Pedro Paulo Vezzá Campos 1 Jackson José Souza 1 Giuliano Salcas Olquin 2 3

October 26, 2013

¹ Institute of Mathematics and Statistics – University of São Paulo, São Paulo, Brazil {pedrovc. iackson}@ime.usp.br

²Faculty of Education - University of Campinas, Campinas, Brazil

³Polytechnic School – University of São Paulo, São Paulo, Brazil giuliano.olguin@gmail.com

Outline

Introduction

- Trends in CS education
- Decreasing focus in mathematics

Methodology & Data

Mathematics in Brazilian CS programs

Conclusions

Is math actually loosing space?

Contents

- 1 Introduction
- 2 Methodology
- 3 Data
- 4 Conclusions

Trends in CS education

Technical

- Tackle current problems of society
- Focus on technical knowledge

Academic

- Tackle problems in a more abstract way
- Focus on academic knowledge

Introduction 000000

Universities are primarily in the business of positive human development. They focus on enhancing the abilities of our graduates to communicate clearly and effectively, to analyze, to confront ambiguity with clear methods and confidence, to break down problems into manageable parts, to think critically and to question deeply.

— Max Blouw ¹

¹ Blouw, M. (2013) "Universities should educate – employers should train." [Online; accessed Oct 14, 2013] Available: http://www.theglobeandmail.com/commentary/ universities-should-educate-employers-should-train/article14078938/

The interplay between theory and practice

The technology area is a strong example on how **standard procedures** inside the industry are **constantly changing**.

Challenges

- How can the university enable one to reason when facing new problems?
- How perennial, fundamental should be the concepts taught?

The interplay between theory and practice

A fundamental aspect of computer science is the balance between theory and practice and the essential link between them. Graduates of a computer science program must understand not only the theoretical underpinnings of the discipline but also how that theory influences practice.

— CS2008²

 ${}^2\mathsf{ACM/IEEE}\ \mathsf{Joint}\ \mathsf{Task}\ \mathsf{Force}\ (2008)\ \mathsf{``Computer}\ \mathsf{Science}\ \mathsf{Curriculum}\ 2008:\ \mathsf{An}\ \mathsf{interim}\ \mathsf{revision}\ \mathsf{of}\ \mathsf{CS2001}.\mathsf{''}$

sciences.

Introduction 000000

CS is a broad field that connects to and draws from many disciplines, including mathematics, electrical engineering, psychology, statistics, fine arts, linguistics, and physical and life

■ The role of mathematics in reference curricula has been decreasing gradually since at least the 1960s, although at a lower rate today. 3 4

³ A. Ralston "Do we need any mathematics in computer science curricula?" SIGCSE Bull., vol 37, no. 2, pp 6-9, Jun 2005.

⁴ A. B. Tucker "Our curriculum has become math-phobic!" in *Proceedings of the Thirty-second SIGCSE Technical Symposium* on Computer Science Education ACM Press, 2001, pp. 243-247

Case Study: Panorama on the study of mathematics in Brazil

- Overview of how much math is studied in eleven well ranked
 Brazilian CS programs
- Objective analysis through a quantitative analysis
- Comparison with reference curricula
- Useful for curriculum reforms
- Problem: Does not account the focus in a particular area, continuous or discrete math, for instance.

Contents

- 1 Introduction
- 2 Methodology
- 3 Data
- 4 Conclusions

Reference Curricula

ACM/IEEE CS2008

- KA of interest: Discrete Structures
- Does not account any hour load on calculus, linear algebra, differential equations, etc

SBC CR2005

- Divided in six blocks, mathematics is one of these
- Definition of math used in this paper

Definition of mathematics

- Calculus
- Linear Algebra
- Geometry
- Set Theory

- Algebra
- Discrete mathematics
- Probability
- Statistics

Selected CS Programs

- Brazil has more than 350 CS programs
- The eleven selected ones were ranked as 5-stars by the Guia do Estudante ranking.
- The ranking consists of an opinion poll among professors, course coordinators and directors of departments.
- Each program is graded by six different reviewers, extremes are excluded
- Ranking audited by PricewaterhouseCoopers

Contents

- 1 Introduction
- 2 Methodology
- 3 Data
- 4 Conclusions

Figure: Map of Brazil with the studied universities ⁵

 $^{{\}bf 5}_{\rm Image}$ courtesy of Wikipedia, the Free Encyclopedia

Table: Studied CS Programs Panorama

Data 0000

University	Period	Organization	Foundation
ICMC/USP	Diurnal	Public	1979
IME/USP	Diurnal	Public	1970
PUC-RS	Nocturnal	Private	1983
UFC	Diurnal	Public	1975
UFCG	Diurnal	Public	1977
UFMG	Diurnal	Public	1978
UFPE	Diurnal	Public	1974
UFRGS	Diurnal	Public	1983
UFRJ	Diurnal	Public	1974
UFSC	Diurnal	Public	1976
UNICAMP	Nocturnal	Public	1969

Table: Studied CS Programs Panorama

University	Years	Students/year	Where is located	
ICMC/USP	5	100	Institute of Mathematical Sciences and CS	
IME/USP	4	50	Institute of Mathematics and Statistics	
PUC-RS	4	60	Faculty of Informatics	
UFC	4	60	Center of Sciences	
UFCG	4	90	Center of Eletrical Engineering and Informatics	
UFMG	4	80	Institute of Exact Sciences	
UFPE	4.5	100	Center of Informatics	
UFRGS	4.5	100	Institute of Informatics	
UFRJ	4.5	50	Institute of Mathematics	
UFSC	4	100	Institute of Informatics and Statistics	
UNICAMP	5	50	Institute of Computing	

Figure: The proportion of mathematics in each curriculum compared with the reference curricula

Contents

- 1 Introduction
- 2 Methodology
- 3 Data
- 4 Conclusions

This paper

- Analyzed the different perspectives of teaching at universities and opinions related
- Noted the decline of the teaching of mathematics in CS both as a trend in reference curricula and in eleven different CS programs in Brazil

Future work

- Apply the analysis with other rankings (Eg. ENADE ranking made by the Brazilian Ministry of Education)
- Is there any correlation between being well ranked and the amount of math studied?
- How useful was mathematics after graduation? Apply questionnaires to analyze the strengths and weaknesses of a curriculum.

Thanks!

Questions?

Acknowledgements

This work was partially supported by the *Ensinar com Pesquisa* and *Pró-Int* grants from the University of São Paulo.

Pedro Paulo Vezzá Campos 1 Jackson José Souza 1 Giuliano Salcas Olquin 2 3

October 26, 2013

¹ Institute of Mathematics and Statistics – University of São Paulo, São Paulo, Brazil {pedrovc. iackson}@ime.usp.br

²Faculty of Education - University of Campinas, Campinas, Brazil

³Polytechnic School – University of São Paulo, São Paulo, Brazil giuliano.olguin@gmail.com

Table: Math coverage in Brazilian CS curricula

University	Total math hours	Total curricu- lar hours	Percentage of math in curriculum
ACM/IEEE	39	280	13.93%
SBC (4 years)	30	160	18.75%
ICMC/USP	540	4395	12.29%
IME/USP	750	2985	25.13%
PUC-RS	300	3045	9.85%
UFC	400	3280	12.20%
UFCG	420	3120	13.46%
UFMG	540	2625	20.57%
UFPE	285	3495	8.15%
UFRGS	360	3240	11.11%
UFRJ	480	3075	15.61%
UFSC	486	3528	13.78%
UNICAMP	510	3000	17.00%