Computer Vision

5. Edge and Corner

I-Chen Lin

College of Computer Science
National Yang Ming Chiao Tung University

Objective

- ► Finding conspicuous low-level features (discontinuities) in images.
 - Edges
 - Corners

Textbook:

• David A. Forsyth and Jean Ponce, Computer Vision: A Modern Approach, Prentice Hall, New Jersey, (1st Ed. 2003, 2nd Ed. 2012).

Some contents are from the reference lecture notes:

- Prof. D. Lowe, Computer Vision, UBC, CA.
- D. Frolova, D. Simakov, Slides of "Matching with Invariant Features".
- Prof. D.A. Forsyth, Computer Vision, UIUC.
- Prof. J. Rehg, Computer Vision, Georgia Inst. of Tech.
- Prof. T. Darrell, Computer Vision and Applications, MIT.

What causes an edge?

Depth discontinuity

- Surface orientation discontinuity
- Reflectance discontinuity (i.e., change in surface material properties)

Illumination discontinuity (e.g., shadow)

Gradient

- The gradient of an image:
 - E.g.

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

$$\nabla f = \left[0, \frac{\partial f}{\partial y} \right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0 \right] \qquad \nabla f = \left[0, \frac{\partial f}{\partial y} \right] \qquad \nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

- The gradient direction:
- The gradient magnitude:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Edge and differentiation

- Edge: a location with high gradient (derivative).
- ▶ Need smoothing to reduce noise prior to taking derivative.
- Two derivatives, in x and y direction for an image.
- We can use derivative of Gaussian filters
 - because differentiation is convolution, and convolution is associative:
 D * (G * I) = (D * G) * I

Derivative of Gaussian

$$\frac{\partial}{\partial x}G_{\sigma}$$

$$\frac{\partial}{\partial y}G_{\sigma}$$

Sobel Edge Detection

$$\mathbf{G}_{x} = \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} * \mathbf{A} \quad \text{and} \quad \mathbf{G}_{y} = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} * \mathbf{A}$$

Gradient magnitude and smoothing

- Increase smoothing:
 - Eliminates noise edges.
 - Makes edges smoother and thicker.
 - Removes fine detail

Canny edge detection

- Noise removal (Gaussian filtering)
- Gradients of the image
- Non-maximum suppression
 - Check whether a pixel is a local maximum along gradient direction

Yellow for 0 degrees; green for 45 degrees; blue for 90 degrees; red for 135 degrees

After non-maximum suppression

Non-maximum suppression

▶ Select the single maximum point across the width of an edge.

Non-maximum suppression

At q, the value must be larger than values interpolated at p or r.

Examples non-maximum suppression

courtesy of G. Loy

Original image

Gradient magnitude

Non-maxima suppressed

Examples non-maximum suppression

Linking to the next edge point

- Assume the marked point is an edge point.
- ► Take the normal to the gradient at that point and use this to predict continuation points (either r or s).

Edge hysteresis

Hysteresis: A lag or momentum factor.

- ▶ Idea: Maintain two thresholds k_{high} and k_{low}
- Use k_{high} to find strong edges to start edge chain
- Use klow to find weak edges which continue edge chain
- Typical ratio of thresholds is roughly

$$k_{high} / k_{low} = 2$$

Steps of Canny edge detection

Apply derivative of Gaussian

- Non-maximum suppression
 - ► Thin multi-pixel wide "ridges" down to single pixel width
- Linking and thresholding
 - Low, high edge-strength thresholds
 - Accept all edges over low threshold that are connected to edge over high threshold

Example: Canny edge detection

Original image

gap is gone

Strong + connected weak edges

Strong edges only

Weak edges

courtesy of G. Loy

courtesy of G. Lo.

Conspicuous location

- First of all, we would like to find "unique" or "conspicuous" positions.
- ► For a small searching window, which one is an "unique" place?

Conspicuous location

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Finding corners

- Edge detectors perform poorly at corners.
- Corners provide repeatable points for matching, so are worth detecting.

- ► Idea:
 - Exactly at a corner, gradient is ill defined.
 - However, in the region around a corner, gradient has two or more different values.

Corner detection (Harris)

 \triangleright Consider the matrix for a small square around (x,y)

$$I_x = \frac{\partial I}{\partial x} \qquad I_y = \frac{\partial I}{\partial y}$$

$$A = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$$

$$A = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} \approx \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

- ► The simplest case
 - ▶ If $\lambda_1 = 0$ and $\lambda_2 = 0$ then there are no features of interest at this pixel (x,y).
 - ▶ If $\lambda_1 = 0$ and λ_2 is some large positive values, then an edge is found.
 - If λ_1 and λ_2 are both large, distinct positive values, then a corner is found.

Corner detection (Harris)

More general cases:

$$A = Rot^{-1} \begin{vmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{vmatrix} Rot$$

where Rot, Rot-1 can be regarded as rotation matrices.

- ▶ Remind "Eigenvalues" or "Singular Value Decomposition (SVD)".
- Process steps
 - Apply Gaussian filter.
 - Evaluate magnitudes of the gradients.
 - Construct A.
 - Find λ_1 and λ_2 by evaluation of eigen values or SVD.
 - If they are both big, we have a corner.

Harris detector: mathematics

Explicitly evaluate the eigen values

$$H = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \lambda_{\pm} = \frac{1}{2} \left((a+d) \pm \sqrt{4bc + (a-d)^2} \right)$$

Or measure of corner response R:

$$R = \det M - k \left(\operatorname{trace} M \right)^{2}$$
$$\det M = \lambda_{1} \lambda_{2}$$
$$\operatorname{trace} M = \lambda_{1} + \lambda_{2}$$

(k - empirical constant, k = 0.04-0.06)

Harris detector: mathematics

 λ_2

- R depends only on eigenvalues of M
- *R* is large for a corner
- *R* is negative with large magnitude for an edge
- |R| is small for a flat region

Compute corner response

Find points with large corner response (>threshold)

Take only the points of local maxima

Harris corners

Originally developed as features for motion tracking

Greatly reduces amount of computation compared to tracking every pixel

Translation and rotation invariant (but not scale invariant)

Matching with corner and features

Figures from Alexei Efros, Computational Photography