2448513_Deshmukh_Pratik_Bhushanrao_ML Lab-1

Name: Deshmukh Pratik Bhushanrao Roll no.: 2448513 Subject: Machine Learning Subject code: MAI171

```
In [ ]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [ ]: df = pd.read_csv("Churn_Modelling - Churn_Modelling.csv")
    df.head()
```

Out[]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
	0	1	15634602	Hargrave	619	France	Female	42	2
	1	2	15647311	Hill	608	Spain	Female	41	1
	2	3	15619304	Onio	502	France	Female	42	8
	3	4	15701354	Boni	699	France	Female	39	1
	4	5	15737888	Mitchell	850	Spain	Female	43	2
	4								•

In []: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

```
# Column
                  Non-Null Count Dtype
---
                   -----
    RowNumber
0
                  10000 non-null int64
1
  CustomerId
                 10000 non-null int64
2 Surname
                  10000 non-null object
                  10000 non-null int64
3 CreditScore
   Geography
                  10000 non-null object
5
  Gender
                 10000 non-null object
                 10000 non-null int64
6
   Age
                 10000 non-null int64
    Tenure
                 10000 non-null float64
    Balance
9 NumOfProducts 10000 non-null int64
                  10000 non-null int64
10 HasCrCard
11 IsActiveMember
                  10000 non-null int64
12 EstimatedSalary 10000 non-null float64
                   10000 non-null int64
13 Exited
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
```

```
In [ ]: df.describe()
```

Out[]:			Cust	omerId	Credi	tScore	Ag	e Tenure	Bal
	count	10000.00000	1.0000	00e+04	10000.0	000000	10000.00000	0 10000.000000	10000.00
	mean	5000.50000	1.5690	94e+07	650.	528800	38.92180	5.012800	76485.88
	std	2886.89568	7.1936	19e+04	96.6	553299	10.48780	6 2.892174	62397.40
	min	1.00000	1.5565	70e+07	350.000000		18.00000	0.000000	0.00
	25%	2500.75000	1.5628	53e+07	584.0	000000	32.00000	3.000000	0.00
	50%	5000.50000	1.5690	74e+07	652.0	000000	37.00000	5.000000	97198.54
	75%	7500.25000	1.5753	23e+07	718.0	000000	44.00000	7.000000	127644.24
	max	nax 10000.00000 1.581569e+07		69e+07	850.0	000000	92.00000	0 10.000000	250898.09
	4								•
In []:	df.dro		er', 'Cu	stomerId	l', 'Sı	urname']	, axis=1,	inplace= True)	
Out[]:	Cre	ditScore Ge	ography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCa
	0	619	France	Female	42	2	0.00	1	
	1	608	Spain	Female	41	1	83807.86	1	
	2	502	France	Female	42	8	159660.80	3	
	3	699	France	Female	39	1	0.00	2	
	4	850	Spain	Female	43	2	125510.82	1	
	4								•

EDA

```
In [ ]: # Let's explore our target variable first
    plt.pie(df.Exited.value_counts(), autopct='%1.2f%%', labels=['Not Exited: 0', 'E
    plt.show()
```


In []: plt.pie(df.Geography.value_counts(), autopct='%1.1f%%', labels=['France', 'Spain
 plt.show()


```
In [ ]: # Let's explore Unique values in Gender
    plt.pie(df.Gender.value_counts(), autopct='%1.1f%%', labels=['Male', 'Female'])
    plt.show()
```


In []:	df	.head()							
Out[]:		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCa
	0	619	France	Female	42	2	0.00	1	
	1	608	Spain	Female	41	1	83807.86	1	
	2	502	France	Female	42	8	159660.80	3	
	3	699	France	Female	39	1	0.00	2	
	4	850	Spain	Female	43	2	125510.82	1	
	4								•
In []:	sn	s.displot([d	f.Balance],	kde= Tru	e)				

Out[]: <seaborn.axisgrid.FacetGrid at 0x1fdaaea3910>

It looks like most of the accounts has zero balance

```
In [ ]: sns.displot([df.EstimatedSalary], kde=True)
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x1fdaaf61190>

Let's find relationship between Balance and Estimated salary

It look like people having no or less salary have less or zero balance

```
# Let's find relationship between zero balance and churn
In [ ]: df_zerobalance_count = df[df.Balance == 0].shape[0]
        total count = df.shape[0]
        percentage = (df_zerobalance_count/total_count)*100
        print(f" The total of {df[df.Balance == 0].shape[0]} customers have a balance of
        The total of 3617 customers have a balance of 0 which is 36.17% of our entire da
       taset
In [ ]: # Let's find relationship between zero Balance and age
        zero_balance_age = df[df.Balance == 0].Age.value_counts()
        zero_balance_age.describe()
                  67.000000
Out[]: count
                  53.985075
        mean
        std
                  58.541488
        min
                  1.000000
        25%
                   8.000000
        50%
                  25.000000
        75%
                  87.000000
                 178.000000
        max
        Name: count, dtype: float64
In [ ]: # Let's find relationship between zero Balance and geography
        zero balance geography = df[df.Balance == 0].Geography.value counts()
        zero_balance_geography
Out[]: Geography
        France
                  2418
        Spain
                  1199
        Name: count, dtype: int64
            Observations:
In [ ]: print(f"-There are people from France and spain who has zero balance in there ac
       -There are people from France and spain who has zero balance in there account
       -In total 36.17% people who have zero balance in their account and left the bank
In [ ]: plt.figure(figsize=(10,10))
        sns.heatmap(df.drop(['Geography', 'Gender'], axis=True).corr(), annot=True)
Out[ ]: <Axes: >
```


Data Cleaning

Dropping unnecessory columns of data

```
relationship = pd.crosstab(df['Geography'], df['Exited'])
In [ ]:
        print(relationship)
        relationship.plot(kind='bar', stacked=False, legend=True)
        plt.show()
       Exited
                     0
                           1
       Geography
       France
                  4204
                         810
                  1695
                         814
       Germany
       Spain
                  2064
                        413
```


Out[]: np.float64(3.8303176053541544e-66)

Since there's no relationship between our target variable with Geography, we can safely remove Geography column

```
In [ ]: df.drop(['Geography'], axis=1, inplace=True)
    df.head()
```

ut[]:		CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActive N
	0	619	Female	42	2	0.00	1	1	
	1	608	Female	41	1	83807.86	1	0	
2	2	502	Female	42	8	159660.80	3	1	
3	3	699	Female	39	1	0.00	2	0	
4	4	850	Female	43	2	125510.82	1	1	
	4								•
		ationship = ationship.p	•		_		- ·		

print(relationship)

Exited 0 1 Gender Female 3404 1139 Male 4559 898


```
In [ ]: # Performing chi-squared test
    chi2_contingency(pd.crosstab(df.Gender, df.Exited))[1]
```

Out[]: np.float64(2.2482100097131755e-26)

Since there's no relationship between our target variable with Gender, we can safely remove Gender column

```
In [ ]: df.drop(['Gender'], axis=1, inplace=True)
    df.head()
```

Out[]:		CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	Is Active Member
	0	619	42	2	0.00	1	1	1
	1	608	41	1	83807.86	1	0	1
	2	502	42	8	159660.80	3	1	0
	3	699	39	1	0.00	2	0	0
	4	850	43	2	125510.82	1	1	1
	4							•

In []: df.NumOfProducts.value_counts()

Out[]: NumOfProducts

1 5084

2 4590

3 266

4 60

Name: count, dtype: int64

The people who uses the total of 4 services is very less so its better for us to remove it

In []: df = df[df.NumOfProducts < 3]
 df.head()</pre>

Out[]:		CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	Is Active Member
	0	619	42	2	0.00	1	1	1
	1	608	41	1	83807.86	1	0	1
	3	699	39	1	0.00	2	0	0
	4	850	43	2	125510.82	1	1	1
	5	645	44	8	113755.78	2	1	0
	4							•

In []: df.reset_index(drop=True, inplace=True)

Working with outliers

In []: sns.boxplot(df.Age)

Let's remove ourliers from Age column first

```
In [ ]: q1_age = df.Age.quantile(.25)
    median_age = df.Age.median()
    q3_age = df.Age.quantile(.75)
# finding IQR
    upperLimit_age= q3_age + 1.5*(q3_age - q1_age)
    lowerLimit_age = q1_age - 1.5*(q3_age - q1_age)

print(f"The upper limit of the age: {upperLimit_age} and the lower limit of the
```

The upper limit of the age: 62.0 and the lower limit of the age: 14.0

```
In [ ]: df = df[df.Age < upperLimit_age]
sns.boxplot(df.Age)</pre>
```

```
Out[]: <Axes: ylabel='Age'>
```


Let's remove ourliers from CreditScore column

```
In [ ]: q1_CreditScore = df.CreditScore.quantile(.25)
    median_CreditScore = df.CreditScore.median()
    q3_CreditScore = df.CreditScore.quantile(.75)
    # finding IQR
    upperLimit_CreditScore = q3_CreditScore + 1.5*(q3_CreditScore - q1_CreditScore)
    lowerLimit_CreditScore = q1_CreditScore - 1.5*(q3_CreditScore - q1_CreditScore)
    print(f"The upper limit of the CreditScore: {upperLimit_CreditScore} and the low
    The upper limit of the CreditScore: 918.0 and the lower limit of the CreditScore: 382.0
In [ ]: df = df[df.CreditScore > lowerLimit CreditScore]
```

sns.boxplot(df.CreditScore)

Out[]: <Axes: ylabel='CreditScore'>

Feature Scaling

```
In [ ]: from sklearn.preprocessing import MinMaxScaler

    sc = MinMaxScaler()
    data_scaled = pd.DataFrame(sc.fit_transform(df.drop(['HasCrCard', 'IsActiveMembe data_scaled.head()
```

Out[]:		CreditScore	Age	Tenure	Balance	NumOfProducts	EstimatedSalary
	0	0.505353	0.558140	0.2	0.000000	0.0	0.506735
	1	0.481799	0.534884	0.1	0.351561	0.0	0.562709
	2	0.676660	0.488372	0.1	0.000000	1.0	0.469120
	3	1.000000	0.581395	0.2	0.526499	0.0	0.395400
	4	0.561028	0.604651	0.8	0.477188	1.0	0.748797

```
In [ ]: df.reset_index(drop=True, inplace=True)
```

Out[]:	С	reditScore	Age	e Tenure	Ва	alance I	NumOfProducts	Estima	atedSalary	HasCrCar
	0	0.505353	0.558140	0.2	0.0	000000	0.0		0.506735	
	1	0.481799	0.534884	1 0.1	0.3	51561	0.0		0.562709	
	2	0.676660	0.488372	2 0.1	0.0	000000	1.0		0.469120	
	3	1.000000	0.581395	5 0.2	0.5	26499	0.0		0.395400	
	4	0.561028	0.60465	0.8	0.4	77188	1.0		0.748797	
	4									>
In []:	df									
Out[]:		CreditSco	ore	Age Ter	ure	Balanc	e NumOfProdu	cts Es	timatedSalaı	y HasCr
	0	0.5053	353 0.55	3140	0.2	0.00000	0	0.0	0.50673	35
	1	0.4817	799 0.53	4884	0.1	0.35156	1	0.0	0.56270	9
	2	0.6766	660 0.48	8372	0.1	0.00000	0	1.0	0.46912	20
	3	1.0000	000 0.58	1395	0.2	0.52649	9	0.0	0.39540	00
	4	0.5610	0.60	4651	8.0	0.47718	8	1.0	0.74879)7
	•••			•••				•••		
	9263	0.8308	335 0.48	8372	0.5	0.00000	0	1.0	0.48134	11
	9264	0.2847	797 0.39	5349	1.0	0.24065	7	0.0	0.50849	00
	9265	0.6980	073 0.41	8605	0.7	0.00000	0	0.0	0.21039	00
	9266	0.8329	976 0.55	8140	0.3	0.31493	0	1.0	0.46442	29
	9267	0.8758	303 0.23	2558	0.4	0.54592	9	0.0	0.19091	4
	9268	rows × 9 co	olumns							
	4									>

Feature Engineering

In []: df.describe()

Out[]:		CreditScore	Age	Tenure	Balance	NumOfProducts	EstimatedS
	count	9268.000000	9268.000000	9268.000000	9268.000000	9268.000000	9268.00
	mean	0.573279	0.453313	0.501554	0.320777	0.476155	0.50
	std	0.205919	0.199735	0.288785	0.261847	0.499458	0.28
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.00
	25%	0.430407	0.302326	0.300000	0.000000	0.000000	0.25
	50%	0.576017	0.441860	0.500000	0.407224	0.000000	0.50
	75%	0.715203	0.581395	0.700000	0.535348	1.000000	0.74
	max	1.000000	1.000000	1.000000	1.000000	1.000000	1.00
	4						>

From the above observation we can say the columns and "NumOfProducts" need feature engineering

```
In [ ]: df = pd.get_dummies(df, columns=['NumOfProducts'], dtype=int)
    df.reset_index(drop=True, inplace=True)
    df.head()
```

Out[]:		CreditScore	Age	Tenure	Balance	EstimatedSalary	HasCrCard	IsActiveMembe
	0	0.505353	0.558140	0.2	0.000000	0.506735	1	
	1	0.481799	0.534884	0.1	0.351561	0.562709	0	
	2	0.676660	0.488372	0.1	0.000000	0.469120	0	
	3	1.000000	0.581395	0.2	0.526499	0.395400	1	
	4	0.561028	0.604651	0.8	0.477188	0.748797	1	
	4							>

In []: df = df.rename(columns={'NumOfProducts_0.0':'NumOfProducts_1', 'NumOfProducts_0.
df.head()

Out[]:		CreditScore	Age	Tenure	Balance	EstimatedSalary	HasCrCard	IsActiveMembe
	0	0.505353	0.558140	0.2	0.000000	0.506735	1	
	1	0.481799	0.534884	0.1	0.351561	0.562709	0	
	2	0.676660	0.488372	0.1	0.000000	0.469120	0	
	3	1.000000	0.581395	0.2	0.526499	0.395400	1	
	4	0.561028	0.604651	0.8	0.477188	0.748797	1	
	4							+

Out[]: (9268, 10)

In []: df.shape

Handling Data Imbalance

```
df.Exited.value_counts()
In [ ]:
Out[]: Exited
               7604
               1664
         Name: count, dtype: int64
         df.columns
In [ ]:
         Index(['CreditScore', 'Age', 'Tenure', 'Balance', 'EstimatedSalary',
                 'HasCrCard', 'IsActiveMember', 'Exited', 'NumOfProducts_1',
                 'NumOfProducts_1.0'],
                dtype='object')
         It looks like our dataset is extreamly imbalanced. So let's make it balanced by using
         SMOTE method
In [ ]: from imblearn.over sampling import SMOTE
         sm = SMOTE()
         x, y = sm.fit_resample(df.drop(['Exited'], axis=1), df.Exited)
         df_balanced = pd.DataFrame(x, columns= ['CreditScore', 'Age', 'Tenure', 'Balance'
         df_balanced['Exited'] = y
        df_balanced.Exited.value_counts()
In [ ]:
Out[]: Exited
         1
              7604
              7604
         Name: count, dtype: int64
         df.corr()
In [ ]:
Out[ ]:
                              CreditScore
                                                Age
                                                        Tenure
                                                                  Balance
                                                                           EstimatedSalary
                                                                                            HasC
                 CreditScore
                                 1.000000
                                          -0.011430
                                                      0.000881
                                                                 0.006623
                                                                                  0.003393
                                                                                             -0.0
                                -0.011430
                                            1.000000
                                                     -0.014453
                                                                 0.041543
                                                                                 -0.005612
                                                                                             -0.0
                        Age
                      Tenure
                                 0.000881
                                           -0.014453
                                                      1.000000
                                                                -0.017085
                                                                                  0.010656
                                                                                              0.0
                     Balance
                                 0.006623
                                            0.041543
                                                     -0.017085
                                                                 1.000000
                                                                                  0.009381
                                                                                             -0.0
             EstimatedSalary
                                 0.003393
                                           -0.005612
                                                      0.010656
                                                                 0.009381
                                                                                  1.000000
                                                                                             -0.0
                  HasCrCard
                                           -0.011923
                                                      0.020608
                                                                                              1.0
                                -0.003122
                                                                -0.014401
                                                                                 -0.013159
             IsActiveMember
                                 0.021880
                                                     -0.030989
                                                                -0.005491
                                                                                 -0.010217
                                                                                             -0.0
                                            0.016354
                                                                                             -0.0
                      Exited
                                -0.015295
                                            0.346740
                                                     -0.015465
                                                                 0.113509
                                                                                  0.004935
           NumOfProducts_1
                                                                                 -0.006127
                                                                                             -0.0
                                -0.011977
                                            0.108527
                                                     -0.018063
                                                                 0.373621
         NumOfProducts_1.0
                                 0.011977 -0.108527
                                                      0.018063
                                                                -0.373621
                                                                                  0.006127
                                                                                              0.0
```

Dimensionality reduction

```
sample = df_balanced.sample(10)
In [ ]:
         from sklearn.decomposition import PCA
         pca = PCA(n_components=9)
         principalComponents = pca.fit_transform(sample.drop(['Exited'], axis=1))
         principalDf = pd.DataFrame(data = principalComponents
                        , columns = ['PCA 1', 'PCA 2', 'PCA 3', 'PCA 4', 'PCA 5', 'PCA 6',
          principalDf
Out[]:
                PCA 1
                           PCA 2
                                      PCA<sub>3</sub>
                                                  PCA 4
                                                             PCA 5
                                                                        PCA 6
                                                                                   PCA 7
                                                                                              PCA8
             -0.539927
                        -0.303986
                                    0.475473
                                               0.212445
                                                          0.318477
                                                                     0.101628
                                                                                 0.022936
                                                                                            0.013850
             -0.777634
                        -0.399645
                                   -0.827473
                                               0.261080
                                                          0.052585
                                                                     -0.080196
                                                                                -0.000487
                                                                                            0.000644
              1.014358
          2
                         0.438309
                                    0.062581
                                               0.176591
                                                          -0.000060
                                                                     -0.188576
                                                                                -0.130689
                                                                                           -0.010095
              0.990014
                         0.413844
                                   -0.147753
                                               0.176727
                                                          -0.139885
                                                                     0.152756
                                                                                 0.016335
                                                                                            0.027022
          3
                        -0.201908
             -0.613833
                                    0.188803
                                              -0.018175
                                                         -0.104891
                                                                                -0.198324
                                                                                           -0.012200
                                                                     0.164459
             -0.473228
                         0.739126
                                   -0.249897
                                              -0.291764
                                                          -0.090969
                                                                     0.162761
                                                                                 0.063001
                                                                                           -0.010469
             -0.389880
                         0.694851
                                    0.166942
                                              -0.040130
                                                          0.302605
                                                                     -0.132112
                                                                                 0.066751
                                                                                           -0.006150
                                                                                            0.014266
             -0.753053
                        -0.153093
                                    0.323491
                                              -0.114353
                                                          -0.405941
                                                                     -0.196474
                                                                                 0.038869
                        -0.641217
                                   -0.154737
                                              -0.514379
                                                          0.194685
                                                                     -0.038968
                                                                                -0.028315
                                                                                            0.008152
          9
                        -0.586282
                                                                                           -0.025020
              0.760028
                                    0.162570
                                               0.151958
                                                         -0.126605
                                                                     0.054721
                                                                                 0.149922
In [ ]:
```