

멀티클라우드, "새로운 생태계를 향한 클라우드 비긴어게인" 클라우드바리스타 커뮤니티 제5차 컨퍼런스

[세션] CB-Tumblebug:

멀티클라우드 인프라 서비스 통합 관리

손 석 호 CB-Tumblebug 프레임워크 리더

아포가토(Affogato) 한잔 어떠세요?

이번 세션은 …

응용/도메인/기관 특화 SW

멀티클라우드 서비스 공통 플랫폼

목 차

- CB-Tumblebug 개요
- CB-Tumblebug 기능 및 구조 요약
- CB-Tumblebug 릴리스 주요 개선 사항

CB-Tumblebug: 멀티클라우드 인프라 서비스 통합 관리 필요성

CB-Tumblebug: 멀티 클라우드 인프라 서비스 통합 관리 개념

기술 정의 사용자 요구사항에 따라 최적의 <u>멀티 클라우드 인프라 서비스를 조합하여 프로비저닝</u>하고,

<u>통합 제어 및 관리를</u> 통해 <u>사용자의 컴퓨팅 인프라 운용을 지원</u>하는 기술

성능벤치마킹기반최적 멀티클라우드인프라

최적 클라우드 인프라 제공을 통한 효율성 증대

멀티클라우드인프라 통합운용자동화

통합 제어, 정책 적용 등 관리 편의성 극대화

CB-Tumblebug 특징

(필요성) 1. 성능 벤치마킹 기반 최적 멀티 클라우드 인프라

VM 가격 비교 (AWS vs GCP)

Ref: aws-vs-gcp-vs-on-premises-cpu-performance-comparison (medium.com)

클라우드 서비스 성능.. 알고 보면 많이 달라요

CSP의 클라우드 서비스 제공 리전(데이터센터) 현황

클라우드는 전세계에 퍼져 있습니다. 조금 더 가까이 다가가려면..

(필요성) 2. 멀티 클라우드 인프라 통합 운용 자동화

CB-Tumblebug 활용 사례

CB-Tumblebug 주요 개념 및 용어

- 멀티 클라우드 인프라 서비스 (MCIS)
 - 지역적으로 격리된 다수의 클라우드 환경에서 단일 목적(응용서비스, 애플리케이션 등)을 위해 하나 이상의 클라우드 인프라 서비스(가상머신 등)를 조합 및 상호 연계한 컴퓨팅 인프라 그룹
 - 용도 : 멀티 클라우드 인프라의 통합 제어 및 관리
- 멀티 클라우드 인프라 리소스 (MCIR)
 - 다수의 클라우드 환경에서 컴퓨팅 인프라 생성을 위해 관리하는 모든 리소스 (예: vNet, Image, AccessKey, ...)
 - 용도 : MCIS 생성 및 설정을 위해 사용

[MCIS 예시]

CB-Tumblebug 주요 기능 요약

- NS(네임스페이스) 및 MCIR 오브젝트 관리
 - 다양한 클라우드 인프라 자원을 오브젝트로 관리하는 기능
- MCIS 프로비저닝 및 특화 구성
 - 다양한 클라우드 자원을 활용하여 MCIS를 생성하고 특화하는 기능
- MCIS 라이프사이클 관리
 - MCIS 라이프사이클 상태를 종합적으로 관리, 통합 제어하는 기능
- MCIS 최적 구성 및 배치 스케줄링
 - 클라우드 평가를 통해 MCIS를 최적 구성하고 스케줄링 하는 기능
- MCIS 자동 제어
 - MCIS를 진단하고 결과에 따라 자동 제어하는 운용 자동화 기능

NS 및 MCIR 관리 기능

MCIS 프로비저닝 및 특화 구성

• 멀티클라우드 자원을 활용하여 MCIS를 생성하고 특화하는 기능

[MCIS 구성 예시]

다양한 클라우드 자원을 통합 제어하기 위한 논리적 그룹 객체

[MCIS 구성 변경 예시]

[MCIS 특화 구성 예시]

MCIS 라이프사이클 관리

- MCIS의 라이프사이클 통합 제어하고 상태를 쉽게 파악할 수 있는 기능
 - MCIS의 세부 요소들의 대표적인 상태를 한눈에 표시 (ex: Partial State)

Cloud- Barista	Creating	Running	Suspending	Suspended	Resuming	Rebooting	Terminating	Terminated	Failed
Alibaba	Pending	Running	Stopping	Stopped	Resuming (자체생성상태)	Rebooting (자체생성상태)	Terminating (자체생성상태) (OP: Stop&Delete) - 실제: suspending	Deleted	상태 정보를 얻을 수 없을 때 오류에 의한 비정상 상태
AWS	앱핑 볼필요 (현재: StartYM내부 Running 상태확인 주P- IP 무착 두 return)	running	stopping	stopped	Resuming (자체생성상태)	Rebooting	shutting-down	terminated	상태 정보를 얻을 수 없을 때 오류에 의한 비정상 상태
GCP	Provisioning staging	running	stopping	terminated	Resuming (자체생성상태)	Rebooting (자체생성 (OP: Stop&Start) 설계: suspending running	Terminating (자체생성상태) (OP: Delete)	(예약) NotExist	상태 정보를 얻을 수 없을 때 오류에 의한 비정상 상태
Azure	starting /-	runnning /succeeded	stopping /-	stopped /succeeded	Resuming (자체생성상태) -> Creating	Rebooting (자체생성상태) (OP: Stop&Start)	deallocating /-	(예외) NotExist	- /failed
OpenStack	BUILD	ACTIVE	Suspending (자체생성상태)	SHUTOFF	Resuming (자체생성상태)	REBOOT	Terminating (자체생성상태) (OP: Delete)	(예외) NotExist	Error
Cloudit	CREATING	RUNNING	STOPPING	STOPPED	STARTING	REBOOTING	DESTROYING	(예외) NotExist	FAILED

MCIS 라이프사이클 상태 검증 및 보정

MCIS 최적 구성 및 배치 스케줄링

- 다양한 정보 수집을 통해 MCIS를 최적으로 구성하고 스케줄링
 - 멀티클라우드는 다양한 클라우드를 활용하므로 최적 선정이 매우 중요

클라우드 리전 위치 (약 150개 리젼)

VM 성능 비교 (AWS vs GCP)

VM 가격 비교 (AWS vs GCP)

- MCIS 통합 최적 배치
 - VM 간 응답속도 기반 배치

예) VM 간 응답시간 < 40ms

- MCIS 개별 VM의 최적 배치
 - VM 스팩 기반 배치
 - VM 가격 기반 배치
 - VM 위치 기반 배치
 - VM 성능 기반 배치 (벤치마킹)
 - VM 복합 조건 기반 배치

사용자 정책 기반 MCIS 자동 제어

사용자 정책을 기반으로 MCIS의 상태를 진단하고, 결과에 따라 MCIS를 자동 제어하는 기능

사용량

- 대규모 자원의 수동 처리 한계 극복
- MCIS 진단 조건
 - MCIS 자원 사용량 진단
 - MCIS 라이프사이클 진단
 - MCIS 성능 진단
- MCIS 제어 액션
 - MCIS 규모 제어 (Scale In/Out)
 - MCIS 라이프사이클 제어 (Suspend/Resume)
 - MCIS 자원 교체 (Replace)

CB-Tumblebug 시스템 구조

Affogato 주요 개선 포인트

동적 MCIS 프로비저닝

MCIS 최적 배치

This time, we will not visit the details

CB-TB hopes to focus on "How to use"

MCIS 동적 프로비저닝 (프로비저닝 단계 간소화 및 자동화)

클라우드 드라이버 등록

클라우드 크리덴셜 등록

클라우드 리전 등록

클라우드 연결 설정 등록

Namespace 생성

MCIR: Image 등록

MCIR: Spec 등록

MCIR: vNet 생성

MCIR: Subnet 생성

MCIR: SG 생성

MCIR: SSHKey 생성

MCIS 생성 VMs 생성

(기본) MCIS 프로비저닝 과정

호출 API:12개

클라우드 연결 설정

공통 Image 설정

공통 Spec 설정

기본 Namespace 자동 생성

CB-TB 시스템 환경 설정 (script)

동작 검증된 image, spec 활용

<u>cb-tumblebug/assets/cloudimage.csv</u> <u>cb-tumblebug/assets/cloudspec.csv</u>

기본 MCIR: vNet 생성

기본 MCIR: Subnet 생성

기본 MCIR: SG 생성

기본 MCIR: SSHKey 생성

VMs 생성

(동적) MCIS 프로비저닝 과정

호출 API: 1개

MCIS 생성 과정에서 자동으로 기본 MCIR 생성

MCIS 동적 프로비저닝 시연

동영상 시연이 준비되어 있습니다.

Affogato 주요 개선 포인트

동적 MCIS 프로비저닝

MCIS 최적 배치

This time, we will not visit the details

CB-TB hopes to focus on "How to use"

MCIS 최적 구성 및 배치 스케줄링

- 다양한 정보 수집을 통해 MCIS를 최적으로 구성하고 스케줄링
 - 멀티클라우드는 다양한 클라우드를 활용하므로 최적 선정이 매우 중요

클라우드 리전 위치 (약 150개 리젼)

VM 성능 비교 (AWS vs GCP)

VM 가격 비교 (AWS vs GCP)

Source: https://medium.com/infrastructure-adventures/aws-vs-gcp-vs-on-premises-

cpu-performance-comparison)

• MCIS 통합 최적 배치

• VM 간 응답속도 기반 배치

예) VM 간 응답시간 < 40ms

• MCIS 개별 VM의 최적 배치

- VM 스팩 기반 배치
- VM 가격 기반 배치
- VM 위치 기반 배치
- VM 성능 기반 배치 (벤치마킹)
- VM 복합 조건 기반 배치

최적 MCIS 배치를 위한 동적 성능 벤치마킹 방식

- 에이전트 기반의 동적 성능 벤치마킹
 - 1. 평가용 MCIS 생성
 - 2. 주기적으로 에이전트에 평가 요청
 - 각 에이전트는 성능 평가를 수행하고 결과를 CB-TB에게 통보
 - 4. 평가 결과를 테이블 형태로 수집
- 동적 성능 평가 지표
 - CPU 계산속도 (싱글/멀티 코어)
 - Memory 처리속도 (읽기/쓰기)
 - FileIO 처리속도 평가 (읽기/쓰기)
 - DB 처리속도 평가 (읽기/쓰기)
 - 목적지까지 네트워크 지연 시간 기 Ping
 - VM간 상호 네트워크 지연 시간

동적 성능 평가 결과 (예: CPU, Memory, FIO, DB 성능)

멀티 클라우드 VM 타입 (지역구분)

gcp-asia-east1-e2-standard-8 gcp-asia-east1-e2-highcpu-2 aws-us-east-1-m4.4xlarge aws-us-east-1-f1.2xlarge aws-us-east-1-m4.xlarge azure-koreacentral-Standard D11 v2 gcp-asia-east1-e2-highcpu-8 gcp-asia-east1-e2-highmem-16 gcp-asia-east1-n1-standard-16 gcp-europe-west3-e2-highcpu-2 aws-ap-northeast-2-c5.xlarge gcp-asia-east1-e2-highmem-2 aws-us-east-1-t2.2xlarge aws-us-east-1-i2.2xlarge gcp-asia-east1-e2-medium gcp-asia-east1-e2-highcpu-16 aws-us-east-1-c3.8xlarge

- CPU
- Memory
- FIO
- DB

X축을 CPU의 결과를 기준으로 나열하였으나, 높은 CPU 성능이 다른 지표에 대한 높은 성능을 보장하지 않음 (사용자 상황에 맞는 사양 선택 필요 !!)

동적 성능 평가 결과 (예: 한국 지역 기준 응답 속도)

MCIS 최적 배치 요청 방법

- MCIS 최적 배치 요청 처리 방식
 - Filtering (필터링) &
 Prioritizing (우선순위 정렬)
 조합
 - 필수 조건으로 필터링
 - 우선순위로 정렬
- Affogato 릴리스 지원 파라미터
 - Filtering
 - vCPU 수, Memory 용량
 - 가격
 - Prioritizing
 - 가격
 - 위치: 지리적 근접성
 - 성능: CPU, Memory, FilelO, DB

CB-MapUI 활용 MCIS 최적 배치 시연

동영상 시연이 준비되어 있습니다.

Remark: in Affogato release

CB-Tumblebug 개발 로드맵

동적 MCIS 프로비저닝

MCIS 최적 배치

CB-Tumblebug 시스템 전반

MCIS 프로비저닝 및 특화 구성

MCIS 최적 구성 및 배치 스케줄링

MCIS 자동 제어

시스템 테스트 및 대규모 프로비저닝 안정화

프레임워크간 연동 및 신규 클라우드 지원

MCIS 동적 배치 기능 구현 및 개선

MCIS 특화 기능 발굴 및 고도화

최적 배치 프레임워크 구현 및 구동 방식 개선

최적 배치를 위한 동적 성능 요소 발굴 및 데이터 수집

자동 제어 진단 조건 / 액션 다양화 및 고도화

예측 기반 자동 제어 알고리즘 연구

[참고] CB-Tumblebug 참여 방법 (환영합니다..^^)

CB-Tumblebug GitHub

https://github.com/cloud-barista/cb-tumblebug

[참고] CB-Tumblebug 참여 방법 (환영합니다..^^)

CB-Tumblebug Slack Channel

CB-Tumblebug 정기 공개 회의 (1회/3주)

감사합니다.

https://github.com/cloud-barista https://cloud-barista.github.io

(손석호/contact-to-cloud-barista@googlegroups.com)

멀티클라우드, "새로운 생태계를 향한 클라우드 비긴어게인"

클라우드 바리스타들의 다섯번째 이야기

Cloud-Barista Community the 5th Conference