On the usage of the geepack

Søren Højsgaard and Ulrich Halekoh

geepack version 1.2-0 as of 2014-09-13

1 Introduction

The primary reference for the geepack package is the Halekoh, U., Højsgaard, S., Yan, J. (2006) – paper in Journal of Statistical Software, see

```
> library(geepack)
> citation("geepack")

To cite geepack in publications use:

Højsgaard, S., Halekoh, U. & Yan J. (2006) The R Package geepack for Generalized Estimating Equations Journal of Statistical Software, 15, 2, pp1--11

Yan, J. & Fine, J.P. (2004) Estimating Equations for Association Structures Statistics in Medicine, 23, pp859--880.

Yan, J (2002) geepack: Yet Another Package for Generalized Estimating Equations R-News, 2/3, pp12-14.
```

If you use geepack in your own work, please do cite the above reference.

This note contains a few extra examples. We illustrate the usage of a the waves argument and the zcor argument together with a fixed working correlation matrix for the geeglm() function. To illustrate these features we simulate some data suitable for a regression model.

```
> library(geepack)
> timeorder <- rep(1:5, 6)
> tvar <- timeorder + rnorm(length(timeorder))
> idvar <- rep(1:6, each=5)
> uuu <- rep(rnorm(6), each=5)
> yvar <- 1 + 2*tvar + uuu + rnorm(length(tvar))
> simdat <- data.frame(idvar, timeorder, tvar, yvar)
> head(simdat,12)
  idvar timeorder
           1 2.78691314 5.422171
                2 2.49785048 4.829722
                3 1.03338284 3.312259
               4 4.70135590 9.053832
               5 4.52720859 10.447779
               1 -0.06782371 -1.087285
                2 1.78202509 4.745779
                3 1.97399555 4.668961
                4 3.27110877 7.355274
                5 4.37496073 9.726676
10
      3
                1 -0.68669331 -1.342365
                2 2.83778704 5.875711
```

Notice that clusters of data appear together in simdat and that observations are ordered (according to timeorder) within clusters.

We can fit a model with an AR(1) error structure as

```
> mod1 <- geeglm(yvar~tvar, id=idvar, data=simdat, corstr="ar1")
> mod1
Call:
geeglm(formula = yvar ~ tvar, data = simdat, id = idvar, corstr = "ar1")
Coefficients:
(Intercept)
                  tvar
  0.4399188 2.1106751
Degrees of Freedom: 30 Total (i.e. Null); 28 Residual
Scale Link:
                              identity
Estimated Scale Parameters: [1] 1.136851
Correlation: Structure = ar1
                               Link = identity
Estimated Correlation Parameters:
    alpha
0.5346614
                     6 Maximum cluster size: 5
```

This works because observations are ordered according to time within each subject in the dataset.

2 Using the waves argument

If observatios were not ordered according to cluster and time within cluster we would get the wrong result:

```
> set.seed(123)
> ## library(doBy)
> simdatPerm <- simdat[sample(nrow(simdat)),]</pre>
> ## simdatPerm <- orderBy("idvar, simdatPerm)
> simdatPerm <- simdatPerm[order(simdatPerm$idvar),]
> head(simdatPerm)
  idvar timeorder
                         tvar
                                     vvar
              2 2.497850 4.829722
                  4 4.701356 9.053832
                 1 2.786913 5.422171
                  3 1.033383 3.312259
3
5
                  5 4.527209 10.447779
                  4 3.271109 7.355274
```

Notice that in simdatPerm data is ordered according to subject but the time ordering within subject is random.

Fitting the model as before gives

```
> mod2 <- geeglm(yvar~tvar, id=idvar, data=simdatPerm, corstr="ar1")</pre>
> mod2
Call:
Coefficients:
(Intercept)
               tvar
 0.1969892 2.2155856
Degrees of Freedom: 30 Total (i.e. Null); 28 Residual
Scale Link:
                         identity
Estimated Scale Parameters: [1] 1.123093
Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
 alpha
0.51013
Number of clusters: 6 Maximum cluster size: 5
```

Likewise if clusters do not appear contigously in data we also get the wrong result (the clusters are not recognized):

```
> ## simdatPerm2 <- orderBy(~timeorder, data=simdat)
> simdatPerm2 <- simdat[order(simdat$timeorder),]</pre>
> geeglm(yvar~tvar, id=idvar, data=simdatPerm2, corstr="ar1")
geeglm(formula = yvar ~ tvar, data = simdatPerm2, id = idvar,
    corstr = "ar1")
Coefficients:
(Intercept)
                   tvar
  0.2589139 2.1828479
Degrees of Freedom: 30 Total (i.e. Null); 28 Residual
Scale Link:
                              identity
Estimated Scale Parameters: [1] 1.118158
Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
{\tt alpha}
Number of clusters: 30 Maximum cluster size: 1
```

To obtain the right result we must give the waves argument:

```
> wav <- simdatPerm$timeorder
> wav
[1] 2 4 1 3 5 4 5 2 1 3 2 3 4 5 1 5 4 2 1 3 3 4 5 1 2 2 5 4 1 3
> mod3 <- geeglm(yvar~tvar, id=idvar, data=simdatPerm, corstr="ar1", waves=wav)
> mod3
geeglm(formula = yvar ~ tvar, data = simdatPerm, id = idvar,
   waves = wav, corstr = "ar1")
Coefficients:
(Intercept)
                  tvar
 0.4399188 2.1106751
Degrees of Freedom: 30 Total (i.e. Null); 28 Residual
Scale Link:
                             identity
Estimated Scale Parameters: [1] 1.136851
Correlation: Structure = ar1
                              Link = identity
Estimated Correlation Parameters:
   alpha
0.5346614
Number of clusters: 6 Maximum cluster size: 5
```

3 Using a fixed correlation matrix and the zcor argument

Suppose we want to use a fixed working correlation matrix:

```
> cor.fixed <- matrix(c(1 , 0.5 , 0.25, 0.125, 0.125, 0.125, + 0.5 , 1 , 0.25 , 0.125, 0.125, + 0.25 , 0.25 , 1 , 0.5 , 0.125, + 0.125, 0.125, 0.5 , 1 , 0.125, + 0.125, 0.125, 0.125, 0.5 , 1 , 0.125, + 0.125, 0.125, 0.125, 0.125, 0.125, 1 ), 5, 5)

> cor.fixed

[,1] [,2] [,3] [,4] [,5]
[1,] 1.000 0.500 0.250 0.125 0.125
[2,] 0.500 1.000 0.250 0.125 0.125
[3,] 0.250 0.250 1.000 0.500 0.125
[4,] 0.125 0.125 0.500 1.000 0.125
[5,] 0.125 0.125 0.125 1.000
```

Such a working correlation matrix has to be passed to geeglm() as a vector in the zcor argument. This vector can be created using the fixed2Zcor() function:

```
> zcor <- fixed2Zcor(cor.fixed, id=simdatPerm$idvar, waves=simdatPerm$timeorder)
> zcor

[1] 0.125 0.500 0.250 0.125 0.125 0.500 0.125 0.250 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 [16] 0.125 0.125 0.500 0.250 0.250 0.250 0.125 0.125 0.500 0.500 0.125 0.250 0.125 0.125 0.125 [31] 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
```

Notice that zcor contains correlations between measurements within the same cluster. Hence if a cluster contains only one observation, then there will be generated no entry in zcor for that cluster. Now we can fit the model with: