Assignment

Aryan Jain - EE22BTECH11011*

Question: Suppose that $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_n$ are independent and identically distributed random vectors each having $N_p(\boldsymbol{\mu}, \Sigma)$ distributions, where Σ is non-singular, p > 1 and n > 1. If $\mathbf{X} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X_i}$ and $\mathbf{Y} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{Y_i}$, then which one of the following statements is true?

- (a) There exists c > 0 such that $c(\mathbf{X} \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{X} \boldsymbol{\mu})$ has χ^2 -distribution with p degrees of freedom.
- (b) There exists c > 0 such that $c(\mathbf{X} \mathbf{Y})^T \Sigma^{-1} (\mathbf{X} \mathbf{Y})$ has χ^2 -distribution with (p-1) degrees of freedom. (c) There exists c > 0 such that $c \sum_{i=1}^{n} (\mathbf{X_i} \mathbf{X})^T \Sigma^{-1} (\mathbf{X_i} \mathbf{X})$ has χ^2 -distribution with p degrees of freedom.
- (d) There exists c > 0 such that $c \sum_{i=1}^{n} (\mathbf{X_i} \mathbf{Y_i} \mathbf{X} + \mathbf{Y})^T \Sigma^{-1} (\mathbf{X_i} \mathbf{Y_i} \mathbf{X} + \mathbf{Y})$ has χ^2 -distribution with p degrees of freedom. GATE ST Paper 2023

Solution:

We are given that,

$$\mathbf{X}_{1}, \mathbf{X}_{2}, \dots, \mathbf{X}_{n}, \mathbf{Y}_{1}, \mathbf{Y}_{2}, \dots, \mathbf{Y}_{n} \sim N_{p}(\mu, \Sigma)$$

$$\tag{1}$$

Also,

$$\mathbf{X} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X_i} \tag{2}$$

$$\mathbf{Y} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{Y_i} \tag{3}$$

The mean of X is given by:

$$\mu_{\mathbf{X}} = E\left(\mathbf{X}\right) \tag{4}$$

$$=\frac{1}{n}\sum_{i=1}^{n}E\left(\mathbf{X_{i}}\right)\tag{5}$$

$$=\mu \tag{6}$$

Similarly,

$$\mu_{\mathbf{Y}} = \mu \tag{7}$$

The covariance of X is given by:

$$\Sigma_{\mathbf{X}} = E \left[(\mathbf{X} - \boldsymbol{\mu}) (\mathbf{X} - \boldsymbol{\mu})^T \right]$$
 (8)

$$= E\left[\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i} - \boldsymbol{\mu}\right)\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i} - \boldsymbol{\mu}\right)^{T}\right]$$
(9)

$$= \frac{1}{n^2} E \left[\sum_{i=1}^n \left(\mathbf{X_i} - \boldsymbol{\mu} \right) \left(\mathbf{X_i} - \boldsymbol{\mu} \right)^T \right]$$
 (10)

$$= \frac{1}{n^2} \left[\sum_{i=1}^n E\left(\mathbf{X_i}^2 + \boldsymbol{\mu}^2 - 2\boldsymbol{\mu}\mathbf{X_i}\right) \right]$$
 (11)

$$= \frac{1}{n^2} \left[\sum_{i=1}^n E(\mathbf{X_i}^2) + \sum_{i=1}^n E(\boldsymbol{\mu}^2) - 2\boldsymbol{\mu} \sum_{i=1}^n E(\mathbf{X_i}) \right]$$
 (12)

$$= \frac{1}{n^2} \left[n\Sigma + n\mu^2 + n\mu^2 - 2\mu^2 \right] \quad \left[:: E\left(\mathbf{X_i}^2\right) = \Sigma_{\mathbf{X_i}} + E\left(\mathbf{X_i}\right)^2 \right]$$
 (13)

$$=\frac{\Sigma}{n}\tag{14}$$

Similarly,

$$\Sigma_{\mathbf{Y}} = \frac{\Sigma}{n} \tag{15}$$

(a) To check option (A): let us say,

$$\mathbf{A} = c(\mathbf{X} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{X} - \boldsymbol{\mu})$$
 (16)

(17)

And,

$$\Sigma^{-1} = \mathbf{F}^T \mathbf{F} \tag{18}$$

$$\mathbf{y} = \mathbf{F}(\mathbf{X} - \boldsymbol{\mu}) \tag{19}$$

$$\implies \mathbf{A} = c\mathbf{y}^T \overline{\mathbf{y}} \tag{20}$$

$$=c||\mathbf{y}||^2\tag{21}$$

Equation (21) shows that **A** can have χ^2 -distribution.

To confirm that we will find the mean and covariance-matrix of \overline{y} .

$$\mu_{\mathbf{y}} = E\left(\mathbf{y}\right) \tag{22}$$

$$= E\left(\mathbf{F}\left(\mathbf{X} - \boldsymbol{\mu}\right)\right) \tag{23}$$

$$= \mathbf{F} \left[E \left(\mathbf{X} \right) - E \left(\boldsymbol{\mu} \right) \right] \tag{24}$$

$$= \mathbf{F} \left[\mu - \mu \right] \quad from(6) \tag{25}$$

$$=0 (26)$$

And,

$$\Sigma_{\mathbf{y}} = E\left[\left(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}} \right) \left(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}} \right)^{T} \right]$$
 (27)

$$= E\left[(\mathbf{F}(\mathbf{X} - \boldsymbol{\mu})) (\mathbf{F}(\mathbf{X} - \boldsymbol{\mu}))^T \right]$$
 (28)

$$= E\left[\mathbf{F}\left(\mathbf{X} - \boldsymbol{\mu}\right)\left(\mathbf{X} - \boldsymbol{\mu}\right)^{T}\mathbf{F}^{T}\right]$$
(29)

$$= \mathbf{F} \left[E \left[(\mathbf{X} - \boldsymbol{\mu}) (\mathbf{X} - \boldsymbol{\mu})^T \right] \right] \mathbf{F}^T$$
(30)

$$= \mathbf{F} \mathbf{\Sigma} \mathbf{F}^T \tag{31}$$

since,

$$\Sigma^{-1} = \mathbf{F}^T \mathbf{F} \tag{32}$$

$$\Sigma \Sigma^{-1} = \Sigma \mathbf{F}^T \mathbf{F} \tag{33}$$

$$\mathbf{I} = \Sigma \mathbf{F}^T \mathbf{F} \tag{34}$$

$$\mathbf{I}\mathbf{F}^{-1} = \Sigma\mathbf{F}^{T} \tag{35}$$

$$\mathbf{F}\mathbf{F}^{-1} = \mathbf{F}\Sigma\mathbf{F}^{T} \tag{36}$$

$$\mathbf{I} = \mathbf{F} \mathbf{\Sigma} \mathbf{F}^T \tag{37}$$

So using (37),

$$\Sigma_{\mathbf{y}} = \mathbf{I} \tag{38}$$

Hence, For c = 1 A has χ^2 -distribution with p degrees of freedom. So option (A) is correct.

(b) To check option (B): Let us say,

$$\mathbf{B} = c(\mathbf{X} - \mathbf{Y})^T \Sigma^{-1} (\mathbf{X} - \mathbf{Y})$$
(39)

And,

$$\Sigma^{-1} = \mathbf{F}^T \mathbf{F} \tag{40}$$

$$\mathbf{y} = \mathbf{F}(\mathbf{X} - \mathbf{Y}) \tag{41}$$

$$\implies \mathbf{B} = c\mathbf{y}^T \overline{\mathbf{y}} \tag{42}$$

$$=c||\mathbf{y}||^2\tag{43}$$

Equation (43) shows that **B** can have χ^2 -distribution.

To confirm that we will find the mean and covariance-matrix of $\overline{\mathbf{y}}$.

$$\mu_{\mathbf{v}} = E(\mathbf{y}) \tag{44}$$

$$= E\left[F\left(\mathbf{X} - \mathbf{Y}\right)\right] \tag{45}$$

$$= F\left[E\left(\mathbf{X}\right) - E\left(\mathbf{Y}\right)\right] \tag{46}$$

$$= F\left[\mu - \mu\right] \tag{47}$$

$$=0 (48)$$

And,

$$\Sigma_{\mathbf{y}} = E\left[\left(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}} \right) \left(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}} \right)^{T} \right]$$
(49)

$$= E\left[(\mathbf{F}(\mathbf{X} - \mathbf{Y})) (\mathbf{F}(\mathbf{X} - \mathbf{Y}))^T \right]$$
(50)

$$= E\left[\mathbf{F}(\mathbf{X} - \mathbf{Y})(\mathbf{X} - \mathbf{Y})^{T}\mathbf{F}^{T}\right]$$
(51)

$$= \mathbf{F} \left[E \left[(\mathbf{X} - \mathbf{Y}) (\mathbf{X} - \mathbf{Y})^T \right] \right] \mathbf{F}^T$$
(52)

$$= \mathbf{F} \left[E \left[||\mathbf{X} - \mathbf{Y}||^2 \right] \right] \mathbf{F}^T \tag{53}$$

$$= \mathbf{F} \left[E\left(\mathbf{X}^{2}\right) + E\left(\mathbf{Y}^{2}\right) - E\left(2\mathbf{X}\mathbf{Y}\right) \right] \mathbf{F}^{T}$$
(54)

$$= \mathbf{F} \left[\frac{\Sigma}{n} + \mu^2 + \frac{\Sigma}{n} + \mu^2 - 2\mu^2 \right] \mathbf{F}^T \quad \left[:: E\left(\mathbf{X}^2\right) = \Sigma_{\mathbf{X}} + E\left(\mathbf{X}\right)^2 \right]$$
 (55)

$$= \frac{2}{n} \mathbf{F} \Sigma \mathbf{F}^T \tag{56}$$

$$= -\frac{2}{n}\mathbf{I} \tag{57}$$

Hence, for $c = \frac{n}{2}$, **B** has χ^2 -distribution with p degrees of freedom. So option (B) is incorrect.

(c) To check option (C):

let us say,

$$\mathbf{C} = c \sum_{i=1}^{n} (\mathbf{X_i} - \mathbf{X})^T \Sigma^{-1} (\mathbf{X_i} - \mathbf{X})$$
 (58)

And,

$$\Sigma^{-1} = \mathbf{F}^T \mathbf{F} \tag{59}$$

$$\mathbf{y} = \mathbf{F} \left(\sum_{i=1}^{n} (\mathbf{X_i} - \mathbf{X}) \right)$$
 (60)

$$\implies \mathbf{C} = c\mathbf{y}^T \bar{\mathbf{y}} \tag{61}$$

$$=c||\mathbf{y}||^2\tag{62}$$

Equation (62) shows that C can have χ^2 -distribution.

To confirm that we will find the mean and covariance-matrix of \overline{y} .

$$\mu_{\mathbf{y}} = E(\mathbf{y}) \tag{63}$$

$$= E\left[\mathbf{F}\left(\sum_{i=1}^{n} (\mathbf{X_i} - \mathbf{X})\right)\right] \tag{64}$$

$$= \mathbf{F} \left[\sum_{i=1}^{n} \left(E\left(\mathbf{X_i} \right) - E\left(\mathbf{X} \right) \right) \right]$$
(65)

$$= \mathbf{F} [E(X_1) - E(X) + E(X_2) - E(X) + \dots + E(X_n) - E(X)]$$
(66)

$$=0 (67)$$

And,

$$\Sigma_{\mathbf{y}} = E\left[\left(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}} \right) \left(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}} \right)^{T} \right]$$
 (68)

$$= \mathbf{F}E\left[\left(\sum_{i=1}^{n} (\mathbf{X_i} - \mathbf{X})\right) \left(\sum_{i=1}^{n} (\mathbf{X_i} - \mathbf{X})\right)^{T}\right] \mathbf{F}^{T}$$
(69)

$$= \mathbf{F}E\left[\left(\sum_{i=1}^{n} \mathbf{X_i} - n\mathbf{X}\right)\left(\sum_{i=1}^{n} \mathbf{X_i} - n\mathbf{X}\right)^{T}\right]\mathbf{F}^{T}$$
(70)

$$= \mathbf{F}E \left[(n\mathbf{X} - n\mathbf{X}) (n\mathbf{X} - n\mathbf{X})^T \right] \mathbf{F}^T$$
(71)

$$= \mathbf{F}\mathbf{0}\mathbf{F}^T \tag{72}$$

$$= \mathbf{0} \tag{73}$$

Hence, There is no value of c > 0 for which \mathbb{C} have χ^2 -distribution. So option (C) is incorrect.

(d) To check option (D):

let us say,

$$\mathbf{D} = c \sum_{i=1}^{n} (\mathbf{X_i} - \mathbf{Y_i} - \mathbf{X} + \mathbf{Y})^T \Sigma^{-1} (\mathbf{X_i} - \mathbf{Y_i} - \mathbf{X} + \mathbf{Y})$$
 (74)

And,

$$\Sigma^{-1} = \mathbf{F}^T \mathbf{F} \tag{75}$$

$$\mathbf{y} = \mathbf{F} \left(\sum_{i=1}^{n} \left(\mathbf{X}_{i} - \mathbf{Y}_{i} - \mathbf{X} + \mathbf{Y} \right) \right)$$
 (76)

$$\implies \mathbf{C} = c\mathbf{y}^T \overline{\mathbf{y}} \tag{77}$$

$$=c||\mathbf{y}||^2\tag{78}$$

Equation (78) shows that **D** can have χ^2 -distribution.

To confirm that we will find the mean and covariance-matrix of \overline{y} .

$$\mu_{\mathbf{y}} = E(\mathbf{y}) \tag{79}$$

$$= E\left(\mathbf{F}\left(\sum_{i=1}^{n} \left(\mathbf{X_i} - \mathbf{Y_i} - \mathbf{X} + \mathbf{Y}\right)\right)\right)$$
(80)

$$= \mathbf{F}E\left[\sum_{i=1}^{n} \mathbf{X_i} - \sum_{i=1}^{n} \mathbf{Y_i} - n\mathbf{X} + n\mathbf{Y}\right]$$
(81)

$$= \mathbf{F} \left[\sum_{i=1}^{n} E\left(\mathbf{X_i}\right) - \sum_{i=1}^{n} E\left(\mathbf{Y_i}\right) - nE\left(\mathbf{X}\right) + nE\left(\mathbf{Y}\right) \right]$$
(82)

$$= \mathbf{F} \left[n\mu - n\mu - n\mu + n\mu \right] \tag{83}$$

$$=0 (84)$$

And,

$$\Sigma_{\mathbf{y}} = E\left[\left(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}} \right) \left(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}} \right)^{T} \right]$$
 (85)

$$= \mathbf{F}E\left[\left(\sum_{i=1}^{n} \left(\mathbf{X_i} - \mathbf{Y_i} - \mathbf{X} + \mathbf{Y}\right)\right) \left(\sum_{i=1}^{n} \left(\mathbf{X_i} - \mathbf{Y_i} - \mathbf{X} + \mathbf{Y}\right)\right)^{T}\right] \mathbf{F}^{T}$$
(86)

$$= \mathbf{F}E\left[\left(\sum_{i=1}^{n} \mathbf{X_i} - \sum_{i=1}^{n} \mathbf{Y_i} - n\mathbf{X} + n\mathbf{Y}\right) \left(\sum_{i=1}^{n} \mathbf{X_i} - \sum_{i=1}^{n} \mathbf{Y_i} - n\mathbf{X} + n\mathbf{Y}\right)^{T}\right] \mathbf{F}^{T}$$
(87)

$$= \mathbf{F}E \left[(n\mathbf{X} - n\mathbf{Y} - n\mathbf{X} + n\mathbf{Y}) (n\mathbf{X} - n\mathbf{Y} - n\mathbf{X} + n\mathbf{Y})^{T} \right] \mathbf{F}^{T}$$
(88)

$$= \mathbf{F}\mathbf{0}\mathbf{F}^T \tag{89}$$

$$= \mathbf{0} \tag{90}$$

Hence, There is no value of c > 0 for which **D** have χ^2 -distribution. So option (D) is incorrect.

Steps for simulation:

- 1) Firstly in the file "gauss.c", I have generated 1000 random vectors with dimension 2 using Box-Muller method and listed the data in the file "random vectors.dat".
- 2) Then in the file "distance.c", using the random vectors generated in the first step, I found the value of $c(\mathbf{X} \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{X} \boldsymbol{\mu})$ distribution which will give us 1×1 matrix.
- 3) So as we have generated 1000 random vectors in first step, we will have 1000 values of the distribution.
- 4) Then I have listed the values of the distribution $c(\mathbf{X} \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{X} \boldsymbol{\mu})$ that I got in the file "mahalanobisdistances.dat".
- 5) Now in the file "cdf.py", I have plotted the cdf of the distribution $c(\mathbf{X} \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{X} \boldsymbol{\mu})$ and also plotted the theoretical cdf plot of a χ^2 distribution.