

GB03 |05523 []

INVESTOR IN PEOPLE

The Patent Office, Concept House Cardiff Road Newport South Wales

NP10 8QQ REC'D **23 JAN 2004**

WIPO PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

12 January 2004

20DEC02 E772524-1 D02944 P01/7700 0.00-0229659.8 Patents Form 1/77 BECEIVED BY FAX

Potents Act 1977 (Rule 16)

S O DEC SOOS

Matagh Request for grant of

(See the none on the back of this form. You can also get an explanatory lagiet from the Petent Office to belo yon fill in ibis form)

The Patent Office

Cardiff Road Newport Gwent NP9 1RH

Your reference

SMC 60568/G8/P1

Patent application number (The Patent Office will fill in this part) 0229659.8

Full name, address and postcode of the or of

each applicant (underline all surnames)

Patents ADP number (4 you know to

If the applicant is a corporate body, give the country/smte of its incorporation

Avecia Limited Hexagon House Blackley Manchester, M9 8ZS

07764137001

GB

Title of the invention.

ELECTRONIC DEVICES

Name of your agent (If you have one)

"Address for service" in the United Kingdom to which all correspondence abould be sent (inclining the postcode)

PARLETT, Peter Michael

Avecia Limited Hexagon House Blackley Manchester, M9 8ZS United Kingdom

Patents ADP trumber (15 you know to)

246365500

6. If you are declaring priority from one or more carlier patent applications, give the country and the date of filing of the or of each of these carlier applications and (lywe know to the or each application aumber

Country

Priority application mumber (Nyou know w)

Date of filing (day y month / year)

If this application is divided or otherwise derived from an earlier UK application, give the number and the fling date of the carlier application

Number of earlier application

Date of Bling (वक्) र स्रावभंति / भुरवर)

Is a statement of inventorship and of right to grant of a patent required in support of this request? Omnore Tes th

a) any applicant named in past 3 is not an inventor, or

b) there is an inventor tobo is not named as an ជាប្រជីជនការ, or

 e) premed applicant is a corporate body. Sée note (d))

Yes

0056122 20+Dec-02 04152

Patents Form 1/77

 Enter the number of sheets for any of the following items you are filing with this form:
 Do not count copies of the same document

THE CONTINUE TO SHEETS OF this form

2 9 DEC 2002

Description

RECEIVED BY FAX

Abstract

10 ...

Drawing(s)

 If you are also filing any of the following, state how many against each item.

Priority documents

Taxaslations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 1977) 01

Request for substantive examination (Patents Form 10/77)

Any other documents

(Disam specify)

11.

I/We request the grant of a pateut on the basis of this application.

Signature Office Authorised Signatory

 Name and daytime telephone number of person to contact in the United Kingdom

Mrs K.M. Pinder/Miss G. Terry 0161 721 1361/2

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider subther publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you like in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need belp to fill in this form or you bave any questions, please contact the Pattent Office on 0645.500503.
- Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

0056122 20-Dec-02 04:52

10

15

20

25

30

35

40

SMC 60568

DUPLICATE

Electronic Devices

Field of the Invention

relatino The present invention concerns improvements in and electrofurninescent (EL) devices such as Organic Light Emitting Diodes (OLEDs).

Background of the Invention

OLEDs are optoelectronic devices being developed for use in flat panel displays as alternatives to existing technologies such as the cathode ray tube and liquid crystal displays. OLEDs have the potential to offer numerous advantages including being lightweight and non-bulky, low powered, wide viewing angled, applicable to large display areas and cheaper to manufacture.

An OLED device comprises an organic electroluminescent (EL) layer located between two electrodes, At least one of the electrodes is transparent to allow transmission of light from the EL layer. In operation, when a voltage is applied across the device via the electrodes, holes are injected into one side of the EL layer from one electrode (the anode) and electrons are injected into the other side from the other electrode (the cathode). The holes and electrons move through the EL layer in opposite directions under the applied voltage until they meet and recombine to form an excited state which subsequently decays with the emission of light.

Holes should effectively transfer from the anode into the highest occupied molecular orbital (HOMO) energy level of the EL layer. Similarly, electrons should effectively transfer from the cathode into the lowest unoccupied molecular orbital (LUMO) energy level of the EL layer. Unfortunately, the workfunction of the anode often differs from the HOMO level of the EL layer. The same problem also exists between the cathode and the LUMO level of the EL layer. In practice, since the relevant electronic energy levels of the anode and cathode are often not ideally matched to the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) respectively of the organic EL material, it is usual to modify the basic OLED structure to improve energy level matching and thus improve hole and/or electron injection efficiency. A extensively employed method is to use between the EL layer and the anode and/or cathode respectively an additional organic layer. These additional layers are commonly referred to as a hole injection layer (HIL) and an electron injection layer (EIL). The HIL and/or EIL improve matching of the energy levels, thus improving efficiency of the device. In addition, the HIL and EIL may serve other purposes such as electron blocking and hole blocking respectively (i.e. the HIL or EIL are each one type lone direction carrier transport materials). It has become typical to employ as HIL on the anode a layer of a conducting organic material, such as polyaniline (PAni) or polyethylenedioxythiophene (PEDOT).

0056130:20-Dec-02:05:00

. 5

10

15

20

25

30

35

40

2

P.007/021

It is not uncommon to find devices employing one or more further organic layers between the HIL and/or EIL respectively and the EL layer to achieve even further enhanced matching of energy levels and thus still higher operating efficiency. The further organic layers between the HIL or EIL and the EL layer are termed hole transport layers (HTLs) and electron transport layers (ETLs) respectively to differentiate them from the HIL or EIL which directly contact the anode or cathode respectively. Such terminology is used herein. A prior art device structure is shown schematically in Figure 1.

Despite the above developments in EL devices which has occurred over recent years, in many aspects there still remains a need for improvement. The present invention is concerned with improvements relating to organic layers in EL devices particularly, but not exclusively, in HILs and HTLs.

In connection with HILs and HTLs, examples of areas where performance could be improved include high efficiency, low drive voltage, transparency, coatability, chemical stability and lifetime. Moreover, present device structures consisting of multiple HIL and HTLs make manufacture complex and costly. It would be desirable to achieve similar or improved performance using a single layer in place of the present multiple layers.

*Objects of the invention include reducing or overcoming one or more of the above problems of the prior art. Further objects of the invention will be apparent from the following description.

The invention is based on the finding that certain polyarylamines, in particular polytrlarylamines, can offer significant advantages when used in organic layers in EL devices.

Prior Art

The use of arylamine compounds as HTLs for OLEDs has been disclosed in EP o 721 935 (Idemitsu Kosan), but polymers of arylamines are not disclosed. Film forming using these small molecule arylamine HTLs is not always satisfactory. Typically, vapour deposition is used for these types of molecules, but such a process is very sensitive to substrate temperature and deposition rate in order to ensure amorphous structure. In addition, the relatively low glass transition temperature (Tg) of small molecule arylamine HTLs leads to instability. Large (e.g. starburst) arylamines (see for example) WO 98/02018 have been developed, partially resolving the Issue of Tg, but still require complicated vapour deposition process. Also, such molecules have inferior hole mobility.

The use of polyarylamine materials as HILs or HTLs for OLEDs has been disclosed by Dow Chemical Company, see for Instance US 5,728,801, EP 0 827 366 and WO 99/54943. However, the hole mobility and general film forming properties of these particular polyarylamine materials, as well as the general efficiency of devices made therefrom, could be improved upon.

In another Dow patent, US 6,309,763, there are disclosed EL devices in which copolymers of fluorene and arylamine are used in one of the layers. It is also disclosed

15

20

25

30

SMC 60568

3

that the copolymer may be mixed with another polymer which can be an arylamine copolymer. The use of the polyfluorene/arylamine copolymers is in hole transport layers, EL layers, or the blending of different copolymers may achieve transport and luminescent functions in a single layer. However, the document does not suggest the use of 100% arylamine layers.

In general, the prior art uses of polyarylamines fall to solve important issues of device quality, in particular, lifetime and luminescence efficiency.

Statement of the Invention

According to the present invention there is provided an electroluminescent device having an anode, a cathode and one or more organic layers between said anode and said cathode, at least one of said organic layers comprising an organic electroluminescent material, wherein at least one of said organic layers comprises a polymeric material having repeat units of Formula 1:

Formula 1:

$$Ar^{1} Ar^{2}$$

$$Ar^{3}$$

wherein:

 Y^i represents, independently if in different repeat units, N, P, S, As and/or Se, preferably N:

Ar¹ and Ar² are aromatic groups and Ar³ is present only if Y¹ is N, P, or As in which case it too is an aromatic group; wherein Ar¹ and Ar² are the same or different and represent, independently if in different repeat units, a multivalent (preferably bivalent) aromatic group (preferably mononuclear but optionally polynuclear) optionally substituted by at least one optionally substituted C₁₄₀ carbyl-derived groups and/or at least one other optional substituent; and Ar³ represents, independently if in different repeat units, a mono or multivalent (preferably bivalent) aromatic group (preferably mononuclear but optionally polynuclear) optionally substituted by at least one optionally substituted C₁₄₀ çarbyl-derived group and/or at least one other optional substituent.

In use, when a voltage is applied between the anode and the cathode, holes are injected into the layer adjacent the anode and electrons are injected into the layer adjacent the cathode, whereby light is emitted from the at least one layer comprising the electroluminescent material.

5

10

15

20

25

30

35

4

Detailed Description of the Invention

The EL device is preferably an OLED. At least one of the anode or cathode is transparent.

The device may comprise only one organic layer in which case the organic layer comprising the polymeric material of the invention is the same layer as the layer comprising the EL material. Typically, the device comprises two or more organic layers, wherein the organic layer comprising the polymeric material of the invention is different to the layer comprising the EL material. The at least one organic layer comprising the polymeric material has been found to be excellent for forming a hole injection layer (HIL) and/or hole transport layer (HTL), i.e. separate from the EL layer and located between the EL layer and the anode.

The arrow extending from Ar³ in Formula 1 is intended to indicate that the group may be monovalent or multivalent. If the group is monovalent the arrow denotes a bond to a suitable terminal group such as hydrogen or another substituent which is there to coupling under the conditions of polymerisation (e.g. alkyl or aryl). If the group is multivalent (e.g. bivalent) the arrow denotes a bond to another repeat unit (i.e. the polymer chain is branched and/or cross-linked).

The polymer may have any chain terminating groups, for example, any leaving groups used in a polymerisation process by which the polymer is made, or end capping groups.

WO 99/32537 is a patent application of the applicants which describes polymers which have repeat units of Formula 1 and methods for their production. In that patent application, polymers of this type are prepared by the addition of an end capping reagent to control the molecular weight of the final polymer and hence its desirable properties as a charge transport material. Materials disclosed in that patent application may be useful as materials in the present invention. Accordingly, the contents of that patent application are incorporated herein by reference. Therefore, optionally, at least one terminal group is attached in the polymer to the Ar¹, Ar² and optionally Ar³ groups located at the end of the polymer chains, so as to cap the polymer chains and prevent further polymer growth, and at least one terminal group is derived from at least one end capping reagent used in the polymerisation to form said polymeric material to control the molecular weight thereof.

WO 00/78843 is another patent application of the applicant which describes polymers which have repeat units of Formula 1. In that patent application, the polymer'is prepared by isolating a molecular weight fraction from a starting polymeric material which has repeat units of Formula 1. The polymeric molecular weight fractions disclosed therein may also be useful as materials in the present invention. Accordingly, the contents of that patent application are incorporated herein by reference.

Examples of further preferred polytriarylamine, which preferably are substituted by at least one optionally substituted long chain, linear, branched or cyclic carbyl-derived

5

group, i.e. C_6 or higher, preferably an optionally substituted alkyl or alkoxy group C_6^1 or higher, are given by formulae 2 and 3:

5 Formula 2

10

15

20

25

Formula 3

The number of repeat units of Formula 1 which may be present per molecule in the invention (and which can also be denoted by the integer 'n' herein) may be from 2 to 20,000, preferably, 3 to 10,000, more preferably 4 to 1,000, still more preferably, 5 to 500 and most preferably 6 to 100.

The polymeric material with Formula 1 is preferably substituted by at least one optionally substituted long chain, linear, branched or cyclic carbyl-derived group, i.e. ICe or higher, preferably an optionally substituted hydrocarbyl, most preferably alkyl or alkoxy, group C₈ or higher. The groups Ar1, Ar2 and Ar3 independently are preferably substituted by the at least one optionally substituted long chain, linear, branched or cyclic carbyl-derived group, i.e. Co or higher, preferably an optionally substituted alkyl or alkoxy group Cs or higher. This substitution has surprisingly been found to enhance film formation. For example, the material can readily form thick films, which, moreover, are stable and have a long lifetime.

The polymeric material of the invention (i.e. with Formula 1) is preferably polydisperse. Preferably, Mw/Mn is less than 20, more preferably less than 40. Preferably the polydispersity is from 1.1 to 5. More preferably, the polydispersity is from 1,1 to 3.

Advantageously, the polymeric material of the present invention exhibits the following properties: high carrier mobility, compatibility with binders, improved solubility. high durability and/or high resistivity undoped. The polymeric material is highly effective for use in EL devices. It has superior film forming properties, particularly when n is greater than 7 and the polymers are substituted with one or more optionally substituted long chain, linear, branched or cyclic carbyl-derived groups (preferably alkyl or alkoxy),

30 i.e. Cs or longer.) SMC 60568

5

10

15

20

25

30

35

6

The polymeric material of the invention may be used either as a pure polymeric material, or as an admixture of the polymeric material with one or more other polymeric or monomeric materials having different electrical and/or physical properties.

Advantageously, the polymeric material may be easily and cheaply deposited on the device since the material is solution coatable, i.e. it may be readily deposited from solution. Preferably, the polymeric material is applied by a solution coating technique. Preferably, the material is laid down in a film form. The material may be laid down in a film form, which can be optionally patterned or structured, by a variety of coating or printing techniques including, but not limited to, dip coating, roller coating, reverse roll coating, bar coating, spin coating, gravure coating, lithographic coating (including photolithographic processes), ink jet coating (including continuous and drop-on-demand, and fired by piezo or thermal processes), screen coating, spray coating and web coating.

In fabrication of a device according to the invention, other than a so-called "topemission device" described separately below, the layer comprising the polymeric material of the invention may be solution coated onto the anode or onto a separate HIL provided by known means on the anode, followed by deposition of subsequent layers, including the EL layer, by solution coating or by conventional vapour deposition.

According to another aspect of the invention, there is provided a method of forming the electroluminescent device, which method comprises depositing from a solution the layer comprising the polymeric material. Optionally, the method further comprises depositing at least one other layer, e.g. the EL layer, by vapour deposition or deposition from solution.

As mentioned above, the polymeric material of the present invention has both excellent film forming ability and high mobility. Preferably, the material is applied at high thickness, preferably greater than 40 nm, more preferably greater than 60 nm, still more preferably greater than 100 nm, and most preferably greater than 200 nm, and preferably up to 500 nm, whilst still achieving high yield. Such thick layers have been found to provide numerous advantages, for example, enhanced device lifetime, reproducibility, yield and luminescence. Without being bound by any theory, it is believed that such thick layers improve the device yield by making the structure less sensitive to substrate defects. The thick layer yields particular improvement when the layer is coated directly onto an indium the exide (ITO) anode as it is believed that it helps to eliminate the roughness of ITO better than conventional injection layers such as PAni or PEDOT. It has been found that thick layers formed by the polymeric material of the invention improve device tifetime. Again, without being bound by any theory, it is believed that this is also due to reducing the effects of surface defects. In particular, the thick layer may reduce shorting effects and local spots at the electrode, thereby increasing the lifetime of the EL layer. The material has been found to be particularly useful in this regard for blue emitting EL materials.

15

20

25

30

35

SMC 60568

The polymeric material preferably has a hole mobility greater than 10-3 cm²V⁻¹s⁻¹, which is an enabling factor in the fabrication of such thick layers. The high mobility of the polymeric material used in the present invention also enables the drive voltage to be kept relatively low for high luminescent efficiencies. The high hole mobility of the polymeric material of the invention means that the potential drop across the layer comprising the material can be very small. Conventional PAni or PEDOT injection layers have low conductivity to avoid "crosstalk" between neighbouring pixels in display devices. However, a thick layer of the polymeric material of the invention can effectively perform this function due to its unipolar nature.

The polymenic material of the invention advantageously also enables a high quality ohmic interface between the material and the anode, e.g., an ITO anode. This in turn yields improvements in device lifetime since non-ohmic contact is thought in part to be responsible for hot spots due to localised build up of electric field at the anode resulting in break down of the adjacent injection layer. It has not previously been easy to find appropriate hole transport materials that allow for an ohmic contact. It has previously been tried to employ doped transport layers. However, this such doping is difficult to implement in a real manufacturing process and attractive lifetime has not yet been demonstrated.

ITO is a highly preferred anode material due to its transparency, high conductivity and availability on glass or polymer substrates. ITO has a workfunction between 4.8-5 eV. In a preferred embodiment, the polymeric material has an ionisation potential close to this value, for example 4.8-5.2 eV. Thus, holes can be injected into the organic layer comprising the polymeric material unhindered.

Conventionally, materials such as PAni or PEDOT are used for the role of the HIL. A separate HTL is typically employed between the PAni or PEDOT layer and the EL layer. We have found that the polymeric material of the invention can effectively perform both the injection function of the PAni or PEDOT and the role of the separate HTL due to its matching ionisation potential and excellent surface levelling ability when coated in a thick layer, e.g. from a solution. Thus, in one advantageous embodiment, the invention provides a HIL comprising the polymeric material, i.e. without need for, e.g., PAni or PEDOT. In a further advantageous embodiment, the invention provides an EL device in which there is only one organic layer between the anode and the (organic) EL layer as shown in Figure 2. This single organic layer (HIL) comprising the polymeric material between the anode and the EL layer greatly simplifies the device and processing thereof compared with the prior art device structure shown in Figure 1. In addition, there is no loss of efficiency; indeed, efficiency in many cases is improved. This solves the problem in the prior art of needing multiple organic layers (HIL, HTLs etc.).

It will be appreciated that other embodiments may exist wherein, if desired, the polymeric material of the Invention may be used with a separate HIL, e.g. comprising

١

:

5

10

15

20

25

30

35

40

ì

8

PAni or PEDOT, whilst still providing benefits. Thus, in another embodiment, the invention provides a HTL comprising the polymeric material.

In another embodiment, there may be a HIL comprising the polymeric material of the invention and, in addition, one or more HTL(s) comprising the polymeric material of the invention, the polymeric material in each of the HIL and HTL(s) being independently optimised in terms of its ionisation potential, e.g., for matching to the anode and EL layer respectively.

A composition comprising a blend of two or more different polymeric materials according to the invention may be used.

The polymeric material of the invention, when used in place of certain conventional EL device materials, e.g. PAni or PEDOT, can yield improvements in transparency and colour rendition, especially with blue emitting EL devices. This is due to the polymeric material being substantially transparent or "white". The polymeric material is also substantially, preferably totally, amorphous, in contrast to a conventional material such as PAni.

It has been found that the polymeric material of the invention is better at blocking electrons than conventional materials, e.g. PAni or PEDOT, thus leading to improvements in device efficiency.

The polymeric material of the invention has been found to be more chemically stable than conventional HiL material such as PAni or PEDOT. Conventional PAni and PEDOT materials for example are acid doped and possess counter-ions which, with time, migrate into adjacent tayers and cause a deterioration in device performance. The polymeric material of the invention, however, does not need counter-ions, thus eliminating the problem. This is particularly advantageously for triplet emitting devices

The polymeric materials of the invention have a relatively high glass transition temperature (T_g) , which leads to improved stability.

The polymeric material may be used in conjunction with a binder resin to further improve film formation and/or adjust viscosity for improving solution coatability. The binder may also be optionally crosslinked for improved stack integrity of layers as described in more detail below. A binder is preferred for an EL device wherein all of the organic layers are solution coated.

Preferred binders are electrical insulators. Preferred binders include, without limitation, at least one of polyamide, polyurethane, polyether, polyester, epoxy resin, polyketone, polycarbonate, polysulphone, vinyl polymer (for example polyvinylketone and/or polyvinylbutyral), polystyrene, polyacrylamide, copolymers thereof (such as aromatic copolymeric polycarbonate polyesters) and/or mixtures thereof.

Those binders disclosed in the patent application WO 99/32537 of the applicant, particularly at pages 24 and 25 of that application as published, are useful for the present invention and that disclosure is incorporated herein by reference. In addition, those binders claimed in and described in the patent application WO 02/45184 of the applicant,

10

15

20

25

30

35

.....

3 SMC 60568

9

particularly at pages 3, 4, 8-11 of that application as published, including those listed in Tables 1 and 2 therein, are useful for the present invention and that disclosure is also incorporated herein by reference

To improve stack integrity between the layer comprising the polymeric material and adjacent layers, the layer comprising the polymeric material optionally may be crosslinked. The crosslinking may be achieved by crosslinking of the polymeric material, e.g. by means of a crosslinkable functionality in the polymer, and/or by crosslinking of the binder resin where present, for example as disclosed in WO 02/45164.

Advantageously, the polymeric material of the invention provides routes to novel device structures by enabling depositing of the transparent electrode on top of an OLED stack for a 'top emission device' preferred in some active matrix display configurations for increased luminance and resolution. It is very desirable for the deposition of the transparent top electrode to use fast processes such as sputtering. For example for depositing ITO. However, these processes are likely to damage the vulnerable active organic layers due to the high kinetic energy of the particles deposited. A thick hole transport layer for example, formed by the polymeric material of the invention, provides protection and thus allows for a robust and commercially viable manufacturing process (high yield) without affecting the device performance (efficiency, driving voltage, lifetime).

The term 'carbyl-derived' as used herein denotes any monovalent or multivalent organic radical moiety which comprises at least one carbon atom either without any non-carbon atoms (e.g. -C=C-), or optionally combined with at least one other non-carbon atom (e.g. alkoxy, carbonyl etc.). The non-carbon atom(s) may comprise any elements other than carbon (including any chemically possible mixtures or combinations thereof) that together with carbon can comprise an organic radical moiety. Preferably the non-carbon atom is selected from at least one hydrogen and/or heteroatom, more preferably from at least one: hydrogen, phosphorus, halo, nitrogen, oxygen and/or sulphur, most preferably from at least one hydrogen, nitrogen, oxygen and/or sulphur. Carbyl-derived groups include all chemically possible combinations in the same group of a plurality (preferably two) of the aforementioned carbon and/or non-carbon atom containing alkoxycarbonyl radical).

Throughout the description and claims of this specification, the words "comprise": and "contain" and variations of the words, for example "comprising" and "comprises", mean "including but not limited to", and are not intended to (and do not) exclude other components.

It will be appreciated that variations to the foregoing embodiments of the invention can be made while still falling within the scope of the invention. Each feature disclosed in this specification, unless stated otherwise, may be replaced by alternative features serving the same, equivalent or similar purpose. Thus, unless stated otherwise, each

8MC 60568

10

feature disclosed is one example only of a generic series of equivalent or similar features.

All of the features disclosed in this specification may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. In particular, the preferred features of the invention are applicable to all aspects of the invention and may be used in any combination. Likewise, features described in non-essential combinations may be used separately (not in combination).

It will be appreciated that many of the features described above, particularly of the preferred embodiments, are inventive in their own right and not just as part of an embodiment of the present invention. Independent protection may be sought for these features in addition to or alternative to any invention presently claimed.

15

5

11

Claims

1. An electroluminescent device having an anode and a cathode, one of which is transparent, and one or more organic layers between said anode and said cathode, at least one of said organic layers comprising an organic electroluminescent material, wherein at least one of said organic layers comprises a polymeric material having repeat units of Formula 1:

Formula 1:

10

15

5

wherein:

Y¹ represents, independently if in different repeat units, N, P, S, As and/or Se, preferably N;

 Ar^1 and Ar^2 are aromatic groups and Ar^3 is present only if Y^1 is N, P, or As in which case it too is an aromatic group; wherein Ar^1 and Ar^2 are the same of different and represent, independently if in different repeat units, a multivalent (preferably bivalent) aromatic group (preferably mononuclear but optionally polynuclear) optionally substituted by at least one optionally substituted C_{1-40} carbyl-derived groups and/or at least one other optional substituent; and Ar^3 represents, independently if in different repeat units, a mono or multivalent (preferably bivalent) aromatic group (preferably mononuclear but optionally polynuclear) optionally substituted by at least one optionally substituted C_{1-40} carbyl-derived group and/or at least one other optional substituent.

25

20

2. An electroluminescent device as claimed in claim 1 wherein the number of repeat units of Formula 1 which is present per molecule is from 2 to 20,000.

- 3. An electroluminescent device as claimed in claim 1 or 2 wherein the polymeric material is substituted by at least one optionally substituted long chain, linear, branched or cyclic carbyl-derived group, which is C₆ or higher,
- 4. An electroluminescent device as claimed in claim 3 wherein the at

5

10

15

20

25

30

12

least one optionally substituted long chain, linear, branched or cyclic carbyl-derived group comprises an alkyl or alkoxy group.

- 5. An electroluminescent device as claimed in any one of the preceding claims: wherein the polymeric material is polydisperse.
- 6. An electroluminescent device as claimed in any one of the preceding claims wherein the device comprises only one organic layer such that the eigenic layer comprising the polymeric material is the same layer as the layer comprising the electroluminescent material.
- 7. An electroluminescent device as claimed in any one of claims 1 to 5 wherein the device comprises two or more organic layers, the at least one organic layer comprising the polymeric material being separate from the at least one organic layer comprising the electroluminescent material and being located between the layer comprising the electroluminescent material and the anode.
 - 8. An electroluminescent device as claimed in any one of the preceding claims wherein the polymeric material is used as an admixture of the polymeric material with one or more other polymeric or monomeric materials having different electrical and/or physical properties.
 - 9. An electroluminescent device as claimed in claim 8 wherein the admixture comprises a blend of two or more of the polymeric materials claimed in claim 1.
 - 10. An electroluminescent device as claimed in any one of the preceding claims wherein the polymeric material has been deposited from solution.
- 11. An electroluminescent device as claimed in any one of the preceding claims wherein the polymeric material has been applied by a coating or printing technique selected from the following group: dip coating, roller coating, reverse roll coating, bar coating, spin coating, gravure coating, lithographic coating (including photolithographic processes). Ink jet coating (including continuous and drop-endermand, and fired by piezo or thermal processes), screen coating, spray coating and web coating.
 - 12. An electroluminescent device as claimed in any one of the preceding claims wherein the thickness of the layer comprising the polymeric material is greater than 40 nm.

15

20

SMC 60568

13

- 13. An electroluminescent device as claimed in claim 12 wherein the thickness of the layer comprising the polymeric material is greater than 60 nm.
- 14. An electroluminescent device as claimed in claim 13 wherein the thickness of the layer comprising the polymeric material is greater than 100 nm.
 - 15. An electroluminescent device as claimed in claim 14 wherein the thickness of the layer comprising the polymeric material is greater than 200 nm.
- 16. An electroluminescent device as claimed in any one of claims 12 to 15 wherein the thickness of the layer comprising the polymeric material is up to 500 nm.
 - 17. An electroluminescent device as claimed in any one of the preceding claims, wherein the polymeric material has a hole mobility greater than 10⁻³ cm²V⁻¹s⁻¹.
 - 18. An electroluminescent device as claimed in any one of the preceding claims wherein the polymeric material forms an ohmic interface with the anode.
 - 19. An electroluminescent device as claimed in any one of the preceding claims wherein the anode comprises an oxide of indium and tin (ITO)
 - 20. An electroluminescent device as claimed in claim 19 wherein the polymeric material has an ionisation potential in the range 4.8 5.2 eV.
- 25 21. An electroluminescent device as claimed in any one of the preceding claims wherein the layer comprising the polymeric material is in direct contact with the anode.
- 22. An electroluminescent device as claimed in claim 21 wherein the layer comprising the polymeric material is the only organic layer between the anode and the layer comprising the electroluminescent material.
 - 23. An electroluminescent device as claimed in any one of the preceding claims wherein the polymeric material is mixed in a binder resin.
 - 24. An electroluminescent device as claimed in any one of the preceding claims wherein the binder resin is selected from the group; polyamide, polyurethane, polyether, polyester, epoxy resin, polyketone, polycarbonate, polysulphone, vinyl polymer, polystyrene, polyacrylamide, copolymers thereof and/or mixtures thereof.

40

and a strain in

5

10

- 25. An electroluminescent device as claimed in any one of the preceding claims: wherein the layer comprising the polymeric material is crosslinked.
- 26. An electroluminescent device as claimed in claim 25 wherein the layer is crosslinked by crosslinking of the polymeric material and/or by crosslinking of the binder resin.
- 27. An electroluminescent device as claimed in any one of the preceding claims wherein the electroluminescent material, in use, emits blue light.
- 28. An electroluminescent device as claimed in any one of the preceding claims which is a top emission device wherein the transparent electrode is deposited after the layer comprising the polymeric material.
- 29. A method of forming an electroluminescent device as claimed in any one of the preceding claims comprising depositing from a solution the layer comprising the polymeric material.
- 30. A method of forming an electroluminescent device as claimed in claim 29
 further comprising depositing at least one other layer by vapour deposition.
 - 31. An electroluminescent device substantially as herein described.
- 32. A method of forming an electroluminescent device substantially as hereindescribed.

1. - 50

SMC 60568

1

Cathode	
EIL	
ETL1	·
ETL2	
EL laver	
HTL2	
HTL1	
HIL (e.g. PAni or PEDOT)	
Anode(e.g. ITO)	

Figure 1 (Prior art)

NOT TO BE AMENDED

(MANA) (HELP & FPN IN 1) F	Cathode
	.EIL
•	EL layer
	HIL (PTAA)
	Anode

Figure 2 (Invention)

BUT TO SE AMENDED

0056130 20-Déc-02 05:00

GB0305523

;

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

CRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.