RÉACTIONS DE COMPLEXATION

Exercices

1 Titrage des ions calcium par l'EDTA

1.1 Principe du titrage

On titre un volume V_1 de solution d'ions calcium Ca^{2+} , de concentration c_1 , par une solution d'ion éthylènediaminetétracétate Y^{4-} à une concentration c_2 . La constante globale de formation du complexe $[\operatorname{Ca} Y]^{2-}$ est $\beta = 10^{10,8}$. On néglige tout phénomène acido-basique.

1. On verse un volume V de Y^{4-} . Quelle est la réaction de titrage?

Solution: La réaction de titrage est la réaction prépondérante quantitative qui a lieu lorsqu'on a versé le titrant :

$$Ca^{2+} + Y^{4-} = [CaY]^{2-}$$

2. À l'équivalence, la quantité de matière de Y^{4-} versée est égale à la quantité de matière de Ca^{2+} présente dans le bécher. Exprimer c_1 en fonction de c_2 , V_1 et V_2 , volume de Y^{4-} versé pour atteindre l'équivalence (il est appelé volume équivalent).

Solution: La concentration c_1 s'exprime :

$$c_1 = c_2 \frac{V_2}{V_1}$$

3. Exprimer la constante d'équilibre de la réaction de titrage.

Solution: La constante d'équilibre de la réaction de titrage est la constante globale de formation du complexe :

$$\beta = \frac{[[\text{Ca}Y]^{2-}]}{[\text{Ca}^{2+}][Y^{4-}]}$$

4. On définit $pY = -log([Y^{4-}])$, en déduire l'expression de pY.

Solution: L'expression de pY se déduit de la constante de formation du complexe :

$$pY = pK_d + log\left(\frac{[\operatorname{Ca}^{2+}]}{[[\operatorname{Ca} Y]^{2-}]}\right)$$

5. On considère un volume $V < V_2$ de solution titrante versée. Exprimer les concentrations $[Ca^{2+}]$ et $[[CaY]^{2-}]$ en fonction de c_1 , V_1 , c_2 , V_2 et V. En déduire l'expression de pY.

Solution: Les expressions des concentrations sont :

$$[Ca^{2+}] = \frac{c_1V_1 - c_2V}{V_1 + V} = \frac{c_2(V_2 - V)}{V_1 + V}$$
$$[CaY]^{2-}] = \frac{c_2V}{V_1 + V}$$

On en déduit :

$$pY = pK_d + log\left(\frac{V_2 - V}{V}\right)$$

6. On considère un volume $V > V_2$ de solution titrante versée. Exprimer la concentration $[Y^{4-}]$ et $[[CaY]^{2-}]$ en fonction de V_1 , c_2 , V_2 et V. En déduire l'expression de P.

Solution: Lorsque $V > V_2$, l'ion Y^{4-} est versé en excès, donc

$$[Y^{4-}] = \frac{c_2(V - V_2)}{V_1 + V}$$

On a donc:

$$pY = -log\left(\frac{c_2(V - V_2)}{V_1 + V}\right)$$

7. À l'équivalence $(V = V_2)$, quelle est la concentration en Y^{4-} en solution? En déduire pY à l'équivalence.

Solution: À l'équivalence, seul le complexe $[CaY]^{2-}$ est présent en solution d'après la méthode de la réaction prépondérante. Pour trouver la quantité résiduelle d'ion Y^{4-} , il faut donc considérer la dissociation du complexe comme équilibre de contrôle :

On écrit la constante d'équilibre en fonction de l'avancement volumique \boldsymbol{x} :

$$K_d = \frac{1}{\beta} = \frac{x^2}{\frac{c_2 V_2}{V_1 + V_2} - x} = 10^{-10.8}$$

En faisant l'hypothèse raisonnable que le complexe est faiblement dissocié, on obtient :

$$pY = -log(x) = \frac{1}{2} \left(pK_d - log\left(\frac{c_2V_2}{V_1 + V_2}\right) \right)$$

1.2 Existence d'une zone de pH optimale pour le titrage

Tenons compte à présent des propriétés acido-basiques de l'ion éthylène diaminetétracétate et du cation calcium. On donne les couples acido-basiques et leur pK_A :

- H_4Y/H_3Y^- : $pK_{A1} = 2,0$
- $H_3Y /H_2Y^{2-} : pK_{A2} = 2,7$
- $H_2 Y^{2-} / H Y^{3-} : pK_{A3} = 6, 2$
- HY^{3-}/Y^{4-} : $pK_{A4} = 10, 2$
- De plus, l'ion calcium peut former avec l'ion hydroxyde HO^- un complexe $[CaOH]^+$, avec une constante de formation $\beta' = 10^{1,3}$.
- 1. Donner le p K_{A5} du couple acido-basique $\operatorname{Ca}^{2+}/[\operatorname{CaOH}]^+$

Solution: La réaction de l'ion Ca²⁺ sur l'eau est :

$$Ca^{2+} + 2H_2O = [CaOH]^+ + H_3O^+$$
 K_{AF}

Elle est la somme de deux équations de réactions : la réaction de formation du complexe, et l'autoprotolyse de l'eau.

$$\begin{aligned} \text{Ca}^{2+} + \text{HO}^- &= & [\text{CaOH}]^+ \\ 2\text{H}_2\text{O} &= & \text{HO}^- + \text{H}_3\text{O}^+ \end{aligned} \qquad \beta' = 10^{1,3} \\ K_e &= 10^{-14} \end{aligned}$$

On a donc:

$$K_{45} = \beta' K_e = 10^{1,3-14} = 10^{-12,7}$$

2. Dessiner un diagramme de prédominance en fonction du pH pour les ions Ca^{2+} et Y^{4-} .

Solution: Diagramme de prédominance :

3. Donner l'équation de titrage à pH = 10. Calculer sa constante d'équilibre. Est-ce une réaction totale? Peut-on réaliser le titrage?

Solution: Dans ce domaine de pH, il convient d'utiliser la forme majoritaire HY^{3-} et il faut éviter d'utiliser H_3O^+ dans l'équation. Pour éliminer les ions H_3O^+ , on utilise l'autoprotolyse de l'eau (dans un sens ou dans l'autre). On obtient l'équation de réaction de titrage :

$$Ca^{2+} + HY^{3-} = [CaY]^{2-} + H_2O$$
 K^0

Elle est somme de trois réactions :

$$\begin{array}{ccc} {\rm Ca^{2^+} + Y^{4^-} = [CaY]^{2^-}} & \beta = 10^{10,8} \\ {\rm HY^{3^-} + H_2O = Y^{4^-} + H_3O^+} & K_{A4} = 10^{-10,2} \\ {\rm H_3O^+ + HO^- = 2H_2O} & \frac{1}{K_e} = 10^{14} \end{array}$$

On a donc:

$$K^0 = \frac{\beta K_{A4}}{Ke} = 10^{10,8-10,2+14} = 10^{14,6}$$

La réaction est totale, on peut réaliser le titrage!

4. Donner l'équation de titrage à pH = 1. Calculer sa constante d'équilibre. Est-ce une réaction totale? Peut-on réaliser le titrage?

Solution: La réaction de titrage s'écrit, à pH = 1:

$$Ca^{2+} + H_4Y + 4H_2O = [CaY]^{2-} + 4H_3O^+$$
 K^0

C'est la somme des équations suivantes :

$$\begin{array}{c} {\rm Ca^{2^+} + Y^{4^-} \!=\! \! [CaY]^{2^-}} \\ {\rm H}Y^{3^-} + {\rm H}_2{\rm O} \!=\! Y^{4^-} + {\rm H}_3{\rm O}^+} \\ {\rm H}_2Y^{2^-} + {\rm H}_2{\rm O} \!=\! {\rm H}Y^{3^-} + {\rm H}_3{\rm O}^+} \\ {\rm H}_3Y^- + {\rm H}_2{\rm O} \!=\! {\rm H}_2Y^{2^-} + {\rm H}_3{\rm O}^+} \\ {\rm H}_4Y + {\rm H}_2{\rm O} \!=\! {\rm H}_3Y^- + {\rm H}_3{\rm O}^+} \end{array} \qquad \begin{array}{c} \beta = 10^{10,8} \\ K_{A4} = 10^{-10,2} \\ K_{A3} = 10^{-6,2} \\ K_{A2} = 10^{-2,7} \\ K_{A1} = 10^{-2} \end{array}$$

La constante d'équilibre de la réaction de titrage est donc :

$$K^0 = \beta K_{A4} K_{A3} K_{A2} K_{A1} = 10^{10.8 - 10.2 - 6.2 - 2.7 - 2} = 10^{-10.3}$$

La réaction n'est pas du tout quantitative, on ne peut pas réaliser le titrage.

5. Exprimer les concentrations totales en métal c_{Ca}^{tot} et en ligand c_Y^{tot} en fonction des concentrations des différentes espèces. On négligera l'espèce $[\text{CaOH}]^+$ qui n'apparaît que très minoritairement dans le domaine de pH étudié et qui ne gène en rien le titrage $(\beta >> \beta')$.

Solution: On utilise la conservation de la matière :

$$c_{\text{Ca}}^{tot} = [\text{Ca}^{2+}] + [[\text{Ca}Y]^{2-}]$$

$$c_Y^{tot} = [Y^{4-}] + [\mathbf{H}Y^{3-}] + [\mathbf{H}_2Y^{2-}] + [\mathbf{H}_3Y^{-}] + [\mathbf{H}_4Y] + [[\mathbf{Ca}Y]^{2-}]$$

6. Écrire les quatre constantes d'acidité relative au tétracide H_4Y . On posera $h=[H_3O^+]$.

Solution: Les expressions de quatres constantes sont :

$$K_{A1} = \frac{h[[\mathcal{H}_{3}Y]^{-}]}{[[\mathcal{H}_{4}Y]]} \; ; \; K_{A2} = \frac{h[[\mathcal{H}_{2}Y]^{2-}]}{[[\mathcal{H}_{3}Y]^{-}]} \; ; \; K_{A3} = \frac{h[[\mathcal{H}Y]^{3-}]}{[[\mathcal{H}_{2}Y]^{2-}]} \; ; \; K_{A4} = \frac{h[Y^{4-}]}{[[\mathcal{H}Y]^{3-}]}$$

7. Exprimer chacune des concentrations des espèces EDTA (Y) en fonction de h, $[Y^{4-}]$ et des constantes d'acidité.

Solution:

$$[[HY]^3 -] = \frac{h}{K_{A4}}[Y^{4-}] \qquad [[H_2Y]^{2-}] = \frac{h^2}{K_{A3}K_{A4}}[Y^{4-}]$$

$$[[H_3Y]^-] = \frac{h^3}{K_{A2}K_{A3}K_{A4}}[Y^{4-}] \qquad [[H_4Y]] = \frac{h^4}{K_{A1}K_{A2}K_{A3}K_{A4}}[Y^{4-}]$$

8. À l'équivalence, établir une expression liant $[Ca^{2+}]$ et $[Y^{4-}]$.

Solution: À l'équivalence, par définition, on a $c_{\text{Ca}}^{tot} = c_Y^{tot}$. Il vient donc :

$$[\mathrm{Ca}^{2+}] + [[\mathrm{Ca}Y]^{2-}] = [Y^{4-}] + [\mathrm{H}Y^{3-}] + [\mathrm{H}_2Y^{2-}] + [\mathrm{H}_3Y^{-}] + [\mathrm{H}_4Y] + [[\mathrm{Ca}Y]^{2-}]$$

On peut exprimer toutes les concentrations en fonction de h et $[Y^{4-}]$:

$$[\mathrm{Ca}^{2+}] + [[\mathrm{Ca}Y]^{2-}] = [Y^{4-}] \left(1 + \frac{h}{K_{A4}} + \frac{h^2}{K_{A3}K_{A4}} + \frac{h^3}{K_{A2}K_{A3}K_{A4}} + \frac{h^4}{K_{A1}K_{A2}K_{A3}K_{A4}} \right) + [[\mathrm{Ca}Y]^{2-}]$$

Par identification, on a donc:

$$[Ca^{2+}] = [Y^{4-}] \left(1 + \frac{h}{K_{A4}} + \frac{h^2}{K_{A3}K_{A4}} + \frac{h^3}{K_{A2}K_{A3}K_{A4}} + \frac{h^4}{K_{A1}K_{A2}K_{A3}K_{A4}} \right)$$

9. On définit α comme le coefficient de complexation de l'ion calcium. Ainsi : $[Ca^{2+}] = c_{Ca}^{tot}(1-\alpha)$; et $[[CaY]^{2-}] = \alpha c_{Ca}^{tot}$. Montrer que :

$$\Omega = \frac{(1 - \alpha)^2}{\alpha} = \frac{f(h)}{\beta c_{\text{Ca}}^{tot}}$$

où f(h) est une fonction ne dépendant que de h.

Solution: On pose:

$$f(h) = 1 + \frac{h}{K_{A4}} + \frac{h^2}{K_{A3}K_{A4}} + \frac{h^3}{K_{A2}K_{A3}K_{A4}} + \frac{h^4}{K_{A1}K_{A2}K_{A3}K_{A4}}$$

On a donc:

$$c_{\mathrm{Ca}}^{tot}(1-\alpha) = [Y^{4-}]f(h)$$

En injectant ces relations dans l'expression de la constante globale de formation β , on a :

$$\beta = \frac{[[\text{Ca}Y]^{2-}]}{[\text{Ca}^{2+}][Y^{4-}]} = \frac{\alpha}{c_{\text{Ca}}^{tot}(1-\alpha)^2 f(h)}$$

D'où

$$\Omega = \frac{(1 - \alpha)^2}{\alpha} = \frac{f(h)}{\beta c_{\text{Ca}}^{tot}}$$

10. Que traduit une augmentation de Ω pour le complexe calcique?

Solution: Un augmentation de Ω traduit une diminution du coefficient de complexation α ($0 < \alpha < 1$): on forme de moins complexe. En effet, lorsque α tend vers 0, Ω tend vers $+\infty$; lorsque α tend vers 1, Ω tend vers 0.

11. Exprimer $p\Omega = -log(\Omega)$.

Solution: En passant au logarythme on obtient:

$$p\Omega = log(\beta) + log(c_{Ca}^{tot}) - log(f(h))$$

12. En ne considérant que la forme majoritaire présente en solution, déterminer les expressions de f(h) et en déduire l'expression de p Ω en fonction du pH dans les différents domaines de pH à considérer. On considérera $c_{\text{Ca}}^{tot} = 0,1 \text{ mol} \cdot \text{L}^{-1}$.

Solution: On a l'expression suivante :

$$p\Omega = 9.8 - log(f(h))$$

- Pour pH > 10, 2, l'espèce Y^{4-} est majoritaire : f(h) = 1, donc $p\Omega = 9, 8$.
- Pour $10,2 \ge \mathrm{pH} \ge 6,2$, l'espèce $\mathrm{H}Y^{3-}$ est majoritaire : $f(h) = \frac{h}{K_{A4}}$, donc $p\Omega = -0,4+\mathrm{pH}$.
- Pour $6,2 \ge \mathrm{pH} \ge 2,7$, l'espèce $\mathrm{H}_2 Y^{2-}$ est majoritaire : $f(h) = \frac{h^2}{K_{A4}K_{A3}}$, donc $p\Omega = -6,6+2\mathrm{pH}$.
- Pour 2, $7 \ge \mathrm{pH} \ge 2, 0$, l'espèce $\mathrm{H}_3 Y^-$ est majoritaire : $f(h) = \frac{h^3}{K_{A4} K_{A3} K_{A2}}$, donc $p\Omega = -9, 3 + 3 \mathrm{pH}$.
- Pour pH $\leq 2,0$, l'espèce H₄Y est majoritaire : $f(h)=\frac{h^4}{K_{A4}K_{A3}K_{A2}K_{A1}}$, donc $p\Omega=-11,3+4$ pH.
- 13. Dans quel domaine de pH doit on travailler pour réaliser le titrage des ions calcium? On considérera qu'il faut que $\alpha = 0,999$ pour garantir une bonne complexation, et donc un titrage efficace.

Solution: Si on suppose $\alpha \geq 0,999$, on trouve que $p\Omega \geq 6,0$.

- Pour pH > 10, 2; $p\Omega = 9, 8$.
- Pour $10, 2 \ge pH \ge 6, 2$; $9, 8 \ge p\Omega \ge 5, 8$.
- Pour $6, 2 \ge pH \ge 2, 7$; $5, 8 \ge p\Omega \ge -1, 2$.
- Pour $2, 7 \ge pH \ge 2, 0: -1, 2 \ge p\Omega \ge -3, 3.$
- Pour pH $\leq 2, 0$; $p\Omega \leq -3, 3$.

Pour trouver la valeur exacte de pH minimal, on se place dans le domaine $10, 2 \ge pH \ge 6, 2$; un $p\Omega = 6, 0$ correspond donc à $pH = p\Omega + 0, 4 = 6, 4$. Pour avoir un titrage efficace, il faut donc se situer à $pH \ge 6, 4$.

2 Propriétés complexantes des ions cuivre (II)

Les constantes de formation globale de complexation sont définies comme les constantes des équilibres suivants :

$$Cu^{2+} + nNH_3 = [Cu(NH_3)_n]^{2+}$$

Complexe	$[\mathrm{Cu}(\mathrm{NH_3})]^{2+}$	$[\mathrm{Cu}(\mathrm{NH_3})_2]^{2+}$	$[\mathrm{Cu}(\mathrm{NH_3})_3]^{2+}$	$[\mathrm{Cu}(\mathrm{NH_3})_4]^{2+}$
$\beta(n)$	$1,58.10^4$	$3,98.10^7$	$3,98.10^{10}$	$3,98.10^{12}$

1. Écrire les expressions des $\beta(n)$.

Solution: Les constantes globales de formation $\beta(n)$ s'écrivent :

$$\beta(n) = \frac{[\mathrm{Cu}(\mathrm{NH}_3)_n]^{2+}}{[\mathrm{Cu}^{2+}][\mathrm{NH}_3]^n}$$

2. Écrire les expressions des constantes successives de dissociation K_{dj} (avec j compris entre 1 et 4), constantes des équilibres :

$$[Cu(NH_3)_j]^{2+} = [Cu(NH_3)_{j-1}]^{2+} + NH_3$$

Solution: Les constantes successives de dissociation s'écrivent, pour j > 1:

$$K_{dj} = \frac{[[\text{Cu(NH}_3)_{j-1}]^{2+}][\text{NH}_3]}{[\text{Cu(NH}_3)_j]^{2+}]}$$

Pour j = 1:

$$K_{d1} = \frac{[\text{Cu}^{2+}][\text{NH}_3]}{[[\text{Cu}(\text{NH}_3)]^{2+}]}$$

3. En déduire une relation entre les constantes successives de dissociation K_{dj} et les constantes de formations globales $\beta(n)$.

Solution: On en déduit les expressions suivantes :

$$K_{d1} = \frac{1}{\beta(1)} \; ; \; K_{d2} = \frac{\beta(1)}{\beta(2)} \; ; \; K_{d3} = \frac{\beta(2)}{\beta(3)} \; ; \; K_{d4} = \frac{\beta(3)}{\beta(4)}$$

4. En déduire les valeurs numériques de p K_{di} .

Solution: On trouve les valeurs numériques suivantes :

$$pK_{d1} = 4, 2$$
; $pK_{d2} = 3, 4$; $pK_{d3} = 3, 0$; $pK_{d4} = 2, 0$

5. En déduire le diagramme de prédominance en fonction de pNH3.

Solution: Diagramme de prédominance des espèces cuivriques :

6. On considère un bécher contenant $20.0\,\mathrm{mL}$ d'une solution d'ammoniaque (solution aqueuse de NH₃) de concentration $1.00\,\mathrm{mol}\cdot\mathrm{L}^{-1}$ et de $30\,\mathrm{mL}$ d'une solution de sulfate de cuivre(II) CuSO₄ de concentration $1.00\times10^{-2}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$. Justifier que le complexe $[\mathrm{Cu}(\mathrm{NH_3})_4]^{2+}$ est le complexe majoritaire. Écrire la réaction globale de formation.

Solution: Les concentrations initiales dans le bécher sont :

—
$$[Cu^{2+}]_0 = 6.00 \times 10^{-3} \text{ mol} \cdot L^{-1}$$

-
$$[NH_3]_0 = 4.00 \times 10^{-1} \, \text{mol} \cdot L^{-1}$$

La quantité de NH_3 initiale est très grande devant la quantité de Cu^{2+} . Même en cas de formation totale du complexe possédant le plus de ligand, la concentration de NH_3 ne varie que très peu. On peut donc considérer qu'à l'équilibre la concentration n'a pas varié, on a donc $\mathrm{pNH}_3 = 0, 4 < 2$. Le complexe $[\mathrm{Cu}(\mathrm{NH}_3)_4]^{2+}$ est donc majoritaire (et même prédominant!). La réaction globale de formation s'écrit :

$$Cu^{2+} + 4NH_3 = [Cu(NH_3)_4]^{2+}$$

7. Quelles sont les concentrations de $\rm NH_3,\, [Cu(NH_3)_4]^{2+}$ et $\rm Cu^{2+}$ à l'équilibre ?

 $\begin{array}{l} \textbf{Solution:} \ \ La\ r\'{e}action\ pr\'{e}c\'{e}dente\ est\ une\ r\'{e}action\ pr\'{e}pond\'{e}rante\ quantitative.\ Elle\ conduit\ \grave{a}\ la\ disparition\ du\ r\'{e}actif\ limitant.\ La\ solution\ \'{e}quivalente\ contient\ : \left[Cu(NH_3)_4\right]^{2^+}\ \grave{a}\ une\ concentration\ de\ 6,0\times 10^{-3}\ mol\cdot L^{-1}\ et\ NH_3\ \grave{a}\ une\ concentration\ de\ 0,376\ mol\cdot L^{-1}\ et\ ne\ contient\ plus\ d'ions\ Cu^{2^+}.\ L'\acute{e}quilibre\ de\ contrôle\ est\ le\ suivant\ : \end{array}$

$$[Cu(NH_3)_4]^{2+} + NH_3 = [Cu(NH_3)_4]^{2+} + NH_3$$
 $K^0 = 1$

Il ne modifie pas les concentrations des espèces à l'équilibre. On peut estimer la quantité d'ions Cu^{2+} en utilisant la constante globale de formation du complexe tétraammoniaccuivre(II) :

$$\beta(4) = \frac{[\text{Cu(NH}_3)_4]^{2+}}{[\text{Cu}^{2+}][\text{NH}_3]^4}$$

D'où

$$[Cu^{2+}] = \frac{[Cu(NH_3)_4]^{2+}}{\beta(4)[NH_3]^4}$$

On trouve une concentration effectivement très faible d'ions cuivrique : $[Cu^{2+}] = 7.54 \times 10^{-14} \text{ mol} \cdot L^{-1}$.