

003. PROVA DE CONHECIMENTOS ESPECÍFICOS E REDAÇÃO 19 06 2018

- Confira seus dados impressos neste caderno.
- Nesta prova, utilize caneta de tinta preta.
- Assine apenas no local indicado. Será atribuída nota zero à questão que apresentar nome, rubrica, assinatura, sinal, iniciais ou marcas que permitam a identificação do candidato.
- Esta prova contém 12 questões discursivas.
- A resolução e a resposta de cada questão devem ser apresentadas no espaço correspondente. Não serão consideradas respostas sem as suas resoluções, nem as apresentadas fora do local indicado.
- Encontra-se neste caderno a Classificação Periódica que poderá ser útil para a resolução de questões.
- As provas terão duração total de 4h30 e o candidato somente poderá sair do prédio depois de transcorridas 3h30, contadas a partir do início da prova.
- Ao final da prova, antes de sair da sala, entregue ao fiscal os Cadernos de Questões.

CIÊNCIAS DA NATUREZA E MATEMÁTICA (Questões 13 – 24)

Nome do candidato

RG Prédio Sala Carteira

USO EXCLUSIVO DO FISCAL

AUSENTE

Assinatura do candidato

O musgo *Dawsonia superba* pertence à classe Brydae e apresenta tecidos condutores especializados, conhecidos como hadroma e leptoma, responsáveis pela condução de seiva bruta e elaborada, respectivamente. Entretanto, esses organismos não são considerados plantas vasculares, pois as paredes das células do hadroma não apresentam lignina.

(www.criptogamas.ib.ufu.br. Adaptado.)

- a) Relacione os dois tecidos que conduzem as seivas nas plantas vasculares com o hadroma e com o leptoma da espécie D. superba.
- b) Cite uma vantagem da espécie *D. superba* em relação aos musgos que não apresentam hadroma e leptoma. Qual a importância da lignina para as plantas vasculares?

3	VNSP1801 003-CE-CiênciasNatMat

Pesquisadores chineses realizaram o seguinte experimento com cinomolgos (Macaca fascicularis), espécie de macacos do Sudeste Asiático: obtiveram fibroblastos (células do tecido conjuntivo) do feto de um macaco e, ao mesmo tempo, extraíram óvulos de uma macaca adulta e retiraram os núcleos desses óvulos. Cada óvulo anucleado foi fundido a uma célula de fibroblasto do feto. Uma substância foi injetada em cada célula reconstituída para reprogramar as moléculas de DNA do fibroblasto para retornarem ao estágio embrionário. Os embriões formados foram transferidos para uma macaca "mãe de aluguel", que gestou os embriões. No fim do processo, dois filhotes nasceram.

(Reinaldo José Lopes. www.folha.uol.com.br, 24.01.2018. Adaptado.)

(https://www.publico.pt. Adaptado.)

- a) Como é denominada a técnica empregada no experimento citado? Os dois macacos gerados são geneticamente idênticos ao feto doador dos fibroblastos, à macaca doadora de óvulos ou à macaca que gestou os embriões?
- Considerando todas as moléculas de DNA presentes nas células dos macacos gerados, por que eles apresentam moléculas de DNA originárias de diferentes macacos envolvidos no experimento?

Biólogos marinhos da Universidade da Califórnia observaram que as algas que se estabelecem próximas a corais das espécies Porites, Pocillopora e Montipora podem secretar polissacarídeos em excesso. Esses nutrientes alimentam microrganismos aeróbios que se proliferam rapidamente ao redor desses corais, levando-os à morte. No entanto, perceberam que os microrganismos não parasitavam os corais nem produziam substâncias danosas. Para entender esse fenômeno natural, os biólogos criaram corais em recipientes com e sem algas e descobriram que os corais sobreviviam bem quando as algas estavam ausentes, mas sofriam alta mortalidade quando elas estavam presentes. Em outro conjunto de recipientes, fizeram o mesmo experimento, mas trataram a água com antibiótico. O gráfico compara o efeito do antibiótico sobre os corais dos recipientes que também continham algas.

(Robert E. Ricklefs. A Economia da Natureza, 2010. Adaptado.)

- a) A que Reino pertencem os microrganismos presentes no experimento? Cite a relação ecológica interespecífica direta entre as algas e os microrganismos.
- b) Na situação analisada, como os microrganismos estavam causando a morte dos corais?

RESOLUÇÃO E RESPOSTA							
HEODEOGRA E HEOLOGIA							
5	VNSP1801 L003-CF-CiênciasNatMa						

A alpaca é uma liga metálica constituída por cobre (61%), zinco (20%) e níquel (19%). Essa liga é conhecida como "metal branco" ou "liga branca", razão pela qual muitas pessoas a confundem com a prata. A tabela fornece as densidades dos metais citados.

Metal	Densidade (g/cm ³)
Ag	10,5
Cu	8,9
Ni	8,9
Zn	7,1

- a) A alpaca é uma mistura homogênea ou heterogênea? Que característica da estrutura metálica explica o fato de essa liga ser condutora de corrente elétrica?
- b) A determinação da densidade pode ser utilizada para se saber se um anel é de prata ou de alpaca? Justifique sua resposta apenas por meio da comparação de valores, sem recorrer a cálculos.

RESOLUÇÃO E RESPOSTA 6 VNSP1801 | 003-CE-CiênciasNatMat

A regeneração do ácido sulfúrico (H₂SO₄) em geral não é economicamente vantajosa, mas é uma imposição das leis ambientais. Nessa regeneração, normalmente se utiliza o ácido proveniente de sínteses orgânicas, que está diluído e contaminado.

(Mariana de Mattos V. M. Souza. Processos inorgânicos, 2012. Adaptado.)

O processo de regeneração é feito em três etapas principais:

$${\sf ETAPA~I} \\ {\sf H_2SO_4~(aq,~diluido)} \longrightarrow {\sf SO_2~(g)+H_2O~(g)+\frac{1}{2}~O_2~(g);} \quad \Delta {\sf H=+202~kJ/mol}$$

Ετάρα ΙΙ

$$\mathrm{SO}_{2}\left(g\right)+\ \frac{1}{2}\ \mathrm{O}_{2}\left(g\right)\longrightarrow\mathrm{SO}_{3}\left(g\right);\ \Delta\mathrm{H}=-\ 99\ \mathrm{kJ/mol}$$

ETAPA III

$$\mathsf{SO}_{3}\left(g\right)+\mathsf{H}_{2}\mathsf{O}\left(g\right)\longrightarrow\mathsf{H}_{2}\mathsf{SO}_{4}\left(\ell\right);\ \ \mathsf{reação}\;\mathsf{exot\acute{e}rmica}$$

- a) Classifique as etapas I e II como endotérmica ou exotérmica.
- b) Calcule a massa mínima de SO₃ (g) que deve reagir completamente com água para obtenção de 98 g de H₂SO₄ (ℓ) na etapa III.

De acordo com a Instrução Normativa n^2 6, de 3 de abril de 2012, do Ministério da Agricultura, Pecuária e Abastecimento, o produto denominado "Fermentado Acético de Álcool", conhecido como "Vinagre de Álcool", deve ser obtido pela fermentação acética de mistura hidroalcoólica originada exclusivamente do álcool etílico potável de origem agrícola. Esse vinagre deve ter, no mínimo, 4,00 g de ácido acético / 100 mL e, no máximo, 1,0% (v/v) de álcool etílico, a 20 °C.

- a) Escreva as fórmulas estruturais do álcool etílico e do ácido acético.
- b) Calcule o volume máximo de álcool, em mL, e a quantidade mínima de ácido acético, em mol, que podem estar presentes em 1,0 L de vinagre de álcool.

	RESOLUÇÃO E RESPOSTA
NIGDIGOLI COO OF C'A N. IV.	0

Falsa estrela no céu

Uma empresa da Nova Zelândia enviou ao espaço uma "estrela artificial", com o objetivo de divulgar seu primeiro lançamento de satélites. A "estrela" é uma esfera de cerca de um metro de diâmetro, feita de fibra de carbono e composta de painéis altamente reflexivos. Em órbita, a esfera se desloca com velocidade de 2.88×10^4 km/h e completa uma volta ao redor da Terra em aproximadamente 100 minutos.

(Fábio de Castro. O Estado de S.Paulo, 31.01.2018. Adaptado.)

- a) Considerando a massa da "estrela artificial" igual a 600 kg, calcule sua energia cinética, em joules.
- **b)** Considerando π = 3 e a órbita da "estrela artificial" circular, calcule a aceleração centrípeta da "estrela", em m/s².

<u> </u>	9	VNSP1801 003-CE-CiênciasNatMat

Uma bateria de smartphone de 4000 mA·h e 5,0 V pode fornecer uma corrente elétrica média de 4000 mA durante uma hora até que se descarregue.

- a) Calcule a quantidade de carga elétrica, em coulombs, que essa bateria pode fornecer ao circuito.
- b) Considerando que, em funcionamento contínuo, a bateria desse smartphone se descarregue em 8,0 horas, calcule a potência média do aparelho, em watts.

	•	
VNSP1801 I 003-CE-CiênciasNatMat	10	

A radiação solar incide sobre o painel coletor de um aquecedor solar de área igual a 2,0 m² na razão de 600 W/m², em média.

- a) Considerando que em 5,0 minutos a quantidade da radiação incidente no painel transformada em calor é de 1.8×10^5 J, calcule o rendimento desse processo.
- b) Considerando que o calor específico da água é igual a 4,0 × 10³ J/(kg·°C) e que 90% do calor transferido para a água são efetivamente utilizados no seu aquecimento, calcule qual deve ser a quantidade de calor transferido para 250 kg de água contida no reservatório do aquecedor para aquecê-la de 20 °C até 38 °C.

11	VNSP1801 003-CE-CiênciasNatMat

A figura 1 indica o corte transversal em um molde usado para a fabricação de barras de ouro. A figura 2 representa a vista frontal da secção transversal feita no molde, sendo ABCD um trapézio isósceles com AC = BD = 10 cm.

Adote: sen 6° = 0,104; cos 6° = 0,994.

- a) Calcule a diferença entre as medidas de \overline{AB} e \overline{CD} .
- b) Admitindo que a área do trapézio ABCD seja igual a 99,4 cm 2 , calcule a soma das medidas de \overline{AB} e \overline{CD} .

A terceira Lei de Kepler sobre o movimento de planetas, aplicada a um certo sistema planetário, afirma que o período P da órbita elíptica de um planeta, em dias, está relacionado ao semieixo maior α da elipse, em milhões de quilômetros, pela fórmula P = 0,199 · $\alpha^{\frac{3}{2}}$. Nos cálculos a seguir, considere 1 ano = 365 dias.

- a) Sabendo que o período da órbita de um planeta é 1,99 ano, calcule o valor de $\alpha^{\frac{3}{2}}$.
- b) Calcule o período P de um planeta desse sistema planetário cuja órbita elíptica está representada na figura a seguir.

Uma expedição arqueológica encontrou um pedaço de um prato de cerâmica antigo, supostamente circular. Para estimar o tamanho do prato, os arqueólogos desenharam o pedaço de cerâmica encontrado, em tamanho real, em um plano cartesiano de origem O(0, 0). A circunferência do prato passa pela origem do plano cartesiano e pelos pontos A(-4, 2) e B(6, 4), como mostra a figura.

- a) A área do pedaço de cerâmica é aproximadamente igual à área do triângulo ABO. Calcule a área desse triângulo, em cm².
- b) Calcule as coordenadas do ponto em que estaria localizado o centro do prato cerâmico circular nesse sistema de eixos cartesianos ortogonais.

\triangleleft
S
Ó
\equiv
α
PER
$\overline{}$
0
ÃO
يَ
ĄČ
CAÇ
:ICAÇ
IFICAÇ
蓝
蓝
SSIFI
蓝
ASSIFI
SSIFI
ASSIFI

18	2 2	hélio 4,00	10	Ne	neônio	20,2	18	Ā	argônio 40,0	98	Ϋ́	criptônio	83,8	54	Xe	xenônio	131	98	R	radônio		118	Og	oganessônio
		17	6	ш	flúor	19,0	17	ರ	cloro 35,5	35	Ą	bromo	79,9	53	_	opoi	12/	85	¥	astato		117		
		16	8	0	oxigênio	16,0	16	တ	enxofre 32,1	34	Se	selênio	79,0	52	Te	telúrio	128	84	Ъ	polônio		116	^	livermório
		15	7	z	nitrogênio	14,0	15	۵	fósforo 31,0	33	As	arsênio	74,9	51	Sb	antimônio	122	83	ö	bismuto	607	115	S Mc	moscóvio
		41	9	ပ	carbono	12,0	14	<u>s</u>	silício 28,1	32	ge Ge	germânio	72,6	20	Sn	estanho	118	82	Pb	chumbo	707	114	正	fleróvio
		13	2	ш	boro	10,8	13	₹	alumínio 27,0	31	Са	gálio	69,7	49	_	indio	115	81	F	tálio 2010	204	113	ž	nihônio
									12	30	Zn	zinco	65,4	48	ဦ	cádmio	712	80	Hg	mercúrio	107	112	ပ်	copernício
									7	59	D.	cobre	63,5	47	Ag	prata	801	79	Αn	ouro	181	111	Rg	roentgênio
									10	28	Ż	níque	58,7	46	Pd	paládio	901	78	Ŧ	platina 105	CS1	110	Ds	darmstádio
									6	27	ပိ	cobalto	58,9	45	뫈	ródio	103	77	<u>-</u>	irídio	761	109	Ĭ	meitnério
									ω	26	Fe	ferro	55,8	44	Ru	rutênio	101	9/	SO	ósmio	081	108	£	hássio
									7	25	M	manganês	54,9	43	ဍ	tecnécio		75	Re	rênio	001	107	뭠	bóhrio
									9	24	ပ်	crômio	52,0	42	ω	molibdênio	96,0	74	≥	tungstênio	104	106	Sg	seabórgio
									2	23	>	vanádio	50,9	41	Q N	nióbio	92,9	73	Та	tântalo 101	101	105	op O	dúbnio
									4	22	F	titânio	47,9	40	Z	zircônio	91,2	72	Ï	háfnio 170	0/1	104	ጅ	rutherfórdio
									ည	21	Sc	escândio	45,0	39	>	itrio	88,9		57-71	antanoides			89-103	actinolides
		2	4	Be	perílio	9,01	12	Mg	magnésio 24,3	20	Ca	cálcio	40,1	38	S	estrôncio	9,/8	26	Ва	bário 127	15	88	Ra	rádio
_	← I	hidrogênio 1,01	က	5	lítio	6,94	11	Na	sódio 23,0	19	¥	potássio	39,1	37	SP Pp	rubídio	82,5	22	S	césio	S :	87	ŗ	frâncio

71	3	Iutécio	175	103	۲	laurêncio	
02	۸۲	itérbio	173	102	8 N	nobélio	
69	Ē	túlio	169	101	Md	mendelévio	
89	ய்	érbio	167	100	Fm	férmio	
29	운	hólmio	165	66	Es	einstênio	
99	۵	disprósio	163	86	ర	califórnio	
65	₽	térbio	159	26	BĶ	berquélio	
64	В	gadolínio	157	96	CB	cúrio	
63	ш	európio	152	92	Am	amerício	
62	Sm	samário	150	94	Pu	plutônio	
61	Pa	promécio		66	d N	neptúnio	
				65			
29	ፈ	praseodímio	141	91	Ра	protactínio	231
28	సి	cério	140	06	드	tório	232
22	Ľ	lantânio	139	89	Ac	actínio	

Símbolo nome massa atômica

número atômico

Notas: Os valores de massas atômicas estão apresentados com três algarismos significativos. Não foram atribuídos valores às massas atômicas de elementos artificiais ou que tenham abundância pouco significativa na natureza. Informações adaptadas da tabela IUPAC 2016.

