චලිතය පිළිබඳ නිව්ටන් නියම

1.	බලය	3 (දෙශික/ අදෙශික) රාශියකි. එනම් හ)		
	•••••	ක් ඇත.			
2.	බාහි • නි	වත් 1 නියමය ර අසමතුලිත බලයක් යෙදෙන තුරු, ශ්චල වස්තූන් පවතින අතර, ලනය වන වස්තූන් චලනය වේ.			
3.	නිව්ම i. ii.	වන්ගේ පළමු නියමය ඇසුරින් පහදන්න. වාහනයක තිරිංග තද කළ විට මගියා ඉදිරියට විසි වීම. වාහන වල ආසන පටි යෙදීමේ අවශාතාවය			
	iii.	නිශ්චල රථයක් ගමන ආරම්භ කරන විට මගියා පසු පසට වැටීම	•••		
	iv.	කැරම් ඩිස්කයට පහරක් එල්ල කළ විට නොනැවතී ගමන් නොකිරීම			
4.	i. ii.	වඩා විශාල බලයක් යෙදිය යුත්තේ මෙහි කුමන $\frac{F}{A}$ වස්තුව චලනය කිරීම ද?			
1.	බාහි	ර අසංතුලිත බලයක් යෙදූ විට වස්තුවක් වේ.)		
		වන් 2 නියමය :			
2.		තුවක ඇතිවන ත්වරණය,			
		යට යොදනු ලබන බාහිර			
,			ر		
		ර අසංතුලිත බලය වැඩි වන විට ත්වරණය(අඩු/වැඩි) වේ.			
	බාහිර අසංතුලිත බලය අඩු වන වීට ත්වරණය (අඩු/වැඩි) වේ.				
5.	. එකම බාහිර අසංතුලිත බලය, ස්කන්ධය වැඩි වස්තුවක් මත කිුයා කරන විට ත්වරණය (අඩු/වැඩි) වේ.				
6.	-	ව බාහිර අසංතුලිත බලය, ස්කන්ධය අඩු වස්තුවක් මත කිුයා කරන විට ත්වරණය			
		/වැඩි) වේ.			
7.	_	ma පද හඳුන්වන්න. $F=$ $m=$ $a=$	••		
8.	$\mathbf{F} =$	ma ඒකක දක්වන්න. $F=$ $m=$ $a=$ $a=$	•••		

9. නිව්ටන් 2 නියමය අනුව පහත අ	වස්ථාවලට අදාලව ගණනයන් සිදුක	ර හිස්තැන් පුරවන්න.
a. Fair = 0.10 N Fgrav = 0.10 N m= a= \(\Sigma F = \)	b. Fair m=10000 kg a = 8.0 m/s/s, down ΣF =	F _{air} =
F _{frict} = F _{norm} = 10 000 N 9000 N F _{grav} = 10 000 N m= a= ΣF=	e. F _{norm} = F _{norm} = F _{app}	f. F _{norm} = 9000 N F _{app} = F _{grav} = 9000 N m= a = 1.50 m/s/s, right ΣF =
F _{norm} =	h. F _{norm} =600 N F _{frict} =100 N F _{grav} =600 N m= a= SF=	F _{norm} = F _{app} =14000 N F _{grav} = m=2000 kg a=2.0 m/s/s, right ΣF=
දෙවන වස්තුව මගින් පළමු වස්තු නිව්ටන් 3 නියමය :	ක් මත ඇති කරන බලය ව මත ඇති කරන බලය මුත් ැත.	ලෙසද හඳුන්වයි.

3. නිව්ටන් 3 නියමය අනුව පහත අවස්ථාවල කිුයාව හා පුතිකිුයාව නම් කරන්න.

viii. ගමාතාවය එක් වස්තුවක සිට වෙනත් වස්තුවකට සම්පේෂණය විය හැක.

x. කුඩා උණ්ඩයක, විශාල ටුක් රථයකට වඩා වැඩි ගමාතාවයක් තිබිය හැක.

ix. වස්තු ගැටෙන විට ගමාතාවයෙන් කොටසක් හානි වී යයි.

(.....)

(.....)

(.....)

5. i. පහත දත්ත ඇසුරින් වගුව සම්පූර්ණ කරන්න.

වස්තුව	ස්කන්ධය (Kg)	පුවේගය (m/s)	ගමාතාවය (kg-m/s)
කුරුල්ලා	0.04	19	0.75
පාපන්දු කීඩකයා	100	10	
හිම මත ලිස්සා යන්නා	60	20	
උණ්ඩය	0.004	600	
ගෙම්බා	0.9	12	
උල්කාව	0.1	1,000	
පන්දුව	0.14	30	
කරත්තය	2	3	
චන්දිිකාව	3,000	8,000	

ii.	i. ඉහත වස්තු ඒවායේ ගමාෘතාවය ආරෝහණය වන ආකාරයට ලියා දක්වන්න.			
iii.	ඔබ මෙවැනි අනුපිළිවෙලක් අපේක්ෂා කළාද? (ඔව්/නැත) ඔබගේ පිළිතුරට හේතුව දක්වන්න.			
iv.	ඉහත වස්තු සැමවිටම එම අනුපිළිවෙල දක්වනු ඇතැයි අපේක්ෂා කල හැකි ද? (ඔව්/නැත) ඔබගේ පිළිතුරට හේතුව?			

6. පහත අවස්ථා වල ගමාාතාවය ගණනය කරන්න.

පා පැදිය -පා පැදි කරුවා -

බෝලය -

බෝලය - පෙර අවස්ථාව -බෝලය - පසු අවස්ථාව -