High Throughput Sequencing Sequence Data Generation and Analysis

Daniel Sobral

High-Throughput Sequencing Workflow

HTS Applications: Genomics Resequencing

A reference sequence already exists and is annotated

Often obtained using "traditional" Sanger (hard work!)

What are the mutations (if any) from reference causing the phenotype?

observed "mutants" (with different phenotype)

observed "mutants" (with different phenotype)

HTS Applications: Genomics Resequencing Pipeline

HTS Applications: Genomics Resequencing Pipeline

HTS Applications: Genomics Resequencing Pipeline

SNP finding is fairly "simple", but other cases are not always so easy

"complex" events most often ignored but in many cases important

HTS Applications: Genomics Resequencing post-analysis

Variants only make sense in context

How can we be sure of the effect of the variant

qualitative VS quantitative effect

HTS Applications: Genomics denovo Assembly of genomes

HTS Applications: Transcriptomics Sequencing your transcriptome

Spliced alignment (eukaryotes)

HTS Applications: Transcriptomics Differential Gene Expression

Differentially Expressed Genes

Fold Change of Gene Expression within a Pathway

HTS Applications: Transcriptomics Discovering your transcriptome

Assembling transcripts denovo is even harder than the genome

Finding alternative
Transcripts with
RNA-Seq is a very
active research area

MUCH easier if genome is already available

You still need the painstaking work done before NGS

HTS Applications: Metagenomics 16S Metagenomics

- Estimate bacterial composition
 - Using only an universal marker gene (16S)

HTS Applications: Metagenomics 16S Metagenomics

Comparative bacterial composition

		Total	WT.day3.11	WT.day3.13	WT.day3.14	WT.day3.15	WT.day3.9	WT.unt.1	WT.unt.2	WT.unt.3	WT.unt.4	WT.unt.7
Legend	Taxonomy	%	%	%	%	%	%	%	%	%	%	%
	Unassigned;Other	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.4%	0.3%	0.3%	0.1%
	k_Bacteria;Other	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	k_Bacteria;p_Actinobacteria	0.8%	0.7%	2.5%	0.8%	3.2%	0.4%	0.0%	0.1%	0.1%	0.0%	0.1%
	k_Bacteria;p_Bacteroidetes	56.9%	71.5%	74.4%	58.8%	31.3%	81.7%	41.7%	56.1%	68.5%	34.0%	50.7%
	k_Bacteria;p Cyanobacteria	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	0.5%	1.0%	1.0%	0.3%
	k_Bacteria;p Deferribacteres	0.5%	0.0%	0.0%	0.0%	0.0%	0.0%	1.4%	1.4%	0.3%	1.5%	0.8%
	k_Bacteria;p_Firmicutes	22.9%	1.0%	0.4%	0.6%	1.6%	1.3%	53.0%	39.2%	25.7%	61.0%	44.7%
	k_Bacteria;p Proteobacteria	17.9%	26.7%	22.7%	39.8%	63.8%	16.7%	1.7%	2.0%	3.0%	1.5%	1.4%
	k_Bacteria;p_TM7	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.5%	0.2%	0.6%	0.4%	0.8%
	k_Bacteria;p_Tenericutes	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.5%	0.0%	0.0%
	k_Bacteria;p Verrucomicrobia	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.0%	0.1%	0.2%	0.9%

Frequency of Taxa

Beta-Diversity (comparative)

Alpha-Diversity (total diversity)

HTS Applications: Metagenomics Whole Shotgun Metagenomics

- Similar to denovo genome assembly
 - Much more complex than a single species
 - Multiple species, at different frequencies

HTS Applications: Epigenomics Targeted Sequencing

HTS Applications: Epigenomics Targeted Sequencing

