Obliczenia naukowe - lab 3

Jakub Musiał 268442

Listopad 2023

Zadania 1-3: Implementacja metod obliczających przybliżenia pierwiastków

Problem

Zaimplementować funkcje obliczające przybliżenie pierwiastka funkcji f z dokkładnością obliczeń określoną przez δ oraz ε .

Funkcje mają zwracać czwórkę (r, v, it, err), gdzie: r - przybliżenie pierwiastka f, v - wartość f(r), it - liczba iteracji algorytmu, err - sygnalizacja błędu.

Zadanie 1: Metoda biseckcji

Metoda znajduje pierwiastek funkcji f w przedziale [a,b], jeśli jest w tym przedziale ciągła oraz zmienia znak (brak zmiany znaku skutkuje zwróceniem błędu). Metoda w każdej iteracji wyznacza nowe przybliżenie pierwiastka f, obliczając środek $c=\frac{a+b}{2}$ akutalnego przedziału. Jeśli $f(c)\approx 0 \vee |a-b|<\delta$ metoda kończy działanie. W przeciwnym przypadku aktualizowany jest przedział [a,b] - jeśli funkcja zmienia znak w przedziale [a,c], to $b\leftarrow c$, jeśli natomiast funkcja zmienia znak w przedziale [c,b], to $a\leftarrow c$.

Figure 1: Wizualizacja metody bisekcji

Zadanie 2: Metoda stycznych (Newtona)

Metoda wyznacza kolejne przybliżenia pierwiastka funkcji f jako argumenty punktów przecięcia z osią x stycznych do funkcji f w punktach $(x_n, f(x_n))$, zaczynając od zadanego x_0 oraz znając pochodną f'. Te

punkty przecięcia wyznaczane są wg. wzoru $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. Warunkiem końca metody stycznych jest osiągnięcie wymaganej precyji $(|x_{n+1} - x| < \delta \lor |f(x_{n+1})| < \varepsilon)$ lub wykonanie maksymalnej liczby iteracji M zadanej jako parametr funkcji.

Figure 2: Wizualizacja metody Newtona

Zadanie 3: Metoda siecznych

Metoda wyznacza kolejne przybliżenia pierwiastka funkcji f jako argumenty punktów przecięcia z osią x siecznych funkcji f w punktach $(x_n, f(x_n))$ oraz $(x_{n+1}, f(x_{n+1}))$, zaczynając od zadanych przybliżeń początkowych x_0 i x_1 . Kolejne przybliżenia są wyznaczane wg. wzoru $x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$. Warunek końca metody siecznych jest taki sam, jak w metodzie Newtona - osiągnięcie wymaganej precyzji lub maksymalnej liczby iteracji.

Figure 3: Wizualizacja metody siecznych

Rozwiązanie

Program z rozwiązaniem: solvers.jl Program z testami: solvers_test.jl

Pseudokody badanych metod:

Algorithm 1 Metoda bisekcji

```
Require: f, a, b, \delta, \varepsilon
 1: if sign(f(a)) = sign(f(b)) then return Error
 2: d \leftarrow b - a
 3: it \leftarrow 0
 4: while true do
         it \leftarrow it + 1
         d \leftarrow \frac{d}{2}
 6:
 7:
         c \leftarrow a + d
         if |d| < \delta or |f(c)| < \varepsilon then return (c, f(c), it, NoError)
 8:
         if sign(f(a)) = sign(f(b)) then
 9:
10:
              a \leftarrow c
11:
          else
              b \leftarrow c
12:
```

Algorithm 2 Metoda stycznych (Newtona)

```
Require: f, f', x_0, \delta, \varepsilon, M
                                                                                                \triangleright M - maksymalna liczba iteracji
 1: if |f(x_0)| < \varepsilon then return Error
 2: for it = 1 to M do
         if |f'(x_0)| < \varepsilon then return Error
         x_1 \leftarrow x_0 - \frac{f(x_0)}{f'(x_0)}
 4:
         if |x_1 - x_0| < \delta or |f(x_1)| < epsilon then return (x_1, f(x_1), it, NoError)
         x_0 \leftarrow x_1
 7: return Error
```

Algorithm 3 Metoda siecznych

```
Require: f, x_0, x_1, \delta, \varepsilon, M
                                                                                                                     \triangleright M - maksymalna liczba iteracji
 1: for it = 1 to M do
           if |f(x_0)| > |f(x_1)| then
 2:
                 (x_0, x_1) \leftarrow (x_1, x_0)
 3:
           \begin{array}{c} s \leftarrow \frac{x_1 - x_0}{f(x_1) - f(x_0)} \\ x_1 \leftarrow x_0 \end{array}
 4:
 5:
           x_0 \leftarrow x_0 - f(a) \cdot s
           if |x_1 - x_0| < \delta or f(x_0) < \varepsilon then return (x_0, f(x_0), it, NoError)
 8: return Error
```

Zadanie 4: Wyznaczanie pierwiastków

Problem

Za pomocą zaimplementowanych metod z zadań 1-3 wyznaczyć znaleźć przybliżenie pierwiastka funkcji $f(x) = \sin x - (\frac{x}{2})^2$ dla dokładności obliczeń $\delta = \varepsilon = \frac{1}{2} \cdot 10^{-5}$ oraz dla zadanych danych:

• Metoda bisekcji: $a = 1.5 \land b = 2$

• Metoda stycznych: $x_0 = 1.5$

• Metoda siecznych: $x_0 = 1 \land x_1 = 2$

Rozwiązanie

Policzmy pochodną funkcji f wymaganą dla metody Newtona:

$$f'(x) = \frac{d}{dx}(\sin x - (\frac{x}{2})^2) = \frac{d}{dx}\sin x - \frac{d}{dx}(\frac{x}{2})^2 = \cos x - \frac{x}{2}$$

Program z rozwiązaniem: ex4.jl

Wyniki i obserwacje

Na podstawie tabeli~1 możemy zauważyć, że wszystkie badane metody zwracają poprawne przybliżenia pierwiastka funkcji f z założoną dokładnością. Można też zauważyć, że metoda Newtona zwróciła wynik w najmniejszej liczbie iteracji $it_n=4$, natomiast metoda bisekcji potrzebowała $it_b=it_n^2$ iteracji. Metoda stycznych potrzebowała $it_n < it_s=5 < it_b$ iteracji. Jest to oczekiwany wynik, biorąc pod uwagę wartości współczynników zbieżności α dla badanych metod: $\alpha_n=2$ (zbieżność kwadratowa), $\alpha_s=\frac{1+\sqrt{5}}{2}\approx 1.1618$ oraz $\alpha_b=1$ (zbieżność liniowa).

Metoda	r	v	it	err
Bisekcji	1.9337539672851562	-2.7027680138402843e - 7	16	0
Stycznych	1.933753779789742	-2.2423316314856834e - 8	4	0
${ m Siecznych}$	1.9337537628211916	7.706280058528137e - 12	5	0

Table 1: Wyniki badanych metod iteracyjnych dla funkcji $f(x) = \sin x - (\frac{x}{2})^2$

Zadanie 5: Przecięcie funkcji

Problem

Za pomocą metody biseckji znaleźć argument x dla którego funkcje $f_1(x)=3x$ oraz $f_2(x)=e^x$ się przecinają, zakładając dokładność obliczeń $\delta=\varepsilon=10^{-4}$

Rozwiązanie

Punkt przecięcia funkcji f_1 oraz f_2 możemy wyznaczyć obliczając pierwiastek funkcji $f(x) = f_1(x) - f_2(x)$. Wynikiem będzie zatem przybliżenie rozwiązań równania $3x - e^x = 0$. Wiemy, że prawdziwe pierwiastki tego równania leżą w przedziałach [0,1] $(f(0) = -1 \land f(1) = 3 - e \approx 0.28)$ oraz [1,2] $(f(1) = 3 - e \land f(2) = 6 - e^2 \approx -1.39)$, zatem dla takich przedziałów będziemy wywoływać metodę bisekcji.

Program z rozwiązaniem: ex5.jl

Wyniki i obserwacje

Przedział	r	v	it	err
[0,1]	$x_1 = 0.619140625$	9.066320343276146e - 5	9	0
[1, 2]	$x_2 = 1.5120849609375$	9.066320343276146e - 5	13	0

Table 2: Wyniki metody bisekcji dla problemu wyznaczenia punktu przecięcia dwóch funkcji

Widzimy, że metoda nie zwraca sygnału o błędzie oraz otrzymane wyniki spełniają rządane warunki co do dokładności przybliżeń. Możemy zatem określić przybliżenia punktów przecięcia funkcji f_1 i f_2 , jako $(x_1, f^*(x_1))$ oraz $(x_2, f^*(x_2))$, gdzie f^* jest dowolną z funkcji f_1 , f_2 . Metoda ta wymaga jednak wcześniejszej analizy przebiegu funkcji, by móc poprawnie określić parametry startowe a oraz b.

Zadanie 6: Wyznaczanie pierwiastków

Problem

Za pomocą zaimplementowanych metod z zadań 1-3 wyznaczyć znaleźć przybliżenie pierwiastków funkcji $f_1(x) = e^{1-x} - 1$ oraz $f_2(x) = x \cdot e^{-x}$ dla dokładności obliczeń $\delta = \varepsilon = \cdot 10^{-5}$.

Dla każdej metody należy dobrać odpowiednie dane wejściowe oraz sprawdzić, jaki będzie wynik metody Newtona dla funkcji f_1 oraz $x_0 \in (1, \infty]$, a także dla $x_0 > 1$ i $x_0 = 1$ dla funkcji f_2 .

Rozwiązanie

Policzmy pochodne funkcji f_1 oraz f_2 wymagane dla metody Newtona:

$$f_1'(x) = \frac{d}{dx}(e^{1-x} - 1) = -e^{1-x}$$

$$f_2'(x) = \frac{d}{dx}(x \cdot e^{-x}) = x \cdot (-e^{-x}) + e^{-x} = e^{-x} \cdot (1 - x)$$

Program z rozwiązaniem: ex6.jl

Wyniki i obserwacje

W tabelach 3 i 4 widzimy, że dla odpowiednio dobranych parametrów startowych wszystkie badane metody zwracają poprawne przybliżenia (z założoną dokładnością) dla obu funkcji f_1 i f_2 . Dodatkowo zauważmy, że najbardziej dokładne przybliżenia zwraca metoda siecznych.

Badając wyniki metody Newtona dla funkcji f_1 , możemy zaobserwować, że wybranie wartości $x_0 \in (1, \infty]$ powoduje bardzo szybki wzrost liczby iteracji potrzebnej do osiągnięcia założonej precyzji - dla $x_0 = 6$ potrzebujemy aż 147 iteracji. Wynika to z faktu, że funkcja $g_1(x) = e^{1-x}$ $(f_1(x) = g_1(x) - 1)$ bardzo szybko zbiega do 0, zatem styczne do niej w punktach $x_0 \in (1, \infty]$ są "bliskie funkcji stałej" (pochodne są bliskie 0), więc kolejne wartości x_n są bardzo nieznacznie od siebie oddalone.

Dla funkcji f_2 możemy zauważyć, że przyjęcie przybliżenia początkowego $x_0 \geq 1$ skutkuje otrzymaniem niepoprawnych wyników ($\geq \sim 14.4$), gdzie jedynym pierwiastkiem tej funkcji jest 0. Jest to skutkiem zmiany monotoniczności funkcji w punkcie $x_0 = 1$ - funckja w nieskończoności zbiega do 0. Wyznaczając zatem kolejne przybliżenia pierwiastka funkcji coraz bardziej oddalamy sie od rzeczywistej wartości podobnie jak dla funkcji f_1 , w pewnym momencie osiągając wartość $f_2(x_n) \approx 0$, co kończy działanie metody z błędnym wynikiem.

Metoda	Parametry	r	v	it	err
Bisekcji	$a = 0 \land b = 3$	1.0000076293945312	-7.6293654275305656e - 6	17	0
Stycznych	$x_0 = e^{-1}$	0.9999999967966953	3.2033047325796815e - 9	4	0
${ m Siecznych}$	$x_1 = 0 \land x_2 = 3$	1.0000000003101366	-3.101365830815439e - 10	7	0

Table 3: Wyniki badanych metod iteracyjnych dla funkcji $f_1(x)=e^{1-x}-1$

Metoda	Parametry	r	v	it	err
Bisekcji	$a = -1 \land b = 2$	7.629394531248679e - 6	7.629336323809809e - 6	16	0
Stycznych	$x_0 = e^{-1}$	-1.8840380756452411e - 6	-1.8840416252480553e - 6	4	0
$\operatorname{Siecznych}$	$x_1 = -1 \land x_2 = 1$	2.7077871812544315e - 13	2.7077871812536984e - 13	19	0

Table 4: Wyniki badanych metod iteracyjnych dla funkcji $f_2(x) = x \cdot e^{-x}$

$\overline{x0}$	r	v	it	err
2	0.9999999810061002	1.8993900008368314e - 8	5	0
3	0.9999999710783241	2.892167638712806e - 8	9	0
4	0.999999995278234	4.721767421500545e - 10	21	0
5	0.9999996427095682	3.572904956339329e - 7	54	0
6	0.9999999573590406	4.264096031825204e - 8	147	0
7	0.0	0.0	256	1
8	0.0	0.0	256	1
9	0.0	0.0	256	1
10	0.0	0.0	256	1

Table 5: Wyniki metody Newtona dla funkcji $f_1(x)=e^{1-x}-1$ oraz wybranych wartości $x_0\in(1,\infty]$

	x0	r	v	it	err
	2	14.398662765680003	8.03641534421721e - 6	10	0
	3	14.787436802837927	5.594878975694858e - 6	10	0
	4	14.398662765680003	8.03641534421721e - 6	9	0
	5	15.194283983439147	3.827247505782993e - 6	9	0
	6	14.97432014974184	4.699833827208111e - 6	8	0
	7	14.792276940955892	5.569686859646652e - 6	7	0
	8	14.636807965014	6.438155219843286e - 6	6	0
	9	14.50105208065629	7.305881300498495e - 6	5	0
	10	14.380524159896261	8.173205649825554e - 6	4	0
	11	14.272123938290518	9.040322779745372e - 6	3	0
	12	14.173615857826384	9.907349924182477e - 6	2	0
	13	15.159766454352443	3.95266121872815e - 6	2	0
	14	15.076923076923077	4.270593381508261e - 6	1	0
	15	15.0	4.588534807527386e - 6	0	0
	16	16.0	1.8005627955081459e - 6	0	0
	17	17.0	7.037894121934784e - 7	0	0
	18	18.0	2.741396354048273e - 7	0	0
	19	19.0	1.0645313231320808e - 7	0	0
	20	20.0	4.122307244877116e - 8	0	0
-					

Table 6: Wyniki metody Newtona dla funkcji $f_1(x) = e^{1-x} - 1$ oraz wybranych wartości $x_0 \ge 1$

Figure 4: Funkcja $g_1(x) = e^{1-x}$

Figure 5: Funkcja $f_2(x) = x \cdot e^x$