MY472 – Week 1: Overview and Fundamentals

Friedrich Geiecke

MY472: Data for Data Scientists

27 September 2021

Course website: lse-my472.github.io

What is this course about?

The 80/20 rule of data science: 80% data manipulation, 20% data analysis

It is about the 80%

In more detail

Course tries to provide "data science literacy"

- ▶ What is data?
 - Basic data types and structures
- ► How to collect data?
 - How to scrape data from the internet
 - How to work with APIs
- ► How to clean and process data?
 - ► How to format, organize, and reshape data
 - Cloud computing to process very large datasets
- How to store and query data?
 - How to create and use databases
 - How to create and manage (online) databases

Tools applicable in a wide range of fields

For example

- Private sector
- Public sector
- ► Healthcare
- ► Non-profit
- ▶ Data journalism
- Research

Plan for today

- ► Administration and logistics
- On the history of data and databases
- Data types and storage units
- Introduction to R
- Markdown in brief
- git and Github for version control

Course outline

- 1. Introduction to data
- 2. The shape of data
- 3. HTML and CSS
- 4. Using data from the internet
- 5. Working with APIs
- 6. (Reading week)
- 7. Textual data
- 8. Data visualisation
- 9. Creating and managing databases
- 10. Interacting with online databases
- 11. Cloud computing

Prerequisites and software

- Introductory course no prerequisites (only completion of R preparatory course required!)
- ► Lab computers are available, but we strongly recommend bringing your own laptop
- Software:
 - ► R 4.1.1 Install from https://www.r-project.org/
 - RStudio Install from https://www.rstudio.com/products/rstudio/download/
 - GitHub Desktop Install from https://desktop.github.com/
 - → Please install before lab session this week
- Mirrors similar tool usage and learning in other Methodology courses

About me

- Assistant Professor of Computational Social Science at the London School of Economics
 - ▶ PhD in Economics, London School of Economics, 2020

Research:

- Topics at the boundary of machine learning and economics
- Innovation, macroeconomic fluctuations, economic policy
- Natural language processing, reinforcement learning, statistical machine learning

▶ Contact:

- f.c.geiecke@lse.ac.uk
- https://sites.google.com/view/friedrichgeiecke/

Your turn

- 1. Name?
- 2. MSc/PhD Programme?
- 3. Previous experience with R?
- 4. Why are you interested in this course and what would you most like to learn?

Course philosophy

How to learn the techniques in this course?

- Lecture approach: not ideal for learning how to code
- ► You can only learn by doing
- ightarrow We will cover each concept three times during each week
 - 1. Introduction to the topic in lecture
 - 2. Guided coding session in lecture and lab
 - 3. Course assignments
- ► We will move relatively fast

Readings

Course webpage: https://lse-my472.github.io/

- Mixed set of readings, very specific to each week
 - Often freely available online, otherwise, available for purchase (often in electronic versions)
 - Some books are (freely) available online and in print, and the online version may be more recent
- Please do the readings!

Course meetings

- Pre-recorded lectures
- One-hour lecture discussions (also called 'Q&A') via Zoom (you only have to attend one per week)
 - ► Group 1: Tuesdays 09:00–10:00 via Zoom
 - ► Group 2: Tuesdays 15:00–16:00 via Zoom
- ► Ten one-hour classes ("labs")
 - ► Group 1: Fridays 11:00–12:00 in KSW.1.01 and via Zoom
 - ► Group 2: Fridays 16:00–17:00 in NAB.2.04 and via Zoom
- No lecture/class in Week 6
- Office hours (book via StudentHub)
 - Friedrich: Tuesdays 16:00-18:00
 - Patrick: Tuesdays 14:00-15:00 and Fridays 15:00-16:00

Assessment

- ▶ 5 assignments will be assessed (50%).
 - Submitted via GitHub (more in lab)
 - Only "knitted" R-markdown assignments in HTML accepted
 - One will be collaborative; rest will be individual submissions
- ► Take-home assignment (50%)
 - Individual assignment that asks to answer a series of question with data
 - ► More open-ended format than assignments
 - Deadline: 14 January 2022, 14:00

A note on plagiarism and collaboration

- ► Four individual term time assignments, one group term time assignment, one individual final assignment
- Strictly no discussion and collaboration with others allowed in any individual assignment
- You can use online resources but always give credit and cite if you borrow code or solutions
- Any forbidden collaboration or not cited code/solutions/papers/resources are considered plagiarism

Plan for today

- ► Administration and logistics
- On the history of data and databases
- Data types and storage units
- Introduction to R
- Markdown in brief
- git and GitHub for version control

History of data

Rosetta Stone, British Museum

- Great book on the history of information and data: The Information by James Gleick (not on the formal reading list)
- ► Early example of database often government records: Who is paying taxes and how much, census of citizens, etc.

Early example of a database index

Index cards used in a library catalog of books

- ► Initially developed to catalog species by botanist Carl Linnaeus (19th century)
- Units (species, books) are a record; records are indexed using a specific reference / sorting system

Each record looked like this:

Dewey decimal system

- ► A proprietary library classification system first published in the United States by Melvil Dewey in 1876
- Scheme is made up of ten classes, each divided into ten divisions, each having ten sections
- The system's notation uses Arabic numbers, with three whole numbers making up the main classes and sub-classes and decimals creating further divisions
- Example:

```
500 Natural sciences and mathematics
510 Mathematics
516 Geometry
```

516.3 Analytic geometries 516.37 Metric differential geometries 516.375 Finsler Geometry

- Problem: Cards only sorted in one way. Re-referencing literally a manual operation
- Contrast with the idea of electronic indices, where assets are stored once and many indexing and referencing systems can be applied

Relational databases

► Codd, E.F. (1970) "A Relational Model of Data for Large Shared Data Banks." *Communications of the ACM*.

School Table

ID	Name
S001	University of Technology
S002	University of Applied Science

Student Table

School ID	ID	Name	DOB
S001	UT-1000	Tommy	05/06/1995
S001	UT-1000	Better	16/04/1995
S002	UAS-1000	Linda	02/09/1995
S002	UAS-1000	Jonathan	22/06/1995

Recent developments in data storage/management

NoSQL: beyond relational structure; flexible; more scalable & compatible with distributed cloud storage (Big Data)

Trying to define Big Data

- 1. Volume: Around 8 billion mobile phones, around 2.5 billion Facebook users, 500+ million tweets per day...
- 2. Velocity: How quickly is data flowing? Personal, spatial and temporal granularity
- 3. Variability: Images, networks, long and short text, geographic coordinates, streaming...

Dumbill (2012), Monroe (2013)

Big Data: Data that is so large, complex, and/or variable that some new tools to understand it must be created

Plan for today

- ► Administration and logistics
- On the history of data and databases
- Data types and storage units
- Introduction to R
- Markdown in brief
- git and Github for version control

Changes in the world of data

- ▶ Volume of data in the modern world: Very large fraction of the world's data has been generated in the last *two years*
- ► Facebook processes 500+ terabytes of data each day
- Square Kilometer Array (SKA) telescope
 - Southern hemisphere radio telescope with a total of 1km² of data sensors
 - Will generate 1 exabyte $daily = 10^{18}$ bytes

- ► Compare this with the Apollo Guidance Computer (1966), which guided the first humans to the moon:
 - Magnetic core memory: 16-bit word length, 2048 words RAM
 4KB
 - Core rope memory: 36,864 words. 73KB

Basic units of data

- Bits
 - Smallest unit of storage; a 0 or 1
 - With n bits, can store 2^n patterns
- Bytes
 - ▶ 8 bits = 1 byte (why 1 byte can store 256 patterns)
 - "eight bit encoding" used to represent characters, such as A represented as 65 = 01000001

Dec Hx Oct Char	Dec H	x Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html C	hr_
0 0 000 NUL (null)	32 20	040		Space	64	40	100	@	0	96	60	140	a#96;	
1 1 001 SOH (start of heading)	33 21	041	6#33;	1	65	41	101	A	A	97	61	141	6#97;	a
2 2 002 STX (start of text)	34 22	042	 4 ;	**	66	42	102	B	В	98	62	142	b	b
3 3 003 ETX (end of text)	35 23	043	6#35;	#				C					c	C
4 4 004 EOT (end of transmission)			\$					D					d	
5 5 005 ENQ (enquiry)			6#37;					E					e	
6 6 006 ACK (acknowledge)			6#38;					F					f	
7 7 007 BEL (bell)			6#39;					G					«#103;	
8 8 010 BS (backspace)			6#40;		72	48	110	6#72;	H	104	68	150	a#104;	h
9 9 011 TAB (horizontal tab))					I					i	
10 A 012 LF (NL line feed, new line)			*					6#74;					a#106;	
11 B 013 VT (vertical tab)	43 2E	053	6#43;	+				6#75;		107	6B	153	k	k
12 C 014 FF (NP form feed, new page)			6#44;					6#76;		108	6C	154	a#108;	1
13 D 015 CR (carriage return)			6#45;					6#77;					a#109;	
14 E 016 SO (shift out)			6#46;					a#78;		110	6E	156	a#110;	n
15 F 017 SI (shift in)	47 2F	057	6#47;	/				O		111	6F	157	6#111;	. 0
16 10 020 DLE (data link escape)	48 30	060	6#48;	0	80	50	120	6#80;	P	112	70	160	p	p
17 11 021 DC1 (device control 1)	49 31	061	6#49;	1	81	51	121	6#81;	Q	113	71	161	6#113;	q
18 12 022 DC2 (device control 2)	50 32	062	6#50;	2	82	52	122	R	R	114	72	162	6#114;	r
19 13 023 DC3 (device control 3)	51 33	063	6#51;	3	83	53	123	S	S	115	73	163	s	s
20 14 024 DC4 (device control 4)	52 34	064	6#52;	4	84	54	124	 4 ;	T	116	74	164	t	t
21 15 025 NAK (negative acknowledge)	53 35	065	6#53;	5	85	55	125	U	U	117	75	165	a#117;	u
22 16 026 SYN (synchronous idle)	54 36	066	%#54 ;	6	86	56	126	V	٧	118	76	166	v	v
23 17 027 ETB (end of trans. block)	55 37	067	7	7	87	57	127	W	W	119	77	167	w	w
24 18 030 CAN (cancel)	56 38	070	8	8	88	58	130	X	Х	120	78	170	x	x
25 19 031 EM (end of medium)	57 39	071	6#57;	9	89	59	131	Y	Y	121	79	171	y	Y
26 1A 032 SUB (substitute)	58 3A	072	6#58;	:	90	5A	132	Z	Z	122	7A	172	z	Z
27 1B 033 ESC (escape)	59 3E	073	6#59;	;	91	5B	133	[[123	7B	173	{	-{
28 1C 034 FS (file separator)	60 30	074	a#60;	<	92	5C	134	6#92;	A.	124	7C	174		1
29 1D 035 GS (group separator)	61 3D	075	=	=	93	5D	135]]	125	7D	175	a#125;	}
30 IE 036 RS (record separator)	62 3E	076	>	>	94	5E	136	^	À	126	7E	176	~	~
31 1F 037 US (unit separator)	63 3F	077	6#63;	?	95	5F	137	6#95;	_	127	7F	177		DEL

Source: www.LookupTables.com

Basic units of data

Multi-byte units:

unit	abbreviation	total bytes	nearest decimal equivalent
kilobyte	КВ	1,024^1	1000^1
megabyte	MB	1,024^2	1000^2
gigabyte	GB	1,024^3	1000^3
terabyte	ТВ	1,024^4	1000^4
petabyte	РВ	1,024^5	1000^5
exabyte	EB	1,024^6	1000^6
zettabyte	ZB	1,024^7	1000^7
yottabyte	YB	1,024^8	1000^8

Plan for today

- ► Administration and logistics
- On the history of data and databases
- ► Data types and storage units
- ► Introduction to R
- Markdown in brief
- git and Github for version control

Why we're using R

- Becoming lingua franca of statistical analysis in academia
- ▶ Often demanded by employers in the private sector
- It's free and open-source
- ► Flexible and extensible through *packages* (over 10,000 and counting!)
- Powerful tool to conduct automated text analysis, social network analysis, and data visualization, with packages such as quanteda, igraph or ggplot2
- Command-line interface and scripts favor reproducibility
- Excellent documentation and online help resources

R is also a full programming language; once you understand how to use it, you can learn other languages too.

RStudio

Plan for today

- ► Administration and logistics
- On the history of data and databases
- ► Data types and storage units
- ► Introduction to R
- R markdown in brief
- git and Github for version control

Exemplary markdown files

01-RMarkdown.Rmd 02-intro-to-R.Rmd

Plan for today

- ► Administration and logistics
- On the history of data and databases
- ► Data types and storage units
- ► Introduction to R
- ► Markdown in brief
- ▶ git and Github for version control

Introduction to git/GitHub

Git is a type of version control system or VCS

- ➤ A VCS keeps records of your changes: It helps track who made changes when
- Possibility of reverting any changes and go back to previous state
- Distributed (entire code and history on each machine) allows for collaborative development
- ► Git: Created by Linus Torvalds in 2005 to facilitate Linux kernel development
- Other options: Mercurial, Subversion
- GitHub allows you to host repositories and adds extra functionalities (UI, documentation, issues, user profiles...)

Basic concepts of git

- Code lives in a repository: Collection of all files (and history)
- Every time you make changes, you need to make a commit:
 - Creates a snapshot of your code
 - Informs how files have changed
 - You need to add a message explaining changes
- ► After you commit, you need to push the changes to the repository on GitHub so that others can see them
- Note − you also need to pull first to receive changes from other people
- When you start from a repository someone created, you will have to first fork it (create a copy on GitHub) and then clone it (download) to your computer