

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Weiterführende Fragestellungen

Grundlegende Fragestellungen

- Kann man zeigen, dass ein Problem nicht effizient(er) gelöst werden kann?
- Wie geht man mit Problemen um, die man nicht effizient lösen kann?

Vergleichsbasiertes Sortieren

- Ein Algorithmus ist ein vergleichsbasierter Sortierer, wenn er
- (1) für eine Eingabe von n unterschiedlichen Zahlen $a_1, ..., a_n$ eine Reihenfolge π berechnet, so dass $a_{\pi(1)} < \cdots < a_{\pi(n)}$ gilt und
- (2) wenn sich die Reihenfolge bereits zwingend aus den vom Algorithmus durchgeführten Vergleichen (<,>) zwischen Eingabeelementen ergibt

Vergleichsbasiertes Sortieren

- Ein Algorithmus ist ein vergleichsbasierter Sortierer, wenn er
- (1) für eine Eingabe von n unterschiedlichen Zahlen $a_1, ..., a_n$ eine Reihenfolge π berechnet, so dass $a_{\pi(1)} < \cdots < a_{\pi(n)}$ gilt und
- (2) wenn sich die Reihenfolge bereits zwingend aus den vom Algorithmus durchgeführten Vergleichen (<,>) zwischen Eingabeelementen ergibt

Erste Beobachtung

 InsertionSort und MergeSort sind vergleichsbasiert (die Algorithmen führen zwar ≤ Operationen durch, wenn die Eingabe jedoch aus unterschiedlichen Zahlen besteht, kann man diese durch < bzw. > ersetzen)

Vergleichsbasiertes Sortieren

- Ein Algorithmus ist ein vergleichsbasierter Sortierer, wenn er
- (1) für eine Eingabe von n unterschiedlichen Zahlen $a_1, ..., a_n$ eine Reihenfolge π berechnet, so dass $a_{\pi(1)} < \cdots < a_{\pi(n)}$ gilt und
- (2) wenn sich die Reihenfolge bereits zwingend aus den vom Algorithmus durchgeführten Vergleichen (<,>) zwischen Eingabeelementen ergibt

Zweite Beobachtung

- Jeder Vergleich benötigt Ω(1) Zeit.
- Benötigt ein Algorithmus f(n) Vergleiche, so ist seine Laufzeit $\Omega(f(n))$
- Ziel: Zeige, dass jeder vergleichsbasierte Sortierer $\Omega(n \log n)$ Vergleiche benötigt

Baumdarstellung eines vergleichsbasierten Sortierers

- Wir geben Ablauf der Vergleiche an, die der Algorithmus bei Eingabe der Länge n ausführt
- Der Algorithmus führt einen eindeutigen ersten Vergleich aus, dieser wird Wurzel des Baum
- Je nach Ausgang des Vergleichs wird der Algorithmus auf unterschiedliche Weise fortgesetzt
- Das linke Kind eines Knotens entspricht dem Vergleichsausgang $a_i < a_j$, das rechte Kind dem Ausgang $a_i > a_j$
- Jedes Blatt wird mit einer Reihenfolge π bezeichnet

Baumdarstellung eines vergleichsbasierten Sortierers (Beispiel InsertionSort, n=3)

InsertionSort(Array A)

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $\text{key} \leftarrow A[j]$
- 3. $i \leftarrow j 1$
- 4. **while** i > 0 and A[i] > key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i 1$
- 7. $A[i+1] \leftarrow \text{key}$

Baumdarstellung eines vergleichsbasierten Sortierers

(Beispiel InsertionSort, n = 3)

InsertionSort(Array A)

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $\ker \leftarrow A[j]$
- 3. $i \leftarrow j 1$
- 4. **while** i > 0 and A[i] > key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i 1$
- 7. $A[i+1] \leftarrow \text{key}$

Beobachtungen

- Die Tiefe eines Sortierbaums ist eine untere Schranke für die Worst-Case Laufzeit bei Eingabegröße n
- Jeder Sortierbaum ist ein Binärbaum
- Der Sortierbaum hat für jede Ausgabereihenfolge mindestens ein Blatt
- Es gibt n! Ausgabereihenfolgen

Beobachtungen

- Die Tiefe eines Sortierbaums ist eine untere Schranke für die Worst-Case Laufzeit bei Eingabegröße n
- Jeder Sortierbaum ist ein Binärbaum
- Der Sortierbaum hat für jede Ausgabereihenfolge mindestens ein Blatt
- Es gibt n! Ausgabereihenfolgen

Überlegung

- Wie tief ist ein Binärbaum mit n! Blättern mindestens?
- Ein Binärbaum der Tiefe k hat höchstens 2^k Blätter (vollständiger Binärbaum)
- Umgekehrt: Ein Binärbaum mit n! Blättern hat mindestens Tiefe $\log(n!)$

Korollar 74

Jeder vergleichsbasierte Sortieralgorithmus hat eine Laufzeit von $\Omega(n \log n)$.

Beweis

• Die Baumdarstellung eines vergleichsbasierten Sortieralgorithmus bei Eingabegröße n hat n! Blätter und somit Tiefe $\Omega(n \log n)$.

Korollar 74

• Jeder vergleichsbasierte Sortieralgorithmus hat eine Laufzeit von $\Omega(n \log n)$.

- Die Baumdarstellung eines vergleichsbasierten Sortieralgorithmus bei Eingabegröße n hat n! Blätter und somit Tiefe $\Omega(n \log n)$.
- Die Tiefe der Baumdarstellung gibt eine untere Schranke für die Worst-Case Laufzeit des Algorithmus, da der Algorithmus bei entsprechender Eingabe alle Vergleiche des längsten Astes durchführt und für jeden Vergleich $\Omega(1)$ Zeit benötigt.

Korollar 74

Jeder vergleichsbasierte Sortieralgorithmus hat eine Laufzeit von $\Omega(n \log n)$.

- Die Baumdarstellung eines vergleichsbasierten Sortieralgorithmus bei Eingabegröße n hat n! Blätter und somit Tiefe $\Omega(n \log n)$.
- Die Tiefe der Baumdarstellung gibt eine untere Schranke für die Worst-Case Laufzeit des Algorithmus, da der Algorithmus bei entsprechender Eingabe alle Vergleiche des längsten Astes durchführt und für jeden Vergleich $\Omega(1)$ Zeit benötigt.
- Somit folgt das Korollar.

Korollar 74

Jeder vergleichsbasierte Sortieralgorithmus hat eine Laufzeit von $\Omega(n \log n)$.

- Die Baumdarstellung eines vergleichsbasierten Sortieralgorithmus bei Eingabegröße n hat n! Blätter und somit Tiefe $\Omega(n \log n)$.
- Die Tiefe der Baumdarstellung gibt eine untere Schranke für die Worst-Case Laufzeit des Algorithmus, da der Algorithmus bei entsprechender Eingabe alle Vergleiche des längsten Astes durchführt und für jeden Vergleich $\Omega(1)$ Zeit benötigt.
- Somit folgt das Korollar.

Aufgabe

Wie kann man untere Schranken für andere Probleme zeigen?

- Will zeigen, dass jeder Algorithmus für Problem A Laufzeit $\Omega(f(n))$ hat
- Ich weiß, dass jeder Algorithmus für Problem B Laufzeit $\Omega(f(n))$ hat

Wie kann man untere Schranken für andere Probleme zeigen?

- Will zeigen, dass jeder Algorithmus für Problem A Laufzeit $\Omega(f(n))$ hat
- Ich weiß, dass jeder Algorithmus für Problem B Laufzeit $\Omega(f(n))$ hat

Generelle Beweisidee

 Baue Algorithmus C der Problem B löst und dabei einen optimalen Algorithmus für Problem A als Unterprogramm benutzt

Wie kann man untere Schranken für andere Probleme zeigen?

- Will zeigen, dass jeder Algorithmus für Problem A Laufzeit $\Omega(f(n))$ hat
- Ich weiß, dass jeder Algorithmus für Problem B Laufzeit $\Omega(f(n))$ hat

- Baue Algorithmus C der Problem B löst und dabei einen optimalen Algorithmus für Problem A als Unterprogramm benutzt
- Zeige: Die Laufzeit des Algorithmus ist o(f(n))+Laufzeit für Problem A

Wie kann man untere Schranken für andere Probleme zeigen?

- Will zeigen, dass jeder Algorithmus für Problem A Laufzeit $\Omega(f(n))$ hat
- Ich weiß, dass jeder Algorithmus für Problem B Laufzeit $\Omega(f(n))$ hat

- Baue Algorithmus C der Problem B löst und dabei einen optimalen Algorithmus für Problem A als Unterprogramm benutzt
- Zeige: Die Laufzeit des Algorithmus ist o(f(n))+Laufzeit für Problem A
- Dann hat jeder Algorithmus für Problem A eine Laufzeit von $\Omega(f(n))$

Wie kann man untere Schranken für andere Probleme zeigen?

- Will zeigen, dass jeder Algorithmus für Problem A Laufzeit $\mathbf{\Omega}ig(f(n)ig)$ hat
- Ich weiß, dass jeder Algorithmus für Problem B Laufzeit $\Omega(f(n))$ hat

- Baue Algorithmus C der Problem B löst und dabei einen optimalen Algorithmus für Problem A als Unterprogramm benutzt
- Zeige: Die Laufzeit des Algorithmus ist o(f(n))+Laufzeit für Problem A
- Dann hat jeder Algorithmus für Problem A eine Laufzeit von $\Omega(f(n))$
- (Wäre dies nicht so, dann gäbe es einen Algorithmus mit Laufzeit $\mathbf{o}(f(n))$ für Problem A. Somit kann ich Problem B mit Algorithmus C in $\mathbf{o}(f(n))$ Zeit lösen. Widerspruch, da die Laufzeit für Problem B $\mathbf{\Omega}(f(n))$ ist)

Wie kann man untere Schranken für andere Probleme zeigen?

- Will zeigen, dass jeder Algorithmus für Problem A Laufzeit $\mathbf{\Omega}ig(f(n)ig)$ hat
- Ich weiß, dass jeder Algorithmus für Problem B Laufzeit $\Omega(f(n))$ hat

- Baue Algorithmus C der Problem B löst und dabei einen optimalen Algorithmus für Problem A als Unterprogramm benutzt
- Zeige: Die Laufzeit des Algorithmus ist o(f(n))+Laufzeit für Problem A
- Dann hat jeder Algorithmus für Problem A eine Laufzeit von $\Omega(f(n))$
- (Wäre dies nicht so, dann gäbe es einen Algorithmus mit Laufzeit $\mathbf{o}(f(n))$ für Problem A. Somit kann ich Problem B mit Algorithmus C in $\mathbf{o}(f(n))$ Zeit lösen. Widerspruch, da die Laufzeit für Problem B $\mathbf{\Omega}(f(n))$ ist)

Satz 75

Die Berechnung der konvexen Hülle einer Punktmenge von n Punkten in der Ebene benötigt $\Omega(n \log n)$ Zeit.

Beweis

• Annahme: Ich kann die konvexe Hülle von n Punkten in der Ebene in $f(n) = \mathbf{o}(n \log n)$ Zeit berechnen

Satz 75

Die Berechnung der konvexen Hülle einer Punktmenge von n Punkten in der Ebene benötigt $\Omega(n \log n)$ Zeit.

- Annahme: Ich kann die konvexe Hülle von n Punkten in der Ebene in $f(n) = \mathbf{o}(n \log n)$ Zeit berechnen
- Dann sei Algorithmus FastHull ein Algorithmus der dies tut

Satz 75

Die Berechnung der konvexen Hülle einer Punktmenge von n Punkten in der Ebene benötigt $\Omega(n \log n)$ Zeit.

- Annahme: Ich kann die konvexe Hülle von n Punkten in der Ebene in $f(n) = \mathbf{o}(n \log n)$ Zeit berechnen
- Dann sei Algorithmus FastHull ein Algorithmus der dies tut
- Zeige: Man kann dann Algorithmus FastSort konstruieren, der in $o(n \log n)$ sortiert

Satz 75

Die Berechnung der konvexen Hülle einer Punktmenge von n Punkten in der Ebene benötigt $\Omega(n \log n)$ Zeit.

- Annahme: Ich kann die konvexe Hülle von n Punkten in der Ebene in $f(n) = \mathbf{o}(n \log n)$ Zeit berechnen
- Dann sei Algorithmus FastHull ein Algorithmus der dies tut
- **Z**eige: Man kann dann Algorithmus FastSort konstruieren, der in $o(n \log n)$ sortiert
- Dies ist aufgrund unserer unteren Schranke nicht möglich (streng genommen gilt dies natürlich nur für vergleichsbasierte Algorithmen; wir schummeln also hier ein wenig)

Satz 75

Die Berechnung der konvexen Hülle einer Punktmenge von n Punkten in der Ebene benötigt $\Omega(n \log n)$ Zeit.

- Annahme: Ich kann die konvexe Hülle von n Punkten in der Ebene in $f(n) = \mathbf{o}(n \log n)$ Zeit berechnen
- Dann sei Algorithmus FastHull ein Algorithmus der dies tut
- **Z**eige: Man kann dann Algorithmus FastSort konstruieren, der in $o(n \log n)$ sortiert
- Dies ist aufgrund unserer unteren Schranke nicht möglich (streng genommen gilt dies natürlich nur für vergleichsbasierte Algorithmen; wir schummeln also hier ein wenig)

Beweis

- 1. Initialisiere Feld *B* für *n* Punkte
- 2. for $i \leftarrow 1$ to n do
- 3. Für Zahl x = A[i] schreibe Punkt (x, x^2) in Feld B
- 4. Berechne konvexe Hülle mit FastHull(*B*)
- 5. Gib Punkte in der Reihenfolge aus, in der sie auf der Hülle auftreten

Beweis

- 1. Initialisiere Feld *B* für *n* Punkte
- 2. for $i \leftarrow 1$ to n do
- 3. Für Zahl x = A[i] schreibe Punkt (x, x^2) in Feld B
- 4. Berechne konvexe Hülle mit FastHull(*B*)
- 5. Gib Punkte in der Reihenfolge aus, in der sie auf der Hülle auftreten

Beweis

- 1. Initialisiere Feld *B* für *n* Punkte
- 2. for $i \leftarrow 1$ to n do
- 3. Für Zahl x = A[i] schreibe Punkt (x, x^2) in Feld B
- 4. Berechne konvexe Hülle mit FastHull(*B*)
- 5. Gib Punkte in der Reihenfolge aus, in der sie auf der Hülle auftreten

Beweis

- 1. Initialisiere Feld *B* für *n* Punkte
- 2. for $i \leftarrow 1$ to n do
- 3. Für Zahl x = A[i] schreibe Punkt (x, x^2) in Feld B
- 4. Berechne konvexe Hülle mit FastHull(*B*)
- 5. Gib Punkte in der Reihenfolge aus, in der sie auf der Hülle auftreten

Beweis

- 1. Initialisiere Feld *B* für *n* Punkte
- 2. for $i \leftarrow 1$ to n do
- 3. Für Zahl x = A[i] schreibe Punkt (x, x^2) in Feld B
- 4. Berechne konvexe Hülle mit FastHull(*B*)
- 5. Gib Punkte in der Reihenfolge aus, in der sie auf der Hülle auftreten

Beweis

- 1. Initialisiere Feld *B* für *n* Punkte
- 2. for $i \leftarrow 1$ to n do
- 3. Für Zahl x = A[i] schreibe Punkt (x, x^2) in Feld B
- 4. Berechne konvexe Hülle mit FastHull(*B*)
- 5. Gib Punkte in der Reihenfolge aus, in der sie auf der Hülle auftreten
- Die Laufzeit von FastSort ist $\mathbf{O}(n) + f(n)$

Beweis

- 1. Initialisiere Feld *B* für *n* Punkte
- 2. for $i \leftarrow 1$ to n do
- 3. Für Zahl x = A[i] schreibe Punkt (x, x^2) in Feld B
- 4. Berechne konvexe Hülle mit FastHull(*B*)
- 5. Gib Punkte in der Reihenfolge aus, in der sie auf der Hülle auftreten
- Die Laufzeit von FastSort ist $\mathbf{O}(n) + f(n)$
- Hat also FastHull eine Laufzeit von $o(n \log n)$, so hat auch FastSort eine solche Laufzeit

Beweis

- 1. Initialisiere Feld B für n Punkte
- 2. for $i \leftarrow 1$ to n do
- 3. Für Zahl x = A[i] schreibe Punkt (x, x^2) in Feld B
- 4. Berechne konvexe Hülle mit FastHull(*B*)
- 5. Gib Punkte in der Reihenfolge aus, in der sie auf der Hülle auftreten
- Die Laufzeit von FastSort ist $\mathbf{O}(n) + f(n)$
- Hat also FastHull eine Laufzeit von $o(n \log n)$, so hat auch FastSort eine solche Laufzeit
- Da jeder (vergleichsbasierte) Sortieralgorithmus Laufzeit $\mathbf{\Omega}(n \log n)$ hat, kann dies nicht sein und FastHull (und jeder andere vergleichsbasierte Algorithmus zur Berechnung der konvexen Hülle) hat Laufzeit $\mathbf{\Omega}(n \log n)$.

Beweis

- 1. Initialisiere Feld *B* für *n* Punkte
- 2. for $i \leftarrow 1$ to n do
- 3. Für Zahl x = A[i] schreibe Punkt (x, x^2) in Feld B
- 4. Berechne konvexe Hülle mit FastHull(*B*)
- 5. Gib Punkte in der Reihenfolge aus, in der sie auf der Hülle auftreten
- Die Laufzeit von FastSort ist $\mathbf{O}(n) + f(n)$
- Hat also FastHull eine Laufzeit von $o(n \log n)$, so hat auch FastSort eine solche Laufzeit
- Da jeder (vergleichsbasierte) Sortieralgorithmus Laufzeit $\Omega(n \log n)$ hat, kann dies nicht sein und FastHull (und jeder andere vergleichsbasierte Algorithmus zur Berechnung der konvexen Hülle) hat Laufzeit $\Omega(n \log n)$.

3SUM

Sei S eine Menge von n Integers. Gibt es 3 unterschiedliche Zahlen in S, die sich zu 0 aufsummieren?

Vermutung

• 3SUM kann nicht in $\mathbf{o}(n^2)$ Laufzeit gelöst werden

Kommentar

- Die Laufzeit hängt immer auch vom genauen Rechenmodell ab
- In bestimmten Rechenmodellen gibt es einen Algorithmus, dessen Laufzeit etwas besser ist als $\mathbf{O}(n^2)$

Kolinearitätsproblem

Seien n Punkte in der Ebene gegeben. Gibt es 3 Punkte, die auf einer Linie liegen?

Kolinearitätsproblem

Seien n Punkte in der Ebene gegeben. Gibt es 3 Punkte, die auf einer Linie liegen?

Wie testet man Kolinearität von 3 Punkten?

Wie testet man Kolinearität von 3 Punkten?

- Seien $x = (x_1, x_2)$ und $y = (y_1, y_2)$ zwei Punkte/Vektoren.
- Dann gibt

$$\det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1$$

die Fläche des von den beiden Vektoren aufgespannten Parallelograms an

Wie testet man Kolinearität von 3 Punkten?

- Seien $x = (x_1, x_2)$ und $y = (y_1, y_2)$ zwei Punkte/Vektoren.
- Dann gibt

$$\det\begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1$$

die Fläche des von den beiden Vektoren aufgespannten Parallelograms an

Sind die Vektoren x und y linear abhängig, so hat das Parallelogram Fläche 0

Wie testet man Kolinearität von 3 Punkten?

- Seien $x = (x_1, x_2)$ und $y = (y_1, y_2)$ zwei Punkte/Vektoren.
- Dann gibt

die Fläche des von den beiden Vektoren aufgespannten Parallelograms an

- Sind die Vektoren x und y linear abhängig, so hat das Parallelogram Fläche 0
- Hat man nun drei Punkte a, b, c, so kann man Kolinerität testen, indem man testet, ob b a und c a linear abhängig sind

Wie testet man Kolinearität von 3 Punkten?

- Seien $x = (x_1, x_2)$ und $y = (y_1, y_2)$ zwei Punkte/Vektoren.
- Dann gibt

$$\det\begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1$$

die Fläche des von den beiden Vektoren aufgespannten Parallelograms an

- Sind die Vektoren x und y linear abhängig, so hat das Parallelogram Fläche 0
- Hat man nun drei Punkte a, b, c, so kann man Kolinerität testen, indem man testet, ob b-a und c-a linear abhängig sind

Satz 76

Sei f(n) eine untere Schranke für die Worst-Case Laufzeit des besten Algorithmus für 3SUM. Dann hat auch das Kolinearitätsproblem eine Laufzeit von $\Omega(f(n))$.

Satz 76

Sei f(n) eine untere Schranke für die Worst-Case Laufzeit des besten Algorithmus für 3SUM. Dann hat auch das Kolinearitätsproblem eine Laufzeit von $\Omega(f(n))$.

Beweis

• Sei Kolinear ein optimaler Algorithmus für das Kolinearitätsproblem mit Laufzeit g(n).

Satz 76

Sei f(n) eine untere Schranke für die Worst-Case Laufzeit des besten Algorithmus für 3SUM. Dann hat auch das Kolinearitätsproblem eine Laufzeit von $\Omega(f(n))$.

Beweis

- Sei Kolinear ein optimaler Algorithmus für das Kolinearitätsproblem mit Laufzeit g(n).
- Wir entwerfen zunächst einen Algorithmus 3SUM-Fast für 3SUM mit Laufzeit $g(n) + \mathbf{O}(n)$, der Algorithmus Kolinear benutzt.

Satz 76

Sei f(n) eine untere Schranke für die Worst-Case Laufzeit des besten Algorithmus für 3SUM. Dann hat auch das Kolinearitätsproblem eine Laufzeit von $\Omega(f(n))$.

Beweis

- Sei Kolinear ein optimaler Algorithmus für das Kolinearitätsproblem mit Laufzeit g(n).
- Wir entwerfen zunächst einen Algorithmus 3SUM-Fast für 3SUM mit Laufzeit $g(n) + \mathbf{O}(n)$, der Algorithmus Kolinear benutzt.

3SUM-Fast(S)

- 1. $P \leftarrow \emptyset$
- 2. Für jede Zahl $x \in S$ füge Punkt (x, x^3) zu Punktmenge P hinzu
- 3. **return** Kolinear(*P*)

Behauptung

3SUM-Fast löst das 3SUM Problem in Laufzeit $g(n) + \mathbf{O}(n)$.

Behauptung

3SUM-Fast löst das 3SUM Problem in Laufzeit $g(n) + \mathbf{O}(n)$.

Beweis

 Die Laufzeit folgt sofort, da nur die n Zahlen aus S in n Punkte umgeformt werden müssen und dann Kolinear aufgerufen wird.

Behauptung

3SUM-Fast löst das 3SUM Problem in Laufzeit $g(n) + \mathbf{O}(n)$.

Beweis

- Die Laufzeit folgt sofort, da nur die n Zahlen aus S in n Punkte umgeformt werden müssen und dann Kolinear aufgerufen wird.
- Wir müssen zeigen, dass die Punkte (a, a^3) , (b, b^3) und (c, c^3) genau dann kollinear sind, wenn a + b + c = 0 ist (d.h. 3SUM erfüllt ist). Dabei sind a, b, c unterschiedliche Zahlen aus S

Behauptung

3SUM-Fast löst das 3SUM Problem in Laufzeit $g(n) + \mathbf{O}(n)$.

Beweis

- Die Laufzeit folgt sofort, da nur die n Zahlen aus S in n Punkte umgeformt werden müssen und dann Kolinear aufgerufen wird.
- Wir müssen zeigen, dass die Punkte (a, a^3) , (b, b^3) und (c, c^3) genau dann kollinear sind, wenn a + b + c = 0 ist (d.h. 3SUM erfüllt ist). Dabei sind a, b, c unterschiedliche Zahlen aus S

Behauptung

3SUM-Fast löst das 3SUM Problem in Laufzeit $g(n) + \mathbf{O}(n)$.

Beweis

• Um zu überprüfen, ob die 3 Punkte kollinear sind, rechnen wir die Determinante von $(b-a,b^3-a^3)$, $(c-a,c^3-a^3)$ aus

Behauptung

3SUM-Fast löst das 3SUM Problem in Laufzeit $g(n) + \mathbf{O}(n)$.

Beweis

Um zu überprüfen, ob die 3 Punkte kollinear sind, rechnen wir die Determinante von $(b-a,b^3-a^3)$, $(c-a,c^3-a^3)$ aus

$$\det \begin{pmatrix} b - a & b^3 - a^3 \\ c - a & c^3 - a^3 \end{pmatrix} = (b - a)(c^3 - a^3) - (c - a)(b^3 - a^3)$$
$$= -(a - b)(a - c)(b - c)(a + b + c)$$

Behauptung

3SUM-Fast löst das 3SUM Problem in Laufzeit $g(n) + \mathbf{O}(n)$.

Beweis

Um zu überprüfen, ob die 3 Punkte kollinear sind, rechnen wir die Determinante von $(b-a,b^3-a^3)$, $(c-a,c^3-a^3)$ aus

$$\det \begin{pmatrix} b - a & b^3 - a^3 \\ c - a & c^3 - a^3 \end{pmatrix} = (b - a)(c^3 - a^3) - (c - a)(b^3 - a^3)$$
$$= -(a - b)(a - c)(b - c)(a + b + c)$$

• Da a, b und c unterschiedliche Zahlen sind, wird dieses Polynom genau dann 0, wenn a + b + c = 0 ist.

Behauptung

3SUM-Fast löst das 3SUM Problem in Laufzeit $g(n) + \mathbf{O}(n)$.

Beweis

Um zu überprüfen, ob die 3 Punkte kollinear sind, rechnen wir die Determinante von $(b-a,b^3-a^3)$, $(c-a,c^3-a^3)$ aus

$$\det \begin{pmatrix} b - a & b^3 - a^3 \\ c - a & c^3 - a^3 \end{pmatrix} = (b - a)(c^3 - a^3) - (c - a)(b^3 - a^3)$$
$$= -(a - b)(a - c)(b - c)(a + b + c)$$

Da a, b und c unterschiedliche Zahlen sind, wird dieses Polynom genau dann 0, wenn a + b + c = 0 ist.

Beweis von Satz 76 (fortgesetzt)

• Wir nehmen nun an, dass f(n) die Laufzeit des besten 3SUM Algorithmus ist. Ist $f(n) = \mathbf{0}(n)$, so müssen wir nichts zeigen, da man sich für das Lösen des Kolinearitätsproblems alle Eingabepunkte angucken muss

- Wir nehmen nun an, dass f(n) die Laufzeit des besten 3SUM Algorithmus ist. Ist $f(n) = \mathbf{0}(n)$, so müssen wir nichts zeigen, da man sich für das Lösen des Kolinearitätsproblems alle Eingabepunkte angucken muss
- Sei also $f(n) = \omega(n)$

- Wir nehmen nun an, dass f(n) die Laufzeit des besten 3SUM Algorithmus ist. Ist $f(n) = \mathbf{0}(n)$, so müssen wir nichts zeigen, da man sich für das Lösen des Kolinearitätsproblems alle Eingabepunkte angucken muss
- Sei also $f(n) = \omega(n)$
- Angenommen, es gibt einen Algorithmus für das Kolinearitätsproblem mit Laufzeit $g(n) = \mathbf{o}(f(n))$

- Wir nehmen nun an, dass f(n) die Laufzeit des besten 3SUM Algorithmus ist. Ist $f(n) = \mathbf{0}(n)$, so müssen wir nichts zeigen, da man sich für das Lösen des Kolinearitätsproblems alle Eingabepunkte angucken muss
- Sei also $f(n) = \omega(n)$
- Angenommen, es gibt einen Algorithmus für das Kolinearitätsproblem mit Laufzeit $g(n) = \mathbf{o}(f(n))$
- Dann hat Algorithmus 3SUM-Fast eine Laufzeit $g(n) + \mathbf{O}(n) = \mathbf{o}(f(n))$.

- Wir nehmen nun an, dass f(n) die Laufzeit des besten 3SUM Algorithmus ist. Ist $f(n) = \mathbf{0}(n)$, so müssen wir nichts zeigen, da man sich für das Lösen des Kolinearitätsproblems alle Eingabepunkte angucken muss
- Sei also $f(n) = \omega(n)$
- Angenommen, es gibt einen Algorithmus für das Kolinearitätsproblem mit Laufzeit $g(n) = \mathbf{o}(f(n))$
- Dann hat Algorithmus 3SUM-Fast eine Laufzeit $g(n) + \mathbf{O}(n) = \mathbf{o}(f(n))$.
- Widerspruch zur Annahme, dass f(n) eine untere Schranke für die Laufzeit des besten 3SUM Algorithmus ist.

- Wir nehmen nun an, dass f(n) die Laufzeit des besten 3SUM Algorithmus ist. Ist $f(n) = \mathbf{0}(n)$, so müssen wir nichts zeigen, da man sich für das Lösen des Kolinearitätsproblems alle Eingabepunkte angucken muss
- Sei also $f(n) = \omega(n)$
- Angenommen, es gibt einen Algorithmus für das Kolinearitätsproblem mit Laufzeit $g(n) = \mathbf{o}(f(n))$
- Dann hat Algorithmus 3SUM-Fast eine Laufzeit $g(n) + \mathbf{0}(n) = \mathbf{o}(f(n))$.
- Widerspruch zur Annahme, dass f(n) eine untere Schranke für die Laufzeit des besten 3SUM Algorithmus ist.
- Also hat jeder Algorithmus für das Kolinearitätsproblem Laufzeit $\Omega(f(n))$

- Wir nehmen nun an, dass f(n) die Laufzeit des besten 3SUM Algorithmus ist. Ist $f(n) = \mathbf{0}(n)$, so müssen wir nichts zeigen, da man sich für das Lösen des Kolinearitätsproblems alle Eingabepunkte angucken muss
- Sei also $f(n) = \omega(n)$
- Angenommen, es gibt einen Algorithmus für das Kolinearitätsproblem mit Laufzeit $g(n) = \mathbf{o}(f(n))$
- Dann hat Algorithmus 3SUM-Fast eine Laufzeit $g(n) + \mathbf{0}(n) = \mathbf{o}(f(n))$.
- Widerspruch zur Annahme, dass f(n) eine untere Schranke für die Laufzeit des besten 3SUM Algorithmus ist.
- Also hat jeder Algorithmus für das Kolinearitätsproblem Laufzeit $\mathbf{\Omega}(f(n))$

Die 1.000.000\$ Frage

- Zeigen Sie, dass es keine Konstante c gibt, so dass das Rucksackproblem in $\mathbf{O}(n^c)$ Zeit gelöst werden kann
- Dabei dürfen die Eingabezahlen exponentiell in n groß sein!

Zusammenfassung

- Für einige (sehr wenige) Probleme können wir untere Schranken beweisen
- Die Schranken können vom gewählten Modell abhängen
- Will man zeigen, dass ein Problem A schwer ist und hat man bereits eine untere Schranke für ein anderes Problem B, so kann man einen Algorithmus entwickeln, der Problem B mit Hilfe von Problem A löst und so die Schwierigkeit der Probleme zueinander in Relation setzen
- Es ist i.a. sehr schwer untere Schranken zu zeigen