$Q^TAQ - \lambda_1 I$ es el vector cero, se tiene que $Q^TAQ - 2_1 I$ contiene a lo más n-2 columnas linealmente independientes. En otras palabras, $\rho(Q^TAQ - \lambda_1 I) \le n-2$. Pero $Q^TAQ - \lambda_1 I$ y $A - \lambda_1 I$ son semejantes; así, del problema 8.3.23, $\rho(A - \lambda_1 I) \le n-2$. Por lo tanto, $\nu(A - \lambda_1 I) \ge 2$, lo que significa que $E_{\lambda} =$ núcleo de $(A - \lambda_1 I)$ contiene al menos dos vectores característicos linealmente independientes. Si k=2, la demostración termina. Si k>2, entonces se toman dos vectores ortonormales $\mathbf{u}_1, \mathbf{u}_2$ en E_{λ} y se expanden a una nueva base ortonormal $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n\}$ para \mathbb{R}^n y se define $P=\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n\}$. Entonces, justo como se hizo, se demuestra que

$$P^{\mathsf{T}}AP - \lambda_1 = \begin{pmatrix} \lambda_1 - \lambda & 0 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_1 - \lambda & 0 & 0 & \cdots & 0 \\ 0 & 0 & \beta_{33} - \lambda & \beta_{34} & \cdots & \beta_{3n} \\ 0 & 0 & \beta_{43} & \beta_{44} - \lambda & \cdots & \beta_{4n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \beta_{n3} & \beta_{n4} & \cdots & \beta_{nn} - \lambda \end{pmatrix}$$

Como k > 2, queda demostrado, como antes, que el determinante de la matriz entre corchetes es cero cuando $\lambda = \lambda_1$, lo cual demuestra que $\rho(P^TAP - \lambda_1I) \le n - 3$ de manera que $\nu(P^TAP - \lambda_1I) = \nu(A - \lambda_1I)$ ≥ 3 . Entonces dim $E_{\lambda_1} \ge 3$, y así sucesivamente. Es evidente que se puede continuar este proceso para demostrar que dim $E_{\lambda_1} = k$. Por último, en cada E_{λ_1} se puede encontrar una base ortonormal. Esto completa la prueba.

RESUMEN 8.4

- Los valores característicos de una matriz simétrica real son reales.
- Los vectores característicos de una matriz simétrica real correspondientes a valores característicos diferentes son ortogonales.
- Una matriz simétrica real de $n \times n$ tiene vectores característicos reales ortonormales.
- Matriz ortogonalmente diagonalizable

Se dice que una matriz A de $n \times n$ es diagonalizable ortogonalmente si existe una matriz ortogonal Q tal que

$$Q^{\mathsf{T}}AQ = D$$

donde $D = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ y $\lambda_1, \lambda_2, \dots, \lambda_n$ son los valores característicos de A.

- Procedimiento para encontrar una matriz diagonalizante Q:
 - i) Encuentre una base para cada espacio característico de A.
 - ii) Encuentre una base ortonormal para cada espacio característico de *A* usando el proceso de Gram-Schmidt.
 - iii) Escriba Q como la matriz cuyas columnas son los vectores característicos ortonormales obtenidos en el paso ii).
- La transpuesta conjugada de una matriz de $m \times n$, $A = (a_{ij})$, denotada por A^* , es la matriz de $n \times m$ cuya componente ij es \overline{a}_{ij}
- Una matriz compleja A de $n \times n$ es hermitiana si $A^* = A$.
- Una matriz compleja $U \operatorname{de} n \times n$ es unitaria si $U^* = U^{-1}$.