Partial Differential Equations

Ikhan Choi

December 13, 2021

Contents

Ι	Dis	tributions and Sobolev Spaces	3		
1	Distributions				
	1.1	Extension of linear operators	4		
	1.2	Convolutions	4		
2	Sobolev spaces				
	2.1	Definition and examples	5		
	2.2	Extensions and restrictions	5		
	2.3	Sobolev embeddings	5		
3	More on Sobolev spaces				
	3.1	Fractional Sobolev spaces	8		
	3.2	Fourier transform methods	8		
	3.3	Almost everywhere differentiability	8		
	3.4	Vector-valued functions	8		
II	Ell	liptic equations	9		
4	Existence				
	4.1	Lax-Milgram theorem	10		
	4.2		10		
	4.3	Perron's method	10		
5	Regularity				
	5.1	L^p theory	11		
	5.2		13		
	5.3	Wevl's lemma	13		

6			14
	6.1	Maximum principle	14
	6.2	Eigenvalue problems	14
II	Ev	volution equations	15
7	Para	abolic equations	16
	7.1	Galerkin approximation	16
8	Нур	erbolic equations	17
9	Sem	igroup theory	18

Part I Distributions and Sobolev Spaces

Distributions

1.1 Extension of linear operators

Let $T: \mathcal{D} \to \mathcal{D}'$ be a continuous linear operator. We can always define the adjoint $T^*: \mathcal{D} \subset \mathcal{D}'' \to \mathcal{D}'$. The most reasonable extension of T is $T: (T^*(\mathcal{D}))' \to \mathcal{D}'$. For $f \in (T^*(\mathcal{D}))'$, we can define $\langle T(f), \varphi \rangle := \langle f, T^* \varphi \rangle$ for $\varphi \in \mathcal{D}$.

Suppose $T: (\mathcal{D}, \mathcal{T}) \to (T(\mathcal{D}), \mathcal{S})$ is proved to be continuous. If $(\mathcal{D}, \mathcal{T}) \to (T^*(\mathcal{D}))'$ and $(T(\mathcal{D}), \mathcal{S}) \to \mathcal{D}'$ are embeddings, then the extension of T to the completion of $(\mathcal{D}, \mathcal{T})$ agrees with $T: (T^*(\mathcal{D}))' \to \mathcal{D}'$.

1.2 Convolutions

For example, if Φ is locally integrable, then since $(T_{\Phi})^* = T_{\widetilde{\Phi}}$ and $\Phi * \varphi \in \mathcal{E} = C^{\infty}$ for $\varphi \in \mathcal{D}$, the convolution operator $T_{\Phi} : \mathcal{E}' \to \mathcal{D}'$ can be defined on the space of compactly supported distributions.

Problem: If g * f is well-defined, is f * g also well-defined? In other words, if $f \in (T_{\widetilde{g}}(\mathcal{D}))'$ so that $g * f \in \mathcal{D}'$, then $g \in (T_{\widetilde{f}}(\mathcal{D}))'$? Are they same?

$$\langle g, \widetilde{f} * \varphi \rangle =$$

- **1.1.** (a) If a test function φ satisfies $\langle 1, \varphi \rangle = 0$, then there is $v \in \mathbb{R}^d$ and a test function ψ such that $\varphi = v \cdot \nabla \psi$.
- (b) If a distribution has zero derivative, then it is a constant.

Sobolev spaces

2.1 Definition and examples

- 2.1 (Sobolev space is a Banach space).
- **2.2** (Difference quotient).
- 2.3 (Interior approximation).
- **2.4** (Myers-Serrin theorem).

2.2 Extensions and restrictions

- 2.5 (Lipschitz boundary).
- **2.6** (Extension theorem).
- **2.7** (Trace theorem).
- 2.8 (Vanishing at boundary). zero trace, whole domain

2.3 Sobolev embeddings

- **2.9** (Gagliardo-Nirenberg-Sobolev inequality).
- 2.10 (Hölder spaces).
- 2.11 (Morrey inequality).

2.12 (Poincaré inequality). BMO

- **2.13** (Rellich-Kondrachov theorem). Let Ω be bounded open subset of \mathbb{R}^d with Lipschitz boundary. Let $1 \leq p < d$ and $1 \leq q < p^*$ where $p^* := \frac{dp}{d-p}$ denotes the Sobolev conjugate. Let $(u_n)_n$ be a bounded sequence in $W^{1,p}(\Omega)$. We may assume it is also bounded in $W^{1,1}(\mathbb{R}^d)$ by the embedding $W^{1,p}(\Omega) \subset W^{1,1}(\Omega)$ and the extension theorem. Let η_{ε} be a standard mollifier.
- (a) There is a subsequence of $(\eta_{\varepsilon} * u_n)_n$ that is Cauchy in $L^q(\Omega)$ for each $\varepsilon > 0$.
- (b) $\sup_{n} \|\eta_{\varepsilon} * u_{n} u_{n}\|_{L^{1}(\Omega)} \to 0 \text{ as } \varepsilon \to 0.$
- (c) $\sup_{n} \|\eta_{\varepsilon} * u_{n} u_{n}\|_{L^{q}(\Omega)} \to 0 \text{ as } \varepsilon \to 0.$
- (d) There is a subsequence of $(u_n)_n$ that is Cauchy in $L^q(\Omega)$.
- (e) $W^{k,p}(\Omega) \to W^{l,q}(\Omega)$ is a compact embedding if

$$\frac{l}{d} - \frac{1}{q} < \frac{k}{d} - \frac{1}{p}.$$

Proof. (a) The sequence $(\eta_{\varepsilon} * u_n)_n$ is pointwise bounded from

$$\|\eta_{\varepsilon} * u_n\|_{C_0(\mathbb{R}^d)} \leq \|\eta_{\varepsilon}\|_{C_0(\mathbb{R}^d)} \|u_n\|_{L^1(\mathbb{R}^d)} \lesssim_{\varepsilon} 1,$$

and equicontinuous from

$$\|\nabla \eta_{\varepsilon} * u_n\|_{C_0(\mathbb{R}^d)} \leq \|\nabla \eta_{\varepsilon}\|_{C_0(\mathbb{R}^d)} \|u_n\|_{L^1(\mathbb{R}^d)} \lesssim_{\varepsilon} 1.$$

By the Arzela-Ascoli theorem, since $\overline{\Omega}$ is compact, there is a subsequence $(\eta_{\varepsilon} * u_{n_k})_k$ that is Cauchy in $C(\overline{\Omega})$, and hence in $L^q(\Omega)$.

(b) Write

$$\eta_{\varepsilon} * u_{n}(x) - u_{n}(x) = \frac{1}{\varepsilon^{d}} \int \eta \left(\frac{x - y}{\varepsilon}\right) (u_{n}(y) - u_{n}(x)) dy$$

$$= \int \eta(y) (u_{n}(x - \varepsilon y) - u_{n}(x)) dy$$

$$= \int \eta(y) \int_{0}^{1} \frac{d}{dt} (u_{n}(x - t\varepsilon y)) dt dy$$

$$= \int \eta(y) \int_{0}^{1} (-\varepsilon y) \cdot \nabla u_{n}(x - t\varepsilon y) dt dy.$$

Then, since $|y| \ge 1$ if $\eta(y) > 0$,

$$\|\eta_{\varepsilon} * u_n - u_n\|_{L^1(\mathbb{R}^d)} \leq \varepsilon \int \eta(y) \int_0^1 \int |\nabla u_n(x - t\varepsilon y)| \, dx \, dt \, dy = \varepsilon \|\nabla u_n\|_{L^1(\mathbb{R}^d)}.$$

(c) The interpolation

$$\|\eta_{\varepsilon}*u_n-u_n\|_{L^q(\Omega)}\leq \|\eta_{\varepsilon}*u_n-u_n\|_{L^1(\Omega)}^{\theta}\|\eta_{\varepsilon}*u_n-u_n\|_{L^{p^*}(\Omega)}^{1-\theta}$$

for $q=\frac{\theta}{1}+\frac{1-\theta}{p}$ with $0<\theta\leq 1$ and the Gagliardo-Nireberg-Sobolev inequality

$$\|\eta_{\varepsilon} * u_n - u_n\|_{L^{p^*}(\Omega)} \lesssim \|\eta_{\varepsilon} * u_n - u_n\|_{W^{1,p}(\Omega)} \lesssim 1$$

give the L^q version of the part (b),

$$\sup_{n} \|\eta_{\varepsilon} * u_{n} - u_{n}\|_{L^{q}(\Omega)} \to 0$$

as $\varepsilon \to 0$.

(d) By the part (c), for any $\delta > 0$, there is $\varepsilon > 0$ such that

$$\sup_{n} \|\eta_{\varepsilon} * u_{n} - u_{n}\|_{L^{q}(\Omega)} < \frac{\delta}{2},$$

so for a subsequence $(\eta_{\varepsilon} * u_{n_k})_k$ that is Cauchy in $L^q(\Omega)$, we have

$$\|u_{n_k}-u_{n_{k'}}\|_{L^q(\Omega)}\leq \|\eta_\varepsilon*u_{n_k}-\eta_\varepsilon*u_{n_{k'}}\|_{L^q(\Omega)}+\delta,$$

and by the diagonal argument reducing δ to zero, we can construct the desired subsequence.

$$\Box$$

More on Sobolev spaces

- 3.1 Fractional Sobolev spaces
- 3.2 Fourier transform methods
- 3.3 Almost everywhere differentiability

Lipschitz, Rademacher

3.4 Vector-valued functions

Part II Elliptic equations

Existence

- 4.1 Lax-Milgram theorem
- 4.2 Fredholm alternative
- 4.3 Perron's method

Regularity

5.1 L^p theory

5.1 (Interior regularity in H^2). Let Ω be bounded open subset of \mathbb{R}^d and $L: \mathcal{D}'(\Omega) \to \mathcal{D}'(\Omega)$ a uniformly elliptic operator given by

$$Lu := -\partial_i(a^{ij}\partial_i u) + b^i\partial_i u + cu$$

for $a^{ij} \in C^1(\Omega)$, $b^i \in L^{\infty}(\Omega)$, and $c \in L^{\infty}(\Omega)$.

Fix an open subset $U \in \Omega$ and $\zeta \in C_c^{\infty}(\Omega)$ a cutoff function such that $\zeta = 1$ in U. Let $\varphi := -\partial_k^{-h}(\zeta^2 \partial_k^h u)$ for $k = 1, \dots, d$ and sufficiently small h > 0.

(a) We have

$$\|\nabla u\|_{L^2(U)} \lesssim \|Lu\|_{L^2(\Omega)} + \|u\|_{L^2(\Omega)}$$

for all u such that $Lu, u \in L^2(\Omega)$

(b) We have

$$\int \zeta^2 |\partial_k^h \nabla u|^2 \lesssim \int a^{ij} \partial_i u \partial_j \varphi + \|\nabla u\|_{L^2(\Omega)}$$

for all $u \in H^1(\Omega)$.

(c) We have

$$\int \zeta^2 |\partial_k^h \nabla u|^2 \lesssim ||Lu||_{L^2(\Omega)} + ||u||_{H^1(\Omega)}$$

for all u such that $Lu \in L^2(\Omega)$ and $u \in H^1(\Omega)$.

(d) We have

$$||u||_{H^2(U)} \lesssim ||Lu||_{L^2(\Omega)} + ||u||_{L^2(\Omega)}$$

for all u such that $Lu, u \in L^2(\Omega)$.

Proof. (a) Since $\zeta^2 u \in H_0^1(\Omega)$

$$\begin{split} \int \zeta^2 |\nabla u|^2 &\lesssim \int a^{ij} \zeta^2 \partial_i u \partial_j u \\ &= \int a^{ij} \, \partial_i u \, \partial_j (\zeta^2 u) - \int a^{ij} \, \partial_i u \, \partial_j (\zeta^2) u \\ &= \int (Lu - b^i \partial_i u - cu) \, \zeta^2 u - \int a^{ij} \, \partial_i u \, 2\zeta \partial_j \zeta \, u \\ &\lesssim \int (|Lu \, u| + |u \, \zeta \nabla u| + |u|^2 + |u \, \zeta \nabla u|) \\ &\lesssim \int (|Lu|^2 + |u|^2) + \frac{1}{\varepsilon} \int |u|^2 + \varepsilon \int \zeta^2 |\nabla u|^2. \end{split}$$

Taking small $\varepsilon > 0$, we are done.

(b) Write

$$\int a^{ij} \partial_i u \partial_j \varphi = -\int a^{ij} \partial_i u \partial_j \partial_k^{-h} (\zeta^2 \partial_k^h u)$$

$$= \int \partial_k^h (a^{ij} \partial_i u) \partial_j (\zeta^2 \partial_k^h u)$$

$$= \int \partial_k^h a^{ij} \partial_i u \partial_j (\zeta^2) \partial_k^h u + \int \partial_k^h a^{ij} \partial_i u \zeta^2 \partial_j \partial_k^h u$$

$$+ \int a^{ij} \partial_k^h \partial_i u \partial_j (\zeta^2) \partial_k^h u + \int a^{ij} \partial_k^h \partial_i u \zeta^2 \partial_j \partial_k^h u.$$

The last term out of the four terms controls the difference quotient $|\partial_k^h \nabla u|$ as

$$\int a^{ij} \, \partial_k^h \partial_i u \, \zeta^2 \, \partial_j \partial_k^h u \gtrsim \int \zeta^2 |\partial_k^h \nabla u|^2,$$

and the absolute values of other three terms are estimated up to constant by

$$\begin{split} \int \zeta |\nabla u| |\partial_k^h u| + \int \zeta^2 |\nabla u| |\partial_k^h \nabla u| + \int \zeta |\partial_k^h \nabla u| |\partial_k^h u| \\ &\lesssim \left(1 + \frac{1}{\varepsilon}\right) \int \zeta^2 |\nabla u|^2 + \left(1 + \frac{1}{\varepsilon}\right) \int |\partial_k^h u|^2 + \varepsilon \int \zeta^2 |\partial_k^h \nabla u|^2 \\ &\lesssim \left(1 + \frac{1}{\varepsilon}\right) \int |\nabla u|^2 + \varepsilon \int \zeta^2 |\partial_k^h \nabla u|^2. \end{split}$$

Therefore,

$$\int \zeta^2 |\partial_k^h \nabla u|^2 \lesssim \int a^{ij} \partial_i u \partial_j \varphi + \left(1 + \frac{1}{\varepsilon}\right) \int |\nabla u|^2 + \varepsilon \int \zeta^2 |\partial_k^h \nabla u|^2,$$

and taking small $\varepsilon > 0$, we are done.

(c) Note that

$$\int a^{ij}\partial_i u\partial_j \varphi = \int (Lu - b^i \partial_i u - cu) \varphi$$

since $\varphi \in H_0^1(\Omega)$. Because

$$\int (Lu - b^i \partial_i u - cu) \varphi \lesssim \frac{1}{\varepsilon} \int (|Lu|^2 + |\nabla u|^2 + |u|^2) + \varepsilon \int |\varphi|^2$$

and

$$\int |\varphi|^2 = \int |\partial_k^{-h}(\zeta^2 \partial_k^h u)|^2$$

$$\lesssim \int |\nabla(\zeta^2 \partial_k^h u)|^2$$

$$\lesssim \int |\partial_k^h u|^2 + \int \zeta^2 |\partial_k^h \nabla u|^2$$

$$\lesssim \int |\nabla u|^2 + \int \zeta^2 |\partial_k^h \nabla u|^2,$$

we obtain

$$\int (Lu - b^i \partial_i u - cu) \varphi \lesssim \frac{1}{\varepsilon} \int (|Lu|^2 + |u|^2) + \left(\varepsilon + \frac{1}{\varepsilon}\right) \int |\nabla u|^2 + \varepsilon \int \zeta^2 |\partial_k^h \nabla u|^2.$$

Taking small $\varepsilon > 0$, we are done.

5.2 Schauder theory

5.3 Weyl's lemma

- 6.1 Maximum principle
- 6.2 Eigenvalue problems

Part III Evolution equations

Parabolic equations

7.1 Galerkin approximation

Hyperbolic equations

Chapter 9
Semigroup theory