Devoir à la maison n° 6

À rendre le 14 novembre

I. Longueur d'un chemin complexe.

Un chemin de classe \mathscr{C}^1 est une fonction $\gamma:[a,b]\to\mathbb{C}$ de classe \mathscr{C}^1 , où a et b sont deux réels vérifiant a< b.

Deux chemins de classe \mathscr{C}^1 $\gamma_1:[a,b]\to\mathbb{C}$ et $\gamma_2:[c,d]\to\mathbb{C}$ sont dits équivalents (noté $\gamma_1\sim\gamma_2$) s'il existe une fonction $\rho:[a,b]\to[c,d]$ de classe \mathscr{C}^1 , strictement croissante, vérifiant $\rho(a)=c$ et $\rho(b)=d$ et $\gamma_2\circ\rho=\gamma_1$.

Ainsi, deux chemins de classe \mathscr{C}^1 γ_1 et γ_2 sont équivalents s'ils sont deux paramétrisations d'une même «courbe» : $\operatorname{Im}(\gamma_1)$.

On admettra l'inégalité triangulaire : si $\gamma:[a,b]\to\mathbb{C}$ est un chemin de classe $\mathscr{C}^1,$ alors

$$\left| \int_a^b \gamma'(t) \, \mathrm{d}t \right| \leqslant \int_a^b |\gamma'(t)| \, \mathrm{d}t.$$

- 1) Soit $\gamma_1 : [a, b] \to \mathbb{C}$, $\gamma_2 : [c, d] \to \mathbb{C}$ et $\gamma_3 : [e, f] \to \mathbb{C}$ trois chemins de classe \mathscr{C}^1 .
 - a) Montrer que $\gamma_1 \sim \gamma_1$.
 - **b)** Montrer que si $\gamma_1 \sim \gamma_2$, alors $\gamma_2 \sim \gamma_1$.
 - c) Montrer que si $\gamma_1 \sim \gamma_2$ et $\gamma_2 \sim \gamma_3$, alors $\gamma_1 \sim \gamma_3$.

Remarque : on dit que \sim est une relation d'équivalence sur l'ensemble des chemins de classe \mathscr{C}^1 de \mathbb{C} .

2) Montrer si deux chemins de classe \mathscr{C}^1 $\gamma_1:[a,b]\to\mathbb{C}$ et $\gamma_2:[c,d]\to\mathbb{C}$ sont équivalents, alors

$$\int_a^b |\gamma_1'(t)| \, \mathrm{d}t = \int_c^d |\gamma_2'(t)| \, \mathrm{d}t$$

On définit la longueur d'un chemin de classe \mathscr{C}^1 $\gamma:[a,b]\to\mathbb{C}$ par

$$L(\gamma) = \int_a^b |\gamma'(t)| \, \mathrm{d}t.$$

On vient donc de montrer que deux chemins de classe \mathscr{C}^1 équivalents on même longueur. Pour toute courbe $\Gamma \subset \mathbb{C}$, on notera $L(\Gamma)$ la longueur de cette courbe, définie par la longueur de tout chemin de classe \mathscr{C}^1 γ vérifiant $\Gamma = \operatorname{Im}(\gamma)$.

- 3) Calculer $L(\mathbb{U})$.
- 4) Soit a < b deux réels, $f : [a, b] \to \mathbb{R}$ de classe \mathscr{C}^1 . Donner une expression de la longueur de la courbe représentative de f.
- 5) Application: déterminer la longueur de la courbe représentative de la fonction $t \mapsto t^2$, entre les points d'abscisses 0 et 1.

 Indication: résoudre $\operatorname{sh}(x) = 2$ et établir les formules de duplication en trigonométrie hyperbolique.
- 6) Soit $u, v \in \mathbb{C}$ distincts. Donner une paramétrisation du segment [u, v] et retrouver ainsi la formule donnant sa longueur.
- 7) Soit $u, v \in \mathbb{C}$ distincts. Montrer que la plus petite longueur d'un chemin de classe \mathscr{C}^1 joignant u à v est celle du segment [u, v].

II. Une équation différentielle.

On considère sur \mathbb{R}_{+}^{*} l'équation différentielle :

$$x^2y'' + 3xy' + y = 1 + x^2. (\mathscr{E})$$

On va résoudre cette équation différentielle par plusieurs méthodes différentes. Les questions sont indépendantes.

- 1) On fait le changement de fonction inconnue u(x) = xy(x). Former l'équation différentielle (E_1) que satisfait la fonction u(x). Résoudre (E_1) et en déduire l'ensemble des solutions de (\mathscr{E}) .
- 2) On pose $v(x) = x^2y'(x) + xy(x)$. Déterminer v. En déduire par une autre méthode l'ensemble des solutions de (\mathscr{E}) .

