Gruppe A wie Anomalie

Erkennung und Lokalisierung von Leckstellen in Wassernetzen

Do Kim, Lisa Krombholz, Stefanie Kunze, Andrea Maldonado, Armela Melegi, Magdalena Speer

Preprocessing Pipeline

Autoencoder Architekturen

Autoencoder Architekturen

Simple Autoencoder

Einfache Dense-Layers

Convolutional A utoencoder

Convolutions, Max Pooling, Dense Layers Variational Autoencoder

Lernt eine Verteilung der Daten

Autoencoder Architekturen: Simple Autoencoder

Dim.: 3 - 300

Nur Dense Layers

Autoencoder Architekturen: Convolutional Autoencoder

Dim.: 2 - 128

Autoencoder Architekturen: Variational Autoencoder

Autoencoder Architekturen: Variational Autoencoder

Autoencoder Architectures: Training

Data Classification: Bspw. CNN AE

Data Classification: Reconstruction Error of Two Files

CNN-Autoencoder mit 6 Layers, Encoding-Dim. 2, 30 Epochen lang trainiert

Jeweils eine Beispiel-Audiodatei mit Leck (rot) vs. eine ohne Leck (grün)

Leck-Spektrogramme der Snippets: Input (o.) vs. Prediction (u.)

Leck-Spektrogramme der Snippets: Input (o.) vs. Prediction (u.)

6.671

3.425

7.425

Reconstruction errors

Input File in snippets

Reconstruction Errors

Scores von Snippets

Evaluation: Konfusionsmatrix

CNN mit 2D

Evaluation: Konfusionsmatrix

SAE mit 10D

Evaluation: ROC AUC Kurve

CNN mit 2D

Evaluation: ROC AUC Kurve

SAE mit 10D

Fazit

Erfolge:

- Pipeline Setup auf unterschiedliche Systeme
- Deep-Learning-Methoden vielversprechend
- Spannende Erkenntnisse durch Analyse

Ausblick:

- Vereinzelte Fehlklassifikationen verbessern
- Mehr Experimente