Dôsledôk: $DSPACE(\log n) \subseteq NSPACE(\log n) \subseteq P \subseteq NP = PSPACE \subseteq EXP \subseteq NEXT$ – druhá inklúzia vyplýva z predchádzajúceho tvrdenia (b), tretia z (a), rovnosť zo Savitchovej vety, predposledná inklúzia opäť z (b).

Poznámka: Nie je známe, či

- $DSPACE(\log n) \subseteq NP \ (P = ? NP)$.
- $P \subseteq PSPACE$. $(P = ^? NP)$.
- $NP \subseteq NEXP$.

Je známe, že:

- $NSPACE(\log n) \subsetneq PSPACE$ (Savitch a pamäťová hierarchia).
- $P \subsetneq EXP$ (časová hierarchia).

1 Translačná lema

Tvrdenie: Ak $NSPACE(n^4) \subseteq NSPACE(n^3)$, potom $NSPACE(n^{20}) \subseteq NSPACE(n^{15})$.

Dôkaz: Nech $L_1 \in NSPACE(n^{20})$, teda existuje nedeterministický Turingov stroj M_1 akceptujúci L_1 s pamäťou n^{20} .

$$L_2 = \{ x \#^i \mid x \in L_1 \land |x|^5 \}$$

Nech M_2 je nedeterministický Turingov stroj, ktorý na vstupe $x\#^i$ najprv overí, či $|x\#^i|=|x|^5$. Ak áno, potom sa na vstupe $x\#^i$ správa rovnako, ako M_1 na x.

 M_2 akceptuje L_2 s pamäťou n, lebo $|x\#^i|^4=(|x|^5)^4=x^{20}$ a M_1 akceptuje L_1 s pamäťou n^{20} . $L_2\in NSPACE(n^4)$. Z predpokladu tvrdenia vyplýva $L_2\in NSPACE(n^3)$, teda existuje nedeterministický Turingov stroj M_3 akceptujúci L_2 s pamäťou n^3 .

Nech M_4 je nedeterministický Turingov stroj, ktorý má na vstupe x. Najprv zostrojí (na niektorej pracovnej páske) reťazec $x\#^i$, $|x\#^i|=|x|^5$. Potom sa na "vstupe" $x\#^i$ správa rovnako, ako M_3 na $x\#^i$. M_4 akceptuje L_1 s pamäťou n^{15} , lebo $|x|^{15}-(|x|^5)^3=|x\#^i|^3$ a $L_1\in NSPACE(n^{15})$.

Lema (translačná): Nech $S_1(n)$, $S_2(n)$, f(n) sú páskovo konštruovateľné, $S_2(n) \ge n$, $f(n) \ge n$. Potom $NSPACE(S_1(n)) \subseteq NSPACE(S_2(n)) \Rightarrow NSPACE(S_1(f(n))) \subseteq NSPACE(S_2(f(n)))$.

Tvrdenie: $NSPACE(n^3) \subseteq NSPACE(n^4)$.

Dôkaz: Nech by $NSPACE(n^4) \subseteq NSPACE(n^3)$. Aplikáciou translačnej lemy pre $f(n) = n^3$, $f(n) = n^4$, $f(n) = n^5$ a $S_1(n) = n^4$, $S_2(n) = n^3$ postupne dostaneme:

$$\left. \begin{array}{lll} NSPACE(n^{12}) & \subseteq & NSPACE(n^9) \\ NSPACE(n^{16}) & \subseteq & NSPACE(n^{12}) \\ NSPACE(n^{20}) & \subseteq & NSPACE(n^{15}) \end{array} \right\} NSPACE(n^{20}) \subseteq NSPACE(n^9).$$

Zo Savitchovej vety a vety o pamäťovej hierarchii platí

$$\begin{array}{ccc} NSPACE(n^9) & \subseteq & DSPACE(n^{18}) \\ DSPACE(n^{18}) & \subseteq & DSPACE(n^{20}) \end{array} \right\} NSPACE(n^{20}) \subsetneq DSPACE(n^{20}) \subseteq NSPACE(n^{20})$$

, čo je spor.

Veta: Ak $\varepsilon > 0$ a $r \ge 0$, potom $NSPACE(n^r) \subseteq NSPACE(n^{r+\varepsilon})$.

2 Vety o medzere a o zrýchľovaní

Tvrdenie: Existuje rekuzrívna funkcia $S(n) \geq n$, teda $DSPACE(S(n)) = DSPACE(2^{S(n)})$.

Dôkaz: Nech $m \in N$, M je ľubovoľný deterministický Turingov stroj, x je ľubovoľný vstup, s je maximálna veľkosť použitej pamäte počas výpočtu M na x; $s \in N \cup \{\infty\}$.

$$TEST(m,M,x) = \left\{ \begin{array}{ll} 1 & \text{ak } s \in < m+1, 2^m > \\ 0 & \text{ak } s \notin < m+1, 2^m > \end{array} \right.$$

Otázka: Existuje algorigmus počítajúci $TEST \forall m, M, x$?

Odpoveď: Áno.

Dôvod: Označme t počet rôznych konfigurácií, do ktorých sa môže dostať M na x použijúc najviac pamäť 2^m . Simulujme M na x počas t+1 krokov, pričom existujú 3 prípady:

- 1. M sa zastavil na x do času t, teda vieme určiť s a teda aj TEST(m, M, x). V čase t+1 má stroj M použitú pamäť najviac 2^m .
- 2. V čase t+1 má M použitú pamäť $\leq 2^m$, potom platí to isté, ako v predchádzajúcom prípade.
- 3. V čase t+1 má M použitú pamäť $> 2^m$, a teda TEST(m,M,x)=0, lebo $s>2^M$ (aj keď nepoznáme s).

Nech $M_1, M_2, ...$ je ľubovoľná efektívne očíslovaná postupnosť všetkých Turingovych strojov (t.j. z čísla i vieme algoritmicky zostrojiť M_i .).

Algoritmus pre S(n): Nech $s_1 < s_2 < ... < s_p$ sú všetky veľkosti použitej pamäte v čase zastavenia sa niektorého stroja M_i , $i \leq n$ na niektorom $x \in \{0,1\}^n$.

Cieľ: Určiť S(n) tak, aby platilo $S_i \notin S(n) + 1, 2^S(n) > \text{pre } i = 1, 2, \dots, p$. Hľadáme dosť veľký interval, do ktorého nepadne žiadne s_i .

Pre $m \leftarrow n, n+1, \ldots$, ak $TEST(m,M,x) = 0 \forall M_j (j \leq n) \land x \in \{0,1\}^n$, potom S(n) = m. (také m existuje, lebo pre každú dvojicu (M_j,x) (ktorých je $n2^n$, teda konečne veľa) platí TEST(m,M,x) = 1 len pre konečne veľa m (teda $m < s \leq 2^m$), ale algoritmus skúša nekonečne veľa $m \geq n$).

Nech $L \in DSPACE(2^{S(n)})$, potom existuje M_k akceptujúci L s pamäťou najviac $2^S(n)$. Nech $n \geq k, x \in \{0,1\}^n$. M_k je deterministický, a teda M_k zastaví na x s použitou pamäťou $S_j \leq 2^{S(n)}$, $1 \leq j \leq p$. Potom $S_j \leq S(n)$, teda M_k sa zastaví na každom x dĺžky k s pamäťou $S_j \leq S(n)$, teda $S_j \leq S(n)$.

Veta (Gap theorem): Pre každú rekurzívnu funkciu $g(n) \ge n$ existuje rekurzívna funkcia $S(n) \ge n$ taká, že DSPACE(S(n)) = DSPACE(g(S(n))).

Veta (Speed up theorem): Pre každú rekurzívnu funkciu $f(n) \geq n^2$ existuje rekurzívny jazyk L taký, že pre ľubovoľný deterministický Turingov stroj M akceptujúci L v čase T(n) existuje deterministický Turingov stroj M' akceptujúci L v čase T'(n) tak, že platí

$$\mathcal{F}(T'(n)) \le T(n)$$

skoro pre všetky n.

Poznámka: Napríklad pre $f(n) = 2^n$ platí: $2^{T'(n)} < T(n)$, teda $T'(n) \le \log T(n)$.