2024转搬分流形第五次作业解答

EXERCISE 1. (WHITNEY'S APPROXIMATION THEOREM) Pf. Choose one coordinate chart covering $\{(y_{\alpha}, U_{\alpha})\}$ s.t. $U_{\alpha} \stackrel{\text{pt}}{=} M$, $\forall \alpha \in M > |R| \text{ cts.}$ so: $\epsilon_{\alpha} := \inf_{u_{\alpha}} \epsilon > 0$. Step1: $\forall f \in C(M)$, $\exists g \in C^{\infty}(M)$ s.t. $|f-g| < \frac{\epsilon}{\sqrt{n}}$. Take P.O. U. Sp. subject to Sual. Let fx:= fogal = c(Ux) & suplful < +00. 9a(Ux) opt. ⇒ Standard modifying steps in REAL ANALYSIS: $\exists f_{\alpha}^{\epsilon_{\alpha}} \in C^{\infty}(U_{\alpha}) \text{ s.t. } |f_{\alpha}^{\epsilon_{\alpha}} - f_{\alpha}| = \frac{\epsilon_{\alpha}}{\sqrt{n}} = \frac{\epsilon_{\alpha} g_{\alpha}^{-1}}{\sqrt{n}}.$ Take $g = \sum_{x} \int_{x} (f_{x}^{\varepsilon_{x}} \circ g_{x}), g \in C^{\infty}(M)$ (due to P.O.U. locally finite), and: 1-91=121x1-12092) = = [(fx-fx)).] $= \sum_{k} \int_{k} \frac{\epsilon \cdot y_{k} \cdot y_{k}}{\sqrt{n}} = \frac{1}{\sqrt{n}} \sum_{k} \int_{k} \cdot \epsilon = \frac{\epsilon}{\sqrt{n}}.$ Step2: YFEC(M, 1Rk), == GEC(M, 1Rk) s. t. 11F-G11-E.

Write
$$F = (F', ..., F^{k})$$
, $F^{i} \in C(M)$, $\forall k \in k$.

From step I , $\exists G^{i} \in C^{\infty}(M)$, $s + i F^{i} - G^{i} | < \frac{\epsilon}{\sqrt{m}}$.

Take $G = (G', ..., G^{k}) \in C^{\infty}(M, |R^{k})$, so:

$$||F - G|| = \left(\sum_{i=1}^{m} |F^{i} - G^{i}|^{2}\right)^{\frac{1}{2}}$$

$$< \left(\sum_{i=1}^{m} \frac{\epsilon^{2}}{n}\right)^{\frac{1}{2}} = \left(\epsilon^{2}\right)^{\frac{1}{2}} = \epsilon. \quad + \epsilon$$

Rmk. One can choose F= G on a closed subset of M. (See Prof. Zwoging Wong's Lecture in 2023)

EXERCISE 2.

Sol Let
$$i_1$$
: $S^2 \rightarrow 10^3$, $i_2: 10^2 \rightarrow 1R^3$. 10^3 : closed unit ball in $1R^3$

& $\partial 10^3 = S^2$. So: $i = i_2 \circ i_1 : S^2 \rightarrow 1R^3$, and:

$$\int_{S^2} i^* \theta = \int_{S^2} i_1^* i_2^* \theta$$

Stokes $\int_{10^3} d(i_2^* \theta) = \int_{10^3} i_2^* (d\theta)$

Symmetry of 10^3 :

$$= \int_{10^3} (2x+2) dx \wedge dy \wedge dy$$

$$\int_{10^3} x dx dy dy = 0$$

$$= \int_{10^3} 2 dx \wedge dy \wedge dy$$

$$= 2 - volume (10^3) = \frac{3}{3} 7C$$

EXERCISE3. Pf. (1) Prove by induction. Suppose for some kelly $\alpha \Lambda (d\alpha)^R - \beta \Lambda (d\beta)^R$ $= (\alpha - \beta) \wedge \sum_{j=0}^{\infty} (d\alpha)^{j} \wedge (d\beta)^{k-j}$ $+d(\alpha \lambda \beta \lambda \sum_{i=0}^{\infty} (d\alpha)^{i} \lambda (d\beta)^{k-j-1})$ then for ktl: $\alpha \wedge \beta = (-1)^{25} \beta \wedge \alpha$ $\alpha \wedge (d\alpha)^{k+1} - \beta \wedge (d\beta)^{k+1}$ $\alpha \in \mathcal{M}$ $= [\alpha \wedge (d\alpha)^{k} - \beta \wedge (d\beta)^{k}] \wedge d\alpha$ BELLY $+\beta\Lambda(d\beta)^{R}\Lambda(d\alpha-d\beta)$ d (XXB) $= (\alpha - \beta) \wedge \sum_{j=0}^{\infty} (d\alpha)^{j+1} \wedge (d\beta)^{k-j}$ = danb +(-1) a > dB $+d(\alpha \wedge \beta \wedge \sum_{k=1}^{\infty}(d\alpha)^{d} \wedge (d\beta)^{k-j+1}) \wedge d\alpha$ ∝€ LUI $+(d\alpha-d\beta)\Lambda\beta\Lambda(d\beta)^{R}$ BELLS $= (\alpha - \beta) \wedge \sum_{i=1}^{k} (d\alpha)^{i} \wedge (d\beta)^{k+1-i}$ $+d(\alpha \wedge \beta \wedge \sum_{i=1}^{k}(d\alpha)^{i+1}\wedge(d\beta)^{k-j}$ $+d((\alpha-\beta)\wedge\beta\wedge(d\beta)^{k}$ $=(\alpha-\beta)\lambda$ \sum_{i} $(d\alpha)^{i}\lambda(d\beta)^{k+1}$

+ J (~ NB N = (da) N (dB) (dB)

still holds, only to check n=2; $\propto \Lambda(d\alpha) - \beta \Lambda(d\beta)$ $= (\alpha - \beta) \wedge (d\alpha) + (\alpha - \beta) \wedge d\alpha \wedge d\beta$ $+(\alpha-\beta)\Lambda(d\beta)^{2}$ $+\beta\Lambda(d\alpha)^{2}-(\alpha-\beta)\Lambda d\alpha\Lambda d\beta-\alpha\Lambda(d\beta)$ $= (\alpha - \beta) \wedge \sum_{k=0}^{\infty} (d\alpha)^k \wedge (d\beta)^{2-k}$ t dan Brda - ardBrda + arBrd(da) +danbadb-anddb)+anbad(db) $= (\alpha - \beta) \wedge \sum_{k=0}^{\infty} (d\alpha)^k \wedge (d\beta)^{2-k}$ +d(angrda)+d(angrdB) also holds. (2) First prove: for any wEDinH(M), w= XNXW. Pf Using HW3Ex8, 3 local chart s.t. X=01 So $\propto = dx' + \sum_{i=1}^{\infty} \propto_i dx^i$ Write $\omega = \lambda dz / \sqrt{dz}$ so: $\nabla_X \omega = 2 \sum_{j=1}^{\infty} (-i)^j dx^j (X) dx^j \wedge \cdots \wedge dx^j \wedge \cdots \wedge dx^{2n+j}$ $= \lambda dz^2 \wedge \cdots \wedge dz^{2n+1}$

Then: $\alpha \wedge \nu_{x} \omega = (dx + \sum_{j=1}^{2n+1} \alpha_{j} dx^{j}) \wedge (\lambda dx^{2}) \wedge (\lambda dx^{2})$ $= \lambda dx^{1} \wedge \cdots \wedge dx^{2n+1} = \omega,$ So: By Stoke's formula, $\int_{M} \propto \Lambda (d\alpha)^{n} = \int_{M} \beta \Lambda (d\beta)^{n}$ $+\int_{M} (\alpha - \beta) \wedge \sum_{j=0}^{\infty} (d\alpha)^{j} \wedge (d\beta)^{n-j}$ Only to show: $(\alpha - \beta) \wedge \sum_{j=0}^{\infty} (d\alpha_j)^j \wedge (d\beta_j)^{n-j} = 0$ $\langle \Rightarrow v_X((\alpha-\beta) \wedge \sum_{j=0}^{\infty} (d\alpha)^j \wedge (d\beta)^{n-j}) = 0$ $v_X(\alpha-\beta)=\alpha(X)-\beta(X)=1-1=0;$ 2x = vx dx + d(vxx) = vx dx = 0; $\mathcal{L}_{X}\beta = \nu_{X}d\beta + d(\nu_{X}\beta) = \nu_{X}d\beta = 0$ $\Rightarrow v_X((\alpha-\beta)_X = (d\alpha)^{d_X}(d\beta)^{\infty})$ $= v_X(\alpha - \beta) / \sum_{i=0}^{\infty} (d\alpha)^t / (d\beta)^{\lambda-1}$ $-(\alpha-\beta)\sqrt{\chi}(\frac{2}{2}(d\alpha)^{\delta}\sqrt{d\beta})^{-\delta}$ $= -(\alpha - \beta) \wedge \left(\sum_{k=0}^{\infty} \sum_{k=0}^{\infty} (d\alpha)^k \wedge v_X d\alpha \wedge (d\alpha)^{k-k-1} \wedge (d\beta)^{n-k}\right)$ + = (da) ~ (dB) x ~ (dB) ~ (dB) ~ (dB)

Rmk	∝(X)二 家际	上挖吸下的预处处理度的截面。
	conclusion!	
	conclusion2:	de Rham 271
		局部可以变为年标的研(分裂)
		(诸年河滩2332)
		$\omega = \propto \wedge v_X \omega \Rightarrow \tilde{\Omega}^{n}(M) \simeq \tilde{\Omega}^{n-1}(M).$

EXERCISE 4. Pf. (1) YzEM, wz:=w|TzM: TzMxTzM->IR bilinear & anti-symmetric. Choose one basis of TzM as {ui, vi}i=1, the related dual basis {u, vi}i=1 s.t.i (Standard Linear Algebra Conclusion) $\omega_{\mathbf{x}} = \sum_{i=1}^{\infty} b_i (u^i \otimes v^i - v^i \otimes u^i) = \sum_{i=1}^{\infty} b_i u^i \wedge v^i,$ where bj GIR. So: $\omega^{n}|_{T_{\mathbf{z}}M} = (\omega_{\mathbf{z}})^{n} = \omega_{\mathbf{z}} \wedge \cdots \wedge \omega_{\mathbf{z}}$ = (~ binhor) / (~ binhor) = n! (元bi) ルハンハ・ハルハッハ standard volume form wirt basis [ni, vi] = So: ω non-degenerate $\Rightarrow \forall z, \omega_z = \sum_{i=1}^{n} b_i u^i \wedge v^i$ with $b_i \neq 0$, $\forall l \leq i \leq n$ $\Rightarrow \forall b_i \neq 0 \Leftrightarrow \forall z, (\omega_z)^n$ is not-vanishing > w is nowhere vanishing.

(2)
$$\{F, G\} \omega = \omega(x_F, x_G) \omega^n$$

$$= -dF(x_G) \omega^n = 0$$

$$= -v_{x_G}(dF \wedge \omega^n) - dF \wedge v_{x_G} \omega^n$$

$$= -dF \wedge \left(\sum_{j=0}^{\infty} \omega^j \wedge v_{x_G} \omega \wedge \omega^{n-1-j}\right)$$

$$= -dG$$

$$+(-1)^{\infty} \wedge (v_{x_G})$$

$$= dF \wedge \left(\sum_{j=0}^{\infty} \omega^j \wedge dG \wedge \omega^{n-1-j}\right)$$

$$= dF \wedge \left(\sum_{j=0}^{\infty} dG \wedge \omega^j \wedge \omega^{n-1-j}\right)$$

$$= dF \wedge dG \wedge \omega^n$$

$$= ndF \wedge dG \wedge \omega^{n-1}$$

EXERCISE 5. (Generalized FUBINIS THEOREM ON Smooth Manifolds) Pf. Due to the structure of product manifolds, let {Ux}, {Vy} be the local chart coverings of M, N, and [Ja], [yy) be P.O. U.s subject to EU23, EVy? then: · {Ux x Vy } is a local chart covering of MxN; · [(gaoTh). (groTh)) is a P.O.U. belonging to [UxXVy]. So: $\int_{M\times N} \times B = \sum_{x,y} \int_{M\times N} (\beta_{x} \circ \pi_{N}) \cdot (y_{y} \circ \pi_{N}) \pi_{M}^{*} \times \lambda \pi_{N}^{*} B$ $= \sum_{n=1}^{\infty} \int_{\mathcal{U}_{X} \times V_{Y}} (J_{x^{0}} \pi_{M}) \cdot (g_{Y^{0}} \pi_{N}) \pi_{M}^{*} \times \Lambda \pi_{N}^{*} \beta$ let: | fa: Ua > Uz = IR" } cordinate maps fr: Vr > Vr = IR" (diffeomorphisms) fao Tajora=Id gromar sizeId & { Tax; UxxVy > Ux, Tax; Tho (faxgr) Tax, Vx > Vy, Tax, = Tho (faxgr) TXX WX > UXXY YV >W ×VY det Z Juxy (Jao Ta, T) (Y Ta, T) (Ta, T) & N (Ta, T) B ix (Txy) = (fx) * = (实际上=证(证券)*从设(证券)*月=(元)*从(月子)*月 Fubin 5 (Ju (Ju of 2) (fu) * x) (Ju (groft) (gt) * B) $= \left(\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \sum_{i=1}^$