Definições e Teoremas

Linearmente Independente: Um cojunto $X \subset E$ é dito linearmente independente, quando nenhum vetor do conjunto é combinação linear dos outros vetores. O conjunto unitário é dito LI. Para isso, existe o teorema de que: $\alpha_1 v_1 + ... + \alpha_n v_n = 0 \rightarrow \alpha_1 = ... = \alpha_n = 0$, se e só se, X é LI. A partir disso, conclue-se que a representação de um vetor como combinação de outros vetores é sempre única (se os vetores formarem um conjunto LI). Se um conjunto não é LI, ele é dito linearmente dependente.

Teorema 1: Seja $X = \{x_1, x_2, ..., x_m\}$. Se, $\forall k \leq m, v_k$ não é combinação linear de seus antecessores, então X é LI.

Observação: Considere $X = \{(1,2), (3,4), (2,4)\} \subset \mathbb{R}^2$, Note que X é LD, porém (3,4) não é combinação linear dos outros vetores (verifique!). Por que isso não é contraditório?

Base: É um conjunto linearmente independente que gera E. Os coeficientes são chamados de coordenadas do vetor nessa base. Como veremos a seguir, toda base de um espaço vetorial apresenta o mesmo número de elementos. Este número é chamado de *dimensão*.

Lema 2.1: Todo sistema homogêneo cujo número de incógnitas é maior que o número de equações admite solução não trivial (a prova é por indução em m, o número de equações.

Teorema 2.2: Se um conjunto de n vetores gera o espaço E, então qualquer conjunto com mais de n elementos é LD.

Corolário 2.3: Assim, se os vetores $v_1, ..., v_n$ geram o espaço vetorial E e os vetores $u_1, ..., u_m$ são LI, $m \le n$. Daqui tiramos que se E admite uma base $\beta = \{u_1, ..., u_n\}$, qualquer outra base também possui n elementos.

Teorema 3: Considere um espaço vetorial de dimensão finita:

- Considere o conjunto de todos os geradores de E. Ele contém uma base.
- Todo conjunto LI está contido numa base.
- Todo subespaço vetorial tem dimensão finita.
- Se a dimensão de um subespaço é n, então o subespaço é o próprio espaço.

Exercícios:

- 1. Prove que os seguintes polinômios são linearmente independentes: $p(x) = x^3 5x^2 + 1$, $q(x) = 2x^4 + 5x 6$, $r(x) = x^2 5x + 2$. Dica: Considere a base $X = \{1, x, x^2, x^3, x^4\}$
- 2. Seja X um conjunto de polinômios. Se dois polinômios quaisquer de X têm graus diferentes, X é LI.

Monitoria 6 - Bases

- 3. Dado $X \subset E$, seja Y o conjunto obtido de X substituindo um dos seus elementos v por $v + \alpha u$, onde $u \in X$ e $\alpha \in \mathbb{R}$. Prove que X e Y geram o mesmo subespaço vetorial de E. Conclua, então que $\{v_1,...,v_k\}\subset E$ e $\{v_1,v_2-v_1,...,v_k-v_1\}\subset E$ geram o mesmo subespaço vetorial de E.
- 4. Mostre que os vetores u = (1,1) e v = (-1,1) formam uma base de \mathbb{R}^2 .
- 5. Considere a afirmação: "A união de dois conjuntos subconjuntos LI do espaço vetorial E é ainda um conjunto LI". Assinale verdadeiro e falso.

() Sempre.

() Nunca.

() Quando um deles é disjunto do outro.

() Quanto um deles é parte do outro.

() Quando um deles é disjunto do subespaço gerado pelo outro.

() Quando o número de elementos de um deles mais o número de elementos do outro é igual à dimensão de E.

6. Encontre uma base para o espaço vetorial $W = \{ \begin{pmatrix} a \\ b \\ -b \end{pmatrix}, \forall a, b \in \mathbb{R}^2 \}.$

7. Se f e g estão no espaço vetorial de todas as funções com derivadas contínuas, então o determinante de $\begin{pmatrix} f(x) & g(x) \\ f'(x) & g'(x) \end{pmatrix}$ é conhecido como **Wronskiano** de f e g. Prove que f e g são linearmente independentes, se seu Wronskiano não for identicamente nulo. Esse estudo é estremamente importante no estudo de soluções de sistemas de equações diferenciáveis, pois identifica se duas soluções são linearmente independentes.

Aplicação: Quadrados Mágicos

Observe a imagem da Melancolia I, de Albrecht Durer de 1514: Link da obra Observa-se o

quadrado mágico: $\begin{pmatrix} 16 & 3 & 2 & 13 \\ 5 & 10 & 11 & 8 \\ 9 & 6 & 7 & 12 \\ 4 & 15 & 14 & 1 \end{pmatrix}$. Primeira coisa interessante é ver 15 e 14 lado a lado. A

soma de cada coluna, linha e diagoral é 34. Podemos definir uma matriz $n \times n$ sendo quadrado mágico quando a soma de cada linha, coluna e diagonal é igual. Essa soma se cham peso. Considere Mag_n o conjunto de todos os quadrados mágicos de ordem n. Prove que Mag_3 é um subespaço de M_{33} .