

Árvores

Algoritmos e Estruturas de Dados Prof. Daniel Guerreiro e Silva

Roteiro

- Introdução
- Árvore de Busca Binária
- Busca e Inserção na BST
- Remoção na BST
- Árvores balanceadas

 Leitura sugerida: Seções 6.1 a 6.7 do livro-texto (Drozdek)

Introdução

Árvores

• São estruturas de dados que permitem implementar uma **relação de hierarquia** entre os elementos

• É composta de **nós** (vértices) e **arcos** (arestas)

Definição

- Uma árvore do tipo T é constituída de
 - Uma estrutura vazia, ou
 - Um elemento ou nó do tipo T chamado raiz, com arcos para um número finito de árvores do tipo T, chamadas de sub-árvores da raiz

Árvore ordenada

- Uma árvore é dita ordenada quando a ordem das sub-árvores é relevante.
- Neste sentido, as duas árvores a seguir são diferentes

Nomenclatura de árvores

- Pai (parent) e filho (child): um nó y abaixo de um nó x é chamado de filho de x, enquanto x é denominado pai de y
 - Ex.: B é pai de E e F
- Irmão: Nós com o mesmo pai são denominados irmãos
 - Ex.: B, C e D são irmãos
- Nível de um nó: a raiz de uma árvore tem nível 1, se um nó tem nível i, então seus filhos têm nível i+1.
 - Ex.: E, F, G e H têm nível 3, I tem nível 4

Nomenclatura de árvores

- Altura ou Profundidade: é
 o máximo nível dos nós da
 árvore.
 - Ex.: a árvore ao lado tem altura 4
- Folha: é um nó que não tem filhos
 - Ex.: E, F, C, I e H são folhas
- **Nó interno**: é um nó que não é folha e nem raiz.
 - Ex.: B, D, G

Nomenclatura de árvores

- Grau de um nó: é o número de filhos de um nó
 - Ex.: B tem grau 2, G tem grau 1
- Grau de uma árvore: é o máximo grau de seus nós
 - Ex.: a árvore tem grau 3

Árvore binária

- É uma árvore ordenada de grau 2.
- Uma árvore binária é
 - vazia, ou
 - um nó raiz mais duas subárvores disjuntas chamadas subárvore esquerda e subárvore direita

Árvore binária - Exemplo

• Representação da expressão aritmética ((a+b)/(c-d))*(e+f)

Árvore binária - Exemplo

Algoritmo de compressão de Huffman

Aplicações de árvores e árvores binárias

- Problemas de busca na memória principal do computador: árvore binária de busca, árvore AVL
- Problemas de busca de dados na memória secundária (disco rígido): árvores B
- Problemas de busca e resolução de problemas na Inteligência Artificial, ex.: jogo de xadrez, árvores de decisão
- Compressão de dados: código de Huffman
- Entre outras...

Aplicações de árvores

- A estrutura de uma árvore ordenada permite realizar a busca por um dado sem necessariamente explorar todos os nós para encontrá-lo.
- Exemplo: considere a localização de um elemento em uma lista duplamente ligada com 10.000 elementos
 - Mesmo ordenada e com apontadores para cabeça e cauda da lista, caso se deseje obter o elemento do meio, temos que acessar os 4.999 anteriores.
 - Por outro lado, se os elementos estão numa árvore ordenada, o número de acessos na busca pode cair drasticamente, como veremos adiante.

Árvore de Busca Binária

A árvore de busca binária (BST, Binary Search Tree)

 As chaves dos dados armazenados numa BST obedecem à seguinte propriedade:

"Seja x um nó na BST. Se y é um nó na sub-árvore esquerda de x, então y. key < x. key. Se y é um nó na sub-árvore direita de x, então y. $key \ge x$. key"

 A propriedade BST permite que se imprima todas as chaves na árvore de forma ordenada, por meio de um algoritmo recursivo simples, chamado de percurso inordem da árvore

Árvore de busca binária

• Exemplos:

Implementando uma árvore de busca binária

- O nó de uma árvore é instância de uma classe contendo a informação a armazenar, e dois apontadores para as subárvores à esquerda e à direita.
- A classe árvore envolve um apontador para a raiz da árvore, que por sua vez apontará indiretamente para os seus nós sucessores
- Operações principais
 - Visitar os nós de uma árvore
 - Buscar um elemento na árvore
 - Inserir um nó na árvore
 - Apagar um nó na árvore

Implementação do nó

```
template<class T>
class BSTNode {
public:
    //CONSTRUTORES
    BSTNode() {
        left = right = 0;
    BSTNode(const T& el, BSTNode<T> *left = 0, BSTNode<T> *right = 0) {
        this->el = el;
        this->left = left;
        this->right = right;
    //ATRIBUTOS
    T el; //elemento a se armazenar
    BSTNode<T> *left, *right; //apontadores para subarvore esquerda e direita
};
```

Implementação da árvore (parcial)

```
template<class T>
class BST {
public:
    //metodos publicos...
protected:
    BSTNode<T>* root; //atributo - raiz da arvore
    //métodos protegidos...
};
```

Percorrer/visitar os nós de uma árvore

- Percurso em **profundidade**
 - **Pré-ordem**: visita o nó atual, sub-árvore esquerda, sub-árvore direita
 - In-ordem: visita sub-árvore esquerda, o nó atual, subárvore direita
 - **Pós-ordem**: visita sub-árvore esquerda, sub-árvore direita, nó atual
- Percurso em largura
 - Visita todos os nós de cada nível da árvore, da esquerda para a direita

Percurso em profundidade

- Exemplo: considere a árvore binária de busca ao lado, liste a ordem de visitação dos nós para o percurso
 - in-ordem
 - pós-ordem
 - pré-ordem

Percurso em profundidade

- in-ordem2, 4, 5, 6, 7, 8, 9
- pós-ordem2, 5, 4, 7, 9, 8, 6
- pré-ordem6, 4, 2, 5, 8, 7, 9

Método inorder – classe BST

```
template<class T>
void BST<T>::inorder(BSTNode<T> *p)
     if (p != 0) {
         inorder(p->left);
         visit(p);
         inorder(p->right);
```

Custo computacional – método inorder

- Veja que, após a chamada inicial, o método chama a si mesmo exatamente duas vezes para cada nó da árvore – uma vez para o filho à esquerda e uma vez para o filho à direita.
- Pode-se daí demonstrar que a complexidade do método é O(n), onde n é o número de nós da árvore.
- O mesmo custo é válido para os métodos pósordem e pré-ordem.

Percurso em largura

- Exemplo: considere a árvore binária ao lado, o percurso em largura seria
 6, 4, 8, 2, 5, 7, 9
- O percurso em largura pode ser implementado com a ajuda de uma fila

Percurso em largura

- 1. Inicie fila vazia
- 2. Ponha raiz no final da fila
- 3. Repita até esvaziar a fila:
 - 1. Tira primeiro da fila
 - 2. Visita nó
 - 3. Se tem filho à esquerda → põe no final da fila
 - 4. Se tem filho à direita → põe no final da fila
- 4. Encerra algoritmo

Percurso em largura

- 1. Põe 6 na fila [6]
- 2. Tira o 6 []
 - 1. Põe 4 na fila [4]
 - 2. Põe 8 na fila [4, 8]
- 3. Tira o 4 [8]
 - 1. Põe 2 na fila [8, 2]
 - 2. Põe 5 na fila [8, 2, 5]
- 4. Tira o $\frac{8}{5}$ [2, 5]
 - 1. Põe 7 na fila [2, 5, 7]
 - 2. Põe 9 na fila [2, 5, 7, 9]
- 5. Tira o 2 [5, 7, 9]
- 6. Tira o 5 [7, 9]
- 7. Tira o 7 [9]
- 8. Tira o 9 []

Método breadthFirst - classe BST

```
template<class T>
void BST<T>::breadthFirst() {
    std::queue< BSTNode<T>* > fila;
    BSTNode<T> *p = root;
    if (p != 0) {
        fila.push(p);
        while (!fila.empty()) {
            p = fila.front(); //pega no do inicio da fila
            fila.pop(); //remove no do inicio da fila
            visit(p);
            if (p->left != 0)
                 fila.push(p->left); //insere no final da fila
            if (p->right != 0)
                 fila.push(p->right); //insere no final da fila
    }
```

Busca e Inserção na BST

Busca na BST

- Considere um dado valor k a ser procurado entre as chaves de uma árvore de busca binária
- Graças à propriedade BST, se comparamos k com a chave do nó atual, é fácil saber qual o próximo nó a visitar
 - Se k < chave → procure no filho à esquerda
 - Se k > chave → procure no filho à direita

Busca na BST

Método search - classe BST

```
template<class T>
T* BST<T>::search(BSTNode<T>* p, const T& el) const {
  while (p != 0)
    if (el == p->el)
      return &p->el;
    else
      if (el < p->el)
        p = p - > left;
      else
        p = p->right;
  return 0;
```

Repare na ausência de chaves no comando while... Pois nesse caso não é necessário!

C++: declaração const

 No caso de declarações de variáveis ou de argumentos de funções, o valor daquela variável não pode mudar dentro do escopo da declaração. Exemplo:

```
const double pi = 3.14;
```

- Quando é colocada após a declaração de uma função, significa que a função não pode alterar nenhum membro daquela classe
 - Logo este tipo de uso só é permitido para funçõesmembro (métodos) de uma classe

Custo computacional - busca

- Repare que os nós visitados ao longo da busca, seja pela recursão ou pelo método iterativo, formam um caminho da raiz até uma folha da árvore de nível i.
- No pior caso, esse caminho será até uma folha de máximo nível, isto é, no valor equivalente à altura da árvore.
- Portanto a busca por um nó na árvore tem complexidade O(h), onde h é a sua altura

Inserção na BST

- A inserção de um nó com chave k é similar ao procedimento de busca
- Ao chegar a uma folha, ali se encontra o ponto de inserção do novo elemento

Inserção na BST

Exercício guiado

```
Inspirado na busca, escreva o código C++ para o
método de inserção
template<class T>
void BST<T>::insert(const T& el){
//codigo...
```

Resposta - método insert - classe BST

```
template<class T>
void BST<T>::insert(const T& el) {
   BSTNode<T> *p = root, *prev = 0;
   while (p != 0) { // find a place for inserting new node;
        prev = p;
        if (el < p->el)
             p = p - > left;
        else p = p->right;
    }
    if (root == 0) // tree is empty;
         root = new BSTNode<T>(el);
    else if (el < prev->el)
         prev->left = new BSTNode<T>(el);
    else prev->right = new BSTNode<T>(el);
}
```

Análogo à operação de busca, a inserção tem custo O(h)

Exercício de Assimilação de Conceitos

Estude o arquivo genBST1.h, complete os trechos faltantes de código e escreva um programa que use a biblioteca e explore as suas operações.

• O que significa a declaração protected?

Remoção na BST

Remoção

- A operação de remoção envolve eliminar um dado nó e, adicionalmente, "consertar" a árvore caso a propriedade BST após a eliminação tenha sido violada
- Para isso, vamos quebrar o problema em três casos

Caso 1: nó a remover é uma folha

 Basta configurar o apontador do nó pai para vazio e o nó é desalocado (operação delete em C++)

Caso 2: nó a remover tem um filho

 Basta configurar o apontador do nó pai diretamente para o filho do nó a remover, daí em seguida o nó é desalocado

Caso 3: o nó a remover tem dois filhos

- Este é o caso mais complicado e há duas soluções possíveis, de forma a manter a propriedade BST
 - Remoção por fusão
 - Remoção por cópia

Remoção por fusão

 A idéia é "fundir" as sub-árvores do nó a ser removido e colocar no lugar dele.

 Repare que a sub-árvore direita agora é filha do nó mais à direita da sub-árvore esquerda

Remoção por fusão

- Para um dado nó x, pela propriedade BST sabemos que todos os elementos à esquerda são menores que sua chave x.key.
- Logo, se procurarmos o máximo desta sub-árvore, i.e. o nó mais à direita possível, encontraremos o maior elemento que é menor que x.key.
- Isto equivale a determinar o antecessor de x.key quando os nós da árvore são colocados em ordem crescente
- Como o antecessor de x.key é menor que qualquer nó da sub-árvore direita, colocar esta como filha mantém válida a propriedade BST

Método deleteByMerging - classe BST

```
template<class T>
void BST<T>::deleteByMerging(BSTNode<T>*& node) {
   BSTNode<T> *tmp = node;
   if (node != 0) {
      if (node->right == 0) // node has no right child: its left
           else if (node->left == 0) // node has no left child: its right
           node = node->right;
                              // child is attached to its parent;
      else {
                             // be ready for merging subtrees;
           while (tmp->right != 0)// 2. and then right as far as possible;
             tmp = tmp->right;
           tmp->right =
                              // 3. establish the link between the
             node->right;
                              // the rightmost node of the left subtree
                           // and the right subtree;
           tmp = node;
                              // 4.
           node = node->left;
                              // 5. left child is attached to its parent
                              // 6. remove node
      delete tmp;
```

Método findAndDeleteByMerging - classe BST

```
template<class T>
void BST<T>::findAndDeleteByMerging(const T& el) {
    BSTNode<T> *node = root, *prev = 0;
    while (node != 0) {
        if (node->el == el)
             break;
        prev = node;
        if (el < node->el)
             node = node->left;
        else node = node->right;
    if (node != 0 && node->el == el)
         if (node == root)
              deleteByMerging(root);
         else if (prev->left == node)
              deleteByMerging(prev->left);
         else deleteByMerging(prev->right);
    else if (root != 0)
         cout << "el " << el << " is not in the tree\n";</pre>
    else cout << "the tree is empty\n";</pre>
```

Remoção por fusão

 Repare que o algoritmo de remoção por fusão pode levar ao aumento (ou redução) da altura da árvore, o que não é desejável

Remoção por cópia

- Se o nó a remover tem os dois filhos, pode-se "transformá-lo" em um dos 2 casos simples:
 - 1. É uma folha: configurar o apontador do nó pai para vazio e o nó é desalocado
 - 2. Tem um filho só: configurar o apontador do nó pai diretamente para o filho do nó a remover, daí em seguida o nó é desalocado
- Como fazer isso? Substitua os dados do nó a remover pelos dados do seu antecessor, então realize o procedimento para apagar o nó antecessor.

Remoção por cópia

 Como o antecessor é o nó mais à direita, veja que ou ele só terá um filho (à esquerda), ou será uma folha: logo sua remoção é simples

Método deleteByCopying - classe BST

```
template<class T>
void BST<T>::deleteByCopying(BSTNode<T>*& node) {
    BSTNode<T> *previous, *tmp = node;
     if (node->right == 0)
                                             // node has no right child;
          node = node->left;
     else if (node->left == 0)
                                             // node has no left child;
          node = node->right;
     else {
          tmp = node -> left
                                             // node has both children;
                                             // 1.
          previous = node;
                                             // 2.
          while (tmp->right != 0) {
              previous = tmp;
              tmp = tmp - > right;
                                              // 3.
          node->el = tmp->el;
          if (previous == node)
               previous->left = tmp->left;
          else previous->right = tmp->left; // 4.
                                              // 5.
     delete tmp;
```

Árvores balanceadas

- O algoritmo de remoção por cópia não aumenta a altura da árvore, mas se aplicado muitas vezes em conjunto com a inserção, pode desbalanceá-la.
 - Subárvore esquerda pode ser reduzida, enquanto direita fica inalterada
 - Uma solução é remover alternando entre a cópia do antecessor e do sucessor (nó mais à esquerda da sub-árvore direita)
- Uma árvore é balanceada se a diferença de altura entre duas sub-árvores de um nó qualquer é zero ou um.
 - Uma árvore é perfeitamente balanceada se ela é balanceada e todas as folhas da árvore se encontram em um ou dois níveis no máximo.

Só a árvore do caso (a) é balanceada

_	Height	Nodes at One Level	Nodes at All Levels
	1	20 = 1	$1 = 2^1 - 1$
A A	2	$2^1 = 2$	$3 = 2^2 - 1$
A A A A	3	$2^2 = 4$	$7 = 2^3 - 1$
* * * * * * * * * * * * * * * * * * * *	4	$2^3 = 8$	$15 = 2^4 - 1$
	11	$2^{10} = 1,024$	$2,047 = 2^{11} - 1$
	: 14	$2^{13} = 8,192$	$16,383 = 2^{14} - 1$
	:		
	h :	2^{h-1}	$n = 2^h - 1$

- Veja que uma árvore perfeitamente balanceada tem altura $h pprox \log_2 n$
- Como a busca na BST tem custo O(h), no caso de árvores perfeitamente balanceadas isto equivale a $O(\log_2 n)$, o que assintoticamente cresce **menos** que O(n)

Um exemplo de aplicação: contagem de frequências de palavras

Conclusões

- Árvores de busca são estruturas interessantes para organização hierárquica de dados e pesquisa em tempo computacional médio menor que estruturas lineares, como as listas
- Existem outros tipos de árvores com diversas propriedades interessantes
 - Heaps
 - Árvores Rubro-Negras
 - Árvores AVL