

Convolutional neural networks

Computer vision

Prof. Dr. Jan Kirenz HdM Stuttgart

Fashion MNIST

- Images are greyscale 28x28
- They are centered
- Only one item per image

In a convolutional neural network, we first filter the images to spot features

Take a look at a particular pixel with value 192

Current pixel value is 192
Consider neighbor values

A filter is simply a set of multipliers

Current pixel value is 192
Consider neighbor values

Filter definition

Multiply and sum up the result to get the new value

Current pixel value is 192
Consider neighbor values

Filter definition

CURRENT_PIXEL_VALUE = 192

NEW_PIXEL_VALUE =
$$(-1 * 0) + (0 * 64) + (-2 * 128) + (.5 * 48) + (4.5 * 192) + (-1.5 * 144) + (1.5 * 42) + (2 * 226) + (-3 * 168)$$

This filter removes almost everything except vertical lines

Source: Moroney (2019)

This filter removes almost everything except horizontal lines

Source: Moroney (2019)

Pooling groups up the pixels in the image

0	64	128	128
48	192	144	144
142	226	168	0
255	0	0	64

Max Pooling 2 by 2 will group image into sets of 2x2 pixels

Source: Moroney (2019)

... and pick the largest

Result of Max pooling: vertical line features are maintained

Max pooling 2x2

The filters are learned - they are parameters!

this process is called feature extraction

Source: Moroney

Resources

The slides are based on the excellent video tutorial "Introducing to convolutional neural networks (ML Zero to Hero - Part 3)" by Lawrence Moroney.

