UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: MAT1100 — Kalkulus

Eksamensdag: Fredag 9. oktober 2015

Tid for eksamen: 15.00-17.00

Oppgavesettet er på 5 sider.

Vedlegg: Svarark, formelsamling.

Tillatte hjelpemidler: Ingen.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Eksamen inneholder 20 oppgaver. De første 10 teller 2 poeng hver, de siste 10 teller 3 poeng hver. Det er bare ett riktig alternativ på hver oppgave. Om du svarer galt eller lar være å svare på en oppgave, får du 0 poeng. Du blir altså ikke "straffet" for å gjette. Før svarene dine inn på svararket. Krysser du av mer enn ett alternativ på en oppgave, får du 0 poeng.

Oppgave 1. (2 poeng) Hvilket av disse utsagnene er sant:

- A) Alle komplekse tall har realdel ulik 0
- B) Ingen komplekse tall har et irrasjonalt tall som realdel
- C) Ingen komplekse tall har et rasjonalt tall som imaginærdel
- D) Alle reelle tall er også komplekse tall
- E) Alle komplekse tall er også reelle tall

Oppgave 2. (2 poeng) Det komplekse tallet $z = -1 + i\sqrt{3}$ kan skrives:

- A) $z = \sqrt{3} i$
- B) $z = 2e^{i(\pi/3)}$
- C) $z = 2e^{i(2\pi/3)}$
- D) $z = 2e^{i(4\pi/3)}$
- E) $z = 2e^{i\sqrt{3}}$

Oppgave 3. (2 poeng) Det komplekse tallet $z=2e^{i(5\pi/6)}$ kan skrives:

- A) $z = -\sqrt{3} + i$
- B) z = -1 + i
- $C) z = -\sqrt{3} i$
- D) $z = \sqrt{2} i\sqrt{2}$
- E) z = -i

Oppgave 4. (2 poeng) Ligningen $z^2 - 2z + (1 - 2i) = 0$ har løsninger:

A)
$$z_1 = 1 - i \text{ og } z_2 = -i$$

B)
$$z_1 = 2 + i \text{ og } z_2 = -i$$

C)
$$z_1 = 2 - i \text{ og } z_2 = -i$$

D)
$$z = 1 - i$$
 (kun en løsning)

E)
$$z = 1 + i$$
 (kun en løsning)

Oppgave 5. (2 poeng) La $\{a_n\}_{n=1}^{\infty}$ være en følge av reelle tall. Hvilket av følgende utsagn er sant:

- A) Hvis følgen er voksende og nedad begrenset, så konvergerer den
- B) Hvis følgen er voksende og oppad begrenset, så konvergerer den
- C) Hvis følgen konvergerer og er nedad begrenset, så er den voksende
- D) Hvis følgen konvergerer, så er $\lim_{n\to\infty}a_n=0$
- E) Hvis følgen konvergerer, så er den voksende og oppad begrenset

Oppgave 6. (2 poeng) $\lim_{x\to\infty} \frac{\ln(4x^2+1)}{\ln(x+1)}$ er lik:

- A) -2
- B) -1
- C) 0
- D) 1
- E) 2

Oppgave 7. (2 poeng) $\lim_{x\to 0} \frac{(\sin x)^2}{5x+x^2}$ er lik:

- A) -2
- B) -1
- C) 0
- D) 1
- E) 2

Oppgave 8. (2 poeng) La P(z) være et polynom med reelle tall som koeffisienter. Hvilket av følgende utsagn er sant:

- A) Alle røttene til P(z) er reelle tall
- B) Polynomet P(z) har minst en reell rot
- C) Polynomet P(z) har minst to ulike komplekse røtter
- D) Hvis et komplekst tall z er en rot til P(z), så er også det konjugerte tallet \overline{z} en rot til P(z)
- E) Hvis et komplekst tall z er en rot til P(z), så må imaginærdelen til z være ulik 0

Oppgave 9. (2 poeng) La $\{a_n\}_{n=1}^{\infty}$ være en følge av reelle tall der vi har $a_{n+1} = \sqrt[3]{(a_n^3+1)/2}$ for alle $n \ge 1$. Hvilket av følgende utsagn er sant:

- A) Hvis følgen konvergerer, så konvergerer den mot 0
- B) Hvis følgen konvergerer, så konvergerer den mot 1
- C) Hvis følgen konvergerer, så konvergerer den mot 2
- D) Hvis følgen konvergerer, så konvergerer den mot 3
- E) Følgen divergerer uansett hvilken verdi a_1 har

Oppgave 10. (2 poeng) La $\{a_n\}_{n=1}^{\infty}$ være gitt ved $a_n = e^{-n}(\cos n + (-2)^n)$ for $n \geq 1$. Hvilket av følgende utsagn er sant:

- A) Følgen konvergerer mot 1
- B) Følgen konvergerer mot 0
- C) Følgen konvergerer mot $e/2 + \cos 1$
- D) Følgen konvergerer mot -2/e
- E) Følgen divergerer

Oppgave 11. (3 poeng) Hvilket av følgende utsagn er sant:

- A) Alle komplekse tall $z \neq 0$ har minst en reell kvadratrot
- B) Alle komplekse tall har minst 4 ulike kvadratrøtter
- C) Alle komplekse tall er kvadratroten til et reelt tall
- D) Alle komplekse tall $z \neq 0$ har nøyaktig 5 ulike komplekse femterøtter
- E) Det finnes komplekse tall $z \neq 0$ som ikke har noen kvadratrot

Oppgave 12. (3 poeng) Den deriverte til $f(x) = \sin(\sin x) + e^x \ln(2x+1)$ er:

- A) $\cos(\sin x) + e^x \ln(2x+1) + \frac{e^x}{2x+1}$ B) $\cos(\sin x) \cos x + e^x \ln(2x+1) + \frac{2e^x}{2x+1}$ C) $\cos(\sin x) \sin x + e^x \ln(2x+1) + \frac{2e^x}{2x+1}$
- D) $\sin(\sin x)\cos x + e^x \ln(2x+1) + \ln(2x+1)\frac{e^x}{2x+1}$ E) $\cos(\sin x)\cos x + e^x \ln(2x+1) + \frac{e}{2x+1}$

Oppgave 13. (3 poeng) Funksjonen $f(x) = \frac{x^2}{x-1}$ har følgende asymptoter:

- A) Horisontal asymptote y = 1
- B) Vertikal asymptote x = 1, skråasymptote y = x
- C) Vertikal asymptote x = 1, skråasymptote y = x + 1
- D) Vertikal asymptote y = 1, skråasymptote y = 2x
- E) Funksjonen har ingen asymptoter

Oppgave 14. (3 poeng) $\lim_{x\to 0} (1-x)^{1/x}$ er lik:

- A) -2
- B) -1
- C) 0
- D) e^{-1}
- E) 2

(Fortsettes på side 4.)

Oppgave 15. (3 poeng) Funksjonen $f(x) = xe^x$ er:

- A) Strengt konkav på $[0, \infty)$
- B) Strengt konkav på (-6,1)
- C) Strengt konkav på (-3,0)
- D) Strengt konveks på $(-2, \infty)$
- E) Strengt konveks på (-6,0)

Oppgave 16. (3 poeng) La a, b og c være reelle tall. Den deriverte av funksjonen $f(x) = \ln(a + \ln(b + \ln(c + x)))$ er lik:

A)
$$\frac{b+\ln(c+x)}{a+\ln(b+\ln(c+x))} \cdot \frac{1}{c+x}$$

A)
$$\frac{b+\ln(c+x)}{a+\ln(b+\ln(c+x))} \cdot \frac{1}{c+x}$$
B)
$$\frac{1}{a+\ln(b+\ln(c+x))} \cdot \frac{1}{b+\ln(c+x)}$$

C)
$$\frac{1}{a+\ln(b+\ln(c+x))} \cdot \frac{1}{c+x}$$

D)
$$\frac{1}{a+\ln(b+\ln(c+x))}$$

E)
$$\frac{1}{a+\ln(b+\ln(c+x))} \cdot \frac{1}{b+\ln(c+x)} \cdot \frac{1}{c+x}$$

Oppgave 17. (3 poeng) Hvis f er kontinuerlig på intervallet [a, b] og deriverbar på (a, b), så kan vi konkludere med at det finnes et tall $c \in (a, b)$ slik at:

$$A) f(b) - f(a) = f'(c)$$

B)
$$f(b) - f(a) = f'(c) \cdot (a - b)$$

C)
$$f(b) = f(a) + f'(c) \cdot (b - a)$$

D)
$$f'(c) = (f(b) - f(a)) \cdot (b - a)$$

D)
$$f'(c) = (f(b) - f(a)) \cdot (b - a)$$

E) $f(c) = (f(b) - f(a)) \cdot (b - a)$

Oppgave 18. (3 poeng) En skråasymptote til $f(x) = xe^{7/x}$ er:

A)
$$y = x + 7$$

B)
$$y = 7x - 1$$

C)
$$y = 7x + 7$$

D)
$$y = x - 7$$

E)
$$y = x + 1$$

Oppgave 19. (3 poeng) Hvilket komplekst tall er en tredjerot til tallet $z = 8e^{i(3\pi/2)}$:

A)
$$z = 2e^{i(7\pi/6)}$$

B)
$$z = 2e^{i(\pi/6)}$$

C)
$$z = (8/3)e^{i(\pi/2)}$$

D)
$$z = e^{i(\pi/6)}$$

E)
$$z = e^{i(11\pi/6)}$$

Oppgave 20. (3 poeng) Hvis funksjonen f ikke er kontinuerlig i punktet a, så gjelder:

A) Det fins $\epsilon > 0$ slik at for alle $\delta > 0$ fins det et tall x som oppfyller

$$|x - a| < \delta \text{ og } |f(x) - f(a)| \ge \epsilon$$

- B) Det fins $\epsilon>0$ og $\delta>0$ slik at for alle tall x gjelder at $|x-a|<\delta$ medfører $|f(x)-f(a)|\geq\epsilon$
- C) For alle $\epsilon > 0$ og $\delta > 0$ fins det et tall x med $|x a| < \delta$ og $|f(x) f(a)| > \epsilon$
- D) For alle $\epsilon > 0$ fins $\delta > 0$ slik at

$$|x - a| < \delta \text{ medfører } |f(x) - f(a)| > \epsilon$$

E) Det fins $\epsilon > 0$ slik at for alle $\delta > 0$ fins det et tall x som oppfyller

$$|x - a| < \delta \text{ og } |f(x) - f(a)| < \epsilon$$

Slutt