Mestrado Integrado em Engenharia Informática Tópicos de Matemática Discreta 3. Introdução à Teoria de Conjuntos

José Carlos Costa

Dep. Matemática Universidade do Minho

 1° semestre 2020/2021

Introdução à Teoria de Conjuntos

- Noções básicas
- Operações com conjuntos
 - União, interseção e complementação
 - Conjunto potência
 - Produto cartesiano
- Famílias de conjuntos

TMD Cap 3

- O conceito de conjunto é essencial na matemática pois serve de fundamento a praticamente todas as outras noções (número, relação, função, etc) da matemática.
- A teoria de conjuntos (a área da matemática que estuda os conjuntos) pode, por isso, ser considerada como que um dos alicerces da matemática.
- O estudo moderno dos conjuntos foi iniciado por Georg Cantor nos finais do século XIX. A abordagem de Cantor é intuitiva (ou ingénua) e, quando aprofundada, conduz a paradoxos.
- No século XX foi introduzido o tratamento axiomático da teoria de conjuntos, que resolveu de algum modo esses paradoxos. Essas questões mais avançadas não serão no entanto aqui abordadas.
- Nesta unidade curricular, iremos considerar a noção de conjunto como um conceito primitivo, ou seja, como uma noção intuitiva, a partir da qual serão definidas outras noções.

Definição

- Intuitivamente, um conjunto é uma coleção bem definida de objetos, que se designam elementos ou membros do conjunto.
- Se *A* é um conjunto e *x* é um objeto, diz-se que:
 - x pertence a (ou está em) A, e denota-se x ∈ A, se x é um dos elementos de A;
 - x não pertence a (ou não está em) A, e escreve-se x ∉ A, se x não é membro de A.

EXEMPLO

Sejam

- P o conjunto de todos os números inteiros pares;
- S o conjunto de todas as soluções da equação $x^2 9 = 0$.

Tem-se, por exemplo,

$$6 \in P$$
, $-3 \in S$,

$$-3 \notin P$$
, $6 \notin S$.

O seguinte postulado estabelece que um conjunto é determinado pelos seus elementos.

Princípio da extensionalidade

Sejam A e B conjuntos.

- A e B são iguais se e só se têm os mesmos elementos.
- Ou seja, A e B são iguais se e só se um objeto qualquer estar em A equivale a estar em B. Simbolicamente,

$$A = B$$
 se e só se $\forall x \ (x \in A \leftrightarrow x \in B)$.

Decorre do princípio da extensionalidade que, os conjuntos A e B são diferentes (denotando-se $A \neq B$) se e só se um dos conjuntos tem algum elemento que não pertence ao outro.

DEFINIÇÃO

- Cada conjunto A tem atribuído um (e um só) cardinal ou número cardinal, representado por |A| ou #(A), que, intuitivamente, indica o número ou quantidade de elementos do conjunto A.
- Conjuntos A e B têm o mesmo cardinal (ou seja, |A| = |B|) se e só se existe uma aplicação bijetiva de A para B.

EXEMPLO

- **②** Seja $n \in \mathbb{N}_0$. O cardinal de um conjunto A com n elementos é n. Em particular, quando n = 1, A é dito um conjunto singular.
- ② O cardinal do conjunto N dos naturais é denotado por ℵ₀ (lê-se alef-zero). Um conjunto de cardinal ℵ₀ diz-se numerável. Prova-se (exercício) que os conjuntos Z, dos números inteiros, e Q, dos números racionais, são numeráveis. Tem-se portanto que |N| = |Z| = |Q| = ℵ₀.
- **3** O conjunto \mathbb{R} , dos números reais, não é numerável. O cardinal de \mathbb{R} é denotado por \mathfrak{c} e é chamado o cardinal do contínuo.

DEFINIÇÃO (DE UM CONJUNTO POR EXTENSÃO)

Seja A um conjunto.

- Se |A| = 0 (isto é, se A não tem elementos), então representa-se A por {}. Pelo princípio da extensionalidade, existe um único conjunto A nestas condições, que é chamado o conjunto vazio e que é também denotado por ∅.
- ② Se $|A| = n \in \mathbb{N}$ e x_1, x_2, \dots, x_n são os elementos de A, então A pode ser representado por $\{x_1, x_2, \dots, x_n\}$.
- ③ Se $|A| = \aleph_0$ e os membros de A podem ser enumerados de forma inequívoca $x_1, x_2, \ldots, x_k, \ldots$, então A pode ser representado por $\{x_1, x_2, \ldots, x_k, \ldots\}$.

Nos casos acima, diz-se que A está definido (ou descrito, ou dado) em extensão.

É de notar que:

- se um conjunto é definido por extensão, a ordem dos membros é irrelevante;
- existem conjuntos que n\u00e3o podem ser dados em extens\u00e3o (os seus elementos n\u00e3o podem ser listados). Este \u00e9 o caso, por exemplo, do conjunto \u00bc dos n\u00e4meros reais.

EXEMPLO

As expressões abaixo representam conjuntos em extensão

$$\begin{split} &\{2,-1,0,1,3,4\}, \ \, \{\mathsf{jo\~ao},\mathsf{jos\'e},\mathsf{joaquim}\}, \ \, \{0,1,\{1,3,\{3\},2\},\emptyset\}, \\ &\{a,x,2,\mathit{bola},y,\mathit{ab},\pi,\mathit{z}^2+5\}, \ \, \{\mathsf{amarelo},\mathsf{vermelho},\mathsf{branco},\mathsf{azul}\}, \\ &\{1,2,4,7,11,16,22,29,37,46,56,\ldots\}. \end{split}$$

- Os conjuntos
 - A, das soluções da equação $x^2 9 = 0$;
 - B, dos divisores naturais de 60;
 - C, dos naturais menores do que 1000;
 - Z, dos números inteiros;
 - N, dos números naturais;
 - P, dos números inteiros pares;

podem ser descritos em extensão das seguintes formas,

$$A = \{-3,3\},$$
 $B = \{1,2,3,4,5,6,10,12,15,20,30,60\},$ $C = \{1,2,3,\ldots,998,999\},$ $\mathbb{Z} = \{\ldots,-2,-1,0,1,2,\ldots\},$ $\mathbb{N} = \{1,2,3,\ldots\},$ $P = \{\ldots,-4,-2,0,2,4,\ldots\}.$

Exercício

Indique o valor lógico das seguintes proposições:

- (a) $\{1,2,3,4,5\} = \{4,2,1,3,5\};$
- (b) $\{1, \sqrt{2}, 1, \pi\} = \{1, \sqrt{2}, \pi\};$
- (c) $2 \in \{1, \{2\}, 3, 4\};$
- (d) $\{2\} \in \{1, 2, 3, 4\};$
- (e) $\{2\} \in \{1, \{2\}, 3, 4\};$
- (f) $a \in \{b\}$ se e só se a = b;
- (g) $\mathbb{N} = {\mathbb{N}};$
- (h) $|\{\emptyset\}| = 0;$
- (i) $A \neq \{0, 2, 4, ...\}$, onde A é o conjunto dos naturais pares;
- (j) $|\{\ldots,-4,-2,0,2,4,\ldots\}| = \aleph_0$.

RESPOSTA

(a) V; (b) V; (c) F; (d) F; (e) V; (f) V; (g) F; (h) F; (i) V; (j) V.

TMD Cap 3

Definição

Sejam A e B conjuntos.

• Diz-se que A está contido em B ou que A é um subconjunto de B, e escreve-se $A \subseteq B$, se todo o elemento de A é membro de B, ou seja, se

$$\forall_x (x \in A \to x \in B).$$

Se é falso que A ⊆ B, escreve-se A ⊈ B e diz-se que A não está contido em B ou que A não é um subconjunto de B. Note que A ⊈ B se existe algum elemento de A que não está em B, ou seja, se

$$\exists_x (x \in A \land x \notin B).$$

• Se $A \subseteq B$ e $A \neq B$, denota-se $A \subsetneq B$ ou $A \subset B$ e diz-se que A está estritamente contido em B ou que A é um subconjunto próprio de B. Ou seia, $A \subseteq B$ se

$$\forall_x (x \in A \rightarrow x \in B) \land \exists_x (x \in B \land x \notin A).$$

EXEMPLO

Consideremos o conjunto $A = \{a, b, \{1, c\}, 1, 2\}$ e notemos que

- \bullet $x \in A$ se e só se $x = a \lor x = b \lor x = \{1, c\} \lor x = 1 \lor x = 2$
- **◄** $X \subseteq A$ se e só se $\forall_x (x \in X \rightarrow (x = a \lor x = b \lor x = \{1, c\} \lor x = 1 \lor x = 2))$

As afirmações:

- 1 ∈ A,
- \circ $c \notin A$,
- $\{a, b, c, 1, 2\} \not\subseteq A$,
- $\{2,\{1,c\}\}\subseteq A$,
- $A = \{a, 1, b, 2, \{c, 1\}\},\$

As afirmações:

- $\{a,1\} \not\subseteq A$,
- $\{1\} \in A$,
- 2 ⊆ A,
- $\{a, 1, 2, 5\} \subseteq A$,
- $A \subseteq \{a, b, 1, 2\}$,
- $A = \{a, b, 1, \{c\}, 1, 2\},$

são falsas.

são verdadeiras.

TEOREMA

Sejam A, B e C conjuntos. Então,

- \bigcirc $A \subseteq A$;
- ① Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$.

DEMONSTRAÇÃO

Provaremos apenas a primeira e a terceira propriedades.

- Suponhamos, por contradição, que ∅ ⊈ A. Então, existe um elemento de ∅ que não pertence a A. Ora, isto é absurdo pois ∅ não tem elementos. A contradição resultou de termos suposto que ∅ ⊈ A. Logo, ∅ ⊆ A.
- ③ (⇒) Suponhamos que A = B. Então, $\forall_x \ (x \in A \leftrightarrow x \in B)$, o que equivale a $\forall_x \ ((x \in A \rightarrow x \in B) \land (x \in B \rightarrow x \in A))$.

Logo, $A \subseteq B$ e $B \subseteq A$.

(\Leftarrow) Suponhamos que $A \subseteq B$ e $B \subseteq A$. Então, todo o elemento de A está em B e todo o elemento de B está em A. Por outras palavras, A e B têm exatamente os mesmos elementos, ou seja, A = B.

Um conjunto pode ser descrito enunciando uma propriedade característica dos seus elementos e só deles.

DEFINIÇÃO (DE UM CONJUNTO POR COMPREENSÃO)

Seja p(x) um predicado de universo U. O subconjunto A de U formado pelos elementos a de U tais que p(a) é uma proposição verdadeira é denotado por

$$\{a \in U : p(a)\}$$
 ou por $\{a \in U \mid p(a)\}.$

Neste caso, diz-se que A está definido (ou descrito, ou dado) em compreensão.

EXEMPLO

São descritos abaixo alguns conjuntos em compreensão e em extensão.

- $\{x \in \mathbb{N} : x \text{ \'e primo e } x \le 11\} = \{2, 3, 5, 7, 11\}$
- $\{d \in \mathbb{N} : d \text{ \'e divisor de } 28\} = \{d \in \mathbb{N} : \exists_{q \in \mathbb{N}} \ dq = 28\} = \{1, 2, 4, 7, 14, 28\}$
- $\{x \in \mathbb{R} : x^2 2 = 0\} = \{-\sqrt{2}, \sqrt{2}\}\$
- $\{n \in \mathbb{Z} : n \text{ \'e par}\} = \{n \in \mathbb{Z} : \exists_{k \in \mathbb{Z}} \ n = 2k\} = \{2k : k \in \mathbb{Z}\}$ = $\{\dots, -4, -2, 0, 2, 4, \dots\}$

Exercício

Considere os conjuntos

$$P = \{\ldots, -6, -3, 0, 3, 6, \ldots\},$$

$$Q = \{5, 10, 15, 20, 25, 30\},$$

•
$$X = \{-2, -\sqrt{2}, -1, 0, 1, \sqrt{2}, 2, 4\}.$$

- Defina os conjuntos P e Q por compreensão.
- Identifique os conjuntos:

•
$$A = \{x \in \mathbb{R} : x^2 + 1 = 0\},$$

•
$$E = \{x \in X : \sqrt{x} \in X\},$$

•
$$B = \{m \in \mathbb{N} : \exists_{n \in \mathbb{N}} \ mn = 12\},$$

•
$$F = \{x \in X : |x| < 2\},$$

•
$$C = \{a \in \mathbb{Z} : a^2 < 10\},$$

•
$$G = \{x \in X : x^2 \in X\},$$

$$D = \{x \in X : x \in \mathbb{N}\},$$

•
$$H = \{x^2 : x \in X\}.$$

RESPOSTA

1 P = {n ∈
$$\mathbb{Z}$$
 : $\exists_{k \in \mathbb{Z}}$ n = 3k} = {3k : k ∈ \mathbb{Z} },

$$Q = \{n \in \mathbb{N} : (\exists_{k \in \mathbb{N}} \ n = 5k) \land n \leq 30\} = \{5k : k \in \{1, 2, 3, 4, 5, 6\}\}.$$

②
$$A = \emptyset$$
, $B = \{1, 2, 3, 4, 6, 12\}$, $C = \{-3, -2, -1, 0, 1, 2, 3\}$, $D = \{1, 2, 4\}$, $E = \{0, 1, 2, 4\}$, $F = \{-\sqrt{2}, -1, 0, 1, \sqrt{2}\}$, $G = \{-2, -\sqrt{2}, -1, 0, 1, \sqrt{2}, 2\}$, $H = \{0, 1, 2, 4, 16\}$.

TMD Cap 3

Um conjunto pode também ser descrito a partir de outros conjuntos usando operações sobre conjuntos.

Definição

Sejam $A \in B$ subconjuntos de um conjunto X (dito o universo).

- **1 A** \cup **B** = {x ∈ X : x ∈ A \vee x ∈ B} é o conjunto constituído pelos elementos que estão em A ou B ou em ambos, dito a *união* de A com B.
- ② A∩B = {x ∈ X : x ∈ A ∧ x ∈ B} é o conjunto formado pelos elementos que pertencem a ambos os conjuntos A e B, designado a interseção de A com B.
 No caso de A∩B ser o conjunto vazio, A e B dizem-se conjuntos disjuntos.
- A \ B = {x ∈ X : x ∈ A ∧ x ∉ B}, também representado por A − B, é o conjunto formado pelos elementos que pertencem a A e não pertencem a B, chamado o complementar de B em A ou a diferença entre A e B.

 Quando A é o universo X, o conjunto A \ B é X \ B, diz-se o complementar de B e representa-se por B ou B'.

EXEMPLO

1 Sendo $A = \{0, 1, 2, 3\}$ e $B = \{\emptyset, 2, 3, 4, 5\}$ tem-se

$$A \cup B = \{\emptyset, 0, 1, 2, 3, 4, 5\},\$$

 $A \cap B = \{2, 3\},\$
 $A \setminus B = \{0, 1\},\$
 $B \setminus A = \{\emptyset, 4, 5\}.$

② Sejam $C = \{2n : n \in \mathbb{Z}\}$ e $D = \{2n+1 : n \in \mathbb{Z}\}$ e suponhamos que o universo é \mathbb{Z} . Então,

$$C \cup D = \mathbb{Z},$$

$$C \cap D = \emptyset,$$

$$C \setminus D = C,$$

$$D \setminus C = D,$$

$$\overline{C} = \mathbb{Z} \setminus C = D,$$

$$\overline{D} = \mathbb{Z} \setminus D = C.$$

TEOREMA

Sejam A e B conjuntos. Então,

- \bigcirc $A \cap B \subseteq A$ e $A \cap B \subseteq B$;
- \bullet $A \subseteq B$ se e só se $A \cup B = B$;

DEMONSTRAÇÃO

Mostraremos 1 e 3. A prova das restantes propriedades fica como exercício.

1 Mostremos que $A \subseteq A \cup B$. Seja $x \in A$. Então, a proposição $x \in A \lor x \in B$ é verdadeira, donde $x \in A \cup B$. Provou-se assim que

$$\forall_x \ (x \in A \to x \in A \cup B).$$

Portanto, $A \subseteq A \cup B$. A inclusão $B \subseteq A \cup B$ prova-se analogamente.

DEMONSTRAÇÃO (CONTINUAÇÃO)

③ (⇒) Admitamos que $A \subseteq B$ e mostremos que $A \cup B = B$. A inclusão $B \subseteq A \cup B$ resulta imediatamente da propriedade 1. Assim sendo, falta apenas provar a inclusão $A \cup B \subseteq B$.

Seja $x \in A \cup B$. Então, $x \in A$ ou $x \in B$. Tratemos cada um destes casos:

- CASO I) $x \in A$. Por hipótese A é um subconjunto de B. Logo, todo o elemento de A está em B. Portanto, de $x \in A$ resulta que $x \in B$.
- CASO II) $x \in B$. Neste caso, já se tem $x \in B$.

Em ambos os casos $x \in B$. Provou-se assim que

$$\forall_x \ (x \in A \cup B \to x \in B).$$

Logo, $A \cup B \subseteq B$, pelo que $A \cup B = B$.

(\Leftarrow) Suponhamos agora que $A \cup B = B$ e mostremos que $A \subseteq B$.

Seja $x \in A$. Por 1, sabemos que $A \subseteq A \cup B$. Logo, $x \in A \cup B$. Da hipótese $A \cup B = B$, resulta então que $x \in B$. Mostramos desta forma que

$$\forall_x (x \in A \rightarrow x \in B).$$

Logo, $A \subseteq B$.

TEOREMA

Sejam A, B e C subconjuntos de um conjunto X. Então,

②
$$A \cup X = X$$
, $A \cap \emptyset = \emptyset$,(elemento absorvente)

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$
 (distributividade)

Demonstração

Mostremos, por exemplo, que $A \cap X = A$.

- Sabemos já, pela propriedade 2 do teorema da página 17, que $A \cap X \subseteq A$.
- Seja $x \in A$. Dado que $A \subseteq X$, deduz-se que $x \in A$ e $x \in X$. Portanto $x \in A \cap X$. Provou-se deste modo que $A \subseteq A \cap X$.

TMD Cap 3

• Logo, por dupla inclusão, conclui-se que $A \cap X = A$.

Observação

Tendo em conta que a união de conjuntos é associativa, pode-se escrever sem qualquer risco de ambiguidade

$$A \cup B \cup C$$
 em vez de $(A \cup B) \cup C$ e de $A \cup (B \cup C)$.

Mais geralmente, sendo A_1, A_2, \ldots, A_n subconjuntos de um conjunto X, e visto que a interseção de conjuntos também é associativa, pode-se escrever

$$A_1 \cup A_2 \cup \ldots \cup A_n$$

e

$$A_1 \cap A_2 \cap \ldots \cap A_n$$

sem ambiguidade. A união dos conjuntos A_1, A_2, \ldots, A_n é usualmente notada por $\bigcup_{i=1}^n A_i$ e a interseção por $\bigcap_{i=1}^n A_i$. Assim,

$$\bigcup_{i=1}^{n} A_{i} = \left\{ x \in X : x \in A_{1} \lor x \in A_{2} \lor \ldots \lor x \in A_{n} \right\}$$

е

$$\bigcap_{i=1}^n A_i = \{x \in X : x \in A_1 \land x \in A_2 \land \ldots \land x \in A_n\}.$$

Exercício

Seja $X = \{1, 2, 3, \dots, 14, 15\}$ o conjunto dos naturais menores ou iguais a 15. Considere os seguintes subconjuntos de X,

$$A = \{x \in X : x \text{ \'e primo}\},$$

$$B = \{d \in X : d \text{ \'e divisor de 12}\}.$$

- **1** Defina os conjuntos A e B por compreensão.
- Calcule os conjuntos:

$$A \cup B$$
, $A \cap B$, $\overline{A \cup B}$, $\overline{A \cap B}$, \overline{A} , \overline{B} , $\overline{A} \cup \overline{B}$, $\overline{A} \cap \overline{B}$.

TMD Cap 3

3 Compare: i) $\overline{A \cup B}$ com $\overline{A} \cap \overline{B}$; ii) $\overline{A \cap B}$ com $\overline{A} \cup \overline{B}$.

RESPOSTA

$$\begin{array}{ll}
A \cup B = \{1, 2, 3, 4, 5, 6, 7, 11, 12, 13\}, & A \cap B = \{2, 3\}, \\
\overline{A \cup B} = \{8, 9, 10, 14, 15\}, & \overline{A \cap B} = \{1, 4, 5, 6, \dots, 14, 15\}, \\
\overline{A} = \{1, 4, 6, 8, 9, 10, 12, 14, 15\}, & \overline{B} = \{5, 7, 8, 9, 10, 11, 13, 14, 15\}.
\end{array}$$

TEOREMA

Sejam A, B e C subconjuntos de um conjunto X. Então,

- $\overline{A} = A$. (dupla complementação)

Demonstração

Note-se que a propriedade 5 é um caso particular da 4: é o caso C=X. Provaremos apenas 1 e 4, ficando a prova das restantes propriedades como exercício.

- **①** Seja $x \in A \cap \overline{A}$. Então, $x \in A$ e $x \in \overline{A}$, ou seja, $x \in A$ e $x \notin A$, o que é absurdo. Logo $A \cap \overline{A} \subseteq \emptyset$. Como $\emptyset \subseteq A \cap \overline{A}$, conclui-se que $A \cap \overline{A} = \emptyset$.
 - Seja $x \in X$. Então, $x \in A$ ou $x \notin A$, ou seja, $x \in A$ ou $x \in \overline{A}$. Logo $x \in A \cup \overline{A}$. Portanto $X \subseteq A \cup \overline{A}$. Dado que $A \cup \overline{A} \subseteq X$, pois $A \subseteq X$, conclui-se que $A \cup \overline{A} = X$.

TMD Cap 3

Demonstração (continuação)

$$x \in C \setminus (A \cup B) \quad \text{sse} \quad x \in C \land x \notin A \cup B$$

$$\text{sse} \quad x \in C \land \neg (x \in A \cup B)$$

$$\text{sse} \quad x \in C \land \neg (x \in A \lor x \in B)$$

$$\text{sse} \quad x \in C \land \neg (x \in A) \land \neg (x \in B)$$

$$\text{sse} \quad x \in C \land x \notin A \land x \notin B$$

$$\text{sse} \quad (x \in C \land x \notin A) \land (x \in C \land x \notin B)$$

$$\text{sse} \quad x \in C \setminus A \land x \in C \setminus B$$

$$\text{sse} \quad x \in (C \setminus A) \cap (C \setminus B).$$

Daí resulta que $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$.

A segunda lei de De Morgan, isto é, a igualdade

$$C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B),$$

pode ser provada de modo análogo.

Apresenta-se agora uma nova operação sobre conjuntos.

DEFINIÇÃO

Seja A um conjunto. O conjunto

$$\mathcal{P}(A) = \{X : X \subseteq A\},\$$

de todos os subconjuntos de A, é chamado o *conjunto das partes* (ou *conjunto potência*) de A.

EXEMPLOS

- ② Se $A = \{1, \{2\}\}$, então $\mathcal{P}(A) = \{\emptyset, \{1\}, \{\{2\}\}, A\}$.
- **③** Seja $\mathbb{P} = \{n \in \mathbb{N} : n \text{ \'e primo}\}$. Então $\mathbb{P} \in \mathcal{P}(\mathbb{N})$ pois $\mathbb{P} \subseteq \mathbb{N}$.

Exercício

Determine: i) $\mathcal{P}(\emptyset)$; ii) $\mathcal{P}(A)$ para $A = \{1, 2, \{1\}\}$.

Resposta

i)
$$\mathcal{P}(\emptyset) = \{\emptyset\};$$
 ii) $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{\{1\}\}, \{1, 2\}, \{1, \{1\}\}, \{2, \{1\}\}\}, A\}.$

TEOREMA

Sejam A e B conjuntos. Então,

- ② $A \subseteq B$ se e só se $\mathcal{P}(A) \subseteq \mathcal{P}(B)$;
- **3** Se A é finito e |A| = n, então $|\mathcal{P}(A)| = 2^n$.

DEMONSTRAÇÃO

- **①** Tem-se $\emptyset \subseteq A$ e $A \subseteq A$ (ver pag. 12). Logo, \emptyset e A são elementos de $\mathcal{P}(A)$.
- ② (⇒) Suponhamos que $A \subseteq B$. Pretende-se mostrar que $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, ou seja, que $\forall X \ (X \in \mathcal{P}(A) \to X \in \mathcal{P}(B))$.

Seja $X \in \mathcal{P}(A)$. Então, $X \subseteq A$. Desta inclusão e da hipótese $A \subseteq B$, deduz-se que $X \subseteq B$. Logo $X \in \mathcal{P}(B)$. Conclui-se assim que $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

- (⇐) Suponhamos que $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. Por 1, sabemos que $A \in \mathcal{P}(A)$. Logo $A \in \mathcal{P}(B)$ e, portanto, $A \subseteq B$.
- 3 Exercício. [Sugestão: prove esta propriedade por indução nos naturais.]

Dados objetos a e b, o conjunto $\{a, b\}$ é igual a $\{b, a\}$ porque a ordem pela qual os elementos são listados é irrelevante. O conceito de par ordenado é utilizado quando importa considerar os objetos numa certa ordem.

DEFINIÇÃO

Um par ordenado é um par (a, b) de objetos a e b apresentados nessa ordem, dizendo-se que

- a é a sua primeira componente (ou coordenada),
- b é a sua segunda componente (ou coordenada).

OBSERVAÇÃO

- Na definição (axiomática) de Kuratowski, o par ordenado (a, b) é definido como sendo o conjunto $\{\{a\}, \{a, b\}\}$.
- Pares ordenados (a, b) e (c, d) são iguais se têm as mesmas primeiras componentes e as mesmas segundas componentes, ou seja,

$$(a,b) = (c,d)$$
 se e só se $a = c$ e $b = d$.

- Se $a \neq b$, então $(a, b) \neq (b, a)$. Por exemplo, $(1, 2) \neq (2, 1)$.
- Um par ordenado pode ter componentes iguais, tal como (1, 1).

Os pares ordenados permitem formar novos conjuntos a partir de conjuntos dados.

Definição

Sejam A e B conjuntos. O conjunto

$$A \times B = \{(a, b) : a \in A \land b \in B\},\$$

de todos os pares ordenados (a, b) tais que $a \in A$ e $b \in B$, é chamado o *produto cartesiano* (ou *direto*) de A por B.

EXEMPLOS

1 Para
$$A = \{1, a\}$$
 e $B = \{1, 2, b\}$, tem-se

$$A \times A = \{(1,1), (1,a), (a,1), (a,a)\}$$

$$A \times B = \{(1,1), (1,2), (1,b), (a,1), (a,2), (a,b)\}$$

$$B \times A = \{(1,1), (1,a), (2,1), (2,a), (b,1), (b,a)\}$$

$$B \times B = \{(1,1), (1,2), (1,b), (2,1), (2,2), (2,b), (b,1), (b,2), (b,b)\}.$$

Note-se que $A \times B \neq B \times A$.

② Se
$$C = \{2n : n \in \mathbb{N}\}\ e\ D = \{n^2 : n \in \mathbb{N}\},\ C \times D = \{(2n, m^2) : n, m \in \mathbb{N}\}.$$

Exercício

Sejam $A = \{1, 2, 3, 4\}$ e $B = \{V, F\}$.

- Oetermine:
 - (a) $A \times B \in |A \times B|$;
 - (b) $B \times B$;
 - (c) $\emptyset \times A$.
- ② Indique o valor lógico das seguintes proposições:
 - (a) $|A \times A| = 16$;
 - (b) $A \times A \subseteq \mathbb{N} \times \mathbb{N}$;
 - (c) $(V,6) \in \mathbb{N} \times B$.

RESPOSTA

① (a) $A \times B = \{(1, V), (2, V), (3, V), (4, V), (1, F), (2, F), (3, F), (4, F)\}$ e $|A \times B| = 8$;

TMD Cap 3

- (b) $B \times B = \{(V, V), (V, F), (F, V), (F, F)\};$
- (c) $\emptyset \times A = \emptyset$.
- ② (a) V; (b) V; (c) F.

TEOREMA

Sejam A, B, X e Y conjuntos. Então,

- 2 Se $A \subseteq X$ e $B \subseteq Y$, então $A \times B \subseteq X \times Y$;
- **3** Se $\emptyset \neq A \times B \subseteq X \times Y$, então $A \subseteq X$ e $B \subseteq Y$;

DEMONSTRAÇÃO

Provaremos 2 e 4. A prova das restantes propriedades fica como exercício.

② Suponhamos que $A \subseteq X$ e $B \subseteq Y$. Pretendemos mostrar que $A \times B \subseteq X \times Y$. Seja $(a,b) \in A \times B$. Então, por definição de produto cartesiano, $a \in A$ e $b \in B$. (continua)

Demonstração (continuação)

Por hipótese, todo o elemento de A está em X e todo o elemento de B está em Y. Logo, $a \in X$ e $b \in Y$ e, portanto, $(a,b) \in X \times Y$.

Provou-se assim que $A \times B \subseteq X \times Y$.

• Mostremos que $A \times (X \cup Y) = (A \times X) \cup (A \times Y)$. Para tal usaremos, em particular, a distributividade da conjunção em relação à disjunção.

Dado um qualquer par ordenado (a, b), tem-se

$$(a,b) \in A \times (X \cup Y) \quad \text{sse} \quad a \in A \land b \in X \cup Y$$

$$\text{sse} \quad a \in A \land (b \in X \lor b \in Y)$$

$$\text{sse} \quad (a \in A \land b \in X) \lor (a \in A \land b \in Y)$$

$$\text{sse} \quad (a,b) \in A \times X \lor (a,b) \in A \times Y$$

$$\text{sse} \quad (a,b) \in (A \times X) \cup (A \times Y).$$

Isto mostra que $A \times (X \cup Y) = (A \times X) \cup (A \times Y)$.

A prova de $(X \cup Y) \times A = (X \times A) \cup (Y \times A)$ é feita de forma simétrica. \Box

A noção de produto cartesiano é generalizada da seguinte forma.

Definição

O produto cartesiano de $n \ge 2$ conjuntos A_1, A_2, \dots, A_n é o conjunto

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) : a_1 \in A_1 \wedge a_2 \in A_2 \wedge \ldots \wedge a_n \in A_n\}.$$

de todos os n-uplos, ou n-tuplos, $(a_1, a_2, ..., a_n)$ tais que, para todo o i, a i-ésima componente a_i é um elemento de A_i .

Quando $A_1 = A_2 = ... = A_n = A$, escreve-se A^n em alternativa a $A \times A \times ... \times A$.

Observação

- Um 3-uplo (a, b, c) é chamado um triplo ordenado.
- Tuplos $(a_1, a_2, ..., a_n)$ e $(b_1, b_2, ..., b_n)$ são iguais se têm as mesmas i-ésimas componentes para todo o i, ou seja,

$$(a_1, a_2, \dots, a_n) = (b_1, b_2, \dots, b_n)$$
 se e só se $\forall_{i \in \{1, 2, \dots, n\}} \ a_i = b_i$.

EXEMPLO

Para
$$A = \{1, 2\}$$
, $B = \{b\}$ e $C = \{1, 3, 8\}$, tem-se

$$A \times B \times C = \{(1, b, 1), (1, b, 3), (1, b, 8), (2, b, 1), (2, b, 3), (2, b, 8)\}$$

$$A^{3} = \{(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1), (2, 2, 2)\}$$

$$B^{7} = \{(b, b, b, b, b, b, b)\}$$

$$B^{4} \times C = \{(b, b, b, b, 1), (b, b, b, b, 3), (b, b, b, b, 8)\}.$$

TEOREMA

Seja $n \in \mathbb{N} \setminus \{1\}$.

• Se A_1, A_2, \ldots, A_n são conjuntos finitos, então

$$|A_1 \times A_2 \times \ldots \times A_n| = |A_1| \times |A_2| \times \ldots \times |A_n|.$$

TMD Cap 3

2 Se A é um conjunto finito, então $|A^n| = |A|^n$.

DEFINIÇÃO

Um conjunto cujos elementos são conjuntos é chamado uma *família de conjuntos*.

EXEMPLOS

São famílias de conjuntos:

- $\mathcal{P}(A)$, o conjunto das partes de um conjunto A;
- $\{\{0,2,4,6,8\},\{1,2,3,4\},\{4,7\},\emptyset\};$
- $\{\mathbb{Z}^-,\{0\},\mathbb{Z}^+\}.$

A definição seguinte generaliza as noções de união e interseção de conjuntos, já estudadas.

Definição

Seja $\mathcal F$ uma família não vazia de conjuntos.

$$\bigcup \mathcal{F} = \{x : \exists_{F \in \mathcal{F}} \ x \in F\}$$

formado pelos objetos que pertencem a pelo menos um dos membros de ${\mathcal F}.$

2 A interseção da família F é o conjunto

$$\bigcap \mathcal{F} = \{ x : \forall_{F \in \mathcal{F}} \ x \in F \}$$

formado pelos objetos que pertencem a todos os membros de \mathcal{F} .

EXEMPLOS

② Para
$$\mathfrak{F} = \{\{1, x, y, z\}, \{1, 2, 3, z\}, \{a, 1\}\}$$
, tem-se

$$\bigcup \mathcal{F} = \{1, x, y, z\} \cup \{1, 2, 3, z\} \cup \{a, 1\} = \{x, y, z, 1, 2, 3, a\},$$
$$\bigcap \mathcal{F} = \{1, x, y, z\} \cap \{1, 2, 3, z\} \cap \{a, 1\} = \{1\}.$$

Exercício

Calcule a união e a interseção de cada uma das seguintes famílias de conjuntos:

- (a) $A = \{\mathbb{Z}^-, \{0\}, \mathbb{Z}^+\};$
- (b) $\mathcal{B} = \{\{\emptyset, 0, \{1\}, 2, \{3\}, 4\}, \{\emptyset, 1, 2, 3, \{4\}\}, \{\emptyset, 2, 4\}\};$
- (c) $\mathfrak{C} = \{I_n : n \in \mathbb{N}_0\}$, onde, para cada $n \in \mathbb{N}_0$,

$$I_n = \{x \in \mathbb{R} : -n \le x \le n\} = [-n, n].$$

RESPOSTA

- (a) $\bigcup A = \mathbb{Z}^- \cup \{0\} \cup \mathbb{Z}^+ = \mathbb{Z}$, $\bigcap A = \mathbb{Z}^- \cap \{0\} \cap \mathbb{Z}^+ = \emptyset$;
- (b) $\bigcup \mathcal{B} = \{\emptyset, 0, \{1\}, 2, \{3\}, 4\} \cup \{\emptyset, 1, 2, 3, \{4\}\} \cup \{\emptyset, 2, 4\}$ = $\{\emptyset, \{1\}, \{3\}, \{4\}, 0, 1, 2, 3, 4\}$.
- (c) $\bigcup \mathcal{C} = \bigcup_{n \in \mathbb{N}_0} I_n = \bigcup_{n \in \mathbb{N}_0} [-n, n] = \mathbb{R},$ $\bigcap \mathcal{C} = \bigcap_{n \in \mathbb{N}_0} I_n = \bigcap_{n \in \mathbb{N}_0} [-n, n] = \{0\}.$

DEFINIÇÃO

Seja $\mathcal F$ uma família de conjuntos. Diz-se que $\mathcal F$ é constituída por *conjuntos disjuntos dois a dois* se a interseção de dois quaisquer elementos distintos de $\mathcal F$ é o conjunto vazio, ou seja,

$$\forall_{X,Y\in\mathcal{F}} (X\neq Y\to X\cap Y=\emptyset).$$

EXEMPLOS

- A família {{0,2,4,6},{8},{1,3,5},{7,9,11,13},{10,12}} é constituída por conjuntos disjuntos dois a dois.
- ② Os conjuntos da família $\mathcal{P}_{fin}(\mathbb{N})$ não são disjuntos dois a dois.

Exercício

Diga se as seguintes famílias de conjuntos são constituídas por conjuntos disjuntos dois a dois:

- (a) $A = \{\mathbb{Z}^-, \{0\}, \mathbb{Z}^+\};$
- (b) $\mathcal{B} = \{\{0,1,2,3\},\{5,8\},\{3,6,9\}\}.$

Definição

Seja A um conjunto. Uma partição de A é um conjunto Π de subconjuntos não vazios de A, disjuntos dois a dois e cuja união é A. Ou seja, uma família de conjuntos Π é uma partição de A quando:

- (i) $\forall_{X \in \Pi} (X \subseteq A \land X \neq \emptyset)$;
- (ii) $\forall_{X,Y\in\Pi} (X\neq Y\to X\cap Y=\emptyset)$;
- (iii) $\bigcup \Pi = A$.

Os elementos de Π são chamados *blocos da partição* Π .

EXEMPLOS

- **1** O conjunto $\{\mathbb{Z}^-, \{0\}, \mathbb{Z}^+\}$ é uma partição de \mathbb{Z} .
- ② Seja $A = \{1, 3, 5, 7, 9\}$. Então
 - $\bullet \ \Pi_1 = \{\{1,5\}, \{3,9\}, \{7\}\}$
 - $\Pi_2 = \{\{1,3,5\},\{7,9\}\}$

• $\Pi_5 = \{\{1, 5, 7, 9\}, \{3, 5\}\}$

• $\Pi_4 = \{\{1,3,5\},\{9\}\}$

- $\bullet \ \Pi_3 = \{\{1\}, \{3\}, \{5\}, \{7\}, \{9\}\}$
- $\Pi_6 = \{\{1,3\},\{5,7\},\emptyset,\{9\}\}$

são partições de A;

não são partições de A.

Exercício

Indique uma partição de cada um dos seguintes conjuntos:

- (a) $A = \{a, b, c, d, e, f, g, h\};$
- (b) $B = \{1\}.$
- ② Indique todas as partições do conjunto $C = \{1, 2\}$.
- $\textbf{ 0} \ \, \text{Diga se as seguintes famílias de conjuntos são partições do conjunto} \,\, \mathbb{Z} : \\$
 - (a) $\Pi_1 = \{\{-n, n\} : n \in \mathbb{N}_0\};$
 - (b) $\Pi_2 = \{ \{3n : n \in \mathbb{Z} \}, \{2n : n \in \mathbb{Z} \} \};$
 - (c) $\Pi_3 = \{ \{3n : n \in \mathbb{Z}\}, \{3n+1 : n \in \mathbb{Z}\}, \{3n+2 : n \in \mathbb{Z}\} \}.$

RESPOSTA

- **1** (a) $\{\{a,b,c\},\{d,e,f,g,h\}\};$ (b) $\{\{1\}\}.$
- ② {{1},{2}} e {{1,2}}.
- (a) Sim; (b) Não; (c) Sim.