Time Series: A First Course with Bootstrap Starter

Contents

Lesson 9-1: Weak Dependence
Example 9.1.1. Slow Polynomial Decay – Long Memory
Exercise 9.2. Long-Range Dependence
Example 9.1.3. Geometric Decay
Example 9.1.4. $MA(q)$ Correlation
Lesson 9-2: Sample Mean
Remark 9.2.1. The Long-Run Variance
Proposition 9.2.2
Theorem 9.2.7
Remark 9.2.8. Inference for the Mean
Exercise 9.13. Simulating an AR(1) Limiting Variance
Lesson 9-4: Serial Correlation 7
Remark 9.4.1. ACVF Estimator for Known Mean
Proposition 9.4.3. Bartlett's Formula
Remark 9.4.4. Limiting Variance of the ACVF Estimator
Remark 9.4.6. ACVF Estimator for Unknown Mean
Lesson 9-5: Sample Autocovariance
Remark 9.5.2. Tapering the ACVF to Reduce Variability in High Lags
Definition 9.5.3
Example 9.5.4. Bartlett Taper
Exercise 9.28. Sample ACVF of ARMA(1,2) Process
Proposition 9.6.1
Definition 9.6.2
Remark 9.6.3. Spectral Mean Estimation
Theorem 9.6.6
Remark 9.6.7. Autocovariance Limiting Variance
Corollary 9.6.9. Ratio Statistics
Remark 9.6.10. Bartlett's Formula for the Autocorrelations
Remark 9.6.12. Autocorrelations of Reduced Population Data
Lesson 9-7: Periodogram
Definition 9.7.2
Corollary 9.7.5
Remark 9.7.6. The Periodogram is Inconsistent
Fact 9.7.7. Independence of Periodogram Ordinates over Fourier Frequencies
Example 9.7.9. Periodogram of the Wolfer Sunspots
Lesson 9-8: Spectral Density Estimation 15
Paradigm 9.8.1. Smoothing the Periodogram
Paradigm 9.8.3. Tapering the ACVF
Example 9.8.6. Bartlett Tapered Spectral Estimator

Lesson 9-9: Spectral Analysis	17
Paradigm 9.9.1. An Interesting Class of Tapers	17
Example 9.9.6. Application of a Trapezoidal Taper	17

Lesson 9-1: Weak Dependence

- We can quantify serial dependence through the ACVF.
- Recall entropy mixing (Paradigm 8.2.11) as another measure of serial dependence.

Example 9.1.1. Slow Polynomial Decay – Long Memory

- Suppose that a time series has ACVF $\gamma(h) = O(|h|^{-a})$ for $0 < a \le 1$.
- The notation means the ACVF is bounded by a constant times that rate.
- There is fairly slow decay in lag when a is small: this means persistence, or high association, across large time lags. This is called *long-range dependence* or *long memory*.

Exercise 9.2. Long-Range Dependence

• An example of long-range dependence is given by the ACVF recursively defined via

$$\gamma(h+1) = \frac{h+d}{h+1-d}\,\gamma(h)$$

for $d \in (0, 1/2)$, where Γ denotes the gamma function, and $\gamma(0) = \Gamma(1 - 2d)/\Gamma(1 - d)^2$.

- This corresponds to $\gamma(h) = O(|h|^{2d-1})$, or the case of long memory with decay rate a = 1 2d.
- We plot with d = .4.

```
lags <- seq(1,100)
d <- .4
gamma.lm <- gamma(1-2*d)/(gamma(1-d))^2
for(i in 1:length(lags))
{
    gamma.new <- gamma.lm[i] * (i-1+d)/(i-d)
    gamma.lm <- c(gamma.lm,gamma.new)
}
plot(ts(gamma.lm,start=0),type="h",xlab="Lag",ylab="",ylim=c(0,2.5))</pre>
```


Example 9.1.3. Geometric Decay

- Suppose that a time series has ACVF $\gamma(h) = O(r^{|h|})$ for 0 < r < 1.
- The notation means the ACVF is bounded by a constant times that rate.
- So there is a geometric, or exponential, rate of decay for the ACVF.
- This holds for ARMA processes by Proposition 5.8.3.

Example 9.1.4. MA(q) Correlation

- Suppose the a time series has ACVF $\gamma(h)$ that is zero if |h| > q.
- Then this can be represented as an MA(q) process.
- This is an example of a q-dependent process: X_t and X_{t-h} are independent for any t when |h| > q.

Lesson 9-2: Sample Mean

- We need to know the statistical properties of common time series estimators.
- We here focus on the sample mean, which estimates the population mean of a stationary time series.
- The sample mean is

$$\overline{X} = n^{-1} \sum_{t=1}^{n} X_t.$$

Remark 9.2.1. The Long-Run Variance

• Suppose $\{X_t\}$ is stationary and the autocovariance function (ACVF) is absolutely summable:

$$\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty.$$

• Then the long-run variance is defined as

$$\sum_{h=-\infty}^{\infty} \gamma(h).$$

- This is denoted by σ_{∞}^2 . Observe this is equal to G(1), i.e., setting z=1 in the AGF.
- The long-run variance can be zero: suppose $\{X_t\}$ has a MA representation $X_t = \psi(B)Z_t$, so that

$$\sigma_{\infty}^2 = G(1) = \psi(1)^2 \sigma^2.$$

Then if $\psi(1) = 0$, the long-run variance is zero. For example, consider an MA(1) process with $\theta(z) = 1 - z$.

Proposition 9.2.2.

Suppose $\{X_t\}$ is stationary with mean μ , and ACVF that is absolutely summable. Then \overline{X} is unbiased for μ , and its scaled variance tends to the long-run variance:

$$\operatorname{Var}[\sqrt{nX}] \to \sigma_{\infty}^2$$
.

Theorem 9.2.7.

- So long as the long-run variance is non-zero, we can establish a central limit theorem for the sample mean under the condition that the inputs (in the MA representation) are i.i.d.
- Suppose $\{X_t\}$ has causal MA representation

$$X_t = \mu + \psi(B)Z_t,$$

where $Z_t \sim i.i.d.(0, \sigma^2)$. Suppose $\sum_{j>0} j |\psi_j| < \infty$ and $\psi(1) \neq 0$. Then

$$\sqrt{n}(\overline{X} - \mu) \Rightarrow \mathcal{N}(0, \sigma_{\infty}^2).$$

Remark 9.2.8. Inference for the Mean

As an application, suppose we want to construct a confidence interval for the mean based on our estimator \overline{X} . To get the standard error, we need to know the long-run variance. This suggests the need to estimate all the autocovariances (however, that is not possible).

Exercise 9.13. Simulating an AR(1) Limiting Variance

• We simulate a Gaussian AR(1) process with parameter $\phi_1 = .8$ and $\sigma^2 = 1$.

```
armapq.sim <- function(n,burn,ar.coefs,ma.coefs,innovar)
{
    p <- length(ar.coefs)
    q <- length(ma.coefs)
    z <- rnorm(n+burn+p+q,sd=sqrt(innovar))
    x <- filter(z,c(1,ma.coefs),method="convolution",sides=1)
    x <- x[(q+1):(q+n+burn+p)]
    y <- x[1:p]</pre>
```

```
for(t in (p+1):(p+n+burn))
{
    next.y <- sum(ar.coefs*y[(t-1):(t-p)]) + x[t]
    y <- c(y,next.y)
}
y <- y[(p+burn+1):(p+burn+n)]
return(y)
}
phi <- .8</pre>
```

```
• Based on sample sizes n = 50, 100, 200, we compute the sample mean.
   • Repeating over 10,000 simulations, we approximate the scaled variance of the sample mean, and see
     how close this is to the long-run variance.
# small sample
n <- 50
x.means <- NULL
for(i in 1:10000)
{
    x.sim <- armapq.sim(n,500,phi,NULL,1)</pre>
    x.means <- c(x.means,mean(x.sim))</pre>
}
y <- sqrt(n)*x.means
var(y)
## [1] 22.99445
# long-run variance for an AR(1)
(1-phi)^{-2}
## [1] 25
# moderate sample
n <- 100
x.means <- NULL
for(i in 1:10000)
    x.sim <- armapq.sim(n,500,phi,NULL,1)</pre>
    x.means <- c(x.means, mean(x.sim))</pre>
}
y <- sqrt(n)*x.means
var(y)
## [1] 23.15012
# long-run variance for an AR(1)
(1-phi)^{-2}
## [1] 25
# large sample
n <- 200
x.means <- NULL
for(i in 1:10000)
{
    x.sim <- armapq.sim(n,500,phi,NULL,1)</pre>
    x.means <- c(x.means,mean(x.sim))</pre>
```

```
}
y <- sqrt(n)*x.means
var(y)

## [1] 25.02043

# long-run variance for an AR(1)
(1-phi)^{-2}</pre>
```

[1] 25

Lesson 9-4: Serial Correlation

We want to estimate the ACVF: they are used in prediction, and are helpful in understanding serial dependence in the time series.

Remark 9.4.1. ACVF Estimator for Known Mean

- Suppose that the mean μ of the stationary time series $\{X_t\}$ was known, and we want to estimate $\gamma(h)$.
- This is the expectation of Y_t , where

$$Y_t = (X_{t+h} - \mu)(X_t - \mu).$$

- We can compute Y_1, \ldots, Y_{n-h} for any $0 \le h < n$, because μ is known.
- The sample mean of these would be

$$\frac{1}{n-h}\sum_{t=1}^{n-h}Y_t = \frac{1}{n-h}\sum_{t=1}^{n-h}(X_{t+h} - \mu)(X_t - \mu).$$

This has expectation $\gamma(h)$.

- The long-run variance of this sample mean is based on the ACVF of $\{Y_t\}$, and has a complicated expression known as *Bartlett's Formula*.
- This suggests an estimator

$$\overline{\gamma}(h) = \frac{1}{n-h} \sum_{t=1}^{n-h} (X_{t+h} - \mu)(X_t - \mu),$$

which is unbiased for $\gamma(h)$.

Proposition 9.4.3. Bartlett's Formula

Suppose $\{X_t\}$ is a causal linear time series with i.i.d. inputs $\{Z_t\}$, which have variance σ^2 and kurtosis η . Then the long-run variance of $\overline{\gamma}(h)$ is

$$\tau_{\infty}^{2} = \sum_{k=-\infty}^{\infty} \left(\gamma(k+h)\gamma(k-h) + \gamma(k)^{2} \right) + \gamma(h)^{2} (\eta - 3).$$

Remark 9.4.4. Limiting Variance of the ACVF Estimator

• Recall that the Fourier coefficients of a spectral density are denoted

$$\langle f \rangle_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\lambda) e^{i\lambda k} d\lambda.$$

• For a stationary Gaussian process with spectral density f, then Bartlett's Formula is

$$\tau_{\infty}^2 = \langle f^2 \rangle_{2k} + \langle f^2 \rangle_0.$$

• Example 1: suppose k=1 and the process is a white noise (with variance σ^2). Then

$$\tau_{\infty}^2 = \langle \sigma^4 \rangle_2 + \langle \sigma^4 \rangle_0 = \sigma^4.$$

• Example 2: suppose k=1 and the process is a MA(1). So $f(\lambda)=\sigma^2|1+\theta e^{-i\lambda}|^2$, and

$$\tau_{\infty}^{2} = \sigma^{4} \langle |1 + \theta e^{-i\lambda}|^{4} \rangle_{2} + \sigma^{4} \langle |1 + \theta e^{-i\lambda}|^{2} \rangle_{0} = \sigma^{4} \left(1 + 5\theta^{2} + \theta^{4} \right).$$

Remark 9.4.6. ACVF Estimator for Unknown Mean

- Since μ is usually unknown, we can replace it by the sample mean \overline{X} .
- The resulting estimator is denoted $\widetilde{\gamma}(h)$.
- This estimator is asymptotically normal when the process $\{X_t\}$ is m-dependent (i.e., random variables of at least lag m between them are independent).

Lesson 9-5: Sample Autocovariance

• We renormalize the ACVF estimator via tapering.

Remark 9.5.2. Tapering the ACVF to Reduce Variability in High Lags

- The estimator $\tilde{\gamma}(h)$ is approximately unbiased, but has high variance for large h.
- We can replace the n-h divisor by n, in order to decrease variance for larger h.
- This is like multiplying $\tilde{\gamma}(h)$ by 1 h/n, which is an example of a taper.

Definition 9.5.3.

- An autocovariance taper is a bounded, even real-valued function Λ on [-1,1], such that $\Lambda(0)=1$ and $\Lambda(x)<1$.
- We multiply the ACVF estimator at lag h by $\Lambda(h/n)$, where $\Lambda(x) = 1 |x|$.

Example 9.5.4. Bartlett Taper

- The Bartlett taper is $\Lambda(x) = 1 |x|$.
- The resulting estimator is

$$\widehat{\gamma}(h) = \Lambda(h/n)\widetilde{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (X_{t+|h|} - \overline{X})(X_t - \overline{X}).$$

- This is called the sample autocovariance function (sample ACVF)
- Under m-dependence, Corollary 9.5.8 establishes a central limit theorem for the sample ACVF:

$$\sqrt{n}(\widehat{\gamma}(h) - \gamma(h)) \Rightarrow \mathcal{N}(0, \tau_{\infty}^2).$$

Exercise 9.28. Sample ACVF of ARMA(1,2) Process

• We load some functions needed to compute the true ACVF.

```
polymult <- function(a,b) {
bb <- c(b,rep(0,length(a)-1))
B <- toeplitz(bb)
B[lower.tri(B)] <- 0
aa <- rev(c(a,rep(0,length(b)-1)))
prod <- B %*% matrix(aa,length(aa),1)
return(rev(prod[,1]))</pre>
```

```
}
ARMAauto <- function(phi,theta,maxlag)
    p <- length(phi)</pre>
    q <- length(theta)</pre>
    gamMA <- polymult(c(1,theta),rev(c(1,theta)))</pre>
    gamMA \leftarrow gamMA[(q+1):(2*q+1)]
    if (p > 0)
         Amat <- matrix(0,nrow=(p+1),ncol=(2*p+1))</pre>
         for(i in 1:(p+1))
             Amat[i,i:(i+p)] <- c(-1*rev(phi),1)</pre>
         }
         Amat \leftarrow cbind(Amat[,(p+1)],as.matrix(Amat[,(p+2):(2*p+1)]) +
             t(matrix(apply(t(matrix(Amat[,1:p],p+1,p)),2,rev),p,p+1)))
         Bmat \leftarrow matrix(0,nrow=(q+1),ncol=(p+q+1))
         for(i in 1:(q+1))
         {
             Bmat[i,i:(i+p)] \leftarrow c(-1*rev(phi),1)
         Bmat <- t(matrix(apply(t(Bmat),2,rev),p+q+1,q+1))</pre>
         Bmat <- matrix(apply(Bmat,2,rev),q+1,p+q+1)</pre>
         Bmat <- Bmat[,1:(q+1)]</pre>
        Binv <- solve(Bmat)</pre>
         gamMix <- Binv %*% gamMA
         if (p <= q) { gamMix <- matrix(gamMix[1:(p+1),],p+1,1)</pre>
             } else gamMix <- matrix(c(gamMix,rep(0,(p-q))),p+1,1)</pre>
         gamARMA <- solve(Amat) %*% gamMix</pre>
    } else gamARMA <- gamMA[1]</pre>
    gamMA <- as.vector(gamMA)</pre>
    if (maxlag <= q) gamMA <- gamMA[1:(maxlag+1)] else gamMA <- c(gamMA,rep(0,(maxlag-q)))
    gamARMA <- as.vector(gamARMA)</pre>
    if (maxlag <= p) gamARMA <- gamARMA[1:(maxlag+1)] else {</pre>
    for(k in 1:(maxlag-p))
    {
         len <- length(gamARMA)</pre>
         acf <- gamMA[p+1+k]</pre>
         if (p > 0) acf <- acf + sum(phi*rev(gamARMA[(len-p+1):len]))</pre>
        gamARMA <- c(gamARMA,acf)</pre>
    } }
    return(gamARMA)
}
```

• We simulate a Gaussian ARMA(1,2) process of length n = 200.

```
armapq.sim <- function(n,burn,ar.coefs,ma.coefs,innovar)
{
    p <- length(ar.coefs)
    q <- length(ma.coefs)
    z <- rnorm(n+burn+p+q,sd=sqrt(innovar))
    x <- filter(z,c(1,ma.coefs),method="convolution",sides=1)</pre>
```

```
x <- x[(q+1):(q+n+burn+p)]
y <- x[1:p]
for(t in (p+1):(p+n+burn))
{
    next.y <- sum(ar.coefs*y[(t-1):(t-p)]) + x[t]
    y <- c(y,next.y)
}
y <- y[(p+burn+1):(p+burn+n)]
return(y)
}

n <- 200
phi1 <- .5
theta1 <- 5/6
theta2 <- 1/6
x.sim <- armapq.sim(n,500,phi1,c(theta1,theta2),1)</pre>
```

- We construct and plot the sample acvf.
- We also overlay the true acvf in red.

```
y.sim <- x.sim - mean(x.sim)
x.acf <- mean(y.sim^2)
for(h in 1:20)
{
     x.acf <- c(x.acf,sum(y.sim[1:(n-h)]*y.sim[(h+1):n])/n)
}
gamma <- ARMAauto(phi1,c(theta1,theta2),21)
plot(ts(x.acf,start=0,frequency=1),xlab="Lag",ylab="Sample Autocovariance",type="h",lwd=2)
lines(ts(gamma,start=0,frequency=1),type="h",col=2)</pre>
```


Lesson 9-6: Spectral Means

• We investigate statistics that are weighted sums of the periodogram.

Proposition 9.6.1.

• The Fourier coefficients of the periodogram are the sample ACVF:

$$I(\lambda) = \sum_{k=-\infty}^{\infty} \widehat{\gamma}(k)e^{-i\lambda k},$$

and $\langle I\rangle_k=\widehat{\gamma}(k).$ • So the sample ACVF is positive definite.

Definition 9.6.2.

A spectral mean is a functional of the spectral density f, of the form

$$\langle gf \rangle_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(\lambda) f(\lambda) d\lambda,$$

where g is a real-valued weighting function.

Remark 9.6.3. Spectral Mean Estimation

A spectral mean can be estimated by substituting the periodogram:

$$\langle gI\rangle_0 = \sum_{|h| < n} \langle g\rangle_h \widehat{\gamma}(h).$$

Theorem 9.6.6.

Suppose $\{X_t\}$ is a linear time series with mean μ and causal moving average representation, with inputs that have variance σ^2 and kurtosis η (fourth moment divided by the square of the second moment). For sufficiently smooth g,

$$\sqrt{n} \left(\langle gI \rangle_0 - \langle gf \rangle_0 \right) \Rightarrow \mathcal{N} \left(0, \langle g(g+g^{\sharp})f^2 \rangle_0 + (\eta-3)\langle gf \rangle_0^2 \right),$$

where $g^{\sharp}(\lambda) = g(-\lambda)$.

Remark 9.6.7. Autocovariance Limiting Variance

- If $g(\lambda) = \cos(\lambda k)$, then the spectral mean is $\gamma(k)$, and the estimate is $\widehat{\gamma}(k)$.
- The Bartlett Formula (Proposition 9.4.3) follows from Theorem 9.6.6.

Corollary 9.6.9. Ratio Statistics

Under same assumptions as Theorem 9.6.6, with smooth weighting functions a and b,

$$\sqrt{n} \left(\frac{\langle bI \rangle_0}{\langle aI \rangle_0} - \frac{\langle bf \rangle_0}{\langle af \rangle_0} \right) \Rightarrow \mathcal{N} \left(0, \frac{\langle g(g+g^{\sharp})f^2 \rangle_0}{\langle af \rangle_0^2} \right),$$

where $g = b - a\langle bf \rangle_0 / \langle af \rangle_0$.

Remark 9.6.10. Bartlett's Formula for the Autocorrelations

- The sample autocorrelation is defined as $\widehat{\rho}(k) = \widehat{\gamma}(k)/\widehat{\gamma}(0)$.
- Applying Corollary 9.6.9 with $b(\lambda) = \cos(\lambda k)$ and $a \equiv 1$, we find the asymptotic variance for the sample autocorrelation is

$$\frac{\langle f^2 \rangle_{2k}}{\langle f \rangle_0^2} + (1 + 2\rho(k)^2) \frac{\langle f^2 \rangle_0}{\langle f \rangle_0^2} - 4\rho(k) \frac{\langle f^2 \rangle_k}{\langle f \rangle_0^2}.$$

• For white noise, this equals 1.

Remark 9.6.12. Autocorrelations of Reduced Population Data

- Consider second differences of U.S. population data.
- We compute the sample autocorrelations, and test the hypothesis of zero serial correlation (i.e., white noise).
- For each lag $k \ge 1$ (treated separately, ignoring multiple testing...) the asymptotic 95% critical values are $\pm 1.96/\sqrt{n}$.

```
pop <- read.table("USpop.dat")
pop <- ts(pop, start = 1901)
diffdiff.pop <- diff(diff(pop*10e-6))
data <- diffdiff.pop
n <- length(data)
acfs.sample <- NULL
mu.hat <- sum(data)/n
for(k in 0:(n-1))
{
        acf.sample <- sum((data[1:(n-k)]-mu.hat)*(data[(k+1):n]-mu.hat))/n
        acfs.sample <- c(acfs.sample,acf.sample)
}
plot(ts(acfs.sample/acfs.sample[1],start=0),xlab="Lag",ylab="Autocorrelations",ylim=c(-.5,1.5),type="h"
abline(h= 1.96/sqrt(n),lty=3)
abline(h= -1.96/sqrt(n),lty=3)</pre>
```


Lesson 9-7: Periodogram

- We further investigate the periodogram.
- It can be viewed as a crude estimator of the spectral density.

Definition 9.7.2

• Given a sample of size n from a time series $\{X_t\}$, the centered DFT is

$$\widehat{X}(\lambda) = n^{-1/2} \sum_{t=1}^{n} (X_t - \overline{X}) e^{-i\lambda t}$$

for $\lambda \in [-\pi, \pi]$.

• So $|\widehat{X}(\lambda)|^2 = I(\lambda)$.

Corollary 9.7.5

Suppose $\{X_t\}$ is either *m*-dependent or is a linear time series with mean μ and causal moving average representation. If $\mu = 0$ then

$$\frac{\widetilde{I}(\lambda)}{f(\lambda)} \Rightarrow \begin{cases} \chi_1^2 & \text{if } |\lambda| = 0, \pi \\ .5\chi_2^2 & \text{if } |\lambda| \in (0, \pi). \end{cases}$$

If $\mu \neq 0$, we use the centered DFT and $I(\lambda)/f(\lambda)$ has the same limit if $\lambda \neq 0$.

Remark 9.7.6. The Periodogram is Inconsistent

- Corollary 9.7.5 implies the periodogram is not consistent as an estimator of the spectral density.
- In contrast, Theorem 9.6.6 shows that weighted averages of the periodogram are consistent for spectral means.

Fact 9.7.7. Independence of Periodogram Ordinates over Fourier Frequencies

- From Corollary 7.2.9, DFT ordinates are approximately uncorrelated.
- Because they are also asymptotically complex Gaussian (see book), the DFT ordinates are asymptotically independent.
- Hence $I(\lambda_i)$ is asymptotically independent of $I(\lambda_k)$ for $j \neq k$.

Example 9.7.9. Periodogram of the Wolfer Sunspots

- We can plot the periodogram to identify cycles in a time series.
- We plot the periodogram of the Wolfer sunspots (recall Exercise 7.18).
- We omit the value I(0) = 0 so that we can plot in logs.
- The maximum occurs at $\lambda = .047$, corresponding to a period of 133.33 months, or 11.08 years.

```
wolfer <- read.table("wolfer.dat")</pre>
wolfer <- ts(wolfer[,1],start=1749,frequency=12)</pre>
data <- wolfer
n <- length(data)</pre>
acfs.sample <- NULL
mu.hat <- sum(data)/n
for(k in 0:(n-1))
{
    acf.sample \leftarrow sum((data[1:(n-k)]-mu.hat)*(data[(k+1):n]-mu.hat))/n
    acfs.sample <- c(acfs.sample,acf.sample)</pre>
}
grid <- 10000
lambda <- seq(0,grid)*pi/grid</pre>
pgram <- cos(0*lambda)*acfs.sample[1]
for(h in 1:(n-1))
{
    pgram <- pgram + 2*cos(h*lambda)*acfs.sample[h+1]
pgram <- ts(pgram[-1],start=0,frequency=grid)</pre>
plot(log(pgram),xlab="Cycles",ylab="Log Periodogram")
```


print(pi*which.max(pgram)/grid)

[1] 0.04712389

Lesson 9-8: Spectral Density Estimation

• We estimate the spectral density by modifying the periodogram.

Paradigm 9.8.1. Smoothing the Periodogram

ullet We can average the periodogram over nearby Fourier frequencies: for integer m,

$$\widehat{f}(\omega) = \frac{1}{2m+1} \sum_{j=-m}^{m} I(\omega + \lambda_j).$$

- Recall nonparametric smoothing: higher m to reduce variance, but bias increases.
- More general smoothing of the periodogram:

$$\widehat{f}(\omega) = \frac{\sum_{\ell} W_n((\lambda_{\ell} - \omega)/m) I(\lambda_{\ell})}{\sum_{\ell} W_n((\lambda_{\ell} - \omega)/m)},$$

where $W_n(x)$ is a kernel function, or spectral window, depending on n. The estimator also depends on the bandwidth m.

Paradigm 9.8.3. Tapering the ACVF

• Recall from Remark 9.5.2 that tapering reduces variability in ACVF estimation. We can insert tapered sample ACVF into the periodogram formula:

$$\widetilde{f}(\lambda) = \sum_{|h| \le d} \Lambda(h/d) \widehat{\gamma}(h) e^{-i\lambda h},$$

where $\Lambda(x)$ is a taper (cf. Definition 9.5.3), and d is the bandwidth.

• We can rewrite \widetilde{f} as a spectral window estimator as well, where the spectral window is proportional to $\sum_{|h| < d} \Lambda(h/d) e^{-i\lambda h}$.

Example 9.8.6. Bartlett Tapered Spectral Estimator

- We apply the tapered acvf spectral estimator of Paradigm 9.8.3, using the Bartlett taper (Example 9.5.4), to the Wolfer sunspot data.
- We choose the bandwidth $d = 3n^{1/3} = 42$, based on some asymptotic theory.
- We plot in logs, and so remove the frequency zero value.

```
wolfer <- read.table("wolfer.dat")</pre>
wolfer <- ts(wolfer[,1],start=1749,frequency=12)</pre>
data <- wolfer
n <- length(data)</pre>
d <- 3*floor(n^{1/3})
acfs.sample <- NULL</pre>
mu.hat <- sum(data)/n
for(k in 0:(n-1))
{
    acf.sample \leftarrow sum((data[1:(n-k)]-mu.hat)*(data[(k+1):n]-mu.hat))/n
    acfs.sample <- c(acfs.sample,acf.sample)</pre>
}
grid <- 10000
lambda <- seq(0,grid)*pi/grid</pre>
pgram <- cos(0*lambda)*acfs.sample[1]
for(h in 1:(n-1))
{
    pgram \leftarrow pgram + 2*(max(1-h/d,0))*cos(h*lambda)*acfs.sample[h+1]
pgram <- ts(pgram[-1], start=0, frequency=grid)</pre>
plot(log(pgram),xlab="Cycles",ylab="Log Spectrum")
```


Lesson 9-9: Spectral Analysis

- We refine the analysis of spectral density estimation.
- We consider the class of flat-top tapers.

Paradigm 9.9.1. An Interesting Class of Tapers

- Consider a taper that takes the value 1 in a neighborhood of zero: this improves the bias.
- This suggests the definition $\Lambda_{\infty}(x) = 1$ for $|x| \leq c$, for some $c \in (0,1]$. We call these flat-top tapers.
- Example: Bartlett taper (Example 9.5.4) is a limiting case with c = 0.
- Example: rectangular taper with c=1, where $\Lambda(x)=1$ for $|x|\leq 1$, zero otherwise.
- Example: trapezoidal taper (depending on choice of c):

$$\Lambda_{\infty}(x) = \begin{cases} 1 & \text{if } |x| \le c \\ \frac{1-|x|}{1-c} & \text{if } c < |x| \le 1. \end{cases}$$

• Flat-top tapers correct bias by shifting the spectral estimate down, which can generate negative estimates. One can take the maximum with zero, so as to enforce a non-negative spectrum estimate.

Example 9.9.6. Application of a Trapezoidal Taper

- We apply a trapezoidal taper to the Wolfer sunspots, using c = 1/3 and d = 42.
- The spectral estimate has more variability, and is no longer positive (log of negative values is cut off).

```
wolfer <- read.table("wolfer.dat")
wolfer <- ts(wolfer[,1],start=1749,frequency=12)</pre>
```

```
data <- wolfer
n <- length(data)</pre>
d <- 3*floor(n^{1/3})</pre>
acfs.sample <- NULL</pre>
mu.hat <- sum(data)/n</pre>
for(k in 0:(n-1))
{
    acf.sample \leftarrow sum((data[1:(n-k)]-mu.hat)*(data[(k+1):n]-mu.hat))/n
    acfs.sample <- c(acfs.sample,acf.sample)</pre>
}
cutoff \leftarrow 1/3
trap <- function(h)</pre>
    val \leftarrow min(max((1 - h/d)/(1 - cutoff), 0), 1)
    return(val)
}
grid <- 10000
lambda <- seq(0,grid)*pi/grid</pre>
pgram <- cos(0*lambda)*acfs.sample[1]</pre>
for(h in 1:(n-1))
{
    pgram <- pgram + 2*trap(h)*cos(h*lambda)*acfs.sample[h+1]</pre>
}
pgram <- pmax(0,pgram)</pre>
pgram <- ts(pgram[-1],start=0,frequency=grid)</pre>
plot(log(pgram),xlab="Cycles",ylab="Log Spectrum",ylim=c(3,12))
```

