Exercice

Une mole de gaz parfait initialement à l'état A (P_1, V_1, T_1) subit les transformations suivantes :

Compression isotherme quasi-statique de l'état A à l'état B (P_2, V_2, T_2) Echauffement à volume constant de l'état B à l'état C (P_3, V_3, T_3) Détente adiabatique réversible de l'état C à l'état A.

On pose
$$a = \frac{V_1}{V_2}$$
 et $\gamma = \frac{C_p}{C_p}$

 C_p et C_v sont les chaleurs spécifiques du gaz considéré, à pression et à volume constant respectivement. On admet que lors d'une transformation adiabatique réversible, le produit \mathcal{L}_v = cte.

- 1-Représenter ces transformations dans le diagramme P=f(V). la pente de l'adiabatique est supérieure à celle de l'isotherme
- 2-Exprimer les pressions P₂, P₃, et la température T₃ en fonction de P₁, a, et . **Y**
- 3-Exprimer le travail reçu par le système dans la transformation AB et la quantité de chaleur correspondante.
- 4-Exprimer la quantité de chaleur reçue par le système dans la transformation BC. En déduire l'expression du travail dans la transformation adiabatique CA. AN: P_1 =1atm; T_1 =300 K; a=2, I=1,4.