Machine Learning Homework 4: Linear Models for Classification

叶璨铭, <u>12011404@mail.sustech.edu</u>.cn

1 Discriminant Function: Maximum Class Separation

Show that maximization of the class separation criterion given by $m_2 - m_1 = \mathbf{w}^{\mathrm{T}}(\mathbf{m_2} - \mathbf{m_1})$ with respect to \mathbf{w} , using a Lagrange multiplier to enforce the constraint $\mathbf{w}^{\mathrm{T}}\mathbf{w} = \mathbf{1}$, leads to the result that $\mathbf{w} \propto (\mathbf{m_2} - \mathbf{m_1})$.

Important Note:

- The notation is extremely unfriendly for handwritten homeworks. We should **never** distinguish two entirely different symbols merely by their boldness.
- Therefore, in this paper we shall use μ for the **before-projection mean**, while using m to denote the **after-projection mean**. As for variance, we use \sum to denote the before and S to denote the after.
- We advocate that does not indicate anything, in case anyone may write it or read it wrong.

Solution: The problem of the maximization of the class separation can be formulated as follows:

$$\max_{w} f(w) = w^{T}(\mu_2 - \mu_1)$$
s. t. $w^{T}w = 1$

Using Lagrange Multiplier λ , we can transform the problem to an unconstrained one.

$$\nabla f(w) = \lambda \nabla g(w)$$
$$g(w) = w^{T}w - 1$$
$$g(w) = 0$$

Since $\nabla f(w) = (\mu_2 - \mu_1)^T$ and $\nabla g(w) = 2w^T$, we obtain

$$w=rac{1}{2\lambda}(\mu_{\mathbf{2}}-\mu_{\mathbf{1}})\sim(\mu_{\mathbf{2}}-\mu_{\mathbf{1}})$$

2 Discriminant Function: Fisher Criterion

Show that the Fisher criterion

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$

can be written in the form

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}.$$

Hint.

$$y = \mathbf{w}^{\mathsf{T}} \mathbf{x}, \qquad m_k = \mathbf{w}^{\mathsf{T}} \mathbf{m}_{\mathbf{k}}, \qquad s_k^2 = \sum_{n \in \mathcal{C}_k} (y_n - m_k)^2$$

Analysis:

- m_1 , m_2 , S_1 , S_2 are the mean and variance after the projection. The lower case s_1 and s_2 denotes the standard deviation.
- S_B and S_W are "scatter matrix", which means how different the vectors are in the vector space.

 $\bullet~$ The B in S_B denotes "between-class", and W in S_W denotes "within-class".

$$egin{aligned} S_B &= \sum_{i=1}^{k-1} \sum_{j=i+1}^k (\mu_\mathbf{i} - \mu_\mathbf{j}) (\mu_\mathbf{i} - \mu_\mathbf{j})^T \ S_W &= \sum_{i=1}^k \Sigma_k \end{aligned}$$

Solution:

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2} = \frac{(\mathbf{w^T}(\mu_2 - \mu_1))^2}{\mathbf{w^T} \mathbf{\Sigma_1 w} + \mathbf{w^T} \mathbf{\Sigma_2 w}} = \frac{w^T (\mu_2 - \mu_1)(\mu_2 - \mu_1)^T w}{w^T (\Sigma_1 + \Sigma_2) w} = \frac{w^T S_B w}{w^T S_W w}$$

which is also refereed to as the generalized Rayleigh quotient.

3 Generative Classification Model Consider a generative classification model for K classes defined by prior class proba-	
bilities $p(\mathcal{C}_k) = \pi_k$ and general class-conditional dendities $p(\phi \mathcal{C}_k)$ where ϕ is the input feature vector Suppose we are given a training data set $\{\phi_n, t_n\}$ where $n = 1,, N$	n=1 k=1 (11/1/1/k=1
and \mathbf{t}_n is a binary target vector of length K that uses the 1-of- K coding scheme, so that it has components $t_{nj} = l_{jk}$ if pattern n is from class C_k / A ssuming that the date points are drwn independently from this model, show that the maximum-likelihood solution for the prior probabilities is given by	TK = TK 时才扩亮 故长确定 区形定
$\pi_k = \frac{N_k}{N}$,	y tal
where N_k is the number of data points assigned to class \mathcal{C}_k .	Z tnik + A =0
Note: 沒里起目面沒有告VR用。 Lik [if pattern nts	
from class (1e) 另一个製体、工意示 { 0 else / 市 不表示単信を見る	$= \sum_{n=1}^{N} t_{n} k = N_{K}$
Solution: 12 Pr. LET TI:K	る有 美一版) = K Nk ドー N
(tn)	
Like $(\pi_k \mid \varphi_{l:n}, t_{l:n}) = P(Y_{l:n}, t_{l:n} \mid \pi_k)$	$-\lambda = N$
$= \prod_{n=1}^{N} P(\Psi_n, t_n \mid \pi_k)$	$\frac{d}{dx} \left(-x \right) \pi k = N \pi k = N = N = \frac{N k}{N}$
= 1	
In like = \frac{\sqrt{k}}{\sqrt{k}} tnk [lnp(\varphi_n C_F)+lntik]	
2) argmax lin like s.t. \(\frac{k}{k} = 1 \) Tik =	
Using Lagrange multiplier method.	
Γ $L(\pi_k, \lambda) = lnlike + \lambda \left(\sum_{k=1}^{k} \pi_k - 1\right)$	
$\int \frac{9 \mu k}{9 \Gamma(\mu^{k} y)} = \int \frac{9 \mu}{9 \Gamma(\mu^{k} y)} = 0$	
5 4 UK	

Convex Hull 6 Multi-Class There are several possible ways in which to generalize the concept of linear discriminant functions from two classes to c classes. One possibility would be to use (c-1) linear discriminant functions, such that $y_k(\mathbf{x}) > 0$ for inputs \mathbf{x} in class C_k and $y_k(\mathbf{x}) < 0$ for inputs not in class C_k . By drawing a simple example in two dimensions for c=3, show that this approach can lead to regions of x-space for which the classification is ambiguous. Another approach would be to use one discriminant function $y_{jk}(\mathbf{x})$ for each possible pair of classes C_i and C_i , such that $y_{jk}(\mathbf{x}) > 0$ for patterns in class C_j and $y_{jk}(\mathbf{x}) < 0$ for patterns in class C_k . For c classes, we would need c(c-1)/2 discriminant functions. Again, by drawing a specific example in two dimensions for c=3, show that this approach can also lead to ambiguous regions. Given a set of data points $\{x^n\}$ we can define the convex hull to be the set of points xgiven by $\mathbf{x} = \sum_{n} \alpha_n \mathbf{x}^n$ where $\alpha_n >= 0$ and $\sum_n \alpha_n = 1$. Consider a second set of points $\{\mathbf{z}^m\}$ and its corresponding convex hull. The two sets of points will be linearly separable if there exists a vector $\hat{\mathbf{w}}$ and a scalar w_0 such that $\hat{\mathbf{w}}^T + w_0 > 0$ for all \mathbf{x}^n , and $\hat{\mathbf{w}}^T \mathbf{z}^m + w_0 < 0$ for all \mathbf{z}^m . Show that, if their convex hulls intersect, the two sets of points cannot be linearly separable, and conversely that, if they are linearly separable, their convex hulls intersection. dimensions for c = 3, show that this approach can also lead to ambiguous regions. hulls do not intersect.