1

XNOR Gate in Arduino

Ahilan R - FWC22090

Abstract—We implement XNOR logic in Arduino by getting the boolean expression from it's K-map for it's truth table by writing our sketch in C.

I. THEORY

Let A and B be the inputs to the gate, Y be the output. The truth table for XNOR gate is given below.

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

K-map for the above mentioned truth table:

Simplified K-map:

Collecting minterms from the kmap, i.e., where Y=1, we get the boolean expression in sum of products form for XNOR gate as following.

$$Y = A'B' + AB \tag{1}$$

And for product of sums form, we get maxterms, where Y=0, we get the boolean expression as following.

$$Y = (A' + B)(A + B')$$
 (2)

II. IMPLEMENTATION

Components Required:

Components	Qty.
Arduino UNO	1
Breadboard	1
Jumper wires	4

Connections:

Arduino	2	3
Inputs	Α	В

In addition to the above table, we connect 5V and GND pins of Arduino to different bus strips of breadboard to input binary values back to the input pins of Arduino.

A. Sketch

We set the digital pins D2, D3 as inputs and feed A, B into those. We utilise the builtin LED at D13, by setting D13 as output. So, when Y = 1, LED glows and when Y = 0 LED doesn't glow. This sketch in assembly code is given in the below link.

https://github.com/ahilan22/fwc-1/tree/main/avr-gcc/assignment/code/main.c

B. Software

We use avr-gcc compilier to convert the C code into AVR code(binary source that can be uploaded to AVR micro-controller).

- 1) Download the source code and the Makefile in the desired location from the link given above.
- 2) Build and execute the code by typing make in the appropriate directory.

We've successfully implemented XNOR logic in Arduino.