OSS Tools for System Management

IBM

Sanjula Ganepola, IBM
Software Developer
sanjula.ganepola@ibm.com

Agenda

- Current State of System Management on IBM i
- Operational Monitoring with Prometheus
- Data Visualization with Grafana
- Event Monitoring with Manzan
- Manzan + AI

Current State of System Management on IBM i

What tools are you using for monitoring your IBM i systems?

- 1. Dynatrace
- 2. Nagios
- 3. Instana
- 4. DataDog
- 5. Control4i
- 6. Syslog Reporting Manager (SRM)
- 7. Created your own
- 8. Other

Specialty is a collective disadvantage

- 1. Dynatrace
- 2. Nagios
- 3. Instana
- 4. DataDog
- 5. Control4i
- 6. Syslog Reporting Manager (SRM)
- 7. Created your own
- 8. Other

Each solutions has their own...

- Configuration
- Host installation requirements
- Monitoring capabilities
 - Collect system metrics (active jobs, ASP consumption)
 - View sub system information
 - Identify long-running SQL
 - View job queue

Do you use Grafana?

- 1. Yes, with IBM i
- 2. Yes, but not with IBM i
- 3. No, but we want to
- 4. No, we don't want to
- 5. No, don't know what it is

Operational Monitoring with Prometheus

Prometheus Overview

What is it?

- Leading open-source systems monitoring and alerting toolkit
- Collects and stores metrics as timeseries data

Features

- Multi-dimensional data model with time series data identified by metric name and labels
- Provides a functional query language called PromQL
- No reliance on distributed storage
- Has an alert manager built-in
- Easily paired with Grafana and other monitoring solutions

Prometheus Architecture

Prometheus Data Model

All data is stored as a time series: (timestamp, value)

- Each time series has a name (metric name)
 - General feature of a system that is measured
- Each time series can have key/value pairs (metric labels)
 - Identifies a particular dimension of the metric
- Notation: <metric name>{<label name>=<label value>, ...}
 api_http_requests_total{method="POST", endpoint="/messages"}
- Time series is uniquely identified by metric name + metric label
 - temperature{city="Toronto"}
 - temperature{city="Rochester"}

PromQL (Prometheus Query Language)

Functional query language that lets the user select and aggregate time series data in real time

Types:

- Instant query: Evaluated at one point in time
- Range query: Evaluated at equally-spaced steps between a start and an end time

Usage:

- Get/filter metrics we are interested in
- Aggregate metrics
- Build dashboards
- Setup alerts

PromQL Basics

SQL	PromQL	
select * from http_server_request_count	http_server_quest_count	
select * from http_server_request_count where uri="/api/people"	http_server_quest_count{uri="/api/people"}	
select * from http_server_request_count where uri="/api/people" and method="GET"	http_server_quest_count{uri="/api/people",me thod="GET"}	
select * from http_server_request_count where status like '2%' or status like '3%' or status like '4%'	http_server_quest_count{status=~"2 3 4"}	

How to use Prometheus with IBM i

Monitoring IBM i with Prometheus

- Blog post by Jesse Gorzinski: "Monitoring IBM i with Prometheus" https://techchannel.com/Trends/12/2022/ibm-i-prometheus
- Simplified view
 - Passive exporter running on IBM I
 - Prometheus running on some central location, preferably Docker or Podman
 - Grafana running somewhere, preferably Docker or Podman

Prometheus can be the bridge to other solutions

JDBC Prometheus Exporter

- https://github.com/ThePrez/prometh eus-exporter-jdbc
- An interface for passive metric collection which allows Prometheus to scrape it
- Deploys on IBM I
- Exports over 400 metrics
- Customizable metrics with SQL
- Demo: http://ibm.biz/ibmi-prometheus

```
"port": 9853,
"queries": [{
   "name": "System Statistics",
   "interval": 60,
   "enabled": true,
   "prefix": "STATS",
   "sql": "SELECT * FROM TABLE(QSYS2.SYSTEM_STATUS(RESET_STATISTICS=>'YES',DETAILED_INFO=>'ALL')) X"
   "name": "System Activity",
   "interval": 20,
   "prefix": "SYSACT",
   "include_hostname": true,
   "enabled": false,
   "sql": "SELECT * FROM TABLE(QSYS2.SYSTEM_ACTIVITY_INFO())"
   "name": "number of remote connections",
   "interval": 60,
   "sql": "select COUNT(REMOTE_ADDRESS) as REMOTE_CONNECTIONS from qsys2.netstat_info where TCP_STATE
   "name": "Memory Pool Info",
   "interval": 100,
   "multi_row": true,
   "prefix": "MEMPOOL",
   "sql": "SELECT POOL_NAME,CURRENT_SIZE,DEFINED_SIZE,MAXIMUM_ACTIVE_THREADS,CURRENT_THREADS,RESERVED
```


Data Visualization with Grafana

Grafana Overview

- Open-source analytics, visualization, and monitoring solution
- Driven by Grafana Labs. Plenty of open-source components. See https://grafana.com/
- Over 300 plugins available

Prometheus Visualization with Grafana

Grafana Backend (Direct, No Prometheus)

Grafana with or without Prometheus

	Prometheus	Straight to Grafana
Persistent storage	Prometheus	Grafana
Persistent storage of unused metrics	Prometheus	
Metric type	Numerics	Numerics/strings/other
Ecosystem	Extremely Broad	There
Scalability	Excellent	Good
IBM i requisites	None	Node.js
Initial setup	Easier	Easy

Event Monitoring with Manzan

Manzan Overview

- Open-source event handling tool designed to simplify handling of system events
- Serves as a gateway for publishing IBM i events to a variety of endpoints:
 - User applications
 - External resources
 - Open-source technologies
- Example use cases:
 - Monitoring system events with a third-party open source or proprietary tool
 - More comprehensive integration with syslog facilities
 - Queryable system events
 - Consolidated auditing/reporting activity.

Understanding the Architecture: Inputs

Inputs: Sources of your data

- Stream file
- System watch facility (STRWCH)
 - MSGQ
 - LIC logs
 - PAL logs
- System exit points
- Audit journals (coming soon)

So practically what can Manzan monitor?

Application crashes

Log data

Specific entries in log data

System
Limits alerts

History Log entries

Problem log entries

*SYSOPR messages

Specific job log messages

Audit journal events (future)

PAL entries

VLOGs

Fishy TCP connections (future)

Understanding the Architecture: Destinations

Destinations: Locations to send data

- Supported destinations:
 - HTTP/HTTPS endpoints (REST, etc)
 - Email (SMTP/SMTPS)
 - SMS (via Twilio)
 - Slack
 - FluentD
 - Kafka
 - Sentry
 - Grafana Loki
 - Google Pub/Sub
 - ActiveMQ
- Custom ILE Code

So can Manzan send data anywhere?

- Many desitnations are already working, but there are more to come
- Desired target not on the list? Please open an issue to the repository and let us know!
- Track supported destinations:
 https://theprez.github.io/Manzan/#/?id=where-can-i-send-these-events

 ActiveMQ • AWS Simple Email Service (SES) AWS Simple Notification System (SNS) ElasticSearch • Email (SMTP/SMTPS) ✓ FluentD Google Drive Google Pub/Sub • Grafana Loki HTTP endpoints (REST, etc) HTTPS endpoints (REST, etc) Internet of Things (mqtt) • Kafka Mezmo Microsoft Teams PagerDuty Sentry • Slack • SMS (via Twilio) • Splunk X = implemented = partially implemented = future

Configuring Inputs and Destinations

Configuration files are located in /QOpenSys/etc/manzan

app.ini

Used for general Manzan configuration (you can leave the default contents)

[install]
library=MANZAN

<u>data.ini</u>

Used for configuring different data sources (inputs)

[<id>] # where the data is coming from type=<type>

as defined in dests.ini
destinations=<destinations>

other properties for <id> here..

dests.ini

Used for configuring different destinations

[<id>]

the type of destination the data is going to
type=<type>

other properties for <id> below (specific
to each destination)...

Simple data.init configuration

Stream file

 Watch application log file (test.txt) and only take action when a line written to the file contains the string "error"

```
[logfile1]
type=file
file=test.txt
destinations=email_it, test_out
filter=error
format=$FILE_DATA$
```

System Watch

Manage information from watch session with id "jesse"

```
[watcher1]
type=watch
id=jesse
destinations=test_out, slackme
enabled=false
```

Advanced data.init configuration

System Watch

- Manage information from watch session with id "jesse", which is configured to watch all messages in the IBM i history log
- Format the message into a human-sensible format
- Automatically start the watch when Manzan is started

```
[watchout]
type=watch
id=jesse
destinations=test_out, slackme
format=$MESSAGE_ID$ (severity $SEVERITY$): $MESSAGE$
strwch=WCHMSG((*ALL)) WCHMSGQ((*HSTLOG))
```

Example dests.ini configuration

Send an email

```
[email_b]
type=smtp
format=Hey, check out this information!! \n\n$FILE_DATA$
    server = my.smtpserver.com
    subject = Testemail
    from=me@mycompany.com
    to=me@mycompany.com
```

Send to Sentry

```
[sentry_out]
type=sentry
dsn=<slackdsn>
```

More example dests.ini configuration

Send SMS message with Twilio

```
[twilio_sms]
type=twilio
sid=x
token=x
to=+
from=+
```

Send to Slack

```
[slackme]
type=slack
channel=open-source-system-status
webhook=https://hooks.slack.com/services/TA3EF58G4...
```

Putting it together

dests.ini

```
[slackme]
type=slack
channel=open-source-system-status
webhook=https://hooks.slack.com/services/TA3EF58G4...
```

data.ini

```
[watchout]
type=watch
id=jesse
destinations=slackme
format=$MESSAGE_ID$ (severity $SEVERITY$): $MESSAGE$
strwch=WCHMSG((*ALL)) WCHMSGQ((*HSTLOG))
```

What does it look like in Slack?

open-source-system-status - Dec 20th, 2022

ibm i system monitor APP 9:01 PM

CPIAD09 (severity 0): User LINUX from client 9.163.40.192 connected to job 492988/QUSER/QZDASOINIT in subsystem QUSRWRK in QSYS on 12/20/22 20:17:06.

Future Enhancements to Manzan

- Trigger events based on audit journals
- Exit point processing (currently this is completely unimplemented)
- Metrics exported to Prometheus, for instance:
 - How many MCH exceptions have happened in production applications?
 - How many severity 40+ history log entries?
 - How many errors showing in web server logs?
 - How many PASE vlogs have been created?
- Ability to trigger events from Prometheus exporter, for instance:
 - Memory pool usage anomalies
 - Increased HTTP server traffic
 - Unexpected amount of remote connections
 - Operational data beyond thresholds

Manzan + AI

AI-Based System Monitoring: Failure Prediction System

AI-Based System Monitoring: Intrusion Detection System

AI-Based System Monitoring: Health and Performance Assistant

Takeaways

01

Grafana is a musthave technology 02

Prometheus is a great way to enable ongoing monitoring

03

Manzan is a great way to handle various events and integrate with tons of solutions

Any Questions?

For More Information

Links You Need	Twitter	#Hashtags
IBM i Home Page: https://www.ibm.com/it-infrastructure/power/os/ibm-i (find link to Forrester Study and updated IBM i Strategy Whitepaper) IBM Strategy Whitepaper: https://www.ibm.com/it-infrastructure/us-en/resources/power/i-strategy-roadmap/ IBM Client Success: https://www.ibm.com/it-infrastructure/us-en/resources/power/ibm-i-customer-stories/ Support Life Cycle: https://www.ibm.com/support/lifecycle/ License Topics: https://www-01.ibm.com/support/docview.wss?uid=nas8N1022087 Fortra IBM i Marketplace Survey https://www.fortra.com/resources/guides/ibm-i-marketplace-survey-results	@IBMSystems @COMMONug @IBMChampions @IBMSystemsISVs @IBMiMag @ITJungleNews @SAPonIBMi @SiDforIBMi	#PowerSystems #IBMi #IBMAIX #POWER9 #LinuxonPower #OpenPOWER #HANAonPower #ITinfrastructure #OpenSource #HybridCloud #BigData

