Kalman Filter

1

• If the observation function $h(\,\cdot\,)$ is linear, then

$$y = \underline{Hx} + \underline{n}$$

where \underline{y} is a linear function of h but with some added noise.

Then
$$\underline{\hat{x}} = \underline{L}\underline{y}$$

where $\underline{L} = \underline{H}^{-1}$

3

Kalman Filter

y: observation

x: state

n: random noise (measurement noise

$$\underline{n} \sim \mathcal{N}(0,\underline{R})$$

$$y = h(\underline{x}) + \underline{n}$$

The estimation problem $\hat{x} = \mathcal{L}(y)$

 \hat{x} : estimate

 \mathscr{L} : estimator

2

Over constrained System

- If \underline{H} has more rows than the number of columns then there is no inverse of \underline{H} .
- But we can find the best $\hat{\underline{x}}$ such that the residue $|\underline{y}-\underline{H}\hat{x}|$ is as small as possible.
- The best estimator for a linear observation function happens to be a linear function.
- . We denote the residue as $\underline{n} = y \underline{H}\hat{x}$

- Different equations can have noise terms of different variance.
 So some equations may be more reliable.
- We formulate minimisation of the norm of Wn where W is a matrix as

$$\|\underline{W}\underline{n}\|^2 = \underline{n}^{\mathsf{T}}\underline{W}^{\mathsf{T}}\underline{W}\underline{n}$$

which is equivalent to solving the system

$$\underline{W}y = \underline{W}\underline{H}\underline{x}$$

because
$$\underline{Wn} = \underline{W}(y - \underline{Hx}) = \underline{Wy} - \underline{WHx}$$

- . That is we want to solve $\underline{W}y = \underline{W}\underline{H}\underline{x}$ subject to minimising $\|\underline{W}y \underline{W}\underline{H}\underline{x}\|^2$

$$\frac{df}{d\underline{x}} = 2\underline{A}^{\mathsf{T}}\underline{A} * \underline{x} - 2A^{\mathsf{T}}b = 0$$

- Therefore $\underline{A}^{\mathsf{T}}\underline{A}\underline{x} = \underline{A}^{\mathsf{T}}\underline{b}$ or $\underline{\hat{x}} = (\underline{A}^{\mathsf{T}}A)^{-1}\underline{A}^{T}\underline{b}$
- . The given system of equations $\underline{WHx} = \underline{Wy}$ Substituting $\underline{A} \equiv \underline{WH}$ and $\underline{b} \equiv \underline{Wy}$ in $\hat{\underline{x}} = (\underline{A}^{\mathsf{T}}A)^{-1}\underline{A}^{T}\underline{b}$
- $\hat{\underline{x}} = \left((\underline{W}\underline{H})^{\mathsf{T}} \underline{W}\underline{H} \right)^{-1} (\underline{W}\underline{H})^{\mathsf{T}} \underline{W}\underline{y} = (\underline{H}^{\mathsf{T}} \underline{W}^{\mathsf{T}} \underline{W}\underline{H})^{-1} \underline{H}^{\mathsf{T}} \underline{W}^{\mathsf{T}} \underline{W}\underline{y}$ $= (\underline{H}^{\mathsf{T}} R^{-1} \underline{H})^{-1} (\underline{H}^{\mathsf{T}} \underline{R}^{-1}) \underline{y}$

• Consider the standard notation for a system of equations $\underline{A}\underline{x} = \underline{b}$ to be solved for $\hat{\underline{x}}$ so as to minimise $\|\underline{b} - \underline{A}\underline{x}\|^2$

• The objective to be minimised can be re-written as $\|\underline{A}\underline{x} - \underline{b}\|^2$ or

$$(\underline{A}\underline{x} - \underline{b})^{\mathsf{T}}(\underline{A}\underline{x} - \underline{b})$$
 or $(\underline{x}^{\mathsf{T}}\underline{A}^{\mathsf{T}} - \underline{b}^{T})(\underline{A}\underline{x} - \underline{b})$

$$\begin{split} \bullet \quad \text{Or} \, f &\equiv (\underline{x}^{\mathsf{T}}\underline{A}^{T}\underline{A}\underline{x} - \underline{x}^{T}\underline{A}^{\mathsf{T}}\underline{b} - \underline{b}^{T}\underline{A}\underline{x} + \underline{b}^{T}\underline{b}) \\ & \frac{df}{dx} = 2\underline{A}^{\mathsf{T}}\underline{A}\underline{x} - \underline{A}^{\mathsf{T}}\underline{b} - \underline{A}^{\mathsf{T}}\underline{b} + 0 \end{split}$$

6

- $\underline{\it R}$ is the covariance matrix of the measurement noise.
- Entries in \underline{R} which correspond to a large variance or covariance will translate to smaller entries in the \underline{W} matrix.

$$\underline{R}^{-1} = \underline{W}^{\mathsf{T}}\underline{W}$$

Quality of the estimator

- The size of the covariance matrix should be small.
- . Covariance matrix $\underline{P} = \mathbb{E}\left[(x \hat{x})(x \hat{x})^T \right]$
- A smaller norm of \underline{P} implies reduced uncertainty or fluctuations
- The estimate \hat{x} should be unbiased

$$\mathbb{E}\left[\underline{x} - \hat{\underline{x}}\right] = 0$$

. For a linear estimator $\underline{\hat{x}} = \underline{L}y$ corresponding to the system $y = \underline{H}\underline{x} + \underline{n}$

$$\mathbb{E}\left[\underline{x} - \hat{\underline{x}}\right] = \mathbb{E}\left[\underline{x} - L\underline{y}\right] = \mathbb{E}\left[\underline{x} - L(\underline{H}\underline{x} + \underline{n})\right] = \mathbb{E}\left[\left(\underline{I} - \underline{L}\underline{H}\right)\underline{x}\right] - \mathbb{E}\left[\underline{L}\underline{n}\right] = 0$$

The covariance matrix of our estimate

$$\underline{P} = \mathbb{E}\left[(\underline{x} - \underline{\hat{x}})(\underline{x} - \underline{\hat{x}})^{\top}\right]$$
$$= \mathbb{E}\left[(\underline{x} - \underline{L}\underline{y})(\underline{x} - \underline{L}\underline{y})^{\top}\right]$$

. Substituting $\underline{y} = \underline{H}\underline{x} + \underline{n}$ we have

$$\begin{split} &= \mathbb{E}\left[(\underline{x} - \underline{L}\underline{H}\underline{x} - \underline{L}\underline{n}) \; (\underline{x} - \underline{L}\underline{H}\underline{x} - \underline{L}\underline{n})^{\top} \right] \\ &= \mathbb{E}\left[\left[(\underline{I} - \underline{L}\underline{H})\underline{x} - \underline{L}\underline{n} \right] \; \left[(\underline{I} - \underline{L}\underline{H})\underline{x} - \underline{L}\underline{n} \right]^{\top} \right] = \mathbb{E}\left[(\underline{L}\underline{n}) \; (\underline{L}\underline{n}]^{\top} \right] \end{split}$$

•
$$\mathbb{E}\left[\left(\underline{I} - \underline{L}\underline{H}\right)\underline{x}\right] = 0$$

or $\left(\underline{I} - \underline{L}\underline{H}\right)\mathbb{E}\left[\underline{x}\right] = 0$
 $\therefore \underline{I} = \underline{L}\underline{H} \text{ or } \underline{L}\underline{H} = \underline{I}$

•
$$\mathbb{E}\left[\underline{\hat{x}}\right] = \underline{x}$$

 $\begin{aligned} \bullet &= \mathbb{E} \left[\underline{L} \underline{n} \underline{n}^{\top} \underline{L} \right] \\ &= \underline{L} \, \mathbb{E} \left[\underline{n} \underline{n}^{\top} \right] \, \underline{L} \\ &= \underline{L} \, \underline{R} \, \underline{L}^{\top} \end{aligned}$

We define $P \equiv \underline{L} R \underline{L}^{\mathsf{T}}$

- Here $\underline{\it R}$ is the covariance matrix of the measurement noise.
- Substituting for the estimator $\underline{L} = (\underline{H}^{\mathsf{T}} \underline{R}^{-1} \underline{H})^{-1} \underline{H}^{\mathsf{T}} \underline{R}^{-1}$ we get

11

•
$$P \equiv \underline{L}\underline{R}\underline{L}^{\mathsf{T}}$$

•
$$\underline{L} = (\underline{H}^{\top}\underline{R}^{-1}\underline{H})^{-1}\underline{H}^{\top}\underline{R}^{-1}$$

•
$$\underline{P} = (\underline{H}^{\mathsf{T}}\underline{R}^{-1}\underline{H})^{-1} \underline{H}^{\mathsf{T}}\underline{R}^{-1} \underline{R} \underline{R}^{-1}\underline{H} (\underline{H}^{\mathsf{T}}\underline{R}^{-1}\underline{H})^{-1}$$

$$= (\underline{H}^{\mathsf{T}}\underline{R}^{-1}\underline{H})^{-1} \underline{H}^{\mathsf{T}}\underline{R}^{-1}\underline{H} (\underline{H}^{\mathsf{T}}\underline{R}^{-1}\underline{H})^{-1}$$

$$= (\underline{H}^{\mathsf{T}}\underline{R}^{-1}\underline{H})^{-1}$$

13

Claim

• The estimator $\underline{L}=(\underline{H}^{\mathsf{T}}\underline{R}^{-1}\underline{H})^{-1}\,\underline{H}^{\mathsf{T}}\underline{R}^{-1}$ has the minimum norm covariance, given by $P\equiv\underline{L}\underline{R}\underline{L}^{\mathsf{T}}$. We denote this optimal estimator as L_0 $\underline{L}_0=\underline{P}\underline{H}^{\mathsf{T}}\underline{R}^{-1}$

Proof:

We know that
$$\underline{L}_0 = (\underline{H}^{\top}\underline{R}^{-1}\underline{H})^{-1}\underline{H}^{\top}\underline{R}^{-1}$$
 is the solution to the normal equations $\underline{W}\underline{H}\underline{x} = \underline{W}\underline{y}$

 Here we have used the result that the inverse of a symmetric and invertible matrix will also be symmetric.

That is, given $A^{\top} = A$ and A^{-1} exists we have

$$A^{-1}A = I$$

Taking transpose of both sides $(A^{-1}A)^{\top} = A^{\top}(A^{-1})^{\top} = I^{\top} = I$

Premultiplying both sides by A^{-1}

$$A^{-1}A\,(A^{-1})^\top = A^{-1}\,I$$

$$I(A^{-1})^{\mathsf{T}} = A^{-1}I$$
 or $(A^{-1})^{\mathsf{T}} = A^{-1}$ Therefore A^{-1} is symmetric.

14

- . The covariance matrix for estimator L_0 is $\quad \underline{L}_0 \underline{R} \underline{L}_0^\top \equiv \underline{P}$
- \underline{L}_0 is an unbiased estimator.

So
$$\underline{L}_0 \underline{H} = \underline{I}$$

- Now consider an alternative unbiased estimator \underline{L}
- . We trivially write $\underline{L} = \underline{L}_0 + (\underline{L} \underline{L}_0)$
- The covariance matrix for \underline{L} is given by

$$\underline{P} = \underline{L}\underline{R}\underline{L}^{\mathsf{T}}$$

16

$$\begin{split} \bullet \ \ \underline{P} &= \underline{L}\underline{R}\underline{L}^{\top} \\ &= (\underline{L}_0 + (\underline{L} - \underline{L}_0)) \ \underline{R} \ (\underline{L}_0 + (\underline{L} - \underline{L}_0))^{\top} \\ &= \underline{L}_0 \underline{R}\underline{L}_0^{\top} + (\underline{L} - \underline{L}_0)\underline{R}\underline{L}_0^{\top} + \underline{L}_0 \underline{R}(\underline{L} - \underline{L}_0)^{\top} + (\underline{L} - \underline{L}_0)\underline{R}(\underline{L} - \underline{L}_0)^{\top} \end{split}$$

•
$$\underline{L}_0^{\mathsf{T}} = (\underline{H}^{\mathsf{T}} R^{-1})^{\mathsf{T}} (\underline{H}^{\mathsf{T}} R^{-1} \underline{H})^{-1^{\mathsf{T}}}$$

$$= R^{-1^{\mathsf{T}}} \underline{H} (\underline{H}^{\mathsf{T}} R^{-1} \underline{H})^{-1}$$

$$= R^{-1} \underline{H} (\underline{H}^{\mathsf{T}} R^{-1} \underline{H})^{-1}$$

1/

$$\begin{split} \text{. Since } &(\underline{L}-\underline{L}_0)\underline{R}\underline{L}_0^\top=0\\ &\left((\underline{L}-\underline{L}_0)\underline{R}\underline{L}_0^\top\right)^\top=0\\ &\text{ or } \left((\underline{L}-\underline{L}_0)\underline{R}\underline{L}_0^\top\right)^\top=0\\ &\underline{L}_0\underline{R}\,(\underline{L}-\underline{L}_0)^\top=0\\ &\underline{L}_0\underline{R}\,(\underline{L}-\underline{L}_0)^\top=0\\ &\underline{P}=\underline{L}_0\underline{R}\underline{L}_0^\top+(\underline{L}-\underline{L}_0)\underline{R}\underline{L}_0^\top+\underline{L}_0\underline{R}(\underline{L}-\underline{L}_0)^\top+(\underline{L}-\underline{L}_0)\underline{R}(\underline{L}-\underline{L}_0)^\top\\ &=\underline{L}_0\underline{R}\underline{L}_0^\top+(\underline{L}-\underline{L}_0)\underline{R}(\underline{L}-\underline{L}_0)^\top \end{split}$$

$$\bullet \ \underline{R}\underline{L}_0^\top = \underline{R}R^{-1}\underline{H}\ (\underline{H}^\top R^{-1}\underline{H})^{-1} = \underline{H}\ (\underline{H}^\top R^{-1}\underline{H})^{-1}$$

• Since L and L_0 are unbiased estimators

$$\underline{L}\underline{H} - \underline{L}_0\underline{H} = \underline{I}$$

$$\cdot \quad \therefore \quad (\underline{L} - \underline{L}_0) \underline{R} \underline{L}_0^{\mathsf{T}} = 0$$

18

•
$$\underline{P} = \underline{L}_0 \underline{R} \underline{L}_0^{\mathsf{T}} + (\underline{L} - \underline{L}_0) \underline{R} (\underline{L} - \underline{L}_0)^{\mathsf{T}}$$

- This is the sum of two positive semi-definite matrices.
- For such matrices, the norm of the sum is greater than or equal to either norm.
- The norm of \underline{P} will be minimised when the 2nd term on the RHS vanishes when $L=L_0$
- Therefore, the estimator $\underline{L}_0 = (\underline{H}^{\mathsf{T}}\underline{R}^{-1}\underline{H})^{-1}\,\underline{H}^{\mathsf{T}}\underline{R}^{-1}$ has the minimum covariance, given by $\underline{P} = (\underline{H}^{\mathsf{T}}R^{-1}\underline{H})^{-1}$

- . In fact, $\underline{L}_0 = \underline{P}\underline{H}^{\top}\underline{R}^{-1}$ in terms of \underline{P}
- So far we have seen how to estimate the state $\hat{\underline{x}}$ given the measurement equation.

$$\underline{y} = \underline{H}\underline{x} + \underline{n} \qquad \underline{n} \sim \mathcal{N}(0, \mathbb{R})$$

$$\hat{\underline{x}} = \underline{P}\underline{H}^{\mathsf{T}}\underline{R}^{-1}\underline{y}$$

$$= \underline{L}\underline{y}$$

21

• In a linear dynamic system, the states update from one time tick to another.

State Update: $\underline{x}_{k+1} = \underline{F}_k \underline{x}_k + \underline{G}_k \underline{u}_k + \underline{\eta}_k$

Measurement: $\underline{y}_k = \underline{H}_k \underline{x}_k + \underline{\xi}_k$

• $\underline{\eta}_k \sim \mathcal{N}(0,\underline{\underline{Q}}_k)$ is the system noise

 $\underline{\xi}_{\scriptscriptstyle L} \sim \mathcal{N}(0,\underline{R}_{\scriptscriptstyle k})$ is the measurement noise

Dynamic System

- At every time tick there are 2 evidences which determine the current state.
 - Contribution (evidence) from the previous state, through state update
 - Evidence from the measurement made at the current time tick.
 (state update from observing the evidence)
- Notation

 $\hat{\underline{x}}_{k|k-1}$ state estimate at time k given the measurements up to time k-1 $\hat{\underline{x}}_{k|k}$ state estimate after taking account the measurement up to time tick k \hat{y}_k predicted observation at time tick k

2

Update Step

- There are two sources that provide estimate to the state \hat{x}_k

2. Evidence from the new measurement

$$\underline{y}_k = \underline{H}_k \underline{x}_k + \underline{\xi}_k$$

$$R_k = \mathbb{E}[\xi_k \xi_k^\top]$$

• There are two sources that provide estimate to the state $\hat{\underline{x}}_k$

1. Estimate from the state propagation $\hat{\underline{x}}_{k|k-1}$

$$\underline{\hat{x}}_{k|k-1} = \underline{x}_k + \underline{e}_k$$

The estimate $\hat{\underline{x}}_{k|k-1}$ is considered to have a random deviation or error from the true state \underline{x}_k

The covariance $P_{k|k-1}$ of the error term summarises the uncertainty of prediction $\hat{\underline{x}}_{k|k-1}$ given the past history of measurements.

$$P_{k|k-1} = \mathbb{E}[\underline{e_k}e_k^\top]$$

26

- . Given the evidences about the unknown true state \underline{x}_k our task is to compute an estimate $\underline{\hat{x}}_k$ of \underline{x}_k
- We collect the two evidences

$$\hat{x}_{k|k-1} = \underline{x}_k + \underline{e}_k$$

$$\underline{y}_k = \underline{H}_k \underline{x}_k + \underline{\xi}_k$$

to form a system of equations

$$\underline{y} = \underline{H}\underline{x}_k + \underline{n}$$

•
$$\underline{y} = \underline{H}\underline{x}_k + \underline{n}$$

$$\underline{y} = \begin{bmatrix} \hat{\underline{x}}_{k|k-1} \\ \underline{y}_{\underline{k}} \end{bmatrix} \qquad \underline{H} = \begin{bmatrix} \underline{I} \\ \underline{H}_{\underline{k}} \end{bmatrix} \qquad \underline{n} = \begin{bmatrix} \underline{e}_{k} \\ \underline{n}_{\underline{k}} \end{bmatrix}$$

$$\hat{x}_{k|k-1} = \underline{I}\underline{x}_k + \underline{e}_k$$

$$\underline{y}_{k} = \underline{H}_{k}\underline{x}_{k} + \underline{\xi}_{k}$$

. The solution to the estimation problem $\underline{y} = \underline{H}_k \underline{x}_k + \underline{n} \,$ is

$$\underline{\hat{x}}_{k|k} = \underline{P}_{k|k} \underline{H}^{\mathsf{T}} \underline{R}^{-1} \underline{y}$$

$$\underline{P}_{k|k} = (\underline{H}^{\mathsf{T}} \underline{R}^{-1} \underline{H})^{-1}$$

This is the update stage of the Kalman Filter

Simplification

$$\underline{P}_{k|k}^{-1} = \underline{H}^{\top} \underline{R}^{-1} \underline{H}$$

$$= \begin{bmatrix} I & \underline{H}_k^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \underline{P}_{k|k-1}^{-1} & 0 \\ 0 & \underline{R}_k^{-1} \end{bmatrix} \quad \begin{bmatrix} \underline{I} \\ \underline{H}_k \end{bmatrix}$$

$$=\underline{P}_{k|k-1}^{-1}+\underline{H}_{k}^{\mathsf{T}}\underline{R}_{k}^{-1}\underline{H}_{k}$$

The covariance matrix of the vector $\underline{n} = \begin{bmatrix} \underline{e}_k \\ \underline{\xi}_k \end{bmatrix}$ is formulated as

$$R = \begin{bmatrix} \underline{P}_{k|k-1} & 0 \\ 0 & \underline{R}_k \end{bmatrix}$$

Here we assume that the two noise vectors are independent.

. The formulation $y = \underline{H}\underline{x}_k + \underline{n}$ is a classical estimation problem.

30

Simplifying the posterior estimate

$$\hat{\underline{x}}_{k|k} = \underline{P}_{k|k}\underline{H}^{\mathsf{T}}\underline{R}^{-1}\underline{y}$$

$$= \underline{P}_{k|k} \begin{bmatrix} \underline{I} & \underline{H}_k^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \underline{P}_{k|k-1}^{-1} & 0 \\ 0 & \underline{R}_k^{-1} \end{bmatrix} \begin{bmatrix} \underline{\hat{x}}_{k|k-1} \\ \underline{y}_k \end{bmatrix}$$

$$= \underline{P}_{k|k} \begin{bmatrix} \underline{P}_{k|k-1}^{-1} & \underline{H}_{k}^{\mathsf{T}} \underline{R}_{k}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\underline{x}}_{k|k-1} \\ \underline{y}_{k} \end{bmatrix}$$

$$= \underline{P}_{k|k} \left(\underline{P}_{k|k-1}^{-1} \hat{\underline{x}}_{k|k-1} + \underline{H}_{k}^{\mathsf{T}} \underline{R}_{k}^{-1} \underline{y}_{k} \right)$$

$$\begin{split} & \cdot \ \, \hat{\underline{x}}_{k|k} = \underline{P}_{k|k} \underline{H}^{\intercal} \underline{R}^{-1} \underline{y} \\ & = \underline{P}_{k|k} \left(\left(\underline{P}_{k|k}^{-1} - \underline{H}_{k}^{\intercal} \underline{R}_{k}^{-1} \underline{H}_{k} \right) \hat{\underline{x}}_{k|k-1} + \underline{H}_{k}^{\intercal} \underline{R}_{k}^{-1} \underline{y}_{k} \right) \\ & = \left(\underline{I} - \underline{P}_{k|k} \underline{H}_{k}^{\intercal} \underline{R}_{k}^{-1} \underline{H}^{k} \right) \hat{\underline{x}}_{k|k-1} + \underline{P}_{k|k} \underline{H}_{k}^{\intercal} \underline{R}_{k}^{-1} \underline{y}_{k} \\ & = \hat{\underline{x}}_{k|k-1} - \underline{P}_{k|k} \underline{H}_{k}^{\intercal} \underline{R}_{k}^{-1} \underline{H}^{k} \hat{\underline{x}}_{k|k-1} + \underline{P}_{k|k} \underline{H}_{k}^{\intercal} \underline{R}_{k}^{-1} \underline{y}_{k} \\ & = \hat{\underline{x}}_{k|k-1} + \left(\underline{P}_{k|k} \underline{H}_{k}^{\intercal} \underline{R}_{k}^{-1} \right) \left(\underline{y}_{k} - \underline{H}_{k} \hat{\underline{x}}_{k|k-1} \right) \end{split}$$