

planetmath.org

Math for the people, by the people.

LL(k)

Canonical name LLk

Date of creation 2013-03-22 19:00:54 Last modified on 2013-03-22 19:00:54

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771)
Entry type Definition
Classification msc 68Q05
Classification msc 68Q42
Classification msc 03D10

Related topic LRk

Given a word u and a context-free grammar G, how do we determine if $u \in L(G)$?

There are in general two ways to proceed. Start from u, and proceed backward to find v such that $v \Rightarrow u$. Keep going until a derivation $\sigma \Rightarrow^* u$ is found. This procedure is known as the bottom-up parsing of u. The other method the top-down approach: begin with the starting symbol σ , and work its way down to u, so $\sigma \Rightarrow^* u$.

As with the bottom-up approach, finding a derivation of u from the top-down may be time consuming, if one is lucky enough to find a derivation at all.

There is a class of grammars, known as the LL(k) grammars, which make the top-down parsing of a word natural and direct. The first L in LL(k) means scanning the symbols of u from left to right, the second L stands for finding a leftmost derivation (\Rightarrow_L) for u, and k means having the allowance to look at up to k symbols ahead while scanning.

Definition. Let $G = (\Sigma, N, P, \sigma)$ be a context-free grammar such that $\sigma \to \sigma$ is not a production of G, and $k \ge 0$ an integer. Suppose $u \in L(G)$ with a $X \to U_1$ a production in a leftmost derivation of u:

$$\sigma \Rightarrow_L^* UXU_2 \Rightarrow_L UU_1U_2 \Rightarrow_L^* u.$$

Let n = |U| + k and v be the prefix of u of length n (if |u| < n, then set v = u).

Then G is said to be LL(k) if for any $w \in L(G)$, with v as a prefix, such that there is a production $X \to W_1$ in a leftmost derivation of w:

$$\sigma \Rightarrow_L^* UXW_2 \Rightarrow_L UW_1W_2 \Rightarrow_L^* w,$$

implies that $W_1 = U_1$.

In a leftmost derivation D_u of a word u, call a prefix v of u is a leftmost descendant of a production $P \to U$ if $\sigma \Rightarrow^* vPU' \Rightarrow vUU' \Rightarrow^* u$ is D_u . Then the definition above can be restated in words as follows:

Given a leftmost derivation D_u of a word u, a production used in D_u is uniquely determined up to k symbols beyond the prefix of u which is a leftmost descendant of the production. In other words, if D_u and D_w are leftmost derivations of u and w which agree on k symbols beyond the common prefix v, where v is both a leftmost descendant of $X \to U$ used in D_u , and a leftmost descendant of $X \to W$ used in D_w , then $X \to U$ and $X \to W$ are the same production, i.e. U = W.

Every LL(k) is unambiguous. Furthermore, every LL(k) grammar is http://planetmath.org/LRkLR(k).

Given a context-free grammar G and $k \geq 0$, there is an algorithm deciding whether G is LL(k).

Examples

• The grammar G over $\Sigma = \{a, b\}$, with productions $\sigma \to a^2 \sigma b^2$, $\sigma \to a$ and $\sigma \to \lambda$ is LL(2) but not LL(1). It is not hard to see that L(G) is the set $\{a^m b^n \mid n \text{ is even, and } n \leq m \leq n+1\}$. On the other hand, the grammar G' over Σ , with productions

$$\sigma \to aX$$
, $\sigma \to \lambda$, $X \to aYb$, $X \to \lambda$, $Y \to aXb$, $Y \to b$

also generates L(G), but is LL(1) instead.

• The grammar G over $\{a, b, c\}$, with productions

$$\sigma \to X$$
, $\sigma \to Y$, $X \to aXb$, $X \to ab$, $Y \to aYc$, $Y \to ac$

is not LL(k) for any $k \geq 0$.

Definition A language is said to be LL(k) if it is generated by an LL(k) grammar. The family of LL(k) languages is denoted by $\mathscr{LL}(k)$.

It is easy to see that an LL(0) contains no more than one word. Furthermore, it can be shown that

$$\mathscr{LL}(0) \subset \mathscr{LL}(1) \subset \cdots \subset \mathscr{LL}(k) \subset \cdots$$

and the inclusion is strict. If $\mathscr{LL}(k)'$ denotes the family of λ -free LL(k) languages, then

$$\mathscr{L}\mathscr{L}(0)' = \mathscr{L}\mathscr{L}(1)' = \cdots = \mathscr{L}\mathscr{L}(k)' = \cdots$$

Given two LL(k) grammars G_1 and G_2 , there is an algorithm that decides if $L(G_1) = L(G_2)$.

References

[1] A. Salomaa, Formal Languages, Academic Press, New York (1973).