Group Number:

NAMES (FIRST AND LAST NAME): Harrison Goes
Mulia Widjaja
Jeneth Jin

In-Class Assignment 2

ELEN 21/COEN 21 - Fall 2022

Instructor: Maria Kyrarini

Date: 10/18/2022

Time: 1 hour and 30 minutes Number of Problems: 4

Important Notes:

- Be sure to read all the problems carefully and answer all questions.
- Be sure to answer all parts of each question.
- Submit only one answer for each question.
- Multiple solutions for one question will not be graded.
- Clearly SHOW and EXPLAIN all the steps of your work.
- Answers without detailed explanations will NOT be graded (excluding Problem 1).
- The Engineering School Honor Code applies.

(20
2	39
3	17
4	12
Total	88

denother fin

Boolean Algebra Properties

$$5a. \quad x \cdot 0 = 0$$

$$5b. \quad x + 1 = 1$$

$$6a. \quad x \cdot 1 = x$$

$$6b. \quad x + 0 = x$$

$$7a. \quad x \cdot x = x$$

$$7b. \quad x + x = x$$

$$8a. \quad x \cdot \overline{x} = 0$$

$$8b. \quad x + \overline{x} = 1$$

$$9. \quad \overline{x} = x$$

$$10a. \quad x \cdot y = y \cdot x$$

$$11b. \quad x + (y + z) = (x \cdot y) \cdot z$$

$$12a. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$12b. \quad x + y \cdot z = (x + y) \cdot (x + z)$$

$$13a. \quad x + x \cdot y = x$$

$$1b. \quad x + x \cdot y = x$$

$$1b. \quad x + (y + z) = (x + y) + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = (x + y) \cdot (x + z)$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1c. \quad x \cdot (y + z) = x \cdot y + x \cdot z$$

$$1$$

(tt)) (tt)) (d(tt))

(H+1) Q (+1) C (+1) Q (

Problem 1 (20 points)

True/False questions — Circle the correct answer (no explanation is needed).

 The decimal value of the following 2's complement number 10010011 is -115. 	True/False
ii. Latch is an edge-sensitive device, while Flip-flop is a level-sensitive device.	True/False
iii. An arithmetic logic unit (ALU) is a digital circuit used to perform only arithmetic operations.	True/False
iv. A D-flip flop and a NOT gate are only needed to implement a T-flip flop.	True/False
v. We wrote our full names and our group number on page 1.	True False

Problem 2 (40 points)

For the following sequential circuit, do the following:

- (a) Write the truth table. [10 points]
- (b) Redesign this circuit by replacing the T₁ Flip-Flop with negative edge D Flip-Flop, the T₀ Flip-Flop with negative edge JK Flip-Flop and a minimal AND-OR-NOT-XOR gate network. [20 points]
- (c) Draw the circuit you have redesigned. [10 points]

Reminder: $\overline{x \oplus y} = \overline{x} \cdot \overline{y} + x \cdot y$

relation, it of a section of

termina eligical de la social de la grada la composición de la grada la composición de la grada la composición

(65)

continuos Similators

the state of the s

- .

Problem 3 (20 points)

- a) Draw the timing diagram of the output Q of the following circuit. Consider that initially Q = 0. (15 pomts)
 - b) What circuit is this? (5 points)

Problem 4 (20 points)

The following two signed 2's complement numbers are given: $A = 1001\ 0111\ 0101$ and $B = 1100\ 1001\ 0110$.

- (a) Subtract number A from number B and show the result. DO NOT use decimal equivalents. [10 points]
- (b) Is the result correct? Explain your answer. [10 points]

reference of the

2 2

a z an tra r

1 1-5

Qo & you can reuse the XOR * XUR explanation E | Q, DQO |Q, DQO DE = To

d: 30000, 4/000, 0 3 00 00

Q change when (5=1 and check=0->1 0 = Q(t) (G) + G (Q(t))

10 = Q(t) (G) + G (Q(t))

10 T flip flop b) This is a 1 Ele Positive

In- Class Assignment #2

600 9 (10/18/2022)

(Da) Flip A: from: A = 1001 0/11 0/01 to: -A = 0/10 1000 10/0

6.) Tho leftmost carries are equal Meaning: They are accurate.

CII & CIZ = 1 & 1 = 0 -> no overflow -> the result is correct.

S) The courses of the course of the courses of the course of the courses of the course of the co

CIECTE = 1001 = 0 - 4 110 OVERFLOW - Educiesuff 13