Problema da Conectividade

Análise da implementação de algoritmos em linguagem C

Laboratórios de Algoritmos e Estruturas de Dados

Grupo X - 2ªfeira Beatriz Ferreira 78794; Henrique Nogueira 78927 Professor ——-

21 de Setembro de 2016

Resumo: Perante o problema da Conectividade, foi feita uma análise da eficácia de resolução para 4 Algoritmos distintos para diferentes níveis de complexidade do problema.

1 Introdução e Motivação

Dado um número **N** de objectos, identificados separadamente por um inteiro, e uma sequência de pares desses inteiros (**p-q**), representando uma ligação entre dois objectos, o **problema da Conectividade** consiste em saber se, dado um par de objectos arbitrários, existe uma ligação directa/indirecta entre eles.

Este problema tem interesse em ser estudado pois objectos abstractos podem ser traduzidos em objectos reais, permitindo a resolução de problemas do mundo real, como por exemplo:

- numa rede de computadores, saber se um está ligado a outro
- saber se dois pontos de contacto de um circuito estão ligados entre si
- saber se existe uma ligação directa ou indirecta entre duas pessoas numa rede social

É portanto vital ser capaz de implementar o Algoritmo certo para cada situação pois a eficácia de resolução do problema pode ser melhorada em várias ordens de grandeza permitindo tomar maior partido do poder de computação de uma dada máquina.

2 Implementação dos Algoritmos

Em laboratório, pretendeu-se analisar a eficácia de diferentes Algoritmos para diferentes níveis de complexidade diferente. Para este efeito foram implementados 4 Algoritmos diferentes.

Visto que para a resolução deste problema não é necessário saber o caminho percorrido que liga dois objectos mas apenas se estes estão de facto ligados, basta-nos distribuir os objectos por diferentes conjuntos e ir aglomerando á medida que é recebida informação acerca das ligações entre si, perdendo no processo informação relativa á ordem de ligação. Podemos portanto dividir este processo em 2 fases distintas, a Procura (Find), onde se identifica se dois objectos estão contidos num mesmo conjunto, e a União (Union) onde se faz a junção de dois conjuntos distintos. O fluxograma representado na figura 1 exprime precisamente este processo:

- $1.\,$ é lido um par de objectos vindo da sequência de pares
- 2. a procura obtém o identificador de conjunto de cada objecto

- 3. o identificador exprime a coexistência dos objectos no mesmo conjunto, permitindo saber se \mathbf{p} e \mathbf{q} se encontram ligados
- 4. caso não se encontrem ligados segue-se o processo de União onde se quer igualar os identificadores de cada objecto de ambos os conjuntos

Algoritmo genérico para o problema da conectividade

Figure 1: Fluxograma genérico de um algoritmo de resolução do problema da conectividade (por aglomeração de conjuntos)

Para cada um dos algoritmos que se seguem é usada a mesma estrutura de dados, uma tabela de identificadores id cujo índice representa o objecto.

2.1 Algoritmo de Procura rápida

O primeiro algoritmo a analisar é o algoritmo de procura rápida, que como o nome indica tem uma fase de procura mais rápida, necessitando apenas de uma operação para concretizar a verificação. A ideia é que o identificador do conjunto está imediatamente contido na identificador da tabela, isto é, se \mathbf{p} e \mathbf{q} estão contidos num mesmo conjunto então $\mathbf{id}[\mathbf{p}] = \mathbf{id}[\mathbf{q}]$.

Em contrapartida de uma operação de procura rápida, a sua união é mais lenta pois implica que para cada união de conjuntos é necessário percorrer a tabela inteira e redefenir o identificador de todos os objectos que pertenciam a um desses conjuntos.

Figure 2: Operações de procura e união de algoritmo Quick-Find. A operação de procura é executada num só passo inquirindo se id[q]=id[p]. A operação de união já exige a leitura e actualização de todos os identificadores antigos da tabela.

Para cada um dos algoritmos que se seguem é usada a mesma estrutura de dados, uma tabela de identificadores id cujo índice representa o objecto.

Podemos dizer com certeza que o número de operações de procura é sempre igual a \mathbf{M} , número de pares, pois para cada novo par a procura é feita num só inquérito $(\mathbf{id}[\mathbf{q}] = = \mathbf{id}[\mathbf{p}])$

Quanto á união é mais incerto pois este dependerá do número de ligações, \mathbf{L} , pois caso o resultado da procura seja negativa não haverá união por fazer. Podemos no entanto garantir que pelo menos $(\mathbf{N+1})\mathbf{L}$ operações de união são feitas pois para cada ligação a tabela é lida \mathbf{N} vezes e escrita pelo menos 1 vez.

No entanto, para M>>N com N>>1, temos na maior parte dos casos L na mesma ordem de grandeza de N, pois o número máximo de ligações é sempre (N-1), e portanto o número de operações expectável é aproximadamente N^2 .

2.2 Algoritmo de União Rápida

Este algoritmo por sua vez tem um processo de união rápida em contrapartida com um processo de procura mais lenta. A ideia desta vez está em vez em estabelecer uma hierarquia de ponteiros que convirjam numa raíz do conjunto, isto é, se a procura indicar uma nova ligação entre \mathbf{p} e \mathbf{q} faz-se $\mathbf{id}[\mathbf{p}] = \mathbf{q}$ estabelecendo a ligação ao apontar arbritáriamente \mathbf{p} á raíz de \mathbf{q} . Desta forma cria-se uma estrutura de conjuntos em forma de árvore cujo cada elemento aponta para o próximo até chegar á raíz que por sua vez aponta para si mesma. Percebe-se portanto que o número de operações de procura é superior pois o identificador de conjunto está "escondido" a cada objecto, sendo necessário seguir o caminho de ponteiros para o encontrar.

O processo de união é sempre feito numa operação dada uma nova ligação, pelo que no total é feita em ${\bf L}$ operações.

Por sua vez, o número de operações de procura é incerto pois o número de procuras por par dependerá da estrutura de árvore dos conjuntos em causa. No entanto para valores de ${\bf N}$ pequenos iremos ter uma estrutura de árvores mais favorável a uma procura mais rápida pois para cada procura temos que seguir no máximo uma cadeia de ${\bf N}$ objectos, pelo que teóricamente será mais eficaz nesses casos.

2.3 Algoritmo de União Rápida equilibrada

Este algoritmo é equivalente ao algoritmo anterior de uma maneira geral, excepto que em vez de ser feita arbitráriamente a estrutura em árvore dos conjuntos, escolhese sempre apontar o objecto com o menor conjunto em árvore da qual ele é raíz, permitindo uma melhor distribuição dos nodos da árvore e por sua vez diminuindo a quantidade de ponteiros a seguir para chegar á raíz do conjunto aglomerado. No entanto, a memória gasta é duplicada já que é necessário acrescentar uma tabela com os tamanhos dos conjuntos correspondentes bem como acrescentar ás operações de união os passos relativos á actualização desta nova tabela.

É possível provar que para cada processo de procura cada objecto tem de seguir no máximo Log(N) ponteiros até chegar á raíz, pelo que as operações de procura não devem exceder MLog(N) operações.

Já as operações de união são no máximo 3 por par: leitura e comparação de tamanhos, associação de ponteiro e por fim update da tabela de tamanhos.

2.4 • Algoritmo de União Rápida equilibrada comprimida

Semelhante ao Algoritmo de União Rápida equilibrada, este por sua vez acrescenta mais ao processo de união fazendo ligar todos os objectos que procedem o ponteiro inicial directamente á raíz do seu objecto par.

Torna-se óbvio que para \mathbf{M} e \mathbf{N} grandes este processo díminui em bastante, mesmo relativamente ao algoritmo imediatamente anterior, o tempo necessário á procura de cada par, no entanto para \mathbf{N} e \mathbf{M} muito pequenos poderá representar trabalho desnecessário.

- 3 Resultados experimentais
- 4 Análise de resultados
- 5 Conclusão
- 6 Referências
 - Algorithms in C, Robert Sedgewick
 - Aulas teóricas, Prof. Carlos Bispo; Instituto Superior Técnico, Departamento de Engenharia Electrotécnica e de Computadores