Q: If $a(\frac{1}{b} + \frac{1}{c})$, $b(\frac{1}{c} + \frac{1}{a})$, $c(\frac{1}{a} + \frac{1}{b})$ are in arithmetic progression (AP), prove that a, b, c are also in AP.

Solution: Using properties of AP,

$$a\left(\frac{1}{b} + \frac{1}{c}\right) + 1, b\left(\frac{1}{c} + \frac{1}{a}\right) + 1, c\left(\frac{1}{a} + \frac{1}{b}\right) + 1$$

$$\implies a\left(\frac{1}{b} + \frac{1}{c}\right) + \frac{a}{a}, b\left(\frac{1}{c} + \frac{1}{a}\right) + \frac{b}{b}, c\left(\frac{1}{a} + \frac{1}{b}\right) + \frac{c}{c}$$

$$\implies a\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right), b\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right), c\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$$

$$\implies a, b, c$$

Hence proved that a, b, c are in AP.

parameter	value	description
d_{y}	-	Common Difference of 2 nd AP
y(n)	$(y(0) + nd_y)u(n)$	General Term of another AP
x(0)	$\frac{2y(0)^2 + 3y(0)d_y}{y(0)^2 + 3y(0)d_y + 2d_y^2}$	First Term of 1st AP
d_x	$\frac{y(0)^2 d_y + y(0) d_y^2 + 2y(0) d_y + d_y^2}{y(0)(y(0) + d_y)(y(0) + 2d_y)}$	Common Difference of 1st AP
x(n)	$(x(0) + nd_x)u(n)$	General Term of given AP

TABLE I Input Parameter Table

From table I

$$X(z) = x(0)\frac{1}{1 - z^{-1}} + d_x \frac{z^{-1}}{(1 - z^{-1})^2} \quad |z| > 1$$
 (1)

Fig. 1. graph with value of y(0) = 5, $d_y = 10$

