

# Discrete Math Sample Exm Question 1 (from Internet without solutions)

Discrete Mathematics (City University of Hong Kong)

# Sample Exam Paper

## University of Kent

Faculty of bla bla bla ...

Discrete Mathematics and Probability

This paper is divided into THREE sections as follows:

Section A: Six short questions each marked out of 10.

Candidates may attempt all SIX questions but are advised that

they cannot obtain more than FORTY marks on this section.

Section B: Two longer questions each marked out of 30.

Section C: Two longer questions each marked out of 30.

Candidates may not attempt more than ONE question from

each of the TWO questions in sections B and C.

### Sample Exam

**A1** For a set X, let |X| denote its size and  $2^X$  its powerset.

Match the following formulae (a) - (f) to the correct english descriptions (1) - (6):

(a) 
$$Y = \emptyset$$
; (b)  $Y = X \setminus (A \cup B)$ ; (c)  $Y \in 2^X$ ;

(d) 
$$A \subseteq X$$
; (e)  $Y = A \cup B$ ; (f)  $Y = A \cap B$ .

- (1) *Y* is the intersection of  $X \setminus A$  and  $X \setminus B$ ;
- (2) every element of A is an element of X;
- (3) Y is the set of elements that lie in A or in B;
- (4) Y is the set of elements that lie in A and in B;
- (5) Y is a set containing no elements;
- (6) Y is a subset of X.

#### marks 10

**A2** Construct the truth tables for the following statements:

- (i)  $p \Rightarrow (q \lor p)$
- (ii)  $[(p \land q) \lor r] \Rightarrow [(p \lor r) \land q]$

marks 10

**A3** Prove the following identity:

$$\sum_{i=0}^{n} \frac{1}{(i+1)(i+2)} = \frac{n+1}{n+2}.$$

marks 10

**B1a** Give a combinatorial proof of the formula

$$\#\{(d_1, d_2, \cdots, d_n) \in \mathbb{N}_0^n \mid \sum_{i=1}^n d_i = k\} = \binom{n+k-1}{k}$$

#### marks 10

- B1b Consider a basket with 5 apples and 4 pears. In how many ways can you collect three apples and two pears?

  marks 3
- B1c How many different equivalence relations with three equivalence classes are there on the set  $\{1, 2, 3, 4, 5\}$ ? marks 7
- B1d How many surjective functions are there from the set  $\{1,2,3,4\}$  to  $\{1,2,3\}$ .

**B2a** Let 
$$F := F(X,Y,Z) = (2X + Y + Z)^4$$
 and  $G := G(X,Y,Z) = (X^2 + Y/2 + Z/3)^3$ . Determine the coefficients with which the following terms appear in  $F$  and  $G$ . 1.  $X^2YZ$ ; 2.  $X^2Z^2$ ; 3.  $X^2YZ^2$ ; 4.  $XYZ^2$ ; 5.  $Y^2Z$ . marks 10

**B2b** Consider arithmetic modulo 8. Determine which of the following functions are bijective. If it is, determine the inverse function.

a. 
$$f: \mathbb{Z}_8 \to \mathbb{Z}_8: f([a]_8) = [a]_8 \cdot [2]_8 + [3]_8;$$
  
b.  $f: \mathbb{Z}_8 \to \mathbb{Z}_8: f([a]_8) = [a]_8 \cdot [3]_8 + [2]_8;$   
marks 5

B2c In how many ways can we divide 20 persons into 4 disjoint groups of the same size?

marks 5

**B2d** Consider the function  $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ , given by

$$f(x) := \frac{7x - 3}{x - 1}.$$

What is the image of f? Find  $d \in \mathbb{R}$  such that the function

$$\hat{f}: \mathbb{R} \backslash \{1\} \to \mathbb{R} \backslash \{d\}$$

is bijective and construct the inverse function of  $\hat{f}$ . marks 10