

MORRO BAY WIND ENERGY AREA (WEA)

- SB 100 for CA Energy Requirements In Response to Climate Change
 - 60% Renewable / Zero Carbon by 2030
 - 100% Renewable / Zero Carbon by 2045
 - Potential to Power 1,000,000+ Homes
- Need to Understand and predict Ecological Impacts (fisheries, whales, oil spills, etc.)

MORRO BAY WIND ENERGY AREA (WEA)

- SB 100 for CA Energy Requirements In Response to Climate Change
 - 60% Renewable / Zero Carbon by 2030
 - 100% Renewable / Zero Carbon by 2045
 - Potential to Power 1,000,000+ Homes
- Need to Understand and predict Ecological Impacts (fisheries, whales, oil spills, etc.)

DEEPWATER HORIZON OIL SPILL: LAGRANGIAN COHERENT STRUCTURES

Blue whales increase feeding rates at fine-scale ocean features

James A. Fahlbusch^{1,2}, Max F. Czapanskiy¹, John Calambokidis², David E. Cade¹, Briana Abrahms³, Elliott L. Hazen^{1,4} and Jeremy A. Goldbogen¹

Fishermen Follow Fine-Scale Physical Ocean Features for Finance

James R. Watson 1,2*, Emma C. Fuller3, Frederic S. Castruccio⁴ and Jameal F. Samhouri5

¹ College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States, ² Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden, ³ Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States, ⁴ Climate and Global Dynamics Group, National Center for Atmospheric Research, Boulder, CO, United States, ⁵ Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, United States

LAGRANGIAN COHERENT STRUCTURES (LCS)

Definition of LCS:

- A LCS is a locally dominant transport structure that can be calculated from particle trajectories.
- More simply, a hyperbolic LCS is an area of repulsion or accumulation in a flow.

*Our research focuses on the detection of hyperbolic repelling and attracting LCSs over the last decade in the WEA.

HIGH FREQUENCY RADAR

CONVERGENCE REGION EXAMPLE

LCS IN WEA

 Configured MATLAB tool to calculate LCS from HFR data in Wind Energy Area

Blue: Attracting Lines

• Red: Repelling Lines

Colormap: FTLE value

 Higher = more divergence of flow

Attracting LCSs: 2016-01-24, 06:00

35.45

35.4

FUTURE WORK / ACKNOWLEDGEMENTS

- Develop a reverse tracking program that calculates attracting FTLEs
- Statistical analysis to determine FTLE trends with oceanographic phenomenon
- Compare results to biological observations

- Hoogstra, L. (2023). Detecting coherent transport structures in ocean surface flows (Master's thesis, California Polytechnic State University, San Luis Obispo).
- Haller, George. "Lagrangian Coherent Structures." Annual Review of Fluid Mechanics, vol. 47, no. 1, 2015, pp. 137— 62, https://doi.org/10.1146/annurev-fluid-010313-141322.

