Übung 1.1: Berechnen Sie die Richtungsableitung $D_{\vec{v}}(p)$ zum Richtungsvektor $\vec{v} := (1,7) \text{ der Funktion } f(x,y) := x^3 + y^2 \text{ beim Punkt p} := (1,2).$

Nach 2.3.12 gilt:
$$D_{\vec{v}}(p) = \langle grad(f)(p), \vec{v} \rangle = \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 7 \end{pmatrix} = 31.$$

Übung 1.2: Gegeben vollständige metrische Räume X, Y ist auch ihr Pro $dukt X \times Y vollständig.$

Beweis:

Sei $z_n := (x_n, y_n)$ eine Cauchy-Folge in X × Y $d(z_n, z_m) = \sup\{d(x_n, x_m), d(y_n, y_m)\}\$ \Rightarrow $d(z_n, z_m) \ge d(x_n, x_m) \land d(z_n, z_m) \ge d(y_n, y_m)$ \Rightarrow x_n ist Cauchy-Folge in X und y_n ist Cauchy-Folge in Y

 $\Rightarrow x_n \to x$ und $y_n \to y$ (X und Y sind vollständig)

Behauptung: $z_n \to (x,y)$

Beweis:

 $d(z_n, (x, y)) = \sup\{d(x_n, x), d(y_n, y)\} \to 0.$

Übung 1.3: Genau dann ist p Häufungspunkt des metrischen Raums X, wenn es eine Folge x_n in $X \setminus p$ gibt mit $\lim_{n \to \infty} x_n = p$.

Sei p ein Häufungspunkt von X \Leftrightarrow Alle Umgebungen U von p schneiden $X \setminus p$ $\Leftrightarrow \exists x_n \in (X \setminus p) \cap B(p, \frac{1}{n}) \forall n \in \mathbb{N}$ $\Leftrightarrow \lim_{n \to \infty} x_n = p$, da $d(x_n, p) \le \frac{1}{n}$.

Übung 1.4: Gegeben ein Banachraum V und $h \in B(V)$ ein stetiger Endomorphismus von V einer Operatornorm ||h|| < 1 konvergiert die Folge der Partialsummen der geometrischen Reihe und der Grenzwert ist invers zu $id_V - h$.

Beweis:
$$\|\sum_{n=0}^N h^n - \sum_{n=0}^M h^n\| = \|\sum_{n=N+1}^M h^n\| \le \sum_{n=N+1}^M \|h\|^n$$

 $\sum_{n=0}^{\infty}\|h\|^n$ konvergiert, somit ist $H:=\sum_{n=0}^{\infty}h^n$ eine Cauchy-Folge und konvergiert somit.

Behauptung: $H = (id - h)^{-1}$

$$\lim_{N \to \infty} (id - h) \sum_{n=0}^{N} h^n = \lim_{N \to \infty} (id - h^{N+1}) = id, \text{ da } ||h||^{N+1} \to 0$$

Behauptung: $f \in B(V)$ mit ||f - id|| < 1

Beweis: id - (id - f) = f.

Übung 1.5: Man zeige, dass jede gleichmäßig stetige Abbildung f von einer Teilmenge A eines metrischen Raums X in einen vollständigen metrischen Raum Y auf genau eine Weise zu einer stetigen Abbildung auf den Abschluss von A in X fortgesetzt werden kann.

```
Beweis per Konstruktion von der Fortsetzung g von f
```

 $g(a) = f(a) \forall a \in A$

Nach der Übung 1.3 gilt: $\forall a \in \overline{A} \setminus A$ gibt es eine Folge $(a_n)_{n \in}$ in A die gegen a konvergiert.

Setzt $g(a) = \lim_{n \to \infty} f(a_n)$. Dieser Grenzwert existiert, da $f(a_n)$ offensichtlich eine Cauchy-Folge ist und Y vollständig ist. Es gilt also nur noch zu zeigen, dass g gleichmäßig stetig ist.

Sei $\epsilon > 0$, $\forall x, y \in \overline{A}$ mit $d(x, y) < \frac{\delta}{3}$ gilt: $d(x_n, y_n) \le d(x_n, x) + d(x, y) + d(y, y_n)$ (Dreiecksungleichung)

Wobei $x_n, y_n \in A \forall n \in \mathbb{N}, x_n \to x, y_n \to y$

Somit kann man n groß genug wählen, damit $d(x_n, x) < \frac{\delta}{3}$ und $d(y, y_n) < \frac{\delta}{3}$ gilt. $\Rightarrow d(x_n, y_n) < \delta$

Es gilt: $d(g(x), g(y)) \le d(g(x), f(x_n)) + d(f(x_n), f(y_n)) + d(f(y_n), g(y))$

Da f gleichmäßig stetig ist und $f(x_n) \to g(x), f(y_n) \to g(y)$ gilt, gilt:

 $d(f(x_n), f(y_n)) < \epsilon, d(f(y_n), g(y)) < \epsilon, d(g(x), f(x_n)) < \epsilon$

 $\Rightarrow d(g(x),g(y)) < 3\epsilon$

Offensichtlich ist mit δ zu dem ϵ zu wählen und man kann dieses auch so wählen, dass am Ende ϵ anstatt 3ϵ herauskommt, jedoch wäre das eine Definier-Schlacht und ich denke man kann den Beweis so besser verstehen.