45 pontos

 $\{X,Y\}$ não gera S $\{X,Y,Z\} \mbox{ \'e base de } S$

 $\{X,Y\}$ é linearmente independente

ALGA — Agrupamento IV (ECT, EET, EI)

Teste 1

27	de	novembro	de 2015	— Duração:	1h45
----	----	----------	---------	------------	------

Valores

Nome _							N.° M€	ec					
Curso _	N.° Folhas suplementares												
Questão	1	2	3	4	5	6	7	8	total				
Cotação Classif.	45	45	20	20	35	06	12	17	200				
	buem-se	stão é consti 9 pontos por 0 pontos por 3 pontos por	cada respos	sta correta, sta em branc	scolha múltip	ola.	E\C 0 0 00 10 20 30 41 51	3 06 15 2 6 03 12 2 9 00 09 2 -03	3 4 5 27 36 45 24 33				
	Dados os ve	tores $X = ($ = $(1, 0, 6)$	-		alar com uma	a × no	correspond	(Reservado à cotação	9)				
	$X \times Y$ $X \times Y$	X = 0 $Y = (4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,$,	= 3, a mat	riz $B\ 3 imes 1$	e o sistema	AX = B c	le matriz am	pliada $[A B$				
	$\operatorname{car}([A])$ o sistem $\operatorname{car}([A])$	[B]) = car(A) [B]) > car(A) a é possível [B]) < car(A)	l) e determina l)										
(c)	$(A^T B)$	atrizes A e B A		n tem-se									
		$a^{(1)} = 3$ $a^{(T)} = 6$ $a^{(-1)} = -4$ $a^{(-1)} = -6$			$\det(A) = -2$ $Z = (1, 1, 2)$			$T,Y,Z>$ de \mathbb{R}^{2}	\mathbb{R}^3 tem-se				

- 2. Considere a matriz $A = \begin{bmatrix} 2 & 0 & 0 & 3 \\ 0 & 2 & 3 & 0 \\ 0 & 3 & 2 & 0 \\ 3 & 0 & 0 & 2 \end{bmatrix}$ e o vetor $B = \begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \end{bmatrix}$.
 - (a) Indicando todas as passagens, calcule $\det(A)$.

(b) Justificando, diga se A é invertível.

(c) Justificando, indique $\mathcal{N}(A)$;

(d) Verifique se $B=(5,5,5,5)\in\mathcal{C}(A)$ e justifique a sua resposta.

Nos exercícios 3, 4 e 5 seguintes considere as matrizes:

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & k^2 - 5 \end{bmatrix}, \quad B = \begin{bmatrix} 2 \\ 3 \\ k \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & -3 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & k^2 - 4 & k - 2 \end{bmatrix}, \quad D = \begin{bmatrix} -1 & 1 & 1 & 2 \\ -2 & 1 & 0 & 2 \\ -3 & 2 & 1 & 4 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Note que a matriz C é uma forma escalonada por linhas da matriz [A|B], a matriz E é a forma escalonada por linhas reduzida da matriz D e nas matrizes A,B e $C,k\in\mathbb{R}$ é um parâmetro.

20
pontos

3. Note que a matriz C é uma forma escalonada por linhas da matriz [A|B]. Indique os valores de k para os quais

(a) o sistema AX = B, com $X \in \mathbb{R}^3$, é possível e determinado:

(b) o plano de equação geral $x+y+(k^2-5)z=k$ e a reta de equações cartesianas $\begin{cases} x+y-z=2\\ x+2y+z=3 \end{cases}$ são estritamente paralelos:

20 pontos

- 4. A matriz E é a forma escalonada por linhas reduzida da matriz D.
 - (a) Para o espaço das colunas da matriz D, C(D),

uma base é $= \bigoplus_{n \in \mathcal{C}(D)} e \dim \mathcal{C}(D) = \bigoplus_{n \in \mathcal{C}(D)} e \dim$

(b) Para o **espaço nulo** da matriz $D, \mathcal{N}(D)$,

uma base é e dim $\mathcal{N}(D)$

35 pontos

- 5. Recorde as matrizes D e E anteriores e responda às seguintes questões.
 - (a) Indique uma equação da reta que passa no ponto Q=(1,0,1) e é ortogonal ao plano $\mathcal P$ definido pela equação geral -3x+2y+z=4:
 - (b) Considere a reta \mathcal{R} definida pelo sistema de equações cartesianas $\begin{cases} -x+y+z=2\\ -2x+y=2 \end{cases}$. Indique, justificando, qual a posição relativa da reta \mathcal{R} e do plano \mathcal{P} ?
 - (c) Calcule $dist(Q, \mathcal{P})$, a distância do ponto Q ao plano \mathcal{P} .

06 pontos 6. Para cada um dos seguintes conjuntos assinale se é, ou não, um subespaço vetorial real de \mathbb{R}^3 .

(a)
$$\{(4y-z, 2y+x, 7y-x): x, y, z \in \mathbb{R}\}$$

SN

(b)
$$\langle (1,-1,3), (-1,1,-3) \rangle$$

SN

(c) O plano de equação cartesiana
$$-6x + 4y + 9z = 0$$

SN

7. Para cada um dos seguintes conjuntos assinale se

é lin. ind.,

gera \mathbb{R}^3 .

(a)
$$\{(-4, -4, -1), (-3, 4, 1), (4, 0, 0)\}$$

SN

S N

(b)
$$\{(8,0,-2),(0,0,0),(2,5,8)\}$$

(b)
$$\{(8,0,-2),(0,0,0),(2,5,8)\}$$

SN

(c)
$$\{(-1,0,0),(-1,-7,0),(-3,0,-8),(-1,-8,-2)\}$$

S N

$$S$$
 N

8. Usando o método de eliminação de Gauss e indicando todas as passagens, resolva o seguinte sistema de equações lineares

$$\begin{cases} x & + & y & + & z & = & 1 \\ x & + & y & - & 2z & = & 3 \\ 2x & + & y & + & z & = & 2 \end{cases}$$

17 pontos

pontos