南阁大学 GPU 编程

学院 计算机学院 专业 计算机科学与技术 南开大学 程伟卿 学号 2311865

目录

1	1 项目仓库位置				3		
2	问题概述						
	2.1 高斯消去算法概述				. 3		
	2.1.1 步骤说明				. 3		
	2.1.2 初等行变换				. 3		
	2.1.3 示例				. 3		
	2.2 串行算法原理分析				. 4		
3	3 实验介绍				5		
4	4 GPU 设计实现				5		
5	5 对比分析方向				6		
6	6 实验结果分析				6		
	6.1 串行算法与 GPU 并行算法对比分析				. 6		
	6.2 不同任务划分方式对比分析				. 8		
	6.3 不同线程块数/线程块大小对性能的影响				. 11		
	6.4 其他探索				. 14		
	6.4.1 策略一: 共享内存与寄存器重构				. 14		
	6.4.2 策略二: 更实用的策略——每线程处	理整行			. 15		
7	7 总结反思				15		

1 项目仓库位置

完整代码见 github 仓库(点击跳转)

2 问题概述

2.1 高斯消去算法概述

高斯消去法(Gaussian Elimination)是一种用于求解线性方程组、计算矩阵秩以及求逆矩阵的常用方法。其主要思想是通过初等行变换将增广矩阵化为行阶梯形矩阵,从而简化求解过程。

2.1.1 步骤说明

- 1. **消元阶段 (Forward Elimination)**:

 一通过初等行变换,将矩阵 化为上三角形式。此过程的目标是消去主对角线以下的元素。
- 2. **回代阶段 (Back Substitution)**:

 从最后一行开始,逐个求解变量值。

2.1.2 初等行变换

• 行交换: 交换两行

• 行倍加: 将一行的若干倍加到另一行

• 行缩放: 将某一行乘以一个非零常数

2.1.3 示例

设线性方程组为:

$$\begin{cases} 2x + y - z = 8 \\ -3x - y + 2z = -11 \\ -2x + y + 2z = -3 \end{cases}$$

其增广矩阵为:

$$\left[\begin{array}{ccc|c}
2 & 1 & -1 & 8 \\
-3 & -1 & 2 & -11 \\
-2 & 1 & 2 & -3
\end{array}\right]$$

通过高斯消去操作,最终可求得唯一解:

$$x = 2, \quad y = 3, \quad z = -1$$

2.2 串行算法原理分析

串行算法通过消去过程将系数矩阵转化为上三角形式,利用消元因子逐步消除下方变量,确保每行仅保留当前主元及右侧变量。回代过程利用上三角特性,从末行开始逐层代入已知变量,最终求出所有解。此方法时间复杂度为 $O(n^3)$,其中消去过程时间复杂度为 $O(n^3)$,主要进行行消元,有三重循环,回代过程时间复杂度为 $O(n^2)$,主要进行逆向求和,有两重循环。

```
1 // 消去过程
g for (int k = 0; k < n; k++) {</pre>
   for (int i = k + 1; i < n; i++) {
   double factor = A[ i ][k] / A[k][k];
   for (int j = k + 1; j < n; ++j) {
   A[i][j] -= factor * A[k][j];
  b[ i ] -= factor * b[k];
  }
11 // 回代过程
x[n-1] = b[n-1] / A[n-1][n-1];
   for (int i = n - 2; i >= 0; i--) {
double sum = b[ i ];
  for (int j = i + 1; j < n; j++) {
   sum -= A[ i ][ j ] * x[j ];
17
  x[i] = sum / A[i][i];
```

3 实验介绍

高斯消元作为一种经典的线性方程组求解方法,其核心包括主元选取、逐行消元和回代求解等步骤。该算法计算复杂度为 $O(n^3)$,在处理大规模稠密矩阵时常成为性能瓶颈。为提升其计算效率,本实验采用基于 CUDA 的 GPU 并行编程方法,对高斯消元算法进行加速优化。

CUDA (Compute Unified Device Architecture) 是 NVIDIA 提出的通用并行计算平台和编程模型,允许开发者使用 C/C++ 等语言编写可在 GPU 上并行执行的程序。与传统 CPU 串行执行模式不同,GPU 拥有数千个轻量级线程,可同时处理大量数据,特别适合高斯消元这类具有大量重复数值计算和可并行操作的任务。

本实验的平台是北京超算平台, GPU 型号是 NVIDIA T4, 环境是 GT-Ubuntu22.04-CMD-V3.0。

本实验的目标是完成高斯消元的 CUDA 加速实现,并对任务分配策略、 线程块数量和线程块大小等参数进行实验设计和性能评估。通过分析不同 并行粒度下的执行效率,探索优化内存访问模式与线程调度策略对整体性 能的影响。

CUDA 编程模型的主要特点包括:

- 大规模并行性:支持成千上万线程并发运行,显著加速数据密集型任务;
- 层次化线程结构:采用线程块(Block)与线程网格(Grid)结构,支持灵活的任务划分;
- 多级内存层次:提供全局内存、共享内存、寄存器等多种存储资源,适合进行显存优化;
- 高吞吐量计算:适用于矩阵运算、图像处理、物理仿真等高性能计算场景。

4 GPU 设计实现

首先,在主机端初始化系数矩阵 A 与常数列向量 b,采用一维数组表示二维矩阵结构,以便在 GPU 中进行线性化访问。随后使用 CUDA 的 cudaMalloc 与 cudaMemcpy 接口将数据拷贝到设备端显存中。

核心计算部分采用了每个线程块 Block 负责矩阵中的一行,线程 Thread 负责该行中的不同列元素更新的任务分配方式。具体而言,核函数 division_kernel_row_col 中通过 blockIdx.x 确定当前 Block 对应的消元行号,通过 threadIdx.x 决定本线程更新的列元素。在核函数中,每个线程根据高斯消元的公式,对矩阵元素 A[i][j] 执行如下操作:

$$A_{ij} = A_{ij} - \frac{A_{ik}}{A_{kk}} * A_{kj}$$

该更新逻辑通过并行的列级线程并发执行,在共享内存冲突较少的情 形下可以有效提升吞吐量。

为了避免线程间的数据写冲突与冗余计算,线程块内部在更新常数列 b 与主元列 A[i][k] 时,仅由 threadIdx.x==0 的线程负责执行,从而实现对消元行的原子级更新。

在主程序中,使用 cudaEventRecord 实现 GPU 代码段的运行时间测量,确保性能评估的准确性。所有消元步完成后,将结果从设备端拷贝回主机端,并使用 CPU 完成反向替代(回代)过程以得到最终解向量 x。

5 对比分析方向

通过不同问题规模(2 的整数次方)下的程序执行时间以及加速比进行 不同优化策略的对比分析:

- 1. 串行算法与 GPU 并行算法对比分析
- 2. 不同任务划分方式对比分析
- 3. 不同线程块数/线程块大小对性能的影响
- 4. 其他探索与分析

6 实验结果分析

6.1 串行算法与 GPU 并行算法对比分析

在不同问题规模下,对串行与 GPU (blocksize=256) 高斯消元执行时间与加速比进行分析。

这里的 GPU 高斯消元算法采用的是策略 B, 具体在"不同任务划分方式对比分析"部分进行介绍。

表 1: 串行时间与 GPU 时间对比及加速比

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
问题规模 n	串行时间 (ms)	GPU 时间 (ms)	加速比		
32	0.040	0.291072	0.1374		
64	0.325	0.597056	0.5443		
128	2.188	3.3792	0.6475		
256	15.568	5.2239	2.9800		
512	140.059	17.1272	8.1776		
1024	1139.062	50.1558	22.7100		
2048	9196.672	172.323	53.3688		
4096	68115.675	644.931	105.617		
8192	537561.435	2394.45	224.500		

首先,在问题规模较小时 (n=32 128), GPU 算法的性能明显不如串行算法。此时加速比远小于 1。这主要归因于 GPU 的内核启动开销、主机与设备之间的数据拷贝延迟、线程同步与资源调度等额外开销在小问题规模下难以被摊薄,导致总体性能低于串行算法。随着问题规模增大 (n 256), GPU 算法开始展现其强大的并行计算能力。加速比逐渐超过 1,并且不断增大,当 n=8192 时,甚至达到约 224.5 倍的加速比。这一趋势充分体现了

GPU 在处理大规模数据并行任务方面的高效性和可扩展性。

上述现象的本质原因在于,高斯消元算法中的行操作在消元过程中可以高度并行化,而 GPU 正适合这样的结构化数据并行任务。同时,GPU 的高吞吐量内存访问机制、多核 SM 单元架构以及 SIMT 执行模型也极大地加速了矩阵计算。因此,综合分析可以得到以下结论:

- 1. GPU 并行算法在大规模计算问题中具有显著优势, 能提供数量级的性能提升。
- 2. 对于小规模问题, 串行算法更具优势, 因为 GPU 的调度与内存开销 在此时难以抵消。
- 3. 加速比的提升依赖于问题规模和算法的并行度,高效的线程调度、合适的线程块设计与内存访问策略是优化 GPU 程序性能的关键。

6.2 不同任务划分方式对比分析

在基于 CUDA 的高斯消元算法中,任务分配策略直接影响程序的并行效率和资源利用率。本实验主要实现并比较了两种典型的任务分配方式:

- 第一种为策略 A,即每个线程独立负责矩阵中从第 k+1 行起的一整行的消元操作。该策略通过将线程一一映射到待处理的行上,利用线程独立性并行执行各行的更新。然而,该方法存在较明显的资源利用缺陷:由于线程只处理完整的行,而一个 block 内部线程之间没有进行细粒度的任务协调,部分线程可能处于空闲状态,从而导致 warp 内的执行单元浪费。此外,该策略在面对列数较多的矩阵时,无法充分利用 GPU 的并行线程能力。
- 第二种为策略 B, 采用更细粒度的任务分配方式,即每个 block 负责处理一行,而该 block 内的每个线程则负责该行中不同的列元素更新。该方法通过将一行的多个元素分配给多个线程,并在 block 内部进行同步,从而更充分地发挥 GPU 的并行计算能力。由于 block 对应一行, thread 对应一列,相比策略 A,策略 B 更适用于列数较多的大规模矩阵计算,能够有效避免线程空转,提高资源利用效率。

下面是策略 A 和策略 B 在线程块数量为 256 时的实验数据:

表 2: 串行与策略 A 和 B 的执行时间与加速比对比

问题规模	串行时间 (ms)	A 时间 (ms)	A 加速比	B 时间 (ms)	B 加速比
32	0.04	0.347328	0.1152	0.291072	0.1374
64	0.325	0.892032	0.3645	0.597056	0.5443
128	2.188	4.92394	0.4445	3.3792	0.6475
256	15.568	26.6504	0.5843	5.2239	2.9800
512	140.059	133.426	1.0497	17.1272	8.1776
1024	1139.062	571.8	1.9917	50.1558	22.710
2048	9196.672	2902.44	3.1683	172.323	53.3688
4096	68115.675	16773	4.0636	644.931	105.617
8192	537561.435	116790	4.6016	2394.45	224.5

加速比以及加速比对比折线图如下:

- 在问题规模较小时(n 128),两种策略的加速比均明显低于 1,GPU 算法性能比串行算法要差。这种现象并不意外,GPU 并行计算存在显 著的初始开销,包括核函数的调用开销、主机与设备间的数据拷贝时 间、线程创建与调度延迟等。这些固定成本在小规模计算中占比很大, 难以通过计算量来摊薄,从而导致整体执行时间反而高于 CPU 串行 算法。
- 随着问题规模逐渐增大 (n 256), GPU 的并行计算能力开始显现,两种策略的加速比都在逐步上升,特别是策略 B,加速比迅速提升。策略 B 在 n=8192 时达到加速比 224.5×,而策略 A 同期加速比仅为 4.60×。两者性能差异在数量级上拉开了显著差距,这直接反映了任务划分策略对 GPU 性能发挥的决定性作用。
- 策略 A 将每个线程映射为一个完整的行操作,由于矩阵大小为 n×n, 线程数量最多为 n,远低于 GPU 能承载的并行线程上限。同时,由于 每行涉及 n-k 个元素的逐列更新操作,在缺乏线程内并发的情况下, 大量的算术运算和访存任务都压在单线程内,容易形成指令瓶颈。此 外,线程之间没有任何通信与协作,warp 级资源调度形同虚设,造成 部分硬件资源空闲。

- 策略 B 通过更细粒度的任务划分,提升了线程级并行度。在该策略中,每个 Block 负责一行内的消元操作,Block 内各线程并行处理该行的不同列,使得并发线程总数提升至 O(n²)量级,更贴近 GPU 架构的最佳负载区间。与此同时,线程之间可以共享中间变量、避免冗余计算,并结合共享内存优化访存延迟,大幅度减少全局内存访问次数,提升了内存带宽利用率。
- 策略 B 对内存访问模式进行了有效对齐:由于列内线程连续读取数组元素,能够实现 memorycoalescing (内存合并访问)访问模式,大大降低访存延迟。而策略 A 中线程独立访问每行各列的数据,往往不连续,造成非对齐访存甚至 bankconflict (内存银行冲突),严重影响吞吐率。
- 此外,在执行效率方面,策略 B 能更好地利用 SIMD 结构特性,借助统一指令调度多个线程执行相似操作,在大规模矩阵操作中展现出极高的浮点运算效率。而策略 A 由于线程独立运行、无协作、操作指令复杂性更高,难以充分发挥 SIMD 架构的指令并行优势。
- 从可扩展性角度看,策略 B 的设计思路能自然适配任意矩阵大小,不 依赖矩阵的具体维度对线程数进行硬编码配置,具备更强的通用性。而 策略 A 的线程分布与行数高度耦合,扩展至更大问题规模时需要手动 调整线程数和 Grid 划分策略,维护复杂性更高。

综上所述,策略 B 凭借其合理的线程分工与高效的内存访问模式,展现出远优于策略 A 的性能表现。特别是在大规模矩阵计算场景下,其加速比的快速增长清晰反映了并行度、指令调度、内存优化等方面协同带来的巨大性能优势。除此之外,也通过实验分析充分说明了在 GPU 编程中,任务划分策略的设计质量往往决定了算法性能的上限。

6.3 不同线程块数/线程块大小对性能的影响

blocksize 是 CUDA 编程中控制线程调度粒度与资源分配效率的关键参数,不同的设置直接影响着线程活跃度、寄存器与共享内存分配,以及线程块在多个 StreamingMultiprocessor 上的并发调度能力。为探究不同线程块数/线程块大小配置对 GPU 性能的影响,我在保持线程总数覆盖问题规模所需的前提下,测试了策略 B 在 blocksize 为 64、128、256、512 和 1024

时的执行时间。每组实验通过调整线程块大小(blockDim.x)并配合合理数量的线程块(gridDim.x)共同完成高斯消元任务,从而评估粒度划分对并行性能的影响。

表 3: 串行与策略 A 和 B 的执行时间与加速比对比

<u> </u>					
问题规模	串行时间 (ms)	A 时间 (ms)	A 加速比	B 时间 (ms)	B 加速比
32	0.04	0.347328	0.1152	0.291072	0.1374
64	0.325	0.892032	0.3645	0.597056	0.5443
128	2.188	4.92394	0.4445	3.3792	0.6475
256	15.568	26.6504	0.5843	5.2239	2.9800
512	140.059	133.426	1.0497	17.1272	8.1776
1024	1139.062	571.8	1.9917	50.1558	22.710
2048	9196.672	2902.44	3.1683	172.323	53.3688
4096	68115.675	16773	4.0636	644.931	105.617
8192	537561.435	116790	4.6016	2394.45	224.5

- 小规模问题下难以显现并行优势:当问题规模较小(n 128)时,所有 blocksize 设置的加速比均未超过 1,甚至部分情况下运行时间明显高 于串行程序。与前两部分的分析相同,这一现象源于 GPU 的并行机 制启动需要额外的代价。
- 中等规模开始出现分化趋势: 从 n=256 起, 各 blocksize 参数间性能 差异开始显现。blocksize=64 和 128 的表现稳定,并开始逐步超越串 行程序,体现出并行优势,而更大的 blocksize 设置尚未显著提升性能。 这表明合理的线程块配置能更早发挥 GPU 并行的潜力。
- blocksize=64 拥有最优可扩展性: 当问题规模进一步增大至 n=8192, blocksize=64 获得了最高的加速比 (超过 660×), 远超其他参数。这种表现归因于更小的 blocksize 能划分出更多 block, 使得 GPU 的 SM 数量得以更充分利用,同时也提升了线程调度灵活性。每个 block 内线程数量少,有利于 warp 组织与共享内存合理分配,减少线程间的依赖与空转。
- blocksize 过大导致资源利用率下降: 当 blocksize 增加至 512 或 1024 时,程序性能显著下降。这是因为每个 block 中线程数过多,线程块总数变少,限制了在多个 SM 上的并发调度数量。此外,大 blocksize配置可能导致共享内存不足、寄存器压力升高,从而引发资源争用与频繁溢出到全局内存,进一步降低吞吐率。
- blocksize=64 和 128 的稳定性与鲁棒性更强:这两种设置在从中小到

大规模的全阶段中都表现出了较强的可扩展性和稳定的性能优势,在 当前的高斯消元场景下,能够提供更好的并行度与资源利用的平衡点。 其中 blocksize=64 综合性能最优,并行效率最高,在部分问题规模下 实现超过 660× 的加速,并且我相信随着问题规模继续增大,加速幅 度还会进一步提升。

综上所述,线程块大小的设置对 GPU 程序的加速效果具有相当关键的作用。合理设置 blocksize,不仅要考虑线程数量和并行度,还需兼顾 GPU 硬件资源(如 SM 数量、共享内存容量、寄存器数)的限制和调度机制。较小的 blocksize 更能发挥 GPU 架构的优势,提高并发调度效率,适配高斯消元这类高内存访问、结构规律明确的线性代数运算,从而获得显著的性能提升。

6.4 其他探索

在完成策略 B 的基础上,我进一步尝试了两种不同的优化方向,希望在保持并行度的同时进一步压缩内存访问开销与同步成本。然而,实验发现这些优化策略的性能表现反而不如未优化前的策略 B,现分析如下:

6.4.1 策略一: 共享内存与寄存器重构

- 1. 优化点 1: Aik 与 Akk 的寄存器缓存。原始策略中每个线程都需要访问一次 Aik 和 Akk,这属于全局内存的重复访问,效率较低。通过将这些值缓存到寄存器中,并通过线程内变量进行共享,可避免重复访问,提高访问速度。
- 2. 优化点 2: Akj 缓存到共享内存。第 k 行的各列数据会被多个线程访问,通过将其缓存到共享内存,可大幅减少对全局内存的带宽需求。
- 3. 优化点 3: 使用 ___restrict___ 和 const 关键字。这类语义提示可帮助编译器更积极地进行加载优化与指令重排,在理论上能提高运行效率。

尽管上述优化理论上能减少冗余访存、加速访问路径,但实验中发现:

1. 同步开销上升:由于共享内存的数据由多个线程协同加载并使用,且 每一轮消元都需要 barrier 同步,频繁同步操作抵消了访存带宽优化带 来的收益,尤其在列数较大(宽矩阵)的情况下更明显。

- 2. 共享内存压力增加:在问题规模增大时,第 k 行需要缓存的元素数量成倍增长,可能导致共享内存容量受限,甚至引发 bankconflict 或fallback 到慢速全局内存。
- 3. 优化收益不足以抵消代价:线程间合作带来的调度和寄存器竞争,以及 GPU 编译器在复杂指令路径下可能无法完全完成访存重排,使得实际收益远低于预期。

6.4.2 策略二: 更实用的策略——每线程处理整行

该策略将每个线程负责一整行的更新工作,意图规避共享内存与线程 同步问题:

- 1. 每个线程独立处理整行,完全避免线程间同步。
- 2. 内存访问按行进行, 具有良好的 coalesced 访问模式。
- 3. 不依赖共享内存,避免 bankconflict 和容量限制。 然而该策略在大规模矩阵上的性能表现仍低于策略 B, 原因包括:
- 线程分布不均
- 线程数量有限
- 指令压力大

综上所述,两种优化策略虽然理论上能减少冗余访存与同步,但实际上引入了线程协同与资源竞争等新的瓶颈,无法达到策略 B 中高并发、负载均衡的优势。

7 总结反思

本实验围绕高斯消元算法的 CUDA 并行化实现展开,通过对串行版本与多种 GPU 策略的对比分析,深入理解了并行编程中的任务划分、线程调度与内存优化等核心要素对程序性能的深刻影响。

首先,从串行算法到 GPU 并行算法的迁移过程中,尽管 GPU 在初期小规模问题上存在较高的调度和通信开销,导致整体性能不如串行版本,但随着问题规模的扩大,GPU 展现出强大的并行计算能力和显著的加速效果,

尤其在 n = 8192 时实现超过 $200 \times$ 的加速比。这验证了 GPU 对于大规模、结构规律性强的数值计算任务具有天然优势。

其次,通过对比策略 A 与策略 B,可以明显看出任务划分的粒度对性能的决定性作用。策略 B 采用了更细粒度的任务分配方式,有效提升了线程活跃度和资源利用率,在内存访问模式、线程协同和负载均衡方面均优于策略 A,是更适合 GPU 架构的实现方式。实验数据也充分表明,优秀的任务划分策略能够将 GPU 的潜力发挥到极致。

在线程块大小的选择上,实验发现较小的 blocksize (如 64) 具有更好的可扩展性和更高的并发度,能更充分利用 GPU 的多核资源和调度机制,从而获得更优的性能表现。与此同时,过大的 blocksize 反而会引发资源竞争、线程调度不灵活等问题,导致性能下降。

最后,尽管尝试了一些进一步的优化(如共享内存与寄存器重构、避免 线程间同步等),但实际结果表明优化策略的效果高度依赖于实现细节与资 源配置。不合理的优化反而可能引入新的瓶颈,如同步开销增加、共享内存 溢出等,提醒我们并行程序优化应慎重权衡成本与收益,避免过度设计。

总体而言,本实验不仅完成了高斯消元算法的 GPU 并行加速实现,还通过丰富的对比实验和详实的数据分析,深入理解了 CUDA 编程模型中影响性能的关键因素,如线程划分策略、内存访问模式、block 配置与同步机制等。通过实践,我对 GPU 的体系结构与编程模式有了更加直观而深入的认识,也意识到性能优化是一项系统性工程,需从算法层面与硬件资源匹配的角度共同设计。未来若能结合稀疏矩阵优化、动态线程调度等技术,相信在更广泛的线性代数场景中仍有巨大性能提升空间。