TD - 10 : Dénombrement

Entraînements

Exercice 1. On veut distribuer 7 prospectus dans 10 boîtes aux lettres nominatives. De combien de façons peut-on le faire si

- 1. on met au plus un prospectus dans chaque boîte aux lettres et les prospectus sont identiques?
- 2. on met au plus un prospectus dans chaque boîte aux lettres et les prospectus sont tous différents?
- 3. on met un nombre quelconque de prospectus dans chaque boîte aux lettres et les prospectus sont tous différents?
- 4. on met un nombre quelconque de prospectus dans chaque boîte aux lettres et les prospectus sont identiques?

Exercice 2. Un sac contient 5 jetons blancs et 8 jetons noirs. On suppose que les jetons sont discernables (numérotés par exemple) et on effectue un tirage de 6 jetons de ce sac.

- 1. On suppose que les jetons sont tirés successivement en remettant à chaque fois le jeton tiré.
 - (a) Donner le nombre de résultats possibles.
 - (b) Combien de ces résultats amènent
 - i. exactement 1 jeton noir?
 - ii. au moins 1 jeton noir?
 - iii. au plus un jeton noir?
 - iv. 2 fois plus de jetons noirs que de jetons blancs?
- 2. Mêmes questions en supposant que les jetons sont tirés successivement sans remise.
- 3. Mêmes questions en supposant que les jetons sont tirés simultanément.

Exercice 3. Un gardien de zoo donne à manger à ses 13 singes.

- 1. Il distribue 8 fruits différents (une pomme, une banane, ...). Combien y-a-t-il de distributions possibles
 - (a) s'il donne au plus un fruit à chaque singe?
 - (b) si chaque singe peut recevoir de 0 à 8 fruits?
- 2. Mêmes questions si les 8 fruits sont 8 pommes golden identiques.

Exercice 4. A l'entrée d'un immeuble, on dispose d'un clavier à 12 touches : 3 lettres A, B et C et les 9 chiffres autres que 0. Le code d'ouverture de la porte est composé d'une lettre suivie de 3 chiffres.

- 1. Combien existe-t-il de codes différents?
- 2. Combien existe-t-il de codes
 - (a) pour lesquels les 3 chiffres sont distincts?
 - (b) comportant au moins une fois le chiffre 7?
 - (c) pour lesquels tous les chiffres sont pairs?
 - (d) pour lesquels les 3 chiffres sont dans l'ordre strictement croissant?

Exercice 5. Un jeu de cartes non truqué comporte 52 cartes. Une main est constituée de 8 cartes.

- 1. Quel est le nombre de mains possibles?
- 2. Quel est le nombre de mains possibles avec au moins un as?
- 3. Quel est le nombre de mains possibles avec au moins un coeur ou une dame?
- 4. Quel est le nombre de mains possibles avec exactement un as et exactement un coeur?
- 5. Quel est le nombre de mains possibles comportant des cartes d'exactement 2 couleurs?
- 6. Quel est le nombre de mains possibles comportant deux couleurs au plus?
- 7. Quel est le nombre de mains possibles avec 8 cartes dont les rangs se suivent?

Exercice 6. Une urne contient 5 paires de chaussures noires, 3 paires de chaussures marrons et 2 paires de chaussures blanches. On tire deux chaussures au hasard.

- 1. Combien y-a-t-il de tirages possibles?
- 2. Combien y-a-t-il de tirages où l'on obtient deux chaussures de même couleur?
- 3. Combien de tirages amènent un pied gauche et un pied droit?
- 4. Combien de tirages amènent une chaussure droite et une chaussure gauche de même couleur?

Formules démontrées à l'aide du dénombrement

Exercice 7. On considère un quadrillage \mathbb{N}^2 du quart de plan des points à coordonnées positives. On appelle chemin croissant tout parcours suivant le quadrillage en utilisant des déplacements vers le haut ou vers la droite.

- 1. Combien y-a-t-il de chemins croissants de longueur $n \in \mathbb{N}$? Combien de points distincts permettent-ils d'atteindre?
- 2. Soit $(m, n) \in \mathbb{N}^2$ fixé.
 - (a) Combien de chemins croissants permettent de relier $A\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ et $B\begin{pmatrix} m \\ n \end{pmatrix}$?
 - (b) Soit $p \in \mathbb{N}$ tel que $0 \le p \le m + n$. Pour tout $k \in \{0, \dots, p\}$, dénombrer le nombre de chemins reliant A et B et passant par $C_k \binom{k}{p-k}$. En déduire la formule de Vandermonde.

Exercice 8. Soient p, q et r trois entiers naturels tels que $p + q + r \ge 1$.

- 1. Combien de mots de p + q + r lettres peut-on former en utilisant p fois la même lettre A, q fois la lettre B et r fois la lettre C? Vérifier le résultat avec p = q = r = 1.
- 2. Démontrer la formule : $(a+b+c)^n = \sum_{p=0}^n \sum_{q=0}^{n-p} \binom{n}{p} \binom{n-p}{q} a^p b^q c^{n-p-q}$.

Type DS

Exercice 9. Une urne contient 5 boules blanches et 8 boules noires. On suppose que les boules sont discernables et on effectue un tirage de 6 boules de cette urne successivement et avec remise.

- 1. Donner le nombre de résultats possibles.
- 2. Combien de ces résultats amènent
 - (a) 5 boules blanches puis une boule noire dans cet ordre?
 - (b) exactement une boule noire?
 - (c) au moins une boule noire?
 - (d) plus de boules noires que de boules blanches?

Exercice 10. Soient n, p et q trois entiers naturels. Le but de l'exercice est de démontrer la formule suivante :

$$\sum_{k=p}^{2p} \binom{k}{p} 2^{2p-k} = 2^{2p}.$$

Soit \mathcal{M} l'ensemble des mots de p+q+1 lettres prises dans l'ensemble $\{A,B\}$.

- 1. Calculer Card (\mathcal{M}) .
- 2. On note \mathcal{N} l'ensemble des éléments de \mathcal{M} contenant au moins p+1 fois la lettre A. Etant donné un entier $k \in \{1, \ldots, q+1\}$, on note \mathcal{N}_k l'ensemble des éléments de \mathcal{N} dont le p+1-ième A se trouve en p+k-ième position. Déterminer $\operatorname{Card}(\mathcal{N}_k)$. En déduire $\operatorname{Card}(\mathcal{N})$ sous forme d'une somme.
- 3. On note \mathcal{R} l'ensemble des éléments de \mathcal{M} contenant au moins q+1 fois la lettre B. Déterminer Card (\mathcal{R}) .
- 4. En déduire la formule : $\sum_{k=0}^{q} {p+k \choose p} 2^{q-k} + \sum_{k=0}^{p} {q+k \choose q} 2^{p-k} = 2^{p+q+1}$.
- 5. Conclure.