

LECTURE-5(A)

COURSE TITLE
LINEAR ALGEBRA

&

GEOMETRY

(MT-272)

DEPARTMENT OF TELECOMMUNICATION ENGINEERING

COURSE TEACHER

DR. FAREED AHMAD

BASIS FOR A VECTOR SPACE

If V is any vector space and $S = \{v_1, v_2, \dots, v_n\}$ is a set of vectors in V, then S is called a **basis** for V if the following two conditions hold:

- \triangleright S spans V.
- > S is linearly independent.

BASIS FOR A VECTOR SPACE

Notes:

A basis S must have enough vectors to span V, but not so many vectors that one of them could be written as a linear combination of the other vectors in S

STANDARD BASES

(1) the **standard basis** for R^3 :

$$\{i, j, k\}$$
, for $i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)$

(2) the **standard basis** for R^n :

$$\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$$
, for $\mathbf{e}_1 = (1,0,...,0)$, $\mathbf{e}_2 = (0,1,...,0)$, ..., $\mathbf{e}_n = (0,0,...,1)$

Ex: For \mathbb{R}^4 , {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}

STANDARD BASES

(3) the **standard basis** for $m \times n$ matrix space:

$$\{E_{ij} \mid 1 \le i \le m, 1 \le j \le n\}$$
, and in E_{ij}
$$\begin{cases} a_{ij} = 1 \\ \text{other entries are zero} \end{cases}$$

Ex: 2×2 matrix space:

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

(4) the **standard basis** for $P_n(x)$:

$$\{1, x, x^2, ..., x^n\}$$

Ex:
$$P_3(x) = \{1, x, x^2, x^3\}$$

EXAMPLE-1

Example-1: The nonstandard basis for R^2

Show that $S = \{\mathbf{v}_1, \mathbf{v}_2\} = \{(1, 1), (1, -1)\}$ is a basis for \mathbb{R}^2

(1) For any
$$\mathbf{u} = (u_1, u_2) \in \mathbb{R}^2$$
, $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{u} \implies \begin{cases} c_1 + c_2 = u_1 \\ c_1 - c_2 = u_2 \end{cases}$

Because the coefficient matrix of this system has a **nonzero determinant**, the system has a unique solution for each \mathbf{u} . Thus you can conclude that S spans R^2

(2) For
$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{0} \implies \begin{cases} c_1 + c_2 = 0 \\ c_1 - c_2 = 0 \end{cases}$$

Because the coefficient matrix of this system has a **nonzero determinant**, you know that the system has only the trivial solution. Thus you can conclude that *S* is linearly independent

EXAMPLE-2

Example-2: Let $\mathbf{v}_1 = (1,2,1)$, $\mathbf{v}_2 = (2,9,0)$, $\mathbf{v}_3 = (3,3,4)$.

Show that the set S= $\{v_1, v_2, v_3\}$ is a basis for R^3

Sol: For basis, we must show that S spans \mathbb{R}^3 & also show that S is linearly independent set.

For Spanning:

Let $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ be an arbitrary vector in \mathbb{R}^3 , it can be expressed as a linear combination

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 \dots (a)$$

of the vector in S.

Putting values of \mathbf{u} , $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$ in (a) we have

$$(u_1,u_2,u_3) = c_1(1,2,1) + c_2(2,9,0) + c_3(3,3,4)$$

or
$$(u_1, u_2, u_3) = (c_1+2c_2+3c_3, 2c_1+9c_2+3c_3, c_1+5c_3)$$

EXAMPLE-2Con'd

On equating corresponding components

$$c_1+2c_2+3c_3=u_1$$

 $2c_1+9c_2+3c_3=u_2....(1)$
 $c_1 +4c_3=u_3$

For L.I.: For L.I. the vector equation

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = \mathbf{0} \dots (b)$$

By putting values we get

$$c_1(1,2,1) + c_2(2,9,0) + c_3(3,3,4) = (0,0,0)$$

or
$$(c_1+2c_2+3c_3,2c_1+9c_2+3c_3,c_1+4c_3) = (0,0,0)$$

On comparing both sides

$$c_1+2c_2+3c_3=0$$

 $2c_1+9c_2+3c_3=0$ (2)
 c_1 $+4c_3=0$

EXAMPLE-2Con'd

Observe that systems (1) and (2) have same coefficient matrix. System (1) is non-homogeneous system of linear equation that is AX = b while system (2) is homogeneous system of linear equation that is AX = 0

```
NOTE : For system AX = b  |f|A| \neq 0 \text{ then system is called consistent and has some solution.}  For system AX = 0  |f|A| \neq 0 \text{ then system has trivial solution.}
```

Therefore, from coefficient matrix of system (1) and (2) we can decide whether (1) has some solution and (2) has trivial solution or not.

The coefficient matrix is
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 9 & 3 \\ 1 & 0 & 4 \end{bmatrix}$$

EXAMPLE-2Con'd

$$|A| = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 9 & 3 \\ 1 & 0 & 4 \end{vmatrix} = -1$$

This implies that system (1) has some solution means arbitrary vector ' \mathbf{u} ' spanned by $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$, and system (2) has trivial solution means that $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ is linearly independent set .

Since both conditions are true, therefore, S is a basis for R^3 .

EXAMPLE-3

Example-3: Determine whether the following vectors form basis for P_2 or not.

$$\mathbf{p}_1 = 4 + 6x + x^2$$
, $\mathbf{p}_2 = -1 + 4x + 2x^2$, $\mathbf{p}_3 = 5 + 2x - x^2$

Sol: Let $S = \{p_1, p_2, p_3\}$

For basis, we must show that S spans P_2 and also show that S is linearly independent set.

For Spanning:

Let $\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2 \mathbf{x} + \mathbf{u}_3 \mathbf{x}^2$ be an arbitrary vector in P_2 it can be expressed as a linear combination

$$\mathbf{u} = c_1 \mathbf{p}_1 + c_2 \mathbf{p}_2 + c_3 \mathbf{p}_3 \dots (a)$$
 of the vector in S.

Putting values of ${f u}$, ${m p_1},{m p_2}$, ${m p_3}$ in (a) we have

$$u_1 + u_2 x + u_3 x^2 = c_1 (4 + 6x + x^2) + c_2 (-1 + 4x + 2x^2) + c_3 (5 + 2x - x^2)$$

$$u_1+u_2x+u_3x^2=(4c_1-c_2+5c_3)+(6c_1+4c_2+2c_3)x+(c_1+2c_2-c_3)x^2$$

EXAMPLE-3 ...Con'd

Comparing on both sides

$$4c_1$$
- c_2 + $5c_3$ = u_1
 $6c_1$ + $4c_2$ + $2c_3$ = u_2 (1)
 c_1 + $2c_2$ - c_3 = u_3

For L.I: For L.I. the vector equation

$$c_1 \mathbf{p}_1 + c_2 \mathbf{p}_2 + c_3 \mathbf{p}_3 = 0 \dots (b)$$

By putting values in (b) we get

$$c_1(4+6x+x^2) + c_2(-1+4x+2x^2) + c_3(5+2x-x^2) = 0+0x+0x^2$$

$$(4c_1-c_2+5c_3)+(6c_1+4c_2+2c_3)x+(c_1+2c_2-c_3)x^2=0+0x+0x^2$$

EXAMPLE-3 ...Con'd

Comparing on both sides

$$4c_1$$
- c_2 + $5c_3$ =0
 $6c_{1+}4c_2$ + $2c_3$ =0 ...(2)
 c_1 + $2c_2$ - c_3 =0

Observe that systems (1) and (2) have same coefficient matrix. System (1) is non-homogeneous system of linear equation that is AX = b while system (2) is homogeneous system of linear equation that is AX = 0

Therefore from coefficient matrix of system (1) and (2) we can decide whether (1) has some solution and (2) has trivial solution or not.

The coefficient matrix is
$$A = \begin{bmatrix} 4 & -1 & 5 \\ 6 & 4 & 2 \\ 1 & 2 & -1 \end{bmatrix}$$

EXAMPLE-3 ...Con'd

$$|A| = \begin{vmatrix} 4 & -1 & 5 \\ 6 & 4 & 2 \\ 1 & 2 & -1 \end{vmatrix} = 0$$

This implies that system (1) has no solution, consequently 'u 'does not span by P_2 . In addition system (2) has nontrivial solution means that from equation (b), $\{p_1, p_2, p_3\}$ is linearly dependent set. Hence, Set S is not basis for P_2 .