Now you have the data

Elmer A. Fernández (PhD)
Guadalupe Nibeyro
CONICET
DataLab @ FPM - CONICET

Your experiment is running

- You understand your problem, did the brainstorming meeting involving all the staff (technician, scientist, bioinformatics, statistician,...,aa, yes yes and YOU.)
- You already did all the wet lab
 - Under a SOP
- The sequencer ran and you have gotten the data.

Remember!

								. •									
	A	В	C A	ACI O	A	nn	G	AFIC	Detailed Amilio	ata	K	L	M	N	0	P	Q
1	PeakID	Chr	Start	End	Strant	Peak Sco F	ocus Re	Amotation	Detailed Anno	Distance to 1	Nearest Pror	PromoterID	Nearest Unig	Nearest Refs	Nearest Ense	Gene Name	Gene Alias
2	chr18-1	chr18	69007968	69008268	+	593	0.939	intron (NR_03	intron (NR_03	74595	NR_034133	400655	Hs.579378	NR_034133		LOC400655	
3	chr9-1	chr9	88209966	88210266	+	531.9	0.946	Intergenic	Intergenic	-50894	NM_001185	79670	Hs.597057	NM_001185	ENSG000000	ZCCHC6	DKFZp666B1
4	chr14-1	chr14	62337073	62337373	+	505.4	0.918	intron (NM_1	intron (NM_17	244485	NM_172375	27133	Hs.27043	NM_139318	ENSG000001	KCNH5	EAG2 H-EAG
5	chr17-1	chr17	5076243	5076543	+	492.1	0.936	intron (NR_03	intron (NR_03	2414	NM_207103	388325	Hs.462080	NM_207103	ENSG000001	C17orf87	FLJ32580 M
6	chr17-2	chr17	47851714	47852014	+	476.2	0.824	Intergenic	Intergenic	-259488	NM_001082	56934	Hs.463466	NM_001082	ENSG000001	CA10	CA-RPX CAR
7	chr10-1	chr10	98420680	98420980	+	474.9	0.967	intron (NM_1	intron (NM_15	49439	NM_152309	118788	Hs.310456	NM_152309	ENSG000001	PIK3AP1	BCAP RP11-
8	chr9-2	chr9	81294389	81294689	+	456.3	0.957	Intergenic	Intergenic	-82159	NM_007005	7091	Hs.444213	NM_007005	ENSG000001	TLE4	BCE-1 BCE1
9	chr14-2	chr14	36817736	36818036	+	452.3	0.757	intron (NM_1	intron (NM_13	81017	NM_001195	145282	Hs.660396	NM_001195	ENSG000001	MIPOL1	DKFZp313M2
10	chr18-2	chr18	20049825	20050125	+	449.7	0.853	intron (NM_0	Eintron (NM_08	56219	NM_018030	114876	Hs.370725	NM_018030	ENSG000001	OSBPL1A	FLJ10217 OF
11	chr7-1	chr7	12226829	12227129	+	445.7	0.901	intron (NM_0:	1 intron (NM_01	9606	NM_001134	54664	Hs.396358	NM_001134	ENSG000001	TMEM106B	FU11273 M

443.1

443.1

443.1

425.8

0.844 intron (NM_00 intron (NM_00

0.908 intron (NM_15 intron (NM_15

Intergenic

Intergenic

Intergenic

0.947 Intergenic

0.87 Intergenic

0.907 Intergenic

81755366 81755666 + 423.2 Raw data

88712488 +

62952224 +

32197069 +

110685448 110685748 +

12 chr14-3

13 chr18-3

15 chr11-1

14 chr3-1

16 chr4-1

chr14

chr18

chr11

chr4

chr3

88712188

62951924

32196769

Nombr	e 1
	c52af53d-part-1468006400-1572863999
₹	SQ24017291-R24005611LR01-Br1384_combined_R1.trimmed.fastq.gz
	SQ24017291-R24005611LR01-Br1384_combined_R1.trimmed.fastq.gz.md5
₽	SQ24017291-R24005611LR01-Br1384_combined_R2.trimmed.fastq.gz

Meta data

2/9618	NM_152770	255119 Hs.52	7104 NM_15	2770 ENSG000001 C4orf22	2 MGC35043 chromosome
	С	-	E	F	G
	- 2	HCW5_Mg	HCW6_Mg	HCW1_not_induced	HCW2_not_induced
	KP00002	218	180	168	130
	KP00003	82	91	67	82
	KP00004	151	177	251	
	KP00005	985	982	ın ntifiga	841
	KP00006	14	QL	ıantifi	19
	KP00007	63	49	31	0.000
	KP00008	52	53	37	31
	KP00010	555	da	521	388
	KP00011	332	293	318	243
	KP00012	82	63	55	46
	KP00014	263	214	126	94
	KP00015	233	193	195	148
	KP00016	509	449	449	379

240869 NM_005197

-382689 NR_033921

-58256 NM_178868

-9849 NR 034154

1112 Hs.621371

643542 Hs.652901

152189 Hs.154986

399948 Hs.729225

NR_033921

NR 034154

NM_001085-ENSG000000 FOXN3

NM_178868 ENSG000001 CMTM8

LOC643542

C11orf92

Gene Descrip

hypothetical

hypothetical

DKFZp666B1 zinc finger, C

EAG2 | H-EAG potassium vo

FLJ32580 | Mi chromosome

CA-RPX | CAR carbonic anh

BCAP RP11- phosphoinos

BCE-1 BCE1 transducin-li

DKFZp313M2 mirror-image

FLJ10217 | OF oxysterol bin

FLJ11273 | Mi transmembra

C14orf116 | C forkhead box

CKLFSF8 CKL CKLF-like MA

DKFZp781P1 chromosome

L1()	~	f _* ∑ - =	7							
	A	В	C	D	E	F	G	Н	I	J	K
	Idcode	Var1	Var2	Var3	Date	Subtipo	МТТ	Secondary Tumor	Age	Gender	Ancestry
Î	XX133	86.40	3.00	33.00	4/19/2018	Luminal HER2	MET-	YES	34	F	АМ
	XX231	76.30	2.40	50.00	6/21/2018	Luminal B	MET-	NO	45	F	AF
	XX378	61.60	2.40	53.00	8/8/2018	Triple Negativo	MET-	NO	66	M	Н
	XX329	69.90	2.20	37.00	7/15/2016	Luminal HER2	MET-	YES	47	F	НІ
)											

So, when you face a data analytics problem

What does mean QA & DS Analysis

Some examples of QA

We performed a target sequencing experiment of three samples

Target sequencing experiment is a genomics technique that focuses on sequencing specific regions of the genome, rather than the entire genome. The **purpose** of this method is to selectively analyze certain genes or regions of interest, typically chosen because of their relevance to a particular disease, biological process, or research question.

So, what should be thinking about?

Some examples of QA

that's make sense?

amplicon (region of interest to be sequenced)

What should I be expecting?

Some examples of QA

Some examples of QA on sequencing Data

RNAseq Data

Estadístico	Q media R1	Q30 R1 (%)	Q media R2	Q30 R2 (%)
Min	35.87	97.53	35.69	96.68
Q1	35.92	97.72	35.80	97.36
Mean	35.95	97.87	35.83	97.48
Q3	35.99	98.06	35.86	97.61
Max	36.04	98.27	35.93	98.01
SD	0.05	0.21	0.06	0.26

Estadístico	Lecturas input (N°)	Largo medio input	Lecturas mapeadas (N°)	Lecturas mapeadas (%)	Largo medio mapeadas
Min	10120782	294.00	9564608	92.09	294.12
Q1	11732190	295.00	11022414	94.15	295.31
Mean	14602004	295.77	13808721	94.55	295.75
Q3	16497719	296.00	15671648	95.12	296.36
Max	16596816	297.00	15884138	96.18	297.13
SD	2611903	0.86	2488324	0.94	0.73

Some examples of QA on sequencing

D -+ -

	Statistic	Number.of.input.reads	Average.input.read.iength	Uniquely.mapped.reads.number	Uniquely.mapped.reads.%	Average.mapped.length
1	Min	374861	250.00	218820	58.37	253.20
2	Q1	1323983	259.00	1011945	82.13	260.76
3	Mean	5654087	264.68	4938357	83.28	266.30
4	Q3	6927377	271.00	6024305	87.45	273.22
5	Max	25289078	280.00	22759790	90.00	280.08
6	SD	6372973	9.02	5741510	7.83	8.50

We already have the data, let's explore them

Another example

Normalization

- There are many tipes of normalization, depending on the problem at hand (tecnical problems, distributional, problems, assumptions...).
- It is not necessary a problem
- It is ussually done in statistics
- Specially in multivariate analysis
- Let the data tells you what to do, according to your knowldege.
- It is cruccial to understand the problem to un order derstand the possible variation sources
- It should be applied with care.

Normalization

- In genomics/proteomics, the aim of normalization is to remove systematic technical effects tha occur in the data to ensure that technical bias has minimal impact on results.
- According to Bulard et al: the greatest impact on DE detection is the choice of the normalization procedure.

Take your time, and get used to the

This is a control-case study
What do you expect from these data?

Analyze and use your assumptions and knowledge

Batch effects Unadjusted 0.010 -PC2: 11.0% Variance ComBat-Seq 0.005 -Group 0.004 -0.000 -**GFP** 0.002 -(control) -0.005 **-**HER2 0.000 --0.010 - , **EGFR** -0.002 **-**-0.02 -0.04PC1: 85.49 **KRAS** -0.004 -0.000 0.005 -0.005PC1: 49.3% Variance

Batch

Once you are satisfied

- Do DGE
 - edgeR, DESeq, what ever you like.
 - I do not suggest to use sufflink

Method

Highly accessed

Open Acc

voom: precision weights unlock linear model analysis tools for RNA-s read counts

Charity W Law¹², Yunshun Chen¹², Wei Shi¹³ and Gordon K Smyth^{14*}
lake into account that, eagen, beseq works over count data, but you can move towards normal based models through the voom method.

log2FC vs Mean log2FPKMs

log2FC vs Mean log2FPKMs

Mean log2FPKMs vs log2Gene_Length

So

• I did the alignment, normalization, summarization, DE...

To be continued...