

# Introduction to Drone Technology (IDT)

**Airport Work Preparations** 



## Schedule

| Week | Date     | Module | Content                                                    |
|------|----------|--------|------------------------------------------------------------|
| 47   | Nov 22nd | 9      | Drone Construction                                         |
| 48   | Nov 29th | 10     | Flight Controller Configuration, Calibration, Indoor Tests |
| 49   | Dec 6th  | 11     | Outdoor Test Flights, Flight Path Recording*               |
| 50   | Dec 13th | 12     | Outdoor Autonomous Test Flights, Course Evaluation         |

- Transport between SDU and HCAA (meet outside TEK entrance)
  - Bus leaves at 8.15am sharp, arrive back to SDU at 16.15
- Bring photo ID (driving license/passport) for airside access weeks 49 and 50

NB: Limited Food options at the airport, there is also a vending machine and coffee machine. Recommendation: bring a packed lunch.



### Task overview

- Step #1: Build a frame
  - Design considerations
- Step #2: Mount and connect hardware
  - Pixhawk 4 Mini Wiring Quick Start
- Step #3: System Configuration and Calibration
  - Continues work from Module 06
- Step #5: First flight and tuning (inside the drone cage)
  - Multicopter PID Tuning Guide
- Step #6: Outdoor flights (both manual and mission)
- Step #7: Autonomous Outdoor Flights (using recorded flight plans)





# Recommended Configurations





### Materials and Resources

#### Materials

- Wood Spars (assorted thicknesses)
- Plywood Plates (3mm, 6.5mm thickness)
- Wood screws
- Assorted Nuts/Bolts
- Zip ties
- Tape
  - Double sided
  - Electrical

#### Resources

- Tools
  - Drilling
  - o Filing
  - Sawing/cutting
- 3D Printing
  - Small parts only no whole frame.
  - Not providing support for designing/printing





# **Design Considerations**

- Weight vs Time tradeoffs
- Repairability in mind Keep it simple, easy to fix in event of crash
- Mounting battery to frame
  - Must be removable
  - Easy to access connector (in Case of Emergency)

#### Positioning of components

- Flight Controller placed near centre of mass
- Propulsion electronics and control hardware

#### Landing legs

- Ability to withstand heavy landings
- Provide clearance from grass



# Design inspiration















# **Preparation Tasks**

- Decide on Frame Configuration (X-type, H-type, Plus-type)
- Create a rough sketch
  - Positions of components on the frame
  - Dimensions of arms and baseplate
- Read through four Drone Components sections on Confluence (<u>Link</u>)
  - Flight Control hardware
  - Powertrain
  - Communication and Control
  - Batteries and Electrical Power



# Questions?

Contact through ItsLearning