

Ayudantía 11 - Algoritmos y complejidad

08 de noviembre de 2024

Martín Atria, José Thomas Caraball, Caetano Borges

Resumen

1. Algoritmos

Definimos un cerro como una lista consistiendo en una serie estrictamente creciente seguida de una serie estrictamente decreciente. Por ejemplo:

$$[1, 2, 4, 19, 8, 3]$$

$$[-5, 2, 7, 10, 15, 6, 5, 4, 1, 0]$$

son cerros.

- 1. Escriba un algoritmo que utilice una estrategia de dividir y conquistar que reciba como input un cerro, y entregue como output el valor máximo de este.
- 2. Calcule la complejidad de su algoritmo.

Intente crear un algoritmo que sea $O(\log(n))$.

2. Complejidad

Sean $f: \mathbb{N} \to \mathbb{R}^+$ y $g: \mathbb{N} \to \mathbb{R}^+$ dos funciones cualesquiera. Demuestre o entregue un contraejemplo para las siguientes afirmaciones:

- 1. Si $f(n) \in \Theta(g(n))$ entonces mín $\{f(n), g(n)\} \in \Theta(\max \{f(n), g(n)\})$.
- 2. Si $f(n) \in O(g(n))$ entonces $f(n)^{g(n)} \in O(g(n)^{f(n)})$.

3. Complejidad + inducción

Considere la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 1 & \text{si } n = 1\\ 4 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n^2 \log_2(n) & \text{si } n > 1 \end{cases}$$

Demuestre usando inducción que $T(n) \in O(n^2(\log n)^2)$. Puede que los siguientes valores le resulten útiles:

$$\log_2(3) \approx 1, 6$$
 $\log_2(5) \approx 2, 3$ $\log_2(6) \approx 2, 6$ $\log_2(7) \approx 2, 8$

4. Bonus: o chica

Dadas las funciones $f(n) = 2^n$ y g(n) = n!, demuestre o entregue un contraejemplo para la siguiente afirmación:

$$f(n) \in o(g(n))$$

Donde $f(n) \in o(g(n))$ si $(\forall c > 0) (\exists n_0) f(n) < c \cdot g(n), n \ge n_0$.