Lógica con Lean

José A. Alonso Jiménez

Grupo de Lógica Computacional Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Sevilla, 1 de octubre de 2020

Esta obra está bajo una licencia Reconocimiento-NoComercial-Compartirlgual 2.5 Spain de Creative Commons.

Se permite:

- copiar, distribuir y comunicar públicamente la obra
- hacer obras derivadas

Bajo las condiciones siguientes:

Reconocimiento. Debe reconocer los créditos de la obra de la manera especificada por el autor.

No comercial. No puede utilizar esta obra para fines comerciales.

Compartir bajo la misma licencia. Si altera o transforma esta obra, o genera una obra derivada, sólo puede distribuir la obra generada bajo una licencia idéntica a ésta.

- Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra.
- Alguna de estas condiciones puede no aplicarse si se obtiene el permiso del titular de los derechos de autor.

Esto es un resumen del texto legal (la licencia completa). Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-sa/2. 5/es/ o envie una carta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Índice general

1	Introducción				
2	Lógi	ica proposicional			
	2.1	Regla	s del condicional	7	
		2.1.1	Regla de eliminación del condicional en $P \rightarrow Q$, $P \vdash Q$	7	
		2.1.2	Pruebas de P, P \rightarrow Q, P \rightarrow (Q \rightarrow R) \vdash R	9	
		2.1.3	Regla de introducción del condicional en P → P	10	
		2.1.4	Pruebas de P \rightarrow (Q \rightarrow P)	12	
			Pruebas del silogismo hipotético: $P \rightarrow Q$, $Q \rightarrow R \vdash P \rightarrow R$		
	2.2	Regla	s de la conjunción	16	
		2.2.1	Reglas de la conjunción en P ∧ Q, R ⊢ Q ∧ R	16	
			Pruebas de P Λ Q \rightarrow Q Λ P		
	2.3	Regla	s de la negación	22	
		2.3.1	Reglas de la negación con $(\bot \vdash P)$, $(P, \neg P \vdash \bot)$ y $\neg (P \land \neg P)$	22	
		2.3.2	Pruebas de P \rightarrow Q, P \rightarrow \neg Q \vdash \neg P	25	
		2.3.3	Pruebas del modus tollens: $P \rightarrow Q$, $\neg Q \vdash \neg P$	28	
		2.3.4	Pruebas de P \rightarrow (Q \rightarrow R), P, \neg R $\vdash \neg$ Q	31	
		2.3.5	Pruebas de P \rightarrow Q $\vdash \neg Q \rightarrow \neg P$	33	
		2.3.6	Regla de introducción de la doble negación: $P \vdash \neg \neg P$	36	
		2.3.7	Pruebas de $\neg Q \rightarrow \neg P \vdash P \rightarrow \neg \neg Q$	37	
	2.4	Regla	s de la disyunción	40	
		2.4.1	Reglas de introducción de la disyunción	40	
		2.4.2	Regla de eliminación de la disyunción	44	
		2.4.3	Pruebas de P v Q \vdash Q v P	46	
		2.4.4	Pruebas de Q \rightarrow R \vdash P v Q \rightarrow P v R	48	
		2.4.5	Pruebas de $\neg P \lor Q \vdash P \rightarrow Q \ldots$	51	
	2.5	Regla	s del bicondicional	54	
		2.5.1	Regla de introducción del bicondicional en P Λ Q \leftrightarrow Q Λ P .	54	
		2.5.2	Reglas de eliminación del bicondicional en P ↔ Q, P v Q ⊢		
			ΡΛΟ	57	

4 Índice general

	2.6	2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6	s de la lógica clásica	60 62 63 67 71 72			
3	Lógica de primer orden 79						
	3.1	Regla	s del cuantificador universal	79			
		3.1.1	Regla de eliminación del cuantificador universal	79			
			Regla de introducción del cuantificador universal				
			s del cuantificador existencial				
		_	Regla de introducción del cuantificador existencial				
			Regla de eliminación del cuantificador existencial				
	3.3		cios sobre cuantificadores				
		2 2 1	Pruphas do $\neg \forall v P(v) \leftrightarrow \exists v \neg P(v)$	۵7			

Capítulo 1

Introducción

El objetivo de este trabajo es presentar una introducción a la Lógica usando Lean para usarla en las clases de la asignatura de Razonamiento automático del Máster Universitario en Lógica, Computación e Inteligencia Artificial de la Universidad de Sevilla. Por tanto, el único prerrequisito es, como en el Máster, cierta madurez matemática como la que deben tener los alumnos de los Grados de Matemática y de Informática.

El trabajo se basa fundamentalmente en

- El curso de "Lógica matemática y fundamentos en que se estudia la deducción natural proposicional y de primer orden (basado en el libro Logic in computer science: Modelling and reasoning about systems de Michael Huth y Mark Ryan) y su formalización en Isabelle/HOL.
- Los apuntes de Lógica y demostración con Lean que son un resumen del libro Logic and Proof de Jeremy Avigad, Robert Y. Lewis y Floris van Doorn.
- Los apuntes Deducción natural en Lean en el que se presentan ejemplos de uso de las tácticas de Lean correspondientes a las reglas de la deducción natural.
- Los apuntes Matemáticas en Lean en el que se presentan la formalización en Lean de temas básicos de las matemáticas usando las librerías de mathlib. Está basado en el libro Mathematics in Lean de Jeremy Avigad, Kevin Buzzard, Robert Y. Lewis y Patrick Massot.

La exposición se hará mediante una colección de ejercicios. En cada ejercicios se mostrarán distintas pruebas del mismo resultado y se comentan las tácticas conforme se van usando y los lemas utilizados en las demostraciones.

Además, en cada ejercicio hay tres enlaces: uno al código, otro que al pulsarlo abre el ejercicio en Lean Web (en una sesión del navegador) de forma

que se puede navegar por las pruebas y editar otras alternativas, y el tercero es un enlace a un vídeo explicando las soluciones del ejercicio.

El trabajo se desarrolla como un proyecto en GitHub que contiene libro en PDF. Además, los vídeos correspondientes a cada uno de los ejercicios se encuentran en YouTube.

Capítulo 2

Lógica proposicional

2.1. Reglas del condicional

2.1.1. Regla de eliminación del condicional en P → Q, P ⊢ O

```
-- Eliminación del condicional en Lean
-- Ej. 1. Demostrar que
-- (P \rightarrow Q), P \vdash Q.
import tactic
variables (P Q : Prop)
-- 1ª demostración
example
 (h1 : P \rightarrow Q)
  (h2 : P)
 : Q :=
begin
 apply h1,
 exact h2,
end
-- 2ª demostración
example
(h1 : P \rightarrow Q)
```

```
(h2 : P)
 : Q :=
begin
 exact h1 h2,
end
-- 3ª demostración
example
 (h1 : P \rightarrow Q)
 (h2 : P)
 : Q :=
by exact h1 h2
-- 4ª demostración
example
 (h1 : P \rightarrow Q)
 (h2 : P)
 : Q :=
h1 h2
-- 5ª demostración
example
 (h1 : P \rightarrow Q)
 (h2 : P)
 : Q :=
by tauto
-- 6ª demostración
example
 (h1 : P \rightarrow Q)
 (h2 : P)
  : Q :=
by finish
-- 7ª demostración
example
 (h1 : P \rightarrow Q)
 (h2 : P)
 : Q :=
by solve_by_elim
```

2.1.2. Pruebas de P, P \rightarrow Q, P \rightarrow (Q \rightarrow R) \vdash R

```
-- Pruebas de P, P \rightarrow Q, P \rightarrow (Q \rightarrow R) \vdash R
-- Ej 1. Demostrar que
-- P, P \rightarrow Q, P \rightarrow (Q \rightarrow R) \vdash R
import tactic
variables (P Q R : Prop)
-- 1ª demostración
example
  (h1 : P)
  (h2 : P \rightarrow Q)
  (h3 : P \rightarrow (Q \rightarrow R))
  : R :=
have h4 : Q,
  from h2 h1,
have h5 : Q \rightarrow R,
  from h3 h1,
show R,
  from h5 h4
-- 2ª demostración
example
  (h1 : P)
  (h2 : P \rightarrow Q)
  (h3 : P \rightarrow (Q \rightarrow R))
  : R :=
have h4 : Q := h2 h1,
have h5 : Q \rightarrow R := h3 h1,
show R, from h5 h4
-- 3ª demostración
example
  (h1 : P)
  (h2 : P \rightarrow Q)
  (h3 : P \rightarrow (Q \rightarrow R))
  : R :=
show R, from (h3 h1) (h2 h1)
```

```
-- 4^{\circ} demostración

example

(h1 : P)

(h2 : P \rightarrow Q)

(h3 : P \rightarrow (Q \rightarrow R))

: R :=

(h3 h1) (h2 h1)

-- 5^{\circ} demostración

example

(h1 : P)

(h2 : P \rightarrow Q)

(h3 : P \rightarrow (Q \rightarrow R))

: R :=

by finish
```

2.1.3. Regla de introducción del condicional en P → P

```
-- Introducción del condicional en Lean
-- -----
-- Ej. 1. Demostrar que
-- P \rightarrow P
import tactic
variable (P : Prop)
-- 1ª demostración
example : P \rightarrow P :=
assume h : P,
show P, from h
-- 2ª demostración
example : P → P :=
assume : P,
show P, from this
-- 3ª demostración
example : P → P :=
assume : P,
show P, from <P>
```

```
-- 4ª demostración
example : P → P :=
assume h : P, h
-- 5ª demostración
example : P \rightarrow P :=
λh, h
-- 6ª demostración
example : P \rightarrow P :=
id
-- 7ª demostración
example : P → P :=
begin
  intro h,
  exact h,
end
-- 8ª demostración
example : P \rightarrow P :=
begin
  intro,
  exact < P>,
end
-- 9ª demostración
example : P \rightarrow P :=
begin
  intro h,
  assumption,
end
-- 10ª demostración
example : P → P :=
begin
  intro,
  assumption,
end
-- 11ª demostración
example : P \rightarrow P :=
by tauto
```

```
-- 12ª demostración

example : P → P :=

by finish

-- 13ª demostración

example : P → P :=

by simp
```

2.1.4. Pruebas de $P \rightarrow (Q \rightarrow P)$

```
-- Pruebas de P \rightarrow (Q \rightarrow P)
-- Ej. 1. Demostrar
-- P \rightarrow (Q \rightarrow P)
import tactic
variables (P Q : Prop)
-- 1ª demostración
example : P \rightarrow (Q \rightarrow P) :=
assume (h1 : P),
show Q → P, from
  ( assume h2 : Q,
     show P, from h1)
-- 2ª demostración
example : P \rightarrow (Q \rightarrow P) :=
assume (h1 : P),
show Q \rightarrow P, from
  ( assume h2 : Q, h1)
-- 3ª demostración
example : P \rightarrow (Q \rightarrow P) :=
assume (h1 : P),
show Q → P, from
 (\lambda h2, h1)
-- 4ª demostración
example : P \rightarrow (Q \rightarrow P) :=
```

```
assume (h1 : P), (\lambda h2, h1)
-- 5ª demostración
example : P \rightarrow (Q \rightarrow P) :=
\lambda h1, \lambda h2, h1
-- 6ª demostración
example : P \rightarrow (Q \rightarrow P) :=
λ h1 h2, h1
-- 7º demostración
example : P \rightarrow (Q \rightarrow P) :=
λ h _, h
-- 8ª demostración
example : P \rightarrow (Q \rightarrow P) :=
imp intro
-- 9ª demostración
example : P \rightarrow (Q \rightarrow P) :=
begin
  intro h1,
  intro h2,
  exact h1,
end
-- 10ª demostración
example : P \rightarrow (Q \rightarrow P) :=
  intros h1 h2,
  exact h1,
end
-- 6ª demostración
example : P \rightarrow (Q \rightarrow P) :=
λ h1 h2, h1
-- 11ª demostración
example : P \rightarrow (Q \rightarrow P) :=
by tauto
-- 12ª demostración
example : P \rightarrow (Q \rightarrow P) :=
by finish
```

2.1.5. Pruebas del silogismo hipotético: $P \rightarrow Q$, $Q \rightarrow R \vdash P \rightarrow R$

```
-- Pruebas del silogismo hipotético
import tactic
variables (P Q R : Prop)
-- Ej. 1. Demostrar que
-- \qquad P \rightarrow Q, \quad Q \rightarrow R \vdash P \rightarrow R
-- 1º demostración
example
  (h1 : P \rightarrow Q)
  (h2 : Q \rightarrow R)
  : P → R :=
assume h : P,
have h3 : Q,
  from h1 h,
show R,
  from h2 h3
-- 2º demostración
example
  (h1 : P \rightarrow Q)
  (h2 : Q \rightarrow R)
  : P → R :=
assume h : P,
have h3 : Q := h1 h,
show R,
  from h2 h3
-- 3º demostración
example
  (h1 : P \rightarrow Q)
  (h2:Q\rightarrow R)
  : P → R :=
assume h : P,
show R,
from h2 (h1 h)
```

```
-- 4º demostración
example
 (h1 : P \rightarrow Q)
 (h2 : Q \rightarrow R)
  : P → R :=
assume h : P, h2 (h1 h)
-- 5º demostración
example
 (h1 : P \rightarrow Q)
  (h2 : Q \rightarrow R)
  : P → R :=
\lambda h, h2 (h1 h)
-- 6º demostración
example
 (h1 : P \rightarrow Q)
 (h2 : Q \rightarrow R)
 : P → R :=
h2 o h1
-- 7º demostración
example
  (h1 : P \rightarrow Q)
  (h2 : Q \rightarrow R)
  : P → R :=
begin
 intro h,
  apply h2,
  apply h1,
  exact h,
end
-- 8º demostración
example
  (h1 : P \rightarrow Q)
  (h2 : Q \rightarrow R)
  : P → R :=
begin
  intro h,
  apply h2,
 exact h1 h,
end
```

```
-- 9º demostración
example
  (h1 : P \rightarrow Q)
  (h2 : Q \rightarrow R)
  : P → R :=
begin
  intro h,
  exact h2 (h1 h),
-- 10º demostración
example
  (h1 : P \rightarrow Q)
  (h2 : Q \rightarrow R)
  : P → R :=
\lambda h, h2 (h1 h)
-- 11º demostración
example
  (h1 : P \rightarrow Q)
  (h2 : Q \rightarrow R)
 : P → R :=
h2 o h1
-- 12º demostración
example
  (h1 : P \rightarrow Q)
  (h2 : Q \rightarrow R)
  : P → R :=
by tauto
-- 13º demostración
example
  (h1 : P \rightarrow Q)
  (h2 : Q \rightarrow R)
  : P → R :=
by finish
```

2.2. Reglas de la conjunción

2.2.1. Reglas de la conjunción en P Λ Q, R \vdash Q Λ R

```
-- Reglas de la conjunción
-- Ej. 1. Demostrar que
-- P \wedge Q, R \vdash Q \wedge R
import tactic
variables (P Q R : Prop)
-- 1ª demostración
-- ==========
example
 (hPQ : P \land Q)
 (hR : R)
 : Q ^ R :=
have hQ : Q,
  from and.right hPQ,
show Q A R,
 from and.intro hQ hR
-- 2ª demostración
-- ==========
example
 (hPQ : P \land Q)
  (hR : R)
  : Q ^ R :=
have hQ: Q,
 from hPQ.right,
show Q A R,
 from (hQ, hR)
-- 3ª demostración
-- ==========
example
 (hPQ : P \land Q)
 (hR : R)
  : Q ^ R :=
have hQ: Q,
 from hPQ.2,
show Q A R,
 from (hQ, hR)
```

```
-- 4ª demostración
-- ==========
example
 (hPQ : P \land Q)
 (hR : R)
  : Q ^ R :=
have hQ : Q :=
 hPQ.2,
show Q \Lambda R,
 from (hQ, hR)
-- 5ª demostración
-- ==========
example
 (hPQ : P \land Q)
 (hR : R)
  : Q ^ R :=
show Q A R,
 from (hPQ.2, hR)
-- 6ª demostración
-- ==========
example
 (hPQ : P \land Q)
 (hR : R)
 : Q ^ R :=
(hPQ.2, hR)
-- 7ª demostración
-- ==========
example
 (hPQ : P \land Q)
 (hR : R)
 : Q ^ R :=
begin
  split,
  { cases hPQ with hP hQ,
   clear hP,
    exact hQ, },
  { exact hR, },
```

```
end
-- 8ª demostración
-- ==========
example
 (hPQ : P \land Q)
  (hR : R)
  : Q ^ R :=
begin
 split,
 { cases hPQ,
   assumption, },
 { assumption, },
end
-- 9ª demostración
-- ===========
example
 (hPQ : P \land Q)
 (hR : R)
 : Q ^ R :=
by tauto
-- 10ª demostración
-- ==========
example
 (hPQ : P \land Q)
 (hR : R)
  : Q ^ R :=
by finish
```

2.2.2. Pruebas de P Λ Q \rightarrow Q Λ P

```
import tactic
variables (P Q : Prop)
-- 1ª demostración
-- ===========
example : P \land Q \rightarrow Q \land P :=
assume h : P \Lambda Q,
have hP : P,
  from and.left h,
have hQ : Q,
 from and.right h,
show Q A P,
  from and.intro hQ hP
-- 2ª demostración
-- ===========
example : P \land Q \rightarrow Q \land P :=
assume h : P \land Q,
have hP : P,
 from h.left,
have hQ : Q,
  from h.right,
show Q A P,
 from (hQ, hP)
-- 3ª demostración
-- ===========
example : P \land Q \rightarrow Q \land P :=
assume h : P \Lambda Q,
have hP : P,
 from h.1,
have hQ: Q,
 from h.2,
show Q \Lambda P,
  from (hQ, hP)
-- 4ª demostración
-- ==========
example : P \land Q \rightarrow Q \land P :=
```

```
assume h : P \Lambda Q,
have hP : P := h.1,
have hQ : Q := h.2,
show Q A P,
 from (hQ, hP)
-- 5ª demostración
-- ==========
example : P \land Q \rightarrow Q \land P :=
assume h : P \land Q,
show Q A P,
  from (h.2, h.1)
-- 6ª demostración
-- ==========
example : P \land Q \rightarrow Q \land P :=
assume h : P \land Q, \langle h.2, h.1 \rangle
-- 7ª demostración
-- ==========
example : P \land Q \rightarrow Q \land P :=
\lambda h, (h.2, h.1)
-- 8ª demostración
-- ==========
example : P \land Q \rightarrow Q \land P :=
and.comm.mp
-- 9ª demostración
-- ===========
example : P \land Q \rightarrow Q \land P :=
begin
 intro h,
  cases h with hP hQ,
 split,
  { exact hQ, },
 { exact hP, },
end
-- 10ª demostración
```

```
-- ===========
example : P \land Q \rightarrow Q \land P :=
begin
  rintro (hP, hQ),
  exact (hQ, hP),
end
-- 11ª demostración
-- ===========
example : P \land Q \rightarrow Q \land P :=
\lambda (hP, hQ), (hQ, hP)
-- 12ª demostración
-- ==========
example : P \land Q \rightarrow Q \land P :=
by tauto
-- 13ª demostración
-- ===========
example : P \land Q \rightarrow Q \land P :=
by finish
```

2.3. Reglas de la negación

2.3.1. Reglas de la negación con ($\bot \vdash P$), (P, $\neg P \vdash \bot$) y $\neg (P \land \neg P)$

```
-- Ej. 1. Demostrar que
-- ⊥ ⊢ P
-- 1ª demostración
example
 (h : false)
 : P :=
false.elim h
-- 2ª demostración
example
 (h : false)
 : P :=
false.rec P h
-- 3ª demostración
example
 (h : false)
 : P :=
by tauto
-- 4ª demostración
example
 (h : false)
 : P :=
by cases h
-- 5ª demostración
example
 (h : false)
 : P :=
by finish
-- 6ª demostración
example
 (h : false)
 : P :=
by solve_by_elim
-- Definición de la negación
-- \neg P ≡ (P → false)
```

```
-- Eliminación de la negación
-- ------
-- Ej. 2. Demostrar que
-- P, ¬P ⊢ ⊥
-- 1ª demostración
example
 (h1: P)
  (h2: ¬P)
 : false :=
not.elim h2 h1
-- 2ª demostración
example
 (h1: P)
 (h2: ¬P)
 : false :=
h2 h1
-- Introducción de la negación
-- -------
-- Ej. 3. Demostrar
-- ¬(P ∧ ¬P)
-- 1ª demostración
example : \neg(P \land \neg P) :=
not.intro
 ( assume h : P ∧ ¬P,
    have h1 : P := h.1,
    have h2 : \neg P := h.2,
    show false, from h2 h1 )
-- 2ª demostración
example : \neg(P \land \neg P) :=
not.intro
  ( assume h : P \land \neg P,
    show false, from h.2 h.1 )
-- 3ª demostración
example : \neg(P \land \neg P) :=
not.intro
  ( assume h : P \land \neg P, h.2 h.1 )
```

```
-- 4ª demostración
example : \neg(P \land \neg P) :=
not.intro (\lambda h, h.2 h.1)
-- 5ª demostración
example : \neg(P \land \neg P) :=
begin
  intro h,
  cases h with h1 h2,
  apply h2,
  exact h1,
end
-- 6ª demostración
example : \neg(P \land \neg P) :=
begin
  rintro (h1, h2),
  exact h2 h1,
end
-- 7ª demostración
example : \neg(P \land \neg P) :=
\lambda (h1, h2), h2 h1
-- 8ª demostración
example : \neg(P \land \neg P) :=
(and_not_self P).mp
-- 9ª demostración
example : \neg(P \land \neg P) :=
by tauto
-- 10ª demostración
example : \neg(P \land \neg P) :=
by finish
-- 11ª demostración
example : \neg(P \land \neg P) :=
by simp
```

2.3.2. Pruebas de P \rightarrow Q, P \rightarrow \neg Q \vdash \neg P

```
-- Pruebas de P \rightarrow Q, P \rightarrow \neg Q \vdash \neg P
import tactic
variables (P Q : Prop)
-- Ej. 1. Demostrar
-- P \rightarrow Q, P \rightarrow \neg Q \vdash \neg P
-- 1ª demostración
example
  (h1 : P \rightarrow Q)
  (h2 : P \rightarrow \neg Q)
  : ¬P :=
assume h : P,
have h4 : Q,
  from h1 h,
have h5 : \neg Q,
  from h2 h,
show false,
  from h5 h4
-- 2ª demostración
example
  (h1 : P \rightarrow Q)
  (h2 : P \rightarrow \neg Q)
  : ¬P :=
assume h : P,
have h4 : Q := h1 h,
have h5 : \neg Q := h2 h,
show false,
  from h5 h4
-- 3ª demostración
example
 (h1 : P \rightarrow Q)
  (h2 : P \rightarrow \neg Q)
  : ¬P :=
assume h : P,
show false,
  from (h2 h) (h1 h)
-- 4ª demostración
example
```

```
(h1 : P \rightarrow Q)
  (h2 : P \rightarrow \neg Q)
  : ¬P :=
assume h : P, (h2 h) (h1 h)
-- 5ª demostración
example
  (h1 : P \rightarrow Q)
  (h2 : P \rightarrow \neg Q)
  : ¬P :=
\lambda h, (h2 h) (h1 h)
-- 6ª demostración
example
  (h1 : P \rightarrow Q)
  (h2 : P \rightarrow \neg Q)
  : ¬P :=
begin
  intro h,
  have h3 : \neg Q := h2 h,
  apply h3,
  apply h1,
  exact h,
end
-- 7ª demostración
example
  (h1 : P \rightarrow Q)
  (h2 : P \rightarrow \neg Q)
  : ¬P :=
begin
  intro h,
  have h3 : \neg Q := h2 h,
  apply h3,
  exact h1 h,
end
-- 8ª demostración
example
  (h1 : P \rightarrow Q)
  (h2 : P \rightarrow \neg Q)
  : ¬P :=
begin
  intro h,
  have h3 : \neg Q := h2 h,
```

```
exact h3 (h1 h),
end
-- 9ª demostración
example
 (h1 : P \rightarrow Q)
  (h2 : P \rightarrow \neg Q)
  : ¬P :=
begin
  intro h,
 exact (h2 h) (h1 h),
-- 10ª demostración
example
 (h1 : P \rightarrow Q)
 (h2 : P \rightarrow \neg Q)
 : ¬P :=
\lambda h, (h2 h) (h1 h)
-- 11ª demostración
example
 (h1 : P \rightarrow Q)
  (h2 : P \rightarrow \neg Q)
 : ¬P :=
by finish
```

2.3.3. Pruebas del modus tollens: $P \rightarrow Q$, $\neg Q \vdash \neg P$

```
(h1 : P \rightarrow Q)
  (h2 : ¬Q)
  : ¬P :=
assume h3 : P,
have h4 : Q,
  from h1 h3,
show false,
  from h2 h4
-- 2ª demostración
example
  (h1 : P \rightarrow Q)
  (h2 : \neg Q)
  : ¬P :=
assume h3 : P,
have h4 : Q := h1 h3,
show false,
  from h2 h4
-- 3ª demostración
example
 (h1 : P \rightarrow Q)
 (h2 : \neg Q)
  : ¬P :=
assume h3 : P,
show false,
  from h2 (h1 h3)
-- 4ª demostración
example
  (h1 : P \rightarrow Q)
  (h2 : ¬Q)
  : ¬P :=
assume h3 : P, h2 (h1 h3)
-- 5ª demostración
example
  (h1 : P \rightarrow Q)
  (h2 : \neg Q)
 : ¬P :=
\lambda h, h2 (h1 h)
-- 6ª demostración
example
 (h1 : P \rightarrow Q)
```

```
(h2 : ¬Q)
: ¬P :=
h2 o h1
-- 7ª demostración
example
 (h1 : P \rightarrow Q)
 (h2 : ¬Q)
  : ¬P :=
mt h1 h2
-- 8ª demostración
example
  (h1 : P \rightarrow Q)
  (h2 : \neg Q)
  : ¬P :=
by tauto
-- 9ª demostración
example
 (h1 : P \rightarrow Q)
  (h2 : ¬Q)
  : ¬P :=
by finish
-- 10ª demostración
example
  (h1 : P \rightarrow Q)
  (h2 : ¬Q)
  : ¬P :=
begin
  intro h,
  apply h2,
  apply h1,
  exact h,
end
-- 11ª demostración
example
 (h1 : P \rightarrow Q)
  (h2 : \neg Q)
  : ¬P :=
begin
  intro h,
  exact h2 (h1 h),
```

```
end

-- 12^{\underline{a}} demostración

example

(h1 : P \rightarrow Q)

(h2 : \negQ)

: \negP :=

\lambda h, h2 (h1 h)
```

2.3.4. Pruebas de P \rightarrow (Q \rightarrow R), P, \neg R $\vdash \neg$ Q

```
-- Pruebas de P \rightarrow (Q \rightarrow R), P, \neg R \vdash \neg Q
-- Ej. 1. Demostrar
-- Pruebas de P \rightarrow (Q \rightarrow R), P, \neg R \vdash \neg Q
import tactic
variables (P Q R : Prop)
-- 1ª demostración
example
  (h1 : P \rightarrow (Q \rightarrow R))
  (h2 : P)
  (h3 : \neg R)
  : ¬Q :=
have h4 : Q \rightarrow R,
  from h1 h2,
show \neg Q,
  from mt h4 h3
-- 2ª demostración
example
  (h1 : P \rightarrow (Q \rightarrow R))
  (h2 : P)
  (h3 : \neg R)
  : ¬Q :=
have h4 : Q \rightarrow R := h1 h2,
show \neg Q,
from mt h4 h3
```

```
-- 3ª demostración
example
  (h1 : P \rightarrow (Q \rightarrow R))
  (h2 : P)
  (h3 : ¬R)
  : ¬Q :=
show ¬Q,
  from mt (h1 h2) h3
-- 4ª demostración
example
  (h1 : P \rightarrow (Q \rightarrow R))
  (h2 : P)
  (h3 : \neg R)
  : ¬Q :=
mt (h1 h2) h3
-- 5ª demostración
example
  (h1 : P \rightarrow (Q \rightarrow R))
  (h2 : P)
  (h3 : ¬R)
  : ¬Q :=
begin
  intro h4,
  apply h3,
  apply (h1 h2),
  exact h4,
end
-- 6ª demostración
example
  (h1 : P \rightarrow (Q \rightarrow R))
  (h2 : P)
  (h3 : \neg R)
  : ¬Q :=
begin
  intro h4,
  apply h3,
  exact (h1 h2) h4,
end
-- 7ª demostración
example
```

```
(h1 : P \rightarrow (Q \rightarrow R))
  (h2 : P)
  (h3 : \neg R)
  : ¬Q :=
begin
  intro h4,
  exact h3 ((h1 h2) h4),
end
-- 8ª demostración
example
  (h1 : P \rightarrow (Q \rightarrow R))
  (h2 : P)
  (h3 : ¬R)
 : ¬Q :=
λ h4, h3 ((h1 h2) h4)
-- 9ª demostración
example
  (h1 : P \rightarrow (Q \rightarrow R))
  (h2 : P)
  (h3 : \neg R)
  : ¬Q :=
by finish
```

2.3.5. Pruebas de $P \rightarrow Q \vdash \neg Q \rightarrow \neg P$

```
assume h2 : \neg Q,
show ¬P,
  from mt h1 h2
-- 2ª demostración
example
 (h1 : P \rightarrow Q)
  : ¬Q → ¬P :=
assume h2 : \neg Q, mt h1 h2
-- 3ª demostración
example
  (h1 : P \rightarrow Q)
  : ¬Q → ¬P :=
\lambda h2, mt h1 h2
-- 4ª demostración
example
  (h1 : P \rightarrow Q)
  : ¬Q → ¬P :=
mt h1
-- 5ª demostración
example
  (h1 : P \rightarrow Q)
  : ¬Q → ¬P :=
begin
  intro h2,
  exact mt h1 h2,
end
-- 6ª demostración
example
  (h1 : P \rightarrow Q)
  : ¬Q → ¬P :=
begin
  intro h2,
  intro h3,
  apply h2,
  apply h1,
  exact h3,
end
-- 7ª demostración
example
```

```
(h1 : P \rightarrow Q)
  : ¬Q → ¬P :=
begin
  intro h2,
  intro h3,
 apply h2,
  exact h1 h3,
end
-- 8ª demostración
example
 (h1 : P \rightarrow Q)
  : ¬Q → ¬P :=
begin
 intro h2,
 intro h3,
  exact h2 (h1 h3),
end
-- 9ª demostración
example
 (h1 : P \rightarrow Q)
 : ¬Q → ¬P :=
 intros h2 h3,
 exact h2 (h1 h3),
-- 10ª demostración
example
 (h1 : P \rightarrow Q)
  : ¬Q → ¬P :=
\lambda h2 h3, h2 (h1 h3)
-- 11ª demostración
example
 (h1 : P \rightarrow Q)
 : ¬Q → ¬P :=
by tauto
-- 12ª demostración
example
  (h1 : P \rightarrow Q)
  : ¬Q → ¬P :=
by finish
```

2.3.6. Regla de introducción de la doble negación: P ⊢ ¬¬P

```
-- Regla de introducción de la doble negación
-- Ej. 1. Demostrar
-- P ⊢ ¬¬P
import tactic
variable (P : Prop)
-- 1ª demostración
example
 (h1 : P)
 : ¬¬P :=
not.intro
 ( assume h2: ¬P,
   show false,
     from h2 h1)
-- 2ª demostración
example
 (h1 : P)
  : ¬¬P :=
assume h2: ¬P,
show false,
 from h2 h1
-- 3ª demostración
example
 (h1 : P)
 : ¬¬P :=
assume h2: ¬P, h2 h1
-- 4ª demostración
example
 (h1 : P)
 : ¬¬P :=
λ h2, h2 h1
-- 5ª demostración
```

```
example
 (h1 : P)
 : ¬¬P :=
not not.mpr h1
-- 6ª demostración
example
 (h1 : P)
 : ¬¬P :=
not_not_intro h1
-- 7ª demostración
example
 (h1 : P)
 : ¬¬P :=
begin
 intro h2,
 exact h2 h1,
end
-- 8ª demostración
example
 (h1 : P)
 : ¬¬P :=
by tauto
-- 9ª demostración
example
 (h1 : P)
 : ¬¬P :=
by finish
```

2.3.7. Pruebas de $\neg Q \rightarrow \neg P \vdash P \rightarrow \neg \neg Q$

```
variables (P Q : Prop)
-- 1ª demostración
example
 (h1 : \neg Q \rightarrow \neg P)
  : P → ¬¬Q :=
assume h2 : P,
have h3 : \neg \neg P,
  from not_not_intro h2,
show ¬¬Q,
  from mt h1 h3
-- 2ª demostración
example
 (h1 : \neg Q \rightarrow \neg P)
  : P → ¬¬Q :=
assume h2 : P,
have h3 : \neg \neg P := not not intro h2,
show ¬¬Q,
  from mt h1 h3
-- 3ª demostración
example
  (h1 : \neg Q \rightarrow \neg P)
  : P → ¬¬0 :=
assume h2 : P,
show \neg \neg Q,
  from mt h1 (not_not_intro h2)
-- 4ª demostración
example
 (h1 : \neg Q \rightarrow \neg P)
  : P → ¬¬Q :=
assume h2 : P, mt h1 (not_not_intro h2)
-- 5ª demostración
example
  (h1 : \neg Q \rightarrow \neg P)
 : P → ¬¬Q :=
λ h2, mt h1 (not_not_intro h2)
-- 6ª demostración
example
  (h1 : \neg Q \rightarrow \neg P)
```

```
: P → ¬¬Q :=
imp_not_comm.mp h1
-- 7ª demostración
example
  (h1 : \neg Q \rightarrow \neg P)
  : P → ¬¬Q :=
begin
  intro h2,
  apply mt h1,
  apply not_not_intro,
  exact h2,
end
-- 8ª demostración
example
  (h1 : \neg Q \rightarrow \neg P)
  : P → ¬¬Q :=
begin
  intro h2,
  apply mt h1,
  exact not_not_intro h2,
end
-- 9ª demostración
example
 (h1 : \neg Q \rightarrow \neg P)
  : P → ¬¬Q :=
begin
  intro h2,
  exact mt h1 (not_not_intro h2),
-- 10ª demostración
example
  (h1 : \neg Q \rightarrow \neg P)
  : P → ¬¬Q :=
λ h2, mt h1 (not_not_intro h2)
-- 11ª demostración
example
  (h1 : \neg Q \rightarrow \neg P)
  : P → ¬¬Q :=
begin
  intro h2,
```

```
intro h3,
  have h4 : \neg P := h1 h3,
  exact h4 h2,
end
-- 12ª demostración
example
  (h1 : \neg Q \rightarrow \neg P)
  : P → ¬¬Q :=
begin
  intros h2 h3,
  exact (h1 h3) h2,
end
-- 13ª demostración
example
 (h1 : \neg Q \rightarrow \neg P)
 : P → ¬¬Q :=
\lambda h2 h3, (h1 h3) h2
-- 14ª demostración
example
  (h1 : \neg Q \rightarrow \neg P)
  : P → ¬¬0 :=
by tauto
-- 15ª demostración
example
  (h1 : \neg Q \rightarrow \neg P)
  : P → ¬¬Q :=
by finish
```

2.4. Reglas de la disyunción

2.4.1. Reglas de introducción de la disyunción

```
variables (P Q R : Prop)
-- Ej. 1. Demostrar
-- P \vdash P \lor Q
-- 1ª demostración
example
 (h : P)
 : P v Q :=
or.intro_left Q h
-- 2ª demostración
example
 (h : P)
 : P V Q :=
or.inl h
-- 3ª demostración
example
 (h : P)
 : P v Q :=
by tauto
-- 4ª demostración
example
 (h : P)
 : P v Q :=
by finish
-- Ej. 2. Demostrar
-- P \land Q \vdash P \lor R
-- 1ª demostración
example
 (h1 : P \land Q)
 : P v R :=
have h2 : P,
 from and.elim_left h1,
show P v R,
 from or.inl h2
-- 2ª demostración
example
 (h1 : P \land Q)
```

```
: P v R :=
have h2 : P,
  from h1.1,
show P v R,
  from or.inl h2
-- 3ª demostración
example
 (h1 : P \land Q)
  : P v R :=
have h2 : P := h1.1,
show P v R,
  from or.inl h2
-- 4ª demostración
example
 (h1 : P \land Q)
 : P v R :=
show P v R,
  from or.inl h1.1
-- 5ª demostración
example
 (h1 : P \land Q)
 : P v R :=
or.inl h1.1
-- 6ª demostración
example
 (h1 : P \land Q)
 : P v R :=
by tauto
-- 7ª demostración
example
  (h1 : P \land Q)
  : P v R :=
by finish
-- Ej. 3. Demostrar
-- Q \vdash P \lor Q
-- 1ª demostración
example
 (h : Q)
```

```
: P v Q :=
or.intro_right P h
-- 2ª demostración
example
 (h : Q)
 : P V Q :=
or.inr h
-- 3ª demostración
example
 (h : Q)
 : P V Q :=
by tauto
-- 4ª demostración
example
  (h : Q)
  : P v Q :=
by finish
-- Ej. 4. Demostrar
-- P \land Q \vdash P \lor R
-- 1ª demostración
example
 (h1 : P \land Q)
  : R v Q :=
have h2 : Q,
  from and.elim_right h1,
show R v Q,
  from or.inr h2
-- 2ª demostración
example
  (h1 : P \land Q)
  : R v Q :=
have h2 : Q,
  from h1.2,
show R v Q,
  from or.inr h2
-- 3ª demostración
example
 (h1 : P \land Q)
```

```
: R v Q :=
have h2 : Q := h1.2,
show R v Q,
 from or.inr h2
-- 4º demostración
example
  (h1 : P \land Q)
  : R v Q :=
show R v Q,
 from or.inr h1.2
-- 5ª demostración
example
 (h1 : P \land Q)
 : R v Q :=
or.inr h1.2
-- 6ª demostración
example
 (h1 : P \land Q)
  : R v Q :=
by tauto
-- 7ª demostración
example
 (h1 : P \land Q)
  : R v Q :=
by finish
```

2.4.2. Regla de eliminación de la disyunción

```
-- 1ª demostración
example
 (h1 : P \lor Q)
  (h2 : P \rightarrow R)
 (h3 : Q \rightarrow R)
  : R :=
or.elim h1 h2 h3
-- 2ª demostración
example
  (h1 : P \lor Q)
  (h2 : P \rightarrow R)
 (h3 : Q \rightarrow R)
  : R :=
or.rec h2 h3 h1
-- 3ª demostración
example
  (h1 : P V Q)
  (h2 : P \rightarrow R)
  (h3 : Q \rightarrow R)
  : R :=
begin
  cases h1 with hP hQ,
  { exact h2 hP, },
 { exact h3 hQ, },
end
-- 4ª demostración
example
  (h1 : P V Q)
 (h2 : P \rightarrow R)
 (h3 : Q \rightarrow R)
  : R :=
by tauto
-- 5ª demostración
example
  (h1 : P \lor Q)
  (h2 : P \rightarrow R)
  (h3 : Q \rightarrow R)
 : R :=
by finish
```

2.4.3. Pruebas de P \vee Q \vdash Q \vee P

```
-- Pruebas de P v Q ⊢ Q v P
import tactic
variables (P Q R : Prop)
-- Ej. 1. Demostrar
-- P \lor Q \vdash Q \lor P
-- 1ª demostración
example
 (h1 : P \lor Q)
  : Q V P :=
or.elim h1
  ( assume h2 : P,
   show Q v P,
     from or.inr h2 )
  (assume h3:Q,
    show Q v P,
      from or.inl h3 )
-- 2ª demostración
example
 (h1 : P \lor Q)
  : Q v P :=
or.elim h1
  (\lambda h, or.inr h)
  (\lambda h, or.inlh)
-- 3ª demostración
example
 (h1 : P \lor Q)
 : Q V P :=
or.elim h1 or.inr or.inl
-- 4ª demostración
example
 (h1 : P \lor Q)
 : Q V P :=
or.rec or.inr or.inl h1
```

```
-- 5ª demostración
example
(h1 : P \lor Q)
 : Q v P :=
or.swap h1
-- 6ª demostración
example
 (h1 : P \lor Q)
 : Q v P :=
begin
 cases h1 with h2 h3,
 { exact or.inr h2, },
 { exact or.inl h3, },
end
-- 7ª demostración
example
 (P V Q)
 : Q v P :=
begin
 cases < P v Q > ,
 { exact or.inr <P>, },
 { exact or.inl <Q>, },
end
-- 8ª demostración
example
  (h1 : P v Q)
 : Q v P :=
begin
 cases h1 with h2 h3,
 { right,
   exact h2, },
 { left,
   exact h3, },
end
-- 9ª demostración
example
 (h1 : P \lor Q)
 : Q V P :=
by tauto
```

```
-- 10<sup>a</sup> demostración

example

(h1 : P v Q)

: Q v P :=

by finish
```

2.4.4. Pruebas de $Q \rightarrow R \vdash P \lor Q \rightarrow P \lor R$

```
-- Pruebas de Q \rightarrow R \vdash P \lor Q \rightarrow P \lor R
-- Ej. 1. Demostrar
-- Q \rightarrow R \vdash P \lor Q \rightarrow P \lor R
import tactic
variables (P Q R : Prop)
-- 1ª demostración
example
 (h1 : Q \rightarrow R)
  : P V Q \rightarrow P V R :=
assume h2 : P \lor Q,
or.elim h2
  ( assume h3 : P,
    show P v R,
      from or.inl h3 )
  ( assume h4 : Q,
    have h5 : R := h1 h4,
    show P v R,
       from or.inr h5 )
-- 2ª demostración
example
  (h1 : Q \rightarrow R)
  : \ P \ V \ Q \ \rightarrow \ P \ V \ R \ :=
assume h2 : P v Q,
or.elim h2
  ( assume h3 : P, or.inl h3 )
  ( assume h4 : Q,
  show P v R,
```

```
from or.inr (h1 h4) )
-- 3ª demostración
example
  (h1 : Q \rightarrow R)
  : P \lor Q \rightarrow P \lor R :=
assume h2 : P v Q,
or.elim h2
  ( assume h3 : P, or.inl h3 )
  ( assume h4 : Q, or.inr (h1 h4) )
-- 4ª demostración
example
  (h1 : Q \rightarrow R)
  : P V Q \rightarrow P V R :=
assume h2 : P v Q,
or.elim h2
  (\lambda h3, or.inl h3)
  ( \lambda h4, or.inr (h1 h4) )
-- 5ª demostración
example
  (h1: Q \rightarrow R)
  : P \lor Q \rightarrow P \lor R :=
assume h2 : P \lor Q,
or.elim h2
  or.inl
  (\lambda h, or.inr (h1 h))
-- 6ª demostración
example
 (h1 : Q \rightarrow R)
  : P \lor Q \rightarrow P \lor R :=
\lambda h2, or.elim h2 or.inl (\lambda h, or.inr (h1 h))
-- 7ª demostración
example
  (h1 : Q \rightarrow R)
  : P V Q \rightarrow P V R :=
or.imp_right h1
-- 8ª demostración
example
  (h1 : Q \rightarrow R)
  : P V Q \rightarrow P V R :=
```

```
begin
  intro h2,
  cases h2 with h3 h4,
  { exact or.inl h3, },
  { exact or.inr (h1 h4), },
end
-- 9ª demostración
example
  (h1 : Q \rightarrow R)
  : P V Q \rightarrow P V R :=
begin
  intro h2,
  cases h2 with h3 h4,
  { left,
    exact h3, },
  { right,
    exact (h1 h4), },
end
-- 10ª demostración
example
  (h1 : Q \rightarrow R)
  : P \lor Q \rightarrow P \lor R :=
  rintro (h3 | h4),
  { left,
    exact h3, },
  { right,
    exact (h1 h4), },
end
-- 11ª demostración
example
 (h1 : Q \rightarrow R)
  : P V Q \rightarrow P V R :=
by tauto
-- 12ª demostración
example
  (h1 : Q \rightarrow R)
  : P \lor Q \rightarrow P \lor R :=
by finish
```

2.4.5. Pruebas de $\neg P \lor Q \vdash P \rightarrow Q$

```
-- Prueba de ¬P v Q ⊢ P → Q
-- Ej. 1. Demostrar
\neg P \lor Q \vdash P \rightarrow Q
import tactic
variables (P Q : Prop)
-- 1ª demostración
example
 (h1 : \neg P \lor Q)
  : P → Q :=
assume h2 : P,
or.elim h1
  ( assume h3 : \neg P,
    have h4 : false,
      from h3 h2,
    show Q,
      from false.elim h4)
  ( assume h5 : Q,
    show Q, from h5)
-- 2ª demostración
example
  (h1 : \neg P \lor Q)
  : P → 0 :=
assume h2 : P,
or.elim h1
  ( assume h3 : \neg P,
    have h4 : false,
      from h3 h2,
    show Q,
      from false.elim h4)
  (assume h5:Q,h5)
-- 3ª demostración
example
 (h1 : \neg P \lor Q)
 : P → Q :=
```

```
assume h2 : P,
or.elim h1
  ( assume h3 : \neg P,
    have h4 : false,
      from h3 h2,
    show Q,
      from false.elim h4)
  (\lambda h5, h5)
-- 4ª demostración
example
 (h1 : \neg P \lor Q)
 : P → Q :=
assume h2 : P,
or.elim h1
 ( assume h3 : \neg P,
    have h4 : false,
      from h3 h2,
    show Q,
      from false.elim h4)
  id
-- 5ª demostración
example
 (h1 : \neg P \lor Q)
 : P → Q :=
assume h2 : P,
or.elim h1
  ( assume h3 : \neg P,
   show Q,
      from false.elim (h3 h2))
  id
-- 6ª demostración
example
  (h1 : \neg P \lor Q)
  : P → Q :=
assume h2 : P,
or.elim h1
  ( assume h3 : ¬P, false.elim (h3 h2))
  id
-- 7ª demostración
example
 (h1 : \neg P \lor Q)
```

```
: P → Q :=
assume h2 : P,
or.elim h1
  (\lambda h3, false.elim (h3 h2))
  id
-- 8ª demostración
example
  (h1 : \neg P \lor Q)
  : P → Q :=
\lambda h2, or.elim h1 (\lambda h3, false.elim (h3 h2)) id
-- 9ª demostración
example
  (h1 : ¬P ∨ Q)
 : P → Q :=
imp_iff_not_or.mpr h1
-- 10ª demostración
example
  (h1 : \neg P \lor Q)
  : P → Q :=
begin
  intro h2,
  cases h1 with h3 h4,
  { apply false.rec,
    exact h3 h2, },
  { exact h4, },
end
-- 11ª demostración
example
  (h1 : \neg P \lor Q)
  : P → Q :=
begin
  intro h2,
  cases h1 with h3 h4,
  { exact false.elim (h3 h2), },
  { exact h4, },
end
-- 12ª demostración
example
 (h1 : \neg P \lor Q)
  : P → Q :=
```

```
begin
  intro h2,
  cases h1 with h3 h4,
  { exfalso,
    exact h3 h2, },
 { exact h4, },
end
-- 13ª demostración
example
 (h1 : \neg P \lor Q)
  : P → Q :=
by tauto
-- 14ª demostración
example
 (h1 : \neg P \lor Q)
 : P → Q :=
by finish
```

2.5. Reglas del bicondicional

2.5.1. Regla de introducción del bicondicional en P Λ Q ↔ Q Λ P

```
have h2 : P,
      from and.elim_left h1,
    have h3 : Q,
      from and.elim_right h1,
    show Q A P,
      from and.intro h3 h2)
  ( assume h4 : Q \land P,
    have h5 : Q,
      from and.elim left h4,
    have h6 : P,
      from and.elim_right h4,
    show P A Q,
      from and.intro h6 h5)
-- 2ª demostración
example : P \land Q \leftrightarrow Q \land P :=
iff.intro
  ( assume h1 : P \Lambda Q,
    have h2 : P,
      from h1.1,
    have h3 : Q,
      from h1.2,
    show Q A P,
      from and.intro h3 h2)
  ( assume h4 : Q \land P,
    have h5 : Q,
      from h4.1,
    have h6: P,
      from h4.2,
    show P A Q,
      from and.intro h6 h5)
-- 3ª demostración
example : P \land Q \leftrightarrow Q \land P :=
iff.intro
  ( assume h1 : P \land Q,
    have h2 : P := h1.1,
    have h3 : Q := h1.2,
    show Q A P,
      from and.intro h3 h2)
  ( assume h4 : Q \land P,
    have h5 : Q := h4.1,
    have h6 : P := h4.2,
    show P A Q,
      from and.intro h6 h5)
```

```
-- 4ª demostración
example : P \land Q \leftrightarrow Q \land P :=
iff.intro
  ( assume h1 : P \land Q,
     show Q A P,
        from and.intro h1.2 h1.1)
   ( assume h4 : Q \land P,
     show P A Q,
        from and.intro h4.2 h4.1)
-- 5ª demostración
example : P \land Q \leftrightarrow Q \land P :=
iff.intro
  ( assume h1 : P \( \text{Q} \), and intro h1.2 h1.1)
   ( assume h4 : Q \Lambda P, and intro h4.2 h4.1)
-- 6ª demostración
example : P \land Q \leftrightarrow Q \land P :=
iff.intro
  ( assume h1 : P \land Q, \langle h1.2, h1.1 \rangle)
   ( assume h4 : Q \land P, \langle h4.2, h4.1 \rangle)
-- 7ª demostración
example : P \land Q \leftrightarrow Q \land P :=
iff.intro
  (\lambda h, (h.2, h.1))
  (\lambda h, (h.2, h.1))
-- 8ª demostración
lemma aux :
  P \land Q \rightarrow Q \land P :=
\lambda h, (h.2, h.1)
example : P \land Q \leftrightarrow Q \land P :=
iff.intro (aux P Q) (aux Q P)
-- 9ª demostración
example : P \land Q \leftrightarrow Q \land P :=
and.comm
-- 10ª demostración
example : P \land Q \leftrightarrow Q \land P :=
begin
  split,
```

```
{ intro h1,
    cases h1 with h2 h3,
    split,
     { exact h3, },
    { exact h2, }},
  { intro h4,
    cases h4 with h5 h6,
    split,
     { exact h6, },
     { exact h5, }},
end
-- 11ª demostración
example : P \land Q \leftrightarrow Q \land P :=
begin
  split,
  { rintro (h2, h3),
    split,
    { exact h3, },
    { exact h2, }},
  { rintro (h5, h6),
    split,
     { exact h6, },
     { exact h5, }},
end
-- 12ª demostración
example : P \land Q \leftrightarrow Q \land P :=
by tauto
-- 12ª demostración
example : P \land Q \leftrightarrow Q \land P :=
by finish
```

2.5.2. Reglas de eliminación del bicondicional en P \leftrightarrow Q, P \lor Q \vdash P \land Q

```
-- Ej. 1. Demostrar
-- P \leftrightarrow Q, P \lor Q \vdash P \land Q
import tactic
variables (P Q : Prop)
-- 1ª demostración
example
  (h1 : P \leftrightarrow Q)
  (h2 : P \lor Q)
  : P ^ Q :=
or.elim h2
  ( assume h3 : P,
    have h4 : P \rightarrow Q,
       from iff.elim_left h1,
    have h5 : Q,
       from h4 h3,
    show P \Lambda Q,
       from and.intro h3 h5 )
  (assume h6: Q,
    have h7 : Q \rightarrow P,
       from iff.elim_right h1,
    have h8 : P,
       from h7 h6,
    show P \wedge Q,
       from and.intro h8 h6 )
-- 2ª demostración
example
  (h1 : P \leftrightarrow Q)
  (h2 : P \lor Q)
  : P ^ Q :=
or.elim h2
  ( assume h3 : P,
    have h4 : P \rightarrow Q := h1.1,
    have h5 : Q := h4 h3,
    show P \wedge Q, from (h3, h5)
  (assume h6: Q,
    have h7 : Q \rightarrow P := h1.2,
    have h8 : P := h7 h6,
    show P \wedge Q, from (h8, h6)
-- 3ª demostración
example
```

```
(h1 : P \leftrightarrow Q)
  (h2 : P \lor Q)
  : P ^ Q :=
or.elim h2
  ( assume h3 : P,
    show P ∧ Q, from (h3, (h1.1 h3))
  (assume h6: Q,
    show P A Q, from (h1.2 h6, h6) )
-- 4ª demostración
example
  (h1 : P \leftrightarrow Q)
  (h2 : P \lor Q)
  : P ^ Q :=
or.elim h2
 (\lambda h, \langle h, (h1.1 h) \rangle)
  (\lambda h, (h1.2 h, h))
-- 5ª demostración
example
  (h1 : P \leftrightarrow Q)
  (h2 : P \lor Q)
  : P ^ Q :=
begin
  cases h2 with h3 h4,
  { split,
    { exact h3, },
    { apply h1.mp,
       exact h3, }},
  { split,
    { apply h1.mpr,
      exact h4, },
    { exact h4, }},
end
-- 6ª demostración
example
  (h1 : P \leftrightarrow Q)
  (h2 : P \lor Q)
  : P ^ Q :=
begin
  cases h2 with h3 h4,
  { split,
   { exact h3, },
    { rw ← h1,
```

```
exact h3, }},
  { split,
    { rw h1,
      exact h4, },
     { exact h4, }},
-- 7ª demostración
example
 (h1 : P \leftrightarrow Q)
 (h2 : P \lor Q)
  : P ^ Q :=
by tauto
-- 8ª demostración
example
 (h1 : P \leftrightarrow Q)
  (h2 : P \lor Q)
  : P ^ Q :=
by finish
-- 9ª demostración
example
 (h1 : P \leftrightarrow Q)
  (h2 : P \lor Q)
  : P ^ Q :=
begin
  simp [h1] at h2 |-,
  assumption,
end
```

2.6. Reglas de la lógica clásica

2.6.1. Pruebas de la regla de reducción al absurdo

```
variable (P : Prop)
-- 1ª demostración
example
  (h1 : \neg P \rightarrow false)
  : P :=
have h2 : ¬¬P, from
  assume h3 : ¬P,
  show false, from h1 h3,
show P, from not_not.mp h2
-- 2ª demostración
example
  (h1 : \neg P \rightarrow false)
  : P :=
begin
  apply not_not.mp,
  intro h2,
  exact h1 h2,
end
-- 3ª demostración
example
  (h1 : ¬P → false)
  : P :=
begin
  apply not_not.mp,
  exact \lambda h2, h1 h2,
end
-- 4ª demostración
example
  (h1 : \neg P \rightarrow false)
  : P :=
not\_not.mp (\lambda h2, h1 h2)
#print axioms not not
-- 5ª demostración
example
  (h1 : \neg P \rightarrow false)
  : P :=
by_contra h1
#print axioms by_contra
```

```
-- 6<sup>a</sup> demostración

lemma RAA

(h1 : ¬P → false)

: P :=

by finish

#print axioms RAA
```

2.6.2. Pruebas de la eliminación de la doble negación

```
-- Pruebas de la eliminación de la doble negación
-- ------
-- Ej. 1. Demostrar
      \neg \neg P \vdash P
import tactic
variable (P : Prop)
open_locale classical
-- 1ª demostración
example
 (h1 : ¬¬P)
 : P :=
by_contra
  ( assume h2 : \neg P,
    show false,
     from h1 h2 )
-- 2ª demostración
example
 (h1 : ¬¬P)
 : P :=
by_contra
 ( assume h2 : \neg P,
   h1 h2 )
-- 3ª demostración
```

```
example
 (h1 : ¬¬P)
 : P :=
by_contra (\lambda h2, h1 h2)
-- 4ª demostración
example
 (h1 : ¬¬P)
 : P :=
not_not.mp h1
-- 5ª demostración
example
 (h1 : ¬¬P)
 : P :=
begin
 by_contradiction h2,
 exact h1 h2,
end
-- 6ª demostración
example
 (h1 : ¬¬P)
 : P :=
by tauto
-- 7º demostración
lemma aux
 (h1 : ¬¬P)
 : P :=
by finish
#print axioms aux
```

2.6.3. Pruebas del principio del tercio excluso

```
import tactic
variable (F : Prop)
open locale classical
-- 1ª demostración
example : F v ¬F :=
by_contradiction
  ( assume h1 : \neg(F \lor \neg F),
    have h2 : ¬F, from
      assume h3 : F,
      have h4 : F v ¬F, from or.inl h3,
      show false, from h1 h4,
    have h5 : F v ¬F, from or.inr h2,
    show false, from h1 h5 )
-- 2ª demostración
example : F v ¬F :=
by contradiction
  ( assume h1 : \neg(F \lor \neg F),
    have h2 : ¬F, from
      assume h3 : F,
      have h4 : F v ¬F, from or.inl h3,
      show false, from h1 h4,
    have h5 : F v ¬F, from or.inr h2,
    h1 h5 )
-- 3ª demostración
example : F v ¬F :=
by contradiction
  ( assume h1 : \neg(F \lor \neg F),
    have h2 : ¬F, from
      assume h3 : F,
      have h4 : F v ¬F, from or.inl h3,
      show false, from h1 h4,
    h1 (or.inr h2) )
-- 4ª demostración
example : F v ¬F :=
by_contradiction
  ( assume h1 : \neg(F \lor \neg F),
    have h2 : ¬F, from
      assume h3 : F,
```

```
have h4 : F v ¬F, from or.inl h3,
      h1 h4,
    h1 (or.inr h2) )
-- 5ª demostración
example : F v ¬F :=
by contradiction
  ( assume h1 : \neg(F \lor \neg F),
    have h2 : ¬F, from
      assume h3 : F,
      h1 (or.inl h3),
    h1 (or.inr h2) )
-- 6ª demostración
example : F v ¬F :=
by contradiction
  ( assume h1 : \neg(F \lor \neg F),
    have h2 : ¬F, from
      \lambda h3, h1 (or.inl h3),
    h1 (or.inr h2) )
-- 7ª demostración
example : F v ¬F :=
by contradiction
  ( assume h1 : \neg(F \lor \neg F),
    h1 (or.inr (\lambda h3, h1 (or.inl h3))) )
-- 8ª demostración
example : F v ¬F :=
by contradiction
  (\lambda h1, h1 (or.inr (\lambda h3, h1 (or.inl h3))))
-- 9ª demostración
example : F v ¬F :=
em F
#print axioms em
-- 10ª demostración
example : F v ¬F :=
begin
  by contra h1,
  apply h1,
  apply or.inr,
  intro h2,
```

```
apply h1,
  exact or inl h2,
-- 11ª demostración
example : F v ¬F :=
begin
  by contra h1,
  apply h1,
  apply or.inr,
  intro h2,
  exact h1 (or.inl h2),
end
-- 12ª demostración
example : F v ¬F :=
begin
  by contra h1,
  apply h1,
  apply or inr,
  exact \lambda h2, h1 (or.inl h2),
-- 13ª demostración
example : F v ¬F :=
begin
  by_contra h1,
  apply h1,
  exact or.inr (\lambda h2, h1 (or.inl h2)),
end
-- 14ª demostración
example : F v ¬F :=
begin
  by contra h1,
  exact h1 (or.inr (\lambda h2, h1 (or.inl h2))),
end
-- 15ª demostración
example : F v ¬F :=
by_contra (\lambda h1, h1 (or.inr (\lambdah2, h1 (or.inl h2))))
-- 16ª demostración
example : F v ¬F :=
begin
```

```
by_contra h1,
apply h1,
right,
intro h2,
apply h1,
left,
exact h2,
end

-- 17<sup>a</sup> demostración
example : F v ¬F :=
by tauto

-- 18<sup>a</sup> demostración
example : F v ¬F :=
by finish
```

2.6.4. Pruebas de $P \rightarrow Q \vdash \neg P \lor Q$

```
-- Pruebas de P \rightarrow Q \vdash \neg P \lor Q
-- Ej. 1. Demostrar
-- P \rightarrow Q \vdash \neg P \lor Q
import tactic
variables (P Q : Prop)
open_locale classical
-- 1ª demostración
example
  (h1 : P \rightarrow Q)
  : ¬P ∨ Q :=
have h2 : P \lor \neg P,
  from em P,
or.elim h2
  ( assume h3 : P,
    have h4 : Q,
      from h1 h3,
```

```
show ¬P ∨ Q,
      from or.inr h4)
  ( assume h5 : \neg P,
    show ¬P v Q,
      from or.inl h5)
-- 2ª demostración
example
  (h1 : P \rightarrow Q)
  : ¬P ∨ Q :=
have h2 : P \vee \neg P,
  from em P,
or.elim h2
  ( assume h3 : P,
    have h4 : Q,
      from h1 h3,
    show \neg P \lor Q,
      from or.inr h4)
  ( assume h5 : \neg P,
    or.inl h5)
-- 3ª demostración
example
  (h1 : P \rightarrow Q)
  : ¬P ∨ Q :=
have h2 : P \lor \neg P,
  from em P,
or.elim h2
  ( assume h3 : P,
    have h4 : Q,
      from h1 h3,
    show ¬P ∨ Q,
      from or.inr h4)
  (\lambda h5, or.inl h5)
-- 4ª demostración
example
  (h1 : P \rightarrow Q)
  : ¬P ∨ Q :=
have h2 : P \lor \neg P,
  from em P,
or.elim h2
  ( assume h3 : P,
    have h4 : Q,
      from h1 h3,
```

```
or.inr h4)
  (\lambda h5, or.inl h5)
-- 5ª demostración
example
  (h1 : P \rightarrow Q)
  : ¬P ∨ Q :=
have h2 : P \lor \neg P,
  from em P,
or.elim h2
  ( assume h3 : P,
    or.inr (h1 h3))
  (\lambda h5, or.inl h5)
-- 6ª demostración
example
  (h1 : P \rightarrow Q)
  : ¬P ∨ Q :=
have h2 : P \lor \neg P,
  from em P,
or.elim h2
  (\lambda h3, or.inr(h1 h3))
  (\lambda h5, or.inl h5)
-- 7ª demostración
example
 (h1 : P \rightarrow Q)
  : ¬P ∨ Q :=
or.elim (em P)
  (\lambda h3, or.inr (h1 h3))
  (\lambda h5, or inl h5)
-- 8ª demostración
example
 (h1 : P \rightarrow Q)
 : ¬P ∨ Q :=
-- by library search
not_or_of_imp h1
-- 9ª demostración
example
 (h1 : P \rightarrow Q)
  : ¬P ∨ Q :=
if h3 : P then or.inr (h1 h3) else or.inl h3
```

```
-- 10ª demostración
example
  (h1 : P \rightarrow Q)
  : ¬P ∨ Q :=
begin
  by_cases h2 : P,
  { apply or.inr,
    exact h1 h2, },
  { exact or.inl h2, },
end
-- 11ª demostración
example
  (h1 : P \rightarrow Q)
  : ¬P ∨ Q :=
begin
  by_cases h2 : P,
  { exact or.inr (h1 h2), },
  { exact or.inl h2, },
end
-- 12ª demostración
example
  (h1 : P \rightarrow Q)
  : ¬P ∨ Q :=
begin
  by_cases h2 : P,
  { right,
    exact h1 h2, },
  { left,
    exact h2, },
end
-- 13ª demostración
example
  (h1 : P \rightarrow Q)
  : ¬P ∨ Q :=
-- by hint
by tauto
-- 14ª demostración
example
  (h1 : P \rightarrow Q)
 : ¬P ∨ Q :=
-- by hint
```

```
by finish
```

2.6.5. Pruebas de P, $\neg\neg(Q \land R) \vdash \neg\neg P \land R$

```
-- Pruebas de P, \neg\neg(Q \land R) \vdash \neg\neg P \land R
-- Ej. 1. Demostrar
-- P, \neg\neg(Q \land R) \vdash \neg\neg P \land R
import tactic
variables (P Q R : Prop)
open locale classical
-- 1ª demostración
example
 (h1 : P)
 (h2 : \neg \neg (Q \land R))
 : ¬¬P ^ R :=
have h3 : ¬¬P, from not_not_intro h1,
have h4 : Q \( \text{R}, \) from not_not.mp h2,
show ¬¬P ∧ R, from and intro h3 h5
-- 2ª demostración
example
 (h1 : P)
 (h2 : \neg \neg (Q \land R))
 : ¬¬P ∧ R :=
have h3 : ¬¬P, from not not intro h1,
have h4 : Q A R, from not_not.mp h2,
and.intro h3 h5
-- 3ª demostración
example
 (h1 : P)
 (h2 : \neg \neg (Q \land R))
: ¬¬P ∧ R :=
```

```
have h3 : ¬¬P, from not_not_intro h1,
have h4 : Q \( \text{R}, \) from not_not.mp h2,
have h5 : R,
                  from h4.2,
and intro h3 h5
-- 5ª demostración
example
  (h1 : P)
  (h2 : \neg \neg (Q \land R))
  : ¬¬P ^ R :=
and.intro (not_not_intro h1) (not_not.mp h2).2
-- 6ª demostración
example
 (h1 : P)
  (h2 : \neg \neg (Q \land R))
  : ¬¬P ∧ R :=
begin
  split,
  { exact not not intro h1, },
  { push neg at h2,
    exact h2.2, },
end
-- 7ª demostración
example
 (h1 : P)
  (h2 : \neg \neg (Q \land R))
  : ¬¬P ∧ R :=
-- by hint
by tauto
-- 8ª demostración
lemma aux
 (h1 : P)
  (h2 : ¬¬(Q ∧ R))
  : ¬¬P ^ R :=
by finish
#print axioms aux
```

2.6.6. Pruebas de $\neg P \rightarrow Q$, $\neg Q \vdash P$

```
-- Pruebas de \neg P \rightarrow Q, \neg Q \vdash P
-- Ej. 1. Demostrar
\neg P \rightarrow Q, \neg Q \vdash P
import tactic
variables (P Q : Prop)
open_locale classical
-- 1ª demostración
example
 (h1 : \neg P \rightarrow Q)
 (h2 : ¬Q)
  : P :=
have h3 : ¬¬P, from mt h1 h2,
show P, from not not.mp h3
-- 2ª demostración
example
 (h1 : \neg P \rightarrow Q)
 (h2 : ¬Q)
 : P :=
not_not.mp (mt h1 h2)
-- 3ª demostración
example
 (h1 : \neg P \rightarrow Q)
 (h2 : ¬Q)
  : P :=
begin
 by_contra h3,
 apply h2,
  exact h1 h3,
end
-- 4º demostración
example
  (h1 : \neg P \rightarrow Q)
  (h2 : \neg Q)
  : P :=
begin
  by_contra h3,
```

```
exact h2 (h1 h3),
end
-- 5ª demostración
example
 (h1 : \neg P \rightarrow Q)
  (h2 : ¬Q)
  : P :=
by_contra (\lambda h3, h2 (h1 h3))
-- 6ª demostración
example
  (h1 : \neg P \rightarrow Q)
  (h2 : ¬Q)
 : P :=
by_contra (λ h3, (h2 o h1) h3)
-- 7ª demostración
example
 (h1 : \neg P \rightarrow Q)
 (h2 : ¬Q)
  : P :=
by_contra (h2 o h1)
-- 8ª demostración
example
 (h1 : \neg P \rightarrow Q)
 (h2 : ¬Q)
 : P :=
-- by library search
not_not.mp (mt h1 h2)
-- 9ª demostración
example
 (h1 : \neg P \rightarrow Q)
 (h2 : ¬Q)
  : P :=
-- by hint
by tauto
-- 10ª demostración
lemma aux
  (h1 : \neg P \rightarrow Q)
  (h2 : \neg Q)
  : P :=
```

```
-- by hint
by finish

#print axioms aux
```

2.6.7. Pruebas de $(Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R))$

```
-- Pruebas de (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R))
-- Ej. 1. Demostrar
       (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R))
import tactic
variables (P Q R : Prop)
-- 1ª demostración
example:
   (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R)) :=
assume h1 : Q \rightarrow R,
show (\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R), from
   ( assume h2 : \neg Q \rightarrow \neg P,
      show P \rightarrow R, from
         ( assume h3 : P,
           have h4 : ¬¬P, from not not intro h3,
           have h5 : \neg \neg Q, from mt h2 h4,
           have h6 : Q, from not not.mp h5,
            show R, from h1 h6))
-- 2ª demostración
example :
   (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R)) :=
assume h1 : Q → R,
show (\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R), from
   ( assume h2 : \neg Q \rightarrow \neg P,
      show P \rightarrow R, from
         ( assume h3 : P,
            have h4 : ¬¬P, from not_not_intro h3,
           have h5 : \neg \neg Q, from mt h2 h4,
            have h6 : Q, from not_not.mp h5,
```

```
h1 h6))
-- 3ª demostración
example:
   (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R)) :=
assume h1 : Q \rightarrow R,
show (\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R), from
   ( assume h2 : \neg Q \rightarrow \neg P,
      show P \rightarrow R, from
         ( assume h3 : P,
            have h4 : ¬¬P, from not_not_intro h3,
            have h5 : \neg \neg Q, from mt h2 h4,
            h1 (not not.mp h5)))
-- 4º demostración
example:
   (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R)) :=
assume h1 : Q → R,
show (\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R), from
   ( assume h2 : \neg Q \rightarrow \neg P,
      show P \rightarrow R, from
         ( assume h3 : P,
            have h4 : ¬¬P, from not not intro h3,
            h1 (not not.mp (mt h2 h4))))
-- 5ª demostración
example :
   (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R)) :=
assume h1 : Q → R,
show (\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R), from
   ( assume h2 : \neg Q \rightarrow \neg P,
      show P → R, from
         ( assume h3 : P,
            h1 (not not.mp (mt h2 (not not intro h3)))))
-- 6ª demostración
example:
   (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R)) :=
assume h1 : Q → R,
show (\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R), from
   ( assume h2 : \neg Q \rightarrow \neg P,
      show P → R, from
         (λh3, h1 (not_not.mp (mt h2 (not_not_intro h3)))))
-- 7º demostración
```

```
example :
   (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R)) :=
assume h1 : Q \rightarrow R,
show (\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R), from
   ( assume h2 : \neg Q \rightarrow \neg P,
      (\lambda h3, h1 (not not.mp (mt h2 (not not intro h3)))))
-- 8ª demostración
example:
   (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R)) :=
assume h1 : Q \rightarrow R,
show (\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R), from
   (\lambda h2,
      (\lambda h3, h1 (not\_not.mp (mt h2 (not\_not\_intro h3)))))
-- 9ª demostración
example:
   (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R)) :=
assume h1 : Q → R,
(\lambda h2 h3, h1 (not not.mp (mt h2 (not not intro h3))))
-- 10ª demostración
example:
   (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R)) :=
λ h1 h2 h3, h1 (not_not.mp (mt h2 (not_not_intro h3)))
-- 11ª demostración
example:
   (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R)) :=
   intro h1,
   intro h2,
   intro h3,
   apply h1,
   apply not_not.mp,
   apply mt h2,
   exact not not intro h3,
end
-- 12ª demostración
example:
  (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R)) :=
begin
   intros h1 h2 h3,
   apply h1,
```

```
apply not_not.mp,
  apply mt h2,
  exact not not intro h3,
end
-- 13ª demostración
example :
  (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R)) :=
begin
  intros h1 h2 h3,
  apply h1,
  apply not_not.mp,
  exact mt h2 (not_not_intro h3),
end
-- 14ª demostración
example:
  (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R)) :=
  intros h1 h2 h3,
  exact h1 (not_not.mp (mt h2 (not_not_intro h3))),
-- 15ª demostración
example:
  (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R)) :=
λ h1 h2 h3, h1 (not_not.mp (mt h2 (not_not_intro h3)))
-- 16ª demostración
lemma aux :
  (Q \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R)) :=
-- by hint
by finish
#print axioms aux
```

Capítulo 3

Lógica de primer orden

3.1. Reglas del cuantificador universal

3.1.1. Regla de eliminación del cuantificador universal

```
-- Regla de eliminación del cuantificador universal
-- Ej. 1. Demostrar
    P(c), \ \forall x \ (P(x) \rightarrow \neg Q(x)) \vdash \neg Q(c)
import tactic
variable U : Type
variable c : U
variables P Q : U → Prop
-- 1ª demostración
example
  (h1 : P c)
  (h2 : \forall x, P x \rightarrow \neg Q x)
  : ¬0 c :=
have h3 : P c \rightarrow \neg Q c, from h2 c,
                          from h3 h1
show ¬Q c,
-- 2ª demostración
example
 (h1 : P c)
(h2 : \forall x, P x \rightarrow \neg Q x)
```

```
: ¬Q c :=
have h3 : P c \rightarrow \neg Q c, from h2 c,
h3 h1
-- 3ª demostración
example
  (h1 : P c)
  (h2 : \forall x, P x \rightarrow \neg Q x)
  : ¬Q c :=
(h2 c) h1
-- 4º demostración
example
  (h1 : P c)
  (h2 : \forall x, P x \rightarrow \neg Q x)
  : ¬Q c :=
-- by library_search
h2 c h1
-- 5ª demostración
example
  (h1 : P c)
  (h2 : \forall x, P x \rightarrow \neg Q x)
  : ¬Q c :=
-- by hint
by tauto
-- 6ª demostración
example
  (h1 : P c)
  (h2 : \forall x, P x \rightarrow \neg Q x)
  : ¬0 c :=
by finish
```

3.1.2. Regla de introducción del cuantificador universal

```
import tactic
variable U : Type
variables P Q : U → Prop
-- 1ª demostración
example
  (h1 : \forall x, P x \rightarrow \neg Q x)
  (h2 : \forall x, P x)
  : ∀x, ¬Q x :=
assume X0,
have h4 : P x_0 \rightarrow \neg Q x_0, from h1 x_0,
have h5 : P x_0, from h2 x_0,
                               from h4 h5
show \neg Q \times_{\theta},
-- 2ª demostración
example
  (h1 : \forall x, P x \rightarrow \neg Q x)
  (h2 : \forall x, P x)
  : ∀x, ¬Q x :=
assume x_0, (h1 x_0) (h2 x_0)
-- 3ª demostración
example
  (h1 : \forall x, P x \rightarrow \neg Q x)
  (h2 : \forall x, P x)
  : ∀x, ¬Q x :=
\lambda x<sub>0</sub>, (h1 x<sub>0</sub>) (h2 x<sub>0</sub>)
-- 4º demostración
example
  (h1 : \forall x, P x \rightarrow \neg Q x)
  (h2 : \forall x, P x)
  : ∀x, ¬Q x :=
begin
  intro x₀,
  apply h1,
  apply h2,
end
-- 5ª demostración
example
  (h1 : \forall x, P x \rightarrow \neg Q x)
  (h2 : \forall x, P x)
```

```
: ∀x, ¬Q x :=
begin
  intro x₀,
  specialize h1 x<sub>0</sub>,
  specialize h2 x<sub>0</sub>,
  apply h1,
  exact h2,
end
-- 6ª demostración
example
  (h1 : \forall x, P x \rightarrow \neg Q x)
  (h2 : \forall x, P x)
  : ∀x, ¬Q x :=
begin
  intro x₀,
  specialize h1 x<sub>0</sub>,
  specialize h2 x<sub>0</sub>,
  exact h1 h2,
end
-- 7ª demostración
example
  (h1 : \forall x, P x \rightarrow \neg Q x)
  (h2 : \forall x, P x)
  : ∀x, ¬Q x :=
-- by hint
by tauto
-- 8ª demostración
example
  (h1 : \forall x, P x \rightarrow \neg Q x)
  (h2 : \forall x, P x)
  : ∀x, ¬0 x :=
by finish
```

3.2. Reglas del cuantificador existencial

3.2.1. Regla de introducción del cuantificador existencial

```
-- Regla de introducción del cuantificador existencial
-- Ej. 1. Demostrar
-- \forall x \ P(x) \vdash \exists x \ P(x)
import tactic
variable U : Type
variable c : U
variable P : U -> Prop
-- 1ª demostración
example
 (h1 : ∀x, P x)
 : ∃x, P x :=
have h2 : P c, from h1 c,
show \exists x, P x, from exists.intro c h2
-- 2ª demostración
example
 (h1 : ∀x, P x)
 : ∃x, P x :=
have h2 : P c, from h1 c,
show ∃x, P x, from exists.intro c h2
-- 3ª demostración
example
 (h1 : \forall x, P x)
 : ∃x, P x :=
exists.intro c (h1 c)
-- 4ª demostración
example
 (c:U)
 (h1 : \forall x, P x)
 : ∃x, P x :=
begin
 use c,
 apply h1,
end
```

3.2.2. Regla de eliminación del cuantificador existencial

```
-- Regla de eliminación del cuantificador existencial
-- Ei. 1. Demostrar
-- \forall x \ [P(x) \rightarrow Q(x)], \ \exists x \ P(x) \vdash \exists x \ Q(x)
import tactic
variable U : Type
variables P Q : U -> Prop
-- 1ª demostración
-- ==========
example
 (h1 : \forall x, P x \rightarrow Q x)
  (h2 : \exists x, P x)
  : ∃x, Q x :=
exists.elim h2
  ( assume x_0 (h3 : P x_0),
    have h4 : P x_0 \rightarrow Q x_0, from h1 x_0,
    from exists.intro x₀ h5 )
    show ∃x, Q x,
-- 2ª demostración
example
  (h1 : \forall x, P x \rightarrow Q x)
  (h2 : \exists x, P x)
 : ∃x, Q x :=
exists.elim h2
  ( assume x_0 (h3 : P x_0),
    have h4 : P x_0 \rightarrow Q x_0, from h1 x_0,
    -- 3ª demostración
- - ===========
example
```

```
(h1 : \forall x, P x \rightarrow Q x)
  (h2 : \exists x, P x)
  : ∃x, Q x :=
exists.elim h2
  ( assume x_0 (h3 : P x_0),
    have h4 : P x_0 \rightarrow Q x_0, from h1 x_0,
    have h5 : Q x_0, from h4 h3,
    (x<sub>0</sub>, h5))
-- 4ª demostración
-- ==========
example
  (h1 : \forall x, P x \rightarrow Q x)
  (h2 : \exists x, P x)
  : ∃x, Q x :=
exists.elim h2
  ( assume x_0 (h3 : P x_0),
    have h4 : P x_0 \rightarrow Q x_0, from h1 x_0,
    (x<sub>0</sub>, h4 h3)
-- 5ª demostración
-- ===========
example
  (h1 : \forall x, P x \rightarrow Q x)
  (h2 : \exists x, P x)
  : ∃x, Q x :=
exists elim h2
  ( assume x_0 (h3 : P x_0),
    (x_0, h1 x_0 h3)
-- 6ª demostración
-- ===========
example
 (h1 : \forall x, P x \rightarrow Q x)
  (h2 : ∃x, P x)
  : ∃x, Q x :=
exists.elim h2 (\lambda x<sub>0</sub> h3, (x<sub>0</sub>, h1 x<sub>0</sub> h3))
-- 7ª demostración
- - ===========
example
```

```
(h1 : \forall x, P x \rightarrow Q x)
  (h2 : \exists x, P x)
 : ∃x, Q x :=
-- by library search
Exists.imp h1 h2
-- 8ª demostración
-- ==========
example
  (h1 : \forall x, P x \rightarrow Q x)
  (h2 : \exists x, P x)
  : ∃x, Q x :=
begin
  cases h2 with x₀ h3,
  use x₀,
  apply h1,
  exact h3,
end
-- 9ª demostración
example
 (h1 : \forall x, P x \rightarrow Q x)
  (h2 : ∃x, P x)
  : ∃x, Q x :=
begin
  cases h2 with x<sub>0</sub> h3,
  use x<sub>0</sub>,
  specialize h1 x0,
  apply h1,
  exact h3,
end
-- 10ª demostración
-- ==========
example
 (h1 : \forall x, P x \rightarrow Q x)
  (h2 : \exists x, P x)
 : ∃x, Q x :=
-- by hint
by tauto
```

3.3. Ejercicios sobre cuantificadores

3.3.1. Pruebas de $\neg \forall x P(x) \leftrightarrow \exists x \neg P(x)$

```
-- Pruebas de \neg \forall x \ P(x) \leftrightarrow \exists x \ \neg P(x)
-- Ej. 1. Demostrar que
\neg \forall x \ P(x) \vdash \exists x \ \neg P(x)
import tactic
variable {U : Type}
variable {P : U -> Prop}
-- 1ª demostración
example
  (h1 : \neg \forall x, P x)
  : ∃x, ¬P x :=
by_contra
  ( assume h2 : \neg \exists x, \neg P x,
    have h8 : \forall x, P x, from
       ( assume x<sub>0</sub>,
         show P xo, from
            by contra
               ( assume h4 : \neg P x_0,
                 have h5 : \exists x, \neg P x, from exists.intro x_0 h4,
                 show false, from h2 h5 )),
     show false, from h1 h8)
```

```
-- 2ª demostración
example
  (h1 : \neg \forall x, P x)
  : ∃x, ¬P x :=
by contra
  ( assume h2 : \neg \exists x, \neg P x,
     have h8 : \forall x, P x, from
       ( assume X<sub>0</sub>,
          show P x0, from
             by contra
               ( assume h4 : \neg P x_0,
                  have h5 : \exists x, \neg P x, from exists.intro x_0 h4,
                  show false, from h2 h5 )),
     h1 h8)
-- 3ª demostración
example
  (h1 : \neg \forall x, P x)
  : ∃x, ¬P x :=
by contra
  ( assume h2 : \neg \exists x, \neg P x,
     have h8 : \forall x, P x, from
       ( assume X0,
          show P xo, from
             by contra
               ( assume h4 : \neg P \times_0,
                  have h5 : \exists x, \neg P x, from exists.intro x_0 h4,
                  h2 h5 )),
     h1 h8)
-- 4ª demostración
example
  (h1 : \neg \forall x, P x)
  : ∃x, ¬P x :=
by contra
  ( assume h2 : \neg \exists x, \neg P x,
     have h8 : \forall x, P x, from
       ( assume X0,
          show P xo, from
             by_contra
               ( assume h4 : \neg P \times_0,
                  have h5 : \exists x, \neg P x, from \langle x_0, h4 \rangle,
                  h2 h5 )),
    h1 h8)
```

```
-- 5ª demostración
example
  (h1 : \neg \forall x, P x)
  : ∃x, ¬P x :=
by contra
  ( assume h2 : \neg \exists x, \neg P x,
     have h8 : \forall x, P x, from
       ( assume X<sub>0</sub>,
          show P xo, from
            by contra
               ( assume h4 : \neg P x_0,
                 h2 (x_0, h4))),
    h1 h8)
-- 6ª demostración
example
  (h1 : ¬∀x, P x)
  : ∃x, ¬P x :=
by contra
  ( assume h2 : \neg \exists x, \neg P x,
     have h8 : \forall x, P x, from
       ( assume X0,
          show P xo, from
            by_contra (\lambda h4, h2 (x_0, h4))),
    h1 h8)
-- 7ª demostración
example
  (h1 : ¬∀x, P x)
  : ∃x, ¬P x :=
by contra
  ( assume h2 : \neg \exists x, \neg P x,
    have h8 : \forall x, P x, from
       ( assume x<sub>0</sub>,
          by contra (\lambda h4, h2 (x_0, h4)),
    h1 h8)
-- 8ª demostración
example
  (h1 : \neg \forall x, P x)
  : ∃x, ¬P x :=
by_contra
  ( assume h2 : \neg \exists x, \neg P x,
    have h8 : \forall x, P x, from
```

```
(\lambda x_0, by\_contra (\lambda h4, h2 (x_0, h4))),
     h1 h8)
-- 9ª demostración
example
  (h1 : \neg \forall x, P x)
  : ∃x, ¬P x :=
by contra
  ( assume h2 : \neg \exists x, \neg P x,
     h1 (\lambda x_0, by\_contra (\lambda h4, h2 (x_0, h4))))
-- 10ª demostración
example
  (h1 : \neg \forall x, P x)
  : ∃x, ¬P x :=
by_contra (\lambda h2, h1 (\lambda x<sub>0</sub>, by_contra (\lambda h4, h2 (x<sub>0</sub>, h4))))
-- 11ª demostración
example
 (h1 : ¬∀x, P x)
 : ∃x, ¬P x :=
-- by library_search
not_forall.mp h1
-- 12ª demostración
lemma aux1
  (h1 : \neg \forall x, P x)
  : ∃x, ¬P x :=
-- by hint
by finish
#print axioms aux1
-- Ej. 2. Demostrar que
\neg P(x) \vdash \neg \forall x P(x)
-- 1ª demostración
example
  (h1 : \exists x, \neg P x)
  : ¬∀x, P x :=
assume h2 : \forall x, P x,
exists.elim h1
 ( assume x_0 (h3 : \neg P x_0),
```

```
have h4 : P x_0, from h2 x_0,
     show false, from h3 h4)
-- 2ª demostración
example
  (h1 : \exists x, \neg P x)
  : ¬∀x, P x :=
assume h2 : \forall x, P x,
exists.elim h1
  ( assume x_0 (h3 : \neg P x_0),
    have h4 : P x_0, from h2 x_0,
    h3 h4)
-- 3ª demostración
example
  (h1 : \exists x, \neg P x)
  : ¬∀x, P x :=
assume h2 : \forall x, P x,
exists.elim h1
  ( assume x_0 (h3 : \neg P x_0),
    h3 (h2 x<sub>0</sub>))
-- 4ª demostración
example
  (h1 : \exists x, \neg P x)
  : ¬∀x, P x :=
assume h2 : \forall x, P x,
exists.elim h1
  (\lambda x_0 h3, h3 (h2 x_0))
-- 5ª demostración
example
  (h1 : \exists x, \neg P x)
  : ¬∀x, P x :=
\lambda h2, exists.elim h1 (\lambda x<sub>0</sub> h3, h3 (h2 x<sub>0</sub>))
-- 6ª demostración
example
  (h1 : \exists x, \neg P x)
  : ¬∀x, P x :=
-- by library search
not_forall.mpr h1
-- 7ª demostración
example
```

```
(h1 : \exists x, \neg P x)
  : ¬∀x, P x :=
begin
  intro h2,
  cases h1 with x0 h3,
 apply h3,
  apply h2,
end
-- 8ª demostración
example
 (h1 : \exists x, \neg P x)
 : ¬∀x, P x :=
-- by hint
by tauto
-- 9ª demostración
lemma aux2
 (h1 : \exists x, \neg P x)
  : ¬∀x, P x :=
by finish
#print axioms aux2
-- Ej. 3. Demostrar que
\neg \forall x \ P(x) \leftrightarrow \exists x \ \neg P(x)
-- 1ª demostración
example:
 (\neg \forall x, P x) \leftrightarrow (\exists x, \neg P x) :=
iff.intro
  ( assume h1 : \neg \forall x, P x,
    show \exists x, \neg P x, from aux1 h1)
  ( assume h2 : \exists x, \neg P x,
    show \neg \forall x, P x, from aux2 h2)
-- 2ª demostración
example:
  (\neg \forall x, P x) \leftrightarrow (\exists x, \neg P x) :=
iff.intro aux1 aux2
-- 3ª demostración
example :
```

```
(\neg \forall x, P x) \leftrightarrow (\exists x, \neg P x) :=
-- by library_search
not_forall
-- 4ª demostración
example :
  (\neg \forall x, P x) \leftrightarrow (\exists x, \neg P x) :=
begin
  split,
  { exact aux1, },
  { exact aux2, },
end
-- 5ª demostración
example :
 (\neg \forall x, P x) \leftrightarrow (\exists x, \neg P x) :=
-- by hint
by finish
```