"西南"联合训练 第3场

比赛时间: 9:00-12:00 共180分钟

题目		输入/输出	时间限制	空间限制
导航	gps.cpp	gps.in/out	1s	128M
比赛	test.cpp	test.in/out	1s	128M
浇花	water.cpp	water.in/out	1s	128M

导航

约翰在他的新车上装了两个导航系统(GPS),但这两个 GPS 选择的导航线路常常不同,约翰很是恼火。

约翰所在的小镇地图由 N 个路口和 M 条单向道路构成,两个路口间可能有多条道路相连。约翰的家在 1 号路口,他的农场在 N 号路口。约翰从家出发,可以经过一系列的道路,最终到达农场。

两个 GPS 用的都是上述地图,但是,它们计算时间的算法不同。比如,经过第 i 条道路,1 号 GPS 计算出的时间是 P_i 分钟,而 2 号 GPS 算出的时间是 Q_i 分钟。

约翰想要驾车从家到农场,但是,如果一个 GPS 认为约翰当前行走的这条路不在它算出的最短路径中,该 GPS 就会大声抱怨约翰走错了路。更倒霉的是,有可能两个 GPS 会同时抱怨约翰当前走的路不是它们推荐的。

请帮助约翰计算,从家到农场过程中,选择怎样的路径才能使得 GPS 抱怨的次数最少,请算出这个最少的抱怨次数。如果一条路上两个 GPS 都在抱怨,算两次(+2)抱怨。

输入格式:

第 1 行: 两个空格间隔的整数, N和 M

接下来M行,每行描述一条道路。第i行描述第i条道路,由四个空格间隔的整数构成,Ai,Bi,Pi,Qi,分别表示该条道路的起点、终点、1号GPS计算的耗时、2号GPS计算的耗时。

输出格式:

第 1 行: 1 个整数, 表示所求答案。

5 7 3 4 7 1 1 3 2 20 1 4 17 18 4 5 25 3 1 2 10 1 3 5 4 14 2 4 6 5 样例输出:	样例输入:
1 3 2 20 1 4 17 18 4 5 25 3 1 2 10 1 3 5 4 14 2 4 6 5	5 7
1 4 17 18 4 5 25 3 1 2 10 1 3 5 4 14 2 4 6 5	3 4 7 1
4 5 25 3 1 2 10 1 3 5 4 14 2 4 6 5	1 3 2 20
1 2 10 1 3 5 4 14 2 4 6 5	1 4 17 18
3 5 4 14 2 4 6 5	4 5 25 3
2 4 6 5	1 2 10 1
	3 5 4 14
样例输出:	2 4 6 5
	样例输出:
1	1

样例说明:

约翰选择路径: $1 \rightarrow 2 \rightarrow 4 \rightarrow 5$, $1 \in GPS$ 会在 $1 \rightarrow 2$ 抱怨(它会推荐走 $1 \rightarrow 3$ 这条路). 但是,剩下的路径 $2 \rightarrow 4 \rightarrow 5$,两个 GPS 都不会抱怨,因为它们算出的从 $2 \ni 1$ 最短路径都是走这条路。

数据范围:

比赛

有三个小伙伴组队去参加 ACM 比赛,这场比赛共有 n 道题目,他们的比赛策略是这样的:每个队员都会对题目通看一遍,然后对每个题的难度进行估算,难度范围为 1° 9。当然,由于每个队员的水平和特点, 他们对同一道题的估算不一定相同。

接下来他们会对所有题目进行分配。三个人分配的题目刚好是所有题目,且不会有交集,而且每个人分配的题目的编号必须是连续的,每人至少要 分一道题。请问,如何分配题目可以使得三个人拿到的题目的难度之和最小。每个人对自己 分配到的题目只按自己的估算值求和。

输入格式:

第一行一个数 n, 表示题目的数量。

接下来有 3 行,每行表示一个学生,每行有 n 个数,表示该生对 n 道题的估算难度,难度介于 $1^{\circ}9$ 。

输出格式:

一个整数。表示最小的估算难度之和。

样例输入1:	样例输入2:
3	5
1 3 3	4 1 5 2 4
1 1 1	3 5 5 1 1
1 2 3	4 1 4 3 1
样例输出1:	样例输出2:
4	11

样例1解释:

第一个同学选第1题,第二个同学选第3题,第三个同学选第2题

样例2解释:

第一个同学选第1,2题,第二个同学选第4,5题,第三个同学选第3题

数据范围:

对于 20% 的数据: 3 <= N <= 1000

对于 100% 的数据: 3 <= N <= 200000

浇花

n 个非负整数排成一行,每个数值为 Ai,数的位置不可改变。需要让所有的数都恰好等于 h。可进行的操作是:对任意长度的区间[i,j]中的每个数都加 1,i 和 j 也任选,但要求每个数只能作为一次区间的起点,也只能作为一次区间的终点。也即是说: 对任意的两个区间[L1,R1] 和 [L2,R2],要求:L1 \neq L2 并且 R1 \neq R2.

请问有多少种不同的方式, 使所有的数都等于 h.

输出答案模 1000000007 (10⁹+7)后的余数。 两种方式被认为不同,只要两种方式所实施的操作的区间集合中,有一个区间不同即可。

输入格式:

第 1 行: 2 个整数 n, h

接下来 n 行,每行 1 个整数,表示 Ai

输出格式:

第 1行: 1 个整数,表示答案。

样例输入1:	样例输入2:	样例输入3:
3 2	5 1	4 3
1 1 1	1 1 1 1 1	3 2 1 1
样例输出1:	样例输出2:	样例输出3:
4	1	0

数据范围:

30%的数据, 1≤n, h≤30

100%的数据, 1≤n, h≤2000 1≤Ai≤2000