

Q1 = 5/15

Q2 = 20/20

Q3 = 20/20

Q4 = 20/20

Q5 = 28/28

Ayoub Echchahed (111 274 558)

Q6 = 24/24

Total = 117/127

Théorie de l'information GEL-7062

Devoir 1 Résolution de Problèmes

Travail présenté à Mr. Jean-Yves Chouinard

Faculté des sciences et de génie Université Laval Hiver 2022

• Problème 1 : Mesure de l'information

5/15 (revoir les expressions de H(XY), H(Y) et de H(X|Y)

Problème 1.1:

(mesure de l'information)

On considère ici deux expériences statistiques représentées par les variables aléatoires X et Y, pour lesquelles l'ensemble des événements de X est (x_1,x_2,x_3,x_4) et l'ensemble des événements de Y est (y_1,y_2,y_3) . La matrice de probabilités conjointes $\mathbf{P}=\{p(x_i,y_j)\}_{i=1,2,3,4\atop j=1,2,3}$ pour ces deux expériences est :

$$\mathbf{P} = \left[\begin{array}{cccc} p(x_1,y_1) & p(x_2,y_1) & p(x_3,y_1) & p(x_4,y_1) \\ p(x_1,y_2) & p(x_2,y_2) & p(x_3,y_2) & p(x_4,y_2) \\ p(x_1,y_3) & p(x_2,y_3) & p(x_3,y_3) & p(x_4,y_3) \end{array} \right] = \left[\begin{array}{cccc} \frac{1}{32} & \frac{3}{32} & \frac{3}{32} & \frac{3}{32} \\ \frac{3}{32} & \frac{1}{32} & \frac{1}{32} & \frac{3}{32} \end{array} \right]$$

- a) Quelle quantité d'information obtient-on si l'on nous informe des résultats de X et de Y ?
- b) Quelle quantité d'information obtient-on si l'on nous informe des résultats de *Y* ?
- c) Quelle quantité d'information obtient-on si l'on nous informe des résultats de X si nous savons déjà le résultat de Y?
- Marginal distribution of X : $\{0.219,\,0.156,\,0.281,\,0.344\}$
- Marginal distribution of Y: {0.313, 0.313, 0.375}
- a) Sum of the information content of all of the separate events

$$I_{(XY)} = \sum -\log p (x_i, y_j)$$

= -6 log p (3/32) + -4 log p (1/32) + -2 log p (5/32)
= 45,846 bits

b) Sum of the information content of Y only

Marginal distribution of Y: {0.313, 0.313, 0.375}

$$I_{(Y)} = \sum -\log p (y_j)$$
= -\log p (0.313) + -\log p (0.313) + -\log p (0.375)
= 4.767 bits

c) Sum of the information content of X minus total mutual information

$$\begin{split} I_{(X)} &= \Sigma - \log p \ (x_i) \\ &= -\log p \ (0.219) + -\log p \ (0.156) + -\log p \ (0.281) + -\log p \ (0.344) \\ &= 8.242 \ \text{bits} \end{split}$$

$$I_{(X;Y)} &= \Sigma \log \left((p \ (x,y)) \ / \ (p \ (x) \ p \ (y)) \right) \\ &= 1/32 \ \log \left((1/32) \ / \ (0.219) \ (0.313) \right) + 3/32 \ \log \left((3/32) \ / \ (0.219) \ (0.313) \right) \\ &+ 3/32 \ \log \left((3/32) \ / \ (0.219) \ (0.375) \right) + 3/32 \ \log \left((3/32) \ / \ (0.156) \ (0.313) \right) \\ &+ 1/32 \ \log \left((1/32) \ / \ (0.156) \ (0.313) \right) + 1/32 \ \log \left((1/32) \ / \ (0.281) \ (0.313) \right) \\ &+ 3/32 \ \log \left((3/32) \ / \ (0.281) \ (0.375) \right) + 3/32 \ \log \left((3/32) \ / \ (0.344) \ (0.313) \right) \\ &+ 5/32 \ \log \left((5/32) \ / \ (0.344) \ (0.313) \right) + 3/32 \ \log \left((3/32) \ / \ (0.344) \ (0.375) \right) \\ &= 0.1374 \ \text{bits} \end{split}$$

 $I_{(X)}$ - $I_{(X;Y)}$ = 8.242 bits - 0.1374 bits = 8.1046 bits

• Problème 2 : Mesure de l'information de sources corrélées

20/20

Problème 1.3:

(mesure de l'information de sources corrélées)

Deux sources corrélées X et Y ont la distribution conjointe suivante :

$p(x_k, y_j)$	y_1	y_2	y_3	y_4
x_1	α	β	β	β
x_2	γ	0	0	0
x_3	γ	0	0	0
x_4	γ	0	0	0

où $0 \le \alpha \le 1$, $0 \le \beta \le 1$, $0 \le \gamma \le 1$ et $\alpha + 3\beta + 3\gamma = 1$.

- a) Déterminez l'entropie conjointe H(XY) en fonction de α , β et γ .
- b) Déterminez les entropies H(X) et H(Y).
- c) Déterminez les entropies conditionnelles H(X|Y) et H(Y|X).
- d) Déterminez l'information mutuelle I(X;Y).
- Marginal distribution of X : $\{(3\beta + \alpha), (\gamma), (\gamma), (\gamma)\}$
- Marginal distribution of Y : $\{3\gamma+\alpha\},$ $(\beta),$ $(\beta),$ $(\beta)\}$

a)
$$H(XY) = \sum p(x_k, y_j) I_{XY}(x_k, y_j)$$

$$= - [p(x_k, y_j) * log p(x_k, y_j) + p(x_k, y_j) * log p(x_k, y_j)]$$

 $H(XY) = -[\alpha * log_2 \alpha] + 3[\gamma * log_2 \gamma] + 3[\beta * log_2 \beta]$

b) H (X) =
$$\Sigma$$
 p (x_k) log [1 / p (x_k)]
5/5 = (3 β + α) * log [1 / (3 β + α)] + 3 [(γ) * log [1 / (γ)]

c) H (X | Y) =
$$\sum p(x_k, y_j) \log [1 / p(x_k | y_j)]$$

$$5/5 = \sum p(x_k, y_j) \log [1 / (p(x_k, y_j) / p(y_j)]$$

$$= 3 [\gamma \log [1 / (\gamma / (3\gamma + \alpha))] + \alpha \log [1 / (\alpha / (3\gamma + \alpha))]$$

5/5

$$\frac{\text{d)}}{\text{d}} I (X; Y) = H (X) - H (X | Y)$$

$$= \left[(3\beta + \alpha) * \log \left[1 / (3\beta + \alpha) \right] + 3 \left[(\gamma) * \log \left[1 / (\gamma) \right] \right] - \left[3 \left[\gamma \log \left[1 / (\gamma / (3\gamma + \alpha)) \right] + \alpha \log \left[1 / (\alpha / (3\gamma + \alpha)) \right] \right] \right]$$

L'entropie conjointe de X et de Y (incertitude sur X et sur Y est donnée par

$$H\left(XY\right) = \mathrm{E}\left[I_{XY}\left(x_{k}, y_{j}\right)\right] = \sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}, y_{j}\right) I_{XY}\left(x_{k}, y_{j}\right)$$

$$H\left(XY\right) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p\left(x,y\right) \log_{b} p\left(x,y\right) = -\sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k},y_{j}\right) \log_{b} p\left(x_{k},y_{j}\right)$$

$$H\left(X\right) = \sum_{k=1}^{K} p\left(x_{k}\right) \log_{b}\left[\frac{1}{p\left(x_{k}\right)}\right] \text{ et } H\left(X\left|Y\right.\right) = \sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}, y_{j}\right) \log_{b}\left[\frac{1}{p\left(x_{k}\left|y_{j}\right.\right)}\right]$$

Conditional Probability Formula

Probability of
A and B

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
Probability of A given B
Probability of B
Probability of B

Problème 3 : Mesure de l'information de sources gaussiennes conjointes 20/20

Problème 2.2:

(mesure de l'information de sources gaussiennes conjointes)

Soient deux variables aléatoires conjointes gaussiennes et corrélées (X,Y) de moyennes et de matrice de covariance $\mathbf{K} = \begin{bmatrix} 9 & 3 \\ 3 & 9 \end{bmatrix}$.

- a) Calculez les entropies différentielles h(X) et h(Y) en shannons ou bits (b=2).
- b) Calculez l'entropie différentielle conjointe h(X,Y) en shannons.
- c) Calculez les entropies différentielles conditionnelles h(X|Y) et h(Y|X) en shannons.
- d) Calculez l'information mutuelle I(X;Y) entre X et Y en shannons.

$$\rho = 1/3$$

a)
$$h(X) = \frac{1}{2} \log_2 (2\pi e^2)$$

 $\frac{5}{5} = \frac{1}{2} \log_2 (2\pi e^9)$

= 3.63 shannons

h (Y) =
$$\frac{1}{2} \log_2 (2\pi e \sigma^2)$$

= $\frac{1}{2} \log_2 (2\pi e 9)$

= 3.63 shannons

b) h (X, Y) =
$$\frac{1}{2} \log_2 [(2\pi e)^2 \sigma^4 (1 - \rho^2)]$$

= $\frac{1}{2} \log_2 [(2\pi e)^2 9^2 (1 - (1/3)^2)]$
= 7.179 shannons

c)
$$h(X | Y) = h(X, Y) - h(Y)$$

= 7.179 - 3.635/5 = 3.55 shannons

$$h(Y | X) = h(X, Y) - h(X)$$

= 7.179 - 3.63
= 3.55 shannons

d) I (X; Y) = -
$$\frac{1}{2} \log_2 (1 - \rho^2)$$

 $\frac{5}{5} = -\frac{1}{2} \log_2 (1 - (\frac{1}{3})^2)$
= $\frac{0.085 \text{ shannons}}{2}$

Les entropies différentielles conjointe et marginales sont alors :

$$\begin{array}{lcl} f_{X}\left(x\right) & = & \frac{1}{\sqrt{2\pi\sigma^{2}}}e^{-\left(\frac{x^{2}}{2\sigma^{2}}\right)}\Rightarrow h\left(X\right) = \frac{1}{2}\log_{2}\left(2\pi e\sigma^{2}\right) \text{ [shannons]} \\ f_{Y}\left(y\right) & = & \frac{1}{\sqrt{2\pi\sigma^{2}}}e^{-\left(\frac{x^{2}}{2\sigma^{2}}\right)}\Rightarrow h\left(Y\right) = \frac{1}{2}\log_{2}\left(2\pi e\sigma^{2}\right) \text{ [shannons]} \\ f_{X,Y}\left(x,y\right) & = & \frac{1}{2\pi\sigma^{2}\sqrt{1-\rho^{2}}}e^{\left[-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{x^{2}}{\sigma^{2}}-2\rho^{\frac{x^{2}}{2}}+\frac{y^{2}}{\sigma^{2}}\right)\right]} \end{array}$$

L'information mutuelle $I\left(X;Y\right)$ entre les variables aléatoires X et Y est la différence entre la somme des entropies (différentielles), $h\left(X\right)$ et $h\left(Y\right)$, et l'entropie (différentielles). tielle) conjointe $h\left(X,Y\right)$:

 $\Rightarrow h(X,Y) = \frac{1}{2} \log_2 \left[(2\pi e)^2 \sigma^4 \left(1 - \rho^2 \right) \right]$ [shannons]

$$\begin{split} &I\left(X;Y\right) &= h\left(X\right) + h\left(Y\right) - h\left(X,Y\right) \\ &I\left(X;Y\right) &= \frac{1}{2}\log_2\left(2\pi e \sigma^2\right) + \frac{1}{2}\log_2\left(2\pi e \sigma^2\right) - \frac{1}{2}\log_2\left[\left(2\pi e\right)^2\sigma^4\left(1 - \rho^2\right)\right] \\ &I\left(X;Y\right) &= \frac{1}{2}\log_2\left(\frac{2\pi e \sigma^2 \cdot 2\pi e \sigma^2}{\left(2\pi e\right)^2\sigma^4\left(1 - \rho^2\right)}\right) = \frac{1}{2}\log_2\left(\frac{1}{\left(1 - \rho^2\right)}\right) \end{split}$$

 $I(X;Y) = -\frac{1}{2}\log_2(1-\rho^2)$ [shannons]

$$f(X;Y) = \frac{1}{2}\log_2\left(\frac{1}{(2\pi e)^2}\sigma^4(1-\rho^2)\right) = \frac{1}{2}\log_2\left(\frac{1}{(1-\rho^2)^2}\right)$$

• Problème 4 : Entropies différentielle et information mutuelle distribution gaussienne conjointe

20/20

Problème 2.3 : (entropies différentielle et information mutuelle distribution gaussienne conjointe)

Soit une fonction de densité de probabilité gaussienne conjointe $f_{XY}(x,y)$ de moyennes nulles $\mu_X = \mu_Y = 0$, de variances unitaires $\sigma_X^2 = \sigma_Y^2 = 1$ et de coefficient de corrélation $\rho_{XY} = 1/2$.

- a) Donnez l'expression des entropies différentielles $h\left(X\right)$ et $h\left(Y\right)$ ainsi que leur valeur numérique en shannons.
- b) Calculez l'entropie différentielle conjointe h(X,Y) en shannons.
- c) Calculez les entropies différentielles conditionnelles h(X|Y) et h(Y|X) en shannons.
- d) Calculez l'information mutuelle I(X;Y) entre X et Y en shannons.

a) h (X) =
$$\frac{1}{2} \log_2 (2\pi e^2)$$

= $\frac{1}{2} \log_2 (2\pi e^1)$
5/5 = $\frac{2.0471 \text{ shannons}}{2.0471 \text{ shannons}}$

h (Y) =
$$\frac{1}{2} \log_2 (2\pi e^2)$$

= $\frac{1}{2} \log_2 (2\pi e^1)$
= $\frac{2.0471 \text{ shannons}}{2.0471 \text{ shannons}}$

b) h (X, Y) =
$$\frac{1}{2} \log_2 [(2\pi e)^2 \sigma^4 (1 - \rho^2)]$$

= $\frac{1}{2} \log_2 [(17.079468)^2 1(1 - 0.5^2)]$
= $\frac{3.88667 \text{ shannons}}{1.88667 \text{ shannons}}$

c)
$$h(X | Y) = h(X, Y) - h(Y)$$

 $5/5 = 3.88667 - 2.0471$
 $= 1.839572 \text{ shannons}$

$$h(Y | X) = h(X, Y) - h(X)$$

= 3.88667 - 2.0471
= 1.839572 shannons

d) I (X; Y) =
$$-\frac{1}{2} \log_2 (1 - 0.5^2)$$

= $\frac{0.207519 \text{ shannons}}{5/5}$

Les entropies différentielles conjointe et marginales sont alors :

$$\begin{split} f_X\left(x\right) &= \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\left(\frac{x^2}{2\sigma^2}\right)} \Rightarrow h\left(X\right) = \frac{1}{2}\log_2\left(2\pi e\sigma^2\right) \text{ [shannons]} \\ f_Y\left(y\right) &= \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\left(\frac{x^2}{2\sigma^2}\right)} \Rightarrow h\left(Y\right) = \frac{1}{2}\log_2\left(2\pi e\sigma^2\right) \text{ [shannons]} \\ f_{X,Y}\left(x,y\right) &= \frac{1}{2\pi\sigma^2\sqrt{1-\rho^2}}e^{\left[-\frac{1}{2(1-\rho^2)}\left(\frac{x^2}{\sigma^2}-2\rho\frac{xy}{\sigma^2}+\frac{x^2}{\sigma^2}\right)\right]} \\ &\Rightarrow h\left(X,Y\right) = \frac{1}{2}\log_2\left[\left(2\pi e\right)^2\sigma^4\left(1-\rho^2\right)\right] \text{ [shannons]} \end{split}$$

L'information mutuelle I(X;Y) entre les variables aléatoires X et Y est la différence entre la somme des entropies (différentielles), h(X) et h(Y), et l'entropie (différentielle) conjointe h(X,Y):

$$\begin{split} I\left(X;Y\right) &= h\left(X\right) + h\left(Y\right) - h\left(X,Y\right) \\ I\left(X;Y\right) &= \frac{1}{2}\log_2\left(2\pi e \sigma^2\right) + \frac{1}{2}\log_2\left(2\pi e \sigma^2\right) - \frac{1}{2}\log_2\left[\left(2\pi e\right)^2 \sigma^4 \left(1 - \rho^2\right)\right] \\ I\left(X;Y\right) &= \frac{1}{2}\log_2\left(\frac{2\pi e \sigma^2 \cdot 2\pi e \sigma^2}{\left(2\pi e\right)^2 \sigma^4 \left(1 - \rho^2\right)}\right) = \frac{1}{2}\log_2\left(\frac{1}{(1 - \rho^2)}\right) \end{split}$$

$$I(X;Y) = -\frac{1}{2}\log_2\left(1-\rho^2\right)$$
 [shannons]

• Problème 5 : Propriété d'Équirépartition asymptotique et codage de source 28/28

Problème 3.2 : Soit une source d'information binaire sans mémoire X ayant une distribution $\mathbf{p} = [p(x_1) = 2/3 \quad p(x_2) = 1/3].$

- a) Déterminez l'entropie H(X) en Sh ou bits (b=2).
- b) On forme des séquences x de longueur n=6. Déterminez le nombre de séquences contenant k fois x_1 et (n-k) fois x_2 , pour $k=0,1,\ldots,6$.
- c) Déterminez la probabilité d'une séquence contenant k x_1 et (n-k) x_2 , pour $k=0,1,\ldots,6$.
- d) Déterminez l'information propre par bit d'une séquence contenant k x_1 et (n-k) x_2 , pour $k=0,1,\ldots,6$.
- e) Déterminez la probabilité de l'ensemble des séquences contenant contenant k x_1 et (n-k) x_2 , pour $k=0,1,\ldots,6$.
- f) Déterminez la probabilité $\Pr\left[\mathbf{x} \in \mathcal{T}_X\left(\delta\right)\right]$ qu'une séquence binaire \mathbf{x} de longueur n soit une séquence typique avec $\delta = 0.1$.
- g) Déterminez le nombre de séquences typiques $|\mathcal{T}_X(\delta)|$ avec $\delta=0.1$.

a)
$$H(X) = -\Sigma p(x_i) \log_2 p(x_i)$$

 $H(X) = -[(2/3) \log_2 (2/3) + (1/3) \log_2 (1/3)]$
 $H(X) = \frac{0.9183 \text{ Sh (or bit)}}{2/\Delta}$

b)
c)
d)

$$\binom{N}{n} \equiv \frac{N!}{(N-n)!n!}$$

nombre n de Os ou x_1	nombre de séquences
dans le vecteur	$\binom{N}{n}$
de longueur N	(117)

somme des probabilités des séquences avec n zéros $\binom{N}{n} p(x_1)^n p(x_2)^{N-n}$

4/4

4/4

4/4

probabilité de

chaque séquence

 $p(x_1)^n p(x_2)^{N-n}$

4/4

k	Nombre séquences	Probabilité séquence	Information propre par bit	Probabilité Ensemble Séquence	Entropie
0	1	0.001372	1.58	0.1372	1.5849
1	6	0.002743	1.42	0.01646	1.4183
2	15	0.005487	1.25	0.0823	1.2516
3	20	0.01097	1.08	0.2194	1.0850
<mark>4</mark>	15	0.0219	0.92	0.3285	0.9188
5	6	0.0439	0.75	0.2634	0.7516
6	1	0.0878	0.58	0.0878	0.5849

f) Probability of binary sequence x of length n is a typical sequence

$$\begin{array}{l} \delta = 0.1 \\ N = 6 \\ H(X) = 0.9183 \\ \\ b^{-N[H(X)+\delta]} \leqslant p(x) \leqslant b^{-N[H(X)-\delta]} \\ 2^{-6[0.9183+0.1]} \leqslant p(x) \leqslant 2^{-6[0.9183-0.1]} \\ 0.01448 \leqslant p(x) \leqslant 0.033266 \\ \\ \text{Range } \{H(X) - \epsilon; H(X) + \epsilon\} \\ \text{Range } \{0.8183; 1.0183\} \\ \textbf{\Sigma \% (k=4)} = \textbf{32,85\%}? \end{array}$$

g) Number of typical sequences

$$\begin{array}{l} \delta = 0.1 \\ N = 6 \\ H(X) = 0.9183 \\ \\ (1 - \epsilon) \ b^{N[H(X) - \delta]} \leqslant |T_X(\delta)| \leqslant b^{N[H(X) + \delta]} \\ (1 - \epsilon) \ 2^{6[0.9183 - 0.1]} \leqslant p(x) \leqslant 2^{6[0.9183 + 0.1]} \\ 30,06 \leqslant |T_X(\delta)| \leqslant 69.06 \\ \\ \text{Range } \{H(X) - \epsilon; H(X) + \epsilon\} \\ \text{Range } \{0.8183; 1.0183\} \\ \text{Hence, typical set} \rightarrow \text{Set of all sequences with k=4.} \\ = 15 \ \text{sequences?} \end{array}$$

Théorème (théorème de Shannon-McMillan pour les séquences typiques) : Soit une source d'information aléatoire sans mémoire X d'entropie H(X), un écart δ et $\mathbf{x} = [x_{k_1,1},\dots,x_{k_N,N}]$ un vecteur de longueur N généré par X. On peut choisir $N \geqslant N_0$ suffissamment grand tel que l'ensemble de tous les K^N vecteurs $\{\mathbf{x}\}$ possibles puisse être partitionné en un ensemble \mathcal{T}_X (δ) des séquences typiques et un ensemble \mathcal{T}_X^N (δ) des séquences atypiques ayant les propriétés suivantes :

1. La probabilité qu'un vecteur ${\bf x}$ de longueur N soit atypique est bornée par :

$$\left[\Pr\left[\mathbf{x}\in\mathcal{T}_{X}^{c}\left(\delta\right)\right]<\varepsilon\right]$$

2. Si x est dans l'ensemble $\mathcal{T}_{X}\left(\delta\right)$ alors sa probabilité $p\left(\mathbf{x}\right)$ est bornée par :

$$\boxed{b^{-N[H(X)+\delta]} \leqslant p\left(\mathbf{x}\right) \leqslant b^{-N[H(X)-\delta]}}$$

3. Le nombre de séquences typiques, $|\mathcal{T}_{\!X}\left(\delta\right)|_{\!\scriptscriptstyle 1}$ est borné par :

$$(1 - \varepsilon) b^{N[H(X) - \delta]} \le |\mathcal{T}_X(\delta)| \le b^{N[H(X) + \delta]}$$

La propriété d'équirépartition asymptotique Asymptotic Equipartition Property (AEP), l'ensemble des séquences atypiques $\in T^*_X(\delta)$ est bornée par :

$$\Pr\left[\mathbf{x} \in \mathcal{T}_{X}^{c}\left(\delta\right)\right] \ = \ \Pr\left[\left|-\frac{1}{N}\log_{b}p\left(\mathbf{x}\right) - H\left(X\right)\right| > \delta\right]$$

- 3.13 Calculation of typical set. To clarify the notion of a typical set $A_{\epsilon}^{(n)}$ and the smallest set of high probability $B_{\delta}^{(n)}$, we will calculate the set for a simple example. Consider a sequence of i.i.d. binary random variables, X_1, X_2, \ldots, X_n , where the probability that $X_i = 1$ is 0.6 (and therefore the probability that $X_i = 0$ is 0.4).
 - (a) Calculate H(X).
 - (b) With n=25 and $\epsilon=0.1$, which sequences fall in the typical set $A_{\epsilon}^{(n)}$? What is the probability of the typical set? How many elements are there in the typical set? (This involves computation of a table of probabilities for sequences with k 1's, $0 \le k \le 25$, and finding those sequences that are in the typical set.)
 - (c) How many elements are there in the smallest set that has probability 0.9?
 - (d) How many elements are there in the intersection of the sets in parts (b) and (c)? What is the probability of this intersection?

a) H (X) =
$$-0.6 \log 0.6 - 0.4 \log 0.4$$

= $\frac{0.97095 \text{ bits}}{5/5}$

k	Nombre séquences	Probabilité Ensemble séquence (%)	Entropie
0	1	0.000000000	1.321928
1	25	0.000000004	1.298530
2	300	0.00000076	1.275131
3	2300	0.00000874	1.251733
4	12650	0.000007210	1.228334
5	53130	0.000045425	1.204936
6	177100	0.000227126	1.181537
7	480700	0.000924725	1.158139
8	1081575	0.003120948	1.134740
9	2042975	0.008842685	1.111342
10	3268760	0.021222445	1.087943
11	<mark>4457400</mark>	0.043409546	1.064545
12	5200300	0.075966705	1.041146
13	5200300	0.113950058	1.017748
14	4457400	0.146507217	0.994349
15	3268760	0.16115794	0.970951
16	2042975	0.15108557	0.947552
17	1081575	0.11997972	0.924154
18	480700	0.07998648	0.900755
<mark>19</mark>	177100	0.04420305	0.877357
20	53130	0.01989137	0.853958
21	12650	0.00710406	0.830560
22	2300	0.00193747	0.807161
23	300	0.00037907	0.783763
24	25	0.00004738	0.760364
25	1	0.00000284	0.736966

o B1: Sequences falling in the typical set

Range $\{H(X) - \varepsilon; H(X) + \varepsilon\}$

Computing entropy third column \rightarrow Range {0.87095; 1.07095}

Hence, typical set \rightarrow Set of all sequences with k **between** 11-19.

o B2: Probability of the typical set

Using the computed cumulative probabilities

$$\Sigma$$
 % (0-19) - Σ % (0-10) =

0.9706 - 0.0343 = 0.9362 or 93.62%

o B3: Elements in the typical set

$$|A^{(n)}_{\epsilon}| = \Sigma$$
 (elements k = 0 to 19) - Σ (elements k = 0 to 10) 33486026 - 7119516 = 26 366 510 Elements

 We begin by showing that with high probability, the sequence is in the typical set. By the weak law of large numbers,

$$-\frac{1}{n}\log p(X^n) \to -E[\log p(X)] = H(X) \quad \text{in probability.}$$
(7.

Loi binomiale :

$$\mathcal{S}_{X} = \{0, 1, \dots, n\}$$

$$p_{k} = \binom{n}{k} p^{k} (1-p)^{n-k}, \quad k = 0, 1, \dots, n$$

c) 5/5

C1: How many elements are there in the smallest set that has probability 0.9?

Smallest set $B^{(n)}\delta$: Σ Sequences $k = \{25, 24, 23...\}$ until % = 0.9

(In other words, we want the sum of the lowest entropy sequences until we reach 90%)

$$\Sigma$$
 % (25-12) = 92.22%

 Σ % (25-13) = 84.62%

 \rightarrow Hence sequences with $k \ge 13$ & portion sequence with k = 12

Remaining probability (k = 12):

0.9 - 0.846232 = 0.053768

The number of such sequences needed to fill this probability is around: (0.053768 / 0.07596671) * 5200300 = 3 680 691 Sequences

Smallest set with probability $0.9 = \Sigma$ Sequences (25-13) + 3 680 691

= 20 457 907 Sequences

d) 5/5

D1: How many elements are there in the intersection of the sets in part (b) and (c)?

$$\Sigma$$
 Sequences (19-13) + 3 680 691 Sequences (k = 12)
Size intersection = 33 486 026 - 16 777 216 + 3 680 691
= 20 389 501 Elements

O D2: What is the probability of this intersection?

P (intersection) =
$$0.970638 - 0.153768 + 0.053768$$

= 0.870638 or 87.06%