EE5609 Assignment 11

Abhishek Thakur

Abstract-This document solves problem based on solution of vector space.

Download all solutions from

https://github.com/abhishekt711/EE5609/tree/ master/Assignment 11

The matrix of T in the ordered basis $\{\alpha_2, \alpha_1\}$ is given as:

$$[\mathbf{T}_{\alpha}]_{\beta} = [\mathbf{T}]_{\beta}[\alpha]_{\beta} = \begin{pmatrix} -i & 1\\ 2 & i \end{pmatrix} \begin{pmatrix} -i & 1\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & -i\\ -2i & 2 \end{pmatrix}$$
(2.0.10)

1 Problem

Let T be the linear operator on \mathbb{C}^2 defined by $T(x_1, x_2) = (x_1, 0)$. Let β be the standard ordered basis for \mathbb{C}^2 and $\beta' = \{\alpha_1, \alpha_2\}$ be the ordered basis defined by $\alpha_1 = (1, i)$, $\alpha_2 = (-i, 2)$. What is the matrix of T in the ordered basis $\{\alpha_2, \alpha_1\}$?

2 Solution

Transformation T from \mathbb{C}^2 to \mathbb{C}^2 . Let

$$\mathbf{e_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{e_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{2.0.1}$$

$$\beta = \begin{pmatrix} \mathbf{e_1} & \mathbf{e_2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{2.0.2}$$

$$\beta' = \begin{pmatrix} \alpha_2 & \alpha_1 \end{pmatrix} = \begin{pmatrix} -i & 1\\ 2 & i \end{pmatrix} \tag{2.0.3}$$

T in the ordered basis β is:

$$[\mathbf{T}]_{\beta} = \begin{pmatrix} -i & 1\\ 2 & i \end{pmatrix} \tag{2.0.4}$$

T is defined by

$$T(\mathbf{x}) = \mathbf{A}\mathbf{x} \tag{2.0.5}$$

$$T(\mathbf{x}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x} \tag{2.0.6}$$

$$T(\alpha_2) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -i \\ 2 \end{pmatrix} = \begin{pmatrix} -i \\ 0 \end{pmatrix}$$
 (2.0.7)

$$T(\alpha_1) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{2.0.8}$$

$$[\alpha]_{\beta} = \begin{pmatrix} -i & 1\\ 0 & 0 \end{pmatrix} \tag{2.0.9}$$