

ANÁLISIS DEL MOVIMIENTO DEL GÖMBÖC

Paula Uribe, David García

paula2220670@correo.uis.edu.co david2220664@correo.uis.edu.co

Introducción

El Gömböc es un objeto 3D con un único punto de equilibrio estable y uno inestable[cite: 1, 6]. Su comportamiento lo hace ideal para estudiar la influencia de la geometría y la distribución de masa en la estabilidad[cite: 2, 7]. Este proyecto busca caracterizar estos efectos combinando modelos matemáticos del potencial gravitacional con experimentos usando réplicas impresas en 3D[cite: 3, 8, 9].

Obietivos

- General: Caracterizar la influencia de la geometría en la estabilidad del Gömböc, comparando modelos y experimentos[cite: 17].
- Determinar numéricamente el potencial gravitacional[cite: 18].
- Diseñar un modelo de simulación[cite: 19].
- Comparar potencial y equilibrios teóricos vs. experimentales[cite: 20].

Metodología

Se parte de un archivo STL para calcular el tensor de inercia y el potencial gravitacional (h) en coordenadas esféricas. Se realizan experimentos con un Gömböc impreso en 3D. Se graban caídas (4K, 60 FPS) y se analizan con Tracker

Figure 1: Montaje experimental[cite: 55].

Superficie de altura

Figure 2: Superficie de altura (potencial) h[cite: 44].

Resultados

Ensayos desde 5° , 8° , 10° y 14° [cite: 56]. Se observó convergencia a 90° con oscilaciones amortiguadas[cite: 57, 66]. Errores ; 3° (ver tabla)[cite: 61, 63]. El

tiempo de estabilización aumenta con el ángulo inicial[cite: 69]. [h]

Figure 3: Gráficas de $\vartheta(t)$ vs. tiempo (s)[cite: 60].

[h]

Table 1: Errores en ángulo final respecto a 90°[cite: 62].

Ángulo (°)	$\overline{\theta_f}$ (°)	$\overline{\theta_{teo}}$ (°)	Error (°)
5	89.978	90.000	0.022
8	87.075	90.000	2.925
10	89.252	90.000	0.748
14	92.385	90.000	2.385

Conclusiones

- Múltiples equilibrios por fallos de impresión[cite: 81, 82].
- El objeto no es estrictamente mono-monostático[cite: 86, 87].
- Procedimiento experimental replicable[cite: 83].
- Imperfecciones/fricción explican desvíos[cite: 75, 76, 77].
- Futuro: Mejorar impresión y dinámica[cite: 84, 90].