Co2 IgE-producing B cell VDJ CE e Germinae Transcription and Igh Swittching VDJ Engagement of CD40 Cε Cα2 **eGermline**expressing B cell 3 3 3 E 11-4 M-producing B cell Cu Cu D

# Momosome 14 Pluman Feavy Chain





exon

8

Spliced Germline Transcript

### Sequences of RPA Probes for Human Immunoglobulin Germline Transcripts

### Germline Ig Alpha-2 Probe

CTCTGCTAAGGACAGACGGCCATCAAGGCAGGACCTGGGCCGGGCCAGGGC TCCCTCCCCACAGCAGCCCTCTTGGCAGG

CAGCCAGACGCCGTGAGGGTGGACCTGCCATGAGGGCCTGCACGCCGAGGCCCCACTCAGCACTGCGGGCCCTCCA

GCAGCCTGACCAGCATCCCCGACCAGCCCCAAGGTCTTCCCGCTGAGCCTCG ACAGCACCCCCAAGATGGGAACGTGGT

CGTCGCATGCCTGGTCCAGGGCTTCTTCCCCCAGGAGCCACTCAGTGTGACCT GGAGCGAAAGCGGACAGAACGTGACCG

CCAGAAACTTCCCACCTAGCCAGGATGCCTCCGGGGACCTGTACACCACGAG CAGCCAGCTGACCCTGCCGGCCACACAG

### Germline Ig Epsilon Probe

GGCTCCACTGCCCGGCACAGAAATAACAACCACGGTTACTGATCATCTGGGA GCTGTCCAGGAACCCGACAGGGAGCCGG ACGGGCCACACCATCCACAGGCACCAAATGGACGACCCGGCGCTTCAGCCTC CACACAGAGCCCATCCGTCTTCCCCTTG ACCCGCTGCTGCAAAAACATTCCCTCCAATGCCACCTCCGTG

### Germline Ig Gamma 1 Probe

ACACACCAGAGGCTGACTGAGGCCTCCAGGACGACCGGGCTGGGAGCACGA GGAACATGACTGGATGCGGCAGAGCCGGC

CGTGGGGTGATGCCAGGATGGGCACGACCTGAGCTCAGGAGGCAGCA GAGCGAGGAGGAGAGGCCCCAGGTG

AACGGAGGGCTTGTCCAGGCCGGCAGCATCACCGGAGCCCAGGGCAGGGT CAGCAGTGCTGGCCGTGGGGCCCTCCTCT

CAGCCAGGACCAAGGACAGCACCTCCACCAAGGGCCCATCGGTCTTCCCCC
TGGCACCCTCCCAAGAGCACCTCTGG

GGGCACAGCGGCCCTGGGCTCCAAGGACTACTTCCCCGAACCGGTG ACGGTGTCGTGGAACTCAGGCGCCCTGA

CCAGCGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCC CTCAGCAGCGTGGTGACCGTGCCCTCC

AGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCA ACACCAAGGTGGACAAGAAAGTTGAGCC

CAAATCTTGTGACAAAACTCACACATGCCCACCG

### Germline Ig Gamma 2 Probe

CCAAGCCAACAGGCAGGACACACAGAGGCTGACTGAGGCCTCCATGACG ACCAGGCTGGGAGCACGAGGAACATGACG

GGATGCGGCAGAGCCGTGGGGTGATGCCAGCATGGGCAGGACCCACC TGAGCTGAGGAGGCAGTAGAACGAGGGÄG

GCCGTGGGCCCTCTCTCAGCCAGGACCAAGGACAGCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCGCCCTGC

TCCAGGAGCACCTCCGAGAGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACT ACTTCCCCGAACCGGTGACGGTGTCGTG

GAACTCAGGCGCTCTGACCAGCGGCGTGCACACCTTCCCAGCTGTCCTACAG TCCTCAGGACTCTACTCCCTCAGCAGCG

TGGTGACCGTGCCCTCCAGCAACTTCGGCACCCAGACCTACACCTGCAACGT AGATCACAAGCCCAGCAACACCAAGGTG

GACAAGACAGTTGAGCGCAAATGTTGTGTCGAGTGCCCACCGTGCCCAGCAC CACCTGTGGCAGGACCGTCA

### Germline Ig Gamma 3 Probe

ACACACCAGAGGCTGACTGAGGCCTCCAGGACCGGCCTGGGAGCGTGAGGAACATGACGGGATGGGGCAGAGCCAGC

CATGGGGTGATGCCAGGATGGCATGACCGACCTGAGCTCAGGAGGCAGCA GAGAGAGGGAGGAGGCCCCAGGTG

AACCGAGGGCTTGTCCAGGCCGGCAGCATCACCGGAGCCCAGGGCAGGGT CAGCAGAGCTGGCCGTAGGGCCCTCCTCT

CAGCCAGGACCAAGGACAGCTTCCACCAAGGGCCCATCGGTCTTCCCCC
TGGCGCCCTGCTCCAGGAGCACCTCTGG

GGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTG ACGGTGTCGTGGAACTCAGGCGCCCTGA

CCAGCGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCC CTCAGCAGCGTGGCCGTGCCCTCC

AGCAGCTTGGGCACCCAGACCTACACCTGCAACGTGAATCACAAGCCCAGCA ACACCAAGGTGGACAAGAGAGTTGAGCT

CAAAACCCCACTTGGTGACACAACTCACACATGCCCACGGTGCCCAGAGCCC AAATCTTGTGACACACCTCCCCGTGCC CACGGTGCCC

### FIGURE 3 3 OF 3

### Germline Ig Gamma 4 Probe

GGCCAGCACCACGGAAGCCCAAGCGGAGCCAGCACGGGGAGGTGGGCA GCCTTCAGGCACTGATGCCCACCCAGŢGC

GAGACGACGGGGACCGTGGGCAGGGCTTCCAAGCCAACAGGGCAGGACAC ACCAGAGGCTGACTGAGGCCTCCAGGACG

TGAGCTCAGGAGCAGCAGAGCGAGGAGGAGGAGGCCCCAGGTGAACG GAGGGGCTTGTCCAGGCCGGCAGCATCAC

CAGAGCCCAGGGCAGGGTCAGCAGAGCTGGCCGTAGGGCCCTCCTCTCAGCC AGGACCAAGGACAGCAGCTTCCACCAAG

GGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACACCTCCGGGCTGCCTGGTCAAGGA

CTACTTCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGE GGCGTGCACACCTTCCCGGCTGTCCTAC

AGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACGAAGACCTACACCTGCAAC

GTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCAAA TATGGTCCCCGTC

### Sequences of RPA Probes for Human Immunoglobulin Germline Transcripts

### Germline Ig Alpha-1 Probe

### Germline Ig Alpha-2 Probe

CTCTGCTAAGGACAGACGGCCATCAAGGCAGGACCTGIGCCGGGCCAGGGC
TCCCTCCCCACAGCAGCCCTCTTGGCAGG
CAGCCAGACGCCCGTGAGGGTGGACCTGCCATGAGGG CTGCACGCCGGAG
GCCGCCCACTCAGCACTGCGGGCCCTCCA
GCAGCCTGACCAGCATCCCCGACCAGCCCCCAAGGTCTTCCCCGCTGAGCCTCG
ACAGCACCCCCCAAGATGGGAACGTGGT
CGTCGCATGCCTGGTCCAGGGCTTCTTCCCCCCAGGAGC CACTCAGTGTGACCT
GGAGCGAAAGCGGACAGAACGTGACCG
CCAGAAACTTCCCCACCTAGCCAGGATGCCTCCGGGGACCTGTACACCACGAG
CAGCCAGCTGACCCTGCCGGCCACACAG

### Germline Ig Epsilon Probe

GGCTCCACTGCCCGGCACAGAAATAACAACCACGGTT/CTGATCATCTGGGA GCTGTCCAGGAACCCGACAGGGAGCCGG ACGGGCCACACCATCCACAGGCACCAAATGGACGACOCGGCGCTTCAGCCTC CACACAGAGCCCATCCGTCTTCCCCCTTG ACCCGCTGCTGCAAAAACATTCCCTCCAATGCCACCTCCGTG

### Germline Ig Gamma 1 Probe

ACACACCAGAGGCTGACTGAGGCCTCCAGGACGACCG(GCTGGGAGCACGA GGAACATGACTGGATGCGGCAGAGCCGGC

CGTGGGGTGATGCCAGGATGGGCACGACCTGAGCTCAGGAGGCAGCA GAGCGAGGGAGGAGAGGCCCCAGGTG

AACGGAGGGCTTGTCCAGGCCGGCAGCATCACCGGAGCCAGGGCAGGGT CAGCAGTGCTGGCCGTGGGGCCCTCCTCT

CAGCCAGGACCAAGGACAGCAGCCTECACCAAGGGCCCATCGGTCTTCCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGG

GGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGG

### Germline Ig Gamma 2 Probe

CCAAGCCAACAGGGCAGGACACACCAGAGGCTGACTG AGGCCTCCATGACG ACCAGGCTGGGAGCACGAGGAACATGACG

GGATGCGGCAGAGCCGGCCGTGGGGTGATGCCAGCATIGGCAGGACCCACC
TGAGCTGAGGAGGCAGTAGAACGAGGGAG

GCCGTGGGGCCCTCTCTCAGCCAGGACCAAGGACAGC/LGCCTCCACCAAGGG CCCATCGGTCTTCCCCCTGGCGCCCTGC

TCCAGGAGCACCTCCGAGAGCACAGCGGCCCTGGGCT(iCCTGGTCAAGGACTACTTCCCCGAACCGG

### Germline Ig Gamma 3 Probe

ACACACCAGAGGCTGACTGAGGCCTCCAGGACCGACCGGGCTGGAGCGTGA GGAACATGACGGGATGGGGCAGAGCCAGC

CATGGGGTGATGCCAGGATGGGCATGACCGACCTGAGCTCAGGAGGCAGCA GAGAGAGGGAGGAGGCCCCCAGGTG

AACCGAGGGCTTGTCCAGGCCGGCAGCATCACCGGAGCCAGGGCAGGGT CAGCAGAGCTGGCCGTAGGCCCTCCTCT

CAGCCAGGACCAAGGACAGCTTCCACCAAGGGCCCATCGGTCTTCCCCC
TGGCGCCCTGCTCCAGGAGCACCTCTGG

GGGCACAGCGGCCTGGGTCGACGGACTAC.TCCCCGAACCGGTGACGGTGTCGTGGAACTCAG

### Germline Ig Gamma 4 Probe

GGCCAGCACCACATGGAAGCCCAAGCGGAGCCAGCAC GGGGAGGTGGGCA GCCTTCAGGCACTGATGCCCACCCAGTGC

GAGACGACGGGGCACGGGCAGGGCTTCCAAGCCA\CAGGGCAGGACAC

CAGAGCCCAGGGCAGGGTCAGCAGAGCTGGCCGTAGGGCCCTCCTCTCAGCCAGGACCAAGGACAGCAGCTTCCACCAAG

GGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCACCGCCCTGGGCTCCAGGAGCACCAGCCGCCCTGGGCTCCAAGGACCACCTCCGAAACCGG

## RPA PROBES





202 BP protected fragment

399 BP protected fragment

430bp protected fragment



Gamma 1 Probes

35/ Br protected fragment

391 BP protected fragment

Gamma 3 Probe

Gamma 2 Frobe

Gamma 4 Probe

497 BP protected fragment

### Gamma 1 Probe



The Gamma 1 5' and 3' Primers amplified a completed probe of 370 BP

## MESSY UIOHIOHOUGE BEOMORIE



Undigested Probe Run undigested probe vs digested protected fragment on acrylamide-Urea gel



Protected Fragment

using beta imaging equipment Visualize

### Technical Bulletin 然如此也没有有有可能是这种人的知识的。这一点,可以可以有效的数据,也是**不是这种**



### FIGURE 8



Figure 2. pSP72 Vector circle map and sequence reference points.

| 1. | Sequence reference points:  a. SP6 RNA polymerase transcription initiation site b. T7 RNA polymerase transcription initiation site c. SP6 RNA polymerase promoter d. T7 RNA polymerase promoter e. multiple cloning sites f. β-lactamase (Ampr) coding region | 1<br>101<br>2446-6<br>96-118<br>4-90<br>1135-1995 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|

- 2.
- a. transcription in vitro from dual opposed promoters (For protocol information, please request Specialized application: Promega's Riboprobe® in vitro Transcription Systems Technical Manual, #TM016.)
- The pSP72 and pSP73 Vectors are identical except for the orientation of the multiple cloning region. 3.
- Blue/white screening for recombinants is not possible with the pSP72 Vector.

### Accession Numbers for Germline Transcripts

### Alpha - 1

4 a 4 k

L04541 = I Region Exon BC005951 = Constant Region Exon

### Alpha - 2

L04541 = I Region Exon AL389978 = Constant Region Exon

### **Epsilon**

X56797 = I Region Exon J00222 = Constant Region Exon

### Gamma - 1

AL122127 = I Region Exon Z17370 = Constant Region Exon

### Gamma - 2

U39934 = I Region Exon J00230 = Constant Region Exon

### Gamma - 3

AL122127 = I Region Exon X16110 = Constant Region Exon

### Gamma - 4

X56796 = I Region Exon K01316 = Constant Region Exon