Convex functions

Mathématiques Informatique et Statistique Appliquées (MISA) Université d'Antananarivo

Definition

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex if **dom** f is convex and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \mathbf{dom} \ f$, $0 \le \theta \le 1$

ightharpoonup f is strictly convex if **dom** f is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \text{dom } f, x \neq y, 0 < \theta < 1$

- ightharpoonup f is convex if -f is convex
- ightharpoonup f is strictly convex

Examples on $\mathbb R$

Convex

- ▶ affine : ax + b on \mathbb{R} , $a, b \in$ on \mathbb{R}
- ▶ exponential : e^{ax} on \mathbb{R} , $a \in \mathbb{R}$
- **•** powers : x^{α} on \mathbb{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$

Concave

- affine
- **•** powers : x^{α} on on \mathbb{R}_{++} , for $0 \leq \alpha \leq 1$
- ▶ logarithm : log(x) on \mathbb{R}_{++}

Examples on \mathbb{R}^n

► Affine (linear) functions are both convex and concave

$$f(x) = a^{\mathsf{T}}x + b$$

Norms are convex

$$||x||_p = (\sum_{i=1}^n |x|^p)^{1/p}$$

First-order condition

f is differentiable if the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_1}, ..., \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \mathbf{dom} \ f$

First-order condition

f is differentiable with a convex domain. f is convex iff

$$f(y) \ge f(x) + \nabla f(x)^{\top} (x - y)$$

for all $x, y \in \mathbf{dom} \ f$

Second-order condition

f is twice differentiable if the Hessian $\nabla^2 f(x)$,

$$(\nabla^2 f(x))_{i,j} = \frac{\partial f}{\partial x_i \partial x_j} \ i, j = 1, ..., n$$

exists at each $x \in \mathbf{dom}$ f

First-order condition

f is twice differentiable with a convex domain. f is convex iff its Hessian is positive semidefinite.

$$\nabla^2 f(x) \succeq 0$$
, for all $x \in \mathbf{dom} \ f$

Sublevel sets

The α -sublevel set of a function $f: \mathbb{R}^n \to \mathbb{R}$ is defined as

$$C_{\alpha} = \{x \in \mathbf{dom} \ f | f(x) \le \alpha \}$$

Sublevel sets of convex functions are convex (converse is false)

Epigraph

The epigraph of a function $f: \mathbb{R}^n \to \mathbb{R}$ is defined as

epi
$$f = \{(x, t) \in \mathbb{R}^{n+1} | x \in \text{dom } f, f(x) < t\}$$

f is convex iff epi f is a convex set.

Convexity in practice

Practical method for establishing convexity of a function :

- 1. Verify definition
- 2. For twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- 3. Show that f is obtained from simple convex functions by operations that preserve convexity

Operations preserving convexity

- ▶ nonnegative scaling : f convex, $\alpha \ge 0 \implies \alpha f$ convex
- ▶ sum : f, g convex $\implies f + g$ convex
- ▶ affine composition : f convex $\implies f(Ax + b)$ convex
- **•** pointwise maximum : $f_1, ..., f_k$ convex $\implies max_i f_i(x)$ convex
- ▶ composition : h convex increasing, f convex $\implies h(f(x))$ convex similar rules for concave functions (there are more)

The only rule you need to know

 $h(f_1(x),...,f_k(x))$ is convex if

- \blacktriangleright h convex, h increasing in each argument, and f_i are convex, or
- \blacktriangleright h convex, h decreasing in each argument, and f_i are concave, or
- $ightharpoonup f_i$ are affine

similar rules for concave (just swap convex and concave)