12-	2	2'-	0,6
-----	---	-----	-----

DEC 2 0 2006 W

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE (Case No. 05-720-US2)

PATENT M

n re Application of:)
John Kouvetakis))
Serial No.: 10/559,981) Group Art Unit: 2812
Filing Date: December 8, 2005) Examiner: To be assigned)
For: GESN Alloys and Ordered Phases with Direct Tunable Bandgaps Grown Directly on Silicon) Confirmation No.: 6588)))

TRANMITTAL LETTER

Commissioner for Patents PO Box 1450 Alexandria, VA 22313-1450

Dear Sir/Madam:

In regard to the above-identified U.S. patent application;

1. We are transmitting herewith the attached:

☐ Transmittal Letter (1 sheet)
 ☐ Information Disclosure Statement (IDS) (11 sheets);
 ☐ IDS Form 1449 (13 sheets);

123 Cited References (Copies of references 13-123 are enclosed herewith);

Return Receipt Postcard.

- 1. With respect to fees:
 - a) No fee is required.
 - b) Please charge any underpayment or credit any overpayment our Deposit Account, No. 13-2490.
- 2. CERTIFICATE OF MAILING BY "EXPRESS MAIL" UNDER 37 CFR § 1.10: The undersigned hereby certifies that this Transmittal Letter and the papers, as described hereinabove, are being deposited with the United States Postal Service with sufficient postage as "Express Mail Post Office to Addressee" in a box addressed to: P.O. Box 1450, Alexandria, VA 22313-1450, on this 20th day of December, 2006. Express Mail No. EV840507821US.

Respectfully submitted,

David S. Harper, Ph.D. Registration No. 42,636

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE (Case No. 05-720-US2)

In the Ap	pplication of:)		
	Kouvetakis et al.)	Art Unit:	2812
Serial No	•)		
Filed:	December 8, 2005)	Examiner:	To be assigned
	ESN Alloys and Ordered Phases with Direct unable Bandgaps Groown Directly on Silicon)))	Confirmatio	n No. 6588

INFORMATION DISCLOSURE STATEMENT

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Pursuant to 37 C.F.R. Section 1.97 - 1.99, the Applicant wishes to make the following references of record in the above-identified application. This Information Disclosure Statement is in compliance with the continuing duty of candor as set forth in 37 C.F.R. Section 1.56. Copies of the references cited below are enclosed. These references are also listed on the enclosed PTO Form 1449.

In the judgment of the undersigned, portions of the listed references may be material to the Examiner's consideration of the presently pending claims. However, the references have not been reviewed in sufficient detail to make any other representation and, in particular, no representation is intended as to the relative relevance between references, whether cited in this or prior statements. This statement is not a representation that the listed references have effective dates early enough to be "prior art" within the meaning of 35 U.S.C. Section 102 or Section 103.

This I	formation Disclosure Statement is being filed:
	within three months of the filing date of a national application; within three months of the date of entry into the national stage as set forth in 37 C.F.R. § 1.491 in an international application; or before the mailing date of a first Office Action on the merits. 37 C.F.R. §1.9 (b)
	after three months of the filing date of a national application, or the date of entry into the national stage as set forth in 37 C.F.R. § 1.491 in an international application; or after the mailing date of a first Office Action on the merits, but <u>before</u> the mailing date of a Final Action under 37 C.F.R. § 1.113 or a Notice of Allowance under 37 C.F.R. § 1.31 (whichever occurs first), and includes (37 C.F.R. § 1.97 (c):
	the Certification under 37 C.F.R. § 1.97(e) (see "Certification" below)
	OR
	the fee of \$180.00 set forth in 37 C.F.R. § 1.17(p) (see "Fees" below).
	after a Final Action under 37 C.F.R. § 1.113 or a Notice of Allowance under 37 C.F.R. 1.311 (whichever occurs first), but before, or simultaneously with, the payment of the issufee, and includes the Certification under 37 C.F.R. § 1.97(e) (see "Certification" below), and the Petition Fee set forth in 37 C.F.R. § 1.17(i) (see "Fees" and "Method of Payment of Fees below). Applicants hereby petitions for consideration of the Information Disclosur Statement submitted herewith and the accompanying references in examination of the subject patent application.
<u>CERT</u>	FICATION
	The undersigned hereby certifies that each item of information contained in the Informatio Disclosure Statement was cited in a communication from a foreign patent office in counterpart foreign patent application not more than three months prior to the filing of th Information Disclosure Statement.
	The undersigned hereby certifies that no item of information contained in the Informatio Disclosure Statement was cited in a communication from a foreign patent office in counterpart foreign patent application or, to the knowledge of the person signing th certification after making reasonable inquiry, was known to any individual designated in 3 C.F.R. § 1.56(c) more than three months prior to the filing of the Information Disclosur Statement.

	No fee is owed by the applicant(s). The IDS Fee of \$180.00 under 37 C.F.R. § 1.17(p) is enclosed herewith.
	OD OF PAYMENT OF FEES
	Attached is a check in the amount of \$180.00
	FICATE OF MAILING VIA EXPRESS MAIL DELIVERY under 37 C.F.R. § 1.10. I hereby
	that the attached paper of fee is being deposited with the United States Postal Service "Express Mail
	ffice to Addressee" Service under 37 C.F.R.§ 1.10 on the date indicated above and is addressed to
Commi	ssioner for Patents, Box 1450, Alexandria, VA, 22313-1450, on this 20th day of Aecch
	, 2006. Express Mail No. EV840507821US.

Respectfully submitted,

David S. Harper

Registration No. 42,636

United States Patents

FEES

- 1. Murthy, et al., U.S. Publication No. US 2003-0157787 A1, Published on August 21, 2003.
- 2. Kouvetakis, et al., U.S. Publication No. US 2006-0134895 A1, Published on June 22, 2006.
- 3. Kouvetakis, et al., U.S. Publication No. US 2006-0236923 A1, Published on October 26, 2006.
- 4. Kouvetakis, et al., U.S. Publication No. US 2006-0163612-A1, Published on July 27, 2006.
- 5. Kouvetakis, et al., U.S. Patent No. 6,911,084, Issued on June 28, 2005.
- 6. Sugawara, et al., U.S. Patent No. 5,532,183, Issued on July 2, 1996.
- 7. Tang, et al., U.S. Patent No. 5,198,387, Issued on March 30, 1993.
- 8. Oguro, U.S. Patent No.: 5,714,415, Issued on February 3, 1998.
- 9. Mani, U.S. Patent No.: 6,410,434, Issued on June 25, 2002.
- 10. Cordone, et al., U.S. Patent No.: 6,723,621 B1, Issued on April 20, 2004.
- 11. Soref, et al., U.S. Patent No.: 6,897,471, Issued on May 24, 2005.
- 12. Doppalapudi, et al., U.S. Patent No.: 6,441,716, Issued on August 27, 2002.

Foreign Documents

- 13. PCT Patent Publication No. WO 2005/001902, published January 6, 2005.
- 14. PCT Patent Publication No. WO 2004/114368, published December 29, 2004.
- 15. PCT Patent Publication No. WO 2005/015609, published February 17, 2005.
- 16. PCT Patent Publication No. WO 2003/033781, published April 24, 2003.
- 17. PCT Patent Publication No. WO 2006/009171, published January 26, 2006.

Other Documents

- 18. D. W. Jenkins, "Electronic properties of metastable GexSn1-x alloys", Phys. Rev. B., Vol. 36, pp. 7994-8001 (1987).
- 19. K. A. Mader, "Band structure and instability of GexSn1-x alloys", Solid State Commun., Vol: 69 (12), pp. 1123-1126 (1989).
- 20. G. He and H.A. Atwater, "Interband transitions in Sn_xGe_{1-x} Alloys", Phys. Rev. Lett., Vol. 79(10), pp. 1937-1940 (1997).
- 21. O. Gurdal, R. Desjardins, J. R. A. Carlsson, N. Taylor, H. H. Radamson, J.-E. Sundgren, and J. E. Greene, "Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1-x Snx (x ≤0.26) alloys", J. Appl. Phys., Vol. 83(1), pp. 162-170 (1998).
- 22. M. T. Asom, E. A. Fitzgerald, A. R. Kortan, B. Spear, and L. C. Kimerling, "Epitaxial Growth of SnGe Alloys", Appl. Phys. Lett., Vol. 55(6), pp. 578-580 (1989).
- 23. H. Höchst, M. A. Engelhardt, and D. W. Niles, "The MBE growth and electronic structure of α-Sn_xGe_{1-x} alloys", SPIE Proceedings, Vol: 1106, pp. 165-171 (1989)(ABSTRACT).
- 24. C. A. Hoffman, et al., "Three-Band transport and cyclotron resonance in alpha –Sn and alpha Sn_{1-x}Ge_x grown by molecular-beam epitaxy", Phys. Rev. B. Vol: 40(17): pp. 11693-11700, (1989).
- 25. W. Wegscheider, K. Eberl, U. Menczigar, and G. Abstreiter, "Single-crystal Sn/Ge superlattices on Ge substrates: Growth and structural properties", Appl. Phys. Lett., Vol. 57(9), pp. 875-877 (1990).
- 26. O. Gurdal, et al., "Growth of metastable $Ge_{1-x}Sn_x/Ge$ stratined layer superlattices on Ge(001)2x1 by temperature-modulated molecular beam epitaxy", Appl. Phys. Lett., Vol: 67(7), pp. 956-958 (1995).
- 27. P. R. Pukite, A. Harwit, and S. S. Iyer, "Molecular beam epitaxy of metastable, diamond structure Sn_xGe_{1-x} alloys", Appl. Phys. Lett. 54(21), pp. 2142-2144 (1989).
- 28. M. Bauer, et al., "Ge-Sn semiconductors for band-gap and lattice engineering", Appl. Phys. Lett. 81(16), pp. 2992-2994 (2002).

- 29. L. Bellaiche, S.-H. Wei and Z. Zunger, "Localization and percolation in semiconductor alloys: GaAsN vs GaAsP", Phys. Rev. B 54, 17568-17576 (1996).
- 30. J. Taraci, J. Tolle, M. R. M. Cartney, J. Menendez, M. A. Santana, D. J. Smith, and J. Kouvetakis, "Simple chemical routes to diamond-cubic germanium-tin alloys", App. Phys. Lett. 78(23), pp. 3607-3609 (2001).
- 31. J. Taraci, S. Zollner, M. R. McCartney, J. Menéndez, M. A. Santana, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, "Synthesis of silicon-based infrared semiconductors in the Ge-Sn system using molecular chemistry methods", J. of the Am. Chem. Soc., Col: 123(44), pp. 10980-10987 (2001).
- 32. V. Atluri, N. Herbots, D. Dagel, H. Jacobsson, M. Johnson, R. Carpio, and B. Fowler, "Comparison and reproducibility of H-passivation of Si(1000) with HF in methanol, ethanol, isopropanol and water by IBA, TMAFM, and FTIR", Mater. Res. Soc. Symp. Proc. 477, pp. 281-292 (1997) (ABSTRACT).
- 33. Z. Charafi and N. Bouarissa, "The effect of the violation of Vegard's law on the optical bowing in Si_{1-x}Ge_x alloys", Phys. Lett. A. Vol: 234, pp. 493-497 (1997).
- 34. H. Kajiyama, S-I. Muramatsu, T. Shimada, and Y. Nishino, "Bond-length relaxation in crystalline Si_{1-x}Ge_xalloys: An extended x-ray-absorption fine-structure study", Phys. Rev. B Vol: 45(24), pp. 14005-14010 (1992).
- 35. F. Cerdeira, W. Dreyrodt, and M. Cardona, "Resonant raman scattering in germanium", Solid State Commun., Vol. 10, 591-595 (1972).
- 36. M.M. McGibbon, N.D. Browning, M.F. Chisholm, A.J. McGibbon, S.J. Pennycook, V. Ravikumar, V.P. Dravid, "Direct determination of grain boundary atomic structure in SrTio₃" Science, Vol: 266, pp. 102-104 (1994).
- 37. P. Mock, T. Topuria, N. D. Browning, G. R. Booker, N. J. Mason, R. J. Nicholas, M. Dobrowolska, S. Lee, and J. K. Furdyna, "Internal self-ordering in In(Sb,As), (In,Ga) Sb, and (Cd,Zn,Mn) Se nano-agglomerates/quantum dots", Appl. Phys. Lett., Vol. 79(7), pp. 946-948. (2001).
- 38. D.M. Ceperley, B.J. Alder, "Ground State of the Electron Gas by Stochastic Method", Phys. Rev. Lett., Vol: 45, pp. 566-569 (1980).
- 39. T G. Kresse and J. Hafner, "Ab initio molecular dynamics for liquid metals", Phys. Rev. B47(1), pp. R558-561 (1993).
- 40. G. Kresse and J. Hafner, "Ab ignition molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium", Phys. Rev. B49(20), pp. 14251-14269 (1994).
- 41. G. Kresse, J. Furthmuller, "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set", Comput. Mater. Sci. Vol. 6, pp. 15-50 (1996).
- 42. G. Kresse, J. Furthmuller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set", Phys. Rev. B54(16), pp. 11169-11186 (1996).

- 43. R. A. Soref and L. Friedman, "Direct-gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures", Superlattices and Microstructures, Vol. 14(2), 189-193 (1993).
- 44. M. R. Bauer, J. Kouvetakis, D.J. Smith and J. Menendez, "Tunable band structure in diamond cubic tin germanium alloys grown on Si", Solid State Commun., Vol. 127, 355-359 (2003).
- 45. M.R. Bauer, P. Crozier, A.V.G Chizmeshya and J. D. Smith and J. Kouvetakis, "GeSn superstructured materials for Si-based optoelectronics", Appl. Phys. Lett. Vol. 83, pp. 3489-3491 (2003).
- 46. M. Bauer et al., "Tunable band structure in diamond-cubic tin-germanium alloys grown on silicon substrates", Solid State Communications, Vol. 127 (2003), pp. 355-359.
- 47. S. Cradock, E. A. V. Ebsorth, G. Davidson, L. A. Woodard, "Studies in Germyl Chemistry.3. Trigermylphosphine", J. Chem. Soc. A, 8, pp. 1229-1233 (1967).
- 48. D. W. H. Rankin, A. G. E. Robiet, G. M. Sheldrick, 5 Beagley, T. G. Hewit, "An electron Diffraction of the Molecular Structures of Trigermylphosphine and Trisilylstibine in the Gas Phase" J. Inorg. Nucl. Chem., 31, pp. 2351-2357 (1969).
- 49. E. A. V. Ebsworth, D. J. Hutchison, D. W. H. Rankin, "The Preparation, properties, and Gas-Phase Molecular-Structure of 1,1- Difluoro-2,2-Digermylbiphosphone", J. Chem. Res., Synop, 12, pp. 393, (1980).
- 50. E. A. V. Ebsworth, D. W. H. Rankin, G. M. Sheldrick, "Preparation and Properties of Trigermyl-arsine and -stibine", J. Chem. Soc. A, 11, pp. 2828-2830 (1968).
- 51. D. E. Wingeleth, A. D. Norman, "Redistribution of primary silyl-and germylphosphines; synthesis of trisilyl-and trigermylphosphines", Phosphorus Sulfur, 39(1-2), pp. 123-129, (1988).
- 52. G. A. Forsyth, D. W. H. Rankin, H. E. Robertson, "Determination of the molecular structure of Tris (Trimethylsilyl) phosphine in the gas phase by electron diffraction, supported by molecular mechanics calculations", J. Mol. Struct., Vol. 239, pp. 209-217, (1990).
- 53. H. Schumann, H. J. Kroth, "NMR-Untersuchungen an Organoelemmenten(IVb)-Phosphinen, 2. Substituenteneinflusse auf die P-chemischen Verschiebungen von Trimethylelement (IVb)-phosphinen", Z. Naturforsch., B: Anorg. Chem., Chem. 32B, pp. 513-515, (1977).
- 54. G. Becker, H. Freudenblum, O. Mundt, M. Reti, M. Sachs, Synthetic Methods of Organometallic and Inorganic Chemistry, 3, pp. 193-198 (1996).
- 55. S. Schulz, M. Nieger, "Synthesis and characterization of organogallium-antimony compounds", J. of Organomet. Chem., Vol. 570, pp. 275-278 (1998).
- 56. H. Schumann, U. Frank, W. W. Du Mont, F. Marschner, "Organometallarsine", J. Organomet. Chem, Vol: 222, pp. 217-225 (1981).
- 57. M. Ates, H. J. Breunig, M. Denker, "Formation of (Me₃M)₃Sb (M = Ge, Sn, Pb) and (Me₃M)₄Sb₂ (M = Pb) by reaction of (Me₃Si)₃Sb with Me₃MCI", Phosphous, Sulfur Silicon Relate. Elem., Vol: 102, pp. 287-289 (1995).

- 58. H. Schumann, A. Roth, O. Stelzer, M. Schmidt, "Pyramidenformige Molekule Mit Dem Atomskelett", Inorg. Nucl. Chem. Lett. 2, pp. 311-312, (1986).
- 59. G. Davidson, L. A. Woodward, E. A. V. Ebsworth, G. M. Sheldrick, "The vibrational spectra and structure of trisilylarsine and trisilylstibine", Spectrochim. Acta, Part A, Vol. 23, pp. 2609-2616, (1967).
- 60. B. Beagley, A. G. Robiette, G. M. Sheldrick, "The Molecular Structures of (SiH3)3P and (SiH3)3As", Chem. Commun, 12, pp. 601-602 (1967).
- 61. Blake, E. A. V. Ebsworth, S. G. D. Henderson, "Structure of trisilylphosphine, P(SiH₃)_x, at 100 K", Acta Crystallogr., Sect. C: Cryst. Struct. Commun, C47, pp. 486-489, (1991).
- 62. H. Siebert, J. Eints, "Neuvermessung des schwingungsspektrums von trisilylphosphin", J. Mol. Struct. Vol: 4, pp. 23-28, (1969).
- 63. D. C. McKean, "On the spectroscopic evidence for geometry in (SiH₃)₃P and (SiH₃)₃ As", Spectrochim. Acta, Part A, Vol: 24A, pp. 1253-1254 (1968).
- 64. J. E. Drake, J. Simpson, "Reactions of Monosilylarsine with Some Boron Lewis Acids and the Reaction of Monosilylphosphine with Boron Tribromide", J. Chem. Soc. A. 5, pp. 1039-1043 (1968).
- 65. E. H. Parker and T. E. Whall, "SiGe heterostructure CMOS circuits and applications", Solid State Electronics 43(8), pp. 1497-1506 (1999).
- 66. R. A. Soref and C. H. Perry, "Predicted band gap of the new semiconductor SiGeSn", J. Appl. Phys. 69, pp. 539-541 (1991).
- 67. K. A. Johnson and N. W. Ashcroft, "Electronic structure of ordered silicon alloys: Direct-gap systems", Phys. Rev. B 54, pp. 14480-14486 (1996).
- 68. R. Kost, in Infrared-Applications-of-Semiconductors-II. Symposium, (Mater. Res. Soc., 1998). pp. 3-10 (ABSTRACT).
- 69. W. Bett, F. Dimroth, G. Stollwerck, and O. V. Sulima, "III-V compounds for solar cell applications", Appl. Phys. A: materials Science & Processing, Vol. 69(2), pp. 119-129 (1999).
- 70. R. Gaska, A. Zukauskas, M. S. Shur, and M. A. Khan, "Progress in III-nitride based white light sources", Proceedings of the SPIE, Vol. 4776, pp. 82-96 (2002).
- 71. R. Bauer, C. Ritter, P. Crozier, J. Menendez, J. Ren, and J. Kouvetakis, "Synthesis of ternary Si-Ge-Sn semiconductors on Si(100) via SnxGe1-x buffer layers", Appl. Phys. Lett. 83 (11), 2163-2165 (2003).
- 72. H.K. Shin, D.J. Lockwood, J.-M. Baribeau, "Strain in coherent-wave SiGe/Si superlattices", Solid State Commun., Vol. 114(10), pp. 505-510 (2000).
- 73. M. Meléndez-Lira, J. D. Lorentzen, J. Menéndez, W. Windl, N. Cave, R. Liu, J. W. Christiansen, N. D. Theodore, and J. J. Candelaria, "Microscopic carbon distribution in Si 1. yCy alloys: A Raman scattering study", Phys. Rev. B 56, pp. 3648-3650 (1997).

- 74. C.S. Cook, S. Zollner, M.R. Bauer, P. Aella, J. Kouvetakis, and J. Menendez, "Optical constants and interband transitions of Ge_{1-x}Sn_x alloys (x < 0.2) grown on Si by UHV-CVD", Thin Solid Films 455-456, pp. 217-221 (2004).
- 75. Chizmeshya, et al., "Experimental and Theoretical study of deviations from Vegards Law in the Ge_{1-x} Ge_{1-x} system", Chem. Of Matls., Vol. 15, pp. 2511-2519 (2003).
- 76. Aella, et al., "Structural and optical properties of Sn_xSi_yGe_{1-x-y} alloys", App. Phys. Lett. Vol: 84, pp. 888-890 (2004).
- 77. Roucka, et al., "Versatile buffer layer architectures based on Ge_{1-x}Sn_x alloys", Appl. Phys. Let. Vol: 86(19), pp. 191912-191914 (2005).
- 78. He, et al., "Synthesis of expitaxial Sn_xGe_{1-x} alloy films by ion-assisted molecular beam epitaxy", App. Phys. Lett., Vol. 68(5), pp. 664-666 (1996).
- 79. Pristovsek, et al., "Growth of strained gaAsSb layers on GaAs (001) by MOVPE", Journal of Crystal Growth, Vol: 276, pp. 347-353 (2005).
- 80. Wosinski, et al., "Deep levels caused by misfit dislocations in gaAsSb/GaAs heterostructures", Appl. Phys. Lett., Vol: 67(8), pp. 1131-1133.
- 81. Dvorak, et al., "300 GHz InP/GaAsSb/InP double HBTs with high current capability and BVCEO < 6V", IEEE Electron Device Letters, Vol. 22(8), pp. 361-363 (2001).
- 82. Ryu Sang-Wan, et al., "Optical characterization and determination of conduction band offset of type-II GaAsSb/InGaAs QW", Semiconductor Science and Technology, Vol: 19, pp. 1369-1372 (2004).
- 83. Dowd, et al., "Long wavelength GaAsP/GaAs/GaAsSb VCSELs on GaAs substrates for communication applications", Electronics Letters, Vol. 39(13), pp. 987-988 (2003).
- 84. Zheng, et al., "Demonstration of High-Speed staggered lineup GaAsSb-InP Unitraveling Carrier Photodiodes", IEEE Photonics Technology Letters, Vol. 17(3), pp. 651-653 (2005).
- 85. Sun, et al., "GaAsSb: a novel material for near infrared photodetectors on GaAs substrates", Selected Topics in Quantum Electronics, IEEE Journal, Vol. 8(4), pp. 817-822 (2002).
- 86. Kaniewski J., et al., "Resonant cavity enhanced InGaAs photodiodes for high speed detection of 1.55 μm infrared radiation", Proceedings of SPIE-The International Society for Optical Engineering (2005), Vol: 5783 (Pt. 1, Infrared Technology and Applications XXXI), pp. 47-56.
- 87. Kang, Y., et al., "InGaAs-on-Si single photon avalanche photodetectors", Applied Physics Letters (2004), 85(10), pp. 1668-1670.
- 88. Kim S., et al., "High Performance 0.1μm GaAs Pseudomorphic High Electron Mobility Transistors with Si Pulse-Doped Cap Layer for 77GHz Car Radar Applications", Jpn. J. App. Phys. 44, pp. 2472–2475 (2005).
- 89. Cristea P., et al., "Growth of AlAsSb/InGaAs MBE-layers for all-optical switches", J. Cryst. Growth 278(1-4), pp. 544-547 (2005).

- 90. Li Y.J., et al., "Improved characteristics of metamorphic InAlAs/InGaAs high electron mobility transistor with symmetric graded In_xGa_{1-x}As channel", J. of Vac. Sci. Tech. B **22**(5), pp. 2429-2433 (2004).
- 91. Mao R. W., et al., "Fabrication of 1.55 μm Si-Based Resonant Cavity Enhanced Photodetectors Using Sol-Gel Bonding" IEEE Photonics Technology Letters 16(8), pp. 1930-1932 (2004).
- 92. Pauchard A., et al., "Wafer-bonded InGaAs/silicon avalanche photodiodes", Proceedings of SPIE-The International Society for Optical Engineering, Vol. 4650 (Photodetector Materials and Devices VII), pp. 37-43 (2002).
- 93. Takano Y., et al., "Residual strain and threading dislocation density in InGaAs layers grown on Si substrates by metalorganic vapor-phase epitaxy", Appl. Phys. Lett., Vol. 78(1), pp. 93-95 (2001).
- 94. Chriqui Y., et al., "Long wavelength room temperature laser operation of a strained InGaAs/GaAs quantum well structure monolithically grown by metalorganic chemical vapour deposition on a low energy-plasma enhanced chemical vapour deposition graded misoriented Ge/Si virtual substrate", Optical Materials, Vol: 27, pp. 846–850 (2005).
- 95. V.K. Yang, et al., "Comparison of luminescent efficiency of InGaAs quantum well structures grown on Si, GaAs, Ge, and SiGe virtual substrate", J. Appl. Phys., Vol. 93(9), pp. 5095-5102 (2003).
- 96. Shiu Fai Li, et al., "Scaling law for the compositional dependence of Raman frequencies in GeSi and SnGe alloys, Appl. Phys. Lett., Vol. 84, pp. 867-869 (2004).
- 97. Cook, et al., "Optical constants and interband transitions of Ge1-xSnx alloys (x<0.2) grown on Si", In press Thin Solid Films, Vol: 455-456, pp. 217-221 (2004).
- 98. Menendez, et al., "Type-I Ge/Ge_{1-x-y} Si _xSn_y strained-layer heterostructures with a direct Ge band gap, Appl. Phys. Lett., Vol: 85(7), pp. 1175-1177 (2004).
- 99. Park, et al., "Observation olarge stark shift in Ge_xSi_{1-x} /Si multiple quantum wells", J. Cac. Sci. Technol. B, Vol: 8(2), pp. 217-220 (1990).
- 100. Baier, et la., "Type-II band alignment in Si/Sil_xGex quantum wells from photoluminescence line shifts due to optically induced band-bending effects: Experiment and theory", Phys. Rev. B, Vol: 50(20), pp. 15191-15196 (1994).
- 101. Temkin, et al., "GexSi1-x strained-layer superlattice waveguide photodetectors operating near 1.3 _m", Appl. Phys. Lett., Vol: 48(15), pp. 963-965 (1986).
- 102. Li, et al., (2000), "Observation of quantum-confined stark shifts in SiGe/Si type-I multiple quantum wells", J. Appl. Phys. Vol. 87(11), pp. 8195-8197.
- 103. Miyake, et al., "Absence of stark shift in strained Si1-xGex/Si type-I quantum wells", Appl. Phys. Lett., Vol; 68(15), pp. 2097-2099 (1996).
- 104. O. Qasaimeh, et al., (1997), "Electroabsorption and Electrooptic Effectin SiGe-Si Quantum Wells: Realization of Low-Voltage Optical Modulators", IIEEE J. Quantum Electron, Vol. 33 (99), pp. 1532-1536.

- 105. Jaros, "Simple analytic model for heterojunction band offsets", Phys. Rev. B. Vol. 37(12), pp. 7112-7114 (1988).
- 106. Tolle, et al., "Epitaxial growth of group III nitrides on Si substrates via a reflective lattice-matched zirconium diboride buffer layer", Appl. Phys. Lett., Vol. 82(15), pp. 2398-2400 (2003).
- 107. Hu, et al., "Nucleation and growth of epitaxial ZrB₂(0001) on Si(111)", Journal of Crystal Growth, Vol: 267, (2004) pp. 554-563.
- 108. Tolle, et al., "Epitaxial growth of AlGaN by metalorganic chemical vapor deposition on Si(111) via a ZrB₂(0001) buffer layer", Appl. Phys. Lett, Vol. 84(18), pp. 3510-3512 (2004).
- 109. R.F.C. Farrow et al., "The growth of metastable, heteroepitaxial films of α-Sn by metal beam epitaxy", J. Cryst. Growth, Vol: 54, pp. 507-518 (1981).
- 110. G Becker et al., "Notiz uber eine einfache methode zur darstellung von tris (trimethylsilyl)phosphin", Chem. Ber., Vol. 108, pp. 2484-2485 (1975).
- 111. H. Schumann et al., "Trimethylsilyldiphosphane", J. Organomet. Chem., Vol. 88, pp. C13-C16, (1975).
- 112. H. Schumann et al., "Eine einfache Methode zur Synthese von Organosilylphosphinen", J. Organometalic Chem. Vol: 55, pp. 257-260 (1973).
- 113. H. Burger et al., "Schwingungsspektren und Kraftkonstanten von Silyl-und Trimethylsilyl-Verbindungen von Elementen der 5. Gruppe", Spectrochimica. Acta, Vol. 26A, pp. 671-683, (1970).
- 114. H.J. Breunig et al., "Crystal structures of tris (trimethylsilyl) stibine and pentacarbonyl(tris(trimethylsilyl) stibine) chromium", Journal of Organometallic Chemistry, Vol. 608 (2000), pp. 60-62.
- 115. L. Rosch et al., "Darstellung und untersuchung von phosphinkomplexen mit aluminiumtrichlorid und aluminiumtriathyl", Anorg. Allg. Chem, Vol. 426, pp. 99-106 (1976).
- 116. H. Schumann et al., "Substituentenaustauschreaktionene zwischen Tris (Trimethylsilyl) phosphan und Trimethylgermanium- und Trimethylzinnchlorid", Z. Naturforsch., Vol:29B, 608-610 (1974).
- 117. H. Schumann et al., "Darstellung und Schwingungsspektren von Trimethylsilyl-, Trimethylgermyl-und Trimethyl-stannyl-tert-butylphosphinen", Chem. Ber., Vol. 107, pp. 854-869 (1974).
- 118. A.V.G. Engelhardt et al. Naturforsch., "Uber die IR-, Raman-und ³¹P-NMR-Spektren ciniger phosphinderivate von germanium und zinn", B: Anorg. Chem., Org. Chem., Biochem, Biophys., Biol. Vol: 22b, pp. 352-353 (1967).
- 119. J.W. Anderson, J.E. Drake, "Trimethylstannylarsines", Canadian Journal of Chemistry, Vol. 49, pp. 2524-2528 (1971).
- 120. E. Niecke, H. Westermann, "A simple method for the preparation of Tris (trimethylsilyl) phosphine", Synthesis, (1988), page 330.

121. H.J. Breunig et al., Naturforsch., "Tetrakis (Trimethylsilyl) distiban", Z. Naturforsch., Vol. 34B, pp. 926-928 (1979).

122. H.J. Breunig, "Synthese von Tetrakis (trimethylgermyl)-Distaiban", Z. Naturforsch., Vol. 33B, pp. 244-245, (1978).

123. Spanier, et al., "The Synthesis of Germylsilane from Silane and German in a Silent Electric Discharge", Inorganic Chemistry, (1962), pp. 215-216.

Commonly owned Co-Pending Applications:

Date: $\frac{1}{3006}$

1. Kouvetakis, et al., U.S. Patent Application No. 10/559,980, Filed on December 8, 2005.

2. Kouvetakis, et al., U.S. Patent Application No. 10/559,979, Filed on December 8, 2005.

In accordance with MPEP Sections 609 and 707.05(b), it is requested the document cited (including any cited in applicant's specification which is not repeated on the attached Form PTO-1449) be given thorough consideration and that it be cited of record in the prosecution history of the present application by initialing on Form PTO-1449. Such initialing is requested even if the Examiner does not consider a cited document to be sufficiently pertinent to use in a rejection, or otherwise does not consider it to be prior art for any reason, or even if the Examiner does not believe that the guidelines for citation have been fully complied with. This is requested so that each document becomes listed on the face of the patent issuing on the present application.

By:

David'S. Harper

Respectfully submitted,

Reg. No. 42,636

McDonnell, Boehnen Hulbert & Berghoff LLP

300 South Wacker Drive, Suite #3100

Chicago, IL 60606

FORM PTO-1449 (Rev. 2-32) O P P P P P P P P P P P P P P P P P P	U.S. Department of Commerce Patent and Trademark Office INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use several sheets if necessary)	Atty. Docket No. 05-720-US2	Serial No. 10/559,981
		Applicant: Kouvetakis, et al.	
		Filing Date:	Group : 2812

U.S. PATENT DOCUMENTS

Examiner Initial		Document Number	Date	Name	Class	Subclass	Filing Date if Appropriate
	1.	US 2003-0157787 A1	August 21, 2003	Murthy, et al.			
N.	2.	US 2006-0134895 A1	June 22, 2006	Kouvetakis, et al.			
	3.	US 2006-0236923 A1	October 26, 2006	Kouvetakis, et al.			
	4.	US 2006-0163612-A1	July 27, 2006	Kouvetakis, et al.			
	5.	6,911,084	June 28, 2005	Kouvetakis, et al.			
	6.	5,532,183	July 2, 1996	Sugawara, et al.			
	7.	5,198,387	March 30, 1993	Tang, et al.			
	8.	5,714,415	February 3, 1998	Oguro			
	9.	6,410,434	June 25, 2002	Mani			
	10.	6,723,621	April 20, 2004	Cordone, et al.			
	11.	6,897,471	May 24, 2005	Soref, et al.			
	12.	6,441,716	August 27, 2002	Doppalapudi, et al.			

EXAMINER	DATE CONSIDERED

FORM PTO-1449 (Rev. 2-32)	U.S. Department of Commerce Patent and Trademark Office	Atty. Docket No.	Serial No.
	INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use several sheets if necessary)	05-720-US2	10/559,981
		Applicant:	
		Kouvetakis, et al.	
		Filing Date:	Group:
		December 8, 2005	2812

FOREIGN PATENT DOCUMENTS

Examiner Initial		Document Number	Date	Country	Class	Subclass	Translatio	
							Yes	No
	13.	WO 2005/001902	January 6, 2005	PCT				
	14.	WO 2004/114368	December 29, 2004	PCT				
	15.	WO 2005/015609	February 17, 2005	PCT				
	16.	WO 2003/033781	April 24, 2003	PCT				
	17.	WO 2006/009171	January 26, 2006	PCT				

OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages, Etc).

Examiner Initial		
	18.	D. W. Jenkins, "Electronic properties of metastable GexSn1-x alloys", Phys. Rev. B., Vol. 36, pp. 7994-8001 (1987).
	19.	K. A. Mader, "Band structure and instability of GexSn1-x alloys", Solid State Commun., Vol. 69 (12), pp. 1123-1126 (1989).
	20.	G. He and H.A. Atwater, "Interband transitions in Sn _x Ge _{1-x} Alloys", Phys. Rev. Lett., Vol. 79(10), pp. 1937-1940 (1997).

EXAMINER	DATE CONSIDERED

FORM PTO-1449 (Rev. 2-32)	U.S. Department of Commerce Patent and Trademark Office	Atty. Docket No.	Serial No.
		05-720-US2	10/559,981
	INFORMATION DISCLOSURE STATEMENT BY APPLICANT		
	(Use several sheets if necessary)		
		Applicant:	
		Kouvetakis, et al.	
		Filing Date:	Group:
		December 8, 2005	2812

21.	O. Gurdal, R. Desjardins, J. R. A. Carlsson, N. Taylor, H. H. Radamson, JE. Sundgren, and J. E. Greene, "Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1-x Snx (x ≤0.26) alloys", J. Appl. Phys., Vol: 83(1), pp. 162-170 (1998).
22.	M. T. Asom, E. A. Fitzgerald, A. R. Kortan, B. Spear, and L. C. Kimerling, "Epitaxial Growth of SnGe Alloys", Appl. Phys. Lett., Vol: 55(6), pp. 578-580 (1989).
23.	H. Höchst, M. A. Engelhardt, and D. W. Niles, "The MBE growth and electronic structure of α -Sn _x Ge _{1-x} alloys", SPIE Proceedings, Vol: 1106, pp. 165-171 (1989)(ABSTRACT).
24.	C. A. Hoffman, et al., "Three-Band transport and cyclotron resonance in alpha –Sn and alpha –Sn _{1-x} Ge _x grown by molecular-beam epitaxy", Phys. Rev. B. Vol: 40(17): pp. 11693-11700, (1989).
25.	W. Wegscheider, K. Eberl, U. Menczigar, and G. Abstreiter, "Single-crystal Sn/Ge superlattices on Ge substrates: Growth and structural properties", Appl. Phys. Lett., Vol. 57(9), pp. 875-877 (1990).
26.	O. Gurdal, et al., "Growth of metastable Ge _{1-x} Sn _x /Ge stratined layer superlattices on Ge(001)2x1 by temperature-modulated molecular beam epitaxy", Appl. Phys. Lett., Vol: 67(7), pp. 956-958 (1995).
27.	P. R. Pukite, A. Harwit, and S. S. Iyer, "Molecular beam epitaxy of metastable, diamond structure Sn _x Ge _{1-x} alloys", Appl. Phys. Lett. 54(21), pp. 2142-2144 (1989).
28.	M. Bauer, et al., "Ge-Sn semiconductors for band-gap and lattice engineering", Appl. Phys. Lett. 81(16), pp. 2992-2994 (2002).
29.	L. Bellaiche, SH. Wei and Z. Zunger, "Localization and percolation in semiconductor alloys: GaAsN vs GaAsP", Phys. Rev. B 54, 17568-17576 (1996).
30.	J. Taraci, J. Tolle, M. R. M. Cartney, J. Menendez, M. A. Santana, D. J. Smith, and J. Kouvetakis, "Simple chemical routes to diamond-cubic germanium-tin alloys", App. Phys. Lett. 78(23), pp. 3607-3609 (2001).

EXAMINER	DATE CONSIDERED

FORM PTO-1449 (Rev. 2-32)	U.S. Department of Commerc Patent and Trademark Office	e	Serial No.
	INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use several sheets if necessary)	05-720-US2	10/559,981
		Applicant: Kouvetakis, et al.	
		Filing Date: December 8, 2005	Group: 2812

31.	J. Taraci, S. Zollner, M. R. McCartney, J. Menéndez, M. A. Santana, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, "Synthesis of silicon-based infrared semiconductors in the Ge-Sn system using molecular chemistry methods", J. of the Am. Chem. Soc., Col: 123(44), pp. 10980-10987 (2001).
32.	V. Atluri, N. Herbots, D. Dagel, H. Jacobsson, M. Johnson, R. Carpio, and B. Fowler, "Comparison and reproducibility of H-passivation of Si(1000) with HF in methanol, ethanol, isopropanol and water by IBA, TMAFM, and FTIR", Mater. Res. Soc. Symp. Proc. 477, pp. 281-292 (1997) (ABSTRACT).
33.	Z. Charafi and N. Bouarissa, "The effect of the violation of Vegard's law on the optical bowing in Si _{1-x} Ge _x alloys", Phys. Lett. A. Vol: 234, pp. 493-497 (1997).
34.	H. Kajiyama, S-I. Muramatsu, T. Shimada, and Y. Nishino, "Bond-length relaxation in crystalline Si ₁ . _x Ge _x alloys: An extended x-ray-absorption fine-structure study", Phys. Rev. B Vol. 45(24), pp. 14005-14010 (1992).
35.	F. Cerdeira, W. Dreyrodt, and M. Cardona, "Resonant raman scattering in germanium", Solid State Commun., Vol: 10, 591-595 (1972).
36.	M.M. McGibbon, N.D. Browning, M.F. Chisholm, A.J. McGibbon, S.J. Pennycook, V. Ravikumar, V.P. Dravid, "Direct determination of grain boundary atomic structure in SrTio ₃ " Science, Vol: 266, pp. 102-104 (1994).
37.	P. Mock, T. Topuria, N. D. Browning, G. R. Booker, N. J. Mason, R. J. Nicholas, M. Dobrowolska, S. Lee, and J. K. Furdyna, "Internal self-ordering in In(Sb,As), (In,Ga) Sb, and (Cd,Zn,Mn) Se nanoagglomerates/quantum dots", Appl. Phys. Lett., Vol. 79(7), pp. 946-948. (2001).
38.	D.M. Ceperley, B.J. Alder, "Ground State of the Electron Gas by Stochastic Method", Phys. Rev. Lett., Vol. 45, pp. 566-569 (1980).

EXAMINER	DATE CONSIDERED

Sheet 5 of 13

FORM PTO-1449 (Rev. 2-32)	U.S. Department of Con Patent and Trademark INFORMATION DISCLOSURE STATEMENT BY APPLICANT	Office	tty. Docket No. 5-720-US2	Serial No. 10/559,981
	(Use several sheets if necessary)	Ko Fi	pplicant: ouvetakis, et al. iling Date: ecember 8, 2005	Group: 2812

39.	T G. Kresse and J. Hafner, "Ab initio molecular dynamics for liquid metals", Phys. Rev. B47(1), pp. R558-561 (1993).
40.	G. Kresse and J. Hafner, "Ab ignition molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium", Phys. Rev. B49(20), pp. 14251-14269 (1994).
41.	G. Kresse, J. Furthmuller, "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set", Comput. Mater. Sci. Vol: 6, pp. 15-50 (1996).
42.	G. Kresse, J. Furthmuller, "Efficient iterative schemes for ab initio total-energy calculations using a planewave basis set", Phys. Rev. B54(16), pp. 11169-11186 (1996).
43.	R. A. Soref and L. Friedman, "Direct-gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures", Superlattices and Microstructures, Vol: 14(2), 189-193 (1993).
44.	M. R. Bauer, J. Kouvetakis, D.J. Smith and J. Menendez, "Tunable band structure in diamond cubic tin germanium alloys grown on Si", Solid State Commun., Vol: 127, 355-359 (2003).
45.	M.R. Bauer, P. Crozier, A.V.G Chizmeshya and J. D. Smith and J. Kouvetakis, "GeSn superstructured materials for Si-based optoelectronics", Appl. Phys. Lett. Vol: 83, pp. 3489-3491 (2003).
46.	M. Bauer et al., "Tunable band structure in diamond-cubic tin-germanium alloys grown on silicon substrates", Solid State Communications, Vol. 127 (2003), pp. 355-359.
47.	S. Cradock, E. A. V. Ebsorth, G. Davidson, L. A. Woodard, "Studies in Germyl Chemistry.3. Trigermylphosphine", J. Chem. Soc. A, 8, pp. 1229-1233 (1967).
48.	D. W. H. Rankin, A. G. E. Robiet, G. M. Sheldrick, 5 Beagley, T. G. Hewit, "An electron Diffraction of the Molecular Structures of Trigermylphosphine and Trisilylstibine in the Gas Phase" J. Inorg. Nucl. Chem., 31, pp. 2351-2357 (1969).

EXAMINER	DATE CONSIDERED

Sheet 6 of 13

FORM PTO-1449 (Rev. 2-32)	U.S. Department of Commerce Patent and Trademark Office	Atty. Docket No. 05-720-US2	Serial No. 10/559,981
	INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use several sheets if necessary)		
		Applicant: Kouvetakis, et al.	
		Filing Date: December 8, 2005	Group : 2812

·		
	49.	E. A. V. Ebsworth, D. J. Hutchison, D. W. H. Rankin, "The Preparation, properties, and Gas-Phase Molecular-Structure of 1,1- Difluoro-2,2-Digermylbiphosphone",J. Chem. Res., Synop, 12, pp. 393, (1980).
	50.	E. A. V. Ebsworth, D. W. H. Rankin, G. M. Sheldrick, "Preparation and Properties of Trigermyl-arsine and –stibine", J. Chem. Soc. A, 11, pp. 2828-2830 (1968).
	51.	D. E. Wingeleth, A. D. Norman, "Redistribution of primary silyl-and germylphosphines; synthesis of trisilyl-and trigermylphosphines", Phosphorus Sulfur, 39(1-2), pp. 123-129, (1988).
	52.	G. A. Forsyth, D. W. H. Rankin, H. E. Robertson, "Determination of the molecular structure of Tris (Trimethylsilyl) phosphine in the gas phase by electron diffraction, supported by molecular mechanics calculations", J. Mol. Struct., Vol. 239, pp. 209-217, (1990).
	53.	H. Schumann, H. J. Kroth, "NMR-Untersuchungen an Organoelemmenten(IVb)-Phosphinen, 2. Substituenteneinflusse auf die P-chemischen Verschiebungen von Trimethylelement (IVb)-phosphinen", Z. Naturforsch., B: Anorg. Chem., Chem. 32B, pp. 513-515, (1977).
	54.	G. Becker, H. Freudenblum, O. Mundt, M. Reti, M. Sachs, Synthetic Methods of Organometallic and Inorganic Chemistry, 3, pp. 193-198 (1996).
	55.	S. Schulz, M. Nieger, "Synthesis and characterization of organogallium-antimony compounds", J. of Organomet. Chem., Vol: 570, pp. 275-278 (1998).
	56.	H. Schumann, U. Frank, W. W. Du Mont, F. Marschner, "Organometallarsine", J. Organomet. Chem, Vol. 222, pp. 217-225 (1981).
	57.	M. Ates, H. J. Breunig, M. Denker, "Formation of (Me ₃ M) ₃ Sb (M = Ge, Sn, Pb) and (Me ₃ M) ₄ Sb ₂ (M = Pb) by reaction of (Me ₃ Si) ₃ Sb with Me ₃ MCI", Phosphous, Sulfur Silicon Relate. Elem., Vol. 102, pp. 287-289 (1995).
	58.	H. Schumann, A. Roth, O. Stelzer, M. Schmidt, "Pyramidenformige Molekule Mit Dem Atomskelett", Inorg. Nucl. Chem. Lett. 2, pp. 311-312, (1986).

EXAMINER	DATE CONSIDERED

Sheet 7 of 13

FORM PTO-1449 (Rev. 2-32)		U.S. Department of Commerce Patent and Trademark Office	Atty. Docket No. 05-720-US2	Serial No. 10/559,981
	INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use several sheets if necessary)			
			Applicant: Kouvetakis, et al.	
			Filing Date: December 8, 2005	Group: 2812

59.	G. Davidson, L. A. Woodward, E. A. V. Ebsworth, G. M. Sheldrick, "The vibrational spectra and structure of trisilylarsine and trisilylstibine", Spectrochim. Acta, Part A, Vol. 23, pp. 2609-2616, (1967).
60.	B. Beagley, A. G. Robiette, G. M. Sheldrick, "The Molecular Structures of (SiH3)3P and (SiH3)3As", Chem. Commun, 12, pp. 601-602 (1967).
61.	A. Blake, E. A. V. Ebsworth, S. G. D. Henderson, "Structure of trisilylphosphine, P(SiH ₃) _x , at 100 K", Acta Crystallogr., Sect. C: Cryst. Struct. Commun, C47, pp. 486-489, (1991).
62.	H. Siebert, J. Eints, "Neuvermessung des schwingungsspektrums von trisilylphosphin", J. Mol. Struct. Vol: 4, pp. 23-28, (1969).
63.	D. C. McKean, "On the spectroscopic evidence for geometry in (SiH ₃) ₃ P and (SiH ₃) ₃ As", Spectrochim. Acta, Part A, Vol: 24A, pp. 1253-1254 (1968).
64.	J. E. Drake, J. Simpson, "Reactions of Monosilylarsine with Some Boron Lewis Acids and the Reaction of Monosilylphosphine with Boron Tribromide", J. Chem. Soc. A. 5, pp. 1039-1043 (1968).
65.	E. H. Parker and T. E. Whall, "SiGe heterostructure CMOS circuits and applications", Solid State Electronics 43(8), pp. 1497-1506 (1999).
66.	R. A. Soref and C. H. Perry, "Predicted band gap of the new semiconductor SiGeSn", J. Appl. Phys. 69, pp. 539-541 (1991).
67.	K. A. Johnson and N. W. Ashcroft, "Electronic structure of ordered silicon alloys: Direct-gap systems", Phys. Rev. B 54, pp. 14480-14486 (1996).
68.	A. R. Kost, in Infrared-Applications-of-Semiconductors-II. Symposium, (Mater. Res. Soc., 1998). pp. 3-10 (ABSTRACT).
69.	A. W. Bett, F. Dimroth, G. Stollwerck, and O. V. Sulima, "III-V compounds for solar cell applications", Appl. Phys. A: materials Science & Processing, Vol: 69(2), pp. 119-129 (1999).

EXAMINER	DATE CONSIDERED

Sheet 8 of 13

FORM PTO-1449 (Rev. 2-32)	U.S. Department of Commerce Patent and Trademark Office	Atty. Docket No. 05-720-US2	Serial No. 10/559,981
STATEMEN	INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use several sheets if necessary)		
·	,	Applicant: Kouvetakis, et al.	
		Filing Date: December 8, 2005	Group: 2812

70.	R. Gaska, A. Zukauskas, M. S. Shur, and M. A. Khan, "Progress in III-nitride based white light sources", Proceedings of the SPIE, Vol. 4776, pp. 82-96 (2002).
71.	R. Bauer, C. Ritter, P. Crozier, J. Menendez, J. Ren, and J. Kouvetakis, "Synthesis of ternary Si-Ge-Sn semiconductors on Si(100) via SnxGe1-x buffer layers", Appl. Phys. Lett. 83 (11), 2163-2165 (2003).
72.	H.K. Shin, D.J. Lockwood, JM. Baribeau, "Strain in coherent-wave SiGe/Si superlattices", Solid State Commun., Vol: 114(10), pp. 505-510 (2000).
73.	M. Meléndez-Lira, J. D. Lorentzen, J. Menéndez, W. Windl, N. Cave, R. Liu, J. W. Christiansen, N. D. Theodore, and J. J. Candelaria, "Microscopic carbon distribution in Si 1-yCy alloys: A Raman scattering study", Phys. Rev. B 56, pp. 3648-3650 (1997).
74.	C.S. Cook, S. Zollner, M.R. Bauer, P. Aella, J. Kouvetakis, and J. Menendez, "Optical constants and interband transitions of Ge _{1-x} Sn _x alloys (x < 0.2) grown on Si by UHV-CVD", Thin Solid Films 455-456, pp. 217-221 (2004).
75.	Chizmeshya, et al., "Experimental and Theoretical study of deviations from Vegards Law in the Ge _{1-x} Ge _{1-x} system", Chem. Of Matls., Vol: 15, pp. 2511-2519 (2003).
76.	Aella, et al., "Structural and optical properties of Sn _x Si _y Ge _{1-x-y} alloys", App. Phys. Lett. Vol: 84, pp. 888-890 (2004).
77.	Roucka, et al., "Versatile buffer layer architectures based on $Ge_{1-x}Sn_x$ alloys", Appl. Phys. Let. Vol: 86(19), pp. 191912-191914 (2005).
78.	He, et al., "Synthesis of expitaxial Sn _x Ge _{1-x} alloy films by ion-assisted molecular beam epitaxy", App. Phys. Lett., Vol: 68(5), pp. 664-666 (1996). Pristovsek, et al., "Growth of strained gaAsSb layers on GaAs (001) by MOVPE", Journal of Crystal Growth, Vol: 276, pp. 347-353 (2005).
79.	Pristovsek, et al., "Growth of strained gaAsSb layers on GaAs (001) by MOVPE", Journal of Crystal Growth, Vol: 276, pp. 347-353 (2005).

EXAMINER	DATE CONSIDERED

Sheet 9 of 13

FORM PTO-1449 (Rev. 2-32)	U.S. Department of Commerce Patent and Trademark Office		Serial No. 10/559,981
	INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use several sheets if necessary)	03-720-032	10/339,361
		Applicant: Kouvetakis, et al.	
		Filing Date: December 8, 2005	Group : 2812

80.	Wosinski, et al., "Deep levels caused by misfit dislocations in gaAsSb/GaAs heterostructures", Appl. Phys. Lett., Vol: 67(8), pp. 1131-1133.
81.	Dvorak, et al., "300 GHz InP/GaAsSb/InP double HBTs with high current capability and BVCEO < 6V", IEEE Electron Device Letters, Vol: 22(8), pp. 361-363 (2001).
82.	Ryu Sang-Wan, et al., "Optical characterization and determination of conduction band offset of type-II GaAsSb/InGaAs QW", Semiconductor Science and Technology, Vol: 19, pp. 1369-1372 (2004).
83.	Dowd, et al., "Long wavelength GaAsP/GaAs/GaAsSb VCSELs on GaAs substrates for communication applications", Electronics Letters, Vol. 39(13), pp. 987-988 (2003).
84.	Zheng, et al., "Demonstration of High-Speed staggered lineup GaAsSb-InP Unitraveling Carrier Photodiodes", IEEE Photonics Technology Letters, Vol. 17(3), pp. 651-653 (2005).
85.	Sun, et al., "GaAsSb: a novel material for near infrared photodetectors on GaAs substrates", Selected Topics in Quantum Electronics, IEEE Journal, Vol. 8(4), pp. 817-822 (2002).
86.	Kaniewski J., et al., "Resonant cavity enhanced InGaAs photodiodes for high speed detection of 1.55 μ m infrared radiation", Proceedings of SPIE-The International Society for Optical Engineering (2005), Vol: 5783 (Pt. 1, Infrared Technology and Applications XXXI), pp. 47-56.
87.	Kang, Y., et al., "InGaAs-on-Si single photon avalanche photodetectors", Applied Physics Letters (2004), 85(10), pp. 1668-1670.
88.	Kim S., et al., "High Performance 0.1μm GaAs Pseudomorphic High Electron Mobility Transistors with Si Pulse-Doped Cap Layer for 77GHz Car Radar Applications", Jpn. J. App. Phys. 44 , pp. 2472–2475 (2005).
89.	Cristea P., et al., "Growth of AlAsSb/InGaAs MBE-layers for all-optical switches", J. Cryst. Growth 278(1-4), pp. 544-547 (2005).
90.	Li Y.J., et al., "Improved characteristics of metamorphic InAlAs/InGaAs high electron mobility transistor with symmetric graded In _x Ga _{1-x} As channel", J. of Vac. Sci. Tech. B 22 (5), pp. 2429-2433 (2004).

EXAMINER	DATE CONSIDERED

Sheet 10 of 13

FORM PTO-1449 (Rev. 2-32)	U.S. Department of Commerce Patent and Trademark Office		Serial No. 10/559,981
	INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use several sheets if necessary)		
	,	Applicant: Kouvetakis, et al.	
		Filing Date:	Group:
		December 8, 2005	2812

91.	Mao R. W., et al., "Fabrication of 1.55 μ m Si-Based Resonant Cavity Enhanced Photodetectors Using Sol-Gel Bonding" IEEE Photonics Technology Letters 16(8) , pp. 1930-1932 (2004).
92.	Pauchard A., et al., "Wafer-bonded InGaAs/silicon avalanche photodiodes", Proceedings of SPIE-The International Society for Optical Engineering, Vol. 4650 (Photodetector Materials and Devices VII), pp. 37-43 (2002).
93.	Takano Y., et al., "Residual strain and threading dislocation density in InGaAs layers grown on Si substrates by metalorganic vapor-phase epitaxy", Appl. Phys. Lett., Vol: 78 (1), pp. 93-95 (2001).
94.	Chriqui Y., et al., "Long wavelength room temperature laser operation of a strained InGaAs/GaAs quantum well structure monolithically grown by metalorganic chemical vapour deposition on a low energy-plasma enhanced chemical vapour deposition graded misoriented Ge/Si virtual substrate", Optical Materials, Vol: 27, pp. 846–850 (2005).
95.	V.K. Yang, et al., "Comparison of luminescent efficiency of InGaAs quantum well structures grown on Si, GaAs, Ge, and SiGe virtual substrate", J. Appl. Phys., Vol: 93 (9), pp. 5095-5102 (2003).
96.	Shiu Fai Li, et al., "Scaling law for the compositional dependence of Raman frequencies in GeSi and SnGe alloys, Appl. Phys. Lett., Vol: 84, pp. 867-869 (2004).
97.	Cook, et al., "Optical constants and interband transitions of Ge1-xSnx alloys (x<0.2) grown on Si", In press Thin Solid Films, Vol: 455-456, pp. 217-221 (2004).
98.	Menendez, et al., "Type-I Ge/Ge _{1-x-y} Si _x Sn _y strained-layer heterostructures with a direct Ge band gap, Appl. Phys. Lett., Vol: 85(7), pp. 1175-1177 (2004).
99.	Park, et al., "Observation olarge stark shift in Ge _x Si _{1-x} /Si multiple quantum wells", J. Cac. Sci. Technol. B, Vol: 8(2), pp. 217-220 (1990).
100.	Baier, et la., "Type-II band alignment in Si/Sil_xGex quantum wells from photoluminescence line shifts due to optically induced band-bending effects: Experiment and theory", Phys. Rev. B, Vol. 50(20), pp. 15191-15196 (1994).

EXAMINER	DATE CONSIDERED

Sheet 11 of 13

FORM PTO-1449 (Rev. 2-32)	U.S. Department of Com Patent and Trademark	Office	Serial No.
		05-720-US2	10/559,981
	INFORMATION DISCLOSURE STATEMENT BY APPLICANT		
	(Use several sheets if necessary)		
		Applicant:	
		Kouvetakis, et al.	
		Filing Date:	Group:
		December 8, 2005	2812

101.	Temkin, et al., "GexSi1-x strained-layer superlattice waveguide photodetectors operating near 1.3 _m", Appl. Phys. Lett., Vol: 48(15), pp. 963-965 (1986).
102.	Li, et al., (2000), "Observation of quantum-confined stark shifts in SiGe/Si type-I multiple quantum wells", J. Appl. Phys. Vol: 87(11), pp. 8195-8197.
103.	Miyake, et al., "Absence of stark shift in strained Si1-xGex/Si type-I quantum wells", Appl. Phys. Lett., Vol; 68(15), pp. 2097-2099 (1996).
104.	O. Qasaimeh, et al., (1997), "Electroabsorption and Electrooptic Effectin SiGe-Si Quantum Wells: Realization of Low-Voltage Optical Modulators", IIEEE J. Quantum Electron, Vol: 33 (99), pp. 1532-1536.
105.	Jaros, "Simple analytic model for heterojunction band offsets", Phys. Rev. B. Vol. 37(12), pp. 7112-7114 (1988).
106.	Tolle, et al., "Epitaxial growth of group III nitrides on Si substrates via a reflective lattice-matched zirconium diboride buffer layer", Appl. Phys. Lett., Vol. 82(15), pp. 2398-2400 (2003).
107.	Hu, et al., "Nucleation and growth of epitaxial ZrB₂(0001) on Si(111)", Journal of Crystal Growth, Vol: 267, (2004) pp. 554-563.
108.	Tolle, et al., "Epitaxial growth of AlGaN by metalorganic chemical vapor deposition on Si(111) via a ZrB ₂ (0001) buffer layer", Appl. Phys. Lett, Vol: 84(18), pp. 3510-3512 (2004).
109.	R.F.C. Farrow et al., "The growth of metastable, heteroepitaxial films of α -Sn by metal beam epitaxy", J. Cryst. Growth, Vol. 54, pp. 507-518 (1981).
110.	G Becker et al., "Notiz uber eine einfache methode zur darstellung von tris (trimethylsilyl)phosphin", Chem. Ber., Vol: 108, pp. 2484-2485 (1975).
111.	H. Schumann et al., "Trimethylsilyldiphosphane", J. Organomet. Chem., Vol. 88, pp. C13-C16, (1975).

EXAMINER	DATE CONSIDERED

Sheet 12 of 13

FORM PTO-1449 (Rev. 2-32)	l	J.S. Department of Commerce Patent and Trademark Office	Atty. Docket No.	Serial No.
			05-720-US2	10/559,981
	INFORMATION DISCLOS		Z	
	(Use several sheets if nece	essary)		
			Applicant:	
		6 14	Kouvetakis, et al.	
			Filing Date:	Group:
			December 8, 2005	2812

112.	H. Schumann et al., "Eine einfache Methode zur Synthese von Organosilylphosphinen", J. Organometalic Chem. Vol: 55, pp. 257-260 (1973).
113.	H. Burger et al., "Schwingungsspektren und Kraftkonstanten von Silyl-und Trimethylsilyl-Verbindungen von Elementen der 5. Gruppe", Spectrochimica. Acta, Vol: 26A, pp. 671-683, (1970).
114.	H.J. Breunig et al., "Crystal structures of tris (trimethylsilyl) stibine and pentacarbonyl(tris(trimethylsilyl) stibine) chromium", Journal of Organometallic Chemistry, Vol: 608 (2000), pp. 60-62.
115.	L. Rosch et al., "Darstellung und untersuchung von phosphinkomplexen mit aluminiumtrichlorid und aluminiumtriathyl", Anorg. Allg. Chem, Vol: 426, pp. 99-106 (1976).
116.	H. Schumann et al., "Substituentenaustauschreaktionene zwischen Tris (Trimethylsilyl) phosphan und Trimethylgermanium- und Trimethylzinnchlorid", Z. Naturforsch., Vol:29B, 608-610 (1974).
117.	H. Schumann et al., "Darstellung und Schwingungsspektren von Trimethylsilyl-, Trimethylgermyl-und Trimethyl-stannyl-tert-butylphosphinen", Chem. Ber., Vol: 107, pp. 854-869 (1974).
118.	A.V.G. Engelhardt et al. Naturforsch., "Uber die IR-, Raman-und ³¹ P-NMR-Spektren ciniger phosphinderivate von germanium und zinn", B: Anorg. Chem., Org. Chem., Biochem, Biophys., Biol. Vol. 22b, pp. 352-353 (1967).
119.	J.W. Anderson, J.E. Drake, "Trimethylstannylarsines", Canadian Journal of Chemistry, Vol. 49, pp. 2524-2528 (1971).
120.	E. Niecke, H. Westermann, "A simple method for the preparation of Tris (trimethylsilyl) phosphine", Synthesis, (1988), page 330.
121.	H.J. Breunig et al., Naturforsch., "Tetrakis (Trimethylsilyl) distiban", Z. Naturforsch., Vol. 34B, pp. 926- 928 (1979).
122.	H.J. Breunig, "Synthese von Tetrakis (trimethylgermyl)-Distaiban", Z. Naturforsch., Vol. 33B, pp. 244-245, (1978).
123.	Spanier, et al., "The Synthesis of Germylsilane from Silane and German in a Silent Electric Discharge", Inorganic Chemistry, (1962), pp. 215-216

EXAMINER	DATE CONSIDERED

Sheet 13 of 13

FORM PTO-1449 (Rev. 2-32)		nent of Commerce Trademark Office	Atty. Docket No. 05-720-US2	Serial No. 10/559,981
			Applicant: Kouvetakis, et al.	
			Filing Date:	Group:
			December 8, 2005	2812

COMMONLY OWNED CO-PENDING APPLICATIONS

Examiner Initial		
	1.	Kouvetakis, et al., U.S. Patent Application No. 10/559,980, Filed on December 8, 2005.
	2.	Kouvetakis, et al., U.S. Patent Application No. 10/559,979, Filed on December 8, 2005.

EXAMINER	DATE CONSIDERED