DT1 - Diagramme partiel des exigences (REQ)

DT2 - Diagramme de bloc (BDD) partiel de la partie Motorisation

BDD partiel du GUS

Le diagramme de blocs internes (IBD) de la partie motorisation est détaillé sur le document réponse DR3 – Question 11.

DT3 - Moto-réducteur à courant continu HAOSUO DM088110-036-02

Présentation

Les moto-réducteurs à courant continu à aimants permanents de la série DM088110, équipés en série d'un réducteur 17:1 sont spécialement conçus pour les véhicules à deux roues de type gyropode. On les retrouve également dans les applications de type trottinette électrique.

Le tableau ci-dessous présente les caractéristiques des différents moto-réducteurs composant cette série. La vitesse en sortie en RPM (tours par

minute) tient compte de la présence du réducteur intégré.

	Tension	Αv	ide		En charg	Puissance		
Modèle	(VDC)	Courant (A)	Vitesse (RPM)	Courant (A)	Vitesse (RPM)	Puissance (W)	Max (W)	Réduction
DM088110- 024-01	24	3,5	230	19	200	350	900	
DM088110- 024-02	24	3,9	245	23	200	420	1000	
DM088110- 036-01	36	3	230	15	200	350	900	17 :1
DM088110- 036-02	36	3,3	250	17	200	500	1000	
DM088110- 048-01	48	1,2	230	11	200	430	1100	(ou 19,3 :1
DM088110- 048-02	48	2,5	260	12,5	200	500	1200	sur commande)
DM088110- 072-01	72	1,6	230	7,8	200	430	1100	
DM088110- 072-02	72	1,8	260	9	200	500	1200	

DT4 - MOSFET IRF1405 (documentation partielle)

International

Rectifier

AUTOMOTIVE MOSFET

IRF1405

PD -93991A

Typical Applications

- Electric Power Steering (EPS)
- Anti-lock Braking System (ABS)
- Wiper Control
- Climate Control
- Power Door

Benefits

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax

Description

Specifically designed for Automotive applications, this Stripe Planar design of HEXFET® Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	169©	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	118©	Α
I _{DM}	Pulsed Drain Current ①	680	
P _D @T _C = 25°C	Power Dissipation	330	W
	Linear Derating Factor	2.2	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy®	560	mJ
I _{AR}	Avalanche Current	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy®		mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.45	°C/W
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		
$R_{\theta JA}$	Junction-to-Ambient		62	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	тур.	мах.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	V _{GS} = 0V, I _D = 250μA
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.057		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		4.6	5.3	mΩ	V _{GS} = 10V, I _D = 101A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = 10V, I_D = 250\mu A$
9 _{fs}	Forward Transconductance	69			S	V _{DS} = 25V, I _D = 110A
I _{DSS}	Drain-to-Source Leakage Current			20	μA -	$V_{DS} = 55V$, $V_{GS} = 0V$
יטכט	Brain to ocuroe Ecanage Carrent			250	μΛ	V_{DS} = 44V, V_{GS} = 0V, T_J = 150°C
loss	Gate-to-Source Forward Leakage			200	nA -	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-200		$V_{GS} = -20V$
Qg	Total Gate Charge		170	260		I _D = 101A
Qgs	Gate-to-Source Charge		44	66	nC	V _{DS} = 44V
Q _{gd}	Gate-to-Drain ("Miller") Charge		62	93		V _{GS} = 10V⊕
t _{d(on)}	Turn-On Delay Time		13			V _{DD} = 38V
t _r	Rise Time		190		ns	I _D = 110A
t _{d(off)}	Turn-Off Delay Time		130		1115	$R_G = 1.1\Omega$
t _f	Fall Time		110			V _{GS} = 10V ④
L _D	Internal Drain Inductance		4.5			Between lead,
בט	memai brain maactanee		4.0		nH	6mm (0.25in.)
1 -	Internal Source Inductance		7.5		''''	from package
L _S	internal Source inductance		1.5			and center of die contact
C _{iss}	Input Capacitance		5480			$V_{GS} = 0V$
Coss	Output Capacitance		1210		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		280			f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		5210			$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		900			$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance ⑤		1500			V _{GS} = 0V, V _{DS} = 0V to 44V

Source-Drain Ratings and Characteristics

	3						
	Parameter	Min.	тур.	Max.	Units	Conditions	
Is	Continuous Source Current			100@		MOSFET symbol	
	(Body Diode)			169®	A	showing the	
I _{SM}	Pulsed Source Current			600		integral reverse	
	(Body Diode) ①			680		p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 101$ A, $V_{GS} = 0$ V ④	
t _{rr}	Reverse Recovery Time		88	130	ns	$T_J = 25$ °C, $I_F = 101$ A	
Qrr	Reverse RecoveryCharge		250	380	nC	$di/dt = 100A/\mu s$ ④	
t _{on}	Forward Turn-On Time	Time Intrinsic turn-on time is negligible (turn-on is dominated by L_S +					

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Starting $T_J = 25^{\circ}\text{C}$, L = 0.11mH $R_G = 25\Omega$, $I_{AS} = 101A$. (See Figure 12).
- ③ $I_{SD} \le 101A$, $di/dt \le 210A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_{J} \le 175$ °C
- ⓐ Pulse width ≤ 400 μ s; duty cycle ≤ 2%.
- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
- $\ \ \,$ Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.

DT5 - Modèle multiphysique en boucle ouverte de la chaîne d'énergie

Page 34

DT6 - Charnière CFA65-ERS-SH6

CFA-ERS

Hinges with friction brake

Technopolymer

MATERIAL

High-resilience polyamide based (PA) technopolymer, black colour, matte finish.

ROTATING PIN

Black-oxide steel.

STANDARD EXECUTION

Pass-through holes for countersunk head screws.

ADJUSTABLE HANDLE FOR CLAMPING

Glass-fibre reinforced polyamide based (PA) technopolymer, black colour, matte finish.

Red writing "PUSH" tampoprinted on the lever body (avoid contact with solvents, alcohol or detergents containing alcohol).

Black-oxide steel retaining screw, AISI 302 stainless steel return spring.

Boss with threaded blind hole in black-oxide steel (CFA.49 and CFA.65) or brass (CFA.97).

ROTATION ANGLE (APPROXIMATE VALUE)

Max 215° (-35° and +180° being 0° the condition where the two interconnected surfaces are on the same plane).

Do not exceed the rotation angle limit so as not to prejudice the hinge mechanical peformance.

FEATURES AND APPLICATIONS

CFA-ERS hinge with friction brake allows to adjust the door open and close desired positions, and also the door clamping in any position within the rotation angle of 215°.

INSTRUCTIONS OF USE

The friction effect is obtained by clamping the two hinged bodies using the special adjustable handle.

To operate the adjusting mechanism, push down the lever (PUSH). By releasing the lever, the spring releases the toothing, thus the handle can return to its starting position and the lever can rotate freely together with the door without obstructing the movement, even in case of accidental shock.

The high number of teeth within the adjustable handle guarantees rotation even in case of very limited movement of the lever arm.

To choose the convenient type and the right number of hinges for your application, see the Guidelines (on page 1368).

For strength data, see the correspondent products of the series CFA. (see page 1370).

FMdesign

Code	Description	L	В	Lı	f±0.25	f1±0.25	Н	h1	h2	h3	h4	b1	R	d3	d4	$\Delta \Delta$
422134	CFA.49-ERS-SH-5	49.5	48	52	30	31	19	13	11	29	36	17	44	5.5	10	40
422234	CFA.65-ERS-SH-6	65	64	52	40	40	23	15	13.5	29	36	24	44	6.5	11.5	75
422334	CFA.97-ERS-SH-10	96.5	97.5	73.5	59.5	62.5	35	23	20.5	37	48	35	63	10.5	20	240

Hinges

Technopolymer

MATERIAL

High-resilience polyamide based (PA) technopolymer, black colour, matte finish. Grey RAL 7040 (C33) only for CFA-SH execution.

ROTATING PIN

AISI 303 stainless steel.

STANDARD EXECUTIONS

- CFA-B: nickel-plated brass bosses with threaded hole.
- CFA-p: nickel-plated steel threaded studs.
- CFA-SH: pass-through holes for countersunk head screws.
- CFA-TI-SH: pass-through holes for countersunk head screws and rear housing to accommodate the head of threaded inserts.
- CFA-CH: pass-through holes for cylindrical head screws.
- CFA-B-p: nickel-plated brass bosses with threaded hole and nickelplated steel threaded studs.
- CFA-B-SH: nickel-plated brass bosses with threaded hole and pass-through holes for countersunk head screws.
- CFA-B-CH: nickel-plated brass bosses with threaded hole and pass-through holes for cylindrical head screws.
- CFA-p-SH: nickel-plated steel threaded studs pass-through holes for countersunk head screws.
- CFA-p-CH: nickel-plated steel threaded studs and pass-through holes for cylindrical head screws.

FM design

CFA-B

Code	Description	L	В	d1	h	f ±0.25	f1 ±0.25	Н	h1	h2	b 1	d	C# [Nm]	Δ'Δ
422391	CFA.40 B-M4	39.5	38.5	M4	6.5	25	25	14	9.5	9.5	14	3	5	23
422111	CFA.49 B-M5	49.5	48	M5	8.5	30	31	19	13	11	17	4	5	39
422113	CFA.49 B-M6	49.5	48	M6	8	30	31	19	13	11	17	4	5	38
422211	CFA.65 B-M6	65	64	M6	9	40	40	23	15	13.5	24	5	5	85
422311	CFA.97 B-M10	96.5	97.5	M10	15	59.5	62.5	35	23	20.5	35	8	5	306

CFA-p

Code	Description	L	В	d2	ı	f±0.25	f1 ±0.25	н	h1	h2	b1	d	C# [Nm]	7.7
422121	CFA.49 p-M5x14	49.5	48	M5	14	30	31	19	13	11	17	4	5	45
422221	CFA.65 p-M6x18	65	64	M6	18	40	40	23	15	13.5	24	5	5	90
422321	CFA.97 p-M10x20	96.5	97.5	M10	20	59.5	62.5	35	23	20.5	35	8	5	330

CFA-SH

Code	Description	L	В	f±0.25	f1±0.25	Н	h1	h2	b1	d	d3	d4	C# [Nm]	Δ'Δ
422411	CFA.40 SH-4	39.5	38.5	25	25	14	9.5	9.5	14	3	4.5	8.5	1	14
422131	CFA.49 SH-5	49.5	48	30	31	19	13	11	17	4	5.5	10	2	29
422231	CFA.65 SH-6	65	64	40	40	23	15	13.5	24	5	6.5	12.5	3	62
422331	CFA.97 SH-10	96.5	97.5	59.5	62.5	35	23	20.5	35	8	10.5	20	5	221

CFA-TI-SH

Code	Description	L	В	d6	f±0.25	f1±0.25	н	h1	h2	h4	b1	d	d3	d4	d6	C# [Nm]	Δ'Δ
422416	CFA.40 TI-SH-4	39.5	38.5	10	25	25	14	9.5	9.5	1.3	14	3	4.5	8.5	-	1	14
422136	CFA.49 TI-SH-5	49.5	48	11	30	31	19	13	11	1.5	17	4	5.5	10	11	2	29
422237	CFA.65 TI-SH-6	65	64	13	40	40	23	15	13.5	1.8	24	5	6.5	12.5	13	3	62

DT7 - Présentation du code EAN 8

Présentation:

Les codes EAN 8 sont des code-barres EAN à 8 chiffres et ils sont une version abrégée des codes-barres EAN 13. Ils sont régis par un système global établi par l'European Article Numbering pour l'identification univoque d'objets.

Sous forme de codes à barres, ces numéros peuvent être lus par un scanner optique.

Un code EAN 8 se compose de 8 chiffres :

- Les 7 premiers sont les chiffres utiles (usable digit).
- Le huitième est la clé de contrôle (check digit).

Codage des chiffres :

Le codage de chacun des chiffres (usable digit et check digit) se fait à l'aide de codes binaires de 7 bits affichés dans deux tables de correspondance.

Suivant la position du chiffre dans le code, le codage est différent.

Pour coder les quatre premiers chiffres, on utilise les codes binaires de gauche et pour les quatre chiffres suivants, on utilise les codes binaires de droite.

Chiffre	Gauche	Droite
0	0001101	1110010
1	0011001	1100110
2	0010011	1101100
3	0111101	1000010
4	0100011	1011100
5	0110001	1001110
6	0101111	1010000
7	0111011	1000100
8	0110111	1001000
9	0001011	1110100

Chaque **Zéro** logique est codé par une bande blanche de largeur élémentaire et chaque **Un** logique est codé par une bande noire de largeur élémentaire.

Zones de garde :

Un code-barres EAN 8 complet débute et se termine par une zone de garde normale qui est codée 101 et contient également une zone de garde centrale qui est codée 01010 et qui sépare les 4 premiers chiffres des 4 suivants.

Déchiffrement :

Le déchiffrement du code EAN 8 consiste en la lecture binaire des bandes verticales, qui peuvent alors être traduites via la table de correspondance.

Calcul de la clé de contrôle EAN 8 :

Le calcul de la clé de contrôle se fait uniquement sur les sept premiers chiffres suivant le principe suivant.

- A chaque chiffre utile, on associe un poids en alternant les poids entre 3 et 1.
 - o On a donc respectivement les poids 3, 1, 3, 1, 3, 1, 3.
- On multiplie le poids et le chiffre correspondant.
- On additionne l'ensemble des résultats partiels.
- On détermine le reste de la division euclidienne par 10.

- La clé est obtenue par la soustraction suivante : 10 reste.
 - o Si le reste est égal à 0, la clé est 0.

A titre d'exemple, avec le code **47 19 51 2**, la clé de contrôle est égale à **7**.

Le code EAN 8 complet s'écrit alors : 47 19 51 27.

DT8 - Code EAN 8 de la version du GUS

