TD2-Compléments

Exercice 1 (HEC 2019-Oral avec préparation)

Pour tout $n \in \mathbb{N}^*$, on définit la fonction $f_n : \mathbb{R}_+ \to \mathbb{R}$ par la relation :

$$\forall x \geq 0, \ f_n(x) = x^{2n+1} - x^{n+1} - 1.$$

- 1. Soit $n \in \mathbb{N}^*$.
 - (a) Étudier les variations de f_n sur \mathbb{R}_+ .
 - (b) Montrer que f_n s'annule sur \mathbb{R}_+ en un et un seul réel, que l'on note x_n , et montrer que $x_n > 1$.
- 2. (a) Montrer que la suite $(x_n)_{n\geq 1}$ décroît. On pourra rechercher le signe de $f_{n+1}(x_n)$.
 - (b) Que peut-on déduire des résultats précédents?
- 3. (a) Montrer que la suite $(x_n)_{n>1}$ converge vers 1.
 - (b) Montrer que la fonction $h: x \mapsto x(x-1)$ est une bijection croissante de $[1, +\infty[$ sur \mathbb{R}_+ .
 - (c) Pour $n \in \mathbb{N}^*$, on pose $u_n = x_n^n$. En exprimant, pour tout $n \in \mathbb{N}^*$, $h(u_n)$ en fonction de x_n , montrer que la suite $(u_n)_{n\geq 1}$ converge vers $\frac{1+\sqrt{5}}{2}$.
 - (d) Déterminer un équivalent simple de $x_n 1$ quand n tend vers $+\infty$.

Exercice 2 (Développement asymptotique de la série harmonique)

Pour tout $n \in \mathbb{N}^*$, on pose

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

L'objectif de cet exercice est d'étudier le comportement asymptotique de la suite $(H_n)_{n\in\mathbb{N}^*}$ (cette suite est appelée la série harmonique).

1. (a) Montrer que, pour tout $k \ge 2$,

$$\int_{k}^{k+1} \frac{1}{t} dt \le \frac{1}{k} \le \int_{k-1}^{k} \frac{1}{t} dt.$$

(b) En déduire que pour tout $n \in \mathbb{N}^*$

$$\ln(n+1) - \ln(2) + 1 \le H_n \le \ln(n) + 1.$$

- (c) En déduire un équivalent de H_n au voisinage de $+\infty$.
- 2. Pour tout $n \in \mathbb{N}^*$, on pose $u_n = H_n \ln(n)$ et $v_n = u_n \frac{1}{n}$.
 - (a) Montrer que pour tout réel x > -1,

$$\ln\left(1+x\right) \leq x.$$

- (b) Montrer que les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes.
- (c) En déduire qu'il existe un réel $\gamma > 0$ tel que

$$H_n = \ln(n) + \gamma + \underset{n \to +\infty}{o}(1).$$

Le réel γ est appelée la constante d'Euler. On ne sait toujours pas s'il s'agit d'un nombre rationnel ou non.