МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САНКТ- ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ РАСТИТЕЛЬНЫХ ПОЛИМЕРОВ»

ПЕРЕДАЧА ВИНТ-ГАЙКА

Учебное пособие

Санкт-Петербург 2015 УДК 621.882 (07.07) ББК 34.44я7 В 180

ПЕРЕДАЧА ВИНТ – ГАЙКА: учебное пособие / сост. В. О. Варганов, М.В. Аввакумов, М. В. Колычев, В.М. Гребенникова, В. А. Романов; СПбГТУРП. – СПб., 2015. – 57 с.

В учебном пособии изложены основные сведения о передачах винт – гайка, рассмотрены методики расчетов и примеры возможного конструктивного исполнения винтовой передачи. Приведены примеры расчета грузовых винтов и необходимые справочные материалы.

Учебное пособие предназначено для студентов направления «Технологические машины и оборудование» всех форм обучения при выполнении практических заданий и расчетно – графической работы по дисциплине «Основы проектирования».

Рецензенты:

Тихонов А.А. – д-р физ-мат. наук, профессор кафедры теоретической и прикладной механики СПбГУ;

Гаузе А.А. – канд. техн. наук, профессор, зав. кафедрой машин автоматизированных систем СПбГТУРП.

Рекомендовано к изданию Редакционно – издательским советом в качестве учебного пособия.

- © Варганов В.О., Аввакумов М.В., Колычев М.В., Гребенникова В.М., Романов В.А., 2015
- © Санкт-Петербургский государственный технологический университет растительных полимеров, 2015

ПРЕДИСЛОВИЕ

В соответствии с учебным планом при изучении дисциплины «Основы проектирования» студенты дневного отделения выполняют расчетно — графические работы, а студенты заочной формы обучения — контрольные работы. Расчетно — графическая работа является первой самостоятельной конструкторской работой студентов, способствует закреплению и углублению знаний, полученных при изучении теоретической части курса.

Объектом расчетно – графической работы является простое механическое устройство. В состав разрабатываемых узлов в качестве основной единицы входят передачи винт – гайка, которые по функциональному назначению делятся на грузовые и ходовые. В грузовых винтах используется передача винт – гайка скольжения, а в ходовых – шариковинтовые передачи. Простейшими грузовыми винтовыми передачами являются: винтовые домкраты и прессы, съемники, натяжные и нажимные приспособления, зажимные устройства различного конструктивного исполнения.

В большинстве учебных пособий расчеты передачи винт – гайка скольжения рассматриваются конспективно, что затрудняет выполнение расчетно – графических работ, практических занятий и контрольных работ.

В настоящем учебном пособии даны основные сведения о передачах винт — гайка, учтены изменения методики расчетов на прочность и износостойкость элементов винтовой передачи, приведены примеры расчета грузовых винтов домкрата и винтовой стяжки и необходимые для этого справочные материалы.

Учебное пособие отвечает образовательным стандартам третьего поколения. Содержит комплекс инженерных компетенций, касающихся проектирования и расчетов деталей машин общемашиностроительного назначения.

При подготовке учебного пособия использованы учебники по деталям машин [1, 2].

1. ПЕРЕДАЧИ ВИНТ-ГАЙКА. ОБЩИЕ СВЕДЕНИЯ

Передача винт-гайка в основном предназначена для преобразования вращательного движения в поступательное. Для преобразования поступательного движения во вращательное силовые передачи практически не используется из-за низкого КПД. В передаче используют пары винт — гайка скольжения (рис. 1а) или качения (рис. 1б) .

Рис.1. Передачи винт – гайка: а – скольжения; б – качения

Винтовые передачи можно разделить на следующие основные группы: ходовые винты для преобразования вращательного движения в поступательное; грузовые винты для перемещения грузов и передачи усилий; установочные винты, применяемые для фиксации деталей в машинах и механизмах.

Область применения передач винт-гайка достаточно обширна — от точных измерительных приборов (механизмы делительных устройств) до тяжелонагруженных нажимных устройств прокатных станов. Винтовые передачи используются в винтовых домкратах и прессах, съемниках, различного типа

стяжках, натяжных и прижимных приспособлениях, зажимных устройствах, механизмах подачи станков и т.п.

По схеме исполнения и конструктивным решениям передачи винтгайка весьма разнообразны. В подавляющем большинстве конструкций гайка неподвижная, а винт совершает вращательное и поступательное движение, но встречаются винтовые передачи, в которых вращается гайка, а винт совершает лишь поступательное движение (некоторые домкраты и прижимы, механизмы изменения вылета кранов и др.).

Достоинствами передачи винт-гайка являются возможность получения медленного поступательного движения при относительно больших частотах вращения; значительный выигрыш в силе; высокая точность перемещения; простота конструкции; малые габариты; возможность обеспечения самоторможения. К недостаткам передачи скольжения относятся большие потери на трение и соответственно сравнительно низкий КПД. Передачи качения лишены этого недостатка, но их конструкция сложнее, а стоимость выше.

2. ПЕРЕДАЧА ВИНТ-ГАЙКА СКОЛЬЖЕНИЯ

Профиль резьбы в передачах скольжения выбирают в зависимости от требований к точности перемещений, КПД и технологичности. С целью повышения КПД в передачах винт-гайка скольжения используют резьбы, имеющие пониженный приведенный коэффициент трения.

В силовых передачах скольжения при двустороннем направлении нагрузки наиболее частое применение находит стандартная трапецеидальная резьба. Требования к трапецеидальной резьбе установлены ГОСТ 9484 – 81 (профиль), ГОСТ 24738 – 81 (диаметры и шаги однозаходной резьбы), ГОСТ 24739 – 81 (диаметры, шаги и заходы многозаходной резьбы), ГОСТ 24737 – 81 (основные размеры однозаходной резьбы) (Приложение 1). Трапецеидальную резьбу в основном диапазоне диаметров выполняют с мел-

ким, средним и крупным шагами. В силовых передачах применяют в основном резьбу со средним шагом. Мелкую резьбу применяют в механизмах, где требуется повышенная точность перемещений, например в микрометрах, крупную — когда передача плохо защищена от пыли и грязи и подвержена сильному износу. Для самотормозящих передач применяют однозаходную резьбу, а для повышения скорости перемещения используют многозаходные резьбы.

Упорную резьбу применяют при больших осевых нагрузках, действующих в одном направлении. Требования к упорной резьбе установлены ГОСТ 10177 – 82 (Приложение 2).

Метрическую (треугольную) резьбу используют в передачах приборов и измерительных машин, где требуются малые перемещения с высокой точностью, а КПД не имеет существенного значения. Требования к метрической резьбе установлены ГОСТ 9150 – 2003 (профиль), ГОСТ 8724 – 2002 (диаметры и шаги), ГОСТ 16093 – 2004 (точность), ГОСТ 24705 – 2004 (основные размеры) – (Приложение 3).

В передачах винт-гайка скольжения для повышения износостойкости и снижения склонности к заеданию гайки изготавливают из материалов, обладающих антифрикционными свойствами, а материал винта должен обладать высокой твердостью. Поэтому для изготовления винтов применяют низколегированные стали 65Г, 40Х, 40ХГ с закалкой до твердости не менее 45 НКС и последующим шлифованием; стали 40ХФА, 18ХГТ с азотированием для уменьшения искажения формы и размеров винтов в результате закалки. Для тихоходных слабонагруженных винтов используют стали 30, 40, 45 и 50 ГОСТ 1050 – 88 без термической обработки. При малых скоростях вращения гайки изготавливают из малооловянной бронзы Бр.О6Ц6С3, безоловянной бронзы Бр.А9ЖЗЛ, а также из антифрикционных чугунов АЧВ – 1, АЧК – 1, или серых чугунов СЧ15 и СЧ20 ГОСТ 1412 – 85. При больших скоростях вращения используют высокооловянную бронзу Бр.О10Ф1.

3. ПЕРЕДАЧА ВИНТ-ГАЙКА КАЧЕНИЯ

Шариковая винтовая передача состоит из винта и гайки с нарезанными винтовыми канавками криволинейного профиля, служащими дорожками для шариков или роликов. Шариковинтовая передача предназначена для преобразования вращательного движения в поступательное. В качестве ведущего звена используют как винт, так и гайку. В ходовых винтах наиболее широко применяют винтовые передачи с шариками (ШВП).

Достоинства шариковинтовой передачи: сравнительно высокий КПД (\approx 0,9); высокая осевая несущая способность при малых габаритах; равномерное поступательное перемещение с высокой точностью; значительный ресурс работы.

Недостатки: сложность конструкции гайки; необходимость высокой точности изготовления и защиты передачи от загрязнений; не обладает самоторможением.

Шариковинтовые передачи используют в исполнительных механизмах, в следящих системах, ответственных силовых передачах (станкостроение, робототехника и др.).

Наибольшее распространение в винтовых шариковых передачах получила резьба с полукруглым профилем, позволяющая создавать конструкции ШВП с регулируемым натягом (рис.2). Предварительный натяг служит для устранения осевого зазора в сопряжении винт — гайка, повышения осевой жесткости и точности перемещения ведомого звена ШВП. Конструктивно натяг при канавках полукруглого профиля осуществляется установкой двух гаек, размещенных в одном корпусе с последующим относительным осевым их смещением. Смещение гаек происходит установкой прокладок между ними (рис.2а) или их относительным угловым поворотом (рис.2б).

Соединение гаек 3 и 4 с корпусом 2 выполнено зубчатыми муфтами 6 и 7, у которых наружные зубья нарезаны на фланцах, а внутренние – в корпусе.

Рис.2. Конструкция ШВП с регулируемым натягом: 1 – винт; 2 – корпус гайки; 3, 4 – гайки; 5 – прокладки; 6, 7 – зубчатые муфты

Числа зубьев z_1 и z_2 муфт отличаются на единицу, что позволяет поворачивать одну гайку относительно другой на малый угол, осуществляя осевое смещение на очень малую величину. Поворот гаек выполняют вне винта на специальной оправке.

При вращении винта шарики движутся по винтовым канавкам, поступательно перемещают гайку и, выкатываясь из канавок резьбы, через канал возврата возвращаются в исходное положение. Таким образом, во время работы движение шариков происходит по замкнутой траектории внутри гайки. Наиболее распространена конструкция ШВП, в которой канал возврата соединяет два соседних витка (рис.3). Число рабочих витков в гайке от 1 до 6.

Рис.3. Устройство возврата шариков в гайке качения

В станкостроении применяют трехвитковые гайки ($i_{\rm B}$ =3). Перепускной канал выполняют в специальном вкладыше, который вставляют в овальное окно гайки.

Винты изготавливают из легированных сталей марок XBГ, 8XB, 20X3МВФ; гайки: ШX15, XBГ, 18XBГ, 12XН3А. Шарики изготавливают из хромистых сталей марок ШX15 и ШX20СГ. Материалы винта, гайки и тел качения должны иметь твердость поверхности не ниже 61 HRC.

Полости гайки при сборке заполняют пластичным смазочным материалом марки ЦИАТИМ – 201 или ЦИАТИМ – 203.

Основные геометрические параметры и силовые характеристики шариковинтовых передач регламентированы отраслевыми стандартами (табл.1) :

P – шаг резьбы; D_{w} – диаметр шарика, D_{w} = 0,6·P;

z – число заходов резьбы (обычно z = 1);

 d_0 – номинальный диаметр резьбы;

d – наружный диаметр резьбы винта, $d = d_0 - 0.35 \cdot D_w$;

 d_3 – внутренний диаметр резьбы винта, $d_3 = d_0 - 1,012 \cdot D_w$;

 ψ_0 – угол подъема винтовой линии на диаметре d_0 :

$$\psi_0 = \operatorname{arctg}[P \cdot z/(\pi \cdot d_0)];$$

 $C_{\alpha 0}$ — статистическая грузоподъемность — статистическая центральная осевая нагрузка, которая соответствует расчетному контактному напряжению в зоне контакта шарика, равному 3000 МПа.

 C_{α} – динамическая грузоподъемность – постоянная центральная осевая нагрузка, которую шариковинтовая передача может воспринимать при базовом ресурсе.

Причины выхода из строя шариковинтовых передач:

1. Усталостное выкрашивание рабочих поверхностей дорожек и шариков под действием переменных контактных напряжений. Усталостное повреждение в виде выкрашивания, образования раковин или отслаивания яв-

ляется основным видом разрушения ШВП в обычных условиях при хорошем смазывании и защите от попадания абразивных частиц.

- 2. Смятие рабочих поверхностей и тел качения (лунки и вмятины) из-за местных пластических деформаций под действием вибрационных, ударных и значительных статических нагрузок.
- 3. Изнашивание вследствие повышенного скольжения в контакте тел качения с винтом и гайкой или плохой защиты ШВП от попадания абразивных частиц. Для уменьшения износа винты защищают телескопическими трубами или гофрированными чехлами, а на гайке предусматривают устройство для очистки резьбы от загрязнений.
- 4. Потеря устойчивости длинных сжатых осевой силой винтов. Обычно длина винтов от 2 до 8 м.

Таблица 1. Параметры шариковых передач винт – гайка

Средний диаметр D _{pw} , мм	Шаг резьбы Р, мм	Диаметр шарика D_{w} , мм	Радиальный зазор, мм	Грузо- подъемность статическая, $C_{\alpha 0}$, Н	Γ рузо- подъемность динамическая C_{α} , Н
25	5	3	0,067 - 0,093	28100	16580
32	5	3	0,064 - 0,096	37500	17710
40	5	3	0,064 - 0,096	49400	19170
40	6	3,5	0,059 - 0,101	56400	23700
40	10	6	0,119 - 0,161	85900	54700
50	5	3	0,059 - 0,101	62800	20640
50	10	6	0,117 - 0,163	112500	57750
50	12	7	0,137 - 0,183	119900	65400
63	10	6	0,115 - 0,165	149700	62030
80	10	6	0,113 - 0,167	197700	66880
80	20	10	0,193 – 0,247	297600	143400

Основными для стандартной шариковинтовой передачи являются расчеты по критериям отсутствия усталостного выкрашивания и пластического деформирования шариков и поверхностей катания.

Рекомендации по проектному расчету шариковинтовой передачи

Цель расчета — определить основные геометрические размеры стандартной винтовой передачи, обеспечивающие ее работоспособность при заданных условиях нагружения.

- 1. Определение внутреннего диаметра d_3 резьбы винта из расчета на совместное действие сжатия и кручения.
- 2. Определение ориентировочного значения требуемой динамической осевой грузоподъемности гайки

$$C_{\alpha T} = 1.25 \cdot F_{\alpha} / (K_p \cdot K_{\alpha} \cdot K_M)$$
, H,

где F_{α} – внешняя центральная осевая сила, H;

 K_p – коэффициент вероятности безотказной работы (табл.2);

 K_{α} – коэффициент точности передачи, $K_{\alpha} {=}~0.8 \div 1.0$;

 $K_{_{\rm M}}$ — коэффициент, учитывающий качество выплавки стали (обычная плавка $K_{_{\rm M}}$ = 1,0 ; плавка с вакуумной дегазацией $K_{_{\rm M}}$ = 1,25 ; для электрошлаковой стали $K_{_{\rm M}}$ = 1,4 ; для стали вакуумной выплавки $K_{_{\rm M}}$ = 1,7).

Таблица 2. Коэффициент вероятности безотказной работы ШВП

Вероятность безотказной работы, %	90	95	99	99,5
K_p	1,0	0,85	0,57	0,46

- 3. Выбирают по каталогу шариковинтовую передачу с ближайшим большим значением динамической грузоподъемности $C_{\alpha} > C_{\alpha T}$ (табл.1).
 - 4. Вычисление ресурса выбранной передачи

$$L_{\alpha} = (C_{\alpha p}/F_{\alpha E})^3$$
, млн об,

где $C_{\alpha p}$ – фактическая динамическая осевая грузоподъемность, H

$$C_{\alpha p} = C_{\alpha} \cdot K_{p} \cdot K_{\alpha} \cdot K_{M}$$
, H,

 C_{α} – табличное значение динамической грузоподъемности гайки, H;

 $F_{\alpha E}$ — расчетная эквивалентная внешняя осевая сила при переменных режимах нагружения, Н. При постоянной, равномерной нагрузке $F_{\alpha E}$ = F_{α} .

Ресурс передачи винт – гайка качения в часах

$$L_{\alpha h} = \frac{10^6 \cdot \left(C_{\alpha p} / F_{\alpha E}\right)^3}{60 \cdot n_{cp}}, y,$$

где n_{cp} – средняя частота вращения, мин⁻¹.

Условие пригодности шариковинтовой передачи

$$L_{\alpha} \ge L_{T}$$
 или $L_{\alpha h} \ge L_{\alpha hT}$,

где $L_{\alpha}\left(L_{\alpha h}\right)$ – расчетный ресурс, млн об (ч);

 $L_{T}(L_{\alpha hT})$ – требуемый ресурс, млн об (ч).

5. Проверочный расчет гайки на статическую контактную прочность.

Статическая контактная прочность обеспечена, если наибольшая осевая сила $F_{\alpha p \; max}$ не превосходит скорректированную статическую осевую грузоподъемность $C_{\alpha 0p}$.

Условие статической контактной прочности

$$F_{\alpha p \text{ max}} < C_{\alpha 0p} = C_{\alpha 0} \cdot K_{\alpha 0}$$
, H,

где $F_{\alpha p \; max}$ — наибольшая осевая сила. Для передач с натягом

$$F_{\alpha p \text{ max}} = F_{\text{HaT}} + 0.65 \cdot F_{\alpha}, \text{ H.}$$

С целью получения высоких значений КПД желательно выполнение условия $F_{\text{нат}} = (0.4 \div 0.8) \cdot F_{\alpha}$.

 $C_{\alpha 0}$ —статическая грузоподъемность шариковинтовой передачи (табл. 1); $K_{\alpha 0} = 0.7 \div 1.0 - коэффициент, учитывающий точность расчетов.$

6. Проверка винта на статическую устойчивость

Статическая устойчивость обеспечена, если

$$F_{\alpha \max} \leq F_{\kappa p}, H,$$

где $F_{\alpha \max}$ – наибольшая осевая сила, нагружающая винт на длине L, H. $F_{\kappa p}$ – значение критической силы по Эйлеру, H.

$$F_{KP} = \pi^3 \cdot E \cdot d_3^4 / [64 \cdot S \cdot (\mu \cdot L)^2], H,$$

где E — модуль упругости материала винта (для стали E = $2,1\cdot10^5$ H/мм 2); d_3 — диаметр резьбы по впадинам, мм; S = 3 — коэффициент запаса; μ — коэффициент, зависящий от способа закрепления винта (табл. 4); L — длина нагруженного участка винта, мм.

4. РАСЧЕТ И ПРОЕКТИРОВАНИЕ ВИНТОВОЙ ПЕРЕДАЧИ СКОЛЬЖЕНИЯ

4.1. Предварительный расчет винта

Основной причиной выхода из строя передачи скольжения является износ витков резьбы гайки.

Условие износостойкости резьбы

$$p_{_{\mathrm{H}}} = \frac{F_{\alpha}}{\pi \cdot d_{2p} \cdot h \cdot z} \leq [p_{_{\mathrm{H}}}], H/_{\mathrm{MM}^2},$$

где p_u – среднее рабочее давление в резьбе, $H/мм^2$;

 F_{α} – осевая сила, действующая на винт, H;

h – рабочая высота профиля резьбы, h= $\!\Psi_h \cdot \! P;$

 Ψ_h — коэффициент относительной высоты профиля резьбы: для трапецеидальной — 0,5; для упорной — 0,75; для метрической — 0,54;

Р – шаг резьбы, мм;

z – число витков резьбы в гайке, z = H/P;

Н – высота гайки, мм;

 $\left[p_{_{\rm H}} \right]$ – допускаемое давление в резьбе (табл.3), H/мм 2 .

При проектном расчете из условия износостойкости определяют средний диаметр резьбы

$$d_{2p} \ge \sqrt{\frac{F_{\alpha}}{\pi \cdot \Psi_{h} \cdot \Psi_{H} \cdot \left[p_{\mu}\right]}} \quad , \text{MM},$$

где Ψ_{H} = H/d_{2p} — коэффициент высоты гайки: для цельных гаек Ψ_{H} = 1,2 ÷ 2,0.

Таблица 3. Допускаемое давление в резьбе

Материалы винтовой пары	Допускаемое давление
(винт – гайка)	$[p_{_{\rm H}}]$, H/mm ²
Сталь закаленная – бронза оловянная	12
Сталь незакаленная – бронза оловянная	9
Сталь закаленная – бронза безоловянная	
или антифрикционный чугун	8
Сталь незакаленная – бронза безоловянная	
или антифрикционный чугун	7
Сталь незакаленная – серый чугун	5
Сталь – сталь	16

Давление в резьбе винтовых механизмов точных приборов принимают в $2 \div 3$ раза меньше, чем в грузовых устройствах.

Стандартами для каждого наружного диаметра предусмотрены различные шаги резьбы. Минимальное значение шага однозаходной резьбы

$$P_{min} \ge H/z_{max} = \Psi_H \cdot d_{2p}/z_{max}$$
, MM,

где z_{max} = 10 — наибольшее число витков резьбы гайки, воспринимающих осевую силу.

После расчета среднего диаметра d_{2p} и минимального шага P_{min} по таблицам соответствующего ГОСТа (см. Приложения 1, 2, 3) находят, по условию $d_2 \geq d_{2p}$ и $P > P_{min}$, основные стандартные параметры для выбранного

профиля резьбы: d — наружный диаметр; d_3 — внутренний диаметр; d_2 — средний диаметр и шаг P .

Примеры возможного конструктивного оформления винтовой передачи, эпюры вращающих моментов Т и соотношения размеров основных элементов показаны на рис. 4, 5, 6, 7, 8.

$$\begin{split} D &= D_2 - (2 \div 4) \text{ mm}; \\ D_1 &= (0,6 \div 0,7) \cdot d; \\ D_2 &= (1,7 \div 1,9) \cdot d; \\ D_3 &= (2,5 \div 3,0) \cdot d; \\ d_4 &= 1,1 \cdot d; d_5 = d_3; \\ h &= 1,5 \cdot d; \\ h_1 &= (1,5 \div 1,8) \cdot d \end{split}$$

Рис. 4. Винтовые домкраты: а – пята кольцевая; б – пята сплошная; 1 – винт; 2 – гайка; 3 – чашка; 4 – рукоятка

Рис. 5. Винтовые стяжки:

1 – винт с правой резьбой; 2 – винт с левой резьбой;

3 – гайка – стяжка; 4 – гайка; 5 – рукоятка.

$$D_4 \approx 1,2 \cdot d$$
; $D_5 = (2,4 \div 2,5) \cdot d$; $D_6 \approx 2 \cdot d$; $h = (1,2 \div 1,5) \cdot d$

Рис. 6. Ходовые винты: а — винтовая отводка; б — прижим: 1 — винт; 2 — гайка; 3 — маховик; 4 — стойка левая; 5 — стойка правая. $d_6 \approx d_3$; $d_{\text{ц}} = (0.8 \div 1.0) \cdot d_3$; $d_7 = (1.2 \div 1.3) \cdot d_{\text{ц}}$; $l_{\text{ц}} = (1.0 \div 1.2) \cdot d_{\text{ц}}$

Рис. 7. Винтовой пресс: 1 — винт; 2 — гайка; 3 — башмак пресса; 4 — рукоятка. $d_8 \approx 0.8 \cdot d_3$; $d_9 \approx 0.9 \cdot d$

Рис. 8. Рычажно –винтовой зажим: 1 –винт; 2 – гайка; 3 – ось; 4 – рукоятка. $D_1 \approx 1,2\cdot d$; $D=(2,5\div 3,0)\cdot d$; $d_{10}\approx 1,2\cdot d$

4.2. Проверка условия самоторможения резьбы

При необходимости выбранную резьбу проверяют на выполнение условия самоторможения

$$\psi < \varphi'$$
,

где $\psi = \text{arctg}(P_h/(\pi \cdot d_2))$ – угол подъема винтовой линии резьбы;

 $P_h = P \cdot n$ –ход резьбы ; P – шаг резьбы ; n – число заходов;

 ϕ' = arctg(f/cos γ) – приведенный угол трения;

f — коэффициент трения в резьбе: для стального винта и бронзовой гайки при хорошей смазке $f\approx 0,1$; для стального винта и стальной гайки $f\approx 0,18$; для стального винта и чугунной гайки $f\approx 0,15$;

 γ — угол наклона рабочей стороны профиля резьбы: для трапецеидальной резьбы $\gamma = 15^{\circ}$; для упорной резьбы $\gamma = 3^{\circ}$; для метрической резьбы $\gamma = 30^{\circ}$.

4.3. Проверочный расчет винта на прочность

Предварительно выбранные размеры винта сконструированной винтовой передачи проверяются на прочность при совместном действии напряжений сжатия (растяжения) и кручения в опасном сечении.

Условие прочности винта по эквивалентному напряжению

$$\sigma_{E} = \sqrt{\sigma_{c(p)}^{2} + 3 \cdot \tau_{\kappa p}^{2}} \leq \left[\sigma_{c(p)}\right], \ H/\text{mm}^{2},$$

где $\sigma_{c(p)} = 4 \cdot F_{\alpha} / (\pi \cdot d_3^2)$ – напряжения сжатия (растяжения), H/мм²;

 $\tau_{\text{кр}} = T/W_k$ – напряжения кручения, H/мм²;

T – вращающий момент, скручивающий винт, H мм;

 $W_k \approx 0.2 \cdot d_3^3$ — момент сопротивления кручению поперечного сечения винта, мм 3 ;

 $\left[\sigma_{c(p)} \right]$ – допускаемые напряжения сжатия (растяжения), Н/мм².

$$\left[\sigma_{c(p)}\right] = \sigma_{T}/[S],$$

где $\sigma_{\scriptscriptstyle T}$ – предел текучести выбранного материала винта, H/мм²;

[S] = 3 - коэффициент запаса прочности винта.

Вращающий момент T, который необходимо приложить к винту или гайке для преодоления момента сил трения в резьбе T_B и момента сил трения в пяте (на торце винта) T_Π , определяется в зависимости от конструкции винтового устройства. В некоторых конструкциях в сечениях винта, испытывающих совместное действие сжатия (растяжения) и кручения, вращающий момент T равен моменту сил трения в резьбе T_B (см. рис.4;5;6a1;8), в других равен моменту сил трения в пяте T_Π (см. рис. 6a2; 66; 7).

Момент сил трения в резьбе

$$T_B = F_{\alpha} \cdot \frac{d_2}{2} \cdot tg(\psi + \varphi')$$
, H·MM.

Момент сил трения в пяте зависит от формы пяты. При сплошной пяте (см. рис. 46; 6a1; 66; 7)

$$T_{\pi} = \frac{1}{3} F_{\alpha} \cdot f_{\pi} \cdot d_{\pi} , H \cdot MM,$$

где f_n – коэффициент трения в пяте, f_n = 0,15 ÷ 0,18;

 $d_{_{\Pi}}$ – диаметр пяты, мм.

Для пяты, имеющей форму кольца (см. рис. 4а; 6а; 8)

$$T_{\Pi} = F_{\alpha} \cdot f_{\Pi} \cdot \frac{D_{\text{cp.}\Pi}}{2}$$
, H·MM,

где $D_{\text{ср.п}}$ – средний диаметр пяты, мм, $D_{\text{ср.п}} = (D - D_1)/2$;

D – наружный диаметр кольцевой пяты, мм;

 D_1 – внутренний диаметр кольцевой пяты, мм.

4.4. Проверка винта на устойчивость

Винты, работающие на сжатие, проверяют на устойчивость при продольном изгибе.

Условие обеспечения прочности и устойчивости винта

$$\sigma_{\text{cm}} = 4 \cdot F_{\alpha} / (\pi \cdot d_3^2) \le \phi \cdot [\sigma_{\text{cm}}], H/\text{mm}^2,$$

где ϕ – коэффициент понижения допускаемого напряжения сжатия, который выбирают в зависимости от гибкости стержня винта по табл.4.

Гибкость стержня винта

$$\lambda = \mu \cdot L/i$$
,

где µ – коэффициент приведения длины, учитывающий способ закрепления концов винта (рис.9 и табл.4);

L – длина сжатого участка винта, мм;

i – радиус инерции поперечного сечения винта, $i \approx \mathrm{d_3/4}$, мм.

Одной из опор винта является гайка. Гайку считают шарнирной опорой при $\Psi_{H} {\leq} \, 2,0.$

Расчетная длина сжатого винта равна расстоянию от точки приложения осевой силы F_{α} до середины высоты гайки (рис.9).

$$L = l_{\text{max}} + (H/2) = l_{\text{max}} + (\Psi_{\text{H}} \cdot d_2/2), \text{ MM},$$

где l – наибольшая рабочая длина винта, мм.

Рис.9. Способы закрепления винта: 1 — гайка; 2 — башмак; 3 — чашка домкрата

Таблица 4. Коэффициент приведения длины стержня винта

Закрепление концов стержня	Схема закрепления концов винта	μ	Примеры		
Оба конца закреплены шарнирно	рис.9а	1,0	Винт пресса, пята сферическая		
Один конец заделан, другой закреплен шарнирно	рис.9б	0,7	Винт пресса, гайка высокая, пята сферическая, винт отводки		
Один конец свободен, другой конец заделан	рис. 9в	2,0	Винты домкратов и съемников		
Один конец заделан, поворот другого ограничен	_	0,6	Винт пресса, пята плоская		
Оба конца заделаны		0,5	На обоих концах винта не- подвижные сдвоенные опо- ры – ходовые винты		

Таблица 5. Значения коэффициента понижения допускаемого напряжения сжатия

λ	0	30	50	60	70	80	90	100	120	140	160
	1,00	0,91	0,86	0,82	0,76	0,70	0,62	0,51	0,37	0,29	0,24
φ	1,00	0,91	0,3	0,79	0,72	0,65	0,55	0,43	0,3	0,23	0,19

Примечание. Нижние значения ф принимаются для винтов, изготовленных из сталей повышенного качества (40XФА, 18XГТ).

При проверке на устойчивость различают винты малой, средней и высокой гибкости. При значениях гибкости $\lambda \leq 55$ проверку на продольный изгиб можно не выполнять. Стальные винты при гибкости $\lambda \geq 100$ проверяют на устойчивость по Эйлеру по величине критической силы

$$F_{\kappa p} = \frac{\pi^2 \cdot E \cdot \mathcal{I}}{S \cdot (\mu \cdot L)^2} \ge F_{\alpha} , H ,$$

где E – модуль упругости материала, $H/мм^2$;

S — коэффициент запаса устойчивости: для вертикально расположенных винтов $S = 2,5 \div 4,0$; для горизонтальных $S = 3,5 \div 5,0$;

J - осевой момент инерции сечения винта

$$\mathcal{J} = \pi \cdot d_3^4 / 64 , \text{ MM}^4.$$

Принимая для стального винта $E = 2,1 \cdot 10^5 \text{ H/мм}^2$ и S = 3, получаем

$$F_{\kappa p} = 3.4 \cdot 10^4 \cdot \frac{d_3^4}{(\mu \cdot L)^2} \ge F_{\alpha}, H.$$

При невыполнении условий прочности и устойчивости необходимо выбрать резьбу с большими диаметрами и повторить проверочные расчеты винта на самоторможение и устойчивость.

4.5. Расчет гайки

4.5.1. Определение основных размеров гайки грузовых винтов

Число рабочих витков гайки $z_p = \Psi_{H} \cdot d_2/P \le z_{max} = 10.$

Полученное значение числа витков гайки округляем до ближайшего целого числа.

Высота гайки $H = z \cdot P$, мм.

Для равномерного распределения нагрузки по виткам резьбы высоту буртика гайки принимают $h_6 = 0.25 \cdot H$ (рис.10).

Наружный диаметр гайки $D_{\rm r}$ (см. рис.10) определяют из условия прочности на растяжение с учетом кручения

$$\sigma_{p} = \frac{4 \cdot F_{\alpha} \cdot k_{\kappa p}}{\pi \cdot \left(D_{\Gamma}^{2} - d^{2}\right)} \leq \left[\sigma_{p}\right], H/MM^{2}.$$

Откуда

$$D_{\Gamma} \geq \sqrt{\frac{4 \cdot F_{\alpha} \cdot k_{\kappa p}}{\pi \cdot \left[\sigma_{p}\right]} + d^{2}} \;, \; \text{mm} \;,$$

где $k_{\kappa p}$ =1,3 – коэффициент, учитывающий кручение гайки;

 $[\sigma_p]$ — допускаемое напряжение растяжения: для бронзовых гаек $[\sigma_p]$ = 50 H/мм²; для чугунных гаек $[\sigma_p]$ = 40 H/мм²; для стальных гаек $[\sigma_p]$ = $\sigma_T/3$, H/мм².

По технологическим соображениям принимают $D_r \ge d+10$, мм.

Наружный диаметр буртика гайки D_{δ} (см. рис.10) определяют из условия прочности на смятие по опорной кольцевой поверхности

$$\sigma_{\text{cm}} = \frac{4 \cdot F_{\alpha}}{\pi \cdot \left(D_{\delta}^2 - D_{\Gamma}^2\right)} \le \left[\sigma_{\text{cm}}\right], \text{ H/mm}^2.$$

Следовательно

$$D_{\delta} \geq \sqrt{rac{4 \cdot F_{\alpha}}{\pi \cdot [\sigma_{cm}]} + |D_{\Gamma}|^2}$$
 , MM,

где $[\sigma_{cm}]$ — допускаемое напряжение смятия: для бронзовых гаек $[\sigma_{cm}] = 70 \div 80 \; \text{H/mm}^2;$ для чугунных гаек $[\sigma_{cm}] = 60 \div 80 \; \text{H/mm}^2.$

Рис.10. Конструкции гаек при осевой нагрузке: а — постоянного направления ; б — переменного направления

4.5.2. Проверочный расчет гайки винтовой передачи

Проверка резьбы гайки.

Условие прочности резьбы гайки на срез

$$\tau_{cp} = \frac{F_a}{\pi \cdot d \cdot k \cdot P \cdot z \cdot k_m} \le [\tau_{cp}], H/MM^2,$$

где d – наружный диаметр резьбы, мм;

k — коэффициент полноты резьбы: для трапецеидальной резьбы k = 0,65, для метрической k = 0,87;

Р – шаг резьбы, мм;

z – число витков резьбы по высоте гайки;

 k_m — коэффициент, учитывающий неравномерность распределения осевой силы по виткам резьбы: с крупным шагом k_m = 0,7 ÷ 0,75; с мелким шагом k_m = 0,65 ÷ 0,70;

 $\left[au_{cp} \right] = 30 \div 50 \; \text{H/mm}^2 -$ допускаемое напряжение среза для бронзовых и чугунных гаек.

Проверочный расчет опорного буртика на срез

$$\tau_{cp} = \frac{F_{\alpha}}{\pi \cdot D_r \cdot h_{\delta}} \le [\tau_{cp}], \text{ H/mm}^2.$$

Расчет гайки – стяжки

Гайку – стяжку (рис.5а) следует проверить в опасном сечении A – A на совместное действие растяжения и кручения.

Эквивалентное напряжение в материале гайки – стяжки определяют по формуле

$$\sigma_{E} = \sqrt{\left(\sigma_{p}^{2} + 3 \cdot \tau_{\kappa p}^{2}\right)} \leq \left[\sigma_{p}\right], H/_{MM}^{2},$$

где σ_p – напряжение растяжения

$$\sigma_{\rm p} = 4 \cdot F_{\alpha} / \left[\pi \cdot \left(D_6^2 - D_4^2 \right) \right] , H/MM^2;$$

где D_6 и D_4 – размеры опасного поперечного сечения A – A гайки – стяжки (см. рис.5а), мм;

 au_{kp} – напряжение кручения

$$\tau_{KD} = T_B/W_K$$
, H/MM²;

 $T_{\mbox{\tiny B}}$ – момент сил трения в резьбе, Н·мм ;

 W_{κ} – момент сопротивления опасного сечения при кручении

$$W_{K} = \frac{\pi \cdot D_{6}^{3}}{16} \cdot \left[1 - \left(\frac{D_{4}}{D_{6}} \right)^{4} \right], \text{ mm}^{3}.$$

В среднем сечении гайки — стяжки Б — Б (рис.5а) напряжение кручения определяют по величине вращающего момента $T=2\cdot T_{\rm B}$

$$\tau_{KD} = 2 \cdot T_B / W_K \cdot H / MM^2$$
.

Размеры квадратной гайки винтовой стяжки (рис. 5б) и прижима (рис. 6б) назначают конструктивно без проверочного расчета.

Гайку рычажно — винтового зажима (рис.8) в опасном сечении проверяют на кручение по вращающему моменту $T = T_{\rm B} + T_{\rm II}$

$$\tau_{KP} = (T_B + T_{II}) / W_K, H/MM^2;$$

где $\left[\tau_{\rm kp} \right]$ — допускаемое напряжение кручения для материала гайки зажима: для бронзы и чугуна $\left[\tau_{\rm kp} \right] = 40 \div 50 \; {\rm H/mm^2}$. Для стальной гайки

$$[\tau_{KD}] = (0.6 \cdot \sigma_{T}) / [S], H/MM^{2},$$

где [S] = 2 - коэффициент запаса прочности стальной гайки.

4.6. Расчет рукоятки

Необходимую длину рукоятки R_p (радиус маховика $R_{\scriptscriptstyle M}$, штурвальной рукоятки $R_{\scriptscriptstyle DIII}$) определяют из условия

$$F_{pa\delta} \cdot R_p \ge T = T_B + T_{\Pi}, H \cdot MM$$
.

Длина рукоятки

$$R_p \ge (T_B + T_\Pi) / F_{pa\delta}$$
, MM,

где $F_{\text{раб}}$ – усилие рабочего на рукоятке, H.

В винтовых устройствах с ручным приводом в случае длительной работы усилие одного рабочего принимают $F_{pa6} = 120 \div 160 \ H$, при кратковременной работе $F_{pa6} = 250 \div 300 \ H$.

Если радиус рукоятки окажется большим (> 1200 мм), то рекомендуется учитывать усилие двух рабочих.

Определение диаметра рукоятки

Для изготовления рукоятки используют углеродистую сталь обыкновенного качества круглого сечения: Ст.3; Ст.4; Ст.5 ГОСТ 380 – 2005.

Расчетная схема рукоятки домкрата показана на рис.11.

Рис.11. Схема нагружения рукоятки домкрата и эпюра изгибающих моментов

Условие прочности рукоятки на изгиб

$$\sigma_{\text{\tiny M}} = F_{\text{pa6}} \cdot R_{\text{p}} / (0.1d_{\text{p}}^3) \leq [\sigma_{\text{\tiny M}}], H/_{\text{MM}}^2,$$

где d_p – диаметр рукоятки, мм;

 $[\sigma_{\scriptscriptstyle \text{M}}]$ – допускаемое напряжение изгиба

$$[\sigma_{\text{\tiny M}}] = 1.2 \cdot \sigma_{\text{\tiny T}} / [\text{S}], \text{ H/mm}^2;$$

 $\sigma_{\rm T}$ – предел текучести материала рукоятки, H/мм²;

 $[S] = 2 \div 2,5 - коэффициент запаса прочности.$

Диаметр рукоятки

$$d_p \ge \sqrt[3]{\left(F_{paó} \cdot R_p\right)/(0.1[\sigma_{_{
m M}}])}$$
 , мм.

Кривошипные рукоятки (рис.12), маховики и рукоятки штурвальные целесообразно выбирать стандартные из справочников.

Для передачи вращающего момента от рукоятки и маховика к винту наиболее часто применяют профильное соединение квадратного сечения (рис. 12 a).

Рис.12. Крепление рукоятки на винте

Размеры кривошипной рукоятки приведены в Приложении 4.

Диаметр маховика $D_{\rm M} \geq 2 \cdot R_{\rm M}$. Размеры чугунного маховика представлены в ГОСТ 5260 - 75 (Приложение 5).Диаметр рукоятки штурвальной $D_{\rm pm} \geq 2R_{\rm pm}$. Параметры штурвальной рукоятки указаны в ГОСТ 14741 - 69 (Приложение 6).

Для упрощения расчета принимают, что соединение ненапряженное и беззазорное, а возникающие от вращающего момента Т напряжения смятия распределяются на рабочих гранях по закону треугольника (рис.12 б).

Напряжения смятия в соединении рассчитывают по формуле

$$\sigma_{\text{cm}} = \frac{3 \cdot \text{T}}{z \cdot l \cdot a^2} \leq [\sigma_{\text{cm}}], \text{H/mm}^2,$$

где z = 4 -число граней ;

l - рабочая длина соединения, мм;

a – рабочая ширина грани, a = S/2, мм;

S – ширина грани, мм;

 $[\sigma_{cm}]$ — допускаемое напряжение смятия: для стальных рукояток и штурвалов $[\sigma_{cm}]$ = 100 ÷ 150 H/мм², для чугунных маховиков $[\sigma_{cm}]$ = 80 ÷100 H/мм².

Для передачи вращения винтам от штурвальной рукоятки и защитного кожуха могут применятся призматические и сегментные шпонки с последующей проверкой их на смятие.

4.7. Расчет стопорных винтов

Для обеспечения неподвижного соединения гаек с корпусом используются стопорные винты (рис. 13). Стопорные винты предотвращают возможное проворачивание гайки под действием момента сил трения в резьбе $T_{\rm B}$. Винты проверяются на прочность по напряжениям среза.

В конструкциях, показанных на рис. 13а, б, напряжения среза возникают в поперечном сечении винтов

$$\tau_{cp} = \frac{4 \cdot T_{\scriptscriptstyle B}}{z \cdot D_{\scriptscriptstyle B} \cdot \pi \cdot d_3^2} \le \left[\tau_{cp}\right], \, H/{\scriptscriptstyle MM}^2,$$

где $D_{\text{в}}$ – диаметр окружности, по которой действует усилие на винт, мм; z – число стопорных винтов; d_3 – внутренний диаметр резьбы винта; $[\tau_{\text{ср}}]$ =70 H/мм 2 – допускаемое напряжение среза стального винта.

Рис.13. Способы стопорения гаек: 1 – гайка; 2 – винт стопорный

В конструкциях, представленных на рис. 13 в, г, напряжения среза возникают в продольном сечении винтов

$$\tau_{cp} = \frac{2 \cdot T_{_B}}{z \cdot D_{_B} \cdot d_3 \cdot l} \leq \left[\tau_{cp}\right], \, H / \text{mm}^2, \label{eq:tcp}$$

где l – длина стопорного винта, мм.

ПРИМЕРЫ РАСЧЕТА ПЕРЕДАЧИ ВИНТ – ГАЙКА СКОЛЬЖЕНИЯ

Пример 1. Рассчитать винтовой домкрат (рис.4а) грузоподъемностью F_{α} =10 кН. Высота подъема груза $l_{\rm max}$ =300 мм. Резьба трапецеидальная.

1.1. Выбор материалов

Для винта — конструкционная сталь 35 ГОСТ 1050 — 88 без термообработки, $\sigma_{\rm T}$ =320 H/мм², $\sigma_{\rm B}$ =540 H/мм².

Для гайки — безоловянная бронза Бр.А9ЖЗЛ ГОСТ 493–79, $\sigma_{\rm T} = 200~{\rm H/mm^2}, \ \sigma_{\rm B} = 400~{\rm H/mm^2}.$

1.2. Определение среднего диаметра и минимального шага резьбы

$$d_{2p} \ge \sqrt{\frac{F_{\alpha}}{\pi \cdot \Psi_{h} \cdot \Psi_{H} \cdot \left[p_{_{\boldsymbol{U}}}\right]}} \quad , \text{ MM},$$

где F_{α} =10000 H ;

 Ψ_h =0,5 – коэффициент относительной высоты профиля резьбы;

 Ψ_{H} – коэффициент высоты гайки. Принимаем $\Psi_{H}=$ 1,7 ;

 $[p_{_{\rm H}}]$ – допускаемое давление в резьбе: $[p_{_{\rm H}}]$ =7 H/мм 2 (с. 14, табл.3).

$$d_{2p} \geq \sqrt{\frac{10000}{3,14 \cdot 0,5 \cdot 1,7 \cdot 7}} = 23,13 \text{ mm}.$$

Минимальное значение шага резьбы

$$P_{min} \ge \Psi_H \cdot d_{2p}/z_{max} = 1,7 \cdot 23,13/10 = 3,93 \text{ mm}.$$

1.3. Выбор параметров резьбы

По ГОСТ 9484 — 81 выбираем трапецеидальную резьбу Tr 28×5 с параметрами: средний диаметр d_2 = 25,5 мм $\geq d_{2p}$ = 23,13 мм; внутренний диаметр d_3 = 22,5 мм; наружный диаметр d = 28 мм; шаг P = 5 мм.

1.4. Проверка условия самоторможения резьбы

Угол подъема винтовой линии резьбы

$$\psi = \text{arctg } (P_h/(\pi \cdot d_2)) = \text{arctg}(5/(3,14\cdot25,5)) = 3,57^\circ = 3^\circ 34'.$$

Приведенный угол трения

$$\varphi' = \operatorname{arctg} (f/\cos \gamma),$$

где f = 0, 1 – коэффициент трения в резьбе;

γ =15° – угол наклона рабочей стороны профиля резьбы

$$\phi' = \arctan(0.1/\cos 15^\circ) = 5.91^\circ = 5^\circ 55'.$$

Так как $\psi < \phi'$, следовательно, самоопускания домкрата под действием груза не произойдет.

1.5. Проверочный расчет винта на прочность

На участке между чашкой и гайкой (рис.4а) в материале винта возникают напряжения сжатия от осевой силы F_a и кручения от момента сил трения в резьбе $T_{\rm B}$.

Напряжения сжатия

$$\sigma_c = 4 \cdot F_{\alpha} / (\pi \cdot d_3^2) = 4 \cdot 10000 / (3,14 \cdot 22,5^2) \approx 25,5 \text{ H/mm}^2.$$

Напряжения кручения

$$\tau_{\kappa p} = T/W_k$$
, H/MM²,

где T – вращающий момент, скручивающий винт в опасном сечении, $H\cdot$ мм ;

 $W_k \approx 0.2 \cdot d_3^3$ — момент сопротивления кручению поперечного сечения винта, мм 3 .

Вращающий момент для винтового домкрата равен моменту сил трения в резьбе $T_{\rm B}$.

$$\begin{split} T = & T_{\scriptscriptstyle B} = F_{\alpha} \cdot \frac{d_2}{2} \cdot tg(\psi + \phi') = 10000 \cdot \frac{25,5}{2} \cdot tg(3,57^{\circ} + 5,91^{\circ}) = 21290,4 \text{ H·mm.} \\ & \tau_{\scriptscriptstyle KP} = \frac{21290,4}{0,2 \cdot 22,5^3} = 9,34 \text{ H/mm}^2 \end{split}$$

Эквивалентное напряжение в опасном сечении винта

$$\sigma_E = \sqrt{\sigma_c^2 + 3 \cdot \tau_{\kappa p}^2} = \sqrt{25,5^2 + 3 \cdot 9,34^2} \approx 30,2 \text{ H/mm}^2.$$

Допускаемое напряжение сжатия материала винта

$$[\sigma_c] = \sigma_T / [S] = 320/3 = 106 \text{ H/mm}^2,$$

где [S]=3 – коэффициент запаса прочности винта.

Условие прочности выполняется, так как

$$\sigma_{\rm E} = 30.2 \text{ H/mm}^2 \le [\sigma_{\rm c}] = 106 \text{ H/mm}^2.$$

1.6. Проверка винта на устойчивость

Условие обеспечения прочности и устойчивости винта

$$\sigma_{\rm c} \leq \varphi[\sigma_{\rm c}], H/MM^2,$$

где ϕ – коэффициент понижения допускаемого напряжения сжатия.

Радиус инерции поперечного сечения винта

$$i = d_3/4 = 22,5/4 = 5,625$$
 MM.

Гибкость стержня винта

$$\lambda = \mu \cdot L/i$$
,

где μ – коэффициент приведения длины, учитывающий способ закрепления концов винта μ = 2,0 (см. рис. 9 и табл. 4),.

L – длина сжатого участка винта

L=
$$l_{\text{max}}$$
+ ($\Psi_{\text{H}} \cdot d_2/2$)=300 + (1,7·25,5/2) = 321,7 MM.

Тогда $\lambda = 2.321,7/5,625 = 114,4$.

Этому значению гибкости соответствует коэффициент понижения допускаемого напряжения $\phi = 0.41$ (см. с. 22, табл.5).

Устойчивость винта обеспечена, так как

$$\sigma_c = 25.5 \text{ H/mm}^2 < 0.41 \cdot 106 = 43.46 \text{ H/mm}^2.$$

1.7. Расчет гайки

1.7.1. Определение числа рабочих витков гайки

$$z_p = \Psi_H \cdot d_2/P = 1,7 \cdot 25,5/5 = 8,67 < z_{max} = 10.$$

Принимаем z = 9.

1.7.2. Определение основных размеров гайки

Высота гайки $H = z \cdot P = 9 \cdot 5 = 45$ мм.

Высота буртика гайки $h_6 = 0.25 \cdot H = 0.25 \cdot 45 = 11.25 \text{мм}$.

Принимаем $h_6 = 10$ мм.

Наружный диаметр гайки

$$D_r \ge \sqrt{rac{4 \cdot F_{lpha} \cdot k_{\kappa p}}{\pi \cdot \left[\sigma_p
ight]} + d^2}$$
 , MM,

где $k_{\kappa p}$ = 1,3 – коэффициент, учитывающий кручение гайки;

 $\left[\sigma_{p}\right] = 50 \; \text{H/mm}^{2} \; - \;$ допускаемое напряжение растяжения для бронзовой гайки.

$$D_{\Gamma} \ge \sqrt{\frac{4 \cdot 10000 \cdot 1,3}{3,14 \cdot 50} + 28^2} \approx 33,4 \text{ mm}.$$

Принимаем $D_{\Gamma} = d + 10 = 28 + 10 = 38$ мм.

Диаметр опорного буртика

$$D_{6} \geq \sqrt{\frac{4 \cdot F_{\alpha}}{\pi \cdot [\sigma_{cm}]} + D_{\Gamma}^{2}}, \text{ MM},$$

где $[\sigma_{cm}]$ =70 H/мм²– допускаемое напряжение смятия.

$$D_6 \geq \sqrt{\frac{4 \cdot 10000}{3,14 \cdot 70} + 38^2} = 40,35 \text{ mm}.$$

Принимаем $D_{\delta} = 45$ мм.

1.7.3. Проверочный расчет гайки

Проверка резьбы гайки на срез

$$\tau_{cp} = \frac{F_{\alpha}}{\pi \cdot d \cdot k \cdot P \cdot z \cdot k_{m}} \le [\tau_{cp}], H/_{MM}^{2}.$$

где k = 0,65– коэффициент полноты резьбы;

 k_m =0,7 — коэффициент, учитывающий неравномерность распределения осевой силы по виткам резьбы;

 $[\tau_{\rm cp}] = 40 \; {\rm H/mm^2} -$ допускаемое напряжение среза.

$$\tau_{cp} = \frac{10000}{3.14 \cdot 28 \cdot 0.65 \cdot 5 \cdot 9 \cdot 0.7} = 5.5 \text{ H/mm}^2 < [\tau_{cp}] = 40 \text{ H/mm}^2.$$

Проверочный расчет опорного буртика на срез

$$\tau_{cp} = \frac{F_{\alpha}}{\pi \cdot D_{r} \cdot h_{6}} = \frac{10000}{3,14 \cdot 38 \cdot 10} = 8,4 \text{ H/MM}^{2} < \left[\tau_{cp}\right] = 40 \text{ H/MM}^{2}.$$

1.8. Расчет рукоятки домкрата

Необходимая длина рукоятки

$$R_p \ge (T_B + T_{\Pi})/F_{pa\delta}$$
, MM,

где $F_{pa\delta} = 160 \text{ H} - \text{усилие рабочего на рукоятке};$

 $T_B = 21290,4 \text{ H} \cdot \text{MM} \text{ (cm.c. } 32 \text{);}$

 T_{Π} – момент сил трения в пяте, Н·мм.

При кольцевой пяте (рис. 4а)

$$T_{\pi} = F_{\alpha} \cdot f_{\pi} \cdot \frac{D_{\text{cp.}\pi}}{2}$$
, H·MM,

где f_n = 0,18 – коэффициент трения в пяте;

 $D_{\text{ср.п}} = (D - D_1)/2 - \text{средний диаметр пяты, мм;}$

D – наружный диаметр кольцевой пяты

$$D = (1.7 \div 1.9) \cdot d - 2 = (1.7 \div 1.9) \cdot 28 - 2 = (45.6 \div 51.2) \text{ MM};$$

 D_1 – внутренний диаметр кольцевой пяты

$$D_1 = (0.6 \div 0.7) \cdot d = (0.6 \div 0.7) \cdot 28 = (16.8 \div 19.6) \text{ mm}.$$

Принимаем D = 50 мм; $D_1 = 18$ мм.

$$D_{cp.\pi} = (50 - 18)/2 = 16 \text{ MM}.$$

$$T_{II} = 10000 \cdot 0,18 \cdot \frac{16}{2} = 14400 \text{ H} \cdot \text{MM}.$$

Отсюда, длина рукоятки

$$R_p \ge (21290,4+14400)/160 = 223 \text{ MM}.$$

Принимаем $R_p = 240$ мм.

Определение диаметра рукоятки

Материал рукоятки сталь Ст.3 ГОСТ 380 – 2005, $\sigma_{\rm T}$ = 220 H/мм².

Расчетная схема рукоятки показана на с. 27, рис.11.

Диаметр рукоятки из условия прочности на изгиб

$$d_p \, \geq \, \sqrt[3]{\left(F_{pa\delta} \cdot R_p\right)/(0.1[\sigma_{_{\!\emph{\scriptsize M}}}])}$$
 , MM,

где $[\sigma_{\rm u}]$ – допускаемое напряжение изгиба, $[\sigma_{\rm u}] = 1, 2 \cdot \sigma_{\rm T} / [{\rm S}]$, ${\rm H/mm^2}$,

[S]=2,0 - коэффициент запаса прочности

$$[\sigma_{\text{H}}] = 1.2 \cdot 220/2 = 132 \text{ H/mm}^2.$$

 $d_{\text{D}} \ge \sqrt[3]{(160 \cdot 240)/(0.1 \cdot 132)} = 14.3 \text{ mm}.$

По сортаменту на стальной прокат круглого сечения ГОСТ 2590 – 2006 принимаем $d_{\rm p}$ = 15 мм.

Пример 2. Винтовая стяжка (рис.5а) имеет правую и левую метрическую резьбу. Рассчитать винт и гайку стяжки. Осевое усилие на винт $F_{\alpha} = 5 \text{ кH}$. Нагрузка статическая, затяжка – неконтролируемая.

2.1. Выбор материалов

Для винта — конструкционная сталь 35 ГОСТ 1050-88 без термообработки, $\sigma_{\rm T} = 320~{\rm H/mm^2}$; $\sigma_{\rm B} = 540~{\rm H/mm^2}$.

Для гайки — конструкционная сталь 30 ГОСТ 1050 — 88 без термообработки, $\sigma_{\rm T}$ = 320 H/мм²; $\sigma_{\rm B}$ = 540 H/мм².

2.2. Определение среднего диаметра и минимального шага резьбы

Средний диаметр резьбы винта из условия обеспечения износостойкости

$$d_{2p} \geq \sqrt{\frac{F_{\alpha}}{\pi \cdot \Psi_{h} \cdot \Psi_{H} \cdot \left[p_{_{\!\mathit{H}}}\right]}} = \sqrt{\frac{5000}{3,14 \cdot 0,54 \cdot 1,2 \cdot 16}} = 12,39 \text{ mm},$$

где $F_{\alpha} = 5000 \text{ H};$

 $\Psi_{\rm h} = 0,54$ –для метрической резьбы;

 $\Psi_{H}\,$ – коэффициент высоты гайки. Принимаем Ψ_{H} = 1,2 ;

 $[p_{_{\rm H}}]$ – допускаемое давление в резьбе: $[p_{_{\rm H}}]$ = 16 H/мм 2 (см. с. 14, табл.3).

Минимальное значение шага резьбы

$$P_{min} \ge \Psi_H \cdot d_{2p}/z_{max} = 1.2 \cdot 12.39/10 = 1.49 \text{ MM}.$$

2.3. Выбор параметров резьбы

По ГОСТ 24705 — 2004 принимаем метрическую резьбу М16 — 6g с параметрами: средний диаметр d_2 = 14,701 мм \geq d_{2p} = 12,39 мм; внутренний диаметр d_3 = 13,546 мм; наружный диаметр d = 16 мм; шаг P = 2 мм.

2.4. Проверка условия самоторможения резьбы

Угол подъема винтовой линии резьбы

$$\psi = \operatorname{arctg}(P_h/(\pi \cdot d_2)) = \operatorname{arctg}(2/(3.14 \cdot 14.701)) = 2.48^\circ = 2^\circ 29^\circ.$$

Приведенный угол трения

$$\varphi' = \operatorname{arctg}(f/\cos \gamma),$$

где f = 0,18 – коэффициент трения в резьбе;

 $\gamma = 30^{\circ}$ – угол наклона рабочей стороны профиля резьбы,

$$\varphi' = \operatorname{arctg}(0.18/\cos 30^{\circ}) = 11.74^{\circ} = 11^{\circ}44'$$

Так как $\psi \le \phi'$, условие самоторможения выполняется.

2.5. Проверочный расчет винта на прочность

Напряжения растяжения

$$\sigma_p = 4 \cdot F_\alpha / (\pi \cdot d_3^2) = 4 \cdot 5000 / (3,14 \cdot 13,546^2) \approx 34,7 \text{ H/mm}^2.$$

Напряжения кручения

$$\tau_{KP} = T/W_k = T/0.2 \cdot d_3^3$$
, H/MM²,

где Т – вращающий момент, скручивающий винт в опасном сечении, Н мм;

Для винтовой стяжки вращающий момент равен моменту сил трения в резьбе $T_{\scriptscriptstyle B}$.

$$T = T_{_B} = F_{\alpha} \cdot \frac{d_2}{2} \cdot tg(\psi + \phi') = 5000 \cdot \frac{14,701}{2} \cdot tg(2,48^{\circ} + 11,74^{\circ}) = 9313,5 \text{ H·mm}.$$

$$\tau_{_{KP}} = \frac{9313,5}{0.2 \cdot 13.546^{3}} = 18,73 \text{ H/mm}^{2}.$$

Эквивалентное напряжение в опасном сечении винта стяжки

$$\sigma_E = \sqrt{\sigma_p^2 + 3 \cdot \tau_{\kappa p}^2} \ = \sqrt{34,7^2 + 3 \cdot 18,73^2} \ = \ 47,5 \ H/\text{mm}^2.$$

Допускаемое напряжение растяжения материала винта

$$[\sigma_p] = \sigma_T / [S] = 320/3 = 106 \text{ H/mm}^2,$$

где [S] = 3 - коэффициент запаса прочности винта.

Статическая прочность винта обеспечена

$$\sigma_{\rm E} = 47.5 \text{ H/mm}^2 < [\sigma_{\rm p}] = 106 \text{ H/mm}^2.$$

2.6. Расчет гайки – стяжки

Определение числа рабочих витков гайки

$$z_p = \Psi_H \cdot d_2/P = 1.2 \cdot 14,704/2 = 8.8 < z_{max} = 10.$$

Принимаем z = 9.

Высота гайки $H = z \cdot P = 9 \cdot 2 = 18$ мм.

Наружный диаметр гайки

$$D_{\Gamma} = D_6 \ge \sqrt{\frac{4 \cdot F_a \cdot k_{\kappa p}}{\pi \cdot [\sigma_p]} + d^2}$$
 , MM,

где $k_{\kappa p} = 1,3$ – коэффициент, учитывающий кручение гайки;

 $\left[\sigma_{p}\right]$ – допускаемое напряжение растяжения материала гайки

$$[\sigma_{\rm p}] = \sigma_{\rm T}/[{\rm S}] = 300/4 = 75 \text{ H/mm}^2,$$

[S]=4 – коэффициент запаса прочности при неконтролируемой затяжке [1] с.56, табл 1.3.

$$D_{\Gamma} = D_6 \ge \sqrt{\frac{4.5000 \cdot 1.3}{3.14.75} + 16^2} = 19.14 \text{ mm}.$$

Конструктивно $D_r = D_6 \approx 2 \cdot d = 2 \cdot 16 = 32$ мм.

Принимаем $D_{\Gamma} = 30$ мм.

Проверочный расчет гайки – стяжки в сечении А-А на совместное действие растяжения и кручения.

Напряжения растяжения в опасном сечении гайки – стяжки (см. рис.5а)

$$\sigma_{\rm p} = 4 \cdot F_a / \left[\pi \cdot \left(D_6^2 - D_4^2 \right) \right] \le \left[\sigma_{\rm p} \right], \, \text{H/MM}^2,$$

где $D_6 = 30$ мм;

 D_4 — внутренний диаметр гайки — стяжки, D_4 = 1,2·d = 1,2·16 = 19,2 мм. Принимаем D_4 =20 мм.

$$\sigma_{\rm p} = \frac{4.5000}{3,14\cdot(30^2 - 20^2)} = 12,74 \text{ H/mm}^2.$$

Напряжение кручения

$$\tau_{\rm kp} = T_{\rm B}/W_{\rm K}$$
, H/MM²;

где W_{κ} — момент сопротивления кручению опасного поперечного сечения гайки — стяжки ,

$$W_{K} = 0.2 \cdot D_{6}^{3} \cdot \left[1 - \left(\frac{D_{4}}{D_{6}} \right)^{4} \right] = 0.2 \cdot 30^{3} \cdot \left[1 - \left(\frac{20}{30} \right)^{4} \right] = 4333.5 \text{ mm}^{3}.$$

$$\tau_{KD} = T_{B} / W_{K} = 9313.5 / 4333.5 = 2.15 \text{ H/mm}^{2}.$$

Эквивалентное напряжение в опасном сечении гайки - стяжки

$$\sigma_E = \sqrt{\sigma_p^2 + 3 \cdot \tau_{\kappa p}^2} \ = \sqrt{12,74^2 + 3 \cdot 2,15^2} \ = 13,27 \ H/\text{mm}^2 < \left[\sigma_p\right] = 75 \ H/\text{mm}^2.$$

Прочность гайки – стяжки обеспечена.

2.7. Определение КПД винта

$$\eta = tg\psi/tg(\psi+\phi') = tg 2,48^{\circ}/tg(2,48^{\circ}+11,74^{\circ}) = 0,17.$$

ПРИЛОЖЕНИЯ

ПРИЛОЖЕНИЕ 1

ТРАПЕЦЕИДАЛЬНАЯ ОДНОЗАХОДНАЯ РЕЗЬБА ГОСТ 24737-81

d — наружный диаметр наружной резьбы (винта); d_2 — средний диаметр наружной резьбы; d_3 — внутренний диаметр наружной резьбы; D_1 — наружный диаметр внутренней резьбы; D_2 — средний диаметр внутренней резьбы; D_4 — внутренний диаметр внутренней резьбы (гайки); P — шаг резьбы; a_c — зазор по вершине резьбы; h_3 — высота профиля наружной резьбы; H_1 — рабочая высота профиля резьбы.

Значения диаметров вычислены по формулам:

$$\begin{aligned} D_1 &= d - 2 \cdot H_1 = d - P; \\ D_4 &= d + 2 \cdot a_c; \\ d_2 &= D_2 = d - H_1 = d - 0.5 \cdot P; \\ d_3 &= d - 2 \cdot h_3. \end{aligned}$$

Таблица 1П. Размеры трапецеидальной резьбы

		П					
Номинальный	Шаг			аметр резьбі			
диаметр	P	нарух		средний	внутре		
резьбы d	1	d	D_4	$d_2 = D_2$	d_3	D_1	
8	1,5	8,000	8,300	7,250	6,200	6,500	
	2	9,000	8,500	7,000	5,500	6,000	
9	1,5	9,000	9,300	8,250	7,200	7,500	
	2	9,000	9,500	8,000	6,500	7,000	
10	1,5	10,000	10,300	9,250	8,200	8,500	
	2	10,000	10,500	9,000	7,500	8,000	
11	2	11,000	11,500	10,000	8,500	9,000	
	3	11,000	11,500	9,500	7,500	8,000	
12	2	12,000	12,500	11,000	9,500	10,000	
12	3	12,000	12,500	10,500	8,500	9,000	
	2	14,000	14,500	13,000	11,500	12,000	
14	3	14,000	14,500	12,500	10,500	11,000	
16	2	16,000	16,500	15,000	13,500	14,000	
	4	16,000	16,500	14,000	11,500	12,000	
10	2	18,000	18,500	17,000	15,500	16,000	
18	4	18,000	18,500	16,000	13,500	14,000	
20	2	20,000	20,500	19,000	17,500	18,000	
20	4	20,000	20,500	18,000	15,500	16,000	
	2	22,000	22,500	21,000	19,500	20,000	
22	3	22,000	22,500	20,500	18,500	19,000	
22	5	22,000	22,500	19,500	16,500	17,000	
	8	22,000	23,000	18,000	13,000	14,000	
	2	24,000	24,500	23,000	21,500	22,000	
24	3	24,000	24,500	22,500	20,500	21,000	
24	5	24,000	24,500	21,500	18,500	19,000	
	8	24,000	25,000	20,000	15,000	16,000	
	2	26,000	26,500	25,000	23,500	24,000	
26	3	26,000	26,500	24,500	22,500	23,000	
20	5	26,000	26,500	23,500	20,500	21,000	
	8	26,000	27,000	22,000	17,000	18,000	
	2	28,000	28,500	27,000	25,500	26,000	
28	3	28,000	28,500	26,500	24,500	25,000	
20	5	28,000	28,500	25,500	22,500	23,000	
	8	28,000	29,000	24,000	19,000	20,000	
	3	30,000	30,500	28,500	26,500	27,000	
30	6	30,000	31,000	27,000	23,000	24,000	
	10	30,000	31,000	25,000	19,000	20,000	

Продолжение табл.1П

		Диаметр резьбы					
Номинальный	Шаг	напу	жный	средний	внутре		
диаметр	P			$d_2 = D_2$		D ₁	
резьбы d		d	D_4	$\mathbf{u}_2 - \mathbf{D}_2$	d ₃		
	3	32,000	32,500	30,500	28,500	29,000	
32	6	32,000	33,000	29,000	25,000	26,000	
	10	32,000	33,000	27,000	21,000	22,000	
	3	34,000	34,500	32,500	30,500	31,000	
34	6	34,000	35,000	31,000	27,000	28,000	
	10	34,000	35,000	29,000	23,000	24,000	
	3	36,000	36,500	34,500	32,500	33,000	
36	6	36,000	37,000	33,000	29,000	30,000	
	10	36,000	37,000	31,000	25,000	26,000	
	3	38,000	38,500	36,500	34,500	35,000	
20	6	38,000	39,000	35,000	31,000	32,000	
38	7	38,000	39,000	34,500	30,000	31,000	
	10	38,000	39,000	33,000	27,000	28,000	
	3	40,000	40,500	38,500	36,500	37,000	
40	6	40,000	41,000	37,000	33,000	34,000	
40	7	40,000	41,000	36,500	32,000	33,000	
	10	40,000	41,000	35,000	29,000	30,000	
	3	42,000	42,500	40,500	38,500	39,000	
42	6	42,000	43,000	39,000	35,000	36,000	
42	7	42,000	43,000	38,500	34,000	35,000	
	10	42,000	43,000	37,000	31,000	32,000	
	3	44,000	44,500	42,500	40,500	41,000	
4.4	7	44,000	45,000	40,500	36,000	37,000	
44	8	44,000	45,000	40,000	35,000	36,000	
	12	44,000	45,000	38,000	31,000	32,000	
	3	46,000	46,500	44,500	42,500	43,000	
46	8	46,000	47,000	42,000	37,000	38,000	
	12	46,000	47,000	40,000	33,000	34,000	
	3	48,000	48,500	46,500	44,500	45,000	
48	8	48,000	49,000	44,000	39,000	40,000	
	12	48,000	49,000	42,000	35,000	36,000	
	3	50,000	50,500	48,500	46,500	47,000	
50	8	50,000	51,000	46,000	41,000	42,000	
	12	50,000	51,000	44,000	37,000	38,000	
	3	52,000	52,500	50,500	48,500	49,000	
52	8	52,000	53,000	48,000	43,000	44,000	
	12	52,000	53,000	46,000	39,000	40,000	

Продолжение табл. 1П

		продолжение таол. 111						
Номинальный	Шаг		1	<u> </u> Тиаметр резьб)Ы			
диаметр	Р	нару	жный	средний	внутр	енний		
резьбы d	r	d	D_4	$d_2 = D_2$	d_3	D_1		
	3	55,000	55,500	53,500	51,500	52,000		
<i></i>	8	55,000	56,000	51,000	46,000	47,000		
55	12	55,000	56,000	49,000	42,000	43,000		
	14	55,000	57,000	48,000	39,000	41,000		
	3	60,000	60,500	58,500	56,500	57,000		
	8	60,000	61,000	56,000	51,000	52,000		
60	9	60,000	61,000	55,500	50,000	51,000		
	12	60,000	61,000	54,000	47,000	48,000		
	14	60,000	62,000	53,000	44,000	46,000		
	4	65,000	65,500	63,000	60,500	61,000		
65	10	65,000	66,000	60,000	54,000	55,000		
	16	65,000	67,000	57,000	47,000	49,000		
		,	,	,	,			
	4	70,000	70,500	68,000	65,500	66,000		
70	10	70,000	71,000	65,000	59,000	60,000		
	16	70,000	72,000	62,000	52,000	54,000		
	4	75,000	75,500	73,000	70,500	71,000		
75	10	75,000	76,000	70,000	64,000	65,000		
	16	75,000	77,000	67,000	57,000	59,000		
	4	80,000	80,500	78,000	75,500	76,000		
80	10	80,000	81,000	75,000	69,000	70,000		
	16	80,000	82,000	72,000	62,000	64,000		
	4	85,000	85,500	83,000	80,500	81,000		
	5	85,000	85,500	82,500	79,500	80,000		
85	12	85,000	86,000	79,000	72,000	73,000		
	18	85,000	87,000	76,000	65,000	67,000		
	20	85,000	87,000	75,000	63,000	65,000		
	4	90,000	90,500	88,000	85,500	86,000		
	5	90,000	90,500	87,500	84,500	85,000		
90	12	90,000	91,000	84,000	77,000	78,000		
	18	90,000	92,000	81,000	70,000	72,000		
	20	90,000	92,000	80,000	68,000	70,000		
	4	95,000	95,500	93,000	90,500	91,000		
	5	95,000	95,500	92,500	89,500	90,000		
95	12	95,000	96,000	89,000	82,000	83,000		
	18	95,000	97,000	86,000	75,000	77,000		
	20	95,000	97,000	85,000	73,000	75,000		

Окончание табл. 1П

Номинальный	Шаг	Диаметр резьбы					
диаметр	Р	нар	ужный	средний	внутренний		
резьбы d	_	d	D_4	$d_2 = D_2$	d ₃	D ₁	
	4	100,00	100,500	98,000	95,500	96,000	
100	5	100,00	100,500	97,500	94,500	95,000	
	12	100,00	101,000	94,00	87,000	88,000	
	4	110,00	110,500	108,000	105,50	106,00	
110	5	110,00	110,500	107,500	104,50	105,00	
110	12	110,00	111,000	104,000	97,000	98,000	
	20	110,00	112,000	100,000	88,000	90,000	
	6	120,00	121,000	117,000	113,00	114,00	
	14	120,00	122,000	113,000	104,00	106,00	
120	16	120,00	122,000	112,000	102,00	104,00	
	22	120,00	122,000	109,000	96,000	98,000	
	24	120,00	122,000	108,000	94,000	96,000	

Номинальный диаметр трапецеидальной резьбы соответствует ее наружному диаметру, измеренному по стержню. Трапецеидальная резьба стандартизована для номинальных диаметров 8 – 640 мм.

В обозначении трапецеидальной резьбы указывают буквы Tr, номинальный диаметр, шаг (либо ход и шаг – для многозаходной резьбы) и поле допуска.

Примеры обозначения трапецеидальной резьбы:

- номинальный диаметр 24 мм, шаг 8 мм, поле допуска 7е

Tr
$$24 \times 8 - 7e \Gamma OCT 24737 - 81$$
;

– номинальный диаметр 24 мм, шаг 5 мм, поле допуска 7е, левая

Tr
$$24 \times 5$$
LH – 7e Γ OCT $24737 – 81;$

номинальный диаметр 24 мм, шаг 2 мм, поле допуска 7е,
 трехзаходная (ход резьбы 3·2=6 мм)

Tr
$$24 \times 6(P2)$$
 LH – 7e FOCT $24737 - 81$.

РЕЗЬБА УПОРНАЯ ГОСТ 10177-82

d — наружный диаметр наружной резьбы винта; d_2 — средний диаметр наружной резьбы; d_3 — внутренний диаметр наружной резьбы; D_1 — наружный диаметр внутренней резьбы; D_2 — средний диаметр внутренней резьбы; P — шаг резьбы; a_c — зазор по вершине резьбы; h_3 — высота профиля наружной резьбы; H_1 —высота профиля внутренней резьбы; R — радиус закруглений по впадине наружной резьбы.

Значения диаметров вычислены по формулам:

$$d_2 = D_2 = d - 0.75 \cdot P;$$

$$d_3 = d - 2 \cdot h_3 = d - 1.735534 \cdot P;$$

$$D_1 = d - 2 \cdot H_1 = d - 1.5 \cdot P.$$

Таблица 2П. Размеры упорной резьбы

Номинальный диаметр	Шаг	P •02021	Диамет	р резьбы	
резьбы d	P	d = D	$d_2 = D_2$	d_3	D_1
10	2	10,000	8,500	6,529	7,000
12	2 3	12,000 12,000	10,500 9,750	8,529 6,793	9,000 7,500
14	2 3	14,000 14,000	12,500 11,750	10,529 8,793	11,000 9,500
16	2	16,000	14,500	12,529	13,000
	4	16,000	13,000	9,058	10,000
18	2	18,000	16,500	14,529	15,000
	4	18,000	15,000	11,058	12,000
20	2	20,000	18,500	16,529	17,000
	4	20,000	17,000	13,058	14,000
22	2	22,000	20,500	18,529	19,000
	3	22,000	19,750	16,793	17,500
	5	22,000	18,250	13,322	14,500
	8	22,000	16,000	8,116	10,000
24	2	24,000	22,500	20,529	21,000
	3	24,000	21,750	18,793	19,500
	5	24,000	20,250	15,322	16,500
	8	24,000	18,000	10,116	12,000
26	2	26,000	24,500	22,529	23,000
	3	26,000	23,750	20,793	21,500
	5	26,000	22,250	17,322	18,500
	8	26,000	20,000	12,116	14,000
28	2	26,000	26,500	24,529	25,000
	3	28,000	25,750	22,793	23,500
	5	28,000	24,250	19,322	20,500
	8	28,000	22,000	14,116	16,000
30	3	30,000	27,750	24,793	25,500
	6	30,000	25,500	19,587	21,000
	10	30,000	22,500	12,645	15,000

Продолжение табл. 2П

	T	1		продолжен	ие таол. 211
Номинальный диаметр	Шаг		Диамет	р резьбы	
резьбы d	P	d = D	$d_2 = D_2$	d_3	D_1
-	3	32,000	29,750	26,793	27,500
32	6	32,000	27,500	21,587	23,000
	10	32,000	24,500	14,645	17,000
	3	34,000	31,750	28,793	29,500
34	6	34,000	29,500	23,587	25,000
	10	34,000	26,500	16,645	19,000
	6	36,000	33,750	30,793	31,500
36	6	36,000	31,500	25,587	27,000
	10	36,000	28,500	18,645	21,000
	3	38,000	35,750	32,793	33,500
38	6	38,000	33,500	27,587	29,000
30	7	38,000	32,750	25,851	27,500
	10	38,000	30,500	20,645	23,000
	3	40,000	37,750	34,793	35,500
40	6	40,000	35,500	29,587	31,000
40	7	40,000	34,750	27,851	29,500
	10	40,000	32,500	22,645	25,000
	3	42,000	39,750	36,793	37,500
42	6	42,000	37,500	31,587	33,000
42	7	42,000	36,750	29,851	31,500
	10	42,000	34,500	24,645	27,000
	3	44,000	41,750	38,793	39,500
44	6	44,000	38,750	31,851	33,500
77	7	44,000	38,000	30,116	32,000
	10	44,000	35,000	23,174	26,000
	3	46,000	43,750	40,793	41,500
46	8	46,000	40,000	32,116	34,000
	12	46,000	37,000	25,174	28,000
	3	48,000	45,750	42,793	43,500
48	8	48,000	42,000	34,116	36,000
	12	48,000	39,000	27,174	30,000
	3	50,000	47,750	44,793	45,500
50	8	50,000	44,000	36,116	38,000
-	12	50,000	41,000	29,174	32,000
	3	52,000	49,750	46,793	47,500
52	8	52,000	46,000	38,116	40,000
	12	52,000	43,000	31,174	34,000

Продолжение табл. 2П

-	1			продолжен	ие таол. 211
Номинальный диаметр	Шаг		Диаметј	р резьбы	
резьбы d	P	d = D	$d_2 = D_2$	d_3	D_1
	3	55,000	52,750	49,793	50,500
	8	55,000	49,000	41,116	43,000
55	9	55,000	48,250	39,380	41,500
	12	55,000	46,000	34,174	37,000
	14	55,000	44,500	30,702	34,000
	3	60,000	57,750	51,793	55,500
	8	60,000	54,000	46,116	48,000
60	9	60,000	53,250	44,380	46,500
	12	60,000	51,000	39,174	42,000
	14	60,000	49,500	35,702	39,000
	4	65.000	62.000	58.058	59.000
65	10	65.000	57.500	47.645	50.000
	16	65.000	53.000	37.231	41.000
	4	70.000	67.000	63.058	64.000
70	10	70.000	62.500	52.645	55.000
	16	70.000	58.000	42.231	46.000
	4	75.000	72.000	68.058	69.000
75	10	75.000	67.500	57.645	60.000
	16	75.000	63.000	47.231	51.000
	4	80.000	77.000	73.058	74.000
80	10	80.000	72.500	62.645	65.000
	16	80.000	68.000	52.231	56.000
	4	85.000	82.000	78.058	79.000
	5	85.000	81.250	76.322	77.500
85	12	85.000	76.000	64.174	67.000
	18	85.000	71.500	53.760	58.000
	20	85.000	70.000	50.289	55.000
	4	90.000	87.000	83.058	84.000
00	5	90.000	86.250	81.322	82.500
90	12	90.000	81.500	69.174	72.000
	18	90.000	76.500	58.760	63.000
	4	95.000	92.000	88.058	89.000
95	5	95.000	91.250	86.322	87.500
73	12	95.000	86.000	74.174	77.000
	18	95.000	81.500	63.760	68.000

Номинальный диаметр	Шаг	Диаметр резьбы					
резьбы d	Р	d = D	$d_2 = D_2$	d_3	D_1		
	4	100.000	97.000	93.058	94.000		
100	5	100.000	96.250	91.322	92.500		
100	12	100.000	91.000	79.174	82.000		
	20	100.000	85.000	65.289	70.000		
	4	110.000	107.000	103.058	104.000		
110	5	110.000	106.250	101.322	102.500		
110	12	110.000	101.000	89.174	92.000		
	20	110.000	95.000	75.289	80.000		
	6	120.000	115.500	109.587	111.000		
120	14	120.000	109.500	95.702	99.000		
120	16	120.000	108.000	92.231	96.000		
	22	120.000	103.500	81.818	87.000		

Профиль упорной резьбы имеет вид неравнобокой трапеции с передним (в направлении передачи усилия) углом 3° и задним углом 30°.

При особо больших нагрузках для диаметров 80 - 2000 мм применяют также усиленную упорную резьбу по ГОСТ 13535 - 87, имеющую задний угол профиля 45° .

Номинальный диаметр упорной резьбы соответствует ее наружному диаметру, измеренному по стержню. Упорная резьба стандартизирована для номинальных диаметров 10 – 640 мм.

В обозначении упорной резьбы указывают букву S, номинальный диаметр, шаг (либо ход и шаг – для многозаходной резьбы) и поле допуска.

Примеры обозначения упорной резьбы:

- номинальный диаметр 24 мм, шаг 5 мм, поле допуска 8h

S
$$24 \times 5 - 8h$$
 FOCT $10177 - 82$;

- номинальный диаметр 24 мм, шаг 2 мм, поле допуска 8h, четырехзаходная (ход резьбы $4 \times 2 = 8$ мм), левая

S
$$24 \times 8(P2)LH - 8h$$
 FOCT $10177 - 82$.

приложение 3

МЕТРИЧЕСКАЯ РЕЗЬБА ГОСТ 24705-2004

d — наружный диаметр наружной резьбы (болта); d_1 — внутренний диаметр наружной резьбы; d_3 — внутренний диаметр наружной резьбы по дну впадин; D — внутренний диаметр внутренней резьбы (гайки); — наружный диаметр внутренней резьбы (гайки); D_2 — средний диаметр гайки; P — шаг резьбы; H — высота исходного треугольника.

Значения диаметров вычислены по формулам:

$$\begin{aligned} &D_2 = D - 2 \cdot \frac{3}{8} \cdot H = D - 0,649519053 \cdot P; \\ &d_2 = d - 2 \cdot \frac{3}{8} \cdot H = d - 0,649519053 \cdot P; \\ &D_1 = D - 2 \cdot \frac{5}{8} \cdot H = D - 1,082531755 \cdot P; \\ &d_1 = d - 2 \cdot \frac{5}{8} \cdot H = d - 1,082531755 \cdot P; \\ &d_3 = d - 2 \cdot \frac{17}{24} \cdot H = d - 1,226869322 \cdot P. \end{aligned}$$

Таблица 3П. Размеры метрической резьбы

 Номинальный	IIIon		Диамет	р резьбы	
диаметр	Шаг	d = D	$d_2 = D_2$	$d_1 = D_1$	d ₃
резьбы d	P	u = D	$\mathbf{u}_2 = \mathbf{D}_2$	$\mathbf{u}_{1} - \mathbf{D}_{1}$	u ₃
4	0,7	4,000	3,545	3,242	3,141
	0,5	4,000	3,675	3,459	3,387
5	0,8	5,000	4,480	4,134	4,019
	0,5	5,000	4,675	4,459	4,387
	1	6,000	5,350	4,917	4,773
6	0,75	6,000	5,513	5,188	5,080
	0,5	6,000	5,675	5,459	5,387
8	1,25	8,000	7,188	6,647	6,466
0	1	8,000	7,350	6,917	6,773
	1,5	10,000	9,026	8,376	8,160
10	1,25	10,000	9,188	8,647	8,466
	1	10,000	9,350	8,917	8,773
	1,75	12,000	10,863	10,106	9,853
10	1,5	12,000	11,026	10,376	10,160
12	1,25	12,000	11,188	10,647	10,466
	1	12,000	11,350	10,917	10,773
	1,5	14,000	13,026	12,376	12,160
14	1,25	14,000	13,188	12,647	12,466
	1	14,000	13,350	12,917	12,773
	2	16,000	14,701	13,835	13,546
16	1,5	16,000	15,026	14,376	14,160
	1	16,000	15,350	14,917	14,773
	2,5	18,000	16,376	15,294	14,933
	2	18,000	16,701	15,835	15,546
18	1,5	18,000	17,026	16,376	16,160
	1	18,000	17,350	16,917	16,773
_	2,5	20,000	18,376	17,294	16,933
20	2	20,000	18,701	17,835	17,546
20	1,5	20,000	19,026	18,376	18,160
	1	20,000	19,350	18,917	18,773
	2,5	22,000	20,376	19,294	18,933
22	2	22,000	20,701	19,835	19,546
22	1,5	22,000	21,026	20,376	20,160
	ĺ	22,000	21,350	20,917	20,773
	3	24,000	22,051	20,752	20,319
24	2	24,000	22,701	21,835	21,546
	1,5	24,000	23,026	22,376	22,160

Продолжение табл. 3П

	<u> </u>		т	<u> </u>	ие таол. 311
Номинальный	Шаг		Диамет	р резьбы	
диаметр	P	d = D	$d_2 = D_2$	$d_1 = D_1$	d_3
резьбы d	2	27,000	25 701	24.925	
27	2	27,000	25,701	24,835	24,546
27	1,5	27,000	26,026	25,376	25,160
	1	27,000	26,350	25,917	25,773
20	3	30,000	28,051	26,752	26,319
30	2	30,000	28,701	27,835	27,546
	1,5	30,000	29,026	28,376	28,160
	3,5	33,00	30,727	29,211	28,706
33	3 2	33,00	31,051	29,752	29,319
		33,00	31,0701	30,835	30,546
	1,5	33,00	32,026	31,376	31,160
	4	36,00	33,402	31,670	31,093
36	3 2	36,00	34,051	32,752	32,319
		36,00	34,701	33,835	33,546
	1,5	36,00	35,026	34,376	34,160
39	4	39,00	36,402	34,670	34,093
	3	39,00	37,051	35,752	35,319
	2	39,00	37,701	36,835	36,546
	4,5	42,00	39,077	37,129	36,479
42	4	42,00	39,402	37,670	37,093
12	3	42,00	40,051	38,752	38,319
	2	42,00	40,701	39,835	39,546
	4,5	45,00	42,077	40,129	39,479
45	4	45,00	42,402	40,670	40,093
73	3	45,00	43,051	41,752	40,319
	2	45,00	43,701	42,835	42,546
	5	48,00	44,752	42,587	41,866
48	4	48,00	45,402	43,670	43,093
40	3 2	48,00	46,051	44,752	44,319
	2	48,00	46,701	45,835	45,546
	5	52,00	48,752	46,587	45,866
50	4	52,00	49,402	47,670	47,093
52	3	52,00	50,051	48,752	48,319
	2	52,00	50,701	49,835	49,546
	5,5	56,00	52,428	50,046	49,252
	4	56,00	53,402	51,670	51,093
56		56,00	54,051	52,752	52,319
	3 2	56,00	54,701	53,835	53,546
	1,5	56,00	55,026	54,376	54,160

Окончание таблицы 3П

Номинальный	Шаг	Диаметр резьбы				
диаметр резьбы d	P	d = D	$d_2 = D_2$	$d_1 = D_1$	d_3	
	4	60,00	57,402	55,670	55,093	
60	3	60,00	58,051	56,752	56,319	
00	2	60,00	58,701	57,835	57,546	
	1,5	60,00	59,026	58,376	58,160	
	6	64,000	60,103	57,505	56,639	
	4	64,000	61,402	59,670	59,093	
64	3	64,000	62,051	60,752	60,319	
	2	64,000	62,701	61,835	61,546	
	1,5	64,000	63,026	62,376	62,160	

Номинальный диаметр метрической резьбы соответствует ее наружному диаметру, измеренному по стержню. Метрическая резьба стандартизована для номинальных диаметров 0.25-600 мм. Для каждого номинального диаметра метрической резьбы в диапазоне 1-68 мм предусмотрен один крупный и несколько мелких шагов.

Метрическая резьба диаметром менее 1 мм имеет только крупный шаг, диаметром свыше 68 мм – только мелкие шаги.

В обозначении метрической резьбы указывают букву М, номинальный диаметр, шаг (только, если он мелкий) либо ход и шаг (для многозаходной резьбы), а также поле допуска.

Примеры обозначения метрической резьбы:

- номинальный диаметр 24 мм, крупный шаг, поле допуска 6g

$$M24 - 6g \Gamma OCT 24705 - 2004;$$

- номинальный диаметр 24 мм, мелкий шаг 1,5 мм, поле допуска 6g

$$M24 \times 1,5 - 6g \Gamma OCT 24705 - 2004;$$

- номинальный диаметр 24 мм, крупный шаг, поле допуска 6g, левая

$$M24LH - 6g \Gamma OCT 24705 - 2004;$$

- номинальный диаметр 24 мм, мелкий шаг 1,5 мм, поле допуска 6g, двухзаходная (ход резьбы $2 \times 1,5=3$ мм), левая

$$M24 \times 3(P1,5)LH - 6g \Gamma OCT 24705 - 2004.$$

РУКОЯТКА КРИВОШИПНАЯ

	Размеры, мм									
L	S	e	D	d(H9)	Н	h	h_1	В	L_1	L
65	10	13,5	20	6	22	8	4	12	62,0	16
80	10	13,5	20	6	22	8	4	12	77,0	16
100	12	16,5	24	8	26	10	5	16	97,0	20
125	14	19,0	28	10	30	12	6	20	122,5	25
160	17	23,0	32	10	34	12	7	20	155,5	25
200	19	26,0	37	12	38	14	8	24	195,5	32
250	22	30,0	42	12	43	14	9	24	243,0	32
320	24	33,0	47	16	48	16	10	28	312,5	40

Примечание: Ручка стальная исполнения 1 по МН 4-64. Пример обозначения ручки фасонной стальной исполнения 1, l_p =60 мм; l_0 =12 мм. Ручка 1. 60 х 12 МН 4-64.

МАХОВИК

Диаметр		Ступи	06	од	Спица							
маховика	размеры, мм											
D, мм.	Н	S	d_1	d_2	h	b	b_1	b_2	h_1	h ₂	Число	
140	18	10	28	32	16	20	20	18	10	9		
160	19	12; 14	30	34	18	22	24	20	12	10	3	
200	22	14; 17	34	40	20	25	26	22	13	11		
240	26	17; 19	40	48	22	28	26	22				
280	30	19; 24	45	55	26	32	28	24	14	12		
320	30	24; 27	55	63			30	26	15	13	ı	
360	34	27; 32	60	70	30	36	32	28	16	14	5	
400	38	27, 32	80				34	30	17	15	3	
450	42	22. 26	70	30	34	40	38	32	19	16		
500	45	32; 36	70				40	34	20	17		
550	50	41	80	90								
640	55	50	95	105								
720	60	55	105	120	36	42	42	36	21	18	7	
800	65	60	115	135								

Пример условного обозначения маховика D=400 мм и S=27 мм: Маховик 400 \times 27 ГОСТ 5260-75

РУКОЯТКА ШТУРВАЛЬНАЯ

1 – корпус; 2 – рукоятка.

Конструкция корпуса

		Pa	змеры, м	MM	Корпус	Рукоятка по			
Обозначение			Н	d		Корпус	ГОСТ 8924-69		
рукояток	D	D_1			d_6	количество			
						1	4		
						обозначение деталей			
7061-0146	160	24	50	12	4	7061-0146/001	7061-0102		
7061-0148	200	30	60	16	5	7061-0148/001	7061-0108		
7061-0150	250	36	76	20	6	7061-0150/001	7067-0114		
7061-0152	300	42	88	25	8	7061-0152/001	7061-0116		
7061-0154	380	52	112	32	0	7061-0154/001	7061-0124		

Примечания: 1. Размер в скобках – после сборки. 2. При сборке резьбу рукоятки смазать эпоксидной смолой или клеем, предназначенным для склеивания металлических поверхностей. 3. Допускается применение рукояток со стальными шариковыми ручками.

Размеры корпуса

Обозначение		Размеры, мм						MM					
корпусов	d	D_k	D_1	H_2	d_2	d_3	d_4	d_5	d_6	h	h_1	h_2	h ₃
7061-0146/001	12	45	24	32	14	11	M8	8	4	16	16	9	6
7061-0148/001	16	55	30	42	18	13	M10	10,5	5	22	20	10	8
7061-0150/001	20	63	36	50	22	17	M12	13,0	6	28	23	12	10
7061-0152/001	25	70	42	55	26	1 /	10112	13,0	8	32	23	12	12
7061-0154/001	32	85	52	70	34	21	M16	17,0	0	43	28	14	16

Пример условного обозначения штурвальной рукоятки со стальными шариковыми ручками размером D=160 мм:

Рукоятка 7061-0146 Ст ГОСТ 14741-69.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Детали машин: учебник для академического бакалавриата / М.Н. Иванов, В.А. Финогенов. 15-е изд. испр. и доп. М.: Юрайт, 2014. 408 с.
- 2. Леликов О.П. Основы расчета и проектирования деталей и узлов машин: конспект лекций по курсу "Детали машин". 3-е изд. перераб. и доп. М.: Машиностроение, 2007. 464 с.

ОГЛАВЛЕНИЕ

предисловие	3
1. Передача винт – гайка. Общие сведения.	4
2. Передача винт – гайка скольжения	5
3. Передача винт – гайка качения	7
4. Расчет и проектирование винтовой передачи скольжения	13
4.1. Предварительный расчет винта	13
4.2. Проверка условия самоторможения резьбы	19
4.3. Проверочный расчет винта на прочность	19
4.4. Проверка винта на устойчивость	20
4.5. Расчет гайки	23
4.5.1. Определение основных размеров гайки грузовых винтов	23
4.5.2. Проверочный расчет гайки винтовой передачи	25
4.6. Расчет рукоятки	26
4.7. Расчет стопорных винтов	29
Примеры расчета передачи винт – гайка скольжения	31
Приложения	40
Приложение 1. Трапецеидальная резьба ГОСТ 24737 – 81	40
Приложение 2. Резьба упорная ГОСТ 10177 – 82	45
Приложение 3. Метрическая резьба ГОСТ 24705 – 2004	50
Приложение 4. Рукоятка кривошипная	54
Приложение 5. Маховик	55
Приложение 6. Рукоятка штурвальная	56
Библиографический список	57

Учебное издание

Валерий Олегович Варганов Михаил Викторович Аввакумов Михаил Владимирович Колычев Вера Михайловна Гребенникова Виталий Альбертович Романов

ПЕРЕДАЧА ВИНТ – ГАЙКА

Учебное пособие

Редактор и корректор Т. А. Смирнова Техн. редактор Л.Я. Титова

Темплан 2015 г., поз. 38

Подп. к печати 06.05.15. Формат 60×84/16. Бумаги тип. №1.

Печать офсетная. Объем 3,75 печ. л.; 3,75 уч.-изд. л.

Тираж 50 экз. Изд. №38. Цена «С». Заказ №

Ризограф Санкт-Петербургского государственного технологического университета растительных полимеров, 198095, Санкт-Петербург, ул. Ивана Черных, 4.