SYS865 Inférence statistique avec programmation R

Ornwipa Thamsuwan

7 février 2024

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Plan de la séance

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Recap

SYS865 Inférence statistique avec programmation R

Ornwipa Thamsuwan

Recap

Plan de la séance

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Les derniers cours . . .

- Variables aléatoires
 - Variables discrètes ou continues
 - ► Fonction de masse ou de densité de probabilité
 - ► Fonction de répartition de probabilité
 - Espérance
 - Variance
 - ► Loi jointe, covariance et indépendance
- ► Échantillonage
 - ► Méthodes d'échantillonage et taille d'échantillon
 - ► Théorème Central Limite
- ► Inférence statistique
 - ► Intervalle de confiance
 - ► Types d'erreur
 - ► Tests d'hypothèse
 - ► Test sur la moyenne d'un échantillon
 - ► Test sur la moyenne des deux échantillons
 - ► Test nonparamétrique

Recan

Plan de la séance

Thamsuwan

aleur n

Tests d'hypothèse vs. Intervalle de

Travaux pratiques

roiet 1

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Plan de la séance

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Projet 1

Dans ce cours . . .

- ► Valeur p
- ► Tests d'hypothèse vs. Intervalle de confiance
- ▶ Début du projet 1

Les matières non abordées dans ce cours ...

ANOVA (déjà enseigné dans le cours SYS814 : Méthodologies expérimentales pour ingénieur)

Valeur p

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Plan de la séance

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Valeur p

vs. Intervalle de confiance

Travaux pratiques

Projet 1

Le p-value est la probabilité d'obtenir un effet au moins aussi

extrême que celui observé dans vos données d'échantillon, en

supposant que l'hypothèse nulle (H_0) soit vraie.

Figure 1: Valeur p

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Proiet 1

Seuil et interprétation :

Le p-value est comparé à un niveau de signification prédéfini $(\alpha, \text{ souvent } 0.05)$.

▶ Un p-value inférieur à α suggère de rejeter H_0 en faveur de l'alternative.

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Droint 1

Seuil et interprétation :

Le p-value est comparé à un niveau de signification prédéfini (α , souvent 0,05).

- ▶ Un p-value inférieur à α suggère de rejeter H_0 en faveur de l'alternative.
- Cependant, cela ne signifie pas que H₀ est fausse. Il suggère simplement que les données observées sont peu probables sous H₀.

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Projet 1

Idées fausses et mauvais usages :

▶ Une idée fausse commune est d'équivaloir un petit p-value à une grande taille d'effet ou à une signification pratique.

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Projet 1

Idées fausses et mauvais usages :

- ▶ Une idée fausse commune est d'équivaloir un petit p-value à une grande taille d'effet ou à une signification pratique.
- ▶ Le p-value ne fournit pas la probabilité des données compte tenu des deux hypothèses (nulle et alternative) ; il ne l'évalue que sous H₀.

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Projet 1

Métriques complémentaires :

La taille de l'effet et les intervalles de confiance devraient accompagner les p-values pour fournir une compréhension plus complète des résultats.

Figure 2: Taille de l'effet

Tests d'hypothèse vs. Intervalle de confiance

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Plan de la séance

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Base de données utilisée

Valeur p Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

SYS865 Inférence

Fisher, R.A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II, 179–188. doi:10.1111/j.1469-1809.1936.tb02137.x.

Les données ont été collectées par Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of the American *Iris Society*, **59**, 2–5.

Base de données utilisée

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Plan de la séance

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Projet 1

Figure 4: Fleur d'Iris et les paramètres de "Sepal" et "Petal"

cat(names(iris))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

Base de données utilisée

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Plan de la séance

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Projet 1

Iris virginica

Figure 5: Espèces d'Iris

summary(iris\$Species)

Iris setosa

setosa versicolor virginica
50 50 50

Intervalle de confiance

Pour calculer les intervalles de confiance pour les quatre paramètres (Sepal.Length, Sepal.Width, Petal.Length, Petal.Width) de chacune des trois espèces d'Iris, quelles sont les démarches ?

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Plan de la séance

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

sont les démarches?

R code:

aleur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

ojet 1

```
calculate_ci <- function(data, level = 0.95) {
  n <- length(data)
  mean <- mean(data)
  stderr <- sd(data)/sqrt(n)
  error_margin <- qt(level/2 + 0.5, df = n-1)*stderr
  lower_ci <- mean - error_margin
  upper_ci <- mean + error_margin
  return(c(lower_ci, upper_ci))
}</pre>
```

Pour calculer les intervalles de confiance pour les quatre

paramètres (Sepal.Length, Sepal.Width, Petal.Length, Petal.Width) de chacune des trois espèces d'Iris, quelles

/aleur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Projet 1

```
pour chaque colonne (paramètre) de ces sous-ensembles. R code :
```

par Species.

Nous utilisons la fonction by pour appliquer ce calcul à chaque sous-ensemble de l'ensemble de données Iris, divisé

La fonction apply est utilisé pour calculer ces statistiques

Intervalle de confiance (suite)

```
SYS865 Inférence
statistique avec
programmation R
    Ornwipa
```

Thamsuwan Plan de la séance

0.2160497_{othèse} 0.2759503

Projet 1

1.269799

1.382201

iris\$Species: setosa

Sepal.Length Sepal.Width Petal.Length Petal.Width ## [1,] 4.905824 3.320271

ci results

##

##

##

##

[1,]

[2,]

[1,]

[2,]

[2,] 5.106176 3.535729

6.407285

6.768715

iris\$Species: versicolor

Sepal.Length Sepal.Width Petal.Length Petal.Width 5.789306

2.68082 6.082694 2.85918

iris\$Species: virginica

Sepal.Length Sepal.Width Petal.Length Petal.Width

3.065653

2.882347

5.395153

1.412645

1.511355

4.126453

4.393547

5.708847

1.947945 2,104055

20 / 41

/aleur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

- La largeur des pétales d'Iris virginica est-elle égale à 2,0
 ?
- 2. Les largeurs de sépales d'Iris setosa et d'Iris versicolor sont-elles égales ?
- **3.** La longueur des sépales et la longueur des pétales d'Iris setosa sont-elles égales ?

1. La largeur des pétales d'Iris virginica est-elle égale à 2,0

```
?
```

```
virginica <- subset(iris, Species == "virginica")</pre>
t.test(virginica$Petal.Width, mu = 2.0)
```

```
##
    One Sample t-test
##
## data: virginica$Petal.Width
```

alternative hypothesis: true mean is not equal to 2 ## 95 percent confidence interval:

t = 0.66939, df = 49, p-value = 0.5064

```
## 1.947945 2.104055
## sample estimates:
```

```
## mean of x
##
       2.026
```

##

Ornwina Thamsuwan

SYS865 Inférence statistique avec programmation R

Plan de la séance

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

La valeur t observée ne se situe pas dans la région de rejet.

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Plan de la séance

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

La valeur p bilaterale supérieure à 0,05.

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Plan de la séance

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

2. Les largeurs de sépales d'Iris setosa et d'Iris versicolor

sont-elles égales ? (Les variances sont homogènes.)

setosa <- subset(iris, Species == "setosa")</pre>

versicolor <- subset(iris, Species == "versicolor") Valeur p</pre>

var.test(setosa\$Sepal.Width, versicolor\$Sepal.Width)Tests d'hypothèse

##

F test to compare two variances

data: setosa\$Sepal.Width and versicolor\$Sepal.Width

F = 1.4592, num df = 49, denom df = 49, p-value = 0.1895

95 percent confidence interval:

0.828080 2.571444

Travaux pratiques

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Plan de la séance

vs. Intervalle de confiance

Les données sont normalement distribuées.

shapiro.test(setosa\$Sepal.Width)

##

##

Shapiro-Wilk normality test ##

data: setosa\$Sepal.Width

W = 0.97172, p-value = 0.2715

##

shapiro.test(versicolor\$Sepal.Width)

Shapiro-Wilk normality test

data: versicolor\$Sepal.Width W = 0.97413, p-value = 0.338

Ornwina Thamsuwan

SYS865 Inférence

statistique avec programmation R

Plan de la séance

Tests d'hypothèse

vs. Intervalle de confiance

Travaux pratiques


```
SYS865 Inférence
statistique avec
programmation R
    Ornwina
```

```
t.test(setosa$Sepal.Width, versicolor$Sepal.Width)
```

```
Plan de la séance
```

Thamsuwan

```
##
##
    Welch Two Sample t-test
```

0.5198348 0.7961652

```
Tests d'hypothèse
vs. Intervalle de
confiance
```

```
## t = 9.455, df = 94.698, p-value = 2.484e-15
## alternative hypothesis: true difference in means is not eq
```

95 percent confidence interval:

```
\hbox{\tt\#\# data: setosa\$Sepal.Width and versicolor\$Sepal.W} \\ \hbox{\tt Width and versicolor\$Sepal.Width} \\
```

```
## sample estimates:
## mean of x mean of y
```

##

##

2 770 3.428

La valeur t observée est dans la région de rejet, et la valeur p est très petite.

SYS865 Inférence statistique avec programmation R

Ornwipa Thamsuwan

Recap

Plan de la séance

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

3. La longueur des sépales et la longueur des pétales d'Iris setosa sont-elles égales ?

```
t.test(setosa$Sepal.Length, setosa$Petal.Length,
       paired = TRUE)
```

alternative hypothesis: true mean difference is not equal

```
##
##
    Paired t-test
```

##

data: setosa\$Sepal.Length and setosa\$Petal.Length

t = 71.835, df = 49, p-value < 2.2e-16

95 percent confidence interval: ## 3.444857 3.643143

sample estimates:

mean difference

3.544

SYS865 Inférence statistique avec programmation R Ornwina

Thamsuwan

Plan de la séance

Tests d'hypothèse vs. Intervalle de confiance Travaux pratiques

29 / 41

Intervalle de confiance (retour)

La largeur des pétales d'Iris virginica est-elle égale à 2,0
 ?

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Plan de la séance

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Intervalle de confiance (retour)

1. La largeur des pétales d'Iris virginica est-elle égale à 2,0

IC de Iris Virginica Petal Width = (1.95, 2.10)

► L'IC couvre la valeur 2,0.

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Plan de la séance

Valeur n

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Proiet 1

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

1. La largeur des pétales d'Iris virginica est-elle égale à 2,0

IC de Iris Virginica Petal Width = (1.95, 2.10)

L'IC couvre la valeur 2,0.

2. Les largeurs de sépales d'Iris setosa et d'Iris versicolor sont-elles égales ?

Tests d'hypothèse vs. Intervalle de

confiance

Travaux pratiques

L'IC couvre la valeur 2.0. 2. Les largeurs de sépales d'Iris setosa et d'Iris versicolor sont-elles égales ?

IC de Iris Setosa Sepal Width = (3.32, 3.54)

IC de Iris Versicolor Sepal Width = (2.68, 2.86)

1. La largeur des pétales d'Iris virginica est-elle égale à 2,0

IC de Iris Virginica Petal Width = (1.95, 2.10)

Les deux ICs ne se chevauchent pas.

Intervalle de confiance (retour)

3. La longueur des sépales et la longueur des pétales d'Iris setosa sont-elles égales ?

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Plan de la séance

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Intervalle de confiance (retour)

3. La longueur des sépales et la longueur des pétales d'Iris setosa sont-elles égales ?

```
## IC de Iris Setosa Sepal Length = (4.91, 5.11)
```

```
## IC de Iris Setosa Petal Length = (1.41, 1.51)
```

► Est-ce que c'est correct ?

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Plan de la séance

/aleur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

niet 1

IC de Iris Setosa Sepal Length = (4.91, 5.11)

IC de Iris Setosa Petal Length = (1.41, 1.51)

Est-ce que c'est correct ? Non, il faut soustraire la longueur des sépales et la longueur

des pétales paire par paire et calculer l'IC de cette différence.

IC de la différence = (3.44, 3.64)

L'IC de la différence ne couvre pas 0. Donc, il n'y a pas de différence significative.

Ornwina Thamsuwan

Plan de la séance

vs. Intervalle de

Tests d'hypothèse

confiance Travaux pratiques

Travaux pratiques

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Plan de la séance

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

Valeur p

vs. Intervalle de confiance

Travaux pratiques

Projet 1

En divisant la base de données "Pima Indian Diabetes" en groupe de non diabétiques et diabétiques, pour chacun des huit paramètres (Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction et Age)...

- 1. Utilisant les résultats de TP de la séance 3, les intervalles de confiance des deux groupes (Outcome=0 et Outcome=1) se chevauchent-ils ?
- 2. Utilisant les résultats de TP de la séance 4, l'interprétation du test d'hypothèse comparant des deux groupes (Outcome=0 et Outcome=1) correspond-elle à celle de l'IC ?

Valeur p

vs. Intervalle de

Travaux pratiques

Dans ce cours . . .

- Valeur p
- ► Tests d'hypothèse (sur la moyenne) vs. Intervalle de confiance
- Début du projet 1

Les prochains cours . . .

- ► Tests pour les conditions des statistiques paramétriques
 - ► Test d'hypothèse sur la variance des deux échantillons
 - Tests de normalité
- Puissance statistique

Projet 1

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Plan de la séance

Valeur p

Tests d'hypothèse vs. Intervalle de confiance

Travaux pratiques

vs. Intervalle de

Travaux pratiques

Proiet 1

votre écran en expliquant et exécutant vos codes R devant vos collègues et interpréter les résultats.

Vous devez faire une présentation de votre projet, partager

Le project doit contenir les éléments suivants :

- Objectifs du projet
 - Justifiez vos raisons
- Sources des données
 - Soit nouvellement collectées ou à partir d'un dépôt existant
- Visualisation des données
- Espérance et variance
- Intervalle de confiance
- ► Test d'hypothèse
- ► Erreur et puissance statistique
- Interprétation