YIEPI meets DNA: on vehicle datasets analysis

on-going progress, findings and record-matching strategies

YIEPI meets DNA: on vehicle datasets analysis

lets go.

vehicle datasets analysis

we all want to identify sold vehicles...

we all want to ok, a glimpse on the data! vehicles...

some other quick insights...

hey, what about the vin number?

hey, what about the vin number?

we all want to identify sold vehicles...

we all want to ok, so let's match the vins! vehicles...

ok, Super VIN is our first hero

ok, Super VIN is our first hero

quick hypotheses:

quick hypotheses: - maybe model matches;

quick hypotheses: - maybe model matches;

98.70% of the cases!

quick hypotheses:

- maybe model matches;
- maybe mileage matches;

z-score to the rescue

nothing fancy, just how many std deviations away from mean a point can be, before it is seen as "outlier"

rule of thumb, z-score in [1,3]

rule of thumb, z-score in [1,3]

- maybe model matches;
- maybe mileage matches;
- maybe registration year matches;

- maybe model matches;
- maybe mileage matches;
- maybe registration year matches;

99.80% of the cases!

- maybe model matches;
- maybe mileage matches;
- maybe registration year matches;
- maybe more features match;

- maybe model matches;
- maybe mileage matches;

maybo rogictration waar matches

correlation matrix as a rescue tool

- maybe model matches;
- maybe mileage matches;

correlation matrix as a rescue tool

maybo rogictration war match

better analyzed with Spearman method

B2C		B2B
initialRegistrationYear	99.85%	registration_year
initial Registration Month	99.25%	registration_month
odometer	99.60%	mileage
firstPrice	96.98%	sales_price
lastPrice	97.86%	sales_price
engineSize	99.87%	engine_size
enginePower	99.72%	engine_power
engineCylinderCount	99.51%	engine_cylinders
gearCount	97.63%	num_gears

time for a research question:

RQ1: Due to the proximity of these features, can the matched 60K points be reidentified against B2C but without VIN?

good idea, bad results.

euclidean distance

euclidean distance

mileage, engine_size, engine_power, sales_price, registration_year, registration_month, model*

Hard Fiffered euclidean distance

mileage, engine_size, engine_power, sales_price, registration_year, registration_month, model*

on a first attempt to rematch the "golden dataset":

when searching for closest point against full B2C dataset

when searching for closest point against 60K B2C dataset

but wait a minute!

YIEPI — Flight #5 — DNA Remarketing — B

RQ1: Due to the proximity of these features, can the matched 60K points be reidentified against B2C but without VIN?

Answer: Apparently not. (**RQ1.1**) But what if we boost the continuous variables to distantiate from the non-matching points?

the incredible Mileage Booster

Hard Fiffered euclidean distance

mileage, engine_size, engine_power, sales_price, registration_year, registration_month, model*

Hard Fiffered Poosted Euclidean distance

MILEAGE, engine_size, engine_power, sales_price, registration year, registration month, model*

methodology: - grid search;

methodology: - grid search;

arbitrary values inside interval [2, 40.000]

- grid search;
- matches;

- grid search;
- matches;

against hardly-filtered B2C dataset! (year / month / model)

- grid search;
- matches;
- likelihood;

- grid search;
- matches;
- likelihood;

different TOP N rankings, useful to assist on labeling unknown data (± 200K B2B records)

- grid search;
- matches;
- likelihood;
- acceptance threshold.

- grid search;
- matches;
- likelihood;
- acceptance threshold.

80% as challenge for useful results (for exact matches, or for likelihood — target in TOP N)

this is quite a lot to process!

let's not forget the amount of records with zero mileage delta!

Mileage Boost	TOP 1	TOP 2	TOP 3	TOP 5	TOP 10	TOP 20	TOP 50	TOP 100
2	4%	8%	12%	18%	30%	45%	69%	84%
6	11%	19%	26%	37%	54%	71%	88%	94%
10	16%	27%	35%	48%	66%	81%	92%	96%
20	24%	39%	49%	63%	79%	89%	95%	96%
50	37%	56%	67%	79%	89%	94%	96%	96%
100	46%	66%	76%	85%	92%	94%	96%	96%
150	51%	70%	79%	87%	92%	94%	96%	96%
200	54%	73%	81%	87%	92%	94%	96%	96%
250	55%	74%	81%	88%	92%	94%	96%	96%
300	57%	75%	82%	88%	92%	94%	96%	96%
500	59%	76%	82%	87%	92%	94%	96%	96%
1000	61%	76%	82%	87%	91%	94%	96%	96%
2000	61%	76%	81%	86%	91%	94%	96%	96%
3000	61%	76%	81%	86%	91%	94%	96%	96%
5000	61%	76%	81%	85%	90%	94%	96%	96%
10000	61%	75%	81%	85%	90%	94%	96%	96%
40000	61%	75%	80%	85%	90%	94%	96%	96%

Mileage Boost	TOP 1	TOP 2	TOP 3	TOP 5	TOP 10	TOP 20	TOP 50	TOP 100
2	4%	8%	12%	18%	30%	45%	69%	84%
6	11%	19%	26%	37%	54%	71%	88%	94%
10	16%	27%	35%	48%	66%	81%	92%	96%

short info: boosting sales_price did not prove successful:-(

3000	61%	76%	81%	86%	91%	94%	96%	96%
5000	61%	76%	81%	85%	90%	94%	96%	96%
10000	61%	75%	81%	85%	90%	94%	96%	96%
40000	61%	75%	80%	85%	90%	94%	96%	96%

Mileage Boost	TOP 1	TOP 2	TOP 3	TOP 5	TOP 10	TOP 20	TOP 50	TOP 100
2	4%	8%	12%	18%	30%	45%	69%	84%
6	11%	19%	26%	37%	54%	71%	88%	94%
10	16%	27%	35%	48%	66%	81%	92%	96%

short info: boosting sales_price did not prove successful:-(

what if we "degraded" this feature, then? (idea)

40000 61% 75% 80% 85% 90% 94% 96% 96%

pause for a quick breath...

can we sketch a pipeline?

-TOP 1 == VIN;

- TOP 1 == VIN;
- Reduce dataset for non-matching VINS;

of course, the set of features can be revisited!

- **TOP 1** == **VIN**;
- Reduce dataset for non-matching VINS;
- Use boosted distance to output likelihood TOP N;

- TOP 1 == VIN;

- Reduce dataset for non-matching VINS;

- Use boosted distance to output likelihood — TOP N;

focusing on statistical no complex n.h. approach, no complex n.h.

- TOP 1 == VIN;
- Reduce dataset for non-matching VINS;
- Use boosted distance to output likelihood TOP N;
- Input likelihood on a second (or more) model(s): best probable B2C match.

- -TOP 1 == VIN;
- Reduce dataset for non-matching VINS;
- Use boosted distance to output likelihood TOP N;
- Input likelihood on a second (or more) model(s): best probable B2C match.

- TOP 1 == VIN;
- Reduce dataset for non-matching VINS;
- Use boosted distance to output likelihood TOP N;
- Input likelihood on a second (or more) model(s): best probable B2C match.

to be continued...

Further superheroes to be unlocked...

to be continued.

