Speech Recognition에 필요한 Audio 기초

조희철

2020년 10월 11일

♠ bit rate & sampling rate

- 파일 크기(byte): (재생시간) x (bit rate) / 8
- 여기서 bit rate(비트전송률)는 초당 얼마나 많은 data를 가지고 있는지를 의미한다. 예를 들어, CD audio 는 2-channel, 16 bit(Quantization, bit depth), sampling rate(44100)
- audio file의 비트전송률은 (Windows 10) 파일 속성에서 확인할 수 있다.

$$16 \times 2 \times 44100 = 1,411,200$$
 bit

• sampling rate: 1초에 들어 있는 data 수.

```
import sox # sox.exe를 설치후, pip install sox --> https://sourceforge.net/projects/sox/
sox.file_info.sample_rate(audio_filename)
sox.file_info.bitdepth(audio_filename)
sox.file_info.bitrate(audio_filename) # '352k'를 float로 변환하는 과정에 bug가 있다.
```

♠ Discrete Fourier Transforms

그림 1: Sound(음파)는 단순 Sine 파의 결합으로 볼 수 있다. 이 결합된 음파가 어떤 단순파의 결합으로 만들어진 것인지 분석할 수 있게 해주는 것이 Fourier Transform이다. 이런 과정을 time domain(음파)를 frequency domain으로 변환한다고 한다. 그림에서는 각기 다른 주파수의 sine 파가 5: 3: 2로 결합된 음파를 보여주고 있다. Fourier Transform을 통해 어떤 주파수의 성분이 얼마나 결합되어 있는지 알아낼 수 있다. 이산적인 data를 다루어야 하기 때문에, Discrete Fourier Transform을 사용한다.

- Fourier Transform: 음파와 같은 시간에 대한 신호(함수)를 주파수 성분으로 분해할 수 있게 해준다. 주어진 신호를 (서로 다른 주기를 가진) 주기함수들의 결합으로 분해한다. 여기서 사용되는 주가함수는 복소 주기 함수 $(\{e^{-2\pi ik}\})$ 들이다.
- Discrete Fourier Transform(DFT): 컴퓨터에서 처리할 수 있는 data는 이산적이다. 이 이산적인 data에 Fourier Transform을 적용하는 것을 Discrete Fourier Transform이라 한다.
- FFT(Fast Fourier Transform): DTF을 좀 더 효율적으로 계산할 수 있게 해주는 알고리즘이다.
- STFT(Short Time Fourier Transform): 우리가 다루어야 하는 음성이나 음악은 하나의 발음이나 음이 계속되는 것이 아니다. 시간에 따라 변한다. 그렇게 때문에 음파를 시간단위로 나누어서 각각에 Fourier Transform을 적용하는 것을 STFT라 한다. 자르는 단위를 (frame-length 또는 window-length)라 한다. 그리고 자를때 겹치지 않게 자르지 않고, data의 손실을 막기 위해 겹치는 방식(overlap)으로 자른다. frame을 이동시키는 간격을 hop-length라 한다. 당연히, hop-length는 frame-length보다 작아야 frame이 겹치게 된다.
- DTF의 결과로 복수소로 이루어진 벡터가 생성되는데, 복소수를 다루기 어렵기 때문에 절대값이나 절대값의 제곱을 취한다. 절대값 취한 것을 magnitude spectrogram, 절대값의 제곱한 것을 power spectrogram 이라 부른다.

```
N = 400; T = 1.0 / 800.0
x = np.linspace(0.0, N*T, N)
y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)
yf = np.fft.fft(y) #shape: (400,) complex numbers
```


그림 2: DTF: FFT의 absolute 값의 그래프. Nyquist critical frequency 1 에 의해 $-\frac{1}{2T}\sim\frac{1}{2T}$ 의 주파수 영역이 구해지고, 양의 주파수/음의 주파수에 대한 값이 conjugate가 된다. 대칭적인 결과가 redundant 하므로, STFT에서는 절반 크기의 output을 만들어 낸다.

```
scale, sr = librosa.load(scale_file)
n_fft = 100
fft = np.fft.fft(scale,n=n_fft) # (100,)
rfft = np.fft.rfft(scale,n=n_fft) # (51,)
print(np.allclose(fft[:n_fft//2+1],rfft)) # True
```

```
N = 5
signal = np.random.rand(N)
fft = np.fft.fft(signal)
```

 $^{^1}$ sampling time이 T일 때, $\frac{1}{2T}$ 이상의 주파수는 측정할 수 없다(aliasing-디지털 신호 처리 과정에서 발생하는 노이즈).

그림 3: fft vs rfft: rfft는 대청적인 부분을 고려해서 계산량을 줄인다. librosa.stft는 애초에 절반만 return한다.

```
result = []
for k in range(N):
    temp = 0
    for m in range(N):
        temp += signal[m]*np.exp(-2*np.pi*1j*m*k/N)
    result.append(temp)
```


그림 4: FFT의 결과: 첫번째 값은 data의 합이 되고, 그 이후의 값들은 서로 대칭적인 conjugate관계이다. librosa의 stft에서는 hann window 를 적용하기 때문에, numpy에서의 fft 결과와는 다르다. 참고로, python에서는 수학에서의 허수단위 $i=\sqrt{-1}$ 를 j로 표시한다.

♠ 소리의 요소들

- Intensity(I): 단위 면적당 에너지를 뜻한다. amplitude(A)의 제곱에 비례한다. $I \propto A^2$
- Threshold of hearing(TOH): $10^{-12}W/m^2$
- Decibel: TOH를 기준으로 log 값을 취한 것

$$dB(I) = 10 \times \log_{10} \left(\frac{I}{I_{TOH}}\right)$$

- Timbre: Color of sound, Difference between two sounds with same intensity, frequency, duration.
- 배음(Overtone): An overtone is any frequency greater than the fundamental frequency of a sound. Using the model of Fourier analysis, the fundamental and the overtones together are called **partials**.

Amplitude and intensity		\bigwedge	\bigwedge	intensity
	amplitude			Time

Source	Intensity	Intensity level	× ТОН
Threshold of hearing (TOH)	10-12	0 dB	1
Whisper	10-10	20 dB	10 ²
Pianissimo	10-8	40 dB	10 ⁴
Normal conversation	10-6	60 dB	10 ⁶
Fortissimo	10-2	100 dB	10 ¹⁰
Threshold of pain	10	130 dB	10 ¹³
Jet take-off	10 ²	140 dB	10 ¹⁴
Instant perforation of eardrum	10 ⁴	160 dB	10 ¹⁶

Table 1.1 from [Müller, FMP, Springer 2015]

그림 5: intensity는 amplitude의 제곱에 비례한다.

Harmonics, or more precisely, harmonic partials, are partials whose frequencies are numerical integer multiples of the fundamental (including the fundamental, which is 1 times itself). 이 배음들이 어떻게 결합되어지는가에 따라 음색이나 악기 고유의 소리가 결정된다.

그림 6: 배음(overtone) 구조: fundamental frequency로 256이 보이고, 이것의 정수배에 해당하는 주파수들도 보인다.

• Formant: 음성학에서 인간 성대의 공명에서 발생하는 스텍트럼의 local maximum을 말한다.

그림 7: Formant: local maximum을 왼쪽 부터 first formant frequency(F1), second formant frequency(F1), ... 로 부른다. formant frequency간의 간격이 중요하다. 이 간격(어떤 의미에서 주기)를 잘 파악하는 것이 MFCC이다. 여기서 y축의 Amplitude는 중요하지 않다.

• Additive Synthesis²: Additive synthesis is a sound synthesis technique that creates timbre by adding sine waves together.

• waveform 비교:

그림 8: waveform 비교: 위에서 부터 클래식음악, 락, 째즈.

- Time-domain audio Features: 아래의 Feature들은 전통적인 Machine Learning 분야에서 활용되었으나, 딥러닝이 활성화되면서 중요성이 낮아졌다.
 - Amplitude envelope: 각 frame의 최대값을 모아 놓은 것.
 - RMS(Root Mean Square Energy): 각 frame에서 제곱값의 평균에 root를 취한 값. 각각의 frame마다 계산된다. 직접 계산할 수도 있고, librosa.feature.rms를 이용해도 된다.
 - Zero Crossing Rate: Number of times a signal crosses the horizontal axis.
 librosa.feature.zero_crossing_rate

♠ Mel Filter Bank

•
$$m = 2595 \log_{10}(1 + \frac{f}{700})$$

²https://teropa.info/harmonics-explorer/

그림 9: mel filter bank(mel basis matrix) 생성 과정: 4 번째 과정에서 선택된 주파수는 끝점 포함해서 (n_mfcc+2) 개이고, array index 는 0 부터 NFFT/2까지 있다. 따라서 $0,1,2,\cdots$, NFFT/2 중에서 (n_mfcc+2) 개 만큼의 index 만 선택된다. index 중에서 선택된 곳에서는 0 또는 1의 값을 가지게 하고, 그 외의 index들에 대한 값은 (Λ) 모양의 직선상에 있게 값을 잡아 줄 수 있다. 그리고, 처음에 최대 주파수를 지정해 주어야 되는데, default로 sampling-rate의 절반을 사용한다. 주파수는 상대적인 것이기 때문에 critical한 것은 아니다.

그림 10: mel filter bank

그림 11: librosa.filters.mel: 왼쪽 norm=1(default)로 하면, band의 폭(삼각형의 밑변 길이)으로 값을 나누어준다. 이 경우는 filter weight 의 합이 동일하다. 즉 각 column합이 일정하다.

오른쪽: norm=None. normalization이 되지 않았기 때문에, mel spectrogram을 구하면 값이 크다.

♠ MFCC

- MFCC(Mel Frequency Cepstral Coefficients)는 Spectrum of Spectrum 이라 할 수 있다. Frequency data에 다시 Discrete Cosine Transform(또는 Inverse DFT)을 적용하기 때문이다.
- Therefore, we can apply Discrete Cosine Transform (DCT) to decorrelate the filter bank coefficients and yield a compressed representation of the filter banks³.
- MFCC는 log mel-spectrogram을 Discrete Cosine Transform하면 된다. Typically, for Automatic Speech Recognition (ASR), the resulting cepstral coefficients 2-13 are retained and the rest are discarded; num_ceps = 12. The reasons for discarding the other coefficients is that they represent fast changes in the filter bank coefficients and these fine details don't contribute to Automatic Speech Recognition (ASR).
- log mel-spectrogram의 feature dimension 이 n 이면, DCT를 적용해도 n 차원이 된다. 이 중에서 앞 부분을 필요한 만큼 선택하면 된다. 첫번째 feature는 값(data의 합)이 너무 작아(음수), 다른 feature에 악영향을 주기 때문에 제거하는 경우도 있다.

그림 12: MFCC의 첫번째 featrue는 입력 data의 합이다(Fourier/Cosine Transform의 첫번째 값은 data의 합). 첫번째 feature 제거 전/후 비교. 왼쪽은 제일 아래쪽 라인의 값이 너무 작아서 다른 값들이 의미를 가지지 못하게 된다.

- 딥러닝이 활성화되기 이전의 머신러닝에서는 Feature의 선택이 중요했기 때문에, mel filter bank에 기인하여 나타나는 Feature 간의 상관관계를 줄이기 위해서 MFCC가 활용되었다. GMM 같은 모델에서는 이런 상관관계가 제거된 Feature가 유용하게 활용된다.
- 딥러닝이 출현한 이후에는 Feature 간의 비선형 관계를 제거해 버리는 MFCC의 중요성이 낮아졌다.
- MFCC의 장점:
 - spectrum의 디테일은 무시하고, 크게 보는 feature.
 - 배음 구조를 잘 파악한다.
 - 음정(pitch)의 차이는 무시한다. 음정을 무시해도 되는 task에 적합하다. 악보를 그리는 것과 같은 task에는 적합하지 않다.
 - formant⁴ 구조를 잘 파악한다.
- MFCC의 단점:
 - noise에 약하다.
 - 음성합성에 적합하지 않다. 압축성이 강한 MFCC로 부터 audio를 생성하거나 복원하는 것이 어렵다.

 $^{^3}$ https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html

⁴https://en.wikipedia.org/wiki/Formant

♠ Preemphasis

• Pre-emphasis is a very simple signal processing method which increases the amplitude of high frequency bands and decrease the amplitudes of lower bands. In simple form it can be implemented as

$$y_t := x_t - \alpha x_{t-1}$$

- 고주파의 노이즈 제거에서 더욱 중요했는데, 요즘 speech recongnition에서는 불필요하다는 견해도 있다⁵.
- STFT를 적용하기 전 waveform에 적용하면 된다.

```
from scipy import signal
N = 5; k = 0.97
wav = np.random.rand(N)

result1 = signal.lfilter([1, -k], [1], wav)
result2 = wav - np.array([0,]+list(k*wav[:-1]))

print(np.allclose(result1,result2))
```

♠ Windowing Function

• Hann window: 각 프레임의 처음과 끝에서의 불연속을 최소화하기 위해, Hann window function을 곱해서 STFT를 구한다.

$$w(n) = 0.5 \left(1 - \cos\left(\frac{2\pi n}{M - 1}\right)\right), \quad 0 \le n \le M - 1$$

• time domain에서 곱해지는 Hann window function은 frequency domain에서의 convolution이 된다. 따라서 frequency를 filtering하는 효과가 있다.

• Hamm window:

$$w(n) = 0.54 - 0.46\cos\left(\frac{2\pi n}{M-1}\right), \quad 0 \le n \le M-1$$

 $^{^{5}}$ https://www.quora.com/Why-is-pre-emphasis-i-e-passing-the-speech-signal-through-a-first-order-high-pass-filter-required-i

♠ librosa API

- librosa.load: wav 파일 load. -1 ~ 1 사이 값.
- librosa.display.waveplot(y,sr,alpha=0.5): sample_rate을 넣어줌으로써, x축이 시간축으로 잘 보여진다. alpah는 선명도.
- librosa.display.specshow: 세로축(axis=0, 아래에서 위), 가로축(axis=1, 왼쪽에서 오른쪽).
 - x축: sample_rate, hop_length을 넣어줌으로써, x축이 시간축으로 잘 보여진다.
 (입력길이 * hop_length/sample_rate) = duration(time). x_axis='time'이 설정되어야 눈금이 표시된다.
 - y축:y_axis='log'로 설정하면, log scale로 보여진다. y축 값은 0 ~ 8000 정도의 값이 입력되는 data에 상관없이 표시된다. y_coords를 넣어주면 y축 눈금이 맞게 표시된다. 어째든 상대적인 위치를 본다고 하면, y_coords를 넣지 않아도 된다.
- librosa.power_to_db: Convert a power spectrogram (amplitude squared) to decibel (dB) units. 즉 제곱 한 것을 넣어야 한다.
- librosa.amplitude_to_db: Convert an amplitude spectrogram to dB-scaled spectrogram. This is equivalent to power_to_db(S**2), but is provided for convenience. 제곱하지 않은 것을 넣으면, 내부에서 제곱해 준다.
- librosa.core.magphase: Separate a complex-valued spectrogram D into its magnitude (S) and phase (P) components, so that D = S * P.
- amplitude vs magnitude: amplitude는 부호를 가진 vector이고, magnitude는 scalar 값이다.

그림 14: log spectrogram vs log mel-spectrogram: '도레미파솔라시도'가 두번 나오는 sound⁶에 대한 spectrogram. 배음 구조(fundamental frequency의 정수배)와 주파수가 올라가는 구조가 잘 보인다. 오른쪽의 mel spectrogram은 차원을 줄이면서도 spectrogram의 특징을 잘 반영하고 있다. MFCC는 더 압축되는 방식이라, 이런 특징이 시각적으로 잘 보이지 않는다.

 $^{^6}$ https://www.dropbox.com/s/3nmwun0s1dd25tw/scale.wav?dl=0

• librosa.feature.melspectrogram: waveform을 입력하면, magnitude spectrogram을 power(default=2)해서 mel filter bank를 곱한다.

```
# melspectrogram를 한번에 구하는 것과, mel filter bank를 거쳐서 구한 것의 결과가 동일하다.
scale, sr = librosa.load(wav_file) # sr=22050, (174943,)
mel_spectrogram = librosa.feature.melspectrogram(scale, sr=sr, n_fft=2048, hop_length=512, n_mels=10) # (10,342)

S_scale = librosa.stft(scale, n_fft=2048, hop_length=512) # (1025, 342)
filter_banks = librosa.filters.mel(n_fft=2048, sr=22050, n_mels=10) # mel matrix
mag_spectrogram = librosa.magphase(S_scale,power=2)[0] # (magnitude,phsase)[0]
mel_spectrogram2 = np.matmul(filter_banks,mag_spectrogram) # (10, 342)

print(np.allclose(mel_spectrogram,mel_spectrogram2)) # True
```

• librosa.feature.mfcc(y,n_mfcc=40): waveform을 mel-spectrogram으로 변환 후, mfcc를 만든다. 내부적으로는 librosa.filters.mel, librosa.feature.melspectrogram의 default parameter들이 사용된다.

```
# mfcc를 한번에 구하는 것과, melspectrogram을 거쳐서 구한 것의 결과가 동일하다.
n_mfcc = 20
mfcc = librosa.feature.mfcc(scale,n_mfcc=n_mfcc) # hop_length=512,n_fft=2048,
    n_mels(default=128) 크기로 생성후, 앞쪽
    return
mfcc_ = librosa.feature.mfcc(scale,n_mfcc=80,hop_length=512,n_fft=2048) # n_mels(default=128) ヨ
    기로 생성후, 앞쪽 80개 return
mel_spectrogram = librosa.feature.melspectrogram(scale, sr=sr) # default: n_fft=2048,
    hop_length=512, n_mels=128
log_mel_spectrogram = librosa.power_to_db(mel_spectrogram)
print('shape of log_mel_spectrogram: ', log_mel_spectrogram.shape)
mfcc2 = librosa.feature.mfcc(S=log_mel_spectrogram,n_mfcc=n_mfcc) # output shape, min(n_mels,
    n_mfcc)
print(mfcc.shape,mfcc2.shape)
print("2가지 mfcc 결과 비교: ", np.allclose(mfcc,mfcc2)) # True
mfcc3 = dct(log_mel_spectrogram, type=2, axis=0, norm='ortho')[1:n_mfcc, :]
print(mfcc3.shape)
print("직접 구한 결과와 비교: ", np.allclose(mfcc[1:],mfcc3)) # True
```

- librosa.feature.delta(mfcc, order=1, axis=-1): delta of mfcc, delta delta of mfcc를 구할 때 사용. 시간에 대한 미분이 필요하므로, axis=-1
- librosa.feature.chroma_stft: Chromagram은 소리를 octave에 상관없이 12음정에 mapping 시킨다.

그림 15: Chromagram: '도레미파솔라시도'의 chromagram. 왼쪽은 단순 sine파 합성이고, 오른쪽을 악기로 (2번 반복) 연주된 것이다.