

PATENT ATTORNEY DOCKET NO. 50013/002003

Certificate of Mailing: Date of Deposit fully 17,300

I hereby certify under 37 CFR 1.8(a) that this correspondence is being deposited with the United States Postal Service as first class mail with sufficient postage on the date indicated above and is addressed to; Assistant Commissioner of Patents, Washington, D.C. 2023).

Printed name of person mailing correspondence

naling correspondence

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

RECEIVED

Applicant:

Philip E. Branton et al.

Art Unit:

1633

JUL 2 7 2001

Serial No.:

09/214,478

Examiner:

S. Chen

TECH CENTER 1600/2900

Filed: Title: June 7, 1999

ADENOVIRUS E4 PROTEINS FOR INDUCING CELL DEATH

Assistant Commissioner for Patents Washington, DC 20231

DECLARATION OF DR. PHILIP BRANTON

- 1. I am a joint inventor on the above-referenced patent application.
- 2. Any description in Mercellus et al., J. Virol. 70:6207-6215, 1996 (hereafter "Marcellus") was the joint contribution of Philip Branton, Richard Marcellus, Jose Teodoro, and Gordon Shore, each of whom is an inventor in the above-captioned case, notwithstanding the inclusion of the additional authors, Tim Wu, Douglas Brough, and Gary Ketner, who contributed to other work described in this paper.
- 3. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further

of maritime to

that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patents issued thereon.

Date:

Kilip E. Branton, Ph.D.

Laure L

der that

15.45

Make c

.

•

made the state

or artist that is

2

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

RECEIVED

Applicant:

Philip E. Branton et al.

Art Unit:

1633

JUL 2 7 2001

Serial No.:

09/214,478

Examiner:

S. Chen

TECH CENTER 1600/2900

Filed:

June 7, 1999

Customer No.:

21559

Title:

ADENOVIRUS E4 PROTEINS FOR INDUCING CELL DEATH

Assistant Commissioner For Patents Washington, D.C. 20231

DECLARATION OF DR. PHILIP BRANTON UNDER 37 C.F.R. & 1.132 TRAVERSING GROUNDS OF REJECTION

Under 37 C.F.R. § 1.132 and regarding the rejection of the claims for lack of معلا أوثيل الله

i Brant

enablement, I declare:

- I am an inventor of the subject matter described and claimed in the above-1. referenced patent application.
- To demonstrate that a vector encoding an E4orf4 polypoptide was capable 2. of increasing apoptosis in vivo, individuals acting under my direction

performed the following experiment. H1299 human lung carcinoma cells or C33A human cervical carcinoma cells (1X10° cells) were implanted subcutaneously into nude mice. Once initial tumors were produced, they were surgically removed, cut into small pieces, and the reimplanted subcutaneously into fresh six week-old nude mice to produce clonal tumors. Once the rumors reached approximately 5 mm in diameter, treatment with a tetracycline-inducible E4orf4-expressing adenovirus was commenced. Mice were provided with water containing 2 mg/ml doxycycline to activate promotes expression. The adenovector was purified and diluted to a titer of 1X1010 pfu/ml. Virus (100 µl or 1X100 pfu) or control was injected directly into the tumor daily for five days (with C33A zenografts) or 10 days (with 10% is 204. H1299 xenografts). Tumors were measured daily for one month and the WEZC & P. 2324 tumor volumes were calculated and plotted.

3. The data from the foregoing experiments are depicted in Exhibits A and B. When treated with an E4orf4-encoding adenovector, xenografted H1299 tumors had a tumor volume that was 10% that of PBS-treated controls (Exhibit A). A similar finding was observed with xenografted C33A tumors; tumor volume was reduced by more than half (Exhibit B). Based on these in vivo data, and on in vitro data, described in the specification,

~ ~

nsid (n **-2-** 1814).

that demonstrate E40xf4 expression in mammalian tumor cells induces apoptosis, I conclude that E40xf4 induces apoptosis in the xenografted tumor cells.

- 4. The xenograft model is an excellent and well-accepted model for the study of human neoplasms and therapies. It is routine for therapies which show promise for the treatment of tumors in this in vivo model to proceed to human trials.
- The experiments performed in the present patent application were performed using E4orf4 nucleic acids and polypeptides derived from adenoviral scrotype Ad2. As is demonstrated in the specification, Applicants postulated that it was highly likely that E4orf4 nucleic acids and polypeptides from other adenoviral scrotypes would, like their Ad2 counterparts, induce apoptosis. Moreover, Applicants taught that the identification of E4orf4 in other adenoviral scrotypes could readily be achieved using standard techniques.

177. 35

6. Individuals acting under my direction ordered adenoviruses of serotype Ad3, Ad4, Ad9, Ad12, and Ad40 from the American Type

id many

_3.

Culture Collection (Manassas, VA). The viruses were used to infect human cells in culture, and nucleic acids encoding E4orf4 were amplified using the polymerase chain reaction under standard conditions. As is demonstrated in table, the E4orf4 nucleic acid sequences were 44-53% identical to that of Ad2 E4orf4.

Table		
Strain	% Ide	entity to Ad2
Ad3		44
Ad9		53
Ad12		51
A.d40		48 -

- Using the cell killing assay described in the specification, all 7. but one of the E4orf4 genes were capable of inducing apoptosis (Exhibit C). The only E4orf4 polypeptide that did not induce apoptosis, Ad3, was found to be expressed at lower levels than the others under the conditions tested, indicating that it may be insufficient expression levels, and not the polypeptide itself, that is the cause of the failure of the polypeptide to induce apoptosis.
- Individuals acting under my direction performed a systematic 8. substitution of single or multiple amino acid residues of Ad2 20: 14 L

standard techniques. We found that the following changes do not alter E4orf4 biological activity: P10A, C18A, Y26A, D31A/V32A/R34A, H38A, Y42A, E44A, P45A, E46A/R48A, R48A, Y59A, C78A, C85A, D99A, and S106A (the first letter is the wild-type amino acid from Ad2 serotype, the number is the residue, and the last letter is the substituted amino acid).

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patents issued thereon.

July 16, 2001

Philip Branton, Ph.D

\\Clark-w2k1\document\\S0013\S0013.002003 decl. Dr. Bramon.wpd

~

, 55000