Comunicação de Dados (2015/2016) Ficha de Exercícios (Códigos para Controlo de Erros)

- 1. Seja $g(x) = 1+x+x^3$ um polinómio gerador de um código cíclico sistemático (7,4).
 - a. Determine as palavras de código, apresentando os respectivos cálculos, correspondentes aos seguintes dados:

$$D_1 = (d_0 d_1 d_2 d_3) = (1010)$$

$$D_2 = (d_0 d_1 d_2 d_3) = (1100)$$

$$D_3 = (d_0 d_1 d_2 d_3) = (1111)$$

$$D_4 = (d_0 d_1 d_2 d_3) = (1101)$$

- b. Explique de que forma poderia gerar rapidamente mais palavras de código.
- c. Apresente uma tabela completa com todas as palavras de código deste código cíclico sistemático.
- d. Qual é a capacidade de detecção e correcção deste código?
- e. Qual o rendimento deste código?
- f. Na página 246 da sebenta é apresentado um circuito codificador para um código deste tipo. Analise o funcionamento desse circuito para o caso particular do circuito ser alimentado com D = (1100).

(nota: em todos os exercícios utilize a mesma sintaxe da sebenta teórica para a representação da palavra de código, dígitos de verificação e dígitos de dados -ver sintaxe no fim da ficha-)

2. Responda ao seguinte problema:

	Seja $g(x) = 1+x+x^4$ um polinómio gerador de um código cíclico sistemático (15,11)		
	utilizado na transmissão de dados entre duas estações num determinado canal. A		
	distância mínima do código é igual três (d _{min} = 3).		
A1	O código possui um rendimento superior a 75%.		
B2	A palavra de código correspondente aos dados D=(00000000011) é		
	C=(00100000000011).		
C3	Assuma que uma determinada palavra de código C é transmitida no canal sofrendo		
	erros durante a sua transmissão. Apesar deste facto, é possível que chegue ao receptor		
	uma palavra que ele considere válida.		
D4	Estamos na presença de um código que é corrector de erros duplos.		
Z9	Nenhuma das opções anteriores está correcta.		
diana	lique a(s) referência(s) da(s) alternativa(s) que considere correcta(s):		

Indique a(s) referência(s) da(s) alternativa(s) que considere correcta(s):

- 3. Considere que g(x) = 1+x+x⁴ é o polinómio gerador de um código cíclico sistemático (15,11) utilizado para comunicação num canal de transmissão.

 A palavra de código C = (000111110100000) é uma palavra válida?
- 4. No âmbito dos códigos para controlo de erros explique o que é o "síndroma". De que forma ele é usado para a detecção/correção de erros?
- 5. Comente a seguinte afirmação: "Quanto maior for o rendimento de um código para controlo de erros, maior será também a sua capacidade de detecção e correcção de erros."
- 6. Distinga as seguintes técnicas de correção de erros e explique em que contextos são usadas: i) *"Forward Error Correction"* e ii) *"Automatic Repeat Request"*.
- 7. **Sugestão:** Desenvolva uma aplicação que simule a utilização de códigos para controlo de erros num processo de transmissão de dados.
 - a. Como *input* a aplicação receberá um conjunto de bytes de dados para transmissão.
 - b. Esses bytes serão separados em vários blocos de k bits, aos quais serão adicionados n-k dígitos de verificação, através da utilização de um polinómio à sua escolha que seja gerador de um código cíclico sistemático (n,k).
 - c. Os blocos resultantes (de n bits) serão depois submetidos a uma função que simulará a transmissão num canal ruidoso. Essa função será parametrizada podendo (ou não) introduzir um conjunto de erros nos vários bits transmitidos (i.e. sem erro nenhum bit do bloco é alterado; com erro um ou mais bits do bloco são alterados).
 - d. A função anterior passará os blocos resultantes a uma função de recepção, que terá unicamente capacidades de detecção de erros. Para cada bloco recebido a função de recepção avisará o utilizador se o mesmo é considerado válido ou inválido.
 - e. Discuta e analise os resultados obtidos tendo em conta os diferentes códigos (n,k) utilizados e o número de erros que são introduzidos pela função de transmissão da sua aplicação.

$C = (r_0, r_1, r_2, \dots, r_{n-k-1}, d_0, d_1, d_2, \dots, d_{k-1})$		
n-k dígitos	k dígitos	
de verificação	da mensagem	
de paridade		

r(x) é o resto da divisão de $x^{n-k}D(x)$ por g(x)