LITERATURE SURVEY

S.NO	TITLE	AUTHORS	ABSTRACT	DRAWBACKS
1.	A Novel	Ali Abdullah	An enormous number of CNN classification	As the noise
	Handwritten	Yahya,	algorithms have been proposed in the	increases, it results
	Digit	Jieqing Tan,	literature. Nevertheless, in these algorithms,	in the steady
	Classification	Min Hu	appropriate filter size selection, data	decrease in the
	System Based		preparation, limitations in datasets, and noise	accuracy of the
	on		have not been taken into consideration. As a	handwritten digit
	Convolutional		consequence, most of the algorithms have	recognition.
	Neural		failed to make a noticeable improvement in	
	Network		classification accuracy. To address the	
	Approach		shortcomings of these algorithms, our paper	
			presents the following contributions: Firstly,	
			after taking the domain knowledge into	
			consideration, the size of the effective	
			receptive field (ERF) is calculated. Calculating	
			the size of the ERF helps us to select a typical	
			filter size which leads to enhancing the	
			classification accuracy of our CNN. Secondly,	
			unnecessary data leads to misleading results	
			and this, in turn, negatively affects	
			classification accuracy. To guarantee the	
			dataset is free from any redundant or irrelevant variables to the target variable, data	
			preparation is applied before implementing the	
			data classification mission. Thirdly, to	
			decrease the errors of training and validation,	
			and avoid the limitation of datasets, data	
			augmentation has been proposed. Fourthly, to	
			simulate the real-world natural influences that	
			can affect image quality, we propose to add an	
			additive white Gaussian noise with $\sigma = 0.5$ to	
			the MNIST dataset. As a result, our CNN	
			algorithm achieves state-of-the-art results in	
			handwritten digit recognition, with a	
			recognition accuracy of 99.98%, and 99.40%	
			with 50% noise.	
2.	Deep	Saleh Aly,	Deep Convolutional Neural Networks	The input image is
	Convolutional Self-	Sultan	(DCNN) are currently the predominant	overlapped, so it
	organizing	Almotairi	technique commonly used to learn visual features from images. However, the complex	may lead to confusions in digit
	Map Network		structure of most recent DCNNs impose two	recognition.
	for Robust		major requirements namely, huge labeled	recognition.
	Handwritten		dataset and high computational resources. In	
	Digit		this paper, we develop a new efficient deep	
	Recognition		unsupervised network to learn invariant image	
			representation from unlabeled visual data. The	
			proposed Deep Convolutional Self-organizing	
			Maps (DCSOM) network comprises a cascade	
			of convolutional SOM layers trained	
			sequentially to represent multiple levels of	
			features. The 2D SOM grid is commonly used	
			for either data visualization or feature	
			extraction. However, this work employs high	
			dimensional map size to create a new deep	
			network. The N-Dimensional SOM (ND-	
			SOM) grid is trained to extract abstract visual	
			features using its classical competitive	
			learning algorithm. The topological order of	

the features learned from ND-SOM helps to absorb local transformation and deformation variations exhibited in the visual data. The	
input image is divided into an overlapped local patches where each local patch is represented by the N-coordinates of the winner neuron in the ND-SOM grid. Each dimension of the ND-SOM can be considered as a non-linear principal component and hence it can be exploited to represent the input image using N-Feature Index Image (FII) bank. Multiple convolutional SOM layers can be cascaded to create a deep network structure A set of experiments using MNIST handwritten digit database and all its variants are conducted to evaluate the robust representation of the proposed DCSOM network. Experimental results reveal that the performance of DCSOM outperforms state-of-the-art methods for noisy digits and achieve a comparable performance with other complex deep learning architecture for other image variations. 3. Hybrid CNN-SVM Classifier for Handwritten Classifier for Handwritten Digit Recognition Anit Choudhary The aim of this paper is to develop a hybrid model of a powerful Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) for recognition of handwritten digit from MNIST dataset. The proposed hybrid model, CNN works as an automatic feature extractor and SVM works as a nainary classifier. The MNIST dataset of handwritten digits is used for training and testing the algorithm adopted in the proposed model. The MNIST dataset consists of handwritten digits images which are diverse and highly distorted. The receptive field of CNN helps in automatically extracting the most distinguishable features from these handwritten digits. The experimental results demonstrate the effectiveness of the proposed framework by achieving a recognition accuracy of 99.28% over MNIST handwritten digits dataset.	