USAF ACADEMY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 281 GRADED REVIEW #3 Spring 2016 - Ver A

Name:	Section:
Academic Security	This examination is not released from academic security until 1630 on 13 May
	2016 . Until this time, you may not discuss the examination contents or the
	course material with anyone other than your instructor.
Integrity	Your honor is extremely important. This academic security policy is designed to
	help you succeed in meeting academic requirements while practicing the
	honorable behavior our country rightfully demands of its military. Do not
	compromise your integrity by violating academic security or by taking unfair
	advantage of your classmates.
Authorized Resources	Calculator
	 MIPS documentation
Instructions	Show all work for full credit
	Box or circle your final answer.
	For all numerical answers, use engineering notation and include units.
	 Completely label all your diagrams, drawings, graphs, etc. for full credit.
	You have 53 minutes to complete this exam.

Problem	Value	Earned
1	38	
2	16	
3	16	
4	30	
Total	100	

This page intentionally left blank.

Spring 2016 Page 2 of 9

ECE 281 - GR #3

Pro	oblem 1	(38 points	General Knowle	edge
a.	(3 poin	nts) Name or	ne difference between a branch and	d a jump instruction in MIPS.
b.	(2 poin	nts each) Ind	icate if the following statements ar	e true or false.
	Т	F	Microarchitecture is the specific a other building blocks to form a mi	rrangement of registers, memories, ALUs and icroprocessor.
	Т	F	A computer architecture defines t	the underlying hardware implementation.
	Т	F	An exception can be caused by eit	ther hardware or software.
	Т	F	MIPS is an example of a CISC archi	itecture.
c.	(2 poin	nts) Which ty	pe of memory does MIPS use? Circ	cle the correct answer.
	<u>By</u>	te-addressal	<u>M</u>	Vord-addressable
d.	(8 poi	nts) Match t	he following descriptions with the a	associated memory segment.
	1	. Location o	f the stack	A. Reserved
	2	. Location o	f machine language program	B. Dynamic data
	3	. Cannot be	used directly by the program	C. Global data
	4	. Contains v	ariables that can be seen by all fund	ctions D. Text
e.	(3 poin	nts) What is t	he purpose of the linker in creating	g an executable file?

Spring 2016 Page 3 of 9

f.	Your friend Tom stored the number 0x12345678 in memory in a computer (shown below).	Indicate
	the correct answer to the following question:	

(2 points) Is this memory

big-endian

or

little-endian?

(2 points) Explain why your answer is correct.

Address	Data
0x00400000	0x12
0x00400001	0x34
0x00400002	0x56
0x00400003	0x78

g. (4 points) One of the design principles articulated by the class text says that "Simplicity favors regularity". Give **one** example of how this principle appears in MIPS. Be specific and explain how this example exemplifies the design principle.

h. (6 points) Suppose the single-cycle MIPS processor suffered a fault on RegDst control line, resulting in that line always having a value of 1. Circle <u>all</u> of the following MIPS instructions that would no longer work properly.

i. add

ii. lw

iii. sw

iv. bne

v.ori

vi. j

Spring 2016 Page 4 of 9

ECE 281 - GR #3

Problem 2	(16 points)	MIPS machine code

a. (8 points) Convert the following MIPS assembly instruction to machine code. Write your answer in hexadecimal.

addi \$t0, \$0, -10

b. (8 points) Convert the following machine code to its corresponding MIPS assembly instruction:

0x0089502A

Spring 2016 Page 5 of 9

Problem 3 (16 points)

MIPS Assembly

No pseudoinstructions are allowed to be used in answers to the next two questions.

a. (12 points) Write a MIPS assembly program to implement the below if loop. Be sure to use appropriate comments. For full points, implement the solution using the slt command and ensure your program does not "fall off the end" of memory.

b. (4 points) MIPS does not contain a nori command. Write some MIPS assembly code that will enable the following logical operation to occur (full points only for the fewest possible lines):
 \$s0 = \$s1 NOR 0xDFEC

Spring 2016 Page 6 of 9

Problem 4 (30 points)

MIPS Microarchitecture

Modify the MIPS single-cycle processor by adding the lui (load upper immediate) instruction. You will need to add hardware and a new control signal. Hint: fully correct solutions will adhere to the following operation for lui: [rt] = [rs] + [imm, 16'b0].

a. (10 points) **Hardware**: Modify the schematic on the next page. Clearly and neatly indicate where you are breaking the current schematic to insert your added functionality, and clearly indicate what goes on inside the component(s) you insert. <u>Briefly describe below the specific changes you are making to the schematic.</u>

b. (20 points) **Control Table:** Fill in the missing elements of the main decoder table below. Don't forget to account for the new control signal too.

Instr	Op _{5:0}	RegWrite	RegDst	AluSrc	Branch	MemWrite	MemtoReg	ALUOp _{1:0}	Jump	
R-type	000000	1		0	0	0	0	10	0	
lw	100011	1	0		0		1	00	0	
sw	101011	0	Х		0	1	Х	00	0	
addi	001000			1	0	0	0	00	0	
j	000010	0	Х	Х	Х	0	Х	XX	1	
lui	001111									

ALU Decoder:

ALUOp _{1:0}	Meaning
00	Add
01	Subtract
10	Look at funct
11	Not Used

Spring 2016 Page 7 of 9

This page intentionally left blank.

Spring 2016 Page 8 of 9

Spring 2016 Page 9 of 9