מתמטיקה דיסקרטית - תרגול 8

סמסטר קיץ תשפ"ד

.2/2 נושאים: עוצמות

משפט 1. (קנטור-שרדר-ברנשטיין) תהיינה A,B קבוצות. אם $|A| \leq |B|$ וגם $|A| \geq |B|$ אז |A| = |B|

 $|A|<|\mathcal{P}\left(A
ight)$ משפט 2. (קנטור) תהי A קבוצה, אזי

 $.|\mathcal{P}\left(\mathbb{N}^{+}
ight)|=|[0,1)|$ כי הוכיחו 1. הוכיחו

I=[0,1) נוכיח את הטענה במספר שלבים. נסמן 1.

- . מתרגיל קודם | $\mathcal{P}\left(\mathbb{N}
 ight)|=|\mathcal{P}\left(\mathbb{N} imes\mathbb{N}
 ight)|$ ולכן אמרגיל הרצאה כי $\mathbb{N}\sim\mathbb{N}\times\mathbb{N}$ מתרגיל קודם.
 - . עה הח $f:\mathcal{P}\left(\mathbb{N}^{+}\right)\to I$ נמצא פונקציה וכצא : $|\mathcal{P}\left(\mathbb{N}^{+}\right)|\leq|I|$
 - , $X\in\mathcal{P}\left(\mathbb{N}^{+}
 ight)$ לכל הבא: לכל $f:\mathcal{P}\left(\mathbb{N}^{+}
 ight)
 ightarrow I$ גדיר פונקציה -

$$f\left(X
ight)=0.d_{1}d_{2}d_{3}\ldots, \quad \forall i\in\mathbb{N}^{+}: d_{i}=\delta_{i\in X}=egin{cases}1 & i\in X\ 0 & \text{החרת} \end{cases}.$$

- n= נסמן S=T נוכיח כי f(S)=f(T) כך ש- $S,T\in\mathcal{P}(\mathbb{N}^+)$ נוכיח יהיו $S,T\in\mathcal{P}(\mathbb{N}^+)$ היא S לכל S לכל S מתקיים שהספרה ה-S אחרי הנקודה ב-S היא S ולכן S באופן זהה ניתן להראות ש-S באופן זהה ניתן להראות ש-S
 - $.|\mathcal{P}\left(\mathbb{N}^{+}\right)|\leq|I|$ ולכן Iל-ל $\mathcal{P}\left(\mathbb{N}^{+}\right)$ מ-"ת פונקציה פונקציה קיבלנו קיבלנו הח"ע מ-
 - .ע"ת $f:I o\mathcal{P}\left(\mathbb{N} imes\mathbb{N}
 ight)$ במצא פונקציה : $|I|\le|\mathcal{P}\left(\mathbb{N} imes\mathbb{N}
 ight)|$

 $x\in I$ לכל הבא: באופן באופן $g:I o\mathcal{P}\left(\mathbb{N} imes\mathbb{N}
ight)$ - נגדיר פונקציה

$$g(x) = \{(i, d_i(x)) \mid i \in \mathbb{N}\},\$$

למשל .x- ב-.x- למשל היא הספרה היא $d_i(x)$ - כך

$$q(0.9381) = \{(1,9), (2,3), (3,8), (4,1)\}.$$

- יהיו $g\left(a\right)\neq g\left(b\right)$ כי ממן ב- $g\left(a\right)\neq g\left(b\right)$, נוכיח כי $a\neq b\in I$ יהיי שיהי $g\left(a\right)\ni (j,d_{j}\left(a\right))\neq (j,d_{j}\left(b\right))\in g\left(b\right)$ אזי $d_{j}\left(a\right)\neq d_{j}\left(b\right)$. אזי $g\left(a\right)\neq g\left(b\right)$
 - $|I| \leq |\mathcal{P}\left(\mathbb{N} \times \mathbb{N}
 ight)|$ ולכן $\mathcal{P}\left(\mathbb{N} \times \mathbb{N}
 ight)$ מ-1 מ-1 מינקציה חח"ע מ-1 קיבלנו שקיימת פונקציה חח"ע מ
 - וגם אפת שמתקיים |
 $|\mathcal{P}\left(\mathbb{N}\right)|=|\mathcal{P}\left(\mathbb{N}\times\mathbb{N}\right)|$ וגם שמתקיים בסך הכל קיבלנו

$$\left|\mathcal{P}\left(\mathbb{N}^{+}\right)\right| \leq \left|I\right| \leq \left|\mathcal{P}\left(\mathbb{N} \times \mathbb{N}\right)\right| = \left|\mathcal{P}\left(\mathbb{N}^{+}\right)\right|,$$

|I|=ים ממשפט קנטור-שרדר-ברנשטיין נקבל ש- $|\mathcal{P}\left(\mathbb{N}^+
ight)|\leq |I|\leq |\mathcal{P}\left(\mathbb{N}^+
ight)|$ ולכן וולכן $|\mathcal{P}\left(\mathbb{N}^+
ight)|$

 $:\!B^A$ ב מסומן היינה Bל-לAה מסומן כל אוסף אוסף קבוצות. קבוצות היינה 1. תהיינה הגדרה ל

$$B^A = \{ f \mid f : A \to B \} .$$

 $\mathcal{P}\left(\mathbb{N}
ight) \sim \mathbb{N}^{\mathbb{N}}$ כי הוכיחו 2. תרגיל

פתרון 2. לכל $\chi_S:\mathbb{N} o \{0,1\}$ האופיינית הפונקציה הפונקציה לכל גל לכל יכל פתרון 2. לכל אופיינית

$$\forall n \in \mathbb{N} : \chi_S(n) = \begin{cases} 1 & n \in S \\ 0 & n \notin S \end{cases}.$$

 $S \neq T \subseteq \mathbb{N}$ יהיו "ע: יהיו $f:S \subseteq \mathbb{N}$ לכל לכל $f(S)=\chi_S$ בתור בתור $f:\mathcal{P}\left(\mathbb{N}\right) \to \mathbb{N}^\mathbb{N}$ בניח בה"כ כי קיים $\chi_S \neq \chi_T$ כלומר ל $\chi_S = 0$ ביו אזי היי אזי ולכן $\chi_S = 0$ בלומר ל $\chi_S = 0$ הח"ע.

נגדיר $\alpha\in\mathbb{N}^\mathbb{N}$ ולכל i-, ולכל p_i - את הראשוני ה- $g:\mathbb{N}^\mathbb{N} o\mathcal{P}(\mathbb{N})$ נגדיר

$$g\left(\alpha\right) = \left\{2^{\alpha(0)+1}, 3^{\alpha(1)+1}, \dots, p_n^{\alpha(n)+1}, \dots\right\} = \left\{p_n^{\alpha(n)+1} \mid n \in \mathbb{N}\right\}.$$

 $p_n^{\alpha_1(n)+1} \neq n$ אזי α_1 אזי α_2 (n) שר $n \in \mathbb{N}$ כך אזי, קיים $n \in \mathbb{N}$ אזי, קיים $n \in \mathbb{N}$ כל האיבר n בחיף n בעית כלשהי. לכן, האיבר היחיד n בעוד שלו הוא n בעוד שלו הוא n בעוד שברור שמתקיים n בעוד n בסך הכל, הראנו שקיימות פונקציות חח"ע מ-n ל-n ולהיפך, ולכן מ-n שוות עוצמה.

תרגיל B. נגדיר קבוצה A באופן הבא:

$$A = \{f : A \to B \mid \exists n_0, y \in \mathbb{N}. \forall n \ge n_0 : f(n) = y\},\$$

 $\mathbb{N} \sim A$ כלומר, כל הפונקציות החל שקבועות שקבועות $f \in \mathbb{N}^\mathbb{N}$ הוכיחו כל כלומר, כל

$:|\mathbb{N}|\leq |A|$ • .3 פתרון

- היא $f=g\left(n
 ight)$ מתקיים ה $n\in\mathbb{N}$ כך שלכל $g:\mathbb{N}\to A$ היא הפונקציה הקבועה הלכל הלכל הא מתקיים ה $f\left(k\right)=n$ מתקיים הלכל הלכל האבועה הקבועה הקבועה ה
- $f_{1}\left(0
 ight)=n_{1}
 eq i$ אזי $f_{1}=g\left(n_{1}
 ight),f_{2}=g\left(n_{2}
 ight)$ נסמן $n_{1}
 eq n_{2}\in\mathbb{N}$ יהיו $g_{1}=g_{2}\left(n_{1}
 ight)$ ולכן $g_{2}=f_{2}\left(0
 ight)$
 - $|A| \leq |\mathbb{N}^3| \bullet$
 - מקיים שמקיים האיבר המינימלי כך $n_0,y\in\mathbb{N}$ יהיו הייבר תהי $f\in A$ יהי

$$\forall n \geq n_0 : f(n) = y.$$

:נגדיר $h:A o \mathbb{N}^3$ באופן -

$$h(f) = \left(2^{f(0)+1} \cdot 3^{f(1)+1} \cdot 5^{f(2)+1} \cdot \dots \cdot p_{n_0}^{f(n_0)+1}, y\right) = \left(\prod_{i=0}^{n_0} p_i^{f(i)+1}, n_0, y\right).$$

 f_1 אם f_1 שונה f_1 שונה f_1 שונה f_1 אם f_1 אם ה- f_1 שונה f_1 שונה f_1 שונה f_1 או שה- f_0 -ם שונים, נקבל ש- f_1 (f_1) $\neq h$ (f_2) שונים, נקבל ש- f_1 (f_1) = h מתקיים (f_1) מתקיים בשתי הפונקציות. לכן, לכל f_1 (f_2) מתקיים (f_1) $= f_2$ (f_1) קיים f_2 פיים f_3 כך ש- f_3 (f_3) אוני ב- f_1 (f_3) קיים f_4 פאוני ב- f_1 מכאן, החזקה של f_3 כגורם ראשוני ב- f_1 אונים אחרים. לכן שונה מאשר ב- f_1 f_2 (f_3) מכיוון ששאר הגורמים הם ראשוניים אחרים. לכן בהכרח מתקיים ש- f_3 (f_3) אורים. f_4 (f_4) f_3 (f_4) אוריש.

ניתן להוכיח כי $|\mathbb{N}^2|=|\mathbb{N}^3|$. בסך הכל, קיבלנו ש-

$$|\mathbb{N}| \le |A| \le |\mathbb{N}^3| = |\mathbb{N}^2| = |\mathbb{N}|$$

 $|A|=|\mathbb{N}|=leph_0$ נקבל בקבל CSB ולכן ממשפט

 $f:\mathcal{P}\left(E
ight) o\mathcal{P}\left(A
ight) imes\mathcal{P}\left(B
ight)$ תרגיל 4. תהי $A,B\subseteq E$ ויהיו ויהיו A וקבוצה עלכל כך שלכל $X\in\mathcal{P}\left(E
ight)$ מתקיים

$$f(X) = (X \cap A, X \cap B).$$

- $A \cup B = E$ הוכיחו כי f חח"ע אמ"מ.
 - $A \cap B = \emptyset$ על אמ"מ f ב.
- ההופכית ההונקציה הפיכה? במקרה הפיכה לקיים כך לקיים כך לקיים לאיזה הפיכה? במקרה לקיים כך לקיים כך לקיים כך A,Bלקיים של f

פתרון 4. ונכיח את שני כיווני הטענה.

ער אזי קיים $A\cup B\subset E$ נניח כי $A\cup B=E$ אזי קיים $A\cup B=E$ (א) אם אם אם אם אב $x\notin A\cup B$. לכן

$$f(\lbrace x\rbrace) = (\lbrace x\rbrace \cap A, \lbrace x\rbrace \cap B) = (\emptyset, \emptyset) = f(\emptyset),$$

.ע"ולכן f לא חח"ע

 $f\left(X
ight)=$ ב) אז $A\cup B=E$ כך ש-ב. גניח כי קיימים אז $A\cup B=E$ ב) אם $z\in X\setminus Y$ בניח בה"כ כי קיים $f\left(Y
ight)$

$$f\left(X\right)=f\left(Y\right)\implies X\cap A=Y\cap A\wedge X\cap B=Y\cap B.$$

מכיוון ש- $z \notin A$ באופן דומה בא ב $z \notin Y$ ו-גו $z \in X$ האופן דומה באופן מכיוון ש- $z \notin A \cup B$ ומתקיים בא ומתקיים בי

- .2 נוכיח את שני כיווני הטענה.
- $X=(\{z\}\,,\emptyset)$ יהי $z\in A\cap B$ פיים כי קיים $A\cap B=\emptyset$ אז f אם לא אם f אם אם לא אם $z\in X\cap A$ יניח בשלילה שקיים $X\in \mathcal{P}(E)$ כך ער f(X)=Y מכיוון ש $z\in X\cap B$ מתקיים $z\in X$ סתירה. בנוסף $z\in X\cap B$
- $X=S\cup T$ נגדיר גגדיר ($S,T)\in\mathcal{P}\left(A
 ight) imes\mathcal{P}\left(B
 ight)$ נב) אם $A\cap B=\emptyset$ אז לעל. יהי לכן אונם אם מכיוון ש- $S\cap T=\emptyset$ מתקיים אוגם $A\cap B=T$ וגם אונם לכן מתקיים לעלות.
- (ג) התנאי הוא $A\cap B=\emptyset \land A\cup B=E$ היא חלוקה של A,B פרט לתנאי הוא $B=\emptyset \land A\cup B=E$ זה, הפונקציה לתנאי ש- $A,B\neq\emptyset$ (ניתן להכללה לכל מספר קבוצות). במקרה זה, הפונקציה ההופכית של $A,B\neq\emptyset$ היא $A,B\neq\emptyset$ כך ש-

$$\forall \left(S,T\right) \in \mathcal{P}\left(A\right) \times \mathcal{P}\left(B\right): f\left(S,T\right) = S \cup T.$$