ASEN 5044, Fall 2018

Statistical Estimation for Dynamical Systems

Lecture 12:
Gaussian Distributions,
Joint PDFs for Multiple Random Variables

Prof. Nisar Ahmed (<u>Nisar.Ahmed@Colorado.edu</u>)
Tues 10/02/2018

Announcements

- HW 4 Due Thurs 10/4 at 11 am
- Submit to Canvas
- Some general notes from TA...

- Midterm 1: out this Thursday 10/4 [coverage: HWs 1-4]
 - One week long take home exam posted to Canvas
 - O Due Thurs 10/11/2017 on Canvas by 11 am
 - Open book/notes must complete by yourself (honor code applies)
- Prof. Ahmed out of town Tues afternoon 10/9 thru Thurs morning 10/11

Overview

• Last time: Expected values and Expectation operator

<u>Today:</u>

- Sums of independent random variables
 - Central limit theorem
- Gaussian (Normal) random variables and PDFs/distributions
- Joint PDFs for multiple random variables
 - → Marginal and conditional pdfs for multiple random vars

READ SIMON BOOK, CHAPTER 2.6

Sums of Independent Random Variables

- Suppose we have independent integer random variables X and Y with P(X) and P(Y)
- What's the distribution P(Z) of the sum Z = X + Y? (note: Z is another random variable!)

Sums of Independent Random Variables

- Frequently need to add independent continuous random variables X and Y
- If we know p(X) and p(Y), what does the pdf p(Z) for Z = X+Y look like?

Suppose
$$Z = Z$$
 (some is) what are all the possible ways to get Z from $X : Y = Z$ and Z a

Example: Sum of Two Uniform RVs

Example: Sum of Three Uniform RVs

 Suppose X~U(-1,1), Y~U(-1,1), and V~U(-1,1), such that W = X + Y + V p(z)p(v)1/2 1/2 -1 0 1 Pw(w) = > Pz(z) p, (w-z) dz p(w)Segment #2 Segment #1 Segment #3 -3 0

The Central Limit Theorem

• If the sequence of RVs x_i , i=1,2,...,n,... consists of independent random variables, then (under some reasonably mild conditions) the pdf $p(z_n)$ of the sum

$$z_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n x_i$$

will tend to a **Gaussian pdf** as $n \to \infty$

$$\mathcal{N}_{z_{\infty}}(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2}(z_{\infty} - \mu)^2\right]$$

• Moreover, if the x_i are independent and identically distributed (i.i.d.) with zero mean and some finite variance σ^2 , then $p(z_n) \to \mathcal{N}(0, \sigma^2)$ as $n \to \infty$

The Gaussian (or Normal) Distribution

• The continuous scalar random variable X with realizations x is normally distributed (has a

Gaussian distribution) if its pdf is

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right] = \mathcal{N}(\mu, \sigma^2)$$

$$\times \sim \mathcal{N}(\mu, \sigma^2)$$

• This pdf is <u>completely</u> defined by:

mean =
$$E[x] = \int_{-\infty}^{\infty} x p(x) dx = \mu$$

$$var(x) = E[(x - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu^2) p(x) dx = \sigma^2$$

• Often we will write $\ x \sim \mathcal{N}(\mu, \sigma^2)$

Gaussians Are Your Friends!

- As we will see throughout course, Gaussians have many exceedingly useful properties
 - Completely described by mean and variance (1st two moments)
 - Single maximum peak at the mean (unimodal), symmetric
 - Show up naturally in physical systems (consequence of Central Limit Theorem)
 - Expectation operations generally easy (especially with linear functions/dynamics)
 - Marginals of multivariate Gaussians are just univariate Gaussians
- Some useful Matlab functions
 - o normpdf: to compute the pdf of $N(\mu,\sigma)$ at some value x
 - o normcdf: to compute the cdf of $N(\mu,\sigma)$ at some value x
 - o randn: to draw samples of standard normal random variables x ~ N(0,1)

```
to get rundom samples S: \sim N(M, \sigma)?

. Step 1: draw K: \sim N(0,1) [e.g. K: = randn]

. Step 2: Compute S: = M + (\sigma \cdot K:)

The can easily check: E[S:] = E[M + \sigma K:] = E[M] + E[\sigma \cdot K:] = E[M] + \sigma E[K:]

Van(S:) = E[(S:-M)^2] = (... do yourself...) = \sigma^2 = M
```

Joint Continuous Random Variables

- How to define joint probabilities for 2 or more continuous RVs?
- Need joint probability density functions (joint pdfs; also called multivariate pdfs)

Joint pJF for
$$X \notin Y : P_{XY}(Y,y) = P(x,y) = P(x,y) = P(x,y) : \text{taleas in 2 real H's } x \notin Y$$

Such that $P(X \times X \leq X_0 + dx) \notin X_0 \leq Y_0 \leq Y$

Marginal pdfs and Conditional pdfs

- As with joint probability tables discussed earlier, joint pdfs tell "the whole story"
- Analogous expressions exist for marginalization, conditioning, Bayes' rule, independence
- Basically just need to replace summations with integrals

- Conditional plf:
$$P(x|y=\overline{y}) \triangleq \frac{P(x,y=\overline{y})}{P(y=\overline{y})} = \frac{P(x,y=\overline{y})}{\sum_{x} P(x,y=\overline{y})dx} \begin{bmatrix} 1^{x} \text{ lewise}^{x} \\ P(y|x=\overline{x}) = P(x,y) \end{bmatrix}$$

- Bayes' Rule for pots:
$$p(x|y=y) = p(x) \cdot p(y=y|x) = \frac{p(x) \cdot p(y=y|x)}{p(y=y)} = \frac{p(x) \cdot p(y=y|x)}{\int_{-\infty}^{\infty} \gamma(x) p(y=y|x)dx}$$

- Independence: cont. Rus x & y are II if & only if p(x,y) = p(x). P(y) + x & y values

All of the about extend to n-dimensional pots p(x1,x2,...,xn) in obvious ways

Example: Simple Bivariate Gaussian

- Suppose people throw darts at an infinite board with an x-y coordinate system
- Coordinate (x,y) of each dart hole is continuous 2-dim RV

Let's assume X & y are II Garsian RU's with $P(x) = \frac{1}{\sqrt{2}\pi^2} \cdot \exp\left\{-\frac{(x^2)}{2\sigma^2}\right\}$ $P(y) = \frac{1}{\sqrt{2}\pi^2} \cdot \exp\left\{-\frac{(y^2)}{2\sigma^2}\right\}$

returns a sight scalar value for any pair xely

