4 Gauss-Markov Theorem. Estimation of σ^2 . Distribution of OLS in normal regression

4.1 Gauss-Markov Theorem

Theorem 4.1.1. Consider an $n \times 1$ random vector Y and an $n \times k$ random matrix X.

Assume (no need for iid, large n or normality):

- **GM1** No perfect multicollinearity: rank(X) = k
- **GM2** Strict Exogeneity $E(Y|X) = X\beta$, equivalently $E(\varepsilon|X) = 0$
- **GM3** Homoskedasticity and no serial correlation $Var(Y|X) = \sigma^2 I$, equivalently $Var(\varepsilon|X) = \sigma^2 I$

Then, the OLS estimator $\hat{\beta}_{OLS}$ has the <u>minimum conditional variance</u> in the class of estimators that, conditional on every X, are linear in Y and unbiased. Thus $\hat{\beta}_{OLS}$ is the Best Linear conditionally Unbiased Estimator (BLUE).

A linear estimator of β is any estimator of the form $\tilde{\beta} = A(X)Y$ where A(X) is a $k \times n$ matrix. For OLS $\tilde{\beta}_{OLS} = A(X)Y = (X'X)^{-1}X'Y$

Definition 4.1.1

Minimum conditional variance implies:

$$Var(\tilde{\beta}|X) - Var(\hat{\beta}_{OLS}|X)$$
 is positive semi-definite $\forall \tilde{\beta}$

This $k \times k$ matrix A is positive semi-definite iff $z'Az \ge 0$ for all $k \times 1$ vectors z. Thus for any z:

$$z'Var(\tilde{\beta}|X)z \ge z'Var(\hat{\beta}_{OLS}|X)z$$

Note this is equivalent to:

$$Var(z'\hat{\beta}|X) \ge Var(z'\hat{\beta}_{OLS}|X)$$

Thus <u>any linear combination</u> of the elements of $\tilde{\beta}$ has a conditional variance that is at least as large as the conditional variance of the corresponding linear combination of the elements of $\hat{\beta}_{OLS}$.

In particular, any component of $\tilde{\beta}$ has a conditional variance that is at least as large as the conditional variance of the corresponding component of $\hat{\beta}_{OLS}$.

4.2 GM PROOF

Lemma 4.2.1. We know

$$\hat{\beta}_{OLS} = (X'X)^{-1}X'Y$$

is conditionally (and unconditionally) unbiased under GM2, and is a linear function of Y. We also know under GM3 that

$$Var(\hat{\beta}_{OLS}|X) = \sigma^2(X'X)^{-1}$$

Now consider any other linear conditionally unbiased estimator $\tilde{\beta} = A(X)Y$.

$$E(\tilde{\beta}|X) = E(AY|X) = AE(Y|X) = AX\beta$$
 under GM3

As we assume conditionally unbiased, for any β

$$AX\beta = \beta \Rightarrow AX = I$$

Lemma 4.2.2.

$$Var(\tilde{\beta}|X) = Var(AY|X) = AVar(Y|X)A' = A\sigma^2 I_n A' = \sigma^2 AA'$$

Decomposing A:

$$A = A - (X'X)^{-1}X' + (X'X)^{-1}X' = W + (X'X)^{-1}X'$$

Thus:

$$Var(\tilde{\beta}|X) = \sigma^{2}(W + (X'X)^{-1}X')(W + (X'X)^{-1}X')'$$
$$= \sigma^{2}(W + (X'X)^{-1}X')(W' + X(X'X)^{-1})$$

But

$$WX = AX - (X'X)^{-1}X'X = I - I = 0$$

Therefore,

$$Var(\tilde{\beta}|X) = \sigma^2 W W' + \sigma^2 (X'X)^{-1}$$
$$= Var(\hat{\beta}_{OLS}|X) + \sigma^2 W W'$$

Lemma 4.2.3. $\sigma^2 W W'$ is positive semi-definite

For any k-dimensional vector z, denote the k-dimensional vector W'z as $\alpha = (\alpha_1, ..., \alpha_k)'$

$$z'\sigma^2 W W' z = \sigma^2(z'W)(W'z) = \sigma^2 \alpha' \alpha = \sigma^2 \sum_{i=1}^k \alpha_i^2 \ge 0$$

Thus $Var(\tilde{\beta}|X) - Var(\hat{\beta}_{OLS}|X)$ is psd for any linear conditionally unbiased estimator $\tilde{\beta} = AY$.

4.3 Estimation of σ^2

Given the following but how to estimate?:

$$Var(\hat{\beta}_{OLS}|X) = \sigma^2(X'X)^{-1}$$

We are given X, thus only need to estimate σ^2 .

Note: $\sigma^2 = E(\varepsilon_i^2|X)$ and since trivially $\sigma^2 = E(\sigma^2)$ we have:

$$\sigma^2 = E(E(\varepsilon_i^2|X)) = E(\varepsilon_i^2)$$

This suggests the MOM estimator:

$$\hat{\sigma}_{MOM}^2 = \frac{1}{n} \sum_{i=1}^n \varepsilon_i^2$$

except we don't know ε_i as β is unknown.

But with $\hat{\beta} = \hat{\beta}_{OLS}$ we can use the sample analogue $\hat{\varepsilon}_i = y_i - x_i' \hat{\beta}_{OLS}$ and thus:

Theorem 4.3.1. The <u>biased</u> (ML) estimator of σ^2 is:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \hat{\varepsilon}_i^2 \left(= \frac{1}{n} \sum_{i=1}^n \hat{\varepsilon}_i' \hat{\varepsilon}_i \right)$$

4.3.1 Unbiased Estimator of σ^2

We first compute the bias of $E(\hat{\sigma}^2|X)$ to then correct for it:

Lemma 4.3.1.

$$\hat{\varepsilon} = M_X Y = M_X (X\beta + \varepsilon) = M_X \varepsilon$$

Then

$$E(\hat{\sigma}^2|X) = E(\hat{\varepsilon}'\hat{\varepsilon}|X)$$

 $= E(\varepsilon' M_X' M_X \varepsilon | X) = E(\varepsilon' M_X \varepsilon | X) = E(tr(\varepsilon' M_X \varepsilon) | X), \quad \text{since argument is a scalar}$

 \because trace multiplications are commutative if conformations exists \Rightarrow

$$= E(tr(M_X \varepsilon \varepsilon')|X) = tr(E(\varepsilon'M_X \varepsilon|X)) = tr(M_X E(\varepsilon \varepsilon'|X)) = tr(M_X \sigma^2 I_n) = \sigma^2 tr(M_X)$$

Lemma 4.3.2.

$$tr(M_X) = n - k$$

Proof.

$$M_X = (I - X(X'X)^{-1}X')$$

$$tr(M_X) = tr(I_n - X(X'X)^{-1}X') = tr(I_n) - ((X'X)^{-1}X'X)$$

$$tr(I_n) - tr(I_k)$$

$$= n - k$$

Thus

$$E(\hat{\sigma}^2|X) = \frac{n-k}{n}\sigma^2$$

Theorem 4.3.2.

$$\hat{\sigma}_u^2 = \frac{n}{n-k} \hat{\sigma}_{ML}^2 = \frac{\hat{\varepsilon}'\hat{\varepsilon}}{n-k}$$

is an unbiased estimator of σ^2 is an unbiased estimator of σ^2

4.4 Estimation of standard errors

By default STATA computes s.e. of component $\hat{\beta}_j$ of $\hat{\beta}_{OLS}$ as the square roots from the i-th diagonal element of $\hat{\sigma}^2(X'X)^{-1}$ or more explicitly with the partitioned regression formulae:

$$\hat{se}(\hat{\beta}_i) = \frac{\hat{\sigma_u}}{\sqrt{X_i' M_{-i} X_i}}$$

where X_i is the i-th column of X (i-th regressor) and M_{-i} is the residual maker matrix in the regression on all the other explanatory variables but X_i .

4.5 Distribution of OLS

Knowing the mean and variance of OLS is <u>not sufficient</u> to test hypotheses about β . We need to also know the distribution. In small samples this is easy to derive with the following assumption:

Normal Regression :
$$\varepsilon | X N(0, \sigma^2 I_n)$$

This subsumes GM2 and GM3 and adds normality.

Claim 4.5.1. There are several properties of the multivariate Gaussian which become useful in derivations.

- If $\mathbf{Z} \sim \mathbf{N}(\mathbf{0}, \sigma^2 \mathbf{I_n})$ and \mathbf{A} be any deterministic $r \times n$ matrix, then $\mathbf{AZ} \sim \mathbf{N}(\mathbf{0}, \sigma^2 \mathbf{AA}')$. In particular any linear combinations of normals is normal.
- The Normal distribution $N(0, \sigma^2 I_n)$ is <u>invariant to rotations/orthogonal transformations</u>. If $\mathbf{Z} \sim \mathbf{N}(\mathbf{0}, \sigma^2 \mathbf{I_n})$ and \mathbf{Q} is any $n \times n$ orthogonal matrix, then $\mathbf{QZ} \sim \mathbf{N}(\mathbf{0}, \sigma^2 \mathbf{I_n})$, i.e. QZ has the same distribution as Z.

Theorem 4.5.1. Using the first property and the normal regression assumption, we obtain:

$$\hat{\beta}_{OLS}|X = \beta + (X'X)^{-1}X'\varepsilon|X \sim N(\beta, \sigma^2(X'X)^{-1})$$

4