数学物理方法(上)前四章综合练习(2018-11-16)

姓名	学号
(本次练习共2页,总计4道	大题, 合计 100 分, 完成时间 120 分钟)
一、选择与填空(50分)	
1. (6分) 复数 $\frac{\left(\cos 5\varphi + i\sin 5\varphi\right)^2}{\left(\cos 3\varphi - i\sin 3\varphi\right)^3}$	约
(1) 指数表示式=();
(2) 三角表示式=() •
2. (6分) 对数函数 $w = \ln(1+z)$ 是多值函数, 其原因来自:	
(A) argz的多值性;	(B) arg(1+z)的多值性;
(C) z 数值的不确定性;	(D) (1+z) 数值的不确定性。
3. (6分) 设函数 $f(z)$ 在复连通区	oxtimes域 G 内解析, C 为 G 内的分段光滑曲线,端
点为 A 和 B ,则积分 $\int_{C} f(z)dz$	
(A) 与积分路径无关, 但与端点会	坐标有关 ;
(B) 与积分路径有关, 但与端点坐标无关;	
(C) 与积分路径和端点坐标均无差	է ;
(D) 与积分路径和端点坐标均有差	≮ 。
4. (6分) 级数 $\sum_{n=1}^{\infty} \frac{\sinh(in)}{\sin(i\sqrt{n})}$ 的收敛性为:	
(A) 通项不趋于 0; (B) 通项趋于 0,发散;
(C) 条件收敛; (D) 绝对收敛。
5. $(7分)$ 幂级数 $\sum_{n=1}^{\infty} (1-i)^n z^n$ 的收敛半径为	
(A) 1; (B) $\frac{1}{\sqrt{2}}$;	(C) $\sqrt{2}$; (D) $\frac{1}{2}$.

6. (7分) 现有复数 $e^{i\phi(x)}$, 其中 $\phi(x)$ 是实变数x的实函数,则 $e^{i\phi(x)}$ 的

7. (7分) 已知
$$f(z) = \int_{|\varsigma|=2}^{\infty} \frac{e^{\frac{\pi}{4}\varsigma}}{\varsigma - z} d\varsigma$$
, 则有

$$(1) f(i) = ($$
);

(2)
$$f(3-4i)=($$

8. (5分) 请判断 sin(i ln z) 是

(B) 单值函数。

二、(20分)请计算

(1) (12 分) 积分
$$f(n) = \int_{|z|=2}^{\infty} \frac{(z^*)^n}{z-5} dz$$
, 其中 n 是整数, z^* 是复数 z 的复共轭。

(2) (8分) 积分
$$I = \iint_{C} \frac{\cos z}{z(z-\pi/2)^{3}} dz$$
, C 为曲线 $|z| = \frac{1}{4}$.

三、(15 分) 请问级数 $\sum_{n=1}^{\infty} \frac{z^{n-1}}{(1-z^n)(1-z^{n+1})}$ 在 $|z| \neq 1$ 是否收敛?若收敛,则求其和。

四、已知函数
$$f(z) = \sqrt{1-z^2} + \ln \frac{1-z}{1+z}$$
 , 规定

f(0)= H $\mathbf{A}i$, 求 f(3)。要求(1) z 沿路径 C_1 从原

点到达z=3的点; (2) z沿路径 C_2 从原点到达z=3

的点。(15分)

