

Joint-Task Regularization for Partially Labeled Multi-Task Learning

Kento Nishi*, Junsik Kim*, Wanhua Li, Hanspeter Pfister

kentonishi.com/JTR-CVPR-2024

Problem

- Multi-Task Learning (MTL) aims to train one model to perform multiple tasks jointly.
- MTL in vision typically requires **each input** image (or pixel) to be **labeled** for **all tasks**.

- Collecting multi-task data is expensive.
- Solution: Do MTL with **partially labeled data** (inputs may not have labels for all tasks).

Our Method

- For each input, stack all tasks across channel dim.
 - Predictions $\rightarrow \widehat{Y}$
- Labels, or predictions
 if task has no label \(\rightarrow\) \(Y\)
- Encode \widehat{Y} and Y into a learned Joint-Task Space (with dims $< \sum$ pred. dims).
- Minimize distance between embeddings of $\widehat{\mathbf{Y}}$ and \mathbf{Y} in the joint-task space.
- Enforce an auto-encoder reconstruction loss to prevent trivial JT spaces.

s). een $[\hat{y}1; \hat{y}2; \hat{y}3] \quad [\hat{y}1; y2; y3]$

Predictions (\widehat{Y})

Labels (Y)

Benefits: simpler, linear complexity wrt # of tasks, better learning of cross-task relations!

Experiments

- Benchmarks with synthetic label scenarios
 - onelabel: labeled for only one of K tasks
 - randomlabels: labeled for 1 to K 1 tasks
 - halflabels: labeled for ~50% of tasks
- Select results (see paper for more):

Method	Seg. ↑	Depth ↓	Norm. ↓	$\overline{\Delta\%}\uparrow$
Supervised MTL*	27.05	0.6624	33.58	+0.000
Consistency Reg.*	29.50	0.6224	33.31	+5.300
Direct Map* [74]	29.17	0.6128	33.63	+5.060
Perceptual Map* [74]	32.20	0.6037	32.07	+10.80
MTPSL [33]	35.60	0.5576	29.70	+19.66
Ours (JTR)	37.08	0.5541	29.44	+21.92

NYU-v2 (3 tasks), randomlabels

Mathad	Cac A	Donth	$\overline{\Delta\%}$ \uparrow	Scenario	Method	$\overline{\Delta}^0_{\lambda}$
Method	Seg. ↑	Depth ↓	Δ %		Consistency Reg.	
Supervised MTL*	69.50	0.0186	+0.000	onelabel	MTPSL [33] Ours (JTR)	+1. +3.
Consistency Reg.*	71.67	0.0178	+3.712	randomlabels	Consistency Reg. MTPSL [33]	+2.
MTPSL [33]	72.09	0.0168	+6.702		Ours (JTR)	+4.
Ours (JTR)	72.33	0.0163	+8.219	halflabels	Consistency Reg. MTPSL [33] Ours (JTR)	+2. +3. +5.

Cityscapes (2 tasks), onelabel

Taskonomy (7 tasks)

Method	Cityscapes		Taskonomy		
	Time ↓	$VRAM \downarrow$	Time ↓	$VRAM \downarrow$	
MTPSL [33]	22h 10m	14.4GiB	223h 10m	34.4GiB	
Ours (JTR)	23h 45m	19.2GiB	105h 00m	23.9GiB	

Training Time/VRAM, NVIDIA A100

• Conclusion: JTR is effective and efficient!