FURTHER SCALING PROPERTIES FOR CIRCLE MAPS

DIETER H. MAYER

Institut für Theoretische Physik, E, RWTH Aachen, D-51 Aachen, F.R.G.

ABSTRACT. It is shown that certain iterations of (k-1) tuples of commuting invertible circle maps whose rotation numbers are algebraic of degree k, show very similar scaling properties to those found by Feigenbaum $et\ al.$ in the case k=2.

Several groups [1-3] have recently found some quite remarkable universal scaling properties for invertible maps of a circle whose rotation number has a periodic continued fraction expansion. They can be used to model the transition in two-parameter families of systems from quasiperiodicity to some kind of chaos. These scaling properties can be understood by a renormalization group transformation \mathcal{R} acting on a space of a pair of functions (ξ, η) which, for rotation number $\omega = [n, n, n, ...]$, is defined as

$$\mathscr{R}\left(\frac{\xi}{\eta}\right) = \frac{1}{\lambda} \left(\frac{\xi^n \circ \eta(\lambda x)}{\xi(\lambda x)}\right), \quad \lambda = -\xi(0). \tag{1}$$

The symbol [n, n, ...] denotes, as usual, the continued fraction expansion of the number ω . The above transformation \mathcal{R} is expected to have exactly two fixed points in an appropriate space. One of them is trivial and corresponds to a pure rotation of the circle by the angle ω . The other non-trivial fixed point whose existence, up to now, follows only from computer calculations, describes a circle map with a critical point and can be conjugated to a pure rotation only via a nondifferentiable circle homeomorphism. It is, therefore, expected to describe some kind of chaos.

In this letter we will show that this theory allows for a generalization to the (k-1) tuples of circle maps whose rotation numbers are algebraic of degree k. In the case k=2, we will recover the results just described.

The scaling relations, respectively the renormalization group transformation, have been derived in the last case by iterating a circle map f with rotation number ω for a certain number of times given by the rational approximants of this number. These approximants (p_n, q_n) are defined by truncating the continued fraction expansion of ω . They can be calculated by an iterated application of the 2×2 matrix A_n defined as

$$A_n = \begin{pmatrix} 0 & 1 \\ 1 & n \end{pmatrix} \tag{2}$$

435

to the initial vector $(p_0, q_0) = (0, 1)$.

To extend the theory to (k-1) tuples of commuting circle maps, we now need the analogous rational approximants for a (k-1) tuple of rotation numbers. They can be described by an integer k vector $(q_{1,\,m},...,q_{k,\,m})$ with the property that for all $1 \le i \le k-1 \lim_{m\to\infty} q_{i,\,m}/q_{k,\,m} = \omega_i$, where ω_i denotes the rotation numbers of a k-1 tuple of the circle maps.

An algorithm providing such approximation vectors was established by Jacobi and Perron [4]. The matrix A_n in (2) is thereby replaced by the following $k \times k$ integer matrix A_n depending on the integer vector $\mathbf{n} = (n_1, ..., n_{k-1})$:

$$A_{n} = \begin{pmatrix} 0 & \dots & \dots & 1 \\ 1 & 0 & \dots & \dots & n_{1} \\ 0 & 1 & 0 & \dots & \dots & n_{2} \\ \vdots & & & \vdots & & \vdots \\ \vdots & & & \vdots & & \vdots \\ \vdots & & & \vdots & & \vdots \\ 0 & \dots & \dots & \dots & 1 & n_{k-1} \end{pmatrix}$$
(3)

where the integers n_i fulfill the relations $0 \le n_i \le n_{k-1}$, $n_{k-1} \ge 1$ and $(n_{k-1}, n_{k-2}, ..., n_{k-1-j}) \ge (n_j, n_{j-1}, ..., n_1, 1)$ in the lexicographic order for all $1 \le j \le k-2$. If we then set

$$\begin{pmatrix} q_1, m \\ q_{k_1, m} \end{pmatrix} = A_n^m \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\tag{4}$$

it follows from the Perron-Frobenius Theorem applied to the matrix A_n that the vectors $(q_{1, m}, ..., q_{k, m})$ are indeed rational approximation vectors for the (k-1) tuple of rotation numbers $(\omega_1, ..., \omega_{k-1})$, where ω_l is given as

$$\omega_i = \omega_*^i + n_1 \omega_*^{i-1} + \dots + n_{i-1} \omega_*.$$

The number ω_* itself is the positive solution of the polynomial equation

$$\omega^{k} + n_{1} \omega^{k-1} + \dots + n_{k-1} \omega - 1 = 0$$
 (5)

and, therefore, an algebraic number. If we choose the vector **n** in such a way that all other roots of (5) except ω_* are strictly larger than one in absolute value, then ω_* and, therefore, all ω_l are algebraic of degree k and the following approximation property holds:

$$\lim_{m \to \infty} |q_{k,m} \omega_i - q_{i,m}| = 0. \tag{6}$$

It should be remarked that this property does not generally hold for the approximants determined by the Jacobi—Perron algorithm [4].

To now define the scaling relations for (k-1) tuples of the circle maps, we need a second integer $k \times k$ matrix B_n which is closely related to the matrix A_n in (3):

$$B_{\mathbf{n}} = \begin{pmatrix} n_1 & -1 & 0 & \dots & 0 \\ n_2 & 0 & -1 & 0 & \dots & 0 \\ \vdots & \vdots & & & \vdots \\ n_{k-2} & 0 & \dots & \dots & -1 & 0 \\ n_{k-1} & 0 & \dots & \dots & 0 & 1 \\ 1 & 0 & \dots & \dots & \dots & 0 \end{pmatrix}.$$

$$(7)$$

It is easy to see that its eigenvalues ρ_i are given simply in terms of the eigenvalues λ_i of the matrix A_n as $\rho_i = -1/\lambda_i$.

Define then for all $1 \le i \le k$ and all $1 \le j \le k-1$ integers $a_{i,j}^{(m)}$ and $c_i^{(m)}$ as

$$\begin{pmatrix} a_{1,j}^{(m)} \\ \vdots \\ a_{k,j}^{(m)} \end{pmatrix} = B_{\mathbf{n}}^{m} \begin{pmatrix} a_{1,j}^{(0)} \\ \vdots \\ a_{k,j}^{(0)} \end{pmatrix}; \qquad \begin{pmatrix} c_{1}^{(m)} \\ \vdots \\ c_{k}^{(m)} \end{pmatrix} = B_{\mathbf{n}}^{m} \begin{pmatrix} c_{1}^{(0)} \\ \vdots \\ c_{k}^{(0)} \end{pmatrix}$$
(8)

with $a_{i,j}^{(0)} = \delta_{i,j}$, $c_i^{(0)} = 0$ and $c_k^{(0)} = 1$.

A straightforward calculation then shows that

$$\lim_{m\to\infty} \left| \sum_{j=1}^{k-1} a_{i,j}^{(m)} \omega_j - c_i^{(m)} \right| = 0, \text{ for all } 1 \le i \le k.$$

Consider now smooth invertible circle maps $f_1, ..., f_{k-1}$ which all commute and have rotation numbers $\rho(f_i) = \omega_i$ as defined in (5). It follows from the results of Yoccoz [5] and Kopell [6] that there exists a smooth circle homeomorphism h such that $f_i = h \circ R_{\omega_i} \circ h^{-1}$ for all i. The (k-1) tuple in fact defines what mathematicians call a differentiable action of the abelian group \mathbb{Z}^{k-1} on the circle. R_{ω_i} in the above expression denotes the pure rotation of the circle by the angle ω_i . Now we can write down the scaling relations: define for $m \ge 1$ and all $1 \le i \le k$ functions $\xi_{i,m}$ as follows

$$\xi_{i, m}(x) = 1/\lambda_m (f_1^{a_{i, 1}^{(m)}} \circ \dots \circ f_k^{a_{i, k-1}^{(m)}} (\lambda_m x) - c_i^{(m)})$$
(9)

where

$$\lambda_m = -(f_1^{a_{k,1}^{(m)}} \circ \cdots \circ f_{k-1}^{a_{k,k-1}^{(m)}}) - c_k^{(m)}).$$

One then shows in complete analogy to the procedure in [3] that

$$\lim_{m \to \infty} \xi_{i, m}(x) = R_{\omega_i}(x), \quad \text{for } 1 \le i \le k - 1$$
(10)

$$\lim_{m\to\infty} \xi_{k,\,m}(x) = x-1 \quad \text{and} \quad \lim_{m\to\infty} \lambda_{m+1}/\lambda_m = -\omega_1.$$

The above limits exist and do not depend on the conjugating homeomorphism h. The scaling relations (10) correspond in the case k = 2 exactly to the ones found in [1-3] as one can see by looking at the matrices A_n and B_n for this case.

It is also very easy to derive in a next step a renormalization group transformation explaining these scaling relations (10). The procedure is well known so that we can immediately obtain the result. In the general case of arbitrary k, the transformation \mathcal{R} acts in a space of k-tuples $\xi = (\xi_1, ..., \xi_k)$ of functions ξ_l on the real line as follows:

$$\mathcal{R}\boldsymbol{\xi} = \frac{1}{\lambda} \begin{pmatrix} \boldsymbol{\xi}_{1}^{n_{l}} \circ \boldsymbol{\xi}_{i+1}^{-1}(\lambda x) & 1 \leq i \leq k-2\\ \boldsymbol{\xi}_{1}^{n_{k}} - 1 \circ \boldsymbol{\xi}_{k}(\lambda x) \\ \boldsymbol{\xi}_{1}(\lambda x) \end{pmatrix}$$

$$(11)$$

with $\lambda = -\xi_1(0)$. For k = 2, this transformation is exactly the one studied in [3].

The transformation \mathcal{R} in (11) again has a trivial fixed point ξ^* with $\xi_i^* = R_{\omega_i}$ for $1 \le i \le k-1$ and $\xi_k^*(x) = x-1$ corresponding to a k-1 tuple of pure rotations of the circle. The structure of this fixed point can be completely analysed as for k=2, and also turns out to be hyperbolic with, for general k, an unstable manifold which has the dimension k-1.

We see, therefore, that at least as far as the trivial side of the diffeomorphisms is concerned, our theory presented above is in complete analogy to the one for k = 2, as developed in [1-3]. There remains, however, the much more difficult problem concerning the nontrivial side of this whole theory, namely the possible existence of a second nontrivial fixed point for our renormalization group transformation. As in the case k = 2, however, one is then forced to do explicit computer calculations. This is planned for the future.

REFERENCES

- 1. Feigenbaum, M., Kadanoff, L., and Shenker, S., Physica 5D, 370-386 (1982).
- 2. Shenker, S., Physica 5D, 405-411 (1982).
- 3. Ostlund, S., Rand, D., Sethna, J., and Siggia, E., Physica 8D, 303-342 (1983).
- 4. Perron, O., Math. Ann. 64, 1-76 (1907).
- Yoccoz, J., in J. Palis (ed.), Geometric Dynamics, Lecture Notes in Math., vol. 1007, Springer-Verlag, Berlin, 1983.
- Kopell, N., in S. Chern and S. Smale (eds.) Global Analysis, Proc. Symp. Pure Math. XIV, Am. Math. Soc., Providence, RI, 1970.

(Received June 7, 1984)