Lab.13. Podstawy cyfrowego przetwarzania sygnałów

Ćwiczenie polega na użyciu kodera / dekodera audio (coder / decoder - CODEC) na karcie DE1-SoC lub DE2-115. Ćwiczenie polega na podłączeniu mikrofonu do kodeka audio w celu zapewnienia dźwięku wejściowego, zmiany odbieranego dźwięku, odfiltrowania szumów, a następnie odtworzenia powstałego dźwięku przez głośniki / słuchawki. Oprócz płyty głównej z serii DE potrzebujesz mikrofonu i głośników lub słuchawek.

Podstawy

Dźwięki, takie jak mowa i muzyka, są sygnałami, które zmieniają się z czasem. Amplituda sygnału określa głośność, z jaką słyszymy dźwięk. Zmieniając sygnał w czasie, określa się rodzaj dźwięków, które słyszymy. Na przykład dźwięk "ah" jest reprezentowany przez kształt fali pokazany na rys. 1.

Rys. 1: Waveform dla dźwięku 'ah'.

Waveform to sygnał analogowy, który można zapisać cyfrowo za pomocą stosunkowo małej liczby próbek, które reprezentują wartości analogowe w określonych punktach czasowych. Proces tworzenia takich sygnałów cyfrowych nazywany jest próbkowaniem.

Rys. 2: Wybrany kształt fali dźwięku "ah".

Punkty na rys. 2 opisują wybrany kształt fali. Wszystkie punkty są rozmieszczone równomiernie w czasie i śledzą oryginalny przebieg.

Płyty DE1-SoC i DE2-115 są wyposażone w kodek audio (audio CODEC), zdolny do próbkowania dźwięku z mikrofonu i wykorzystania go jako wejścia do układów. Domyślnie CODEC dostarcza 48000 próbek na sekundę, co jest wystarczające do dokładnego odwzorowania dźwięków słyszalnych.

Ćwiczenie obejmuje projekt kilku układów, które pobierają dane wejściowe z mikrofonu za pośrednictwem CODECa, nagrywają i przetwarzają te dane audio, a następnie odtwarzają je za pomocą głośników. Aby uprościć zadanie, prosty system, który może nagrywać i odtwarzać dźwięki na płycie z serii DE, jest dostarczany jako "zestaw startowy". Układ pokazany na rys. 3, zawiera generator zegara, interfejs audio CODEC i moduły konfiguracji audio / wideo. Ten interfejs jest uproszczoną wersją University Program Audio IP Core, który jest dostępny na stronie internetowej Intel's FPGA University Program.

Rys. 3: System audio do omawianego ćwiczenia.

Lewa strona rysunku 3 pokazuje wejścia i wyjścia systemu. Te porty wejścia / wyjścia zapewniają wejścia zegara, a także podłączają CODEC AUDIO i moduły konfiguracji audio / video do odpowiednich urządzeń peryferyjnych na płytach Intel DE1-SoC i DE2-115. Na środku rysunku pokazano grupę sygnałów do i z modułu interfejsu AUDIO CODEC. Sygnały te pozwalają układowi pokazanemu po prawej stronie na rejestrowanie dźwięków z mikrofonu i odtwarzanie ich przez głośniki.

System działa w następujący sposób. Aby zresetować konfigurację audio / video, rozpoczyna się sekwencja autoinicjalizacji. Sekwencja ustawia urządzenie audio na wejście demonstracyjne mikrofonu z częstotliwością 48 kHz i wyprowadzanie sygnału przez głośniki na tej samej częstotliwości. Po zakończeniu automatycznej inicjalizacji CODEC AUDIO rozpoczyna odczytywanie danych z mikrofonu 48 000 razy na sekundę i wysyła je do rdzenia interfejsu AUDIO CODEC w systemie. Następnie jak otrzymano próbkę, jest ona przechowywany w buforze o 128 elementach w rdzeniu interfejsu AUDIO CODEC. Pierwszy element bufora jest zawsze widoczny na wyjściach readdata_left i readdata_right, gdy ustawiony jest sygnał read_ready. Następny element można odczytać, ustawiając sygnał odczytu, który pobiera bieżącą próbkę, a nowa próbka pojawia się jeden lub więcej cykli zegara później, jeśli ustawiony jest sygnał read_ready.

Aby wyprowadzić dźwięk przez głośniki, wykonywana jest podobna procedura. Twój układ powinien obserwować sygnał write_ready, a jeśli potwierdzono zapis próbki, AUDIO CODEC dostarcza go na wejściach writedata left i write-data_right i jest on potwierdzany przez sygnał

zapisu. Ta czynność przechowuje próbkę w wewnętrznej części bufora interfejsu AUDIO CODEC, która wyśle próbkę do głośników we właściwym czasie.

Pakiet startowy zawierający ten projekt stanowi część tego ćwiczenia.

Zadanie 1. Prześlij dane wyjściowe kodeka na jego wejście. Skompiluj układ i załaduj go do Intel DE1-SoC lub DE2-115. Podłącz mikrofon i głośniki do portów Mic i Line Out płyty i mów do mikrofonu, aby usłyszeć swoją wypowiedź poprzez głośniki.

W tej części ćwiczenia należy wykonać prostą modyfikację w dostarczonym układzie pakietu startowego, aby przesłać dane wejściowe z mikrofonu do głośników. Należy zachować ostrożność, aby odczytywać dane i zapisywać dane w interfejsie AUDIO CODEC tylko wtedy, gdy ustawione są gotowe sygnały.

Zadanie 2. Dodaj generator szumu do sygnału wejściowego. Ustaw odpowiednią wartość szumu przy pomocy zmiany szerokości i miejsca bitów licznika w sygnale szumu. Wykonaj symulację. Zaprojektuj jednostkę sterującą generatorem szumu i sygnałami sterującymi AUDIOCODECa (read, write). Szum ma być włączany przełącznikiem SW0.

Ten układ to prosty licznik, którego wartość należy interpretować jako **wartość ze znakiem**. Układ musi być zsynchronizowany z zegarem 50 MHz, a sygnał zezwolenia musi być kontrolowany przez poziom wysoki, kiedy moduł AUDIO CODEC może zarówno wyprodukować, jak i przyjąć nową próbkę.

```
\label{eq:counter_problem} \begin{split} & module \ noise\_generator \ (clk, enable, Q); \\ & input \ clk, enable; \\ & output \ [23:0] \ Q; \\ & reg \ [2:0] \ counter; \\ & always@(posedge \ clk) \\ & if \ (enable) \\ & counter = counter + 1'b1; \\ & assign \ Q = \{\{10\{counter[2]\}\}, \ counter, 11'd0\}; \\ & end module \end{split}
```

Rys.4. Układ generacji szumu

Aby usłyszeć efekt generatora szumów, dodaj wartości wytwarzane przez układ do każdej próbki audio z CODEC AUDIO w układzie z zadania 1.

Zadanie 3. Zaimplementuj filtr cyfrowy uśredniający z 8 próbek. Wykonaj symulację. Sprawdź jego działanie dla sygnału przed i po dodaniu szumu z generatora z zadania 2. Dodaj do jednostki sterującej funkcję sterowania sygnałem włączenia filtru przełącznikiem SW1.

Filtrowanie to proces korekcji sygnału, na przykład usuwanie szumów. Szum w fali dźwiękowej jest reprezentowany przez małe, ale częste zmiany amplitudy sygnału. Prostym układem logicznym, który realizuje zadanie filtrowania szumów, jest filtr uśredniający o skończonej odpowiedzi impulsowej (FIR). Schemat filtra przedstawiono na rys. 5.

Rys.5. Prosty filtr uśredniający FIR.

Filtr uśredniający, podobny do filtra pokazanego na rys. 5, usuwa szumy z dźwięku, uśredniając wartości sąsiednich próbek. W tym przypadku usuwa niewielkie odchylenia dźwięku, obserwując zmiany w sąsiednich 8 próbkach. Podczas korzystania z mikrofonów niskiej jakości ten filtr powinien usuwać zakłócenia powstające podczas mówienia do mikrofonu, dzięki czemu dźwięk mowy będzie wyraźniejszy.

Musisz zaimplementować układ, który pokazano na rys. 5, aby przetworzyć dźwięk z mikrofonu i wyprowadzić przefiltrowany dźwięk przez głośniki. Czy zauważasz jakąkolwiek różnicę między jakością dźwięku w tej części w porównaniu do pierwszej części ćwiczenia?

<u>Uwaga:</u> Możesz zastosować wysokiej jakości mikrofon z funkcją redukcji szumów. W takich okolicznościach prawdopodobnie nie będzie słychać żadnego efektu korzystania z tego filtra. Jeśli tak, sugerujemy wprowadzenie szumu do dźwięku, dodając wyjście układu z rys. 4 do próbki wyprodukowanej przez CODEC AUDIO.

Zadanie 4. Zaimplementuj N-próbkowy filtr uśredniający FIR. Wykonaj symulację. Sprawdź działanie filtru na płycie dla różnych wartości N będących potęgą liczby 2 (N= 4, 8, 16, 32). Dodaj możliwość właczania szumu i filtra przełącznikami SW0 i SW1.

Realizacja filtra uśredniającego z zadania 2, może być skuteczna w usuwaniu części szumu wytwarzanego przez generator szumu. Jednakże, jeśli mikrofon jest słabej jakości, albo zwiększymy szerokość licznika generatora szumu, filtr z drugiej części będzie niewystarczający, aby usunąć szum. Powodem tego jest to, że filtr z drugiej części, obserwuje tylko bardzo krótki okres czasu, podczas którego zmienia się kształt fali dźwiękowej. Można to poprawić, tworząc większy filtr, biorąc średnią liczbę kolejnych próbek.

W tej części, należy poeksperymentować z wielkością filtra do określenia liczby próbek, w których trzeba uśrednić wejście audio do usuwania szumu tła. Aby to zrobić skutecznie, wykorzystaj do uśredniania filtr FIR, pokazany na rys. 6.

Rys. 6: N-próbkowy filtr uśredniający FIR.

Aby obliczyć średnią liczbę ostatnich N próbek, układ najpierw dzieli próbkę wejściową przez N. Następnie uzyskana wartość jest przechowywana w buforze (FIFO - First-In First-out) o długości N i dodawana do akumulatora. Aby upewnić się, że wartość w akumulatorze jest średnią z ostatnich próbek N, obwód odejmuje wartość, która opuszcza FIFO, która reprezentuje (n + 1)-szą próbkę.

Zaimplementuj, skompiluj i załaduj układ na płytę Intel DE1-SoC. Podłącz mikrofon i głośniki do portów Mic i Line Out i mów do mikrofonu, aby usłyszeć swoją wypowiedź przez głośniki. Eksperymentuj z różnymi wartościami N, aby zobaczyć, co dzieje się z Twoją mową i szumem w tle, pamiętając o dzieleniu próbek przez odpowiednią wartość. Zalecamy eksperymentowanie z wartościami N, które są potęgą 2, aby ułatwić dzielenie.

Jeśli masz przenośny odtwarzacz audio ze złączem, dzięki któremu możesz wprowadzać sygnał wejściowy do układu przez port Mic, spróbuj eksperymentować z różnymi rozmiarami filtrów i ich wpływem na utwór, który odtwarzasz.