

Modelación de sistemas dinámicos

Guía de asignatura

Última actualización: enero de 2023

1. Información general

Nombre de la asignatura	Modeling of Dynamical Systems
Código	11310040
Tipo de asignatura	Obligatoria
Número de créditos	3
Tipo de crédito	2A+1B
Horas de trabajo semanal con	80
acompañamiento directo del	
profesor	
Horas semanales de trabajo	64
independiente del estudiante	
Prerrequisitos	Álgebra lineal, Ecuaciones Diferenciales
Correquisitos	Ninguno
Horario	miércoles 7:00-9:00 (teoría), viernes 7:00-10:00 (lab)
Líder de área	Germán Obando
	Correo: german.obando@urosario.edu.co
Salón	Teoría: CASUR, 404
	Labs: Sala Turing (Torre 2, 3er piso)

2. Información del profesor

Nombre del profesor	Germán Obando
Perfil profesional	Ingeniero Electrónico con maestría y doctorado en Automatización y Control. Áreas de interés: análisis de sistemas dinámicos y diseño de controladores distribuidos.
Correo electrónico institucional	german.obando@urosario.edu.co
Lugar y horario de atención	Por definir

3. Resumen y propósitos del curso

El curso aborda el modelado de sistemas dinámicos mediante ecuaciones diferenciales y en diferencia. Esto resulta extremadamente útil para predecir el comportamiento de distintos fenómenos físicos, sociales, computacionales, etc. Una vez expuestas las generalidades de los sistemas de ecuaciones diferenciales y en diferencias, se presentan las principales técnicas de análisis de modelos lineales, enfatizando en la representación en espacio de estados. Además, se introduce al estudiante en el uso de software especializado para simular el comportamiento de sistemas dinámicos.

4. Conceptos fundamentales

- 1. Modelos dinámicos en tiempo continuo
- 2. Modelos dinámicos en tiempo discreto
- 3. Simulación de sistemas dinámicos usando software especializado
- 4. Representación en espacio de estados
- 5. Análisis de sistemas lineales e invariantes en el tiempo
- 6. Puntos de equilibrio y estabilidad
- 7. Linealización de sistemas dinámicos

5. Resultados de aprendizaje esperados (RAE)

- 1. Conocer modelos típicos de sistemas a través de ecuaciones diferenciales y en diferencias.
- 2. Simular el comportamiento de sistemas dinámicos usando software especializado
- 3. Comprender la representación en espacios de estados de los sistemas dinámicos.
- 4. Manejar distintos métodos de análisis de sistemas lineales.
- 5. Realizar la linealización de un sistema representado en espacio de estados.

6. Modalidad del curso

Presencial.

7. Estrategias de aprendizaje

1. Clases magistrales donde se impartirán los fundamentos teóricos.

- 2. Tareas donde los estudiantes trabajarán independientemente en los contenidos vistos.
- 3. Laboratorios donde se implementarán los métodos y algoritmos abordados en las clases magistrales.
- 4. Proyecto final donde los estudiantes deberán aplicar las herramientas aprendidas durante el semestre para solucionar un problema real.

8. Actividades de evaluación

Tema	Actividad de evaluación	Porcentaje	Fecha examen
Los correspondientes a las	Evaluación escrita individual	20	Semana 5
sesiones 1 a 7	-		
	Primer parcial		
Los correspondientes a las	Evaluación escrita individual	20	Semana 11
sesiones 9 a 19	_		
	Segundo parcial		
Los correspondientes a las	Evaluación escrita individual	20	Semana 16
sesiones 21 a 29	_		
	Tercer parcial		
Todas las sesiones	Exposición y documento	15	Semana de
	_		exámenes
	Proyecto final		finales
Laboratorios y talleres	Informes individuales	25	Todas las
	y/o grupales		semanas

9. Programación de actividades

Fecha	Tema	Descripción de la actividad	Trabajo independiente del estudiante	Recursos que apoyan la actividad (bibliografía y otros recursos de apoyo)
Sesión 1	Presentación del	Clase Magistral,	Haber leído previamente	[Lue, 1.1-
	curso.	discusión,	la(s) sección(es).	1.4]
		ejercicios.	Complementar la clase	

	Teoría: Fenómenos dinámicos. Ejemplos típicos		haciendo ejercicios de la sección.		
Sesión 2	Laboratorio: introducción a Matlab				
Sesión 3	Teoría: Ecuaciones en diferencias. Existencia y unicidad de soluciones. Ejemplos	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Lue ,2.1-2.5]	
Sesión 4	Laboratorio: im	plementación de e	cuaciones en diferencias en	Matlab	
Sesión 5	Teoría: Ecuaciones en diferencias lineales. Ecuaciones lineales con coeficientes constantes	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Lue , 2.6- 2.7]	
Sesión 6	Laboratorio: ecuaciones en diferencias lineales				
Sesión 7	Teoría: Ecuaciones diferenciales. Existencia y unicidad de soluciones. Ecuaciones diferenciales lineales. Ejemplos	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Lue , 2.8- 2.10]	
Sesión 8	Laboratorio: solución de ecuaciones diferenciales en Matlab				
Sesión 9	Teoría: Sistemas de ecuaciones de primer orden.	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Lue, 4.1 & 4.2]	

	Representación de sistemas en espacio de estados. Entradas y salidas				
Sesión 10	Primer parcial				
Sesión 11	Teoría: Diagramas dinámicos	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Lue , 4.3]	
Sesión 12	Laboratori	o: diagramas dinám	nicos e introducción a Simulir	nk	
Sesión 13	Teoría: Sistemas lineales homogéneos en tiempo discreto. Matriz de transición de estados	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Lue, 4.4]	
Sesión 14	Laboratorio: simulación de sistemas lineales en tiempo discreto en Matlab y Simulink				
Sesión 15	Teoría: Sistemas lineales homogéneos en tiempo continuo. Matriz de transición de estados	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Lue, 4.6]	
Sesión 16	Laboratorio: simulación de sistemas lineales en tiempo continuo en Matlab y Simulink				
Sesión 17	Teoría: Cálculo de la matriz de transición de estados para sistemas lineales con coeficientes constantes usando	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Bay , 5.4]	

	funciones de		I	
	matrices cuadradas			
Sesión 18	Laboratorio: funciones de matrices cuadradas			
Sesión 19	Teoría: Sistemas lineales con entradas: principio de superposición	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Lue , 4.5 & 4.7]
Sesión 20	Apreciación Docencia Laboratorio: valores y vectores propios de la matriz del sistema			
Sesión 21	Teoría: Sistemas lineales con coeficientes constantes. Valores y vectores propios de la matriz del sistema	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Lue , 5.1 & 5.2]
Sesión 22		Segundo	o parcial	
Sesión 23	Teoría: Cambio de bases y diagonalización de sistemas	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Lue , 5.3]
Sesión 24	Laboratorio: diagonalización de sistemas			
Sesión 25	Teoría: Sistemas no diagonalizables. Test de diagonalización	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Bay, 4.4]
Sesión 26	Teoría: Forma canónica de Jordan I: estructura	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Bay, 4.4]
	Laboratorio: estructura de la forma canónica de Jordan			

Sesión 27	Teoría: Forma canónica de Jordan II: vectores propios generalizados	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Bay, 4.4]	
Sesión 28	Teoría: Forma canónica de Jordan III: cadenas de vectores propios generalizados y matriz modal generalizada	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Bay, 4.4]	
Sesión 29	Laboratorio: matriz modal generalizada				
Sesión 30	Teoría: Forma canónica de Jordan IV: cálculo de la matriz de transición de estados	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Bay, 4.4]	
Sesión 31	Teoría: Introducción al análisis de sistemas no lineales. Puntos de equilibrio. Linealización	Clase Magistral, discusión, ejercicios.	Haber leído previamente la(s) sección(es). Complementar la clase haciendo ejercicios de la sección.	[Lue , 9.1 - 9.4]	
Sesión 32	Tercer parcial				

10. Factores de éxito para este curso

A continuación se sugieren una serie de acciones que pueden contribuir, de manera significativa, con el logro de metas y consecuentemente propiciar una experiencia exitosa en este curso:

- 1. Planificar y organizar el tiempo de trabajo individual que le dedicará al curso
- 2. Organizar el sitio y los materiales de estudios
- 3. Tener un grupo de estudio, procurar el apoyo de compañeros
- 4. Cultivar la disciplina y la constancia, trabajar semanalmente, no permitir que se acumulen temas ni trabajos

- 5. Realizar constantemente una autoevaluación, determinar si las acciones realizadas son productivas o si por el contrario se debe cambiar de estrategias
- 6. Asistir a las horas de consulta del profesor, participar en clase, no quedarse nunca con la duda
- 7. Utilizar los espacios destinados para consultas y resolución de dudas, tales como Sala Gauss y Sala Knuth
- 8. Propiciar espacios para el descanso y la higiene mental, procurar tener buenos hábitos de sueño
- 9. Tener presente en todo momento valores como la honestidad y la sinceridad, al final no se trata solo de aprobar un examen, se trata de aprender y adquirir conocimientos. El fraude es un autoengaño

11. Bibliografía y recursos

[Lue] D. Luenberger, Introduction to Dynamic Systems: Theory, Models & Applications. Wiley & Sons. 1979

12. Bibliografía y recursos complementarios

[Bay] J. Bay, Fundamentals of linear state space systems. McGraw-Hill,1999.

[Oga] K. Ogata, Dinámica de Sistemas. Prentice-Hall.1987.

13. Acuerdos para el desarrollo del curso

REGLAS GENERALES

No se realizará aproximación de notas al final del semestre. Las notas solo serán cambiadas con base en reclamos OPORTUNOS dentro de los límites de tiempo determinados por el Reglamento Académico. Si por motivos de fuerza mayor el estudiante falta a algún parcial o quiz, deberá seguir el procedimiento regular determinado por el Reglamento Académico para presentar supletorios. No habrá acuerdos informales al respecto. No se eximirá a ningún estudiante de ningún examen. La asignatura no tiene ningún tipo de Bono. Las monitorias no son regulares sino por demanda. El horario de monitorias se podrá usar para hacer reposición de clases y/o exámenes.

Si el estudiante se presenta 20 minutos luego de dar inicio a alguna evaluación parcial o final, no podrá presentarla y deberá solicitar supletorio siguiendo la reglamentación institucional.

PROCESOS DISCIPLINARIOS-FRAUDE EN EVALUACIONES

Teniendo en cuenta el reglamento formativo-preventivo y disciplinario de la Universidad del Rosario, y la certeza de que las acciones fraudulentas van en contra de los procesos de enseñanza y aprendizaje, cualquier acto corrupto vinculado a esta asignatura será notificado a la secretaría académica correspondiente de manera que se inicie el debido proceso disciplinario. Se recomienda a los estudiantes leer dicho reglamento para conocer las razones, procedimientos y consecuencias que este tipo de acciones pueden ocasionar, así como sus derechos y deberes asociados a este tipo de procedimientos.

14. Respeto y no discriminación

A continuación, encontrará unas orientaciones institucionales básicas que sugerimos mantener en su guía de asignatura. Puede ampliar esta información si lo considera pertinente:

Si tiene alguna discapacidad, sea esté visible o no, y requiere algún tipo de apoyo para estar en igualdad de condiciones con los(as) demás estudiantes, por favor informar a su profesor(a) para que puedan realizarse ajustes razonables al curso a la mayor brevedad posible. De igual forma, si no cuenta con los recursos tecnológicos requeridos para el desarrollo del curso, por favor informe de manera oportuna a la Secretaría Académica de su programa o a la Dirección de Estudiantes, de manera que se pueda atender a tiempo su requerimiento.

Recuerde que es deber de todas las personas respetar los derechos de quienes hacen parte de la comunidad Rosarista. Cualquier situación de acoso, acoso sexual, discriminación o matoneo, sea presencial o virtual, es inaceptable. Quien se sienta en alguna de estas situaciones puede denunciar su ocurrencia contactando al equipo de la Coordinación de Psicología y Calidad de Vida de la Decanatura del Medio Universitario (Teléfono o WhatsApp 322 2485756).