

Discriminate between posed and spontaneous smile

Project report - Multimedia Data Security
A.Y. 2016/2017

Manfredi Salvatore and Viglianisi Emanuele

The problem

Main Reference: Recognition of Genuine Smiles, Hamdi Dibeklioğlu et al

Pipeline

Dataset: UvA-Nemo

- 1240 videos
- 597 spontaneous and 643 posed
- 400 subjects: 149 young people and 251 adults, 185 women and 215 men

Landmarks and Features

Landmarks extraction

- DLIB extracts 68 points
- 11 points needed

Frontalization

Two methods:

- 1. Method 1: Effective Face Frontalization in Unconstrained Images
- 2. Method 2: Learning Spatially-Smooth Mappings in Non-Rigid Structure from Motion

Dlip & Deyelid

$$\frac{\rho\left(\frac{l_{10}^{1}+l_{11}^{1}}{2},l_{10}^{t}\right)+\rho\left(\frac{l_{10}^{1}+l_{11}^{1}}{2},l_{11}^{t}\right)}{2\rho\left(l_{10}^{1},l_{11}^{1}\right)}$$

$$\frac{\tau\left(\frac{l_1^t + l_3^t}{2}, l_2^t\right) + \tau\left(\frac{l_4^t + l_6^t}{2}, l_5^t\right)}{2\rho\left(l_1^t, l_3^t\right)}$$

Features extraction

Temporal phase division - 1

Phase division algorithm:

- 1. Longest run (longest sequences)
- 2. Clustering based (K-means)

Temporal phase division - 2

Features to extract

Feature	Definition
Duration ^d :	$\left[\begin{array}{c} \frac{\eta(\mathcal{D}^+)}{\omega} \ , \ \frac{\eta(\mathcal{D}^-)}{\omega} \ , \ \frac{\eta(\mathcal{D})}{\omega} \end{array}\right]$
Duration Ratio d :	$\left[\begin{array}{c} \frac{\eta(\mathcal{D}^+)}{\eta(\mathcal{D})} \;, \frac{\eta(\mathcal{D}^-)}{\eta(\mathcal{D})} \end{array}\right]$
${\it Maximum\ Amplitude}^{d,m}:$	$\max(D)$
${\it Mean Amplitude}^{d,m};$	$\left[\begin{array}{c} \frac{\sum \mathcal{D}}{\eta(\mathcal{D})} \;,\; \frac{\sum \mathcal{D}^+}{\eta(\mathcal{D}^+)} \;,\; \frac{\sum \mathcal{D}^- }{\eta(\mathcal{D}^-)} \end{array}\right]$
STD of Amplitude d :	$std(\mathcal{D})$
Total Amplitude d :	$\left[\begin{array}{cc} \sum \mathcal{D}^{+} \;,\; \sum \left \mathcal{D}^{-}\right \end{array}\right]$
Net Amplitude ^d :	$\sum D^+ - \sum D^- $
Amplitude $Ratio^d$:	$\left[\begin{array}{c} \frac{\sum \mathcal{D}^+}{\sum \mathcal{D}^+ + \sum \mathcal{D}^- } + \frac{\sum \mathcal{D}^- }{\sum \mathcal{D}^+ + \sum \mathcal{D}^- } \end{array} \right]$
Maximum Speed d :	$\left[\begin{array}{c} \max(\mathcal{V}^+), \ \max(\mathcal{V}^-) \end{array}\right]$
Mean Speed d :	$\left[\begin{array}{c} rac{\sum \mathcal{V}^+}{\eta(\mathcal{V}^+)} \; , \; rac{\sum \mathcal{V}^- }{\eta(\mathcal{V}^-)} \end{array} ight]$
Maximum Acceleration ^d :	$\left[\begin{array}{c} \max(\mathcal{A}^+) \;,\; \max(\mathcal{A}^-) \end{array}\right]$
Mean Acceleration d :	$\left[\begin{array}{c} \frac{\sum \mathcal{A}^+}{\eta(\mathcal{A}^+)} \ , \frac{\sum \mathcal{A}^- }{\eta(\mathcal{A}^-)} \end{array} ight]$
Net Ampl., Duration $Ratio^d$:	$\frac{\left(\sum D^{+} - \sum D^{-} \right)\omega}{\eta(D)}$
Left/Right Ampl. Difference*:	$\frac{ \sum \mathcal{D}_L - \sum \mathcal{D}_R }{\eta(\mathcal{D})}$

Results

Frontalization 1	~50%
Images not frontalized	~74%
Frontalization 2	~75%
Frontalization 2 with optimizations	~78%

Conclusions

Problems:

- dlib is slow
- not-optimal frontalization and phase division algorithm

Improvements:

- other concatenation method
- test with ranges of age
- improvement of dlip
 - real-time analysis
 - end-user application (classify a new video)

Conclusions

Problems:

- dlib is slow
- not-optimal frontalization and phase division algorithm

Improvements:

- other concatenation method
- test with ranges of age
- improvement of dlip
 - real-time analysis
 - end-user application (classify a new video)