Solutions to Exercises from 'Algebra: Chapter 0'

Abstract. Solutions to exercises from the book 'Algebra: Chapter 0' by Paolo Aluffi.

Contents

Preface	V
Chapter 1. Preliminaries: Set theory and categories	1
1. Naive set theory	1
2. Functions between sets	2
3. Categories	5
4. Morphisms	8
5. Universal properties	10

Preface

This document contains my attempt at writing (hopefully correct!) solutions to exercises from Aluffi's book, while engaging in some self-study of modern abstract algebra with the ultimate aim of teaching myself some modern algebraic geometry.

CHAPTER 1

Preliminaries: Set theory and categories

1. Naive set theory

EXERCISE 1.1. Let $U = \{x \mid x \notin x\}$. Then, $U \notin U \iff U \in U$, a contradiction. This is Russell's paradox. Either we assume the *set of all sets* doesn't exist, or we need to give up the axiom of *unrestricted comprehension* in set theory.

EXERCISE 1.2. Suppose \sim is an equivalence relation on a set S. For every element $a \in S$, define the *equivalence class* of a (with respect to \sim) by

$$[a]_{\sim} := \{ b \in S \mid b \sim a \}.$$

Then, we note that due to reflexivity, the equivalence class $[a]_{\sim}$ of every element $a \in S$ contains a, and hence, is nonempty. Also, $[a]_{\sim} \subset S$, and therefore, $\bigcup_{a \in S} [a]_{\sim} = S$. Finally, we show the equivalence classes are mutually disjoint. Indeed, for any two elements $a,b \in S$, if $[a]_{\sim}$ and $[b]_{\sim}$ are disjoint, then there is nothing to prove. So, suppose $[a]_{\sim} \cap [b]_{\sim}$ is nonempty. Then, there exists some $c \in S$ that belongs to such an intersection. Thus, $c \sim a$ and $c \sim b$. By symmetry, $a \sim c$, and thus, by transitivity, $a \sim b$, which by symmetry again, implies $b \sim a$. Therefore, for all $x \in [a]_{\sim}$, we have $x \sim a$, and since $a \sim b$, by transitivity, $x \sim b$, which implies $x \in [b]_{\sim}$, from which we conclude $[a]_{\sim} \subset [b]_{\sim}$. We can similarly show $[b]_{\sim} \subset [a]_{\sim}$. Hence, $[a]_{\sim} = [b]_{\sim}$. This establishes equivalence classes are mutually disjoint. Hence, the set \mathscr{P}_{\sim} of equivalence classes of S is indeed a partition of S.

EXERCISE 1.3. Suppose $\mathscr P$ is a partition on a set S. Define a relation \sim on S as follows: For any two elements $a,b\in S,\ a\sim b$ iff a and b belong to the same set in the partition. Then, it is easy to check \sim is indeed an equivalence relation on S. $\mathscr P$ is, therefore, the corresponding partition of the aforesaid equivalence relation, and we are done.

EXERCISE 1.4. Note the set of equivalence relations on a set S are in a one-to-one correspondence with the set of partitions of S. Thus, the number of different equivalence relations that may be defined on $S = \{1, 2, 3\}$ equals the number of partitions of S, and this number equals 5, since the partitions of S are

$$\{\{1\}, \{2\}, \{3\}\}, \{\{1,2\}, \{3\}\}, \{\{1,3\}, \{2\}\}, \{\{2,3\}, \{1\}\}, \{\{1,2,3\}\}.$$

The above partitions are also written as 1|2|3, 12|3, 13|2, 23|1, 123.

EXERCISE 1.5. An example of a relation R (defined on a set S) that is reflexive and symmetric but not transitive is the following:

$$R = \{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2)\},$$
where $S = \{1,2,3\}.$

EXERCISE 1.6. Define a relation \sim on the set \mathbb{R} of real numbers by setting

$$a \sim b \iff b - a \in \mathbb{Z}.$$

We claim \sim is an equivalence relation. To that end, note, for all $a \in \mathbb{R}$, we have $a \sim a$, since $a - a = 0 \in \mathbb{Z}$. Therefore, \sim is reflexive. Also, if $a \sim b$, then $b - a \in \mathbb{Z}$, which implies $a - b \in \mathbb{Z}$, and thus, $b \sim a$. Therefore, \sim is symmetric. Finally, suppose $a \sim b$ and $b \sim c$. Then, b - a, $c - b \in \mathbb{Z}$, and thus, $c - a = (c - b) + (b - a) \in \mathbb{Z}$. Thus, \sim is transitive. Therefore, \sim is an equivalence relation on \mathbb{R} .

(Description of \sim) Note all reals that have the same decimal expansion belong to the same equivalence class under \sim . Thus, $[0]_{\sim} = \mathbb{Z}$, and for any $0 < \alpha < 1$, $[\alpha]_{\sim} = \{n + \alpha \mid n \in \mathbb{Z}\}$. This takes care of all the reals, since each real can always be written as $n + \alpha$, for some $n \in \mathbb{Z}$ and $0 < \alpha < 1$. Therefore, a 'compelling' description for \mathbb{R}/\sim is the unit interval [0,1], such that the endpoints, 0 and 1, are 'glued' together. In other words, it is a 'loop' or a 1-sphere.

Define a relation \approx on the plane $\mathbb{R} \times \mathbb{R}$ as follows:

$$(a_1, a_2) \approx (b_1, b_2) \iff b_1 - a_1 \in \mathbb{Z} \text{ and } b_2 - a_2 \in \mathbb{Z}.$$

Then, just as above, it is easy to show \approx defines an equivalence relation on $\mathbb{R} \times \mathbb{R}$. We note $[(0,0)]_{\sim} = \{(m,n) \mid m,n \in \mathbb{Z}\}$, and for any $0 < \alpha,\beta < 1,[(\alpha,\beta)]_{\sim} = \{(m+\alpha,n+\beta) \mid m,n \in \mathbb{Z}\}$. Thus, a 'compelling' description of $\mathbb{R} \times \mathbb{R}/\approx$ is the unit square $[0,1] \times [0,1]$ with the four corners joined together, so that it forms a 2-sphere.

2. Functions between sets

EXERCISE 2.1. We claim the number of bijections from a set S with n elements to itself is n!. To begin with, any element in S can be mapped to any of the n possible elements in S. Then, the next element in S can be mapped to any of the remaining n-1 elements in S, and so on, with the last element in S being mapped to the last remaining element in S. Thus, the number of bijections equals $n \cdot (n-1) \cdot \ldots \cdot 1 = n!$, which proves our claim.

EXERCISE 2.2. Assume $A \neq \emptyset$, and let $f: A \to B$ be a function. We claim f has a right inverse iff it is surjective.

(\Leftarrow) Suppose f has a right inverse, $g: B \to A$, say. Then, $f \circ g = 1_B$. Thus, for all $b \in B$, $b = 1_B(b) = (f \circ g)(b) = f(g(b)) = f(a)$, where $g(b) = a \in A$. This shows f is surjective.

 (\Longrightarrow) Suppose f is surjective. Then, for any $b\in B$, the fiber of f over b is nonempty. Thus, $\{f^{-1}(b)\}_{b\in B}$ is a family of nonempty sets, and therefore, using the axiom of choice, we can construct a function $g:B\to A$ as follows: For all $b\in B$, g(b)=a for some $a\in f^{-1}(b)$. Hence, for all $b\in B$, $(f\circ g)(b)=f(g(b))=f(a)=b=1_B(b)$, and so, $f\circ g=1_B$. This establishes g is the right inverse of f, and we are done.

EXERCISE 2.3. Suppose $f: A \to B$ is a bijection. Then, f has an inverse $f^{-1}: B \to A$ such that $f^{-1} \circ f = 1_A$ and $f \circ f^{-1} = 1_B$. Clearly, f is an inverse of f^{-1} , showing f^{-1} is also a bijection.

Suppose $f:A\to B$ and $g:B\to C$ are bijections. We claim $g\circ f:A\to C$ is also a bijection. To that end, we show $f^{-1}\circ g^{-1}:C\to A$ is the inverse of $g\circ f$. Indeed, $(g\circ f)\circ (f^{-1}\circ g^{-1})=g\circ (f\circ f^{-1})\circ g^{-1}=g\circ 1_B\circ g^{-1}=g\circ g^{-1}=1_C$. And, $(f^{-1}\circ g^{-1})\circ (g\circ f)=f^{-1}\circ (g^{-1}\circ g)\circ f=f^{-1}\circ 1_B\circ f=f^{-1}\circ f=1_A$, and we are done.

EXERCISE 2.4. We show 'isomorphism' is an equivalence relation on any set of sets.

(Reflexivity) For all sets $A, 1_A : A \to A$ is a natural bijection, and thus, $A \cong A$. (Symmetry) Suppose $A \cong B$ for any two sets A, B. Then, there exists a bijection $f: A \to B$, such that its inverse $f^{-1}: B \to A$ is also a bijection (as shown in the above exercise.) Thus, $B \cong A$.

(Transitivity) Finally, suppose for any three sets, A, B and $C, A \cong B$ and $B \cong C$, with $f: A \to B$ and $g: B \to C$ as bijections. Then, from the previous exercise, $g \circ f: A \to C$ is also a bijection, and thus $A \cong C$.

Thus, our original claim is established.

EXERCISE 2.5. (**Epimorphism**) A function $f: A \to B$ is an *epimorphism* (or *epi*) if the following holds: For all sets Z and all functions $\alpha', \alpha'': B \to Z$,

$$\alpha' \circ f = \alpha'' \circ f \Longrightarrow \alpha' = \alpha''.$$

In other words, an epimorphism f is right cancellative.

Proposition: A function is surjective iff it is an epimorphism.

Proof. (\Longrightarrow) Suppose $f:A\to B$ is an epimorphism. Assume, for the sake of contradiction, f is not surjective. Then, there exists an element $b_0\in B$, such that, for all $a\in A$, $f(a)\neq b_0$. We now construct two distinct functions $\alpha',\alpha'':B\to\{0,1\}$ as follows:

$$\alpha'(b) = 0$$

$$\alpha''(b) = \begin{cases} 0 & \text{if } b \neq b_0 \\ 1 & \text{if } b = b_0 \end{cases}$$

Then, it is easy to check that, for all $a \in A$, $(\alpha'' \circ f)(a) = \alpha''(f(a)) = 0 = \alpha'(f(a)) = (\alpha' \circ f)(a)$, which implies $\alpha' \circ f = \alpha'' \circ f$. However, $\alpha' \neq \alpha''$, which contradicts our assumption that f is an epimorphism. Hence, we conclude f is surjective.

 (\Leftarrow) Suppose $f:A\to B$ is surjective. Then, it has a right inverse $g:B\to A$ such that $f\circ g=1_B$. Now, assume, for any set Z and any two functions $\alpha',\alpha'':B\to Z,\,\alpha'\circ f=\alpha''\circ f$. Then, $\alpha'=\alpha'\circ 1_B=\alpha'\circ (f\circ g)=(\alpha'\circ f)\circ g=(\alpha''\circ f)\circ g=\alpha''\circ (f\circ g)=\alpha''\circ 1_B=\alpha''$, thus proving f is an epimorphism.

EXERCISE 2.6. Any function $f:A\to B$ determines a section $g:A\to A\times B$ of $\pi_A:A\times B\to A$ by defining g as follows:

$$a \mapsto (a, f(a))$$

Then, for all $a \in A$, $(\pi_A \circ g)(a) = \pi_A(g(a)) = \pi_A(a, f(a)) = a = 1_A(a)$, which implies $\pi_A \circ g = 1_A$, thereby showing g as defined above is indeed a section of π_A .

EXERCISE 2.7. Let $f: A \to B$ by any function. We show the graph Γ_f of f is isomorphic to A. First, recall the definition of Γ_f :

$$\Gamma_f := \{(a, b) \in (A, B) \mid b = f(a)\} \subseteq A \times B.$$

We define a function $g: A \to \Gamma_f$ by

$$a \mapsto (a, f(a)).$$

Then, for any $(a,b) \in \Gamma_f$, we have b = f(a), which implies g(a) = (a,f(a)) = (a,b), proving g is surjective. Next, for any $a',a'' \in A$, suppose g(a') = g(a''). This implies (a',f(a')) = (a'',f(a'')), which implies a' = a'', thus proving g is injective. Hence, g is an isomorphism, and so, $A \cong \Gamma_f$.

EXERCISE 2.8. We describe below explicitly all the terms in the canonical decomposition of the function $f: \mathbb{R} \to \mathbb{C}$ defined by

$$r \mapsto e^{2\pi i r}$$
.

Note f determines an equivalence relation \sim on \mathbb{R} as follows: For all $r', r'' \in \mathbb{R}$,

$$r' \sim r'' \iff f(r') = f(r'').$$

Now, f(r') = f(r'') whenever $e^{i2\pi r'} = e^{i2\pi r''}$, i.e. $e^{i2\pi(r'-r'')} = e^0$; that is, $2\pi(r'-r'') = 2\pi k$, where $k \in \mathbb{Z}$. In other words, f(r') = f(r'') iff r' - r'' = k, where $k \in \mathbb{Z}$. This implies

$$r' \sim r'' \iff r' - r'' \in \mathbb{Z}.$$

The above equivalence relation matches the one stated in Exercise 1.6 of Chapter 1. And, from the solution to the aforesaid exercise, we note that all equivalence classes are of the form $[\alpha]_{\sim}$, where $\alpha \in [0,1)$. Therefore, the isomorphism $\tilde{f}: \mathbb{R}/\sim \xrightarrow{\sim} \operatorname{im} f$ is defined by

$$\tilde{f}(\alpha) = e^{2\pi i \alpha}, \ \alpha \in [0, 1).$$

Also, note im f is the unit circle on the complex plane. So, the entire decomposition of $f: \mathbb{R} \to \mathbb{C}$ is as shown below:

$$\mathbb{R} \xrightarrow{\mathscr{F}} \mathbb{R}/\sim \xrightarrow{\sim} \inf f \xrightarrow{\mathscr{C}} \mathbb{C} ,$$

where \mathbb{R}/\sim is a 'loop' (1-sphere.)

EXERCISE 2.9. Suppose $A'\cong A''$ and $B'\cong B''$, and further $A'\cap B'=\varnothing$ and $A''\cap B''=\varnothing$. Then, there exist isomorphisms $f:A'\to A''$ and $g:B'\to B''$. Define a piecewise function $h:A'\cup B'\to A''\cup B''$ as follows:

$$h(x) = \begin{cases} f(x) & \text{if } x \in A' \\ g(x) & \text{if } x \in B' \end{cases}$$

We claim h is an isomorphism. Indeed, let $y \in A'' \cup B''$. Since A'' and B'' are disjoint, there are two cases to consider. Either, $y \in A''$, in which case, since f is surjective there exists some $x_1 \in A'$ such that $f(x_1) = y$, which implies $h(x_1) = y$. Or, $y \in B''$, in which case, since g is surjective there exists some $x_2 \in B'$ such that $g(x_2) = y$, which implies $h(x_2) = y$. Thus, in either case, h maps some $x \in A' \cup B'$ to $y \in A'' \cup B''$, thus showing h is surjective.

Now, suppose $h(x_1) = h(x_2)$ for any $x_1, x_2 \in A' \cup B'$. There are three cases to consider. First, if both $x_1, x_2 \in A'$, then $f(x_1) = f(x_2)$, and since f is injective, $x_1 = x_2$. Second, if both $x_1, x_2 \in B'$, then $g(x_1) = g(x_2)$, and since g is injective, $x_1 = x_2$. Finally, without loss of generality, we can assume $x_1 \in A'$ and $x_2 \in B'$, which implies $f(x_1) = g(x_2)$, but this is impossible, since $f(x_1) \in A''$ and $f(x_2) \in B''$, but A'', B'' are disjoint. Thus, we conclude h is injective. Hence, h is an isomorphism.

The above demonstrates the *disjoint union* operation $A \coprod B$ for any two sets A and B is, indeed, well-defined *up to isomorphism*.

EXERCISE 2.10. Suppose A and B are finite sets. Then, any one of the |A| elements in A can be mapped to any one of the |B| elements in B. Thus, there are exactly $|B|^{|A|}$ ways of constructing a function $A \to B$. Hence, $|B^A| = |B|^{|A|}$.

EXERCISE 2.11. Let A be a set, and let 2^A denote the set of functions from A to $2 = \{0, 1\}$. Then, define a mapping $f : 2^A \to \mathcal{P}A$, where $\mathcal{P}A$ is the powerset of A, as follows: Any function $A \to 2$ is mapped to the subset consisting of all those elements of A that are mapped to 1 under such a function. Then, it is easy to check f is both surjective and injective, and hence, a bijection.

3. Categories

EXERCISE 3.1. Let \mathcal{C} be a category. Consider a structure \mathcal{C}^{op} with

- $Obj(\mathcal{C}^{op}) := Obj(\mathcal{C});$
- for A, B objects of \mathcal{C}^{op} (hence objects of \mathcal{C}), $\operatorname{Hom}_{\mathcal{C}^{op}}(A, B) := \operatorname{Hom}_{\mathcal{C}}(B, A)$.

We can make C^{op} into a category as follows.

- For every object A of C^{op} , its identity morphism in C^{op} is defined as the identity morphism 1_A in C.
- For any two morphisms $f \in \operatorname{Hom}_{\mathcal{C}^{op}}(A, B)$ and $g \in \operatorname{Hom}_{\mathcal{C}^{op}}(B, C)$, the composite $g \circ f \in \operatorname{Hom}_{\mathcal{C}^{op}}(A, C)$ is defined as the composite $f \circ g$ in \mathcal{C} .
- The associativity of composition in C^{op} is a direct consequence of associativity of composition in C.
- The fact that identity morphisms in \mathcal{C}^{op} are identities with respect to composition is a direct consequence of identity morphisms in \mathcal{C} being identities with respect to composition.

The above construction, thus, shows C^{op} is a category. This *opposite category* is simply obtained by 'reversing all the arrows' in C.

EXERCISE 3.2. If A is a finite set, then $|\operatorname{End}_{\mathbf{Set}}(A)| = |A^A| = |A|^{|A|}$.

EXERCISE 3.3. In Example 3.3, to say $1_a = (a,a)$ is the identity of element $a \in S$ with respect to composition means that any $f = (a,b) \in \text{Hom}(a,b)$ remains unchanged when composed with 1_a or 1_b in the appropriate manner. In the first case, we have $a \sim a$ and $a \sim b$, and thus, by transitivity, $a \sim b$, from which we conclude $f1_a = (a,b) = f$. Similarly, in the second case, we conclude $1_b f = f$.

EXERCISE 3.4. Suppose we can define a category in the style of Example 3.3 using the relation < on the set \mathbb{Z} . Then, any element (object) $n \in \mathbb{Z}$ will have an identity morphism $1_n = (n, n)$ that would imply n < n, which is impossible. Hence, we can't define such a category using the relation < on the set \mathbb{Z} .

EXERCISE 3.5. Example 3.4 is an instance of the categories considered in Example 3.3 in the sense that set inclusion \subseteq (morphisms) between subsets of S (objects) satisfies the reflexivity and transitivity axioms for \sim .

EXERCISE 3.6. (Assuming some familiarity with linear algebra.) Define a category V by taking $\mathrm{Obj}(\mathsf{V}) = \mathbb{N}$ and letting $\mathrm{Hom}_{\mathsf{V}}(n,m) = \mathrm{the}$ set of $m \times n$ matrices with real entries, for all $n,m \in \mathbb{N}$. Composition is defined as products of matrices. Note, for all $n \in \mathbb{N}$,

$$\operatorname{Hom}_{\mathsf{V}}(n,0) = \emptyset = \operatorname{Hom}_{\mathsf{V}}(0,n).$$

This category does *not* 'feel' familiar, since it is quite unlike any of the other categories we have seen before. Objects of V are not like the usual sets or elements we have encountered so far, and its morphisms are matrices which are not the typical set-theoretic functions.

EXERCISE 3.7. Let $\mathcal C$ be a category, and A an object of $\mathcal C$. We define a category $\mathcal C^A$ as follows:

- $\operatorname{Obj}(\mathcal{C}^A) := \operatorname{collection}$ of all morphisms from A to any object of \mathcal{C} ; that is, an object of \mathcal{C}^A is a morphism $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ for some object B of \mathcal{C} .
- For any two objects $f_1: A \to B$ and $f_2: A \to C$ of \mathcal{C}^A , morphisms $f_1 \to f_2$ are defined to be commutative diagrams

in the 'ambient' category \mathcal{C} . That is, morphisms $f_1 \to f_2$ correspond precisely to those morphisms $\sigma: B \to C$ in \mathcal{C} such that $\sigma \circ f_1 = f_2$.

(Composition) Two morphisms $f_1 \to f_2$ and $f_2 \to f_3$ in \mathcal{C}^A correspond to putting two commutative diagrams side-by-side:

Then, the diagram obtained by removing the central arrow, i.e.

also commutes, since C is a category.

EXERCISE 3.8. A subcategory \mathcal{C}' of a category \mathcal{C} consists of a collection of objects of \mathcal{C} , with morphisms $\operatorname{Hom}_{\mathcal{C}'}(A,B) \subseteq \operatorname{Hom}_{\mathcal{C}}(A,B)$ for all objects A,B in $\operatorname{Obj}(\mathcal{C}')$, such that identities and compositions in \mathcal{C} make \mathcal{C}' into a category. A subcategory \mathcal{C}' is full if $\operatorname{Hom}_{\mathcal{C}'}(A,B) = \operatorname{Hom}_{\mathcal{C}}(A,B)$ for all A,B in $\operatorname{Obj}(\mathcal{C}')$.

We can construct a category of *infinite sets* as follows. The objects of this category are all infinite sets from \mathbf{Set} , and morphisms from an infinite set A to another infinite set B are just the usual set-functions. Then, it is clear that this category is indeed a full subcategory of \mathbf{Set} .

Exercise 3.9.

EXERCISE 3.10. Given any set A in **Set**, the subsets (subobjects) of A are in a one-to-one correspondence with functions $A \to \{0,1\}$. Thus, $\Omega = \{0,1\}$ is a subobject classifier of **Set**.

EXERCISE 3.11. The category $C^{A,B}$ consists of the following pieces of data:

• $Obj(\mathcal{C}^{A,B}) = diagrams$

• morphisms $(f_1:A\to Z_1,g_1:B\to Z_1)\to (f_2:A\to Z_2,g_2:B\to Z_2)$ are commutative diagrams

• (Composition) Given commutative diagrams

the following diagram commutes:

• (Identities) The identity morphism of

is $Z \xrightarrow{1_Z} Z$, thus making the following diagram commute:

Given a category \mathcal{C} and two fixed morphisms $\alpha: C \to A$ and $\beta: C \to B$, the category $\mathcal{C}^{\alpha,\beta}$ consists of the following pieces of data:

• $Obj(\mathcal{C}^{\alpha,\beta}) = commutative diagrams$

in C.

• Morphisms correspond to commutative diagrams

- Composition and identities are defined in the obvious way.
- The usual composition and identity laws for $C^{\alpha,\beta}$ follow from the composition and identity laws in C.

4. Morphisms

EXERCISE 4.1. Suppose $A_0 \xrightarrow{f_1} A_1 \xrightarrow{f_2} A_2 \xrightarrow{f_3} \dots \xrightarrow{f_n} A_n$ is a sequence of n > 0 morphisms in a category \mathcal{C} . We claim any choice of placement of parentheses for $f_n f_{n-1} \dots f_1$ equals

$$(\dots((f_nf_{n-1})f_{n-2})\dots)f_1.$$

We use induction on n to prove our claim.

(Base cases) We note $f_1 = (f_1)$. And, also $f_2 f_1 = (f_2) f_1$. So the statement holds for n = 1, 2.

(Inductive case) Suppose the statement holds for some n > 1. Now, consider the placement of parentheses for the expression $E = f_{n+1}f_nf_{n-1}\dots f_1$. Any such choice will correspond to a representation of E in the form ee', where both e and e' contain at least one term. This also implies both e and e' contain at most e

terms. So, assume e contains the terms $f_{n+1}, f_n, \ldots, f_i$ and e' contains the terms f_{i-1}, \ldots, f_1 for some $1 < i \le n+1$. Then, by the inductive hypothesis,

$$e = (((f_{n+1}f_n)...)f_i)$$

 $e' = (f_{i-1}(...(f_2f_1)))$

Then, through repeated use of the associativity of morphisms under composition, we have ${\cal E}$

```
= ee'
= e(f_{i-1}(\dots(f_2f_1)))
= ((((ef_{i-1})f_{i-2})f_{i-3})\dots)f_1
= (\dots((f_{n+1}f_n)f_{n-1})\dots)f_1
```

So, the statement holds for n+1 as well, and hence, by induction, the statement holds for all naturals n > 0. And, we are done.

EXERCISE 4.2. We claim if a set S is endowed with an equivalence relation \sim , then the corresponding category \mathcal{C} is a groupoid. Indeed, if $a \to b$ is a morphism in \mathcal{C} , then $a \sim b$, which (by symmetry) implies $b \sim a$. Thus, $b \to a$, and since there is at most one morphism from any object (element) to another, we must have

$$a \to b \to a = 1_a$$

 $b \to a \to b = 1_b$

Hence, $a \to b$ is an isomorphism, for all elements $a, b \in S$, and thus, C is a groupoid.

EXERCISE 4.3. Let A, B be objects of a category C, and let $f \in \text{Hom}_{\mathcal{C}}(A, B)$ be a morphism.

- Suppose f has a right inverse, $g: B \to A$, say. Then, $f \circ g = 1_B$. Assume Z is an object of C and $\beta, \beta': B \to Z$ morphisms such that $\beta \circ f = \beta' \circ f$. Then, $\beta = \beta \circ 1_B = \beta \circ (f \circ g) = (\beta \circ f) \circ g = (\beta' \circ f) \circ g = \beta' \circ (f \circ g) = \beta' \circ 1_B = \beta'$, thus showing f is an epimorphism.
- In (\mathbb{Z}, \leq) , considered as a category, any morphism is an epimorphism, but the same does not have a right inverse. For example, $1 \leq 2$, *i.e.* $1 \to 2$. But, if the latter were to have a right inverse, then we would have $2 \to 1$, which would then imply $2 \leq 1$, clearly a contradiction.

EXERCISE 4.4. Suppose $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ are both monomorphisms in a category C. Let Z be any object of C, and let $\alpha', \alpha'' : Z \to A$ be morphisms such that

$$(g \circ f) \circ \alpha' = (g \circ f) \circ \alpha''.$$

Then, $g \circ (f \circ \alpha') = g \circ (f \circ \alpha'')$, which implies $f \circ \alpha' = f \circ \alpha''$, which implies $\alpha' = \alpha''$. Hence, $g \circ f$ is a monomorphism. This demonstrates the composition of two monomorphisms is a monomorphism.

Now, it is easy to check identity morphisms in \mathcal{C} are monomorphisms. Thus, one can define a subcategory $\mathcal{C}_{\text{mono}}$ of a category \mathcal{C} by taking the same objects as in \mathcal{C} and defining $\text{Hom}_{\mathcal{C}_{\text{mono}}}$ to be the subset of $\text{Hom}_{\mathcal{C}}(A,B)$ consisting of monomorphisms, for all objects A,B of \mathcal{C} .

(Epimorphisms) Suppose $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ are both epimorphisms in a category C. Let Z be any object of C, and let $\beta', \beta'' : C \to Z$ be morphisms such that

$$\beta' \circ (g \circ f) = \beta'' \circ (g \circ f).$$

Then, $(\beta' \circ g) \circ f = (\beta'' \circ g) \circ f$, which implies $\beta' \circ g = \beta'' \circ g$, which implies $\beta' = \beta''$, thus showing $g \circ f$ is an epimorphism. In a manner similar to the one shown above, one can define a subcategory \mathcal{C}_{epi} of a category \mathcal{C} .

Exercise 4.5.

5. Universal properties

EXERCISE 5.1. Suppose F is a final object in a category C. Then, for all objects A of C, there exists a unique morphism $A \to F$ in C, which implies for all objects A of C^{op} , there exists a unique morphism $F \to A$ in C^{op} . We thus conclude F is initial in the opposite category C^{op} .

EXERCISE 5.2. For any set A, the function

$$\varnothing \xrightarrow{(\varnothing, A, \varnothing)} A$$

is the unique function from \varnothing to A. Thus, \varnothing is initial in **Set**. Now, suppose I is a set that's also initial in **Set**. Then, $\varnothing \cong I$. Therefore, $|I| = |\varnothing| = 0$, which implies $I = \varnothing$. Hence, \varnothing is the unique initial object in **Set**.

EXERCISE 5.3. Suppose F_1 and F_2 are final objects in a category \mathcal{C} . Then, there are unique morphisms $F_1 \to F_2$ and $F_2 \to F_1$. So, we must have

$$F_1 \to F_2 \to F_1 = 1_{F_1}$$

 $F_2 \to F_1 \to F_2 = 1_{F_2}$

Thus, $F_1 \cong F_2$, and hence, we conclude final objects are unique up to isomorphism.

EXERCISE 5.4. In the category \mathbf{Set}^* of pointed sets, any object ($\{*\},*$) is both an initial and a final object.

EXERCISE 5.5. The final objects considered in the category considered in §5.3 are $A \to \{\bullet\}$.

EXERCISE 5.6. Consider the category corresponding to endowing the set \mathbb{Z}^+ of positive integers with the *divisibility* relation. Then, for any two positive integers m, n, if their product $m \times n$ exists, then $m \times n$ divides both m and n, and further, if some positive integer d divides both m and n, then d divides $m \times n$. gcd(m, n) satisfies the aforesaid condition, and hence, it is the product of m and n. Similarly, it is easy to check lcm(m, n) is the coproduct of any two positive integers m and n.

EXERCISE 5.7. Suppose $A'\cong A''$ and $B'\cong B''$, and further, $A'\cap B'=\varnothing$ and $A''\cap B''=\varnothing$. Then, there exist isomorphisms $k:A'\to B'$ and $l:B'\to B''$, say. We claim

$$A' \xrightarrow{i_{A'}} A' \cup B' \xleftarrow{i_{B'}} B',$$

where $i_{A'}, i_{B'}$ are inclusion functions, is the coproduct of A' and B'.

Toward that end, for any set C and functions $A' \xrightarrow{f} C \xleftarrow{g} B'$, we define a function $h: A' \cup B' \to C$ by

$$h(x) = \begin{cases} f(x) & \text{if } x \in A' \\ g(x) & \text{if } x \in B' \end{cases}$$

Then, it is easy to check the following diagram commutes:

$$A' \xrightarrow{i_{A'}} A' \cup B' \xleftarrow{i_{B'}} B'$$

Also, h is necessarily the unique function $A' \cup B' \to C$ that makes the above diagram commute.

We next verify

$$A' \xrightarrow{k \circ i_{A'}} A'' \cup B'' \xleftarrow{l \circ i_{B'}} B'$$

is also a coproduct of A' and B'. Indeed, for any set C and functions $A' \xrightarrow{f} C \xleftarrow{g} B'$, we define a function $h': A'' \cup B'' \to C$ by

$$h'(x) = \begin{cases} f \circ k^{-1}(x) & \text{if } x \in A'' \\ g \circ l^{-1}(x) & \text{if } x \in B'' \end{cases}$$

It is, again, easy to check the following diagram commutes:

$$A' \xrightarrow[k \circ i_{A'}]{f} A'' \cup B'' \xleftarrow[loi_{B'}]{g} B'$$

Also, h'' is necessarily the unique function $A'' \cup B'' \to C$ that makes the above diagram commute.

Thus, we see both $A' \cup B'$ and $A'' \cup B''$ along with their associated functions are coproducts of A' and B', and hence, we conclude they are isomorphic to each other.

EXERCISE 5.8. Suppose $\mathcal C$ is a category and A,B are objects of $\mathcal C$. Assume the products $A \leftarrow A \times B \to B$ and $B \leftarrow B \times A \to A$ exist. Then, for all sets C and functions $A \xleftarrow{f} C \xrightarrow{g} B$, there exists a unique function $\langle f,g \rangle : C \to A \times B$ such that the following diagram commutes:

$$A \stackrel{f}{\longleftarrow} A \times B \stackrel{g}{\longrightarrow} B$$

This implies there is a unique function $\langle g,f\rangle:C\to B\times A$ such that the following diagram commutes:

$$B \stackrel{g}{\longleftarrow} B \times A \longrightarrow A$$

We thus see both $A \leftarrow A \times B \rightarrow B$ and $B \leftarrow B \times A \rightarrow A$ satisfy the universal property for the product of A and B. That is, they are both final objects in the corresponding category, and hence, by Proposition 5.4, they are isomorphic.

EXERCISE 5.9. Let \mathcal{C} be a category with products. For any three objects A, B, C of \mathcal{C} , their product $A \times B \times C$ satisfies the following property: The product is equipped with morphisms $A \times B \times C \to A$, $A \times B \times C \to B$ and $A \times B \times C \to C$ such that, for all objects D and morphisms $f: D \to A, g: D \to B$ and $h: C \to C$, there is a unique morphism $\langle f, g, h \rangle : D \to A \times B \times C$, making the following diagram commute:

A routine check can verify $\langle f, \langle g, h \rangle \rangle : D \to A \times (B \times C)$ satisfies the aforesaid universal property, and so does $\langle \langle f, g \rangle, h \rangle : D \to (A \times B) \times C$. Hence, $A \times (B \times C)$ and $(A \times B) \times C$ are isomorphic.