NATIONAL UNIVERSITY OF SINGAPORE SCHOOL OF COMPUTING

MIDTERM TEST FOR Semester 1, AY2022/23

CS2040 – Data Structures and Algorithms

1 October 2022	October 2022 Time allowed: 1.5 hours									
STUDENT NO. :	Α	0	1							

INSTRUCTIONS TO CANDIDATES

- 1. Do NOT flip / turn over the test paper until you are told to do so
- 2. Shade your **student number** in page 1 of the answer sheet. Do **NOT** write your name!
- 3. **COMPLETELY shade** the bubble for each answer using a fairly **dark pencil**, except for openended Q5, in which you may write legibly in either pen or pencil
- 4. Do NOT rearrange, add/remove staples or add/remove pages from the answer sheet. Submit only the ENTIRE answer sheet at the end of the test. It is your responsibility to ensure that you have submitted it, and submitted the correct answer sheet
- 5. If you fail to submit the correct answer sheet, fail to provide **correct particulars** or prevent the options from being **automatically detected** by software, we will consider it as if you did not submit your answers. In the best case, **marks will be deducted**
- 6. No extra time will be given at the end of the test for you to write your particulars, to shade or to fill in the answer sheet. You must do it **before** the end of the test
- 7. This paper consists of five (5) questions. Q1-4 are "MCQ", shade at most one option per grid. Write your code for Q5 in the allotted answer sheet. The question paper comprises ten (10) printed pages including this front page. The answer sheet comprises two (2) printed pages
- 8. This is an open-hardcopy-notes examination but **WITHOUT** electronic materials
- 9. Marks allocated to each question are indicated. Total marks for the paper is 45
- 10. The use of electronic calculator is NOT allowed

Qn	Max	Marks
Q1ab	04	
Q2abcdefg	14	
Q3ab	10	
Q4	09	
Q5	08	
Total	45	

Q1 $[4 \text{ marks} == 2 \times 2]$

A Java class X has only one

We want to

ArrayList<X> L containing

The

implementation of class X cannot be modified

Q1a. We can write our own

in Java

○ True ○ False

L correctly

Q1b. We can utilize Java

L correctly

○ True	○ False
--------	---------

Q2 [14 marks == 7×2]

Computer memory can be visualized as in the diagram on the right, with the top row from left to right being the first 4 spaces, the middle row being the next 4 spaces, ... and so on. There are only 12 spaces in the example on the right

Suppose there are:

- D
- P

as well as

• (blank) – unused space

Data can be stored in

, or as a

	Data <i>Example</i>						
			Р	Р	Р	Р	Р
Р	Р	Р	Р	Р			
		Р	Р			Р	
		Р			Р		

 Data Example

 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P</td

In this illustration, the first

- The first
- The second
- The third and last

Notes:					
 The sizes of r 	nemory, number of				
(P)	(blar	nk) illustrated l	here are just an exan	nple , and ma	ay not always be as
such					
Every					
 Algo using an 	ny space outside		counts as takii	ng up additio	onal space
 You may safe 	ely ignore << O(N) sp	ace taken up b	y system's call-stack	if you are u	sing a recursive algo
 You may clair 	m the average/exped	cted time for q	uick sort if pivot sele	ection is rand	domized
For each question in	Q2a-g,choose the ti	me complexity	y of the best algorith	m needed to	solve the problem:
O(log(log(N))	O(log(N))	\bigcirc O(\sqrt{N})	\bigcirc O($\sqrt{N}\log(N)$)	○ O(N)	○ O(N log(N))
○ O(N ^{1.5})	○ O(N ^{1.5} log(N))	○ O(N²)	\bigcirc O(N ² log(N))	○ O(2 ^N)	○ O(N!)
Suppose our data is:	stored in a	-	and you are limited to	o using	
suppose our data is	stored iii a	, c	ind you are infinted to	o using	
Q2a. if the data i	is		require	es	_ time
Q2b. if there are	at least				
•		time			
Q2c. if there are	exactly				requires
time					
We still have our dat	ta store in a	, but no	NA/		
vvc still flave our dat	ta store in a	, but no	, vv		
024 1516					
Q2d. If there are time	exactly				requires
time					
Q2e. If there are	•				
rec	quires tin	ne			
Q2f. If there are	not more than				
			requires	time	

requires _____ time

Q2g. If there are not more than

Q3 [10 marks == 2×5]

Jerry and Tom¹ are both working in a factory, standing along This is illustrated in the diagram below:

Left chute

| Tom | Right chute | Your right | Your right

The

shown here are just an example

You want to implement a program that models these real-life operations:

Item

if

Jerry

if

Jerry

Output if

Jerry

if

• Tom

output

if

Output

if

Output

if

Each operation must be done in time. Deferring the cost to another operation is NOT acceptable here

You have the choice to keep track, or NOT keep track, of anything that you are not required to output

 $^{^1\,}A dapted\,from\,https://coloringonly.com/images/imgcolor/1548379186-tom-and-jerry-coloring-pages-lovely-tom-and-jerry-thumbs-up-coloring-page-tom-and-jerry-coloring-pages-of-tom-and-jerry-coloring-pages.jpg$

Q3a. Only Cat/Dog/Cow(s) WITHOUT any extra Cat -Dog – Cow -2 Cats ○ 1 Cat +1 Dog O 2 Dogs O 1Dog +1Cow O 2 Cows O 1 Dog + 2Cows Q3b. Only Rat (R) and/or Wolf (W) ○ 2 R ○ 1 R + 1 W ○ 2 W O 2 R + 1 W ○ 1 R + 2W O 2 R + 2 W

For each of the question in Q3a-b INDEPENDENTLY, choose the minimal/simplest data structure(s) you

need, i.e. as far left an option as possible, aside from O(1) spaced variables

BLANK SPACE

TILL END OF PAGE

Match the following 4 code snippets to the 3 problems which are independent of one another. A problem will be correctly solved by 0 or 1 code snippet, while a code snippet will solve 0 or 1 problem
P1: Given the
P2: Given 2
P3: Given the
P3: Given the
Each

For each of code snippets **Q4A-D** in **pseudocode**, shade the problem it **correctly solves** if any:

○ P1	○ P2	○ P3
------	------	------

[9 marks]

Q4

Marks will be awarded for the entire Q4 instead of for individual parts. Shading option(s) when the code snippet does NOT solve those problem(s) will be penalized

BLANK SPACE

TILL END OF PAGE

```
f(a ...
             ) {
ans = f(a \dots
           );
Code Snippet Q4B
f(a ...
              ) {
ans = f(a \dots
                 );
Code Snippet Q4C
f(a ...
               ) {
ans = f(a \dots);
Code Snippet Q4D
f(a ... ) {
ans = f(a \dots
                  );
```

Code Snippet **Q4A**

You have a diagram below

The class is defined below the diagram

ZZ is a Each object

has in the respective directions

class
 public
 public
}

Ivan is interested in It is

guaranteed that the will:

- NOT
- NOT
- NOT

If you perform this operation, which may be performed repeatedly, correctly in:

- O() time, you will get the full 8 marks and 3 bonus marks (WARNING: time consuming)
- O() time with O(1) space, you will get the full 8 marks
- O() time with O() space, you will get 5 marks
- O() time with O(1) space, you will get 3 marks

[If you have no time left, you might want to go for a lower-tier but correct solution to cut loss]

}

other instance methods (that MAY or may NOT help you solve the problem?)

Your task is to **implement the mystery method** correctly and efficiently. You may implement other method(s) in the class if it helps you

```
{
class
     public void
                                () {
           // your Q5 answer here
     }
     void
                                              {
     }
```

mystery(

- End of paper -