Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Maps or Dictionaries

Dictionaries

- A Dictionary models a searchable collection of key-value entries
- The main operations of a Dictionary are for searching, inserting, and deleting items
- Multiple entries with the same key are not allowed
- Applications:
 - address book
 - student-record database

The Dictionary ADT

- get(k): if the Dictionary M has an entry with key k, return its associated value; else, return null
- put(k, v): insert entry (k, v) into the Dictionary M; if key k
 is not already in M, then return null; else, ERROR
- remove(k): if the Dictionary M has an entry with key k, remove it from M and return its associated value; else, ERROR
- size(), isEmpty()
- entrySet(): return an iterable collection of the entries in M
- keySet(): return an iterable collection of the keys in M
- values(): return an iterator of the values in M

Example

Operation	Output	Dictionary
isEmpty()	true	Ø
put(5,A)	null	(5, <i>A</i>)
put(7, <i>B</i>)	null	(5,A),(7,B)
put(2, <i>C</i>)	null	(5,A),(7,B),(2,C)
put(8, <i>D</i>)	null	(5,A),(7,B),(2,C),(8,D)
put(2, <i>E</i>)	C	(5,A),(7,B),(2,E),(8,D)
get(7)	В	(5,A),(7,B),(2,E),(8,D)
get(4)	null	(5,A),(7,B),(2,E),(8,D)
get(2)	E	(5,A),(7,B),(2,E),(8,D)
size()	4	(5,A),(7,B),(2,E),(8,D)
remove(5)	A	(7,B),(2,E),(8,D)
remove(2)	E	(7,B),(8,D)
get(2)	null	(7,B),(8,D)
isEmpty()	false	(7,B),(8,D)

A Simple List-Based Dictionary

- We can implement a Dictionary using an unsorted list
 - We store the items of the Dictionary in a list S
 (based on a linked list), in arbitrary order

The get(k) Algorithm

```
Algorithm get(k) {
  p = header
  while p is not null do
      if p.element().getKey() = k then
             return p.element().getValue()
       else p = p.next();
  return null {there is no entry with key equal to k}
```

The put(k,v) Algorithm

```
Algorithm put(k,v)
p = header
while p is not null do
  if p.element().getKey() = k then ERROR
  else p = p.next()
p = new node storing (k,v)
p.setNext (header)
header = p
n = n + 1 {increment variable storing number of entries}
```

The remove(k) Algorithm

```
Algorithm remove(k)
p = header
prev = null
while p is not null do
   if p.element().getKey() = k then {
      if prev is not null then
          prev.setNext(p.next())
      else header = p.next()
      n = n - 1 {decrement number of entries}
  else {
      prev = p
      p = p.next()
```

Performance of a List-Based Dictionary

Performance:

- put takes O(n) time since we need to check for duplicated keys
- get and remove take O(n) time since in the worst case (the item is not found) we traverse the entire sequence to look for an item with the given key
- The unsorted list implementation is effective only for Dictionaries of small size.