Introducción. MSV Resultados numéricos. Comentarios.

Máquina de Soporte Vectorial en paralelo.

• Modelo lineal de clasificación.

- Modelo lineal de clasificación.
- Sean C_0 , C_1 dos clases y $\mathbf{x} \in \mathbb{R}^n$ un vector de atributos. Se desea clasificar al vector \mathbf{x} en alguna de las dos clases ajenas de modo que se tenga el menor error de clasificación.

- Modelo lineal de clasificación.
- Sean C_0 , C_1 dos clases y $\mathbf{x} \in \mathbb{R}^n$ un vector de atributos. Se desea clasificar al vector \mathbf{x} en alguna de las dos clases ajenas de modo que se tenga el menor error de clasificación.
- Problemas de este tipo surgen naturalmente en medicina (cáncer), finanzas (crédito), computación (spam),...

• Supóngase que se tienen m individuos a los que se desea clasificar en C_0, C_1 y para cada individuo sean $\mathbf{x}_i \in \mathbb{R}^n$ su correspondiente vector de atributos i = 1, 2, ..., m y el vector de etiquetas $\hat{\mathbf{y}} = (\hat{y}_i)_{i=1}^m \in \mathbb{R}^m, \ \hat{y}_i \in \{-1, 1\}.$

- Supóngase que se tienen m individuos a los que se desea clasificar en C_0, C_1 y para cada individuo sean $\mathbf{x}_i \in \mathbb{R}^n$ su correspondiente vector de atributos i = 1, 2, ..., m y el vector de etiquetas $\hat{\mathbf{y}} = (\hat{y}_i)_{i=1}^m \in \mathbb{R}^m$, $\hat{y}_i \in \{-1, 1\}$.
- En \mathbb{R}^2 :

• Modelo para MSV:

• Modelo para MSV:

$$y(\mathbf{x}|w_0,\mathbf{w})=\mathbf{w}^T\mathbf{x}+w_0$$

• Modelo para MSV:

$$y(\mathbf{x}|w_0,\mathbf{w})=\mathbf{w}^T\mathbf{x}+w_0$$

• En \mathbb{R}^2 :

• En MSV se construye la recta $\mathcal{P} = \{\mathbf{x} \in \mathbb{R}^2 \mid y(\mathbf{x}|w_0, \mathbf{w}) = 0\}$ que cumpla con dos condiciones:

- En MSV se construye la recta $\mathcal{P} = \{\mathbf{x} \in \mathbb{R}^2 \mid y(\mathbf{x}|w_0, \mathbf{w}) = 0\}$ que cumpla con dos condiciones:
 - Tenga distancia mínima $d(\cdot, \cdot)$ al conjunto de individuos:

$$d(\mathcal{P}, \mathbf{x}_i) = \frac{|y(\mathbf{x}_i|w_0, \mathbf{w})|}{||\mathbf{w}||} = \frac{\hat{y}_i y_i}{||\mathbf{w}||}$$

- En MSV se construye la recta $\mathcal{P} = \{\mathbf{x} \in \mathbb{R}^2 \mid y(\mathbf{x}|w_0, \mathbf{w}) = 0\}$ que cumpla con dos condiciones:
 - Tenga distancia mínima $d(\cdot, \cdot)$ al conjunto de individuos:

$$d(\mathcal{P}, \mathbf{x}_i) = \frac{|y(\mathbf{x}_i|w_0, \mathbf{w})|}{||\mathbf{w}||} = \frac{\hat{y}_i y_i}{||\mathbf{w}||}$$

• Su margen sea máximo, considerando el margen $\mathcal{M}_{w_0,\mathbf{w}}$ como:

$$\mathcal{M}_{w_0,\mathbf{w}} = \min_{i \in \{1,\dots,m\}} \left\{ d(\mathcal{P},\mathbf{x}_i) \right\}$$

• Se obtiene para este ejemplo la recta siguiente:

$\overline{\mathsf{MSV}}$ en \mathbb{R}^2 .

• Se obtiene para este ejemplo la recta siguiente:

MSV en \mathbb{R}^2 .

• Se obtiene para este ejemplo la recta siguiente:

• Los individuos encerrados en círculos representan los vectores de soporte de la recta.

• Un individuo $(\mathbf{x}_i, \hat{y}_i)$ está bien clasificado si se verifica:

•
$$\mathbf{w}^T \mathbf{x}_i + w_0 \geq 1$$
 para $\hat{y}_i = 1$

•
$$\mathbf{w}^T \mathbf{x}_i + w_0 \leq -1$$
 para $\hat{y}_i = -1$

• Un individuo $(\mathbf{x}_i, \hat{y}_i)$ está bien clasificado si se verifica:

$$ullet$$
 $\mathbf{w}^T\mathbf{x}_i+w_0\geq 1$ para $\hat{y}_i=1$

•
$$\mathbf{w}^T \mathbf{x}_i + w_0 \leq -1$$
 para $\hat{y}_i = -1$

• Ambas condiciones se escriben:

$$\hat{y}_i(w^T \mathbf{x}_i + w_0) \ge 1 \quad \forall i = 1, 2, ..., m$$

• Suponiendo que los datos son linealmente separables en el espacio \mathbb{R}^n el problema que se debe resolver es:

• Suponiendo que los datos son linealmente separables en el espacio \mathbb{R}^n el problema que se debe resolver es:

$$\min_{\mathbf{w}_0, \mathbf{w}} \frac{1}{2} ||(\mathbf{w}_0, \mathbf{w})||^2$$
 sujeto a: $\hat{y}_i y_i \ge 1$ $\forall i = 1, \dots, m$

• Suponiendo que los datos son linealmente separables en el espacio \mathbb{R}^n el problema que se debe resolver es:

$$\min_{\mathbf{w}_0,\mathbf{w}} \frac{1}{2} ||(\mathbf{w}_0,\mathbf{w})||^2$$
 sujeto a: $\hat{y}_i y_i \geq 1$ $\forall i = 1,\ldots,m$

• La regla para un nuevo individuo \mathbf{x}_N es: si $y(\mathbf{x}_N|\mathbf{w},w_0)\geq 0$ entonces se clasifica a \mathcal{C}_0 y en otro caso a \mathcal{C}_1

 La formulación dual del problema de optimización anterior tiene ventajas en la práctica por la posibilidad de usar funciones que permitan separar linealmente a los individuos.

 La formulación dual del problema de optimización anterior tiene ventajas en la práctica por la posibilidad de usar funciones que permitan separar linealmente a los individuos.

• El problema dual es:

$$\min_{\lambda} \frac{1}{2} \lambda^T \hat{Y} X^T X \hat{Y} \lambda - \lambda^T e \quad \text{sujeto a:} \quad e^T \hat{Y} \lambda = 0, \quad \lambda \geq 0$$

donde:

• El problema dual es:

$$\min_{\lambda} \frac{1}{2} \lambda^T \hat{Y} X^T X \hat{Y} \lambda - \lambda^T e \quad \text{sujeto a:} \quad e^T \hat{Y} \lambda = 0, \quad \lambda \ge 0$$

donde:

- $e = (1)_{i=1}^{m}$
- $\bullet \ X = [\begin{array}{cccc} \mathbf{x}_1 & \cdots & \mathbf{x}_m \end{array}]$
- $\hat{Y} = \operatorname{diag}(\hat{y}_i)_{i=1}^m$
- $\lambda \in \mathbb{R}^m$ vector de multiplicadores de Lagrange.

$\overline{\mathsf{MSV}}$ en \mathbb{R}^2

MSV en \mathbb{R}^2

• En el caso que se tenga una situación del tipo:

$\overline{\mathsf{MSV}}$ en \mathbb{R}^2

$\overline{\mathsf{MSV}}$ en \mathbb{R}^2

• Se definen para cada individuo $\xi_i \geq 0 \quad \forall i = 1, 2, ..., m$:

MSV.

MSV.

• El problema de optimización en este caso:

$$\min_{w_0, \mathbf{w}} \frac{1}{2} ||(w_0, \mathbf{w})||^2 + Ce^T \xi$$

sujeto a:
$$\boldsymbol{\xi} \geq 0$$
 $\hat{y}_i y_i \geq 1 - \xi_i$ $\forall i = 1, \dots, m$

MSV.

• El problema de optimización en este caso:

$$\min_{\boldsymbol{w}_0,\mathbf{w}} \frac{1}{2} ||(\boldsymbol{w}_0,\mathbf{w})||^2 + Ce^T \boldsymbol{\xi}$$

sujeto a:
$$\boldsymbol{\xi} \geq 0$$
 $\hat{y}_i y_i \geq 1 - \xi_i$ $\forall i = 1, \dots, m$

donde: C > 0 realiza un equilibrio entre sobreajuste y complejidad del modelo.

MSV dual.

MSV dual.

• El problema de optimización dual (POD):

$$\min_{\lambda_g} \frac{1}{2} \lambda_g^T \hat{Y} X^T X \hat{Y} \lambda_g - \lambda_g^T e$$

sujeto a:
$$e^T \hat{Y} \lambda_g = 0$$
, $0 \le \lambda_g \le C$

MSV dual.

• El problema de optimización dual (POD):

$$\min_{\lambda_g} \frac{1}{2} \lambda_g^T \hat{Y} X^T X \hat{Y} \lambda_g - \lambda_g^T e$$

sujeto a:
$$e^T \hat{Y} \lambda_g = 0$$
, $0 \le \lambda_g \le C$

donde e, X, \hat{Y} son como antes y $\lambda_g \in \mathbb{R}^m$ corresponde al vector de multiplicadores de Lagrange para la restricciones de la forma $\hat{y}_i y_i \geq 1 - \xi_i \quad \forall i = 1, 2, \dots, m$

 Ambas formulaciones duales son problemas de optimización cuya función es cuadrática con restricciones lineales.

- Ambas formulaciones duales son problemas de optimización cuya función es cuadrática con restricciones lineales.
- Métodos convencionales para resolver estos problemas han sido propuestos por el análisis numérico.

- Ambas formulaciones duales son problemas de optimización cuya función es cuadrática con restricciones lineales.
- Métodos convencionales para resolver estos problemas han sido propuestos por el análisis numérico.
- Entre ellos se encuentran los métodos por puntos interiores.

- Ambas formulaciones duales son problemas de optimización cuya función es cuadrática con restricciones lineales.
- Métodos convencionales para resolver estos problemas han sido propuestos por el análisis numérico.
- Entre ellos se encuentran los métodos por puntos interiores.
- La formulación por puntos interiores que veremos se realizará con el enfoque de función de barrera logarítmica.

• Realizando una asignación de variables y agregando la holgura s para la condición $\lambda_g \leq Ce$ se tiene el problema de optimización:

• Realizando una asignación de variables y agregando la holgura s para la condición $\lambda_g \leq Ce$ se tiene el problema de optimización:

$$\min_{x,y,s} \frac{y^T y}{2} - e^T x$$
 sujeto a:

• Realizando una asignación de variables y agregando la holgura s para la condición $\lambda_g \leq Ce$ se tiene el problema de optimización:

$$\min_{x,y,s} \frac{y^T y}{2} - e^T x$$
 sujeto a:

$$b^{T}x = 0$$

$$Ax - y = 0$$

$$x - Ce + s = 0$$

$$x \ge 0$$

$$s \ge 0$$

• Utilizando la función de barrera logarítmica:

• Utilizando la función de barrera logarítmica:

$$\min_{x,y,s} \frac{y^T y}{2} - e^T x - \mu_x \sum_{i=1}^m \log x_i - \mu_s \sum_{i=1}^m \log s_i \quad \text{sujeto a:}$$

$$b^{T}x = 0$$

$$Ax - y = 0$$

$$x - Ce + s = 0.$$

Formulacion dual
Datos no linealmente separables
Formulación con puntos interiores
MSV secuencial
MSV en paralelo

Condiciones KKT para MSV secuencial

Condiciones KKT para MSV secuencial

 Las condiciones KKT del problema anterior conducen a un sistema lineal de la forma:

$$Kd = -r(\mu),$$

Condiciones KKT para MSV secuencial

 Las condiciones KKT del problema anterior conducen a un sistema lineal de la forma:

$$Kd = -r(\mu),$$

$$\operatorname{con} K = \begin{bmatrix} X^{-1}Z + S^{-1}W & A^T & 0 & -b \\ A & -I_n & 0 & 0 \\ I_m & 0 & I_m & 0 \\ b^T & 0 & 0 & 0 \end{bmatrix}, \ r$$

$$\operatorname{conocidos}, \ \mu = \begin{bmatrix} \mu_x \\ \mu_s \end{bmatrix}.$$

Formulación dual Datos no linealmente separables Formulación con puntos interiore MSV secuencial MSV en paralelo

POD con función de barrera

• Algunas consideraciones para el problema anterior:

- Algunas consideraciones para el problema anterior:
 - La solución del problema se obtiene haciendo $\mu_x, \mu_s \to 0$ en cada iteración.

- Algunas consideraciones para el problema anterior:
 - La solución del problema se obtiene haciendo $\mu_x, \mu_s \to 0$ en cada iteración.
 - Esta solución es única.

- Algunas consideraciones para el problema anterior:
 - La solución del problema se obtiene haciendo $\mu_x, \mu_s \to 0$ en cada iteración.
 - Esta solución es única.
 - Se agrega la corrección de Mehrotra para acelerar convergencia.

- Algunas consideraciones para el problema anterior:
 - La solución del problema se obtiene haciendo $\mu_x, \mu_s \to 0$ en cada iteración.
 - Esta solución es única.
 - Se agrega la corrección de Mehrotra para acelerar convergencia.
 - La matriz K no posee una estructura para una formulación en paralelo....

- Algunas consideraciones para el problema anterior:
 - La solución del problema se obtiene haciendo $\mu_x, \mu_s \to 0$ en cada iteración.
 - Esta solución es única.
 - Se agrega la corrección de Mehrotra para acelerar convergencia.
 - La matriz K no posee una estructura para una formulación en paralelo.... solución: Using interior point methods for large scale support vector machine training por K. Woodsend y J. Gondzio, 2009.

Formulación dual
Datos no linealmente separables
Formulación con puntos interiores
MSV secuencial
MSV en paralelo

Formulación dual
Datos no linealmente separables
Formulación con puntos interiores
MSV secuencial
MSV en paralelo

POD (2) con función de barrera

 Se realiza la misma asignación de variables pero no se agrega la holgura s:

 Se realiza la misma asignación de variables pero no se agrega la holgura s:

$$\min_{x,y} \quad \frac{y^T y}{2} - e^T x - \mu \left[\sum_{i=1}^m \log x_i + \log \left(C e_i - x_i \right) \right] \quad \text{sujeto a:}$$

$$A_y y + A_x x = 0$$

 Se realiza la misma asignación de variables pero no se agrega la holgura s:

$$\min_{x,y} \quad \frac{y^T y}{2} - e^T x - \mu \left[\sum_{i=1}^m \log x_i + \log \left(Ce_i - x_i \right) \right] \quad \text{sujeto a:}$$

$$A_y y + A_x x = 0$$

donde:
$$A_y = \begin{bmatrix} I_n \\ 0 \end{bmatrix}$$
, $A_x = \begin{bmatrix} -A \\ -b^T \end{bmatrix}$, $\mu > 0$ es el parámetro de barrera logarítmica.

Formulación dual
Datos no linealmente separables
Formulación con puntos interiores
MSV secuencial
MSV en paralelo

Condiciones KKT para MSV en paralelo

Condiciones KKT para MSV en paralelo

 Las condiciones de KKT del problema anterior conducen a un sistema lineal de la forma:

$$Kd = -r$$

Condiciones KKT para MSV en paralelo

 Las condiciones de KKT del problema anterior conducen a un sistema lineal de la forma:

$$Kd = -r$$

donde: K es una matriz simétrica, indefinida cuyas

entradas son conocidas y
$$r = \begin{bmatrix} rc_y \\ rc_x(\mu) \\ r_b \end{bmatrix}$$

Condiciones KKT para MSV en paralelo

 Las condiciones de KKT del problema anterior conducen a un sistema lineal de la forma:

$$Kd = -r$$

donde: K es una matriz simétrica, indefinida cuyas $\begin{bmatrix} rc_y \end{bmatrix}$

entradas son conocidas y
$$r = \begin{bmatrix} rc_y \\ rc_x(\mu) \\ r_b \end{bmatrix}$$

• El óptimo del problema anterior se encuentra haciendo $\mu \to 0$ en cada iteración.

Formulación dual Datos no linealmente separables Formulación con puntos interiores MSV secuencial MSV en paralelo

Puntos interiores en paralelo

 Una ventaja del sistema anterior tiene que ver con la estructura de la matriz K:

$$K = \left[\begin{array}{cc} H & -\hat{A}^T \\ -\hat{A} & 0 \end{array} \right]$$

 Una ventaja del sistema anterior tiene que ver con la estructura de la matriz K:

$$K = \left[\begin{array}{cc} H & -\hat{A}^T \\ -\hat{A} & 0 \end{array} \right]$$

con H una matriz diagonal, \hat{A} rectangular.

 Una ventaja del sistema anterior tiene que ver con la estructura de la matriz K:

$$K = \left[\begin{array}{cc} H & -\hat{A}^T \\ -\hat{A} & 0 \end{array} \right]$$

con H una matriz diagonal, \hat{A} rectangular.

• Si se tienen p procesadores, entonces K se puede escribir

como sigue:
$$K = \begin{bmatrix} H_1 & A_1^T \\ H_2 & A_2^T \\ & \vdots \\ & H_p & A_p^T \\ A_1 & A_2 & \cdots & A_p & 0 \end{bmatrix}$$

Formulación dual Datos no linealmente separables Formulación con puntos interiores MSV secuencial MSV en paralelo

Puntos interiores en paralelo

Formulación dual Datos no linealmente separables Formulación con puntos interiores MSV secuencial MSV en paralelo

Puntos interiores en paralelo

 Por otro lado, existe una factorización para K de la forma LD^TL:

 Por otro lado, existe una factorización para K de la forma LD^TL:

$$L = \begin{bmatrix} L_1 & & & & & \\ & \ddots & & & & \\ & & L_p & & \\ L_{A_1} & \cdots & L_{A_p} & L_C \end{bmatrix}, \quad D = \begin{bmatrix} D_1 & & & & \\ & \ddots & & & \\ & & D_p & & \\ & & & D_C \end{bmatrix}$$

Formulación dual Datos no linealmente separables Formulación con puntos interiores MSV secuencial MSV en paralelo

Puntos interiores en paralelo

• Se concluye lo siguiente:

$$H_i = L_i D_i L_i^T, \quad \therefore D_i = H_i, \quad L_i = I$$
 (1)

$$L_{A_i} = A_i L_i^{-T} D_i^{-1} = A_i H_i^{-1}$$
 (2)

$$C \equiv -\sum_{i=1}^{P} A_i H_i^{-1} A_i^{T}$$
 (3)

$$= L_C D_C L_C^T. (4)$$

Se concluye lo siguiente:

$$H_i = L_i D_i L_i^\mathsf{T}, \quad \therefore D_i = H_i, \quad L_i = I$$
 (1)

$$L_{A_i} = A_i L_i^{-T} D_i^{-1} = A_i H_i^{-1}$$
 (2)

$$C \equiv -\sum_{i=1}^{r} A_{i} H_{i}^{-1} A_{i}^{T}$$
 (3)

$$= L_C D_C L_C^T. (4)$$

Los productos (2) se realizan en cada uno de los procesadores y la suma (3) y la factorización (4) se realiza en un sólo procesador.

Formulación dual Datos no linealmente separables Formulación con puntos interiores MSV secuencial MSV en paralelo

Puntos interiores en paralelo

• Con la factorización $K = LDL^T$ se resuelve el sistema:

• Con la factorización $K = LDL^T$ se resuelve el sistema:

$$LDL^{T}\left[\begin{array}{c}d_{z}\\d_{\lambda}\end{array}\right]=-\left[\begin{array}{c}r_{c}\\r_{b}\end{array}\right],$$

donde
$$z = \begin{bmatrix} y \\ x \end{bmatrix}$$
, $rc = \begin{bmatrix} rc_y \\ rc_x \end{bmatrix}$ también en paralelo.

Formulación dual Datos no linealmente separables Formulación con puntos interiores MSV secuencial MSV en paralelo

Puntos interiores en paralelo

• Se tiene:

$$d\lambda'' = L_C^{-1} \left(r_b - \sum_{i=1}^p L_{A_i} r_{c_i} \right)$$
 (5)

$$d\lambda^{'} = D_C^{-1} d\lambda^{''} \tag{6}$$

$$d\lambda = L_C^{-T} d\lambda' \tag{7}$$

$$dz_{i}^{'} = D_{i}^{-1}r_{c_{i}}$$
 (8)

$$dz_i = dz_i^{'} - L_{A_i}^T d\lambda. (9)$$

Se tiene:

$$d\lambda'' = L_C^{-1} \left(r_b - \sum_{i=1}^p L_{A_i} r_{c_i} \right)$$
 (5)

$$d\lambda^{'} = D_C^{-1} d\lambda^{''} \tag{6}$$

$$d\lambda = L_C^{-T} d\lambda' \tag{7}$$

$$dz_{i}^{'} = D_{i}^{-1}r_{c_{i}}$$
 (8)

$$dz_i = dz_i' - L_{A_i}^T d\lambda. (9)$$

En cada procesador se lleva a cabo el producto $L_{A_i}r_{c_i}$ y en un sólo procesador se realiza (5), (6), (7). El vector $d\lambda$ se transmite a cada procesador en los que se realiza el producto $D_i^{-1}r_{c_i}$ y (9).

Criterios de selección:

- Criterios de selección:
 - Dimensiones.

- Criterios de selección:
 - Dimensiones.
 - Sin valores faltantes.

- Criterios de selección:
 - Dimensiones.
 - Sin valores faltantes.
 - De acuerdo a las características de la computadora (procesador con dos núcleos y 8 gb en RAM)

- Criterios de selección:
 - Dimensiones.
 - Sin valores faltantes.
 - De acuerdo a las características de la computadora (procesador con dos núcleos y 8 gb en RAM)
 - Se elige la tasa de clasificación incorrecta como medida de precisión.

• Avisos de texto en 12 sitios de internet.

- Avisos de texto en 12 sitios de internet.
- Modelo por bolsa de palabras.

- Avisos de texto en 12 sitios de internet.
- Modelo por bolsa de palabras.
- Etiquetas binarias (aprueba o no el aviso)

- Avisos de texto en 12 sitios de internet.
- Modelo por bolsa de palabras.
- Etiquetas binarias (aprueba o no el aviso)
- 4,143 renglones y 54,877 columnas.

- Avisos de texto en 12 sitios de internet.
- Modelo por bolsa de palabras.
- Etiquetas binarias (aprueba o no el aviso)
- 4,143 renglones y 54,877 columnas.
- Se divide en un 10 % para el conjunto de prueba

	MSV	RL
Entrenamiento	1.072e-3	2.681 e-3
Prueba	7.729e-2	5.797e-2

• Compuestos presentes en la sangre.

- Compuestos presentes en la sangre.
- Etiquetas binarias (el compuesto se une o no a la trombina)

- Compuestos presentes en la sangre.
- Etiquetas binarias (el compuesto se une o no a la trombina)
- El conjunto de entrenamiento tiene 1,909 renglones y 139,351 columnas

- Compuestos presentes en la sangre.
- Etiquetas binarias (el compuesto se une o no a la trombina)
- El conjunto de entrenamiento tiene 1,909 renglones y 139,351 columnas
- El conjunto de prueba tiene 634 renglones.

	MSV	RL
Entrenamiento	1.047e-3	2.2e-2
Prueba	2.3659e-1	2.3659e-1

 La conexión entre nodos de un clúster, la transmisión de datos entre ellos y el manejo de memoria es posible consultar en la referencia de Woodsend y Gondzio.

- La conexión entre nodos de un clúster, la transmisión de datos entre ellos y el manejo de memoria es posible consultar en la referencia de Woodsend y Gondzio.
- La formulación dual de la MSV permite considerar problemas de la forma:

$$\begin{split} \min_{\lambda_g} \frac{1}{2} \lambda_g^T \hat{Y} \hat{K} \hat{Y} \lambda_g - \lambda_g^T e \\ \text{sujeto a:} \quad e^T \hat{Y} \lambda_g = 0, \quad 0 \leq \lambda_g \leq C \end{split}$$

- La conexión entre nodos de un clúster, la transmisión de datos entre ellos y el manejo de memoria es posible consultar en la referencia de Woodsend y Gondzio.
- La formulación dual de la MSV permite considerar problemas de la forma:

$$\min_{\lambda_g} \frac{1}{2} \lambda_g^T \hat{Y} \hat{K} \hat{Y} \lambda_g - \lambda_g^T e$$

sujeto a:
$$e^T \hat{Y} \lambda_g = 0$$
, $0 \le \lambda_g \le C$

donde \hat{K} es una matriz con elementos $\hat{K}_{i,j} = \hat{K}(\mathbf{x}_i, \mathbf{x}_j)$ y $\hat{K}(\mathbf{x}_i, \mathbf{x}_i) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_i)$, ϕ no lineal.

- La conexión entre nodos de un clúster, la transmisión de datos entre ellos y el manejo de memoria es posible consultar en la referencia de Woodsend y Gondzio.
- La formulación dual de la MSV permite considerar problemas de la forma:

$$\min_{\lambda_{g}} \frac{1}{2} \lambda_{g}^{T} \hat{Y} \hat{K} \hat{Y} \lambda_{g} - \lambda_{g}^{T} e$$

sujeto a:
$$e^T \hat{Y} \lambda_g = 0$$
, $0 \le \lambda_g \le C$

donde \hat{K} es una matriz con elementos $\hat{K}_{i,j} = \hat{K}(\mathbf{x}_i, \mathbf{x}_j)$ y $\hat{K}(\mathbf{x}_i, \mathbf{x}_i) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_i)$, ϕ no lineal.

 En la referencia de Woodsend y Gondzio se trabaja este enfoque para realizar en paralelo MSV.