Distribución	Not	ación	$p_X(x)$	Soporte	Parámetro	s	$\mathbf{E}[X]$	$\mathbf{var}(X)$	Œ
Bernoulli	Ве	r(p)	$p^x(1-p)^{1-x}$	{0, 1}	$p \in (0, 1)$		p	p(1 - p)	
Binomial	$\mathcal{B}($	n, p)	$\binom{n}{x}p^x(1-p)^{n-x}$	$[\![0,n]\!]$	$p \in (0,1), n \in$	$\in \mathbb{N}$	np	np(1-p)	B:
Geométrica	G	(p)	$(1-p)^{x-1}p$	N	$p \in (0, 1)$		1/p	$(1-p)/p^2$	
Pascal	Pas	(k, p)	$\binom{x-1}{k-1}(1-p)^{x-k}p^k$	\mathbb{Z}_k	$p \in (0,1), k \in$	E N	k/p	$k(1-p)/p^2$	ın/
Poisson	Po	i(μ)	$(\mu^{x}e^{-\mu})/x!$	\mathbb{Z}_0	$\mu > 0$		μ	μ	1P(1
Hipergeométri	ca $\mathcal{H}(N)$	(d, n)	$\frac{\binom{d}{x}\binom{N-d}{n-x}}{\binom{N}{n}}$	$[\![m,M]\!]^\dagger$	$d \le N, \ n \le N$	$\in \mathbb{N}$	$\frac{nd}{N}$	$\frac{nd(N-d)(N-n)}{N^2(N-1)}$	f _× ,
Distribución	Notació	n	$f_X(x)$	Soporte	Parámetros	Е	[X]	$\mathbf{var}(X)$	'×,
Uniforme	$\mathcal{U}[a,b]$		1/(b-a)	[a,b]	a < b	(a +	b)/2	$(b-a)^2/12$	F _×
Exponencial	$\mathcal{E}(\lambda)$		$\lambda e^{-\lambda x}$	$[0,+\infty)$	$\lambda > 0$	1	/λ	$1/\lambda^2$, ×
Gamma	$\Gamma(\nu, \lambda)$		$\frac{\lambda^{\nu}}{\Gamma(\nu)}x^{\nu-1}e^{-\lambda x}$	$[0,+\infty)$	$\nu > 0, \lambda > 0$	ν	//λ	ν/λ^2	
Normal	$\mathcal{N}(\mu, \sigma^2)$	2)	$\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	R	$\mu \in \mathbb{R}, \sigma^2 > 0$		μ	σ^2	۴.
Chi cuadrado	χ_k^2		$\frac{1}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})}x^{\frac{k}{2}-1}e^{-\frac{x}{2}}$	$[0,+\infty)$	$k \in \mathbb{N}$		k	2k	
t-Student	$t_{ u}$	-	$\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$	R	$\nu > 0$		0	$\frac{\nu}{\nu-2}*$	7
Weibull	Wei(c, a)	٠)	$\frac{c}{\alpha} \left(\frac{x}{\alpha} \right)^{c-1} e^{-\left(\frac{x}{\alpha} \right)^c}$	$[0, +\infty)$	$c > 0, \alpha > 0$	αΓ($1 + \frac{1}{6}$	$\alpha^2 \left[\Gamma(1+\frac{2}{c})\right]$	٦
Weibun	wei(e,	,	ā(ā) e (a)	[0,+\infty]	ε > 0,α > 0	ar (· + -/-	$-\Gamma^2(1+\tfrac{1}{c})\big]$	
Rayleigh	$Ray(\sigma$)	$\tfrac{x}{\sigma^2}e^{-x^2/(2\sigma^2)}$	$[0,+\infty)$	$\sigma > 0$	σν	$\sqrt{\pi/2}$	$\frac{4-\pi}{2}\sigma^2$	
Pareto	Par(m,	α)	$\frac{\alpha m^{\alpha}}{x^{\alpha+1}}$	$[m, +\infty)$	$m>0, \alpha>0$	$\frac{\alpha}{\alpha}$	<u>m</u> † −1	$\frac{m^2\alpha}{(\alpha-1)^2(\alpha-2)}$ ‡	
Beta	$\beta(a,b)$	ī	$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}$	(0,1)	a > 0, b > 0	a/(e	a+b)	$\frac{ab}{(a+b)^2(a+b+1)}$	
									1

 $x_0 \in \mathbb{R}, \gamma > 0$ no existe

no existe

 $Cau(x_0, \gamma)$

Cauchy

Fondicional:
$$|P(\Delta|B) = |P(\Delta \cap B)|$$

Boyes:
$$|P(A|B) = |P(B|A)|P(A)$$

, B indep
$$\rightarrow |P(A|B) = |P(A)|$$
; $|P(A \cap B) = |P(A)|P(B)$

Condicional: $|P(\Delta|B) = |P(\Delta \cap B)|$ $|P(\Delta)| = |P(\Delta \cap B)|$ $|P(\Delta)| = |P(\Delta \cap B)| = |$

$$|P(B) = \sum_{i=1}^{N} |P(B \cap A_i)| = \sum_{i=1}^{N} |P(B | A_i)|P(A_i)$$

Ser
$$y = \sum x_i$$
 sum a de
 $f_y(\delta) = f_{x_1} * f_{x_2} * ... f_{x_n}$
 $convolución$

$$|P(B)| = \sum_{\lambda=1}^{n} |P(B \cap A_{\lambda})| = \sum_{\lambda=1}^{n} |P(B \mid A_{\lambda})| P(A_{\lambda}) |P(A_{\lambda})| = \sum_{\lambda=1}^{n} |P(A_{\lambda})| P(A_{\lambda}) |P(A_{\lambda})| = \sum_{\lambda=1}^{n} |P(A_{\lambda})| P(A_{\lambda})| P(A_{\lambda}) |P(A_{\lambda})| = \sum_{\lambda=1}^{n} |P(A_{\lambda})| P(A_{\lambda})| P(A_{\lambda})| =$$

$$E[g(x)] = \int g(x) f_{x}(x) dx \quad E[3x+b] = 3E[x] + b$$

$$-\infty \quad \text{Medis} \rightarrow E[x]$$

$$F_{\times |A}(x) = |P(\times \times , A)|$$

$$= \frac{1}{|P(A)|} |P(X = X, A) = \sqrt{1} = \left[\left(x - \mu_X \right)^2 \right]$$

$$= \sqrt{1} |P(A)| |P(A)|$$

$$= \sqrt{1} |P(A)| |P(A)|$$

$$= \sqrt{1} |P(A)|$$

fraginal:
$$f_{\chi_1(\chi_2)} = \int f_{\chi_2(\chi_2)} d\chi_{2,3...}$$

formarginal:
$$f_{\chi}(x) = \int f_{\bar{x}}(x) dx_{2,3...}$$

November grunoco's

 $f_{\bar{y}}(\bar{x}) = f_{\bar{x}}(\bar{x}) dx_{2,3...}$
 $f_{\bar{y}}(\bar{x}) = f_{\bar{x}}(\bar{x}) dx_{2,3...}$

$$\int x = \begin{vmatrix} \frac{\partial x}{\partial x} & \frac{\partial x}{\partial x} \\ \frac{\partial x}{\partial x} & \frac{\partial x}{\partial x} \end{vmatrix}$$

Señal	1	Poc	
$\delta(t)$	1 C		
u(t)	$\frac{1}{s}$	$\{s\in\mathbb{C}:\operatorname{Re}\left\{ s\right\} >0\}$	
-u(-t)	$\frac{1}{s}$	$\{s\in\mathbb{C}:\operatorname{Re}\left\{ s\right\} <0\}$	
$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$\{s\in\mathbb{C}:\operatorname{Re}\left\{ s\right\} <0\}$	J
$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\{s \in \mathbb{C} : \operatorname{Re}\{s\} > -\operatorname{Re}\{\alpha\}\}\$	١,
$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\left\{ s\in\mathbb{C}:\operatorname{Re}\left\{ s\right\} <-\operatorname{Re}\left\{ \alpha\right\} \right\}$	
$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	$\{s \in \mathbb{C} : \operatorname{Re}\{s\} > -\operatorname{Re}\{\alpha\}\}\$	
$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$\{s \in \mathbb{C} : \operatorname{Re}\{s\} < -\operatorname{Re}\{\alpha\}\}$	
$\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{s^2+\omega_0^2}$	$\{s\in\mathbb{C}:\operatorname{Re}\left\{ s\right\} >0\}$	
$\cos(\omega_0 t)u(t)$	$\frac{s}{s^2+\omega_0^2}$	$\{s\in\mathbb{C}:\operatorname{Re}\left\{ s\right\} >0\}$	

Desplazamiento Laplace

$$x(t - t_0) \stackrel{\mathcal{L}}{\longleftrightarrow} e^{-st_0} X(s), \text{ ROC } \left\{ e^{-st_0} X(s) \right\} = \text{ROC } \left\{ X(s) \right\}$$

$$x(t) e^{s_0 t} \stackrel{\mathcal{L}}{\longleftrightarrow} X(s - s_0), \text{ ROC } \left\{ X(s - s_0) \right\} = \text{ROC } \left\{ X(s) \right\} + \text{Re } \left\{ s_0 \right\}$$

$$\mathcal{F} \left[\frac{dx(t)}{dt} \right] = j\omega X(j\omega) \qquad \mathcal{F} \left[\int_{-\infty}^t x(\tau) d\tau \right] = \frac{X(j\omega)}{j\omega}$$

$$\int_{-\infty}^t x(\tau) d\tau \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{X(s)}{s}, \text{ ROC } \left\{ \frac{X(s)}{s} \right\} \supseteq \text{ROC } \left\{ X(s) \right\} \cap \left\{ s \in \mathbb{C} : \text{Re } \left\{ s \right\} > 0 \right\}$$

$$\frac{dx(t)}{dt} \stackrel{\mathcal{L}}{\longleftrightarrow} sX(s), \text{ ROC } \left\{ sX(s) \right\} \supseteq \text{ROC } \left\{ X(s) \right\}$$

$\begin{array}{c} -\partial t^{K} \\ \\ (\Delta I_{S})\} \supseteq \mathrm{ROC}\left\{X(s)\right\} \\ \\ & \begin{array}{c} \mathrm{Nyquist} \quad \mathrm{fsmple} \ge 2 \, \mathrm{fm}. \\ \\ & \begin{array}{c} \mathrm{Serie} \ \mathrm{geométrica:} \\ \\ \sum_{n=0}^{\infty} \alpha^{n} = \frac{1}{1-\alpha}, \ \alpha \in \mathbb{C}, \ |\alpha| < 1 \\ \\ \mathrm{Suma} \ \mathrm{geométrica} \ \mathrm{geométrica} \ \mathrm{suma} \ \mathrm{geométrica} \ \mathrm{geometrica} \ \mathrm{geométrica} \ \mathrm{geometrica} \ \mathrm{geomet$

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}, \quad \alpha \in \mathbb{C}, \quad |\alpha| < 1$$

$$\sum_{n=N_1}^{N_2-1}\alpha^n=\frac{\alpha^{N_1}-\alpha^{N_2}}{1-\alpha}, \quad \alpha\in\mathbb{C},\ N_1,N_2\in\mathbb{N}$$

$$x(0+) = \lim_{s \to \infty} sX(s)$$

Si $\lim_{t\to\infty} x(t)$ existe:

$$\lim_{t\to\infty}x(t)=\lim_{s\to 0}sX(s)$$

Convolution
$$x(t)*y(t) = \int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau \qquad \qquad x[n]*y[n] = \sum_{k=-\infty}^{\infty} x[k]y[n-k]$$

Lineal:
$$\uparrow [\propto \times (t) + b \gamma(t)] = A \gamma [\kappa(t)] + b \gamma [\gamma(t)]$$
 Council $\Rightarrow h(t) = 0 \ \forall t < 0$
 $\uparrow i : \gamma [\times (t-to)] = S(t-to)$ Monovio $\Rightarrow h(t) = \kappa S(t)$ Catoble $\Rightarrow Po C \circ [|h(t)| < \infty$

Ec
$$d_1\ell$$
: $\sum_{k=0}^{N} a_k \frac{d^k y(k)}{d + k} = \sum_{k=0}^{M} b_k \frac{d^k x(k)}{d + k}$

$$\begin{cases}
\frac{1}{2} \left\{ \times (n-n_0) \right\} = e^{-J\omega t_0} \times (\infty)
\end{cases}$$

$$\begin{cases}
\frac{1}{2} \left\{ \times (t-t_0) \right\} = e^{-J\omega t_0} \times (\omega)$$

$$\sum_{p=0}^{N} y[n-p] \propto_{p} = \sum_{q=0}^{M} x[n-q] p_{q}$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt, \ \omega \in \mathbb{R} \qquad x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t}d\omega, \ t \in \mathbb{R}$$

$$X(e^{j\mathbf{S}}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}, \ \omega \in [-\pi,\pi) \qquad x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n}d\omega, \ n \in \mathbb{Z}$$
 Periódice an \mathbf{M}

helocios entre transformadas

Z

X(2) -> X(52) -> X[K]

Z=e^{JR}

R = 2<u>rrk</u>
N

$$H(z) = \frac{\sum_{i=0}^{N} \frac{1}{2^{i}} \alpha_{i}^{2}}{\sum_{i=0}^{N} \frac{1}{2^{i}} \alpha_{i}^{2}} = \frac{\beta_{0} + \beta_{1} \frac{1}{2^{i}} + ... + \beta_{N} \frac{1}{2^{N}}}{\alpha_{1} + \alpha_{2} \frac{1}{2^{i}} + ... + \alpha_{N} \frac{1}{2^{N}}}$$

$$\begin{array}{|c|c|c|c|}\hline \mathbf{Se\~nal} & \mathbf{Transformada} \ \mathbf{Z} & \mathbf{ROC} \\ \hline & \delta[n] & 1 & \mathbb{C} \\ \hline & u[n] & \frac{1}{1-z^{-1}} & \{z \in \mathbb{C} : |z| > 1\} \\ \hline & -u[-n-1] & \frac{1}{1-z^{-1}} & \{z \in \mathbb{C} : |z| < 1\} \\ \hline & \alpha^n u[n] & \frac{1}{1-\alpha z^{-1}} & \{z \in \mathbb{C} : |z| < |\alpha|\} \\ \hline & -\alpha^n u[-n-1] & \frac{1}{1-\alpha z^{-1}} & \{z \in \mathbb{C} : |z| < |\alpha|\} \\ \hline & n\alpha^n u[n] & \frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2} & \{z \in \mathbb{C} : |z| > |\alpha|\} \\ \hline & -n\alpha^n u[-n-1] & \frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2} & \{z \in \mathbb{C} : |z| < |\alpha|\} \\ \hline & r^n \cos(\omega_0 n) u[n], \ r > 0 & \frac{1-r \cos(\omega_0) z^{-1}}{1-2r \cos(\omega_0) z^{-1} + r^2 z^{-2}} & \{z \in \mathbb{C} : |z| > r\} \\ \hline & r^n \sin(\omega_0 n) u[n], \ r > 0 & \frac{r \sin(\omega_0) z^{-1}}{1-2r \cos(\omega_0) z^{-1} + r^2 z^{-2}} & \{z \in \mathbb{C} : |z| > r\} \\ \hline & x[n-n_0] & \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-n_0} X(z) & nx[n] & \stackrel{\mathcal{Z}}{\longleftrightarrow} -z \frac{dX(z)}{dz} \\ \hline \end{array}$$

 $x[n-n_0] \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-n_0}X(z)$

Señal	Transformada de Fourier	Serie de Fourier
$\delta(t)$	1	
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0 \forall k \neq 1$
$\cos(\omega_0 t)$	$\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$	$a_k = 0 \forall k \neq 1$ $a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0 \forall k \neq 1$
$\sin(\omega_0 t)$	$\frac{\pi}{j}\left[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)\right]$	$a_k = 0 \forall k \neq 1$ $a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0 \forall k \neq 1$
1	$2\pi\delta(\omega)$	$a_0 = 1$ $a_k = 0 \forall k \neq 0$
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\frac{2\pi}{T} \sum_{n=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi n}{T}\right)$	$a_k = \frac{1}{T}, \forall k$
$\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$	a_k
$u\left(t+T_{1}\right)-u\left(t-T_{1}\right)$	$\frac{2\sin(\omega T_1)}{\omega}$	
$x(t) = u(t + T_1) - u(t - T_1)$ $x(t + T) = x(t)$	$\sum_{k=-\infty}^{\infty} \frac{2\sin(k\omega_0 T_1)}{k} \delta(\omega - k\omega_0)$	$\frac{\sin(k\omega_0 T_1)}{k\pi}$
$\frac{\sin(Wt)}{\pi t}$	$u\left(\omega+W\right)-u\left(\omega-W\right)$	
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$	
$e^{-\alpha t}u(t), \operatorname{Re}(\alpha) > 0$	$\frac{1}{\alpha + j\omega}$	
$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t), \operatorname{Re}(\alpha) > 0$	$\frac{1}{(\alpha+j\omega)^n}$	
$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{t^2}{2\sigma^2}}$	$e^{-\frac{\omega^2\sigma^2}{2}}$	

	Señal	Transformada de Fourier	Coeficientes de la serie de Fourier
	$\delta[n]$	1	
	$e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi l)$	$a_k = \begin{cases} 1 & k = m, m \pm N, m \pm 2N, \dots \\ 0 & en \ otro \ caso \end{cases}$
	$\cos(\omega_0 n)$	$\pi \sum_{l=-\infty}^{\infty} \left[\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l) \right]$	Si $w_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2} & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0 & en \ otro \ caso \end{cases}$
 _ _	$\sin(\omega_0 n)$		Si $w_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2j} & k = m, m \pm N, m \pm 2N, \\ -\frac{1}{2j} & k = -m, -m \pm N, -m \pm 2N, \\ 0 & en otro caso \end{cases}$
	1	$2\pi \sum_{l=-\infty}^{\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1 & k = 0, \pm N, \pm 2N, \dots \\ 0 & en \ otro \ caso \end{cases}$
	$\sum_{k=-\infty}^{\infty} \delta[n - kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N} \forall k$
	$\sum_{k=\langle N\rangle} a_k e^{j\frac{2\pi k}{N}n}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - \frac{2\pi k}{N})$	a_k
	$u\left[n\right] -u\left[n-N\right]$	$e^{-j\omega \frac{(N-1)}{2}} \frac{\sin(\omega N/2)}{\sin(\omega/2)}$ periódica con periodo 2π	
	$x[n] = u[n + N_1] - u[n - N_1 - 1]$ x[n] = x[n + N]	$2\pi \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin\left(\frac{2\pi k}{N}\left(N_1 + \frac{1}{2}\right)\right)}{N\sin(\frac{2\pi k}{2N})} k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N} k = 0, \pm N, \pm 2N, \dots$
	$\frac{\sin(Wn)}{\pi n}, \ 0 < W < \pi$	$u(\omega + W) - u(\omega - W)$ periódica con periodo 2π	• •
	u[n]	$\frac{1}{1-e^{-j\omega}} + \pi\delta(\omega)$ periódica con periodo 2π	
	$\alpha^n u[n], \alpha < 1$	$rac{1}{1-lpha e^{-j\omega}}$ periódica con periodo 2π	
	$\frac{(n+r-1)!}{n!(r-1)!}\alpha^n u[n], \alpha < 1$	$rac{1}{(1-lpha e^{-j\omega})^r}$ periódica con periodo 2π	