$\mathcal{S} = \iiint (\frac{1}{4} (2 a_{\stackrel{\circ}{0}} \mathcal{H}_{\alpha\beta}^{\alpha\beta} \mathcal{H}_{\beta\chi}^{\alpha\beta} + \mathcal{H}_{\alpha\beta\chi}^{\alpha\beta}) + 4 \mathcal{H}_{\alpha\beta\chi}^{\alpha\beta}) + 4 \mathcal{H}_{\alpha\beta\chi}^{\alpha\beta} (-2 a_{\stackrel{\circ}{0}} \mathcal{H}_{\alpha\beta}^{\alpha\beta} - a_{\stackrel{\circ}{0}} \mathcal{H}_{\alpha\beta}^{\alpha\beta} -$

Wave operator

	$0.^+h^\perp$	0.+ <i>h</i>	${}^{0^+}\mathcal{F}_{a}{}^{\scriptscriptstyle \parallel}$	${}^{0,^{+}}\mathcal{A}_{S}{}^{\scriptscriptstyle{\perp}t}$	${}^{0^+}\mathcal{A}_{S}{}^{\parallel}$	${}^{0,^{+}}\mathcal{A}_{S}{}^{{\scriptscriptstyle \perp}h}$	$^{0}\mathcal{A}_{a}^{\parallel}$
^{0,+} <i>h</i> [⊥] †	0	0	0	0	$\frac{i a \cdot k}{\frac{0}{4}}$	$-\frac{ia.k}{0}$	0
^{0,+} h †	0	0	$\frac{i a. k}{0}$ $2 \sqrt{2}$	0	$-\frac{i a. k}{4 \sqrt{3}}$	$\frac{i a \cdot k}{4 \sqrt{6}}$	0
^{0,+} $\mathcal{F}_{a}^{$	0	$-\frac{i a. k}{2 \sqrt{2}}$	$-\frac{a_{0}}{2}-c_{1}k^{2}$	0	$\frac{c_1 k^2}{\sqrt{6}}$	$-\frac{c_1 k^2}{2 \sqrt{3}}$	0
${}^{0^+}\mathcal{R}_{S}{}^{{\scriptscriptstyle\perp}t}\dagger$	0	0	0	0	$\frac{a}{0}$	$-\frac{a_0}{2\sqrt{2}}$	0
$^{0^{+}}\mathcal{R}_{S}{}^{\parallel}$ †	$-\frac{1}{4}ia.k$	$\frac{i a_1 k}{4 \sqrt{3}}$	$\frac{c_1 k^2}{\sqrt{6}}$	$\frac{a}{0}$	$-\frac{2c_1k^2}{3}$	$\frac{-3 a. +4 c. k^2}{6 \sqrt{2}}$	0
${}^{0^+}\mathcal{A}_{S}{}^{\perph}\dagger$	$\frac{i a.k}{0}$ $4 \sqrt{2}$	$-\frac{i a. k}{4 \sqrt{6}}$	$-\frac{c_1 k^2}{2 \sqrt{3}}$	$-\frac{a_0}{2\sqrt{2}}$	$\frac{-3a_0+4c_1k^2}{6\sqrt{2}}$	$\frac{1}{6} (3 a_0 - 2 c_1 k^2)$	0
^{0⁻} ℋ _a ∥†	0	0	0	0	0	0	$-\frac{a}{0}$

²)	0										
	$-\frac{a}{2}$	$^{1^{+}}\mathcal{R}_{a}{}^{\parallel}{}_{\alpha\beta}$	$^{1^+}\mathcal{R}_{a^_{\alpha\beta}}$	$^{1.^{+}}\mathcal{A}_{S^{^{\perp}}lphaeta}$	$\frac{1}{2}h^{\perp}_{\alpha}$	$^1\mathcal{A}_{a}{}^{\parallel}{}_{lpha}$	${}^{1}\mathcal{F}_{a^{\perp}_{\alpha}}$	${}^{1}\mathcal{A}_{s}{}^{\perpt}{}_{\alpha}$	$^{1}\mathcal{A}_{s}{}^{lt}{}_{lpha}$	$^{1}\mathcal{A}_{S}^{\perp h}{}_{\alpha}$	$^{1}\mathcal{A}_{S}{}^{\parallelh}{}_{\alpha}$
	$^{1^{+}}\mathcal{A}_{a}{}^{\parallel}\dagger^{^{lphaeta}}$	$-\frac{a}{0}$	$-\frac{a_{0}}{2\sqrt{2}}$	0	0	0	0	0	0	0	0
	$^{1^+}\mathcal{A}_{a^\perp}\dagger^{^{lphaeta}}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0
	$^{1^{+}}\mathcal{A}_{S}{}^{^{\perp}}\dagger^{^{lphaeta}}$	0	0	$\frac{a}{0}$	0	0	0	0	0	0	0
	$^{1}h^{\perp}\uparrow^{\alpha}$	0	0	0	0	$\frac{i a. k}{4 \sqrt{2}}$	0	$-\frac{i a \cdot k}{4 \sqrt{6}}$	$\frac{1}{4}i\sqrt{\frac{5}{6}}a_0k$	$-\frac{i a \cdot k}{4 \sqrt{3}}$	$-\frac{i a. k}{4 \sqrt{6}}$
	${}^{1}\mathcal{A}_{a}{}^{\parallel}\dagger^{\alpha}$	0	0	0	$-\frac{\int_{0}^{a}\frac{a\cdot k}{0}}{4\sqrt{2}}$	$\frac{1}{4} \left(-a_0 - c_1 k^2 \right)$	$\frac{a_{0}}{2\sqrt{2}}$	$\frac{c_1 k^2}{4 \sqrt{3}}$	$-\frac{1}{4} \sqrt{\frac{5}{3}} c_1 k^2$	$\frac{c_1 k^2}{2 \sqrt{6}}$	$\frac{c_1 k^2}{4 \sqrt{3}}$
	${}^{1}\mathcal{A}_{a}{}^{\scriptscriptstyle \perp}\dagger^{\scriptscriptstyle lpha}$	0	0	0	0	$\frac{a_{0}}{2\sqrt{2}}$	0	0	0	0	0
	$\frac{1}{2}\mathcal{A}_{S}^{Lt}\dagger^{\alpha}$	0	0	0	$\frac{i a. k}{4 \sqrt{6}}$	$\frac{c_1 k^2}{4 \sqrt{3}}$	0	$\frac{1}{12} \left(-4 a \cdot - c \cdot k^2 \right)$	$\frac{1}{12} \sqrt{5} (2a_0 + c_1 k^2)$	0 12	$\frac{1}{12} \left(-2 a_{0} - c_{1} k^{2} \right)$
	${}^{1}\mathcal{A}_{S}{}^{It}t^{\alpha}$	0	0	0	$-\frac{1}{4}\bar{i}\sqrt{\frac{5}{6}}a_{0}k$		0	$\frac{1}{12} \sqrt{5} (2a_0 + c_1 k^2)$	$\frac{1}{12} (4 a_0 - 5 c_1 k^2)$	$-\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 - c_1 k^2)$	$\frac{1}{12} \sqrt{5} \left(-2 a_{0} + c_{1} k^{2} \right)$
	${}^{1}\mathcal{A}_{S}^{\perp h}t^{\alpha}$	0	0	0	$\frac{i a. k}{4 \sqrt{3}}$	$\frac{c_1 k^2}{2 \sqrt{6}}$	0	$-\frac{a_0 + c_1 k^2}{6 \sqrt{2}}$	$-\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 - c_1 k^2)$		$\frac{ac.k^2}{\frac{0.1}{6}\sqrt{2}}$
	${}^{1}\mathcal{A}_{S}^{IIh}\dagger^{\alpha}$	0	0	0	$\frac{i a. k}{4 \sqrt{6}}$	$\frac{c_1 k^2}{4 \sqrt{3}}$	0	$\frac{1}{12} \left(-2 a_0 - c_1 k^2 \right)$	$\frac{1}{12} \sqrt{5} \left(-2 a_{0} + c_{1} k^{2} \right)$	$\frac{a_0 - c_1 k^2}{6 \sqrt{2}}$	$\frac{1}{12} (5 a_0 - c_1 k^2)$

$(5ac.k^2)$	$^{2.^{+}}h^{\parallel}{}_{\alpha\beta}$	$^{2^{+}}\mathcal{A}_{a}{}^{\parallel}{}_{\alpha\beta}$	2 . $^{+}\mathcal{A}_{S}{}^{\parallel}{}_{lphaeta}$	$^{2.^{+}}\mathcal{A}_{S^{^{\perp}}lphaeta}$	$^{2}\mathcal{A}_{a}^{\parallel}_{\alpha\beta\chi}$	$^{2}\mathcal{A}_{S}^{\parallel}_{\alpha\beta\chi}$	
$^{2.}h^{\parallel}$ $\dagger^{\alpha\beta}$	0	$-\frac{\int_{0}^{a} \frac{a \cdot k}{0}}{4 \sqrt{2}}$	$-\frac{i a \cdot k}{4 \sqrt{3}}$	$\frac{i a \cdot k}{4 \sqrt{6}}$	0	0	
$^{2.}\mathcal{A}_{a}^{\parallel}\dagger^{^{lphaeta}}$	$\frac{i a_{0} k}{4 \sqrt{2}}$	$\frac{1}{4} (a_0 - c_1 k^2)$	$-\frac{c_1 k^2}{2 \sqrt{6}}$	$\frac{c_1^{k^2}}{4\sqrt{3}}$	0	0	
		, -	$\frac{1}{6} \left(-3 a_{0} - c_{1} k^{2} \right)$	$\frac{c_1 k^2}{6 \sqrt{2}}$	0	0	
$^{2.}^{+}\mathcal{A}_{S}{}^{\perp}\dagger^{lphaeta}$	$-\frac{i a. k}{4 \sqrt{6}}$	$\frac{c_1 k^2}{4 \sqrt{3}}$	$\frac{c_1^2 k^2}{6\sqrt{2}}$	$\frac{1}{12} (3 a_{0} - c_{1} k^{2})$	0	0	
$2^{-}\mathcal{H}_{a}^{\parallel} \dagger^{\alpha\beta\chi}$		0	0	0	$\frac{a}{4}$	0	
$^{2}\mathcal{H}_{S}^{I} + ^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{a}{0}$	3-
						$3^{-}\mathcal{A}_{s}^{\parallel} + \alpha^{\alpha\beta\chi}$	

Saturated propagator

	$\overset{0^+}{\cdot}\mathcal{T}^{\scriptscriptstyle\perp}$	$^{0,^{+}}\mathcal{T}^{\parallel}$	$^{0.}^+\mathcal{W}_a{}^{\parallel}$	${}^{0^+}_{\cdot}W_{s}^{\perpt}$	${}^{0^+}\mathcal{W}_{S}{}^{\parallel}$	${}^{0,^{+}}\mathcal{W}_{S}{}^{\perph}$	$0^{-}W_{a}^{\parallel}$
^{0,+} <i>T</i> ⁻ †	$-\frac{36 k^2 (a2 c. k^2)}{a.^2 (16+3 k^2)^2}$	$\frac{4 \sqrt{3}}{16 a_0 + 3 a_0 k^2}$	$\frac{2 i \sqrt{6} k}{16 a_0 + 3 a_0 k^2}$	$-\frac{72 i k (a2 c. k^2)}{a0^2 (16+3 k^2)^2}$	$\frac{8 i k (19 a.+3 (a2 c.) k^2)}{a^2 (16+3 k^2)^2}$	$-\frac{4i\sqrt{2}k(10a.+3(a.+4c.)k^2)}{a^2(16+3k^2)^2}$	0
^{0,+} ∕T [∥] †	$\frac{4\sqrt{3}}{16a_0+3a_0k^2}$	$\frac{4(2c_1^2+\frac{a_0^2}{k^2})}{a_0^2}$	$\frac{2 i \sqrt{2}}{a \cdot k}$	$\frac{8i\sqrt{3}}{16a_0k+3a_0k^3}$	$-\frac{8i}{\sqrt{3}(16a_0k+3a_0k^3)}$	$-\frac{8 i \sqrt{\frac{2}{3}}}{16 a. k+3 a. k^{3}}$	0
^{0,+} W _a †	$-\frac{2 i \sqrt{6} k}{16 a_0 + 3 a_0 k^2}$	$-\frac{2i\sqrt{2}}{a\cdot k}$	0	$\frac{4 \sqrt{6}}{16 a_0 + 3 a_0 k^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a.+3a.k^{2}}$	$-\frac{8}{\sqrt{3}(16a_{.}+3a_{.}k^{2})}$	0
0.+Ws ^{1t} †	$\frac{72 i k (a2 c. k^2)}{a0^2 (16+3 k^2)^2}$	$-\frac{8 i \sqrt{3}}{16 a_0 k + 3 a_0 k^3}$	$\frac{4 \sqrt{6}}{16 a_0^{1} + 3 a_0^{1} k^2}$	$-\frac{144(a2c_1k^2)}{a0^2(16+3k^2)^2}$	$\frac{304 a. +48 (a2 c.) k^{2}}{a. {}_{0}^{2} (16 + 3 k^{2})^{2}}$	$-\frac{8\sqrt{2}(10a.+3(a.+4c.)k^2)}{a.^2(16+3k^2)^2}$	0
^{0,+} W _s "†	$-\frac{8ik(19a.+3(a2c.)k^2)}{a^2(16+3k^2)^2}$	$\frac{8i}{\sqrt{3} (16a.k+3a.k^3)}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$\frac{304a.+48(a2c.)k^2}{a0^2(16+3k^2)^2}$	$\frac{-560 a. +96 (-a. +c.) k^{2}}{3 a.^{2} (16+3 k^{2})^{2}}$	$-\frac{8\sqrt{2}(22a.+3(a4c.)k^2)}{3a.^2(16+3k^2)^2}$	0
^{0,+} Ws ^{+h} †	$\frac{4i\sqrt{2}k(10a.+3(a.+4c.)k^2)}{a0^2(16+3k^2)^2}$	$\frac{8 i \sqrt{\frac{2}{3}}}{16 a_0 k + 3 a_0 k^3}$	$-\frac{8}{\sqrt{3} (16 a. +3 a. k^2)}$	$-\frac{8\sqrt{2}(10a.+3(a.+4c.)k^2)}{a0^2(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22a.+3(a4c.)k^2)}{3a.^2(16+3k^2)^2}$	$\frac{416 a.+96 (a.+2 c.) k^{2}}{3 a.^{2} (16+3 k^{2})^{2}}$	0
⁰⁻ Wa †	0	0	0	0	0	0	$-\frac{2}{a}$

<i>a</i> .	$\ W_a \ _{\alpha\beta}$	$\mathcal{W}_{a^{\perp}\alpha\beta}$	$W_{S^{\perp}\alpha\beta}$	$^{1}_{\cdot}\mathcal{T}^{_{-}}{}_{lpha}$	${}^{1}\mathcal{W}_{a}{}^{\parallel}{}_{\alpha}$	${}^{1}\mathcal{W}_{a^{\perp}{}_{\alpha}}$	$\mathcal{W}_{S^{LL}\alpha}$	$\mathcal{W}_{s^{II^{c}}\alpha}$	$\mathcal{W}_{S}^{III}{}_{\alpha}$	$\mathcal{W}_{s^{III}_{\alpha}}$	
$^{1^+}\mathcal{W}_{a}{}^{\parallel}\dagger^{lphaeta}$	0	$-\frac{2\sqrt{2}}{a_{0}}$	0	0	0	0	0	0	0	0	
$1.^+W_a^{\perp}\dagger^{\alpha\beta}$	$-\frac{2\sqrt{2}}{a_{0}}$	$\frac{2}{a}$	0	0	0	0	0	0	0	0	
$1.^+W_s^{\perp}\dagger^{\alpha\beta}$	0	0	$\frac{4}{a}$	0	0	0	0	0	0	0	
$\frac{1}{2}\mathcal{T}^{\perp} \dagger^{\alpha}$	0	0	0	$\frac{2 k^2 (a \cdot +4 c \cdot k^2)}{a \cdot (2 + k^2)^2}$	$\frac{2 i \sqrt{2} k}{2 a + a \cdot k^2}$	$\frac{i k (4 a + (a + 8 c) k^{2})}{a \cdot (2 + k^{2})^{2}}$	$-\frac{i\left(6a.k+(5a16c.)k^{3}\right)}{\sqrt{6}a^{2}(2+k^{2})^{2}}$	$\frac{i \sqrt{\frac{5}{6}} k}{2 a + a k^2}$	$-\frac{2 i k (3 a. + (a. + 4 c.) k^{2})}{\sqrt{3} a.^{2} (2 + k^{2})^{2}}$	$\frac{i\sqrt{\frac{2}{3}}k}{2a.+a.k^2}$	
$\frac{1}{2}W_{a}^{\parallel} + \alpha$	0	0	0	$-\frac{2 i \sqrt{2} k}{2 a_0 + a_0 k^2}$	0	$\frac{\sqrt{2} (4+k^2)}{a_0(2+k^2)}$	$-\frac{2 k^2}{\sqrt{3} (2 a_0 + a_0 k^2)}$	0	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a_0 + a_0 k^2}$	0	
$^{1}\mathcal{W}_{a}{}^{\scriptscriptstyle \perp}\dagger^{\scriptscriptstyle lpha}$	0	0	0	$-\frac{i(4a.k+(a.+8c.)k^3)}{a.^2(2+k^2)^2}$	$\frac{\sqrt{2} (4+k^2)}{a_0(2+k^2)}$	$\frac{16c_1k^2+a_1(4+k^2)^2}{2a_1^2(2+k^2)^2}$	$\frac{k^2 (32c_1 + a_1 (-2 + k^2))}{2 \sqrt{6} a_0^2 (2 + k^2)^2}$	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$	$\frac{k^2 \left(-8 c_1 + a_0 (5 + 2 k^2)\right)}{\sqrt{3} a_0^2 (2 + k^2)^2}$	$-\frac{k^2}{\sqrt{6} (2 a_0 + a_0 k^2)}$	
$\frac{1}{2}W_{s^{\perp t}} + \alpha$	0	0	0	$\frac{i (6 a. k + (5 a16 c.) k^3)}{\sqrt{6} a.^2 (2 + k^2)^2}$	$-\frac{2 k^2}{\sqrt{3} (2 a_0 + a_0 k^2)}$	$\frac{k^2 (32c_1 + a_1 (-2 + k^2))}{2 \sqrt{6} a_1^2 (2 + k^2)^2}$	$\frac{64 c_1 k^2 - a_0 (76 + 52 k^2 + 3 k^4)}{12 a_0^2 (2 + k^2)^2}$	$\frac{\sqrt{5} (10+3 k^2)}{12 a_0 (2+k^2)}$	$\frac{-2a. + (a16c.) k^{2}}{3 \sqrt{2} a.^{2} (2+k^{2})^{2}}$	$\frac{1}{-2 a_0^{-\frac{8 a_0}{0}}}$	
$\mathcal{X}_{S}^{I^{L}}$	0	0	0	$-\frac{i\sqrt{\frac{5}{6}}k}{2a_0+a_0k^2}$	0	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$	$\frac{\sqrt{5} (10+3 k^2)}{12 a_0 (2+k^2)}$	$\frac{1}{12a}$	$-\frac{\sqrt{\frac{5}{2}}}{6 a_0 + 3 a_0 k^2}$	$-\frac{\sqrt{5}}{6a}_{0}$	
$\frac{1}{2}W_{s}^{\perp h} + \alpha$	0	0	0	$\frac{2ik(3a.+(a.+4c.)k^2)}{\sqrt{3}a.^2(2+k^2)^2}$	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a_0 + a_1 k^2}$	$\frac{k^2 \left(-8 c_1 + a_1 \left(5 + 2 k^2\right)\right)}{\sqrt{3} a_1^2 \left(2 + k^2\right)^2}$	$\frac{-2a.+(a16c.)k^2}{3\sqrt{2}a.0^2(2+k^2)^2}$	$-\frac{\sqrt{\frac{5}{2}}}{6a_0+3a_0k^2}$	$\frac{8c_1k^2 + a_1(34 + 28k^2 + 6k^4)}{3a_0^2(2+k^2)^2}$	$-\frac{\sqrt{2} (7+3 k^2)}{3 a_0 (2+k^2)}$	
$^{1}W_{s}^{\parallel h}\dagger^{\alpha}$	0	0	0	$-\frac{i}{2} \sqrt{\frac{2}{3}} \frac{k}{k}$	0	$-\frac{k^2}{\sqrt{6} (2 a. + a. k^2)}$	$\frac{1}{-2 a_0 - \frac{8 a_0}{0 - \frac{2 + 3 k^2}{2 + 3 k^2}}}$	$-\frac{\sqrt{5}}{6a_0}$	$-\frac{\sqrt{2} (7+3 k^2)}{3 a_0 (2+k^2)}$	5 3 a.	2,+5
					·		-				1

$\frac{5}{3a}$	$2^+_{\cdot}\mathcal{T}^{\parallel}_{\alpha\beta}$	$^{2^{+}}\mathcal{W}_{a}^{\parallel}{}_{\alpha\beta}$	$2^+_{\cdot}W_{S}^{\parallel}_{\alpha\beta}$	$^{2^{+}}\mathcal{W}_{S^{^{\perp}}\alpha\beta}$	$2^{-}W_{a}^{\parallel}_{\alpha\beta\chi}$	$2^{-}W_{s}\ _{\alpha\beta\chi}$
$^{2^{+}}\mathcal{T}^{\parallel}$ † lphaeta	$\frac{8(c_{1}^{-\frac{a_{0}}{k^{2}}})}{a_{0}^{2}}$	$-\frac{4i\sqrt{2}}{a\cdot k}$	$\frac{4i}{\sqrt{3} a.k}$	$\frac{4i\sqrt{\frac{2}{3}}}{a.k}$	0	0
$^{2^{+}}\mathcal{W}_{a}{}^{\parallel}\dagger^{lphaeta}$			U	$\frac{4}{\sqrt{3}}a_{0}$	0	0
$^{2^{+}}\mathcal{W}_{S}^{\parallel}\dagger^{lphaeta}$		· ·		$-\frac{2\sqrt{2}}{3a}$	0	0
$^{2^{+}}W_{s}^{\perp}\dagger^{lphaeta}$	$-\frac{4i\sqrt{\frac{2}{3}}}{a.k\atop 0}$	$\frac{4}{\sqrt{3}}a_{0}$	$-\frac{2\sqrt{2}}{3a}$	$\frac{8}{3a}$	0	0
2 $\mathcal{W}_{a}^{\parallel}$ $\dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{4}{a}$	0
$2^{-}W_{s}^{\parallel} +^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{4}{a}$
						$3^{-}W_{c}^{\parallel}+^{\alpha\beta\chi}$

Source constraints

Spin-parity form	Covariant form	Multiplicities
$k^{0+}W_{s}^{\parallel} + 2k^{0+}W_{s}^{\perp h} - 6i^{0+}T^{\perp} == 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} + \partial_{\chi} \partial^{\chi} \partial_{\alpha} \mathcal{W}^{\alpha\beta}{}_{\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1
$k^{0+}W_{s}^{\perp t} + 2i^{0+}T^{\perp} == 0$	$2\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == \partial_{\chi}\partial_{\beta}\partial_{\alpha}\mathcal{W}^{\alpha\beta\chi}$	1
$\frac{6k^{1}W_{a}^{\perp \alpha} + 2k^{1}W_{s}^{\parallel h^{\alpha}} + k^{1}W_{s}^{\parallel t^{\alpha}} + 3k^{1}W_{s}^{\perp t^{\alpha}} + 12i^{1}\mathcal{T}^{\perp \alpha} = 0}{6k^{1}W_{s}^{\perp t^{\alpha}} + 2k^{1}W_{s}^{\parallel h^{\alpha}} + k^{1}W_{s}^{\parallel h^{\alpha}} + k^{1}W_{s}^{\parallel t^{\alpha}} + 3k^{1}W_{s}^{\perp t^{\alpha}} + 12i^{1}\mathcal{T}^{\perp \alpha} = 0}$	$4 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \mathcal{W}^{\beta \alpha \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \mathcal{W}^{\alpha \beta}_{\beta} = 4 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + 2 \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi \delta} + \partial_{\delta} \partial^{\delta} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi}_{\chi}$	3
$k^{1}W_{s}^{\perp h^{\alpha}} - 6i^{1}\mathcal{T}^{\perp^{\alpha}} == k(3^{1}W_{a}^{\perp^{\alpha}} + {}^{1}W_{s}^{\perp t^{\alpha}})$	$2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \mathcal{W}^{\beta \alpha \chi} = 2 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi \delta}$	3
Total expected gauge generators:	•	8

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue: $\left| -\frac{p^2}{\frac{a}{0}} > 0 \right|$ Polarisations: 2

Unitarity conditions