

Figure 1.

SEQ ID NO:1

GCTCAAAGAGACATTTGGGGTGGCAAAATAGTCTACAGGATTCTATGGCATA
GGAGACAACTCTCAGATAGCTCTGCAGACCTGCTCCAAAGAAGTATAGGAGAAG
CCAGGATTATAAGAACTTTTTGTTGGGAAAATAATGAGTCACACATAAAAAG
ACAACGTCAATAACAAACAATAGACATGTCAGAGATAATGACCTAGTGCCTTCT
ATGTGTGGAAAGACTCAAGAATCTGGGTCAATTGAACTTTTCCCTAGATATGCA
TCTTAATATCCTGGGTCACTATAATCCAAATGCTCCTGTTTCTCCATCCTAA
AGTCCCCTCCGGTGCAGTGGTCCCTCCAGTGGCAACTGCAGTGGC
AATTGGCTTGATCTCTGTAGAACTGGAATGGTGGCAACATTCTTCTTACAG
TATCCTGAGTCTGGGAGGGGCTGTGAGGCCAGAGCCTG**N**ATGCAGGAGGAG
GAGGGAGTCTGATCGCTTAGTCAGCTCTGCTTAACCTTGAGCTGGTGGTTAT
AAGCTGGGCCAGGCGCCGAGGCCAGACTCACCTCATCAGGCCCTGCTGCA
GTGGGAGCAGGGAGAGTAGCAGTGGTAGGGCAGCATG

N = C or T at polymorphic site

SEQ ID NO:2

Forward primer:

GCTCCAAAGAGACATTGGGGTGGC

SEQ ID NO:3

Reverse primer:

CATGCTGCCCTACCACTGCTACTCT

Figure 2. SphI restriction digest of porcine CYP11a1 PCR fragment

Figure 3. Comparison of submaxillary salivary gland $\Delta 16$ -androstenes in boars possessing a CYP11a1 single nucleotide polymorphism.

Genotype

	CC	CT	P value
Rate of gain (kg BW/d)	0.76 ± .01	0.72 ± .01	.05
Carcass length (cm)	85.17 ± .38	82.96 ± .47	.001
Submaxillary salivary gland (SMG) wt (g)	92.1 ± 3.1	71.5 ± 4.9	.0001
Δ16- androstenes in SMG (μg/g)	38.7 ± 4.1	23.9 ± 5.0	.05
Relative SMG wt (g/kg BW)	0.72 ± .023	0.58 ± .027	.001
Bulbourethral gland length (mm)	128.8 ± 2.4	117.7 ± 2.9	.01
Relative bulbourethral gland wt (g/kg BW)	93.8 ± 4.0	73.5 ± 4.9	.01
Testis wt (g)	628.6 ± 27.1	530.2 ± 25.4	.05
Relative testis wt (g/kg BW)	4.92 ± .20	4.33 ± .24	.10
Serum testosterone at slaughter (ng/ml)	2.04 ± .28	1.59 ± .35	.32

Figure 4. Growth, carcass, and reproductive traits of pigs with CC or CT CYP11a1 polymorphism.

1 gcagatgtcc ctgggtatcc ctgaaacagg ccctctgttt aaattcttca gcagtttagag
61 ggaaggtcaa tttttcccaa ggctttggg ctttgattgt tttcattttt aaattatctg
121 cattctaaag agatattttg ggtggcagat tttgtctcc tacaggactt tgtcttaggag
181 acggctctca ggccagctcc gacgactgtt ccaaagaagt aaggaaaagc tagggtttat
241 atcaatcttt tttttgtctg ggagaagggg gatgaacatg tagtcaaaca taaaaagatc
301 actgctaatac ccaaacaaca gacaccaa gtgaatgggtt ttagtgtttt tctatataatg
361 ttgttttagtc actaagtctt gtccgactct tttgcactc catagactgt agcccaccaa
421 gtcctctgtt ccatgggatt tttctaggca agaatactgg agtgggttgc catttccttc
481 tccctgggat cttcctaacc caaggactga accctgtct cctgcattgc aggtggattt
541 tttaccgact gagccaccag ggaagttatg tggcaagaa tccggggta tggaaatttt
601 cccttagata tacatcgat ctagggacca gtacaatgca aatgcttcct gttttcttc
661 atcctgaagt ctcctcaggg tgcattgagg gagggagtcc cctcagggtgg gtgaccacag
721 tggctgacgc ttgatgttgtt agaactggaa tggatgggtt cattctttcg tttacagtac
781 tgagtctggg aggagctgtg tgggctggag tcagccggag gaggctgacc gcccgtcag
841 ctttcactt agccttgagc tggtgattat aagctgggtc ccagggtccc agggccagag
901 tcacacgtcg cagtacgagc agagacagca gcagctgtgg gggcagcatg ctaccaaggg
961 ggcttccctt ccgttcagcc ctggtcaaag cttgtccacc catcctgagc tcagtgggg
1021 agggctgggg ccaccacagg gtgggactg gagagggagc tggcatctcc acaaagaccc
1081 ctcgcccccta cagttagatc ccctccctg gtgacaatgg ctggcttaac ctctaccatt
1141 tctggagggaa gaagggtca cagagaatcc actttcgcca catcgagaac ttccagaagt
1201 atggcccat ttacaggtaa gcctggcagg aggtgggg ctggcggat agggaaagcct
1261 gtgggtggccc ctcctgaa aggtctgccc tcccttcca ggctctgtt cacctctgac
1321 tttatatttctt ctcctgccc ggtggcagga gtagagttaa tgcttccag acagtgggtt
1381 cacttccca cctgaggcc tcaacagttc ccggctcta cacccttaga aactttgggg
1441 aggtggggag gcccagaaa ataagccccc g

FIGURE 5

1 cttttttcgg ttgtacctt gtctctgtac agatattttt taatatatta aaaacaaaaac
61 ctactgagct cctcgccctt agcccaggat tcagggataa gaggcagggtc gccccggccg
121 tgcggccccc tgctcccatg ctctccaggc ctgcacccat a诶cgggcagc tttcaggcat
181 gccgctgtgc cggagggatc ccagccctcg cgggggtcca ctaccattt cccagctcct
241 cgggagctcg gccttcgac caggtgcccgg gtgaatggag a诶cgggttgg ctcaacctgt
301 accacttctg gaaggaggga ggcttccaca acgtgcacaa catcatggcc agcaagtcc
361 agcgtttgg gcccattcac agggagaagt tgggtgtcta cgagagcgtg aatatcatca
421 gcccccgca tgcggccacg ctcttcaagt cagagggat gctgcccggag cgcttcagcg
481 tgccccatg ggtggcatac cgtgactacc gcaacaagcc ctacggcgtg ctccctaaga
541 caggggaggc ctggcgctcg gaccgcctga ccctgaacaa ggaggtgctg tcgcccagg
601 tggtgacag cttcggtcccc ttgctggacc aggtgagcca ggacttttgc cggcgggac
661 gggcgcaggt ccagcagagc ggccgggagc gctggacggc cgacttcagc cacgagctct
721 tccgctttgc cttggagttt gtgtgcacg tgctgtatgg ggaacgcctg gggctgctgc
781 aggactttgt ggaccaggag gcacagcagt tcatcgacgc cgtcaccctc atgttccaca
841 ccacccccc catgtctac gtggccaccccg ccctgtcccg ccaccccaac accaagacat
901 ggcgtgacca cgtgcatgtc tggatgcca ttttccacaca ggctgacaaa tgtatccaaa
961 acgttacccg ggacatccgg ctgcaacgcg agagcaccga ggagcacacg ggcateccct
1021 tcagcctct tggcaggac aagctcccc tggatgacat caaggccgc gtcaccgaga
1081 tggatggcggg cggcgtggac acgacttcca tggacttgcg atggggcatg ctggagctgg
1141 cacgatcccc gggcatcccg gaggcgtgc gggcagggat gctggcagcc aaggaggagg
1201 cacagggggg cagggtgaag atgttgcgaa gcatccgact gctcaaagcc gccatcaagg
1261 agactctcag gctgcacccg gtggcggta cgttgcagag gtacaccaca caggagggtca
1321 tcctgcagga ctaccgcattt ccccccaaga cgttgggtca gtttggcttc tacgccccatgg
1381 gacgagaccc tgaggttttc cccaaaggccg agcagttcaa ccctgagcgc tggctgggtga
1441 tgggctccaa gcacttcaag ggactgagct tgggtttgg gcaacggcag tggctgggtc
1501 gtcgcacatcg cggagctggag atgcagctct tcctcatgca catcctggag aacttttaaga
1561 tcgaaacccaa gcggggggtg gaagttggga ccaagttcgat cctcattttt gtcctgtaaa
1621 aacccatcta cctgagactg cggccctcc agccccaggaa gtgacatggg gtgtccccag
1681 ttggtccccag cttggggaca cttccatcag ctcagcgcattt ctagccttgg ctccagccct
1741 tcttacgcga tggggggagat ggctgcccccc ttcccatttt cttcgccctt gatttgctct
1801 gtaatttctg caccaaaaac

FIGURE 6