Level A

Pick a dataset and objective

Dataset:

• Dataset of Nifty Stock prices of Indian companies. (https://www.kaggle.com/rohanrao/nifty50-stock-market-data)

Problem Statement:

- Creating a Predictive Model using any Algorithm (Deep Learning/Machine Learning) that can predict the stock price(Close column) of ASIANPAINTs.
- A prediction for the year of 2016 using data from 2009-2015.
- Show accuracy of the algorithms and explaining a choice of accuracy metric (RMSE/MAE/MAPE,R^2, Adjusted R^2).

This algorithm predits the Close column of the data set for 2016 year using 2009 - 20015 years data.

```
In [1]:
         ### Loading the libraries required
                              #Loading pandas for creating and adjusting dataframes
         import pandas as pd
         import numpy as np
                                   # Loading Numpy for creating and adjusting arrays
         import seaborn as sns
                                              # Loading seaborn for visualizations
         import matplotlib.pyplot as plt
                                           # Loading matplotlib for visualizations
         %matplotlib inline
         from sklearn.preprocessing import StandardScaler
                                                             # Loading standard scaler to normalize the data
         from sklearn.model selection import GridSearchCV
                                                            # Loading gridsearch CV for hyperparameter tuning using Crss Validation
         from sklearn.neighbors import KNeighborsRegressor
                                                            #Loading KNN regressor to cretae a model
         from sklearn.ensemble import RandomForestRegressor #Loading Random Forest regressor to cretae a model
         from sklearn.ensemble import AdaBoostRegressor
                                                            #Loading Ada Boost regressor to cretae a model
```

Algomax_2016_LevelA

```
from tensorflow.keras.models import Sequential
                                                            #Loading Sequential model from tensor flow to craete a ANN model
          from tensorflow.keras.layers import Dense
                                                            #Loading Dense layer from tensor flow to craete a Neural network layers
          from tensorflow.keras.layers import Dropout
                                                            #Loadina Drop out Laver
         from tensorflow.keras.optimizers import Adam
                                                            #Loading Adam optimizer for NN
          from sklearn.metrics import mean squared error
                                                            #Loading Mean Squared Error to to check the error metrics of each model
          from sklearn.metrics import mean absolute percentage error #Loading Mean absolute percentage error to to check the error metrics
          from sklearn.metrics import r2 score
                                                 #Loading R^2 (R squared) to check the efficiency metrics of each model
In [2]:
          df = pd.read csv("ASIANPAINT.csv") #Loading the data set using read csv to dataframe
In [3]:
          # Adjusting the "Date" column to date time format and creating a Year column to split the data
          df["Year"] = pd.to datetime(df.Date, format="%d-%m-%Y").dt.year
In [16]:
          df 2016 = df[(df["Year"] <= 2016) & (df["Year"]>=2009)] #Spliiting the dat to use only from 2009 to 2016
In [18]:
          #Checking the NON null Count of and Data type of the columns
          df 2016.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 1982 entries, 2253 to 4234
         Data columns (total 16 columns):
             Column
                                 Non-Null Count Dtype
          0
             Date
                                 1982 non-null object
          1 Symbol
                                 1982 non-null object
             Series
                                 1982 non-null object
          3
             Prev Close
                                 1982 non-null float64
                                               float64
          4
             0pen
                                 1982 non-null
             High
                                 1982 non-null float64
          6
                                 1982 non-null float64
             Low
                                 1982 non-null float64
          7
             Last
          8
             Close
                                 1982 non-null float64
          9
             VWAP
                                 1982 non-null float64
          10 Volume
                                 1982 non-null int64
          11 Turnover
                                 1982 non-null float64
          12 Trades
                                 1385 non-null float64
```

```
13 Deliverable Volume 1982 non-null float64
14 %Deliverble 1982 non-null float64
15 Year 1982 non-null int64
dtypes: float64(11), int64(2), object(3)
memory usage: 263.2+ KB
```

```
# Plotting the "Close" column of the data set
fig = df_2016.plot(x = "Date",y = "Close",figsize=(20,10))
fig.figure.savefig("Close_plot.jpg",bbox_inches='tight')
plt.show()
```



```
In [24]: #Dropping the unnecessary columns of the data
```

```
df 2016 = df 2016.drop(["Date", "Symbol", "Series"], axis=1)
In [26]:
          #Splitting the dataset into train and test
          # Train Data for 2009 -2015 years
          # Test Data for 2016
          train = df 2016.loc[df 2016["Year"] < 2016]</pre>
          test = df 2016.loc[df 2016["Year"] == 2016]
In [27]:
          # Checking null values count in all the coulmns of the train dataset
          train.isnull().sum()
         Prev Close
                                  0
Out[27]:
                                  0
         0pen
          High
          Low
          Last
          Close
         VWAP
         Volume
          Turnover
         Trades
                                597
         Deliverable Volume
                                  0
         %Deliverble
                                  0
         Year
                                  0
         dtype: int64
In [28]:
          # Checking the skewness of the "Trades"
          train["Trades"].skew(axis = 0, skipna = True)
          1.8170049925548912
Out[28]:
In [29]:
          # Imputing the Columns with mean if not skewed
          # Imputing the column with median if skewed
          train["Trades"].fillna(train["Trades"].median(),inplace = True)
          train.isnull().sum()
```

C:\Users\cricl\anaconda3\lib\site-packages\pandas\core\generic.py:6392: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

```
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versu
          s-a-copy
           return self._update_inplace(result)
         Prev Close
Out[29]:
                                0
          0pen
         High
                                0
                                0
          Low
         Last
         Close
         VWAP
                                0
         Volume
         Turnover
         Trades
                                0
         Deliverable Volume
         %Deliverble
         Year
                                0
         dtype: int64
In [30]:
          #Visualizxing the distributaion of the data for all the independent Columns
          for i in range(len(train.columns)):
              x = train.columns[i]
              fig = sns.displot(data=train, x=x, kde=True)
              filename = "{} Histogram.jpg".format(train.columns[i])
              fig.figure.savefig(filename,bbox inches='tight')
```



```
In [31]: # Visualizing th data set for OUTliers using BOXPLOT
for i in range(train.shape[1]):
    x = train.columns[i]
    fig = sns.boxplot(data=train, x=x)
    filename = "{} Boxplot.jpg".format(train.columns[i])
    fig.figure.savefig(filename,bbox_inches='tight')
    plt.show()
```



```
In [32]:
          #SCAling the Train and Test Datasets Using STANDARD SCALER
          scaler = StandardScaler()
          scaled array train = scaler.fit transform(train)
          train = pd.DataFrame(scaled array train, columns = train.columns)
          scaled array test = scaler.fit transform(test)
          test = pd.DataFrame(scaled array test, columns = test.columns)
In [33]:
          # Creating a FUNCTION to remove outliers
          def remove outliers(df):
              for i in range(df.shape[1]):
                  col name = df.columns[i]
                  upper limit = df[col name].mean() +3*df[col name].std()
                  lower limit = df[col name].mean() -3*df[col name].std()
                  df = df[(df[col name]<upper limit) & (df[col name]>lower limit)]
              return(df)
In [34]:
          #Remove outliers
          train = remove outliers(train)
In [35]:
          # Visualizing the cleaned Data
          for i in range(train.shape[1]):
              x = train.columns[i]
```

```
fig = sns.displot(data=train, x=x, kde=True)
filename = "{} Cleaned_Histogram.jpg".format(train.columns[i])
fig.figure.savefig(filename,bbox_inches='tight')
```



```
In [36]:
# Visualizing the Data for Corelations Using HEAT MAP
corr= train.corr()
plt.figure(figsize=(15,8))
fig = sns.heatmap(corr,annot=True,cmap='RdYlGn')
fig.figure.savefig("Heat map.jpg",bbox_inches='tight')
plt.show()
```



```
In [37]: #Dropping the Columns with Corelation of 1 as they donot comtribute to the model creation
    train = train.drop(["Prev Close", "Open", "High","Low","Last","Year"],axis = 1)
    test = test.drop(["Prev Close", "Open", "High","Low","Last","Year"],axis = 1)
```

```
corr= train.corr()
plt.figure(figsize=(15,8))
fig = sns.heatmap(corr,annot=True,cmap='RdY1Gn')
fig.figure.savefig("Feature_selected_Heat_map.jpg",bbox_inches='tight')
plt.show()
```



```
In [39]: #Splitting X_train, Y_train, X_test, Y_test
```

```
X_train = train.drop(["Close"],axis=1)
          Y_train = train["Close"]
          X_test = test.drop(["Close"],axis=1)
          Y_test = test["Close"]
In [40]:
          Y_train.plot()
          <AxesSubplot:>
Out[40]:
           2.0
           1.5
           1.0
           0.5
           0.0
          -0.5
          -1.0
                                        1000
                                               1250
                      250
                            500
                                   750
                                                     1500
                                                           1750
In [41]:
          Y_test.plot()
          <AxesSubplot:>
Out[41]:
```

```
2.0 -

1.5 -

1.0 -

0.5 -

0.0 -

0.5 -

1.0 -

0.5 -

1.0 -

0.5 -

1.0 -

0.5 -

1.0 -

0.5 -

1.0 -

0.5 -

1.0 -

0.5 -

0.0 -

0.5 -

1.0 -

0.5 -

0.0 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.5 -

0.
```

```
In [42]:
          #List Hyperparameters that we want to tune.
          n neighbors = list(range(1,15))
          p=[1,2]
          #Convert to dictionary
          params = dict(n_neighbors=n_neighbors, p=p)
          #Create new KNN object
          KNN = KNeighborsRegressor()
          #Use GridSearch
          GSCV = GridSearchCV(KNN, params, cv=10)
          #Fit the model
          best model = GSCV.fit(X train, Y train)
          #Print The value of best Hyperparameters
          print('Best p:', best model.best estimator .get params()['p'])
          print('Best n neighbors:', best model.best estimator .get params()['n neighbors'])
         Best p: 2
         Best n neighbors: 2
In [43]:
          # Assigning the parameters tuned
          p = best_model.best_estimator_.get_params()['p']
          n neighbors = best model.best estimator .get params()['n neighbors']
In [44]:
          #KNN Model creation and fitting the data
          model_KNN = KNeighborsRegressor(n_neighbors=n_neighbors,p = p)
          model_KNN.fit(X_train,Y_train)
```

```
KNeighborsRegressor(n_neighbors=2)
Out[44]:
In [45]:
          #Random Forest Model creation and fitting the data
          model RF = RandomForestRegressor()
          model RF.fit(X train, Y train)
          RandomForestRegressor()
Out[45]:
In [46]:
          #Ada Boost Model creation and fitting the data
          model Ada = AdaBoostRegressor()
          model Ada.fit(X train, Y train)
         AdaBoostRegressor()
Out[46]:
In [47]:
          #Creating the structure of the Neural Network model
          # Assigning the num of neurons per layer
          hidden layer1 = 150
          hidden layer2 = 200
          hidden layer3 = 250
          # Learnig rate and Input dimensions
          learning rate = 0.01
          input dim = X train.shape[1]
          # Creating a Sequential Nueral network model with 3 Dense and 3 Dropuout layers altenatively
          model NN = Sequential()
          model NN.add(Dense(hidden layer1, input dim=input dim, kernel initializer='normal', activation='relu'))
          model NN.add(Dropout(0.2))
          model NN.add(Dense(hidden layer2, kernel initializer='normal', activation='relu'))
          model NN.add(Dropout(0.2))
          model NN.add(Dense(hidden layer3, kernel initializer='normal', activation='relu'))
          model NN.add(Dropout(0.2))
          model_NN.add(Dense(1, kernel_initializer='normal', activation='linear'))
```

```
#Compilimng the model using Optimizer and learning rate
model_NN.compile(loss='mse',optimizer=Adam(learning_rate=learning_rate),metrics=['mse'])
# train the model
history = model_NN.fit(X_train,Y_train,epochs=300,batch_size=10)
```

```
Epoch 1/300
Epoch 2/300
Epoch 3/300
Epoch 4/300
Epoch 5/300
Epoch 6/300
Epoch 7/300
Epoch 8/300
Epoch 9/300
Epoch 10/300
Epoch 11/300
Epoch 12/300
Epoch 13/300
Epoch 14/300
Epoch 15/300
Epoch 16/300
Epoch 17/300
Epoch 18/300
Epoch 19/300
```

163/163 [====================================
163/163 [====================================
Epoch 21/300
163/163 [====================================
Epoch 22/300
163/163 [====================================
163/163 [====================================
Epoch 24/300
163/163 [====================================
Epoch 25/300
163/163 [====================================
Epoch 26/300
163/163 [====================================
163/163 [====================================
Epoch 28/300
163/163 [====================================
Epoch 29/300
163/163 [====================================
Epoch 30/300
163/163 [====================================
163/163 [====================================
Epoch 32/300
163/163 [====================================
Epoch 33/300
163/163 [====================================
Epoch 34/300
163/163 [====================================
Epoch 35/300 163/163 [====================================
Epoch 36/300
163/163 [====================================
Epoch 37/300
163/163 [====================================
Epoch 38/300
163/163 [====================================
Epoch 39/300
163/163 [====================================
163/163 [====================================
Epoch 41/300
•

163/163 [====================================
Epoch 42/300 163/163 [====================================
Epoch 43/300
163/163 [====================================
Epoch 44/300
163/163 [====================================
Epoch 45/300
163/163 [====================================
Epoch 46/300
163/163 [====================================
Epoch 47/300
163/163 [====================================
Epoch 48/300
163/163 [====================================
Epoch 49/300 163/163 [====================================
Epoch 50/300
163/163 [====================================
Epoch 51/300
163/163 [====================================
Epoch 52/300
163/163 [====================================
Epoch 53/300
163/163 [====================================
Epoch 54/300
163/163 [====================================
Epoch 55/300
163/163 [====================================
Epoch 56/300
163/163 [====================================
163/163 [====================================
Epoch 58/300
163/163 [====================================
Epoch 59/300
163/163 [====================================
Epoch 60/300
163/163 [====================================
Epoch 61/300
163/163 [====================================
Epoch 62/300
163/163 [====================================
Epoch 63/300

```
Epoch 64/300
Epoch 65/300
Epoch 66/300
Epoch 67/300
Epoch 68/300
Epoch 69/300
Epoch 70/300
Epoch 71/300
Epoch 72/300
Epoch 73/300
Epoch 74/300
Epoch 75/300
Epoch 76/300
Epoch 77/300
Epoch 78/300
Epoch 79/300
- ETA: 0s - loss: 0.0407 - mse
Epoch 80/300
Epoch 81/300
Epoch 82/300
Epoch 83/300
Epoch 84/300
```

Epoch 85/300
163/163 [====================================
Epoch 86/300
163/163 [====================================
Epoch 87/300
163/163 [====================================
Epoch 88/300
Epoch 89/300
163/163 [====================================
Epoch 90/300
163/163 [====================================
Epoch 91/300
163/163 [====================================
Epoch 92/300
163/163 [====================================
Epoch 93/300
163/163 [====================================
Epoch 94/300
163/163 [====================================
Epoch 95/300
163/163 [====================================
Epoch 96/300
163/163 [====================================
Epoch 97/300
163/163 [====================================
Epoch 98/300
163/163 [====================================
Epoch 99/300
163/163 [====================================
Epoch 100/300
163/163 [====================================
Epoch 101/300
163/163 [====================================
Epoch 102/300
163/163 [====================================
Epoch 103/300
163/163 [====================================
Epoch 104/300
163/163 [====================================
Epoch 105/300
163/163 [====================================
Epoch 106/300
163/163 [====================================

Epoch 107/300
163/163 [====================================
Epoch 108/300
163/163 [====================================
Epoch 109/300
163/163 [====================================
Epoch 110/300
163/163 [====================================
Epoch 111/300
163/163 [====================================
Epoch 112/300
163/163 [====================================
Epoch 113/300
163/163 [====================================
Epoch 114/300
163/163 [====================================
Epoch 115/300
163/163 [====================================
Epoch 116/300
163/163 [====================================
Epoch 117/300
163/163 [====================================
Epoch 118/300
163/163 [====================================
Epoch 119/300
163/163 [====================================
Epoch 120/300
163/163 [====================================
Epoch 121/300
163/163 [====================================
Epoch 122/300
163/163 [====================================
Epoch 123/300
163/163 [====================================
Epoch 124/300
163/163 [====================================
Epoch 125/300
163/163 [====================================
Epoch 126/300
163/163 [====================================
Epoch 127/300
163/163 [====================================
Epoch 128/300
163/163 [====================================

Epoch 129/300										
163/163 [====================================	-	0s	1ms/step	-	loss:	0.0356	-	mse:	0.0356	
Epoch 130/300										
163/163 [===========]	-	0s	1ms/step	-	loss:	0.0392	-	mse:	0.0391	
Epoch 131/300			•							
163/163 [========]	_	0s	1ms/step	_	loss:	0.0379	_	mse:	0.0379	
Epoch 132/300			•							
163/163 [====================================	_	0s	1ms/step	_	loss:	0.0387	_	mse:	0.0387	
Epoch 133/300			-,							
163/163 [==========]	_	0s	1ms/step	_	loss:	0.0490	_	mse:	0.0489	
Epoch 134/300			•							
163/163 [====================================	_	0s	1ms/step	_	loss:	0.0526	_	mse:	0.0526	
Epoch 135/300			, ,							
163/163 [========]	_	0s	1ms/step	_	loss:	0.0459	_	mse:	0.0459	
Epoch 136/300			·							
163/163 [========]	-	0s	1ms/step	-	loss:	0.0434	-	mse:	0.0435	
Epoch 137/300										
163/163 [==========]	-	0s	1ms/step	_	loss:	0.0385	-	mse:	0.0385	
Epoch 138/300										
163/163 [====================================	-	0s	1ms/step	_	loss:	0.0453	-	mse:	0.0454	
Epoch 139/300										
163/163 [===========]	-	0s	1ms/step	-	loss:	0.0379	-	mse:	0.0380	
Epoch 140/300										
163/163 [=========]	-	0s	1ms/step	-	loss:	0.0476	-	mse:	0.0477	
Epoch 141/300										
163/163 [========]	-	0s	1ms/step	-	loss:	0.0425	-	mse:	0.0426	
Epoch 142/300										
163/163 [========]	-	0s	1ms/step	-	loss:	0.0406	-	mse:	0.0406	
Epoch 143/300										
163/163 [=========]	-	0s	1ms/step	-	loss:	0.0380	-	mse:	0.0380	
Epoch 144/300										
163/163 [=======]	-	0s	1ms/step	-	loss:	0.0373	-	mse:	0.0373	
Epoch 145/300										
163/163 [=======]	-	0s	1ms/step	-	loss:	0.0380	-	mse:	0.0380	
Epoch 146/300										
163/163 [=======]	-	0s	1ms/step	-	loss:	0.0377	-	mse:	0.0377	
Epoch 147/300					_					
163/163 [========]	-	0s	1ms/step	-	loss:	0.0456	-	mse:	0.0457	
Epoch 148/300					_					
163/163 [====================================	-	0s	1ms/step	-	loss:	0.0407	-	mse:	0.0406	
Epoch 149/300					_					
163/163 [=========]	-	0s	1ms/step	-	loss:	0.0400	-	mse:	0.0400	
Epoch 150/300					_					
163/163 [======]	-	0s	1ms/step	-	loss:	0.0369	-	mse:	0.0369	

Epoch 151/300
163/163 [====================================
Epoch 152/300
163/163 [====================================
Epoch 153/300
163/163 [====================================
Epoch 154/300
163/163 [====================================
Epoch 155/300
163/163 [====================================
Epoch 156/300
163/163 [====================================
Epoch 157/300
163/163 [====================================
Epoch 158/300
163/163 [====================================
Epoch 159/300
163/163 [====================================
Epoch 160/300
163/163 [====================================
Epoch 161/300
163/163 [====================================
Epoch 162/300
163/163 [====================================
Epoch 163/300
163/163 [====================================
Epoch 164/300
163/163 [====================================
Epoch 165/300
163/163 [====================================
Epoch 166/300
163/163 [====================================
Epoch 167/300 163/163 [====================================
Epoch 168/300 163/163 [====================================
Epoch 169/300
163/163 [====================================
Epoch 170/300
163/163 [====================================
Epoch 171/300
163/163 [====================================
Epoch 172/300
163/163 [====================================
105, 105 L

Epoch 173/300
163/163 [====================================
Epoch 174/300
163/163 [====================================
Epoch 175/300
163/163 [====================================
Epoch 176/300
163/163 [====================================
Epoch 177/300
163/163 [====================================
Epoch 178/300
163/163 [====================================
Epoch 179/300
163/163 [====================================
Epoch 180/300
163/163 [====================================
Epoch 181/300
163/163 [====================================
Epoch 182/300
163/163 [====================================
Epoch 183/300
163/163 [====================================
Epoch 184/300
163/163 [====================================
Epoch 185/300
163/163 [====================================
Epoch 186/300
163/163 [====================================
Epoch 187/300
163/163 [====================================
Epoch 188/300
163/163 [====================================
Epoch 189/300
163/163 [====================================
Epoch 190/300
163/163 [====================================
Epoch 191/300
163/163 [====================================
Epoch 192/300
163/163 [====================================
Epoch 193/300
163/163 [====================================
Epoch 194/300
163/163 [====================================

Epoch 195/300
163/163 [====================================
Epoch 196/300
163/163 [====================================
Epoch 197/300
163/163 [====================================
Epoch 198/300
163/163 [====================================
Epoch 199/300
163/163 [====================================
Epoch 200/300
163/163 [====================================
Epoch 201/300
163/163 [====================================
Epoch 202/300
163/163 [====================================
Epoch 203/300
163/163 [====================================
Epoch 204/300
163/163 [====================================
Epoch 205/300
163/163 [====================================
Epoch 206/300
163/163 [====================================
Epoch 207/300
163/163 [====================================
Epoch 208/300
163/163 [====================================
Epoch 209/300
163/163 [====================================
Epoch 210/300
163/163 [====================================
Epoch 211/300
163/163 [====================================
Epoch 212/300
163/163 [====================================
Epoch 213/300
163/163 [====================================
Epoch 214/300
163/163 [====================================
Epoch 215/300
163/163 [====================================
Epoch 216/300
163/163 [====================================

499
526
626
450
623
551
496
399
448
416
414
532
402
404
424
453
575
530
F06
506
570
E12
512
E22
522

Epoch 239/300
163/163 [====================================
Epoch 240/300
163/163 [====================================
Epoch 241/300
163/163 [====================================
Epoch 242/300
163/163 [====================================
Epoch 243/300
163/163 [====================================
Epoch 244/300
163/163 [====================================
Epoch 245/300
163/163 [====================================
Epoch 246/300
163/163 [====================================
Epoch 247/300
163/163 [====================================
Epoch 248/300
163/163 [====================================
Epoch 249/300
163/163 [====================================
Epoch 250/300
163/163 [====================================
Epoch 251/300
163/163 [====================================
Epoch 252/300
163/163 [====================================
Epoch 253/300
163/163 [====================================
Epoch 254/300
163/163 [====================================
Epoch 255/300
163/163 [====================================
Epoch 256/300
163/163 [====================================
Epoch 257/300
163/163 [====================================
Epoch 258/300 163/163 [====================================
Epoch 259/300
163/163 [====================================
Epoch 260/300 163/163 [====================================
103/103 [=========================] - ØS IMS/Step - 1055: Ø.0481 - MSE: Ø.0481

Epoch 261/300									
163/163 [====================================	1 -	05	1ms/sten	_	loss:	0.0507	_	mse:	0.0507
Epoch 262/300	,		о, о сер						
163/163 [====================================	1 -	05	1ms/sten	_	loss:	0.0513	_	mse:	0.0514
Epoch 263/300	,		о, о сер			0.002			
163/163 [====================================	1 -	05	1ms/sten	_	loss:	0.0606	_	mse:	0.0607
Epoch 264/300	,		о, о сер						
163/163 [====================================	1 -	05	1ms/sten	_	loss:	0.0610	_	mse:	0.0610
Epoch 265/300	,		о, о сер			0.0020			0.0020
163/163 [====================================	1 -	0s	1ms/step	_	loss:	0.0551	_	mse:	0.0550
Epoch 266/300	-		-,						
163/163 [====================================	1 -	0s	1ms/step	_	loss:	0.0570	_	mse:	0.0570
Epoch 267/300	-		-,						
163/163 [====================================	1 -	0s	1ms/step	_	loss:	0.0578	-	mse:	0.0577
Epoch 268/300	-		·						
163/163 [====================================	1 -	0s	1ms/step	_	loss:	0.0484	-	mse:	0.0484
Epoch 269/300	-								
163/163 [====================================] -	0s	1ms/step	-	loss:	0.0507	-	mse:	0.0507
Epoch 270/300									
163/163 [====================================] -	0s	1ms/step	-	loss:	0.0427	-	mse:	0.0426
Epoch 271/300									
163/163 [====================================] -	0s	2ms/step	-	loss:	0.0463	-	mse:	0.0463
Epoch 272/300									
163/163 [====================================] -	0s	1ms/step	-	loss:	0.0431	-	mse:	0.0431
Epoch 273/300									
163/163 [====================================] -	0s	1ms/step	-	loss:	0.0551	-	mse:	0.0551
Epoch 274/300									
163/163 [====================================] -	0s	1ms/step	-	loss:	0.0532	-	mse:	0.0532
Epoch 275/300									
163/163 [====================================] -	0s	1ms/step	-	loss:	0.0534	-	mse:	0.0534
Epoch 276/300									
163/163 [====================================] -	0s	1ms/step	-	loss:	0.0565	-	mse:	0.0565
Epoch 277/300	_				_				
163/163 [====================================] -	0s	1ms/step	-	loss:	0.0474	-	mse:	0.0474
Epoch 278/300	_				_				
163/163 [====================================] -	0s	1ms/step	-	loss:	0.0524	-	mse:	0.0523
Epoch 279/300		_							
163/163 [====================================] -	0s	1ms/step	-	loss:	0.0544	-	mse:	0.0545
Epoch 280/300	,	_			-				
163/163 [====================================] -	ØS	ıms/step	-	Toss:	0.0640	-	mse:	0.0640
Epoch 281/300	,	٥.	1		1	0 0445			0 0416
163/163 [====================================] -	ØS	ıms/step	-	TOSS:	0.0415	-	mse:	0.0416
Epoch 282/300	,	0	1		1	0.0467			0.0467
163/163 [====================================] -	0 S	ıms/step	-	Toss:	Ø.0487	-	mse:	0.0487

```
Epoch 283/300
Epoch 284/300
Epoch 285/300
Epoch 286/300
Epoch 287/300
Epoch 288/300
Epoch 289/300
Epoch 290/300
Epoch 291/300
Epoch 292/300
Epoch 293/300
Epoch 294/300
Epoch 295/300
Epoch 296/300
Epoch 297/300
Epoch 298/300
Epoch 299/300
Epoch 300/300
```

Metrics

- MSE -- Mean Squared Error
- RMSE -- Root mean squred error

- R2 -- R Squared
- ADJ_R2 -- Adjusted R Squared
- MAPE -- Mean Absolute Percentage Error

```
In [48]:
          # Created a function to evaluate the metrics of all the models
          def Evaluate models(model):
              y pred = model.predict(X test)
              MSE = mean squared error(Y test, y pred)
              RMSE = mean squared error(Y_test, y_pred, squared=False)
              R2 = r2 score(Y test, y pred)
              ADJ R2 = 1 - (1-R2)*(len(Y train)-1)/(X train.shape[0]-X train.shape[1]-1)
              MAPE = mean absolute percentage error(Y test, y pred)
              return (MSE, RMSE, R2, ADJ R2, MAPE)
In [49]:
          # Evaluating all the metrics for K Nearest Neighbour model
          Metrics KNN = Evaluate models(model KNN)
          MSE KNN = Metrics KNN[0]
          RMSE KNN = Metrics KNN[1]
          R2 KNN = Metrics KNN[2]
          ADJ R2 KNN = Metrics KNN[3]
          MAPE KNN = Metrics KNN[4]
In [50]:
          # Evaluating all the metrics for Random Forest model
          Metrics RF = Evaluate models(model RF)
          MSE RF= Metrics RF[0]
          RMSE RF = Metrics RF[1]
          R2 RF = Metrics RF[2]
          ADJ_R2_RF = Metrics_RF[3]
          MAPE_RF = Metrics_RF[4]
In [51]:
          # Evaluating all the metrics for Ada Boost model
```

```
Metrics_Ada = Evaluate_models(model_Ada)
MSE_Ada = Metrics_Ada[0]
RMSE_Ada = Metrics_Ada[1]
R2_Ada = Metrics_Ada[2]
ADJ_R2_Ada = Metrics_Ada[3]
MAPE_Ada = Metrics_Ada[4]
In [52]:
# Evaluating all the metrics for Neural Network model
Metrics_NN = Evaluate_models(model_NN)
MSE_NN = Metrics_NN[0]
RMSE_NN = Metrics_NN[1]
R2_NN = Metrics_NN[2]
ADJ_R2_NN = Metrics_NN[3]
MAPE_NN = Metrics_NN[4]
```

Creating the Dataframe with Metrics corresponding to all the models created

```
        Out[53]:
        Models
        MSE
        RMSE
        R2
        ADJ R2
        MAPE

        0
        KNN
        0.138955
        0.372766
        0.861045
        0.860531
        1.319430

        1
        Random Forest
        0.002505
        0.050049
        0.997495
        0.997486
        0.143844

        2
        AdaBoost
        0.007262
        0.085217
        0.992738
        0.992711
        0.361345

        3
        Neural Network
        0.191309
        0.437389
        0.808691
        0.807983
        1.496710
```

Plotting Model MSE

```
In [54]:
    plt.figure(figsize =(50, 25))
    plt.plot(Compare['Models'], Compare['MSE'], c='blue', lw=10)

    plt.title('Model MSE', fontdict={'fontsize': 60,'fontweight': 60,'color': 'g'})
    plt.xlabel('Models')
    plt.ylabel('MSE')

    plt.yticks(fontsize=60)
    plt.xticks(rotation=90, fontsize=60)
    plt.grid()
    plt.savefig("MSE.jpg", bbox_inches='tight')
    plt.show()
```


Plotting Model RMSE

```
plt.plot(Compare['Models'],Compare['RMSE'],c='blue', lw=10)

plt.title('Model RMSE',fontdict={'fontsize': 60,'fontweight' : 60,'color' : 'g'})

plt.xlabel('Models')

plt.ylabel('RMSE')

plt.yticks(fontsize=60)

plt.xticks(rotation=90, fontsize=60)

plt.grid()

plt.savefig("RMSE.jpg",bbox_inches='tight')

plt.show()
```


Plotting Model R Squared

In [56]: plt.figure(figsize =(50, 25))

```
plt.plot(Compare['Models'],Compare['R2'],c='blue', lw=10)

plt.title('Model R2',fontdict={'fontsize': 60,'fontweight' : 60,'color' : 'g'})

plt.xlabel('Models')

plt.ylabel('R2')

plt.yticks(fontsize=60)

plt.xticks(rotation=90, fontsize=60)

plt.grid()

plt.savefig("R2.jpg",bbox_inches='tight')

plt.show()
```


Plotting Model Adjusted R Squared

In [57]: plt.figure(figsize =(50, 25))

localhost:8888/nbconvert/html/Documents/AIQ4/LEVEL A/2016/Algomax_2016_LevelA.ipynb?download=false

```
plt.plot(Compare['Models'],Compare['ADJ R2'],c='blue', lw=10)

plt.title('Model ADJ R2',fontdict={'fontsize': 60,'fontweight' : 60,'color' : 'g'})
plt.xlabel('Models')
plt.ylabel('ADJ R2')

plt.yticks(fontsize=60)
plt.xticks(rotation=90, fontsize=60)
plt.grid()
plt.savefig("ADJ R2.jpg",bbox_inches='tight')
plt.show()
```


Plotting Model MAPE

In [58]: plt.figure(figsize =(50, 25))

localhost:8888/nbconvert/html/Documents/AlQ4/LEVEL A/2016/Algomax_2016_LevelA.ipynb?download=false

```
plt.plot(Compare['Models'],Compare['MAPE'],c='blue', 1w=10)

plt.title('Model MAPE',fontdict={'fontsize': 60,'fontweight' : 60,'color' : 'g'})

plt.xlabel('Models')

plt.ylabel('MAPE')

plt.yticks(fontsize=60)

plt.xticks(rotation=90, fontsize=60)

plt.grid()

plt.savefig("MAPE.jpg",bbox_inches='tight')

plt.show()
```



```
In [61]:
# Visualizing the dataset created for "Close" column
df_2016.plot(y = "Close", figsize=(10,5))
```

<AxesSubplot:>

Out[61]:

```
In [64]:
# Visualizing the plot comparing between Y_test and the predicted values for 2016 year
y_pred = model_RF.predict(X_test)
y_pred = pd.DataFrame(y_pred)
Y_test.plot()
plt.title("Y_Test")
plt.savefig("Y_test.jpg",bbox_inches='tight')
y_pred.plot()
plt.title("Prediction")
plt.savefig("Prediction.jpg",bbox_inches='tight')
```


In []: