4. Convex optimization problems

- optimization problem in standard form
- convex optimization problems
- linear optimization
- quadratic optimization
- geometric programming
- generalized inequality constraints
- semidefinite programming

Optimization problem in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

- $x \in \mathbb{R}^n$ is the optimization variable
- $f_0: \mathbb{R}^n \to \mathbb{R}$ is the objective or cost function
- $f_i: \mathbf{R}^n \to \mathbf{R}$, $i=1,\ldots,m$, are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

optimal value:
$$f_{in}(x) = m_{in}(x)$$
 $f_{in}(x) = 0, i = 1, ..., m, h_{i}(x) = 0, i = 1, ..., p$

- $p^* = \infty$ if problem is infeasible (no x satisfies the constraints)
- $p^{\star} = -\infty$ if problem is unbounded below

Optimal and locally optimal points

x is **feasible** if $x \in \operatorname{dom} f_0$ and it satisfies the constraints

- a feasible x is **optimal** if $f_0(x) = p^*$; X_{opt} is the set of optimal points
- x is **locally optimal** if there is an R>0 such that x is optimal for

minimize (over z) $f_0(z)$ subject to

$$f_i(z) \le 0, \quad i = 1, \dots, m, \quad h_i(z) = 0, \quad i = 1, \dots, p$$

examples (with n=1, m=p=0)

- $f_0(x) = 1/x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = 0$, no optimal point
- $f_0(x) = -\log x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $\underline{p}^* = -\infty$ $f_0(x) = x \log x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -1/e$, $\underline{x} = 1/e$ is optimal
 - $f_0(x) = x^3 3x$, $p^* = -\infty$, local optimum at x = 1

Implicit constraints

the standard form optimization problem has an implicit constraint

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i},$$

- ullet we call ${\mathcal D}$ the **domain** of the problem
- the constraints $f_i(x) \leq 0$, $h_i(x) = 0$ are the explicit constraints
- a problem is **unconstrained** if it has no explicit constraints (m = p = 0)

example:

$$=\log x : \text{CONVEX}.$$
 minimize $f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$
$$\text{Transformation}$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$

Feasibility problem

find
$$x$$
 subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ $h_i(x) = 0, \quad i = 1, \dots, p$

can be considered a special case of the general problem with $f_0(x) = 0$:

minimize
$$0$$
 subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ $h_i(x) = 0, \quad i = 1, \dots, p$

- $p^* = 0$ if constraints are feasible; any feasible x is optimal
- $p^* = \infty$ if constraints are infeasible

Convex optimization problem $\begin{array}{c}
(2 = 1 \times 1) \\
(2 = 2)
\end{array}$ nvex optimization problem $\begin{array}{c}
(2 = 1 \times 1) \\
(2 = 2)
\end{array}$ prince:

standard form convex optimization problem

- ullet f_0 , f_1 , . . . , f_m are convex; equality constraints are affine
- problem is quasiconvex if f_0 is quasiconvex (and f_1, \ldots, f_m convex)

often written as

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0$, $i=1,\ldots,m$
$$Ax = b$$

important property: feasible set of a convex optimization problem is convex

example

- f_0 is convex; feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}$ is convex
- not a convex problem (according to our definition): f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal $g \in \mathbb{R}$ proof: suppose x is locally optimal, but there exists a feasible y with $f_0(y) < f_0(x)$

 \boldsymbol{x} locally optimal means there is an R>0 such that

$$z$$
 feasible, $||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$

consider $z = \theta y + (1-\theta)x$ with $\theta = R/(2\|y-x\|_2)$

•
$$||y-x||_2 > R$$
, so $0 < \theta < 1/2$ $f(z) \le C f(y) + (-\alpha) f(x)$

 \bullet z is a convex combination of two feasible points, hence also feasible

•
$$||z-x||_2 = R/2$$
 and $= O(fy) - f(x) + f(x)$

$$f_0(z) \le \theta f_0(y) + (1 - \theta) f_0(x) < f_0(x) \qquad \Longrightarrow f(z) \le f(x)$$

which contradicts our assumption that \boldsymbol{x} is locally optimal

 $\mathcal{O} = \{ (x) \mid y - x \} = 0. \quad \forall y = 0.$

Optimality criterion for differentiable f_0

x is optimal if and only if/it is feas/ble and

$$f(x) = 0$$

$$f(y) \ge f(x) + \mathcal{O}(x) \cdot (y-x)$$

$$\nabla f_0(x)^T(y-x) \ge 0$$
 for all feasible y

$$-\nabla f_0(x)$$

$$f_n(x) = Const$$

if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x

• unconstrained problem: x is optimal if and only if

$$x \in \operatorname{dom} f_0, \qquad \nabla f_0(x) = 0$$

equality constrained problem

minimize
$$f_0(x)$$
 subject to $Ax = b$

x is optimal if and only if there exists a ν such that

$$x \in \operatorname{dom} f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$$

• minimization over nonnegative orthant

minimize
$$f_0(x)$$
 subject to $x \succeq 0$

 $\nabla f_{\kappa} \rangle \times = 0$

 \boldsymbol{x} is optimal if and only if

$$x \in \text{dom } f_0, \qquad x \succeq 0, \qquad \begin{cases} \nabla f_0(x)_i \ge 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{cases}$$

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

eliminating equality constraints

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$
$$Ax = b$$

is equivalent to

minimize (over
$$z$$
) $f_0(Fz+x_0)$
subject to $f_i(Fz+x_0) \leq 0, \quad i=1,\ldots,m$

where F and x_0 are such that

$$(R(F) = \mathcal{N}(A), A^{x_2} = \lambda)$$

$$Ax = b \iff x = Fz + x_0 \text{ for some } z$$

• introducing equality constraints

minimize
$$f_0(A_0x + b_0)$$

subject to $f_i(A_ix + b_i) \leq 0, \quad i = 1, \dots, m$

is equivalent to

minimize (over
$$x$$
, y_i) $f_0(y_0)$ subject to $f_i(y_i) \leq 0, \quad i=1,\ldots,m$ $y_i=A_ix+b_i, \quad i=0,1,\ldots,m$

introducing slack variables for linear inequalities

minimize
$$f_0(x)$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

is equivalent to

minimize (over
$$x$$
, s) $f_0(x)$ subject to $a_i^T x + s_i = b_i, \quad i = 1, \dots, m$ $s_i \ge 0, \quad i = 1, \dots m$

Linear program (LP)

minimize
$$c^T x + d$$

subject to $Gx \leq h$
 $Ax = b$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Convex optimization problems

4-17

Examples

diet problem: choose quantities x_1, \ldots, x_n of n foods

- ullet one unit of food j costs c_j , contains amount a_{ij} of nutrient i
- ullet healthy diet requires nutrient i in quantity at least b_i

to find cheapest healthy diet,

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \succeq b, \quad x \succeq 0 \end{array}$$

piecewise-linear minimization

minimize
$$\max_{i=1,...,m} (a_i^T x + b_i)$$

equivalent to an LP

minimize
$$t$$
 subject to $a_i^T x + b_i \leq t, \quad i = 1, \dots, m$

Quadratic program (QP)

minimize
$$(1/2)x^TPx + q^Tx + r$$

$$Gx \leq h$$

$$Ax = b$$

$$(\mathcal{V} = \mathcal{S}_+^n)$$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Examples

 $||Ax - b||_2^2$

least-squares

- analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- can add linear constraints, e.g., $l \leq x \leq u$

$$A^{f} = \lim_{z \to 0} (A^{T}A + zI)^{-1}A^{T}$$

$$= \lim_{z \to 0} A^{T}(AA^{T} + zI)^{-1}$$

$$= \lim_{z \to 0} A^{T}(AA^{T} + zI)^{-1}$$

Quadratically constrained quadratic program (QCQP)

minimize
$$(1/2)x^T\underline{P_0}x + q_0^Tx + r_0$$
 subject to
$$(1/2)x^T\underline{P_i}x + q_i^Tx + r_i \leq 0, \quad i = 1, \dots, m$$

$$Ax = b$$

- $P_i \in \mathbf{S}^n_+$; objective and constraints are convex quadratic
- if $P_1, \ldots, P_m \in \mathbf{S}_{++}^n$, feasible region is intersection of m ellipsoids and an affine set

Second-order cone programming

minimize
$$f^Tx$$
 subject to $\frac{\|A_ix+b_i\|_2^2 \leq |c_i^Tx+d_i|^2}{Fx=g}$ $i=1,\ldots,m$ $Fx=g$ Second-order cone $\{A_i \in \mathbf{R}^{n_i \times n}, \ F \in \mathbf{R}^{p \times n}\}$

$$(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$$

• inequalities are called second-order cone (SOC) constraints:

$$(\underline{A_i x + b_i}, c_i^T x + d_i) \in \text{second-order cone in } \mathbf{R}^{n_i + 1}$$

- ullet for $n_i=0$, reduces to an LP; if $c_i=0$, reduces to a QCQP
- more general than QCQP and LP

Geometric programming

monomial function

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \quad \mathbf{dom}\, f = \mathbf{R}_{++}^n$$

with c > 0; exponent a_i can be any real number

posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \mathbf{dom} \, f = \mathbf{R}_{++}^n$$

geometric program (GP)

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 1, \quad i = 1, \dots, m$
 $h_i(x) = 1, \quad i = 1, \dots, p$

with f_i posynomial, h_i monomial

Geometric program in convex form

change variables to $y_i = \log x_i$, and take logarithm of cost, constraints

• monomial $f(x) = cx_1^{a_1} \cdots x_n^{a_n}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b \qquad (b = \log c)$$

• posynomial $f(x) = \sum_{k=1}^K c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = \log \left(\sum_{k=1}^K e^{a_k^T y + b_k} \right) \qquad (b_k = \log c_k)$$

geometric program transforms to convex problem

minimize
$$\log\left(\sum_{k=1}^{K}\exp(a_{0k}^{T}y+b_{0k})\right)$$
 subject to
$$\log\left(\sum_{k=1}^{K}\exp(a_{ik}^{T}y+b_{ik})\right)\leq 0,\quad i=1,\ldots,m$$

$$Gy+d=0$$

Generalized inequality constraints

convex problem with generalized inequality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \preceq_{K_i} 0$, $i = 1, \ldots, m$
 $Ax = b$

- $f_0: \mathbf{R}^n \to \mathbf{R}$ convex; $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i}$ K_i -convex w.r.t. proper cone K_i
- same properties as standard convex problem (convex feasible set, local optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize
$$c^T x$$

subject to $Fx + g \leq_K 0$
 $Ax = b$

extends linear programming $(K = \mathbf{R}_{+}^{m})$ to nonpolyhedral cones

Semidefinite program (SDP)

minimize
$$c^Tx$$
 subject to $x_1F_1+x_2F_2+\cdots+x_nF_n+G \preceq 0$
$$Ax=b$$
 with $F_i,\ G\in \mathbf{S}^k$

- inequality constraint is called linear matrix inequality (LMI).
- includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \leq 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \leq 0$$

is equivalent to single LMI

$$x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \preceq 0$$

$$(\angle M \mathbf{I})$$

LP and SOCP as SDP

LP and equivalent SDP $Ax=1 \le 1$

minimize LP: subject to $Ax \prec$

SDP: $c^T x$ minimize

subject to $\operatorname{\mathbf{diag}}(Ax - b) \leq 0$

(note different interpretation of generalized inequality \leq)

SOCP and equivalent SDP

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \geq 0$$

SOCP: minimize
$$f^T x$$

$$\begin{array}{lll} \text{minimize} & f^Tx & & & & & \\ \text{subject to} & \|A_ix+b_i\|_2 \leq c_i^Tx+d_i, & i=1,\ldots,m & & & \\ \end{array}$$

$$i=1,\ldots,m$$

subject to
$$\begin{bmatrix} (c_i^T x + d_i)I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{bmatrix} \succeq 0, \quad i = 1, \dots, m$$

$$\downarrow \downarrow (c_i^T x + d_i)T \geq 9 \quad (c_i^T x + d_i) = (A_i x + b_i)T \xrightarrow{1} (A_i x + b_i)T \xrightarrow{1$$

Eigenvalue minimization

minimize
$$\lambda_{\max}(A(x))$$

where
$$A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$$
 (with given $A_i \in \mathbf{S}^k$)

equivalent SDP

minimize
$$t$$
 subject to $A(x) \leq tI$ \Rightarrow $tI - A(x) \geq 0$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- follows from

$$\lambda_{\max}(A) \le t \iff A \le tI$$

Matrix norm minimization

minimize
$$||A(x)||_2 = \left(\lambda_{\max}(A(x)^T A(x))\right)^{1/2}$$

where $A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$ (with given $A_i \in \mathbf{R}^{p \times q}$) equivalent SDP

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & \left[\begin{array}{cc} tI & A(x) \\ A(x)^T & tI \end{array} \right] \succeq 0 \\ \end{array}$$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- constraint follows from

$$||A||_2 \le t \iff A^T A \le t^2 I, \quad t \ge 0$$

$$\iff \begin{bmatrix} tI & A \\ A^T & tI \end{bmatrix} \succeq 0$$