ID: 109179049

CSCI 3104, Algorithms Problem Set 2 – Due Thurs Jan 30 11:55pm Profs. Chen & Grochow Spring 2020, CU-Boulder

Advice 1: For every problem in this class, you must justify your answer: show how you arrived at it and why it is correct. If there are assumptions you need to make along the way, state those clearly.

Advice 2: Informal reasoning is typically insufficient for full credit. Instead, write a logical argument, in the style of a mathematical proof.

Instructions for submitting your solutions:

- The solutions **should be typed** and we cannot accept hand-written solutions. Here's a short intro to IAT_FX.
- You should submit your work through the class Canvas page only.
- You may not need a full page for your solutions; pagebreaks are there to help Gradescope automatically find where each problem is. Even if you do not attempt every problem, please submit this template of at least 9 pages (or Gradescope has issues with it).

Quicklinks: 1 2a 2b 2c 2d 3a 3b 3c

- 1. Name (a) one advantage, (b) one disadvantage, and (c) one alternative to worst-case analysis. For (a) and (b) you should use full sentences.
 - (a) Advantage: It provides an upper guarantee of running time and generally captures complexity in practice.
 - (b) Disadvantage: The worse case input may occur rarely.
 - (c) Althernative: Average Case Analysis

Profs. Chen & Grochow Spring 2020, CU-Boulder

CSCI 3104, Algorithms Problem Set 2 – Due Thurs Jan 30 11:55pm

2. For each part of this question, put the growth rates in order, from slowest-growing to fastest. That is, if your answer is $f_1(n), f_2(n), \ldots, f_k(n)$, then $f_i(n) < O(f_{i+1}(n))$ for all i. If two adjacent ones are asymptotically the same (that is, $f_i(n) = \Theta(f_{i+1}(n))$), you must specify this as well.

Justify your answer (show your work). You may assume transitivity: if f(n) < O(g(n)) and g(n) < O(h(n)), then f(n) < O(h(n)), and similarly for little-oh, etc.

(a) Polynomials.

$$n+1$$
 n^4 $1/n$ 1 n^2+2n-4 n^2 \sqrt{n} 10^{100}

Answer:

$$1/n < 1 = 10^{100} < \sqrt{n} < n+1 < n^2 = n^2 + 2n + 4 < n^4$$

The slowest growth rate is 1/n. This is because the growth rate can be rewritten as n^{-1} . Rather than the function growing, it actually gets smaller and smaller.

Math Work Shown (2a):

- $\lim_{n\to\infty} \frac{1/n}{1} = 0$ because the limit can be rewritten as $\lim_{n\to\infty} \frac{1}{n} = 0$. Therefore, we can conclude that 1/n grows slower than 1.
- $\lim_{n\to\infty} \frac{1}{10^{100}} = \frac{1}{10^{100}} \neq 0$ and the limit L is a finite number. Therefore, they grow at the same rate.
- $\lim_{n\to\infty} \frac{10^{100}}{\sqrt{n}} = 0$. This limit can be rewritten as $10^{100} \times \lim_{x\to\infty} \frac{1}{\sqrt{n}} = 0$. Therefore, we can conclue that 10^{100} grows slower than \sqrt{n} .
- $\lim_{n\to\infty} \frac{\sqrt{n}}{n+1} = 0$. This limit can be rewritten as $\lim_{n\to\infty} \frac{n^{1/2}}{n+1} = 0$. Therefore, we can conclude that \sqrt{n} grows slower than n+1.
- $\lim_{n\to\infty} \frac{n+1}{n^2} = 0$. Since the denominator has the highter term, we can conclude that this limit will be 0. Thus, n+1 grows slower than n^2 .
- $\lim_{n\to\infty} \frac{n^2}{n^2+2n+4} = 1$. Since the terms are equal between the numerator and the denomator, the limit, L, is 1. Since L \neq 0 and is a finite number, we can conclude that the two have the same growth rate.
- $\lim_{n\to\infty} \frac{n^2+2n+4}{n^4} = 0$. Since the denominator has a higher term than the numerator, we can conclude that the limit is 0, and thus, conclude that $n^2 + 2n + 4$ has a slower growth rate than n^4 .

CSCI 3104, Algorithms Problem Set 2 – Due Thurs Jan 30 11:55pm Profs. Chen & Grochow Spring 2020, CU-Boulder

(b) Logarithms and related functions.

$$(\log_2 n)^2$$
 $\log_2(n)$ $\log_3(n)$ \sqrt{n} $\log_{1.5}(n)$ $\log_2(n^2)$

Answer:

$$\log_{1.5}(n) = \log_2(n) = \log_3(n) = \log_2(n^2) < (\log_2(n))^2 < \sqrt{n}$$

Math Work Shown (2b):

- $\lim_{n\to\infty}\frac{\log_{1.5}(n)}{\log_2(n)}=\frac{ln(1.5)}{ln(2)}$. L'Hopital's rule can be applied to the limit. $\lim_{n\to\infty}\frac{\log_{1.5}(n)}{\log_2(n)}=\lim_{n\to\infty}\frac{1}{\frac{ln(1.5)}{nln(2)}}=\lim_{n\to\infty}\frac{ln(2)}{ln(1.5)}=\frac{ln(2)}{ln(1.5)}$. The limit L \neq 0 and is also a finite number. Because of this, we can conclude that the two have the same growth rate.
- $\lim_{n\to\infty}\frac{\log_2(n)}{\log_3(n)}=\frac{ln(3)}{ln(2)}$. L'Hopital's rule can be applied to the limit. $\lim_{n\to\infty}\frac{\log_2(n)}{\log_3(n)}=\lim_{n\to\infty}\frac{1}{\frac{ln(2)}{ln(2)}}=\lim_{n\to\infty}\frac{ln(3)}{ln(2)}=\frac{ln(3)}{ln(2)}$. The limit $L\neq 0$ and is also a finite number. Because of this, we can conclude that the two have the same growth rate.
- $\lim_{n\to\infty}\frac{\log_3(n)}{\log_2(n^2)}=\frac{ln(2)}{2ln(3)}$. L'Hopital's rule can be applied to the limit. $\lim_{n\to\infty}\frac{\log_2(n)}{\log_3(n)}=\lim_{n\to\infty}\frac{1}{\frac{1}{nln(3)}}=\lim_{n\to\infty}\frac{ln(3)}{ln(2)}=\frac{ln(3)}{ln(2)}$. The limit $L\neq 0$ and is also a finite number. Because of this, we can conclude that the two have the same growth rate.
- $\lim_{n\to\infty} \frac{\log_2(n^2)}{(\log_2(n))^2} = 0$. L'Hopital's rule can be applied to this limit. $\lim_{n\to\infty} \frac{\log_2(n^2)}{(\log_2(n))^2} = \lim_{n\to\infty} \frac{2}{\frac{2\log_2(n)}{\log_2(n)}} = \lim_{n\to\infty} \frac{1}{\log_2(n)} = 0$. Because the limit is 0, we can conclude that $\log_2(n^2)$ has a slower growth rate than $(\log_2(n))^2$.
- $\lim_{n\to\infty}\frac{(\log_2(n))^2}{\sqrt{n}}=0$. L'Hopital's rule can be applied to this limit. $\lim_{n\to\infty}\frac{(\log_2(n))^2}{\sqrt{n}}=\lim_{n\to\infty}\frac{\frac{2\log_2(n)}{n\ln(2)}}{\frac{1}{2\sqrt{n}}}$. Then, L'Hopital's rule can be applied again. $\lim_{n\to\infty}\frac{\frac{2\log_2(n)}{n\ln(2)}}{\frac{1}{2\sqrt{n}}}=\lim_{n\to\infty}\frac{8}{\ln^2(2)\sqrt{n}}=0$. Because the limit is 0, we can conclude that the growth rate of $(\log_2(n))^2$ is slower than the growth rate of \sqrt{n} .

Profs. Chen & Grochow

Spring 2020, CU-Boulder

CSCI 3104, Algorithms Problem Set 2 – Due Thurs Jan 30 11:55pm

(c) Logarithms in exponents.

$$n^{\log_3(n)} \qquad n^{\log_2 n} \qquad n^{1/\log_2(n)} \qquad n \qquad 1$$

Answer:

$$n^{1/\log_2(n)} = 1 < n < n^{\log_3(n)} < n^{\log_2(n)}$$

Math Work Shown (2c):

- $\lim_{n\to\infty}\frac{n^{1/log_2(n)}}{1}=2$. This limit can be split up into two limits. $\lim_{n\to\infty}1=1$ and $\lim_{n\to\infty}n^{1/log_2(n)}=2$. Therefore, the limit, L, is $\frac{2}{1}$. L $\neq 0$ and is a finite number. From this, we can conclude that 1 and $n^{1/log_2(n)}$ have the same growth rate.
- $\lim_{n\to\infty} \frac{1}{n} = 0$. Therefore, we can conclude that the growth rate of 1 is slower than the growth rate of n.
- $\lim_{n\to\infty}\frac{n}{n^{log_3(n)}}=0$. L'Hopital's rule can be applied to this limit. $\lim_{n\to\infty}\frac{n}{n^{log_3(n)}}=\lim_{n\to\infty}\frac{1}{\frac{2n^{log_3(n)-1}ln(n)}{ln(3)}}=ln(3)\lim_{n\to\infty}\frac{1}{\frac{2n^{log_3(n)-1}ln(n)}{ln(3)}}=0$. Therefore, we can conclude the n has a slower growth rate than $n^{log_3(n)}$.
- $\lim_{n\to\infty} \frac{n^{\log_3(n)}}{n^{\log_2(n)}} = 0$. Due to exponent rules, this limit can be rewritten as $\lim_{n\to\infty} n^{\log_3(n)-\log_2(n)} = 0$. Since this limit evaluates to 0, we can conclude that the growth rate of $n^{\log_3(n)}$ is smaller than the growth rate of $n^{\log_2(n)}$.

Profs. Chen & Grochow Spring 2020, CU-Boulder

CSCI 3104, Algorithms Problem Set 2 – Due Thurs Jan 30 11:55pm

(d) Exponentials. Hint: Recall Stirling's approximation, which says that $n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$, i.e. $\lim_{n\to\infty} \frac{n!}{\left(\frac{n}{e}\right)^n \sqrt{2\pi n}} = 1$.

$$n!$$
 2^n 2^{2n} $2^{n \log_2(n)}$ 2^{n+7}

Answer:

$$2^n = 2^{n+7} < 2^{2n} < n! < n^{n\log_2 n}$$

Math Work Shown (2d):

- $\lim_{n\to\infty} \frac{2^n}{2^{n+7}} = \frac{1}{128}$. The exponent rule can be applied to this limit. $\lim_{n\to\infty} \frac{2^n}{2^{n+7}} = \lim_{n\to\infty} \frac{1}{2^{n+7-n}} = \lim_{n\to\infty} \frac{1}{2^7} = \frac{1}{128}$. Therefore, since the limit, L, is a contant and $\neq 0$, we can conclude that 2^n and 2^{n+7} have the same growth rate.
- $\lim_{n\to\infty} \frac{2^{n+7}}{2^{2n}} = 0$. The exponent rule can be applied to this limit. $\lim_{n\to\infty} \frac{1}{2^{2n-(n+7)}} = \frac{1}{2^{n-7}} = 0$. Because the limit evaluates to 0, we can conclude that 2^{n+7} has a slower growth rate than 2^{2n} .
- $\lim_{n\to\infty}\frac{2^{2n}}{n!}=0$. This limit can be simplified to $\lim_{n\to\infty}\frac{2^{2n}}{n!}=\lim_{n\to\infty}\frac{4^n}{n!}$. From here, this limit can be represented as $\frac{4\times 4\times 4...4\times 4...}{1\times 2\times 3\times 4...(n-1)\times (n)}$. Based on this, we can see that the denominator grows significantally faster than the numerator, which allows us to conclude that the limit is 0, and further conclude that 2^{2n} has a slower growth rate that n!.
- $\lim_{n\to\infty} \frac{n!}{n^{nlog_2(n)}} = 0$. Stirling's approximation can be applied to this problem. $\lim_{n\to\infty} \frac{n!}{n^{nlog_2(n)}} = \lim_{n\to\infty} \frac{(\frac{n}{e})^n \sqrt{2\pi n}}{n^{nlog_2(n)}}$. Then, the constants can be taken outside of the limit to make the evalation simpler. $\sqrt{2\pi} \lim_{n\to\infty} \frac{(\frac{n}{e})^n \sqrt{n}}{n^{nlog_2(n)}}$. Then, using exponent rules, parts of the numerator can be moved to the denomator. $\sqrt{2\pi} \lim_{n\to\infty} \frac{1}{e^n n^{nlog_2(n)-n-1/2}}$. We can then conclude that this limit evalutes to 0, and thus conclude that the growth rate of n! is slower than the growth rate of $n^{nlog_2(n)}$.

ID: \[\left[\frac{109179049}{\text{Grochow}} \]

CSCI 3104, Algorithms Problem Set 2 – Due Thurs Jan 30 11:55pm Profs. Chen & Grochow Spring 2020, CU-Boulder

3. For each of the following algorithms, analyze the worst-case running time. You should give your answer in big-Oh notation. You do not need to give an input which achieves your worst-case bound, but you should try to give as tight a bound as possible.

Justify your answer (show your work). This likely means discussing the number of atomic operations in each line, and how many times it runs, writing out a formal summation for the runtime complexity T(n) of each algorithm, and then simplifying your summation.

```
(a) 1
      f(A): // A is a square, 2D array; indexed starting from 1
        let d be a copy of A
   3
        for i = 1 to len(A):
   4
          d[i][i] = 0
   5
   6
        for i = 1 to len(A):
   7
          for j = 1 to len(A):
   8
            for k = 1 to len(A):
   9
               if (d[i][k] + d[k][j]) < d[i][j]:
   10
                 d[i][j] = d[i][k] + d[k][j]
   11
   12
        return d
```

Answer:

Worst Case Running Time:

$$T(n) = (c_6 + c_7 + c_8)(n^3) + (c_5 + c_6)(n^2) + (c_2 + c_3 + c_4 + c_5)(n) + (c_1 + c_2 + c_4 + c_9)$$

$$= \mathcal{O}(n^3)$$

ID: | 109179049

CSCI 3104, Algorithms Problem Set 2 – Due Thurs Jan 30 11:55pm Profs. Chen & Grochow Spring 2020, CU-Boulder

Answer:

Line Number	Cost	Time
2	c_1	n+1
3	c_2	$\sum_{i=1}^{n} (n+1-i) = \frac{n^2+n}{2}$
4	c_3	$\sum_{i=1}^{n} (n-i) = \frac{n^2 - n}{2}$ $\sum_{i=1}^{n} (n-i) = \frac{n^2 - n}{2}$ $\sum_{i=1}^{n} (n-i) = \frac{n^2 - n}{2}$
6	c_4	$\sum_{i=1}^{n} (n-i) = \frac{n^2 - n}{2}$
7	c_5	$\sum_{i=1}^{n} (n-i) = \frac{n^2 - n}{2}$
8	C_6	1

Worst Case Running Time:

$$T(n) = (c_2 + c_3 + c_4 + c_5)(\frac{n^2}{2}) + (c_2)(\frac{n}{2}) + (c_3 + c_4 + c_5)(\frac{-n}{2}) + (c_1)(n) + (c_1 + c_6)$$
=
$$\mathcal{O}(n^2)$$

Profs. Chen & Grochow

Spring 2020, CU-Boulder

CSCI 3104, Algorithms Problem Set 2 – Due Thurs Jan 30 11:55pm

(c) Here, abs(n) returns the absolute value of its argument, and can be treated as an atomic operation

```
1 h(A): // A is a list of integers, of length at least 2, first index is 1
2  min = abs(A[1] - A[2])
3  for i = 1 to len(A):
4   for j = i+1 to len(A):
5    if abs(A[i] - A[j]) < min:
6       min = abs(A[i] - A[j])
7  return min</pre>
```

Answer:

Line Number	Cost	Time
2	c_1	1
3	c_2	n+1
4	c_3	$\sum_{i=1}^{n} \sum_{j=i+1}^{n+1} 1 = \frac{n^2 + n}{2}$ $\sum_{i=1}^{n} \sum_{j=i+1}^{n} 1 = \frac{n^2 - n}{2}$ $\sum_{i=1}^{n} \sum_{j=i+1}^{n} 1 = \frac{n^2 - n}{2}$
5	c_4	$\sum_{i=1}^{n} \sum_{j=i+1}^{n} 1 = \frac{n^2 - n}{2}$
6	c_5	$\sum_{i=1}^{n} \sum_{j=i+1}^{n} 1 = \frac{n^2 - n}{2}$
7	c_6	1

Worst Case Running Time:

$$T(n) = (c_3 + c_4 + c_5)(\frac{n^2}{2}) + (c_2)(n) + (c_2)(\frac{n}{2}) + (c_4 + c_5)(\frac{-n}{2}) + (c_2 + c_3 + c_6)$$
=
$$\mathcal{O}(n^2)$$

ID: 109179049

CSCI 3104, Algorithms Problem Set 2 – Due Thurs Jan 30 11:55pm Profs. Chen & Grochow Spring 2020, CU-Boulder

References:

- Office hours with other stdudents and CA.
- Prof. Chen's Week 2 notes.