Project: Measure Energy Consumption

Introduction:

- ☐ Certainly, using time series analysis and machine learning models to predict future energy consumption patterns is a promising approach.
- ☐ Here's how you can explore these techniques for energy consumption prediction.

Objective

Explore innovative techniques such as time series analysis and machine learning models to predict future energy consumption patterns ☐ In PHASE 1 we discussed about the problem definition and their application used in artificial intelligence.

Phase 2:

- ☐ Consider Certainly, using time series analysis and machine learning models to predict future energy consumption patterns is a promising approach.
- ☐ Here's how you can explore these techniques for energy consumption prediction..Here is the following contents.
- ☐ Here are some key components and methods commonly used in such solutions:

1.Data Collection:

- ☐ Gather historical energy consumption data.
- This data should include information about the time and date of measurements, energy usage, and potentially other relevant factors like temperature, holidays, or special events.
- ☐ Dataset link is below here:

https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption

2. Data Preprocessing:

- ☐ Data preprocessing is an important step before applying machine learning methods for energy or load prediction.
- ☐ It improves accuracy and reliability.
- There are four types of data processing
 - 1. Data cleaning
 - 2. Data integration
 - 3. Data transformation
 - 4. Data reduction

3. Exploratory Data Analysis (EDA):

- Perform EDA to gain insights into the data.
- Learn everything you need to know about exploratory data analysis, a method used to analyze and summarize data sets.
- ☐ Exploratory data analysis (EDA) is used by data scientists to analyze and investigate data sets and summarize their main characteristics, often employing data visualization methods.
- ☐ Visualize trends, seasonality, and correlations between energy consumption and other variables.

4.Time Series Analysis:

It comprises of ordered sequence of data at equally spaced interval.

☐ In particular, a time series allows one to see what factors influence certain variables from period to period.

1. Decomposition:

Decompose the time series data into its trend, seasonal, and residual components to understand underlying patterns.

2. Smoothing:

Apply smoothing techniques like moving averages or exponential smoothing to reduce noise in the data.

Time Series Analysis

5.Feature Engineering:

Create additional features that could impact energy consumption, such as holidays, weather data, day of the week, and time of day.

☐ This includes the use of electricity, gas, diesel, oil, and biomass. The concept of energy consumption is directly related to energy efficiency since higher consumption results in lower energy efficiency.

☐ TEE includes three core components

- 1.Resting metabolic rate, or resting energy expenditure (REE)
 - 2. The thermic effect of food (TEF)
 - 3. Diet-induced thermogenesis DIT)

6.Machine Learning Models:

A) Regression Models:

☐ Utilize linear regression, decision trees, or random forests to build models that predict energy consumption based on relevant features.

B) Time Series Forecasting:

☐ Implement specialized time series forecasting models like ARIMA, Prophet, or LSTM (Long Short-Term Memory) neural networks.

C)Ensemble Methods:

☐ Combine multiple models to improve prediction accuracy.

7. Model Evaluation:

Energy	y consumption	modeling seeks t	o determine	energy
requii	rements as a fu	nction of input p	arameters.	

- ☐ Models may be used for determining the requirements of energy supply and the consumer consumption variations while an upgrade or addition of technology exist.
- ☐ Use appropriate metrics such as

- I. Mean Absolute Error (MAE)
- II. Mean Squared Error (MSE)
- III. Root Mean Squared Error (RMSE)

8.Hyperparameter Tuning:

- ☐ Optimize model hyperparameters to enhance predictive accuracy.
- ☐ Hyperparameter tuning allows data scientists to tweak model performance for optimal results.

9. Cross-Validation:

- ☐ Employ cross-validation techniques to assess the model's generalization performance.
- ☐ Cross-validation is a statistical method used to estimate the performance (or accuracy) of machine learning models.

☐ It is used to protect against overfitting in a predictive model, particularly in a case where the amount of data may be limited.

10. Monitoring and Updating:

☐ Continuously monitor the model's performance and update it as needed with new data.

11.Deployment:

☐ Once you have a reliable model, deploy it in a real-world environment to make real-time predictions.

12.Interpretability:

☐ Understand the factors driving energy consumption by examining feature importance and model explanations.

13.Integration:

☐ Integrate the energy consumption prediction model into your energy management system to optimize resource allocation and reduce costs.

Source code:

Int[1]:

Import numpy as np

Import pandas as pd

Import matplotlib.pyplot as plt

Import matplotlib.dates as mdates

%matplotlib inline

Import seaborn as sns

Import warnings

Warnings.filterwarnings("ignore")

From pandas.plotting import lag_plot

From pylab import rcParams

From statsmodels.tsa.seasonal import seasonal_decompose

From pandas import DataFrame

From pandas import concat

Int[2]:

Df=pd.read_csv("../input/hourly-energy-consumptio n/AEP_hourly.csv",index_col='Datetime',parse_date s=True) Df.head() Out[2]:

	AEP_MW
Datetime	
2004-12-31 01:00:00	13478.0
2004-12-31 02:00:00	12865.0
2004-12-31 03:00:00	12577.0
2004-12-31 04:00:00	12517.0
2004-12-31 05:00:00	12670.0

Int[3]:

df.sort_values(by='Datetime', inplace=True)

print(df)

Int[4]:

df.shape

Out[4]:

(121273, 1)

Int[5]:

df.info()

Out[5]:

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 121273 entries, 2004-10-01 01:00:00

to 2018-08-03 00:00:00

Data columns (total 1 columns):

Column Non-Null Count Dtype

0 AEP_MW 121273 non-null float64

dtypes: float64(1)

memory usage: 1.9 MB

Int[6]:

df.describe()

Out[6]:

	AEP_MW
count	121273.000000
mean	15499.513717

std	2591.399065
min	9581.000000
25%	13630.000000
50%	15310.000000
75%	17200.000000
100%	25695.000000

Int[7]:

df.index = pd.to_datetime(df.index)

Int[8]:

```
# Extract all Data Like Year MOnth Day Time etc
df["Month"] = df.index.month df["Year"] =
df.index.year df["Date"] = df.index.date
df["Hour"] = df.index.hour df["Week"] =
df.index.week df["Day"] = df.index.day_name()
df.head()
Out[8]:
```

	AEP _M W	Mon th	Year	Date	Hour	Wee k	Day
Date time							
2004 -10-0 1 01:0 0:00	1237 9.0	10	2004	2004 -10-0 1 1	1	4	Frid ay
2004 -10-0 1 02:0 0:00	1193 5.0	10	2004	2004 -10-0 1 1	2	4	Frid ay
2004 -10-0 1 03:0 0:00	1169 2.0	10	2004	2004 -10-0 1 1	3	4	Frid ay

2004 -10-0 1 04:0 0:00	1159 7.0	10	2004	2004 -10-0 1 1	4	4	Frid ay
2004 -10-0 1 05:0 0:00	05:0 0:00	10	2004	2004 -10-0 1 1	5	4	Frid ay

Int[9]:

```
df.plot(title="PJME Energy use in MegaWatts",
    figsize=(20, 8), style=".",
    color=sns.color_palette()[0])
```

plt.show()

Out[9]:

Int[10]:

from pandas.plotting import autocorrelation_plot autocorrelation_plot(df['AEP_MW']) plt.show() Out[10]:

Int[11]:

```
#Train Arima Model train_arima =
train_data['AEP_MW'] test_arima =
test_data['AEP_MW']
```

history = [x for x in train_arima]
y = test_arima # make first
prediction predictions = list()
model = sm.tsa.arima.ARIMA(history,
order=(5,1,0)) model_fit = model.fit()
yhat = model_fit.forecast()[0]
predictions.append(yhat)
history.append(y[0]) # rolling
forecasts for i in range(1, len(y)):

```
# predict
  model = sm.tsa.arima.ARIMA(history,
order=(5,1,0))
  model fit = model.fit() yhat =
  model fit.forecast()[0] # invert
  transformed prediction
  predictions.append(yhat)
  # observation obs =
  y[i]
  history.append(obs
  )
plt.figure(figsize=(14,8))
plt.plot(df.index, df['AEP MW'], color='green',
label = 'Train Energy AEP MW')
plt.plot(test data.index, y, color = 'red', label = 'Real
Energy AEP MW')
plt.plot(test data.index, predictions, color = 'blue',
label = 'Predicted Energy AEP MW')
plt.legend()
plt.grid(True)
plt.show()
```

```
plt.figure(figsize=(14,8))
plt.plot(df.index[-600:], df['AEP_MW'].tail(600),
color='green', label = 'Train Energy AEP MW')
plt.plot(test data.index, y, color = 'red', label = 'Real
Energy AEP MW')
plt.plot(test data.index, predictions, color = 'blue',
label = 'Predicted Energy AEP MW')
plt.legend()
plt.grid(True)
plt.show()
print('MSE: '+str(mean squared error(y,
predictions)))
print('MAE: '+str(mean absolute error(y,
```


predictions)))

Conclusion:

- Remember that the accuracy of your predictions will depend on the quality and quantity of data, as well as the choice of the most appropriate modelling techniques.
- Regularly updating the model with new data is crucial to ensure it remains accurate as consumption patterns evolve.

TEAM MEMBERS	E-MAIL ID
DEEPAK.S	deepaksubramani144@gmail.com
LOGESH.U	logeshulaganathan98@gmail.com
JAIGHER DANIEL.F	jaigherd@gmail.com
JEROME.X	Jeromejamals6@gmail.com