Analog Electronics

Fengchun Zhang

fz@es.aau.dk

Agenda

- Recap feedback system
- Solutions of the assignments
- Gain optimization and harmonic distortion improvement for BJT
- Introduction to biasing
 - BJT case
 - MOSFET case

General feedback system

Negative feedback system:

- X and X_F change in the same direction;
- The error signal should be minimized;
- Open-loop system: break the feedback network, K = 0
- Closed-loop system: $K \neq 0$

Loop-gain

- Open-loop gain: A₁
- Closed-loop gain: $A_{cL} = \frac{Y}{X} = \frac{A_1}{1 + KA_1}$
- Loop-gain: KA₁
 - Procedure to measure loop-gain
 - Set the input X to zero (X is voltage \rightarrow AC ground; if X is current \rightarrow open)
 - Break the loop at an arbitrary point
 - Apply a test signal V_{test} at one terminal and measure the signal V_F at the other terminal
 - Calculate the loop-gain $-\frac{V_F}{V_{test}} = KA_1$
 - $\frac{V_F}{V_{test}} < 0 \rightarrow \text{negative feedback}$ $\frac{V_F}{V_{test}} > 0 \rightarrow \text{positivie feedback}$

Properties of negative feedback

- Cons:
 - Smaller gain
- Pros:
 - Gain desensitization
 - Bandwidth extension
 - Linearity improvement
 - Modification of input and output impedance

Agenda

- Recap feedback system
- Solutions of the assignments
- Gain optimization and harmonic distortion improvement for BJT
- Introduction to biasing
 - BJT case
 - MOSFET case

Gain optimization for BJT

Definition & assumption:

$$v_S' = \frac{R_B}{R_B + R_S} v_S$$

$$R_S' = R_S \parallel R_B$$

$$r_o >> R_C \parallel R_L$$

$$R_B = R_1 || R_2$$

Optimize R_C to maximize gain for the fixed V_{R_C}

$$A_{v} = \frac{v_o}{v_s} = \frac{v_o}{v_s'} \cdot \frac{v_s'}{v_s} = A_v' \cdot \frac{R_B}{R_B + R_S}$$

$$A'_{v} = -\frac{g_{m}(R_{C}||R_{L})}{1 + \frac{R'_{S}}{r_{\pi}}} = -\frac{1}{(\frac{1}{g_{m}} + \frac{R'_{S}}{g_{m}r_{\pi}})(\frac{1}{R_{C}} + \frac{1}{R_{L}})}$$

 $g_m = rac{I_C}{V_T}$ and $eta = g_m r_\pi$

$$A'_{v} = -\frac{1}{\frac{(V_{T} + \frac{R'_{S}}{\beta})(\frac{1}{R_{C}} + \frac{1}{R_{L}})}{\beta}} = -\frac{1}{\frac{V_{T}}{I_{C}R_{C}} + \frac{R'_{S}}{\beta R_{C}} + \frac{V_{T}}{I_{C}R_{L}} + \frac{R'_{S}}{\beta R_{L}}} = -\frac{1}{N}$$

$$= -\frac{1}{\frac{V_{T}}{V_{R_{C}}} + \frac{R'_{S}}{\beta R_{C}} + \frac{R_{C}V_{T}}{V_{R_{C}}R_{L}} + \frac{R'_{S}}{\beta R_{L}}} = -\frac{1}{N}$$

 $Minimize \frac{R'_S}{\beta R_C} + \frac{R_C V_T}{V_{R_C} R_L} \rightarrow minimize N \rightarrow maximize A'_v$

Optimized
$$R_C$$

$$\frac{\partial N}{\partial R_C} = 0 \implies R_C^* = \sqrt{\frac{R_S' \cdot R_L \cdot V_{R_C}}{\beta \cdot V_T}} \implies$$

$$\left| A_{v,\text{max}}' \right| = \frac{1}{\left(\sqrt{\frac{V_T}{V_{R_C}}} + \sqrt{\frac{R_S'}{R_L \cdot \beta}} \right)^2}$$

Gain optimization

• Max gain based exclude $r_o = \frac{V_A}{I_C}$

$$\left| A_{v,\text{max}}' \right| = \frac{1}{\left(\sqrt{\frac{V_T}{V_{R_C}}} + \sqrt{\frac{R_S'}{R_L \cdot \beta}} \right)^2} \quad \Rightarrow \quad R_C^* = \sqrt{\frac{R_S' \cdot R_L \cdot V_{R_C}}{\beta \cdot V_T}}$$

• Max gain based include $r_o = \frac{V_A}{I_C}$

$$\left| A_{v}^{'} \right| = \frac{r_{o} \parallel R_{C} \parallel R_{L}}{\frac{1}{g_{m}} + \frac{R_{S}^{'}}{\beta}} \quad \Rightarrow \quad R_{C}^{*} = \sqrt{\frac{R_{S}^{'} \cdot R_{L} \cdot V_{R_{C}}}{\beta \cdot V_{T}}} \left(1 + \frac{V_{R_{C}}}{V_{A}} \right)$$

• Adding emitter resistor R_e reduce the gain

$$\left| A_{v}^{'} \right| = \frac{r_{o} \parallel R_{C} \parallel R_{L}}{R_{e}^{'} + \frac{1}{g_{m}} + \frac{R_{S}^{'}}{\beta}} \quad \Rightarrow \quad R_{e}^{'} = \frac{r_{o} \parallel R_{C} \parallel R_{L}}{A_{v}^{'}} - \frac{1}{g_{m}} - \frac{R_{S}^{'}}{\beta} = R_{e} \parallel R_{E}$$

Improving the THD for a BJT

Large-signal model

$$v_S = V_S + \Delta V_S$$
$$i_C = I_C + \Delta I_C$$

- $i_c = f(v_s)$ must be found and then $f^{(1)}$ and $f^{(2)}$ are found at the operating point given by I_c
- Determine f^1 and f^2 by implicitly differentiation

$$v_{S} = \frac{i_{C}}{\beta} R_{x} + v_{BE} + i_{C} R_{y}$$

$$= \left(\frac{R_{x}}{\beta} + R_{y}\right) i_{C} + V_{T} \ln\left(\frac{i_{C}}{I_{S}}\right)$$

$$i_{C} = I_{S} \cdot e^{\left(\frac{v_{BE}}{V_{T}}\right)}$$

Improving the THD for a BJT

Determination of $f^{(1)}$:

Determination of $f^{(2)}$:

(fg)'=(f)'g+f(g)'

(f(g))' = (f(g))'g'

Improving the THD for a BJT

We have now determined $f^{(1)}$ and of $f^{(2)}$ and are thus able to assess which effect Rx and Ry might have on, for example, HD2

$$f^{(1)}(i_C) = \frac{1}{\left(\frac{R_x}{\beta} + R_y + \frac{V_T}{i_C}\right)}$$

$$f^{(2)}(i_C) = \frac{\left(f^1\right)^2 \frac{V_T}{i_C^2}}{\frac{R_x}{\beta} + R_y + \frac{V_T}{i_C}}$$

$$HD_{2} = \frac{1}{4} \left| \frac{f^{(2)}}{f^{(1)}} \right| A = \frac{1}{4} \frac{\left(f^{(1)} \right) \frac{V_{T}}{i_{C}^{2}}}{\beta} A = \frac{1}{4} \frac{\frac{V_{T}^{2}}{i_{C}^{2}}}{\left(\frac{R_{x}}{\beta} + R_{y} + \frac{V_{T}}{i_{C}} \right)^{2}} \frac{A}{V_{T}}$$

$$= \frac{1}{4} \frac{1}{\left(\frac{i_{C}}{V_{T}} \left(\frac{R_{x}}{\beta} + R_{y} \right) + 1 \right)^{2}} \frac{A}{V_{T}} = \frac{\frac{1}{4} \frac{A}{V_{T}}}{F^{2}}$$

$$i_C = I_C + \Delta I_C \approx I_C$$

$$F = \frac{i_C}{V_T} \left(\frac{R_x}{\beta} + R_y \right) + 1 = g_m \left(\frac{R_x}{\beta} + R_y \right) + 1$$

Agenda

- Recap feedback system
- Solutions of the assignments
- Gain optimization and harmonic distortion improvement for BJT
- Introduction to biasing
 - BJT case
 - MOSFET case

Dispersion/spread -BJT

- Key parameter:
 - V_{BE} : $\pm 10\%$ spread; vary with temperature $-2 \text{ mV/}^{\circ}\text{C}$
 - β : typical β_{DC} and β_{AC} are given, variation of $\pm 50\%$ is normal; vary with temperature -0.5% /°C

Bias circuit — BJT

Fix V_{BE} is not a good design:

$$I_C = I_S e^{\frac{V_{BE}}{V_T}}$$

- Small variation in V_{BE} \rightarrow large variation in I_C
- I_S and V_T is temperature dependent

Fix I_B is not a good design:

$$I_C = \beta I_B$$

• Large variation in β among units of the same device type \Rightarrow large variation in I_C

The classical discrete circuit bias design--BJT

Single-power supply

$$V_{BB} = V_{CC} \frac{R_2}{R_1 + R_2}$$

$$R_B = R_1 || R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

$$I_E = \frac{V_{BB} - V_{BE}}{R_E + \frac{R_B}{\beta + 1}}$$

To make I_E insensitive to

- Temperature $(V_{BE}) \rightarrow V_{BB} \gg V_{BE}$
- $\beta \rightarrow R_E \gg \frac{R_B}{\beta+1}$

Fix
$$I_E$$
 is a good design: $I_E \approx \frac{V_{BB}}{R_E}$

The classical discrete circuit bias design -BJT

Stable operating point despite of uncertainty in V_{BE} & β

$$I_E = \frac{V_{BB} - V_{BE}}{R_E + \frac{R_B}{\beta + 1}} \approx \frac{V_{BB}}{R_E}$$

Cond 1: $V_{BB} \gg V_{BE}$

$$V_{CC} = V_{R_C} + V_{CB} + V_{BB}$$

- $V_{BB} \uparrow \rightarrow (V_{R_C} + V_{CB})\downarrow$
- V_{R_C} needs be large to have a large $A_v \approx -g_m R_C = -\frac{I_C}{V_T} R_C = -\frac{V_{RC}}{V_T}$ (CE, R_E bypassed in AC)
- V_{CB} needs to be large
 → large signal swing
- \rightarrow trade-off in designing $V_{RC} \& V_{CB} \& V_{BB}$

Cond 2:
$$R_E \gg \frac{R_B}{\beta + 1}$$

- small $R_B \rightarrow$ small $R_1 \& R_2$:
 - large bias current drained from V_{CC}
 - Smaller input impedance
- \rightarrow trade-off in design $R_1 \& R_2$

Rules of thumb for practical bias design: BJT amplifiers

Using these rules, a design based on data for a **BC547b** transistor can ensure \sim 3% spread at operating point due to V_{BE} and β tolerances

Design procedure - BJT

- Determine V_C or V_{R_C} : $V_{R_F} + V_{CE,sat} \le V_C \le V_{CC}$
 - Maximum output swing case: $V_C = \frac{V_{CC} + V_{R_E} + V_{CE,sat}}{2} \rightarrow V_{R_C} = V_{CC} V_C = \frac{V_{CC} \left(V_{R_E} + V_{CE,sat}\right)}{2}$
 - Known $v_{o,p}$ for highest A_v case: $V_C = V_{CE,sat} + V_{R_E} + v_{o,p} \Rightarrow V_{R_C} = V_{CC} V_C = V_{CC} V_{CE,sat} V_{R_E} v_{o,p}$
- Determine R_C to achieve maximum gain: $R_C = \sqrt{\frac{R_S' \cdot R_L \cdot V_{R_C}}{\beta V_T}} \approx \sqrt{\frac{R_S \cdot R_L \cdot V_{R_C}}{\beta V_T}}$, as $R_S \ll R_B$
- Determine $I_C = V_{R_C}/R_C$
- Determine $R_E = \frac{V_{R_E}}{I_C} = \frac{3V}{I_C}$
- Determine $R_B = \beta R_E/10$ -- to approx $R_E \gg R_B/\beta$
- Calculate $V_{BB} = I_C R_E + V_{BE} + \frac{I_C}{\beta} R_B$
- Determine R_1 and R_2 : $R_B = \frac{R_1 R_2}{R_1 + R_2} \& V_{BB} = V_{CC} \frac{R_2}{R_1 + R_2}$
- Calculate the gain and compare with requirement
- Check harmonic distortion

Definitioner/antagelser:
$$v_S^{'} = \frac{R_B}{R_B + R_S} v_S$$

$$R_S^{'} = R_S \parallel R_B$$

$$r_o >> R_C \parallel R_L$$

$$A_{v} = -\frac{R_{in}}{R_{in} + R_{S}} g_{m}(R_{C}||R_{L}) - R_{in} = R_{1}||R_{2}||r_{\pi}$$
Or $A_{v} = A'_{v} \frac{R_{B}}{R_{B} + R_{S}}$ with $A'_{v} = \frac{R_{C}||R_{L}}{\frac{1}{g_{m}} + \frac{R'_{S}}{\beta}}$

Classical configuration with two power supplies

$$I_E = \frac{V_{EE} - V_{BE}}{R_E + \frac{R_B}{\beta + 1}}$$
 Cond 1: $V_{EE} \gg V_{BE}$

$$V_{EE} \ge 5V_{BE} \qquad \qquad R_E \ge 10 \frac{R_B}{\beta}$$

A good configuration:

a stable operating point that is robust to changes in V_{BE} , β and temperature.

$$A_v = -g_m R_C$$
 -- without AC R_e
$$A_v = -\frac{R_C}{\frac{1}{g_m} + R'_e}$$
 -- with AC R_e & $R'_e = R_E || R_e$

Biasing with collector-to-base feedback R_B

- Small $R_B \rightarrow$ small signal swing, as $V_{CB} = I_B R_B$
- Large $R_C \rightarrow \text{large } V_{CC}$

 $A_v = -g_m(R_C||R_B)$ -- without AC R_e Gain drops due to the feedback

Quiz:

- The small-signal model of the circuit for CE stage? $A_v = ?$

Bais design - MOSFET

$$I_D = \frac{1}{2} k_n (V_{GS} - V_{TH})^2 = \frac{1}{2} \mu_n C_{ox} W / L (V_{GS} - V_{TH})^2$$

- μ_n : mobility of the electrons at the surface of the channel
- C_{ox} : oxide capacitance
- W & L: width & length of the channel

I_D variation:

- For different devices: V_{TH} , C_{ox} and W/L vary among devices even for devices with the same nominal values due to fabrication.
- For the same device due to temperature

Fix V_{GS} is not good.

Bias design - MOSFET

Fix V_G and connecting R_S in source lead

$$V_G = V_{GS} + I_D R_S \approx I_D R_S$$

Cond: $V_G \gg V_{GS}$

$$V_{G} = V_{DD} \frac{R_{G_{2}}}{R_{G_{1}} + R_{G_{2}}}$$

$$V_{G} = V_{GS} + I_{D}R_{S}$$

Cond:
$$V_G \gg V_{GS}$$

$$V_{SS} = V_{GS} + I_D R_S \approx I_D R_S$$

Cond:
$$V_{SS} \gg V_{GS}$$

Bias design procedure - MOSFET

- Determine V_{GS} , for a required $THD = HD_2 = \frac{A}{4(V_{GS} V_{TH})}$, A input amplitude
- Determine $I_D = \frac{1}{2} k_n (V_{GS} V_{TH})^2$, k_n and V_{TH} from datasheet
- Determine $V_G = 5 V_{GS}$ to approx $V_G \gg V_{GS}$
- Determine $R_S = \frac{V_G V_{GS}}{I_D}$
- Determine V_D or V_{R_D} : $V_G \le V_D \le V_{DD}$ Maximum output swing case: $V_D = \frac{V_{DD} + V_G}{2} \implies V_{R_D} = V_{DD} V_D = \frac{V_{DD} V_G}{2}$
 - Known $v_{o,p}$ for highest A_v case: $V_D = V_G + v_{o,p} \rightarrow V_{R_D} = V_{DD} V_D = V_{DD} V_G v_{o,p}$
- Determine $R_D = \frac{V_{R_D}}{I_D}$
- Determine R_{G_1} and R_{G_1} in M Ω range (provide high input impedance) using $V_G = V_{DD} \frac{R_{G_2}}{R_{G_1} + R_{G_2}}$
- Calculate the gain and compare with requirement
- Check harmonic distortion

