NOTE: This template is shareware downloaded from www.processimpact.com. All shareware payments are donated to the Norm Kerth Benefit Fund to help a consultant who is disabled with a brain injury. Please visit http://www.processimpact.com/norm_kerth.html to make a shareware payment (\$10 suggested). Thank you!

Software Requirements Specification

for

AstroClassify

Version 1.0 approved

Prepared by:

- 1. Kevin Jonathan Rotty (103052330047)
 - 2. Faaris Khairrudin (103052300115)
- 3. Fauzan Ahsanudin Alfikri (103052300003)
 - 4. Muhammad Fikri Hanif (103052300118)
 - 5. Farrel Farruqh Effendi (103052330092)

Kelompok MAHALL DS-47-03 25-03-2025

eLearning versions of several popular Process Impact training seminars are available at www.processimpact.com/elearning.shtml, including "In Search of Excellent Requirements," "Exploring User Requirements with Use Cases," "Writing High-Quality Requirements," "Software Inspections and Peer Reviews," and "Project Management Best Practices". Single-user and corporate-wide site licenses are both available.

DAFTAR ISI

Daftar Isı .		1
Revision H	History	 11
Jobdesc Aı	nggota Kelompok	 11
1. Introd	luction	1
1.1 F	Purpose	1
1.2 I 1.2.1 1.2.2	Document Conventions Format dan Penulisan Konvensi Penulisan Kode	1
1.3 I	Intended Audience and Reading Suggestions	2
1.4 F	Project Scope	2
1.5 F	References	3
2. Overa	all Description	3
2.1 F	Product Perspective	3
2.2 F 2.2.1 2.2.2 2.2.3 2.2.4	Product Features Data Input Model Selection Result Visualization Export Result.	4 4 5
2.3 U	User Classes and Characteristics	5
2.4	Operating Environment	5
2.5 I	Design and Implementation Constraints	6
2.6 U	User Documentation	6
2.7 A	Assumptions and Dependencies	6
3. System	m Features	6
3.1 I 3.1.1 3.1.2 3.1.3	Data Input & Preprocessing Description and Priority Stimulus/Response Sequences Functional Requirements	6 7
3.2 N 3.2.1 3.2.2 3.2.3	Model Selection Description and Priority Stimulus/Response Sequences Functional Requirements	7 7
3.3 (3.3.1 3.3.2 3.3.3	Classification & Model Performance Comparison	8
3.4 F 3.4.1	Result Visualization	

	3.4.2	Stimulus/Response Sequences	8
	3.4.3	Functional Requirements	
	3.5.1	User Interaction & Export Feature Description and Priority	9
	3.5.2 3.5.3	Stimulus/Response Sequences	
4.	Sker	nario Testing	. 10
	4.1	Data Input – 7 Skenario Testing	10
	4.2	Model Selection – 5 Skenario Testing	11
	4.3	Result Visualization – 6 Skenario Testing	12
	4.4	Export Result – 7 Skenario Testing.	13
5.	Hasi	1 Testing (Testing Results)	. 14
	5.1	Tujuan Pengujian.	14
	5.2	Metode Pengujian	14
	5.3	Hasil Pengujian	
	5.3.1	Fitur Data Input	
	5.3.2 5.3.3	Fitur Model Selection Fitur Result Visualization	
	5.3.4		
6.	Inter	face Aplikasi	. 20
	6.1	Data Input	20
	6.2	Model Selection	21
	6.3	Result Visualitation	22
	6.4	Export Result	23
7.	Prak	tik Git & Github	. 24

Revision History

Name	Date	Reason For Changes	Version

Jobdesc Anggota Kelompok

No	Anggota Kelompok	Jobdesc
1.	Kevin Jonathan Rotty	Menangani fitur 1 (Data input) + implementasi pada
		streamlit
2.	Faaris Khairrudin	Menangani fitur 2 (preprocessing & Modeling) +
		implementasi pada streamlit
3.	Farrel Farruqh	Menangani fitur 3 (model selection) + implementasi pada
	Effendi	streamlit
4.	Fauzan Ahsanudin	Menangani fitur 4 (Result Visualization) + implementasi
	Alfikri	pada streamlit
5.	Muhammad Fikri	Menangani fitur 5 (Export Results) + implementasi pada
	Hanif	streamlit

1. Introduction

1.1 Purpose

AstroClassify adalah aplikasi berbasis data science yang dirancang untuk mengklasifikasikan dan memvisualisasikan objek astronomi seperti bintang, galaksi, dan quasar berdasarkan karakteristik spektralnya menggunakan algoritma machine learning.

Tujuan utama aplikasi ini adalah:

- 1. Membantu astronom, peneliti, dan para penikmat astronomi dalam mengidentifikasi objek langit berdasarkan data pengamatan dari Sloan Digital Sky Survey (SDSS).
- 2. Menyediakan alat untuk eksplorasi data astronomi secara interaktif dengan bantuan teknik visualisasi data.
- 3. Memudahkan klasifikasi otomatis menggunakan algoritma machine learning, seperti Random Forest, XGBoost, dan LightGBM.

Dokumen ini menjelaskan spesifikasi perangkat lunak AstroClassify, termasuk fitur yang didukung, antarmuka pengguna, persyaratan sistem, serta batasan dan asumsi yang digunakan dalam pengembangan sistem.

1.2 Document Conventions

1.2.1 Format dan Penulisan

- 1. Istilah teknis pertama kali disebutkan dalam dokumen akan dijelaskan dalam Appendix A: Glossary.
- 2. Persyaratan wajib ditandai dengan kata kunci "harus" (*must*), sedangkan persyaratan opsional menggunakan "dapat" (*may*).
- 3. Semua diagram mengikuti standar UML (Unified Modeling Language) untuk merepresentasikan arsitektur dan proses sistem.
- 4. Kutipan atau rujukan ke dokumen lain diberikan dalam format [Nomor Referensi], misalnya [1].

1.2.2 Konvensi Penulisan Kode

- 1. Nama kelas menggunakan CamelCase, misalnya DataProcessor.
- 2. Variabel dan fungsi menggunakan snake_case, misalnya preprocess_data().
- 3. Paradigma pemrograman:

- a. Functional Programming (FP) diterapkan dalam tahap preprocessing data untuk menjaga immutability dan meningkatkan keandalan kode.
- b. Object-Oriented Programming (OOP) digunakan untuk desain arsitektur utama, seperti pengelolaan objek dan modul dalam sistem.
- 4. Standar kode lebih lanjut dapat ditemukan dalam 2.5 Design and Implementation Constraints.

1.3 Intended Audience and Reading Suggestions

Dokumen ini ditujukan untuk berbagai pemangku kepentingan yang memiliki peran dalam pengembangan dan penggunaan AstroClassify, termasuk:

- 1. **Astronom & Peneliti:** Untuk menganalisis data pengamatan dan mengklasifikasikan objek langit berdasarkan karakteristik spektralnya.
- 2. Data Scientist & Machine Learning Engineer: Untuk memahami metode analisis data dan algoritma klasifikasi yang digunakan dalam aplikasi.
- 3. **Pengembang Perangkat Lunak**: Untuk memahami spesifikasi sistem, arsitektur perangkat lunak, dan mengembangkan fitur yang dibutuhkan.
- 4. **Penggemar Astronomi**: Untuk mengeksplorasi data astronomi dan mendapatkan wawasan tentang objek langit berdasarkan data observasi dari SDSS.

Saran Pembacaan:

- Astronom & Peneliti disarankan untuk membaca bagian 1 (Introduction) dan bagian 4 (External Interface Requirements) untuk memahami fitur aplikasi dan cara penggunaannya dalam penelitian.
 Data Scientist & Machine Learning Engineer lebih disarankan untuk fokus pada bagian
- Data Scientist & Machine Learning Engineer lebih disarankan untuk fokus pada bagian 3 (System Features) dan bagian 5 (Nonfunctional Requirements) untuk mengetahui algoritma yang digunakan dan aspek teknis lainnya.
- 3. Pengembang Perangkat Lunak dapat langsung membaca bagian 2 (Overall Description) dan bagian 3 (System Features) untuk memahami bagaimana aplikasi ini dirancang dan dikembangkan.
- 4. Penggemar Astronomi disarankan untuk membaca bagian 4 (External Interface Requirements) dan Appendices untuk mengeksplorasi fitur aplikasi dan cara penggunaannya.

1.4 Project Scope

AstroClassify dikembangkan untuk memberikan solusi yang lebih **cepat, akurat, dan otomatis** dalam menganalisis data astronomi. Beberapa manfaat utama dari perangkat lunak ini meliputi:

- 1. Meningkatkan efisiensi klasifikasi objek astronomi dengan otomatisasi menggunakan machine learning.
- 2. Mempermudah eksplorasi dan analisis data spektral melalui visualisasi interaktif.

3. Mendukung penelitian dan edukasi dalam bidang astronomi dengan menyediakan alat analisis berbasis data.

Mengoptimalkan proses identifikasi objek langit, mengurangi ketergantungan pada klasifikasi manual yang rentan terhadap kesalahan.

1.5 References

Dokumen ini merujuk pada sumber dan standar berikut:

- 1. Sloan Digital Sky Survey (SDSS) Database https://www.sdss.org/
- 2. Scikit-learn Documentation https://scikit-learn.org/
- 3. Pandas Documentation https://pandas.pydata.org/
- 4. Matplotlib Documentation https://matplotlib.org/
- 5. Bokeh Documentation https://docs.bokeh.org/
- **6.** Plotly Documentation https://plotly.com/python/

2. Overall Description

2.1 Product Perspective

AstroClassify adalah aplikasi berbasis Python yang dikembangkan sebagai produk baru dan self-contained untuk klasifikasi objek astronomi. Aplikasi ini tidak merupakan bagian dari sistem yang lebih besar atau penerus dari aplikasi sebelumnya, melainkan dikembangkan secara mandiri untuk menyediakan alat klasifikasi berbasis machine learning yang dapat dijalankan secara lokal tanpa ketergantungan pada cloud computing.

AstroClassify dirancang untuk astronom amatir, mahasiswa, serta peneliti yang ingin mengklasifikasikan objek langit berdasarkan fitur tertentu. Input yang digunakan dalam sistem ini terdiri dari alpha, delta, serta magnitudo pada berbagai filter fotometri (u, g, r, i, z). Berdasarkan fitur tersebut, aplikasi akan mengklasifikasikan objek ke dalam beberapa kategori, seperti Bintang, Galaksi, dan Quasar.

Aplikasi ini sepenuhnya dijalankan melalui Streamlit, yang memungkinkan pengguna untuk mengunggah data, melakukan analisis, serta menampilkan hasil klasifikasi dalam bentuk interaktif melalui browser. AstroClassify dapat beroperasi sebagai sistem mandiri, tetapi juga dapat diintegrasikan dengan database astronomi eksternal (misalnya, katalog bintang) untuk memperkaya analisis data serta menghasilkan visualisasi yang mendukung pemahaman hasil klasifikasi.

2.2 Product Features

AstroClassify dirancang untuk memberikan pengalaman yang **mudah digunakan**, **cepat**, dan **akurat** dalam mengklasifikasikan objek astronomi berdasarkan data spektralnya. Berikut adalah fitur utama dari aplikasi ini:

2.2.1 Data Input

AstroClassify memungkinkan pengguna untuk menginput data astronomi tanpa label guna diklasifikasikan ke dalam kategori yang sesuai. Terdapat dua metode input:

- 1. **Upload Dataset**: Pengguna dapat mengunggah file CSV yang berisi data spektral objek astronomi tanpa label kelas.
- 2. **Input Manual**: Pengguna dapat memasukkan satu atau beberapa data objek langsung melalui antarmuka aplikasi.

Proses preprocessing yang diterapkan sebelum klasifikasi:

- 1. **Penanganan Nilai Hilang**: Menggunakan metode imputasi atau penghapusan data yang tidak lengkap.
- 2. **Normalisasi dan Standarisasi**: Menyesuaikan skala data agar sesuai dengan kebutuhan model.
- 3. **Seleksi Fitur**: Menghilangkan variabel yang kurang relevan agar meningkatkan akurasi model.

2.2.2 Model Selection

AstroClassify menyediakan pilihan model machine learning yang telah dilatih sebelumnya, yang memungkinkan pengguna memilih model untuk proses klasifikasi:

- 1. Random Forest
- 2. XGBoost
- 3. LightGBM

Sebelum pengguna melakukan klasifikasi, mereka dapat melihat performa dari masing-masing model yang telah kami latih sebelumnya dengan dataset referensi. Metrik evaluasi yang tersedia meliputi:

- 1. Akurasi Model
- 2. Precision, Recall, dan F1-score
- 3. Confusion Matrix

Pengguna dapat memilih model yang paling sesuai sebelum menjalankan klasifikasi data yang mereka masukkan.

2.2.3 Result Visualization

AstroClassify menyajikan hasil klasifikasi dalam berbagai bentuk visual Isasi yang interaktif dan informatif:

1. 3D Scatter Plot (Plotly):

- \circ Menampilkan distribusi objek astronomi dalam ruang **Right Ascension** (α), **Declination** (δ), dan Redshift (z).
- o Warna objek ditentukan berdasarkan hasil klasifikasi.
- o Pengguna dapat melakukan filter terhadap visualisasi berdasarkan objek yang dipilih.

2. Histogram & Distribution Plot:

 Menunjukkan distribusi spektral untuk melihat pola karakteristik masing-masing kelas

2.2.4 Export Result

Export Hasil Analisis dan visualisasi, Hasil klasifikasi dan visualisasi dapat diunduh dalam format CSV atau PNG untuk dokumentasi lebih lanjut.

2.3 User Classes and Characteristics

- 1. Astronom & Data Scientist & Peneliti: Menggunakan aplikasi untuk analisis ilmiah. Menggunakan aplikasi untuk keperluan edukasi dan penelitian.
- 2. Pengguna Awam/penggemar astronomi: Dapat memanfaatkan visualisasi interaktif untuk eksplorasi data astronomi.

2.4 Operating Environment

- 1. **OS**: Windows, Linux, macOS
- 2. **Python**: Versi 3.8 atau lebih baru
- 3. Pustaka utama:
 - Pandas
 - NumPy
 - Scikit-learn
 - Matplotlib/Bokeh/Plotly
 - Streamlit

2.5 Design and Implementation Constraints

- 1. Dataset dari Sloan Digital Sky Survey (SDSS) cukup besar (100.000 observasi, 17 fitur spektral).
- 2. Perlu optimasi memori saat loading dan preprocessing data untuk menjaga performa.
- 3. Python 3.8 atau lebih baru wajib digunakan untuk kompatibilitas dengan pustaka ML dan data science.

2.6 User Documentation

- 1. Manual penggunaan dalam bentuk Markdown yang ditampilkan langsung di Streamlit.
- 2. Contoh kode interaktif menggunakan st.code() untuk membantu pemahaman penggunaan aplikasi.
- 3. Fitur unggah file (CSV) dengan st.file_uploader() untuk memasukkan data input.
- 4. Navigasi antar bagian dokumentasi menggunakan sidebar dengan st.sidebar.radio().
- 5. Visualisasi hasil klasifikasi menggunakan st.pyplot() atau st.dataframe().
- 6. Bagian troubleshooting dalam format expander (st.expander()) untuk solusi cepat.

2.7 Assumptions and Dependencies

- 1. Dataset dari Sloan Digital Sky Survey (SDSS) dapat diakses dan digunakan tanpa batasan lisensi atau perubahan format. Model menggunakan Scikit-learn.
- 2. AstroClassify akan berjalan dengan lancar di sistem operasi utama seperti Windows, macOS, dan Linux, dengan Python 3.8+.
- 3. Pustaka seperti Scikit-learn, Pandas, Matplotlib, dan Bokeh tetap didukung dan tidak mengalami perubahan besar selama pengembangan.

3. System Features

3.1 Data Input & Preprocessing

3.1.1 Description and Priority

Fitur ini bertanggung jawab untuk memungkinkan pengguna mengunggah atau memasukkan data astronomi serta melakukan preprocessing sebelum klasifikasi.

• Prioritas: Tinggi

3.1.2 Stimulus/Response Sequences

- 1. **Input**: Dataset mentah dari SDSS atau input manual
- 2. Proses:
 - o Menghapus nilai yang hilang atau outlier.
 - Melakukan normalisasi dan standarisasi data.
 - o Melakukan seleksi fitur untuk meningkatkan akurasi model.
- 3. **Output**: Dataset yang sudah dibersihkan, dinormalisasi, dan siap digunakan untuk klasifikasi.

3.1.3 Functional Requirements

- 1. **REQ-1**: Sistem harus dapat menangani nilai yang hilang dengan metode imputasi atau penghapusan baris.
- 2. REQ-2: Sistem harus dapat menormalkan dan menstandarisasi data menggunakan metode seperti Min-Max Scaling atau Standardization.
- 3. **REQ-3**: Sistem harus dapat melakukan seleksi fitur berdasarkan relevansi terhadap model.

3.2 Model Selection

3.2.1 Description and Priority

Fitur ini memungkinkan pengguna untuk memilih model machine learning yang akan digunakan dalam proses klasifikasi.

• Prioritas: Tinggi

3.2.2 Stimulus/Response Sequences

- 1. **Input**: Dataset yang telah diproses
- 2. Proses:
 - o Menyediakan pilihan algoritma seperti Random Forest, XGBoost, dan LightGBM.
 - Menampilkan metrik evaluasi model yang telah dilatih.
- 3. **Output**: Model yang telah dipilih dan evaluasi performanya.

3.2.3 Functional Requirements

- 1. **REQ-4**: Sistem harus mendukung algoritma Random Forest, XGBoost, dan lightGBM untuk klasifikasi.
- 2. **REQ-5**: Sistem harus menampilkan metrik evaluasi seperti akurasi, precision, recall, dan F1-score.

3. **REQ-6**: Sistem harus memungkinkan pengguna memilih model sebelum melakukan klasifikasi.

3.3 Classification & Model Performance Comparison

3.3.1 Description and Priority

Fitur ini memungkinkan pengguna untuk menjalankan klasifikasi serta membandingkan performa model yang berbeda.

• Prioritas: Tinggi

3.3.2 Stimulus/Response Sequences

- 1. **Input**: Data yang telah diproses dan model yang dipilih
- 2. Proses:
 - Menjalankan klasifikasi terhadap data yang dimasukkan.
 - Menampilkan hasil prediksi untuk setiap objek.
 - Membandingkan performa model berdasarkan metrik evaluasi.
- 3. Output: Hasil klasifikasi dan perbandingan model dalam bentuk visualisasi.

3.3.3 Functional Requirements

- 1. **REQ-7**: Sistem harus dapat menjalankan klasifikasi menggunakan model yang dipilih.
- 2. **REQ-8**: Sistem harus menampilkan hasil prediksi untuk setiap objek astronomi.
- 3. **REQ-9**: Sistem harus menyajikan perbandingan performa model dalam bentuk grafik seperti confusion matrix dan ROC curve.

3.4 Result Visualization

3.4.1 Description and Priority

Fitur ini menyajikan hasil klasifikasi dan analisis model dalam bentuk visualisasi yang interaktif.

• Prioritas: Medium

3.4.2 Stimulus/Response Sequences

- 1. **Input**: Hasil klasifikasi dari model machine learning
- 2. Proses:
 - O Menampilkan scatter plot 3D berdasarkan koordinat Right Ascension (α), Declination (δ), dan Redshift (z).
 - o Menyediakan histogram dan distribusi spektral.
 - o Menampilkan heatmap confusion matrix.
- 3. Output: Grafik interaktif yang membantu pengguna memahami hasil klasifikasi.

3.4.3 Functional Requirements

- 1. **REQ-10**: Sistem harus menyediakan scatter plot 3D yang menunjukkan distribusi objek astronomi.
- 2. **REQ-11**: Sistem harus menampilkan histogram dan distribusi spektral.
- 3. **REQ-12**: Sistem harus menampilkan heatmap confusion matrix untuk evaluasi model.

3.5 User Interaction & Export Feature

3.5.1 Description and Priority

Fitur ini memungkinkan pengguna untuk berinteraksi dengan hasil klasifikasi serta mengunduh data dan visualisasi.

• **Prioritas**: Medium

3.5.2 Stimulus/Response Sequences

- 1. **Input**: Hasil klasifikasi dan visualisasi
- 2. Proses:
 - Menyediakan filter interaktif untuk eksplorasi data.
 - Mengaktifkan fitur linked brushing untuk menyorot data terkait dalam visualisasi.
 - o Memungkinkan pengguna mengunduh hasil analisis dalam berbagai format.
- 3. **Output**: Hasil klasifikasi yang dapat dieksplorasi dan diunduh.

3.5.3 Functional Requirements

- 1. **REQ-13**: Sistem harus menyediakan filter interaktif berdasarkan parameter tertentu (misalnya redshift).
- 2. **REQ-14**: Sistem harus memungkinkan linked brushing antar visualisasi.
- 3. **REQ-15**: Sistem harus memungkinkan pengguna mengunduh hasil analisis dalam format CSV, JSON, atau gambar (PNG/JPG).

4. Skenario Testing

Setiap test case pada aplikasi AstroClassify diimplementasikan sebagai fungsi terpisah yang menguji satu komponen atau fitur secara spesifik. Aplikasi ini dikembangkan dengan pendekatan gabungan antara Object-Oriented Programming (OOP) untuk struktur kelas dan Functional Programming (FP) untuk fungsi-fungsi murni yang dapat diuji secara modular. Fitur-fitur utama seperti upload data, preprocessing, prediksi model, dan visualisasi disusun secara sekuensial dalam alur penggunaan, namun pengujian dilakukan secara terpisah untuk memastikan keandalan masing-masing fungsi secara independen.

Pengujian mencakup berbagai skenario, termasuk validasi range input, penanganan missing value, evaluasi hasil prediksi model, dan respons sistem saat data tidak tersedia. Dengan pendekatan ini, proses testing tidak hanya memastikan fungsionalitas, tetapi juga stabilitas dan ketahanan sistem terhadap variasi input dan kondisi tak terduga.

4.1 Data Input – 7 Skenario Testing

No	Test Case	Input	Langkah Uji	Ekspetasi
1	Upload File CSV	File CSV dari	Klik Upload → Pilih	Data tampil di
	dari SDSS	SDSS	file valid \rightarrow Submit	pratinjau
2	Upload file kosong	File kosong	Klik Upload → Submit	Error: "File tidak
				mengandung data"
3	Input data manual	Atribut satuan	Klik Input Manual →	Data muncul di tabel
	valid		Masukkan alpha,	input
			delta, magnitudo $ ightarrow$	
			Submit	
4	Upload file	Upload file		Sistem menolak dan
	dengan jumlah	dengan kolom	Kolom u/g/r/i/z hilang	tampilkan error
	kolom kurang	tidak lengkap		
5	Input data satuan	Input berisi teks,	Nilai non-numerik	Error: format tidak
	dengan format	bukan angka	dimasukkan	valid
	yang tidak sesuai			

6	Input data	Atribut numerik	Klik Input Manual →	Muncul pesan error,
	numerik di luar		Masukkan alpha,	"input berada di luar
	range yang		delta, magnitudo	batas/tidak valid"
	ditentukan (range:		dengan value 1M $ ightarrow$	
	0-360.000)		Submit	
7	Memasukkan file	File csv	Klik Upload → Pilih	Data akan di
	dengan missing		file valid \rightarrow Submit	preprocess secara
	value di beberapa			otomatis (nilai null
	kolom			terisi)

4.2 Model Selection – 5 Skenario Testing

No	Test Case	Input	Langkah Uji	Ekspetasi
1	Pilih model	Dataset	Pilih XGBoost→ Klik	Muncul hasil evaluasi
	XGBoost	preprocessed	Train	
2	Tanpa memilih		Klik Train tanpa pilih	Model terbaik
	model	Dataset	model	digunakan secara
		preprocessed		default
3	Pilih model,	Model pilihan	Pilih model "Random	Confusion Matrix
	tampilkan		Forest" \rightarrow Klik "Lihat	ditampilkan sesuai
	confusion matrix		Confusion Matrix"	model
4	Switch model	2 model	Pilih "Random Forest"	Tampilan metrik
		pilihan	→ Klik "Lihat	berubah ke evaluasi
			Confusion Matrix" \rightarrow	milik XGboost, model
			Ganti ke "XGboost"	aktif terganti

5	Validasi hasil	Dataset	Pilih model bebas	Hasil prediksi sama
	prediksi	preprocessed	("random forest") →	seperti data uji
			klik "prediksi" →	
			bandingkan dengan data	
			uji	
6	Dataset belum	Dataset	Pilih model bebas	Tampil Eror: "gagal
	sepenuhnya di		("random forest") →	prediksi: Data gagal di
	preprocessing		klik "prediksi"	preprocessed"

4.3 Result Visualization – 6 Skenario Testing

No	Test Case	Input	Langkah Uji	Ekspetasi
1	Tampilkan scatter plot	Hasil	Klik "3D Scatter"	Plot interaktif
	3D	klasifikasi		muncul
2	Zoom pada grafik	Grafik hasil	Scroll mouse / gesture	Grafik melakukan
			pinch pada grafik	zoom in/out
3	Interaksi menggunakan	Grafik	Sorot elemen pada satu	Elemen terkait di
	linked brushing	terkait	grafik	grafik lain tersorot
4	Interaksi dengan plot	Pointer	Arahkan kursor ke	Tooltip muncul
	(hover)	Mouse	titik pada grafik	dengan detail data
5	Interaksi dengan grafik (Menggeser)	Grafik aktif	Hover/klik elemen	Tooltip atau highlight muncul
6	Ketika Data hasil	Data Hasil	Klik "3D Scatter"	Error: "Tidak ada
	klasifikasi Kosong	Klasifikasi		data untuk
		Kosong		visualisasi"

7	Ketika Kolom untuk	Hasil	Klik "3D Scatter"	Error: "Tidak ada
	visualisasi (alpha,	Klasifikasi		Kolom 'alpha', 'delta'.
	delta,dll) tidak ada	tanpa		Silahkan cek kembali
		kolom		data anda"
		alpha, delta		

4.4 Export Result – 7 Skenario Testing

No	Test Case	Input	Langkah Uji	Ekpetasi
1	Unduh hasil klasifikasi	Data hasil	Klik tombol	File CSV berhasil
	sebagai CSV	klasifikasi	Export CSV	diunduh dan berisi
				hasil klasifikasi
				dengan struktur
				benar
2	Unduh hasil klasifikasi	Data hasil	Klik tombol	File XLSX berhasil
	sebagai XLSX	klasifikasi	Export XLSX	diunduh dan dapat
				dibuka di Excel
3	Unduh hasil klasifikasi	Data xls	Klik tombol	File JSON berhasil
	sebagai JSON	klasifikasi	Export JSON	diunduh dengan
				format key-value
				sesuai
4	Unduh Hasil klasifikasi	Data hasil	Klik tombol	Error: "Data hasil
	sebagai CSV, XLSX atau	klasifikasi	Export CSV,	klasifikasi
	JSON ketika Data hasil	yang	Export XLSX,	kosong/tidak valid
	klasifikasi kosong/tidak	kosong/tidak	atau Export JSON	untuk diunduh"
	valid	valid		

5	Unduh plot 2D hasil	Grafik hasil	Klik tombol	Gambar PNG
	klasifikasi sebagai gambar	visualisasi	Unduh plot 2D	berhasil diunduh
	(PNG)			dan sesuai tampilan
				grafik
6	Unduh plot 3D hasil	Grafik hasil	Klik tombol	Gambar PNG
	klasifikasi sebagai gambar	visualisasi	Unduh plot 3D	berhasil diunduh
	(PNG)			dan sesuai tampilan
				grafik
7	Unduh plot 2D atau 3D	Grafik hasil	Klik tombol	Error: "Grafik
	hasil klasifikasi sebagai	visualisasi	Unduh plot 2D	visualisasi tidak
	gambar (PNG) ketika grafik	kosong/tidak	atau Unduh plot	tersedia, unduhan
	hasil visualisasi kosong atau	tersedia	3D	tidak dapat
	tidak tersedia			dilakukan"

5. Hasil Testing (Testing Results)

5.1 Tujuan Pengujian

Pengujian dilakukan untuk memastikan bahwa aplikasi AstroClassify berjalan sesuai dengan yang diharapkan, baik dari segi fungsionalitas, akurasi model klasifikasi, kestabilan sistem, maupun antarmuka pengguna. Secara umum, pengujian bertujuan untuk mengidentifikasi dan memperbaiki potensi kesalahan atau bug, serta memastikan bahwa setiap komponen aplikasi dapat berfungsi secara optimal dan terintegrasi dengan baik sebelum digunakan oleh pengguna akhir.

5.2 Metode Pengujian

Pengujian dilakukan dengan pendekatan pengujian berlapis yang terdiri dari:

1. Unit Testing

• Menguji fungsi-fungsi terkecil secara individual, seperti fungsi input data, praproses data, pemodelan, dan visualisasi.

2. Component Testing

• Menguji integrasi antar beberapa fungsi dalam satu komponen, misalnya antara modul klasifikasi dengan hasil visualisasi.

3. System Testing

- Melakukan pengujian terhadap sistem secara menyeluruh dengan metode pengujian tradisional (mencocokkan output dengan scenario test case), dari input data hingga output akhir yang ditampilkan ke pengguna.
- Dilakukan berdasarkan test scenario yang telah dirancang sebelumnya.
- Output aktual dibandingkan dengan expected output pada setiap skenario untuk menentukan apakah sistem lulus pengujian.

4. Evaluasi Akurasi Model

Selain pengujian sistem, dilakukan juga evaluasi performa model klasifikasi menggunakan metrik seperti:

- Accuracy
- Precision
- Recall
- F1-score

Evaluasi dilakukan pada dataset uji (test set) untuk memastikan performa generalisasi model.

5.3 Hasil Pengujian

5.3.1 Fitur Data Input

No	Test Case	Input	Langkah Uji	Ekspetasi	Status
					Testing
1	Upload File CSV	File CSV dari	Klik Upload →	Data tampil di	LULUS
	dari SDSS	SDSS	Pilih file valid \rightarrow	pratinjau	
			Submit		
2	Upload file	File kosong	Klik Upload →	Error: "File tidak	LULUS
	kosong		Submit	mengandung	
				data"	
3	Input data	Atribut	Klik Input	Data muncul di	LULUS
	manual valid	satuan	$Manual \to$	tabel input	
			Masukkan alpha,		
			delta, magnitudo		
			\rightarrow Submit		
4	IInland file	Upload file		Sistem menolak	LULUS
	Upload file dengan	dengan	Kolom u/g/r/i/z	dan tampilkan	
	jumlah kolom kurang		hilang	error	

		kolom tidak			
		lengkap			
5	Input data	Input berisi	Nilai non-	Error: format	LULUS
	satuan dengan	teks, bukan	numerik	tidak valid	
	format yang	angka	dimasukkan		
	tidak sesuai				
6	Input data	Atribut	Klik Input	Muncul pesan	LULUS
	numerik di luar	numerik	$Manual \to$	error, "input	
	range yang		Masukkan alpha,	berada di luar	
	ditentukan		delta, magnitudo	batas/tidak valid"	
	(range: 0-		dengan value 1M		
	360.000)		\rightarrow Submit		
7	Memasukkan	File csv	Klik Upload →	Data akan di	LULUS
	file dengan		Pilih file valid \rightarrow	preprocess secara	
	missing value di		Submit	otomatis (nilai null	
	beberapa kolom			terisi)	

5.3.2 Fitur Model Selection

No	Test Case	Input	Langkah Uji	Langkah Uji Ekspetasi	
					Pengujian
1	Pilih model	Dataset	Pilih XGBoost→	Muncul hasil	LULUS
	XGBoost	preprocessed	Klik Predik	evaluasi	
2	Tanpa memilih		Klik Train tanpa	Model terbaik	LULUS
	model	Dataset preprocessed	pilih model	digunakan secara	
		1 1		default	

3	Pilih model,	Model	Pilih model	Confusion Matrix	LULUS
	tampilkan	pilihan	"Random Forest"	ditampilkan sesuai	
	confusion		→ Klik "Lihat	model	
	matrix		Confusion Matrix"		
4	Switch model	2 model	Pilih "Random	Tampilan metrik	LULUS
		pilihan	Forest" \rightarrow Klik	berubah ke	
			"Lihat Confusion	evaluasi milik	
			Matrix" → Ganti	XGboost, model	
			ke "XGboost"	aktif terganti	
5	Validasi hasil	Dataset	Pilih model bebas Hasil prediksi sama		LULUS
	prediksi	preprocessed	("random forest") seperti data uji		
			→ klik "prediksi"		
			→ bandingkan		
			dengan data uji		
6	Dataset belum	Dataset	Pilih model bebas	Tampil Eror: "gagal	LULUS
	sepenuhnya di		("random forest") prediksi: Data gagal		
	preprocessing		→ klik "prediksi"	di preprocessed"	

5.3.3 Fitur Result Visualization

No	Test Case	Input	Langkah Uji	Ekspetasi	Status
					Testing
1	Tampilkan scatter	Hasil	Klik "3D Scatter"	Plot interaktif	LULUS
	plot 3D	klasifikasi		muncul	
2	Zoom pada grafik	Grafik	Scroll mouse /	Grafik	LULUS
		hasil	gesture pinch	melakukan zoom	
			pada grafik	in/out	

3	Interaksi	Grafik	Sorot elemen	Elemen terkait	GAGAL
	menggunakan	terkait	pada satu grafik	di grafik lain	(LIBRARY
	linked brushing			tersorot	TIDAK
					SUPPORT)
4	Interaksi dengan	Pointer	Arahkan kursor	Tooltip muncul	LULUS
	plot (hover)	Mouse	ke titik pada	dengan detail	
			grafik	data	
5	Interaksi dengan	Grafik	Hover/klik	Tooltip atau	LULUS
	grafik (Menggeser)	aktif	elemen	highlight muncul	
6	Ketika Data hasil	Data Hasil	Klik "3D Scatter"	Error: "Tidak ada	LULUS
	klasifikasi Kosong	Klasifikasi		data untuk	
		Kosong		visualisasi"	
7	Ketika Kolom	Hasil	Klik "3D Scatter"	Error: "Tidak ada	LULUS
	untuk visualisasi	Klasifikasi		Kolom 'alpha',	
	(alpha, delta,dll)	tanpa		ʻdelta'. Silahkan	
	tidak ada	kolom		cek kembali data	
		alpha, delta		anda"	

5.3.4 Fitur Export Result

No	Test Case	Input	Langkah Uji	Ekpetasi	Status
					Pengujian
1	Unduh hasil	Data hasil	Klik tombol	File CSV	LULUS
	klasifikasi sebagai	klasifikasi	Export CSV	berhasil diunduh	
	CSV			dan berisi hasil	
				klasifikasi	
				dengan struktur	
				benar	

2	Unduh hasil	Data hasil	Klik tombol	File XLSX	LULUS
	klasifikasi sebagai	klasifikasi	Export XLSX	berhasil diunduh	
	XLSX			dan dapat dibuka	
				di Excel	
3	Unduh hasil	Data xls	Klik tombol	File JSON	LULUS
	klasifikasi sebagai	klasifikasi	Export JSON	berhasil diunduh	
	JSON			dengan format	
				key-value sesuai	
4	Unduh Hasil	Data hasil	Klik tombol	Error: "Data	LULUS
	klasifikasi sebagai	klasifikasi	Export CSV,	hasil klasifikasi	
	CSV, XLSX atau	yang	Export XLSX,	kosong/tidak	
	JSON ketika Data	kosong/tidak	atau Export	valid untuk	
	hasil klasifikasi	valid	JSON	diunduh"	
	kosong/tidak valid				
5	Unduh plot 2D hasil	Grafik hasil	Klik tombol	Gambar PNG	LULUS
	klasifikasi sebagai	visualisasi	Unduh plot	berhasil diunduh	
	gambar (PNG)		2D	dan sesuai	
				tampilan grafik	
6	Unduh plot 3D hasil	Grafik hasil	Klik tombol	Gambar PNG	LULUS
	klasifikasi sebagai	visualisasi	Unduh plot	berhasil diunduh	
	gambar (PNG)		3D	dan sesuai	
				tampilan grafik	
7	Unduh plot 2D atau	Grafik hasil	Klik tombol	Error: "Grafik	LULUS
	3D hasil klasifikasi	visualisasi	Unduh plot	visualisasi tidak	
	sebagai gambar (PNG)	kosong/tidak	2 D atau	tersedia,	
	ketika grafik hasil	tersedia	Unduh plot	unduhan tidak	
			3D	dapat dilakukan"	

visualisasi kosong		
atau tidak tersedia		

6. Interface Aplikasi

Tampilan awal aplikasi AstroClassify menyambut pengguna dengan antarmuka yang informatif dan visual yang menarik, memperkenalkan tujuan utama aplikasi dalam membantu proses klasifikasi objek langit menggunakan teknologi machine learning. Halaman ini menjelaskan manfaat utama aplikasi, seperti mengidentifikasi objek langit dari data observasi, mengenali jenis objek baru, serta memahami struktur kosmos secara efisien. Ditujukan untuk mahasiswa, pengamat langit, dan peneliti, halaman ini memberikan pengantar yang jelas tentang peran dan potensi AstroClassify dalam eksplorasi data astronomi.

6.1 Data Input

Halaman Input Data Astronomi pada aplikasi AstroClassify dirancang untuk memudahkan pengguna dalam memasukkan dataset berbasis standar Sloan Digital Sky Survey (SDSS). Pengguna dapat memilih metode input melalui unggahan file CSV atau input manual, dengan ketentuan kolom wajib seperti alpha, delta, u, g, r, i, z, dan redshift.

Fitur Preprocessing Data pada aplikasi AstroClassify berfungsi untuk menyiapkan data astronomi agar layak digunakan oleh model machine learning, khususnya dengan menangani nilai hilang (missing values) dan menyusun ulang fitur yang diperlukan. Pengguna dapat melihat data mentah sebelum dan sesudah praproses, serta mendapatkan status progres secara interaktif, yang menunjukkan bahwa data telah berhasil diproses dan siap untuk tahap pemodelan.

6.2 Model Selection

Fitur Pemilihan & Evaluasi Model pada aplikasi AstroClassify memungkinkan pengguna untuk memilih algoritma klasifikasi, seperti Random Forest, dan melakukan evaluasi performa model secara langsung. Pengguna dapat melihat hasil evaluasi seperti akurasi model serta menjalankan prediksi terhadap data yang telah diproses, sebelum melanjutkan ke tahap visualisasi hasil klasifikasi.

6.3 Result Visualitation

Fitur Klasifikasi & Visualisasi pada AstroClassify menyajikan hasil prediksi dalam bentuk grafik 3D scatter yang memvisualisasikan distribusi objek astronomi berdasarkan atribut α (right ascension), δ (declination), redshift, u, g, r, i, z. Pengguna dapat mengatur batas jarak angular untuk menampilkan objek dalam radius tertentu dari titik pusat, serta membedakan kelas objek (seperti GALAXY, STAR, dan QSO) melalui skala warna, sehingga memudahkan analisis spasial dan klasifikasi objek langit secara intuitif.

Selain itu, tersedia pula visualisasi histogram yang menampilkan distribusi nilai Alpha dan Beta. Pengguna dapat memilih salah satu dari kedua parameter ini melalui menu dropdown. Setiap histogram disusun berdasarkan kelas objek, sehingga memudahkan dalam mengamati pola distribusi yang khas pada masing-masing kategori.

6.4 Export Result

Fitur Ekspor Hasil pada AstroClassify memungkinkan pengguna untuk mengunduh hasil prediksi klasifikasi objek astronomi dalam berbagai format file seperti CSV, XLSX, dan JSON, sehingga memudahkan dokumentasi dan analisis lanjutan. Selain data tabular, pengguna juga dapat mengunduh visualisasi grafik 3D scatter dalam format PNG, yang menampilkan distribusi objek berdasarkan atribut α , δ , dan redshift serta klasifikasinya. Fitur ini memberikan fleksibilitas tinggi dalam penyimpanan dan pelaporan hasil analisis.

7. Praktik Git & Github

Selama proses pengembangan proyek AstroClassify, kami menerapkan Git dan GitHub sebagai alat utama dalam mengelola versi dan kolaborasi kode. Praktik ini menjadi pengalaman langsung dalam bekerja secara tim, membagi tugas melalui branch masing-masing, serta menyatukan kontribusi melalui pull request.

Link repository Github proyek ini bisa diakses pada link berikut: https://github.com/FaarisKhairrudin/AstroClassify

Terdapat total 69 commits pada branch utama selama masa pengerjaan proyek (dapat dilihat lengkap pada repository bagian history commits)

Berikut adalah bukti pengerjaan praktik Git & Github:

1. Inisialisasi Proyek & First Commit (menambahkan README.md)

Proyek *AstroClassify* diawali dengan proses inisialisasi Git lokal menggunakan perintah git init pada folder proyek. Setelah itu, kami menambahkan file awal README.md untuk memberikan deskripsi singkat proyek, kemudian dilakukan commit awal menggunakan git add dan git commit.

2. Membuat Repository (Menghubungkan dengan github)

Repository GitHub dibuat dengan nama AstroClassify, lalu Git lokal dikaitkan ke remote repository menggunakan perintah git remote add origin. Setelah itu, commit awal di-push menggunakan git push -u origin main. Struktur awal direktori yang disiapkan terdiri dari beberapa folder kosong seperti modules/, training/, models/, dan utils/, yang nantinya akan diisi oleh setiap anggota sesuai dengan tugasnya masing-masing. Berikut struktur awal repositori kami:

3. Kolaborasi Tim

Setiap anggota membuat branch pribadi dari main untuk mengembangkan fitur masingmasing. Berikut daftar branch dan anggotanya:

- KevinJonathanRotty-DataInput Input data
- FaarisKhairrudin-Preprocessing Preprocessing data
- FarrelFaruqh-Model_Selection Pemilihan model klasifikasi
- FauzanAhsanudin-Visualization Visualisasi hasil klasifikasi
- MuhammadFikri-ExportResult Ekspor hasil

Pada branch masing-masing, setiap anggota menambahkan kode, melakukan commit, dan push ke GitHub menggunakan perintah git push origin nama_branch.

4. Review dan Merge

Setelah menyelesaikan pekerjaan di masing-masing branch, anggota tim membuat Pull Request (PR) untuk digabungkan ke branch main. PR ini direview oleh anggota lain, dan setelah disetujui dilakukan proses merge. Setiap merge berhasil akan diikuti dengan penghapusan branch jika sudah tidak digunakan lagi.

May 13, 2025 – June 13, 2025

Period: 1 month ▼

Excluding merges, **5 authors** have pushed **46 commits** to main and **46 commits** to all branches. On main, **0 files** have changed 10 and there have been **0 additions** and **0 deletions**.

% 21 Pull requests merged by 5 people