Worksheet 21: Determinants and Elementary Row Operations (§§6.1,6.2)

(c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License.

Recall the following:

- an *elementary matrix* is any matrix that results from applying a single elementary row operation to an identity matrix.
- If E is the elementary matrix arising from applying the elementary row operation R to I_n , then EA is the matrix obtained by applying R to the $n \times n$ matrix A.

Problem 1. Let $0 \neq a \in \mathbb{R}$ and suppose $i \neq j$.

- (a) If E is the elementary matrix obtained from I_n by scaling row i by a, what is det(E)?
- (b) If E is the elementary matrix obtained from I_n by interchanging rows i and j, what is $\det(E)$?
- (c) If E is the elementary matrix obtained from I_n by adding a times row i to row j, what is det(E)?

Solution:

- (a) Using the definition of determinant, or alternatively multilinearity, det $E = a \det I_n = a$.
- (b) There is only one pattern in E that does not contain a zero entry. Every entry in the pattern is 1, and the sign of this pattern is -1 since it contains |i-j|+|i-j|-1=2|i-j|-1 inversions. Thus det E=-1.
- (c) By multilinearity of the determinant on rows, $\det E$ is the sum of $\det I_n$ with a times the determinant of a matrix (call it C) that has two rows both equal to \vec{e}_i^{\top} . Since any pattern in C must contain a zero entry in at least one of the two rows equal to \vec{e}_i^{\top} , we have $\det C = 0$, so $\det E = 1$.

Problem 2. Let A be an $n \times n$ matrix.

- (a) If E is the elementary matrix obtained from I_n by scaling row i by a, what is $\det(EA)$ in terms of $\det(E)$ and $\det(A)$?
- (b) If E is the elementary matrix obtained from I_n by interchanging rows i and j, what is $\det(EA)$ in terms of $\det(E)$ and $\det(A)$?
 - [Hint: This one is a little tricky. It might help to consider first the case where j = i + 1, and then treat the general case as successive applications of this simpler case.]
- (c) What is det(A) if two different rows of A are identical to each other? What if two different columns are identical?
- (d) If E is the elementary matrix obtained from I_n by adding a times row i to row j, what is det(EA) in terms of det(E) and det(A)?

Solution:

- (a) By multilinearity of det and Problem 1(a), $\det(EA) = a \det A = (\det E)(\det A)$.
- (b) Suppose first that j=i+1. Then EA is the matrix obtained from A by interchanging rows i and i+1 of A. For each pattern P in A, let P' be the "corresponding" pattern in EA which chooses the same entries after those entries have changed locations. Then $\operatorname{prod}_{EA}(P') = \operatorname{prod}_A(P)$. Depending on the entries chosen by P in rows i and i+i, the pattern P' will have either one more or one fewer inversion than P, so that $\operatorname{sgn}(P') = -\operatorname{sgn}(P)$. Thus

$$\det(EA) = \sum_{P'} \operatorname{sgn}(P')\operatorname{prod}_{EA}(P') = \sum_{P'} \operatorname{sgn}(P')\operatorname{prod}_{A}(P)
= \sum_{P'} -\operatorname{sgn}(P)\operatorname{prod}_{A}(P) = -\sum_{P} \operatorname{sgn}(P)\operatorname{prod}_{A}(P) = -\det A,$$

where for the second-last equality above we are using the fact that the association of P' to P defines a bijection from the set of patterns to itself.

Now, for the general case, note that swapping rows i and j can be accomplished by 2|i-j|-1 swaps of adjacent rows. Thus (using Problem 1(b)),

$$\det(EA) = (-1)^{2|i-j|-1} \det A = -\det A = (\det E)(\det A).$$

(c) Suppose rows i and j of the square matrix A are equal to each other (where $i \neq j$). Let E be the elementary matrix that swaps rows i and j, so EA = A. Then by part (b) we see that

$$\det(A) = \det(EA) = -\det A,$$

which implies that $\det A = 0$. Of course, the same holds when two columns of A are equal, since $\det A = \det A^{\top}$.

(d) By multilinearity, det(EA) is the sum of det(A) with a times the determinant of a matrix (call it C) that has two equal rows (namely rows i and j). Thus det C = 0 by part (c), so we conclude that

$$\det(EA) = \det A = (\det E)(\det A).$$

Problem 3. Let A be an $n \times n$ matrix.

- (a) Prove that if A is not invertible, then det(A) = 0.
- (b) Prove that if A is invertible, then $\det(A) \neq 0$ and $\det(A^{-1}) = (\det A)^{-1}$.

Solution:

(a) Suppose that A is not invertible. Then $\operatorname{rref}(A)$ has a zero row, so $\det(\operatorname{rref}(A)) = 0$. Let E_1, \ldots, E_k be a sequence of elementary matrices such that

$$(E_k \cdots E_1)A = \operatorname{rref}(A).$$

By repeatedly applying the results of Problem 2, we see that

$$(\det E_k) \cdots (\det E_1) \det A = \det(\operatorname{rref}(A)) = 0.$$

Since the determinant of an elementary matrix is never zero (by Problem 1), this shows $\det A = 0$.

Alternate Proof: If $A = [\vec{a}_1 \cdots \vec{a}_n]$ is not invertible, then its columns are linearly dependent; suppose $\vec{a}_k = \sum_{i=1}^{k-1} c_i \vec{a}_i$. Then by multilinearity we have

$$\det A = \sum_{i=1}^{k-1} c_i \det \left[\vec{a}_1 \cdots \vec{a}_{k-1} \ \vec{a}_i \ \vec{a}_{k+1} \cdots \vec{a}_n \right] = 0.$$

(b) Now suppose that A is invertible, so $rref(A) = I_n$. Again choose elementary matrices E_1, \ldots, E_k so that

$$(E_k \cdots E_1)A = \operatorname{rref}(A) = I_n,$$

and thus

$$(\det E_k) \cdots (\det E_1) \det A = \det I_n = 1.$$

This shows that A is invertible (with inverse $E_k \cdots E_1$), and (applying Problem 2 again)

$$\det A^{-1} = \det(E_k \cdots E_1) = (\det E_k) \cdots (\det E_1) = (\det A)^{-1}.$$

Problem 4. Prove that for any $n \times n$ matrices A and B, $\det(AB) = (\det A)(\det B)$.

[Hint: show that every invertible matrix is a product of elementary matrices, and use Problem 2.]

Solution: Let A and B be arbitrary $n \times n$ matrices. It follows from the Invertible Matrix Theorem that AB is invertible if and only if both A and B are invertible. Thus if AB is not invertible, we have by Problem 3 that both $\det(AB) = 0$ and $(\det A)(\det B) = 0$. So we may assume A and B (and hence AB) are invertible, which means none of their determinants are zero.

Since A and B are invertible, we can write them as products of elementary matrices, say

$$A = E_1 \cdots E_k$$
 and $B = F_1 \cdots F_\ell$.

Then by repeatedly applying the results of Problem 2, we have

$$det(AB) = \det(E_1 \cdots E_k F_1 \cdots F_\ell)
= \det(E_1) \cdots \det(E_k) \det(F_1) \cdots \det(F_\ell)
= \det(E_1 \cdots E_k) \det(F_1 \cdots F_\ell) = (\det A)(\det B).$$

Problem 5. If A and B are similar $n \times n$ matrices, how are $\det(A)$ and $\det(B)$ related to each other? What is $\det(A^n)$ where $n \in \mathbb{N}$?

Solution: If A and B are similar, meaning there is an invertible matrix P such that $B = PAP^{-1}$, then

$$\det B = \det(PAP^{-1}) = (\det P)(\det A)(\det P^{-1}) = (\det P)(\det A)(\det P)^{-1} = \det A.$$

Thus similar matrices have the same determinant. By repeatedly applying the multiplicative property from Problem 4, we see that for any $n \in N$, $\det(A^n) = (\det A)^n$. In fact, if A is invertible then we have $\det(A^n) = (\det A)^n$ for any integer $n \in \mathbb{Z}$, as long as we remember that $A^0 = I_n$ by definition.