

```
name: <unnamed>
        log: C:/Users/yfkas/Documents/GitHub/ARE213 Fall2023/PSet 4/Stata/pset4 logfil
  > e.smcl
   log type: smcl
  opened on: 4 Dec 2023, 11:50:56
1 .
2.
3 . // install programs
4 . // do "$do_loc/Code/01_programs.do"
6 . // analyze
7 . do "$do_loc/02_q1a.do"
8 . /*
 > Title:
                 02_q1a.do
 > Purpose:
                  Question 1.a, PSet 4
 > */
9.
10.
12. use "$dta_loc/pset4_data.dta", clear
13. foreach v of varlist *vote* election* {
   2. 3. }
             char `v'[_de_col_width_] 14
14.
15.
16. /* -----
                                _____
 > 1a Define running var, X*/
17. gen votes tot = votes for + votes against
18. gen x = votes_for/votes_tot
19. assert win == 1 if x > 0.5
20. gen w = eligible voters
21. gen margin = x-0.5
22.
24. save "$dta_loc/pset4_clean.dta", replace
 file C:/Users/yfkas/Dropbox (Personal)/ARE213/Pset4/pset4 clean.dta saved
 end of do-file
26. do "$do loc/02 q1b.do"
27. /*
 > Title:
                  02 q1b.do
 > Purpose:
                  Question 1.b, PSet 4
 > */
28.
29.
```

```
30. /* -----
 > 1b Check RDD assumption, E[W|X]*/
31.
32.
33. use "$dta_loc/pset4_clean.dta", clear
34.
35.
36. // hist x
37. sort votes_for votes_against eligible_voters
38.
39. /*
 > // Testing scatter and binscatter
 > scatter w x
 > xtile pctx = x, nq(100)
 > preserve
           collapse (mean) w, by(pctx)
           scatter w pctx
 > restore
 > */
40.
41. /*
 > rdrobust w x, ///
> p(2) ///
            c(0.5) ///
h(0.5) ///
            masspoints(adjust) ///
            bwselect(mserd) ///
            kernel(tri)
 > local h l = e(h l)
 > local h_r = e(h_r)
42.
43. // Local linear regression
44. reg w i.win##c.margin
                                                                            76,740
        Source
                       SS
                                     df
                                              MS
                                                       Number of obs
                                                                       =
                                                       F(3, 76736)
                                                                            136.32
                                                                       =
        Model
                  44643727.3
                                         14881242.4
                                                       Prob > F
                                                                       =
                                                                             0.0000
                                 76,736 109167.039
                  8.3770e+09
                                                                             0.0053
     Residual
                                                       R-squared
                                                                       =
                                                       Adj R-squared
                                                                       =
                                                                             0.0053
                                 76,739 109744.532
         Total
                  8.4217e+09
                                                      Root MSE
                                                                             330.4
                 Coefficient Std. err.
                                                             [95% conf. interval]
             W
                                              t
                                                   P>|t|
                   -69.0819
                               4.187571
                                          -16.50
                                                   0.000
                                                             -77.28952
                                                                          -60.87428
        1.win
        margin
                   106.8179
                               13.95248
                                            7.66
                                                   0.000
                                                              79.47107
                                                                          134.1646
  win#c.margin
                   103.1523
                               17.93967
                                            5.75
                                                   0.000
                                                              67.99067
                                                                            138.314
         _cons
```

45. rdrobust w x, p(1) c(0.5) h(0.5) kernel(uniform)

151.7831

Sharp RD estimates using local polynomial regression.

2.846744

Cutoff $c = .5$	Left of c	Right of ${f c}$	Number of ob	s = =	76740 Manual
Number of obs	41656	35084	BW type Kernel	=	Uniform
Eff. Number of obs Order est. (p)	41656	35084 1	VCE method	=	NN
Order bias (q) BW est. (h)	0.500	0.500			
BW bias (b) rho (h/b)	0.500 1.000	0.500 1.000			

53.32

0.000

146.2035

157.3627

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	-77.577 -		-22.1532 3.5594	0.000	-84.4406 6.68396	-70.7136 23.0655

```
46. // close
47.
48. // Visual test
49. rdplot w x, ///
            p(2) ///
  >
            c(0.5) ///
            masspoints(adjust) ///
            /// bwselect(mserd) ///
            kernel(tri) ///
            binselect(espr) ///
  >
            graph_options(legend(position(6)) ///
                                       xtitle("Running variable") ///
                                       ytitle("Eligible voters")) ///
            ci(95) ///
            shade
```

Mass points detected in the running variable.

RD Plot with evenly spaced number of bins using polynomial regression.

Cutoff c = .5	Left of c	Right of c	Number of obs Kernel	= 76740 = Triangular
Number of obs Eff. Number of obs	41656 41656	35084 35084	Kerner	- IIIangulai
Order poly. fit (p)	2	2		
BW poly. fit (h)	0.500	0.500		
Number of bins scale	1.000	1.000		

Outcome: w. Running variable: x.

	Left of c	Right of c
Bins selected Average bin length Median bin length	11 0.045 0.045	18 0.028 0.028
IMSE-optimal bins Mimicking Var. bins	11 786	18 600
Rel. to IMSE-optimal:	1.000 0.500 0.500	1.000 0.500 0.500

67. use "\$dta loc/pset4 clean.dta", clear

```
52. // Statistical test
53. rdperm x w, c(0.5) perm(500) // rejects equality
 RD Distribution Test using permutations.
 Cutoff c =
                       Left of c
                                    Right of c
                                                   Number of obs =
                                                                         76740
              .5
                                                   Fixed q
                                                                         462
                                                                  =
                                                   Number of perms =
         Number of obs
                              41656
                                          35084
                                                                          500
    Eff. number of obs
                               462
                                            462
                                                   Test statistic =
                                                                          CvM
    Eff. neighbourhood
                          -.0090909
                                             Λ
 Running variable : x
 Covariates
                    W
                               P.value
               Result
54. cdfplot w if w < 500, by(win) // visually apparent that CDFs diverge early on
  (0 observations deleted)
55. graph export "$do_loc/graphs/q1b_cdfs.png", ///
 > width(1200) height(900) 7//
          replace
 file C:/Users/yfkas/Documents/GitHub/ARE213 Fall2023/PSet
     4/Stata/graphs/qlb cdfs.png saved as PNG format
56.
 > Q: is checking whether E [Wi | Xi] is continuous at the cutoff
 > be a useful placebo check for the RDD assumptions
 > Testing for the continuity of this expectation can be done visually using a
 > scatter plot. If a ruler can be placed across the entire graph, then
 > the continuity of E[Wi | Xi] is satisfied in a local linear model. The ruler
 > analogy can be extended to a polynomial of degree p, hence the result is
 > somewhat arbitrary. The bandwidth introduces more arbitrariness. Canay and Kamat
 > (2017) suggested comparing CDFs of W at either side of the cutoff. The
 > result of rdperm shows that the null of equality of distributions can be
 > rejected. Visually inspecting the CDFs confirms this.
 > */
58.
59.
 end of do-file
61. do "$do_loc/02_q1c.do"
 > Title:
                 02_q1c.do
 > Purpose:
                Question 1.c, PSet 4
64. /* -----
 > 1c Check RDD assumption, density of Xi is continuous around c.
65.
```

```
68.
```

69. hist x // histogram seems ok
 (bin=48, start=0, width=.02083333)

70

71. // try rddensity

72. rddensity x, c(0.45) plot kernel(triangular) all

Computing data-driven bandwidth selectors.

Point estimates and standard errors have been adjusted for repeated observations. (Use option *nomasspoints* to suppress this adjustment.)

RD Manipulation test using local polynomial density estimation.

c = 0.450	Left of c	Right of c	Number o: Model
Number of obs	35726 8397	41014 7756	BW method Kernel
Order est. (p)	2	2	VCE metho
Order bias (q)	3	3	
BW est. (h)	0.059	0.064	

Number of obs = 76740

Model = unrestricted

BW method = comb

Kernel = triangular

VCE method = jackknife

Running variable: x.

Method	Т	P> T
Conventional	-0.7890	0.4301
Robust	-0.9183	0.3584

P-values of binomial tests. (H0: prob = .5)

Window Length / 2	<c< td=""><td>>=c</td><td>P> T </td></c<>	>=c	P> T
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	89 89 89 89 89 89	0 0 0 0 0 0	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

```
73. graph export "$do loc/graphs/q1c 45.png", /// > width(120\overline{0}) height(900) 7//
```

> replace

file C:/Users/yfkas/Documents/GitHub/ARE213_Fall2023/PSet 4/Stata/graphs/q1c_45.png
 saved as PNG format

74

75. rddensity x, c(0.5) plot kernel(triangular) all Computing data-driven bandwidth selectors.

Point estimates and standard errors have been adjusted for repeated observations. (Use option nomasspoints to suppress this adjustment.)

RD Manipulation test using local polynomial density estimation.

Left of c	Right of c	Number of obs	=	76740
		Model	=	unrestricted
41656	35084	BW method	=	comb
6592	4859	Kernel	=	triangular
2	2	VCE method	=	jackknife
3	3			•
0.055	0.041			
	41656 6592 2 3	41656 35084 6592 4859 2 2 3 3	Model 41656 35084 BW method 6592 4859 Kernel 2 2 VCE method 3 3	## Model = ## Model = ## Model = ## ## ## ## ## ## ## ## ## ## ## ## #

Running variable: x.

Method	Т	P> T
Conventional Robust	-13.3528 -10.9449	0.0000

P-values of binomial tests. (H0: prob = .5)

Window Length / 2	<c< th=""><th>>=c</th><th>P> T </th></c<>	>=c	P> T
0.000 0.000 0.000 0.000 0.000 0.000 0.000	0 0 0 0 0	956 956 956 956 956 956	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.000	0	956 956	0.0000

> replace

file C:/Users/yfkas/Documents/GitHub/ARE213_Fall2023/PSet 4/Stata/graphs/q1c_50.png saved as PNG format

77.

78. rddensity x, c(0.55) plot kernel(triangular) all Computing data-driven bandwidth selectors.

Point estimates and standard errors have been adjusted for repeated observations. (Use option *nomasspoints* to suppress this adjustment.)

RD Manipulation test using local polynomial density estimation.

c =	0.550	Left of c	Right of c
	of obs	47372	29368
Eff. Number	of obs	6524	6763
Order e	st. (p)	2	2
Order b	ias (q)	3	3
BW e	st. (h)	0.062	0.065

Number of obs = 76740
Model = unrestricted
BW method = comb
Kernel = triangular
VCE method = jackknife

Running variable: x.

Method	Т	P> T
Conventional	-0.4940	0.6213
Robust	2.3461	0.0190

P-values of binomial tests. (H0: prob = .5)

Window Length / 2	<c< th=""><th>>=c</th><th>P> T </th></c<>	>=c	P> T
0.000 0.000 0.000 0.000 0.000 0.000 0.000	0 0 0 0 0 0	66 66 66 66 66 66 66 66 66 66 66 66 66	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.000	ŏ	66	0.0000

```
79. graph export "$do loc/graphs/q1c 55.png", ///
          width (120\overline{0}) height (900) 7//
           replace
  file C:/Users/yfkas/Documents/GitHub/ARE213 Fall2023/PSet 4/Stata/graphs/q1c 55.png
    saved as PNG format
80.
81. /*
 > This algorithm compares densities below and above the cutoff using
 > bandwidths calculated as follows:
           1) minimize the MSE of each density estimator to the L and R separately
           2) minimize the MSE of the difference of the two density estimators
           3) repeat (2) for the sum
           3) Take the median of the three bandwidths.
 > I have also set it to use a triangular kernel to emphasize observations
 > closer to the cutoff. One notices that shifting the cutoff slightly around
 > c=0.5 shows that indeed there appears to be manipulation at c = 0.5 but not
 > at those other points.
82.
83.
 end of do-file
84. do "$do loc/02 q1d.do"
85. /*
 > Title:
                  02_q1d.do
 > Purpose:
                  Question 1.d, PSet 4
86.
87.
88. /* -----
 > 1d Drop inconclusive races and repeat q1b and c
89.
90. use "$dta_loc/pset4_clean.dta", clear
92. drop if x == 0.5
 (956 observations deleted)
93.
94.
95.
96. // repeat 1b ------
97. // Visual test
98. rdplot w x, ///
> p(2) ///
           c(0.5) ///
           masspoints(adjust) ///
           /// bwselect(mserd) ///
           kernel(tri) ///
           binselect(espr) ///
           graph options(legend(position(6))) ///
           ci(95) ///
           shade
 Mass points detected in the running variable.
```

RD Plot with evenly spaced number of bins using polynomial regression.

Cutoff c = .5	Left of c	Right of c	Number of obs Kernel	= 75784 = Triangular
Number of obs Eff. Number of obs	41656 41656	34128 34128	Reflict	IIIangulai
Order poly. fit (p)	2	2		
BW poly. fit (h)	0.500	0.500		
Number of bins scale	1.000	1.000		

	Left of c	Right of c
Bins selected	11	20
Average bin length	0.045	0.025
Median bin length	0.045	0.025
IMSE-optimal bins	11	20
Mimicking Var. bins	778	609
Rel. to IMSE-optimal:	1.000 0.500 0.500	1.000 0.500 0.500

99. 100 // Statistical test

101 rdperm x w, c(0.5) perm(500) // fails to reject equality RD Distribution Test using permutations.

Cutoff	c =		. 5	Left	of c	Right o	fс	Number o	f obs	=	75784
								Fixed q		=	383
	Number	of	obs	4	1656	34	128	Number o	f perms	=	500
Eff.	number	of	obs		383		383	Test sta	tistic	=	C√M
Eff.	neighbo	ourh	nood	0081	9671	.00887	573				
Running	variab]	۱ -		x							

Covariates

P.value Result .186

```
102 cdfplot w if w < 500, by (win)
  (0 observations deleted)
```

```
103 graph export "$do_loc/graphs/qld_cdfs.png", ///
         width(1200) height(900) 7//
           replace
```

file C:/Users/yfkas/Documents/GitHub/ARE213 Fall2023/PSet 4/Stata/graphs/qld cdfs.png saved as PNG format

```
104 // although still visually apparent that CDFs diverge early on
105
106
107
108 // repeat 1c -----
109 hist x // histogram seems ok
 (bin=48, start=0, width=.02083333)
```

111 // try rddensity

112 rddensity x, c(0.45) plot kernel(triangular) all

Computing data-driven bandwidth selectors.

Point estimates and standard errors have been adjusted for repeated observations. (Use option nomasspoints to suppress this adjustment.)

RD Manipulation test using local polynomial density estimation.

c = 0.450	Left of c	Right of c	Number of ob Model	_	75784 unrestricted
Number of obs	35726	40058	BW method	=	comb
Eff. Number of obs Order est. (p)	8399	8200 2	Kernel VCE method	=	triangular jackknife
Order bias (q) BW est. (h)	0.059	3 0.076			

Running variable: x.

T P> T	Т	Method
4.5365 0.0000 0.3655 0.7148		Conventional Robust

P-values of binomial tests. (H0: prob = .5)

Window Length / 2	<c< th=""><th>>=c</th><th>P> T </th></c<>	>=c	P> T
0.000 0.000 0.000 0.000 0.000 0.000 0.000	89 89 89 89 89 89	0 0 0 0 0 0	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.000	89	0	0.0000

> replace

file C:/Users/yfkas/Documents/GitHub/ARE213_Fall2023/PSet 4/Stata/graphs/qld_45.png saved as PNG format

114

115 rddensity x, c(0.5) plot kernel(triangular) all Computing data-driven bandwidth selectors.

Point estimates and standard errors have been adjusted for repeated observations. (Use option *nomasspoints* to suppress this adjustment.)

RD Manipulation test using local polynomial density estimation.

c = 0.5	500	Left of c	Right of c
Number of		41656	34128
Eff. Number of of Order est.		6591 2	5156 2
Order bias BW est.	(q) (h)	3 0.055	0.053

Number of obs = 75784

Model = unrestricted

BW method = comb

Kernel = triangular

VCE method = jackknife

Running variable: x.

Method	Т	P> T
Conventional	-3.8780	0.0001
Robust	-3.4202	0.0006

P-values of binomial tests. (H0: prob = .5)

Window Length / 2	<0	>=c	P> T
0.002 0.003 0.005 0.007 0.008 0.010 0.012 0.013 0.015 0.017	11 62 140 269 404 575 808 1008 1236 1544	9 45 120 237 345 484 649 795 976 1200	0.8238 0.1215 0.2386 0.1681 0.0340 0.0057 0.0000 0.0000

Point estimates and standard errors have been adjusted for repeated observations. (Use option *nomasspoints* to suppress this adjustment.)

RD Manipulation test using local polynomial density estimation.

c = 0.550	Left of c	Right of c
Number of obs	46416	29368
Eff. Number of obs	5638	6763
Order est. (p)	2	2
Order bias (q)	3	3
BW est. (h)	0.062	0.065

Number of obs = 75784

Model = unrestricted

BW method = comb

Kernel = triangular

VCE method = jackknife

Running variable: x.

120

Method	Т	P> T
Conventional	-2.0580	0.0396
Robust	5.0569	0.0000

P-values of binomial tests. (H0: prob = .5)

Window Length / 2	<c< th=""><th>>=c</th><th>P> T </th></c<>	>=c	P> T
0.000 0.000 0.000 0.000 0.000 0.000 0.000	0 0 0 0 0 0	66 66 66 66 66 66	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.000	0	66	0.0000

file C:/Users/yfkas/Documents/GitHub/ARE213_Fall2023/PSet 4/Stata/graphs/q1d_55.png
 saved as PNG format

```
123
124 save "$dta loc/pset4 trim.dta", replace
  file C:/Users/yfkas/Dropbox (Personal)/ARE213/Pset4/pset4_trim.dta saved
125
126
127
  end of do-file
128 do "$do_loc/02_q1e.do"
129 /*
  > Title:
                   02_q1e.do
  > Purpose:
                   Question 1.e, PSet 4
  > */
130
131
132
133 /* ------
  > 1d Redefine x and
  > */
134 use "$dta loc/pset4 trim.dta", clear
135 gen xp = votes_for - votes_against, after(x)
136 sort xp
137
138 // cdfplot xp
140 xtile xp_100 = xp, nq(100)
141 // scatter xp_100 xp
142 // drop if inlist(xp_100, 1,2,99,100)
144\ // Test for continuity of mean firm size around the cutoff. 145\ // Visual test
146 rdplot w xp if !inlist(xp_100, 1,2,99,100) , ///
           p(2) ///
           c(0) ///
           masspoints(adjust) ///
           bwselect(mserd) ///
           h(`h_l' `h_r') ///
kernel(tri) ///
           binselect(espr) ///
            graph_options(legend(position(6))) ///
            ci(95) ///
            shade
  Mass points detected in the running variable.
```

RD Plot with evenly spaced number of bins using polynomial regression.

Cutoff c = 0	Left of c	Right of c	Number of obs Kernel	= 72756 = Triangular
Number of obs Eff. Number of obs	40138 40138	32618 32618	Reffici	rrangarar
Order poly. fit (p)	2	2		
BW poly. fit (h)	159.000	148.000		
Number of bins scale	1.000	1.000		

Outcome: w. Running variable: xp.

	Left of c	Right of c
Bins selected	30	16
Average bin length	5.300	9.250
Median bin length	5.300	9.250
IMSE-optimal bins	30	16
Mimicking Var. bins	346	137
Rel. to IMSE-optimal:	1.000 0.500 0.500	1.000 0.500 0.500

```
147 graph export "$do loc/graphs/qle.png", ///
            width (120\overline{0}) height (900) ///
            replace
  file C:/Users/yfkas/Documents/GitHub/ARE213_Fall2023/PSet 4/Stata/graphs/q1e.png
      saved as PNG format
148
149
150 /* 1e and 1f Ans:
  > 1e: Redefining x as the difference shows that firms tend to be smaller if the race
  > is close. That is, larger firms have larger majorities either for or against.
  > 1f: From the exercise in qld, it appears that there is indeed bunching
  > that causes close races. Dropping inconclusive races results in balance tests
  > that fail to reject the identifying assumption of the continuity of potential
 > outcomes which we test using balance of w and x at the cutoff.
  > */
151
152 save "$dta loc/pset4 trim2.dta", replace
  file C:/Users/yfkas/Dropbox (Personal)/ARE213/Pset4/pset4_trim2.dta saved
153
154
155
156
  end of do-file
157 do "$do loc/02 q2a.do"
158 /*
 > Title:
                    02 q2a.do
                    Question 2.a, PSet 4
  > Purpose:
 > */
159
160
161
162 use "$dta loc/pset4 trim2.dta", clear
163
```

```
164 \text{ gen y} = \text{logwage}
165
166 scatter y x
167 graph export "$do loc/graphs/q2a yx.png", ///
            width (120\overline{0}) height (900) 7//
            replace
  file C:/Users/yfkas/Documents/GitHub/ARE213 Fall2023/PSet 4/Stata/graphs/q2a yx.png
      saved as PNG format
168
169 // statistically inspect ATE at c
170 reg y i.win##c.margin // Local linear regression
        Source
                        SS
                                      df
                                                MS
                                                         Number of obs
                                                                          =
                                                                               75,784
                                                         F(3, 75780)
                                                                          =
                                                                                435.10
         Model
                   1098.54679
                                        3
                                           366.182262
                                                         Prob > F
                                                                          =
                                                                                0.0000
      Residual
                   63776.1907
                                  75,780
                                          .841596605
                                                         R-squared
                                                                                0.0169
```

				_ Adi	R-squared	=	0.0169
Total	64874.7375	75,783	.85605924			=	.91739
У	Coefficient	Std. err.	t	P> t	[95% conf		interval]
1.win margin	.1551971 .1714447	.0118305 .0397388	13.12 4.31	0.000	.1320094 .0935568		.1783848 .2493326
win#c.margin 1	.0565245	.0505913	1.12	0.264	0426343		.1556833
_cons	11.34204	.0082005	1383.09	0.000	11.32597		11.35812

171 rdrobust y x, p(1) c(0.5) h(0.5) kernel(uniform)

Sharp RD estimates using local polynomial regression.

Cutoff $c = .5$	Left of c	Right of ${f c}$	Number of ok		75784 Manual
Number of obs	41656	34128	BW type Kernel	=	Uniform
Eff. Number of obs Order est. (p)	41656 1	34128 1	VCE method	=	NN
Order bias (q) BW est. (h)	0.500	2 0.500			
BW bias (b) rho (h/b)	0.500 1.000	0.500 1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.1552	.01161	13.3654 8.7974		.132438 .118795	.177956

Mass points detected in the running variable.

RD Plot with evenly spaced number of bins using polynomial regression.

Cutoff c = .5	Left of c	Right of ${f c}$
Number of obs Eff. Number of obs Order poly. fit (p) BW poly. fit (h) Number of bins scale	41656 41656 1 0.500 1.000	34128 34128 1 0.500 1.000

Number of obs = 75784 Kernel = Triangular

Outcome: y. Running variable: x.

	Left of c	Right of c
Bins selected	6	6
Average bin length	0.083	0.083
Median bin length	0.083	0.083
IMSE-optimal bins	6	6
Mimicking Var. bins	604	599
Rel. to IMSE-optimal:	1.000 0.500 0.500	1.000 0.500 0.500

175 graph export "\$do_loc/graphs/q2a h50.png", ///
> width(1200) height(900) 7//
> replace

file C:/Users/yfkas/Documents/GitHub/ARE213_Fall2023/PSet 4/Stata/graphs/q2a_h50.png saved as PNG format

176

177 // setting h by minimizing MSE tightens the bandwidth and exagerates the ATE 178 rdrobust y x, p(1) c(0.5) kernel(uniform)

Mass points detected in the running variable.

Sharp RD estimates using local polynomial regression.

Cutoff c = .5	Left of c	Right of c	Number of obs BW type	=	75784 mserd
Number of obs Eff. Number of obs Order est. (p)	41656 14499 1	34128 11060 1	Kernel VCE method	= =	Uniform NN
Order bias (q) BW est. (h) BW bias (b) rho (h/b) Unique obs	0.110 0.206 0.533 7352	0.110 0.206 0.533 5274			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.17225	.02428	7.0948 6.0272	0.000 0.000	.124668 .117361	.219839

Estimates adjusted for mass points in the running variable.

179 local h_l `e(h_l)'

Mass points detected in the running variable.

RD Plot with evenly spaced number of bins using polynomial regression.

= Triangular

Cutoff c = .5	Left of c	Right of ${f c}$	Number of obs Kernel	=
Number of obs Eff. Number of obs	41656 14499	34128 11060	Verlier	
Order poly. fit (p) BW poly. fit (h)	1 0.110	1 0.110		
Number of bins scale	1.000	1.000		

Outcome: y. Running variable: x.

	Left of c	Right of c
Bins selected verage bin length Median bin length	6 0.083 0.083	6 0.083 0.083
IMSE-optimal bins micking Var. bins	6 604	6 599
to IMSE-optimal: Implied scale WIMSE var. weight WIMSE bias weight	1.000 0.500 0.500	1.000 0.500 0.500

182 graph export "\$do_loc/graphs/q2a_hopt.png", ///

```
width (120\overline{0}) height (900) 7//
            replace
  file C:/Users/yfkas/Documents/GitHub/ARE213 Fall2023/PSet
      4/Stata/graphs/q2a hopt.png saved as PNG format
183
184 /*
 > // plotting xp against y is very different and sensitive to outliers
  > rdplot y xp if !inlist(xp_100, 1,2,99,100), ///
           p(2) ///
            c(0.5) ///
            masspoints(adjust) ///
            /// bwselect(mserd) ///
            kernel(tri) ///
            binselect(espr) ///
            graph_options(legend(position(6))) ///
            ci(95) ///
            shade
 > rdplot y xp, ///
> p(2) ///
            c(0.5) ///
            masspoints(adjust) ///
            /// bwselect(mserd) ///
            kernel(tri) ///
            binselect(espr) ///
            graph_options(legend(position(6))) ///
            ci(95) ///
```

```
shade
  > */
185
186
187 /* 2a Discuss:
  > Upon visual inspection, the outcome appears to follow a local linear trend > on both sides of the cutoff. I therefore implement a local linear regression
  > using the full range of the running variable as a bandwidth. I also use a
  > uniform kernel but a triangular one does not change the results by much. My
  > approach is thus equivalent to a specification where the treatment and the
  > margin (running variable less cutoff) are fully interacted. A local linear
  > specification is not always the most informative because the conditional
  > expectation of Y given X can have some curvature. In our case, it apparently
  > does not.
  > The effect is a statistically significant positive number.
  > 2c: see discussion above.
  > */
188
189
190
  end of do-file
191 do "$do_loc/02_q2b.do"
  > Title:
                     02 q2b.do
  > Purpose:
                     Question 2.b, PSet 4
 > */
193
194 /*
  > What's the estimand? The estimand is \hat{tau}, the same one as in slide 15.
  > Larger or smaller firms? As we showed in q 1
195
196 use "$dta loc/pset4 trim2.dta", clear
197
198 gen y = logwage
200 rdrobust y x, p(1) c(0.5) kernel(uniform)
  Mass points detected in the running variable.
```

Sharp RD estimates using local polynomial regression.

Cutoff c = .5	Left of c	Right of c	Number of ob BW type	s = =	75784 mserd
Number of obs	41656	34128	Kernel	=	Uniform
Eff. Number of obs	14499	11060	VCE method	=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	0.110	0.110			
BW bias (b)	0.206	0.206			
rho (h/b)	0.533	0.533			
Unique obs	7352	5274			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.17225	.02428	7.0948 6.0272	0.000	.124668 .117361	.219839

Estimates adjusted for mass points in the running variable.

```
201 local h l `e(h l)'
202 local h_r `e(h_r)'
203 rdplot y x, ///
            p(1) ///
            c(0.5) ///
            masspoints(adjust) ///
            /// bwselect(mserd) ///
            h(`h_l' `h_r') ///
kernel(tri) ///
            binselect(espr) ///
            graph_options(legend(position(6))) ///
            ci(95) ///
            shade
```

Mass points detected in the running variable.

RD Plot with evenly spaced number of bins using polynomial regression.

Cutoff c = .5	Left of c	Right of c	Number of obs Kernel	= 75784 = Triangular
Number of obs Eff. Number of obs Order poly. fit (p) BW poly. fit (h) Number of bins scale	41656 14499 1 0.110 1.000	34128 11060 1 0.110 1.000	ROTHOL	TTTUNGTUT

Outcome: y. Running variable: x.

	Left of c	Right of c
Bins selected	6	6
Average bin length	0.083	0.083
Median bin length	0.083	0.083
IMSE-optimal bins	6	6
Mimicking Var. bins	604	599
Rel. to IMSE-optimal:	1.000 0.500 0.500	1.000 0.500 0.500

```
205 // around the cutoff, firms are not larger 206 gen localtobw = inrange(x, 0.5-`h_1', 0.5+`h_r')
```

207 ttest w, by(localtobw)

Two-sample t test with equal variances

Group	Obs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
0	50,225 25,559	131.7441 134.3151	1.663188 1.482614	372.736 237.0283	128.4842 131.4091	135.004 137.2211
Combined	75,784	132.6112	1.210376	333.203	130.2389	134.9835
diff		-2.571003	2.560152		-7.588889	2.446883

```
diff = mean(0) - mean(1)
                                                                 t = -1.0042
H0: diff = 0
                                                 Degrees of freedom =
                                                                        75782
```

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0 Pr(T < t) = 0.1576Pr(|T| > |t|) = 0.3153Pr(T > t) = 0.8424

```
208
  end of do-file
209 do "$do loc/02 q2d.do"
210 /*
  > Title:
                      02_q2d.do
  > Purpose:
                     Question 2.d, PSet 4
211
212
213
214 use "$dta loc/pset4 trim2.dta", clear
216 gen y = logwage
217
218 local h max = 50
219 local step = 50
220 forval i = 1(`=`h max'/`step'')`h max'
                dis "rdrobust with h(`i'/100)"
                qui rdrobust y x, p(1) c(0.5) h(i'/100) kernel(uniform)
    4.
221
             // get stats
             local tau_`i' = `e(tau_cl)'
  local z_bc = e(tau_bc) / e(se_tau_rb)
  local bc_lb_`i' = e(tau_bc) - invnormal(0.975)*e(se_tau_rb)
  local bc_ub_`i' = e(tau_bc) + invnormal(0.975)*e(se_tau_rb)
222
    5.
    6.
    7.
    8. }
  rdrobust with h(1/100)
  rdrobust with h(2/100)
  rdrobust with h(3/100)
  rdrobust with h(4/100)
  rdrobust with h(5/100)
  rdrobust with h(6/100)
  rdrobust with h(7/100)
  rdrobust with h(8/100)
  rdrobust with h(9/100)
  rdrobust with h(10/100)
  rdrobust with h(11/100)
  rdrobust with h(12/100)
  rdrobust with h(13/100)
  rdrobust with h(14/100)
  rdrobust with h(15/100)
  rdrobust with h(16/100)
  rdrobust with h(17/100)
  rdrobust with h(18/100)
  rdrobust with h(19/100)
  rdrobust with h(20/100)
  rdrobust with h(21/100)
  rdrobust with h(22/100)
  rdrobust with h(23/100)
  rdrobust with h(24/100)
  rdrobust with h(25/100)
  rdrobust with h(26/100)
  rdrobust with h(27/100)
  rdrobust with h(28/100)
  rdrobust with h(29/100)
  rdrobust with h(30/100)
  rdrobust with h(31/100)
  rdrobust with h(32/100)
  rdrobust with h(33/100)
  rdrobust with h(34/100)
  rdrobust with h(35/100)
  rdrobust with h (36/100)
  rdrobust with h(37/100)
  rdrobust with h(38/100)
  rdrobust with h(39/100)
```

```
rdrobust with h(40/100)
  rdrobust with h (41/100)
  rdrobust with h(42/100)
  rdrobust with h(43/100)
  rdrobust with h(44/100)
  rdrobust with h (45/100)
  rdrobust with h(46/100)
  rdrobust with h(47/100)
  rdrobust with h (48/100)
  rdrobust with h(49/100)
  rdrobust with h(50/100)
223
224
225 // plot estimates and SEs against bandwidth
226 clear
227 set obs `step'
 Number of observations ( N) was 0, now 50.
228 \text{ gen h} = .
  (50 missing values generated)
229 gen tau = .
  (50 missing values generated)
230 \text{ gen rb\_lb} = .
  (50 missing values generated)
231 gen rb ub =
  (50 missing values generated)
232
233 forval i = 1/\hat{}= N' {
                                = `i'/`h_max' in `i'
= `tau_`i'' in `i'
                replace h
    2.
                replace h = i'/h max' in i'
replace tau = `tau `i'' in `i'
replace rb lb = `bc lb `i'' in `i'
replace rb ub = `bc ub `i'' in `i'
    3.
    4.
    6. }
  (1 real change made)
  (1 real change made)
```

(1 real change made) (1 real change made)

```
(1 real change made)
  (1 real change made)
235 label var rb ub "Bias-corrected upper bound (95% CI)"
                       "Conventional local-polynomial RD estimate"
236 label var tau
237 label var rb lb "Bias-corrected lower bound (95% CI)"
238 label var h "Bandwidth"
239 twoway (line rb_ub h, lpattern(dash) lcolor(grey)) ///
                        (line tau h, lcolor(black)) ///
                       (line rb lb h, lpattern(dash) lcolor(grey)), ///
                       legend(position(6)) ytitle("Estimate") ///
yline(0, lcolor(red) lpattern(solid))
  (note: named style grey not found in class color, default attributes used)
  (note: named style grey not found in class color, default attributes used) (note: named style grey not found in class color, default attributes used) (note: named style grey not found in class color, default attributes used)
241 graph export "$do loc/graphs/q2d.png", ///
            width (120\overline{0}) height (900) ///
             replace
  file C:/Users/yfkas/Documents/GitHub/ARE213 Fall2023/PSet 4/Stata/graphs/q2d.png
       saved as PNG format
242
243
244 /* As the bandwidth increases, the estimates become less biased in this
  > local linear setting.
245
246
  end of do-file
247 do "$do loc/02 q2e.do"
```

```
248 /*
  > Title:
                       02 q2e.do
  > Purpose:
                         Question 2.e, PSet 4
249 /*
  > 2.E Alter the cutoff.
  > */
250
251 use "$dta loc/pset4 trim2.dta", clear
253 \text{ gen y} = logwage
255 local c_range 30(10)70
257 forval i = 1/41 {
                   local c = 29+i' // c = 30(1)70
              gen margin_`c' = x - `c'/100
  gen win_`c' = x > `c'/100
258
     5. }
259
260 // Local linear regression
261 /*
  > forval i = 1/41  {
               local c = 29+i' // c = 30(1)70
               if `c' < 50 reg y i.win_`c'##c.margin_`c' if x < 0.5 else if `c' == 50 reg y i.win_`c'##c.margin_`c' else if `c' > 50 reg y i.win_`c'##c.margin_`c' if x > 0.5
262
263 local rdopts ""
264 \text{ forval i} = 1/41  {
265
               // get c
              local c = 29+`i' // c= 30(1)70
local c_reg = `c'/100
266
    3.
     4.
267
                        `c' < 50 rdrobust y x if x < 0.5, c(`c reg') p(1) h(50/100) kernel(
  > uniform)
                   else if c' == 50 rdrobust y x,
                                                                                       c(`c reg') p(1) h(50/
  > 100) kernel(uniform)
                else if c' > 50 rdrobust y x if x > 0.5, c(c = 0) p(1) h(50/100) kern
    6.
  > el(uniform)
    7.
268
               // get stats
               // get stats
local tau_`c' = `e(tau_cl)'
  dis "tau_`c' = `tau_`c'!"
  local z bc = e(tau_bc) / e(se_tau_rb)
269
    8.
    9.
                   local bc_lb_`c' = e(tau_bc) - invnormal(0.975)*e(se_tau_rb) local bc_ub_`c' = e(tau_bc) + invnormal(0.975)*e(se_tau_rb)
   10.
   11.
   12. }
```

Cutoff c = .3	Left of c	Right of ${f c}$	Number of obs BW type	=	41656 Manual
Number of obs	15195 15195	26461 26461	Kernel VCE method	=	Uniform NN
Order est. (p) Order bias (q)	15195	1	VCE Method	_	ININ
BW est. (h)	0.500	0.500			
BW bias (b) rho (h/b)	0.500 1.000	0.500 1.000			

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	<pre>Interval]</pre>
Conventional Robust	.01502	.01845			021149 056689	.051192 .049096

 $tau_30 = .015021428558839$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .31$	Left of c	Right of ${f c}$	Number of obs =	41656
Number of obs	16406	25250	BW type = Kernel =	
Eff. Number of obs	16406	25250	VCE method =	
Order est. (p)	1	1		
Order bias (q)	2	2		
BW est. (h) BW bias (b)	0.500	0.500 0.500		
rho (h/b)	1.000	1.000		

Outcome: y. Running variable: \mathbf{x} .

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.00878	.01824			026983 067179	.044535

 $tau_31 = .0087761259873247$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .32$	Left of c	Right of c	Number of ob	s = =	41656 Manual
Number of obs	17674	23982	1.021.02	=	Uniform
Eff. Number of obs Order est. (p)	17674	23982 1	VCE method	=	NN
Order bias (q) BW est. (h)	0.500	2 0.500			
BW bias (b) rho (h/b)	0.500 1.000	0.500 1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	<pre>Interval]</pre>
Conventional Robust	.01224	.0181			023234 056797	.047722 .046711

tau 32 = .0122437935695849

Sharp RD estimates using local polynomial regression.

Cutoff $c = .33$	Left of c	Right of ${f c}$	Number of ob		41656
Number of obs	18859	22797	BW type Kernel	=	Manual Uniform
Eff. Number of obs	18859	22797	VCE method	=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	<pre>Interval]</pre>
Conventional Robust	.02172	.01802	1.2052 0.6917	0.228 0.489	013602 0333	.057044

 $tau_33 = .0217211098977259$

Sharp RD estimates using local polynomial regression.

41656 Manual	bs = =	Number of ob	Right of c	Left of c	Cutoff c = .34
Uniform	=	BW type Kernel	21595	20061	Number of obs
NN	=	VCE method	21595 1	20061	Eff. Number of obs Order est. (p)
			2	2	Order bias (q)
			0.500 0.500	0.500 0.500	BW est. (h) BW bias (b)
			1.000	1.000	rho (h/b)

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.01245	.018			022836 048578	.047727

 $tau_34 = .0124454009049089$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .35$	Left of c	Right of $oldsymbol{c}$	Number of ob)S = =	41656 Manual
Number of obs	21507	20149	BW type Kernel	=	Uniform
Eff. Number of obs	21507	20149	VCE method	=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.01003	.01816			025558 049084	.045622

 $tau_35 = .0100319166975602$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .36$	Left of c	Right of ${f c}$	Number of ob	-	41656
Number of obs	22802	18854	BW type Kernel	=	Manual Uniform
Eff. Number of obs	22802	18854	VCE method	=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h) BW bias (b)	0.500 0.500	0.500 0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
Conventional	.01462	.01828	0.8000	0.424	0212	.050 444
Robust		-	0.6753	0.499	03406	.069868

 $tau_36 = .0146219233892815$

Cutoff c = .37	Left of c	Right of c	Number of ok	os = =	41656 Manual
Number of obs	24211	17445	BW type Kernel	=	Uniform
Eff. Number of obs Order est. (p)	24211	17445 1	VCE method	=	NN
Order bias (q) BW est. (h)	0.500	0.500			
BW bias (b) rho (h/b)	0.500 1.000	0.500 1.000			

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	00777 -	.01851	-0.4198 -0.9555		04406 078265	.028515 .026964

 $tau_37 = -.0077726241658844$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .38$	Left of c	Right of ${f c}$	Number of ob	s = =	41656 Manual
Number of obs	25775	15881	1.021.02	=	Uniform
Eff. Number of obs Order est. (p)	25775 1	15881 1	VCE method	=	NN
Order bias (q)	2	2			
BW est. (h) BW bias (b)	0.500 0.500	0.500 0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	01689 -	.01906			054254 102506	.020466 .007793

 $tau_38 = -.0168941355655257$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .39$	Left of c	Right of ${f c}$	Number of obs		41656
Number of obs	27154	14502	BW type Kernel	=	Manual Uniform
Eff. Number of obs	27154	14502		=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.00011	.01954		0.995 0.734	038175 066784	.038403

 $tau_39 = .0001140979514993$

Cutoff $c = .4$	Left of c	Right of $oldsymbol{c}$	Number of ob	os = =	41656 Manual
Number of obs	28253	13403	BW type Kernel	=	Uniform
Eff. Number of obs Order est. (p)	28253 1	13403 1	VCE method	=	NN
Order bias (q)	2	2			
BW est. (h) BW bias (b) rho (h/b)	0.500 0.500 1.000	0.500 0.500 1.000			

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	01523				053441 095815	.022982 .013159

 $tau_40 = -.0152294819179382$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .41$	Left of c	Right of ${f c}$	Number of ob	s = =	41656 Manual
Number of obs	29990	11666	1.021.02	=	Uniform
Eff. Number of obs Order est. (p)	29990	11666 1	VCE method	=	NN
Order bias (q)	0.500	0.500			
BW est. (h) BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	01446	.02069			055012 108443	.026099

 $tau_41 = -.0144561424662797$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .42$	Left of c	Right of ${f c}$	Number of obs		41656
Number of obs	31455	10201	BW type Kernel	=	Manual Uniform
Eff. Number of obs	31455	10201		=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	00157 -	.0219	-0.0715 -0.8279		04449 089807	.041358 .036469

 $tau_42 = -.0015662699972339$

Cutoff c = .43	Left of c	Right of c	Number of ob BW type	s = =	41656 Manual
Number of obs	32904	8752	Kernel	=	Uniform
Eff. Number of obs Order est. (p)	32904	8752 1	VCE method	=	NN
Order bias (q) BW est. (h)	0.500	2 0.500			
BW bias (b) rho (h/b)	0.500	0.500 1.000			

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.00041	.0236			045843 094178	.046671

 $tau_43 = .0004143517504502$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .44$	Left of c	Right of ${f c}$	Number of obs	s = =	41656 Manual
Number of obs	34314	7342	1.011.01	=	Uniform
Eff. Number of obs Order est. (p)	34314 1	7342 1	VCE method	=	NN
Order bias (q) BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.00958	.0252	0.3801 0.1102	0.704 0.912	03982 0696	.058982

 $tau_44 = .0095809283334063$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .45$	Left of c	Right of ${f c}$	Number of obs		41656
Name to the second of the seco	25706	F020	BW type	=	Manual
Number of obs	35726	5930	1.021.02	=	Uniform
Eff. Number of obs	35726	5930	VCE method	=	NN
Order est. (p)	1	Ī			
Order bias (q)	2	2			
BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.02032	.0279			034359 031722	.074992 .135257

 $tau_45 = .0203162987549561$

Cutoff c = .46	Left of c	Right of c	Number of obs BW type	s = =	41656 Manual
Number of obs	36962	4694	Kernel	=	Uniform
Eff. Number of obs Order est. (p)	36962	4694 1	VCE method	=	NN
Order bias (q) BW est. (h)	0.500	2 0.500			
BW bias (b) rho (h/b)	0.500 1.000	0.500 1.000			

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	03429	.03026			093603 141402	.025016

 $tau_46 = -.0342936662187014$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .47$	Left of c	Right of $oldsymbol{c}$	Number of ob		41656
Number of she	20420	2026	BW type	=	Manual
Number of obs	38420 38420	3236 3236	Kernel	=	Uniform
Eff. Number of obs	38420	3236	VCE method	=	NN
Order est. (p)	2	2			
Order bias (q)	0.500	0.500			
BW est. (h)	0.500	0.500			
BW bias (b)	1.000				
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.01087	.0372	0.2923 1.3783		062032 031512	.083775 .180843

 $tau_47 = .0108714762746409$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .48$	Left of c	Right of ${f c}$	Number of obs		41656
Nla a a a fa a la a	39677	1979	BW type Kernel	=	Manual Uniform
Number of obs	39677	1979		=	
Eff. Number of obs	390//	19/9	VCE method	_	NN
Order est. (p)	1	1			
Order bias (q)	2 500	2 500			
BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	08226 -	.04421			168909 239282	.004393 .033311

 $tau_48 = -.0822580530512731$

Cutoff $c = .49$	Left of c	Right of c	Number of obs BW type	s = =	41656 Manual
Number of obs	41088 41088	568 568	Kernel VCE method	=	Uniform NN
Order est. (p) Order bias (q)	1 2	1 2	ven meerioa		1111
BW est. (h) BW bias (b) rho (h/b)	0.500 0.500 1.000	0.500 0.500 1.000			

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.03427	.08067			123841 141107	.192383

 $tau_49 = .0342712501831883$

Sharp RD estimates using local polynomial regression.

Cutoff c = .5	Left of c	Right of ${f c}$	Number of ok	os = =	75784 Manual
Number of obs	41656	34128	BW type Kernel	=	Uniform
Eff. Number of obs Order est. (p)	41656 1	34128 1	VCE method	=	NN
Order bias (q) BW est. (h)	0.500	2 0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.1552	.01161	13.3654 8.7974	0.000	.132438 .118795	.177956

 $tau_50 = .155197106007666$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .51$	Left of c	Right of ${f c}$	Number of ob	-	34128
Number of obs	482	33646	BW type Kernel	=	Manual Uniform
Eff. Number of obs	482	33646	VCE method	=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	01941 -	.06182			140574 215795	.101744 .116378

 $tau_51 = -.0194146579748917$

Cutoff c = .52	Left of c	Right of c	Number of ok	os = =	34128 Manual
Number of obs	1666	32462	BW type Kernel	=	Uniform
Eff. Number of obs Order est. (p)	1666 1	32462 1	VCE method	=	NN
Order bias (q) BW est. (h)	0.500	2 0.500			
BW bias (b) rho (h/b)	0.500 1.000	0.500 1.000			

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	04578 -	.03491			114198 131196	.022631 .054293

 $tau_52 = -.0457833334740378$

Sharp RD estimates using local polynomial regression.

Cutoff c = .53	Left of c	Right of ${f c}$	Number of ol	os = =	34128 Manual
Number of obs	2632	31496	BW type Kernel	=	Uniform
Eff. Number of obs Order est. (p)	2632	31496 1	VCE method	=	NN
Order bias (q)	2	2			
BW est. (h) BW bias (b)	0.500	0.500 0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	01349 -	.03108			074413 103083	.047435

 $tau_53 = -.0134892261037152$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .54$	Left of c	Right of c	Number of obs BW type	: = =	34128 Manual
Number of obs	3769	30359	Kernel	=	Uniform
Eff. Number of obs Order est. (p)	3769 1	30359 1	VCE method	=	NN
Order bias (q)	2	2			
BW bias (b)	0.500	0.500			
BW est. (h)	0.500	0.500 0.500 1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.01915	.02587	0.7401 1.0729	0.200	031555 033464	.069846 .114405

 $tau_54 = .0191453971836175$

Cutoff c = .55	Left of c	Right of c	Number of ol	os = =	34128 Manual
Number of obs	4760	29368	BW type Kernel	_	Uniform
Eff. Number of obs	4760	29368	VCE method	=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.01545	.02415			031895 051888	.062789 .091689

 $tau_55 = .0154470996587825$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .5600000$)000000001 Le	eft of c Right	of c	Number of ob		34128
27	F0.60	00060			=	Manual
Number of obs	5868	28260		Kernel	=	Uniform
Eff. Number of obs	5868	28260		VCE method	=	NN
Order est. (p)	1	1				
Order bias (q)	2	2				
BW est. (h)	0.500	0.500				
BW bias (b)	0.500	0.500				
rho (h/b)	1.000	1.000				

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.00461	.02197			038451 082074	.047664 .047381

 $tau_56 = .0046067195915391$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .57$	Left of c	Right of ${f c}$	Number of ol		34128
Number of obs	6972	27156	BW type Kernel	=	Manual Uniform
Eff. Number of obs	6972	27156 27156	VCE method	=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	00931 -				049921 106717	.031305

 $tau_57 = -.0093076136005159$

Cutoff c = .58	Left of c	Right of c	Number of ob BW type	s = =	34128 Manual
Number of obs	8095	26033	Kernel	=	Uniform
Eff. Number of obs Order est. (p)	8095 1	26033 1	VCE method	=	NN
Order bias (q) BW est. (h)	0.500	0.500			
BW bias (b) rho (h/b)	0.500 1.000	0.500 1.000			

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.02369	.01955			014619 027958	.062006 .086587

 $tau_58 = .0236935265799367$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .59$	Left of c	Right of ${f c}$	Number of ob	os = =	34128 Manual
Number of obs	9067	25061	BW type Kernel	=	Uniform
Eff. Number of obs Order est. (p)	9067	25061 1	VCE method	=	NN
Order bias (q)	2	2			
BW est. (h) BW bias (b)	0.500	0.500 0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	 Z	P> z	[95% Conf.	Interval]
Conventional Robust	.03116	.01912	1.6299 1.4291		006312 015403	.068641

 $tau_59 = .0311646223006825$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .6$	Left of c	Right of ${f c}$	Number of ob	-	34128
Number of obs	9868	24260	BW type Kernel	=	Manual Uniform
Eff. Number of obs	9868	24260	VCE method	=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional	.03126	.01894	1.6509		005854	.068377
Robust	-	-	1.1919		022494	.092316

 $tau_60 = .0312615341529892$

Cutoff $c = .61$	Left of c	Right of c	Number of obs		34128 Manual
27 1 6 1	11000	00060	BW type	=	
Number of obs	11060	23068	Kernel	=	Uniform
Eff. Number of obs	11060	23068	VCE method	=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.02702	.01788			008017 025451	.062065 .078789

 $tau_61 = .0270239747992704$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .62$	Left of c	Right of ${f c}$	Number of ob	s = =	34128 Manual
Number of obs	12020	22108	1.011.01	=	Uniform
Eff. Number of obs Order est. (p)	12020	22108 1	VCE method	=	NN
Order bias (q)	2	2			
BW est. (h) BW bias (b)	0.500	0.500 0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.01711		0.9742 0.2231		017316 045703	.05154

 $tau_62 = .0171116405654494$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .63$	Left of c	Right of ${f c}$	Number of ok		34128
Number of obs	12981	21147	BW type Kernel	=	Manual Uniform
Eff. Number of obs	12981	21147	VCE method	=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.01478	.01718	0.8607 0.2014	0.389 0.840	018882 04477	.048451 .055024

 $tau_63 = .0147847834244317$

Cutoff c = .64	Left of c	Right of c	Number of ol	os = =	34128 Manual
Number of obs	13819	20309	BW type Kernel	_	Uniform
Eff. Number of obs	13819	20309	VCE method	=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.01531	.01712	0.8946 0.3826		018238 04043	.048865

 $tau_64 = .0153138155797485$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .65$	Left of c	Right of ${f c}$	Number of ob	-	34128
Number of obs	14679	19449	BW type Kernel	=	Manual Uniform
Eff. Number of obs	14679	19449	VCE method	=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.02027	.01713			013306 027532	.053847

 $tau_65 = .0202708768525568$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .66$	Left of c	Right of ${f c}$	Number of ob	os = =	34128 Manual
Number of obs	15489	18639	BW type Kernel	=	Uniform
Eff. Number of obs	15489	18639	VCE method	=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.00671	.01717	0.3907 -0.1697	0.696 0.865	026948 055517	.040366

 $tau_66 = .0067088055904883$

Cutoff c = .67	Left of c	Right of c	Number of obs BW type	; = =	34128 Manual
Number of obs	16212	17916	Kernel	_	Uniform
Eff. Number of obs	16212	17916	VCE method	=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	0.500	0.500			
BW bias (b)	0.500	0.500			
rho (h/b)	1.000	1.000			

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.00166	.01732			032289 063507	.035605

 $tau_67 = .001657936994885$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .68$	Left of c	Right of ${f c}$	Number of ob	s = =	34128 Manual
Number of obs	16905	17223	BW type Kernel	=	Uniform
Eff. Number of obs	16905	17223	VCE method	=	NN
Order est. (p) Order bias (q)	2	2			
BW est. (h)	0.500	0.500			
BW bias (b) rho (h/b)	0.500 1.000	0.500 1.000			

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.01096	.01746	0.6278 0.5266		023262 038432	.045187 .066672

 $tau_68 = .0109626271500858$

Sharp RD estimates using local polynomial regression.

Cutoff $c = .68999999999999999999999999999999999999$	999999999	Left of c Ri	ght of ${f c}$	Number of o		34128
NT	17620	16400		BW type Kernel	=	Manual Uniform
Number of obs Eff. Number of obs	17638 17638	16490 16490		VCE method	=	UNITORM
Order est. (p)	1/030	10490		vce method	_	ININ
Order est. (p) Order bias (q)	1	2				
BW est. (h)	0.500	0.500				
BW bias (b)	0.500	0.500				
rho (h/b)	1.000	1.000				

Outcome: y. Running variable: x.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.00599	.01755	0.3411 0.2943	0.733 0.769	028415 044674	.040391 .060463

 $tau_69 = .0059880332223443$

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	.00137	.01773			033371 051141	.036112 .055102

tau 70 = .0013703275602168

```
270
271
272 clear
273 set obs 41
 Number of observations ( N) was 0, now 41.
274 \text{ gen c} = .
  (41 missing values generated)
275 \text{ gen tau} = .
  (41 missing values generated)
276 \text{ gen rb lb} = .
  (41 missing values generated)
277 \text{ gen rb ub} = .
  (41 missing values generated)
279 forval i = 1/`=_N' {
                 1/ = N' {
  local c = 29+`i' // c= 30(1)70
  replace c = `c' in `i'
  replace tau = `tau_`c'' in `i'
  replace rb_lb = `bc_lb_`c'' in `i'
  replace rb_ub = `bc_ub_`c'' in `i'
    2.
    3.
    5.
    7. }
  (1 real change made)
  (1 real change made)
```

(1 real change made) (1 real change made)

(1 real change made) (1 real change made)

```
280
281 label var rb ub "Bias-corrected upper bound (95% CI)"
282 label var tau
                     "Conventional local-polynomial RD estimate"
283 label var rb lb "Bias-corrected lower bound (95% CI)"
284 label var c "Cutoff"
285 twoway (line rb_ub c, lpattern(dash) lcolor(grey)) ///
                       (line tau c, lcolor(black)) ///
                       (line rb_lb c, lpattern(dash) lcolor(grey)), ///
                      legend(position(6)) ytitle("Estimate") ///
yline(0, lcolor(red) lpattern(solid))
  (note: named style grey not found in class color, default attributes used)
  (note: named style grey not found in class color, default attributes used)
  (note: named style grey not found in class color, default attributes used) (note: named style grey not found in class color, default attributes used)
286 graph export "$do_loc/graphs/q2e.png", ///
             width (120\overline{0}) height (900) ///
             replace
  file C:/Users/yfkas/Documents/GitHub/ARE213 Fall2023/PSet 4/Stata/graphs/q2e.png
      saved as PNG format
287
288
289
290
 end of do-file
291
292
293
294 log close
         name:
                <unnamed>
         log: C:/Users/yfkas/Documents/GitHub/ARE213 Fall2023/PSet 4/Stata/pset4 logfil
    log type:
                smcl
                4 Dec 2023, 11:53:26
   closed on:
```