Hints and Answers of Tutorial Sheet-1, MATHEMATICS-II Spring 2017

- 1. (i) Not a vector space. Scalar multiplication is not distributive over vector addition.
 - (ii) Not a vector space. Vector addition is not associative.
 - (iii) Vector space. Verify all the properties.
 - (iv) Not a vector space. Closure property does not hold for addition.
 - (v) Vector space. If p_1, p_2 are periods of the functions $f_1, f_2 \in V$, then $lcm(p_1, p_2)$ is the period of $f_1 + f_2$. Verify all the properties.
- 2. (i),(ii),(iii) Subspace. Verify $\alpha v_1 + \beta v_2 \in S$, for scalars α, β and vectors $v_1, v_2 \in S$.
 - (iv),(v) Not a subspace. Closure property does not hold for addition.
 - (vi) W is a subspace of \mathbb{R}^3 but not a subspace of \mathbb{C}^3 . In \mathbb{R}^3 , $W = \{(a, b, c) \in \mathbb{R}^3 : a = b\}$ is a subspace. But in \mathbb{C}^3 , $W = \{(a, b, c) \in \mathbb{C}^3 : a = b, a = \omega b, a = \omega^2 b, \omega^3 = 1\}$, then the closure property does not hold for addition.
- 3. If S is a subspace then $0(x) \in S$, where $0(x) = 0, \forall x \in [0, 1]$. This implies b = 0. Conversely prove that $S = \{f \in C[0, 1] : \int_0^1 f(x) dx = 0\}$ is a subspace of C[0, 1].
- 4. Let $g(x) = \alpha f_1(x) + \beta f_2(x)$ for $\alpha, \beta \in \mathbb{R}$ and $f_1, f_2 \in S$. Try to show that g'(-1) = 3g(2) i.e. $g(x) \in S$.
- 5. (a) E = 2A B + 2C. Let $E = \alpha A + \beta B + \gamma C$ and solve for α, β, γ .
 - (b) $p = \frac{1}{2}(p_1 p_2 + p_3)$. Let $p = \alpha p_1 + \beta p_2 + \gamma p_3$ and solve for α, β, γ .
 - (c) (i),(ii),(iv). Let $(4,2,6) = \alpha u + \beta v$ and solve for α,β . Do similar for (ii), (iii) and (iv).
- 6. Try to show that u_3 is a linear combination of u_1, u_2 , i.e. $u_3 = \alpha u_1 + \beta u_2$ for some scalars α, β .
- 7. (a) If spanW = V there exist α, β, γ such that $\alpha(v_1 v_2) + \beta(v_2 v_3) + \gamma(v_3 v_4) + \delta v_4 = av_1 + bv_2 + cv_3 + dv_4$, for some fixed $a, b, c \in F$, then try to find α, β, γ in terms of a, b, c.
 - (b) Similar to part (a).

- 8. (a) Linear independent. Consider the relation $c_1(4, -4, 8, 0) + c_2(2, 2, 4, 0) + c_3(6, 0, 0, 2) + c_4(6, 3, -3, 0) = 0$. Try to solve for $c_1 = c_2 = c_3 = c_4 = 0$
 - (b) Linearly dependent. Consider the relation $c_1.2 + c_2.(4\sin^2 x) + c_3.(\cos^2 x) = 0$. Differentiating it successively twice try to solve for non zero c_1, c_2, c_3 .
 - (c) Linearly dependent. Consider the relation $c_1(t^3 5t^2 2t + 3) + c_2(t^3 4t^2 3t + 4) + c_3(2t^3 7t^2 7t + 9) = 0$. Try to solve for non zero c_1, c_2, c_3 .
 - (d) f_1 , f_2 are linear dependent in [a,b] if $f_1(t) = \alpha f_2(t) \ \forall t \in [a,b]$. In [-1,0], $f_1(t) = -f_2(t) \ \forall t \in [-1,0]$. In [0.1], $f_1(t) = f_2(t) \ \forall t \in [0,1]$. But in [-1,1] there does not exist such unique α .
 - (e) $\{1+i, 1-i\}$ is independent in \mathbb{R}^2 , but dependent \mathbb{C} . Since 1(1+i)-i(1-i)=0.
 - (f) Linearly independent. Since for x=2 we can get $c_j\neq 0$ for $j=0,1,\ldots,m$ such that $\sum_{j=0}^m c_j p_j(2)=0$. As $p_j(2)=0$, for $j=0,1,\ldots,m$