Biologicky motivované výpočtové modely

Michal Kováč

FMFI UK

24.6.2013

- Prehľad problematiky
 - Prehľad modelov
 - P systémy
 - Varianty
- Plány na dizertačnú prácu
 - Aktuálne riešené problémy
 - Ďalšie plány

Biologicky motivované výpočtové modely

Modely vznikajú s dvoma účelmi:

- simulácia biologických javov
- zdokonalenie informatických riešení

Biologicky motivované výpočtové modely

- Neurónové siete (od 1943)
- Celulárne automaty (od 1948)
- Evolučné algoritmy (od 1954)
- L systémy (od 1968)
- P systémy (od 1998) [Păun, 1998]
- . .

Membránová štruktúra

Obsah membrány

- multimnožina objektov
 - a | b | b
- prepisovacie pravidlá

$$\bullet \ \ a \mid b \mid b \rightarrow a \mid a_{out} \mid b_{in_6}$$

$$\bullet \ b \to a \mid \delta$$

P systém

P systém definujeme ako

$$\Pi = (V, \mu, w_1, w_2, \dots, w_m, R_1, R_2, \dots, R_m)$$
, kde:

- V je abeceda objektov
- ullet μ je membránová štruktúra
- $w_1, w_2, \dots w_m$ sú počiatočné multimnožiny v membránach $1 \dots m, \ w_i \subseteq \mathbb{N}^V$
- R₁, R₂,..., R_m sú množiny prepisovacích pravidiel v membránach 1...m, pričom

$$R_i \subseteq (\mathbb{N}^V \setminus 0^V) \times \mathbb{N}^{V \times (\{here, out\} \cup \{in_1, ... in_m\})}$$

Konfigurácia a krok výpočtu

- ullet konfigurácia = membránová štruktúra + obsahy membrán
- krok výpočtu: maximálny paralelizmus

$$egin{array}{c|c} a & b & b
ightarrow c \\ b
ightarrow c & c \\ \hline a & a & b & b \end{array}$$

Konfigurácia a krok výpočtu

- ullet konfigurácia = membránová štruktúra + obsahy membrán
- krok výpočtu: maximálny paralelizmus

Jazyk

- Parikhovo zobrazenie
- alternatíva: worm objects [Maté et al., 2002]
 - namiesto multimnožín objektov sú v membránach multimnožiny stringov
 - inšpirované DNA
- generatívny mód
- akceptačný mód

Varianty pravidiel

- kontextové (PsRE)
- kooperatívne (PsRE)
- katalytické
 - s 2 katalyzátormi (PsRE) [Freund et al., 2005]
 - s 1 katalyzátorom (otvorený problem)
 - s 1 katalyzátorom a inhibítormi (PsRE) [lonescu and Sburlan, 2004]
- bezkontextové (PsCF) [Sburlan, 2005]
- bezkontextové s inhibítormi (PsET0L)
 [Ionescu and Sburlan, 2004]

Varianty kroku výpočtu

- maximálny paralelizmus (PsRE)
- maximálny paralelizmus bez priorít (PsRE) [Sosík and Freund, 2003]
- sekvenčný (vieme simulovať pomocou VASS, [Ibarra et al., 2005])
- sekvenčný s prioritami (TODO)
- asynchrónny (TODO)
- minimálny paralelizmus (PsRE) [Ciobanu et al., 2007]
- n-paralelizmus, max-n-paralelizmus, . . .

Sekvenčné P systémy

- nie sú univerzálne
- na univerzalitu treba:
 - povoliť neobmedzené vytváranie membrán [Ibarra et al., 2005]
 - inhibítory
 - publikuje sa
 - Inhibiting the parallelism in P systems
 - 2nd International Workshop on Hybrid Systems and Biology
 - iné rozšírenia (vacuum, ...)
 - inšpirácie z výsledkov iných formalizmov

Ďalšie plány

- Preskúmať možnosti kombinovania ďalších variantov P systémov z hľadiska výpočtovej sily
 - priestorové P systémy
 - rozpadajúce sa objekty
 - energie
- Porovnať s inými formalizmami, napríklad Petriho siete / reaction systems / CLS / ...
- Nájsť nové varianty

Inšpirácie z výsledkov iných formalizmov

- Petriho siete
 - nie sú univerzálne
 - s inhibítormi áno
 - ake iné varianty Petriho sietí ešte nikto nevyskúšal aplikovať v P systémoch?
- CLS (Calculi of Looping Sequences)
 - sekvenčný model, vie simulovať P systémy [Barbuti et al., 2007]
- Reakčné (alebo reaktívne?) systémy

Nové varianty

Besozzi [Besozzi, 2004]: Dobrý variant by mal byť:

- realistický
- univerzálny
- iredundantný

Literatúra I

The calculus of looping sequences for modeling biological membranes.

In 8th Workshop on Membrane Computing (WMC8), LNCS 4860, pages 54–76. Springer.

Besozzi, D. (2004).

Computational and modelling power of P systems.

PhD thesis, Universita' degli Studi di Milano, Milano, Italy.

Ciobanu, G., Pan, L., Pun, G., and Pérez-Jiménez, M. J. (2007).

P systems with minimal parallelism.

Theor. Comput. Sci., 378(1):117-130.

Literatúra II

Freund, R., Kari, L., Oswald, M., and Sosík, P. (2005). Computationally universal p systems without priorities: two catalysts are sufficient.

Theoretical Computer Science, 330(2):251 – 266. Descriptional Complexity of Formal Systems.

Ibarra, O. H., Woodworth, S., Yen, H.-C., and Dang, Z. (2005).

On sequential and 1-deterministic p systems.

In *Proceedings of the 11th annual international conference on Computing and Combinatorics*, COCOON'05, pages 905–914, Berlin, Heidelberg. Springer-Verlag.

Literatúra III

- Ionescu, M. and Sburlan, D. (2004).
 On p systems with promoters/inhibitors.

 Journal of Universal Computer Science, 10(5):581–599.
- Maté, J. L., Rodríguez-Patón, A., and Silva, A. (2002). On the power of p systems with dna-worm-objects. *Fundam. Inf.*, 49(1):229–239.
- Păun, G. (1998).
 Computing with membranes.
 Technical Report 208, Turku Center for Computer Science-TUCS.
 (www.tucs.fi).

Literatúra IV

Sburlan, D. (2005).

Promoting and Inhibiting Contexts in Membrane Computing.

PhD thesis, University of Seville.

Sosík, P. and Freund, R. (2003).

P systems without priorities are computationally universal. In *Revised Papers from the International Workshop on Membrane Computing*, WMC-CdeA '02, pages 400–409, London, UK, UK. Springer-Verlag.

Ďakujem za pozornosť