Лабораторна робота №1.

РОБОТА В СЕРЕДОВИЩІ MATLAB. СТРУКТУРА SIGNAL PROCESSING TOOLBOX. ГЕНЕРАЦІЯ СИГНАЛІВ.

Мета роботи: отримати основні навики роботи в середовищі Matlab.

Вивчити можливості пакету Signal Processing Toolbox по генерації сигналів.

Виконання роботи

Варіант 3						
A	В	C	D	E	N	
1,0,1,0,1,0,1	1,2,3,0,0	1,2,0,3,4,0	2,1,2,3,4,5,0	0,5,3,5,3,1,0	3	
t	G		F			
0:1/125:10	0,4,1,2,0		$\sin(2*pi*t)+0.1*randn(1,length(t))$			

1.1 Виконую генерацію гармонічних сигналів (Рис. 1.1), параметри яких задані в таблиці 1.1:

Ohnooning onemony	Параметри		
Описання сигналу	A	ШАГ	
Гармонійний сигнал з частотою	10+N*0,5 Гц	1/125	
А з нормально розподіленим	20+N*0,5 Гц	1/125	
шумом (randn)	30+N*0,5 Гц	1/125	

Таблиця 1.1

```
f1=11.5;
f2=21.5;
f3=31.5;
t=0:1/125:1;
A=3;
y1=A*sin(f1*t)+randn(1,length(t));
y2=A*sin(f2*t)+randn(1,length(t));
y3=A*sin(f3*t)+randn(1,length(t));
plot(t,y1,'-ro',t,y2,'-g>',t,y3,'-b')
grid on
xlabel('Time');
ylabel('Amplitude');
title('SIGNAL');
```


Рис. 1.1. Генерація гармонічних сигналів

1.2 -3 Пишу програму, що обчислює згортку двох сигналів, оформлюю її у вигляді функції Z = myconv(A,b). Порівнюю результати роботи програми з функцією conv(A,b):

```
% 1.2 Порівняння бібліотечної та влосної функцій для розрахуну згорток
function Z = myCONV(a, b)
  aLen = length(a);
  bLen = length(b);
  zLen = aLen + bLen - 1;
  Z = zeros(1, zLen);
  for k = 1:zLen
    jmin = max(1, k - bLen + 1);
    jmax = min(k, aLen);
    for j = jmin:jmax
     Z(k) = Z(k) + a(j) * b(k - j + 1);
  end
end
a=[1,0,1,0,1,0,1]
b=[1,2,3,0,0]
z1 = myCONV(a, b);
z2 = conv(a, b);
disp('Згортка myconv:');
disp(z1);
disp('Згортка conv:');
disp(z2);
%1.3 Обчислення згорток вхідних сигналів
% Вкінці масивів додано "0" для їх сумісності
A=[1,0,1,0,1,0,1]
B=[1,2,3,0,0,0,0]
C=[1,2,0,3,4,0,0]
D=[2,1,2,3,4,5,0]
E=[0,5,3,5,3,1,0]
F=[sin(2*pi*t)+0.1*randn(1,length(t))]
G=[0,4,1,2,0,0,0]
```

```
Z1=myCONV(A,A);
Z2=myCONV(B,C);
Z3=myCONV(myCONV(D,E),B);
Z4=myCONV(D,E+B);
Z5=myCONV(F,A);
Z6=myCONV(F,G);
Z7=myCONV(C,B);
Z8=myCONV(D,myCONV(E,B));
Z9=myCONV(D,E)+myCONV(D,B);
figure; plot(Z1); title('A*A');
figure; plot(Z2); title('B*C');
figure; plot(Z3); title('(D*E)*B');
figure; plot(Z4); title('D*(E+B)');
figure; plot(Z5); title('F*A');
figure; plot(Z6); title('F*G');
figure; plot(Z7); title('C*B');
figure; plot(Z8); title('D*(E*B)');
figure; plot(Z9); title('D*E+D*B)');
```


Рис. 1.2 – Порівняння роботи функції conv та myConv

Рисунок 1.4 – Результат згортки сигналів А та А

Рисунок 1.5 – Результат згортки сигналів В*С

Рисунок 1.6 – Результат згортки сигналів (D*E)*В

Рисунок 1.7 – Результат згортки сигналів D*(E+B)

Рисунок 1.8 – Результат згортки сигналів F*A

Рисунок 1.9 – Результат згортки сигналів F*G

Рисунок 1.10 – Результат згортки сигналів (С*В)

Рисунок 1.11 — Результат згортки сигналів $D^*(E^*B)$

Рисунок 1.12 – Результат згортки сигналів D*E+D*B

Висновки

Під час виконання лабораторної роботи навчився та отриматв основні навики й навчики роботи в середовищі Matlab. Вивчити частну можливостей пакету Signal Processing Toolbox по генерації сигналів та їх візуалізації за використанням бібліотек для роботи з графіками.