SYNTAX ANALYSIS

LECTURE 3 - 4

CONTENT

- Top-Down Parsing
- Recursive Descent Parsing
- Concepts of FIRST and FOLLOW
- Examples

TOP DOWN PARSING

- Can be viewed as a problem of constructing a parse tree for the input string
- It starts from the root and create nodes of the parse tree in pre order (Depth First)
- Equivalently can be viewed as a leftmost derivation

TOP DOWN PARSING

Example:

E→TE'

E'→+TE'|ε

T→FT'

T'→*FT'|ε

 $F\rightarrow (E)|id$

Leftmost Derivation of string id + id * id

 $E \rightarrow TE'$

 \rightarrow FT'E'

 \rightarrow idT'E'

 \rightarrow id e E'

 \rightarrow id + TE'

 \rightarrow id + FT'E'

 \rightarrow id + id T'E'

 \rightarrow id + id * F T' E'

 \rightarrow id + id * id T' E'

 \rightarrow id + id * id e E'

 \rightarrow id + id * id e e

TOP DOWN PARSING

- At each of the step the key problem is that Determining the production to be applied for a nonterminal say A
- Once an A production is chosen the rest of the parsing process consists of matching the terminal symbols in the production body with the input string

RECURSIVE DESCENT PARSING

```
void A()
   Choose an A pro duction A \rightarrow X1 X2 ... Xk
    For (i to k)
       if (Xi is a nonterminal)
            call procedure Xi ();
       else if (Xi equals the current input symbol a)
            advance the input to the next symbol
        else
            an error has occurred
```

RECURSIVE DESCENT PARSING

- A recursive descent parsing program consists of a set of procedures one for each nonterminal
- Execution begins with the procedure for the start symbol
- The execution halts and announces success if its procedure body scans entire input string.
- Note that this pseudo code is nondeterministic since it begins by choosing the A production to apply in a manner that is not specified
- Backtracking is required

RECURSIVE DESCENT PARSING

Consider the grammar

 $S \rightarrow c A d$

 $A \rightarrow a b \mid a$

Derivation of string w = cad

If you go with $S \rightarrow cAd$ and then $A \rightarrow ab$ it leads to wrong string.

 $S \rightarrow cabd$

Backtracking is necessary

FIRST OF GRAMMAR

- If X is a terminal then FIRST (X) = X
- If X is a nonterminal and

 $X \rightarrow Y1 Y2 \dots Yk$ is a production for some $k \ge 1$

Case 1:

- a. if for some i, 'a' is in FIRST(Yi) and
- b. epsilon is in all of FIRST Yj where j = 1, 2, ... i -1Then add 'a' in the FIRST(X)

Case 2:

If epsilon is in FIRST(Yj) for all j = 1, 2, ..., kthen add epsilon in FIRST (X)

• If $X \rightarrow e$ is a production then add epsilon in FIRST(X)

FIRST OF GRAMMAR

Example 1:

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' | \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' | \epsilon$
 $F \rightarrow (E) | id$

- FIRST(E) = FIRST(T) = FIRST(F) = { (, id}
- FIRST(E') = { +, ε }
- FIRST(T) = FIRST (F) = { (, id }
- FIRST (Τ') = { *, ε }
- FIRST (F) = { (, id }

FIRST OF GRAMMAR

Example 2

- A -> BC
- B -> Ax | x
- C -> yC | y

- In A-> BCFIRST(A)={FIRST(B) U FIRST (C)} if B -> E is true
- FIRST(A)={FIRST(B)} if B -> € is false
- FIRST(A) = $\{x\}$
- FIRST(B) = $\{x\}$
- FIRST(C) = {y}

Rule 1:

Place \$ in FOLLOW (S) where S is the start symbol and \$ is the input right endmarker

Rule 2:

If there is a production A -> $\alpha B\beta$ then everything in FIRST(β) except ϵ is in FOLLOW (B)

Rule 3:

If there is a production A -> α B or a production A -> α B β where FIRST(β) contains ϵ then everything in FOLLOW (A) is in FOLLOW (B)

APPLY ABOVE RULES UNTIL THERE IS NO UPDATION IN FOLLOW LIST

	FIRST	FOLLOW
Е	(, id	\$,)
E'	+ , &	\$,)
Т	(, id	
T'	* , &	
F	(, id	

Example 1:

$$E' \rightarrow +TE' | \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT'|\epsilon$$

$$F\rightarrow (E)|id$$

Solution:

1. FOLLOW
$$(E) = \{ \$,) \}$$

Since E is start symbol and Production Rule $F \rightarrow (E)$

By Rule 3 of FOLLOW

	FIRST	FOLLOW
Е	(, id	\$,)
E'	+ , &	\$,)
Т	(, id	+,\$,)
T'	* , &	+,\$,)
F	(, id	

Example 1:

$$T' \rightarrow *FT'|\epsilon$$

$$F\rightarrow (E)|id$$

3. FOLLOW (T) = { FIRST (E') -
$$\varepsilon$$
 } U { FOLLOW (E') }

$$= \{ + \} \cup \{ \$,) \}$$

4.
$$FOLLOW(T') = FOLLOW(T)$$

	FIRST	FOLLOW
Е	(, id	\$,)
E'	+ , &	\$,)
Т	(, id	+,\$,)
T'	* , &	+,\$,)
F	(, id	* , + , \$,)

Example 1:

$$T{\longrightarrow}FT'$$

$$T' \rightarrow *FT'|\epsilon$$

$$F\rightarrow (E)|id$$

Solution:

5. FOLLOW (F) = { FIRST (T') - ε } U { FOLLOW (T') }
$$= \{ * \} U \{ + , \$,) \}$$

= { * , + , \$,) }

	FIRST	FOLLOW
Α	X	\$, x
В	X	У
С	У	\$, x

Example 2:

$$B \rightarrow Ax \mid x$$

- 1. FOLLOW (A) = { \$ } U FIRST (x) ... As A is the start symbol = { \$, x }
- 2. FOLLOW (B) = FIRST (C) = { y }
- 3. FOLLOW (C) = FOLLOW (A) = { \$, x }

	FIRST	FOLLOW
S	d, g, h, b, a, ε	
Α	d,g,h,ϵ	
В	g, ε	
С	h,ε	

Example 3:

$$S \rightarrow ACB \mid Cbb \mid Ba$$

$$A \rightarrow da \mid BC$$

$$B \rightarrow g \mid \epsilon$$

$$C \to h \mid \epsilon$$

Solution:

$$= \{ d, g, h \} \cup \{ h, \epsilon \} \cup \{ g, \epsilon \} \cup \{ b, a \}$$

$$= \{ d, g, h, b, a, \epsilon \}$$

2. FIRST (A) = FIRST (d) U FIRST (B) U FIRST (C)

$$= \{ d, g, h, \epsilon \}$$

- 3. FIRST (B) = { g, ε }
- 4. FIRST (C) = $\{h, \epsilon\}$

	FIRST	FOLLOW
S	d, g, h, b, a, ε	\$
А	d,g,h,ϵ	h , g , \$
В	g, ε	a,h,g,\$
С	h,ε	b,h,g,\$

Example 3:

$$S \rightarrow ACB \mid Cbb \mid Ba$$

$$A \rightarrow da \mid BC$$

$$B \rightarrow g \mid \epsilon$$

$$C \rightarrow h \mid \epsilon$$

- 1. FOLLOW (S) = { \$ } ... Since S is start symbol
- 2. FOLLOW (A) = { FIRST (C) ε } U { FIRST (B) ε } U FOLLOW (S) = { h , g , \$ }
- 3. FOLLOW (B) = FIRST (a) U { FIRST (C) ε } U FOLLOW (A) U FOLLOW (S) = { a , h , g , \$ }
- 3. FOLLOW (C) = FIRST (b) U { FIRST(B) ϵ } U FOLLOW (A) = { b , g , h, \$ }

	FIRST	FOLLOW
S	a,b,d,ε	
Α	a,b,d,ε	
В	b, d, ε	
D	d,ε	

Example 4:

$$S \to ABD$$

$$A \rightarrow a \mid BSB$$

$$B \rightarrow b \mid D$$

$$D \rightarrow d \mid \epsilon$$

1.
$$FIRST(S) = FIRST(A)$$

$$= \{a, b, d, \epsilon\}$$

$$= \{a, b, d, \epsilon\}$$

3.
$$FIRST(B) = \{b\} U FIRST(D)$$

$$= \{ b, d, \epsilon \}$$

4. FIRST (D) = { d,
$$\varepsilon$$
 }

	FIRST	FOLLOW
S	a,b,d,ε	b,d,\$
Α	a,b,d,ε	b,d,\$
В	b, d, ε	a,b,d,\$
D	d, ε	a,b,d,\$

Example 4:

$$S \to ABD$$

$$A \rightarrow a \mid BSB$$

$$B \rightarrow b \mid D$$

$$D \rightarrow d \mid \epsilon$$

1. FOLLOW (S) = { \$ } U { FIRST (B) -
$$\varepsilon$$
 } U FOLLOW (A)
= { \$, b , d } U { FIRST (B) - ε } U { FIRST (D) - ε }

$$= \{ b, d, \$ \}$$

2. FOLLOW (A) = { FIRST (B) -
$$\varepsilon$$
 } U { FIRST (D) - ε } U FOLLOW (S) = { b , d , \$ }

3. FOLLOW (B) = {FIRST (D) -
$$\varepsilon$$
} U FOLLOW (S) U {FIRST (S) - ε } U FOLLOW (A) = { d, b, a, \$ }