School of Mathematical and **Computational Sciences** Abstract Algebra

Prof. Pablo Rosero & Christian Chávez Lesson 6

Quotient Groups and Homomorphisms

1.1. Cosets and counting

Let (G, \cdot) be a group.

Definition 1.1. Let $H \leq G$ and $a, b \in G$. Define \cong_r over G by

$$a \cong_r b \iff ab^{-1} \in H$$
.

Whenever $a \cong_r b$ we say a right is congruent to b module H. Define \cong_l over G by

$$a \cong_{l} b \iff a^{-1}b \in H.$$

Whenever $a \cong_l b$ we say a is left congruent to b module H.

Remark 1.1.1. If *G* is Abelian,

$$ab^{-1} \in H \iff a^{-1}b \in H$$

for any $a, b \in G$.

Theorem 1.2. *Let* $H \leq G$.

- (i) Right and left congruence module H are both equivalence relations on G.
- (ii) The equivalence class of $a \in G$ under right congruence mod H is the set

$$Ha = \{ha \mid h \in H\}$$

(iii) The equivalence class of $a \in G$ under left congruence mod H is the set

$$aH = \{ah \mid h \in H\}$$

(iv) |Ha| = |H| = |aH| for any $a \in G$.

We call aH the left coset of H by a in G, and Ha the a right coset of H by a in G.

Remark 1.2.1. In additive notation (that is, when we are working with an Abelian group) we write a + H instead of aH and H + a instead of Ha. In fact, there is no difference between left and right cosets in this case. (Why a + H = H + a for any $a \in G$?)

Proof. (i)

Corollary 1.3. *Let* $H \leq G$.

$$(i) \ \ G = \bigcup_{a \in G} Ha = \bigcup_{a \in G} aH$$

- (ii) For all $a, b \in G$ distinct, $aH \cap bH = \emptyset$ and $Ha \cap Hb = \emptyset$.
- (iii) For all $a, b \in G$, we have aH = bH if and only if $a^{-1}b \in H$ (or $b a \in H$ in additive notation) and Ha = Hb if and only if $ab^{-1} \in H$ (or $b aa \in H$ in additive notation).
- (iv) If $\mathcal{R} = \{ Ha \mid a \in G \}$ and $\mathcal{L} = \{ aH \mid a \in G \}$ then $|\mathcal{R}| = |\mathcal{L}|$.

A special name and notation have been adopted for the number of left (or right) cosets of a subgroup in a group.

Definition 1.4 (Index). The index of a subgroup H in G is the number of distinct left cosets of H in G. This number is denoted by |G:H|.

Exercise 1. Prove |G:H| equals the number of distinct right cosets of H in G.

Theorem 1.5. If K, H, G are groups with k < H < G then

$$[G:k] = [G:H] \cdot [H:k]$$

If any two of these indices are finite, so is the third.

Proof.

Corollary 1.6 (Lagrange's theorem). *If* $H \le G$, then |G| = [G:H]|H|. *In particular, if* G *is finite, the order of any* $a \in G$ *divides* |G|.

Proof. \Box

Theorem 1.7. Let H and K be finite subgroups of a group G. Then

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

Proposition 1.8.

Proof.

Proposition 1.9.