Stress Test Evaluation for Natural Language Inference

Aakanksha Naik*, Abhilasha Ravichander*, Norman Sadeh, Carolyn Rose, Graham Neubig

(a.k.a Recognizing Textual Entailment)

Premise: Stimpy was a little cat who believed he could fly

Hypothesis: Stimpy could fly

(a.k.a Recognizing Textual Entailment)

Premise: Stimpy was a little cat who believed he could fly

Given a premise, determine whether a hypothesis is True (entailment), False (contradiction), Undecided (neutral)

Hypothesis: Stimpy could fly

(a.k.a Recognizing Textual Entailment)

Benchmark task for Natural Language Understanding

- **Prevalent View:** To perform well at NLI, models must
 - learn good sentence representations: "handle nearly the full complexity of compositional semantics" (Williams et al, 2018)
 - reason over "difficult" phenomena like lexical entailment, quantification, coreference, tense, belief, modality, lexical and syntactic ambiguity (Dagan et al, 2009; McCartney and Manning, 2009; Marelli et al, 2014; Williams et al, 2018)

(a.k.a Recognizing Textual Entailment)

MultiNLI

- Text from 10 genres!
- Covers written & spoken english
- Longer, more complex sentences
- Variety of linguistic phenomena
- Sentence-encoder SOTA: 74.5 % (Nie and Bansal, 2017)*

Motivation

Neural networks can solve nearly $\frac{3}{4}$ examples from the challenging MultiNLI dataset!

Motivation

Neural networks can solve nearly $\frac{3}{4}$ examples from the challenging MultiNLI dataset!

But, more difficult cases occur rarely and are masked in traditional evaluation

Optimistic estimate of model performance

Motivation

Neural networks can solve nearly $\frac{3}{4}$ examples from the challenging MultiNLI dataset!

But, more difficult cases occur rarely and are masked in traditional evaluation

Optimistic estimate of model performance

We want to figure out whether our systems have the ability to make real inferential decisions, and if so, to what extent.

What are Stress Tests?

For NLI

Building large-scale diagnostic datasets to exercise models on their weaknesses and better understand their capabilities.

Why Stress Tests?

Reward system **ability to reason** about task instead of encouraging reliance on misleading correlations in datasets.

"Sanity checking" for NLP models

Analyze **strengths and weaknesses** of various models

Fine-grained **phenomenon-by-phenomenon** evaluation scheme

Weaknesses of SOTA NLI Models

- To construct stress tests, we must first identify "bugs" (potential weaknesses)
- Analyzed errors of Nie & Bansal (2017) (best-performing single model)

Word Overlap (29%)

Premise: And, could it not result in a decline in Postal Service volumes across—the—board?

Hypothesis: There may not be a decline in Postal Service volumes across—the—board.

Neutral—Entailment

Negation (13%)

Premise: Enthusiasm for Disney's Broadway production of The Lion King dwindles.

Hypothesis: The broadway production of The Lion King is no longer enthusiastically attended.

Entailment—Contradiction

Length Mismatch (3%)

Premise: So you know well a lot of the stuff you hear coming from South Africa now and from West Africa that's considered world music because it's not particularly using certain types of folk styles.

Hypothesis: They rely too heavily on the types of folk styles.

Contradiction→ **Neutral**

Numerical Reasoning (3%)

Premise: Deborah Pryce said Ohio Legal Services in Columbus will receive a \$200,000 federal grant toward an online legal self-help center.

Hypothesis: A \$900,000 federal grant will be received by Missouri Legal Services, said Deborah Pryce.

Contradiction—Entailment

Antonymy (5%)

Premise: "Have her show it," said Thorn

Hypothesis: Thorn told her to hide it.

Contradiction—Entailment

Grammaticality (3%)

Premise: So if there are something interesting or something worried, please give me a call at any time.

Hypothesis: The person is open to take a call anytime.

Contradiction—Neutral

Real World Knowledge (12%)

Premise: It was still night.

Hypothesis: The sun hadn't risen yet, for the moon was shining daringly in the sky.

Entailment—Neutral

Ambiguity (6%)

Premise: Outside the cathedral you will find a statue of John Knox with Bible in hand.

Hypothesis: John Knox was someone who read the Bible.

Entailment—Neutral

Unknown (26%)

Premise: We're going to try something different this morning, said Jon.

Hypothesis: Jon decided to try a new approach.

Entailment—Contradiction

Constructing Stress Tests

Competence Tests

Evaluate model **ability** to reason about quantities and understand antonyms

Target error categories: antonymy, numerical reasoning

Construction framework: Heuristic rules, external knowledge sources

Distraction Tests

Evaluate model **robustness** to shallow distractions

Target error categories: word overlap, negation, length mismatch

Construction framework: label-preserving

perturbations using propositional logic

Noise Tests

Evaluate model **robustness** to noise in data

Target error categories: grammaticality

Construction framework: Random perturbation

Constructing Competence Tests: Antonymy

Constructing Competence Tests: Antonymy

Constructing Competence Tests: Numerical Reasoning

Constructing Competence Tests: Numerical Reasoning

CONT **AQuA-RAT ENT** Word problem pair pair **Options** Answer **Final Entailment Pairs** Rationale Premise: Tim had 750 bags of cement. Preprocessing: Hypothesis: Tim had more than 550 bags of 1. Discard "complex" Flip cement. problems ent 2. Split problems into Label: Entailment sentences 3. Discard sentences Premise: Tim had 750 bags of cement. **NEU** pair without numbers and Hypothesis: Tim had 350 bags of cement. P: Tim had more NEs **Label: Contradiction** than 550 bags of cement Size: 7.5 k pairs H: Tim had 750 P: Tim had 750 bags of cement 750 bags bags of cement

L: neutral

Constructing Distraction Tests

Logic Framework for Distraction Test Construction: Appending tautology to either premise or hypothesis

Constructing Distraction Tests (Cont.)

Word Overlap

- Tautology: true is true
- Append to hypothesis
- Reducing word overlap

Negation

- Tautology: false is not true
- Append to hypothesis
- Introducing strong negation

Length Mismatch

- Tautology: (true is true)*5
- Append to premise
- Add irrelevant information to premise

Constructing Distraction Tests (Cont.)

Word Overlap

Final Entailment Pair

Premise: Possibly no other country has had such a turbulent history and true is true.

Hypothesis: The country's history has been turbulent.

Label: Entailment

Negation

Final Entailment Pair

Premise: Possibly no other country has had such a turbulent history and false is not true.

Hypothesis: The country's history has been turbulent.

Label: Entailment

Length Mismatch

Final Entailment Pair

Premise: Possibly no other country has had such a turbulent history and true is true is true.

Hypothesis: The country's history has been turbulent.

Label: Entailment

Constructing Noise Tests

Constructing Noise Tests

Experimental Setup: Models

SOTA

- Nie & Bansal, 2017: Shortcut-Stacked BiLSTMs
- Chen et al, 2017: Shortcut-Stacked BiLSTMs + Char CNN
- Balazs et al, 2017: BiLSTMs with Inner Attention
- Conneau et al, 2017: BiLSTMs with Max Pooling

Results on Competence Tests

Model Performance on Competence Tests

Results on Competence Tests

Model Performance on Competence Tests

Results on Competence Tests

Model Performance on Competence Tests

Performance Analysis on Competence Tests

ANTONYMY

- All models overpredict entailment relations: 86.4% of all errors are Contradiction → Entailment predictions!
- Some success on "easy" antonym-pairs (seen before in training data)
- Antonym pairs recognized by weakest model occur nearly twice as often in training data as pairs recognized by stronger model

NUMERICAL REASONING

- All models overpredict entailment relations. 78.3% of all errors are Neutral → Entailment or Contradiction → Entailment
- Models rely on lexical cues due to artifacts in training data
- No quantitative reasoning performed

Performance Analysis on Distraction Tests

High proportion of **false neutral** errors:

Account for 67.1% of errors on word overlap and length mismatch tests (tests with ↓ lexical similarity), compared to 35.05% of errors on MultiNLI Dev

Crowdworkers shown sentence:
Asked to construct entailed, neutral and contradictory hypotheses

P: Stimpy the cat believed he could fly H: Stimpy thought he could fly

Construct hypotheses with inherent biases → biased datasets

(Bar-Haim et al, 2006; Parent et. al, 2010; Wang et. al, 2012; Yih et al, 2013; Gururangan et. al, 2018; Poliak et.al, 2018)

Neural models predict **entailment for high word overlap**, regardless of semantic meaning, and **neutral for low word overlap**, regardless of semantic meaning

Results on Noise Tests

Model Performance on Noise Tests

Results on Noise Tests

Model Performance on Noise Tests

Conclusion

Neural networks will **take shortcuts**! Latch onto misleading correlations in datasets.

Conclusion

 Must ensure that our models are learning reasonable things. Good performance on dev set != good performance on task.

- Avoid attributing good model performance to doing the kinds of reasoning we imagine the task needs.
- Calls for diagnostic datasets Stress Tests!

Conclusion

All stress tests/code/leaderboard now available:

https://abhilasharavichander.github.io/NLI StressTest/

Use the data to show models are actually learning!

THANK YOU!

Visit our website: https://abhilasharavichander.github.io/NLI_StressTest/

For questions, contact: anaik@cs.cmu.edu, aravicha@cs.cmu.edu, aravicha@cs.cmu.edu,