Review

- We've identified the parameters that control the capacity of our models, we need a way to choose optimal values for these parameters.
- In addition, we will want an estimate of the generalization error that the selected parameters achieve.
- To obtain, valid results, we need to use appropriate methodology and construct learning experiments carefully.
- **Guiding Principle:** Data used to estimate generalization error can not be used for any other purpose (ie: model training, hyperparameter selection, feature selection, etc.) or the results of the evaluation will be **biased**.

Review

- Given a data set D, we randomly partition the data cases into a training set (Tr), a validation set (V), and a test set (Te). Typical splits are 60/20/20, 80/10/10, etc.
- Models M_i are learned on Tr for each choice of hyperparameters H_i
- The validation error Val_i of each model M_i is evaluated on V.
- The hyperparameters H_* with the lowest value of Val_i are selected and the classifier is re-trained using these hyperparameters on Tr + V, yielding a final model M_*
- Generalization performance is estimated by evaluating error/accuracy of M_* on the test data Te.

Example: Train-Validation-Test

Note that the order of the data cases needs to be randomly shuffled before partitioning D.

- Randomly partition *D* into a learning set *L* and a test set *Te* (typically 50/50, 80/20, etc).
- We next randomly partition *L* into a set of *K* blocks $B_1, ..., B_K$.
- For each crossvalidation fold k = 1, ..., K:
 - Let $V = B_k$ and $Tr = L/B_k$ (the remaining K 1 blocks).
 - Learn M_{ik} on Tr for each choice of hyperparameters H_i .
 - Compute Val_{ik} of M_{ik} on V.
- Select hyperparameters H_* minimizing $\frac{1}{K} \sum_{k=1}^{K} Val_{ik}$ and re-train model on L using these hyperparameters, yielding final model M_* .
- Estimate generalization performance by evaluating error/accuracy of M_* on Te.

Example: 3-Fold Cross Validation and Test

First Cross Validation Fold

Note that the order of the data cases needs to be randomly shuffled before partitioning D into L and Te.

Example: 3-Fold Cross Validation and Test

Second Cross Validation Fold

Note that the order of the data cases needs to be randomly shuffled before partitioning D into L and Te.

Example: 3-Fold Cross Validation and Test

Third Cross Validation Fold

Note that the order of the data cases needs to be randomly shuffled before partitioning D into L and Te.

- Randomly partition the data cases into a learning set *L* and a test set *Te* (typically 50/50, 80/20, etc).
- For sample s = 1, ..., S:
 - Randomly partition L into Tr and V (again 50/50, 80/20, etc).
 - Learn M_{is} on Tr for each choice of hyperparameters H_i .
 - Compute Val_{is} of M_{is} on V.
- Select hyperparameters H_* minimizing $\frac{1}{S} \sum_{s=1}^{S} Val_{is}$ and re-train model on L using these hyperparameters, yielding final model M_* .
- Estimate generalization performance by evaluating error/accuracy of M_* on Te.

Example: 3-Sample Random Resampling and Test

First Sample

Note that the order of the data cases needs to be randomly shuffled before partitioning D into L and Te.

Second Sample

Note that the order of the data cases needs to be randomly shuffled before partitioning D into L and Te.

Example: 3-Sample Random Resampling and Test

Third Sample

Note that the order of the data cases needs to be randomly shuffled before partitioning D into L and Te.

- Randomly partition data set *D* into a set of *J* blocks $C_1, ..., C_J$.
- For j = 1, ..., J:
 - Let $Te_i = C_i$ and $L_i = D/C_i$
 - Partition L_i into a set of K blocks $B_1, ..., B_K$.
 - For k = 1, ..., K:
 - Let $V = B_k$ and $Tr = L_i/B_k$.
 - Learn M_{ik} on Tr for each choice of hyperparameters H_i .
 - Compute error Val_{ik} of M_{ik} on V.
 - Select hyperparameters H_* minimizing $\frac{1}{K} \sum_{k=1}^{K} Val_{ik}$ and re-train model on L_i using these hyperparameters, yielding model M_{*i} .
 - Compute Err_i by evaluating M_{*i} on Te_i .
- Estimate generalization error using $\frac{1}{J} \sum_{j=1}^{J} Err_j$
- We can define a similar nested random resampling validation procedure.

Review

- In cases where the data has a benchmark split into a training set and a test set, we can use Recipes 1-3 by preserving the given test set and splitting the given training set into train and validation sets as needed.
- In cases where there is relatively little data, using a single held out test set will have high bias. In these cases, Recipe 4 often provides a better estimate of generalization error, but has much higher computational cost.
- Choosing larger K in cross validation will reduce bias. Choosing larger S in random re-sampling validation will reduce variance and bias. However, both increase computational costs. K = 3, 5, 10 are common choices for cross validation. K = N, also known as Leave-one-out cross validation is also popular when feasible.