

Current amplifier (photodiode amp)

Notes:

- •Photodiode is ≈ constant current source
- • C_{FB} is **necessary** for stability: use 1pF \bigcirc (Ignore for this analysis)
- Photodiode has full shot noise

Re-draw to include all noise sources

Design 3 (2)

 $(R_{FB} \text{ thermal})$

Re-draw to include <u>all</u> noise sources

Design 3 (2)

Re-draw to include all noise sources

Design 3 (2)

Hence total noise RTI is total current noise through $R_{FB} + v_n / R_{FB}$ Added as uncorrelated noise sources:

$$i_n(RTI) = \sqrt{\frac{v_n^2}{R_{FB}^2} + 2qi_{PD} + i_n^2 + \frac{4k_BT}{R_{FB}}}$$

As the shot noise is the fundamental limit for the measurement of photodiode current, for low noise we require that

Noise Analysis: Summary

Convert detailed circuit to noisy amplifier model

Uncorrelated noise sources add as sum of squares $v_{tot} = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}$

Largest source will dominate: $\sqrt{2^2 + 1^2} = 2.23$ -> Intuition!

Voltage = noise spectral density · √bandwidth

Noise Figure = $20 \cdot \log_{10} \frac{v_{ni}}{v_{Th}}$

