CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 14 LUGLIO 2014

Svolgere i seguenti esercizi, giustificando **pienamente** tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Vero o falso? (E perché?)

- (i) L'equazione congruenziale $24x \equiv_{128} 40$ ha soluzioni in \mathbb{Z} .
- (ii) L'equazione congruenziale $24x \equiv_{128} 40$ ha esattamente una soluzione modulo 128.
- (iii) Esistono $a, b \in \mathbb{Z}$ tali che 24a + 128b = 40.
- (iv) Per definizione, un anello commutativo è un dominio di integrità se e solo se tutti i suoi elementi diversi dallo zero sono invertibili.
- (v) Posto $A = \{1, 4, 7, 10\}$ e $B = \{2, 5, 6\}$, si ha: $\{n \in \mathbb{N} \mid n \in A \Rightarrow n \in B\} = \emptyset$.

Esercizio 2. Nell'insieme $A = \{n \in \mathbb{N} \mid n < 9\}$ si consideri la relazione binaria \sim definita da:

$$(\forall a, b \in A)(a \sim b \iff (a^2 \equiv_4 b^2 \land 10a + 1 \equiv_{15} 10b + 1)).$$

- (i) Verificare che \sim è una relazione di equivalenza.
- (ii) Descrivere l'insieme quoziente A/\sim , elencando in modo esplicito gli elementi di ciascuna delle classi di equivalenza e calcolando $|A/\sim|$.

Esercizio 3. In $S := \mathbb{N} \times \{0,1\}$ si definiscano le relazioni binarie $\rho \in \sigma$:

$$(\forall (a,i), (b,j) \in S) \qquad (a,i) \ \rho \ (b,j) \iff (a|b \land i \le j);$$
$$(a,i) \ \sigma \ (b,j) \iff (a|b \lor i \le j).$$

- (i) Spiegare perché ρ è una relazione d'ordine e perché σ non lo è.
- (ii) (S, ρ) è un reticolo? Determinarne gli (eventuali) elementi minimali, massimali, minimo, massimo.
- (iii) Descrivere l'insieme dei maggioranti di $A := \{(10,0), (14,0), (2,1)\}$ in (S,ρ) e, se esiste, sup A. Posto $X = \{(1,0), (2,0), (2,1), (4,0), (6,0), (10,0), (100,1)\}$,
 - (iv) Disegnare il diagramma di Hasse di (X, ρ) . (X, ρ) è un reticolo?
 - (v) Determinare eventuali elementi minimali, massimali, minimo, massimo in (X, ρ) .
 - (vi) Determinare, se esiste, un elemento $a \in S$ tale che $(X \cup \{a\}, \rho)$ sia un reticolo. È possibile scegliere a in modo che non sia il massimo di $(X \cup \{a\}, \rho)$? Nel caso a esista, il reticolo $(X \cup \{a\}, \rho)$ è distributivo? È complementato?

Esercizio 4. Sia * l'operazione binaria definita in \mathbb{Z}_{15} da: $(\forall a, b \in \mathbb{Z}_{15})(a * b = \bar{5}ab)$, e sia + la consueta operazione di addizione \mathbb{Z}_{15} .

- (i) Verificare che $(\mathbb{Z}_{15}, +, *)$ è un anello. È un anello commutativo? È unitario?
- (ii) In $(\mathbb{Z}_{15}, +, *)$, quali tra $\bar{5}$, $\bar{3}$, $\bar{2}$ sono divisori dello zero?
- (iii) Determinare tutti i divisori dello zero in $(\mathbb{Z}_{15}, +, *)$.

Esercizio 5. Si consideri il polinomio $f = 3x^4 - 2x^3 - 6x^2 + 6x - 20 \in \mathbb{Z}[x]$.

- (i) Quali tra gli interi 1, 2, -1 sono radici di f?
- (ii) In $\mathbb{Q}[x]$, decomporre f in prodotto di polinomi irriducibili.
- (iii) Per ciascuno dei fattori irriducibili di f in $\mathbb{Q}[x]$ determinati al punto precedente, si dica se esso è o non è irriducibile in $\mathbb{R}[x]$.

(Si ricorda che è parte essenziale dell'esercizio la giustificazione del fatto che i fattori indicati come irriducibili lo siano effettivamente.)