Counting Distinct Elements

Applications
Flajolet-Martin Approximation
Technique
Generalization to Moments

Counting Distinct Elements

- Problem: a data stream consists of elements chosen from a set of size n. Maintain a count of the number of distinct elements seen so far.
- Obvious approach: maintain the set of elements seen.

Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?).
- How many unique users visited Facebook this month?
- How many different pages link to each of the pages we have crawled.

Estimating Counts

- Real Problem: what if we do not have space to store the complete set?
- Estimate the count in an unbiased way.
- Accept that the count may be in error, but limit the probability that the error is large.

Flajolet-Martin Approach

- Pick a hash function h that maps each of the n elements to at least log₂n bits.
- For each stream element a, let r(a) be the number of trailing 0's in h(a).
- Record R = the maximum r(a) seen.
- Estimate = 2^R .

Why It Works

- The probability that a given h(a) ends in at least i 0's is 2^{-i} .
- If there are m different elements, the probability that $R \ge i$ is $1 (1 2^{-i})^m$.

Prob. all h(a)'s end in fewer than *i* o's.

Prob. a given h(a) ends in fewer than *i* o's.

Why It Works – (2)

- Since 2⁻ⁱ is small, 1 $(1-2^{-i})^m \approx 1 e^{-m2^{-i}}$.
- If $2^i >> m$, $1 e^{-m2^{-i}} \approx 1 (1 m^{2^{-i}}) \approx m/2^i \approx 0$.
- If $2^i << m$, $1 e^{-m2^{-i}} \approx 1$.
- Thus, 2^R will almost always/be around m.

First 2 terms of the Taylor expansion of e^{x}

Why It Doesn't Work

- $E(2^R)$ is, in principle, infinite.
 - Probability halves when R -> R+1, but value doubles.
- Workaround involves using many hash functions and getting many samples.
- How are samples combined?
 - Average? What if one very large value?
 - Median? All values are a power of 2.

Solution

- Partition your samples into small groups.
 - Log n, where n = size of universal set, suffices.
- Take the average of groups.
- Then take the median of the averages.

Generalization: Moments

- Suppose a stream has elements chosen from a set of n values.
- Let m_i be the number of times value i occurs.
- The k^{th} moment is the sum of $(m_i)^k$ over all i.

Special Cases

- 0th moment = number of different elements in the stream.
 - The problem just considered.
- 1st moment = count of the numbers of elements = length of the stream.
 - Easy to compute.
- 2nd moment = surprise number = a measure of how uneven the distribution is.

Example: Surprise Number

- Stream of length 100; 11 values appear.
- Unsurprising: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9.Surprise # = 910.
- Surprising: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1. Surprise # = 8,110.

AMS Method

- Works for all moments; gives an unbiased estimate.
- We'll just concentrate on 2nd moment.
- Based on calculation of many random variables
 X.
 - Each requires a count in main memory, so number is limited.

One Random Variable

- Assume stream has length n.
- Pick a random time to start, so that any time is equally likely.
- Let the chosen time have element a in the stream.
- X = n * (twice the number of a's in the stream starting at the chosen time) 1).
 - Note: store n once, count of a's for each X.

Expected Value of X

- 2nd moment is $\Sigma_a(m_a)^2$.
- $E(X) = (1/n)(\Sigma_{\text{all times } t} n^*)$ (twice the number of times the stream element at time t appears from that time on) -1).

a is seen

$$= \sum_{a} (1/n)(n)(1+3+5+...+2m_a-1).$$

$$= \sum_{a} (m_a)^2.$$
Time when the last a Time when the first a the last a

is seen

Group times by the value seen

is seen

Problem: Streams Never End

- We assumed there was a number n, the number of positions in the stream.
- But real streams go on forever, so n changes; it is the number of inputs seen so far.

Fixups

- The variables X have n as a factor keep n separately; just hold the count in X.
- 2. Suppose we can only store *k* counts. We must throw some *X*'s out as time goes on.
 - Objective: each starting time t is selected with probability k/n.

Solution to (2)

- Choose the first k times for k variables.
- When the n^{th} element arrives (n > k), choose it with probability k/n.
- If you choose it, throw one of the previously stored variables out, with equal probability.
- Probability of each of the first n-1 positions being chosen: