Probabilistic Modelling Principles

Yingzhen Li

Department of Computing Imperial College London

y@liyzhen2
yingzhen.li@imperial.ac.uk

October 21, 2022

Have you ever wondered about the following questions:

- Why using ℓ_2 loss in many regression problems?
- Where does the cross-entropy loss come from?
- What is a good principle for choosing a good loss function?

Have you ever wondered about the following questions:

- Why using ℓ_2 loss in many regression problems?
- Where does the cross-entropy loss come from?
- What is a good principle for choosing a good loss function?

Probabilistic modelling gives you good answers for all of them!

Probabilistic modelling is about:

- 1. making model assumptions on how the data is generated
- 2. estimating model parameters under probabilistic principles
- 3. model checking using data, and repeat 1 3
- 4. using the fitted model for downstream tasks

Imagine you'd like to predict the next coin flip result:

- Assume $x_1, x_2, ..., x_N$ are observed **independent** coin flip results using the **same** coin,
- I.e., $x_1, ..., x_N$ are sampled i.i.d. from the same **data distribution** $\pi(x)$
- However, we don't know $\pi(x)$

Imagine you'd like to predict the next coin flip result:

Probabilistic modelling is about:

- 1. Assume *x* is sampled from $p(x|\theta) \leftarrow \text{our probabilistic model}$
- 2. estimating θ under probabilistic principles such as MLE, MAP, posterior inference \leftarrow **learning the model**
- 3. check if $p(x|\theta^*)$ fits $\pi(x)$ well, and repeat $1 3 \leftarrow$ model checking
- 4. making prediction for next coin flip result using $p(x|\theta^*)$

Imagine you'd like to predict the next coin flip result:

Step 1: Assume *x* is sampled from $p(x|\theta)$

$$x = \begin{cases} 1, & \text{with probability } \theta \\ 0, & \text{with probability } 1 - \theta \end{cases}, \quad \theta \in [0, 1].$$

$$\Leftrightarrow \quad p(x|\theta) = \text{Bern}(\theta).$$

• Likelihood of θ given observed x: $\ell(\theta) = p(x|\theta)$

Imagine you'd like to predict the next coin flip result:

Step 2: estimating θ using probabilistic principles Here we consider **maximum likelihood estimation (MLE)** Idea of MLE: for datapoints x sampled from $\pi(x)$

• We want to find θ^* such that $p(x|\theta^*) \approx \pi(x)$

Imagine you'd like to predict the next coin flip result:

Step 2: estimating θ using probabilistic principles Here we consider **maximum likelihood estimation (MLE)**

Idea of MLE: for datapoints x sampled from $\pi(x)$

- We want to find θ^* such that $p(x|\theta^*) \approx \pi(x)$
- We need to measure the "closeness" of the two distributions ⇒ use the KL divergence

$$\mathrm{KL}[\pi(x)||p(x|\boldsymbol{\theta})] = \mathbb{E}_{\pi(x)}\left[\log\frac{\pi(x)}{p(x|\boldsymbol{\theta})}\right]$$

Imagine you'd like to predict the next coin flip result:

Step 2: estimating θ using probabilistic principles Here we consider maximum likelihood estimation (MLE) Idea of MLE: for datapoints x sampled from $\pi(x)$

- We want to find θ^* such that $p(x|\theta^*) \approx \pi(x)$
- We want this KL to be small:

$$\theta^* = \arg\min_{\theta} \text{KL}[\pi(x)||p(x|\theta)]$$

Imagine you'd like to predict the next coin flip result:

Step 2: estimating θ using probabilistic principles Here we consider **maximum likelihood estimation (MLE)** Idea of MLE: for datapoints x sampled from $\pi(x)$

• We want to find θ^* such that $p(x|\theta^*) \approx \pi(x)$

$$\Leftrightarrow \quad \boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} \mathbb{E}_{\pi(x)}[\log p(x|\boldsymbol{\theta})]$$

Imagine you'd like to predict the next coin flip result:

Step 2: estimating θ using probabilistic principles Here we consider maximum likelihood estimation (MLE)

Idea of MLE: for datapoints x sampled from $\pi(x)$

- We want to find θ^* such that $p(x|\theta^*) \approx \pi(x)$
- Estimate using dataset $\mathcal{D} = \{x_1, ..., x_N\}$ sampled from $\pi(x)$:

$$\theta^* = \arg\max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \log p(x_n | \theta)$$

Imagine you'd like to predict the next coin flip result:

Step 2: estimating θ using probabilistic principles Here we consider **maximum likelihood estimation (MLE)**

• Estimate using dataset $\mathcal{D} = \{x_1, ..., x_N\}$ sampled from $\pi(x)$:

$$\theta^* = \arg\max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \log p(x_n | \theta)$$

• model assumption: $p(x|\theta) = Bern(\theta)$

$$\Rightarrow \quad \theta^* = \arg\max_{\theta} \frac{1}{N} \sum_{n=1}^{N} x_n \log \theta + (1 - x_n) \log(1 - \theta)$$

Imagine you'd like to predict the next coin flip result:

Step 2: estimating θ using probabilistic principles Here we consider **maximum likelihood estimation (MLE)**

• Estimate using dataset $\mathcal{D} = \{x_1, ..., x_N\}$ sampled from $\pi(x)$:

$$\theta^* = \arg\max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \log p(x_n | \theta)$$

solution by zeroing the gradient:

$$\frac{1}{N} \sum_{n=1}^{N} x_n \boldsymbol{\theta}^{-1} - (1 - x_n)(1 - \boldsymbol{\theta})^{-1} = 0 \quad \Rightarrow \quad \boldsymbol{\theta}^* = \frac{1}{N} \sum_{n=1}^{N} x_n$$

Imagine you'd like to predict the next coin flip result:

Step 3: check if $p(x|\theta^*)$ fits $\pi(x)$ well (We assume the model has passed here)

Imagine you'd like to predict the next coin flip result:

Step 4: making prediction for next coin flip result using $p(x|\theta^*)$

$$\boldsymbol{\theta}^* = \frac{1}{N} \sum_{x \in \mathcal{D}} x$$

$$\Rightarrow x_{N+1} = \begin{cases} 1, & \text{with probability } \frac{1}{N} \sum_{n=1}^{N} x_n \\ 0, & \text{with probability } 1 - \frac{1}{N} \sum_{n=1}^{N} x_n \end{cases}.$$

Datapoints (x, y) are sampled from an **unknown ground truth distribution** $\pi(x, y)$

Probabilistic modelling is about (in supervised learning case):

1. Assuming the output *y* given *x* is sampled from

$$p(y|x, \theta)$$

- 2. estimating θ under probabilistic principles such as MLE, MAP, posterior inference
- 3. check if $p(y|x, \theta^*)$ fits $\pi(y|x)$ well, and repeat 1 3
- 4. using $p(y|x, \theta^*)$ for predictions

Linear regression

$$f(x, \theta) = \theta^{\top} x,$$

$$y = f(x, \theta) + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma^2)$$

 \Rightarrow

Linear regression

$$f(x, \theta) = \theta^{\top} x,$$

$$y = f(x, \theta) + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma^{2})$$

Non-linear regression

$$f(\mathbf{x}, \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\mathbf{x})$$

$$y = f(x, \theta) + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Step 1: making assumptions about the output generation process

$$y = \boldsymbol{\theta}^{\top} \phi(x) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

- θ is the model parameter
- $\phi(x)$ is a pre-defined feature mapping (e.g., polynomial features)

Step 1: making assumptions about the output generation process

$$y = \boldsymbol{\theta}^{\top} \phi(x) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

- θ is the model parameter
- $\phi(x)$ is a pre-defined feature mapping (e.g., polynomial features)

Probabilistic formulation:

• The distribution of *y* given *x* under model assumption:

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\mathbf{x}), \sigma^2)$$

• Likelihood of θ given observed data (x, y):

$$\ell(\boldsymbol{\theta}) = p(y|\boldsymbol{x}, \boldsymbol{\theta})$$

Step 2: estimating θ using maximum likelihood estimation (MLE) Idea of MLE: for datapoints (x, y) sampled from $\pi(x, y)$

• We want to find θ^* such that $p(y|x, \theta^*) \approx \pi(y|x)$

Step 2: estimating θ using maximum likelihood estimation (MLE) Idea of MLE: for datapoints (x, y) sampled from $\pi(x, y)$

- We want to find θ^* such that $p(y|x, \theta^*) \approx \pi(y|x)$
- We need to measure the "closeness" of the two distributions ⇒ use the KL divergence

$$KL[\pi(y|x)||p(y|x,\theta)] = \mathbb{E}_{\pi(y|x)} \left[\log \frac{\pi(y|x)}{p(y|x,\theta)} \right]$$

Step 2: estimating θ using maximum likelihood estimation (MLE) Idea of MLE: for datapoints (x, y) sampled from $\pi(x, y)$

- We want to find θ^* such that $p(y|x, \theta^*) \approx \pi(y|x)$
- We need to measure the "closeness" of the two distributions ⇒ use the KL divergence

$$KL[\pi(y|x)||p(y|x,\theta)] = \mathbb{E}_{\pi(y|x)} \left[\log \frac{\pi(y|x)}{p(y|x,\theta)} \right]$$

• We want this KL to be small for all x sampled from $\pi(x)$

$$\theta^* = \arg\min_{\boldsymbol{\theta}} \mathbb{E}_{\pi(\boldsymbol{x})}[\mathrm{KL}[\pi(\boldsymbol{y}|\boldsymbol{x})||p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\theta})]]$$

Step 2: estimating θ using maximum likelihood estimation (MLE) Idea of MLE: for datapoints (x, y) sampled from $\pi(x, y)$

- We want to find θ^* such that $p(y|x, \theta^*) \approx \pi(y|x)$
- We need to measure the "closeness" of the two distributions ⇒ use the KL divergence

$$KL[\pi(y|x)||p(y|x,\theta)] = \mathbb{E}_{\pi(y|x)} \left[\log \frac{\pi(y|x)}{p(y|x,\theta)} \right]$$

• We want this KL to be small for all x sampled from $\pi(x)$

$$\Leftrightarrow \quad \theta^* = \arg \max_{\theta} \mathbb{E}_{\pi(x,y)}[\log p(y|x,\theta)]$$

Step 2: estimating θ using maximum likelihood estimation (MLE) Idea of MLE: for datapoints (x, y) sampled from $\pi(x, y)$

- We want to find θ^* such that $p(y|x, \theta^*) \approx \pi(y|x)$
- We need to measure the "closeness" of the two distributions ⇒ use the KL divergence

$$KL[\pi(y|\mathbf{x})||p(y|\mathbf{x},\boldsymbol{\theta})] = \mathbb{E}_{\pi(y|\mathbf{x})} \left[\log \frac{\pi(y|\mathbf{x})}{p(y|\mathbf{x},\boldsymbol{\theta})} \right]$$

• We want this KL to be small for all x sampled from $\pi(x)$ Estimate using dataset $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$ from $\pi(x, y)$:

$$\theta^* = \arg\max_{\theta} \frac{1}{N} \sum_{(x_n, y_n) \in \mathcal{D}} \log p(y_n | x_n, \theta)$$

Step 2: estimating θ using maximum likelihood estimation (MLE) MLE: find θ^* by

$$\theta^* = \arg\max_{\theta} \frac{1}{N} \sum_{(x_n, y_n) \in \mathcal{D}} \log p(y_n | x_n, \theta)$$

We assumed the probabilistic model to be

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\mathbf{x}), \sigma^2)$$

Step 2: estimating θ using maximum likelihood estimation (MLE) MLE: find θ^* by

$$\theta^* = \arg \max_{\theta} \frac{1}{N} \sum_{(x_n, y_n) \in \mathcal{D}} \log p(y_n | x_n, \theta)$$

• We assumed the probabilistic model to be

$$p(y|x, \theta) = \mathcal{N}(\theta^{\top} \phi(x), \sigma^{2})$$

$$\Rightarrow \theta^{*} = \arg \max_{\theta} \frac{1}{N} \sum_{(x_{n}, y_{n}) \in \mathcal{D}} \log \mathcal{N}(\theta^{\top} \phi(x), \sigma^{2})$$

Step 2: estimating θ using maximum likelihood estimation (MLE) MLE: find θ^* by

$$\theta^* = \arg \max_{\theta} \frac{1}{N} \sum_{(x_n, y_n) \in \mathcal{D}} \log p(y_n | x_n, \theta)$$

• We assumed the probabilistic model to be

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\mathbf{x}), \sigma^{2})$$

$$\Rightarrow \boldsymbol{\theta}^{*} = \arg \max_{\boldsymbol{\theta}} \frac{1}{N} \sum_{(\mathbf{x}_{n}, y_{n}) \in \mathcal{D}} \log \mathcal{N}(\boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\mathbf{x}), \sigma^{2})$$

$$= \arg \max_{\boldsymbol{\theta}} \frac{1}{N} \sum_{(\mathbf{x}_{n}, y_{n}) \in \mathcal{D}} -\frac{1}{2\sigma^{2}} ||y_{n} - \boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\mathbf{x}_{n})||_{2}^{2} + \text{const}$$

Step 2: estimating θ using maximum likelihood estimation (MLE) MLE: find θ^* by

$$\theta^* = \arg \max_{\theta} \frac{1}{N} \sum_{(x_n, y_n) \in \mathcal{D}} \log p(y_n | x_n, \theta)$$

• We assumed the probabilistic model to be

$$p(y|x, \theta) = \mathcal{N}(\theta^{\top} \phi(x), \sigma^{2})$$

$$\Rightarrow \theta^{*} = \arg \max_{\theta} \frac{1}{N} \sum_{(x_{n}, y_{n}) \in \mathcal{D}} \log \mathcal{N}(\theta^{\top} \phi(x), \sigma^{2})$$

$$= \arg \max_{\theta} \frac{1}{N} \sum_{(x_{n}, y_{n}) \in \mathcal{D}} -\frac{1}{2\sigma^{2}} ||y_{n} - \theta^{\top} \phi(x_{n})||_{2}^{2} + \text{const}$$

$$= \arg \min_{\theta} \frac{1}{N} \sum_{(x_{n}, y_{n}) \in \mathcal{D}} \frac{1}{2\sigma^{2}} ||y_{n} - \theta^{\top} \phi(x_{n})||_{2}^{2}$$

Step 2: estimating θ using maximum likelihood estimation (MLE)

$$\arg\min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{(\boldsymbol{x}_n, \boldsymbol{y}_n) \in \mathcal{D}} \frac{1}{2\sigma^2} ||\boldsymbol{y}_n - \boldsymbol{\theta}^\top \boldsymbol{\phi}(\boldsymbol{x}_n)||_2^2$$

Writing the objective in matrix form:

$$\mathbf{\Phi} = (\phi(x_1), ..., \phi(x_N))^\top, \mathbf{y} = (y_1, ..., y_N)^\top$$

$$\mathbf{\theta}^* = \arg\min_{\boldsymbol{\theta}} L(\boldsymbol{\theta}), \quad L(\boldsymbol{\theta}) = \frac{1}{2\sigma^2} ||\mathbf{y} - \mathbf{\Phi}\boldsymbol{\theta}||_2^2$$

• Gradient of the loss $\nabla_{\theta} L(\theta)$:

Step 2: estimating θ using maximum likelihood estimation (MLE)

$$\arg\min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{(\boldsymbol{x}_n, \boldsymbol{y}_n) \in \mathcal{D}} \frac{1}{2\sigma^2} ||\boldsymbol{y}_n - \boldsymbol{\theta}^\top \boldsymbol{\phi}(\boldsymbol{x}_n)||_2^2$$

Writing the objective in matrix form:

$$\mathbf{\Phi} = (\phi(x_1), ..., \phi(x_N))^{\top}, \mathbf{y} = (y_1, ..., y_N)^{\top}$$

$$\theta^* = \underset{\theta}{\operatorname{arg\,min}} L(\theta), \quad L(\theta) = \frac{1}{2\sigma^2}||\mathbf{y} - \mathbf{\Phi}\theta||_2^2$$

• Gradient of the loss $\nabla_{\theta} L(\theta)$:

$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) = \frac{1}{\sigma^2} \boldsymbol{\Phi}^{\top} (\boldsymbol{\Phi} \boldsymbol{\theta} - \mathbf{y})$$

• Setting $\nabla_{\theta} L(\theta) = 0$:

Step 2: estimating θ using maximum likelihood estimation (MLE)

$$\arg\min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{(\boldsymbol{x}_n, \boldsymbol{y}_n) \in \mathcal{D}} \frac{1}{2\sigma^2} ||\boldsymbol{y}_n - \boldsymbol{\theta}^\top \boldsymbol{\phi}(\boldsymbol{x}_n)||_2^2$$

Writing the objective in matrix form:

$$\mathbf{\Phi} = (\phi(x_1), ..., \phi(x_N))^{\top}, \mathbf{y} = (y_1, ..., y_N)^{\top}$$

$$\theta^* = \arg\min_{\theta} L(\theta), \quad L(\theta) = \frac{1}{2\sigma^2} ||\mathbf{y} - \mathbf{\Phi}\theta||_2^2$$

• Gradient of the loss $\nabla_{\theta} L(\theta)$:

$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) = \frac{1}{\sigma^2} \boldsymbol{\Phi}^{\top} (\boldsymbol{\Phi} \boldsymbol{\theta} - \mathbf{y})$$

• Setting $\nabla_{\theta} L(\theta) = 0$:

$$\Rightarrow \frac{1}{\sigma^2} \mathbf{\Phi}^{\top} \mathbf{\Phi} \mathbf{\theta}^* = \frac{1}{\sigma^2} \mathbf{\Phi}^{\top} \mathbf{y} \quad \Rightarrow \mathbf{\theta}^* = (\mathbf{\Phi}^{\top} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\top} \mathbf{y}$$

Step 3: check if $p(y|x, \theta^*)$ fits $\pi(y|x)$ well Typical approaches:

- Cross validation
- Model selection with marginal likelihood

Step 3: check if $p(y|x, \theta^*)$ fits $\pi(y|x)$ well Typical approaches:

- Cross validation
- Model selection with marginal likelihood

If model fit is bad:

- Try another set of features $\phi'(x) \neq \phi(x)$
- Use other classes of models other than linear regression

Step 4: using $p(y|x, \theta^*)$ to make predictions Assume new test input x_{test} :

$$\boldsymbol{\theta}^* = (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \mathbf{y}$$

$$\Rightarrow p(y_{test}|x_{test}, \boldsymbol{\theta}^*) = \mathcal{N}(\mathbf{y}^{\top} \boldsymbol{\Phi}(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \phi(x_{test}), \sigma^2)$$

Probabilistic modelling: logistic regression

Step 1: making assumptions about the output generation process

$$y = \begin{cases} 1, & \text{with probability } \rho \\ 0, & \text{with probability } 1 - \rho \end{cases}, \quad \rho = sigmoid(\boldsymbol{\theta}^{\top} \phi(\boldsymbol{x}))$$

Probabilistic formulation:

• The distribution of *y* given *x* under model assumption:

$$p(y|\mathbf{x}, \mathbf{\theta}) = \text{Bern}(sigmoid(\mathbf{\theta}^{\top} \phi(\mathbf{x})))$$

Step 2: estimating θ using maximum likelihood estimation (MLE) MLE: find θ^* by

$$\theta^* = \arg \max_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} \log p(y|x,\theta)$$

We assumed the probabilistic model to be

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \text{Bern}(sigmoid(\boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\mathbf{x})))$$

Step 2: estimating θ using maximum likelihood estimation (MLE) MLE: find θ^* by

$$\theta^* = \arg \max_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} \log p(y|x,\theta)$$

We assumed the probabilistic model to be

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \text{Bern}(sigmoid(\boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\mathbf{x})))$$

$$\Rightarrow \theta^* = \arg\max_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} \log \operatorname{Bern}(\operatorname{sigmoid}(\theta^{\top} \phi(x)))$$

Step 2: estimating θ using maximum likelihood estimation (MLE) MLE: find θ^* by

$$\theta^* = \arg \max_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} \log p(y|x,\theta)$$

• We assumed the probabilistic model to be

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \text{Bern}(sigmoid(\boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\mathbf{x})))$$

$$\Rightarrow \theta^* = \arg\max_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} \log \operatorname{Bern}(sigmoid(\theta^{\top} \phi(x)))$$

$$= \arg\max_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} y \log \hat{y}(x;\theta) + (1-y) \log(1-\hat{y}(x;\theta)),$$

$$\hat{y}(x;\theta) = sigmoid(\theta^{\top} \phi(x))$$

Step 2: estimating θ using maximum likelihood estimation (MLE)

$$\arg\max_{\boldsymbol{\theta}} L(\boldsymbol{\theta}), \quad L(\boldsymbol{\theta}) = \frac{1}{|\mathcal{D}|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{D}} y \log \hat{y}(\boldsymbol{x}; \boldsymbol{\theta}) + (1 - y) \log (1 - \hat{y}(\boldsymbol{x}; \boldsymbol{\theta})),$$

$$\hat{y}(x; \boldsymbol{\theta}) = sigmoid(\boldsymbol{\theta}^{\top} \boldsymbol{\phi}(x))$$

• Gradient of the loss $\nabla_{\theta} L(\theta)$:

$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} [y - \hat{y}(\mathbf{x}; \boldsymbol{\theta})] \phi(\mathbf{x})$$

No analytic solutions!

Gradient descent based optimisation

Algorithm: Gradient Descent (gradient **ascent** in MLE case) Define **starting point** θ_0 , sequence of **step sizes** γ_t , set $t \leftarrow 0$.

- 1. Set $\theta_{t+1} = \theta_t + \gamma_t \nabla_{\theta} L(\theta_t)$, $t \leftarrow t+1$
- 2. Repeat 1 until stopping criterion.

Probabilistic modelling: logistic regression

Step 3: check if $p(y|x, \theta^*)$ fits $\pi(y|x)$ well Typical approaches:

- Cross validation
- Model selection with marginal likelihood

If model fit is bad:

- Try another set of features $\phi'(x) \neq \phi(x)$
- Use other classes of models other than logistic regression

Probabilistic modelling: logistic regression

Step 4: using $p(y|x, \theta^*)$ to make predictions Assume new test input x_{test} : θ^* obtained by gradient descent

$$\Rightarrow p(y_{test}|\mathbf{x}_{test}, \mathbf{\theta}^*) = \text{Bern}(Sigmoid((\mathbf{\theta}^*)^{\top}\phi(\mathbf{x}_{test})))$$

Probabilistic modelling & MLE: summary

Have you ever wondered about the following questions:

• Why using ℓ_2 loss in many regression problems? **A:** We assume the model to be $p(y|x, \theta) = \mathcal{N}(\theta^{\top}\phi(x), \sigma^2)$, and fit θ using MLE

Probabilistic modelling & MLE: summary

Have you ever wondered about the following questions:

- Why using ℓ_2 loss in many regression problems? **A:** We assume the model to be $p(y|x,\theta) = \mathcal{N}(\theta^{\top}\phi(x),\sigma^2)$, and fit θ using MLE
- Where does the cross-entropy loss come from? **A:** It comes from MLE, and in binary classification using $p(y|x, \theta) = \text{Bern}(sigmoid(\theta^{\top}\phi(x)))$

Probabilistic modelling & MLE: summary

Have you ever wondered about the following questions:

- Why using ℓ_2 loss in many regression problems? **A:** We assume the model to be $p(y|x,\theta) = \mathcal{N}(\theta^{\top}\phi(x),\sigma^2)$, and fit θ using MLE
- Where does the cross-entropy loss come from? **A:** It comes from MLE, and in binary classification using $p(y|x,\theta) = \text{Bern}(sigmoid(\theta^{\top}\phi(x)))$
- What is a good principle for choosing a good loss function?
 A: Build a probabilistic model for the data generation process, and fit the parameters using MLE (or MAP, posterior inference)

Exercises

Finish relevant exercises in the exercise sheet

 You should be able to derive MLE objectives from probabilistic model assumptions, and vice versa

Next lecture: convergence of gradient descent Pre-requisite knowledge: Eigen-decomposition (See e.g., https://youtu.be/xgZ8oK9Wxzg or search relevant videos from e.g., 3Blue1Brown)