1) Observation from the data :-Feature 1 : Initial observation tells that linear regression will best bit feature 1. Increasing to higher degree polynomial might overfit the training data and will give wrong prediction on test or voss validation data (CU). 0-5 masky Feature 2 : From Fig 2 it can be observed that for feature 2 vs target plot 2 or 3 degree polynomial regression will give the best fit line. Frakling miller more parties sommer plant Feature 3: In fig 3, wel have multiple target values for 1 value of feature3. mitiall observation tells that polynomial regression with higher if stigatelian degree around 4/5 might leest bit blature 3. 25 mily

- (0.5 mortes)

1) (a) 2(b) her been tabulated in table 1 -> 0.5 for table 200 5 for comment Feature 1: (Fig 4)
Polynomial Regression with degree 1 i'e linear regression best bits the data. This ian le seen from Fig 4(6). Increasing to higher degrees (>,2) overbits the data and trys to capture the outliers. This overbitting of training data leads to Flature 2: (Fig 5)

Polynomial regression with degree 2 best bits the data (Fig 5c). Beyond degree 2 there is overbitting. Hence, ule choose degree 2 polynomial regression for feature 2,000

1000 + 15 modes

Flature 3: (Fig 6).

As we have predicted from the initial observation that higher degree polynomial regression of around. 4/5 might less bit the data.

Hence, we plotted multipled degrees of polynomial regression is performed from Fig 6 we can see that from degree 4 we tend to have samilar lost beit line. Therefore, choosing degree less than 4 will be underbit and above 4 will be all give similar bit. Higher degrees of regression will be computationally extensive too. Hence, degree 4 is the last bit line for feature 3.

(0.5 monles)

Feature 1 & Feature 2

The plane with degree 1 inc. bivariate linear regression withwell best bit the data — 1/3 mass.

Table — (13 marsles)
Comment — (13 marsles)

Frature 2 & 3

Ace I to the initial observation,
The data is spread such that a plane
with alegare 1 or atmost degree 2 with
least bit the date. This will be
validated by the compution method.

— 1/3 marks.

Table — (3 mordes).

Comment — (/3 martes).

Feature 123

mitial observation tells that and-line will lest bit the data.

Data looks like it is sussounded around a Line like a noise.

Table — (15 mars)

Comment (13 mades)-

3) Réfer Table 3 — 1 martes.

Comment - I marsles

In multivariate linear regression, all the features are taken and regression analyses is performed "Multivariate regression gives better performance when compared with linear and bivariate. This is because in this we predict the farget value based on multiple dependent features. Hence, we get better bit over the fargel.

Solution 1:

Fig 1: Feature1 vs target

Fig 2 : Feature2 vs target

0.6

Fig 3: Feature3 vs target

Features	k-fold	Parameters		Error		Comment	
		wO	w1	Training Error	CV Error	10.00	
Feature1	Dataset 1	4.49	8.25	1.41	1.428		
	Dataset 2	4.494	8.626	1.424	1.432	All the 5-fold gives	
	Dataset 3	4.622	8.643	1.431	1.528	approaximately same	
	Dataset 4	4.51	8.373	1.264	1.998	parameters. This shows that best	
	Dataset 5	4.538	8.472	1.499	1.3379	fit line fits properly for all set from	
Feature2	Dataset 1	4.496	-6.24	1.071	1.516	the shuffled dataset. From the	
	Dataset 2	4.49	-6.046	1.115	1.263	data set:- When training error is	
	Dataset 3	4.622	-6.358	1.235	1.118	high CV error is low and vice	
	Dataset 4	4.513	-6.369	1.093	1.406		
	Dataset 5	4.538	-6.212	1.233	0.754	versa. Out aim is to pick the	
	Dataset 1	4.49	-3.62	1.96	2.146	model which neither overfits nor	
	Dataset 2	4.494	-3.8	2.023	1.917	underfits the data. Hence, we pick	
Feature3	Dataset 3	4.622	-3.888	1.95	2.499	the model in which training error	
	Dataset 4	4.513	-3.398	1.963	2.129	is closest to CV error.	
	Dataset 5	4.538	-4.016	2.068	1.7611		

Table1: Univariate linear regression

Feature 1:-

 $Fig \ 4$: $Feature \ 1$ univariate linear regression

Fig 5: Feature 2 univariate linear regression

Fig 6: Feature 3 univariate linear regression.

 $Fig~8: Bivariate\ features\ vs\ target$

In the figure 9 red are predicted values and blue are actual value

Fig 9(a), (b), (c) contain actual value (blue), predicted value (red), best fit plane.

Features	k-fold	Parameters			Error		Comment	
		w0	w1	w2	Training Error	CV Error		
Feature(1&2)	Dataset 1	4.538	4.441	-4.358	0.997	0.5525	All the 5-fold gives	
	Dataset 2	4.494	4.652	-4.354	0.85	1.224	approaximately same	
	Dataset 3	4.622	4.826	-4.3741	0.97	1.019	parameters. This shows that	
	Dataset 4	4.5135	4.6077	-4.294	0.844	1.218	best plane fits closely for all	
	Dataset 5	4.538	7.127	-2.637	1.178	1.119	set from the shuffled dataset.	
Feature(2&3)	Dataset 1	4.496	-5.498	-1.929	0.91	1.22	From the data set:- When	
	Dataset 2	4.494	-5.276	-1.962	0.948	1.003	training error is high CV error	
	Dataset 3	4.622	-5.391	-2.198	1.016	1.09	is low and vice versa. Out aim	
	Dataset 4	4.513	-5.591	-1.766	0.938	1.073		
	Dataset 5	4.438	-5.34	-2.352	0.982	0.911	is to pick the model which	
Feature(1&3)	Dataset 1	4.496	7.089	-2.399	1.149	1.043	neither overfits nor underfits	
	Dataset 2	4.494	7.391	-2.518	1.132	1.206	the data. Hence, we pick the	
	Dataset 3	4.622	7.205	-2.492	1.141	1.285	model in which training error is	
	Dataset 4	4.513	7.322	-2218	1.006	1.615	closest to CV error for all the	
	Dataset 5	4.538	7.127	-2.637	1.178	1.119	features.	

Table 2: Bivariate linear regression

Solution 3:-

Features	k-fold		Parameters			Error	
		w0	w1	w2	w3	Training Error	CV Error
	Dataset 1	4.45	3.68	-3.96	-1.91	0.72	1.07
	Dataset 2	4.56	3.59	-4.06	-1.78	0.78	0.67
Feature(1, 2 & 3)	Dataset 3	4.58	4.55	-3.83	-1.74	0.78	1.09
	Dataset 4	4.55	4.36	-3.96	-1.86	0.77	0.81
	Dataset 5	4.54	4.32	-3.64	-1.95	0.73	0.92

Table 3: Multivariate linear regression