Gráfalgoritmusok

Gaskó Noémi

2023. március 5.

Tartalomjegyzék

- Szélességi bejárás
- Mélységi bejárás
- Alkalmazások
 - Összefüggőség
 - Tranzitív lezárás
 - Topológiai rendezés
 - Egyéb

Múlt órán

- követelmények
- alapfogalmak
- gráfok ábrázolása

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 3/7

gráfok bejárása

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 4/7

- gráfok bejárása
- összefüggő-e

- gráfok bejárása
- összefüggő-e
- utak keresése

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 4/76

- gráfok bejárása
- összefüggő-e
- utak keresése
- o . .

Gráfok bejárása

• mélységi bejárás (DFS - depth-first search)- mint egy séta

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 5/7

Gráfok bejárása

mélységi bejárás (DFS - depth-first search)- mint egy séta

 szélességi bejárás (BFS - breadth-first search)- mint ahogy a hullám terjed

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 5/76

Szélességi bejárás (Breadth-first search BFS)

• több algoritmus a BFS ötletén alapul (pl. Dijkstra, Prim)

BFS algoritmus

Adott egy G=(V,E) gráf és egy **kiinduló csomópont** s, az algoritmus bejárja a gráfot, hogy minden csomópontot felfedezzen, ami elérhető az s-ből

- irányított és nem irányított gráfok esetén is működik
- az algoritmus egy fát épít fel, melynek gyökere az s

BFS (II)

- ahhoz, hogy megfigyeljük hogyan működik az algoritmus három szinre van szükségünk: fehér, szürke és fekete:
 - fehér nem volt meglátogatva
 - fekete ha $\{u,v\} \in E$, u fekete, akkor v fekete vagy szürke
 - szürke a meglátogatott és nem meglátogatott csomópontok "határán" van

BFS (III)

- az eljárás adiacencia listával dolgozik
- ullet a π érték a szülőt, a d érték a távolságot tartja nyilván a kezdeti csomópontból az aktuális csomópontba

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 8 / 70

BFS(G,s)

```
For minden csomopont u \in G, V - \{s\}
  u.color = feher
  u.d = \infty
  u.\pi = NIL
s.color = szurke
s.d = 0
s \pi = NII
Q = \emptyset
Enqueue(Q,s)
While Q \neq \emptyset
  u = Dequeue(Q)
  For minden v \in G.Adj[u]
     If v \text{ color} == feher
       v color = szurke
       v.d = u.d + 1
       v \pi = u
       Enqueue(Q,v)
  u.color = fekete
```

Egy példa¹

¹forrás: Cormen, Introduction to algorithms

askó Noémi Gráfa|goritmusok 2023. március 5. 11

◆ロ > ◆部 > ◆恵 > ◆恵 > ・恵 ・ 少へ○

askó Noémi Gráfalgoritmusok 2023. március 5. 17 /

askó Noémi Gráfa|goritmusok 2023. március 5. 18

Szélességi bejárás - nem jelölve a csomópontokat

```
BFS(G, source):
(source a kezdeti csomópont)
create a queue Q (várakozási sor)
enqueue source onto Q
mark source
while Q is not empty:
      dequeue an item from Q into v
      for each edge e incident on v in Graph:
         let w be the other end of e
         if w is not marked:
            mark w
            enqueue w onto Q
```

ullet az algoritmus végrehajtási ideje O(V+E)

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 20 / 76

Mélységi bejárás (Depth-first search DFS)

• miután minden élt bejárt, amit a v-ből elért, visszatér annak az élnek a csomópontjára, amely a v-be ment, és onnan folytatja a bejárást

DFS (II)

- itt is kiszinezzük a csomópontokat, mint a BFS esetén
- megjegyezzük azt is, hogy mennyi időbe telt felfedezni
- ullet u.d az időt jelzi, amikor felfedeztük u-t
- $ullet \ u.f$ amikor "befejeztük" u
- ullet a csomópont állapota: fehér u.d szürke u.f fekete

DFS - az eljárás

```
\begin{array}{l} \mathsf{DFS}(G,s) \\ \mathsf{For\ minden\ csomópont}\ u \in G.V \\ \mathsf{u.color} = \mathsf{feher} \\ \mathsf{u.d} = \infty \\ \mathsf{u.\pi} = \mathsf{NIL} \\ \mathsf{time} = 0 \\ \mathsf{For\ minden}\ u \in G.V \\ \mathsf{If\ u.color} == \mathsf{feher} \\ \mathsf{DFS}\ \ \mathsf{VISIT}(\mathsf{G,u}) \end{array}
```

DFS - (II)

```
DFS VISIT(G, u)
time = time + 1
u.d = time
u.color = szurke
For minden v \in G.Adj[u]
  If v.color == feher
    v.\pi = u
    DFS VISIT(G,v)
  u.color = fekete
  time = time + 1
  u.f = time
```

DFS

- az algoritmus végrehajtási ideje:
 - $\bullet \ \mathsf{DFS_VISIT} \ \mathsf{v\'egrehajt\'odik} \ |Adj[v]| \text{-szor, mert} \\$

$$\sum_{v \in V} |Adj[v]| = \Theta(E)$$

ullet az algoritmus végrehajtási ideje $\Theta(V+E)$

Élek típusai

- ullet fa él (Tree edge) (u,v) egy fa él, ha u után v-t látogatjuk meg
- ullet vissza él (back edge) (v,u) egy él, de nem tartozik hozzá a DFS fához
- ullet előre él (forward edge) v-t az u után látogatjuk meg, de az (u,v) él nincs benne a DFS fában
- kereszt él (cross edge) az egyéb élek

Példa: lásd 2_jegyzet.pdf

Egy példa²

²Cormen, Introduction to Algorithms

askó Noémi Gráfalgoritmusok 2023. március 5. 27 /

askó Noémi Gráfalgoritmusok 2023. március 5. 28

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 29 /

askó Noémi Gráfalgoritmusok 2023. március 5. 32 /

askó Noémi Gráfalgoritmusok 2023. március 5. 33 /

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 34 /

Gaskó Noémi Gráfal goritmusok 2023. március 5. 35,

Gaskó Noémi Gráfal goritmusok 2023. március 5. 36,

iaskó Noémi Gráfalgoritmusok 2023. március 5. 37

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 38 /

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 39 /

askó Noémi Gráfalgoritmusok 2023. március 5. 40 /

askó Noémi Gráfalgoritmusok 2023. március 5. 41/

Bejárások - irányított gráfok

Bejárások: DFS és BFS hasonlóan, mint a nem irányított esetben

Bejárások - irányított gráfok

Bejárások: DFS és BFS hasonlóan, mint a nem irányított esetben

Összefüggő komponens meghatározása

Összefüggőség irányítatlan gráfban

Egy irányítatlan gráfot összefüggőnek nevezünk, ha bármely két csúcsa között létezik út.

Osszefüggő komponens meghatározása

Összefüggőség irányítatlan gráfban

Egy irányítatlan gráfot összefüggőnek nevezünk, ha bármely két csúcsa között létezik út.

Összefüggőség irányított gráfban

Egy irányított gráfot gyengén összefüggőnek nevezünk, ha a neki megfelelő irányítatlan gráf összefüggő.

Egy irányított gráf erősen összefüggő ha bármely u és v csúcsra létezik $u \rightarrow v$ irányított út.

Gaskó Noémi

Példa

Összefüggőség:

askó Noémi Gráfalgoritmusok 2023. március 5. 44 / i

Hány összefüggő komponense van az alábbi ábrának :)?

- 4 ロ b 4 個 b 4 重 b 4 重 b 9 Q (*)

Erősen összefüggő komponensek meghatározása -"+-"-algoritmus

Gráf transzponáltja

Legyen G^T a G gráf transzponáltja, melyet úgy kapunk, hogy minden él irányítását megfordítjuk.

Az algoritmus alapötlete:

- inditsunk egy mélységi bejárást v-ből, és minden csúcspont ahova eljutottunk jelöljük meg "+"-al
- transzponáljuk a gráfot
- indítsunk még egy bejárást v-ből a transzponált gráfon, jelöljük "-"-al ahova eljutottunk
- v erősen összefüggő komponensei azok amik + és jelet is tartalmaznak
- ismételjük az eljárást a maradék csomópontokra

Gaskó Noémi

Erősen összefüggő komponensek meghatározása - Kosaraju algoritmusa

Kosaraju algoritmusa Az algoritmus lépései:

- bejárjuk a gráfot DFS-el a bejárt elemeket egy verembe tesszük
- bejárjuk a gráf transzponáltját DFS-el a verem alapján

Egy példa - lásd 2 jegyzet.pdf

Erősen összefüggő komponensek meghatározása - Tarjan algoritmusa

- csak egy mélységi bejárást használ
- minden csomópont esetén tároljuk a következőket:
 - az időpillanatot, amikor meglátogattuk (amikor szürke lett) (time)
 - v a segéd vermen van-e
 - a v-ből elérhető legkorábban meglátogatott csúcsok belépési ideje (low[v])

DFS_SCC(v)

```
time ++
belep[v]=time
low[v] = time
vermen[v] = TRUE
FOR minden w szomszédjára v-nek
  IF (belep[w] = -1)
    DFS SCC(w)
    low[v] = min(low[v], low[w])
  ELSE
    IF ((belep[w] < belep[v]) AND vermen[w])
       low[v] = min(low[v], belep[w])
IF (low[v]=belep[v])
  komponensek++
  WHILE ((verem.empty()=FALSE) AND (belep[verem.top()]>=belep[v]))
    component[komponensek].add(verem.top())
    vermen[verem.top()] = FALSE
    verem.pop()
```

Egy példa³

³forrás: https://nanopdf.com/download/scc-algorithm-wordpresscom pdf

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 50 / 76

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 51/76

skó Noémi Gráfa|goritmusok 2023. március 5. 52/7

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 53 / 7

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 54/7

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 55/7

Gaskó Noémi Gráfalgoritmusok 2023. március 5.

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 57/1

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 58 / 70

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 59 / 70

4 U P 4 B P 4 E P 4 E P E *) 4 (*

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 60 /

Gaskó Noémi

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 63 / 76

4 U P 4 DP P 4 E P 4 E P E *) 4 (*)

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 64 / 7

Tranzitív lezárás

Tranzitív lezárás

Egy G=(V,E) gráf tranzitív lezártja (tranzitív lezárása) az a G'=(V,E') gráf, melyben akkor létezik egy (u,v) él, ha a G-ben létezik út u-ból v-be.

Megoldás: Warshall algoritmus (következő órákon), vagy

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 65 / 76

Tranzitív lezárás

Tranzitív lezárás

Egy G = (V, E) gráf tranzitív lezártja (tranzitív lezárása) az a G' = (V, E')gráf, melyben akkor létezik egy (u, v) él, ha a G-ben létezik út u-ból v-be.

Megoldás: Warshall algoritmus (következő órákon), vagy DFS

Topológiai rendezés

- DFS-t használva egy kör nélküli irányított gráfot topológiailag rendezhetünk
- egy lineáris elrendezése a csomópontoknak az élek függvényében

Topológiai rendezés

Legyen egy G = (V, E) körmentes gráf, a topológiai rendezés a csomópontok sorát adja meg, úgy hogy ha G tartalmazza az $\{u,v\}$ élt, akkor u hamarabb jelenik meg a felsorolásban, mint v.

sok helyen használják a topológiai rendezést

Topológiai rendezés (II)

- egy sorrendje bizonyos cselekményeknek, amit egy meghatározott sorrendben kell végrehajtani
- egyes cselekményeket végre kell hajtani, mielőtt mások elkezdődnének
- milyen sorrendben kell végrehajtani?
- reprezentálhatjuk ezeket mint egy gráfot, ahol a csomópontok a cselekmények
- ullet az $\{u,v\}$ él azt jelenti, hogy az u cselekmény megelőzi a v-t
- topológiai rendezés során megkapjuk az események végrehajtásának sorrendjét

Topológiai rendezés (III)

Topológiai rendezés (G)

meghívjuk a DFS(G)-t, hogy meghatározzuk a $v.f,v\in V$ -ket csökkenő sorrendbe rendezzük a v.f szerint (miután a csúcsok befejeződtek beszúrjuk egy listába)

return lista

- ullet a topológiai rendezés ideje $\Theta(V+E)$
- DFS ideje $\Theta(V+E)$
- \bullet ahhoz, hogy egy $v \in V$ csúcsot beszúrjunk a listába O(1)időre van szükség

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 68 / 76

Példa - lásd 2_jegyzet.pdf

Alkalmazások - szélességi és mélységi bejárásra

szoftverek moduljainak a függősége

Alkalmazások - szélességi és mélységi bejárásra

- szoftverek moduljainak a függősége
- biológia

Gaskó Noémi Gráfalgoritmusok 2023. március 5. 70 / 76

Alkalmazások (folyt.) - hálózatelemzés

Szélességi bejárásra:

közösségi hálókban az ismerősök ajánlása (pl. Facebook)

Alkalmazások (folyt.) - hálózatelemzés

Szélességi bejárásra:

- közösségi hálókban az ismerősök ajánlása (pl. Facebook)
- Kevin Bacon/ Erdős Pál/ Sabbath szám

Alkalmazások (folyt.) - képfeldolgozás

Keressünk nagyobb csillagokat az alábbi képen:

Alkalmazások (folyt.) - Labirintus

Megoldás: Thremaux algoritmusa - a 19. századból, DFS-en alapul

- jegyezd meg minden csomópontot amiben jártál
- jegyezz meg minden bejárt utat

Alkalmazások (folyt.)

- páros gráf ellenőrzés
- kör meghatározása

