ANÁLISIS Y DISEÑO DE ALGORITMOS I

Práctico Nº 1. Análisis de eficiencia de algoritmos - Primera Parte

De acuerdo a la definición formal de las notaciones Big-Oh (O), Big-Omega (Ω) y Zeta (Θ):

- 1) determine si las siguientes sentencias son verdaderas o falsas
- 2) grafique la funciones y analice los resultados obtenidos en el inciso 1
- a) $15n \in O(n)$
- b) $15n \in \Omega(n)$
- c) $15n \in O(n^2)$
- d) $15n \in \Omega(n^2)$
- e) $n \log n \in O(n)$
- f) $n \log n \in O(n^2)$
- g) $\sum_{i=1}^{n} i \in O(n^2)$
- h) $10n^3 + 15n^4 + 100n^2 \in O(n^4)$
- i) $n^3 + 15 \in O(n^2)$
- j) $\frac{1}{2}$ n²- 3n ∈ Ω (n²)
- k) $\frac{1}{2} n^2 5n \in \Theta(n^2)$
- I) $3 n^3 \in \Theta(n^2)$
- m) $n! O(n^n)$

Voy a usar el principio de la invarianza

$$f(x) = n!$$
$$g(x) = n^n$$

 $f(x) <= c^*g(x)$; existe un n_0 natural y una constante real c>0

$$n! <= c*n^n$$

 $n!/n^n <= c$