Note on Kate's Rotation Project

February 13, 2019

For the linear mixed-effects model to fit the parabolas, we can consider

$$y = X(\beta + b + \Gamma(\alpha'x)) + \epsilon.$$

The goal is to find a vector $\boldsymbol{\alpha}$ that gives the best "purity" when clustering. \boldsymbol{X} will be the design matrix for the orthogonal polynomials; \boldsymbol{b} the vector of random effects; $\boldsymbol{\Gamma}$ a vector (of the same dimension of $\boldsymbol{\beta}$) of fixed-effects.

Actually, we can fit a model separately for the drug and placebo treatments

$$oldsymbol{y}_1 = oldsymbol{X}(oldsymbol{eta}_1 + oldsymbol{b}_1 + oldsymbol{\Gamma}_1(oldsymbol{lpha}'oldsymbol{x})) + oldsymbol{\epsilon}_1 \ \ ext{and} \ \ oldsymbol{y}_2 = oldsymbol{X}(oldsymbol{eta}_2 + oldsymbol{b}_2 + oldsymbol{\Gamma}_2(oldsymbol{lpha}'oldsymbol{x})) + oldsymbol{\epsilon}_2.$$

My intuition says to find α that leads to big differences in Γ_1 and Γ_2 as well as differences between β_1 and β_2 . If we choose α and then fit the model, that will determine $\hat{\Gamma}_1, \hat{\Gamma}_2, \hat{\beta}_1$ and $\hat{\beta}_2$.