Contrôle de géométrie analytique N°3

Durée : 1 heure 40 minutes Barème sur 15 points

NOM:	_	
	Groupe	
PRENOM:		

1. Dans le plan muni d'un repère orthonormé, on donne les coordonnées de deux points Ω_1 et Ω_2 et l'équation cartésienne d'un cercle γ :

$$\Omega_1(4,7), \qquad \Omega_2(25,27), \qquad \gamma: x^2 + y^2 - 1 = 0.$$

Soit $\gamma_1(\Omega_1, r_1)$ un cercle de centre Ω_1 et de rayon r_1 et $\gamma_2(\Omega_2, r_2)$ un cercle de centre Ω_2 et de rayon r_2 .

Sachant que le cercle γ_1 est orthogonal au cercle γ et tangent extérieurement au cercle γ_2 , calculer la puissance de Ω_1 par rapport à γ_2 .

3 pts

2. Dans le plan muni d'un repère orthonormé d'origine O, on donne l'équation cartésienne d'une ellipse $\mathcal E$:

$$\mathcal{E}: \quad \frac{2x^2}{3} + y^2 - 1 = 0.$$

Soit B l'extrémité du petit axe de \mathcal{E} d'ordonnée positive.

Soient M un point courant de \mathcal{E} , t la tangente à \mathcal{E} en M, n la perpendiculaire à t passant par O, d la droite (BM) et P le point d'intersection des droites n et d.

Déterminer l'équation cartésienne du lieu de $\,P\,$ lorsque $\,M\,$ décrit l'ellipse $\,\mathcal{E}\,.$

Décrire avec précision la nature géométrique de ce lieu.

5 pts

4.5 pts

3. Dans le plan muni d'un repère orthonormé, on donne deux points Ω et F ainsi qu'un nombre réel e en fonction d'un paramètre réel λ :

$$\Omega(1,0), \qquad F(\lambda,0) \qquad \text{et} \qquad e = \frac{\lambda-1}{\lambda}.$$

a) Déterminer le domaine de variation de λ de sorte que $\mathcal E$ soit une ellipse de centre Ω , de foyer F et d'excentricité e.

Puis donner l'équation cartésienne de l'ellipse $\,\mathcal{E}\,$ en fonction du paramètre $\,\lambda\,$.

b) Soient F' l'autre foyer de \mathcal{E} tel que F' soit d'abscisse positive, et B l'extrémité du petit axe d'ordonnée positive.

Déterminer l'équation cartésienne de l'ellipse $\mathcal E$ de sorte que la droite BF' soit de pente $m=2\sqrt{2}$.

4. Dans le plan, on considère un cercle γ_1 , une droite a et un segment de longueur δ .

Construire rigoureusement (règle, équerre, compas), sur la donnée graphique cidessous, un cercle $\,\gamma\,$ de rayon $\,r=\delta\,$ et tel que $\,a\,$ soit l'axe radical des deux cercles γ et γ_1 .

2,5 pts

 δ

