Jonas Kunze: IT affine physicist

Conclusion

Jonas Kunze

University of Mainz

29.03.2012

SPONSORED BY THE

- Motivation
 - The physics
 - The experiment
- 2 Trigger topology
 - Three level online trigger
 - New proposal
- 3 Implementation
 - Socket programming
 - Parallel programming
- 4 Conclusion

- Motivation
 - The physics
 - The experiment
- 2 Trigger topology
 - Three level online trigger

Trigger topology

- New proposal
- 3 Implementation
 - Socket programming
 - Parallel programming
- 4 Conclusion

Motivation

e0000

- An elementary particle like Proton, Neutron...
- Decays within 12 ns

$$K^+ o \pi^+
u ar{
u}$$

Extremely rare: 1 out of 10¹⁰ decays

What it does mean

Motivation

1 out of 10¹⁰ decays is like taking a 227 kB picture of every human being on earth and filtering those with red hair, green-brown eyes, 3 birthmarks at the right cheek, being smaller than 1.50 m ...

Motivation

00000

Implementation

The NA62 Experiment at CERN

- About 90 physicists from I, GB, RU, BE, USA, DE . . .
- Will measure about 100 decays within 2 years
- Needs to analyze $10^{13} K^+$ decays

NA62 Experiment at CERN

K^+ production

Motivation

00000

High energy protons colliding with a beryllium target

Measurement

0.8 GHz particles crossing

Vacuum tanks with embedded detectors

 9 "cameras" shooting a picture at every decay (10 MHz)

Backup

Motivation

00000

10 MHz event rate or "10 Mio. pictures per second"

Detector	Event size [B]	Data rate [GBps]
CEDAR	216	2.16
GTK	2250	22.50
CHANTI	192	1.92
LAV	160	1.60
STRAW	768	7.68
RICH	160	1.60
MUV	768	7.68
IRC & SAC	576	5.76
LKr	222 k	2220
Sum	≈227 kB	≈2.3 TBps

It's like 10 Mio. users uploading a big profile image every second!

- Motivation
 - The physics
 - The experiment
- 2 Trigger topology
 - Three level online trigger
 - New proposal
- Implementation
 - Socket programming
 - Parallel programming
- 4 Conclusion

Online trigger system

Three levels to filter data

Motivation

Data transmission via ordinary 10 gigabit ethernet and **UDP/IP**:

First topology proposal

Original concept:

Burst time

Motivation

Only 3-9 sec. proton burst and long break

Burst time

Motivation

Only 3-9 sec. proton burst and long break

My proposal to use resources more efficiently

Combine L1 and L2 to one farm

Don't separate L1 and L2!

Combine L1 and L2 to one farm

We save about 80k

- No L1 PCs anymore
- Less switches. less network cards

New proposal Event building @ L1

Every subdetector sends data of one event to the same PC

- + More physics at earlier state
- + No broadcast of a L1 decision needed anymore
- + Easier to implement load balancing (self-sustaining PCs)

Motivation

- The physics
- The experiment
- - Three level online trigger
 - New proposal
- **Implementation**
 - Socket programming
 - Parallel programming

Bad performance with interrupts

Standard socket programming is interrupt based

Every hardware and software (syscall) interrupt induces a context switch (\approx 100 ns)

Motivation

High packet loss ($> 10^{-5} \Rightarrow lose > 100$ Mio. events)

No problem for web apps but I cannot use kernel sockets!

Solution: pf_ring DNA - new type of network socket

pf_ring DNA

Motivation

Special socket: pf_ring DNA by ntop (open source)

- Polling the NIC memory directly (avoids system calls)
- ullet Only pprox40% CPU @ full speed 10 G receiving 1 kB packets
- No packet loss at all

pf_ring does not yet support any protocol

- Every byte has to be moved by the user
- I had to implement Ethernet, IP, UDP, ARP and IGMP

270 kHz Eventbuilding rate with ${\rm i}5$ virtual cores

 \Rightarrow ;19 cores left for L1 and L2 trigger

Bad performance with Mutexes/Semaphores

Motivation

Implemented lockless queues based on consumer-producer communications

- Motivation
 - The physics
 - The experiment
- 2 Trigger topology
 - Three level online trigger
 - New proposal
- 3 Implementation
 - Socket programming
 - Parallel programming
- 4 Conclusion

Backup

- High energy physics $\hat{=}$ high data rate
- A well planned strategy can save a lot of money
- Using ordinary 10G ethernet saves money but lossless communication only feasible with special software: pf_ring DNA
- High performance parallel programming requires special approaches

Motivation

Thank you for the invitation!

Tree topology (Hexapus)

Motivation

Backup

Packet loss

UDP-Bündel Test mit 20 L0-PCs

2097152B memory - TCP

2097152B memory - UDP

