Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант <u>13</u>

Виконав студент	III-13, Жмайло Дмитро Олександрович
	(шифр, прізвище, ім'я, по батькові)
·	
Перевірив	
	(прізвище, ім'я, по батькові)

Київ 2021

Лабораторна робота 4

Дослідження арифметичних циклічних алгоритмів

Мета - дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання

Варіант 13

13. Нехай задані додатні дійсні числа a, x та ціле число n. Знайти n-й член послідовності y_1, y_2, \ldots , що утворена за законом

$$y_0 = a$$
; $y_i = \frac{1}{2} \left(y_{i-1} + \frac{x}{y_{i-1}} \right)$, $i = 1, 2 \dots$

Постановка задачі

Необхідно за законом

$$y_0 = a; y_i = \frac{1}{2} \left(y_{i-1} + \frac{x}{y_{i-1}} \right), i = 1, 2....$$

знайти n-й член послідовності y_1, y_2, \dots, y_n при заданих числах a, x, n.

Для цього достатньо знайти перший член послідовності (y_1) , підставши значення попереднього члена послідовності $(y_0 = a)$ та х до формули

$$y_0 = a$$
; $y_i = \frac{1}{2} \left(y_{i-1} + \frac{x}{y_{i-1}} \right)$, $i = 1, 2, ...$

За таким же методом знаходимо значення y_2 , підставивши значення y_1 та x; значення y_n , підставивши значення y_{n-1} та x до тієї ж формули.

Побудова математичної моделі

Відповідно до умови складемо таблицю змінних:

Змінна	Tun	Назва	Призначення
Початкове число х	Дійсний	X	Вхідні дані
Початкове число а	Дійсний	a	Вхідні дані
Початкове число п	Цілий	number	Вхідні дані
Лічильник і	Цілий	i	Проміжні дані
Проміжний результат	Дійсний	prev_result	Проміжні дані
Результат	Дійсний	result	Вихідні дані

Розв'язання:

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії;

Крок 2. Деталізуємо дію перевірки значень x, a, number;

Крок 3. Деталізуємо дію знаходження y_0 ;

Крок 4. Деталізуємо дію знаходження п-го члена послідовності;

Псевдокод:

Крок 1

початок

```
введення х 

<u>перевірка значень х, а, number</u> 

знаходження значення у<sub>о</sub> 

знаходження n-го числа послідовності 

виведення result
```

кінець

Крок 2

початок

кінець

Крок 3

```
початок
```

кінець

Крок 4

початок

```
введення x, a, n

якщо a > 0 && x > 0 && number > 0

то

result := 0.5 * (a + (x/a))

для і від 1 до number повторити

prev_result := result

result := 0.5 * (prev_result + (x / prev_result))

все повторити

все якщо

інакше

виведення "Введено некоректне значення змінних"

виведення result
```

кінець

Блок-схема:

Крок 1

Крок 2

Крок 3

Крок 4

Випробування алгоритму:

Блок	Дія
	Початок
1	Введення x=-1, a=3, n=5
2	0 < x не виконується
3	Вивід: "Введено некоректне значення змінних"
	Кінець

Блок	Дія
	Початок
1	Введення x=3, a=3, n=3
2	0 < x & 0 < a & 0 < n виконується
3	result $(y_0) = 2$;
4	prev_result = 2 , i = 1 ,
	result = 1.75
5	2 <= 3 виконується
6	prev_result = 1.75 , i = 2 ,
	result = 1.732142
7	3 <= 3 виконується
8	prev_result = 1.732142 , i = 3 ,
	result = 1.732050
9	4 <= 3 не виконується
10	Вивід: 1.732050
	Кінець

Блок	Дія
	Початок
1	Введення x=15, a=7, n=2
2	0 < x & 0 < a & 0 < n виконується
3	result $(y_0) = 4.571428$;
4	prev_result = 4.571428 , i = 1
	result = 3.926339
5	2 <= 2 виконується
6	prev_result = 3.926339 , i = 2
	result = 3.873345
7	3 <= 2 не виконується
8	Вивід: 3.873345
	Кінець
	Кіпсць

Висновок:

На цій лабораторній роботі ми дослідили особливості роботи арифметичних циклів, закріпили ці знання практично; навчилися оформлювати арифметичні цикли в програмах у вигляді блок-схем та псевдокоду. Випробували програму покрокова та перевірили результати.