Effects of phenology on plant community assembly and structure

Elsa E. Cleland* & E. M. Wolkovich*

January 9, 2024

*Authors contributed equally.

Abstract

Phenology—the timing of critical stages of growth and reproduction and the transitions between them—is an important plant trait that determines environmental conditions and biotic interactions. It thus has major implications for organisms' survival and fitness. In recent years, it has received growing interest as it is one of the most reported biological impacts of climate change, with many plants shifting their timing earlier—and later—with warming. Such shifts could have major implications for plant communities given the importance of phenology to determine community assembly at multiple steps, from determining environmental filtering, to structuring priority effects and related trade-offs. Trade-offs have also been invoked in increasing research on the role of phenology in coexistence, with multiple models positing a trade-off between phenology and plant competitive ability. Here we review these intersecting areas that highlight how phenology may affect community assembly at multiple steps. We highlight how the complexity of the life history aspect of phenology may make trade-offs—such as between growth timing and competitive ability—simple entry points to larger plant strategies shaped by a framework of risk, reward and investment over multiple timescales. Integrating across intra- and inter-annual timescales is a common—and challenging—topic in both community assembly and life history theories, with most work generally focuses on one temporal scale or the other. Yet the complexity of species phenologies and overall life histories makes it seems likely plants clearly integrate and optimize across these scales, leading to diverging lifespans, growing season lengths and fundamental strategies that likely operate within and across years. Embracing this temporal complexity could provide major insights into how phenology shapes communities.

1 Main text

Introduction

Phenology, defined here as the timing of growth and reproduction, is a key plant trait because it is often closely tied to the fitness of individuals in seasonal environments (Verdú & Traveset, 2005; Munguía-Rosas et al., 2011). Phenology determines both the environmental conditions and biotic interactions experienced by individuals during different stages of their life-cycles (Donohue, 2005), and hence the relative impact of these factors on survival and reproduction (Caruso et al., 2019). For instance, in temperate ecosystems, the timing of leaf emergence or flowering in spring can determine fitness consequences of frost events (Inouye, 2008; Augspurger, 2013), or the impacts of herbivores (Meineke et al., 2021), on plant performance.

Plant phenology has also garnered global attention because observations suggest that phenology of many plant species has shifted in recent decades, associated with rising temperatures and co-occurring global changes (Wolkovich et al., 2012; Parmesan & Hanley, 2015; Menzel et al., 2020). In response to both experimental and observed warming, plants generally display earlier spring events (e.g. leaf-out, flowering) and later fall events (e.g. senescence Henry & Molau, 1997; Menzel et al., 2020). However, there is considerable variation among species in how much they shift their phenology (Cook et al., 2012; Wolkovich et al., 2012; König et al., 2018, sometimes termed 'phenological sensitivity,'). Species that 'track' climate change by accelerating early-season phenology have been found to maintain or even increase their performance in experimental settings (Cleland et al., 2012; Wolkovich & Donahue, 2021a). Hence, species-level phenological responses to global changes have the potential to influence process at the population- (Iler et al., 2021), community- (Cook et al., 2012; CaraDonna et al., 2014), and ecosystem-scales (Piao et al., 2019).

Phenology is one of many interacting traits that influence the suitability of an organism to its environment. Functional traits are at the core of many theories in community ecology (with the key exception of neutral theories, e.g. Hubbell, 2005), especially those aiming to predict the assembly of local communities from a larger regional species pool. It is often assumed that plants have a suite of traits that determine their ability to survive and reproduce in different environments (Schimper, 1902), and that traits also reflect strategies of resource-capture, such that species with similar traits will compete, leading to competitive exclusion during community assembly (Gause, 1932; MacArthur & Levins, 1967; Abrams, 1983). Despite the recognized importance of phenology for understanding species responses to the environment, and structuring species interactions in communities, phenology is missing from many frameworks seeking to identify major axes of global plant trait variation (e.g. Westoby, 1998; Wright et al., 2004; Díaz et al., 2016; Joswig et al., 2022). Yet, many recognize that phenology is essential in trait-based approaches to understanding species interactions and community assembly (Cope et al., 2022).

Here we focus our review on the role that phenology plays in plant community assembly. We examine how phenology enters into major theories of community assembly, including the potential for phenology to influence competitive and facilitative interactions, and to shape priority effects and coexistence. Including phenology in such theories highlights a suite of ecological and life history trade-offs that may occur with different phenological events over different timespans, and in the many different environmental contexts humans have created today. We thus include in our review studies that document community assembly following disturbance, shifting community composition in response to global environmental changes, and the role that phenology plays in invasion by exotic species into resident communities, including efforts to assemble native communities that are resistant to invasion through restoration.

Given our focus on community assembly, we consider mainly multi-species studies from ecological perspectives. We thus consider less purely ecosystem-level measures of phenology and the underlying environmental cues and cue systems for plant phenology (e.g. Chuine & Régnière, 2017), and—relatedly—the multiple global change factors interact to influence phenology (e.g. Zhou et al., 2023). We take an evolutionary perspective, however, to show how selection may act on phenology in ways that shape assembly and trait trade-offs (but limit our discussion of evolutionary responses of phenology to changing conditions, which could play an important role in community assembly, e.g. Cavender-Bares, 2019).

We define phenology as the timing of critical stages of growth and reproduction and the transitions between them. This definition is intentionally more inclusive than some other definitions, which focus on recurring or seasonal events, and thus can narrow phenology to only certain plant types or biomes (e.g., woody species in the temperate zone). We find this narrowing artificial and think it can limit a broader understanding the selective pressures on phenology that—as we outline below—are critical for understanding the role of phenology in community assembly. Our definition thus includes both tree leafout, and seed germination of annual plants at the same time in encompasses fruiting, flowering and importation transitions in and out of these phases, such as dormancy and vernalization (see potential figure idea 1).

Phenological assembly: From the abiotic to biotic environments

Communities assemble from a pool of potential species through a series of abiotic and biotic sorting processes (HilleRisLambers et al., 2012). At the largest scale, a community's assemblage is limited by species present in a wider regional pool—species well suited to an environment will thus not occur in any one local community unless they are present in this regional pool. From this pool, species are filtered based on the abiotic environmental conditions of a particular location—species must be able to persist through a local environment's extremes in hot, cold, dry, wet and other factors to pass through this 'environmental filtering' step of assembly. This collection of potential species that could form a community is then filtered once more—by the now smaller, local pool of species itself (HilleRisLambers et al., 2012).

Competitive, facilitative, predatory and all other biotic interactions determine which species together can co-occur in the long term. If two species compete too strongly, then only the stronger competitor will remain in the local community at this step. Similarly obligate mutualists, predators and parasites will persist only if the other species they require are present in the community. This final stage of assembly is where much of community ecology has focused over its history as a subdiscipline, driving theories of coexistence, including whether species even truly 'coexist' or merely are on a slow walk to extinction for all but one species in each community (Hubbell, 2001).

Phenology enters community assembly at both the environmental (abiotic) and biotic filtering steps. Species phenologies must match the environment to pass the first filter: their growth and reproduction must be timed to match periods when the environment is mild and resource-rich enough for these events (Rathcke & Lacey, 1985). Thus, in an environment with cold sub-freezing winters, species generally must have well-timed dormancy to avoid growing too much in the middle of the winter when they would lose new tissue. Similarly, arid and tropical environments impose filters against certain phenologies. Once a set of species passes the environmental filter, phenology matters again at the biotic filtering step, where species with too similar phenologies may compete too strongly to co-occur. Alternatively, species that overlap phenologically have the opportunity to develop facilitative interactions (Duchenne et al., 2021) promoting co-occurrence, while species with little phenological overlap are unlikely to interact via biotic filtering processes. Interactions with predators (herbivory) may either limit or promote long-term persistence, depending on the dynamics (such dynamics relate in part to a larger literature on trophic synchrony, for which we refer readers to a number of recent reviews, e.g. Kharouba et al., 2018; Renner & Zohner, 2018)

These two steps at which phenology is relevant to community assembly suggest a simple temporal matching that obscures the underlying complexity of most phenological 'events,' such as leafout or fruiting. First, while 'event' suggest an almost instantaneous timepoint, this is gross simplification. Phenology is an attempt to extract and simplify the temporal dimensions of

various developmental processes that can rarely (if ever) be one point in time. Instead, phenology is generally a series of distributions. For any one event within one individual, there is a distribution of the process starting, peaking and ending, which can be variously imagined as a normal curve or sigmoid curve (imagine the event of a grape cluster ripening: the number of berries ripening each day mapped over time, would look normal, while the progress towards all berries ripened would be sigmoid). This then scales up across individuals within a population, and across populations (Inouye et al., 2019). Such complexity is generally simplified into an 'event' that often represents the 50% point extracted statistically after repeated observations.

Second, phenology—as a point in time—can appear highly flexible or strongly fixed—depending on how time is defined. To date, much work has used calendar time for phenology: a wildflower flowers on a certain day of the month in one year, for example, and on another day another year. When measured this way, phenology appears highly flexible—jumping around in temporal space from year to year or place to place—as the environment is variously warm, cool, dry or wet. Yet, plant phenology can also appear highly deterministic when defined in biological time; that is, when defined as relative to a set of known environmental triggers, such as accumulated cool temperatures known to vernalize some flowering species. When the underlying triggers or cues for phenological events are fairly well understood for some events (with perhaps flowering in Arabidopsis thaliana being the best understood) phenology can be highly predictable and effectively—inflexible. For the purposes of our review here, we cotton more to the latter interpretation which strips away complexities of geography that do not necessarily aid our understanding of phenology (Davies et al., 2013).

Where phenology fits in the environmental vs. biotic filtering part of community assembly

The importance of phenology to species passing the environmental filter of community assembly has been long studied—though rarely framed in exactly these terms. Early studies of the controls on species ranges stressed phenology as a major axis (Salisbury, 1926). Today process-based models based almost entirely on species phenology are highly predictive of tree species ranges (where they have been tested, Chuine, 2000; Morin et al., 2009, 2007). These models integrate over both growth and reproduction: trees in temperate systems leafout, flower and fruit then lose tissue to frost if temperatures dip below their cold limits (which vary for leaves, flowers and fruit), they then must have a long enough season for fruit development. Various species along various range edges are limited by tissue damage, fruit ripening or carbon starvation—depending on the summed outcome of a phenological model (Chuine, 2010).

Range models based on phenology highlight the life history challenges of phenology—species must fit in a sequence of events to grow and reproduce within environmentally feasible periods. Through this lens, the sequence and length of phenological events becomes critical, and prevalent trade-offs from life history theory become more relevant. For example, trade-offs between fruit size and time available to grow (growing season length) may drive some species to flower before they leaf (Buonaiuto et al., 2021). Similarly, trade-offs between growth, reproduction and survival may determine how often an individual invests in reproduction (Schaffer, 1974; Law, 1979; Stearns, 1998). These complexities are present in many process-based models, but rarely extend beyond into either life history or community ecology theories. Process-based models similarly view phenology often as a static trait that shapes broad-scale (biogeographical) processes (Chuine, 2010), with little focus on the role it may play within communities. Yet plant invasions suggest this view is overly narrow.

Recent work on plant invasions suggest a role for phenology beyond environmental filtering and instead through biotic assembly mechanisms (Wolkovich & Cleland, 2011; Fridley, 2012).

Theory in invasion biology focuses both on the characteristics of the species invading, and on the community into which it invades, with the vacant niche model proposing that species should invade if there is open 'space' in a community and the invader fits that space (Elton, 1958). Phenologically, this predicts species not to simply filter in based on their phenological match to the abiotic environment, but on their match to the biotic environment. Invaders should thus take advantage of open temporal space within communities, which some evidence suggests they do—particularly at the start and end of seasons (see next section).

Findings from invasion biology support a potential role of temporal niches more broadly in community assembly (Gotelli & Graves, 1996). Static environments (e.g., a chemostat) cannot easily support temporal niches, but even slightly more complex dynamics of resource availability across a season can create the potential for temporal niches (Fig. 2). Models including a simple resource pulse that starts a growing season can theoretically create space for temporal niches and thus phenological assembly (discussed further in the section on coexistence). Such models, however, highly simplify the resource dynamics of most environments, which is more aptly described a multi-dimensional mosaic of access to light, water, and nutrients variously present through abiotic factors (weather, tree fall due to storms etc.) and lost through uptake and use by other species. This complexity leaves much room for the order of species arrival to matter.

Priority effects

In addition to the roles of environmental filtering and biotic interactions for determining the temporal niches of species in assembled community, the relative timing of arrival of a species can influence community assembly through priority effects (Alford & Wilbur, 1985; Chase, 2003; Fukami, 2015). Priority effects have often been considered as historical contingencies in the process of community assembly, arising from the chance establishment of individuals of different species, resulting in different community compositions across sites that are otherwise similar in terms of species pools, environmental conditions and disturbance histories (e.g. Diamond, 1975). In the context of succession, early studies noted that the timing of disturbance relative to seasonality of seed dispersal could result in different species initially colonizing sites, and variation in later species abundances (Keever, 1950; Holt, 1972). More recently, it has been recognized that the relative order of species' growth onset throughout the growing season can also greatly influence the relative abundance of species later in the season via priority effects (Fukami, 2015; Wainwright et al., 2012; Rudolf, 2019). Phenology is a key aspect of a species niche, and hence should be key to niche-based predictions of community assembly (Vannette & Fukami, 2014).

The predictive power of priority effects for understanding community assembly suggests that the potential for competitive exclusion is not equal across the growing season, and should drive patterns where phenologically earlier species are competitively dominant. For instance, the timing of germination is a trait which is highly linked to plant fitness, because it determines both the biotic and abiotic environment experienced by the emerging seedling (Donohue et al., 2010). Foundational studies demonstrated that earlier germinating individuals achieved higher adult size, likely via space and resource preemption, and competitive suppression of later germinating individuals of the same species (Ross & Harper, 1972), a type of asymmetric competition (Connolly & Wayne, 1996). Subsequent work has found repeatedly that earlier germinating species gain a competitive advantage over later germinating species (Cleland et al., 2015; Waterton & Cleland, 2016; Blackford et al., 2020). Hence it is unsurprising that seeds can "sense" the pres-

ence of neighboring seeds, and display accelerated germination in more competitive environments (Dyer *et al.*, 2000).

However, a number of factors can reduce the benefit of early germination phenology. For instance, apparency to herbivores (Waterton & Cleland, 2016) or exposure to sub-optimal conditions such as early-season drought (Wainwright et al., 2012) can create trade-offs whereby later germinating species can achieve numerical dominance. Further, priority effects are not always competitive; experimental work with A. thaliana has shown that individuals germinating during stressful periods of the growing season can be facilitated by neighbors (Leverett, 2017). This finding is broadly consistent with the prediction that competitive priority effects will be stronger under conditions of high resource availability or low stress (Vannette & Fukami, 2014), opening the door for facilitative priority effects to arise under stressful conditions.

Priority effects arising via differential germination timing are likely to be most important in herbaceous-dominated ecosystems, but may also arise in woody-dominated ecosystems via the timing of spring green-up, due to light preemption by species with earlier growth dynamics. For instance, the non-native Amur honeysuckle (*Lonicera maackii*) invades the understory of deciduous forests in the Eastern U.S., where it has earlier leafout in the spring likely associated with greater frost tolerance compared with co-occurring native shrubs (McEwan *et al.*, 2009). The potential for priority effects to arise directly from earlier season flowering are less clear mechanistically, and early-flowering species are more prone to frost damage in temperature ecosystems (Inouye, 2008). However, the timing of flowering can be indicative of the timing of soil resource uptake, with important implications for community assembly (Gulmon *et al.*, 1983; Seabloom *et al.*, 2003).

Restoring native plant communities, and preventing invasion by exotic species, are two areas where phenological priority effects can play a key role in optimizing desired endpoints of community composition. Non-native species have sometimes been observed to germinate (Wainwright et al., 2012; Wilsey et al., 2011; Marushia et al., 2010) or flower (Cleland et al., 2013) earlier than co-occurring native species, suggesting phenological priority effects may be one factor predicting the successful establishment of invaders into resident communities (Wolkovich & Cleland, 2011; Alexander & Levine, 2019). Mechanistically, earlier phenology may allow invaders to avoid competition by exploiting a vacant phenological niche, or window of opportunity (Gioria & Osborne, 2014). Or, priority effects can also be mediated by plant-soil feedbacks whereby earlier active invaders can change the environmental conditions for later active native species (Grman & Suding, 2010). However, other reviews have found that phenological differences between invading and resident species differ across regions (Godoy et al., 2009) or found limited evidence of phenological differences between native and non-native species (Zettlemoyer et al., 2022). There have also been cases where later-active invaders that achieve greater size outcompete early-active native species (Godoy & Levine, 2014). Together these findings suggest that the role of phenology in invasion inherently depends on how phenology correlates with other traits important for community assembly.

In the context of restoration, introducing target native plants to a recently disturbed site either earlier in the season, or as larger plants rather than seeds, can give them a priority advantage over invasive species in the seedbank (Young et al., 2017; Wilsey, 2021). Experimental studies sometimes find that phenological priority effects of invasive species are stronger under conditions of nutrient enrichment (Kardol et al., 2013; Valliere et al., 2022) consistent with theoretical predictions (Vannette & Fukami, 2014). Restoration strategies can help reduce the seasonal priority effects of invading species on native communities, for example reducing nutri-

ent availability through carbon additions, or planting early-active native species (Cleland *et al.*, 2013; Hess *et al.*, 2019). Additionally, early-season exposure to herbivores (Waterton & Cleland, 2016) or early-season herbicide treatments (Marushia *et al.* (2010) could aid restoration goals by reducing priority effects of invading species.

Climatic context is also likely to pay a role in phenological priority effects. Inter-annual climate variation (Levine et al., 2011), or directional changes in climate, can change the relative order of species seasonal phenology or the correspondence of temperature and moisture cues (Kimball et al. (2010), resulting in altered species interactions and species relative abundances (Thomson et al., 2017; Kimball et al., 2010; Buonaiuto & Wolkovich, 2023). Thus, seasonal priority effects will likely play a key role in understanding changing species compositions in plant communities with future climate change.

Plant strategies: phenology and correlated traits

Plant species do not have random combinations of functional traits; rather, traits are assorted in predictable combinations because of inevitable trade-offs in form and function, resulting in distinct ecological and life history strategies (Stearns, 1998; Adler et al., 2014; Westoby et al., 2002). Hence, as we have noted in the preceding section, the role of phenology in environmental filtering and priority effects likely depends critically on the association of phenology with other functional traits. As trait correlations with phenology have been reviewed previously (e.g. Wolkovich & Cleland (2014); Segrestin et al. (2020)), here we concentrate on the role of phenology in plant strategies.

Phenology is a key trait in some classical theories on plant strategy. For instance, Westoby (1998) defined a Leaf-Height-Seed (LHS) schema whereby a plant species' strategy is defined by their location in three dimensions, based on specific leaf area (SLA), height, and seed mass. Subsequent work by Laughlin et al. (2010) found evidence supporting a LHS scheme in a diverse pine forest community, and found that phenology correlated with plant height, with taller plants being later flowering. Bolmgren & D. Cowan (2008) investigated correlations between flowering time and height in a north-temperature flora and found that in a phylogentically controlled analysis, only perennial herbs showed the pattern of later flowering in taller plants, and not woody species nor annuals. This height- reproductive phenology relationship for herbaceous species has been demonstrated in floras in botanical gardens (e.g. Sporbert et al. (2022); Horbach et al. (2023)) as well as naturally assembled communities (Du & Qi (2010); Liu et al. (2021)).

Bolmgren & D. Cowan (2008) also found that earlier flowering perennial herbs had larger seeds, a correlation not found for woody species, and the reverse pattern was actually seen in annuals (although marginally significant). Across 11 Tibetan plant communities Du & Qi (2010) also found earlier flowering woody and perennial herbaceous species had larger seeds, but no relationship for annual species. In a diverse Indian dunes flora Mazer (1990) found that only earlier flowering species with a short flowering duration produced larger seeds, and that this correlation was not as strong for earlier flowering species with a longer flowering duration. These and other authors conclude that the relationship between flowering time and seed size is likely driven by plant strategies for resource accumulation, storage, and reproductive allocation.

Grime's CSR theory (Grime, 1977) suggests that herbaceous plants can be classified according to three primary strategies, competitive, stress-tolerant or ruderal; leaf and flowering phenology are traits associated with the original description of these strategies (see Table 2 in Grime, 1977). Ruderal species adapted to growing in recently disturbed environments are defined as having

strong associations with early seedling establishment, and rapid growth and reproduction. In contrast competitive species are expected to flower later, after their period of peak vegetative growth, assumably associated with a trade-off between growth and reproductive allocation (Law, 1979). In Grime's original formulation, stress tolerant species were not defined by phenological traits.

In many systems, spring frost is likely a controller on phenology that could lead to trait correlations as part of plant strategies to deal with cold (Fig. 3). In most temperate and boreal systems freezing temperatures limit growth throughout part of the year, shaping the spring phenology of most species. Leafing or flowering before the last spring frost can mean losing tissue, but simply pushing all phenological events well after frost has its own costs as it means higher competition for light and other resources.

This temporal landscape of shifting frost risk and competition predicts early species should have traits that allow them to cope with frost, but be competitively inferior under low resource conditions, while later species should show the reverse. Recent reviews suggest some evidence for this (Wolkovich & Cleland, 2014; Wolkovich & Donahue, 2021b), but few have directly tested traits related to frost tolerance and avoidance, possibly because of the diversity of ways early-active species can deal with frost (Sakai & Larcher, 1987). Species vary in what temperatures can cause tissue damage (Lenz et al., 2013), but universally tissues are most vulnerable during budburst and leafout (Sakai & Larcher, 1987; Vitasse et al., 2014; Chamberlain et al., 2019), thus species often have a suite of other mechanisms including waxy or hairy leaves to slow ice formation, rapid budburst to speed through the most dangerous period or cheap-to-build tissues so that tissue lost can be quickly replaced (Sakai & Larcher, 1987). This last mechanism fits neatly with a competition trade-off as leaf and vessel tissues that are easy to build are also those that generally cannot compete well under low resource conditions (Larcher, 1980; Díaz et al., 2016).

Similarly, phenology is a key component of some drought-adaptation strategies but not others (Kooyers, 2015). For instance, drought escape is associated with rapid growth and flowering phenology, and an annual life history, where dormant seeds can survive drought (Fox, 1992). In contrast species with a drought-avoidance strategy are more likely to be perennial species, which have a longer period of growth, greater investment in root growth to soil depths with greater soil moisture (Padilla & Pugnaire, 2007), and later-seasonal flowering (Seabloom et al., 2003). Drought tolerant plants tend to be slow growing perennial species, often woody, with the potential for varied seasonal flowering phenologies (Williams et al., 1997). A drought deciduous strategy can allow drought-avoiding or drought-tolerant perennials to survive unfavorable periods through dormancy, for which the timing of this transition is critical to survival (Gillespie & Volaire, 2017). Thus, while phenology may play a key role in adaptations that enable species to persist in arid environments or ones that that experience seasonal droughts, species with varied phenologies may coexist due to the different ways that phenology correlates with other traits to form these strategies.

Trait correlations with phenology may also vary across contexts and life histories. For instance, (Delalandre et al., 2023) compared herbaceous plant communities with intensive (grazing) versus extensive (ungrazed) management, with significant variation in species composition across contexts. While annuals had earlier seed dispersal phenology under both contexts, earlier annuals had smaller leaves than perennials under grazing, but in the ungrazed context earlier annuals also had thinner leaves, and lower leaf dry matter content, carbon content, and water-use efficiency compared with perennials. Hence...

Phenological coexistence

By defining the temporal niche, phenology links clearly to theories of species coexistence focused on niche partitioning. Decades of theory have posited that plant communities are organized by a final critical filter where each species uses a unique set of temporal, spatial and otherwise environmental resources (Hutchinson, 1959), which may be shaped in part by predators and mutualists (McPeek, 2022). This allows each species to be uniquely superior in one particular *n*-dimensional niche space and thus increases intra-specific competition above inter-specific competition—a critical component for species to coexist (Chesson, 2000; HilleRisLambers *et al.*, 2012; McPeek, 2022). Through differing vegetative phenologies, species could use similar resources but occupy distinct temporal niches and thus coexist (Fig. 2).

Coexistence through niche differences is often referred to as a 'stabilizing mechanism' in the canon of what is now often called 'modern coexistence theory' (Chesson, 2000). This theory divides mechanisms of this final stage of community assembly into stabilizing mechanisms—which increase intra-specific competition relative to inter-specific and thus can contribute to coexistence through species differences—and equalizing mechanisms—which decrease fitness differences. Equalizing mechanisms generally reduce true coexistence, but can lead to apparent coexistence as two identical species will generally co-occur in nature for a very long time (until one is lost to stochasticity, Hubbell, 2001). This canon has dominated coexistence research of recent decades and underpins recent work to integrate phenology.

A number of recent studies leverage niche differences to argue that phenology is critical to coexistence in plant communities. Godoy & Levine (2014) found that differences in phenology tended to increase niche differences in experimentally assembled grassland communities of native and exotic species, but this did not promote coexistence. Instead, the phenological uniqueness of some invaders promoted their invasion, while other invaders benefited from an apparent correlation between phenology and competitive ability (later active species—both native and exotic—appeared competitively superior to early-active species). Correlated phenology and competition was also used by Rudolf (2019) to insert phenology into classical coexistence equations for competing species. In this approach, increased phenological differences between competitors promote coexistence when the earlier species is the inferior competitor. Wolkovich & Donahue (2021b) apply a similar trade-off to show that a species attribute strongly related to phenology—'environmental tracking'—can be critical to coexistence when it trades off with how well species convert resources to new biomass. Most recently Levine et al. (2022) added phenology to classical coexistence equations by allowing species to have longer or shorter seasons; here coexistence is possible if phenology trades-off with a growth rate advantage—effectively a type of competitive advantage.

As these studies highlight, recent research heralding the importance of phenology to coexistence all leverage a similar trade-off between phenology and competitive ability. Given the domination of competition in current coexistence theory and research (McPeek, 2022), this seems the most obvious and natural point to insert phenology into coexistence. Superficially the idea that phenology and competition trade-off is very attractive: if species vary their overlap in time, they should compete less and reduced interspecific competition should increase stabilizing niche differences and promote coexistence—but this is not the exact angle these models are leveraging. Instead they posit that earlier or later species (depending on the model) are competitively superior (through one parameter or another) thus invoking a rather simple trade-off. This trade-off would work equally well for many plant traits; fundamentally any plant trait added to a classic competition model such that it trades off with competitive ability will promote coexistence

through stabilizing niche differences. Our current insights into how phenology specifically effects coexistence is thus, still rather narrow and not terribly specific to phenology.

These models also generally insert phenology as a coexistence mechanism mostly independent of environmental variation—even though phenology itself varies year to year with environmental variation. These current studies, like much of the work on modern coexistence theory focus on resource partitioning—a fluctuation-independent mechanism of coexistence—ignoring an additional suite of likely relevant mechanisms that are fluctuation dependent: relative non-linearity of competition and the storage effect. While not yet tackled (to our knowledge) and certainly more complex to model and study, these two mechanisms seem highly relevant to phenology. Relative non-linearity promotes coexistence through variation in competitive intensity over time or space, given that species have different nonlinear responses to competition (Chesson, 1994, 2000). Recent work suggests relative non-linearity may be an important and under-appreciated mechanism in plant communities, but attempted to 'control' for phenology rather than consider it (Hallett et al., 2019). Yet species varying phenologies could produce varying competitive intensity over time and/or create the required non-linear response for coexistence via relative non-linearity.

Similarly, the underlying mechanisms of storage effect—where species vary in their responses to the environment, and that response covaries with competition—could clearly relate to phenology, as is often theoretically proposed (Chesson & Huntly, 1993; Chesson et al., 2004), but rarely tested. Instead the storage effect today is generally tested on interannual timescales for annual plants, where the model prediction that species 'store' environmentally favorable periods ('buffered population growth') can be tested through seedset. Older work focused on storage outside of seedbanks, however, has made phenological predictions. Kubo & Iwasa (1996) generated a model of coexistence for tropical forest trees where species compete for spatial gaps—and their associated resources—at the start of climatically favorable periods each year. The model predicted phenological diversity across tree species that depended both on the length of climatically unfavorable periods and the phenological widths of species—effectively the size of the temporal niches (Kubo & Iwasa, 1996). Storage occurred through long-lived adult stages, with seedbanks assumed to have weak dormancy (and thus could not provide 'storage' of good environments). This approach contrasts in the method of storage compared to models today focused on annual plant communities, yet both approaches have similarly allowed storage through only one mechanism and focused on inter-annual timescales (Fig. 1).

Yet the complexity of species phenologies and overall life histories makes it seems likely they may use more diverse timescales and multiple types of 'storage'. (Just the way chinstrap penguins get in a good night's sleep through thousands of daily micronaps....) Indeed the definition of 'storage' in the storage effect model highlights this complexity—and unites varying life histories under one model—storage can be through seed banks, long-lived life stages in perennials, or through dormancy periods (Chesson, 2000). Most plant communities contain a mix of these storage strategies across species, and within species multiple ways to store environmentally favorable periods seem common. Including this complexity in coexistence theory, however, likely requires modeling phenology as a more nuanced and complex trait.

Limited time within seasons and lifespans

Phenology captures a major axis of how organisms deal with limited time. Time is inherently limited for all organisms—both each season and over their lifetimes—by abiotic and biotic drivers

that shape each organism's schedule of growth and reproduction. Most of the literature on phenology focuses on the annual schedule—events that occur and often recur each year—but the lifetime schedule also matters (Post et al., 2008; Park & Post, 2022). Integrating this lifetime perspective, however, requires bridging to life history theory, which has worked to predict the optimal schedule of growth and reproductive timing across an organism's lifetime, generally ignoring finer scales within lifetimes, where many phenological events fall (but see Bazzaz et al., 1987; Ejsmond et al., 2010). Each field has thus focused on its own version of time—phenology on the seasonal or annual version and life history theory on the lifetime version—in part because of the challenge of integrating across them. Integrating across these temporal perspectives is critical, we argue, since each is likely to impact the other.

Integrating across timescales highlights that phenological events are non-independent in ways critical for understanding phenology. All single phenological events are part of a larger schedule, constrained in multiple ways. First, most growing seasons have climatically unfavorable periods for growth that make time a limited—and bounded—resource. Plants need to grow and reproduce within these bounds while dealing with a second major constraint—certain immovable sequences. A fruit cannot occur without flowering and leaves cannot senesce before they start growth. These combined constraints create a geometric optimality problem well-suited to life history theory, but—we argue—one that may also be imperative to solve for useful advances in phenological community assembly.

Much current research in the role of phenology within plant community assembly treats phenological events as independent. Empirical work on trade-offs focuses generally on only one event and often one part of the season (e.g., spring leafout). Similarly, models of the role of phenology in coexistence generally simplify phenology to a single trait—though what event or events this links to is rarely clear (even when studied with empirical data Godoy & Levine, 2014). Because phenology generally trades-off with resource competition in most models, events related to growth such as germination, or leafout seem likely candidates for some models (e.g., Godoy & Levine, 2014; Wolkovich & Donahue, 2021b), but others seem to implicitly model phenology as total growing period (Levine et al., 2022). Most accurate to these models would be when resource uptake is greatest, which recent research suggests relates to phenology (Heberling & Fridley, 2013; Heberling et al., 2019), but perhaps not in ways that allow us to generalize from phenology to resource uptake across species. Further, most models appear to ignore reproductive events, such as flowering and fruiting, which occur before leafout for many species (Primack, 1987; Buonaiuto et al., 2021) and may play a large role in determining the timing of growth events (Ettinger et al., 2018). The complexity of this only increases when integrating over how the timing of fruit development relates to the timing of pollination and seed dispersal, both of which also appear under strong selection (Whitehead, 1969).

This current focus in plant phenological assembly on growth events, with little mention of reproduction, seems to miss increasing evidence that reproductive phenology is as or more important than growth phenology in determining tissue loss and fitness. While life history theory generally predicts growth before reproduction, many plants flower before they leaf, with research suggesting this is driven by strong selection on flowering (Buonaiuto et al., 2021). Studies of full sequences of phenological events within a year—including growth and reproduction—find little evidence that leafout or senescence (growth events) affect flowering or fruiting, but strong evidence that the development time of fruit may constrain senescence and other growth events (Ettinger et al., 2018). Current studies of trade-offs focused on growth-related phenological events may thus miss where selection is potentially acting on the trade-offs, and highlight the

problem of simplifying a constrained sequence to a single unconstrained and independent event. Better recognizing and integrating phenological sequences could solve part of this problem, but doing so usefully will require more efforts to develop models and theory across timescales.

Integrating across intra- and inter-annual timescales is a common—and challenging—topic in both community assembly and life history theories. Most work generally focuses on one temporal scale or the other but plants clearly integrate risk and reward across these scales, leading to diverging lifespans, growing season lengths and fundamental strategies that likely operate within and across years (Bazzaz et al., 1987). Building up to understand this requires models that incorporate storage alongside growth and reproduction. Earlier work in this area suggested maximizing reproduction when considering growth and storage across favorable unfavorable climatic periods was able to replicate the relative timing of leaf growth and senescence for broad classes of species; this suggested that diverging plant strategies may depend on the productivity, stability and reliability of the habitat (Iwasa & Cohen, 1989). More recently this area of life history theory has been focused on capital breeding animals (e.g., Varpe et al., 2009), but provides insights for plants, including the benefits of reproduction before growth seasonally. Such models can predict flowering before leafout if there is variation in the fitness of seeds across the season (Ejsmond et al., 2010)—an idea relatively unstudied in community assembly, but possible to add. Further developing models of the storage effect that operate within-season as well as between-season could provide insights into both phenology and life history. While bet-hedging in plants is almost always discussed in terms of seedbanks and multi-year scenarios, it is likely to operate within seasons as well, and may underlie varying rates of leafout (percent of total buds burst in spring) across species (Baumgarten et al., 2021).

Understanding trade-offs with phenology will clearly require a reckoning with the complexity and variation of available time each year. With climate change, phenology research has focused strongly on how climate variability in most habitats varies the length of a season year to year, leading to the high variability in observed phenology for any one location. Yet how long a plant grows for varies additionally by species, population and individual (Ettinger et al., 2018; Körner et al., 2023). These two layers of variation—environmental and genotypic—add significant and important complexity to trade-offs. If time is a significant resource that varies strongly by year and species, this variation will adjust how strong a trade-off is in each year for each species. Variation in the resource could change the sign of the trade-off (Van Noordwijk & De Jong, 1986), or—as life history theory stresses—'the environment can determine whether [a] trade-off appears at all.' Considering the full sequence of phenological events from a life history perspective hints that current assembly models focused on a trade-off between growth timing and competitive ability may be overly simplistic. These trade-offs may thus recapitulate broad plant strategies (Grime, 1977), but given limited insights into how species assort phenologically—and fundamentally what limits and resources they experience (Stanton et al., 2000).

2 References

- Abrams, P. (1983) The theory of limiting similarity. Annual review of ecology and systematics 14, 359–376.
- Adler, P.B., Salguero-Gómez, R., Compagnoni, A., Hsu, J.S., Ray-Mukherjee, J., Mbeau-Ache, C. & Franco, M. (2014) Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences 111, 740-745.
- Alexander, J.M. & Levine, J.M. (2019) Earlier phenology of a nonnative plant increases impacts on native competitors. *Proceedings of the National Academy of Sciences* **116**, 6199–6204.
- Alford, R.A. & Wilbur, H.M. (1985) Priority effects in experimental pond communities: competition between bufo and rana. *Ecology* **66**, 1097–1105.
- Augspurger, C.K. (2013) Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing. *Ecology* **94**, 41–50.
- Baumgarten, F., Zohner, C.M., Gessler, A. & Vitasse, Y. (2021) Chilled to be forced: the best dose to wake up buds from winter dormancy. *New Phytologist* **230**, 1366–1377.
- Bazzaz, F.A., Chiariello, N.R., Coley, P.D. & Pitelka, L.F. (1987) Allocating resources to reproduction and defense. *BioScience* **37**, 58–67.
- Blackford, C., Germain, R.M. & Gilbert, B. (2020) Species differences in phenology shape co-existence. *The American Naturalist* **195**, E168–E180.
- Bolmgren, K. & D. Cowan, P. (2008) Time—size tradeoffs: A phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate flora. *Oikos* 117, 424–429.
- Buonaiuto, D. & Wolkovich, E. (2023) Contrasting responses to climate variability generate seasonal priority effects between native and invasive forest herbs. *Journal of Ecology*.
- Buonaiuto, D.M., Morales-Castilla, I. & Wolkovich, E.M. (2021) Reconciling competing hypotheses regarding flower-leaf sequences in temperate forests for fundamental and global change biology. *New Phytologist* **229**, 1206–1214.
- CaraDonna, P.J., Iler, A.M. & Inouye, D.W. (2014) Shifts in flowering phenology reshape a subalpine plant community. *Proceedings of the National Academy of Sciences* **111**, 4916–4921.
- Caruso, C.M., Eisen, K.E., Martin, R.A. & Sletvold, N. (2019) A meta-analysis of the agents of selection on floral traits. *Evolution* **73**, 4–14.
- Cavender-Bares, J. (2019) Diversification, adaptation, and community assembly of the american oaks (quercus), a model clade for integrating ecology and evolution. *New Phytologist* **221**, 669–692.
- Chamberlain, C.J., Cook, B.I., García de Cortázar-Atauri, I. & Wolkovich, E.M. (2019) Rethinking false spring risk. *Global Change Biology* **25**, 2209–2220.
- Chase, J.M. (2003) Community assembly: when should history matter? *Oecologia* **136**, 489–498.

- Chesson, P. (1994) Multispecies competition in variable environments. *Theoretical Population Biology* 45, 227–276.
- Chesson, P. (2000) Mechanisms of maintenance of species diversity. *Annual Review of Ecology* and Systematics **31**, 343–366.
- Chesson, P., Gebauer, R.L.E., Schwinning, S., Huntly, N., Wiegand, K., Ernest, M.S.K., Sher, A., Novoplansky, A. & Weltzin, J.F. (2004) Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. *Oecologia* **141**, 236–253.
- Chesson, P. & Huntly, N. (1993) Temporal hierarchies of variation and the maintenance of diversity. *Plant Species Biology* 8, 195–206.
- Chuine, I. (2000) A unified model for budburst of trees. *Journal of Theoretical Biology* **207**, 337–347.
- Chuine, I. (2010) Why does phenology drive species distribution? *Philosophical Transactions of the Royal Society B: Biological Sciences* **365**, 3149–3160.
- Chuine, I. & Régnière, J. (2017) Process-based models of phenology for plants and animals. Annual review of ecology, evolution, and systematics 48, 159–182.
- Cleland, E.E., Allen, J.M., Crimmins, T.M., Dunne, J.A., Pau, S., Travers, S.E., Zavaleta, E.S. & Wolkovich, E.M. (2012) Phenological tracking enables positive species responses to climate change. *Ecology* 93, 1765–1771.
- Cleland, E.E., Esch, E. & McKinney, J. (2015) Priority effects vary with species identity and origin in an experiment varying the timing of seed arrival. *Oikos* **124**, 33–40.
- Cleland, E.E., Larios, L. & Suding, K.N. (2013) Strengthening invasion filters to reassemble native plant communities: soil resources and phenological overlap. *Restoration Ecology* **21**, 390–398.
- Connolly, J. & Wayne, P. (1996) Asymmetric competition between plant species. *Oecologia* **108**, 311–320.
- Cook, B.I., Wolkovich, E.M. & Parmesan, C. (2012) Divergent responses to spring and winter warming drive community level flowering trends. *Proceedings of the National Academy of Sciences* **109**, 9000–9005.
- Cope, O.L., Burkle, L.A., Croy, J.R., Mooney, K.A., Yang, L.H. & Wetzel, W.C. (2022) The role of timing in intraspecific trait ecology. *Trends in Ecology & Evolution* 37, 997–1005.
- Davies, T.J., Wolkovich, E.M., Kraft, N.J.B., Salamin, N., Allen, J.M., Ault, T.R., Betancourt, J.L., Bolmgren, K., Cleland, E.E., Cook, B.I., Crimmins, T.M., Mazer, S.J., McCabe, G.J., Pau, S., Regetz, J., Schwartz, M.D. & Travers, S.E. (2013) Phylogenetic conservatism in plant phenology. *Journal of Ecology* 101, 1520–1530.
- Delalandre, L., Violle, C., Coq, S. & Garnier, E. (2023) Trait—environment relationships depend on species life history. *Journal of Vegetation Science* **34**, e13211.
- Diamond, J.M. (1975) Assembly of species communities. *Ecology and evolution of communities* pp. 342–444.

- Díaz, S., Kattge, J., Cornelissen, J.H., Wright, I.J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I. et al. (2016) The global spectrum of plant form and function. Nature 529, 167–171.
- Donohue, K. (2005) Niche construction through phenological plasticity: life history dynamics and ecological consequences. *New Phytologist* **166**, 83–92.
- Donohue, K., Rubio de Casas, R., Burghardt, L., Kovach, K. & Willis, C.G. (2010) Germination, postgermination adaptation, and species ecological ranges. *Annual review of ecology, evolution, and systematics* 41, 293–319.
- Du, G. & Qi, W. (2010) Trade-offs between flowering time, plant height, and seed size within and across 11 communities of a qinghai-tibetan flora. *Plant Ecology* **209**, 321–333.
- Duchenne, F., Fontaine, C., Teulière, E. & Thébault, E. (2021) Phenological traits foster persistence of mutualistic networks by promoting facilitation. *Ecology letters* **24**, 2088–2099.
- Dyer, A.R., Fenech, A. & Rice, K. (2000) Accelerated seedling emergence in interspecific competitive neighbourhoods. *Ecology letters* **3**, 523–529.
- Ejsmond, M.J., Czarnołeski, M., Kapustka, F. & Kozłowski, J. (2010) How to time growth and reproduction during the vegetative season: an evolutionary choice for indeterminate growers in seasonal environments. *The American Naturalist* 175, 551–563.
- Elton, C.S. (1958) The Ecology of Invasions by Animals and Plants. University of Chicago Press, Chicago.
- Ettinger, A., Gee, S. & Wolkovich, E. (2018) Phenological sequences: how early-season events define those that follow. *American Journal of Botany* **105**, 1771–1780.
- Fox, G.A. (1992) The evolution of life history traits in desert annuals: adaptation and constraint. Evolutionary Trends in Plants 6, 25.
- Fridley, J.D. (2012) Extended leaf phenology and the autumn niche in deciduous forest invasions. *Nature* **485**, 359–362.
- Fukami, T. (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annual review of ecology, evolution, and systematics 46, 1–23.
- Gause, G.F. (1932) Experimental studies on the struggle for existence: I. mixed population of two species of yeast. *Journal of experimental biology* **9**, 389–402.
- Gillespie, L.M. & Volaire, F.A. (2017) Are winter and summer dormancy symmetrical seasonal adaptive strategies? the case of temperate herbaceous perennials. *Annals of Botany* 119, 311–323.
- Gioria, M. & Osborne, B.A. (2014) Resource competition in plant invasions: emerging patterns and research needs. *Frontiers in Plant Science* 5, 501.
- Godoy, O. & Levine, J.M. (2014) Phenology effects on invasion success: insights from coupling field experiments to coexistence theory. *Ecology* **95**, 726–736.

- Godoy, O., Richardson, D.M., Valladares, F. & Castro-Díez, P. (2009) Flowering phenology of invasive alien plant species compared with native species in three mediterranean-type ecosystems. *Annals of botany* **103**, 485–494.
- Gotelli, N.J. & Graves, G.R. (1996) The temporal niche. *Null Models in Ecology* (eds. N.J. Gotelli & G.R. Graves), pp. 95–111, Smithsonian Institution, Washington, DC.
- Grime, J.P. (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. *The american naturalist* **111**, 1169–1194.
- Grman, E. & Suding, K.N. (2010) Within-year soil legacies contribute to strong priority effects of exotics on native california grassland communities. *Restoration Ecology* **18**, 664–670.
- Gulmon, S., Chiariello, N., Mooney, H. & Chu, C. (1983) Phenology and resource use in three co-occurring grassland annuals. *Oecologia* **58**, 33–42.
- Hallett, L.M., Shoemaker, L.G., White, C.T. & Suding, K.N. (2019) Rainfall variability maintains grass-forb species coexistence. *Ecology Letters* **22**, 1658–1667.
- Heberling, J.M., Cassidy, S.T., Fridley, J.D. & Kalisz, S. (2019) Carbon gain phenologies of spring-flowering perennials in a deciduous forest indicate a novel niche for a widespread invader. *New Phytologist* **221**, 778–788.
- Heberling, J.M. & Fridley, J.D. (2013) Resource-use strategies of native and invasive plants in Eastern North American forests. *New Phytologist* **200**, 523–533.
- Henry, G.H.R. & Molau, U. (1997) Tundra plants and climate change: the international tundra experiment (itex). Global Change Biology 3, 1–9.
- Hess, M.C., Mesléard, F. & Buisson, E. (2019) Priority effects: Emerging principles for invasive plant species management. *Ecological Engineering* **127**, 48–57.
- HilleRisLambers, J., Adler, P.B., Harpole, W.S., Levine, J.M. & Mayfield, M.M. (2012) Rethinking community assembly through the lens of coexistence theory. *Annual review of ecology*, evolution, and systematics 43, 227–248.
- Holt, B.R. (1972) Effect of arrival time on recruitment, mortality, and reproduction in successional plant populations. *Ecology* **53**, 668–673.
- Horbach, S., Rauschkolb, R. & Römermann, C. (2023) Flowering and leaf phenology are more variable and stronger associated to functional traits in herbaceous compared to tree species. *Flora* **300**, 152218.
- Hubbell, S.P. (2001) The Unified Neutral Theory of Biodiversity. Princeton University Press, Princeton.
- Hubbell, S.P. (2005) Neutral theory in community ecology and the hypothesis of functional equivalence. *Functional ecology* **19**, 166–172.
- Hutchinson, G.E. (1959) Homage to Santa-Rosalia or why are there so many kinds of animals. *American Naturalist* **93**, 145–159.

- Iler, A.M., CaraDonna, P.J., Forrest, J.R. & Post, E. (2021) Demographic consequences of phenological shifts in response to climate change. *Annual Review of Ecology, Evolution, and Systematics* **52**, 221–245.
- Inouye, B.D., Ehrlen, J. & Underwood, N. (2019) Phenology as a process rather than an event: from individual reaction norms to community metrics. *Ecological Monographs* 89.
- Inouye, D.W. (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. *Ecology* **89**, 353–362.
- Iwasa, Y. & Cohen, D. (1989) Optimal growth schedule of a perennial plant. *The American Naturalist* **133**, 480–505.
- Joswig, J.S., Wirth, C., Schuman, M.C., Kattge, J., Reu, B., Wright, I.J., Sippel, S.D., Rüger, N., Richter, R., Schaepman, M.E. et al. (2022) Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology & Evolution 6, 36–50.
- Kardol, P., Souza, L. & Classen, A.T. (2013) Resource availability mediates the importance of priority effects in plant community assembly and ecosystem function. *Oikos* 122, 84–94.
- Keever, C. (1950) Causes of succession on old fields of the piedmont, north carolina. *Ecological Monographs* **20**, 229–250.
- Kharouba, H.M., Ehrlén, J., Gelman, A., Bolmgren, K., Allen, J.M., Travers, S.E. & Wolkovich, E.M. (2018) Global shifts in the phenological synchrony of species interactions over recent decades. *Proceedings of the National Academy of Sciences* 115, 5211–5216.
- Kimball, S., Angert, A.L., Huxman, T.E. & Venable, D.L. (2010) Contemporary climate change in the sonoran desert favors cold-adapted species. *Global Change Biology* **16**, 1555–1565.
- König, P., Tautenhahn, S., Cornelissen, J.H.C., Kattge, J., Bönisch, G. & Römermann, C. (2018) Advances in flowering phenology across the northern hemisphere are explained by functional traits. *Global Ecology and Biogeography* 27, 310–321.
- Kooyers, N.J. (2015) The evolution of drought escape and avoidance in natural herbaceous populations. *Plant science* **234**, 155–162.
- Körner, C., Möhl, P. & Hiltbrunner, E. (2023) Four ways to define the growing season. Ecology Letters.
- Kubo, T. & Iwasa, Y. (1996) Phenological pattern of tree regeneration in a model for forest species diversity. THEORETICAL POPULATION BIOLOGY 49, 90–117.
- Larcher, W. (1980) Plant Physiological Ecology. Springer-Verlag.
- Laughlin, D.C., Leppert, J.J., Moore, M.M. & Sieg, C.H. (2010) A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. *Functional Ecology* **24**, 493–501.
- Law, R. (1979) The cost of reproduction in annual meadow grass. *The American Naturalist* **113**, 3–16.

- Lenz, A., Hoch, G., Vitasse, Y. & Korner, C. (2013) European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients. *New Phytol* **200**, 1166–75.
- Leverett, L.D. (2017) Germination phenology determines the propensity for facilitation and competition. *Ecology* **98**, 2437–2446.
- Levine, J.I., Levine, J.M., Gibbs, T. & Pacala, S.W. (2022) Competition for water and species coexistence in phenologically structured annual plant communities. *Ecology letters* **25**, 1110–1125.
- Levine, J.M., McEachern, A.K. & Cowan, C. (2011) Seasonal timing of first rain storms affects rare plant population dynamics. *Ecology* **92**, 2236–2247.
- Liu, Y., Li, G., Wu, X., Niklas, K.J., Yang, Z. & Sun, S. (2021) Linkage between species traits and plant phenology in an alpine meadow. *Oecologia* **195**, 409–419.
- MacArthur, R. & Levins, R. (1967) The limiting similarity, convergence, and divergence of coexisting species. *The american naturalist* **101**, 377–385.
- Marushia, R.G., Cadotte, M.W. & Holt, J.S. (2010) Phenology as a basis for management of exotic annual plants in desert invasions. *Journal of Applied Ecology* 47, 1290–1299.
- Mazer, S.J. (1990) Seed mass of indiana dune genera and families: taxonomic and ecological correlates. *Evolutionary Ecology* 4, 326–357.
- McEwan, R.W., Birchfield, M.K., Schoergendorfer, A. & Arthur, M.A. (2009) Leaf phenology and freeze tolerance of the invasive shrub amur honeysuckle and potential native competitors. *The Journal of the Torrey Botanical Society* **136**, 212–220.
- McPeek, M.A. (2022) Coexistence in ecology: a mechanistic perspective. Princeton University Press.
- Meineke, E.K., Davis, C.C. & Davies, T.J. (2021) Phenological sensitivity to temperature mediates herbivory. Global change biology 27, 2315–2327.
- Menzel, A., Yuan, Y., Matiu, M., Sparks, T., Scheifinger, H., Gehrig, R. & Estrella, N. (2020) Climate change fingerprints in recent european plant phenology. *Global Change Biology* **26**, 2599–2612.
- Morin, X., Augspurger, C. & Chuine, I. (2007) Process-based modeling of species' distributions: What limits temperate tree species' range boundaries? *Ecology* 88, 2280–2291.
- Morin, X., Lechowicz, M.J., Augspurger, C., O' Keefe, J., Viner, D. & Chuine, I. (2009) Leaf phenology in 22 north american tree species during the 21st century. *Global Change Biology* **15**, 961–975.
- Munguía-Rosas, M.A., Ollerton, J., Parra-Tabla, V. & De-Nova, J.A. (2011) Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. *Ecology letters* 14, 511–521.
- Padilla, F. & Pugnaire, F. (2007) Rooting depth and soil moisture control mediterranean woody seedling survival during drought. *Functional Ecology* pp. 489–495.

- Park, J.S. & Post, E. (2022) Seasonal timing on a cyclical earth: Towards a theoretical framework for the evolution of phenology. *PLoS Biology* **20**, e3001952.
- Parmesan, C. & Hanley, M.E. (2015) Plants and climate change: complexities and surprises. *Annals of botany* **116**, 849–864.
- Piao, S., Liu, Q., Chen, A., Janssens, I.A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M. & Zhu, X. (2019) Plant phenology and global climate change: Current progresses and challenges. Global change biology 25, 1922–1940.
- Post, E.S., Pedersen, C., Wilmers, C.C. & Forchhammer, M.C. (2008) Phenological sequences reveal aggregate life history response to climatic warming. *Ecology* **89**, 363–370.
- Primack, R.B. (1987) Relationships among flowers, fruits, and seeds. *Annual Review of Ecology and Systematics* **18**, 409–430.
- Rathcke, B. & Lacey, E.P. (1985) Phenological patterns of terrestrial plants. *Annual review of ecology and systematics* **16**, 179–214.
- Renner, S.S. & Zohner, C.M. (2018) Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. *Annual review of ecology, evolution, and systematics* **49**, 165–182.
- Ross, M.A. & Harper, J.L. (1972) Occupation of biological space during seedling establishment. The Journal of Ecology pp. 77–88.
- Rudolf, V.H. (2019) The role of seasonal timing and phenological shifts for species coexistence. *Ecology letters* **22**, 1324–1338.
- Sakai, A.K. & Larcher, W. (1987) Frost Survival of Plants. Ecological Studies, Springer-Verlag.
- Salisbury, E.J. (1926) The geographical distribution of plants in relation to climatic factors. *The Geographical Journal* **67**, 312–335.
- Schaffer, W.M. (1974) Optimal reproductive effort in fluctuating environments. *The American Naturalist* **108**, 783–790.
- Schimper, A.F.W. (1902) Plant-geography upon a physiological basis. Clarendon Press.
- Seabloom, E.W., Harpole, W.S., Reichman, O. & Tilman, D. (2003) Invasion, competitive dominance, and resource use by exotic and native california grassland species. *Proceedings of the National Academy of Sciences* **100**, 13384–13389.
- Segrestin, J., Navas, M.L. & Garnier, E. (2020) Reproductive phenology as a dimension of the phenotypic space in 139 plant species from the mediterranean. *New Phytologist* **225**, 740–753.
- Sporbert, M., Jakubka, D., Bucher, S.F., Hensen, I., Freiberg, M., Heubach, K., König, A., Nordt, B., Plos, C., Blinova, I. *et al.* (2022) Functional traits influence patterns in vegetative and reproductive plant phenology—a multi-botanical garden study. *New Phytologist* **235**, 2199—2210.
- Stanton, M.L., Roy, B.A. & Thiede, D.A. (2000) Evolution in stressful environments. i. phenotypic variability, phenotypic selection, and response to selection in five distinct environmental stresses. *Evolution* **54**, 93–111.

- Steams, S.C. (1998) The evolution of life histories. Oxford university press.
- Thomson, D.M., King, R.A. & Schultz, E.L. (2017) Between invaders and a risky place: Exotic grasses alter demographic tradeoffs of native forb germination timing. *Ecosphere* 8, e01987.
- Valliere, J.M., Flores, R.G., Cason, B.J. & Hernández, M.J. (2022) Phenological and physiological advantages of invasive annuals are strengthened by nitrogen enrichment. Functional Ecology 36, 2819–2832.
- Van Noordwijk, A.J. & De Jong, G. (1986) Acquisition and allocation of resources: their influence on variation in life history tactics. *The American Naturalist* **128**, 137–142.
- Vannette, R.L. & Fukami, T. (2014) Historical contingency in species interactions: towards niche-based predictions. *Ecology letters* 17, 115–124.
- Varpe, Ø., Jørgensen, C., Tarling, G.A. & Fiksen, Ø. (2009) The adaptive value of energy storage and capital breeding in seasonal environments. *Oikos* 118, 363–370.
- Verdú, M. & Traveset, A. (2005) Early emergence enhances plant fitness: a phylogenetically controlled meta-analysis. *Ecology* **86**, 1385–1394.
- Vitasse, Y., Lenz, A., Hoch, G. & Körner, C. (2014) Earlier leaf-out rather than difference in freezing resistance puts juvenile trees at greater risk of damage than adult trees. *Journal of Ecology* 102, 981–988.
- Wainwright, C.E., Wolkovich, E.M. & Cleland, E.E. (2012) Seasonal priority effects: implications for invasion and restoration in a semi-arid system. *Journal of Applied Ecology* **49**, 234–241.
- Waterton, J. & Cleland, E.E. (2016) Trade-off between early emergence and herbivore susceptibility mediates exotic success in an experimental california plant community. *Ecology and evolution* **6**, 8942–8953.
- Westoby, M. (1998) A leaf-height-seed (lhs) plant ecology strategy scheme. *Plant and soil* 199, 213–227.
- Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. (2002) Plant ecological strategies: some leading dimensions of variation between species. *Annual review of ecology and systematics* **33**, 125–159.
- Whitehead, D.R. (1969) Wind pollination in the angiosperms: evolutionary and environmental considerations. *Evolution* pp. 28–35.
- Williams, R.J., Myers, B.A., Muller, W., Duff, G.A. & Eamus, D. (1997) Leaf phenology of woody species in a north australian tropical savanna. *Ecology* **78**, 2542–2558.
- Wilsey, B. (2021) Restoration in the face of changing climate: importance of persistence, priority effects, and species diversity. *Restoration Ecology* **29**, e13132.
- Wilsey, B.J., Daneshgar, P.P. & Polley, H.W. (2011) Biodiversity, phenology and temporal niche differences between native-and novel exotic-dominated grasslands. *Perspectives in Plant Ecology, Evolution and Systematics* 13, 265–276.
- Wolkovich, E. & Donahue, M.J. (2021a) How phenological tracking shapes species and communities in non-stationary environments. *Biological Reviews* **96**, 2810–2827.

- Wolkovich, E.M. & Cleland, E.E. (2011) The phenology of plant invasions: a community ecology perspective. Frontiers in Ecology and the Environment 9, 287–294.
- Wolkovich, E.M. & Cleland, E.E. (2014) Phenological niches and the future of invaded ecosystems with climate change. *AoB Plants* **6**, plu013.
- Wolkovich, E.M., Cook, B.I., Allen, J.M., Crimmins, T., Betancourt, J.L., Travers, S.E., Pau, S., Regetz, J., Davies, T.J., Kraft, N.J. et al. (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497.
- Wolkovich, E.M. & Donahue, M.J. (2021b) How phenological tracking shapes species and communities in non-stationary environments. *Biological Reviews*.
- Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H., Diemer, M. et al. (2004) The worldwide leaf economics spectrum. Nature 428, 821–827.
- Young, T.P., Stuble, K.L., Balachowski, J.A. & Werner, C.M. (2017) Using priority effects to manipulate competitive relationships in restoration. *Restoration Ecology* **25**, S114–S123.
- Zettlemoyer, M.A., Ellis, S.L., Hale, C.W., Horne, E.C., Thoen, R.D. & DeMarche, M.L. (2022) Limited evidence for phenological differences between non-native and native species. *Frontiers in Ecology and Evolution* 10.
- Zhou, H., Min, X., Chen, J., Lu, C., Huang, Y., Zhang, Z. & Liu, H. (2023) Climate warming interacts with other global change drivers to influence plant phenology: A meta-analysis of experimental studies. *Ecology Letters*.

3 Figures

Figure 1: Phenology captures the timing of critical stages of growth and reproduction and the transitions between them, which plants optimize given constraints (e.g. unfavorable climate, herbivory, immovable sequences) over their lifespans in many ways that in turn impact community assembly. In particular the concept of the 'storage effect' as a way for plants to 'store' favorable periods may be a major way species that appear similar phenotypically partition the environment to promote coexistence (giving them buffered population growth through environmental variation, see text for more details). We show three examples here, though there are many more versions (e.g. biennial, perennial herbaceous): (a) annual plants, which generally must always invest in growth first and reproduction at the end of their life, and thus store good years through their seedbanks; (b) woody deciduous species, which can generally flower and fruit at various times, but store good years through winter dormancy and (c) evergreen woody species, which can grow throughout the year, and store through long-lived lifestages. We show reproduction mid-season for the woody species, though it can occur before leafout or much later in the season. Additionally, while we do not show seedbanks for woody species, they also have them—thus having multiple ways to store good periods, though the challenge of integrating multiple methods of this time of 'storage' is not often modeled.

Figure 2: Theory suggests resource levels may determine temporal niche space. In a system where resources are constant (top left,, chemostat; species can only coexist if they are each the superior competitor for a different limiting resource) species would be expected to show little temporal fluctuations and there would be no real temporal niches. Many models of coexistence today, however, assume a resource pulse that decays (middle, left; e.g., water with evaporative loss, such as in snowpack systems) over time: this resource then sets the temporal window of each season and species compete within it. Most real systems, however, are more complicated, even considering only a single resource could provide opportunities to partition niches temporally further (bottom left, taken from Jornada LTER site 302, showing soil moisture at 10 cm depth over the year).

Figure 3: In temperature systems where low temperatures generally define unfavorable periods, species may trade-off along an axis of frost risk versus competitive environment. Early-active species risk losing tissue to frost, but gain access to more available light and soil resources while later active species experience almost no risk of frost but leafout and start resource uptake when many other species are active and thus competition is high.)