

Budapest University of Technology and Economics Department of Electron Devices

Technology of IT Devices

Lecture 9

ASIC circuits

ASIC circuits

- Classification of integrated circuits
- ASIC categories
 - Standard cell ASIC
 - Gate array
 - PLDs
 - CPLD
 - FPGA

Classification of integrated circuits

- Catalog circuits
- Commercial off-the-shelf integrated circuits (COTS)
 - Wide range of applications (e.g. 555)
 - The designer of the IC and the engineer who uses it in a system do not cooperate
 - The IC designer helps users by writing data sheets and application notes.
 - These circuits are fabricated in large volumes thus their price can be relatively low.
 - The 555 timer IC is still in widespread use
 - Introduced in 1971 by American company Signetics, 1 billion units are manufactured every year
- Systems made of catalog (integrated) circuits
 - Not an optimal solution (delay, power consumption)
 - Large-scale, easily reproducible

ASIC / SoC

- Application specific integrated circuit
 - Designed for one specific application.
 - The user designs it
 - The performance is better / simpler than with COTS circuits
 - Sometimes the reason for designing an ASIC is to make copying harder
 - The volumes of the production might differ substantially depending on the application
- The number of devices manufactured can differ from 1 to millions
- When the number needed is small, it is vital to minimalize the unique design and fabrication steps to minimize costs
- In IC design
 - Some components are prefabricated,
 - Some components are predesigned

in order to save design and fabrication costs.

System on a chip (SoC)

- A whole system on a chip
 - Digital circuits (processors, graphic accelerators, memory etc.)
 - Analog (and RF) parts.
 - Power supply etc.
- Advantages of the integration:
 - Lower delay, higher operating frequency, lower power consumption
 - Smaller physical size.
 - Cheaper (lower assembly costs)
- Drawbacks
 - The process yield of a complicated integrated circuit can be low
 - Sometimes the power supply voltages of integrated chips are different
 - E.g.: a digital circuit with memory: 1.2V core voltage, 0.3V threshold voltage, 2.5V supply voltage of DRAM, 0.7V threshold voltage, USB with 5V power supply...
 - A widely used solution
 - Package on package: EEPROM/DRAM chips are assembled onto SoC devices.

ASIC categories

- Custom ASIC (full custom)
 - Every mask of a custom ASIC needs to be designed and manufactured
 - Great expertise and expensive tools are needed
 - The price of a mask is \$10,000-\$100,000 at 14 nm
 - This is only worth doing when large volumes are needed

Semi-custom ASICs

- Partially or entirely prefabricated,
- If they are prefabricated
 - The mask of the metal wiring is designed by the user,
 - Customization is done entirely by software means
- If they are predesigned
 - The circuit is structured, most masks are predesigned and tested.

ASIC categories

- Predesigned

Standard cells ASIC

- The masks are predesigned these are the cells.
- The application specific circuit is designed by instantiating and connecting standard cells.
- The heights of the cells are identical, the widths depend on the complexity of the function realized by the cell.
- The positions of the connections to the ground and supply voltage, and that of the inputs and outputs are fixed.
- The cell library is developed by the semiconductor company

Standard cell ASICs

- The custom function is realized by the unique placement and connection of standard cells
 - This task can be automated entirely.
 - Memory can be realized using generated megacell blocks
 - Cells are placed in rows, wires run between the cell rows.
 - Every mask needs to be manufactured which is expensive
 - When prototypes are created, multiple projects are gathered on the same chip to share costs – these are called multi project wafers – MPW.)

Standard cell ASIC

- The design is performed as if it was done by the manufacturer.
- The manufacturer provides the customer with:
 - 1. A limited view of the physical design including the positioning of the I/Os.
 - 2. Timing and power-consumption characteristics for post-layout simulations.
 - 3. Physical and electrical design rules for placement and routing.
 - 4. Parasitic extraction rules for LVS.
 - 5. Functional models for logic simulation.
- The design is done with this data set as shown in Lecture 6.
 - Mainly with pre-designed hard/soft IPs.
 - E.g. Apple's A9 processor
- In the case of standard cell design
 - Every mask must be manufactured, so there is no cost saving here.
 - The cells are pre-designed, tested, and characterized.

Gate array

Gate array

- Everything is ready made except for the wiring.
 - "Sea of gates": n and p type transistors are fabricated in a certain pattern.
- Circuits are realized by designing the multi-level connections:
 - Transistors are connected to form logic gates
 - Complex circuits are built of gates
 - Logic gates are created automatically most of the design process steps are automated.
 - The internal connections in logic gates are pre-designed.
 - The design process is automated

Gate array

A cheaper solution

- The number of the required masks is lower
- This technology is cheap
- Only four masks are needed (for an IC with 2 metal layers).
 - 1) Contacts between the components and metal 1 layer
 - 2) Metal 1 layer (wiring)
 - 3) Vias between metal 1 and metal 2
 - 4) Metal 2 layer
- Gate array master slices are usually prefabricated and stockpiled in large quantities regardless of customer orders

Compromise

- The entire chip area is never fully utilized
- The gates are not optimal
- The wiring is not optimal, the propagation delay is higher than in the case of standard cells

Example

- In the gate array above a basic cell contains two n-type and two ptype transistors.
- A 2×7 part can be seen in the picture.

Programmable logic devices

- Programmable logic devices are entirely prefabricated
 - Both the logic components and the connections are programmable
- Electrically configurable
 - Programming is made possible by the same techniques as in memory circuits.
 - Volatile
 - The configuration is done by a static RAM
 - The configuration bits are loaded from an EEPROM at startup. The EEPROM is sometimes placed on the board with the device.
 - It can be reconfigured during operation.
 - Non-volatile
 - Mask programmed ROM
 - Flash EEPROM transistor
 - Antifuse (PLICE or ViaLink)

Comparison of programming methods

	SRAM	FLASH	Anti-fuse
Vulnerable	Yes	Not	Not
Can be reprogrammed	∞	limited	Not
Occupied area	6-transistor	1-transistor	1 contact
Technology	Standard CMOS	Spec. flash	Spec. ViaLink
ISP	Yes	Yes	not
Switching resistance(Ω)	500-1000	500-1000	20-100
Switching capacitance (fF)	1-2	1-2	<1
Reverse engineering	possible	hard	hard

 The lowest propagation delay can be achieved with Antifuse technology (sacrificing the possibility of reconfiguration)

PLA/PAL

- Programmable logic array (PLA)
 - Programming was performed using fuses
 - PLAs were used to realize logic functions as they have a programmable AND and an OR field connected.
 - One PLA could substitute several TTL gates.
 - PALs (Programmable Array Logic) contained registers as well.
 - First HDLs were created to program these devices (e.g. ABEL)

CPLD – Complex Programmable Logic Device

- Descendant of PLA/PAL
- Usually glue logics are realized with them (e.g. interface to a data bus).
 - This is often achieved using ordinary (cheap) 7400- or 4000-series components...
- They contain macrocells
 - Every macrocell contains.:
 - a programmable AND matrix for logic functions
 - a programmable flip-flop (J-K or D type),
 - a macrocell can usually drive output pins as well.
 - They can be programmed using EEPROMs.

Example: ATMEL CPLD macrocell

Field Programmable Gate Array

- General purpose, reconfigurable device
- Logic blocks can be configured to perform complex combinational functions, or simple logic gates like AND and XOR.
- Resources:
 - Configurable logic blocks
 - (Basic Logic Element, BLE it has a lot of different names)
 - Configurable I/O blocks
 - Special blocks at periphery for external connections
 - Configurable connection resources
 - They connect logic blocks and I/O blocks
 - Configuration memory
 - Stores the states of aforementioned resources
 - Generally SRAM, but it can be EEPROM, FLASH, Anti-fuse etc...
 - Special purpose resources

Architecture

- I (interconnect block): realize the interconnections of wiring channels
- C (connection blocks): they connect the logic blocks to the routing network.

- Wiring: the size of occupied area can be seen in the picture above
- The routing fabric occupies 80-90% of chip area

Programmable Interconnects

- Not all the connections are realized.
 - It would be too complicated and unnecessary
 - Disjoin-type matrix— change direction or go straight on
 - Wilton-type matrix change direction or switches to another channel

Realizations of switching matrixes - Example

Basic Logic Element (BLE)

- Granularity
 - Describes the complexity of the basic logic element (thus the number of them)
- Modern FPGA fine granularity
 - Simple function, but lots of BLEs.
 - A simplified BLE:

FPGA – configurable logic block– simplified

- Basic logic and storing functionality
- BLEs consist of a Look Up Table (LUT) implementing an arbitrary logic function, carry logic and a flip-flop.
 - Any 4-input, 1-output logic function can be realized.
- The carry logic increases the design efficiency of an adder.
 - Adding is a common function
- Configurable flip-flop/register storing the output of the LUT or the carry logic.

Realizing LUT

- The LUT mask is stored by the configuration memory.
- The output logic value is selected by 4 inputs (A, B, C, and D)
- The multiplexers can be realized using transmission gates

Example: Altera Cyclone V.

- The smallest logic element is the ALM
 - Adaptive Logic Module
- A logic block contains 10 ALMs
 - Logic Array Block (LAB) = 10 ALM + 1 control block
- MLAB The LUTs may be used as dual-port SRAMs.
- 32 x 20-bit memory modules may be formed.
 - A single ALM may be used as a 32x2-bit dual-port SRAM.

FPGA – Example

- 4 registers, synchronous and asynchronous clear, synchronous load
- 2 x 6 inputs LUT (the 6th is the register feedback)
- 2 full adders

Special purpose resources

- Every logic function can be realized using general purpose resources
 - But depending on the required function, the efficiency may be poor.
- In modern FPGAs there are other special resources
- Block RAM
 - It contains a large amount of static RAM (on the order of a Mbit)
 - Single or dual port RAM, the capacitance and the worldlength can be easily configured on a wide range

FPGA – Special purpose resources

DSP slice

- Implementing the multiplication operation is difficult using only simple logic elements
- Generally, FPGAs contain multiplier circuits
- Usually they are multiplier + accumulator circuits (A+=BC)
- Shifter circuits (by more bits)
- SoPC System on a Programmable Chip
 - One or more microprocessor cores, hard IP
 - Some additional logic for microprocessor-based systems
 - E.g. DRAM controller
 - External, high-speed communication
 - Gigabit Ethernet, PCI Express etc.
 - Generally, these functions are hard IPs.

Structured ASIC

- Incorporates the properties of FPGAs and standard cell ICs.
 - Not really widespread
- Similar to a modern FPGA, there are hard IP blocks, mask programmed logic blocks, and interconnections.
 - No configuration RAM
 - No configurable interconnections
 - Due to the lack of switching transistors, the connections are much faster than in FPGAs.
- Structured ASIC services are provided by the biggest FPGA companies
 - They produce ASIC ICs based on FPGA designs
 - Altera HardCopy
 - Xilinx EasyPath

Comparisons

	Std. Cell	FPGA	Structured ASIC
Maximum clock frequency (%)	100	15	75
Power (%)	100	1200!	300
Gates per area unit (%)	100	1	33

Table 7.1 The FPGA:ASIC gap from [120].

Metric	Soft logic	Soft logic &	Soft logic &	Soft logic, DSP &
	only	DSP	memory	memory
Area	35	25	33	18
Delay	3.4	3.5	3.5	3.0
Dynamic power	14	12	14	7.1

- True only for the same technology
- In the case of FPGAs modern technologies is available
- In the case of ASICs, the modern technology is too expensive

Hardware acceleration

- FPGA
 - Parallel resources, pipelined
 - Reconfigurable.
- OpenCL support
 - Instead of CPU or GPU core FPGA can be used.

