Quel est le nombre minimal de multiplications pour calculer xⁿ dans chaque cas suivant :

n	15	16	23	33	53
min(n)	5	4	6	6	8

Explications (Inspiré de Donald Knuth The Art of Computer Programming)

Il y a deux méthodes classiques (on suppose qu'on peut garder en mémoire les résultats intermédiaires obtenus et donc les réutiliser sans les recalculer).

La méthode binaire :

Ecrivez n en base 2, puis remplacez dans l'écriture trouvée chaque 1 par SX, chaque 0 par S. Supprimez le SX qui apparaît à gauche.

Interprétez l'écriture obtenue comme le moyen de calculer x ⁿ : S désigne la mise au carré et X la multiplication par x.

Par exemple 15 = 1111 en binaire donne SXSXSXSX ce qui s'interprète (à condition de commencer par la droite) comme :

$$x^{15} = X(S(X(S(X(S(x))))))$$
 soit $x * (x * (x * x^2)^2)^2$

Donc pour 15, la méthode binaire nécessite 6 multiplications b(15) = 6.

Remarque : avec cette méthode, on n'a besoin de mettre en mémoire que x et le résultat courant.

La méthode de factorisation

Elle consiste à utiliser une factorisation de n : n = p q où p est le plus petit facteur premier de n et q > 1. On calcule d'abord x p qu'on élève ensuite à la puissance q.

Par exemple, pour x 15 on calcule x 3 en deux multiplications, puis on élève x 3 à la puissance 5 en trois multiplications, y 5 = y * (y 2) 2

Donc, par la méthode de factorisation, on calcule x^{15} en 5 multiplications : f(15) = 5.

Les exemples proposés

- Pour 16 la méthode binaire est la meilleure : $(((x^2)^2)^2)^2$
- Pour 15, la méthode binaire nécessite 6 multiplications b(15) = 6, alors que par la méthode de factorisation, on calcule x^{15} en 5 multiplications.
- 23 est le plus petit exemple où la meilleure méthode n'est ni la méthode binaire, ni la méthode par factorisation : b(23) = 7, f(23) = 1 + b(22) = 7 tandis qu'on peut calculer x ²³ en 6 multiplications : on calcule x ³ en deux multiplications : x ² * x puis x ⁵ en une multiplication supplémentaire x ³ * x² et x ¹⁰ comme carré de x ⁵ et enfin x ²³ = (x ¹⁰ * x ³) * x ¹⁰
- Pour 33 la méthode binaire est la meilleure b(33) = 6, f(33) = 7
- Pour 55 la méthode par factorisation est la meilleure b(55) = 9, f(55) = 8