Contingency Tables

Andy Grogan-Kaylor

 $8~{\rm Sep}~2021$

Key Concepts and Commands

- Matrices of data
- Probabilities, risks, and odds
- χ^2 Tests
- tabulate x y, row col chi2

Flipping Two Coins

Figure 1: Coin Emoji From Apple

Figure 2: Coin Emoji From Apple

Setup

- . clear all
- . set seed 3846

Good value labels are **key** here.

```
. label define nickel ///
> 1 "heads for nickel" ///
> 0 "tails for nickel" // define value label
. label define quarter ///
> 1 "heads for quarter" ///
> 0 "tails for quarter" // define value label
```

```
. set obs 1000 // 1000 observations Number of observations (_N) was 0, now 1,000.
```

- . * curiously it takes around 1000 obs for the proportions
- . * below to "take hold"
- . generate nickel = rbinomial(1, .75) // unfair nickel
- . generate quarter = rbinomial(1, .5) // fair quarter
- . label values nickel nickel // assign value label
- . label values quarter quarter // assign value label

The Graph We Think We Want But Don't

- . graph bar, over(nickel) scheme(burd) title(Nickel) name(nickel)
- . graph bar, over(quarter) scheme(burd) title(Quarter) name(quarter)
- . graph combine nickel quarter, title(Nickel And Quarter) scheme(burd)
- . graph export unhelpfulgraph.png, width(500) replace

/Users/agrogan/Desktop/GitHub/newstuff/categorical/contingency-tables/unhelpfulgraph.png saved as PNG format

Nickel And Quarter

Figure 3: A Graph That May Not Be That Helpful

Crosstabulation

. tabulate nickel quarter, row col

Key
frequency
row percentage
column percentage

	qua	rter	
nickel	tails for	heads for	Total
tails for nickel	104	140	244
	42.62	57.38	100.00
	21.62	26.97	24.40
heads for nickel	377	379	756
	49.87	50.13	100.00
	78.38	73.03	75.60
Total	481	519	1,000
	48.10	51.90	100.00
	100.00	100.00	100.00

Graphing (Mosaic Plot)

- . * ssc install spineplot // mosaicplots (spineplots)
- . * ssc install scheme-burd, replace // BuRd graph scheme
- . spineplot nickel quarter, scheme(burd)
- . graph export nickel-quarter.png, width(500) replace file

/Users/agrogan/Desktop/GitHub/newstuff/categorical/contingency-tables/nickel-quarter.png saved as PNG format

Figure 4: Mosaic Plot

Bar Chart

Does a bar chart work to visualize these relationships?

```
. graph bar, over(quarter) over(nickel) scheme(burd)
. graph export nickel-quarter-bar1.png, width(500) replace
file
```

/Users/agrogan/Desktop/GitHub/newstuff/categorical/contingency-tables/nickel-quarter-bar > 1.png saved as PNG format

Figure 5: Bar Chart 1

Bar Chart (2)

Option asyvars adds a crucial color element.

```
. graph bar, over(quarter) over(nickel) scheme(burd) asyvars % \left( \frac{1}{2}\right) =\left( \frac{1}{2}\right) \left( \frac
```

```
. graph export nickel-quarter-bar2.png, width(500) replace file \,
```

Horizontal Bar Chart

And hbar may improve legibility even more.

. graph hbar, over(quarter) over(nickel) scheme(burd) asyvars

Figure 6: Bar Chart 2

```
. graph export nickel-quarter-bar3.png, width(500) replace file
```

-/Users/agrogan/Desktop/GitHub/newstuff/categorical/contingency-tables/nickel-quarter-bar > 3.png saved as PNG format

1961 French Skiiers

. clear all

Define Matrix

- . matrix input FrenchSkiiers = (31, 109 \setminus 17, 122)
- . matrix rownames FrenchSkiiers = Placebo AscorbicAcid
- . matrix colnames FrenchSkiiers = Cold NoCold
- . matrix list FrenchSkiiers

FrenchSkiiers[2,2]

	Cold	NoCold
Placebo	31	109
AscorbicAcid	17	122

Theme Music

Polo And Pan on YouTube

Figure 7: Bar Chart 3

Try Making a Data Set From Matrix

```
. symat FrenchSkiiers, name(count) number of observations will be reset to 2 Press any key to continue, or Break to abort Number of observations (_N) was 0, now 2.
```

. list

	count1	count2
1.	31	109
2.	17	122

Enter Data By Hand

There are many alternative commands to do this, but the easiest way is using edit.

I have already done this. Note the structure of the data is different from above.

- . use "FrenchSkiiers.dta", clear
- . list $\//$ list the data

	Tx	Outcome	Count
1.	Ascorbic Acid	Cold	17
2.		No Cold	122
3.	Placebo	Cold	31
	Placebo	No Cold	109
4.	Flacebo	NO COIG	109

Mosaic Plot

- . spineplot Tx Outcome, scheme(burd)
- . graph export FrenchSkiiers1.png, width(500) replace file

/ Users/agrogan/Desktop/GitHub/newstuff/categorical/contingency-tables/FrenchSkiiers1.png saved as PNG format

Figure 8: Mosaic Plot Attempt 1

Mosaic Plot (2)

- . spineplot Outcome Tx [fweight=Count], scheme(burd) // order matters to interpretability
- . graph export FrenchSkiiers2.png, width(500) replace file

/ Users/agrogan/Desktop/GitHub/newstuff/categorical/contingency-tables/FrenchSkiiers2.png saved as PNG format

Definitions and Notation

Counts

- c_{ij} c_{ij} c_{ij}
- c_{ij} c_{ij} $c_{i\bullet}$
- $c_{\bullet j}$ $c_{\bullet j}$ $c_{\bullet \bullet}$

Figure 9: Mosaic Plot Attempt 2

Probabilities

 p_{ij} p_{ij} $p_{i\bullet}$

 p_{ij} p_{ij} $p_{i\bullet}$

 $p_{\bullet j}$ $p_{\bullet j}$ $p_{\bullet \bullet}$

Terms

 p_{ij} are joint probabilities.

 $p_{i\bullet}$ and $p_{\bullet j}$ are marginal probabilities.

 $p_{ij} \mid p_{i \bullet}$ and $p_{ij} \mid p_{\bullet j}$ are conditional probabilities.

Formulas

Counts

$$\sum_{1}^{i} \sum_{1}^{j} c_{ij} = N$$

Probabilities

$$\sum_{1}^{i} \sum_{1}^{j} p_{ij} = 1.0$$

Expected Probabilities p and Counts m or Frequencies

$$p_{ij} = p_{i \bullet} p_{\bullet j}$$

$$m_{ij} = \frac{m_{i \bullet} m_{\bullet j}}{m_{\bullet \bullet}}$$

Observed counts are represented by c while expected counts are represented by m.

Fundamental Rule

conditional = joint / marginal

. tabulate Tx Outcome [fweight = Count], cell row col

Key
frequency row percentage
column percentage cell percentage

Outcome			
Tx	No Cold	Cold	Total
Placebo	109	31	140
	77.86	22.14	100.00
	47.19	64.58	50.18
	39.07	11.11	50.18
Ascorbic Acid	122	17	139
	87.77	12.23	100.00
	52.81	35.42	49.82
	43.73	6.09	49.82
Total	231	48	279
	82.80	17.20	100.00
	100.00	100.00	100.00
	82.80	17.20	100.00

[.] display 6.09 / 49.82

Independence (Robert Mare)

If independence is true, then joint probabilities = products of marginal probabilities.

That is, under independence, the conditional distribution equals the marginal distribution.

Under independence, row membership provides no information about the column distribution; and column membership provides no information about the row distribution.

Independence is a model, which is never exactly true in the real world.

^{.12224006}

[.] display 17/139

^{.12230216}

Observed vs. Expected

. tabulate Tx Outcome [fweight = Count]

	Outcor	ne	
Tx	No Cold	Cold	Total
Placebo	109	31	140
Ascorbic Acid	122	17	139
Total	231	48	279

- . scalar N = 31 + 109 + 17 + 122
- . scalar A = ((31 + 17)*(31 + 109)) / N // expected count
- . scalar B = ((31 + 109)*(109 + 122)) / N // expected count
- . scalar C = ((31 + 17) * (17 + 122)) / N // expected count
- . scalar D = ((17 + 122) * (109 + 122)) / N // expected count
- . matrix FS = (A, B \setminus C, D) // matrix of expected values
- . matrix rownames FS = Placebo AscorbicAcid // rownames
- . matrix colnames FS = Cold NoCold // column names
- . matrix list FS

FS[2,2]

Cold NoCold
Placebo 24.086022 115.91398
AscorbicAcid 23.913978 115.08602

Chi-Square Test

$$\chi^2 = \Sigma \tfrac{(O-E)^2}{E}$$

- . scalar chisquare = $(31 24.086022)^2 / 24.086022 + ///$
- > (109 115.91398)^2 / 115.91398 + ///
- > (17 23.913978)^2 / 23.913978 + ///
- > (122 115.08602)^2 / 115.08602
- . scalar list chisquare
 chisquare = 4.8114124

Compare With Tabulate

- . use "FrenchSkiiers.dta", clear
- . tabulate Tx Outcome [fweight = Count], row col chi2

frequency
row percentage
column percentage

Outcome
Tx No Cold Cold Total

			_
Placebo	109	31	140
	77.86	22.14	100.00
	47.19	64.58	50.18
Ascorbic Acid	122	17	139
	87.77	12.23	100.00
	52.81	35.42	49.82
Total	231	48	279
	82.80	17.20	100.00
	100.00	100.00	100.00
Pears	son chi2(1) =	4.8114	Pr = 0.028

Risk Differences and Risk Ratios (Relative Risk)

Following Viera, 2008:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

	Develop Outcome	Do Not Develop Outcome
Exposed	a	b
Not Exposed	c	d

$$\begin{split} R &= \frac{a}{a+b} \text{ (in Exposed)} \\ RR &= \frac{\text{risk in exposed}}{\text{risk in not exposed}} = \frac{a/(a+b)}{c/(c+d)} \end{split}$$

Calculating a Risk Ratio

. tabulate Outcome Tx [fweight = Count]

		T	X	
Outo	ome	Placebo	Ascorbic	Total
No C	old	109 31	122 17	231 48
То	tal	140	139	279

. tabulate Outcome Tx [fweight = Count], col

Key
frequency column percentage

	Tx			
Outcome	Placebo	Ascorbic	Total	
No Cold	109	122	231	
	77.86	87.77	82.80	
Cold	31	17	48	
	22.14	12.23	17.20	
Total	140	139	279	
	100.00	100.00	100.00	

. display 31/140 .22142857

. display 17/139

.12230216

. display (17/139) / (31/140)

.55233233

. csi 17 31 122 109 // also has an intuitive dialog box

	Exposed	Unexposed	Total	
Cases Noncases	17 122	31 109	48 231	
Total	139	140	279	
Risk	.1223022	.2214286	.172043	
	Point estimate		[95% conf.	interval]
Risk difference Risk ratio Prev. frac. ex. Prev. frac. pop	0991264 .5523323 .4476677 .2230316		1868592 .3209178 .0493797	0113937 .9506203 .6790822

4.81 Pr>chi2 = 0.0283 chi2(1) =

Odds Ratios

	Develop Outcome	Do Not Develop Outcome
Exposed	a	b
Not Exposed	c	d

OR =

odds that exposed person develops outcome odds that unexposed person develops outcome

$$= \frac{\frac{a}{a+b}/\frac{b}{a+b}}{\frac{c}{c+d}/\frac{d}{c+d}} = \frac{a/b}{c/d} = \frac{ad}{bc}$$

Properties of the Odds Ratio (Robert Mare)

In general for the 2 X 2 Table,

0 < OR < 1

indicates that one row is less likely to make the first response than the other row.

 $1 < OR < \infty$

indicates that one row is more likely to make the first response than the other row.

Calculate Odds Ratio

. tabulate Tx Outcome [fweight = Count]

	Outcome		
Tx	No Cold	Cold	Total
Placebo Ascorbic Acid	109 122	31 17	140 139
Total	231	48	279

. display (17 * 109)/(122 * 31) .48995241

. csi 17 31 122 109, or // also has an intuitive dialog box

	Exposed	Unexposed	Total		
Cases	17 122	31 109	48 231		
Total	139	140	279		
Risk	.1223022	.2214286	. 172043		
	Point	estimate	[95% conf.	interval]	
Risk difference	09	91264	1868592	0113937	
Risk ratio	.55	523323	.3209178	.9506203	
Prev. frac. ex.	.44	176677	.0493797	.6790822	
Prev. frac. pop	. 22	230316			
Odds ratio	.48	399524	.2588072	.9282861	(Cornfield)
	L		1		

chi2(1) = 4.81 Pr> chi2 = 0.0283