

Avaliação de desempenho Arquitetura de Computadores

Bruno Prado

Departamento de Computação / UFS

- O que é desempenho de sistema?
 - É o conjunto de operações que podem ser realizadas por um sistema em um determinado espaço de tempo ou com uma certa quantidade de recursos

- O que é desempenho de sistema?
 - É o conjunto de operações que podem ser realizadas por um sistema em um determinado espaço de tempo ou com uma certa quantidade de recursos

↑ Desempenho ←→ ↓ Energia

- O que é desempenho de sistema?
 - É o conjunto de operações que podem ser realizadas por um sistema em um determinado espaço de tempo ou com uma certa quantidade de recursos

↑ Desempenho ←→ ↓ Funcionários

- O que é desempenho de sistema?
 - É o conjunto de operações que podem ser realizadas por um sistema em um determinado espaço de tempo ou com uma certa quantidade de recursos

 \uparrow Desempenho $\longleftrightarrow \downarrow$ Material

- O que é desempenho de sistema?
 - É o conjunto de operações que podem ser realizadas por um sistema em um determinado espaço de tempo ou com uma certa quantidade de recursos

 \uparrow Desempenho \longleftrightarrow \uparrow Componentes

- O que é desempenho de sistema?
 - É o conjunto de operações que podem ser realizadas por um sistema em um determinado espaço de tempo ou com uma certa quantidade de recursos

 \uparrow Desempenho \longleftrightarrow \uparrow Patentes

- Como avaliar o desempenho de um sistema?
 - Esta avaliação pode ser feita com a medição absoluta ou relativa do desempenho, utilizando métricas que são representativas para o sistema

- Como avaliar o desempenho de um sistema?
 - Esta avaliação pode ser feita com a medição absoluta ou relativa do desempenho, utilizando métricas que são representativas para o sistema
 - A escolha destas métricas pode ser extremamente complicada, basicamente pela escala e grande variedade dos sistemas existentes

- Categoria e funcionalidades
- Materiais de fabricação
- Tecnologias utilizadas

- Como avaliar o desempenho de um sistema?
 - Esta avaliação pode ser feita com a medição absoluta ou relativa do desempenho, utilizando métricas que são representativas para o sistema
 - A escolha destas métricas pode ser extremamente complicada, basicamente pela escala e grande variedade dos sistemas existentes

- Categoria e funcionalidades
- Materiais de fabricação
- ► Tecnologias utilizadas

Qual dos veículos tem melhor desempenho?

- Avaliação absoluta e relativa de desempenho
 - A análise individual das métricas do sistema permite uma avaliação absoluta de desempenho

- Avaliação absoluta e relativa de desempenho
 - A análise individual das métricas do sistema permite uma avaliação absoluta de desempenho
 - Quando é realizada a comparação destas métricas, é possível estabelecer um desempenho relativo entre cada um dos sistemas considerados

- Avaliação absoluta e relativa de desempenho
 - A análise individual das métricas do sistema permite uma avaliação absoluta de desempenho
 - Quando é realizada a comparação destas métricas, é possível estabelecer um desempenho relativo entre cada um dos sistemas considerados

O veículo A possui o menor custo e menor eficiência (absoluto), enquanto que o veículo C é 300% mais caro e mais eficiente do que o veículo A (relativo)

- Largura de banda x tempo de resposta
 - O desempenho pode estar descrito em termos da quantidade de trabalho pode ser realizado em cada operação (largura de banda) ou em quanto tempo uma operação é realizada (tempo de resposta)

Veículo para entregas

Capacidade de carga (largura de Banda)

- Largura de banda x tempo de resposta
 - O desempenho pode estar descrito em termos da quantidade de trabalho pode ser realizado em cada operação (largura de banda) ou em quanto tempo uma operação é realizada (tempo de resposta)

Veículo para entregas

Velocidade média (tempo de resposta)

- Largura de banda × tempo de resposta
 - O desempenho pode estar descrito em termos da quantidade de trabalho pode ser realizado em cada operação (largura de banda) ou em quanto tempo uma operação é realizada (tempo de resposta)

Veículo para entregas

Velocidade média (tempo de resposta)

Como avaliar o desempenho para métricas conflitantes?

- Complexidade x desempenho
 - É feita uma análise para determinar um ponto de equilíbrio entre a complexidade e o desempenho do sistema, tendo como base os objetivos do sistema

- Complexidade x desempenho
 - É feita uma análise para determinar um ponto de equilíbrio entre a complexidade e o desempenho do sistema, tendo como base os objetivos do sistema

- Definição de desempenho de sistemas
 - Os desempenhos dos sistemas A e B estão relacionados com seus tempos de execução para realizar um conjunto de operações X

$$Desempenho_A = \frac{X}{Tempo de execução_A}$$

$$Desempenho_B = \frac{X}{Tempo de execução_B}$$

- Definição de desempenho de sistemas
 - Os desempenhos dos sistemas A e B estão relacionados com seus tempos de execução para realizar um conjunto de operações X

 $Desempenho_A > Desempenho_B$

- Definição de desempenho de sistemas
 - Os desempenhos dos sistemas A e B estão relacionados com seus tempos de execução para realizar um conjunto de operações X

$$rac{Desempenho_A}{X} > rac{Desempenho_B}{X}$$
 $rac{X}{Tempo de execução_A} > rac{X}{Tempo de execução_B}$

- Definição de desempenho de sistemas
 - Os desempenhos dos sistemas A e B estão relacionados com seus tempos de execução para realizar um conjunto de operações X

```
\frac{X}{\text{Tempo de execução}_{A}} > \frac{X}{\text{Tempo de execução}_{B}} > \frac{X}{\text{Tempo de execução}_{B}}
\text{Tempo de execução}_{B} > \text{Tempo de execução}_{A}
```

- Definição de desempenho de sistemas
 - Os desempenhos dos sistemas A e B estão relacionados com seus tempos de execução para realizar um conjunto de operações X

$$\begin{array}{ccc} Desempenho_A & > & Desempenho_B \\ \hline X & & X \\ \hline \textit{Tempo de execução}_A & > & \hline \textit{Tempo de execução}_B \\ \textit{Tempo de execução}_B & > & \textit{Tempo de execução}_A \end{array}$$

Avaliação absoluta de desempenho

- Definição de desempenho de sistemas
 - Os desempenhos dos sistemas A e B estão relacionados com seus tempos de execução para realizar um conjunto de operações X

$$n = \frac{Desempenho_A}{Desempenho_B}$$

- Definição de desempenho de sistemas
 - Os desempenhos dos sistemas A e B estão relacionados com seus tempos de execução para realizar um conjunto de operações X

$$n = rac{Desempenho_A}{Desempenho_B}$$
 $= rac{X}{Tempo de execução_A}{X}$
 $Tempo de execução_B$

- Definição de desempenho de sistemas
 - Os desempenhos dos sistemas A e B estão relacionados com seus tempos de execução para realizar um conjunto de operações X

$$n = rac{Desempenho_A}{Desempenho_B}$$
 $= rac{rac{X}{Tempo de execução_A}}{rac{X}{Tempo de execução_B}}$
 $= rac{Tempo de execução_B}{Tempo de execução_A}$

- Definição de desempenho de sistemas
 - Os desempenhos dos sistemas A e B estão relacionados com seus tempos de execução para realizar um conjunto de operações X

$$n = rac{Desempenho_A}{Desempenho_B}$$
 $= rac{rac{X}{Tempo de execução_A}}{rac{X}{Tempo de execução_B}}$
 $= rac{Tempo de execução_B}{Tempo de execução_A}$

Avaliação relativa de desempenho

- Medição de desempenho de sistemas
 - Para medir o desempenho de um sistema é preciso obter o tempo de processamento (CPU time) para executar uma determinada aplicação X

- Medição de desempenho de sistemas
 - Para medir o desempenho de um sistema é preciso obter o tempo de processamento (CPU time) para executar uma determinada aplicação X
 - Este é o tempo gasto na execução das operações pelo processador, desconsiderando o período de espera por escalonamento ou operações de E/S

Tempo de execução $_X = \#Ciclos_X \times Periodo de relógio$

- Medição de desempenho de sistemas
 - Para medir o desempenho de um sistema é preciso obter o tempo de processamento (CPU time) para executar uma determinada aplicação X
 - Este é o tempo gasto na execução das operações pelo processador, desconsiderando o período de espera por escalonamento ou operações de E/S

```
Tempo de execução_X = \#Ciclos_X \times Periodo de relógio= \frac{\#Ciclos_X}{Frequência de relógio}
```

- Medição de desempenho de sistemas
 - Em uma aplicação X com tempo de execução de 8 segundos em um processador com frequência de 5 GHz, quantos ciclos são consumidos?

$$Tempo_X = \frac{\#Ciclos_X}{Frequência}$$

- Medição de desempenho de sistemas
 - Em uma aplicação X com tempo de execução de 8 segundos em um processador com frequência de 5 GHz, quantos ciclos são consumidos?

$$Tempo_X = \frac{\#Ciclos_X}{Frequência}$$

 $8 = \frac{\#Ciclos_X}{5 \times 10^9}$

- Medição de desempenho de sistemas
 - Em uma aplicação X com tempo de execução de 8 segundos em um processador com frequência de 5 GHz, quantos ciclos são consumidos?

Tempo_X =
$$\frac{\#Ciclos_X}{Frequencia}$$

8 = $\frac{\#Ciclos_X}{5 \times 10^9}$
 \downarrow
 $\#Ciclos_X$ = 4×10^{10} ciclos

- Medição de desempenho de sistemas
 - Para reduzir o tempo de execução da aplicação X em 25%, qual deveria ser o valor da nova frequência de operação do processador?

 $Tempo_Y = Tempo_X \times 0,75$

- Medição de desempenho de sistemas
 - Para reduzir o tempo de execução da aplicação X em 25%, qual deveria ser o valor da nova frequência de operação do processador?

Tempo_Y = Tempo_X × 0,75
6 =
$$\frac{4 \times 10^{10}}{Frequência}$$

- Medição de desempenho de sistemas
 - Para reduzir o tempo de execução da aplicação X em 25%, qual deveria ser o valor da nova frequência de operação do processador?

$$Tempo_Y = Tempo_X \times 0,75$$

$$6 = \frac{4 \times 10^{10}}{Frequência}$$

$$\downarrow$$

$$Frequência = \frac{4 \times 10^{10}}{6}$$

$$\approx 6,66 GHz$$

- Medição de desempenho de sistemas
 - Para reduzir o tempo de execução da aplicação X em 25%, qual deveria ser o valor da nova frequência de operação do processador?

$$Tempo_Y = Tempo_X \times 0,75$$

$$6 = \frac{4 \times 10^{10}}{Frequência}$$

$$\downarrow$$
 $Frequência = \frac{4 \times 10^{10}}{6}$

$$\approx 6,66 \ GHz$$

$$\uparrow Frequência \longleftrightarrow \uparrow Desempenho$$

- Medição de desempenho de sistemas
 - Cada instrução da aplicação X possui um tempo médio de ciclos durante sua execução (CPI)

$$\#Ciclos_X = \#Instruções_X \times CPI_X$$

- Medição de desempenho de sistemas
 - Cada instrução da aplicação X possui um tempo médio de ciclos durante sua execução (CPI)

$$\#Ciclos_X = \#Instruções_X \times CPI_X$$
 \downarrow
 $Tempo_X = \frac{\#Instruções_X \times CPI_X}{Frequência}$

- Medição de desempenho de sistemas
 - Cada instrução da aplicação X possui um tempo médio de ciclos durante sua execução (CPI)

$$\#Ciclos_X = \#Instruções_X \times CPI_X$$
 \downarrow
 $Tempo_X = \frac{\#Instruções_X \times CPI_X}{Frequência}$
 $\downarrow CPI_X \longleftrightarrow \uparrow Desempenho$

- Medição de desempenho de sistemas
 - A taxa de execução de instruções para uma determinada aplicação X define o desempenho em termos do número de operações que podem ser executadas por segundo

Taxa de execução
$$_X = \frac{\#Instruções_X}{Tempo_X}$$

- Medição de desempenho de sistemas
 - A taxa de execução de instruções para uma determinada aplicação X define o desempenho em termos do número de operações que podem ser executadas por segundo

$$\begin{array}{rcl} \textit{Taxa de execução}_{\chi} & = & \frac{\#\textit{Instruções}_{\chi}}{\textit{Tempo}_{\chi}} \\ & = & \frac{\#\textit{Instruções}_{\chi}}{\frac{\#\textit{Instruções}_{\chi} \times \textit{CPl}_{\chi}}{\textit{Frequência}} \end{array}$$

- Medição de desempenho de sistemas
 - A taxa de execução de instruções para uma determinada aplicação X define o desempenho em termos do número de operações que podem ser executadas por segundo

$$Taxa de execução_X = \frac{\#Instruções_X}{Tempo_X}$$

$$= \frac{\#Instruções_X}{\frac{\#Instruções_X \times CPI_X}{Frequência}}$$

$$= \frac{Frequência}{CPI_X} instruções/s$$

- Medição de desempenho de sistemas
 - A taxa de execução de instruções para uma determinada aplicação X define o desempenho em termos do número de operações que podem ser executadas por segundo

$$Taxa de execução_{\chi} = \frac{\#Instruções_{\chi}}{Tempo_{\chi}}$$

$$= \frac{\#Instruções_{\chi}}{\frac{\#Instruções_{\chi} \times CPl_{\chi}}{Frequência}}$$

$$= \frac{Frequência}{CPl_{\chi}} instruções/s$$

Esta taxa depende da frequência de operação e do CPI médio das instruções do processador

- Medição de desempenho de sistemas
 - Executando uma aplicação X em um processador com frequência de 5 GHz e CPI médio de 0,25

Taxa de execução
$$_X = \frac{Frequência}{CPI_X}$$

- Medição de desempenho de sistemas
 - Executando uma aplicação X em um processador com frequência de 5 GHz e CPI médio de 0,25

Taxa de execução_X =
$$\frac{Frequência}{CPI_X}$$

= $\frac{5 \times 10^9}{0,25}$

- Medição de desempenho de sistemas
 - Executando uma aplicação X em um processador com frequência de 5 GHz e CPI médio de 0,25

Taxa de execução_X =
$$\frac{Frequência}{CPI_X}$$

= $\frac{5 \times 10^9}{0,25}$
= 20×10^9 instruções/s

- Medição de desempenho de sistemas
 - Executando uma aplicação X em um processador com frequência de 5 GHz e CPI médio de 0,25

Taxa de execução_X =
$$\frac{Frequência}{CPI_X}$$

= $\frac{5 \times 10^9}{0,25}$
= 20×10^9 instruções/s
= 20000 MIPS
= 20 GIPS

- Medição de desempenho de sistemas
 - Uma métrica alternativa para avaliar o desempenho é a contabilização do número de operações de ponto flutuante realizadas pelo processador

- Medição de desempenho de sistemas
 - Uma métrica alternativa para avaliar o desempenho é a contabilização do número de operações de ponto flutuante realizadas pelo processador
 - Geralmente é descrita em milhões de operações de ponto flutuante por segundo ou Millions of Floating-point Operations Per Second (MFLOPS)

$$MFLOPS = \frac{\#Operações\ de\ ponto\ flutuante}{Tempo\ de\ execução} \times 10^{-6}$$

- Medição de desempenho de sistemas
 - Uma métrica alternativa para avaliar o desempenho é a contabilização do número de operações de ponto flutuante realizadas pelo processador
 - Geralmente é descrita em milhões de operações de ponto flutuante por segundo ou Millions of Floating-point Operations Per Second (MFLOPS)

$$\textit{MFLOPS} = \frac{\#\textit{Operações de ponto flutuante}}{\textit{Tempo de execução}} \times 10^{-6}$$

É comumente utilizado na avaliação de desempenho de aplicações científicas, de jogos e de supercomputadores

Como avaliar o desempenho de processadores com arquiteturas e repertório de instruções diferentes?

Como avaliar o desempenho de processadores com arquiteturas e repertório de instruções diferentes?

Realização da operação A = A + 1 com todos os dados armazenados na memória principal

```
1 add [A], 1 1 2 addi r1, r1, 1 3 2 2 32 [A], r1 CISC RISC
```

Realização da operação A = A + 1 com todos os dados armazenados na memória principal

```
1 add [A], 1 1 2 addi r1, r1, 1 3 2 2 32 [A], r1 CISC RISC
```

Avaliando o desempenho com a métrica MIPS, o processador RISC pareceria 3 vezes mais rápido que o CISC, entretanto, ambos realizam operações equivalentes no mesmo intervalo de tempo

A indústria e a academia resolveram desenvolver um conjunto de aplicações de referência (benchmarks) para avaliar o desempenho dos sistemas sem dependências tecnológicas de conjuntos de instruções ou de frequência de operação

- A indústria e a academia resolveram desenvolver um conjunto de aplicações de referência (benchmarks) para avaliar o desempenho dos sistemas sem dependências tecnológicas de conjuntos de instruções ou de frequência de operação
 - Estas aplicações são escritas em linguagens de programação de alto nível, como C ou C++, podendo ser compiladas para diferentes arquiteturas

- A indústria e a academia resolveram desenvolver um conjunto de aplicações de referência (benchmarks) para avaliar o desempenho dos sistemas sem dependências tecnológicas de conjuntos de instruções ou de frequência de operação
 - Estas aplicações são escritas em linguagens de programação de alto nível, como C ou C++, podendo ser compiladas para diferentes arquiteturas
 - Devem ser representativas para algum domínio da computação, como cálculo numérico, inteligência artificial ou processamento de imagem

- A indústria e a academia resolveram desenvolver um conjunto de aplicações de referência (benchmarks) para avaliar o desempenho dos sistemas sem dependências tecnológicas de conjuntos de instruções ou de frequência de operação
 - Estas aplicações são escritas em linguagens de programação de alto nível, como C ou C++, podendo ser compiladas para diferentes arquiteturas
 - Devem ser representativas para algum domínio da computação, como cálculo numérico, inteligência artificial ou processamento de imagem
 - É esperada uma distribuição ampla com código fonte aberto e resultados mensuráveis, para fins de comparação dos resultados gerados

- Aplicações de referência (benchmarks)
 - ▶ Domínios × métricas de avaliação
 - Processamento de vídeo: taxa de quadros (fps)

- Aplicações de referência (benchmarks)
 - Domínios x métricas de avaliação
 - Processamento de vídeo: taxa de quadros (fps)
 - Serviços: tempo de resposta ou latência (s)

- Aplicações de referência (benchmarks)
 - Domínios x métricas de avaliação
 - Processamento de vídeo: taxa de quadros (fps)
 - Serviços: tempo de resposta ou latência (s)
 - Sistemas embarcados: potência consumida (Wh)

- Aplicações de referência (benchmarks)
 - ▶ Domínios × métricas de avaliação
 - Processamento de vídeo: taxa de quadros (fps)
 - Serviços: tempo de resposta ou latência (s)
 - Sistemas embarcados: potência consumida (Wh)
 - Telecomunicações e redes: taxa de transferência (bps)
 - ▶ ..

- Aplicações de referência (benchmarks)
 - Algoritmos sintéticos
 - São algoritmos criados para explorar um conjunto de operações que são utilizadas em diversas aplicações
 - As implementações são focadas em estabelecer estatísticas sobre as operações e os comportamentos

- Aplicações de referência (benchmarks)
 - Algoritmos sintéticos
 - São algoritmos criados para explorar um conjunto de operações que são utilizadas em diversas aplicações
 - As implementações são focadas em estabelecer estatísticas sobre as operações e os comportamentos

Dhrystone	Whetstone	
DMPS	WPS	
Aritmética inteira	Aritmética de ponto flutuante	

Os resultados gerados só permitem avaliar o desempenho e não possuem nenhuma utilidade

- Aplicações de referência (benchmarks)
 - Dhrystone
 - Criado por Reinhold P. Weicker em 1984
 - Simples + Fácil utilização + Código aberto
 - A métrica fornece uma relação entre quantas iterações das funções e procedimentos foram realizadas durante o tempo de execução do software

- Aplicações de referência (benchmarks)
 - Dhrystone
 - Criado por Reinhold P. Weicker em 1984
 - Simples + Fácil utilização + Código aberto
 - A métrica fornece uma relação entre quantas iterações das funções e procedimentos foram realizadas durante o tempo de execução do software

- Aplicações de referência (benchmarks)
 - Whetstone
 - Criado pelo Laboratório Nacional de Física do Reino Unido em Whetstone no ano de 1972
 - Focado em avaliar o desempenho das operações aritméticas em ponto flutuante, através da métrica de Whetstone Instructions Per Second (WIPS)
 - Cerca de metade do seu tempo de execução é consumido executando funções de bibliotecas matemáticas, como seno e coseno

- Aplicações de referência (benchmarks)
 - ▶ Dhrystone × Whetstone

Arquitetura	DMIPS	MWIPS
Intel Core 2 E8400	12,41	23,29
AMD Phenom II X4 965	27,25	44,19
Intel Core i7 980X	72,08	108,56

- Aplicações de referência (benchmarks)
 - Deficiências dos algoritmos sintéticos
 - Como os algoritmos utilizados são sintéticos, as estruturas de códigos descritas não são usualmente utilizados em situações reais

- Aplicações de referência (benchmarks)
 - Deficiências dos algoritmos sintéticos
 - Como os algoritmos utilizados são sintéticos, as estruturas de códigos descritas não são usualmente utilizados em situações reais
 - Devido a sua concepção artificial e previsível, as técnicas de otimização dos compiladores são capazes de ampliar o desempenho obtido

- Aplicações de referência (benchmarks)
 - Deficiências dos algoritmos sintéticos
 - Como os algoritmos utilizados são sintéticos, as estruturas de códigos descritas não são usualmente utilizados em situações reais
 - Devido a sua concepção artificial e previsível, as técnicas de otimização dos compiladores são capazes de ampliar o desempenho obtido
 - Por ser uma aplicação pequena, grande parte dos acessos realizados para buscar instruções e dados estarão disponíveis na cache

- Aplicações de referência (benchmarks)
 - Algoritmos reais
 - São algoritmos baseados em problemas reais de diversas áreas, como multiplicação de matrizes, busca, processamento e ordenação de dados
 - O foco da implementação é incorporar os algoritmos em um contexto real de utilização

- Aplicações de referência (benchmarks)
 - Algoritmos reais
 - São algoritmos baseados em problemas reais de diversas áreas, como multiplicação de matrizes, busca, processamento e ordenação de dados
 - O foco da implementação é incorporar os algoritmos em um contexto real de utilização

CoreMark

Busca Ordenação Operações com matrizes Máquina de estados CR.C

SPEC

Aritmética inteira Operações de ponto flutuante Máquina virtual Java Aplicações na nuvem

- Aplicações de referência (benchmarks)
 - Algoritmos reais
 - São algoritmos baseados em problemas reais de diversas áreas, como multiplicação de matrizes, busca, processamento e ordenação de dados
 - O foco da implementação é incorporar os algoritmos em um contexto real de utilização

CoreMark

Busca Ordenação Operações com matrizes Máquina de estados CR.C

SPEC

Aritmética inteira Operações de ponto flutuante Máquina virtual Java Aplicações na nuvem :

Os resultados gerados servem como métrica para avaliação do desempenho e podem fornecer informações relevantes para análise do usuário

- Aplicações de referência (benchmarks)
 - CoreMark
 - Desenvolvido por Shay Gal-On da EEMBC em 2009
 - O objetivo principal de sua criação foi de transformar em um padrão para a indústria e substituir o Dhrystone
 - Combina as vantagens do Dhrystone com a utilização de algoritmos reais que fornecem uma métrica padronizada para avaliação de desempenho

- Aplicações de referência (benchmarks)
 - CoreMark
 - Desenvolvido por Shay Gal-On da EEMBC em 2009
 - O objetivo principal de sua criação foi de transformar em um padrão para a indústria e substituir o Dhrystone
 - Combina as vantagens do Dhrystone com a utilização de algoritmos reais que fornecem uma métrica padronizada para avaliação de desempenho

- Aplicações de referência (benchmarks)
 - Standard Performance Evaluation Corporation (SPEC)
 - É uma organização fundada em 1988 e tem como objetivo a criação a manutenção de um conjunto de aplicações de referência padronizadas
 - Possui diversas áreas de atuação, como sistemas de código aberto e computação de alto desempenho

- Aplicações de referência (benchmarks)
 - Standard Performance Evaluation Corporation (SPEC)
 - É uma organização fundada em 1988 e tem como objetivo a criação a manutenção de um conjunto de aplicações de referência padronizadas
 - Possui diversas áreas de atuação, como sistemas de código aberto e computação de alto desempenho

Desempenho =
$$\frac{Tempo_{Referência}}{Tempo_{Sistema}}$$

- Aplicações de referência (benchmarks)
 - Standard Performance Evaluation Corporation (SPEC)
 - É uma organização fundada em 1988 e tem como objetivo a criação a manutenção de um conjunto de aplicações de referência padronizadas
 - Possui diversas áreas de atuação, como sistemas de código aberto e computação de alto desempenho

Desempenho =
$$\frac{\text{Tempo}_{\text{Referência}}}{\text{Tempo}_{\text{Sistema}}}$$
$$= \frac{\text{Tempo}_{\text{Referência}}}{\frac{1}{n}\sum_{i=1}^{n}\text{Tempo}_{i}}$$

- Aplicações de referência (benchmarks)
 - ► CoreMark × SPEC CPU 2006

Arquitetura	CoreMark	SPEC CPU 2006
Intel Core 2 E8400	20628,00	23,50
AMD Phenom II X4 910	24828,46	16,10
Intel Core i7-2600	99562,34	46,40

- Análise dinâmica de perfil (software profiling)
 - É uma técnica de instrumentação do código fonte para análise das propriedades dinâmicas do software, como alocação de memória e tempo de execução das funções e dos procedimentos

- Análise dinâmica de perfil (software profiling)
 - É uma técnica de instrumentação do código fonte para análise das propriedades dinâmicas do software, como alocação de memória e tempo de execução das funções e dos procedimentos

É feita a otimização do software com as estatísticas e informações obtidas

- Análise dinâmica (software profiling)
 - Aplicação de exemplo

```
// Tipos inteiros de tamanho fixo
   #include <stdint.h>
   // Função principal
26
   int main() {
27
       // Variáveis auxiliares
28
       uint64_t fat = 0, fib = 0;
29
       // 10000 iterações
30
       for (uint32_t i = 0; i < 10000; i++) {
31
           // Chamadas de funções
32
            fat = fat + fatorial(i);
33
34
            fib = fib + fibonacci(i);
35
       // Retorno sem erros
36
       return 0:
37
38
```

- Análise dinâmica (software profiling)
 - GNU Profiler (gprof)

- Análise dinâmica (software profiling)
 - GNU Profiler (gprof)

```
$ gcc -Wall -g -pg exemplo.c -o exemplo.bin
```

- Análise dinâmica (software profiling)
 - GNU Profiler (gprof)

```
$ gcc -Wall -g -pg exemplo.c -o exemplo.bin
$ time ./exemplo.bin
```

- Análise dinâmica (software profiling)
 - GNU Profiler (gprof)

```
$ gcc -Wall -g -pg exemplo.c -o exemplo.bin
$ time ./exemplo.bin
real 0m1.838s
user 0m1.838s
sys 0m0.000s
```

- Análise dinâmica (software profiling)
 - GNU Profiler (gprof)

```
$ gcc -Wall -g -pg exemplo.c -o exemplo.bin
$ time ./exemplo.bin
real 0m1.838s
user 0m1.838s
sys 0m0.000s
$ gprof exemplo.bin
```

- Análise dinâmica (software profiling)
 - GNU Profiler (gprof)

```
$ gcc -Wall -g -pg exemplo.c -o exemplo.bin
$ time ./exemplo.bin
real 0m1.838s
user 0m1.838s
sys 0m0.000s
$ gprof exemplo.bin
Flat profile:
Each sample counts as 0.01 seconds.
     cumulative
                self
                                self total
time
      seconds seconds calls us/call us/call name
55.10
      0.33 0.33 10000 32.51 32.51 fatorial
42.18
      0.57 0.25 10000 24.89 24.89 fibonacci
 4.30
      0.60 0.03
                                               frame_dummy
```