Работа 2.4.1 Определение теплоты испарения жидкости

Трунов Владимир Владимирович Б01-103

Цель работы

- 1. Измерение давления насыщенного пара жидкости при разной температуре
- 2. Вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона-Клаузиуса.

Теоретическая справка

Уравнение Клапейрона-Клаузиуса

Запишем уравнение для свободной энергии Гиббса и дифференциал из 1 и 2 начал термодинамики

$$G = U + PV - TS$$

$$dG = -SdT + VdP$$

Отсюда следует, что если в термодинамической системе не изменяется давление и температура, то потенциал Гиббса так же остается неизменным.

Пусть система состоит из фаз 1 и 2, массы которых равны m_1 и m_2 соответственно. Удельные термодинамические потенциалы обозначим $\gamma_1(P,T)$ и $\gamma_2(P,T)$. Тогда

$$G = \gamma_1(P, T)m_1 + \gamma_2(P, T)m_2$$

При фазовом переходе давление и температура не меняются, поэтому не меняется и G, и $\gamma_1(P,T)$, и $\gamma_2(P,T)$ из условия равновесия. Меняются лишь массы. При этом общая масса всей системы не меняется. Из всего вышеперечсисленного следует, что

$$dm_1 + dm_2 = 0$$

$$dG = 0 = \gamma_1 dm_1 + \gamma_2 dm_2$$

$$\gamma_1(P, T) = \gamma_1(P, T)$$

Отсюда получается, что условие равновесия фаз эквивалентно условию равновесия их удельных потенциалов Гиббса. Отсюда получаем

$$\begin{split} d\gamma_1(P,T) &= -s_1 dT + v_1 dP = d\gamma_2(P,T) = -s_2 dT + v_1 dP \\ d\gamma_1 &= d\gamma_2 \Rightarrow \\ \frac{dP}{dT} &= \frac{s_2 - s_1}{v_2 - v_1} \end{split}$$

при T = const имеем, что

$$s_2 - s_1 = \frac{q}{T}$$
$$\frac{dP}{dT} = \frac{q}{T(v_2 - v_1)}$$

Поскольку в данной работе температура далека от критической, то газ можно считать идеальным и можно пренебреч v_1 по сравнению с v_2 , то есть

$$v_2 = \frac{RT}{P}$$

$$q = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)}$$

Экспериментальная установка

Рис. 1: Схема установки

Здесь блок A - нагревательный элемент, блок B - исследуемый сосуд и C - измерительный микроскоп.

Ход работы

1. Измеряем высоту столба ртути в монометрах при повышении температуры, затем находим разность и по ним считаем разность давлений.

2. Проводим те же измерения при понижении температуры. Все данные записываем в таблицу.

T, K	σ_T, K	h_1, mm	h_2, mm	$\Delta h, mm$	σ_h, mm	<i>p</i> , Па	$\sigma_p, \Pi a$
295,0	0,1	71	91,00	20	1	2668	133
296,4	0,1	70,8	91,60	20,8	1	2775	133
297,0	0,1	70,2	92,15	21,95	1	2928	133
298,0	0,1	69,95	93,10	23,15	1	3088	133
299,0	0,1	68,90	93,50	24,60	1	3282	133
300,0	0,1	68,30	94,25	26,15	1	3488	133
301,0	0,1	67,55	95,05	27,50	1	3668	133
302,0	0,1	67,05	96,00	28,95	1	3862	133
303,0	0,1	66,95	96,70	29,75	1	3969	133
304,0	0,1	65,05	97,80	32,75	1	4369	133
305,0	0,1	64,20	98,75	34,55	1	4609	133
306,0	0,1	63,40	99,55	36,15	1	4822	133
307,0	0,1	62,55	100,40	37,85	1	5049	133
308,0	0,1	61,45	101,80	$40,\!35$	1	5383	133
309,0	0,1	60,15	102,70	42,55	1	5676	133
310,0	0,1	59,00	104,10	45,10	1	6017	133
311,0	0,1	58,70	105,40	46,70	1	6230	133
312,0	0,1	56,20	107,00	50,80	1	6777	133
313,0	0,1	54,90	108,50	53,60	1	7151	133

Таблица 1: P от T при нагреве

3. Строим график в координатах 1/T и $\ln P$.

Рис. 2: График зависимости $\ln P$ от 1/T

4. Вычисляем L по первому графику.

$\frac{d(\ln P)}{d(1/T)}, K$	$\sigma_{d(\ln P)/d(1/T)}, K$	L, Дж/моль	$\sigma_L,$ Дж/моль
-5075	51	42169	2100

Таблица 2: Результаты полученные из первого графика

5. Строим график в координатах T и P.

Рис. 3: График зависимости P от T

6. Вычислим L по второму графику, например вблизи точки T=302K. Для этого построим касательную в данной точке, найдем v_2 по формуле $v_2=\frac{RT}{P}$ и далее из формулы

$$\frac{dP}{dT} = \frac{L}{T(v_2 - v_1)}$$

Принебрегая v_1 по сравнению с v_2 мы получим

$$L \approx \frac{dP}{dT} \cdot T \cdot v_2$$

$\left[\frac{d}{d} \right]$	$\frac{P}{T}, \Pi a/K$	$\sigma_{dP/dT}, /$	L, Дж/моль	$\sigma_L,$ Дж/моль
	248	20	41595	3300

Таблица 3: Результаты для второго графика

Вывод

Сравнивая полученные результаты можно сделать вывод, что нахождение по первому графику более точное, нежели по второму. Исходя из таблицы мы видим, что наши результаты табличными в пределах погрешности, то есть с $L=43660 \mbox{Дж/моль}$ при T=305 K