Exercice 1:

Données: par hectare

engrais	potasium	calcium	sodium	prix
A	1kg	3	3	100dh
В	2	2	1	100
Besoin	60	120	90	

minimiser les packet de A et B

Variables: x_A quantité de paquet A utilise par hectare x_B quantité de paquet B utilise par hectare

Critère:

$$min(f(x)) = 100(x_A + x_b)$$

Sous contraint:

$$\begin{cases}
 x_A + 2x_B \ge 60 \\
 3x_A + 2x_B \ge 120 \\
 3x_A + 1x_B \ge 90 \\
 x_A, x_B \ge 0
\end{cases}$$
(1)

Exercice 2:

Données:

aliment/composant	A	В	С	D	prix
1kg de M	100g	0	100	200	100dh
1kg de N	0	100	200	100	40
Besoin	$0.4 \mathrm{kg}$	0.6	2	1.7	

Variables: x_M quantité d'aliment M en kg x_N quantité d'aliment N en kg

Critère:

$$min(f(x)) = 100x_M + 40x_N$$

Sous contraint:

$$\begin{cases} x_M * 0.1 \ge 0.4 \\ x_N * 0.1 \ge 0.6 \\ x_M * 0.1 + x_N * 0.2 \ge 2 \\ x_M * 0.2 + x_N * 0.1 \ge 1.7 \\ x_M, x_N \ge 0 \end{cases}$$
 (2)

Exercice 3:

Données:

train	voiture postal	wagon 2eme	wagon 1ere	couchette
rapid	1	5	7	9
express	2	4	7	6
disponibilite par jour	12	30	119	81
Nombre Voyageur		52	41	34

maximiser le nombre de voyageur transporte par jour ##### Variables: x_r nombre de train rapide par jour x_e nombre de train expresse par jour

Critère:

$$max(f(x)) = x_r(5*52+7*41+9*34)$$
(4)

$$+x_e(4*52+7*41+6*34)$$
 (5)

Sous contraint:

$$\begin{cases} x_r + 2x_e \le 12 \\ 5x_r + 4_e \le 30 \\ 7x_r + 7x_e \le 119 \\ 9x_r + 6x_e \le 81 \\ x_r, x_e \ge 0 \end{cases}$$
(6)

Exercice 4:

Données:

jus sucre concentre additives-arôme	prix
orange 100g 30 4	2dh
mangue 80 45 6	2.5
fruit 120 40 7	3
disponibilite 1 000 000 350 000 6000	

moins 7000 litre entre le jus d'orange et le jus de fruit et il ne faut pas dépasser 3000 litre de jus de mangue.

En plus, le nombre de litre de jus d'orange doit être plus grand que le double de nombre de litre de jus de fruit.

maximiser le bénéfice.

Variables: x_o litre de jus orange x_m litre de jus de mangue x_f litre de jus de fruit

Critère:

$$max(f(x)) = 2x_0 + 2.5x_m + 3x_f$$

Sous contraint:

$$\begin{cases} x_o \ge 7000 \\ x_e \le 3000 \\ x_o > 2x_f \end{cases}$$

$$\begin{cases} 100x_o + 80x_m + 120x_f \le 1000000 \\ 30x_o + 45x_m + 40x_f \le 350000 \\ 4x_o + 6x_m + 7x_f \le 6000 \end{cases}$$

$$\begin{cases} x_o \ge 7000 \\ x_o, x_e, x_f \ge 0 \end{cases}$$

$$(7)$$