

UNIVERSIDADE PRESBITERIANA MACKENZIE

- Faculdade de Computação e Informática -

Curso: Ciência da Computação Disciplina: Teoria dos Grafos – Turma 6N Atividade Prova 1 --- abril de 2021

Nome: Luan Damato		TIA: 31817051
Nota:	Visto:	

Questão 01. (1,0 ponto) O grafo G abaixo é hamiltoniano? Justifique sua resposta...

G é um grafo hamiltoniano, pois o passeio C é um circuito que contem todos os vértices do grafo

```
C = (v1, v1v4, v4, v4v5, v5, v5v6, v6, v6v3, v3, v3v2, v2, v2v1, v1)
```

Questão 02. (1,5 pontos) Considerando uma classe chamada Grafo, usada para manipular grafos em geral, e considerando que esta classe apresenta os seguintes métodos:

```
boolean eConexo(); // Retorna true sse o grafo é conexo
boolean eArvore(); // Retorna true sse o grafo é árvore
boolean eBipartido(); // Retorna true sse o grafo é bipartido
boolean eSimples(); // Retorna true sse o grafo é simples
int ordem(); // Retorna a ordem do grafo
int tamanho(); // Retorna o tamanho do grafo
int grauMinimo(); // Retorna δ(G)
int grauMaximo(); // Retorna Δ(G)
```

escreva um método para decidir se um grafo é completo.

Questão 02. Considerando que a lista de adjacência abaixo representa um grafo não orientado:

- a) (0,5 ponto) Desenhe o grafo representado pela estrutura acima.
- b) (0,5 ponto) Construa a matriz de adjacência que representa o mesmo grafo.

Questão 03. (2,0 pontos) O grafo G abaixo é euleriano? Justifique sua resposta.

- a) Caso afirmativo, apresente uma trilha de Euler fechada em G.
- b) Caso contrário, qual a quantidade mínima de arestas que devem ser acrescentadas a AG, obtendo um grafo chamado G', de tal forma que o G' seja euleriano? Apresente tal grafo G' e uma trilha de Euler fechada em G'.

É preciso adicionar 1 aresta para ter um grafo eulariano

G' =

Uma trilha de Euler possível é:

T = (V4, V4V2, V2, V2V1, V1, V1V4, V4, V4V6, V6, V6V3, V3, V3V3, V3, V3V6, V6, V6V5, V5, V6, V6V6, VV5V4, V40

Questão 04. (1,5 ponto) Considerando o grafo H ao lado, com custos associados nas arestas, apresente a árvore geradora de custo mínimo obtida pelo algoritmo de Kruskal. Qual é o custo da árvore obtida?

(Na ordenação inicial, no caso de "empate", considere como menor aquela aresta que tenha como extremo uma letra que ocorra antes na ordem alfabética.)

orden anastricar)			
Aresta	Custo		
ah	1		
Ic	1		
Bc	2		
Ef	2 2 4		
Ab	4		
Ig	6		
Cg	6		
Hi	7		
Cd	7		
Gf	9		
De	9		
Bh	11		
Hg	12		
Df	14		

Custo total: 32

Questão 05. Dado o grafo H abaixo:

a) (1,0 ponto) Apresente, exclusivamente no espaço abaixo e usando uma representação textual de conjuntos, um emparelhamento máximo de H.

Dacn	•
resp	•

 $E = \{V1V6, V7V5, V4V3, V2V8\}$

b) (1,0 ponto) Apresente, exclusivamente no espaço abaixo e usando uma representação textual de conjuntos, uma cobertura mínima de H.

Resp:

 $K = \{V3, V5, V6, V8\}$

c) (1,0 ponto) Justifique, objetivamente e exclusivamente no espaço abaixo e usando algum resultado teórico visto em aula, as respostas obtidas nos itens anteriores.

Resp:

Teorema (**König**, **1931**): Em um grafo bipartido, o número de arestas em um emparelhamento máximo é igual ao número de vértices em uma cobertura mínima.