Octobre 2017

TE 1

Exercice 1 (6 points)

Résoudre l'équation suivante:

$$\ln(\sqrt{3-x}) + \ln(\sqrt{x+1}) = \ln(\sqrt{10-6x})$$

Exercice 2 (8 points)

- a) Donner toutes les solutions de l'équation: $\tan(5t)=\sqrt{3}$,
- b) Utiliser la formule $\cos(2\alpha) = 2\cos^2(\alpha) 1$ pour calculer la valeur exacte de $\cos(\frac{\pi}{8})$.

Exercice 3 (12 points)

Quelle est le domaine de définition des fonctions suivantes :

a)
$$f(x) = \ln(\frac{x-1}{x^3 - 9x})$$
,

c)
$$h(x) = \frac{\sqrt{2x-3}}{x^2 - 5x + 4}$$
,

b)
$$g(x) = \frac{x}{\sqrt{-x^2 + x + 1}}$$
,

d)
$$i(x) = \frac{\sqrt{4x-3}}{\sqrt{4-x^2}}$$
.

Exercice 4 (8 points)

Étudier la parité des fonctions suivantes et justifier vos résultats.

a)
$$f(x) = 5x^3 + x|x|$$
,

c)
$$h(x) = (x^3 - x)^2$$
,

b)
$$q(x) = e^{|x|} - e^{-|x|}$$
,

d)
$$i(x) = \sqrt{3x^3 - x^2 + 1}$$
.

Exercice 5 (6 points)

Soient les fonctions suivantes:

$$f(x) = \sqrt{x-1}, \quad g(x) = \ln(1+x).$$

Trouver $(f \circ g)(x)$ et $(g \circ f)(x)$

Il n'est pas demandé de trouver les domaines de définition de ces deux fonctions.

Exercice 6 (10 points)

Soit la fonction $f(x) = \frac{x^4 - 16}{x^3}$, déterminer

- a) le domaine de définition,
- b) les zéros,
- c) les asymptotes verticales éventuelles,
- d) les asymptotes horizontales ou obliques éventuelles,
- e) le ou les points d'intersection avec les asymptotes (s'ils existent),
- f) esquisser le graphique de la fonction.

Dr K.Gafaiti 13 octobre 2017