# Determination of reconstruction efficiency

Chatura Kuruppu<sup>1</sup>

<sup>1</sup>New Mexico State University, Las Cruces, NM 88003

September 24, 2025

#### Abstract

This document outlines the methodology for determining the dimuon reconstruction efficiency required for the Drell-Yan double-differential cross-section measurement. Efficiency correction factors are derived using Monte Carlo simulations and applied to experimental data. The efficiency  $\epsilon$  is parameterized as a function of the kinematic variables, Feynman-x  $(x_F)$  and dimuon invariant mass (m). We detail the procedure for calculating the average efficiency  $\langle \epsilon \rangle$  for each kinematic bin by applying a linear interpolation method to data events. The propagation of statistical uncertainties is rigorously derived, and the final correction factors,  $1/\langle \epsilon \rangle$ , are presented for different datasets and target configurations.

# Contents

| 1        | Intr | roduction                                                      | 5  |
|----------|------|----------------------------------------------------------------|----|
|          | 1.1  | Dimuon Events Used                                             | 5  |
|          | 1.2  | Bin ranges                                                     | 5  |
|          | 1.3  | Event Selection                                                | 5  |
|          | 1.4  | Determination of Efficiency for a Dimuon Event                 | 6  |
|          |      | 1.4.1 Error Propagation Method                                 | 6  |
|          |      | 1.4.2 Step-by-Step Derivation                                  | 7  |
|          |      | 1.4.3 Simplify the Expression for $\epsilon_{t,d_2}$           | 7  |
|          |      | 1.4.4 Calculate the Partial Derivatives                        | 7  |
|          |      | 1.4.5 Uncertainty Formula for one di-muon event                | 7  |
|          | 1.5  | Average efficiency and final uncertainty                       | 8  |
| <b>2</b> | Res  | cults                                                          | 8  |
| 3        | Effi | ciency Curves by Kinematic Bin                                 | 8  |
| 4        | Met  | thodology: Calculating Average Efficiencies                    | 26 |
| 5        | Res  | oults: Average Efficiency Tables                               | 26 |
|          | 5.1  | Average Efficiency Calculations using RS67 LH2 target only     | 27 |
|          | 5.2  | Average Efficiency Calculations using RS67 all targets only    | 31 |
|          | 5.3  | Average Efficiency Calculations using RS57-70 LH2 target only  | 35 |
|          | 5.4  | Average Efficiency Calculations using RS57-70 all targets only | 39 |
| 6        | Dis  | scussion                                                       | 43 |

# List of Figures

| 1  | Determination of Efficiency and it's uncertainty             | <br> | <br> |  | <br> | . 6      |
|----|--------------------------------------------------------------|------|------|--|------|----------|
| 2  | Efficiency plots for the $x_F$ bin $0.00 \le x_F < 0.05$ .   | <br> | <br> |  | <br> | <br>. 9  |
| 3  | Efficiency plots for the $x_F$ bin $0.05 \le x_F < 0.10$ .   | <br> | <br> |  | <br> | <br>. 10 |
| 4  | Efficiency plots for the $x_F$ bin $0.10 \le x_F < 0.15$ .   | <br> | <br> |  | <br> | <br>. 11 |
| 5  | Efficiency plots for the $x_F$ bin $0.15 \le x_F < 0.20$ .   | <br> | <br> |  | <br> | <br>. 12 |
| 6  | Efficiency plots for the $x_F$ bin $0.20 \le x_F < 0.25$ .   | <br> | <br> |  | <br> | <br>. 13 |
| 7  | Efficiency plots for the $x_F$ bin $0.25 \le x_F < 0.30$ .   | <br> | <br> |  | <br> | <br>. 14 |
| 8  | Efficiency plots for the $x_F$ bin $0.30 \le x_F < 0.35$ .   | <br> | <br> |  | <br> | <br>. 15 |
| 9  | Efficiency plots for the $x_F$ bin $0.35 \le x_F < 0.40$ .   | <br> | <br> |  | <br> | <br>. 16 |
| 10 | Efficiency plots for the $x_F$ bin $0.40 \le x_F < 0.45$ .   | <br> | <br> |  | <br> | <br>. 17 |
| 11 | Efficiency plots for the $x_F$ bin $0.45 \le x_F < 0.50$ .   | <br> | <br> |  | <br> | <br>. 18 |
| 12 | Efficiency plots for the $x_F$ bin $0.50 \le x_F < 0.55$ .   | <br> | <br> |  | <br> | <br>. 19 |
| 13 | Efficiency plots for the $x_F$ bin $0.55 \le x_F < 0.60$ .   | <br> | <br> |  | <br> | <br>. 20 |
| 14 | Efficiency plots for the $x_F$ bin $0.60 \le x_F < 0.65$ .   | <br> | <br> |  | <br> | <br>. 21 |
| 15 | Efficiency plots for the $x_F$ bin $0.65 \le x_F < 0.70$ .   | <br> | <br> |  | <br> | <br>. 22 |
| 16 | Efficiency plots for the $x_F$ bin $0.70 \le x_F < 0.75$ .   | <br> | <br> |  | <br> | <br>. 23 |
| 17 | Efficiency plots for the $x_F$ bin $0.75 \le x_F < 0.80$ .   | <br> | <br> |  | <br> | <br>. 24 |
| 18 | Efficiency plots for the $x_F$ bin $0.80 \le x_F \le 0.85$ . | <br> | <br> |  | <br> | <br>. 25 |

# List of Tables

| 1 | Average Efficiency and Errors calculated for $x_F$ and Mass bins using RS67 LH2    |    |
|---|------------------------------------------------------------------------------------|----|
|   | target only                                                                        | 27 |
| 2 | Average Efficiency and Errors calculated for $x_F$ and Mass bins using RS67 all    |    |
|   | targets                                                                            | 31 |
| 3 | Average Efficiency and Errors calculated for $x_F$ and Mass bins using RS57-70 LH2 |    |
|   | target only                                                                        | 35 |
| 4 | Average Efficiency and Errors calculated for $x_F$ and Mass bins using RS57-70 all |    |
|   | targets                                                                            | 39 |

### 1 Introduction

We report DY absolute double differntial cross-section for different Mass and  $x_F$  bins. It is necessary to correct the reconstruction efficiency for different  $x_F$  and Mass bins using Monte-Carlo events. In this study we first generate efficiency curves for different Mass and  $x_F$  bins and then calculate average efficiency  $<\epsilon>$  using the methodology developed by Harsha and iterating through data (RS67, RS57-70) for each 2-dimensional bin range. Then the correction factor:  $1/<\epsilon>$  will be applied when calculating cross-section.

#### 1.1 Dimuon Events Used

Following files were used to calculate kTracker efficiency for different Mass and  $x_F$  bins:

- Following Monte-Carlo files were used to generate efficiency curves for different Mass and  $x_F$  bins:
  - mc\_drellyan\_LH2\_M027\_S002\_messy\_occ\_pTxFweight\_v2.root
  - mc\_drellyan\_LH2\_M027\_S002\_clean\_occ\_pTxFweight\_v2.root
- Following data files were used to calculate average efficiency for different Mass and  $x_F$  bins:
  - $-~R008\_roadset 67\_0\_2111v42\_tmp\_noPhys\_noOcc.parquet$
  - roadset57\_70\_R008\_2111v42\_tmp\_noPhys.parquet

The reconstruction efficiency curves were generated for different Mass and  $x_F$  bins by taking the ratio:

$$Efficiency \ (\epsilon) = \frac{Number \ of \ messy \ dimuon \ events}{Number \ of \ clean \ dimuon \ events}$$

that passes all event selection cuts. This is calculated as a function of the D2 variable, binned in Feynman-x  $(x_F)$  and dimuon mass (m).

#### 1.2 Bin ranges

This efficiency study is conducted by using the same bin ranges defined in Shivangi's cross-section script. Following bins widths are defined to calculate efficiency corrections.

- $x_F$  bins: [0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85]
- Mass bins: [4.2, 4.5, 4.8, 5.1, 5.4, 5.7, 6.0, 6.3, 6.6, 6.9, 7.5, 8.7]

#### 1.3 Event Selection

Following event selection criteria applied to Monte-Carlo events mentioned in section. I am using the same event selection criteria defined by Hugo's analysis.

- $\bullet$  Event selection applied to messy events:
  - Base cuts: chuckCutsPositive\_2111v42\_tmp && chuckCutsNegative\_2111v42\_tmp && chuckCutsDimuon\_2111v42 && physicsCuts\_noMassCut\_2111v42\_tmp && occuts 2111v42 && DYCut MC
  - xF cut
  - mass cut

- Event selection applied to clean events:
  - Base cuts: chuckCutsPositive\_2111v42\_tmp && chuckCutsNegative\_2111v42\_tmp && chuckCutsDimuon\_2111v42 && physicsCuts\_noMassCut\_2111v42\_tmp && DY-Cut\_MC
  - xF cut
  - mass cut

### 1.4 Determination of Efficiency for a Dimuon Event

In order to determine efficiency for each dimuon event in data, I use the same methodology developed by Harsha.



Figure 1: Determination of Efficiency and it's uncertainty

The given formula for the efficiency, denoted by  $\epsilon_{t,d_2}$ , is a function of  $\epsilon_{t,d_+}$ ,  $\epsilon_{t,d_-}$ ,  $d_+$ ,  $d_-$ , and  $d_2$ :

$$\epsilon_{t,d_2} = \epsilon_{t,d_-} - \frac{\epsilon_{t,d_+} - \epsilon_{t,d_-}}{d_+ - d_-} (d_2 - d_-)$$

Our goal is to find the uncertainty of  $\epsilon_{t,d_2}$ , denoted as  $\delta\epsilon_{t,d_2}$ , assuming we know the uncertainties  $\delta\epsilon_{t,d_+}$  and  $\delta\epsilon_{t,d_-}$ . The terms  $d_2$ ,  $d_+$ , and  $d_-$  are treated as constants with no associated uncertainty.

#### 1.4.1 Error Propagation Method

For a function of multiple variables, such as  $\epsilon_{t,d_2}(\epsilon_{t,d_+}, \epsilon_{t,d_-})$ , the general formula to propagate uncertainty (assuming the variables are uncorrelated) is:

$$(\delta \epsilon_{t,d_2})^2 = \left(\frac{\partial \epsilon_{t,d_2}}{\partial \epsilon_{t,d_+}}\right)^2 (\delta \epsilon_{t,d_+})^2 + \left(\frac{\partial \epsilon_{t,d_2}}{\partial \epsilon_{t,d_-}}\right)^2 (\delta \epsilon_{t,d_-})^2$$

#### 1.4.2 Step-by-Step Derivation

To find the final uncertainty, we follow three main steps.

#### 1.4.3 Simplify the Expression for $\epsilon_{t,d_2}$

To make the calculation of derivatives more straightforward, we first rearrange the formula for  $\epsilon_{t,d_2}$ :

$$\epsilon_{t,d_2} = \epsilon_{t,d_-} - \left(\frac{d_2 - d_-}{d_+ - d_-}\right) \epsilon_{t,d_+} + \left(\frac{d_2 - d_-}{d_+ - d_-}\right) \epsilon_{t,d_-}$$

Combining the terms that contain  $\epsilon_{t,d_-}$ , we get:

$$\epsilon_{t,d_2} = \left(1 + \frac{d_2 - d_-}{d_+ - d_-}\right) \epsilon_{t,d_-} - \left(\frac{d_2 - d_-}{d_+ - d_-}\right) \epsilon_{t,d_+}$$

We can find a common denominator for the term multiplying  $\epsilon_{t,d}$ :

$$\epsilon_{t,d_2} = \left(\frac{d_+ - d_- + d_2 - d_-}{d_+ - d_-}\right) \epsilon_{t,d_-} - \left(\frac{d_2 - d_-}{d_+ - d_-}\right) \epsilon_{t,d_+}$$

This simplifies to:

$$\epsilon_{t,d_2} = \left(\frac{d_+ + d_2 - 2d_-}{d_+ - d_-}\right) \epsilon_{t,d_-} - \left(\frac{d_2 - d_-}{d_+ - d_-}\right) \epsilon_{t,d_+}$$

#### 1.4.4 Calculate the Partial Derivatives

With the simplified expression, we can now find the partial derivatives of  $\epsilon_{t,d_2}$  with respect to  $\epsilon_{t,d_+}$  and  $\epsilon_{t,d_-}$ .

Derivative with respect to  $\epsilon_{t,d_+}$ :

$$\frac{\partial \epsilon_{t,d_2}}{\partial \epsilon_{t,d_+}} = -\frac{d_2 - d_-}{d_+ - d_-} = \frac{d_- - d_2}{d_+ - d_-}$$

Derivative with respect to  $\epsilon_{t.d.}$ :

$$\frac{\partial \epsilon_{t,d_2}}{\partial \epsilon_{t,d}} = \frac{d_+ + d_2 - 2d_-}{d_+ - d_-}$$

#### 1.4.5 Uncertainty Formula for one di-muon event

Finally, we substitute these partial derivatives back into the error propagation formula:

$$(\delta \epsilon_{t,d_2})^2 = \left(\frac{d_- - d_2}{d_+ - d_-}\right)^2 (\delta \epsilon_{t,d_+})^2 + \left(\frac{d_+ + d_2 - 2d_-}{d_+ - d_-}\right)^2 (\delta \epsilon_{t,d_-})^2$$

Taking the square root of both sides gives the final expression for the uncertainty,  $\delta \epsilon_{t,d_2}$ :

$$\delta \epsilon_{t,d_2} = \sqrt{\left(\frac{d_- - d_2}{d_+ - d_-}\right)^2 (\delta \epsilon_{t,d_+})^2 + \left(\frac{d_+ + d_2 - 2d_-}{d_+ - d_-}\right)^2 (\delta \epsilon_{t,d_-})^2}$$

This can also be written in a more compact form by factoring out the denominator:

$$\delta\epsilon_{t,d_2} = \frac{1}{|d_+ - d_-|} \sqrt{(d_- - d_2)^2 (\delta\epsilon_{t,d_+})^2 + (d_+ + d_2 - 2d_-)^2 (\delta\epsilon_{t,d_-})^2}$$

#### 1.5 Average efficiency and final uncertainty

We determine average efficiency by iterating through all the di-muon events. The final efficiency  $\bar{\epsilon}$  If you have N dimuon events, each with a calculated efficiency  $(\epsilon_1, \epsilon_2, \dots, \epsilon_N)$  and a corresponding error  $(\delta \epsilon_1, \delta \epsilon_2, \dots, \delta \epsilon_N)$ , you first calculate the **average efficiency**,  $\bar{\epsilon}$ :

$$\bar{\epsilon} = \frac{1}{N} \sum_{i=1}^{N} \epsilon_i$$

The error on this average efficiency, which we'll call  $\delta \bar{\epsilon}$ , is then given by the standard formula for propagation of error for a sum:

$$\delta \bar{\epsilon} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (\delta \epsilon_i)^2}$$

This is equivalent to writing the sum of squares explicitly:

$$\delta \bar{\epsilon} = \sqrt{\frac{(\delta \epsilon_1)^2 + (\delta \epsilon_2)^2 + \dots + (\delta \epsilon_N)^2}{N^2}}$$

### 2 Results

Here, we report efficiency corrections under 2 scenerios.

- Efficiency calculation only by using  $x_F$  bins (1-D Study)
- Efficiency calculation only by using both  $x_F$  and Mass bins (2-D Study)

## 3 Efficiency Curves by Kinematic Bin

The following pages display the D2 efficiency curves for all 187 kinematic bins. Each page corresponds to a single bin in  $x_F$ , with the 11 mass bins for that  $x_F$  range arranged as sub-plots.



Figure 2: Efficiency plots for the  $x_F$  bin  $0.00 \le x_F < 0.05$ .



Figure 3: Efficiency plots for the  $x_F$  bin  $0.05 \le x_F < 0.10$ .



Figure 4: Efficiency plots for the  $x_F$  bin  $0.10 \le x_F < 0.15$ .



Figure 5: Efficiency plots for the  $x_F$  bin  $0.15 \le x_F < 0.20$ .



Figure 6: Efficiency plots for the  $x_F$  bin  $0.20 \le x_F < 0.25$ .



Figure 7: Efficiency plots for the  $x_F$  bin  $0.25 \le x_F < 0.30$ .



Figure 8: Efficiency plots for the  $x_F$  bin  $0.30 \le x_F < 0.35$ .



Figure 9: Efficiency plots for the  $x_F$  bin  $0.35 \le x_F < 0.40$ .



Figure 10: Efficiency plots for the  $x_F$  bin  $0.40 \le x_F < 0.45$ .



Figure 11: Efficiency plots for the  $x_F$  bin  $0.45 \le x_F < 0.50$ .



Figure 12: Efficiency plots for the  $x_F$  bin  $0.50 \leq x_F < 0.55.$ 



Figure 13: Efficiency plots for the  $x_F$  bin  $0.55 \leq x_F < 0.60.$ 



Figure 14: Efficiency plots for the  $x_F$  bin  $0.60 \le x_F < 0.65$ .



Figure 15: Efficiency plots for the  $x_F$  bin  $0.65 \le x_F < 0.70$ .



Figure 16: Efficiency plots for the  $x_F$  bin  $0.70 \le x_F < 0.75$ .



Figure 17: Efficiency plots for the  $x_F$  bin  $0.75 \le x_F < 0.80$ .



Figure 18: Efficiency plots for the  $x_F$  bin  $0.80 \le x_F < 0.85$ .

### 4 Methodology: Calculating Average Efficiencies

With the efficiency data saved in '.npz' files, a Python script is used to calculate the average efficiency for a separate dataset of dimuon events. For each event in the dataset, its corresponding efficiency is found by linearly interpolating the efficiency curve from the appropriate  $(x_F, m)$  bin. The average efficiency for each bin is then calculated along with its associated errors.

The key quantities are defined as follows:

• Average Efficiency ( $<\epsilon>$ ): The simple arithmetic mean of the interpolated efficiency values,  $\epsilon_i$ , for all N events in a bin, as shown in Equation 1.

$$\langle \epsilon \rangle = \frac{1}{N} \sum_{i=1}^{N} \epsilon_i \tag{1}$$

• Statistical Error ( $\delta_{\text{stat}} < \epsilon >$ ): The standard error on the mean of the efficiency distribution within the bin, which quantifies the statistical uncertainty.

$$\delta_{\text{stat}}\langle\epsilon\rangle = \sqrt{\frac{\langle\epsilon^2\rangle - \langle\epsilon\rangle^2}{N}} \tag{2}$$

• Propagated Error ( $\delta_{prop} < \epsilon >$ ): The error on the average efficiency found by propagating the uncertainties from the original efficiency curve points,  $\delta \epsilon_i$ .

$$\delta_{\text{prop}}\langle\epsilon\rangle = \frac{\sqrt{\sum_{i=1}^{N} (\delta\epsilon_i)^2}}{N}$$
 (3)

- Inverse Average Efficiency (1/ $<\epsilon>$ ): The reciprocal of the average efficiency, often used in cross-section calculations.
- Propagated Error of the Inverse ( $\delta(1/<\epsilon>)$ ): The uncertainty on the inverse efficiency, found using standard error propagation.

$$\delta(1/\langle \epsilon \rangle) = \frac{\delta_{\text{prop}} \langle \epsilon \rangle}{\langle \epsilon \rangle^2} \tag{4}$$

## 5 Results: Average Efficiency Tables

The final results of the analysis are summarized in the following tables.

- Efficiency Table made by using RS-67 LH2 only target 1
- Efficiency Table made by using RS-67 all targets 2
- Efficiency Table made by using RS-57-70 LH2 only target 3
- Efficiency Table made by using RS-57-70 all targets 4

## 5.1 Average Efficiency Calculations using RS67 LH2 target only

Table 1: Average Efficiency and Errors calculated for  $x_F$  and Mass bins using RS67 LH2 target only

| $x_F$ Bin   | Mass Bin (GeV/ $c^2$ ) | $N_{ m events}$ | $<\epsilon>$ | $\delta_{\mathrm{stat}} < \epsilon >$ | $\delta_{\mathrm{prop}} < \epsilon >$ | $1/<\epsilon>$ | $\delta(1/<\epsilon>)$ |
|-------------|------------------------|-----------------|--------------|---------------------------------------|---------------------------------------|----------------|------------------------|
| [0.0, 0.05) | [4.2, 4.5)             | 1               | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.0, 0.05) | [4.5, 4.8)             | 9               | 0.1378       | 0.0878                                | 0.0248                                | 7.258          | 1.305                  |
| [0.0, 0.05) | [4.8, 5.1)             | 40              | 0.8807       | 0.0827                                | 0.0209                                | 1.135          | 0.027                  |
| [0.0, 0.05) | [5.1, 5.4)             | 72              | 0.6521       | 0.0167                                | 0.0216                                | 1.534          | 0.051                  |
| [0.0, 0.05) | [5.4, 5.7)             | 66              | 0.6728       | 0.0262                                | 0.0119                                | 1.486          | 0.026                  |
| [0.0, 0.05) | [5.7, 6.0)             | 37              | 0.5828       | 0.0505                                | 0.0174                                | 1.716          | 0.051                  |
| [0.0, 0.05) | [6.0, 6.3)             | 27              | 0.6133       | 0.0487                                | 0.0186                                | 1.631          | 0.050                  |
| [0.0, 0.05) | [6.3, 6.6)             | 15              | 0.5970       | 0.0532                                | 0.0313                                | 1.675          | 0.088                  |
| [0.0, 0.05) | [6.6, 6.9)             | 12              | 0.7055       | 0.0394                                | 0.0250                                | 1.417          | 0.050                  |
| [0.0, 0.05) | [6.9, 7.5)             | 9               | 0.6253       | 0.0865                                | 0.0272                                | 1.599          | 0.070                  |
| [0.0, 0.05) | [7.5, 8.7)             | 1               | 0.6066       | 0.0000                                | 0.0595                                | 1.649          | 0.162                  |
| [0.05, 0.1) | [4.2, 4.5)             | 2               | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.05, 0.1) | [4.5, 4.8)             | 39              | 0.2746       | 0.0516                                | 0.0222                                | 3.642          | 0.294                  |
| [0.05, 0.1) | [4.8, 5.1)             | 81              | 0.5004       | 0.0360                                | 0.0185                                | 1.999          | 0.074                  |
| [0.05, 0.1) | [5.1, 5.4)             | 95              | 0.7206       | 0.0381                                | 0.0099                                | 1.388          | 0.019                  |
| [0.05, 0.1) | [5.4, 5.7)             | 78              | 0.6643       | 0.0204                                | 0.0121                                | 1.505          | 0.027                  |
| [0.05, 0.1) | [5.7, 6.0)             | 53              | 0.7379       | 0.0231                                | 0.0122                                | 1.355          | 0.022                  |
| [0.05, 0.1) | [6.0, 6.3)             | 39              | 0.7318       | 0.0325                                | 0.0117                                | 1.367          | 0.022                  |
| [0.05, 0.1) | [6.3, 6.6)             | 25              | 0.5964       | 0.0379                                | 0.0204                                | 1.677          | 0.057                  |
| [0.05, 0.1) | [6.6, 6.9)             | 5               | 0.5670       | 0.1215                                | 0.0382                                | 1.764          | 0.119                  |
| [0.05, 0.1) | [6.9, 7.5)             | 7               | 0.6487       | 0.0764                                | 0.0268                                | 1.541          | 0.064                  |
| [0.05, 0.1) | [7.5, 8.7)             | 6               | 0.5979       | 0.1095                                | 0.0270                                | 1.672          | 0.075                  |
| [0.1, 0.15) | [4.2, 4.5)             | 31              | 13.2153      | 3.4691                                | 0.0144                                | 0.076          | 0.000                  |
| [0.1, 0.15) | [4.5, 4.8)             | 97              | 0.5642       | 0.0287                                | 0.0171                                | 1.772          | 0.054                  |
| [0.1, 0.15) | [4.8, 5.1)             | 140             | 0.6170       | 0.0155                                | 0.0142                                | 1.621          | 0.037                  |
| [0.1, 0.15) | [5.1, 5.4)             | 133             | 0.5928       | 0.0155                                | 0.0113                                | 1.687          | 0.032                  |
| [0.1, 0.15) | [5.4, 5.7)             | 87              | 0.6659       | 0.0247                                | 0.0091                                | 1.502          | 0.021                  |
| [0.1, 0.15) | [5.7, 6.0)             | 77              | 0.6895       | 0.0192                                | 0.0088                                | 1.450          | 0.019                  |
| [0.1, 0.15) | [6.0, 6.3)             | 53              | 0.7156       | 0.0258                                | 0.0100                                | 1.398          | 0.020                  |
| [0.1, 0.15) | [6.3, 6.6)             | 28              | 0.7879       | 0.0218                                | 0.0113                                | 1.269          | 0.018                  |
| [0.1, 0.15) | [6.6, 6.9)             | 10              | 0.7518       | 0.0446                                | 0.0193                                | 1.330          | 0.034                  |
| [0.1, 0.15) | . ,                    | 11              | 0.6798       | 0.0405                                | 0.0167                                | 1.471          | 0.036                  |
| [0.1, 0.15) | [7.5, 8.7)             | 7               | 0.7011       | 0.0352                                | 0.0140                                | 1.426          | 0.029                  |
| [0.15, 0.2) | [4.2, 4.5)             | 83              | 1.1271       | 0.1084                                | 0.0121                                | 0.887          | 0.010                  |
| [0.15, 0.2) | [4.5, 4.8)             | 170             | 0.7035       | 0.0215                                | 0.0131                                | 1.421          | 0.027                  |
| [0.15, 0.2) | [4.8, 5.1)             | 240             | 0.5329       | 0.0099                                | 0.0087                                | 1.877          | 0.031                  |
| [0.15, 0.2) | [5.1, 5.4)             | 206             | 0.6986       | 0.0132                                | 0.0070                                | 1.432          | 0.014                  |
| [0.15, 0.2) | [5.4, 5.7)             | 115             | 0.6923       | 0.0212                                | 0.0086                                | 1.444          | 0.018                  |
| [0.15, 0.2) | [5.7, 6.0)             | 99              | 0.7341       | 0.0188                                | 0.0086                                | 1.362          | 0.016                  |
| [0.15, 0.2) | [6.0, 6.3)             | 68              | 0.7129       | 0.0175                                | 0.0089                                | 1.403          | 0.017                  |
| [0.15, 0.2) | [6.3, 6.6)             | 36              | 0.7514       | 0.0397                                | 0.0105                                | 1.331          | 0.019                  |
| [0.15, 0.2) | [6.6, 6.9)             | 16              | 0.6784       | 0.0492                                | 0.0176                                | 1.474          | 0.038                  |
| [0.15, 0.2) | [6.9, 7.5)             | 12              | 0.6677       | 0.0281                                | 0.0149                                | 1.498          | 0.033                  |
| [0.15, 0.2) | [7.5, 8.7)             | 3               | 0.6570       | 0.1554                                | 0.0400                                | 1.522          | 0.093                  |

Table 1: (Continued)

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                             |                     | ·            |                                       |                                     |                |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|---------------------|--------------|---------------------------------------|-------------------------------------|----------------|------------------------|
| $ \begin{bmatrix} 0.2, 0.25 ) & \{4.5, 4.5 \} & 185 & 0.5419 & 0.0213 & 0.0127 & 1.845 & 0.043 \\ 10.2, 0.25) & \{4.5, 4.5 \} & 294 & 0.5943 & 0.0116 & 0.0057 & 1.441 & 0.012 \\ 10.2, 0.25) & \{5.1, 5.4 \} & 227 & 0.6730 & 0.0123 & 0.0056 & 1.486 & 0.0112 \\ 10.2, 0.25) & \{5.4, 5.7 \} & 149 & 0.6935 & 0.0162 & 0.0066 & 1.442 & 0.014 \\ 10.2, 0.25) & \{5.4, 5.7 \} & 149 & 0.6935 & 0.0162 & 0.0066 & 1.442 & 0.014 \\ 10.2, 0.25) & \{5.4, 5.7 \} & 149 & 0.6935 & 0.0162 & 0.0066 & 1.442 & 0.014 \\ 10.2, 0.25) & \{6.3, 6.6 \} & 110 & 0.7851 & 0.0137 & 0.0061 & 1.274 & 0.010 \\ 10.2, 0.25) & \{6.3, 6.6 \} & 46 & 0.7367 & 0.0252 & 0.0098 & 1.357 & 0.016 \\ 10.2, 0.25) & \{6.6, 6.9 \} & 21 & 0.7909 & 0.0341 & 0.0111 & 1.264 & 0.018 \\ 10.2, 0.25) & \{6.6, 6.9 \} & 21 & 0.7909 & 0.0341 & 0.0111 & 1.264 & 0.018 \\ 10.2, 0.25) & \{6.5, 8.7 \} & 10 & 0.6933 & 0.0456 & 0.0153 & 1.438 & 0.032 \\ 10.2, 0.25) & \{7.5, 8.7 \} & 6 & 0.7790 & 0.0427 & 0.0117 & 1.284 & 0.019 \\ 10.25, 0.3) & \{4.5, 4.5 \} & 385 & 0.6994 & 0.0120 & 0.0074 & 1.438 & 0.015 \\ 10.25, 0.3) & \{4.5, 4.5 \} & 348 & 0.7160 & 0.0069 & 0.0051 & 1.336 & 0.009 \\ 10.25, 0.3) & \{4.5, 4.5 \} & 348 & 0.7160 & 0.0069 & 0.0051 & 1.436 & 0.009 \\ 10.25, 0.3) & \{5.4, 5.7 \} & 199 & 0.7569 & 0.0126 & 0.0055 & 1.321 & 0.010 \\ 10.25, 0.3) & \{5.7, 6.0 \} & 91 & 0.7372 & 0.0192 & 0.0073 & 1.356 & 0.013 \\ 10.25, 0.3) & \{5.7, 6.0 \} & 91 & 0.7372 & 0.0192 & 0.0073 & 1.356 & 0.013 \\ 10.25, 0.3) & \{6.6, 6.9 \} & 27 & 0.6981 & 0.0136 & 0.0131 & 1.443 & 0.027 \\ 10.25, 0.3) & \{6.6, 6.9 \} & 27 & 0.6981 & 0.0368 & 0.0131 & 1.443 & 0.027 \\ 10.25, 0.3) & \{6.6, 6.9 \} & 27 & 0.6981 & 0.0368 & 0.0131 & 1.443 & 0.027 \\ 10.25, 0.3) & \{5.7, 6.0 \} & 91 & 0.7521 & 0.0064 & 0.0050 & 1.330 & 0.009 \\ 10.3, 0.35) & \{4.5, 4.5 \} & 574 & 0.7521 & 0.0064 & 0.0050 & 1.330 & 0.009 \\ 10.3, 0.35) & \{4.5, 4.5 \} & 574 & 0.7521 & 0.0064 & 0.0050 & 1.330 & 0.009 \\ 10.3, 0.35) & \{5.7, 6.0 \} & 91 & 0.7321 & 0.0629 & 0.0141 & 1.344 & 0.016 \\ 10.3, 0.35) & \{6.6, 6.9 \} & 22 & 0.77554 & 0.0122 & 0.0041 & 1.344 & 0.006 \\ 10.3, 0.35) & \{6.6, 6.9 \} & 22 & 0.7555 & 0.0288 & $                                                                                                                                                                           | $x_F \operatorname{Bin}$ | Mass Bin $(\text{GeV}/c^2)$ | $N_{\text{events}}$ | $<\epsilon>$ | $\delta_{\mathrm{stat}} < \epsilon >$ | $\delta_{\text{prop}} < \epsilon >$ | $1/<\epsilon>$ | $\delta(1/<\epsilon>)$ |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [0.2, 0.25)              | [4.2, 4.5)                  |                     | 0.5419       | 0.0213                                | 0.0127                              | 1.845          | 0.043                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [0.2, 0.25)              | [4.5, 4.8)                  | 294                 | 0.5943       | 0.0152                                | 0.0073                              | 1.683          | 0.021                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [0.2, 0.25)              | [4.8, 5.1)                  | 285                 | 0.6938       | 0.0116                                | 0.0057                              | 1.441          | 0.012                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [0.2, 0.25)              | [5.1, 5.4)                  | 227                 | 0.6730       | 0.0123                                | 0.0056                              | 1.486          | 0.012                  |
| $ \begin{bmatrix} 0.2, 0.25) & [6.6, 6.3) & 54 & 0.7371 & 0.0250 & 0.0086 & 1.357 & 0.016 \\ [0.2, 0.25) & [6.6, 6.69) & 21 & 0.7909 & 0.0341 & 0.0111 & 1.264 & 0.018 \\ [0.2, 0.25) & [6.9, 7.5) & 10 & 0.6953 & 0.0456 & 0.0153 & 1.438 & 0.032 \\ [0.2, 0.25) & [7.5, 8.7) & 6 & 0.7790 & 0.0427 & 0.0117 & 1.284 & 0.018 \\ [0.25, 0.3] & [4.2, 4.5) & 385 & 0.6954 & 0.0120 & 0.0074 & 1.438 & 0.015 \\ [0.25, 0.3] & [4.5, 4.8) & 448 & 0.7160 & 0.0069 & 0.0051 & 1.397 & 0.010 \\ [0.25, 0.3] & [5.1, 5.4] & 273 & 0.6967 & 0.0110 & 0.0051 & 1.435 & 0.001 \\ [0.25, 0.3] & [5.1, 5.4] & 273 & 0.6967 & 0.0110 & 0.0051 & 1.435 & 0.001 \\ [0.25, 0.3] & [5.4, 5.7) & 199 & 0.7569 & 0.0126 & 0.0055 & 1.321 & 0.010 \\ [0.25, 0.3] & [6.0, 6.3] & 62 & 0.7643 & 0.0153 & 0.0076 & 1.308 & 0.013 \\ [0.25, 0.3] & [6.0, 6.3] & 62 & 0.7643 & 0.0153 & 0.0076 & 1.308 & 0.013 \\ [0.25, 0.3] & [6.0, 6.3] & 62 & 0.7643 & 0.0153 & 0.0076 & 1.308 & 0.013 \\ [0.25, 0.3] & [6.3, 6.6) & 39 & 0.7777 & 0.0233 & 0.0081 & 1.286 & 0.013 \\ [0.25, 0.3] & [6.6, 6.9) & 27 & 0.6931 & 0.0368 & 0.0131 & 1.443 & 0.027 \\ [0.25, 0.3] & [7.5, 8.7) & 2 & 0.5631 & 0.0368 & 0.0131 & 1.443 & 0.027 \\ [0.25, 0.3] & [7.5, 8.7] & 2 & 0.5631 & 0.0363 & 0.0336 & 1.776 & 0.106 \\ [0.3, 0.35) & [4.2, 4.5) & 574 & 0.7521 & 0.0064 & 0.0050 & 1.330 & 0.009 \\ [0.3, 0.35) & [4.5, 4.8) & 530 & 0.7698 & 0.0083 & 0.0037 & 1.299 & 0.006 \\ [0.3, 0.35) & [5.1, 5.4] & 301 & 0.7891 & 0.0085 & 0.0038 & 1.267 & 0.006 \\ [0.3, 0.35) & [5.7, 6.0] & 100 & 0.7073 & 0.0227 & 0.0061 & 1.414 & 0.012 \\ [0.3, 0.35) & [6.0, 6.3) & 63 & 0.7262 & 0.0219 & 0.0081 & 1.377 & 0.016 \\ [0.3, 0.35) & [6.0, 6.3) & 63 & 0.7262 & 0.0219 & 0.0081 & 1.377 & 0.016 \\ [0.3, 0.35) & [6.0, 6.3) & 63 & 0.7262 & 0.0219 & 0.0081 & 1.377 & 0.008 \\ [0.3, 0.35) & [5.7, 6.0] & 100 & 0.7073 & 0.0227 & 0.0061 & 1.414 & 0.012 \\ [0.3, 0.35) & [6.0, 6.3) & 63 & 0.7262 & 0.0219 & 0.0081 & 1.377 & 0.006 \\ [0.3, 0.35) & [6.0, 6.3) & 63 & 0.7262 & 0.0219 & 0.0081 & 1.377 & 0.006 \\ [0.3, 0.35) & [6.0, 6.3] & 63 & 0.7769 & 0.0077 & 0.0034 & 1.299 & 0.006 \\ [0.3, 0.3$                                                                                                                                                                                                                                | [0.2, 0.25)              | [5.4, 5.7)                  | 149                 | 0.6935       | 0.0162                                | 0.0066                              | 1.442          | 0.014                  |
| $ \begin{bmatrix} 0.2, 0.25 \\ 0.6, 6.6, 6.9 \\ 0.2, 0.25 \\ 0.6, 6.6, 6.9 \\ 0.2, 0.25 \\ 0.6, 6.9, 5.5 \\ 0.0, 0.25 \\ 0.2, 0.25 \\ 0.6, 7.5 \\ 0.0, 0.25 \\ 0.2, 0.25 \\ 0.6, 7.5 \\ 0.0, 0.25 \\ 0.2, 0.25 \\ 0.6, 7.5 \\ 0.0, 0.25 \\ 0.2, 0.25 \\ 0.75, 8.7 \\ 0.0, 0.25 \\ 0.2, 0.25 \\ 0.75, 8.7 \\ 0.0, 0.0000 \\ 0.25, 0.3 \\ 0.24, 0.25 \\ 0.3, 0.35 \\ 0.45, 4.8 \\ 0.48 \\ 0.48 \\ 0.0100 \\ 0.25, 0.3 \\ 0.3, 0.35 \\ 0.48, 5.1 \\ 0.3, 0.35 \\ 0.48, 5.1 \\ 0.3, 0.35 \\ 0.48, 5.1 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.4, 0.45 \\ 0.3, 0.35 \\ 0.44, 2.45 \\ 0.38 \\ 0.39 \\ 0.30, 0.35 \\ 0.30, 0.35 \\ 0.30, 0.35 \\ 0.40 \\ 0.30, 0.35 \\ 0.30, 0.35 \\ 0.40 \\ 0.35, 0.4) \\ 0.45, 4.8 \\ 0.448 \\ 0.7210 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.00000 \\ 0.0000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 0.0000000 \\ 0.0000000 \\ 0.00000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.2, 0.25)              | [5.7, 6.0)                  | 110                 | 0.7851       | 0.0137                                | 0.0061                              | 1.274          | 0.010                  |
| $ \begin{bmatrix} 0.2, 0.25 \\ 0.2, 0.25 \\ 0.69, 7.5 \\ 0.2, 0.25 \\ 0.69, 7.5 \\ 0.5, 0.3 \\ 0.2, 0.25 \\ 0.75, 8.7 \\ 0.6, 0.759 \\ 0.0427 \\ 0.0117 \\ 0.1284 \\ 0.019 \\ 0.025, 0.3 \\ 0.42, 4.5 \\ 0.385 \\ 0.6954 \\ 0.0102 \\ 0.0069 \\ 0.0069 \\ 0.0074 \\ 0.0009 \\ 0.0074 \\ 1.438 \\ 0.015 \\ 0.025, 0.3 \\ 0.48, 5.1 \\ 0.347 \\ 0.0969 \\ 0.0069 \\ 0.0051 \\ 0.39, 0.3) \\ 0.25, 0.3 \\ 0.48, 5.1 \\ 0.347 \\ 0.099 \\ 0.025, 0.3 \\ 0.48, 5.1 \\ 0.347 \\ 0.099 \\ 0.0069 \\ 0.0051 \\ 0.39, 0.3 \\ 0.35, 0.3 \\ 0.48, 5.1 \\ 0.347 \\ 0.099 \\ 0.0069 \\ 0.0069 \\ 0.00051 \\ 0.0005 \\ 0.30051 \\ 0.35, 0.3 \\ 0.48, 5.1 \\ 0.317 \\ 0.27 \\ 0.25, 0.3 \\ 0.48, 5.1 \\ 0.317 \\ 0.27 \\ 0.25, 0.3 \\ 0.49, 4.5 \\ 0.39 \\ 0.7777 \\ 0.0233 \\ 0.0076 \\ 0.30053 \\ 0.0076 \\ 0.30053 \\ 0.0076 \\ 0.30053 \\ 0.3005 \\ 0.30053 \\ 0.42, 4.5 \\ 0.3005 \\ 0.30053 \\ 0.42, 4.5 \\ 0.3005 \\ 0.30053 \\ 0.4005 \\ 0.30053 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.30053 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005 \\ 0.4005$                                  | [0.2, 0.25)              | [6.0, 6.3)                  | 54                  | 0.7371       | 0.0250                                | 0.0086                              | 1.357          | 0.016                  |
| $ \begin{bmatrix} 0.2, 0.25 \\ 0.2, 0.25 \\ 0.75, 8.7 \\ 0.25, 0.3 \\ 0.45, 4.8 \\ 0.45, 4.8 \\ 0.45, 0.35 \\ 0.25, 0.3 \\ 0.45, 4.8 \\ 0.45, 4.8 \\ 0.45, 0.35 \\ 0.25, 0.3 \\ 0.45, 4.8 \\ 0.45, 4.8 \\ 0.48, 5.1 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.45, 4.8 \\ 0.48, 5.1 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.45, 4.8 \\ 0.48, 5.1 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.45, 4.8 \\ 0.48, 5.1 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.54, 5.7 \\ 0.199 \\ 0.7569 \\ 0.0126 \\ 0.0055 \\ 0.0131 \\ 0.0065 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0055 \\ 0.0$                                   | [0.2, 0.25)              | [6.3, 6.6)                  | 46                  | 0.7367       | 0.0252                                | 0.0097                              | 1.357          | 0.018                  |
| $ \begin{bmatrix} 0.2, 0.25 \\ 0.5, 0.3 \\ 0.25, 0.3 \\ 0.42, 4.5 \\ 0.5, 0.3 \\ 0.45, 4.8 \\ 0.48 \\ 0.7160 \\ 0.0069 \\ 0.0069 \\ 0.0051 \\ 0.0069 \\ 0.0051 \\ 0.1.397 \\ 0.010 \\ 0.009 \\ 0.0051 \\ 0.1.397 \\ 0.010 \\ 0.009 \\ 0.0051 \\ 0.1.397 \\ 0.010 \\ 0.009 \\ 0.0051 \\ 0.1.397 \\ 0.010 \\ 0.009 \\ 0.0051 \\ 0.1.397 \\ 0.010 \\ 0.009 \\ 0.0051 \\ 0.1.397 \\ 0.010 \\ 0.0069 \\ 0.0131 \\ 0.0045 \\ 0.0045 \\ 1.436 \\ 0.009 \\ 0.0051 \\ 1.435 \\ 0.011 \\ 0.0051 \\ 0.0055 \\ 1.321 \\ 0.010 \\ 0.0055 \\ 0.013 \\ 0.0055 \\ 0.0131 \\ 0.0055 \\ 1.321 \\ 0.010 \\ 0.0055 \\ 1.321 \\ 0.010 \\ 0.0055 \\ 1.321 \\ 0.010 \\ 0.0055 \\ 0.0055 \\ 0.013 \\ 0.025, 0.3 \\ 0.63, 6.6 \\ 0.63 \\ 0.66, 6.9 \\ 0.27 \\ 0.0931 \\ 0.0368 \\ 0.013 \\ 0.025, 0.3 \\ 0.69, 7.5 \\ 0.6931 \\ 0.0368 \\ 0.0370 \\ 0.0104 \\ 1.360 \\ 0.0104 \\ 1.360 \\ 0.019 \\ 0.03, 0.35 \\ 0.40, 4.5, 4.8 \\ 0.50 \\ 0.30, 0.35 \\ 0.40, 4.5 \\ 0.75 \\ 0.75 \\ 0.0064 \\ 0.0055 \\ 0.30, 0.35 \\ 0.66, 6.9 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.0064 \\ 0.0053 \\ 0.0083 \\ 0.0033 \\ 0.0030 \\ 0.0039 \\ 1.397 \\ 0.008 \\ 0.30, 0.35 \\ 0.40, 4.5, 5.7 \\ 0.20 \\ 0.0064 \\ 0.0050 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.30 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.30 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.30 \\ 0.30, 0.35 \\ 0.60, 6.9 \\ 0.20 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.60, 6.9 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.30 \\ 0.30, 0.$                                                   | [0.2, 0.25)              | [6.6, 6.9)                  | 21                  | 0.7909       | 0.0341                                | 0.0111                              | 1.264          | 0.018                  |
| $ \begin{bmatrix} 0.25, 0.3 \\ 0.25, 0.3 \\ 0.45, 4.8 \\ 0.48 \\ 0.51 \\ 0.25, 0.3 \\ 0.45, 4.8 \\ 0.48 \\ 0.7160 \\ 0.0069 \\ 0.0051 \\ 0.0069 \\ 0.0051 \\ 0.0069 \\ 0.0051 \\ 0.0069 \\ 0.0051 \\ 0.0069 \\ 0.0051 \\ 0.0069 \\ 0.0051 \\ 0.0069 \\ 0.0051 \\ 0.0069 \\ 0.0051 \\ 0.0069 \\ 0.0051 \\ 0.0069 \\ 0.0051 \\ 0.0069 \\ 0.0051 \\ 0.0069 \\ 0.0051 \\ 0.0069 \\ 0.0051 \\ 0.0069 \\ 0.0055 \\ 0.0069 \\ 0.0055 \\ 0.0069 \\ 0.0055 \\ 0.0069 \\ 0.0055 \\ 0.0069 \\ 0.0055 \\ 0.0069 \\ 0.0055 \\ 0.0069 \\ 0.0055 \\ 0.0069 \\ 0.0055 \\ 0.0069 \\ 0.0055 \\ 0.0069 \\ 0.0055 \\ 0.0069 \\ 0.0055 \\ 0.0073 \\ 0.0069 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0074 \\ 0.0073 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 \\ 0.0074 $                          | [0.2, 0.25)              | [6.9, 7.5)                  | 10                  | 0.6953       | 0.0456                                | 0.0153                              | 1.438          | 0.032                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [0.2, 0.25)              | [7.5, 8.7)                  | 6                   | 0.7790       | 0.0427                                | 0.0117                              | 1.284          | 0.019                  |
| $ \begin{bmatrix} 0.25, 0.3 \\ 0.25, 0.3 \\ 0.15, 1.5.4 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\$                                                                                 | [0.25, 0.3)              | [4.2, 4.5)                  | 385                 | 0.6954       | 0.0120                                | 0.0074                              | 1.438          | 0.015                  |
| $ \begin{bmatrix} 0.25, 0.3 \\ 0.25, 0.3 \\ 0.15, 1.5.4 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\ 0.25, 0.3 \\$                                                                                 | [0.25, 0.3)              | [4.5, 4.8)                  | 448                 | 0.7160       | 0.0069                                | 0.0051                              | 1.397          | 0.010                  |
| $ \begin{bmatrix} 0.25, 0.3 \\ 0.25, 0.3 \\ 0.57, 6.0 \\ 0.91 \\ 0.7372 \\ 0.0192 \\ 0.0073 \\ 0.0073 \\ 0.1356 \\ 0.0073 \\ 0.1356 \\ 0.013 \\ 0.025, 0.3 \\ 0.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.62 \\ 0.7643 \\ 0.0153 \\ 0.0081 \\ 0.0081 \\ 0.125, 0.3 \\ 0.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.7777 \\ 0.0233 \\ 0.0081 \\ 0.25, 0.3 \\ 0.3 \\ 0.66, 6.9 \\ 0.7770 \\ 0.025, 0.3 \\ 0.60, 6.9 \\ 0.7056 \\ 0.7356 \\ 0.0370 \\ 0.0104 \\ 0.360, 0.0081 \\ 0.1286 \\ 0.013 \\ 0.0081 \\ 0.1286 \\ 0.013 \\ 0.0081 \\ 0.1286 \\ 0.013 \\ 0.0081 \\ 0.1286 \\ 0.013 \\ 0.0081 \\ 0.1286 \\ 0.013 \\ 0.0081 \\ 0.1286 \\ 0.013 \\ 0.0081 \\ 0.1443 \\ 0.0091 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.4, 0.60, 0.30 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\$                                                                     | 1 -                      | [4.8, 5.1)                  | 347                 | 0.6962       | 0.0131                                | 0.0045                              | 1.436          | 0.009                  |
| $ \begin{bmatrix} 0.25, 0.3 \\ 0.25, 0.3 \\ 0.57, 6.0 \\ 0.91 \\ 0.7372 \\ 0.0192 \\ 0.0073 \\ 0.0073 \\ 0.1356 \\ 0.0073 \\ 0.1356 \\ 0.013 \\ 0.025, 0.3 \\ 0.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.62 \\ 0.7643 \\ 0.0153 \\ 0.0081 \\ 0.0081 \\ 0.125, 0.3 \\ 0.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.7777 \\ 0.0233 \\ 0.0081 \\ 0.25, 0.3 \\ 0.3 \\ 0.66, 6.9 \\ 0.7770 \\ 0.025, 0.3 \\ 0.60, 6.9 \\ 0.7056 \\ 0.7356 \\ 0.0370 \\ 0.0104 \\ 0.360, 0.0081 \\ 0.1286 \\ 0.013 \\ 0.0081 \\ 0.1286 \\ 0.013 \\ 0.0081 \\ 0.1286 \\ 0.013 \\ 0.0081 \\ 0.1286 \\ 0.013 \\ 0.0081 \\ 0.1286 \\ 0.013 \\ 0.0081 \\ 0.1286 \\ 0.013 \\ 0.0081 \\ 0.1443 \\ 0.0091 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.4, 0.60, 0.30 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\$                                                                     | [0.25, 0.3)              | [5.1, 5.4)                  | 273                 | 0.6967       | 0.0110                                | 0.0051                              | 1.435          | 0.011                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 -                      | , ,                         | 199                 | 0.7569       | 0.0126                                | 0.0055                              | 1.321          | 0.010                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [0.25, 0.3)              | [5.7, 6.0)                  | 91                  | 0.7372       | 0.0192                                | 0.0073                              | 1.356          | 0.013                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [0.25, 0.3)              | [6.0, 6.3)                  | 62                  | 0.7643       | 0.0153                                | 0.0076                              | 1.308          | 0.013                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [0.25, 0.3)              | [6.3, 6.6)                  | 39                  | 0.7777       | 0.0233                                | 0.0081                              | 1.286          | 0.013                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [0.25, 0.3)              | [6.6, 6.9)                  | 27                  | 0.6931       | 0.0368                                | 0.0131                              | 1.443          | 0.027                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [0.25, 0.3)              | [6.9, 7.5)                  | 26                  | 0.7356       | 0.0370                                | 0.0104                              | 1.360          | 0.019                  |
| $ \begin{bmatrix} 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0$                                                                                 | [0.25, 0.3)              | [7.5, 8.7)                  | 2                   | 0.5631       | 0.0363                                | 0.0336                              | 1.776          | 0.106                  |
| $ \begin{bmatrix} 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0$                                                                                 | [0.3, 0.35)              | [4.2, 4.5)                  | 574                 | 0.7521       | 0.0064                                | 0.0050                              | 1.330          | 0.009                  |
| $ \begin{bmatrix} 0.3, 0.35 \\ 0.3, 0.35 \\ 0.5, 0.4 \\ 0.5, 0.5 \\ 0.5, 0.4 \\ 0.5, 0.5 \\ 0.5, 0.4 \\ 0.5, 0.5 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5, 0.4 \\ 0.5,$                                                                  | [0.3, 0.35)              | [4.5, 4.8)                  | 530                 | 0.7698       | 0.0083                                | 0.0037                              | 1.299          | 0.006                  |
| $ \begin{bmatrix} 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.4, 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.4, 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.4, 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.4, 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.4, 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0$                                                                                   | [0.3, 0.35)              | [4.8, 5.1)                  | 425                 | 0.7158       | 0.0090                                | 0.0039                              | 1.397          | 0.008                  |
| $ \begin{bmatrix} 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\ 0.35, 0.40 \\$                                                                                         | [0.3, 0.35)              | [5.1, 5.4)                  | 301                 | 0.7891       | 0.0085                                | 0.0038                              | 1.267          | 0.006                  |
| $ \begin{bmatrix} [0.3,0.35) & [6.0,6.3) & 63 & 0.7262 & 0.0219 & 0.0081 & 1.377 & 0.015 \\ [0.3,0.35) & [6.3,6.6) & 46 & 0.7800 & 0.0265 & 0.0077 & 1.282 & 0.013 \\ [0.3,0.35) & [6.6,6.9) & 25 & 0.7720 & 0.0154 & 0.0113 & 1.295 & 0.019 \\ [0.3,0.35) & [6.9,7.5) & 19 & 0.7341 & 0.0488 & 0.0124 & 1.362 & 0.023 \\ [0.3,0.35) & [7.5,8.7) & 10 & 0.7321 & 0.0629 & 0.0118 & 1.366 & 0.022 \\ [0.35,0.4) & [4.2,4.5) & 681 & 0.8006 & 0.0077 & 0.0034 & 1.249 & 0.005 \\ [0.35,0.4) & [4.5,4.8) & 595 & 0.7260 & 0.0078 & 0.0034 & 1.377 & 0.006 \\ [0.35,0.4) & [4.8,5.1) & 460 & 0.7454 & 0.0067 & 0.0035 & 1.342 & 0.006 \\ [0.35,0.4) & [5.1,5.4) & 334 & 0.7731 & 0.0085 & 0.0039 & 1.293 & 0.007 \\ [0.35,0.4) & [5.4,5.7) & 172 & 0.7554 & 0.0132 & 0.0044 & 1.324 & 0.008 \\ [0.35,0.4) & [5.7,6.0) & 129 & 0.7513 & 0.0167 & 0.0053 & 1.331 & 0.009 \\ [0.35,0.4) & [6.0,6.3) & 73 & 0.7796 & 0.0221 & 0.0068 & 1.283 & 0.011 \\ [0.35,0.4) & [6.3,6.6) & 47 & 0.7828 & 0.0232 & 0.0075 & 1.277 & 0.012 \\ [0.35,0.4) & [6.9,7.5) & 19 & 0.7659 & 0.0476 & 0.0091 & 1.306 & 0.016 \\ [0.35,0.4) & [7.5,8.7) & 8 & 0.6464 & 0.0596 & 0.0164 & 1.547 & 0.039 \\ [0.4,0.45) & [4.2,4.5) & 727 & 0.7649 & 0.0067 & 0.0033 & 1.307 & 0.006 \\ [0.4,0.45) & [4.8,5.1) & 455 & 0.7405 & 0.0071 & 0.0030 & 1.350 & 0.006 \\ [0.4,0.45) & [4.8,5.1) & 455 & 0.7405 & 0.0071 & 0.0041 & 1.375 & 0.008 \\ [0.4,0.45) & [5.1,5.4) & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ [0.4,0.45) & [5.1,5.4) & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ [0.4,0.45) & [5.1,5.4) & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ [0.4,0.45) & [5.1,5.4) & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ [0.4,0.45) & [5.1,5.4) & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ [0.4,0.45) & [5.1,5.4) & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ [0.4,0.45) & [5.1,5.4) & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ [0.4,0.45) & [5.1,5.4) & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ [0.4,0.45) & [5.1,5.4) & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ [0.4,0.45) & [5.1,5.4) & 288 & 0.7271 & 0.0091 & 0.00$                                                                                                                                                                                                                                | [0.3, 0.35)              | [5.4, 5.7)                  | 209                 | 0.7093       | 0.0112                                | 0.0046                              | 1.410          | 0.009                  |
| $ \begin{bmatrix} [0.3,0.35) & [6.3,6.6) & 46 & 0.7800 & 0.0265 & 0.0077 & 1.282 & 0.013 \\ [0.3,0.35) & [6.6,6.9) & 25 & 0.7720 & 0.0154 & 0.0113 & 1.295 & 0.019 \\ [0.3,0.35) & [6.9,7.5) & 19 & 0.7341 & 0.0488 & 0.0124 & 1.362 & 0.023 \\ [0.3,0.35) & [7.5,8.7) & 10 & 0.7321 & 0.0629 & 0.0118 & 1.366 & 0.022 \\ [0.35,0.4) & [4.2,4.5) & 681 & 0.8006 & 0.0077 & 0.0034 & 1.249 & 0.005 \\ [0.35,0.4) & [4.5,4.8) & 595 & 0.7260 & 0.0078 & 0.0034 & 1.377 & 0.006 \\ [0.35,0.4) & [4.8,5.1) & 460 & 0.7454 & 0.0067 & 0.0035 & 1.342 & 0.006 \\ [0.35,0.4) & [5.1,5.4) & 334 & 0.7731 & 0.0085 & 0.0039 & 1.293 & 0.007 \\ [0.35,0.4) & [5.4,5.7) & 172 & 0.7554 & 0.0132 & 0.0044 & 1.324 & 0.008 \\ [0.35,0.4) & [5.7,6.0) & 129 & 0.7513 & 0.0167 & 0.0053 & 1.331 & 0.009 \\ [0.35,0.4) & [6.0,6.3) & 73 & 0.7796 & 0.0221 & 0.0068 & 1.283 & 0.011 \\ [0.35,0.4) & [6.3,6.6) & 47 & 0.7828 & 0.0232 & 0.0075 & 1.277 & 0.012 \\ [0.35,0.4) & [6.6,6.9) & 22 & 0.7455 & 0.0288 & 0.0119 & 1.341 & 0.021 \\ [0.35,0.4) & [6.9,7.5) & 19 & 0.7659 & 0.0476 & 0.0091 & 1.306 & 0.016 \\ [0.35,0.4) & [7.5,8.7) & 8 & 0.6464 & 0.0596 & 0.0164 & 1.547 & 0.039 \\ [0.4,0.45) & [4.2,4.5) & 727 & 0.7649 & 0.0067 & 0.0033 & 1.307 & 0.006 \\ [0.4,0.45) & [4.8,5.1) & 455 & 0.7405 & 0.0071 & 0.0030 & 1.350 & 0.006 \\ [0.4,0.45) & [4.8,5.1) & 455 & 0.7405 & 0.0071 & 0.0031 & 1.400 & 0.006 \\ [0.4,0.45) & [4.8,5.1) & 455 & 0.7405 & 0.0071 & 0.0031 & 1.350 & 0.006 \\ [0.4,0.45) & [5.1,5.4) & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [0.3, 0.35)              | [5.7, 6.0)                  | 100                 | 0.7073       | 0.0227                                | 0.0061                              | 1.414          | 0.012                  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [0.3, 0.35)              | [6.0, 6.3)                  | 63                  | 0.7262       | 0.0219                                | 0.0081                              | 1.377          | 0.015                  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [0.3, 0.35)              | [6.3, 6.6)                  | 46                  | 0.7800       | 0.0265                                | 0.0077                              | 1.282          | 0.013                  |
| $ \begin{bmatrix} [0.3, 0.35) & [7.5, 8.7) & 10 & 0.7321 & 0.0629 & 0.0118 & 1.366 & 0.022 \\ [0.35, 0.4) & [4.2, 4.5) & 681 & 0.8006 & 0.0077 & 0.0034 & 1.249 & 0.005 \\ [0.35, 0.4) & [4.5, 4.8) & 595 & 0.7260 & 0.0078 & 0.0034 & 1.377 & 0.006 \\ [0.35, 0.4) & [4.8, 5.1) & 460 & 0.7454 & 0.0067 & 0.0035 & 1.342 & 0.006 \\ [0.35, 0.4) & [5.1, 5.4) & 334 & 0.7731 & 0.0085 & 0.0039 & 1.293 & 0.007 \\ [0.35, 0.4) & [5.4, 5.7) & 172 & 0.7554 & 0.0132 & 0.0044 & 1.324 & 0.008 \\ [0.35, 0.4) & [5.7, 6.0) & 129 & 0.7513 & 0.0167 & 0.0053 & 1.331 & 0.009 \\ [0.35, 0.4) & [6.0, 6.3) & 73 & 0.7796 & 0.0221 & 0.0068 & 1.283 & 0.011 \\ [0.35, 0.4) & [6.3, 6.6) & 47 & 0.7828 & 0.0232 & 0.0075 & 1.277 & 0.012 \\ [0.35, 0.4) & [6.6, 6.9) & 22 & 0.7455 & 0.0288 & 0.0119 & 1.341 & 0.021 \\ [0.35, 0.4) & [6.9, 7.5) & 19 & 0.7659 & 0.0476 & 0.0091 & 1.306 & 0.016 \\ [0.35, 0.4) & [7.5, 8.7) & 8 & 0.6464 & 0.0596 & 0.0164 & 1.547 & 0.039 \\ [0.4, 0.45) & [4.2, 4.5) & 727 & 0.7649 & 0.0067 & 0.0033 & 1.307 & 0.006 \\ [0.4, 0.45) & [4.8, 5.1) & 455 & 0.7405 & 0.0071 & 0.0030 & 1.350 & 0.006 \\ [0.4, 0.45) & [5.1, 5.4) & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [0.3, 0.35)              | [6.6, 6.9)                  | 25                  | 0.7720       | 0.0154                                | 0.0113                              | 1.295          | 0.019                  |
| $ \begin{bmatrix} 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.45, 4.8 \\ 0.595 \\ 0.7260 \\ 0.0078 \\ 0.0078 \\ 0.0078 \\ 0.0034 \\ 0.0034 \\ 0.0034 \\ 1.377 \\ 0.006 \\ 0.006 \\ 0.0078 \\ 0.0034 \\ 1.377 \\ 0.006 \\ 0.006 \\ 0.0078 \\ 0.0034 \\ 1.377 \\ 0.006 \\ 0.006 \\ 0.0035 \\ 0.0035 \\ 1.342 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.0078 \\ 0.0034 \\ 0.0034 \\ 1.377 \\ 0.006 \\ 0.0035 \\ 0.0035 \\ 1.342 \\ 0.006 \\ 0.007 \\ 0.0035 \\ 0.0039 \\ 0.007 \\ 0.0035 \\ 0.0039 \\ 0.007 \\ 0.007 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\$ | [0.3, 0.35)              | [6.9, 7.5)                  | 19                  | 0.7341       | 0.0488                                | 0.0124                              | 1.362          | 0.023                  |
| $ \begin{bmatrix} 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0$                                                                                 | - /                      | [7.5, 8.7)                  |                     |              | 0.0629                                | 0.0118                              |                |                        |
| $ \begin{bmatrix} 0.35, 0.4 ) & [4.8, 5.1) & 460 & 0.7454 & 0.0067 & 0.0035 & 1.342 & 0.006 \\ [0.35, 0.4) & [5.1, 5.4) & 334 & 0.7731 & 0.0085 & 0.0039 & 1.293 & 0.007 \\ [0.35, 0.4) & [5.4, 5.7) & 172 & 0.7554 & 0.0132 & 0.0044 & 1.324 & 0.008 \\ [0.35, 0.4) & [5.7, 6.0) & 129 & 0.7513 & 0.0167 & 0.0053 & 1.331 & 0.009 \\ [0.35, 0.4) & [6.0, 6.3) & 73 & 0.7796 & 0.0221 & 0.0068 & 1.283 & 0.011 \\ [0.35, 0.4) & [6.3, 6.6) & 47 & 0.7828 & 0.0232 & 0.0075 & 1.277 & 0.012 \\ [0.35, 0.4) & [6.6, 6.9) & 22 & 0.7455 & 0.0288 & 0.0119 & 1.341 & 0.021 \\ [0.35, 0.4) & [6.9, 7.5) & 19 & 0.7659 & 0.0476 & 0.0091 & 1.306 & 0.016 \\ [0.35, 0.4) & [7.5, 8.7) & 8 & 0.6464 & 0.0596 & 0.0164 & 1.547 & 0.039 \\ [0.4, 0.45) & [4.2, 4.5) & 727 & 0.7649 & 0.0067 & 0.0033 & 1.307 & 0.006 \\ [0.4, 0.45) & [4.5, 4.8) & 571 & 0.7143 & 0.0110 & 0.0031 & 1.400 & 0.006 \\ [0.4, 0.45) & [4.8, 5.1) & 455 & 0.7405 & 0.0071 & 0.0030 & 1.350 & 0.006 \\ [0.4, 0.45) & [5.1, 5.4) & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.35, 0.4)              | [4.2, 4.5)                  |                     | 0.8006       | 0.0077                                | 0.0034                              |                |                        |
| $ \begin{bmatrix} 0.35, 0.4) & [5.1, 5.4) & 334 & 0.7731 & 0.0085 & 0.0039 & 1.293 & 0.007 \\ [0.35, 0.4) & [5.4, 5.7) & 172 & 0.7554 & 0.0132 & 0.0044 & 1.324 & 0.008 \\ [0.35, 0.4) & [5.7, 6.0) & 129 & 0.7513 & 0.0167 & 0.0053 & 1.331 & 0.009 \\ [0.35, 0.4) & [6.0, 6.3) & 73 & 0.7796 & 0.0221 & 0.0068 & 1.283 & 0.011 \\ [0.35, 0.4) & [6.3, 6.6) & 47 & 0.7828 & 0.0232 & 0.0075 & 1.277 & 0.012 \\ [0.35, 0.4) & [6.6, 6.9) & 22 & 0.7455 & 0.0288 & 0.0119 & 1.341 & 0.021 \\ [0.35, 0.4) & [6.9, 7.5) & 19 & 0.7659 & 0.0476 & 0.0091 & 1.306 & 0.016 \\ [0.35, 0.4) & [7.5, 8.7) & 8 & 0.6464 & 0.0596 & 0.0164 & 1.547 & 0.039 \\ [0.4, 0.45) & [4.2, 4.5) & 727 & 0.7649 & 0.0067 & 0.0033 & 1.307 & 0.006 \\ [0.4, 0.45) & [4.5, 4.8) & 571 & 0.7143 & 0.0110 & 0.0031 & 1.400 & 0.006 \\ [0.4, 0.45) & [4.8, 5.1) & 455 & 0.7405 & 0.0071 & 0.0030 & 1.350 & 0.006 \\ [0.4, 0.45) & [5.1, 5.4) & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 - /                    | [4.5, 4.8)                  | 595                 | 0.7260       |                                       |                                     | 1.377          |                        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | ! -                         |                     | 0.7454       |                                       | 0.0035                              | 1.342          | 1                      |
| $ \begin{bmatrix} 0.35,  0.4 \rangle & [5.7,  6.0) \\ [0.35,  0.4) & [6.0,  6.3) \\ [0.35,  0.4) & [6.3,  6.6) \\ [0.35,  0.4) & [6.3,  6.6) \\ [0.35,  0.4) & [6.6,  6.9) \\ [0.35,  0.4) & [6.6,  6.9) \\ [0.35,  0.4) & [6.9,  7.5) \\ [0.35,  0.4) & [7.5,  8.7) \\ [0.35,  0.4) & [7.5,  8.7) \\ [0.35,  0.4) & [7.5,  8.7) \\ [0.35,  0.4) & [7.5,  8.7) \\ [0.35,  0.4) & [7.5,  8.7) \\ [0.4,  0.45) & [4.2,  4.5) \\ [0.4,  0.45) & [4.5,  4.8) \\ [0.4,  0.45) & [4.8,  5.1) \\ [0.4,  0.45) & [5.1,  5.4) \\ \end{bmatrix} \begin{array}{c} 129 & 0.7513 \\ 727 & 0.7649 \\ 0.0221 \\ 0.0232 \\ 0.0232 \\ 0.0232 \\ 0.0075 \\ 0.0288 \\ 0.0119 \\ 0.0091 \\ 0.0091 \\ 0.0091 \\ 0.0091 \\ 0.0091 \\ 0.0031 \\ 0.0030 \\ 1.350 \\ 0.0060 \\ 0.0060 \\ 0.0060 \\ 0.0060 \\ 0.0080 \\ 0.0060 \\ 0.0080 \\ 0.0080 \\ 0.0081 \\ 0.0091 \\ 0.0091 \\ 0.0091 \\ 0.0091 \\ 0.0091 \\ 0.0091 \\ 0.0091 \\ 0.0091 \\ 0.0091 \\ 0.0091 \\ 0.0091 \\ 0.0091 \\ 0.0091 \\ 0.0090 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080 \\ 0.0080$                                                                    | [0.35, 0.4)              | [5.1, 5.4)                  | 334                 |              | 0.0085                                | 0.0039                              |                | 1                      |
| $ \begin{bmatrix} 0.35,  0.4 \rangle & \begin{bmatrix} 6.0,  6.3 \rangle & 73 & 0.7796 & 0.0221 & 0.0068 & 1.283 & 0.011 \\ 0.35,  0.4 \rangle & \begin{bmatrix} 6.3,  6.6 \rangle & 47 & 0.7828 & 0.0232 & 0.0075 & 1.277 & 0.012 \\ 0.35,  0.4 \rangle & \begin{bmatrix} 6.6,  6.9 \rangle & 22 & 0.7455 & 0.0288 & 0.0119 & 1.341 & 0.021 \\ 0.35,  0.4 \rangle & \begin{bmatrix} 6.9,  7.5 \rangle & 19 & 0.7659 & 0.0476 & 0.0091 & 1.306 & 0.016 \\ 0.35,  0.4 \rangle & \begin{bmatrix} 7.5,  8.7 \rangle & 8 & 0.6464 & 0.0596 & 0.0164 & 1.547 & 0.039 \\ 0.4,  0.45 \rangle & \begin{bmatrix} 4.2,  4.5 \rangle & 727 & 0.7649 & 0.0067 & 0.0033 & 1.307 & 0.006 \\ 0.4,  0.45 \rangle & \begin{bmatrix} 4.5,  4.8 \rangle & 571 & 0.7143 & 0.0110 & 0.0031 & 1.400 & 0.006 \\ 0.4,  0.45 \rangle & \begin{bmatrix} 4.8,  5.1 \rangle & 455 & 0.7405 & 0.0071 & 0.0030 & 1.350 & 0.006 \\ 0.4,  0.45 \rangle & \begin{bmatrix} 5.1,  5.4 \rangle & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ 0.4,  0.45 \rangle & \begin{bmatrix} 5.1,  5.4 \rangle & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ 0.008 \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 - /                    | 1 -                         |                     |              |                                       |                                     |                |                        |
| $ \begin{bmatrix} 0.35,  0.4 \rangle & \begin{bmatrix} 6.3,  6.6 \rangle & 47 & 0.7828 & 0.0232 & 0.0075 & 1.277 & 0.012 \\ [0.35,  0.4 \rangle & \begin{bmatrix} 6.6,  6.9 \rangle & 22 & 0.7455 & 0.0288 & 0.0119 & 1.341 & 0.021 \\ [0.35,  0.4 \rangle & \begin{bmatrix} 6.9,  7.5 \rangle & 19 & 0.7659 & 0.0476 & 0.0091 & 1.306 & 0.016 \\ [0.35,  0.4 \rangle & \begin{bmatrix} 7.5,  8.7 \rangle & 8 & 0.6464 & 0.0596 & 0.0164 & 1.547 & 0.039 \\ [0.4,  0.45 \rangle & \begin{bmatrix} 4.2,  4.5 \rangle & 727 & 0.7649 & 0.0067 & 0.0033 & 1.307 & 0.006 \\ [0.4,  0.45 \rangle & \begin{bmatrix} 4.5,  4.8 \rangle & 571 & 0.7143 & 0.0110 & 0.0031 & 1.400 & 0.006 \\ [0.4,  0.45 \rangle & \begin{bmatrix} 4.8,  5.1 \rangle & 455 & 0.7405 & 0.0071 & 0.0030 & 1.350 & 0.006 \\ [0.4,  0.45 \rangle & \begin{bmatrix} 5.1,  5.4 \rangle & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | 1 = -                       |                     |              |                                       |                                     |                |                        |
| $ \begin{bmatrix} 0.35,  0.4 \rangle & \begin{bmatrix} 6.6,  6.9 \rangle & 22 & 0.7455 & 0.0288 & 0.0119 & 1.341 & 0.021 \\ [0.35,  0.4 \rangle & [6.9,  7.5 \rangle & 19 & 0.7659 & 0.0476 & 0.0091 & 1.306 & 0.016 \\ [0.35,  0.4 \rangle & [7.5,  8.7 \rangle & 8 & 0.6464 & 0.0596 & 0.0164 & 1.547 & 0.039 \\ [0.4,  0.45 \rangle & [4.2,  4.5 \rangle & 727 & 0.7649 & 0.0067 & 0.0033 & 1.307 & 0.006 \\ [0.4,  0.45 \rangle & [4.5,  4.8 \rangle & 571 & 0.7143 & 0.0110 & 0.0031 & 1.400 & 0.006 \\ [0.4,  0.45 \rangle & [4.8,  5.1 \rangle & 455 & 0.7405 & 0.0071 & 0.0030 & 1.350 & 0.006 \\ [0.4,  0.45 \rangle & [5.1,  5.4 \rangle & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ \hline \end{tabular} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 -                      | /                           |                     |              |                                       |                                     |                |                        |
| $ \begin{bmatrix} 0.35, 0.4) & [6.9, 7.5) & 19 & 0.7659 & 0.0476 & 0.0091 & 1.306 & 0.016 \\ [0.35, 0.4) & [7.5, 8.7) & 8 & 0.6464 & 0.0596 & 0.0164 & 1.547 & 0.039 \\ [0.4, 0.45) & [4.2, 4.5) & 727 & 0.7649 & 0.0067 & 0.0033 & 1.307 & 0.006 \\ [0.4, 0.45) & [4.5, 4.8) & 571 & 0.7143 & 0.0110 & 0.0031 & 1.400 & 0.006 \\ [0.4, 0.45) & [4.8, 5.1) & 455 & 0.7405 & 0.0071 & 0.0030 & 1.350 & 0.006 \\ [0.4, 0.45) & [5.1, 5.4) & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 ' /                    | [6.3, 6.6)                  |                     |              |                                       |                                     |                |                        |
| $ \begin{bmatrix} 0.35,  0.4) & [7.5,  8.7) & 8 & 0.6464 & 0.0596 & 0.0164 & 1.547 & 0.039 \\ [0.4,  0.45) & [4.2,  4.5) & 727 & 0.7649 & 0.0067 & 0.0033 & 1.307 & 0.006 \\ [0.4,  0.45) & [4.5,  4.8) & 571 & 0.7143 & 0.0110 & 0.0031 & 1.400 & 0.006 \\ [0.4,  0.45) & [4.8,  5.1) & 455 & 0.7405 & 0.0071 & 0.0030 & 1.350 & 0.006 \\ [0.4,  0.45) & [5.1,  5.4) & 288 & 0.7271 & 0.0091 & 0.0041 & 1.375 & 0.008 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 ' /                    | · '                         |                     |              |                                       |                                     |                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 - /                    | , ,                         |                     |              |                                       |                                     |                | 1                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 - /                    | ,                           |                     |              |                                       |                                     |                | 1                      |
| [0.4, 0.45)     [4.8, 5.1)     455     0.7405     0.0071     0.0030     1.350     0.006       [0.4, 0.45)     [5.1, 5.4)     288     0.7271     0.0091     0.0041     1.375     0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | , ,                         |                     |              |                                       |                                     |                | 1                      |
| [0.4, 0.45)     [5.1, 5.4)       288     0.7271       0.0091     0.0041       1.375     0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 - /                    | 1 = -                       |                     |              |                                       |                                     |                | 1                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 - /                    | _ · · · /                   |                     |              |                                       |                                     |                |                        |
| Continued on next name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [0.4, 0.45)              | [5.1, 5.4]                  | 288                 | 0.7271       | 0.0091                                | 0.0041                              |                | 0.008                  |

Table 1: (Continued)

| $x_F$ Bin   | Mass Bin $(\text{GeV}/c^2)$ | $N_{\text{events}}$ | $<\epsilon>$ | $\delta_{\mathrm{stat}} < \epsilon >$ | $\delta_{\mathrm{prop}} < \epsilon >$ | $1/<\epsilon>$ | $\delta(1/<\epsilon>)$ |
|-------------|-----------------------------|---------------------|--------------|---------------------------------------|---------------------------------------|----------------|------------------------|
| [0.4, 0.45) | [5.4, 5.7)                  | 207                 | 0.7540       | 0.0121                                | 0.0042                                | 1.326          | 0.007                  |
| [0.4, 0.45) | [5.7, 6.0)                  | 117                 | 0.7764       | 0.0172                                | 0.0052                                | 1.288          | 0.009                  |
| [0.4, 0.45) | [6.0, 6.3)                  | 87                  | 0.7993       | 0.0136                                | 0.0058                                | 1.251          | 0.009                  |
| [0.4, 0.45) | [6.3, 6.6)                  | 50                  | 0.7329       | 0.0239                                | 0.0083                                | 1.364          | 0.015                  |
| [0.4, 0.45) | [6.6, 6.9)                  | 25                  | 0.8221       | 0.0238                                | 0.0087                                | 1.216          | 0.013                  |
| [0.4, 0.45) | [6.9, 7.5)                  | 22                  | 0.7415       | 0.0401                                | 0.0095                                | 1.349          | 0.017                  |
| [0.4, 0.45) | [7.5, 8.7)                  | 8                   | 0.8233       | 0.0525                                | 0.0100                                | 1.215          | 0.015                  |
| [0.45, 0.5) | [4.2, 4.5)                  | 748                 | 0.7659       | 0.0067                                | 0.0029                                | 1.306          | 0.005                  |
| [0.45, 0.5) | [4.5, 4.8)                  | 616                 | 0.7536       | 0.0055                                | 0.0026                                | 1.327          | 0.005                  |
| [0.45, 0.5) | [4.8, 5.1)                  | 417                 | 0.7138       | 0.0078                                | 0.0033                                | 1.401          | 0.007                  |
| [0.45, 0.5) | [5.1, 5.4)                  | 271                 | 0.7484       | 0.0116                                | 0.0039                                | 1.336          | 0.007                  |
| [0.45, 0.5) | [5.4, 5.7)                  | 181                 | 0.7800       | 0.0108                                | 0.0047                                | 1.282          | 0.008                  |
| [0.45, 0.5) | [5.7, 6.0)                  | 113                 | 0.7730       | 0.0153                                | 0.0053                                | 1.294          | 0.009                  |
| [0.45, 0.5) | [6.0, 6.3)                  | 64                  | 0.7775       | 0.0264                                | 0.0070                                | 1.286          | 0.012                  |
| [0.45, 0.5) | [6.3, 6.6)                  | 54                  | 0.7185       | 0.0182                                | 0.0080                                | 1.392          | 0.015                  |
| [0.45, 0.5) | [6.6, 6.9)                  | 19                  | 0.7740       | 0.0347                                | 0.0134                                | 1.292          | 0.022                  |
| [0.45, 0.5) | [6.9, 7.5)                  | 29                  | 0.7864       | 0.0231                                | 0.0063                                | 1.272          | 0.010                  |
| [0.45, 0.5) | [7.5, 8.7)                  | 8                   | 0.8275       | 0.0459                                | 0.0110                                | 1.208          | 0.016                  |
| [0.5, 0.55) | [4.2, 4.5)                  | 721                 | 0.6792       | 0.0072                                | 0.0033                                | 1.472          | 0.007                  |
| [0.5, 0.55) | [4.5, 4.8)                  | 487                 | 0.7263       | 0.0070                                | 0.0032                                | 1.377          | 0.006                  |
| [0.5, 0.55) | [4.8, 5.1)                  | 336                 | 0.7164       | 0.0103                                | 0.0035                                | 1.396          | 0.007                  |
| [0.5, 0.55) | [5.1, 5.4)                  | 245                 | 0.7580       | 0.0115                                | 0.0038                                | 1.319          | 0.007                  |
| [0.5, 0.55) | [5.4, 5.7)                  | 170                 | 0.7682       | 0.0086                                | 0.0041                                | 1.302          | 0.007                  |
| [0.5, 0.55) | [5.7, 6.0)                  | 89                  | 0.7787       | 0.0151                                | 0.0059                                | 1.284          | 0.010                  |
| [0.5, 0.55) | [6.0, 6.3)                  | 49                  | 0.7067       | 0.0271                                | 0.0088                                | 1.415          | 0.018                  |
| [0.5, 0.55) | [6.3, 6.6)                  | 42                  | 0.8119       | 0.0204                                | 0.0075                                | 1.232          | 0.011                  |
| [0.5, 0.55) | [6.6, 6.9)                  | 20                  | 0.7857       | 0.0256                                | 0.0124                                | 1.273          | 0.020                  |
| [0.5, 0.55) | [6.9, 7.5)                  | 15                  | 0.8274       | 0.0461                                | 0.0099                                | 1.209          | 0.015                  |
| [0.5, 0.55) | [7.5, 8.7)                  | 11                  | 0.7586       | 0.0439                                | 0.0102                                | 1.318          | 0.018                  |
| [0.55, 0.6) | [4.2, 4.5)                  | 565                 | 0.7673       | 0.0076                                | 0.0031                                | 1.303          | 0.005                  |
| [0.55, 0.6) | [4.5, 4.8)                  | 448                 | 0.7441       | 0.0071                                | 0.0033                                | 1.344          | 0.006                  |
| [0.55, 0.6) | [4.8, 5.1)                  | 286                 | 0.7291       | 0.0110                                | 0.0041                                | 1.372          | 0.008                  |
| [0.55, 0.6) | [5.1, 5.4)                  | 181                 | 0.7664       | 0.0133                                | 0.0044                                | 1.305          | 0.008                  |
| [0.55, 0.6) | [5.4, 5.7)                  | 111                 | 0.7781       | 0.0176                                | 0.0056                                | 1.285          | 0.009                  |
| [0.55, 0.6) | [5.7, 6.0)                  | 71                  | 0.7315       | 0.0163                                | 0.0060                                | 1.367          | 0.011                  |
| [0.55, 0.6) | [6.0, 6.3)                  | 52                  | 0.8107       | 0.0221                                | 0.0067                                | 1.233          | 0.010                  |
| [0.55, 0.6) | [6.3, 6.6)                  | 26                  | 0.7791       | 0.0290                                | 0.0098                                | 1.284          | 0.016                  |
| [0.55, 0.6) | [6.6, 6.9)                  | 18                  | 0.8203       | 0.0334                                | 0.0111                                | 1.219          | 0.016                  |
| [0.55, 0.6) | [6.9, 7.5)                  | 17                  | 0.7324       | 0.0504                                | 0.0101                                | 1.365          | 0.019                  |
| [0.55, 0.6) | [7.5, 8.7)                  | 5                   | 0.7910       | 0.0674                                | 0.0155                                | 1.264          | 0.025                  |
| [0.6, 0.65) | [4.2, 4.5)                  | 452                 | 0.7862       | 0.0083                                | 0.0032                                | 1.272          | 0.005                  |
| [0.6, 0.65) | [4.5, 4.8)                  | 289                 | 0.7690       | 0.0099                                | 0.0040                                | 1.300          | 0.007                  |
| [0.6, 0.65) | [4.8, 5.1)                  | 199                 | 0.7582       | 0.0102                                | 0.0048                                | 1.319          | 0.008                  |
| [0.6, 0.65) | [5.1, 5.4)                  | 130                 | 0.8185       | 0.0148                                | 0.0043                                | 1.222          | 0.006                  |
| [0.6, 0.65) | [5.4, 5.7)                  | 81                  | 0.8009       | 0.0162                                | 0.0060                                | 1.249          | 0.009                  |
| [0.6, 0.65) | [5.7, 6.0)                  | 59                  | 0.7266       | 0.0216                                | 0.0071                                | 1.376          | 0.013                  |
| [0.6, 0.65) | [6.0, 6.3)                  | 44                  | 0.8146       | 0.0258                                | 0.0078                                | 1.228          | 0.012                  |
| [0.6, 0.65) | [6.3, 6.6)                  | 27                  | 0.7482       | 0.0381                                | 0.0096                                | 1.336          | 0.017                  |

Table 1: (Continued)

| $x_F \operatorname{Bin}$ | Mass Bin $(\text{GeV}/c^2)$ | $N_{ m events}$ | $<\epsilon>$    | $\delta_{\mathrm{stat}} < \epsilon >$ | $\delta_{\mathrm{prop}} < \epsilon >$ | $1/<\epsilon>$ | $\delta(1/<\epsilon>)$ |
|--------------------------|-----------------------------|-----------------|-----------------|---------------------------------------|---------------------------------------|----------------|------------------------|
| [0.6, 0.65)              | [6.6, 6.9)                  | 13              | 0.9021          | 0.0308                                | 0.0081                                | 1.109          | 0.010                  |
| [0.6, 0.65)              | [6.9, 7.5)                  | 11              | 0.8028          | 0.0723                                | 0.0130                                | 1.246          | 0.020                  |
| [0.6, 0.65)              | [7.5, 8.7)                  | 4               | 0.8472          | 0.0841                                | 0.0193                                | 1.180          | 0.027                  |
| [0.65, 0.7)              | [4.2, 4.5)                  | 301             | 0.7887          | 0.0119                                | 0.0039                                | 1.268          | 0.006                  |
| [0.65, 0.7)              | [4.5, 4.8)                  | 220             | 0.7684          | 0.0093                                | 0.0045                                | 1.301          | 0.008                  |
| [0.65, 0.7)              | [4.8, 5.1)                  | 131             | 0.8002          | 0.0143                                | 0.0052                                | 1.250          | 0.008                  |
| [0.65, 0.7)              | [5.1, 5.4)                  | 102             | 0.7953          | 0.0134                                | 0.0054                                | 1.257          | 0.009                  |
| [0.65, 0.7)              | [5.4, 5.7)                  | 61              | 0.7377          | 0.0222                                | 0.0068                                | 1.356          | 0.013                  |
| [0.65, 0.7)              | [5.7, 6.0)                  | 33              | 0.8108          | 0.0310                                | 0.0094                                | 1.233          | 0.014                  |
| [0.65, 0.7)              | [6.0, 6.3)                  | 30              | 0.7968          | 0.0257                                | 0.0094                                | 1.255          | 0.014                  |
| [0.65, 0.7)              | [6.3, 6.6)                  | 9               | 0.7798          | 0.0237                                | 0.0030                                | 1.282          | 0.028                  |
| [0.65, 0.7)              | [6.6, 6.9)                  | 9               | 0.7736          | 0.0430                                | 0.0173                                | 1.187          | 0.020                  |
| [0.65, 0.7)              | [6.9, 7.5)                  | 15              | 0.7883          | 0.0302                                | 0.0161                                | 1.269          | 0.021                  |
| [0.65, 0.7)              | [7.5, 8.7)                  | 5               | 0.786           | 0.0219 $0.0548$                       | 0.0102                                | 12.717         | 6.635                  |
| [0.05, 0.7)              | [4.2, 4.5)                  | 190             | 0.7409          | 0.0348                                | 0.0410                                | 1.350          | 0.033                  |
| [0.7, 0.75)              | [4.2, 4.8)                  | 150             | 0.7409 $0.7718$ | 0.0125 $0.0132$                       | 0.0054 $0.0053$                       | 1.330          | 0.010                  |
| - /                      | 1 -                         | 97              | 0.7718          | 0.0152 $0.0169$                       | 0.0055                                | 1.290          | 0.009                  |
| [0.7, 0.75)              | [4.8, 5.1)                  | 53              |                 | 0.0109 $0.0206$                       |                                       |                | 1                      |
| [0.7, 0.75)              | [5.1, 5.4)                  | $\frac{33}{30}$ | 0.7841 $0.7500$ | 0.0200 $0.0398$                       | 0.0097                                | 1.275          | 0.016<br>0.020         |
| [0.7, 0.75)              | [5.4, 5.7)                  |                 |                 |                                       | 0.0112                                | 1.333          |                        |
| [0.7, 0.75)              | [5.7, 6.0)                  | 20              | 0.9249          | 0.0696                                | 0.0161                                | 1.081          | 0.019                  |
| [0.7, 0.75)              | [6.0, 6.3)                  | 18              | 0.7275          | 0.0573                                | 0.0256                                | 1.375          | 0.048                  |
| [0.7, 0.75)              | [6.3, 6.6)                  | 12              | 0.8809          | 0.1134                                | 0.0458                                | 1.135          | 0.059                  |
| [0.7, 0.75)              | [6.6, 6.9)                  | 7               | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.7, 0.75)              | [6.9, 7.5)                  | 3               | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.7, 0.75)              | [7.5, 8.7)                  | 2               | 0.0000          | 0.0000                                | 0.0000                                | 1 400          | - 0.010                |
| [0.75, 0.8)              | [4.2, 4.5)                  | 139             | 0.7004          | 0.0245                                | 0.0094                                | 1.428          | 0.019                  |
| [0.75, 0.8)              | [4.5, 4.8)                  | 60              | 0.8745          | 0.0492                                | 0.0087                                | 1.144          | 0.011                  |
| [0.75, 0.8)              | [4.8, 5.1)                  | 44              | 0.0809          | 0.0295                                | 0.0125                                | 12.360         | 1.911                  |
| [0.75, 0.8)              | [5.1, 5.4)                  | 29              | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.75, 0.8)              | [5.4, 5.7)                  | 21              | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.75, 0.8)              | [5.7, 6.0)                  | 17              | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.75, 0.8)              |                             | 16              | 0.0000          | 0.0000                                | 0.0000                                |                | _                      |
| [0.75, 0.8)              | [6.3, 6.6)                  | 5               | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.75, 0.8)              | [6.6, 6.9)                  | 3               | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.75, 0.8)              | [6.9, 7.5)                  | 1               | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.75, 0.8)              | [7.5, 8.7)                  | 3               | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85)              | [4.2, 4.5)                  | 59              | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85)              | [4.5, 4.8)                  | 39              | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85)              | [4.8, 5.1)                  | 24              | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85)              | [5.1, 5.4)                  | 12              | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85)              | [5.4, 5.7)                  | 10              | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85)              | [5.7, 6.0)                  | 8               | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85)              | [6.0, 6.3)                  | 1               | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85)              | [6.3, 6.6)                  | 1               | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85)              | [6.6, 6.9)                  | 3               | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85)              | [6.9, 7.5)                  | 2               | 0.0000          | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85)              | [7.5, 8.7)                  | 0               | _               |                                       | _                                     | _              | _                      |

## 5.2 Average Efficiency Calculations using RS67 all targets only

Table 2: Average Efficiency and Errors calculated for  $x_F$  and Mass bins using RS67 all targets

| $x_F \operatorname{Bin}$ | Mass Bin (GeV/ $c^2$ ) | $N_{ m events}$ | $<\epsilon>$ | $\delta_{ m stat} < \epsilon >$ | $\delta_{\mathrm{prop}} < \epsilon >$ | $1/<\epsilon>$ | $\delta(1/<\epsilon>)$ |
|--------------------------|------------------------|-----------------|--------------|---------------------------------|---------------------------------------|----------------|------------------------|
| [0.0, 0.05)              | [4.2, 4.5)             | 2               | 0.0000       | 0.0000                          | 0.0000                                |                | _                      |
| [0.0, 0.05)              | [4.5, 4.8)             | 33              | 0.1782       | 0.0465                          | 0.0140                                | 5.612          | 0.440                  |
| [0.0, 0.05)              | [4.8, 5.1)             | 133             | 0.7940       | 0.0451                          | 0.0120                                | 1.260          | 0.019                  |
| [0.0, 0.05)              | [5.1, 5.4)             | 200             | 0.6265       | 0.0107                          | 0.0127                                | 1.596          | 0.032                  |
| [0.0, 0.05)              | [5.4, 5.7)             | 207             | 0.6752       | 0.0150                          | 0.0067                                | 1.481          | 0.015                  |
| [0.0, 0.05)              | [5.7, 6.0)             | 147             | 0.6548       | 0.0230                          | 0.0079                                | 1.527          | 0.019                  |
| [0.0, 0.05)              | [6.0, 6.3)             | 109             | 0.6673       | 0.0207                          | 0.0093                                | 1.498          | 0.021                  |
| [0.0, 0.05)              | [6.3, 6.6)             | 56              | 0.6430       | 0.0260                          | 0.0144                                | 1.555          | 0.035                  |
| [0.0, 0.05)              | [6.6, 6.9)             | 28              | 0.7049       | 0.0198                          | 0.0147                                | 1.419          | 0.030                  |
| [0.0, 0.05)              | [6.9, 7.5)             | 29              | 0.6924       | 0.0390                          | 0.0132                                | 1.444          | 0.027                  |
| [0.0, 0.05)              | [7.5, 8.7)             | 4               | 0.7334       | 0.0395                          | 0.0217                                | 1.364          | 0.040                  |
| [0.05, 0.1)              | [4.2, 4.5)             | 10              | 0.0000       | 0.0000                          | 0.0000                                | _              | _                      |
| [0.05, 0.1)              | [4.5, 4.8)             | 113             | 0.3243       | 0.0329                          | 0.0147                                | 3.084          | 0.140                  |
| [0.05, 0.1)              | [4.8, 5.1)             | 261             | 0.5304       | 0.0193                          | 0.0101                                | 1.885          | 0.036                  |
| [0.05, 0.1)              | [5.1, 5.4)             | 321             | 0.6912       | 0.0217                          | 0.0061                                | 1.447          | 0.013                  |
| [0.05, 0.1)              | [5.4, 5.7)             | 269             | 0.6654       | 0.0104                          | 0.0067                                | 1.503          | 0.015                  |
| [0.05, 0.1)              | [5.7, 6.0)             | 215             | 0.7406       | 0.0113                          | 0.0063                                | 1.350          | 0.011                  |
| [0.05, 0.1)              | [6.0, 6.3)             | 128             | 0.7174       | 0.0177                          | 0.0063                                | 1.394          | 0.012                  |
| [0.05, 0.1)              | [6.3, 6.6)             | 85              | 0.6176       | 0.0183                          | 0.0098                                | 1.619          | 0.026                  |
| [0.05, 0.1)              | [6.6, 6.9)             | 37              | 0.6574       | 0.0347                          | 0.0124                                | 1.521          | 0.029                  |
| [0.05, 0.1)              | [6.9, 7.5)             | 31              | 0.7089       | 0.0288                          | 0.0095                                | 1.411          | 0.019                  |
| [0.05, 0.1)              | [7.5, 8.7)             | 14              | 0.6354       | 0.0618                          | 0.0152                                | 1.574          | 0.038                  |
| [0.1, 0.15)              | [4.2, 4.5)             | 96              | 8.7853       | 1.6997                          | 0.0093                                | 0.114          | 0.000                  |
| [0.1, 0.15)              | [4.5, 4.8)             | 316             | 0.5394       | 0.0168                          | 0.0095                                | 1.854          | 0.033                  |
| [0.1, 0.15)              | [4.8, 5.1)             | 502             | 0.6230       | 0.0078                          | 0.0075                                | 1.605          | 0.019                  |
| [0.1, 0.15)              | [5.1, 5.4)             | 486             | 0.6083       | 0.0084                          | 0.0056                                | 1.644          | 0.015                  |
| [0.1, 0.15)              | [5.4, 5.7)             | 354             | 0.6480       | 0.0116                          | 0.0046                                | 1.543          | 0.011                  |
| [0.1, 0.15)              | [5.7, 6.0)             | 236             | 0.6728       | 0.0120                          | 0.0054                                | 1.486          | 0.012                  |
| [0.1, 0.15)              | [6.0, 6.3)             | 170             | 0.7252       | 0.0152                          | 0.0056                                | 1.379          | 0.011                  |
| [0.1, 0.15)              | [6.3, 6.6)             | 103             | 0.7499       | 0.0141                          | 0.0066                                | 1.334          | 0.012                  |
| [0.1, 0.15)              | [6.6, 6.9)             | 58              | 0.7386       | 0.0168                          | 0.0079                                | 1.354          | 0.014                  |
| [0.1, 0.15)              | [6.9, 7.5)             | 34              | 0.7159       | 0.0235                          | 0.0081                                | 1.397          | 0.016                  |
| [0.1, 0.15)              | [7.5, 8.7)             | 18              | 0.6957       | 0.0249                          | 0.0096                                | 1.437          | 0.020                  |
| [0.15, 0.2)              | [4.2, 4.5)             | 311             | 1.2111       | 0.0601                          | 0.0063                                | 0.826          | 0.004                  |
| [0.15, 0.2)              | [4.5, 4.8)             | 643             | 0.7138       | 0.0109                          | 0.0066                                | 1.401          | 0.013                  |
| [0.15, 0.2)              | [4.8, 5.1)             | 807             | 0.5390       | 0.0059                          | 0.0046                                | 1.855          | 0.016                  |
| [0.15, 0.2)              | [5.1, 5.4)             | 687             | 0.6905       | 0.0071                          | 0.0039                                | 1.448          | 0.008                  |
| [0.15, 0.2)              | [5.4, 5.7)             | 424             | 0.7186       | 0.0111                          | 0.0042                                | 1.392          | 0.008                  |
| [0.15, 0.2)              | [5.7, 6.0)             | 346             | 0.7544       | 0.0092                          | 0.0043                                | 1.326          | 0.008                  |
| [0.15, 0.2)              | [6.0, 6.3)             | 209             | 0.7254       | 0.0113                          | 0.0047                                | 1.378          | 0.009                  |
| [0.15, 0.2)              | [6.3, 6.6)             | 131             | 0.7516       | 0.0180                          | 0.0058                                | 1.331          | 0.010                  |
| [0.15, 0.2)              | [6.6, 6.9)             | 59              | 0.7037       | 0.0260                          | 0.0088                                | 1.421          | 0.018                  |
| [0.15, 0.2)              | [6.9, 7.5)             | 42              | 0.6736       | 0.0217                          | 0.0082                                | 1.485          | 0.018                  |
| [0.15, 0.2)              | [7.5, 8.7)             | 20              | 0.6716       | 0.0468                          | 0.0107                                | 1.489          | 0.024                  |
| [0.2, 0.25)              | [4.2, 4.5)             | 748             | 0.5316       | 0.0105                          | 0.0064                                | 1.881          | 0.023                  |

Table 2: (Continued)

| $x_F$ Bin   | Mass Bin $(\text{GeV}/c^2)$ | $N_{\rm events}$ | $<\epsilon>$ | $\delta_{\mathrm{stat}} < \epsilon >$ | $\delta_{\mathrm{prop}} < \epsilon >$ | $1/<\epsilon>$ | $\delta(1/<\epsilon>)$ |
|-------------|-----------------------------|------------------|--------------|---------------------------------------|---------------------------------------|----------------|------------------------|
| [0.2, 0.25) | [4.5, 4.8)                  | 1069             | 0.5939       | 0.0081                                | 0.0038                                | 1.684          | 0.011                  |
| [0.2, 0.25) | [4.8, 5.1)                  | 1057             | 0.6847       | 0.0064                                | 0.0030                                | 1.460          | 0.006                  |
| [0.2, 0.25) | [5.1, 5.4)                  | 855              | 0.6653       | 0.0063                                | 0.0029                                | 1.503          | 0.007                  |
| [0.2, 0.25) | [5.4, 5.7)                  | 555              | 0.6937       | 0.0084                                | 0.0034                                | 1.441          | 0.007                  |
| [0.2, 0.25) | [5.7, 6.0)                  | 410              | 0.7840       | 0.0071                                | 0.0033                                | 1.276          | 0.005                  |
| [0.2, 0.25) | [6.0, 6.3)                  | 220              | 0.7241       | 0.0117                                | 0.0044                                | 1.381          | 0.008                  |
| [0.2, 0.25) | [6.3, 6.6)                  | 157              | 0.7457       | 0.0137                                | 0.0052                                | 1.341          | 0.009                  |
| [0.2, 0.25) | [6.6, 6.9)                  | 74               | 0.8240       | 0.0170                                | 0.0055                                | 1.214          | 0.008                  |
| [0.2, 0.25) | [6.9, 7.5)                  | 58               | 0.7418       | 0.0210                                | 0.0059                                | 1.348          | 0.011                  |
| [0.2, 0.25) | [7.5, 8.7)                  | 19               | 0.7242       | 0.0403                                | 0.0087                                | 1.381          | 0.017                  |
| [0.25, 0.3) | [4.2, 4.5)                  | 1455             | 0.7032       | 0.0062                                | 0.0038                                | 1.422          | 0.008                  |
| [0.25, 0.3) | [4.5, 4.8)                  | 1594             | 0.7156       | 0.0037                                | 0.0027                                | 1.397          | 0.005                  |
| [0.25, 0.3) | [4.8, 5.1)                  | 1239             | 0.7012       | 0.0070                                | 0.0024                                | 1.426          | 0.005                  |
| [0.25, 0.3) | [5.1, 5.4)                  | 989              | 0.7060       | 0.0054                                | 0.0026                                | 1.416          | 0.005                  |
| [0.25, 0.3) | [5.4, 5.7)                  | 692              | 0.7712       | 0.0068                                | 0.0028                                | 1.297          | 0.005                  |
| [0.25, 0.3) | [5.7, 6.0)                  | 361              | 0.7322       | 0.0088                                | 0.0035                                | 1.366          | 0.007                  |
| [0.25, 0.3) | [6.0, 6.3)                  | 252              | 0.7556       | 0.0073                                | 0.0038                                | 1.323          | 0.007                  |
| [0.25, 0.3) | [6.3, 6.6)                  | 151              | 0.7462       | 0.0149                                | 0.0044                                | 1.340          | 0.008                  |
| [0.25, 0.3) | [6.6, 6.9)                  | 70               | 0.7253       | 0.0213                                | 0.0089                                | 1.379          | 0.017                  |
| [0.25, 0.3) | [6.9, 7.5)                  | 91               | 0.7585       | 0.0174                                | 0.0048                                | 1.318          | 0.008                  |
| [0.25, 0.3) | [7.5, 8.7)                  | 20               | 0.6224       | 0.0411                                | 0.0098                                | 1.607          | 0.025                  |
| [0.3, 0.35) | [4.2, 4.5)                  | 2031             | 0.7482       | 0.0034                                | 0.0027                                | 1.337          | 0.005                  |
| [0.3, 0.35) | [4.5, 4.8)                  | 1923             | 0.7547       | 0.0045                                | 0.0020                                | 1.325          | 0.004                  |
| [0.3, 0.35) | [4.8, 5.1)                  | 1539             | 0.7174       | 0.0048                                | 0.0020                                | 1.394          | 0.004                  |
| [0.3, 0.35) | [5.1, 5.4)                  | 1090             | 0.7827       | 0.0046                                | 0.0020                                | 1.278          | 0.003                  |
| [0.3, 0.35) | [5.4, 5.7)                  | 714              | 0.7043       | 0.0060                                | 0.0025                                | 1.420          | 0.005                  |
| [0.3, 0.35) | [5.7, 6.0)                  | 414              | 0.7174       | 0.0106                                | 0.0031                                | 1.394          | 0.006                  |
| [0.3, 0.35) | [6.0, 6.3)                  | 258              | 0.7343       | 0.0106                                | 0.0040                                | 1.362          | 0.007                  |
| [0.3, 0.35) | [6.3, 6.6)                  | 157              | 0.7575       | 0.0148                                | 0.0046                                | 1.320          | 0.008                  |
| [0.3, 0.35) | [6.6, 6.9)                  | 99               | 0.7301       | 0.0133                                | 0.0065                                | 1.370          | 0.012                  |
| [0.3, 0.35) | [6.9, 7.5)                  | 70               | 0.7077       | 0.0212                                | 0.0061                                | 1.413          | 0.012                  |
| [0.3, 0.35) | [7.5, 8.7)                  | 27               | 0.7499       | 0.0345                                | 0.0069                                | 1.334          | 0.012                  |
| [0.35, 0.4) | [4.2, 4.5)                  | 2398             | 0.7980       | 0.0042                                | 0.0019                                | 1.253          | 0.003                  |
| [0.35, 0.4) | [4.5, 4.8)                  | 2088             | 0.7220       | 0.0043                                | 0.0018                                | 1.385          | 0.003                  |
| [0.35, 0.4) | [4.8, 5.1)                  | 1607             | 0.7414       | 0.0039                                | 0.0019                                | 1.349          | 0.003                  |
| [0.35, 0.4) | [5.1, 5.4)                  | 1157             | 0.7666       | 0.0044                                | 0.0021                                | 1.304          | 0.004                  |
| [0.35, 0.4) | [5.4, 5.7)                  | 683              | 0.7445       | 0.0069                                | 0.0023                                | 1.343          | 0.004                  |
| [0.35, 0.4) | [5.7, 6.0)                  | 448              | 0.7298       | 0.0094                                | 0.0030                                | 1.370          | 0.006                  |
| [0.35, 0.4) | [6.0, 6.3)                  | 269              | 0.7824       | 0.0100                                | 0.0035                                | 1.278          | 0.006                  |
| [0.35, 0.4) | [6.3, 6.6)                  | 158              | 0.7640       | 0.0141                                | 0.0043                                | 1.309          | 0.007                  |
| [0.35, 0.4) | [6.6, 6.9)                  | 99               | 0.7462       | 0.0140                                | 0.0061                                | 1.340          | 0.011                  |
| [0.35, 0.4) | [6.9, 7.5)                  | 85               | 0.7386       | 0.0213                                | 0.0045                                | 1.354          | 0.008                  |
| [0.35, 0.4) | [7.5, 8.7)                  | 27               | 0.7163       | 0.0294                                | 0.0075                                | 1.396          | 0.015                  |
| [0.4, 0.45) | [4.2, 4.5)                  | 2735             | 0.7463       | 0.0039                                | 0.0018                                | 1.340          | 0.003                  |
| [0.4, 0.45) | [4.5, 4.8)                  | 2092             | 0.6973       | 0.0058                                | 0.0016                                | 1.434          | 0.003                  |
| [0.4, 0.45) | [4.8, 5.1)                  | 1634             | 0.7308       | 0.0039                                | 0.0017                                | 1.368          | 0.003                  |
| [0.4, 0.45) | [5.1, 5.4)                  | 1035             | 0.7210       | 0.0047                                | 0.0022                                | 1.387          | 0.004                  |
| [0.4, 0.45) | [5.4, 5.7)                  | 700              | 0.7580       | 0.0062                                | 0.0022                                | 1.319          | 0.004                  |
|             |                             |                  |              |                                       |                                       | O 1            |                        |

Table 2: (Continued)

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                             |                     |              |                                       |                                       |                |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|---------------------|--------------|---------------------------------------|---------------------------------------|----------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $x_F$ Bin   | Mass Bin $(\text{GeV}/c^2)$ | $N_{\text{events}}$ | $<\epsilon>$ | $\delta_{\mathrm{stat}} < \epsilon >$ | $\delta_{\mathrm{prop}} < \epsilon >$ | $1/<\epsilon>$ | $\delta(1/<\epsilon>)$ |
| $ \begin{bmatrix} 0.4, 0.45 \\ 0.4, 0.45 \\ 0.6, 6.6, 0.9 \\ 0.9, 7.5 \\ 0.4, 0.45 \\ 0.6, 6.6, 0.9 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9, 7.5 \\ 0.9,$                                                                                                                                                                                  | [0.4, 0.45) | [5.7, 6.0)                  | 445                 | 0.7799       | 0.0095                                | 0.0027                                | 1.282          | 0.004                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [0.4, 0.45) | [6.0, 6.3)                  | 281                 | 0.7872       | 0.0093                                | 0.0036                                | 1.270          | 0.006                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [0.4, 0.45) | [6.3, 6.6)                  | 176                 | 0.7500       | 0.0120                                | 0.0044                                | 1.333          | 0.008                  |
| $ \begin{bmatrix} 0.4, 0.45 \\ 0.5, 0.5 \\ 14.2, 4.5 \\ 0.45, 0.5 \end{bmatrix} & \{ 24, 4.5 \\ 0.52 \\ 14.5, 4.5 \\ 0.45, 0.5 \} & \{ 4.5, 4.5 \\ 0.45, 0.5 \} & \{ 4.5, 4.5 \\ 0.45, 0.5 \} & \{ 4.5, 4.8 \\ 0.45, 0.5 \} & \{ 4.5, 4.8 \\ 0.45, 0.5 \} & \{ 4.8, 5.1 \\ 0.45, 0.5 \} & \{ 4.8, 5.1 \\ 0.45, 0.5 \} & \{ 4.8, 5.1 \\ 0.45, 0.5 \} & \{ 5.4, 5.7 \\ 0.45, 0.5 \} & \{ 5.4, 5.7 \\ 0.45, 0.5 \} & \{ 5.4, 5.7 \\ 0.45, 0.5 \} & \{ 5.4, 5.7 \\ 0.45, 0.5 \} & \{ 5.4, 5.7 \\ 0.45, 0.5 \} & \{ 5.4, 5.7 \\ 0.45, 0.5 \} & \{ 5.4, 5.7 \\ 0.45, 0.5 \} & \{ 5.4, 5.7 \\ 0.45, 0.5 \} & \{ 6.6, 6.3 \\ 0.45, 0.5 \} & \{ 6.6, 6.3 \\ 0.45, 0.5 \} & \{ 6.6, 6.3 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.45, 0.5 \} & \{ 6.6, 6.9 \\ 0.5, 0.55 \} & \{ 6.2, 6.8 \\ 0.40, 0.5, 0.55 \\ 0.50, 0.55 \} & \{ 6.2, 6.8 \\ 0.50, 0.55 \\ 0.50, 0.55 \} & \{ 5.4, 5.7 \\ 0.50, 0.55 \\ 0.50, 0.55 \} & \{ 5.4, 5.7 \\ 0.50, 0.55 \\ 0.50, 0.55 \} & \{ 6.6, 6.9 \\ 0.9 \} & \{ 1.22, 0.000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [0.4, 0.45) | [6.6, 6.9)                  | 98                  | 0.7921       | 0.0118                                | 0.0052                                | 1.262          | 0.008                  |
| $ \begin{bmatrix} 0.4, 0.45 & 7.5, 8.7 \\ 0.45, 0.5 & 4.2, 4.5 \\ 1.45, 0.45 & 2747 & 0.7502 & 0.0038 & 0.0016 & 1.333 & 0.003 \\ 0.45, 0.5 & 14.5, 4.8 & 2107 & 0.7542 & 0.0030 & 0.0014 & 1.326 & 0.003 \\ 0.45, 0.5 & 14.8, 5.1 & 1472 & 0.7112 & 0.0043 & 0.0018 & 1.406 & 0.004 \\ 0.45, 0.5 & 5.1, 5.4 & 1022 & 0.7414 & 0.0060 & 0.0021 & 1.349 & 0.004 \\ 0.45, 0.5 & 5.4, 5.7 & 633 & 0.7828 & 0.0057 & 0.0024 & 1.277 & 0.004 \\ 0.45, 0.5 & 5.4, 5.7 & 633 & 0.7828 & 0.0057 & 0.0024 & 1.277 & 0.004 \\ 0.45, 0.5 & 5.4, 5.7 & 633 & 0.7828 & 0.0057 & 0.0024 & 1.277 & 0.004 \\ 0.45, 0.5 & 6.0, 6.3 & 245 & 0.7938 & 0.0128 & 0.0033 & 1.260 & 0.005 \\ 0.45, 0.5 & 6.3, 6.6 & 162 & 0.7264 & 0.0103 & 0.0046 & 1.377 & 0.009 \\ 0.45, 0.5 & 6.3, 6.6 & 162 & 0.7264 & 0.0103 & 0.0046 & 1.269 & 0.011 \\ 0.45, 0.5 & 6.9, 7.5 & 87 & 0.7520 & 0.0179 & 0.0066 & 1.269 & 0.011 \\ 0.45, 0.5 & 7.5, 8.7 & 25 & 0.8017 & 0.0287 & 0.0068 & 1.247 & 0.011 \\ 0.45, 0.5 & 7.5, 8.7 & 25 & 0.8017 & 0.0287 & 0.0068 & 1.247 & 0.011 \\ 0.5, 0.55 & 14.2, 4.5 & 2527 & 0.6804 & 0.0038 & 0.0018 & 1.470 & 0.004 \\ 0.5, 0.55 & 14.8, 5.1 & 1272 & 0.7080 & 0.0054 & 0.0018 & 1.412 & 0.004 \\ 0.5, 0.55 & 15.4, 5.7 & 565 & 0.7536 & 0.0061 & 0.0024 & 1.327 & 0.004 \\ 0.5, 0.55 & 15.4, 5.7 & 565 & 0.7536 & 0.0061 & 0.0024 & 1.327 & 0.004 \\ 0.5, 0.55 & 15.4, 5.7 & 565 & 0.7536 & 0.0061 & 0.0024 & 1.327 & 0.004 \\ 0.5, 0.55 & 16.6, 6.9 & 91 & 0.8206 & 0.0042 & 0.0039 & 1.359 & 0.007 \\ 0.5, 0.55 & 6.3, 6.6 & 126 & 0.8077 & 0.0115 & 0.0045 & 1.238 & 0.007 \\ 0.5, 0.55 & 6.3, 6.6 & 126 & 0.8077 & 0.0115 & 0.0045 & 1.238 & 0.007 \\ 0.5, 0.55 & 16.4, 4.8 & 1505 & 0.7534 & 0.0042 & 0.0041 & 1.329 & 0.003 \\ 0.55, 0.6 & 14.8, 5.1 & 1037 & 0.7838 & 0.0062 & 0.0024 & 1.295 & 0.003 \\ 0.55, 0.6 & 15.4, 5.7 & 450 & 0.7584 & 0.0040 & 0.0017 & 1.329 & 0.003 \\ 0.55, 0.6 & 15.4, 5.4 & 1037 & 0.7585 & 0.0319 & 0.0084 & 1.442 & 0.017 \\ 0.55, 0.55 & 6.6, 6.9 & 91 & 0.8206 & 0.0124 & 0.0048 & 1.219 & 0.007 \\ 0.55, 0.55 & 6.6 & 6.9 & 7.5 & 58 & 0.7660 & 0.0242 & 0.0057 & 1.336 & 0.004 \\ 0.55, 0.6 & 15.4, 5.7 & 450 & 0.7585 $                                                                                                                                                                                                                                                                                                                                             | [0.4, 0.45) | [6.9, 7.5)                  | 91                  | 0.7787       | 0.0186                                | 0.0042                                | 1.284          | 0.007                  |
| $ \begin{bmatrix} 0.45, 0.5 \\ 0.45, 0.5 \\ 0.45, 0.5 \\ 0.45, 0.5 \\ 0.45, 0.5 \\ 0.45, 0.5 \\ 0.45, 0.5 \\ 0.48, 5.1 \\ 0.45, 0.5 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0$                                                                                                                                                                                                | [0.4, 0.45) | . ,                         | 24                  | 0.8029       | 0.0299                                | 0.0060                                | 1.245          | 0.009                  |
| $ \begin{bmatrix} 0.45, 0.5 &   4.5, 4.8 \\ 0.045, 0.5 &   4.8, 5.1 \\ 0.45, 0.5 &   4.8, 5.1 \\ 0.45, 0.5 &   5.1, 5.4 \\ 0.45, 0.5 &   5.1, 5.4 \\ 0.45, 0.5 &   5.1, 5.4 \\ 0.45, 0.5 &   5.1, 5.4 \\ 0.45, 0.5 &   5.4, 5.7 \\ 0.45, 0.5 &   5.4, 5.7 \\ 0.45, 0.5 &   5.4, 5.7 \\ 0.45, 0.5 &   5.4, 5.7 \\ 0.45, 0.5 &   6.0, 6.3 \\ 0.45, 0.5 &   6.0, 6.3 \\ 0.45, 0.5 &   6.0, 6.3 \\ 0.45, 0.5 &   6.0, 6.3 \\ 0.45, 0.5 &   6.0, 6.3 \\ 0.45, 0.5 &   6.0, 6.3 \\ 0.45, 0.5 &   6.0, 6.3 \\ 0.45, 0.5 &   6.3, 6.6 \\ 0.62, 0.7264 & 0.0103 & 0.0046 & 1.377 & 0.009 \\ 0.45, 0.5 &   6.6, 6.9 & 75 & 0.7881 & 0.0179 & 0.0066 & 1.269 & 0.011 \\ 0.45, 0.5 &   6.6, 6.9 & 75 & 0.7881 & 0.0179 & 0.0066 & 1.269 & 0.011 \\ 0.45, 0.5 &   6.9, 7.5 &   87 & 0.7520 & 0.0170 & 0.0041 & 1.330 & 0.007 \\ 0.45, 0.5 &   6.9, 7.5 &   87 & 0.7520 & 0.0170 & 0.0041 & 1.330 & 0.007 \\ 0.45, 0.5 &   6.9, 7.5 &   87 & 0.7520 & 0.0170 & 0.0041 & 1.330 & 0.007 \\ 0.5, 0.55 &   4.2, 4.5 &   2527 & 0.6804 & 0.0038 & 0.0018 & 1.470 & 0.004 \\ 0.5, 0.55 &   4.8, 5.1 &   1272 & 0.7080 & 0.0054 & 0.0018 & 1.412 & 0.004 \\ 0.5, 0.55 &   5.4, 5.7 &   565 & 0.7536 & 0.0061 & 0.0024 & 1.327 & 0.005 \\ 0.5, 0.55 &   5.4, 5.7 &   565 & 0.7536 & 0.0061 & 0.0024 & 1.327 & 0.005 \\ 0.5, 0.55 &   5.7, 6.0 &   333 & 0.7831 & 0.0082 & 0.0030 & 1.277 & 0.005 \\ 0.5, 0.55 &   6.0, 6.3 &   199 & 0.7361 & 0.0129 & 0.0039 & 1.359 & 0.007 \\ 0.5, 0.55 &   6.3, 6.6 &   126 & 0.8077 & 0.0115 & 0.0045 & 1.238 & 0.007 \\ 0.5, 0.55 &   6.3, 6.6 &   126 & 0.8077 & 0.0115 & 0.0045 & 1.238 & 0.007 \\ 0.5, 0.55 &   6.4, 5.7 &   25 & 0.6935 & 0.0319 & 0.0084 & 1.442 & 0.017 \\ 0.5, 0.55 &   6.4, 5.7 &   25 & 0.6935 & 0.0319 & 0.0084 & 1.442 & 0.017 \\ 0.5, 0.55 &   6.5, 6.9 &   91 & 0.8206 & 0.0124 & 0.0048 & 1.219 & 0.003 \\ 0.5, 0.55 &   6.5, 6.9 &   91 & 0.8206 & 0.0124 & 0.0045 & 1.238 & 0.007 \\ 0.5, 0.55 &   6.6, 6.9 &   91 & 0.8206 & 0.014 & 0.0045 & 1.238 & 0.007 \\ 0.5, 0.55 &   6.6, 6.9 &   91 & 0.8206 & 0.014 & 0.0045 & 1.238 & 0.007 \\ 0.5, 0.55 &   6.6, 6.9 &   9.75 &   58 & 0.7660 & 0.0242 & 0.0057 & 1.336 & 0.001 \\ 0.5$                                                                                                                                                                                                                                                                                                                                  | /           | . ,                         | 2747                | 0.7502       | 0.0038                                | 0.0016                                | 1.333          | 0.003                  |
| $ \begin{bmatrix} 0.45, 0.5) & [4.8, 5.1) & 1472 & 0.7112 & 0.0043 & 0.0018 & 1.406 & 0.004 \\ [0.45, 0.5) & [5.4, 5.7) & 633 & 0.7828 & 0.0057 & 0.0024 & 1.277 & 0.004 \\ [0.45, 0.5) & [5.7, 6.0) & 432 & 0.7763 & 0.0077 & 0.0027 & 1.288 & 0.004 \\ [0.45, 0.5) & [6.0, 6.3) & 245 & 0.7938 & 0.0128 & 0.0033 & 1.260 & 0.005 \\ [0.45, 0.5) & [6.3, 6.6) & 162 & 0.7264 & 0.0103 & 0.0046 & 1.377 & 0.009 \\ [0.45, 0.5) & [6.6, 6.9) & 75 & 0.7881 & 0.0179 & 0.0066 & 1.269 & 0.011 \\ [0.45, 0.5) & [6.6, 6.9) & 75 & 0.7881 & 0.0179 & 0.0066 & 1.269 & 0.011 \\ [0.45, 0.5) & [6.9, 7.5) & 87 & 0.7520 & 0.0170 & 0.0041 & 1.330 & 0.007 \\ [0.45, 0.5) & [4.2, 4.5] & 2527 & 0.6804 & 0.0038 & 0.0018 & 1.470 & 0.004 \\ [0.5, 0.55) & [4.2, 4.5] & 2527 & 0.6804 & 0.0038 & 0.0018 & 1.470 & 0.004 \\ [0.5, 0.55) & [4.5, 4.8] & 1845 & 0.7307 & 0.0025 & 0.0017 & 1.369 & 0.003 \\ [0.5, 0.55) & [4.8, 5.1) & 1272 & 0.7080 & 0.0054 & 0.0018 & 1.412 & 0.004 \\ [0.5, 0.55) & [5.1, 5.4] & 818 & 0.7723 & 0.0062 & 0.0020 & 1.295 & 0.003 \\ [0.5, 0.55) & [5.4, 5.7] & 565 & 0.7536 & 0.0061 & 0.0024 & 1.327 & 0.004 \\ [0.5, 0.55) & [6.0, 6.3] & 199 & 0.7361 & 0.0129 & 0.0039 & 1.359 & 0.007 \\ [0.5, 0.55) & [6.0, 6.3] & 199 & 0.7361 & 0.0129 & 0.0039 & 1.359 & 0.007 \\ [0.5, 0.55) & [6.0, 6.3] & 199 & 0.7361 & 0.0129 & 0.0039 & 1.359 & 0.007 \\ [0.5, 0.55) & [6.4, 5.7] & 565 & 0.6935 & 0.0319 & 0.0048 & 1.219 & 0.007 \\ [0.5, 0.55) & [6.4, 5.7] & 565 & 0.6935 & 0.0319 & 0.0048 & 1.219 & 0.007 \\ [0.5, 0.55) & [6.9, 7.5) & 58 & 0.7660 & 0.0242 & 0.0057 & 1.336 & 0.007 \\ [0.5, 0.55) & [6.9, 7.5) & 58 & 0.7660 & 0.0242 & 0.0057 & 1.336 & 0.007 \\ [0.5, 0.55) & [6.9, 7.5) & 58 & 0.7660 & 0.0242 & 0.0057 & 1.338 & 0.007 \\ [0.5, 0.55) & [6.9, 7.5) & 58 & 0.7660 & 0.0242 & 0.0057 & 1.338 & 0.004 \\ [0.5, 0.55) & [6.9, 7.5) & 58 & 0.7660 & 0.0242 & 0.0057 & 1.338 & 0.004 \\ [0.5, 0.55) & [6.9, 7.5) & 550 & 0.7328 & 0.0044 & 0.0011 & 1.220 & 0.007 \\ [0.5, 0.55) & [6.6, 6.9] & 69 & 0.7780 & 0.0091 & 0.0027 & 1.235 & 0.008 \\ [0.5, 0.6] & [6.7, 5.8, 7) & 450 & 0.7878 & 0.0088 & 0.0034 & 1.374 & $                                                                                                                                                                                                                                                                                                                                                |             | • '                         |                     |              |                                       |                                       | 1.326          |                        |
| $ \begin{bmatrix} 0.45, 0.5 \\ 0.5, 0.5 \\ 0.54, 5.7 \\ 0.50, 0.5 \\ 0.45, 0.5 \\ 0.54, 5.7 \\ 0.60 \\ 0.45, 0.5 \\ 0.50, 0.60 \\ 0.45, 0.5 \\ 0.50, 0.60 \\ 0.45, 0.5 \\ 0.50, 0.60 \\ 0.45, 0.5 \\ 0.60, 6.3 \\ 0.45, 0.5 \\ 0.60, 6.3 \\ 0.45, 0.5 \\ 0.60, 6.3 \\ 0.45, 0.5 \\ 0.60, 6.3 \\ 0.45, 0.5 \\ 0.60, 6.3 \\ 0.45, 0.5 \\ 0.60, 6.9 \\ 0.45, 0.5 \\ 0.60, 6.9 \\ 0.45, 0.5 \\ 0.60, 6.9 \\ 0.45, 0.5 \\ 0.60, 6.9 \\ 0.45, 0.5 \\ 0.60, 6.9 \\ 0.45, 0.5 \\ 0.60, 6.9 \\ 0.45, 0.5 \\ 0.60, 6.9 \\ 0.45, 0.5 \\ 0.60, 6.9 \\ 0.45, 0.5 \\ 0.60, 6.9 \\ 0.45, 0.5 \\ 0.60, 6.9 \\ 0.45, 0.5 \\ 0.60, 6.9 \\ 0.45, 0.5 \\ 0.60, 6.9 \\ 0.45, 0.5 \\ 0.60, 6.9 \\ 0.45, 0.5 \\ 0.60, 6.9 \\ 0.45, 0.5 \\ 0.60, 6.9 \\ 0.45, 0.5 \\ 0.60, 6.9 \\ 0.45, 0.5 \\ 0.45, 0.5 \\ 0.45, 0.5 \\ 0.42, 4.5 \\ 0.45, 0.5 \\ 0.45, 0.55 \\ 0.42, 4.5 \\ 0.45, 0.5 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ 0.45, 0.55 \\ $                                                                                                                                                                                                        | , ,         | • '                         | 1472                | l            |                                       |                                       |                |                        |
| $ \begin{bmatrix} 0.45, 0.5 \\ 0.45, 0.5 \\ 0.5, 7.5, 6.0 \\ 0.45, 0.5 \\ 0.6, 6.3 \\ 0.63, 0.3 \\ 0.45, 0.5 \\ 0.63, 6.6 \\ 0.63, 0.3 \\ 0.45, 0.5 \\ 0.63, 6.6 \\ 0.63, 0.3 \\ 0.45, 0.5 \\ 0.63, 6.6 \\ 0.63, 0.3 \\ 0.45, 0.5 \\ 0.63, 6.6 \\ 0.63, 0.60 \\ 0.45, 0.5 \\ 0.645, 0.5 \\ 0.63, 6.6 \\ 0.60, 6.9 \\ 0.75, 0.750 \\ 0.750 \\ 0.45, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.5 \\ 0.645, 0.645, 0.0 \\ 0.645, 0.655, 0.65 \\ 0.645, 0.655, 0.65 \\ 0.645, 0.655, 0.65 \\ 0.645, 0.655, 0.65 \\ 0.645, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.655, 0.$                                                                                                                                                                                                                                                                       | , ,         | . ,                         |                     |              |                                       |                                       | l .            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , ,         | • '                         |                     | !            |                                       |                                       | l              |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , ,         | • '                         |                     | l            |                                       |                                       | l .            |                        |
| $ \begin{bmatrix} 0.45, 0.5 \\ 0.45, 0.5 \\ 0.66, 6.9 \\ 0.45, 0.5 \\ 0.66, 6.9 \\ 0.45, 0.5 \\ 0.66, 6.9 \\ 0.75 \\ 0.750 \\ 0.870 \\ 0.45, 0.5 \\ 0.645, 0.5 \\ 0.55 \\ 0.69, 7.5 \\ 0.877 \\ 0.7520 \\ 0.0170 \\ 0.0041 \\ 0.1330 \\ 0.007 \\ 0.0066 \\ 1.269 \\ 0.011 \\ 0.0066 \\ 1.269 \\ 0.011 \\ 0.0066 \\ 1.269 \\ 0.011 \\ 0.007 \\ 0.0066 \\ 1.269 \\ 0.011 \\ 0.007 \\ 0.0066 \\ 1.269 \\ 0.0011 \\ 0.0006 \\ 1.247 \\ 0.001 \\ 0.0018 \\ 1.470 \\ 0.004 \\ 0.50, 0.55 \\ 0.45, 4.8 \\ 1845 \\ 0.7307 \\ 0.0035 \\ 0.0035 \\ 0.0017 \\ 0.0035 \\ 0.0017 \\ 1.369 \\ 0.003 \\ 0.003 \\ 0.05, 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.60 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.54, 5.7 \\ 0.56 \\ 0.91 \\ 0.55, 0.6 \\ 0.54, 5.7 \\ 0.56 \\ 0.7580 \\ 0.003 \\ 0.55, 0.6 \\ 0.56, 0.65 \\ 0.57, 6.0 \\ 0.250 \\ 0.250 \\ 0.003 \\ 0.55, 0.6 \\ 0.54, 5.7 \\ 0.003 \\ 0.55, 0.6 \\ 0.54, 5.7 \\ 0.003 \\ 0.55, 0.6 \\ 0.54, 5.7 \\ 0.003 \\ 0.55, 0.6 \\ 0.54, 5.7 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.0000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , ,         | . , ,                       |                     |              |                                       |                                       |                |                        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , ,         | . ,                         |                     |              |                                       |                                       |                |                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,         | • '                         |                     | l            |                                       |                                       |                |                        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 ' '       | • '                         |                     | l            |                                       |                                       | l              |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , ,         | • '                         |                     | l            |                                       |                                       | 1.247          |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | . ,                         | 2527                | l            |                                       |                                       | l              |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , ,         | - '                         |                     | 1            |                                       | 0.0017                                | l              |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /           | . , ,                       | 1272                | !            |                                       |                                       |                |                        |
| $ \begin{bmatrix} 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.6, 0.6.3 \\ 0.5, 0.55 \\ 0.6.3, 0.6.0 \\ 0.5, 0.55 \\ 0.6.4, 0.50 \\ 0.5, 0.55 \\ 0.6.4, 0.50 \\ 0.5, 0.55 \\ 0.6.4, 0.50 \\ 0.5, 0.55 \\ 0.6.4, 0.50 \\ 0.5, 0.55 \\ 0.6.4, 0.50 \\ 0.5, 0.55 \\ 0.6.4, 0.50 \\ 0.5, 0.55 \\ 0.6.4, 0.50 \\ 0.5, 0.55 \\ 0.6.4, 0.50 \\ 0.5, 0.55 \\ 0.6.4, 0.50 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5, 0.60 \\ 0.5$                                                                                                                                                                                                  | [0.5, 0.55) | [5.1, 5.4)                  | 818                 | 0.7723       | 0.0062                                | 0.0020                                | 1.295          | 0.003                  |
| $ \begin{bmatrix} 0.5, 0.55 \\ 0.5, 0.55 \\ 0.6, 0.6.3 \\ 0.5, 0.55 \\ 0.6.3, 6.6 \\ 0.6.6, 6.9 \\ 0.91 \\ 0.8206 \\ 0.0124 \\ 0.0045 \\ 0.0045 \\ 0.0045 \\ 0.0045 \\ 1.238 \\ 0.007 \\ 0.007 \\ 0.5, 0.55 \\ 0.6.6, 6.9 \\ 0.97.5 \\ 0.5, 0.55 \\ 0.97.5 \\ 0.5, 0.55 \\ 0.97.5 \\ 0.5, 0.55 \\ 0.97.5 \\ 0.5, 0.55 \\ 0.97.5 \\ 0.5, 0.55 \\ 0.97.5 \\ 0.0084 \\ 0.0057 \\ 0.55, 0.6 \\ 0.124 \\ 0.0048 \\ 0.0057 \\ 0.306 \\ 0.0057 \\ 0.306 \\ 0.0057 \\ 0.306 \\ 0.0057 \\ 0.306 \\ 0.0010 \\ 0.0057 \\ 0.306 \\ 0.0057 \\ 0.306 \\ 0.0057 \\ 0.306 \\ 0.0010 \\ 0.0057 \\ 0.306 \\ 0.0010 \\ 0.0057 \\ 0.306 \\ 0.0010 \\ 0.0057 \\ 0.306 \\ 0.0010 \\ 0.0057 \\ 0.306 \\ 0.0010 \\ 0.0017 \\ 0.329 \\ 0.003 \\ 0.003 \\ 0.055, 0.6 \\ 0.42, 4.5 \\ 0.003 \\ 0.55, 0.6 \\ 0.48, 5.1 \\ 0.1037 \\ 0.7323 \\ 0.0042 \\ 0.0017 \\ 0.0021 \\ 0.329 \\ 0.0021 \\ 0.329 \\ 0.003 \\ 0.055, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.60, 6.3 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.0091 \\ 0.0027 \\ 0.208 \\ 0.008 \\ 0.0091 \\ 0.0027 \\ 0.208 \\ 0.008 \\ 0.0041 \\ 0.209 \\ 0.0011 \\ 0.209 \\ 0.0011 \\ 0.209 \\ 0.0011 \\ 0.209 \\ 0.0011 \\ 0.209 \\ 0.0011 \\ 0.209 \\ 0.0011 \\ 0.209 \\ 0.0011 \\ 0.209 \\ 0.0011 \\ 0.209 \\ 0.0011 \\ 0.209 \\ 0.0021 \\ 0.0011 \\ 0.209 \\ 0.0011 \\ 0.209 \\ 0.0011 \\ 0.209 \\ 0.0021 \\ 0.0011 \\ 0.209 \\ 0.0011 \\ 0.209 \\ 0.0021 \\ 0.0011 \\ 0.209 \\ 0.0021 \\ 0.0021 \\ 0.0023 \\ 0.0024 \\ 0.0021 \\ 0.0024 \\ 0.0021 \\ 0.0024 \\ 0.0021 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024 \\ 0.0035 \\ 0.0024$                                                                                                                                            | [0.5, 0.55) | [5.4, 5.7)                  | 565                 | 0.7536       | 0.0061                                | 0.0024                                | 1.327          | 0.004                  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [0.5, 0.55) | [5.7, 6.0)                  | 333                 | 0.7831       | 0.0082                                | 0.0030                                | 1.277          | 0.005                  |
| $ \begin{bmatrix} 0.5, 0.55 \\ 0.5, 0.55 \\ 0.6, 6.9 \\ 0.5, 0.55 \\ 0.6, 7.5 \\ 0.5, 0.55 \\ 0.6, 7.5 \\ 0.5, 0.55 \\ 0.75, 0.55 \\ 0.75, 0.55 \\ 0.75, 0.55 \\ 0.75, 0.75 \\ 0.50, 0.55 \\ 0.75, 0.75 \\ 0.50, 0.55 \\ 0.75, 0.75 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.6 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.75, 0.75 \\ 0.$                                                                                                                                                                                                      | [0.5, 0.55) | [6.0, 6.3)                  | 199                 | 0.7361       | 0.0129                                | 0.0039                                | 1.359          | 0.007                  |
| $ \begin{bmatrix} 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.55 \\ 0.5, 0.6 \\ 0.5, 0.55 \\ 0.69 \\ 0.5, 0.55 \\ 0.69 \\ 0.55, 0.6 \\ 0.69 \\ 0.55, 0.6 \\ 0.69 \\ 0.752 \\ 0.6935 \\ 0.0319 \\ 0.0084 \\ 0.0017 \\ 0.0084 \\ 1.442 \\ 0.017 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.0055, 0.6 \\ 0.6, 0.65 \\ 0.6, 0.65 \\ 0.6, 0.65 \\ 0.65, 0.6 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.605 \\ 0.6$                                                                                                                    | [0.5, 0.55) | [6.3, 6.6)                  | 126                 | 0.8077       | 0.0115                                | 0.0045                                | 1.238          | 0.007                  |
| $ \begin{bmatrix} [0.5, 0.55) & [7.5, 8.7) & 25 & 0.6935 & 0.0319 & 0.0084 & 1.442 & 0.017 \\ [0.55, 0.6) & [4.2, 4.5) & 2123 & 0.7524 & 0.0040 & 0.0017 & 1.329 & 0.003 \\ [0.55, 0.6) & [4.5, 4.8) & 1505 & 0.7323 & 0.0042 & 0.0019 & 1.366 & 0.003 \\ [0.55, 0.6) & [4.8, 5.1) & 1037 & 0.7398 & 0.0054 & 0.0021 & 1.352 & 0.004 \\ [0.55, 0.6) & [5.1, 5.4) & 657 & 0.7472 & 0.0070 & 0.0025 & 1.338 & 0.004 \\ [0.55, 0.6) & [5.4, 5.7) & 450 & 0.7780 & 0.0091 & 0.0027 & 1.285 & 0.005 \\ [0.55, 0.6) & [5.7, 6.0) & 250 & 0.7278 & 0.0088 & 0.0034 & 1.374 & 0.006 \\ [0.55, 0.6) & [6.0, 6.3) & 179 & 0.7871 & 0.0133 & 0.0041 & 1.270 & 0.007 \\ [0.55, 0.6) & [6.3, 6.6) & 105 & 0.7722 & 0.0156 & 0.0047 & 1.295 & 0.008 \\ [0.55, 0.6) & [6.6, 6.9) & 69 & 0.7750 & 0.0217 & 0.0068 & 1.290 & 0.011 \\ [0.55, 0.6) & [6.9, 7.5) & 56 & 0.7159 & 0.0244 & 0.0054 & 1.397 & 0.011 \\ [0.55, 0.6) & [7.5, 8.7) & 14 & 0.7765 & 0.0356 & 0.0101 & 1.288 & 0.017 \\ [0.6, 0.65) & [4.2, 4.5) & 1670 & 0.7646 & 0.0045 & 0.0018 & 1.308 & 0.003 \\ [0.6, 0.65) & [4.8, 5.1) & 758 & 0.7583 & 0.0052 & 0.0024 & 1.319 & 0.004 \\ [0.6, 0.65) & [5.1, 5.4) & 512 & 0.8108 & 0.0071 & 0.0023 & 1.233 & 0.003 \\ [0.6, 0.65) & [5.7, 6.0) & 206 & 0.7561 & 0.0117 & 0.0036 & 1.323 & 0.006 \\ [0.6, 0.65) & [6.0, 6.3) & 149 & 0.7856 & 0.0163 & 0.0047 & 1.273 & 0.008 \\ [0.6, 0.65) & [6.0, 6.3) & 149 & 0.7856 & 0.0163 & 0.0047 & 1.273 & 0.008 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 $                                                                                                                                                                                                                                                                                                                                                | [0.5, 0.55) | [6.6, 6.9)                  | 91                  | 0.8206       | 0.0124                                | 0.0048                                | 1.219          | 0.007                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [0.5, 0.55) | [6.9, 7.5)                  | 58                  | 0.7660       | 0.0242                                | 0.0057                                | 1.306          | 0.010                  |
| $ \begin{bmatrix} [0.55, 0.6] & [4.5, 4.8] & 1505 & 0.7323 & 0.0042 & 0.0019 & 1.366 & 0.003 \\ [0.55, 0.6] & [4.8, 5.1] & 1037 & 0.7398 & 0.0054 & 0.0021 & 1.352 & 0.004 \\ [0.55, 0.6] & [5.1, 5.4] & 657 & 0.7472 & 0.0070 & 0.0025 & 1.338 & 0.004 \\ [0.55, 0.6] & [5.4, 5.7] & 450 & 0.7780 & 0.0091 & 0.0027 & 1.285 & 0.005 \\ [0.55, 0.6] & [5.7, 6.0) & 250 & 0.7278 & 0.0088 & 0.0034 & 1.374 & 0.006 \\ [0.55, 0.6] & [6.0, 6.3) & 179 & 0.7871 & 0.0133 & 0.0041 & 1.270 & 0.007 \\ [0.55, 0.6] & [6.3, 6.6) & 105 & 0.7722 & 0.0156 & 0.0047 & 1.295 & 0.008 \\ [0.55, 0.6] & [6.6, 6.9) & 69 & 0.7750 & 0.0217 & 0.0068 & 1.290 & 0.011 \\ [0.55, 0.6] & [6.9, 7.5) & 56 & 0.7159 & 0.0244 & 0.0054 & 1.397 & 0.011 \\ [0.55, 0.6] & [7.5, 8.7] & 14 & 0.7765 & 0.0356 & 0.0101 & 1.288 & 0.017 \\ [0.6, 0.65) & [4.2, 4.5) & 1670 & 0.7646 & 0.0045 & 0.0018 & 1.308 & 0.003 \\ [0.6, 0.65) & [4.8, 5.1) & 758 & 0.7583 & 0.0052 & 0.0024 & 1.319 & 0.004 \\ [0.6, 0.65) & [5.1, 5.4) & 512 & 0.8108 & 0.0071 & 0.0023 & 1.233 & 0.003 \\ [0.6, 0.65) & [5.4, 5.7) & 301 & 0.7847 & 0.0094 & 0.0035 & 1.274 & 0.006 \\ [0.6, 0.65) & [5.7, 6.0) & 206 & 0.7561 & 0.0117 & 0.0036 & 1.323 & 0.006 \\ [0.6, 0.65) & [6.0, 6.3) & 149 & 0.7856 & 0.0163 & 0.0047 & 1.273 & 0.008 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ $                                                                                                                                                                                                                                                                                                                                               | [0.5, 0.55) | [7.5, 8.7)                  | 25                  | 0.6935       | 0.0319                                | 0.0084                                | 1.442          | 0.017                  |
| $ \begin{bmatrix} [0.55, 0.6] & [4.8, 5.1] & 1037 & 0.7398 & 0.0054 & 0.0021 & 1.352 & 0.004 \\ [0.55, 0.6] & [5.1, 5.4] & 657 & 0.7472 & 0.0070 & 0.0025 & 1.338 & 0.004 \\ [0.55, 0.6] & [5.4, 5.7] & 450 & 0.7780 & 0.0091 & 0.0027 & 1.285 & 0.005 \\ [0.55, 0.6] & [5.7, 6.0) & 250 & 0.7278 & 0.0088 & 0.0034 & 1.374 & 0.006 \\ [0.55, 0.6] & [6.0, 6.3) & 179 & 0.7871 & 0.0133 & 0.0041 & 1.270 & 0.007 \\ [0.55, 0.6] & [6.3, 6.6] & 105 & 0.7722 & 0.0156 & 0.0047 & 1.295 & 0.008 \\ [0.55, 0.6] & [6.6, 6.9] & 69 & 0.7750 & 0.0217 & 0.0068 & 1.290 & 0.011 \\ [0.55, 0.6] & [6.9, 7.5) & 56 & 0.7159 & 0.0244 & 0.0054 & 1.397 & 0.011 \\ [0.55, 0.6] & [7.5, 8.7] & 14 & 0.7765 & 0.0356 & 0.0101 & 1.288 & 0.017 \\ [0.6, 0.65) & [4.2, 4.5) & 1670 & 0.7646 & 0.0045 & 0.0018 & 1.308 & 0.003 \\ [0.6, 0.65) & [4.8, 5.1] & 758 & 0.7583 & 0.0052 & 0.0024 & 1.319 & 0.004 \\ [0.6, 0.65] & [5.1, 5.4) & 512 & 0.8108 & 0.0071 & 0.0023 & 1.233 & 0.003 \\ [0.6, 0.65] & [5.4, 5.7] & 301 & 0.7847 & 0.0094 & 0.0035 & 1.274 & 0.006 \\ [0.6, 0.65] & [5.7, 6.0) & 206 & 0.7561 & 0.0117 & 0.0036 & 1.323 & 0.006 \\ [0.6, 0.65] & [6.0, 6.3) & 149 & 0.7856 & 0.0163 & 0.0047 & 1.273 & 0.008 \\ [0.6, 0.65] & [6.0, 6.3) & 149 & 0.7856 & 0.0163 & 0.0047 & 1.273 & 0.008 \\ [0.6, 0.65] & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [0.55, 0.6) | [4.2, 4.5)                  | 2123                | 0.7524       | 0.0040                                | 0.0017                                | 1.329          | 0.003                  |
| $ \begin{bmatrix} 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.55, 0.6 \\ 0.00088$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [0.55, 0.6) | [4.5, 4.8)                  | 1505                | 0.7323       | 0.0042                                | 0.0019                                | 1.366          | 0.003                  |
| $ \begin{bmatrix} 0.55, 0.6 \\ [0.55, 0.6) \\ [0.55, 0.6) \\ [0.55, 0.6) \\ [0.55, 0.6) \\ [0.55, 0.6) \\ [0.55, 0.6) \\ [0.55, 0.6) \\ [0.55, 0.6) \\ [0.55, 0.6) \\ [0.55, 0.6) \\ [0.55, 0.6) \\ [0.55, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\ [0.50, 0.6) \\$                                                                                                                                                                                                                        | [0.55, 0.6) | [4.8, 5.1)                  | 1037                | 0.7398       | 0.0054                                | 0.0021                                | 1.352          | 0.004                  |
| $ \begin{bmatrix} 0.55, 0.6 \\ 0.55, 0.6 \\ 0.65, 0.6 \\ 0.55, 0.6 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.3 \\ 0.60, 6.5 \\ 0.60, 6.5 \\ 0.60, 6.5 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.65 \\ 0.60, 6.60, 6.65 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60, 6.60 \\ 0.60, 6.60, 6.60, 6.60, 6.60 \\$                                                                                                                                                                                                                            | [0.55, 0.6) | [5.1, 5.4)                  | 657                 | 0.7472       | 0.0070                                | 0.0025                                | 1.338          | 0.004                  |
| $ \begin{bmatrix} 0.55, 0.6 \\ 0.55, 0.6 \\ 0 \end{bmatrix} \begin{bmatrix} 6.0, 6.3 \\ 0.6 \\ 0.55, 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.$ | [0.55, 0.6) | [5.4, 5.7)                  | 450                 | 0.7780       | 0.0091                                | 0.0027                                | 1.285          | 0.005                  |
| $ \begin{bmatrix} 0.55,0.6 \rangle & \begin{bmatrix} 6.3,6.6 \rangle & 105 & 0.7722 \\ 0.55,0.6 \rangle & \begin{bmatrix} 6.6,6.9 \rangle & 69 & 0.7750 \\ 0.55,0.6 \rangle & \begin{bmatrix} 6.9,7.5 \rangle & 56 & 0.7159 \\ 0.55,0.6 \rangle & \begin{bmatrix} 6.9,7.5 \rangle & 56 & 0.7159 \\ 0.0244 & 0.0054 & 1.397 \\ 0.0054 & 0.0011 \\ 0.55,0.6 \rangle & \begin{bmatrix} 7.5,8.7 \rangle & 14 & 0.7765 \\ 0.7646 & 0.0356 & 0.0101 \\ 0.6,0.65 \rangle & \begin{bmatrix} 4.2,4.5 \rangle & 1670 & 0.7646 \\ 0.044 & 0.0045 & 0.0018 \\ 0.6,0.65 \rangle & \begin{bmatrix} 4.5,4.8 \rangle & 1147 & 0.7620 & 0.0049 \\ 0.6,0.65 \rangle & \begin{bmatrix} 4.8,5.1 \rangle & 758 & 0.7583 & 0.0052 \\ 0.6,0.65 \rangle & \begin{bmatrix} 5.1,5.4 \rangle & 512 & 0.8108 & 0.0071 \\ 0.6,0.65 \rangle & \begin{bmatrix} 5.4,5.7 \rangle & 301 & 0.7847 & 0.0094 \\ 0.6,0.65 \rangle & \begin{bmatrix} 5.7,6.0 \rangle & 206 & 0.7561 & 0.0117 \\ 0.6,0.65 \rangle & \begin{bmatrix} 6.0,6.3 \rangle & 149 & 0.7856 \\ 0.017 \end{pmatrix} & 0.0026 & 1.365 \\ 0.0101 \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [0.55, 0.6) | [5.7, 6.0)                  | 250                 | 0.7278       | 0.0088                                | 0.0034                                | 1.374          | 0.006                  |
| $ \begin{bmatrix} 0.55,0.6) & [6.6,6.9) & 69 & 0.7750 & 0.0217 & 0.0068 & 1.290 & 0.011 \\ [0.55,0.6) & [6.9,7.5) & 56 & 0.7159 & 0.0244 & 0.0054 & 1.397 & 0.011 \\ [0.55,0.6) & [7.5,8.7) & 14 & 0.7765 & 0.0356 & 0.0101 & 1.288 & 0.017 \\ [0.6,0.65) & [4.2,4.5) & 1670 & 0.7646 & 0.0045 & 0.0018 & 1.308 & 0.003 \\ [0.6,0.65) & [4.5,4.8) & 1147 & 0.7620 & 0.0049 & 0.0021 & 1.312 & 0.004 \\ [0.6,0.65) & [4.8,5.1) & 758 & 0.7583 & 0.0052 & 0.0024 & 1.319 & 0.004 \\ [0.6,0.65) & [5.1,5.4) & 512 & 0.8108 & 0.0071 & 0.0023 & 1.233 & 0.003 \\ [0.6,0.65) & [5.4,5.7) & 301 & 0.7847 & 0.0094 & 0.0035 & 1.274 & 0.006 \\ [0.6,0.65) & [5.7,6.0) & 206 & 0.7561 & 0.0117 & 0.0036 & 1.323 & 0.006 \\ [0.6,0.65) & [6.0,6.3) & 149 & 0.7856 & 0.0163 & 0.0047 & 1.273 & 0.008 \\ [0.6,0.65) & [6.3,6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ \hline \end{tabular} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [0.55, 0.6) | [6.0, 6.3)                  | 179                 | 0.7871       | 0.0133                                | 0.0041                                | 1.270          | 0.007                  |
| $ \begin{bmatrix} 0.55,0.6) & [6.9,7.5) & 56 & 0.7159 & 0.0244 & 0.0054 & 1.397 & 0.011 \\ [0.55,0.6) & [7.5,8.7) & 14 & 0.7765 & 0.0356 & 0.0101 & 1.288 & 0.017 \\ [0.6,0.65) & [4.2,4.5) & 1670 & 0.7646 & 0.0045 & 0.0018 & 1.308 & 0.003 \\ [0.6,0.65) & [4.5,4.8) & 1147 & 0.7620 & 0.0049 & 0.0021 & 1.312 & 0.004 \\ [0.6,0.65) & [4.8,5.1) & 758 & 0.7583 & 0.0052 & 0.0024 & 1.319 & 0.004 \\ [0.6,0.65) & [5.1,5.4) & 512 & 0.8108 & 0.0071 & 0.0023 & 1.233 & 0.003 \\ [0.6,0.65) & [5.4,5.7) & 301 & 0.7847 & 0.0094 & 0.0035 & 1.274 & 0.006 \\ [0.6,0.65) & [5.7,6.0) & 206 & 0.7561 & 0.0117 & 0.0036 & 1.323 & 0.006 \\ [0.6,0.65) & [6.0,6.3) & 149 & 0.7856 & 0.0163 & 0.0047 & 1.273 & 0.008 \\ [0.6,0.65) & [6.3,6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ \hline \end{tabular} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [0.55, 0.6) | [6.3, 6.6)                  | 105                 | 0.7722       | 0.0156                                | 0.0047                                | 1.295          | 0.008                  |
| $ \begin{bmatrix} 0.55,0.6) & [7.5,8.7) & 14 & 0.7765 & 0.0356 & 0.0101 & 1.288 & 0.017 \\ [0.6,0.65) & [4.2,4.5) & 1670 & 0.7646 & 0.0045 & 0.0018 & 1.308 & 0.003 \\ [0.6,0.65) & [4.5,4.8) & 1147 & 0.7620 & 0.0049 & 0.0021 & 1.312 & 0.004 \\ [0.6,0.65) & [4.8,5.1) & 758 & 0.7583 & 0.0052 & 0.0024 & 1.319 & 0.004 \\ [0.6,0.65) & [5.1,5.4) & 512 & 0.8108 & 0.0071 & 0.0023 & 1.233 & 0.003 \\ [0.6,0.65) & [5.4,5.7) & 301 & 0.7847 & 0.0094 & 0.0035 & 1.274 & 0.006 \\ [0.6,0.65) & [5.7,6.0) & 206 & 0.7561 & 0.0117 & 0.0036 & 1.323 & 0.006 \\ [0.6,0.65) & [6.0,6.3) & 149 & 0.7856 & 0.0163 & 0.0047 & 1.273 & 0.008 \\ [0.6,0.65) & [6.3,6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ \hline \end{tabular} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [0.55, 0.6) | [6.6, 6.9)                  | 69                  | 0.7750       | 0.0217                                | 0.0068                                | 1.290          | 0.011                  |
| $ \begin{bmatrix} 0.6, 0.65 ) & [4.2, 4.5) \\ [0.6, 0.65) & [4.5, 4.8) \\ [0.6, 0.65) & [4.8, 5.1) \\ [0.6, 0.65) & [5.1, 5.4) \\ [0.6, 0.65) & [5.4, 5.7) \\ [0.6, 0.65) & [5.4, 5.7) \\ [0.6, 0.65) & [5.7, 6.0) \\ [0.6, 0.65) & [6.0, 6.3) \\ [0.6, 0.65) & [6.3, 6.6) \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [0.55, 0.6) | [6.9, 7.5)                  | 56                  | 0.7159       | 0.0244                                | 0.0054                                | 1.397          | 0.011                  |
| $ \begin{bmatrix} 0.6,0.65) & [4.5,4.8) & 1147 & 0.7620 & 0.0049 & 0.0021 & 1.312 & 0.004 \\ [0.6,0.65) & [4.8,5.1) & 758 & 0.7583 & 0.0052 & 0.0024 & 1.319 & 0.004 \\ [0.6,0.65) & [5.1,5.4) & 512 & 0.8108 & 0.0071 & 0.0023 & 1.233 & 0.003 \\ [0.6,0.65) & [5.4,5.7) & 301 & 0.7847 & 0.0094 & 0.0035 & 1.274 & 0.006 \\ [0.6,0.65) & [5.7,6.0) & 206 & 0.7561 & 0.0117 & 0.0036 & 1.323 & 0.006 \\ [0.6,0.65) & [6.0,6.3) & 149 & 0.7856 & 0.0163 & 0.0047 & 1.273 & 0.008 \\ [0.6,0.65) & [6.3,6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ \hline \end{tabular} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [0.55, 0.6) | [7.5, 8.7)                  | 14                  | 0.7765       | 0.0356                                | 0.0101                                | 1.288          | 0.017                  |
| $ \begin{bmatrix} 0.6, 0.65 ) & [4.8, 5.1) \\ [0.6, 0.65) & [5.1, 5.4) \\ [0.6, 0.65) & [5.4, 5.7) \\ [0.6, 0.65) & [5.7, 6.0) \\ [0.6, 0.65) & [6.0, 6.3) \\ [0.6, 0.65) & [6.3, 6.6) \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,         | [4.2, 4.5)                  | 1670                | 0.7646       | 0.0045                                |                                       | 1.308          | 0.003                  |
| $ \begin{bmatrix} 0.6, 0.65) & [5.1, 5.4) & 512 & 0.8108 & 0.0071 & 0.0023 & 1.233 & 0.003 \\ [0.6, 0.65) & [5.4, 5.7) & 301 & 0.7847 & 0.0094 & 0.0035 & 1.274 & 0.006 \\ [0.6, 0.65) & [5.7, 6.0) & 206 & 0.7561 & 0.0117 & 0.0036 & 1.323 & 0.006 \\ [0.6, 0.65) & [6.0, 6.3) & 149 & 0.7856 & 0.0163 & 0.0047 & 1.273 & 0.008 \\ [0.6, 0.65) & [6.3, 6.6) & 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.6, 0.65) | [4.5, 4.8)                  | 1147                | 0.7620       | 0.0049                                |                                       | 1.312          | 0.004                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , ,         | •                           |                     | ļ            |                                       |                                       |                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | - 1                         |                     | ļ            |                                       |                                       |                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | • '                         |                     | !            |                                       |                                       |                |                        |
| $\begin{bmatrix} 0.6, 0.65 \end{pmatrix} \begin{bmatrix} 6.3, 6.6 \end{pmatrix} = \begin{bmatrix} 90 & 0.7328 & 0.0215 & 0.0056 & 1.365 & 0.010 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | • '                         |                     | !            |                                       |                                       |                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , ,         | . ,                         |                     | l            |                                       |                                       |                |                        |
| [0.6, 0.65)   [6.6, 6.9) $ [52   0.8311   0.0240   0.0060   1.203   0.009$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /           | • '                         |                     |              |                                       |                                       |                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [0.6, 0.65] | [6.6, 6.9)                  | 52                  | 0.8311       | 0.0240                                | 0.0060                                | 1.203          | 0.009                  |

Table 2: (Continued)

| $x_F Bin$   | Mass Bin (GeV/ $c^2$ ) | $N_{ m events}$ | $<\epsilon>$ | $\delta_{\mathrm{stat}} < \epsilon >$ | $\delta_{\rm prop} < \epsilon >$ | $1/<\epsilon>$ | $\delta(1/<\epsilon>)$ |
|-------------|------------------------|-----------------|--------------|---------------------------------------|----------------------------------|----------------|------------------------|
| [0.6, 0.65) | [6.9, 7.5)             | 39              | 0.7622       | 0.0329                                | 0.0080                           | 1.312          | 0.014                  |
| [0.6, 0.65) | [7.5, 8.7)             | 13              | 0.7647       | 0.0427                                | 0.0134                           | 1.308          | 0.023                  |
| [0.65, 0.7) | [4.2, 4.5)             | 1122            | 0.7849       | 0.0061                                | 0.0021                           | 1.274          | 0.003                  |
| [0.65, 0.7) | [4.5, 4.8)             | 772             | 0.7602       | 0.0052                                | 0.0024                           | 1.315          | 0.004                  |
| [0.65, 0.7) | [4.8, 5.1)             | 514             | 0.7962       | 0.0070                                | 0.0027                           | 1.256          | 0.004                  |
| [0.65, 0.7) | [5.1, 5.4)             | 331             | 0.7859       | 0.0076                                | 0.0031                           | 1.272          | 0.005                  |
| [0.65, 0.7) | [5.4, 5.7)             | 219             | 0.7195       | 0.0119                                | 0.0038                           | 1.390          | 0.007                  |
| [0.65, 0.7) | [5.7, 6.0)             | 134             | 0.8178       | 0.0151                                | 0.0048                           | 1.223          | 0.007                  |
| [0.65, 0.7) | [6.0, 6.3)             | 93              | 0.7759       | 0.0153                                | 0.0058                           | 1.289          | 0.010                  |
| [0.65, 0.7) | [6.3, 6.6)             | 42              | 0.7969       | 0.0135                                | 0.0075                           | 1.255          | 0.012                  |
| [0.65, 0.7) | [6.6, 6.9)             | 29              | 0.8335       | 0.0240                                | 0.0098                           | 1.200          | 0.014                  |
| [0.65, 0.7) | [6.9, 7.5)             | 30              | 0.7975       | 0.0163                                | 0.0111                           | 1.254          | 0.017                  |
| [0.65, 0.7) | [7.5, 8.7)             | 14              | 0.3255       | 0.1116                                | 0.0168                           | 3.072          | 0.159                  |
| [0.7, 0.75) | [4.2, 4.5)             | 705             | 0.7281       | 0.0069                                | 0.0029                           | 1.374          | 0.006                  |
| [0.7, 0.75) | [4.5, 4.8)             | 494             | 0.7783       | 0.0073                                | 0.0030                           | 1.285          | 0.005                  |
| [0.7, 0.75) | [4.8, 5.1)             | 324             | 0.7758       | 0.0098                                | 0.0038                           | 1.289          | 0.006                  |
| [0.7, 0.75) | [5.1, 5.4)             | 211             | 0.7767       | 0.0109                                | 0.0048                           | 1.288          | 0.008                  |
| [0.7, 0.75) | [5.4, 5.7)             | 137             | 0.7577       | 0.0170                                | 0.0055                           | 1.320          | 0.010                  |
| [0.7, 0.75) | [5.7, 6.0)             | 86              | 0.8505       | 0.0260                                | 0.0075                           | 1.176          | 0.010                  |
| [0.7, 0.75) | [6.0, 6.3)             | 47              | 0.7228       | 0.0385                                | 0.0157                           | 1.383          | 0.030                  |
| [0.7, 0.75) | [6.3, 6.6)             | 42              | 0.7012       | 0.0549                                | 0.0260                           | 1.426          | 0.053                  |
| [0.7, 0.75) | [6.6, 6.9)             | 32              | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.7, 0.75) | [6.9, 7.5)             | 13              | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.7, 0.75) | [7.5, 8.7)             | 7               | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.75, 0.8) | [4.2, 4.5)             | 437             | 0.7087       | 0.0148                                | 0.0053                           | 1.411          | 0.011                  |
| [0.75, 0.8) | [4.5, 4.8)             | 256             | 0.8243       | 0.0251                                | 0.0041                           | 1.213          | 0.006                  |
| [0.75, 0.8) | [4.8, 5.1)             | 168             | 0.1443       | 0.0212                                | 0.0091                           | 6.931          | 0.439                  |
| [0.75, 0.8) | [5.1, 5.4)             | 107             | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.75, 0.8) | [5.4, 5.7)             | 77              | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.75, 0.8) | [5.7, 6.0)             | 55              | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.75, 0.8) | [6.0, 6.3)             | 37              | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.75, 0.8) |                        | 21              | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.75, 0.8) | [6.6, 6.9)             | 13              | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.75, 0.8) | [6.9, 7.5)             | 11              | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.75, 0.8) | [7.5, 8.7)             | 8               | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.8, 0.85) | [4.2, 4.5)             | 181             | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.8, 0.85) | [4.5, 4.8)             | 156             | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.8, 0.85) | [4.8, 5.1)             | 80              | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.8, 0.85) | [5.1, 5.4)             | 63              | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.8, 0.85) | [5.4, 5.7)             | 41              | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.8, 0.85) | [5.7, 6.0)             | 23              | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.8, 0.85) | [6.0, 6.3)             | 7               | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.8, 0.85) | [6.3, 6.6)             | 12              | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.8, 0.85) | [6.6, 6.9)             | 5               | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.8, 0.85) | [6.9, 7.5)             | 5               | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |
| [0.8, 0.85) | [7.5, 8.7)             | 2               | 0.0000       | 0.0000                                | 0.0000                           | _              | _                      |

## 5.3 Average Efficiency Calculations using RS57-70 LH2 target only

Table 3: Average Efficiency and Errors calculated for  $x_F$  and Mass bins using RS57-70 LH2 target only

| $x_F Bin$   | Mass Bin (GeV/ $c^2$ ) | $N_{ m events}$ | $<\epsilon>$ | $\delta_{ m stat} < \epsilon >$ | $\delta_{\mathrm{prop}} < \epsilon >$ | $1/<\epsilon>$ | $\delta(1/<\epsilon>)$ |
|-------------|------------------------|-----------------|--------------|---------------------------------|---------------------------------------|----------------|------------------------|
| [0.0, 0.05) | [4.2, 4.5)             | 1               | 0.0000       | 0.0000                          | 0.0000                                | _              | _                      |
| [0.0, 0.05) | [4.5, 4.8)             | 15              | 0.1600       | 0.0695                          | 0.0202                                | 6.250          | 0.790                  |
| [0.0, 0.05) | [4.8, 5.1)             | 63              | 0.7540       | 0.0681                          | 0.0161                                | 1.326          | 0.028                  |
| [0.0, 0.05) | [5.1, 5.4)             | 98              | 0.6199       | 0.0186                          | 0.0188                                | 1.613          | 0.049                  |
| [0.0, 0.05) | [5.4, 5.7)             | 105             | 0.6071       | 0.0254                          | 0.0110                                | 1.647          | 0.030                  |
| [0.0, 0.05) | [5.7, 6.0)             | 65              | 0.5932       | 0.0377                          | 0.0132                                | 1.686          | 0.037                  |
| [0.0, 0.05) | [6.0, 6.3)             | 48              | 0.5844       | 0.0351                          | 0.0160                                | 1.711          | 0.047                  |
| [0.0, 0.05) | [6.3, 6.6)             | 29              | 0.6437       | 0.0441                          | 0.0207                                | 1.553          | 0.050                  |
| [0.0, 0.05) | [6.6, 6.9)             | 18              | 0.6598       | 0.0489                          | 0.0195                                | 1.516          | 0.045                  |
| [0.0, 0.05) | [6.9, 7.5)             | 18              | 0.5822       | 0.0528                          | 0.0203                                | 1.718          | 0.060                  |
| [0.0, 0.05) | [7.5, 8.7)             | 3               | 0.4789       | 0.0527                          | 0.0432                                | 2.088          | 0.188                  |
| [0.05, 0.1) | [4.2, 4.5)             | 3               | 0.0000       | 0.0000                          | 0.0000                                | _              | _                      |
| [0.05, 0.1) | [4.5, 4.8)             | 64              | 0.2532       | 0.0422                          | 0.0180                                | 3.949          | 0.281                  |
| [0.05, 0.1) | [4.8, 5.1)             | 132             | 0.4897       | 0.0270                          | 0.0143                                | 2.042          | 0.060                  |
| [0.05, 0.1) | [5.1, 5.4)             | 156             | 0.7031       | 0.0280                          | 0.0082                                | 1.422          | 0.017                  |
| [0.05, 0.1) | [5.4, 5.7)             | 136             | 0.6435       | 0.0167                          | 0.0100                                | 1.554          | 0.024                  |
| [0.05, 0.1) | [5.7, 6.0)             | 96              | 0.7362       | 0.0168                          | 0.0095                                | 1.358          | 0.018                  |
| [0.05, 0.1) | [6.0, 6.3)             | 71              | 0.7301       | 0.0251                          | 0.0087                                | 1.370          | 0.016                  |
| [0.05, 0.1) | [6.3, 6.6)             | 38              | 0.5782       | 0.0334                          | 0.0158                                | 1.729          | 0.047                  |
| [0.05, 0.1) | [6.6, 6.9)             | 12              | 0.6250       | 0.0674                          | 0.0230                                | 1.600          | 0.059                  |
| [0.05, 0.1) | [6.9, 7.5)             | 11              | 0.6378       | 0.0606                          | 0.0203                                | 1.568          | 0.050                  |
| [0.05, 0.1) | [7.5, 8.7)             | 11              | 0.5861       | 0.0886                          | 0.0183                                | 1.706          | 0.053                  |
| [0.1, 0.15) | [4.2, 4.5)             | 50              | 11.9106      | 2.6768                          | 0.0121                                | 0.084          | 0.000                  |
| [0.1, 0.15) | [4.5, 4.8)             | 154             | 0.5236       | 0.0250                          | 0.0134                                | 1.910          | 0.049                  |
| [0.1, 0.15) | [4.8, 5.1)             | 231             | 0.5916       | 0.0139                          | 0.0113                                | 1.690          | 0.032                  |
| [0.1, 0.15) | [5.1, 5.4)             | 233             | 0.5939       | 0.0130                          | 0.0084                                | 1.684          | 0.024                  |
| [0.1, 0.15) | [5.4, 5.7)             | 159             | 0.6249       | 0.0201                          | 0.0071                                | 1.600          | 0.018                  |
| [0.1, 0.15) | [5.7, 6.0)             | 127             | 0.6793       | 0.0172                          | 0.0074                                | 1.472          | 0.016                  |
| [0.1, 0.15) | [6.0, 6.3)             | 93              | 0.7370       | 0.0213                          | 0.0074                                | 1.357          | 0.014                  |
| [0.1, 0.15) | [6.3, 6.6)             | 43              | 0.7542       | 0.0266                          | 0.0104                                | 1.326          | 0.018                  |
| [0.1, 0.15) | [6.6, 6.9)             | 29              | 0.7193       | 0.0324                          | 0.0112                                | 1.390          | 0.022                  |
| [0.1, 0.15) | [6.9, 7.5)             | 20              | 0.6820       | 0.0374                          | 0.0124                                | 1.466          | 0.027                  |
| [0.1, 0.15) | [7.5, 8.7)             | 9               | 0.6188       | 0.0594                          | 0.0177                                | 1.616          | 0.046                  |
| [0.15, 0.2) | [4.2, 4.5)             | 137             | 1.0519       | 0.0879                          | 0.0094                                | 0.951          | 0.008                  |
| [0.15, 0.2) | [4.5, 4.8)             | 293             | 0.6914       | 0.0180                          | 0.0097                                | 1.446          | 0.020                  |
| [0.15, 0.2) | [4.8, 5.1)             | 400             | 0.5172       | 0.0088                          | 0.0069                                | 1.934          | 0.026                  |
| [0.15, 0.2) | [5.1, 5.4)             | 338             | 0.7004       | 0.0100                          | 0.0054                                | 1.428          | 0.011                  |
| [0.15, 0.2) | [5.4, 5.7)             | 205             | 0.7100       | 0.0166                          | 0.0063                                | 1.408          | 0.013                  |
| [0.15, 0.2) | [5.7, 6.0)             | 158             | 0.7478       | 0.0137                          | 0.0065                                | 1.337          | 0.012                  |
| [0.15, 0.2) | [6.0, 6.3)             | 105             | 0.7177       | 0.0145                          | 0.0069                                | 1.393          | 0.013                  |
| [0.15, 0.2) | [6.3, 6.6)             | 61              | 0.7333       | 0.0315                          | 0.0090                                | 1.364          | 0.017                  |
| [0.15, 0.2) | [6.6, 6.9)             | 26              | 0.7088       | 0.0372                          | 0.0135                                | 1.411          | 0.027                  |
| [0.15, 0.2) | [6.9, 7.5)             | 36              | 0.7084       | 0.0212                          | 0.0081                                | 1.412          | 0.016                  |
| [0.15, 0.2) | [7.5, 8.7)             | 4               | 0.7244       | 0.1303                          | 0.0303                                | 1.380          | 0.058                  |

Table 3: (Continued)

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                         |                     |              |                                       |                                     |                |                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------|---------------------|--------------|---------------------------------------|-------------------------------------|----------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $x_F$ Bin   | Mass Bin $(\text{GeV}/c^2)$             | $N_{\text{events}}$ | $<\epsilon>$ | $\delta_{\mathrm{stat}} < \epsilon >$ | $\delta_{\text{prop}} < \epsilon >$ | $1/<\epsilon>$ | $\delta(1/<\epsilon>)$ |
| $ \begin{bmatrix} 0.2, 0.25 & [4.8, 5.1) & 481 & 0.6812 & 0.0097 & 0.0045 & 1.468 & 0.010 \\ [0.2, 0.25) & [5.1, 5.4) & 402 & 0.6719 & 0.0097 & 0.0042 & 1.488 & 0.0019 \\ [0.2, 0.25) & [5.4, 5.7) & 259 & 0.6846 & 0.0152 & 0.0065 & 1.461 & 0.0011 \\ [0.2, 0.25) & [5.7, 6.0) & 170 & 0.7757 & 0.0141 & 0.0051 & 1.289 & 0.009 \\ [0.2, 0.25) & [6.6, 6.3) & 100 & 0.7263 & 0.0190 & 0.0064 & 1.377 & 0.012 \\ [0.2, 0.25) & [6.6, 6.9) & 28 & 0.8122 & 0.0289 & 0.0190 & 1.231 & 0.017 \\ [0.2, 0.25) & [6.6, 6.9) & 28 & 0.8122 & 0.0289 & 0.0190 & 1.231 & 0.017 \\ [0.2, 0.25) & [7.5, 8.7) & 10 & 0.7015 & 0.0401 & 0.0146 & 1.425 & 0.030 \\ [0.25, 0.3) & [4.2, 4.5) & 608 & 0.6842 & 0.0102 & 0.0059 & 1.462 & 0.013 \\ [0.25, 0.3) & [4.5, 4.8) & 746 & 0.7141 & 0.0057 & 0.0040 & 1.400 & 0.008 \\ [0.25, 0.3) & [4.5, 4.8, 5.1) & 607 & 0.6847 & 0.0104 & 0.0036 & 1.461 & 0.008 \\ [0.25, 0.3) & [5.4, 5.7) & 322 & 0.7568 & 0.0112 & 0.0045 & 1.332 & 0.008 \\ [0.25, 0.3) & [5.4, 5.7) & 322 & 0.7568 & 0.0112 & 0.0045 & 1.332 & 0.008 \\ [0.25, 0.3) & [5.7, 6.0) & 175 & 0.7214 & 0.0146 & 0.0054 & 1.386 & 0.010 \\ [0.25, 0.3) & [5.7, 6.0) & 175 & 0.7214 & 0.0146 & 0.0054 & 1.386 & 0.010 \\ [0.25, 0.3) & [6.6, 6.9) & 43 & 0.6770 & 0.0326 & 0.0099 & 1.375 & 0.015 \\ [0.25, 0.3) & [6.6, 6.9) & 43 & 0.6770 & 0.036 & 0.0081 & 1.477 & 0.025 \\ [0.25, 0.3) & [6.5, 9.7.5) & 35 & 0.7536 & 0.0366 & 0.0083 & 1.327 & 0.015 \\ [0.25, 0.3) & [6.5, 9.7.5) & 35 & 0.7536 & 0.0366 & 0.0083 & 1.327 & 0.015 \\ [0.25, 0.3) & [6.5, 9.7.5) & 35 & 0.7536 & 0.0366 & 0.0083 & 1.327 & 0.015 \\ [0.25, 0.3) & [6.6, 6.9) & 43 & 0.6770 & 0.036 & 0.0083 & 1.327 & 0.015 \\ [0.25, 0.3) & [6.6, 6.9) & 43 & 0.6770 & 0.036 & 0.0083 & 1.327 & 0.015 \\ [0.25, 0.3) & [6.6, 6.9) & 43 & 0.6770 & 0.036 & 0.0083 & 1.327 & 0.015 \\ [0.25, 0.3) & [6.6, 6.9) & 43 & 0.6770 & 0.036 & 0.0083 & 1.327 & 0.015 \\ [0.25, 0.3) & [6.6, 6.9) & 43 & 0.6770 & 0.0036 & 0.0083 & 1.327 & 0.015 \\ [0.25, 0.3) & [6.6, 6.9) & 43 & 0.6770 & 0.0036 & 0.0083 & 1.327 & 0.015 \\ [0.25, 0.3) & [6.6, 6.9) & 43 & 0.6770 & 0.0060 & 0.0085 & 1.326 & 0.005 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [0.2, 0.25) | [4.2, 4.5)                              |                     | 0.5355       | 0.0160                                | 0.0092                              | 1.867          | 0.032                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [0.2, 0.25) | [4.5, 4.8)                              | 465                 | 0.5805       | 0.0124                                | 0.0059                              | 1.723          | 0.018                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [0.2, 0.25) | [4.8, 5.1)                              | 481                 | 0.6812       | 0.0097                                | 0.0045                              | 1.468          | 0.010                  |
| $ \begin{vmatrix} 0.2, 0.25 \\ 0.2, 0.25 \\ 0.6, 6.3 \\ 0.3, 0.66 \\ 0.3, 0.66 \\ 0.3, 0.66 \\ 0.3, 0.25 \\ 0.26, 0.25 \\ 0.60, 6.3 \\ 0.3, 0.35 \\ 0.20, 0.25 \\ 0.60, 6.3 \\ 0.3, 0.35 \\ 0.20, 0.25 \\ 0.60, 6.3 \\ 0.20, 0.25 \\ 0.60, 6.3 \\ 0.20, 0.25 \\ 0.60, 6.3 \\ 0.20, 0.25 \\ 0.60, 6.3 \\ 0.20, 0.25 \\ 0.60, 6.3 \\ 0.20, 0.25 \\ 0.60, 6.3 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.60, 6.9 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.25 \\ 0.20, 0.20 \\ 0.20, 0.25 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, 0.20 \\ 0.20, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [0.2, 0.25) | [5.1, 5.4)                              | 402                 | 0.6719       | 0.0097                                | 0.0042                              | 1.488          | 0.009                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [0.2, 0.25) | [5.4, 5.7)                              | 259                 | 0.6846       | 0.0132                                | 0.0052                              | 1.461          | 0.011                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [0.2, 0.25) |                                         | 170                 | 0.7757       | 0.0141                                | 0.0051                              | 1.289          | 0.009                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - /         | _ · /                                   | 100                 | 0.7263       | 0.0190                                | 0.0064                              | 1.377          | 0.012                  |
| $ \begin{bmatrix} 0.2, 0.25 & [6.6, 6.9) & 28 & 0.8122 & 0.0289 & 0.0109 & 1.231 & 0.017 \\ [0.2, 0.25] & [6.9, 7.5) & 25 & 0.7370 & 0.0267 & 0.0092 & 1.357 & 0.017 \\ [0.2, 0.25] & [7.5, 8.7) & 10 & 0.7015 & 0.0401 & 0.0146 & 1.425 & 0.030 \\ [0.25, 0.3] & [4.2, 4.5) & 608 & 0.6842 & 0.0102 & 0.0059 & 1.462 & 0.013 \\ [0.25, 0.3] & [4.5, 4.8) & 746 & 0.7141 & 0.0057 & 0.0040 & 1.400 & 0.008 \\ [0.25, 0.3] & [4.8, 5.1) & 607 & 0.6847 & 0.0104 & 0.0036 & 1.461 & 0.008 \\ [0.25, 0.3] & [5.1, 5.4) & 454 & 0.6764 & 0.0095 & 0.0042 & 1.478 & 0.009 \\ [0.25, 0.3] & [5.4, 5.7) & 322 & 0.7508 & 0.0112 & 0.0045 & 1.332 & 0.008 \\ [0.25, 0.3] & [5.7, 6.0) & 175 & 0.7214 & 0.0146 & 0.0054 & 1.386 & 0.010 \\ [0.25, 0.3] & [6.3, 6.6) & 62 & 0.7271 & 0.0252 & 0.0079 & 1.375 & 0.015 \\ [0.25, 0.3] & [6.6, 6.9) & 43 & 0.6770 & 0.0316 & 0.0117 & 1.477 & 0.025 \\ [0.25, 0.3] & [6.9, 7.5) & 335 & 0.7536 & 0.0306 & 0.0083 & 1.327 & 0.015 \\ [0.25, 0.3] & [7.5, 8.7) & 2 & 0.5631 & 0.0363 & 0.0336 & 1.776 & 0.106 \\ [0.3, 0.35] & [4.2, 4.5) & 929 & 0.7522 & 0.0073 & 0.0031 & 1.331 & 0.005 \\ [0.3, 0.35] & [4.5, 4.8) & 881 & 0.7512 & 0.0072 & 0.0031 & 1.331 & 0.005 \\ [0.3, 0.35] & [4.5, 5.7) & 351 & 0.7161 & 0.0072 & 0.0031 & 1.331 & 0.005 \\ [0.3, 0.35] & [5.4, 5.7) & 351 & 0.7161 & 0.0091 & 0.0068 & 1.366 & 0.010 \\ [0.3, 0.35] & [5.4, 5.7) & 351 & 0.7161 & 0.0091 & 0.0068 & 1.366 & 0.010 \\ [0.3, 0.35] & [5.4, 5.7) & 351 & 0.7161 & 0.0091 & 0.0068 & 1.366 & 0.010 \\ [0.3, 0.35] & [5.4, 5.7) & 351 & 0.7161 & 0.0091 & 0.0068 & 1.366 & 0.010 \\ [0.3, 0.35] & [5.4, 5.7) & 31 & 0.6848 & 0.0441 & 0.0113 & 1.460 & 0.024 \\ [0.3, 0.35] & [5.4, 5.7) & 303 & 0.7238 & 0.0115 & 0.0066 & 1.366 & 0.010 \\ [0.3, 0.35] & [6.3, 6.6) & 83 & 0.7714 & 0.0166 & 0.0088 & 1.317 & 0.015 \\ [0.35, 0.4] & [4.5, 4.8) & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35, 0.4] & [4.5, 4.8) & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35, 0.4] & [5.4, 5.7) & 303 & 0.7238 & 0.0115 & 0.0064 & 1.381 & 0.005 \\ [0.35, 0.4] & [5.4, 5.7) & 303 & 0.7288 & 0.0115 & 0.0064 & 1.381 & 0.005 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 5 /       |                                         |                     |              | 0.0214                                |                                     |                |                        |
| $ \begin{bmatrix} 0.2, 0.25 & [6.9, 7.5) & 25 & 0.7370 & 0.0267 & 0.0092 & 1.357 & 0.017 \\ [0.2, 0.25] & [7.5, 8.7) & 10 & 0.7015 & 0.0401 & 0.0146 & 1.425 & 0.030 \\ [0.25, 0.3) & [4.2, 4.5) & 608 & 0.6842 & 0.0102 & 0.0059 & 1.462 & 0.013 \\ [0.25, 0.3) & [4.5, 4.8) & 746 & 0.7141 & 0.0057 & 0.0040 & 1.400 & 0.008 \\ [0.25, 0.3) & [4.8, 5.1) & 607 & 0.6847 & 0.0104 & 0.0036 & 1.461 & 0.008 \\ [0.25, 0.3] & [5.1, 5.4) & 454 & 0.6764 & 0.0095 & 0.0042 & 1.478 & 0.009 \\ [0.25, 0.3] & [5.4, 5.7) & 322 & 0.7508 & 0.0112 & 0.0045 & 1.332 & 0.008 \\ [0.25, 0.3] & [5.7, 6.0) & 175 & 0.7214 & 0.0146 & 0.0054 & 1.386 & 0.010 \\ [0.25, 0.3] & [6.3, 6.6) & 62 & 0.7271 & 0.0252 & 0.0079 & 1.375 & 0.015 \\ [0.25, 0.3] & [6.6, 6.9) & 43 & 0.6770 & 0.0316 & 0.0117 & 1.477 & 0.025 \\ [0.25, 0.3] & [6.9, 7.5) & 35 & 0.7536 & 0.0306 & 0.0083 & 1.327 & 0.015 \\ [0.25, 0.3] & [6.9, 7.5) & 35 & 0.7536 & 0.0306 & 0.0083 & 1.327 & 0.015 \\ [0.25, 0.3] & [6.9, 8.7) & 2 & 0.5631 & 0.0363 & 0.0336 & 1.776 & 0.106 \\ [0.3, 0.35) & [4.2, 4.5) & 929 & 0.7522 & 0.0053 & 0.0039 & 1.329 & 0.007 \\ [0.3, 0.35) & [4.5, 4.8) & 851 & 0.7512 & 0.0072 & 0.0031 & 1.331 & 0.005 \\ [0.3, 0.35) & [4.5, 4.8) & 851 & 0.7512 & 0.0072 & 0.0031 & 1.331 & 0.005 \\ [0.3, 0.35) & [5.7, 6.0) & 195 & 0.7184 & 0.0173 & 0.0044 & 1.402 & 0.009 \\ [0.3, 0.35) & [5.7, 6.0) & 195 & 0.7184 & 0.0173 & 0.0044 & 1.402 & 0.009 \\ [0.3, 0.35) & [6.0, 6.9) & 51 & 0.7555 & 0.0165 & 0.0081 & 1.396 & 0.007 \\ [0.3, 0.35) & [6.0, 6.9) & 51 & 0.7555 & 0.0165 & 0.0081 & 1.324 & 0.014 \\ [0.3, 0.35) & [6.9, 7.5) & 31 & 0.6848 & 0.0441 & 0.0113 & 1.460 & 0.024 \\ [0.3, 0.35) & [6.9, 7.5) & 31 & 0.6848 & 0.0441 & 0.0113 & 1.460 & 0.024 \\ [0.3, 0.35) & [6.9, 7.5) & 31 & 0.6848 & 0.0441 & 0.0113 & 1.460 & 0.026 \\ [0.35, 0.4] & [4.5, 4.8) & 1020 & 0.7217 & 0.0064 & 0.0066 & 1.386 & 0.005 \\ [0.35, 0.4] & [5.7, 5.0) & 127 & 0.7861 & 0.0166 & 0.0081 & 1.332 & 0.005 \\ [0.35, 0.4] & [5.7, 5.0) & 227 & 0.7241 & 0.0132 & 0.0066 & 1.386 & 0.005 \\ [0.35, 0.4] & [5.7, 5.0) & 227 & 0.7241 & 0.0132 & 0.0066 & 1.386 & 0.005 \\ [0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | , ,                                     | 28                  | 0.8122       | 0.0289                                | 0.0109                              |                | 1                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - /         | ,                                       | 25                  |              |                                       |                                     |                | 1                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 . /       | /                                       |                     |              |                                       |                                     |                | 1                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 . /       | , ,                                     |                     |              |                                       |                                     |                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 - /       | , ,                                     |                     |              |                                       |                                     |                |                        |
| $ \begin{bmatrix} 0.25, 0.3 \\ 0.25, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5, 0.3 \\ 0.5,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 -         |                                         |                     |              |                                       |                                     |                |                        |
| $ \begin{bmatrix} 0.25, 0.3 \\ 0.25, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.52, 0.3 \\ 0.3036 \\ 0.0336 \\ 0.0336 \\ 0.0336 \\ 0.0336 \\ 0.0336 \\ 0.0336 \\ 0.0336 \\ 0.0336 \\ 0.0331 \\ 0.0329 \\ 0.005 \\ 0.0077 \\ 0.0030 \\ 0.0031 \\ 0.329 \\ 0.005 \\ 0.0051 \\ 0.329 \\ 0.005 \\ 0.0051 \\ 0.329 \\ 0.005 \\ 0.329 \\ 0.005 \\ 0.329 \\ 0.005 \\ 0.329 \\ 0.005 \\ 0.329 \\ 0.005 \\ 0.329 \\ 0.005 \\ 0.329 \\ 0.005 \\ 0.329 \\ 0.005 \\ 0.329 \\ 0.005 \\ 0.329 \\ 0.005 \\ 0.329 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 - /       | _ · /                                   |                     |              |                                       |                                     |                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 -         | ,                                       |                     |              |                                       |                                     |                | 1                      |
| $ \begin{bmatrix} 0.25, 0.3 \\ 0.25, 0.3 \\ 0.63, 6.6 \\ 0.63 \\ 0.66 \\ 0.62 \\ 0.7271 \\ 0.0252 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0015 \\ 0.0079 \\ 0.0015 \\ 0.0079 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 - /       | ,                                       |                     |              |                                       |                                     |                | 1                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 -         | ,                                       |                     |              |                                       |                                     |                | 1                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ' '         | ,                                       |                     |              |                                       |                                     |                | 1                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ' '         | /                                       |                     |              |                                       |                                     |                |                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 ' '       | /                                       |                     |              |                                       |                                     |                |                        |
| $ \begin{bmatrix} 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 - /       | _ · /                                   | 2                   |              |                                       |                                     |                |                        |
| $ \begin{bmatrix} 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , ,         | _ · · · · · · · · · · · · · · · · · · · | 929                 |              |                                       |                                     |                | 1                      |
| $ \begin{bmatrix} 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.4) \\ 0.3, 0.3, 0.35 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 . /       | ,                                       |                     |              |                                       |                                     |                | 1                      |
| $ \begin{bmatrix} 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.3, 0.35 \\ 0.3, 0.40 \\ 0.3, 0.3, 0.3, 0.3 \\ 0.3, 0.40 \\ 0.3, 0.3, 0.3, 0.3 \\ 0.3, 0.40 \\ 0.3, 0.3, 0.3, 0.3 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\ 0.3, 0.40 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - /         | ,                                       |                     |              |                                       |                                     |                | 1                      |
| $ \begin{bmatrix} 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.4, 0.45 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , ,         | , ,                                     |                     |              |                                       |                                     |                | 1                      |
| $ \begin{bmatrix} 0.3, 0.35 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.03, 0.35 \\ 0.04 \\ 0.03, 0.35 \\ 0.04, 0.046 \\ 0.046 \\ 0.0088 \\ 0.0013 \\ 0.0027 \\ 0.0064 \\ 0.0026 \\ 0.0088 \\ 0.0027 \\ 0.0064 \\ 0.0026 \\ 0.0088 \\ 0.007 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                         |                     |              | 0.0091                                |                                     |                |                        |
| $ \begin{bmatrix} [0.3,0.35) & [6.0,6.3) & 121 & 0.7320 & 0.0155 & 0.0056 & 1.366 & 0.010 \\ [0.3,0.35) & [6.3,6.6) & 83 & 0.7714 & 0.0200 & 0.0062 & 1.296 & 0.010 \\ [0.3,0.35) & [6.6,6.9) & 51 & 0.7555 & 0.0165 & 0.0081 & 1.324 & 0.014 \\ [0.3,0.35) & [6.9,7.5) & 31 & 0.6848 & 0.0441 & 0.0113 & 1.460 & 0.024 \\ [0.3,0.35) & [7.5,8.7) & 16 & 0.7594 & 0.0466 & 0.0088 & 1.317 & 0.015 \\ [0.35,0.4) & [4.2,4.5) & 1160 & 0.7967 & 0.0063 & 0.0027 & 1.255 & 0.004 \\ [0.35,0.4) & [4.5,4.8) & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35,0.4) & [4.8,5.1) & 771 & 0.7292 & 0.0061 & 0.0029 & 1.371 & 0.005 \\ [0.35,0.4) & [5.1,5.4) & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35,0.4) & [5.4,5.7) & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ [0.35,0.4) & [5.7,6.0) & 227 & 0.7241 & 0.0132 & 0.0046 & 1.381 & 0.009 \\ [0.35,0.4) & [6.0,6.3) & 127 & 0.7861 & 0.0166 & 0.0050 & 1.272 & 0.008 \\ [0.35,0.4) & [6.3,6.6) & 83 & 0.7483 & 0.0216 & 0.0063 & 1.336 & 0.011 \\ [0.35,0.4) & [6.9,7.5) & 33 & 0.7708 & 0.0300 & 0.0069 & 1.297 & 0.012 \\ [0.35,0.4) & [6.9,7.5) & 33 & 0.7708 & 0.0330 & 0.0069 & 1.297 & 0.012 \\ [0.35,0.4) & [6.9,7.5) & 33 & 0.7708 & 0.0330 & 0.0069 & 1.297 & 0.012 \\ [0.35,0.4) & [6.4,0.45) & [4.2,4.5) & 1274 & 0.7487 & 0.0060 & 0.0025 & 1.336 & 0.005 \\ [0.4,0.45) & [4.5,4.8) & 1043 & 0.6955 & 0.0085 & 0.0025 & 1.438 & 0.005 \\ [0.4,0.45) & [4.8,5.1) & 783 & 0.7380 & 0.0057 & 0.0024 & 1.355 & 0.004 \\ \hline{\cal{c}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 5 7       | 1 = -                                   | 195                 | 0.7134       | 0.0173                                | 0.0044                              | 1.402          | 0.009                  |
| $ \begin{bmatrix} [0.3, 0.35) & [6.3, 6.6) & 83 & 0.7714 & 0.0200 & 0.0062 & 1.296 & 0.010 \\ [0.3, 0.35) & [6.6, 6.9) & 51 & 0.7555 & 0.0165 & 0.0081 & 1.324 & 0.014 \\ [0.3, 0.35) & [6.9, 7.5) & 31 & 0.6848 & 0.0441 & 0.0113 & 1.460 & 0.024 \\ [0.3, 0.35) & [7.5, 8.7) & 16 & 0.7594 & 0.0466 & 0.0088 & 1.317 & 0.015 \\ [0.35, 0.4) & [4.2, 4.5) & 1160 & 0.7967 & 0.0063 & 0.0027 & 1.255 & 0.004 \\ [0.35, 0.4) & [4.5, 4.8) & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35, 0.4) & [4.8, 5.1) & 771 & 0.7292 & 0.0061 & 0.0029 & 1.371 & 0.005 \\ [0.35, 0.4) & [5.1, 5.4) & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35, 0.4) & [5.4, 5.7) & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ [0.35, 0.4) & [5.7, 6.0) & 227 & 0.7241 & 0.0132 & 0.0046 & 1.381 & 0.009 \\ [0.35, 0.4) & [6.0, 6.3) & 127 & 0.7861 & 0.0166 & 0.0050 & 1.272 & 0.008 \\ [0.35, 0.4) & [6.3, 6.6) & 83 & 0.7483 & 0.0216 & 0.0063 & 1.336 & 0.011 \\ [0.35, 0.4) & [6.6, 6.9) & 44 & 0.7978 & 0.0210 & 0.0079 & 1.253 & 0.012 \\ [0.35, 0.4) & [6.9, 7.5) & 33 & 0.7708 & 0.0330 & 0.0069 & 1.297 & 0.012 \\ [0.35, 0.4) & [6.9, 7.5) & 33 & 0.7708 & 0.0330 & 0.0069 & 1.297 & 0.012 \\ [0.35, 0.4) & [7.5, 8.7) & 17 & 0.7598 & 0.0422 & 0.0085 & 1.316 & 0.015 \\ [0.4, 0.45) & [4.2, 4.5) & 1274 & 0.7487 & 0.0060 & 0.0025 & 1.336 & 0.005 \\ [0.4, 0.45) & [4.5, 4.8) & 1043 & 0.6955 & 0.0085 & 0.0025 & 1.438 & 0.005 \\ [0.4, 0.45) & [4.8, 5.1) & 783 & 0.7380 & 0.0057 & 0.0024 & 1.355 & 0.004 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 - /       | _ · /                                   | 121                 | 0.7320       | 0.0155                                | 0.0056                              | 1.366          | 0.010                  |
| $ \begin{bmatrix} [0.3, 0.35) & [6.9, 7.5) & 31 & 0.6848 & 0.0441 & 0.0113 & 1.460 & 0.024 \\ [0.3, 0.35) & [7.5, 8.7) & 16 & 0.7594 & 0.0466 & 0.0088 & 1.317 & 0.015 \\ [0.35, 0.4) & [4.2, 4.5) & 1160 & 0.7967 & 0.0063 & 0.0027 & 1.255 & 0.004 \\ [0.35, 0.4) & [4.5, 4.8) & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35, 0.4) & [4.8, 5.1) & 771 & 0.7292 & 0.0061 & 0.0029 & 1.371 & 0.005 \\ [0.35, 0.4) & [5.1, 5.4) & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35, 0.4) & [5.4, 5.7) & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ [0.35, 0.4) & [5.7, 6.0) & 227 & 0.7241 & 0.0132 & 0.0046 & 1.381 & 0.009 \\ [0.35, 0.4) & [6.0, 6.3) & 127 & 0.7861 & 0.0166 & 0.0050 & 1.272 & 0.008 \\ [0.35, 0.4) & [6.3, 6.6) & 83 & 0.7483 & 0.0216 & 0.0063 & 1.336 & 0.011 \\ [0.35, 0.4) & [6.6, 6.9) & 44 & 0.7978 & 0.0210 & 0.0079 & 1.253 & 0.012 \\ [0.35, 0.4) & [6.9, 7.5) & 33 & 0.7708 & 0.0330 & 0.0069 & 1.297 & 0.012 \\ [0.35, 0.4) & [7.5, 8.7) & 17 & 0.7598 & 0.0422 & 0.0085 & 1.316 & 0.015 \\ [0.4, 0.45) & [4.2, 4.5) & 1274 & 0.7487 & 0.0060 & 0.0025 & 1.336 & 0.005 \\ [0.4, 0.45) & [4.5, 4.8) & 1043 & 0.6955 & 0.0085 & 0.0025 & 1.438 & 0.005 \\ [0.4, 0.45) & [4.8, 5.1) & 783 & 0.7380 & 0.0057 & 0.0024 & 1.355 & 0.0044 \\ \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 -         | [6.3, 6.6)                              | 83                  | 0.7714       | 0.0200                                | 0.0062                              | 1.296          | 0.010                  |
| $ \begin{bmatrix} [0.3, 0.35) & [7.5, 8.7) & 16 & 0.7594 & 0.0466 & 0.0088 & 1.317 & 0.015 \\ [0.35, 0.4) & [4.2, 4.5) & 1160 & 0.7967 & 0.0063 & 0.0027 & 1.255 & 0.004 \\ [0.35, 0.4) & [4.5, 4.8) & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35, 0.4) & [4.8, 5.1) & 771 & 0.7292 & 0.0061 & 0.0029 & 1.371 & 0.005 \\ [0.35, 0.4) & [5.1, 5.4) & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35, 0.4) & [5.4, 5.7) & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ [0.35, 0.4) & [5.7, 6.0) & 227 & 0.7241 & 0.0132 & 0.0046 & 1.381 & 0.009 \\ [0.35, 0.4) & [6.0, 6.3) & 127 & 0.7861 & 0.0166 & 0.0050 & 1.272 & 0.008 \\ [0.35, 0.4) & [6.3, 6.6) & 83 & 0.7483 & 0.0216 & 0.0063 & 1.336 & 0.011 \\ [0.35, 0.4) & [6.6, 6.9) & 44 & 0.7978 & 0.0210 & 0.0079 & 1.253 & 0.012 \\ [0.35, 0.4) & [6.9, 7.5) & 33 & 0.7708 & 0.0330 & 0.0069 & 1.297 & 0.012 \\ [0.35, 0.4) & [7.5, 8.7) & 17 & 0.7598 & 0.0422 & 0.0085 & 1.316 & 0.015 \\ [0.4, 0.45) & [4.2, 4.5) & 1274 & 0.7487 & 0.0060 & 0.0025 & 1.336 & 0.005 \\ [0.4, 0.45) & [4.5, 4.8) & 1043 & 0.6955 & 0.0085 & 0.0025 & 1.438 & 0.005 \\ [0.4, 0.45) & [4.8, 5.1) & 783 & 0.7380 & 0.0057 & 0.0024 & 1.355 & 0.004 \\ \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [0.3, 0.35) | [6.6, 6.9)                              | 51                  | 0.7555       | 0.0165                                | 0.0081                              | 1.324          | 0.014                  |
| $ \begin{bmatrix} [0.3, 0.35) & [7.5, 8.7) & 16 & 0.7594 & 0.0466 & 0.0088 & 1.317 & 0.015 \\ [0.35, 0.4) & [4.2, 4.5) & 1160 & 0.7967 & 0.0063 & 0.0027 & 1.255 & 0.004 \\ [0.35, 0.4) & [4.5, 4.8) & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35, 0.4) & [4.8, 5.1) & 771 & 0.7292 & 0.0061 & 0.0029 & 1.371 & 0.005 \\ [0.35, 0.4) & [5.1, 5.4) & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35, 0.4) & [5.4, 5.7) & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ [0.35, 0.4) & [5.7, 6.0) & 227 & 0.7241 & 0.0132 & 0.0046 & 1.381 & 0.009 \\ [0.35, 0.4) & [6.0, 6.3) & 127 & 0.7861 & 0.0166 & 0.0050 & 1.272 & 0.008 \\ [0.35, 0.4) & [6.3, 6.6) & 83 & 0.7483 & 0.0216 & 0.0063 & 1.336 & 0.011 \\ [0.35, 0.4) & [6.6, 6.9) & 44 & 0.7978 & 0.0210 & 0.0079 & 1.253 & 0.012 \\ [0.35, 0.4) & [6.9, 7.5) & 33 & 0.7708 & 0.0330 & 0.0069 & 1.297 & 0.012 \\ [0.35, 0.4) & [7.5, 8.7) & 17 & 0.7598 & 0.0422 & 0.0085 & 1.316 & 0.015 \\ [0.4, 0.45) & [4.2, 4.5) & 1274 & 0.7487 & 0.0060 & 0.0025 & 1.336 & 0.005 \\ [0.4, 0.45) & [4.5, 4.8) & 1043 & 0.6955 & 0.0085 & 0.0025 & 1.438 & 0.005 \\ [0.4, 0.45) & [4.8, 5.1) & 783 & 0.7380 & 0.0057 & 0.0024 & 1.355 & 0.004 \\ \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [0.3, 0.35) | [6.9, 7.5)                              | 31                  | 0.6848       | 0.0441                                | 0.0113                              | 1.460          | 0.024                  |
| $ \begin{bmatrix} 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0.35, 0.4 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [0.3, 0.35) | 1 = -                                   | 16                  | 0.7594       | 0.0466                                | 0.0088                              | 1.317          | 0.015                  |
| $ \begin{bmatrix} 0.35, 0.4 ) & [4.8, 5.1) \\ [0.35, 0.4) & [5.1, 5.4) \\ [0.35, 0.4) & [5.1, 5.4) \\ [0.35, 0.4) & [5.4, 5.7) \\ [0.35, 0.4) & [5.7, 6.0) \\ [0.35, 0.4) & [6.0, 6.3) \\ [0.35, 0.4) & [6.3, 6.6) \\ [0.35, 0.4) & [6.3, 6.6) \\ [0.35, 0.4) & [6.3, 6.6) \\ [0.35, 0.4) & [6.3, 6.6) \\ [0.35, 0.4) & [6.3, 6.6) \\ [0.35, 0.4) & [6.3, 6.6) \\ [0.35, 0.4) & [6.3, 6.6) \\ [0.35, 0.4) & [6.3, 6.6) \\ [0.35, 0.4) & [6.4, 0.45) & [4.2, 4.5) \\ [0.4, 0.45) & [4.2, 4.8) \\ [0.4, 0.45) & [4.8, 5.1) \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [0.35, 0.4) | [4.2, 4.5)                              | 1160                | 0.7967       | 0.0063                                | 0.0027                              | 1.255          | 0.004                  |
| $ \begin{bmatrix} 0.35,  0.4 \rangle & \begin{bmatrix} 5.1,  5.4 \rangle & & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35,  0.4) & \begin{bmatrix} 5.4,  5.7 \rangle & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ [0.35,  0.4) & \begin{bmatrix} 5.7,  6.0 \rangle & 227 & 0.7241 & 0.0132 & 0.0046 & 1.381 & 0.009 \\ [0.35,  0.4) & \begin{bmatrix} 6.0,  6.3 \rangle & 127 & 0.7861 & 0.0166 & 0.0050 & 1.272 & 0.008 \\ [0.35,  0.4) & \begin{bmatrix} 6.3,  6.6 \rangle & 83 & 0.7483 & 0.0216 & 0.0063 & 1.336 & 0.011 \\ [0.35,  0.4) & \begin{bmatrix} 6.6,  6.9 \rangle & 44 & 0.7978 & 0.0210 & 0.0079 & 1.253 & 0.012 \\ [0.35,  0.4) & \begin{bmatrix} 6.9,  7.5 \rangle & 33 & 0.7708 & 0.0330 & 0.0069 & 1.297 & 0.012 \\ [0.35,  0.4) & \begin{bmatrix} 7.5,  8.7 \rangle & 17 & 0.7598 & 0.0422 & 0.0085 & 1.316 & 0.015 \\ [0.4,  0.45) & \begin{bmatrix} 4.2,  4.5 \rangle & 1274 & 0.7487 & 0.0060 & 0.0025 & 1.336 & 0.005 \\ [0.4,  0.45) & \begin{bmatrix} 4.5,  4.8 \rangle & 1043 & 0.6955 & 0.0085 & 0.0025 & 1.438 & 0.005 \\ [0.4,  0.45) & \begin{bmatrix} 4.8,  5.1 \rangle & 783 & 0.7380 & 0.0057 & 0.0024 & 1.355 & 0.004 \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [0.35, 0.4) | [4.5, 4.8)                              | 1020                | 0.7217       | 0.0064                                | 0.0026                              | 1.386          | 0.005                  |
| $ \begin{bmatrix} 0.35,  0.4 \rangle & \begin{bmatrix} 5.1,  5.4 \rangle & & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35,  0.4) & \begin{bmatrix} 5.4,  5.7 \rangle & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ [0.35,  0.4) & \begin{bmatrix} 5.7,  6.0 \rangle & 227 & 0.7241 & 0.0132 & 0.0046 & 1.381 & 0.009 \\ [0.35,  0.4) & \begin{bmatrix} 6.0,  6.3 \rangle & 127 & 0.7861 & 0.0166 & 0.0050 & 1.272 & 0.008 \\ [0.35,  0.4) & \begin{bmatrix} 6.3,  6.6 \rangle & 83 & 0.7483 & 0.0216 & 0.0063 & 1.336 & 0.011 \\ [0.35,  0.4) & \begin{bmatrix} 6.6,  6.9 \rangle & 44 & 0.7978 & 0.0210 & 0.0079 & 1.253 & 0.012 \\ [0.35,  0.4) & \begin{bmatrix} 6.9,  7.5 \rangle & 33 & 0.7708 & 0.0330 & 0.0069 & 1.297 & 0.012 \\ [0.35,  0.4) & \begin{bmatrix} 7.5,  8.7 \rangle & 17 & 0.7598 & 0.0422 & 0.0085 & 1.316 & 0.015 \\ [0.4,  0.45) & \begin{bmatrix} 4.2,  4.5 \rangle & 1274 & 0.7487 & 0.0060 & 0.0025 & 1.336 & 0.005 \\ [0.4,  0.45) & \begin{bmatrix} 4.5,  4.8 \rangle & 1043 & 0.6955 & 0.0085 & 0.0025 & 1.438 & 0.005 \\ [0.4,  0.45) & \begin{bmatrix} 4.8,  5.1 \rangle & 783 & 0.7380 & 0.0057 & 0.0024 & 1.355 & 0.004 \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [0.35, 0.4) | [4.8, 5.1)                              | 771                 | 0.7292       | 0.0061                                | 0.0029                              | 1.371          | 0.005                  |
| $ \begin{bmatrix} 0.35,  0.4 \rangle & \begin{bmatrix} 5.7,  6.0 \rangle \\ [0.35,  0.4 \rangle & [6.0,  6.3 \rangle \\ [0.35,  0.4 \rangle & [6.0,  6.3 \rangle \\ [0.35,  0.4 \rangle & [6.3,  6.6 \rangle \\ [0.35,  0.4 \rangle & [6.3,  6.6 \rangle \\ [0.35,  0.4 \rangle & [6.6,  6.9 \rangle \\ [0.35,  0.4 \rangle & [6.6,  6.9 \rangle \\ [0.35,  0.4 \rangle & [6.6,  6.9 \rangle \\ [0.35,  0.4 \rangle & [6.9,  7.5 \rangle \\ [0.35,  0.4 \rangle & [7.5,  8.7 \rangle \\ [0.35,  0.4 \rangle & [7.5,  8.7$ | [0.35, 0.4) | [5.1, 5.4)                              | 550                 | 0.7680       | 0.0071                                | 0.0031                              | 1.302          | 0.005                  |
| $ \begin{bmatrix} 0.35,  0.4 \rangle & \begin{bmatrix} 6.0,  6.3 \rangle & 127 & 0.7861 & 0.0166 & 0.0050 & 1.272 & 0.008 \\ [0.35,  0.4 \rangle & [6.3,  6.6) & 83 & 0.7483 & 0.0216 & 0.0063 & 1.336 & 0.011 \\ [0.35,  0.4 \rangle & [6.6,  6.9) & 44 & 0.7978 & 0.0210 & 0.0079 & 1.253 & 0.012 \\ [0.35,  0.4 \rangle & [6.9,  7.5) & 33 & 0.7708 & 0.0330 & 0.0069 & 1.297 & 0.012 \\ [0.35,  0.4 \rangle & [7.5,  8.7) & 17 & 0.7598 & 0.0422 & 0.0085 & 1.316 & 0.015 \\ [0.4,  0.45) & [4.2,  4.5) & 1274 & 0.7487 & 0.0060 & 0.0025 & 1.336 & 0.005 \\ [0.4,  0.45) & [4.5,  4.8) & 1043 & 0.6955 & 0.0085 & 0.0025 & 1.438 & 0.005 \\ [0.4,  0.45) & [4.8,  5.1) & 783 & 0.7380 & 0.0057 & 0.0024 & 1.355 & 0.004 \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 -         | [5.4, 5.7)                              | 303                 | 0.7238       | 0.0115                                | 0.0037                              | 1.382          | 0.007                  |
| $ \begin{bmatrix} 0.35,  0.4 \rangle & \begin{bmatrix} 6.3,  6.6 \rangle & 83 & 0.7483 & 0.0216 & 0.0063 & 1.336 & 0.011 \\ [0.35,  0.4 \rangle & [6.6,  6.9 \rangle & 44 & 0.7978 & 0.0210 & 0.0079 & 1.253 & 0.012 \\ [0.35,  0.4 \rangle & [6.9,  7.5 \rangle & 33 & 0.7708 & 0.0330 & 0.0069 & 1.297 & 0.012 \\ [0.35,  0.4 \rangle & [7.5,  8.7 \rangle & 17 & 0.7598 & 0.0422 & 0.0085 & 1.316 & 0.015 \\ [0.4,  0.45 \rangle & [4.2,  4.5 \rangle & 1274 & 0.7487 & 0.0060 & 0.0025 & 1.336 & 0.005 \\ [0.4,  0.45 \rangle & [4.5,  4.8 \rangle & 1043 & 0.6955 & 0.0085 & 0.0025 & 1.438 & 0.005 \\ [0.4,  0.45 \rangle & [4.8,  5.1 \rangle & 783 & 0.7380 & 0.0057 & 0.0024 & 1.355 & 0.004 \\ \hline \end{tabular} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [0.35, 0.4) | [5.7, 6.0)                              | 227                 | 0.7241       | 0.0132                                | 0.0046                              | 1.381          | 0.009                  |
| $ \begin{bmatrix} 0.35,  0.4 \rangle & \begin{bmatrix} 6.6,  6.9 \rangle & 44 & 0.7978 & 0.0210 & 0.0079 & 1.253 & 0.012 \\ [0.35,  0.4) & [6.9,  7.5) & 33 & 0.7708 & 0.0330 & 0.0069 & 1.297 & 0.012 \\ [0.35,  0.4) & [7.5,  8.7) & 17 & 0.7598 & 0.0422 & 0.0085 & 1.316 & 0.015 \\ [0.4,  0.45) & [4.2,  4.5) & 1274 & 0.7487 & 0.0060 & 0.0025 & 1.336 & 0.005 \\ [0.4,  0.45) & [4.5,  4.8) & 1043 & 0.6955 & 0.0085 & 0.0025 & 1.438 & 0.005 \\ [0.4,  0.45) & [4.8,  5.1) & 783 & 0.7380 & 0.0057 & 0.0024 & 1.355 & 0.004 \\ \hline \end{tabular} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [0.35, 0.4) | [6.0, 6.3)                              | 127                 | 0.7861       | 0.0166                                | 0.0050                              | 1.272          | 0.008                  |
| $ \begin{bmatrix} 0.35,  0.4 \rangle & \begin{bmatrix} 6.6,  6.9 \rangle & 44 & 0.7978 & 0.0210 & 0.0079 & 1.253 & 0.012 \\ [0.35,  0.4) & [6.9,  7.5) & 33 & 0.7708 & 0.0330 & 0.0069 & 1.297 & 0.012 \\ [0.35,  0.4) & [7.5,  8.7) & 17 & 0.7598 & 0.0422 & 0.0085 & 1.316 & 0.015 \\ [0.4,  0.45) & [4.2,  4.5) & 1274 & 0.7487 & 0.0060 & 0.0025 & 1.336 & 0.005 \\ [0.4,  0.45) & [4.5,  4.8) & 1043 & 0.6955 & 0.0085 & 0.0025 & 1.438 & 0.005 \\ [0.4,  0.45) & [4.8,  5.1) & 783 & 0.7380 & 0.0057 & 0.0024 & 1.355 & 0.004 \\ \hline \end{tabular} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 -         | [6.3, 6.6)                              | 83                  | 0.7483       | 0.0216                                | 0.0063                              | 1.336          | 0.011                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [0.35, 0.4) | •                                       | 44                  | 0.7978       | 0.0210                                | 0.0079                              | 1.253          | 0.012                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [0.35, 0.4) | [6.9, 7.5)                              | 33                  | 0.7708       | 0.0330                                | 0.0069                              | 1.297          | 0.012                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [0.35, 0.4) | [7.5, 8.7)                              | 17                  | 0.7598       | 0.0422                                | 0.0085                              | 1.316          | 0.015                  |
| [0.4, 0.45)     [4.8, 5.1)       783     0.7380       0.0057     0.0024       1.355     0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [0.4, 0.45) | [4.2, 4.5)                              | 1274                | 0.7487       | 0.0060                                | 0.0025                              | 1.336          | 0.005                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [0.4, 0.45) | [4.5, 4.8)                              | 1043                | 0.6955       | 0.0085                                | 0.0025                              | 1.438          | 0.005                  |
| [0.4, 0.45)   [5.1, 5.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 - /       | [4.8, 5.1)                              |                     | 0.7380       |                                       | 0.0024                              |                |                        |
| Continued on port page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [0.4, 0.45) | [5.1, 5.4)                              | 511                 | 0.7128       | 0.0074                                | 0.0034                              |                | 0.007                  |

Table 3: (Continued)

| $x_F \operatorname{Bin}$ | Mass Bin $(\text{GeV}/c^2)$ | $N_{\text{events}}$ | $<\epsilon>$ | $\delta_{\mathrm{stat}} < \epsilon >$ | $\delta_{\text{prop}} < \epsilon >$ | $1/<\epsilon>$ | $\delta(1/<\epsilon>)$ |
|--------------------------|-----------------------------|---------------------|--------------|---------------------------------------|-------------------------------------|----------------|------------------------|
| [0.4, 0.45)              | [5.4, 5.7)                  | 353                 | 0.7475       | 0.0093                                | 0.0033                              | 1.338          | 0.006                  |
| [0.4, 0.45)              | [5.7, 6.0)                  | 194                 | 0.7846       | 0.0135                                | 0.0040                              | 1.274          | 0.006                  |
| [0.4, 0.45)              | [6.0, 6.3)                  | 149                 | 0.8273       | 0.0100                                | 0.0039                              | 1.209          | 0.006                  |
| [0.4, 0.45)              | [6.3, 6.6)                  | 91                  | 0.7577       | 0.0182                                | 0.0057                              | 1.320          | 0.010                  |
| [0.4, 0.45)              | [6.6, 6.9)                  | 42                  | 0.8269       | 0.0172                                | 0.0066                              | 1.209          | 0.010                  |
| [0.4, 0.45)              | [6.9, 7.5)                  | 34                  | 0.7409       | 0.0337                                | 0.0078                              | 1.350          | 0.014                  |
| [0.4, 0.45)              | [7.5, 8.7)                  | 9                   | 0.8325       | 0.0475                                | 0.0091                              | 1.201          | 0.013                  |
| [0.45, 0.5)              | [4.2, 4.5)                  | 1245                | 0.7614       | 0.0054                                | 0.0024                              | 1.313          | 0.004                  |
| [0.45, 0.5)              | [4.5, 4.8)                  | 1039                | 0.7470       | 0.0049                                | 0.0021                              | 1.339          | 0.004                  |
| [0.45, 0.5)              | [4.8, 5.1)                  | 728                 | 0.7038       | 0.0069                                | 0.0028                              | 1.421          | 0.006                  |
| [0.45, 0.5)              | [5.1, 5.4)                  | 485                 | 0.7386       | 0.0099                                | 0.0030                              | 1.354          | 0.006                  |
| [0.45, 0.5)              | [5.4, 5.7)                  | 312                 | 0.7845       | 0.0088                                | 0.0035                              | 1.275          | 0.006                  |
| [0.45, 0.5)              | [5.7, 6.0)                  | 192                 | 0.7727       | 0.0118                                | 0.0040                              | 1.294          | 0.007                  |
| [0.45, 0.5)              | [6.0, 6.3)                  | 110                 | 0.7723       | 0.0211                                | 0.0056                              | 1.295          | 0.009                  |
| [0.45, 0.5)              | [6.3, 6.6)                  | 73                  | 0.7187       | 0.0161                                | 0.0071                              | 1.391          | 0.014                  |
| [0.45, 0.5)              | [6.6, 6.9)                  | 31                  | 0.7521       | 0.0272                                | 0.0116                              | 1.330          | 0.021                  |
| [0.45, 0.5)              | [6.9, 7.5)                  | 50                  | 0.7417       | 0.0281                                | 0.0058                              | 1.348          | 0.010                  |
| [0.45, 0.5)              | [7.5, 8.7)                  | 12                  | 0.8096       | 0.0418                                | 0.0096                              | 1.235          | 0.015                  |
| [0.5, 0.55)              | [4.2, 4.5)                  | 1221                | 0.6750       | 0.0057                                | 0.0026                              | 1.481          | 0.006                  |
| [0.5, 0.55)              | [4.5, 4.8)                  | 842                 | 0.7314       | 0.0055                                | 0.0025                              | 1.367          | 0.005                  |
| [0.5, 0.55)              | [4.8, 5.1)                  | 591                 | 0.7043       | 0.0088                                | 0.0028                              | 1.420          | 0.006                  |
| [0.5, 0.55)              | [5.1, 5.4)                  | 439                 | 0.7485       | 0.0096                                | 0.0029                              | 1.336          | 0.005                  |
| [0.5, 0.55)              | [5.4, 5.7)                  | 272                 | 0.7660       | 0.0087                                | 0.0035                              | 1.306          | 0.006                  |
| [0.5, 0.55)              | [5.7, 6.0)                  | 155                 | 0.7768       | 0.0134                                | 0.0046                              | 1.287          | 0.008                  |
| [0.5, 0.55)              | [6.0, 6.3)                  | 89                  | 0.7238       | 0.0203                                | 0.0062                              | 1.382          | 0.012                  |
| [0.5, 0.55)              | [6.3, 6.6)                  | 63                  | 0.7951       | 0.0204                                | 0.0068                              | 1.258          | 0.011                  |
| [0.5, 0.55)              | [6.6, 6.9)                  | 29                  | 0.7849       | 0.0267                                | 0.0099                              | 1.274          | 0.016                  |
| [0.5, 0.55)              | [6.9, 7.5)                  | 25                  | 0.8269       | 0.0348                                | 0.0073                              | 1.209          | 0.011                  |
| [0.5, 0.55)              | [7.5, 8.7)                  | 15                  | 0.7485       | 0.0400                                | 0.0090                              | 1.336          | 0.016                  |
| [0.55, 0.6)              | [4.2, 4.5)                  | 989                 | 0.7547       | 0.0062                                | 0.0025                              | 1.325          | 0.004                  |
| [0.55, 0.6)              | [4.5, 4.8)                  | 724                 | 0.7389       | 0.0058                                | 0.0026                              | 1.353          | 0.005                  |
| [0.55, 0.6)              | [4.8, 5.1)                  | 456                 | 0.7346       | 0.0087                                | 0.0032                              | 1.361          | 0.006                  |
| [0.55, 0.6)              | [5.1, 5.4)                  | 324                 | 0.7578       | 0.0124                                | 0.0035                              | 1.320          | 0.006                  |
| [0.55, 0.6)              | [5.4, 5.7)                  | 203                 | 0.7906       | 0.0130                                | 0.0039                              | 1.265          | 0.006                  |
| [0.55, 0.6)              | [5.7, 6.0)                  | 122                 | 0.7404       | 0.0124                                | 0.0046                              | 1.351          | 0.008                  |
| [0.55, 0.6)              | [6.0, 6.3)                  | 90                  | 0.7928       | 0.0173                                | 0.0054                              | 1.261          | 0.009                  |
| [0.55, 0.6)              | [6.3, 6.6)                  | 49                  | 0.7420       | 0.0271                                | 0.0077                              | 1.348          | 0.014                  |
| [0.55, 0.6)              | [6.6, 6.9)                  | 29                  | 0.7835       | 0.0275                                | 0.0110                              | 1.276          | 0.018                  |
| [0.55, 0.6)              | [6.9, 7.5)                  | 26                  | 0.7674       | 0.0383                                | 0.0075                              | 1.303          | 0.013                  |
| [0.55, 0.6)              | [7.5, 8.7)                  | 8                   | 0.8404       | 0.0479                                | 0.0101                              | 1.190          | 0.014                  |
| [0.6, 0.65)              | [4.2, 4.5)                  | 758                 | 0.7741       | 0.0074                                | 0.0026                              | 1.292          | 0.004                  |
| [0.6, 0.65)              | [4.5, 4.8)                  | 550                 | 0.7692       | 0.0076                                | 0.0029                              | 1.300          | 0.005                  |
| [0.6, 0.65)              | [4.8, 5.1)                  | 349                 | 0.7565       | 0.0081                                | 0.0040                              | 1.322          | 0.007                  |
| [0.6, 0.65)              | [5.1, 5.4)                  | 234                 | 0.8047       | 0.0132                                | 0.0035                              | 1.243          | 0.005                  |
| [0.6, 0.65)              | [5.4, 5.7)                  | 153                 | 0.7911       | 0.0129                                | 0.0045                              | 1.264          | 0.007                  |
| [0.6, 0.65)              | [5.7, 6.0)                  | 102                 | 0.7046       | 0.0170                                | 0.0057                              | 1.419          | 0.011                  |
| [0.6, 0.65)              | [6.0, 6.3)                  | 66                  | 0.8156       | 0.0200                                | 0.0062                              | 1.226          | 0.009                  |
| [0.6, 0.65)              | [6.3, 6.6)                  | 44                  | 0.7413       | 0.0323                                | 0.0093                              | 1.349          | 0.017                  |

Table 3: (Continued)

| $x_F$ Bin   | Mass Bin $(\text{GeV}/c^2)$ | $N_{ m events}$                                         | $<\epsilon>$ | $\delta_{\mathrm{stat}} < \epsilon >$ | $\delta_{\text{prop}} < \epsilon >$ | $1/<\epsilon>$ | $\delta(1/<\epsilon>)$ |
|-------------|-----------------------------|---------------------------------------------------------|--------------|---------------------------------------|-------------------------------------|----------------|------------------------|
| [0.6, 0.65) | [6.6, 6.9)                  | 27                                                      | 0.9000       | 0.0197                                | 0.0056                              | 1.111          | 0.007                  |
| [0.6, 0.65) | [6.9, 7.5)                  | 18                                                      | 0.7508       | 0.0588                                | 0.0152                              | 1.332          | 0.027                  |
| [0.6, 0.65) | [7.5, 8.7)                  | 8                                                       | 0.8233       | 0.0567                                | 0.0139                              | 1.215          | 0.021                  |
| [0.65, 0.7) | [4.2, 4.5)                  | 527                                                     | 0.7887       | 0.0089                                | 0.0030                              | 1.268          | 0.005                  |
| [0.65, 0.7) | [4.5, 4.8)                  | 387                                                     | 0.7592       | 0.0077                                | 0.0034                              | 1.317          | 0.006                  |
| [0.65, 0.7) | [4.8, 5.1)                  | 229                                                     | 0.7965       | 0.0122                                | 0.0043                              | 1.256          | 0.007                  |
| [0.65, 0.7) | [5.1, 5.4)                  | 180                                                     | 0.7849       | 0.0113                                | 0.0047                              | 1.274          | 0.008                  |
| [0.65, 0.7) | [5.4, 5.7)                  | 113                                                     | 0.7462       | 0.0174                                | 0.0050                              | 1.340          | 0.009                  |
| [0.65, 0.7) | [5.7, 6.0)                  | 66                                                      | 0.8122       | 0.0213                                | 0.0071                              | 1.231          | 0.011                  |
| [0.65, 0.7) | [6.0, 6.3)                  | 54                                                      | 0.7958       | 0.0222                                | 0.0074                              | 1.257          | 0.012                  |
| [0.65, 0.7) | [6.3, 6.6)                  | 25                                                      | 0.7773       | 0.0375                                | 0.0107                              | 1.287          | 0.018                  |
| [0.65, 0.7) | [6.6, 6.9)                  | 15                                                      | 0.8053       | 0.0304                                | 0.0141                              | 1.242          | 0.022                  |
| [0.65, 0.7) | [6.9, 7.5)                  | 20                                                      | 0.7746       | 0.0312                                | 0.0145                              | 1.291          | 0.024                  |
| [0.65, 0.7) | [7.5, 8.7)                  | 5                                                       | 0.0786       | 0.0548                                | 0.0410                              | 12.717         | 6.635                  |
| [0.7, 0.75] | [4.2, 4.5)                  | 327                                                     | 0.7368       | 0.0040                                | 0.0042                              | 1.357          | 0.008                  |
| [0.7, 0.75) | [4.5, 4.8)                  | 242                                                     | 0.7680       | 0.0103                                | 0.0044                              | 1.302          | 0.007                  |
| [0.7, 0.75) | [4.8, 5.1]                  | 168                                                     | 0.7904       | 0.0136                                | 0.0052                              | 1.265          | 0.008                  |
| [0.7, 0.75) | [5.1, 5.4)                  | 86                                                      | 0.7830       | 0.0176                                | 0.0077                              | 1.277          | 0.013                  |
| [0.7, 0.75) | [5.4, 5.7)                  | 67                                                      | 0.7453       | 0.0218                                | 0.0079                              | 1.342          | 0.014                  |
| [0.7, 0.75) | [5.7, 6.0)                  | 36                                                      | 0.8839       | 0.0434                                | 0.0120                              | 1.131          | 0.015                  |
| [0.7, 0.75) | [6.0, 6.3)                  | 34                                                      | 0.7284       | 0.0458                                | 0.0193                              | 1.373          | 0.036                  |
| [0.7, 0.75) | [6.3, 6.6)                  | 25                                                      | 0.8257       | 0.0730                                | 0.0357                              | 1.211          | 0.052                  |
| [0.7, 0.75) | [6.6, 6.9)                  | 11                                                      | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.7, 0.75) | [6.9, 7.5)                  | 3                                                       | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.7, 0.75) | [7.5, 8.7)                  | $\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$ | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.75, 0.8) | [4.2, 4.5)                  | 224                                                     | 0.6932       | 0.0203                                | 0.0075                              | 1.443          | 0.016                  |
| [0.75, 0.8) | [4.5, 4.8)                  | 107                                                     | 0.8326       | 0.0397                                | 0.0069                              | 1.201          | 0.010                  |
| [0.75, 0.8) | [4.8, 5.1)                  | 76                                                      | 0.0955       | 0.0262                                | 0.0107                              | 10.468         | 1.177                  |
| [0.75, 0.8) | [5.1, 5.4)                  | 57                                                      | 0.0000       | 0.0000                                | 0.0000                              | _              |                        |
| [0.75, 0.8) | [5.4, 5.7)                  | 35                                                      | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.75, 0.8) | [5.7, 6.0)                  | 27                                                      | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.75, 0.8) | • / /                       | 19                                                      | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.75, 0.8) | [6.3, 6.6)                  | 6                                                       | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.75, 0.8) | [6.6, 6.9)                  | 7                                                       | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.75, 0.8) | [6.9, 7.5)                  | 5                                                       | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.75, 0.8) | [7.5, 8.7)                  | 4                                                       | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.8, 0.85) | [4.2, 4.5)                  | 97                                                      | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.8, 0.85) | [4.5, 4.8)                  | 65                                                      | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.8, 0.85) | [4.8, 5.1)                  | 40                                                      | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.8, 0.85) | [5.1, 5.4)                  | 17                                                      | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.8, 0.85) | [5.4, 5.7)                  | 19                                                      | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.8, 0.85) | [5.7, 6.0)                  | 12                                                      | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.8, 0.85) | [6.0, 6.3)                  | 4                                                       | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.8, 0.85) | [6.3, 6.6)                  | 6                                                       | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.8, 0.85) | [6.6, 6.9)                  | 5                                                       | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.8, 0.85) | [6.9, 7.5)                  | 2                                                       | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |
| [0.8, 0.85) | [7.5, 8.7)                  | 1                                                       | 0.0000       | 0.0000                                | 0.0000                              | _              | _                      |

## 5.4 Average Efficiency Calculations using RS57-70 all targets only

Table 4: Average Efficiency and Errors calculated for  $x_F$  and Mass bins using RS57-70 all targets

| $x_F Bin$   | Mass Bin $(\text{GeV}/c^2)$ | $N_{ m events}$ | $<\epsilon>$ | $\delta_{\mathrm{stat}} < \epsilon >$ | $\delta_{\mathrm{prop}} < \epsilon >$ | $1/<\epsilon>$ | $\delta(1/<\epsilon>)$ |
|-------------|-----------------------------|-----------------|--------------|---------------------------------------|---------------------------------------|----------------|------------------------|
| [0.0, 0.05) | [4.2, 4.5)                  | 2               | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.0, 0.05) | [4.5, 4.8)                  | 58              | 0.2186       | 0.0384                                | 0.0120                                | 4.574          | 0.251                  |
| [0.0, 0.05) | [4.8, 5.1)                  | 210             | 0.7313       | 0.0357                                | 0.0093                                | 1.367          | 0.017                  |
| [0.0, 0.05) | [5.1, 5.4)                  | 322             | 0.6007       | 0.0112                                | 0.0100                                | 1.665          | 0.028                  |
| [0.0, 0.05) | [5.4, 5.7)                  | 332             | 0.6512       | 0.0138                                | 0.0057                                | 1.536          | 0.014                  |
| [0.0, 0.05) | [5.7, 6.0)                  | 252             | 0.6583       | 0.0178                                | 0.0061                                | 1.519          | 0.014                  |
| [0.0, 0.05) | [6.0, 6.3)                  | 180             | 0.6595       | 0.0159                                | 0.0076                                | 1.516          | 0.017                  |
| [0.0, 0.05) | [6.3, 6.6)                  | 110             | 0.6639       | 0.0205                                | 0.0098                                | 1.506          | 0.022                  |
| [0.0, 0.05) | [6.6, 6.9)                  | 48              | 0.6775       | 0.0210                                | 0.0113                                | 1.476          | 0.025                  |
| [0.0, 0.05) | [6.9, 7.5)                  | 57              | 0.6714       | 0.0274                                | 0.0098                                | 1.489          | 0.022                  |
| [0.0, 0.05) | [7.5, 8.7)                  | 9               | 0.5661       | 0.0833                                | 0.0271                                | 1.766          | 0.085                  |
| [0.05, 0.1) | [4.2, 4.5)                  | 22              | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.05, 0.1) | [4.5, 4.8)                  | 185             | 0.3146       | 0.0260                                | 0.0115                                | 3.178          | 0.116                  |
| [0.05, 0.1) | [4.8, 5.1)                  | 457             | 0.4959       | 0.0147                                | 0.0077                                | 2.017          | 0.031                  |
| [0.05, 0.1) | [5.1, 5.4)                  | 529             | 0.6826       | 0.0158                                | 0.0047                                | 1.465          | 0.010                  |
| [0.05, 0.1) | [5.4, 5.7)                  | 490             | 0.6542       | 0.0085                                | 0.0052                                | 1.529          | 0.012                  |
| [0.05, 0.1) | [5.7, 6.0)                  | 358             | 0.7325       | 0.0098                                | 0.0049                                | 1.365          | 0.009                  |
| [0.05, 0.1) | [6.0, 6.3)                  | 209             | 0.7106       | 0.0154                                | 0.0052                                | 1.407          | 0.010                  |
| [0.05, 0.1) | [6.3, 6.6)                  | 148             | 0.6179       | 0.0155                                | 0.0072                                | 1.618          | 0.019                  |
| [0.05, 0.1) | [6.6, 6.9)                  | 65              | 0.6878       | 0.0252                                | 0.0088                                | 1.454          | 0.019                  |
| [0.05, 0.1) | [6.9, 7.5)                  | 61              | 0.6746       | 0.0218                                | 0.0078                                | 1.482          | 0.017                  |
| [0.05, 0.1) | [7.5, 8.7)                  | 24              | 0.6253       | 0.0499                                | 0.0111                                | 1.599          | 0.028                  |
| [0.1, 0.15) | [4.2, 4.5)                  | 161             | 8.1673       | 1.2842                                | 0.0073                                | 0.122          | 0.000                  |
| [0.1, 0.15) | [4.5, 4.8)                  | 518             | 0.5176       | 0.0137                                | 0.0074                                | 1.932          | 0.028                  |
| [0.1, 0.15) | [4.8, 5.1)                  | 811             | 0.6135       | 0.0067                                | 0.0059                                | 1.630          | 0.016                  |
| [0.1, 0.15) | [5.1, 5.4)                  | 858             | 0.6040       | 0.0069                                | 0.0042                                | 1.656          | 0.012                  |
| [0.1, 0.15) | [5.4, 5.7)                  | 625             | 0.6263       | 0.0094                                | 0.0036                                | 1.597          | 0.009                  |
| [0.1, 0.15) | [5.7, 6.0)                  | 416             | 0.6728       | 0.0096                                | 0.0042                                | 1.486          | 0.009                  |
| [0.1, 0.15) | [6.0, 6.3)                  | 293             | 0.7289       | 0.0125                                | 0.0043                                | 1.372          | 0.008                  |
| [0.1, 0.15) | [6.3, 6.6)                  | 159             | 0.7369       | 0.0133                                | 0.0058                                | 1.357          | 0.011                  |
| [0.1, 0.15) | [6.6, 6.9)                  | 112             | 0.7193       | 0.0152                                | 0.0060                                | 1.390          | 0.012                  |
| [0.1, 0.15) | [6.9, 7.5)                  | 75              | 0.7171       | 0.0190                                | 0.0058                                | 1.394          | 0.011                  |
| [0.1, 0.15) | [7.5, 8.7)                  | 26              | 0.6676       | 0.0269                                | 0.0089                                | 1.498          | 0.020                  |
| [0.15, 0.2) | [4.2, 4.5)                  | 487             | 1.1841       | 0.0482                                | 0.0051                                | 0.845          | 0.004                  |
| [0.15, 0.2) | [4.5, 4.8)                  | 1052            | 0.7085       | 0.0091                                | 0.0051                                | 1.412          | 0.010                  |
| [0.15, 0.2) | [4.8, 5.1)                  | 1362            | 0.5343       | 0.0048                                | 0.0036                                | 1.872          | 0.013                  |
| [0.15, 0.2) | [5.1, 5.4)                  | 1163            | 0.6907       | 0.0057                                | 0.0030                                | 1.448          | 0.006                  |
| [0.15, 0.2) | [5.4, 5.7)                  | 738             | 0.7110       | 0.0088                                | 0.0034                                | 1.407          | 0.007                  |
| [0.15, 0.2) | [5.7, 6.0)                  | 564             | 0.7624       | 0.0072                                | 0.0033                                | 1.312          | 0.006                  |
| [0.15, 0.2) | [6.0, 6.3)                  | 342             | 0.7256       | 0.0095                                | 0.0037                                | 1.378          | 0.007                  |
| [0.15, 0.2) | [6.3, 6.6)                  | 239             | 0.7305       | 0.0144                                | 0.0047                                | 1.369          | 0.009                  |
| [0.15, 0.2) | [6.6, 6.9)                  | 112             | 0.7293       | 0.0176                                | 0.0062                                | 1.371          | 0.012                  |
| [0.15, 0.2) | [6.9, 7.5)                  | 92              | 0.7042       | 0.0163                                | 0.0053                                | 1.420          | 0.011                  |
| [0.15, 0.2) | [7.5, 8.7)                  | 28              | 0.7024       | 0.0376                                | 0.0084                                | 1.424          | 0.017                  |
| [0.2, 0.25) | [4.2, 4.5)                  | 1287            | 0.5234       | 0.0083                                | 0.0048                                | 1.911          | 0.018                  |

Table 4: (Continued)

|             |                             |                     | `            | ,                                     |                                       |                |                        |
|-------------|-----------------------------|---------------------|--------------|---------------------------------------|---------------------------------------|----------------|------------------------|
| $x_F$ Bin   | Mass Bin $(\text{GeV}/c^2)$ | $N_{\text{events}}$ | $<\epsilon>$ | $\delta_{\mathrm{stat}} < \epsilon >$ | $\delta_{\mathrm{prop}} < \epsilon >$ | $1/<\epsilon>$ | $\delta(1/<\epsilon>)$ |
| [0.2, 0.25) | [4.5, 4.8)                  | 1771                | 0.5882       | 0.0064                                | 0.0030                                | 1.700          | 0.009                  |
| [0.2, 0.25) | [4.8, 5.1)                  | 1726                | 0.6759       | 0.0053                                | 0.0024                                | 1.479          | 0.005                  |
| [0.2, 0.25) | [5.1, 5.4)                  | 1457                | 0.6635       | 0.0053                                | 0.0022                                | 1.507          | 0.005                  |
| [0.2, 0.25) | [5.4, 5.7)                  | 973                 | 0.6810       | 0.0071                                | 0.0027                                | 1.469          | 0.006                  |
| [0.2, 0.25) | [5.7, 6.0)                  | 647                 | 0.7697       | 0.0068                                | 0.0027                                | 1.299          | 0.005                  |
| [0.2, 0.25) | [6.0, 6.3)                  | 391                 | 0.7225       | 0.0096                                | 0.0034                                | 1.384          | 0.007                  |
| [0.2, 0.25) | [6.3, 6.6)                  | 270                 | 0.7401       | 0.0117                                | 0.0040                                | 1.351          | 0.007                  |
| [0.2, 0.25) | [6.6, 6.9)                  | 113                 | 0.8147       | 0.0149                                | 0.0053                                | 1.227          | 0.008                  |
| [0.2, 0.25) | [6.9, 7.5)                  | 112                 | 0.7571       | 0.0138                                | 0.0041                                | 1.321          | 0.007                  |
| [0.2, 0.25) | [7.5, 8.7)                  | 33                  | 0.6915       | 0.0287                                | 0.0073                                | 1.446          | 0.015                  |
| [0.25, 0.3) | [4.2, 4.5)                  | 2334                | 0.6958       | 0.0052                                | 0.0030                                | 1.437          | 0.006                  |
| [0.25, 0.3) | [4.5, 4.8)                  | 2649                | 0.7130       | 0.0031                                | 0.0021                                | 1.403          | 0.004                  |
| [0.25, 0.3) | [4.8, 5.1)                  | 2161                | 0.6885       | 0.0056                                | 0.0019                                | 1.452          | 0.004                  |
| [0.25, 0.3) | [5.1, 5.4)                  | 1660                | 0.6945       | 0.0046                                | 0.0021                                | 1.440          | 0.004                  |
| [0.25, 0.3) | [5.4, 5.7)                  | 1155                | 0.7683       | 0.0057                                | 0.0022                                | 1.302          | 0.004                  |
| [0.25, 0.3) | [5.7, 6.0)                  | 679                 | 0.7170       | 0.0071                                | 0.0027                                | 1.395          | 0.005                  |
| [0.25, 0.3) | [6.0, 6.3)                  | 440                 | 0.7526       | 0.0066                                | 0.0032                                | 1.329          | 0.006                  |
| [0.25, 0.3) | [6.3, 6.6)                  | 246                 | 0.7377       | 0.0127                                | 0.0038                                | 1.356          | 0.007                  |
| [0.25, 0.3) | [6.6, 6.9)                  | 131                 | 0.7213       | 0.0166                                | 0.0066                                | 1.386          | 0.013                  |
| [0.25, 0.3) | [6.9, 7.5)                  | 136                 | 0.7627       | 0.0151                                | 0.0038                                | 1.311          | 0.007                  |
| [0.25, 0.3) | [7.5, 8.7)                  | 31                  | 0.6334       | 0.0332                                | 0.0081                                | 1.579          | 0.020                  |
| [0.3, 0.35) | [4.2, 4.5)                  | 3427                | 0.7484       | 0.0028                                | 0.0021                                | 1.336          | 0.004                  |
| [0.3, 0.35) | [4.5, 4.8)                  | 3121                | 0.7449       | 0.0038                                | 0.0016                                | 1.342          | 0.003                  |
| [0.3, 0.35) | [4.8, 5.1)                  | 2660                | 0.7042       | 0.0041                                | 0.0016                                | 1.420          | 0.003                  |
| [0.3, 0.35) | [5.1, 5.4)                  | 1804                | 0.7803       | 0.0040                                | 0.0016                                | 1.281          | 0.003                  |
| [0.3, 0.35) | [5.4, 5.7)                  | 1217                | 0.6993       | 0.0050                                | 0.0020                                | 1.430          | 0.004                  |
| [0.3, 0.35) | [5.7, 6.0)                  | 737                 | 0.7166       | 0.0085                                | 0.0023                                | 1.395          | 0.005                  |
| [0.3, 0.35) | [6.0, 6.3)                  | 459                 | 0.7268       | 0.0084                                | 0.0030                                | 1.376          | 0.006                  |
| [0.3, 0.35) | [6.3, 6.6)                  | 284                 | 0.7595       | 0.0110                                | 0.0034                                | 1.317          | 0.006                  |
| [0.3, 0.35) | [6.6, 6.9)                  | 172                 | 0.7205       | 0.0115                                | 0.0051                                | 1.388          | 0.010                  |
| [0.3, 0.35) | [6.9, 7.5)                  | 120                 | 0.7036       | 0.0179                                | 0.0049                                | 1.421          | 0.010                  |
| [0.3, 0.35) | [7.5, 8.7)                  | 45                  | 0.7637       | 0.0257                                | 0.0052                                | 1.309          | 0.009                  |
| [0.35, 0.4) | [4.2, 4.5)                  | 4154                | 0.7929       | 0.0033                                | 0.0015                                | 1.261          | 0.002                  |
| [0.35, 0.4) | [4.5, 4.8)                  | 3597                | 0.7180       | 0.0035                                | 0.0014                                | 1.393          | 0.003                  |
| [0.35, 0.4) | [4.8, 5.1)                  | 2740                | 0.7287       | 0.0033                                | 0.0015                                | 1.372          | 0.003                  |
| [0.35, 0.4) | [5.1, 5.4)                  | 1947                | 0.7600       | 0.0038                                | 0.0017                                | 1.316          | 0.003                  |
| [0.35, 0.4) | [5.4, 5.7)                  | 1156                | 0.7305       | 0.0057                                | 0.0019                                | 1.369          | 0.004                  |
| [0.35, 0.4) | [5.7, 6.0)                  | 768                 | 0.7145       | 0.0075                                | 0.0025                                | 1.400          | 0.005                  |
| [0.35, 0.4) | [6.0, 6.3)                  | 475                 | 0.7870       | 0.0077                                | 0.0026                                | 1.271          | 0.004                  |
| [0.35, 0.4) | [6.3, 6.6)                  | 299                 | 0.7530       | 0.0111                                | 0.0034                                | 1.328          | 0.006                  |
| [0.35, 0.4) | [6.6, 6.9)                  | 178                 | 0.7646       | 0.0112                                | 0.0045                                | 1.308          | 0.008                  |
| [0.35, 0.4) | [6.9, 7.5)                  | 142                 | 0.7335       | 0.0179                                | 0.0036                                | 1.363          | 0.007                  |
| [0.35, 0.4) | [7.5, 8.7)                  | 52                  | 0.7419       | 0.0222                                | 0.0050                                | 1.348          | 0.009                  |
| [0.4, 0.45) | [4.2, 4.5)                  | 4687                | 0.7402       | 0.0032                                | 0.0013                                | 1.351          | 0.002                  |
| [0.4, 0.45) | [4.5, 4.8)                  | 3755                | 0.6903       | 0.0044                                | 0.0013                                | 1.449          | 0.003                  |
| [0.4, 0.45) | [4.8, 5.1)                  | 2761                | 0.7311       | 0.0032                                | 0.0013                                | 1.368          | 0.002                  |
| [0.4, 0.45) | [5.1, 5.4)                  | 1874                | 0.7180       | 0.0037                                | 0.0017                                | 1.393          | 0.003                  |
| [0.4, 0.45) | [5.4, 5.7)                  | 1209                | 0.7504       | 0.0052                                | 0.0018                                | 1.333          | 0.003                  |
|             | [,,                         | 1_00                | J., JOI      | 0.0002                                |                                       |                | on nevt page           |

Table 4: (Continued)

|             |                             |                 | `            | ,                                     |                                       |                |                        |
|-------------|-----------------------------|-----------------|--------------|---------------------------------------|---------------------------------------|----------------|------------------------|
| $x_F$ Bin   | Mass Bin $(\text{GeV}/c^2)$ | $N_{ m events}$ | $<\epsilon>$ | $\delta_{\mathrm{stat}} < \epsilon >$ | $\delta_{\mathrm{prop}} < \epsilon >$ | $1/<\epsilon>$ | $\delta(1/<\epsilon>)$ |
| [0.4, 0.45) | [5.7, 6.0)                  | 776             | 0.7713       | 0.0076                                | 0.0021                                | 1.296          | 0.004                  |
| [0.4, 0.45) | [6.0, 6.3)                  | 489             | 0.7828       | 0.0077                                | 0.0028                                | 1.277          | 0.005                  |
| [0.4, 0.45) | [6.3, 6.6)                  | 310             | 0.7582       | 0.0095                                | 0.0032                                | 1.319          | 0.006                  |
| [0.4, 0.45) | [6.6, 6.9)                  | 169             | 0.8065       | 0.0092                                | 0.0038                                | 1.240          | 0.006                  |
| [0.4, 0.45) | [6.9, 7.5)                  | 143             | 0.7609       | 0.0159                                | 0.0036                                | 1.314          | 0.006                  |
| [0.4, 0.45) | [7.5, 8.7)                  | 34              | 0.7886       | 0.0259                                | 0.0055                                | 1.268          | 0.009                  |
| [0.45, 0.5) | [4.2, 4.5)                  | 4659            | 0.7450       | 0.0030                                | 0.0013                                | 1.342          | 0.002                  |
| [0.45, 0.5) | [4.5, 4.8)                  | 3627            | 0.7541       | 0.0025                                | 0.0011                                | 1.326          | 0.002                  |
| [0.45, 0.5) | [4.8, 5.1)                  | 2571            | 0.7067       | 0.0036                                | 0.0015                                | 1.415          | 0.003                  |
| [0.45, 0.5) | [5.1, 5.4)                  | 1783            | 0.7388       | 0.0049                                | 0.0016                                | 1.353          | 0.003                  |
| [0.45, 0.5) | [5.4, 5.7)                  | 1088            | 0.7786       | 0.0050                                | 0.0019                                | 1.284          | 0.003                  |
| [0.45, 0.5) | [5.7, 6.0)                  | 700             | 0.7706       | 0.0062                                | 0.0022                                | 1.298          | 0.004                  |
| [0.45, 0.5) | [6.0, 6.3)                  | 435             | 0.7701       | 0.0102                                | 0.0028                                | 1.299          | 0.005                  |
| [0.45, 0.5) | [6.3, 6.6)                  | 255             | 0.7313       | 0.0085                                | 0.0036                                | 1.367          | 0.007                  |
| [0.45, 0.5) | [6.6, 6.9)                  | 129             | 0.7924       | 0.0139                                | 0.0049                                | 1.262          | 0.008                  |
| [0.45, 0.5) | [6.9, 7.5)                  | 141             | 0.7439       | 0.0148                                | 0.0033                                | 1.344          | 0.006                  |
| [0.45, 0.5) | [7.5, 8.7)                  | 45              | 0.7840       | 0.0273                                | 0.0058                                | 1.275          | 0.009                  |
| [0.5, 0.55) | [4.2, 4.5)                  | 4306            | 0.6773       | 0.0030                                | 0.0014                                | 1.476          | 0.003                  |
| [0.5, 0.55) | [4.5, 4.8)                  | 3228            | 0.7308       | 0.0028                                | 0.0013                                | 1.368          | 0.002                  |
| [0.5, 0.55) | [4.8, 5.1)                  | 2223            | 0.7064       | 0.0043                                | 0.0014                                | 1.416          | 0.003                  |
| [0.5, 0.55) | [5.1, 5.4)                  | 1444            | 0.7628       | 0.0051                                | 0.0016                                | 1.311          | 0.003                  |
| [0.5, 0.55) | [5.4, 5.7)                  | 914             | 0.7484       | 0.0054                                | 0.0020                                | 1.336          | 0.004                  |
| [0.5, 0.55) | [5.7, 6.0)                  | 580             | 0.7779       | 0.0069                                | 0.0024                                | 1.285          | 0.004                  |
| [0.5, 0.55) | [6.0, 6.3)                  | 352             | 0.7311       | 0.0105                                | 0.0032                                | 1.368          | 0.006                  |
| [0.5, 0.55) | [6.3, 6.6)                  | 211             | 0.7949       | 0.0110                                | 0.0039                                | 1.258          | 0.006                  |
| [0.5, 0.55) | [6.6, 6.9)                  | 131             | 0.8114       | 0.0124                                | 0.0040                                | 1.232          | 0.006                  |
| [0.5, 0.55) | [6.9, 7.5)                  | 107             | 0.7816       | 0.0171                                | 0.0039                                | 1.279          | 0.006                  |
| [0.5, 0.55) | [7.5, 8.7)                  | 46              | 0.7344       | 0.0256                                | 0.0058                                | 1.362          | 0.011                  |
| [0.55, 0.6) | [4.2, 4.5)                  | 3659            | 0.7458       | 0.0033                                | 0.0013                                | 1.341          | 0.002                  |
| [0.55, 0.6) | [4.5, 4.8)                  | 2558            | 0.7304       | 0.0034                                | 0.0014                                | 1.369          | 0.003                  |
| [0.55, 0.6) | [4.8, 5.1)                  | 1733            | 0.7319       | 0.0045                                | 0.0016                                | 1.366          | 0.003                  |
| [0.55, 0.6) | [5.1, 5.4)                  | 1153            | 0.7508       | 0.0057                                | 0.0019                                | 1.332          | 0.003                  |
| [0.55, 0.6) | [5.4, 5.7)                  | 791             | 0.7826       | 0.0072                                | 0.0021                                | 1.278          | 0.003                  |
| [0.55, 0.6) | [5.7, 6.0)                  | 461             | 0.7215       | 0.0070                                | 0.0026                                | 1.386          | 0.005                  |
| [0.55, 0.6) | [6.0, 6.3)                  | 310             | 0.7764       | 0.0107                                | 0.0032                                | 1.288          | 0.005                  |
| [0.55, 0.6) | [6.3, 6.6)                  | 178             | 0.7579       | 0.0135                                | 0.0038                                | 1.320          | 0.007                  |
| [0.55, 0.6) | [6.6, 6.9)                  | 113             | 0.7729       | 0.0176                                | 0.0056                                | 1.294          | 0.009                  |
| [0.55, 0.6) | [6.9, 7.5)                  | 91              | 0.7624       | 0.0179                                | 0.0038                                | 1.312          | 0.007                  |
| [0.55, 0.6) | [7.5, 8.7)                  | 25              | 0.7924       | 0.0322                                | 0.0071                                | 1.262          | 0.011                  |
| [0.6, 0.65) | [4.2, 4.5)                  | 2841            | 0.7534       | 0.0039                                | 0.0014                                | 1.327          | 0.002                  |
| [0.6, 0.65) | [4.5, 4.8)                  | 1979            | 0.7593       | 0.0041                                | 0.0016                                | 1.317          | 0.003                  |
| [0.6, 0.65) | [4.8, 5.1)                  | 1276            | 0.7592       | 0.0043                                | 0.0020                                | 1.317          | 0.003                  |
| [0.6, 0.65) | [5.1, 5.4)                  | 900             | 0.8001       | 0.0062                                | 0.0018                                | 1.250          | 0.003                  |
| [0.6, 0.65) | [5.4, 5.7)                  | 535             | 0.7816       | 0.0082                                | 0.0026                                | 1.279          | 0.004                  |
| [0.6, 0.65) | [5.7, 6.0)                  | 353             | 0.7361       | 0.0098                                | 0.0029                                | 1.359          | 0.005                  |
| [0.6, 0.65) | [6.0, 6.3)                  | 228             | 0.7966       | 0.0125                                | 0.0025                                | 1.255          | 0.006                  |
| [0.6, 0.65) | [6.3, 6.6)                  | 148             | 0.7245       | 0.0126                                | 0.0048                                | 1.380          | 0.009                  |
| [0.6, 0.65) | [6.6, 6.9)                  | 85              | 0.8524       | 0.0170                                | 0.0042                                | 1.173          | 0.006                  |
| [0.0, 0.00) | [0.0, 0.0]                  |                 | 0.0024       | 0.0103                                | 0.0042                                |                | on nevt page           |

Table 4: (Continued)

| $x_F$ Bin   | Mass Bin $(\text{GeV}/c^2)$ | $N_{ m events}$ | $<\epsilon>$ | $\delta_{\mathrm{stat}} < \epsilon >$ | $\delta_{\mathrm{prop}} < \epsilon >$ | $1/<\epsilon>$ | $\delta(1/<\epsilon>)$ |
|-------------|-----------------------------|-----------------|--------------|---------------------------------------|---------------------------------------|----------------|------------------------|
| [0.6, 0.65) | [6.9, 7.5)                  | 65              | 0.7452       | 0.0265                                | 0.0069                                | 1.342          | 0.012                  |
| [0.6, 0.65) | [7.5, 8.7)                  | 23              | 0.7339       | 0.0431                                | 0.0111                                | 1.363          | 0.021                  |
| [0.65, 0.7) | [4.2, 4.5)                  | 1977            | 0.7822       | 0.0048                                | 0.0016                                | 1.278          | 0.003                  |
| [0.65, 0.7) | [4.5, 4.8)                  | 1353            | 0.7474       | 0.0047                                | 0.0019                                | 1.338          | 0.003                  |
| [0.65, 0.7) | [4.8, 5.1)                  | 858             | 0.7918       | 0.0058                                | 0.0022                                | 1.263          | 0.003                  |
| [0.65, 0.7) | [5.1, 5.4)                  | 576             | 0.7777       | 0.0064                                | 0.0026                                | 1.286          | 0.004                  |
| [0.65, 0.7) | [5.4, 5.7)                  | 383             | 0.7330       | 0.0097                                | 0.0029                                | 1.364          | 0.005                  |
| [0.65, 0.7) | [5.7, 6.0)                  | 241             | 0.8234       | 0.0110                                | 0.0035                                | 1.215          | 0.005                  |
| [0.65, 0.7) | [6.0, 6.3)                  | 172             | 0.7830       | 0.0115                                | 0.0042                                | 1.277          | 0.007                  |
| [0.65, 0.7) | [6.3, 6.6)                  | 86              | 0.7874       | 0.0155                                | 0.0060                                | 1.270          | 0.010                  |
| [0.65, 0.7) | [6.6, 6.9)                  | 46              | 0.7974       | 0.0223                                | 0.0087                                | 1.254          | 0.014                  |
| [0.65, 0.7) | [6.9, 7.5)                  | 48              | 0.7732       | 0.0189                                | 0.0097                                | 1.293          | 0.016                  |
| [0.65, 0.7) | [7.5, 8.7)                  | 21              | 0.3154       | 0.0935                                | 0.0142                                | 3.171          | 0.143                  |
| [0.7, 0.75) | [4.2, 4.5)                  | 1245            | 0.7274       | 0.0052                                | 0.0023                                | 1.375          | 0.004                  |
| [0.7, 0.75) | [4.5, 4.8)                  | 833             | 0.7707       | 0.0060                                | 0.0024                                | 1.297          | 0.004                  |
| [0.7, 0.75) | [4.8, 5.1)                  | 568             | 0.7776       | 0.0077                                | 0.0029                                | 1.286          | 0.005                  |
| [0.7, 0.75) | [5.1, 5.4)                  | 356             | 0.7822       | 0.0087                                | 0.0038                                | 1.278          | 0.006                  |
| [0.7, 0.75) | [5.4, 5.7)                  | 243             | 0.7451       | 0.0137                                | 0.0044                                | 1.342          | 0.008                  |
| [0.7, 0.75) | [5.7, 6.0)                  | 143             | 0.8584       | 0.0311                                | 0.0060                                | 1.165          | 0.008                  |
| [0.7, 0.75) | [6.0, 6.3)                  | 90              | 0.7598       | 0.0270                                | 0.0110                                | 1.316          | 0.019                  |
| [0.7, 0.75) | [6.3, 6.6)                  | 77              | 0.7555       | 0.0444                                | 0.0201                                | 1.324          | 0.035                  |
| [0.7, 0.75) | [6.6, 6.9)                  | 43              | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.7, 0.75) | [6.9, 7.5)                  | 19              | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.7, 0.75) | [7.5, 8.7)                  | 11              | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.75, 0.8) | [4.2, 4.5)                  | 763             | 0.6989       | 0.0116                                | 0.0040                                | 1.431          | 0.008                  |
| [0.75, 0.8) | [4.5, 4.8)                  | 438             | 0.7955       | 0.0202                                | 0.0032                                | 1.257          | 0.005                  |
| [0.75, 0.8) | [4.8, 5.1)                  | 303             | 0.1510       | 0.0163                                | 0.0069                                | 6.624          | 0.302                  |
| [0.75, 0.8) | [5.1, 5.4)                  | 190             | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.75, 0.8) | [5.4, 5.7)                  | 133             | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.75, 0.8) | [5.7, 6.0)                  | 91              | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.75, 0.8) | [6.0, 6.3)                  | 55              | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
|             | [6.3, 6.6)                  | 36              | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.75, 0.8) | [6.6, 6.9)                  | 23              | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.75, 0.8) | [6.9, 7.5)                  | 21              | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.75, 0.8) | [7.5, 8.7)                  | 13              | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85) | [4.2, 4.5)                  | 329             | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85) | [4.5, 4.8)                  | 248             | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85) | [4.8, 5.1)                  | 139             | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85) | [5.1, 5.4)                  | 101             | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85) | [5.4, 5.7)                  | 64              | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85) | [5.7, 6.0)                  | 41              | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85) | [6.0, 6.3)                  | 18              | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85) | [6.3, 6.6)                  | 23              | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85) | [6.6, 6.9)                  | 11              | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85) | [6.9, 7.5)                  | 7               | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |
| [0.8, 0.85) | [7.5, 8.7)                  | 3               | 0.0000       | 0.0000                                | 0.0000                                | _              | _                      |

### 6 Disscussion

We calculated kTracker efficiency corrections with the propagated uncertainties for different Mass and  $x_F$  bins by using Monte-Carlo events. It is evident that the efficiency corrections for some  $x_F$  and Mass bins couldn't calculate reliably due to low statistics. In some cases we cannot reliably determine the efficiency in these bins; sometimes the efficiency is even larger than one due to the large fluctuations. Also in some bins have an efficiency of zero and we have to delete these bins from the final results. We have to calculate efficiency curves for these 2D bins with the Monte-Carlo samples with high statistics.