0.1 Lazos

Definición 1. Sea X un espacio topológico y $x_0 \in X$. Un espacio basado es la pareja (X, x_0) y un morfismo $f:(X,x_0)\to (Y,y_0)$ entre espacios basados es una función continua $f:X\to Y$ tal que $f(x_0)=y_0$.

Observemos que la clase de espacios basados junto con los morfismos de espacios basados forman una categoría que denotamos por \mathbf{Top}_* (aquí la notación viene de \mathbf{Top} , la categoría de espacios topológicos). Esto se sigue inmediatamente de que la composición de funciones continuas es continua.

Definición 2. Sea (X, x_0) un espacio basado. Un *lazo* en (X, x_0) es una función continua $\alpha : [0, 1] \to X$ tal que $\alpha(0) = x_0 = \alpha(1)$, es decir, una curva cerrada. Al conjunto de todos los lazos en (X, x_0) se denota por

$$\Omega(X, x_0) := \{ [0, 1] \xrightarrow{\alpha} X \mid \alpha \text{ es una lazo en } (X, x_0) \}.$$

Ejemplo 1.

- 1. La función constante $c(s) = x_0$ para toda $s \in [0,1]$ es claramente un lazo en (X, x_0) . De hecho se considera como el lazo trivial y funcionará como elemento neutro en las construcciones que haremos más adelante.
- 2. El círculo \mathbb{S}^1 se puede pensar como un lazo en $(\mathbb{C},1)$, o en $(\mathbb{R}^2,(1,0))$; la función $\alpha(s)=e^{2\pi is}$ es continua y cumple que $\alpha(0)=e^0=1=e^{2\pi i}=\alpha(1)$.

El espacio $\Omega(X, x_0)$, en general, es demasiado grande como para poder realmente detectar propiedades topológicas de X. Entonces vamos a subdividir $\Omega(X, x_0)$ en clases de equivalencia. Para esto queremos que dos lazos sean equivalentes si podemos "deformar" continua un lazo en otro; de esta manera podremos aislar las propiedades topológicas de X.

La idea de "deformar" un lazo α_0 al lazo α_1 es realmente cambiar continuamente de lazos hasta llegar a α_1 . Más precisamente, una deformación es una familia de lazos $\{\alpha_t\}_{0 \leq t \leq 1}$ que empiezan en α_0 , varían continuamente mientras $t \to 1$ y terminan en α_1 . Escribimos la definición para hacer más preciso esta idea.

Definición 3. Sean $\alpha, \beta \in \Omega(X, x_0)$. Una homotopía entre α_0 y α_1 es una función continua $H : [0, 1] \times [0, 1] \to X$ tal que:

- Para toda $t \in [0,1]$ fija, $\alpha_t(s) := H(s,t)$ es un lazo en (X,x_0) .
- $H(s,0) = \alpha(s) \text{ y } H(s,1) = \beta(s).$

Si existe una homotópia entre dos lazos α y β , decimos que son homotópicos y lo denotamos por $\alpha \simeq \beta$.

Ejemplo 2.

1. El lazo constante c(s)=(1,0) y el lazo \mathbb{S}^1 (del ejemplo 1) son homotópicos en el espacio basado $(X,x_0)=(\mathbb{R}^2,(1,0))$ mediante la homotopía:

$$H(s,t) = (t + (1-t)\cos 2\pi s, (1-t)\sin 2\pi s).$$

Podemos pensar a H como la restricción de una función suave $\bar{H}: \mathbb{R}^2 \to \mathbb{R}^2$ (con la misma regla de correspondencia) y así concluimos que H es continua. Observemos que para $t_0 \in [0,1]$ fija cada $H(s,t_0)$ es un círculo con centro $(t_0,0)$ y radio $1-t_0$. Por lo tanto es un lazo en $(\mathbb{R}^2,(1,0))$ porque

$$H(0, t_0) = (t_0 + (1 - t_0)\cos 2\pi 0, (1 - t_0)\sin 2\pi 0) = (1, 0) = H(1, t_0)$$

para toda $t_0 \in [0,1]$ (H es una función periódica en s con periodo 1), véase la figura 1.

Por último $H(s,0) = (\cos 2\pi s, \sin 2\pi s)$ es el círculo \mathbb{S}^1 y H(s,1) = (1,0) = c(s) es el punto y así, H es una homotopía entre \mathbb{S}^1 y el lazo constante c(s). Por lo tanto $\mathbb{S}^1 \simeq c$ en $(\mathbb{R}^2, (1,0))$.

Figure 1: \mathbb{S}^1 es homotópico a un punto.

2. Si tomamos $(X, x_0) = (\mathbb{R} - \{0\}, 2)$, entonces el lazo $\alpha(s) = 2 + \sin 2\pi s$ es homotópico al lazo constante c(s) = 2, mediante la homotopía $H(s,t) = 2 + (1-t)\sin 2\pi s$ (la prueba de este hecho es idéntico al ejemplo anterior; la idea es que el factor 1-t hace que las osilaciones del lazo cada vez se hacen más pequeñas hasta que termina por no osilar y se fija en el 2). Por lo tanto $\alpha \simeq c$

Si cambiamos el punto base a $(\mathbb{R} - \{0\}, -2)$ entonces tendremos lo opuesto: $\alpha \not\simeq c$ (aquí el lazo constante cambia a c(s) = -2 para ser consistente con el cambio de espacio basado). Para ver esto fijamos $s_0 \in [0, 1]$. Cualquier homotopía H entre α y c nos induce una función continua $H_{s_0}: [0, 1] \to \mathbb{R}$ cuyos valores extremos son:

$$H_{s_0}(1) = c(s_0) = -2 < 1 \le \alpha(s_0) = H_{s_0}(0).$$

Por lo tanto el Teorema del valor intermedio nos dice que H_{s_0} debe asumir el valor 0 en algún punto $t \in [0,1]$, pero nuestra homotopía vive en $\mathbb{R} - \{0\}$, es decir nunca vale 0; esto es una contradicción. Por lo tanto $\alpha \not\simeq c$ en $(\mathbb{R} - \{0\}, -2)$ pero sí son homotópicos en $(\mathbb{R} - \{0\}, 2)$. Este ejemplo ilustra porque es importante aclarar en que espacio basado estamos considerando las homotopías.

Ejercicio 1. La relación $\alpha \simeq \beta$ en $\Omega(X, x_0)$ es una relación de equivalencia.

Proof. Debemos probar tres cosas:

- (Simetría) Afirmamos que para todo lazo α , tenemos que $\alpha \simeq \alpha$ mediante la homotopía $H(s,t) = \alpha(s)$. Claramente H es continua porque es independiente del parámetro t y α es una función continua sobre la variable s. Además, para toda t, $H(s,t) = \alpha_t(s) = \alpha(s)$ es un lazo. Por lo tanto H es una homotopía
- (Reflexividad) Supongamos que $\alpha \simeq \beta$ para dos lazos en $\Omega(X, x_0)$ mediante la homotopía H. Si definimos $\bar{H}(s,t) := H(s,1-t)$, entonces claramente \bar{H} es continua porque es la composición de la función continua $t \mapsto 1-t$ y H, que por hipótesis es continua. Además, para toda t, $\bar{H}(s,t)$ es un lazo, en particular es el lazo H(s,1-t). Por último, $\bar{H}(s,0) = H(s,1) = \beta(s)$ y $\bar{H}(s,1) = H(s,0) = \alpha(s)$. Por lo tanto \bar{H} es una homotopía entre β y α .
- (Transitividad) Sean $\alpha, \beta, \gamma \in \Omega(X, x_0)$ tales que $\alpha \simeq \beta$ y $\beta \simeq \gamma$ mediante las homotopías H y G respectivamente. Definimos una nueva homotopía:

$$F(s,t) := \begin{cases} H(s,2t) & \text{si } 0 \le t \le \frac{1}{2} \\ G(s,2t-1) & \text{si } \frac{1}{2} \le t \le 1 \end{cases}$$

Primero observemos que al dominio de definición de F (el cuadrado $[0,1] \times [0,1]$) lo estamos partiendo en dos cerrados $[0,1] \times [0,\frac{1}{2}]$ y $[0,1] \times [\frac{1}{2},1]$, de tal manera que sobre la intersección de esos cerrados

(ie. $[0,1] \times \{\frac{1}{2}\}$), las homotopías H y G coinciden:

$$F\left(s, \frac{1}{2}\right) = H(s, 1) = \beta(s) = G(s, 0) = F\left(s, \frac{1}{2}\right).$$

Como H y G son continuas, tenemos que F está bien definida y es continua sobre el cuadrado $[0,1] \times [0,1]$.

Por otro lado, para cada $t_0 \in [0,1]$ fija tenemos que $F(s,t_0)$ es un lazo en $\Omega(X,x_0)$ porque $H(s,t_0)$ o $G(s,t_0)$ es un lazo (la opción depende de si $t \leq \frac{1}{2}$ o si $t \geq \frac{1}{2}$). Por último verificamos que F deforma α en γ :

$$F(s,0) = H(s,0) = \alpha(0)$$
 y $F(s,1) = G(s,1) = \gamma(s)$.

Concluimos que $\alpha \simeq \gamma$ mediante la homotopía F.

Nota. Es útil tener notación para cuando $\alpha \simeq \beta$ mediante una homotopía H, entonces simplemente lo denotamos por $\alpha \simeq_H \beta$

Una vez establecida una relación de equivalencia, el siguiente paso es definir el espacio cociente:

Definición 4. El grupo fundamental de un espacio basado (X, x_0) se define como el cociente del espacio de lazos módulo homotopía:

$$\pi_1(X, x_0) := \Omega(X, x_0) /_{\sim}$$

y sus elementos los denotamos por $[\alpha]$ para algún representante $\alpha \in \Omega(X, x_0)$.

Inmediatamente podemos identificar un elemento en todo grupo fundamental: en cualquier espacio basado (X, x_0) siempre existe el lazo constante $c(s) = x_0$, por lo tanto $[c] \in \pi_1(X, x_0)$. Pronto veremos que el lazo constante va a ser el neutro del grupo fundamental, entonces de ahora en adelante usaremos la notación de teoría de grupos y denotaremos por e al lazo constante $e(s) = x_0$ del espacio basado (X, x_0) .

Se llama "grupo" fundamental porque le podemos definir una estructura de grupo de manera natural: simplemente recorre un lazo y después recorre el otro. Esta operación se llama concatenación.

Definición 5. Sean $\alpha, \beta \in \Omega(X, x_0)$, definimos la concatenación de lazos como el lazo

$$(\alpha * \beta)(s) := \begin{cases} \alpha(2s) & \text{si } 0 \le s \le \frac{1}{2} \\ \beta(2s-1) & \text{si } \frac{1}{2} \le s \le 1 \end{cases}$$

Como $\alpha * \beta$ está definido por dos funciones continuas sobre dos cerrados cuya unión es el dominio de $\alpha * \beta$ y valen lo mismo sobre su intersección $(\alpha(2\frac{1}{2}) = \alpha(1) = x_0 = \beta(0) = \beta(2\frac{1}{2} - 1))$, podemos concluir que $\alpha * \beta$ es continua. Además, como:

$$(\alpha * \beta)(0) = \alpha(0) = x_0 = \beta(1) = (\alpha * \beta)(1),$$

tenemos que $\alpha * \beta$ es un lazo y la concatenación $*: \Omega(X, x_0) \times \Omega(X, x_0) \to \Omega(X, x_0)$ es una operación bien definida.

De hecho, la concatenación respeta homotopías, es decir que si $\alpha \simeq \alpha'$ y $\beta \simeq \beta'$ entonces $(\alpha * \beta) \simeq (\alpha' * \beta')$. Esto quiere decir que la concatenación en $\Omega(X, x_0)$ se factoriza a través del grupo fundamental, o en otras palabras, podemos concatenar clases de equivalencias. Esto nos dará una operación bien definida en $\pi_1(X, x_0)$.

Es importante pasar a $\pi_1(X, x_0)$ porque la concatenación no convierte $\Omega(X, x_0)$ en un grupo porque no tiene un elemento neutro: $\alpha * e \neq \alpha$ ya que son funciones distintas.

Para probar que * es una operación bien definida en $\pi_1(X, x_0)$ supongamos que $\alpha \simeq_H \alpha'$ y $\beta \simeq_G \beta'$. Definimos:

$$F(s,t) := \begin{cases} H(2s,t) & \text{si } 0 \le s \le \frac{1}{2} \\ G(2s-1,t) & \text{si } \frac{1}{2} \le s \le 1 \end{cases}$$

como nuestro candidato a homotopía entre $\alpha * \beta$ y $\alpha' * \beta'$.

Primero observemos que F está definido en base a dos funciones continuas sobre dos cerrados que se intersectan en $\{\frac{1}{2}\} \times [0,1]$, pero sobre esta intersección ambas funciones coinciden:

$$H\left(2\frac{1}{2},t\right) = H(1,t) = x_0 = G(0,t) = G\left(2\frac{1}{2}-1,t\right).$$

Por lo tanto F es continua sobre la unión de ambos cerrados: el cuadrado $[0,1] \times [0,1]$.

Por último, si fijamos $t_0 \in [0,1]$ y denotamos por H_{t_0} y G_{t_0} a los lazos inducidos por las homotopoías con parámetro fijo, obtenemos:

$$F(s,t_0) := \begin{cases} H(2s,t_0) & \text{si } 0 \le s \le \frac{1}{2} \\ G(2s-1,t_0) & \text{si } \frac{1}{2} \le s \le 1 \end{cases} = (H_{t_0} * G_{t_0}) (s)$$

que ya hemos visto que es un lazo en (X, x_0) . Por lo tanto F es una homotopía y así podemos concluir que

$$(\alpha * \beta) \simeq_{F} (\alpha' * \beta').$$

Con este resultado podemos definir una operación en el grupo fundamental: si $[\alpha], [\beta] \in \pi_1(X, x_0)$, definimos:

$$[\alpha][\beta] := [\alpha * \beta].$$

El argumento anterior prueba que esta operación está bien definida y así proponemos:

Teorema 1. Sea (X, x_0) un espacio basado. El grupo fundamental $\pi_1(X, x_0)$ junto con la operación * (concatenación) es un grupo con neutro [e], el lazo constante $e(s) = x_0$.

Para probar esto vamos a requerir de más herramienta, empezando con generalizar la definición de homotopía a cualquier función continua $f: X \to Y$ y no necesariamente un lazo.

Antes de seguir, vale la pena enunciar y probar el siguiente resultado:

Proposición 1. La asignación

$$(X,x_0)\mapsto \Omega(X,x_0)$$

es un funtor $\Omega: \mathbf{Top}_* \to \mathbf{Top}_*$ donde el punto base de $\Omega(X, x_0)$ es el lazo constante e_{x_0} .

Proof. Primero debo establecer qué sucede con los morfismos en \mathbf{Top}_* . Sea $f:(X,x_0)\to (Y,y_0)$ un morfismo de espacios basados y sea $\alpha\in\Omega(X,x_0)$ un lazo. Observa que $f\circ\alpha$ es un lazo en $\Omega(Y,y_0)$ porque (claramente) es continua y además

$$(f \circ \alpha)(0) = f(\alpha(0)) = f(x_0) = y_0 = f(x_0) = f(\alpha(1)) = (f \circ \alpha)(1).$$

Por lo tanto si escribo $\Omega f(\alpha) := f \circ \alpha$ tengo que $\Omega f : \Omega(X, x_0) \to \Omega(Y, y_0)$ es un morfismo de espacios basados

Si Id_X es la identidad sobre (X, x_0) entonces $\Omega \operatorname{Id}_X(\alpha) = \operatorname{Id}_x \circ \alpha = \alpha$ y así $\Omega \operatorname{Id}_X = \operatorname{Id}_{\Omega(X, x_0)}$. Por último si $(X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{g} (Z, z_0)$ son morfismos entonces:

$$\Omega(g \circ f)(\alpha) = (g \circ f) \circ \alpha = g \circ (f \circ \alpha) = (g \circ \Omega f)(\alpha) = \Omega g(\Omega f)(\alpha) = (\Omega g \circ \Omega f)(\alpha).$$

Con esto acabo.