Ch(12): Enantiomers

I- Asymmetric carbon and enantiomers

A carbon atom is said to be asymmetric when it is attached to <u>4 different</u> atoms or group of atoms.

An asymmetric carbon is represented by C*: T - C* - Y

A molecule is called chiral if it contains at least one asymmetric carbon(C*). Each chiral molecule has two isomers called enantiomers.

Each one of the isomers (A) and (B) is a mirror image to the other one but they have different chemical and physical properties, they are called enantiomers.

Examples of molecules containing asymmetric carbon (C*):

<u>II- Three dimensional representation of the enantiomers (Cram representation)</u>

Example: how to write the Cram representation of the two enantiomers of 2-butanol (consists of C*)?

The Cram representation of the two enantiomers is the following:

Application

For each of the following molecules, indicate the asymmetric carbon(C*) then write the Cram representation of the two enantiomers.

$$\begin{array}{c} \mathbf{B} \\ \mathbf{C_2H_5} & \mathbf{CH} & \mathbf{C} \\ \mathbf{CH_3} \end{array}$$

$$\begin{array}{c|c}
C & CH_3 \\
\parallel & \mid \\
CH_3 - C - O - CH - CH_2 - CH_3
\end{array}$$

