TD 7: avec la dimension

1 Familles de vecteurs et dimension

Exercice 1 (Égalité de sous-espaces vectoriels par double inclusion)

Dans $E = \mathbb{R}^4$, soient $F = \text{Vect}(\vec{u}_1, \vec{u}_2)$ et $G = \text{Vect}(\vec{v}_1, \vec{v}_2)$, avec

$$\vec{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad \vec{u}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad \text{et} \quad \vec{v}_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$

- 1. a) Écrire \vec{v}_1 et \vec{v}_2 comme combinaison linéaire de \vec{u}_1 et \vec{u}_2 .
 - **b)** En déduire l'inclusion $G \subseteq F$.
- **2.** Montrer de même l'inclusion $F \subseteq G$.
- **3.** En déduire l'égalité F = G.

Exercice 2 (Égalité de sous-espaces vectoriels par dimension)

Dans
$$E = \mathbb{R}^3$$
, soient $F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E$, tels que $x + y - z = 0 \right\}$ et $G = \text{Vect} \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

- 1. a) Montrer que F est un sous-espace vectoriel de E.
 - b) Trouver une base de F. En déduire sa dimension $\dim(F)$.
- **2.** Montrer que $\vec{u}, \vec{v} \in F$. En déduire que $G \subseteq F$.
- **3.** En comparant les dimensions $\dim(F)$ et $\dim(G)$, conclure que F = G.

Exercice 3 (Plans dans \mathbb{R}^3)

Soit
$$F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^4 \text{ tels que } x + y - 2z = 0 \right\}$$
, et $\vec{u} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

- 1. Vérifier que les vecteurs $\vec{u},$ \vec{v} forment une base du sous-espace vectoriel F.
- 2. Calculer l'intersection de F avec le plan G d'équation x y z = 0.
- 3. Écrire $F \cap G = \text{Vect}(\vec{d})$ (donc $\vec{d} \in F$!). Décomposer le vecteur \vec{d} dans la base \vec{u}, \vec{v} .

Exercice 4 (Calculs de dimension)

Quelle est la dimension des sous-espaces vectoriels de \mathbb{R}^4 suivants :

$$F = \operatorname{Vect}\begin{bmatrix} \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} \end{bmatrix} \qquad G = \left\{ \begin{pmatrix} x\\y\\z\\t \end{pmatrix} \in \mathbb{R}^4 \text{ tels que } \left\{ \begin{aligned} x & +z & =0\\y & +t & =0 \end{aligned} \right. \right\}$$

$$H = \operatorname{Vect}\begin{bmatrix} \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 0\\1\\2\\3 \end{pmatrix} \right] \quad J = \left\{ \begin{pmatrix} x\\y\\z\\t \end{pmatrix} \in \mathbb{R}^4 \text{ tels que } \left\{ \begin{aligned} x & +z & =0\\y & +t & =0 \end{aligned} \right. \right\}$$

Exercice 5 (Intersection dans \mathbb{R}^4)

Dans
$$\mathbb{R}^4$$
, soient $F = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \text{ tels que } x + y + z + t = 0 \right\}$ et $G = \text{Vect} \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 0 \\ 4 \end{bmatrix}$

- 1. Trouver une base de F. En déduire $\dim(F)$.
- **2.** Donner $\dim(G)$.
- 3. Trouver une condition nécessaire et suffisante sur $\lambda, \mu \in \mathbb{R}$, pour que $\lambda \vec{u} + \mu \vec{v} \in F$.
- 4. En déduire une base du sous-espace $F \cap G$. Préciser sa dimension.

2 La formule du rang

Exercice 6 (Calculs de rang)

Pour chacune des matrices suivantes :

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, D = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}, E = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}.$$

- 1. Calculer le rang.
- 2. Calculer l'image et le noyau le cas échéant.
- 3. Calculer l'inverse le cas échéant.

Exercice 7 (Application de la formule du rang)

Soit
$$E = \mathbb{R}_2[X]$$
, et φ l'application : $\varphi : \begin{cases} E \to \mathbb{R}^2 \\ P \mapsto \begin{bmatrix} P(0) \\ P'(0) \end{bmatrix} \end{cases}$

- 1. a) Donner la dimension de E.
 - b) Montrer que l'application φ est linéaire.
- **2.** a) Calculer $\varphi(1)$, et $\varphi(X)$.
 - b) En déduire que $\operatorname{Im}(\varphi)$ contient les vecteurs de la base canonique \vec{e}_1 et \vec{e}_2 .
 - c) En déduire $\operatorname{Im}(\varphi)$ et donner $\operatorname{rg}(\varphi)$.
- **3.** a) En déduire dim $[Ker(\varphi)]$.
 - b) Trouver une base de $Ker(\varphi)$.

Exercice 8 (Variante moins guidée)

Soit
$$E = \mathbb{R}_2[X]$$
, et ψ l'application : ψ :
$$\begin{cases} E \to \mathbb{R}^2 \\ P \mapsto \begin{bmatrix} P(0) \\ P(1) \end{bmatrix} \end{cases}$$

- 1. Montrer que ψ est linéaire.
- **2.** Trouver deux polynômes $P, Q \in E$ tels que $\psi(P) = \vec{e}_1$ et $\psi(Q) = \vec{e}_2$.
- 3. En déduire que ψ est surjective, et la dimension du noyau $\operatorname{Ker}(\psi)$.
- **4.** Trouver une base du noyau $Ker(\psi)$.