ANÁLISIS DE CIRCUITOS ELÉCTRICOS LINEALES

OSCAR PERPIÑÁN LAMIGUEIRO

Noviembre 2019

Índice general

Ín	dice general	I
1	Introducción	1
I	Conceptos Básicos	3
2	Variables	5
3	Elementos de un circuito lineal	7
4	Leyes de Kirchhoff	9
5	Métodos de Análisis	11
TT	Constants Alterna Cincons 1-1	10
Ш	Corriente Alterna Sinusoidal	13
6	Cálculo Fasorial	15
7	Sistemas Monofásicos	17
8	Sistemas Trifásicos	19

Introducción

- Análisis vs. diseño (o síntesis)
- Qué es un circuito eléctrico
- Sistemas lineales como aproximación de la realidad.
- Simplificación de Maxwell: aplicación a circuitos cortos (en términos de longitud de onda), parámetros concentrados.

Parte I Conceptos Básicos

Variables

El análisis de un circuito eléctrico lineal consiste en determinar tres variables principales: tensión, corriente, y potencia.

2.1. Tensión Eléctrica

La tensión o diferencia de potencial entre dos puntos A y B es el trabajo realizado por el campo eléctrico al desplazar una carga unitaria entre esos puntos.

$$u_{AB} = \frac{dW_e}{dq} \tag{2.1}$$

Dado que el campo eléctrico es conservativo, la diferencia de potencial entre A y B no depende de la trayectoria seguida para realizar el desplazamiento, sino únicamente del potencial existente en cada uno de los puntos:

$$u_{AB} = v_A - v_B \tag{2.2}$$

Por tanto, aunque la trayectoria no sea relevante, siempre hay que tener en cuenta el sentido del desplazamiento. Así, si el movimiento se produce desde B hasta A obtenemos el signo contrario al anterior resultado:

$$u_{BA} = v_B - v_A = -u_{AB} (2.3)$$

Elementos de un circuito lineal

Leyes de Kirchhoff

Métodos de Análisis

Parte II Corriente Alterna Sinusoidal

Cálculo Fasorial

Sistemas Monofásicos

Sistemas Trifásicos