2022/05/31 電力工程導論 姓名 學號 學號

1. (20) Assume that 1. conductors are equally spaced, D, and have equal radii r. 2. $q_a + q_b + q_c = 0$ ($c_a = c_b = c_c = c$, $v_a + v_b + v_c = 0$) 3. $i_a + i_b + i_c = 0$. Find (a) c = ? (b) $\lambda_a = ?$

2. (20) A 60-Hz 138-kV 3Φ transmission line is 225mile long. The distributed line parameters are r =0.169 Ω /mile , l = 2.093 mH/mile , c = 0.01427 μ F/mile , g = 0. The transmission line delivers 40 Mwat 132 kV with 95% power factor lagging. (a) Find the sending-end voltage and current. (b) Find the transmission line efficiency. 3. (20) V_1 = 1 \geq 0 $^{\circ}$, jQ_{G2} = j1.0, Z_L =j0.5, S_{D2} = P_{D2} +j1.0. Find S_1 and V_2 . We consider the solution as a function of P_{D2} for P_{D2} \geq 0 . (a) If P_{D2} >1 => V_2 =? (b) If P_{D2} =1 => V_2 =? (c) If P_{D2} =0.5 => V_2 =?

4. (20) Fault current: $I^f = [I_{af} \ I_{bf} \ I_{cf}] = [I^f \ 0 \ 0]$. Find the symmetrical components of single line-to-ground faults currents.

 $5.(20)~v_a=180~cos~\omega t$, $v_b=180~cos~(\omega t-120^\circ)$, $v_c=180~cos~(\omega t+120^\circ)$ (a) Find abc Reference Frame to Stationary Reference Frame (b) Stationary Reference Frame to Synchronous Reference Frame