 g of 4-	
	ethyl-2,3-dioxo-1-piperazinocarbonyl chloride at said temperature over a period of 10	
10	minutes, and the mixture was reacted for 15 minutes. After the reaction, slight amounts	10
	of insolubles formed were separated by filtration, and the filtrate was charged into 10 ml of methyl n-propyl ketone. Into the resulting mixture was dropped 1.98 ml of 2N HCl	
	at 15° to 20°C over a period of 2 minutes, and the mixture was stirred at said tem-	
	perature for 1 hour to deposit crystals. The deposited crystals were collected by filtra-	
15	tion, washed two times with 2 ml of water, further washed two times with 2 ml of methyl n-propyl ketone, and then dried to obtain 1.7 g of a monohydrate of $D(-)$ - α -	15
	(4-ethyl-2,3-dioxo-1-piperazinocarbonylamino)benzylpenicillin, m.p. 152—154°C	
	(decomp.), yield 80.2% .	
20	The thus obtained product was neutralized with an aqueous sodium hydrogen- carbonate solution, and then subjected to filtration and freeze-drying to obtain a sodium	20
20	salt of the said product.	20
	Example 25.	
	A suspension of 4.0 g of a monohydrate of $7-[D(-)-\alpha-\text{aminophenylacetamido}]-3-$	
25	methyl-Δ ³ -cephem-4-carboxylic acid in 60 ml of tetrahydrofuran containing 20% by volume of water was adjusted to a pH of 8.0 to 8.5 by gradual addition of triethylamine	
23	with stirring to form a solution, which was then cooled to 0°C. To this solution were	. 25
	gradually added 2.5 g of crystals of 4-methyl-2,3-dioxo-1-piperazinocarbonyl chloride over a period of 10 minutes. During this period, the pH of the reaction solution was	
	maintained at 7.5 to 8.0 by gradual addition of triethylamine. Subsequently, the result-	
30	ing mixture was reacted at 0° to 5°C for 15 minutes while maintaining the pH thereof	30
	at 7.5 to 8.0. After the reaction, the reaction liquid was stirred together with 60 ml of diethyl ether and 70 ml of water, and then the aqueous layer was separated off. The	50
	thus obtained aqueous layer was washed with 30 ml of ethyl acetate, cooled to 0° to	
25	5°C, and then adjusted to a pH of 1.5 by addition of dilute hydrochloric acid to deposit white crystals. The deposited crystals were collected by filtration, sufficiently washed	
35	with water and then dried to obtain 4.7 g of white crystals of $7 - [D(-) - \alpha]$	35
	(4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - methyl-	
	Δ ³ - cephem - 4 - carboxylic acid, m.p. 185—186°C (decomp.), yield 86%.	
	IR (KBr) cm ⁻¹ : $v_{C=0}$ 1770—1760 (lactam), 1720—1660 (—CON<, —COOH)	
40	NMR (d_0 -DMSO) τ -values: 0.1 (1H, d), 0.56 (1H, d), 2.62 (5H, s), 4.26—4.37 (2H, dd), 5.05 (1H, d), 6.1 (2H, bs), 6.47 (2H, bs), 6.63 (2H, s),	40
	7.05 (3H, s), 8.02 (3H, s)	
	The above-mentioned operation was repeated, except that the 4-methyl-2,3-dioxo-	
	1-piperazinocarbonyl chloride was replaced by each of the reactive derivatives of com-	
45	pounds of formula (III) shown in Table 21, to obtain respective objective compounds	45

as shown in Table 21. The structure of each objective compound was confirmed by IR and NMR.

Table 21

Reactive derivative of compound of formula (III)	Objective compound
	D(-)-
CH ₂ CH ₂ -N N-COC1	CH ₂ CH ₂ -N N-CONHCHCONH S CH ₃
	m.p. (decomp.) 168°C, yield 80 %
C	D(-)-
CH2CH2-N N-COCI	CH ₂ CH ₂ CH ₂ -N N-CONHÇH CONH CH ₂
	m.p. (decomp.) 160°C, yield 80.5 %
	S HNOCHOHOLOGO O O O
сн ₃ (сн ₂) ₂ сн ₂ -и м-сос1	CH2 CH3
-	m.p. (decomp.) 150°C, yield 76 %

Example 26.

(1) To a solution of 0.92 g of 1-n-pentyl-2,3-dioxo-piperazine in 15 ml of anhydrous dioxane were added 1.1 ml of triethylamine and 1.08 g of trimethylsilyl chloride. The resulting mixture was stirred at room temperature for 20 hours to form triethylamine hydrochloride. This hydrochloride was separated by filtration, and the filtrate was dropped at 0° to 5°C into a solution of 0.6 g of phosgene in 10 ml of anhydrous tetrahydrofuran. Subsequently, the resulting mixture was reacted at 5° to 10°C for 30 minutes and then at room temperature for 2 hours. Thereafter, the solvent was removed by distillation under reduced pressure to obtain 1.21 g of pale yellow, oily 4-n-pentyl-2,3-dioxo-1-piperazinocarbonyl chloride.

IR (film) cm⁻¹: $\nu_{C=0}$ 1790, 1720—1665

(2) A suspension of 1.70 g of a monohydrate of $7-[D(-)-\alpha-aminophenylacetamido]-3-methyl-Λ^0-cephem-4-carboxylic acid in 50 ml of tetrahydrofuran containing 20% by volume of water was adjusted to a pH of 8.0 to 8.5 by addition of triethylamine with stirring to form a solution. This solution was cooled to 0° to 5°C, and 7 ml of an anhydrous tetrahydrofuran solution containing 1.21 g of the 4-n-pentyl-2,3-dioxo-1-piperazinocarbonyl chloride obtained in (1) was dropped into the solution. During this period, the pH of the solution was maintained at a pH of 7.5 to 8.0 by addition of triethylamine. Subsequently, the resulting mixed solution was reacted at 0° to 5°C for 1 hour and then at 5° to 10°C for 2 hours while maintaining the pH thereof at 7.5 to 8.0. After the reaction, the tetrahydrofuran was removed by distillation under reduced pressure, and the residue was dissolved in 20 ml of water and then washed two times with 20 ml of ethyl acetate. The aqueous layer was again charged with 40 ml of ethyl acetate, and then adjusted to a pH of 1.5 by gradual addition of dilute hydrochloric acid with ice-cooling. Subsequently, the ethyl acetate layer was separated off, washed with water, and then dried over anhydrous magnesium sulfate. Thereafter, 10 ml of an ethyl acetate solution containing 0.75 g of sodium 2-ethylhexanoate was dropped into the layer at 0° to 5°C to deposit white crystals. The deposited crystals were collected by filtration, and washed with ethyl acetate and then with diethyl ether to obtain 1.95 g of a sodium salt of 7 - <math>[D(-)-\alpha-(4-n-pentyl-2,3-dioxo-1-piperazinocarbonylamino)$ phenylacetamido] - 3 - methyl - Δ^3 - cephem - 4 - carboxylic acid, m.p. 164—166°C (decomp.), yield 75%.

IR (KBr) cm⁻¹: $\nu_{C=0}$ 1750 (lactam), 1720—1660 (—CON<), 1590 (—COO^{\ominus}) NMR (d₈-DMSO|+D₂O) τ values: 2.58 (5H, s), 4.33 (1H, s), 4.49 (1H, d), 5.17 (1H, d), 6.10 (2H, bs), 6.42—6.87 (6H, m), 8.09 (3H, s), 8.60— 8.90 (6H, bs), 9.12 (3H, t)

The above-mentioned operation was repeated, except that the 4-n-pentyl-2,3-dioxo-1-piperazinocarbonyl chloride was replaced by each of the reactive derivatives of compounds of formula (III) shown in Table 22, to obtain respective objective compounds as shown in Table 22. The structure of each objective compound was confirmed by IR and NMR.

ľ

Fable 22

Objective compound	D(-)- $CH_{2}(CH_{2})_{4}CH_{2}-N$ $CH_{3}(CH_{2})_{4}CH_{2}-N$ $CH_{3}(CH_{2})_{4}CH_{3}-N$ $CH_{3}(CH_{2})_{4}CH_{3}-N$ $CH_{3}(CH_{2})_{4}CH_{3}-N$ $CH_{3}(CH_{3})_{4}CH_{3}-N$ $CH_{3}(C$	D(-)- CH ₃ (CH ₂) ₅ CH ₂ -N N-CONHCECONH S CH ₃ (CH ₂) ₅ CH ₂ -N N-CONHCECONHCECONH CH ₃ (CH ₂) ₅ C	D(-)- $CH_{2}(CH_{2})_{6}CH_{2}-M$ $CH_{3}(CH_{2})_{6}CH_{2}-M$
Reactive derivative of compound of formula (III)	о о о сиз (сн ₂)4сн ₂ -и и-сосы	оо сн ₃ (сн ₂) ₅ сн ₂ -м м-сос1	сн ₃ (сн ₂) ₆ сн ₂ -м м-сос1

Table 22 (Cont'd)

сн ₃ сн ₂ осо-м м-сост	D(-)- CH ₃ CH ₂ OCO-N N-CONHCHCONH S CH ₃ CH ₂ CH ₂ O COONa m.p. (decomp.) 185 - 188°C, yield 77 %
сн ₃ (сн ₂) ₄ сн ₂ -и м-сос1	D(-)- CH ₃ (CH ₂) ₄ CH ₂ -N N-CONHCHCONH O CH ₃ O COONa m.p. (decomp.) 135 - 137°C, yield 79.2 %

	Example 27.	
•	Using 1.5 g of a hydrochloride of methoxymethyl ester of $7-[D(-)-\alpha-amino-phenylacetamido]-3-methyl-\Delta^{a}-cephem-4-carboxylic acid and 0.65 g of 4-methyl-2,3-$	
-	dioxo-1-piperazinocarbonyl chloride, the same operation as in Example 25 was repeated	5
5	to obtain 1.6 g of a methoxymethyl ester of $7 - [D(-) - \alpha - (4 - \text{methyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido] - 3 - methyl - Δ^3 - cephem - 4-	3
	carboxylic acid, m.p. 146—148°C (decomp.), yield 86%.	
	IR (KBr) cm ⁻¹ : $\nu_{0=0}$ 1770 (lactam), 1710 (ester), 1680—1600 (—CON<)	
	Example 28.	
10	To a suspension of 0.20 g of 7-[D($-$)- α -aminophenylacetamido]-3-acetoxy-	10
	methyl-Δ ⁰ -cephem-4-carboxylic acid in 15 ml of anhydrous chloroform was added 0.17 ml of triethylamine with stirring to form a solution, which was then cooled to 0°C.	
	To this solution was added 0.11 g of 4-methyl-2,3-dioxo-1-piperazinocarbonyl chloride,	
	and the resulting mixture was reacted at room temperature for 2 hours. After the reac-	
15	tion, the reaction liquid was evaporated under reduced pressure, and the residue was	15
-	dissolved in 15 ml of water. The resulting solution was washed with 10 ml of ethyl	
	acetate. The aqueous layer was again charged with 20 ml of ethyl acetate, and then adjusted to a pH of 1.5 by addition of 2N hydrochloric acid with ice-cooling. Subse-	
	quently, the ethyl acetate layer was separated off, successively washed with water and a	
20	saturated aqueous sodium chloride solution, and then dried over magnesium sulfate.	20
	Thereafter, the solvent was removed by distillation under reduced pressure to obtain	
	0.22 g of white crystals of $7 - [D(-) - \alpha - (4 - \text{methyl} - 2,3 - \text{dioxo} - 1 - \text{piper-azinocarbonylamino})$ phenylacetamido] - 3 - acetoxymethyl - Δ^3 - cephem - 4 - carb-	
	oxylic acid, m.p. 175°C (decomp.), yield 76%.	
		25
25	IR (KBr) cm ⁻¹ : $\nu_{0=0}$ 1770 (lactam), 1720—1650 (—CON<, —COOH)	
	NMR (d ₀ -DMSO) τ values: 0.23 (1H, d), 0.63 (1H, d), 2.66 (5H, s), 4.32 (1H, q), 4.43 (1H, d), 5.05 (1H, d), 5.21 (2H, q), 6.15 (2H, bs), 6.40	
	(2H, bs), 6.57 (2H, bs), 7.0 (3H, s), 8.0 (3H, s)	
	The above-mentioned operation was repeated, except that the 4-methyl-2,3-dioxo-	
30	1-piperazinocarbonyl chloride was replaced by each of the reactive derivatives of com-	30
50	pounds of formula (III) shown in Table 23, to obtain respective objective compounds	
	as shown in Table 23. The structure of each objective compound was confirmed by IR	
	and NMR.	

N
ø
덥
ø

Objective compound	D(-)- CH ₃ CH ₂ CH ₂ -N N-CONHCHCONH S CH ₂ CCCCH ₃ CH ₃ CH ₂ CH ₂ -N N-CONHCHCONH CH ₂ CH ₃ CH ₂ CH ₂ -N CH ₂ CCCCH ₃ CH ₃ CH ₂ CH ₂ -N N-CONHCHCONH S CH ₂ CH ₃ CH ₂ CH ₂ -N N-CONHCHCONH S CH ₂ CH ₃ CH ₂ CH ₂ -N N-CONHCHCONH S CH ₃ CH ₃ CH ₂ CH ₂ -N N-CONHCHCONH S CH ₃ CH ₃ CH ₂ CH ₂ -N N-CONHCHCONH S CH ₃ CH ₃ CH ₂ CH ₂ -N N-CONHCHCONH S CH ₃ CH ₃ CH ₂ CH ₂ -N N-CONHCHCONH S CH ₃ CH ₃ CH ₂ CH ₂ -N N-CONHCHCONH S CH ₃ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃	D(-)- CH ₃ CH ₂ -N N-CONECHCONH S CH ₂ OCOCH ₃ COOH D.p. (decomp.) 165°C, yield 83 %	D(-)- (CH ₃) ₂ CH-N N-CONHCHCONH S (CH ₃) ₂ CH-N N-CONHCHCONH (O) (O) (CH ₃) ₂ CH-N N-CONHCHCONH (CH ₃) ₂ CH-N CH ₂ OCOCH ₃ (O) (CH ₃) ₂ CH-N N-CONHCHCONH (CH ₃) ₂ CH-N CH ₂ OCOCH ₃ (CH ₃) ₂ CH-N (CH ₂) ₂ COCH ₃ (CH ₃) ₂ CH-N (CH ₂) ₃ COCH ₃ (CH ₃) ₂ CH-N (CH ₂) ₃ COCOCH ₃ (CH ₃) ₂ CH-N (CH ₂) ₃ COCOCH ₃ (CH ₃) ₂ CH-N (CH ₂) ₃ COCOCH ₃ (CH ₃) ₂ CH-N (CH ₂) ₃ COCOCH ₃ (CH ₃) ₃ CH-N (CH ₂) ₃ COCOCH ₃ (CH ₃) ₃ CH-N (CH ₂) ₃ COCOCH ₃ (CH ₃) ₃ CH-N (CH ₂) ₃ COCOCH ₃ (CH ₃) ₃ CH-N (CH ₃) ₄ COCOCH ₃ (CH ₃) ₄ CH-N (CH ₃) ₄ COCOCH ₃ (CH ₃) ₄ CH-N (CH ₃) ₄ COCOCH ₃ (CH ₃) ₄ CH-N (CH ₃) ₄ COCOCH ₃ (CH ₃) ₄ CH-N (CH ₃) ₄ COCOCH ₃ (CH ₃) ₄ CH-N (CH ₃) ₄ COCOCH ₃ (CH ₃) ₄ CH-N (CH ₃) ₄ COCOCH ₃ (CH ₃) ₄ CH-N (CH ₃) ₄ COCOCH ₃ (CH ₃) ₄ CH-N (CH ₃) (CH ₃) ₄ CH-N (CH ₃) ₄ CH-N (CH ₃) ₄ CH-N (CH ₃) (CH ₃) ₄ CH-N (CH ₃) ₄ CH-N (CH ₃) (CH ₃) ₄ CH-N (CH ₃) ₄ CH-N (CH ₃) (CH ₃) ₄ CH-N (CH ₃) ₄ CH-N (CH ₃) (CH ₃
Reactive derivative of compound of formula (III)	сн ₃ сн ₂ сн ₂ -и м-сост	CH3CH2-N-COC1	ооо (сн ₃) ₂ сн-и_м-сост

cont'd

ຊ

8

Table 23 (Cont'd)

CH3CH2-NN-CSC1	$CH_{3}CH_{2}-N$ O
	m.p. (decomp.) 112°C, yield 95 %
	D(-)-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0	CH3-N N-CSNHCHCONH - S CH-OCOCH3
	COOR (O)
	m.p. (decomp.) 134°C, yield 90.2 %

The aforesaid $7 - [D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazino-carbonylamino)phenylacetamido] - 3 - acetoxymethyl - <math>\Lambda^3$ - cephem - 4 - carboxylic acid, m.p. 175°C (decomp.), was recrystallized from hydrous acetone to obtain white crystals showing a melting point of 198° to 200°C (decomp.).

S

dioxo-1-piperazinocarbonyl chloride over a period of 15 minutes, and the mixture was reacted at 5° to 10° C for 15 minutes. Thereafter, the aqueous layer was separated off and adjusted to a pH of 0.5 by addition of 2N hydrochloric acid with ice-cooling to deposit crystals. The deposited crystals were collected by filtration and then dried to obtain 42 g of white crystals of D(--)- α -(4-methyl-2,3-dioxo-1-piperazinocarbonyl-(2) To a suspension in 15 ml of anhydrous methylene chloride of 0.31 g of the D(-)-a-(4-methyl-2,3-dioxo-1-piperazinocatbonylamino) phenylacetic acid obtained in the above-mentioned item (1) was added 0.11 g of N-methylmorpholine with stirring to form a solution, which was then cooled to -20°C. To this solution was added 3 ml of an anhydrous methylene chloride solution containing 0.13 g of ethyl chlorocarbonate, and the resulting mixture was reacted at -10°C to -20°C for 60 minutes (1) To a solution of 28.2 g of a sodium salt of D(—)-phenylglycine in 150 ml of water were added 200 ml of ethyl acetate and 18.2 g of triethylamine, and the resulting mixture was cooled to 0°C. To this mixture was added 34.3 g of 4-methyl-2,3-Example 29. amino) phenylacetic acid. 2 15

15.

to form a mixed acid anhydride. Into the thus formed acid anhydride was dropped a solution formed by adding 0.50 ml of triethylamine to a suspension in 5 ml of methanol of 0.41 g of 7 - amino - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl]- Δ³ - cephem - 4 - carboxylic acid. After the dropping, the resulting mixture was reacted at -50° to -30°C for 30 minutes, at -30° to -20°C for 30 minutes, at -20° to 0°C for 60 minutes, and then at room temperature for 30 minutes. Thereafter, the reaction liquid was concentrated under reduced pressure, and the concentrate was dissolved in 10 ml of water, washed with 5 ml of ethyl acetate, again charged with 15 ml of ethyl acetate, and then adjusted to a pH of 1.5 by addition of 2N hydrochloric acid with icecooling. Subsequently, insolubles were separated by filtration, and the ethyl acetate layer was separated off, successively washed with water and a saturated sodium chloride solution, dried over magnesium sulfate, and then freed from the solvent by distillation under reduced pressure to obtain 0.58 g of pale yellow crystals of 7 - [D(-)-α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2- (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - Δ³ - cephem - 4 - carboxylic acid, m.p. 160°C (decomp.), yield 91%. IR (KBr) cm ⁻¹ : ν ₀₌₀ 1780 (lactam), 1650—1720 (—CON<, —COOH) NMR (d ₀ -DMSO) τ values: 0.2 (1H, d), 0.6 (1H, d), 2.60 (5H, s), 4.35 (1H, q), 4.40 (1H, d), 5.0 (1H, d), 5.70 (2H, q), 6.10 (2H, bs), 6.25—6.55 (2H, 2H, bs), 7.0 (3H, s), 7.30 (3H, s) The above-mentioned operation was repeated, except that the D(-)-α-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)phenylacetic acid was replaced by each of the compounds of formula (V) shown in Table 24, to obtain respective objective compounds as shown in Table 24. The structure of each objective compounds was confirmed by IR and NMR.		-,,,-	
st -50° to -30°C for 30 minutes, at -30° to -20°C for 30 minutes, at -20° to 0°C for 60 minutes, and then at room temperature for 30 minutes. Thereafter, the reaction liquid was concentrated under reduced pressure, and the concentrate was dissolved in 10 ml of water, washed with 5 ml of ethyl acetate, again charged with 15 ml of ethyl acetate, and then adjusted to a pH of 1.5 by addition of 2N hydrochloric acid with icecooling. Subsequently, insolubles were separated by filtration, and the ethyl acetate layer was separated off, successively washed with water and a saturated sodium chloride solution, dried over magnesium sulfate, and then freed from the solvent by distillation under reduced pressure to obtain 0.58 g of pale yellow crystals of 7 - [D(-)-α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2-(5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - Δ³ - cephem - 4 - carboxylic acid, m.p. 160°C (decomp.), yield 91%. IR (KBr) cm ⁻¹ : ν ₀₌₀ 1780 (lactam), 1650—1720 (—CON<, —COOH) NMR (d₀-DMSO) τ values: 0.2 (1H, d), 0.6 (1H, d), 2.60 (5H, s), 4.35 (1H, q), 4.40 (1H, d), 5.0 (1H, d), 5.70 (2H, q), 6.10 (2H, bs), 6.25—6.55 (2H, 2H, bs), 7.0 (3H, s), 7.30 (3H, s) The above-mentioned operation was repeated, except that the D(-)-α-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)phenylacetic acid was replaced by each of the compounds of formula (V) shown in Table 24, to obtain respective objective compounds as shown in Table 24. The structure of each objective compound was confirmed		solution formed by adding 0.50 ml of triethylamine to a suspension in 5 ml of methanol of 0.41 g of 7 - amino - 3 - $[2 - (5 - \text{methyl} - 1,3,4 - \text{thiadiazolyl})$ - thiomethyl]- Δ^3 - cephem - 4 - carboxylic acid. After the dropping, the resulting mixture was reacted	
in 10 ml of water, washed with 5 ml of ethyl acetate, again charged with 15 ml of ethyl acetate, and then adjusted to a pH of 1.5 by addition of 2N hydrochloric acid with icecooling. Subsequently, insolubles were separated by filtration, and the ethyl acetate layer was separated off, successively washed with water and a saturated sodium chloride solution, dried over magnesium sulfate, and then freed from the solvent by distillation under reduced pressure to obtain 0.58 g of pale yellow crystals of 7 - [D(-)-α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2-(5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - Δ³ - cephem - 4 - carboxylic acid, m.p. 160°C (decomp.), yield 91%. IR (KBr) cm ⁻¹ : ν _{C=0} 1780 (lactam), 1650—1720 (—CON<, —COOH) NMR (d ₀ -DMSO) τ values: 0.2 (1H, d), 0.6 (1H, d), 2.60 (5H, s), 4.35 (1H, q), 4.40 (1H, d), 5.0 (1H, d), 5.70 (2H, q), 6.10 (2H, bs), 6.25—6.55 (2H, 2H, bs), 7.0 (3H, s), 7.30 (3H, s) The above-mentioned operation was repeated, except that the D(-)-α-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)phenylacetic acid was replaced by each of the compounds of formula (V) shown in Table 24, to obtain respective objective compounds as shown in Table 24. The structure of each objective compound was confirmed	5	at -50° to -30° C for 30 minutes, at -30° to -20° C for 30 minutes, at -20° to 0° C for 60 minutes, and then at room temperature for 30 minutes. Thereafter, the reac-	5
layer was separated off, successively washed with water and a saturated sodium chloride solution, dried over magnesium sulfate, and then freed from the solvent by distillation under reduced pressure to obtain 0.58 g of pale yellow crystals of 7 - [D(-)-α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2-(5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - Δ³ - cephem - 4 - carboxylic acid, m.p. 160°C (decomp.), yield 91%. IR (KBr) cm ⁻¹ : ν ₀₌₀ 1780 (lactam), 1650—1720 (—CON<, —COOH) NMR (d ₀ -DMSO) τ values: 0.2 (1H, d), 0.6 (1H, d), 2.60 (5H, s), 4.35 (1H, q), 4.40 (1H, d), 5.0 (1H, d), 5.70 (2H, q), 6.10 (2H, bs), 6.25—6.55 (2H, 2H, bs), 7.0 (3H, s), 7.30 (3H, s) The above-mentioned operation was repeated, except that the D(-)-α-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)phenylacetic acid was replaced by each of the compounds of formula (V) shown in Table 24, to obtain respective objective compounds as shown in Table 24. The structure of each objective compound was confirmed		in 10 ml of water, washed with 5 ml of ethyl acetate, again charged with 15 ml of ethyl acetate, and then adjusted to a pH of 1.5 by addition of 2N hydrochloric acid with ice-	
5 (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - Δ³ - cephem - 4 - carboxylic acid, m.p. 160°C (decomp.), yield 91%. IR (KBr) cm ⁻¹ : ν ₀₌₀ 1780 (lactam), 1650—1720 (—CON<, —COOH) NMR (d ₀ -DMSO) τ values: 0.2 (1H, d), 0.6 (1H, d), 2.60 (5H, s), 4.35 (1H, q), 4.40 (1H, d), 5.0 (1H, d), 5.70 (2H, q), 6.10 (2H, bs), 6.25—6.55 (2H, 2H, bs), 7.0 (3H, s), 7.30 (3H, s) The above-mentioned operation was repeated, except that the D(-)-α-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)phenylacetic acid was replaced by each of the compounds of formula (V) shown in Table 24, to obtain respective objective compounds as shown in Table 24. The structure of each objective compound was confirmed	D	layer was separated off, successively washed with water and a saturated sodium chloride solution, dried over magnesium sulfate, and then freed from the solvent by distillation under reduced pressure to obtain 0.58 g of pale yellow crystals of 7 - [D(-)-	10
NMR (d ₀ -DMSO) τ values: 0.2 (1H, d), 0.6 (1H, d), 2.60 (5H, s), 4.35 (1H, q), 4.40 (1H, d), 5.0 (1H, d), 5.70 (2H, q), 6.10 (2H, bs), 6.25—6.55 (2H, 2H, bs), 7.0 (3H, s), 7.30 (3H, s) The above-mentioned operation was repeated, except that the D(-)-α-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)phenylacetic acid was replaced by each of the compounds of formula (V) shown in Table 24, to obtain respective objective compounds as shown in Table 24. The structure of each objective compound was confirmed	5	$(5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - \Delta^3 - cephem - 4 - carboxylic acid,$	15
2,3-dioxo-1-piperazinocarbonylamino)phenylacetic acid was replaced by each of the compounds of formula (V) shown in Table 24, to obtain respective objective compounds as shown in Table 24. The structure of each objective compound was confirmed 25	20	NMR (d ₀ -DMSO) τ values: 0.2 (1H, d), 0.6 (1H, d), 2.60 (5H, s), 4.35 (1H, q), 4.40 (1H, d), 5.0 (1H, d), 5.70 (2H, q), 6.10 (2H, bs),	20
pounds as shown in Table 24. The structure of each objective compound was confirmed 25		2,3-dioxo-1-piperazinocarbonylamino)phenylacetic acid was replaced by each of the	,
	25	pounds as shown in Table 24. The structure of each objective compound was confirmed	25

Table 24

Compound of formula (V)	Objective compound
D(-)- 0 0 сн ₂ сн ₂ -и и-сомнснсоон	$D(-)-QQQ$ $CH_3CH_2-N N-CONHCHCONH S CH_2S UNN CH_2S U$
D(-)- CH ₂ CH ₂ CH ₂ -м м-сомнснсоон	D(-)- CH ₃ CH ₂ CH ₂ -N N-CONHCHCONH S N-N CH ₃ CH ₂ CH ₂ S S CH ₃ CH ₃ CH ₂ CH ₂ S S CH ₃ COOH m.p. (decomp.) 147°C, yield 85.4 %
D(-)- CH ₃ (CH ₂) ₂ CH ₂ -и и-сомысносон	D(-)- CH ₂ (CH ₂) ₂ CH ₂ -N N-CONHCHCONH S N-N CH ₂ S S N-N CH ₃ O COOH m.p. (decomp.) 144°C, yield 84.3 %

cont'd -

Table 24 (Cont'd)

D(-)-	D(-)-
O-M N-connectedon	O N N-CONHCHCONH S N-N CH2S S CH3
>	m.p. (decomp.) 167°C, yield 93 %

2 Using 0.3 g of D(-) - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetic acid and 0.33 g of 7 - amino - 3 - <math>[5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Λ^3 - cephem - 4 - carboxylic acid, the same operation as in Example 29 was repeated, to obtain 0.5 g of 7 - [D(-) - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetamido] - 3 - <math>[5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Λ^3 - cephem - 4 - carboxylic acid, m.p. 161—163°C (decomp.), yield 76%. IR (nujol) cm⁻¹: v₀₌₀ 1775 (lactam), 1720—1660 (—CON<, —COOH)
NMR (d₆-DMSO) τ values: 0.02 (1H, d), 0.34 (1H, d), 2.48 (5H, s), 4.17
(1H, q), 4.26 (1H, d), 4.92 (1H, d), 5.66 (2H, s), 6.01 (5H, s), 6.35
(4H, s), 7.0 (3H, s) 15 10

The above-mentioned operation was repeated, except that the D(--)-\alpha-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)phenylacetic acid was replaced by each of the compounds of formula (V) shown in Table 25, to obtain respective objective compounds as shown in Table 25. The structure of each objective compound was confirmed by IR and NMR.

Table 25

Compound of formula (V)	Objective compound
D(-)- 0 0	D(-)-
CH ₂ CH ₂ -N N-CONHCHCOOH	CH ₂ CH ₂ -N N-CONHCHCONH S CH ₂ S N-N
	* * CH2 COOH 1. m.p. (decomp.) 170°C, yield 67.6 %
D(-)-	D(-)-
CH ₃ -N N-CONHCHCOOH	CH2-N N-CONHCHCONH S N-N CH2S W N
)	m.p. (decomp.) 173°C, yield 68 % CH ₃
D(-)-	D(-)-
O N N -conhercoon	O-N N-CONHCHCONH S N-N
<u></u>	163 ⁰ .

Anhydrous methylene chloride was substituted for the methanol used in Example 29.

5

20

25

5

10

15

20

25

_		_	
12-	-	_1_	21
EX	ш	ple	31.

Using 0.30 g of D(-) - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetic acid and 0.34 g of 7 - amino - 3 - [5 - (1,3,4 - thiadiazolyl)-thiomethyl] - Δ^3 - cephem - 4 - carboxylic acid, the same operation as in Example 29 was repeated, to obtain 0.47 g of 7 - [D(-) - α - (4 - methyl - 2,3 - dioxo - 1-piperazinocarbonylamino)phenylacetamido] - 3 - [5 - (1,3,4 - thiadiazolyl) - thiomethyl] - Δ^3 - cephem - 4 - carboxylic acid, m.p. 158—159°C (decomp.), yield

IR (nujol) cm⁻¹: $\nu_{0=0}$ 1775 (lactam), 1720—1660 (—CON<, —COOH)

The above-mentioned operation was repeated, except that the D(-) - α -(4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetic acid was replaced by D(-) - α - (4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetic acid, to obtain 7 - [D(-) - α - (4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [5 - (1,3,4 - thiadiazolyl) - thiomethyl]- Δ^3 - cephem - 4 - carboxylic acid, m.p. 123°C (decomp.), yield 64.5%. 10 15

Example 32.

Using 0.31 g of D(-) - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetic acid and 0.39 g of 7 - amino - 3 - [2 - (1 - methyl - 1,3,4-triazolyl) - thiomethyl] - Δ^3 - cephem - 4 - carboxylic acid, the same operation as in Example 29 was repeated, except that the methanol was replaced by anhydrous methylene chloride, to obtain 0.43 g of 7 - $[D(-) - \alpha - (4 - \text{methyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido] - 3 - [2 - (1 - methyl - 1,3,4 - triazolyl)-thiomethyl] - Δ^3 - cephem - 4 - carboxylic acid, yield 70%.

IR (Nujol) cm⁻¹: $\nu_{0=0}$ 1780 (lactam), 1720—1650 (—CON<, —COOH)

The above-mentioned operation was repeated, except that the $D(-)-\alpha$ -(4-methyl-2,3-dioxo-1-piperazinocarbonylamino) phenylacetic acid was replaced by each of the compounds of formula (V) shown in Table 26, to obtain respective objective compounds as shown in Table 26. The structure of each objective compound was confirmed by IR and NMR.

Table 26

	(4) ([Objective compound
D(-)- CH ₃ CH ₂ -N N-CON PCONHCHCOOH D(-)- D(-)- CH ₃ CH ₂ -N N-CON D(-)- CH ₃ CH ₂ -N N-CON CH ₃	Compound of formuta (V)	
CH ₃ CH ₂ -N N-CONP.) m.p. (decomp.) m.p. (decomp.)	D(-)-	D(-)-
m.p. (decomp.) D(-)- O O O O O O M.D. (decomp.)	CH2CH2CHCOCH	CH3CH2-N N-CONHCHCONH CH2S N-N
	~(©	- HOOD O O
	>	
		ğ(-)-
		N-N-N-S-HNOOHOHOON-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
m.p. (decomp.) 158°C, yield 74.5 %		
	○	m.p. (decomp.) 158°C, yield 74.5 %

Example 33.

The procedure of Example 29 was repeated, except that the D(—)-x-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino)phenylacetic acid was replaced by each of the compounds of formula (V) shown in Table 27, to obtain respective objective compounds shown in Table 27. The structure of each objective compound was confirmed by IR and NMR.

Ś

27
ые
la!

Objective compound	D(-)-	CH ₂ CO-N N-CONHCHCONH S N-N CH ₂ CO-N CH ₂ CH ₂ CH ₃ CH ₃ CCOH	D(-)-	CH ₂ SO ₂ -N N-CONHCHCONH S N-N CH ₂ S L CH ₃ CH ₃ CH ₃ COH	D(-)-	CH3-N N-CONHCHCONH S N-N CH2S S CH3
Compound of formula (V)	D(-)-	сн ₃ со-и и-сомеснсоон	D(-)-	сн ₃ so ₂ -и й-соинснсоон	D(-)a	сн3-и й-сомнсясоон

Table 27 (Cont'd)

D(-)-	D(-)-
сн ₂ сн ₂ -и у-соинснсоон	CH ₂ CH ₂ -N N-CONHCHCONH S N-N CH ₂ S L CH ₂
D(-)-	D(-)-
сн ₃ соинсо-и и-соинсисоон	CH ₂ CONHCO-N N-CONHCHCONH S CH ₂ N-N CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH
D(-)-	D(-)-
сн ₃ -и м-соинсисоон	CH3-N N-CONHCHCONH N CH2S US US CH3

Table 27 (Cont'd)

D(-)~	D(-)-
CH ₂ CH ₂ -N N-CONHCHCOOH	CH ₂ CH ₂ -NN-CONHCHCONH S N-N CH ₂ S L CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
D(-)-	D(-)-
ни у -сомненсоон	HN N-CONHCHCONH S N-N OH2S LE L CH2
D(-)-	D(-)-
сн ₃ со-и и-соинснсоон	CH ₂ CO-N N-CONHCHCONH S N-N N-N CH ₂ CH ₂ N-N CH ₂ CH ₃ CH ₂ CH ₃

Example 34.

The procedure of Example 30 was repeated, except that the D(—)-\alpha-(4-methyl-2,3-\text{dioxo-1-piperazinocarbonylamino}) phenylacetic acid was replaced by each of the compounds of formula (V) shown in Table 28, to obtain respective objective compounds shown in Table 28. The structure of each objective compound was confirmed by IR and NMR.

w	
N)	
0	
_	
۵	
ø	

	of formula (V) Objective compound	N'HCHCOOH CH ₂ CO-N N-CONHCHCONH S N-N N CH ₂ CO-N N-CONHCHCONH N CH ₂ CO-N N CH ₂	CH ₂ SO ₂ -N CONHCHCONH S N-N CH ₂ S N-N CH	HCHCOOH CH3-N N-CONHCHCONH CH2-N N-CONHCHCONH CH2-N N-N CH2-N N-N CH3-N
-	Compound of formula (V)	D(-)- сн ₃ со-м м-сомненсоон	D(-)- O O O O O O O O O O O O O O O O O O	D(-)- CH3-N N-CONHCHCOOH

Table 28 (Cont'd)

₹,

D(-)-	D(-)-
сн3сн2-и и-сомнснсоон	CH ₃ CH ₂ -N N-CONHCHCONH S N-N CH ₂ S N-N C
D(-)-	D(-)-
сн ₃ соинсо-и и-соинсисоон	CH ₂ CONHCO-N N-CONHCHCONH S CH ₂ S N-N N-N CH ₂ S N-N N-N CH ₂ S N-N N-N N-N N-N N-N N-N N-N N-N N-N N-
D(-)-	D(-)-
сн3-й м-сомнсисоон	CH3-N N-CONHCHCONH S N-N CH2S UN N-N CH2S UN N-N CH2S UN N-N CH3

Table 28 (Cont'd) ...

D(-)-	D(-)-
сн ₃ сн ₂ -и л-сомнснсоон	CH ₂ CH ₂ -N N-CONHCHCONH S CH ₂ S N-N CH ₂
D(-)- о муу-сохнснсоон о	D(-)- HN N-CONHCHCONH S OF S N-N OCH28 N-N OCH28 N-N OCH28 N-N OCH28 N-N OCH3
D(-)- CH3CO-N N-CONHCHCOOH	D(-)-CON = CON = CHCON = CH2S = N-N ON

55

147 147 Example 35. To a suspension of 0.9 g of D(-)- α -alanine in 15 ml of water was added 2.05 g of triethylamine to dissolve $D(-)-\alpha$ -alanine in water, and the resulting solution was cooled to 0°C. To the solution was added 2.3 g of 4-methyl-2,3-dioxo-1-piperazinocarbonyl chloride over 15 minutes, after which reaction was effected for 30 minutes 5 with ice-cooling. Dilute hydrochloric acid was then added to the reaction product to adjust the pH thereof to 2.0. The water was removed by distillation under reduced pressure. and 30 ml of acetone was added to the residue, after which insolubles were filtered off. To the resulting acetone solution was added 10 ml of an acetone solution 10 of 1.6 g of a sodium salt of 2-ethylhexanoic acid, and the deposited crystals were col-10 lected by filtration, and dried to obtain 2.1 g of a sodium salt of D(-)-a-(4-methyl-2,3-dioxo-1-piperazinocarbonylamino) propionic acid having a melting point of 115-8°C (decomp), yield 78.5%. IR (KBr) cm⁻¹: $\nu_{C=0}$ 1700, 1680, 1600 (—CON<, —COO^{\ominus}) (2) In the same manner as in Example 32, $7 - [D(-) - \alpha - (4 - methyl-2,3 - dioxo - 1 - piperazinocarbonylamino)propionamido] - 3 - acetoxymethyl - <math>\Delta^{s}$ -cephem - 4 - carboxylic acid was obtained from a sodium salt of $D(-) - \alpha$ - (4-15 15 methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) propionic acid and 7 - amino - 3acetoxymethyl - Δ^3 - cephem - 4 - carboxylic acid. The thus obtained product was dissolved in 20 ml of acetone, and a solution of 0.65 g of a sodium salt of 2-ethylhexa-20 noic acid in 5 ml of acetone was added to the resulting solution. The deposited crystals were collected by filtration and dried to obtain 1.2 g of sodium salt of $\bar{7}$ - [D(-) - α -(4 - methyl - 2,3 - dioxo - piperazinocarbonylamino)propionamido] - 3 - acetoxymethyl - Δ³ - cephem - 4 - carboxylic acid having a melting point of 195°C 25 (decomp.), yield 67.7%. 25 IR (KBr) cm⁻¹: $\nu_{0=0}$ 1780 (lactam), 1710—1660 (—CON<), 1600 (—COO^{\ominus}) Example 36. In the same manner as in Example 32, $7 - [D(-) - \alpha - (4 - methyl - 2)]$ dioxo - 1 - piperazinocarbonylamino) - p - hydroxyphenylacetamido] - 3 - [5 - (1-methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^3 - cephem - 4 - carboxylic acid was obtained from 7 - amino - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^3 - cephem - 4 - carboxylic acid and D(-) - α - (4 - methyl - 2,3 - dioxo - 1-30 30 piperazinocarbonylamino) - p - hydroxyphenylacetic acid. Melting point (decomp.), 147—9°C; yield, 62.0%. 35 IR (KBr) cm⁻¹: $\nu_{0=0}$ 1765 (lactam), 1720—1660 (—CON<, —COOH) 35 Example 37. In the same manner as in Example 29, 7 - [D(-) - α - (4 - methyl - 2,3-dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - azidomethyl - Δ^0 - cephem-4 - carboxylic acid was obtained from D(-) - α - (4 - methyl - 2,3 - dioxo - 1piperazinocarbonylamino) phenylacetic acid and 7 - amino - 3 - azidomethyl - Δ^3 -40 cephem - 4 - carboxylic acid. Melting point (decomp.), 185—8°C; yield, 68.0%. IR (KBr) cm⁻¹: $\nu_{O=0}$ 1775 (lactam), 1720—1660 (—CON<, —COOH) ν_{N_8} 2090 Example 38. - 45 In 10 ml of a phosphoric acid buffer solution of a pH of 6.3 was suspended 0.57 g of $7 - [D(-) - \alpha - (4 - \text{ethyl} - 2, 3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido] - 3 - acetoxymethyl - Δ^3 - cephem - 4 - carboxylic acid, and 0.07 g of sodium hydrogencarbonate was dissolved therein. To the solution was then added 0.12 g 50 of 1-methyl-5-mercapto-1,2,3,4-tetrazole to dissolve the latter in the former, and the 50 solution was subjected to reaction for 24 hours while maintaining the pH of the solution at 6.5-6.7 by using dilute hydrochloric acid and sodium hydrogencarbonate. After the reaction, the reaction liquid was cooled, and then adjusted to a pH of 5.0 by adding dilute hydrochloric acid. The reaction liquid was sufficiently washed with ethyl acetate,

after which the aqueous layer was separated off and then adjusted to a pH of 1.5 by

adding dilute hydrochloric acid thereto. The deposited crystals were collected by filtration and dried, after which the dried crystals were washed with ethyl acetate to obtain 0.40 g of $7 - [D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{diox} - 1 - \text{piperazinocarbonylamino})$

10

phenylacetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl)thiomethyl] - Δ^3 -cephem - 4 - carboxylic acid, m.p. 163—165°C (decomp.), yield 74.5%.

IR (KBr) cm⁻¹: $\nu_{C=0}$ 1775 (lactam), 1720—1660 (—CON<, —COOH) NMR (d_e-DMSO) τ values: 0.18 (1H, d), 0.55 (1H, d), 2.64 (5H, s), 4.3 (1H, q), 4.4 (1H, d), 5.0 (1H, d), 5.75 (2H, s), 6.05 (5H, s), 6.3—6.8 (6H), 8.92 (3H, t)

In the same manner as above, the objective compounds shown in Table 29 were obtained from 7 - [D(-) - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonyl)-phenylacetamido] - 3 - acetoxymethyl - Δ^3 - cephem - 4 - carboxylic acid or 7-[D(-) - α - (4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido]-3 - acetoxymethyl - Δ^6 - cephem - 4 - carboxylic acid and the compounds of formula (VII) shown in Table 29. All the objective compounds were D(-) isomers, and the structure of each objective compound was confirmed by IR and NMR.

Table 29

HS\S\
m.p. (decomp.) 158 - 159°C, yield 78.5 %

cont'd

Table 29 (Cont'd)

• • •	· · · · · · · · · · · · · · · · · · ·	
CH3-N N-CONHCHCONH S CH28 N-N CH3-N (decomp.) 175 - 180°C, yield 73.4 %	CH3-N-CONHCHCONH S N-N CH3-N-CONHCHCONH S N-N COOH H m.p. (decomp.) 163 - 165°C, yield 72.5 %	CH ₂ CH ₂ -N N-CONHCHCONH S CH ₂ S N-N N CH ₂ S N N N N N N N N N N N N N N N N N N N
HS N H	N N N N N H	N—N H N—N H H

cont.a

Table 29 (Cont'd)

	O. O
CH ₃ SH	CH ₂ -N N-CONHCHCONH S N-N CH ₂ S 10 CH ₂
	m.p. (decomp.) 128 - 129°C, yield 67.7 %
CH ₂ N SH	CH3-N -CONHCHCONH S CH2S N CH3
N-N CH ₃	m.p. (decomp.) 95 - 98°C, yield 66.6 %
CH ₂ CH ₂	CH ₂ CH ₂ -N -CONHCHCONH S CH ₂ S N CH ₃
HS \ 0	COOH m.p. (decomp.) 175 - 180°C, yield 78.0 %

Table 29 (Cont'd)

CH ₂ -N N-CONHCHCONH N CH ₂ S N CH ₃ COOH m.p. (decomp.) 156 - 157°C, yield 67.0 %	CH ₃ CH ₂ -N N-CONHCHCONH S CH ₂ S O CH ₃ S O CH	CH ₂ -N N-CONHCHCONH S CH ₂ S N CH ₂ S S CooH CHCOMP.) 180 - 182°C, yield 68.7 %
CH ₃ SH	ES O≥→o	HS NH S

Table 29 (Cont'd)

CH ₂	CH ₃ -N N-CONHCHCONH S OCOH N-CH ₂ S N N CH ₂ CH ₂ S N N CH ₂ S N
Hs $\langle \overset{N}{\bigcirc} \rangle$	CH3-N N-CONHCHCONH S CH2S (O) (COOH O) 192 - 194°C, yield 72.3 %
CH ₃ (O) SH	CH ₂ CH ₂ -N N-CONHCHCONH S N-N CH ₂ S CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ COOH COOH COOH COOH COOH COOH COOH COO

Table 29 (Cont'd)

CH ₂ -N - CONHCHCONH - CH ₂ SCOCH ₂ CH ₃	m.p. (decomp.) 181 - 183°C, yield 64.3 %
CH ₂ CH ₂ OC-SNa	1

In 10 ml of water was suspended 1.15 g of $7 - \{D(1-) - \alpha - (4 - \text{ethyl} - 2, 3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino)} phenylacetamido] - 3 - acetoxymethyl - <math>\Delta^3$ cephem - 4 - carboxylic acid, and 0.17 g of sodium hydrogencarbonate was then dissolved therein, after which 0.48 g of pyridine and 4.1 g of potassium thiocyanate were added thereto. The resulting mixture was subjected to reaction at 60°C for 5 hours while maintaining the pH of the mixture at 6.0 to 6.5 by adding dilute hydrochloric acid or sodium hydrogencarbonate. After the reaction, 20 ml of water was added to dilute the reaction mixture, which was then sufficiently washed with chloroform. The aqueous layer was then separated off and then adjusted to a pH of 1.5 by adding dilute hydrochloric acid. The deposited crystals were collected by filtration, dried, and then washed with actone to obtain 1.04 g (yield, 79.6%) of a thiocyanic acid salt of 7-[D(-) - α - (4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - pyridinomethyl - Δ^3 - cephem - 4 - carboxylic acid betaine having a melting point (decomp.) of 155—160°C, said product having the formula,

2

15

IR (KBr) cm⁻¹: v₀₋₀ 1780 (lactam), 1720-1660 (--CON<)
vSCN 2040

10

15

20

25

30

40

45

5

10

15

20

25

30

35

40

45

In the same manner as above, a thiocyanic acid salt of $7 - [D(-) - \alpha - (4-)]$ methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - pyridinomethyl - Δ^3 - cephem - 4 - carboxylic acid betaine was obtained from 7 - [D(-)- α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3acetoxymethyl - A³ - cephem - 4 - carboxylic acid and pyridine, said product having the formula,

Melting point (decomp.), 180-185°C; yield, 82.0%.

In a conventional manner, the above two products were treated with an ion exchange resin to obtain the desired $7 - [D(-) - \alpha - (4 - \text{ethyl} - 2, 3 - \text{diox} - 1 - \text{piperazinocarbonylamino}) phenylacetamido] - 3 - pyridinomethyl - <math>\Delta^3$ - cephem - 4-carboxylic acid betaine and $7 - [D(-) - \alpha - (4 - \text{methyl} - 2, 3 - \text{diox} - 1 - \text{piperazinocarbonylamino}) phenylacetamido] - 3 - pyridinomethyl - <math>\Delta^3$ - cephem - 4 - carboxylic acid betains boxylic acid betaine.

Example 40.

In 85 ml of anhydrous methanol was dissolved 1.5 g of a sodium salt of 7- $[D(-)-\alpha-(4-\text{ethyl}-2,3-\text{dioxo}-1-\text{piperazinocarbonylamino})$ phenylacetamido]-3- [2-(pyridyl-1-oxide)thiomethyl] - Δ^3 - cephem - 4 - carboxylic acid. To the resulting solution was added 0.65 g of anhydrous cupric chloride, and the resulting mixture was stirred at room temperature for 15 minutes and then subjected to reaction at 50°C for 14 hours. After the reaction, hydrogen sulfide gas was passed through the reaction solution with ice-cooling for 20 minutes. The resulting insolubles were filtered off, and the filtrate was concentrated under reduced pressure. To the residue was added 20 ml of a 5% aqueous sodium hydrogencarbonate solution, and the insolubles were filtered off, after which dilute hydrochloric acid was added to the filtrate to adjust the pH to 6.5. The filtrate was then washed with 10-ml portions of ethyl acetate three times, after which the aqueous layer was separated off and then adjusted to a pH of 1.8 by adding dilute hydrochloric acid thereto. The thus deposited crystals were collected by filtration and then dried under reduced pressure and washed with 20 ml of an ethyl acetate-chloroform mixed solvent (1:1 by volume) to obtain 0.40 g of 7- $[D(-)-\alpha-(4-\text{ethyl}-2,3-\text{dioxo}-1-\text{piperazinocarbonylamino})\text{phenylacetamido}]-3-\text{methoxymethyl}-\Delta^3-\text{cephem}-4-\text{carboxylic acid, m.p. }162-6^{\circ}\text{C}$ (decomp.), vield 30.5%.

IR (KBr) cm⁻¹: $\nu_{0=0}$ 1770 (lactam), 1700 (—COOH), 1666 (—CON<) NMR (d_e-DMSO) τ values: 0.13 (1H, d), 0.53 (1H, d), 2.61 (5H, s), 4.31 (1H, q), 4.41 (1H, d), 4.96 (1H, d), 5.82 (2H, s), 6.10 (2H, bs), 6.33 35 (2H, 2H, 2H, bs), 6.79 (3H, s), 8.89 (3H, t)

The word 'Nujol' used herein is a Registered Trade Mark.

WHAT WE CLAIM IS:-1. A compound represented by the general formula (I),

wherein R represents an amino acid residue; R1 represents a hydrogen atom, an esterforming group capable of being removed by catalytic reduction, chemical reduction or hydrolysis under mild conditions, an ester-forming group capable of being easily removed by mammalian enzymic action, a silicon-phosphorus- or tin-containing group which is capable of being easily removed by treatment with H₂O or an alcohol, or a conven-

25

30

35

5

10

20

25

30

tional salt-forming cation; n represents 1 or 2; nX's, which may be the same or different, represent individually an oxygen or sulfur atom, and are linked in any combination at the 2-, 3- and 5- positions of the piperazine ring; m represents 4-n; each pair of R2 and R3 in linked to the same carbon atom, and m pairs of R2 and R3, which may be the same or different, represent individually a hydrogen atom, a halogen atom, a carboxyl group or an unsubstituted or substituted alkyl, cycloalkyl, aryl, acyl, aralkyl, 5 alkoxycarbonylalkyl, acyloxyalkyl, alkoxy, alkoxycarbonyl, cycloalkyloxycarbonyl, aralkoxycarbonyl, aryloxycarbonyl, amino or carbamoyl group, any pair of R2 and R3 together with a common carbon atom may form a cycloalkyl ring; A represents a hydrogen atom, a hydroxy group, a nitro group, a cyano group, or an unsubstituted or 10 substituted alkyl, alkenyl, alkynyl, alkadienyl, cycloalkyl, cycloalkenyl, cycloalkadienyl, aryl, arelyt, arkyt, arkatienyt, cycloaikyt, cycloaikyt, cycloaikyt, aryloxy, arloxy, alkoxycarbonyl, cycloaikyloxycarbonyl, aryloxycarbonyl, aryloxycarbonyl, aryloxycarbonyl, aryloxycarbonyl, aryloxycarbonyl, acylcarbamoyl, acylcarbamoyl, acylcarbamoyl, acylcarbamoyl, alkylsulfonyl-15 carbamoyl, arylsulfonylcarbamoyl, alkylsulfonylthiocarbamoyl, arylsulfonylthiocarb-15 amoyl, sulfamoyl, alkoxycarbonylthioalkyl, alkoxythiocarbonylthioalkyl, amino or heterocyclic group; Y represents an oxygen or sulfur atom, and

where R² represents a hydrogen atom, a hydroxy group, a cyano group, an azido group, a quaternary ammonium group, or an unsubstituted or substituted alkoxy, aryloxy, aralkoxy, acyloxy, carbamoyloxy, guanidino, amino, alkylthio, arylthio, aralkylthio, acylthio, thiocarbamoylthio, alkoxythiocarbonylthio, aryloxythiocarbonylthio, cycloalkyloxythiocarbonylthio, amidinothio or heterocyclylthio group.

2. A compound according to claim 1, wherein R is a group represented by the formula.

wherein R5 represents a substituted or unsubstituted alkyl, cycloalkyl, cycloalkenyl, cycloalkadienyl, aryl, aralkyl, aryloxy, alkylthioalkyl, or heterocyclic group; and R6 represents a hydrogen atom; or R5 and R6 together with a common carbon atom may form a cycloalkyl, cycloalkenyl or cycloalkadienyl ring.

3. A compound according to any one of claims 1 and 2, wherein

4. A compound according to any one of claims 1 and 2, wherein

where R4 is as defined in claim 1. 5. A compound represented by the general formula (Ia),

10

15

20

$$A = N \longrightarrow N - CO - NH - CH - CONH \longrightarrow Z$$

$$(R^2 R^3)_3 \qquad O \qquad COOR^1$$

$$(1a)$$

wherein R1, R2, R3, A and

7

are as defined in Claim 1 and R⁵ is as defined in Claim 2.
6. A compound represented by the general formula (Ib),

(ть)

wherein R1, R2, R3, A and

\<u>`</u>

are as defined in Claim 1 and R⁵ is as defined in Claim 2.

7. A compound represented by the general formula (Ic),

10

5

$$A - N \qquad N - CO - NH - CH - CONH$$

$$O \qquad R^{5} \qquad O \qquad COOR^{1}$$

$$O \qquad COOR^{1}$$

wherein R1, R2, R3, A and

are as defined in Claim 1 and R⁵ is as defined in Claim 2. 8. A compound represented by the general formula (Id),

15

$$\begin{array}{c}
0\\
A-N\\
O(R^2-R^3)_2
\end{array}$$
N - CO-NH - CH- CONH - S \\
\frac{1}{R^5}
\tag{(1d)}

wherein R1, R2, R3, A and

are as defined in Claim 1 and R⁵ is as defined in Claim 2.
9. A compound represented by the general formula (Ie),

$$\begin{array}{c}
0 & 0 \\
A - N & N - CO - NH - CH - CONH \\
1 & R^2 & R^3)_2 & R^5 & O & COOR^1
\end{array}$$
(1e)

25

5

wherein R1, R2, R3, A and

Z

are as defined in Claim 1 and R5 is as defined in Claim 2.

10. A compound according to Claim 9, wherein A is a hydrogen atom, or a substituted or unsubstituted alkyl, alkenyl, aryl or aralkyl group; and R² and R³ are individually a hydrogen atom or an alkyl group.

11. A compound according to Claim 5, wherein

12. A compound according to Claim 6, wherein

Z is CCCH_s

13. A compound according to Claim 7, wherein

14. A compound according to Claim 8, wherein

15 15. A compound according to Claim 9, wherein

Z is CH₃

16. A compound according to Claim 9, wherein

in which R⁴ is as defined above.

17. A compound according to Claim 1, wherein R1 is a hydrogen atom.

18. A compound according to Claim 1, wherein R¹ is selected from ester-forming groups capable of being removed by catalytic reduction, chemical reduction or hydrolysis under mild conditions and ester-forming groups capable of being easily removed owing to enzymes in a living body.

19. A compound selected from

25

20

	$6 - [D(-) - \alpha - (4 - acetyl - 2 - oxo - 1 - piperazinocarbonylamino)$ phenylacet-	
	amido] penicillanic acid, $6 - [D(-) - \alpha - (4 - dichloroacetyl - 2 - oxo - 1 - piperazinocarbonylamino)-$	
	phenylacetamidol nenicillanic acid.	*
5	$6 - [D(-) - \alpha - (4 - \text{enanthoyl} - 2 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$	5
	acetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - cyclohexanecarbonyl - 2 - oxo - 1 - piperazinocarbonyl-$	4.
•	amino) phenylacetamido) penicillanic acid.	
	$6 - [D(-) - \alpha - (4 - acetyl - 3 - methyl - 2 - oxo - 1 - piperazinocarbonylamino)-$	10
10	phenylacetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - methanesulfonyl - 2 - oxo - 1 - piperazinocarbonylamino) -$	
	nhenvlacetamidol penicillanic acid.	
	$6 - [D(-) - \alpha - (4 - n - \text{hexyl} - 2 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenyl-	
15	acetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - n - butyl - 2 - oxo - 1 - piperazinocarbonylamino) phenyl-$	15
15	acetamido I nenicillanic 'acid.'	
	$6 - [D(-) - \alpha - (4 - n - butyl - 6 - methyl - 2 - oxo - 1 - piperazinocarbonyl-$	
	amino) phenylacétamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - n - octyl - 2 - oxo - 1 - piperazinocarbonylamino) phenyl-$	20
20	acetamido I nenicillanic acid.	20
	$6 - [D(-) - \alpha - (4 - pivaloyloxymethyl - 2 - oxo - 1 - piperazinocarbonylamino)-phenylacetamido] penicillanic acid,$	
	$6 - [D(-) - \alpha - (4 - palmitoyl - 2 - oxo - 1 - piperazinocarbonylamino)phenyl-$	
	acetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - \text{capryloyl} - 2 - \text{oxo} - 1 - \text{piperazinocarbonylamino}) \text{phenyl-}$	25 =
25	acetamidol penicillanic acid.	
	$6 - [\hat{D}(-) - \alpha - (4 - \text{caproyl} - 2 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$	_
	acetamido] penicillanic acid, 6 - $[D(-) - \alpha - (4 - \text{chloroacetyl} - 2 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenyl-	•
30	acetamidol nenicillanic acid.	30
30	$6 - (D(-) - \alpha - (4 - benzoyl - 2 - oxo - 1 - piperazinocarbonylamino)phenyl-$	
	acetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - p - chlorobenzoyl - 2 - oxo - 1 - piperazinocarbonylamino)-$	
	phenylacetamidol nenicillanic acid.	35
35	6 - $[D(-) - \alpha - (4 - p - methoxybenzoyl - 2 - oxo - 1 - piperazinocarbonyl-amino)phenylacetamido]penicillanic acid,$	33
	amino) prieny lacetamido) periorinante acid, $6 - \{D(-) - \alpha - [4 - (3,4,5 - trimethoxybenzoyl) - 2 - oxo - 1 - piperazino-$	
	carbonylamino l phenylacetamido l penicillanic acid.	
40	$6 - \{D(-) - \alpha - [4 - (2,4 - dichlorobenzoyl) - 2 - oxo - 1 - piperazinocarbonylamino] phenylacetamido] penicillanic acid,$	40
40	$6 - [D() - \alpha - (4 - acetylaminocarbonyl - 2 - oxo - 1 - piperazinocarbonyl-$	
	amino \nhenvlacetamido nenicillanic acid.	
	$6 - [D(-) - \alpha - (4 - phenylaminocarbonyl - 2 - oxo - 1 - piperazinocarbonyl-amino)phenylacetamido]penicillanic acid, and$	
45	$6 - [D(-) - \alpha - (4 - \text{ethoxycarbonyl} - 2 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$	45
	phenylacetamido] penicillanic acid. 20. A compound selected from	
	20. A compound selected from $6 - [D(-) - \alpha - (4 - \text{methyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenyl-	
	acetamida i menicilianic acid.	50
50	6 - [D(-) - α - (4 - n - butyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetamido] penicillanic acid,	55
	$6 - [D(-) - \alpha - (4 - \text{ethyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenylacet-	
	amido] penicillanic acid, $6 - [D(-) - \alpha - (4 - isopropyl - 3 - oxo - 1 - piperazinocarbonylamino) phenyl-$	
55	acetamidol penicillanic acid	55
33	$6 - [D(-) - \alpha - (4 - n - pentyl - 3 - oxo - 1 - piperazinocarbonylamino)phenyl-$	
	acetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - iso - pentyl - 3 - oxo - 1 - piperazinocarbonylamino) phenyl-$	
	acetamido I nenicillanic acid.	60
60	$6 - [D(-) - \alpha - (2 - \text{methyl} - 4 - n - \text{butyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonyl} - \frac{1}{\alpha} = \frac{1}{\alpha} + \frac$	60
	amino)phenylacetamido]penicillanic acid, $6 - [D(-) - \alpha - (4 - n - butyl - 5 - methyl - 3 - oxo - 1 - piperazinocarbonyl-$	
	emino \nheavlaceramido Inenicillanic acid.	
65	6 - $[D(-) - \alpha - (4 - n - butyl - 6 - methyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetamido]penicillanic acid,$	65
	HILLIO INICIA INCCENTIANO I PROMOCENCE	

161	1,508,062	161
	6 - [D(-) - α - (4 - benzyl - 3 - oxo - 1 - piperazinocarbonylamino) phenylacet-	
	amido] penicillanic acid, $6 - [D(-) - \alpha - (4 - \beta - \text{hydroxyethyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$	
. 5	phenylacetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - acetyl - 2 - methyl - 3 - oxo - 1 - piperazinocarbonylamino) -$	
	phenylacetamido penicillanic acid,	5
•	6 - $[D(-) - \alpha - (4 - \text{carbamoyl} - 2 - \text{methyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonyl-amino})$ phenylacetamido] penicillanic acid,	
10	$6 - [D(-) - \alpha - (3 - oxo - 1 - piperazinocarbonylamino) phenylacetamido] penicillanic acid.$	10
	6 - $[D(\cdot -) - \alpha - (2,5 - \text{dimethyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido]penicillanic acid,	
	$6 - [D(-) - \alpha - (5 - methyl - 3 - oxo - 1 - piperazinocarbonylamino) phenyl-$	
15	acetamido] penicillanic acid, $6 - [D(-) - \alpha - (2 - \text{ethoxycarbonylmethyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonyl}$	15
	amino)phenylacetamido]penicillanic acid, 6 - [D(-) - α - (2 - methyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacet-	
	amido] penicillanic acid,	
20	6 - $[D(-) - \alpha - (4 - \text{ethyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ propionamido] penicillanic acid,	20
	$6 - [D(-) - \alpha - (4 - allyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetamido] penicillanic acid,$	
	$6 - [D(-) - \alpha - (4 - \alpha - \text{methylallyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$	•
25	phenylacetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - \beta - methylallyl - 3 - oxo - 1 - piperazinocarbonylamino) -$	25
	phenylacetamido] penicillanic acid, $6 - \{D(-) - \alpha - [4 - (trans - 2 - butenyl) - 3 - oxo - 1 - piperazinocarbonyl-$	
	amino] phenylacetamido) penicillanic acid, 6 - [D(-) - α - (4 - n - hexyl - 3 - oxo - 1 - piperazinocarbonylamino) phenyl-	
30	acetamido] penicillanic acid.	30
	6 - $[\tilde{D}(-)$ - α - (4 - n - heptyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetamido]penicillanic acid,	
	6 - $[\widetilde{D}(-) - \alpha - (4 - n - \text{octyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido]penicillanic acid,	
35	$6 - [D(-) - \alpha - (4 - n - dodecyl - 3 - oxo - 1 - piperazinocarbonylamino) phenyl-$	35
	acetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - \text{cyclopentyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenyl-	
	acetamido] penicillanic acid, 6 - [D(-) - α - (4 - phenylaminocarbonyl - 3 - οxo - 1 - piperazinocarbonyl-	
40	amino)phenylacetamido]penicillanic acid, $6 - [D(-) - \alpha - (2 - phenyl - 3 - oxo - 1 - piperazinocarbonylamino)phenyl-$	40
	acetamido] penicillanic acid, and	
	$6 - [\widetilde{D}(-) - \alpha - (4 - \text{morpholinomethyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ - phenylacetamido] penicillanic acid.	
45	 21. A compound selected from 6 - [D(-) - α - (4 - acetyl - 2,5 - dioxo - 1 - piperazinocarbonylamino)phenyl- 	45
	acetamido) penicillanic acid.	
	6 - $[\hat{D}(-)] - \alpha$ - (4 - benzoyl - 2,5 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido]penicillanic acid,	
50	$6 - [\hat{D}(-) - \alpha - (4 - \text{methyl} - 2,5 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido] penicillanic acid, and	50
	$6 - [D(-) - \alpha - (4 - benzyl - 2,5 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] penicillanic acid.$	
	22. A compound selected from	
55	6 - $[D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido] penicillanic acid,	55
	6 - $[\hat{D}(-) - \alpha - (4 - \text{methyl} - 2, 3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido] penicillanic acid,	
	$6 - [D(-) - \alpha - (4 - n - propyl - 2, 3 - dioxo - 1 - piperazinocarbonylamino)$	
60	phenylacetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - n - butyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-$	60
	phenylacetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - iso - propyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) -$	
	phenylacetamido] penicillanic acid,	

102	1,200,0002	
	$6 - [D(-) - \alpha - (4 - acetoxyethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-phenylacetamido] penicillanic acid,$	
	6 - $[D(-) - \alpha - (4 - \text{allyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido penicillanic acid,	
5	$6 - [\hat{D}(-) - \alpha - (4 - phenyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenyl-$	5
	acetamido] penicillanic acid, $6 - \{D(-) - \alpha - (4 - \beta - \text{chloroethyl} - 2, 3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}\}$	•
	phenylacetamido] penicillanic acid, $6 - [D(-) - \alpha - (6 - methyl - 4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonyl-$	40
10	amino)phenylacetamido]penicillanic acid, $6 - [D(-) - \alpha - (4,6 - dimethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-$	10
	phenylacetamido] penicillanic acid, $6 - [D(-)] - \alpha - (4 - n - pentyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) -$	
15	phenylacetamido] penicillànic acid, $6 - [D(-) - \alpha - (4 - n - hexyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-$	15
15	phenylacetamido] penicillanic acid, 6 - [D(-) - α - (4 - n - heptyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-	
	phenylacetamido] penicillanic acid, $6 - [D(-) - \alpha - (4 - n - octyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-$	
20	nhenylacetamido l penicillanic acid.	20
	$6 - [D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinothiocarbonylamino})$ - phenylacetamido]penicillanic acid,	
	$6 - [D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - phydroxyphenylacetamido] penicillanic acid,$	
25	$6 = [D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) - p-$	25 =
	$6 - [D(-) - \alpha - (4 - \text{methyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) - 1,4-cyclohexadienylacetamido] penicillanic acid,$	
20	6 - $[D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) - 1,4-cyclohexadienylacetamido] penicillanic acid,$	30
30	$6 - [D() - \alpha - (4 - n - propyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-$	
-	1,4 - cyclohexadienylacetamido] penicillanic acid, 6 - [D(-) - α - (4 - n - butyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 1,4-	
35 -	cyclohexadienylacetamido] penicillanic acid, 6 - [DL - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 2-	35
	thienylacetamido] penicillanic acid, 6 - [DL - α - (4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 2 - thienyl-	
	acetamido] penicillanic acid, $6 - [DL - \alpha - (4 - n - propyl - 2,3 - dioxo - 1 - piperadinocarbonylamino) - 2-$	
40	thienylacetamido] penicillanic acid, and 6 - [DL - n - (4 - n - butyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - 2-	40
	thienylacetamido] penicillanic acid. 23. A compound selected from	
45	$6 - [D(-) - \alpha - (2,2 - pentamethylene - 3,5 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido]penicillanic acid,$	45
45	$6 - [D(-) - \alpha - (3.5 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) \text{phenylacetamido}]$	
	penicillanic acid, $6 - [D(-) - \alpha - (2 - methyl - 2 - phenyl - 3,5 - dioxo - 1 - piperazinocarbonyl-$	
50	amino) phenylacetamido] penicillanic acid, 6 - [D(-) - α - (4 - benzyl - 2,2 - pentamethylene - 3,5 - dioxo - 1 - piperazino-	50
	carbonylamino)phenylacetamido]penicillanic acid, 6 - $[D(-) - \alpha - (4 - \beta, \beta, \beta - \text{trichloroethoxycarbonyl} - 2, 2 - \text{pentamethylene-}$	
	3,5 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido[penicillanic acid, and $6 - [D(-)] - \alpha - (4 - benzyl - 2 - methyl - 2 - phenyl - 3,5 - dioxo - 1 - piper-$	
55	azinocarbonylamino)phenylacetamido]penicillanic acid.	55
	$7 - [D(-) - \alpha - (4 - \text{methyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ pnenyl-	
	$7 - [D(-) - \alpha - (4 - \text{ethyl} - 2, 3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) \text{phenyl-acetamido}] - 3 - \text{methyl} - \Delta^3 - \text{cephem} - 4 - \text{carboxylic}$ acid,	60
60	$7 - (D(-) - \alpha - (4 - n - propyl - 2,3 - dioxo - 1 - piperazinocaroonylamino)-$	
	phenylacetamido] - 3 - methyl - Δ^3 - cephem - 4 - carboxylic acid, 7 - $[D(-)$ - α - $(4 - n$ - butyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenyl-	
65	acetamido] - 3 - methyl - Δ^3 - cephem - 4 - carboxylic acid, 7 - [D(-) - α - (4 - π - pentyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-	65

-		103
	phenylacetamido] - 3 - methyl - Δ^3 - cephem - 4 - carboxylic acid, 7 - $[D(-)$ - α - $(4 - n$ - hexyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-	
	phenylacetamido] - 3 - methyl - Δ^a - cephem - 4 - carboxylic acid.	
² 5	7 - $[D(-)$ - α - $(4 - n$ - heptyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-phenylacetamido] - 3 - methyl - Δ^3 - cephem - 4 - carboxylic acid,	. 5
•	$7 - [D(-) - \alpha - (4 - n - octyl - 2.3 - dioxo - 1 - piperazinocarbonylamino) -$	J
•	phenylacetamido] - 3 - methyl - Δ^3 - cephem - 4 - carboxylic acid, 7 - [D(-) - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenyl-	
10	acetamido] - 3 - acetoxymethyl - Δ^3 - cephem - 4 - carboxylic acid.	10
10	7 - $[D(-) - \alpha - (4 - n - propyl - 2, 3 - dioxo - 1 - piperazinocarbonylamino)-phenylacetamido] - 3 - acetoxymethyl - \Delta^3 - cephem - 4 - carboxylic acid,$	10
	7 - $[D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido] - 3 - acetoxymethyl - Δ^3 - cephem - 4 - carboxylic acid,	
	$7 - [D(-) - \alpha - (4 - iso - propyl - 2.3 - dioxo - 1 - piperazinocarbonylamino) -$	
15	phenylacetamido] - 3 - acetoxymethyl - Δ^3 - cephem - 4 - carboxylic acid, 7 - $[D(-)$ - α - (4 - ethyl - 2,3 - dioxo - 1 - piperazinothiocarbonylamino)-	15
	phenylacetamido] - 3 - acetoxymethyl - Δ^3 - cephem - 4 - carboxylic acid.	
	7 - $[D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinothiocarbonylamino)-phenylacetamido] - 3 - acetoxymethyl - \Delta^3 - cephem - 4 - carboxylic acid,$	-
20	$7 - [D(-) - \alpha - (4 - methyl - 2.3 - dioxo - 1 - piperazinocarhonylamino) phenylamino$	20
	acetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - Δ^3 - cephem-4 - carboxylic acid,	
	7 - $[D(-) - \alpha - (4 - \text{ethyl} - 2.3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$	
² 25	acetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - Δ^3 - cephem-4 - carboxylic acid,	-25
20	$7 - [D(-) - \alpha - (4 - n - propyl - 23 - dioxo - 1 - piperazinocarbonylamino) -$	25
_	phenylacetamido] - 3 - $[2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - \Delta^0-cephem - 4 - carboxylic acid,$	
30	$7 - [D(-) - \alpha - (4 - n - butyl - 2.3 - dioxo - 1 - piperazinocarbonylamino)$	20
30	phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - Δ^3 -cephem - 4 - carboxylic acid,	30
	7 - $\{D(-)$ - α - $(4$ - phenyl - 2,3 - dioxo - 1 - piperazinocarbonylamino phenyl-	
	acetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - Δ^3 - cephem-4 - carboxylic acid,	
35	7 - $[D(-)$ - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenyl-	35
	acetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^3 - cephem-4 - carboxylic acid,	
	7 - $[D(-)$ - α - $(4$ - ethyl - 6 - methyl - $2,3$ - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - $[5$ - $(1$ - methyl - $1,2,3,4$ - tetrazolyl) - thiomethyl] -	
40	Δ' - cephem - 4 - carboxylic acid,	40
	7 - $[D(-)$ - α - (4,6 - dimethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - phenylacetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^3	
	cephem - 4 - carboxylic acid,	
45	7 - $[D(-)$ - α - (4 - phenyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^a - cephem-	45
	4 - carboxylic acid,	
	7 - $[D(-)$ - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenylacetamido] - 3 - [5 - (1,3,4 - thiadiazolyl) - thiomethyl] - Δ^3 - cephem - 4 - carboxylic	
50	acid, 7 - [D(-) - α - (4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenyl-	50
30	acetamido] - 3 - [5 - (1,3,4 - thiadiazolyl) - thiomethyl] - Δ^3 - cephem - 4 - carboxylic	50
-	acid, $7 - [D(-) - \alpha - (4 - methyl - 2, 3 - dioxo - 1 - piperazinocarbonylamino)phenyl-$	
cr	acetamido] - 3 - $[2 - (1 - methyl - 1,3,4 - triazolyl) - thiomethyl] - \Delta^3 - cephem - 4-$	
. 55	carboxylic acid, 7 - $[D(-) - \alpha - (4 - \text{ethyl} - 2, 3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ phenyl-	55
	acetamido] - 3 - [2 - (1 - methyl - 1,3,4 - triazolyl) - thiomethyl] - Δ^3 - cephem - 4-carboxylic acid,	
	$7 - [D(-) - \alpha - (4 - phenyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenyl-$	
60	acetamido] - 3 - [2 - (1 - methyl - 1,3,4 - triazolyl) - thiomethyl] - Δ^2 - cephem - 4-carboxylic acid,	60
	$7 - [D(-) - \alpha - (4 - methyl - 2, 3 - dioxo - 1 - piperazinocarbonylamino) pro-$	
	pionamido] - 3 - acetoxymethyl - Δ^1 - cephem - 4 - carboxylic acid, 7 - [D(-) - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) - p-	
	c= () = (1 mom) = 20 mon = 1 - biberasmoratounitammo) + b-	

64	1,508,062	164
	hydroxyphenylacetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl]-	
	Δ^{3} - cephem - 4 - carboxylic acid, 7 - [D(-) - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenyl-	
	acetamido] - 3 - azidomethyl - Δ^3 - cephem - 4 - carboxylic acid,	
•	7 - $[D(-)] - \alpha$ - (4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenyl-	5
5	acetamido] - 3 - $[5 - (1 - \text{methyl} - 1,2,3,4 - \text{tetrazolyl}) - \text{thiomethyl}] - \Delta^3 - cephem-$	
	4 - carboxylic acid,	
	7 - $[D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenyl-$	
	acetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^3 - cephem-	
10	4 - carboxylic acid.	10
	7 - (D(-) - m - (4 - methyl - 2.3 - dioxo - 1 - piperazinocarbonylamino)phenyl-	
	acetamido] - 3 - [2 - (1,3,4 - triazolyl) - thiomethyl] - Δ^3 - cephem - 4 - carboxylic	
	acid .	
	7 - (1)(-) (4 - methyl - 2.3 - dioxo - 1 - piperazinocarbonylamino) phenyl-	
15	acetamido] - 3 - [5 - (1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^0 - cephem - 4 - carboxylic	1
	acid.	•
	$7 - (D(-) - \alpha - (4 - \text{ethyl} - 2.3 - \text{diox} - 1 - \text{piperazinocarbonylamino})$	
	acetamido] - 3 - $[5 - (1,2,3,4 - \text{tetrazolyl}) - \text{thiomethyl}] - \Delta^3 - \text{cephem} - 4 - \text{carboxylic}$	
	acid.	20
20	$7 - ID(-1) - \alpha - (4 - methyl - 2.3 - dioxo - 1 - piperazinocarbonylamino) pnenyl-$	21
	acetamido] - 3 - [2 - (5 - methyl - 1,3,4 - oxadiazolyl) - thiomethyl] - Δ ³ - cephem-	
	4 - carboxylic acid.	
	$7 - [D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenyl-$	
	acetamido] - 3 - [3 - (2,6 - dimethyl - 5 - oxo - 2,5 - dihydro - 1,2,4 - triazinyl)-	2
25	thiomethyl - Δ^3 - cephem - 4 - carboxylic acid,	
	$7 - [D(-) - \alpha - (4 - \text{ethyl} - 2, 3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) \text{phenyl-}$	
	acetamido] - 3 - [2 - (4 - methyloxazolyl) - thiomethyl] - Δ^3 - cephem - 4 - carboxylic	
	acid, $7 - [D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenyl-$	
30	$7 - [D(-) - \alpha - (4 - methyl - 2.5 - dioxo - 1 - piperazinecarous yramino pinety acetamido] - 3 - [2 - (4 - methylthiazolyl) - thiomethyl] - \Delta^3 - cephem - 4 - car-$	3
50		
	boxylic acid, $7 - [D(-) - \alpha - (4 - \text{ethyl} - 2, 3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) \text{phenyl-}$	
	acetamido] - 3 - [2 - (pyridyl - 1 - oxide) - thiomethyl] - Δ^3 - cephem - 4 - carboxylic	
	acid,	
35	$7 - [D(-) - \alpha - (4 - methyl - 2, 3 - dioxo - 1 - piperazinocarbonylamino) phenyl-$	3
00	acetamidol - 3 - (2 - thiazolinylthiomethyl) - Δ^3 - cephem - 4 - carboxylic acid,	
	7 - [D(-) - a - (4 - methyl - 2.3 - dioxo - 1 - piperazinocarbonylamino) pnenyl-	
	acetamido] - 3 - [2 - (1 - methylimidazolyl)thiomethyl] - Δ^3 - cephem - 4 - carboxylic	
	acid.	
40	7 - 10(-1) - 7 - (4 - methyl - 2.3 - dioxo - 1 - piperazinocarbonylamino) pnenyl-	4
	acetamidol - 3 - (2 - pyrimidinylthiomethyl) - Δ^3 - cephem - 4 - carboxylic acid,	
	$7 - \{D(-) - \alpha - (4 - \text{ethyl} - 2.3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$	
	acetamido] - 3 - [3 - (6 - methylpyridazinyl) - thiomethyl] - Δ* - cephem - 4 - car-	
	hample acid	4
45	7 - $[D(-) - \alpha - (4 - \text{methyl} - 2.3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$	4
	acetamido] - 3 - [1 - (4 - methylpiperazino) - thiocarbonylthiomethyl] - Δ ³ - cephem-	
	4 - carboxylic acid.	
	$7 - [D(-) - \alpha - (4 - \text{methyl} - 2.3 - \text{diox} - 1 - \text{piperazinocarbonylamino}) \text{phenyl}$	
50	acetamido] - 3 - [5 - (3 - methylisoxazolyl) - carbonylthiomethyl] - Δ ³ - cephem - 4-	5
50	carboxylic acid, $7 - [D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino) phenyl-$	-
	acetamido] - 3 - ethoxythiocarbonylthiomethyl - Δ^{6} - cephem - 4 - carboxylic acid,	
	$7 - [D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) phenyl-$	
	acetamidol = 3 - pyridinomethyl = Λ^3 - cephem = 4 - carboxylic acid betaine, and	
55	$7 - (D(-) - \alpha - (4 - \text{methyl} - 2.3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ pnenyl-	5
J.J.	acetamido] - 3 - pyridinomethyl - Δ^3 - cephem - 4 - carboxylic acid betaine.	
	25 A compound selected from	
	$7 - [D(-)] - \alpha - (4 - \text{ethoxycarbonyl} - 2 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$	
	phenylacetamidal -3 - methyl $-\Delta^3$ - cephem -4 - carboxylic acid,	_
	- cm () (4 hamil 2 and 1 minoraring carbonylaming) phenyl-	6
60	$7 - 1D(-) - \alpha - (4 - n - nexyl - 3 - 0x0 - 1 - piperazinocarbonylamino) pichyl$	U
60	$7 - [D(-) - \alpha - (4 - n - hexyl - 3 - oxo - 1 - piperazinocarbonylamino) phenylacetamido] - 3 - methyl - \Delta^3 - cephem - 4 - carboxylic acid,$	Ū
60	acetamido] - 3 - methyl - Δ^3 - cephem - 4 - carboxylic acid, 7 - $(D(-))$ - α - (4 - acetyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacet-	v
60	acetamido] - 3 - methyl - Δ^3 - cephem - 4 - carboxylic acid, 7 - $(D(-))$ - α - (4 - acetyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacet-	·
60	acetamidol -3 - methyl -3 - cephem -4 - carboxylic acid.	6

105	2,500,002	نن
	phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - Δ^0 -cephem - 4 - carboxylic acid,	
3	7 - $[D(-)$ - α - (4 - methyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl} - Δ^{c} - cephem-	
5	4 - carboxylic acid, 7 - $[D(-) - \alpha - (4 - \text{ethyl} - 2 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenylacet- amido] - 3 - $[2 - (5 - \text{methyl} - 1,3,4 - \text{thiadiazolyl})$ - thiomethyl] - Δ^3 - cephem - 4-	5
	carboxylic acid, $7 - [D(-) - \alpha - (4 - acetylaminocarbonyl - 2 - oxo - 1 - piperazinocarbonyl-$	
10	amino)phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl]- \[\Delta^3 - cephem - 4 - carboxylic acid, \]	10
	7 - [D() - α - (4 - methyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - Δ^3 - cephem - 4-carboxylic acid,	
15	7 - $[D(-) - \alpha - (4 - \text{ethyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino})$ phenylacetamido] - 3 - $[2 - (5 - \text{methyl} - 1,3,4 - \text{thiadiazolyl})$ - thiomethyl] - Δ^8 - cephem - 4-carboxylic acid,	15
20	7 - $[D(-) - \alpha - (3,5 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) \text{phenylacetamido} - 3 - [2 - (5 - \text{methyl} - 1,3,4 - \text{thiadiazolyl}) - \text{thiomethyl}] - \Delta^3 - cephem - 4 - carboxylic acid,$	20
200	7 - $[D(-)$ - α - (4 - acetyl - 2,5 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - Δ^3 - cephem-4 - carboxylic acid,	
້ 25	7 - $[D(-)$ - α - (4 - acetyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - $[5$ - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^3 - cephem - 4-carboxylic acid,	25
	7 - $[D(-)$ - α - $(4$ - methanesulfonyl - 2 - oxo - 1 - piperazinocarbonylamino)-phenylacetamido] - 3 - $[5$ - $(1$ - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^3 -cephem - 4 - carboxylic acid,	
30	7 - $[D(-)$ - α - $(4$ - methyl - 2 - oxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - $[5$ - $(1$ - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^3 - cephem - 4-	30
	carboxylic acid, $7 - [D(-) - \alpha - (4 - \text{ethyl} - 2 - \text{oxo} - 1 - \text{piperazinocarbonylamino}) \text{phenylacet-amido}] - 3 - [5 - (1 - \text{methyl} - 1,2,3,4 - \text{tetrazolyl}) - \text{thiomethyl}] - \Delta^3 - cephem - 4-$	35
35	carboxylic acid, 7 - $[D(-) - \alpha - (4 - \text{acetylaminocarbonyl} - 2 - \text{oxo} - 1 - \text{piperazinocarbonyl-amino})$ phenylacetamido] - 3 - $[5 - (1 - \text{methyl} - 1,2,3,4 - \text{tetrazolyl}) - \text{thiomethyl}]$	
40	Δ^3 - cephem - 4 - carboxylic acid, 7 - [D(-) - α - (4 - methyl - 3 - oxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^3 - cephem - 4-	40
	carboxylic acid, $7 - [D(-) - \alpha - (4 - \text{ethyl} - 3 - \text{oxo} - 1 - \text{piperazinocarbonylamino}) phenylacetamido] -3 - [5 - (1 - \text{methyl} - 1,2,3,4 - \text{tetrazolyl}) - \text{thiomethyl}] - \Delta^3 - \text{cephem} - 4$	
45	carboxylic acid, $7 - [D(-) - \alpha - (3.5 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) \text{phenylacetamido}] - 3 - [5 - (1 - \text{methyl} - 1.2.3.4 - \text{tetrazolyl}) - \text{thiomethyl}] - \Delta^3 - cephem - 4 - carboxylic$	45
	acid, and $7 - [D(-) - \alpha - (4 - acetyl - 2,5 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - \Delta^0 - cephem-$	
50	4 - carboxylic acid. 26. A compound selected from	50
-	pivaloyloxymethyl 6 - $[D(-) - \alpha - (2 - methyl - 3 - oxo - 1 - piperazinocarbonyl-amino)$ phenylacetamido] penicillanate, phthalidyl 6 - $[D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonyl-$	
* 55	amino) phenylacetamido] penicillanate, phthalidyl 6 - [D() - α - (4 - ethyl - 2,3 - dioxo - 1 - piperazinocarbonyl- amino) phenylacetamido] penicillanate,	55
	phthalidyl 6 - $[D(-) - \alpha - (4 - iso - propyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido]penicillanate,$	
60	phthalidyl 6 - $[D(-)$ - α - $(4 - n - butyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)phenylacetamido]penicillanate,methoxymethyl 6 - [D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazino-$	60
	carbonylamino) phenylacetamido] penicillanate, methoxymethyl 6 - $[D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonyl}-$	
65	amino) phenylacetamido] penicillanate,	65

	methoxymethyl 6 - $[D(-)$ - α - $(4 - n - butyl - 2,3 - dioxo - 1 - piperazino-$	
-	carbonylamino) phenylacetamido) penicillanate, methoxymethyl 6 - $[D(-) - \alpha - (4 - iso - propyl - 2,3 - dioxo - 1 - piperazino-$	
	carbonylamino) phenylacetamido) penicillanate,	F
5	methoxymethyl 6 - $[D(-) - \alpha - (4 - n - \text{octyl} - 2,3 - \text{dioxo} - 1 - \text{piperazino-}$	5
3	carbonylamino) phenylacetamido penicillanate,	
	pivaloyloxymethyl 6 - $[D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazino-$	7
	carbonylamino)phenylacetamido]penicillanate,	
	pivaloyloxymethyl 6 - $[D(-) - \alpha - (4 - \text{ethyl} - 2, 3 - \text{dioxo} - 1 - \text{piperazino-}$	10
10	carbonylamino)phenylacetamido]penicillanate, pivaloyloxymethyl 6 - $[D(-) - \alpha - (4 - n - octyl - 2,3 - dioxo - 1 - piperazino-$	10
	carbonylamino)phenylacetamido]penicillanate,	•
	β - piperidinoethyl 6 - $[D(-)$ - α - $(4$ - methyl - 2,3 - dioxo - 1 - piperazino-	-
	carbonylamino)phenylacetamido]penicillanate,	
15	β - piperidinoethyl 6 - $[D(-)$ - α - $(4 - n - \text{octyl} - 2, 3 - \text{dioxo} - 1 - \text{piperazino}$	15
13	carbonylamino) phenylacetamido) penicillanate,	
	β - morpholinoethyl 6 - $[\hat{D}(-) - \alpha - (4 - \text{methyl} - 2, 3 - \text{dioxo} - 1 - \text{piperazino-}$	
	carbonylamino) phenylacetamido] penicillanate,	-
	β - morpholinoethyl 6 - $[D(-) - \alpha - (4 - n - \text{octyl} - 2, 3 - \text{diox} - 1 - \text{piperazino-}]$	20
20	carbonylamino)phenylacetamido]penicillanate, and methoxymethyl 7 - $[D(-)$ - α - $(4$ - methyl - $2,3$ - dioxo - 1 - piperazino-	20
	carbonylamino)phenylacetamido] - 3 - methyl - Δ^3 - cephem - 4 - carboxylate.	
	27. A compound according to Claim 1, 5, 6, 7, 8 or 9, wherein R ¹ is a cation	
	capable of forming a non-toxic salt.	.,
25	28. A non-toxic salt of a compound according to Claim 19, 20, 21, 22, 23, 24 or	25 🐣
23	25.	
	29. 6 - $[D(-)$ - α - $(4$ - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-	
	phenylacetamido] penicillanic acid or its non-toxic salt.	9
	30. $6 - [D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$ - phenylacetamido] penicillanic acid or its non-toxic salt.	30
30	31. $6 - [D(-) - \alpha - (6 - \text{methyl} - 4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonyl}]$	-
	amino)phenylacetamido]penicillanic acid or its non-toxic salt.	
	32. $6 - [D(-) - \alpha - (4 - \text{ethyl} - 2.3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino}) - p$	
	hydroxyphenylacetamido penicillanic acid or its non-toxic salt.	25
35	33. $7 - [D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)$. 35
	phenylacetamido] - $3 - [5 - (1,3,4 - \text{thiadiazolyl}) - \text{thiomethyl}] - \Delta^3 - \text{cephem} - 4$	
	carboxylic acid or its non-toxic salt.	
	34. 7 - [D(-) - α - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-phenylacetamido] - 3 - [2 - (5 - methyl - 1,3,4 - thiadiazolyl) - thiomethyl] - Δ^3 -	
40	cephem - 4 - carboxylic acid or its non-toxic salt.	40
40	35. $7 - [D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)$	
	phenylacetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^3 -	•
	cephem - 4 - carboxylic acid or its non-toxic salt.	
	36. $7 - [D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)$	45
45	phenylacetamido] - 3 - [2 - (1 - methyl - 1,3,4 - triazolyl) - thiomethyl] - Δ^3 - cephem-	45
	4 - carboxylic acid or its non-toxic salt.	
	37. $7 - [D(-) - \alpha - (4 - methyl - 2,3 - dioxo - 1 - piperazinocarbonylamino)-phenylacetamido] - 3 - acetoxymethyl - \Delta^3 - cephem - 4 - carboxylic acid or its non-$	
	toxic salt.	
50	38. $7 - [D(-) - \alpha - (4 - methyl - 2, 3 - dioxo - 1 - piperazinocarbonylamino) -$	50
50	p - hydroxyphenylacetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thio-	
	methyll - Δ^3 - cephem - 4 - carboxylic acid or its non-toxic salt.	
	39. $7 - [D(-) - \alpha - (4 - \text{ethyl} - 2,3 - \text{dioxo} - 1 - \text{piperazinocarbonylamino})$	
•	phenylacetamido] - 3 - [5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thiomethyl] - Δ^{α}	55
55	cephem - 4 - carboxylic acid or its non-toxic salt. 40. A process for producing a compound represented by the general formula (I),	55
	40. A process for producing a compound represented by the general formula (1),	

$$A - N = 0$$

$$(X)_{n}$$

$$A - N = 0$$

$$(R^{2} R^{3})_{m}^{2} N - C - NH - R - CONH$$

$$(I)$$

5

5

20

wherein R, A, X, n, m, R₁, R₂, R₃, Y and Z are as herein defined which comprises reacting a compound represented by the general formula (II),

$$R^7$$
-NH-R-CONH Z (III)

wherein R' represents a hydrogen atom, a silicon or phosphorous containing group, which is capable of easy removal by treatment with water or an alcohol; R, R¹ and

•

are as defined above, with a reactive derivative in the (thio)carboxyl group of a compound represented by the general formula (III),

$$A - N = C - OH$$
 (III)

wherein A, X, Y, R², R³, n and m are as defined above.
41. A process for producing a compound represented by the general formula (I),

$$A - N = \begin{cases} X \\ 3 \\ 2 \\ R^{3} \end{cases} = \begin{cases} N - C - NH - R - CONH \\ 0 \\ COOR^{1} \end{cases}$$
(1)

wherein A, Y, R, R¹, R², R³, X,

Z

n and m are as defined in Claim 40, which comprises reacting a compound represented by the general formula (IV),

wherein R1, R7 and

z

are as defined in Claim 40, with a compound represented by the general formula (V),

$$\begin{array}{c} (X)_{n} \\ A - N \\ (R^{2} - R^{3})_{N} \end{array} = \begin{array}{c} (V) \\ (V) \end{array}$$

wherein A, R, R², R³, X, Y, n and m are as defined in Claim 40, or with a reactive derivative in the carboxyl group of the compound of formula (V).

42. A process for producing a compound represented by the general formula (I'),

15

20

25

$$A - N = \begin{pmatrix} X \\ N - C \\ Y \\ Y \\ R^{3} \end{pmatrix}_{m} - C - NH - R - CONH - CONH - CH_{2}R^{4\alpha}$$

$$COOR^{1}$$

wherein A, R, R¹, R², R³, X, Y, n and m are as defined in Claim 1 and R⁴ⁿ represents a cyano group, an azido group, a quaternary ammonium group, or a substituted or unsubstituted alkoxy, aryloxy, aralkoxy, acyloxy, carbamoyloxy, guanidino, amino, alkylthio, arylthio, aralkylthio, acylthio, thiocarbamoylthio, alkoxythiocarbonylthio, arylthiocarbonylthio, cycloalkyloxythiocarbonylthio, amidinothio, or heterocyclylthio group, which comprises reacting a compound represented by the general formula (VI),

$$A - N = C - NH - R - CONH$$

$$(VI)$$

$$(VI)$$

$$(R^2 R^3)_{m}$$

$$(VI)$$

wherein B represents a substituent capable of being easily replaced by a nucleophilic reagent; and A, R, R¹, R², R³, X, Y, n and m are as defined in Claim 40, with a compound represented by the general formula (VII),

(VII)

wherein M represents a hydrogen atom, or an alkali metal or alkaline earth metal atom; and R⁸ represents a cyano group, an azido group or an organic group linked through O, N or S, or with a tertiary amine.

R⁸M

43. A process according to Claim 40, 41 or 42, wherein R is a group represented by the formula,

in which R⁵ is as defined in claim 2.
44. A process according to Claim 40 or 41, wherein

Z is C

45. A process according to Claim 40 or 41, wherein

in which R⁴ is as defined in Claim 40.
46. A process according to Claim 40 or 41, wherein R is

in which R^5 is as defined in Claim 43, n is 1, m is 3, and X is an oxygen atom linked to the carbon atom at the 2-position of the piperazine ring.

•

15

5

20

47. A process according to Claim 40 or 41, wherein R is

in which R³ is as defined in Claim 43, n is 1, m is 3 and X is an oxygen atom linked to the carbon atom at the 3-position of the piperazine ring.

48. A process according to Claim 40 or 41, wherein R is

--CH---

in which R^5 is as defined in Claim 43, n is 2, m is 2 and the two X's are oxygen atoms linked to the carbon atoms at the 2- and 5-positions of the piperazine ring.

49. A process according to Claim 40 or 41, wherein R is

10

25

5

. 10

in which R⁵ is as defined in Claim 43, n is 2, m is 2 and the two X's are oxygen atoms linked to the carbon atoms at the 3- and 5-positions of the piperazine ring.

50. A process according to Claim 40 or 41, wherein R is

--CH-

in which R⁵ is as defined in Claim 43, n is 2, m is 2 and the two X's are oxygen atoms linked to the carbon atoms at the 2- and 3-positions of the piperazine ring.

51. A process according to Claim 42 or 45, wherein R is

in which R⁵ is as defined in Claim 43; n is 2; m is 2; and the two X's are oxygen atoms linked to the carbon atoms at the 2- and 3-positions of the piperazine ring.

52. A process according to Claim 46, wherein

20

15

53. A process according to Claim 47, wherein

54. A process according to Claim 48, wherein

15

5

25

55. A process according to Claim 49, wherein

56. A process according to Claim 50, wherein

57. A process according to Claim 40, 41 or 42, wherein A is a hydrogen atom, or a substituted or unsubstituted alkyl, alkenyl, aryl or aralkyl group; and R² and R³ are individually a hydrogen atom or an alkyl group.

58. A process according to Claim 40 or 41, wherein R is

n is 2; m is 2 and two X's are oxygen atoms linked to the carbon atoms at the 2- and 3-positions of the piperazine ring, each pair of R² and R³, which may be the same or different, are individually a hydrogen atom or a methyl group, A is a methyl or ethyl group, R¹ is a hydrogen atom or a cation capable of forming a non-toxic salt and

in which R⁴ is an acetoxy, 5 - (2 - methyl - 1,3,4 - thiadiazolyl) - thio, 5 - (1,3,4-thiadiazolyl) - thio, 2 - (1 - methyl - 1,3,4 - triazolyl) - thio, 5 - (1 - methyl - 1,2,3,4-tetrazolyl) - thio or 5 - (1,2,3,4 - tetrazolyl) - thio group.

59. A process according to Claim 42, wherein R is

20 n is 2, m is 2; two X's are oxygen atoms linked to the carbon atoms at the 2- and 3positions of the piperazine ring; each pair of R² and R³, which may be the same or
different, are individually a hydrogen atom or methyl group; A is a methyl or ethyl
group; and R¹ is a hydrogen atom or a cation capable of forming a non-toxic salt.

60. A process according to Claim 42, wherein \mathbb{R}^4 and \mathbb{R}^8 are the same and selected from, 5 - (2 - methyl - 1,3,4 - thiadiazolyl) - thio, 5 - (1,3,4 - thiadiazolyl) - thio, 5 - (1 - methyl - 1,2,3,4 - tetrazolyl) - thio, and 5 - (1,2,3,4 - tetrazolyl) - thio groups.

61. A process according to Claim 40 or 41, wherein R' is a hydrogen atom.
62. A process according to Claim 40, 41 or 42, wherein R' is a cation capable of

forming a salt.

63. A process according to Claim 62, wherein the salt is a non-toxic salt.

64. A process according to Claim 40, 41 or 42 wherein R1 is selected from the

17:1	1,508,062	171			
	group consisting of ester-forming groups capable of being removed by catalytic reduction, chemical reduction or hydrolysis under mild conditions and ester-forming groups				
	capable of being easily removed owing to enzymes in a living body.				
•	65. A process according to Claim 40 or 41, wherein R ¹ is a trialkylammonium.				
5	66. A process according to Claim 40, wherein the reactive derivative in the (thio)-				
_	carboxyl group of a compound of formula (III) is an acid halide.				
•	67. A process according to Claim 41, wherein the reactive derivative in the carboxyl group of a compound of formula (V) is a mixed acid anhydride.				
	68. A process according to Claim 40 or 41, wherein the reaction is carried out in				
10	the presence of an acid-binding agent.	10			
	69. A process according to Claim 41, wherein the reaction is carried out in the	•			
	presence of a dehydrating condensing agent.				
	70. A process according to Claim 40 or 41, wherein at least one of R ² and R' is a silicon, or a phosphorus containing group capable of easy removal by treatment with				
15	water or an alcohol.				
	71. A process according to Claim 40 or 41, wherein the reaction is carried out at	1			
	a temperature of -60° to $+80^{\circ}$ C.				
	72. A process according to Claim 42, wherein B is a halo-substituted or unsubsti-				
20	tuted lower alkanoyloxy group.	_			
20	73. A process according to Claim 42, wherein B is an acetoxy group. 74. A process according to Claim 42, wherein R ⁸ is an organic group linked	2			
	through O or S.				
	75. A process according to Claim 42, wherein the compound (VII) is selected				
	from				
	·				
	N-N N-N N-N N-N N-N				
25	N LSH N LSH I I I I I I I				
	H SH, CH3 S SH, S SH, N-N N-N N-N				
	., сн³				
		•			
		•			
	CH ₃ O SH, CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ N CH				
	CH ₃ -()-SH				
	CH, O'SH, S'SH, NSH				
	o o	•			
	$ \begin{bmatrix} $				
	[
	`S´`SH,				
	: Ou				
	· ·				
	C-SNa, C ₂ H ₅ O-C-5Na, and CH ₃ OH.				
	N-U H H S				
	76. A process according to Claim 42, wherein the tertiary amine is pyridine.				
30	77. A process according to Claim 42, wherein the reaction is carried out in a	3			
	polar solvent at a pH of 2 to 10.				
	78. A process according to Claim 42, wherein the reaction is carried out at a tem-				

35

78. A process according to Claim 42, wherein the reaction is carried out at a temperature of 0° to 100°C.

79. A process according to Claim 42, wherein B is a hetero aromatic amine N-oxide thio group having a thio group on the carbon atom adjacent to the N-oxide in the molecule, and the reaction is effected in the presence of a cupric compound.

80. A pharmaceutical composition containing as an active ingredient the compound as claimed in Claim 1.

For the Applicants:
F. J. CLEVELAND & COMPANY,
Chartered Patent Agents,
Lincoln's Inn Chambers,
40—43 Chancery Lane,
London, WC2A 1JQ.

Printed for Her Majesty's Stationery Office by the Courier Press, Leamington Spa, 1978.

Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

Š

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the	items checked:
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES ☐ FADED TEXT OR DRAWING	. •
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR	QUALITY
Потивр.	•

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.