EECS 16A Designing Information Devices and Systems I Discussion 14A

1. Mechanical Projection

In \mathbb{R}^n , the vector valued projection of vector \vec{b} onto vector \vec{a} is defined as:

$$\operatorname{proj}_{\vec{a}}\left(\vec{b}\right) = \frac{\left\langle \vec{a}, \vec{b} \right\rangle}{\left\| \vec{a} \right\|^2} \vec{a}.$$

Recall $\|\vec{a}\|^2 = \langle \vec{a}, \vec{a} \rangle$.

(a) Project $\begin{bmatrix} 5 \\ 2 \end{bmatrix}$ onto $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ — that is, onto the y-axis. Graph these two vectors and the projection.

(b) Project $\begin{bmatrix} 4 \\ -2 \end{bmatrix}$ onto $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$. Graph these two vectors and the projection.

(c) Project $\begin{bmatrix} 4 \\ -2 \end{bmatrix}$ onto $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Graph these two vectors and the projection.

2. Least Squares with Orthogonal Columns

(a) Consider a least squares problem of the form

$$\min_{\vec{x}} \quad \left\| \vec{b} - \mathbf{A}\vec{x} \right\|^2 \quad = \quad \min_{\vec{x}} \quad \left\| \mathbf{A}\vec{x} - \vec{b} \right\|^2 \quad = \quad \min_{\vec{x}} \quad \left\| \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} - \begin{bmatrix} | & | \\ \vec{a_1} & \vec{a_2} \\ | & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\|^2$$

Let the solution be $\vec{\hat{x}} = \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix}$.

Label the following elements in the diagram below.

$$\operatorname{span}\{\vec{a_1},\vec{a_2}\}, \qquad \vec{\hat{e}} = \vec{b} - \mathbf{A}\vec{\hat{x}}, \qquad \mathbf{A}\vec{\hat{x}}, \qquad \vec{a_1}\hat{x}_1, \ \vec{a_2}\hat{x}_2, \qquad \operatorname{colspace}(\mathbf{A})$$

(b) We now consider the special case of least squares where the columns of $\bf A$ are orthogonal. Given that $\vec x = ({\bf A}^T{\bf A})^{-1}{\bf A}^T\vec b$ and $A\vec x = {\rm proj}_{\bf A}(\vec b) = \hat{x_1}\vec a_1 + \hat{x_2}\vec a_2$, show that

$$\operatorname{proj}_{\vec{a_1}}(\vec{b}) = \hat{x_1}\vec{a_1}$$

$$\operatorname{proj}_{\vec{a_2}}(\vec{b}) = \hat{x_2}\vec{a_2}$$

(c) Compute the least squares solution to

$$\min_{\vec{x}} \quad \left\| \begin{bmatrix} 1\\2\\3 \end{bmatrix} - \begin{bmatrix} 1 & 0\\0 & 0\\0 & 1 \end{bmatrix} \begin{bmatrix} x_1\\x_2 \end{bmatrix} \right\|^2.$$