

# امنیت داده و شبکه

رمزنگاری متقارن (مدرن)

# فهرست مطالب

- □ رمزهای متقارن و قالبی
- □ ساختار رمزهای فیستل
- □ استاندارد رمزگذاری داده DES
- □ الگوريتم رمز 2DES و 3DES
- □ استاندارد رمزگذاری پیشرفته AES
  - 🗖 رمزهای متقارن معروف
  - □ مدهای کاری رمزهای متقارن



# رمزنگاری متقارن





# الگوریتمهای رمز متقارن

- □ رمزهای متقارن را میتوان با دو روش عمده تولید کرد:
  - رمزهای قطعهای یا قالبی (Block Cipher)
    - □ پردازش پیغام ها بصورت قطعه به قطعه
- □ اندازه متعارف مود استفاده برای قطعات ۶۴، ۱۲۸ یا ۲۵۶ بیتی است.
  - رمزهای جریانی (Stream Cipher)
    - پردازش پیغامها بصورت پیوسته



# رمزهای قالبی





# رمزگذاری کلاسیک-رمزگذاری مدرن

- □ در روشهای رمزگذاری مدرن، علاوه بر اَعمال جانشینی و جایگشت از توابع ساده مانند XOR استفاده می شود.
- □ مجموعه اعمال فوق طی مراحل متوالی روی متن اولیه اعمال میشوند.
  - $\square$  تکنیک بکارگرفته شده در Rotor Machineها الهام بخش روشهای رمزگذاری مدرن بوده است.



# رمز قالبی ایدهآل



- □ یک جانشینی عمده
- طول کلید  $n.2^n$  برای قطعات n بیتی n
  - □ نیاز به کاهش طول کلید و ایجاد تقریبی از رمز قالبی ایدهآل



ایده رمز فیستل



# اصول رمزهای قالبی

- □ اغلب مبتنی بر ساختار رمز فیستل هستند.
- □ نگاشت قطعات متن آشکار به قطعات متن رمزشده باید (برای ممکن بودن رمزگشایی) برگشتپذیر باشد.
- □ ایده رمز محصولی (Product Cipher): الگوریتم رمز، قطعات ورودی را در چند مرحله ساده و متوالی پردازش می کند. به این مراحل دور می گوییم.
- □ هر دور عموماً مبتنی بر ترکیب اعمال سادهای همچون جایگزینی و جایگشت استوار است.



# شانون و رمز جانشینی و جایگشت

- □ شانون ایده استفاده از شبکه اَعمال جانشینی و جایگشت را در سال ۱۹۴۹ مطرح کرد.
  - □ پایه رمزهای مدرن بر اساس این دو عمل است:
    - جانشینی (S-box)
    - (P-box) جایگشت
  - این دو عمل، گمراه کنندگی (Confusion) و پراکندگی (Diffusion) پیام موردنظر و کلید را موجب می شوند.



# گمراهکنندگی و پراکندگی

□ الگوریتمهای رمز باید خصوصیات آماری پیام اصلی (متن آشکار) را به طور کامل مخفی کنند.

□ گمراه کنندگی (Confusion): رابطه بین متن رمزشده و کلید تا حد امکان پیچیده باشد.

□ پراکندگی (Diffusion): ساختار آماری متن آشکار بر روی حجم وسیعی از متنهای رمزشده ممکن پراکنده شود.



# استانداردهای رمزهای قالبی آمریکا

- □ رمزهای قالبی استاندارد
- استاندارد رمزگذاری داده DES
- استاندارد رمزگذاری پیشرفته AES
  - □ تحت نظارت

National Institute of Science and Technology (NIST)



# فهرست مطالب

- □ رمزهای متقارن و قالبی
- □ ساختار رمزهای فیستل
- □ استاندارد رمزگذاری داده DES
- □ الگوريتم رمز 2DES و 3DES
- □ استاندارد رمزگذاری پیشرفته AES
  - □ رمزهای متقارن معروف
  - □ مدهای کاری رمزهای متقارن



# ساختار رمزهای فیستل

- □ معمولا الگوریتمهای رمزنگاری از ساختاری تبعیت میکنند که توسط فیستل در سال ۱۹۷۳ در IBM پیشنهاد شد.
  - 🗖 مبتنی بر رمز محصولی برگشتپذیر
  - □ مبتنی بر مفهوم شبکه جانشینی و جایگشت
  - □ هر قطعه ورودی را به دو نیمه تقسیم می کند:
    - پردازش در طی چند مرحله (دور)
    - انجام جانشینی بر روی نیمه چپ
- جانشینی بر اساس تابع دور حاصل از زیرکلید هر دور و نیمه راست
  - ایگشت با معاوضه دو نیمه





# ساختار رمزهای فیستل

رمزهای فیستل به انتخاب پارامترهای زیر بستگی دارند.

- □ طول قطعه (بلوک): ۶۴ بیت تا ۱۲۸ بیت
- □ طول کلید: ۶۴ بیت یا کمتر در حال حاضر کافی نیست.
  - 🗖 تعداد دورها: معمولا ۱۶ دور
    - □ الگوريتم توليد زير كليدها
- هرچه پیچیدهتر باشد، تحلیل هم سختتر میشود.
- $\square$  تابع دور (Round function): هر چه پیچیده تر تحلیل سخت تر
  - □ سرعت رمز گذاری /رمز گشایی
  - □ سادگی بررسی و درک درستی عملکرد





### رمزگذاری و رمزگشایی در ساختار رمز فیستل

 $LD_{16} = RE_0$ 

 $\square$  نیازی به برگشتیذیر بودن  $\square$ تابع F نیست.

# فهرست مطالب

- □ رمزهای متقارن و قطعهای
  - □ ساختار رمزهای فیستل
- □ استاندارد رمزگذاری داده DES
  - □ الگوريتم رمز 2DES و 3DES
- □ استاندارد رمزگذاری پیشرفته AES
  - □ رمزهای متقارن معروف
  - □ مدهای کاری رمزهای متقارن



# استاندارد رمزگذاری داده DES

- 🗖 مرور
- در سال ۱۹۷۴ توسط IBM تولید شد.
- □ پس از انجام تغییراتی توسط NSA، در سال ۱۹۷۶ آن را پذیرفت.
  - اساس الگوریتم ترکیبی از عملیات جایگزینی و جایگشت است.

#### □ مشخصات

- طول کلید ۵۶ بیت
- طول قطعههای ورودی و خروجی: ۴۴ بیت
  - تعداد دورها: ۱۶ دور
- الگوریتمهای رمزگذاری و رمزگشایی عمومی هستند، ولی مبانی ریاضی و اصول طراحی آنها فاش نشد.



# DES امن نیست!

- $2^{56} = 7.2 * 10^{16}$  کلید ۵۶ بیتی دارای کل فضای حالت  $\Box$ 
  - حمله آزمون جامع هرچند مشکل ولی امکانپذیر است.
- □ در ژانویه ۱۹۹۹ این الگوریتم توسط آزمون جامع فضای کلید در ۲۳ ساعت شکسته شد!
- بیش از ۱۰۰۰ کامپیوتر بر روی اینترنت هر یک بخش کوچکی از کار جستجو را انجام دادند.
  - □ به الگوریتمهای امنتر با طول کلید بیشتر نیاز داریم.
    - □ علاوه بر این، DES طراحی شفاف و روشن ندارد.



# استاندارد رمزگذاری داده DES



20



# ساختارفیستل رمز DES



# حمله تحلیلی به DES

- $\square$  عموما حملات آماری هستند.
- □ از ساختار داخلی DES استفاده می کنند.
- تشخیص همه یا بعضی از بیتهای کلید میانی
  - جستجوی کامل روی بقیه بیتها
    - 🗖 شاملِ
    - تحلیل تفاضلی
      - تحلیل خطی
- □ این روشها هنوز به طور عملی امکانپذیر نیستند.
  - □ جستجوی کامل سادهتر به نظر میرسد!



# تحلیل تفاضلي و خطی DES

### □ تحليل تفاضلي

- ارائه شده توسط Murphy و دیگران در سال ۱۹۹۰
- مبتنی بر اینکه تغییرات ورودی چگونه به تغییرات در خروجی منتقل میشوند.
  - نیاز به ۲<sup>۴۷</sup> زوج plaintext/ciphertext انتخابی دارد.

### □ تحلیل خطی

- ارائه شده توسط Matsui در سال ۱۹۹۱
- مبتنی بر یافتن یک تقریب خطی از تبدیلات انجام شده توسط DES
  - نیاز به۲<sup>۴۷</sup> زوج plaintext/ciphertext انتخابی دارد.

# فهرست مطالب

- □ رمزهای متقارن و قطعهای
  - □ ساختار رمزهای فیستل
- □ استاندارد رمزگذاری داده DES
- □ الگوريتم رمز 2DES و 3DES
- □ استاندارد رمزگذاری پیشرفته AES
  - □ رمزهای متقارن معروف
  - □ مدهای کاری رمزهای متقارن



# الگوريتم 2DES و 3DES

#### □ مسئله:

■ آسیبپذیری DES در مقابل حمله آزمون جامع

### □ راه حل:

- پیچیده کردن الگوریتم DES از طریق اضافه کردن مراحل رمزنگاری و افزایش طول کلید
  - یا استفاده از الگوریتمهای رمزنگاری مناسب دیگر

# الگوريتم 2DES



□ افزایش قدرت DES با رمز گذاری چندمر حلهای با DES و استفاده از کلیدهای متعدد

#### 2DES

 $C=E(K_2, E(K_1,P))$ 

 $P=D(K_1, D(K_2,C))$ 

طول کلید = ۱۱۲ بیت





Decryption

# تحليل الگوريتم رمز 2DES

- □ حمله ملاقات در میانه (Meet-in-the-Middle)
- $\square$  C = E(K<sub>2</sub>, E(K<sub>1</sub>,P))
- $\square$  X = D(K<sub>2</sub>,C) = E(K<sub>1</sub>,P)

- با داشتن یک زوج (P, C)،
- را با  $7^{08}$  کلید ممکن برای  $K_1$  رمزگذاری کن و مقادیر  $K_1$  را ذخیره کن.  $K_2$  رمزگشایی کن و مقادیر حاصله با مقادیر ذخیره  $K_2$  کلید ممکن برای  $K_2$  رمزگشایی کن و مقادیر حاصله با مقادیر ذخیره شده مقایسه کن.
  - در صورت تطابق، درستی زوج کلید یافت شده را چک کن.
    - ییچیدگی انجام عملیات فوق  $O(2^{56})$  است.



# الگوریتم 3DES با دو کلید

- DES با سه مرحله رمزگذاری با  $\Box$ 
  - □ امکان بهره گیری از DES به صورت زیر:

$$C = E(K_1, D(K_2, E(K_1, P)))$$

$$P = D(K_1, E(K_2, D(K_1, C)))$$







# الگوريتم 3DES با سه كليد

- □ استفاده از سه کلید مختلف
- $C = E(K_3, D(K_2, E(K_1, P)))$ 
  - □ طول کلید = ۱۶۸ بیت

- □ استفاده در برخی برنامههای تحت اینترنت
  - PGP
  - S/MIME



# فهرست مطالب

- □ رمزهای متقارن و قطعهای
  - □ ساختار رمزهای فیستل
- □ استاندارد رمزگذاری داده DES
  - □ الگوريتم رمز 2DES و 3DES
- □ استاندارد رمزگذاری پیشرفته AES
  - □ رمزهای متقارن معروف
  - □ مدهای کاری رمزهای متقارن



# استاندارد رمزگذاری پیشرفته AES

- استاندارد جدید برگزار کرد. NIST مسابقه ای دو مرحله ای برای طراحی استاندارد جدید برگزار کرد.
  - تمام طراحی ها باید بر اساس اصول کاملاً روشن انجام شوند.
- سازمانهای دولتی آمریکا حق هیچ گونه دخالتی در طراحی الگوریتم ندارند.

Vincent Rijmen•
Joan Daemen•

- □ در سال ۲۰۰۰ رایندال (Rijndael) به عنوان برنده اعلام شد.
- استاندارد جدید تحت عنوان استاندارد رمزگذاری پیشرفته AES مورد قبول واقع شد.

# اصول طراحی Rijndael



□ J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag Berlin, 2002.





**Joan Daemen** (1965 - )



Vincent Rijmen (1970 - )



### مشخصات استاندارد AES

| طول کلید               | 128 | 192 | 256 |
|------------------------|-----|-----|-----|
| طول قطعه ورودی و خروجی | 128 | 128 | 128 |
| تعداد دور              | 10  | 12  | 14  |
| طول کلید هر دور        | 128 | 128 | 128 |

در الگوریتم اصلی Rijndael طول قطعه می تواند ۱۲۸، ۱۹۲ و یا ۲۵۶ بیت باشد، ولی در استاندارد FIPS PUB 197 طول آن به ۱۲۸بیت محدود شده است.



## مشخصات استاندارد AES

- □ مبتنی بر ساختار رمز فیستل نیست و کل قطعه داده پردازش می شود.
  - □ کلید ۱۲۸ بیتی (۴ کلمهای)، به یک آرایه W با ۴۴ عنصر از کلمات ۳۲ بیتی بسط داده می شود.
    - □ کلید هر دور ۴ عنصر این آرایه (۱۲۸ بیت) است.



## نحوه كار AES-128

- □ الگوریتم زمان بندی کلید نقش تهیه کلید برای هر دور بر اساس کلید اصلی را بر عهده دارد.
  - □ برخلاف DES و بسیاری از رمزهای دیگر، اَعمال لازم بر روی بایتها انجام می شود نه بیتها.
    - متن آشکار ۱۲۸ بیتی به شکل یک ماتریس حالت \*\* در می آید.
      - هر درایه یک بایت از متن آشکار را نشان میدهد.
        - این ماتریس به صورت ستونی پر میشود.
        - این ماتریس در انتها مولد متن رمز است.



### نحوه كار AES-128

 $\Box$  متن آشکار ورودی به صورت ستونی در ماتریس حالت ذخیره می شود.

Input = 32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34

| 32 | 88 | 31 | e0 |
|----|----|----|----|
| 43 | 5a | 31 | 37 |
| f6 | 30 | 98 | 07 |
| a8 | 8d | a2 | 34 |



# مراحل رمزگذاری AES-128

- $\Box$  در هر دور  $\Upsilon$  عمل بر روی ماتریس حالت اعمال می شود.
- - شیفت سطری
  - **ترکیب ستونها:** ترکیب خطی ستونها با استفاده از ضرب ماتریسی
- اضافه نمودن کلید دور: جمع مبنای دو ماتریس حالت با کلید دور
  - □ هر چهار عمل برگشت پذیر بوده، لذا هر دور برگشت پذیر است.



38







# جایگزینی بایتها (S-box) در AES

- □ نوعی تابع غیرخطی محسوب میشود
- □ توسط یک جدول ۱۶×۱۶ پیادهسازی میشود.
- این جدول بر اساس تبدیل مقادیر در میدان متناهی  $^{7}$  ساخته  $\Box$

می شود و در مقابل حملات شناخته شده مقاوم است.



# AES) در S-box) در

- $\Box$  ورودی تابع سطر و ستون درایه جدول را معین کرده و مقدار ذخیره شده در این درایه خروجی تابع است.
  - □ با داشتن یک عنصر از ماتریس حالت
  - سطر جدول = ۴ بیت سمت چپ عنصر
  - ستون جدول = ۴ بیت سمت راست عنصر
  - □ برای رمزگشایی از جدول معکوس استفاده می شود.



# جایگزینی بایتها (S-box) در AES





# جداول جایگزینی در AES

|   |   | (a) S-box |    |    |    |    |    |    |   |    |      |     |            |     |     |      |        |         |       |    |    |    |    |    |    |    |
|---|---|-----------|----|----|----|----|----|----|---|----|------|-----|------------|-----|-----|------|--------|---------|-------|----|----|----|----|----|----|----|
|   |   |           |    |    |    |    |    |    |   | у  |      |     |            |     |     |      |        |         |       |    |    |    |    |    |    |    |
|   |   | 0         | 1  | 2  | 3  | 4  | 5  | 6  | 1 | 7  | 8 9  | ) A | <b>A</b> 1 | В   | C I | D 1  | E I    | F       |       |    |    |    |    |    |    |    |
|   | 0 | 63        | 7C | 77 | 7B | F2 | 6B | 6F | ( | :5 | 30 0 | 1 6 | 7 2        | B F | E   | 07 A | В 7    | 6       |       |    |    |    |    |    |    |    |
|   | 1 | CA        | 82 | C9 | 7D | FA | 59 | 4  |   |    | -    | -   |            |     |     | (b   | ) Inve | rse S-b | ox    |    |    |    |    |    |    |    |
|   | 2 | В7        | FD | 93 | 26 | 36 | 3F | F  |   |    |      |     |            |     |     |      |        |         | Check |    |    |    |    |    |    |    |
|   | 3 | 04        | C7 | 23 | C3 | 18 | 96 | 0  |   |    |      |     |            |     |     |      |        |         | v     |    |    |    |    |    |    | ,  |
|   | 4 | 09        | 83 | 2C | 1A | 1B | 6E | 5. |   |    | 0    | 1   | 2          | 3   | 4   | 5    | 6      | 7       | 8     | 9  | A  | В  | C  | D  | E  | F  |
|   | 5 | 53        | D1 | 00 | ED | 20 | FC | В  |   | 0  | 52   | 09  | 6A         | D5  | 30  | 36   | A5     | 38      | BF    | 40 | A3 | 9E | 81 | F3 | D7 | FB |
|   | 6 | D0        | EF | AA | FB | 43 | 4D | 3  |   | 1  | 7C   | E3  | 39         | 82  | 9B  | 2F   | FF     | 87      | 34    | 8E | 43 | 44 | C4 | DE | E9 | СВ |
| x | 7 | 51        | A3 | 40 | 8F | 92 | 9D | 3  |   | 2  | 54   | 7B  | 94         | 32  | A6  | C2   | 23     | 3D      | EE    | 4C | 95 | 0B | 42 | FA | C3 | 4E |
|   | 8 | CD        | 0C | 13 | EC | 5F | 97 | 4  |   | 3  | 08   | 2E  | A1         | 66  | 28  | D9   | 24     | B2      | 76    | 5B | A2 | 49 | 6D | 8B | D1 | 25 |
|   | 9 | 60        | 81 | 4F | DC | 22 | 2A | 9  |   | 4  | 72   | F8  | F6         | 64  | 86  | 68   | 98     | 16      | D4    | A4 | 5C | CC | 5D | 65 | B6 | 92 |
|   | A | E0        | 32 | 3A | 0A | 49 | 06 | 2  |   | 5  | 6C   | 70  | 48         | 50  | FD  | ED   | В9     | DA      | 5E    | 15 | 46 | 57 | A7 | 8D | 9D | 84 |
|   | В | E7        | C8 | 37 | 6D | 8D | D5 | 4  |   | 6  | 90   | D8  | AB         | 00  | 8C  | BC   | D3     | 0A      | F7    | E4 | 58 | 05 | В8 | В3 | 45 | 06 |
|   | С | BA        | 78 | 25 | 2E | 1C | A6 | В  | x | 7  | D0   | 2C  | 1E         | 8F  | CA  | 3F   | 0F     | 02      | C1    | AF | BD | 03 | 01 | 13 | 8A | 6B |
|   | D | 70        | 3E | B5 | 66 | 48 | 03 | F  |   | 8  | 3A   | 91  | 11         | 41  | 4F  | 67   | DC     | EA      | 97    | F2 | CF | CE | F0 | B4 | E6 | 73 |
|   | E | E1        | F8 | 98 | 11 | 69 | D9 | 8  |   | 9  | 96   | AC  | 74         | 22  | E7  | AD   | 35     | 85      | E2    | F9 | 37 | E8 | 1C | 75 | DF | 6E |
|   | F | 8C        | A1 | 89 | 0D | BF | E6 | 4  |   | A  | 47   | F1  | 1A         | 71  | 1D  | 29   | C5     | 89      | 6F    | В7 | 62 | 0E | AA | 18 | BE | 1B |
|   |   |           |    |    |    |    |    |    |   | В  | FC   | 56  | 3E         | 4B  | C6  | D2   | 79     | 20      | 9A    | DB | C0 | FE | 78 | CD | 5A | F4 |
|   |   |           |    |    |    |    |    |    |   | С  | 1F   | DD  | A8         | 33  | 88  | 07   | C7     | 31      | B1    | 12 | 10 | 59 | 27 | 80 | EC | 5F |
|   |   |           |    |    |    |    |    |    |   | D  | 60   | 51  | 7F         | A9  | 19  | В5   | 4A     | 0D      | 2D    | E5 | 7A | 9F | 93 | C9 | 9C | EF |
|   |   |           |    |    |    |    |    |    |   | E  | A0   | E0  | 3B         | 4D  | AE  | 2A   | F5     | В0      | C8    | EB | ВВ | 3C | 83 | 53 | 99 | 61 |
|   |   |           |    |    |    |    |    |    |   | F  | 17   | 2B  | 04         | 7E  | BA  | 77   | D6     | 26      | E1    | 69 | 14 | 63 | 55 | 21 | 0C | 7D |



# شیفت سطری در AES

- □ شیفت چرخشی به چپ که در آن
  - سطر اول بدون تغییر
- سطر دوم یک بایت شیفت چرخشی به چپ
- سطر سوم دو بایت شیفت چرخشی به چپ
- سطر چهارم سه بایت شیفت چرخشی به چپ
- □ در رمزگشایی، شیفت به راست انجام میشود.
- □ از آنجا که داده به صورت ستونی در ماتریس حالت ذخیره شده، لذا این مرحله یک جایگشت بین ستونها انجام میدهد.



### شیفت سطری در AES





#### ترکیب ستونها در AES

- 🗖 هر ستون جداگانه پردازش میشود.
- □ هر بایت با مقداری (وابسته به هر چهار عنصر آن ستون) جایگزین می شود.
  - □ با ضرب ماتریسی این کار انجام میشود.



#### ترکیب ستونها در AES





#### تركيب ستونها در AES

جمع همان XOR است ولی ضرب باید در میدان متناهی ۲۸ انجام شود که آن هم با تعدادی XOR و شیفت دهی قابل انجام است (برای اطلاع از نحوه چگونگی مراجعه شود به فصل ۴ کتاب Stallings).

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$

$$s'_{0,j} = (2 \cdot s_{0,j}) \oplus (3 \cdot s_{1,j}) \oplus s_{2,j} \oplus s_{3,j}$$
  
 $s'_{1,j} = s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j}) \oplus s_{3,j}$   
 $s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j})$   
 $s'_{3,j} = (3 \cdot s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 \cdot s_{3,j})$ 



#### ترکیب ستونها در AES

برای رمزگشایی از ماتریس دیگری در ضرب استفاده میشود.



### افزودن کلید دور در AES

- $\square$  ماتریس حالت با کلید دور XOR می شود.
  - $\square$  به صورت ستونی انجام می شود.
- □ برای رمزگشایی نیز همین عمل انجام میشود.

| S <sub>0,0</sub> | S <sub>0,1</sub> | S <sub>0,2</sub> | S <sub>0,3</sub> |
|------------------|------------------|------------------|------------------|
| S <sub>1,0</sub> | S <sub>1,1</sub> | s <sub>1,2</sub> | S <sub>1,3</sub> |
| S <sub>2,0</sub> | S <sub>2,1</sub> | S <sub>2,2</sub> | S <sub>2,3</sub> |
| S <sub>3,0</sub> | S <sub>3,1</sub> | S <sub>3,2</sub> | S <sub>3,3</sub> |

 $\oplus$ 

| Wi | W <sub>i+1</sub> | W <sub>i+2</sub> | W <sub>i+3</sub> |
|----|------------------|------------------|------------------|
|----|------------------|------------------|------------------|

=

| s' <sub>0</sub> | ,o s  | 0,1 S | 0,2 S   | ),3 |
|-----------------|-------|-------|---------|-----|
| s' <sub>1</sub> | ,o s' | 1,1 S | 1,2 S'1 | ,3  |
| s' <sub>2</sub> | ,o s  | 2,1 S | 2,2 s'2 | 2,3 |
| s' <sub>3</sub> | ,o s  | 3,1 s | 3,2 S   | 3,3 |





# بسط کلید در AES

- □ یک کلید ۱۲۸ بیتی (۱۶ بایتی) دریافت میکند و آن را به یک آرایه ۴۴ عنصره (از کلمات ۳۲ بیتی) بسط میدهد.
  - □ شروع: کپی کلید در ۴ عنصر (کلمه) اول آرایه
- w[i-4] وw[i-1] بر اساس w[i-4] وw[i-4]
- □ عناصر موجود در درایه های مضرب ۴ با تابع پیچیده g محاسبه می شوند.

#### بسط کلید در AES



□ If i=4k:

g

 $w[i] = SubWord(RotWord(w[i-1])) \oplus Rcon[i/4]' \oplus w[i-4]$ 

Otherwise:

$$w[i] = w[i-1] \oplus w[i-4]$$



#### بسط کلید در AES

- تابع پیچیده g شامل زیرتوابع زیر است:
- 1. (RotWord) شیفت چرخشی به چپ به اندازه یک بایت
- 2. (SubWord) جایگزینی هر بایت بر اساس جدول S-box مورد استفاده در رمزگذاری
  - 3. ترکیب XOR مقدار حاصل از انجام اَعمال ۱ و ۲ با مقدار ثابت Rcon[i/4]

Rcon[i/4] = (RC[i/4], 0, 0, 0)

| j     | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|-------|----|----|----|----|----|----|----|----|----|----|
| RC[j] | 01 | 02 | 04 | 08 | 10 | 20 | 40 | 80 | 1B | 36 |



#### امنیت AES

- □ تا کنون حمله ای بر روی آن کشف نشده و در مقابل همه حملات معمول اَمن طراحی شده است.
  - □ از لحاظ مقایسه با DES:
- فرض کنید ماشینی وجود دارد که کلید DES را از طریق آزمون جامع در یک ثانیه بازیابی می کند، یعنی در هر ثانیه ۲<sup>۵۶</sup> کلید را امتحان می کند. این ماشین کلید AES را در ۱۰<sup>۱۲</sup>×۱۴۹ سال بازیابی می نماید.



# جنبههای پیادهسازی AES

- □ قابلیت پیادهسازی روی پردازندههای ۸ بیتی
- □ قابلیت پیادهسازی کارا روی پردازندههای ۳۲ بیتی
- □ همه اَعمال با شیفت، XOR و استفاده از یک سری جداول look-up قابل انجام است.
- □ به اعتقاد طراحان آن، قابلیت پیادهسازی بسیار کارای آن باعث انتخاب آن شده است.



#### مجموعه دستورالعمل AES

- را به AES اینتل در سال ۲۰۰۸ مجموعه دستورالعملهای AES را به CPU های خود افزود  $\rightarrow$  افزایش چشمگیر سرعت CPU
- □ مجموعه دستورالعملهای مشابهی برای سایر معماریهای CPU نظیر ARM وجود دارد.

| توصيف                                         | دستورالعمل      |
|-----------------------------------------------|-----------------|
| اجرای یک دور عادی از رمزگذاری AES             | AESENC          |
| اجرای دور آخر از رمزگذاری AES                 | AESENCLAST      |
| اجرای یک دور عادی از رمزگشایی AES             | AESDEC          |
| اجرای دور آخر از رمزگشایی AES                 | AESDECLAST      |
| کمک در تولید کلید دور AES                     | AESKEYGENASSIST |
| کمک در عملیات Inverse Mix Columns             | AESIMC          |
| ضرب بدون رقم نقلی (عملیات در میدانهای متناهی) | PCLMULQDQ       |

# فهرست مطالب

- □ رمزهای متقارن و قطعهای
  - □ ساختار رمزهای فیستل
- □ استاندارد رمزگذاری داده DES
  - □ الگوريتم رمز 2DES و 3DES
- □ استاندارد رمزگذاری پیشرفته AES
  - □ رمزهای متقارن معروف
  - □ مدهای کاری رمزهای متقارن

#### **IDEA**



- 🗖 ابداع شده توسط Messay و Lai در سال ۱۹۹۰
  - 🗖 ویژگیها
  - طول کلید : ۱۲۸ بیت
  - طول بلاک : ۶۴ بیت
    - تعداد دورها : ۸ دور
  - انجام عملیات روی عملوندهای ۱۶ بیتی



#### تحليل IDEA

- □ تا كنون هيچ حمله عملي عليه IDEA شناخته نشده است.
  - □ به نظر می رسد تا مدتها نسبت به حملات امن باشد.
- □ طول کلید ۱۲۸ بیتی حمله آزمون جامع را غیرممکن می کند (حداقل با تکنولوژیهای موجود).





- □ طراحی شده توسط Schneier در سال ۹۴/۱۹۹۳
- □ وجود پیادهسازیهای پرسرعت روی پردازندههای ۳۲بیتی
  - □ فشردگی: نیاز به کمتر از 5k حافظه
    - 🗖 پیادهسازی آسان
    - □ تحليل الگوريتم آسان
  - □ طول كليد متغير: درجه امنيت قابل تغيير است.





#### ویژگیهای Blowfish

- □ طول بلاک: ۶۴ بیت
- 🗖 تعداد دورها: ۱۶ دور
- □ طول کلید متغیر: ۳۲ تا ۴۴۸ بیت
- تولید زیر کلید و S-Box های وابسته به کلید

#### RC5



- □ انطباق با نرم افزارها و سخت افزارهای مختلف
- □ سرعت اجرای زیاد: عملیات روی کلمه ها انجام می شوند.
  - □ انطباق با پردازندههای با تعداد بیتهای متفاوت
    - □ طول بلاک متغیر
    - □ طول كليد متغير
    - 🗖 تعداد دورها متغير
      - □ نیاز به حافظه کم
    - □ طراحی و تحلیل الگوریتم ساده
- $\Box$  تعداد دورهای وابسته به داده: تحلیل رمز را مشکل می کند.

# **CAST-128**



- 🗖 ابداع شده توسط Adams و Tavares در سال ۱۹۹۷
  - □ طول کلید متغیر: از ۴۰ تا ۱۲۸ بیت (افزایش ۸ بیتی)
    - 🗖 تعداد دور: ۱۶ دور
    - □ مشابه ساختار کلاسیک فیستل است با دو تفاوت زیر:
      - در هر دور از دو زیرکلید استفاده میکند.
        - تابع F به دور بستگی دارد.
  - $\square$  در حال استفاده در PGP (امن سازی سرویس ایمیل)

# مقايسه سرعت الگوريتمها



| Algorithm | Clock<br>cycles per<br>round | # of<br>rounds | #of clock cycles per byte encrypted |  |  |  |  |
|-----------|------------------------------|----------------|-------------------------------------|--|--|--|--|
| Blowfish  | 9                            | 16             | 18                                  |  |  |  |  |
| RC5       | 12                           | 16             | 23                                  |  |  |  |  |
| DES       | 18                           | 16             | 45                                  |  |  |  |  |
| IDEA      | 50                           | 8              | 50                                  |  |  |  |  |
| 3DES      | 18                           | 48             | 108                                 |  |  |  |  |



## فهرست مطالب

- □ رمزهای متقارن و قطعهای
  - □ ساختار رمزهای فیستل
- □ استاندارد رمزگذاری داده DES
- □ الگوريتم رمز 2DES و 3DES
- □ استاندارد رمزگذاری پیشرفته AES
  - □ رمزهای متقارن معروف
  - □ مدهای کاری رمزهای متقارن



# استفاده از رمزهای قطعهای

□ رمزهای قطعه ای به طور مستقل امنیت زیادی را به ارمغان نمیآورند. بلکه باید در مدهای کاری مناسب مورد استفاده قرار گیرند.

□ مدهای کاری که متنهای مشابه را به متنهای رمزشده یکسان تبدیل میکنند، امن نیستند. صرف نظر از رمز قطعهای مورد استفاده!



### وضعیت ایده آل

- □ ساختار الگوریتم رمزنگاری متقارن (مد کاری) به گونهای باشد که قابلیتهای عناصر سازنده خود (رمزهای قطعهای) را به ارث ببرد.
- یعنی با اطمینان از رمزهای قطعهای، بتوانیم از الگوریتم رمزنگاری نیز مطمئن شویم.



### مدهای کاری رمزهای قطعه ای

- □ امروزه مدهای کاری با توجه به امنیت قابل اثبات طراحی میشوند.
- □ مدهای کاری می توانند از رمزهای قطعهای DES ،AES، ... استفاده کنند.
  - □ برخی مدهای کاری پراهمیت عبارتند از:
    - ECB: Electronic Code Book
    - CBC: Cipher Block Chaining
      - CTR: Counter Mode
      - CFB: Cipher Feed Back
      - OFB: Output Feed Back

#### مد کاری ECB (Electronic Code Book)















#### بررسی مد کاری ECB

- □ اشکال اساسی: هر متن آشکار به ازاء کلید ثابت همیشه به یک متن رمز شده نگاشته می شود.
  - دشمن می تواند دریابد که پیامهای یکسان ارسال شدهاند.
- □ این مد امن محسوب نمی شود حتی اگر از یک رمز قطعهای قوی استفاده کنیم.
  - □ ECB مثالی از مواردی است که علی رغم بهرهبرداری از عناصر مرغوب، کیفیت نهایی دلخواه نیست.

#### مد کاری CBC مد (Cipher Block Chaining)







#### مد کاری CBC

- این مد از یک مقدار دهی اولیه تصادفی(IV) بهره می گیرد.  $\Box$
- مقدار |V| در هر بار رمزگذاری به صورت تصادفی تغییر می کند.
  - □ ۱۷ همراه با متن رمز شده ارسال میشود.
- در صورت ارسال IV بصورت متن آشکار، تحلیلگر ممکن است بتواند با فرستادن IV جعلی موردنظر خود، منجر به تغییر خاصی در پیغام واگشایی شده در سمت گیرنده شود.
  - IV نیز باید بصورت رمز شده ارسال شود. برای اینکار می توان از مد کاری ECB استفاده کرد.
    - □ هر متن آشکار به ازاء کلید ثابت هر بار به یک متن رمز شده متفاوت نگاشته می شود (زیرا مقدار ۱۷ تغییر می نماید).



#### بررسی مد کاری CBC

- □ ملزومات امنیتی:
- IV باید کاملاً غیر قابل پیشبینی باشد.
  - 🗖 رمزگذاری:
- عملیات رمزگذاری قابل موازیسازی نیست.
- مقدار IV و متن آشکار باید در دسترس باشند.
  - □ رمزگشایی:
  - عملیات رمزگشایی قابل موازی سازی است.
- مقدار IV و متن رمزشده باید در دسترس باشند.

## مد کاری CFB (Cipher Feed Back)



#### □ رمزگذاری







## مد کاری CFB

#### □ رمزگشایی





#### مد کاری OFB مد (Output Feed Back)



#### □ رمزگذاری







## مد کاری OFB

#### □ رمزگشایی







#### مقایسه CFB و OFB

- $lacksymbol{\Box}$  موارد استفاده  $lacksymbol{\Box}$ 
  - رمز جریانی
  - کاربردهای بی درنگ
- □ عيب CFB: انتشار خطاي انتقال
- □ OFB این عیب را برطرف می کند.

#### مد کاری CTR (Counter Mode)



- مارنده به طول قطعه (b بیت) انتخاب شده و می تواند با مقدار اولیه صفر یا بصورت تصادفی انتخاب شود.
- رای هر قطعه به شمارنده یک واحد اضافه می شود (در پیمانه  $^{2b}$ 
  - □ رمز گذاری ↓

# counter + i $K \rightarrow E$ (b) (b) (b) $C_i$



□ رمزگشایی ل



#### بررسی مد کاری CTR

#### □ ملزومات امنیتی:

■ مقادیر شمارنده، در بازه طول عمر کلید، باید مجزا باشند.

#### 🗖 رمزگذاری:

- عملیات رمزگذاری قابل موازی سازی است.
- برای عملیات رمزگذاری نیازی به متن آشکار نیست.



#### بررسی مد کاری CTR

- 🗖 رمزگشایی:
- عملیات رمزگشایی قابل موازی سازی است.
- برای عملیات رمزگشایی نیازی به متن رمز شده نیست.

#### 🗖 پیادهسازی:

- به شکل کارایی میتواند پیادهسازی سختافزاری و نرمافزاری شود.
  - از پردازش موازی میتوان در آن استفاده کرد.



## مقایسه کاربرد انواع مدهای کاری

| کارپرد                                          | مد کاری                            |
|-------------------------------------------------|------------------------------------|
| ارسال مقادیر کوچک مانند کلید                    | <b>ECB</b> (Electronic Code Book)  |
| ارسال قطعه-گرای هر گونه داده<br>احراز صحت       | <b>CBC</b> (Cipher Block Chaining) |
| ارسال جریانی هر گونه داده                       | <b>CFB</b>                         |
| احراز صحت                                       | (Cipher Feed Back)                 |
| ارسال جریانی بر روی کانال نویزی (مانند ارتباطات | <b>OFB</b>                         |
| ماهوارهای)                                      | (Output Feed Back)                 |
| ارسال قطعه-گرای هر گونه داده                    | CTR                                |
| مناسب برای ارسال با سرعت بالا                   | (Counter)                          |



#### ہایان

84



## بيوست

## الگوريتم رمزنگاري DES



#### استاندارد رمزگذاری داده DES





#### ساختارفیستل رمز DES





## جداول جايگشت اوليه

- □ تاثیری در رمز ندارند.
- □ صرفاً جهت تسهیل در بارگذاری بلوکها در سختافزارهای دهه ۷۰.

|    | <u>Initi</u> |   |   |     |   |    |    |    |          |     |            |       |        |        |
|----|--------------|---|---|-----|---|----|----|----|----------|-----|------------|-------|--------|--------|
| 58 | 50           | 4 | 2 | 34  | 4 | 26 | 5  | 18 | 3        | 10  | 2          | کها 📗 | ری بلو | بارگذا |
| 60 | 52           | 4 | 4 | 36  | 5 | 28 | 3  | 20 |          | 12  | 4          |       | -      | ٠٧٠.   |
| 62 | 54           | 4 | 6 | 38  | 3 | 30 | )  | 22 | <u> </u> | 14  | 6          | tatio | on (1  |        |
| 64 | 56           | 4 | 8 | 40  | ) | 32 | 2  | 24 | -        | 16  | 8          | 24    | 64     | 32     |
| 57 | 49           | 4 | 1 | 33  | 3 | 25 | 25 |    | ,        | 9   | 1          | 23    | 63     | 31     |
| 59 | 51           | 4 | 3 | 3!  | 5 | 27 |    | 19 | )        | 11  | 3          | 22    | 62     | 30     |
| 61 | 53           | 4 | 5 | 37  | 7 | 29 | )  | 21 |          | 13  | 5          | 21    | 61     | 29     |
| 63 | 55           | 4 | 7 | 39  | 9 | 31 | L  | 23 | 3        | 15  | 7          | 20    | 60     | 28     |
|    |              | • |   | ) F |   | 2  |    | 12 | Ë.       | 1 1 | <b>E</b> 1 |       |        |        |
|    |              |   | ٥ | 35  |   | 3  |    | 43 | -        | 11  | 51         | 19    | 59     | 27     |
|    |              |   | 3 | 34  |   | 2  |    | 42 |          | 10  | 50         | 18    | 58     | 26     |
|    |              |   | 3 | 3   |   | 1  | 4  | 41 |          | 9   | 49         | 17    | 57     | 25     |

#### یک دور از DES





$$L_i = R_{i-1}$$

$$R_{i} = L_{i-1} \oplus F(R_{i-1}, K_{i})$$



Figure 2.4 Single Round of DES Algorithm

## تابع دور DES







#### تابع دور DES



#### بررسي S-Box در DES

- □ تنها بخش غيرخطى از الگوريتم DES هستند.
  - □ غيرقابل برگشت هستند.
  - □ اصول طراحی آنها سری هستند.
- استفاده از S-Box که هریک ۶ بیت ورودی را به ۴ بیت خروجی تبدیل میکنند.
  - بیتهای ۱ و ۶: انتخاب یکی از ۴ سطر ماتریس
  - بیتهای ۲ تا ۵: انتخاب یکی از ۱۶ ستون ماتریس
  - برگرداندن عدد موجود در آن خانه از ماتریس به عنوان خروجی
- در مجموع ۴۸ بیت ورودی از هشت S-Box مختلف عبور می کنند و ۳۲ بیت برمی گردانند.



#### یک S-Box از DES

|                |    | شماره ستون |    |   |    |    |    |    |    |    |    |    |    |    |    |    |
|----------------|----|------------|----|---|----|----|----|----|----|----|----|----|----|----|----|----|
| شماره<br>سطر ل | 0  | 1          | 2  | 3 | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| 0              | 14 | 4          | 13 | 1 | 2  | 15 | 11 | 8  | 3  | 10 | 6  | 12 | 5  | 9  | 0  | 7  |
| 1              | 0  | 15         | 7  | 4 | 14 | 2  | 13 | 1  | 10 | 6  | 12 | 11 | 9  | 5  | 3  | 8  |
| 2              | 4  | 1          | 14 | 8 | 13 | 6  | 2  | 11 | 15 | 12 | 9  | 7  | 3  | 10 | 5  | 0  |
| 3              | 15 | 12         | 8  | 2 | 4  | 9  | 1  | 7  | 5  | 11 | 3  | 14 | 10 | 0  | 6  | 13 |



## جدول جايگشت

DES مورد استفاده در هر دور □

| 1  | 16 | 7  | 20 | 21 | 29 | 12 | 28 | 17 |
|----|----|----|----|----|----|----|----|----|
| 9  | 1  | 15 | 23 | 26 | 5  | 18 | 31 | 10 |
| 17 | 2  | 8  | 24 | 14 | 32 | 27 | 3  | 9  |
| 25 | 19 | 13 | 30 | 6  | 22 | 11 | 4  | 25 |



#### زمانبندی کلید



- □ هر بیت کلید حدوداً در ۱۴ دور از ۱۶ دور از ۱۶ دور استفاده می شود.
- □ تابع تعبیه شده برای زمانبندی کلید،
  یک مقدار ۶۴ بیتی را به عنوان کلید
  میپذیرد ولیکن فقط ۵۶ بیت آن را
  استفاده می کند و بقیه به عنوان
  استفاده می تواند مورد استفاده قرار
  گیرد.

امنیت داده و شبکه



#### زمانبندی کلید

√کلید اصلی ۵۶ بیت √کلید هر دور ۴۸ بیت





#### عناصر زمانبند كليد

|                | ا شیفت چرخشی به چپ بر اساس جدول زیر |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
|----------------|-------------------------------------|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| شماره دور      | 1                                   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| تعداد بیت شیفت | 1                                   | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2  | 2  | 2  | 2  | 2  | 2  | 1  |

#### □ جداول جايگشت

|    | Permuted Choice One (PC-1) |    |    |    |    |    |  |  |  |  |  |  |  |  |
|----|----------------------------|----|----|----|----|----|--|--|--|--|--|--|--|--|
| 57 | 49                         | 41 | 33 | 25 | 17 | 9  |  |  |  |  |  |  |  |  |
| 1  | 58                         | 50 | 42 | 34 | 26 | 18 |  |  |  |  |  |  |  |  |
| 10 | 2                          | 59 | 51 | 43 | 35 | 27 |  |  |  |  |  |  |  |  |
| 19 | 11                         | 3  | 60 | 52 | 44 | 36 |  |  |  |  |  |  |  |  |
| 63 | 55                         | 47 | 39 | 31 | 23 | 15 |  |  |  |  |  |  |  |  |
| 7  | 62                         | 54 | 46 | 38 | 30 | 22 |  |  |  |  |  |  |  |  |
| 14 | 6                          | 61 | 53 | 45 | 37 | 29 |  |  |  |  |  |  |  |  |
| 21 | 13                         | 5  | 28 | 20 | 12 | 4  |  |  |  |  |  |  |  |  |

|    | Permuted Choice Two (PC-2) |    |    |    |    |    |    |  |  |  |  |  |  |  |
|----|----------------------------|----|----|----|----|----|----|--|--|--|--|--|--|--|
| 14 | 17                         | 11 | 24 | 1  | 5  | 3  | 28 |  |  |  |  |  |  |  |
| 15 | 6                          | 21 | 10 | 23 | 19 | 12 | 4  |  |  |  |  |  |  |  |
| 26 | 8                          | 16 | 7  | 27 | 20 | 13 | 2  |  |  |  |  |  |  |  |
| 41 | 52                         | 31 | 37 | 47 | 55 | 30 | 40 |  |  |  |  |  |  |  |
| 51 | 45                         | 33 | 48 | 44 | 49 | 39 | 56 |  |  |  |  |  |  |  |
| 34 | 53                         | 46 | 42 | 50 | 36 | 29 | 32 |  |  |  |  |  |  |  |

امنیت داده و شبکه



## ميزان توانمندي DES

- □ اندازه کلید
- $2^{56} = 7.2 * 10^{16}$  جالت کل فضای کل فضای کال هضای حالت ۵۶ = 2
- حمله آزمون جامع هرچند مشکل, ولی امکانپذیر است.
- □ آخرین گزارش ثبت شده در سال ۱۹۹۹ نشان از کشف کلید تنها در عرض ۲۳ ساعت دادهاند!
  - 🗖 حمله زمانی
  - پیاده سازی الگوریتم رمز را مورد هدف قرار میدهند.
- الگوریتم برای ورودی های مختلف مدت زمان متفاوتی صرف رمزگذاری می کند.
  - بیشتر در کارتهای هوشمند مشکل زا میشوند.
    - DES در مقابل حمله زمانی مقاوم است.

# Time to break a code (106 decryptions/µs)



