Curve Tracing

Let

$$f[\mathbf{x}] := (x^2 - 1) * \operatorname{Tan}[x]$$

be a function defined on $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$. We want to find its roots, extreme values i.e. minima, maxima, and saddle points, inflection points, and if applicable, singularities and limits.

Plot

The plot for the function f is the following.

Plot
$$\left[\left(x^2-1\right)*\mathrm{Tan}[x],\left\{x,-\frac{\pi}{2},\frac{\pi}{2}\right\},\mathrm{ImageSize}\to1000,\mathrm{AxesLabel}\to\{x,y\}\right]$$

Roots

Mathematica will find the roots for us numerically.

$$\mathrm{FindRoot}[f[x],\{x,-1\}]$$

$$\{x \to -1.\}$$

 ${\bf FindRoot}[f[x],\{x,0\}]$

$$\{x \to 0.\}$$

${\bf FindRoot}[f[x],\{x,1\}]$

$$\{x \to 1.\}$$

Therefore, the function f has three roots (intersections with the x axis). These are (-1, 0); (0, 0); and (1, 0).

Simplify[f[x] = 0]

0

Setting the function f to zero, we get the intersection with the y axis which is at (0, 0).

Extreme Values

In this section, we want to find all maxima, minima and saddle points of the function f.

Derivatives

Before we consider the extreme values for the function f, we want to find its derivatives. We have

$$\left(-1+x^2\right)\operatorname{Sec}[x]^2+2x\operatorname{Tan}[x]$$

 $\operatorname{Plot}\left[f'[x],\left\{x,\tfrac{-\pi}{2},\tfrac{\pi}{2}\right\},\operatorname{PlotStyle}\to\operatorname{Orange},\operatorname{ImageSize}\to 1000\operatorname{AxesLabel}\to \{x,y\}\right]$

f"[x]

 $4x\mathrm{Sec}[x]^2+2\mathrm{Tan}[x]+2\left(-1+x^2\right)\mathrm{Sec}[x]^2\mathrm{Tan}[x]$

 $\mathrm{Plot}\left[f"[x],\left\{x,\tfrac{-\pi}{2},\tfrac{\pi}{2}\right\},\mathrm{ImageSize}\to1000,\mathrm{PlotStyle}\to\mathrm{Green}\right]$

Putting the original function and its two derivatives in a plot, we get

 $\operatorname{Plot}\left[\left\{\left(x^{2}-1\right)\operatorname{Tan}[x],f'[x],f''[x]\right\},\left\{x,\tfrac{-\pi}{2},\tfrac{\pi}{2}\right\},\operatorname{ImageSize} \rightarrow 1000,\operatorname{PlotStyle} \rightarrow \left\{\operatorname{Dashed},\operatorname{Orange},\operatorname{Green}\right\},\operatorname{Plot}\left(\left\{\left(x^{2}-1\right)\operatorname{Tan}[x],f'[x],f''[x]\right\}\right)\right]$

Extreme Values

For the extreme values we have

FindMinimum $[(x^2-1) \operatorname{Tan}[x], \{x, 0.5\}]$

 $\{-0.439732, \{x \to 0.631264\}\}$

Find Maximum $\left[\left(x^2-1\right) \mathrm{Tan}[x], \{x,-0.5\}\right]$

 $\{0.439732, \{x \to -0.631264\}\}\$

To find saddle points we have

 $FindRoot[f'[x], \{x, -1\}]$

 $\{x \to -0.631264\}$

 $FindRoot[f'[x], \{x, 1\}]$

 $\{x \to 0.631264\}$

These extreme values are already a minimum or a maximum; therefore, the function f does not have any saddle points.

Inflection Points

To find inflection points, we compute

 $FindRoot[f"[x], \{x, 0\}]$

 $\{x \to 0.\}$

f"[0]

0

Therefore, the function f does not have any inflection points.

Singularity

The function f does not have a singularity in $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ since $\tan(x) = \frac{\sin(x)}{\cos(x)}$, but $\cos(x)$ is never 0 for the given domain. In other words, the function f is defined everywhere on the given domain.

Limits

Since we do not have any singularity and the domain is a closed set, there is no limit to sensibly evaluate.