Examen E1 (temes 2 i 3)

- Duració de l'examen: 1 hora 15 minuts
- La solució de cada exercici cal fer-la en l'espai reservat en el mateix enunciat
- No podeu usar calculadora, mòbil, apunts, etc
- La solució de l'examen es publicarà en Atenea per la tarda, les notes el 6 Octubre

Exercici 1 (Objectiu 2.4) (1,5 punts)

Cada fila de la tabla tiene 3 columnas con: el vector X de 8 bits, X expresado en hexadecimal y el valor en decimal, Xu, que representa X interpretado como un número natural codificado en binario. Completa todas las casillas vacías.

X	X (hexa)	Xu
11110000		
	CD	
01010101		
		123

Exercici 2 (Objectius 2.1 i 2.2) (0,5 punts)

Escribid la fórmula que da el valor del número natural Wu en función de los n dígitos que lo representan en el sistema convencional en base b: w_{n-1} , ..., w_1 , w_0 y el rango de los números naturales que se pueden representar.

Exercici 3 (Objectius 3.5 i 3.13) (3 punts)

Dado el esquema del siguiente circuito (incluida la tabla de verdad del bloque B), completad la tabla de verdad de la salida F y escribid el camino crítico (o uno de ellos si hay varios) y el tiempo de propagación de cada entrada a la salida. Se dan los tiempos de propagación de B en la tabla y los de cada puerta son: Tp(Not) = 10, Tp(And) = 30, Tp(Or) = 20 y Tp(Xor) = 50 u.t. Un camino se debe especificar como por ejemplo: x_2 - Or - And - Not - And - F.

x_1	X_0	F
0	0	
0	1	
1	0	
1	1	
0	0	
0	1	
1	0	
1	1	
	0 0 1 1 0 0	$\begin{array}{cccc} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ \end{array}$

В				
e	g	f	h	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	1	

Camino crítico de x2 a F:

 $Tp(x_2-F)$:

Camino crítico de x1 a F:

 $Tp(x_1-F)$:

Camino crítico de x₀ a F:

 $Tp(x_0-F)$:

Tp	f	h
е	10	30
g	20	20

Cognoms i Nom:DNI:DNI:

Exercici 4 (Objectius 3.6 3.8 3.11) (2 punts)

Per sintetitzar amb una única ROM el circuit que implementa les funcions lògiques descrites per la següent taula de veritat:

Quants senyals d'entrada ha de tenir la ROM ?:

Quants bits guardem en cada paraula de la ROM ?:

Dona l'expressió lògica de *g* com a suma de minterms.

X2	x_1	x_0	f	g	h
0	0	0	0	0	0
0	0	1	1	0	1
0	1	0	0	0	1
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	1	0	1
1	1	1	1	0	0

Sintetitza només la funció f amb una única ROM.

Sintetitza la funció *h* amb un decodificador i un nombre mínim de portes OR.

Exercici 5 (Objectiu 3.11) (1,5 punts)

Dibujad el mapa de Karnaugh dibujando las agrupaciones de unos adecuadas para obtener la expresión mínima en suma de productos de la función \boldsymbol{w} cuya tabla de verdad se da. Escribe la expresión mínima en suma de productos de \boldsymbol{w} .

X 3	X2	X1	X0	W
0	0	0	0	1
0	0	0	1	
0	0	1	1 0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0
1	1	1	1	0

Exercici 6 (Objectiu 3.12) (1,5 punts)

Completad el siguiente cronograma de las señales del esquema lógico sabiendo que los tiempos de propagación de las puertas son: Tp(Not) = 10, Tp(And) = 20, Tp(Or) = 20.

