Yifu-He-Homework6

May 13, 2020

```
In [1]: import pandas as pd
    import numpy as np
    import os
```

1 Question 1

```
In [4]: path = "/Users/yifuhe/Learning/RBS/fin_model/homework6"
        HXZ_factor = pd.read_excel(path+"/Data_q_factors.xlsx")
        five_factor = pd.read_excel(path+"/F-F_Research_Data_5_Factors_2x3.xlsx")
        fama_french = pd.read_excel(path+"/F-F_Research_Data_Factors.xlsx")
        # read data from path
        port_25 = pd.read_excel(path+"/25_Portfolios_5x5.xlsx")
        # 25 Fama-French size and book to market sorted portfolios
        colname = port 25.iloc[14,:].values
        colname[0] = "Date"
        data = port_25.iloc[15:-2,:].reset_index().drop("index",axis = 1)
        data.columns = colname
        for i in range(len(data["Date"])):
            if not isinstance(data["Date"][i],(int,float)):
                print(i,data.Date[i])
        #data["Date"] = pd.to_datetime(data.loc["Date"].apply(str),format = "%Y%m")
1126
       Average Equal Weighted Returns -- Monthly
2254
       Average Value Weighted Returns -- Annual
       Average Equal Weighted Returns -- Annual
2351
2448
       Number of Firms in Portfolios
3576
       Average Market Cap
4704
       For portfolios formed in June of year t
4705
       Value Weight Average of BE/ME Calculated for June of t to June of t+1 as:
4706
       Sum[ME(Mth) * BE(Fiscal Year t-1) / ME(Dec t-1)] / Sum[ME(Mth)]
4707
       Where Mth is a month from June of t to June of t+1
4708
       and BE(Fiscal Year t-1) is adjusted for net stock issuance to Dec t-1
5836
       For portfolios formed in June of year t
       Value Weight Average of BE_FYt-1/ME_June t Calculated for June of t to June of t+1 as:
5837
5838
       Sum[ME(Mth) * BE(Fiscal Year t-1) / ME(Jun t)] / Sum[ME(Mth)]
5839
       Where Mth is a month from June of t to June of t+1
5840
       and BE(Fiscal Year t-1) is adjusted for net stock issuance to Jun t
```

```
6968
      For portfolios formed in June of year t
6969
      Value Weight Average of OP Calculated as:
6970
      Sum[ME(Mth) * OP(fiscal year t-1) / BE(fiscal year t-1)] / Sum[ME(Mth)]
6971
      Where Mth is a month from June of t to June of t+1
      For portfolios formed in June of year t
7655
      Value Weight Average of investment (rate of growth of assets) Calculated as:
7656
7657
      Sum [ME(Mth) * Log(ASSET(t-1) / ASSET(t-2) / Sum [ME(Mth)]
      Where Mth is a month from June of t to June of t+1
7658
In [7]: industry_30 = pd.read_excel(path+"/30_Industry_Portfolios.xlsx")
       for i in range(len(industry 30.iloc[:,0])):
           if not isinstance(industry_30.iloc[i,0],(int,float)):
               print(i,industry_30.iloc[i,0])
       colname = industry_30.iloc[10,:].values
       colname[0] = "Date"
       AVWR_month = industry_30.iloc[11:1135].reset_index().drop("index",axis=1)
       AVWR_month.columns = colname
       AVWR month["Date"] = pd.to_datetime(AVWR_month["Date"],format = "%Y%m")
       AVWR month.head()
O It contains value- and equal-weighted returns for 30 industry portfolios.
2 The portfolios are constructed at the end of June.
4 The annual returns are from January to December.
6 Missing data are indicated by -99.99 or -999.
   Average Value Weighted Returns -- Monthly
1137
      Average Equal Weighted Returns -- Monthly
2265
      Average Value Weighted Returns -- Annual
2362
      Average Equal Weighted Returns -- Annual
2459
      Number of Firms in Portfolios
3587
      Average Firm Size
4715
      Sum of BE / Sum of ME
4813
      Value-Weighted Average of BE/ME
4910 Copyright 2020 Kenneth R. French
Out[7]:
               Date Food
                           Beer Smoke Games Books Hshld Clths Hlth Chems ... \
       0 1926-07-01 0.56 -5.19 1.29 2.93 10.97 -0.48 8.08 1.77 8.14 ...
       1 1926-08-01 2.59 27.03 6.5 0.55 10.01 -3.58 -2.51 4.25
                                                                       5.5 ...
                          4.02 1.26 6.58 -0.99 0.73 -0.51 0.69 5.33 ...
       2 1926-09-01 1.16
       3 1926-10-01 -3.06 -3.31 1.06 -4.76
                                               9.47 -4.68 0.12 -0.57 -4.76
                          7.29 4.55 1.66
       4 1926-11-01 6.35
                                              -5.8 -0.54 1.87 5.42
                                                                       5.2
         Telcm Servs BusEq Paper Trans Whlsl Rtail Meals Fin
       0 0.83 9.22 2.06 7.7 1.93 -23.79 0.07 1.87 0.37
       1 2.17 2.02 4.39 -2.38 4.88
                                         5.39 -0.75 -0.13 4.46 6.76
       2 2.41 2.25 0.19 -5.54 0.05 -7.87 0.25 -0.56 -1.23 -3.86
```

```
3 -0.11 -2 -1.09 -5.08 -2.64 -15.38 -2.2 -4.11 -5.16 -8.49
       4 1.63 3.77 3.64 3.84 1.6 4.67 6.52 4.33 2.24
        [5 rows x 31 columns]
In [8]: def get_portfolio_pool(data, J, decile=3):
           res = []
           cumulate = data.rolling(J).sum().dropna()
           slices = [i for i in range(decile)] + [i for i in range(-decile,0)]
            index = cumulate.index
           for i in index:
               sorted_slice = cumulate.sort_values(by = i ,axis = 1, ascending = False)
               res.append(sorted_slice.columns[slices])
            colname = ["long_{}".format(i) for i in range(decile)] + ["short_{}".format(i) for
            return pd.DataFrame(res,columns=colname,index=index)
       portfolio_pool_6 = get_portfolio_pool(AVWR_month,6,3)
       portfolio_pool_9 = get_portfolio_pool(AVWR_month,9,3)
       portfolio_pool_6.head()
Out[8]: long_0 long_1 long_2 short_3 short_2 short_1
       5 Autos Beer Chems Hshld Paper
                                                Whlsl
       6 Beer Books Txtls
                                Other
                                        Paper
                                                Whlsl
       7 Servs Chems Txtls Paper
                                        Other
                                                Whlsl
       8 Chems Mines BusEq Other
                                        Paper
                                                Whlsl
       9 Chems Mines Autos
                                Paper
                                        Oil
                                                Whlsl
In [93]: def long_short(month_return, portfolio_pool, K, skip=1):
            index, end = portfolio_pool.index[1+skip:], portfolio_pool.index[-1]
            raw_df = pd.DataFrame(np.zeros((len(index),3)),index=index,columns=["long","short
            for i in index:
                hold_index = list(range(i,min(end,i+K)))
                for i in hold_index:
                    long = portfolio_pool.loc[i,["long_0","long_1","long_2"]].values
                    short = portfolio_pool.loc[i,["short_3","short_2","short_1"]].values
                    #print(company_columns)
                    raw_df.loc[i,"long"] += month_return.loc[i,long].sum()
                    raw_df.loc[i,"short"] += month_return.loc[i,short].sum()
            raw_df["long"] /= 18
            raw_df["short"] /= 18
            raw_df["arbitrage"] = raw_df["long"] - raw_df["short"]
            return raw_df
        p66 = long_short(AVWR_month,portfolio_pool_6,6)
        p69 = long_short(AVWR_month,portfolio_pool_6,9)
        p96 = long_short(AVWR_month,portfolio_pool_9,6)
        p99 = long_short(AVWR_month,portfolio_pool_9,9)
```

Because of the t-value is greater than the 95% tscore, all the excess return are significant.

```
In [97]: print(f"df: {p66.shape[0]}")
        print(f"95%t-score: {1.646}")
         print(f't66: {p66["arbitrage"].mean()/p66["arbitrage"].std()*np.sqrt(p66.shape[0])}')
         print(f't69: {p69["arbitrage"].mean()/p69["arbitrage"].std()*np.sqrt(p66.shape[0])}')
         print(f't96: {p96["arbitrage"].mean()/p96["arbitrage"].std()*np.sqrt(p66.shape[0])}')
         print(f't99: {p99["arbitrage"].mean()/p99["arbitrage"].std()*np.sqrt(p66.shape[0])}')
df: 1117
95%t-score: 1.646
t66: 30.830085692495242
t69: 30.7784947528333
t96: 24.879829686348785
t99: 24.847067914443098
In [133]: # get rf
          temp_data = pd.read_excel(path+"/F-F_Research_Data_Factors.xlsx")
          rf = temp_data.iloc[3:1127,4].mean()
          Rm = temp_data.iloc[3:1127,2]
          rf *=10
          print(f"rf: {rf}")
          # compute sharpe ratio
          print(f'sharpe ratio 66: {(p66["long"].mean() - rf)/p66["long"].std()}')
          print(f'sharpe ratio 69: {(p69["long"].mean() - rf)/p69["long"].std()}')
          print(f'sharpe ratio 96: {(p96["long"].mean() - rf)/p96["long"].std()}')
          print(f'sharpe ratio 99: {(p99["long"].mean() - rf)/p99["long"].std()}')
          print(f'market portfolio sharpe ratio: {Rm.mean()/Rm.std()}')
          print("All the sharpe ratio of long portfolio are higher than market portfolio")
rf: 2.7283807829181446
sharpe ratio 66: 0.15099621770830926
sharpe ratio 69: 0.2752308516025211
sharpe ratio 96: 0.0839389006728528
sharpe ratio 99: 0.21009221254283436
market portfolio sharpe ratio: 0.061386904331229016
All the sharpe ratio of long portfolio are higher than market portfolio
   Question 2
In [257]: # import model
          from sklearn.linear_model import LinearRegression
          import statsmodels.api as sm
          from scipy import stats
```

load data

```
factor_3 = pd.read_excel(path+"/F-F_Research_Data_Factors.xlsx")
         name = [factor_3.iloc[2,1]]
         CAPM = pd.DataFrame(factor_3.iloc[3:1127,1].values,columns=name)
         name = factor 3.iloc[2,:].to list()
         F3 = pd.DataFrame(factor_3.iloc[3:1127,:].values,columns=name)
         factor 3.columns = name
         factor_5 = pd.read_excel(path+"/F-F_Research_Data_5_Factors_2x3.xlsx")
         name = factor_5.iloc[2,:].to_list()
         F5 = pd.DataFrame(factor_5.iloc[3:683,:].values,columns=name)
         Q = pd.read_excel(path+"/Data_q_factors.xlsx")
         Q["Rm-Rf"] = Q["R_MKT"]-Q["R_F"]
         name = ["Rm-Rf", "R_ME", "R_IA", "R_ROE",]
         Q = pd.DataFrame(Q.loc[2:635,name].values,columns=name)
Out [257]:
               Rm-Rf
                        R_ME
                                R_IA
                                      R_ROE
              3.5998 1.9517 -1.6933 1.8876
          1
              3.4921 -0.7446 -2.9519 1.0983
             -4.5545 2.9132 2.4686 0.5234
              2.1555 6.2350 -2.1700 0.2945
         4
              4.2883 3.0119 2.3713 -0.7125
                         . . .
                                  . . .
         629 -2.4087 -4.2469 -0.9351 1.7673
         630 1.2450 1.3935 3.0078 1.6828
         631 1.6203 0.8401 -0.5515 0.6286
         632 3.2577 -0.0261 -1.0127 -1.1667
         633 2.5586 1.2822 1.8360 -1.3200
          [634 rows x 4 columns]
```

2.1 66

Almost all the excess return are sinificant according to the p-value

```
In [328]: # imports
    from sklearn.linear_model import LinearRegression
    import statsmodels.api as sm
    from scipy import stats

# 66 CAPM
length = np.min([p66.shape[0],CAPM.shape[0]])
y = p66["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
x = CAPM.iloc[-length:,:].reset_index().drop("index",axis=1)
```

```
lm1 = sm.OLS(y,x.astype(float)).fit()
print("\n# 66 CAPM")
print(lm1.summary())
# 66 F3
length = np.min([p66.shape[0],F3.shape[0]])
y = p66["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
x = F3.iloc[-length:,1:4].reset_index().drop("index",axis=1)
#print(x)
lm1 = sm.OLS(y,x.astype(float)).fit()
print("\n# 66 F3")
print(lm1.summary())
# 66 F5
length = np.min([p66.shape[0],F5.shape[0]])
y = p66["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
x = F5.iloc[-length:,1:6].reset_index().drop("index",axis=1)
#print(x)
lm1 = sm.OLS(y,x.astype(float)).fit()
print("\n# 66 F5")
print(lm1.summary())
# 66 D
length = np.min([p66.shape[0],Q.shape[0]])
y = p66["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
x = F5.iloc[-length:,1:6].reset_index().drop("index",axis=1)
lm1 = sm.OLS(y,x.astype(float)).fit()
print("\n# 66 Q")
print(lm1.summary())
```

66 CAPM

OLS Regression Results

______ R-squared (uncentered): Dep. Variable: 0.018 arbitrage Model: OLS Adj. R-squared (uncentered): 0.017 Method: Least Squares F-statistic: 19.90 Date: Tue, 12 May 2020 Prob (F-statistic): 9.00e-06 Time: 22:32:28 Log-Likelihood: -3925.6No. Observations: 1117 AIC: 7853. Df Residuals: BIC: 1116 7858. Df Model: 1 Covariance Type: nonrobust_______

coef std err t P>|t| [0.025 0.975]

Omnibus: 495.243 Durbin-Watson: 1.060 Prob(Omnibus): 0.000 Jarque-Bera (JB): 5396.868 Skew: 1.745 Prob(JB): 0.00 Kurtosis: 13.187 Cond. No. 1.00	Mkt-RF	0.2019	0.045	4.461	0.000	0.113	0.291
	Prob(Omnibus) Skew:	:	0.000 1.745	Jarqı Prob	ue-Bera (JB): (JB):		5396.868

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

66 F3

OLS Regression Results

===========			========
Dep. Variable:	arbitrage	R-squared (uncentered):	0.061
Model:	OLS	Adj. R-squared (uncentered):	0.058
Method:	Least Squares	F-statistic:	24.02
Date:	Tue, 12 May 2020	Prob (F-statistic):	4.58e-15
Time:	22:32:28	Log-Likelihood:	-3900.4
No. Observations:	1117	AIC:	7807.
Df Residuals:	1114	BIC:	7822.
DC W 1 7	0		

Df Model: 3
Covariance Type: nonrobust

==========						========
	coef	std err	t	P> t	[0.025	0.975]
Mkt-RF	0.0830	0.048	1.730	0.084	-0.011	0.177
SMB	0.2553	0.079	3.232	0.001	0.100	0.410
HML	0.4352	0.070	6.197	0.000	0.297	0.573
Omnibus:	======			======== in-Watson:	:=======	1.080
Umnibus:		291.31	L Durb	in-watson:		1.080
Prob(Omnibus):	:	0.000) Jarqı	ıe-Bera (JB):		1344.735
Skew:		1.176	5 Prob	(JB):		9.87e-293
Kurtosis:		7.834	1 Cond	. No.		1.91

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

66 F5

OLS Regression Results

===========			=========
Dep. Variable:	arbitrage	R-squared (uncentered):	0.069
Model:	OLS	Adj. R-squared (uncentered):	0.062
Method:	Least Squares	F-statistic:	9.966
Date:	Tue, 12 May 2020	Prob (F-statistic):	3.26e-09
Time:	22:32:28	Log-Likelihood:	-2327.6

 No. Observations:
 680
 AIC:
 4665.

 Df Residuals:
 675
 BIC:
 4688.

Df Model: 5 Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Mkt-RF	0.1803	0.073	2.479	0.013	0.038	0.323
SMB	0.2067	0.103	1.998	0.046	0.004	0.410
HML	-0.3838	0.143	-2.686	0.007	-0.664	-0.103
RMW	0.6056	0.143	4.237	0.000	0.325	0.886
CMA	1.2341	0.211	5.858	0.000	0.820	1.648
Omnibus:		41.3	======== 56 Durbin	 -Watson:		1.181
Prob(Omnibu	ıs):	0.0	00 Jarque	-Bera (JB):		63.700
Skew:		0.4	68 Prob(J	B):		1.47e-14
Kurtosis:		4.1	72 Cond.	No.		4.00
========	:=======	========	=======	=======		=======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

66 Q

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations:	arbitrage OLS Least Squares Tue, 12 May 2020 22:32:28 634	<pre>R-squared (uncentered): Adj. R-squared (uncentered): F-statistic: Prob (F-statistic): Log-Likelihood: AIC:</pre>	0.073 0.066 9.902 3.95e-09 -2177.5 4365.
No. Ubservations: Df Residuals:	634 629	BIC:	4365. 4387.

Df Model: 5
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Mkt-RF	0.1691	0.075	2.262	0.024	0.022	0.316
SMB	0.1885	0.108	1.740	0.082	-0.024	0.401
HML	-0.4425	0.148	-2.996	0.003	-0.733	-0.152
RMW	0.6266	0.147	4.250	0.000	0.337	0.916
CMA	1.2905	0.220	5.861	0.000	0.858	1.723
Omnibus:		37.3	356 Durbin	 ı-Watson:		1.197
Prob(Omnib	us):	0.0	000 Jarque	e-Bera (JB):		56.116
Skew:		0.4	61 Prob(J	B):		6.52e-13
Kurtosis:		4.1	.28 Cond.	No.		4.06
========						=======

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

2.2 69

Almost all the excess return are sinificant according to the p-value

```
In [330]: # imports
          from sklearn.linear_model import LinearRegression
          import statsmodels.api as sm
          from scipy import stats
          # 69 CAPM
          length = np.min([p96.shape[0],CAPM.shape[0]])
          y = p69["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
          x = CAPM.iloc[-length:,:].reset_index().drop("index",axis=1)
          lm1 = sm.OLS(y,x.astype(float)).fit()
          print("\n# 66 CAPM")
          print(lm1.summary())
          # 69 F3
          length = np.min([p96.shape[0],F3.shape[0]])
          y = p69["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
          x = F3.iloc[-length:,1:4].reset_index().drop("index",axis=1)
          #print(x)
          lm1 = sm.OLS(y,x.astype(float)).fit()
          print("\n# 66 F3")
          print(lm1.summary())
          # 69 F5
          length = np.min([p96.shape[0],F5.shape[0]])
          y = p69["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
          x = F5.iloc[-length:,1:6].reset_index().drop("index",axis=1)
          #print(x)
          lm1 = sm.OLS(y,x.astype(float)).fit()
          print("\n# 66 F5")
          print(lm1.summary())
          # 69 0
          length = np.min([p96.shape[0],Q.shape[0]])
          y = p69["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
          x = F5.iloc[-length:,1:6].reset_index().drop("index",axis=1)
          #print(x)
```

```
lm1 = sm.OLS(y,x.astype(float)).fit()
print("\n# 66 Q")
print(lm1.summary())
```

66 CAPM

OLS Regression Results

	=======================================		
Dep. Variable:	arbitrage	R-squared (uncentered):	0.017
Model:	OLS	Adj. R-squared (uncentered):	0.017
Method:	Least Squares	F-statistic:	19.77
Date:	Tue, 12 May 2020	Prob (F-statistic):	9.61e-06
Time:	22:33:47	Log-Likelihood:	-4377.2
No. Observations:	1117	AIC:	8756.
Df Residuals:	1116	BIC:	8762.
Df Model:	1		

Covariance Type: nonrobust

Mkt-RF 0.	.3016 =======	0.068	4.446	0.000	0.168	0.435
Omnibus: Prob(Omnibus): Skew: Kurtosis:		497.022 0.000 1.752 13.228	Durbin-W Jarque-B Prob(JB) Cond. No	era (JB): :	ļ	1.061 5439.617 0.00 1.00

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

66 F3

OLS Regression Results

=======================================	=======================================		
Dep. Variable:	arbitrage	R-squared (uncentered):	0.061
Model:	OLS	Adj. R-squared (uncentered):	0.058
Method:	Least Squares	F-statistic:	24.12
Date:	Tue, 12 May 2020	Prob (F-statistic):	4.00e-15
Time:	22:33:47	Log-Likelihood:	-4351.9
No. Observations:	1117	AIC:	8710.
Df Residuals:	1114	BIC:	8725.
Df Model:	3		

Df Model: 3
Covariance Type: nonrobust

========		========	========	=======	========	=======
	coef	std err	t	P> t	[0.025	0.975]
Mkt-RF	0.1225	0.072	1.705	0.088	-0.018	0.264
SMB	0.3851	0.118	3.253	0.001	0.153	0.617

HML	0.6541	0.105	6.218	0.000	0.448	0.861		
=========		=========	======	========		=======		
Omnibus:		298.515	Durbi	n-Watson:		1.082		
Prob(Omnibus)):	0.000	Jarqu	e-Bera (JB):		1354.216		
Skew:		1.180	1.180 Prob(JB):			8.62e-295		
Kurtosis:		7.851	Cond.	No.		1.91		

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

66 F5

OLS Regression Results

			=========
Dep. Variable:	arbitrage	R-squared (uncentered):	0.069
Model:	OLS	Adj. R-squared (uncentered):	0.062
Method:	Least Squares	F-statistic:	9.966
Date:	Tue, 12 May 2020	Prob (F-statistic):	3.26e-09
Time:	22:33:47	Log-Likelihood:	-2603.4
No. Observations:	680	AIC:	5217.
Df Residuals:	675	BIC:	5239.

Df Model: 5
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Mkt-RF	0.2705	0.109	2.479	0.013	0.056	0.485
SMB	0.3100	0.155	1.998	0.046	0.005	0.615
HML	-0.5756	0.214	-2.686	0.007	-0.996	-0.155
RMW	0.9084	0.214	4.237	0.000	0.487	1.329
CMA	1.8511	0.316	5.858	0.000	1.231	2.472
Omnibus: 41.		41.3	356 Durbir	 n-Watson:		1.181
Prob(Omnibu	ıs):	0.0	000 Jarque	e-Bera (JB):		63.700
Skew:		0.4	168 Prob(3	IB):		1.47e-14
Kurtosis:		4.1	72 Cond.	No.		4.00

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

66 Q

OLS Regression Results

Dep. Variable:	arbitrage	R-squared (uncentered):	0.073
Model:	OLS	Adj. R-squared (uncentered):	0.066
Method:	Least Squares	F-statistic:	9.902
Date:	Tue, 12 May 2020	Prob (F-statistic):	3.95e-09

No. Observa	tions:	6	334 AIC:				4879.
Df Residual	s:	6	329 BIC:				4901.
Df Model:			5				
Covariance	Type:	nonrobu	ıst				
	 coef	======== std err 	t	P> t	[0.025	0.975]	
Mkt-RF	0.2537	0.112	2.262	0.024	0.033	0.474	
SMB	0.2828	0.162	1.740	0.082	-0.036	0.602	
HML	-0.6638	0.222	-2.996	0.003	-1.099	-0.229	
RMW	0.9399	0.221	4.250	0.000	0.506	1.374	
CMA	1.9357	0.330	5.861	0.000	1.287	2.584	

22:33:47 Log-Likelihood:

-2434.6

Kurtosis:	4.128	Cond. No.	4.06
Skew:	0.461	Prob(JB):	6.52e-13
Prob(Omnibus):	0.000	Jarque-Bera (JB):	56.116
Omnibus:	37.356	Durbin-Watson:	1.197

Warnings:

Time:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

2.3 96

Almost all the excess return are sinificant according to the p-value. Except Rm-Rf in all the model, and SMB in the last one

```
In [332]: # imports
    from sklearn.linear_model import LinearRegression
    import statsmodels.api as sm
    from scipy import stats

# 96 CAPM
length = np.min([p96.shape[0],CAPM.shape[0]])
    y = p96["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
    x = CAPM.iloc[-length:,:].reset_index().drop("index",axis=1)
    lm1 = sm.OLS(y,x.astype(float)).fit()
    print("\n# 66 CAPM")
    print(lm1.summary())

# 96 F3
length = np.min([p96.shape[0],F3.shape[0]])
    y = p96["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
    x = F3.iloc[-length:,1:4].reset_index().drop("index",axis=1)
```

```
lm1 = sm.OLS(y,x.astype(float)).fit()
       print("\n# 66 F3")
       print(lm1.summary())
       # 69 F5
       length = np.min([p96.shape[0],F5.shape[0]])
       y = p96["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
       x = F5.iloc[-length:,1:6].reset_index().drop("index",axis=1)
       #print(x)
       lm1 = sm.OLS(y,x.astype(float)).fit()
       print("\n# 66 F5")
       print(lm1.summary())
       # 96 Q
       length = np.min([p96.shape[0],Q.shape[0]])
       y = p96["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
       x = F5.iloc[-length:,1:6].reset_index().drop("index",axis=1)
       #print(x)
       lm1 = sm.OLS(y,x.astype(float)).fit()
       print("\n# 66 Q")
       print(lm1.summary())
                        OLS Regression Results
______
Dep. Variable:
                    arbitrage R-squared (uncentered):
                                                             0.010
                         OLS Adj. R-squared (uncentered):
                                                             0.009
                 Least Squares F-statistic:
                                                             11.13
             Tue, 12 May 2020 Prob (F-statistic):
                                                           0.000878
                     22:34:54 Log-Likelihood:
                                                            -3835.7
No. Observations:
                        1114 AIC:
                                                             7673.
Df Residuals:
                             BIC:
                        1113
                                                             7678.
                           1
Covariance Type:
                    nonrobust
______
                          t P>|t| [0.025 0.975]
            coef std err
______
                           3.336 0.001
                    0.042
         0.1407
                                            0.058
______
```

#print(x)

66 CAPM

Model:

Date:

Time:

Skew:

Kurtosis:

Method:

Df Model:

Prob(Omnibus):

1.470 Prob(JB):

11.489

417.570 Durbin-Watson:

0.000 Jarque-Bera (JB):

Cond. No.

3746.558

0.00

1.00

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

66 F3

OLS Regression Results

==========		=========	======	========	=======	========	=======
Dep. Variable:		arbitrage	R-sq	R-squared (uncentered):			0.039
Model:		OLS	Adj.	R-squared (u	ncentered):		0.037
Method:		Least Squares	_	_			15.07
Date:		Tue, 12 May 2020	Prob	(F-statistic	:):		1.28e-09
Time:		22:34:54	Log-	Likelihood:			-3819.0
No. Observation	ns:	1114	AIC:				7644.
Df Residuals:		1111	BIC:				7659.
Df Model:		3					
Covariance Type	e:	nonrobust					
==========		==========	======			=======	
	coef	std err		P> t	[0.025	0.975]	
Mkt-RF	0.0466	0.045			-0.042	0.135	
		0.074					
HML		0.066	4.749				
Omnibus:		252.413	===== Durb	======== in-Watson:		1.314	
<pre>Prob(Omnibus):</pre>		0.000	Jarq	ue-Bera (JB):		1128.400	
Skew:		0.992	_			9.36e-246	
Kurtosis:		7.514	Cond	. No.		1.91	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

66 F5

OLS Regression Results

=======================================			=========
Dep. Variable:	arbitrage	R-squared (uncentered):	0.061
Model:	OLS	Adj. R-squared (uncentered):	0.054
Method:	Least Squares	F-statistic:	8.731
Date:	Tue, 12 May 2020	Prob (F-statistic):	4.90e-08
Time:	22:34:54	Log-Likelihood:	-2287.4
No. Observations:	680	AIC:	4585.
Df Residuals:	675	BIC:	4607.
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t 	P> t	[0.025	0.975]
Mkt-RF	0.1085	0.069	1.583	0.114	-0.026	0.243
SMB	0.1955	0.097	2.005	0.045	0.004	0.387

HML	-0.4186	0.135	-3.109	0.002	-0.683	-0.154
RMW	0.5852	0.135	4.345	0.000	0.321	0.850
CMA	1.0826	0.199	5.453	0.000	0.693	1.472
Omnibus:	========	 45.96	======= 4 Durb:	======== in-Watson:	=======	1.370
Prob(Omni	bus):	0.00	0 Jarqı	ue-Bera (JB)	:	88.721
Skew:		0.43	5 Prob	(JB):		5.43e-20
Kurtosis:		4.54	1 Cond	. No.		4.00
=======	========	=========	=======	========	========	========

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

66 Q

OLS Regression Results

=======================================			=========
Dep. Variable:	arbitrage	R-squared (uncentered):	0.067
Model:	OLS	Adj. R-squared (uncentered):	0.060
Method:	Least Squares	F-statistic:	9.066
Date:	Tue, 12 May 2020	Prob (F-statistic):	2.46e-08
Time:	22:34:54	Log-Likelihood:	-2140.6
No. Observations:	634	AIC:	4291.
Df Residuals:	629	BIC:	4313.
Df Model:	5		
Covariance Type:	nonrohust		

		~
Covariance	Type:	nonrobust

========			========	=======	========	=======
	coef	std err	t	P> t	[0.025	0.975]
Mkt-RF	0.1051	0.071	1.490	0.137	-0.033	0.244
SMB	0.1582	0.102	1.548	0.122	-0.043	0.359
HML	-0.4845	0.139	-3.478	0.001	-0.758	-0.211
RMW	0.5822	0.139	4.185	0.000	0.309	0.855
CMA	1.1796	0.208	5.679	0.000	0.772	1.588
Omnibus:		41.3	======= 397 Durbin	 -Watson:	=======	1.396
Prob(Omnibu	ıs):	0.0	000 Jarque	-Bera (JB):		77.511
Skew:		0.4	27 Prob(J	Prob(JB):		1.47e-17
Kurtosis:		4.4	85 Cond.	No.		4.06
========			========	=======	========	=======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

2.4 99

Almost all the excess return are sinificant according to the p-value. except the Rm-Rf in all the model

```
In [333]: # imports
          from sklearn.linear_model import LinearRegression
          import statsmodels.api as sm
          from scipy import stats
          # 99 CAPM
          length = np.min([p99.shape[0],CAPM.shape[0]])
          y = p99["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
          x = CAPM.iloc[-length:,:].reset_index().drop("index",axis=1)
          lm1 = sm.OLS(y,x.astype(float)).fit()
          print("\n# 99 CAPM")
          print(lm1.summary())
          # 99 F3
          length = np.min([p99.shape[0],F3.shape[0]])
          y = p99["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
          x = F3.iloc[-length:,1:4].reset_index().drop("index",axis=1)
          #print(x)
          lm1 = sm.OLS(y,x.astype(float)).fit()
          print("\n# 99 F3")
          print(lm1.summary())
          # 99 F5
          length = np.min([p99.shape[0],F5.shape[0]])
          y = p99["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
          x = F5.iloc[-length:,1:6].reset_index().drop("index",axis=1)
          lm1 = sm.OLS(y,x.astype(float)).fit()
          print("\n# 99 F5")
          print(lm1.summary())
          # 99 Q
          length = np.min([p99.shape[0],Q.shape[0]])
          y = p99["arbitrage"].iloc[-length:].reset index().drop("index",axis=1)
          x = F5.iloc[-length:,1:6].reset_index().drop("index",axis=1)
          #print(x)
          lm1 = sm.OLS(y,x.astype(float)).fit()
          print("\n# 99 Q")
          print(lm1.summary())
# 99 CAPM
                                 OLS Regression Results
```

Dep. Variable: arbitrage R-squared (uncentered): 0.010

Model:	OLS	Adj. R-squared (uncentered):	0.009
Method:	Least Squares	F-statistic:	10.98
Date:	Tue, 12 May 2020	Prob (F-statistic):	0.000952
Time:	22:35:59	Log-Likelihood:	-4286.7
No. Observations:	1114	AIC:	8575.
Df Residuals:	1113	BIC:	8580.
Df Model:	1		

0.2094 0.063 3.313 0.001 0.085 ______ Omnibus: 418.791 Durbin-Watson: Jarque-Bera (JB): Prob(Omnibus): 0.000 3770.311 Skew: 1.474 Prob(JB): 0.00 Kurtosis: 11.517 Cond. No. 1.00 ______

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

99 F3

OLS Regression Results

Dep. Variable: R-squared (uncentered): 0.039 arbitrage Model: Adj. R-squared (uncentered): 0.037 OLS Method: Least Squares F-statistic: 15.10 Date: Tue, 12 May 2020 Prob (F-statistic): 1.23e-09 Time: 22:35:59 Log-Likelihood: -4269.9No. Observations: 1114 AIC: 8546. Df Residuals: 1111 BIC: 8561.

Df Model: 3

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Mkt-RF	0.0681	0.067	1.008	0.313	-0.064	0.200
SMB	0.3425	0.111	3.081	0.002	0.124	0.561
HML	0.4712	0.099	4.768	0.000	0.277	0.665
=========		========	=======	========		========
Omnibus:		253.	194 Durb	in-Watson:		1.314
Prob(Omnibus	s):	0.	000 Jarq	ue-Bera (JB):	1133.800
Skew:		0.	995 Prob	(JB):		6.29e-247
Kurtosis:		7.	524 Cond	. No.		1.91
			=======			

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

99 F5

OLS Regression Results

Dep. Variable:	arbitrage R-squared (uncentered):					0.061
Model:	OLS	Adj.	R-squared (1	incentered):		0.054
Method:	Least Squares	F-sta	atistic:			8.731
Date: T	ue, 12 May 2020	Prob	(F-statistic	:):		4.90e-08
Time:	22:35:59	Log-l	Likelihood:			-2563.1
No. Observations:	680	AIC:				5136.
Df Residuals:	675	BIC:				5159.
Df Model:	5					
Covariance Type:	nonrobust					
	==========	======		.=======		
coef	std err	t	P> t	[0.025	0.975]	
Mkt-RF 0.1628	0.103	1.583	0.114	-0.039	0.365	
SMB 0.2933	0.146	2.005	0.045	0.006	0.580	
HML -0.6279	0.202 -	3.109	0.002	-1.024	-0.231	
RMW 0.8778	0.202	4.345	0.000	0.481	1.275	
CMA 1.6240	0.298	5.453	0.000	1.039	2.209	

45.964 Durbin-Watson:

0.435 Prob(JB):

4.541

1.370

4.00

88.721

5.43e-20

Warnings:

Kurtosis:

Omnibus:

Skew:

Prob(Omnibus):

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.000 Jarque-Bera (JB):

Cond. No.

99 Q

OLS Regression Results

===========			===	=====		=========	-======	
Dep. Variable:		arbitrag	ge	R-squ	ared (uncen	tered):		0.067
Model:		OL	S	Adj. 1	R-squared (0.060	
Method:		Least Square	s	F-sta	tistic:		9.066	
Date:	Tu	ie, 12 May 202	20	Prob	(F-statisti		2.46e-08	
Time:		22:35:5	9	Log-L	ikelihood:			-2397.6
No. Observations:	:	63	34	AIC:				4805.
Df Residuals:		62	9	BIC:				4828.
Df Model:			5					
Covariance Type:		nonrobus	st					
=======================================			===	=====				
	coef	std err		t	P> t	[0.025	0.975]	
Mkt-RF 0.	. 1576	0.106	1	.490	0.137	-0.050	0.365	

SMB	0.2372	0.153	1.548	0.122	-0.064	0.538
HML	-0.7268	0.209	-3.478	0.001	-1.137	-0.316
RMW	0.8732	0.209	4.185	0.000	0.464	1.283
CMA	1.7695	0.312	5.679	0.000	1.158	2.381
========	.=======	=======	=======		========	========
Omnibus:		41	.397 Durk	oin-Watson:		1.396
Prob(Omnib	ous):	0	.000 Jaro	que-Bera (JB):	77.511
Skew:		0	.427 Prob	(JB):		1.47e-17
Kurtosis:		4	.485 Cond	l. No.		4.06
========	.========		========		========	========

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

3 Question 3

```
In [380]: # load data
         data = pd.read_excel(path+"/25_Portfolios_5x5.xlsx")
         name = data.iloc[14,:].to_list()
         new_data = pd.DataFrame(data.iloc[15:1139,:].values,columns=name)
         new_data.head()
Out [380]:
               NaN SMALL LoBM ME1 BM2 ME1 BM3 ME1 BM4 SMALL HiBM ME2 BM1 ME2 BM2 \
            192607
                       3.7782 -0.4119 -1.9434
                                                0.353
                                                         2.0534 2.1904 2.4192
         1 192608
                      -2.2074 -8.7275 2.4404 0.6086
                                                         8.3968 2.1709 -1.1849
         2 192609
                      -6.2113 -0.2989 -6.1982 -1.6368
                                                         0.8649 -1.855 -1.2618
         3 192610
                      -8.6241 -3.7532 -5.6719
                                               5.717
                                                        -2.5476 -1.7995 -3.2663
         4 192611
                       3.4744 6.6476 2.2634 -4.702
                                                         0.5362 2.9051 -2.369
           ME2 BM3 ME2 BM4 ... ME4 BM1 ME4 BM2 ME4 BM3 ME4 BM4 ME4 BM5 BIG LoBM \
         0 0.4926 -1.577 ... 1.5893 1.5278 1.1869 0.2727
                                                                2.4678
                                                                         3.4539
         1 4.0084 0.4643
                           ... 1.3336
                                          3.873
                                                2.0059
                                                        2.1706 5.3422
                                                                         1.0124
         2 1.0829 -3.0405
                           ... 1.0923 -0.525 -1.7314 1.4646
                                                                 0.873
         3 -5.0745
                   -8.045
                            ... -3.3361 -2.6559 -2.0316 -3.1051 -5.3525
                                                                       -2.7413
         4 3.0078 4.6649
                           ... 3.4448 2.3887 3.7403
                                                         4.932 1.8213
                                                                         4.2946
           ME5 BM2 ME5 BM3 ME5 BM4 BIG HiBM
         0 6.0902 2.0266 3.1111
                                     0.5623
         1 4.1903 2.0131 5.4849
                                     7.7576
         2 3.6538
                     0.095 - 0.7487
                                   -2.4284
         3 -3.0071 -2.2437 -4.6719
                                   -5.8129
         4 2.5326 1.5204 3.6619
                                     2.5636
          [5 rows x 26 columns]
In [396]: # use the function from question 1
```

portfolio_pool_5 = get_portfolio_pool(new_data.iloc[:,1:],5,3)

```
def short_long(month_return, portfolio_pool, K, skip=1):
              index, end = portfolio_pool.index[1+skip:], portfolio_pool.index[-1]
              raw_df = pd.DataFrame(np.zeros((len(index),3)),index=index,columns=["long","shor
              for i in index:
                  hold_index = list(range(i,min(end,i+K)))
                  for i in hold_index:
                      long = portfolio_pool.loc[i,["long_0","long_1","long_2"]].values
                      short = portfolio_pool.loc[i,["short_3","short_2","short_1"]].values
                      #print(company_columns)
                      raw_df.loc[i,"long"] += month_return.loc[i,long].sum()
                      raw_df.loc[i,"short"] += month_return.loc[i,short].sum()
              raw_df["long"] /= 60
              raw_df["short"] /= 60
              raw_df["arbitrage"] = raw_df["short"] - raw_df["long"]
              return raw_df
          q3 = long_short(new_data,portfolio_pool_5,5)
  It is significant greater than zero
In [398]: print(f"df: {q3.shape[0]}")
          print(f"95%t-score: {1.646}")
          print(f't66: {q3["arbitrage"].mean()/q3["arbitrage"].std()*np.sqrt(q3.shape[0])}')
df: 1118
95%t-score: 1.646
t66: 19.81441972208044
  According to the t-value Except for Rm-Rf, RMW in 5 factor model, and HXZ 1-factor mode
are not significant, all other parameters are significant
In [399]: # imports
          from sklearn.linear_model import LinearRegression
          import statsmodels.api as sm
          from scipy import stats
          # q3 CAPM
          length = np.min([q3.shape[0],CAPM.shape[0]])
          y = q3["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
          x = CAPM.iloc[-length:,:].reset_index().drop("index",axis=1)
          lm1 = sm.OLS(y,x.astype(float)).fit()
          print("\n# q3 CAPM")
          print(lm1.summary())
```

portfolio_pool_5

```
length = np.min([q3.shape[0],F3.shape[0]])
        y = q3["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
        x = F3.iloc[-length:,1:4].reset_index().drop("index",axis=1)
        #print(x)
        lm1 = sm.OLS(y,x.astype(float)).fit()
        print("\n# q3 F3")
        print(lm1.summary())
        # q3 F5
        length = np.min([q3.shape[0],F5.shape[0]])
        y = q3["arbitrage"].iloc[-length:].reset_index().drop("index",axis=1)
        x = F5.iloc[-length:,1:6].reset_index().drop("index",axis=1)
        #print(x)
        lm1 = sm.OLS(y,x.astype(float)).fit()
        print("\n# q3 F5")
        print(lm1.summary())
        # q3 Q
        length = np.min([q3.shape[0],Q.shape[0]])
        y = q3["arbitrage"].iloc[-length:].reset index().drop("index",axis=1)
        x = F5.iloc[-length:,1:6].reset_index().drop("index",axis=1)
        #print(x)
        lm1 = sm.OLS(y,x.astype(float)).fit()
        print("\n# q3 Q")
        print(lm1.summary())
                          OLS Regression Results
_____
                      arbitrage R-squared (uncentered):
Dep. Variable:
                                                                  0.049
                           OLS Adj. R-squared (uncentered):
                                                                  0.048
                  Least Squares F-statistic:
                                                                  57.63
           Tue, 12 May 2020 Prob (F-statistic):
                                                               6.65e-14
                       23:20:30 Log-Likelihood:
                                                                -3613.1
No. Observations:
                                                                  7228.
                          1118 AIC:
Df Residuals:
                          1117 BIC:
                                                                  7233.
Covariance Type: nonrobust
_______
            coef std err t P>|t| [0.025 0.975]
 _____
          0.2590
                             7.592 0.000 0.192
                     0.034
```

q3 F3

q3 CAPM

Model:

Date:

Time:

Method:

Df Model:

Omnibus:

Prob(Omnibus):

1083.196 Durbin-Watson:

0.000 Jarque-Bera (JB): 87348.981

1.261

Kurtosis:	45.454	Cond. No.	1.00
Skew:	4.265	Prob(JB):	0.00

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

q3 F3

OLS Regression Results

Dep. Variable:	arbitrage	R-squared (uncentered):	0.246
Model:	OLS	Adj. R-squared (uncentered):	0.244
Method:	Least Squares	F-statistic:	121.1
Date:	Tue, 12 May 2020	Prob (F-statistic):	7.02e-68
Time:	23:20:30	Log-Likelihood:	-3483.6
No. Observations:	1118	AIC:	6973.
Df Residuals:	1115	BIC:	6988.

Df Model: 3
Covariance Type: nonrobust

=========	=======	========	=======			========
	coef	std err		t P> t	[0.025	0.975]
Mkt-RF	0.0532	0.033	1.6	15 0.107	-0.011	0.118
SMB	0.5335	0.054	9.8	33 0.000	0.427	0.640
HML	0.6432	0.048	13.3	0.000	0.549	0.738
Omnibus:	=======	656	.093 D	======== ırbin-Watson:	:========	1.336
Prob(Omnibus):	C).000 J	arque-Bera (J	mB):	12990.092
Skew:		2		rob(JB):		0.00
Kurtosis:		19	0.053 C	ond. No.		1.91

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

q3 F5

OLS Regression Results

=======================================	:=========		
Dep. Variable:	arbitrage	R-squared (uncentered):	0.117
Model:	OLS	Adj. R-squared (uncentered):	0.110
Method:	Least Squares	F-statistic:	17.86
Date:	Tue, 12 May 2020	Prob (F-statistic):	1.18e-16
Time:	23:20:30	Log-Likelihood:	-1933.1
No. Observations:	680	AIC:	3876.
Df Residuals:	675	BIC:	3899.
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Mkt-RF	0.0117	0.041	0.286	0.775	-0.068	0.092
SMB	0.3544	0.058	6.120	0.000	0.241	0.468
HML	-0.1734	0.080	-2.168	0.030	-0.330	-0.016
RMW	0.0593	0.080	0.741	0.459	-0.098	0.216
CMA	0.7507	0.118	6.366	0.000	0.519	0.982
Omnibus:		180	.779 Durl	oin-Watson:		1.306
Prob(Omnibu	ıs):	0	.000 Jaro	que-Bera (JB):	2628.857
Skew:		0	.760 Prob	o(JB):		0.00
Kurtosis:		12	.512 Cond	d. No.		4.00
========		=======	=======			========

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

q3 Q

OLS Regression Results

16.71 33e-15 1809.7 3629. 3652.
0002.
3 L

Warnings:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.06

12.303 Cond. No.

4 Question 4

```
In [435]: # load data
          Q4_data = pd.read_excel(path+"/book_market.xlsx",header =None)
          mkt_val = pd.read_csv(path+"/ME.csv")
          mkt_val.set_index("Date",inplace=True)
          book_val = pd.read_csv(path+"/Book_value.csv")
          book_val.set_index("Date",inplace=True)
          risk_free_returns = pd.read_csv(path+"/t_bill_returns.csv")
          risk_free_returns.set_index("date",inplace=True)
          stock_ret = pd.read_csv(path+"/HPR_data.csv")
          stock_ret.set_index("date",inplace=True)
          mrkt_ret = pd.read_csv(path+"/mrkt_returns.csv")
          mrkt_ret.set_index("date",inplace=True)
In [436]: import numpy as np
          stock_ret = stock_ret.apply(lambda x: np.log(x/100 +1)*100, axis=1,result_type='broad
          stock_ret = stock_ret.iloc[-179:]
          ln_book = book_val.apply(lambda x: np.log(x))
          ln_mkt = mkt_val.apply(lambda y: np.log(y))
          bk_mkt_ratio = np.subtract(ln_book,ln_mkt)
          bk_mkt_ratio.head()
          long_ret = []
          short_ret = []
          arb_ret = []
          for i in range(len(stock_ret)):
              if i > 59 and i+1 < len(stock_ret.index):</pre>
                  expected_returns = {}
                  for n in stock_ret.columns:
                      BV_MV_lagged = bk_mkt_ratio[n].iloc[0:i].values
                      X = np.column_stack((np.repeat(1, len(BV_MV_lagged)),BV_MV_lagged))
                      Y = stock_ret[n].iloc[0:i].values
                      estimates = np.matmul(np.matmul(np.linalg.inv(np.matmul(np.transpose(
                      expected_returns[n] = estimates[0] + estimates[1] * bk_mkt_ratio[n].value
                  sorted_data = sorted(expected_returns.items(),key=lambda x:x[1],reverse=True
                  highest = sorted_data[0:3]
                  lowest = sorted_data[-3:]
                  unzipped_highest = zip(*highest)
                  unzipped_lowest = zip(*lowest)
                  high_three =list(unzipped_highest)[0]
                  low_three = list(unzipped_lowest)[0]
                  net_long = 0
```

```
net_short = 0
                  for j in high_three:
                      net_long += stock_ret[j].values[i+1]*(1/3)
                  for k in low_three:
                      net_short += stock_ret[k].values[i+1]*(1/3)
                  long_ret.append(net_long)
                  short_ret.append(net_short)
                  arb_ret.append(net_long - net_short)
In [430]: # compute t-status
          print("arbitrage:")
          print(f"return: {np.array(arb_ret).mean()}")
          print(f"t-status: {np.array(arb_ret).mean()/np.array(arb_ret).std()}")
          print("short:")
          print(f"return: {np.array(short_ret).mean()}")
          print(f"t-status: {np.array(short_ret).mean()/np.array(long_ret).std()}")
          print("long:")
          print(f"return: {np.array(long_ret).mean()}")
          print(f"t-status: {np.array(long_ret).mean()/np.array(long_ret).std()}")
arbitrage:
return: 0.0020941903582484445
t-status: 0.04856800066021095
short:
return: 0.01569530610190985
t-status: 0.3494865082381052
long:
return: 0.0177894964601583
t-status: 0.39611772849835214
  question 5
In [438]: # load data
          stock_ret_no_div = pd.read_csv(path+"/HPR_data_wo_div.csv")
          stock_ret_no_div.set_index("date",inplace=True)
          log_stock_no_div = stock_ret_no_div.apply(lambda x:np.log(x/100 +1)*100, axis=1,resu
          log_stock_no_div = log_stock_no_div.iloc[-179:]
          dp_ratio=np.subtract(stock_ret , log_stock_no_div)
In [439]: long_ret = []
          short_ret = []
          arb_ret = []
```

```
if i > 59 and i < len(stock_ret.index)-1:</pre>
                  expected_returns = {}
                  for n in stock_ret.columns:
                      DP_ratio = dp_ratio[n].iloc[0:i].values
                      X = np.column_stack((np.repeat(1, len(DP_ratio)),DP_ratio))
                      Y = stock_ret[n].iloc[0:i].values
                      estimates = np.matmul(np.matmul(np.linalg.inv(np.matmul(np.transpose(
                      expected_returns[n] = estimates[0] + estimates[1] * bk_mkt_ratio[n].value
                  sorted_data = sorted(expected_returns.items(), key=lambda x:x[1], reverse=True
                  highest = sorted_data[0:3]
                  lowest = sorted_data[-3:]
                  unzipped_highest = zip(*highest)
                  unzipped_lowest = zip(*lowest)
                  high_three =list(unzipped_highest)[0]
                  low_three = list(unzipped_lowest)[0]
                  net_long = 0
                  net_short = 0
                  for j in high_three:
                      net_long += stock_ret[j].values[i+1]*(1/3)
                  for k in low_three:
                      net_short += stock_ret[k].values[i+1]*(1/3)
                  long_ret.append(net_long)
                  short_ret.append(net_short)
                  arb_ret.append(net_long - net_short)
In [440]: # compute t-status
          print("arbitrage:")
          print(f"return: {np.array(arb_ret).mean()}")
          print(f"t-status: {np.array(arb_ret).mean()/np.array(arb_ret).std()}")
          print("short:")
          print(f"return: {np.array(short_ret).mean()}")
          print(f"t-status: {np.array(short_ret).mean()/np.array(long_ret).std()}")
          print("long:")
          print(f"return: {np.array(long_ret).mean()}")
          print(f"t-status: {np.array(long_ret).mean()/np.array(long_ret).std()}")
arbitrage:
return: 0.0016691245415136299
t-status: 0.03838523936983855
```

for i in range(len(stock_ret)):

short:

return: 0.01635686839374341 t-status: 0.36376643149168636

long:

return: 0.018025992935257036 t-status: 0.40088670803642246