Chapter 9.

Charles

Networks

Definition.

$$N = (V, X, Y, A, C)$$

X: sources of N

Y: sinks of N

Other vertices are called Intermediate vertices.

C: capacity function (>0)

Example:

Flow

Definition:

A flow in a network N is an integar-valued Function defined

on A such that:

 C_1 $0 \le f(a) \le C(a)$ for all $a \in A$ C_2 $f^-(u) = f^+(u)$ for $v \in V-(XUY)$

Zeno How: Yaca. fra = 0

Definition:

The value of flow:

valf = f'(x) = f(y)

A flow fin N is a maximum

Flow if there is no flow f'in N

such that Valf' > Valf.

Cuts

Definition:

Let N be a network with a single source x and a single sink y. A cut in N is a set of arcs of the form (S, Ξ) , where $x \in S$, $y \in \Xi$.

Example:

$$S = \{x, v_1, v_2, v_3, v_5\}$$

 $(5, \overline{5}) = \{v_1 v_4, v_5 v_4, v_5 v_4, v_6 v_6\}$
 $(ap(5, \overline{5}) = 9$

Definition:

The capacity of a cut K is the sum of capacity of its arces. $cap K = \sum_{a \in K} c(a)$

Lenna:

For any flow f and any cut

Definition:

A cut k in N is a minimum

cut if there is no we k!

in N such that cap k! < cup k,

Definition:

<1> f(a) = 0, f = zero

<2) f(a) > 0, f = positive

(3) f(a) = C(a), f = saturated
<4> f(a) < C(a), f = unsaturated</pre>

Theorem:

For any flow f and any cut

(< = (5, 5) in N

val f < cap <.

Equality holds if and only if each arc in (S, S) is f-saturated and each arc in (S, S) is f-zero

Corollary:

fis a flow and K is a cut such that valf = cap K. then fis a maximum flow and K is a minimum cut.

Theorem (Ford, Fulkerson, 1956)
In any network, the value of a maximum flow is equal to the capacity of a minimum cut.

Maximum Flow Roblem

Thoorem,

A flow f in N is a maximum flow if and only if N contains no f-incrementing path.

Let $\Delta f(a) = \int c(a) - f(a)$ forward arc

f(a) reverse arc

$$\Delta f(P) = \min \Delta f(a)$$

$$\alpha \in P$$

$$227$$

$$f(a) + \Delta f(P) \quad \text{forward}$$

$$f(a) = \begin{cases} f(a) - \Delta f(P) & \text{Reverse} \\ f(a) & \text{Otherwise} \end{cases}$$

Example:

Labeling Procedure 18th Minimum - Cost Flow 17th