Axioms and Theorems of the Propositional Calculus

In A Logical Approach to Discrete Math, D. Gries and F. B. Schneider. Springer, 1994.

(1.1) Substitution: $\frac{E}{E[v\backslash F]}$

(1.4) Transitivity:
$$X = Y Y = Z$$
$$X = Z$$

(1.5) Leibniz:
$$\frac{X=Y}{E[z\backslash X]=E[z\backslash Y]}$$

3.1 Equivalence and True

(3.1) Axiom, Associativity of \equiv :

$$((p \equiv q) \equiv r) \ \equiv \ (p \equiv (q \equiv r))$$

- (3.2) Axiom, Symmetry of \equiv : $p \equiv q \equiv q \equiv p$
- (3.3) Axiom, Identity of \equiv : $True \equiv p \equiv p$

 $(3.5) \ {\bf Reflexivity} \ {\bf of} \equiv: \ \ p \equiv p$

3.2 Negation, Inequivalence, and False

(3.15) Axiom, Definition of $False: \neg p \equiv p \equiv False$

(3.10) Axiom, Definition of $\not\equiv$: $(p \not\equiv q) \equiv \neg (p \equiv q)$

Theorems Relating \equiv , \neq , \neg

- (3.8) $False \equiv \neg True$
- (3.9) Distributivity of \neg over \equiv :

$$\neg(p \equiv q) \equiv \neg p \equiv q$$

- $(3.11) \quad \neg p \equiv q \equiv p \equiv \neg q$
- (3.12) **Double negation**: $\neg \neg p \equiv p$
- (3.13) **Negation of** $False : \neg False \equiv True$
- $(3.14) \quad (p \not\equiv q) \equiv \neg p \equiv q$
- (3.16) Symmetry of $\not\equiv$: $(p \not\equiv q) \equiv (q \not\equiv p)$
- (3.17) Associativity of $\not\equiv$:

$$((p \not\equiv q) \not\equiv r) \equiv (p \not\equiv (q \not\equiv r))$$

(3.18) Mutual associativity:

$$((p \not\equiv q) \equiv r) \equiv (p \not\equiv (q \equiv r))$$

(3.19) Mutual interchangeability:

$$p \not\equiv q \equiv r \equiv p \equiv q \not\equiv r$$

3.3 Disjunction

- (3.24) Axiom, Symmetry of $\vee: p \vee q \equiv q \vee p$
- (3.25) Axiom, Associativity of \vee :

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

- (3.26) Axiom, Idempotency of $\vee: p \vee p \equiv p$
- (3.27) Axiom, Distributivity of \lor over \equiv :

$$p \lor (q \equiv r) \equiv p \lor q \equiv p \lor r$$

(3.28) Axiom, Excluded Middle : $p \lor \neg p$

Basic Properties of \lor

(3.29) **Zero of**
$$\vee$$
: $p \vee True \equiv True$

(3.30) **Identity of**
$$\vee$$
 : $p \vee False \equiv p$

$$(3.31)$$
 Distributivity of \lor over \lor :

$$p \lor (q \lor r) \equiv (p \lor q) \lor (p \lor r)$$

$$(3.32) \ p \lor q \equiv p \lor \neg q \equiv p$$

3.4 Conjunction

(3.35) Axiom, Golden rule : $p \land q \equiv p \equiv q \equiv p \lor q$

Basic Properties of \wedge

- (3.36) Symmetry of $\wedge: p \wedge q \equiv q \wedge p$
- (3.37) Associativity of \wedge :

$$(p \land q) \land r \equiv p \land (q \land r)$$

- (3.38) Idempotency of $\wedge: p \wedge p \equiv p$
- (3.39) **Identity of** \wedge : $p \wedge True \equiv p$
- (3.40) **Zero of** \wedge : $p \wedge False \equiv False$
- (3.41) Distributivity of \wedge over \wedge :

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge (p \wedge r)$$

(3.42) Contradiction : $p \land \neg p \equiv False$

Theorems relating \wedge and \vee

$$(3.43)$$
 Absorption : (a) $p \land (p \lor q) \equiv p$

(b)
$$p \lor (p \land q) \equiv p$$

(3.44) **Absorption**: (a)
$$p \land (\neg p \lor q) \equiv p \land q$$

(b)
$$p \lor (\neg p \land q) \equiv p \lor q$$

(3.45) Distributivity of \lor over \land :

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

(3.46) Distributivity of \land over \lor :

$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

(3.47) **De Morgan** :
$$(a) \neg (p \land q) \equiv \neg p \lor \neg q$$

$$(b) \neg (p \lor q) \equiv \neg p \land \neg q$$

Theorems relating \wedge and \equiv

$$(3.48) \ p \land q \equiv p \land \neg q \equiv \neg p$$

$$(3.49) \ p \land (q \equiv r) \equiv p \land q \equiv p \land r \equiv p$$

$$(3.50) \ p \land (q \equiv p) \equiv p \land q$$

(3.51) Replacement :

$$(p \equiv q) \land (r \equiv p) \equiv (p \equiv q) \land (r \equiv q)$$

Alternative Definitions of \equiv and $\not\equiv$

(3.52) **Definition of**
$$\equiv$$
 : $p \equiv q \equiv (p \land q) \lor (\neg p \land \neg q)$

(3.53) Exclusive or :
$$p \not\equiv q \equiv (\neg p \land q) \lor (p \land \neg q)$$

3.5 Implication

(3.57) Axiom, Definition of implication:

$$p \Rightarrow q \equiv p \lor q \equiv q$$

(3.58) Axiom, Consequences :
$$p \Leftarrow q \equiv q \Rightarrow p$$

Rewriting Implication

(3.59) **Definition of implication**:

$$p \Rightarrow q \equiv \neg p \lor q$$

(3.60) **Definition of implication**:

$$p \Rightarrow q \; \equiv \; p \equiv p \wedge q$$

$$(3.61) \ \textbf{Contrapositive}: p \Rightarrow q \ \equiv \ \neg q \Rightarrow \neg p$$

Miscellaneous Theorems About Implication

$$(3.62) p \Rightarrow (q \equiv r) \equiv p \land q \equiv p \land r$$

$$(3.63)$$
 Distributivity of \Rightarrow over \equiv :

$$p \Rightarrow (q \equiv r) \equiv p \Rightarrow q \equiv p \Rightarrow r$$

$$(3.64) p \Rightarrow (q \Rightarrow r) \equiv (p \Rightarrow q) \Rightarrow (p \Rightarrow r)$$

$$(3.65)$$
 Shunting $: p \land q \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)$

$$(3.66) \ p \land (p \Rightarrow q) \equiv p \land q$$

$$(3.67) \ p \land (q \Rightarrow p) \equiv p$$

$$(3.68) \ p \lor (p \Rightarrow q) \equiv True$$

$$(3.69) \ p \lor (q \Rightarrow p) \equiv q \Rightarrow p$$

$$(3.70) p \lor q \Rightarrow p \land q \equiv p \equiv q$$

Implication and Boolean Constants

(3.71) **Reflexivity of**
$$\Rightarrow$$
 : $p \Rightarrow p \equiv True$

(3.72) Right zero of
$$\Rightarrow$$
: $p \Rightarrow True \equiv True$

(3.73) Left identity of
$$\Rightarrow$$
: $True \Rightarrow p \equiv p$

$$(3.74) p \Rightarrow False \equiv \neg p$$

$$(3.75)$$
 False $\Rightarrow p \equiv True$

Weakening, Strengthening, and Modus Ponens

(3.76) Weakening, Strengthening:

- (a) $p \Rightarrow p \lor q$
- (b) $p \land q \Rightarrow p$
- (c) $p \land q \Rightarrow p \lor q$
- $(d) \ p \lor (q \land r) \Rightarrow p \lor q$
- $(e) \ p \land q \Rightarrow p \land (q \lor r)$
- (3.77) Modus ponens : $p \land (p \Rightarrow q) \Rightarrow q$

Forms of Case Analysis

$$(3.78) (p \Rightarrow r) \land (q \Rightarrow r) \equiv (p \lor q \Rightarrow r)$$
$$(3.79) (p \Rightarrow r) \land (\neg p \Rightarrow r) \equiv r$$

Mutual Implication and Transitivity

(3.80) Mutual implication :

$$(p \Rightarrow q) \land (q \Rightarrow p) \equiv p \equiv q$$

(3.81) Antisymmetry:

$$(p \Rightarrow q) \land (q \Rightarrow p) \Rightarrow (p \equiv q)$$

(3.82) Transitivity:

$$(a) (p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$$

(b)
$$(p \equiv q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$$

$$(c) (p \Rightarrow q) \land (q \equiv r) \Rightarrow (p \Rightarrow r)$$

Leibniz's Rule as an Axiom

(3.83) Axiom, Leibniz:

$$(e=f)\Rightarrow (E[z\backslash e]=E[z\backslash f])$$

Rules of Substitution

(3.84) **Substitution**:

$$(a) (e = f) \wedge E_e^z \equiv (e = f) \wedge E_f^z$$

(b)
$$(e = f) \Rightarrow E_e^z \equiv (e = f) \Rightarrow E_f^z$$

$$(c) \ q \wedge (e = f) \Rightarrow E_e^z \equiv q \wedge (e = f) \Rightarrow E_f^z$$

Replacing Variables by Boolean Constants

(3.85) Replace by $\mathit{True}:$

(a)
$$p \Rightarrow E_p^z \equiv p \Rightarrow E_{True}^z$$

(b)
$$q \wedge p \Rightarrow E_p^z \equiv q \wedge p \Rightarrow E_{True}^z$$

(3.86) Replace by False:

(a)
$$E_p^z \Rightarrow p \equiv E_{False}^z \Rightarrow p$$

(b)
$$E_p^z \Rightarrow p \lor q \equiv E_{False}^z \Rightarrow p \lor q$$

(3.87) Replace by
$$\mathit{True}: p \wedge E^z_p \equiv p \wedge E^z_{\mathit{True}}$$

(3.88) Replace by
$$False: p \lor E_p^z \equiv p \lor E_{False}^z$$

(3.89) Shannon:

$$E_p^z \equiv (p \wedge E_{True}^z) \vee (\neg p \wedge E_{False}^z)$$

4.1 An Abbreviation for Proving Implications

$$(4.1) p \Rightarrow (q \Rightarrow p)$$

(4.2) Monotonicity of \vee :

$$(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$$

(4.3) Monotonicity of \wedge :

$$(p\Rightarrow q)\Rightarrow (p\wedge r\Rightarrow q\wedge r)$$

4.2 Additional Proof Techniques

(4.4) **(Extended) Deduction Theorem**. Suppose adding $P_1, \ldots P_n$ as axioms (with the variables of each P_i considered to be constants) allows Q to be proved. Then $P_1 \wedge \ldots P_n \Rightarrow Q$ is a theorem.