Modelos y Simulación: Parcial $2\,$

Ferré Valderrama, Eduardo

12 de mayo de 2025

Modelos y Simulación

Índice

1.	Gen	ieració	n de Variables Aleatorias Discretas	2
	1.1.	Métod	o de la Transformada Inversa	2
		1.1.1.	Generación de una variable aleatoria uniforme discreta	2
		1.1.2.	Cálculo de promedios	4
		1.1.3.	Generación de una variable aleatoria geométrica	5
		1.1.4.	Generación de varaibles Bernoulli	5
		1.1.5.	Generación de una variable aleatoria Poisson	6
		1.1.6.	Generación de una variable aleatoria binomial	7
	1.2.	Métod	o de Aceptación-Rechazo	7
	1.3.	Métod	o de composición	8
	1.4.	Métod	os alternativos	8
		1.4.1.	Método del alias	8
		1.4.2.	Método de la urna	8
2.	Generación de Variables Aleatorias Continuas			
2.	Gen	ieració	n de Variables Aleatorias Continuas	10
2.			n de Variables Aleatorias Continuas o de la Transformada Inversa	
2.			o de la Transformada Inversa	10
2.		Métod	o de la Transformada Inversa	10 10
2.		Métod 2.1.1.	o de la Transformada Inversa	10 10
2.		Métod 2.1.1. 2.1.2. 2.1.3.	o de la Transformada Inversa	10 10 11 12
2.	2.1.	Métod 2.1.1. 2.1.2. 2.1.3. Métod	o de la Transformada Inversa	10 10 11 12
2.	2.1.2.2.	Métod 2.1.1. 2.1.2. 2.1.3. Métod Simula	o de la Transformada Inversa	10 10 11 12 13
2.	2.1.2.2.	Métod 2.1.1. 2.1.2. 2.1.3. Métod Simula	o de la Transformada Inversa	10 10 11 12 13 13
2.	2.1.2.2.	Métod 2.1.1. 2.1.2. 2.1.3. Métod Simula 2.3.1.	o de la Transformada Inversa	10 10 11 12 13 13 14
2.	2.1.2.2.2.3.	Métod 2.1.1. 2.1.2. 2.1.3. Métod Simula 2.3.1. 2.3.2. 2.3.3.	o de la Transformada Inversa	10 10 11 12 13 13 14 15
2.	2.1.2.2.2.3.	Métod 2.1.1. 2.1.2. 2.1.3. Métod Simula 2.3.1. 2.3.2. 2.3.3. Genera	o de la Transformada Inversa	10 10 11 12 13 13 14 15 15

1. Generación de Variables Aleatorias Discretas

1.1. Método de la Transformada Inversa

Consideremos una variable aleatoria discreta X, con funcion de probabilidad de masa dada por:

$$P(X = x_i) = p_i, \quad j = 0, 1, ..., \quad 0 < p_i < 1$$

donde los valores x_n de la variable están ordenados en forma creciente. Esto es si, i < j entonces $x_i < x_j$. La función de distribución acumulada de la variable aleatoria discreta es:

$$F(x) = P(X \le x) = \sum_{x_j \le x} p_j$$

El algoritmo general para una variable aleatoria discreta que toma un numero finito de valores es como el siguiente

```
# x: vector de valores posibles de X
# p: vector de probabilidades

def discretaX(p, x):
    U = random()
    i, F = 0, p[0]
    while U >= F:
        i += 1
        F += p[i]
    return x[i]
```

1.1.1. Generación de una variable aleatoria uniforme discreta

Si X es una variable aleatoria con distribución uniforme discreta en $\{1, \ldots n\}$ entonces $p_1 = p_2 = \ldots = p_n = \frac{1}{n}$.

La aplicación del método de la transformada inversa conduce al siguiente algoritmo:

```
def udiscreta(n):
    U = random()
    x = 1; F = 1/n
    while U >= F:
        F += 1/n
        x += 1
    return x
```

Una mejora del algoritmo:

```
def udiscreta(n):
    U = random()
    return int(n * U) + 1
```

Para generar X uniforme en [m, k], discreta:

```
def udiscreta(m, k):
    U = random()
    return int((k - m + 1) * U) + m
```

Generación de una permutación aleatoria de un conjunto de cardinal N

Una aplicación de la generación de variables aleatorias con distribución uniforme discreta es el de generar **permutaciones aleatorias** en un conjunto de cardinal N. El número de permutaciones de un conjunto de N elementos es N!, y el objetivo es poder generar permutaciones **equiprobables**, es decir, cada una con probabilidad $\frac{1}{N!}$ de ocurrencia.

Consideramos un ordenamiento de los elementos de un conjunto A, de cardinal N:

$$(a_0, a_1, \ldots, a_{N-1}).$$

Un algoritmo es el siguiente:

```
def permutacion(a): #a=[a[0], a[1], ..., a[N-1]]
  N = len(a)
  for j in range(N - 1):
    indice = int((N - j) * random()) + j
    a[j], a[indice] = a[indice], a[j]
  return a
```

Otro algoritmo pero recorriendo el vector de atrás hacia adelante:

```
def permutacion(a): #a=[a[0], a[1], ..., a[N-1]]
  N = len(a)
  for j in range(N - 1, 0, -1):
    indice = int((j+1) * random())
    a[j], a[indice] = a[indice], a[j]
  return a
```

1.1.2. Cálculo de promedios

$$\overline{a} = \frac{1}{N} \sum_{N}^{i} a_{i}$$

Queremos estimar \overline{a} Definimos

- $g: \{1, \dots, N\} \to \mathbb{R};$
- $g(j) = a_j$
- $X \sim \mathcal{U}(1, N);$
- $P(X = j) = \frac{1}{N}$

$$\implies \overline{a} = \frac{1}{N} \sum_{i=1}^{N} g(i) \cdot P(X = i) = E[g(X)]$$

Por la ley de los grandes números tomamos $X_1, X_2, \ldots, X_k, X_i \sim \mathcal{U}(1, N)$ y estimamos $\overline{a} = E[g(x)]$ como:

$$\frac{g(X_1) + g(X_2) + \dots g(X_k)}{k} \simeq \overline{a}$$

Si queremos estimar

$$S = \sum_{i=1}^{N} b_i$$

Entonces escribimos:

$$B = \frac{S}{N} = \frac{1}{N} \sum_{i=1}^{N} b_i$$
$$h(i) = b_i$$

Estimamos

$$B \simeq \frac{1}{k}(h(X_1) + h(X_2) + \dots + h(X_k))$$

$$\implies S = \frac{N}{k}(h(X_1) + h(X_2) + \dots + h(X_k))$$

1.1.3. Generación de una variable aleatoria geométrica

 $X \in \{1,2,3\ldots\}$ con probabilidad de éxito p

q = 1 - p probabilidad de fracaso

$$P(X = i) = p \cdot q^{i-1}$$
 $F(i) = P(X \le i) = 1 - P(X > i) = 1 - q^{i}$

El algoritmo para la generación de una variable aleatoria geométrica es el siguiente:

```
def geom(p):
    U = random()
    return int(log(1 - U) / log(1 - p)) + 1
```

1.1.4. Generación de varaibles Bernoulli

$$X \sim B(p)$$

$$P(X = 1) = p$$
 $P(X = 0) = 1 - p$

El algoritmo para la generación de una variable aleatoria Bernoulli es el siguiente:

```
def bernoulli(p):
    U = random()
    if U < p:
        return 1
    else:
        return 0</pre>
```

Si queremos obtener $X_1.X_2,...,X_N \sim B(p)$; independientes

- $Y \sim geom(p)$
- Y = j equivale a $X_1 = 1, X_2 = 1, ..., X_{i-1} = 1; X_i = 0$

El algoritmo para generar una lista de variables aleatorias Bernoulli es el siguiente:

```
##devuelve una lista de N Bernoullis B(p)
def NBernoullis(N, p):
    Bernoullis = [0] * N
    j = geom(p) - 1
    while j < N:
        Bernoullis[j] = 1
        j += geom(p)
    return Bernoullis</pre>
```

1.1.5. Generación de una variable aleatoria Poisson

$$X \sim \mathcal{P}(\lambda)$$
 $X \in \{0, 1, 2, ...\};$ $\lambda > 0$
 $P(X = j) = e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} = p_{j};$ $j \ge 1$
 $\implies p_{j} = p_{j-1} \cdot \frac{\lambda}{j}$

El algoritmo para la generación de una variable aleatoria Poisson es el siguiente:

```
def Poisson(lamda):
    U = random()
    i = 0; p = exp(-lamda)
    F = p
    while U >= F:
        i += 1
        p *= lamda / i
        F += p
    return i
```

Mejora del algoritmo:

```
def Poisson(lamda):
    p = exp(-lamda); F = p
    for j in range(1, int(lamda) + 1):
      p *= lamda / j
      F += p
    U = random()
    if U >= F:
      j = int(lamda) + 1
      while U >= F:
        p *= lamda / j
        F += p
11
        j += 1
12
      return j
13
14
    else:
15
      j = int(lamda)
      while U < F:
16
        F -= p; p *= j / lamda
17
        j -= 1
18
      return j + 1
19
```

1.1.6. Generación de una variable aleatoria binomial

$$X \sim B(n, p) \qquad X \in \{0, 1, 2, \dots, n\}$$

$$p_j = P(X = j) = \binom{n}{j} p^j (1 - p)^{n - j} \qquad j = 0, 1, \dots, n$$

$$p_0 = (1 - p)^n \qquad p_{j+1} = p_j \cdot \frac{p}{1 - p} \cdot \frac{(n - j)}{j + 1}$$

El algoritmo para la generación de una variable aleatoria binomial es el siguiente:

```
def Binomial(n, p):
    c = p / (1 - p)
    prob = (1 - p) ** n
    F = prob; i = 0
    U = random()
    while U >= F:
        prob *= c * (n - i) / (i + 1)
        F += prob
        i += 1
    return i
```

1.2. Método de Aceptación-Rechazo

X variable aleatoria $X \in \{x_1, x_2, \dots, x_n\}$

$$P(X = x_i) = p_i, \quad j \ge 1$$

Se conoce un método para generar una v.a Y:

- Si $P(X = x_i) = p_i > 0 \implies P(Y = x_i) = q_i > 0$
- \exists constante c > 0 tal que:

$$p_j \le c \cdot q_j, \quad \forall j \ge 1$$

$$\left[1 = \sum_{j \ge 1} p_j \le c \cdot \sum_{j \ge 1} q_j \le c\right]$$

En general, si X e Y tienen distinta distribución $\Rightarrow c > 1$.

El algoritmo es:

```
def AceptacionRechazo():
    while True:
        Simular Y
        U = random()
        if U <= p(Y) / (c * q(Y)):
            return Y
        else:
            continue</pre>
```

En general la constante c se elige como $n \cdot max_j\{p_i\}$

1.3. Método de composición

X v.a discreta

$$P(X = x_j) = \alpha_1 \cdot P(X_1 = x_j) + \alpha_2 \cdot P(X_2 = x_j) + \dots + \alpha_n \cdot P(X_n = x_j)$$
$$\alpha_1 + \alpha_2 + \dots + \alpha_n = 1; \qquad \alpha_i \ge 0$$

U uniforme en [0,1].

$$P(X = x_i) = P(U < \alpha_1)$$
 y $P(X_1 = x_i) + P(\alpha_1 < U < \alpha_1 + \alpha_2)$ y $P(X_2 = x_i) + \dots$

El algoritmo es:

```
def Composicion(alpha, X):
    # alpha = [alpha_1, alpha_2, \ldots, alpha_n]
    # X = [X_1, X_2, \ldots, X_n]
    U = random()
    i = 1; F = alpha[1]
    while U >= F:
    i += 1
    F += alpha[i]
    return X[i]
```

1.4. Métodos alternativos

1.4.1. Método del alias

Para entenderlo es mejor ver como se explica con un ejemplo en el apunte.

1.4.2. Método de la urna

$$X \in \{x_1, x_2, \dots, x_n\}$$

$$p_i = P(X = x_i)$$

Si existe algún $k \in \mathbb{N}$ tal que $p_i \cdot k \in \mathbb{N}, 1 \leq i \leq n$.

$$A = \left[\underbrace{x_1, \dots, x_1}_{p_1 \cdot k}, \underbrace{x_2, \dots, x_2}_{p_2 \cdot k}, \dots, \underbrace{x_n, \dots, x_n}_{p_n \cdot k}\right]$$

El algoritmo es:

```
def urnaX(A):
    I = int (random() * k)
    return A[I]
```

2. Generación de Variables Aleatorias Continuas

2.1. Método de la Transformada Inversa

X v.a continua con función de densidad f(x) y función de distribución F(x).

$$F(x) = \int_{-\infty}^{x} f(s)ds$$
 $F(x) = P(X \le x)$

El algoritmo es:

```
def Tinversa():
    U = random()
    return G(U) # G = F^{-1}
```

2.1.1. Simulación de una variable aleatoria exponencial

Si X es una variable aleatoria con distribución exponencial con parámetro $\lambda=1,$ $X\sim\mathcal{E}(1),$ entonces su función de distribución acumulada está dada por:

$$F(x) = \begin{cases} 1 - e^{-x} & \text{si } x > 0 \\ 0 & \text{si } x \le 0. \end{cases}$$

Luego, la inversa de F sobre (0,1) está dada por:

$$F^{-1}(u) = -\ln(1-u), \quad u \in (0,1).$$

Así, el algoritmo de simulación para $X \sim \mathcal{E}(1)$ es:

```
def exponencial():
    U = 1 - random()
    return -log(1 - U)
```

Notemos que si X es exponencial con parametro 1, esto es $X \sim \mathcal{E}(1)$, entonces $Y = \frac{1}{\lambda}X$ con media $\frac{1}{\lambda}: Y \sim \mathcal{E}(\lambda)$

Para simular $Y \sim \mathcal{E}(\lambda)$ es:

```
def exponencial(lamda):
    U = 1 - random()
    return -log(U) / lamda
```

2.1.2. Simulación de una variable aleatoria Poisson $X \sim \mathcal{P}(\lambda)$

Proceso de Poisson con tasa
$$\lambda$$
 $N(1) \sim \mathcal{P}(\lambda)$
$$N(1) = n$$

Si se simulan variables aleatorias exponenciales $X_1, X_2, \ldots,$ con $X_i \sim \mathcal{E}(\lambda)$ para $i \geq 1$, hasta que

$$X_1 + X_2 + \dots + X_n \le 1$$
 y $X_1 + X_2 + \dots + X_n + X_{n+1} > 1$,

entonces n representa el número de arribos hasta t=1. Esto es:

$$N(1) = \max\{n \mid X_1 + X_2 + \dots + X_n \le 1\}$$

Si se simula cada exponencial X_i con

$$X_i = -\frac{1}{\lambda} \ln(1 - U_i), \quad \text{con } U_i \sim \mathcal{U}(0, 1),$$

tenemos que:

$$\begin{split} N(1) &= \max \big\{ n \mid X_1 + X_2 + \dots + X_n \leq 1 \big\} \\ &= \max \left\{ n \mid -\frac{1}{\lambda} \left(\ln(1 - U_1) + \ln(1 - U_2) + \dots + \ln(1 - U_n) \right) \leq 1 \right\} \\ &= \max \left\{ n \mid -\frac{1}{\lambda} \ln \left((1 - U_1)(1 - U_2) \cdots (1 - U_n) \right) \leq 1 \right\} \\ &= \max \left\{ n \mid \ln \left((1 - U_1)(1 - U_2) \cdots (1 - U_n) \right) \geq -\lambda \right\} \\ &= \max \left\{ n \mid (1 - U_1)(1 - U_2) \cdots (1 - U_n) \geq e^{-\lambda} \right\} \end{split}$$

Luego:

$$N(1) = \min \left\{ n \mid (1 - U_1)(1 - U_2) \cdots (1 - U_n) < e^{-\lambda} \right\} - 1$$

El algoritmo es:

```
def Poisson_con_exp(lamda):
    X = 0
    Producto = 1 - random()
    cota = exp(-lamda)
    while Producto >= cota:
        Producto *= (1 - random())
        X += 1
    return X
```

2.1.3. Simulación de una variable con distribución Gamma $(n, \frac{1}{\lambda})$

- Sean $n \in \mathbb{N}$, y $X_1, X_2, \dots, X_n \sim \mathcal{E}(\lambda)$ independientes.
- Entonces:

$$X_1 + X_2 + \dots + X_n \sim \text{Gamma}\left(n, \frac{1}{\lambda}\right)$$

■ Para generar $Y \sim \text{Gamma}(n, \frac{1}{\lambda})$, basta con:

$$Y = X_1 + X_2 + \dots + X_n$$

$$= \frac{-\ln(1 - U_1) - \ln(1 - U_2) - \dots - \ln(1 - U_n)}{\lambda}$$

$$= \frac{-\ln((1 - U_1)(1 - U_2) \cdots (1 - U_n))}{\lambda}$$

■ Donde $U_i \sim \mathcal{U}(0,1)$ y U_1, U_2, \dots, U_n son independientes.

El algoritmo es:

```
def Gamma(n, lamda):
    'Simula una gamma con parametros n y 1/lamda'

U = 1
for _ in range(n):
    U *= (1 - random())
return -log(U) / lamda
```

Para generar X,Y exponenciales independientes con parámetro λ , podemos aplicar el siguiente algoritmo:

```
def DosExp(lamda):
    V1, V2 = 1 - random(), 1 - random()
    t = -log(V1 * V2) / lamda
    U = random()
    X = t * U
    Y = t - X
    return X, Y
```

Para simular n exponenciales:

```
def NExponenciales(n, lamda):
    t = 1
    for _ in range(n): t *= random()
    t = -log(t) / lamda
    unif = random.uniform(0, 1, n-1)
    unif.sort()
    exponenciales = [unif[0] * t]
    for i in range(n-2):
        exponenciales.append((unif[i+1] - unif[i]) * t)
    exponenciales.append((1 - unif[n-2]) * t)
    return exponenciales
```

2.2. Método de Aceptación-Rechazo

Supongamos que se quiere generar una variable aleatoria X con función de densidad f:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt,$$

y que se tiene un método para generar otra variable Y, con densidad g, tal que

$$\frac{f(y)}{g(y)} \le c$$
, para todo $y \in \mathbb{R}$ tal que $f(y) \ne 0$.

El **método de rechazo** para generar X a partir de Y tiene el siguiente algoritmo:

```
def Aceptacion_Rechazo_X():
    while True:
        Simular_Y()
        U = random()
        if U < f(Y) / (c * g(Y)):
        return Y</pre>
```

2.3. Simulación de variables aleatorias normales

Si $X \sim \mathcal{N}(\mu, \sigma)$, entonces:

$$\frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

Si $Z \sim \mathcal{N}(0,1)$, entonces:

$$Z \cdot \sigma + \mu \sim \mathcal{N}(\mu, \sigma)$$

La función de densidad estándar es:

$$f_Z(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

Por transformada inversa y rechazo no se puede. (Justificación en las notas).

2.3.1. Por composición usando |Z|

Generar Z:

```
def Normal_composicion():
    Generar |Z|
    if random() < 0.5:
        return |Z|
    else:
        return -|Z|</pre>
```

Una variable Y fue generada previamente, se necesita saber cómo generarla.

Generar Y = |Z|

```
def abs_Z():
    while True:
        X = -log(1 - random())
        Y1 = -log(1 - random())
        if Y1 > (X - 1)**2 / 2:
            return X
        # Conservar Y1 - ((X - 1)**2 / 2)
        # como el valor de X en la siguiente llamada al algoritmo
```

2.3.2. Método polar

```
def MetodoPolar():
    Rcuadrado = -2 * log(1 - random())
    Theta = 2 * Pi * random()
    X = sqrt(Rcuadrado) * cos(Theta)
    Y = sqrt(Rcuadrado) * sin(Theta)
    return (X * sigma + mu, Y * sigma + mu)
```

Si queremos dos variables estándar normales, retornamos X, Y.

Una mejora para no generar funciones trigonométricas

```
def Polar_Box_Muller(mu, sigma):
    # Generar un punto aleatorio en el circulo unitario
    while True:
        V1, V2 = 2 * random() - 1, 2 * random() - 1
        if V1 ** 2 + V2 ** 2 <= 1:
            S = V1 ** 2 + V2 ** 2
            X = V1 * sqrt(-2 * log(S) / S)
            Y = V2 * sqrt(-2 * log(S) / S)
            return (X * sigma + mu, Y * sigma + mu)</pre>
```

Idem para el caso estándar.

2.3.3. Método de razón entre uniformes

```
from math import exp
NV_MAGICCONST = 4 * exp(-0.5) / sqrt(2.0)

def normalvariate(mu, sigma):
    while 1:
        u1 = random()
        u2 = 1.0 - random()
        z = NV_MAGICCONST * (u1 - 0.5) / u2
        zz = z * z / 4.0
        if zz <= -log(u2):
            break
    return mu + z * sigma</pre>
```

2.4. Generación de un Proceso de Poisson

2.4.1. Procesos de Poisson homogéneos

```
def eventosPoisson(lamda, T):
    t = 0
    NT = 0
    Eventos = []
    while t < T:
        U = 1 - random()
        t += - log(U) / lamda
    if t <= T:
        NT += 1
        Eventos.append(t)
    return NT, Eventos</pre>
```

2.4.2. Procesos de Poisson no homogéneos

```
def Poisson_no_homogeneo_adelgazamiento(T):
      'Devuelve el numero de eventos NT y los tiempos en Eventos'
      \# lamda_t(t): intensidad, lamda_t(t) <= lamda
      NT = O
      Eventos = []
      U = 1 - random()
      t = -log(U) / lamda
      while t <= T:</pre>
          V = random()
          if V < lamda_t(t) / lamda:</pre>
               NT += 1
11
              Eventos.append(t)
12
          t += -log(1 - random()) / lamda
13
      return NT, Eventos
```