ECE408 Spring 2020

**Applied Parallel Programming** 

Lecture 18: Parallel Sparse Methods

©Wen-mei W. Hwu and David Kirk/NVIDIA, 2010-2018

1

### **Sparse Matrix**

- · Many real-world systems are sparse in nature
  - Linear systems described as sparse matrices
- Solving sparse linear systems
  - Traditional inversion algorithms such as Gaussian elimination can create too many "fill-in" elements and explode the size of the matrix
  - Iterative Conjugate Gradient solvers based on sparse matrix-vector multiplication is preferred
- Solution of PDE systems can be formulated into linear operations expressed as sparse matrixvector multiplication

©Wen-mei W. Hwu and David Kirk/NVIDIA, 2010-2018

Objective

- To learn the key techniques for compacting input data in parallel sparse methods for reduced consumption of memory bandwidth
  - better utilization of on-chip memory
  - fewer bytes transferred to on-chip memory
  - Better utilization of global memory
  - Challenge: retaining regularity

©Wen-mei W. Hwu and David Kirk/NVIDIA, 2010-2018

.

## Sparse Data Motivation for Compaction

- Many real-world inputs are sparse/non-uniform
- Signal samples, mesh models, transportation networks, communication networks, etc.



©Wen-mei W. Hwu and David Kirk/NVIDIA, 2010-2018

2

4



5



| Science Area                                               | Number<br>of<br>Teams | Codes                                                 | Struct<br>Grids | Unstruct<br>Grids | Dense<br>Matrix | Sparse<br>Matrix | N-<br>Body | Monte<br>Carlo | FFT | PIC | Sig<br>I/O |
|------------------------------------------------------------|-----------------------|-------------------------------------------------------|-----------------|-------------------|-----------------|------------------|------------|----------------|-----|-----|------------|
| Climate and<br>Weather                                     | 3                     | CESM, GCRM,<br>CM1/WRF, HOMME                         | Х               | Х                 |                 | Х                |            | Х              |     |     | Χ          |
| Plasmas/<br>Magnetosphere                                  | 2                     | H3D(M),VPIC,<br>OSIRIS, Magtail/UPIC                  | Х               |                   |                 |                  | Х          |                | Х   |     | Х          |
| Stellar<br>Atmospheres and<br>Supernovae                   | 5                     | PPM, MAESTRO,<br>CASTRO, SEDONA,<br>ChaNGa, MS-FLUKSS | X               |                   |                 | х                | Х          | X              |     | Х   | X          |
| Cosmology                                                  | 2                     | Enzo, pGADGET                                         | Х               |                   |                 | Х                | Х          |                |     |     |            |
| Combustion/<br>Turbulence                                  | 2                     | PSDNS, DISTUF                                         | Х               |                   |                 |                  |            |                | Х   |     |            |
| General Relativity                                         | 2                     | Cactus, Harm3D,<br>LazEV                              | Х               |                   |                 | Х                |            |                |     |     |            |
| Molecular<br>Dynamics                                      | 4                     | AMBER, Gromacs,<br>NAMD, LAMMPS                       |                 |                   |                 | Х                | Х          |                | Х   |     |            |
| Quantum Chemistry                                          | 2                     | SIAL, GAMESS,<br>NWChem                               |                 |                   | Х               | Х                | Х          | Х              |     |     | Χ          |
| Material Science                                           | 3                     | NEMOS, OMEN, GW,<br>QMCPACK                           |                 |                   | Х               | Х                | Х          | Х              |     |     |            |
| Earthquakes/<br>Seismology                                 | 2                     | AWP-ODC,<br>HERCULES, PLSQR,<br>SPECFEM3D             | Х               | X                 |                 |                  | Х          |                |     |     | Χ          |
| Quantum Chromo<br>Dynamics                                 | 1                     | Chroma, MILC,<br>USQCD                                | Х               |                   | Х               | Х                |            |                |     |     |            |
| Social Networks                                            | 1                     | EPISIMDEMICS                                          |                 |                   |                 |                  |            |                |     |     |            |
| Evolution                                                  | 1                     | Eve                                                   |                 |                   |                 |                  |            |                |     |     |            |
| Engineering/System of Systems                              | 1                     | GRIPS,Revisit                                         |                 |                   |                 |                  |            | Х              |     |     | 6          |
| Comput@Bitmomei W. Htwu and David Kirk/NVIDIA, 2010-2018 X |                       |                                                       |                 |                   |                 | Х                |            |                | Χ   |     | Χ          |

6

## Challenges

- Compared to dense matrix multiplication, SpMV
  - Is irregular/unstructured
  - Has little input data reuse
  - Benefits little from compiler transformation tools
- · Key to maximal performance

©Wen-mei W. Hwu and David Kirk/NVIDIA, 2010-2018

- Maximize regularity (by reducing divergence and load imbalance)
- Maximize DRAM burst utilization (layout arrangement)

7

### A Simple Parallel SpMV

 Row 0
 3
 0
 1
 0
 Thread 0

 Row 1
 0
 0
 0
 0
 Thread 1

 Row 2
 0
 2
 4
 1
 Thread 2

 Row 3
 1
 0
 0
 1
 Thread 3

· Each thread processes one row

©Wen-mei W. Hwu and David Kirk/NVIDIA, 2010-2018

9





10



#### A Parallel SpMV/CSR Kernel (CUDA) \_\_global\_\_ void SpMV\_CSR(int num rows, float \*data, int \*col index, int \*row ptr, float \*x, float \*y) { int row = blockIdx.x \* blockDim.x + threadIdx.x; if (row < num rows) { float dot = 0; 4. int row start = row ptr[row]; 6. int row end = row ptr[row+1]; for (int elem = row start; elem < row end; elem++) { 8. dot += data[elem] \* x[col index[elem]]; 9. y[row] = dot;Row 0 Row 2 Row 3 Nonzero values data[7] Column indices col index[7] Row Pointers row ptr[5] $\{0, 2, 2, 5, 7\}$ ©Wen-mei W. Hwu and David Kirk/NVIDIA, 2010-2018

13

# CSR Kernel Memory Divergence (Uncoalesced Accesses)

- Adjacent threads access non-adjacent memory locations
  - Grey elements are accessed by all threads in iteration 0



14







```
A parallel SpMV/ELL kernel

1. _global__ void SpMV_ELL(int num_rows, float *data, int *col_index, int num_elem, float *x, float *y) {

2. int row = blockIdx.x * blockDim.x + threadIdx.x;

3. if (row < num_rows) {

4. float dot = 0;

5. for (int i = 0; i < num_elem; i++) {

6. dot += data[row+i*num_rows]*x[col_index[row+i*num_rows]];

}

7. y[row] = dot;

}

6. Wen-mei W. Hwu and David Kirk/NVIDIA. 2010-2018
```



## COO Allows Reordering of Elements

....

21

#### **READ CHAPTER 10**

©Wen-mei W. Hwu and David Kirk/NVIDIA, 2010-2018

```
1. for (int i = 0; i < num_elem; row++)
2. y[row_index[i]] += data[i] * x[col_index[i]];

a sequential loop that implements SpMV/COO
```