

Théorie et Algorithmes de l'Apprentissage Automatique

6 - Évaluation et sélection de modèles

Simon BERNARD simon.bernard@univ-rouen.fr

Erreur en généralisation

Figure 1 – SVM (RBF kernel), Forêts Aléatoires (100 arbres), K-Plus Proches Voisins (K=5)

- SVM, avec quel noyau? si RBF quel γ et quel C?
- · Forêts Aléatoires, avec combien d'arbres, quelle profondeur des arbres?
- · kNN, avec combien de voisins?
- ⇒ Comment choisir pour garantir de bonnes performances en généralisation?

· La capacité à généraliser est définie via la fonction de perte :

$$\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$$

tel que $\ell(y, h(\mathbf{x})) \geq 0$ mesure à quel point la prédiction $h(\mathbf{x})$ est proche de la vraie valeur y

· La "qualité " globale d'un h est définie par le risque réel :

$$R(h) = E_{(\mathbf{x},y) \sim P_{X,Y}}[\ell(y,h(\mathbf{x}))]$$

 \cdot $p_{X,Y}$ étant inconnue, l'apprentissage se base sur le risque empirique :

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(h(\mathbf{x}_i), y)$$

à partir des observations $\mathcal{D} = \{(\mathbf{x}_i, y_i), i = 1, \dots, n\}$

- $R_n(h)$ est une approximation de R(h)
- \cdot La qualité de cette approximation dépend de n et de la "complexité" du modèle

· Si le modèle est trop complexe, $R_n(h)$ peut être faible mais R(h) élevé (sur-apprentissage)

- · La différence entre le risque empirique et le risque réel est appelée generalization gap
- · On souhaite pouvoir garantir que ce generalization gap est faible :

$$P\left(\sup_{h\in\mathcal{H}}|R(h)-R_n(h)|>\epsilon\right)<\delta$$

pour $\epsilon > 0$ et $\delta > 0$ les plus petits possibles ¹

- \cdot ϵ permet de formuler une borne sur l'erreur en généralisation
- \cdot δ est le degré de confiance en cette borne

^{1.} Appelé théorie de l'apprenabilité Probably Approximatively Correct (PAC)

Borne sur l'erreur en généralisation

Pour tout $h \in \mathcal{H}$, avec une probabilité $1 - \delta$ on a

$$R(h) \leq R_n(h) + O\left(\sqrt{\frac{8d_{VC}\left(\ln\left(\frac{2n}{d_{VC}}\right) + 1\right) + 8\ln\left(\frac{4}{\delta}\right)}{n}}\right)$$

- $d_{VC} > 0$ est la dimension Vapnik-Chervonenkis $d_{VC} = 0$ qui mesure la capacité de $d_{VC} = 0$
- \cdot C'est une mesure de la "complexité" de ${\cal H}$

^{2.} Correspond au cardinal du plus grand ensemble de points pour lequel $\exists h \in \mathcal{H}$ pouvant prédire n'importe quel combinaison de label pour ces points

Ce que nous dit ce résultat :

· L'erreur en généralisation est borné par $R_n(h)$ + un terme qui dépend notamment de la complexité de \mathcal{H} :

$$R(h) \leq \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mathbf{x}_i, y_i)) + O\left(d_{VC}(\mathcal{H}), \frac{1}{n}, \log\left(\frac{1}{\delta}\right)\right)$$

- · Minimiser la loss ne suffit pas, il faut aussi minimiser la complexité de ${\cal H}$
- De façon générale, \mathcal{H} avec d_{VC} faibles préférables (linéaire > quadratique)
- · Mais il faut aussi que \mathcal{H} soit suffisamment complexe pour avoir un $R_n(h)$ faible

 \cdot Pour un hyperplan séparateur, la marge d'un point \mathbf{x}_i est :

$$\gamma_i = \frac{|\mathbf{w}^\top \mathbf{x} + b|}{\|\mathbf{w}\|}$$

• La marge de l'hyperplan est la marge du point le plus proche :

$$\gamma = \min_{i=1,\ldots,n} \gamma_i$$

 \cdot Soit \mathcal{H}_{γ} l'ensemble des hyperplans séparateurs avec une marge d'au moins γ . alors :

$$d_{VC}(\mathcal{H}_{\gamma}) \leq \min\left(\frac{R^2}{\gamma^2}, n\right) + 1$$

où R est le rayon de la plus petite hypersphère contenant les données

· Alors, on peut montrer:

$$R(h) \le R_n(h) + \sqrt{\frac{O\left(\frac{R^2}{\gamma^2}\right) + \ln\left(\frac{4}{\delta}\right)}{n}}$$

• Plus γ est grand, plus on peut obtenir un generalization gap petit

- \cdot Borne sur l'erreur en généralisation : indications solides sur les qualités souhaités de ${\cal H}$
- · Mais...
 - \cdot d_{VC} est difficile à calculer
 - · La borne est souvent pessimiste
 - Elle ne donne pas d'indication sur comment choisir les hyper-paramètres
- D'autres décompositions de l'erreur existent (e.g. biais-variance) qui donnent des indications plus pratiques
- Mais on ne peut pas garantir de bonnes performances en généralisation sans évaluer sur des données inconnues

Sélection et évaluation de modèles

Objectifs:

- Évaluation des modèles : quelle(s) mesure(s) de performance?
- · Estimation de la capacité de généralisation du modèle
- · Procédures pratiques de sélection de modèles

Remarques:

- · On se limitera dans ce cours aux problèmes de classification binaire
- · Mais ce qui va être dit s'appliquent à d'autres types de problèmes d'apprentissage

		Vérité terrain (y)		
		positifs	négatifs	
Valeurs	positifs	True Positive (TP)	False Positive (FP)	
	négatifs	False Negative (FN)	True Negative (TN)	

- TP : nombre de positifs classés positifs (bonnes prédictions)
- FP : nombre de négatifs classés positifs (erreurs)
- FN : nombre de positifs classés négatifs (erreurs)
- · TN : nombre de négatifs classés négatifs (bonnes prédictions)

Plusieurs critères peuvent être construits à partir de cette matrice...

Mesures de performances

• Précision
$$^3 = \frac{TP}{TP + FP} (\nearrow)$$

• Rappel
$$^4 = \frac{TP}{TP + FN} (\nearrow)$$

• Spécificité
$$^{5} = \frac{TN}{TN + FP} (\nearrow)$$

• Erreur Type-I
$$^{6} = \frac{FP}{TN + FP} (\searrow)$$

• Erreur Type-II
$$^7 = \frac{FN}{TP + FN} (\searrow)$$

^{3.} Mesure à quel point les prédictions positives du modèle sont fiables

^{4.} Mesure à quel point le modèle réussi à détecter les vrais positifs

^{5.} Mesure à quel point le modèle réussi à détecter les vrais négatifs

^{6.} Mesure à quel point le modèle à échoué à prédire les positifs

^{7.} Mesure à quel point le modèle à échoué à prédire les négatifs

Mesures de performances

• Taux d'erreur =
$$\frac{FP + FN}{TP + TN + FP + FN}$$
 (\searrow)

• Taux de bonne classification =
$$\frac{TP + TN}{TP + TN + FP + FN} (\nearrow)$$

· Taux de bonne classification balancé
$$=\frac{1}{2}\left(\frac{TP}{TP+FN}+\frac{TN}{TN+FP}\right)$$
 (\nearrow)

•
$$F_1 - score^8 = 2 \frac{Precision \times Rappel}{Precision + Rappel} = \frac{2TP}{2TP + FP + FN} (\nearrow)$$

• MCC (Mathews Correlation Coefficient)
$$^{9} = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}} \ (\nearrow)$$

^{8.} équivalent au taux de bonne classification si les classes sont équilibrées

^{9.} Mesure de corrélation entre les prédictions et les vraies valeurs. Particulièrement adapté pour les problèmes déséquilibrés

Courbe ROC (Receiver Operating Characteristic)

- TPR = taux de vrais positifs (rappel)
- FPR = taux de faux positifs (Erreur Type-I)
- · Courbe ROC : TPR = f(FPR) (pour tout point de fonctionnement/seuil de décision)

Permet de comparer visuellement plusieurs modèles, pour plusieurs compromis TPR/FPR

Aire sous la courbe ROC

- Soit $\mathcal{D} = \{(\mathbf{x}_i, y_i = 1) \cup (\mathbf{x}_i, y_i = -1), i = 1, \dots, n_+, j = 1, \dots, n_-\}$
- · L'AUC (Area Under the ROC Curve) est définie par :

$$AUC = \frac{\sum_{i=1}^{n_+} \sum_{j=1}^{n_-} \mathbf{1}_{h(\mathbf{x}_i) > h(\mathbf{x}_j)}}{n_+ n_-}$$

avec 1 la fonction indicatrice

- · l'AUC est comprise entre 0 et 1 (↗)
- Privilégie la fonction de décision telle que $h(\mathbf{x}_i) > h(\mathbf{x}_j)$, $\forall (y_i = 1, y_j = -1)$

Mesures de performances

- · Il en existe beaucoup d'autres, chacune avec des spécificités
- Il faut choisir la bonne mesure de performances en fonction de la tâche d'apprentissage, des modèles étudiés, de la problèmatique spécifique, etc.

Généralisation du modèle

- · L'enjeu est de pouvoir mesurer ces performances sur des données inconnues
- · On "construit" h sur des données d'apprentissage $\mathcal{D}_n = \{(\mathbf{x}_i, y_i), i = 1, \dots, n\}$
- · On s'intéresse à $S(\mathcal{D},h)$, la performance réelle de h sur des données inconnues

Capacité de généralisation

La capacité de h à donner de bonnes performances (mesurées avec une des métriques précédentes) lorsqu'il est testé sur des données autres que celles qui ont servi à l'apprentissage

• Comment estimer $S(\mathcal{D}, h)$ en pratique?

Découper aléatoirement \mathcal{D}_n en deux sous-ensembles disjoints \mathcal{D}_{app} et \mathcal{D}_{test}

- $\mathcal{D}_{app} = \{(\mathbf{x}_i, y_i), i = 1, \dots, n_{app}\} : \text{données pour l'apprentissage de } h$
- $\mathcal{D}_{test} = \{(\mathbf{x}_i, y_i), i = 1, \dots, n_{test}\}$: données pour évaluer la capacité de généralisation de h

Remarques:

- Plus *n_{app}* est grand, meilleur est l'apprentissage
- Plus n_{test} est grand, meilleure est l'estimation de la performance en généralisation de h
- Dtest n'est utilisé qu'une seule fois!

- · On peut calculer un intervalle de confiance en fonction des résultats sur \mathcal{D}_{test}
- · Soit \hat{p} , la probabilité de succès, alors ¹⁰ :

$$\hat{p}_{\alpha} = \hat{p} \pm z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \frac{n_{S}}{n} \pm \frac{z_{\alpha}}{n} \sqrt{\frac{n_{S}n_{F}}{n}}$$

avec α le niveau de confiance, n_S/n_F le nombre de succès/échecs, et z_α le quantile de la loi normale

• Exemple : pour n = 100, $\hat{p} = 0.9$, $\alpha = 1 - 0$, 95 = 0.05, $z_{\alpha} = 1.96$, on a :

$$0.9 \pm 1.96 \times \sqrt{\frac{0.9 \times 0.1}{100}} = 0.9 \pm 0.06$$

• Donc, on peut dire que 95% du temps : 0, 84 $< \hat{p} <$ 0, 96

^{10.} Intervalle de confiance binomial, ici avec l'intervalle de Wald, mais il en existe d'autres

Fiabiliser l'estimation

- · En augmentant le nombre de tests, on augmente la confiance
- · Séparation aléatoires répétées : plusieurs découpages aléatoires $\mathcal{D}_{app}/\mathcal{D}_{test}$
- · Validation croisée (K-fold cross-validation) (détails plus loins)
- Leave-one-out: app. de n-1 données et test sur la donnée restante, répété n fois.
- · Bootstrap : échantillonnage avec remise, répété B fois

Fiabiliser l'estimation

- · Répétitions : permet de calculer des statistiques sur les performances
- · Soit N le nombre de répétitions et ϵ_i la performance de h sur le découpage i
- · Statistiques:

· Moyenne :
$$\bar{\epsilon} = \frac{1}{N} \sum_{i=1}^{N} \epsilon_i$$

• Variance (non-biaisée) :
$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (\epsilon_i - \overline{\epsilon})^2$$

· Intervalle de confiance :

$$\bar{\epsilon} \pm t_{N-1,\alpha/2} \frac{\sigma}{\sqrt{N}}$$

où $t_{N-1,\alpha/2}$ est le quantile de la loi de Student 11

^{11.} Ces quantiles sont données dans des tables de statistiques

Bonnes pratiques:

- · Simuler des conditions réelles (distribution de classes, bruit, etc.)
- · Utiliser des métriques adaptées à la tâche
- · Fiabiliser les estimations (plusieurs découpages, validation croisée)
- · Privilégier la stabilité plutôt que la performance (écart-type faible)
- · Ne pas oublier de comparer avec des modèles simples (baseline)

Sélection de modèle

Sélection de modèle

Consiste à choisir le modèle le plus pertinent pour une tâche, parmi un ensemble de modèles candidats et compte-tenu des données

Par exemple :

- Quelle valeur d'hyper-paramètres pour obtenir les meilleures performances en généralisation?
- · Quel algorithme d'apprentissage pour un problème d'apprentissage donné?
- Quelle architecture (noyaux pour les SVM, nombres de neurones et de couches pour les réseaux de neurones, nombre de classifieurs pour les ensembles, etc.)?

• ...

Comment sélectionner le meilleur modèle sans toucher à \mathcal{D}_{test} ?

- 1. Découper aléatoirement $\mathcal{D}_n = \mathcal{D}_{app} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$
- 2. Apprendre chaque modèle possible sur \mathcal{D}_{app}
- 3. Évaluer leur performances sur \mathcal{D}_{val}
- 4. Sélectionner le modèle qui donne la meilleure performance sur \mathcal{D}_{val}

Validation croisée (K-fold cross-validation)

Si le nombre de données dans \mathcal{D}_n est faible? (ou pour fiabiliser)

Validation	Apprentissage		Test
Apprentissage	Validation	Apprentissage	Test
Apprentissage		Validation	Test

- 1. Découper aléatoirement $\mathcal{D}_n = \mathcal{D}_{app} \cup \mathcal{D}_{test}$
- 2. Découper aléatoirement $\mathcal{D}_{app} = \mathcal{D}_1 \cup \cdots \cup \mathcal{D}_K$ en K sous-ensembles disjoints (fold)
- 3. Pour k = 1, ..., K
 - 3.1 Mettre de coté \mathcal{D}_k
 - 3.2 Apprendre h sur les K 1 fold restants
 - 3.3 Évaluer sa performance R_k sur \mathcal{D}_k
- 4. Moyenner les K mesures de performances R_k

Procédure générale pour la sélection de modèles

Pour un jeu d'hyper-paramètres $\mathcal{P} = \{p_1, p_2, \dots\}$ donné...

Procédure:

Entrées :
$$P = \{h_{p_1}, h_{p_2}, \dots\}$$
, $D_n = \{(\mathbf{x}_i, y_i), i = 1, \dots, n\}$,

- 1. Découper les données : $(\mathcal{D}_{app}, \mathcal{D}_{test}) \leftarrow SplitData(\mathcal{D}_n, options)$
- 2. Sélectionner le meilleur modèle : $h^* \leftarrow Selection(\mathcal{D}_{app}, \mathcal{P})$
- 3. Évaluer le modèle retenu : $Perf \leftarrow Evaluer Performance(\mathcal{D}_{test}, h^*)$

Procédure générale pour la sélection de modèles (suite)


```
Fonction h^* \leftarrow Selection(\mathcal{D}, \mathcal{P}):
```

- 1. Redécouper les données $(\mathcal{D}_{app}, \mathcal{D}_{val}) \leftarrow SplitData(\mathcal{D}, options)$
- 2. Pour $p_i \in \mathcal{P}$:
 - 2.1 Apprendre le modèle : $h_i \leftarrow Apprentissage(\mathcal{D}_{app}, p_i)$
 - 2.2 Évaluer le modèle : $Perf_i \leftarrow Evaluer Performance(\mathcal{D}_{val}, h_i)$
- 3. Sélectionner le meilleur hyper-paramètre : $p^* \leftarrow \arg\min_i Perf_i$
- 4. $h^* \leftarrow Apprentissage(\mathcal{D}, p^*)$

Méthodologie pour comparer plusieurs \mathcal{A}_i sur plusieurs \mathcal{D}_j

- 1. Choisir une mesure de performance pertinente S
- 2. Pour chaque base \mathcal{D}_i :
 - 2.1 Réaliser k découpages \mathcal{D}_{j,app_k} / $\mathcal{D}_{j,test_k}$
 - 2.2 Pour chaque méthode A_i :
 - 2.2.1 $h_{i,j,k} \leftarrow Selection(\mathcal{D}_{j,app_k}, \mathcal{P})$
 - 2.2.2 Evaluer sa performance $S_{i,j,k}$ sur $\mathcal{D}_{j,test_k}$
 - 2.3 Calculer la performance moyenne $S_{i,j}$
- 3. Comparaison globale ou sur chaque base avec un test de significativité

Test statistiques de significativité

Principe:

- · On vérifie une hypothèse statistique sur les performances des modèles
- · L'hypothèse usuelle est que les performances des modèles sont équivalentes
- · Le test statistique permet de rejeter ou non cette hypothèse
- Le test porte sur les distributions des performances des modèles
- Si les performances sont significativement différentes, on peut conclure que les modèles sont différents et que l'un est meilleur que l'autre

Test de Wilcoxon

- · Comparer les performances de deux modèles sur N datasets
- · Soit $S_{i,j}$ la performance de \mathcal{A}_i sur \mathcal{D}_j
- Hypothèse testée : les distributions $S_{1,j}, S_{2,j}, \forall j$ sont équivalentes
- · Procédure :
 - $\cdot \ S_j = |S_{1,j} S_{2,j}|$
 - Calcul des rangs R_i de S_i (1 pour le plus petit S_i , 2 pour le suivant, etc.)
 - · Signed rank sum:

$$W = \sum_{i} \operatorname{sign}(S_{i}) R_{j}$$

- · Calcul d'une p-value pour W (table de Wilcoxon)
- \cdot Si $p < \alpha$, on rejette l'hypothèse d'équivalence

Test de Friedman

- Comparer les performances de k > 2 modèles sur N datasets
- · Soit $r_{i,j}$ le rang de \mathcal{A}_i sur \mathcal{D}_j
- Hypothèse testée : les $r_{i,j}$, $\forall i,j$ sont équivalents, i.e. tous les algorithmes se valent
- · Procédure :
 - · Calcul des rangs moyens $\overline{r}_i = \frac{1}{n} \sum_j r_{i,j}$
 - · Calcul de la statistique de Friedman :

$$\chi_F^2 = \frac{12N}{k(k+1)} \left(\sum_i \bar{r}_i^2 - \frac{k(k+1)^2}{4} \right)$$

- · Calcul d'une p-value pour χ_E^2 (table de Friedman)
- Si $p < \alpha$, on rejette l'hypothèse d'équivalence

- · Si hypothèse rejetée par Friedman, comparaison deux à deux avec un test post-hoc
- · Nemenyi calcule un seuil de différence significative entre les rangs moyens

$$CD = q_{\alpha} \sqrt{\frac{k(k+1)}{6N}}$$

 Si la différence entre les rangs moyens de deux classifieurs est supérieure à CD, alors les performances sont significativement différentes

