정수 나누기 계산법 (The Integer Division Algorithm)

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z}$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t.}$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \ s.t. \ A = BQ + R, \ 0 \leq R < |B|$$
 [Existence] Proof

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence] Proof [Uniqueness] Proof

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence] Proof [Uniqueness] Proof

ex) 7

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence] Proof [Uniqueness] Proof

$$ex)$$
 7 =

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence] Proof [Uniqueness] Proof

$$ex) 7 = 2$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \quad s.t. \quad A = BQ + R, \quad 0 \leq R < |B|$$
 [Existence] Proof [Uniqueness] Proof

$$ex) 7 = 2 \times$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B| \\ [\text{Existence}] \quad \text{[Uniqueness]} \quad \text{Proof} \quad \text{[}$$

$$ex) 7 = 2 \times 3$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B| \\ [\text{Existence}] \quad \text{[Uniqueness]} \quad \text{Proof} \quad \text{[}$$

$$ex)$$
 7 = 2 \times 3 +

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence] Proof [Uniqueness] Proof

$$ex) 7 = 2 \times 3 + 1$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence] Proof [Uniqueness] Proof

$$ex) 7 = 2 \times 3 + 1 , 0 \le 1 < |2|$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence] Proof [Uniqueness] Proof

$$ex) 7 = 2 \times 3 + 1 , 0 \le 1 < |2|$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence] Proof [Uniqueness] Proof

$$ex) 7 = 2 \times 3 + 1 , 0 \le 1 < |2|$$
 $7 =$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence] Proof [Uniqueness] Proof

$$ex)$$
 7 = 2 × 3 + 1 , 0 \leq 1 $<$ |2| 7 = (-2)

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence] Proof [Uniqueness] Proof

$$ex)$$
 7 = 2 \times 3 + 1 , 0 \leq 1 $<$ |2| 7 = (-2) \times

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence] Proof [Uniqueness] Proof

$$ex)$$
 7 = 2 × 3 + 1 , 0 \leq 1 $<$ |2|
7 = (-2) × (-3)

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence] Proof [Uniqueness] Proof

$$ex)$$
 7 = 2 × 3 + 1 , 0 \leq 1 $<$ |2|
7 = (-2) × (-3) +

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence] Proof [Uniqueness] Proof

$$ex)$$
 7 = 2 × 3 + 1 , 0 \leq 1 $<$ |2|
7 = (-2) × (-3) + 1

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence] Proof [Uniqueness] Proof

$$ex)$$
 7 = 2 × 3 + 1 , 0 \leq 1 $<$ |2|
7 = (-2) × (-3) + 1 , 0 \leq 1 $<$ |-2|

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence] Proof [Uniqueness] Proof

$$ex)$$
 7 = 2 × 3 + 1 , 0 \leq 1 $<$ |2|
7 = (-2) × (-3) + 1 , 0 \leq 1 $<$ |-2|

▶ Start

 $\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \ s.t. \ A = BQ + R, \ 0 \leq R < |B|$ [Existence]

```
▶ Start
```

 $\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists !Q, \exists !R \in \mathbb{Z} \ s.t. \ A = BQ + R, \ 0 \leq R < |B|$ [Existence] Let

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\}$ $\cdots \cdots (1)$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S$$

→ Start

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\} \cdots (1)$

 $\exists R \in S \ s.t.$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\}$ $\cdots \cdots (1)$

$$\exists R \in S \ s.t. \ x \in S$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\}$ $\cdots \cdots (1)$

$$\exists R \in S \text{ s.t. } x \in S \Rightarrow$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \text{ s.t. } x \in S \Rightarrow R \leq x$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n > 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \text{ s.t. } x \in S \Rightarrow R \leq x \text{ } (:: S \subset \mathbb{N} \cup \{0\})$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n > 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \text{ s.t. } x \in S \Rightarrow R \leq x \text{ } (:: S \subset \mathbb{N} \cup \{0\})$$
$$\exists Q \in \mathbb{Z}$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n > 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \ s.t. \ x \in S \Rightarrow R \leq x \ (\because S \subset \mathbb{N} \cup \{0\})$$
$$\exists Q \in \mathbb{Z} \ s.t.$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n > 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \ s.t. \ x \in S \Rightarrow R \leq x \ (\because S \subset \mathbb{N} \cup \{0\})$$
$$\exists Q \in \mathbb{Z} \ s.t. \ R = A - BQ \ \cdots (2)$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n > 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \ s.t. \ x \in S \Rightarrow R \leq x \ (\because S \subset \mathbb{N} \cup \{0\})$$
$$\exists Q \in \mathbb{Z} \ s.t. \ R = A - BQ \ \cdots (2)$$

▶ Start

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n > 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \text{ s.t. } x \in S \Rightarrow R \leq x \text{ } (\because S \subset \mathbb{N} \cup \{0\})$$

$$\exists Q \in \mathbb{Z} \text{ s.t. } R = A - BQ \cdots (2)$$

Assume

▶ Start

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n > 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \ s.t. \ x \in S \Rightarrow R \leq x \ (\because S \subset \mathbb{N} \cup \{0\})$$
$$\exists Q \in \mathbb{Z} \ s.t. \ R = A - BQ \ \cdots (2)$$

Assume $R \ge |B|$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n > 0, n \in \mathbb{Z}\}$ $\cdots \cdots (1)$

$$\exists R \in S \ s.t. \ x \in S \Rightarrow R \leq x \ (\because S \subset \mathbb{N} \cup \{0\})$$
$$\exists Q \in \mathbb{Z} \ s.t. \ R = A - BQ \ \cdots (2)$$

Assume
$$R \ge |B|$$

 $A - BQ \ge |B|$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n > 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \ s.t. \ x \in S \Rightarrow R \leq x \ (\because S \subset \mathbb{N} \cup \{0\})$$
$$\exists Q \in \mathbb{Z} \ s.t. \ R = A - BQ \ \cdots (2)$$

Assume
$$R \ge |B|$$

 $A - BQ \ge |B|$, $A - BQ - |B| \ge 0$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \ s.t. \ x \in S \Rightarrow R \leq x \ (\because S \subset \mathbb{N} \cup \{0\})$$
$$\exists Q \in \mathbb{Z} \ s.t. \ R = A - BQ \ \cdots (2)$$

Assume
$$R \ge |B|$$

 $A - BQ \ge |B|$, $A - BQ - |B| \ge 0$
 $A - B\left(Q + \frac{|B|}{B}\right)$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \ s.t. \ x \in S \Rightarrow R \leq x \ (\because S \subset \mathbb{N} \cup \{0\})$$
$$\exists Q \in \mathbb{Z} \ s.t. \ R = A - BQ \ \cdots (2)$$

Assume
$$R \ge |B|$$

 $A - BQ \ge |B|$, $A - BQ - |B| \ge 0$
 $A - B\left(Q + \frac{|B|}{B}\right) =$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \ s.t. \ x \in S \Rightarrow R \leq x \ (\because S \subset \mathbb{N} \cup \{0\})$$
$$\exists Q \in \mathbb{Z} \ s.t. \ R = A - BQ \ \cdots (2)$$

Assume
$$R \ge |B|$$

 $A - BQ \ge |B|$, $A - BQ - |B| \ge 0$
 $A - B\left(Q + \frac{|B|}{B}\right) = A - BQ - |B|$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \ s.t. \ x \in S \Rightarrow R \leq x \ (\because S \subset \mathbb{N} \cup \{0\})$$
$$\exists Q \in \mathbb{Z} \ s.t. \ R = A - BQ \ \cdots (2)$$

Assume
$$R \ge |B|$$

 $A - BQ \ge |B|$, $A - BQ - |B| \ge 0$
 $A - B\left(Q + \frac{|B|}{B}\right) = A - BQ - |B| < 0$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \ s.t. \ x \in S \Rightarrow R \leq x \ (\because S \subset \mathbb{N} \cup \{0\})$$

$$\exists Q \in \mathbb{Z} \ s.t. \ R = A - BQ \ \cdots (2)$$

Assume
$$R \ge |B|$$

 $A - BQ \ge |B|$, $A - BQ - |B| \ge 0$
 $A - B\left(Q + \frac{|B|}{B}\right) = A - BQ - |B| < A - BQ$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \text{ s.t. } x \in S \Rightarrow R \leq x \text{ } (\because S \subset \mathbb{N} \cup \{0\})$$

$$\exists Q \in \mathbb{Z} \text{ s.t. } R = A - BQ \text{ } \cdots \cdots (2)$$

Assume
$$R \ge |B|$$

 $A - BQ \ge |B|$, $A - BQ - |B| \ge 0$
 $A - B\left(Q + \frac{|B|}{B}\right) = A - BQ - |B| < A - BQ$: contradiction

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \text{ s.t. } x \in S \Rightarrow R \leq x \text{ } (\because S \subset \mathbb{N} \cup \{0\})$$

$$\exists Q \in \mathbb{Z} \text{ s.t. } R = A - BQ \text{ } \cdots \cdots (2)$$

Assume
$$R \ge |B|$$

 $A - BQ \ge |B|$, $A - BQ - |B| \ge 0$
 $A - B\left(Q + \frac{|B|}{B}\right) = A - BQ - |B| < A - BQ$: contradiction
 $\therefore R < |B| \cdot \cdots \cdot (3)$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \ s.t. \ x \in S \Rightarrow R \leq x \ (\because S \subset \mathbb{N} \cup \{0\})$$

$$\exists Q \in \mathbb{Z} \ s.t. \ R = A - BQ \ \cdots (2)$$

Assume
$$R \ge |B|$$

 $A - BQ \ge |B|$, $A - BQ - |B| \ge 0$
 $A - B\left(Q + \frac{|B|}{B}\right) = A - BQ - |B| < A - BQ$: contradiction
 $\therefore R < |B| \cdot \cdots \cdot (3)$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \ s.t. \ x \in S \Rightarrow R \leq x \ (\because S \subset \mathbb{N} \cup \{0\})$$
$$\exists Q \in \mathbb{Z} \ s.t. \ R = A - BQ \ \cdots (2)$$

Assume
$$R \ge |B|$$

 $A - BQ \ge |B|$, $A - BQ - |B| \ge 0$
 $A - B\left(Q + \frac{|B|}{B}\right) = A - BQ - |B| < A - BQ$: contradiction
: $R < |B|$ ·····(3)

By (1), (2), (3)

$$\therefore \exists Q, \exists R \in \mathbb{Z}$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \ s.t. \ x \in S \Rightarrow R \leq x \ (\because S \subset \mathbb{N} \cup \{0\})$$
$$\exists Q \in \mathbb{Z} \ s.t. \ R = A - BQ \ \cdots (2)$$

Assume
$$R \ge |B|$$

 $A - BQ \ge |B|$, $A - BQ - |B| \ge 0$
 $A - B\left(Q + \frac{|B|}{B}\right) = A - BQ - |B| < A - BQ$: contradiction
 $\therefore R < |B| \cdot \cdots \cdot (3)$

By (1), (2), (3)

$$\therefore \exists Q, \exists R \in \mathbb{Z} \quad s.t.$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \text{ s.t. } x \in S \Rightarrow R \leq x \text{ } (\because S \subset \mathbb{N} \cup \{0\})$$

$$\exists Q \in \mathbb{Z} \text{ s.t. } R = A - BQ \cdots (2)$$

Assume
$$R \ge |B|$$

 $A - BQ \ge |B|$, $A - BQ - |B| \ge 0$
 $A - B\left(Q + \frac{|B|}{B}\right) = A - BQ - |B| < A - BQ$: contradiction
 $\therefore R < |B| \cdot \cdots \cdot (3)$

By (1), (2), (3)

$$\therefore \exists Q, \exists R \in \mathbb{Z} \text{ s.t. } A = BQ + R,$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Existence]
Let $S = \{x | x = A - B \times n \geq 0, n \in \mathbb{Z}\} \cdots (1)$

$$\exists R \in S \ s.t. \ x \in S \Rightarrow R \leq x \ (\because S \subset \mathbb{N} \cup \{0\})$$
$$\exists Q \in \mathbb{Z} \ s.t. \ R = A - BQ \ \cdots (2)$$

Assume
$$R \ge |B|$$

 $A - BQ \ge |B|$, $A - BQ - |B| \ge 0$
 $A - B\left(Q + \frac{|B|}{B}\right) = A - BQ - |B| < A - BQ$: contradiction
 $\therefore R < |B| \cdot \cdots \cdot (3)$

By (1), (2), (3)

$$\therefore \exists Q, \exists R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \le R < |B|$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists !Q, \exists !R \in \mathbb{Z} \ s.t. \ A = BQ + R, \ 0 \leq R < |B|$$
 [Uniquness]

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \ s.t. \ A = BQ + R, \ 0 \leq R < |B|$$
 [Uniquness]
Let $A = BQ_1 + R_1, \ 0 \leq R_1 < |B|$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Uniquness]
 $Let \ A = BQ_1 + R_1, \ 0 \leq R_1 < |B|$
 $Let \ A = BQ_2 + R_2, \ 0 \leq R_2 < |B|$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Uniquness]

 $Let \ A = BQ_1 + R_1, \ 0 \leq R_1 < |B|$
 $Let \ A = BQ_2 + R_2, \ 0 \leq R_2 < |B|$
 $-|B| < R_2 - R_1 < |B|$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \ s.t. \ A = BQ + R, \ 0 \leq R < |B|$$
 [Uniquness]
Let $A = BQ_1 + R_1, \ 0 \leq R_1 < |B|$
Let $A = BQ_2 + R_2, \ 0 \leq R_2 < |B|$
 $-|B| < R_2 - R_1 < |B|, \ |R_2 - R_1| < |B| \ \cdots (1)$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \ s.t. \ A = BQ + R, \ 0 \leq R < |B|$$
 [Uniquness]

Let $A = BQ_1 + R_1, \ 0 \leq R_1 < |B|$

Let $A = BQ_2 + R_2, \ 0 \leq R_2 < |B|$
 $-|B| < R_2 - R_1 < |B|, \ |R_2 - R_1| < |B| \ \cdots \cdots (1)$
 $BQ_1 + R_1 = BQ_2 + R_2$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists !Q, \exists !R \in \mathbb{Z} \ s.t. \ A = BQ + R, \ 0 \leq R < |B|$$
 [Uniquness]
Let $A = BQ_1 + R_1, \ 0 \leq R_1 < |B|$
Let $A = BQ_2 + R_2, \ 0 \leq R_2 < |B|$
 $-|B| < R_2 - R_1 < |B|, \ |R_2 - R_1| < |B| \cdots (1)$
 $BO_1 + R_1 = BO_2 + R_2, \ B(O_1 - O_2) = R_2 - R_1 \cdots (2)$

→ Start

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \ s.t. \ A = BQ + R, \ 0 \leq R < |B|$$
 [Uniquness]
Let $A = BQ_1 + R_1, \ 0 \leq R_1 < |B|$
Let $A = BQ_2 + R_2, \ 0 \leq R_2 < |B|$
 $-|B| < R_2 - R_1 < |B|, \ |R_2 - R_1| < |B| \cdots (1)$
 $BQ_1 + R_1 = BQ_2 + R_2, \ B(Q_1 - Q_2) = R_2 - R_1 \cdots (2)$
by (1), (2)

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \text{ s.t. } A = BQ + R, \ 0 \leq R < |B|$$
 [Uniquness]
Let $A = BQ_1 + R_1, \ 0 \leq R_1 < |B|$
Let $A = BQ_2 + R_2, \ 0 \leq R_2 < |B|$
 $-|B| < R_2 - R_1 < |B|, \ |R_2 - R_1| < |B| \cdots (1)$
 $BQ_1 + R_1 = BQ_2 + R_2, \ B(Q_1 - Q_2) = R_2 - R_1 \cdots (2)$
by $(1), (2)$
 $|B(Q_1 - Q_2)| = |R_2 - R_1| < |B|$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \quad s.t. \quad A = BQ + R, \quad 0 \leq R < |B|$$
[Uniquness]
$$Let \ A = BQ_1 + R_1, \quad 0 \leq R_1 < |B|$$

$$Let \ A = BQ_2 + R_2, \quad 0 \leq R_2 < |B|$$

$$-|B| < R_2 - R_1 < |B| , \quad |R_2 - R_1| < |B| \cdots (1)$$

$$BQ_1 + R_1 = BQ_2 + R_2 , \quad B(Q_1 - Q_2) = R_2 - R_1 \cdots (2)$$

$$by \ (1), (2)$$

$$|B(Q_1 - Q_2)| = |R_2 - R_1| < |B|$$

$$|B||Q_1 - Q_2| < |B|$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \quad s.t. \quad A = BQ + R, \quad 0 \leq R < |B|$$
 [Uniquness]

$$Let \ A = BQ_1 + R_1, \quad 0 \leq R_1 < |B|$$

$$Let \ A = BQ_2 + R_2, \quad 0 \leq R_2 < |B|$$

$$-|B| < R_2 - R_1 < |B|, \quad |R_2 - R_1| < |B| \quad \cdots \quad (1)$$

$$BQ_1 + R_1 = BQ_2 + R_2, \quad B(Q_1 - Q_2) = R_2 - R_1 \quad \cdots \quad (2)$$

$$by \ (1), (2)$$

$$|B(Q_1 - Q_2)| = |R_2 - R_1| < |B|$$

$$|B||Q_1 - Q_2| < |B|, \quad |Q_1 - Q_2| < 1$$

$$|Q_1 - Q_2| = 0$$

$$orall A, orall B (
eq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \quad s.t. \quad A = BQ + R, \quad 0 \leq R < |B|$$
 [Uniquness]

 $Let \ A = BQ_1 + R_1, \quad 0 \leq R_1 < |B|$
 $Let \ A = BQ_2 + R_2, \quad 0 \leq R_2 < |B|$
 $-|B| < R_2 - R_1 < |B|, \quad |R_2 - R_1| < |B| \quad \cdots \quad (1)$
 $BQ_1 + R_1 = BQ_2 + R_2, \quad B(Q_1 - Q_2) = R_2 - R_1 \quad \cdots \quad (2)$
 $by \ (1), (2)$
 $|B(Q_1 - Q_2)| = |R_2 - R_1| < |B|$
 $|B||Q_1 - Q_2| < |B|, \quad |Q_1 - Q_2| < 1$
 $|Q_1 - Q_2| = 0 \quad (\because Q_1, Q_2 \in \mathbb{Z})$

→ Start

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \quad s.t. \quad A = BQ + R, \quad 0 \leq R < |B|$$
[Uniquness]
$$Let \ A = BQ_1 + R_1, \quad 0 \leq R_1 < |B|$$

$$Let \ A = BQ_2 + R_2, \quad 0 \leq R_2 < |B|$$

$$-|B| < R_2 - R_1 < |B|, \quad |R_2 - R_1| < |B| \quad \cdots \quad (1)$$

$$BQ_1 + R_1 = BQ_2 + R_2, \quad B(Q_1 - Q_2) = R_2 - R_1 \quad \cdots \quad (2)$$

$$by \ (1), (2)$$

$$|B(Q_1 - Q_2)| = |R_2 - R_1| < |B|$$

$$|B||Q_1 - Q_2| < |B|, \quad |Q_1 - Q_2| < 1$$

$$|Q_1 - Q_2| = 0 \quad (\because Q_1, Q_2 \in \mathbb{Z})$$

$$\therefore Q_1 = Q_2$$

$$\forall A, \forall B (\neq 0) \in \mathbb{Z}, \exists ! Q, \exists ! R \in \mathbb{Z} \quad s.t. \quad A = BQ + R, \quad 0 \leq R < |B|$$
[Uniquness]
$$Let \ A = BQ_1 + R_1, \quad 0 \leq R_1 < |B|$$

$$Let \ A = BQ_2 + R_2, \quad 0 \leq R_2 < |B|$$

$$-|B| < R_2 - R_1 < |B| , \quad |R_2 - R_1| < |B| \cdots (1)$$

$$BQ_1 + R_1 = BQ_2 + R_2 , \quad B(Q_1 - Q_2) = R_2 - R_1 \cdots (2)$$

$$by \ (1), (2)$$

$$|B(Q_1 - Q_2)| = |R_2 - R_1| < |B|$$

$$|B||Q_1 - Q_2| < |B| , \quad |Q_1 - Q_2| < 1$$

$$|Q_1 - Q_2| = 0 \quad (\because Q_1, Q_2 \in \mathbb{Z})$$

$$\therefore Q_1 = Q_2, \quad R_1 = R_2$$

Github:

https://min7014.github.io/math20201204001.html

Click or paste URL into the URL search bar, and you can see a picture moving.