Homework (15)

- 1. Give examples, which are different from the ones in the lecture note and the classroom, to show that $C_{fd}(\mathbf{x}_0) \neq C_t(\mathbf{x}_0) \neq C_l(\mathbf{x}_0)$. 2.
 - a) Solve the optimization problem

$$\min_{\mathbf{x}} f(x_1, x_2) := 2x_1 + 3x_2, \quad s.t. \quad \sqrt{x_1} + \sqrt{x_2} = 5,$$

using Lagrange multipliers.

- b) Visualize the contour lines of f as well as the set of feasible points, and mark the optimal solution \mathbf{x}^* .
- c) Find all its KKT points. Do they all correspond to local minima?

Homework (15)

3. With $f(\mathbf{x}) := x_1^2 + x_2^2$ for $\mathbf{x} \in \mathbb{R}^2$ consider

$$(P) \begin{cases} \min_{\mathbf{x}} f(\mathbf{x}) \\ -x_2 \le 0 \\ x_1^3 - x_2 \le 0 \\ x_1^3 (x_2 - x_1^3) \le 0 \end{cases}.$$

- a) Determine the linearizing cone, the tangent cone and the feasible direction cones at the (strict global) minimal point $\mathbf{x}_0 := (0,0)^T$.
- b) Find all its KKT points. Do they all correspond to local minima?

Homework (15)

- 4. Determine a triangle with minimal area containing two disjoint disks with radius 1. Without loss of generalization, let (0,0), $(x_1,0)$ and (x_2,x_3) with $x_1,x_3 \geq 0$ be the vertices of the triangle; (x_4,x_5) and (x_6,x_7) denote the centers of the disks.
 - a) Formulate this problem as a minimization problem in terms of seven variables and nine constraints.
 - b) $\mathbf{x}^* = (4 + 2\sqrt{2}, 2 + \sqrt{2}, 2 + \sqrt{2}, 1 + \sqrt{2}, 1, 3 + \sqrt{2}, 1)^T$ is a solution of this problem; calculate the corresponding Lagrange multipliers $\boldsymbol{\lambda}^*$, such that the KKT conditions are fulfilled.

