Численные методы. Практическое задание.

Швецов Владислав Андреевич. 213 группа.

22 декабря 2024 г.

1 Задача 2.3

Вычеслить значения функции $f(x) = \int_0^x g(t) \, dt$ для x в диапазоне от -2 до 2 с шагом 0.5, используя численное интегрирование:

1.
$$g(t) = \sinh 2t \cdot (x^2 + 1)$$

2.
$$g(t) = -\frac{5t \cdot \cos t}{(1+2t^2)^3}$$

Построить интерполяционный полином Лагранжа, используя вычесленные значения. Сравнить приближенные значения фунеции f(x) с полученными значениями на сетке с шагом 0.1 в том же диапозоне. Оценить абсолютную и относительную ошибку. Подобрать более эфективный метод приближения функции f(x).

2 Теория

2.1 Интерполяционный полином Лагранжа

Интерполяционный полином Лагранжа - это полином, использующийсяя для аппроксимации функции по её значениям в заданных точках.

Построение. Пусть есть набор узлов $(x_0,y_0),(x_1,y_1),\dots,(x_n,y_n)$, где x_i - различные точки на интервале, а y_i - значения функции в этих точках. Ин-

терполяционный полином Лагранжа для таких узлов задается следующей формулой:

$$P_n(x) = y_0 L_0(x) + y_1 L_1(x) + \ldots + y_n L_n(x),$$

где

$$L_i(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

Полином Лагранжа имеет следующие свойства:

- 1. Интерполяционный многочлен Лагранжа имеет степень не выше n, где n количество узлов.
- Значения многочлена в узлах совпадают с заданными значениями функции.
- Существует единственный многочлен Лагранжа для данного набора узлов.

2.2 Узлы Чебышева

Узлы Чебышёва - это особые узлы интерполяции, используемые для уменьшения эффекта Рунге при построении интерполяционных полиномов. Для интервала [-1,1] для натурального n узлы Чебышева задаются по формуле:

$$x_i = \cos\left(\frac{(2i-1)\pi}{2n}\right),\,$$

На интервале [a,b] узлы Чебышева x_i находятся при помощи афинного преобразования отрезков:

$$x_i = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\frac{(2i-1)\pi}{2n}\right),\,$$

где $i=1,2\ldots,n$ - номер узла, n - количество узлов на интервале [a,b].

Узлы Чебышевы обладают следующими свойствами:

1. Интерполяция по узлам Чебышёва наименее подвержена эффекту Рунге, из-за того, что узлы больше распределяются по краям отрезка. 2. Узлы Чебышева обеспечивают оптимальную сходимость интерполяционных полиномов к интерполируемой функции.

Узлы Чебышёва могут улучшить точность интерполяции, особенно для функций, сильно изменяющихся на краях интерполяционного интервала.

2.3 Применение интерполяции в реальной жизни

Компьютерное зрение:

В области обработки изображений и компьютерного зрения интерполяция применяется для повышения разрешения изображений или восстановления отсутствующих частей изображения.

Визуализация данных:

Интерполяция часто используется для создания плавных кривых на графиках, что позволяет эффективно визуализировать данные. Это особенно важно в графике и компьютерной графике.

Анализ данных во времени:

В таких областях, как финансовый анализ или моделирование климата, где данные представлены в виде временных рядов, интерполяция используется для увеличения частоты наблюдений или для восполнения пропущенных значений.

Аудио- и видеопроизводство:

В обработке аудио и видео интерполяция используется для улучшения качества звука и изображения, а также для изменения частоты кадров в видео.

Финансовое моделирование:

В области финансов интерполяция помогает аппроксимировать такие показатели, как процентные ставки и кривые доходности, что улучшает точность финансовых моделей.

3 Применимаость

3.1 Построение интерполяционного полинома Лагранжа

Нахождение значений функции $f_1(x)$ (см. рис 1), $f_2(x)$ (см. рис 2) и последующего использования их для построения полинома Лагранжа, с помощью интеграла Симпсона. Вывод программы:

_____Function 1_____

```
x:
   -2.000000 y: 65.952515
    -1.500000 y:
                 14.767509
x:
    -1.000000 y:
                   2.767032
x:
    -0.500000 y:
                  0.339915
x:
     0.000000 y:
                   0.000000
     0.500000 y:
                   0.339915
x:
     1.000000 y:
                   2.767032
x:
     1.500000 y:
                  14.767509
x:
     2.000000 y:
                  65.952515
x:
Function + Chebyshov nodes
x:
     1.969616 y: 60.423157
     1.732051 y:
                 30.052754
x:
     1.285575 y:
                  7.414043
x:
x:
     0.684040 y:
                   0.802122
     0.000000 y:
                   0.000000
x:
   -0.684040 y:
                   0.802122
x:
    -1.285575 y:
                   7.414043
x:
   -1.732051 y:
                  30.052754
   -1.969616 y:
                  60.423157
          рис. 1
_____Function 2_____
   -2.000000 y: -0.504968
   -1.500000 y: -0.506644
```

```
      x:
      -1.000000
      y:
      -0.488853

      x:
      -0.500000
      y:
      -0.330292

      x:
      0.000000
      y:
      0.000000

      x:
      0.500000
      y:
      -0.330292

      x:
      1.000000
      y:
      -0.488853

      x:
      1.500000
      y:
      -0.506644

      x:
      2.000000
      y:
      -0.504968
```

Function + Chebyshov nodes

```
1.969616 y: -0.505141
x:
     1.732051 y: -0.506367
x:
    1.285575 y: -0.504220
x:
     0.684040 y: -0.422646
x:
     0.000000 y: -0.000000
x:
    -0.684040 y: -0.422646
    -1.285575 y: -0.504220
x:
    -1.732051 y: -0.506367
x:
   -1.969616 y: -0.505141
```

рис. 2

3.2 Применимость интерполяционного полинома Лагранжа

Вывод программы значений функции, интерполяционного полинома Лагранжа, и сравнение их для функции $f_1(x)$ (см. таблица. 1) и $f_2(x)$ (см. таблица 2).

3.3 Применимость интерполяционного полинома Лагранжа с узлами Чебышева

Вывод программы значений функции, интерполяционного полинома Лагранжа с использование узлов Чебышева и сравнение их, для функции $f_1(x)$ (см. таблица. 3) и $f_2(x)$ (см. таблица 4).

4 Реализация на языке С

Исхдный код программы, реализованной на языке C, можно посмотреть в файле $\mathbf{zadan.c}$

5 Анализ и вывод

Численное интегрирование функции f(x) с использованием интерала Симпсона позволяет найти ее значения с высокой точностью, и интерполяция с помощью полинома Лагранжа дает хорошие приближения для большинства значений x. Однако для функций с большими колебаниями или сильными изменениями на краях интервала использование узлов Чебышева значительно улучшает точность интерполяции. Метод Лагранжа является хорошим выбором для малых интервалов и функций с достаточно гладкими изменениями, но при необходимости высокой точности на большом интервале следует рассмотреть альтернативные методы интерполяции, такие как сплайны или использование узлов Чебышева.

6 Литература

- 1. Д.П. Костомаров, А.П. Фаворский.(2004) Вводные лекции по численным методам', Логос.
- 2. Г.М. Кобельков. Численные методы. Часть 1. (лекции).
- 3. Полинм Лагража. Статья.
- 4. Узлы Чебышева. Статья.

7 Таблицы

Таблицу в формате .xlsx можно посомтреть в файле table.xlsx

X	f (x)	P (x)	Абсолютная ошибка	Относительная ошибка
-2.0	65.952515	65.952515	0.000000	1.000000
-1.9	49.369345	49.459309	0.000001	1.001822
-1.8	36.796128	36.882257	0.000002	1.002341
-1.7	27.293520	27.346775	0.000003	1.001951
-1.6	20.136732	20.157849	0.021117	1.001049
-1.5	14.767509	14.767509	0.000000	1.000000
-1.4	10.756670	10.747147	0.009523	0.999115
-1.3	7.774920	7.764173	0.010747	0.998618
-1.2	5.570146	5.562488	0.007657	0.998625
-1.1	3.949762	3.946328	0.003434	0.999130
-1.0	2.767032	2.767032	0.000000	1.000000
-0.9	1.910458	1.912349	0.001890	1.000989
-0.8	1.295599	1.297904	0.002305	1.001779
-0.7	0.858743	0.860490	0.001746	1.002034
-0.6	0.552067	0.552884	0.000818	1.001481
-0.5	0.339915	0.339915	0.000000	1.000000
-0.4	0.195987	0.195535	0.000452	0.997696
-0.3	0.101217	0.100704	0.000513	0.994928
-0.2	0.042215	0.041888	0.000327	0.992260
-0.1	0.010147	0.010049	0.000098	0.990323
0.0	0.000000	0.000000	0.000000	0.241644
0.1	0.010147	0.010049	0.000098	0.990323
0.2	0.042215	0.041888	0.000327	0.992260
0.3	0.101217	0.100704	0.000513	0.994928
0.4	0.195987	0.195535	0.000452	0.997696
0.5	0.339915	0.339915	0.000000	1.000000
0.6	0.552067	0.552884	0.000818	1.001481
0.7	0.858743	0.860490	0.001746	1.002034
0.8	1.295599	1.297904	0.002305	1.001779
0.9	1.910458	1.912349	0.001890	1.000989
1.0	2.767032	2.767032	0.000000	1.000000
1.1	3.949762	3.946328	0.003434	0.999130
1.2	5.570146	5.562488	0.007657	0.998625
1.3	7.774920	7.764173	0.010747	0.998618
1.4	10.756670	10.747147	0.009523	0.999115
1.5	14.767509	14.767509	0.000000	1.000000
1.6	20.136732	20.157849	0.021117	1.001049
1.7	27.293520	27.346775	0.053255	1.001951
1.8	36.796128	36.882257	0.086129	1.002341
1.9	49.369345	49.459309	0.089965	1.001822

Таблица 1: Вывод программы, представленный в табличном представлении для $f_1(x)$

X	f (x)	P (x)	Абсолютная ошибка	Относительная ошибка
-2.0	-0.504968	-0.504968	0.000000	1.000000
-1.9	-0.505534	-0.967091	0.461557	1.913010
-1.8	-0.506060	-1.002221	0.496161	1.980439
-1.7	-0.506490	-0.852283	0.345794	1.682726
-1.6	-0.506731	-0.661943	0.155212	1.306302
-1.5	-0.506644	-0.506644	0.000000	1.000000
-1.4	-0.506017	-0.415033	0.090984	0.820196
-1.3	-0.504531	-0.386498	0.118033	0.766053
-1.2	-0.501706	-0.404461	0.097245	0.806171
-1.1	-0.496829	-0.446071	0.050758	0.897836
-1.0	-0.488853	-0.488853	0.000000	1.000000
-0.9	-0.476274	-0.514861	0.038587	1.081020
-0.8	-0.457001	-0.512820	0.055819	1.122142
-0.7	-0.428307	-0.478711	0.050404	1.117682
-0.6	-0.387018	-0.415202	0.028184	1.072822
-0.5	-0.330292	-0.330292	0.000000	1.000000
-0.4	-0.257406	-0.235486	0.021919	0.914845
-0.3	-0.172691	-0.143778	0.028912	0.832577
-0.2	-0.088411	-0.067684	0.020728	0.765555
-0.1	-0.024241	-0.017508	0.006733	0.722242
0.0	-0.000000	-0.000000	0.000000	0.650550
0.1	-0.024241	-0.017508	0.006733	0.722242
0.2	-0.088411	-0.067684	0.020728	0.765555
0.3	-0.172691	-0.143778	0.028912	0.832577
0.4	-0.257406	-0.235486	0.021919	0.914845
0.5	-0.330292	-0.330292	0.000000	1.000000
0.6	-0.387018	-0.415202	0.028184	1.072822
0.7	-0.428307	-0.478711	0.050404	1.117682
0.8	-0.457001	-0.512820	0.055819	1.122142
0.9	-0.476274	-0.514861	0.038587	1.081020
1.0	-0.488853	-0.488853	0.000000	1.000000
1.1	-0.496829	-0.446071	0.050758	0.897836
1.2	-0.501706	-0.404461	0.097245	0.806171
1.3	-0.504531	-0.386498	0.118033	0.766053
1.4	-0.506017	-0.415033	0.090984	0.820196
1.5	-0.506644	-0.506644	0.000000	1.000000
1.6	-0.506731	-0.661943	0.155212	1.306302
1.7	-0.506490	-0.852283	0.345794	1.682726
1.8	-0.506060	-1.002221	0.496161	1.980439
1.9	-0.505534	-0.967091	0.461557	1.913010

Таблица 2: Вывод программы, представленный в табличном представлении для $f_2(x)$

X	f (x)	Р (х) + Узлы Чебышева	Абсолютная ошибка	Относительная ошибка
-2.0	65.952515	65.929406	0.023108	0.999650
-1.9	49.369345	49.390083	0.020738	1.000420
-1.8	36.796128	36.808375	0.012247	1.000333
-1.7	27.293520	27.288318	0.005202	0.999809
-1.6	20.136732	20.121373	0.015359	0.999237
-1.5	14.767509	14.751773	0.015736	0.998934
-1.4	10.756670	10.747136	0.009533	0.999114
-1.3	7.774920	7.773759	0.001161	0.999851
-1.2	5.570146	5.576042	0.005897	1.001059
-1.1	3.949762	3.959557	0.009795	1.002480
-1.0	2.767032	2.777260	0.010228	1.003696
-0.9	1.910458	1.918426	0.007967	1.004170
-0.8	1.295599	1.299898	0.004299	1.003318
-0.7	0.858743	0.859280	0.000537	1.000625
-0.6	0.552067	0.549740	0.002327	0.995785
-0.5	0.339915	0.336128	0.003787	0.988859
-0.4	0.195987	0.192144	0.003843	0.980389
-0.3	0.101217	0.098325	0.002892	0.971428
-0.2	0.042215	0.040670	0.001545	0.963404
-0.1	0.010147	0.009719	0.000428	0.957814
0.0	0.000000	-0.000000	0.000000	3.866301
0.1	0.010147	0.009719	0.000428	0.957814
0.2	0.042215	0.040670	0.001545	0.963404
0.3	0.101217	0.098325	0.002892	0.971428
0.4	0.195987	0.192144	0.003843	0.980389
0.5	0.339915	0.336128	0.003787	0.988859
0.6	0.552067	0.549740	0.002327	0.995785
0.7	0.858743	0.859280	0.000537	1.000625
0.8	1.295599	1.299898	0.004299	1.003318
0.9	1.910458	1.918426	0.007967	1.004170
1.0	2.767032	2.777260	0.010228	1.003696
1.1	3.949762	3.959557	0.009795	1.002480
1.2	5.570146	5.576042	0.005897	1.001059
1.3	7.774920	7.773759	0.001161	0.999851
1.4	10.756670	10.747136	0.009533	0.999114
1.5	14.767509	14.751773	0.015736	0.998934
1.6	20.136732	20.121373	0.015359	0.999237
1.7	27.293520	27.288318	0.005202	0.999809
1.8	36.796128	36.808375	0.012247	1.000333
1.9	49.369345	49.390083	0.020738	1.000420

Таблица 3: Вывод программы, представленный в табличном представлении для $f_1(x)$

X	f (x)	Р (х) + Узлы Чебышева	Абсолютная ошибка	Относительная ошибка
-2.0	-0.504968	-0.467711	0.037257	0.926220
-1.9	-0.505534	-0.542968	0.037435	1.074050
-1.8	-0.506060	-0.530902	0.024841	1.049088
-1.7	-0.506490	-0.494587	0.011902	0.976500
-1.6	-0.506731	-0.466908	0.039823	0.921412
-1.5	-0.506644	-0.460188	0.046456	0.908306
-1.4	-0.506017	-0.473801	0.032216	0.936334
-1.3	-0.504531	-0.500012	0.004519	0.991044
-1.2	-0.501706	-0.528291	0.026585	1.052988
-1.1	-0.496829	-0.548337	0.051508	1.103674
-1.0	-0.488853	-0.552027	0.063174	1.129229
-0.9	-0.476274	-0.534472	0.058198	1.122195
-0.8	-0.457001	-0.494382	0.037381	1.081796
-0.7	-0.428307	-0.433889	0.005582	1.013033
-0.6	-0.387018	-0.357990	0.029028	0.924995
-0.5	-0.330292	-0.273740	0.056553	0.828779
-0.4	-0.257406	-0.189305	0.068100	0.735435
-0.3	-0.172691	-0.113001	0.059689	0.654357
-0.2	-0.088411	-0.052376	0.036036	0.592406
-0.1	-0.024241	-0.013425	0.010815	0.553832
0.0	-0.000000	-0.000000	0.000000	0.214459
0.1	-0.024241	-0.013425	0.010815	0.553832
0.2	-0.088411	-0.052376	0.036036	0.592406
0.3	-0.172691	-0.113001	0.059689	0.654357
0.4	-0.257406	-0.189305	0.068100	0.735435
0.5	-0.330292	-0.273740	0.056553	0.828779
0.6	-0.387018	-0.357990	0.029028	0.924995
0.7	-0.428307	-0.433889	0.005582	1.013033
0.8	-0.457001	-0.494382	0.037381	1.081796
0.9	-0.476274	-0.534472	0.058198	1.122195
1.0	-0.488853	-0.552027	0.063174	1.129229
1.1	-0.496829	-0.548337	0.051508	1.103674
1.2	-0.501706	-0.528291	0.026585	1.052988
1.3	-0.504531	-0.500012	0.004519	0.991044
1.4	-0.506017	-0.473801	0.032216	0.936334
1.5	-0.506644	-0.460188	0.046456	0.908306
1.6	-0.506731	-0.466908	0.039823	0.921412
1.7	-0.506490	-0.494587	0.011902	0.976500
1.8	-0.506060	-0.530902	0.024841	1.049088
1.9	-0.505534	-0.542968	0.037435	1.074050

Таблица 4: Вывод программы, представленный в табличном представлении для $f_2(x)$