

E83-10414

INSTITUTE OF FOOD AND AGRICULTURAL SCIENCES UNIVERSITY OF FLORIDA

APPLICATION OF SATELLITE FROST
FORECAST TECHNOLOGY TO OTHER PARTS OF
THE UNITED STATES
PHASE II

(E83-10414) APPLICATION OF SATELLITE FROST FORECAST TECHNOLOGY TO OTHER PARTS OF THE UNITED STATES Final Report (Florida Univ.) 321 p HC A14/MF A01 CSCL 020

N83-35448 THRU N83-35456 Unclas 00414

G3/43

APPLICATION OF SATELLITE FROST FORECAST TECHNOLOGY TO OTHER PARTS OF THE UNITED STATES PHASE II

FINAL REPORT

PRESENTED TO:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
SI-PRO-33/WILLIAM R. HARRIS
JOHN F. KENNEDY SPACE CENTER
FLORIDA 32899

SUBMITTED BY:

CLIMATOLOGY LABORATORY, FRUIT CROPS DEPT.,
IFAS/UF, 2121 HS/PP
GAINESVILLE, FL. 32611

CO-PRINCIPAL INVESTIGATORS:

J. DAVID MARTSOLF

ELLEN CHEN

CONTRACT NO. NAS10-9876
NOVEMBER, 1981
(revised)

STANDARD TITLE PAGE						
1. Report No.	2. Government Accessi	on No. 3	. Recipient's Catalog N	10.		
CR-166827						
4. Title and Subtitle		1 1	5. Report Date			
Application of Satellit Technology to Other Par		—	November 1981			
Phase II Final Report	its of the unite	1	. Performing Organizati PT—SPD	ion Code		
7. Author(s) J. David Martsol KSC Monitor: R.		en, 8	. Performing Organizati	on Report No.		
9. Performing Organization Name and Addi Climatology Laboratory,			0. Work Unit No.			
IFAS/UF, 2121 HS/PP Gainesville, FL 32611		·	1. Contract or Grant No. NAS10-9876			
		. 1	13. Type of Report and Period Covered			
12. Sponsoring Agency Name and Address						
National Aeronautics &	<u>-</u>	ation	Final			
John F. Kennedy Space C	•		4. Sponsoring Agency Co	ode		
Kennedy Space Center, F	ь 32099					
15. Abstract						
This is the final report of the second year's activities of a two-year effort to ascertain the application of satellite freeze forecast technology. The effort is periodically referred to as CCM II (Cold Climate Mapping Phase II). Input to this report was provided by Pennsylvania State University (C. T. Morrow) and Michigan State University (Dr. Stuart H. Gage and Dr. Jon F. Bartholic). Thermal infrared data is taken from the GOES satellite over a period of several hours and color enhanced by computer according to temperature. The varying temperatures can then be used to assist in frost forecasting.						
16. Key Words						
Remote Sensing, GOES, Freeze Forecasting						
17. Bibliographic Control		18. Distribution				
STAR Category 43		Unlimited Di	istribution			
19. Security Classif.(of this report)	20. Security Classif.(o	f this page)	21. No. of Pages	22. Price		
Unclassified	Unclassified					

TABLE OF CONTENTS

CCM II

Intro	oduct:	ion	• • • • • • • • • • • • • • • • • • • •	• •	••	•••	• •	. 1
Task	Repo	rts	• • • • • • • • • • • • • • • • • • • •			•••	,	.5
	Task		P-model P-model exportability					
		b. (c.)	Correlation with ground truth Environmental fit	••	••	• • •	• • •	8 8
			Key station locations					
	Task	2 - 3	S-model	••	• •	• • •	• •	12
	Task	á	Limitations			• • •		15
	Task	1) 1 2) 1 3) 2 4) 1	Recommendations	•••	•••	• • •		.19 .22 .22 .25
Appen	dices	5						
	1.	PSU Ha.	Report Report Appendices I - IX	C.	Γ.	Mc) r r	ow
	2.	MSU I a. b.	Report Test of P-model Preliminary Report					
	3.	Repri	int of traverse articleJ.	D.	Ma	ırt	.s o	lf
	4.		manuscriptJ.					
	5. 6.		n manuscriptJ.F. Gerber, J. er of O6 October 1981					
	٥.	Te cce	at of on occoper languages.	· ·	τ.	LIC	1.5	U₩

INTRODUCTION

This is the final report of the second year of activity of a two-year effort to ascertain the application of satellite freeze forecast technology to other parts of the U.S. This effort has been periodically referred to as CCM II (Cold Climate Mapping Phase II); this acronym appears in the report occasionally.

NAS10-9611. The final report under that contract is dated October 1980 with the final revision dated March 1981. Although the second year of activity was clearly a continuation of the first year's work (notice "Phase II" used in title), a new contract number, NAS10-9876, was designated and a lapse in the funding occurred from 05/03/80 to 07/10/80. That funding lapse included the frost period in both Michigan and Pennsylvania. The lapse left Dr. Ellen Chen, a very productive post doctorate on the first year of the contract, to be funded by other contracts during the lapse, with the result that her full attention was never returned to this effort. Communications to get Michigan State University and Pennsylvania State University back on target were time consuming and met with varied success during the period of this contract.

The Phase II contract (NAS10-9876) includes a three month period of "forebearance". This period was granted in response to a request for a no-cost extension to aid in the development of the final report

to include final reports from the two subcontractors (copy of letter dated March 26, 1981 from William R. Harris is included in the 3rd Quarterly report as Appendix 1). This extension changed the end date of the contract from July 9, 1981 to October 9, 1981.

This report covers the period from July 10, 1980 through October 9, 1981. In the case of Pennsylvania, the most productive data collection period was during the lapse in funding between the two phases of the contract, i.e. the spring of 1980. Three quarterly progress reports have been submitted (see Table 1).

TABLE 1. PREVIOUS REPORTS

Quarterly Report	<u>Dated</u>
First	December, 1980
Second	January, 1981
Third	April, 1981

TABLE 2. List of CCM II Subcontractors Contract NAS10-9876

Shorthand designation	Institution	Investigator	Location
PSU	The Pennsylvania State University	Dr. C. Terry Morrow	University Park, PA
MSU	Michigan State University	Dr. Stuart Gage (Dr. Jon F. Bartholic)	E. Lansing, MI

As was the case with Phase I (NASA Contract NAS10-9611), the same two subcontractors (see Table 2) are involved in Phase II (NASA Contract NAS10-9876).

Throughout the report the subcontractor's contributions are referred to as the PSU and the MSU Reports, respectively. The PSU Report may be found in Appendix 1. All references to Appendices with Roman numerals that appear in this report are referring to appendices of the PSU Report and are all contained within Appendix 1. The next 4 paragraphs appear to contain exceptions to this rule but notice that the Roman numerals refer to appendices of previous reports to NASA. Reference to the table of contents will aid in clearing up any confusion that may result from this effort to retain the contributions from the subcontractors in as near to original format as possible. The MSU Report makes up Appendix 2b of this report.

A very elaborate proposal was submitted by Dr. Stuart H. Gage of MSU and is contained in the First Quarterly Report as Appendix I of that report. While it does not directly address the Tasks as outlined in the Statement of Work, it places the CCM II effort very convincingly in the midst of the development of a broad based remote sensing capability that is under development at MSU. MSU's contribution to the second Quarterly report was late (arrived January 20, 1981, a few days after our Second Quarterly Report had left for KSC) and was retained for the Third Quarterly Report, becoming Appendix V of that Report. After a series of phone calls and an attempt by Dr.

John Gerber to aid in the procurement of a draft of the final report while he visited MSU in September, the draft was received on October 7, 1981. This was in time to include the MSU draft in the draft of the CCM II final report (the latter report was in the process of being mailed when the MSU draft arrived). However, there were very few cross references in the CCM II final draft that concerned the MSU report. Most of these have been added since the MSU draft arrived in October. Some modifications to that MSU draft are still expected at the time of refinement of the CCM II report, i.e. mid-November, 1981. It might be added at this point that it is our understanding that both Dr. Jon F. Bartholic and Dr. Stuart Gage worked over a weekend to get the draft to us as soon as it arrived. It is included in this report as Appendix 2b.

A phone call from MSU on October 1, 1981, passed (verbally) the data that MSU had collected to test the P-model. Mr. Robert Dillon, a programmer I, received that data and prepared it for input into the P-model evaluation programs. The results of those runs make up Appendix 2a.

The proposal from the PSU subcontractor arrived too late to include in the First Quarterly Report even though that report was held for some time in anticipation of receiving that PSU proposal. Consequently, it became Appendix I of the Second Quarterly (Mid-term) Report. The PSU proposal followed the tasks in the Statement of Work closely and disclosed that data collected on 5 frost nights

during the Spring of 1980 would be used to test P-model. Very productive communications resulted in the delivery of that data for P-model runs at UF/IFAS and the communication of the results back to PSU for evaluation. These results are covered in detail in the PSU Report that makes up Appendix 1 of this report. Note that there are nine (9) appendices to the PSU Report which are numbered in Roman numerals.

The following portion of this report entitled TASKS REPORTS is written in a format in which the individual task is first declared and then a discussion of progress toward that task follows. In the case of Task I there are four parts of the task denoted by a, b, c, and d.

TASK REPORTS

Task 1: From data bases collected, make sample runs of the P-model and/or concept and present observations/conclusions as to:

a. Can the P-model and/or concept work in that particular geographic setting;

Data from Michigan State University documenting the frost of May 6-7, 1981 were passed to IFAS/Climatology by telephone (verbally) on October 1, 1981. Mr. Robert Dillon copied the data and prepared

it for input to the P-model. The results of that analysis make up Appendix 2a.

The average error made by P-model in 55 predictions made using the MSU data was -0.024°F with a standard deviation of 2.374 degrees. The worst prediction was a 6-hour forecast made at midnight that predicted a 6AM temperature 6.1°F too low. The large positive errors were all made in the 9PM forecast for the remainder of the night, i.e up to 10 hours ahead. The 10-hour forecast for 6AM was slightly over 3 deg. F too high. The P-model's performance was judged quite acceptable.

Sample runs of the P-model were made on data from Pennsylvania (see Appendix VI of PSU report for detail). Numerous phone conversations, magnetic tape exchanges, and visits by the investigators (see Table 3) improved computer to computer communications between Dr. C.T. Morrow's Lab at PSU and the Climatology Lab at UF/Gainesville to the extent that such analyses can be quite effective in the future. The visits helped clarify communication problems and resulted in the depth of interpretation that characterizes the remainder of this report (see also Appendix 6).

A copy of PSU's proposal makes up PSU Appendix I, i.e. Appendix 1, Appendix I. While it suggests that 5 nights of data are available for the Spring of 1980 and more data would be collected for the Spring of 1981. The data was first received at Gainesville in the format indicated in Appendix II. While such graphs of temperature

Table 3. Exchange visits by CCM II investigators.

<u>Visitor</u>	Location	<u>Dates</u> (1981)
J.D. Martsolf	Pennsylvania State Univ. Univ. Park, PA. Ag. Engr. Lab, Environ. Measurements	August 26-27
C.T. Morrow	University of Florida Gainesville, FL Climatology Lab, HS-PP	September 28-29

data versus time served in the selection of particular nights that qualified as typical frost nights, they did not provide input appropriate to the P-model. Consequently, a procedure to go back to the original magnetic tape records and transfer appropriate records to a tape that was later sent from Pennsylvania to Florida was developed (see PSU Appendix III). The testing data base was reduced to the first 4 nights of the 1980 data (see page 9 of PSU report, Appendix 1). Dew point temperatures were located in a hand-written log and called down from Pennsylvania to Florida (see PSU Appendix IV) and incorporated in the P-model input files (shown in PSU Appendix V). The results of the P-model input runs of the Pennsylvania data comprise PSU Appendix VI. Dr. Morrow discusses these results on page 10 through 13 of the PSU report (Appendix 1). It is possible to add to his discussion that he was surprised that the model worked as well as it did for the particular site that was The main criteria for choosing the site was that it was available (a rather arbitrary choice).

Conclusion: Comparisons of the PSU P-model runs with those on pages 36 through 42 of the SFFS V Mid-term report, i.e. runs on Florida Key Station data, with those of Michigan (Appendices 2, a & b) and with those of Pennsylvania (Appendix 4) indicate that the P-model seems to do as well in mountainous terrain as it does on the gentle rolling to flat Florida or Michigan terrain (c.f. pages 11 and 15 of Appendix 4). The P-model concept may be considered effectively independent of geographic setting. However, if P-model were determined by future analyses to show bias it is conceivable that such bias could be corrected by some minor modification to P-model. In other words, these studies revealed no reason to feel that the P-model will be a problem in the exportation of the SFFS concept.

b. Degree of correlation with ground truth data;

Table 3 of Appendix 2b summarizes the error analysis of the MSU data, i.e. the difference between the P-model predictions and the observations. There was a mean error by P-model of -0.024°F in 55 comparisons. This is very acceptable.

Table 6.3 of the PSU Appendix VI summarizes the error analysis performed on the PSU data. There was a mean error by P-model in 264 comparisons of only 0.6°F (see Table 6.1, PSU Appendix VI) which is quite acceptable (page 11, PSU report, Appendix 1).

c. Appropriateness to agricultural/meteorological environment;

Pages 8 and 9 of the MSU Report (Appendix 2b) describes 5 reasons that the P-model seems appropriate to the Michigan environment. These point primarily to the similarity in the expected energy transport mechanisms, i.e. both radiative and convective, during freezes in both Florida and Michigan.

Page 13 of the PSU Report (Appendix 1) initiates a discussion by Dr. C.T. Morrow of the appropriateness of the P-model to the agricultural needs of Pennsylvania and by inference to the fruit growing areas of Northwestern U.S. He concludes that the model has quite a bit of applicability (see pages 15 and 16 of PSU Report, Appendix 1; and also Appendix 6).

It seems to this author (who feels somewhat qualified to speak to this question by virtue of 13 years of experience in frost protection research in Pennsylvania) that two characteristics of fruit production in temperature zones have permitted growers to register less concern about frost or cold damage in comparison to those who grow tropical plants in sub-tropical climates, e.g. citrus. One of these is that the production areas in the temperate zones are generally more scattered over the total area and consequently when frost damage occurs its localized effects define a minority of affected growers. Secondly, only the crop is in jeopardy; the trees

live on to potentially bear another year. However, while producer pressures may not be as high in deciduous fruit areas for frost warning services the total extent of the damage is large. The consumer pays for the losses in higher fruit prices and some of the transportation and marketing mechanisms suffer greater fluctuations in their volume, leading to operations inefficiencies and finance problems.

Regarding the appropriateness of the P-model to the meteorological environment there are no apparent reasons that the large scale weather is significantly different from that in Florida, i.e. the frosts occur primarily in the presence of a large high pressure dome. On the micrometeorological scale there seems to be some reason for concern because the P-model is a one-dimensional model, i.e. the vertical components of the energy budget are primarily involved. Cold air drainage, horizontal flow of heat, would seem to be ignored except for the wind speed indicators that have the opportunity of tipping off the model that down slope flow is occurring. resulting mixing is likely to forestall as rapid a temperature drop as would otherwise occur. This mechanism is apparently handled quite effectively because the model seems to have predicted the temperatures at the Rock Springs site in Pennsylvania rather well; That site is on the West slope of Mt. Tussey, i.e. very much in a cold air drainage pattern.

d. If feasible, discuss parameters important to the location of key weather stations, i.e. numbers, settings, etc.

The MSU Report (Appendix 2b) does not directly address this question but contains a statement on Page 9 that indicates there has been a persistence of temperature differences between stations in the MOSS product analysis. They interpreted this as an indication that there are good correlations between key (weather forecasting sites) locations and agricultural weather measuring locations. While it is not explicit in Appendix 2b it should be noted that Michigan already benefits from one of the largest and most effective network of agricultural weather stations in the nation.

Dr. C.T. Morrow discusses a computerized dissemination network that PSU is planning (see pages 16-18, PSU Report, Appendix 1). There are possibilities that the communication network may include automatic weather stations to support integrated pest management programs as well as to facilitate a warning system similar to the Satellite Frost Forecasting System. The Meteorology Department of PSU has had an automated weather station in operation for some time on top of the 5-story building in which their department is housed. There have been negotiations underway to move that station off the building roof and onto agricultural lands of the Agricultural Experiment Station that are likely to remain in similar service for

years to come in order to make the observations more characteristic of the surrounding countryside. This has immediate implications in the feasibility of the acquisition of ground data for the Nittany Valley.

The National Weather Service has provided frost warning services from a station in Kearneysville, West Virginia, but under the manpower reductions this position has remained vacant in recent years. The previous weather service provides some tradition around which an automated station might be located since the University of West Virginia operates a branch station of their Agricultural Experiment The branch station at Biglerville is another Station there. possibility. Several possibilities exist to represent the concentration of fruit production in what is referred to as the Cumberland-Shenandoah production region. The region is well represented by a meeting of researchers and extension specialists serving the fruit industry in a group called the Cumberland- Shanandoah Fruit Worker's Conference. There is a good possibility that this group would play a very active part in the placement of automated stations in the event of the implementation of a SFFS-like program.

Task 2: Give observations/conclusions as to the applicability of the S-model and/or concept from the data base at the two areas. This portion of the study must be general as this subject cannot be

covered comprehensively without substantial work in statistical evaluation of temperature correlations which is beyond the scope of this contract.

Recent developments with the S-model indicate that there are good possibilities that the coefficients for the model may be produced by the minicomputer system supporting a SFFS-like system. This certainly could be the case for areas like Pennsylvania and Michigan. However, this possibility was not sufficiently apparent at the time that the subcontracts were drawn up to attempt to test the concept through the subcontracts.

The S-model represents the possibility of developing a SFFS that can recall the distibution of temperatures during previous freezes in a particular area and bring that cold climate climatology to bear upon present forecasts. Since compouters have excellent memories, the concept of recalling such information from memory and influencing the forecasts with it is good climatology and very likely will be attractive to any who adapt SFFS to their locations. However, the S-model in its current configuration fails to live up to these expectations. It may not be a trivial matter to bring past freeze information to bear readily upon current freeze events until the navigational problems with the satellite data from one year to another are resolved. That problem is defined well enough to declare it nontrivial. This line of thought is discussed in more detail under Task 5.

Certainly, there will be pressure on SFFS developers and adapters to lengthen the period over which the system can be expected to successfully or usefully forecast. The possibility of using the excursion of temperatures above a common base during the day previous to the freeze as convincingly related to the amount that temperatures may be expected to drop below that base on the subsequent clear night gives hope of lengthening the forecast period. Drs. Hartwell Allen and Ellen Chen have been perfecting a method of determining the heat capacitance of soils by observing the temperature excursions through clear days using day and night IR image sequences after the The moisture conditions in a particular locality have been found by Dr. Ellen Chen to be clearly involved in the amount that one may expect that locality to cool under radiant frost conditions. It is likely that the development of this heat capacitance mapping technology will spin-off into the SFFS development with the possibility of extending the points in time from whence the system will forecast into the previous day, i.e. develop forecasting periods approaching 20 hours, double the current capability. Without the present limitation on the range of temperatures that can be acquired via 1200 Baud link with Suitland, Maryland has prevented the acquisition of daytime IR maps in sequence with nighttime IR maps due to over or under ranging problems at NOAA/NWS. This program is discussed in more detail under Task 4.

Pages 10 and 11 of the MSU Report (Appendix 2b) describe in

some detail the conviction that similar temperature patterns persist from one frost night to the next indicating a stong dependence on surface vegetation and soil characteristics. Figures 1 through 4 of Appendix 2b were submitted as evidence of such persistence.

Task 3: Identify and discuss any peculiarities of the Michigan and Pennsylvania sites which might limit conclusions from being applied elsewhere in the United States as a general case.

a. Michigan: A peculiarity of Michigan under frost conditions is that the wind speed seems to be less likely to go to zero during the event, making wind machines and other frost protection methodology difficult to adopt without some qualification. This peculiarity in the case of a SFFS-like system works in favor of the system when used in Michigan. The more the wind tends to mix up the air near the surface the more likely the pixel temperatures determined by the satellite are to very closely represent the temperature of the whole area. If other areas of the Midwest were thought to have greatly different frost conditions than Michigan has there would be a problem in extrapolating the experience from Michigan to Ohio, Indiana, Illinois, Kentucky, Missouri, Wisconsin, Minnesota, Iowa, Nebraska, etc. However, all of this area of the United States seems to have high pressure domes that continue to move with the westerlies across the country during the frost season (both spring and fall)

so that the periods of dead calm under the center of the high are relatively short. The further south one goes, the more likely the high pressure domes are to become stalled between the westerlies and easterlies, resulting in longer periods of cold, clear and calm weather.

Since the paragraphs above were developed the MSU Report (Appendix 2b) arrived with an explicit statement concerning Task III (see pages 11 and 12 of that report). It declares the Florida and Michigan cases to be very similar but an earlier statement (item 3 on page 8) indicates that Ceel Van Den Brink had interpreted in earlier work that approximately 70% of Michigan's frosts were radiational and 30% were advective. Since this ratio would be more like 90:10 in Florida the author of this report has let the following conclusion stand.

Conclusion: The Michigan case provides a good example for the remainder of the Midwest. The Florida experience is more likely to be a good example for the southern U.S.

- b. Pennsylvania: The PSU site is on the slope of one of the narrow ridges that separates the broad fertile valleys of the fruit growing portion of the Appalachian Mountains. The diagram that makes up Figure 2 in Appendix 3 demonstrates two points:
 - the variations in temperature under frost conditions
 in mountain-valley topography are very similar from

one frost to another.

2) these variations closely follow the topography and have distance scale very similar to the intervalley topographical features.

Figure 1 relates this situation to a typical pixel from GOES, i.e. approximately 25 square miles in area. If the pixel location is known, i.e. the pixel is oriented relative to the geography of the covered area there is an excellent possibility that the relationship between the pixel temperature and that of particular sites covered by the pixel will become known and used with reliability.

Conclusion: small scale (relative to pixel size) variations in topography and hence in temperature distribution may not pose a serious limitation to the usefulness of a SFFS-like system in mountainous terrain. However, in order for the products to be convincing it is likely that a period of time is necessary during which the product users become calibrated or convincing research must be accomplished for each area that relates individual site temperatures to pixel temperatures. Finally, it is assumed in this discussion that it will become possible in these systems to orient the pixels with respect to the location they actually cover.

Task 4: Give recommendations as to whether the concept should

Fig. 1. Sketch of pixel with dimensions larger than elements of temperature fluctuation implying that if the pixel remains constant relative to the topography ($\Delta Y = \Delta X = 0$) and the temperature distribution remains constant relative to the topography for post events (a well documented horticultural observation) then given locations will have predictable ΔT with respect to the pixel temperature (Tp).

GOES STRETCHED VISSR DATA DOWNLINK

Figure 2. Diagram of the GOES Satelite downlink system that has been proposed to capture and sectorize the satellite data necessary to operate SFFS in Florida. This system is expected to become operational about December 1, 1981, in Gainesville, Florida, near the IFAS Climatology Lab in the Fruit Crops Department.

be pursued further and if so, what specific studies should be performed.

On pages 20 and 21 of the PSU Report (Appendix 1), Dr. Morrow makes six recommendations regarding the future of this type of study. These might be summarized to have indicated that while there is additional work that is identifiable, the concept is useful and is likely to be pursued (see Appendix 6). Communications with Dr. Morrow along these lines permits this author to indicate that a joint effort between the Pennsylvania State University and some private company is the likely future developer of this sort of service in the Northeastern U.S.

The Department of Meteorology of INPE, Brazil, is down linking GOES-East IR data to document the location and intensity of freezing temperatures during very cold nights in the coffee and citrus producing areas of Brazil. Mr. Michael Allan Fortune made contact with IFAS/Climatology when he was visiting NOAA/NESS in Suitland, MD on Oct. 5, 1981, to describe the Brazilian acquisition system and request information about SFFS. At our suggestion he also made contact with NASA/KSC and NASA/HQ (Mr. James M. Dodge, in the latter case). We have exchanged some information and it is apparent that both parties would probably benefit from closer communications concerning the nature of the efforts.

Appendix 2b contains MSU's recommendations for additional work in the following areas: P-model performance when Michigan soils

are frozen in the early Spring; collection of GOES data from NOAA/NESS on a real time basis; correlation of temperature patterns with general surface conditions during freeze events. On page 12 of Appendix 2b indicates that, "Clearly, the conceptual theme of using GOES data to aid in characterizing the thermal regimes in a state both in non-real and real time, need to be further prusued. The data proves to be very accurate, particularly during freeze events and correlations of temperarture patterns with general surface conditions would indicate more information could be obtained."

Appendices 4 and 5 contain manuscripts that describe the SFFS system as reported to a group of scientists having responsibilities for the communication of agricultural weather data and to an international symposium on citriculture in Japan. Both manuscripts describe SFFS as a rapidly developing methodology that has potential application in horticulture when the industry experiences frost hazard. Most horticultural industries are climatically temperate or subtropical and consequently experience frost hazards.

The following are specific studies that it would seem from our experience to be necessary to the utilization of a SFFS-like thermal map display and forecasting system:

1) Navigation of the Satellite Data

The user of the information in real-time must know where his fruit is located in relation to the thermal map or the value of the information is greatly reduced in his decision-making process. While survey results published in NAS10-8920 Reports indicate that Florida growers can find their location within a couple of pixels on thermal maps of the entire peninsula, the growers are quick to expect geographic references that have some reliability. It should be noted at this point that if the information is to be valuable to the real-time user it must be available to him within a matter of minutes after it becomes available from the satellite.

The use of the data in the assessment of damage and subsequent planning of transportation and marketing scenarios is a near real-time operation and seems even more dependent on good geographical orientation of the data in order to couple the data with densities of crops for which the critical temperatures are known. The Jan. 13, 1981 freeze in Florida demonstrated this use of SFFS products convincingly. At this point the need for some standardized pixel location becomes apparent. The data bases upon which assessment programs will depend will undoubtedly be fixed in space and require that some interpolation of the satellite data be made to line up the temperature fields directly on top of the areas for which the crop densities have been determined.

Finally, the long-term user of the temperatures for climatological studies which we have been terming, "cold climate mapping," or CCM,

must be able to relate thermal maps one with another over extended periods of time, i.e. years. Consequently, not only do the navigational studies need to deal with orientation on the face of the globe but with the software that seems necessary to develop time series of data that have acceptable space orientation. It is becoming apparent that this includes stretching and rotation as well as the simple x and y offsets of the rectangular coordinate system.

The navigation or orientation of the satellite data was indicated under Task 2 to be critical to the successful operation of S-model as it currently exists. But fairly sophisticated tools to study this problem are becoming available in the SFFS software. Consequently, there is hope that the goal of developing a system that will have a recollection of past freezes and be able to bring such information not only into display to remind the forecaster of the scenario but also to incorporate the patterns into the forecasted product through the S-model is realistic. The effort would seem to be dependent upon the ability of the system to stack the pixels in time over a particular geographical location. The changes in temperatures of these pixels (even during the previous day) become the principal ingredient upon which the model forms its predicted product. memory of past events comes into play by the development of software that can relate the current happening with a similar one of the past, either automatically or with aid from the user. In its present configuration, the potential power of SFFS is far from its zenith.

This is an emphatic recommendation that the effort with S-model development continue.

2) The Dissemination of SFFS products

This is viewed as a continual process that is necessary to achieve the maximum value from the observed and forecasted products. We appear to be on the threshold of an era of the home computer controlled communication device that brings in all manner of information from which the user can make decisions in finance, purchasing, services such as transportation, lodging, etc. Opportunities to interface with these various private, quasi-public and public service communication networks should be investigated and capitalized upon where appropriate. Funding from the USDA/SEA-Extension has been requested and some obtained (Agreement 12-05-300-535, Amendment 1) for this purpose. Further efforts along this line are anticipated by UF/IFAS. These include the pursuit of contacts with television firms. So far there have been two promising contacts in this latter area, one from Ft. Myers, and the second from St. Petersburg.

3) Satellite Data Acquisition

Currently, the satellite freeze forecast system (SFFS) is

dependent on a 1200 Baud link to a NOAA/NWS queue in Suitland, Maryland, that in turn is dependent upon the successful operation of at least two batch programming operations to transfer the data from the antenna to a data base from which it is sectorized for the Florida queue. While this experimental link worked rather well in the 79-80 frost season, it was quite unsatisfactory during the 80-81 season and little hope has been provided by NOAA/NESS, or for that matter NOAA/NWS, that much better performance can be expected from an experimental link on a system that has as much operational pressure as theirs. The MSU Report (Appendix 2b) indicates on Page 7 that the method of obtaining GOES data from NESS in Suitland was no longer operative and that they should use the historical archiving system at Wisconsin. MSU on pages 13 and 14 of Appendix 2b describes difficulties and frustration in acquiring satellite data due to a rapid change in NESS policy. IFAS attempts to acquire the data on MSU's behalf were disrupted by the declaration of center of sector being within the NOAA/NESS program at Suitland and not under IFAS control.

The direct downlink described in Figure 2 has been proposed and largely funded by IFAS to be operational during the 81-82 season. Since there is no redundancy in the system, it will serve simply as a back-up to the current method of satellite data acquisition described earlier in the paragraph.

Initially, SFFS acquired satellite data from the GOES-TAP link,

an analog linkage through the NOAA/NESS field station in Miami. The analog data was digitized at the SFFS site in Ruskin, Florida, for use in the SFFS display and forecast software. Presently, the digital data in the NOAA/NWS queue in Suitland, Maryland, is in the form of ASCII characters.

The number of characters in the ASCII set is 95, restricting the temperature range over which data can be transmitted to 95/2 or 47.5°C (85.5°F) since the infrared temperature resolution of GOES is 0.5°C. Actually the data is downlinked in binary and the complete range 000 through 255 (256 temperature divisions from -110.2°C to 56.8°C or -165.3°F to 134.3°F). If the data could be passed from NOAA/NWS to SFFS in binary instead of translation to ASCII, it is much more likely that most of the full scale would be available (some combinations become illegal due to control character assignment through the various software interfaces involved). Mr. Art Bedient at NOAA/NWS is presently trying to develop the binary data transfer possibility. IFAS/Climatology is trying to ready SFFS to accept binary data input since the antenna link will transmit in binary format.

SFFS's acquisition of digital satellite data from GOES has been taking place in parallel with an effort connected with with a much more sophisticated (and consequently expensive) acquisition system known as McIDAS. The development of McIDAS has reached a stage in which a private company, Control Data Corporation, appears to be in

the process of producing systems that used to be available in limited numbers through the University of Wisconsin. Both SFFS and, we understand, McIDAS are NASA developments. There may be some mutually beneficial exchanges of information between the developers. Certainly SFFS would benefit from increased reliability in satellite data acquisition and aid in the navigational aspects of the data orientation. Contact has been made with Control Data Corporation (CDC) to identify several possibilities that SFFS may benefit from the presence of a McIDAS in Florida and that CDC may benefit from the incorporation of an additional application, i.e. the frost warning products, into McIDAS.

4) Development of Alternative Forecasting Models

There is every reason to believe that with time the forecasting models, i.e. the P-model and the S-model, will be improved. Certainly there is a need to develop simpler models that will operate on less expensive computer systems, e.g. the APPLE II+ system that is being used by 6 counties currently interfacing to the SFFS/Florida system. One much simplified S-model uses coefficients that simply relate the pixels to changes in key station temperature as weighted by the distance of the pixel being forecasted from the particular key station.

With increased use of the SFFS systems there is little doubt

that various resarch efforts will find it both convenient and advisable to experiment with new models and test their performance against the present models. As the users of the system become more sophisticated in their demands for options on the system, there will be continued pressure to develop additional features as justified by need.

5) SFFS's potential role in rapid communication of weather data

Currently, SFFS products are communicated to users in the following manner: first the NWS forecasters at Ruskin see the products displayed on the color monitor and, in the case of the key station data, on a clip board on their data board. They make their forecasts and communicate them to radio stations and other media by the same procedures that they have used before having SFFS. SFFS may be mentioned in this process but it is more likely that the users of the NWS frost warnings will not be aware that such a tool exists and is influencing the forecasts.

Secondly, SFFS products are beginning to be linked to other display systems from both the Ruskin and the Gainesville components of SFFS. Last winter, APPLE II computers at the Lake County and the Polk County Agriculture Extension Centers received satellite maps from a third APPLE in Gainesville, and built displays for the agents, John Jackson and Tom Oswalt. The impressions they gained

from viewing the thermal maps were relayed through the tapes they played to subscribers of phone links to electronic secretaries. These agents carry out very effective educational programs in frost protection on freeze nights through these verbal telephone links with growers. Largely because of the popularity of the concept, this APPLE II+ network has been increased to six county offices this year. Four are in counties with citrus and two in peaches (see Table 4).

The rate at which the ASCII character string can be communicated from queues in the Hewlett-Packard minicomputers that service them has been increased this year to 1200 Baud. It requires about 3 minutes to transmit a thermal map to a user by the new network.

In addition to serving the new APPLE II+ network from Ruskin the HP mini is expected to acquire the dew point information it needs to make its P-model forecast through a port in the NWS/AFOS mainframe. Once this link is established it seems possible and quite likely that other weather data available in the AFOS system will become available to SFFS and be transmitted by the APPLE II+ Network to users. Digitized radar maps are likely to be targets for this link as well as many of the text formated weather summaries that are not communicated by AFOS.

Finally, SFFS in Florida, may have additional opportunities to support similar efforts in other states. For example, PSU outlines an attractive possibility in a letter dated October 6, 1981, which

Table 4. Listing of members of the 81-82 APPLE II+ Network using products from SFFS.

Location	Agent	County	Crops	Connection
Homestead	Seymour Goldweber	Dade	Avocados, limes, vege- tables, etc.	Ruskin
Ft. Pierce	Pete Spyke	St. Lucie	Citrus ornamentals	Ruskin
Bartow	Tom Oswalt	Polk	Citrus	Ruskin
Tavares	John Jackson (Francis Ferguson)	Lake & Orange	Citrus	Gainesville
Madison	Jacque Breman	Madison	Peaches	Gainesville
Quitman	Henry Carr	Brooks	Peaches	Gainesville

is attached to this report as Appendix 6. The letter proposes to explore the possibility of submitting a proposal to help fund the goals of the proposal. Another example is the Brazilian Frost Warning System described earlier.

In summary, there are possibilities that the SFFS computer equipment will be called upon in the future to support a much larger

menu of products than simply the SFFS products. To accomplish this there is a need to develop some very flexible software to handle the link between SFFS and AFOS. Secondly, the link into AFOS may permit other areas of the United States to capitalize on SFFS products by picking up summaries or renditions of them off the AFOS schedule. However, this possibility is clearly in the domain of NOAA/NWS and will be explored at their instigation.

D2_

N83 35451

APPENDIX 1

 $\begin{array}{c} P \ S \ U \\ \\ \text{Pennsylvania State University} \end{array}$ Report

Author: Dr. C. Terry Morrow

APPLICATION OF SATELLITE FROST FORECAST TECHNOLOGY TO OTHER PARTS OF THE UNITED STATES PHASE II FINAL REPORT PENNSYLVANIA SUBCONTRACTOR

Submitted to: University of Florida

Institute of Food and Agricultural Science

2121 HS/PF

Gainesville, Florida 32611

Submitted by: C. T. Morrow, Principal Investigator

Department of Agricultural Engineering

The Pennsylvania State University University Park, Pennsylvania 16802

Submitted on: September 21, 1981

Signature

C. T. Morrow, Principal Investigator

Table of Contents

	Page .
Introduction	1
Task 1. Collection of Data for P-Model	2
 A. Description of Test Site i. Topography ii. Physical Description iii. Climatological Features iv. Aerial Photographs and Topography Maps 	2 3 3 4 4
B. Data Collected	8
C. P-Model Analysis	. 10
Task 2. Description of the Major Apple Growing Regions of Pennsylvania	13
Task 3. P-Model Limitation	15
Task 4. Future Projections and Recommendation	16
Cited References	22
Appendices	
Appendix I - Proposal from Penn State to University of	Florida
Appendix II - Frost Data for Pennsylvania Test Site	
Appendix III - Tape Description for Pennsylvania Frost Da	ita
Appendix IV - Dew Point Temperatures for Pennsylvania Te	st Plots
Appendix V - Reduced Data for Pennsylvania Test Plot	
Appendix VI - P-Model Analysis Results	
Appendix VII - Pennsylvania Orchard and Vineyard Survey	
Appendix VIII - Climate of Pennsylvania	
Appendix IX - The Office for Remote Sensing of Earth Res	ources

Introduction

This final report of work performed under a grant for application of satellite frost forecast technology to other parts of the United States, Phase II is being submitted by The Pennsylvania State University to the University of Florida for inclusion in a final report to the National Aeronautics and Space Administration. The work being described in this report is the result of the second year of support from NASA relating to this topic.

The work performed by The Pennsylvania State University is in accordance with a proposal which had been submitted from The Pennsylvania State University to the University of Florida on December 1, 1980. A copy of this proposal is included as Appendix I of this final report. The findings at The Pennsylvania State University will be described in terms of the objectives of that proposal. In order to make the task easier for the University of Florida to prepare a consolidated final report, however, the findings and conclusions will also be reported in terms of tasks which had been requested by NASA for Phase II of this project.

There was a large amount of data collected at The Pennsylvania State
University experimental sites for the purposes of this study. Much of the
raw data has been included as an appendix to this final report and will be
discussed where appropriate. In order to make the most concise conclusions
relative to the objectives of this project isolated portions of that data
have been analyzed in detail. Many findings which will be presented during
the course of this report are results of interpretation of selected data as
opposed to an overall evaluation of all data collected for the project.

This approach was believed to be very desirable in view of the time required for data analyses. There is, however, believed to a sufficient quantity of data fully analyzed to enable some clear indication of the merits of the techniques being evaluated as a part of this contract.

Task 1. Collection of Data for P-Model

A. Description of Test Site

The data which was collected for use in running the freeze prediction model, P-Model, as described by Sutherland (1980) was obtained at the Rock Springs Agricultural Research Center. This facility is the location of the primary agricultural research station for The Pennsylvania State University. For the past several years extensive frost protection research has been conducted at this location. There are two primary orchard facilities available at this station. One of these orchards is equipped for heaters for studying the use of heating as a frost protection technique. An adjacent orchard has the facilities for providing overhead sprinklers as an alternate method of frost protection. The sprinkled orchard was the location of the test instrumentation for obtaining the measurements reported for this study.

i. Topography

The Rock Springs Agricultural Research Center is located about nine miles west of State College, PA, latitude 40°42'23" north, longitude 77°57'20" west. The orchard elevation is 1240 feet above sea level. The site is located at the base of "Gobbler's Knob", a mountain ridge with an average top elevation of 1840 feet (peak 1860 feet). The orchard is 3500 feet NNW of the peak directly downslope.

The general slope of the orchard area is a 1 foot drop in elevation to 50 feet horizontal. The slope of the orchard itself is about 1.5 foot drop to 100 fee horizontal sloping down towards NNW.

ii. Physical Description

The orchard is made up of two blocks, 209 trees per block. Each block consists of 19 rows, 11 tree per row, 10 foot spacing between each tree. The site size is 324×230 feet, each block 324×100 feet with a 30 foot space between the blocks. The rows are oriented NNW-SSE.

A stream 300 feet to West of the orchard provides water for a large and thick stand of conifers. This sets up a year-round wind break for the prevalent west wind. A stand of pines 50 feet to the NE provides a wind break for the Easterly winds. The NNW and SSE directions are exposed. To the SSE between the mountain and the orchard there is a large open field and there are some small orchards with short trees to the NNW.

iii. Climatological Figures

The following table shows average monthly climatological information for the State College area (Spring months):

	March	April	May	June
Dry bulb temp. F	36.6	49.0	59.9	68.1
Max. dry bulb F	46.0	59.0	71.0	79.0
Dew point temp. F	27.0	38.0	48.0	58.0
Precipitation inches	3.43	3.34	4.03	3.34
Wind MPH	10.0	9.0	9.0	6.0
Solar inso- lation BTU's	1090	1404	1685	1914
Solar fraction	.466	.472	.494	.530

iv. Aerial Photographs and Topography Maps

The location of the Rock Springs Agricultural Research Center and the test plot is shown on the enclosed copies of an aerial photograph and a portion of the reproduction of a topological map. As may be seen from the aerial photograph the test site, denoted by an X on the photograph, is located in an open field at the base of a large stand of mountaineous forest. The location is further documented on a portion of the topological map. As may be seen from the enlarged topological map, the test plot is at an elevation of about 12,020 feet above sea level. The terrain to the south of the test

ORIGINAL PAGE IS OF POOR QUALITY

Aerial Photograph Showing Test Plot (Test Plot Denoted by X)

site increases rather rapidly as shown by the enclosed contour line depictions. A full description of the topography in the vicinity of the test site may be obtained from a U.S. geological survey map for the Pine Grove Mills quadrangle in the Pennsylvania series. The map currently available was produced in 1973 and is a part of the 7.5 minute series. Copies of this map are available either through the U.S. geological survey or from the principal investigator at The Pennsylvania State University.

B. Data Collected

Data were collected for use in this project at the previously described Rock Springs Agricultural Research Center site. Much of the analyses which have been made in Phase II of the satellite freeze forecast project are based on data which were collected during the spring of 1980. Data were also obtained for nights in the spring of 1981, but it is believed that the most definitive results are based on the analyses of the 1980 data.

Data which were collected include the following:

- a. Air temperature at 9.3 and 1.5 meters.
- b. Soil temperature at the surface, 10, and 50 centimeters deep.
- c. Wind speed at a height of 1.5 meters.
- d. Dew point temperature.
- e. Net radiation.

The air temperature data were collected by means of mechanically aspirated and shielded type T thermocouples. The soil temperatures were measured with type T thermocouples. The dew point temperature was obtained with a lithium/chloride type of sensing element. The wind speed was evaluated with a climatronics anemometer. All of these data were collected on an Esterline-Angus data logger. The collection was in the form of a printed paper tape and for part of the time the data were also accumulated on a seven track magnetic tape. After appropriate processing and reduction of the data, a nine track ASCII formated tape was produced and sent to the University of Florida for use in the P-Model analysis program.

Many nights of data were available for inclusion in this study. As may be indicated by the plots of frost data given in Appendix II, it was decided that primary concentration should occur for the nights of May 7-8, May 8-9, May 9-10, and May 15-16, 1980. Several additional nights of data are available at the University of Florida or at The Pennsylvania State University if additional questions occur. As may be seen from the plots shown in Appendix II, there is significant variation in the parameters being studied for the afore mentioned nights.

A log describing the various channels and the format of the tape which was provided to the University of Florida is included as Appendix III of this report.

Upon analysis of the data which had been collected it was discovered that on occasion the dew point sensor which had been used was apparently giving erroneous results. It was, therefore,

believed appropriate to use manually recorded dew point temperatures which had been collected for the nights under question. These dew point temperatures were provided to the University of Florida in a format as shown in Appendix IV. The device which was used for the collection of these dew point temperatures was an Ortemp dew point indicator.

A summary of the final resultant data which was used in P-Model predictions by the University of Florida is shown in Appendix V. It will be noted that the radiation data was believed to be insufficient to include in the model at the preliminary stage. Radiation has, therefore, been assumed to be zero for the purposes of P-Model computation.

C. P-Model Analysis

The data which had been supplied to the University of Florida by The Pennsylvania State University in the form of a nine track magnetic tape was used in the analysis of P-Model prediction. The results for this analysis are given in Appendix VI. As may be noted from the data in that appendix, the technique that is used with the P-Model analysis is to make predictions of temperature at a later point in a night using baseline temperatures for a three-hour period. For the present study the initial prediction hours that were used were 1800, 1900, and 2000. This prediction was then increased by one hour in hourly increments until the final predicting time of 0100, 0200, and 0300. The model predicted the temperature for hourly scan times until 0700 the following morning.

A complete summary of the P-Model analysis is given in Appendix VI. It is not very surprising to note that the best predictions normally occur during the time when a minimum mumber of hours occur from the baseline until the predicted point in time. It will be noted that the overall error analysis as also shown in Appendix VI is believed to be quite acceptable. The cumulative P-Model error analysis for all four nights and all prediction times was found to have a mean error of only 0.588. This error was based upon a population count of 264 data points.

The P-Model error analysis by nights was also found to be quite good as shown in Table 6.3 in Appendix VI. It will be noted that the error analysis by prediction time also tends to be much better for minimum prediction cycles. As may be seen from Table 4 in Appendix VI, the mean error ranges from a value of 3.123 when predicting ten hour temperatures to a value of minus 0.3 when only predicting one hour temperatures. A careful perusal of the predictions over the entire set of data indicates that this model does appear to have applicability to terrain such as was found in Pennsylvania for the purposes of this study. It must be realized that a great amount of additional data would probably need to be included to use this model in fruit growing operations, but the preliminary indications are that the technique is very applicable to predicting potential frost conditions in fruit growing regions such as are found in Pennsylvania.

The figures which are also shown in Appendix VI once again indicate a deviation between the predicted and observed temperature.

As may be seen from those figures, the predictions are much better for

a minimum number of hours deviation from the baseline temperatures. The heavy line which is shown on those figures indicates the observed temperatures. The lighter colored lines indicate predicted temperatures starting at various baseline times. Figure 6.1 shows P-Model prediction using the raw baseline as provided by The Pennsylvania State University. In Figure 6.2 this raw data for baselines was adjusted to provide a smooth function during the three hour baseline period. As may be seen by comparing Figure 6.1 and Figure 6.2 for any given night, there does not appear to be any significant benefit to using the error correction term in the P-Model. Examination of Figures 6.1 and/or 6.2 indicates the prediction as shown by P-Model for the nights of May 8-9 and May 15-16 was particularly good. The prediction of the other nights was not quite as accurate, but was still believed to be sufficiently useful to warrant further exploration of the application of this technique to Pennsylvania conditions. As previously stated, the P-Model certainly predicts temperatures much better during a time when a minimum number of hours occurs from the baseline. For example, in Figure 6.2.1, the predictive results are quite good for baseline times ending after 2200 hours. For predictions prior to that time there are significant deviations between the predicted and the observed temperatures. It is anticipated that additional inputs such as more radiation and additional inversion temperature data may help to enhance the ability of the P-Model to predict conditions over a longer period of time. It should be realized, however, that even if the P-Model is only able to make predictions two hours in advance it still would have a very useful benefit to growers who are attempting to provide frost production in a commercial orchard or grove.

Task 2. Description of the Major Apple Growing Regions of Pennsylvamia

The primary apple growing region of Pennsylvania is located in the South Central area, between a 77 longitude and 78°W and at at 40°N latitude. The region covers two counties; Adams and Franklin, which have a total of almost 20,000 acres of apple orchards. The area has mountains with peak ridges 1500-2000 ft above sea level, generally running NE-SW, and valleys averaging 500-600 ft above sea level and several miles wide. Most of the orchards are located on the lower slopes of the mountains and on the gentler slopes in the valleys.

The following climatological information was taken from the centrally located point in each county; Gettysburg in Adams and Chambersburg im Franklin:

	Mean Eleva (ft)	tion I	atitude	Lon gitude
Chambersburg Gettysburg	640 540		39°56' 39°50'	77°38' 77°14'
	Mean Tempe	Mean Temperature (°F)		
	March	April	<u>May</u>	June
Chambersburg Gettysburg	40.1 41.2	51.4 52.6	62.1 63.0	70.8 71.5
	Mean Maximum Temperature (°F)			
Chambersburg Gettysburg	51.3 52.8	62.7 64.6	73.6 75.2	81.2 82.8
	Mean Minimum Temperature (°F)			
Chambersburg Gettysburg	29.8 30.5	38.2 39.3	47.6 49.0	56.7 59.7
	Average Precipitation (inches) Both Locations			
	3.71	3.47	4.13	3. 83

A full description of the Pennsylvania orchard fruit production areas by country and growers is included as Appendix VII to this report. This publication was compiled by the Pennsylvania Crop Reporting Service during 1978. As may be noted from the enclosed publication, there was a total acreage of 61,382 acreas of fruit production in Pennsylvania in 1978. Of that acreage 32,791 acreas were in apples. This survey included 893 apple growers of whom 825 qualified as commercial. As may be seen from Page 3 of the publication, 14,417 acreas of apples are present in Adams County and 4,266 acres in Franklin County as of 1978. These values should have not changed significantly since that time. The Pennsylvania orchard and vineyard survey will be updated approximately every five years.

Climatology data for the state of Pennsylvania is most easily obtained from a NOAA (National Oceanic and Atmospheric Administration) publication entitled Climatography of the United States No. 60, Climate of Pennsylvania. A copy of the material included on a microfilm of this publication has been attached as Appendix VIII to this report. Since this material was obtained from a microfilm it was very difficult to read in the presented form. If the user of this report needs to obtain more complete data he/she is referred to either the original publication or a microfilm. The Pennsylvania State University personnel involved in this project can also provide additional data upon request.

A careful examination of the principal fruit growing regions for Pennsylvania indicates that topography information can most easily be obtained from U.S. Geological Survey maps. These maps are available from USGS, Reston, Virginia 22092. The following quadrangles in the 7.5 minute series have significant acreage of orchards shown on them. All of these quadrangle maps were photo revised in 1973.

- 1. Arendtsville, PA
- 2. Biglerville, PA
- 3. Iron Spring, PA
- 4. Mont Holly Springs, PA
- 5. St. Thomas, PA
- 6. Scotland, PA
- 7. Waynesboro, PA

A number of other topological maps in Adams and Franklin County are also applicable, but the above mentioned ones upon examination have the highest percentage of orchards shown. If required The Pennsylvania State University can supply copies of these maps to any interested persons. As was previously stated, they are also available from USGS.

Task III P-Model Limitations

As was previously was discussed under Task I, the P-Model appears to have quite a bit of applicability to Pennsylvania conditions. It is believed that modifications may need to be made in this model in order to be suitably used for many of the fruit growing regions, but even in its present state the model does appear to offer some very definite advantages to a grower who is concerned with frost protection of his fruit crop.

A more detailed discussion of the manner in which the P-model may be applied to Pennsylvania growing conditions will be provided under Task IV of this report. The important concept that is being spelled out at this time, however, is that it is firmly believed that the model does appear to offer a benefit to Pennsylvania growers. This statement is supported by the error analysis and prediction charts that were presented in Appendix VI of this report.

Task IV Future Projections and Recommendations

Considerable time has been devoted to discussing the application of the P-model and satellite forecasting technology to Pennsylvania fruit growers needs. Many of the projections which are being made are, of course, speculative in nature but these projections are based upon present plans and predictions for Pennsylvania.

One of the necessities for Pennsylvania growers to make fullest use of satellite forecast technology is for a computerized information dissemination network. Discussions with Dr. G. A. Hussey, a computer specialist with the College of Agriculture at The Pennsylvania State University, indicates that present plans call for a microcomputer network to be made available in county offices under the control of the Pennsylvania Agricultural Extension Service. These microcomputers will probably be connected to a main frame computation system at University Park, Pennsylvania. Individual counties will then have the capability of accessing large data files by microwave and telephone links to the central computer complex. In addition to being able to provide many management type programs for Pennsylvania farmers and fruit growers, it will be possible to conceivably also provide forecasting capabilities for individual fruit growers.

Many farmers conceivably will also link to either the county extension offices or the central computer complex in order to obtain up-to-date forecast information for their own needs. It is anticipated that the P-model approach may be very conveniently used on individual large farms in Pennsylvania by making a series of adjustments to the prediction equations used in the P-model. These adjustments would take into account individual climatological histories and topographical features for a particular fruit growing region or farm. By making the fine adjustments indicated, it should be possible for a grower to obtain a very reliable forecast for his particular operation. It is anticipated that he may well decide to obtain forecast technology through the Agricultural Extension Service. Alternately he may wish to link to a commercially available service which could have available forecasting capability.

Dr. Hussey, who is previously cited, indicates that The Pennsylvania State University has negotiated with at least one commercial communication service for including agricultural data in their communication network. This type of communication service is of a format similar to that used by Source or Compuserve computer services currently available throughout the United States. Addresses for these commercial services are given in the cited references to this report. It is anticipated that it might be possible for individual states such as Pennsylvania to use commercial computer networks for information dissemination. By so doing material could more easily be upgraded and made available to growers throughout the United States without requiring an extensive computer network maintained specifically for a given state. Such a projection will need to be refined before it becomes practical, but it is the belief of this investigator that such a system is certainly feasible.

Other inputs which will be needed in order for a satellite forecast program to be useful to Pennsylvania fruit growers includes much better defined climatological data for Pennsylvania. This data will need to be calibrated and adjusted for individual fruit growing regions. The Office for Remote Sensing of Earth Resources at The Pennsylvania State University has for many years been involved in processing, analysis, and interpretation of remotely sensed data, most of which has been supplied by NASA in both imagery and digital format. Appendix IX to this report includes a discussion of the capability of that office. It is anticipated that one of the future continuations of the work described in this report would be to collect and define climatological data for a more wider portion of Pennsylvania than was included in this study. It is conceivable that the Office for Remote Sensing would be involved in such a collection and reduction of data. Having reduced temperature data for various portions of Pennsylvania, it then should be possible to refine the P-model in order to take into account climatological and topological variations throughout the fruit growing regions. This series of refined models would then be applied to individual fruit growers and/or areas in order to provide optimal predictions for frost potential.

Having developed individual calibrated models for various parts of Pennsylvania the grower would then need to have available a system for rapid access of the data such as had been previously described in this section. It is believed that growers may not all chose the same system, but in fact some growers might prefer to use a commercial service while others might tie into an agricultural extension service run by the state of Pennsylvania. Regardless of which route the

.

individual grower should chose to take, it is believed quite probable that he or she should have access to timely data and projections for their individual farms. In order to get such projections, it is probably very desirable to have an ability to access satellite data quite rapidly. In order to do this efficiently one possibility may be to utilize down-link capability currently being developed at the University of Florida for obtaining directly satellite data. This data could be segmented and provided to Pennsylvania within a very short period of time after it was obtained from the satellite. By so doing, it would be possible to provide the grower with a very current projection of freeze forecast conditions. Such an operation would be somewhat expensive but is probably justified in view of the increasing costs for oil and the rapidly depleting water resources available to many fruit growers. It is anticipated that the satellite data would be provided by an institution similar to the University of Florida directly to Pennsylvania. The data would then be incorporated into either a single P-type model or a series of P-models which had been individually calibrated to fruit growers.

The fruit grower would call for the data via a personal computer available on their farm. Several modes of operation would be possible. The farmer could call at various time intervals and determine the probability of a frost. Alternately, an automatic dialing system and alarm network could be used to alert a grower to probable frost conditions on his or her individual operation. This technology would be the most effective, but would also be the most expensive for an individual grower to implement.

An alternate method of utilizing satellite projection in Pennsylvania would be to make P-model projections available to cable television networks in fruit growing regions. Many such cable television networks at the present time have channels which are devoted to news and similar materials. It is possible that the frost forecast could be incorporated as a part of these services

Of course, the National Weather Service is also providing in some areas of the United States, an agricultural forecasting service. It would be very desirable to use satellite forecast technology similar to that employed in this study for improving frost forecasting by the National Weather Service. A number of commercial forecasting services such as Accu-weather also could conceivably make use of the technology being described at this time. In conclusion several useful findings have resulted from this study. These findings can be enumerated as follows:

- 1. The P-model in its present form appears to give quite reasonable predictions for night-time temperatures over a short time interval under Pennsylvania conditions.
- It appears feasible to modify the P-model in order to take into account topographical variations for individual fruit growing regions.
- Present microcomputer technology appears to be very appropriate to enable individual fruit growers to use results from satellite freeze forecast technology.
- 4. In a continuation of this study it is suggested that a more detailed collection of climatological data is needed. This data would then be incorporated into the P-model in order to statistically evaluate the effectiveness of this model over a wide range of climatological conditions.

- 5. It is believed that in the next few years growers will have the capability and desire to quickly access results from forecast technology such as was used in this study. It would be desirable, therefore, to continue to work on an information dissemination network which will rapidly make satellite-based forecasts available to the grower. This information dissemination may well be offered by both commercial and public institutions.
- 6. A minimum of two additional years of data are needed in order to accurately evaluate the suitability of P-model to Pennsylvania growing conditions. It is hoped that some mechanism will be developed by which additional studies of the suitability of this model may be achieved.

CITED REFERENCES

- Sutherland, R. A. 1980. A Short-Range Objective Nocturnal Temperature Forecasting Model. Journal of Applied Meteorology. March 1980. pp. 247-255.
- Pennsylvania Crop Reporting Service. 1978. Pennsylvania Orchard and Vineyard Survey. Pennsylvania Department of Agriculture. Harrisburg, PA.
- National Oceanic and Atmospheric Administration. 1977. Climate of Pennsylvania. Environmental Data Service. National Climatic Center. Asheville, NC.
- Hussey, G. A. 1981. Personal Communication, College of Agriculture, University Park, PA 16802.
- Peterson, G. W. 1981. Personal Communication Office for Remote Sensing of Earth Resources. The Pennsylvania State University, University Park, PA 16802.
- Source. 1981. 1616 Anderson Road. McLean, VA.
- Compuserve. 1981. 5000 Arlington Centre Boulevard. Columbus, Ohio 43220

on the state of 100 appendix

Appendix I

Proposal from The Pennsylvania State University

to

The University of Florida

APPENDIX 70

Application of Satellite Freeze Forecast Technology to Other Parts of the U.S. Phase II

Proposal for Continuing Support

Submitted to: University of Florida

Institute of Food and Agricultural Science

2121 HS/PP

Gainesville, Florida 32611

Submitted by: C. T. Morrow, Principal Investigator

Department of Agricultural Engineering

The Pennsylvania State University University Park, Pennsylvania 16802

Submitted on: December 1, 1980

Note: This proposal is submitted from The Pennsylvania State University as a sub-contractor to the University of Florida. The University of Florida is designated as the prime contractor to John F. Kennedy Space Center, NASA.

Signatures

C 5 Mann	c.	T.	Morrow, Principal Investigator
	н.	v.	Walton, Head, Dept. of Ag. Engineering
	R.	G.	Cunningham, Vice President for Research

Introduction

Improved methods of freeze forecasting would greatly benefit agricultural interests throughout the contiguous United States. NASA has entered into a joint effort with the National Oceanic and Atmospheric Administration (NOAA) to demonstrate the technology necessary to accomplish more accurate freeze forecasting in the state of Florida. To this end NASA has engaged the University of Florida, Institute of Food and Agricultural Sciences (IFAS), to develop and demonstrate a satellite freeze forecast system under NASA contract NAS10-9168.

During the past year, NASA also has had IFAS investigate the "Application of Satellite Freeze Forecast Technology to Other Parts of the United States" under NASA contract NAS10-9611. The first year's work concentrated in gathering key weather station data bases and comparing this data with the NOAA GOES-2 satellite or any other available satellite gathering temperature data and evaluating the usefulness of such satellite data in two selected test areas, which are located in Michigan and Pennsylvania. The collected data would be evaluated and conclusions/observations presented as follows:

The ability to correlate GOES data with surface data and its applicability to cold climate mapping considering such factors as:

- a. Accuracy, resolution, and reliability of the satellite data;
- b. Geometric distortions;
- c. Terrain variables;
- d. Atmospheric effects; and
- e. Other.

Scope

Under the proposed extension of the project, the Pennsylvania State University shall be responsible for accomplishing the following tasks:

- Task 1. Collect data to be used in running a freeze prediction model (P-Model) by the University of Florida. This model was described by Sutherland, 1980. Data will be collected at a site located at the Rock Springs Agricultural Research Center. The site chosen for the data collection provides a uniform and level agricultural terrain. The following data will be collected at the site:
 - a. Air temperature at 9.3, and 1.5 meters
 - b. Soil temperature at the surface, 10, and 50 centimeters
 - c. Windspeed at 1.5 meters
 - d. Dewpoint temperature
 - e. Net radiation

In anticipation of continuing funding for the project data were collected during the Spring of 1980 for the following nights:

May 8, 1980 May 9, 1980 May 10, 1980 May 15, 1980 June 11, 1980

Additional data will be collected for nights in early Spring, 1981.

The above data will be supplied to the University of Florida for running the P-Model on their computer.

Archived GOES satellite data will be procured by the University of Florida for use in evaluating the applicability of the P-Model to Pennsylvania conditions.

- Task 2. The Pennsylvania State University will supply terrain, surface and topographic information to the University of Florida concerning fruit growing regions in Pennsylvania. This information will be used to develop preliminary specifications for a statistics model such as the one previously developed at the University of Florida and described by Chen, 1980.
- Task 3. The Pennsylvania State University will study the P-Model (Sutherland, 1980) and discuss limitations and pecularities of the Pennsylvania test site which might limit generalization of the P-Model to other areas of the United States.
- Task 4. The Pennsylvania State University will make recommendations to the University of Florida relative to specific concepts and studies that could be pursued for further application.

Cited References

- Chen, Ellen. 1980. Personal Correspondence. University of Florida, Gainesville, Florida.
- Sutherland, R. A. 1980. A Short-Range Objective Nocturnal Temperature Forecasting Model. Journal of Applied Meteorology. March, 1980. pp. 247-255

Sub-Contact Budget, 1980-81

The Pennsylvania State University

Salaries	
C. T. Morrow, Principal Investigator M. A. Wittman, Electronics Technician P. A. Mark, Technician Salaries Su	\$1,000 300 300 b-Total 1,600
Wages	
Part-Time Hourly Help 400 hours @ ave. \$3.40 Wages Sub-To Total-Salar	
Fringe Benefits	
22.10% of Salaries 6.60% of Wages Fringe Bene	354 90 444
Travel	
Mileage to Rock Springs Agricultural Research of Travel to University of Florida and KSC Travel Sub-	500
Other	
Computer - IBM 370/3033 @ \$252/hr Expendable Supplies and Materials	504 700
Other Sub-To	otal 1,204
Total-Direc	t Costs 5,208
Indirect Costs	·
64.30% of Total Salaries and Wages	1,903
Total Estim	ated Costs 7,111

Appendix II

Frost Data for Pennsylvania Test Site

Channel Descriptions for Pennsylvania Data May 8-9, 9-10, 10-11, and 15-16, 1980

Channel	Description	Units
4	Bud thermocouple, North block	Deg. C
5	Bud thermocouple, North block	Deg. C
6	Bud thermocouple, North block	· Deg. C
7	Aspirator chamber, North block	Deg. C
8	Aspirator Chamber, South block	Deg. C
9	Bud thermocouple, South block	Deg. C
10	Bud thermocouple, North block	Deg. C
11	Bud thermocouple, South block	Deg. C
12	Bud thermocouple, South block	Deg. C
13	Bud thermocouple, South block	Deg. C
14	Surface temperature	Deg. C
15	Tower ground level thermocouple	Deg. C
16	Tower 1.5 meter aspirator	Deg. C
17	Tower 15 meter aspirator	Deg. C
18	Tower 5 meter thermocouple	Deg. C
19	Tower 3 meter thermocouple	Deg. C
20	Tower 3 meter aspirator	Deg. C
21	Tower 9 meter aspirator	Deg. C
22	Trench 10 cm thermocouple	Deg. C
23	Trench 10 cm thermocouple	Deg. C
24	Trench 50 cm thermocouple	Deg. C
25	Trench 50 cm thermocouple	Deg. C
26 .	Wind speed	Meters per second
27	Wind peak	Meters per second
28	Wind average	Meters per second

FROST DATA

MAY 8, 1980

CHAN4=BLUE CHAN5=RED
CHAN6=GREEN CHAN7=BLACK
TIME IS IN HOURS, TEMP. IN DEG C

MAY 8, 1980 TEMP 1 5.0-CHAN87 2.5-0.0-CHAN 9 -2.5-CHANIO 2 0 3 5 8 6 TIME CHAN8=BLUE CHAN9=RED CHAN18=GREEN TIME IS IN HOURS TEMP IN DEC C

FROST DATA

MAY 8, 1980

TIME IS IN HOURS, TEMP, IN DEG C

MAY 8, 1980

CHAN22=BLUE CHAN23=RED
CHAN23=BLACK
TIME IS IN HOURS, TEMP. IN DEG C

ORIGINAL PAGE IS

MAY 8, 1980--00:00-8:00A.M. WIND1 0.75--CHAN 27 0.50-CHAN 26 0.25--CHAN 28 0.00-0 2 5 6 TIME

CHAN26=BLUE CHAN27=RED CHAN28=GREEN TIME IS IN HOURS, WIND IN MPS

THUSI WATA MAY 9, 1980--00:00-8:00A.M. TEMP1 CHAN 7 CHAN 6 2 CHAN 4 0 3 TIME CHAN4=BLUE CHAN5=RED CHANG=GREEN CHAN7=BLACK TIME IS IN HOURS, TEMP. IN DEG C

MAY 9, 1980--00:00-8:00 A.M.

PRUSI DATA

CHAN8=BLUE CHAN9=RED

CHAMICHERTEN.

MAY 9, 1980--00:00-8:00A.M.

CHAN15=BLUE CHAN16=RED CHAN17=3REE.

MAY 9, 1980--00:00-8:00A.M. TEMP1 7.5-5.0--CHAN 20 CHAN 18 2.5 0.0-CHAN 19 0 5 TIME.

CHAN18=BLUE CHAN19=RED ONANGO=GRAFON

MAY 9, 1980--00:00-8:00A.M. TEMP 1 CHAN 23 CHAN 22 9.5 9.0 -CHAN 25 8.5 8.0 7.5 2 3 0 5 6 orighial page is TIME CHAN22=BLUE CHAN23=RED CHAN25=BLACK TIME IS IN HOURS. TEMP. IN DEG C

MAY 9, 1980--00:00-8:00A.M.

CHAN26=BLUE CHAN27=RED

TIME IS IN HOURS, WIND IN MPS

MAY 10, 1980--00:00-8:00A.M.

CHAN4=BLUE CHAN5=RED CHAN6=GREEN CHAN7=BLACK TIME IS IN HOURS, TEMP. IN DEG C

MAY 10, 1983--00:20-8:00A.D.

CHAN11=BLUE CHAN12=RED

CHAN14=BLACK
TIME IS IN HOURS, TEMP. IN DEG C

MAY 10, 1932-22:02-9:02A.M.

CHAN15=BLUE CHAN16=RED

MAY 12, 1982--- 20:20-8:20A.F.

CHAN18=BLUE CHAN19=RED

MAY 13, 1932--30:20-3:224....

CHAN21=BLUE

MAY 12, 1332--22:22-3:224.M.

CHAN22=BLUE CHAN23=RED
CHAN25=BLACK
TIME IS IN HOURS, TEMP. IN DEG C

FROST DATA

MAY 18, 1980---22:88-3:00A.M.

CHAN26=BLUE CHAN27=RED

TIME IS IN HOURS, WIND IN MPS

TROST DATA

MAY 16, 1980--00:00-8:00A.M.

CHAN4=BLUE CHAN5=RED
CHAN3=GREEN CHAN7=BLACK
TIME IS IN HOURS TEMP. IN DEG C

KUST DAIA

MAY 16, 1980--00:00-8:00A.M.

CHAN8=BLUE CHAN9=RED CHAN10=GREEN TIME IS IN HOURS, TEMP. IN DEG C

MAY 16, 1980--00:00-8:00A.M.

CHAN11=BLUE CHAN12=RED CHAN13=GREEN CHAN14=BLACK TIME IS IN HOURS, TEMP. IN DEG C

TROST DATA

MAY 16, 1980--00:00-8:00A.M.

FROST DATA

MAY 16, 1980--00:00-8:00A.M.

. CHAN21

FROST DATA

MAY 16, 1980--00:00-8:00A.M.

CHAN22=BLUE CHAN23=RED CHAN24=GREEN CHAN25=BLACK TIME IS IN HOURS, TEMP. IN DEG C PROST DATA

MAY 16, 1980--00:00-8:00A.M.

CHAN26=BLUE CHAN27=RED CHAN28=GREEN

Appendix III

Tape Description for Pennsylvania Frost Data

TAPE DESCRIPTION

Tape name is FROST. FROST is a 9-track, no label tape, recorded at 800 bpi in ASCII.

FROST consists of 5 unlabeled files containing the following information:

File 1

Date: May 7 - June 30, 1980

Column: 1 2 3

date time net radi- aspirator, aspirator, ometer North block South block

Note: On day 49 (June 18), the day was reset to 18.

File 2

Date: May 7 - June 6, 1980

Column: 1 2 3 4 5

date time surface temp tower ground tower 1.5m level thermo- aspirator

couple

7 8 9
tower 5m tower 3m tower 3m
thermocouple thermocouple aspirator

File 3

Date: May 7 - June 6, 1980

Column: 1 2 3 4 5
date time tower 9m trench 10cm trench 10cm aspirator thermocouple

 $6 \\ 7 \\ 8 \\ 9 \\ 10 \\ trench 50cm \\ trench 50cm \\ wind speed \\ wind peak \\ wind average \\ thermocouple \\ thermocouple$

File 4

Date: April 20- May 7, 1981

Column: 1 2 3 4 5
date time aspirator aspirator surface temperNorth block South block ature

6 7 8 9 10
tower 1.5m tower 1.5m tower 3.0m tower 5.0m tower 9.0m
thermocouple aspirator aspirator thermocouple aspirator

Note: Files 4 and 5 contain data for the hours of 9:00 P.M. - 9:00 A.M. only.

File 5

Date: April 20 - May 7,1981

Column: 1 2 3 4 5
date time 10cm trench 10cm trench 50cm trench

thermocouple thermocouple

6 7 8 9
50cm trench wind speed wind direction wind average thermocouple

Note: Column 7 - Wind speed was not working during this time.

Appendix IV

Dewpoint Temperatures for Pennsylvania Test Plots

Dew Point Temperatures for Pennsylvania Test Plots

Date	Time	Dew Point (°F)	Date	Time	Dew Point (°F)
May 8-9,			May 9-10,		
1980	0215	27	1980	0045	- 30
	0235	27		0115	30
	0320	29		0142	29
	0410	26		0145	30
	0436	25		0240	28
	0500	26		0300	. 28
				0410	27
				0567	27
				0530	· 26
				0631	27
May 8-9,			May 15-16,		
1980	2350	33	1980	0100	35
	2355	31	_,_,	0151	35
	0115	29		0202	34
•	0150	28		0248	32
	0308	27		0305	32
	0322	27		0305	33
	0400	26	•	0334	32
	0443	29		0353	32
	0450	30		0410	31
	0525	30		0414	30
	0600	28		0420	. 31
	0617	27		0425	31

Appendix V

Reduced Data for Pennsylvania Test Plot

ORIGINAL PAGE IS OF POOR QUALITY

1980	7-8,	YAM	~~ ~~ ~~ ~~ ~~ ~~			ATAG	eather	COLD W	STATE	VANIA	PENNSYL
			NIND	DEW POINT	9.011	3.00	1.511	50CH	10Cti	•	
			SPEED I	PUINT	AIR	AIR	AIR	SOIL	SOIL	SOIL	TIME
			2.8	27.0 27.0 27.0	54.0	53-8	53.4	49.8	54.7	53.4	. 18-0
			4-2	27.0	53.2	53.1	53.1	49.8	54.5	52.5	19.0
			2.3	27.0	51.4	50.7	50.7	50.0	54 • 1	48.9	20.0
			•3	27.0 27.0 27.0	49.6	48.7	48.7	50.0	53.6	47.8	21.0
			- 6	27.0	47.8	46.0	46.6	49.8	53.1	44.2	22.0
			•2	27.0	46.8	44.1	43.7	50.0	52.7	39.4	23.0
			. 2	27.0	12 5	//O 1	40. R	50.0	52 0	37 6	0.0
		•	• 2	27.0	43.5	38-8	39.4	49.6	51.3	35.8	1.0
•			.2 .1 .1 .1	27.0	37.8	34.2	34.0	49.8	50.7	34.7	2.0
			- 1	27.0	36.9	34.0	33.3	49.8	50.2	34.0	3.0
			-1	26.0	34.5	52.0	31.3	49.8	49.6	33.4	4.0
			-1	26.0	32.9	29.7	30.4	49.6	48.9	32.0	- 5.0
			• 1	26.0	33.3	31.1	27.7	49.8	48.6	31.6	6.0
			1	26.0	34.7	38.3	32.0	49.6	47.7	34.2	7.0
				/// Two was day-free was and o'							
1980	8-9,			/// Two was day-free was and o'							
1980	8-9,			an too an any too an an an an		DATA	EATHER	COLD [STATE	.VANIA	PENNSYL
1980	8-9,		wind	DEW	9.011	DATA 3.011	EATHER . 1.5%	COLD I	STATE 10CM	AIKAV.	PENNSYL
1980	8-9,		wind	an too an any too an an an an	9.011	DATA 3.011	EATHER . 1.5%	COLD I	STATE 10CM	AIKAV.	PENNSYL
1980	8-9,		WIND SPEED	DEW POINT	9.011 AIR 47.8	3.011 AIR 49.6	1.5% AIR	50CM SOIL 48.4	10CM SOIL.	SOIL 52.0	PENNSYL TIME
1980	8-9,		WIND SPEED 4.9	DEW POINT 33.0	9.011 AIR 47.8 45.7	3.0H AIR 49.6 45.7	1.5% AIR 48.0 45.3	50CN SOTL 48.4 48.6	10CM SOIL 53.4 52.5	SOIL 52.0 49.1	PENNSYL TIME 18.0 19.0
1980	8-9,		WIND SPEED 4.9 .8	DEW POINT 33.0 35.0 33.0	9.011 AIR 47.8 45.7 45.0	3.0H AIR 49.6 45.7 44.1	1.5% AIR 48.0 45.3 44.1	50CN SOIL 48.4 48.6 48.7	10CH SOIL 53.4 52.5 52.2	SOIL 52.0 49.1 44.8	PENNSYL TIME 18.0 19.0 20.0
1980	8-9,		WIND SPEED 4.9 .8	DEW POINT 33.0 35.0 33.0	9.011 AIR 47.8 45.7 45.0	3.0H AIR 49.6 45.7 44.1	1.5% AIR 48.0 45.3 44.1	50CN SOIL 48.4 48.6 48.7	10CH SOIL 53.4 52.5 52.2	SOIL 52.0 49.1 44.8	PENNSYL TIME 18.0 19.0 20.0
1980	8-9,		WIND SPEED 4.9 .8	DEW POINT 33.0 35.0 33.0	9.011 AIR 47.8 45.7 45.0	3.0H AIR 49.6 45.7 44.1	1.5% AIR 48.0 45.3 44.1	50CN SOIL 48.4 48.6 48.7	10CH SOIL 53.4 52.5 52.2	SOIL 52.0 49.1 44.8	PENNSYL TIME 18.0 19.0 20.0
1980	8-9,		WIND SPEED 4.9 .8 1.1 .4 .1	DEW POINT 33.0 33.0 33.0 33.0 33.0	9.011 AIR 47.8 45.7 45.0 43.2 40.8 39.9	3.0/1 AIR 49.6 45.7 44.1 40.8 38.7 36.3	1.5% AIR 48.0 45.3 44.1 41.9 37.4 38.8	50CN S0IL 48.4 48.6 48.7 48.9 48.9	10CM SOIL. 53.4 52.5 52.2 51.8 51.3 50.4	SOIL 52.0 49.1 44.8 41.0 37.4 36.3	PENNSYL TIME 18.0 19.0 20.0
1980	8-9,		WIND SPEED 4.9 .8 1.1 .4 .1	DEW POINT 33.0 33.0 33.0 33.0 33.0 33.0	9.011 AIR 47.8 45.7 45.0 43.2 40.8 39.9 38.5	3.0/1 AIR 49.6 45.7 44.1 40.8 38.7 36.3	1.5% AIR 48.0 45.3 44.1 41.9 37.4 38.8 37.4	50CN S0IL 48.4 48.6 48.7 48.9 48.9 48.9	10CM SOIL. 53.4 52.5 52.2 51.8 51.3 50.4 49.5	SOIL 52.0 49.1 44.8 41.0 37.4 36.3 35.1	PENNSYL TIME 18.0 19.0 20.0 21.0 22.0 23.0 0.0
1980	8-9,		WIND SPEED 4.9 .8 1.1 .4 .1	DEW POINT 33.0 33.0 33.0 33.0 33.0 33.0	9.011 AIR 47.8 45.7 45.0 43.2 40.8 39.9 38.5	3.0/1 AIR 49.6 45.7 44.1 40.8 38.7 36.3	1.5% AIR 48.0 45.3 44.1 41.9 37.4 38.8 37.4	50CN S0IL 48.4 48.6 48.7 48.9 48.9 48.9	10CM SOIL. 53.4 52.5 52.2 51.8 51.3 50.4 49.5	SOIL 52.0 49.1 44.8 41.0 37.4 36.3 35.1	PENNSYL TIME 18.0 19.0 20.0 21.0 22.0 23.0 0.0
1980	8-9,		WIND SPEED 4.9 .8 1.1 .4 .1	DEW POINT 33.0 33.0 33.0 33.0 33.0 33.0	9.011 AIR 47.8 45.7 45.0 43.2 40.8 39.9 38.5	3.0/1 AIR 49.6 45.7 44.1 40.8 38.7 36.3	1.5% AIR 48.0 45.3 44.1 41.9 37.4 38.8 37.4	50CN S0IL 48.4 48.6 48.7 48.9 48.9 48.9	10CM SOIL. 53.4 52.5 52.2 51.8 51.3 50.4 49.5	SOIL 52.0 49.1 44.8 41.0 37.4 36.3 35.1	PENNSYL TIME 18.0 19.0 20.0 21.0 22.0 23.0 0.0
1980	8-9,		WIND SPEED 4.9 .8 1.1 .4 .1 .1 .2 .2 .2	DEW POINT 33.0 33.0 33.0 33.0 31.0 29.0 23.0 27.0	9.011 AIR 47.8 45.7 45.0 43.2 40.8 39.9 38.5 38.1 37.6 36.3	DATA 3.0H AIR 49.6 45.7 44.1 40.8 38.7 36.3 36.9 36.0 35.2 33.4	1.5% AIR 48.0 45.3 44.1 41.9 37.4 38.8 37.4 35.4 34.7	50CN 50IL 48.4 48.6 48.7 48.9 48.9 48.9 48.9 48.7 48.6	10CM SOIL. 53.4 52.5 52.2 51.8 51.3 50.4 49.5 49.3 48.4	SOIL 52.0 49.1 44.8 -41.0 37.4 36.3 35.1 34.0 33.1 32.4	PENNSYL TIME 18.0 19.0 20.0 21.0 22.0 23.0 0.0 1.0 2.0 3.0
1980	8-9,		WIND SPEED 4.9 .8 1.1 .4 .1 .1 .2 .2 .2	DEW POINT 33.0 33.0 33.0 33.0 33.0	9.011 AIR 47.8 45.7 45.0 43.2 40.8 39.9 38.5 38.1 37.6 36.3	DATA 3.0H AIR 49.6 45.7 44.1 40.8 38.7 36.3 36.9 36.0 35.2 33.4	1.5% AIR 48.0 45.3 44.1 41.9 37.4 38.8 37.4 35.4 34.7	50CN 50IL 48.4 48.6 48.7 48.9 48.9 48.9 48.9 48.7 48.6	10CM SOIL. 53.4 52.5 52.2 51.8 51.3 50.4 49.5 49.3 48.4	SOIL 52.0 49.1 44.8 -41.0 37.4 36.3 35.1 34.0 33.1 32.4	PENNSYL TIME 18.0 19.0 20.0 21.0 22.0 23.0 0.0 1.0 2.0 3.0
1980	8-9,		WIND SPEED 4.9 .8 1.1 .4 .1 .1 .2 .2 .4	DEW POINT 33.0 33.0 33.0 33.0 31.0 29.0 23.0 27.0 26.0	9.011 AIR 47.8 45.7 45.0 43.2 40.8 39.9 38.5 38.1 37.6 36.3 33.4	3.0/1 AIR 49.6 45.7 44.1 40.8 38.7 36.3 36.9 36.0 35.2 33.4 30.9	1.5M AIR 48.0 45.3 44.1 41.9 37.4 38.8 37.4 35.4 34.7 32.2 31.5	50CN S0IL 48.4 48.6 48.7 48.9 48.9 48.9 48.6 48.7 48.6 47.8	10CM SOIL. 53.4 52.5 52.2 51.8 51.3 50.4 49.5 49.3 48.4 48.0 46.8	SOIL 52.0 49.1 44.8 41.0 37.4 36.3 35.1 34.0 33.1 32.4	PENNSYL TIME 18.0 19.0 20.0 21.0 22.0 23.0 0.0 1.0 2.0 3.0 4.0
1980	8-9,		WIND SPEED 4.9 .8 1.1 .4 .1 .2 .2 .2 .4	DEW POINT 33.0 33.0 33.0 33.0 31.0 29.0 23.0 27.0	9.011 AIR 47.8 45.7 45.0 43.2 40.8 39.9 38.5 38.1 37.6 36.3 33.4	3.0H AIR 49.6 45.7 44.1 40.8 38.7 36.3 36.9 36.0 35.2 33.4 30.9 32.7	1.5M AIR 48.0 45.3 44.1 41.9 37.4 38.8 37.4 35.4 34.7 32.2 31.5 32.5	50CM S0IL 48.4 48.6 48.7 48.9 48.9 48.9 48.6 48.7 48.6 47.8 48.6	10CH SOIL 53.4 52.5 52.2 51.8 51.3 50.4 49.5 49.3 48.4 48.0 46.8 46.4	SOIL 52.0 49.1 44.8 -41.0 37.4 36.3 35.1 34.0 33.1 32.4 30.4	PENNSYL TIME 18.0 19.0 20.0 21.0 22.0 23.0 0.0 1.0 2.0 3.0 4.0 5.0

ORIGINAL PAGE IS OF POOR QUALITY

ENNSYL	VVIIV	STATE	COLD W	EATHER						Ya:1	9-10,	1980
	•					•	DEW .					·
TIME	SOIL	SOIL	SOIL	AIR	Alk	Alr	POINT	SPEED	1			
18.0	60-4	52•3	47.8	53.6	56.3	53.4	30.0	2.5	,			
							30.0					
20.0	42.8	51.6	47.8	46.4	46.8	49.3	30.0	.9	ı			
21.0	37.9	51.1	47.8	37.2	43.7	47.8	30.0 30.0 30.0	•3				
22.0	35.8	50.5	48.0	39.6	40.5	47.1	30.0	• 2	:			
23.0	35.1	49.8	48.2	38.7	38.8	43.9	30.0 30.0 30.0 30.0 28.0 27.0	• 2				
0.0	33.8	49.3	48.2	33.6	36.7	40.3	,30.0	-1				
1.0	33.6	48.4	47.8	33.6	33.8	39.9	30.0	• 1		•	•	
2.0	32.5	47.8	47.8	34.5	33.1	37.4	30.0	-1				
3.0	32.0	47.5	47.8	31.8	31.3	34.5	28.0	• 1				
4 • Ó	31.6	46.8	48.0	32.5	31.6	34.0	27.0	- 1				
5.0	30.9	46.4	48.0	32.0	31.5	33.8	27.0	• 1				
6.0	30.9	45.7	47.8	32.0	31.8	34.5	27.0	• 1				
	20 2	1.1. 6	46.9	31.1	35.1	34.0	27.0	•1				
5.0 6.0 7.0							· · · · · · · · · · · · · · · · · · ·					
PENNSYL	AIWAV						·					
PENNSYL		STATE	COLD W	EATHER	ATAÚ		· · · · · · · · · · · · · · · · · · ·	من میں				
·ENNSYL	VANIA	STATE 10CM	COLD W	EATHER	DATA 3.0%	9.0H AIR	ĎEW POINT	VIND.				
PENNSYL TIME	VANIA SOIL	STATE 10CN SOIL	SOCH SOIL	1.5ii AIR	3.0% A1R	9.0H AIR	DEW POINT 35.0	WIND SPEED				
PENNSYL TIME 18.0 19.0	VANIA SOIL 59.4	10CN SOIL 57.7	50CH SOTL 50.0	1.5ii AIR 56.7	3.0% A1R 61.5	9.0H AIR 56.7	DEW POINT 35.0	WIND SPEED 1.4				
PENNSYL TIME 18.0 19.0	VANIA SOIL 59.4	10CN SOIL 57.7	50CH SOTL 50.0	1.5ii AIR 56.7	3.0% A1R 61.5	9.0H AIR 56.7	DEW POINT 35.0	WIND SPEED 1.4				
PENNSYL TIME 18.0 19.0	VANIA SOIL 59.4	10CN SOIL 57.7	50CH SOTL 50.0	1.5ii AIR 56.7	3.0% A1R 61.5	9.0H AIR 56.7	DEW POINT 35.0	WIND SPEED 1.4				
TIME 18.0 19.0 20.0 21.0 22.0	SOIL 59.4 56.7 51.8 46.8 44.6	10CN SOIL 57.7 57.0 56.7 55.9	50CH SOTL 50.0 50.0 50.4 50.4	1.5ii AIR 56.7 55.9 51.4 43.0 43.0	3.0% A1R 61.5 60.8 51.4 45.0	9.0H AIR 56.7 56.1 53.6 50.5	DEW POINT 35.0 35.0 35.0 35.0	WIND SPEED 1.4 .4 .1				
TIME 18.0 19.0 20.0 21.0 22.0	SOIL 59.4 56.7 51.8 46.8 44.6	10CN SOIL 57.7 57.0 56.7 55.9	50CH SOTL 50.0 50.0 50.4 50.4	1.5ii AIR 56.7 55.9 51.4 43.0 43.0	3.0% A1R 61.5 60.8 51.4 45.0	9.0H AIR 56.7 56.1 53.6 50.5	DEW POINT 35.0 35.0 35.0 35.0	WIND SPEED 1.4 .4 .1				
TIME 18.0 19.0 20.0 21.0 22.0	SOIL 59.4 56.7 51.8 46.8 44.6	10CN SOIL 57.7 57.0 56.7 55.9	50CH SOTL 50.0 50.0 50.4 50.4	1.5ii AIR 56.7 55.9 51.4 43.0 43.0	3.0% A1R 61.5 60.8 51.4 45.0	9.0H AIR 56.7 56.1 53.6 50.5	DEW POINT 35.0 35.0 35.0 35.0	WIND SPEED 1.4 .4 .1				
TIME 18.0 19.0 20.0 21.0 22.0	SOIL 59.4 56.7 51.8 46.8 44.6	10CN SOIL 57.7 57.0 56.7 55.9	50CH SOTL 50.0 50.0 50.4 50.4	1.5ii AIR 56.7 55.9 51.4 43.0 43.0	3.0% A1R 61.5 60.8 51.4 45.0	9.0H AIR 56.7 56.1 53.6 50.5	DEW POINT 35.0 35.0 35.0 35.0	WIND SPEED 1.4 .4 .1				
TIME 18.0 19.0 20.0 21.0 22.0 0.0 1.0 2.0	SOIL 59.4 56.7 51.8 46.8 44.6 43.2 42.0 40.6	10CN SOIL 57.7 57.0 56.7 55.9 55.0 54.1 53.2 52.5	50CH SOIL 50.0 50.4 50.4 50.4 50.4 50.4	1.5ii AIR 56.7 55.9 51.4 43.0 43.0 36.9 35.6 34.5	3.0% A1R 61.5 60.8 51.4 45.0 45.0 40.6 38.1 37.6	9.0H AIR 56.7 56.1 53.6 50.5 50.5 43.5 41.5 40.5	DEW POINT 35.0 35.0 35.0 35.0 35.0 35.0	WIND SPEED 1.4 .4 .1 .1 .1 .1				
TIME 18.0 19.0 20.0 21.0 22.0 0.0 1.0 2.0	SOIL 59.4 56.7 51.8 46.8 44.6 43.2 42.0 40.6	10CN SOIL 57.7 57.0 56.7 55.9 55.0 54.1 53.2 52.5	50CH SOIL 50.0 50.4 50.4 50.4 50.4 50.4	1.5ii AIR 56.7 55.9 51.4 43.0 43.0 36.9 35.6 34.5	3.0% A1R 61.5 60.8 51.4 45.0 45.0 40.6 38.1 37.6	9.0H AIR 56.7 56.1 53.6 50.5 50.5 43.5 41.5 40.5	DEW POINT 35.0 35.0 35.0 35.0 35.0 35.0	WIND SPEED 1.4 .4 .1 .1 .1 .1				
TIME 18.0 19.0 20.0 21.0 22.0 0.0 1.0 2.0	SOIL 59.4 56.7 51.8 46.8 44.6 43.2 42.0 40.6	10CN SOIL 57.7 57.0 56.7 55.9 55.0 54.1 53.2 52.5	50CH SOIL 50.0 50.4 50.4 50.4 50.4 50.4	1.5ii AIR 56.7 55.9 51.4 43.0 43.0 36.9 35.6 34.5	3.0% A1R 61.5 60.8 51.4 45.0 45.0 40.6 38.1 37.6	9.0H AIR 56.7 56.1 53.6 50.5 50.5 43.5 41.5 40.5	DEW POINT 35.0 35.0 35.0 35.0 35.0 35.0	WIND SPEED 1.4 .4 .1 .1 .1 .1				
TIME 18.0 19.0 20.0 21.0 22.0 23.0 0.0 1.0 2.0 3.0 4.0 5.0	SOIL 59.4 56.7 51.8 46.8 44.6 43.2 42.0 40.6 40.6 39.7 39.2 38.3	10CN SOIL 57.7 57.0 56.7 55.9 55.0 54.1 53.2 52.5 52.0 51.8 51.1	50CH SOIL 50.0 50.4 50.4 50.4 50.4 50.4 50.4 50.5 51.1 51.1	1.5ii AIR 56.7 55.9 51.4 43.0 43.0 36.9 35.6 34.5 38.1 34.7 33.6	3.0% A1R 61.5 60.8 51.4 45.0 45.0 45.0 40.6 38.1 37.6 37.4 34.5 34.7	9.0H AIR 56.7 56.1 53.6 50.5 50.5 41.5 40.5 41.2 36.9 37.2	DEW POINT 35.0 35.0 35.0 35.0 35.0 35.0 32.0 32.0	WIND SPEED 1.4 .4 .1 .1 .1 .1 .1 .1 .1				
TIME 18.0 19.0 20.0 21.0 22.0 23.0 0.0 1.0 2.0 3.0 4.0 5.0	SOIL 59.4 56.7 51.8 46.8 44.6 43.2 42.0 40.6 40.6 39.7 39.2 38.3	10CN SOIL 57.7 57.0 56.7 55.9 55.0 54.1 53.2 52.5 52.0 51.8 51.1	50CH SOIL 50.0 50.4 50.4 50.4 50.4 50.4 50.4 50.5 51.1 51.1	1.5ii AIR 56.7 55.9 51.4 43.0 43.0 36.9 35.6 34.5 38.1 34.7 33.6	3.0% A1R 61.5 60.8 51.4 45.0 45.0 45.0 40.6 38.1 37.6 37.4 34.5 34.7	9.0H AIR 56.7 56.1 53.6 50.5 50.5 41.5 40.5 41.2 36.9 37.2	DEW POINT 35.0 35.0 35.0 35.0	WIND SPEED 1.4 .4 .1 .1 .1 .1 .1 .1 .1				

Appendix VI

P-Model Analysis Results

Table 6.1 P-Model Error Analysis (Total)

Table 6.2 P-Model Analysis by Night
Table 6.3 P-Model Analysis by Prediction Period
Table 6.4 P-Model Error Analysis

Figure 6.1 P-Model Predictions (Without Error Analysis)

Figure 6.2 P-Model Predictions (With Error Analysis)

ORIGINAL PAGE IS OF POOR QUALITY

Table 6.1 P-Model Error Analysis (Total)

P-HODEL ERROR ANALYSIS

PERNSYLVANIA STATE COLD MEATHER DATA

ALL RIGHTS - MAY 7-8, 8-9, 9-10, 15-16, 1980

POPULATION = 264 ·

HEAN ERROR = .588 STND. DEV. = .4.117

ORIGINAL PAGE 19 ... OF POOR QUALITY

Table 6.2 P-Model Analysis by Night

P-HODEL AMALYSIS BY WIGHT

ERROR ABALYSIS OF MAY 748, 1980

POPULATION = 66 MEAU ERROR = 3.333

STIID. DEV. = 4.417

ERROR ANALYSIS OF MAY 3-9, 1980

POPULATION = 66

MEAN ERROR = -.712

STRD. DEV. = 2.826

ERROR ANALYSIS OF MAY 9-10, 1980

POPULATION = 66

MEAN ERROR = -.280

STRU. DEV. = 3.519

ERROR ANALYSIS OF MAY 15-16, 1980

POPULATION = 66

HEAN ERROR = .018

STHU. DEV. = 4.270

Table 6.3 P-Model Analysis by Prediction Periods

P-HODEL ERROR ANALYSIS BY PREDICTION PERIODS

ERROR ADALYSIS OF 1-HOUR PREDICTIONS (FOUR RIGHTS)

POPULATION = 44

MEAN ERROR = -.300

STED. DEV. = 2.749

ERROR ANALYSIS OF 2-HOUR PREDICTIONS (FOOR REGRES)

POPULATION = 40

MEAN ERROR = -.250

STND. DEV. = 2.921

ERROR ANALYSIS OF 3-HOUR PREDICTIONS (FOUR HIGHTS)

POPULATION = 36

MEAN ERROR = -.020

STND. DEV. = 3.474

ERROR ARALYSIS OF 4-BOUR PREDICTIONS (FOUR EIGHTS)

POPULATION = 32

EEAN ERROR = .368

STMD. DEV. = 3.950

ERROR ANALYSIS OF 5-HOUR PREDICTIONS (FOUR MIGHTS)

POPULATION = 28

MEAN ERROR = .682

STAD. DUV. = 4.248

ERROR ANALYSIS OF 6-HOUR PREDICTIONS (FOUR NICHTS)

POPULATION = 24

 $MEAN \cdot ERROR = .824$

STRD.DEV. = 4.449

ERROR ANALYSIS OF 7-HOUR PREDICTIONS (FOUR NIGHTS)

POPULATION = 20

HEAN ERROR = 1.447

STMD. DEV. = 5.099

24.5

Table 6.3 (Continued)

ERROR ADMINSTS OF 8-hour PREDICTIONS (FOUR MIGHTS)

POPULATION = 16

HEAR EEROK = 1.977

STUD. DEV. = 5.495

ERROR AMALYSIS OF 9-HOUR PREDICTIONS (FOUR RIGHTS)

POPULATION = 12

HEAD ERROR = 2.179

STND. DEV. = 6.262

ERROR ARALYSIS OF 10-ROUR PREDICTIONS (FOUR EIGHTS)

POPULATION = 8 .

. MLAN DEROR = 3.123

STOD. DEV. = 6.170

Table 6.4 P-Model Error Analysis

PMODL ERROR ANALYSIS FOR MAY 7-8, 1980

HOUR 1800 1900 2000 2100 2200 2300 0000 0100 0200 0300 0400 0500 0600 0700 base ** ** ** **

PRED \$\$\$\$ \$\$\$\$ \$\$\$\$ 49.4 48.2 47.2 46.2 45.3 44.4 43.5 42.8 42.0 41.3 46.7 0BS 53.3 53.0 50.6 48.7 46.5 43.6 40.7 39.3 33.9 33.2 31.4 30.3 27.6 31.9

ERR \$\$\$\$ \$\$\$\$ \$\$\$\$.7 1.7 3.5 5.4 5.9 10.5 10.4 11.4 11.7 13.7 8.7

MFAN OF ERRORS = 7.609STD. DEV. OF ERRORS = 4.380

PMODL ERROR ANALYSIS FOR MAY 6-9, 1980

 HOUR
 1800
 1900
 2000
 2100
 2200
 2300
 0000
 0100
 0200
 0300
 0400
 0500
 0600
 0700

 BASE
 **
 **
 **
 **
 **
 **

 PRED
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 42.5-41.2
 40.0
 38.9
 37.9
 37.0
 36.2
 35.4
 34.7
 34.0
 33.4

 OES
 47.9
 45.2
 44.0
 41.8
 37.3
 38.8
 37.3
 35.3
 34.6
 32.1
 31.4
 32.5
 32.1
 34.4

 ERR
 \$\$\$\$\$\$
 \$\$\$\$\$\$
 \$\$\$\$\$\$
 .6
 3.8
 1.2
 1.6
 2.6
 2.4
 4.1
 4.0
 2.2
 1.9
 -1.1

HEAN OF ERRORS = 2.126STD. DEV. OF ERRORS = 1.555

PMODL ERROR AMALYSIS FOR MAY 9-10, 1980

HEAN OF ERRORS = 5.302 STD. DEV. OF ERRORS = 1.389

. PHODL ERROR ANALYSIS FOR MAY 15-16, 1980

 BOUR
 1800
 1900
 2000
 2100
 2200
 2300
 0000
 0100
 0200
 0300
 0400
 0500
 0600
 0700

 BASE
 **
 **
 **
 **
 **
 **

 PRID
 \$\$\$\$\$
 \$\$\$\$\$\$
 \$\$\$\$\$
 49.5
 47.9
 46.5
 45.3
 44.2
 43.2
 42.4
 41.6
 40.9
 40.3
 39.7

 OBS
 56.6
 55.9
 51.4
 42.9
 42.9
 36.8
 35.5
 34.4
 38.0
 34.6
 33.5
 31.9
 33.2
 35.5

 ERK
 \$\$\$\$\$
 \$\$\$\$\$\$
 \$\$\$\$\$\$
 6.5
 5.0
 9.7
 9.8
 5.2
 7.8
 8.1
 9.0
 7.1
 4.2

MEAN OF ERRORS = 7.457STD. DEV. OF ERRORS = 2.036 EMODE ERROR ABALYSIS FOR DAY 7-6, 1986

MEAN OF LEBORS # 6.003 STD. DEV. OF LEBORS # 3.788

PHODL ERROR ANALYSIS FOR MAY 8-9, 1980

MEAN OF ERRORS = .809 STD. DEV. OF ERRORS = 1.702

PHODL ERROR ANALYSIS FOR MAY 9-10, 1980

MEAN OF ERRORS = -2.810STD. DEV. OF ERRORS = 1.278

PHODL ERROR ANALYSIS FOR MAY 15-16, 1980 '

HEAN OF ERRORS = -.864STD. DEV. OF ERRORS = 2.000 PRODE ERROR ANALYSIS FOR MAY 7-8, 1980

MEAR OF ERRORS = 5.086 STD. DEV. OF ERRORS = 2.703

PHODL ERROR ANALYSIS FOR MAY 8-9, 1980

HEAR OF ERRORS = -4.066STD. DEV. OF ERRORS = 1.234

PEOBL ERROR ANALYSIS FOR MAY 9-10, 1980

MEAN OF ERRORS = -1.684STD. DEV. OF ERRORS = 1.752

PHODE ERROR ANALYSIS FOR MAY 15-16, 1980

HOUR 1800 1900 2000 2100 2200 2300 0000 0100 0200 0300 0400 0500 0600 0700 base ** ** **

PRED \$\protect{\prote

HEAN OF ERRORS = .754 STD. DEV. OF ERRORS = 2.364 PRODE ERROR ANALYSES FOR MAY 7-8, 1980

MEAN OF ERRORS = 2.897 STD. DEV. OF ERRORS = 2.070

PMODL ERROR ANALYSIS FOR MAY 8-9, 1980

HEAN OF ERRORS = -.093 STD. DEV. OF ERRORS = 1.804

PHODL ERROR ANALYSIS FOR MAY 9-10, 1980

 HOUR
 1800
 1900
 2000
 2100
 2200
 2300
 0600
 0100
 0200
 0300
 0400
 0500
 0600
 0700

 BASE
 **
 **
 **
 **
 **
 **

 PRED
 \$\$\$\$
 \$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$\$\$
 \$\$\$

MEAN OF ERRORS = 3.416 STD. DEV. OF ERRORS = .713

PHODL ERROR ANALYSIS FOR MAY 15-16, 1980

MEAN OF ERRORS = -3.140STD. DEV. OF ERRORS = 1.954

PRODE ERROR ARALYSIS FOR GAY 7-8, 1980

MEAN OF ERRORS = 1.505 STD. DEV. OF ERRORS = 1.951

PHODE ERROR ANALYSIS FOR MAY 8-9, 1980

MEAN OF ERRORS = 1.509 STD. DEV. OF ERRORS = 1.553

PMODL ERROR ARALYSIS FOR MAY 9-10, 1980

HEAN OF ERRORS = -4.111STD. DEV. OF ERRORS = 1.314

PHODE ERROR ANALYSIS FOR MAY 15-16, 1980

HEAM OF ERRORS = -3.901 STD. DEV. OF ERRORS = 1.918

PRIODE ERROR ANALYSIS FOR DAY 7-8, 1960 ORIGINAL PAGE IS OF POOR QUALITY

MEAN OF ERRORS = 2.664 STD. DEV. OF ERRORS = 1.791

PHODL ERROR ANALYSIS FOR MAY 8-9, 1980

MEAN OF ERRORS = -1.753STD. DEV. OF ERRORS = 2.199

PMODE ERROR ANALYSIS FOR MAY 15-16, 1980

THEAD OF ERRORS = -2.353STD. DEV. OF EPRORS = 1.789 PRIODE ERROR ARALYSIS FOR LAY 7-8, 1980

MEAR OF ERRORS = -1.895STD. DLV. OF ERRORS = 1.951

PMODE ERROR ANALYSIS FOR MAY 8-9, 1980

MEAN OF ERRORS = -1.228. STD. DEV. OF ERRORS = 2.381

PRODL ERROR ANALYSIS FOR MAY 9-10, 1980

HOUR 1800 1900 2000 2100 2200 2300 0000 0100 0200 0300 0400 0500 0600 0700 BASE ** ** ** **

PRED 5000 53.5 51.9 46.3 37.1 39.5 38.6 33.5 33.5 34.4 31.7 32.5 31.9 31.9 31.0 ERE 5000 5000 5000 5000 6000 0700

MEAN OF ERRORS = .655 SID. DEV. OF ERRORS = .653

PHODE ERROR ARALYSIS FOR MAY 15-16, 1980

FIFAN OF ERRORS = 2.372 STD. DEV. OF ERRORS = 1.632

PHODE ERROR AMALYSIS FOR HAY 7-8, 1980

HEAR OF ERRORS = -1.164STD. DEV. OF ERRORS = 2.304

PHODL ERROR ADALYSIS FOR DAY 8-9, 1980

MEAN OF EKRORS = -3.560STD. DEV. OF EKRORS = 2.430

PHODE ERROR ARALYSIS FOR MAY 9-10, 1980

MEAN OF ERRORS = -2.265STD. DEV. OF ERRORS = .361

PHODE ERROR AMALYSIS FOR MAY 15-16, 1960

HEAR OF ERRORS = -.655STD. DEV. OF ERRORS = 1.951

Figure 6.1.2

(IP) HEWLETT

ME PACKARD

Appendix VII

Pennsylvania Orchard and Vineyard Survey

1978 ORIGINAL PAGE IS OF POOR QUALITY PAGE IS OF POOR PAGE IS OF POOR QUALITY PAGE IS OF POOR QUALITY

compiled by

PENNSYLVANIA CROP REPORTING SERVICE
2301 NORTH CAMERON STREET
HARRISBURG, PENNSYLVANIA 17110
TELEPHONE — 717-787-3904

P. GREGORY TRUCKOR Statistician in Charge

DIRECTOR OF THE SURVEY
CHRIS L. CADWALLADER, AGRICULTURAL STATISTICIAN

A Cooperative Function of

ORIGINAL PAGE IS OF POOR QUALITY

PENNSYLVANIA
DEPARTMENT OF AGRICULTURE

UNITED STATES
DEPARTMENT OF AGRICULTURE

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

FOREWORD

• The Commonwealth of Pennsylvania has a prominent position in the nation's production of deciduous fruit.

Pennsylvania usually ranks fourth or fifth in apple and peach production, fifth in grape production, sixth in cherry production and eighth in pear production.

The fruit industry is a dynamic one and adapting to a changing fruit market takes considerable foresight, courage, work and money — fruit trees and grapevines need several years of care before a crop is produced.

This bulletin, which records significant developments in the important fruit industry of Pennsylvania, is intended to provide basic information as a guide in production and marketing plans for all sectors of the Pennsylvania fruit industry.

Accordingly, the Department is pleased to present the 1978 Orchard and Vineyard survey publication. This bulletin has been made possible through the joint effort of the U.S. Department of Agriculture and the Pennsylvania Department of Agriculture.

Sincerely yours,

Penrose Hallowell Secretary of Agriculture

PHOTO CREDIT: Grant Heilman Lititz, PA

ACKNOWLEDGEMENTS

THE PENNSYLVANIA CROP REPORTING SERVICE EXPRESSES APPRECIATION TO ALL FRUIT PRODUCERS WHO VOLUNTARILY COOPERATED IN FURNISHING DATA PERTAINING TO THEIR OPERATIONS. SPECIAL RECOGNITION IS EXTENDED TO THE FOLLOWING PEOPLE WHO CONTRIBUTED IN VARIOUS WAYS:

WILLIAM J. FLUKE, RETIRED STATISTICIAN-IN-CHARGE, PENNSYLVANIA SSO

CHARLES W. HAMMOND, STATISTICIAN-IN-CHARGE, NEW ENGLAND SSO

MARSHALL RITTER, EXTENSION SERVICE - PENNSYLVANIA STATE UNIVERSITY

THOMAS E. PIPER, EXTENSION SERVICE - ADAMS COUNTY

THOMAS OBOURN, EXTENSION SERVICE - ERIE COUNTY

RAYMOND REITER, PENNSYLVANIA DEPARTMENT OF AGRICULTURE - BUREAU OF MARKETS

J. WARD COOPER, PROCUREMENT OFFICER - KNOUSE FOODS COOPERATIVE

THE ENUMERATIVE STAFF OF THE PENNSYLVANIA CROP REPORTING SERVICE

THE OFFICE STAFF OF THE PENNSYLVANIA CROP REPORTING SERVICE:

HOWARD M. JONES, J. NEIL WOODWARD - ELECTRONIC DATA PROCESSING

CHARLES D. WILLIAMS, ADMINISTRATIVE OFFICER

MIRIAM STOCK JOANN LIPPERT JUDITH PALMER BETSY IBAUGH JANIE JACKSON VIVIAN LONG MOLLY BEHNEY ELIZABETH MILLER LOUANN ENSMINGER BARBARA CLEMENS JAMES GOLDEN SUE WAGNER - TYPIST

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

TABLE OF CONTENTS

	Page	PEARS:	
Description of survey		Highlights of survey results	23
Highlights of survey results Orchards & Vineyards: Number of growers, trees and acres		Comparison of commercial grower and tree numbers by region - 1967, 1972 and 1978	23
by kind of fruit 1964, 1967, 1972 and 1978	111	Region and district maps, illustrated total number of trees	
All Fruit: Number and percent breakdown by age groups	iv	by county Total growers, acres, trees and production by county and	24
APPLES		region — 1972, 1978	25
Highlights of survey results	1	Total growers, acres, trees, and production by size of	
Comparison of commercial grower and tree numbers by	1 .	operation and region	26
region — 1967, 1972 and 1978	1	Comparison of commercial and non-commercial grower and tree numbers, 1967, 1972, and 1978	26
region — 1967, 1972 and 1978	1	Production, disposition and value 1930-1978	27
Region and district maps, illustrated total number of trees by county	2	Number of total trees by counties and age groups	
Total growers, acres, types of trees and production by	2	Total trees by variety and age groups :	29
county and region	3		
Total growers, acres, trees and production by size of	_	CHERRIES:	
operation and region	4	Highlights of survey results	30
Comparison of commercial and non-commercial grower and tree numbers, 1967, 1972, and 1978	4	Comparison of commercial grower and tree numbers by region 1967, 1972, and 1978	30
Cold storage bushel capacity by county and region	5	Region and district maps, illustrated total number of trees	
Production, disposition and value 1930-1978	6	by county	31
Comparison of total growers and trees of all ages by county, 1967, 1972 and 1978	7	Production, disposition and value 1940-1978	32
Number of total trees by counties and age groups	8	Total growers, acres, trees and production by county	33
Number of total standard size trees by counties and age	0	Tart Cherries: Total growers, acres, trees and production by size of operation and region	34
groups	9	Sweet Cherries: Total growers, acres, trees and production	34
Number of total size controlled trees by counties and age		by size of operation	34
groups	10	Tart Cherries: Comparison of total growers and trees of all	
Total all types by variety and age groups	11		35
Total trees, percent age breakdown of trees, production and yield	12	Tart Cherries: Number of total trees by counties and age	26
Total standard trees by variety and age groups	13	groups Total trees by variety and age groups	
Total size controlled trees by variety and age groups	14	Total trees by variety and age groups	31
Total Size controlled trees by variety and age groups	• •	GRAPES:	
PEACHES		Highlights of survey results	38
Highlights of survey results	15	Comparison of total number of vineyards and acres by	
Comparison of commercial grower and tree numbers by region — 1967, 1972 and 1978	15	region — 1972 and 1978	
Comparison of number and size of commercial orchards by	15	Region map, illustrated total number of acres by county.	38
region — 1967, 1972 and 1978	15	Total growers, acres and production by size of operation — 1972 and 1978	39
Region and district maps, illustrated total number of trees			39
by county	16		39
Total growers, acres, trees and production by county and region	17	•	40
Total growers, acres, trees and production by size of	17		41
operation and region	18	Average price paid by Pennsylvania wineries and	
Comparison of commercial and non-commercial grower and tree numbers, 1967, 1972, and 1978	18	processors for Pennsylvania grown grapes by variety 1976,	41
Production, disposition, and value 1930-1978	19		41
Comparison of total growers and trees of all ages by		Pennsylvania grown grapes by variety delivered to wineries	
county, 1967, 1972 and 1978	20	,	42
Number of total trees by counties and age groups	21	Utilization by variety used in Pennsylvania wineries and processing plants — 1976, 1977 and 1978	42
Total trees by variety and age groups	22	Utilization by variety of Pennsylvania grown grapes to all	42

PLUMS & PRUMES:	
Highlights of survey results	43
Comparison of commercial and non-commercial grower and tree numbers — 1967, 1972, and 1978	43
Region and district maps, illustrated total number of trees by county	44
Total growers, acres, trees and production by county and region	45
Total growers, acres, trees and production by size of operation	46
Total trees by variety and age groups	46
Number of commercial orchards and trees by size groups, selected counties	46
Total number of trees by counties and age groups	47
NECTARINES:	
Highlights of survey results	48
Comparison of commercial and non-commercial grower and tree numbers 1967, 1972, and 1978	48
Region and district maps, illustrated total number of trees by county	49
Total growers, acres, trees and production by county and	50

operation	51
Total trees by variety and age groups	51
Number of commercial orchards and trees by size groups, selected counties	51
Total number of trees by counties and age groups	52
APPENDIX:	
All fruit — acres by kind and county	53
Pennsylvania — peaches, nectarines, pears, plums and prunes — reported average weight per bushel of production	
– 1977.	54
Apples and peach varieties reported in Pennsylvania	55
Other fruits — varieties reported in Pennsylvania	56
Apples, peaches, pears — comparison of leading varieties in selected states	57
Pennsylvania — Usual dates of full bloom, harvest and marketing for principal fruit crops	58
Tree Density Guide	58
Orchard and Vineyard Survey Questionnaire59	-62

DESCRIPTION OF THE 1978 PENNSYLVANIA ORCHARD AND VINEYARD SURVEY

By: Chris L. Cadwallader

INTRODUCTION: Pennsylvania has a prominent position in deciduous fruit production on the National level. The Commonwealth usually ranks fourth or fifth in apple and peach production, fifth in grape production, sixth in cherry production and seventh in pear production. To some, Pennsylvania may not easily be recognized as a major fruit producing state because of the relatively small, intensified fruit producing areas in relation to the size of Pennsylvania.

Of the total 67 counties in the state, ten counties had 78 percent of the apple acreage. Erie county alone had 96 percent of the grape acreage, and six counties had 76 percent of the state's peach acreage. There are 28,692,480 acres in the Keystone state with approximately 61,900 acres in orchards and vineyards. Therefore, fruit acreage accounts for only 2 tenths of one percent of Pennsylvania's total land mass. Adams, Berks, Cumberland, Erie, Franklin, Lancaster, Lehigh and York counties had 81 percent of the total fruit acreage in Pennsylvania.

The fruit industry is a dynamic one, annually contributing approximately 60 million dollars, or 10 percent, to the state's total value of cash receipts from all crops.

SURVEY OBJECTIVES: Each kind and variety of fruit has special production and marketing characteristics and challenges. Some are best adapted to certain exposures, slope and soil; some are needed as pollinators and some can be planted on size-controlled root stock. Some ripen early, mid-season and late season, helping to spread out the production and marketing work load. Some are quite perishable while some are firm, storable and transportable. Some are best eaten fresh or in culinary preparations such as salads, sauce, fruit cocktail, etc.; whereas some are best baked whole or as pie filling and some are best utilized for juice, wines, or brandy.

The purpose of this survey is to satisfy requests by various segments of the fruit industry for a detailed inventory of Pennsylvania's fruit tree numbers and grape vine acreage by age and variety. Growers, wholesalers, cooperatives, brokers, processors, retailers, input suppliers, research workers, county agents and government need and use the survey data for many important purposes. Growers provide the survey information, and the benefits derived through analysis of this data are channeled back to the growers through improved services.

This is the sixth in a series of Orchard and Vineyard inventory surveys conducted in 1953, 1957, 1964, 1967 and 1972 for Pennsylvania. This report will also be comparable with surveys compiled by other State Statistical Offices. If copies of the reports for other States are needed, they may be obtained by writing to the Pennsylvania Crop Reporting Service.

DEFINITION OF COMMERCIAL FRUIT OPERATION: A commercial orchard is defined as one having 100 or more trees of one of the following fruits being maintained for production: apples, peaches, pears, plums and prunes, sweet cherries, tart cherries or nectarines. A commercial vineyard is defined as one having two acres or more of grape vines maintained for production.

Fruit operations which did not meet these requirements were excluded in this survey. Also excluded from this survey were mature orchards and vineyards which qualified as commercial but were not being maintained for production at the time of data collection. The tables contained within this publication with (total) in the heading include counts from all commercial fruit operations regardless of number of trees or acres of the specified fruit. Tables with (commercial) in the heading exclude growers who do not have 100 or more trees for the respective fruit or two acres or more for grapes.

SURVEY METHODOLOGY: In June of 1977 the Crop Reporting Service began to solicit lists of potential fruit growers from County Agents, processing firms, grower associations and cooperatives, trade publications and various fruit directories. Over 80 lists were received and reviewed. This effort yielded 4,230 names. These names were then checked for duplication within the listings and upon completion, 2,680 names of potential fruit growers remained for inquiry.

In November of 1977 a screening questionnaire was developed and mailed. A second and third request were mailed to the non-respondents. A telephone follow-up was conducted in January and February of 1978 for the remaining non-respondents. Of the 2,680 names of potential fruit growers, 175 could not be contacted or verified.

In addition to the list building process mentioned above, the screening questionnaire and the survey questionnaire asked each individual to list names of fruit operations nearby. This "snowball technique" netted an additional 140 names of potential fruit growers for further inquiry.

The overall list building project resulted in a master list of 1,510 commercial fruit grower operations. The remaining potential fruit growers were either out of business or did not qualify as commercial operations.

The master list was mailed a survey questionnaire in March 1978 with a second request mailed in April to 1,100 non-respondents. Of the 870 non-respondents to the second request, 550 had over 10 acres of fruit and were personally contacted while 320 with less than 10 acres in fruit were interviewed by telephone.

From the master list of 1,510 fruit growers, 1,275 commercial fruit reports were summarized. The balance of 235 were non-commercial, abandoned, out of business, etc. Every effort has been made to publish survey results in a detailed format as possible without relaxing restrictions on disclosure of individual operations. Crop utilization and value estimates presented herein were obtained through the annual estimating programs of the Pennsylvania Crop Reporting Service.

OTHER VARIETIES: This category includes minor varieties of the specified fruit. Included are fruit tree numbers from growers who reported a small quality of "miscellaneous" or "other" varieties. A small percentage of data for some of the major varieties may be included in the "other" category.

HIGHLIGHTS OF SURVEY RESULTS

Number Of Commercial Orchards/Vineyards: The number of commercial fruit operations accounted for in the 1978 survey was 1,275 compared with 1,035 in the 1972 survey, a 23 percent increase. Commercial nectarine orchards increased 61 percent from 44 in 1972 to 71 in 1978. A total of 436 commercial grape vineyards were counted in 1978 compared with 348 in 1972, an increase of 25 percent. Apple orchards at 825, increased 22 percent from 674 in 1972. Commercial pear orchards increased 7 percent from 180 in 1972 to 193 in 1978, and peach orchards increased from 472 to 498, or 6 percent.

On the declining side, tart cherry orchards dropped 30 percent from 201 in 1972 to 140 in 1978. Commercial plum and prune orchards declined 28 percent from 108 in 1972 to 78 in 1978. Sweet cherry operations at 61 in 1978 compared with 73 in 1972, down 16 percent.

Trees In Commercial Orchards: For commercial tree numbers (100+ for each fruit), nectarine trees more than doubled, pear trees increased 23 percent, sweet cherry trees increased 19 percent and apple trees increased 18 percent, while plum and prune, tart cherry and peach trees declined 20, 16 and 3 percent respectively from 1972.

Age Of Trees: Of the total trees accounted for on all commercial fruit operations, 15.9 percent were in the 1-3 year age group, 14.6 percent in the 4-6 year age group, 48.2 percent in the 7-21 year age group and 21.3 percent in the 22 years plus age group.

Acreage Of Commercial Trees: The corresponding acreage for commercial fruit trees (100+ for each fruit) on the 1,275 commercial fruit farms in 1978 was 47,137.5. This is a 6 percent decline from the 50,304 acres in 1972. Increased tree planting densities are primarily responsible for the decline in acreage.

Acreage Of Commercial Vineyards: The acreage of commercial vineyards in 1978 was 14,245.4 compared with 9,865.8 in 1972, a 44 percent increase. All fruit production regions were up sharply from 1972 acreage levels.

Age Of Acreage In Vineyards: Of the total 14,271.3 acres of grapes on all commercial fruit farms, 10.0 percent were in the 1-3 year age group, 9.3 percent in the 4-6 year age group and 80.7 percent in the 7 years and older age group.

Photo Credit: Tom Piper

PENNSYLVANIA: ORCHARDS AND VINEYARDS (TOTAL & COMMERCIAL): NUMBER OF FARMS, TREES AND ACRES BY KIND OF FRUIT - 1964, 1967, 1972 & 1978

Fruit :	F	arms	τ.	rees	A	cres	Trees	Per Acre
:	Total	: Commercial	Total	Commercial	Total	Commercial	Total	Commercia
				· <u>196</u>	4			
Apples	1/	984	<u>1</u> /	1,710,115	<u>1</u> /	39,837	1/	42
Peaches	<u>T/</u>	742	<u>J</u> /	1,050,311	<u>Ţ/</u>	13,509	Ĭ/ Ĭ/ <u>Ĭ</u> /	78
ears	1/	188 353	<u>!/</u>	73,255 322,416	1/ 1/	994 3,518	<u>'</u> /	74 92
art Cherries Sweet Cherries	₹⁄	91	Ţ/ Ţ/ Ţ/ <u>Ţ</u> /	27,680	17	489	1/	57
Grapes	T/ T/ T/ T/ T/	303	<i></i>		T/ T/ T/ T/ T/ T/ T/	7,292	Ţ	57 1/ 1/
Plums & Prunes	<u>T</u> /	1/	<u>'</u> '/	<u>1/</u>	<u>I/</u>	1/	1/	Ŋ
ectarines	<u>ľ</u> / , , ,	· · · · · · · · · · · · · · · · · · ·	<u>1</u> /	<u>1</u> /	1/	σς ς <u>π</u> /	Ţ	<u>1</u> /
ill Fruit	1,4-	\$6 <u>3</u> /	-	-	Ŋ	65,6 3 9 <u>2</u> /	-	-
				1967				
pples	968	879	1,774,885	1,771,582	38,558	y .	46	1/
eaches	780 580	665 227	1,074,108	1,069,598	13,297	. 1/	81	ħ
ears art Cherries	580 481	237 283	104,934 275,473	. 94,421 270,906	1,301 3,236	V TV TV TV TV TV	. 81 85	17 17 17 17 17 17
weet Cherries	386	86	32,944	26,296	702	Ϋ/	47	Ϋ́
rapes	420	-	-	-	8,644	Ϊ/	-	<i>-</i>
lums & Prunes	363	127	49,505	42,173	944	<u>Ţ/</u>	52	1/
ectarines	141	35	26,931	24,039	352	1/	77 -	1/
ll Fruit	1,32	21 <u>3</u> /	-	-	67,034	<u> </u>	-	-
ppleseachesearheseart Cherriesweet Cherries	715 545 401 318 232 379	674 472 180 201 73 348	1,815,608 887,001 104,288 220,667 32,343	1,813,756 882,550 96,373 217,610 28,230	34,601 11,076 1,212 2,613 618 9,887.7	34,547 10,955 1,073 2,550 526 9,865.8	52 80 86 84 52	53 81 90 85 54
lums & Prunes ectarines	281 130	108 44	41,573 21,352	36,327 19,024	528 253	431 222	79 84	84 86
II Fruit	1,03		-	-	60,779.7	60,169.8	-	-
				1978				
pples	893	825	2,145,658	2,142,214	32,858.4	32,790.9	65	65
eaches	616	498	856,842	852,052	9,781.7	9,727.5	88	88
ears	477	193	127,158	118,874	1,499.8	1,380.7	85	86
art Cherries	302	140	186,387	183,768	2,000.5	1,967.0	93	93
veet Cherries rapes	269 474	61 436	38,019	33,068	545.7	472.5	. 70	70
upcommen	319	78	35,479	29,120	14,271.3 386.5	14,245.4 319.3	92	- 91
lums & Prunes			JJ 77 J	6.79160	300.3	212.3	74	91
lums & Prunes	224	71	47,938	44,877	527.1	479.6	91	94

^{1/} Data not available.
2/ Does not include plum, prune or nectarine data.
3/ Total number of commercial fruit farms in Pennsylvania. Farms (total) is the total number of commercial fruit farms reporting. Farms (commercial) is the number of commercial fruit farms reporting 100 or more trees for each particular fruit or two or more acres for grapes.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Photo Credit: Tom Piper

Fruit -	1975- (1-3 Y		1972 <i>-</i> (4-6 Y		: 1957- : (7-21 Y		: 1956 & I : (22 Year		Total Al	1 Ages
:	Number	Percent	Number	Percent	. Number	Percent	Number	Percent	Number	Percent
Apples	311,944	14.5	262,664	12.3	1,000,463	46.6	570,587	26.6	2,145,658	100.0
Peaches	176,261	20.6	158,743	18.5	470,106	54.9	51,732	6.0	856,842	100.0
Pears	11,546	9.1	18,318	14.4	68,579	53.9	28,715	22.6	127,158	100.0
Tart Cherries	27,597	14.8	31,239	16.8	64,065	34.4	63,486	34.0	186,387	100.0
Sweet Cherries	6,084	16.0	4,019	10.6	15,444	40.6	12,472	32.8	38,019	100.0
Plums & Prunes	4,454	12.6	5,622	15.8	20,775	58.6	4,628	13.0	35,479	100.0
Nectarines	9,909	20.7	19,974	41.6	17,868	37.3	. 187	.4	47,938	100.0
TOTAL	547,795	15.9	500,579	14.6	1,657,300	48.2	731,807	21.3	3,437,481	100.0
Grapes	1,428.6	10.0	1,320.6	9.3	11,522.1	80.7	<u>2</u> /	2/	14,271.3	100.0

^{1/} Number of acres for grapes, number of trees for all other fruits. 2/ Included in the 7-21 year age group.

APPLES

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Number of Orchards and Trees: A total of 893 apple growers were accounted for in the 1978 survey with 825 qualifying as commercial (100+ trees). In 1972 the total number of growers was 715 with 674 qualifying as commercial. Tree numbers have shown a continued gain since the first commercial fruit tree survey conducted in 1953. Commercial apple growers in 1978 had 2,142,214 trees compared with 1,813,756 trees in 1972, an 18 percent increase. Of the total 2,145,658 apple trees in 1978, 65 percent were standard size trees and 35 percent dwarf, semi-dwarf, spur type or trellis. Comparable percentages for the 1972 survey were 75 and 25 respectively. Of the 825 commercial apple growers, 180 or 22 percent accounted for 81 percent of the trees.

Acreage In Orchards: A total of 32,790.9 acres of land was being used by commercial apple orchards in 1978. This is a decline of 1,756.1 acres from 1972. The fact that commercial apple acreage declined 5 percent from 1972 while corresponding trees increased 18 percent is indicative of the 10 percent increase in size controlled rootstock during the same period. Trees per acre increased from 53 in 1972 to 65 in 1978.

Location Of Trees: Apples are widely grown throughout Pennsylvania but the inventory of commercial trees in Fruit Region I accounts for 64 percent of the total. This is a 2 percent decline from 1972. The ten leading counties (Adams, Franklin, Lehigh, Berks, York, Erie, Bedford, Cumberland, Snyder and Allegheny) contained 78 percent or 1,748,167 of the total 2,145,658 trees.

Age Of Trees: Of the total 2,145,658 apple trees, 14.5 percent were 1-3 years old, 12.3 percent 4-6 years old, 46.6 percent 7-21 years old and 26.6 percent 22 years or older. New plantings of standard size trees continued to decline in relation to the increase in size controlled tree planting. For trees planted since 1972, 75 percent were of size controlled types.

Photo Credit: Grant Heilman, Lititz, PA.

Varieties: Red Delicious continues to be the leading variety accounting for 28 percent of all trees in 1978. The number of Red Delicious trees increased 54 percent from 1972. Other leading varieties as a percent of total trees are: York Imperial - 19, Golden Delicious - 16, Rome Beauty -11, Stayman -9, Jonathan and McIntosh -4. Of the total trees 1-3 years old, 40 percent were Red Delicious and 11 percent Golden Delicious.

PENNSYLVANIA: APPLES (COMMERCIAL): COMPARISON OF GROWERS AND TREE NUMBERS BY REGION - 1967, 1972, and 1978

:	1967	Survey	1972	Survey	1978	Survey	Percent Chan	ge 72/78
Region	Number Of Orchards	Number Of Trees	: Number : Of Orchards	Number Of Trees	Number Of Orchards	Number Of Trees	Number Of Orchards	Number Of Trees
IIV & V	197	1,074,964 296,071 203,622 196,925	272 147 144 111	1,189,904 276,350 205,173 142,329	281 188 181 175	1,362,784 340,801 252,169 186,460	+ 3 +28 +26 +58	+15 +23 +23 +31
ENNSYLVANIA	879	1,771,582	674	1,813,756	825 .	2,142,214	+22	+18

PENNSYLVANIA: APPLES (COMMERCIAL): COMPARISON OF NUMBER AND SIZE OF ORCHARDS BY REGION - 1967, 1972 and 1978

	Numbar	Of Orch	ards	:			Иыл	ber Of	Orchard:	s In Eacl	h Size G	roup			
Region :	MONDET	01 01 01	21.03	:	100-499	rees	500	-2,499	Trees	2,50	00-4,999	Trees	5,00	0 Trees &	Over
	1967 :	1972 :	1978	: 1967	: 1972	: 1978	: 1967 :	1972	: 1978	: 1967	: 1972	: 1978	1967	: 1972 :	1978
IIIIV & V	319 188 197 175	272 147 144 111	281 188 181 175	75 97 102 89	63 70 66 51	74 96 90 108	142 59 76 71	109 44 54 47	101 61 63 52	54 19 13 11	44 21 15 8	45 17 15 10	48 13 6 4	56 12 9	61 14 13
PENNSYLVANIA	879	674	825	363	250	368	348	254	277	97	88	87	71	82	93

1

Number of Apple Trees by County - 1978

		: Standa	rd Type	Dwarf, Se Spur Type	mi-Dwarf, & Trellis		All Types		
County :	Growers	:	:	:			Trees	3	Production Bushels
Region :	diowers	Acres	Total	: Acres :	Total	Acres	: 	Trees	2/
•		: ^c/e3	: Trees :	: //c/c3	Trees		Total	Per Acre	
REGION I:		<u>•</u>	•	·		•	<u>•</u>	'·	<u>'</u>
Adams	161	12,433.8	673,950	1,983.1	255,341	14,416.9	929,291	65 61	5,157,369 367,563
Cumberland	16 48	722.0 3,770.9	39,799 239,668	121.5 495.4	11,682 60,127	843.5 4,266.3	51,481 299,795	70	1,826,464
Franklin Perry.!	10	94.5	3,125	9.0	352	103.5	3,477	34	23,611
York		887.9	35,292	470.3	43,952	1,358.2	79,244	58	512,614
TOTAL	290	17,909.1	991,834	3,079.3	371,454	20,988.4	1,363,288	65	7,887,621
REGION II:				226.0	51 400	1 015 0	07.010	77	400 963
Berks	35	399.0	35,577	816.2 68.1	51,433	1,215.2 231.2	87,010 19,405	72 84	400,863 82,853
Bucks Pike	20 9	163.1 40.4	10,822 1,428	13.2	8,583 2,668	53.6	4,096	76	12,970
Chester	14	222.2	11,038	149.5	20,028	371.7	31,066	84	152,972
Dauphin	9	122.0	6,604	85.7	5,174	207.7	11,778	57	86,001
Delaware	. 8	53.0	1,541	19.1	2,287	72.1	3,828	53	18,621
Lancaster	23	224.6	8,779	139.4	12,386	364.0 76.5	21,165 6,755	58 88	136,602 33,160
Lebanon	4 20	45.0 833.5	2,133 71,016	31.5 721.7	4,622 30,808	1,555.2	101,824	66	284,353
Lehigh Montgomery	20 16	155.9	4,562	41.3	4,790	197.2	9,352	47	51,726
Northampton	6	261.0	15,140	222.0	10,555	483.0	25,695	53	115,648
Schuylkill	42	249.0	12,828	63.5	6,952	312.5	19,780	63	128,273
TOTAL	206	2,768.7	181,468	2,371.2	160,286	5,139.9	341,754	67	1,504,042
REGION III:							53 530	***	364 003
Bedford	21	496.0	24,261	200.0	27,317	696.0	51,578 35,094	<i>7</i> 4 55	164,992 227,400
Blair	6 8	509.0 144.5	22,514 4,630	130.0 34.6	12,580 2,279	639.0 179.1	6,909	39	34,323
Bradford	4	89.0	4,682	98.0	11,600	187.0	16,282	87	45,276
Clinton & Potter	4	29.1	1,076	1.2	174	30.3	1,250	41	7,689
Columbia	15	40.3	1,824	90.5	7,010	130.8	8,834	68	44,684
Huntingdon & Fulton	5	35.0	1,039	10.0	1,013	45.0	2,052	46 63	12,596
Juniata	14	307.7	17,397	81.0	7,161	388.7	24,558 6,524	63 53	112,769 21,717
Lackawanna	10 22	112.3 144.3	5,328 5,541	11.8 43.9	1,196 3,755	124.1 188.2	9,296	49	45,853
Luzerne Lycoming	16	116.3	4,104	59.€	12,543	175.9	16,647	95	50,190
Mifflin	.4	37.0	1,606	43.U	2,992	80.0	4,598	58	19,153
Montour & Northumberland	30	230.7	8,759	58.8	6,171	289.5	14,930	52	73,138
Snyder	19	488.8	24,550	145.5	15,754	634.3	40,304	64 37	217,331 5,675
Tioga Union	3 6	50.0 22.3	1,796 1,137	.6 8.1	60 625	50.6 ^-30.4	1,856 1,762	58	6,059
Wayne & Susquehanna	5	44.0	978	28.0	2,600	72.0	3,578	50	15,826
Wyoming	4	150.0	6,296	4.0	650	154.0	6,946	4 5	24,400
TOTAL	191	3,046.3	137,518	1,048.6	115,480	4,094.9	252,998	62	1,129,071
REGION IV:		507.0	10.556	160.0	16 200	676.0	25 020	53	94.531
Allegheny	19 4	507.0 66.2	19,556 3,568	169.2 36.0	16,382 2,461	676.2 102.2	35,938 6,029	59	5,955
Armstrong	16	60.5	2,798	35.8	5,263	96.3	8,061	84	20,536
Butler	6	17.0	1,247	12.4	588	29.4	1,835	62	3,510
Cambria	4	9.0	369	25.0	600	34.0	969	29	5,175
Clearfield	4	40.1	2,187	28.0	2,792	68.1	4,979	73	12,770
Crawford	7 4	17.5 13.5	714 648	27.0 1.2	2,070 118	44.5 14.0	2,784. 766	63 55	6,003 4,340
Elk & McKean Fayette, Somerset & Greene.	5	81.0	4,166	15.5	1,349	96.5	5,515	57	44,629
Indiana!	16	124.7	5,545	74.8	5,469	200.2	11,014	55	10,267
Jefferson & Clarion	3	21.0	423	17.0	3,775	38.0	4,198	110	4,385
Lawrence	10	59.6	2,491	24.0	1,783	83.6	4,274	51	20,475
Mercer	12	56.0	2,475	8.7	601	64.7	3,076 5,717	48 71	14,459 23,231
Venango:	4 17	65.0 214.6	3,961 13,784	16.0 · 19.3	1,756 2,794	81.0 233.9	5,717 16,578	7} 71	30,700
Washington Westmoreland	8	25.2	840	29.5	3,343	54.7	4,183	77	300
TOTAL	139	1,377.9	64,772	539.4	51,144	1,917.3	115,916	61	301,266
REGION V:				•					
Erie	62 62	421.2 421.2	22,827 22,827	296.7 296.7	48,875 48,875	717.9 717.9	71,702 71,702	100 100	94,522 94,522
PENNSYLVÁNIA	893	25,523.2	1,398,419	: 7,335.2	747,239	32,858.4	2,145,658	65	10,916,522

^{1/} Some counties are combined to avoid disclosure of individual operations.
2/ Production in 1977 from acreage maintained for production in 1978.

PENNSYLVANIA: APPLES (TOTAL): GROWERS, ACRES, TREES AND PRODUCTION BY SIZE OF OPERATION AND REGION, 1978

Size Of Operation :	Gra	wers	Tre	es	. Ac	res	Product	ion <u>1/</u>
(Trees)	Number	Percent	Number	Percent	Number	Percent	Bushels	Percen
egion I:							· · · · · · · · · · · · · · · · · · ·	
99	9	3	504		9.0		2,143	
00-199	2Ó	ž	2,870		69.1	_	17,358	-
0-499	54	19	18,513	1	347.6	2	138,524	-
0-999	49	17	33,042	3	675.8	3	240,183	2
000-2,499	52	18	86,665	ž	1,723.4	8	725,639	3 9
500-4,999	45	15	168,236	12	2,984.5	15	1,105,384	14
000+	61	21	1,053,458	77	15,179.0	72	5,658,330	72
tal	290	100	1,363,288	100	20,988.4	100	7,887,621	100
gion II:								
	10	9	050		15.5			
99	18		953	-	15.5	-	5,111	-
0~199	45 5 1	22 25	5,823	2	117.4	2 .	38,576	2
0~499			15,996	5	303.9	6	100,079	7
0-999	34 27	16 13	22,628	7 12	413.0	.8	114,238	.8
000-2,499	17		41,517		663.6	13	178,183	12
500-4,999		8	63,222	18	783.2	15	309,622	21
000+	14	7	191,615	56	2,843.3	56	758,233	50
tal	206	100	341,754	100	5,139.9	100	1,504,042	100
gion III:		_						
99	15	8	829	-	18.0	-	5,470	-
0-199	48	24	6,447	3	141.9	4	33,826	3
0-499	42	21	13,861	5	284.2	7	63,084	6
0-999	34	17	24,192	10	551.3	13	121,351	11
000-2,499	29	15	45,345	18	908.2	22	227,441	20
500-4,999	15	8	53,422	21	687.0	17	220,017	19
000+	13	7	108,902	43	1,504.3	37	457,882	41
ta1	196	100	252,998	100	4,094.9	100	1,129,071	100
gion IV:								
99	10	7	507	-	15.0	7	1,645	1
0~199	40	29	6,197	5	132.2	7	30,935	10
0-499	46	33	15,898	14	291.8	15	42,072	14
0~999	18	, 13	13,470	12	228.8	12	58,540	19
000-2,499	16	' iž	26,449	23	415.5	22	73,783	25
500-4,999	ğ	6	53,395	46	834.0	43	94,291	31
000+	2/	-	-	-	-	-	J-7,6J1 -	- -
:a1	139	100	115,916	100	1,917.3	100	301,266	100
gion V:								
99	16	26	651	1	10.0	1	751	,
0~199	9	14	1,586	2	20.0	3	3,512	1 A
0~499	13	21	5,936	8	77.1	11	3,512 8,564	4
J-999	7	11	5,393	8 8	77.1 81.7	11		9
000-2,499	11	18					16,267	17
500-4,999	3	16 5	18,236	25 17	193.7	27	16,590	18
×00+	3	5	11,815 28,085		169.4 166.0	24 23	18,088	19
:al	62	100	28,085 71,702	39 100	717.9	23 100	30,750 94,522	32 100
<u>l_Regions</u> :		-	,	* = ="				100
		<i>a-</i>						
99	68	. 8	3,444	:	67.5	0	15,120	-
0~199	162	18	22,723	1	480.6	3	124,207	1
3~499	206	23	70,204	3	1,304.6	4	352,383	3 5
0-999	142	16 .	98,725	5	1,950.6	6	550,579	5
000-2,499	135	15	218,212	10	3,904.4	12	1,221,636	11
500+	180	20	1,732,350	81	25,150.7	77	8,652,597	80

PENNSYLVANIA: APPLES - COMPARISON OF COMMERCIAL & NON-COMMERCIAL GROWER AND TREE NUMBERS 1967, 1972, 1978 Number Of Growers Number Of Trees Trees 1967 1972 1978 1967 1972 1978 68 825 3,303 1,771,522 1,852 1,813,756 3,444 2,142,214 89 41 879 674 968 715 893 1,774,885 1,815,608 2,145,658 Total 1/.....

Production in 1977 from acreage maintained for production in 1978. Combined with the 2,500-4,999 size group to avoid disclosure of individual operations.

 $[\]underline{1}\prime$ Includes trees in orchards classified as commercial (100+ trees) for any fruit.

PENNSYLVANIA: APPLE COLD STORAGE CAPACITY BY DISTRICT - 1978

District	3ushe1	District	Bushel	:	District	Bushel
(1) Northwestern(2) North Central(3) Northeastern	717,300	(4) West Central	104,300	(7)	Southwestern	192,500
	75,250	(5) Central	483,940	(8)	South Central	1,716,900
	24,650	(6) East Central	435,825	(9)	Southeastern	575,315

Total Apple Cold Storage Bushel Capacity - 3,726,030

Photo Credit: Tom Piper

PENNSYLVANIA: APPLES (COMMERCIAL): PRODUCTION, DISPOSITION AND VALUE, 1930-1978

per .		Produc	tion <u>1</u> /			Utili	zation			Price	: Value Of
	Year					Sa	les			Per Pound	Utilized
- 1		Total	Utilized	: Fresh & : : Home Use :	Juice	Canned	Frozen	: Othe : Sale		3/	Production
,	-				- Millio	n Pounds				Cents	Thous.Dols
	1930	424.0	424.0	100.5	<u>2</u> /	-	· -	323.	5 323.5	1.10	10,704
, to;	1940	359.0	348.5	225.3	<u>2</u> /	61.3	-	61.	9 123.2	.60	4,728
	1950	263.0	263.0	141.5	<u>2</u> /	67.1	5.8	48.	6 121.5	1.60	9,718
لسا	1960	322.0	322.0	150.4	<u>2</u> /	125.4	19.7	26.	5 171.6	3.90	12,526
	1970	540.0	510.0	195.0	78.9	225.1	2.6	. 8.	4 3 15.0	3.80	19,329
	1970 1971	540.0	505.0	185.0	124.4	186.8	1.5	7.	3 320.0	3.90	19,695
	1972	400.0	400.0	169.9	64.0	163.7	.8	1.	6 230.1	5.40	21,680
	1973	500.0	500.0	186.9	50.1	250.1	4.4	8.	5 313.1	8.70	43,500
1	1974	480.0	480.0	168.1	62.7	222.1	3.8	23.	3 311.9	8.30	39,840
" - !	1975	550.0	503.5	228.2	62.2	201.5	3.9	7.	7 275.3	. 5.90	29,707
4	1976	360.0	359.0	151.5	69.2	128.5	6.1	3.	7 207.5	8.30	29,797
- 1	1977	460.0	460.0	166.1	89.9	186.9	10.4	6.	7 293.9	9.10	41,860
****	1978	400.0	400.0	158.9	70.3	151.8	3.2	15.	8 241.1	8.90	35,600

Total production is the quantity actually harvested plus quantities not harvested because of economic reasons. Utilized production is the amount sold plus the quantities used at home or held in storage. When total and utilized production are equal, economic abandonment and cullage quantities are considered at a "normal" level.

Juice is included in "other sales".

Fresh and processing prices combined.

Photo Credit: Tom Piper

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

PENNSYLVANIA: APPLES (TOTAL): COMPARISON OF ORCHARDS AND TREES OF ALL AGES BY COUNTIES, 1967, 1972 AND 1978

: :	Tree S	urvey, 1967	Tree Surve	y, 1972 <u>1</u> /	: Tree Sur	rvey, 1978
County & District	Number Of Orchards	Total Trees	Number Of Orchards	Total Trees	Number Of Orchards	Total Trees
rawford	2	1.450		_	7	2 704
rie	94	52,164	64	61,011	62	2,784 71,702
orest	<u>-</u> 4.	29,972	-	-	-	· -
ercerenango	6	10,005	4	9,351	12 4	3,076
arren	106	-	•	•	<u>-</u>	5,717
ORTHWESTERN, TOTAL	106	93,591		3 262	85	83,279
radford!ameron.3	-	4,334	<u>5</u>	3,253	8 .	6,909
1inton.:	3	<u>2</u> /	4	1,122	2	2/
1k	8	-	-	7.416	.3	501
ycomingcKean	3	8,973 944	3 -	7,416	16 1	16,647
otter	1	2/	-	-	ż	<u>2/</u> <u>2</u> /
ıllivan	5	-	-	-	<u>-</u>	-
ORTH CENTRAL, TOTAL	28	2,501 17,684	-	-	3 35	1,856 27,428
ckawanna	11	3,294	8	2,388	10	6,524
squeharlna	3	1,920	-	•	2 .	3/
yne /oming	5 9	1,778 6,428	4	5,309	3 4	3,578
ORTHEASTERN, TOTAL	28	13,420	-	2,309	4 19	6,946 17,048
rmstrong	3	5,037	3	4,405	4	6,029
eaver	14 6	10,919 17,633	9	7,013	16	8,061
larion	i	2/	-	-	6 2	1,835 2/
ndiana	9	3,435	6	5,305	16	11,014
effersonawrence	2 · 13	2/ 5,591	4	2 126	1	2/ 4,274
ST CENTRAL, TOTAL	48	45,758	-	2,136	10 55	35,411
air	12	38,279	10	41,594	6	35,094
umbria	2 3	206	-	16 046	4	969
earfield	5 5	10,340 3,147	3 -	16,046	4 4	16,282 4,979
olumbia	13	5,471	12	6,639	15	8,834
auphin	5	13,357	5	11,071	9	11,778
ıntingdon	4 15	5,078 15,234	12	19,757	4 14	1,502 24,558
fflin	6 .	3,489	3	2,613	4	4,598
ontour	2	362	3	444	2	3/
orthumberland	25 6	16,063 3,088	19 3	10,769 2,539	28 10	14,930
nyder	25	28,048	18	28,358	19	3,477 40,304
nion	3	555	-	-	6	1,762
ENTRAL, TOTAL	126 5	142,717 894	4	566	129	169,067
ehigh	26	81,783	17	75,516	6 20	2,661 101,824
zerne	23	11,477	16	6,906	22	9,296
onroe	3 10	668 10.450	- 7	10 410	2	2/
orthamptonike	-	10,450	7	18,410	6 1	25,6 9 5
huylkill	42	23,166	30	17,301	42	19,780
ST CENTRAL, TOTAL	109	128,438			99	160.691
leghenyyette	20 2	30,444 2,227	14	7,150	19 . 1	35,938 2/
eene	2	408	-	-	ż	2/
merset	3	5,380	-	-	2	· 2/
shingtonstmoreland	17 6	12,613 3,387	6 4	6,886 2,324	17 8	16,578
UTHWESTERN, TOTAL	50	54,459			49	4,183 62,214
ams	183	693,828	165	806,145	161	929,291
dford mberland	26 15	39,648 42,225	20 14	45,239 48,204	21	52,128
anklin.,	78	277,425	50	275,991	16 48	51,481 299,795
lton	1	3/	-	-	1	3/
rk. JTH CENTRAL, TOTAL	56 359	59,192 1,112,318	44	57,305	55	79,244
ks	39	86,799	34	80,781	302 35	1,411,939 87,010
:ks	10	9,312	8	11,417	20	19,405
aware	15 6	29,047	11	19,426	14 -	31,066
caster	23	20,3 <u>9</u> 0	3 18	2,655 21,153	8 23	3,828
anon	6	11,149	4	9,249	23 4	21,165 6,755
ntgomery	14	6,569	1	8,105	16	9,352
iladelphia UTHEASTERN, TOTAL	1 114	2/ 166,500	- -	<u>-</u> -	120	-
FAL, OTHER	:: 	00,000	30	46,340	120	178,581
			Ju	74,540	-	_

^{1/} Comparable data only available on counties listed for 1972 survey. 2/ Not published separately to avoid disclosure of individual operations. 3/ Susquenenna County combined with Wayne County; Fuiton County combined with Sedford County; Montour County combined with Northumberland County to avoid disclosure of individual operations.

PENNSYLVANIA: APPLES (TOTAL): NUMBER OF TREES BY COUNTIES AND AGE GROUPS, 1978 1/

Country And Dispusion	Number O	f Trees Maintain	ed For Producți	ion According To	Year Set Out :	Percent
County And District	1975-1977 (1-3 Yrs.)	1972-1974 (4-6 Yrs.)	1957-1971 (7-21 Yrs.)	1956 & Earlier (22 Yrs +)	: Total All Ages :	Of Total
Crawford	15,688	70 17,696	. 2,002 26,519	431 11,799	2,784 71,702	.13 3.34
Forest	. 460 . 2,075	175 506	1,946 2,035	495 1,101	3,076 5,717	.14 .27
WarrenNORTHWESTERN, TOTAL	18,504	18,447	32,502	13,826	83,279	3.88
BradfordCameron	-	398 - 261	1,382	3,013 - 125	6,909 - 501	.32
Lycoming	10,389 45	678 10	2,770 184	2,810 1,276	16,647 1,515	.78 .07
TiogaNORTH CENTRAL, TOTAL	31	1,347	18 4,469	1,807 9,031	1,856 27,428	.09 1.28
Lackawanna	853	635 125 101	1,388 1,742 222	3,905 858 5,923	6,524. 3,578	.31 .17
Wyoming NORTHEASTERN, TOTAL	2,149	168	3,352	5,923 10,686	6,946 17,048	.32 .80
BeaverButlerClarion & Jefferson	1,118 995 650	75 1,279 327 3,125	3,718 4,145 221 140	1,411 1,519 292 283	6,029 8,061 1,835 4,198	.28 .37 .09 .20
Lawrence		239 191 5,236	.7,680 1,843 17,747	1,264 1,893 6,662	11,014 4,274 35,411	.51 .20 1.65
[™] BlairCambria CambriaγCentreγ	3,450 - 1,255	2,375 20	24,018 668	5,251 281	35,094 969	1.64 .05
Clearfield	2,325 2,259 876	7,275 145 2,215 1,428	5,334 2,013 3,305 6,880	2,418 496 1,055 2,594	16,282 4,979 8,834 11,778	.76 .23 .41 .55
Huntingdon. Juniata. Mifflin. Montour & Northumberland.	220 4,773 100 3,036	130 1,934 100 2,295	812 13,797 3,548 7,619	340 4,054 850 1,980	1,502 24,558 4,598 14,930	.07 1.15 .21 .69
Perry	3 8,921 384	225 6,239 2	1,666 16,709 623	1,583 8,435 753	3,477 40,304 1,762	.16 1.88 .08
CENTRAL, TOTAL	27,602 17,111 1,427	24,383 11,128 769	86,992 51,684 2,164	30,090 21,901	169,067 101,824	7.88 4.75
Northampton. *Pike, Carbon & Monroe. Schuylkill. EAST CENTRAL, TOTAL.	4,065 255 3,993 26,851	5,110 2,041 2,932 21,980	15,584 379 8,787 78,598	4,936 936 1,421 4,068 33,262	9,296 25,695 4,096 19,780 160,691	.43 1.20 .19 .92 7.49
Allegheny. Somerset, Greene & Fayette	2,859 260 1,054	1,501 224 1,169	25,304 4,957 12,958	6,274 74 1,397	35,938 5,515 16,578	1.67 .26 .77
Westmoreland	1,611 5,784	180 3,074	2,011 45,230	381 8,126	4,183 62,214	.20 2.90
Adams. Cumberland. Franklin. Fulton & Bedford. York.	118,428 5,414 35,512 12,930 13,463	87,794 4,246 50,522 4,240 10,837	455,096 16,813 114,688 28,167 39,196	267,973 25,008 99,073 6,791 15,748	929,291 51,481 299,795 52,128 79,244	43.31 2.40 13.97 2.43 3.69
SOUTH CENTRAL	185,747 11,677 2,703	157,639 12,711 3,831	653,960 41,363	414,593 21,259	1,411,939 87,010	65.80 4.05
Chester	7,862 988 2,733	6,237 8 3,551	6,362 11,815 1,478 9,368	6,509 5,152 1,354 5,513	19,405 31,066 3,828 21,165	.90 1.45 .18 .99
Lebanon Montgomery Philade?ohia SOUTHEASTERN, TOTAL	485 512 - 26,960	2,247 1,112 - 29,697	2,812 4,415 - 77,613	1,211 3,313 - 44,311	6,755 9,352 - 178,581	.31 .44 - 8.32
PENNSYLVANIA	311,944	262,664	1,000,463	570,587	2,145,658	100.00
PERCENT OF TOTAL TREES	14.5	12.3	46.6	26.6	100.0	_

 $[\]underline{ extstyle 1}/$ Some counties are combined to avoid disclosure of individual operations.

PENNSYLVANIA: APPLES (TOTAL): NUMBER OF STANDARD SIZE TREES BY COUNTIES AND AGE GROUPS - 1978 1/

:	Number 0	f Trees Maintain	ed For Producti	on According To	Year Set Out :	Percent
County & District :	1975-1977 (1-3 Yrs.)	1972-1974 (4-6 Yrs.)	1957-1971 (7-21 Yrs.)	1956 & Earlier (22 Yrs +)	: :Total All Ages :	Of Total
Crawford. Erie. Forest.	56 2,594	70 1,705	157 8,845	431 9,683	714 22,827	.05 1.63
MercerVenango	1,000	135	1,845 1,860	495 1,101	2,475 3,961	.18 .28
WarrenNORTHWESTERN, TOTAL	3,650	1,910	12,707	11,710	29,977	2.14
Bradford	515	185 - 213	1,087 - 115	2,843 - 125	4,630 - 453	.33
Lycoming Potter, Clinton & McKean Sullivan	105 25 -	5 - -	1,184 20	2,810 1,226	4,104 1,271	.30
NORTH CENTRAL, TOTAL	645	403	2,406	1,796 8,800	1,796 12,254	.13 .88
Lackawanna	85 - 50	110 - 101	1,228 120 222	3,905 858 5,923	5,328 978 6,296	. 38 . 07 . 45
NORTHWESTERN, TOTAL	135 125	211 75	1,570 1,957	10,686 1,411	12,602 3,568	.90 .25
Beaver. Butler. Clarion & Jefferson. Indiana. Lawrence.	95 485 - 94 102	65 315 - 127 20	1,540 155 140 4,060 476	1,098 292 283 1,264 1,893	2,798 1,247 423 5,545 2,491	.20 .09 .03 .40 .18
WEST CENTRAL, TOTAL	901	602	8,328 17,263	6,241 5,251	16,072 22,514	1.15 1.61
Cambria Centre Clearfield Columbia	35 - 35	20 120 - 57	68 2,139 1,691 715	281 2,388 496 1,017	369 4,682 2,187 1,824	.03 .33 .16 .13
Dauphin. Huntingdon. Juniata. Mifflin. Montour & Northumberland.	87 - 761 100 329	79 60 320 100 452	3,894 89 12,262 566 5,998	2,544 340 4,054 840 1,980	6,604 489 17,397 1,606 8,759	.47 .04 1.24 .11 .63
Perry. Snyder. Union. CENTRAL, TOTAL	723 374 2,444	143 701 2 2,054	1,439 14,935 8 61,067	1,543 8,191 753 29,678	3,125 24,550 1,137 95,243	.22 1.76 .08 6.81
Lehigh. Luzerne. Northampton. Carbon, Monroe & Pike. Schuylkill.	7,561 100 1,205 12 176	7,264 34 1,180 12 991	34,625 572 11,821 3 7,610	21,566 4,835 934 1,401 4,051	71,016 5,541 15,140 1,428 12,828	5.08 .40 1.08 .10 .92
EAST CENTRAL, TOTAL Allegheny Fayette, Greene & Somerset Washington Westroreland. SOUTHWESTERN, TOTAL	9,054 2,346 100 19 - 2,465	9,481 596 - 425 6 1,027	54,631 10,501 4,017 11,943 453 26,914	32,787 6,113 49 1,397 381 7,940	105,953 19,556 4,166 13,784 840 38,346	7.58 1.40 .30 .98 .06 2.74
Adams. Cumberland. Franklin. Bedford & Fulton. York. SOUTH CENTRAL, TOTAL.	15,879 364 16,137 100 854 33,334	35,054 1,496 29,373 140 1,772 67,835	358,580 15,751 99,367 18,089 18,551 510,338	264,437 22,188 94,791 6,482 14,115 402,013	673,950 39,799 239,668 24,811 35,292 1,013,520	48. 19 2. 85 17. 14 1. 78 2. 52 72. 48
Berks Bucks Chester Delaware Lancaster Lebanon Montgomery Philadelahi	428 111 85 80 172 - 10	3,642 883 185 - 228 75 130	13,223 3,393 6,286 152 3,009 847 1,269	18,284 6,435 4,482 1,309 5,370 1,211 3,153	35,577 10,822 11,038 1,541 8,779 2,133 4,562	2.54 .77 .79 .11 .63 .15
PhiladelphiaSOUTHEASTERN, TOTAL	886	5,143	28,179	40,244	74,452	5.32
PENNSYLVANIA	53,514	88,666	706,140	550,099	1,398,419	100.00
PERCENT OF TOTAL TREES	3.8	6.4	50.5	39.3	100.0	-

 $[\]underline{1}\!\!/$ Some counties are combined to avoid disclosure of individual operations.

PENNSYLVANIA: APPLES (TOTAL): NUMBER OF SIZE CONTROLLED TREES BY COUNTIES AND AGE GROUPS, 1978 1/

	Number Of I	Trees Maintaine	d For Productio	n According To Y	ear Set Out :	Percent
County & District :	1975-1977 (1-3 Yrs.)	1972-1974 (4-6 Yrs.)	1957-1971 (7-21 Yrs.)	1956 & Earlier (22 Yrs +)	: Total All Ages :	Of Tota
rawford	225	<u>.</u>	1,845	-	2,070	.28
rie Drest	13,094	15,991	17,674	2,116	48,875	6.54
ercer	460	40	101	-	601	.08
enango	1,075	506	175	-	1,756	.23
arren DRTHWESTERN, TOTAL	14,854	16,537	19,795	2,116	53,302	7.13
radford	1,601	213	295	170		
meron	1,001	213	293	170	2,279	.30
lk	-	48	-	-	48	.01
/coming Otter, Clinton & McKean	10,284 20	673 10	1,586 164	50	12,543 244	1.68
ullivan	-		-	-	-	-
loga	31	-	18	11	60	.01
ORTH CENTRAL, TOTAL	11,936	944	2,063	231	15,174	2.03
ıckawanna ıyne & Susquehanna	511 853	525 125	160 1,622	-	1,196 2,600	. 16 . 35
oming	650	-	- ,022	- -	650	.08
ORTHEASTERN, TOTAL	2,014	650	1,782	-	4,446.	.59
mstrong	700		1,761	-	2,461	.33
averitler	1,023 510	1,214 12	2,605 66	421	5,263 588	.70 .08
arion & Jefferson	650	3,125	-	-	3,775	.51
diana	1,737	112	3,620	-	5,469	.73
wrence, ST CENTRAL, TOTAL	245 4,865	171 4,634	1,367 9,419	421	1,783 19,339	.24 2.59
air	3,450	2,375	6,755	-	12,580	1.69
mbria	3,430	-	600	-	600	.08
ntre	1,220	7,155	3,195	30	11,600	1.55
earfieldlumbia	2,325 2,224	145 2,158	322 2,590	38	2,792 7,010	.37 .94
uphin	789	1,349	2,986	50	5,174	.69
ntingdon	220	70	723	-	1,013	.14
niata fflin	4,012	1,614	1,535 2,982	10	7,161 2,992	.96 .40
ntour & Northumberland	2,707	1,843	1,621	-	6,171	-82
rryyder	3 8,198	82 5,538	227 1,774	40 244	352 15 , 754	.05 2.11
ion	10	5,536	615	-	625	-08
NTRAL, TOTAL	25,158	22,329	25,925	412	73,824	9.88
high	9,550	3,864	17,059	335	30,808	4.13
zernenroe, Carbon & Pike	1,327 243	735 2,029	1,592 376	101 20	3,755 2,668	.50 .36
rthampton	2,860	3,930	3,763	2	10,555	1.41
huylkill	3,817	1,941	1,177	17	6,952	.93
ST CENTRAL, TOTAL	17,797	12,499	23,967	475	54,738	7.33
legheny	513 160	905 224	14,803 940	161 25	16,382 1,349	2.19 .18
merset, Greene & Fayetteshington	1,035	744	1,015	23	2,794	.37
stmoreland	1,611	174	1,558	-	3,343	.45
UTHWESTERN, TOTAL	3,319	2,047	18,316	186	23,868	3.19
amsdford & Fulton	102,549 12,830	52,740 4,100	96,516 10,078	3,536 309	255,341 27,317	34.17 3.66
mberland	5,050	2,750	1,062	2,820	11,682	1.56
ank]in	19,375	21,149	15,321	4,282	60,127	8.05
rk JTH CENTRAL, TOTAL	12,609 152,413	9,065 89,804	20,645 143,622	1,633 12,580	43,952 398,419	5.88 53.32
rks	11,249	9,069	28,140	2,975	51,433	6.88
CKS	2,592	2,948	2,969	. 74	8,583	1.15
ester	7,777	6,052	5,529	670	20,028	2.68
laware	908 2,561	8 3,323	1,326 6,359	. 45 · 143	2,287 12,386	.31 1.66
Danon	485	2,172	1,965	-	4,622	.62
ntgomery	502	982	3,146	160	4,790	.64
iladelohia JTHEASTERN, TOTAL	26,074	24,554	49,434	4,067	104,129	13.94
- income willing a consumer to the constant of		÷ • • • • •	,	,	,,	
NNSYLVANIA	258,430	173,998	294,323	20,488	747,239	100.00
	34.6			2.7	100.0	

 $[\]ensuremath{\underline{U}}$ Some counties are combined to avoid disclosure of individual operations.

PENNSYLVANIA: APPLES (TOTAL): ALL TYPES OF TREES BY VARIETY AND AGE GROUPS - 1978

Variety	1975-1977 (1-3 Yrs.)	1972-1974 (4-6 Yrs.)	1957-1971 (7-21 Yrs.)	1956 & Earlier (22 Yrs +)	Total All Ages	: Percent : Of : Total
SUMMER:						
Beacon	1,644	1,464	7,759	131	10,998	.5
Early Blaze	359	1,128	1,635	240	3,372	.2
Early McIntosh	2,866	1,348	3,817	1,255	9,286	.4
Lodi	555	464	2,698	913	4,630	.2
Rambo	861	1,166	7,587	7,143	16,757	.8
Other Summer	2,364	1,055	4,125	1,916	9,460	.5
TOTAL SUMMER	8,659	6,625	27,621	11,598	54,503	2.6
i !						
CALL.						
FALL:	. 117	112	1 520	2 076	A CAA	2
Grimes Golden		112	1,539	2,876	4,644	.2
Jonathan	-	5,565 426	44,216	23,793	81,232	3.8
Paulared (Size Controlled Only). Smokehouse		426 556	775	1 260	5,091	.2
Tydemans Red (Size Controlled On)			1,467	1,260	3,478	.2
Other Fall	• •	7,928	1,669	2 642	10,523	.5
TOTAL FALL		1,280 15,867	5,198	2,642 30,571	11,545	.5
TOTAL FALL	. 10,211	13,007	54,864	30,371	116,513	5.4
WINTER:						
Cortland	6,168	4,180	10,678	9,740	30,766	1.4
Empire (Size Controlled Only)	2,939	216	620	-	3,775	.2
Golden Delicious	34,117	35,299	176,463	95,881	341,760	15.9
Greenings	2,945	1,976	8,285	2,888	16,094	.8
Idared	7,593	1,652	4,532	540	14,417	.7
Macoun	1,369	870	1,153	520	3,912	.2
McIntosh	17,068	12,861	32,512	18,517	80,958	3.8
Northern Spy	3,845	1,699	2,920	4,565	13,029	.6
Red Delicious	124,537	109,791	288,282	72,627	595,237	27.7
Rome Red	22,666	18,923	88,453	38,136	168,178	7.8
Rome Regular	10,607	7,551	25,109	33,008	76,275	3.6
Spartan	1,746	1,067	3,143	7	5,963	.3
Stayman	19,842	12,374	71,140	79,702	183,058	8.5
Winesap	2,366	2,590	13,269	5,923	24,148	1.1
York Red	11,695	12,317	90,443	46,567	161,022	. 7.5
York Regular	16,523	13,826	96,686	115,727	242,767	11.3
Other Winter	1,943	2,980	4,290	4,070	13,283	.6
TOTAL WINTER,	288,074	240,172	917,978	528,418	1,974,642	92.0
! DTAL APPLES	311,944	262,664	1,000,463	570,587	2,145,658	100.0

PENNSYLVANIA: APPLES (TOTAL): TOTAL TREES, PERCENT AGE BREAKDOWN OF TREES, PRODUCTION AND YIELD BY VARIETY 1978

-	Yandah	Total Trees		Percent Of Tre	es Planted In:		: : Dunduskins 1/:	Yield
7	Variety :	•	1975-1977 (l-3 Yrs.)	: 1972-1974 : (4-6 Yrs.)	: 1957-1971 : (7-21 Yrs.)	:1956 & Earlie : (22 Yrs. +)	Production 1/	Per Tree <u>2</u> /
;			Percent	Percent	Percent	Percent	Bushels	Bushels
7	Beacon	10,998	15	13	71	1	28,502	3.0
	Cortland	30,766	20	13	35	32	126,430	5.1
	Early Blaze	3,372	11	34	48	7	5,125	i.7
	Early McIntosh	9,286	31	15	41	13	31,460	4.9
	Empire (Size Controlled Only)	3,775	78	6	16	-	1,700	2.0
	Golden Delicious	341,760	10	10	52	28	2,152,577	7.0
	Greenings	16,094	18	12	52	18	54,901	4.2
	Grimes Golden	4,644	3	2	33	62	34,719	7.7
	[dared	14,417	53	12	31	4	31,101	4.6
	Jonathan	81,232	10	7	54	29	384,364	5.2
	Lodi	4,630	12	10	58	. 20	24,196	5.9
	Macoup	3,912	35	22	30	13	11,948	4.7
	McIntosh	80,958	21	16	40	23	302,432	4.7
	Northern Spy	13,029	30	13	22	35	42,271	4.6
	Paulared (Size Controlled Only).	5,091	77	8	15	-	5,147	4.3
	Rambo	16,757	5	7	45	43	101,726	6.4
	Red Delicious	595,237	21	18	49	12	1,864,410	4.0
	Rome Red	168,178	13	11	53	23	919,494	6.3
	Rome Regular	76,275	14	10	33	43	509,751	7.8
	Smokehouse	3,478	6	16	42	36	22,125	6.7
	Spartan	5,963	29	18	53	-	13,393	3.2
	Stayman	183,058	11	7	39	43	1,108,363	6.8
	Tydemans Red (Size Controlled)	10,523	9	75	16	-	9,221	1.0
	Winesap	24,148	10	11	55	24	103,529	4.8
	York Red	161,022	7	8	56	29	1,160,075	7.8
	York Regular	242,767	7	6	40	47	1,730,408	7.6
	Other Summer	9,460	25	11	44	20	34,600	4.9
	Other Fall	11,545	21	11	45	23	38,973	4.3
	Other Winter	13,283	15	22	32	31	63,581	5.6
	All Varieties	2,145,658	14	12	47	27	10,916,522	6.0

^{1/} Production in 1977 from acreage maintained for production in 1978.

 $[\]underline{2}/$ Yield calculations are derived excluding the 1-3 year age category trees.

PENNSYLVANIA: APPLES (TOTAL): STANDARD TREES BY VARIETY AND AGE GROUPS - 1978

Variety :	1975-1977 (1-3 Yrs.)	: 1972-1974 : (4-6 Yrs.)	: 1957-1971 : (7-21 Yrs.)	: 1956 & Earlier : (22 Yrs. +)	: Yotal : All Ages
UMMER					•
Beacon (Fenton)	93	776	3,064	71	4,009
Earliblaze	6 1	297	1,599	65	2,025
Gravenstein	96	119	1 764	888	2,867
Lodi	394 394	777	1,764 6,761	7,128	15,060
RamboStrawberry	520	,,,	78	210	808
Yellow Transparent	32	5	304	338	679
Early McIntosh	118	302	2,121	1,219	3,760
Other Summer	119	330	1,739	1,297	3,485
TOTAL SUMMER	1,441	2,606	17,430	11,216	32,693
<u>ALL</u>					
Winter Banana	-	_	-	_	
Grimes Golden	30	45	1,299	2,864	4,238
Jonathan	1,201	2,794	32,442	23,173	59,610
Wealthy	-	-	46	705	751
Tydemans RedSmokehouse	15	91	1,188	-	-
Other Fall.	452	375	2,764	1,258	2,552
			2,704	1,905	5,496
TOTAL FALL	1,698	3,305	37,739	29,905	72,647
INTER					
Baldwin		-	107	1,562	1,669
Cortland	757	583	6,759	8,025	16,124
Delicious (Red)	17,695 8,824	22,653	183,165	67,255	290,768
Golden Delicious	113	11,899 620	123,377	93,606	237,706
Macoun	113	210	2,497 750	540	3,770
McIntosh	1,145	1.828	19,459	475 18,347	1,435
Northern Spy	1,495	240	1,872	4,470	40,779
N.W. Greenling	· -	1,976	8,082	2,888	8,077
Opalescant	-	50	20	469	12,946 539
Spartan	.	6 6	2,246	7	2,319
Stayman	1,709	2,879	56,524	· 78,747	139,859
Turley	-	-	484	697	1,181
Lowery	-	+	200	541	741
Red Gold	0 775	-	654	22	676
Rome Red	8,775	12,420	63,869	36,889	121,953
York Red.	3,859 3,485	5,708	23,739	32,843	66,149
York Regular	1,661	10,227	69,432	41,283	124,427
Other Winter	41	9,730 303	76,844	115,006	203,241
Winesap	816	1,363	1,267 9,624	762 4,544	2,373 16,347
TOTAL WINTER	50,375	82,755	650,971	508,978	1,293,079
TAL STANDARD	53,514	88,666	706,140	550,099	1,398,419

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Photo Credit: Tom Piper

LEMMA I FAVIATA	ULLEFT	(IOINE)	. 3176	CONTROLLED	
	VARIFTY	AND AGE	GROUPS	- 1978	

,]	Variety :	1975-1977 (1-3 Years)	: : 1972-1974 : (4-6 Years)	: 1957-1971 : (7-21 Years) :	: 1956 & Earlier : (22 Years +)	Total All Ages	
} c	· UMMER:						
1 3	Beacon (Fenton)	1.546	688	4,695	60	6,989	· (* -
ĺ	Earliblaze	305	831	36	175	1,347	
•	Lodi	459	34 5	934	25	1.763	
	Jersey Mac	695	160	-	-	855	
17	Early McIntosh	2,748	1,046	1,696	36	5,526	ئى ھەرە
	Ottawa - T-441 (Quinte).	199	336	910	-	1,445	30.5
لـا	Rambo	467	389	826	15	1,697	
	Other Summer	799	224	1,094	71	2,188	
	TOTAL SUMMER	7,218	4,019	10,191	382	21,810	,
F	ALL:						
-	Grimes Golden	87	67	240	12	406	
' "]	Jonathan	6,457	2,771	11,774	620	21,622	
į	Paulared	3,890 ·	426	775	-	5,091	
. }	Smokehouse	180	465	279	2	926	
-	Tydeman's Red	926	7,928	1,669	-	10,523	
]	Other Fall	1,973	905	2,388	32	5,298	
Section of	TOTAL FALL	13,513	12,562	17,125	666	43,866	
W	INTER:						
c mag	Cortland	5,411	3,597	3,919	1,715	14,642	·
- [Delicious (Red)	106,842	87,138	105,117	5,372	304,469	
	Empire	2,939	216	620	· <u>-</u>	3,775	
ا	Golden Delicious	25,293	23,400	53,086	2,275	104,054	
	Granny Smith	57	1,382	-	-	1,439	
- 7	Idared	7,580	1,032	2,035	7	10,647	
;	Macoun	1,369	660	403	45	2,477	٠.,
;	Mutsa N.W. Greening	1,020 2,945	258	589	-	1,867	.n. : **
- 1	Northern Spy	2,350	1,459	203	-	3,148	
	Stayman	18,133	9,495	1,048	95 055	4,952	
	Winesap	1,550	1,227	14,616	955	43,199	
1	McIntosh	15,293	11,033	3,645 13,053	1,379	7,801	^
ì	Rome, Red	13,891	6,503	24,584	170	40,179	
	Rome, Regular	6,748	1,843	1,370	1,247	46,225	
	Spartan	1,746	1,001	897	165	10,126	
2	York, Red	8,210	2,090	21,011	5,284	3,644	
;	York, Regular	14,867	4,096	19,842	721	36,595 39,526	
, 3	•	-				-	
	Other Winter	825	987	969	17	2,798	
9	TOTAL WINTER	237,699	157,417	267,007	19,440	681,563	
·-tc	TAL SIZE CONTROL	258,430	173,998	294,323	20,488	747,239	

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Photo Credit: Tom Piper

PEACHES

Number Of Orchards And Trees: The number of commercial peach growers (100+ trees) increased from 472 in 1972 to 498 in 1978, or 6 percent. Commercial peach tree numbers have declined 60 percent from the 1953 survey total and 3 percent since 1972. The number of trees in 1978 at 852,052 compares with 882,550 in 1972, down 4 percent. Of the 498 commercial growers, 76, or 15 percent, accounted for 67 percent of the trees.

Acreage In Orchards: Commercial peach acreage declined 11 percent from 10,955 acres in 1972 to 9,727.5 acres in 1978. Trees per acre increased from 81 in 1972 to 88 in 1978.

Location Of Trees: Fruit Region I accounts for 541,510 trees or 64 percent of the total. The ten leading counties (Adams, Franklin, York, Lehigh, Berks, Lancaster, Juniata, Erie, Northampton and Snyder) contains 86 percent of the total 856,842 trees.

Age Of Trees: Of the 856,842 total peach trees, 20.6 percent are 1-3 years old, 18.5 percent 4-6 years old, 54.9 percent 7-21 years old and 6 percent 22 years or older.

Varieties: Redhaven is the leading variety, comprising 13 percent of the total 856,842 trees. Other leading varieties as a percent of total trees are: Sunhigh — 11, Loring — 11, Elberta — 7, Redskin — 6, and Blake — 5. Of the total trees 1-3 years old, 14 percent were Redhavens.

Photo Credit: Mrs. Gail McPherson

PENNSYLVANIA: PEACHES (COMMERCIAL): COMPARISON OF GROWERS AND TREE NUMBERS BY REGION - 1967, 1972 and 1978

:	1967	Survey	1972	Survey	1978 5	urvey	Percent Change 72/78		
Region :	Number Of Orchards	Number Of Trees							
I	281	613,891	225	562,919	198	541,510	-12	-4	
II	165	288,324	108	204,764	133	199,573	+23	-3	
III	98	103,412	77	77,807	91	74,716	+18	-4	
IV & V	121	63,971	62	37,060	76	36,253	+23	-2	
PENNSYLVANIA	665	1,069,598	472	882,550	498	852,052	+ 6	-3	

DENNSYLVANIA:	PEACHES	(COMMERCIAL):	MUMBER	AND SIZE	DE OPCHAPES	RV REGION	1967	1972 and 1978

	: : 500	ber Of O	irchards	:			N	umber Of	Peach Or	chards B	y Size G	roups	_		
Region	:	.52, 0, 0		: 10	00-499 T	rees . ,	500	0-2,499	Trees	2,5	00-4,999	Trees	5	,000 + Tr	ees
	1967	1972	1978	1967	: 1972	1973	1967	1972	1978	1967	1972	1978	1967	1972	1978
I	. 165 . 93	225 108 77 62	193 133 91 76	90 59 47 84	67 37 39 39	60 67 52 51	125 75 41 35	103 49 31 21	87 49 31 25	40 17 7	29 15 5 2	31 14 6 -	26 14 3 1	26 7 2	20 3 2
PENNSYLVANIA	665	472	498	230	182	230	276	204	192	65	51	_ 51	44	35	25

PENNSYLVANIA: PEACHES (TOTAL): GROWERS, ACRES, TREES AND PRODUCTION BY COUNTY AND REGION, 1978 1/

17.2 1.5 7.0 1.1 7.8 34.6 5.0 2.3 .7 1.9 1.0 4.4 .5 2.6 2.6 .8 2.6 2.6 .8 2.3	2,968.5 156.0 1,874.5 25.5 1,110.4 6,134.9 581.4 114.5 9.3 125.3 106.0 34.7 387.5 58.0 524.4 84.6 215.0 77.0 2,317.7	30.3 1.6 19.2 .3 11.3 62.7 5.9 1.2 1.3 4.0 .6 5.4 .9 2.2 .8 23.7	255,654 14,551 179,435 2,294 90,423 542,357 50,787 10,045 720 9,758 8,281 3,504 29,541 4,685 55,900 6,393 16,120 5,670 201,404	29.8 1.7 20.9 .3 10.6 63.3 5.9 1.2 .1 1.1 1.0 .4 3.4 6.5 .7 1.9 .7 23.5	86 93 96 90 81 88 77 78 101 76 81 107 76 75 74 87	### Rushels ### 422,698	26.0 1.7 27.6 .2 13.6 69.1 4.8 1.3 .1 1.3 1.2 .3 4.1 7,7 7.0 .7 1.5 .8 23.8	2.0 3.0 2.5 2.4 2.2 1.5 2.7 2.3 3.6 2.7 2.5 2.5 2.6
1.5 7.0 1.1 7.8 34.6 5.0 2.3 .7 1.9 1.0 4.4 .5 2.6 2.6 2.6 2.8 5.4 28.2	156.0 1,874.5 25.5 1,110.4 6,134.9 581.4 114.5 9.3 125.3 106.0 34.7 387.5 58.0 524.4 84.6 215.0 77.0 2,317.7	1.6 19.2 .3 11.3 62.7 5.9 1.2 .3 4.0 .6 5.4 .9 2.2 .8 23.7	14,551 179,435 2,294 90,423 542,357 50,787 10,045 720 9,758 8,281 3,504 4,685 55,900 6,393 16,120 5,670 201,404	1.7 20.9 .3 10.6 63.3 5.9 1.2 .1 1.1 1.0 .4 3.4 .6 6.5 .7 1.9 .7 23.5	93 96 90 81 88 88 87 77 78 78 101 76 81 107 76 75 74 87	26,664 448,546 3,395 221,041 1,122,344 78,009 20,953 1,015 21,155 19,020 5,359 65,872 11,075 113,602 12,081 24,720 12,880 385,661	1.7 27.6 .2 13.6 69.1 4.8 1.3 .1 1.3 1.2 .3 4.1 .7 7.0 .7 1.5 .8 23.8	1.9 2.9 2.0 3.0 2.5 2.4 2.2 1.7 2.3 1.7 2.3 2.7 2.5 2.5 2.6
1.5 7.0 1.1 7.8 34.6 5.0 2.3 .7 1.9 1.0 4.4 .5 2.6 2.6 2.6 2.8 5.4 28.2	156.0 1,874.5 25.5 1,110.4 6,134.9 581.4 114.5 9.3 125.3 106.0 34.7 387.5 58.0 524.4 84.6 215.0 77.0 2,317.7	1.6 19.2 .3 11.3 62.7 5.9 1.2 .3 4.0 .6 5.4 .9 2.2 .8 23.7	14,551 179,435 2,294 90,423 542,357 50,787 10,045 720 9,758 8,281 3,504 4,685 55,900 6,393 16,120 5,670 201,404	1.7 20.9 .3 10.6 63.3 5.9 1.2 .1 1.1 1.0 .4 3.4 .6 6.5 .7 1.9 .7 23.5	93 96 90 81 88 88 87 77 78 78 101 76 81 107 76 75 74 87	26,664 448,546 3,395 221,041 1,122,344 78,009 20,953 1,015 21,155 19,020 5,359 65,872 11,075 113,602 12,081 24,720 12,880 385,661	1.7 27.6 .2 13.6 69.1 4.8 1.3 .1 1.3 1.2 .3 4.1 .7 7.0 .7 1.5 .8 23.8	1.9 2.9 2.0 3.0 2.5 2.4 2.2 1.7 2.3 1.7 2.3 2.7 2.5 2.5 2.6
1.5 7.0 1.1 7.8 34.6 5.0 2.3 .7 1.9 1.0 4.4 .5 2.6 2.6 2.6 2.8 5.4 28.2	156.0 1,874.5 25.5 1,110.4 6,134.9 581.4 114.5 9.3 125.3 106.0 34.7 387.5 58.0 524.4 84.6 215.0 77.0 2,317.7	1.6 19.2 .3 11.3 62.7 5.9 1.2 .3 4.0 .6 5.4 .9 2.2 .8 23.7	14,551 179,435 2,294 90,423 542,357 50,787 10,045 720 9,758 8,281 3,504 4,685 55,900 6,393 16,120 5,670 201,404	1.7 20.9 .3 10.6 63.3 5.9 1.2 .1 1.1 1.0 .4 3.4 .6 6.5 .7 1.9 .7 23.5	93 96 90 81 88 88 87 77 78 78 101 76 81 107 76 75 74 87	26,664 448,546 3,395 221,041 1,122,344 78,009 20,953 1,015 21,155 19,020 5,359 65,872 11,075 113,602 12,081 24,720 12,880 385,661	1.7 27.6 .2 13.6 69.1 4.8 1.3 .1 1.3 1.2 .3 4.1 .7 7.0 .7 1.5 .8 23.8	1.9 2.9 2.0 3.0 2.5 2.4 2.2 1.7 2.3 1.7 2.3 2.7 2.5 2.5 2.6
1.1 7.8 34.6 5.0 2.3 .7 1.9 1.0 4.4 .5 2.6 2.6 2.6 .8 .7 .7 .8 .8 .7 .8 .7	25.5 1,110.4 6,134.9 581.4 114.5 9.3 125.3 106.0 524.4 84.6 215.0 77.0 2,317.7 52.0 34.0 61.0 10.7 84.7 272.6	.3 11.3 62.7 5.9 1.2 1.3 4.0 .6 5.4 .9 2.2 .8 23.7	2,294 90,423 542,357 50,787 10,045 720 9,758 8,281 3,504 29,541 4,685 55,900 6,393 16,120 5,670 201,404 5,169 3,413 3,008	3 10.6 63.3 5.9 1.2 .1 1.1 1.0 .4 3.4 .6 6.5 .7 1.9 .7 23.5	90 81 88 88 77 78 78 101 76 81 107 76 75 74 87	3,395 221,041 1,122,344 78,009 20,953 1,015 21,155 19,020 5,359 65,872 11,075 113,602 12,081 24,720 12,880 385,661	.2 13.6 69.1 4.8 1.3 .1 1.3 1.2 .3 4.1 .7 7.0 .7 1.5 -8 23.8	2.0 3.0 2.5 2.4 2.2 1.5 2.7 2.3 3.6 2.7 2.5 2.5 2.6
7.8 34.6 5.0 2.3 .7 1.9 1.0 4.4 .5 2.6 2.6 .8 -5.4 28.2	1,110.4 6,134.9 581.4 114.5 9.3 125.3 106.0 524.4 84.6 215.0 77.0 2,317.7 52.0 34.0 61.0 10.7 84.7 272.6	11.3 62.7 5.9 1.2 1.3 4.0 .6 5.4 .9 2.2 - 8.3 .6 .3 .6	90,423 542,357 50,787 10,045 720 9,758 8,281 3,504 29,541 4,685 55,900 6,393 16,120 5,670 201,404 5,169 3,413 3,008	10.6 63.3 5.9 1.2 1 1.1 1.0 4 3.4 6 6.5 7 1.9 7 23.5	81 88 77 78 78 101 76 81 107 76 75 74 87	221,041 1,122,344 78,009 20,953 1,015 21,155 19,020 5,359 65,872 11,075 113,602 12,081 24,720 12,880 385,661	13.6 69.1 4.8 1.3 1.1 1.3 1.2 .3 4.1 .7 7.0 .7 1.5 5 .8 23.8	3.0 2.5 2.4 2.2 1.5 2.7 2.3 1.7 2.8 3.6 2.7 2.5 2.5 2.5
34.6 5.0 2.3 .7 1.9 1.0 4.4 .5 2.6 2.6 2.8 5.4 28.2	581.4 114.5 9.3 125.3 106.0 34.7 387.5 58.0 524.4 84.6 215.0 77.0 2,317.7	5.9 1.2 1.3 1.1 .3 4.0 .6 5.4 .9 2.2 .8 23.7	542,357 50,787 10,045 720 9,758 8,281 3,504 29,541 4,685 55,900 6,393 16,120 5,670 201,404 5,169 3,413 3,008	5.9 1.2 .1 1.1 1.0 .4 3.4 .6 6.5 .7 1.9 .7 23.5	88 87 88 77 78 78 101 76 81 107 76 75 74 87	78,009 20,953 1,015 21,155 19,020 5,359 65,872 11,075 113,602 12,081 24,720 12,800 385,661	4.8 1.3 1.2 .3 4.1 .7 7.0 .7 1.5 .8 23.8	2.5 2.4 2.2 1.5 2.7 2.3 1.7 2.5 2.7 2.5 2.5 2.6
2.3 .7 1.9 1.0 4.4 .5 2.6 2.6 .8 - 5.4 28.2	114.5 9.3 125.3 106.0 34.7 387.5 58.0 524.4 84.6 215.0 - 77.0 2,317.7 52.0 34.0 61.0 10.7 84.7 272.6	1.2 1.3 1.1 .3 4.0 .6 5.4 .9 2.2 -8 23.7	10,045 720 9,758 8,281 3,504 29,541 4,685 55,900 6,393 16,120 5,670 201,404 5,169 3,413 3,008	1.2 .1 1.1 1.0 .4 3.4 .6 6.5 .7 1.9 .7 23.5	88 77 78 78 101 76 81 107 76 75 74 87	20,953 1,015 21,155 19,020 5,359 65,872 11,075 113,081 24,720 12,880 385,661	1.3 .1 1.3 1.2 .3 4.1 .7 7.0 .7 1.5 .8 23.8	2.2 1.5 2.7 2.8 3.6 2.7 2.5 2.3 2.5
2.3 .7 1.9 1.0 4.4 .5 2.6 2.6 .8 - 5.4 28.2	114.5 9.3 125.3 106.0 34.7 387.5 58.0 524.4 84.6 215.0 - 77.0 2,317.7 52.0 34.0 61.0 10.7 84.7 272.6	1.2 1.3 1.1 .3 4.0 .6 5.4 .9 2.2 -8 23.7	10,045 720 9,758 8,281 3,504 29,541 4,685 55,900 6,393 16,120 5,670 201,404 5,169 3,413 3,008	1.2 .1 1.1 1.0 .4 3.4 .6 6.5 .7 1.9 .7 23.5	88 77 78 78 101 76 81 107 76 75 74 87	20,953 1,015 21,155 19,020 5,359 65,872 11,075 113,081 24,720 12,880 385,661	1.3 .1 1.3 1.2 .3 4.1 .7 7.0 .7 1.5 .8 23.8	2.2 1.5 2.7 2.8 3.6 2.7 2.5 2.3 2.5
2.3 .7 1.9 1.0 4.4 .5 2.6 2.6 .8 - 5.4 28.2	114.5 9.3 125.3 106.0 34.7 387.5 58.0 524.4 84.6 215.0 - 77.0 2,317.7 52.0 34.0 61.0 10.7 84.7 272.6	1.2 1.3 1.1 .3 4.0 .6 5.4 .9 2.2 -8 23.7	10,045 720 9,758 8,281 3,504 29,541 4,685 55,900 6,393 16,120 5,670 201,404 5,169 3,413 3,008	1.2 .1 1.1 1.0 .4 3.4 .6 6.5 .7 1.9 .7 23.5	88 77 78 78 101 76 81 107 76 75 74 87	20,953 1,015 21,155 19,020 5,359 65,872 11,075 113,081 24,720 12,880 385,661	1.3 .1 1.3 1.2 .3 4.1 .7 7.0 .7 1.5 .8 23.8	2.2 1.5 2.7 2.8 3.6 2.7 2.5 2.3 2.5
.7 1.9 1.0 4.4 .5 2.6 2.6 2.8 - 5.4 28.2	125.3 106.0 34.7 387.5 58.0 524.4 84.6 215.0 77.0 2,317.7	1.3 1.1 .3 4.0 .6 5.4 .9 2.2 .8 23.7	720 9,758 8,281 3,504 29,541 4,685 55,900 6,393 16,120 5,670 201,404 5,169 3,413 3,008	1.1 1.0 .4 3.4 .6 6.5 .7 1.9 .7 23.5	78 78 101 76 81 107 76 75 74 87	21,155 19,020 5,359 65,872 11,075 113,602 12,081 24,720 12,800 385,661	1.3 1.2 .3 4.1 .7 7.0 .7 1.5 .8 23.8	2.7 2.3 1.7 2.8 3.6 2.7 2.5 2.3 2.5 2.6
1.0 1.0 4.4 .5 2.6 2.6 .8 - 5.4 28.2	106.0 34.7 387.5 58.0 524.4 84.6 215.0 - 77.0 2,317.7 52.0 34.0 61.0 10.7 84.7 272.6	1.1 .3 4.0 .6 5.4 .9 2.2 .8 23.7	8,281 3,504 29,541 4,685 55,900 6,393 16,120 5,670 201,404 5,169 3,413 3,008	1.0 .4 3.4 .6 6.5 .7 1.9 .7 23.5	78 101 76 81 107 76 75 74 87	19,020 5,359 65,872 11,075 113,602 12,081 24,720 12,800 385,661	1.2 .3 4.1 .7 7.0 .7 1.5	2.3 1.7 2.8 3.6 2.7 2.5 2.3 2.5 2.6
1.0 4.4 .5 2.6 2.6 .8 - 5.4 28.2	106.0 34.7 387.5 58.0 524.4 84.6 215.0 - 77.0 2,317.7 52.0 34.0 61.0 10.7 84.7 272.6	.3 4.0 .6 5.4 .9 2.2 - .8 23.7	8,281 3,504 29,541 4,685 55,900 6,393 16,120 5,670 201,404 5,169 3,413 3,008	.4 3.4 .6 6.5 .7 1.9 - .7 23.5	101 76 81 107 76 75 - 74 87	19,020 5,359 65,872 11,075 113,602 12,081 24,720 12,800 385,661	1.2 .3 4.1 .7 7.0 .7 1.5	2.3 1.7 2.8 3.6 2.7 2.5 2.3 2.5 2.6
4.4 .5 2.6 2.6 .8 5.4 28.2	34.7 387.5 58.0 524.4 84.6 215.0 - 77.0 2,317.7 52.0 34.0 61.0 10.7 84.7 272.6	.3 4.0 .6 5.4 .9 2.2 - .8 23.7	3,504 29,541 4,685 55,900 6,393 16,120 5,670 201,404 5,169 3,413 3,008	.4 3.4 .6 6.5 .7 1.9 - .7 23.5	76 81 107 76 75 74 87	5,359 65,872 11,075 113,602 12,081 24,720 12,800 385,661 7,223 400 4,765	.3 4.1 .7 7.0 .7 1.5 .8 23.8	1.7 2.8 3.6 2.7 2.5 2.3 2.5 2.6
.5 2.6 2.6 .8 5.4 28.2 1.3 .7 .8 .8 1.9	58.0 524.4 84.6 215.0 77.0 2,317.7 52.0 34.0 61.0 10.7 84.7 272.6	.6 5.4 .9 2.2 .8 23.7	29,541 4,685 55,900 6,393 16,120 5,670 201,404 5,169 3,413 3,008	.6 6.5 .7 1.9 .7 23.5	81 107 76 75 74 87	11,075 113,602 12,081 24,720 12,800 385,661 7,223 400 4,765	4.1 .7 7.0 .7 1.5 - .8 23.8	2.8 3.6 2.7 2.5 2.3 2.5 2.6
.5 2.6 2.6 .8 5.4 28.2 1.3 .7 .8 .8 1.9	58.0 524.4 84.6 215.0 77.0 2,317.7 52.0 34.0 61.0 10.7 84.7 272.6	.6 5.4 .9 2.2 .8 23.7	4,685 55,900 6,393 16,120 5,670 201,404 5,169 3,413 3,008	.6 6.5 .7 1.9 .7 23.5	107 76 75 74 87 99 100 49	11,075 113,602 12,081 24,720 12,800 385,661 7,223 400 4,765	.7 7.0 .7 1.5 .8 23.8	3.6 2.7 2.5 2.3 2.5 2.6
2.6 2.6 .8 5.4 28.2 1.3 .7 .8 1.9	524.4 84.6 215.0 77.0 2,317.7 52.0 34.0 61.0 10.7 84.7 272.6	5.4 .9 2.2 .8 23.7 .6 .3 .6	55,900 6,393 16,120 5,670 201,404 5,169 3,413 3,008	6.5 .7 1.9 .7 23.5 .6 .4	107 76 75 74 87 99 100 49	113,602 12,081 24,720 12,800 385,661 7,223 400 4,765	7.0 .7 1.5 .8 23.8	2.7 2.5 2.3 2.5 2.6
2.6 .8 - 5.4 28.2 1.3 .7 .8 .8 1.9	84.6 215.0 - 77.0 2,317.7 52.0 34.0 61.0 10.7 84.7 272.6	.9 2.2 - .8 23.7	6,393 16,120 - 5,670 201,404 5,169 3,413 3,008	.7 1.9 - .7 23.5 .6 .4 .3	76 75 74 87 99 100 49	12,081 24,720 12,800 385,661 7,223 400 4,765	.7 1.5 .8 23.8	2.5 2.3 2.5 2.6
1.3 .7 .8 1.9	215.0 - 77.0 2,317.7 52.0 34.0 61.0 10.7 84.7 272.6	2.2 .8 23.7 .6 .3 .6	5,670 201,404 5,169 3,413 3,008	1.9 -7 23.5 6 -4 -3	75 74 87 99 100 49	24,720 12,800 385,661 7,223 400 4,765	1.5 - .8 23.8	2.3 2.5 2.6
5.4 28.2 1.3 .7 .8 1.9 1.9	77.0 2,317.7 52.0 34.0 61.0 10.7 84.7 272.6	.8 23.7 .6 .3 .6 .1	5,670 201,404 5,169 3,413 3,008	.6 .4 .3	99 100 49	12,800 385,661 7,223 400 4,765	-8 23.8	2.5 2.6
28.2 1.3 .7 .8 .8 1.9	52.0 34.0 61.0 10.7 84.7 272.6	23.7 .6 .3 .6 .1	5,169 3,413 3,008	.6	74 87 99 100 49	7,223 400 4,765	23.8	2.6 1.7
28.2 1.3 .7 .8 .8 1.9	52.0 34.0 61.0 10.7 84.7 272.6	23.7 .6 .3 .6 .1	5,169 3,413 3,008	.6	99 100 49	7,223 400 4,765	23.8	2.6 1.7
.7 .8 .8 1.9 1.9	34.0 61.0 10.7 84.7 272.6	.3 .6 .1 .9	3,413 3,008	.4 .3	100 49	400 4,765	-	.1
.7 .8 .8 1.9 1.9	34.0 61.0 10.7 84.7 272.6	.3 .6 .1 .9	3,413 3,008	.4 .3	100 49	400 4,765	-	.1
.8 .8 1.9 1.9	61.0 10.7 84.7 272.6	.6 .1 .9	3,C08	.3	49	4,765		
.8 1.9 1.9	10.7 84.7 272.6	.1 .9					. 3	
1.9 1.9	84.7 272.6	.9	846	1	79			2.5
1.9	272.6			• •		125	_	.2
			7,561	.9	89	17,536	1.1	2.8
. 7	3.2	2.8	21,755	2.5	80	19,710	1.2	1.2
		-	271	-	85	222	-	.9
1.5	39.0	. 4	2,538	. 3	65	961	.1	.5
2.1	59.1	.6	5,919	.7	100	4,055	.3	1.4
3.4	97.2	.9	7,8 67	1.0	- 81	10,329	. 7	2.1
-	-	-	-	-	-	-	-	-
2.4	232.2	2.4	15,192	1.8	65	25,112	1.5	1.9
-	-	-	-	-	_	-	-	-
.7	24.5	.3	1,863	.2	76	2,413	.1	1.4
-	-	-	-		-	-	-	-
18.2	970.2	9.9	75,402	8.8	78	92,851	5.7	1.6
1.9	30.7	.3	2,321	.3	76	2,566	.2	1.4
. 7	26.1	.3	2,285	.3	88	2,105	.1	1.2
1.5	22.4	.2	1,554	.2	69	1,162	.1	1.0
.5	2.8	-	250	-	89	35	-	.2
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
.8	3.6	-	382	-	106	552	-	2.1
-	=	-	-	-	-	-	-	-
1.3	15.9	.2	1,775	.2	112	35	-	-
.8	19.1	.2	1,759	.2	92	2,071	.1	1.6
-	-	_	-	-	-	• • •	-	-
1.3	46.4	.5	3.301	.4	71	4.479	.3	1.5
-	-	-	-,	-	· -		-	-
1.9	27.7	.3	2.307	. 3	83	1.655	. 1	.8
		_						.5
7	207.2	2.1	17,371	2.0	84	14,940	.9	1.1
.7 11.4								
					134	R 050	.5	.6
11.4	151.7	1.6	20.308	2.4	134	0.030		
	151.7 151.7	1.6 1.6	20,308 20,308	2.4 2.4	134	8,050	.5	.6
	1.3 - 1.9 .7	1.3 46.4 	1.3 46.4 .5 	1.3 46.4 .5 3,301 1.9 27.7 .3 2,307 .7 12.5 .1 1,437	1.3 46.4 .5 3,301 .4 1.9 27.7 .3 2,307 .3 .7 12.5 .1 1,437 .1 11.4 207.2 2.1 17,371 2.0	1.3 46.4 .5 3,301 .4 71 1.9 27.7 .3 2,307 .3 83 .7 12.5 .1 1,437 .1 115 11.4 207.2 2.1 17,371 2.0 84	1.3 46.4 .5 3,301 .4 71 4,479 1.9 27.7 .3 2,307 .3 83 1,655 .7 12.5 .1 1,437 .1 115 280 11.4 207.2 2.1 17,371 2.0 84 14,940 7.6 151.7 1.6 20,308 2.4 134 8,050	1.3 46.4 .5 3,301 .4 71 4,479 .3 .1 1.9 27.7 .3 2,307 .3 83 1,655 .1 .7 12.5 .1 1,437 .1 115 280 .11.4 207.2 2.1 17,371 2.0 84 14,940 .9 .9

Some counties are combined to avoid disclosure of individual operations. Production in 1977 from acreage maintained for production in 1978. Yield calculations are derived excluding the 1-3 year age category trees.

OF POOR QUALITY

PENNSYLVANIA: PEACHES (TOTAL): GROWERS, ACRES, TREES AND PRODUCTION BY SIZE OF OPERATION AND REGION, 1978

Size Of Operation	Gro	wers	Tr	rees	: A	cres	Product	ion <u>1</u> /
(Trees)	Number	Percent	Number	Percent	Number	Percent	Bushels	Percent
Region I:								
1-99	15	7	847	_	10.5	_	2,209	
100-199	19	ģ	2,829	_	45.2	3	4,976	1
200-499	41	19	14,677	3	191.1	3	25,190	ż
500-999	40	19	32,968	6	411.6	ž	72,069	6
1,000-2,499	47	22	76,227	14	942.5	15	184,362	17
2,500-4,999	31	15						
1,300+4,399			112,143	21	1,277.0	21	225,688	20
ۇ , 000+	20	9	302,666	56	3,257.0	53	607,850	54
Tota1	213	100	542,357	100	6,134.9	100	1,122,344	100
Region II:								
1-99	41	24	1,831	1	27.5	1	4,060	1
100-199	30	17	3,597	ż	57.3	3	7,139	ż
200-499	37	żί	12,082	6'	159.3	ž	21,471	ē
500-999	24	14	17,014	8	233.6	10	30,717	8
1,000-2,499	25	14			508.0	22	72,858	19
	14		40,814	20				32
2,500-4,999		8	52,088	26	636.0	27	125,305	
5,000+	3	2	73,978	37	696.0	30	124,111	32
Total	174	100	201,404	100	2,317.7	100	385,661	100
Region III:								
1-99	21	19	686	1	6.3	1	784	1
100-199	25	22	3,416	4	54.3	6	6,666	7
200-499	27	24	8,315	11	108.5	11	10,639	12
500-999	16	14	10,611	14	148.7	15	8,597	9
1,000-2,499	15	14	22,036	29	269.4	28	24,150	26
2,500-4,999	.8	7	30,338	41	383.0	39	42,015	45
5,000+	2/	-	-	-	505.0	-	-	-
Total	112	100	75,402	100	970.2	100	92,851	100
Region IV:			• • •					
								_
1-99	27	39	1,084	6	7.4	4	980	6
100-199	10	14	1,215	7	17.6	8	780	5
200-499	24	34	7,691	44	97.2	47	7,150	48
500-999	9	13	7,381	43	85.0	41	6,030	41
1,000-2,499	<u>2</u> /	-	-	-	-	-	-	-
2,500-4,999		<u> -</u>	-	-	-	_	-	-
5,000+	-	_	_	_	-	_	-	-
	~~	100				200	14.040	700
[ota]	70	100	17,371	100	207.2	100	14,940	100
Region V:								
1-99	14	30	342	2	2.5	2	69	1
100-199	5	11	715	3	7.7	5	720	9
200-499	12	25	3,551	17	31.9	21	584	7
500-999	11	23	7,822	39	57.5	38	5,345	66
1,000-2,499	5	11	7,878	39	52.1	34	1,332	17
,500-4,999	-		-	-			-	-
,000+	-	-	-	_	-	-	-	-
Tota]	47	100	20,308	100	151.7	100	8,050	100
All Regions:								
l-99	118	19	4,790	1	54.2	1	8,102	1
100-199	89	15	11,772	i	182.1	ż	20,231	j
200~499	141			5		6	65,034	4
500-499	268	23 43	46,316 793,964	93	588.0 8,957.4	91	1,530,429	94
	200	73	,,,,,,,,,	,,	0,557.47	31	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	٠,
ENNSYLVANIA	616	100	856,842	100	9,781.7	100	1,623,846	100

Production in 1977 from acreage maintained for production in 1978.

Combined with the 2,500-4,999 size group to avoid disclosure of individual operations.

	PENNSYLVANIA:	PEACHES -	- COMPARISON	OF COMMERCIA	L & NON-COMMERC	IAL GROWER AND TREE	NUMBERS 1967, 197	2, 1978
لئا. Trees.	:		Number (Of Growers		: :	Number Of Trees	
·rrees	:	1967	19	972	1978	1967	1972	1978
l-99 <u>1</u> /		115 665		73 472	118 498	4,510 1,069,598	4,451 882,550	4,790 852,052
Total <u>1</u> /	• • • • • • • • •	780	5	645	616	1,074,108	887,001	856,842

Includes trees in orchards classified as commercial (100+ trees) for any fruit.

PENNSYLVANIA: PEACHES (COMMERCIAL): PRODUCTION, DISPOSITION AND VALUE, 1930-1978

:	Production	:	Util	ization	<u>-</u>	Price	Value
Year :	1/	: Home	: :	Sales		Per Pound	Of Production
		: Use	Fresh	All Processed	All Sales	<u>3</u> /	
•			- Million Pounds			Cents	Thous. Dols.
1930	50.1	15.0	-	-	-	3.54	1,775
1940	94.8	11.5	76.7	-	-	1.98	1,830
1950	105.3	10.0	89.6	4.8	95.3	4.38	4,607
1960	139.2	2.9	112.3	24.0	136.3	4.48	6,236
1970	84.0	<u>2</u> /	74.0	10.0	84.0	7.70	6,468
1971	105.0	<u>2</u> /	88.7	16.3	105.0	6.52	6,846
1972	0.08	<u>2</u> /	71.8	8.2	80.0	13.00	10,400
1973	81.0	<u>2</u> /	70.3	10.7	81.0	11.30	9,153
1974	100.0	<u>2</u> /	86.4	13.6	100.0	11.80	11,800
1975	90.0	<u>2</u> /	83.4	6.6	90.0	12.20	10,980
1976	90.0	<u>2</u> /	81.8	8.2	90.0	13.00	11,700
1977	95.0	<u>2</u> /	88.4	6.6	95.0	12.90	12,255
1978	85.0	<u>2</u> /	70.4	14.6	85.0	15.80	13,430

^{1/} Includes some quantities not harvested and excess cullage. 2/ Included in fresh utilization. 3/ Fresh and processing prices combined.

Photo Credit: Tom Piper

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Photo Credit: Tom Piper

PENNSYLVANIA: PEACHES (TOTAL): COMPARISON OF ORCHARDS AND TREES OF ALL AGES BY COUNTIES, 1967, 1972 AND 1978

,	Tree Surve	y, 1967	Tree Survey,	1972 <u>1</u> /	Tree Surve	y, 1978
County & District	Number-Orchards	Total Trees	Number-Orchards	Total Trees	Number-Orchards	Total Trees
rawford					^	2,
rie	103	38,144	- 55	23,572	2 47	2/ 20,308
orest	.03	-	- ·	23,372	* /	20,300
lercer	3	1,877	. <u>-</u>	-	R	3,301
Venango	3	1,707	-	_	2	2/
larren	-	-	_	-	-	=-
NORTHWESTERN, TOTAL	109	41,728	-	_	50	23.861
Bradford	3	2/	-	-	1	2/
ameron	-	<i>=</i> _	-	•	<u> i</u>	=-
linton	-		-	-	1	21
1k	-	-	-	-	i	<u>2/</u> 2/
ycoming	7	3,230	-	_	13	5,9 1 9
lcKean	-	-	-	-	.5	
otter	-	-	-	<u>-</u>	-	_
ullivan	-	-	-	-	_	• -
ioga	1	2/	-	-	_	-
WORTH CENTRAL, TOTAL	11	4,324	-	-	16	6.632
ackawanna	5	282	6	650	4	271
usquehanna	ĭ	2/	-	-	i	<u>2/</u>
layne	i	<u>2</u> /	-	-	<u>.</u>	<u> </u>
lyoming	ż	1,510	-	-	2	2/
ORTHEASTERN, TOTAL	10	2,064	-	-	7	534
Armstrong	3	1,762	3	930		2,285
Beaver	6	832	ž	705	ā	1,554
Butler	ž	188	.	703	3	250
Clarion	ĭ	2/	_	. •	ĭ	21
ndiana	่ง	3 2 /	-	-	Ω	1,7 7 5
Defferson	ĭ	2/	-	•	ن 1	2/
awrence	10	$2.5\frac{2}{2}$	-	-	i E	1,759
MEST CENTRAL, TOTAL	27	6,725	-	- -	3 31	8,635
lair	5	1,616		1 000		3,413
ambria	2	2/	э	1,968	4	3,413
entre	1	<u>4/</u>	-	-	Ţ	21
	1	1,157	-	•	ı.	<u>2</u> /
learfield	14		10		-	7 563
olumbia	14 5	14,478	12	10,804	12	7,561
auphin		10,649	4	9,119	6	8,281
untingdon	2	2,840	-	•	2	2/
luniata	10	32,048	10	26,812	12	21,755
ifflin	4	2,497	-	-	2	<u>2/</u>
ontour	2	2/		-	_1	3/
orthumberland	19	7,482	16	5,565	20	7,867
erry	3	940	<u>.</u> :	-	_7	2,294
nyder	18	16,103	11	14,028	15	15,192
Inion	.5	6,160	-	•	4	1,863
ENTRAL, TOTAL	94	98,374			86	71,234
arbon	5	1,063	_ -	-	4	720
.ehigh	23	70,372	15	57, 935	16	55,900
uzerne	7	3,071	5	2,125	9	2,538
onroe	3	170	-	-	1	<u>3</u> /
orthampton	7	12,230	4	7,078	5	$16,1\overline{20}$
ike	- ·	-	_ _	• •	-	
chuylkill	30	15,342	28	8,521	33	5,670
AST CENTRAL, TOTAL	75	102,248			68	80,948
llegheny	18	6,408	12	5,146	12	2,321
ayette	1	<u>2/</u> <u>2</u> /	-	-	1	<u>2</u> /
reene	1	<u>2</u> /	-	-	-	· -
omerset		-	-	-	-	-
ashington	14	6,187	6	4,897	12	2,307
estmoreland	3	1,794	-	-	1	2/
OUTHWESTERN, TOTAL	37	15,989			26	<u>5,053</u>
dams	147	265,837	126	270,498	106	255,654
edford	10	9,478	8	2,071	7	5,169
umberland	10	15,193	-	•	9	14,551
ranklin	75	217,280	47	177,913	43	179,435
ulton	1	3/	-	,	ī	3/
ork	62	115,489	46	94,979	48	$90.4\overline{2}3$
OUTH CENTRAL, TOTAL	. 305	623,277			214	545,232
rks	41	100,341	32	65,551	31	50,787
ıcks	ii	11,382	6	7,425	14	10,045
ester	14	8,731	9	6,545	12	9,758
laware	4	2/	3	2,484	6	3,504
ancaster	22	32,8 0 5	18	26,717	27	29,541
banon	6	17,567	4	10,270	3	4,685
ontgomery	13	5,669	12	5,103	16	6,393
niladeiphia	i	2/	-	J, 103	-	0,373
OUTHEASTERN, TOTAL	112	$\frac{27}{179,379}$	-	-	109	114 712
JUHEASIERA, TUTAL		1/3,3/3			103	114,713
OTAL, OTHER	_		39	27 500		
HAL, UIREA			33	37,590		
MNSYLVANIA	780	1,074,108	545	887.001	616	056 040
31 12 16 1DH 1D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1,0/4,100	2/ Not public		616	856,842

[/] Comparable data only available on counties listed for 1972 survey. 2/ Not published separately to avoid disclosure of individual operations. 3/ Monroe county combined with Carbon county; Fulton county combined with Bedford county; Montour county combined with Northumberland county to avoid disclosure of individual operations.

1975-1977 1972-1973 1955 & Earlier Total All Ages		Number 0	f Trees Maintain	ed For Producti	on According To	Year Set Out	Percent
Forest	County And District					: Total All Ages :	Of Total
Nercer	Erie	7,290	5,643	. 5,800	1,575	20,308	2.4
Wenangs & Crewford.		_ -		-	-		-
Name							.4
ORTHMESTERN, TOTAL.		105	- 60	23	4 -	232	-
Bradford, Clinton & Elk. 10	NORTHWESTERN, TOTAL	7,730	6,236	8,156	1,689	23,861	.2.8
Cameron		-	_		_		.1
Content			_	703	-	713	-
Value Valu		2,950	728	2,225	16	5,919	.7
Sullivan.		-	-	-	-	-1	
Times		, -	-	_	-	<u>-</u>	•
ORTH CENTRAL, TOTAL. 2,960 728 2,928 16 6,632 2,626 2,4978 12 124 135 - 271 24788 - 271 24788 - 271 24788 - 271 24788 - 271 24788 - 271 24788 - 271 24788 - 271 24788 - 271 24788 - 271 24788 - 271 24788 - 271 24788 - 271 24788 - 271		-	-	-	-		-
Ayrne		2,960	728	2,928	16	6,632	.8
Ayrne	ackawanna	12	124	1.35	_	271	. 1
yöming & Susquehanna		-	-		-	-	• •
Server S	lyoming & Susquehanna				-		•
leaver. 366 2 1,156 30 1,554 wither 120 120 50 - 250 ndiana. 820 836 99 20 1,775 ndiana. 820 836 ndiana. 820 842 1515 ndiana. 820 842 1515 ndiana. 820 842 120 120 120 120 83 0008 ndiana. 820 842 1,290 128 3,008 ndiana. 820 820 820 820 820 820 820 820 820 820	ORTHEASTERN, TOTAL	227	130	177	0	534	.1
Rever 366 2 1,156 30 1,554 1,555	rmstrong	525	560	700	500	2,285	.3
ndiana. 820 836 99 20 1,775 efferson & Clarion 520 492 - 1,012 awrence. 482 515 662 100 1,759 EST CENTRAL, TOTAL. 2,273 2,553 3,159 650 8,635 1. lair	eaver		2		30	1,554	.2
efferson & Clarion. - 520				_	-		-
awrence. 482 515 662 100 1,759 EST CENTRA, TOTAL 2,773 2,553 3,159 650 8,635 1. Lair. 166 3,085 120 42 3,413 mabria. 16 3,085 120 42 3,413 mabria. 1,098 492 1,290 128 3,008 128 128 128 128 128 128 128 128 128 12					20		.2 .1
EST CENTRAL, TOTAL 2,273 2,553 3,159 650 8,635 1. Tair					001		.1
lair 166 3,085 120 42 3,413		_ ::-					1.0
ambria entre, Huntingdon & Miffilin.	•				12		.4
entre, Huntingdon & Miffilin		100	3,085	120	42	3,413	.4
learfield		1.098	492	1,290	128	3.008	.3
auphin 1,177 1,225 5,788 91 8,281 miata 5,420 1,385 14,950 - 21,755 2. ontour & Northumberland 2,949 1,628 3,210 80 7,867 1. rery 636 149 1,509 - 2,294 1. 1,947 5,695 5,712 1,838 15,192 1 vider 100 253 1,510 - 1,863 . 1,863 . NTRAL, TOTAL 14,892 15,397 37,046 3,899 71,234 8. stron & Monroe 61 420 239 - 720 . . sirbigh 14,226 11,051 27,670 2,853 55,900 6. sizerne 536 1,934 851 57 2,538 . sirchambron 5,385 2,840 7,895 - 16,120 1. ike - - - - - ike - - - - - - - - - - </td <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>•</td> <td>-</td>		-	-	-	-	•	-
uniata. 5,420 1,385 14,950 - 21,755 2. ontour & Northumberland. 2,949 1,628 3,210 80 7,867 1. erry 636 149 1,509 - 2,294 1,967 1. erry 636	olumbia						.9
ontour & Northumberland. 2,949 1,628 3,210 80 7,867 1 erry. 636 149 1,509 - 2,294 1 nyder. 1,947 5,695 5,712 1,838 15,192 1 nton. 100 253 1,510 - 1,863 1 enton. 100 253 1,510 3,899 71,234 8 enton. 61 420 239 - 720 - ehigh. 14,326 11,051 27,670 2,853 55,900 6 suzerne. 5365 1,094 851 57 2,538 - suzerne. 5365 1,094 851 57 2,538 - suzerne. 5365 1,094 851 57 2,538 - strene. 5365 1,094 851 57 2,538 - strene. 5365 1,443 3,519 257					91		.9
Perry 636					•0		
nyder. 1,947 5,695 5,712 1,838 15,192 1. nion. 100 253 1,510 - 1,863 . eNTRAL, TOTAL 14,892 15,397 37,046 3,899 71,234 8. entral, TOTAL 1,051 27,670 2,853 55,900 6. entral, TOTAL 5366 11,051 27,670 2,853 55,900 6. entral, TOTAL 5366 11,051 27,670 2,853 55,900 6. entral, TOTAL 5366 1,094 851 57 2,538 . entral, TOTAL 5366 1,094 851 57 2,538 . entral, TOTAL 20,759 16,848 40,174 3,167 80,948 9. entral, TOTAL 20,759 16,848 40,174 20,848 40,174 20,848 40,174 20,848 40,174 20,848 40,174 20,848 40,174 20,848 40,174 20,848 40,174 20,848 40,174 20,848 40,174 20,848 40,174 20,848 40,174 20,848 40,174 20,848 40,174 20,848					00		.3
100					1,838		1.8
arbon & Monroe.		100		1,510	-		.2
ehigh. 14,326 11,051 27,670 2,853 55,900 6. uzerne. 536 1,094 851 57 2,538 1. orthampton. 5,385 2,840 7,895 - 16,120 1. ike	ENTRAL, TOTAL	14,892	15,397	37,046	3,899	71,234	8.3
Sizeme	arbon & Monroe	61	420	239	_	720	.1
orthampton 5,385 2,840 7,895 - 16,120 1. ike ike - - - - - - - chuylkill 451 1,443 3,519 257 5,670 . AST CENTRAL, TOTAL 20,759 16,248 40,174 3,167 80,948 9. 1legheny 437 176 1,702 6 2,321 . ayette & Westmoreland - 325 100 - 425 . reene - - - - - - ashington 351 307 1,596 53 2,307 . 0dams 53,755 42,604 141,369 17,926 255,654 29 adford & Fulton 877 869 3,266 157 5,169 amberland 645 2,156 11,750 - 14,551 1 canklin 23,973 34,459 107,772 13,221 179,435 20 ork 17,120 19,391 48,705 5,207 90,423 10 ork 17,120 19,391 48,705 5,207 90,423 10 ork		•			2,853		6.5
ike					57		.3
chuylkill 451 1,443 3,519 257 5,670 AST CENTRAL, TOTAL 20,759 16,248 40,174 3,167 80,948 9. 1legheny 437 176 1,702 6 2,321 . ayette & Westmoreland - 325 100 - 425 . pomerset - - - - - - pomerset - - - - - - - pomerset -	- · · · · · · · · · · · · · · · · · · ·	5,385	2,840	7,895	-	16,120	1.9
AST CENTRAL, TOTAL. 20,759 16,248 40,174 3,167 80,948 9. 1legheny. 437 176 1,702 6 2,321 ayette & Westmoreland 325 100 - 425 reene		451	1 443	3 510	- 25.7	5 670	.6
The content of the			-				9.4
ayette & Westmoreland 325 100 - 425 reene		•	•		•		
reene		43/			b		.2 .1
Dimerset		-	J23 -	-	-	463	- 1
DUTHMÉSTERN, TOTAL. 788 808 3,398 59 5,053 dams. 53,755 42,604 141,369 17,926 255,654 29 edford & Fulton. 877 869 3,266 157 5,169 umberland. 645 2,156 11,750 - 14,551 1 anklin. 23,973 34,469 107,772 13,221 179,435 20.0 ork. 17,120 19,391 48,705 5,207 90,423 10.0 ork. 16,675 6,355 23,804 1,953 50,787 5.0 orks. 18,675 6,355 23,804 1,953 50,787 5.0 orks. 19,293		-	-	-	-	-	-
dams	ashington						.3
### State	OUTHWESTERN, TOTAL	788	808	3,398	59	5,053	.6
edford & Fulton. 877 869 3,266 157 5,169 umberland. 645 2,156 11,750 - 14,551 1 ranklin. 23,973 34,469 107,772 13,221 179,435 20. ork. 17,120 19,391 48,705 5,207 90,423 10. OUTH CENTRAL, TOTAL 96,370 39,489 312,862 36,511 545,232 63. erks. 18,675 6,355 23,804 1,953 50,787 5. erks. 616 896 6,753 1,780 10,045 1. ucks. 616 896 6,753 1,780 10,045 1. hester. 1,923 422 6,976 417 9,758 1. elaware. 261 2,879 364 - 3,504 . ebanon. 1,575 490 2,630 - 4,685 . ebanon. 1,515 1,937 2,409 532 6,393 . ontgomery. 1,515 1,937	dams	53,755	42,604	141,369	17,926	255,654	29.8
Pranklin. 23,973 34,469 107,772 13,221 179,435 20.07k DOTH. 17,120 19,391 48,705 5,207 90,423 10.00000 DOTH CENTRAL, TOTAL 96,370 39,489 312,862 36,511 545,232 63.0000 erks. 18,675 6,355 23,804 1,953 50,787 5.0000 erks. 616 896 6,753 1,780 10,045 1.0000 elaware. 1,923 442 6,976 417 9,758 1.0000 elaware. 261 2,879 364 - 3,504 elamcaster. 5,697 3,515 19,270 1,059 29,541 3.0000 elanon. 1,575 490 2,630 - 4,685 0.0000 entgomery. 1,515 1,937 2,409 532 6,393 entladelphia. - - - - - DUTHEASTERN, TOTAL 30,262 16,504 62,206 5,741 114,713 13.0000	edford & Fulton	877	869	3,266		5,169	.6
17,120 19,391 48,705 5,207 90,423 10. DUTH CENTRAL, TOTAL 96,370 39,489 312,862 36,511 545,232 63.6 erks 18,675 6,355 23,804 1,953 50,787 5. ucks 616 896 6,753 1,780 10,045 1. rester 1,923 422 6,976 417 9,758 1. elaware 261 2,879 364 - 3,504 . uncaster 5,697 3,515 19,270 1,059 29,541 3. ebanon 1,575 490 2,630 - 4,685 . ontgomery 1,515 1,937 2,409 532 6,393 DUTHEASTERN, TOTAL 30,262 16,504 62,206 5,741 114,713 13.4					<u>-</u>		1.7
DUTH CENTRAL, TOTAL 96,370 99,489 312,862 36,511 545,232 63.0 erks 18,675 6,355 23,804 1,953 50,787 5.0 ucks 616 896 6,753 1,780 10,045 1.0 nester 1,923 442 6,976 417 9,758 1.0 elaware 261 2,879 364 - 3,504 3.0 uncaster 5,697 3,515 19,270 1,059 29,541 3.0 ebanon 1,575 490 2,630 - 4,685 4.0 ontgomery 1,515 1,937 2,409 532 6,393 3.0 UUTHEASTERN, TOTAL 30,262 16,504 62,206 5,741 114,713 13.0							20.9
erks 18,675 6,355 23,804 1,953 50,787 5.000 ccks 616 896 6,753 1,780 10,045 1.000 nester 1,923 442 6,976 417 9,758 1.000 claware 261 2,879 364 - 3,504 0.000 chacaster 5,697 3,515 19,270 1,059 29,541 3.000 chanon 1,575 480 2,630 - 4,685 0.000 contgomery 1,515 1,937 2,409 532 6,393 0.000 contgomery 1,515 1,937 2,409 532 6,393 0.000 contgomery 1,526 16,504 62,206 5,741 114,713 13.000							10.6
cks. 616 896 6,753 1,780 10,045 1. rester. 1,923 442 6,976 417 9,758 1. rloware. 261 2,879 364 - 3,504 . rlocaster. 5,697 3,515 19,270 1,059 29,541 3. rebanon. 1,575 480 2,630 - 4,685 . rintgomery. 1,515 1,937 2,409 532 6,393 . riladelphia - - - - - UUTHEASTERN, TOTAL 30,262 16,504 62,206 5,741 114,713 13.4							
nester							5.9
Claware							1.2
ncaster					. 417		.4
banon					1,059		3.5
iladelphia		1,575	480	2,630	• -		.6
DUTHEASTERN, TOTAL		1,515	1,937	2,409	532	6,393	.7
NNSYLVANIA 176,261 158.743 470,106 51,732 856,842 100.0		30,262	16,504	62,206	5,741	114,713	13.4
	ENNSYLVANIA	176,261	158.743	470,106	51,732	856,842	100.0
RCENT OF TOTAL TREES	70507 05 7070 7070						

 $[\]underline{1}/$ Some counties are combined to avoid disclosure of individual operations.

PENNSYLVANIA: PEACHES-(TOTAL): TREES BY VARIETY AND AGE GROUPS, 1978

Variety :	1975-1977 (1-3 Years)	1972-1974 : (4-6 Years)	: 1957-1971 : (7-21 Years)	: 1956 & Earlier : : (22 Years +) :	Total All Ages	% Of Total	
Sarly:							
Dixie Red	1,142	1,080	1,115	300	3,637	.4	
Earliglo	535	1,985	1,964	-	4,484	.4 .5 .3	٠
' Early Red Haven	305	1,536	76		1,917	.3	
Early Red Fre	539	592	1,149	140	2,420	.3	
, Jerseyland	1,280	433	1,961	816	4,490	.5	
Redhaven	23,879	27,656	55,539	4,748	111,822	13.1	
Redskin	11,563 3,421	10,671	29,197	834	52,265	6.1	
Sunhaven	5,353	5,614 4,187	11,079	217 126	20,331	2.4 1.4	
Total Early	48,017	53,754	2,010 104,090	7,181	11,676 213,042	25.0	
	40,017	33,734	104,030	7,101	213,042	23.0	
lid-Season:							
Ambergem	60	175	6,700	-	6,935	.8	
Baby Gold	6,915	4,170	16,296	100	27,481	3.2	
Belle of Georgia	288	211	1,007	132	1,638	.2	
Blake	2,407	3,692	38,355	1,436	45,890	5.4	
Cresthaven	7,984	8,350	1,092	60	17,486	2.0	
Garnet Beauty	3,662	791	249	35	4,737	.6	
Glohaven	1,323	1,372	1,104	125	3,924	-4	
Hale Harrison Brilliant	129	357	2,629	440	3,555	.4	
Halehaven	969 1,561	2,253	10,236	5,784	19,242	2.2 .4	
Harbelle	3,004	1,441 810	176 200	-	3,178 4,014	.5	
Harmony	4,408	3,019	577	_	8,004	.9	
Golden Jubilee	451	548	2,437	656	4,092	.5	
Loring	16,966	13,033	58,644	1,069	89,712	10.5	
Madison	897	978	6,284	40	8,199	1.0	
Ranger	· 85	330	2,090	95	2,600	.3	
Red Elberta	82	310	928	494	1,814	.2	
Red Crest	73	91	797	34	995	.1	
Richhaven	213	1,358	6,203	385	8,159	1.0	
Southhaven	65	303	813	50	1,231	.1	
Suncrest	4,000	3,695	2,057	- 5 027	9,752	1.0	
Sunhigh Triogem	16,653 7,453	20,247 3,524	52,316	5,837 2,808	95,053	11.1 3.4	
Washington	4,963	2,332	15,533 9,486	109	29,318 16,890	2.0	
Other Mid-Season	9,570	4,758	16,984	1,818	33,130	3.8	
Total Mid-Season	94,181	78,148	253,193	21,507	447,029	52.0	
	01,202		200,220	42,007	, , 5.2.5		
ate:							
Brackett		93	156	238	487	.1	
Elberta	1,686	2,466	33,758	17,361	55,271	6.5	
Gemmers Late	300	245	400	10	955	1	
J. H. Hale	1,778	1,584	10,558	1,664	15,584	1.8	
Jefferson	700	1,576	17,773	317	20,366	2.4 4.4	
Jerseyqueen	11,285	8,279	17,646	242	37,452	.3	
Late Sunhaven - Slaybaugh	870 2,289	1,192 662	646	100	2,708 4,982	.6	
MonroeRio Oso Gem	10,608	8,097	1,931 25,391	1,785	45,881	5.3	
Sweet Sue	1,451	60	25,391 80	1,705	1,591	.2	
White Hale	236	392	1,647	154	2,429	.3	
Other Late	2,860	2,195	2,837	1,173	9,065	1.0	
Total Late	34,063	26,841	112,823	23,044	196,771	23.0	
COTAL ALL MANTETE	175 263	150 747	470.100	F. 700	056 040		
FOTAL ALL VARIETIES	176,261	158,743	470,106	51,732	856,842	100.0	

PEARS

Number of Orchards And Trees: Commercial pear orchards (100+ Trees) at 193 in 1978 increased 7 percent from the 180 total in 1972. The corresponding tree numbers increased 23 percent from 96,373 in 1972 to 118,874 in 1978.

Acreage In Orchards: Commercial pear acreage increased 29 percent from 1,073 acres in 1972 to 1,380.7 in 1978. Trees per acre declined from 90 in 1972 to 86 in 1978. Pears were the only fruit to decline in trees per acre since the 1972 survey.

Location Of Trees: Fruit Region I accounts for 57 percent of the 118,874 commercial trees. Adams county alone contains 45 percent of the total 127,158 trees. The leading six counties (Adams, Schuylkill, York, Erie, Lehigh and Franklin) contain 73 percent of the total trees.

Age Of Trees: Of the 127,158 total pear trees, 9.1 percent are 1-3 years old, 14.4 percent 4-6 years old, 53.9 percent 7-21 years old and 22.6 percent 22 years or older.

Varieties: The Bartlett pear is by far the most popular variety in Pennsylvania comprising 65 percent of the total 127,158 trees. Other leading varieties as a percent of total trees are: Bosc -17, D'Anjou -7, Clapps Favorite and Sekel -2 percent each.

PENNSYLVANIA: PEARS (COMMERCIAL): COMPARISON OF GROWERS AND TREE NUMBERS BY REGION - 1972 & 1978

Region	1972 Su	rvey	1978 Su	irvey	Percent Change 72/78		
	Number Of Orchards	Number Of Trees	Number Of Orchards	Number Of Trees	Number Of Orchards	Number Of Trees	
I	. 44 . 28	48,936 26,210 12,047 9,180	80 55 41 17	68,107 31,292 13,535 5,940	+ 7 +25 +46 -48	+39 +19 +12 -35	
PENNSYLVANIA	. 180	96,373	193	118,874	+ 7	+23	

Photo Credit: Tom Piper

Number of Pear Trees by County - 1978

Pennsylvania Crop Reporting Districts

PENNSYLVANIA: PEARS-(TOTAL): GROWERS, ACRES, TREES AND PRODUCTION BY COUNTY AND REGION, 1972 & 1978

County	Gr	rowers	: ,	Acres		Trees				
& : Region :			<u>:</u>		·	otal.	Trees P	er Acre	<pre> Production (Bushels</pre>	
neg ton :	1972	1978	1972	1978	1972	1978	1972	1978	: <u> </u>	
Region I:										
Adams	73	72	432	678.0	37,994	57,107	88	84	82,709	
Franklin	17	22	38	49.0 96.0	3,202	4,853	85 00	99	6,769	
YorkOther	38 5	36 15	87 25	25.0	7,836 2,226	6,981 1,530	90 89	72 61	12,068 965	
Total	133	145	582	848.0	51,258	70,471	88	83	102,511	
10(41	133	145	302	040.0	31,238	70,471	88	03	102,311	
Region II:										
Berks	22	21	47	36.7	2,615	3,140	56	86	4,708	
Bucks	6	11	16	18.0	1,044	1,495	67	83	9,989	
Chester	6	8	25	14.0	738	1,188	30 06	85	2,292	
Dauphin	3 15	5 19	30 54	30.9 43.3	2,891 4,822	3,440 2,915	96 90	111 67	5,333 6,312	
LancasterLebanon	15	3	34 15	43.3 8.0	1,110	1,030	76	129	3,065	
Lehigh	13	14	75	90.3	7,194	5,541	96	61	13,063	
Montgomery	8	8	9	6.1	456	385	50	63	768	
Northampton	6	6	17	13.0	1,371	1,771	81	136	5,552	
Schuylkill	24 8	32 11	69 8	101.7 10.1	6,350 448	12,012 702	92 52	118 70	12,893 664	
Other Total	114	138	365	372.1	29,039	33,521	80	90	64,639	
					·	·		•	•	
, Region III:										
Bedford	4	9	2	16.2	153	1,293	83	80	554	
Blair	4	4	14	19.0	2,729	2,203	195	116	9,700	
Bradford	3	4	. 5	7.9	535	632	107	80	585	
Columbia	10	10	24	22.0	1,980	1,919	84	87	4,005	
Juniata Lackawanna	5 6	7	17 2	21.1 2.0	1,126 183	1,912 197	66 110	91 99	1,260 232	
Luzerne	10	. 16	17	14.0	466	925	27	66	919	
Mifflin	3	3	3	6.0	169	297	50	50	700	
Northumberland	13	14	13	18.0	652	1,327	47	74	1,777	
Snyder	9	12	15	15.8	1,215	1,202	79	76	1,033	
Other	9	26	23	49.2	4,078	3,547 .	177	72	7,164	
Tota1	76	. 112	135	191.2	13,286	15,454	98	81	27,929	
Region IV:										
	10	10	8	6.0	455	363	60	63	919	
Allegheny Beaver	10 3	5	î	3.0	73	202	103	61 67	105	
Indiana	3	10	3	5.0	131	417	44	83	74	
Washington	3	3	5	1.0	368	24	74	24	_	
Other	12	27	22	12.5	1,791	875	81	70	. 431	
Total	31	55	39	27.5	2,818	1,881	72	68	,529	
								•	٠.	
Region V:							•			
Erie	47	27	91	61.0	7,887	5,731	87	94	8,305	
Total	47	27	91	61.0	7,887	5,731	87	94	8,305	
ENNSYLVANIA	401	477	1,212	1,499.8	104,288	127,158	86	85	204,913	

 $[\]underline{1}$ / Production in 1977 from acreage maintained for production in 1978. Comparable data for 1972 not available.

OF POOR QUALITY

PENNSYLVANIA: PEARS (TOTAL): GROWERS, ACRES, TREES AND PRODUCTION BY SIZE OF OPERATION AND REGION, 1978

Size Of Operation :	Gro	wers	Ţ,	rees	. Ac	res	Produc	tion <u>1</u> /
(Trees) :	Number	Percent	Number	Percent	Number	Percent	Bushels	Percent
<u>egion I</u> :								
-99	65	45	2 264	•	. 20.2	4	6,149	6
00-199	27	19	2,364 3,455	3 5	29.3 53.6	6	7,129	7
00-499	25	17	7,568	າ້າ	105.5	12	11,052	າກໍ
QO-999	12	8	8,277	12	84.5	10	9,592	' <u>'</u>
,000-2,499	່າຳ	8	16,917	24	165.1	20	26,195	26
,500-4,999	5	3	31,890	45	410.0	48	42,394	41
,000 ⁺	<u>2</u> /	-	31,030	-	-	-	-	- :
ota]	145	100	70,471	100	848.0	100	102,511	100
	143	100	70,471	100	646.0	100	102,311	100
egion II:	•			-				
L99	83	60	2,329	7	36.8	10	5,211	8
00-199	25	18	3,679	11	49.3	13	16,915	26
00-499	17	13	4,423	13	62.8	17	9,399	15
00-999	7	5	4,285	13	54.2	15	8,388	13
,000-2,499	6	4	18,905	56	169.0	45	24,726	38
,500_4,999	3/	-	-	-	-	_	•	-
000*	3/ 3/	-	_	-	-	-	_	-
ota]	138	100	33,621	100	372.1	100	64,639	100
egion III:			•				•	
······································								_
-99	71	64	1,919	12	27.2	14	2,546	.9
0-199	18	16	2,479	16	34.5	18	2,761	10
0-499	16	14	5,108	33	64.5	34	5,217	19
0-999	7	6	5,948	39	65.0	34	17,405	62
000-2,499	4/	-	-	-	-	-	•	-
500-4,999	-	-	-	-	-	-		-
000*	-	-	•	-	-	-	-	-
ta1	112	100	15,454	100	191.2	100	27,929	100
gion IV & V:								
99	65	79	1,672	22	25.8	29	1,761	18
0-199	6	7	840	11	11.3	13	469	5
0-499	7	ġ	2,072	27	21.9	25	1,945	20
0-999	4	5	3,028	40	29.5	33	5,659	57
000-2,499	<u>4</u> /	-	-	-		-		-
500-4,999	<u> </u>	-	_	_	_		~	
000+	-	-	-	-	-	-	-	-
tal	82	100	7,612	100	88.5	100	9,834	100
1 Regions:								
	204	60	0.204	c	130 1	8	15,667	8
99	284	60	8,284	6	119.1			13
0-199	76 65	16 14	10,453	9	148.7	10 17	27,274 27,613	13
00-499	65 53		19,171	16	254.7	65	134,359	66
00'	52	10	89,250	69	977.3	63	134,333	00
ENNSYLVANIA	477	100	127,158	100	1,499.8	100	204,913	100

PENNSYLVANIA: PEARS - COMPARISON OF COMMERCIAL & NON-COMMERCIAL GROWER AND TREE NUMBERS 1967, 1972, 1978

Tuesday	:		Number Of Growers		Number Of Trees					
Trees	:	1967	1972	1978	1967	1972	1978			
-99 <u>1</u> /		343 237	221 180	284 193	10,513 94,421	7,915 96,373	8,284 118,874			
Total <u>1</u> /		580	401	477	104,934	104,288	127,158			

Includes trees in orchards classified as commercial (100+ trees) for any fruit.

Production from 1977 from acreage maintained for production in 1978.

Combined with the 2,500-4,999 size group to avoid disclosure of individual operations.

Combined with the 1,000-2,499 size group to avoid disclosure of individual operations.

Combined with the 500-999 size group to avoid disclosure of individual operations.

PENNSYLVANIA: PEARS (COMMERCIAL): PRODUCTION, DISPOSITION AND VALUE, 1930-1978

	• •	: :		Uti	lization		Price	: : Value
Year '	: Production 1	/ : ¯¯	Ноте	:	Sales	:	Per Ton 4/	Of Production
	:	:	Use	Fresh	All Processed	All Sales	10// <u>4</u> /	Froduction
				<u>Tons</u>			Dollars	Thous. Dols.
1930			5,950	8,275	-	8,275	44	626
1940			3,975	7,825	-	7,825	34	401
1950			2,500	2,750	-	2,750	78	410
1960			650	2,100	-	2,100	102	280
1970			2/	2/	2/	4,100	153	627
1971	3,700		₹/	$\frac{2}{2}$ / 3,300	<u>2/</u> <u>2</u> /	3,700	128	474
1972	. 3,700		3/	3,3 0 0		3,300	196	647
1973. 			<u>3</u> /	1,900	-	1,900	230	437
1974	4,100		₹/	2/	2/	4,100	235	964
1975 .			<u>2</u> /	₹/	2/	4,500	216	972
1976			2/	₹/	7/	3,700	232	858
1977			2/ 2/ 3/ 3/ 2/ 2/ 2/ 2/	2/ 2/ 2/ 2/ 2/	<u>2</u> / <u>2</u> / <u>2</u> /	4,700	252	1,184
1978	3,300		<u>2</u> /	₹/ .	<u>2</u> /	3,300	286	944

 $[\]frac{1}{3}$ Includes some quantities not harvested and excess cullage. $\frac{2}{3}$ Not published to avoid dislosure of individual operations. $\frac{4}{3}$ Fresh and processing prices combined.

Photo Credit: Tom Piper

CRIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

County & District		 -	d For Production			Percent Of
	1975-1977 (1-3 Years)	1972-1974 (4-6 Years)	1957-1971 (7-21 Years)	(22 Years +)	er:Total All Ages:	Total
rawford	15	_	142	12	169	.1
rie	350	348	1,749	3,284	5,731	4.5
orest	-			-	-	-
lercer & Venango	39	· 6	46	-	91	.1
arren	404	354	3 007	2 206	-	. :
ORTHWESTERN, TOTAL		354	1,937 467	3,296 165	5,991	4.7 -
ameron	-	-	407	103	632	.5
linton	_		-	-	_	-
1k	-	-	-	-	•	-
ycoming	35	5	1,244	801	2,085	1.6
cKean	-	-	-	-	•	-
ullivan	-	-	-	-	•	-
ioga & Potter		2	131	250	381	.3
ORTH CENTRAL, TOTAL			1,842	1,216	3,098	2.4
ackawanna	10	21	111	55	197	.2
yoming & Susquehanna		-	557	<u>-</u>	557	.4
ORTHEASTERN, TOTAL		21	668	55	754	.6
eavereaver		57	104	33	202	.2
utler, Armstrong, Clarion & Jefferson		25	35	16	96.	.1
ndiana		117	152	24	417	.3
awrence		•	103	20	123	.1
EST CENTRAL, TOTAL	152	199	394	93	838	7
lair	400	773	730	300	2,203	١٠,
ambria & Centre	185	100	50 1,041	15	165	1.5
olumbiaauphin	971	239 454	1,884	454 131	1,919	2.7
untingdon & Clearfield	7	60	225	50	3,440 342	.3
uniata	1,077	-	835	50	1.912	1.5
ifflin	-	_	297	-	297	.2
ontour & Northumberland	137	574	502	179	1.392	1.1
erry	12	20	272	-	304	.2
nyder		183	754	183	1,202	1.0
nion	40	2	115	55	212	.2
ENTRAL, TOTAL	2,911	2,405	6,705	1,367	13.388	10.5
arbon, Monroe & Pike	_	263	8	52	331	.3
ehighuzerneuzerne	6 97	211 103	1,211 214	4,113	5,541	4.4 .7
orthampton	45	298	1,427	511 1	925 3 771	1.4
chuylkill	141	316	7,847	3,708	1,771 12,012	9.4
AST CENTRAL, TOTAL	297	1,191	10,707	8,385	20,580	16.2
llegheny	56	25	195	87	363	.3
ayette, Somerset & Westmoreland	30	75	31	-	136	.1
reene	-	-	-	-	-	-
ashington	-			24	24	-
OUTHWESTERN, TOTAL	86	100	226	111	523	<u>.4</u>
dams	3,546	8,932	34,075	10,554	57,107	44.9
edfordumberland	675 396	480 127	118 703	20	1,293	1.0 1.0
ranklin	1,308			01/	1,226	
ulton		720	1,911	914	4,853	3.8
ork	339	2,540	2,977	1,125	6,981	5.5
OUTH CENTRAL, TOTAL	6,264	12,799	39,784	12,613	71.460	56.2
erks	719	206	1,812	403	3,140	2.5
ıcks	215	208	1,066	6	1,495	1.2
nester	332	23	807	26	1,188	.9
laware	2	•	72	297	371	.3
ancaster	119	639	1,489	669	2,916	2.3
ebanon	-	40	990 80	770	1,030	.8
ontgomery	-	128	ou -	178	386	.3
niladelphia DUTHEASTERN, TOTAL	1,387	7 2/4	6,316	3 570	10 526	8.3
JUHILASIERN, TUINE	1,30/	1,244	0,310	1,579	10,526	0.3
ENNSYLVANIA	11,546	18,318	68,579	28,715	127,158	100.0
	9.1	14.4	53.9	22.6		

^{1/} Some counties are combined to avoid disclosure of individual operations.

Vaniatu :	1975 - 1977	: 1972 - 1974	: 1957 - 1971	: 1956 & Earlier	Total :	Percent
Variety :	(1-3 Years)	: (4-6 Years)	: (7-21 Years) :		All Ages :	Of Total
REGION I: Bartlett Bosc Clapps Favorite D'Anjou Devoe Gorham Magness Moonglo Seckel Starks Other	2,581 1,990 252, 588 30 - - - 80	6,774 3,551 255 650 5 213 60 10 321 300 200	22,616 7,706 745 4,912 302 689 1,320 177 736 220 515	10,578 891 101 518 8 212 39 - 121 7	42,549 14,138 1,363 6,668 345 1,114 1,419 187 1,258 527 903	60.4 20.0 1.9 9.5 .5 1.6 2.0 .3 1.8 .7
TOTAL	5, 601	12,339	39,938	12,593	70,471	100.0
REGION II: Bartlett. Bosc. Clapps Favorite. D'Anjou. Gorham. Magness. Seckel. Starks. Other. TOTAL	1,066 990 47 17 17 12 200 - 2,553	1,580 · 686 97 212 5 - 84 6 116 2,786	13,482 1,483 222 1,258 169 65 675 345 994 18,693	7,533 702 118 395 132 53 295 65 291	23,661 3,861 484 1,882 323 130 1,254 416 1,610 33,621	70.4 11.5 1.4 5.6 1.0 .4 3.7 1.2 4.8
•	-				,	
REGION III: Bartlett. Bosc. Clapps Favorite. D'Anjou. Devoe. Moonglo. Seckel Other. TOTAL	1,719 555 - 237 105 5 113 2,745	1,982 401 70 20 55 - 11 1 2,540	5,732 342 363 215 331 11 42 110 7.146	2,148 277 175 60 30 - 322 11 3,023	11,581 1,585 608 532 416 116 381 235	74.9 10.3 3.9 3.4 2.7 .8 2.5 1.5
REGION IV: Bartlett Bosc Other TOTAL	202 33 57 292	286 2 17 305	713 85 255 1,053	142 10 79 231	1,343 130 408 1,881	71.4 6.9 21.7 100.0
REGION V: Bartlett Bosc Other TOTAL	182 738 30 350	255 60 33 348	1,061 501 187 1,749	2,479 508 197 3,284	3,977 1,307 447 5,731	69.4 22.8 7.8 100.0
ALL REGIONS: Bartlett Bosc. Clapps Favorite D'Anjou Devoe Gorham Magness Moonglo Seckel Starks Other	5,750 2,716 309 247 300 27 200 200 200 200 200 200 200 200	10,877 4,700 422 882 65 233 62 10 425 306 336	43,604 10,117 1,424 6,418 727 902 1,423 203 1,509 614 1,626	22,580 2,488 414 989 44 411 92 -757 72 558	83,111 21,021 2,569 9,136 866 1,619 1,605 415 2,987 1,014 2,815	65.4 16.5 2.0 7.2 .7 1.3 1.3 .3 2.3 .8 2.2
PENNSYLVANIA	12,546	18,318	68,579	23,715	127,158	100.0

CHERRIES

Number Of Orchards And Trees: The number of commercial tart cherry growers (100 + Trees) has steadily leclined since the first commercial fruit tree survey conducted in 1953. Commercial growers (100 + Trees) in 1978 at 140 was down 30 percent from the 201 accounted for in 1972. Commercial tart cherry growers had 183,768 rees in 1978 compared with 217,610 in 1972, a 15 percent decline. Commercial sweet cherry growers at 61 declined 16 percent from 1972 while corresponding tree numbers increased from 28,230 to 33,068, or 17 percent.

Acreage In Orchards: Commercial tart cherry acreage at 1,967 declined 23 percent from 2,550 in 1972 while commercial sweet cherry acreage declined from 526 to 472.5 or 10 percent during the same period. Tart cherry trees per acre increased from 85 in 1972 to 93 in 1978 while sweet cherry trees per acre increased from 54 to 70 n 1978.

Location Of Trees: Adams, Erie, Franklin and York pounties contain 94 percent of the total 186,387 tart herry trees. Fruit Region I accounts for 80 percent of the total trees. For sweet cherries, Lancaster, Erie, Adams, Franklin and Northampton counties contain 73 percent of he 38,019 total trees.

Age Of Trees: Of the total 186,387 tart cherry trees, 14.8 percent were 1-3 years old, 16.8 percent 4-6 years old, 14.4 percent 7-21 years old and 34.0 percent 22 years or older. Of the total 38,019 sweet cherry trees the age percentage breakdown was 16.0, 10.6, 40.6 and 32.8 respectively.

Varieties: Montmorency tart cherry trees account for 97 percent of the total trees, English Morello 2 percent and other varieties 1 percent. Dark sweet cherry trees comprise 72 percent of total trees while light sweet cherry trees accounted for 23 percent. Leading varieties as a percent of the total 38,019 trees are: Windsor — 16.3, ding — 15.2, Napoleon — 10.1, Hedelfingen — 9.9 and Schmits Biggereau — 9.2.

BLACK AND WHITE PHOTOGRAPH

PE	NNSYLVANIA:	TART	CHERRIES:	COMPARIS	ON OF COMM	ERCIAL AN	D NON-COMMERC	IAL GF	NOWER AND TRE	E NUMBER	RS, - 1967, 1	972, and	1 1978		
4	Trees	:		Nun	ber Of Gro	wers		:	Number Of Trees						
		:-	1967	:	1972	:	1978	:	1967	:	1972		1978		
	••••••	• • •	198 283 481		117 201 318		162 140 302		4,567 270,906 275,473		3,057 217,610 220,667		2,619 183,768 186,387		
	NNSYLVANIA:	SWEET	CHERRIES:	COMPARI	SON OF COM	MERCIAL A	ND NON-COMMER	CIAI G	ROWER AND TR	EE NUMBE	RS, - 1967,	1972, ar	nd 1978		
		:		A1				:							
	Trees	<u>:</u>		Num	ber Of Gro	wers		:			lumber Of Tre				
	Trees	: : :	1967	Num : :	ber Of Gro	wers :	1978	:	1967				1978		

PENNSYLVANIA: TART & SWEET CHERRIES (COMMERCIAL): PRODUCTION, DISPOSITION AND VALUE, 1940-1978

:	Prodi	uction 1/		Utilization	:	Price Per	. Value
Year :		: : : : : : : : : : : : : : : : : : :		Processed	·	Pound	Of Utilized
	Total	Utilized	Fresh	` Canned	All Processed	<u>2</u> /	: Production
			Tar	t Cherries (Mi)	.Lbs.)	Cents	Thous . Dols
1940	12.6	12.6	6.1	5.5	6.5	3.5	441
1950	16.8	16.8	5.0	10.4	11.8	8.2	1,378
1960	18.0	18.0	2.9	9.8	15.1	8.4	1,512
1970	14.0	14.0	.5	5.5	13.5	7.8	1,092
1971	12.7	12.7	.9	7.0	11.8	11.3	1,435
1972	12.3	11.1	.7	7.9	10.4	8.7	966
1973	6.3	6.3	. 4	4.7	5.9	19.8	1,247
1974	13.1	13.1	.9	8.6	12.2	19.8	2,594
1975	12.6	11.5	1.1	6.8	10.4	11.4	1,311
1976	7.6	7.6	1.0	5.3	6.6	25.8	1,961
1977	3.2	3.2	.5	2.6	2.7	29.8	954
1978	6.2	. 6.2	.8	4.5	5.4	41.7	2,585
			£	Ch		£ /T	
			2/46	et Cherries (I	ons)	<u>S/Ton</u>	
940	2,200	2,100	•	-	•	105	220
950	1,500	1,500	-	-	-	171 .	256
960	500	500	-	-	-	370	185
970	600	600	-	-	-	500	300
971	800	800	-	-	-	449	359
972	200	190	-	-	-	415	79
973	660	660	-	-	-	640	422
974	730	730	-	-	-	700	511
975	860	860	-	-	-	730	628
976	460	460	-	-	-	792	364
977	350	350	-	-	-	836	293
978	750	750	-	-	-	936	627

Total production is the quantity actually harvested plus quantities not harvested because of economic reasons. Utilized production is the amount sold plus the quantities used at home or held in storage. When total and utilized production are equal, economic abandonment and cullage quantities are considered at a "normal" level.

Fresh and processing prices combined.

Photo Credit: Tom Piper

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

PENNSYLVANIA: CHERRIES (TOTAL): GROWERS, ACRES, TREES AND PRODUCTION BY COUNTY - 1978 1/

County & District	Gr	owers	Acre	es :	Total	Trees	Trees F	er Acr	e Product	ion 2/ :	Yield Per	Acre <u>3</u> /
	Tart	Sweet	Tart	Sweet :	Tart	Sweet	Tart	Swee	t Tart	Sweet	Tart	Sweet
•			 -	<u>Numb</u>	<u>er</u>					<u>Lbs</u> .		
Crawford & Mercer		3	.6	.3	55			2 7			1,330	733
Erie Forest	•	20	290.8	145.8	23,791	8,999	9 8	2 6	404,970	171,865	1,393	1,179
/enango		-	_	_	_		_	_ :	- -	-	-	_
darren		-	-	-	-			- :	<u> </u>			
ORTHWESTERN, TOTAL	. 35	23	291.4	146.1	23,846	9,02	1 8	2 6	405,768	172,085	1,393	1,178
radford		<u>4</u> /	<u>4</u> /	<u>4</u> /	4/	<u>4</u> ,	/ 4	/ 4	′ <u>4</u> /	4/	4/	<u>4</u> /
ameron		-	-	_	-	•	-			-	-	-
1k		-	-	_	_		-	- :	- -	-	_	_
ycoming	. 10	9	3.7	9.1	346	1,092	2 9	4 120	3,470	2,380	938	262
cKean otter		-	-	-	_		-	_ :		-		-
ullivan		-	-	-	_		-			-	-	-
ioga		4.	-	4-	-		-	- ,	-	4.	-	_
ackawannausquehanna		4/ 4/	47	4/ 4/	4,	4, 4,	, 4	- 4 / 4		4/	4/	4/ 4/
ayne			2	2	2	2			. <u>-</u>	<i>y</i>	<i></i>	<i>y</i>
yoming		13	10.7	11 6		1 220	-		. 10 470	C 210	1 020	- 540
ORTH CENTRAL & NORTHEASTERN TOTAL.	. 12	13	10.7	11.5	1,021	1,320	, 9	5 119	19,470	. 6,210	1,820	540
rmstrong, Clarion, and Jefferson		3	3.7	2.5	199	179		4 70		100	257	40
eaver & Lawrence		7	.3	.4	27	38	39	0 .9	; -	-	-	-
utler ndiana		3	1.7	.7	133	61	- 1 7	8 8	7 190	50	112	71
EST CENTRAL, TOTAL	. 16	13	5.7	3.6	359			3 76			200	42
lair, Cambria, Huntingdon & Miffli	n 4	5	7.0	12.6	524	1,018	3 7	5 8	10,500	5,700	1.500	452
entre & Clearfield		-	10.0	-	800	-	. 8				100	-
olumbia		5	2.4	3.3	100	122					563	1,185
uphin miata		6 7	8.3 4.5	18.6 12.5	470 270						723 1,356	918 1,780
ontour & Northumberland		ģ	6.1	3.2	464	205					2,501	2,683
erry	. 6	4	5.8	3.8	485	203		-	7,208	3,500	1,243	921
yder		7	13.3	4.9	1,015			6 56			2,705	6,602
nion ENTRAL, TOTAL	. 3 . 46	3 46	.1 57.5	.5 59.4	7 4,135	43 3,581					1,660 1,453	2,160 1,590
			07.0	0,,,	1,100	0,00.	•				,,,,,,	
arbon & Luzerne		6 8	.2	.2 3.0	12 49	17 300					230	470 504
ehigh onroe	-	-	.5	3.0	49	300	, ,	8 100 -) 1,095	1,513	2,190 -	504
orthampton	. 3	3	2.2	18.1	215	1,958	3 9	8 10	6,100	25,000	2,773	1,381
ike		9	1.6	1.1	122	68	2 7	 6 62	1,645	520	1,028	- 473
chuylkillAST CENTRAL, TOTAL		26	4.5	22.4	398						1,028	1,211
-	_		_			•				, ,		• • •
llegheny ayette, Somerset & Westmoreland		5 8	.5 1.8	. 3 3. 6	51 151	26 247				1,630	56	453
reene		-	-	-	-	-	-			-	_	-
OUTHWESTERN, TOTAL		13	2.3	3.9	202	273	3 8	8 70	100	1,630	44	418
lams	63	37	1,375.4	48.8	133,670	2,838	3 9	7 58	2,151,839	55,098	1,565	1,129
edford & Fulton	5	8	3.0	13.2	297	1,062	2 9	9 80	3,500	2,395	1,167	181
mberland		4	17.0	2.8 31.2	1,376 10,367	131 2,241					739	1,018
anklin rk		18 27	100.8 51.1	18.0	4,146	1,337					1,153 2,697	1,389 855
OUTH CENTRAL, TOTAL		94	1,547.3		149,856	7,609			2,421,910		1,565	1,044
erks & Lebanon	13	12	34.5	4.6	3,046	470	8 (8 102	60,036	12,315	1,740	2,677
icks	. 5	5	5.6	1.6	340	83	3 6	1 52	5,285	810	944	506
nester, Delaware & Montgomery	9	7	5.2	23.1	289	1,168					1,115	390
ncaster		17	35.8	155.5	2,895	11,877	7 8	1 79	44,918	79,633	1,254	512
uiladelphia UTHEASTERN, TOTAL		41	81.1	184.8	6,570	13,598	8	7	116,039	101,758	1,431	551
•		269	2,000.5	545.7	186,387	38.019		3 70	3,056,866	522.462	1,528	957
ENNSYLVANIA	JUL	200	2,000.3	5 73.1	. 00, 307	50,015	. ,	<i>-</i> /(. 2,030,000	JLL, 70Z	1,328	33/

Some counties are combined to avoid disclosure of individual operations. Production in 1977 from acreage maintained for production in 1978.

Actual yield will be slightly higher due to non-bearing acres included in calculations. Included in North Central and Northeastern total.

PENNSYLVANIA: TART CHERRIES (TOTAL): GROWERS, ACRES, TREES AND PRODUCTION BY SIZE OF OPERATION AND REGION, 1978

Size Of Operation :	Gre	wers	Tr	ees	: Ac	res	Product	ion <u>1</u> /
(Trees)	Number	Percent	Number	Percent	Number	Percent	Pounds	Percent
Region I:								
1-99	35 19	30 16	756 2,440	1 2 7	9.0 35.5 122.0	1 2 8	14,930 85,365	1 4
200-499	30 11 10	25 9 9	9,988 7,727 14,086	, 5 9	78.8 165.0	5 11	313,970 255,786 294,842	13 10 12
2,500-4,999 5,000+	7 6	6 5	24,660 90,369	16 60	286.0 851.7	18 55	545,698 915,027	22 38
fotal	118	100	150,026	100	1,548.0	100	2,425,618	100
Region II:	52	74	550	8	7.5	8	9,030	7
100-199 200-499 500-999	5 8	7 12 ·	602 2,026	8 27	8.3 28.7	9 32	7,800 43,996	6. 34
1,000-2,499	5 <u>2</u> /	7 - -	4,272	57 - -	45.5 - -	51 - -	70,101	53 - -
5,000+	- 70	- 100	- 7,450	- 100	- 90.0	100	- 130,927	100
Total	70	100	7,430	100	30.0	100	130,921	100
1-99	39	74	665	15	8.0	15	11,583	12
100-199. 200-499.	6 8	11 15	849 2,948	19 66	13.5 30.9	26 59	13,980 67,750	15 73
500-999 1,000-2,499 2,500-4,999	<u>3/</u>	-	-	-	-	-	-	-
5,000+	-	-	-	-	-	-	<u>.</u>	-
Total	53	100	4,462	100	52.4	100	93,313	100
Region IV & V:	36	59	648	3	9.0	3	2,064	•
100-199 200-499	9 7 4	15 11 7	1,046 2,278 2,587	4 9 11	12.5 25.5 27.0	4 8 9	9,450 40,200 18,190	2 10 5
500-999 1,000-2,499 2,500-4,999	5 4/ 4/	8 -	17,890	73	236.1	76 -	337,104	83
5,000 ⁺	4/ 61	100	- 24,449	100	310.1	100	407,008	- 100
All Regions:							•	
1-99 100-199	162 39	53 13	2,619 4,937	1 3	33.5 69.8	2 3	37,607 116,595	1
200+	101	34	178,831	96	1,897.2	95	2,902,664	95
PENNSYLVANIA	302	100	186,387	100	2,000.5	100	3,056,866	100

PENNSYLVANIA: SWEET CHERRIES (TOTAL): GROWERS, TREES, ACRES AND PRODUCTION BY SIZE OF OPERATION AND REGION, 1978

Size Of Operation :	Gro	wers	Tı	Trees			;	:	Produ	1/	
(Trees)	Number	Percent	Number	Percent	Number	. :	Percent	:	Pounds (000)	<u>:</u>	Percent
1-99 [2]100-199	208 29	77 11	4,951 3,776	13 10	73.2 56.4	٠	14 10		85,301 95,769		16 18
200-499. 500 ⁺	16 16	6 6	5,267 24,025	14 63	88.9 327.2		16 60		103,197 238,195		20 46
PENNSYLV/NIA	269	100	38,019	100	545.7		100		522,462		100

Production in 1977 from acreage maintained for production in 1978.

Production in 1977 from acreage maintained for production in 1978.

Combined with the 500-999 size group to avoid disclosure of individual operations.

Combined with the 200-499 size group to avoid disclosure of individual operations.

Combined with the 1,000-2,499 size group to avoid disclosure of individual operations.

PENNSYLVANIA: TART CHERRIES (TOTAL): COMPARISON OF ORCHARDS AND TREES OF ALL AGES BY COUNTIES - 1967, 1972 and 1978

County & District	Tree Surve	ey, 1967	Tree Survey	, 1972 <u>1</u> /	Tree Survey	, 1978
county a priserice	Number-Orchards	Total Trees	Number-Orchards	Total Trees	Number-Orchards	Total Tree
rawford	-		_		2 .	21
rie		58,587	55	36,869	32	2/ 23,791
orest	-	• -	-	· -	-	
ercer	-	-	-	-	1 !	· <u>2/</u>
enango	-	-	-	-	_ ;	<i>=-</i>
arren	-	<u>.</u>	-	-	-	-
ORTHWESTERN, TOTAL	92	58,587			35	23,846
radford	2	520	-	-	, 1 :	3/
ameron	;	-	-	-	- ,	-
linton	1	<u>2</u> /	-	-	-	-
lk		-	-	-	<u></u> '	-
ycoming	3	490	-	-	10	1,021
cKean	-	•	-	-		-
otter	<u>-</u>	-	-	-	- 1	-
ullivan	7	21	-	-	-	-
ioga	7	$1.2\frac{27}{20}$	-	-	-	
ORTH CENTRAL, TOTAL						1,021
ackawanna	1	$\frac{2}{3}$	-	-	Ţ	-
usquehanna	2	<u>2</u> / <u>2</u> /	-	-	•	<u>3</u> /
ayneyoming	ì	<u>2/</u> 2/	-	•	.	-
ORTHEASTERN, TOTAL	8	231 231	- -	-	· <u> </u>	<u>-</u>
mstrong	 3	140	 		<u>-</u>	3/
aver	3	140 39	<u>-</u>	-	3 '	. 64
itler	ĭ	2/	-	-	3 .	22
larion	i	2 /	<u>-</u>	-	- 1	-
diana	3	<u>-7</u> 68	_	-	į.	127
fferson	ĭ	2/	-	<u>-</u>	, , , , , , , , , , , , , , , , , , ,	133
wrence	5	<u> </u>	-	-	;	<u>2/</u>
ST CENTRAL, TOTAL	17	572	-	_	16	<u>2</u> / 359
air	2	600			10	<u> </u>
ımbria	1	2/	-		<u>.</u>	<i>\(\sigma_{\text{\tin}\exitt{\text{\tin}\text{\texi\text{\texi}\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\t</i>
ntre	2	225	-	_	2	2/
earfield	3	208	-	-	i	2 /
lumbia	5	2/	4	374	Ġ	100
uphin	4	606	- -	-	Š	470
intingdon	3	365	-	-	ĭ	2/
miata	6	696	5	380	å	2 7 0
fflin	3	864	_	-	ż	2/
ntour	1	2/	-	-	ž	7/
rthumberland	6	307-	_	-	<u>-</u>	361
rry	4	2,051	4	1,702	6	485
yder	12	2,006	9	764	7	1,015
ion	1	2/	-	-	3	7
NTRAL, TOTAL	53	8,0 <u>3</u> 0	_	-	46 .	4,135
rbon		2/	-	-	3	12
high	10	296	5	96	8	49
zerne	3	2/	-	-	1	<u>3</u> /
nroe	2	<u>2</u> / 2/	-	-	-	- -
rthampton	1	<u>2</u> /	-	-	3	215
ke	<u>-</u>		-	•	- ,	-
huylkill	7	127	6	124	8	122
ST CENTRAL, TOTAL	24	2,171			23	398
legheny	8	140	3	`81	5	51
yette	-	-	=	-	1	<u>2/</u>
eene	-	-	-	-	- ·	
merset	j	<u>2/</u> 5 8 7	-	_	Ī	<u>2/</u> 21
shington	5	587	3	485	3	21
stmoreland	2	2/	· -	-	1	<u>2</u> /
JTHWESTERN, TOTAL	16	794	-		11	202
ams	125	160,697	104	141,249	63	133,670
ford	8	250	5	329	5 '	297
mberland	6 35	3,308	6 20	4,669	,3 :	1,376
anklin	35	24,033	20	12,492	15 ,	10,367
Iton	34	9,030	29	11 270	20 1	
rk	208		29 -	11,379	29	4,146
JTH CENTRAL, TOTAL	13	197,318 2,290		1 025	115	149,856
rks	8	2,290	4	1,035	12	1,411
ks	6	306	-	95	5	340
ester	2	2/	<u>-</u>	-	6 .	253
aware	16	$1.8\frac{27}{19}$	- 12	2.05.	3	36
caster	3		-	. 2,054	17 !	4,530
oanon	3	1,801	- -	-	1 .	<u>3</u> /
tgomery	-	2/	-	-	~	-
iladelphia	56	6,550	-	-	*** 1	
JTHEASTERN, TOTAL		0,550			44 !	6,570
			34	C 100		
AL OTHER						
AL, OTHER			37	6,490		

^{1/} Comparable data only available on counties listed for 1972 survey. Z/ Not published to avoid disclosure of individual operations.

3/ Bradford and Susquehanna Counties combined with Lyconing Co., Luzerne Co. combined with Carbon Co., Lebanon Co. combined with Lancaster Co. to avoid disclosure of individual operations.

- \		Number (Of Trees Maintaine	d For Producti	on According To	Year Set Out :	Percent
~ ·	County And District	1975-1977 (1-3 Yrs.)	1972-1974 (4-6 Yrs.)	1957-1971 (7-21 Yrs.)	1956 3 Earlier (22 Yrs +)	: Total All Ages :	Of Total
~ , E	rawford & Mercer	34	2,674	2,023	18 19,094	55 23,791	12.8
, , V	Orestenangodarren.	-	- -	-	- - -	i -	- -
۸	ORTHWESTERN, TOTAL	34	2,674	2,026	19,112	43,846	12.8 .6
. 0	radford, Susquehanna & Lycoming ameron	272 - -	234	400	115	1,021 - -	-
E	lkcKean	-	-	-	-	- ** -	.
p S	otterullivan	-	-	- -	-	4 von	-
L	logaackawanna	-	- -	-	-	-	-
³ W	ayneyomingORTH CENTRAL & NORTHEASTERN, TOTAL	- - 272	- - 234	400	- 115	· - · 1,021	6
· ¡ A	rmstrong, Clarion & Jefferson	- 2	-	154	45	199	.1
βB	eaver & Lawrence utlerndiana	-	12	18 - 117	, - 4	27 - 133	.1
W	EST CENTRAL, TOTAL	2	12 34	289 250	56 30	359	.2
; c	lair, Huntingdon & Mifflinambriaentre & Clearfieldentre & Clearfield	210 - 200	34 - 350	125	125	524 - . 800	.3 - .4
C	olumbiaauphin	35 47	8 171	55 15	2 237	100 470	.3
N	uniataorthumberland & Montour	30 252	10	240 102	100	270 464	.1
S	errynyder	125 704	13	132 183 3	215 128 .3	485 1,015 7	.5
C	nion ENTRAL, TOTAL	1,603	587	1,105	840	4,135	2.2
, F	ehighuzerne & Carbononroe	18	9 -	10	12 5	49 12	-
, N	orthamptonikeike	105	-	110	-	215	.1
5	chuylkillAST CENTRAL, TOȚAL	2 132	3 12	112 232	5 22	122 398	.1 .2
	lleghenyayette, Somerset & Westmoreland	- 70	1	20 60	30	51 130	- .1
G	reeneashington	2	-	19	-	21	<u>-</u> -
	OUTHWESTERN, TOTAL	72 23,028	1 22,372	99 48,391	30 39,879	202 133,670	.1 71.7
C	edfordumberland	20	60 165	225 525	12 666	297 1,376	.2
F	ranklinulton	550 -	3,600	5,666	551 - 627	10,367 - 4,146	5.6 - 2.2
, S	OUTH CENTRAL, TOTAL	822 24,420	680 26,877	2,017 56,824	41,735	149,856	80.4
· ' B	erks & Lebanonucks	8 85	419 8	1,959 217 75	660 30	3,046 340 253	1.7 .2 .1
, D	nesterelawareancasterancaster	158 2 809	20 - . 395	33 806	1 885	36 2,895	1.5
J M J Pi	ontgomery niladelphia	-	-	- -	· · -	- -	-
SI m	DUTHEASTERN, TOTAL	1,062	842	3,090	1,576	6,570	3.5
PI	ENNSYLVANIA	27,597	31,239	64,065	63,486	186,387	100.0
, PI	ERCENT OF TOTAL TREES	14.8	16.8	34.4	34.0	100.0	-

 $^{^{\}circ}$ 1/ Some counties are combined to avoid disclosure of individual operations.

PENNSYLVANIA: SWEET CHERRIES (TOTAL): TREES BY VARIETY AND AGE GROUPS - 1978

Variety :	1975-1977 (1-3 Years)	1972-1974 (4-6 Years)	1957-1971 (7-21 Years)	1956 & Earlier (22 Years +)	Total All Ages	Percent Of Total
DARK:						
Bing	741	1,109	2,490	1,439	5,779	15.2
Black Tartarian	129	207	293	293	922	2.4
Hedelfingen	950	536	1,274	995	3,755	9 9
Lambert	87	113	690	140	1,030	9.9 2.7 9.2
Smidts Biggereau	916	295	1,430	871	3,512	9.2
Vista	429	192	542	210	1,373	3.6
Windsor	160	261	2,466	3,302	6,189	16.3
Other	719	507	2,533	960	4,719	12.4
TOTAL DARK	4,131	3,220	11,718	8,210	27,279	71.7
_IGHT:			•			-
Emperor Francis	273	280	755	431	1,739	A C
Napoleon	22	77	959	2,775		4.6
Starks Gold	42	124	628	123	3,833 917	. 10.1
Other	1,616	318	1.384	933		2.4
TOTAL LIGHT	1,953	799	3,726	4,262	4,251	11.2
TOTAL LIGHT	1,300	799	3,720	4,202	10,740	28.3
OTAL ALL VARIETIES	6,084	4,019	15,444	12,472	38,019	100.0
ERCENT OF TOTAL	16.0	10.6	40.6	32.8	100.0	

PENNSYLVANIA: TART CHERRIES (TOTAL): TREES BY VARIETY AND AGE GROUPS - 1978

			··-, · · ·			
: Variety : :	1975-1977 (1-3 Years)	1972-1974 (4-6 Years)	1957-1971 (7-21 Years)	1956 & Earlier (22 Years +)	Total All Ages	Percent Of Total
Montmorency English Morello Other	27,467	29,825 1,000 414	62,794 603 668	60,873 2,407 206	180,959 4,010 1,418	97.1 2.2 .7
TOTAL ALL VARIETIES	27,597	31,239	64,065	63,486	186,387	100.0

GRAPES

Number And Location Of Vineyards: The number of commercial grape vineyards (2+ Acres) increased from 348 in 1972 to 436 in 1978, a 25 percent increase. Of the total 474 vineyards in 1978, 361 or 76 percent were in Erie County. The number of vineyards throughout the rest of Pennsylvania more than doubled from 1972.

Acreage In Vineyards: The acreage in commercial grape vineyards in 1978 was 14,245.4 compared with 9,865.8 in 1972, a 44 percent increase. Of the total 436 commercial vineyards 177 with 20.0 acres or more accounted for 86 percent of all commercial grape acreage. Geneva double curtain acreage increased from 657.1 acres in 1972 to 2,771.9 acres in 1978. This is 19.4 percent of the total 14,271.3 acres. An additional 90.9 acres of Geneva double curtain were intended for 1978.

Age Of Grape Acreage: Of the total 14,271.3 acres of grapes, 10.0 percent were 1-3 years old, 9.3 percent 4-6 years old and 80.7 percent 7 years or older. For Concord acreage 7.8 percent was 1-3 years old, 5.4 percent 4-6 years old and 86.7 percent 7 years or older.

Varieties: Concord acreage at 11,751.2 accounted for 82.3 percent of the total 14,271.3 acres. Although all varieties increased in acreage since 1972, French Hybrids, Delaware and Catawba acreage more than doubled. Of all the French Hybrid acreage in the 1-3 year age group 80 percent was in counties other than Erie. This is primarily due to an increased number of wineries established in recent years.

PENNSYLVANIA: GRAPES (TOTAL): COMPARISON OF NUMBER OF VINEYARDS AND ACRES BY REGION, 1972 & 1978.

Region -	1972 St	ırvey	1978 Survey				
: :	Number Of Vineyards	Number Of Acres	Number Of Vineyards	Number Of Acres			
***************************************	7	12.3	16	90.4			
<u>I</u>	14	36.1	\$6	251.5			
II	13	22.8	21	163.6			
V	12	17.6	20	97.7			
***************************************	333	9,798.9	361	13,668.1			
ENNSYLVANIA	379	9,887.7	474	14,271.3			

PENNSYLVANIA: GRAPES (TOTAL): GROWERS, ACRES AND PRODUCTION BY SIZE OF OPERATION, 1972. And 1978 1/2

Size Of :		Grov	Growers			Acres			:	Produc	tion	:	Yie	eld :	Geneva Double Curtain Acres		
Operation : In Acres	Numb	er	Perc	ent	Number Percent		To	ns	Perc	ent	Tons/Acre						
	1972	1978	1972	1978	1972	1978	1972	1978	1972	: 1977	1972	1977	1972	1977	1972	1977	1978
.1-1.9	31	38	8	8	21.9	25.9	_	-	67	30	_	_	3.1	1.2	-	3.2	3.2
2.0-4.9	45	80	12	17	142.6	236.0	1	2	609	393	1	1	4.3	1.7	2.5	19.6	20.6
5.0-9.9	75	90	20	19	÷99.7	579.7	5	4	2400	1134	5	4	4.8	2.0	5.0	80.2	86.6
10.0-19.9	73	89	19	19	987.4	1202.0	10	8	4922	2524	10	8	5.0	2.1	16.5	86.6	92.6
20.0-49.9	104	105	28	22	3138.6	3243.5	32	23	16007	7856	34	24	5.1	2.4	109.6	289.5	294.5
50.0-99.9	35	44	9	9	2525.6	3022.7	26	21	11884	7544	25	23	4.7	2.5	70.5	481.2	533.2
100.0-199.9	11	20	3	4	1425.4	2761.0	14	19	6561	6625	14	21	4.6	2.4	83.0	836.1	841.1
200.0 & Over	4	8	1	2	1145.5	3200.5	12	23	5269	6127	11	19	4.6	1.9	370.0	975.5	991.0
PENNSYLVANIA	379	474	100	100	9887.7	14271.3	100	100	47719	32233	100	100	4.8	2.3	657.1	2771.9	2862.8

^{1/} Production in 1977 from acreage maintained for production in 1978.

PENNSYLVANIA: GRAPES (TOTAL): GROWERS, ACRES AND PRODUCTION BY COUNTY AND REGION - 1978

County & Confin	C		: Produc	tion - Tons 1/
County & Region :	Growers	: Acres	Harvested	: Not Harvested
REGION I:				
Adams	4	20.3	28.4	6.0
Cumberland	4	20.4	19.5	-
York	8	49.7	22.4	3.0
, TOTAL	16	90.4	70.3	9.0
REGION II:		• •		
Berks	6	12.3	9.5	_
Bucks	8	36.0	50.2	_
Dauphin	3	12.6	12.2	-
Lancaster	17	111.6	141.4	4.0
Lehigh	4	11.5	7.0	3.8
Montgomery	6	30.4	41.7	1.5
Other	12	37.1	35.2	1.1
TOTAL	56	251.5	297.2	10.4
REGION III:				
Blair	4	. 76.1	250.0	-
Luzerne	3	9.3	.2	.2
Northumberland	4	30.0	15.6	.1
Other	10	48.2	24.8	•
TOTAL	21	163.6	290.6	.3
REGION IV:				
Allegheny	6	19.5	1.3	_
Indiana	3	12.9	2.2	_
Mercer	3	43.0	60.0	_
Other	š	22.3	13.8	-
TOTAL	20	97.7	77.3	*
REGION V:				
Erie	351	13,668.1	31,497.8	195.0
Total	351	13,668.1	31,497.8	195.0
PENNSYLVANIA	474	14,271.3	32,233.2	214.7

^{1/} Production in 1977 from acreage maintained for production in 1978

PENNSYLVANIA: GRAPES (TOTAL): NUMBER OF GRAPE VINEYARDS BY SIZE OF CPERATION AND COUNTY - 1978

County :	Number Of Vineyard Acres In Each Size Group											
	.1-1.9	2.0-4.9	5.0-9.9	10.0-19.9	20.0-49.9	50.0-99.9	100.0-199.9	200.0 & Over	Total			
Erie	2 35	44 36 80	65 25	7 9 10	100 5 105	43 1	20	8	361 113			

PENNSYLVANIA: GRAPES (TOTAL): NUMBER OF GROWERS, ACRES OF VINES BY VARIETY, COUNTY & AGE GROUPS

	_	Number	:	r Of Acres Main According To	Year Set Out		Geneva Do	uble Curtain
Variety :	County :	Of Growers	1975-1977 (1-3 Years)		1971 & Older (7 Years +)	Total Acres All Ages	Total Acres	Total Acres Intended 197
Catawba	Erie	77	202.5	305.0	394.4	901.9	197.0	197.0
	Other	15	4.6	6.8	. 1.4	12.8	3.7	4.7
Concord	PA Erie	92	207.1	311.8	395.8	914.7	200.7	201.7
concord	Other	355	890.9 26.4	621.0 17.7	10103.2	11615.1 136.1	2222.0	2307.6
	PA	64 419	917.3	638.7	92.0 10195.2	11751.2	1.4 2223.4	1.4 2309.0
Delaware	Erie	35	16.0	22.5	315.9	354.4	189.0	189.0
	Other	18	3.5	11.3	3.5	18.3	2.2	3.6
	PA	53	19.5	33.8	319.4	372.7	191.2	192.6
Fredonia	Erie	10		.7	36.6	37.3	8.0	8.0
	Other	16	8.6	1.0	11.7	21.3	1.2	1.2
	PA	26	8.6	1.7	48.3	58.6	9.2	9.2
Niagara	Erie	79	87.4	61.8	287.3	436.5	78.8	80.8
	Other	34	2.6	5.0	27.1	34.7	2.4	3.3
Aumana	PA	113	90.0	66.8	314.4	471.2	81.2	84.1
Aurora	Erie Other	4	12.8	1.5 2.4	16.0 .9	17.5 16.1	3.0	3.0
	PA	12 16	12.8	2.4 3.9	.9 16.9	33.6	3.0	3.0
Baco Noir	Erie	11	3.4	3.8	10.0	17.2	, 8.5	8.5
0000 NOTE	Other	10	2.1	10.2	.6	12.9	. 0.5	0.5
	PA	21	5.5	14.0	10.6	30.1	8.5	8.5
Chancellor	Erie	- <u>;</u>	10.0	5.6	6.3	21.9	5.0	5.0
	Other	11	10.4	9.6	.2	20.2	-	-
	PA	16	20.4	15.2	6.5	42.1	5.0	5.0
Chelois	Erie	5	1.5	6.0	3.5	11.0	-	-
	Other	18	2.8	28.9	5.1	36.8	-	-
	PA	23	4.3	34.9	8.6	47.8	-	
DeChanac	Erie	.3	10.0	4.8	4.0	8.8	4.8	4.8
	Other PA	14	10.9 10.9	11.6 16.4	4.0	22.5 31.3	4.8	4.8
Seyval Blanc	Erie	17 12	2.0	18.8	28.0	48.8	8.5	4.8 8.5
Jeyvar Diane	Other	22	14.1	30.7	5.6	50.4	2.0	2.0
	PA	34	16.1	49.5	33.6	99.2	10.5	10.5
Fosh	Erie	3	-	•	9.0	9.0	-	-
	Other	24	10.6	21.9	2.4	34.9	2.0	2.0
	PA	27	10.6	21.9	11.4	43.9	2.0	2.0
Vidal 256	Erie	8	15.0	6.0	6.5	27.5	8.0	8.0
	Other	14	10.3	18.5		28.8	-	
	PA	22	25.3	24.5	6.5	56.3	8.0	8.0
Other Native	Erie	35	5.1	32.0	69.7	106.8	19.2	19.2
	Other	29	14.8 19.9	4.3 36.3	24.3 94.0	43.4 150.2	1.2 20.4	1.2
Other French	PA	64	13.3	30.3	34.0	150.2	20.4	20.4
Hybrids	Erie	8	-	3.5	16.6	20.1	2.0	2.0
	Other	37	53.8	30.7	17.4	101.9	2.0	2.0
•	PA	45	53.8	34.2	34.0	122.0	4.0	4.0
Total Native	Erie	1/	1201.9	1043.0	11207.1	13452.0	2714.0	2801.6
	Other	٦/	60.5	46.1	160.0	266.6	12.1	15.4
	PA	1/	1262.4	1089.1	11367.1	13718.6	2726.1	2817.0
Total French	·				00.5	101.0	20.0	
Hybrids	Erie	1/ 1/ 1/ 5	31.9	50.0	99.9	181.8	39.8	39.8
	Other	<u>!</u> /,	127.8	164.5	32.2	324.5 506.3	6.0 45.8	6.0
Total Vinifera.	PA Erie	냋	159.7 1.3	214.5 12.0	132.1 21.0	506.3 34.3	45.0	45.8
iotal vinilera.	Other	12	5.2	5.0	1.9	12.1	_	- -
	PA	17	6.5	17.0	22.9	46.4	_	
Total		• •						-
All Varieties.	Erie	361	1235.1	1105.0	11328.0	13668.1	2753.8	2841.4
	Other	113	193.5	215.6	194.1	603.2	18.1	21.4
	PA	474	1428.6	1320.6	11522.1	14271.3	2771.9	2862.8
								
Percent Of All Acro	30		10.0	9.3	80.7	100.0	19.4	

^{1/} Data unavailable.

PENNSYLVANIA: GRAPES (TOTAL): COMPARISON OF VARIETIES BY ACRES, 1972 & 1978

Yariety :	1972 Survey Acres	: Percent Of Total :	: 1978 Survey Acres	: Percent Of Total	: Percent Change 78/72
Catamba	344.5	3.5	914.7	6.4	+166
Concord	8,835.3	89.3	11,751.2	82.3	+ 33
Delaware	130.8	1.3	372.7	2.6	+185
Fredonia	56.3	.6	58.6	.4	+ 4
Niagara	236.6	2.4	471.2	3.3	+ 99
Other Native	85.0	.9	150.2	1.1	+ 77
Total Native	9,688.5	98.0	13,718.6	96.1	+ 42
Total French Hybrids	176.3	1.8	506.3	3.6	+187
Total Vinifera	22.9	.2	46.4	.3	+103
Total All Varieties	9,887.7	100.0	14,271.3	100.0	+ 44

PENNSYLVANIA: GRAPES: AVERAGE PRICE PAID BY PENNSYLVANIA WINERIES AND PROCESSORS FOR PENNSYLVANIA GROWN GRAPES BY VARIETY 1976-1978 1/- 2/

Concord	Catawba	Delaware	Niagara	Other Native	French Hybrids	Other	Average				
\$ 195	\$ 128	\$ 198	\$ 170	\$ 250	\$ 258	\$ 600	\$ 193				
254	175	199	220	225	304	744	252				
210 .	226	279	177	301	326	861	212				
	\$ 195 254	\$ 195	\$ 195	\$ 195	\$ 195 \$ 128 \$ 198 \$ 170 \$ 250 \$ 254 \$ 175 \$ 199 \$ 220 \$ 225	\$ 195 \$ 128 \$ 198 \$ 170 \$ 250 \$ 258 254 175 199 220 225 304	\$ 195 \$ 128 \$ 198 \$ 170 \$ 250 \$ 258 \$ 600 254 175 199 220 225 304 744				

1/ Dollars Per Ton. 2/ Source - Grape production and utilization survey.

PENNSYLVANIA: GRAPES (COMMERCIAL): PRODUCTION, DISPOSITION AND VALUE, 1930-1978

:		Utilization						Value
Year :	Produ	ction <u>l</u> /	:		Per Unit	Of Production		
	Total	Utilized	Fresh	: Juice	Other Sales	: All Sales	2/	:
				<u>Tons</u>			- \$/ Ton	Thous.Dols
1930	22,400	22,400	4,680	-	17,720	22,400	43	963
1940	17,300	17,300	10,350	6,950		17,300	39	675
950	30,900	29,700	2,900	26,800	3/ 3/ 3/	29,700	112	3,326
960	33,500	33,500	1,940	31,560	3/	33,500	119	3,936
970	45,000	45,000	1,800	36,230	3,970	45,000	147	6,615
971	57,000	57,000	2,170	51,470	3,360	57,000	137	7,809
972	37,500	37,600	2,275	32,410	2,915	37,600	172	6,467
973	40,000	40,000	2,390	33,367	4,243	40,000	2 21	8,840
974	53,000	53,000	1,275	42,217	9,508	53,000	198	10,494
975	48,0CO	48,000	1,660	39,250	7,090	48,000	168	8,064
976	59,000	59,000	1,350	46,270	11,380	59,000	168	9,912
977	30,000	29,650	1,350	23,350	4,950	29,650	231	6,849
978	57,500	57,500	1,300	42,300	13,900	57,500	232	13,340

Total production is the quantity actually harvested plus quantities not harvested because of economic reasons. Utilized production is the amount sold plus the quantities used at home or held in storage. When total and utilized production are equal, economic abandonment cullage quantities are considered at a "normal" level.

Fresh and processing prices combined. Included in fresh sales.

PENNSYLVANIA: GRAPES: QUANTITY OF PENNSYLVANIA GROWN GRAPES BY VARIETY DELIVERED TO WINERIES AND PROCESSING PLANTS, 1976-1978 1/2

Yariety —	Pennsylvania Plants And Wineries			: Out-Of-State : Plants And Wineries			Total <u>2</u> /		
	1976	1977	1978	1976	1977	1978	1976	1977	1978
-					<u>Tons</u>				
Concord	42,690.6	21,409.5	38,622.6	10,155.0	5,155.0	13,490.0	52,845.6	26,564.5	52,112.6
Catawba	-2-	-2-	-2-	-2-	-2-	-2-	2,092.9	693.1	1,523.4
Delaware	-3-	-3-	-3-	-3-	-3-	-3-	194.9	152.7	239.4
Niagara	-4-	-4-	-4-	- 4-	-4-	-4-	1,489.4	712.5	1,300.2
Other Native	-5-	- 5-	-5-	-5 -	-5-	-5-	176.9	89.2	179.8
(2+3+4+5)	1.862.1	1,054.5	2,478.8	2.092.0	593.0	764.0	3.954.1	1.647.5	3,242.8
		517.0	696.7	187.0	43.0	73.9	779.1	560.0	770.6
French Hybrid Other	47.9	7.9	17.6	0.0	0.0	0.0	47.9	7.9	17.6
TOTAL	45,192.7	22,988.9	41,815.7	12,434.0	5,791.0	14,327.9	57,626.7	28,779.9	56,143.6

Source - Grape production and utilization survey.

PENNSYLVANIA: GRAPES: UTILIZATION BY VARIETY OF GRAPES USED IN PENNSYLVANIA WINERIES AND PROCESSING PLANTS, 1976-1978 1/

: Variety :-		Wine		Swe	:	Total <u>2</u> /			
Variety	1976	1977	1978	1976	1977	1978	1976	1977	1978
					<u>Tons</u>				
Concord	258.5	1,143.0	2,508.9	72,097.0	32,829.9	57,836.2	72,355.5	33,972.9	60,345.1
atawba	912.3 72.9	311.1 141.7	1,070.4 295.5	0.0 0.0	9.0 9.0	0.0	912.3 72.9	311.1 141.7	1,070.4 295.5
iagarather Native	282.4 140.9 705.8	334.5 134.2 595.1	565.6 248.7 847.6	2,295.0 0.0	1,199.0 0.0	2,015.0 0.0	2,577.4 140.9	1,533.5 134.2	2,580.6 248.7
rench Hybrid	51.3	9.7	25.6	0.0 0.0	0.0 0.0	0.0 0.0	· 705.8 51.3	595.1 9.7	847.6 25.6
OTAL	2,424.1	2,669.3	5,562.3	74,392.0	34,025.9	59,851.2	76,816.1	36,698.2	65,413.5

[/] Source -

PENNSYLVANIA: GRAPES: UTILIZATION BY VARIETY OF PENNSYLVANIA GROWN GRAPES TO ALL WINERIES AND PROCESSORS, 1976-1978

Year	Tons										
:	Concord	Catawba	Delaware	Niagara	: Gther : Native	: French : Hybrids	: Other : Varieties	Total <u>2</u> /			
1					Wine	•					
1976 1977 1978	8,055.6 4,383.2 10,605.3	2,092.9 693.1 1,523.4	194.9 152.7 239.4	305.4 239.5 510.2	376.9 89.2 179.8	779.1 560.0 770.6	47.9 7.9 17.6	11,643.7 6,125.6 13,846.3			
				Juice	+ Otrer	•					
1976 1977 978	44,790.0 22,103.3 41,507.3	0.0 0.0 0.0	0:0 0.0 0.0	1,184.0 473.0 790.0	0.0 0.0 0.0	0.0 78.0 0.0	0.0 0.0 0.0	45,983.0 22,654.3 42,297.3			
- Paris - Pari					Total						
1976 977 978	52,845.6 26,486.5 52,112.6	2,092.9 693.1 1,523.4	194.9 152.7 239.4	1,489.4 712.5 1,300.2	176.9 E9.2 179.8	779.1 638.6 770.6	47.9 7.9 17.6	57,626.7 28,779.9 56,143.6			

^{1/} Source -

^{2/} Excludes small amount of cullage.

^{2/} Excludes small amount of cullage.

^{2/} Excludes small amount of cullage.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

PLUMS AND PRUNES

Number Of Orchards And Trees: There were 78 commercial plum and prune orchards (100 + Trees) in 1978 compared with 108 in 1972, a 28 percent decrease. Corresponding tree numbers decreased from 36,327 in 1972 to 29,120 in 1978, down 20%.

Acreage In Orchards: Commercial plum and prune acreage declined 26 percent from 431 acres in 1972 to 319.3 acres in 1978. Trees per acre increased from 84 in 1972 to 91 in 1978.

Location of Trees: Fruit Region I accounts for 54 percent of the total 35,479 trees. Adams county alone accounts for 33 percent of all trees. The leading four counties (Adams, Franklin, Dauphin and Erie) account for 60 percent of the total trees.

Age Of Trees: Of the 35,479 total plum and prune trees, 12.6 percent were 1-3 years old, 15.8 percent 4-6 years old, 58.6 percent 7-21 years old and 13.0 percent 22 years old or older.

Varieties: European varieties accounted for 72 percent of the total 35,479 trees while Japanese varieties comprised 19 percent and other varieties 9 percent. Stanley is the leading variety accounting for 42 preent of the total trees. Other leading varieties as a percent of total trees are: Fellenburg — 5, President — 4, Bluefree and Shiro Gold — 3

PENNSYLVANIA: PLUMS & PRUNES - COMPARISON OF COMMERCIAL & NON COMMERCIAL GROWER AND TREE NUMBERS, 1967, 1972, 1978

Trees		Number Of Growers		: Number Of Trees			
	1967	1972	1978	1967	1972	1978	
1 - 99 <u>1/</u>	236 127	173 108	241 78	7,332 42,173	5,246 36,327	6,359 29,120	
TOTAL 1/	363	281	319	49,505	41,573	35,479	

1/ Include trees in orchards classified as commercial (100 + Trees) for any fruit.

Photo Credit: Tom Piper

Number of Plum and Prune Trees by County - 1978

PENNSYLVANIA: PLUMS & PRUNES (TOTAL): GROWERS, ACRES, TREES, PRODUCTION BY COUNTY & REGION - 1978 1/

County & Region	Grow	ers	Acı	res	Total	Trees	Trees	Product	ion 2/	Yield
county a negron	Number	: % :	Number	: % : %	: Number	2 2	Per Acre	: Bushels	; ;	: Per : Tree <u>3</u> / : (Bu.)
REGION I:										
Adams	40	12.5	122.4	.31.7	11,659	32.9	95	15,531	31.4	1.6
Cumberland	3	.9	2:0	.5	146	.4	73	245	.5	1.7
Franklin	16	5.0	56.0	14.5	5,185	14.6	93	6,245	12.6	1.2
Perry		1.3	1.2	.3	95	.3	79	16	-	.3
York	32	10.1	25.3	6.6	1,973	5.5	78	3,441	7.0	2.0
TOTAL	95	29.8	206.9	53.6	19,058	53.7	92	25,478	51.5	1.5
REGION II:										
Berks	16	5.0	12.0	3.1	993	2.8	83	939	1.9	1.1
Bucks	7	2.1	5.5	1.4	580	1.6	105	1,191	2.4	2.2
Carbon	3	9	.6	.2	58	.2	97	26	.1	.6
Chester		1.9	3.4	.9	315	.9	93	590	1.2	2.0
Dauphin & Lebanon	7	2.2	21.3	5.5	2,513	7.1	118	3,317	6.7	1.3
Delaware	4	1.3	1.1	.3	81	.2	74	55	.1	-7
Lançaster		5.0	15.4	4.0	1,293	3.7	84	1,033	2.1	.9
Lehigh	6	1.9	9.7	2.5	870	2.4	90	1,946	3.9	2.6
Monroe & Pike	2	.6	1.1	.3	106	.3	91	20	-	3.3
Montgomery	4	1.3	2.0	.5	185	.5	93	285	.6	1.9
Northampton	5	1.6	3.6	.9	318	.9	88	694	1.4	3.2
Schuylkill	21	6.6	4.4	1.1	386	1.1	88	· 774	1.6	2.3
TOTAL	97	30.4	80.1	20.7	7,692	21.7	96	10,870	22.0	1.7
REGION III:										
Bedford	4	1.3	1.7	.4	161	.5	95	48	.1	.3
Blair	-	-	-	-	-	-	-	-	-	-
Bradford & Tioga	3	.9	.9	.3	75	.2	83	298	.6	4.0
Huntingdon, Centre, and Montour	5	1.6	2.1	.6	175	. 4	83	195	.4	1.4
Clinton	-	-	_	-	-	-	-	-	_	_
Columbia	5	1.6	11.0	2.8	922	2.6	84	1,709	3.5	1.9
Fulton	-	-	-	-	-	-	-	-	-	-
Juniata	6	1.9	8.0	2.1	739	2.1	92	2,052	4.1	2.9
Lackawanna	4	1.3	.5	. 7	46	.1	92	21	-	.6
Luzerne	8	2.5	4.1	1.0	318	.9	78	199	.4	.9
Lycoming	9	2.8	3.4	.9	264	.8	78	454	.9	2.8
Mifflin	-	_	-	-	-	-	-	-	-	-
Northumberland	10	3.1	11.3	2.9	967	2.7	86	889	1.8	1.5
Potter	_	-	_	_	-	-	_	-	-	· -
Snyder	5	1.6	10.9	2.8	904	2.6	83	3,238	6.6	3.8
Susquehanna & Wyoming	3	.9	. 4	.1	42	.1	105	4	-	.3
Union	3	.9	.3	.i	32	. 1	107	35	.1	1.3
Wayne	-		-	-	-	-	-	-	-	-
TOTAL	65	20.4	54.6	14.1	4,645	13.1	85	9,142	18.5	2.4
REGION IV:	•									
Allegheny	10	3.1	3.0	.8	269	.8	90	253	.5	1.0
Armstrong	3	.9	3.5	.9	335	.9	96	253 54	.1	.2
Beaver	4	1.3	1.9	.5	171	.5	90	8	• •	.1
Clarion, Jefferson, Butler & Clearfield	4	1.3	9.9	.2	73	.2	81	39	.1	
Cambria	-	1.5			, ,		-	-	• •	- .
Mercer, Crawford	5	1.6	5.8	1.5	527	1.5	91	271	.5	.6
Elk		1.0	5.0		JL,		-	2/1	.,	-
Fayette	_	_	-	_	_	_	_	_	_	-
Greene	_	_	_	_	_	_	_	_	_	-
Indiana	9	2.8	4.0	1.0	334	.9	84	178	.4	.5
Lawrence	ž	.9	2.1	.6	160	.5	76	457	.9	2.9
McKean	-	.,				.,	, ,	737		2.5
Somerset	_	_	-	_	_	-	-	_	-	_
Venango	_		_	_	_	_	_	_	-	_
Westmoreland, and Washington	5	1.6	1.7	.4	145	.4	85	185	.4	2.2
TOTAL	43	13.5	22.9	5.9	2,014	5.7	88	1,445	2.9	.9
EGION_V:										
Erie	19	5.9	22.0	5.7	2,070	5.8	94	2,535	5.1	.8
							_			_
TOTAL	19	5.9	22.0	5.7	2,070	5.8	94	2,535	5.1	.8

Some counties are combined to avoid disclosure of individual operations. Production in 1977 from acreage maintained for production in 1978. Yield calculations are derived excluding the 1-3 year age category trees.

PENNSYLVANIA: PLUMS & PRUNES (TOTAL): GROWERS, ACRES, TREES, PRODUCTION BY SIZE OF OPERATION, 1978

Size Of	:	Growers		Acres		: T	Trees		Production $1/$		ld <u>2</u> /
Operation (Trees)	:	Number	Percent :	Number	: Percent :	: Number	: Percent	: Bushels	: Percent	Bushels Per Tree	Bushels Per Acre
1-99		241	75.5	67.2	17.4	6,359	. 17.9	10,285	20.8	1.6	153
100-199		42	13.2	70.2	18.2	5,659	16.0	8,115	16.4	1.4	116
200-499		26	8.2	85.6	22.2	7,695	21.7	10,220	20.6	1.3	119
500-999		5	1.6	43.0	11.1	3,439	9.7	8,250	16.7	2.4	192
1000 +		5	1.5	120.0	31.1	12,327	34.7	12,600	25.5	1.0	105
PENNSYLVANIA	•	319	100.0	386.5	100.0	35,479	100.0	49,470	100.0	1.4	128

1/ Production in 1977 from acreage maintained for production in 1978. 2/ Actual yield will be slightly higher due to nom bearing trees and acres included for this calculation.

PENNSYLVANIA: PLUMS & PRUNES (TOTAL): TREES BY VARIETY AND AGE GROUPS, 1978

Variety	1975 - 1977 (1-3 Years)	1972 - 1974 (4-6 Years)	1957 - 1971 (7-21 Years)	1956 & Earlier : (22 Years +) :	Total All Ages	Percent Of Total
European:						T
Stanley	2,313	2,629	7,416	2,520	14,878	41.9
Fellenberg	42	282	1,240	260	1,824	5.1
President	337	461	671	40	1,509	4.3
Bluefre	262	82	730	8	1,082	3.0
Other European	278	456	5,038	532	6,304	17.8
TOTAL EUROPEAN	3,232	3,910	15,095	3,360 -	25,597	72.1
Japanese:						
Methley	68	127	587	93	875	2.5
Santa Rosa	102	256	458	41	857	2.4
Shiro (Gold)	89	376	523	238	1,226	3.4
Other Japanese	408	456	2,377	400	3,641	10.3
TOTAL JAPANESE	667	1,215	3,945	772	6,599	18.6
TOTAL OTHER	5 55	497	1,735	496	3,283	9.3
OTAL ALL VARIETIES	4,454	5,622	20,775	4,628	35,479	100.0

PENNSYLVANIA: PLUMS AND PRUNES (COMMERCIAL): NUMBER OF ORCHARDS AND TREES BY SIZE GROUPS, SELECTED COUNTIES, 1978

County	100 - 199 Trees	200 - 499 Trees	. 500 + Trees	Total
Adams - No. Of Orchards	5	6	4	15
Adams - 'io. Of Trees	809	1,576	8,477	10,862
Erie - No. Of Orchards	4	4	· -	8
Erie - No. Of Trees	626	1,215		1,841
Others - No. Of Orchards	33	16	6	55
Others - No. Of Trees	4.224	4,904	7,289	16,417
PENNSYLVANIA - No. Of Orchards	42	26	10	78
PENNSYLVANIA - No. Of Trees	5,659	7,695	15,766	29,120

County And Displace	Number 0	f Trees Maintai	ned For Producti	on According To	Year Set Out	Percent
County And District :	1975-1977 (1-3 Yrs.)	1972-1974 (4-6 Yrs.)	1957-1971 (7-21 Yrs.)	1956 & Earlier (22 Yrs +)	: :Total All Ages :	Of Total
Erie	20	192	766	1,092	2,070	5.8
Mercer and Crawford	70	-	432	25	527	1.5
NORTHWESTERN, TOTAL	90	192	1,198	1,117	2,597	7.3
Bradford and Tioga	20	10	25	20	75	.2
Lycoming	102	31	81	` 50	264	.8
NORTH CENTRAL, TOTAL	122	41	106	70	339	1.0
Lackawanna	8	8	14	16	46	.1
Susquehanna and Wyoming	30 30	-	12	-	42	.1
NORTHEASTERN, TOTAL	38	8	26	16	88	.2
Armstrong	-	165	. 5	165	335	.9
Beaver	-	28 12	. 143	-	171	.5 .1
Butler, Clarion and Jefferson	8	233	36 70	23	48 · 334	.9
Lawrence	-		130	30	160	.5
WEST CENTRAL, TOTAL	8	438	384	218	1,048	2.9
Centre, Clearfield, Huntingdon & Montour	36	25	79	60	200	.6
Columbia	40	54	628	200	922	2.6
Dauphin	489	334	1,509	41	2,373	6.7
Juniata Northumberland	40 383	- 59	699 525	-	739 967	2.1 2.7
Perry	40	5	50 50	-	95	.3
Snyder	43	41	530	290	904	2.5
Union	5	2	25	-	32	1
CENTRAL, TOTAL	1,076	520	4,045	591	6,232	17.6
Carbon	17	22	11	8	58	.2
LehighLuzerne	115 105	108 75	291	350	864	2.4
Monroe and Pike	100	/5	-	138 6	318 106	.9 .3
Northampton	103	. 45	170	-	318	.9
Schuylkill	44	71	261	10	386	1.1
EAST CENTRAL, TOTAL	484	321	733	512	2,050	5.8
Allegheny	8	52	177	32	269	.8
Washington and Westmoreland	5	70	70	. .	145	.4
SOUTHWESTERN, TOTAL	13	122	247	32	414	1.2
Adams	1,860	2,002	6,469	1,328	11,659	32.9
Bedford	-	73	88	-	161	.4
CumberlandFranklin	105	- 615	146	236	146	.4
fork	225	520	4,229 1,079	149	5,185 1,973	14.6 5.6
SOUTH CENTRAL, TOTAL	2,190	3,210	12,011	1,713	19,124	53.9
Berks	174	253	509	57	993	2.8
Bucks	30	253 31	478	41	580 ·	1.6
Chester	25	20	270	-	315	.9
Delaware	-	38	15	28	81	.2
Ancaster and Lebanon	169 35	328 100	753	183 50	1,433 185	4.1 .5
SOUTHEASTERN, TOTAL	433	770	2,025	359	3,587	10.1
PENNSYLVANIA	4,454	5,622	20,775	4,628	35 ,479	100.0

^{1/} Some counties are combined to avoid disclosure of individual operations.

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

NECTARINES

Number Of Orchards And Trees: Consumer acceptance of nectarines has increased substantially during recent years. The number of commercial nectarine orchards (100+ Trees) increased from 44 in 1972 to 71 in 1978, up 61 percent. The number of trees in commercial nectarine orchards climbed from 19,024 in 1972 to 44,877 in 1978.

Acreage In Orchards: Commercial nectarine acreage more than doubled from 222 acres in 1972 to 479.6 in 1978. During the same period trees per acre increased from 86 to 94.

Location Of Trees: Fruit Region I accounted for 58 percent of the total 47,938 nectarine trees. The leading three counties (Franklin, York and Adams) accounted for 58 percent of the total trees.

Age Of Trees: Of the total 47,938 nectarine trees, 20.7 percent were 1-3 years old, 41.6 percent 4-6 years old, 37.3 percent 7-21 years old and .4 percent 22 years or older.

Varieties: Leading varieties as a percent of total trees are: Redgold -24, Sunglo -17, Nectared -11, and Favertop -8.

PENNSYLVANIA: NECTARINES - COMPARISON OF COMMERCIAL & NON COMMERCIAL GROWER AND TREE NUMBERS 1967 - 1972 - 1978

:		Number Of Growers		: Number Of Trees				
Trees :	1967	1972	1978	1967	1972	1978		
1-99 <u>1</u> / 100 + Total <u>1</u> /	106 35 141	86 44 130	153 71 224	2,892 24,039 26,931	2,328 19,024 21,352	3,061 44,877 47,938		

1/ Include trees in orchards classified as commercial (100 + Trees) for any fruit.

Photo Credit: Tom Piper

PENNSYLVANIA: NECTARINES (TOTAL): GROWERS, TREES, ACRES, PRODUCTION, BY COUNTY & REGION, 1978 1/

County & Region	Gr	owers	. Ac	res '	Total	Trees	Trees	Pròdu	ction 2/	Yield
county a negron	Number	: Percent	: Number	: Percent	: Number	Percent	Per Acre	Bushels	Percent:	Per Tree 3/ (Bushels)
REGION I:									· · · · · · · · · · · · · · · · · · ·	
Adams	. 23	10.3	75.3	14.3	6,592	13.7	88	6,979	8.6	1.4
Cumberland & Perry	. 7	3.1	1.6	.3	107	2	67	62	.1	.9
Franklin	. 16	7.1	172.8	32.8	13,206	27.6	76	42,032	51.7	3.6
York		11.6	69.7	13.2	7,863	16.4	113	10,776	13.3	1.4
TOTAL		32.1	319.4	60.6	27,768	57.9	87	59,849	73.7	2.4
REGION II:								ž.		
Berks		6.8	43.4	8.2	4,184	8.7	96	3,385	4.2	1.3
Bucks		2.2	2.2	.4	185	.4	84	300	.4	1.6
Carbon & Schuylkill		5.4	5.7	1.0	308	.6	54	465	.6	1.6
Chester		2.2	8.7	1.7	1,021	2.1	117	255	.3	2.5
Dauphin & Lebanon	. 6	2.7	19.0	3.6	1,740	3.6	92	1,984	2.4	1.6
Delaware	. 3	1.3	.8	.2	57	.1	71	75	ī.i	1.6
Lancaster	. 9	4.0	3.6	.7	277	.6	77	196	.ż	
Lehigh		4.0	19.4	3.7	1,943			6,197	7.6	1.1
Monroe		~	.3.4	3.7	1,543	4.1	100	0,137		3.7
Montgomery		1.8	5.2	1.0	700	, -	125	344	7	-
Northampton		2.2			700	1.5	135		.4	.9
Pike		2.2	3.4	.6	421	.9	124	162	.2	.6
1 102		-	-	-	•	-	-	-	-	-
TOTAL	. 73	32.6	111.4	21.1	10,836	22.6	97	13,363	16.4	1.9
	-									
Bedford		1.3	3.2	.6	413	.9	129	86	.1	.2
Blair & Huntingdon		1.3	3.8	.7	377	.8	99	80	.1	.2
Bradford		-	-	-		-		-	-	
Centre		-	_	-	_	-	_	_	-	
Clintón		-	-	-	_	_		-	_	_
Columbia	. 5	2.2	4.5	.9	479	1.0	106	1,063	1.3	3.8
Fulton		-			473	1.0	100	1,000	1.5	3.0
Juniata	. 5	2.2	13.6	2.6	1,215	2 5		1,100	1.4	, -
Lackawanna		_		-	1,213	2.5	89	1,100	1.4	1.6
Luzerne & Susquehanna	. 6	2.7	1.0	.2	86	-	-	8	-	-
Lycoming		2.7	26.0			.2	86			.2
Mifflin			20.0	4.9	2,609	5.4	100	4,011	5.0	1.6
Montour & Northumberlan		3.6	2.0	-		-	-			-
	-	3.0	3.8	.7	274	.6	72	193	.2	1.2
Potter		2 2			-	-	-	-	-	-
Snyder		3.2	11.7	2.2	1,482	3.1	127	T40	.2	1.0
Tioga			-	-	-	-		-	-	-
Union		1.3	.9	.2	53	.1	59	25	_	.5
Wayne		•	-	-	_	•	-	_	_	••
Wyoming		-	_	_	-	-	_	-		_
							-			-
TOTAL	. 46	20.5	68.5	13.0	6,988	14.6	102	6,706	8.3	1.4
GION IV:	_									
Allegheny		2.2	4.8	.9	437	.9	91	375	.5	.9
Beaver		2.8	4.2	.8	373	.7	89	120	.1	.3
Butler		-	-	-		-	-	-	-	
Cambria		-	-	-	_	-	-	_	-	-
Clarion		-	-	-	-	-	-	_	_	-
Clearfield		-	_	_	-	-	-	-	-	••
Crawford & Mercer		1.3	.5	.1	22	;	-	40	-	
E1k		-	. 5	• •	33	.1	66	48	.1	1.5
Fayette		=	-	-	-	-	-	-	-	-
Greene		-	-	-		-	-	-	-	-
Indiana & Jefferson		1 0					-	-	-	-
		1.8	9.3	1.8	660	1.4	71	3	-	-
Lawrence		1.8	2.2	.4	225	.5	102	306	.4	2.2
McKean		_	-	-	-	_	-	-	_	
Somerset & Washington		2.2	1.4	.3	121	.3	86	190	.2	1.6
Venango		,-	- '				-	-	-	1.0
Westmoreland	-	·-	-	-	_	-	-	_	-	-
										_
TOTAL	27	12.1	22.4	4.3	1,849	3.9	83	1,042	1.3	.8
			•		. ,0 15	3.3		. ,		.0
GION V:							•			
Erie	6	2.7	5,4	1.0	497	1.0	03	219	.3	
TOTAL		2.7	5.4	1.0		1.0	92			.6
	•		3.4	1.0	497	1.0	92	219	.3	.6
	004	100.0	507.3							
NNSYLVANIA	224	100.0	527.1	100.0	47,938	100.0	91	81,179	100.0	2.1

Some counties are combined to avoid disclosure of individual operations. Production in 1977 from acreage maintained for production in 1978. Yield calculations are derived excluding the 1-3 year age category trees.

PENNSYLVANIA: NECTARINES - TOTAL: GROWERS, TREES, ACRES AND PRODUCTION BY SIZE OF OPERATION - 1978

	Growers		Tı	Trees		Acres		Production 1/		<u>2</u> /
Size Of Operation (Trees)	Number	: Percent	: Number	: Percent	: Number	: : Percent :	: : Bushels	: : Percent :	Bushels Per Tree	Bushels Per Acre
1-99	153	68.3	3,061	6.4	47.5	9.0	3.868	4.8	1.3	81.4
100-199	29	13.0	4,747	9.9	49.9	9.5	4,887	6.0	1.0	97.9
200-499	19	8.5	6.035	12.6	63.0	12.0	9,709	12.0	1.6	154.1
500-999	13	5.8	8,453	17.6	92.7	17.6	8,210	10.1	1.0	88.6
1000-2499	5	2.2	5,542	11.6	54.0	10.2	4,005	4.9	.7	74.2
2500+	5	2.2	20,100	41.9	220.0	41.7	50,500	62.2	2.5	229.5
PENNSYLVANIA	224	100.0	47,938	100.0	527.1	100.0	81,179	100.0	1.7	154.0

PENNSYLVANIA: NECTARINES - TOTAL: TREES BY VARIETY AND AGE GROUPS - 1978

Variety :	1975-1977 (1-3 Years)	: 1972-1974 : (4-6 Years)	: 1957-1971 : (7-21 Years)	: 1956 & Earlier : : (22 Years +) : :	Total All Ages :	Percent Of Total
iun Glo	1,306	3,001	3,663	-	7,970	16.6
Red Gold	3,042	6,586	2,025	_	11,653	24.3
avertop	690	2,602	293	_	3,585	7.5
rancesco	11	540	50	-	601	1.2
eolglo	389	680	563	-	1,632	3.4
tarks Delicious	571	455	560	20	1,606	3.4
un Grande	140	305	1,881	-	2,326	4.8
antasia	13:	550	79	-	763	1.6
ectared	1,265	1,089	2,765	47 ·	5,106	10.7
ther	2,421	4,166	5,989	120	12,696	26.5
OTAL ALL VARIETIES	9,909	19,974	17,868	187	47,938	100.0

PENNSYLVANI4: NECTARINES - COMMERCIAL: NUMBER OF ORCHARDS AND TREES BY SIZE GROUPS, SELECTED COUNTIES - 1978

County :	100-199 Trees	200-499 Trees	: 500 + Trees :	Total
lams - No. Of Orchards	4	3	4	11
lams - No. Of Trees		6-0	4,745	5,864
anklin - No. Of Orchards	-	3	5	8
anklin - No. Of Trees	-	1,000	12,002	13,002
hers - No. Of Orchards	~ -	13	. 14	52
hers - No. Of Trees		4,395	17,348	26,011
HNSYLVANIA - No. Of Orenards		19	23	71
MNSYLVANIA - No. Of Trees	4,747	6,035	34,095	44,877

Production in 1977 from acreage maintained for production in 1978.

Actual yield will be slightly higher due to nonbearing trees and acres included for this calculation.

County & Region	Number U	Tirees Maintain	ed For Producti	on According To	rear Set Out :	Percent
:	1975-1977 (1-3 Yrs.)	1972-1974 (4-6 Yrs.)	1957-1971 (7-21 Yrs.)	1955 & Earlier (22 Yrs +)	Total All Ages:	Of Tota
EGION I:		·				
Adams	1,533	1,905	3,119	. 35	6,592	13.8
Cumberland & Perry	40	15	44	8	107	.2
Franklin	1,411	6,194	5,560	41	13,206	27.5
York TOTAL	59 3,043	6,697 14,811	1,063 9,786	44 128	7,863 27,768	16.4 57.9
EGION II:						
Berks	1,614	1,510	1,060	0	4,184	8.7
Bucks	0	25	160	0	185	. 4
Carbon & Schuylkill	24	142	142	0	308	.6
Chester	917	30	74	0	1,021	2.1
Dauphin & Lebanon	517	482	741	0	1,740	3.6
Delaware	10 102	12 80	35 75	0 20	57 277	.]
ancaster	262	510	1,170	1	1,943	.6 4.1
Lehigh	0	0	0	Ö	0	7.1
ontgomery	300	345	40	15	700	1.5
Vorthampton	155	210	51	.5	421	.9
ike	0	0	Ö	Ŏ.	0	-
OTAL	3,901	3,346	3,548	41	10,836	22.6
GION III:						
Bedford	.O	290	117	6 .	413	.9
Blair & Huntingdon	40	337	0	0	377	.8
gradford	0	0	0	0	0	-
entre	0 0	· 0	0	0	0	-
linton	200	0 235	0 34	0 10	0 479	, -
olumbia ulton	200	235	0	0	4/9	1.0
uniata	515	15	685	o o	1,215	2.5
ackawanna	0	Ö	0	ŏ	,,2,0	
uzerne & Susquehanna	52	20	14	Ŏ	86	.2
ycoming	73	36	2,500	Ó	2,609	5.4
lifflin	0	0	0	0	0	-
ontour & Northumberland	116	53	105	0	274	.6
otter	0	0	0	Ó	0	
nyder	1,347	32	102	I .	1,482	3.1
ioga	0 2	0 51	0 0	0 0	0 53	
nìonavne	0	0	0	0	0	.1
yoming	0	0	0	0	Ö	-
OTAL	2,345	1,069	3,557	17	6,988	14.6
GION IV:						
llegheny	25	77	335	0	437	.9
eaver	0	176	197	Ö	373	.8
utler	0	0	0	Õ	0	-
ambria	Ō	0	0	Ō	0	-
larion	0	0	0	0	0	-
learfield	0	0	0	0	0	-
rawford & Mercer	0	0	33	Ü	33	. 1
1k	0	0	0 0	0 0	0	-
ayette reene	0	0	o o	n	0.	_
ndiana & Jefferson	360	250	50	Ö	660	1.3
awrence	85	15	125	ŏ	225	.5
cKean	Õ	Ö	0	Ŏ	0	-
omerset & Washington	0	60	60	1	121	.3
enango	0	0	0	0	0	-
estmoreland	0	0	0	0	0	<u>.</u>
OTAL	470	578	800	1	1,849	3.9
GION V:	***					
rieOTAL	150 150	170 170	177 177	0 0	497 497	1.0
NNSYLVANIA	9,909	19,974	17,868	187	47,938	100.0

 $[\]underline{1}$ / Some counties are combined to avoid disclosure of individual operations.

ORIGINAL PAGE IS OF POOR QUALITY

County	Apples	Peaches	Pears	Tart Cherries	Sweet Cherries	Plums & Prunes	Nectarines:	Grapes	Ranking All Fruit Acreage
Ada-5		2,968.5	673.0	1,375.4	48.8	122.4	75.3	20.3	1
Allegneny	676.2	30.7	6.0	.5	.3	3.0	4.8	19.5	14
Armstrong Beaver	102.2 96.3	26.1 22.3	<u>1/</u> 3.0	1.3	$\frac{1}{.3}$	3.5	-	<u>'</u> /	32
Becford	696.3	1/	3.J 16.2	.2 3.0		1.9 1.7	4.2 3.2	1/	33 .
Berks	1,215.2	531.4	35.7	19.5	13.1 4.6	12.0	43.4	12.3	11 6
31air	639.0	34.0	19.0	1/	17	-	<u>1</u> /	76.1	10
Bragford	179.1	<u>i/</u>	7.9	Ť⁄	Ť/	1/	-	1/	27
Bucks	231.2	114.5	13.0	5.6	1.6	5.5	2.2	36.0	18
Butler Cambria	29.4 34.0	2.3	1/	-	-	1/	-	-	52
Cameron	34.0	_	<u> </u>	-	1/	-	-	-	50
Carbon	.17	1/	1/	1/	<u>1</u> /	.6	1/	1/	49
Centre	187.0	Tr	7/	Ϊ/	<u> </u>	17	2/_	Ť⁄	26
Chester	371.7	125.3	14 <u>.0</u>	4.8	22.9	3.4	8.7	Ĭ/ I/	15
Clarion	1/ 68.1	1/	1/	<u>1/</u>	<u>1</u> /	<u>1/</u>	-	Ţ	51
Clearfield	1/	Ñ.	<u>Ī</u> /	1/	-	<u>1</u> /	-	-	40
Columbia	130 . 8	ر <u>∹</u> ن۔3	22.0	2.4	3.3	11.0	4.5	-	53
rawford	44.5	1/	2.5	1/	3.3 1/	17.0	4.3	1/	23 42
Cumberland	843.5	156.0	19.0	17.0	2 . 8	2.0	17	20.4	8
)auphin	207.7	196.0	30.9	8.3	18.6	1/	<u>Ī</u> / .8	12.6	17
Jelaware	72.1	34.7	5.0	.4	<u>1</u> /	13	.8	1/	35
[]k	<u>]/</u> 717.9	<u>1/</u> 151.7	61.0	200.0	-	22.0		12 660 1	58
rie Tayette	1/	1317/	1/	290.8 .5	145.8	22.0	5.4	13,668.1	2
orest	<u> </u>	.	<u> </u>	.5	<u>1/</u>	_	-	-	61
ranklin	4,265.3	1,874.5	49.0	100.8	31.2	56.0	172.8	-	3
Tulton	\overline{N}	<u>"</u>	-	-	<u>1</u> /	-	-	-	47
reene	Ϋ́ 1/	1/		<u>-</u>	-			-	59
luntingdon	200.2	15.9	<u>1/</u> 5.0	1/ 1.7	<u>1/</u> .7	41/	1/	-	45
Indiana	1/		1/	1.7	.,	4.0	<u>ī</u> / ī/	12.9	25 5.6
Juniata	388.7	272.5	21.1	4.5	12.5	8.0	13 . 6	1/	56 12
ackawanna	124.1	3.2	2.0	, .	1/	.5	-	₹/	34
ancaster	364.0	387.5	-3.3	35.8	155.5	15.4	3.6	111.6	7
awrence	83.6 76.5	19.1	1.5	1/	1/	2.1	2.2		37
.ebanonehigh	1,555.2	53.0 524.4	2.0 93.3	<u>Î</u> / .5	-	1/ 9.7	10 1/	.,1/	29
uzerne	188.2	39.0	7÷.0	.5 17	3.0 1/	4.1	19.4 1/	11.5 9.3	5
ycoming	175.9	53.	24.2	$\frac{1}{3.7}$	9 . 1	3.4	26 <u>.0</u>	9.3 <u>1</u> /	24 21
cKean	6÷.7	-	-	-	-	-	-	7	60
ercer		1 46,4	<u> 1/</u>	1/	1/	1/	1/	43.0	30
ifflin	80.0 1/	=	₹ <u>.</u> 0	1/	Ţ/	,-	-	1/	36
lonroe	197.2	ε <u>∴΄</u> ε	<u>1</u> / €.1	-	7.	<u>1/</u>	 	70.4	57
ontour	1/	1,	1.2	1/	1/	2.0 1/	5.2	30.4 1/	20 48
orthampton	483.3	215.0	13.0	2.7	18.1	3.6	3.4	1/	48 13
orthumberland	1/	1/	18.0	4.0	3.2	11.3	3.8	30.0	19
erry	103.5	25.5	5.9	5.8	3.8	1.2	1/	-	31
hiladelphia	17	•	,-	-	-	-		-	-
ike	1/	-	<u>;/</u>	-	-	<u>1</u> /	-	-	55 .
chuylkill	312.5	77.0	101.7	1.6	1.1	4.4	1,	7.7	62
nyder	634.3	232.2	15.8	13.3	4.9	10.9	<u>1/</u> 11.7	<u>1</u> /	16 9
onerset	<u>1</u> /	-	1/			-	1/	-	38
ulliyan	-	-		1/	1/	-	1/	_	-
usquen anna	<u> 1/</u>	<u>1</u> ,	1/	<u>!/</u>	1/	1/	1/.	1/	46
ioganion	50.6 30.4	•	<u>T/</u>	<u>-</u>	T/	$\frac{\overline{1}}{1}$		-	44
enango	81.0	25	3.2	1/	.5	.3	.9	-	43
arren	-	7/	1/	-	-	-	-	-	39
ashington	233.9	27.7	1.0	.2	2.5	1/	1/	<u>1</u> /	22
ayne	1/	_	-	-		-		<i>''</i>	22 54
estmoreland	54.7	$\frac{1}{1}$	-1/	1/	_	1/ 1/	-	1/	41
yoming	154.0		T/	-			-		28
ork	-	1,11074	96.70	51.1	18.0	25.3	69.7	49.7	4
creage Not Listed Above	638.9	246.3	3≐.2	45.6	19.5	34.2	42.3	107.6	-
ENNSYLVANIA	32.858.4	9,787.7	1,499.3	2,000.5	545.7	386.5	527.1	14,271.3	61,871.0

^{1/} Not published to avoid disclosure of individuel operations.

ORIGINAL PAGE IS OF POOR QUALITY

PENNSYLVANIA: PEACHES, NECTARINES, PEARS, PLUMS AND PRUNES AVERAGE WEIGHT PER BUSHEL OF PRODUCTION — 1977

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

- POUNDS -

4

NECTARINES

PLUMS & PRUNES

ORIGINAL PAGE IS OF POOR QUALITY

PENNSYLVANIA: APPLES, PEACHES, VARIETIES REPORTED - 1978 1/

APPLE VARIETIES

PEACH VARIETIES

	4	_		•	Adams Late After Glo Ambergem Autumglo Baby Gold Beekman Belle Of Georgia Biscoe Blake Brakett Canadian Harmony Canadian Queen Cardinal Carman Champion Collins (N.J. 200) Colora Comanchee Coronet Crawford Cresthaven Cumberland Dawn Dixe Queen Dixired Early Blake Early East Early Red Fre Early Red Fre Early Red Haven Early Red Rose Early White Giant Eclipse Edens Elberta Emory Envoy Farinaven Fertile Hale Frost King Garnet Beauty Gemmers Late Glohaven Golden Gem Golden Gem Golden Fast (N.J. 87) Golden Gem Golden Fast Hale Harrison Brilliant Harbelle Harbinger Harbrite Harmony Harken Harrow		
1.	Arkansas (Black Twig)	72.	Minnjon Mollys Dolicious	1.	Adams Late	74. 75	Lizzie
٤.	August Farly	73. 74	Monroe	۷.	Anter Gio	76.	Madison
4.	Baldwin	75.	Muts	4.	Autumalo	77.	Marglow
5.	Barry	76.	Nero Red	5.	Baby Gold	78.	Marhigh
6.	Baxter	77.	Niagara	6.	Beekman	79.	Marqueen
7.	Beacon (Fenton)	78.	Nittany	7.	Belle Of Georgia	80.	Marsun
8. 0	Belle riower	79. 80	Obje Normerill	8.	815COE	81.	Maryland
10	Rentley	81.	Onalescent	10.	Brakett	94. 83	Moore Farly Red
11.	Bisbee	82.	Ottawa (T441 Quinte)	ii.	Canadian Harmony	84.	Newday (N.J. 79)
12.	Blushing Golden	83.	Ozark Gold	12.	Canadian Queen	85.	N.J. 178
13.	Bright McIntosh	84.	Paradise (Sweet)	13.	Candor	86.	N.J. 193
14.	Burgandy	85.	Paula Red	14.	Cardinal	87.	N.J. 233
15.	Champion	86. 27	Praire Spy	15.	Champion ;	88.	Norman
17	Connell Red (Fireside)	88.	Pricilla	17.	Collins (N.J. 200)	90	Ponny
18.	Cortland	89.	Prima	18.	Colora	91.	Ranger
19.	Crabapple	90.	Prime Gold	19.	Comanchee	92.	Rare Ripe
20.	Crandell ·	91.	Puratin	20.	Coronet	93.	Raritan Rose
21.	Criterion	92.	Rambo	21.	Crawford	94.	Red Cap
22.	Daigo Crabappie	93.	Raritan Pod Astrochan	22.	Cumbonland	95.	Red Crest
23.	Double Ked	95	Red Rird	23. 24	Nawn	90. 97	Red Elberta
25.	Farliblaze	96.	Red Bliss	25.	Dixe Oueen	98.	Red Globe
26.	Early Delicious	97.	Red Delicious	26.	Dixired	99.	Red Hale
27.	Early Glo	98.	Red Doctor	27.	Eariglo	100.	Red Haven
28.	Early Harvest	.99.	Red Gold	28.	Earired	101.	Red Kist
29.	Early McIntosh	100.	Red Ruby	29.	Early Blake	102.	Redqueen (N.J. 212)
3U.	Early Red June	101.	Red Warrior	30. 31	Farly Red Fre	103.	Red ROSe
32.	Empire	103.	Rome Red	32.	Early Red Haven	105.	Redwin
33.	Fallwater	164.	Rome Regular	33.	Early Red Rose	106.	Reliance
34.	Franklin	105.	Russits	34.	Early White Giant	107.	Richaven
35.	Gala Beauty (Rome Red)	106.	Seek-No-Further	35.	Eclipse	108.	Rio Oso Gem
36.	Gold Spur	107.	Sheepnose	36. 37	Flhorts	109.	Rodchester
37.	Granny Smith	109.	Smokehouse	38.	Emory	111.	Koyai vexe
39.	Gravenstein	110.	Snowapple :	39.	Envoy	112.	Shippers Late Red
40.	Green Stark	111.	Spartan	40.	Fairhaven	113.	Slappy
41.	N.W. Greening	112.	Spigold	41.	Fertile Hale	114.	Somerset
42.	R.I. Greening	113.	Starks Splendor	42.	Frost King	115.	South Haven
43.	Harvest Sweet	114.	Stavman	43. 44	Germers late	110.	South Haven Southland Springold Starkling Delicious Starks Earliglo
44.	Holliday	116.	Strawberry	45.	Glohaven ,	118.	Starkling Delicious
46.	Idared	117.	Sun Gold	46.	Golden East (N.J. 87)	119.	Starks Earliglo
47.	Jersey Mac	118.	Sutton Beauty	47.	Golden Gem	120.	Starks Late Glo
48.	Jersey Red	119.	Sweet Bough	48.	Golden Jubilee	121.	Sullivan Elberta
49.	John Blemish	121	Inompsons	49.	Golden Kay	122.	Summercrest
5U.	John Grimes	122	Tolman Sweet	50. 51	Halehaven	123.	Summer Queen
52.	Jonagrime	123.	Turley	52.	Hale Harrison Brilliant	125.	Sumbright
53.	Jonared	124.	Turleywine	53.	Harbelle	126.	Suncrest
54.	Jonathan	125.	Twenty Ounce	54.	Harbinger	. 127.	Sunhaven
55.	Jonee	126.	Tydemans Red	55.	Harbrite	128.	Sunhigh
56.	Jonee Mac July Red	127.	Viking Wagner	50. 57	Harmony Harken	129.	Sunqueen Sunrise
57. 58.	Jumbo (NY16884)	129.	Wayne	58.	Harrow	131.	Sunshine
59.			Weal thy	59.	Harvest Queen	132.	Sweet Sue
60.	King		Wellington		Honey Dew	133.	Trio Gem
61.			Williamsearly Red		Iron Mountain J.H. Hale		Valiant
62.			Wincester Winesap		Jefferson ;		Vedette Velvet
63. 64.	Lakeland Lodi (King Lotus)		Winter Banana		Jersey Belle		Veteran
65.			Wolf River		Jerseyland	138.	Washington
66.		137.	Yellow Horse	66.	Jerseyqueen	139.	White Giant
67.			Yellow Transparent		July Elberta	140.	White Hale
	McIntosh		York Imperial		Kalhaven	141.	White Rose
-	Melba	140.	York Red		Keystone Late Glò		Wild Rose
	Melrose Milton				Late Rose		Winter Gem Yakima Hale
, , ,				_	Late Sun Haven	145.	Yellow Cross
					(Slaybaugh Special)	146.	Yellow Elberta
				73.	Late Yellow		

^{1/} Some duplication and "Farmer Brands" may be contained in these lists.

		PEARS		NECTAR	INES
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	Aurora Bartlett Bosc Clapps Favorite D'Anjou Devoe Dutchess Dymond Ewart Fame Flemish Beauty Gorham Honey Lawrence	29. Tyson CHERRIES - SWEET	15. Lincoln 16. Magness 17. Marlatte 18. Maxine 19. Moonglo 20. New York 10274 21. Red Bartlett 22. Reinier Red 23. Russit 24. Sekel 25. Sheldon 26. Starkrimson 27. Starks Delicious 28. Sugar Pear Miniature	1. Anderson 2. Apricot 3. Bowden 4. Cavalier 5. Champion 6. Che Kee 7. Cremson Great 8. Delicious 9. Early Gold 10. Early Red 11. Fantasia 12. Flavertop 13. Francesco 14. Fussless Berta 15. Garden State 16. Harko 17. Hershey 18. Hersiey 19. Independence 20. King 21. La Grande 22. Late Glo	28. Nectalate 29. Nectared #1 30. Nectared #2 31. Nectared #3 32. Nectared #4 33. Nectared #5 34. Nectared #6 35. Nectared #7 36. Nectared #8 37. Nectared #8 37. Nectared #9 38. Nectared #9 38. Nectared #9 40. New Jersey 40. New Jersey 40. New York State 41. Packhouse 42. Pochahontas 43. Red Chief 44. Red Glow 45. Red Gold 46. Red June 47. Red Bud 48. Slaybaugh 49: Star Grande
1. 2. 3. 4. 5. 7. 8. 9. 10. 12. 13. 14.	Big Jo Bing Black Giant Black Oxhart Black Republican Black Tartarian Chinook Emperor Francis Golden Sharon Hardy Giant Heldelfingen Hershey Special Lambert Napoleon Olsters Onterio PA White	CHERRIES - TART	18. Queen-Anne 19. Rainier 20. Red Che 21. Sam 22. Schmidts Biggereau 23. Senaca Star 24. Starks Gold 25. Sweet Shower 26. Ulster 27. Van 28. Venus 29. Victor 30. Vista 31. White Oxheart 32. Wickson 33. Yellow Oxheart 34. Yellow Spanish	23. Late La Grande 24. Lexington 25. Mericrest 26. Nectacrest 27. Nectaheart GRAPI Native 1. Buffalo 2. Caco 3. Catawba 4. Concord	50. Starks Delicious 51. Sun Glo 52. Sun Gold 53. Sun Grand 54. Sure Crop ES French Hybrid 1. Avrora (Seibel 5279) 2. Baco Noir (Baco #1) 3. Cascade (Seibel 13053) 4. Chancellor (Seibel 7053)
1.	Early Richmond	3. Montmorency PLUMS - PRUNES	2. English Morella	5. Delaware 6. Diamond 7. Dutchess 8. Fredonia 9. Himrod 10. Isabella 11. Niagara 12. Portland 13. Seneca	5. Chelois (Seibel 10878) 6. Colobel (Seibel 8357) 7. De Chanac (Seibel 9549) 8. Marechal Fosh (Kuhlman 188-2) 9. Rosette (Seibel 1000) 10. Seibel 5276 11. Seibel 9110 12. Seyvel Blanc (Villard 5276) 13. Vidal 256
	European	<u>Japanese</u>	<u>Other</u>	14. Sheridan	14. Landot 4511
1. 2. 3. 4.	Bradshaw 2 Damson 3 Duarte 4	Burbank Burmosa Mamouth Cardina Eldorado	4. Idaho	15. Sherman 16. Steuben 17. Van Buren 18. Worden	15. Leon Millot 16. Muscat 17. Verdelett
5. 6.	German Blue 6	5. Elephant Heart 5. Formosa	5. Mac Verna 6. Maxiview	<u>Other</u>	Vinifers
12.	Green Gage Italian Lombard N.Y. State Ozark Premier President Stanley	7. Great Yellow 8. Methley 9. Red Heart 9. Sant Rosa 9. Satsuma 9. Shiro (Gold) 8. Wicson	7. Medley 8. Oxheart 9. Rare Ripe 10. Red Ace 11. Sharon 12. Starks Delicious 13. Yellow Gage 14. Yellow Gold	 Agawan Alden Chambouron Gadwin 113 Interlaken Seedless Moores Earley Moresdiamond 	 Cabernet Souvignor Johannisburger Resiling Pinot Chardonnay
		American			
1.	Ace Mariposa 2	. Superior	3. North Dakota		

^{1/} Some duplication and "Farmer Brands" may be contained in these lists.

APPLES: TOTAL: NUMBER OF TREES FOR LEADING VARIETIES IN SELECTED STATES 1/

• .	Pennsylv	/ania	New Eng	land	New Y	ork	North Can	rolina	Virginia	
Rank	Variety	Number Of Trees	: Variety :	Number Of Trees	: Variety :	Number Of Trees	: Variety :	Number Of Trees	Variety :	Number Of Trees
1	R. Delicious York G. Delicious Rome Stayman Jonathan	595,237 403,789 341,760 244,453 183,058 81,232	McIntosh R. Delicious Cortland G. Delicious Macoun Baldwin	791,219 238,543 94,925 40,527 30,163 18,631	McIntosh R. Delicious Rome RI Greening G. Delicious Idared	672,635 455,806 335,924 290,468 282,442 263,394	R. Delicious G. Delicious Rome Stayman Winesap Jonathan	640,520 251,754 159,707 64,835 4,914 2,875	R. Deliciou G. Deliciou York Stayman Winesap Rome	
TOTAL ALL	2	,145,658	1	,365,109		3,554,996	1	,173,376		1,592,706

^{1/} Year data pertains to: New York 1975, New England 1976, Virginia and North Carolina 1977, and Pennsylvania 1978.

PEACHES: TOTAL: NUMBER OF TREES FOR LEADING VARIETIES IN SELECTED STATES 1/

:	Pennsy	lvania	New Je	rsey	North Car	North Carolina		olina	Virginia	
Rank	Variety	Number Of Trees	: : : : : : : : : : : : : : : : : : :	Number Of Trees	: Variety :	Number Of Trees	: Variety :	Number Of Trees	: : Variety :	Number Of Trees
1	Elberta Redskin	111,822 95,053 89,712 55,271 52,265 45,890	Rio-Oso-Gem Redhaven Blake Jerseyqueen Loring Washington	174,883 150,877 115,076 103,669 88,600 34,337	Redhaven Blake Loring Candor Georgia Bell Winblo	29,028 21,643 19,865 18,461 17,009 13,788	Blake Redglobe Redhaven Coronet Loring Rio-Oso-Gem	355,764 289,180 233,997 199,599 182,170 142,827	Sunhigh Redhaven Elberta Blake Loring Redskin	34,791 30,519 28,833 27,463 25,015 16,218
TOTAL ALL		856,842		7,035,516		279,315	3	,140,185		337,643

^{1/} Year data pertains to: Maryland 1976, New Jersey and Virginia 1977, Pennsylvania and South Carolina 1978.

PEARS: TOTAL: NUMBER OF TREES FOR LEADING VARIETIES IN SELECTED STATES 1/

	Pennsyl	vania	Michig	an	New Er	ngland	New York		
Rank	: Variety	Number Cf Trees	: : : Variety : : :	Number Of Trees	: : Variety :	Number Of Trees	: : Variety :	Number Of Trees	
5	. Bosc . D'Anjou . Seckel . Clapps Fav.	83,111 21,021 9,136 2,987 2,569 1,619	Bartlett Bosc Kieffer Clapps Fav. Flemish Beauty Howell	958,887 37,306 27,684 17,337 1,711 1,368	Bosc Bartlett Clapps Fav.	14,723 8,332 1,827	Bartlett Bosc Clapps Fav. Seckel Spartlett Devoe	262,567 77,729 27,204 8,863 4,134 4,068	
TOTAL ALL	•	127,158		,048,562		28,170		392,285	

^{1/} Year data pertains to: Michigan 1973, New York 1975, New England 1976, and Pennsylvania 1978.

GRAPES: TOTAL: ACRES OF VINES FOR LEADING VARIETIES IN SELECTED STATES 1/

Dank.	Pennsylv	ania	: New	York	Michi	gan	North Carolina		
Rank	Variety :	Acreage Of Vines	: Variety	Acreage Of Vines	Variety :	Acreage Of Vines	Variety	Acreage Of Vines	
	Catawba Niagara Delaware	11,751.2 914.7 471.2 372.7 99.2	Concord Catawba Niagara Delaware Aurora	27,568 3,477 2,355 2,051 1,727	Concord Niagara Delamare Baco Noir Fredonia	15,274 977 243 84 71	Carlos Magnolia Scuppernong Higgins Fry	508 422 288 150 45	
OTAL ALL		14,271.3		42,653		16,878		1,677	

^{1/} Year data pertains to: North Carolina and Michigan 1973, New York 1975, and Pennsylvania 1978.

OF POOR QUALITY

USUAL DATES OF FULL BLOOM, HARVEST AND MARKETING FOR PRINCIPAL PENNSYLVANIA FRUIT CROPS

	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER MARKETH
	5 1 0 1 5 20 25	30 5 10 1520 25 30	5 10 1520 25 30	5 10 15 20 25 30	5 10 15 20 25 30	5 101522,2530	5 10 15 20 25 30	s 1015 2025 30 Most Active En
Apples								Sept.10 Jun Mar. 30 30
Peaches								Aug.10 Oc Sapt.25 1
Cherries - Sweet								Sens 20 July 5
Cherries - Tart								July 5 Ai
Pears								Aug.15 D Sept.30 1
Grapes	-++++				╂┼┼┼┼			Sept.25 No.

Key: Full Bloom Begins Most Ends Active

TREE DENSITY GUIDE

					···	Ε	ISTANC	E BETWEE	N TREES	IN RON	(FEET)							
Feet 1/	6	: : 7 :	: : 8 :	9	: : 10 :	12	14	: : 16 :	: : 18 :	: : 20 :	: : 22 :	24		: : 28 :	: : 30		: : 34 :	: : 36 :
4	1,815	1,627	1,261	1,210	1,089	907	777	680	605	544	495	453	418	388	363	340	320	302
5	1,452	1,240	1,089	966	871	726	622	544	484	435	396	363	335	311	2 90	272	2 56	242
6	1,218	1,037	907	806	727	605	518	543	403	363	330	302	279	259	242	226	213	201
8	907	777	680	605	544	453	388	339	302	272	247	225	209	194	181	169	160	151
10	726	622	544	484	435	363	311	272	242	218	207	181	167	155	145	136	128	121
12	605	518	453	403	362	302	259	226	201	181	165	151	139	129	121	113	106	100
14	518	444	388	345	311	259	222	194	172	155	141	129	119	111	103	97	91	86
16	453	388	339	325	272	226	194	169	151	136	123	113	104	97	90	85	80	75
18	403	345	302	268	242	201	172	151	134	121	110	100	93	86	80	75	70	67
20	363	311	272	242	218	181	155	136	121	108	99	90	83	77	72	66	64	60
22	330	282	247	220	207	165	141	123	110	9 9	90	82	76	70	66	61	58	55
24	302	259	226	201	181	151	129	113	100	90	82	75	69	64	60	56	53	50
26	279	239	209	196	167	139	119	104	93	83	76	69	64	59	55	52	49	46
28	259	222	194	172	155	129	111	97	86	77	70	64	59	5 5	51	48	45	43
30	242	207	181	161	145	121	103	90	80	72	66	6 0	55	51	48	45	42	40
32	226	194	169	151	136	113	97	85	75	66	61	55	52	48	45	42	40	37
34	213	183	160	145	128	106	91	80	70	64	58	53	49	45	42	40	37	35
36	210	172	151	134	121	100	86	75	67	60	55	50	46	43	40	37	35	33
38	191	164	143	127	114	95	81	71	63	57	52	47	44	40	38	35	33	31
40	181	155	136	121	108	90	77	66	60	54	48	45	41	38	36	34	32	30
45	161	138	121	108	96	81	69	61	54	48	44	40	37	35	32	30	28	27

NUMBER OF TREES PER ACRE FOR CORRESPONDING SPACING

^{1/} Distance between rows (feet).

Zurich. A member of the ORSER staff traveled to Australia and implemented the system for the Commonwealth Scientific and Industrial Research Organization. While there, he also conducted several short courses and seminars on use of the system.

Foreign users have also visited Penn State to become acquainted with the system. A planner from Italy spent several months at ORSER, generating land use maps of Rome and Milan and demonstrating that Landsat data could be used as valuable input to planning for densely populated European cities. The results of this work were presented to the UN Center for Housing and Urban Development and to several remote sensing conferences in Europe.

The ORSER system is continually expanded and refined to meet the needs of the growing number of users who are finding that its capabilities, flexibility, and portability meet their needs for timely and effective analysis of remote sensing data. Students trained on the system are highly employable and find it easy to adapt to other computerized systems of remote sensing analysis.

PRECEDING PAGE BLANK NOT FILMED

THE ORSER SYSTEM FOR THE ANALYSIS OF REMOTELY SENSED DIGITAL DATA¹

Wayne L. Myers and Brian J. Turner²

Abstract.—The ORSER system is a comprehensive package of computer programs developed by the Office for Remote Sensing of Earth Resources (ORSER) at The Pennsylvania State University for analyzing various kinds of remotely sensed digital data. It is now probably the most widespread remote sensing computer analysis package in the world, being available at more than 28 locations in the United States and in 8 other countries. A general-purpose interface is being constructed so that information extracted by the ORSER system can be used readily to augment and update geographic information systems (GIS). Application of this capability for statewide monitoring of gypsy moth defoliation is discussed.

INTRODUCTION

Remote sensing has been used as an input to natural resource inventories long before the term "remote sensing" was coined. Such early work, however, was based entirely on aerial photography. Aerial photography from conventional aircraft offers the advantage of high resolution, making it possible to associate a high degree of location specificity with the information extracted. On the other hand, procurement of such imagery is relatively expensive and extraction of the information is a manual and somewhat subjective process. One alternative for reducing costs is to use small-scale imagery from high-flying aircraft. Information taken from small-scale airphotos is less location specific, and the extraction process tecomes considerably more subjective. LANDSAT provides relatively inexpensive, broad area coverage in computer-compatible form. The computercompatible nature of LANDSAT data makes it possible to replace slow and subjective human interpretation by more rapid and objective statistical techniques for extraction of information. LANDSAT usage has evolved as the computerized equivalent of smallscale aerial photography, with a relatively low degree of location specificity being attributed to the information extracted. LANDSAT data are, however, intrinsically quite location specific. The next step in evolution of LANDSAT usage is to take advantage of that location specificity. When

this step is taken, computer analysis of remotely sensed digital data becomes a very versatile method of augmenting and updating natural resource information systems. The ORSER system has proven itself repeatedly in the traditional mode of LANDSAT analysis, and is now undergoing expansion for in-place applications.

BASIC STRUCTURE OF THE ORSER SYSTEM

The ORSER system is a comprehensive package of computer programs developed by the Office for Remote Sensing of Earth Resources (ORSER) at The Pennsylvania State University for analyzing various kinds of remotely sensed digital data. It is now possibly the most widespread remote sensing computer analysis package in the world, being available at more than 28 locations in the United States and in 8 other countries. It has the substantial advantage of being relatively easy to implement on any large general-purpose computer having a FORTRAN compiler.

The system is dynamic and continually evolving and, because of its modular construction, it can be easily updated. The preprocessing subsystem can now read data from most satellites which have collected earth resources information. Data can be merged, edge-joined, transformed in a variety of ways, and geometrically corrected. The analysis subsystem provides the user with an array of analytical programs, including both supervised and unsupervised classification procedures. The display subsystem can produce output maps for display on a wide variety of devices including line printers, cathode ray tubes, film recorders, and incremental plotters. Line data from a digitizer can be superimposed on these displays and used to delineate areas for area statistics.

¹Paper presented at the SAF National Workshop, "In-Place Resource Inventories: Principles and Practices" [University of Maine, Orono, August 10-14, 1981].

<sup>10-14, 1981].

2</sup>Wayne L. Myers is Associate Professor of Forest Biometrics and Brian J. Turner is Associate Professor of Forest Management and Co-Director of ORSER, The Pennsylvania State University, University Park, Pa.

ORIGINAL PAGE IS OF POOR QUALITY

The basic approach in the ORSER system is to treat channels of data as vector dimensions in hyperspace. Original channels and ancillary data of a metric nature may be recombined in various ways to produce additional "synthetic" channels. The entire vector space can undergo both Euclidean and non-Euclidean transformations. Transformation to canonical axes has proven particularly useful. Geometric registration is achieved by translation, rescaling, rotation, and rubber-sheet stretch through resampling processes. Extensive use of vector and matrix notation is made in documentation of the system.

As of this writing, the ORSER system consisting of some 35 individual programs can be purchased as FORTRAN code on magnetic tape for \$3,000. Most organizations which have acquired it have had large IBM computers, although the system has also been installed on large CDC, Honeywell, and Burroughs main frames. Ease of installation has varied, depending more on the ability of the installer than on the particular computer configuration. Since all code is now in near-ANSI FORTRAN IV, the latest version should be easier to install them previous ones.

Students and short-course participants have found the system to be relatively easy to use. Typical run decks, or "stems," are shown in the "ORSER User Manual" (Turner et al. 1978). Card users can use these as a base, and teletypewriter-terminal users can call the stems for all programs from stored files and edit them. Control cards are set up as a keyword followed by appropriate parameters. In most cases, format is fixed. Defaults are used extensively. Most programs can be run successfully with only a few control cards, and users can then refine the results by modifying or adding control cards. Control cards are described in the manual, and many of them are common to several programs.

A user-friendly "front-end" to some of the most commonly used ORSER programs, called OCCULT, has been developed at NASA/Goddard Space Flight Center. It has been used extensively in their training sessions (National Aeronautics and Space Administration 1979). At Penn State, we have used our INTERACT editing system to develop a similar procedure for all programs. The role of both of these "front-ends" is to allow the user to set up a run file (JCL and control cards) in a conversational manner and submit it for batch processing. Such an interactive system, however, is not essential for operation of the ORSER system.

Typical applications of the ORSER system have dealt with land use, soils, geology, and vegetation. Typical end products have been classification maps and enhanced color images.

ORSER IN RELATION TO IN-PLACE INVENTORIES

Research on natural resource information systems at Penn State and a NASA project tomonitor

gypsy moth defoliation in Pennsylvania have both provided impetus for enhancing the capabilities of the ORSER system to extract location-specific information. Although the capacity to isolate and process data from polygonal areas has existed within the system for some time, it has been necessary to go through the entire analytical sequence on a polygon-by-polygon basis. This becomes quite cumbersome when the polygons are small or numerous. Furthermore, there were no provisions for subsequent compilation or logical overlay operations by polygon classes when the classes were defined in terms of attribute data. Such limitations are typical of the current state of the art in systems for analyzing remotely sensed digital data.

There are two possible avenues of approach to overcoming these limitations. One is to build the capabilities into the remote sensing system itself. Success in this endeavor would almost surely lead to a very large and complex system—ruch more so than the current 40,000 lines of FORTRAN code already comprising the ORSER system. Such a system would also have a rather large inertia to overcome in keeping pace with the rapidly moving technology of geographic information systems. Complexity and inertia of this order are contrary to the philosophy of design in the ORSER system. We wish to keep the system rodular and retain the ability to alter one component easily without affecting the other components.

The second approach to developing the desired capabilities is to build an interface between the remote sensing analysis system and a companion geographic information system (GIS). This way the main data base containing all sorts of information is hosted and manipulated by the GIS. The remote sensing analysis system becomes one of many methods for augmenting and updating the data base. The essential feature of such an interface is the ability to summarize information extracted from the remotely sensed data for each of the geounits already defined in the GIS, and to provide these summaries in a form that can be loaded directly into the data base as an additional layer of information. The geounits can be counties, townships, forest districts, timber stands, ecotypes, sampling strata, etc. Given this linkage for one GIS, liaison with another GIS becomes mostly a problem of reformatting the geounit summaries.

This latter approach has been chosen as the rethod of giving the ORSER system capabilities for providing truly location-specific information from LANDSAT or other sources of remotely sensed digital data. The interface system currently being developed is called ZONAL (ZONAtion ALgorithms). Given a set of polygonal geounits, ZONAL will simulate the action of a raster scanner and produce a set of "pixels" for each geounit that corresponds to the pixels in the remotely sensed digital data. Instead of reflectance values, however, the ZONAL pixels will contain geounit identifiers. The geounit identifiers in the ZONAL

ORIGINAL PAGE IS OF POOR QUALITY

pixels constitute the indexing information needed for compilation by geownit.

This procedure has the major advantage of not requiring modifications in either the GIS or the remote sensing analysis system. It does require the capability for accurately registering the remotely sensed data to the map base used in the GIS. It also requires the capacity to process blocks of data large enough to encompass the geomnits of interest. The CRSER system has both the necessary registration capabilities and the ability to process a full LANDSAT scene.

DEVELOPMENT OF A GYPSY MOTH MONITORING SYSTEM

A proposed statewide system for monitoring gypsy moth defoliation in Penns/Ivania will exercise the full capabilities of CRSEP/ZONAL. Development of the prototype system is being sponsored by NASA/Goddard Space Flight Center under the direction of Mr. Darrel Williams and Dr. Lisette Dottavio, and in cooperation with CRSER at Penn State. The general structure planned for the system is as follows.

A map-registered set of LANDSAT data covering the entire State of Pennsy' vania is being assembled by MASA. This initial statewice data set will be classified by NASA into forested and nonforested categories. Pixels in the forested area will be assigned a value of one and pixels in nonforested areas will be assigned a value of zero to form a binary mask that can be superimposed in multiplicative fashion on LAMDSAT data collected subsequently. The reason for this binary mask is that past research at NASA/Goodand and CPSER has indicated an overlap of LAMOSAT signatures between defoliated forest areas and certain features in nonforested areas. The binary mask will restrict analyses to forested areas, thus eliminating any confusion with features in nonforested areas. LANDSAT data collected subsequently will be registered to the same map pase, and will thus be in registration with the binary mask.

Three different sets of geounits (polygons) will be used in the monitoring system. Counties will constitute one set of geounits. Forest districts will constitute a second set of geo-units. And, units in the Pennsylvania State Forest Pest Locator Grid will comprise a third set of geounits. The system is designed to provide area statistics on moderate and severa defoliation by

any of these three types of geounits, as well as changes in defoliated area from year to year.

Since gypsy moth defoliation tends to move in progressive fashion from areas affected the previous year, it should not be necessary to obtain or process LANDSAT data over the entire state every year. Data procurement and processing in any given year can be restricted to areas having likelihood of infestation as judged from occurrence in the previous year.

For this particular application, the GIS need not be very sophisticated. In fact, something as simple as SYMAP with a small "front-end" should suffice. A background information system will also be needed to handle the mask, ZONAL indexing sets, and large quantities of LANDSAT data that will be accumulated over a period of time. For this purpose, the various data sets will be partitioned and stored in a series of files. A file management subsystem is being developed to retrieve specified partitions and edge-join them into larger blocks as required.

When the monitoring system calls attention to specific geounits, currently available facilities of ORSER for handling individual polygons can be used to prepare detailed maps showing distribution or defoliation within a particular geounit.

If inclement weather makes it appear unlikely that LANDSAT data will be available over the area of interest, estimates of defoliation can still be developed from aerial observation and entered directly into the GIS. This ability to bypass LANDSAT processing and substitute information from other sources is an additional virtue of the ZONAL interface technique, as opposed to making the GIS logic an integral part of the system for processing remotely sensed data.

LITERATURE CITED

National Aeronautics and Space Administration. 1979. OCCULT users' manual. Goddard Space Flight Center, Greenbelt, Md.

Turner, B. J., D. M. Applegate, and B. F.
Merembeck. 1978. Satellite and aircraft
multispectral scanner digital data user
manual. ORSER Technical Report 9-78, The
Pennsylvania State University, University
Park, Pa.

APPLICABILITY OF SATELLITE FREEZE FORECASTING AND COLD CLIMATE MAPPING TO THE OTHER PARTS OF THE UNITED STATES

Subcontract to Michigan State University
Agriculture Experiment Station
Center for Remote Sensing
Department of Entomology
East Lansing, Michigan 48824

TABLE OF CONTENTS

			Page
I.	Int	roduction	1
II.	MSU	GOES Data Analysis System	3
	Α.	Interactive Image Processing System	5
	В.	The Earth Resources Data Analysis System	6
	C.	Contour Program	9
III.	Data	a Bases	9
	Α.	GOES Data	9
	В.	Surface Environment Data Base	17
IV.	Ana	lysis of GOES Thermal Data	23
	Α.	Comparison of Satellite and Weather Station Temperatures	23
	В.	Analysis of Apparent Temperature Patterns	` 29
	C.	Contouring Temperature Difference Images	38
V.	Sign	nificant Freeze Events in 1981	41
VI.	Phy	sical Model and Specific Task Discussion	47
VII.	Data	a Access Difficulties	51
VITT.	Ref	erences	54

List of Figures

		Page
1.	MSU GOES data analysis systems	4
2.	Color display sequence of GOES thermal data of Michigan acquired June 24-25, 1979	12
3.	Line printer output of GOES pixel temperatures in Michigan from 3:00 p.m., June 24, 1979	13
4.	Line printer output of GOES pixel temperatures in Michigan from 4:00 a.m., June 25, 1979	14
5.	Land cover classification of Michigan	19
6.	Percent of land in forest for Michigan	20
7.	Local relief (elevation change per pixel) in Michigan	22
8.	Water holding capacity of the upper 3 feet of soil in Michigan	25
9.	Apparent temperature at selected synoptic weather station sites from GOES 3:00 p.m. data for June 24, 1979 (circuled pixel temperatures differed by more than 4° F. from recorded air temperatures)	27
10.	Apparent temperature at selected synoptic weather station sites from GOES 4:00 a.m. data for June 25, 1979 (circled pixel temperatures differed by more than 4° F. from recorded air temperatures)	28
11.	Average pixel temperatures derived from GOES data acquired at 3:00 p.m. and 10:00 p.m., June 24; 4:00 a.m. and 10:00 a.m., June 25, 1979	30
12.	Apparent temperature change from 3:00 p.m., June 24 to 4:00 a.m., June 25, 1979 derived from GOES data	31
13.	Comparison of GOES thermal patterns with the distribution of selected surface features in Michigan	32
14.	Areas of minimum and maximum apparent temperatures at 3:00 p.m., June 24, 1979 from GOES thermal data	33
15.	Reference map of Michigan showing county boundaries and selected geographic features	34
16.	Areas of minimum and maximum apparent temperatures at 4:00 a.m., June 25, 1979 from GOES thermal data	36
17.	8° F. temperature difference boundary from GOES thermal data acquired 3:00 p.m. and 11:00 p.m., June 24, 1979	39
18.	20° F, temperature difference boundary from GOES thermal data ac-	40

List	of Figures (Con't)	Page
19.	24° F. temperature difference boundary from GOES thermal data accquired 3:00 p.m. and 11:00 p.m., June 24, 1979	42
20.	Weather data at MSU Horticultural Farm on April 20-21, 1981.	46
	List of Tables	Page
1.	Comparison of GOES pixel temperatures with 1.5m air temperatures recorded at selected synoptic weather stations.	26
2.	Selected April minimum temperatures in Michigan (1.5).	43

ACKNOWLEDGEMENTS

This project has involved a number of MSU faculty, specialists, and students, all of whom have contributed to the process of developing and utilizing satellite imagery for applications in Michigan. The development of the various software and displays required the use of several different computing facilities at MSU including those in the Department of Entomology, the Center for Remote Sensing and the Univeristy mainframe. The project has grown through stimulation from a rather small contract. As more individuals are exposed to the system developed at MSU, additional applications are perceived and suggested. The information and displays provided by the system are currently shown at remote sensing training sessions and the technology transfer process is being extended further through these educational channels.

This report and the results contained herein, are a product of many individuals who have worked on various aspects of this project. Following is an alphabetical listing of those who have made significant contributions to the project.

John Baleja, Programmer Analyst, Center for Remote Sensing
Jon Bartholic, Associate Director, Agricultural Experiment Station
William Corcoran, Student Programmer, Department of Geography
William Enslin, Manager, Center for Remote Sensing
Stuart Gage, Associate Professor, Department of Entomology
Ardeshir Goshtasby, Graduate Research Asst. Center for Remote Sensing
David Lusch, Research Specialist, Center for Remote Sensing
James Pieronek, Systems Analyst, Department of Entomology

We also acknowledge the efforts of Liz Bartels and Rosie Spagnuolo who assisted in preparing the final report.

I. INTRODUCTION

The physiography of Michigan provides a ideal conditions to evaluate the use of GOES thermal imagery for assessing freeze events in the state. Since fruit is among the major commodities grown in Michigan and freezing temperatures can severely limit production, a frost assessment and prediction system can be a definite asset.

For example, 1981 showed that spring frosts can have a major impact on the fruit crop. This year, frosts during April destroyed a major portion of the Michigan cherry crop and were also responsible for diminishing apple production. The cherry crop was reduced by about 75% in the major growing area and apple production was reduced by up to 50%. These events exemplify the need to enhance frost prediction methods and to develop methods to analyze and assess the impact of such events.

This project has addressed some of these aspects and real progress has been made in identifying the value of using GOES thermal imagery in Michigan. The process of technology transfer is a difficult one and we appreciate the efforts of NASA and The University of Florida in this activity.

At MSU we are convinced of the utility of using satellite information to aid in the enhancement of crop production for Michigan. It should be recognized that our growth in this high technology area has been variable. Within the University it has been important to disseminate some of the technology to other

units. We have been successful in moving the efforts related to this project to the Center for Remote Sensing from the Entomology Department where the project was first established. Additional state resources were allocated so that we could approach the use of thermal imagery as part of an integrated system. Hardward has been acquired and existing hardware has been used toward these developments.

We now believe that we are on the trajectory of developing an independent and integrated project which will be able to grow on its own accord. This should be truly indicative of the process of technology transfer.

It is the intent of this report to describe the progress we have made and to identify the developments relative to the tasks which were assigned. First, since a great deal of effort was placed on development of a system to process satellite imagery, an overview of the processing system will be presented. Second, GOES thermal images and several surface environmental data bases were prepared to comply with the various tasks which we were able to accomplish. These data bases were developed so that we could begin to assess the physical models developed in Florida. Third, the data bases were then analyzed to identify correlations between satellite apparent temperature patterns, and earth factors. Fourth, a discussion of significant freeze events in 1981 and the physical models are presented to provide our perspective on how these models could be applied in the context of the Michigan environment. Next, we felt it necessary to describe

some of the difficulties we encountered in obtaining data to develop the system for Michigan.

II. MSU GOES DATA ANALYSIS SYSTEM

New data analysis and display capabilities were developed and implemented around the existing basic software system used at MSU to manage image data obtained from the GOES satellite (Figure 1).

The previous system includes a projection conversion program and several display options. GOES thermal infrared data, stored on nine-track magnetic tape by NESS, are read onto a permanent disk file on the MSU CDC Cyber 170/750 mainframe computer. These data are converted to text and transmitted to a Terak 8510 via a 1200 baud telephone connection and stored on diskette for further processing.

Once the data are available on the Terak microcomputer, they are reconverted into the original format—a 129 by 129 array of integers corresponding to infrared intensities as measured by the GOES/SMS satellite. The projection conversion program converts the satellite's perspective projection centered at 75 degrees west longitude, 0 degrees latitude, to an orthographic projection of Michigan centered at 85 degrees west longitude, 42 degrees north latitude. Although this program corrects the perspective distortion, it does not correct for drift in the satellite's position, which can introduce a registration error of 5 to 30 kilometers in a given data set. Software programs allow an operator to produce several different types of maps interactively

Figure 1. MSU GOES data analysis systems.

NESS

TAPE

READ and Text Conversion

Program

Projection Conversion

Program

Terac Microcomputer Display

3. Areas Beyond a Specified

2. Temperature Windows

Window

1. Full Range of Temperatures

ORIGINAL PAGE IS OF POOR QUALITY using a data value-to-temperature conversion scheme which is basically a two-part linear approximation of an exponential curve (Chen, 1979). The display program produces the following:

- a. Map of full range of temperatures across Michigan.
- b. Map of areas falling into a specified temperature window.
- c. Map of areas with temperatures above or below a specified temperature.

All of the above temperature displays are available in degrees Fahrenheit, Celsius or Kelvin. The program operator selects the desired mapping option and the computer produces an image on either a 12 inch black-and-white video monitor with 320 by 240 on/off pixel resolution or an eight-color video monitor.

A. Interactive Image Processing System

All of the new programs access GOES data that has been transferred back onto a data file on the mainframe computer after being run through the projection conversion program.

An interactive image processing system (IIPS) was developed which contains module subprograms that perform selected operations on image data. The system resides on the Cyber 170/750 mainframe computer and is operated interactively from a terminal. The image operation routines (except for file handling and management) available are:

- 1) SEGMENT--segments an image into regions of specified gray levels using up to 15 threshold values.
- 2) GRADIENT--finds the gradient of an image by the maximum difference method. If the input image is a segmented image, the result is a contour image.
- 3) AVERAGE--finds the average gray level of corresponding pixels of several images.
- 4) HISTOGRAM--produces a histogram of data values of an image.
- 5) DIFFERENCE--finds the difference between the data values of pixels in two images.
- 6) MISREGISTRATION--finds the translational misregistration between images by using a sequential similarity detection method on gradient images of the original data.
- 7) REGISTER--corrects for translational misregistration through x,y shift.
- 8) WINDOW--will window out a portion of an image.
- 9) MAGNIFY--will enlarge an image to a specified magnification factor.
- 10) PRINT--outputs an image as gray level values on a printer.

B. The Earth Resources Data Analysis System (ERDAS)

Image data generated through the above routines can be transferred via a 1200 baud telephone connection to the ERDAS microcomputer system at the Center for Remote Sensing. One of the following image transformations, accomplished with software which resides on the Cyber 170/750, must be executed prior to data

transfer:

- 1) SEGMENT (LEVE)--groups the Fahrenheit or Celsius temperature value into 2-16 ranges.
- 2) IMAGE INTERLEAVING (ITRANS) -- transforms four GOES images into a band interleaved by line format file.
- 3) REFORMAT (GREFMT)--processes GOES image data for transfer to the ERDAS system.

A geographic information system, IMGRID2, is available on the ERDAS for the manipulation of grid-based data files. This system will display a data file on a 512 x 480 x 4 bit pixel array capable of a maximum of 16 color-coded categories. The following display, analysis and utility options are available within this GIS:

DISPLAY

- 1) DISPLAY1--displays a user-specified data file on the color monitor in the 512 x 480 display mode.
- 2) MAGNIFY--magnifies a user-specified data file on the color monitor in the 512×480 display mode.
- 3) CHARACTER MAP--prints a character overprint grey scale map of a user specified data file on the Anadex printer.
- . 4) GREYSCALE MAP--prints a dot matrix grey scale map of any user-specified data file on the Anadex printer.
 - 5) DISPLAY2--displays a data file that includes user-generated alpha-numeric graphics.

ANALYSIS

- 1) INDEX--performs a weighted summation on 2-5 variable files and outputs a new variable file.
- 2) OVERLAY--creates a new file by combining from 2-5 userspecified variables and taking the highest value for any grid
 cell from the old variables and assigning it as the new data
 value.
- 3) MATRIX--compares the occurrences between two variable files and create a new variable file of the coincidences.

UTILITY

- 1) LISTEN--A system communication package used primarily for mainframe to micro data transfer.
 - 2) ENTER--Allows the user to enter data to create a new variable file.
 - 3) RECODE--Allows the user to change or group specific values in a given variable file.
 - 4) UPDATE--Allows the user to change the value of any data element in a given file.
 - 5) RESAMPLE -- Changes the pixel size of any user-specified image.
 - 6) WINDOW--Creates a user-specified subimage from a larger image file.
 - 7) SAVEIMAGE -- Stores an image exactly the way it is displayed on

the RGB monitor.

C. Contour Program

The Interactive Image Processing system also transfers GOES data, via a 1200 baud telephone link, to the Texas Instrument minicomputer in the Department of Entomology. The contour program on the T.I. computer is designed to find the boundary between regions of different temperature ranges in a GOES thermal image. After the contours are found, they can be displayed either on the graphics terminal or the plotter.

The program is composed of 3 parts:

- 1) Thresholding, by which the image is segmented into regions of different temperature ranges which are specified by the user.
- 2) Contour extractor which produces contours by following the boundary between regions.
- 3) Plotter program which generates plotting data both for the graphics display and the plotter.

III. DATA BASES

A. Goes Data Base

Computer line printer maps were created from each of the 18 GOES images within the time frame of 3:00 p.m., June 24 to 10:00 a.m., June 25, 1979 which were available for the study. These

maps display the Fahrenheit temperature value for each GOES pixel in a given scene. Based on a comparison of all of these line printer maps, the 10:00 a.m. image was selected as having the widest temperature variation for a daytime image (8:00 a.m. - 6:00 p.m.) and the 5:00 a.m. image was selected as having the widest temperature variation of the night images (8:00 p.m. - 7:00 a.m.). The 10:00 5:00 a.m. and a.m. printer maps were hand-contoured using a 2 degree F contour interval and optimum landmass and water temperature ranges were determined. process was necessitated by the IMGRID2 graphic information system which is limited to a maximum of 16 color-coded categories. temperature ranges were used to process all of the GOES data sets using the segment routine on the mainframe computer.

Since the June 24-25, 1979 GOES digital tape did not contain the orbital information necessary for digital geometric correction procedures, a less accurate registration method was employed. Once the 10:00 a.m. data file was contoured and color coded via the IMGRID2 package, it required resampling since the screen pixels on the color monitor are square. Hence, the color-coded image on the monitor could not be used for "fitting" to the base map.

Initial photographic enlargement of color-coded GOES data had suggested that the average pixel size was approximately 9 x 12 km. Using this pixel aspect ratio, a line printer map of contoured (categorized in 16 classes) temperature data was created at a scale of 1:1,000,000. This map was found to be very

distorted compared to the 1:1,000,000 U.S.G.S. base map of Michigan indicating that the pixel size was not 9 x 12 km. Several other aspect ratios were tried and the "best fit" was obtained with pixels which were 8 x 11 km. The 8 x 11 km grid cell was adopted for use in data capture in order to match the GOES data.

Figure 2 depicts the thermal patterns in Michigan at six selected times during the interval 3:00 p.m., June 24 to 10:00 a.m., June 25, 1979. The 3:00 p.m. (Figure 3) and 4:00 a.m. (Figure 4) data sets were selected for analysis because they approximate maximum and minimum land-surface temperature conditions, respectively.

The multitemporal analysis of the GOES data mandates that the various data sets be registered relative to one another. methods determine and correct translational were used to misregistration between GOES images resulting from satellite drift between acquisition times. The first method involved generating line printer maps of each GOES image, and contouring by hand the shoreline of Michigan (i.e. the maximum thermal gradient contour) on each map. These shoreline contours were used to register map light table. The pairs superimposed on а amount misregistration between two images was simply the amount of shift. (x,y), if any, between the column and row numbers of each map pair. Using the Window program on ERDAS, the GOES data files were properly registered to each other by partitioning out windowed areas specified by appropriate x-y coordinates for each image.

Figure 2. Color display sequence of GOES thermal data of Michigan acquired June 24-25, 1979.

```
W#########WWWWW#\\#######W#W\P...-COPW*COOCCC**COC-,
0001
                                                         .,-,--*0
                                                        .*000--*00
.*0000+++
0002
      4444400040MWBPOCFO-
##########WWWBFWWWW45----
                                      -ປປ-້
                                      , -<del>*</del>--
                                    .*pûp0*
owPWP0C*.
0004
      #######WWOCC-CC
      #WWW####WW##
                                 .W##W###W*
.P##WPWWPPPOC-
-COWW###WWWWWWP*
.CP###W##WPWWPPWWWPC
0005
      ##WW##WWC-.
###W#\#C---
      ###W##P*----
8000
      #####P*-.*C.
0009
                        0010
      AAA##O--CM
      AAAMD*'OMC
0011
      ##0**M#M*
AAMO*-*bC
0012
      ÄÜĞP¥WÜ.
0014
0015
      ALMARAM
0015
0017
      MAMEAMM.
      HEERDAM.
0018
      出区内内片#
                     0019
      KKDDAM
0020
      HZZDA
ZZDAAO
0022
0023
0024
0025
0026
      ባብ፳측 -
      DAMA
      卉瓜医*
      山田田田
      山田区*
                      用用C
0028
0029
0030
0031
      KAO
      ΧP
      R*
      #AAAXXXXXXHXUXXXHXKAAKAAKAHHHHAAAA##AHAAA4
      ИH
0032
0033
0034
0035
0036
8500
8500
0040
0041
0042
0043
0044
      63-64
                                                             65-66
                        55-56
                                       59-60
                                              61-62
                                       CCCC
CCCC
CCCC
CCCC
                                                      PPPP
                                                             WWWW
                                               0000
                                ***
                                                      युप्युप्
युप्युपु
                                                             WWWW
WWWW
                                              ÖÖÖÖ
                                ***
                                              0000
                                ***
                 . . . .
                                                      વંપવવ
                                               ŌŌŌŌ
                                                             WWWW
                                ***
          67-68
                 69-70
                        71-72
                                73-74
                                       75-76
                                              77-78
                                                      79-80
                                                             > 80
                 ####
                                XXXX
                                       HHHH
                                                      YNNY
                        บบบบบ
          ####
                                              FREE
                                                             omuñ
                                eree
Eree
                 <del>Ļ</del>ĄĄĄ
                        MAAA
                                               RRRR
                                                      MANN
                                                             WWWW
                                       HHHH
          ####
```

Figure 3. Line printer output of GOES pixel temperatures in Michigan from

HHHH

нишн

ORIGINAL PAGE IS OF POOR QUALITY

####

ORIGINAL PAGE COLOR PHOTOGRAPH

MAMA

nnan

WWWW

www

REEE

RRRR

0001

0002

0004

0005

0008

0009

0010

0011

0013

0014

0016

0018

0020

ŎŎĪŌ

0031

0032 0034 0035

0036

0038 0039

0040

0041 0042 0043

0044

DAPA

DAMA

卉卉卉

ۼؚۼؚۼؚڂ

A second, digital method was developed which automatically determines the translational misregistration between images. The registration is accomplished using a sequential similarity detection method (Barnea & Silverman, 1972).

This method works as follows:

- 1) Gradient images of each GOES image are provided.
- 2) A search area (a subpicture) of one of the two images to be registered is selected.
- 3) A window area from the other image (which is smaller in size than the search area) is selected which covers (approximately) the same region on the ground as the search area.
- 4) The window area is shifted exhaustively over the search area and the difference between the search and the window area is computed.
- 5) The registration is determined by the (x,y) translation which produce the minimum difference value.

The following table shows the amount of translational corrections (x,y shift) needed to register each GOES image to the previous one in the sequence (relative shift) and to the 3:00 p.m. image (absolute shift). The 3:00 p.m. image was selected as the base because it displays the maximum thermal gradient along Michigan's coastline.

PRECEDING PAGE BLANK NOT FILMED

IMAGE TIME	RELATIVE SHIFT VALUE	ABSOLUTE SHIFT VALUE
	(x,y)	(x,y)
3:00 p.m.		•
4:00 p.m.	(0,0)	(0,0)
5:00 p.m.	(0,1)	(0,1)
6:00 p.m.	(0,0)	(0,1)
8:00 p.m.	(-1,0)	(-1,1)
9:00 p.m.	(0,0)	(-1,1)
10:00 p.m.	(-1,0)	(-2,1)
11:00 p.m.	(1,0)	(-2,1)
12:00 a.m.	(-1,0)	(-3,1)
1:00 a.m.	(0,0)	(-3,1)
2:00 a.m.	(0,0)	(-3,1)
4:00 a.m.	(1,0)	(-2,1)

B. Surface Environmental Data Base

Several environmental factors were selected because of their potential to significantly influence surface temperatures. These included land cover/use, local relief, percent forest land and water holding capacity in the upper three feet of soil. With the exception of statewide land cover/use information, published data were available for each of these variables.

Level I land cover/use data were photo interpreted from 1:1,000,000 scale, diazo-enhanced Landsat imagery. Seven categories were derived: urban, agriculture, deciduous forest, coniferous forest, barren land, water and wetlands. Local relief data were extracted from the very small scale (approximately 1:3 million) map in Pawling (1969). Information on the percent of land in forest was available from a 1:2.5 million map of the state (Michigan Department of Natural Resources, 1970). Data on the water holding capacity of Michigan's soils were obtained from 1:1.8 million maps of the state (Schneider and Erickson, n.d.). Although information was available for several solum depths, data for the upper three feet were selected to take into account the many two-storied soils in Michigan.

All of these maps were brought to a common scale of 1:1 million cartographically. Each factor map was registered to the 1:1 million U.S.G.S. base map of Michigan and overlaid with a computer-generated orthogonal coding grid composed of $8 \times 11 \text{ km}$ cells. Dominant factor categories were encoded in each cell and, subsequently, placed on diskette storage via direct keyboard entry

on the ERDAS microcomputer. These four digital files were output to line printer hardcopy and compared for registration accuracy. Additionally, the percent forest land and land cover/use files were digitally overlaid to assess their compatibility and assist in editing the files for encoding errors. The general patterns of the four surface characteristics are discussed below.

The generalized land cover/use of Michigan's southern peninsula is shown in Figure 5. The large cell size of the encoding grid (determined by the GOES pixel dimensions), is compatable with this Level I categorization of land cover/use. Urban centers large enough to dominate this cell size occur only in the southern half of the peninsula which is dominated by agricultural land use. The two forest categories predominate in the northern half of the Lower Peninsula and water bodies sufficiently large to dominate a coding cell are also restricted to this part of the state.

The forest lands in the southern part of the state are scattered and small in extent compared to the woodlands in the northern half of the Lower Peninsula. With the exception of the Allegan State Game Area in southwestern Michigan, which is 70-95% forested, most of the woodland in southern Michigan is less than 40% forested (Figure 6). The northern Lower Peninsula, on the other hand, has at least 70% forest cover in most places. A notable exception to this generalization is the agricultural area of northwestern Michigan around Grand Traverse Bay which has less than 40% forest cover.

Figure 5. Land cover classification of Michigan.

ORIGINAL PAGE IS OF POOR QUALITY

```
0001
             0002
2003
0004
8885
7888
0008
0009
ōŏīī
0012
0014
0015
0016
0017
0018
õõ i 9
0020
0021
0022
0023
0024
0025
0028
0029
0030
0032
0033
0034
0035
0036
0038
0039
0040
0041
0042
0043
   0044
```

0-5%	5-15%	15-40%	40-70%	70-95%	95-100%
 		****	CCCC	0000	PPPP
		* * * *	CCCC	0000	4444
		***	CCCC	0000	PPPP
		***	CCCC	augu	PPPP

Figure 6. Percent of land in forest for Michigan.

ORIGINAL PAGE IS OF POOR QUALITY Local relief, a measure of absolute elevation difference per unit area, in the Southern Peninsula ranges from less than 49 feet per cell (GOES pixel) to more than 500 feet per cell (Figure 7). Areas of lowest relief (0-49 feet/cell) correspond to the glacial lacustrine plains around and southwest of Saginaw Bay and along southeastern coast of the state. The narrow, linear, north-south trending area of low relief on the east side of Michigan's "thumb" correlates with the Black River Valley. A much broader zone of higher relief, up to 249 feet/cell, trends southwestward from the central "thumb" area. This more rugged topography is associated with interlobate ice-contact glacial deposits. A more diffuse zone of high relief relates to other interlobate deposits occurs in southwestern Michigan and trends northwards where it merges with the nearly ubiquitous rugged topography of the northern Lower Peninsula. The very hummocky terrain (greater than 200 ft/cell) of this part of the state results from the abrupt juxtaposition of high coastal dunes or inland morainic masses with broad flat valley-train deposits. A localized area of somewhat subdued local relief (less than 150 ft/cell) occurs in the northeastern-most part of the state.

The distribution of soil types in Michigan at the order level is characterized by the predominance of Spodosols in the northern and west-central parts of the state and Alfisols in the southern and east-central regions of the Lower Peninsula. The gross textural differences between these soil orders results in low water holding capacities for most northern Michigan soils and much higher capacities in the soils of central and southeastern

```
0001
                                                                                        0001
0002
                                                                                        0002
                                                                                        0003
                                             PP***
WWP**P**--
WWWW.COCPPOO
#PPOOCCCOOOC
0004
                                                                                        8885
                                       * *
       0005
                                                                                        0006
8000
                                                                                        0008
0009
                                                                                        0009
0010
0012
                                                                                        0012
0014
                                                                                        0014
0015
0015
                                                                                        0016
0017
                                                                                        0017
0018
                                                                                        0018
0019
                                                                                        0019
0020
                                                                                       0020
0021
0022
0023
0022
0023
0024
0025
                                                                                        0024
0025
0026
0027
                                                                                       0028
0029
0030
0031
0028
0025
0030
0031
                                                                                       0032
0033
0034
0035
0032
0034
0035
0036
                                                                                        0036
                                                                                       0037
8500
8500
                                                                                       8500
9500
0040
                                                                                        0040
ŎŎ41
                                                                                       0041
0042
                                                                                       0042
0043
0043
0044
                                                                                        0044
```

FEET/PIXEL

0-49	50-99	100-149	150-199	200-249	250-299	300-399	400-599
		***	CCCC	0000	PPPP	WWWW	####
		***	ĊĊĊĊ	ÖÖÖÖ	વપવવ	WWWW	####
		***	ĈĊĊĊ	0000	વવવવ	WWWW	####
		****	CCCC	0000	લવવવ	WWWW	####

Figure 7. Local relief (elevation change per pixel) in Michigan.

Michigan and the "thumb" area (Figure 8). The stratified ice-contact and glaciofluvial drift of the two interlobate zones of southern Michigan produce soils of low water holding capacity as well. Each of the five areas of highest water holding capacity (greater than 20") are associated with areas of Histosols.

IV. ANALYSIS OF GOES THERMAL DATA

A. Comparison of Satellite and Weather Station Temperatures

The recorded ambient air temperatures at selected synoptic weather stations were compared to the 3:00 p.m. and 4:00 a.m. temperatures derived from GOES data as shown in Table 1. Overall, there is a good agreement between GOES pixel temperatures and recorded air temperatures. At 3:00 p.m., 63% of the GOES pixels examined agreed within + 4 degrees F with corresponding recorded air temperature, while at 4:00 a.m., there was 88% agreement. The majority of 3:00 p.m. GOES temperature values were warmer than the 1.5m air temperatures, but at 4:00 a.m. the positive and negative departures were about equal. The nine pixels which varied by more than 4 degrees F from the synoptic station temperatures at 3:00 p.m. are all located in the southern part of the state and are circled on Figure 9. The three pixels circled on Figure 10 differed by more than 4 degrees F from the 4:00 a.m. station temperatures. The discrepancies between these two data sets are probably due to the inherent differences between thermal radiance values integrated across 88 square kilometers and point sampled ambient air temperatures, as well as the +/- 2 to 4 degrees C

accuracy limitation of the VISSR thermal channel (NOAA, 1978:C2).

```
0001
0002
ĕÕÕÕ
0004
0005
0006
   0022
0024
0025
0030
0031
0039
0040
0041
0042
0043
0044
```

INCHES

3.75-6.5		9.0-10.2	5	11.5-15.	0 .	>20.0
* * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * *	2222 2222 2222 2222	0000 0000 0000 0000	4444 4444 4444 4444	WWWW WWWW WWWW WWWW
	6.5-9.0		10.25-11.	· 5	15.0~20.0)

Figure 8. Water holding capacity of the upper 3 feet of soil in Michigan.

ORIGINAL PAGE IS OF POOR QUALITY

Table 1. Comparison of GOES pixel temperatures with 1.5 m. air temperatures recorded at selected synoptic weather stations.

	$4:00 \underline{a}.\underline{m}.$	Temp (F)	3:00 p.m.	Temp (F)
•	GOES	STATION	GOES	STATION
Allegan	42-43	41	74-75	66
Alpena City	42-43	40	63-64	61
Alpena WSO	40-41	38	65-66	61
Bad Axe	40-41	38	73-74	60
Benton Harbor	46-47	46	79-80	66
Detroit WSFO	46-47	42	73-74	69
Eau Claire	44-45	42	73-74	66
Flint WSO	40-41	41	75-76	66
Grand Haven	44-45	47	67-68	63
Grand Rapids	42-43	45	74-75	72
Hart	46-47	52	61-62	61
Hesperia	40-41	41	71-72	71
Holland	44-45	41	67-68	61
Houghton Lake WSO	46-47	38	65-66	66
Lake City	38 - 39	37	71-72	67
Lansing WSO	40-41	39	79-80	66
Lapeer	36-37	36	67-68	65
Ludington	42-43	47	61-62	63
Muskegon WSO	44-45	42	69-70	63
Newaygo	42-43	39	71-72	71
Onaway	38 - 39	40	63-64	63
Paw Paw	42 - 43	45	73-74	73
Sandusky	38 - 39	4 1	65-66	60
Traverse City	38 - 39	40	65-66	63

	57-58	59-60	61-62	63-64	65-66	67-68	
	* * * * * * * * * * * * *	0000 0000 0000 0000	0000 0000 0000 0000	4444 4444 4444 4444		#### #### #### ####	ORIGINAL PAGE IS OF POOR QUALITY
	69-70	71-72	73-74	75-76	77-78	79-80	
-	<u>ት</u> ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት	0000 0000 0000 0000	TEKE TEKE TEKE		RRRE RRRE RERE RRRE	anan anan anan anan	

Figure 9. Apparent temperature at selected synoptic weather station sites from GOES 3:00 p.m. data for June 24, 1979 (circled pixel temperatures differed by more than 4° F. from recorded air temperatures).

ORIGINAL PAGE IS OF POOR QUALITY

0002 0003 ŌŌĨŹ ÕÕĨĨ 0021 0022 0023 0024 0026 0027 0028 0029 0030 0031 0033 ĪĔŌŌ 0035 0035 ០០១ខ 0043 0043

" F

33	34	35	36-37	38-39	40-41	42-43	44-45	46-47	48-49
* * * * * * * * * * * *	0000 0000 0000	0000 0000 0000	4444 4444 4444 4444	######################################	# # # # # # # # # # # # #	AAAA AAAA AAAA AAAA	0000 0000 0000 0000	eene eene eene	ARREN ARREN ARREN ARREN

Figure 10. Apparent temperature at selected synoptic weather station sites from GOES 4:00 a.m. data for June 25, 1979 (circled pixel temperatures differed by more than 4° F. from recorded air temperatures).

B. Analysis of Apparent Temperature Patterns

Static temperature patterns at 3:00 p.m. (Figure 3) and 4:00 a.m. (Figure 4), were analyzed as well as patterns of dynamic thermal flux. An average temperature pattern image (Figure 11) was produced from GOES data acquired at 3:00 p.m., 10:00 p.m., 4:00 a.m. and 10:00 a.m., June 24-25, 1979 utilizing the Index routine of the IMGRID2 program. By subtracting 4:00 a.m. radiance values from 3:00 p.m. values using IIPS software, a temperature difference image (Figure 12) was constructed.

The correlation of temperature patterns depicted on these four GOES images with the four surface attributes encoded in the environmental data base was assessed by comparing both printer maps and color images (Figure 13) displayed on a video monitor. A brief description of the major correlations follows.

Land mass temperatures at 3:00 p.m. ranged from 53 degrees to greater than 80 degrees F (Figure 13). The warmest temperatures occurred in the central, south and southeastern parts of the state, whereas the northeast had the coolest temperatures (Figure 14). The hottest pixel temperatures (greater than 80 degrees) were detected in the Detroit metropolitan area, northwest Monroe County, northwest Shiawassee County and the northern boundary between Gratiot and Saginaw Counties (see reference map, Figure 15). These areas are in either urban or agricultural use on lands of low relief (less than 100') and high water holding capacity. Over 75% of these hot areas have relief less than 50'/pixel, a

001C

003E,

```
0001
0002
0003
0004
0005
0005
8000
0010
.ŌO11
0012
0013
0014
0015
0015
0018
0019
  0020
0028
0029
0030
0031
0032
0033
0034
0035
0036
  8500
9500
0040
0041
0042
0043
0044
```

LOW	•			•		***	
	* * * *		* * * * * * * * * * * * * * * *	CCCC CCCC CCCC	0000 0000 0000	4444 4444 4444	
#### #### #### ####	4444 4444 7000	2222 2222 2222 2222 2222 2222 2222 2222 2222	XXXX		TUTT REER REER REER	nana nana nana kran	######################################
					-		HIGH

Figure 11. Average pixel temperatures derived from GOES data acquired at 3:00 p.m. and 10:00 p.m., June 24; 4:00 a.m. and 10:00 a.m., June 25, 1979.

ORIGINAL PAGE IS OF POOR QUALITY

```
OPPPWPPWWWPWWW#¥##PCCCCO*
0001
                                                                          0001
0002
                                                                          0003
      #W#WPWPWWPPC**
                                                               , , , , - > ,
0004
      PPPWW##WWPC
PWPWW##WW.
                                                                          0004
                                       , *UO*,
                                                                          ŬŎŬŚ
                                     -0PP***>0
-0PP***>0
-0PPPWWWPPPPC-
-0PPPPWWWPPPPPO-
      PWPWW#PPC
P#PPWWW-
PPPPFC
PPPFFC
0005
                                                                          0005
      8000
8000
                                                                          0008
                                                                          ÖÖÖÐ
0010
                                                                          0010
8813
8813
                                                                         0012
0014
0015
                                                                         0014
0015
0016
0017
001<u>6</u>
0017
                                                                          0018
0019
                                                                          0020
                                                                         0021
0022
0023
                                                                          0024
0025
                                                                          0026
0027
                                                                          0028
0029
                                                                          0030
                                                                          ÕÕŜi
0032
0033
                                                                          0032
0033
0034
0035
                                                                          0034
0035
0036
0037
                                                                         0036
0037
8500
9500
                                                                         8500
9500
0040
                                                                          0040
0041
                                                                          ŎŌ41
```

	< 16	16-17	18-19	20-21	22-23	24-25	26-27	28-29
°F		• • • •		* * * * * * * *	2222 2222 2222 2222	0000 0000 0000 0000	4444 4444 4444 4444 4444	
	30-31	32-33	34-35	36-37	38-39	40-41	42-43	>43
	#### #### ####	4444 4444 4444	0000 0000 0000 0000	XXXX XXXX XXXX XXXX		REEE EEEE EEEE	NANA NANA NANA	

0043

Figure 12. Apparent temperature change from 3:00 p.m., June 24 to 4:00 a.m., June 25, 1979 derived from GOESEdesa.
ORIGINAL PAGE

OF POOR QUALITY

0043

Figure 13. Comparison of GOES thermal patterns with the distributions of selected surface features in Michigan.

COOR

0003

UUU#

ひひひつ UUÜË

បបបដ

ひひひと

UULÜ 0012

0017

0018

0013

0026

0033

0004

0035

0037

០០១ខ

0040

0041

0042

0043

0044

```
0001
0002
0003
ÚUU4
0005
000z
0008
0005
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
                                                                                                                                                                              ن
ن
                                                                                                                                                                                                                           CU
                                                                                                                                                                                                                       ند:ليا
0025
                                                                                                                                                      www
0026
0027
                                                                                                                                     W WWWWWWWWWW
0028
                                                                                                                                                                                                                                                   Ü
0029
                                                                                                                                                  w waldwalamana w
                                                                                                                                                  wwwww wwwww
0031
                                                                                                                                                      MAM MMMMMM
                                                                                                                                                         WWWWWWWW
0032
                                                                                                                                                                                                                                                       Cu
                                                                                                                                                         يبزيها لمرابدة لها لها لها لها لها لها لها لها لها
0033
                                                                                                                                                                                                                                                       60
                                                                                                                                                                                  نبا بها لبا
0034
                                                                                                                                             ww www.
                                                                                                                         W
                                                                                                                                                  WWW WWWW WWW
0035
                                                                                                                     WW
0036
                                                                                                                     لمانعا
                                                                                                                                                      WWWWWWWWW
                                                                                                                                                         พพฟฟฟฟฟพพพ
COBY
                                                                                                                         WW
                                                                                                                                                                                                                               للالهائها
0038
                                                                                                                                                          WWWWWWWW
                                                                                                                                                                                                                       WWWY
0039
                                                                                                                                                                         WWW
                                                                                                                                                                                                                   WWWW
0040
                                                                                                                 W
                                                                                                                                                                                                           WWWWWW
                                                                                                         WWWWW
0041
                                                                                         Ċ
                                                                                                                                                      WWWW
                                                                                                                                                                                               wwwwww
0042
                                                                                                         WW WWW
                                                                                                                                          MMMMMMM
                                                                                                                                                                                                   นพพพพพพพ
0043
                                                                                                                             WWWWWWWWWW
                                                                                                                                                                                           ખોપીપાપાપાપાપા
0044
                                                                                                 ખામામાં અમામાં ખામાં આવે છે. આ મામાં આ
                        CUCC
                                                                                                                                              WWWW
                                        pixel temperatures
                                                                                                                                                                         pixel temperatures
             0000
                                                                                                                                              للالباليا
```

Figure 14. Areas of minimum and maximum apparent temperatures at 3:00 p.m., June 24, 1979 from GOES thermal data.

www

พพพพ

greater than 76°F.

less than 68 F.

Figure 15. Reference map of Michigan showing county boundaries and selected geographic features.

water holding capacity of greater than 10.25" in the upper three feet of the soil and are less than 5% forested. Pixels with radiant temperatures greater than 76 degrees F at 3:00 p.m. (Figure 14) also correlate with urban and agricultural areas of low relief and high water holding capacity. The majority of the coolest temperatures (less than 68 degrees F) are in the forested areas of the northeastern part of Michigan where the land area is over 95% forested with a soil water holding capacity of less than 9".

)

The coolest (33 - 35 degrees F) and warmest (44 - 47 degrees F) pixel temperatures at 4:00 a.m. are shown in Figure 16. Cool temperatures were recorded in the north-central part of the state on a heavily forested plateau-like area of well-drained sandy soils with low water holding capacities. Within this cool region, the coldest radiant temperatures were associated with coniferous forests composed primarily of jack pine. Additionally, the effects of latitude and continentality may also contribute to the cold temperatures of this area. The linear series of cool pixels trending southwest from the Houghton Lake area corresponds with the upper Muskegon River valley and may result from cold air drainage. A similar situation in the upper Manistee River valley produced the pocket of cool temperatures south of Grand Traverse Bay in northwestern Michigan.

The warmest pixels over land at 4:00 a.m. are associated with areas of high soil water holding capacity, urban centers such as Detroit and Grand Rapids or inland lakes. Houghton Lake, for

CCCC pixel temperatures 33°- 35°F. WWW pixel temperatures 44°- 47°F. CCCC WWW

Figure 16. Areas of minimum and maximum apparent temperatures at 4:00 a.m.,

June 25, 1979 from GOES thermal data.

example, had an apparent temperature as much as 10 degrees F warmer than its surroundings. The close proximity of Black, Burt, and Mullett Lakes in the northernmost part of the Lower Peninsula contributed to the warmer temperatures of the east-west trending Indian River lowland. The highest temperatures detected at 4:00 a.m. (greater than 57 degrees F) correspond to the shallow waters of Saginaw Bay, Lake St. Clair and Lake Erie (Figure 13).

The lowest average apparent temperatures (based on satellite observations at 3:00 p.m., 10:00 p.m., 4:00 a.m. and 10:00 a.m., June 24-25, 1979) are highly correlated with the deepest parts of Lakes Michigan and Huron indicating the high thermal inertia of these areas. Of the land areas, northeastern Michigan maintained the coolest average temperatures during the observation period probably as a result of its high percentage of forest land, rugged topography and low soil water holding capacities. The highest average apparent temperatures are associated with the city of Detroit and east-central Monroe county. Warm average temperatures are also found in central Michigan's Saginaw lowland which is dominated by agricultural land use, has minimal forest cover and very low local relief.

The greatest diurnal (3:00 p.m. - 4:00 a.m.) apparent temperature changes (greater than 37 degrees F) occurred primarily in the agricultural land of south central Michigan. Temperature changes of less than 28 degrees F were associated with many coastal areas, the rugged, forested northeastern part of the Lower Peninsula, the areas of numerous inland lakes in Barry and Oakland

counties, and Houghton Lake and its neighboring wetlands.

C. Contouring Temperature Difference Images

Automatic machine contouring of temperature change digital files provides a valuable analysis technique which is particularly useful for studying thermal patterns and gradients. Temperature difference files record the absolute difference, pixel for pixel, between thermal data files recorded at two separate times. Thermal gradients can be studied using this technique by the repetitive display of multiple contoured images of increasing temperature thresholds. Although a detailed assessment of this technique was not undertaken, a sample data set is included herewith to illustrate this data processing capability.

A temperature difference file was prepared by calculating the absolute thermal flux between the 3:00 p.m. and 11:00 p.m. GOES data sets. This file was then thresholded at various temperature values (e.g. Figures 17-19) to display regions of different temperature change. The contours shown in Figure 17 encompass areas of more than 8 degrees F temperature change (3:00 p.m. to 11:00 p.m.) and depict the land-water interface fairly well. Note especially that Beaver and North and South Manitou Islands in Michigan are resolved northern Lake at this temperature In Figure 18, areas of more than 20 degrees F threshold. temperature difference are bounded by the contour lines. At this threshold. several inland areas are depicted which may be associated with lakes and/or wetlands. Relative to the 8 degree F

ORIGINAL PAGE IS OF POOR QUALITY

Figure 17. 8° F. temperature difference boundary from GOES thermal data acquired 3:00 p.m. and 11:00 p.m., June 24, 1979.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 18. 20° F. temperature difference boundary from GOES thermal data acquired 3:00 p.m. and 11:00 p.m., June 24, 1979.

difference image, the more restricted areal expansion of Saginaw Bay, Lake St. Clair and Lake Erie at this 20 degree F threshold compared to Lakes Michigan and Huron indicates that these shallow water bodies are bounded by steeper thermal gradients. This condition is even more pronounced in the 24 degree F difference image (Figure 19). At this threshold, mesoscale regions of varying thermal flux become apparent within Michigan's land mass. For example, western and southwestern Michigan as a whole seems to have a higher thermal inertia than the central and southeastern parts of the state but also displays more intra-regional variability. This western region of fluctuating thermal differences can also be discriminated in the 3:00 p.m. - 4:00 a.m. temperature change image discussed previously (Figure 13).

V. SIGNIFICANT FREEZE EVENTS IN 1981

7

In 1981 two significant freeze events occurred during April, the most serious of which occurred on April 21. These freezes seriously affected fruit production in the state. Minimum temperatures which occurred at 61 weather stations during the two freeze events are shown on Table 2. To document the environmental change at one location, hourly data were collected at the MSU weather station.

The variables measured were:

- 1. Screen temperature (1.5 m)
- 2. Outside temperature (1.5 m)

ORIGINAL PAGE IS, OF POOR QUALITY

Figure 19. 24° F. temperature difference boundary from GOES thermal data acquired 3:00 p.m. and 11:00 p.m., June 24, 1979.

Table 2. Selected April minimum temperatures in Michigan (1.5m).

STATION	APRIL 15, 1981 MINIMUM	APRIL 21, 1981 MINIMUM
Alpena	23	19
Detroit	29	25
Escanaba	26	26
Flint	26	25
Grand Rapids	26	27
Houghton	22	24
Houghton Lake	23	19
Jackson	30	28
Lansing	26	24
Marquette	17	17
Muskegon	25	27
Pellston	15	16
Saginaw Airport	MM	25
Sault Ste. Marie	18	16
Traverse	21	16
Glendora	28	28
Sodus	30	28
Watervliet	28	24
Paw Paw	28	28
Grand Junction	26	24
Fenville	27	27
Coldwater	29	25
Allendale	26	29
Hudsonville	27	29
Holland	24	28
Nunica	23	25
Mears	25	25
Belding	23 .	26
Clarksville	25	27
Peach Ridge	25	27
Kent City	25	26
Graham Station	25	29
Edmore	20	24
Grant	23	27
Fremont	23	26
Berrien Springs	Msg.	30
MSU Horticultural Farm	25	24
Bad Axe	25	20
Bear Lake	24	20

ORIGINAL PAGE 13 OF POOR QUALITY

Table 2. Con't.

STATION	APRIL 15, 1981 MINIMUM	APRIL 21, 1981 MINIMUM
Beulah	24	22
Empire	. 20	20
Imlay City	26	21
Kewadin	22	22
Lake City	18	16
Lake Leelanau	22	21
Lexington	26	MM
Ludington	23	22
Montrose	24	19
N.W. Horticultural	22	22
Old Mission	20	22
Ossineke	22	20
Rogers City	21	20
Saginaw Valley	22	21
Saline	26	21
Sandusky	25	23
Standish	22	19
Toledo	27	25
Unionville	26	24
Washington	30	25
Riverside		27
Keeler		27

ORIGINAL PAGE IS OF POOR QUALITY.

- 3. Soil moisture (5 cm)
- 4. Relative humidity (%)
- 5. Light intensity (kj/m)
- 6. Wind velocity (mph)

An attempt made to measure radiation during this period failed due to technical problems with the device, but radiation was successfully measured during two successive spring freeze events.

Plots of each variable during the April 20-21 freeze event are shown in Figures 20-25. In conjunction with this freeze event, an attempt was made to procure GOES imagery to validate the impact of the freeze and to assist in the interpretation of the physical model and to examine the sequence of thermal events as the freeze approached. Unfortunately we were informed by NESS that we could no longer obtain GOES imagery but could only obtain GOES data from the historical archiving system at Wisconsin (see Data Access Difficulties section). This led to great disappointment and discouragement because the image processing system we developed was based on the GOES format provided by We are still hopeful that this problem can be resolved as we have spent considerable time and effort developing this component of the system.

VI. PHYSICAL MODEL AND SPECIFIC TASK DISCUSSION

Task I: From data bases collected, make sample runs of the P-model and/or concept and present observations/conclusions as to results.

Data to characterize the micrometeorological conditions during freezes in Michigan were collected on different spring nights. The measurements included temperature gradient, radiation, wind movement and indication of direction, dew point and soil temperature. This data has been provided to Florida for general analysis.

Our conclusions from the data are the following:

- 1. The radiation, which is such an important driving force in affecting minimum temperatures, fell in the same range of readings that one might expect over the peninsula of Florida during freeze conditions.
- 2. The temperature drops observed, although limited in number, have indicated that temperature drops were within the range that might be expected during Florida freezes.
- 3. Recently, a thesis in Agricultural Engineering (Levitt, 1981) has characterized the statistical types of freeze conditions which tend to verify earlier work by Van Den Brink, (1981), showing approximately 60% of Michigan freezes were radiation, and 24% were advection and 16% were due to both conditions. Again, these general characterizations which show freeze

conditions on a broad scale are similar to the types of general freeze conditions from the statistical standpoint that Florida receives.

- 4. Persistence of temperature differences between stations seems to exist. MOSS product analysis has been done that indicates there are good correlations between key (weather forecasting sites) locations and agricultural weather measuring locations.
- 5. Analysis from Phase I of field measurements with an airplane and with temperature instrumentation mounted in moving vehicles provided important data. This information showed that there is clearly cold air drainage with large temperature differences down moderate slopes. Also, the high degree of wind variability and its affect mixing the atmospheric boundary layer were experienced in Michigan as in Florida.

The main difference would be the fact that Michigan's important freezes occur in the spring. Thus, the soil heat flux might be expected to be different from Florida during fall events. Analysis of this effect would show, however, that there has to be warming periods prior to the freeze for nearly all conditions during later spring freeze events. Thus, for many of the most significant freezes, the soil would be considerably warmer than air in a manner similar to that found in Florida. The clear exception would be severe early spring freezes when frozen ground would complicate the physical model.

Task II: Give observations/conclusions as to the applicability of the S-Model and/or concept from the data bases at the two areas.

Before the data bases could even be examined, extensive geometric corrections were required. This was accomplished during The whole system for more accurate analysis was transferred over to the ERDAS System in the Center for Remote Sensing during Phase II. The accuracy of the data was again shown to be adequate during Phase I, but during Phase II additional analysis was conducted. Figures 5 and 6 show output of various temperature ranges from the printer on the ERDAS System. Certain patterns, as well as detailed temperature information are clearly portrayed. To enhance analysis, a windowing technique developed that located the exact GOES element with weather stations for which hourly data was collected. (Figure 8 shows systematically where these airport collecting stations were located). This technique gave us greater capability to locate with stations. exact pixels Figure 9, shows temperature differences observed for those stations at 4:00 a.m. Clearly, the accuracy is shown to be sufficiently good for dependable real time temperature information, as well as for use in developing the S-Model.

Persistence of temperature by location existed throughout the night. With the enhanced capabilities for color display, by smaller temperature increments on the ERDAS system, more detailed persistence patterns were able to be evaluated (Figure 10). This

evaluation clearly showed that the coldest temperatures, for example, occurred at specific locations early in the night and continued to be the coldest temperature locations throughout the night. Thus, there was every indication that patterns would persist throughout a night.

Of extreme importance to the statistical model is the persistance of similar patterns from night to night. This would clearly be expected if the temperatures are strongly dependent on permanent surface vegetation and soil characteristics. For this analysis, a variety of data bases were digitized on the same scale as the GOES data. (See Figure 1-4). As a result of an extensive visual analysis, it is clear that the temperature patterns can be specifically related to surface features or combinations of surface features. The conclusion is that one would anticipate the patterns to be a function of surface conditions, and therefore, would persist under similar meteorological conditions.

Task III: Identify and discuss any peculiarities of the Michigan and Pennsylvania sites which might limit conclusions from being applied elsewhere in the United States as a general case.

It has become increasingly clear that there are considerable similarities between Michigan conditions and Florida conditions. The significance of the peninsula and its effect on temperatures inland have been shown to exist for both locations. The advantage in geometrically correcting data and overlaying scenes are clearly easiest when one has a temperature discontinuity as it occurs between water and land for a peninsula.

Also, Michigan has a slightly more rugged terrain, from a meteorological standpoint, than Florida. Thus, there are terrain features that have a significant impact on temperature regimes. However, many of the surface characteristics, such as bare soil, pastures, and forested areas exist in both states.

Task IV: Give recommendations as to whether the concept should be pursued further, and if so, what specific studies should be performed.

Clearly, the conceptual theme of using GOES data to aid in characterizing the thermal regimes in a state both in non-real and real time, need to be further pursued. The data proves to be very accurate, particularly during radiation freeze events and correlations of temperature patterns with general surface conditions which indicates more information could be obtained.

VII. DATA ACCESS DIFFICULTIES

It is appropriate to discuss some of the problems encountered in obtaining satellite data as it relates to the process of technology transfer. One of the objectives of our involvement with the project was to develop capabilities relative to processing GOES thermal imagery.

After considerable difficulty in obtaining the Michigan GOES imagery from NESS, we finally obtained a readable data set. A system of processing the information was developed based on the NESS format and tape characteristics. It required five or six

tries to get usable information. In April 1981 a request was made to obtain data for both the freeze events that we had been anticipating. The data for April 15 was requested and sent. It, however, was not Michigan data nor did it conform to the range of data expected. The request for data for the April 21 freeze event was denied due to a change in policy and we were informed that we had to obtain the data from Wisconsin. Since we had previously attempted to obtain archived data from this source we were discouraged.

One of our objectives was to examine GOES thermal imagery over a growing season. We requested and paid for the imagery. After several months a further attempt was made to obtain the information. It finally arrived with no documentation. After many attempts to read the data on our own, we requested assistance again. Some documentation arrived but it still did not seem to help. The format provided was inadequate and the data was provided in 24 bit binary.

Since the project related directly to the access and processing of GOES imagery we were surprised at the difficulty in obtaining this information. We expected that we would be assisted rather than discouraged because we felt this was part of the technology transfer process to involve other areas of the U.S.

After these difficulties we are still convinced that our pursuit of analysis of GOES thermal imagery and its application to Michigan has been and will continue to be rewarding. We trust that NASA and NESS will recognize the problem of data availability and

will strive to assist users who want to use the data to benefit a state. We look forward to future assistance in this area.

III. REFERENCES

- Barnea, D. I., and Silvervan, H. F. 1972. A class of algorithms for fast digital image registration. IEEE Trans. on Computers, v. C-21, pp. 179-186.
- Chen, E. 1979. Estimating nocturnal surface temperatures in Florida using thermal data from geostationary satellite data. Unpublished Ph.D. disseration. Univ. of Florida. 280 p.
- Levitt, Larry J. 1891. Freeze climatology of Michigan. Unpublished Ph.D. dissertation. Michigan State University, 180 p.
- Michigan Department of Natural Resources. 1970. Michigan Recreation Plan. Lansing, Michigan: Office of Planning Services.
- Pawling, J. W. 1969. Morphometric analysis of the Southern Peninsula of Michigan. Unpublished Ph.D. dissertation. Michigan State University.
- Schneider, I. F., and Erickson, A. E. n.d. Water holding capacity and infiltration rates of soils in Michigan. Michigan Ag. Exp. Project 413. Lansing, Michigan: Michigan Dept. of Commerce, State Resources Planning Division and Michigan Department of Conservation, Water Resources Commission.
- Van Den Brink, Ceel. 1968. Types of Spring Freezes in Michigan and their relationships to protection equipment. Michigan State Hort. Society, Vol. 98, 102-107.

Appendix VIII

Climate of Pennsylvania

DEPARTMENT OF COMMERCE OCEANIC AND ATMOSPHERIC ADMINISTRATION ENVIRONMENTAL DATA SERVICE

\$78

REDUCTION RATIO:

National Climatic Center

Foderal Building

Ashoville, N.C. 28801

tertify that this is an official microform of the National Oceanie 4 Atmospheric Administration and is prepared from records received the National Climatic Center, Atherille, North Carolina 26801.

Louis & Whitelell

Daniel B. Mitchell - Director, National Climatic Center

.......

CLIMATOGRAPHY OF THE UNITED STOES NO. 60

Climate of Pennsylvania

100 NATIONAL OCEANIC AND / ENVIRONMENTAL / HATIONAL C

This publication is a modified version of "Climatography of the United States, 660, Climates of the States," which was first issued by the National Oceanic and Atmospheric Administration climatologists assigned to the various States. It is one of several in the series, "Periodic Summarization of Climate," (PERSUM), prepared by the National Climatic Center (NCC) designed to provide selected climatic information of general interest to a broad spectrum of users.

The staff of the National Climatic Center expresses its thanks to those State Climatologists, who, over the years, have made significant and lasting contributions toward the development of this very useful series. Some additions and deletions to the earlier issues have been made in the interest of standardization, and to reflect current programs within the NCC.

Sale Price: 50 cents per copy. Checks and noney orders should be made payable to Department of Commerce, NOAA. Remittances and correspondence regarding this or other publications mentioned herein should be sent to: Director, National Climatic Center, Federal Building, Acheville, North Carolina 23801.

CLIMATE OF PENNSYLVANIA

INTRODUCTION

This publication consists of a narrative that describes some of the principal climatic features and a number of climatological summaries for stations in various geographic regions of the State. The detailed information presented should be sufficient for general use; however, some users may require additional information.

The National Climatic Center (NCC) located in Abheville, NC is authorized to perform special services for other government agencies and for private clients at the expense of the requester. The amount charged in all cases is intended solely to defray the expenses incurred by the government in patisfying such specific requests to the best of its obility. It is essential that requesters furnish the NCC with a precise statement describing the problem so that a mutual understanding of the specifica 'one is reached.

Unpublished climatological summaries have been prepared for a wide variety of uners to fit specific applications. These include wind and temperature studies at airports, heating and cooling degree day information for energy studies, and many others. Tabulations produced as byproducts of major projects often contain information useful for unreleted special problems. A copy of each tabulation on file at the Center may be obtained for the cost of duplication.

The Heans and Extremes of meteorological variables in the Climatography of the U.S. No.20 series are recorded by observers in the cooperative network. The Normals, Heans and Extremes in the Local Climatological Data, annuals are computed from observations taken by National Weather Service personnel who are generally located at airports.

ORIGINAL PAGE IS OF POOR QUALITY

CLIMATE OF PENNSYLVANIA

TOPOGRAPHIC FEATURES - The erratic course of the Delaware River is the only natural boundary of Pennsylvania. All others are arbitrary boundaies that do not conform to physical features. Notable contrasts in topography, climate, and soils exist. Within this 45,126-square-mile area lies a great variety of physical lond forms of which the most notable is the Appalachian Mountain system composed of two ranges; the Blue Ridge and the Allegheny. These mountains divide the Commonwealth into three major topographical sections. In addition, two plains areas of relatively small size also exist, one in the southeast and the other in the northwest.

In the extreme moutheast is the Coastal Plain situated along the Delaware River and covering an area 50 miles long and 10 miles wide. The land is low, flat, and poorly drained, but has been improved for industrial and commercial use because of its proximity to ocean transportation via the Delaware River. Philadelphia lies almost in the center of this area.

Bordering the Coaut. Plain and extending 60 to 80 miles northwest to the filue Ridge is the Piedmont Plateau, with elevations ranging from 100 to 500 feet and including rolling or undulating uplands, low hills, fertile valleys, and well drained soils. These features, combined with the prevailing climate, have aided this area in becoming the leading agricultural section of the State. Good pastures, productive land, and short distances to markets have resulted in dairy farming becoming one of the leading agricultural activities. Another activity is the growing of fruit, primarily apples and peaches. Gentle hillside alopes provide an excellent place for fruit trees, as cold air drainage helps to prevent unseasonable freezing temperatures on these alightly dievated lands. The area has many orchards, with Adams County leading all others within the region in the production of apples. The climate and soils in the Lancaster County area are especially well suited for the growing of cigar leaf tobacco, as is pointed up by the fact that Pennsylvania is the leading producer of cigar leaf of any type in the Nation.

Just northwest of the Piedmont and between the Blue Ridge and Allegheny Mountains is the Ridge and Valley Region, in which forested ridges alternate with fertile and extensively farmed valleys. Vegetables, grown primarily for canning, are the leading crop. This has led to a well developed canning industry, which is concentrated in the ciddle Susquehanna Valley. The Ridge and Valley Province is 80 to 100 miles wide and characterized by parallel ridges and valleys oriented northmeast—couthwest. The mountain ridges vary from 1,300 and 1,600 feet above sea level, with local relief 600 to 700 feet.

OF POOR QUALITY

North and west of the Ridge and Valley Region and extending to the New York and Ohio borders in the area known as the Allegheny Plateau. This is the largest natural division of the State and occupies more than half the area. It is crossed by many deep narrow valleys and drained by the Delaware, Susquehanna, Allegheny, and Monongahela River systems. Elevations are generally 1,000 to 2,000 feet; however, none mountain peaks extend to 3,000 feet. The area is heavily wooded and among the most rugged in the State. Numerous lakes and swamps characterize this once glaciated area, creating a very picturesque landscape; this is particularly outstanding in the more northerly counties. The combination of lakes and forests at elevations high enough to keep summer tamperatures confortable and its location close to heavily supulated cities have made the Pocono Mountain area a leading tourist and recreational center.

Bordering Lake Erie is a narrow 40-mile strip of flat, rich land three to four miles wide called the Lake Erie Plain. Fine alluvial soils and favorable climate permit intensive vegetable and fruit cultivation, which is typical of the much larger area surrounding Lake Erie.

Eastern and central Pennsylvania drain into the Atlantic Ocean, while the western portion of the State lies in the Ohio River Basin, except for the Lake Eric Plain in the northwest, which is drained by a number of small streams into Lake Eric. The Delaware River, which forms the eastern boundary, drains the eastern portion and flows into Delaware Bay. The Sunquehanna River drains the central portion and flows into Cheaspeake Bay. In the western portion, the Alleghan, and the Monongahela Rivers have their confluence at Pittsburgh to fora the Ohio River.

Floods may occur during any month of the year in Pennsylvania, although they occur with greater frequency in the spring months of March and April. They may result from heavy rains during any season. Generally, the most videspread flooding occurs during the winter and spring when associated with heavy rains, or heavy rains combined with snowmolt. Serious local flooding sometimes results from ice jams during the spring than. Heavy local thunderstorm rains cause severe flush flooding in many areas. Storms of tropical origin sometimes deposit flood-producing rains, especially in the eastern portion of the State.

Floods may be expected at least once in most years. For instance, flood stage at Pittaburgh is exceeded on the average of 1.3 times per year, based on the long-term record. However, floods of notable severity and magnitude for the State occur about once in eight years.

GENERAL CLIMATIC FEATURES - Pennsylvania is generally considered to have a humid continental type of climate, but the varied physiographic features have a marked effect on the weather and climate of the various sections within the State. The prevailing westerly uinds carry most of the weather disturbances that affect Pennsylvania from the interior of the continent, so that the Atlantic Ocean has only limited influence upon

the climate of the State. Coastal storms do, at times, affect the day-to-day weather, especially in castern sections. It is here that storms of tropical origin have the greatest effect within the State, causing floods in some instances.

Throughout the State temperatures generally remain between 0° and 100°F and average from near 47°F annually in the north-central mountains to 57°F annually in the extreme moutheaut. The highest temperature of record in Pennsylvania of 111°F was observed at Phoenixvilla July 9 and 10, 1936, while the record low of -42°F occurred at Smethport January 5, 1904.

Summers are generally warm, averaging about 68°F along Lake Erio to 74°F in southeastern counties. High temperatures, 90°F or above, occur on an average of 10 to 20 days per year in most sections; but occasionally southeastern localities may experience a season with as many an 30 days, while the extreme northwest averages an few as for, days annually. Only rarely does a summer pass without excessive temperatures being reported somewhere in the State. However, there are places such as immediately adjacent to take Eric and at some higher elevations whore readings of 100°F have never been recorded. Daily temperatures during the warm season anually have a range of about 20°F over much of the State, while the daily range in winter is several degrees lass. During the coldest months temperatures overage near the freezing point with doil; minimum readings sometimes near O'F or below. Freezing temporatures occur on the average of 100 or more days annually with the greatest number of occurrences in mountainous regions. Records show that freezing temperatures have occurred somewhere in the State during all months of the year and below 0°F readings from Hovember to April, inclusive.

Precipitation is fairly evenly distributed throughout the year. Annual amounts generally range between 34 to 52 inches, while the majority of places receive 38 to 46 inches. Greatest amounts usually occur in spring and sugger months, while February is the driest month, having about two inches less than the wettest conths. Precipitation tends to be somewhat greater in eastern sections due primarily to coastal storms which accomionally frequent the area. During the warm session these storms bring heavy roin, while in winter heavy cass or a mixture of rain and now may be produced. Thunderstorms, which average between 30 to 35 per year, are concentrated in the warm months and are reaponable for most of the summertime rainfall, which averages from 11 inches in the northwest to 13 inches in the east. Occasionally dry spells may develop and persist for several months during which time monthly precipitation may total less than one-quarter inch. These periods almost never affect all nections of the State at the asse time, nor are they confined to any particular season of the year. Winter precipitation is usually three to four inches less than summer rainfall and is produced most frequently from northenstward-moving storms. When temperatures are low enough these storms sometimes cause heavy snow which may accumulate to 20 inches or more. Annual snowfall ranges between wide limits from year to year and place to place. Some years are quite light as snowfall may total less than ten inches while other years may produce upwards to 100

ORIGINAL PAGE IS

inches, mostly in northern and mountainous areas. Annual snowfall averages from about 20 inches in the extreme southeast to 90 inches in parts of McKean County. Measurable snow generally occurs between November 20 and March 15, although snow has been observed as early as the beginning of October and as late as May, especially in northern counties. Greatest monthly amounts usually fall in December and January; however, greatest amounts from individual storms generally occur in March as the moisture supply increases with the annual march of temperature.

As mentioned earlier, hurricanes or low pressure systems with a tropical origin seldom affect the State. Damages es a result of hurricano winds are rare and usually confined to extreme eastern portions. However, nature's most violent storm, the tornade, does occur in Pennsylvania. At longt one tornado has been noted in almost all counties wince the advent of severe storms records in 1854. On the average, six or seven tornadoes are observed annually in Pennsylvania, and the State ranks 27th nationally. June is the north of highest frequency, followed closely by July and August. Principal areas of tornado concentration are in the extreme northwest, the Southwest Plateau, and the Southeastern Piedmont. The frequency in the latter area is the highest in the State ner square mile, similar to what is observed in portions of the Midwestern United States. Many of the tornadoes in Pennsylvania have caused relatively minor damages. However, several have claimed lives and dealt severe local economic setbacks. The most destructive activity occurred June 23, 1944, when three tornsdoes raked the southwestern portion of the Commonwealth, killing 45 persons, injuring another 362, and causing over \$2 million in property damage.

More detailed information is given for each of the four rather distinct climatic areas of the state.

THE SOUTHEASTERN COASTAL PLANK AND PIEDIDIT PLATEAU - In this region the numbers are long and at times unconfortably hot. Daily temperatures reach 90°P or above on the average of 25 days during the summer session; however, readings of 100°P or above are comparatively rare. From about July 1 to the middle of September this area occasionally experiences unconfortably warm periods, four to five lays to the long the longth, during which light wind movement and high relative humidity make conditions oppressive. In general, the winters are comparatively mild, with an average of less than 100 days with minimum temperatures below the freezing point. Temperatures 0°P or lower occur at Philadelphia, on an average, one winter in four, and at Harrisburg one in three. The freeze-free season averages 170 to 200 days.

Average annual precipitation in the area ranges from about 30 inches in the lower Susquehanna Valley to about 46 in Chester County. Under the influence of an occasional severe conetal atorm, a normal month's rainfall, or more, may occur within a period of 48 hours. The average seasonal snowfall is about 30 inches, and fields are ordinarily snow covered about one-third of the time during the winter season.

THE RIDGE AND VALLEY PROVINCE - This region does not have a true mountain type of climate, but it does have many of the characteristics of such a climate. The mountain-and-valley influence on the air movements causes somewhat greater temperature extremes than are experienced in the southeastern part of the State where the modifying coastal and Chesapeake Bay influence hold them relatively constant, and the daily range of temperature increases somewhat under the valley influences.

The effects of nocturnal radiation in the valleys and the tendency for cool air masses to flow down them at night result in a shortening of the growing season by causing freezes later in spring and earlier in fall than would otherwise occur. The growing (freeze-free) season in this section is longest in the middle Susquehanna Valley, where it averages about 165 days, and shortest in Schuylkill and Carbon Counties, averaging less than 130 days.

The annual precipitation in this area has a mean value of three or four inches more than in the southeastern part of the State, but its geographic distribution is less uniform. The mountain ridges are high enough to have some deflecting influence on general storm winds, while summer showers and thunderstorms are often shunted up the valleys.

Seasonal sno fall of the Ridge and Valley Province varies considerably within short distances. It is greatest in Somerset County, avaraging 88 inches in the vicinity of Somerset, and least in Huntingdon, Mifflin, and Juniata Counties, averaging about 37 inches.

THE ALLECHENY PLATEAU - This region has a continental type of climate, with changeable temperatures and more frequent precipitation than other parts of the State. In the more northerly sections the influence of latitude, together with higher elevation and radiation conditions, serve to make this the coldest area in the State. Occasionally, winter minimum temperatures are severe. The daily temperature range is fairly large, averaging about 20° in midwinter and 26° in midsummer. In the southern counties the daily temperature range is a few degrees higher and the same may be said of the normal annual range. Because of the rugged topography the freeze-free season is variable, ranging between 130 days in the north to 175 days in the couth.

Annual precipitation has a mean of about 41 inches, ranging from less than 35 inches in the northern parts of Tioga and Bradford Counties to more than 45 inches in parts of Crawford, Warren, and Wayne Counties. The seasonal snowfall averages 54 inches in northern areas, while southern sections receive several inches less. Fields are normally snow covered three-fourths of the time during the winter season. With rapidly flowing streams in the Ohio Drainage system (except the Monongahola), it is fortunate that this part of the State is not subject to torrential rains such as sometimes occur along the Atlantic slope. Although average snowal precipitation is about equal to that for the State as a whole, it usually occurs in smaller amounts at more frequent intervals; 24-hour rains exceeding 2.5 inches are comparatively rare.

THE LAKE ERIE PLAIN - This region has a unique and agriculturally advantageous climate typical of the constal areas surrounding much of the Great Lakes. Both in spring and autumn the lake vator exerts a retarding influence on the temperature regime and the freeze-free season is extended about 45 days. In the autumn this prevents early freezing temperatures, which is a critical factor in the growing of fruit and vegetables.

Annual precipitation totals about 34.5 inches, which is fairly evenly distributed throughout the year. Snowfall exceeds 54 inches per year, with heavy snows sometimes experienced late in April.

7

STATIONS IN THE CURRENT SERIES OF CLIMATOGRAPHY OF THE U.S. NO. 20:

PEHNSYLVANIA	RERIOD	LAT. (N)	LONG. (W)	ELEV. (FT.)
Carlisle Chambersburg 1 ESE Claysville 3 W Donora 1 SW Ephrata Franklin Gettysburg Holtwood Jamestown 2 NW Johnstown Lawrenceville Marcus Hook Montrose Phoenixville 1 E Port Clinton Reading 3 N Ridgway State College Stroudsburg Towanda 1 ESE Warren York 3 SSW Pump Sta	1951-74 1951-74 1951-74 1951-74 1951-74 1951-74 1951-74 1951-74 1951-74 1951-74 1951-74 1951-74 1951-74 1951-74 1951-74 1951-74 1951-74	40°13' 39°56' 40°07' 40°10' 41°13' 39°50' 41°30' 40°20' 42°00' 39°49' 41°50' 40°07' 40°35' 40°22' 41°25' 40°48' 41°00' 41°45' 41°51'	77°12' 77°38' 80°28' 79°52' 76°10' 79°49' 77°14' 76°20' 80°28' 78°55' 77°03' 76°02' 75°56' 78°45' 77°52' 75°11' 76°25' 79°03'	465 640 1000 762 485 987 500 187 1050 1214 1000 12 1560 105 450 270 1360 1170 480 745 1280
		39 33	76°45'	390

STATIONS FOR WHICH LOCAL CLIMATOLOGICAL DATA, ANNUAL, IS PREPARED:

PENNGYLVANIA	PERIOD	LAT. (N)	LONG. (W)	ELEV. (FT.)
Allentoum Avoca Erie Harrisburg Philadelphia Pittsburgh AP Pittsburgh Fed. Blo Williamsport	1976 1976 1976 1976 1976 1976 1976	40°39' 41°20' 42°05' 40°13' 39°53' 40°30' 40°27' 41°15'	75°26' 75°44' 80°11' 76°51' 75°15' 80°13' 80°00' 76°55'	387 930 731 338 5 1137 747 524

CLIMATOLOGICAL SUMMARY

CARLISLE, PA		981 - 1974	45° F %	77" 12" W	463 PT.
, 4145	11-010-(1-19-/5)	Turks one :			ได้เริ่มเพลี
manu a l	. I 11771T	14 1 311 MAX MAX	; ,		! " ; " ;
	2				
37.7 11.3	19.25 25 107/22 -12 109/2		ر من المن المن المن المن المن المن المن ا	2-0 23-0 05 19-0 01	
*** **** ****	18.88 20 20 20 20 20			0.0 32.0 04 10.0 04	
440 30.0 31.0		•	t to tomic distribution		ું તું કું કું કું
wa 00,0 01,0	11.11 10 11 12 12 12 1		8187 - 8179 - 91 - 1178 - 83 [†] 98 3174 - 818478 - 8148 - 80 [†] 88	7	127 1 1
	11.01	1	1.11 .11.2. (a. 1.2.4 1) 11		
F17 17.11 41.11	76.00 100 157 20 37 79 12 18.00 120 100 3 10 10 10 2 70.8 100 102 10 10 10 2 07.01 100 100 3 10 10 10	la, e, e, e	وأودود المستودة ددره		ું કરવી છે
49.3	79-28 180 62 63 63 63 63 97-28 188-188 8 80-188 61		A. C. A. C. C. S.		444
97.2 93.2	*****		2-29 - 1-26-31 - 6-25-72/26 2-29 - 2-26-32 - 8-25-82/ 6		
*** 32.4 32.4	97.0 97 91 0 200 00 34 11.0 0/4 70 1. 12 00 21		1.01 1.02 (a. 1.27 ha)	2.5 10.0 23 0.0 7	
			<u> </u>	7.7 10.0[40] 19.0[9]	10 0 3 1
7.00 13.01 13.01	0.3] 100 [11[3]-12 10[3]	124 1000	0.70 0.0. T 3 10 ft 91	33.3 30.0, 18, 23.0, 10	20, 27, 27
CHAMBERSOURG		981 - 1974	2 h pt. 4	77" 18' W	440 PY.
	timbreating to	I was string !		The Print Sent	[2:42.34.49.4
	1 1 1 1 1 1	1-1117			7 7 3
	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2-2-2		The state of the s	1 7 1
1 1 1 1 1 1 1		115151	1 11 1 11 11		2 3 2
10- 07.0 70.0	30.8 71 07 30 -17 00 .1				
20.0 17.0	31.44 33 34. 13 -14 34.		2011 - 1010 - 2 PR 10/31		
44.9	30 68 29 -4 68 21	11111		i - 1.5 date es deseja	
APR 02.0 17.3			gata Taba sa ayan baga gang tang sa ayan balas		", "
At 01.3 37.3			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
A17 11.0 11.0	**** \$4** 40 41 42 44 44		\$100 P.DE IS 1-22 70 1		
NG 33.0 30.0	00.0 00 00 00 00 00 00 00 00 00 00 00 00		3.10 A.C. 11 2.00 35 11		
17.1 17.1 17.0 057 17.1 11.0	22.7		1.05 (1.0 to 1.0 to		
wm 11.0 17.5			5-13 1-12 a 2 75 841 ;		
	رة إحدارة إ <u>حداً قد أ</u> قدير	o} oj o, oo, o, .	بواردوردن بالمحبد إبديو	oj 1.5) 20.4[69] 19.9[6	44 4 A
77.00 18.01 19.01	errel resolved fore loth	in man	والمالية والمتحدد والمال	1 114 121 141 141 141 141 141 141 141 14	1.4 may
CLAYSVILLE 3 Y	7, PA	1931 - 1370	42" E" "1	90- 59, M	1000 PT.
	FEMOTPATURE (*F)		Pa 4 1 15	11110 10141 1000	
124-	######################################		•		1-17.77
2 2	7071	2 - 2 - 2		1 1 2 2 2	1 2 2 3
34 34	4 93 2 2 2 3 3 3	1 2 2 2 2		1 11 2 5	
p-9 10.0 17.0	0.0 70 10 10 10 10		2,64 h.00 m		20 20
	20.0 20.01120 -120.02.25		2.00 0.00 m		
15.7 25.0	77 - 79 77 1 77 33 41 43 43 43 43 43 43		وأوموسية نسيدته دفيد	of	4 4 4 4
1	w.,	1 9 9 9	\$160 Pala - 1239 Page	i in acque exele	
	97.1 01 10 07 -13 (00 0 97.1 00 70 10 0 0 0 10.3 07-01 10 20 00 10 67.1 00 10 10 10 10		\$189 - 1012 mr . 100 041 0 8189 - 8199 mr . 101 181 181		
	70		4,10 4.50 41 1,47 49		
13.1 33.0			2.83		1. 4 4 1
			ويها جملت المالمجدة الافري	• •	11 4 9 4
007 11.0 31.0	21.0		4.00 0.00 % 2.22 % 1. 4.61 0.00 % 0. 00 23.5		
146 11.7 21.1	11.0 11 0 0 -10 11 1 11.0 1 0 0 -10 11 1		81.02	al era terales teral	
Į.	413	1 1 1 1 1 1 1 1 1	arright.	711 4	i .
Am [11/1 11/0]	!•या तन्त्राची सन्दर्भावी	La care te	the transfer to the	<u> </u>	101 101 21 05

ATT 1

•

CLIMATOLOGICAL SUMMARY

DON	IORA	1 E W.	PA						- 19	74			40-	10.	**			79*	52 .	ty				762	t PT
	•			114						-	1	•	-			***			LACTOR	CED S					
	-		•		-,			77	, <u>,,,</u>	Z., .				77		1-1			.~~	_			7-		Cual I
	• ;		•	•	•	•	• :-	1.	4 6 .	111 . Wa	•	:		! !		H				Γ.Ι		П.	-j··	• • • • • • • • • • • • • • • • • • • •	-
~	• • •	•	•	47		19-	i	-			. i	:	7	1:		1		i	25	١'	ŧ.	1 1	1 5	, 1	ï
					12:5		131:	1	33.		ļ.,	<u> </u>	- 6	2		3	2	. i	19711	3.	ž E	3:	: 13	1	
	, - •	٠,	٠,	, - 1	3 2		1512	1	22	::,\	Ξ.	" !	. 31	13	.34	أأأ	4:	. 7	••	١٠.	z	15:3	<u>'</u> ــا!'	1	
••	****	41.4.	51.5	,	100,00		40,00	• •	•	٠.	ı'	*. **	*.11	20	1,49	100	.,	7.1	27.0	70	4*.0	••;	•	•;	٠,
•	* ****	11.57	13.6	11	100 100		400	•		44.		2.27	3.91	9.	1.11	100	13	0.0	17.0	٠,	17.0	`		•'	4
*	****	13.0	*1.7	*		•	•••	•	1.	10	•	3.41	7.01	6.7	1.00	47	*	2.7	10,8	**	11.0	[22]	-	٠,	21
•	. ****	**.*	33,5	• • • • • • • • • • • • • • • • • • • •	**	10	**	· i •	• '	٠,	٠	3.**!		•1	1.10	70		• • • •	•.•	**;		20 8		•	•
47	••••	••••	• 2 . 1	*	100 10	200	70 1	•	•	١,	•	3.44	8,41	(**)	3.00	74	٠		3.9	••;		11	i	٠į	•
•		10.0	**	**	100 00		4.	•	•	•!	Φ×	1.00	10.01	12	3,74	70				1		11		7	•
٠.	****	• • • • • •	****	**•	1001 4	- 44		١,	•!	-1	٠	اٍ٠٠٠٠	7.17	į••	3.47	**	,,			1 :			•	•	•
٠.	**.*	**.*;	12.7	:	100	**	**	• •	•;		٠,	*-**	7.31	10	P. 90	•••		-•		il			;	•	•
*	****	30.4	**.7	: '			101	1			٠,	1.41	*.**	1	2.00	1 (••		1		ı	1	•	•
•		***	14.1	:	1 (**			,	•;	••••		```	3.11				1.0			. 1.		•	1
-	, ,,,,,	34,4	****	ė				6 :		•	•	***	1.0		1.00	1. 1	۱۹	•••	49.9	1 1		"	"	1	1
	****	•					00 2: 100 2:			_ 1	•,	41		121	_':::	131	_31	4.4	_!*••		10.0	i <u>- 4</u>	٦.	_•1_	1
48	****	44.21	. ***	10>		1-10	100/2	1 22	111	141		39.81	10.07	í	3.31	1	197	33.7,	13.0	1			٩_	78: 1	<u>'</u>
PH	474	, PA					1	951	- 19	74			400	۰0	74			78*	10.	~				481	,
- ;				11 40				-	•							7816	141	1177 (01	AL94150	37250					
•		4144			٠	٠		T=1		· · · · ·				T			Т		54440	1111				14 5 L	
		•	- 1	1	٠.	i -	Ţ -	1		11	•	!	_	i	_	1	1			T		T	1:	"	-
1	أؤدا	- ;	Ξ.	25	: .	1:5	Li	5-1		. 2	•			H	÷.		- 1	į	17	ļ	5. 3.5.		1		,
1	33	1	•	2	;		2 3	1			2	3 .	ží	빏	รี่ส์	3	:1	1	1	31	3	3 3	1		
-	;		· 1		i T		11	1	i	1	,	`		i I		† †	- 1	•		-		- 0	1		1
	****	****	**.					(• '	•1	4*1	•	****	1.17		1.01	ı ı	٠.	4.9	43.0	٠٠.	10.0	44, B	4	•	٠, ١
	****	**.*	**.*	7,	3. 10	-10	** **	•	;		•,	4.10	*.,,	: 1	1.19	. 1	- 1	*.•	23.0	,	10.0		1	•'	*
**	***	14,1	**.	70				1 1	1.		•.		*.**	: !	7.10	l I	- (3.7	10.0	1 4		**	•	٠į	4
	• • • •	**.*	*1.*	٠٠.			-	(1	•	•	•	3.13	7.11	1	1.40		- :	**	4.0	**	1.0	• •	'i	•1	4
! ۳۰	74.	**.*	****	**	ļ., j.,	1 10		'i 4	• ;	• •	•	9.34	*.*;	,,,,		•••	**						ì	•	400

	<u>'</u>			1140		,	·								,		1 104	*******	ALFIN	CITS	•					- 1
		4144			٠٠.			Ľ	CEL	.111.				П					54170	27.6				MEAN	PAT	-
₩ ~1×	1111				2	9	2 2	2	5	19		្ទ :	1	3	71111	3	,	;	17	3	ت د د د د د د د د د د د د د د د د د د د	3			7	1
,,,,	37.4		,,,,		Ιt	1	ļļ.	1	•	,,	.'	1.00	1,11		1.01			,			10.0					-
~		14,1	17.1	,,		1	••;				•	1.10	1.30	••	1.19 7.10	••	••).·	14.0	**	10.0			,	3	+
***	74.7	33.7	****	**		•! **					:		****	,,	8.40 8.40 8.71	••			5. •	"	1,0	"	•		*	
J117	43.3	43.4	***	107	··i	şį .,	1 !			•	:	3.93	11.47	,.	-	••	٠			li					,	
mm mm	70.0	****	11.1		: 1		0.0	: 1			• '	3.15	1.47	•>	8.18		••	.0	,		1,1	,,				
**	****	_94.0` _83.0}	****		1 1			•	•! •!	10,	•	1.11	7.43	1;	2.12 2.65	73	••	1.1	7.1 20.1		7,6 13.9	1		_•		•
****	41	. <u>**:</u> *i	21:1	191	1	1-10	10,77	111	1-41	119	1	*1.*1	17.75	1	3,79	13		10.0		L	35.0	Ü	ف		301	10

FRA	NKL	IH, PA							1	931	- 1	974	•			41*	23.	м			750	49"	٧٧					67 F	٧.
				7147	241			_	_				~	•					(*)			1445 ·I'-		,	•	٠-	•		٦
		MEAN				13.	441	_	-	_	111	yw.	•	1	,		П			П		V##					44	14 H	"
alChet a	4174	1	1	M.A.S.	2	3	11107	6114	ā	2	36	100	3		\$ \$ -1	Tree of	::::	CALATES PARTS	114	ž	S H	ברונונה ב-נינו	3	CLIMA	3	ī		1	3 3 3 4 -
J~#	34.0	10.0	**.*	••	7,	٠٠;	-11				1.	١,,	į.		2.99	4.41	.,,	4.40	.,	,,	10.3	20.0		17.9					
***	****	10.0	**.*	**	••!	••	-37	••	"	٠,	١		1	•	2.44	9.41	100	1,17	,,	10	17.0	81.1	••;	17.0	61				•
****	**.*	10.0	**.*	"	••'	**	•••	••	10	•	٠	••		٠.	•. •• '	••••	1	1.17	48	,	10.0	27.0			٠.				•
~-	**.*	**.*	47.8	844	••	••	1+	••	٠	٠	٠	•••	1	•	*.*:	*,14	100	1.40	••	,,	4.1	**.*	••	•.•	••	20	•		•
	"	**.*	**.*		: 1	•	**	ı I		•	٠	•	į,	• (8.47	4.11		•	**	••			!				•	ાં	4
J:	**.*	17.4	**.1	**	1 1		•1	1 1		١.	•	٠.	1	•	*.**	•.•	177	3.40	•	*			1		١.	١.	•	٠	4
424		\$7.5	70.2	**	••	•	**	74	••	١,	•	٠.	•	•	•		1"	1.11	*	••	-+					•	•	•	٠į
*00	**.*	30.0	**.	**	**	**;	•••	••	**		٠.	١.	1	٠.	3.57	•.•,		4.17	**	•			1		!	li	, 1	•	· l
un	**.*	••••	**.*	••	**	•;	**	۱۰۰¦	•••	١	٠	•	١.	•	3.41	3.01	.74		"	10			! !		i		. •		4]
ראם	***	29.0	*2.*	**	1	•	15	i••	"	٠	•	! •		•	*.**	*. *;	234	•. * *	*	10		`1.0	••	2.0	.,	.,			4
	****	31.4	**,7	• 1	P1	•	1.	••	44	٠ ا	٠	١,		•	3.31	***	ļ	1.**	' \$\$	**	9,9	14.1	٠.	14.4	11	ja.		4	•
D14 .	21.1	21.0		. • • •	(**)	٠٠,	-11-	••	17	٠. ا	١.		i.	٠.	1.91	1.1	in	1.44		٠٠.	•	49.5	•:	11.4	1.	٠.		Ŀ	_•
-!:• {	*****	37.0	••••		 •• {	١;١	- 2 *	١٠٠;		i , •	"		٠.	•	••••	10,01			15.	۱۰۰	, ,,	81.1	1	19.1	į.,	. 1		. 17	,

10

CLIMATOLOGICAL SUMMARY

OET	***	una,	PA	_	٠.		_	1	***	- 1	974			39-	30.	N		77*	14"	w			3	00 PT
:				HIMP			٠٠.										ra 8 + 194 S	41 h A 101	419-10	148 4.				
i		W1 A 7 1				100		·	1."		.,		-		1.1	!	! 1	_	win	411	•		j ~ ;;	11 WAR IN 11474
	Paris Paris	7	e Pilue		1	ă		֧֓֞֞֝֟֞֝֟֝֟֝֞֝֟֞֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֝֟֝֟֝֝֟֝֟	3.5	Že Se	i e Lä	100	;	1			1 a	; ;	111111		31.012	} } i		*****
IAN	10.1	81.0	10.1	,,			••		J.	Ι.			4.44	1.1	,,,	1.02	, , , , ,	4,5	43,0	••		*1 11		, ,
***		***	31.0	74.		10	•7		· •	٠.	٠,,	٠.	1.00		۱,,,	F. 13	as. a.	0.01	15.1	•		., .	١.	
		30.3	44.1			**	,					٠.	3.07		.,,,				10.0	٠.,	17.0	wij s		
**	48.4	41.0	11.4		١.,				٠.		٠.		3,14	1		1.55	10 10			• • •	3.0	98 [†] 87	. •	A 1
	79.5			•••				00 1	٠,		٠.		8.91	•.•		2.01	•• ••	!				-	٠,	
110	**.*	30.4	70.6				*	100	٠,	١.	: •	ا•. !			إدواه	3.73	70 20					- 1		
144	**.3	44.1	11,4	***		•1	•••			•	•	, •	1.43			3. 13	70 10			١.		•	•	ه اد
AUG.	44.4	40.4	***		••		44		√ .	١.	! •		1,11	10.1		4.01	85 15		1	i		1	• • •	. 1
1177	**.*	39,3	44.7		20	•	**		•i	٠,	٠.		3,44		• ••{	4,21	••[11]	. •		H	i	İ	•	
""	**.	*3.7	*1.*			٠			u! •	•	•					1.4.	•			*4	1.0	78, 41	, .	
-~	11.0	14,7	41.8	` ••	**		13	10014	٠, •				3.15	•	.] 👊	a. • • •	10	1-1	7.0	*				
<u>بر</u>	45.0			***		١٠,	. • •	100/1	٠, ١	•	į.		3.17	٠.,	١,		25 7		_,,,		20.0			_4_4
YLLD	و. رو	47.6	93.0	187-	100	Ľì	->-	أووا	<u>.</u>	1 .43	1113	1_1			ارزاد	3.73	۲, ۱۱		17.9	**	47.0			16 10

HOF.	TWO	00,7/	•						191	١. ١	974			12.	23.	H			74.	50.	W				197	**
				114					•			1	ļ. - .	-	٠.		m 16	189 6	415× 301	ALT 11~	. 2173				• • •	
i		MIAOS		[1101	**		T		V213						ΓŢ	1		140	411	,,		-1	455	
	P.A.V.	Perit.	* 1115 L M	0 10 m	1148	ž	11(74)	200	9		: ! !		.	1000000		CLEATED!	177	ž	1	#1.01 # #0.74	=	5 112	3.	٦	2 1	
pan	.,,	29.7	30.0	"			••		•]			•	1.50		,	1,94	1 1	·	7.3		••	10,0	•	1	•	•
~•	••••	33.5		;				.,,					,		, ,,,	3,14	٠.		*.0	**.*) [83,0		- 1	•	4,
V*	*1.*		41.7	94. 91.	1 1		-	,,			, <u>.</u>		3.30	1	3 3 d		ļι	- 1		3.0	١٠٠,		••	**;	*;	0, 1 0, 1
147	**.*	47.1 47.7	74.7		30			72 1 73		;;;	, .		3.13		172	*.01	1 7						Ì		"!	
44	*1.*	65,0 53,1	10.0	***	1	1	***	11.	:	: :	¦ •	٠	!	11.	1	1.17	: :	٠,	.•							
-			10.2	**		•	**	٠, ,	1				' '.		• ••	2.53	h	••	٠.			! . <u>.</u> .		į	4	ij
4	12.0	47.4	14.0	1 44-	1 1		:	<u>.</u> j.	1	į,			2.13	:		1.77	1 1	i	4.5	41.6	1 1	17.4)]		_•	*) -1
·••]	12.0	49,1	81.6	141	144	۱,۲	-1-	1017	; ,	., .	,,,,,,	1 .	17.34		124		111		39.5	***					•• •	

JAM	KBTC	WN 2	NW. P	Α.		_			193	1 - 1	874			41*	\$ 2,	**			65*	٠, (17				102	9 FT.
				E2 MP													n	(m	141215 111	44 6 115	(115)					
- 1		WIA-			13	200	411		L	_11	011)				Π					1,4470	41	11		1		P111
	ELLY COLLEGE	Bill Con	****	11,043	3	ž	LLC40 Leaf	2	7.		3 8	33	÷	111111	13	55.5	27.	ã	S. Pa	***	1	1	,	ā	;	7
144	24.0	19.7	93,9		,,,				.) ;	.)	!	١,	1.33	•.•	1	1.43		,,	11.1							
•••	31,0		**,*	**		••			• •	· ··		•	3.44	•.,	• •	1,00	.,		12.5	40	10	14.0	٠,	ŀ		٠,٠
***	47.5	24.4	17.5	l l	1 1	- 1	-11-	••	۱ ۱	• •	**	i -	3.47	1	711	2.10	I	1 1	19.9	****	i ·		1 1	1	•	4
45	****	34.4	15.9			· 1				1.	1 18	:	9,55	ı			i	1 1	4.4	1.0	1 '	•••	1			
p.	71,7	15.1	45,5	,,	,.]		194	1.0			•		4.10	٠.,		1,73		١,	. 1					Ι,	•	
MY	81.6	37.0	17.5	1	m	· · ·		••	•	· ·	•	•	3.07	1	• • •	8,44	1	i l	!			Ì	١,	!	•	i
AVE.	89.7	***	67,0 61,6			1						1:	3.11	1	, ,,		1	l'.	1 1		1	İ	Ì	١.	• ;	
467	47.1	39.7	1)		- 1	-	.,),	1		! .	.	i	10.1	1.		1	F			į.,			١.,	•]	
w.,	44,4	20.1	39.6	••		•	ı	1.1	ij	• •	10	•		٠.,	•¦••	1.90	٠.		7.7	39.1	•	17.0		11	•	
DAK	39.1	12.0	11.5	•	<u>inl</u>	<u>.</u>	-100		1	<u> </u>	1 !		2:47	l ':'	, ,,		1.		i'::'	L.! <u>'-</u>	•]••	. **:	1.,	1	1	(/i _'
7744	[ويوب	35.0	***	1.	P:\	ŀ	-1	أزديا	Ù.	* ; *	Ľ,	; "	[<u>.**.</u> **	i.***	13.	•.•	į.	١,	1	11.5	ı,	1 11:2	Ļ	į •i	**,	. **!

A ALEXAN PARLIES (WITH

1

CLIMATOLOGICAL SUMMARY

JOHN	18TO	WH, P	A .						11	15	- 11	7.4			40- 1	۵,	H			76	33. 1	W				121	4 77	r.
			•	11-										Γ				HI	4	laters but	41 5 174	< me 1		_				Ť
į		W(AN)			• 1			_		-	125							П			-	41	••				0473	叮
wa.,	Paris Sellens	Print.	an lake	CECTATION OF THE PERSON OF THE	35	M	California	17.46	Pr	0 400	9	3,1	35	· ·	2011	77.	111.111	3	i	5		3	# F F F F F F F F F F F F F F F F F F F	14.1	ă	19.2 - 01	***	7
Jan	27.3	10.0	10.7	18		,,	-1-		,,	•	11	17	٦,	3,66	9.11	168	3.40		,,	13.0	**.*		37.5	94	10.	9.		7
***	30.1	41.0	30.1	11	١.	,,	-10			٠	٠	**	١,	3.11	7.01	ļ.	1.10	•	••	14.4	31.4	43	84,0			٠	8"	٠
***	**.*	10.7	80,4	••		10	•		٠	٠.	•		•	3.**	٠.,,	••	2.30	••	•	10.5	27.3	٠,	19.0	••	ļ •	•	2	1
~~	*3.*	39,3	****	***	١.	73	10	•••	**	•	•		•	4,30	*.*	7.0	F.10	72	,,	1.9	7.0		.,.	20	23	10	이	
~~7	78.0	47,7	44,5	940	۱۰۰	**	11	į۰۰	11		•	,	١.		7.11		1.**	**				į••'		• •	4,	•	, ei	1
pt~	84.5	30.1	**,*	***	••	12	**	••	٠	٠	٠		•	*.10	4.01	110	2.79	7.	••						١.			
INT	43,3	39,9	*2.7	100	••	•	***	••		٠	•		٠	4.41			4.41	•		.0		١.			ĺ	•		
AUC.	40.0	\$1.5	*1.3	**	••	••	350	••	**	٠	٠	•	•	3.41	***	74	1.%	7.	٠	.0		1 1		H	l	· i	•j	
~~	".,	31.5	80.5	1200	(88	•	13	97	**	•	٠	•	٠	8.82	9.0	• ••	2.10	-)		ĺ	i.	•	•	ᅨ
m7	**.1	49,8	**.*	l	••	i 'i	1*		- 1	٠	•	٠	•	8.00	*.1	3~	3.43	ا••!	••	-4		••		•4	ندوا	٠.	-	٠
~~	****	39.4	47.0	••	"		•	**	30	•	٠	**	•	3.40	***	**	2.**	••	••	9.4	11.0	71	11.0	••	••	•	•	•
= 1			17.1	<u></u> .		l °ı	٠.٠٠	Į.,	**	•	. •	*	١•			120	.*.!			16.0	40.0	ļ "•¦	19.0	**	٠,			_
774	••••	***	99.5	L!**.	100	<u>'</u>	-10	10.0			الثا		Ľ		٠		0.07	•	•	11.0	44.1		37.0	**	191	•	89]	٠

LAN	/RKH	CEVIL	.LE, P	^						•31	- 1	97			42"	o 3.	H			77*	os.	w				80	100	et.
	!			11-4	RAI							-	_	-	•			**	1 101	1417~10	41315		, -	• •				
		4140				10)	411	_			I'L	1				П		Т	П		2444	41	17	_	\Box	492	-	
	11.0	a lucas a local	:	27	7	ā	61114B	3	ă	4 10.00	2.1	C a	2	; }	Tings.	1100	32	2	à	57.78	11	7	55	31.	į	3		17.00
344	30.1	17.0	33.9	•	.,		-330			Ī.	٠,	, ,,	-	1.00	3.10		1.71		١,٠	7.0	41.0	ļ.,	10.0	70	٠.	•	, 8	-
***	24.3	19.1	**.*	70		••	-11	!		•		١,		1.93	*.**	1.,	4.94	74	,,	11.1	**.7	1.	41.0	••	٠.			. •
448	**.,	44.0	\$3,5	100	•••	۱.	-19	w	ı٠	•	,	٠٠.		4.91	9.17		1-41		10	7.0	**.*	 .	10.0		•	٠		•
479	24.8	33.1	46,6	440		**	110		3		•	11	(•	2.40	5.31	[05]	1.00	63		1.7	10.0	100	4,0	••			, .	, •l
***	79.2	11.7	****	*>-	••	18	14	••	10	١.	•	•	•	3.94	0.10	••	7,20		•	-3	•.•	**	٠.٠	44	•:	•		•
M.A.	179.3	\$1.0	41.1	***		**	**	128	"	٠	٠	١.	•	3.07	****	73	3.41	20	23	!		1		١	1 ;	, ,		1
Mr	**.*	35.0	47.2	**	100	•	*	••	41	٠	٠	١.	•	3.40	4.07		2.07	94	**	!		H			1	,		4
-	81.0	34.0	47.5	**	10.	١٠,	**	**	×		•	١	•	3.81	7.10	100	4,77	•	2.0			1		1	١.	,		•
2021	74.5	47.0	81.4	**	••	٠١	**	ŀ··	"	•	٠ ا	١.		7.43	4.71	ុំ។	1.11	107				1 1			!	. •		
67	****	37.1	17.5	***	••	1	1 10	12	**	٠	١.	1 81	1 •	3.87	*.10	100	*.41	•	••	••		20	*.1	••	00	٠	ļ٠	. 4
~~	**.*	39.2	39.0	**	100	*	-1	100	**	٠	٠		۱.	2.70	9,74	103	1.41	42	٠,	•••	11.0	10	12.0	••	•	٠	١,	, •
*	27.3	ه.ويل	****	L.	10	ند	-10	100	•	·	L.•	Ŀ	1.	3.10	9.22			100	11		35.1		10.0	••	10	_:	Ŀ	1.1
TEAR	90.3	49.9	47.1	••	1	31	-44		"	11		110	1	11.71	•.••	í	3.61	1						1	ت	_ ,,		اب

MAR	CUS	H001	(, PA						1		- 11	74			35. 4	to.	N			7 22	:3.	v				1		7.
				1110	184			• -	_	-		-	•	· ·		-		•••	'n	IATY~ R	.419 :14			-				\neg
		-14-			•						. (20)					Γ		۱ ۱	П		\	41	11	_		W 45	hi al	
-	17.4	a Partual	1	0.7716	3	ž	1000	3	ř	S LAWS		C		**	Citana L'Ant	11.4	הניים. סייני	าเ	DA P	4	anima enfine	342	# # # # # # # # # # # # # # # # # # #	77.46	ż	g o mag	3	in e acti
244	87,7	44.0			١,,			7.	•	•		**	١.	1.00		١.,	1.07	١.,	١.,	.,,	44.1		41.0					-
***		10.0	****		١.			44			١.	**	١.	3.40	4.11	٠,	*.1*	••	.,	3.4	10.3	••		.,	١.			
	89.5	20.0	48.7	••		••		١,,	,,	٠	,				.,,,		1,50	٠,	,,	9.5	12.0		30.0	93		,		
APT	**.*	\$4.1	35,7	***	۱.,		**	7.	٠	•	٠	•	•	*.*1	10.01		1,30	٠.	1,	.1	1.7		i		Н			4
247	12.0	84.1	63.5	**		10	**	66	10		•			3.40	*,41		1.**	٠,	••	.9		i	ł	1		, •		
**	***	63.0	12.0	100	ļ.	,,	••	72	11	,	•			1.11	4,02	1,0	4.10					Į	ŧ .		1			اد
Jul 4	**.1	**.*	77.0	100.	,,,		***	71	٠	•	•			3.11	0.01		4.10	١,,		.,		1	!	i				
AUG	81,4	67.7	74.4	103	12	21	**	45	39		•	٠	١.	4.11	11.00		1,31	"	.,		ľ	1	!	1	1			1
чл	77.0		67.0	***	,,	3	,,	.,	20			٠.		3.43	13,11	71	4.43	٠,	,,			i		1				
u7	***	10.1	**.*		þ,		334	١.,	١.		٠		١.	4.01	8.74	112	3.31		.,			I	l	l	1			
***	80,5	30.0	47.1		١.,	1		133		•		١,	Į.	3.40	*.22		2.27	١,,	Į.		*.1	ļ.,		١.,	١.			ld
EAE	43,8	33.7	37.1	71	١.,		,		١,		١٠	**		9.10	7.7	,,	1.,,	١,	١.		10.0				١,,	,		4
TEAR						•		14.					•			1		•			. 10.0	111			:			
		.,,,,			1''		∟	1	ι.		. ••	ŧ	i "			1		1	ı.,	1	,		, ,,,,,	1"		1 "	,	1

- 4181184 949189 6479

: .

CLIMATOLOGICAL SUMMARY

200	Alexa Alexa 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	10.0 10.0 10.0 10.0 10.0 10.0	12 64. 17.	2 2 2 1144	8	25727	174	ž.		200	15 4 E	9 20 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	C. 141117	1 :	יי פייני	1 1		1	1		31	ž	D. D.	M17.
10.0	12.0 18.0 21.2 23.0	\$ \$ \$ \$ \$ \$ \$ \$ \$	17 72 64. 17.	30	8	3325	01 39	1	2000	2 2 2 2	0 R 1 3	9 2			-								+		
10.0	12.0 18.0 21.2 23.0	\$ \$11 \$2.1 \$3.1 \$3.1	17 72 64. 17.	30		***	01 39	1	1	••;	,,				-								+		
10.0	18.1 81.1 33.0	83.4 89.4 43.4	67 72 64. 87.	••	17	••	39	1	1	••;	,,		1		1 :	1.00	.,	13.0	,,,,		17.0	**		•;	•
17.0	21.1	19.1 13.1	"; 64. 17.	•••	••	••		1	1	- 1		i i	2.00	4,40											
***	**.*	****	81.	١.	**	- 1		٠ij	• !	٠.,					i	1.77	71/10	10.1	•2.5	٠.	P*.*	•1	•	•	
		****	17.	1 ł	1	• 1			-1	٠į	38	, ,		0.4	••	1,70	19/10	1 12.0	****		**.*	**;	**	•	
••••		ι				1		1	•	•	10	: ;	,	6.47	1 1	1.73	- 1	i	1 .	: :		**	•;	Ť	•
- 1	****,	*****			``{		,	٠.	•	•	•	•	3.16	11.5	: 1	2,00	- [1		4.9	•		-1	j
	**.1	.,.						ï	4,		:		,	7,4	, -		-1	1	1	1		H		j	7
١.,,	84.0				- 1		1	- 1					:			4.74	-1	1	•			lì			j
!	.,	****		,. ,			٠.						8.00		. !		- 1	•	į.	1		! !	:	•	
••••	57.6	••••		[••]	•	100	••		٠ļ	•	٠		3,45	4.7	(35	8.40	••		4.0		1,0	73	14,	-į	٠
••••]	**.*		71	i۰۰i	٠į	•	••	**!	٠į	•	21	•	9.71	9.1		8,31	10	٠.	29.0	71	13.0	78		•	•
***	39.3	.2.3	.,	m	٠.	•••	Ŀŀ	<u>. 1</u>	i	11		1.		7.2	71	1.57	111	12.	1 200	100	13.0	100	<u>"</u>	•	_*
••••	4.4	_:1	••	111	1	25	121	<u>'i</u>	_11	••	143	تب	44-14	11.1	6	1.45	۲,		4 55.1	***			L	_2_	**1
HIX	VIL.	. 1 T.	PA							- 13	•74			40-	c 7·	N		7	» »».	w)
					1678								i			•	-	****	10744	- m	٠.	٠			-
			T	-		415	·	_	1	17			i		-		\prod	<u> </u>	:]	435	
	. '	•	!	1	ıį				-	<u> </u>	1.	-	1	: -			П	1	1	ï	٠.	1	!]		7
B	x x	11XVIL	1.0	113 1946 1444 15 144 1444 1544 15 144 1444 1544 15 144 1444 1544 1544 1544 144 1444 1544 144 1444 1544 144 1444 1544 144 1444 1544 144 1444 1544 144 1444 1544 144 1444 144 144	10 10 10 10 10 10 10 10	12.0 12.0 12 13 14 15 15 15 15 15 15 15	10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10																	

105	HIX.	VIL.	1 K.	^ ^					19	*: -	19	74			40- 0	; 7 ·	H			75*	34.	W			•	03 F	Ŧ
•				****			•••	-					1				•	m 1		1412m 101		4 *** *		•		-	
					_;;		413		1	- 61		173				-		Γ.	[]		***				-33	-	,,;
~~~		1		-	Ţ,	Ĩ			7	-4	• !	-	- ]						1			1. 1	:	İŢ.	] =	•	;
ļ		3		1	13	ا اچ		2	-	3	31	32	3 2	:	-	2	1 1 1	. <u>:</u>	: : :::	: :		3		2 ;		í	
!		` •-∔	;	٠.	: 1	٠-,		-1	۰	٠,	٠.		:	. *	· **.	٠.,	-,-	1:		_ •	-":"	۲.		•			
• !	****	**.1	**.*	*1	**	••	•••	۱۰۰	••	•	٠			1.1			1.11		١٠٠	4,4"	***	**	11.0		١.		
٠;	****	*1.*	11.0	"	9.		-11	• •	١٠j	• '	•	**	· • !	3.50	1.11	1	1.40	ł۰۰	••	7.0	18.4	*1	**.*		١ •	. 4.	
• 1	**	**.*	**,*	**	••		-1		'n	•;	٠	31	•		4,9	**		ļ.	••	• • •	1		10.0	وفروور	, •	: ∙,	
1	****	**.*	91.8	***	**	••		••	*	• •	٠,	•	. •	3.70				70		-4	4.4				. •	! •!	
•	77.0	**.*	*5.7	••	.,	10.	•,	••	·i	4	٠,		•	>.**		***	2.43	١.,	20			1		1 :	٠,		
٠ ١	13.1	\$7.7	70.0	100-			M	!		•	• ;	•		3.41	19.9	**	1,70	•	100			ì		i :	٠	: •!	
• !	• * • •	81.5	**,*	155		<u>ا ۱۰</u>	••	ויין	٠Į		• ;	٠	į •	•.•>	•.•	• • •	****	į٠٠	••	.•'		١.		!!	•	! •	
-	.,,,	ا	***	,.,	*	**;	***	••	٠·	•	٠	•	•	4.34	**.*	• • •	1.01	ļ'n.	.,			H			. •	l •i	
٠,	17.1	\$0.0	**.3	***	33	3	**	0 7	**	•	٠¦	•	•	1.15		• ••	3.30	ŀ	111	.0		1 1		i	, ,		
١ [	**.1	**-1	13.4	••	100	ı • i		ľ۳i	••	•	٠į	•	•		•.•	' 19	1.44	٠٠,	10	.•		1 !		1		Į a¦	
' !	****	****	**•	•*•		•	***	<b>'*</b> •	"	•	•	••	· •	8.97	•••	٠,٠٠	9.70	78	١.	.•	4.4		*.*	100			
_	23.25	40,05	19.1	i		٠	••	10.1	11	ك	_:	41	. •	1.11	9.51	• • •		٠.	ί.	1:1.	11.1	'n.	**	100 21	, .	3	
u İ	1	41.1	45.6			٠: ،	-10		44.													***		068 (04)			_

-,		HTO	```^.					. ".	•	٠.	674			460	• •				74"	01,	w 					30 1	_
,				1141		••••	٠.				٠.		1				<b>10 01</b>	1017	A189 100	412.1	1 146 1						
				- '			_	_	-			•	- 1		7		ľ	I		عرش ٔ	u	"		-[	-		
	··· . I	•			: :	!	ı				-	. `	1		; ;	_		-1			-			П	_ `\		١,
٠,	-1		7	::	: :	ign	1		٠.	ç.		١			٠ إ	7	1	١	- 1		1	Ē.		11	7	۱ ۲	ł ·
i	33	52 1	-	5.5	3	125	13	-		13.5	3 3	134	3	= 7		11	lěl	اء	3	141	3	źŝ	7	1			İ
_ i	4.5				1.4	1 2 3	17	٥	8 -		::			31	131	29	151	4	-1	38	5	da	=	3		-	Ĺ
.	34,1	\$8.8	20.3		100		.,		٠,	١,,	,,	۱.	3.41	,	ابن	1.49	[ • • ]	,,	7.0	11.7				1,,			į
. [			.,	٠,,	į,,		.,			٠.	: 11	١,	2.27	٠,		3.75				*1.0	٠.		١.,	i .		١,	i
, i	.7			**	į ¹ .		١.,			١.		١.	,.,,				١	١,,	3.9	10.4	:	;	١.,	١.,١		!	ŧ
i	,	24.7			ı i			1		1:	!	! .		1.11			1 1	٠,		2.5	ŀ		ŧ	1 1			1
.	,,,,		87.0		1 1	:	١.,	ì		Ι.	! "	1:	•.•	!			1	- 1		•••	ì	,	١	17		1	1
í	· 1	- 1			1 1	1	1 1		•	١.	1:						) 1				ļ	ί	l	U		i :	l
ij	***	67.4			i :		72		'	١.	١.	•		41.0	1 :			٠,	••			!	l	i ł	•	!	1
٠!	****	**.*			٠,		**	**	•	١ ،	١.	٠.	1	*****	•		1 1	١	. ••		İ	i		1	•	١.	1
٠i	****	,,,,	47.1		1 1	1 12	••	••	•	•	! •	١.	•	,,,,,			1 1		••		l	1	ı		' '	١.	1
١ ١	****	**.*	44.1	165-			"	1 1	•	١.	١.	١,	i	10.01	. ••	•	100	•			1	1	1	i i	,	1.	ï
- (	***	\$4.1	*1.7	**	, (	.; 11	7.	••	•	٠	; ··	•	.,,,	****	•	1.11	100	••			<b>''</b> '	ł	1	1	١,	i ·	1
1	****	37.0	44.9	• 1	[**]	1: 1	**	**	٠				4.17	*-10	ុំ។	3.45	**	**	1.1	٠.٠	**	•,•	100	٠	١,	· •	'n
_!		44.4	14.1	L • <u>*</u>	99	-11	.,		٠		1	٠,		9,3	4		11	1	1,4	24.0		10,0	•	10	١,	1 .	ŀ
						_							,		٠,٠		34.	- •	10,0,		111			·			_

---

13

### CLIMATOLOGICAL SUMMARY

TEA:	21110	3 14, 5	· A					10	31	- 11	72			40" 1	ı.	н		75		w			,	170	PT.
		•		,,,,	****		• •				-	`				•••	****	n1418- 1	7.44		53			٠	_
		***			. * .				. "	,	(-i	•	!		Π				3000	ū,	••		1	ini.	
		1117	;			1		ž			2,2	5 2	;	1	3	11111	2	;	F. 177.14	3.5	35	3 5	7 2	,	
je.								: !				•	;	8.7.		1.11		+							
•••		***		1	٠.			٠.		,			*-**;	1.40	••	1.01	•• .	s; •.•		••	**.*				
•••	****	****		**	•••	•;	• •	10	•1	•	**	٠,	3.30	1.1.		1.4)	••	• • • •		ļ.	17.0	10 51	٠,	( •)	
<b>~•</b> }	**.*	*4.*	**.*	•1-	•••	*   *1	- 11	•	• 1	•	٠	•,	3.77	4.73	••	1.12	70		1	••	1.0				
•••	11.1	*1.8	**.*	***	, e	• •	70	١٠.	•į	•	٠	•	3-41	•,	••	3,30			!					( a)	
	**.*.	****	71.7	103	100 4	• : ••	74		•	•	٠	•;		10,73	٠,!	4.49	7.		i i		ı	Н	: •		
٠ :	****	**.1	**.1	181		3 31		•	•	·	٠	٠,	3.41	19.11	00	1,70	.,,	• .•		1		1	٠.	1 .	
··· ;	****	••••	**.*	***	***	e i •:	-1-1	m;	•	•	٠	•	3.01		30	9.51	, , ,		!	1	ĺ	1	; •		
*** '	**.*	37.4"	47,3		**	4; 30	••	•••		٠	•	1 4	9.31	4,00	••	7.47	.		:	t					
٠,	**.71	**.*,	**.*	••			•	44	•;	•		•			••	1.33			:	ı					
		35.7								•	٠	•	•.••	1,11	٠,	3.11	·	1	11.5	93	11.0	13 .	,		
41 :	**.*	12.1		. 1	٠. ا	٠, .	• [44]		٠.	!	11	. • .	3.41	•		4.40	les		47.1		17.4		١.		
n.,		**.*!	13.15		:::	١	_i*•	•	11	.:1	••	! . •.	******	17.75		•		, ,,,	47.1	:::	,,,			1.0	

RIDO	34AY	, PA						1 0 3 1		\$74			41. 2	ъ.	М		. 71	r 43.	w				13	50 F	7.
				16.00	****											****	#1141# ~ 1	OT - LD :	-04	<del></del> -		_			$\neg$
		211-5								201						T		540	- 11	117		٦	- T-	DAY	
ar min		* 100 m	1114	95019		1		1	3 3	500	33	31	Late had	2	TATAIN.			A MALEN	3	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3	-		200	8 e E X 8
144			43.4			• • • •					,	4.70	1,11			١	P 14.		1		†			<del></del>	긕
***	, ,,,,	19.0	14.6		ŧ i	:				١,,		4.11	-	! }				1	1 '	. 27.9 ( 21.9	1 1	"	•;	ij	•
~-	**.*	15.0°		7*	ļ.,	4.			ļ.	; <b>,</b> ,		3.44				**:1	1	•	١.,	1	1 1	J			.]
	10.0	**.*					-,**}	1 -	•		,	3.41	•	•••	1,**		sį 1.	, s.	٠, إ٠,			·!	•	•	
Post 1		**.*			1 !		1,1	1	i :	: :	1	••		1 1				١.	• ••	<u> </u>	••	•,	۱۰,	•	•
PLEA		13.7			i				١.		:		0.33	1 1		· .		÷	1			•	•	ij	4
***	**.1	11.6	44.1	***	•• •	,	Jona	٠! ،	٠.		•:		0,15				•	,	1	!	11	,	,		7
MPI :	****	**.*	- 1	!		, ,,		٠, ١	١.		} •	3.71	1.13	••	٠.٠٠	٠.,	• •	1	1		11	:	•		
ω :		****					111	•	•	į :,	٠.			1 1	>.16	,**;*	·	· .	•••	• • •	•	٠٠; ز٠٠	•	•	•
tec !	19.0	11.1			: 1		1 +	:		! "		2.11	9,47	i I				,	•			••	•	*	•
		ba.e!				··-	:-	·	1_*!	112	'. [	_ **. **;	10.44	1: l.		<u> </u>		1		1 11.0	•••		! !	_*	-

TAT	2 60	LLEG	K, PA		_		1		. 11	74			400	£6. 1	H		77	23.	w				117		7
:				I Las		<b>-1.</b> '1					7					P31' #		7 ALS 4.	J 70)		_				_
		*114			- 1 !!	* ( - ' '		1		5773				T		TT		9404	* 11.1	••		1	- FAN	H. 1	
~1H	9 ,	. ;	• 1	i 	•	•	•	1.5	**	•			٠.	•		; •		• • •			T	-!		-	:
	1	4	1	1	12.3		2:3			12.8 12.8 13.8		1	5.	3	1		. 5 i .	34	1	35	3	ē	1 i	*	
	34,1	19.9	11.1	•-	. 1	-10		, .		,,		1. H			1.49	·	1 10.7			10.0	١.,				_
:	****;	10.0	47.7	70	10-71	, j		•; •	•		٠, ١	2.00	•.•		1.47			,,,,	14	**.1					
٠,	••••	17.1	10.0	78.	40 14	·' •	47 6	٠! •		10.	•	3.30		إددا	1.00		,,,,			17.0		٠	•:		
i	10.7	11.1	**,1	94.	,•• `•	1 1 1	•••	٠, •	•	•	•	1. 11	9.5	·les!	1.31	200				9,4	j.,		•	٠į	
i	****	****		!	1 1		90 61		•	•	•	3. 14	*	199	1.46			.,	100		1	:	•	٠į	
!	****		• • • •	**	100		[••] I	1 4	٠	•	٠,		18.5	70	*-71	1		i	1		1	:	•	•]	
;		••.•	****			: **		•	•	٠	•	1.71		1 1				;	1		i!		7	•	
Į	****	****	**.					1 1	•	•	•;	4.11		1 1		ייוֹיייִ	i i	į	11		:		•	•	
1		31.0	47.1	.,	; •	:	او دد: روادو ^ا :	1 '					•••			1.	!	:			1	1	•	•	
į	••••	,,,,,	***	,,	1				1		٠,	3.40		,,		1	;		1		1.	í	•	•	į
. :		:	39.9						11				•.•	1 ,			i	; ** , **	1 .		1				1
	11,7	19.91	****	1 1 1 9	(*)							14.11				4.2					• • • •	L. 1	نــ	1	-
•					•		• • • • • • • • • • • • • • • • • • • •				•			1	'	1		1	1	:		1.1	<b>"</b> ";	. ••	١.,

14

### CLIMATOLOGICAL SUMMARY

STROUGSBURG, PA	1951 - 1974	41° 02° N	71' 11' W	480 FT.
	9 2 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	### 10   10   10   10   10   10   10   1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The bird stal stal is 137 5 -23	. 121 1 - 12 - 13 - 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TOWANDA I ESE, PA	1951 - 1974	41° 45° N	76" 25" W	745 77.
***************************************	,		h Ataram tiffat Sungary	
MANAX 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9-12-0-17-1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
27.0 37.1 27.3 70 10-10-23	11 1 1 1 1	* *.** *s *	11.0 10.0 11, 10.0	** ** * *
MA 16,2 38,0 07,8 07- 08 27 10 MAY 70.0 04,0 27,0 01- 02 18 20		3.37 9.44 57 1.47 6 3.43 1.44 52 2.16 2	1 1, 3.0 19.3 97, 4.0 5 7 14 1.7 99	
Fig. 05.0 57.7 70.0 1070 00 5 30		3.45 5.05 72 3.45 7 3.45 5.05 72 2.15 7	31, 10	
AU. 01.0 50.0 00.0 00 57 3 37 5427 20.0 00.0 02.2 101 33 2 23		0-10- 1-02-20- 2-10-0 0-00- 1-10-20- 2-10-2	11 .0	
10,7 31,1 40,2 77 30 1 6		3.45 1.34 65 3.45 5 3.46 4.48 72 3.76 5	- 4 4.0 11.7 90 49.9	
DEC 38.4 21.4 39.0 69 1401101-15	1.0 1.0 1.0 1.1.	100 100 10 100 2	<u>. 24                                   </u>	** * *
1240   00:0[ 27:0] 00:0  tot   121.23 -13	364.4751546.67		. 134 -1.04 00.04 00.04 12.04	14.00 19.00 M
WARREN, PA	1981 - 1974	415 \$17.77	, s - 63	1260 FT.
MA445   \$2130MeS			Sector States	MANAGE MAN
# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
20.0 20.0 27.0 .0.7 07 07 12 -17		2.24 2.16 23 1.56 5	) s0       40.21 <b>30.1</b> .04     17.0	44,81 A, 4, 4
	tealist of set of	3.10 2.33 24 3.39 4		
AND 19.0 25.0 07.0 50 00 10 10 AND 09.0 00.0 57.0 000 00 10 02		3.43 7.27 27 3.44,0 4.83 9.49,13 8.27,1	7 70	
				그 : 이 이 네
430. 43.0 20.0 10.0 27 33 27 19	11 0 1 0 0	8.60 Yess 35 3.65 8		
1071 7323 3020 0320 310 73 3 30 107 0420 0420 4420 00 11 2, 10	107,071 1 0 0 0		. 10 0.0 0.7	3 3 3
- 2007   10.0   21.0   10.1   27   25   8   B	91 21 0 0 12 0	2.41 2.11 11 1.41 1	0.0 20.0 2. 0.0	33 35 35
75Ab 93.0 37.0 40.3 40 10 10 10 10 10 10 10 10 10 10 10 10 10	100,00	9.45, 0.45, 5, 1.95 a	· · · · · · · · · · · · · · · · · · ·	1121 1 1
* ALDO CO: BABLES DATES	mid elected a	15	- 10. 23.71 33.31631 21.0	(2) 12 12 12 12 12 12 12 12 12 12 12 12 12

### CLIMATOLOGICAL SUMMARY

		2.34 L.O					_		."		- '-				35- :	3.5		<b>.</b> .			43.				_	_ ;·	
				1107	-			_	_					L,						117-10	41511	~:	·	_	_		
		~~~	:				•••		_!	-	121		·	, '	•	i į	. !	! {	- (		1	•:•	. 1		1	~14~	M-3 D473
 ! !	: 1		17.4	25.5	77	[4]	;;	111	ž		2	9	9 2	1	77.64	1111	11.12	114	3	-	A. C. C.	3	2000	Ī	į	1, 4	7
, ,		41.1	30.7	73	••	131	-10		,,,	•	•	7,	Γ.	3.50	•,	••	1.10	••	- j	1.1	14,4		20.0	••	,,	• 1	•
		22.0	13.0						- 1	•	٠	••	٠ ;	2.00		: 1			٠.	•.•	34.0	i !	\$0,0	•	٠	•	*
	62.0; 67.0]	30.0	11.1	•	1 '	٠ ،	-1-	٠ .	٠,	•				3.17		1 1			1	7.0	47,1					9; a1	,
•	****	••••	47.3	,,.		٠.,	24	••	c,	,	•	١.		,.,,	:	: 1	1		·			:		1			1
		67.6		, ; ;,	i.						•		1	}	i	: :	17.16	: :	- 1	•		1	. '	1	:	,	1
	.,,,	**.*		,,,,	١,			,	:			١,			14.31	: 1			i			П		П			1
7	٠٠.٠	**.*	**.*	***		, ;	**	٠٠,	•	٠	١.	١,	١.	3.17	,	٠,	3,33	••	•	.•		Н		l	. :		ž
•	••••	25.0			10	. 1				٠		ا :	1:	3.07	1	1	*.**	1	1		***	1 1		IJ	j	8	•
		11.4			!			, ,				; 60 20		ļ		1	1.17		1	7.4	17.0 28.9		17.0	L	[.		į
						,. <u>.</u> `		`- '	•				• -	•	*- - -						**,1		21.5	•			15

extroculation began

ALLENTOWN, PA	ALLEN'	TOWN-DETHLEHEN-EAST	OH AP EASTE	ERN 40° 39' N	75*	16. A	357 FT. 1	976
1000001		Newson - and					· · · ·	
In	tion to 'I	the species	bure to party					تت.
3 3 3 1 3 3 3 3			1; ,); ,				111111111111111111111111111111111111111	
	0 2 2 2 2 2 2 2 2 2		100 100 100 100 100 100 100 100 100 100		20 1030 0.0 20 1030 0.0 20 4031 0.0 20 4031 0.0 20 4031 0.0 20 4000 0.3 20 4000 0.3 20 4000 0.3 20 4000 0.3 20 4000 0.3 20 1030 0.3 10 1030 0.3 11 1030 0.3			1 19-9.9 1 29-9.9 1 29-9.9 1 19-9.9 1 19-9.9 1 19-9.9 1 19-9.9 1 19-9.9 1 19-9.9 1 19-9.9 1 19-9.9 1 19-9.9
TE 01.0 05.7 93.0 505 \$100 017 5051	,,,,, ,,,,		25 1 1 1 2 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2	ابه برایه ^{نیه} مرد د. در	. 27 1494 - 6.3	46 322 36 225 - 91 32	. 11. 14. 14. 14. 14.	1293.3

means and extreme above are free existing and comparable Elymenton. According to their extended or other extre in the locality or factors. According to their extremental extremental extrements and the second extremental ex

		1		••				- ;					~-							~	*, p-4	l	'	~-		1	e l									
			Γ	1.00			-	·~:					~		,	} ```	}		•	,,,	١,,			•	~	3		-		ا	111	,	<u> </u>	~	1 24	
, }	1,1	1	1	,	ji	,	J	j	}	1	,	};	?	111	,	11	,	11	,			1:		1	*ee	, o' e		3 3	i					11	1 21	31
•	+-	┧∸	Ti	Ť	i.				_	- 41		٦.		*		•	1	11	l i	- 1	11	31	1 1	71: 1	1	11	n	11	n 1	1 21	n	2,3	23	21 21	1	- 1
	:::;		1::	١ <u></u>	E : :		12:::	:		3:33																	:::		: :					1 !!		:
		1 34.4	1 70	2 ***					1.17	1:::	!:::	1:::		1:1:	100	1 12.			11:11				. 1					-1	٠.				-11			
		1 44.1	1 * 1	1447			2		3.54	7:11	l::::'	1:::	1100	1.11	1417			1:::	1	343		1::	;;;]	3;		•		4	:: <u>.</u> :	, ;;	•	. :	1	; ;		•
	1	1		•			1							1	1		1	٠.٠	1 1	٠٠ ^۱ ٠٠	31 92	9,0			11110		٠.,	٠,	ນໍ ເ	. 11			1	, ,		
	*1.						, ,,	111	8.41		!	1."	1457	. 3.15	31.0	1 ":"		1.			1	1::	1	30 1	4 1114	331	4.3.	÷į	13: 1	: ::		. :[- 1	: :	(i ii	•1
	1:::						1 141	';	1.11	4-14	• • •	į		1.11			1100	1.2.2		:::::	***	1.1	211				7.61	:	1 1	: :	:		- 11	: :		
	111.0							. :	1.11				1111	1:56	3113				1111	***	11 11	11.7		10.		31	٠.٠	•	•; i	1 1	• •	•}	"	. 11	· •	-1)

Busine, and Statement derive are from existing and perpentile sepectures. Someti extremes have been permised at other siting in the legiting as follows: Expend to be a supported by the following the following statement to the following the following statement of the following the following statement of the following the following statement of the following the following processing the following the following processing the following

[2] (profit of reard, point, through the correct payment profits that are referred for the laterill's ported, correct payment and the correct payment of the correct payment payment of the correct payment payment payment to the correct payment pay

form		1	*******	Arrent pat	~	117	~~~ ~ m
		torne man	Programme and a second		1000		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1 1	11, 11,	[]	111,11,11,		1111111111111		
1 · 17.0 11.1 • · 17.0 11.1 • · 17.0 11.1 • · 17.0 11.1 • · 17.0 11.1 • · 17.0 11.1	11 12 13 14 15 15 15 15 15 15 15		2.17 N. 61 1676 N. 61 1616 Z. 61 161 161 161 161 161 161 161 161 161	Fig. 1 11 1. 1. 1. 1. 1.	73 18.0 073 02 32 1010 10 72 1 230 32 22 22 107 11 18.0 001 32 10 100 13 11.0 010 02 11 100 13 10.0 010 02 11 100 10 0.0 0 010 101 101		1 2 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0 1001 0 2001 0 12 1001 0 1001 0 0 1002 1 1001 0 1002 1 1000 0 1001 1 7 1000		3 3.16 3 CO 4079 1.07 100 -10 1079				

nesse and propose show are from exercise and concerns to consider. Annal and new have been advanced at their sites to the law in a failure. Suppose the exercise at a section of this lever term time. It is farmer, 1976, when we mailty site explicitly 1976 and 1976

HARRISEURG, PA	CAPIT	AL CITY AIRPORT	EASTERN	10, 13, M	76' 51' W	333 FT. 1976
Townson of				***	!!	340 400 F 800
1 1						
	111 1.41 1			1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	
1 11 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1 1 1 1	1 1 1 1 1 1	الماد الباداء	1 - 100 11 - 1 - 100	line of me in the state of the state of

means and extremes there are from existing and comparable as wearse. Moved estimate have been extremed at ether exists in the jurisly as deliver. Lowert temperature -18 as Jensey (1), someon morally precipitation 2 (2) in Deciber 1224.

PHILADELPHIA PA	INTE	TROSTIC LANGEST	EASTERN 37 33'	N 75° 15' W	3 FT. 1976
formany **		Property of the			7 am am ==
				·	1
	[]				
	1			41, 41, 618 17 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

PITTEGURCH, PA	GREATE	. PITTEDURGH INTL	LP EASTERN	401 301 H	ED* 131 W	1137 FT. 11	976
1 forester "1		Pare - 170			11.,	~~~	
torse torse	1	*******	1 ! !	1111		111115	7
							<u> </u>
W 10.3 10.3 10.3 10.3 10.7 0.0 10.0 10.0 10.0 10.0 10.0 10.0	1100 1.39 0.1111 1	10 100 1	70 1000 10 1000 21.1 107 11 1000 10.1 1007 10 1007	17 1" 17 17 30 11 20 4 29 40 40 6" 12: " 050 40 4 21 10 43 6" 11:0 45 13 4 24 15 15 40 11:0 150 48 40 12 52 52 16: " 050 40 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
10 10 10 10 10 10 10 10	200 03 0.00 0 20 193 3.40 7 20 193 3.13 7 20 07 2.37 3	100 1.11 200 2.00 200			1 1000 01.0.0 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0		
0 01.3 13.4 13.3 17 1910 18 2019 0 01.3 13.5 01.3 17 1911 -1 3700 1 07.5 21.6 33.6 17 30.7 01 37.7 1 07.5 21.6 33.6 17 30.7 01 30.7		.ti 1800 8.10 Level 3.50 1850 1.37 1	21.2 1979 12.5 1979	75 52 75 6: 425 650 95 4 72 77 32 96 15:1 650 63 4 76 72 67 79 ,8:5 650 68 2 75 78 27 82 8.0 68 3	7 1000 32 1.3 2 23 3 1000 32 1.3 2 23		1 333

•	***	3UR	GH.	PA					F 1	1021	:AL	CUII	Land	C				C	AST	ERI	4	4	or I	7.	N		60	. 00.	w			747 7	٣.	1978	
			1		•				~	-				٠.							-				~			, ī		~					
	Γ			T	1	-		<u>ئ</u>	. 7	٠				-			:-,	-		•		.[.						,		-1.	11	Π		-	
}	5	,1	1);	,		,	1	!	1	1	1	11	· ;);	, ,	1	,	11		111	1:1	1		11	1,		1						11 3	
	1	1	ľ		•		Ċ	i .		· •	")	i	•		•	į .,		.,		i i	1				1	1	1-			•	17	4 4		
- :	1	13.5	1::::	1::	****		:::	133		· ;;;	1.11	} ;;;	1:::	.::	1.17	123	1 :::	11:5	117:5	1000	! [[11	I		1			136	:	
		101.0	1	1 43 .		1 40 1		104	.:	3.50	1:2	100	1.11	1 . 14	1.4	. ***	1 1.0	. 1746		1100							1	i						1	
			* *2.6	100	***			:		!:;;	1::	1 * * * *	1 4 . 1 1	4 + 1 *	1.20	. * * *	1 1.0		::							1	22	i	!				: : :		
	1	33.5	10.4	133	111	13		133	١.,		7.10	}:::	1::::	1:::	1:::	1114		4 1078	. 11.1		. ! !	1	;	;	Ì			į				11			
	l	١.	í	1 :		1			} '	i	1	١,,	1	٠,3	Ì	c:,	1	٠,		ļ,		i		li	1	1	.,	;			•	11.			

mean and extreme shows are free printing and ecountable ecountable accounts being a time been exceed as other after in the 10 to 10

WILLIAMSPORT, PA	שוננות יהססתד-נינסא	ho af eastern	41" 15" N	76' 35' W	524 FT. 1978
Section 19	and the same			11	
Server Street	up to 1 the species				
	1.1.1 1.11.				
		19 1400 1901 1800 25.1 1400 190 190 190 190 190 190 190 190 190 1	0 70-10 01 0.1 000 05 10,1071 0,71 17 01, 0.3 0 16- 3 1750 0,70 07 08 5.2 0 02 10 1010;	17.9 9 9 10 12 9 17 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	10 10 10 10 10 10 10 10 10 10 10 10 10 1
1000 1000 1000 1000 1000 1000		9	3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0

(a) Langth of record, padra, transport or collect garrier on linearly data.

강

SCHOOLS IN BUSINESS OF CHARACTER FOR THE PROPERTY OF CHARACTER'S CONTRACT OF CONTRACT OF CHARACTER CONTRACT OF CON

may mily mily mily (1985) 21 of the source thomaps. Mily mily 21th (270) is the more fit interests from mercens (2 more to the property of the source of the source of the day fit in the mily is the mily distinct programme from more marked and the mily mily of the mily distinct programme from more than a form mo

Local Climatological Data Stations Climatography of the U.S. No. 20 Stations

OF POOR QUALITY

omit to

Appendix IX

The Office for Remote Sensing of Earth Resources

•

THE OFFICE FOR REMOTE SENSING OF EARTH RESOURCES Institute for Research on Land and Water Resources The Pennsylvania State University

P. 4

The Office for Remote Sensing of Earth Resources (ORSER), is an interdisciplinary group, established in 1970 for the purpose of participating in projects involving the use of remotely-sensed data of earth resources. Investigators involved in ORSER research projects have been from the fields of agrenomy, anthropology, civil engineering, computer science, electrical engineering, forestry, geology, geophysics, hydrology, meteorology, plant pathology, pattern recognition, regional planning, and soils. A problems-oriented, rather than a discipline-oriented, approach is taken in the completion of tasks, in order that associates from various disciplines may work together toward a common goal.

ORSER has directed most of its efforts toward processing, analysis, and interpretation of multispectral remotely-sensed data, most of which have been supplied by NASA in both imagery and digital format. Photo-interpretation has been a vital part of the overall analytical process, but emphasis has been on the use of digital computer algorithms for data processing. The end product of a project is typically a computer map showing various environmental and land use characteristics of data points in the analyzed scenes.

Using the IBM 370/3033 Processor at the University Computation Center, ORSER has developed an extensive digital data processing system, employing FORTRAN IV source language, remote job entry (RJE), and an interactive management and editing system (INTERACT). Statistical information, pattern recognition routines, and a variety of analyses of remotely-sensed data can be produced. Portability and computation cost efficiency have been emphasized throughout.

The ORSER facilities include a Ramtek color TV display system and a Tektronix 4010 remote graphic terminal with associated cathode ray tube (CRT) display, hard copy unit, and digitizing graphic tablet. Three additional terminals (one portable) are available, as well as a complete Datacolor image enhancement system. The laboratory also includes a Map-o-Graph unit and a Bausch and Lomb Zoom transferscope, along with Zoom 70 and 95R stereoscope systems, a microfilm reader, a Diazo printer and developer, and a variety of portable stereoscopes and light tables. All staff members have access to a Saltzman projector in the Department of Geosciences and a completely equipped photogrammetry and photointerpretation laboratory, including a Kelsh plotter, in the Department of Civil Engineering.

From 1972 through 1975, ORSER interpreted MSS data from ERTS-1 (now Landsat-1), on a NASA-funded project. The general objectives were to ascertain the usefulness of these data, to develop interpretation techniques, to apply remote sensing techniques to regional resource management problems, to provide student training in remote sensing, and to evaluate the effectiveness of interdisciplinary research and university-industry related research. Specific objectives were met in the fields of digital processing and pattern recognition, inventory of natural resources and land use, geology and hydrology, and environmental quality.

Since 1973, the data processing system developed during the course of the above project, has been continually refined and expanded. Recent developments include the capability to handle entire Landsat scenes and to merge these scenes with a variety of ancillary data. With the system implemented on the IBM 370/3033, NASA's Goddard Space Flight Center and other users as far away as California have access by long-distance telephone lines to a sophisticated data analysis package for generating thematic maps suitable for a large variety of applications.

To assist these users, ORSER has conducted several short courses in remote sensing techniques. One of these, for planners from cities across the United States, was sponsored by Goddard Space Flight Center. Several course participants have since obtained terminals of their own in order to use the ORSER system to assist them with planning and mapping problems. Follow-up courses have been periodically held at Goddard Space Flight Center, providing further information in the use of remote sensing technology as well as giving users the opportunity to share methods they had developed while applying the ORSER system to their individual planning problems.

The various thematic maps which can be generated from Landsat, Skylab, and aircraft data using the ORSER system have both general and specific uses. For example, 17 watersheds were mapped for the Susquehanna River Basin Commission. These maps showed generalized categories of land use and were designed to assist in predicting the extent and quality of rumoff from drainage basins. Projects involving the generation of maps on specific themes have included mapping of saline seeps in Montana and strip mines in Pennsylvania. A current project, funded in part by the Pennsylvania Department of Environmental Resources, is aimed towards mapping gypsy moth damage from Landsat data and incorporating ancillary geographic and related data, with a view toward creating a comprehensive data base for Pennsylvania.

The system has been used with aircraft scanner digital data to map floodplains, housing developments, power plants, and other small scale features. Funding for these and other projects has come from a variety of sources, including NASA, the U.S. Army Corps of Engineers, several regional planning commissions, and assorted private corporations. Aerial photographs have been digitized to develop an automatic system for photoanalysis of specific features. One such project, conducted in cooperation with the Department of Anthropology at Penn State and the Environmental Remote Sensing Center at the University of Wisconsin, involved digitization and analysis of photographs from Central Mexico. Soil tones and related features were mapped to trace ancient canals and settlements near Mexico City. Current projects involve Heat Capacity Mapping Mission (HCMM) and Seasat data.

The ORSER software is frequently sold for implementation at other locations. This has been done for universities and private corporations in the United States, as well as for several foreign agencies, such as EURATOM (an interdisciplinary working group in the European Common Market), the Indian Institute of Technology, the Norwegian Water Resources and Electricity Board, and the Geographic Institute of the University of

EN83 35455

Appendix 2a

MSU Test of P-Model

C-21

Table 2 is a copy of the output of P-model evaluation (JDAY 126 = Oct. 6-7). Period denotes the length of the prediction. The column headed by PRED is the actual prediction of the 1.5m air temperature. The OBSVD column is the observed value and the error is the difference between the observed and the predicted value with a positive value indicating a high prediction.

Table 3 contains a histogram indicating the nature of the distribution of the error about the mean error. The statistics of the analysis of the errors follows in that table.

Figure 1 presents the analysis graphically.

The following items were prepared by Mr. Robert Dillon,
Programmer I, IFAS/Climatology from information he received by phone
from one of Dr. Stewart Gage's technicians on October 1, 1981 (see
Table 1). Mr. Dillon ran the key station data from MSU through
the P-model to obtain these results.

TABLE 1

KEYSITE	<i>#</i> 1	(THL) J	ULIAN	DAY:	126 YEA	R: 1981	ł			
		10CM	50CM	1.5M	3.0M	9.0M	DEW	WIND	WIND	NET	REF
TIME	SOIL	SOIL	SOIL	AIR	AIR	AIR	POINT	SPEED	DIRCT	RADTN	VOLTG
18.0	0.0	0.0	0.0	50.5	51.0	0.0	0.0	0.0	0.0	078	0.000
19.0	0.0	0.0	0.0	48.7	47.9	0.0	0.0	0.0	0.0	078	0.000
20.0	0.0	0.0	0.0	44.8	43.0	0.0	0.0	0.0	0.0	078	0.000
21.0	0.0	0.0	0.0	41.5	40.7	0.0	0.0	0.0	0.0	078	0.000
22.0	0.0	0.0	0.0	39.7	38.6	0.0	0.0	0.0	0.0	078	0.000
23.0	0.0	0.0	0.0	36.1	34.9	0.0	0.0	0.0	0.0	078	0.000
0.0	0.0	0.0	0.0	33.3	33.1	0.0	0.0	0.0	0.0	078	0.000
1.0	0.0	0.0	0.0	33.9	32.7	0.0	0.0	0.0	0.0	078	0.000
2.0	0.0	0.0	0.0	33.1	31.6	0.0	0.0	0.0	0.0	078	0.000
3.0	0.0	0.0	0.0	31.8	30.8	0.0	0.0	0.0	0.0	078	0.000
4.0	0.0	0.0	0.0	30.4	29.7	0.0	0.0	0.0	0.0	078	0.000
5.0	0.0	0.0	0.0	29.4	29.8	0.0	0.0	0.0	0.0	078	0.000
6.0	0.0	0.0	0.0	29.4	31.0	0.0	0.0	0.0	0.0	078	0.000
7.0	0.0	0.0	0.0	36.6	39.0	0.0	0.0	0.0	0.0	078	0.000

Table 1. Data received from MSU in appropriate format for input to P-Model. 0.0 indicates missing data.

Table 2. Copy of output from P-model run indicating the detail of each of the 55 error calculations.

YEAR	JDAY	STATION	HOUR	PERIOD	PRED	OBSVD	ERROR
1981	126	MICHIGAN	2100	i	42.9	41.5	1.4
1981	126	MICHIGAN	5500	. 2	41.3	39.6	1.7
1981	126	MICHIGAN	2300	3	39. 9	36.0	3.9
1981	126	MICHIGAN	0	4	38.6	33.2	5.4
1981	126	MICHIGAN	1.00	5	37.4	33.8	3.6
1981	126	MICHIGAN	200	6	36.3	33.0	3.3
1981	126	MICHIGAN	300	7	35. 3	31.7	3.6
1981	126	MICHIGAN	400	8	34.3	30.3	4.0
1981	i26	MICHIGAN	500	9	33.4	29.3	4.0
1981	126	MICHIGAN	600	10	32.5	29.3	3.1
1981	126	MICHIGAN	2200	í	39.1	39.6	5
1981	126	MICHIGAN	2300	2	37.3	36.0	1.2
1981	126	MICHIGAN	0	3	35.6	33,2	2.4
1981	126	MICHIGAN	100	4	34.1	33.8	, 3
1981	126	MICHIGAN	200	5	32.8	33.0	- 2
1981	126	MICHIGAN	300	6	31.5	31.7	-,2
1981	126	MICHIGAN	400	7	30.3	30.3	. 0
1981	126	MICHIGAN	500	8	29.2	29.3	-,1
1981	126	MICHIGAN	600	9	28.2	29.3	-1.2
1981	126		2300	i	37.4	36.0	1.4
1981	126	MICHIGAN	0	ż	35.7	33,2	2.5
1981	126	MICHIGAN	1.00	3	34.1	33.8	.3
1981	126	MICHIGAN	200	4	32.7	33.0	3
1981	126	MICHIGAN	300	5	31.5	31.7	-,2
		MICHIGAN		6	30.3	30.3	
1981	126	MICHIGAN	400 500	7	29.2	29.3	. 0 , <u>1</u> .
1981 1981	126 126	MICHIGAN	600	ŕ F	28.2	29.3	-1.1
		MICHIGAN	000	1	34.0	33.2	. 8
1981	126	MICHIGAN		5	34.0		-1.4
1981	126	MICHIGAN	100			33.8	
1981	126	MICHIGAN	200	3	31.0	33.0	-2.0
1981	126	MICHIGAN	300	4	29.7	31.7	-2.0
1981	126	MICHIGAN	400	5	28.4	30.3	-1.9
1981	126	MICHIGAN	50 0	6	27.2	29.3	-2.1
1981	126	MICHIGAN	600	7	26.0	29.3	-3.3
1981	126	MICHIGAN		1	30.9	33.8	-2.9
1981	126	MICHIGAN	200	2	29.2	33.0	-3.8
1931	126	MICHIGAN	300	3	27.6	31.7	-4.1
1981	126	MICHIGAN	400	4	26.1	30.3	-4.2
1981	126	MICHIGAN	500	5	24.7	29.3	-4.7
1981	126	MICHIGAN	600	6	23.3	29.3	-6.1
1981	126	MICHIGAN	200	í	32.5	33.0	5
1981	126	MICHIGAN	300	2	31,5	31.7	, 2
198i	126	MICHIGAN	400	3	30.6	30.3	, 3
1981	126	MICHIGAN	500	4	29.8	29.3	. 4
1981	126	MICHIGAN	60 0	5	29.0	29.3	3
1981	126	MICHIGAN	300	ì	32.0	31.7	. 3
1981	126	MICHIGAN	400	2	31.5	30.3	1.1
1981	126	MICHIGAN;	500	3	30.9	29.3	1.6
1981	126	MICHIGAN	600	4	30.4	29.3	10
1981	126	MICHIGAN	400	1	30.2	30.3	1
1981	126	MICHIGAN	500	2	29.2	29.3	1.
1981	126	MICHIGAN	600	3	28.3	29.3	-i,0
1991	126	MICHTGAN	500	1	28.6	29.3	, (3
1981	126	MICHIGAN	$\epsilon_{0}00$	2	27.4	29.3	-1,9
1981	126	MICHIGAN	600	1.	27.7	29.3	-1.7

Table 3.

PMODL ERROR HISTOGRAM (DEGREES FAHRENHEIT)

POPULATION = 55

MEAN ERROR = -.024

STND. DEV. = 2.374

Table 3. Statistics from P-model analyses, MSU test, May 6-7, 1981.

Figure 1. Results of P-model run on data submitted by the Michigan subcontractor. The thicker trace follows the 1.5 meter air temperature at the site while the thin lines trace out the P-model predictions for the remainder of the night beginning at the hour that they depart from the thicker (observed) trace. The vertical line at 6AM marks the point at which the analysis of the P-model performance was stopped because it is obvious the sun came up prior to the 0700 observations.

APPENDIX 2 B

 ${\tt M} {\tt S} {\tt U}$

Michigan State University
Report

APPENDIX 3

Temperature Distribution accross Nittany Valley,
Pennsylvania, during Three Typical Spring Frosts.

J. David Martsolf

Reprinted from <u>Science in Agriculture</u> 18(2):2-3

Penn. Stat Agr. Expr. Station, 1971.

FIGURE 1. Four thermistors mounted in tandem on a vehicle fender. From left to right, an uncoated disc, an epoxy-coated bead, a bead set in a stainless steel cylinder, and a small uncoated thermistor.

FIGURE 3. The meter of a thermistor thermometer is temporarily mounted on the glove compartment lid with an extension of the vehicle's instrument lighting system in front of the meter for a light. It is advisable to have either a tape recorder or a passenger to record the observations.

Thermistor thermometer useful horticultural tool

J. David Martsolf, Associate Professor of Agricultural Climatology

The thermistor thermometer has been found to be a useful tool in at least three horticultural production practices: (1) site selection, (2) sensing temperature inversion strengths and (3) sensing fruit-blossom temperatures. A thermistor is a temperature-sensitive resistor, a few are pictured in Figure 1. The resistance to current flow decreases as the temperature of the thermistor increases. The relatively small size of the thermistor minimizes disruption of the environment by its presence.

The best method of frost protection is undoubtedly good site selection. Traverses of the Nittany Valley in Central Pennsylvania using thermistor ther-

FIGURE 2. Temperatures observed on three radiant frost nights, near dawn, indicating very similar patterns, from where Route 322 crosses Bald Eagle Mountain to where Route 26 crosses Mount Tussey through Nittany Valley near State College. Thermal belts along the slopes are outstanding features quite important in site selection.

mometers have revealed that up to 18° Fahrenheit differences in temperatures occur between the warmest and coldest locations in the valley of typical radiation frost nights near dawn. The mean increase in temperature with elevation of the site above the floor of the cold air drainage basin was 3.4° F. per 100 feet of elevation. Thermal belts on the slopes of ridges and knolls are readily mapped by this technique, Figure 2. The same instruments have sensed temperature inversion strengths between 5 feet and 50 feet heights in local orchards to be on the order of 6° to 8° F. in the early morning with rapid decay as dawn approaches.

Air temperature in the close vicinity of fruit-tree blossoms has been sensed easily and compared with more conventional observations using liquid-in-glass thermometers mounted in nearby shelters. In large mature trees the air temperatures up near the blossoms were found to be 1° to 2° F. warmer than the shelter temperatures at the time the de-

cisions were being made to light heaters. This knowledge resulted in both a saving of the crop and fuel oil.

Thermistors help in site selection—The thermistor thermometer, mounted on a vehicle, provides a technique of sensing temperature differences between potential horticultural sites by direct comparison. Figures 1 and 3 indicate a method of using a thermistor thermometer on a vehicle to measure air temperature. The readings are made while the vehicle is in forward motion to avoid sensing the heat from the vehicle's engine. Such observations express the average temperature of a column of air through which the vehicle has just moved, even more desirable information than that from a thermometer in one location.

To make comparisons between two horticultural sites, having one of known productivity and one of undetermined frost hazard, begin at one site and go to the other and then return to the first. Assume that the temperature at the first site was changing at a constant rate

FIGURE 4. A 50 foot tower for monitoring temperature inversion, showing the vehicle at the base of the tower where wires connected to thermistors on the tower are momentarily plugged into a meter in the vehicle to sense air temperatures at various levels on the tower. With practice, the observer can make his notations and drive away from the tower before the effect of the vehicle on temperature readings becomes noticeable.

and was probably at the mean of the two observations at the time the observation at the second site was being made. This is a defendable assumption near dawn of radiant frost nights, the time of interest, since the temperature change with time is both small and predictable.

Thermistors gauge temperature inversion strengths-The difference in air temperature between a reference height near the ground, say at 5 feet, and a warmer location well above the ground, possibly at 50 feet, is termed inversion strength. Knowledge of this inversion strength is necessary to predict realistically the possible effects of various frost protection methods at the disposal of growers. In general, the greater the inversion strength, the greater the possibility of the grower modifying blossom temperatures with heating devices, wind machines, or a combination of the two. Figure 4 illustrates a method of using a meter mounted in a vehicle to quickly read thermistors mounted on a stationary inversion tower located in an orFIGURE 5. An idealized diagram showing the decrease in blossom temperature with time on a typical radiant frost night. (1) The trend from time A to time B will erroneously predict that the critical temperature of the blossom will be reached at time C. (2) The goal of the protection plan is to modify the blossom temperature so that it follows the dashed line from time D until sunrise rather than falling below the critical temperature at time E. (3) The minimum value of frost protection required is the number of degrees indicated by the doubleheaded arrow.

chard. An alternative method is to place the inexpensive tower out of the traffic pattern of the row by running it up through a tree. In this case the distribution of temperature within the tree is more directly indicated. The studies indicated that a 6° to 8° F. inversion strength is typical in the University orchard location near the time when firing would begin. Inversions of less than 2° or more than 10° were rare.

Blossom temperature estimator unique application—Quite typically the grower uses liquid-in-glass thermometers to calibrate temperatures. The success of this method rests on the grower's ability to decide when his blossoms are in danger of being damaged, using knowledge of the air temperature some 5 feet above the ground. The thermistor thermometer offers a more direct solution to the problem by placing the sensor in the immediate vicinity of the blossoms to increase the possibility that a good estimate of their temperature is obtained. Figure 5 describes the decision-making

process diagramatically.

Small bead thermistors were intertwined with the blossoms of large apple, peach, and cherry trees in the University orchards during the past two frost seasons. Several observations indicated that blossom temperatures were most often from 1° to 2° F. above the sheltered liquid-in-glass thermometers nearby. No thermistor readings were lower than thermometer readings and none were over 5° higher. The additional information resulted in delaying the lighting of fires several times. This resulted in no further crop loss but a definite savings in fuel. The thermistor thermometer promises to take some of the guess work out of decisions regarding lighting of orchard heaters.

Experiences with both "homemade" and several commercially produced thermistor thermometers have unfolded knowledge of some sources as well as some characteristics of the instruments. The author will be happy to share this knowledge upon request.

APPENDIX 4

A SATELLITE FROST FORECASTING SYSTEM FOR FLORIDA

Presented to:

The Workshop on Applications of Weather Data to Agriculture and Forest Production $_{\rm l}$

Anaheim, CA March 30-31, 1981

¹Funded by: National Science Foundation Sponsored by: American Meteorological Society

A SATELLITE FROST FORECASTING SYSTEM

FOR FLORIDA

J. David Martsolf
Department of Fruit Crops,
Institute of Food and Agricultural Science
University of Florida

INTRODUCTION

The first of two minicomputers that are the main components of the Satellite Frost Forecast System (SFFS) was delivered in July of 1977 (Bartholic, 1977). SFFS has evolved appreciably since then (Woods, 1977; Sutherland and Bartholic, 1977; Bartholic and Sutherland, 1978; Woods, 1979; Sutherland, et al., 1979; Martsolf, 1979, 1980a,b,c,d; Gaby, 1980; Sutherland, 1980; Barnett, et al., 1980). A geostationary operational environmental satellite (GOES) system provides the satellite data [SMS-2 (synchronous meteorological satellite) a prototype for the GOES-became the operational 'east bird' at 75 W in April of 1980; Schnapf, 1980]. This past frost season, 80-81, marked the fourth winter in the development of SFFS. The freeze of January 12-14, 1981, was documented by the system and increasing interest in potential of such systems (Brandli, 1981). Two major changes took place during these four years . of development. One is that the satellite data is now acquired digitally (from NOAA/NWS in Suitland, ND; see fig. 1), rather than by redigitizing the GOES-Tap transmissions. Secondly, the data acquisition has been automated, i.e. the computers are programmed to operate the system with little, if any, operator intervention.

THE CURRENT SYSTEM

1. Computers

Figure 1 describes SFFS in block diagram as it was operated during the 1980-81 frost season. The system is operated by one of two minicomputers which acquires the data necessary to form the SFFS products automatically. A NASA-owned computer located at the NOAA/NWS Weather Forecast Office (WFO) at Ruskin, Florida, served as the main computer

Fig. 1. Block diagram of SFFS indicating satellite digital data acquisition by phone link with NOAA/NWS-NESS in Suitland and links with 10 automated weather stations in Florida, the two computers linked by DS/1000 (a distributed system) that automate the acquisitions and process the data into products for forecasters at Ruskin, FL and for other users through Agriculture Extension offices.

with a similar machine located in the Climatology Laboratory of the Fruit Crops Department, IFAS, University of Florida, Gainesville, Florida, serving as a back-up machine.

The minicomputers are Hewlett-Packards (HP Series 1000) having RTE-IVB operating systems, and connected as a distributed system (DS/1000). The Ruskin machine is a model 2112 with 192 Kbytes of memory and accessing a 15 Mbyte disc (EP Mdl. 7905). The Gainesville machine is a model 2113 with 256 Kbytes of memory and accessing 2 each 5 Mbyte discs (HP mdl. 7900) with a third to be added in the near future. Both systems are controlled through CRT terminals (HP 2645A's) and store data on magnetic tape (300 BPI, HP Mdl 7970B). The major products are displayed on 15 inch Conrac Red-Green-Blue (RGB) Monitors, i.e. color TV displays. Automated use of telephone connections, both 300 and 1200 Baud is accomplished through a Vadic multiple chassis housing both auto-dialers and modems (Mdls 801, 305, 3415).

2. Satellite Data Link

Initially, GOESTAP analog data arriving at Ruskin WFO via Miami was redigitized to provide the satellite data input to SFFS, but planning to obtain the digital data was in progress during the first year of development (Bartholic, 1977).

During the third frost season, the development of special driver made computer-to-computer communication between the SFFS HP's and NOAA/NWS's IBM's possible. SFFS auto dials a Vadic 3467 modem at NOAA/NWS (supplied by SFFS at first but now by NWS) in Suitland. Upon connection the computer interrogates a particular storage queue ned by Mr. Arthur Bedient, Chief, Automation Div., assigned by Mr. NOAA/NWS. Previous to this step an NWS batch-mode program must have interrogated a large disc file (4 ea Mbyte discs) known as the VISSR Data Base (VDB; VISSR = Visible Infrared Spin-Scan Radiometer) via an IBM 360/195 (NOAA uses 2 with a third as a back-up) to select the Florida sector from the entire hemisphere of infrared data and pass it into SFFS's queue. The VDB must contain the particular VISSR data for the hour in question for the NWS program to be successful.

The VD3 is filled by a batch-mode program on the IBM 360 that passes the satellite data from 22 Mbyte staging disks located in Wing 1 of FO3-4 near the 7-m dish antennae. Collecting the stretched VISSR data by antenna and processing it into the VDB are operations under NOAA/NESS jurisdiction (Waters and Green, 1979). Building the output

queues for clients such as SFFS, i.e. the Florida Sector, is a responsibility of NOAA/NWS. During the 1980-81 frost season the staging disks sustained head crashes during a period when GTE was on strike and the VDB had to be filled by manually transferring 9-track 1600 BPI magnetic tapes from the VISSR Ingest Computers (GTE IS1000's) to transports serving the IBM 360's. Therefore, during the 80-81 frost season SFFS was successful in acquiring the sectorized satellite data in only 63% of its attempts. When the data were acquired, it was often 4 to 6 hours delayed during the early evening when the system is dependent on timely data to make convincing forecasts. Since the staging disks have been repaired and the data are transferred automatically (but by batch-processing) to the VDB, the reliability of map presence has not greatly increased nor has the delay decreased. Consequently, direct access to the satellite has been investigated. Sufficient insight was developed to suggest that the reception of the stretched VISSR data by large numbers of users was the dissemination method envisioned by the satellite's designers. Progress toward the procurement of an antenna system will be reported under a later section.

3. Automated Weather Stations

Initially these ground stations were manned by volunteers (in most cases). There were a dozen key stations selected to represent peninsular Florida in locations in which volunteers could be obtained to read and report the sensings. At the beginning of the third frost season 10 remaining stations were automated by the addition of microprocessors manufactured by Darcom.

The microprocessor controlled data acquisition systems that automate the key stations are Darcom model D303's. They are capable of interrogating up to 8 analog channels and totalizing on 2 additional six-digit electronic These pulse counters can be remotely set to counters. average the inputs over 7.5, 15, 30, or 60 minute intervals. They can be programmed to reveal the total as well as the rate over the selected time interval. These units were designed for, and have been extensively used by, gas line companies to monitor flow through pipelines by telephone. They have a built-in modem that for its cost handles the telephone communications very well. The Darcom Remote Terminal Units (RTU), as they are termed, are used at the key stations to accumulate counts from light chopper anemometers, and to scan 6 levels of thermistor sensed temperatures, a net pyrradiometer, and a reference voltage (see fig. 2).

Fig. 2. Diagram of SFFS showing data acquisition links and featuring details of automated link with 10 surface weather stations at scattered over peninsular Florida.

Table 1. List of key stations serving SFFS indicating their location and affiliation.

No.	Station	Location	Affiliation
1	Tallahassee	Airport	NWS
2	Jacksonville	Airport	NWS
. 3	Gainesville	Horticultural Unit 5 miles NW of Gainesville	IFAS/Fruit Crops
4	Tavares	Agr. Extension Center Rural, SW of Tavares	IFAS/Extension
· 5	Ruskin	Site of	NWS
6	Arcadia	Radio Station	Private
. 7	West Palm Beac	h. Airport	NWS
8	Belleglade	Branch Experiment Station	IFAS/AEC
9	Immokalee	Branch Experiment Station	IFAS/AEC
10 :	Homestead	Branch Experiment Station	IFAS/AEC

During a frost night they are scanned once per hour by one of the SFFS HP's by a fairly elaborate software package that checks to see if the station has been successfully interrogated. If not the computers tries to call the key station several additional times (a variable set by the operator) and then if unsuccessful, uses a substitution table or prearranged calculation to substitute information, while leaving a message for the operation that such a substitution has been necessary. This past frost season the key station data was acquired on 95% of the tries with most of the failures caused by chance phone line routing that resulted in very noisy lines. Regular voice grade lines are employed for these interrogations.

Seven phone companies are involved in providing the service. While these companies are required by law to provide similar service from place to place, experience with troubleshooting problems has revealed a variety of attitudes and policies regarding such service. For example, a problem developed when the Ruskin system began to interrogate the key stations (the Gainesville system had handled them during the development stage). Apparently, problems with crank calls in the Tampa Bay area had caused the phone company to hold lines open when one party hung up while the other held long enough for a trace. The procedure treated our Darcoms as a crank caller and prevented the system from completing additional calls until the rather long timeout occurred. software change in our procedure corrected the relatively easily after it was isolated. But tracing problems through phone companies can not only be time consuming but quite frustrating.

Figure 2 diagrams the instrumentation on the key stations, the microprocessor controlled data acquisition system automating the station and the accuisition links that the SFFS uses to acquire the ground weather data and the satellite data used to construct the output products.

ORIGINAL PAGE IS OF POON QUALITY

the key stations used thermocouples Initially, (copper-constantan for temperature measurement) but when they were automated in 1979, a switch to locally available thermistors (Atkins Technical, Gainesville, FL; Type 3) was To reduce cost, the bare thermistor beads were made. purchased and encased in epoxy. In 1980 the procedure was modified to increase the time constant of the sensor and its spatial integrating character by potting it in a 3.2 in length, 1/4 in diameter copper tube. The air temperature probes (3 each at 1.5m, 3.0m and 9.0m) are shielded by circular painted plywood shields (5in. dia., 1/4 in. thick) on both top and bottom. The sensor and the shields are horizontal with about 1.2 inch clearance between the shields natural airflow aspirates the copper-clad where the thermistor sensor. The same sensor configuration is used for 3 ea soil temperature measurements (surface, 10cm and 50cm in depth) except that three sensors are connected in series and enclosed in a 10 inch long copper tube to provide better spatial integration. The location of these thermistor sensors is indicated in Figure 2 but the indication of a bead thermocouple junction is an unfortunate carryover in the diagram from the first two years of SFFS operation when the manually operated key stations utilized thermocouples. Please recall that these stations are designed to operate at night only. Their purpose is more to demonstrate the procedure than to be accepted as a solution to an automated weather station for multiple uses.

The anemometer at each key station is 10 meters high. It is a Gill 3-cup light-chopper anemometer (Model 12202D, R. M. Young) which has been modified to avoid spurious counts from light scattered around the shutter and to effect a more reliable interface with the Darcom counting circuitry. Major changes involve the substitution of a GE silicon/Darlington Photo detector (Type L- 14-F1) and a IR Emitter (Type LED-55B). Currently the averaging period for the wind data is one hour but the Darcom has options for shorter periods. A shorter period is likely to be utilized in the future.

The measurement of net radiation at the key stations remains a troublesome problem. Early in the development of the key stations, shielded net pyrradiometers (Swissteco's) were used at 4 of the key stations. Covers (removable shields) were used to protect the polyethylene domes during non-frost periods but the need to manually remove and replace these was inconsistent with the automated concept. Properly maintained, the Swissteco's are excellent instruments but without such maintenance their outputs are less convincing. This past season an attempt was made to

substitute ventilated net pyrradiometers that were on hand but in need of refurbishment. Delays and errors in the refurbishment process by the current vendor of Gier-Dunkle type ventilated net radiometer precluded their use during the frost season. Tests with the delayed instruments have resulted in their return to the factory. the ventilated net radiometers fail to sufficiently reliable sensings of the net radiant loss from the surface, there are several contingency plans under consideration. Several involve the development of a simple sensor that will in effect detect the presence of clouds or very moist atmospheric conditions. Others involve the use of the infrared satellite data.

4. System Products

The primary product of SFPS are a series of color-coded maps, often termed thermal maps, displayed on the Conrac color monitors located in Gainesville (the development system) and in Ruskin (the operational system). products fall into two categories: observed maps and predicted maps. A scheduling program provides the operator with an opportunity to exercise options by modifying instructions when initiating SFFS operation. Once started (scheduled) SFFS operates on previous instructions, unless there are changes. Normally, one observed map and three predicted maps are displayed as the generating programs complete their construction during each hour of the system's operation. The scheduling program looks in an answer file for its instructions concerning the options. For example, the rather broad range of temperatures from 13 F to 50 F is often chosen for the initial thermal map display to assure complete coverage of the data. The operator then has the opportunity to request the system to refine the temperature resolution of the display by requesting a narrower temperature range.

In addition to flexibility in the temperature range per color, the operator has options in the type of presentation, e.g. split screen permitting comparison of two thermal maps side by side, or the enlargement of a particular portion of the screen (see figures 3 and 4). With a little practice the user can slice the temperature range into appropriate increments that reveal isotherms of temperatures near critical values in the forecast or for plant damage.

The big freeze of January 13-14, 1981, revealed that secondary products from the system were also in demand. Figure 5 is a copy of the printout of the so-called "symbols map." A translation table has been added that permits the

Fig. 3. Black-and-white print of the color-coded thermal map that is the prinary product of SFFS. This view demonstrates the enlargement capability available to the operator through which he is able to control both the size of the box (multiplication factor) and its location on the peninsula.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Fig. 4. Black-and-white representation of the color SFFS product demonstrating the split screen option. The operator may bring up for comparison any previously archived map for a side-by-side view of the thermal pattern similarity.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Fig. 5. A reduction (size) of the symbols map; a product of SFFS that become popular just after the big freeze (see date/time on map). The translation table on left margin permits the user to determine the temperature of any 5 km. by 5 km. pixel of interest. Users found this product much easier to archive than the color product viewed on a TV screen. Such maps were communicated from APPLE II to APPLE II for display in color.

Table 2. Printout of SFFS key station data for 1.5m air temperature for the indicated dates.

JAN. 12-13, 1981
1.5m air temperature (rounded to nearest degree F)

	18	19	20	21	22	23	00	01	02	03	04	05	06 0	17
Tallahassee Jacksonville Gainesville Tavares Ruskin Arcadia West Palm Beach Belle Glade Immokalee	28 27 30 37 38 33 42 40	26 24 26 35 36 30 41 39	24 17 20 32 36 28 38 37	18 20 19 23 34 27 36 37	14 18 18 23 32 22 35	13 13 16 27 30 19 34 36	16 16 14 18 28 18 34 35	14 15 14 28 27 18 34 35	11 13 13 17 26 16 33 35	10 9 12 22 24 18 32 34	10 13 11 21 22 16 31 34	8 13 10 14 21 18 30 33	7 11 1 10 15 1 21 2 17 1 30 3 33 3	7 L1 9 L8 20 17 30
Homestead	40	38	39	38	36	35	33	31	31	31	29	29	29 2	29

JAN. 13-14, 1981
1.5m air temperature (rounded to nearest degree F)

Tallahassee Jacksonville Gainesville Tavares Ruskin Arcadia West Palm Beach Belle Glade Immokalee 44 45 34 22 27 25 22 23 23 28 32 34 37 32 28 29 29 29 29 28 27 28 29 29 29 29 29 28 27 28 29 29 29 29 29 29 29 29 28 27 28 29 29 29 29 29 29 29 29 29 29 28 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29		18	19	20	21	22	23	00	01	02	03	04	05	06 0	17
Homestead 44 39 41 42 41 41 40 40 40 38 39 36 39 40	Jacksonville Gainesville Tavares Ruskin Arcadia West Palm Beach Belle Glade Immokalee	39 38 34 39 39 47 41 42	30 35 33 35 41 47 38 37	30 33 37 34 37 46 38 34	34 28 34 31 29 44 36 31	19 22 31 30 28 43 35 28	31 20 25 29 27 41 32 27	30 20 22 27 22 41 33 31	29 20 24 27 22 39 33 30	29 20 19 27 21 38 33 27	29 20 20 26 20 40 33 26	29 20 21 27 19 40 31 28	28 20 22 27 18 37 30 28	27 2 21 2 22 2 28 1 19 2 37 3 30 3 30 3	28 27 23 19 20 17 11

SFFS Key Station Codes:

TLH - Tallahassee

JAX - Jacksonville

GNV - Gainesville

TAV - Tavares

TBW - Ruskin

ARC - Arcadia

PBI - West Palm Beach

BLG - Belle Glade

IMK - Immokalee

HST - Homestead

user to translate the symbols in a particular area into temperatures. The map can be easily reproduced in quantity and many of these have been used by decision makers in the areas of crop transportation, processing, futures, etc. A detail that becomes apparent in viewing this map is that differentiation of temperatures ceases below 12.8 F. This is an arbitrary limitation that results from the necessity of assigning a symbol set to temperature values in order to easily move them through the NOAA/NWS program and into the SPFS queue in Suitland. The raw data covers a much broader temperature range, i.e. -110 C to 568 C. covered by 256 counts.

Another secondary product of the system that was found quite useful after a damaging freeze was the printout of the 1.5m temperatures from the key stations. These data are available faster than those from minimum-temperature thermograph networks. The product is easily reproduced and inexpensively duplicated for mass dissemination (see Table 2).

5. Models Construct Predictions

Two models operate in series to produce the predicted products. The first, known as P-model, is an energy budget model requiring as inputs data from the key stations and estimated or observed dew points from the SFFS operator. The P-model has been published (Sutherland, 1980) and discussed in the literature (Shaw, 1981; Sutherland, 1981). Only a brief summary is made here.

The "P" in P-model stands for predictive as well as physical. The model outputs 1.5m air-temperature forecasts for the remainder of the night, i.e. up to 7AM the following morning. These forecasts are printed out in tabular form along with the previously observed 1.5m air temperatures at the key station for the operators to view at the system printer. The forecasters use these as part of the input information they have available to make their frost warnings for various areas of the state.

Currently the P-model requires 3 consecutive hours of key station to produce forecasts for subsequent hours. So the forecasts begin 3 hours after the system begins operation, often at 9PM EST. Each hour the system upgrades the forecasts for the remainder of the night using the most recent 3-hour sequence of input data.

The second model, called the S-model, requires the output of the P-model and the satellite data to produce

forecasted satellite maps. The "S" stands for space, statistical and satellite. It must build a precited satellite view, a thermal map, from the predicted temperature at 10 locations into temperatures for each of the 8 km by 8 km pixels within the borders of the peninsula. A matrix of coefficients relates the predicted key station temperatures to pixels surrounding the key station. These coefficients have been developed from previous freezes. The operator has as an option the set of coefficients that he or she wishes to employ.

THE FUTURE SYSTEM

Direct Down-link Antenna System

Experience with SFFS over its 4 years of development has provided users and potential users of the system products numerous opportunities to voice their concern for both the speed and the reliability of the delivery of the products. If the system products are to influence decisions concerning the commitment of energy to heating, wind machines, irrigation pumps and combinations of these, the information must be available to the decision maker as early as possible.

The NOAA/NESS-NWS communication route in Suitland through which the system has received its satellite data during the 79-80 and 80-81 frost season does not rapidly communicate the satellite data. At least two batch operations in the computer-controlled data transmission are involved. The channel has been classed as a special project rather than an operational effort. During the 80-81 frost season SPFS received approximately 63% of the satellite data that it attempted to acquire. When the staging disks were brought back on line in March at NOAA/NESS in Suitland, the reliability of map acquisition failed to increase. IFAS/UF had little choice but to attempt to directly link to the satellite by antenna (fig. 6). At the time of this report all the components indicated in Figure 6 are available or onorder except for the demodulator and the bit stream symphronizer. If arrangements can be made for these two components and all the components are functional when delivered, the antenna should be feeding satellite data to SFFS by December 1, 1981.

2. Communication of SFFS Products to Additional Users

The primary user of SFFS output is the forecaster. The NCAA/NWS forecaster is expected to incorporate SFFS information into his frost warnings and communicate these to

GOES STRETCHED VISSR DATA DOWNLINK

Fig. 6. Proposed antenna system for SFFS permitting direct access to digital data. Portions of this system are on order at the time of this report.

Fig. 7. Block diagram of SFFS when the antenna at UF/Gainesville (Fig. 7) becomes operational. Dissemination of SFFS products is expected to rely heavily on the IFAS computer network that is expected to link the county extension offices with the main campus of UF. Compare with Figure 1.

nsers through the normal communication channels that NCAA/NWS has developed over years of service to its clientel. This has occurred during the developmental period, and is expected to continue independently of the presence of the antenna (fig. 7).

Additional users of SFFS information include all other consumers showing interest in receiving the information. During the 80-81 frost season, two county extension offices (one in Polk County and the other in Lake County) received the thermal maps by an APPLE II computer link with the Gainesville minicomputer. This was an experimental link in anticipation of the communication link that is expected to occur via the new IFAS Computer System in coming years. Growers, media, processors, etc. are expected to arrange to commect with the county computers or terminals to view thermal maps, as well as to obtain other system products through the cooperative extension service. This plan does not preclude dissemination of SFFS products from the Ruskin portion of the system as well.

SUMMARY

_During 4 years of development, the Satellite Frost Forecast System has undergone significant change. system that initially depended upn the redigitizing of the analog GOESTAP data, it has retooled to operate with direct digital data from Suitland, MD, and is in the process of incorporating a direct link with the stretched VISSR data from the GOZS satellite by antenna. - The system began with . marmal (verbal) communications of ground truth (surface weather observations) and to graduated interrogation of ten key stations. Data from these two data bases (IR from GOES and air and soil temperature, wind and net radiation from key stations) are used to produce both observed and predicted satellite views of the temperature patterns over peninsular Florida. These color products, as well as some black-and-white documentation of the data accrired, are communicated not only to NWS forecasters but are expected to go to additional users through computerized communication channels developing in the Florida Cooperative Extension Service.

ACKNOWLEDGEMENTS

(Contracts Both IFAS/UF and NASA NASIO-9158 NAS10-9892) have funded SFFS development with NOAA/NWS cooperating. Dr. Jon F. Bartholic served as the principal investigator (PI) during the first 1.5 years before becoming Director at University, an Assistant Michigan State Agricultural Experiment Station. Dr. John F. Gerber served as interim PI for a period of approximately one year and continues to support the work from his position as IFAS Grants Office Director. Dr. Michael J. Burke, Department Chairman, Dr. Ellen Chen, Post Doctorate Fellow, and Mr. Georg, Consultant Meteorologist have provided James 🤼 leadership as-well. Dr. James M. Dodge, NASA/HQ, Mr. U. Reed Barnett, Jr., and Mr. Frank W. Horn, Jr., both of NASA/KSC have-coordinated NASA's support to the development. Mr. Frederick: C. Crosby of NOAA/NWS has coordinated NOAA's cooperation and provided operational testing of SFFS at the Ruskin WFO. Mr. Ferris G. Johnson, Jr. has coordinated the software development with recent programming support from Mr. Fred D. Stephens, Mr. Steven E. Lasley, Mr. . Dillon and Mr. Bogdan Pelszynski. Robert A. Mr. Eugene H. Hannah and Mr. Michael P. Baker have developed the key station instrumentation and the latter-has responsibility for the antenna system. Mrs. Alice E. Grimes has coordinated secretarial and bookkeeping activities with aid from Miss Cindy M. Weygant and Miss Nancy S. Guzman. the many who have contributed to SFFS development only those who constitute the very recent team effort have been named.

LITERATURE CITED

- Barnett, U. Reed, J. David Martsolf, and Frederick L. Crosby. 1980. Freeze line system. Proc. 17th Space Congress, Cocoa Beach, Fl., 4:9-20.
- Bartholic, Jon F. 1977. First quarterly report on ASVT, SFFS, submitted to NASA Design Engineering Sec. AD-PRO-21, NAS10-9168, September, 10 pages.
- Bartholic, Jon F. 1978. Crop freeze protection The energy crisis plus four years. The Citrus Industry, 59(10):22-28.
- Bartholic, Jon F., and Robert A. Sutherland. 1978.
 Future freeze forecasting. Proc. Fla. State Hort.
 Soc. 91:334-336.
- Brandli, Henry W. 1981. Weather satellites and agriculture. Florida Grower and Rancher, 74(4):4,8,9,34.
- Chen, Ellen, L.H. Allen, Jr., J.F. Bartholic, R.G. Bill, Jr., and R.A. Sutherland. 1979. Satellite-sensed winter nocturnal temperature patterns for everglades agricultural area. J. Appl. Meteor. 18(8):992-1002.
- Gaby, Donald C. 1980. Comments on "A real-time satellite data acquisition, analysis and display system A practical application of the GOES network". J. Appl. Meteor. 19:340-341.
- Martsolf, J. David. 1979. Frost protection: A rapidly changing program. Proc. Fla. State Hort. Soc. 92:22-25.
- Martsolf, J. David. 1980a. An improved satellite frost warning system. Proc. Fla. State Hort. Soc. 93:44-444.
- Martsolf, J. David. 1980b. Evolution in frost protection.
 Amer. Fruit Growers 100(2):12,92-94.
- Martsolf, J. David. 1980c. Frost protection. The Citrus Industry Magazine 61(9):17-26.
- Martsolf, J. David. 1980d. Freeze line system. Proc. Workshop on Crop Management Modeling Utilizing Environmental Data. VPI & SU, NASA, and USDA/ARS sponsors. Jan. 17-18, pages 49-57.

- Schnapf, A. 1980. 20 years of weather satelliteswhere we have been and where we are going. Proc. 17th Space Congress, NASA/KSC, Apr. 30-May 2, Cocoa Beach, Fl., pages 2-1, 2-20.
- "Shaw, Roger H. 1981. Comments on "A short-range objective nocturnal temperature forecasting model." J. Appl. Meteor. 20:95.
- Sutherland, Robert A., and Jon F. Bartholic. 1977. A freeze forecasting model based upon meteorological satellite data. Proc. International Soc. Citriculture 181-183.
- Sutherland, Robert., Jane L. Langford, Jon F. Bartholic, and Robert G. Bill, Jr. 1979. A real time satellite data acquisition, analysis and display system A practical application of the GOES network. J. Appl. Meteor. 18(3):335-360.
- Sutherland, Robert A. 1980. A short range objective nocturnal temperature forecasting model. J. Appl. Meteor_19:247-265.
- Sutherland, Robert A. 1981. Reply. J. Appl. Meteor. 20:95-97.
- Waters, Marshall P., and Robert N. Green. 1979. A merged satellite infrared and manually digitized radar product. Machine processing and Remotely Sensed Data Symposium Proceedings, pages 183-191.
- Woods, Chuck_ 1977. Satellite freeze prediction system for Florida. Citrus and Vegetable Magazine 40(1): 6,24.
- Woods, Chuck. 1979. Satellite paints Florida weather portrait. Sunshine State Agricultural Reseach Report 23(1)4,5,22.

and of doc.

Same of the same o

v ...

. .

APPENDIX 5

Japan Manuscript

UNIVERSITY OF FLORIDA

INSTITUTE OF FOOD AND AGRICULTURAL SCIENCES

GAINESVILLE. FLORIDA 32611

IFAS GRANTS OFFICE 2011 MCCARTY HALL

TELEPHONE: 904/392-2357

ORIGINAL PAGE IS OF POOR QUALITY

October 2, 1981

Secretariat
1981 International Citrus Congress
c/o The Japan Association for
Advancement of Phyto-Regulators
1-26-6 Taito,
Taito-ku,
Tokyo 110, JAPAN

Dear Sir,

Enclosed please find the paper for presentation at the 1981 International Citrus Congress entitled, "A Weather Satellite System for Observing, Forecasting, and Displaying Cold Temperatures for Citrus Producing Areas". I apologize for getting this to you a few days late.

We will be replacing the copies of Figures 7 and 10° with photographs of the appropriate size.

Please do not hesitate to contact me if you have any questions. Thank you very much.

Sincerely,

John F. Gerber

Director, IFAS Grants

JFG.jdg Enclosure

COLLEGE OF AGRICULTURE

AGRICULTURAL EXPERIMENT STATIONS

COOPERATIVE EXTENSION SERVICE

SCHOOL OF FOREST RESOURCES AND CONSERVATION

CENTER FOR TROPICAL AGRICULTURE

The Institute of Food and Agricultural Sciences is an Equal Employment Opportunity - Affirmative Action Employer authorized to provide research, educational information and other services only to individuals and institutions that function without regard to race, color, sex, or national origin.

A Weather Satellite System for Observing, Forecasting, and Displaying Cold Temperatures for Citrus Producing Areas

ORIGINAL PAGE IS OF POOR QUALITY

J. F. Gerber University of Florida, Institute of Food and Agricultural Sciences, IFAS Grants, 2014 McCarty Hall, Gainesville, FL 32611

J. D. Martsolf University of Florida, Institute of Food and Agricultural Sciences, Department of Fruit Crops, HS-PP Building, Gainesville, FL 32611

Additional index words: Remote sensing, Microcomputers, Micrometeorology, Mesoclimatology.

Abstract. Thermal, infrared data are acquired from the NOAA geostationary satellite at 75°W. The data are processed by a minicomputer which generates a false-colored, thermal image geometrically arranged to represent citrus growing areas in Florida, USA. Spacial resolution is limited to about 8 km² and thermal resolution at about 1°C. These data are available normally within one hour of observation. A library of software programs is used to manipulate the data and to forecast the expected temperatures for the rest of the night. The data can also be transmitted to local users over telephone lines and displayed with small microcomputers and television sets. The system operates under the control of the minicomputer which initiates the action to acquire the data, generates the thermal data arrays, and estimates future temperatures. The data are compared with automated ground truth stations to verify and improve both the observed and predicted data. The system was designed to assist weather forecasters, county extension staff, and citrus growers.

Forecasting and observing minimum temperatures for citrus producing areas is difficult because citrus growers need precision of \pm 1°C. This precision is especially important if temperatures are expected to reach lethal thresholds (7). Forecast of low temperatures are verified by the minimum temperature observed at official sites in standard exposures. These sites are limited in number and each may be choosen to represent an area of several 100 square Km. Forecast scoring is based upon the differences between the forecast and the observation. The predictions are for geographic regions or zones of 100's to 1000's of Km² and for official sites.

Citrus growers correlate the expected temperature in their orchard to the forecast for the region or zone. This correlation is based upon ambient temperatures observed in the orchard coupled with years of experience using both objective and subjective techniques.

Received for publication . Florida Agricultural Experiment Station Journal Series No. . Support for this work was provided by NASA contracts NAS10-9168 and NAS10-9892. Cooperation of NWS/NOAA was greatly appreciated.

²Standard exposures are with glass and alcohol minimum indicating thermometers exposed either in Standard Cotton Region Shelters or in Standard Fruit Forecast Shelters used by the USA, National Weather Service

Changes in policies of the weather forecasting services, in funding, in personnel, in observation sites, in urban development, and perhaps climate changes due to land use tend to confound and change the correlation between the observed and predicted temperature at official sites and zones and the observed orchard temperature. This tends to confuse and frustrate the citrus grower.

Areal temperature measurement and forecasts could improve the services to growers, but at prohibitive expense for an intense observational network. The preparation and dissemination of verbal or written forecasts in such detail would be impractical if not impossible.

Areal measurement and display of surface temperatures in real time sensed by weather satellites provide a technique to meet many of the needs of citrus growers for temperature information. The satellites are in place and are used for a multitude of purposes - cloud movement, storm tracking, wind fields, etc. Use for horticultural purposes is simply the exploitation of this existent technology and equipment.

Satellite Observation of Surface Temperature

The weather satellite data referred to are from the IR (Infrared) 10.5 to 12.6u radiometric teloscopes on the Geostationary Operational Environmental Satellite (COES) (Fig. 1) series. These satellites are located at 75°W latitude, at an orbital height near 36,000 Km above the earth. They operate 24 hours per day, producing areal surface IR data for the entire hemisphere once each half hour. satellite were launched by the NASA (National Aeronautic and Space Administration (NOAA). They are spin oriented and equipped with visible and infrared radiometers. VISSR described by Abbot (1). The IR sensors view the earth through a telescope which sweeps an 8 Km wide path across Florida from West to East. Analog data from the sensors are digitized to 256 levels by the National Environmental Satellite Service (NESS) of NOAA producing a temperature resolution of 0.5°C, and a spacial resolution of 8 Km x 8 Km for 4 Km² pixels. Over 3000 pixels are required to represent the State of Florida. This is equivalent to a surface temperature observational network 8 Km apart in the North-South and East-West direction. An entire earth frame consist of 1821 sweeps, (1821 resolutions of the satellite) and requires 18 minutes.

The data from the satellite are telementered to an earth station at Wallops Island, Virginia, USA, they are navigated and geometrically corrected for view angle distortion, changes in the satellite spin axis and retransmitted to the satellite for dissemination to users.

The satellite observed temperatures represent the integrated areal temperature for each 8 Km by 8 Km pixel. The pixels view a fixed geographic position on the surface and which does not move or change due to surface development. Drift and shift due to satellite orbital changes, and digitization cause movement of one unit even if adequate navigational data are supplied and properly used.

The data from the satellite can be transformed into a graphic representation of a plan map of the region. (Fig. 2). Image enhancement techniques are used to transform the shape into an almost exact outline of the geographic boundaries of Florida. Either colors, gray scales, or symbols (letters, numbers, etc.) can be used to represent classes of temperature by different colors because of ease in optical assimilation of the data. Thus, surface temperature patterns representing

physiographic areas are portrayed as colored pixels on a color monitor representing the entire State of Florida. This includes all of the citrus and other horticultural producing regions. At a glance the observer can view temperature distribution, patterns, changes in boundaries for the entire state.

The surface temperatures as observed by the satellite have been repeatedly verified by ground truth transects (5,8), by automated surface stations, and by minimum temperature thermometers in both orchards and official sites (8,9) (Fig. 3). The thermal patterns which emerge have been found to be presistent for weeks and nights and have been used to do retrospective agroclimatic studies (4). They can be used as a basis for delineating forecast regions with specified thermal homogenity.

The satellite observational data is nominally available one hour after observation which is satisfactory for now cast of temperature as a weather element. Since the entire area is represented there is no interpolation. Forecasts made for expected changes in each pixel can be used to produce a similar false-colored thermal image of Florida for the entire nocturnal cold period. A physical cooling model (6,11) is used to predict temperature changes for 10 key locations using both satellite and surface weather element data (wind, net radiation, soil temperature, surface air profile temperatures). The 10 key stations were correlated with individual pixels to produce a map of the entire state.

Both the observational data and the forecast data can be communicated over telephone lines as digital data to inexpensive microcomputers. Selection of appropriate microcomputers such as the Apple II Plus can be used to generate the false-colored thermal images on conventional home color television sets. (Fig. 4).

The system is called the Satellite Freeze Forecast System (SFFS). It was developed by the University of Florida in cooperation with NASA and NOAA. It is a highly flexible system which uses high technology (mini and microcomputers), existent satellite resources and a library of software application programs.

Most fruit and citrus growing regions of the world are viewed by GOES Weather Satellites (10). The SFFS system could be used with some modification in most citrus and fruit growing regions of the world.

In addition to low temperature freeze observation and forecasts other applications could include, chilling hour accumulation, climate data collection, and observations, high temperature stress, cloud pattern, storm tracks, rainfall (indirectly from cloudtop temperatures), etc. SFFS presently is limited to surface temperatures during clear weather. Microwave radiometry will eventually permit temperature measurement through clouds, and the Vertical Atmospheric Sounders (VAS) are already on board some satellites. The polar orbiting satellite (NOAA Series) could be used to provide high resolution IR (1 km²) but only 4 to 6 times per day.

Description of SFFS

The SFFS system (Fig. 5) consists of (1) the GOES satellite, (2) a minicomputer system, (3) automated surface weather stations, (4) communication links and, (5) software programs. A complete description of the system was made by Martsolf (8).

The name Apple, Apple computer and the Apple symbol are registered trademarks of Apple Computer, Inc. Their use in this manuscript are for illustrative purposes only and does not constitute endorsement.

The GOES satellites are spin oriented and stabilized weather satellites launched by NASA and operated by NOAA. Nominal location of the satellites used is 75°W longitude above the equator at 36,000 km above the earths surface. The IR and visual data accumulated by the satellite during a scan of the earth disk are transmitted to the surface at high band rates (gigahertz). These raw data must be navigated to proper earth orientation because the satellite progresses in orbit, the orbit is not perfectly circular, or oriented latitudinally and the spin axis orientation shifts. In addition, to the navigation, the data are geometrically corrected for view angle. The navigated, corrected data and the navigation information are retransmitted to the satellite and rebroadcast to various users.

The NESS acquires these data and routes them to NWS/IBM 360 computer which removes a sector representing Florida and places it in computer quere.

Two Hewlett Packard 1000 series minicomputer systems make up the heart of the SFFS. (Fig. 6). One system is located at the NVS office in Ruskin, Florida, USA. The other computer is located in the Department of Fruit Crops at the University of Florida which is the development system and is also used for backup. The two computers are linked with a distributed, real time operating system (RTE-IVB and DS/1000). Both computers are equipped with tape drives, hard disks, communication modems and a color red-green-blue monitor. These computers via software and hardware control the digital telephone communications and acquire the satellite and key station data automatically.

Ten automated, microprocessor controlled weather stations are used to observe, store and furnish weather data over telephone links (Fig. 7). The microprocessor package (Darcom model D303's) was not designed for weather purposes, but has been a satisfactory, low cost method of observing and acquiring wind, temperature, humidity and radiation data. The package includes a dial-up modem which dumps data to the minicomputer when called with the proper security codes. Tampering with the stations sets flags to avoid spurious data.

The communications links consists of standard, voice grade telephone lines. The minicomputers are equipped with auto dialers and 1200 and 300 baud rate modems. Software programs control the communications. The NWS satellite data is acquired over a 1200 baud link. The software programs repeats the call if a connection is not made. The 10 key stations are dialed automatically over the 300 baud link. Since the data set from the key stations is msall the slower baud rates do not constitute a problem. The satellite data requires 3.25 minutes to transfer a thermal data set. Each key station requires 45 seconds to transfer data. These stations are interrogated hourly. Three attempts are made to acquire the data. During the past season (1980-81) data from the key stations were acquired 96% of the time.

Software programs are responsible for the coordination and operation of the entire SFFS. They control the data acquisition communication and product generation. The satellite IR data are scaled, arranged in class intervals and color assigned. The data are used to create an observed, false-colored thermal image of Florida with the time and date and a color temperature key. (Fig. 2). The range of temperatures and the colors assigned can be changed by the operator to isolate certain temperature ranges. Eight temperature color classes can be used. Enlargement of a specified area is made by positioning a white rectangular outline over the image. The enlargement is variable (2x to 9x). The enlarged rectangle appears in the upper right hand corner of the display. (Fig. 8). Two

thermal maps can be displayed simultaneously on a split screen (Fig. 9). The observed thermal maps are nominally available one hour after observations, however, this could be sooner if satellite data were available more rapidly.

Predicted thermal maps of Florida are produced by the software. Data from the satellite and the key stations are used with a physical cooling model to estimate the minimum and hourly temperatures for the entire night. These data are correlated with pixel temperatures and the key station temperatures to produce a false-colored thermal map of Florida. If red-green-blue color monitor is not available a standard (MTSC) color television signal is produced which can be viewed on a home television receiver. The data can be printed as hard copy (Fig. 10) using symbols because the system is not limited to 8 thermal levels.

A summary of the 10 key stations is printed as acquired (Table 1) so the measured weather elements are recorded and updated immediately. These data are valuable to verify the satellite observational data and for planning and mangement purposes following cold weather.

The software library includes programs for evaluation and analysis of the data. Temperature difference maps, cooling rates and persistent cold areas can be obtained from the software. The operator has control of the SFFS through the keyboard software and can intervene or can allow the system to operate automatically.

Future Developments

The SFFS was designed to assist weather forecasters, extension specialists, extension agents and growers. A pilot effort is underway to transmit the thermal images to county extension offices. The commercial television signal could be communicated, but would require costly coxial cable or microwave links and would not allow local manipulation of the product. Software programs have been developed to use microcomputers (Apple-II Plus) to acquire the thermal and weather data over telephone lines and display the thermal maps on home color television sets. This has been successfully demonstrated in the 1980-81 cold season. This network will be expanded to 5 counties, communication rates will be enhanced (300 baud to 1200 baud) and additional software developed. The present microcomputers have color compatibility limitations but the products are of acceptable quality.

A direct satellite antenna link will be tested during the 1981-82 cold season. This link will intercept the stretched VISSR data and reduce the time delays in processing and sectorizing by NESS and NWS. In addition, it may reduce expensive long distance telephone lines. The main advantage would be more timely data. The problems of handling the data stream with the present minicomputer system are a major part of the present testing program. Additional software and hardware may be required.

A two year study of the applicability of SFFS to other regions is nearing completion. The preliminary indications are encouraging and lead us to conclude that SFFS may be useful at higher latitudes in areas with high topographic relief.

During the severe freezes in January 1981 in Florida, the satellite observed temperatures were lower than expected. Subsequent examination of surface data and of specific location in identified pixels tend to be in agreement (± 1°C) with surface observations. These data combined work done by our colleague Dr. E. Chen (3,4) indicate that satellite data have excellent potential for delineation of agroclimate zones and for the identification of persistent cold and warm locations.

The thermal inertia of the earths surface is closely related to the maximum and minimum temperatures. Diurnal satellite observations should permit the estimation and mapping of the thermal inertia classes of the surface and charges caused by rainfall, foliage, cultivation, etc. These data could significantly assist the forecasters skills and estimates of departures from climatic norms.

As forecasters develop skill in using SFFS, forecast scores and verification could become more closely tied to forecasts and observed temperatures for specific regions and areas, as delineated by SFFS thermal images. Coupled with satellite defined climatic zones in important citrus producing regions the SFFS should assist in the development of more meaningful and accurate temperature observations, warnings and forecasts for citrus and other horticultural producers.

Literature Cited

- 1. Abot, T. M. 1974. Visible infrared spin-scam radiometer (VISSR) for a synchronous meteorological spacecraft (SMS), Santa Barbara Records Center's Final Report, NASA, Goddard Space Flight Center, Greenbelt, Maryland.
- 2. Bartholic, Jon F., and Robert A. Sutherland. 1978. Future freeze forecasting. Proc. Fla. State Hort. Soc. 91:334-336.
- 3. Chen, E., L. H. Allen, Jr., J. F. Bartholic and J. F. Gerber. 1981.

 Delineation of cold-prone areas using SMS/GOES thermal data: effects of soils and water. Submitted for publication to Journal of Applied Meteorology (April 1981).
- 4. Chen, Ellen, and J. David Martsolf. 1981. Fourth Quarterly Report on the development of nocturnal GOES infrared data as a source of climate information, report submitted to National Climate Program Office, NASOAA-D-00129, September 8, 14 pages.
- 5. Chen, Ellen. 1981. Comparison of geostationary satellite infrared temperature with ground-collected temperature in florida, report submitted to John F. Kennedy Space Center, Florida, SL-PRO-33, NAS10-9892, 20 pages.
- 6. Georg, J. G. 1971. A numerical model for prediction of the National temperature in the atmospheric surface layer, M.S. Thesis, University of Florida. 1971, 121 pages.
- 7. Gerber, J. F., and F. Hashemi. 1965. The freezing point of citrus leaves. Proc. Am. Soc. Hort. Sci. 86:220-225.
- Martsolf, J. David. 1981. A satellite frost forecasting system for florida. Workshop of Weather Data to Agriculture and Forest Production, sponsored by American Meteorological Society Committee on Agricultural Forest Meteorology, and the American Society of Agronomy, and the American Society of Agricultural Engineers. March 30-31, 1981, 21 pages. (in press).
- 9 Martsolf, J. D. 1981. Satellite freeze forecast system. Phase V mid-term report and SFFS evaluation. Submitted to John F. Kennedy Space Center. NAS10-9892, 68 pages.
- 10. Schanpf, A. 1980. 20 years of weather satellites-where we have been and where we are going. Proc. 17th Space Congress, NASA/KSC, Apr. 30-May 2, Cocoa Beach, Fl., pages 2-1, 2-20.
- 11. Sutherland, Robert A. 1980. A short range objective nocturnal temperature forecasting model. J. Appl. Meteor. 19:247-265.

Fig. 1. Is a line drawing of the GOES-D satellite presently in geosynchronous orbit over the equator at 75°W latitude. Orbital height is 36,000 Km above the surface. The satellite is spin stabilized. The infrared data from the satellite is used by SFFS to produce a false-colored thermal image of Florida.

Fig. 2. A photograph of a geometrical image ofFlorida created from infrared data from the
GOES-D satellite. The boundary outlines are
derived from thermal discounties between the
ocean and gulf waters and the land. The
temperature classes are displayed in color
on a video monitor.

. '	•		· ;	i "					in thermo cation	ometer ·	
	21.8	26.3	26.3	21-22 groves	22.7	263	25.4 NWS 26°	32.6	45.2		
	20.9	20.9	26.3	25.4	24.5	24.5	24.5	29.9	40.7	ATLANTIC	
	20.0	-209-	26.3	254	25,4	24.5	24.5	<u>CTR</u> 25.4		ဝွ	
	20.0	20.0	21.8	22.7	24.9	25.4	25.4	25.4	32.6	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	\$									· · · · · · · · · · · · · · · · · · ·	

Fig. 3. A comparison of observed temperature from satellite data pixels (rectangular outlines) and surface shelter (1.5M) height exposures (Circled numbers).

, T

Fig. 4. A photograph of an Apple microcomputer, disk drive and television monitor used to display the false-colored thermal images in county extension offices. The data is transferred from the SFFS computers to the microcomputers by telephone lines.

Fig. 5. A black diagram of the Satellite Freeze Forecast System (SFFS).

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 6. Satellite Freeze Forecast System Hewlett Packard 1000 series minicomputer.

Fig. 8. A false-colored thermal image of Florida with an enlargement of section enclosed by the white rectangular outline displayed in the upper right hand corner. Note: the resolution of individual pixels is unchanged, but visual resolution is enhanced.

Fig. 9. False colored images of Florida from 8 and 10 PM EST (20:00 and 22:00) displayed simultaneously to portray rates of cooling and changes in cold areas.

-

```
~ZYRJEGF04C83=>9:876554233
                                                                                                                                                                                                        *\SUEFECCC388?(;:98765421
                                                                                                                                                                                                                                                                                          6: ;: ?HPSRPNUT
                                                                                                   ORIGINAL PAGE 19
                                                                                                                                                                                                 77YFLHGEDACR88??>=(9;98762 17=88=ALTQRPSUC
                                                                                                                                                                                           cHZ($IHJEDACESS?)=(9;:95652 6)CI!HLQTQ2RTPI
                                                                                          ---OF-POOR-QUALITY
                                                                                                                                                                                         "bb| [416F6DC6A=?)(;:95764310 2:614LKPTQQUUQRRL
"|Z|44CFDACA=)(9:8765422 2:810QXXQRSQYSHPTL
                                                                                                                                                                                                ZLJ.EFDCC8=>(;85765423 16;8JNPQRQSRUYTQQHE
                                                                                                                                                                                              กับ AGDACA?(;:99855210 178Gหรมงาคดุมพรรดุรธุน
ที่เล็นคอดธล?)(;::955310 28?GLรมงบบาารมาคมะเดเ
                                                                                                                                                                                               กัฐฏิริริคลิซิ=?=(;::8622 016AJHHQVZUVVTTUUSGHLQVL
                                                                                                                                                                                            660[=FD59=>=(9::543101670475112X17:141141141151151
                                                                                                                                                                                         17: 645. 1

10-14001 JANUARY 13, 1981 6 AM. 1981

10-14001 JANUARY 13, 1981 6 AM. 1981

10-14001 JANUARY 13, 1981 6 AM. 1981

10-14001 JANUARY 13, 1981 6 AM. 1981

10-14001 JANUARY 13, 1981 6 AM. 1981

10-14001 JANUARY 13, 1981 6 AM. 1981
                                                                                                                                                                                                    CHDCS2?(95654348)CLQUQQUQAQQNPHDELVHDCBJF
                                                                                                                                                                                                    tilFA3=>(;:56445)AJRUVVSTTSPOQPJHHKQILQFC
                                                  ्रा प्रशासम्बद्धान
                                                                                                                                                                                                    d(Eab?9:876458(CHPUV#QQQQPQQHJJRHAQQIIQ=F
                                                     YUPHGEEEFIZHT
                                                                                                                                                                                                         <u>ikae(;8975593EKHQUUVUSSSLPSISQHEBT~VFBHW</u>
                                                                                                                                                                                                      total ::876(CEIHOUZYYTSHILNGEROKLLR\UI99C
                                            USAGEAB39CDEEF 12
                                                                                                                                                                                                      -คิจิต=)9;:59?FINSUZZUVVSPOZHEPUTNHICUMAE
TODEA=)(::COXMHS!!YUTUGRRLGSCLTYGGHCUIUIN
    -CIU_1/U0HNXEA->>>>=?????DEFUUD
-CJU_1/U0HNXEA->>>>=?????DEFUUD
                                                                                                                                                                                                                                                            TOOVOLPURE DOUUNLUCKHAD:
     =8AEFLNIHEC9=)=(9;;;(===))?ABEE
                                                                                                                                                                                 TZDECTHA ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=)=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE=M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE-M\
PROPERTY OF THE ST. JOHNS R. MUNMHIGPLRYSINGLE-MUNMHIGPLRYSINGLE-MUNMHIGPLRYSINGLE-MUNMHIGPLRYSINGLE-MUNMHIGPLRYSINGLE-MUNMHIGPLRYSINGLE-MUNMHIGPLRYSINGLE-MUNMHIGPLRYSINGLE-MUNMHIGPLRYSINGLE-
    (((==))2=2?)(9; 763599::;(=))A3EFILP
756579:;((==(;:97777579:;(==)9ABEEH)()
4444445568:;:95765568999:;(==)8ACDEH)
                                                                                                                                                                                  TCTOB TO THE A PACCHOUNTER (CFC (SLF: LIULORHIBGE) TO TO THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTR
    344442445589588765668889::;(=)8ABCEFINOPOL
                                                                                                                                                                                                         112ULA=BDEHLTJEA99GMGA?KMD?IRGEHUQHGGD
--1NJHA=ABETIHF>55ETES(HX;BUXAENHEBN
    33333334456567555467787::;(=)@AABDEFHHHI
                                                                                                                                                                      chental state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t
    333333333345555555577739:::(=)?BAABDEEEEHU
    333333333334554444555775999:<==>EAABCCCCDEH
    3333333333442344555576799:;(=)>8AAA3BCEFUT?
                                                                                                                                                                         333322233333
                                                                               "::; <= >????&A33DEH:
    4222222333
                                                                                ::((===)?BAAABEFIC
    2222222333
                                                                               9:;(((=)?82AAB3E)
    221112222333
                                                                               3(((((((((((()
                                                                              3:::;(===>)@ABEEK
   221111232332
                                             15.55
                                                                              :8999: ; ( (== )@ABEF[[
                                                                                                                                                                                 COLUMN NEST LELL SECHCHANGE SANDEN LA PREBILE.
    211111222335
                                                                              78999:;; (== >BAEH)
    122223333345
                                                                                                                                                                      ----c; )uy(uvz(\\((u\p=)9543(23(EMTGS?^6)^_6\E81JE'
b|111~('yyzzzz((((yuz=)<523214;AHUPINZ^^([~c6Q(68Ni
    111123423359
                                                                              ·78899::;(==)2A5行了
                                                                               678999:;;(=)63573
                                                                                                                                                 TOTAL STATE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF
   09123455559=
    223355+539=)
                                                                               6578999:; (=)AEUS\^\
                                             157.65.71
157.65.71
                                                                              5667897:;;(=);(UUQY^)
-55678897:;==E;;47;72.VU
   6789775699;{
    9==>8658=9;:
                                                                             55667899: (=)th([FFHL
   >AA2::=>>?9:
   EIEA)CCBC)=8
                                                                              555556939:; (=) AGIFEPZ
   EHFARFEEEADA
                                                                              .4445567879; <=>ADDDDZ^1
   HEAADJINTAFA
                                                                               4444556339; ;=)ยค<u>สมี</u>ปั่นZ^_
   FBABEFEILGGF
                                                                              .33334557899÷<=€ญีSU\^
   B=)FCHTJEFHE
                                                                              33334456789:;=>AAHUJ
                                                                                                                                                         c~~~c~b
                                                                                                                                                                                 *1ZYAAICCCCCCCYLUVUQTA
                                                                                                                                                                                                                                                                                                JQE84=P^
   CHESKOCEERS
                                                                              33355666879: (=)$GCZ^
                                                                                                                                              TOOCCCCCCC ) 1 ZUARWZZZ [ [ [ZZUNUVNIH ]: 5483AAGLU ~ GNHF=64) GVZZ
   95983ATECCSE
                                                                              37:9
  ·96:==A3C2<del>542</del>
   #37545(=)}8:
   ><ABEUABA@A=
   >=DHGNHHHFAR
                                                                              =SDELKILHHOP
   1 JECKHETHSET
   :9(BEABEAEJJ
   (=9)0=?=24==
                                                                              =EADEA:43345667899::(=AELBYUVUZCCCCZYZZZZZZZZZYZYUPQCULYUVTSRF$ 5787=7:5=HPQYLB5;==
==>>((6233455668997:;=AECQUSWYZ\\ZZZYYZZZYZZ:UVTUVUVVTTSRI;84(=9:==44=H^^T8416(=
  CE23A? >92922
   LNHEKTC49<del>0</del>54
                                                                             ==)?(623355658999;;==ECQUSWIZ\\ZZTYZZZTZZ:U016UWQ015K16U4(=9;==44=M^*TB416(=)
(49872333445568999;;=FIJHUUYYZZTYZ\\XIIZ\UVZ(UTQSSRCP 59;:=824=P1*WI(30 1
:4952111233355667899:=DFFFMQUWWWZ-ZY\\I(I(I(IYZ(USRSNF 8(9;=A?439I\bb)1F3
9=(621112333455667899:;=)?)AMHUUUVYY(\1\(I(I(IZZZZYUWTSQSSLP 19=997=A;4:BQ* 1\t)
=?821222333345565788999:;;(=ETUUUHUYZ(YUHWWYYWWWUVTSSSI504)=9;;8986 4EWZZZSA1
B=8211223333455667888999::($25UYYYUWXZUUUTUUWWUVVQSRRRDP 5=2928ABB3:2 2(P1*IQ=20
  #CG2FFHCGXPI
    ; DPIEXF&=CF?
   4AICHRJEADAÐ
   =LQJEHJ9;A=2
  HCETAJJ; SHAA
                                                                             EA:211235333455566677868999:ปีนิขนัวขนับบาทีที่บับบาที่สายการค่ะ รัก=(=AAHE62413GZbe=H
DA921123333334555566778899:ยี่นับขวามหายรถาบบาทีเกลื่อ 390=9:56=D(4:868T1)ปีว
  L=2HFJIATTAA
                                                                                                                                                                                                                                                              9A=(=AAHE62413GZbc^H2
  ASLOGPIPSJEJ
                                                                             ##211233333445556667789:=PUVYYHUUUVUTQSSSSSPPQTTRRK5c=3e)=9B)<=)95S=IUZTK=
=82122222233345556665789:#HHQUVVVVUUUUQSSRPHPQSSSRPE546C=;<=8E(89854DJEEIED
                                            17.3
  IDEB?AGPAKKE
  IMMBÉGTPFDFI
                                                                             (8212211112233334455556667899=AEFEMQUUUUUTTSRPOMQRTQQRNAF7AA:9=2DFFA4D65DMIITUQQ
(532311211213233344455566789:=)8AFESTUUTTTSPOMPQRTQRRLA75A=54967(A97?27APPIID8=
  FAJDFGTTGJHI
 PIPRNTUGRSPO
                                                                              95333221 001111223334445556789:;(==£@PQSTQSSSPOPQSTQSIF819)95655456();eAAJA956(#
               _b^$Z^ER
 UPTŽŽKU (ZZUQ
                                                                             8974331100000112223334455567699:;;(=+ผู้ดูกรรรรกพคตาาตุครู่⊨629>9:9:::()8A)9=)CL ๆเดิน
                                                                              =864321000000111223333445566589;;;;(=##PQRRSPODQRSSSIP(63(895986559==958(EU)
  PSTUĽMRYUGTT
                                                                                                                                                                                 ::<=CMQRSSRHQRSSSSPEP=63;>988524;=<=9659HY^ZPNTF
  -: TTHHAEGTHHQPPIIHKKIHDEGDC0)==9532111122223333334455566788999:;=)]HQSSRQRTTSSRHE
DI;=ITVQHPHKDIHFCLNHHJIEA?)?)9432211112222335333444556678899:(=CILMPORTGSROPJE=6 4=)>>>)=)95236DFLZYIGA:
EHDFUZUNSCQTQLLPLLHJGNHD=>>>>821111011222333333444555667899:;=EIFFIHPQRQQ>JJC81 8==??9:;:5224:DHMSUNH29
 TUQOTUQIRMEDJMHELHNIJHLH?=>=952 000011222233333444555567787::=EMMXLNDNNLKHER;4 2932)94452101696Y[RRRHF=
EIRUURHHTGITTQHHRIPHLNIER)?(:52 00001122222333334444555667899:=]FHIJLTKHJCCC=6 39=A=9510 1 35(J\b]UI?:AII
EAGUUJKUUTKQPJAJIAHIJHLC=A=9562 00111111222233333444555667899:((=AFFHEFDCD0:4 4;=>9510 3345)AI\cb^ZIQIU
                                                                                                                                                                                                                                                 4;=>9510 3345)AI\cb^ZIEIUA
 xJEHULIUHLLTQIAH=GSGGCECA=)9542 00111112222233333344455667897;;(<=ADDDCCB9:3</pre>
                                                                                                                                                                                                                                                  4()>938 192>=AHQ^b^ UXNR
PRLPUTTUVVQITHELILNHNJR8A=9563100001122222233333444655667899:;;<==8666846
                                                                                                                                                                                                                                              18=);82 122HLFFDEKL ** ZTEEE
 DUVOHTYPhUSHE=AGNOTIHNFE(;862310
                                                                                                         012222333333334445556689:;;;((==>)?95
                                                                                                                                                                                                                                               69::56116)@JED76:=LZ_ZPA98
                                                                                                        01123333333333444SS56B7()?>>=(==>>94
NORH-LPFARVOJIPOHIGOIIEA2-:5642
                                                                                                                                                                                                                                           156057212:=))986524GUQHA(578
 JJLA20L8ETĽÓDIMIJHKOHHJ80?986$42 001\2233333333444455689=ABA0?<<<u><<</u>951
                                                                                                                                                                                                                                       02458952247586412339IQKDE?6789
ZYRJLCRRUVVT:@JPPILOILIGA=(:5762102321233333344445569:=AFC8R=9852
                                                                                                                                                                                                                                    23345774334569:955679DQTNE957
[[UIHMUTPIINGAHEKNDEMEEAB=<988743342 | 1223444458959(<=??=;8743
                                                                                                                                                                                                                                 122245644331259999;9((=KQLEA2?
UVTPIJHHFAHHHUQIKOGEEGCB3=9:57762442112233331112356623310
                                                                                                                                                                                                                           00 0013323410 389876())((H[^Z2hG
                                                                                                                                                                                                                                                    2542 4(9;;:59=?)EUVOD=9(9
HDBHPQTOA?FJKRTSQPIMHGFDA=(;::874342 0011
```

JAN. 12-13, 1981

1.5m air temperature (rounded to nearest degree F)

	18	19	20	21	22	23	00	01	02	03	04	05	06	07
Tallahassee	28	26	24	18	14.	13	16	14	11	10	10	8	7	Ž
Jacksonville	27	24	17	20	18	13	16	15	13	9	<u>13</u>	13	.11	ìı
Gainesville	30	26	23	19	18	15	14	14	13	12	11	10	10	9
Tavares '	37	35	32	23	23	27	18	28	17	22	21	14	15	18
Ruskin	38	36	36	34	32	30	28	27	25	24	22	21	21	20
Arcadia	33	30	28	27	22	19	18	18	16	18	16	18	17	17
West Palm Beach	42	41	38	36	35	34	34	34	33	32	31	30	30	30
Belle Glade	40	39	37	37	36	36	35	35	35	34	34	33	33	32
Immokalee	36	35	32	36	31	29	27	23	22	22	22	20	20	20
Homestead	40	38	39	38	36	35	33	31	3 I	31	29	29	29	29

JAN. 13-14, 1981

1.5m air temperature (rounded to nearest degree F)

	18	19	20	21	22	23	00	01	02	03	04	05	06	07
Tallahassee	44	45	34	22	27	25	22	23	23	28	32	34	37	32
Jacksonville	39	30	30	34	19	31	3Ò	29	29	29	29	23	27	28
Gainesville	38	35	33	28	22	20	20	20	20	20	20	20	21	27
Tavares	34	33	37	34	31	25	22	24	19	20	21	22	22	23
Ruskin	39	35	34	31	30	29	27	27	27	26	27	27	28	19
Arcadia	39	41	37	29	28	27	22	22	21	20	19	18	19	20
West Palm Beach	47	47	46	44	43	41	41	39	33	40	40	37	37	37
Belle Glade	41	38	38	36	35	32	33	33	33	3 3	31	30	30	31
Immokalee	42	37	34	31	28	27	31	30	27	26	28	23	30	30
Homestead	44	39	41	42	41	41	40	40	40	38	39	36	39	40

Table 1. Hourly air temperatures collected from the ten key stations by the SFFS computer and printed immediately.

OMICE - LOUD

APPENDIX 6

s s s

. .

THE PENNSYLVANIA STATE UNIVERSITY

249 AGRICULTURAL ENGINEERING BUILDING UNIVERSITY PARK, PENNSYLVANIA 16802

College of Agriculture
and
College of Engineering
Department of Agricultural Engineering

October 6, 1981

Dr. J. D. Martsolf University of Florida Institute of Food and Agricultural Science 2121 HS/PF Gainesville, Florida 32611

Dear Dave:

I am writing a letter to clarify a few points which we had discussed during our session in Gainesville last week. I personally thought that we had a very productive meeting relative to the conclusion of work on Phase II of the satellite freeze forecast project in which we have been involved.

As I have indicated to you several times over the past two years, I had much reservation relative to the possibility of using satellite freeze forecast technology in mountainous regions such as Pennsylvania. As was evident, I assume, by the final report which I sent you and by our lengthly discussions during the time that I was in Gainesville I have certainly altered this opinion. I do, in fact, now feel very hopeful that this technology can be successfully applied to Pennsylvania as well as other states in the Northeast region of the United States. There are a number of developments which have indicated the possibility of applying this technology to Pennsylvania and surrounding area fruit growers.

As we have discussed, there is considerable interest at this institution in the development of a computerized information dissemination network for use by both county extension offices and by individual fruit growers and farmers. This network will lend itself very well to the transfer of technology and predictions arising from satellite forecast methods.

Work which you had previously conducted while at The Pennsylvania State University and which has been referred to in the final composite report for this project has indicated extreme temperature variations over a traverse of about 18° Fahr. These variations were again supported by studies which were conducted in Pennsylvania during Phase I of the current project. These studies have all shown that there is, in fact, a very significant temperature variation with topological changes. Even with these variations, however, it has been possible to very accurately predict night time temperatures for one particular station such as was used in Phase II of this project.

Dr. J. D. Martsolf October 6, 1981 Page 2

At the present time, I am attempting to gather resources sufficient to allow a proposal for additional research in the area of application of satellite freeze forecast technology. The most pressing need, in my opinion, is to use a minimum of three climatological stations for gathering data needed for input to the P-model. By gathering such information from these three stations and making predictions at various locations in the state of Pennsylvania, a further analysis of the applicability of the P-model will be possible. It is also believed feasible to attempt to adjust the model for topological and climatic histories for these stations. It would be possible to obtain some of the climatological data needed from archived records, but the total inputs which would be desirable for the P-model are not available to the best of my knowledge.

Having either used archive or newly collected data and obtained a new set of predictions for the P-model, the next step for the project would be to provide a technique for real time application of said P-model or an alternate form of forecasting.

As I discussed with you while in Gainesville, presumably The Pennsylvania State University might be very much interested in attempting to procure real time satellite data from the down-link capability for stationary satellite data acquisition which you are developing at the University of Florida. This information could be sectorized and transmitted to Pennsylvania on a contractual arrangement if agreeable with your organization. Having obtained in a timely fashion the appropriate satellite data, the P-model would be run in Pennsylvania and forecasts made readily available to fruit growers through an information distribution network which is concurrently being developed.

In order for this scheme to be feasible, it is necessary that cooperation does exist between The Pennsylvania State University and the University of Florida. We would very much like to explore a method by which it would be possible for us to obtain a listing and/or magnetic tape of the P-model in the form currently being used at the University of Florida. In addition, we would also like to explore the probable cost for obtaining real time sectorized data from the stationary satellites once your antenna system and data reduction capability is operational.

Attached to this letter, I have indicated the resources which are available at The Pennsylvania State University for coming to bear with this problem. We will actively explore the possibility of submitting a proposal for continuation of this work. I would welcome any suggestions you may have in that regard. We are very anxious to cooperate with the University of Florida in this respect in any way possible.

Dr. J. D. Martsolf October 6, 1981 Page 3

Once again, I feel we have had a very productive project and am quite encouraged by the success which has been shown by Phase II of the freeze forecast technology research. I look forward to cooperating with you once again in the future and hope that we can identify some mechanism by which this research may be continued.

Sincerely yours,

C. T. Morrow Assoc. Prof.

CTM/ds

cc: H. V. Walton

Attachment

SATELLITE FROST FORECAST TECHNOLOGY APPLIED TO PENNSYLVANIA FOR MULTI-TASK AGRICULTURAL FORECASTING

I. Research Team

Name	Credentials	Specialty	Departmental Affiliation	Location
C. Morrow	Ph.D, P.E.	Engineering Team Leader	Agricultural Engineering	University Park
J. Russo	Ph.D	Climatology	Horticulture	University Park
C. Ritter	Ph.D	Pomology Extension	Horticulture	University Park
G. Hussey	Ph.D	Computers Information Network	College of Agriculture	University Park
G. Petersen	Ph.D	Remote Sensing Soil Genesis	Remote Sensing Lab, Agronomy	University Park
T. Carlson	Ph.D	Meteorology Remote Sensing	Meteorology Remote Sen. Lab	University Park
D. Thomson	Ph.D	Meteorology Instrumentation	Meteorology	University . Park
G. Greene, II	Ph.D	Pomologist	Horticulture	Biglervil.
G. Jubb, Jr.	Ph.D	Entomologist	Entomology	North East PA
S. Pennypacker	Ph.D	Plant Pathologist	Plant Pathologist	University Park

SATELLITE FROST FORECAST TECHEOLOGY APPLIED TO PENNSYLVANIA FOR MULTI-TASK AGRICULTURAL FORECASTING

II. Information Transfer for Phase I (Model Adaptation)

Note: Similar procedures to be followed for integrated pest management and similar applications.

SATELLITE FROST FORECAST TECHNOLOGY APPLIED TO PENNSYLVANIA FOR MULTI-TASK AGRICULTURAL FORECASTING

III. Real-Time Forecasting System

Note: Exact nature of outward links from host computer will be finalized during the course of the research project.