

Gestão/Management

Management of Local and Global Networks Concepts and Protocols

1

Junive thy Networks and Systems Management?

- Lower Cost Manual management is costly
- More efficient Automatic systems allow an efficient planning, and mechanisms to predict the utilization trends: lower errors and faster actuation
- Better service The manager is informed at the same time the (client) is, and can make an automatic check of the situation
- Greater knowledge more information exists about the network, allowing better decisions and planning
- Why not human intervention?
 - Difficult to describe responsabilities
 - Technology rapidly evolves
 - Mangement systems rapidly evolve
 - Lack of technical resources

7

- Problems need to be quickly solved
- Management systems simplify the work of multi-functional networks (e.g. VoIP in multiple networks)
- Persons better used they do not need to perform repetitive tasks
- Companies need to optimze their structures, and network management allow resources optimization

Aspects of Network Management

- What to manage?
 - Network, equipment, systems, users, services, applications
- How to manage?
 - Interfaces, actions, abstractions
- What protocol(s) format(s)?
 - Protocol abstraction, formats, messages
- What information format(s)?
 - Information type

Standards for all this – including global frameworks

19

20

Management protocols

- · Methods to monitor and configure network equipments
- Do not describe how to achieve management objectives

<u>Simple protocols</u> ⇒ common data and parameters formats allowing easy information transfer

Complex protocols ⇒ add flexibility and security capacity
Advanced protocols ⇒ remotely execute network
management tasks, without depending on specific protocol layers

Tools for network management

- WAN/LAN monitoring and analyzers
- Software monitors
- Security managers
- Documents, presentations and administrative instruments
- Tools for cross-analysis
- · Databases, tools for information management
- Console emulator
- Tools for systems modelling
- Toolkits for development

21

- Internet Engineering Task Force (IETF)
 - **Simple Network Management Protocol**
 - · SNMP, disman
 - Operations and Management Area
- International Telecommunications Union (ITU-T)
 - Telecommunications Management Network
 - SG IV
- International Standard Organization (ISO)
 - OSI, CMIP-CSIS
 - ISO-IEC/JTC 1/WG 4
- Others
 - DMTF, TM FORUM, OMG, IEEE, ...

Early discussions across bodies. Now cooperation is the normal across bodies.

- Manager/agent: common in all NMS (especially in SNMP/CMIP)
- Idea of a client/server, but many clients and only some servers
 - (manager ⇔client; agent ⇔server)
- The agent operates with the equipment
 - Reports problems to the manager, to control all the equipment information
- The manager contains the intelligence to decide what the agents should do, and gives instructions to them
 - It controls the agents and manages their interworking

SNMP: Polling

- Manager periodically asks the agent for new information
- **<u>Advantage</u>**: Manager completely controls the equipment, and knows all network details
- **Disadvantage:** delay between event and its entry in the system, and unnecessary communication overhead:
 - Slow polling, slow answer to the events
 - Quick polling, quick reaction, but large bandwidth wastage

31

31

SNMP: Traps

- There is an event ⇒ trap is sent
- Trap contains appropriate information equipment name, time instant of event, type of event
- (a) Advantage: information only generated when required
- **⊗** Disadvantage:
 - **⊗** More resources required in the managed equipment
 - **⊗** Traps can be useless
 - If many events occur, bandwitdh can be wasted with all traps (thresholds can solve)
 - Since the agent has only a limited scope of the network, NMS may already know about the events.
- Traps&Polling
 - Event occurs ⇒ trap is sent
 - Manager performs polling to obtain the rest of information
 - Manager also performs periodic polling, as backup

SN MP Pro	otocol: types of messages
Types of messages	<u>Function</u>
GetRequest GetNextRequest GetBulkRequest	Mgr → agent: "get me data" (instantiates, next on the list, block of information)
InformRequest	Agent → Mgr: informs the Manager of exception in a reliable
SetRequest	Mgr → agent: defines MIB value way
Response	Agent → mgr: answer value to Request
Тгар	Agent → mgr: informs the manager of an exception event

- In its initial version, the authorization and authentication were based in the notion of "SNMP community string"
- The "community words" identifying the permissions of the machine that access the agente: read-only ou read-write
- By default, all systems come configured with the strings:
 - public (read-only)
 - private (read-write)
- These strings are case sensitive.

RMON

- Remote monitoring MIB measure network traffic
 - Agents management interface
 - Probes equipment for network analysis (promiscuous);
 usually configured to specific data types.
- Off-line operation (separated from the network)
- Preemptive monitoring, providing multiple information in the network.
- Support multiple managers and probes
- Detection and report of problems
- RMON has 9 groups:

Statistics, History, Alarm, Host, HostTopN, Matrix, Filter, Packet Capture, and Event

ASN.1

- ISO X.680 standard
 - Formal language to describe SMI
 - Frequent in Internet
 - "Heavy", but essential for heterogenous environments.
- Data types, object constructors
 - As in SMI
- BER: Basic Encoding Rules
 - Specified the format as ASN.1 data should be transmitted.
 - Each transmitted object has a coding Type, Length,
 Value (TLV) encoding

PBM and COPS

Concept: Policy Based Management Protocol: Common Open Policy Service

Policies - Example

- Network with multiple services support
 - Differentiated QoS
 - Additional requirements in AAA functions
 - · Different levels
 - User
 - Service
 - QoS
- Service authorized
 - only to some users
 - between authorized network points
 - with specific QoS requirements
 - between specific time intervals
- User also needs to be charged according to the service characteristics being received

43

4

Management based on Policies

- Objective: globally manage the network and not its elements.
- Mechanism:
 - Define policies (rules) to inform the network of what to do – e.g:
 - Operation center should have access to all routers
 - Charging department has priority in the last 3 months of each year
 - In the maximum, only 10% of each link can transport video.
 - The policy rules are translated in equipment configuration changes

de aveil lements of systems based on policies

Conceptual parts:

- Management policy tools:
 - Used to create the policy rules
- Policies repository
 - Store the policy rules
- Policy consumers policy decision points, PDP
 - Make decisions and transfer the policy rules (eventually translated) to the policy targets.
- Policy targets, policy enforcement points, PEP
 - Functional elements affected by the policy rules.

45

Processing rules - sequence

- Rules definition
 - Verify internal conflicts
 - Include in a repository (e.g. with LDAP)
- Get policies from policy consumers
 - Take decisions based on policies
 - Processed to create configurations in policy targets
 - May use temporal restrictions
- Send policies to policy targets
 - Can be "pushed" or "pulled" (e.g. by COPS or SNMP)
- Policy targets
 - Instal configurations

COPS – Common Open Policy **Service**

- Question/answer protocol to PDP-PEP interaction
- Based on TCP
- Maintains state synchronization
 - Recovers from fault
 - State maintenance with keep-alive
- PDP can send notifications to PEP
 - Default concept was for QoS support/control
- PDP can receive policies through LDAP and SNMP
- Supports two types of clients
 - RSVP, outsourcing model
 - Diff-serv, configuration model

49

PDP-PEP Interactions

- Outsourcing (RSVP)
 - PEP contacts PDP when a decision is needed
 - Request contains relevant elements for the policy, and admission control information (e.g. flowspec)
 - Best match for RSVP-based QoS systems
- Configuration requests (Diffserv)
 - PDP configures PEP with specific equipment information
 - Considers a PIB (policy information base) that maintains provisioning information
 - Best match for DiffServ-based QoS systems

COPS Session

• PEP opens a COPS session (specifying a client type: RSVP, DiffServ)

- PEP sends requests and receives answers
- PEP can also send non-solicited commands
- PDP can change commands previously sent
- PEP sends messages related to resources utilization (charging)
- KeepAlives are sent if there is no activity

52

OSI CMIP

- Common Management Information Protocol • Very simple in the
- Designed in 1980's: the unifying protocol ("advanced") to network management
- Implemented very slowly

SNMP: Simple Network Management Protocol

- Internet based (SGMP)
- beginning
- · Rapidly spreaded
- It grew in largeness and complexity
- actual: SNMPv3
- Management protocol de facto

56

OSI Management architecture		
ITU-T	Γ Acronym	Title
X.701		System Management Overview
X.710	CMIS	Common Management Information Service
X.711	CMIP	Common Management Information Protocol
X.712	CMIP-PICS	CMIP Protocol Implementation
		Conformance State Proforma
X.720	MIM	Management Information Model (defines fundamental concepts of the objects)
X.721	DMI	Definition of Management Information
X.722	GDMO	Guideline for Definition of Management Objects (techniques for specification of objects)

CMIS/CMIP

5

- Approach object-oriented objects
 - Have attributes
 - Generate events/notifications (reliably)
 - Execute operations
- Objects with same attributes, notifications and operations belong to the same class
- Objects inserted in multiples hierarchies, with different inherits and containers
- · Intelligent agents
 - Can use rules or policies defined by the manager
 - Can be changed on-line
- Actions (verbs)

GET, SET, CREATE, DELETE, ACTION, NOTIFICATION, CANCEL_GET

 Capacity of CMIP actions is related to scoping and filtering capacities - through GDMOs

58

59

CMIP - GDMOs

- Guideline for the Definition of Managed Objects
 - The equipment through which the agent operates
- Model objects inside the equipment
 - Instantiation of GDMOs is called MIB
- Do not have well-defined behaviors, with large implementation freedom
 - Flexibility
 - Problem (complexity)
- CMIP is not polling oriented
 - Better scalability is achieved
- There are not so many defined GDMOs as MIBs

CMIP: pros and cons

CMIP advantages

- Object-oriented approach is flexible and extensible
- Support from telecommunications industry and international vendors
- Support of manager-manager interaction
- Support of automation environments
- Imposed in some industrial areas

CMIP disadvantages

- Complex and multi-layer
- Large management overhead
- Few management systems based on CMIP
- Few CMIP agents in use
- Generally rejected in the Internet.

63

Frameworks: SNMP and CMIS

SNMP

- Static MIBs
- Concepts of limited models
- Non-connection oriented protocol
- Polling model
- Implementation-oriented
- Ligth
- Limited functionalities
- Bulk capcacity only in new versions
- Completely dominating the market
- Many SNMP-based products

CMIS

- Dynamic MIBs
- Object-oriented models
- Connection-oriented protocol
- Event-oriented model
- Specification-oriented
- Heavy
- Functionalities until the system management level
- Bulk capacity with scope and filtering
- Some relevance in the telecommunications market
- Some CMIP-based products in the market

TMN

Telecomunications Management Network

65

6

What is TMN?

- Objective
 - -Support the management of the telecommunication networks and services
- Concept
 - Create an organized structure to allow the interconnection of several operating systems and telecommunications equipments, using a well-defined architecture, with normalized protocols and interfaces

