

스마트미디어인재개발원 **나예호**

RasberryPi GPIO

39

40

GPIO 21

GND

RasberryPi GPIO

Raspberry Pi2 GPIO Header

Pin#	NAME		NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1, I2C)	00	DC Power 5v	04
05	GPIO03 (SCL1, I2C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	00	Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	00	(SPI_CE0_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(I2C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

GPIO: General Purpose Input Output

- 임베디드 시스템에서 외부와 입/출력 통신을 하기 위한 핀
- 사용목적에 따라 입력 혹은 출력을 설정하여 사용 가능
- 다양한 <mark>센서들을 라즈베리파이와 연결</mark>하고 제어할 수 있는 통신을 수행가능하도록 해주는 연결 핀

GPIO

GPIO

- HIGH or LOW, 즉 디지털 신호 인식 가능
- Arduino는 ADC(Analog to Digital Convert) 내장
- 라즈베리파이는 별도의 ADC/DAC를 연결해주어야 함

디지털 신호

아날로그 신호

전기 신호

디지털 신호 2개의 신호로 불연속적으로 변함

아날로그 신호 여러개의 신호로 연속적으로 변함

센서 (Sensor)

감각하여 알아내는 장치 액츄에이터 (Actuator)

시스템을 움직이거나 제어하는 기계 장치

LED

액츄에이터

온도센서

온도센서

라즈베리파이

LED 제어

디지털 신호의 출력(LED제어)

■ 특별 용도의 GPIO핀

- I2C 통신 핀 : GPIO2, 3
- SPI통신 핀 : GPIO7, 8, 9, 10, 11
- EEPROM(비휘발성 메모리): ID_SD, ID_SC
- Serial통신(TXD, RXD) : GPIO14, 15
- PWM: GPI012, 13, 18, 19

LED Blink

LED Blink 회로

LED 제어

Breadboard(빵판)

Breadboard 구조

Breadboard 구조

Breadboard를 이용한 LED제어

LED Blink 회로

저항

저항

저항(resistance)색띠읽는법

	수	승수	오차
검정색(Black)	0	1	
갈색(Brown)	1	10	1%
빨간색(Red)	2	100	2%
주황색(Orange)	3	1000	
노란색(Yellow)	4	10000	
초록 ^시 (Green)	5	100000	
파란색(Blue)	6	1000000	
보라색(Violet)	7	10000000	
قامٔ(Gray)	8	100000000	
	9	1000000000	
금색(Gold)			5%
24(Siver)			10%

220 ohm

Led blink Code

RPi.GPIO명칭 대신 GPIO사용

import RPi.GPIO as GPIO

GPIO를 사용할 수 있게 하는 라이브러리

import time

시간 관련 라이브러리

RaspberryPi RPi.GPIO

메서드명	기능	
GPIO.setmode(GPIO.BOARD) GPIO.setmode(GPIO.BCM)	핀 번호를 라즈베리파이 보드(BOARD) 번호로 참조 BCM(Broadcom chip-specific pin numbers)모드로 설정	
GPIO.setup(pin, GPIO.IN) GPIO.setup(pin, GPIO.OUT)	핀을 입력으로 설정 핀을 출력으로 설정	
GPIO.output(pin, GPIO.HIGH) GPIO.output(pin, GPIO.LOW)	디지털 출력을 HIGH로 설정 디지털 출력을 LOW로 설정	
GPIO.input(pin)	디지털 값을 읽음	
GPIO.cleanup()	GPIO 모듈의 점유 리소스 해제	
GPIO.VERSION	Rpi.GPIO 모듈의 버전 값을 갖는 변수	

Led blink Code

GPIO.setmode(GPIO.BCM)

라즈베리파이 GPIO를 BCM모드로 설정

GPIO.setup(led_pin, GPIO.OUT)

원하는 핀(led)을 출력 모드로 설정

Led blink Code

try:

LED 점등 반복

while True:

GPIO.output(2, GPIO.HIGH) time.sleep(1)

GPIO.output(2,GPIO.LOW) time.sleep(1)

excpet KeyboardInterrupt:

GPIO.cleanup()

리소스 반환

디지털 신호의 출력(LED * 3)

디지털 신호의 출력(LED * 3)

디지털 신호의 입력(Button)

Button + Led

디지털 신호의 입력(Button)

Button + Led

Button + Led 회로

Button x 3 + LED x 3

Button x 3 + LED x 3 회로

LED 밝기제어(PWM)

Analog LED

LED: 0~255

PWM 제어

디지털 신호 2개의 신호로 불연속적으로 변함

아날로그 신호 여러개의 신호로 연속적으로 변함

PWM Pulse Width Modulation 펄스폭 변조

PWM 제어

디지털 신호의 출력(LED제어)

■ 특별 용도의 GPIO핀

- I2C 통신 핀 : GPIO2, 3
- SPI통신 핀 : GPIO7, 8, 9, 10, 11
- EEPROM(비휘발성 메모리): ID_SD, ID_SC
- Serial통신(TXD, RXD) : GPIO14, 15
- PWM: GPI012, 13, 18, 19

RasberryPi PWM

Raspberry Pi2 GPIO Header

Pin#	NAME		NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1, I2C)	00	DC Power 5v	04
05	GPIO03 (SCL1, I2C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	00	Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	00	(SPI_CE0_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

Analog Led 회로


```
*blink_analog.py - /home/pi/blink_analog.py (2.7.9)*
File Edit Format Run Options Windows Help
import RPi.GPI0 as GPI0
import time
GPI0.setmode(GPI0.BCM)
GPIO.setwarnings(False)
GPI0.setup(2,GPI0.OUT)
p=GPI0.PVM(2,50)
p.start(0)
try :
   while True :
        p.ChangeDutyCycle(0)
        time.sleep(0.5)
        p.ChangeDutyCycle(50)
        time.sleep(0.5)
        p.ChangeDutyCycle(100)
        time.sleep(0.5)
except KeyboardInterrupt :
    GPI0.cleanup()
```


import RPi.GPIO as GPIO

GPIO를 사용할 수 있게 하는 라이브러리

import time

시간 관련 라이브러리

GPIO.setmode(GPIO.BCM) 라즈베리파이 GPIO를 BCM모드로 설정

GPIO.setup(led_pin, GPIO.OUT)

원하는 핀(led)을 출력 모드로 설정

GPIO.setmode(GPIO.BCM) 라즈베리파이 GPIO를 BCM모드로 설정

GPIO.setup(led_pin, GPIO.OUT)

원하는 핀(led)을 출력 모드로 설정

p=GPIO.PWM(led_pin,500) LED핀 PWM핀으로 사용, 500Hz

p.start(0)

설정한 PWM 시작, 초기값 설정

p.ChangeDutyCycle(0)
time.sleep(0.5)

p.ChangeDutyCycle(50)
time.sleep(0.5)

p.ChangeDutyCycle(100)
time.sleep(0.5)

LED 밝기제어(PWM) 예제 2

스탠드 회로

디바운스 스탠드

디바운스 스탠드 회로

스마트미디어인재개발원 **나예호**