Wydział	Imię i nazwisko	Rok	Grupa
WIMilP	Mateusz Witkowski	II	4
Temat:		Prowadzący	
	ranie równań różniczkowych ego-Kutty: Huena i klasyczne	dr hab. inż. Hojny Marcin, prof. AGH	
Data	Data oddania	Data	OCENA
ćwiczenia	04.06.2020	zaliczenia	
28.05.2020			

1. Cel ćwiczenia

Celem ćwiczenia było zapoznanie się oraz implementacja sposobu rozwiązywania równań różniczkowych zwyczajnych używając metod Rungego-Kutty: Huena i klasycznej RK4.

2. Wprowadzenie teoretyczne

Metoda Huena jest ulepszoną wersją metody Eulera poznanej na poprzednich zajęciach. Główną modyfikacją jest to, że zamiast obliczać tylko stałą wartość na początku przedziału oblicza się również pochodną na końcu przedziału co daje efekty w postać dokładniejszych wyników w porównaniu do poprzedniej metody.

Pierwszym krokiem podczas korzystania z tej metody jest wyliczenie liczby koniecznych do wykonania korków przy pomocy wzoru:

$$N = \frac{b - a}{h}$$

Gdzie:

a – początek przedziału

b – koniec przedziału

h – wielkość ustalonego kroku

Wzór ogólny natomiast wygląda następująco:

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n))]$$

Gdzie:

$$f(x_n, y_n) = \frac{dy}{dx}$$

- n = 0,1,...,N
- h wielkość ustalonego kroku

Klasyczna metoda RK4 – zakładamy, że znane jest y(x) i chcemy wyznaczyć przybliżoną wartość y(x+h). Obliczamy wartości f(x,y(x)) w pewnych szczególnie dobranych punktach leżących w pobliżu krzywej rozwiązania w przedziale (x,x+h) i zastosowaniu odpowiednio dobranego wzoru złożonego z kombinacji wspomnianych wartości w celu oszacowania przyrostu y(x+h)-y(x).

Wzory Rungego-Kutty czwartego rzędu:

$$k_{1} = h \cdot f(x, y(x))$$

$$k_{2} = h \cdot f(x + \frac{1}{2}h, y(x) + \frac{1}{2}k_{1})$$

$$k_{3} = h \cdot f(x + \frac{1}{2}h, y(x) + \frac{1}{2}k_{2})$$

$$k_{4} = h \cdot f(x + h, y(x) + k_{3})$$

Ogólny wzór metody RK czwartego rzędu wygląda następująco:

$$y_{n+1} = y_n + (k_1 + 2k_2 + 2k_3 + k_4)/6$$

Gdzie:

- n = 0,1,...,N
- h wielkość ustalonego kroku

3. Kod programu

Zdefiniowano funkcję pomocniczą zwracającą wartość pochodnej w przekazanym do niej punkcie, co znacznie ułatwi nam pracę w przypadku modyfikacji kodu, gdyż będziemy chcieli rozpatrywać wiele różnych funkcji.

Rysunek 1. Funkcja wartości pochodnej.

Następnie zaimplementowano algorytm Huena w postaci funkcji przyjmującej za zmienne punkt początkowy – współrzędną x i y, kraniec interesującego nas przedziału oraz wielkość kroku wyznaczająca kolejne punkty. Na podstawie punktu początkowego, krańca przedziału i wielkości kroku wyliczono wartość N, czyli potrzebną liczbę iteracji do wykonania algorytmu. Utworzono pętlę for odpowiedzialną za wyliczanie i wypisywanie kolejnych x i y.

Rysunek 2. Implementacja metody Huena.

Dla metody RK4 również utworzyliśmy funkcję pomocniczą oraz obliczyliśmy N. Algorytm w każdej iteracji obliczał nowy zestaw wartości k oraz na ich podstawie interesujące nas wyniki.

```
|double fR(double x, double y) {    //Funkcja pomocnicza
    //return x * x + y;
    return x + y;
void RK4(double a, double b, double y0, double h) {
    double N = (b - a) / h; //wyliczamy liczbe iteracji
    double x = a; //przypisujemy x punkt startowy
    double y = y0; //przypisujemy parametr poczatkowy
    double k1,k2,k3,k4;
    for (size_t i = 0; i < N; i++)
        //Obliczanie kolejnych wartosci k
        k1 = h * fR(x, y);
        cout << "k1: " <<setprecision(6) << k1 << endl;</pre>
        k2 = h * fR(x + 0.5 * h, y + 0.5 * k1);
        cout << "k2: " << k2 << endl;
        k3 = h * fR(x + 0.5 * h, y + 0.5 * k2);
        cout << "k3: " << k3 << endl;
        k4 = h * fR(x + h, y + k3);
        cout << "k4: " << k4 << endl;
        y = y + (k1 + 2 * k2 + 2 * k3 + k4)/6; //wyliczamy i wypisujemy kolejne y
        cout << "y[" << i + 1 << "] = " << y << endl;
                                 //wyliczamy i wypisujemy kolejne x
        cout << x[" << i + 1 << "] = " << x << endl;
        cout << endl;</pre>
```

Rysunek 3. Implementacja metody RK4.

W funkcji main przed i po wywołaniu funkcji Huen bądź RK4 zdefiniowano zmienne pobierające moment czasowy w celu obliczenia oraz wyświetlenia czasu potrzebnego do zrealizowania algorytmu.

Rysunek 4. Funkcja main.

Cały kod:

```
double fh(double x, double y) { //Funkcja pomocnicza
    return (cos(x) - sin(x) - y);
    //return x * x + y;
}

void Huen(double a, double b, double y0, double h) {
    double N = (b - a) / h; //wyliczamy liczbe iteracji
    double x = a; //przypisujemy x punkt startowy
    double y = y0; //przypisujemy parametr poczatkowy
    for (size_t i = 0; i < N; i++)
    {
        y = y + (h/2) * (fh(x, y) + fh(x+h, y + h * fh(x, y))); //wyliczamy i wypisujemy kolejne y
        cout << "y[" << i + 1 << "] = " << y << endl;
        x = x + h; //wyliczamy i wypisujemy kolejne x
        cout << "x[" << i + 1 << "] = " << x << endl;
        cout << endl;
    }
}</pre>
```

Rysunek 5. Cały kod cz.1

```
double fR(double x, double y) { //Funkcja pomocnicza
    //return x * x + y;
    return x + y;
void RK4(double a, double b, double y0, double h) {
   double N = (b - a) / h; //wyliczamy liczbe iteracji
    double x = a; //przypisujemy x punkt startowy
    double y = y0; //przypisujemy parametr poczatkowy
   double k1,k2,k3,k4;
    for (size t i = 0; i < N; i++)
       //Obliczanie kolejnych wartosci k
       k1 = h * fR(x, y);
       cout << "k1: " <<setprecision(6) << k1 << endl;</pre>
       k2 = h * fR(x + 0.5 * h, y + 0.5 * k1);
       cout << "k2: " << k2 << endl;
       k3 = h * fR(x + 0.5 * h, y + 0.5 * k2);
       cout << "k3: " << k3 << endl;
       k4 = h * fR(x + h, y + k3);
       cout << "k4: " << k4 << endl;
       y = y + (k1 + 2 * k2 + 2 * k3 + k4)/6; //wyliczamy i wypisujemy kolejne y
       cout << "y[" << i + 1 << "] = " << y << endl;
                               //wyliczamy i wypisujemy kolejne x
       cout << "x[" << i + 1 << "] = " << x << endl;
       cout << endl;</pre>
int main() {
   RK4(0, 0.2, 1, 0.1);
   auto end = std::chrono::steady_clock::now();
   std::chrono::duration<double, milli> elapsed_seconds = end - start;
   std::cout << "Czas wykonania algorytmu: " << elapsed_seconds.count() << "ms\n";</pre>
   getchar(); getchar();
   return 0;
```

Rysunek 6. Cały kod cz.2

4. Testy

W celu zweryfikowania wyników programu dokonano testów na podanych w instrukcji parametrach oraz na własnym równaniu różniczkowym. Wszystkie wyniki porównano z rozwiązaniami dokładnymi oraz wykreślono odpowiednie wykresy przy użyciu programu Microsoft Excel.

Testy metody Huena

Test 1 – Równanie różniczkowe z instrukcji.

Przypadek A.

Tabela 1.Dane dla testu 1, przypadku A.

x_0	y_0	b	h	dy	Rozwiązanie
				\overline{dx}	analityczne
0	2	0.3	0.1	$\cos(x) - \sin(x) - y$	$e^{-x} + \cos(x)$

Wartości zwrócone przez program:

```
D:\STUDIA\IV_Semestr\Metody\zajecia13\H_RK4\Debug\H_RK4.exe

y[1] = 1.89976
x[1] = 0.1

y[2] = 1.79863
x[2] = 0.2

y[3] = 1.69592
x[3] = 0.3

Czas wykonania algorytmu: 3.1088ms
```

Rysunek 7. Wartości zwrócone przez program dla h = 0.1.

Punkty		Program		EXP(-X)	+ COS(X)
x0	0	y0	2	y0	2
x1	0,1	y1	1,899759	y1	1,899842
x2	0,2	y2	1,798634	y2	1,798797
x3	0,3	у3	1,695917	у3	1,696155

Rysunek 8. Wyniki otrzymane w Excelu.

Rysunek 9. Wykres porównujący wartości wyliczone w programie z wartościami dokładnymi.

Przypadek B.

Tabela 2.Dane dla testu 1, przypadku B.

\mathfrak{r}_0	y_0	b	h	<u>dy</u>	Rozwiązanie
				dx	analityczne
0	2	0.3	0.05	$\cos(x) - \sin(x) - y$	$e^{-x} + \cos(x)$

```
D:\STUDIA\IV_Semestr\Metody\zajecia13\H_RK4\Debug\H_RK4.exe

y[1] = 1.94997
x[1] = 0.05

y[2] = 1.89982
x[2] = 0.1

y[3] = 1.84945
x[3] = 0.15

y[4] = 1.79876
x[4] = 0.2

y[5] = 1.74766
x[5] = 0.25

y[6] = 1.6961
x[6] = 0.3

Czas wykonania algorytmu: 3.9691ms
```

Rysunek 10. Wartości zwrócone przez program dla h = 0.05.

Punkty		Program		EXP(-X)	+ COS(X)
x0	0	y0	2	y0	2
x1	0,05	y1	1,949969	y1	1,94998
x2	0,1	y2	1,899821	y2	1,899842
x3	0,15	у3	1,849448	у3	1,849479
x4	0,2	y4	1,798757	y4	1,798797
x5	0,25	y5	1,747663	y5	1,747713
х6	0,3	y6	1,696096	у6	1,696155

Rysunek 11.Wyniki otrzymane w Excelu.

Rysunek 12. Wykres porównujący wartości wyliczone w programie z wartościami dokładnymi.

Przypadek C.

Tabela 3.Dane dla testu 1, przypadku C.

x_0	y_0	b	h	$\frac{dy}{dx}$	Rozwiązanie
				dx	analityczne
0	2	0.3	0.01	$\cos(x) - \sin(x) - y$	$e^{-x} + \cos(x)$

```
D:\STUDIA\IV_Semestr\Metody\zajecia13\H_RK4\Debug\H_RK4.exe
y[22] = 1.77841
x[22] = 0.22
(y[23] = 1.7682
(x[23] = 0.23
y[24] = 1.75796
x[24] = 0.24
y[25] = 1.74771
x[25] = 0.25
y[26] = 1.73744
x[26] = 0.26
y[27] = 1.72715
x[27] = 0.27
y[28] = 1.71684
x[28] = 0.28
y[29] = 1.70651
x[29] = 0.29
y[30] = 1.69615
x[30] = 0.3
Czas wykonania algorytmu: 40.7795ms
```

Rysunek 13. Wartości zwrócone przez program dla h = 0.01.

Punkty		Program		EXP(-X)	+ COS(X)
x0	0	y0	2	y0	2
x1	0,01	у1	1,99	y1	1,99
x2	0,02	y2	1,979999	y2	1,979999
x3	0,03	у3	1,969995	у3	1,969996
x4	0,04	у4	1,959989	y4	1,95999
x5	0,05	у5	1,949979	y5	1,94998
х6	0,06	у6	1,939965	у6	1,939965
x7	0,07	у7	1,929944	у7	1,929945
x8	0,08	у8	1,919917	y8	1,919918
x9	0,09	у9	1,909883	y9	1,909884
x10	0,1	y10	1,899841	y10	1,899842
x11	0,11	y11	1,889789	y11	1,88979
x12	0,12	y12	1,879728	y12	1,879729
x13	0,13	y13	1,869656	y13	1,869657
x14	0,14	y14	1,859573	y14	1,859574
x15	0,15	y15	1,849478	y15	1,849479
x16	0,16	y16	1,83937	y16	1,839371
x17	0,17	y17	1,829248	y17	1,82925
x18	0,18	y18	1,819112	y18	1,819114
x19	0,19	y19	1,808962	y19	1,808963
x20	0,2	y20	1,798796	y20	1,798797
x21	0,21	y21	1,788613	y21	1,788615
x22	0,22	y22	1,778414	y22	1,778416
x23	0,23	y23	1,768198	y23	1,7682
x24	0,24	y24	1,757964	y24	1,757966
x25	0,25	y25	1,747711	y25	1,747713
x26	0,26	y26	1,73744	y26	1,737442
x27	0,27	y27	1,727148	y27	1,72715
x28	0,28	y28	1,716837	y28	1,716839
x29	0,29	y29	1,706505	y29	1,706507
x30	0,3	y30	1,696152	y30	1,696155

Rysunek 14.Wyniki otrzymane w Excelu.

Rysunek 15. Wykres porównujący wartości wyliczone w programie z wartościami dokładnymi.

Test 2 – Własne równanie różniczkowe.

Przypadek A.

Tabela 4.Dane dla testu 2, przypadku A.

x_0	y_0	b	h	<u>dy</u>	Rozwiązanie
				dx	analityczne
0	0.1	0.3	0.1	$x^2 + y$	$2,1*e^{x}-x^{2}-2x-2$

```
D:\STUDIA\IV_Semestr\Metody\zajecia13\H_RK4\Debug\H_RK4.exe

y[1] = 0.111
x[1] = 0.1

y[2] = 0.125205
x[2] = 0.2

y[3] = 0.145052
x[3] = 0.3

Czas wykonania algorytmu: 2.6919ms
```

Rysunek 15. Wartości zwrócone przez program dla h = 0.1.

Wartości obliczone w Excelu:

Punkty		Program		2,1*EXP(X) - x^2 -2x -2
x0	0	y0	0,1	y0	0,1
x1	0,1	y1	0,111	y1	0,110858928
x2	0,2	y2	0,125205	y2	0,124945792
x3	0,3	у3	0,145052	у3	0,144703496

Rysunek 16. Wyniki otrzymane w Excelu.

Wykres:

Rysunek 17. Wykres porównujący wartości wyliczone w programie z wartościami dokładnymi.

Przypadek B.

Tabela 5.Dane dla testu 2, przypadku B.

x_0	y_0	b	h	$\frac{dy}{dx}$	Rozwiązanie analityczne
0	0.1	0.3	0.05	$x^2 + y$	$2,1*e^{x}-x^{2}-2x-2$

Wartości zwrócone przez program:

```
D:\STUDIA\IV_Semestr\Metody\zajecia13\H_RK4\Debug\H_RK4.exe

y[1] = 0.105188
x[1] = 0.05

y[2] = 0.110894
x[2] = 0.1

y[3] = 0.117402
x[3] = 0.15

y[4] = 0.12501
x[4] = 0.2

y[5] = 0.134029
x[5] = 0.25

y[6] = 0.144789
x[6] = 0.3

Czas wykonania algorytmu: 4.4866ms
```

Rysunek 18. Wartości zwrócone przez program dla h = 0.05.

Punkty		Program		2,1*EXP(X	() - x^2 -2x -2
x0	0	y0	0,1	y0	0,1
x1	0,05	y1	0,105188	y1	0,1051693
x2	0,1	y2	0,110894	y2	0,11085893
x3	0,15	у3	0,117402	у3	0,11735191
x4	0,2	y4	0,12501	y4	0,12494579
x5	0,25	y5	0,134029	y5	0,13395338
х6	0,3	y6	0,144789	y6	0,1447035

Rysunek 19. Wyniki otrzymane w Excelu.

Rysunek 20. Wykres porównujący wartości wyliczone w programie z wartościami dokładnymi.

Przypadek C.

Tabela 6.Dane dla testu 2, przypadku C.

x_0	y_0	b	h	dy	Rozwiązanie
				\overline{dx}	analityczne
0	0.1	0.3	0.01	$x^2 + y$	$2,1*e^{x}-x^{2}-2x-2$

```
D:\STUDIA\IV_Semestr\Metody\zajecia13\H_RK4\Debug\H_RK4.exe

y[22] = 0.128364
x[22] = 0.22

y[23] = 0.130163
x[23] = 0.23

y[24] = 0.132026
x[24] = 0.24

y[25] = 0.133956
x[25] = 0.25

y[26] = 0.135956
x[26] = 0.26

y[27] = 0.138028
x[27] = 0.27

y[28] = 0.140176
x[28] = 0.28

y[29] = 0.142401
x[29] = 0.29

y[30] = 0.144707
x[30] = 0.3

Czas wykonania algorytmu: 37.9651ms
```

Rysunek 21. Wartości zwrócone przez program dla h = 0.01.

Punkty		Program		2,1*EXP	X) - x^2 -2x -2
x0	0	y0	0,1	y0	0,1
x1	0,01	y1	0,1010055	y1	0,101005351
x2	0,02	y2	0,10202311	y2	0,102022814
x3	0,03	у3	0,103054963	у3	0,103054521
x4	0,04	у4	0,10410321	у4	0,104102626
x5	0,05	у5	0,105170027	у5	0,105169302
х6	0,06	уб	0,106257611	у6	0,106256748
x7	0,07	у7	0,10736818	у7	0,107367181
x8	0,08	у8	0,108503975	y8	0,108502842
x9	0,09	у9	0,10966726	у9	0,109665996
x10	0,1	y10	0,110860321	y10	0,110858928
x11	0,11	y11	0,112085467	y11	0,112083948
x12	0,12	y12	0,113345031	y12	0,113343388
x13	0,13	y13	0,114641369	y13	0,114639605
x14	0,14	y14	0,11597686	y14	0,115974978
x15	0,15	y15	0,117353907	y15	0,11735191
x16	0,16	y16	0,118774939	y16	0,118772829
x17	0,17	y17	0,120242407	y17	0,120240188
x18	0,18	y18	0,121758788	y18	0,121756463
x19	0,19	y19	0,123326584	y19	0,123324155
x20	0,2	y20	0,124948321	y20	0,124945792
x21	0,21	y21	0,126626552	y21	0,126623926
x22	0,22	y22	0,128363854	y22	0,128361134
x23	0,23	y23	0,13016283	y23	0,130160021
x24	0,24	y24	0,132026112	y24	0,132023216
x25	0,25	y25	0,133956354	y25	0,133953375
x26	0,26	y26	0,13595624	y26	0,135953182
x27	0,27	y27	0,138028481	y27	0,138025347
x28	0,28	y28	0,140175812	y28	0,140172606
x29	0,29	y29	0,142400999	y29	0,142397725
x30	0,3	y30	0,144706834	y30	0,144703496

Rysunek 22.Wyniki otrzymane w Excelu.

Rysunek 23. Wykres porównujący wartości wyliczone w programie z wartościami dokładnymi.

Testy metody RK4

Test 1 – Równanie różniczkowe z instrukcji.

Przypadek A.

Tabela 7.Dane dla testu 1, przypadku A.

<i>x</i> ₀	y_0	b	h	$\frac{dy}{dx}$	Rozwiązanie analityczne
0	1	0.2	0.1	x + y	$2e^{x} - x - 1$

```
D:\STUDIA\IV_Semestr\Metody\zajecia13\H_RK4\Debug\H_RK4.exe
k1: 0.1
k2: 0.11
k3: 0.1105
k4: 0.12105
y[1] = 1.11034
x[1] = 0.1
k1: 0.121034
k2: 0.132086
k3: 0.132638
k4: 0.144298
y[2] = 1.24281
x[2] = 0.2
Czas wykonania algorytmu: 3.3374ms
```

Rysunek 24. Wartości zwrócone przez program dla h = 0.1.

Wartości obliczone w Excelu:

Punkty						Program		2*EXP()	K) - X - 1
x0	0	k1	k2	k3	k4	y0	1	y0	1
x1	0,1	0,1	0,11	0,1105	0,12105	y1	1,110342	y1	1,110342
x2	0,2	0,121034	0,132086	0,132638	0,144298	y2	1,242805	y2	1,242806

Rysunek 25. Wyniki otrzymane w Excelu.

Wykres:

Rysunek 26. Wykres porównujący wartości wyliczone w programie z wartościami dokładnymi.

Przypadek B.

Tabela 8.Dane dla testu 1, przypadku B.

x_0	y_0	b	h	$\frac{dy}{dx}$	Rozwiązanie analityczne
0	1	0.2	0.05	x + y	$2e^{x} - x - 1$

Wartości zwrócone przez program:

```
D:\STUDIA\IV_Semestr\Metody\zajecia13\H_RK4\Debug\H_RK4.exe
k1: 0.05
k2: 0.0525
k3: 0.0525625
k4: 0.0551281
y[1] = 1.05254
x[1] = 0.05
k1: 0.0551271
k2: 0.0577553
k3: 0.057821
k4: 0.0605182
y[2] = 1.11034
x[2] = 0.1
k1: 0.0605171
k2: 0.06328
k3: 0.0633491
k4: 0.0661845
y[3] = 1.17367
x[3] = 0.15
k1: 0.0661834
k2: 0.069088
k3: 0.0691606
k4: 0.0721415
y[4] = 1.24281
x[4] = 0.2
Czas wykonania algorytmu: 7.6875ms
```

Rysunek 27. Wartości zwrócone przez program dla h = 0.05.

Punkty						Program		2*EXP()	() - X - 1
x0	0	k1	k2	k3	k4	y0	1	y0	1
x1	0,05	0,05	0,0525	0,052563	0,055128	y1	1,052542	y1	1,052542
x2	0,1	0,055127	0,057755	0,057821	0,060518	y2	1,110342	y2	1,110342
x3	0,15	0,060517	0,06328	0,063349	0,066185	у3	1,173668	у3	1,173668
x4	0,2	0,066183	0,069088	0,069161	0,072141	y4	1,242805	y4	1,242806

Rysunek 28.Wyniki otrzymane w Excelu.

Rysunek 29. Wykres porównujący wartości wyliczone w programie z wartościami dokładnymi.

Przypadek C.

Tabela 9.Dane dla testu 1, przypadku C.

x_0	y_0	b	h	dy	Rozwiązanie
				\overline{dx}	analityczne
0	1	0.2	0.01	x + y	$2e^x-x-1$

```
D:\STUDIA\IV_Semestr\Metody\zajecia13\H_RK4\Debug\H_RK4.exe
k1: 0.0134702
k2: 0.0135876
k3: 0.0135882
k4: 0.0137061
y[17] = 1.20061
x[17] = 0.17
k1: 0.0137061
k2: 0.0138246
k3: 0.0138252
k4: 0.0139443
y[18] = 1.21443
x[18] = 0.18
k1: 0.0139443
k2: 0.0140641
k3: 0.0140647
k4: 0.014185
y[19] = 1.2285
x[19] = 0.19
k1: 0.014185
k2: 0.0143059
k3: 0.0143065
k4: 0.0144281
y[20] = 1.24281
x[20] = 0.2
Czas wykonania algorytmu: 87.2118ms
```

Rysunek 30. Wartości zwrócone przez program dla h = 0.01.

Punkty							Program		2*EXP()	X) - X - 1
x0	0	k:	1	k2	k3	k4	y0	1	y0	1
x1	0,01		0,01	0,0101	0,010101	0,010201	y1	1,0101	y1	1,0101
x2	0,02	(0,010201	0,010302	0,010303	0,010404	y2	1,020403	y2	1,020403
х3	0,03	(0,010404	0,010506	0,010507	0,010609	у3	1,030909	у3	1,030909
x4	0,04	(0,010609	0,010712	0,010713	0,010816	y4	1,041622	y4	1,041622
x5	0,05	(0,010816	0,01092	0,010921	0,011025	y5	1,052542	y5	1,052542
х6	0,06	(0,011025	0,011131	0,011131	0,011237	у6	1,063673	у6	1,063673
x7	0,07	(0,011237	0,011343	0,011343	0,01145	у7	1,075016	у7	1,075016
x8	0,08		0,01145	0,011557	0,011558	0,011666	y8	1,086574	y8	1,086574
x9	0,09	(0,011666	0,011774	0,011775	0,011883	у9	1,098349	у9	1,098349
x10	0,1	(0,011883	0,011993	0,011993	0,012103	y10	1,110342	y10	1,110342
x11	0,11	(0,012103	0,012214	0,012214	0,012326	y11	1,122556	y11	1,122556
x12	0,12	(0,012326	0,012437	0,012438	0,01255	y12	1,134994	y12	1,134994
x13	0,13		0,01255	0,012663	0,012663	0,012777	y13	1,147657	y13	1,147657
x14	0,14	(0,012777	0,01289	0,012891	0,013005	y14	1,160548	y14	1,160548
x15	0,15	(0,013005	0,013121	0,013121	0,013237	y15	1,173668	y15	1,173668
x16	0,16	(0,013237	0,013353	0,013353	0,01347	y16	1,187022	y16	1,187022
x17	0,17		0,01347	0,013588	0,013588	0,013706	y17	1,20061	y17	1,20061
x18	0,18	(0,013706	0,013825	0,013825	0,013944	y18	1,214435	y18	1,214435
x19	0,19	(0,013944	0,014064	0,014065	0,014185	y19	1,228499	y19	1,228499
x20	0,2	(0,014185	0,014306	0,014307	0,014428	y20	1,242806	y20	1,242806

Rysunek 31. Wyniki otrzymane w Excelu.

Rysunek 32. Wykres porównujący wartości wyliczone w programie z wartościami dokładnymi.

Test 2 – Własne równanie różniczkowe.

Przypadek A.

Tabela 10.Dane dla testu 2, przypadku A.

x_0	y_0	b	h	<u>dy</u>	Rozwiązanie
				dx	analityczne
0	0.1	0.2	0.1	$x^2 + y$	$2,1*e^x-x^2-2x-2$

```
D:\STUDIA\IV_Semestr\Metody\zajecia13\H_RK4\Debug\H_RK4.exe

k1: 0.01

k2: 0.01075

k3: 0.0107875

k4: 0.0120788

y[1] = 0.110859

x[1] = 0.1

k1: 0.0120859

k2: 0.0139402

k3: 0.0140329

k4: 0.0164892

y[2] = 0.124946

x[2] = 0.2

Czas wykonania algorytmu: 8.0589ms
```

Rysunek 33. Wartości zwrócone przez program dla h = 0.1.

Wartości obliczone w Excelu:

Punkty						Program		2,1*EXP(X) - x^2 -2x -2
x0	0	k1	k2	k3	k4	y0	0,1	y0	0,1
x1	0,1	0,01	0,01075	0,010788	0,012079	y1	0,110859	y1	0,110858928
x2	0,2	0,012086	0,01394	0,014033	0,016489	y2	0,124946	y2	0,124945792

Rysunek 34. Wyniki otrzymane w Excelu.

Wykres:

Rysunek 35. Wykres porównujący wartości wyliczone w programie z wartościami dokładnymi.

Przypadek B.

Tabela 11.Dane dla testu 2, przypadku B.

x_0	y_0	b	h	<u>dy</u>	Rozwiązanie
				dx	analityczne
0	0.1	0.2	0.05	$x^2 + y$	$2,1*e^x-x^2-2x-2$

Wartości zwrócone przez program:

```
D:\STUDIA\IV_Semestr\Metody\zajecia13\H_RK4\Debug\H_RK4.exe
k1: 0.005
k2: 0.00515625
k3: 0.00516016
k4: 0.00538301
y[1] = 0.105169
x[1] = 0.05
k1: 0.00538347
k2: 0.0056743
k3: 0.00568157
k4: 0.00604254
y[2] = 0.110859
x[2] = 0.1
k1: 0.00604295
k2: 0.00647527
k3: 0.00648608
k4: 0.00699225
y[3] = 0.117352
x[3] = 0.15
k1: 0.0069926
k2: 0.00757366
k3: 0.00758819
k4: 0.008247
y[4] = 0.124946
x[4] = 0.2
Czas wykonania algorytmu: 14.1607ms
```

Rysunek 36. Wartości zwrócone przez program dla h = 0.05.

Punkty					
x0	0	k1	k2	k3	k4
x1	0,05	0,005	0,005156	0,00516	0,005383
x2	0,1	0,005383	0,005674	0,005682	0,006043
х3	0,15	0,006043	0,006475	0,006486	0,006992
x4	0,2	0,006993	0,007574	0,007588	0,008247

Rysunek 37. Wyniki otrzymane w Excelu.

Rysunek 38. Wykres porównujący wartości wyliczone w programie z wartościami dokładnymi.

Przypadek C.

Tabela 12.Dane dla testu 2, przypadku C.

x_0	<i>y</i> ₀	b	h	<u>dy</u>	Rozwiązanie
				dx	analityczne
0	0.1	0.2	0.01	$x^2 + y$	$2,1*e^{x}-x^{2}-2x-2$

```
D:\STUDIA\IV_Semestr\Metody\zajecia13\H_RK4\Debug\H_RK4.exe
k1: 0.00144373
k2: 0.0014672
k3: 0.00146731
k4: 0.0014914
y[17] = 0.12024
x[17] = 0.17
k1: 0.0014914
k2: 0.00151611
k3: 0.00151623
k4: 0.00154156
y[18] = 0.121756
x[18] = 0.18
k1: 0.00154156
k2: 0.00156752
k3: 0.00156765
k4: 0.00159424
y[19] = 0.123324
x[19] = 0.19
k1: 0.00159424
k2: 0.00162146
k3: 0.0016216
k4: 0.00164946
y[20] = 0.124946
x[20] = 0.2
Czas wykonania algorytmu: 70.3759ms
```

Rysunek 39. Wartości zwrócone przez program dla h = 0.01.

Punkty								Progr	Program	Program 2	Program 2,1*EXP(X)
x0	0	k1	1	k2	k3	k4	l	y0	у0 0,1	y0 0,1 y0	y0 0,1 y0
x1	0,01		0,001	0,001005	0,001005	0,001011		y1	y1 0,101005	y1 0,101005 y1	y1 0,101005 y1
x2	0,02	0	0,001011	0,001017	0,001017	0,001024	١	y2	y2 0,102023	y2 0,102023 y2	y2 0,102023 y2
x3	0,03	0	0,001024	0,001032	0,001032	0,00104	ı	у3	y3 0,103055	y3 0,103055 y3	y3 0,103055 y3
x4	0,04		0,00104	0,001048	0,001048	0,001057	I	у4	y4 0,104103	y4 0,104103 y4	y4 0,104103 y4
x5	0,05	0	0,001057	0,001067	0,001067	0,001077		у5	y5 0,105169	y5 0,105169 y5	y5 0,105169 y5
хб	0,06	0	0,001077	0,001087	0,001087	0,001099		у6	y6 0,106257	y6 0,106257 y6	y6 0,106257 y6
x7	0,07	0	0,001099	0,00111	0,00111	0,001123		у7	y7 0,107367	y7 0,107367 y	у7 0,107367 у7
x8	0,08	0	0,001123	0,001136	0,001136	0,001149	l	у8	y8 0,108503	y8 0,108503 y8	y8 0,108503 y8
x9	0,09	0	0,001149	0,001163	0,001163	0,001178		у9	y9 0,109666	y9 0,109666 ys	y9 0,109666 y9
x10	0,1	0	0,001178	0,001193	0,001193	0,001209	l	y10	y10 0,110859	y10 0,110859 y:	y10 0,110859 y10
x11	0,11	0	0,001209	0,001225	0,001225	0,001242		y11	y11 0,112084	y11 0,112084 y1	y11 0,112084 y11
x12	0,12	0	0,001242	0,001259	0,001259	0,001277		y12	y12 0,113343	y12 0,113343 y1	y12 0,113343 y12
x13	0,13	0	0,001277	0,001296	0,001296	0,001315	I	y13	y13 0,11464	y13 0,11464 y:	y13 0,11464 y13
x14	0,14	0	0,001315	0,001335	0,001335	0,001356	ĺ	y14	y14 0,115975	y14 0,115975 y1	y14 0,115975 y14
x15	0,15	0	0,001356	0,001377	0,001377	0,001399		y15	y15 0,117352	y15 0,117352 y:	y15 0,117352 y15
x16	0,16	0	0,001399	0,001421	0,001421	0,001444		y16	y16 0,118773	y16 0,118773 y:	y16 0,118773 y16
x17	0,17	0	0,001444	0,001467	0,001467	0,001491		y17	y17 0,12024	y17 0,12024 y:	y17 0,12024 y17
x18	0,18	0	0,001491	0,001516	0,001516	0,001542		y18	y18 0,121756	y18 0,121756 y1	y18 0,121756 y18
x19	0,19	0	0,001542	0,001568	0,001568	0,001594		y19	y19 0,123324	y19 0,123324 y	y19 0,123324 y19
x20	0,2	0	0,001594	0,001621	0,001622	0,001649		y20	y20 0,124946	y20 0,124946 y2	y20 0,124946 y20

Rysunek 40.Wyniki otrzymane w Excelu.

Rysunek 41. Wykres porównujący wartości wyliczone w programie z wartościami dokładnymi.

5. Wnioski

Metody wykorzystane w ćwiczeniu są ulepszonymi wersjami metody Eulera opracowanej podczas poprzedniego ćwiczenia. Obydwie cechują się dużo wyższą dokładnością w stosunku do najprostszej numerycznej metody obliczania równania różniczkowego pierwszego rzędu. Dokładność ta jednak jest silnie uzależniona od wielkości przyjętego kroku, szczególnie ma to znaczenie w przypadku metody Huena, której wyniki mocno odbiegają od rzeczywistości jeżeli wybierzemy zbyt duże "h", wyniki RK4 również w takim przypadku nie będą dokładne ale w zdecydowanie mniejszym stopniu. Dużą zaletą algorytmu Huena jest niski czas jego wykonania. Analizując testy można zauważy, że algorytm ten dla większej o 10 liczy iteracji(N), zastosowany dla takiej samej funkcji wykonała się niemal dwa razy szybciej niż algorytm RK4. Reasumując, korzystając z metody RK4 uzyskamy bardzo precyzyjne wyniki nawet w przypadku względnie dużych kroków, natomiast używając funkcji Huena czas wykonania będzie znacznie krótszy.