ESTRUCTURAS ALGEBRAICAS FaMAF-UNC -2024

PRÁCTICO 3

Subgrupos normales y grupos cociente.

- (1) Consideremos el grupo simétrico S_3 .
 - (a) Si H es el subgrupo cíclico generado por (1 2), entonces ninguna coclase a izquierda de H (excepto la misma H) es también una coclase a derecha de H.
 - (b) Si K es el subgrupo cíclico generado por (1 2 3), entonces toda coclase a izquierda de K es también una coclase a derecha de K.
- (2) Sea G un grupo y H y K dos subgrupos de G. Se define $HK := \{hk : h \in H, k \in K\}$. Probar las siguientes afirmaciones.
 - (a) $HK \leq G$ si y sólo si HK = KH.
 - (b) Si G es abeliano, entonces $HK \leq G$.
- (3) Sean $k, m, p \in \mathbb{N}$, con p primo y (p, m) = 1. Sean G un grupo, con $|G| = p^k m$, $H, K \leq G$ tales que $|H| = p^k$, $|K| = p^d$, $0 < d \leq k$ y $K \not\subseteq H$. Entonces HK no es subgrupo de G.
- (4) Si H y K son subgrupos de índice finito de un grupo G tales que ([G:H], [G:K]) = 1, entonces G = HK.
- (5) Mostrar que $\mathbb{Q}/\sim = \mathbb{Q}/\mathbb{Z}$, donde \mathbb{Q}/\sim es el grupo dado en el Ejercicio 33 del Práctico 2 y \mathbb{Q}/\mathbb{Z} es el grupo cociente del grupo ($\mathbb{Q}, +$) por el subgrupo ($\mathbb{Z}, +$).
- (6) Sean G un grupo y $N \leq G$. Probar que si [G:N] = 2, entonces $N \triangleleft G$.
- (7) Sea G un grupo y sea Z(G) el centro de G:

$$Z(G) := \{a \in G : ab = ba \text{ para todo } b \in G\}.$$

- (a) Probar que Z(G) es un subgrupo normal abeliano de G.
- (b) ¿Es Z/Z(G) abeliano?
- (c) Probar que si $f: G \to H$ es un epimorfismo, entonces $f(Z(G)) \subseteq Z(H)$ y si f es un isomorfismo se da la igualdad.
- (d) ¿Es necesaria la hipótesis de que f sea un epimorfismo?
- (8) Sea G un grupo y sea $\{N_i: i \in I\}$ una familia de subgrupos normales de G. Probar que $\bigcap_{i \in I} N_i \triangleleft G$.
- (9) Si G es abeliano, entonces todo subgrupo es normal. Mostrar que la recíproca no es cierta (ayuda: considerar el grupo de los cuaterniones).
- (10) Sean G un grupo y H un subgrupo.
 - (a) Probar que para todo $g \in G$, $gHg^{-1} \leq G$ y $gHg^{-1} \cong H$.
 - (b) Si |H| = n y es el único subgrupo de orden n en G, entonces $H \triangleleft G$.
- (11) Sea G un grupo y H y K dos subgrupos de G. Probar las siguientes afirmaciones.
 - (a) Si $H \triangleleft G$ o $K \triangleleft G$, entonces $HK \leq G$.
 - (b) Si H y K son normales, entonces HK es normal en G.
- (12) Hallar $H, K \leq D_4$ tales que $H \triangleleft K, K \triangleleft D_4$ y H no es normal en D_4 .

- (13) Decir cuáles de los siguientes H son subgrupos normales de G:
 - (a) $H = \{1, r, r^2, r^3\}$ y $G = D_4$.
 - (b) \mathcal{H} y $G = GL(2, \mathbb{C})$.
 - (c) $SL(n, \mathbb{R})$ y $G = GL(n, \mathbb{R})$.
- (14) Sean $f: G \to H$ un homomorfismo de grupos y $N \triangleleft G$. Probar las siguientes afirmaciones.
 - (a) Si $B \triangleleft H$, entonces $f^{-1}(B) \triangleleft G$.
 - (b) Si f es epimorfismo, entonces $f(N) \triangleleft H$. ¿Vale lo mismo si f no es epimorfismo?
 - (c) Si f es un isomorfismo, entonces $G/N \cong H/f(N)$.
- (15) Sea G grupo y $N \triangleleft G$. Si N y G/N son finitamente generados, entonces G es finitamente generado.
- (16) Sean G_1 y G_2 dos grupos y N_1 y N_2 dos subgrupos normales de G_1 y G_2 respectivamente. Probar que:
 - (a) $N_1 \times N_2 \triangleleft G_1 \times G_2$.
 - (b) $(G_1 \times G_2)/(N_1 \times N_2) \cong (G_1/N_1) \times (G_2/N_2)$.
- (17) Sean $n, m \in \mathbb{N}$ tal que n divide a m. Calcular $n\mathbb{Z}/m\mathbb{Z}$.
- (18) Sea $N := \{(1), (12)(34), (13)(24), (14)(23)\}.$
 - (a) Mostrar que N es un subgrupo normal de \mathbb{S}_4 y que N está contenido en \mathbb{A}_4 .
 - (b) Dar un conjunto completo de representantes de coclases a derecha (izquierda) de N en \mathbb{S}_4 .
 - (c) Dar un conjunto completo de representantes de coclases a derecha (izquierda) de N en \mathbb{A}_4 .
 - (d) Probar que $\mathbb{S}_4/N \cong \mathbb{S}_3$ y $\mathbb{A}_4/N \cong \mathbb{Z}_3$.
- (19) En cada caso determinar el índice [G:H] y hallar un sistema de representantes de G módulo H.
 - (a) $H = \mathbb{Z}, G = \mathbb{R}$.

(c) $H = SL(n, \mathbb{R}), G = GL(n, \mathbb{R}).$

(b) $H = \langle r \rangle$, $G = D_n$.

- (d) $H = S^1$, $G = \mathbb{C}^{\times}$.
- (20) Sea G un grupo. Para cada $a \in G$ se define $I_a : G \to G$ por $I_a(g) := a g a^{-1}$. A la aplicación I_a se la llama la conjugación por a,
 - (a) Probar que I_a es un automorfismo de G. Estos automorfismos se llaman interiores.
 - (b) Probar que la aplicación $I: G \to \operatorname{Aut}(G)$, definida por $I(a) = I_a$, es un morfismo de grupos y verificar que $\operatorname{Ker}(I) = Z(G)$.
 - (c) Probar que Im(I) es un subgrupo normal de Aut(G); usualmente se lo denota Int(G).
 - (d) Deducir que $G/Z(G) \cong Int(G)$.
- (21) Para cada uno de los siguientes grupos G hallar un automorfismo que no sea interior.

(i)
$$G = \mathbb{Z}_6$$
. (ii) $G = \mathbb{A}_5$. (iii) $G = \mathbb{S}_6$.

(22) Para los siguientes pares (G, N) calcular el cociente G/N, proponiendo un grupo K tal que $G/N \cong K$ y explicitando un isomorfismo.

$$(\mathbb{C}^{\times}, \mathbb{R}_{>0}); \quad (\mathbb{Q}^{\times}, \mathbb{Q}_{>0}); \quad (\mathbb{G}_{kn}, \mathbb{G}_n); \quad (S^1, \mathbb{G}_n).$$

¹Debido a este ejercicio se suele decir que cada G_i , con i = 1, 2, es normal en (y es cociente de) $G_1 \times G_2$.

EJERCICIOS ADICIONALES

- (23) Calcular los subgrupos cerrados (topológicamente) de $(\mathbb{R}, +)$.
- (24) Hallar todos los subgrupos normales de D_n , distinguiendo los casos en que n sea par o impar.
- (25) En cada uno de los siguientes casos verificar que $H \triangleleft G$ y calcular el cociente G/H.
 - (a) $G = D_6 \text{ y } H = \{ \text{Id}, r^3 \}.$

(b) Sea
$$p \in \mathbb{N}$$
 primo, $G = \left\{ \begin{pmatrix} 1 & b \\ 0 & a \end{pmatrix} : a, b \in \mathbb{Z}_p, a \neq 0 \right\}$ y $H = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{Z}_p \right\}$.

- (26) Decir si las siguientes afirmaciones son verdaderas o falsas.
 - (a) Si |G| = p, con p primo, entonces G es cíclico.
 - (b) Si $|G| = p^2$, con p primo, entonces G es cíclico.
 - (c) Si $H \triangleleft G \vee K \triangleleft G$, entonces $H \vee K \triangleleft G$. (Nota: $H \vee K := \langle H \cup K \rangle$).
 - (d) Sean G_1 y G_2 grupos, y $H_i \triangleleft G_i$, i = 1, 2.
 - (i) Si $G_1 \cong G_2$ y $H_1 \cong H_2$, entonces $G_1/H_1 \cong G_2/H_2$.
 - (ii) Si $G_1 \cong G_2$ y $G_1/H_1 \cong G_2/H_2$, entonces $H_1 \cong H_2$.
 - (iii) Si $H_1 \cong H_2$ y $G_1/H_1 \cong G_2/H_2$, entonces $G_1 \cong G_2$.
 - (e) Si $G/N \cong G$, entonces $N = \{e_G\}$.
- (27) Hallar pares de grupos G y H no isomorfos tales que $Aut(G) \cong Aut(H)$.
- (28) Sea G un grupo y sea [G,G] el subgrupo conmutador de G:

$$[G,G] := \langle [a,b] : a,b \in G \rangle,$$

donde, para todo $a, b \in G$, $[a, b] = aba^{-1}b^{-1} \in G$.

- (a) Probar que $[G, G] \triangleleft G$. ¿Es [G, G] abeliano?
- (b) Mostrar que G/[G, G] es abeliano.
- (c) Probar que si $f: G \to H$ es un homomorfismo, entonces $f([G,G]) \subseteq [H,H]$; más aún, si f es un epimorfismo, entonces se da la igualdad.
- (d) Sea $H \triangleleft G$. Entonces G/H es abeliano si y sólo si $[G,G] \subset H$.
- (29) Un grupo se dice perfecto si [G, G] = G.
 - (i) Sea G un grupo no abeliano. Probar que si G es simple, entonces es perfecto.
 - (ii) Muestre que la recíproca del enunciado anterior no es cierta.
- (30) Determinar todos los cocientes de S_3 , D_4 y \mathcal{H} .
- (31) Sean G un grupo finito y $f:G\to G$ un isomorfismo sin puntos fijos distintos de la identidad tal que $f^2=\mathrm{Id}$. Entonces G es abeliano.
- (32) Probar que $\operatorname{Hom}(\mathbb{Z}_m, \mathbb{Z}_n) \cong \mathbb{Z}_{(m,n)}$.
- (33) Sea G un grupo y sean H, K subgrupos normales de G. Sean π_H y π_K las proyecciones de G sobre G/H y G/K respectivamente. Probar que la aplicación $f: G/(H \cap K) \to G/H \times G/K$ definida por $f(x) = (\pi_H(x), \pi_K(x))$ es un monomorfismo.
- (34) Sean $n, p, r \in \mathbb{N}$, con p primo. Sea $G = GL(n, p^r)$ y $g \in G$. Probar que
 - g es p-unipotente si y sólo si los autovalores de g son todos 1 (i. e. 1-g es nilpotente).
 - g es p-regular si y sólo si g es semisimple (i. e. g es diagonalizable).

(Ver Ejercicio (28) del Práctico 2 para las definiciones de elemento p-unipotente y elemento p-regular).