Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

- Homework assignment published on Tuesday, 2018-03-13
- Submit questions and first solutions by Sunday, 2018-03-18, 12:00 by email to dominik.scheder@gmail.com and the TAs.
- You will receive feedback by Wednesday, 2018-03-21
- Revise your solution and submit your final solution by Sunday, 2018-03-25 by email to dominik.scheder@gmail.com and the TAs.

3 Basic Counting

A function $[m] \to [n]$ is monotone if $f(1) \le f(2) \le \cdots \le f(m)$. It is strictly monotone if $f(1) < f(2) < \cdots < f(m)$.

Exercise 3.1. Find and justify a closed formula for the number of strictly monotone functions from [m] to [n].

Solution. We choose m elements in [n], and match each one with the element in [n] with the same order. Note that if n < m, there is no feasible matching like that, and the solution is 0.

$$N_{m,n} = \binom{n}{m}$$

Exercise 3.2. Find and justify a closed formula for the number of monotone functions from [m] to [n].

Solution. We choose 1 to m elements in [n], and then we need to allocate elements in [m] to them. If we choose i elements in [n], [m] needs to be divided into i parts. Note that elements in each part is continuous in order, so we can insert i-1 plates into intervals of [m], where there are m-1 intervals. Then we can use the formula $\binom{n}{m} = \binom{n}{n-m}$. At last we can use a combinatorial interpretation to get the final formula for the number of monotone functions from [m] to [n].

$$N_{m,n} = \sum_{i=0}^{m} {\binom{n}{i} \times \binom{m-1}{i-1}} = \sum_{i=1}^{m} {\binom{n}{i} \times \binom{m-1}{m-i}} = \binom{m+n-1}{m}$$

Remark. By "closed" I mean something using expressions like \times , +, $\binom{n}{k}$, n!, but not \sum or \prod . For example, $\binom{n}{k^2}$ is a closed formula but $\sum_{k=0}^{n} \binom{n}{k}$ is not.

Exercise 3.3. Prove that $\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$ for every $n \geq 0$ by finding a combinatorial interpretation.

Solution. Obviously $\sum_{k=0}^{n} \binom{n}{k}^2 = \sum_{k=0}^{n} \binom{n}{k} \times \binom{n}{n-k}$. Assume there are two sets each of which has n elements, and we need to choose n elements from them. One way is to choose k $(0 \le k \le n)$ elements from one set and then choose n-k elements from the other, which is $\sum_{k=0}^{n} \binom{n}{k}^2$. Another way is to see them as a whole which has 2n elements, and then we choose n elements from it, which is $\binom{2n}{n}$.

Exercise 3.4. [From the textbook] Find a closed formula for $\sum_{k=m}^{n} {k \choose m} {n \choose k}$ and prove it combinatorially, i.e., by giving an interpretation.

Exercise 3.5. Let B_n be the number of partitions of the set [n] (this is the same as the number of equivalence relations on [n]). This is called the Bell number, thus we denote it B_n . Prove that the following recursive formula for B_n is correct:

$$B_0 = 1$$

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k .$$

Exercise 3.6. Let P_n be the number of ways to write the natural number n as a sum $a_1 + a_2 + \cdots + a_k$ such that $1 \le a_1 \le a_2 \le \cdots \le a_k$. For example, 3 can be written as 3, 2+1, and 1+1+1, so $P_3=3$. Find a recursive formula for P_n .

Remark. The formula might not be as simple as the above for B_n . Be creative! Start by writing a simple recursive program that computes P_n .