PythonLinearAlgebra

This code implements part of the algorithm in Gilbert Strang's Introduction to Linear Algebra, and it is completely written in Python.

CATALOG

- 1. Introduction
- 2. Licence
- 3. Tutorial
- 4. APIs

INTRODUCTION

I'm a high school student who is studying Linear Algebra with the Professor Gillbert Strang's MIT OpenCourse. This is the code I used to practice linear algebra on.

This code includes most linear algebra operations as well as a basic interactive command line that allows users to perform computations.

To run this code, a python3 interpreter (3.6 and above) is required. And also, no 3rd library is used in this code.

Licence

This software is licensed under the GNU General Public License v3.0

Copyright (C) 2020 Weizheng Wang

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see https://www.gnu.org/licenses/.

Tutorial

To run this software, enter the folder "Python Linear Algebra" (https://github.com/EPIC-WANG/PythonLinearAlgebra/tree/masterPython Linear Algebra) and run the file in python script, .exe file or a pypy based executable file (recommended).

Also, this code could be imported by other python scripts by using:

```
import alice
# or
from alice import *
```

or using interactive console:

```
this is a basic compute software of linear algebra developed by Wang Weizheng For more information, type 'copyright()' or 'about()' in the console.
```

>>>

To exit the console (if you are using the console), type exit(). the console could accept python commands (a single line of code).

Next step, start compute

To create matrix or vector:

```
# create a matrix
X = matrix([[1,2,3],[2,3,4],[-1,-1,-1]])
\# X = [1]
            2
                   3]
      [ 2
             3
                  4]
      [-1
            -1 -1]
# create a vector
Y = vector([1,2,3])
\# Y = 1i\_hat + 2j\_hat + 3k\_hat
# or it is same with
\# Y = [1]
     [2]
     [3]
```

To perform basic operations:

```
X*Y
# matrix:
# [14]
# [20]
# [-6]

X+X
# matrix:
# [2, 4, 6]
# [4, 6, 8]
# [-2, -2, -2]

X.transpose()
# matrix:
```

```
# [1, 2, -1]
# [2, 3, -1]
# [3, 4, -1]

X.invert()
# the matrix is singular. It is uninvertible.

Y.module()
# 3.7416573867739413
```

To generate a random matrix:

```
# generate a 4*4 matrix, from 0 to 10, integer value
X = matrix.random_matrix(5,6,2,-3,int)
# matrix:
\# [-3, 2, 0, 0, 1, 1]
# [0, -3, -3, -2, 2, -2]
# [-1, 0, -3, 0, 0, 1]
# [-1, 2, 1, -2, 2, -2]
# [-2, 0, 0, -2, -1, 0]
# generate a default 4*4 matrix, from 0 to 10, by default, floating point value
X = print(matrix.random_matrix(type_ = float))
# matrix:
# [3.5043241003, 0.3713558007, 3.7324463516, 5.2982786823]
# [2.4268259983, 4.8068851973, 9.7347697987, 6.8648311404]
# [0.189252822, 7.126140657, 5.6800361683, 7.6905833487]
# [8.1493381191, 7.0644692704, 1.7996603637, 6.6048587747]
# generate a 3*4 matrix, from 0+0j to 10+10j, by default, integer real and imagine value
print(matrix.random_matrix(type_ = (complex, int), row = 3))
# matrix:
# [(3+2j), (10+3j), 1j, (6+0j)]
\# [(9+5j), 7j, (8+5j), (3+6j)]
# [(1+4j), (8+4j), (7+8j), (10+9j)]
```

To perform advanced operations:

```
Z = matrix([[1,2,3],[2,3,4],[-1,-1,-1],[3,4,5]])
Z.null_space()
# [vector:
# [1.0, -2.0, 1.0]
# ]

Z.column_space()
# [vector:
# [1, 2, -1, 3]
# , vector:
# [2, 3, -1, 4]
# ]

# get the row reduced form of matrix Z
Z.reduced_echelon_form()
# matrix:
# [1.0, 0.0, -1.0]
# [-0.0, 1.0, 2.0]
```

Other methods could be found in the APIs

APIs (Public methods)

Note

- 1. these methods are recommended to use within basic computations
- 2. all the methods, without notice, returns matrix (or vector) object.

The APIs under<class 'alice.matrix'>:

1. matrix(my_matrix):

to create a matrix, use matrix(your_matrix)

• **param:** my_matrix: the matrix, use list[list] to input a matrix. Type: Union[int, float, complex] are supported as elements in matrix.

For example, To create:

$$X = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

, type:

$$X = matrix([[1,2,3],[2,3,4],[3,4,5]])$$

Also, you could create a matrix with different types of element:

$$T = egin{bmatrix} cos(heta) & -sin(heta) \ sin(heta) & cos(heta) \end{bmatrix} \qquad heta = 2\pi$$

, type:

```
theta = 2 * pi
T = matrix([[cos(theta), -sin(theta)], [sin(theta), cos(theta)]])
```

Or create:

$$A=egin{bmatrix} 2+3i & 4+2i \ -1-2i & 3-4i \end{bmatrix}$$

, type (use j or J as complex part):

$$A = matrix([[2+3j, 4+2j], [-1-2j, 3-4j]])$$

note, use double square braces to represent a matrix, even if your matrix has only one row.

For example:

$$X = egin{bmatrix} 3 & 4 & 5 & 6 \end{bmatrix}$$

, type:

$$X = matrix([[3, 4, 5, 6]])$$

the operations between matrix (+, -, *) are supported.

to compute:

$$\begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 4 & 3 \\ 2 & 2 & 4 \end{bmatrix}$$

, type:

1. matrix.get_value(self)

Return the *matrix* object of the matrix variable.

• return: list[list] object, same as the param my_matrix in matrix().

```
1. matrix.get_row(self, row: int)
```

Return the selected row of the matrix (index starts with 0).

• return: list object.

```
4. get_column(self, column: int)
```

Return the selected column of the matrix (index starts with 0).

• return: list object.

```
5. get_size(self)
```

Return the size of the matrix.

• return: (int, int) object.

```
6. matrix.null_space(self):
```

Return the null space of a matrix, returns a list of vector.

To compute:

$$N\left(egin{bmatrix}1&2&3\2&3&4\3&4&5\1&1&1\end{bmatrix}
ight)=span\left(egin{bmatrix}1.0\-2.0\1.0\end{bmatrix}egin{bmatrix}0\0\0\end{bmatrix}
ight)$$

type:

```
>>> print(matrix([[1,2,3],[2,3,4],[3,4,5],[1,1,1]]).null_space())
[vector:
[1.0, -2.0, 1.0]
]
```

```
7. matrix.left_null_space(self)
```

returns the null space transpose (left null space) of the matrix.

```
8. matrix.gauss_jordan_elimination(self)
```

perform a gauss jordan elimination and return the gauss jordan elimination matrix.

to solve the equation set:

$$\left\{egin{array}{l} x+2y+3z=4\ 2x+3y+4z=6\ 3x+3y+3z=4 \end{array}
ight.$$

, transfer the equation set into matrix:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 6 \\ 3 & 3 & 3 & 4 \end{bmatrix}$$

```
>>> X = matrix([[1,2,3,4],[2,3,4,6],[3,3,3,4]])
>>> print(X.gauss_jordan_elimination())
matrix:
[1.0, 0.0, -1.0, 0.0]
[-0.0, 1.0, 2.0, 2.0]
[0.0, 0.0, 0.0, -2.0]
```

9. matrix.reduced_echelon_form(self)

return the row reduced form of the matrix.

```
>>> X = matrix([[1,2,3,4],[2,3,4,6],[3,3,3,4],[3,4,5,6]])
>>> print(X.reduced_echelon_form())
matrix:
[1.0, 0.0, -1.0, 0.0]
[0.0, 1.0, 2.0, 0.0]
[-0.0, -0.0, -0.0, 1.0]
[0.0, 0.0, 0.0, 0.0]
```

10. matrix.column_space(self, return_index: bool = False)

return the column space (or the pivot column index) of the matrix.

- param: return_index: return the index of the pivot column, the default value is False.
- return: matrix object when return_index is False, otherwise set object.

to compute:

$$C\left(\begin{bmatrix}1 & 2 & 3 & 4\\ 2 & 3 & 4 & 6\\ 3 & 3 & 3 & 4\\ 3 & 4 & 5 & 6\end{bmatrix}\right) = span\left(\begin{bmatrix}1\\2\\3\\3\\3\end{bmatrix}\begin{bmatrix}2\\4\\6\\4\\6\end{bmatrix}\begin{bmatrix}0\\0\\0\\0\end{bmatrix}\right)$$

type:

```
>>> print(matrix([[1,2,3,4],[2,3,4,6],[3,3,3,4],[3,4,5,6]]).column_space())
[vector:
[1, 2, 3, 3]
, vector:
[2, 3, 3, 4]
, vector:
[4, 6, 4, 6]
]
```

```
11. matrix.row_space(self, return_index: bool = False)
```

return the row space (or the pivot row index) of the matrix.

- param: return_index: return the index of the pivot row, the default value is False.
- **return:** *matrix* object when *return_index* is False, otherwise *set* object.

```
12. matrix.transpose(self)
```

return the transpose matrix.

to compute:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 6 \\ 3 & 3 & 3 & 4 \\ 3 & 4 & 5 & 6 \end{bmatrix}^T$$

type:

```
>>> print(matrix([[1,2,3,4],[2,3,4,6],[3,3,3,4],[3,4,5,6]]).transpose())
matrix:
[1, 2, 3, 3]
[2, 3, 3, 4]
[3, 4, 3, 5]
[4, 6, 4, 6]
```

```
13. matrix.invert(self)
```

return the invert of the matrix, if matrix couldn't be inverted, a message: the matrix is singular. It is un invertible. will be printed.

to compute:

$$\begin{bmatrix} 0 & 2 & 1 & 3 \\ 2 & 2 & 6 & 4 \\ 3 & 4 & 3 & 4 \\ 3 & 4 & 7 & 6 \end{bmatrix}^{-1}$$

type:

```
>>> print(matrix([[0,2,1,3],[2,2,6,4],[3,4,3,4],[3,4,7,6]]).invert())
matrix:
[1.0, 5.0, 2.5, -5.5]
[-2.0, -7.5, -3.0, 8.0]
[-1.0, -3.0, -1.5, 3.5]
[2.0, 6.0, 2.5, -6.5]
```

14. matrix.combine(self, target)

Combine two matrices into one single matrix, the target matrix will appear at the right side of the given matrix.

For example, combine X and Y:

$$X = egin{bmatrix} 1 & 1 & 3 \ 2 & 2 & 4 \ 3 & 4 & 3 \end{bmatrix}, Y = egin{bmatrix} 4 & 3 & 3 \ 3 & 2 & 3 \ 2 & 1 & 3 \end{bmatrix}$$

The result is:

$$\begin{bmatrix} 1 & 1 & 3 & 4 & 3 & 3 \\ 2 & 2 & 4 & 3 & 2 & 3 \\ 3 & 4 & 3 & 2 & 1 & 3 \end{bmatrix}$$

type:

```
>>> X = matrix([[1,1,3],[2,2,4],[3,4,3]]); Y = matrix([[4,3,3],[3,2,3],[2,1,3]])
>>> print(X.combine(Y))
matrix:
[1, 1, 3, 4, 3, 3]
[2, 2, 4, 3, 2, 3]
[3, 4, 3, 2, 1, 3]
```

15. matrix.cast_to_complex(self, target)

create a complex matrix and map the complex part to target.

• param: target: the matrix which will be mapped in to complex part

To map X and Y:

$$X = egin{bmatrix} 1 & 1 & 3 \ 2 & 2 & 4 \ 3 & 4 & 3 \end{bmatrix}, Y = egin{bmatrix} 4 & 3 & 3 \ 3 & 2 & 3 \ 2 & 1 & 3 \end{bmatrix}$$

The result is:

$$\begin{bmatrix} 1+4i & 1+3i & 3+3i \\ 2+3i & 2+2i & 4+3i \\ 3+2i & 4+i & 3+3i \end{bmatrix}$$

type:

```
>>> X = matrix([[1,1,3],[2,2,4],[3,4,3]]); Y = matrix([[4,3,3],[3,2,3],[2,1,3]])
>>> print(X.cast_to_complex(Y))
matrix:
[(1+4j), (1+3j), (3+3j)]
[(2+3j), (2+2j), (4+3j)]
[(3+2j), (4+1j), (3+3j)]
```

16. matrix.conjugate(self)

Return the conjugate matrix of the given matrix.

17. matrix.conjugate_transpose(self)

Return the conjugate transpose matrix of the given matrix. it is same as X.transpose().conjugate().

$$A^H \equiv \bar{A}^T$$

18. matrix.round_to_square_matrix(self)

Return a square matrix with $\mathbb{R}^{(max(m,n) \times max(m,n))}$, extra columns or rows will be filled with 0.

For example:

$$egin{array}{cccc} 1 & 1 \ 2 & 2 \ 3 & 4 \ 4 & 5 \ \end{array}$$

will be filled to:

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 4 & 5 & 0 & 0 \end{bmatrix}$$

19. matrix.get_projection_matrix(self)

Return the projection matrix of a given matrix, This method uses $P=A(A^TA)^{-1}A^T$ to produce the projection matrix.

20. matrix.project(self, target, to_orthogonal_space: bool = False)

Return the projected matrix (even if you input a vector, see vector() methods)

- param: target: the target matrix on which you want to project.
- param: $to_orthogonal_space$: whether to project on the orthogonal space (I-P) of the target matrix.

For example, to project matrix A on matrix X to get projected matrix p:

$$A = \begin{bmatrix} 1 & 1 & 2 & 5 \\ 2 & 2 & 3 & 3 \\ 3 & 4 & 4 & 8 \\ 4 & 5 & 5 & 1 \end{bmatrix} \qquad X = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 2 & 3 & 1 & 4 \\ 3 & 4 & 1 & 2 \\ 4 & 5 & 1 & 7 \end{bmatrix}$$

$$p = \begin{bmatrix} 1.0 & 0.8444444444 & 2.0 & 4.4944444444 \\ 2.0 & 2.2444444444 & 3.0 & 3.7944444444 \\ 3.0 & 3.9777777778 & 4.0 & 7.9277777778 \\ 4.0 & 4.93333333333 & 5.0 & 0.7833333333 \end{bmatrix}$$

type:

```
>>> A = matrix([[1,1,2,5],[2,2,3,3],[3,4,4,8],[4,5,5,1]])
>>> X = matrix([[1,2,1,3],[2,3,1,4],[3,4,1,2],[4,5,1,7]])
>>> print(A.project(X))
matrix:
[1.0, 0.84444444444, 2.0, 4.4944444444]
[2.0, 2.24444444444, 3.0, 3.79444444444]
[3.0, 3.9777777778, 4.0, 7.927777778]
[4.0, 4.93333333333, 5.0, 0.7833333333]
```

21. matrix.least_square(data: list)

compute the linear regression equation with the data list.

- param: data: input the data which represented by list[list].
- return: None (the data will be printed in the console.)

For example, to compute with the data set with y = Cx + D:

$$X = (1,2); (2,3); (3,3); (4,6); (5,7)$$

type:

```
>>> matrix.least_square([[1,2],[2,3],[3,3],[4,6],[5,7]])
least square of [[1, 2], [2, 3], [3, 3], [4, 6], [5, 7]] for y = Cx + D:
C = 1.2999999999999, D = 0.30000000000000
```

```
22. matrix.to_vector(self, split_index: Union[range, list, tuple, set, None] = None)
```

split the matrix with selected column and return a list of vector.

- param: split_index: the index of splitting the column in to the vector list. **Default** None, splitting all the columns in to the list.
- return: a list of vectors.

For example:

```
>>> # to split X:
>>> X = matrix([[1,2,3],[2,3,4]])
>>> # split the X with index [0,2]:
>>> print(X.to_vector([0,2]))
[vector:
[1, 2]
, vector:
[3, 4]
]
```

```
23. matrix.to_list(self)
```

• return a list object of matrix.

```
24. matrix.to_str(self)
```

• return a str object of the matrix's list.

```
The APIs under<class 'alice.vector'>:
```

```
1. vector(matrix)
```

Note

1. All private and static method (starts with __) will overwrite the input matrix which indicates the parameter 'my_matrix'. If you want to remain the matrix unchanged, please use copy.deepcopy() or call the methods by <class '__main__.matrix'> object.

