תכנון וניתוח אלגוריתמים הרצאה 7

פרק 1.7: בעית b-ים שליליים

- במקרים רבים צדו הימני של האילוץ מופיע כמספר שלילי.
- ▶ זה יכול לנבוע הן מצורתו המקורית של האילוץ והן כתוצאה משינוי שבוצע באילוץ על מנת לשנות את כיוונו.
- $x_1 10x_2 \le -5 \iff -x_1 + 10x_2 \ge 5$ למשל: \diamond
 - ⇒ הבעיה הנוצרת ע"י b-ים שליליים היא, שהוספת משתני חוסר אינה מאפשרת קבלת פתרון בסיסי אפשרי, היות ואחד או יותר ממשתני הבסיס במקרה זה יקבל ערך שלילי, מאחר וה-b המתאים לו שלילי.

Min
$$\{Z = 8x_1 + 4x_2 + 6x_3\}$$

:מונה הבעיה הבאה

S.t.

$$2x_1 + x_2 + 3x_3 \ge 2$$

$$5x_1 + x_2 + 2x_3 \ge 3$$

$$6x_1 + 3x_2 - x_3 \ge 4$$

$$x_{i} \ge 0$$
 $j = 1, 2, 3$

- € פתרון:
- שלב ראשון הוא הפיכת האי-שוויונים לשוויונים. ◆
- ♦ לשם כך נחסיר מכל משוואה "משתנה עודף" המקביל ל"משתנה חוסר" באי-שוויונים עם ≥.
 - סחיר "משתנה העודף" בפונקצית המטרה יהיה אפס. ♦

א: המערכת המתקבלת היא:

Min
$$\{Z = 8x_1 + 4x_2 + 6x_3\}$$

S.t.

$$2x_1 + x_2 + 3x_3 - x_4 = 2$$

 $5x_1 + x_2 + 2x_3 - x_5 = 3$
 $6x_1 + 3x_2 - x_3 - x_6 = 4$

$$x_j \ge 0$$
 $j = 1, 2, ..., 6$

- עבוד על בעית המינימום בשיטת הסימפלקס, כאשר השינוי
 היחיד שיתבצע בתהליך הוא הקריטריון לאופטימליות (כפי שלמדנו).
- ⇒ הבעיה במערכת המשוואות המתקבלת היא, שלא ניתן לזהות מייד פתרון בסיסי ראשוני.
- אינם יכולים להוות פתרון בסיסי ראשוני, x_4, x_5, x_6 אינם יכולים להוות פתרון בסיסי ראשוני, המקבל את ערכי האילוצים, היות והם יהיו שליליים והפתרון לא יהיה אפשרי.

♥ על מנת להתגבר על בעיה זו נבנה פתרון בסיסי ראשוני
 באמצעות הוספת 'משתנים מלאכותיים" – משתנה אחד לכל משוואה.

גם ממשתנים אלו נדרוש אי-שליליות.

מערכת האילוצים שתתקבל היא: ♦

$$2x_1 + x_2 + 3x_3 - x_4 + y_1 = 2$$

$$5x_1 + x_2 + 2x_3 - x_5 + y_2 = 3$$

$$6x_1 + 3x_2 - x_3 + y_3 = 4$$

$$x_j \ge 0$$
 $j = 1, 2, ..., 6$ $y_j \ge 0$ $j = 1, 2, 3$

שיטת ה-M הגדול The Big M Method

- ⇒ מערכת האילוצים שהתקבלה אינה זהה למערכת המקורית.
- כדי לקבל פתרון שיהיה זהה לפתרון הבעיה המקורית, עלינו
 לדרוש שבפתרון האופטימלי המשתנים המלאכותיים שהוספנו
 ישוו לאפס.
 - Mנעשה זאת באופן הבא (שיטת ה-M הגדול):

שיטת ה-M הגדול The Big M Method

- ♦ ניתן למשתנים המלאכותיים שהוספנו מחיר M בפונקצית המטרה, כאשר M הוא ערך גדול מאוד.
- .-M עבור בעית מקסימום, ניתן למשתנים המלאכותיים מחיר ◆
- במצב כזה, הערך האופטימלי של פונקצית המטרה מושג,כאשר ערכי המשתנים המלאכותיים יגיעו לאפס.
 - אם זה לא קורה, הרי שאין פתרון אפשרי לבעיה.
- ♦ לאחר מתן המחירים הנ"ל, אנו ממשיכים בתהליך הסימפלקס הרגיל ומקבלים את הפתרון הדרוש.

Min $\{Z = 8x_1 + 4x_2 + 6x_3 + My_1 + My_2 + My_3\}$

$$x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = 0$$

$$y_1 = y_2 = y_3 = M$$

$$Z = 9M$$

- !אין זה פתרון אפשרי לבעיה המקורית ♦
- ♦ רק בשלב שבו כל ה-y-ים יצאו מהבסיס ויקבלו ערך אפס, נקבל פתרון בסיסי אפשרי לבעיה המקורית.
 - כעת, נציג את הבעיה שהתחלנו לפתור בטבלה, ונריץ את הסימפלקס:

		x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	y_1	y ₂	y_3		
ריו	מחי	8	4	6	0	0	0	M	M	M		
	בסיס	\overline{a}_1	\bar{a}_2	\bar{a}_3	\bar{a}_4	$\bar{a}_{\scriptscriptstyle 5}$	\bar{a}_{6}	\bar{a}_7	\bar{a}_8	\bar{a}_9	\overline{b}	$\frac{b_i}{a_{ik}}$
1	y_1	2	1	3	-1	0	0	1	0	0	2	
2	y_2	5	1	2	0	-1	0	0	1	0	3	
3	y_3	6	3	-1	0	0	-1	0	0	1	4	
	C_j^{\mid}										9 <i>M</i>	=Z

:מי-C'_j נחשב את ♦

			x_1	x_2	x_3	<i>x</i> ₄	<i>x</i> ₅	! !	! y ₁	<i>y</i> ₂	y ₃		
ים	יך	מח	8	4	6	0	0	0	M	M	M		
		בסיס	\overline{a}_1	\overline{a}_2	\bar{a}_3	$\bar{a}_{\scriptscriptstyle 4}$	$\bar{a}_{\scriptscriptstyle 5}$	\bar{a}_6	\bar{a}_7	\bar{a}_8	\bar{a}_9	\overline{b}	$\frac{b_i}{a_{ik}}$
	1	y_1	2	1	3	-1	0	0	1	0	0	2	
	2	y_2	5	1	2	0	-1	0	0	1	0	3	
	3	y_3	6	3	-1	0	0	-1	0	0	1	4	
		C_j^{\mid}	13M - 8	5 <i>M</i> – 4	4 <i>M</i> – 6	-M	-M	-M	0	0	0	9 <i>M</i>	=Z

 (x_1, x_2, x_3) ים חיוביים (עבור C'_j כי ישנם, כי ישנם הפתרון אינו אופטימלי, כי ישנם אובר המועמד הבא לבסיס. והמקסימלי מתקבל עבור x_1 , לכן זהו המועמד הבא לבסיס.

		x_1	x_2	x_3	<i>x</i> ₄	x ₅	 	y_1	y_2	y ₃		
ים	מחיר	8	4	6	0	0	0	M	M	M		
	בסיס	\overline{a}_{1}	\overline{a}_2	\overline{a}_3	$\bar{a}_{\scriptscriptstyle 4}$	$\bar{a}_{\scriptscriptstyle 5}$	$\bar{a}_{\scriptscriptstyle 6}$	\bar{a}_7	\overline{a}_8	\bar{a}_9	\bar{b}	$\frac{b_i}{a_{ik}}$
1	y_1	2	1	3	-1	0	0	1	0	0	2	1
2	y_2	5	1	2	0	-1	0	0	1	0	3	$\frac{3}{5}$
3	y_3	6	3	-1	0	0	-1	0	0	1	4	$\frac{2}{3}$
	$C_j^{ }$	13 <i>M</i> -8	5M - 4	4M-6	-M	-M	-M	0	0	0	9 <i>M</i>	=Z

מתקבל כי המשתנה שיעזוב את הבסיס $lackbrace{b_i}{a_{ik}}$ מתקבל שיעזוב את הבסיס אהחישוב של הערכים $lackbrace{b_i}{a_{ik}}$ נבצע את ההתמרה לפי ציר ההתמרה $lackbrace{y_2}$. נבצע את ההתמרה לפי

			x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	y ₁	<i>y</i> ₂	y ₃		
ים	יר	מח	8	4	6	0	0	0	M	M	M		
		רסיס	\overline{a}_1	\overline{a}_2	\overline{a}_3	\overline{a}_4	$\bar{a}_{\scriptscriptstyle 5}$	\overline{a}_6	\bar{a}_7	\bar{a}_{8}	\bar{a}_9	$ar{b}$	$\frac{b_i}{a_{ik}}$
	1	y_1	0	$\frac{3}{5}$	$\frac{11}{5}$	-1	$\frac{2}{5}$	0	1	$-\frac{2}{5}$	0	$\frac{4}{5}$	
	2	x_1	1	$\frac{1}{5}$	$\frac{2}{5}$	0	$-\frac{1}{5}$	0	0	$\frac{1}{5}$	0	$\frac{3}{5}$	
	3	y_3	0	9 5	$-\frac{17}{5}$	0	$\frac{6}{5}$	-1	0	$-\frac{6}{5}$	1	$\frac{2}{5}$	
		$C_j^{ }$	0	$\frac{12}{5}M - \frac{12}{5}$	$-\frac{6}{5}M-\frac{14}{5}$	-M	$\frac{8}{5}M-\frac{8}{5}$	-M	0	$-\frac{13}{5}M+\frac{8}{5}$	0	$\frac{6}{5}M + \frac{24}{5}$	=Z

ים חיוביים. המקסימלי עדיין הפתרון לא אופטימלי, כי קיימים -C'_j עדיין אופטימלי אופטימלי בינהם מתקבל עבור בינהם מתקבל עבור בינהם מתקבל אופטימלי.

א 1	דוגמ	21

			x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>y</i> ₁	y ₂	y ₃		
ים	٦	מחי	8	4	6	0	0	0	M	M	M		
		בסיס	$\bar{a}_{\scriptscriptstyle 1}$	\overline{a}_2	\overline{a}_3	\bar{a}_4	$\bar{a}_{\scriptscriptstyle 5}$	$\bar{a}_{\scriptscriptstyle 6}$	\bar{a}_7	\overline{a}_{8}	\bar{a}_{9}	\overline{b}	$\frac{b_i}{a_{ik}}$
1	I	y_1	0	$\frac{3}{5}$	$\frac{11}{5}$	-1	$\frac{2}{5}$	0	1	$-\frac{2}{5}$	0	$\frac{4}{5}$	$\frac{4}{3}$
2	2	x_1	1	$\frac{1}{5}$	$\frac{2}{5}$	0	$-\frac{1}{5}$	0	0	$\frac{1}{5}$	0	$\frac{3}{5}$	3
3	3	y_3	0	$\left(\begin{array}{c} \frac{9}{5} \end{array}\right)$	$-\frac{17}{5}$	0	$\frac{6}{5}$	-1	0	$-\frac{6}{5}$	1	$\frac{2}{5}$	$\frac{2}{9}$
		$C_j^{ }$	0	$\underbrace{\frac{12}{5}M - \frac{12}{5}}$	$-\frac{6}{5}M-\frac{14}{5}$	-M	$\frac{8}{5}M-\frac{8}{5}$	-M	0	$-\frac{13}{5}M+\frac{8}{5}$	0	$\frac{6}{5}M + \frac{24}{5}$	=Z

.9/5 איר ההתמרה איר y_3 איר מהבסים הוא איר המשתנה היוצא מהבסים הוא

			x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>y</i> ₁	y ₂	<i>y</i> ₃		
ים	<u>י</u> רי	מח	8	4	6	0	0	0	M	M	M		
		בסיס	\bar{a}_{1}	\bar{a}_2	\bar{a}_3	$\overline{a}_{\scriptscriptstyle 4}$	\overline{a}_{5}	$\bar{a}_{_{6}}$	\bar{a}_7	\bar{a}_{8}	\bar{a}_{9}	$ar{b}$	$\frac{b_i}{a_{ik}}$
	1	y_1	0	0	$\frac{10}{3}$	-1	0	$\frac{1}{3}$	1	0	$-\frac{1}{3}$	$\frac{2}{3}$	
	2	x_1	1	0	$\frac{7}{9}$	0	$-\frac{1}{3}$	$\frac{1}{9}$	0	$\frac{1}{3}$	$-\frac{1}{9}$	$\frac{5}{9}$	
	3	x_2	0	1	$-\frac{17}{9}$	0	$\frac{2}{3}$	$-\frac{5}{9}$	0	$-\frac{2}{3}$	$\frac{5}{9}$	$\frac{2}{9}$	
		$C_j^{ }$	0	0	$\frac{10}{3}M - \frac{22}{3}$	-M	0	$\left \frac{1}{3}M-\frac{4}{3}\right $	0	-M	$-\frac{4}{3}M + \frac{4}{3}$	$\frac{2}{3}M + \frac{16}{3}$	= Z

ים חיוביים. המקסימלי עדיין הפתרון לא אופטימלי, כי קיימים כ'-C'_j עדיין אופטימלי אופטימלי אופטימלי בינהם מתקבל עבור בינהם מתקבל עבור בינהם מתקבל אופטימלי

		x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃		
רים	מחיו	8	4	6	0	0	0	M	M	M		
	בסיס	\overline{a}_{1}	\bar{a}_2	\overline{a}_3	$\bar{a}_{\scriptscriptstyle 4}$	\overline{a}_{5}	\overline{a}_{6}	\overline{a}_7	\bar{a}_{8}	\overline{a}_{9}	\overline{b}	$\frac{b_i}{a_{ik}}$
1	y_1	0	0	$\left(\frac{10}{3}\right)$	-1	0	$\frac{1}{3}$	1	0	$-\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{5}$
2	x_1	1	0	$\frac{7}{9}$	0	$-\frac{1}{3}$	$\frac{1}{9}$	0	$\frac{1}{3}$	$-\frac{1}{9}$	$\frac{5}{9}$	$\frac{5}{7}$
3	x_2	0	1	$-\frac{17}{9}$	0	$\frac{2}{3}$	$-\frac{5}{9}$	0	$-\frac{2}{3}$	$\frac{5}{9}$	$\frac{2}{9}$	
	$C_j^{ }$	0	0	$\frac{10}{3}M - \frac{22}{3}$	-M	0	$\frac{1}{3}M-\frac{4}{3}$	0	-M	$-\frac{4}{3}M + \frac{4}{3}$	$\frac{2}{3}M + \frac{16}{3}$	=Z

.10/3 איר ההתמרה היוצא מהבסיס הוא y_1 . ציר ההתמרה הוא \diamond

		x_1	<i>x</i> ₂	¹ x ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	הפר	
רים	מחי	8	4	6	0	0	0	M	M	M	נרון	
	בסיס	\overline{a}_1	\bar{a}_2	\bar{a}_3	$\bar{a}_{\scriptscriptstyle 4}$	$\bar{a}_{\scriptscriptstyle 5}$	\overline{a}_{6}	\overline{a}_7	\bar{a}_{8}	\overline{a}_9	\bar{b}	$\frac{b_i}{a_{ik}}$
1	X_3	0	0	1	$-\frac{3}{10}$	0	$\frac{1}{10}$	$\frac{3}{10}$	0	$-\frac{1}{10}$	$\frac{1}{5}$	
2	X_1	1	0	0	$\frac{7}{30}$	$-\frac{1}{3}$	$\frac{1}{30}$	$-\frac{7}{30}$	$\frac{1}{3}$	$-\frac{1}{30}$	$\frac{2}{5}$	
3	x_2	0	1	0	$-\frac{17}{30}$	$\frac{2}{3}$	$-\frac{11}{30}$	$\frac{17}{30}$	$-\frac{2}{3}$	$\frac{11}{30}$	$\frac{3}{5}$	
	$C_j^{ }$	0	0	0	$-\frac{11}{5}$	0	$-\frac{3}{5}$	$-M+\frac{11}{5}$	-M	$-M+\frac{3}{5}$	<u>34</u> <u>5</u>	=Z

.ים חיוביים סי- C'_j הפעם זהו פתרון אופטימלי, כי לא נותרו \diamondsuit

$$\frac{3}{5}x_1^* = \frac{2}{5}$$
 $x_2^* = \frac{3}{5}$ $x_3^* = \frac{1}{5}$:אופטימלי שקיבלנו הוא: $\frac{3}{5}$ הפתרון האופטימלי שקיבלנו הוא: $\frac{3}{5}$ המשתנים הבסיסיים).

- .0 כל שאר המשתנים (הלא בסיסיים) הינם ₪.
 - $Z^* = \frac{34}{5}$ ערך פונקצית המטרה הוא
- הפתרון מורכב כולו מכל המשתנים המקוריים, וכל משתני
 העודף שווים לאפס, כלומר האילוצים "מנוצלים" במלואם.
 - ברור שהמשתנים המלאכותיים אינם מופיעים בפתרוןהאופטימלי, כי אחרת זה לא היה פתרון חוקי.

מסקנות

$$\{x_3, x_1, x_2\}$$

משתני הבסיס לפי הסדר הם: $[y_1,y_2,y_3]$

$$\begin{bmatrix} x_3, x_1, x_2 \\ 3 & 2 & 1 \\ 2 & 5 & 1 \\ -1 & 6 & 3 \end{bmatrix} B^{-1} = \begin{bmatrix} \frac{3}{10} & 0 \\ -\frac{7}{30} & \frac{1}{3} \\ \frac{17}{30} & -\frac{2}{3} \end{bmatrix}$$

מסקנות

סיכום השימוש בשיטת ה-M הגדול לפתרון בעיות עם b-ים שליליים

צבור בעית מקסימיזציה:

- 1. הפוך כל מרכיבי b לאי-שליליים, על ידי הכפלת אי-שוויונים בהם b-ים שליליים ב- 1—.
- 2. עבור אילוצים המופיעים כשוויון, הוסף משתנה מלאכותי עם מקדם 1+.
- עבור אי-שוויונים שהיו הפוכים בכיוונם, הוסף משתנה עודף 3 עם מקדם -1 ומשתנה מלאכותי עם מקדם -1.
- הוסף כל משתנה מלאכותי (בעל מקדם +1) לפונקצית המטרה -M, כאשר -M, מספר חיובי גדול מאוד.

סיכום השימוש בשיטת ה-M הגדול לפתרון בעיות עם b-ים שליליים

- 5. לכל אי-שוויון בכיוון הנכון, הוסף משתנה חוסר עם מקדם +1
 - .6 פתור את הבעיה בשיטת הסימפלקס.
- 7. לבעיה המקורית קיים פתרון אפשרי, רק אם המשתנים המלאכותיים עם מקדם M – בפונקצית המטרה אינם בבסיס האופטימלי.

עבור בעית מינימום יש לתת למשתנים המלאכותיים מחיר M+ בפונקצית המטרה.

. נוכיח שלבעיה הבאה אין פתרון אפשרי

$$\text{Max } \{Z = 2x_1 + 3x_2 + 5x_3\}$$

S.t.

$$3x_1 + 10x_2 + 5x_3 \le 15$$

 $33x_1 - 10x_2 + 9x_3 \le 33$
 $x_1 + 2x_2 + x_3 \ge 4$

$$x_j \ge 0 \qquad j = 1, 2, 3$$

- . נפתור את הבעיה בשיטת ה-M הגדול.
- לשני האילוצים הראשונים, $\mathbf{x}_4, \mathbf{x}_5$ לשני האילוצים הראשונים, ומשתנה עודף \mathbf{x}_6 ומשתנה מלאכותי \mathbf{y}_1 לאילוץ השלישי:

$$\text{Max } \{Z = 2x_1 + 3x_2 + 5x_3 - My_1\}$$

S.t.

$$3x_1 + 10x_2 + 5x_3 + x_4 = 15$$

 $33x_1 - 10x_2 + 9x_3 + x_5 = 33$
 $x_1 + 2x_2 + x_3 - x_6 + y_1 = 4$

$$x_i \ge 0$$

$$j = 1, 2, ..., 6$$

$$y_1 \ge 0$$

דוגמא 2 – הרצת הסימפלקס

		x_1	x_2	<i>x</i> ₃	x ₄	<i>x</i> ₅	<i>x</i> ₆	y_1		
רים	מחיו	2	3	5	0	0	0	-M		
	בסיס	\overline{a}_1	\bar{a}_2	\overline{a}_3	\overline{a}_4	$\bar{a}_{\scriptscriptstyle 5}$	\bar{a}_{6}	\bar{a}_7	$ar{b}$	$\frac{b_i}{a_{ik}}$
1	x_4	3	10	5	1	0	0	0	15	$\frac{3}{2}$
2	X_5	33	-10	9	0	1	0	0	33	
3	y_1	1	2	1	0	0	-1	1	4	2
	$C_j^{ }$	-M-2	-2M - 3	-M-5	0	0	M	0	-4 <i>M</i>	=Z

 \mathbf{x}_{4} המשתנה הנכנס הוא \mathbf{x}_{2} , המשתנה היוצא הוא \mathbf{x}_{4} . ציר ההתמרה הוא

דוגמא 2 – הרצת הסימפלקס

		x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	y ₁		
ים	מחיר	2	3	5	0	0	0	-M		
	בסיס	\overline{a}_1	\overline{a}_2	\bar{a}_3	\overline{a}_4	$\bar{a}_{\scriptscriptstyle 5}$	\bar{a}_{6}	\bar{a}_7	\overline{b}	$\frac{b_i}{a_{ik}}$
1	x_2	3 10	1	$\frac{1}{2}$	$\frac{1}{10}$	0	0	0	$\frac{3}{2}$	5
2	X_5	36	0	14	1	1	0	0	48	$\frac{4}{3}$
3	\mathcal{Y}_1	$\frac{2}{5}$	0	0	$-\frac{1}{5}$	0	-1	1	1	$\frac{5}{2}$
	$C_j^{ }$	$-\frac{2}{5}M - \frac{11}{10}$	0	$-\frac{7}{2}$	$\frac{1}{5}M + \frac{3}{10}$	0	M	0	$-M+\frac{9}{2}$	=Z

איר ההתמרה הוא x_1 , המשתנה היוצא הוא x_5 . ציר ההתמרה הוא 36.

דוגמא 2 – הרצת הסימפלקס

		x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	y ₁		
רים	מחיו	2	3	5	0	0	0	-M		
	בסיס	\overline{a}_1	\bar{a}_2	\overline{a}_3	$\overline{a}_{\scriptscriptstyle 4}$	\overline{a}_{5}	\overline{a}_{6}	\bar{a}_7	\overline{b}	$\frac{b_i}{a_{ik}}$
1	x_2	0	1	$\frac{23}{60}$	$\frac{11}{120}$	$-\frac{1}{120}$	0	0	$\frac{11}{10}$	
2	x_1	1	0	$\frac{7}{18}$	$\frac{1}{36}$	$\frac{1}{36}$	0	0	$\frac{4}{3}$	
3	y ₁	0	0	$-\frac{7}{45}$	$-\frac{19}{90}$	$-\frac{1}{90}$	-1	1	$\frac{7}{15}$	
	$C_j^{ }$	0	0	$\frac{7}{45}M - \frac{553}{180}$	$\frac{19}{90}M + \frac{119}{360}$	$\frac{1}{90}M + \frac{11}{360}$	M	0	$-\frac{7}{15}M + \frac{179}{30}$	= Z

אי-שליליים. אולם כל הרה, הגענו לפתרון אופטימלי, כי כל ה- \mathbb{C}_j -ים אי-שליליים. אולם אולה עדיין בבסים, לכן ערכו בפתרון שקיבלנו שונה אפס. מכאן, אין פתרון אפשרי למערכת.