

Features

- V_{DS} (V) = 30V
- $\bullet~\text{RDS(ON)} < 27 \text{m}\,\Omega~\text{(VGs = 10V)}$
- RDS(ON) < 40m Ω (VGS = 4.5V)

Benefits

- Lower switching losses
- Multi-vendor compatibility
- Easier manufacturing
- Environmentally friendly
- Increased reliability

Absolute Maximum Ratings

Symbol Parameter		Max.	Units
V_{DS}	Drain-Source Voltage	30	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	5.3	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	4.3	А
I _{DM}	Pulsed Drain Current	21	
P _D @T _A = 25°C	Maximum Power Dissipation	1.3	14/
P _D @T _A = 70°C	Maximum Power Dissipation	0.8	W
	Linear Derating Factor	0.01	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

Symbol	Symbol Parameter		Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
$R_{\theta JA}$	Junction-to-Ambient (t<10s)		99	C/VV

Notes:

- $\ensuremath{\mathbb{O}}$ Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ③ Surface mounted on 1 in square Cu board

Electric Characteristics @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	30		_	V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	_	0.02	_	V/°C	Reference to 25°C, I _D = 1mA
D	Static Drain-to-Source On-Resistance		33	40	mΩ	$V_{GS} = 4.5V, I_D = 4.2A$ ②
R _{DS(on)}	Static Diam-to-Source Off-nesistance		22	27	11122	V _{GS} = 10V, I _D = 5.2A ②
$V_{GS(th)}$	Gate Threshold Voltage	1.3	1.7	2.3	V	$V_{DS} = V_{GS}, \ I_D = 25 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			1		$V_{DS} = 24V$, $V_{GS} = 0V$
	Diam-to-Source Leakage Current			150	μΑ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100	I IIA	V _{GS} = -20V
R _G	Internal Gate Resistance	_	2.3		Ω	
gfs	Forward Transconductance	9.5			S	$V_{DS} = 10V, I_D = 5.2A$
Q_g	Total Gate Charge	_	2.6	_		$I_D = 5.2A$
Q_gs	Gate-to-Source Charge	_	0.8	_	nC	V _{DS} =15V
Q_gd	Gate-to-Drain ("Miller") Charge		1.1		Ī	V _{GS} = 4.5V ②
t _{d(on)}	Turn-On Delay Time		5.2			V _{DD} =15V ^②
t _r	Rise Time	_	4.4	_		$I_D = 1.0A$
$t_{d(off)}$	Turn-Off Delay Time	_	7.4	_	ns	$R_G = 6.8\Omega$
t _f	Fall Time		4.4			$V_{GS} = 4.5V$
C _{iss}	Input Capacitance		382			$V_{GS} = 0V$
Coss	Output Capacitance		84		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		39			f = 1.0MHz

Source - Drain Ratings and Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	
Is	Continuous Source Current			1.6		MOSFET symbol
	(Body Diode)			1.0	A	showing the
I _{SM}	Pulsed Source Current			21		integral reverse
	(Body Diode) ①			21		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 1.6A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		11	17	ns	$T_J = 25^{\circ}C$, $V_R = 15V$, $I_F=1.6A$
Q _{rr}	Reverse Recovery Charge		4.0	6.0	nC	di/dt = 100A/µs ②

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

Fig 15. Typical Threshold Voltage Vs. Junction Temperature

Fig 16. Typical Power Vs. Time

SOT-23 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950	TYP.	0.037 TYP.		
e1	1.800	2.000	0.071	0.079	
L	0.550	REF.	0.022	REF.	
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0° 8°		

Marking

Ordering information

Order code	Package	Baseqty	Deliverymode
UMW IRLML0030TR	SOT-23	3000	Tape and reel