K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS Diode Application

Numerical 1:

For the circuit shown below in figure 1, plot

a) Input $V_{in}(t)$ and output $V_{out}(t)$ waveforms

b) VTC curve

Given: $V_{in}(t) = 10V_{p-p}$ Sinusoidal signal with frequency of 5000Hz $V_{D_{ON}} = 0.7$ V

$$V_{B_1} = 1$$
V DC, $V_{B_2} = 1$ V DC, $R_1 = 1$ k Ω

Figure 1: Circuit 1

Solution:

Assuming constant voltage models for diodes D_1 and D_2

When input voltage V_{in} is greater than $(V_{D_{1_{ON}}} + V_{B_1})$ i.e 0.7V + 1V = 1.7V, diode D_1 is ON and D_2 is OFF.

$$\therefore V_{out} = V_{D_{1_{ON}}} + V_{B_1} = 0.7 + 1 = 1.7 \mathbf{V}$$

: figure 1 reduces to,

Figure 2: diode D_1 is ON and diode D_2 is OFF

When input voltage V_{in} is less than $(-V_{D_{2_{ON}}} - V_{B_2})$ i.e -0.7V - 1V = -1.7V, diode D_2 is ON and D_1 is OFF.

$$\therefore V_{out} = -V_{D_{2_{ON}}} - V_{B_2} = -0.7 - 1 = -1.7 \mathbf{V}$$

 \therefore figure 1 reduces to,

Figure 3: diode D_2 is ON and diode D_1 is OFF

When V_{in} is less than $(V_{B_1} + V_{D_{1_{ON}}})$ and also greater than $(-V_{D_{2_{ON}}} - V_{B_2})$, both diodes D_1 and D_2 are OFF.

- $\therefore V_{out} = V_{in}$
- ∴ figure 1 reduces to,

Figure 4: diode D_1 and diode D_2 are OFF

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 5: Circuit Schematic

The input and output waveforms are shown in figure 6.

Figure 6: Input-Output waveforms

The VTC curve for the following circuit is given below in figure 7.

Figure 7: VTC curve

Comparison between theoretical and simulated values:

Parameters	Theoretical values	Simulated values
Clipped output voltage level	±1.7V	± 1.640017

Table 1: Question 1

Numerical 2:

For the circuit shown below in figure 8,

Plot: Input $V_{in}(t)$ and output $V_{out}(t)$ waveforms Given: $V_{in}(t)$ is a square wave as shown in figure 9

Figure 8: Circuit 2

Figure 9: Square wave input

Solution:

Assuming constant voltage model for diode D_1 ,

When input voltage V_{in} is greater than $(V_{D_{1_{ON}}} + V_B)$ i.e 0.7V + 5V = 5.7V, diode D_1 is ON.

$$\therefore V_{out} = V_{in} - V_{D_{ON}}$$

: figure 8 reduces to,

PULSE(20 -5 1m 10u 10u 1m 2m)

Figure 10: diode D_1 is ON

$$\begin{array}{l} \therefore V_{out} = V_{in} - V_{D_{ON}} \\ \text{i.e } V_{out} = V_m - V_{D_{ON}} = 20.0.7 = \textbf{19.3V} \\ \text{i.e output tracks input but with a shift of } V_{D_{ON}} \text{ i.e } 0.7\text{V} \\ \end{array}$$

When V_{in} is less than $(V_{D_{ON}} + V_B)$ i.e 0.7V + 5V = 5.7V, diode D_1 is OFF.

: figure 8 reduces to,

Figure 11: diode D_1 is OFF

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 12: Circuit Schematic

The input and output waveforms are shown in figure 13.

Figure 13: Input-Output waveforms

Comparison between theoretical and simulated values:

Parameters	Theoretical values	Simulated values
Clipped maximum output voltage level	19.3V	19.3272V
Clipped minimum output voltage level	5V	4.999V

Table 2: Question 2

Numerical 3:

For the circuit shown below in figure 14,

Plot: Input $V_{in}(t)$ and output $V_{out}(t)$ waveforms Given: $10V_{p-p}$ square wave of frequency 1000Hz

 $C=10\mu F$ and $R=10k\Omega,$ diode D_1 is Si diode i.e $V_{D_{ON}}=0.7 \mathrm{V},\, V_1=2.7 \mathrm{V}$ DC

Figure 14: Circuit 3

Figure 15: Square wave input

Solution:

Since given diode D_1 is Si diode, we will use constant voltage model i.e $V_{D_{ON}}=0.7\mathrm{V}$

Given: $V_{in} = 10V_{p-p}$ i.e $V_m = 5V$

Assumption: RC time constant is large enough (than time period of input signal) to ensure that voltage across capacitor does not discharge significantly during the period diode is off.

Operation:

a) During negative half cycle, D_1 is ON when $V_{in} < (-V_{D_{ON}} + V_1)$ i.e $V_{in} < (-0.7 \text{V} + 2.7 \text{V})$ i.e $V_{in} < 2 \text{V}$

: figure 14 reduces to,

POLSE(3 -3 0.5m 10p 10p 0.5m 1m

Figure 16: diode D_1 is ON

$$\therefore V_{out} = V_{D_{ON}} + V_1 = -0.7V + 2.7V = 2V$$

i.e $V_{out} = 2V$ during negative half cycle

b) At the same time, voltage across capacitor V_C charges upto $-V_m$ KVL gives us:

$$V_{in} + V_C + V_{D_{ON}} - V_1 = 0$$

 $V_C = -V_{in} - V_{D_{ON}} + V_1$ (: In negative half cycle, $V_{in} = V_m$)
 $V_C = -(-V_m) - 0.7 + 2.7 = 5 - 0.7 + 2.7 = 7\mathbf{V}$
i.e $V_C = 7\mathbf{V}$ is voltage across capacitor C_1 during positive half cycle

c) During positive half cycle, diode D_1 is OFF for entire positive half cycle \therefore figure 14 reduces to,

Figure 17: diode D_1 is OFF

During positive half cycle, capacitor C_1 holds the charge $V_C = 7\mathrm{V}$ and acts as a battery \therefore KVL ggives us: $V_{in} + V_C - V_{out} = 0$ \therefore $V_{out} = V_{in} + V_C$ $(\because$ In positive half cycle, $V_{in} = V_m$) $V_{out} = 5 + 7 = 12\mathrm{V}$ i.e $V_{out} = 12\mathrm{V}$ during positive half cycle

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 18: Circuit Schematic

The input and output waveforms are shown in figure 19.

Figure 19: Input-Output waveforms

Comparison between theoretical and simulated values:

Parameters	Theoretical values	Simulated values
Upper level of clamped output voltage	12V	12.0921V
Lower level of clamped output voltage	2V	2.1097V

Table 3: Question 3
