材料力学总结

一、基本变形

		轴向拉压	扭转	弯 曲	
外 力		外力合力作用线沿杆轴 线	力偶作用在垂直于轴 的平面内. 外力偶矩: $m = 9550 \frac{N}{n} (N \bullet m)$ N—千瓦; n —转/分	外力作用线垂直杆轴,或外力偶作员 在杆轴平面	用
内力		轴力: F _N 规定: 拉为"+" 压为"-"	扭转: <i>M</i> _T 规定: 矩矢离开截面为"+" 反之为"-"	剪力: F_Q 规定: 左上右下为 "+" 弯矩: M 规定: 下拉上压为 "+" 微分关系: $\frac{\mathrm{d}F_Q}{\mathrm{d}x} = q$; $\frac{\mathrm{d}M}{\mathrm{d}x} = F_Q$	
应	几何方面	变形现象: 平面假设: 应变规律: $\varepsilon = \frac{\mathrm{d}\Delta l}{\mathrm{d}x} = 常数$	变形现象: 平面假设: 应变规律: $\gamma_{\rho} = \rho \frac{\mathrm{d}\varphi}{\mathrm{d}x}$	弯曲正应力 变形现象: 平面假设: 应变规律: $\varepsilon = \frac{y}{\rho}$	J
力	应力公式	$\sigma = \frac{F_N}{A}$	$ au = rac{M_{\mathrm{T}} ho}{I_{P}}$ $ au_{\mathrm{max}} = rac{M_{\mathrm{T}}}{W_{\mathrm{p}}}$	$\sigma = \frac{My}{I_Z}$ $\sigma_{\text{max}} = \frac{M}{W_Z}$ $\tau = \frac{QS^*_z}{I_z b}$ $\tau_{\text{max}} = \frac{QS_{\text{max}}}{I_z b}$	-
	应力分布	σ	τ		
	应用条件	等直杆 外力合力作用 线沿杆轴线	圆轴 应力在比例极限内	平面弯曲 应力在比例极限内	
应力-应变 关系		σ= Εε (单向应力状态)	τ=Gγ (纯剪应力状态)		
强度条件		$\sigma_{\max} = \left(\frac{N}{A}\right)_{\max} \le [\sigma]$ $[\sigma] = \frac{\sigma_u}{n}$ 塑材: $\sigma_u = \sigma_s$ 脆材: $\sigma_u = \sigma_b$	$\tau_{\text{max}} = \left(\frac{M_{\text{T}}}{W_{\text{P}}}\right)_{\text{max}} \leq [\tau]$ 号 [工大喵] 收集整理	弯曲正应力 1. $[\sigma_t] = [\sigma_c]$ $ \sigma_{\max} \leq [\sigma]$ 2. $[\sigma_t] \neq [\sigma_c]$ $\sigma_{t \max} \leq [\sigma_t]$ $\sigma_{cmac} \leq [\sigma_c]$ 弯曲剪应力 $\tau_{\max} = \frac{Q_{\max} S_{\max}}{I_z b} \leq [\tau]$	

		轴向拉压	扭转	弯曲
	刚 度 条 件		$\theta_{\text{max}} = \left(\frac{M_{\text{T}}}{GI_{P}}\right)_{\text{max}} \cdot \frac{180^{0}}{\pi} \leq \left[\theta\right]$ 注意: 单位统一	$y_{\text{max}} \le [y]$ $\theta_{\text{max}} \le [\theta]$
变形		$\frac{\mathrm{d}\Delta l}{\mathrm{d}x} = \frac{F_{\mathrm{N}}}{EA}; \Delta L = \frac{F_{\mathrm{N}}L}{EA}$ EA—抗拉压刚度	$ heta = rac{M_{ ext{ iny T}}}{GI_{P}}; arphi = rac{M_{ ext{ iny T}}l}{GI_{P}}$ GI_{p} 一抗扭刚度	$\frac{1}{\rho(x)} = \frac{M(x)}{EI}$ $y'' = \frac{M(x)}{EI}$ EI—抗弯刚度
	应用 条件	应力在比例极限	圆截面杆, 应力在比例极限	小变形, 应力在比例极限
	矩形	A= bh		$I_Z = \frac{bh^3}{12}; W_Z = \frac{bh^2}{6}$
	实 心 圆	$A = \frac{\pi d^2}{4}$	$I_P = \frac{\pi d^4}{32}; W_p = \frac{\pi d^3}{16}$	$I_Z = \frac{\pi d^4}{64}; W_Z = \frac{\pi d^3}{32}$
	空心圆	$A = \frac{\pi D^2}{4} (1 - \alpha^2)$	$I_{P} = \frac{\pi d^{4}}{32} (1 - \alpha^{4})$ $W_{p} = \frac{\pi d^{3}}{16} (1 - \alpha^{4})$	$I_Z = \frac{\pi d^4}{64} (1 - \alpha^4)$ $W_Z = \frac{\pi d^3}{32} (1 - \alpha^4)$
其它公式		(1) $\varepsilon' = -\nu\varepsilon$ (2) $G = \frac{E}{2(1+\nu)}$	剪 切 $(1) 强度条件:$ $\tau = \frac{F_Q}{A} \le [\tau] A$ $(2) 挤压条件:$ $\sigma_{bs} = \frac{F_C}{A_{bs}} \le [\sigma_{bs}]$ A_{bs} A_{bs}	矩形: $ au_{\text{max}} = \frac{3F_{Q}}{2A}$ 圆形: $ au_{\text{max}} = \frac{4F_{Q}}{3A}$ 环形: $ au_{\text{max}} = 2\frac{F_{Q}}{A}$ $ au_{\text{max}}$ 均发生在中性轴上

二、截面几何性质

- (1) 平行移轴公式: $I_z = I_{zc} + a^2 A$; $I_{yz} = I_{z_c Y_c} + abA$
- (2) 组合截面:

1. 形 心:
$$y_c = \frac{\sum_{i=1}^n A_i y_{ci}}{\sum_{i=1}^n A_i^2}$$
; $z_c = \frac{\sum_{i=1}^n A_i z_{ci}}{\sum_{i=1}^n A_i}$ 地 集整理并免费分享

2. 静 矩: $S_z = \sum A_i y_{ci}$; $S_y = \sum A_i z_{ci}$

3. 惯性矩: $I_z = \sum_i (I_z)_i$; $I_v = \sum_i (I_v)_i$

三、应力分析:

(1) 二向应力状态 (解析法、图解法)

a. 解析法:

$$\sigma_{\alpha} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha - \tau_x \sin 2\alpha$$

$$\tau_{\alpha} = \frac{\sigma_{x} - \sigma_{y}}{2} \sin 2\alpha + \tau_{x} \cos 2\alpha$$

$$\tan 2\alpha_0 = -\frac{2\tau_x}{\sigma_x - \sigma_y}$$

$$\sigma_{\max}_{\min} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_x^2}$$

c: 适用条件: 平衡状态

(2)三向应力:

$$\sigma_{\text{max}} = \sigma_1; \quad \sigma_{\text{min}} = \sigma_3; \quad \tau_{\text{max}} = \frac{\sigma_1 - \sigma_3}{2}$$

(3) 广义虎克定律:

$$\begin{cases}
\varepsilon_{1} = \frac{1}{E} \left[\sigma_{1} - v(\sigma_{2} + \sigma_{3}) \right] \\
\varepsilon_{2} = \frac{1}{E} \left[\sigma_{2} - v(\sigma_{3} + \sigma_{1}) \right] \\
\varepsilon_{3} = \frac{1}{E} \left[\sigma_{3} - v(\sigma_{1} + \sigma_{2}) \right]
\end{cases}$$

$$\begin{cases}
\varepsilon_{x} = \frac{1}{E} \left[\sigma_{x} - v(\sigma_{y} + \sigma_{z}) \right] \\
\varepsilon_{y} = \frac{1}{E} \left[\sigma_{y} - v(\sigma_{z} + \sigma_{x}) \right] \\
\varepsilon_{z} = \frac{1}{E} \left[\sigma_{z} - v(\sigma_{z} + \sigma_{y}) \right]
\end{cases}$$

$$\begin{cases}
\varepsilon_{x} = \frac{1}{E} \left[\sigma_{x} - v(\sigma_{y} + \sigma_{z}) \right] \\
\varepsilon_{y} = \frac{1}{E} \left[\sigma_{y} - v(\sigma_{z} + \sigma_{x}) \right] \\
\varepsilon_{z} = \frac{1}{E} \left[\sigma_{z} - v(\sigma_{x} + \sigma_{y}) \right]
\end{cases}$$

σ: 拉为"+", 压为"-"

法线为"+"

τ: 使单元体顺时针转动为"+"

α: 从 x 轴逆时针转到截面的

*适用条件:各向同性材料;材料服从虎克定律

(4) 常用的二向应力状态

1. 纯剪切应力状态:

$$\sigma_1 = \tau$$
 , $\sigma_2 = 0$, $\sigma_3 = -\tau$

2. 一种常见的二向应力状态:

$$\sigma_{\frac{1}{3}} = \frac{\sigma}{2} \pm \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2}$$

$$\sigma_{r3} = \sqrt{\sigma^2 + 4\tau^2}$$

$$\sigma_{r4} = \sqrt{\sigma^2 + 3\tau^2}$$

四、强度理论

破坏形式	脆性断裂		塑性断裂	
强度理论	第一强度理论 (最大拉应力理 论)	莫尔强度理 论	第三强度理论 (最大剪应力理 论)	第四强度理论(形状 改变比能理论)
破坏主要	单元体内的最大拉		单元体内的最大	单元体内的改变比
因素	应力		剪应力	能
破坏条件	$\sigma_1 = \sigma_b$		$ au_{ m max} = au_s$	$u_f = u_{fs}$
强度条件	$\sigma_1 \leq [\sigma]$		$\sigma_1 - \sigma_3 \le [\sigma]$	
适用条件	脆性材料	脆性材料	塑性材料	塑性材料

*相当应力: σ,

$$\sigma_{r1} = \sigma_1, \quad \sigma_{r3} = \sigma_1 - \sigma_3, \quad \sigma_{r4} = \sqrt{\frac{1}{2} \left[\left(\sigma_1 - \sigma_2 \right)^2 + \left(\sigma_2 - \sigma_3 \right)^2 + \left(\sigma_3 - \sigma_1 \right)^2 \right]}$$

五、材料的力学性质

脆性材料 δ<5%

塑性材料 δ≥5%

低碳钢四阶段:

- (1) 弹性阶段
- (2) 屈服阶段
- (3) 强化阶段
- (4) 局部收缩阶段

强度指标 σ_s,σ_b

塑性指标 ψ,δ

$$\tan \alpha = \frac{\sigma}{\varepsilon} = E$$

	拉	压	扭
低碳钢	7 45 8 45°,剪断	只有σ _s ,无σ _b	- · (· · · · · · · · · · · · · · · · ·
铸铁	拉断 断口垂直轴线	σ_b 剪断	断口与轴夹角 45° _{7b}

六. 组合变形

类型	拉(压)弯	弯扭	弯扭拉 (压)
简图	M -(-(-(-)-)-	← (-())-
公式	$\sigma = \pm \frac{P}{A} \pm \frac{M}{W}$	$\sigma_{r_3} = \sqrt{\sigma^2 + 4\tau^2} \le [\sigma]$ $\sigma_{r_4} = \sqrt{\sigma^2 + 3\tau^2} \le [\sigma]$	$\sigma_{r_3} = \sqrt{(\sigma_M + \sigma_N)^2 + 4\tau^2} \le [\sigma]$ $\sigma_{r_4} = \sqrt{(\sigma_M + \sigma_N)^2 + 3\tau^2} \le [\sigma]$
强 度 条 件	$\sigma_{\max} = \pm \frac{P_{\max}}{A} \pm \frac{M_{\max}}{W} \le [\sigma]$	圆截面 $\sigma_{r_3} = \frac{\sqrt{M^2 + T^2}}{W_Z} \le [\sigma]$	$\sigma_{r_3} = \sqrt{\left(\frac{M}{W_Z} + \frac{F_N}{A}\right)^2 + 4\left(\frac{M_T}{W_P}\right)^2} \le [\sigma]$
中 性 轴	$y^* = -\frac{I_Z}{Ae_y} = -\frac{i_Z^2}{e_y}$	$\sigma_{r_4} = \frac{\sqrt{M^2 + 0.75T^2}}{W_Z} \le [\sigma]$	$\sigma_{r_4} = \sqrt{(\frac{M}{W_Z} + \frac{F_N}{A})^2 + 3(\frac{M_T}{W_P})^2} \le [\sigma]$

七、压杆稳定

欧拉公式: $P_{cr} = \frac{\pi^2 E I_{\min}}{(\mu l)^2}$, $\sigma_{cr} = \frac{\pi^2 E}{\lambda^2}$, 应用范围: 线弹性范围, $\sigma_{cr} < \sigma_p$, $\lambda > \lambda_p$

柔度:
$$\lambda = \frac{ul}{i}$$
; $\lambda_{\rho} = \pi \sqrt{\frac{E}{\sigma_{\rho}}}$; $\lambda_{0} = \frac{a - \sigma_{s}}{b}$,

柔度是一个与杆件<u>长度、约束、截面尺寸、</u> <u>形状</u>有关的数据, $\lambda \uparrow P_{cr} \downarrow \sigma_{cr} \downarrow$

稳定校核:安全系数法: $n = \frac{P_{cr}}{P_I} \ge n_w$

提高杆件稳定性的措施有:

1、减少长度 2、选择合理截面 3、加强约束 4、合理选择材料

八、交变应力

金属疲劳破坏特点:

应力特征:破坏应力小于静荷强度;

断裂特征: 断裂前无显著塑性变形;

断口特征: 断口成光滑区和粗糙区。

循环特征 $r = \frac{\sigma_{\min}}{\sigma_{\max}}$;

平均应力 $\sigma_m = \frac{\sigma_{\max} + \sigma_{\min}}{2}$;

应力幅度 $\sigma_{\alpha} = \frac{\sigma_{\text{max}} - \sigma_{\text{min}}}{2}$

材料疲劳极限:材料经无限次应力循环而不发生疲劳破坏的应力极限值—— $N=10^7$: σ_{-1}

条件疲劳极限: (有色金属) 无水平渐近线: $N=(5-7)\times10^7$ 对应的 σ_{-1}

构件疲劳极限:考虑各种因素;

影响构件疲劳极限因素:应力集中;尺寸;表面质量。

影响材料疲劳极限因素:循环特性;变形形式;材料。

提高构件疲劳强度的主要措施:减缓应力集中;提高表面光洁度;增强表面强度。