# **EMERGING TECHNOLOGIES**

KINGSFORD KISSI MIREKU Ph. D.



## **OBJECTIVES**

- Understand the impact that emerging technologies will have in the future.
- Define the use of emerging technologies
  - a) Cloud Computing,
  - b) Big data concept and analytics,
  - c) Data Centre and virtualization,
  - d) internet of things,
  - e) 4G/5g Mobile technologies,
  - f) optical computing,
  - g) quantum computing and quantum cryptography,
  - h) virtual reality and wearable computing.
- 4. Define the ways in which certain technologies will impact homes of the future.
- 5. Describe some emerging technologies and their uses that are extreme.



#### **MODULE 2**

### **BIG DATA CONCEPT AND ANALYTICS**



#### **MODULE 2**

# **What is Big Data?**



## **What is Big Data?**

Massive sets of unstructured/semi-structured data from Web traffic, social media, sensors, etc

- Petabytes, exabytes of data
  - Volumes too great for typical DBMS
  - Information from multiple internal and external sources:
    - Transactions
    - Social media
    - Enterprise content
    - Sensors
    - Mobile devices

## **What is Big Data?**



- 204 million emails sent
- 61,000 hours of music listened to on Pandora
- 20 million photo views
- 100,000 tweets
- 6 million views and 277,000 Facebook Logins
- 2+ million Google searches
- 3 million uploads on Flickr

## What is Big Data? continued

Companies leverage data to adapt products and services to:

- Meet customer needs
- Optimize operations
  - Optimize infrastructure
  - Find new sources of revenue
  - Can reveal more patterns and anomalies

IBM estimates that by 2015, 4.4 million jobs will be created globally to support big data

1.9 million of these jobs will be in the United States

#### DATA *VERSES* BIG DATA

#### **Data**

- Data, the plural form •
   of **Datum** means
   raw facts.
- Unorganized and unmeaningful
- They come in bits (1s and 0s)

## **Big Data**

- Big data is just with:
  - More volume
  - Faster data generation (velocity)
  - Multiple data format (variety)

#### DATA *VERSES* BIG DATA

#### Big data is just data with:

- More volume
- Faster data generation (velocity)
- Multiple data format (variety)
- World's data volume to grow 40% per year
- & 50 times by 2020 [1]
- Data coming from various human & machine
- activity



## Data storage measurement units





## Where does Big Data come from?



# **TYPES OF DATA**

- When collecting or gathering data we collect data from individuals cases on particular variables.
- A *variable* is a unit of data collection whose value can vary.
- Variables can be defined into *types* according to the level of mathematical scaling that can be carried out on the data.
- There are four types of data or levels of measurement:
  - Categorical (Nominal)
  - Ordinal
  - Interval
  - Ratio

## **CATEGORICAL (NOMINAL) DATA**

**Nominal or categorical** data is data that comprises of categories that *cannot* be rank-ordered – each category is just different.

The categories available cannot be placed in any order and no judgement can be made about the relative size or listance from one category to another.

ategories bear no quantitative relationship to one another. xamples:

- customer's location (America, Europe, Asia)
- employee classification (manager, supervisor, associate)

This means "No mathematical operations can be performed on the data relative to each other".

Therefore, nominal data reflect qualitative differences rather than quantitative ones.

## **CATEGORICAL (NOMINAL) DATA**

**Examples:** 





systems for measuring nominal data must ensure that each attegory is mutually exclusive and the system of measurement needs to be exhaustive.

- Mutually exclusive: each observation (person, case, score) cannot fall into more than one category.
- Exhaustive: the system of categories system should have enough categories for all the observations

## **ORDINAL DATA**

• Example:





Ordinal data is data that comprises of categories that <u>can</u> be ranked in an orderly manner.

Similarly with nominal data the distance between each category cannot be calculated but the categories can be ranked above or below each other.

- No fixed units of measurement
- Examples: college football rankings
- survey responses (poor, average, good, very good, excellent)

#### **INTERVAL DATA**

- Ordinal data but with constant differences between observations
- Ratios are not meaningful

#### Examples:

- Time moves along a continuous measure or seconds, minutes and so on and is without a zero point of time.
- Temperature moves along a continuous measure of degrees and is without a true zero.
- SAT scores

#### **RATIO DATA**

- Ratio data measured on a continuous scale and does have a natural zero point.
- Ratios are meaningful

## Examples:

- Monthly sales
- Weight
- Height
- Age

#### **Data for Business Analytics**

(continued)

Classifying Data Elements in a Purchasing Database





If there was field (column) for **Supplier Rating** (*Excellent, Good, Acceptable, Bad*), that data would be classified as **Ordinal** 

### **BIG DATA CHARACTERISTICS**



**Growing quantity of data** e.g. social media, behavioral, video



Quickening speed of data e.g. smart meters, process monitoring



Increase in types of data e.g. app data, unstructured data

**VELOCITY** 

Gartner, Feb 2001

# Which Big Data characteristic is the biggest issue for your organization?









#### Volume



- Volume
  - Petabytes, exabytes of data
  - Volumes too great for typical DBMS

# **Volume - Bytes Defined**

|                        | Managerial<br>Definition    | Exact<br>Amount       | To Put It in Perspective                                                                      |
|------------------------|-----------------------------|-----------------------|-----------------------------------------------------------------------------------------------|
| 1 Terabyte<br>(TB)     | One trillion bytes          | 2 <sup>40</sup> bytes | Printed collection of the Library of Congress = 20 TB                                         |
| 1 Petabyte<br>(PB)     | One<br>quadrillion<br>bytes | 2 <sup>50</sup> bytes | eBay data warehouse (2010) = 10 PB eBay will increase this 2.5 times by 2011 Teradata > 10 PB |
| 1 Exabyte<br>(EB)      | One<br>quintillion<br>bytes | 2 <sup>60</sup> bytes |                                                                                               |
| 1<br>Zettabyte<br>(ZB) | One sextillion<br>bytes     | 2 <sup>70</sup> bytes | Amount of data consumed by U.S. households in 2008 = 3.6 ZB                                   |



Megabyte: 2<sup>20</sup> bytes or, loosely, <sup>22</sup> one million bytes

Gigabyte: 2<sup>30</sup> bytes or, loosely one billion bytes

# **Velocity**

The New York Stock Exchange captures

### 1 TB OF TRADE INFORMATION

during each trading session





Modern cars have close to 100 SENSORS

that monitor items such as fuel level and tire pressure



ANALYSIS OF STREAMING DATA



By 2016, it is projected there will be

#### 18.9 BILLION NETWORK CONNECTIONS

 almost 2.5 connections per person on earth



VelocityMassiveamount ofstreaming data

# ariety



- Variety
  - Massive sets of unstructured/semi-structured data from Web traffic, social media, sensors, and so on

# Which source of data represents the most immediate opportunity?



Source: Getting Value from Big Data, Gartner Webinar, May 2012

#### **BIG DATA OPPORTUNITIES**



Making better informed decisions

e.g. strategies, recommendations





**Discovering hidden insights** 

e.g. anomalies forensics, patterns, trends



**Automating business processes** 

e.g. complex events, translation

# Which is the biggest opportunity for Big Data in your organization?



#### Through 2017:

- 85% of Fortune 500
   organizations will be unable
   to exploit big data for
   competitive advantage.
- Business analytics needs
  will drive 70% of
  investments in the
  expansion and
  modernization of information
  infrastructure.

Source: Getting Value from Big Data, Gartner Webinar, May 2012

### **IDENTIFYING INSURANCE FRAUD**

#### Opportunity

 Save and make money by reducing fraudulent auto insurance claims

#### Data & Analytics

- Predictive analytics against years of historical claims and coverage data
- Text mining adjuster reports for hidden clues, e.g. missing facts, inconsistencies, changed stories

#### Results

- Improved success rate in pursuing fraudulent claims from 50% to 88%; reduced fraudulent claim investigation time by 95%
- Marketing to individuals with low propensity for fraud

## **Quality Improvement**

#### Opportunity

 Move from manual to automated inspection of burger bun production to ensure and improve quality



- Photo-analyze over 1000 buns-per-minute for color, shape and seed distribution
- Continually adjust ovens and process automatically

#### Result

• Eliminate 1000s of pounds of wasted product per year; speed production; save energy; Reduce manual labor costs

Is the company using all of its "senses" to observe, measure and optimize business processes?





## **Improving Corporate Image**

#### Opportunity

• Improve reputation, brand and buzz by tapping social media



#### **Data & Analytics**

- Continually scanning twitterverse for mentions of their business
  - Integrating tweeters with their robust customer management system

#### Results

- Saw tweet from a top customer lamenting late flight—no time to dine at Morton's
- Tuxedo-clad waiter waiting for him when he landed with a bag containing his favorite steak, prepared the way he normally likes it with all the fixin's



#### **MODULE 3**

# **Business Analytics**

## check it out in presentation 3

