3. Logischer Datenbankentwurf

Definition Relation

- Relationenschemata
- Transformation von ER-Modellen
- Normalisierungen
- Relationale Algebra

Datenbankentwurf

Entwurfsschritte

Sammlung aller für eine Miniwelt bedeutsamen Gegenstände, Eigenschaften, Beziehungen und Operationen

Präzise Beschreibung einer Miniwelt durch relationale oder objektorientierte Modelle

Abbildung auf ein rechnergestützt interpretierbares Schema, z.B. relationales Schema

Abbildung des logischen Datenbankschemas in eine effiziente physische Datenbasisstruktur

Logischer Datenbank-Entwurf

Das Relationenmodell

- Das Entity-Relationship-Modell von CHEN beschreibt die Miniwelt in einer sehr abstrakten Form
- Ziel: Beschreibung in "computerverständlicher" Form
- Bereitstellung einer Notation (Syntax) und eindeutigen Bedeutung (Semantik)
- Gebräuchliche Datenbankmodelle
 - Netzwerk-Datenbankmodell
 - Hierarchisches Datenbankmodell
 - Relationales Datenbankmodell
 - Objektorientiertes Datenbankmodell
 - XML-Datenmodell
 - Graph, JSON, etc.

Gliederung

Strukturteil

Beschreibung von Objekttypen (Entity-Typen, Beziehungstypen) der Anwendungswelt

Operationenteil

 Bereitstellung von Operationen zur Anfrage oder Manipulation der diesen Objekttypen gehörenden Instanzen (Daten)

Definition Relation

A₁, A₂, ..., A_n seien beliebige Mengen

- 1. Das kartesische Produkt $A_1 \times A_2 \times ... \times A_n$ der Mengen A_i , i=1, 2, ..., n ist die Menge $A_1 \times A_2 \times ... \times A_n := \{(a_1, a_2, ..., a_n) \mid a_i \in A_i \text{ für } i = 1, 2,, n\}$
- 2. Eine Teilmenge $r \subseteq A_1 \times A_2 \times ... \times A_n$ heißt (n-stellige) Relation über den Mengen (Attributen) $A_1, A_2, ..., A_n$. N ist der Grad der Relation. Wir schreiben: $r(A_1, A_2, ..., A_n)$
- 3. Ein Element $t := (t_1, t_2, ..., t_n) \in r$ wird als n-Tupel der Relation bezeichnet

Relationenschemata

- Ein Relationenschema (Relationstyp) R = (V, Σ) besteht aus
 - einem Namen R
 - einer Menge V von Attributen, $V = \{a_1, a_2, ..., a_n\}$
 - einer Menge Σ von Integritätsbedingungen (Constraints)
- Attributen werden Wertebereiche (Domains) zugeordnet
 - In der Praxis Standard-Datentypen wie z.B. INTEGER, STRING, DATE, ...
 - Beispiel: dom(NAME) = STRING
 - $dom(V) = dom(a_1) \times dom(a_2) \times ... \times dom(a_n)$

Instanzen von Relationenschemata

- Eine Relation ist eine Instanz des zugehörigen Relationenschemas
 R: (V, Σ) ⇔
 - 1) r ist Relation vom Format V d.h. r ⊆ dom(V)
 - 2) r genügt allen Integritätsbedingungen von Σ
- Sei $\Re = \{R_1, ..., R_k\}$, Σ_{\Re} eine Menge von interrelationalen Integritätsbedingungen. Ein **Datenbankschema** wird definiert durch
 - $\quad \mathsf{D} = (\mathfrak{R}, \, \Sigma_{\mathfrak{R}} \,)$
- Eine **relationale Datenbank** $d = \{r_1, ..., r_k\}$ ist eine Menge von Relationen r_i vom Typ R_i $1 \le i \le k$, die Σ_{\Re} erfüllen
 - Eine relationale Datenbank ist also eine Zusammenfassung mehrerer Relationen mit Integritätsbedingungen

Prof. Dr. Oliver Eck

Tabellarische Darstellung von Relationen

- Spaltenüberschriften: Attribute des Relationsschemas
- Tupel: Zeile in Tabelle
- Relation: Einträge in Tabelle
- Einträge in Tabellen gehören zu den entsprechenden Domains

Tabellarische Darstellung von Relationen Schlüsselattribute

Student = ({matrikelnr, name, wohnort}, {matrikelnr→ name, wohnort ist vom Typ String})

Vereinfacht:

Student = ({matrikelnr, name, wohnort})

Mit Darstellung der Wertebereichen:

Student = ({matrikelnr: Integer, name: String, wohnort: String})

Student			
<u>matrikelnr</u>	name	wohnort	
132004	Müller	Singen	
131208	Zimmer	Lindau	
131001	Abel		
131013	Jung	Konstanz	
132740	Moser	Singen	

Eigenschaften einer Relation / Tabelle

- Eindeutiger Name
- Reihenfolge der Tupel (Zeilen) ist beliebig
- Attributnamen sind eindeutig innerhalb einer Relation
- Die Tupel der Relation (Zeilen der Tabelle) sind paarweise verschieden
- Für das Einbringen eines Tupels in eine Relation ist mindestens der Primärschlüssel vorzugeben
- Nicht-Schlüsselattribute können durch "Nullwerte" belegt werden
 - Bedeutung: "Wert ist nicht existent"

Prof. Dr. Oliver Eck

Primärschlüssel

Primärschlüssel

- Attribut (Attributmenge), die ein Tupel eindeutig identifiziert
- Ein Primärschlüssel existiert nur einmal in einer Relation
- Bei der Tupel-Suche reicht die Suche nach Primärschlüssels aus
- Darstellung: Name unterstrichen

Schlüsselkandidat

- Es können mehrere potentielle Schlüssel vorhanden sein ("Schlüsselkandidaten")
- Auszeichnung eines Schlüsselkandidaten als Primärschlüssel
- Sekundärschlüssel: nicht als Primärschlüssel ausgezeichnet

Studierender			
matrikelnr personalausweisnr name wohnort			
132004	1252345432	Müller	Singen
131001 5432534234 Abel			

Primärschlüssel

Ein Primärschlüssel kann aus mehreren Attributen bestehen

Benotung			
<u>matrikelnr</u>	<u>klausur</u>	note	
135745	Datenbanksysteme	2,3	
135745	Systemmodellierung	4,0	
135663	Datenbanksysteme	1,7	

- Einführung "künstlicher" Primärschlüssel (Pseudokey)
 - Falls kein Schlüsselkandidat existiert
 - Falls Schlüsselkandidaten aus zu vielen Attributen besteht

Kunde			
<u>kunde-ID</u> name vorname wohnort			
11200	Kunz	Stefan	Konstanz
11210	Maier	Andreas	Konstanz

Primärschlüssel

- Wahl des Primärschlüssels
 - Konstanz: Primärschlüssel sollten sich nicht ändern
 - Wertepflicht: Primärschlüssel muss ein Mußattribut sein
 - Minimalität: Bei zusammengesetzten Schlüsseln sollte Primärschlüssel so gewählt werden, dass kein Attribut entfernt werden kann, ohne dass Identifikationsvermögen verloren geht
 - Design-Entscheidung: Pseudokey / zusammengesetzter Key
- Tabellen mit gleichem Primärschlüssel können zusammengefasst werden

Hochschule Konstanz

Fakultät Informatik

Fremdschlüssel

Fremdschlüssel

- Attribute zur Identifikation von Tupel aus anderen Relationen
- Modellierung einer Zuordnung (Beziehung)
- Darstellung: Name gestrichelt unterstrichen

Kunde			
kundennr name vorname wohnort			
11200	Kunz	Stefan	Konstanz
11210 Maier Andreas Konstanz			

Artikel			
<u>artikelnr</u>	bezeichnung	preis	
224	Fernseher	600	
116	DVD-Player	200	

Bestellung			
bestellnr kundennr artikelnr datum			datum
224533	11200	224	21.03.2005
226522 11210 116 17.02.2005			

Transformation von ER-Modellen **Entity-Typen**

- Abbildung Entity-Typen auf Relationen
 - Abbildung Entity-Attribute auf Attribute der Relation
 - Mehrwertige und zusammengesetzte Attribute müssen noch angepasst werden!

Student = ({matrnr, name, studiengang, (plz, stadt, strasse, hnr), {telnr}})

- Abbildung 1:n-Relationship
 - Anhängen der Attribute an die Relation, die dem Entity-Typ mit der mit "n" bezeichneten Kante entspricht
- Fremdschlüssel
 - Attributmenge, die in einer anderen Relation Primärschlüssel ist
 - Name: Name des Primärschlüssels oder Name der Relationship

Abteilung = ({abtnr, name})

Angestellter = ({anr, name, vorname, arbeitet_in})

Beispiel:

Abteilung		
<u>abtnr</u> name		
448	HW	
122	SW	
200	Personal	

Angestellter			
anr name vorname <u>arbeitet in</u>			
2004	Müller	Hans	448
1208	Zimmer	Jochen	122
1001	Abel	Kai	122

17

- Realisierung einer eigenen Relation
 - Schlüssel sind die Schlüssel der Relationen der beteiligten Entity-Typen
 - Attribute des Beziehungstyps als zusätzliche Attribute

Beispiel:

Projekt		
<u>pnr</u> name		
56	PS1	
77	QEM	
12	PN	

arbeitet an		
<u>pnr</u> <u>anr</u>		
56	2004	
77 2004		
77	1001	

	Angestellter			
anr name vorname				
2004	Müller	Hans		
1208	Zimmer	Jochen		
1001	Abel	Kai		

18

- Möglichkeit 1
 - Zusammenfassen zu einer Relation

Angestellter = ({ANR, Name, Vorname, VNR, Datum, Gehalt})

Beispiel:

Angestellter					
<u>anr</u>	name	vorname	vnr	datum	gehalt
2004	Müller	Hans	v646	1.10.1999	3500
1208	Zimmer	Jochen	v83	1.1.2002	4000
1001	Abel	Kai	v143	1.3.1990	5500

- Möglichkeit 2
 - Übernahme des Primärschlüssels

Bundesland = ({name, ezahl, ausweisnr})

Person = ({ausweis-nr, name})

Bundesland			
<u>name</u>	ezahl	<u>ausweis-nr</u>	
BW	10.000.000	20045566	
Bayern	12.000.000	12087744	

Person77		
<u>ausweis-nr</u>	name	
20045566	Kretschmann	
12087744	Söder	

- Möglichkeit 1
 - Schlechte Umsetzung !!!

Person = ({ausweisnr1, name1, ausweisnr2, name2})

Person			
ausweisnr1	name1	ausweisnr2	name2
3333212	Müller		
		4444222	Maier
5555313	Kunz	7777636	Kunz

Probleme?

- Möglichkeit 2
 - Realisierung als eigene Relation

Person = ({ausweisnr, name, verheiratetMit})

Person			
<u>ausweisnr</u>	name	<u>verheiratetMit</u>	
3333212	Müller		
5555313	Kunz	7777636	
7777636	Kunz	???	

- Möglichkeit 3 Vermeidung von NULL-Werten
 - Realisierung als eigene Relation

Person = ({ausweisnr, name})

Person		
<u>ausweisnr</u>	name	
3333212	Müller	
4444222	Maier	
5555313	Kunz	

verheiratet = ({ausweisnr1, ausweisnr2})

verheiratet		
ausweisnr1	ausweisnr2	
3333212	5345432	
4444222	5555313	

Transformation von mehrstellige Relationships

Abbildung einer mehrstelligen Relationship analog zu n:m-Relationship

Beispiel:

Lieferant		
<u>lnr</u>	name	
346	XY GmbH	
624	KLAG	

Teil		
<u>tnr</u>	name	
4211	Getriebe	
6344	Kupplung	

	Firma		
<u>fnr</u>	name		
442	AB GmbH		
613	DE AG		

liefert			
<u>Inr</u>	<u>tnr</u>	<u>fnr</u>	anz
346	4211	442	1000
624	6344	613	500

Unterschiedliche Abbildung?

Prof. Dr. Oliver Eck

Transformation von Spezialisierung

Keine direkte Abbildung in relationales Modell möglich

1. Table per Subclass / Vertical

Angestellter = ({persnr, name})

Professor = ({persnr, raum, Rang})

Assistent = ({persnr, fachgebiet})

2: Table per Class Hierarchy / Flat

Angestellter = ({persnr, name, raum, rang, fachgebiet, is_a})

3. Table per Concrete Class / Horizontal

Professor = ({persnr, name, raum, rang})

Assistent = ({persnr, name, fachgebiet})

Transformation schwacher Entities

 Partieller Schlüssel bildet zusammen mit Fremdschlüssel den Primärschlüssel der Relation


```
Hochschule = ({name, adresse})
Studierender = ({matrikelnr, studiertAn, name})
```

Beispiel Abbildung Relationenmodell

Bilden Sie folgende ER-Modell in das Relationenmodell ab:

Zusammenfassung ER → Relationenmodell

ER-Modell	Relationenmodell
Entity-Typ	Relation
1:1 – Relationship	Zu einer Relation zusammenfassen
1:n – Relationship	Fremdschlüssel zu eindeutiger Relation
n:m – Relationship	Relation aus Relationship mit zwei Fremdschlüssel
n-äre Relation	Relation aus Relationship mit n Fremdschlüssel
Einfaches Attribut	Attribut
Zusammengesetztes Attribut	Menge von einfachen Attributen
Mehrwertiges Attribut	Relation mit Fremdschlüssel
Schlüsselattribut	Primärschlüssel (oder Sekundärschlüssel)

Hochschule Konstanz

Fakultät Informatik

Motivation Normalformen

Artikel								
<u>artikelnr</u>	bezeichnung	preis	lagernr	lagerort	lagerstrasse			
211	Radkappe	25	20	Konstanz	Seestrasse			
333	Pumpe	100	15	Stuttgart	Hauptstrasse			
655	Federbein	250	15	Stuttgart	Hauptstrasse			
225	Kugellager	190	15	Stuttgart	Hauptstrasse			

Einfügeanomalie

 Ein neues Lager kann nur dann aufgenommen werden, wenn bereits ein Artikel zugeordnet ist

Änderungsanomalie

 Wenn die Strasse des Lagers in Stuttgart geändert wird, müssen mehrere Tupel geändert werden

Löschanomalie

 Wenn die Radkappe aus der Artikelliste gelöscht wird, wird auch das Lager in Konstanz gelöscht

Flache Relationen

- Flache Relationen sind Relationen, die
 - Keine mehrwertigen Attribute und
 - Keine zusammengesetzte Attribute enthalten
- Beispiel für mehrwertiges Attribut
 - Student = ({ <u>matrnr</u>, name, {telnr} })
- Beispiel für zusammengesetztes Attribut
 - Person = ({ pnr, name, (plz, stadt, strasse, hnr) })

1. Normalform.

- Eine Relation ist in erster Normalform (1NF), wenn jeder Attributwert elementar ist
 - d.h. es existieren keine matrix-, listen-, mengenwertige Attribute
- Normalisierung:

32

Redundanz und Konsistenz

- Redundanz (redundancy)
 - Maß für "Überflüssigkeit" von Informationen
 - Redundante Information: mehrfaches Vorhandensein gleicher Information
- Änderungen von redundanten Informationen führen häufig zu Inkonsistenzen

Funktionale Abhängigkeiten

- X, Y sind Attributmengen, R ein Relationsschema
- Y heißt funktional abhängig von X in R, geschrieben X → Y, wenn es in jeder Relation zu R keine zwei Tupel gibt, die in ihrem Wert unter X, aber nicht in ihrem Wert unter Y übereinstimmen
- Y heißt voll funktional abhängig von X in R, geschrieben X → Y, wenn X minimal ist, d.h. wenn es keine Teilmenge aus X gibt, die bereits Y funktional bestimmt
- Triviale funktionale Abhängigkeiten: X → Y mit Y ⊆ X

2. Normalform

- Eine Relation ist in zweiter Normalform (2NF), wenn sie
 - in 1NF ist und
 - jedes Nichtschlüsselattribut von jedem Schlüsselkandidaten voll funktional abhängig ist
- Informale Beschreibung
 - Ein Relationenschema verletzt die 2NF, wenn Informationen über mehr als ein einziges Konzept modelliert werden
- Normalisierung durch
 - Auslagerung nicht abhängiger Schlüsselattribute in eigene Tabellen

arbeitetln								
projektnr	personalnr	projektname	name	vorname	seit			
P01	2004	Carrera	Müller	Hans	01.10.2000			
P02	1208	Coyote	Zimmer	Jochen	01.01.1999			
P02	1001	Coyote	Abel	Kai	01.09.1995			
P02	2004	Coyote	Müller	Hans	01.12.2000			

3. Normalform

- Eine Relation ist in dritter Normalform (3NF), wenn sie
 - in 2NF ist und
 - kein Nichtschlüsselattribut transitiv von einem Schlüsselattribut abhängt
- Anschaulicher: In der Menge der Nichtschlüsselattribute darf es keine nicht trivialen funktionale Abhängigkeiten geben

Artikel									
<u>artikelnr</u>	bezeichnung	preis	lagernr	lagerort	lagerstrasse				
211	Radkappe	25	20	Konstanz	Seestrasse				
333	Pumpe	100	15	Stuttgart	Hauptstrasse				
655	Federbein	250	15	Stuttgart	Hauptstrasse				
225	Kugellager	190	15	Stuttgart	Hauptstrasse				

36

Prof. Dr. Oliver Eck

Boyce-Codd Normalform

- Eine Relation ist in Boyce-Codd Normalform (BCNF), wenn sie
 - in 3NF ist und
 - keine transitiven Abhängigkeiten der Schlüsselattribute existieren
- Anschaulicher: In der Menge der Schlüsselattribute darf es keine funktionale Abhängigkeiten geben
- Beispiel Relation Adresse:
 - Adresse = ({plz, ort, bundesland, hauptstadt})
 - Schlüsselkandidaten: plz, {ort, bundesland}, {ort, hauptstadt}
 - Transitive Abhängigkeiten: plz → bundesland → hauptstadt

```
A table is based on the key, the whole key, and nothing but the key (so help me Codd)

(William Kent, "A Simple Guide to Five Normal Forms in Relational Database Theory")
```

37

Normalformen

Beispiel

Gegeben ist ein Realweltausschnitt "Reisebüro" mit folgender Relation:

- Reisebuchung = ({buchungs-nr, reisebuero-nr, reisebuero-name, kunden-nr, kunden-nachname, kunden-vorname, kunden-wohnort, {kunden-tel-nr}, buchungs-datum, reise-nr, reise-beschreibung})
- (a) In welcher Normalform befindet sich diese Relation? Begründen Sie kurz Ihre Antwort.
- (b) Überführen Sie die Relation in die BCN Normalform. Legen Sie dabei auch die Primärschlüssel sinnvoll durch Unterstreichen der jeweiligen Attribute fest.

38

Kurzwiederholung ER-Modell

- Durch eine korrekte ER-Modellierung Abbildung ins Relationenmodell erhält man gleich Relationen in BCNF
- Relationen welcher Normalform werden aus folgendem Modell gebildet?

Hochschule Konstanz

Fakultät Informatik

Relationale Algebra Übersicht

- Selektion σ
 - Auswahl von Tupel aus einer Relation
- Projektion π
 - Auswahl auf ausgewählte Attribute einer Relation
- Verbund ⋈
 - Verbindung mehrerer Relationen über gemeinsame Attribute

Selektion und Projektion

- Selektion σ: Auswahl von Tupel aus einer Relation
 - σ_{name= "Müller"}(Student)

Student				
<u>matrikelnr</u>	name	wohnort		
132004	Müller	Singen		

- Projektion π: Auswahl von Spalten (Attribute) aus einer Relation
 - $\pi_{name, wohnort}(Student)$

name	wohnort
Müller	Singen
Zimmer	Lindau

Beispiel zu relationale Operationen

```
Student = ({ <u>matrikelnr</u>, name, <u>sg</u>})
Studium = ({ <u>sq</u>, abschluss})
```

Student				
<u>matrikelnr</u>	name	<u>sg</u>		
134711	Müller	AIN		
138801	Kunz	WIN		
131294	Maier	MSI		

Studium			
<u>sg</u>	abschluss		
AIN	Bachelor of Science		
WIN	Bachelor of Science		
MSI	Master of Science		

Welche Matrikelnummer hat der Student mit Namen Müller?

Join-Operation

- Join (Verbund)
 - Kartesisches Produkt zw. Relationen, eingeschränkt durch gemeinsame Attribute
 - Inverse ist Projektion
 - Symbol ⋈
- Definition Theta-Join (Θ-Join, Theta-Verbund)

$$- \ \ \mathsf{R} \ \ \mathsf{M} \ \ \mathsf{S} = \sigma_{\mathsf{A} \Theta \mathsf{B}} \ \ (\mathsf{R} \times \mathsf{S}), \quad \Theta = \{\, <, \, =, \, >, \, \leq, \, \neq, \, \geq \, \}$$

- Andere Schreibweise
 - $-R(A\Theta B)S$

Equi-Join (Gleich-Verbund)

 Join = Kartesisches Produkt zw. Relationen, eingeschränkt durch Gleichheit zwischen Attributen

- R1
$$M_{C=D}$$
 R2 = $\sigma_{C=D}$ (R1 × R2)

Eigenschaften Join

- Eigenschaften
 - Assoziativ: $(A \bowtie B) \bowtie C = A \bowtie (B \bowtie C)$
 - Kommutativ: $A \bowtie B = B \bowtie A$
- Equi-Join (Gleich-Verbund)
 - Kartesisches Produkt zw. Relationen, eingeschränkt durch Gleichheit zwischen Attributen

R1				
Α	В	С		
a1	b1	c1		
a2	b2	с1		
а3	b3	c2		
a4	b4	сЗ		

R1 ⋈ R2				
Α	В	С	D	Е
a1	b1	c1	с1	e1
a2	b2	c1	c1	e1
а3	b3	c2	c2	e2

Beispiel Equi-Join

Student				
matrikel-nr	name			
260111	Hans Müller			
260112	Kai Maier			
260113	Egon Schneider			

besucht				
matrikel-nr vorl-nr				
260111	246			
260111	241			

Vorlesung		
<u>vorl-nr</u>	name	
246	Datenbanksysteme	
241	Systemmodellierung	

Student.Matrikel-Nr = besucht.Matrikel-Nr besucht.Vorl-Nr = Vorlesung.Vorl-Nr

Student ⋈ besucht ⋈ Vorlesung					
Student besucht Vorlesung					Vorlesung
matrikel-nr	name	matrikel-nr	vorl-nr	vorl-nr	name
260111	Hans Müller	260111	246	246	Datenbanksysteme
260111	Hans Müller	260111	241	241	Systemmodellierung

Natural Join (natürlicher Verbund)

- Gleichsetzen aller Attribute, die gleich heißen
- Entfernung der redundanten Attribute

R1				
Α	В	С		
a1	b1	с1		
a2	b2	с1		
а3	b3	c2		
a4	b4	сЗ		

R1 ⋈ _n R2				
Α	В	С	Е	
a1	b1	c1	e1	
a2	b2	c1	e1	
а3	b3	c2	e2	

Beispiel Natural Join

Student		
<u>matrikelnr</u>	name	
260111	Hans Müller	
260112	Kai Maier	
260113	Egon Schneider	

besucht		
<u>matrikelnr</u>	<u>vorl-nr</u>	
260111	246	
260111	241	

Vorlesung		
<u>vorl-nr</u>	name	
246	Datenbanksysteme	
241	Systemmodellierung	

Probleme?

Student ⋈ _n besucht ⋈ _n Vorlesung				
matrikelnr name vorl-nr name				
260111	Hans Müller	246	Datenbanksysteme	
260111	Hans Müller	241	Systemmodellierung	

Beispiel Join-Operation

Beispiel: Welche Studenten machen welchen Abschluss?

$$-\pi_{\text{name, abschluss}} \bowtie_{\text{sg = sg}} (\text{Student, Studium})$$

Student				
<u>matrikelnr</u>	name	<u>sg</u>		
134711	Müller	AIN		
138801	Kunz	WIN		
131294	Maier	MSI		

Studium		
<u>sg</u>	abschluss	
AIN	Bachelor of Science	
WIN	Bachelor of Science	
MSI	Master of Science	

name	abschluss
Müller	Bachelor of
	Science
Kunz	Bachelor of
	Science
Maier	Master of Science

Eigenschaften Inner-Joins

Ziel: Auflistung aller Mitarbeiter und der Projekte, die sie leiten:

Mitarbeiter				
<u>mnr</u>	name	<u>leitet</u>		
4711	Müller	44		
8801	Schmidt	33		
1288	Huber			
1294	Maier	42		

Projekt		
<u>pnr</u>	projektname	
33	Projekt 1	
44	Projekt 2	
55	Projekt 3	
42	Projekt 4	

Mitarbeiter ⋈ Projekt					
mnr name leitet pnr projektname					
4711	Müller	44	44	Projekt 2	
8801	Schmidt	33	33	Projekt 1	
1294	Maier	42	42	Projekt 4	

Mitarbeiter Huber fehlt!

Outer Joins (1)

Full Outer Join

- Bei einem full outer join zwischen Relationen R1 und R2 werden auch dann Tupel aus R1 (bzw. R2) in das Ergebnis aufgenommen, für die es kein passendes Tupel in R2 (bzw. R1) gibt
- Fehlende Attributwerte werden mit Nullwerten aufgefüllt
- Symbol ⋈

R1			
Α	В	C	
a1	b1	с1	
a2	b2	с1	
а3	b3	c2	
a4	b4	c3	

R1 ⋈ R2				
Α	В	С	D	Е
a1	b1	с1	с1	e1
a2	b2	с1	с1	e1
а3	b3	c2	c2	e2
a4	b4	сЗ		
		·	c4	e4

Outer Joins (2)

- Left Outer Join von A, B
 - Der left outer join ist ein Verbund vereinigt mit den Tupeln aus A
 - Symbol ⋈
- Right Outer Join von A, B
 - Der right outer join ist ein Verbund vereinigt mit den Tupeln aus B
 - Symbol ⋈

52

Aufgabe zu Outer Join

Gegeben seien die folgenden Tabellen L und R. Geben Sie für die folgenden Join-Verknüpfungen die Ergebnistabellen an.

- a) L $M_{L.a = R.d}$ R
- b) L $M_{L.b = R.d}$ R
- c) L $M_{L,a=R,c}$ R

L	
а	b
8	2
15	16
40	16

R	
C	d
2	2
8	40
8	16

Beispiel zu relationale Operationen

```
Student = ({ <u>matrikelnr</u>, name, <u>sg</u>})
Studium = (\{ \underline{sq}, abschluss \})
```

Student			
<u>matrikelnr</u>	name	<u>sg</u>	
134711	Müller	AIN	
138801	Kunz	WIN	
131294	Maier	MSI	

Studium		
<u>sg</u>	abschluss	
AIN	Bachelor of Science	
WIN	Bachelor of Science	
MSI	Master of Science	

Welchen Abschluss macht der Student Müller?

Beispiel zu relationale Operationen

```
Student = ({ <u>matrikelnr</u>, name, <u>sg</u>})
Studium = ({ <u>sg</u>, abschluss})
```

Student			
<u>matrikelnr</u>	name	<u>sg</u>	
134711	Müller	AIN	
138801	Kunz	WIN	
131294	Maier	MSI	

Studium		
<u>sg</u>	abschluss	
AIN	Bachelor of Science	
WIN	Bachelor of Science	
MSI	Master of Science	

Welche Studiengänge haben keinen einzigen Studenten?

Beispiel für Use-Case-Diagramm

Modellierung der Zugriffsrechte

- Darstellung als Zugriffsmatrix
 - Zugriffsrechte können aus Use Case-Diagramm abgeleitet werden
 - Subjekte sind einzelne Benutzer bzw. Benutzergruppen
 - Objekte können Entitytypen, Entities oder Attribute sein
 - Prinzip des kleinstmöglichen Privilegs:
 Welche Rechte benötigt ein Benutzer mindestens, um einen Use Case auszuführen?
 - Zugriffsrechte = {read, write, delete}

Objekt Subjekt	Flug	Flug- hafen	Flugbuchung(flugNr, datum kundenNr, von, bis)	Flugbuchung (stornogebühr)
Kunde	r	r	r, w	r
Sachbearbeiter	r, w, d	r, w, d	r, w, d	r, w

User Interface

- User Interface f
 ür Datenfelder von Tabellen
 - Eingabefelder für Attribute
 - Auswahlliste (Listbox) zur Spezifikation von Relationships
 - Berücksichtigung der Kardinalität von Relationships (Combobox)

58

Quelle: C. Churcher: Beginning Database Design