CZ2007 Introduction to Database Systems (Week 3)

Topic 3: Boyce-Codd Normal Form (1)

Dr. Ng Wee Keong Associate Professor

This presentation is copyright property of NTU. It is intended for students of CZ2007 only.

This Lecture

- Boyce-Codd Normal Form
- BCNF Decomposition

Normal Forms

- Various normal forms (in increasing order of strictness)
 - First normal form
 - Second normal form
 - Third normal form (3NF)
 - Boyce-Codd normal form (BCNF)
 - Fourth normal form
 - Fifth normal form
 - Sixth normal form
- 3NF and BCNF are most commonly used

Boyce-Codd Normal Form (BCNF)

- A table R is in BCNF, if and only if
 - The left hand side of every non-trivial FD contains a key of R
- Non-trivial FD:
 - An FD that is not implied by the axiom of reflexivity
 - Example:
 - A→B -- Non-trivial
 - AC→BC -- Non-trivial
 - AC→A -- Trivial
 - AC→C -- Trivial

Boyce-Codd Normal Form (BCNF)

- A table R is in BCNF, if and only if
 - The left hand side of every non-trivial FD contains a key of R
- R(A, B)
- Given FD: A→B
- Key: A
- All FDs on R: $A \rightarrow B$, $AB \rightarrow A$, $AB \rightarrow B$, $AB \rightarrow AB$
 - \square AB \rightarrow A, AB \rightarrow B, AB \rightarrow AB: trivial
 - \square A \rightarrow B: The left hand side contains a key
- Therefore, R is in BCNF

Boyce-Codd Normal Form (BCNF)

- A table R is in BCNF, if and only if
 - The left hand side of every non-trivial FD contains a key of R
- R(A, B, C)
- Given FD: A→B
- Key: AC
- All FDs on R: A \rightarrow B, AB \rightarrow B, AC \rightarrow C, ...
 - □ The left hand side of A→B does not contain a key
- Therefore, R is NOT in BCNF

BCNF: Example

Name	<u>NRIC</u>	<u>Phone</u>	Address
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

- NRIC → Name, Address
- Key: {NRIC, Phone}; key has two attributes
- Not in BCNF

BCNF: Straightforward Checking

- Given: A table R, a set of FDs on R
- Step 1: Derive the keys of R
- Step 2: Derive all non-trivial FDs on R

- Step 3: For each non-trivial FD, check if its left hand side contains a key
- Step 4: If all FDs pass the check, then R is in BCNF; otherwise, R is not in BCNF

BCNF: Straightforward Checking

- Given: A table R, a set of FDs on R
- Step 1: Derive the keys of R
- Step 2: Derive all non-trivial FDs on R
 - This is too time-consuming
 - Trick: Only check the FDs given on R instead of all FDs
- Step 3: For each non-trivial FD, check if its left hand side contains a key
- Step 4: If all FDs pass the check, then R is in BCNF; otherwise, R is not in BCNF

BCNF Checking: Example

- R(A, B, C, D)
- Given: $A \rightarrow B$, $A \rightarrow C$, $A \rightarrow D$
- Key: A (no other keys)
- Check: For each given non-trivial FD, check if its left hand side contains a key
- A→B: Non-trivial, LHS contains a key
- A→C: Non-trivial, LHS contains a key
- A→D: Non-trivial, LHS contains a key
- Therefore, R is in BCNF

BCNF Checking: Example

- R(A, B, C, D)
- Given: $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$
- Key: A (no other keys)
- Check: For each given non-trivial FD, check if its left hand side contains a key
- A→B: Non-trivial, LHS contains a key
- B→C: Non-trivial, LHS does NOT contain a key
- Therefore, R is NOT in BCNF

BCNF Checking: Rationale

- A table R is in BCNF, if and only if for every FD on R,
 - Either the FD is trivial
 - Or the left hand side of the FD contains a key
- The definition says "every", but we only check the ones "given" on R
- This leaves the "hidden" ones unchecked
- Why does it work?
- Rationale: If the "given" FDs pass the check, then all "hidden" ones will pass the check

BCNF Checking: Rationale

- R(A, B, C, D)
- Given: $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$
- If the 3 FDs pass the check, then any other FDs derived from them will either have the same LHS as them, or LHS with more attributes
- Reflexitivity axiom: we ignore since this yields trivial **FDs**
- Augmentation axiom: LHS of new FD will have more attributes (A \rightarrow B becomes AC \rightarrow BC); if original LHS contains key, so will the new LHS
- Transitivity axiom: LHS of new FD is same as original LHS ($A \rightarrow B$ and $B \rightarrow C$ yields $A \rightarrow C$)

BCNF Checking: Multiple-Key Cases

- R(A, B, C, D)
- Given: $A \rightarrow B$, $B \rightarrow A$, $B \rightarrow C$, $B \rightarrow D$, $A \rightarrow D$
- Keys: A, B
- Check: For each given non-trivial FD, check if its left hand side contains a key
- \blacksquare A \rightarrow B, A \rightarrow D: Non-trivial, LHS contains a key
- B→A, B→C, B→D: Non-trivial, LHS contains a key
- Therefore, R is in BCNF

BCNF: Intuition

- Basically, BCNF requires that there cannot be any non-trivial X→Y such that the X does not contain a key
- Why does this make sense?
- Intuition: X→Y indicates that the table has some redundancies

BCNF Intuition: Example

Name	<u>NRIC</u>	<u>Phone</u>	Address
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

- NRIC → Name, Address
- Key: {NRIC, Phone}
- NRIC determines Name and Address
- Therefore, every time NRIC appears repeatedly in the table, Name and Address also appear repeatedly
- Since NRIC is not a key, the same NRIC can appear multiple times in the table
- This leads to redundancies
- BCNF prevents this

This Lecture

- Boyce-Codd Normal Form
- BCNF Decomposition

BCNF Decomposition

Name	<u>NRIC</u>	<u>Phone</u>	Address
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

- What can we do if a table violates BCNF?
- Answer: Decompose it (i.e., normalize it)

Name	<u>NRIC</u>	Address
Alice	1234	Jurong East
Bob	5678	Pasir Ris

NRIC	<u>Phone</u>
1234	67899876
1234	83848384
5678	98765432

Decompose, until all are in BCNF

- R(A, B, C, D)
- Given: A \rightarrow B, B \rightarrow C, C \rightarrow D
- Key of R: A
- Step 1: Identify a FD that violates BCNF
- \blacksquare B \rightarrow C is a violation, since
 - It is non-trivial
 - Its left hand side does not contain a key

- R(A, B, C, D)
- Given: $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$
- Key of R: A
- Step 1: $B \rightarrow C$ is a violation
- Step 2: Compute the closure of the left hand side of the FD
- \blacksquare {B}+ = {BCD}

- R(A, B, C, D)
- Given: $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$
- Key of R: A
- Step 1: $B \rightarrow C$ is a violation
- Step 2: {B}⁺ = {BCD}
- Step 3: Decompose R into two tables R₁ and R₂
 - R₁(B, C, D), i.e., it contains all attributes in the closure
 - R₂(A, B), i.e., it contains B and all attributes NOT in the closure
- Step 4: Check R₁ and R₂, decompose if necessary

BCNF Decomposition Algorithm

- Input: A table R
- Step 1: Find a FD X→Y on R that violates BCNF
 - If cannot find, stop
- Step 2: Compute the closure {X}+
- Step 3: Break R into two tables R₁ and R₂
 - R₁ contains all attributes in {X}⁺
 - R₂ contains X and attributes NOT in {X}⁺
- Repeat Steps 1-3 on R₁ and R₂

- R(A, B, C, D)
- Given: $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$
- Key of R: A
- Previous results: R₁(B, C, D), R₂(A, B)
- Is R₂ in BCNF?
 - Yes. So R₂ is done
- Is R₁ in BCNF?
 - No. Key of R_1 is B. In that case, $C \rightarrow D$ is a violation.
- Decompose R₁ into R₃ and R₄
 - $(C)^+ = \{CD\}$
 - $R_3(C, D)$, i.e., it contains all attributes in $\{C\}^+$
 - R₄(B, C), i.e., it contains C and all attribute NOT in {C}⁺
- Are R_3 and R_4 in BCNF?
 - Yes. So we stop here.

- R(A, B, C, D)
- Given: $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$
- Key of R: A
- Final BCNF Decomposition
 - \square R₂(A, B)
 - \square R₃(C, D)
 - \square R₄(B, C)

Decompose, until all are in BCNF

Notes

The BCNF decomposition of a table may not be unique

- If a table has only two attributes, then it must be in BCNF
 - Therefore, you do not need to check tables with only two attributes

Exercise: BCNF Decomposition

- R(A, B, C, D, E)
- Given: AB \rightarrow C, C \rightarrow D, D \rightarrow E
- Key of R: AB
- \rightarrow D \rightarrow E is a violation
- Decompose R(A, B, C, D, E)
 - \Box {D}+ = {D, E}
 - $R_1(D, E), R_2(A, B, C, D)$
 - \square R₁ has only two attributes. Must be in BCNF.
 - \square R₂... Key of R₂: AB. Therefore, C \rightarrow D is a violation
- Decompose R₂(A, B, C, D)
 - C⁺ = {C, D, E}. E is omitted since it is not in R₂
 - $R_3(C, D), R_4(A, B, C)$
 - \square R₃ has only two attributes. Must be in BCNF.
 - \square R₄... Key of R₄: AB. No violation of BCNF. Done

To continue in

Topic 3: Boyce-Codd Normal Form (2)

