MODELI RAČUNARSTVA - JEZIČNI PROCESORI 1 Siniša Srbljić, Sveučilište u Zagrebu

- 1. UVOD
- 2. REGULARNI JEZICI
- 3. KONTEKSTNO NEOVISNI JEZICI
- 4. REKURZIVNO PREBROJIVI JEZICI
- 5. KONTEKSTNO OVISNI JEZICI
- 6. RAZREDBA (TAKSONOMIJA) JEZIKA, AUTOMATA I GRAMATIKA

3. KONTEKSTNO NEOVISNI JEZICI

3.1. KONTEKSTNO NEOVISNA GRAMATIKA

3.2. POTISNI AUTOMAT

3.3. SVOJSTVA KONTEKSTNO NEOVISNIH JEZIKA

3.2. Potisni automat(Push Down Automata, PA)

3.2.1. Model potisnog automata

3.2.2. Definicija potisnog automata

3.2.3. Potisni automat i svojstva CFG

3.2.1. Model potisnog automata

- je proširenje konačnog automata
- za potrebe prihvata kontekstno neovisnih jezika
- konačnom automatu dodaje se potisni slog
- automat čita ulazniznak i znak stoga

- upravljačka jedinica donosi odluku o
 - promjeni sadržaja stoga
 - pomaku glave za čitanje
 - promjeni stanja
- odluku donosi na osnovu
 - stanja
 - znaka stoga
 - ulaznog znaka
- moguće su odluke na osnovu samo dva parametra:
 - stanja i znaka stoga
 - tada se glava za čitanje ne pomiče u desno

- na vrh stoga može se staviti:
 - prazni niz ε jednako je uzimanju znaka sa vrha stoga
 - niz duljine jednog znaka, isti kao prije ili neki drugi (zamjena)
 - niz duljine više znakova, npr. simulira primjenu produkcije
- upravljačka jedinica obavlja dvije vrste prijelaza
 - na temelju trojke (q, a, Z) mijenja stanje u p, pomakne glavu i zamijeni Z sa nizom γ
 - na temelju trojke (q, ε, Z) mijenja stanje u p,
 ostavi glavu na istom mjestu i zamijeni Z sa nizom γ

- odluku o prihvaćanju niza nakon čitanja svih znakova niza PA donosi na jedan od dva načina
- PA M prihvaća niz prihvatljivim stanjem
 - ako uđe u prihvatljivo stanje niz se prihvaća
 - PA M prihvaća jezik L(M)
- PA M prihvaća niz praznim stogom
 - ako je stog prazan niz se prihvaća
 - PA M prihvaća jezik N(M)
- generalno vrijedi L(M)<>N(M)

POTISNI AUTOMAT - PRIMJER

- Izgradimo potisni automat koji praznim stogom prihvaća jezik N(M) = {(na)n|n≥1}
- znak a okružen je jednakim brojem otvorenih i zatvorenih zagrada
- na početku je na stogu znak K
- PA ima dva stanja:
 - početno q₀ u kojem prihvaća otvorene zagrade i na stog stavlja znak A
 - završno q₁ u koje prelazi nakon prijema znaka a i prihvaća zatvorene zagrade i sa stoga skida znakove A

POTISNI AUTOMAT - PRIMJER

- Imamo 5 prijelaza:
 - 1. q₀ (K q₀ AK desno
 - 2. q₀ (A q₀ AA desno
 - 3. q_0 a A q_1 A desno
 - 4. q_1) A q_1 ϵ desno
 - 5. $q_1 \in K$ $q_1 \in stop$
- prijelaz 5 moguć je samo ako je broj lijevih i desnih zagrada isti

POTISNI AUTOMAT - PRIMJER

– pratimo rad automata za niz (((a))):

```
• p: K q_0 (((a)))
```

• 1: AK q_0 ((a)))

• 2: AAK q_0 (a)))

• 2: AAAK q_0 a)))

• 3: AAAK q₁)))

• 4: AAK q₁))

• 4: AK q₁)

• 4: K q₁

• 5: q₁ stop, niz se prihvaća

POTISNI AUTOMAT - PRIMJER

- ako je broj zatvorenih zagrada veći,
 niz se ne pročita do kraja jer se stog isprazni prerano
- ako je broj zatvorenih zagrada manji, stog se ne isprazni
- ako u nizu nema znaka a, automat ne pređe u stanje q₁

POTISNI AUTOMAT - PRIMJER

- definirajmo PA M' slično kao M, samo što je q₀
 neprihvatljivo a q₁ prihvatljivo
- automat M' prihvaća prihvatljivim stanjem jezik $L(M') = \{(^na)^m | n \ge 1, m \ge 0, m \le n\}$
- pri tome $N(M) \Leftrightarrow L(M')$
- M' prihvaća niz ((((a, M ga odbacuje
- ako je m>n, stog se isprazni i niz se ne prihvaća
- također se odbacuje niz bez znaka a

POTISNI AUTOMAT

formalno zadajemo sedmorkom:

$$PA = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

- gdje su
 - Q konačan skup stanja s početnim stanjem q₀
 - Σ konačan skup ulaznih znakova (ulazna abeceda)
 - Γ konačan skup znakova stoga (abeceda stoga) s početnim znakom stoga Z_0
 - δ funkcija prijelaza $Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \rightarrow Q \times \Gamma^*$
 - F ⊆ Q podskup prihvatljivih stanja
- uobičajena značenja su:
 - a, b, c ulazni znakovi, v, w, x nizovi ulaznih znakova
 - A, B, C znakovi stoga, α, β, nizovi znakova stoga

- funkcija prijelaza δ: Q × (Σ∪{ε}) × Γ → Q × Γ* pridružuje trojci (q, a, Z) konačni skup parova (p, γ): $\delta(q, a, Z) = \{(p_1, \gamma_1), (p_2, \gamma_2), ... (p_m, \gamma_m)\}$
- Značenje funkcije δ je:
 - ako je automat u stanu q, pročita ulazni znak a i na vrhu stoga je Z
 - preći će u stanje p_i , zamijeniti Z nizom γ_i s desna na lijevo, te pomaknuti glavu na slijedeći znak ulaznog niza
- funkcija δ je nejednoznačna
- ako je zadano preslikavanje za $\delta(q, \varepsilon, Z)$
 - glava za čitanje se ne pomakne

POTISNI AUTOMAT - PRIMJER

- zadan je PA koji prihvaća jezik L(M1) = $\{w2w^R\}$ $M_1 = (\{q_1, q_2, q_3\}, \{0, 1, 2\}, \{N, J, K\}, \delta, q_1, K, \{q_3\})$
- s funkcijom prijelaza
 - 1) $\delta(q_1, 0, K) = \{(q_1, NK)\}\ 2) \delta(q_1, 1, K) = \{(q_1, JK)\}\$
 - 3) $\delta(q_1, 0, N) = \{(q_1, NN)\}$ 4) $\delta(q_1, 1, N) = \{(q_1, JN)\}$
 - 5) $\delta(q_1, 0, J) = \{(q_1, NJ)\}$ 6) $\delta(q_1, 1, J) = \{(q_1, JJ)\}$
 - 7) $\delta(q_1, 2, K) = \{(q_2, K)\}$
 - 8) $\delta(q_1, 2, N) = \{(q_2, N)\}$
 - 9) $\delta(q_1, 2, J) = \{(q_2, J)\}$
 - 10) $\delta(q_2, 0, N) = \{(q_2, \epsilon)\}\ 11) \delta(q_2, 1, J) = \{(q_2, \epsilon)\}$
 - 12) $\delta(q_2, \varepsilon, K) = \{(q_3, \varepsilon)\}$

POTISNI AUTOMAT - PRIMJER

analizirajmo stazu prijelaza za niz 0012100

```
• p: K q<sub>1</sub> 0012100
```

• 1: NK q₁ 012100

• 3: NNK q₁ 12100

• 4: JNNK q₁ 2100

• 9: JNNK q₂ 100

• 11: NNK q₂ 00

• 10: NK q₂ 0

• 10: K q₂

• 12: $q_3 = F$, niz se prihvaća

KONFIGURACIJA PA

- konfiguracija PA je trojka (q, w, γ)
 - stanje,
 - nepročitani dio ulaznog niza i
 - sadržaj stoga (vrh je krajnje lijevi znak niza γ)
- u ranijem primjeru rad PA pratili smo kroz niz konfiguracija
- neka je zadan PA M = (Q, Σ , Γ , δ , q_0 , Z_0 , F) konfiguracija se mijenja:
 - iz (q, aw, Zα)
 - u (p, w, βα)
 - ako je $\delta(q, a, Z) = \{(p, \beta), ...\}; a \in \Sigma \cup \{\epsilon\}$

KONFIGURACIJA PA

– pišemo relacije ≻:

$$(q, aw, Z\alpha) \succeq_{M} (p, w, \beta\alpha); \delta(q, a, Z) = \{(p, \beta), \ldots\}$$

- oznaka M se ne koristi ako se zna o kojem je PA riječ
- u ranijem primjeru imamo:

$$(q_1,0012100K) \succ (q_1,012100NK) \succ (q_1,12100NNK) \succ (q_1,2100JNNK) \succ (q_2,100,JNNK) \succ (q_2,00,NNK) \succ (q_2,0,NK) \succ (q_2,\epsilon,K) \succ (q_3,\epsilon,\epsilon)$$

- ili skraćeno: $(q_1,0012100K) + (q_3,\epsilon,\epsilon)$

- te za konkretan broj koraka: $(q_1,0012100K) \stackrel{8}{\succ} (q_3,\epsilon,\epsilon)$

PRIHVAĆANJE JEZIKA ZADANIM PA

- prihvaćanje jezika za PA definira se na dva načina
- PA M = $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ prihvaća **prihvatljivim stanjem** jezik:

$$L(M) = \left\{ w \middle| (q_0, w, Z_0) \stackrel{*}{\succ} (p, \varepsilon, \gamma); \qquad p \in F, \gamma \in \Gamma^* \right\}$$

- PA M = $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ prihvaća **praznim stogom** jezik:

$$N(M) = \left\{ w \middle| (q_0, w, Z_0) \stackrel{*}{\succ} (p, \varepsilon, \varepsilon); \qquad p \in Q, \right\}$$

PRIHVAĆANJE JEZIKA PRIMJER

- zadan je PA M_2 koji prihvaća jezik $N(M_2) = \{ww^R\}$ $M_1 = (\{q_1, q_2\}, \{0, 1\}, \{N, J, K\}, \delta, q_1, K, \emptyset)$
 - s funkcijom prijelaza

```
\begin{array}{lll} 1) \ \delta(q_1,\,0,\,K) = \{(q_1,\,NK)\} & 2) \ \delta(q_1,\,1,\,K) = \{(q_1,\,JK)\} \\ 3) \ \delta(q_1,\,0,\,N) = \{(q_1,\,NN),\,(q_2,\,\epsilon)\} & 4) \ \delta(q_1,\,1,\,N) = \{(q_1,\,JN)\} \\ 5) \ \delta(q_1,\,0,\,J) = \{(q_1,\,NJ)\} & 6) \ \delta(q_1,\,1,\,J) = \{(q_1,\,JJ),\,(q_2,\,\epsilon)\} \\ 7) \ \delta(q_2,\,0,\,N) = \{(q_2,\,\epsilon)\} & 8) \ \delta(q_2,\,1,\,J) = \{(q_2,\,\epsilon)\} \\ 9) \ \delta(q_1,\,\epsilon,\,K) = \{(q_2,\,\epsilon)\} \\ 10) \ \delta(q_2,\,\epsilon,\,K) = \{(q_2,\,\epsilon)\} \end{array}
```

- ovaj automat je nedeterministički PA, ili samo PA
- nasuprot tome, raniji primjeri su deterministički PA,
 ili DPA

PRIHVAĆANJE JEZIKA PRIMJER

- nedetrminizam je je iskazan u dva očita primjera:
 - 3) $\delta(q_1, 0, N) = \{(q_1, NN), (q_2, \varepsilon)\}$
 - 6) $\delta(q_1, 1, J) = \{(q_1, JJ), (q_2, \varepsilon)\}$
- i dva neočita:
 - 1) $\delta(q_1, 0, K) = \{(q_1, NK)\}\ \text{zajedno s 9}\ \delta(q_1, \varepsilon, K) = \{(q_2, \varepsilon)\}\$
 - 2) $\delta(q_1, 1, K) = \{(q_1, JK)\}\ \text{zajedno s 9}\ \delta(q_1, \varepsilon, K) = \{(q_2, \varepsilon)\}\$
- jezik $N(M_2) = \{ww^R\}$ **nije moguće** prihvatiti s DPA
- nema središnjeg znaka koji omogućuje središnju odluku
- nederministički PA radi kao NKA,
 nastavljajući u nizu paralelnih inačica

- PRIHVAĆANJE JEZIKA PRIMJER
 - ispitajmo prihvaćanje niza 001100:

DETERMINISTIČKI PA - DPA

- PA M = (Q, Σ, Γ, δ, q_0 , Z_0 , F) jest **deterministički** ako su ispunjena OBA uvjeta:
 - ako je $\delta(q, \varepsilon, Z) \neq \emptyset$, tada $\delta(q, a, Z) = \emptyset$
 - u skupu $\delta(q, \varepsilon, Z)$ je najviše jedan element
- prvi uvjet sprječava izbor između prijelaza i ε prijelaza
- drugi uvjet garantira jednoznačnost prijelaza
- PA prihvaća širu klasu jezika u odnosu na DPA (NKA prihvaća istu klasu kao i DKA)
- pod PA podrazumijeva se nedeterministički PA
- deterministički PA označavamo s DPA

3.2.3. Potisni automat i CFG

ISTOVJETNOST PA

- dva PA su istovjetna ako prihvaćaju isti jezik
- to je kontekstno neovisni jezik
- PA mogu biti istovjetni bez obzira da li prihvaćaju prihvatljivim stanjem ili praznim stogom

KONSTRUKCIJA ESPA IZ ASPA

- neka PA $M_2 = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$
 - prihvaća jezik prihvatljivim stanjem
- konstruiramo istovjetni PA M₁ koji
 - prihvaća jezik praznim stogom
- konstrukcija se zasniva na simulaciji
 - uđe li M₂ u prihvatljivo stanje, M₁ isprazni stog
 - koristimo posebni znak stoga X₀
 - isprazni li M₂ stog bez da uđe u prihvatljivo stanje, M₁ neće prihvatiti niz zbog znaka X₀

KONSTRUKCIJA ESPA IZ ASPA

- konstruiramo PA $M_1 = (Q \cup \{q_0', q_e\}, \Sigma, \Gamma \cup \{X_0\}, \delta', q_0', X_0, \emptyset)$
- funkcija prijelaza PA M₁ gradi se:
 - 1) $\delta'(q_0', \varepsilon, X_0) = \{(q_0, Z_0X_0)\}$ prelazi u početnu konfiguraciju kao M_2
 - 2) u skup $\delta'(q, a, Z)$ stave se svi elementi od $\delta(q, a, Z)$ računa se za sve q iz Q, a iz $\Sigma \cup \{\epsilon\}$ i za sve Z iz Γ
 - 3) u skup $\delta'(q, \varepsilon, Z)$, $q \in F$, doda se ε -prijelaz (q_e, ε) dakle doda se za sva prihvatljiva stanja
 - 4) u skup $\delta'(q_e, \varepsilon, Z)$, $q \in F$, doda se ε -prijelaz (q_e, ε) time se prazni stog

KONSTRUKCIJA ESPA IZ ASPA

- − M₁ i M₂ su istovjetni:
 - M₁ prihvaća niz ako ga prihvati M₂
 - M₂ prihvaća niz ako ga prihvati M₁
- M₂ prihvati niz prihvatljivim stanjem:

$$(q_0, x, Z_0) \xrightarrow{*} (q, \varepsilon, A\gamma); q \in F$$

− M₁ u prvom koraku zbog 1) obavi:

$$\left(q_0', x, X_0\right) \underset{M_1}{\triangleright} \left(q_0, x, Z_0 X_0\right)$$

KONSTRUKCIJA ESPA IZ ASPA

nakon toga zbog 2) M₁ radi isto kao i M₂:

$$(q_0, x, Z_0X_0) \underset{M_1}{\overset{*}{\triangleright}} (q, \varepsilon, A\gamma X_0)$$

zbog q∈F korakom 3) M₁ prijeđe u stanje qe, a s vrha uzme jedan znak:

$$(q, \varepsilon, A\gamma X_0) \sum_{M_1} (q_e, \varepsilon, \gamma X_0)$$

– u koraku 4) M₁ isprazni stog:

$$(q_e, \varepsilon, \gamma X_0) \underset{M_1}{\overset{*}{\succeq}} (q_e, \varepsilon, \varepsilon)$$

KONSTRUKCIJA ESPA IZ ASPA

dakle prihvati li M₂ niz prihvatljivim stanjem,
 M₁ će ga prihvatiti praznim stogom:

$$\left(q_0', x, X_0\right)_{M_1}^* \left(q_e, \varepsilon, \varepsilon\right)$$

- M₁ prihvati niz praznim stogom:
 - u koraku 1) je dodao X₀
 - u koraku 2) je simulirao rad M₂
 - koraci 3) i 4) mogući su samo ako je bilo q∈F
- dakle, M₂ niz prihvaća prihvatljivim stanjem,
 ako i samo ako ga je M₁ prihvatio praznim stogom

KONSTRUKCIJA ESPA IZ ASPA PRIMJER

- zadan je ASPA M_2 $M_2 = (\{q_1, q_2\}, \{0, 1\}, \{N, K\}, \delta, q_1, K, \{q_2\})$ 1) $\delta(q_1, 0, K) = \{(q_1, NK)\}$ 2) $\delta(q_1, 0, N) = \{(q_1, NN)\}$ 3) $\delta(q_1, 1, N) = \{(q_2, \epsilon)\}$ 4) $\delta(q_2, 1, N) = \{(q_2, \epsilon)\}$
- M_2 prihvatljivim stanjem prihvaća jezik $L(M_2) = \{0^n1^m \mid n \ge 1, m \ge 1, m \le n\}$
- konstuiramo istovjetni ESPA M_1 $M_1 = (\{q_1,q_2,q_0',q_e\}, \{0,1\}, \{N,K,X_0\}, \delta', q_0', X_0, \emptyset)$
- korak (1) dopunjuje funkciju prijelaza: 0) $\delta'(q_0', \varepsilon, X_0) = \{(q_1, KX_0)\}$

KONSTRUKCIJA ESPA IZ ASPA PRIMJER

- korak (2) preuzima sve prijelaze M₂
 - 1) $\delta'(q_1,0,K) = \{(q_1,NK)\}\ 2) \delta'(q_1,0,N) = \{(q_1,NN)\}\$
 - 3) $\delta'(q_1,1,N) = \{(q_2,\epsilon)\}$ 4) $\delta'(q_2,1,N) = \{(q_2,\epsilon)\}$
- korak (3) dodaje ε-prijelaze u stanje q_e
 - 5) $\delta'(q_2, \varepsilon, N) = \{(q_e, \varepsilon)\}$
 - 6) $\delta'(q_2, \varepsilon, K) = \{(q_e, \varepsilon)\}$
 - 7) $\delta'(q_2, \epsilon, X_0) = \{(q_e, \epsilon)\}$
- korak (4) dodaje ε-prijelaze koji prazne stog
 - 8) $\delta'(q_e, \varepsilon, N) = \{(q_e, \varepsilon)\}$
 - 9) $\delta'(q_e, \varepsilon, K) = \{(q_e, \varepsilon)\}$
 - 10) $\delta'(q_e, \epsilon, X_0) = \{(q_e, \epsilon)\}$

KONSTRUKCIJA ESPA IZ ASPA PRIMJER

- slijed prijelaza ESPA M_1 za niz 00011 je: $(q_0',00011, X_0) \succ \{(q_1,00011, KX_0)\}$ $\succ \{(q_1,0011, NKX_0)\} \succ \{(q_1,011, NNKX_0)\}$ $\succ \{(q_1,11, NNNKX_0)\} \succ \{(q_2, 1, NNKX_0)\}$ $\succ \{(q_2, \epsilon, NKX_0)\} \succ \{(q_e, \epsilon, KX_0)\} \succ \{(q_e, \epsilon, X_0)\}$ $\succ \{(q_e, \epsilon, \epsilon)\}$
- niz je prihvaćen jer je pročitan, a stog je prazan
- slijed prijelaza ASPA M_2 za niz 00011 je: $(q_1,00011, K) \succ \{(q_1,0011, NK)\} \succ \{(q_1,011, NNK)\}$ $\succ \{(q_1,11, NNNK)\} \succ \{(q_2,1, NNK)\} \succ \{(q_2, \epsilon, NK)\}$
- niz je prihvaćen jer je pročitan, stanje je prihvatljivo

KONSTRUKCIJA ASPA IZ ESPA

- neka PA $M_1 = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, \emptyset)$
 - prihvaća jezik praznim stogom
- konstruiramo istovjetni PA M₂ koji
 - prihvaća jezik prihvatljivim stanjem
- konstrukcija se zasniva na simulaciji
 - isprazni li M₁ stog, M₂ uđe u prihvatljivo stanje,

KONSTRUKCIJA ASPA IZ ESPA

- konstruiramo PA $M_2 = (Q \cup \{q_0', q_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta', q_0', X_0, \{q_f\})$
- funkcija prijelaza PA M₂ gradi se:
 - 1) $\delta'(q_0', \varepsilon, X_0) = \{(q_0, Z_0 X_0)\}$ prelazi u početnu konfiguraciju kao M_1, X_0 indicira dno stoga
 - 2) u skup $\delta'(q, a, Z)$ stave se svi elementi od $\delta(q, a, Z)$ računa se za sve q iz Q, a iz $\Sigma \cup \{\epsilon\}$ i za sve Z iz Γ
 - 3) u skup $\delta'(q, \varepsilon, X_0)$, doda se ε -prijelaz (q_f, ε) dakle doda se za sva stanja q iz Q
- pročita li se X₀ to je znak da je stog prazan
 i PA prelazi u prihvatljivo stanje q_f

KONSTRUKCIJA ASPA IZ ESPA

- M₂ obavi prijelaze:

$$\left(q_0', x, X_0\right) \underset{M_2}{\triangleright} \left(q_0, x, Z_0 X_0\right) \underset{M_2}{\stackrel{*}{\triangleright}} \left(q, \varepsilon, X_0\right) \underset{M_2}{\triangleright} \left(q_f, \varepsilon, \varepsilon\right)$$

- prvi prijelaz osigurava početne uvjete
- dalji niz prijelaza simulira rad zadanog ESPA
- na kraju prijeđe u prihvatljivo stanje
- M₂ prihvaća niz x prihvatljivim stanjem ako i samo ako M₁ prihvaća niz praznim stogom

KONSTRUKCIJA ASPA IZ ESPA PRIMJER

PA M₁ prihvaća jezik praznim stogom:

$$M_1 = (\{q_1, q_2\}, \{0, 1\}, \{N, J, K\}, \delta, q_1, K, \emptyset)$$

1)
$$\delta(q_1,0,K) = \{(q_1,NK)\}$$

3)
$$\delta(q_1,0,N) = \{(q_1,NN),(q_2,\epsilon)\}$$
 4) $\delta(q_1,1,N) = \{(q_1,JN)\}$

5)
$$\delta(q_1,0,J) = \{(q_1,NJ)\}$$

7)
$$\delta(q_2,0,N) = \{(q_2,\epsilon)\}$$

9)
$$\delta(q_1, \varepsilon, K) = \{(q_2, \varepsilon)\}$$

10)
$$\delta(\mathbf{q}_2, \varepsilon, \mathbf{K}) = \{(\mathbf{q}_2, \varepsilon)\}$$

2)
$$\delta(q_1, 1, K) = \{(q_1, JK)\}$$

4)
$$\delta(q_1,1,N) = \{(q_1,JN)\}$$

6)
$$\delta(q_1, 1, J) = \{(q_1, JJ), (q_2, \varepsilon)\}$$

8)
$$\delta(q_2, 1, J) = \{(q_2, \varepsilon)\}$$

- M₁ prihvaća jezik ww^R, w je niz (0+1)*

KONSTRUKCIJA ASPA IZ ESPA PRIMJER

- konstuiramo istovjetni ASPA M_2 $M_1 = (\{q_1,q_2,q_0',q_f\}, \{0,1\}, \{N,J,K,X_0\}, \delta', q_0', X_0, \{q_f\})$
- korak (1) dopunjuje funkciju prijelaza: 0) $\delta'(q_0', \epsilon, X_0) = \{(q_1, KX_0)\}$
- korak (2) preuzima sve prijelaze M₁
 - 1) $\delta'(q_1,0,K) = \{(q_1,NK)\}\$ 2) $\delta'(q_1,1,K) = \{(q_1,JK)\}\$ 3) $\delta'(q_1,0,N) = \{(q_1,NN),(q_2,\epsilon)\}\$ 4) $\delta'(q_1,1,N) = \{(q_1,JN)\}\$ 5) $\delta'(q_1,0,J) = \{(q_1,NJ)\}\$ 6) $\delta'(q_1,1,J) = \{(q_1,JJ),(q_2,\epsilon)\}\$
 - 7) $\delta'(q_2,0,N) = \{(q_2,\epsilon)\}$ 8) $\delta'(q_2,1,J) = \{(q_2,\epsilon)\}$
 - 9) $\delta'(q_1, \varepsilon, K) = \{(q_2, \varepsilon)\}$ 10) $\delta'(q_2, \varepsilon, K) = \{(q_2, \varepsilon)\}$

KONSTRUKCIJA ASPA IZ ESPA PRIMJER

- korak (3) dodaje ϵ -prijelaze u prihvatljivo stanje q_f 11) $\delta'(q_1, \epsilon, X_0) = \{(q_f, \epsilon)\}$ 12) $\delta'(q_2, \epsilon, X_0) = \{(q_f, \epsilon)\}$
- $\begin{array}{l} \text{ za niz } 001100 \text{ slijed prijelaza ASPA } M_2 \text{ je:} \\ (q_0',001100, X_0) \succ \{(q_1,001100, KX_0)\} \\ \succ \{(q_1,01100, NKX_0)\} \succ \{(q_1,1100, NNKX_0)\} \\ \succ \{(q_1,100, JNNKX_0)\} \succ \{(q_2,00, NNKX_0)\} \\ \succ \{(q_2,0, NKX_0)\} \succ \{(q_2,\epsilon,KX_0)\} \succ \{(q_2,\epsilon,X_0)\} \\ \succ \{(q_f,\epsilon,\epsilon)\} \end{array}$
- niz je prihvaćen jer je pročitan, stanje je prihvatljivo

KONSTRUKCIJA ASPA IZ ESPA PRIMJER

- slijed prijelaza ESPA M_1 za niz 001100 je: $(q_1,001100, K) \succ \{(q_1,01100, NK)\}$ $\succ \{(q_1,1100, NNK)\} \succ \{(q_1,100, JNNK)\}$ $\succ \{(q_2,00, NNK)\} \succ \{(q_2, 0, NK)\} \succ \{(q_2, \epsilon, K)\}$ $\succ \{(q_2, \epsilon, \epsilon)\}$
- niz je prihvaćen jer je pročitan, a stog je prazan

KONSTRUKCIJA ESPA IZ CF GRAMATIKE

- koristimo samo konstrukciju ESPA,
 ASPA dobijemo lako na osnovu istovjetnosti
- nedeterministički PA, NPA,
 prepozna klasu kontekstno neovisnih jezika
- za bilo koji CFL L postoji NPA M koji ga prihvaća praznim stogom: N(M)=L
- pretpostavljamo da prazni niz ε nije element jezika L
- jezik je zadan gramatikom G = (V, T, P, S)s produkcijama u standardnom obliku Greibacha oblika: $A \rightarrow a\alpha$; $A \in V$, $a \in T$, $\alpha \in V^*$

KONSTRUKCIJA ESPA IZ CF GRAMATIKE

- Konstruira se PA M = $(\{q\}, \Sigma, \Gamma, \delta, q, S, \emptyset)$
 - PA M ima samo jedno stanje q koje je ujedno i početno stanje
 - $\Sigma = T$, skup ulaznih znakova jednak je skupu završnih znakova
 - $\Gamma = V$, skup znakova stoga jednak je skupu nezavršnih znakova
 - početni znak stoga jednak je početnom znaku gramatike S
 - skup prihvatljivih stanja je prazan skup, $F = \emptyset$
 - PA M prihvaća praznim stogom
- funkcija prijelaza δ definira se:
 - $\delta(q, a, A)$ sadrži (q, γ) samo ako postoji produkcija $A \rightarrow a\gamma$

KONSTRUKCIJA ESPA IZ CF GRAMATIKE

- PA M simulira postupak generiranja niza zamjenom krajnjeg lijevog nezavršnog znaka
- − bilo koji generirani međuniz je oblika: $x\alpha$, $x \in T^*$, $\alpha \in V^*$
- nakon čitanja niza x, na stogu je niz α
- vrijedi: $(q, x, S) \sum_{M}^{*} (q, \varepsilon, \alpha)$ ako i samo ako $S \longrightarrow_{G} x\alpha$
- ako je α prazan niz vrijedi: $(q, x, S) + (q, \epsilon, \epsilon)$ ako i samo ako $S \rightarrow x$
- PA prihvaća x praznim stogom samo ako G generira x

KONSTRUKCIJA ESPA IZ CFG PRIMJER

- zadana je gramatika $G = (\{S, A\}, \{a, b\}, \{S \rightarrow aAA, A \rightarrow aS|bS|a\}, S)$
- koristeći pravila izgradi se PA M $M = (\{q\}, \{a, b\}, \{S, A\}, \delta, q, S, \emptyset)$
 - $\delta(q,a,S) = \{(q,AA)\}\ \delta(q,a,A) = \{(q,S), (q,\epsilon)\}\ \delta(q,b,A) = \{(q,S)\}$
- gramatika generira abaaaa:
- $S \Rightarrow aAA \Rightarrow abSA \Rightarrow abaAAA \Rightarrow abaaAA \Rightarrow abaaaA \Rightarrow abaaaa$
- PA M prihvaća abaaaa praznim stogom:

$$(q, abaaaa, S) \succ (q, baaaa, AA) \succ (q, aaaa, SA)$$

 $\succ (q, aaa, AAA) \succ (q, aa, AA) \succ (q, a, A) \succ (q, \epsilon, \epsilon)$

KONSTRUKCIJA CF GRAMATIKE IZ ESPA

- koristimo samo konstrukciju iz ESPA,
 ASPA pretvorimo prvo u ESPA na osnovu istovjetnosti
- za zadani PA M = $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, \emptyset)$
- konstruira se gramatika G = (V, T, P, S)
 - nezavršni znakovi gramatike označeni su [q,A,p] ∈ V q,p∈Q, A∈Γ
 - u skup nezavršnih znakova dodaje se S

KONSTRUKCIJA CF GRAMATIKE IZ ESPA

- gradi se skup produkcija
- 1. za početno stanje q_0 , Z_0 i sva stanja iz Q gradi se: $S \rightarrow [q_0, Z_0, q]$
 - gradi se n produkcija, n=|Q|
- 2. ako skup $\delta(q,a,A)$ sadrži $(q_1, B_1B_2...B_m)$ gradi se: $[q, A, q_{m+1}] \rightarrow a[q_1, B_1, q_2][q_2, B_2, q_3]... [q_m, B_m, q_{m+1}]$
 - za znakove q₂, q₃ ... q_{m+1}
 uzimaju se sve moguće kombinacije svih stanja iz Q
 - za svaku funkciju prijelaza gradi se n^{m-1} produkcija
 - ako $\delta(q,a,A)$ sadrži (q_1, ϵ) gradi se $[q, A, q_1] \rightarrow a$

KONSTRUKCIJA CF GRAMATIKE IZ ESPA

- dobivena gramatika G
 - postupkom zamjene krajnjeg lijevog znaka simulira rad PA M
 - niz nezavršnih znakova u međunizu jednak je nizu znakova stoga PA M
 - gramatika počinje generirati x iz [q,A,p] ako i samo ako PA M čitanjem x izbriše A i promjeni stanje iz q u p
- dokaz L(G) = N(M) slijedi iz:

$$[q,A,p] \xrightarrow{*}_{G} x$$
 ako i samo ako $(q,x,A) \xrightarrow{*}_{M} (p,\varepsilon,\varepsilon)$

KONSTRUKCIJA CFG IZ ESPA PRIMJER

zadan je PA M

$$M = (\{q_1,q_2\}, \{0,1\}, \{N,K\}, \delta, q_1, K, \{\})$$

1)
$$\delta(q_1, 0, K) = \{(q_1, NK)\}$$

2)
$$\delta(q_1,0,N) = \{(q_1,NN)\}$$

3)
$$\delta(q_1, 1, N) = \{(q_2, \varepsilon)\}$$

4)
$$\delta(q_2, 1, N) = \{(q_2, \varepsilon)\}$$

5)
$$\delta(q_2, \varepsilon, N) = \{(q_2, \varepsilon)\}$$

6)
$$\delta(q_2, \varepsilon, K) = \{(q_2, \varepsilon)\}$$

- PA M prihvaća jezik $N(M)=\{0^n1^m | n\geq 1, m\geq 1, m\leq n\}$
- konstruira se gramatika:

$$G = (V, \{0, 1\}, P, S)$$

$$V = \{S, [q_1,N,q_1], [q_1,N,q_2], [q_2,N,q_1], [q_2,N,q_2], [q_1,K,q_1], [q_1,K,q_2], [q_2,K,q_1], [q_2,K,q_2], \}$$

KONSTRUKCIJA CFG IZ ESPA PRIMJER

- gradnja produkcija
 - počinje iz S,
 - ostale produkcije grade se isključivo za dohvatljive znakove
 - redoslijed gradnje zasniva se na traženju dohvatljivih znakova
- korak konstrukcije (1) daje

$$S \rightarrow [q_1, K, q_1] | [q_1, K, q_2]$$

- nastavlja se (2) sa $[q_1, K, q_1]$ za $\delta(q_1, 0, K) = \{(q_1, NK)\}$ $[q_1, K, q_1] \rightarrow 0$ $[q_1, N, q_1]$ $[q_1, K, q_1] \mid 0$ $[q_1, N, q_2]$ $[q_2, K, q_1]$
- $\operatorname{za} [q_1, K, q_2] \operatorname{za} \delta(q_1, 0, K) = \{(q_1, NK)\}$ $[q_1, K, q_2] \to 0 [q_1, N, q_1] [q_1, K, q_2] | 0 [q_1, N, q_2] [q_2, K, q_2]$

KONSTRUKCIJA CFG IZ ESPA PRIMJER

-
$$za [q_1, N, q_1] [q_1, N, q_2] i za \delta(q_1, 0, N) = \{(q_1, NN)\}$$

 $[q_1, N, q_1] \rightarrow 0 [q_1, N, q_1] [q_1, N, q_1] | 0 [q_1, N, q_2] [q_2, N, q_1]$
 $[q_1, N, q_2] \rightarrow 0 [q_1, N, q_1] [q_1, N, q_2] | 0 [q_1, N, q_2] [q_2, N, q_2]$

– za prijelaze 3-6 u (q_2,ϵ) piše se:

3)
$$\delta(q_1, 1, N) = \{(q_2, \epsilon)\}\$$
 $[q_1, N, q_2] \to 1$
4) $\delta(q_2, 1, N) = \{(q_2, \epsilon)\}\$ $[q_2, N, q_2] \to 1$
5) $\delta(q_2, \epsilon, N) = \{(q_2, \epsilon)\}\$ $[q_2, N, q_2] \to \epsilon$
6) $\delta(q_2, \epsilon, K) = \{(q_2, \epsilon)\}\$ $[q_2, K, q_2] \to \epsilon$

KONSTRUKCIJA CFG IZ ESPA PRIMJER

- nezavršni znakovi [q₂, N, q₁] i [q₂, K, q₁] su mrtvi jer nema prijelaza iz q₂ u q₁
- stoga su mrtvi i [q₁, N, q₁] i [q₁, K, q₁]
- nakon odbacivanja produkcija s mrtvim znakovima:

$$S \rightarrow [q_1, K, q_2]$$

 $[q_1, K, q_2] \rightarrow 0 [q_1, N, q_2] [q_2, K, q_2]$
 $[q_1, N, q_2] \rightarrow 0 [q_1, N, q_2] [q_2, N, q_2]$
 $[q_1, N, q_2] \rightarrow 1$
 $[q_2, N, q_2] \rightarrow 1$
 $[q_2, N, q_2] \rightarrow \epsilon$
 $[q_2, K, q_2] \rightarrow \epsilon$

KONSTRUKCIJA CFG IZ ESPA PRIMJER

 odbacimo [q₂, K, q₂] jer ima samo ε-produkciju, pa ostane:

$$S \rightarrow [q_1, K, q_2]$$

 $[q_1, K, q_2] \rightarrow 0 [q_1, N, q_2]$
 $[q_1, N, q_2] \rightarrow 0 [q_1, N, q_2] [q_2, N, q_2]$
 $[q_1, N, q_2] \rightarrow 1$
 $[q_2, N, q_2] \rightarrow 1$
 $[q_2, N, q_2] \rightarrow \epsilon$

KONSTRUKCIJA CFG IZ ESPA PRIMJER

– gramatika generira niz 00011 nizom transformacija:

$$S \Rightarrow [q_1, K, q_2] \Rightarrow 0 [q_1, N, q_2] \Rightarrow 0 0 [q_1, N, q_2] [q_2, N, q_2]$$

$$\Rightarrow 0 0 0 [q_1, N, q_2] [q_2, N, q_2] [q_2, N, q_2]$$

$$\Rightarrow 0 0 0 1 [q_2, N, q_2] [q_2, N, q_2] \Rightarrow 0 0 0 1 1 [q_2, N, q_2]$$

$$\Rightarrow 0 0 0 1 1 \epsilon \Rightarrow 0 0 0 1 1$$

PA M prihvaća niz 00011 nizom konfiguracija:

$$(q_1,00011, K) \succ (q_1,0011, NK) \succ (q_1,011, NNK)$$

 $\succ (q_1,11, NNNK) \succ (q_2,1, NNK) \succ (q_2, \epsilon, NK)$
 $\succ (q_2, \epsilon, K) \succ (q_2, \epsilon, \epsilon)$

3.3. Svojstva kontekstno neovisnih jezika

3.3.1. Svojstva zatvorenosti kontekstno neovisnih jezika

3.3.2. Svojstvo napuhavanja

3.3. Svojstva kontekstno neovisnih jezika

ISTOVJETNOST KNJ I PA

- Jezik L je kontekstno neovisan samo ako postoji PA koji ga prihvaća
- $-L = \{a^ib^ic^i \mid i≥1\}$ je primjer jezika koji nije KN jezik
- Kontekstno neovisni jezici su pravi podskup svih jezika:

Skup svih jezika 2^{Σ^*} nad abecedom Σ

Kontekstno neovisni jezici KNJ $\subset 2^{\Sigma^*}$

Svojstva kontekstno neovisnih jezika

ISTOVJETNOST KNJ I PA

- $-L = \{ww^R\}$ je primjer jezika koji
 - za koji je moguće izgraditi PA (NPA)
 - za koji **nije** moguće izgraditi DPA
- dakle postoje jezici
 - koji su kontekstno neovisni
 - ali nisu deterministički kontekstno neovisni
- deterministički kontekstno neovisni jezici su pravi podskup skupa kontekstno neovisnih jezika

Svojstva kontekstno neovisnih jezika

ISTOVJETNOST KNJ I PA

- DKA je poseban slučaj DPA koji ne koristi stog
- stoga su regularni jezici **pravi podskup** skupa determinističkih kontekstno neovisnih jezika
- definiramo hijerarhiju automata i jezika:

3.3.1. Svojstva zatvorenosti KNJ

ZATVORENOST KNJ

- istovjetnost KNG, KNJ i PA koristi se za opis svojstva zatvorenosti KNJ
- KNG se koristi za dokazivanje da je KNJ zatvoren obzirom na:
 - uniju
 - nadovezivanje
 - Kleene
 - supstituciju
- PA i DKA se koristi za dokazivanje da je
 - presjek KNJ i RJ jest KNJ

UNIJA

- unija dvaju KNJ jest KNJ. Neka
 - $G_1 = (V_1, T_1, P_1, S_1)$ generira $L(G_1)$
 - $G_2 = (V_2, T_2, P_2, S_2)$ generira $L(G_2)$
 - pri čemu je $V_1 \cap V_2 = \emptyset$
- gramatika $G_3 = (V_3, T_3, P_3, S_3)$ koja generira $L(G_3) = L(G_1) \cup L(G_2)$ konstruira se:
 - $V_3 = V_1 \cup V_2 \cup \{S_3\}; S_3 \notin V_1 \cup V_2$
 - $T_3 = T_1 \cup T_2$
 - $P_3 = P_1 \cup P_2 \cup \{S_3 \rightarrow S_1 | S_2\};$

UNIJA - DOKAZ

- dokažimo prvo da je L(G₁)∪L(G₂) ⊆ L(G₃)
- obzirom na $P_3 = P_1 \cup P_2 \cup \{S_3 \rightarrow S_1 | S_2\}$ vrijedi:
 - pretpostavimo da je $w \in L(G_1)$ $S_3 \underset{G_3}{\longrightarrow} S_1 \underset{G_1}{\overset{*}{\longrightarrow}} w$
 - slično za $w \in L(G_2)$ * $S_3 \underset{G_3}{\longrightarrow} S_2 \underset{G_2}{\longrightarrow} w$
- zaključujemo: $w \in L(G_1) \cup L(G_2) \Rightarrow w \in L(G_3)$

UNIJA - DOKAZ

- dokažimo drugo da je $L(G_3) \subseteq L(G_1) \cup L(G_2)$
- obzirom na $P_3 = P_1 \cup P_2 \cup \{S_3 \rightarrow S_1 | S_2\}$ gramatika G_3 generira w na jedan od dva načina:

$$S_3 \underset{G_3}{\longrightarrow} S_1 \underset{G_3}{\overset{*}{\longrightarrow}} W$$
 ili $S_3 \underset{G_3}{\longrightarrow} S_2 \underset{G_3}{\overset{*}{\longrightarrow}} W$

- obzirom da je $V_1 \cap V_2 = \emptyset$
 - za S₁ koristimo P₁, za S₂ koristimo P₂
- zaključujemo: $w \in L(G_3) \Rightarrow w \in L(G_1) \cup L(G_2)$
- slijedi: $L(G_1) \cup L(G_2) = L(G_3)$

NADOVEZIVANJE

- nadovezivanje dvaju KNJ jest KNJ. Neka
 - $G_1 = (V_1, T_1, P_1, S_1)$ generira $L(G_1)$
 - $G_2 = (V_2, T_2, P_2, S_2)$ generira $L(G_2)$
 - pri čemu je $V_1 \cap V_2 = \emptyset$
- gramatika $G_4 = (V_4, T_4, P_4, S_4)$ koja generira $L(G_4) = L(G_1)L(G_2)$ konstruira se:
 - $V_4 = V_1 \cup V_2 \cup \{S_4\}; S_4 \notin V_1 \cup V_2$
 - $T_4 = T_1 \cup T_2$
 - $P_4 = P_1 \cup P_2 \cup \{S_3 \to S_1S_2\};$

NADOVEZIVANJE - DOKAZ

- dokaz je sličan kao za uniju
- niz generiramo postupkom:

$$S_4 \xrightarrow{G_4} S_1 S_2 \xrightarrow{*} W_1 S_2 \xrightarrow{*} W_1 W_2$$

- gdje su $w_1 w_2 \in L(G_4)$; $w_1 \in L(G_1)$ i $w_2 \in L(G_2)$

KLEENE

- KNJ zatvoreni su obzirom na Kleene. Neka
 - $G_1 = (V_1, T_1, P_1, S_1)$ generira $L(G_1)$
- gramatika $G_5 = (V_5, T_5, P_5, S_5)$ koja generira $L(G_5) = L(G_1)^*$ konstruira se:
 - $V_5 = V_1 \cup \{S_5\}; S_5 \notin V_1$
 - $T_5 = T_1$
 - $P_5 = P_1 \cup \{S_5 \rightarrow S_1S_5 \mid \epsilon\};$

KLEENE - DOKAZ

- dokaz se zasniva na dva postupka generiranja niza
- 1. postupak:

$$S_5 \underset{G_5}{\longrightarrow} S_1 S_5 \underset{G_1}{\overset{*}{\longrightarrow}} w_1 S_5 \underset{G_5}{\longrightarrow} w_1 S_1 S_5 \underset{G_1}{\overset{*}{\longrightarrow}} w_1 w_1 S_5 \cdots \underset{G_1}{\overset{*}{\longrightarrow}} w_1^+ S_5 \underset{G_5}{\longrightarrow} w_1^+$$

gdje su $w_1^+ \in L(G_5)$ i $w_1 \in L(G_1)$

- 2. postupak:

$$S_5 \underset{G_5}{\longrightarrow} \varepsilon$$

SUPSTITUCIJA

- KNJ zatvoreni su obzirom na supstituciju. Neka
 - G = (V, T, P, S) generira L(G)
 - svi završni znakovi a_i jezika L(G) zamijene nizovima $L(G_i)$ $1 \le i \le k, \ k = |T|$
- gramatika $G_i = (V_i, T_i, P_i, S_i)$ generira $L(G_i)$
- konstruira se gramatika G' koja generira nastali jezik L':
 - $V' = V_1 \cup V_2 \cup \dots V_k$, $V \cap V_i = \emptyset$, $V_i \cap V_j = \emptyset$, za sve i,j
 - $T' = T_1 \cup T_2 \cup T_k$
 - S' = S
 - P' = P₁ ∪ P₂ ∪ P_k ,
 a to su produkcije od G preuređene tako da se bilo koji a_i zamijeni početnim S_i

SUPSTITUCIJA - PRIMJER

- zadan je jezik L
 u kojem nizovi imaju jednak broj znakova a i b
- jezik L generira gramatika $G = (\{S\}, \{a, b\}, P, S)$ $S \rightarrow aSbS \mid bSaS \mid \epsilon$
- znak a zamijenimo nizovima jezika $L_1 = \{0^n1^n \mid n \ge 1\}$
- jezik L₁ generira gramatika $G_1 = (\{S_1\}, \{0, 1\}, P, S_1)$ $S_1 \rightarrow 0S_1 1 \mid 01$
- znak b zamijenimo nizovima $L_2 = \{ww^R \mid w=(0+2)^*\}$
- jezik L₂ generira gramatika $G_2 = (\{S_2\}, \{0, 2\}, P, S_2)$ $S_2 \rightarrow 0S_20 \mid 2S_22 \mid \varepsilon$

SUPSTITUCIJA - PRIMJER

- zamjenom znakova a i b nastaje jezik L'
- jezik L' generira gramatika G'
 - $V' = \{S\} \cup \{S_1\} \cup \{S_2\} = \{S, S_1, S_2\}$
 - $T' = \{0, 1\} \cup \{0, 2\}$
 - S' = S
 - P' = $\{S_1 \rightarrow 0S_1 1 \mid 01\} \cup \{S_2 \rightarrow 0S_2 0 \mid 2S_2 2 \mid \epsilon\}$ $\cup \{S \rightarrow S_1 SS_2 S \mid S_2 SS_1 S \mid \epsilon\}$

PRESJEK

- presjek dvaju KNJ nije nužno KNJ, odnosno KNJ nisu zatvoreni obzirom na presjek
- L = $\{a^ib^ic^i \mid i\ge 1\}$ nije KNJ, a nastaje kao presjek jezika
 - $L_1 = \{a^i b^i c^j \mid i \ge 1, j \ge 1\} i$
 - $L_2 = \{a^j b^i c^i \mid i \ge 1, j \ge 1\}$
 - u L₁ proizvoljan je broj znakova c,
 a u L₂ proizvoljan je broj znakova a,
 u L su nizovi sa jednakim brojem znakova a, b i c.
- pokazat ćemo da su L1 i L2 kontekstno neovisni, a kako L nije kontekstno neovisan, KNJ nisu zatvoreni obzirom na presjek

PRESJEK

- jezik $L_1 = \{a^ib^ic^j \mid i\ge 1, j\ge 1\}$ prihvaća PA
 - koji za svaki a sprema na stog A
 - za svaki b skida sa stoga A
 - provjeri da li je najmanje jedan c
- L₁ generira gramatika $G_1 = (\{S,A,C\}, \{a,b,c\}, P, S)$ $P = \{S \rightarrow AC, A \rightarrow aAb \mid ab, C \rightarrow cC \mid c\}$
- jezik $L_2 = \{a^jb^ic^i \mid i\ge 1, j\ge 1\}$ prihvaća PA
 - provjeri da li je najmanje jedan a
 - koji za svaki b sprema na stog B
 - za svaki c skida sa stoga B
- L₂ generira gramatika $G_2 = (\{S,A,B\}, \{a,b,c\}, P, S)$ $P = \{S \rightarrow AB, A \rightarrow aA \mid a, B \rightarrow bBc \mid bc\}$

KOMPLEMENT

- komplement KNJ nije KNJ,
 odnosno KNJ nisu zatvoreni obzirom na komplement
- pretpostavimo da je komplement KNJ također KNJ
- na temelju DeMorganovog teorema vrijedi:

$$L_1 \cap L_2 = (L_1^C \cup L_2^C)^C$$

- kako presjek ne mora biti KNJ,
 pretpostavka da je komplement KNJ nije točna
- pa komplement unije (koja je KNJ) ne mora biti KNJ

PRESJEK KNJ i RJ

- presjek KNJ i RJ jest KNJ
- pretpostavimo
 - da KNJ L₁ prihvaća PA M₁ = $(Q_1, \Sigma, \Gamma, \delta_1, q_0, Z_1, F_1)$
 - da RJ L₂ prihvaća DKA $M_2 = (Q_2, \Sigma, \delta_2, p_0, F_2)$
- moguće je izgraditi PA M' = (Q', Σ , Γ , δ ', q'₀, Z_0 , F') koji prihvaća jezik L = $L_1 \cap L_2$
 - $Q' = Q_2 \times Q_1$; $q'_0 = [p_0, q_0]$; $F' = F_2 \times F_1$
 - $\delta'([p,q], a, X)$ sadrži $([p',q'], \gamma)$ ako i samo ako vrijedi: $za M_2 \delta_2(p,a) = p'$ i $za M_1(q', \gamma) \in \delta_1(q, a, X)$
 - ako a jest ε , onda je p' = p

PRESJEK KNJ i RJ

- PA M' simulira rad M₁ i M₂
- dokaz da je $L = L_1 \cap L_2$ izvodi se indukcijom
- dokaže se da je:

$$([p_0,q_0],w,Z_0) \underset{M'}{\overset{i}{\succeq}} ([p,q],\epsilon,\gamma)$$

ako i samo ako je:

$$(q_0, w, Z_0) \sum_{M_1}^{1} (q, \varepsilon, \gamma)$$
 i $\delta_2(p_0, w) = p$

gdje je $[p, q] \in F'$ ako i samo ako $p \in F_2$ i $q \in F_1$

PRESJEK KNJ i RJ PRIMJER

```
- PA M_1 = (\{q_1,q_2\}, \{0,1\}, \{N,K\}, \delta_1, q_1, K, \{q_2\})
1) \delta_1(q_1,0,K) = \{(q_1,NK)\} 
2) \delta_1(q_1,0,N) = \{(q_1,NN)\}
3) \delta_1(q_1,1,N) = \{(q_2,\epsilon)\} 
4) \delta_1(q_2,1,N) = \{(q_2,\epsilon)\}
```

- prihvaća jezik $L(M_1) = \{0^n1^m \mid n \ge 1, m \ge 1, m \le n\}$ prihvatljivim stanjem q_2
- DKA $M_2 = (\{p_1, p_2, p_3\}, \{0,1\}, \delta_2, p_1, K, \{p_3\})$ $\delta_2(p_1,0) = p_1 \quad \delta_2(p_1,1) = p_2$ $\delta_2(p_2,0) = p_2 \quad \delta_2(p_2,1) = p_3$
 - $\delta_2(p_3,0) = p_3$ $\delta_2(p_3,1) = p_3$
- prihvaća jezik L(M₂) s barem dva znaka 1

PRESJEK KNJ i RJ PRIMJER

- Presjek jezika $L(M_1)$ i $L(M_2)$ jest jezik $L_3 = L(M_1) \cap L(M_2) = \{0^n1^m \mid n \ge 2, m \ge 2, m \le n\}$
- prihvaća ga $M_3 = (Q', \Sigma, \Gamma, \delta', q'_0, Z_0, F')$
 - $Q' = \{[p_1, q_1], [p_1, q_2], [p_2, q_1], [p_2, q_2], [p_3, q_1], [p_3, q_2],$
 - $q'_0 = [p_1, q_1]$
 - $F' = [p_3, q_2]$
 - 1) $\delta'([p_1,q_1],0,K) = \{([p_1,q_1],NK)\}$
 - 2) $\delta'([p_1,q_1],0,N) = \{([p_1,q_1],NN)\}$
 - 3) $\delta'([p_1,q_1],1,N) = \{([p_2,q_2], \epsilon)\}$
 - 4) $\delta'([p_2,q_2],1,N) = \{([p_3,q_2], \epsilon)\}$
 - 5) $\delta'([p_3,q_2],1,N) = \{([p_3,q_2], \epsilon)\}$

PRESJEK KNJ i RJ PRIMJER

PA M₁ prihvaća niz 00011 prihvatljivim stanjem q₂:

$$(q_1,00011, K) \succ (q_1,0011, NK) \succ (q_1,011, NNK)$$

$$\succ$$
 (q₁,11, NNNK) \succ (q₂,1, NNK) \succ (q₂, ϵ , NK); q₂ \in F₁

- DKA M₂ također prihvaća niz 00011:

$$\delta(p_1,00011) = \delta(p_1,0011) = \delta(p_1,011) = \delta(p_1,11) = \delta(p_2,1) = p_3; p_3 \in F_2$$

PRESJEK KNJ i RJ PRIMJER

- PA M' prihvaća niz 00011 prihvatljivim stanjem $[p_3,q_2]$:
 - $([p_1,q_1], 00011, K) \succ ([p_1,q_1], 0011, NK)$
 - $\succ ([p_1,q_1], 011, NNK) \succ ([p_1,q_1],11, NNNK)$
 - $\succ ([p_2,q_2], 1, NNK) \succ ([p_3,q_2], \varepsilon, NK); [p_3,q_2] \in F'$

3.3.2. Svojstvo napuhavanja

SVOJSTVO NAPUHAVANJA KNJ

- slično svojstvu napuhavanja regularnih jezika
- koristi se za dokazivanje kontekstne neovisnosti jezika
- primjena je dosta kompleksna
- zasniva se
 - na **broju čvorova** generativnog stabla
 - na broju nezavršnih članova gramatike
- za dovoljno dugački niz
 - broj unutrašnjih čvorova veći je od kardinalnog broja skupa V
 - znači da je više čvorova označeno istim nezavršnim znakom

SVOJSTVO NAPUHAVANJA KNJ

- neka gramatika g = (V, T, P, S)
 - generira stablo
 - koje ima više čvorova od kardinalnog broja skupa V
- sigurno postoji put stabla u kojem je jedan nezavršni znak barem na dva mjesta pri dnu stabla
- za takvo stablo postoji slijed generiranja niza:

$$S \underset{G}{\overset{*}{\Longrightarrow}} uAy \underset{G}{\overset{*}{\Longrightarrow}} uvAxy \underset{G}{\overset{*}{\Longrightarrow}} uvwxy$$

 nezavršni znak A koristi se dva puta u postupku generiranja niza uvwxy

SVOJSTVO NAPUHAVANJA KNJ

gramatika generira niz oblika:

$$S \underset{G}{\overset{*}{\Longrightarrow}} uAy \underset{G}{\overset{*}{\Longrightarrow}} uvAxy \underset{G}{\overset{*}{\Longrightarrow}} uvvAxxy \underset{G}{\overset{*}{\Longrightarrow}} uvvVAxxxy \underset{G}{\overset{*}{\Longrightarrow}} \cdots$$

$$\underset{G}{\overset{*}{\Longrightarrow}} uv^{i}Ax^{i}y \underset{G}{\overset{*}{\Longrightarrow}} uv^{i}wx^{i}y$$

- da je jezik KNJ dokazuje se korištenjem svojstva:
- neka je L KNJ, postoji konstanta n ovisna o L:
 - ako je za niz z |z|≥n, z pišemo kao uvwxy
 - $|vx| \ge 1$; $|vwx| \le n$; $za i \ge 1$ $niz uv^i wx^i y \in L$

SVOJSTVO NAPUHAVANJA KNJ PRIMJER

- pokažimo da jezik $L = \{a^ib^ic^i \mid i \ge 1\}$ nije KNJ
 - pretpostavimo da je L KNJ
 - izaberimo konstantu n i niz aⁿbⁿcⁿ
 - vrijedi |z|≥n
 - napišimo niz z kao uvwxy tako da zadovolji uvjete napuhavanja
 - odredimo podnizove v i x u nizu aⁿbⁿcⁿ koje je moguće ponoviti
 - zbog uvjeta $|vwx| \le n$ a i c ne mogu istovremeno biti u v i x
 - ako su u nizovima v i x isključivo znakovi a, tada u nizu uwy manjka znakova a zbog |vx| ≥ 1
 - time je pokazano da uwy nije u jeziku L
 - za sličan način detektiraju se nelogičnosti ako su u v i x znakovi b ili c

SVOJSTVO NAPUHAVANJA KNJ PRIMJER

- za jezik $L = \{a^ib^jc^kd^l \mid i = 0 \text{ ili } j=k=l\}$ koji **nije** KNJ
 - uvjeti svojstva napuhavanja nisu dovoljni
 - definiramo strože uvjete za definiranje mjesta podanizova v i x