Probability theory

Gabriel Ng

May 19, 2022

A measurable space is a pair (E,\mathcal{E}) where E is a set and \mathcal{E} is a sigma algebra on E. A probability space is a measurable space and a positive measure \mathbb{P} on our space such that $\mathbb{P}(E)=1$. We denote such a space by $(\Omega,\mathcal{F},\mathbb{P})$. The elements of \mathcal{F} are called events.

If $(\Omega\mathcal{F},\mathbb{P})$ and (E,\mathcal{E}) are probability and measurable spaces respectively, a function $f:\Omega\to E$ is called a random variable if it is measurable. It is a real random variable when $E=\mathbb{R}$ and $\mathcal{E}=B(R)$ the Borel sigma algebra. When $\int X \,\mathrm{d}\mathbb{P} < \infty$, we say X is integrable and denote this integral EX. Two random variables are equivalent if $\mathbb{P}(X=Y)=1$.

The spaces L^p is defined by the set of f so that $(E|f|^p)^{1/p}$ is finite up to equivalence (equal a.s.). L^{∞} is defined by the set of f such that |f(x)| is finite aside from a subset of measure 0.

Proposition – Jensen's inequality

Let X be an integrable random variable on \mathbb{R}^m and let $\Phi: \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$ be a lower semi-continuous convex function. Then $\Phi(X)$ is lower semi-integrable and

$$E\Phi(X) \ge \phi(EX)$$
.

Furthermore, if Φ is strictly convex and $\Phi(EX) < \infty$ then the inequality is strict unless X takes only 1 value a.s.

Proof. X is integrable so that EX is finite. Since Φ is convex, there is a line through EX and $\Phi(EX)$ such that the graph of Φ lies above this line (this is determined by the lower and upper derivatives). Hence $\Phi(X) \geq \Phi(EX) + c(X - EX)$ so that $E\Phi(X) \geq \Phi(EX)$. Now, unless $\Phi(X) = \Phi(EX)$, then our second statement holds.

Proposition - Holder's inequality

Let Z, W be positive random variables and α , β positive real numbers such that $\alpha + \beta = 1$. Then

$$E(Z^{\alpha}W^{\beta}) < (EZ)^{\alpha}(EW)^{\beta}.$$

Proof. Consider first the convex function $\exp(X)$. We know this is convex since it is a smooth function and its second derivative is greater than 0. Setting $a = \alpha \log \left(\frac{|Z|}{\|Z\|_{\alpha}} \right)$ and $b = \beta \log \left(\frac{|W|}{\|(\|W)_{\beta}} \right)$, we get using the definition of convexity that $\frac{|f||g|}{\|f\|_{\alpha}\|g\|_{\beta}} \le \frac{|f|^{\alpha}}{\|f\|_{\alpha}^{\alpha}} + \frac{|g|^{\beta}}{\|g\|_{\beta}^{\beta}\beta}$ upon which we obtain our inequality after integrating.

Proposition - Minkowski's inequality

Let *X* and *Y* be real random variables and $p \ge 1$. Then

$$||X + Y||_p \le ||X||_p + ||Y||_p$$
.