

Algorithms and Data Structures 2 CS 1501

Fall 2022

Sherif Khattab

ksm73@pitt.edu

Announcements

- Lab 0 is due this Friday (not graded)
- Recitations start next week
- Homework 1 will be assigned this Friday
- JDB Example will be available on Canvas
- Draft slides and handouts available on Canvas

Recall from previous lecture

runtime of an algorithm =

And after we group statements with the same frequency into blocks

$$=\sum_{all\ blocks} Cost * frequency$$

```
frequency: f_0 = 1 cost: t_0
```

```
freq: f_1 = n cost: t_1
```

```
frequency: f_0 = 1 cost: t_0
```

freq: $f_1 = n$ cost: t_1

$$f_2 = (n-1) + (n-2) + (n-3) + ... + 1$$

= $\frac{n-1}{2}(n-1+1) = \frac{n^2}{2} - \frac{n}{2}$
cost = t_2

frequency: $f_0 = 1$ cost: t_0

freq: $f_1 = n$ cost: t_1

$$f_3 = C(n,3) = n_{C_3} = \frac{n!}{(n-3)!3!}$$

$$= \frac{n(n-1)(n-2)(n-3)!}{(n-3)!6} = \frac{n(n-1)(n-2)}{6} = \frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3}$$
cost: t₃

```
frequency: f_0 = 1 cost: t_0
```

```
freq: f_1 = n cost: t_1
```

```
f_4 = x (the number of triples that sum to 0 in the input array) 0 \le x \le C(n,3) cost: t_4
```

frequency: $f_0 = 1$ cost: t_0

freq: $f_1 = n$ cost: t_1

$$f_2 = (n-1) + (n-2) + (n-3) + \dots + 1$$

$$= \frac{n-1}{2}(n-1+1) = \frac{n^2}{2} - \frac{n}{2}$$

$$cost = t_2$$

 $f_4 = x$ (the number of triples that sum to 0 in the input array) $0 \le x \le C(n, 3)$ cost: t_4

$$f_3 = C(n,3) = n_{C_3} = \frac{n!}{(n-3)!3!}$$

$$= \frac{n(n-1)(n-2)(n-3)!}{(n-3)!6} = \frac{n(n-1)(n-2)}{6} = \frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3}$$
cost: t_3

Grand total =
$$\sum_{i=0}^{4} f_i * t_i$$

$$= \frac{t_3}{6}n^3 + (\frac{t_2}{2} - \frac{t_3}{2})n^2 + (\frac{t_3}{3} - \frac{t_2}{2} + t_1)n + t_0 + t_4x$$

CS 1501 – Algorithm Implementation – Sherif Khattab

$$\frac{t_3}{6}n^3 + (\frac{t_2}{2} - \frac{t_3}{2})n^2 + (\frac{t_3}{3} - \frac{t_2}{2} + t_1)n + t_0 + t_4x$$

- Remember that $0 \le x \le C(n, 3)$
- If x = 0 → best-case runtime

$$\frac{t_3}{6}n^3 + (\frac{t_2}{2} - \frac{t_3}{2})n^2 + (\frac{t_3}{3} - \frac{t_2}{2} + t_1)n + t_0$$

• If $x = C(n, 3) \rightarrow \text{worst-case runtime}$

$$\frac{t_3}{6}n^3 + (\frac{t_2}{2} - \frac{t_3}{2})n^2 + (\frac{t_3}{3} - \frac{t_2}{2} + t_1)n + t_0 + t_4(\frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3})$$

Algorithm Analysis

- You see that this analysis can get ugly at times
- Do we really need to consider all these terms and constants?
 - The answer is No!

Enter Asymptotic Analysis

Algorithm Analysis

- Determine resource usage as a function of input size
 - e.g., *n*, in 3-sum, the length of the array size, is the input size
 - We already did that for ThreeSum
- Measure asymptotic performance
 - Performance as input size increases to infinity

Asymptotic performance

Focus on the <u>order of growth</u> of functions, not on exact values

Asymptotic performance

Order of growth captures how fast the function value increases when the input increases; in particular, for a function *T(n)*

- When *n* doubles, does *T*(*n*) essentially
 - stay constant
 - increase by a constant
 - double as well
 - quadruple (x4)
 - increase eightfold (x8)
 - ...?
- When n increases by 1, does T(n) essentially
 - double
 - increase n-fold (xn)
 - · ...?

Asymptotic performance

We don't care as much about the exact value of T(n)

Common orders of growth in Algorithm Analysis

- Constant 1
- Logarithmic log n
- Linear n
- Linearithmic n log n
- Quadratic n²
- Cubic n³
- Exponential 2ⁿ
- Factorial n!

Side note

What does log_2n really mean? log_2n is the number of times n can be divided by 2 before until we reach 1 or less

Side note

Why do we use T(n) instead of f(x)?

T stands for Time, or running time
Using n signifies that the input is a positive integer

Order of growth of runtime functions

- For runtime functions, is it better to have a function with a high order of growth or a low order of growth?
 - low order of growth means when input size increases, the value of the runtime won't increase by much
 - This means a fast algorithm
 - So, we want a low order of growth function for runtime

Quick algorithm analysis

- How can we determine the order of growth of a function?
 - Ignore lower-order terms
 - Ignore multiplicative constants
- Example: polynomial functions
 - $T(n) = 5n^3 + 53n + 7$
 - Terms: $5n^3$, 53n, 7
 - $5n^3$ is of order 3, 53 n is of order 1
 - what is the order of the term 7?

Example

$$5n^3 + 53n + 7 \rightarrow n^3$$

- Warning: this is a simplification
 - It works for most of the algorithms in this course
- In some cases, it is difficult to determine the highest-order term
- In some cases, the constant factors play a significant role
 - e.g., small or medum-size input and large constant factors

But ...

- Can we say $5n^3 + 53n + 7 = n^3$?
- No! We need a mathematical notation
- $5n^3 + 53n + 7 = O(n^3)$
 - Read as Big O of n^3
- It means the order of growth of $5n^3 + 53n + 7$ is no more than (\leq) the order of growth of n^3

Notations

- May also see:
 - $f(x) \in O(g(x))$ or
 - f(x) = O(g(x))
- used to mean that f(x) is O(g(x))
- Same for the other functions

Notations

The Big O Family

- O roughly means ≤
 - Big O
- o roughly means <
 - Little O or O-micron
- Ω roughly means ≥
 - Big Omega
- ω roughly means >
 - Little Omega
- Oroughly means =
 - Theta
- Relationships are between orders of growth, not between exact values!

Asymptotic analysis approximations

- How can we determine the order of growth of a function?
 - Ignore lower-order terms
 - Ignore multiplicative constants
- Would it matter if the frequency of a statement is n or n+1?
 - No!
- Would it matter if it is n or 2n?
 - No!
- Would it matter if it is 2ⁿ or 2²ⁿ?
 - Yes! Why?

A couple useful approximations under Asymptotic Analysis

Let's go back to our ThreeSum Algorithm

We know that

$$T(n) = \frac{t_3}{6}n^3 + (\frac{t_2}{2} - \frac{t_3}{2})n^2 + (\frac{t_3}{3} - \frac{t_2}{2} + t_1)n + t_0 + t_4x$$

What is the order of growth of T(n)?

•
$$T(n) = O(n^3)$$

Let's go back to our ThreeSum Algorithm

- Assuming that definition...
 - Is ThreeSum O(n⁴)?
 - What about O(n⁵)?
 - What about O(3ⁿ)??
- If all of these are true, why was O(n³) what we
 - jumped to to start?

Another mathematical notation

Tilde approximation (~)

- Same as Theta but keeps constant factors
- Two functions are Tilde of each other if they have the same order of growth and the same constant of the largest term

$$5n = \left(\frac{5,000,000,000}{1000}n\right)$$

$$= \left(\frac{5,000,000,000}{1000}n\right)$$

A faster algorithm for 3-sum

- What if we sorted the array first?
 - For each pair of numbers, binary search for the third one that will make a sum of zero
 - e.g., a[i] = 10, a[j] = -7, binary search for -3
 - Be careful not to use the same number twice
- What is the runtime?
 - Still have two for-loops, but we replace the third with a binary search
 - What if the input data isn't sorted?
 - What about the sorting time?

The 3-sum problem: can we do better?

- There is an $O(n^2)$ algorithm
 - Idea 1: use hashing to find the third number
 - Idea 2: for each number, find the missing pair of numbers in linear time
- There is also an O(n log n) algorithm under special cases
- Unsolved problem: Is there a general $O(n^{2-\varepsilon})$ algorithm for some $\varepsilon > 0$?

Bonus Alert!

- Modify ThreeSum to work correctly with duplicates in the input
- Write an O(n²) solution to the 3-sum problem

Send your solution using Piazza in a private message to all instructors labeled with the "bonus" tag

Another problem: Boggle

- Given a 4x4 board of letters, find all words with at least 3 adjacent letters
- Adjacent letters are horizontally, vertically, or diagonally neighboring
- Any cube in the board can only be used once per word
 - but can be used fo multiple words

Recursing through Boggle letters

- Have 16 different options to start from
- Have 8 different options from each cube
 - From B[i][j]:
 - B[i-1][j-1]
 - B[i-1][j]
 - B[i-1][j+1]
 - B[i][j-1]
 - B[i][j+1]
 - B[i+1][j-1]
 - B[i+1][j]
 - B[i+1][j+1]

Boggle Game: Decisions and Choices

- For the first decision (which cube to start from), how many possible choices do we have?
- Starting from a cube, the next decision to make is which adjacent cube to move to.
 - There are at most 8 possible choices to choose from
- There is a decision to make at each cube that we go through
 - A maximum of 15 decisions
 - Some decisions may be trivial if the number of choices is
 0

Search Space

First decision

Are all 16 choices valid?

For next decisions, are all 8 chices valid?

- Can't go past the edge of the board
- Can't reuse cells
- Each letter added must lead to the prefix of an actual word
 - check the dictionary as we add each letter, if there is no word with the currently constructed string as a <u>prefix</u>, don't go further down this way
 - Practically, this can be used for huge savings
 - This is called pruning!

Then what?

- How can we code up such exhaustive search with pruning?
- The algorithm is called backtracking.

```
void traverse(current decision, partial solution) {
 for each choice at the current decision {
    if choice is valid {
      apply choice to partial solution
      if partial solution a valid solution
        report partial solution as a final solution
      if more decisions possible
        traverse(next decision, updated partial solution)
       undo changes to partial solution
```

Application to Boggle Game

void traverse(current decision,

Which cube are we at:

row number (0..3) and column number (0..3)

```
void traverse(...., partial solution) {
   ....
}
```

The letters that we have seen so far

```
void traverse(....) {
  for each choice at the current decision {
    ...
  }
}
```

We have 8 choices (except for the first decision, which has 16 choices)

- From B[i][j]:
 - B[i-1][j-1]
 - B[i-1][j]
 - B[i-1][j+1]
 - B[i][j-1]
 - B[i][j+1]
 - B[i+1][j-1]
 - B[i+1][j]
 - B[i+1][j+1]

```
void traverse(current decision, partial solution) {
  for each choice at the current decision {
    if choice is valid {
```

Invalid choices send us outside the board, reuse a cube, result in a non-prefix

```
void traverse(current decision, partial solution) {
  for each choice at the current decision {
    if choice is valid {
      apply choice to partial solution
```

Append the letter to the partial solution and mark the cube as used

. . .

if partial solution a valid solution report partial solution as a final solution

. . .

If the partial solution is a 3+ letter word in the dictionary

. . .

if more decisions possible

. . .

A decision is possible if partial solution is a prefix of a word in the dictionary

. . .

traverse(next decision, updated partial solution)

. . .

a recursive call.

next decision is the next cube down the direction that we chose

. . .

undo changes to partial solution

. . .

Remove the last letter that we appended from partial solution and mark cube as unused

```
void traverse(current decision, partial solution) {
  for each choice at the current decision {
    if choice is valid {
      apply choice to partial solution
      if partial solution a valid solution
        report partial solution as a final solution
      if more decisions possible
        traverse(next decision, updated partial solution)
       undo changes to partial solution
```

You will implement this algorithm in Lab 1 next week!

Search Tree Traversal Order in Backtracking

- Each node (circle) corresponds to a recursive call
- The runtime cost per node is the cost of all statements except the recursive call

