

✓ Congratulations! You passed!

Next Item

1/1 point

1.

Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x) = 0.4$. This means (check all that apply):

1/1 point

2.

Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$.

x_1	x_2	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

0/1 point

3.

For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

1/1 point

4.

 $\underbrace{ \text{Which of the following statements are true? Check all that apply.} }_{\text{Quiz, 5 questions}} \underbrace{ \text{Logistic Regression} }_{\text{Quiz, 5 questions}}$

1/1 point

Suppose you train a logistic classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$. Suppose $\theta_0=6, \theta_1=0, \theta_2=-1$. Which of the following figures represents the decision boundary found by your classifier?

