Recherche de signaux de codes circulaires dans les gènes

Nestor Demeure, Christian J. Michel

- 2017 -

1. ACQUISITION DES GENES

Gènes de bactéries (bacteria), archaea (archaea), eucaryotes (eukaryotes), plasmides (plasmids), mitochondries (mitochondria), chloroplastes (chloroplasts) et virus (viruses).

2. FONCTION DE CORRELATION

Un langage F (génome) est constitué de n(F) mots (gènes) sur l'alphabet $\mathcal{A} = \{A, C, G, T\}$. Soit x un mot de F de longueur |x| lettres (nucléotides). Soient 2 motifs w et w' de longueurs respectives |w| et |w'| sur \mathcal{A} . Soit m_i , appelé i-motif, 2 motifs w et w' séparés par i, $i \in \{0, ..., imax\}$, lettres quelconques N et noté $m_i = wN^iw'$. Pour chaque mot x de F, le compteur $c_i(x)$ compte les occurrences de m_i dans x. Pour compter les occurrences de m_i dans les mêmes conditions pour tout $i \in \{0, ..., imax\}$, uniquement les l(x) = |x| - imax - |w'| premières lettres de x sont considérées.

Remarque: l(x) se termine sur la dernière lettre de w (l(x) = m(x) + 2 avec m(x) la longueur pour la fonction de corrélation moyenne)

Remarque: imax doit être un multiple de 3.

Alors la probabilité d'occurrence $o_i(x)$ de m_i dans x est égale au ratio du compteur par le nombre de lettres étudiées

$$o_i(x) = \frac{3 \times c_i(x)}{l(x)}.$$

La probabilité d'occurrence $A_{w,w'}(i,F)$ de m_i dans F est donc égale à

$$A_{w,w'}(i,F) = \frac{1}{n(F)} \sum_{x \in F} o_i(x).$$

La fonction $i \to A_{w,w'}(i,F)$ donnant la probabilité d'occurrence que w' apparaisse i lettres quelconques N après w dans le langage F, est dite fonction de corrélation wN^iw' (associée au i-motif wN^iw').

Remarque importante:

Les mots w sont analysés en phase 0 modulo 3 (en phase de lecture), c'est-à-dire par pas de 3 lettres à partir des trinucléotides d'initiation.

Les mots w' sont analysés après chaque mot w en position $i, i \in \{0, ..., imax\}$, c'est-à-dire par pas de 1 lettre.

Remarque importante:

 $\sum_{w,w} A_{w,w}(i,F) = 1$ pour tout $i, i \in \{0, ..., imax\}$, lettres quelconques N^i .

Cette fonction de corrélation wN^iw' est représentée par une courbe avec:

- en abscisse, le nombre i de lettres N entre w et w', i variant de 0 à imax
- en ordonnée, la probabilité $A_{w,w'}(i,F)$ d'occurrence de wN^iw' dans F.

3. Application

- gènes de bactéries, archaea, eucaryotes, plasmides, mitochondries, chloroplastes et virus avec $|x| \ge 200$ nucléotides.
- -imax = 99.
- $w, w' \in \{X, X_1, X_2, X_p\}$ où le code circulaire X (maximal, C^3 et autocomplémentaire) est

$$X = \{AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC, GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC\},$$

le code circulaire $X_1 = \mathcal{P}(X)$ (\mathcal{P} étant l'application de permutation) est

$$X_1 = \{AAG, ACA, ACG, ACT, AGC, AGG, ATA, ATG, CCA, CCG, GCG, GTG, TAG, TCA, TCC, TCG, TCT, TGC, TTA, TTG\},$$

le code circulaire $X_2 = \mathcal{P}^2(X)$ est

$$X_2 = \{AGA, AGT, CAA, CAC, CAT, CCT, CGA, CGC, CGG, CGT, CTA, CTT, GCA, GCT, GGA, TAA, TAT, TGA, TGG, TGT\}$$

et le code

$$X_p = \{AAA, CCC, GGG, TTT\}.$$

4. Programmation

- Paramétrer |x| et imax dans le programme
- Dans une feuille Excel, les valeurs numériques des 16 fonctions de corrélation: XN^iX , XN^iX_1 , ..., $X_pN^iX_p$:

i	$A_{X,X}$	i	A_{X,X_1}	
0	0.123	0	0.223	
1	0.145	1	0.245	
imax	0.167	100	0.267	

- Dans une autre feuille Excel, les courbes associées aux 16 fonctions de corrélation.

Remarque importante:

Pour chaque fonction de corrélation, on dessine 3 courbes modulo 3: une courbe reliant les points 0 modulo 3, une courbe reliant les points 1 modulo 3 et une courbe reliant les points 2 modulo 3.