CS F364: Design & Analysis of Algorithm

Search Trees **Network Flow**

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

Feb 22, 2021

(Campus @ BITS-Pilani Jan-May 2021)

http://ktiwari.in/algo

Flow

Flow in the graph G is a real valued function $f:V\times V$

- Capacity Constraint: $\forall u, v \in V$ we require $0 \le f(u, v) \le c(u, v)$

Flow conservation: $\forall u \in V - \{s,t\}$ we require $\sum_{v \in V} f(v,u) = \sum_{v \in V} f(u,v)$ here if $(u,v) \notin E$ then f(u,v) = 0,

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

Typically, no edge enters the source, so $\sum_{v\in V}f(v,s)=0$

Maximum-flow problem: given a flow network G with source s and sink t; we wish to find a flow of maximum value.

Ford-Fulkerson method

Algorithm 1: FORD-FULKERSON-METHOD(G,s,t)

- Initialize flow f to 0 while \exists an augmenting path p in the residual network G_f
- Augment the flow f along p
- 4 return f

Given a flow network G = (V, E) with source s, sink t, and flow f

Residual network G_f has two type of edges

- **①** Residue: $c_f(u, v) = c(u, v) f(u, v)$
- ② flow: $c_f(u, v) = f(v, u)$

Observe that $|E_f| \le 2|E|$

э-16(Feb 22, 2021) 5/16

Flow Network

Flow network G = (V, E) is a directed graph

- Every edge $(u,v)\in E$ has a non-negative **capacity** $|c(u,v)\geq 0|$
- There are two distinguished vertices: source s, and sink t
 - For each vertex $v \in V$ the network has a path $s \rightsquigarrow v$
 - Self loops are not allowed $(u,u) \notin E$
- No reverse edge, If $(u,v) \in E$ then $(v,u) \notin E$
- If $(u, v) \notin E$ then c(u, v) = 0,
- Graph is connected, so $|E| \ge |V| 1$

Dealing Anti-Parallel Edges, Many Source/Sink (Supersource, Supersink)

Example: Residual Network

Augmentation $f \uparrow f'$

If f is a flow in G; and f' in its residual network G_f then

$$(f\uparrow f')(u,v) = \left\{ \begin{array}{ll} f(u,v) + f'(u,v) - f'(v,u) & \text{if } (v,u) \in E \\ 0 & \text{otherwise} \end{array} \right.$$

 $f \uparrow f'$ is a flow in G with value $|f \uparrow f'| = |f| + |f'|$

Capacity Constraints

As
$$f(v,u) \le c_l(v,u) = f(u,v)$$
 ($f+f')(u,v) = f(u,v) = f'(u,v) - f'(v,u)$)
$$\begin{cases} (f+f')(u,v) = f(u,v) + f'(u,v) - f'(v,u) \\ \ge f(u,v) + f'(u,v) - f'(v,u) \end{cases}$$

$$\sum_{v \in V} f(f+f')(u,v) = \sum_{v \in V} f(u,v) + f'(u,v) - f'(v,u) = \sum_{v \in V} f(v,u) + \sum_{v \in V} f'(v,u) - \sum_{v \in V} f'(v,u) = \sum_{v \in V} f'(v,u) + \sum_{v \in V} f'(v,u) = \sum_{v \in V} f'(v,u) + \sum_{v \in V} f'(v,u) - \sum_{v \in V} f'(v,u) = \sum_{v \in V} f'(v,u) + \sum_{v \in V} f'(v,u) - f'(u,v) = \sum_{v \in V} f'(v,u) - f'(u,v) + \sum_{v \in V} f'(v,u) - f'(u,v) = \sum_{v \in V} f'(v,u) + f'(u,v) - f'(u,v) = \sum_{v \in V} f'(v,u) + f'(u,v) - f'(u,v) = \sum_{v \in V} f'(v,u) + f'(u,v) - f'(u,v) = \sum_{v \in V} f'(v,u) + f'(u,v) + f'(u,v)$$

(BITS F364)

Augmenting Paths

- Augmenting path ρ is a simple path from s to t in residual n/w G_t of a flow network G = (V, E) having source s and sink t
 - **Residual capacity** $c_f(p) = min\{c_f(u, v) : (u, v) \text{ is on path } p\}$ •
- Define

$$f_{\mathcal{P}}(u, v) = \begin{cases} c_{f}(p) & \text{if } (u, v) \text{ is on path } p \\ 0 & \text{otherwise} \end{cases}$$

- f_p is a flow in G_t with value $|f_p|=c_t(p)>0$ If we augment f with f_p we get another flow in G, whose value is closer to the maximum.

Design & Analysis of Algo. (BITS F364) MW F (3-4PM) online@BITS-Pilani Lecture-16(Feb 22, 2021) 9/16

Find flow and capacity across the cut in following n/w

11/14 S = T

flow 19, capacity 26

Lecture-16(Feb 22, 2021) 11/16

Let's find $f \uparrow$

$$\begin{aligned} &|f + f'| &= \sum_{v \in I_{Y}} (f + f')(s, v) - \sum_{v \in I_{Y}} (f + f')(v, s) \\ &= \sum_{v \in I_{Y}} (f + f')(s, v) - \sum_{v \in I_{Y}} (f + f')(v, s) \\ &= \sum_{v \in I_{Y}} (((s, v) + f'(s, v) - f'(v, s)) - \sum_{v \in I_{Y}} f(v, s) + f'(v, s) - f'(s, v)) \\ &= \sum_{v \in I_{Y}} f(s, v) + \sum_{v \in I_{Y}} f'(s, v) - \sum_{v \in I_{Y}} f'(s, v) + \sum_{v \in I_{Y}} f'(s, v) - \sum_{v \in I_{Y}} f'(v, s) \\ &= \sum_{v \in V} f'(s, v) - \sum_{v \in I_{Y}} f'(s, v) - \sum_{v \in I_{Y}} f'(s, v) - \sum_{v \in I_{Y}} f'(v, s) \\ &= |f| + |f'| \end{aligned}$$

where
$$V_1=\{v:(s,v)\in E\}$$
 and $V_2=\{v:(v,s)\in E\}$

e-16(Feb 22, 2021) 8/16 Design & Anal

Cuts of flow network

Lecture-16(Feb 22, 2021) 7/16

- A **cut** (S,T) of a flow network G=(V,E) is a partition of V in S and T=V-S such that $s\in S$ and $t\in T$
 - Net flow across the cut is

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

Capacity of the cut is

$$c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$$

Minimum cut of a network is a cut whose capacity is minimum over all cuts of the network

Lecture-16(Feb 22, 2021) 10/16

Net flow is |f|

Let f be a flow in a network G with source s and sink t and let (S,T) be any cut of G. Then the net flow across (S,T) is f(S,T)=|f|

•
$$\forall u \in V - \{s,t\}$$
 we know $\sum_{v \in V} f(u,v) - \sum_{v \in V} f(v,u) = 0$

$$|I| = \sum_{v \in V} I(s, v) - \sum_{v \in V} I(v, s) + \sum_{u \in S - \{s\}} \sum_{v \in V} I(u, v) - \sum_{v \in V} I(v, u)$$

$$= \sum_{v \in V} I(s, v) - \sum_{v \in V} I(v, s) + \sum_{u \in S - \{s\}} \sum_{v \in V} I(u, v) - \sum_{v \in V} I(v, u)$$

$$= \sum_{v \in V} I(s, v) - \sum_{u \in S - \{s\}} I(u, v) - \sum_{v \in V} I(u, v) - \sum_{u \in S - \{s\}} I(v, u)$$

$$= \sum_{v \in V} \sum_{u \in S} I(u, v) - \sum_{v \in V} I(v, v) - \sum_{v \in V} I(v, u)$$

$$= \sum_{v \in V} \sum_{u \in S} I(u, v) + \sum_{v \in V} \sum_{u \in S} I(u, v) - \sum_{v \in V} \sum_{u \in S} I(v, u)$$

$$= \sum_{v \in I} \sum_{u \in S} I(u, v) - \sum_{v \in I} \sum_{u \in S} I(u, v) - \sum_{v \in I} \sum_{u \in S} I(v, u) - \sum_{v \in I} \sum_{u \in S} I(v, u)$$

$$= \sum_{v \in I} \sum_{u \in S} I(u, v) - \sum_{v \in I} \sum_{u \in S} I(v, u) + \sum_{v \in S} \sum_{u \in S} I(v, u)$$

$$= \sum_{v \in I} \sum_{u \in S} I(u, v) - \sum_{v \in I} \sum_{u \in S} I(v, u) + \sum_{v \in S} \sum_{u \in S} I(v, u)$$

$$= \sum_{v \in I} \sum_{u \in S} I(u, v) - \sum_{v \in I} \sum_{u \in S} I(v, u)$$

$$= I(s, T)$$

Lecture-16(Feb 22, 2021) 12/16

Flow is upper bounded

$$|f| = f(S,T)$$

$$= \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

$$\leq \sum_{u \in S} \sum_{v \in T} f(u,v)$$

$$\leq \sum_{u \in S} \sum_{v \in T} c(u,v)$$

$$= c(S,T)$$

Lecture-16(Feb 22, 2021) 13/16

Example

Max-Flow min-cut theorem

If f is a flow in a flow network G=(V,E) with source s and sink t, then following conditions are equivalent

- f is maximum flow in G
- \odot The residual network G_f contains no augmenting paths
 - **©** |f| = c(S, T) for some cut (S, T) of G

Proof:

- (1) → (2) if residual network G_f contains augmenting paths p, then augment p in G to get more flow.
 (2) → (3) let S = {v ∈ V : there is a path from s to v in G_f}, also T V S. Consider u ∈ S and v ∈ T; if (u, v) ∈ E then f(u, v) = c(u, v) and if (v, u) ∈ E then f(v, u) = 0
- $f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) \sum_{u \in S} \sum_{v \in T} f(v,u) = \sum_{u \in S} \sum_{v \in T} c(u,v) = C(S,T)$
 - ullet (3) o (1) since flow is upper bounded by $c(S,\mathcal{T})$ shown earlier

Lecture-16(Feb 22, 2021) 14/16 (BITS F364) M W F (3-4PM) on

Thank You!

Thank you very much for your attention! (Reference $\mbox{\sc l})$

Queries?

Lecture-16(Feb 22, 2021) 16/16

Lecture-16(Feb 22, 2021) 15/16