Quiz 8

Cody Frisby

11/4/2016

8.26

First I display the ANOVA table with the full model

$$y_{ijk} = \mu + P_i + O_j + (PO)_{ij} + \varepsilon_{ijk} \begin{cases} i = 1, 2, ..., 10 \\ j = 1, 2 \\ k = 1, 2, 3 \end{cases}$$

Where P_i is the ith part and O_j is the jth operator.

	Df	$\operatorname{Sum}\operatorname{Sq}$	Mean Sq	F value	Pr(>F)
part	9	99.0166667	11.0018519	7.3345679	0.0000032
operator	1	0.4166667	0.4166667	0.2777778	0.6010725
part:operator	9	5.4166667	0.6018519	0.4012346	0.9270089
Residuals	40	60.0000000	1.5000000	NA	NA

It can be seen that the interaction term (as well as the operator term) is not significant. I suggest we fit a reduced model that drops this term.

$$y_{ijk} = \mu + P_i + O_j + \varepsilon_{ijk} \begin{cases} i = 1, 2, ..., 10 \\ j = 1, 2 \\ k = 1, 2, 3 \end{cases}$$

and the ANOVA table from the reduced model is shown here.

Sum Sq	Mean Sq	F value	$\Pr(>F)$
99.0166667 0.4166667	11.0018519 0.4166667	0.3121019	0.0000002 0.5789374 NA
	99.0166667	99.0166667 11.0018519 0.4166667 0.4166667	99.0166667 11.0018519 8.2408776 0.4166667 0.4166667 0.3121019

With the reduced model, we can estimate gauge repeatibility with $\hat{\sigma}^2$ wich is simply the mean square error of our model, **1.335034**.

We can estimate gauge reproducibility with

$$\sigma_{Reproducibility}^2 = \sigma_O^2 = 0$$

where

$$\sigma_O^2 = \frac{MS_{operator} - MS_{Error}}{an}$$

and a = 10 and n = 3, and if it is less than zero we assume it to be zero.