MAECS

Generated by Doxygen 1.8.4

March 2, 2014

Contents

	Syml	bols	2
1	MAE 1.1	· · · · · · · · · · · · · · · · · · ·	3
2	Todo	D List	4
		→ to to	_
3	3.1	70-5	6
4		ALC: 11	7 7
	4.1	Data Types List	,
5	_		8
	5.1	File List	8
6	Data	Type Documentation	9
	6.1		9
		6.1.1 Detailed Description	9
		6.1.2 Member Function/Subroutine Documentation	9
		6.1.2.1 initialize	9
		6.1.2.2 get_light_extinction	10
	6.2	fabm_hzg_maecs::maecs_do Interface Reference	10
		6.2.1 Detailed Description	10
	6.3	maecs_functions Module Reference	10
		6.3.1 Detailed Description	11
		6.3.2 Member Function/Subroutine Documentation	11
		6.3.2.1 smooth_small	11
		6.3.2.2 uptflex	11
			12
		·	12
		·	12
		·	12
			12
			13
			13
			13
	6.4	_ 0	13
		2000.00.	13
	6.5		14
		•	14
			14
			14
		0 0=	14
	6.6		14
			15
			15
		6.6.2.1 photosynthesis	15

CONTENTS

	6.7	maecs types Module Reference	15
		6.7.1 Detailed Description	16
	6.8	maecs_types::stoichiometry_pointer Type Reference	16
	0.0	6.8.1 Detailed Description	16
	6.9	fabm_hzg_maecs::type_hzg_maecs Type Reference	16
	0.5	6.9.1 Detailed Description	16
	0.40		
	6.10	maecs_types::type_maecs_allocation_fractions Type Reference	16
		6.10.1 Detailed Description	16
	6.11	maecs_types::type_maecs_base_model Type Reference	17
		6.11.1 Detailed Description	17
	6.12	maecs_types::type_maecs_basic_traits Type Reference	17
		6.12.1 Detailed Description	17
	6.13	maecs_types::type_maecs_env Type Reference	17
		6.13.1 Detailed Description	17
	6 1/	maecs_types::type_maecs_life Type Reference	18
	0.14		18
	0.45	6.14.1 Detailed Description	
	6.15	maecs_types::type_maecs_om Type Reference	18
		6.15.1 Detailed Description	18
	6.16	maecs_types::type_maecs_phy Type Reference	18
		6.16.1 Detailed Description	19
	6.17	maecs_types::type_maecs_rhs Type Reference	19
		6.17.1 Detailed Description	19
	6.18	maecs_types::type_maecs_sensitivities Type Reference	19
		6.18.1 Detailed Description	19
	6.19	maecs_types::type_maecs_switch Type Reference	19
		6.19.1 Detailed Description	19
	6 20	maecs_types::type_maecs_traitdyn Type Reference	19
	0.20	6.20.1 Detailed Description	19
	6.01	maecs_types::type_maecs_zoo Type Reference	
	0.21	-maecs typestype maecs zoo type Beierence	20
			00
		6.21.1 Detailed Description	20
7		6.21.1 Detailed Description	
7	File	6.21.1 Detailed Description	21
7		6.21.1 Detailed Description	21 21
7	File 17.1	6.21.1 Detailed Description Documentation maecs.F90 File Reference	21 21 21
7	File	6.21.1 Detailed Description	21 21 21 21
7	File 17.1	6.21.1 Detailed Description Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description	21 21 21 21 22
7	File 17.1	6.21.1 Detailed Description Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation	21 21 21 21 22 22
7	File 17.1	6.21.1 Detailed Description Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description	21 21 21 21 22
7	File 17.1	6.21.1 Detailed Description Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation	21 21 21 21 22 22
7	File 7.1 7.2	6.21.1 Detailed Description Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference	21 21 21 22 22 22 22
7	File 7.1 7.2	6.21.1 Detailed Description Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description	21 21 21 22 22 22 22 22
7	File 7.1	Cocumentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference	21 21 21 22 22 22 22 23
7	File 7.1	Cocumentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description 7.4.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description	21 21 21 22 22 22 22 23 23
7	File 7.1	Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_primprod.F90 File Reference	211 211 212 222 222 223 233 233
7	7.1 7.2 7.3 7.4 7.5	Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description	211 211 212 222 222 222 223 233 233 233
7	File 7.1	Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_types.F90 File Reference	21 21 21 22 22 22 23 23 23 23 23
7	7.1 7.2 7.3 7.4 7.5	Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description	21 21 21 22 22 22 22 23 23 23 23
	7.1 7.2 7.3 7.4 7.5 7.6	Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_types.F90 File Reference 7.6.1 Detailed Description	21 21 21 22 22 22 23 23 23 23 24
7	7.1 7.2 7.3 7.4 7.5 7.6 Text	Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_types.F90 File Reference 7.6.1 Detailed Description	211 211 212 222 222 232 233 233 244 25
	7.1 7.2 7.3 7.4 7.5 7.6	Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_types.F90 File Reference 7.6.1 Detailed Description maecs_types.F90 File Reference 7.6.1 Detailed Description Model Structure	21 21 21 22 22 22 23 23 23 23 24 25 25 25 25 26 27 27 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29
	7.1 7.2 7.3 7.4 7.5 7.6 Text 8.1	Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_types.F90 File Reference 7.6.1 Detailed Description maecs_types.F90 File Reference 7.6.1 Detailed Description Model structure 8.1.1 Mass equations	21 21 21 22 22 22 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25
	7.1 7.2 7.3 7.4 7.5 7.6 Text	Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_types.F90 File Reference 7.6.1 Detailed Description ual Model Description Model structure 8.1.1 Mass equations Process Descriptions	21 21 21 21 22 22 22 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25
	7.1 7.2 7.3 7.4 7.5 7.6 Text 8.1	Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_types.F90 File Reference 7.6.1 Detailed Description ual Model Description Model structure 8.1.1 Mass equations Process Descriptions 8.2.1 Growth rate components and primary production	21 21 21 22 22 22 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25
	7.1 7.2 7.3 7.4 7.5 7.6 Text 8.1	Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_types.F90 File Reference 7.6.1 Detailed Description ual Model Description Model structure 8.1.1 Mass equations Process Descriptions	21 21 21 21 22 22 22 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25
	7.1 7.2 7.3 7.4 7.5 7.6 Text 8.1	Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_types.F90 File Reference 7.6.1 Detailed Description ual Model Description Model structure 8.1.1 Mass equations Process Descriptions 8.2.1 Growth rate components and primary production	21 21 21 21 22 22 22 23 23 23 24 25 25 26 26 26
	7.1 7.2 7.3 7.4 7.5 7.6 Text 8.1	Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_types.F90 File Reference 7.6.1 Detailed Description maecs_types.F90 File Reference 7.6.1 Detailed Description Model Structure 8.1.1 Mass equations Process Descriptions 8.2.1 Growth rate components and primary production 8.2.2 Respiration and temperature	21 21 21 22 22 22 23 23 23 24 25 26 26 27
	7.1 7.2 7.3 7.4 7.5 7.6 Text 8.1	Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_types.F90 File Reference 7.5.1 Detailed Description maecs_types.F90 File Reference 7.6.1 Detailed Description maecs_types.F90 File Reference 7.6.1 Detailed Description Model structure 8.1.1 Mass equations Process Descriptions 8.2.1 Growth rate components and primary production 8.2.2 Respiration and temperature 8.3.3 Multi-nutrient co-limitation 8.2.4 Uptake system allocation and Pl-coefficients	21 21 21 22 22 22 23 23 23 24 25 26 26 27 27 28
	7.1 7.2 7.3 7.4 7.5 7.6 Text 8.1	Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_types.F90 File Reference 7.6.1 Detailed Description Model Description Model Structure 8.1.1 Mass equations Process Descriptions 8.2.1 Growth rate components and primary production 8.2.2 Respiration and temperature 8.2.3 Multi—nutrient co—limitation 8.2.4 Uptake system allocation and PI-coefficients 8.2.5 Nutrient uptake	21 21 21 22 22 22 23 23 23 23 24 25 26 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
	7.1 7.2 7.3 7.4 7.5 7.6 Text 8.1	Documentation maccs.F90 File Reference 7.1.1 Detailed Description maccs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maccs_do maccs_functions.F90 File Reference 7.3.1 Detailed Description 7.3.1 Detailed Description maccs_grazing.F90 File Reference 7.4.1 Detailed Description maccs_grazing.F90 File Reference 7.4.1 Detailed Description maccs_primprod.F90 File Reference 7.5.1 Detailed Description maccs_types.F90 File Reference 7.6.1 Detailed Description maccs_types.F90 File Reference 7.6.1 Detailed Description Model structure 8.1.1 Mass equations Process Descriptions 8.2.1 Growth rate components and primary production 8.2.2 Respiration and temperature 8.2.3 Multi—nutrient co—limitation 8.2.4 Uptake system allocation and PI-coefficients 8.2.5 Nutrient uptake 8.2.6 Grazing	21 21 22 22 22 23 23 23 24 25 26 26 27 27 28 29 29
	7.1 7.2 7.3 7.4 7.5 7.6 Text 8.1	Documentation maecs.F90 File Reference 7.1.1 Detailed Description maecs_do.F90 File Reference 7.2.1 Detailed Description 7.2.2 Function/Subroutine Documentation 7.2.2.1 maecs_do maecs_functions.F90 File Reference 7.3.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_grazing.F90 File Reference 7.4.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_primprod.F90 File Reference 7.5.1 Detailed Description maecs_types.F90 File Reference 7.6.1 Detailed Description Model Description Model Structure 8.1.1 Mass equations Process Descriptions 8.2.1 Growth rate components and primary production 8.2.2 Respiration and temperature 8.2.3 Multi—nutrient co—limitation 8.2.4 Uptake system allocation and PI-coefficients 8.2.5 Nutrient uptake	21 21 21 22 22 22 23 23 23 23 24 25 26 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20

CONTENTS 1

Index			37
Biblio	graphy		3
8.4	Ackno	wledgements	3
	8.3.5	Photoacclimation and transport	
	8.3.4	Costs in P and Si uptake	3
	8.3.3	Uptake activity regulation	
	8.3.2	Quota-uptake feed-back	3
	8.3.1	Growth derivatives under co-limitation	3
8.3		ve trait regulation and differential trade-off	
	829	Other stuff	3

Symbols

Symbols used in formulas, respective model parameters, and their descriptions

 α alpha: initial slope of the P-I curve P_{max} P_max: phyto max. growth rate

MAECS: Model for Adaptive Ecosystems in Coastal Seas

1.1 General Overview

With regard to the conceptualization of trophic interactions, MAECS resembles the classical N-P-Z-D models (1). The emphasis is on the regulation of a number of physiological processes in the phytoplankton unit, which are resolved following a sophisticated optimization scheme. Energy & nutrient allocation scheme of the phytoplankton, as well as the optimization concept used in MAECS is hinted by the model described by Wirtz and Pahlow (2010). See the last section (2) (available only in the pdf form of the documentation) for a detailed description and model equations with some narration.

Todo (1) include a diagram here

Todo (2) find out how to refer to the other sections, e.g., auto-generated by doxygen and added as extra latex packages (maybe Carsten knows already?)

In order to re-generate this documentation, make sure the prerequisites (doxygen,latex, bibtex) installed in your system, then type:

make

inside:

\$FABMDIR/src/models/hzg/maecs/doc/

Todo List

: add a description and details

```
Subprogram fabm_hzg_maecs::initialize (self, configunit)
   parser could do this here either.
Type fabm_hzg_maecs::maecs_do
   for some reason the documentation for the real maecs_do module included inside maecs_do.F90 is not included
   in the data-type documentation, but only in the file-documentation. find out why.
page MAECS: Model for Adaptive Ecosystems in Coastal Seas
   (1) include a diagram here (2) find out how to refer to the other sections, e.g., auto-generated by doxygen
   and added as extra latex packages (maybe Carsten knows already?)
Subprogram maecs_do (self, _ARGUMENTS_DO_)
   : althougth HIDE_IN_BODY_DOCS=NO, the body-documentation is not included! HAS TO BE FIXED
   : add equations
Subprogram maecs functions::calc internal states (maecs, phy, det, dom, zoo)
   : add equations
Subprogram maecs_functions::calc_sensitivities (maecs, sens, phy, env, nut)
   : add a better description and equations
Subprogram maecs_functions::foptupt (Aff0, Vmax0, Nut)
   : add equations
Subprogram maecs_functions::min_mass (maecs, phy, method)
   : add equations
Subprogram maecs_functions::queuederiv (n, x)
   : add equations
Subprogram maecs_functions::queuefunc (n, x, qfunc, qderiv)
   : add equations
Subprogram maecs_functions::queuefunc1 (n, x, qfunc, qderiv)
   : add equations
Subprogram maecs functions::sinking (vS, phys status, sinkvel)
   : add equations
Subprogram maecs_functions::smooth_small (x, eps)
   : add a description and details
Subprogram maecs_functions::uptflex (Aff0, Vmax0, Nut, fAv)
   : add equations
Subprogram maecs_grazing::grazing (Imax, HalfSat, preyconc, rate)
```

Subprogram maecs_grazing::grazing_losses (zoo, resC, Q_prey, lossZNut, lossZDet, mswitch)

: add a description and details

Type maecs_types::type_maecs_base_model

: parser should do this!!

Type maecs_types::type_maecs_rhs

: do we need a parameter list for each maecs type?

Data Type Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

abm_hzg_maecs	9
abm_hzg_maecs::maecs_do	10
maecs_functions	10
abm_hzg_maecs::maecs_get_vertical_movement	13
maecs_grazing	14
maecs_primprod	14
maecs_types	15
maecs_types::stoichiometry_pointer	16
ype_base_model	
maecs_types::type_maecs_base_model	17
maecs_types::type_maecs_allocation_fractions	16
ype_maecs_base_model	
fabm_hzg_maecs::type_hzg_maecs	16
naecs_types::type_maecs_basic_traits	17
naecs_types::type_maecs_env	17
naecs_types::type_maecs_om	18
maecs_types::type_maecs_life	18
maecs_types::type_maecs_phy	18
maecs_types::type_maecs_phy	
	20
maecs_types::type_maecs_zoo	20 19
maecs_types::type_maecs_zoo	20 19

Data Type Index

4.1 Data Types List

Here are the data types with brief descriptions:

rabm_nzg_maecs	
This is the module registered in FABM	9
fabm_hzg_maecs::maecs_do	
This is the module where all the left-hand sides are calculated	10
maecs_functions	
Functions called by maecs_do, maecs_grazing and maecs_primprod	10
fabm_hzg_maecs::maecs_get_vertical_movement	
Handles vertical movement for depth-varying movement rates	13
maecs_grazing	
Grazing module	14
maecs_primprod	
Primary production module	14
maecs_types	
Data types used in fabm_hzg_maecs are defined here	15
maecs_types::stoichiometry_pointer	16
fabm_hzg_maecs::type_hzg_maecs	
This is the model type FABM uses to create the mode	16
maecs_types::type_maecs_allocation_fractions	16
maecs_types::type_maecs_base_model	
урог ана сон ранинисти	17
maecs_types::type_maecs_basic_traits	17
maecs_types::type_maecs_env	
· ·	17
maecs_types::type_maecs_life	18
maecs_types::type_maecs_om	18
maecs_types::type_maecs_phy	18
maecs_types::type_maecs_rhs	
9	19
maecs_types::type_maecs_sensitivities	19
maecs_types::type_maecs_switch	19
maecs_types::type_maecs_traitdyn	19
maecs_types::type_maecs_zoo	20

File Index

5.1 File List

Here is a list of all documented files with brief descriptions:

aecs.F90	21
aecs_do.F90	21
aecs_functions.F90	22
aecs_grazing.F90	23
aecs_primprod.F90	23
aecs_types.F90	
Maecs_types module	23
ainpage.doxygen	??

Data Type Documentation

6.1 fabm_hzg_maecs Module Reference

This is the module registered in FABM.

Data Types

• interface maecs_do

this is the module where all the left-hand sides are calculated

interface maecs_get_vertical_movement

handles vertical movement for depth-varying movement rates

type type_hzg_maecs

this is the model type FABM uses to create the mode

Private Member Functions

• subroutine initialize (self, configurit)

initializes the model

• subroutine get_light_extinction (self, _ARGUMENTS_GET_EXTINCTION_)

to calculate light extinction when kc chnages with depth

6.1.1 Detailed Description

This is the module registered in FABM.

all the maecs_types are made available to this module

Definition at line 8 of file maecs.F90.

6.1.2 Member Function/Subroutine Documentation

6.1.2.1 subroutine fabm_hzg_maecs::initialize (class (type_hzg_maecs), intent(inout), target self, integer, intent(in) configurit) [private]

initializes the model

here the maecs namelists are read and assigned respectively in the model type (self), state & diagnostic variables are registered in FABM model tree and dependencies are imported from FABM

Model parameters, descriptions and corresponding symbols used in formulas:

Parameters

```
alpha \alpha: initial slope of the P-I curve
```

Todo parser could do this here either.

Definition at line 75 of file maecs.F90.

to calculate light extinction when kc chnages with depth

```
extinction coef= a_w ater + a_s pm * (p+d+z)
```

Definition at line 493 of file maecs.F90.

References maecs_functions::calc_internal_states(), maecs_functions::min_mass(), and maecs_functions::sinking().

The documentation for this module was generated from the following file:

· maecs.F90

6.2 fabm hzg maecs::maecs do Interface Reference

this is the module where all the left-hand sides are calculated

6.2.1 Detailed Description

this is the module where all the left-hand sides are calculated

this is only the interface documentation

Todo for some reason the documentation for the real maecs_do module included inside maecs_do.F90 is not included in the data-type documentation, but only in the file-documentation. find out why.

Definition at line 52 of file maecs.F90.

The documentation for this interface was generated from the following file:

• maecs.F90

6.3 maecs_functions Module Reference

functions called by maecs_do, maecs_grazing and maecs_primprod

Public Member Functions

- pure real(rk) function, public smooth_small (x, eps) smoothly ..?
- pure real(rk) function, public uptflex (Aff0, Vmax0, Nut, fAv)
 calc's pot nut upt as f(external conc, allocations)

pure real(rk) function foptupt (Aff0, Vmax0, Nut)
 opt. partitioning between surf upt sites and intern. enzymes for nut assim.

• subroutine, public queuefunc (n, x, qfunc, qderiv)

the queue function

• subroutine queuefunc1 (n, x, qfunc, qderiv)

approximation of the queue function

• real(rk) function, public queuederiv (n, x)

derivative of the queue function ??

• subroutine, public sinking (vS, phys_status, sinkvel)

calculation of the sinking rate

• subroutine, public min_mass (maecs, phy, method)

minimum mass

• subroutine, public calc_sensitivities (maecs, sens, phy, env, nut)

calculate sensitivities

• subroutine, public calc_internal_states (maecs, phy, det, dom, zoo)

calculate the internal states

6.3.1 Detailed Description

functions called by maecs_do, maecs_grazing and maecs_primprod

Definition at line 8 of file maecs_functions.F90.

6.3.2 Member Function/Subroutine Documentation

6.3.2.1 pure real(rk) function, public maecs_functions::smooth_small (real(rk), intent(in) x, real(rk), intent(in) eps)

smoothly ..?

Returns

smooth_small

Todo: add a description and details

Definition at line 28 of file maecs_functions.F90.

Referenced by calc_internal_states(), calc_sensitivities(), min_mass(), and maecs_primprod::photosynthesis().

6.3.2.2 pure real(rk) function, public maecs_functions::uptflex (real(rk), intent(in) Aff0, real(rk), intent(in) Vmax0, real(rk), intent(in) Nut, real(rk), intent(in) fAv)

calc's pot nut upt as f(external conc, allocations)

Returns

uptflex

Todo: add equations

Definition at line 51 of file maecs_functions.F90.

Referenced by calc_sensitivities().

6.3.2.3 pure real(rk) function maecs_functions::foptupt (real(rk), intent(in) Aff0, real(rk), intent(in) Vmax0, real(rk), intent(in) Nut)

opt. partitioning between surf upt sites and intern. enzymes for nut assim.

Returns

fOptUpt

Todo: add equations

Definition at line 69 of file maecs_functions.F90.

Referenced by calc_sensitivities().

6.3.2.4 subroutine, public maecs_functions::queuefunc (real(rk), intent(in) n, real(rk), intent(in) x, real(rk), intent(out) qfunc, real(rk), intent(out) qderiv)

the queue function

n->inf :liebig n~1:product

Todo: add equations

Definition at line 82 of file maecs_functions.F90.

Referenced by maecs_primprod::photosynthesis().

6.3.2.5 subroutine maecs_functions::queuefunc1 (real(rk), intent(in) n, real(rk), intent(in) x, real(rk), intent(out) qfunc, real(rk), intent(out) qderiv)

approximation of the queue function

n->inf :liebig n \sim 1:product

Todo: add equations

Definition at line 104 of file maecs_functions.F90.

6.3.2.6 real(rk) function, public maecs_functions::queuederiv (real(rk), intent(in) n, real(rk), intent(in) x)

derivative of the queue function ??

Returns

queuederiv

Todo: add equations

Definition at line 127 of file maecs_functions.F90.

6.3.2.7 subroutine, public maecs_functions::sinking (real(rk), intent(in) vS, real(rk), intent(in) phys_status, real(rk), intent(out) sinkvel)

calculation of the sinking rate

Todo: add equations

Definition at line 142 of file maecs_functions.F90.

Referenced by fabm_hzg_maecs::get_light_extinction().

6.3.2.8 subroutine, public maecs_functions::min_mass (type (type_maecs_base_model), intent(in) *maecs*, type (type_maecs_phy), intent(inout) *phy*, integer, intent(in), optional *method*)

minimum mass

Todo: add equations

Definition at line 204 of file maecs functions.F90.

References smooth small().

Referenced by fabm_hzg_maecs::get_light_extinction(), and maecs_do().

6.3.2.9 subroutine, public maecs_functions::calc_sensitivities (type (type_maecs_base_model), intent(in) maecs, type (type_maecs_sensitivities), intent(out) sens, type (type_maecs_phy), intent(in) phy, type (type_maecs_env), intent(in) env, type (type_maecs_om), intent(in) nut)

calculate sensitivities

Todo: add a better description and equations

Definition at line 309 of file maecs functions. F90.

References foptupt(), smooth_small(), and uptflex().

Referenced by maecs_do().

6.3.2.10 subroutine, public maecs_functions::calc_internal_states (type (type_maecs_base_model), intent(in) *maecs*, type (type_maecs_phy), intent(inout) *phy*, type (type_maecs_om), intent(inout) *det*, type (type_maecs_om), intent(inout) *dom*, type (type_maecs_zoo), intent(inout) *zoo*)

calculate the internal states

Todo: add equations

Definition at line 370 of file maecs_functions.F90.

References smooth_small().

Referenced by fabm_hzg_maecs::get_light_extinction(), and maecs_do().

The documentation for this module was generated from the following file:

• maecs functions.F90

6.4 fabm_hzg_maecs::maecs_get_vertical_movement Interface Reference

handles vertical movement for depth-varying movement rates

6.4.1 Detailed Description

handles vertical movement for depth-varying movement rates

phyto sinking rate depends on the nutritional state, so for each node:

phy%relQ obtained by calling calc_internal_states(self,phy,det,dom,zoo)

then phyQstat = phy%relQ%N * phy%relQ%P

finally, vsink = maecs_functions::sinking(self%vS_phy, phyQstat, vsink)

Definition at line 39 of file maecs.F90.

The documentation for this interface was generated from the following file:

· maecs.F90

6.5 maecs_grazing Module Reference

Grazing module.

Public Member Functions

• subroutine, public grazing (Imax, HalfSat, preyconc, rate)

calculates grazing rate

• subroutine, public grazing_losses (zoo, resC, Q_prey, lossZNut, lossZDet, mswitch)

loss rates of grazers to inorganic and organic particulate

6.5.1 Detailed Description

Grazing module.

Definition at line 7 of file maecs_grazing.F90.

6.5.2 Member Function/Subroutine Documentation

6.5.2.1 subroutine, public maecs_grazing::grazing (real(rk), intent(in) *lmax*, real(rk), intent(in) *HalfSat*, real(rk), intent(in) *preyconc*, real(rk), intent(out) *rate*)

calculates grazing rate

Todo: add a description and details

Definition at line 20 of file maecs_grazing.F90.

Referenced by maecs do().

6.5.2.2 subroutine, public maecs_grazing::grazing_losses (type (type_maecs_zoo), intent(in) zoo, real(rk), intent(in) resC, type (type_maecs_om), intent(in) Q_prey, type (type_maecs_om), intent(out) lossZNut, type (type_maecs_om), intent(out) lossZDet, type (type_maecs_switch), intent(in) mswitch)

loss rates of grazers to inorganic and organic particulate

assumes a constant C:N:P unit feeding on variable C:N:P food

Todo: add a description and details

Definition at line 37 of file maecs_grazing.F90.

Referenced by maecs_do().

The documentation for this module was generated from the following file:

• maecs_grazing.F90

6.6 maecs_primprod Module Reference

Primary production module.

Public Member Functions

subroutine, public photosynthesis (self, sens, phy, uptake, exud, acc)
 calculates grazing rate

6.6.1 Detailed Description

Primary production module.

Definition at line 7 of file maecs_primprod.F90.

6.6.2 Member Function/Subroutine Documentation

6.6.2.1 maecs_primprod::photosynthesis (type (type_maecs_base_model), intent(in) self, type (type_maecs_sensitivities), intent(in), target sens, type (type_maecs_phy), intent(inout) phy, type (type_maecs_om), intent(out), target uptake, type (type_maecs_om), intent(out) exud, type (type_maecs_traitdyn), intent(out), target acc)

calculates grazing rate

here some in-body-doc Prepare loop over structure elements by assigning a poinzer structure here, every possible nutrient is asked explicitely; thus first Si then P

This is the subroutine, where the optimal regulation of phytoplankton traits are described, which is central to the physiological-MAECS

Definition at line 21 of file maecs_primprod.F90.

References maecs_functions::queuefunc(), and maecs_functions::smooth_small().

Referenced by maecs_do().

The documentation for this module was generated from the following file:

• maecs_primprod.F90

6.7 maecs_types Module Reference

Data types used in fabm_hzg_maecs are defined here.

Data Types

- type stoichiometry_pointer
- type type_maecs_allocation_fractions
- type type_maecs_base_model

stores standard fabm model types and self-parameters

- type type_maecs_basic_traits
- type type_maecs_env

stores environmental dependencies

- type type_maecs_life
- type type_maecs_om
- type type_maecs_phy
- type type_maecs_rhs

stores right hand sides

- type type_maecs_sensitivities
- type type_maecs_switch
- type type_maecs_traitdyn
- type type_maecs_zoo

6.7.1 Detailed Description

Data types used in fabm_hzg_maecs are defined here.

Definition at line 9 of file maecs_types.F90.

The documentation for this module was generated from the following file:

· maecs types.F90

6.8 maecs_types::stoichiometry_pointer Type Reference

6.8.1 Detailed Description

Definition at line 121 of file maecs_types.F90.

The documentation for this type was generated from the following file:

· maecs types.F90

6.9 fabm_hzg_maecs::type_hzg_maecs Type Reference

this is the model type FABM uses to create the mode

Inheritance diagram for fabm_hzg_maecs::type_hzg_maecs:

6.9.1 Detailed Description

this is the model type FABM uses to create the mode

the parent type (type_maecs_base_model) was defined in maecs_types module

Definition at line 24 of file maecs.F90.

The documentation for this type was generated from the following file:

· maecs.F90

6.10 maecs_types::type_maecs_allocation_fractions Type Reference

6.10.1 Detailed Description

Definition at line 71 of file maecs types.F90.

The documentation for this type was generated from the following file:

· maecs_types.F90

6.11 maecs_types::type_maecs_base_model Type Reference

stores standard fabm model types and self-parameters

Inheritance diagram for maecs_types::type_maecs_base_model:

6.11.1 Detailed Description

stores standard fabm model types and self-parameters

this model type parents the FABM-recognized type_maecs_base_model

Model parameters, descriptions and corresponding symbols used in formulas:

Parameters

```
P_{max} \mid P_{max}: phyto max. growth rate
```

Todo: parser should do this!!

Definition at line 40 of file maecs_types.F90.

The documentation for this type was generated from the following file:

· maecs_types.F90

6.12 maecs_types::type_maecs_basic_traits Type Reference

6.12.1 Detailed Description

Definition at line 66 of file maecs_types.F90.

The documentation for this type was generated from the following file:

• maecs_types.F90

6.13 maecs_types::type_maecs_env Type Reference

stores environmental dependencies

6.13.1 Detailed Description

stores environmental dependencies

Definition at line 25 of file maecs_types.F90.

The documentation for this type was generated from the following file:

· maecs_types.F90

6.14 maecs_types::type_maecs_life Type Reference

Inheritance diagram for maecs_types::type_maecs_life:

6.14.1 Detailed Description

Definition at line 78 of file maecs_types.F90.

The documentation for this type was generated from the following file:

· maecs_types.F90

6.15 maecs_types::type_maecs_om Type Reference

Inheritance diagram for maecs_types::type_maecs_om:

6.15.1 Detailed Description

Definition at line 62 of file maecs_types.F90.

The documentation for this type was generated from the following file:

· maecs_types.F90

6.16 maecs_types::type_maecs_phy Type Reference

Inheritance diagram for maecs_types::type_maecs_phy:

6.16.1 Detailed Description

Definition at line 83 of file maecs_types.F90.

The documentation for this type was generated from the following file:

· maecs_types.F90

6.17 maecs_types::type_maecs_rhs Type Reference

stores right hand sides

6.17.1 Detailed Description

stores right hand sides

Todo : do we need a parameter list for each maecs type?

Definition at line 31 of file maecs_types.F90.

The documentation for this type was generated from the following file:

· maecs_types.F90

6.18 maecs_types::type_maecs_sensitivities Type Reference

6.18.1 Detailed Description

Definition at line 112 of file maecs_types.F90.

The documentation for this type was generated from the following file:

· maecs_types.F90

6.19 maecs_types::type_maecs_switch Type Reference

6.19.1 Detailed Description

Definition at line 58 of file maecs_types.F90.

The documentation for this type was generated from the following file:

· maecs_types.F90

6.20 maecs_types::type_maecs_traitdyn Type Reference

6.20.1 Detailed Description

Definition at line 100 of file maecs_types.F90.

The documentation for this type was generated from the following file:

· maecs_types.F90

6.21 maecs_types::type_maecs_zoo Type Reference

Inheritance diagram for maecs_types::type_maecs_zoo:

6.21.1 Detailed Description

Definition at line 94 of file maecs_types.F90.

The documentation for this type was generated from the following file:

• maecs_types.F90

File Documentation

7.1 maecs.F90 File Reference

```
#include "fabm_driver.h"
```

Data Types

• module fabm_hzg_maecs

This is the module registered in FABM.

• type fabm_hzg_maecs::type_hzg_maecs

this is the model type FABM uses to create the mode

• interface fabm_hzg_maecs::maecs_get_vertical_movement

handles vertical movement for depth-varying movement rates

• interface fabm_hzg_maecs::maecs_do

this is the module where all the left-hand sides are calculated

7.1.1 Detailed Description

Author

Richard Hofmeister, Markus Schartau, Kai Wirtz, Onur Kerimoglu Definition in file maecs.F90.

7.2 maecs_do.F90 File Reference

```
#include "fabm_driver.h"
```

Functions/Subroutines

• subroutine maecs_do (self, _ARGUMENTS_DO_)

This is the main routine where right-hand-sides are calculated.

22 File Documentation

7.2.1 Detailed Description

Author

Richard Hofmeister, Markus Schartau, Kai Wirtz, Onur Kerimoglu

Definition in file maecs_do.F90.

7.2.2 Function/Subroutine Documentation

7.2.2.1 subroutine maecs_do (class (type_maecs_base_model), intent(in) self, _ARGUMENTS_DO_)

This is the main routine where right-hand-sides are calculated.

Phytoplankton Equations

We distinguish between mass state variables (in units of carbon, nitrogen, & phosphorus) and property state variables. See also: Section 8.1.1

Current 'traits' are:

- nitrogen allocated to rubisco (frac_Rub)
- · Chla content of chloroplasts (theta)

General code structure:

- 1. Calculation of quotas
- 2. Calculation of fluxes and mass exchange rates
- 3. Specify rates of change of traits variables
- 4. Assign mass exchange rates ('rhs(j,i)')
- 5. Assign rates of change of 'traits' property variables

Todo: althougth HIDE_IN_BODY_DOCS=NO, the body-documentation is not included! HAS TO BE FIXED: add equations

Definition at line 27 of file maecs do.F90.

References maecs_functions::calc_internal_states(), maecs_functions::calc_sensitivities(), maecs_grazing::grazing(), maecs_grazing::grazing_losses(), maecs_functions::min_mass(), and maecs_primprod::photosynthesis().

7.3 maecs_functions.F90 File Reference

```
#include "fabm_driver.h"
```

Data Types

· module maecs_functions

functions called by maecs_do, maecs_grazing and maecs_primprod

7.3.1 Detailed Description

Author

Richard Hofmeister, Markus Schartau, Kai Wirtz, Onur Kerimoglu

Definition in file maecs_functions.F90.

7.4 maecs_grazing.F90 File Reference

```
#include "fabm_driver.h"
```

Data Types

module maecs_grazing
 Grazing module.

7.4.1 Detailed Description

Author

Richard Hofmeister, Markus Schartau, Kai Wirtz, Onur Kerimoglu Definition in file maecs_grazing.F90.

7.5 maecs_primprod.F90 File Reference

```
#include "fabm_driver.h"
```

Data Types

module maecs_primprod
 Primary production module.

7.5.1 Detailed Description

Author

Richard Hofmeister, Markus Schartau, Kai Wirtz, Onur Kerimoglu Definition in file maecs_primprod.F90.

7.6 maecs_types.F90 File Reference

```
maecs_types module
#include "fabm driver.h"
```

Data Types

• module maecs_types

Data types used in fabm_hzg_maecs are defined here.

 type maecs_types::type_maecs_env stores environmental dependencies

type maecs_types::type_maecs_rhs

24 File Documentation

stores right hand sides

type maecs_types::type_maecs_base_model
 stores standard fabm model types and self-parameters

- type maecs_types::type_maecs_switch
- type maecs_types::type_maecs_om
- type maecs_types::type_maecs_basic_traits
- type maecs_types::type_maecs_allocation_fractions
- type maecs_types::type_maecs_life
- type maecs_types::type_maecs_phy
- type maecs_types::type_maecs_zoo
- type maecs_types::type_maecs_traitdyn
- type maecs_types::type_maecs_sensitivities
- type maecs_types::stoichiometry_pointer

7.6.1 Detailed Description

maecs_types module

Author

Richard Hofmeister, Kai Wirtz, Onur Kerimoglu

Definition in file maecs_types.F90.

Textual Model Description

8.1 Model structure

MAECS resolves major functional groups and their dynamics not unlike simple state-of-the-art ecosystem models. All energy and material fluxes in the ecosystem derive from primary production of phytoplankton, here expressed in terms of biomass carbon (C) concentration. Phytoplankton experiences various local and trait dependent loss rates, from sinking, respiration, exudation, to grazing. MAECS versions differ in the degree of resolution in ecological processes; a full account of grazing interactions in the plankton is only addressed by versions that includes size as a major trait. Grazers convert only a fraction of captured phytoplankton to their own biomass; in size-based variants of MAECS we have implemented different formulations for whether this fraction immediately contributes to the biomass of adult grazers or their egg stage, or how many grazer groups are simulated (see below).

Physiological regulation in unicellular autotrophs makes the very kernel of the MAECS version documented here. The intracellular nutrient quotas, in this model version resolved for nitrogen (N), phosphorus (P), and silicon (Si), change over time when uptake does not match demand due to biomass build-up. Differential uptake regulation then leads to highly variable stoichiometries, that not only reflect ambient nutrient and light concentration, but also generalized optimality criteria.

For describing the living compartment of plankton ecosystems MAECS employs much more trait variables (e.g., allocation coefficients) compared to bulk variables (e.g., phytoplankton or zooplankton biomass). The adaptive trait dynamics infers the need of calculating (sometimes long) derivative terms, which also challenges this documentation; however, the gradient-derived terms include very few additional process parameters, so that the number of tunable parameters in relation to simulated and testable dynamics is significantly reduced compared to models that share a similar resolution in plankton physiology or ecology. Most importantly, MAECS seeks to account for biophysical and evolutionary principles as much as possible; resulting in expressions replacing heuristic functions such as Michaelis-Menten approximations of nutrient uptake, Droop representation of cell growth, or Liebig's rule of minimum. Biophysical origins of model formulations further reduces the number of tunable parameters, in particular in the ecological part. Prominent counter-examples, i.e. yet uncertain model formulations or parameters, comprise aggregation dynamics or variations in metabolic interdependency.

8.1.1 Mass equations

Basic mass equations common to the two MAECS variants (size and physiology). All coefficients and their meanings are listed in Table ??.

Net change in autotroph C, N, P, Si (cf. Eq.(8.8) and Eq.(8.29)) ...

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Phy}_{\mathrm{C}} = \mu_{\mathrm{tot}} \cdot \mathrm{Phy}_{\mathrm{C}}$$
(8.1)

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Phy}_{X} = \underset{(8.23)}{V_{\mathrm{X}}}\cdot\mathrm{Phy}_{\mathrm{C}} - \underset{(8.9)}{M}\cdot\mathrm{Phy}_{X} \qquad \text{with} \quad \mathrm{X} = \mathrm{N,P,Si} \tag{8.2}$$

... in dissolved inorganic nutrients (X=N, P), optionally including silicate

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DIX} = -V_{\mathrm{X}}\,\mathrm{Phy}_{\mathrm{C}} + \omega_{\mathrm{DOM}}\,\mathrm{DOX} \tag{8.3}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DSi} = -V_{\mathrm{Si}}\,\mathrm{Phy_{\mathrm{C}}} + \omega_{\mathrm{Det}}\,\mathrm{Det_{\mathrm{Si}}}_{(8.7)} \tag{8.4}$$

[TODO: include DIC into code]

 \dots in dissolved organic nutrients (X=C, N, P),

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DOX} = E\,\mathrm{Phy}_X + \omega_{\mathrm{Det}}\,\mathrm{Det}_X - \omega_{\mathrm{DOM}}\,\mathrm{DOX} \tag{8.5}$$

... and in the detrital pool (X=C, N, P, Si).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Det}_{\mathrm{X}} = M'\,\mathrm{Phy}_{X} + M_{Z}\,\mathrm{Zoo}_{X} - \omega_{\mathrm{Det}}\,\mathrm{Det}_{\mathrm{X}} \tag{8.6}$$

where the phytoplankton mortality M' collects contributions from sloppy grazing ((1-y)G) and, in 0D setups, and from sinking (S in Eq.(8.33)). Remineralization of DOM $\omega_{\rm DOM}$ and hydrolysis of detritus $\omega_{\rm Det}$ both change with ambient temperature and substrate quality

$$\omega_{\text{DOM}} = f_T \frac{\text{DON}}{\text{DOC}} \, \omega_{\text{DOM}}^* \qquad \qquad \omega_{\text{Det}} = f_T \, \frac{\text{Det}_{\text{N}}}{\text{Det}_{\text{C}}} \, \omega_{\text{Det}}^*$$
 (8.7)

Because of the quality dependency in degradation rates [TODO: justify], element cycles in the water column are easily decoupled within MAECS.

Note that in a chemostat mode, to the dynamics of *all* concentration variables a dilution (D) loss is added, which only for dissolved nutrients also contains reservoir inflow ($-D \cdot (DIX - DIX^0)$).

[TODO: Parameter table]

8.2 Process Descriptions

8.2.1 Growth rate components and primary production

Temporal changes of the bulk phytoplankton concentration Phy_C are per construction given in terms of the over all relative growth rate μ_{tot} :

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Phy}_{\mathrm{C}} = \mu_{\mathrm{tot}} \cdot \mathrm{Phy}_{\mathrm{C}} \tag{8.8}$$

The relative growth rate of autotrophic unicells (phytoplankton) collects primary production and a number of loss terms

$$\mu_{\text{tot}} = \underbrace{P - \underset{\mu}{R}} - (\underbrace{E}_{(8.43)} + \underbrace{\frac{GZ\text{oo}_{\text{C}}}{Phy_{\text{C}}}}_{(8.32)} + \underbrace{S}_{(8.33)} + \underbrace{AF}_{(8.38)} + D) = \mu - M$$
(8.9)

with sinking loss given in Eq.(8.33) (relevant only in 0D), aggregate formation in Eq.(8.38) [TODO: living cells in aggregates], grazing G explained in Sec. 8.2.6, exudation rate E formulated in Eq.(8.43), dilution rate D (for running the model in a chemostat mode), and respiration R in Eq.(8.12).

Gross C assimilation P changes with stoichiometric balance as expressed by the multi–nutrient co–limitation factor LF(Eq.(8.14)), maximal photosynthetic capacity P_{max} (further depending on, e.g. partitioning, Eq.(8.20), or size in the ecological version, Wirtz (2011, 2013)) and light harvesting success LH

$$P = P_{\text{max}} \cdot \underset{(8.20)}{\text{LF}} \cdot \text{LH}$$
 (8.10)

Light harvesting LH is primarily controlled by ambient light intensity PAR and light adsorption by chloroplasts $\alpha \cdot \theta$ proportional to the chlorophyll concentration θ (cf.Eq.(8.21)). Its functional form derives from Poisson arrival statistics of photons

$$LH = 1 - e^{-\alpha\theta PAR/P_{max}}$$
 (8.11)

8.2.2 Respiration and temperature

Respiratory losses reflect costs of N uptake (Raven, 1984; Pahlow, 2005), while neglecting energetic costs of P-and Si-assimilation

$$R = \zeta V_{\rm N} \tag{8.12}$$

Temperature dependency of respiration thus follows from the factor f_T in the uptake coefficients in Eq.(8.24). In the current MAECS version, all metabolic rates equally increase with rising temperature following the Arrhenius equation,

$$f_T = e^{-E_a(T^{-1} - T_0^{-1})}$$
 with $E_a = \frac{T_0^2}{10} \cdot \log(Q_{10})$ (8.13)

with a reference temperature T_0 (here 18°C) where f_T equals one.

8.2.3 Multi-nutrient co-limitation

The co-limitation factor LF is constructed within a metabolic network view of cellular physiology. There, LF reflects not only the availability of singular resources (nutrients) but also how dependent the sub-networks (protein turnover) associated to those nutrients can evolve. In this view, LF quantifies the turnover of the first sub-process (here intracellular nitrogen turnover) times the queuing function that gives the intermittency between the first and the other sub-processes (associated to elements X):

LF =
$$q_N \cdot g_h (q'_X/q_N) \cdot c_{hq}$$
 with $c_{hq} = 1 + c_h + h \cdot q_N q'_X$ (8.14)

The relative quota q_X expresses the availability of nutrient X above a subsistence threshold Q_X^0 normalized by a reference pool size $Q_X^* - Q_X^0$. In contrast to most other models resolving variable internal stores (e.g. Morel, 1987), Q_X^* does not impose [TODO: 'does not impose'=? is it rather 'is not a prescribed'? but what is it then?] an upper boundary of the cell quota Q_X .

$$q_{\rm X}=rac{Q_{\rm X}-Q_{\rm X}^0}{\Delta Q_{\rm X}} \quad {\rm with} \quad \Delta Q_{\rm X}=Q_{\rm X}^*-Q_{\rm X}^0 \quad {\rm and} \quad {\rm X=N,P,Si,\dots}$$
 (8.15)

In Eq.(8.14), the product hq_Nq_X' describes the non-linear metabolic interdependency between intracellular turnover of element N and X that is not covered by the simple queuing function. g_h expresses a "stop and go" dependency while neglecting possible amplification and inhibition effects as explained by Wirtz&Kerimoglu (in prep.). The product term leads to a quadratic influence of the first element (q_N) and can be considered as most simple account of nonlinear metabolic interdependency. It also ensures symmetry of LF with respect to exchanging the order of nutrients as $q_1g_h(q_2'/q_1)c_{hq12}\approx q_2g_h(q_1'/q_2)c_{hq21}$.

The queuing function g_h can be derived from assuming Poisson statistics in phase-locking of sub-networks [TODO: 'Poisson statistics in phase-locking of sub-networks' sounds scary, please expand!]:

$$g_h(x) = \frac{x - x_h}{1 - x_h}$$
 with $x_h = x^{1 + h^{-1}}$ (8.16)

The function g_h introduces as new control parameter the metabolic interdependency h. h resembles the processing intermittency introduced by Wirtz (2012), which describes the probability of phase-locking [TODO: 'phase-locking' is again an unusual term: expand with a sentence?] in independent sub-steps in a process chain.

The correction coefficient c_h in Eq.(8.14) follows from imposing convergence of LF to the product and Liebig rules. Compliance to the Liebig rule leads to $c_0=0$ since g_0 describes a stepwise linear function [TODO: it's not clear: when ch=h=0, Eq.(8.14) reduces to $q_Ng_0(q_X'/q_N)$, $withg_0=-\inf/-\inf$]. For the product rule, we use the identity $g_h(1)=1/(1+h)$ and assume that $q_X=q_Y=1/2$, to obtain $1/4=1/2\cdot(1+h/4+c_h)/(1+h)$ [TODO: it's very unclear where this equation came from], or $c_h=-1/2+h/4$. However, the offset in this linear relation conflicts with the condition $c_0=0$. Both conditions can be approximately reconciled by a logarithmic function [TODO: does Eq.(8.17) have something to do with all the other equations in this paragraph? if so, how? if not, why not directly listing those 'conditions', providing Eq.(8.17) saying that it is one of the potentially many pragmatic solutions?]

$$c_h = \log(1/4^h + h/2) \tag{8.17}$$

It is mandatory in MAECS to resolve nitrogen. If optionally one, two, or more further nutrients are considered (e.g., P or Si, P and Si, or a micro-nutrient), a recursive scheme is applied. The limiting effect of element X+1 on the processing of element $X(q_X')$ is then formally equivalent to the LF of the first element (N) limited by the remainder metabolism (LF = q_N') as given in Eq.(8.14):

$$q'_{X} = q_{X} \cdot g_{h}(q'_{X+1}/q_{X}) \cdot c_{hq} \qquad X = P, Si, ...$$
 (8.18)

For the final element we have $q'_{\rm X}=q_{\rm X}$. From the (subjective) ordering of elements in the recursive scheme only a small asymmetry arises. [TODO: no matter how small it is, the asymmetry probably requires us to document (and maybe also provide justification, if any) the order we chose]

8.2.4 Uptake system allocation and PI-coefficients

It is assumed that the fraction of free proteins or allocatable resources does not change. [TODO: it is not clear what this means: maybe a diagram helps?] Structural compounds such as cell wall, nucleus, or other non directly functional components are thus kept at a fixed ratio. The pool of free organics (in terms of cellular carbon) is partitioned between photosynthetic machinery and nutrient uptake. Photosynthetic machinery is further sub-divided into light harvesting and processing. The relative pool size of free resource (here in units C!) invested into light-independent reactions, primarily those in Rubisco and the Calvin cycle (Friend, 1991) is denoted as f_R , the one for the light harvesting complex (LHC) f_{θ} . This way, the coefficient f_V for C-allocation to nutrient uptake becomes a linear function of the C-allocation to LHC f_{θ} and to Rubisco f_R :

$$f_V = 1 - f_R - f_\theta (8.19)$$

Maximum photosynthesis rate P_{max} is controlled by the pool fraction f_R invested into Rubisco/processing and a temperature dependency f_T given in Eq.(8.13), while the effect of nutrient limitation (namely N) is already included in Eq.(8.10)

$$P_{\text{max}} = f_R \cdot f_T \cdot P_{\text{max}}^*$$
 (8.20)

The fraction of light harvesting carbon depends on the C-fraction partitioned to photosystem processing (electron chain) and the chlorophyll concentration θ (relative to a reference value θ_C):

$$f_{\theta} = f_R q_N^{\sigma} \theta / \theta_C$$
 or $\theta = f_{\theta} / f_R q_N^{-\sigma} \theta_C$ (8.21)

where C stoichiometry of pigment complexes is denoted by θ_C . The exponent σ describes an additional linkage of LHC synthesis on the N-status of the cell. Wirtz and Pahlow (2010) proposed that $\sigma=1$ for diatoms, while $\sigma=0$ for other autotrophs.

[TODO: 1) so far, it's not clear what's the relevance of θ or f_{θ} for physiological processes. Maybe a sentence. 2) it's also not clear where these novel and mysterious parameters such as f_R and θ come from. Maybe it's helpful to hint that they are being dynamically optimized, referring to Sec. 8.3]

8.2.5 Nutrient uptake

Nutrient uptake rate of the cell varies with a number of internal, physiological factors, such as the partitioning coefficient f_V (see above) and the (enzymatic) activity $a_{\rm V,X}$ (X= N, P, Si, ...), and is furthermore determined by the potential uptake $V_{\rm X}^*$

$$V_{X} = f_{V} \cdot a_{V,X} \cdot V_{X}^{*}$$
(8.22)

Potential uptake $V_{\rm X}^*$ reflects ambient nutrient concentration, but also affinity and transport capacities denoted by $A_{\rm X}$ and $V_{\rm max,X}$. Nutrient uptake is a sequential 2-stage process (membrane uptake and intracellular transport) as described by the nutrient affinity $A_{\rm X}$ and maximal uptake rate $V_{\rm max,X}$ such that the effective uptake time equals the sum of turnover times in each stage:

$$V_{\rm X}^{*-1} = V_{\rm max,X}^{-1} + (A_{\rm X} \, {\rm DIX})^{-1}$$
 with ${\rm DIX} = {\rm DIN}, {\rm DIP}, {\rm DSi}, \dots$ (8.23)

Nutrient uptake characteristics are temperature sensitive and assumed to depend on a sub-partitioning of allocatable proteins expressed by the coefficient $f_{A,X}$

$$V_{\text{max},X} = (1 - f_{A,X}) \cdot Q_0 \cdot f_T \cdot V_{\text{max},X}^0$$
 (8.24)

$$A_{\mathbf{X}} = f_{A,\mathbf{X}} \cdot Q_0 \cdot f_T \cdot A_{\mathbf{X}}^0 \tag{8.25}$$

[TODO: differential temperature sensitivity; see Smith 2013]

Protein sub-partitioning of overall uptake machinery (f_V) into affinity and transport capabilities is instantaneously optimized

$$\frac{\partial V_{\mathbf{X}}^*}{\partial f_{A|\mathbf{X}}} = 0 \tag{8.26}$$

and the resulting optimal sub-partitioning depends on nutrient availability (Pahlow, 2005; Smith et al., 2009)

$$f_{A,X} = \left(1 + \sqrt{A_X^0 \cdot \text{DIX}/V_{\text{max},X}^0}\right)^{-1}$$
 (8.27)

In terms of the autotroph nutrient quota Q_X (X=N, P, Si) imbalance between nutrient uptake and growth demand leads to

$$\frac{\mathrm{d}}{\mathrm{d}t}Q_{\mathrm{X}} = V_{\mathrm{X}} - \mu \cdot Q_{\mathrm{X}} \tag{8.28}$$

or, in the MAECS notation where traits/characteristics are transported as bulk biomasses Phy_X parallel to the basic phytoplankton concentration Phy_C

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Phy}_{X} = V_{\mathrm{X}} \cdot \mathrm{Phy}_{\mathrm{C}} - \underbrace{M}_{(8.9)} \cdot \mathrm{Phy}_{X} \quad \text{with} \quad Q_{\mathrm{X}} = \frac{\mathrm{Phy}_{X}}{\mathrm{Phy}_{\mathrm{C}}}$$
(8.29)

[TODO: exudation]

8.2.6 Grazing

Before merging with the ecological MAECS version, we use primitive (non-biophysical) standards for describing heterotrophic activities:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Zoo}_{\mathrm{C}} = (y \cdot G - \tau_{\mathrm{C}} - M_{\mathrm{Z}}) \cdot \mathrm{Zoo}_{\mathrm{C}}$$
(8.30)

with quadratic and temperature sensitive mortality to represent top-down pressure

$$M_Z = f_T \cdot M_Z^0 \cdot \text{Zoo}_{\mathcal{C}} \tag{8.31}$$

and a Holling-III response function for functional grazing response:

$$G = g_{\text{max}} f_T \cdot \frac{\text{Phy}_{\text{C}}^2}{K_G^2 + \text{Phy}_{\text{C}}^2}$$
(8.32)

[TODO: more complicated loss/leakage terms τ_X to ensure homeostasis and mass conservation]

8.2.7 Sinking loss

Vertical losses account for enhanced settling due to aggregate formation which occurs under high concentrations of particles and exopolymeres. As a coastal model, already the basic version of MAECS resolves a benthic compartment independently from the coupled diagenesis model (see below).

The relative loss rate S is, in an idealized picture, the ratio between v_s and the mixed layer depth (MLD)

$$S = (1 + f_{\text{agg}}) \cdot \frac{v_{\text{S}}}{\text{MLD}}$$
 (8.33)

[TODO: add size as trait or explicit parameter; the following part comes from the size-based model version]

The velocity v_s of a sinking particle is described by Stokes' law, which for a spherical cell with diameter ESD= e^{ℓ} reads

$$v_{\rm s} = \frac{g \, \rho'(\ell) \, {\rm e}^{2\ell}}{18 \nu(T)} \tag{8.34}$$

The unitless excess density ρ' , the density difference between water and the suspended body, divided by water density, is known to be a function of the physiology and size of the suspended cells (Waite et al., 1997; Kiørboe et al., 1998; Miklasz and Denny, 2010). Dead cells are relatively heavy-weighted ($\rho' = \rho^{\dagger}$, $\rho^{\dagger} > 0$), but ρ^{\dagger} decreases in large (siliceous) phytoplankton due to an increasing fraction of vacuoles. The allometric relation of vacuolation and excess density reduction is

$$\rho^{\dagger} = \rho_0^{\dagger} e^{-\alpha_{\rho}\ell} \tag{8.35}$$

As vacuoles usually contain a higher concentration of inorganic compounds than the surrounding cytoplasm, the exponent α_{ρ} should be close to the size scaling slope reported for carbon density by Menden-Deuer and Lessard (2000).

Linear dependency between excess density and relative production

$$\rho' = (1 - f_{\text{vac}} \cdot p) \cdot \rho^{\dagger} \tag{8.36}$$

 $f_{\rm vac}$ is the relative volumetric fraction that can be filled with material of reduced density (e.g., gases, lipids, or solutes, the latter listed in Boyd and Gradmann (2002)). This quantity relates to the vacuole structure (Raven and Waite, 2004) and can therefore be formulated as the relative density difference with respect to cells without vacuolation (ρ_0^{\dagger} in Eq.(8.35))

$$f_{\text{vac}} = \frac{\rho_0^{\dagger} - \rho^{\dagger}}{\rho_0^{\dagger}} = 1 - e^{-\alpha_{\rho}\ell}$$
 (8.37)

8.2.8 Particle aggregation

[check with Richard; re-introduce into code]

Aggregation depends on stickiness and particle surface

$$f_{\text{agg}} = f_{\text{agg}}^* \operatorname{EP} \cdot \operatorname{Phy}_{\mathbf{C}} \cdot \operatorname{ESD}^n$$
 (8.38)

The relative fraction of exopolymeres within the DOM pool is inversely related to DOM quality, which is expressed in terms of the N:C stoichiometry. Stickiness associated with exopolymeres (EP) correlates with DOM quantity and inverse quality

$$EP = \frac{DOC}{DON}DOC$$
 (8.39)

Stickiness not only enhances coagulation efficiency in particle aggregation, it also increases the critical bottom shear stress for sediment resuspension ("biostabilization"). Resuspension of benthic material occurs when bottom shear stress exceeds that "sticky" threshold.

$$RS = RS^* \max \left\{ V_{\text{bshear}} - V_{\text{EP}}^* \, \text{EP}, 0 \right\} \tag{8.40}$$

so we have for material fluxes due to resuspension

$$\frac{\mathrm{d}}{\mathrm{d}t}C_X^{\mathrm{z=H}} = \dots + \mathrm{RS}C_X^{\mathrm{ben}} \quad \text{with} \quad C_X = \mathrm{Phy}_X, \mathrm{Det}_X$$
 (8.41)

8.2.9 Other stuff

Photoinhibition by depletion of D1-protein

$$u = \frac{q_{\rm N}}{q_{\rm N} + u^* \, \text{Chl:} \, \text{C}^2} \tag{8.42}$$

Exudation reflects imbalance between C uptake and assimilation

$$E = e^* P_{\text{max}}^* f_T \text{ LH} \tag{8.43}$$

8.3 Adaptive trait regulation and differential trade-off

Adaptive trait dynamics in its general form has been proposed as an optimality-seeking principle guiding transient adaptive regulation phenomena on very different levels of description, from organ physiology to population ecology (Wirtz, 2000, 2003; Smith et al., 2011). This principle/equation is applied to all physiological traits in MAECS, in particular to those that primarily control nutrient uptake (f_R and θ through f_V , and activity $a_{V,X}$. C-growth as goal function needs to be extended by "hidden" or indirect effects through a differential link between nutrient uptake V_X and quota Q_X for all macro-nutrients:

$$\frac{\mathrm{d}f_{m,X}}{\mathrm{d}t} = \delta_m \left(\frac{\partial \mu}{\partial f_{m,X}} + \sum_{\mathbf{x}} \frac{\partial \mu}{\partial Q_{\mathbf{X}}} \frac{\mathrm{d}Q_{\mathbf{X}}}{\mathrm{d}V_{\mathbf{X}}} \Big|_{\text{tot}} \frac{\partial V_{\mathbf{X}}}{\partial f_{m,X}} \right) \quad \text{with} \quad f_{m,X} = f_{\mathbf{R}}, \theta, a_{\mathbf{V},X} \quad \mathbf{X} = \mathbf{N}, \mathbf{P}, \mathbf{Si}, \dots$$
 (8.44)

[TODO: reduce text or spread to individual eugations]

Diverging from most standard ecosystem models, however, MAECS assumes intricate interdependencies between independent C, N, or P assimilation functions while avoiding prescribed stoichiometric control settings such as maximal N:C or P:C ratios. For doing so, it implies optimality criteria already in the description of basic uptake formulations (lower part of Table ??). These criteria control shifts between high affinity and fast transport nutrient uptake (see above Eq.(8.27)) and in the enzymatic down-regulation of all nutrient uptake activities. Adaptive control in activity secures phytoplankton cells from non-beneficial intracellular accumulation of nutrients, but in the model also requires to formulate an extended optimality principle by which C costs of nutrient uptake have to be balanced with corresponding C benefits arising fro associated quota changes (Eq.(??)). For both regulations (uptake site/transport partitioning, activity), steady-state solutions or approximations are calculated since physiological uptake regulations proceed at very high speed.

For nitrogen (N), the differential effect of increasing nutrient uptake rate on the quota derives from functional variation applied to the quota uptake equation Eq.(8.28):

$$\delta V_{\rm X} + \frac{\partial V_{\rm X}}{\partial Q_{\rm X}} \delta Q_{\rm X} - \mu \cdot \delta Q_{\rm X} - Q_{\rm X} \cdot \frac{\partial \mu}{\partial Q_{\rm X}} \delta Q_{\rm X} - Q_{\rm X} \cdot \frac{\partial \mu}{\partial V_{\rm X}} \delta V_{\rm X} = 0 \tag{8.45}$$

or

$$\frac{\mathrm{d}Q_{\mathrm{X}}}{\mathrm{d}V_{\mathrm{X}}} = \left(1 + \zeta_{\mathrm{X}}Q_{\mathrm{X}}\right) \cdot \left(\mu + Q_{\mathrm{X}}\frac{\partial\mu}{\partial Q_{\mathrm{X}}} - \frac{\partial V_{\mathrm{X}}}{\partial Q_{\mathrm{X}}}\right)^{-1} \tag{8.46}$$

where the derivative of uptake rate on quota may only become non-zero (1) for nitrogen (N) and (2) if C-partitioning to chlorophyll (f_{θ} in Eq.(8.21)) is hardwired to the N-quota:

$$\frac{\partial V_{\rm N}}{\partial Q_{\rm N}} = \frac{V_{\rm N}}{f_{\rm V}} \frac{\partial f_{\rm V}}{\partial Q_{\rm N}} = -\frac{\sigma f_R \theta}{f_{\rm V} \theta_{\rm C} \Delta Q_{\rm N}} V_{\rm N} = -\sigma' V_{\rm N} \tag{8.47}$$

8.3.1 Growth derivatives under co-limitation

For the N-turnover and regulation, the differential dependency of $V_{\rm N}$ on $Q_{\rm N}$ also enters the marginal increase in primary production when raising intracellular quota; an analytical derivation of the photosynthesis rate P in Eq.(8.10) with respect to each co-limiting quota $Q_{\rm X}$ reads

$$\frac{\partial \mu}{\partial Q_{X}} = \frac{P}{LF} \frac{\partial LF}{\partial q_{X}} \frac{\partial q_{X}}{\partial Q_{X}} - \zeta \frac{\partial V_{N}}{\partial Q_{X}}$$

$$= d_{X} \frac{\mu + \zeta V_{N}}{\Delta Q_{X}} + \sigma' \zeta V_{N} \qquad \text{with } d_{X} = LF^{-1} \frac{\partial LF}{\partial q_{X}}$$

$$= \left(d_{X} \frac{1 + \zeta Q_{N}}{\Delta Q_{X}} + \sigma' \zeta Q_{N} \right) \cdot \mu$$

$$= d_{OX} \cdot \mu \qquad (8.48)$$

where we assumed a balanced growth relation between growth and uptake ($\mu Q_{\rm N}=V_{\rm N}$), used the relation $P=\mu+\zeta V_{\rm N}$. In light of Eq.(8.57) we have $\sigma_N'=\sigma'$ and $\sigma_X'=0$ for other elements that lack direct influence on N-uptake rate.

The derivation result $d_{\rm X}$ of the (recursive) co-limitation factor LF $\equiv q_1'$ may contain a number of product terms, depending on where in the scheme the limiting effect of $Q_{\rm X}$ is calculated. Consider the series of limitation factors $q_1, q_2, \ldots q_{\rm No^{\rm nut}}$ (e.g., for $q_{\rm N}, q_{\rm P}, q_{\rm Si}$) we start from the first element where the recursive scheme Eq.(8.18) has been invoked only once. For example, if MAECS just resolves its basic element N,

$$d_N = \frac{1}{q'_N} \qquad \qquad \text{for No}^{\text{nut}} = 1 \tag{8.49}$$

or N and P,

$$d_{\rm N} = \frac{1}{q'_{\rm N}} \frac{\partial q'_{\rm N}}{\partial q_{\rm N}} \qquad d_{\rm P} = \frac{1}{q'_{\rm N}} \frac{\partial q'_{\rm N}}{\partial q'_{\rm P}} \frac{\partial q'_{\rm P}}{\partial q_{\rm P}} \qquad \text{for No}^{\rm nut} = 2$$
 (8.50)

Note that $\partial q_P'/\partial q_P$ is one because P makes the last element in the list, so that the metabolic effect of Q_P as quantified by q_P' exclusively depends on the availability of Q_P as quantified by q_P . The general form for an arbitrary No^{nut} continues the sequential differentiation from the first element (here usually N) to the element X under consideration. So starting from q_1' we calculate the use efficiency of element X again using the chain-rule:

$$d_{X} = \frac{1}{q_{1}'} \frac{\partial q_{1}'}{\partial q_{2}'} \frac{\partial q_{2}'}{\partial q_{3}'} \cdots \frac{\partial q_{X}'}{\partial q_{X}}$$
(8.51)

Note that the last term in the product of differentials $(\partial q'_{\rm X}/\partial q_{\rm X})$ is either one if X is the last element in the sequence, and otherwise given by Eq.(8.52). The differentials in Eqs.(8.49)–(8.51) characterize the recursive effect of metabolic efficiencies of $q'_{\rm X}$ formulated in Eq.(8.18)

$$\frac{\partial q_{\mathbf{X}}'}{\partial q_{\mathbf{X}}} = q_{\mathbf{X}}' \cdot \left(q_{\mathbf{X}}^{-1} - \frac{\partial g_h}{\partial x} \frac{q_{\mathbf{X}+1}'}{g_h q_{\mathbf{X}}^2} + \frac{h q_{\mathbf{X}+1}'}{c_{hq}} \right) \tag{8.52}$$

or, if we differentiate with respect to the second efficiency:

$$\frac{\partial q_{\mathbf{X}}'}{\partial q_{\mathbf{X}+1}'} = q_{\mathbf{X}}' \cdot \left(\frac{\partial g_h}{\partial x} \frac{1}{g_h q_{\mathbf{X}}} + \frac{h q_{\mathbf{X}}}{c_{hq}} \right) \tag{8.53}$$

where the coefficient c_{hq} given in Eq.(8.14) is written without nutrient specific indices. Step-wise derivation of the queuing function $(x-x_h)/(1-x_h)$ with $x_h=x^{1+h^{-1}}$ in Eq.(8.16) yields

$$\frac{\partial g_{h}}{\partial x} = \frac{(1 - (1 + h^{-1})x_{h}/x) \cdot (1 - x_{h}) + (x - x_{h}) \cdot (1 + h^{-1})x_{h}/x}{(1 - x_{h})^{2}}$$

$$= \frac{(xh - (h+1)x_{h}) \cdot (1 - x_{h}) + (x - x_{h}) \cdot (h+1)x_{h}}{xh \cdot (1 - x_{h})^{2}}$$

$$= \frac{xh - (h+1)x_{h} - xhx_{h} + (h+1)x_{h}^{2} + x \cdot (h+1)x_{h} - (h+1)x_{h}^{2}}{xh \cdot (1 - x_{h})^{2}}$$

$$= \frac{xh + (x-1-h) \cdot x_{h}}{xh \cdot (1 - x_{h})^{2}} \tag{8.54}$$

[TODO: numerical approximation to avoid problems at x = 1]

8.3.2 Quota-uptake feed-back

Eq.(8.46) provides a first estimate for the differential trade-off required for a fully coherent application of the optimality principle to physiological regulation. However, a marginal change in quota after a differential change in uptake rate may propagate back to the uptake rate, if the latter directly depends on Q_N . This direct, differential feed-back between changes in Q_N and V_N reads

$$\frac{dQ_{N}}{dV_{N}}\Big|_{\text{tot}} = \frac{dQ_{N}}{dV_{N}} \cdot \left(1 + \frac{dQ_{N}}{dV_{N}} \frac{\partial V_{N}}{\partial Q_{N}}\right)$$
(8.55)

$$\frac{dQ_{N}}{dV_{N}} \frac{\partial V_{N}}{\partial Q_{N}} = -(1 + \zeta Q_{N}) \cdot \left(\mu + Q_{N} \frac{\partial \mu}{\partial Q_{N}} - \frac{\partial V_{N}}{\partial Q_{N}}\right)^{-1} \sigma' V_{N}$$

$$= -(1 + \zeta Q_{N}) \cdot \left(1 + Q_{N} \left[d_{N} \frac{1 + \zeta Q_{N}}{Q_{N} - Q_{N0}} + \sigma' \zeta Q_{N}\right] + \sigma' Q_{N}\right)^{-1} \sigma' Q_{N}$$

$$= -(1 + \zeta Q_{N}) \cdot \left((Q_{N})^{-1} + d_{N} \frac{1 + \zeta Q_{N}}{Q_{N} - Q_{N0}} + \sigma' \cdot (1 + \zeta Q_{N})\right)^{-1} \sigma'$$

$$= -\sigma' \cdot \left(\underbrace{(Q_{N}(1 + \zeta Q_{N}))^{-1} + d_{N}(Q_{N} - Q_{N0})^{-1}}_{e_{N}} + \sigma'\right)^{-1}$$

$$= -\frac{\sigma'}{e_{N} + \sigma'}$$
(8.56)

In all other cases apart of nitrogen, the uptake dependency on the quota vanishes:

$$\frac{\partial V_{\rm X}}{\partial Q_{\rm X}} = 0$$
 and $\frac{\mathrm{d}Q_{\rm X}}{\mathrm{d}V_{\rm X}}\Big|_{\rm tot} = \frac{\mathrm{d}Q_{\rm X}}{\mathrm{d}V_{\rm X}}$ with $X = P, Si$ (8.57)

The product of the quota-uptake differential (without feed-back) and the growth-quota differential in Eq.(8.44) com-

bines Eq.(8.46) and Eq.(8.48) and again assumes $V_X = Q_X \mu$:

$$\frac{dQ_X}{dV_X} \frac{\partial \mu}{\partial Q_X} = (1 + \zeta_X Q_X) \cdot \left(\mu + Q_X \frac{\partial \mu}{\partial Q_X} - \frac{\partial V_X}{\partial Q_X}\right)^{-1} \cdot d_{QX} \cdot \mu$$

$$= (1 + \zeta_X Q_X) \cdot \left(1 + Q_X d_{QX} + \sigma_X' V_X \mu^{-1}\right)^{-1} \cdot d_{QX}$$

$$= \frac{(1 + \zeta_X Q_X) \cdot d_{QX}}{1 + Q_X \cdot (d_{QX} + \sigma_X')}$$
(8.58)

8.3.3 Uptake activity regulation

In the current version of MAECS, regulation of all uptake activity traits $a_{\rm X}$ is supposed to be very fast compared to the simulated dynamics and therefore not integrated in time according to Eq.(8.44), but assumed to be in steady-state. If the marginal benefit of uptake ${\rm d}\mu/{\rm d}a_{\rm X}$ is negative, activity is ceased; at positive benefit, $a_{\rm X}$ approaches one, while at neutral growth effect ${\rm d}\mu/{\rm d}a_{\rm X}\approx 0$, the activity smoothly varies at 1/2. This behavior is emulated by the non-linear function

$$a_{\mathbf{X}} = \left(1 + \mathrm{e}^{-\Delta t_{\mathbf{Y}} \mathrm{d}\mu/\mathrm{d}a_{\mathbf{X}}}\right)^{-1} \tag{8.59}$$

For optimization in N-uptake activity a_N based on its the marginal C gain the extended optimality principle integrates Eq.(8.44) and Eqs.(8.48)–(8.58):

$$\frac{d\mu}{da_{X}} = \frac{\partial \mu}{\partial a_{X}} + \frac{\partial \mu}{\partial Q_{X}} \frac{dQ_{X}}{dV_{X}} \Big|_{tot} \frac{\partial V_{X}}{\partial a_{X}}$$

$$= -\zeta_{X} \frac{V_{X}}{a_{X}} + \frac{\partial \mu}{\partial Q_{X}} \frac{dQ_{X}}{dV_{X}} \frac{e_{N}}{e_{N} + \sigma'_{X}} \frac{V_{X}}{a_{X}}$$

$$= \left(-\zeta_{X} + \frac{(1 + \zeta_{X}Q_{X}) \cdot d_{QX}}{1 + Q_{X} \cdot (d_{QX} + \sigma'_{X})} \frac{e_{N}}{e_{N} + \sigma'_{X}}\right) \cdot \frac{V_{X}}{a_{X}} \tag{8.60}$$

where, again, $\sigma_N' = \sigma'$ and $\sigma_X' = 0$ for other elements that lack direct influence on uptake.

8.3.4 Costs in P and Si uptake

For a first estimation of the C-costs of P- and Si-uptake (with units mol-C/mol-X) we link the latter to N-assimilation. This means that energetic costs of P- and Si-assimilation are not accounted for as additional terms but assumed to be already included in protein synthesis that are chararized by $\zeta \equiv \zeta_N$ (with units mol-C/mol-N). For the P-link, we use the N-stoichiometry in RNA (N:P \approx 3.8:1) and phospholipids (N:P \approx 0.8:1 mol-N/mol-P)

$$\frac{\partial \mu}{\partial V_{\rm X}} = \frac{\partial \mu}{\partial V_{\rm N}} \frac{\partial V_{\rm N}}{\partial V_{\rm X}} = -\zeta_{\rm N} \cdot \frac{Q_{\rm N}^{0*}}{Q_{\rm X}^{0*}} = -\zeta_{\rm X} \tag{8.61}$$

with Eq.(8.14) Eq.(8.18)

$$\zeta_{\rm P} = \left[(1 - f_{\rm Lip}) \, 3.8 + f_{\rm Lip} \, 0.8 \right] \cdot \zeta_{\rm N} \quad \text{and} \quad \zeta_{\rm Si} = 0$$
 (8.62)

[TODO: check and simplify]

[TODO: include proteins/membranes (N:P ≫ 16:1) under low growth conditions]

8.3.5 Photoacclimation and transport

MAECS resolves transient photoacclimation as adaptive dynamics in allocation traits (Eq.(8.44)). The optimality principle extended by the differential quota-based trade-off Eq.(8.58) seeks to find an allocation key between nutrient uptake, LHC and light-independent processes (Rubisco) that maximizes relative C-uptake rate μ . The optimality condition includes marginal growth benefits of all nutrients (see Eq.(8.44)):

$$\frac{\mathrm{d}}{\mathrm{d}t} f_{\mathrm{R}} = \delta_{R} \left(\frac{\partial \mu}{\partial f_{\mathrm{R}}} + \sum_{\mathbf{x}} \frac{\partial \mu}{\partial Q_{\mathbf{x}}} \frac{\mathrm{d}Q_{\mathbf{x}}}{\mathrm{d}V_{\mathbf{x}}} \Big|_{\text{tot}} \frac{\partial V_{\mathbf{x}}}{\partial f_{\mathrm{R}}} \right)$$

$$(8.63)$$

and similar for the chloroplast CHL:C ratio θ :

$$\frac{\mathrm{d}}{\mathrm{d}t}\theta = \delta_R \left(\frac{\partial \mu}{\partial \theta} + \sum_{\mathbf{x}} \frac{\partial \mu}{\partial Q_{\mathbf{x}}} \frac{\mathrm{d}Q_{\mathbf{x}}}{\mathrm{d}V_{\mathbf{x}}} \Big|_{\text{tot}} \frac{\partial V_{\mathbf{x}}}{\partial \theta} \right)$$
(8.64)

The differential growth loss by increasing allocation to photosynthesis apparati down-sizes the nutrient uptake machinery. All uptake and indirect derivatives of the photoacclimation traits that induce these differential costs had been already introduced above.

Flexibilities in chloroplast CHL:C ratio and in C-allocation to Rubisco are given following Wirtz and Eckhardt (1996); Wirtz (2000)

$$\delta_{\theta} = \delta_{\theta}^* \cdot \theta \cdot (\theta_C - \theta) \qquad \delta_R = \delta_R^* \cdot f_R \cdot (1 - f_R) \tag{8.65}$$

Partial derivatives of photosynthesis rates with respet to θ and f_R (see Eq.(8.20) and Eq.(8.22)):

$$\frac{\partial \mu}{\partial f_{R}} = \frac{P}{f_{R}} - \zeta \frac{\partial V_{N}}{\partial f_{R}}$$

$$= \frac{P}{f_{R}} + \zeta \cdot \left(1 + \frac{q_{N}^{\sigma} \theta}{\theta_{C}}\right) \cdot a_{V,N} V_{X}^{*}$$
(8.66)

$$\frac{\partial \mu}{\partial \theta} = \frac{P}{LH} \frac{\partial LH}{\partial \theta} - \zeta \frac{\partial V_{N}}{\partial \theta}$$

$$= \frac{P}{LH} \frac{\alpha PAR}{P_{\text{max}}} (1 - LH) - \zeta \frac{q_{N}^{\sigma} f_{R}}{\theta_{C}} \cdot a_{V,N} V_{X}^{*} \tag{8.67}$$

For transporting photoacclimation traits in 1D-3D, MAECS integrates them as bulk variables by employing a "carrier" biomass variable (usually Phy_C). With Eq.(8.21) we have for the bulk chlorophylla concentration

$$Chl = f_{\theta} \theta_{C} Phy_{C} = f_{R} q_{N}^{\sigma} \theta Phy_{C}$$
(8.68)

and bulk Rubisco concentrations

$$Rub = f_R Phy_C (8.69)$$

[TODO: write down full equations]

8.4 Acknowledgements

We thank The work was supported by the Helmholtz society via the program PACES.

Bibliography

- C. Boyd and D. Gradmann. Impact of osmolytes on buoyancy of marine phytoplankton. 141(4):605-618, 2002. 30
- A. D. Friend. Use of a model of photosynthesis and leaf microenvironment to predict optimal stomatal conductance and leaf nitrogen partitioning. 14:895–905. 1991. 28
- T. Kiørboe, P. Tiselius, B. Mitchell-Innes, J.L.S. Hansen, A.W. Visser, and X. Mari. Intensive aggregate formation with low vertical flux during an upwelling-induced diatom bloom. 43:104–116, 1998. 30
- S. Menden-Deuer and E. J. Lessard. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. 45(3):569–579, 2000. 30
- K.A. Miklasz and M.W. Denny. Diatom sinking speeds: improved predictions and insight from a modified Stokes' law. 55(6):2513–2525, 2010.
- F. M. M. Morel. Kinetics of nutrient uptake and growth in phytoplankton. 23(2):137-150, 1987. 27
- M. Pahlow. Linking chlorophyll-nutrient dynamics to the Redfield N: C ratio with a model of optimal phytoplankton growth. 287:33–43, 2005. 27,
- J. A. Raven and A. M. Waite. The evolution of silicification in diatoms: inescapable sinking and sinking as escape? 162:45-61, 2004. 30
- JA Raven. Dark respiration. In *Energetics and transport in aquatic plants*, volume 4 of *MBL Lectures*, pages 253–317. Alan R. Liss; Inc., New York, 1984. 27
- S. L. Smith, Y. Yamanaka, M. Pahlow, and A. Oschlies. Optimal uptake kinetics: physiological acclimation explains the pattern of nitrate uptake by phytoplankton in the ocean. 384:1–12, 2009. 29
- S. L. Smith, M. Pahlow, A. Merico, and K. W. Wirtz. Optimality as a unifying concept for planktonic organisms and their ecology. 56:2080–2094, 2011. 31
- A. Waite, A. Fisher, P.A. Thompson, and P.J. Harrison. Sinking rate verses cell volume relationships illuminate sinking rate control mechanisms in marine diatoms. 157:97–108, 1997. 30
- K. W. Wirtz. Simulating the dynamics of leaf physiology and morphology with an extended optimality approach. 86:753–764, 2000. 31, 35
- K. W. Wirtz. Adaptive significance of C partitioning and SLA regulation in Betula pendula. 23(3):181-190, 2 2003. 31
- K. W. Wirtz. Non-uniform scaling in phytoplankton growth rate due to intracellular light and CO₂ decline. 33:1325–1341, 2011. 26
- K. W. Wirtz. Intermittency in processing explains the diversity and shape of functional grazing responses. 169:879–894, 2012. 27
- K. W. Wirtz. Mechanistic origins of variability in phytoplankton dynamics. Part I: Niche formation revealed by a size-based model. DOI 10.1007/s00227-012-2163-7, 2013. doi: 10.1007/s00227-012-2163-7. 26
- K. W. Wirtz and B. Eckhardt. Effective variables in ecosystem models with an application to phytoplankton succession. 92:33-53, 1996. 35
- K. W. Wirtz and M. Pahlow. Dynamic CHL and N-C regulation in algae optimizes instantaneous growth rate. 402:81-96, 2010. 3, 28

Index

cala internal atatas	magas types E00, 22
calc_internal_states	maecs_types.F90, 23
maecs_functions, 13	maecs_types::stoichiometry_pointer, 16
calc_sensitivities	maecs_types::type_maecs_allocation_fractions, 16 maecs_types::type_maecs_base_model, 17
maecs_functions, 13	
fabm_hzg_maecs, 9	maecs_types::type_maecs_basic_traits, 17
get_light_extinction, 10	maecs_types::type_maecs_env, 17
initialize, 9	maecs_types::type_maecs_life, 18
fabm hzg maecs::maecs do, 10	maecs_types::type_maecs_om, 18
fabm hzg maecs::maecs get vertical movement,	maecs_types::type_maecs_phy, 18 maecs_types::type_maecs_rhs, 19
13	maecs_types::type_maecs_sensitivities, 19
fabm_hzg_maecs::type_hzg_maecs, 16	
	maecs_types::type_maecs_switch, 19
foptupt	maecs_types::type_maecs_traitdyn, 19
maecs_functions, 11	maecs_types::type_maecs_zoo, 20
get_light_extinction	min_mass
fabm_hzg_maecs, 10	maecs_functions, 12
. — -	photosynthesis
grazing manage grazing 14	maecs primprod, 15
maecs_grazing, 14	maccs_primprod; 10
grazing_losses	queuederiv
maecs_grazing, 14	maecs_functions, 12
initialize	queuefunc
fabm hzg maecs, 9	maecs_functions, 12
1abii_12g_iiiaccs, 5	queuefunc1
maecs.F90, 21	maecs_functions, 12
maecs_do	
maecs_do.F90, 22	sinking
maecs_do.F90, 21	maecs_functions, 12
maecs_do, 22	smooth_small
maecs_functions, 10	maecs_functions, 11
calc_internal_states, 13	
calc_sensitivities, 13	uptflex
foptupt, 11	maecs_functions, 11
min_mass, 12	
queuederiv, 12	
queuefunc, 12	
queuefunc1, 12	
sinking, 12	
smooth_small, 11	
uptflex, 11	
maecs functions.F90, 22	
maecs grazing, 14	
grazing, 14	
grazing, 14 grazing_losses, 14	
maecs_grazing.F90, 23	
maecs primprod, 14	
photosynthesis, 15	
maecs_primprod.F90, 23	
maecs_types, 15	
macus_types, 10	