11. Неприводимые многочлены. Свойства. 12. Основная теорема арифметики в кольце многочленов над полем. Каноническое разложение.

Неприводимые многочлены

Определение

Пусть $f \in K[t]$, $\deg(f) > 0$.

- ullet Многочлен f называется приводимым, если f = gh, где $g,h \in K[t],\ 0 < \deg(g) < \deg(f)$ и $0 < \deg(h) < \deg(f)$
- \bullet Если такого разложения не существует, то f называется неприводимым.
- ullet Если $f \in K[t]$ неприводимый и f = gh (где $g,h \in K[t]$), то один из многочленов g и h константа, а другой тогда ассоциирован с f.
- ullet Если $f \in K[t]$ неприводимый, $f \nmid g$ и $0 < \deg(g)$, то $g \sim f$.

Можно провести аналогию с простыми числами. Неприводимые многочлены в некотором роде и есть простые числа.

Свойство 1

Пусть $f,g \in K[t]$, g — неприводимый. Тогда либо $f \in g$, либо $(f,g) \sim 1$.

Доказательство. • Пусть d=(f,g). Тогда $g \in d$, то есть $g=dh,\ h\in K[t]$.

- ullet Тогда либо $\deg(d)=0$ (в этом случае $(f,g)=d\sim 1$), либо $\deg(h)=0$.
- ullet Если $\deg(h)=0$, то $h\in K$ константа и $g\sim d$.
- ullet Так как $f \ \dot{} \ d$ и $d \sim g$, то $f \ \dot{} \ g$.

Из соображений здравого смысла: два многочлена могут быть или взаимно просты, или иметь какой-то общий множитель. Но этим общим множителем может быть только неприводимый g в чистом виде, потому что g и на что не раскладывается.

Свойство 2

Пусть $g, f_1, ..., f_n \in K[t]$ таковы, что $f_1 ... f_n : g$ и g — неприводимый. Тогда существует такое $i \in \{1, ..., n\}$, что $f_i : g$.

Доказательство. • Предположим противное, пусть $f_i \not | g$ для всех $i \in \{1, \ldots, n\}$. По Свойству 1 тогда $(f_i, g) \sim 1$.

- ullet По Свойству 3 взаимно простых многочленов, тогда и $(f_1 \dots f_n, \ g) \sim 1.$
- ullet Но тогда $f_1\dots f_n \slash g$ (в этом случае должно быть $(f_1\dots f_n,\ g)\sim g).$ Противоречие.

Свойство 3

Пусть $f_1, \ldots, f_n, g_1, \ldots, g_m \in K[t]$, причем $(f_i, g_j) \sim 1$ для всех $i \in \{1, \ldots, n\}$ и $j \in \{1, \ldots, m\}$. Тогда $(f_1 \ldots f_n, \ g_1 \ldots g_m) \sim 1$.

Основная теорема арифметики в кольце многочленов над полем

Теорема 5

Пусть K — поле, $f \in K[t]$, $\deg(f) \geq 1$, а c — старший коэффициент f. Тогда существует разложение $f = c \cdot p_1 \dots p_n$, где p_1, \dots, p_n — неприводимые, со старшим коэффициентом 1. Такое разложение единственно c точностью до порядка сомножителей.

Доказательство. \exists . Индукция по $\deg(f)$. База — случай неприводимого f. Тогда $p = c^{-1} \cdot f$ — также неприводимый, со старшим коэффициентом 1, и $f = c \cdot p$ — искомое разложение,

Переход. • Пусть для многочленов степени меньше $\deg(f)$ утверждение доказано и f — приводимый. Тогда f = gh, где $g,h \in K[t], \deg(g) < \deg(f)$ и $\deg(h) < \deg(f)$.

- Пусть a и b старшие коэффициенты g и h соответственно. Тогда по индукционному предположению $g=a\cdot q_1\dots q_s$, а $h=b\cdot r_1\dots r_\ell$, где $q_1,\dots,q_s,r_1,\dots,r_\ell\in K[t]$ неприводимые со старшими коэффициентами 1.
- ullet Тогда $f=c\cdot q_1\dots q_s r_1\dots r_\ell$ искомое разложение для f (очевидно, ab=c).

! Докажем единственность индукцией по $\deg(f)$.

База: • Пусть f — неприводимый и имеет разложение $f = cp_1 \dots p_n$, где $p_1, \dots, p_n \in K[t]$ — неприводимые.

ullet Тогда $f=p_1g$, где $g\in K[t]$ и $\deg(p_1)>0$. Следовательно, $f\sim p_1$, но тогда $f=cp_1$, а такое разложение ровно одно.

Переход. • Пусть единственность с точностью до перестановки доказана для многочленов степени меньше чем $\deg(f)$.

- ullet Предположим, $f=cp_1\dots p_n=cq_1\dots q_m$. Тогда $q_1\dots q_m \ \vdots \ p_1$.
- ullet По Свойству 2 неприводимых многочленов $\exists i \in \{1, \dots m\}$ такое, что $q_i \cdot p_1$. НУО i=1.
- Так как $q_1 cdots p_1$, q_1 неприводим и $\deg(p_1) \geq 1$, имеем $q_1 \sim p_1$. Но оба многочлена имеют старшие коэффициенты 1, следовательно, $q_1 = p_1$.
- ullet $f = c \cdot p_1 g$, где $g \in K[t]$, $\deg(g) \geq 1$ (иначе f неприводим, а этот случай разобран).
- Для многочлена g разложение на неприводимые единственно с точностью до перестановки, значит, разложения $g=p_2\dots p_n$ и $g=q_2\dots q_m$ могут отличаться только порядком сомножителей.
- Значит, два рассматриваемых разложения f также отличаются только порядком сомножителей.

Определение

Каноническое разложение многочлена $f \in K[t]$ — это представление его в виде

$$f=c\cdot p_1^{k_1}\dots p_m^{k_m},$$

где c — старший коэффициент f, а p_1, \ldots, p_m — различные неприводимые многочлены со старшими коэффициентами 1.

• Из ОТА следует, что каноническое разложение существует. Нужно взять разложение на неприводимые многочлены из Теоремы 5 и сгруппировать одинаковые многочлены — получится каноническое разложение.