

Description

The device is CMOS Dynamic RAM organized as 1,048,576 words \times 16 bits with extended data out access mode. It is fabricated with an advanced submicron CMOS technology and designed to operate from a single 5V only or 3.3V only power supply. Low voltage operation is more suitable to be used on battery backup, portable electronic application. A new refresh feature called "self-refresh" is supported and very slow CBR cycles are being performed. It is packaged in JEDEC standard 42-pin plastic SOJ or 50/44-pin plastic TSOP(II).

Features

- Single 5V (\pm 10%) or 3.3V (\pm 10%) only power supply
- High speed t_{RAC} access time: 60/70 ns
- · Low power dissipation
 - Active mode: 5V version 990/935 mW (Max.)
 - 3.3V version 648/612 mW (Max.)
 - Standby mode: 5V version 5.5mW(Max.)
 - 3.3V version 1.8mW(Max.)
- · Extended-data-out (EDO) page mode access
- · I/O level: TTL compatible (Vcc=5V)
 - LVTTL compatible (Vcc=3.3V)
- · 1024 refresh cycles in 16 ms(Std.) or 128ms(S-version)
- · 2 CAS byte control
- · 4 refresh modes:
 - RAS only refresh
 - CAS before- RAS refresh
 - Hidden refresh
 - Self-refresh (S-version)

Pin Configuration

50/44-Pin Plastic TSOP(II)(Normal Pinouts)

Pin Description

Pin Name	Function	
A0-A9	Address inputs	
	- Row address	A0-A9
	- Column address	A0-A9
	- Refresh address	A0-A9
DQ1~DQ16	Data-in/data-out	
RAS	Row address strobe)
UCAS , LCAS	Column address str	obe
WE	Write enable	
ŌE	Output enable	
V _{cc}	Power (+5V or +3.3	V)
V _{SS}	Ground	

Block Diagram

Truth Table

							ADDRE	SSES		
FUNCTION	NC	RAS	LCAS	UCAS	WE	ŌĒ	ROW	COL	DQ _s	Notes
STANDBY		Н	H→X	H→X	Х	Х	Х	Х	High-Z	
READ : WORD		L	L	L	Н	L	ROW	COL	Data-Out	
READ : LOWER	RBYTE	L	L	H	Н	L	ROW	COL	Lower Byte:Data-Out Upper Byte:High-Z	
READ : UPPER	BYTE	L	Н	L	H.	L	ROW	COL	Lower Byte:High-Z Upper Byte:Data Out	
WRITE : WORD (EARLY WRITE		L	L	L	L	X	ROW	COL	Data-In	
WRITE : LOWE BYTE(EARLY)	R	L	L	Н	r	X	ROW	COL	Lower byte:Data-In Upper Byte:High-Z	
WRITE : UPPEI BYTE(EARLY)	R	L	Н	· L	L	X	ROW	COL	Lower byte:High-Z Upper Byte:Data-In	
READ WRITE		L	L	L	H→L	L→H	ROW	COL	Data-Out,Data-in	1,2
EDO-PAGE-	1st Cycle	L	H→L	H→L	Н	L	ROW	COL	Data-Out	2
MODE READ	2nd Cycle	L	H→L	H→L	Н	L	n/a	COL	Data-Out	2
EDO-PAGE-	1st Cycle	L	H→L	H→L	L	Х	ROW	COL	Data-In	1
MODE WRITE	2nd Cycle	L	H⊸Ŀ	.H-→L	L	X	n/a	COL	Data-in	1
EDO-PAGE-	1st Cycle	L	H→L	H→L	± +	L→H	ROW	COL	Data-Out,Data-In	1,2
MODE READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Data-Out,Data-In	1,2
HIDDEN	READ	L→H→L	L	L	Н	L	ROW	COL	Data-Out	2
REFRESH	WRITE	L→H→L	L	L	L	Х	ROW	COL	Data-In	1,3
RAS ONLY RE	FRESH	L	Н	Н	Х	Х	ROW	n/a	High-Z	<u> </u>
CBR REFRESH		H→L	L	L	Х	Х	Х	Х	High-Z	4

Notes:

- 1. These WRITE cycles may also be BYTE WRITE cycles (either LCAS or UCAS active).
- 2. These READ cycles may also be BYTE READ cycles (either LCAS or UCAS active).
- 3. EARLY WRITE only.
- 4. At least one of the two CAS signals must be active (LCAS or UCAS).

Absolute Maximum Ratings

Parameter		Symbol	Value	Unit
Voltage on any pin relative to Vss	5V 3.3V	VT	-1.0 to +7.0 -0.5 to +4.6	V
Supply voltage relative to Vss	5V 3.3V	V _{cc}	-1.0 to +7.0 -0.5 to +4.6	V
Short circuit output current		lout	50	mA
Power dissipation	- "	PD	1.0	W
Operating temperature		TOPT	0 to +70	°C
Storage temperature	·	TSTG	-55 to +125	°C

Recommended DC Operating Conditions

Parameter/Condition	Symbol	5 '	√olt Ve	ersion	3.3	3.3 Volt Version		
		Min	Тур	Max	Min	Тур	Max	
Supply Voltage	Vcс	4.5	5.0	5.5	3.0	3.3	3.6	>
Input High Voltage, all inputs	VIH	2.4	_	Vcc+1.0	2.0	_	Vcc+0.3	٧
Input Low Voltage, all inputs	V _{IL}	-1.0	_	0.8	-0.3		0.8	٧

Capacitance

Ta=25°C,VCC=5V \pm 10% or 3.3V \pm 10%, f=1MHz

Parameter	Symbol	Тур	Max	Unit	Note
Input capacitance(Address)	c _{l1}	_	5	pF	1
Input capacitance	C _{I2}		7	pF	1
(RAS, LCAS, UCAS, OE, WE)					
Output capacitance	C _{I/O}		7	pF	1,2
(Data-in, Data-out)					

Note: 1. Capacitance measured with effective capacitance measuring method.

2. RAS, LCAS and UCAS =V_{IH} to disable Dout.

DC Characteristics ; 5-Volt Verion (Ta=0 to $70^{\circ}\text{C}, V_{CC}$ =+5V $\pm 10^{\circ}\text{M}, V_{SS}$ =0V)

				VG	26(V)(S	S)1816	65B		
Para	ımeter	Symbol	Test Conditions		6		7	Unit	Notes
				Min	Max	Min	Max		
Operating current)	l _{CC1}	RAS cycling LCAS ,UCAS cycling tRC=min.	1	180	1	170	mA	1,2
			TTL interface RAS, CAS=V _{IH} Dout=High-Z	•	2	•	2	mA	
Standby	Low power S-version	I _{CC2}	CMOS interface RAS , CAS ≧Vcc-0.2V Dout = High-Z	-	0.25	1	0.25	mA	
Current	Standard power version		TTL interface RAS, CAS=V _{IH} Dout = High-Z	-	2		2	mA	
			CMOS interface RAS, CAS ≧Vcc-0.2V Dout = High-Z	-	1	-	1	mA	
RAS-onl refresh c	•	Іссз	RAS cycling, CAS=V _{IH} t _{RC} =mín.	-	180		170	mA	1,2
EDO pag current	e mode	I _{CC4}	t _{PC} =min.	-	110	-	100	mA	1,3
CAS-bet	fore-RAS urrent	l _{CC5}	t _{RC} =min. RAS, CAS cycling	-	180	•	170	mA	1,2
Self-refre (S-Versio	esh current on)	lcc8	^t RASS≧100 μS	_	350	-	350	μΑ	
long refre	fore-RAS esh -Version)	ICC9	Standby:Vcc-0.2V ≤ RAS CAS before RAS refresh: 1024 cycles/128ms RAS, CAS:0V ≤ V _{IL} ≤ 0.2V V _{cc-0.2} V ≤ V _{IH} ≤ V _{IH} (Max) Dout=High-Z, t _{RAS} ≤ 300ns	-	380	-	380	μΑ	

DC Characteristics; 5-Volt Version (Cont.)

(Ta=0 to 70 $^{\circ}$ C,V_{CC}=+5V \pm 10%,V_{SS}=0V)

			VG	26(V)(S)1816	35B		
Parameter	Symbol	Test Conditions	-4	6	-	7	Unit	Notes
	_		Min	Max	Min	Max		
Input leakage current	ILI	0V _≦ Vin _≦ Vcc+0.5V	-5	5	-5	5	μΑ	
Output leakage current	^I LO	0V <u>≤</u> Vout _≤ Vcc+0.5V Dout = Disable	-5	5	-5	5	μΑ	
Output high voltage	V _{OH}	I _{OH} =-5mA	2.4	-	2.4		V	
Output low voltage	V _{OL}	I _{OL} =+4.2mA	-	0.4	-	0.4	v	

Notes:

- 1. I_{CC} is specified as an average current. It depends on output loading condition and cycle rate when the device is selected. I_{CC} max is specified at the output open condition.
- 2. Address can be changed once or less while RAS =VIL.
- 3. For I_{CC4} , address can be changed once or less within one EDO page mode cycle time.

DC Characteristics ; 3.3-Volt Version (Ta=0 to 70° C, V_{CC} =+3.3 $V\pm10\%$, V_{SS} =0V)

				VG	26(V)(S)1816	55B		
Pai	rameter	Symbol	Test Conditions	L .	ô	•	7	Unit	Notes
		_		Min	Max	Min	Max		
Operating Cu	rrent	l _{CC1}	RAS cycling LCAS, UCAS cycling tRC=min.	-	180	1	170	mA	1,2
			LVTTL interface RAS, CAS=V _{IH} Dout=High-Z	-	0.5	1	0.5	mA	
Standby	Low power S-version	l _{CC2}	CMOS interface RAS, CAS ≧Vcc-0.2V Dout=High-Z	-	0.25	-	0.25	mA	
Current	Standard power version		LVTTL interface RAS, CAS=V _{IH} Dout=High-Z	-	2	•	2	mA	
			CMOS interface RAS , CAS ≧Vcc-0.2V Dout=High-Z	-	0.5	-	0.5	mA	
RAS-only ref	resh current	lcc3	RAS cycling, CAS=V _{IH} t _{RC} =min.	-	180	-	170	mA	1,2
EDO page m	ode current	I _{CC4}	t _{PC} =min.	_	100	-	90	mA	1,3
CAS -before- current	RAS refresh	lcc5	tRC=min. RAS, CAS cycling	-	180	-	170	mA	1,2
Self-refresh o	eurrent (S-Version)	I _{CC8}	t _{RASS} ≧100 μS	-	250	-	250	μΑ	
CAS -before- long refresh o	RAS current(S-Version)	lcc9	Standby:Vcc-0.2V≦RAS CAS before RAS refresh: 1024 cycles/128ms RAS, CAS:0V≦V _{{L} ≦0.2V		270	-	270	μА	
			V _{cc-0.2} V≤VIH≤VIH(Max) Dout=High-Z, t _{RAS} ≤300ns						

DC Characteristics; 3.3-Volt Version (Cont.)

(Ta=0 to 70°C , V_{CC} =+3.3 $V \pm 10\%$, V_{SS} =0V)

			VG	26(V)(35B			
Parameter	Symbol	Test Conditions	Test Conditions -6 Min Max		-	7	Unit	Notes
					Min	Max		
Input leakage current	lLI	0V _≦ Vin _≦ Vcc+0.3V	-5	5	-5	5	μА	
Output leakage current	¹ LO	0V _≦ Vout _≦ Vcc+0.3V Dout = Disable	-5	5	-5	5	μΑ	
Output high voltage	Voн	I _{OH} =-2mA	2.4	-	2.4		٧	
Output low voltage	V _{OL}	I _{OL} =+2mA		0.4	•	0.4	>	

Notes:

- 1. I_{CC} is specified as an average current. It depends on output loading condition and cycle rate when the device is selected. I_{CC} max is specified at the output open condition.
- 2. Address can be changed once or less while RAS =V_{IL}.
- 3. For I_{CC4} , address can be changed once or less within one EDO page mode cycle time.

AC Characteristics

(Ta =0 to +70°C, V_{CC} =5 $V\pm10\%$ or 3.3 $V\pm10\%$, V_{SS} =0V)*1,*2,*3,*4,*5

Test conditions

- · Output load: two TTL loads and 100pF (Vcc=5.0V+10%) one TTL loads and 100pF (Vcc=3.3V+10%)
- · Input timing reference levels:

 $V_{IH} = 2.4 \text{V}, \ V_{IL} = 0.8 \text{V} \ (V_{CC} = 5.0 \text{V} \pm 10\%) \ ; \ V_{IH} = 2.0 \text{V}, \ V_{IL} = 0.8 \text{V} \ (V_{CC} = 3.3 \text{V} \pm 10\%)$

· Output timing reference levels:

 $V_{OH} = 2.0V$, $V_{OL} = 0.8V$ ($V_{CC} = 5.0V \pm 10\%$, $3.3V \pm 10\%$)

Read, Write, Read-Modify-Write and Refresh Cycles

(Common	Parameters)	

(Common Farancers)		V	G26(V)(S	3)18165	В		
		J	_	-	7	Unit	Notes
Parameter	Symbol	Min	Max	Min	Max		
Random read or write cycle time	^t RC	110	-	130		ns	
RAS precharge time	t _{RP}	40	-	50	-	ns	
LCAS / UCAS precharge time in normal mode	^t CPN	10	-	10		ns	
RAS pulse width	^t RAS	60	10000	70	10000	ns	6
LCAS/UCAS pulse width	^t CAS	10	10000	12	10000	ns	7
Row address setup time	t _{ASR}	0	•	0	-	ns	
Row address hold time	^t RAH	10	,	10	-	ns	
Column address setup time	t _{ASC}	0	-	0	-	ns	8
Column address hold time	^t CAH	10	-	15	-	ns	
RAS to LCAS/UCAS delay time	^t RCD	20	42	20	50	ns	9
RAS to column address delay time	^t RAD	15	30	15	35	ns	10
Column address to RAS lead time	^t RAL	30	1	35	,	ns	
RAS hold time	^t RSH	15	1	18	-	ns	
LCAS/UCAS hold time	tcsH	50	1	60	•	ns	
LCAS/UCAS to RAS precharge time	tCRP	5	-	5	-	ns	11
OE to Din delay time	tOED	15	-	18	-	ns	
Transition time (rise and fall)	t _T	1	50	1	50	ns	12
Refresh period	tREF	-	16	•	16	ms	
Refresh period (S-Version)	t _{REF}	-	128	-	128	ms	
CAS to output in Low-Z	tCLZ	0	-	0	-	ns	

Read Cycle

		V	G26(V)(S)18165	В		1
		-(6	-	7 .	Unit	Notes
Parameter	Symbol	Min	Max	Min	Max		
Access time from RAS	tRAC	-	60	-	70	ns	13
Access time from LCAS/UCAS	tCAC	•	18	-	20	ns	14,15
Access time from column address	t _{AA}	,	30	-	35	ns	15,16
Access time from OE	t _{OEA}		15	-	18	ns	
Read command setup time	tRCS	0	,	0	•	ns	8
Read command hold time to	tRCH	0	,	0	-	ns	11,17
LCAS/UCAS							
Read command hold time to RAS	^t RRH	10	ı	10	-	ns	17
Output buffer turn-off time	toff	0	15	0	18	ns	18
Output buffer turn-off time from OE	tOEZ	0	15	0	18	ns	18

Write Cycle

		VG26(V)(S)18165B					
			6	1	7	Unit	Notes
Parameter	Symbol	Min	Max	Min	Max		
Write command setup time	twcs	0	•	0	•	ns	8,19
Write command hold time	tWCH	10	•	10	-	ns	
Write command pulse width	tWP	10	-	10	-	ns	
Write command to RAS lead time	^t RWL	15	-	18	-	ns	
Write command to LCAS/UCAS lead time	tCWL	15	•	18	-	ns	20
Data-in setup time	t _{DS}	0	-	0	-	ns	21
Data-in hold time	^t DH	10	-	15	-	ns	21
WE to Data-in delay	twED	10	-	10	-	ns	

Read-Modify-Write Cycle

		VG26(V)(S)18165B					T
		-6	3	-	7	Unit	Notes
Parameter	Symbol	Min	Max	Min	Max		
Read-modify-write cycle time	tRWC	133		157		ns	
RAS to WE delay time	^t RWD	77	1	89	-	ns	19
LCAS/UCAS to WE delay time	tcwD	32	1	37	-	ns	19
Column address to WE delay time	^t AWD	47	1	54	~	ns	19
OE hold time from WE	tOEH	15	1	18	-	ns	

Refresh Cycle

		V	G26(V)(S)18165	В		
		-1	6		7	Unit	Notes
Parameter	Symbol	Min	Max	Min	Max		
LCAS/UCAS setup time(CBR refresh)	t _{CSR}	10	-	10	-	ns	
LCAS /UCAS hold time (CBR refresh)	^t CHR	10	-	10	*	ns	11
RAS precharge to LCAS/UCAS hold time	t _{RPC}	5	-	5	•	ns	8
RAS pulse width (self refresh)	^t RASS	100	-	100	•	μS	
RAS precharge time (self refresh)	^t RPS	110	-	130	_	ns	
CAS hold time (CBR self refresh)	tcHs	-50	-	-50	-	ns	

EDO Page Mode Cycle

EDO I age mode dycie		VG26(V)(S)18165B		В			
		-6 -7		7	Unit	Notes	
Parameter	Symbol	Min	Max	Min	Max		
EDO page mode cycle time	t _{PC}	25	•	30	•	ns	
EDO page modeLCAS /UCAS precharge time	^t CP	10	1	10	•	ns	
EDO page mode RAS pulse width	^t RASP	60	105	70	10 ⁵	ns	22
Access time from LCAS/UCAS precharge	^t CPA	1	35	ı	40	ns	11,15
RAS hold time from LCAS/UCAS precharge	^t CPRH	35	•	40	•	ns	
OE high hold time from CAS high	^t OEHC	5	-	5	•	ns	
OE high pulse width	^t OEP	10	ı	10	•	ns	
Data output hold after CAS low	t _{COH}	5	•	5		ns	
Output disable delay from WE	^t WHZ	3	10	3	10	ns	
WE pulse width for output disable when CAS high	tWPZ	7	-	7	-	ns	

EDO Page Mode Read Modify Write Cycle

		V	G26(V)(S)18165	В		
		-	6		7	Unit	Notes
Parameter	Symbol	Min	Max	Min	Max		
EDO page mode read-modify-write cycle LCAS/UCAS precharge to WE delay time	tcpw	55		65	1	ns	11
EDO page mode read-modify-write cycle time	^t PRWC	68	-	75	•	ns	

Notes:

- AC measurements assume t_T=2ns.
- 2. An initial pause of 100 µs is required after power up followed by a minimum of eight initialization cycles (RAS-only refresh cycle or CAS-before-RAS refresh cycle). If the internal refresh counter is used, a minimum of eight CAS-before-RAS refresh cycles are required.
- 3. In delayed write or read-modify-write cycles, \overrightarrow{OE} must disable output buffer prior to applying data to the device.
- 4. When both LCAS and UCAS go low at the same time, all 16-bits data are written into the device. LCAS and UCAS cannot be staggered within the same write/read cycles.
- 5. All the V_{CC} and V_{SS} pins shall be supplied with the same voltages.
- 6. $t_{RAS}(min)=t_{RWD}(min)+t_{RWL}(min)+t_{T}$ in read-modify-write cycle.
- 7. t_{CAS}(min)=t_{CWD}(min)+t_{CWL}(min)+t_T in read-modify-write cycle.
- 8. t_{ASC}(min) , t_{RCS} (min) , t_{WCS}(min) and t_{RPC} are determined by the earlier falling edge of LCAS or UCAS .
- Operation with the t_{RCD} (max) limit insures that t_{RAC}(max) can be met, t_{RCD}(max) is specified as
 a reference point only, if t_{RCD} is greater than the specified t_{RCD}(max) limit, then access time is
 controlled exclusively by t_{CAC}.
- 10. Operation with the t_{RAD} (max) limit insures that t_{RAC}(max) can be met, t_{RAD}(max) is specified as a reference point only, if t_{RAD} is greater than the specified t_{RAD}(max) limit, then access time is controlled exclusively by t_{AA}.
- 11. t_{CRP}, t_{CHR}, t_{RCH}, t_{CPA} and t_{CPW} are determined by the later rising edge of LCAS or UCAS.
- 12. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing or input signals. Also, transition times are measured between V_{IH} and V_{IL} .
- 13. Assumes that $t_{RCD} \le t_{RCD}(max)$ and $t_{RAD} \le t_{RAD}(max)$. If t_{RCD} or t_{RAD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
- 14. Assumes that $t_{RCD} \ge t_{RCD}(max)$ and $t_{RAD} \le t_{RAD}(max)$.
- 15. Access time is determined by the longer of tAA, tCAC, tCPA.
- 16. Assumes that ${}^{t}RCD \leq {}^{t}RCD(max)$ and ${}^{t}RAD \geq {}^{t}RAD(max)$.
- 17. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 18. toff(max) and tofic (max) define the time at which the output achieves the open circuit condition and is not referenced to output voltage levels. toff is determined by the later rising edge of RAS or CAS.
- 19. t_{WCS}, t_{RWD}, t_{CWD}, and t_{AWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If t_{WCS} ≥ t_{WCS}(min), the cycle is an early write cycle and the data out will remain open circuit (high impedance) throughout the entire cycle. If t_{RWD} ≥ t_{RWD}(min), t_{CWD} ≥ t_{CWD}(min), t_{AWD} ≥ t_{AWD}(min) and t_{CPW} ≥ t_{CPW}(min), the cycle is a read-modify-write and the data output will contain data read from the selected cell. If neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 20. t_{CWL} shall be satisfied by both LCAS, UCAS.
- 21. These parameters are referenced to LCAS or UCAS separately in an early write cycle and to WE edge in a delayed write or a read-modify-write cycle.
- 22. tRASP defines RAS pulse width in EDO page mode cycles.

Timing Waveforms - Word Read Cycle

· Word Early Write Cycle

· Byte Early Write Cycle

· Word Delayed Write Cycle

· Byte Delayed Write Cycle

· Word Read - Modify - Write Cycle

· Byte Read - Modify - Write Cycle

• EDO Page Mode Word Read Cycle

. EDO Page Mode Byte Read Cycle

- EDO Page Mode Word Early Write Cycle

· EDO Page Mode Byte Early Write Cycle

• EDO Page Mode Word Read-Early-Write Cycle

• EDO Page Mode Byte Read-Early-Write Cycle

• EDO Page Mode Word Read - Modify - Write Cycle

. EDO Page Mode Byte Read - Modify - Write Cycle

· Read Cycle with WE Controlled Disable

· RAS-Only Refresh Cycle

· CAS-Before-RAS Refresh Cycle

· CBR Self-Refresh Cycle

· Hidden Refresh Cycle

Ordering information

Part Number	Access Time	Package
VG26(V)(S)18165BJ-6	60 ns	400mil 42-Pin
VG26(V)(S)18165BJ-7	70 ns	Plastic SOJ

VG26(V)(S)18165BJ-6

- VG → VIS Memory Product
- · 26 → · Technology
- · V → · 3.3V Version
- · S → · Self refresh
- 18165 → Device Type and Configuration
- B → Revision
- J → Package Type (J : SOJ , T:TSOP II)
- 6 → Speed (6:60 ns, 7:70 ns)

Packaging Information

· 400 mil, 42-Pin Plastic SOJ

Ordering information

Part Number	Access Time	Package
VG26(V)(S)18160BT-6	60 ns	400mil 50/44-Pin
VG26(V)(S)18160BT-7	70 ns	Plastic TSOP(II)

VG26(V)(S)18160BT-6

- VG → VIS Memory Product
- · 26 → · Technology
- · V → · 3.3V Version
- · S Self refresh
- 18160 → Device Type and Configuration
- · B → · Revision
- T → Package Type (J : SOJ, T : TSOP)
- 6 → Speed (6:60 ns, 7:70 ns)

Packaging Information

· 400 mil, 50/44-Pin Plastic TSOP(II)

