Indian Institute of Technology Kanpur Department of Mathematics and Statistics

Complex Analysis (MTH 403) Exercise Sheet 12

1. Applications of Residue Theory

- 1.1.* Prove the following Rouché's theorem:
 - (a) Fundamental theorem of algebra.

Hint. Let $P(z) \stackrel{def}{=} z^n + a_{n-1}z^{n-1} + \cdots + a_z + a_0$. Show that when R is sufficiently large, $|P(z) - z^n| < |z|^n$ on |z| = R.

- (b) Hurwitz's theorem.
- 1.2. (a) Suppose that f is analytic on a region containing $\overline{\mathbb{D}}$ and |f(z)| < 1 whenever |z| = 1. Show that, for any $n \in \mathbb{N}$, the equation $f(z) = z^n$ has exactly n solutions in \mathbb{D} .
 - (b) Let |a| > e and $n \in \mathbb{N}$. Show that the function $\exp z az^n$ has precisely n zeros in \mathbb{D} .
 - (c) Show that there exists unique $z \in \mathbb{D}$ such that $\exp z = 2z + 1$.
 - (d) How many zeros (counting multiplicities) does the function $3z^{100} \exp(z)$ have in \mathbb{D} ?
 - (e) How many roots does the polynomial $2z^5 + 4z^2 + 1$ have in \mathbb{D} ?
 - (f) Find the number of zeros of the polynomial $3z^9 + 8z^6 + z^5 + 2z^3 + 1$ in A(0, 1, 2).
 - (g) Find the number of zeros of the polynomial $z^5 + z^3 + 5z^2 + 2$ in A(0; 1, 2).
- 1.3. Let $z_0 \in U \subseteq_{open} \mathbb{C}$ and r > 0 be such that $\overline{D(z_0; r)} \subseteq U$. Suppose that $f, g \in H(U)$ and f does not vanish anywhere on $|z z_0| = r$. Show that there exists $\varepsilon_0 > 0$ such that for all $\varepsilon > 0$, the function f and $f + \varepsilon g$ have the same number of zeros in $D(z_0; r)$.
- 1.4.* Let 0 < r < 1 < R. Show that there exists $\varepsilon_0 > 0$ such that for all $\varepsilon > 0$, $\varepsilon z^7 + z^2 + 1$ has exactly five roots (counting multiplicities) in $A\left(0; \frac{r}{\varepsilon^{\frac{1}{5}}}, \frac{R}{\varepsilon^{\frac{1}{5}}}\right)$.

Hint. Use εz^7 and $z^2 + 1$ for comparison.

- 1.5. For $z \in \mathbb{C}$, define $A(z) = \begin{pmatrix} 4z^2 & 1 & -1 \\ -1 & 2z^2 & 0 \\ 3 & 0 & 1 \end{pmatrix}$. Find the cardinality of $\{z \in \mathbb{D} : A(z) \text{ is singular}\}$.
- 1.6.* Let $\lambda > 1$. Show that $\exp z z \lambda$ has only one zero in $\{z \in \mathbb{C} : \operatorname{Re} z < 0\}$ and furthermore, that zero is real.

Hint. Some semi-circular contour with end points $\pm iR$ will be useful.

- 1.7. Let $\overline{\mathbb{D}} \subseteq U \subseteq_{open} \mathbb{C}$ and $f \in H(U)$.
 - (a) Suppose that |f| > m on $\partial \mathbb{D}$ and |f(0)| < m where m > 0. Show that f has at least one zero on \mathbb{D} ?

Note: This can also be proved using the Maximum modulus principle. Try!

- (b) Assume that $|f(z_0)| < 1$, for some $z_0 \in \mathbb{D}$, and $|f| \ge 1$ on $\partial \mathbb{D}$. Show that $f(\mathbb{D})$ contains \mathbb{D} .
- 1.8.* Let $a \in \mathbb{C}$. Show that, for all $\varepsilon > 0$, the function $\sin z + \frac{1}{z-a}$ has infinitely many zeros in the strip $\{z \in \mathbb{C} : |\operatorname{Im} z| < \varepsilon\}$.

Hint. First observe that $\sin z = 0$ if and only if $z = m\pi$, for some $m \in \mathbb{Z}$. Consider any $m \in \mathbb{Z}$ and the rectangle with vertices $m\pi - \frac{\pi}{2} \pm \varepsilon$ and $m\pi + \frac{\pi}{2} \pm \varepsilon$. Use Rouché's theorem to show that, when m is sufficiently large, such rectangular regions always contain a zero of $\sin z + \frac{1}{z-a}$.

1.9.* Let U, z_0 and r be as in 1.3. and $f \in H(U)$. Suppose that z_0, z_1, \ldots, z_n are distinct points in $D(z_0; r)$. Consider the polynomial $g(z) \stackrel{\text{def}}{=} (z - z_0)(z - z_1) \ldots (z - z_n)$. Show that the function P defined as follows is a polynomial of degree n and $P(z_j) = f(z_j)$, for all $j = 0, 1, \ldots, n$:

$$P(z) = \frac{1}{2\pi i} \int_{C(z_0;r)} \frac{f(w)}{g(w)} \cdot \frac{g(w) - g(z)}{w - z} \, dw.$$

Deduce Lagrange's interpolation formula from this.

1.10.* (a) Let $\mathbb{H} \subseteq U \subseteq_{open} \mathbb{C}$ and $f \in H(U)$. Assume that there exist M, a > 0 such that $|f(z)| \leq \frac{M}{|z|^a}$ for all $z \in \mathbb{H}$. Prove the following version of Cauchy's integral formula:

$$f(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(x)}{x - z} dx. \tag{1.1}$$

- (b) Can the formula mentioned in (1.1) be proved when $f : \{z \in \mathbb{C} : \text{Im } z \ge 0\} \longrightarrow \mathbb{C}$ is continuous and $f \in H(\mathbb{H})$?
- 1.11. Show that the function $\frac{z}{(z-1)(z-2)(z-3)}$, defined on $\{z \in \mathbb{C} : |z| > 4\}$ has a primitive.

Hint. Observe that, for any closed path γ in its domain, all of 1, 2 and 3 lie on the same component of $\mathbb{C} \setminus \gamma^*$. Now calculate the sum of the residues at those points.

2. Continuity of zeros of a polynomial

Let $f(z) \stackrel{\text{def}}{=} a_0 + a_1 z + \dots + a_n z^n$ be a polynomial with complex coefficients of degree n, and z_1, \dots, z_p are the distinct roots of f with multiplicities m_1, \dots, m_p respectively. For each $\Xi = (\xi_0, \xi_1, \dots, \xi_n) \in \mathbb{C}^{n+1}$, we consider the following polynomial

$$f_{\Xi}(z) = (a_0 + \xi_0) + (a_1 + \xi_1)z + \dots + (a_n + \xi_n)z^n.$$
(2.1)

For each k = 1, ..., p, choose r_k such that $0 < r_k < \min_{\ell \neq k} |z_k - z_\ell|$.

2.1.* (a) Show that, for each k = 1, ..., p and $z \in \partial D(z_k, r_k)$,

$$|f(z)| = |a_n| \prod_{\ell=1}^p |z - z_\ell|^{m_\ell} \ge |a_n| r_k^{m_k} \prod_{\ell \neq k} (|z_\ell - z_k| - r_k)^{m_\ell}.$$

(b) For each k = 1, ..., p, let $\delta_k \stackrel{\text{def}}{=} |a_n| r_k^{m_k} \prod_{\ell \neq k} (|z_\ell - z_k| - r_k)^{m_\ell}$ and $M_k \stackrel{\text{def}}{=} \sum_{i=0}^n (|z_k| + r_k)^i$. Choose

$$0<\varepsilon<\min_{k=1,\ldots,p}\frac{\delta_k}{M_k}.$$

Show that, if all $|\xi_j| < \varepsilon$ then, for all $z \in D(z_k; r_k)$,

$$|f_{\Xi}(z) - f(z)| \le \sum_{j=0}^{n} \xi_{j}(|z_{k}| + r_{k})^{j} < \varepsilon M_{k} < \delta_{k} \le |f(z)|.$$

(c) Conclude from Rouché's theorem that, whenever $\max_{0 \le j \le n} |\xi_j| < \varepsilon$, f_{Ξ} has precisely m_k zeros in $B(z_k; r_k)$, for all k = 1, ..., p.

2.2.* Suppose that α is a simple root of f. Then show that there exists an open $U \subseteq \mathbb{C}^{n+1}$ containing (a_0, a_1, \ldots, a_n) and a unique continuous function $r: U \longrightarrow \mathbb{C}$ such that $r(b_0, b_1, \ldots, b_n)$ is a root of f, for all $(b_0, b_1, \ldots, b_n) \in U$, and $r(a_0, a_1, \ldots, a_n) = \alpha$.

2.3.* Let f be as above. Refine the choices of r_k 's so that $\overline{D(z_k; r_k)}$'s are pairwise disjoint. Cosnider $\varepsilon \stackrel{\text{def}}{=} \min\{|f(z)| : |z - z_k| = r_k, k = 1, \dots, n\}$. Show that, whenever $|w| < \varepsilon$, the equation f(z) = w has exactly m_k solutions in $D(z_k; r_k)$, for all $k = 1, \dots, n$.

Note: This shows that the solutions of the equation f(z) = w varies continuously with w.

3. Evaluation of integrals

3.1. Let P(x), $Q(x) \in \mathbb{R}[x]$, $\gcd(P(x), Q(x)) = 1$ and $\deg Q(x) \ge \deg P(x) + 2$. Assume that Q(x) does not have a real root and the complex roots of Q(x) that lie in the upper half plane are z_1, \ldots, z_n . Then show that

$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} dx = 2\pi i \sum_{j=1}^{n} \operatorname{Res}\left(\frac{P}{Q}, z_{j}\right).$$

3.2. Evaluate the following integrals:

(a)
$$\frac{1}{2\pi i} \int_{C(0;1)} \frac{(z+2)^2}{z^2(2z-1)} dz$$
.

(b)
$$\int_{C(0;r)} \frac{z^2 + \exp(z)}{z^2(z-2)} dz, \text{ where } r \in (0,\infty) \setminus \{2\}.$$

(c)
$$\frac{1}{2\pi i} \int_{C(0;1)} \frac{dz}{\sin 4z}$$
.

(d)
$$\int_{C(0;(n+\frac{1}{2})\pi)}^{2\pi i} \frac{1}{z^3 \sin z} dz.$$

(e)
$$\int_{C(0;1)} \frac{\exp(z)}{z(2z+1)^2} \, dz$$

(f)
$$\int_{\gamma} \frac{\exp(z)}{z^2(1-z^2)} dz$$
, where γ is depicted as follows:

3.3. Evaluate
$$\int_0^{2\pi} \frac{d\theta}{r^2 - 2r\cos\theta + 1}$$
, where $r^2 \neq 1$.

Hint. The function
$$\frac{i}{(z-r)(rz-1)}$$
 might be useful.

3.4.* Let $n \in \mathbb{N}$. Evaluate $\int_0^{2\pi} \frac{1 - \cos n\theta}{1 - \cos \theta} d\theta.$

Hint. Consider the following contour:

Observe that
$$\int_{0}^{2\pi} \frac{1 - \cos n\theta}{1 - \cos \theta} d\theta = \lim_{\varepsilon \to 0+} \int_{\varepsilon}^{2\pi - \varepsilon} \frac{1 - \cos n\theta}{1 - \cos \theta} d\theta = \lim_{\varepsilon \to 0+} \int_{\varepsilon}^{2\pi - \varepsilon} \frac{1 - e^{in\theta}}{1 - \cos \theta} d\theta.$$
 The last equality holds because
$$\int_{\varepsilon}^{2\pi - \varepsilon} \frac{i \sin n\theta}{1 - \cos \theta} d\theta = 0 \text{ (why?)}.$$

- 3.5. Evaluate $\int_0^{2\pi} \frac{\sin n\theta}{\sin \theta} d\theta.$
- 3.6. For a > 1 and $n = 0, 1, 2, \ldots$, evaluate the integrals: $\int_0^{2\pi} \frac{\cos n\theta}{a \cos \theta} d\theta$, and $\int_0^{2\pi} \frac{\sin n\theta}{a \cos \theta} d\theta$. **Hint.** It might be easier to handle $\int_0^{2\pi} \frac{\cos n\theta}{a \cos \theta} d\theta + i \int_0^{2\pi} \frac{\sin n\theta}{a \cos \theta} d\theta = \int_0^{2\pi} \frac{e^{in\theta}}{a \cos \theta} d\theta$.
- 3.7. Evaluate $\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx$. **Hint.** Observe that $\frac{1 \exp(2iz)}{z^2}$ has a simple pole at 0.
- 3.8. Evaluate $\int_{-\infty}^{\infty} \frac{x \sin x}{(1+x^2)^2} dx.$ **Hint.** Consider $\frac{z \exp(z)}{(1+z^2)^2}.$
- 3.9. Let a > 0. Evaluate $\int_0^\infty \frac{\sin x}{x(x^2 + a^2)} dx$. **Hint.** Observe that $\frac{\exp(iz) 1}{z(z^2 + a^2)}$ has a removable singularity at 0 and a simple pole at ia.

3.10. Evaluate $\int_{0}^{\infty} \frac{x^2 + 1}{x^4 + 1} dx$.

3.11. Evaluate
$$\int_0^\infty \frac{\sqrt{x}}{1+x^2} dx$$

Hint. Does any obvious substitution transform this integral to a familiar one?

4. Miscellaneous exercises

4.1. Find all
$$z \in \mathbb{C}$$
 such that the series $\sum_{n=1}^{\infty} \left(\frac{z^n}{n!} + \frac{n^2}{z^n} \right)$ converges.

- 4.2. Let $\alpha \in (0, \frac{\pi}{2})$ and S_{α} denote the minor sector of the unit circle made of the arc with end points $e^{-i\alpha}$ and $e^{i\alpha}$ along with two radii. Show that the function $\exp(-\frac{1}{z})$ is uniformly continuous on $S_{\alpha} \setminus \{0\}$.
- 4.3. Let k be a positive integer > 1. Find all entire functions f satisfying $f(z^k) = (f(z))^k$, for all $z \in \mathbb{C}$.
- 4.4. Let $U \subseteq_{open} \mathbb{C}$ and $f \in H(U)$ whose derivative vanishes nowhere. Show that the following is an open subset of \mathbb{R} :

$$\{\operatorname{Re} f(z) + \operatorname{Im} f(z) : z \in U\}.$$

4.5.* Let f be an entire function such that $f(\mathbb{C}) \cap L = \emptyset$, for some line L in \mathbb{C} . Show that f is constant.

Hint. Without loss in generality, we may assume that L is the imaginary axis. Then either Re f > 0 or < 0. Use Exercise 2.3.(a) of Exercise Sheet 6.

- 4.6. Let $f, g \in H(\mathbb{D})$ and $\sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=0}^{\infty} b_n z^n$ are their power series representations on \mathbb{D} .
 - (a) Let $r \in (0, 1)$. Show that, for all $z \in D(0; r)$,

$$\frac{1}{2\pi i} \int_{C(0;r)} \frac{f(w)}{w} \cdot g\left(\frac{z}{w}\right) dw = \sum_{n=0}^{\infty} a_n b_n z^n. \tag{4.1}$$

- (b) Show from (4.1) that the integral $\frac{1}{2\pi i} \int_{C(0;r)} \frac{f(w)}{w} \cdot g\left(\frac{z}{w}\right) dw$ is independent of r as long as $z \in D(0;r)$, and thus it defines a holomorphic function on \mathbb{D} .
- (c) Denote the holomorphic function obtained in 4.6.b by h. Prove or disprove the following: if neither f nor g is identically zero then so is h.
- 4.7. Show that the following map is onto but not one-one:

$$\mathbb{C}^3 \longrightarrow \mathbb{C}^3$$
, $(u, v, w) \mapsto (u + v + w, uv + vw + uw, uvw)$.

- 4.8. Let *a* and *b* be positive numbers.
 - (a) Show that, if a nowhere vanishing entire function f satisfies $|f(z)| \le e^{a|\log|z|+b}$, for all $z \in \mathbb{C} \setminus \{0\}$, then it must be constant.

Hint. For any positive integer n > a, observe that $\frac{f(z)}{z^n}$ approaches to 0 when $|z| \to \infty$. From this it follows that, at f ha either a removable singularity or a pole at ∞ . In the former one

obtains that f is constant, while in the latter f becomes a polynomial. Now from Fundamental theorem of algebra yields that f is consant.

(b) Show that any harmonic function u on the complex plane satisfying $u(z) \le a|\log|z|| + b$, for all $z \in \mathbb{C} \setminus \{0\}$, must be constant.