

Cryogenic Resonator Workshop

Josh Mutus February 8, 2019

Find a material

- 2. Design a chip
- Assemble apparatus in a fridge
- 4. Take data with a VNA
- 5. Fit the data
- Analyze and report Q

- Find a material
- 2. Design a chip
- Assemble apparatus in a fridge
- 4. Take data with a VNA
- 5. Fit the data
- Analyze and report Q

- Find a material
- 2. Design a chip
- 3. Assemble apparatus in a fridge
- 4. Take data with a VNA
- 5. Fit the data
- 6. Analyze and report Q

- 1. Find a material
- 2. Design a chip
- Assemble apparatus in a fridge
- 4. Take data with a VNA
- 5. Fit the data
- 6. Analyze and report Q

- Find a material
- Design a chip
- Assemble apparatus in a fridge
- Take data with a VNA
- Fit the data
- Analyze and report Q

- Find a material
- 2. Design a chip
- Assemble apparatus in a fridge
- 4. Take data with a VNA
- 5. Fit the data
- 6. Analyze and report Q

Make a decision based on data

What is the *correct* way to do this? Is method *consistent?*Are the conclusions *valid?*

Apocryphal motivational quote of the day:

Boulder Cryogenic Resonator Testbed

Improve materials by establishing a quantitative testbed for single photon loss measurement

What do we want to accomplish?

- **Consolidate** existing knowledge. Publish a "Collaborative Standard" that teams are implementing and actively improving upon.
- Connect with material science research. Have researchers lining up at this facility to vet new materials.
- Quantify the testbed. Is the testbed optimal for measuring single photon loss in our material systems?

What does this actually look like:

- Build a new apparatus from scratch and perform careful experiments
- Publish findings (arxiv)
- Host regular follow ups to this workshop (MRS? March meeting?)
- Establish new forums for advancing science:
 - Software repositories (Github)
 - Compilation of useful datasets

CU Boulder/NIST:

Corey Rae McRae Postdoctoral Fellow

Dave Pappas Group Leader

Josh Mutus Sr. Research Scientist

Dave Fork Staff Research Scientist

Kunal Arya Software Engineer

Ted White Sr. Research Scientist

Accelerate science through collaboration

- Software tools for managing collaboration
- Linux kernel 2M lines of code with 10s thousands of developers
- "All of us are smarter than any of us"
- Rapidly close the loop
 - Typically 6 months to publish a paper
 - File an issue on a web forum, can resolve in hours potentially
- Traceability and versioning for all published results
 - What apparatus, what fitting?
- Kunal Arya (Google) will talk in detail about this in the afternoon

Historical perspective (stolen from David Fork)

The first transistor, it changed the world.

Historical perspective

It changed computing once others <u>discarded</u>:

The package

Rube Goldberg

The process method

Mechanical force

The interconnect

Gold foil

The junction technology

Dual point contact

The semiconductor

germanium

The operating principle

pnp (MOSFET didn't work initially!)

Historical perspective

A brilliant demonstration that inspired numerous discoveries and innovations that would soon follow.

What must we discover and invent to transform a demonstration into an industry?

What should we accomplish today?

What is a "standard" single photon loss measurement? Does such a thing exist?

If Yes:

we will document it, take off early. Go bowling.

If No:

identify the key experiments to establishing it.

Today's agenda:

Plenary talks:

- Ben Palmer (temperature, attenuators, effective temperature)
- Martin Weides (fitting)
- Greg Calusine (modeling, geometry)
- Moe Khalil (circle fit)
- Tom Ohki (quasiparticles)

Panel discussions (hardware, software):

2-3 slides per group to frame the discussion.

Email me your slides mutus@google.com

Today's Goal: Create a plan to define this "Community Standard"

Have the **nitty gritty** conversation we'd normally have outside of the conference.

Discuss the things that don't work.

What do we want to accomplish beyond this program?

- Reduce loss in superconducting qubits
- At least, understand origins of loss in our material systems
- This program is the first step along that way, to deconvolve the apparatus from the measurement.

Another analogy? Optical fibers

- Reduce loss in superconducting qubits.
- Loss in commercial optical fiber: <1 dB/km! That's Q~10⁹!
- Moreover sources of loss are well understood:

Extrinsic Impurity Ions Absorption

Extrinsic impurity ions absorption is caused by the presence of minute quantity of metallic ions (such as Fe^{2+} , Cu^{2+} , Cr^{3+}) and the OH^- ion from water dissolved in glass. The attenuation from these impurity ions is shown in the following table.

Impurity Ion	Loss due to 1ppm of impurity (dB/km)	Absorption Peak Wavelength (um)
Fe ²⁺	0.68	1.1
Fe ²⁺	0.15	0.4
Cu ²⁺	1.1	0.85
Cr ³⁺	1.6	0.625
V ⁴⁺	2.7	0.725
OH-	1.0	0.95
OH-	2.0	1.24
OH-	4.0	1.38

Output from today's meeting

- Discuss ways to collaborate and iterate more quickly
- Potential material science collaborations
- Standard datasets
- What metrics should we report?
 - Experimental protocols eg field cools, measure frequency noise.
- Provide a direction for the program.
 - Compile information from today's meeting into shared notes <u>here</u>.
 - Summarize state of the art into a white paper

Open questions (to Josh, at least):

- How do we know power incident on device?
- What is the simplest package?
- What is the best "standard" resonator geometry?
- Why do we see chip to chip variation (same wafer)?
- Why fridge to fridge variation? (same device)
- What is the physical rationale for subtracting away, normalizing high power loss?
- Can we systematically under-report loss?

Thanks for attending!

Questions?

Extra slides

What are the microscopic origins of loss?

Many models proposed, none conclusive. Nice review in (Müller, Lisenfeld *et al* 2018 https://arxiv.org/pdf/1705.01108.pdf)

Can we answer this question by looking at new material systems?

Vary bonding, interstitials, impurities, Disorder, etc...

