EE 457 - Homework 4

Problem 1 The objective of this problem is to implement and evaluate the performance of several iterative algorithms for the Rosenbrock function

$$F(x) = \sum_{i=1}^{2} 100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2$$

with the initial condition $x^{(0)} = [3, -1, 0]^T$ and termination criteria $\|\nabla F(x)\| \le 0.01$.

- (i) Implement in MATLAB the conjugate gradient algorithm. Plot $x_1^{(k)}, x_2^{(k)}, x_3^{(k)}$ and $f(x^{(k)})$ vs k.
- (ii) Implement in MATLAB the rank one correction algorithm. Plot $x_1^{(k)}, x_2^{(k)}, x_3^{(k)}$ and $f(x^{(k)})$ vs k.
- (iii) Implement in MATLAB the DFP algorithm. Plot $x_1^{(k)}, x_2^{(k)}, x_3^{(k)}$ and $f(x^{(k)})$ vs k.
- (iv) Implement in MATLAB the BFGS algorithm. Plot $x_1^{(k)}, x_2^{(k)}, x_3^{(k)}$ and $f(x^{(k)})$ vs k.
- (v) Compare the results of the algorithms employed in (i)-(iv).

Problem 2 Write MATLAB programs to implement naive random search and simulated annealing. Use the neighborhood

$$N(x^{(k)}) = \{x : x_i^{(k)} - \alpha \le x_i \le x_i^{(k)} + \alpha\}$$

where $\alpha > 0$ is pre-specified, and pick $z^{(k)}$ to be uniformly distributed on $N(x^{(k)})$. Test both algorithms on minimizing the Rosenbrock function in Problem 1 for $\alpha = 0.001$ and $\alpha = 0.01$.

Problem 3 Consider the data for USD/TL parity given in Table 1. Let (t_i, y_i) represent the data points for i = 1, ..., 20. The objective is determine the best fitting line y = mt + c to minimize

$$f(m,c) = \frac{1}{2} \sum_{i=1}^{N} (mt_i + c - y_i)^2$$
 (0.1)

(i) Implement in MATLAB the recursive least squares algorithm starting with the initial two data points and using two weeks data at each iteration. Plot $m^{(k)}$, $c^{(k)}$ and $f(m^{(k)}, c^{(k)})$ vs k.

Table 1: USD/TL data

Date	USD/TL
08-05-2015	2.69670
15-05-2015	2.66766
22-05-2015	2.58348
29-05-2015	2.62418
05-06-2015	2.67750
12-06-2015	2.73102
19-06-2015	2.72662
26-06-2015	2.68096
03-07-2015	2.68090
10-07-2015	2.68424
17-07-2015	2.64755
24-07-2015	2.68472
31-07-2015	2.75736
07-08-2015	2.77880
14-08-2015	2.77856
21-08-2015	2.88432
28-08-2015	2.92674
04-09-2015	2.92866
11-09-2015	3.01290
18-09-2015	3.03274

(ii) Implement in MATLAB the least squares solution using all data points. Compare the results obtained with those in (i).

Problem 4 Consider the measurement data given in Table 2 where (t_i, y_i) represent the data points for i = 1, ..., 21. The objective is determine the best fitting sine curve $y = A \sin(\omega t + \phi)$ to minimize

$$\sum_{i=1}^{21} (y_i - A\sin(\omega t_i + \phi))^2$$
 (0.2)

- (i) Implement in MATLAB the Gauss-Newton algorithm to determine the sinusoid of best fit.
- (ii) Implement in MATLAB the Levenberg-Marquardt algorithm to determine the sinusoid of best fit. Compare the result with the one in (i).

Important!

• For submission of your homework, use Moodle system to upload all of your MATLAB codes and reports in a single compressed file including your name and homework number. Also make sure each file in the compressed one is named using your fullname and question number (i.e. FirstName_LastNameEE457hw4Qx.m).

Table 2: Measurement data

y _i
0.9783
1.4617
2.0580
2.0265
2.2238
1.5446
1.0970
0.2566
-0.5050
-0.8899
-1.5676
-2.1563
-1.9748
-2.2858
-1.6735
-1.0813
-0.1376
0.6637
1.0799
1.7931
2.1022

• Academic dishonesty will not be tolerated.