第六章 群本及抽样分布

1. 在总体 $N(52,6.3^2)$ 中随机抽取一容量为 36 的样本,求样本均值 \overline{X} 落在 50.8 到 53.8 之间的概率.

解
$$n=36, \overline{X}=\frac{1}{36}\sum_{i=1}^{36}X_i$$
,因总体 $X\sim N(52,6.3^2)$,故 $E(\overline{X})=52, D(\overline{X})=$

 $6.3^2/36=1.05^2$, $\overline{X}\sim N(52,1.05^2)$. 从而

$$P\{50, 8 < \overline{X} < 53, 8\}$$

$$= P\{\frac{50, 8 - 52}{1, 05} < \frac{\overline{X} - 52}{1, 05} < \frac{53, 8 - 52}{1, 05}\}$$

$$= \Phi(\frac{53, 8 - 52}{1, 05}) - \Phi(\frac{50, 8 - 52}{1, 05})$$

$$= \Phi(1, 71) - \Phi(-1, 14)$$

$$= \Phi(1, 71) + \Phi(1, 14) - 1 = 0, 829 3.$$

- 2. 在总体 N(12,4) 中随机抽一容量为 5 的样本 X_1, X_2, X_3, X_4, X_5 .
- (1) 求样本均值与总体均值之差的绝对值大于1的概率.
- (2) 求概率 $P\{\max\{X_1, X_2, X_3, X_4, X_5\} > 15\}$, $P\{\min\{X_1, X_2, X_3, X_4, X_5\}$ < 10}.

解 (1) $\overline{X} = \frac{1}{5} \sum_{i=1}^{5} X_i$,因总体 $X \sim N(12,4)$,故 $\overline{X} \sim N(12,4/5)$,从而

$$P\{|\overline{X} - 12| > 1\} = 1 - P\{|\overline{X} - 12| \le 1\}$$

$$= 1 - P\{-1 \le \overline{X} - 12 \le 1\}$$

$$= 1 - P\left\{-\frac{1}{\sqrt{4/5}} \le \frac{\overline{X} - 12}{\sqrt{4/5}} \le \frac{1}{\sqrt{4/5}}\right\}$$

$$= 1 - \left[\Phi\left(\frac{1}{\sqrt{4/5}}\right) - \Phi\left(\frac{-1}{\sqrt{4/5}}\right)\right] = 2 - 2\Phi(1, 12)$$

$$= 2(1 - 0, 868 6) = 0, 262 8.$$

(2) 因 X_i 的分布函数为 $\Phi\left(\frac{x-12}{2}\right)$,故 $M=\max\{X_1,X_2,X_3,X_4,X_5\}$ 的分布函数为

$$F_{M}(x) = \left[\Phi\left(\frac{x-12}{2}\right)\right]^{5},$$

$$P\{\max\{X_1, X_2, X_3, X_4, X_5\} > 15\}$$

$$= P\{M > 15\}$$

$$= 1 - P\{M \le 15\} = 1 - F_M(15) = 1 - \left[\Phi\left(\frac{15 - 12}{2}\right)\right]^5$$

$$= 1 - 0.933 \ 2^5 = 0.292 \ 3.$$

记 $N=\min\{X_1,X_2,X_3,X_4,X_5\}$,则 N 的分布函数为

$$F_N(x) = 1 - \left[1 - \Phi\left(\frac{x-12}{2}\right)\right]^5$$

故

$$P\{\min\{X_1, X_2, X_3, X_4, X_5\} < 10\}$$

$$= P\{N < 10\}$$

$$= 1 - \left[1 - \Phi\left(\frac{10 - 12}{2}\right)\right]^5 = 1 - \left[1 - \Phi(-1)\right]^5$$

$$= 1 - \left[\Phi(1)\right]^5 = 1 - (0.841 \ 3)^5 = 0.578 \ 5.$$

3. 求总体 N(20,3)的容量分别为 10,15 的两独立样本均值差的绝对值大于 0.3 的概率.

解 将总体 N(20,3)的容量分别为 10,15 的两独立样本的均值分别记作 \overline{X} , \overline{Y} ,则 \overline{X} \sim N(20,3/10), \overline{Y} \sim N(20,3/15),从而

$$\overline{X} - \overline{Y} \sim N(20 - 20, 3/10 + 3/15),$$

 $\overline{X} - \overline{Y} \sim N(0, 1/2),$

即

故所求概率为

$$p = P\{|\overline{X} - \overline{Y}| > 0.3\} = 1 - P\{|\overline{X} - \overline{Y}| \le 0.3\}$$

$$= 1 - P\{\frac{-0.3}{\sqrt{1/2}} \le \frac{\overline{X} - \overline{Y}}{\sqrt{1/2}} \le \frac{0.3}{\sqrt{1/2}}\}$$

$$= 2 - 2\Phi(0.42) = 2(1 - 0.6628) = 0.6744$$

注:注意 $D(\overline{X} - \overline{Y}) = D(\overline{X}) + D(\overline{Y})$.

- 4. (1) 设样本 X_1, X_2, \dots, X_6 来自总体 $N(0,1), Y = (X_1 + X_2 + X_3)^2 + (X_4 + X_5 + X_6)^2$,试确定常数 C 使 CY 服从 χ^2 分布.
- (2) 设样本 X_1, X_2, \dots, X_5 来自总体 $N(0,1), Y = \frac{C(X_1 + X_2)}{(X_3^2 + X_4^2 + X_5^2)^{1/2}}$, 试确 定常数 C 使 Y 服从 t 分布.
 - (3) 已知 $X \sim t(n)$,求证 $X^2 \sim F(1,n)$.

解 (1) 因 X_1, X_2, \dots, X_6 是总体 N(0,1) 的样本,故 $X_1 + X_2 + X_3 \sim N(0,3), \qquad X_4 + X_5 + X_6 \sim N(0,3),$

且两者相互独立. 因此

$$\frac{X_1+X_2+X_3}{\sqrt{3}}\sim N(0,1), \quad \frac{X_4+X_5+X_6}{\sqrt{3}}\sim N(0,1),$$

且两者相互独立. 按χ² 分布的定义

$$\frac{(X_1+X_2+X_3)^2}{3}+\frac{(X_4+X_5+X_6)^2}{3}\sim\chi^2(2),$$

即 $\frac{1}{3}Y\sim\chi^2(2)$,即知 $C=\frac{1}{3}$.

(2) 因 X_1, X_2, \dots, X_5 是总体 N(0,1) 的样本,故 $X_1 + X_2 \sim N(0,2)$,即有

$$\frac{X_1+X_2}{\sqrt{2}}\sim N(0,1).$$

而

$$X_3^2 + X_4^2 + X_5^2 \sim \chi^2$$
 (3).

且 $\frac{X_1+X_2}{\sqrt{2}}$ 与 $X_3^2+X_4^2+X_5^2$ 相互独立,于是

$$\frac{(X_1+X_2)/\sqrt{2}}{\sqrt{(X_3^2+X_4^2+X_5^2)/3}} = \sqrt{\frac{3}{2}} \frac{X_1+X_2}{(X_3^2+X_4^2+X_5^2)^{1/2}} \sim t(3),$$

因此所求的常数 $C=\sqrt{\frac{3}{2}}$.

(3) 按定义 $X \sim t(n)$,故 X 可表示成

$$X = \frac{Z}{\sqrt{Y/n}},$$

其中, $Y \sim \chi^2(n)$, $Z \sim N(0,1)$ 且 Z 与 Y 相互独立,从而

$$X^2 = \frac{Z^2}{Y/n}$$
.

由于 $Z \sim N(0,1)$, $Z^2 \sim \chi^2(1)$, 上式右端分子 $Z^2 \sim \chi^2(1)$, 分母中 $Y \sim \chi^2(n)$, 又由 Z = Y 相互独立, 知 $Z^2 = Y$ 相互独立. 按 Z = Y 分布的定义得

$$X^2 \sim F(1,n)$$
.

- 5. (1) 已知某种能力测试的得分服从正态分布 $N(\mu,\sigma^2)$,随机取 10 个人参与这一测试. 求他们得分的联合概率密度,并求这 10 个人得分的平均值小于 μ 的概率.
- (2) 在(1)中设 μ =62, σ^2 =25,若得分超过 70 就能得奖,求至少有一人得奖的概率.

解 (1) 10 个人的得分分别记为 X_1, X_2, \dots, X_{10} . 它们的联合概率密度为

$$f(x_1, x_2, \dots, x_{10}) = \prod_{i=1}^{10} \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x_i - \mu)^2}{2\sigma^2}},$$
 $\overline{X} = \frac{1}{10} \sum_{i=1}^{10} X_i \sim N(\mu, \frac{\sigma^2}{10}),$

$$P\{\overline{X}<\mu\}=\Phi\left(\frac{\mu-\mu}{\sigma/\sqrt{10}}\right)=\Phi(0)=\frac{1}{2}.$$

(2) 若一人得奖的概率为 p,则得奖人数 $Y \sim b(10,p)$. 此处 p 是随机选取一人,其考分 X 在 70 分以上的概率. 因 $X \sim N(62,25)$,故

$$p = P\{X > 70\} = 1 - P\{X \le 70\} = 1 - \Phi\left(\frac{70 - 62}{\sqrt{25}}\right)$$
$$= 1 - \Phi(1, 6) = 1 - 0.945 \ 2 = 0.054 \ 8.$$

至少一人得奖的概率为

$$P{Y \ge 1} = 1 - (0.945 \ 2)^{10} = 0.431.$$

- 6. 设总体 $X \sim b(1,p), X_1, X_2, \dots, X_n$ 是来自 X 的样本.
- (1) 求 (X_1, X_2, \dots, X_n) 的分布律.
- (2) 求 $\sum_{i=1}^{n} X_i$ 的分布律.
- (3) 求 $E(\overline{X})$, $D(\overline{X})$, $E(S^2)$.

解(1)因 X_1, X_2, \dots, X_n 相互独立,且有 $X_i \sim b(1,p), i=1,2,\dots,n$,即 X_i 具有分布律 $P\{X_i=x_i\}=p^{x_i}(1-p)^{1-x_i}, x_i=0,1,$ 因此 (X_1,X_2,\dots,X_n) 的分布律为

$$P\{X_{1} = x_{1}, X_{2} = x_{2}, \dots, X_{n} = x_{n}\}$$

$$= \prod_{i=1}^{n} P\{X_{i} = x_{i}\}$$

$$= \prod_{i=1}^{n} \left[p^{x_{i}} (1-p)^{1-x_{i}} \right] = p^{\sum_{i=1}^{n} x_{i}} (1-p)^{n-\sum_{i=1}^{n} x_{i}}.$$

(2) 因 X_1, X_2, \dots, X_n 相互独立,且有 $X_i \sim b(1, p), i=1, 2, \dots, n$,故 $\sum_{i=1}^n X_i \sim b(n, p)$,其分布律为

$$P\left\{\sum_{i=1}^{n} X_{i} = k\right\} = {n \choose k} p^{k} (1-p)^{n-k}, \quad k = 0, 1, 2, \dots, n.$$

(3) 由于总体 $X \sim b(1,p)$, E(X) = p, D(X) = p(1-p), 故有 $E(\overline{X}) = p$, $D(\overline{X}) = \frac{p(1-p)}{n}$, $E(S^2) = D(X) = p(1-p)$.

7. 设总体 $X \sim \chi^2(n)$, X_1 , X_2 , ..., X_{10} 是来自 X 的样本, 求 $E(\overline{X})$, $D(\overline{X})$, $E(S^2)$.

解 因 E(X)=n,D(X)=2n,故有

$$E(\overline{X}) = n, \quad D(\overline{X}) = \frac{2n}{10} = \frac{n}{5},$$
$$E(S^2) = D(X) = 2n.$$

- 8. 设总体 $X \sim N(\mu, \sigma^2), X_1, X_2, \dots, X_{10}$ 是来自 X 的样本.
- (1) 写出 X_1, X_2, \dots, X_{10} 的联合概率密度.
- (2) 写出 \overline{X} 的概率密度.

解 (1) 由假设 X_i ($i=1,2,\cdots,10$) 的概率密度为

$$f_{X_i}(x_i) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x_i - \mu)^2/(2\sigma^2)},$$

故 X_1, X_2, \cdots, X_{10} 的联合概率密度为

$$\prod_{i=1}^{10} f_{X_i}(x_i) = \prod_{i=1}^{10} \frac{1}{\sqrt{2\pi\sigma}} e^{-(x_i - \mu)^2 / (2\sigma^2)}$$

$$= \frac{1}{(2\pi\sigma^2)^5} e^{-\sum_{i=1}^{10} (x_i - \mu)^2 / (2\sigma^2)}.$$

(2) $\overline{X} \sim N(\mu, \frac{\sigma^2}{10})$,故 \overline{X} 的概率密度为

$$f_{\bar{X}}(x) = \frac{\sqrt{10}}{\sqrt{2\pi}\sigma} e^{-5(x-\mu)^2/\sigma^2} = \frac{\sqrt{5}}{\sqrt{\pi}\sigma} e^{-5(x-\mu)^2/\sigma^2}.$$

- 9. 设在总体 $N(\mu, \sigma^2)$ 中抽得一容量为 16 的样本,这里 μ, σ^2 均未知.
- (1) 求 P{S²/σ²≤2.041},其中 S² 为样本方差.
- (2) 求 D(S²).

解 (1) 因为
$$\frac{(n-1)S^2}{\sigma^2}$$
~ χ^2 ($n-1$),现在 $n=16$,即有 $\frac{15S^2}{\sigma^2}$ ~ χ^2 (15),故有 $p = P\{S^2/\sigma^2 \le 2.041\} = P\{15S^2/\sigma^2 \le 15 \times 2.041\}$ $= P\{15S^2/\sigma^2 \le 30.615\} = 1 - P\{15S^2/\sigma^2 > 30.615\}.$

查 χ^2 分布表得 $\chi^2_{0.01}(15)=30.578$,从而知 p=1-0.01=0.99.

(2) 由 $15S^2/\sigma^2 \sim \chi^2$ (15),得

$$D(15S^2/\sigma^2) = 2 \times 15 = 30$$
,

即

$$\frac{15^2}{\sigma^4}D(S^2) = 30$$
, $D(S^2) = \frac{2\sigma^4}{15}$.

10. 下面列出了 30 个美国 NBA 球员的体重(以磅计,1 磅=0.454 kg.)数据. 这些数据是从美国 NBA 球队 1990—1991 赛季的花名册中抽样得到的.

(1) 画出这些数据的频率直方图(提示:最大和最小观察值分别为 271 和 185,区间[184.5,271.5]包含所有数据,将整个区间分为 5 等份,为计算方便,将

区间调整为(179.5,279.5).

(2) 作出这些数据的箱线图.

解(1)最大和最小观察值分别为 271 和 185,考虑到这些数据是将实测数据经四舍五人后得到的,取区间 I=[184.5, 271.5] 使得所有实测数据都落在 I 上.将区间 I 等分为若干小区间,小区间的个数与数据个数 n 有关,取为 \sqrt{n} 左右为佳.现在取小区间的个数为 5,于是小区间的长度为(271.5—184.5)/5=17.4.这一长度使用起来不方便.为此,将区间 I 的下限延伸至 179.5,上限延伸至 279.5.这样小区间的长度调整为

$$\Delta = (279.5 - 179.5)/5 = 20.$$

数出落在每个小区间内的数据的个数 f_i , i=1,2,3,4,5, 算出数据落在各个小区间的频率 $f_i/n(n=30,i=1,2,3,4,5)$, 所得结果列表如下:

组限	频数 fi	频率 f_i/n	累积频率
179.5~199.5	3	0.1	0.10
199.5~219.5	6	0, 2	0.30
219.5~239.5	13	0.43	0.73
239.5~259.5	6.	0.2	0.93
259.5~279.5	2	0.07	1

在每个小区间上作以对应的频率除以 Δ 为高(即以(f_i/n)/ Δ 为高)以小区间为底的小长方形. 小长方形的面积就是 $[(f_i/n)/\Delta] \times \Delta = f_i/n$. 画出图形,这就是所求的频率直方图(如题 6.10 图(1)).

(2) 将 n=30 个数据按自小到大的次序排序得到

185 195

下面来求第一四分位数 Q_1 ,中位数 M,第三四分位数 Q_3 .

因 $np=30\times0.25=7.5$,故 Q_1 位于左起第[7.5]+1=8 处,即有 $Q_1=215$.

因 $np=30\times0.5=15$,故 $M=Q_2$ 是这 30 个数最中间两个数的平均值,即有 $Q_2=M=\frac{1}{2}(225+225)=225$.

因 $np=30\times0.75=22.5$,故 Q_3 位于左起第[22.5]+1=23 处,即有 $Q_3=240$.又 Min=185,Max=271.

根据 Min_1Q_1, M_1Q_3, Max 这 5 点作出箱线图如题 6.10 图(2) 所示. 从上述两个图能看出数据的分布关于中心线比较对称.

11. 截尾均值 设数据集包含 n 个数据,将这些数据自小到大排序为

$$x_{(1)} \leqslant x_{(2)} \leqslant \cdots \leqslant x_{(n)}$$
,

删去 $100\alpha\%$ 个数值小的数,同时删去 $100\alpha\%$ 个数值大的数,将留下的数据取算术平均,记为 \bar{x}_{α} ,即

$$\overline{x}_{\alpha} = \frac{x_{([n\alpha]+1)} + \cdots + x_{(n-[n\alpha])}}{n-2[n\alpha]}$$

其中, $[n\alpha]$ 是小于或等于 $n\alpha$ 的最大整数(一般取 $\alpha=0.1\sim0.2$)。 \overline{x}_{α} 称为 $100\alpha\%$ 截尾均值. 例如对于第 10 题中的 30 个数据,取 $\alpha=0.1$,则有 $[n\alpha]=[30\times0.1]$ = 3,得 $100\times0.1\%$ 截尾均值为

$$\overline{x}_a = \frac{200 + 200 + \dots + 245 + 245}{30 - 6} = 225.416$$
 7.

若数据来自某一总体的样本,则 \bar{x}_a 是一个统计量, \bar{x}_a 不受样本的极端值的影响,截尾均值在实际应用问题中是常会用到的.

试求第 10 题的数据的 $\alpha=0.2$ 的截尾值.

解
$$\alpha=0.2$$
, $[n\alpha]=[30\times0.2]=6$, $100\times0.2\%$ 截尾均值为

$$\bar{x}_a = \frac{210 + 215 + \dots + 240 + 240}{30 - 12} = 226.3333.$$