RSA Public Key Cryptosystem

Introduction

 After Whitfield Diffie and Martin Hellman introduced public-key cryptography (Diffie Hellman Algorithm) in 1976, a new branch of cryptography suddenly opened up.

- In 1977, Ronald Rivest, Adi Shamir and Leonard Adleman proposed a scheme at MIT known as RSA.
- General Information
 - best known & widely used asymmetric cryptographic scheme
 - can be used to provide both secrecy & digital signatures
 - based on exponentiation in a finite field over integers
 - modulo a prime, using large integers (e.g.,2048 bits)

RSA Key Setup

- Each user generates a public/private key pair by the following process:
 - 1. Select two large distinct primes at random p and q
 - 2. Compute modulus $n = p \times q$
 - 3. Compute $\emptyset(n) = (p-1) \times (q-1)$
 - 4. Choose an integer e such that $1 < e < \phi(n)$, $gcd(e, \phi(n)) = 1$
 - (e and $\phi(n)$ share no factors other than 1) (e is relatively prime with $\phi(n)$ or co-primes)
 - Consider e as a public key
 - 5. Calculate decryption key d
 - $e.d = 1 \mod \emptyset(n)$ and $0 \le d \le n$.
 - $\circ d = e^{-1} mod \, \phi(n)$

RSA Key Setup

- Publish the Public encryption key: $PU = \{e, n\}$
- Keep secret Private Decryption key: $PR = \{d, n\}$
- It is critically important that the factors p & q of the modulus n are kept secret
- The primes p and q must be of sufficient size that factorization of their product is beyond computational reach

RSA Encryption

- For encryption, sender performs following:
 - Obtains the recipients public key PU: (e, n)
 - \circ Represents the plaintext (message to be encrypted) as a positive integer value P
 - Size of plaintext must be less than n, $(0 \le P \le n)$
 - \circ If the size of the plaintext is larger than n, it should be divided into blocks
 - Compute the Ciphertext : $C = P^e mod n$
 - Send the Ciphertext C to the recipient

RSA Decryption

Receiver do the following:

- Uses private key PR: (d, n) to decrypt the cipher-text
 - $P = C^d mod n$

Extract the plaintext from the integer representative P

RSA Example - Key Setup

- 1. Select primes $\rightarrow p = 17$ and q = 11
- 2. Compute $n \to n = pq = 17 \times 11 = 187$
- 3. Compute $\phi(n)$

$$\phi(n) = (p-1)(q-1) = 16 \times 10 = 160$$

- 4. Select encryption key *e*
 - $gcd(e, \phi(n)) = 1$; choose e = 7
- 5. Decryption key d
- $d = e^{-1} mod \ \phi(n) \rightarrow d = 7^{-1} mod \ 160 = 23$ (using Extended Euclidean Algorithm)
- 6. Publish Public Key $PU = \{e, n\} \rightarrow PU = \{7,187\}$
- 7. Keep secret Private Key $PR = \{d, n\} \rightarrow \{23,187\}$

RSA Example - En/Decryption

- The sample RSA private/public operations are:
 - Given message P = 88 (note that 88<187)
 - Encryption is:

```
    C = 88<sup>7</sup> mod 187
    = 88<sup>(3+3+1)</sup> mod 187
    = (88<sup>3</sup> mod 187)(88<sup>3</sup> mod 187)(88 mod 187) mod 187
    = (44 * 44 *88) mod 187
    = 11
```

Decryption is:

Greatest Common Divisor (GCD)

- a common problem in number theory
- GCD (a,b) of a and b is
 - the largest number that divides evenly into both a and b
 - \circ e.g., GCD(60,24) = 12
- often want no common factors (except 1)
 - \circ e.g., GCD(8,15) = 1
- these numbers are then relatively prime
 - hence 8 & 15 are relatively prime

Euclidean Algorithm

- an efficient way to find the GCD(a,b)
- uses theorem that:
 - \circ GCD(a,b) = GCD(b, a mod b)
- Euclidean Algorithm to compute GCD(a,b) is:
- EUCLID(a,b)
 - 1. A = a; B = b
 - \circ 2. if B = 0 return else A = gcd(a, b)
 - \circ 3. R = A mod B
 - 4. A = B
 - 5. B = R
 - 6. goto 2

Example GCD(1970,1066)

```
1970 = 1 \times 1066 + 904
                                   gcd(1066, 904)
1066 = 1 \times 904 + 162
                                   gcd(904, 162)
904 = 5 \times 162 + 94
                                   gcd(162, 94)
162 = 1 \times 94 + 68
                                   gcd(94, 68)
94 = 1 \times 68 + 26
                                   gcd(68, 26)
68 = 2 \times 26 + 16
                                   gcd(26, 16)
26 = 1 \times 16 + 10
                                   gcd(16, 10)
16 = 1 \times 10 + 6
                                   gcd(10, 6)
10 = 1 \times 6 + 4
                                   gcd(6, 4)
6 = 1 \times 4 + 2
                                   gcd(4, 2)
4 = 2 \times 2 + 0
                                   gcd(2, 0)
```

Hence, gcd(1970,1066) = 2

Finding Inverses – Extended Euclidean algorithm

```
EXTENDED EUCLID (m, b) [Find b^{-1}mod m]
   1. (A1, A2, A3) = (1, 0, m);
       (B1, B2, B3) = (0, 1, b)
   2. if B3 = 0
       return A3 = gcd(m, b); no inverse
   3. if B3 = 1
       return B3 = gcd (m, b); B2 = b^{-1} \mod m
   4. Q = A3 \, div \, B3
   5. (T1, T2, T3) = (A1 - Q B1, A2 - Q B2, A3 - Q B3)
   6. (A1, A2, A3) = (B1, B2, B3)
   7. (B1, B2, B3) = (T1, T2, T3)
   8. goto2
```

Inverse of 37 in modulus 160 (7^{-1} mod 160)

• calling Extended_Euclid(160, 7)

Q	A1	A2	A3	B 1	B2	B3
	1	0	160	0	1	7
22	0	1	7	1	-22	6
1	1	-22	6	-1	23	1

Hence, $7^{-1} \mod 160 = 23$

Example: Inverse of 37 in modulus 49 $(37^{-1} mod 49)$

• calling Extended_Euclid(49, 37)

Q	A1	A2	A3	B 1	B2	B3
	1	0	49	0	1	37
1	0	1	37	1	-1	12
3	0	1	12	-3	4	1

• Hence $37^{-1} \mod 49 = 4 \text{ OR } 37^{-1} \equiv 4 \mod 49$

Inverse of 550 in modulus 1759

• calling Extended_Euclid(1759, 550)

Q	A1	A2	A3	B 1	B2	B3	
	1	0	1759	0	1	550	
3	0	1	550	1	-3	109	
5	1	-3	109	- 5	16	5	
21	-5	16	5	106	-339	4	
1	106	-339	4	-111	355	1	

• Hence, $550^{-1} \mod 1759 = 355$

Inverse of 49 in modulus 37

• calling Extended_Euclid(37, 49)

Q	A1	A2	A3	B 1	B2	B3
	1	0	37	0	1	49
0	0	1	49	1	0	37
1	1	0	37	-1	1	12
3	-1	1	12	4	-3	1

- Hence $49^{-1} \mod 37 = -3$
- But, $-3 \pmod{37} \equiv 34 \pmod{37}$. Hence,
- $34 = 49^{-1} \mod 37$

- Encrypt message "hello" with block size 1
- Given e=3,p=137 and q=131, n = 17947

а	b	С	d	е	f	g	h	i	j	k	1	m	n	0	р	q	r	S	t	u	v	w	x	У	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

- Letters H = 7, E = 4, L = 11,.....
- Encryption of chracter "H": $C = P^e \mod n \rightarrow 7^3 \mod 17947 = 343$
- Decryption key, $\phi(n) = 17680 \rightarrow d = 3^{-1} mod \ 17680 = 11787$

Inverse of 3 in modulus 17680

• calling Extended_Euclid(17680, 3)

Q	A1	A2	A3	B 1	B2	B3	
	1	0	17680	0	1	3	
5893	0	1	3	1	-5893	1	

• Hence, $3^{-1} \mod 17680 = -5893 \rightarrow -5893 \mod 17680 = 11787$

Decryption

- Decryption : $P = C^d \mod n \rightarrow 343^{11787} \mod 17947$
- 343¹¹⁷⁸⁷ mod 17947
 - 11787= 8192+2048+1024+512+8+2+1
- 343^2 = 9967, 343^8 = 7436, 343^64 = 9880, 343^512=12090, 343^1024 = 7732,
- 343^2048 = 2367, 343^8192 = 9312
- = (9312*2367*7732*12090*7436*9967*343) mod 17947
- = 7 = "H"

Encryption-Decryption

- H = 7, **E = 4**, L = 11
- e=3,p=137 and q=131, n = 17947, d = 11787
- Let's encrypt $-C = P^e \mod n$
- $4^3 \mod 17947 = 64$
- Decrypt = $P = C^d \mod n$
- 64 ^11787 mod 17947 = ?

Conti...

- H = 7, E = 4, L = 11, L = 11, O = 14
- e=3,p=137 and q=131, n = 17947, d = 11787
- Encryption: $L = 11^3 \mod 17947 = ?$
- $0 = 14^3 \mod 17947 = ?$

Another Text Example – Block Size 3

- given e=3,p=137 and q=131, encrypt the message "HELLO"
- using 00 to 25 for letters A to Z for the block size of THREE.
- First block of size three-

•
$$HEL = H * 26^2 + E * 26^1 + L * 26^0 = 7 * 26^2 + 4 * 26^1 + 11 * 26^0 = ?$$
 (4847)

Second block

•
$$LOX = L * 26^2 + O * 26^1 + X * 26^0 = 11 * 26^2 + 14 * 26^1 + 23 * 26^0 = ?$$
 (7823)

Encryption $C = P^e \mod n$

- $C1 = (4847)^3 \mod 17947 = 4978$
- $C2 = (7823)^3 \mod 17947 = 12882$

Decryption

- $P = C^d mod n$
- (4978) ^ 11787 mod 17947 =

$$//11787 = 8192 + 2048 + 1024 + 512 + 8 + 2 + 1$$

(4978)^2 mod 17947 = 13624	(4978)^4 mod 17947 = 5502	(4978)^8 mod 17947= 13362
(4978)^16 mod 17947 = 6288	(4978)^64 mod 17947 = 10742	(4978)^512 mod 17947 = 16375
(4978)^1024 mod 17947 = 12445	(4978)^2048 mod 17947 = 13362	(4978)^8192 mod 17947 = 1703

- (4978)^(8192+2048+1024+512+8+2+1) mod 17947
- = 4847 (How to get HEL out of 4847?)

Recover Plaintext

- 4847%26 == 11 (L) Quotient=186
- 186%26 == 4 (E) Quotient=7
- 7%26 == 7 (H) !!!!!

RSA Key Generation

- The users of RSA must
 - determine two primes at random p, q
 - select either e or d and compute the other
- primes p,q must not be easily derived from modulus n=p.q
 - means must be sufficiently large
 - typically guess and use probabilistic test
- exponents e, d are inverses, so use inverse algorithm to compute the other
 - So, the basic operation involved, in either case, is
 - modular exponentiation
 - Use binary left-to-right or square-and-multiply method

Computational complexity: Exponentiation

- The Square and Multiply Algorithm
 - a fast, efficient algorithm for exponentiation
 - also known as
 - exponentiation by squaring OR
 - Binary exponentiation OR
- concept is based on repeatedly squaring the base
 - and multiplying in the ones that are needed to compute the result
- can be formally defined as

```
• Power (x,n) = \begin{cases} x & \text{if } n=1 \\ Power(x^2, n/2) & \text{if } n = \text{even} \\ x \cdot Power(x^2, (n-1)/2) & \text{if } n = \text{odd} \end{cases}
```

Computational complexity: Exponentiation

- The Square and Multiply Algorithm
- Algorithm for Computing: a^b mod n
- The integer b is expressed as a binary number b_kb_k1 ... b₀

Algorithm Square_Multiply(,)

- c = 0; f = 1
- for i = k down to 0
 - do c = 2 * c
 - o f = (f * f) mod n
 - if bi == 1 then
 - \circ c = c + 1
 - f = (f x a) mod n
- return f

Result of Square and Multiply Algorithm

- where a = 7, b = 560 = 1000110000, n = 561
- bi = **1000110000**

1	9	8	7	6	5	4	3	2	1	0
bi	1	0	0	0	1	1	0	0	0	0
С	1	2	4	8	17	35	70	140	280	560
f	7	49	157	526	160	241	298	166	67	1

• Result $a^b \mod n = 7^{560} \mod 561 = 1$ (final return value of f)

Result of Square and Multiply Algorithm

- where a = 4978, b = 11787 = 10111000001011, n = 17947
- bi= 10111000001011

• **Result** $a^b \mod n = 4978^{11787} \mod 17947$

Result of Square and Multiply Algorithm

- where a = 4978, b = 11787 = 10111000001011, n = 17947
- bi= 10111000001011

1	13	12	11	10	9	8	7	6	5	4	3	2	1	0
bi	1	0	1	1	1	0	0	0	0	0	1	0	1	1
С	1	2	5	11	23	46	92	184	368	736	1473	2946	5893	1178 7
f	4978	1362 4	1834	2489	1310 0	786	7598	1205 2	5633	393	1558 9	1454 1	2358	4847

• **Result** a^b mod $n = 4978^{11787}$ mod 17947 = 4847 (final return value of f)

- Consider the text grouping in the groups of three i.e.
 - ATTACKXATXSEVEN = ATT ACK XAT XSE VEN
- Represent the blocks in base 26 using A=0, B=1, C=2.....
 - \circ ATT = 0 * 26² + 19 * 26¹ + 19 = 513
 - ACK = $0 * 26^2 + 2 * 26^1 + 10 = 62$
 - \circ XAT= 23 * 26² + 0 * 26¹ + 19 = 15567
 - \circ XSE= 23 * 26² + 18 * 26¹ + 4 = 16020
 - VEN = $21 * 26^2 + 4 * 26^1 + 13 = 14313$
- Next issue is designing the cryptosystem selecting the parameters.
- What should be the value of n?

- The value of n should be greater than 17575. How & why?
 - **0≤m<n (Here maximum value of message can ZZZ =** 25 * 26² + 25 * 26¹ + 25 = 17575
- Let p = 137 and q = 131; so that n = pq = 17947

- Compute phi value
 - \circ $\phi(n)=(p-1)(q-1)=136 \times 130=17680$
- Select encryption parameter
 - e: gcd(e,17680)=1; choose *e=3*
- Determine decryption parameter
 - d: de=1 mod 17680 and d < 17680

- Value is d=11787 since 3⁻¹ mod 17680 = 11787
- Publish public key PU={3,17947}
- Keep secret private key PR={11787,17947}

Text En/Decryption using RSA

- The sample RSA private/public operations are:
 - Given message M = ATT = 513
 - Overall the plaintext is represented as the set of integers m
 - {513,62,15567,16020,14313}
 - Encryption is
 - C = 513³ mod 17947 (m^e mod n)
 = 8363
 - Overall the Ciphertext is represented as the set of integers m
 - {8363,5017,11884,9546,13366}
 - Decryption is

```
M = 8363^{11787} \mod 17947 (c<sup>d</sup> mod n) = 513
```

Complexity of operations in RSA

RSA uses modular exponentiation for encryption/decryption; To attack it, Eve needs to calculate $\sqrt[e]{C}$ mod n.

RSA Challenge

number	digits	prize	factored
RSA-100	100		Apr. 1991
RSA-110	110		Apr. 1992
RSA-120	120		Jun. 1993
RSA-129	129	\$100	Apr. 1994
RSA-130	130		Apr. 10, 1996
RSA-140	140		Feb. 2, 1999
RSA-150	150		Apr. 16, 2004
RSA-155	155		Aug. 22, 1999
RSA-160	160		Apr. 1, 2003
RSA-200	200		May 9, 2005
RSA-576	174	\$10,000	Dec. 3, 2003
RSA-640	193	\$20,000	Nov. 4, 2005
RSA-704	212	\$30,000	open
RSA-768	232	\$50,000	open
RSA-896	270	\$75,000	open
RSA-1024	309	\$100,000	open
RSA-1536	463	\$150,000	open
RSA-2048	617	\$200,000	open