Physics 8.07: Electromagnetism II Prof. Alan Guth

November 23, 2019

PROBLEM SET 8 SOLUTIONS

PROBLEM 1: THE MAGNETIC FIELD OF A SPINNING, UNIFORMLY CHARGED SPHERE (25 points)

Griffiths Problem 5.60 (p. 264).

(a) A uniformly charged solid sphere of radius R carries a total charge Q, hence it has charge density $\rho = Q/(\frac{4}{3}\pi R^3)$. To find the magnetic moment of sphere we can divide the sphere into infinitesimal charges. Using spherical polar coordinates, we can take $dq = \rho d\tau = \rho r^2 dr \sin\theta d\theta d\phi$, with the contribution to the dipole moment given by $d\vec{m} = \frac{1}{2}\vec{r} \times \vec{J} d\tau$. One method would be to write down the volume integral directly, using $\vec{J} = \rho \vec{v} = \rho \vec{\omega} \times \vec{r}$. We can, however, integrate over ϕ before we start, so we are breaking the sphere into rings, where a given ring is indicated by its coordinates r and θ , and its size dr and $d\theta$. The volume of each ring is $d\tau = 2\pi r^2 dr \sin\theta d\theta$. The current dI in the ring is given by dq/T, where $T = 2\pi/\omega$ is the period, so

$$dI = \frac{dq}{T} = \frac{\omega \rho d\tau}{2\pi} = \omega \rho r^2 dr \sin \theta d\theta . \qquad (1.1)$$

The magnetic dipole moment of each ring is then given by

$$d\vec{\boldsymbol{m}}_{\rm ring} = \frac{1}{2} \int_{\rm ring} \vec{\boldsymbol{r}} \times \vec{\boldsymbol{J}} \, d\tau = \frac{1}{2} dI \int_{\rm ring} \vec{\boldsymbol{r}} \times d\vec{\boldsymbol{\ell}} = dI (\pi r^2 \sin^2 \theta) \, \hat{\boldsymbol{z}} \,. \tag{1.2}$$

The total magnetic dipole moment is then

$$egin{aligned} ec{m{m}} &= \int \omega
ho r^2 \sin heta \left(\pi r^2 \sin^2 heta
ight) \mathrm{d}r \, \mathrm{d} heta \, \hat{m{z}} \ &= \pi \omega
ho \int_0^R r^4 \, \mathrm{d}r \int_0^\pi (1 - \cos^2 heta) \sin heta \, \mathrm{d} heta \, \hat{m{z}} \ &= \pi \omega rac{Q}{rac{3}{3}\pi R^3} rac{4}{5} = \left[egin{aligned} rac{1}{5} Q \omega R^2 \, \hat{m{z}} \end{array}
ight. \end{aligned}$$

(b) Griffiths Eq. (5.93) gives the average field inside the sphere as

$$\vec{B}_{\text{avg}} = \frac{\mu_0}{4\pi} \frac{2\vec{m}}{R^3} = \begin{vmatrix} \mu_0 & 2 & Q\omega \\ 4\pi & 5 & R \end{pmatrix} \hat{z} .$$
 (1.4)

(c) The vector potential in dipole approximation is,

$$\vec{A} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{|\vec{m}| \sin \theta}{r^2} \hat{\phi} = \begin{vmatrix} \mu_0 & Q\omega R^2 \sin \theta \\ 4\pi & 5 \end{vmatrix} \hat{\sigma}.$$
 (1.4)

(d) To calculate the exact vector potential outside the sphere, we split the sphere into shells. Let r' be the integration variable and the radius of a shell, moreover let dr' denote the thickness of the shell. Then we can use the results of Example 5.11 (pp. 245-47) in Griffiths, if we replace σ by its value for this case. The value of σ is found equating charges

$$\sigma(4\pi r'^2) = \frac{Q}{\frac{4}{3}\pi R^3} (4\pi r'^2) dr' \tag{1.5}$$

and therefore we must replace

$$\sigma
ightarrow rac{Q}{rac{4}{3}\pi R^3} dr'$$
 .

Making this replacement in Griffiths' Eq. (5.69) we now have

$$dA_{\phi}(r,\theta,\phi) = \frac{Q}{\frac{4}{3}\pi R^3} dr' \frac{\mu_0 \omega}{3} \sin \theta \begin{cases} r'r & \text{if } r < r' \\ \frac{r'^4}{r^2} & \text{if } r > r' \end{cases} . \tag{1}$$

Note that the R of Griffiths has been replaced by r', which is the radius of the integration shell. For r > R the quantity r is always bigger than the integration variable, so we use the second form in Eq. (1.6),

$$A_{\phi}(r, heta,\phi) = rac{Q}{rac{4}{3}\pi R^3} rac{\mu_0 \omega}{3} rac{\sin heta}{r^2} \int_0^R r'^4 dr' = rac{\mu_0}{4\pi} rac{Q\omega R^2}{5} rac{\sin heta}{r^2} = \left[egin{array}{c} \mu_0 \ rac{|ec{m}| \sin heta}{4\pi} rac{ec{m}}{r^2} \ \end{array}
ight].$$

This shows that the vector potential outside the sphere is exactly that of a magnetic dipole with magnetic moment equal to that calculated before.

(1.3)

(e) We first calculate the vector potential inside the sphere at some radius r < R. This time the integration will require two pieces, a piece where 0 < r' < r and the other where r < r' < R, thus using the two options in Eq. (1.6):</p>
(1.6)
(1.7)
(1.7)
(1.7)
(1.7)
(1.8)
(1.8)

$$A_{\phi}(r, heta,\phi) = rac{\mu_0}{4\pi} rac{Q\omega}{R^3} \sin heta \left[\int_0^r dr' rac{r'^4}{r^2} + \int_r^R dr' r r'
ight] \,.$$
 (1.8)

Doing the integrals one finds

$$A_{\phi}(r,\theta,\phi) = \frac{\mu_0}{4\pi} \frac{Q\omega}{R^3} \sin \theta \left[-\frac{3r^3}{10} + \frac{rR^2}{2} \right]. \tag{1.9}$$

To find the magnetic field we use

$$\vec{B} = \vec{\nabla} \times \vec{A} = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_{\phi}) \hat{r} - \frac{1}{r} \frac{\partial}{\partial r} (r A_{\phi}) \hat{\theta}.$$
 (1.10)

The calculation, using Eqs. (1.9) and (1.10), gives

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{Q\omega}{R^3} \left[-\frac{3}{5} r^2 \cos\theta \,\hat{r} + \frac{6}{5} r^2 \sin\theta \,\hat{\theta} + R^2 \hat{z} \right] \,, \tag{1.11}$$

where we used the relation $\hat{r}\cos\theta - \hat{\theta}\sin\theta = \hat{z}$. This is the exact magnetic field inside the sphere, it is not constant! To find its average, we note, by symmetry, that the average is going to be in the z direction. We can therefore replace $\hat{r} \to \cos\theta \hat{z}$ and $\hat{\theta} \to -\sin\theta \hat{z}$. Doing this in Eq. (1.11) we have that

$$m{ec{B}}_{
m avg} = rac{\mu_0}{4\pi}rac{Q\omega}{R^3} \left[-rac{3}{5}\langle r^2\cos^2 heta
angle - rac{6}{5}\langle r^2\sin^2 heta
angle + R^2
ight] m{\hat{z}} \,, \qquad \qquad (1.12)$$

where we have used $\langle \cdots \rangle$ to denote averages over a sphere.

$$egin{align} \langle r^2 \cos^2 heta
angle &= rac{1}{rac{4\pi}{3} R^3} \int_{
m sphere} r^2 \cos^2 heta \, r^2 \sin heta \, {
m d} r \, {
m d}$$

and similarly $\langle r^2 \sin^2 \theta \rangle = \frac{2}{5} R^2$. (One might note that r and θ are uncorrelated, so $\langle r^2 \cos^2 \theta \rangle = \langle r^2 \rangle \langle \cos^2 \theta \rangle$, with $\langle r^2 \rangle = \frac{3}{5} R^2$, $\langle \sin^2 \theta \rangle = \frac{2}{3}$, and $\langle \cos^2 \theta \rangle = \frac{1}{3}$.) Thus we

$$\vec{B}_{\text{avg}} = \frac{\mu_0}{4\pi} \frac{Q\omega}{R^3} \left[-\frac{3}{5} \left(\frac{3R^2}{5} \right) \left(\frac{1}{3} \right) - \frac{6}{5} \left(\frac{3R^2}{5} \right) \left(\frac{2}{3} \right) + R^2 \right] \hat{z}$$

$$= \left[\frac{\mu_0}{4\pi} \frac{Q\omega}{R} \frac{2}{5} \hat{z} , \right]$$
(1.13)

which confirms the result in part (b)

PROBLEM 2: THE COMPLETE MAGNETIC FIELD OF A MAGNETIC DIPOLE: $(10\ points)$

This problem explores the identity

$$\partial_i \partial_j \left(\frac{1}{r} \right) = -\partial_i \left(\frac{\hat{r}_j}{r^2} \right) = -\partial_i \left(\frac{x_j}{r^3} \right) = \frac{3\hat{r}_i \hat{r}_j - \delta_{ij}}{r^3} - \frac{4\pi}{3} \, \delta_{ij} \, \delta^3(\vec{r}) . \quad (2.1)$$

Starting from the vector potential of a magnetic dipole,

$$ec{m{A}}_{
m dip}(ec{m{r}}) = rac{\mu_0}{4\pi}rac{ec{m{m}} imes\hat{m{r}}}{r^2}\,,$$

(2.2)

we find using index notation that

$$B_{\mathrm{dip},i} = \epsilon_{ijk} \partial_j A_k = \frac{\mu_0}{4\pi} \epsilon_{ijk} \partial_j \left(\frac{\vec{\boldsymbol{m}} \times \hat{\boldsymbol{r}}}{r^2} \right)_k = \frac{\mu_0}{4\pi} \epsilon_{ijk} \partial_j \left(\frac{\epsilon_{k\ell m} m \ell^{\hat{\boldsymbol{r}}_m}}{r^2} \right)$$
$$= \frac{\mu_0 m \ell}{4\pi} \epsilon_{kij} \epsilon_{k\ell m} \partial_j \left(\frac{\hat{\boldsymbol{r}}_m}{r^2} \right) . \tag{2.3}$$

$$\epsilon_{kij}\epsilon_{k\ell m}=\delta_{i\ell}\delta_{jm}-\delta_{im}\delta_{j\ell}$$
 as the identity (2.1) to give

(2.4)

as well as the identity (2.1) to give

$$B_{\mathrm{dip},i} = \frac{\mu_0 m_\ell}{4\pi} \left(\delta_{i\ell} \delta_{jm} - \delta_{im} \delta_{j\ell} \right) \left[\frac{\delta_{jm} - 3\hat{\boldsymbol{r}}_j \hat{\boldsymbol{r}}_m}{r^3} + \frac{4\pi}{3} \delta_{jm} \delta^3(\vec{\boldsymbol{r}}) \right]$$

$$= \frac{\mu_0}{4\pi} \left(m_i \delta_{jm} - m_j \delta_{im} \right) \left[\frac{\delta_{jm} - 3\hat{\boldsymbol{r}}_j \hat{\boldsymbol{r}}_m}{r^3} + \frac{4\pi}{3} \delta_{jm} \delta^3(\vec{\boldsymbol{r}}) \right]. \tag{2.5}$$

Before we continue, note that

$$\delta_{jm}rac{\delta_{jm}-3\hat{m r}_j\hat{m r}_m}{r^3}=rac{3-3}{r^3}=0\;.$$

(2.6)

Thus,

$$B_{{
m dip},i} = rac{\mu_0}{4\pi} \left[-rac{m_i - 3(m_j \hat{m{r}}_j) \hat{m{r}}_i}{r^3} + rac{4\pi}{3} \left(3m_i - m_i
ight) \delta^3(m{r})
ight] \ rac{\mu_0}{r^3} \left[3m_i \hat{m{r}}_i + \frac{2\mu_0}{r^3} \left(3m_i - m_i
ight) \delta^3(m{r})
ight]$$

(2.7)

$$=rac{\mu_0}{4\pi}rac{3(m_j\hat{m{r}}_j)\hat{m{r}}_i-m_i}{r^3}+rac{2\mu_0}{3}m_i\delta^3(m{ec{r}})\;.$$

In vector notation, this becomes

$$\vec{\boldsymbol{B}}_{\mathrm{dip}}(\vec{\boldsymbol{r}}) = \frac{\mu_0}{4\pi} \frac{3(\vec{\boldsymbol{m}} \cdot \hat{\boldsymbol{r}})\hat{\boldsymbol{r}} - \vec{\boldsymbol{m}}}{r^3} + \frac{2\mu_0}{3}\vec{\boldsymbol{m}} \,\,\delta^3(\vec{\boldsymbol{r}}) \,\,. \tag{2.8}$$

PROBLEM 3: SQUARE CURRENT LOOP ON AXIS: BIOT-SAVART AND THE MAGNETIC DIPOLE APPROXIMATION (15 points)

Griffiths Problem 5.36 (p. 255).

The magnetic field that a finite current carrying line segment produces at a point P at a distance s from the line was found in Problem 2 in of this problem set as

a point P at a distance s from the line was
$$\theta$$
 in of this problem set as
$$B = \frac{\mu_0 I}{4\pi s} (\sin \theta_2 - \sin \theta_1) , \qquad (3.1)$$

Q

where θ_1 and θ_2 are the angles, as seen from P, of the endpoints

of the line, measured from the line through P which intersects the segment at a right angle, as shown in the diagram at the right. The direction is perpendicular to the plane including the line segment and the point P.

For this case s is the distance from the point (0,0,z) to the center of one side of the square, $s=\sqrt{z^2+(w/2)^2}$, and $\sin\theta_2=-\sin\theta_1=\frac{(w/2)}{\sqrt{z^2+(w/\sqrt{2})^2}}$, as shown in the diagram at the right. (Note that $w/\sqrt{2}$ is the distance from the center of the square to one corner.) The magnetic field from one side of the square then has magnitude

 $B = rac{\mu_0 I}{4\pi} rac{w}{\sqrt{\left(z^2 + rac{w^2}{2}
ight)\left(z^2 + rac{w^2}{4}
ight)}} \ .$ (3.2)

For all four sides, we will pick the vertical components by multiplying by $\sin \phi = \frac{(w/2)}{\sqrt{z^2 + (w/2)^2}}$. The contribution of all four sides is then

$$ec{m{B}} = rac{\mu_0 I}{2\pi} rac{w^2}{\left(z^2 + rac{w^2}{4}
ight)\sqrt{z^2 + rac{w^2}{2}}} \hat{m{z}} \; .$$
 (3.3)

(A useful check is to evaluate this answer for z=0, comparing with the answer to Problem 2(a) of this problem set: $B_{\text{tot}} = \frac{\sqrt{2}\mu_0 I}{\pi R}$. Using R=w/2, we can see that they agree.) For $z\gg w$, $\vec{B} = \mu_0 I w^2 + \mu_0 m$

$$\vec{B} \approx rac{\mu_0 I w^2}{2\pi z^3} \hat{z} = rac{\mu_0 m}{2\pi z^3} \hat{z},$$
 (3.4)

where $\vec{m} = m\hat{z}$, and $m = Iw^2$ is the dipole moment of a square loop. The magnetic field of an equivalent dipole on the z-axis is given by

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{3(\vec{m} \cdot \hat{z})\hat{z} - \vec{m}}{z^3} = \frac{\mu_0 \vec{m}}{2\pi z^3} , \qquad (3.5)$$

So they agree

PROBLEM 4: A BAR MAGNET IN THE SHAPE OF A RIGHT CIRCU-LAR CYLINDER (20 points)

(a) We can find the bound currents and then the magnetic fields. The permanent magnetization \vec{M}_0 results in $\vec{K}_b = \vec{M}_0 \times \hat{n} = M_0 \hat{\phi}$ and $\vec{J}_b = \vec{\nabla} \times \vec{M}_0 = 0$. We can divide the cylinder into infinitesimal rings of $dI = M_0 dz$, and the contribution for each ring to the magnetic field on the axis at $z = z_0$ can be found using the Biot-Savart law, as given by Griffiths' Eq. (5.41) (p. 227):

The total magnetic field at $z=z_0$ is then

$$B_z = \frac{\mu_0 M_0}{2} \int_{-L/2}^{L/2} \frac{a^2}{[a^2 + (z - z_0)^2]^{3/2}} dz . \tag{4.2}$$

The integral can be carried out by the change of variable $z-z_0=a\tan\theta$, and $dz=a\frac{d\theta}{\cos^2\theta}$, giving

$$\int \frac{a^2}{[a^2 + (z - z_0)^2]^{3/2}} dz = \int \frac{a^2 \cos^3 \theta}{a^3} \frac{a d\theta}{\cos^2 \theta} = \int \cos \theta d\theta = \sin \theta . \tag{4.3}$$

Using $\sin \theta = \frac{z-z_0}{\sqrt{(z-z_0)^2+a^2}}$ and making use of the limits of integration,

$$m{\vec{B}} = rac{\mu_0 M_0}{2} \left[rac{L/2 - z_0}{\sqrt{(L/2 - z_0)^2 + a^2}} - rac{-L/2 - z_0}{\sqrt{(L/2 + z_0)^2 + a^2}} \right] \hat{m{z}} \ .$$
 (4.4)

Thus,

$$\vec{B}(z) = \begin{bmatrix} -\frac{\mu_0 M_0}{2} \left[\frac{z - L/2}{\sqrt{(z - L/2)^2 + a^2}} - \frac{z + L/2}{\sqrt{(z + L/2)^2 + a^2}} \right] \hat{z} . \tag{4.5}$$

To calculate $\vec{\boldsymbol{H}}$, we use $\vec{\boldsymbol{H}}(z) = \vec{\boldsymbol{B}}(z)/\mu_0 - \vec{\boldsymbol{M}}_0(z)$, where $\vec{\boldsymbol{M}}_0(z)$ can be written in terms of the step function $\Theta(x)$, where $\Theta(x) = 1$ if x > 0 and $\Theta(x) = 0$ otherwise. Then $\vec{\boldsymbol{M}}_0(z) = M_0 \Theta(L/2 - |z|)\hat{\boldsymbol{z}}$, and

$$ec{m{H}}(z) = -rac{M_0}{2} \left[rac{z-L/2}{\sqrt{(z-L/2)^2 + a^2}} - rac{z+L/2}{\sqrt{(z+L/2)^2 + a^2}} + 2\Theta(L/2 - |z|)
ight] m{\hat{z}} \; .$$

(b) Let $z/a \equiv x$ and $L/a \equiv 2b$, then \vec{B} on the axis becomes

$$B_z(x) = -rac{\mu_0 M_0}{2} \left[rac{x-b}{\sqrt{(x-b)^2+1}} - rac{x+b}{\sqrt{(x+b)^2+1}}
ight] \; , \eqno (4.5)$$

and $m{H}$ becomes

$$H_z(x) = -rac{M_0}{2} \left[rac{x-b}{\sqrt{(x-b)^2+1}} - rac{x+b}{\sqrt{(x+b)^2+1}} + 2\Theta(b-|x|)
ight], \eqno(4.6)$$

For L/a=5, the we can plot $B_z(z)/\mu_0 M_0$ as

and $H_z(z)/M_0$ as

- (c) The bound currents were found in part (a): $\vec{K}_b = \vec{M}_0 \times \hat{n} = M_0 \hat{\phi}$ and $\vec{J}_b = \vec{\nabla} \times \vec{M}_0 = 0$.
- (d) The field far away from the magnet $x\gg b$ is approximately

$$B_{z} = -\frac{\mu_{0} M_{0}}{2} \left[\frac{1}{\sqrt{(1 + \frac{1}{(x-b)^{2}})^{2}}} - \frac{1}{\sqrt{1 + \frac{1}{(x+b)^{2}}}} \right]$$

$$\approx -\frac{\mu_{0} M_{0}}{2} \left[\left(1 - \frac{1}{2(x-b)^{2}} \right) - \left(1 - \frac{1}{2(x+b)^{2}} \right) \right] = \frac{\mu_{0} M_{0}}{4} \left[\frac{1}{(x-b)^{2}} - \frac{1}{(x+b)^{2}} \right]$$

$$\approx \frac{\mu_{0} M_{0} b}{x^{3}} = \frac{\mu_{0} M_{0} L a^{2}}{2z^{3}}. \tag{4.7}$$

The magnetic field of a dipole moment $\vec{m} = m\hat{z}$ for points on the z-axis is

$$\vec{B}_{dip} = \frac{\mu_0}{4\pi} \frac{3(\vec{m} \cdot \hat{z})\hat{z} - \vec{m}}{z^3} = \frac{\mu_0 \vec{m}}{2\pi z^3}.$$
 (4.8)

Comparing Eq. (4.7) and Eq. (4.8) we can get $|\vec{\boldsymbol{n}}| = M_0 L \pi a^2$. We could also find the same result by integrating $dm = M_0 dz (\pi a^2)$, or by multiplying $\vec{\boldsymbol{M}} = M_0 \hat{\boldsymbol{z}}$ by the volume of the cylinder.

PROBLEM 5: CURRENT TRAVELING ON A LONG STRAIGHT WIRE MADE OF A MATERIAL WITH LINEAR MAGNETIZATION (15 points)

Griffiths Problem 6.17 (p. 287).

The current is uniformly distributed with $J_f = I/(\pi a^2)$. We choose a coordinate system so that the wire runs along the z-axis, and we take advantage of the cylindrical symmetry to apply Ampère's law to a circular loop of radius s about the z-axis:

$$\oint ec{m{H}} \cdot dec{m{\ell}} = H_\phi(2\pi s) = I_{f, ext{enc}} \; ,$$
 (5.1)

where $I_{f, \text{enc}} = I(s^2/a^2)$ for s < a, and $I_{f, \text{enc}} = I$ for s > a. Then we find

$$H_{\phi} = \begin{cases} \frac{Is}{2\pi a^2} & \text{if } s < a ,\\ \frac{I}{2\pi s} & \text{if } s > a . \end{cases}$$
 (5.2)

The magnetic field $\vec{B} = \mu \vec{H}$, where $\mu = \mu_0 (1 + \chi_m)$, so

$$B_{\phi} = \begin{cases} \frac{\mu_0 (1 + \chi_m) Is}{2\pi a^2} & \text{if } s < a ,\\ \frac{\mu_0 I}{2\pi s} & \text{if } s > a . \end{cases}$$
 (5.3)

The bound current density is then given by

$$ec{m{J}}_b = ec{m{\nabla}} imes ec{m{M}} = ec{m{\nabla}} imes (\chi_m ec{m{H}}) = \chi_m ec{m{J}}_f \quad \Longrightarrow \quad \left| \quad ec{m{J}}_b = rac{\chi_m I}{\pi a^2} \hat{m{z}} \right|.$$
 (5.4)

The bound surface current density is

$$\vec{\boldsymbol{K}}_b = \vec{\boldsymbol{M}} \times \hat{\boldsymbol{n}} = \chi_m \vec{\boldsymbol{H}} \times \hat{\boldsymbol{n}} \quad \Longrightarrow \quad \left| \quad \vec{\boldsymbol{K}}_b = -\frac{\chi_m I}{2\pi a} \hat{\boldsymbol{z}} \right|$$
 (5.5)

The net bound current flowing is then

$$I_b = J_b(\pi a^2) + K_b(2\pi a) = \chi_m I - \chi_m I = 0 ,$$
 (5.6)

as it must be. The bound current is constructed from current loops, so it cannot give a net flow of current through the wire.

PROBLEM 6: BAR SLIDING ON TWO RAILS IN A UNIFORM MAGNETIC FIELD (20 points)

Griffiths Problem 7.7 (p. 310). This problem is being held over to Problem Set 9, so it is no longer part of Problem Set 8.

PROBLEM 7: VECTOR POTENTIAL FOR A UNIFORM \vec{B} FIELD (10

Griffiths Problem 5.25 (p. 248).

points extra credit)

Let's first check $\vec{\nabla} \cdot \vec{A} = 0$:

$$\vec{\nabla} \cdot \vec{A} = -\frac{1}{2} \vec{\nabla} \cdot (\vec{r} \times \vec{B}),$$

$$= -\frac{1}{2} [\vec{B} \cdot (\vec{\nabla} \times \vec{r}) - \vec{r} \cdot (\vec{\nabla} \times \vec{B})] = 0, \qquad (7.1)$$

where the first term vanishes because the curl of a radial vector field is zero, $(\vec{\nabla} \times \vec{r}) = 0$, and the second term vanishes because the magnetic field \vec{B} is uniform. Then

$$\vec{\nabla} \times \vec{A} = -\frac{1}{2} \vec{\nabla} \times (\vec{r} \times \vec{B})$$

$$= -\frac{1}{2} [(\vec{B} \cdot \vec{\nabla})\vec{r} - (\vec{r} \cdot \vec{\nabla})\vec{B} + \vec{r}(\vec{\nabla} \cdot \vec{B}) - \vec{B}(\vec{\nabla} \cdot \vec{r})] . \tag{7.2}$$

The terms involving the partial derivative of the magnetic field give zero, $(\vec{r} \cdot \vec{\nabla})\vec{B} = 0$, and $\vec{r}(\vec{\nabla} \cdot \vec{B}) = 0$. The first term in Eq. (7.2) is

$$(\vec{B} \cdot \vec{\nabla})\vec{r} = \left(B_x \frac{\partial}{\partial x} + B_y \frac{\partial}{\partial y} + B_z \frac{\partial}{\partial z}\right) (x\hat{e}_x + y\hat{e}_y + z\hat{e}_z)$$

$$= B_x \hat{e}_x + B_y \hat{e}_y + B_z \hat{e}_z = \vec{B}. \tag{7.3}$$

The last term in Eq (7.2) is,

$$\vec{B}(\vec{\nabla} \cdot \vec{r}) = \vec{B} \left(\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} \right) = 3\vec{B} . \tag{7.4}$$

Then we get

$$\vec{\nabla} \times \vec{A} = -\frac{1}{2} (\vec{B} - 3\vec{B}) = \vec{B} . \tag{7.5}$$

Is this result unique? In localized situations, where we can impose the boundary condition that $|\vec{A}| \to \vec{0}$ as $|\vec{\tau}| \to \infty$, the conditions $\vec{\nabla} \times \vec{A} = \vec{B}$ and $\vec{\nabla} \cdot \vec{A}$ have a unique solution. In this case, however, with the \vec{B} field extending to infinity, no such boundary condition is possible, so \vec{A} is not unique. One possible change would be to add any constant vector. Bigger differences are possible, too. If $\vec{B} = B_0 \hat{z}$, then $\vec{A} = B_0 x \hat{y}$ or $\vec{A} = -B_0 y \hat{z}$ both

PROBLEM 8: DONUT-SHAPED MAGNETS ON A VERTICAL ROD (15

Griffiths Problem 6.2 (p. 293).

This problem is being held over to Problem Set 9, so it is no longer part of Problem Set 8.

PROBLEM 9: THE MAGNETIC DIPOLE MOMENT OF A CURRENT LOOP (10 points extra credit)

We start with the definition of a magnetic dipole moment:

$$ec{m{m}} = rac{1}{2} I \int_P ec{m{r}} imes \mathrm{d} ec{m{\ell}} \ .$$

The $i^{ ext{th}}$ component of the dipole moment $ec{m{n}}$ can be written as

$$m_i = rac{1}{2} I \int_P \hat{m{e}}_{m{i}} \cdot (m{ec{r}} imes \mathrm{d}m{ec{\ell}}) \; .$$

Using the property that the triple product is invariant under cyclic permutations, we change this to

$$n_i = rac{1}{2} I \int_P \mathrm{d} ec{m{\ell}} \cdot (\hat{m{e}}_{m{i}} imes ec{m{r}})$$

 $m_i = \frac{1}{2}I\int_P \mathrm{d}\vec{\boldsymbol{\ell}}\cdot(\hat{\boldsymbol{e}}_i\times\vec{\boldsymbol{r}})\ .$ Then we use Stokes' theorem to convert the integral over the loop P to an integral over an arbitrary surface S enclosed by the loop P:

$$m_i = rac{1}{2} I \int_S \mathrm{d} oldsymbol{ec{a}} \cdot oldsymbol{ec{\nabla}} imes (\hat{oldsymbol{e}}_{oldsymbol{i}} imes oldsymbol{ec{r}}) \; .$$

The expression under the integral can be expanded using the rule for the curl of a product of vector fields:

$$ec{m{
abla}} imes(\hat{m{e}}_{m{i}} imesm{ec{r}})=\hat{m{e}}_{m{i}}(ec{m{
abla}}\cdotm{ec{r}})-(\hat{m{e}}_{m{i}}\cdotec{m{
abla}})m{ec{r}}$$
 ,

$$\nabla \cdot \vec{r} = 3$$

$$(\hat{m{e}}_i\cdotec{m{ riangledath}})ec{m{r}}=\partial_iec{m{r}}=\partial_i(r_j\hat{m{e}}_j)=\delta_{ij}\hat{m{e}}_j=\hat{m{e}}_i$$
 .

$$oldsymbol{
abla} imes (\hat{oldsymbol{e}_i} imes oldsymbol{ec{r}}) = 2\hat{oldsymbol{e}_i}$$

 $\vec{\nabla}\times(\hat{\pmb{e}_i}\times\vec{\pmb{r}})=2\hat{\pmb{e}_i}\;,$ and the resulting expression for m_i and $\vec{\pmb{m}}$ is

$$m_i = I \int_S \mathrm{d} ec{m{a}} \cdot \hat{m{e}}_{m{i}} \; ,$$

which is equalivalent to

$$ec{m{m}} = I \int_S \mathrm{d} m{a} \ .$$

PROBLEM 10: CURRENT LOOPS AND NEWTON'S THIRD LAW (10

Griffiths Problem 5.50 (p. 259).

Using the Biot-Savart law, we find the field of the first loop as

$$\vec{B}(\vec{r}_2) = \frac{\mu_0 I_1}{4\pi} \oint_1 \frac{\mathrm{d}\vec{\ell}_1 \times \hat{\boldsymbol{\imath}}}{\nu^2}, \qquad (10.1)$$

where $ec{m{z}} \equiv ec{m{r}}_2 - ec{m{r}}_1$. The force on the second loop is then

$$\vec{F}_2 = I_2 \oint_2 d\vec{\ell}_2 \times \vec{B}(\vec{r}_2) = \frac{\mu_0}{4\pi} I_1 I_2 \oint_1 \oint_2 \frac{d\vec{\ell}_2 \times (d\vec{\ell}_1 \times \hat{\boldsymbol{\lambda}})}{\hbar^2} . \tag{10.2}$$

Using the triple product rule, $d\vec{\boldsymbol{\ell}}_2 \times (d\vec{\boldsymbol{\ell}}_1 \times \hat{\boldsymbol{\boldsymbol{\lambda}}}) = d\vec{\boldsymbol{\ell}}_1 (d\vec{\boldsymbol{\ell}}_2 \cdot \hat{\boldsymbol{\boldsymbol{\lambda}}}) - \hat{\boldsymbol{\boldsymbol{\lambda}}} (d\vec{\boldsymbol{\ell}}_1 \cdot d\vec{\boldsymbol{\ell}}_2)$, we find the force as

$$\vec{F}_2 = -\frac{\mu_0}{4\pi} I_1 I_2 \oint_1 \oint_2 \frac{\hat{x}(d\vec{\ell}_1 \cdot d\vec{\ell}_2)}{\hbar^2} + \frac{\mu_0}{4\pi} I_1 I_2 \oint_1 d\vec{\ell}_1 \oint_2 \frac{d\vec{\ell}_2 \cdot \hat{x}}{\hbar^2} . \tag{10.3}$$

The second integral in Eq. (10.3) can be shown to vanish:

$$\oint_{2} d\vec{\ell}_{2} \cdot \frac{\hat{\boldsymbol{\lambda}}}{2} = \oint_{2} d\vec{\ell}_{2} \cdot \frac{\vec{\boldsymbol{r}}_{2} - \vec{\boldsymbol{r}}_{1}}{|\vec{\boldsymbol{r}}_{2} - \vec{\boldsymbol{r}}_{1}|^{3}} = \oint_{2} d\vec{\ell}_{2} \cdot \vec{\boldsymbol{\nabla}}_{\vec{\boldsymbol{r}}_{2}} \left(\frac{1}{|\vec{\boldsymbol{r}}_{2} - \vec{\boldsymbol{r}}_{1}|} \right) = 0 , \qquad (10.4)$$

since the line integral of a gradient field over a closed path gives zero. Then only the first term remains,

$$ec{F}_{2} = -rac{\mu_{0}}{4\pi}I_{1}I_{2}\oint_{1}\oint_{2}rac{\hat{m{z}}(\mathrm{d}ec{m{\ell}}_{1}\cdot\mathrm{d}ec{m{\ell}}_{2})}{\hbar^{2}}$$
 (10.5)

In this form it is clear that the forces that each loop exerts on the other obey $\vec{F}_1 = -\vec{F}_2$, since \vec{z} changes direction when the roles of \vec{r}_1 and \vec{r}_2 are interchanged.