Lecture: Set fundamentals

COS10003 Computer Logic and Essentials (Hawthorn)

Semester 1 2021

SetsSet relationsOperationsTheoremsCountingNext0000000000000000000000000000000000000

Today

Sets

2 Set relations

3 Operations

Theorems

6 Counting

How we define collections of objects

Some approaches for proving simple statements

The principles for working with finite sets

Overview

- Sets are collections of objects
- The elements of a set can be physical objects, abstract objects or other sets.
- Sets are a key foundation of discrete maths and also computing.

Set definitions

- ► Sets can be empty (denoted as Ø)
- Sets can be equal, meaning two sets have the same elements.
- Sets can be ordered, however in computing they are generally treated as unordered.
- Elements of a set should be distinct.
- We sometimes work with a universal set U: the set containing everything of interest.

Visualising sets

Each disk or circle represents a set. Coloured sets represent the area we are interested in. The rectangular border represents the universal set: this is often denoted by U.

 Sets
 Set relations
 Operations
 Theorems
 Counting
 Next

 000 • 0
 00000000
 00000000
 0000000
 0000000

Defining sets

Enumerating all elements

- $\blacktriangleright \ \{1, 2, 3, 4, 5, 6\}$
- ► {Hawthorn, Croydon, Lilydale}

Providing a common property

- Natural numbers between 1 and 6
- ► Locations of Swinburne campuses in Australia

Notation

Natural numbers between 1 and 6

$$A = \{x : x \in \mathbb{N}, x \le 6\}$$
$$A = \{x \in \mathbb{N} : x \le 6\}$$
$$A = \{1, 2, 3, 4, 5, 6\}$$

Sometimes you might see a vertical bar in place of a colon.

Inclusion

We have \in to denote membership of a set.

We also have two approaches to inclusion:

- ightharpoonup where the first set is included in or equal to the second set
- where the first set is included in but not equal to the second set

The formal definition is that when $A \subseteq B$, for all $x \in A$, then $x \in B$.

 Sets
 Set relations
 Operations
 Theorems
 Counting
 Next

 00000
 0 ● 000000
 00000000
 00000000
 00000000
 00000000

Fill in the blank

Which symbol (membership or subset) is the best to use for the following expressions?

- $ightharpoonup a = \{a, b, c\}$
- $ightharpoonup f_{-}\{a,b,c\}$
- $\blacktriangleright \{a,b\} = \{a,b,c\}$
- $ightharpoonup \{a, b, d\} \ \ \ \{a, b, c\}$

- $\blacktriangleright \{a, b, d\} \ \{a, b, c\}$
- $\blacktriangleright \{a, b, d\} \ \{a, b, c, d\}$
- $ightharpoonup \{a,b,c\} \ _a$
- $ightharpoonup \{a, b, c\} \ _ \{a, b, c\}$

Sets
oocooSet relations
oo ●0000Operations
oocoooooTheorems
occoooooCounting
occoooooNext
occooooooooooocoooooooocoooooooocooooo

Extensionality

When both $A \subseteq B$ and $B \subseteq A$, then the sets A and B are identical.

 Sets
 Set relations
 Operations
 Theorems
 Counting
 Next

 00000
 0000000
 0000000
 0000000
 0000000
 0000000

Reasoning about sets

Would you say the following statement is true or false?

Whenever $A \subseteq B$ and $B \subseteq C$, $A \subseteq C$

Assume the left hand side is true: for any $x \in A$, then $x \in B$ from the inclusion definition, and if $x \in B$, then $x \in C$. For the right hand side, we know that if $x \in A$, then $x \in C$, which checks out.

Sets
oocooSet relations
oocooOperations
oocoocooTheorems
occoocooCounting
occoocooNext
occoocoooocoocoocoooocoocoocoooocoocoocoooocoocoocoo

The logic behind the reasoning

- Be clear what you want to show: this is not straightforward as the goal will need to be broken down, which is good practice for programming problems
- 2. Use what you can: this could be axioms, other things you have already shown, and definitions
- 3. Be flexible: be prepared to climb down the mountain and try another approach

Another example

Would you say the following statement is true or false?

Whenever
$$A \subseteq B$$
 and $C \subseteq B$, $A \subseteq C$

This is false. The best approach here is to find a counterexample: some sets where the idea does not hold. For example, $A = \{1, 2, 3\}$, $B = \{1, 2, 3, 4, 5\}$ and $C = \{4, 5\}$. So $A \subseteq B$ and $C \subseteq B$ but $A \not\subseteq C$.

00000	Counting Next	Theorems	Operations	Set relations	Sets
00000000 00000000 00000000	0000000 0000	00000000	00000000	0000000	00000

The empty set

Sets can be empty. The trickiest concept to understand is the statement

 $\varnothing \subseteq A$ for every set A

To prove this, we start with inclusion again, so if $x \in \emptyset$, then $x \in A$. But there is no x in \emptyset and so this statement is true.

Disjoint sets

Two sets are mutually exclusive or disjoint if they have no elements in common. There is no element x such that both $x \in A$ and $x \in B$.

Assume we have two sets

You might like to look at the following set operations with these sets in mind.

- $A = \{1,2,3,4,5\} \text{ or } \{x: x \in \mathbb{N}, x \leq 5\}$
- ▶ $B = \{2, 4, 6, 8, 10, 12\}$ or $\{x : x \in \mathbb{N}, x \text{ is even }, x \leq 12\}$
- $V = \{1...12\}$

Intersection

 $x \in A \cap B \text{ iff } x \in A \text{ and } x \in B$

Sets	Set relations	Operations	Theorems	Counting	Next
00000	0000000	00000000	00000000	0000000	0000

Union

 $x \in A \cup B \text{ iff } x \in A \text{ or } x \in B$

 Sets
 Set relations
 Operations occool
 Theorems occool
 Counting occool
 Next occool

Difference

 $x \in A \setminus B \text{ iff } x \in A \text{ and } x \not \in B$

Complement

 $x \in A^C \text{ iff } x \not\in A$

 Sets
 Set relations
 Operations
 Theorems
 Counting
 Next

 0000
 0000000
 0000000
 0000000
 0000000
 0000000

With these sets

- $A = \{1, 2, 3, 4, 5\} \text{ or } \{x : x \in \mathbb{N}, x \le 5\}$
- $ightharpoonup B = \{2, 4, 6, 8, 10, 12\} \text{ or } \{x : x \in \mathbb{N}, x \text{ is even }, x \leq 12\}$
- $V = \{1...12\}$
- ▶ What is $A \cap B$?
- ▶ What is $A \cup B$?
- ▶ What is $A \setminus B$?
- \blacktriangleright What is A^C ?

With these sets again

- $A = \{1, 2, 3, 4, 5\} \text{ or } \{x: x \in \mathbb{N}, x \le 5\}$
- ▶ $B = \{2, 4, 6, 8, 10, 12\}$ or $\{x : x \in \mathbb{N}, x \text{ is even }, x \leq 12\}$
- $V = \{1...12\}$
- ▶ What is $A \cap B$? $x \le 5$ and x is even
- ▶ What is $A \cup B$?
- ▶ What is $A \setminus B$?
- \blacktriangleright What is A^C ?

 Sets
 Set relations
 Operations
 Theorems
 Counting
 Next

 0000
 00000000
 00000000
 00000000
 00000000
 00000000

To ponder

Would you say the following statement is true or false?

$$A \setminus B = A \cap B^C$$

For this, two parts need to be shown:

- $ightharpoonup A \setminus B \subseteq A \cap B^C$
- $\blacktriangleright \ A \cap B^C \subseteq A \setminus B$

Both of these can then be defined using inclusion and the definitions for set difference and intersection.

Lecture: Set fundamentals

COS10003 Computer Logic and Essentials (Hawthorn)

Semester 1 2021

General rules about sets

Recall when talking about proofs, it was mentioned that you could use established rules?

Fundamental laws

Commutative: $A \cup B = B \cup A$, $A \cap B = B \cap A$

Associative: $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$

Distributive: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Identity: $A \cup \varnothing = A$, $A \cap U = A$

Complement: $A \cup A^C = U$, $A \cap A^C = \emptyset$

 Sets
 Set relations
 Operations
 Theorems
 Counting
 Next

 00000
 00000000
 00000000
 0000000
 0000000
 0000000

More laws

Idempotent: $A \cup A = A$, $A \cap A = A$

Identity or domination or null: $A \cup U = U$, $A \cap \emptyset = \emptyset$

Absorption: $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$

De Morgan's: $(A \cup B)^C = A^C \cap B^C$, $(A \cap B)^C = A^C \cup B^C$

Involution or double complement: $(A^C)^C = A$ And some more complements: $U^C = \varnothing$, $\varnothing^C = U$

SetsSet relationsOperationsTheoremsCountingNext00000000000000000000000000000000000

Complement law

Let A = BCS students, B = identify as female What is $A \cup A^C$? BCS students or not BCS students?

$$A \cup A^C = U$$

De Morgan's law

Let A = BCS students, B = identify as female What is $A^C \cup B^C$ equal to? Not male or not BCS students?

$$(A \cap B)^C = A^C \cup B^C$$

SetsSet relationsOperationsTheoremsCountingNext00000000000000000000000000000000000

Manipulating set expressions

How can we show that $(A \cap A^C)^C = U$?

One way:

$$A\cap A^C=\varnothing$$

complement

$$\varnothing^C = U$$

complement again

Another way:

$$(A \cap A^C)^C = A^C \cup (A^C)^C$$

de Morgan's

$$(A^C)^C = A$$

involution or double complement

$$A^C \cup A = U$$

complement

 Sets
 Set relations
 Operations
 Theorems
 Counting
 Next

 00000
 00000000
 0000000
 0000000
 0000000
 0000000

Another proof

Show that $(A \cup B) \cap (A^C \cap B)^C$ is equal to A.

$$(A \cup B) \cap (A^C \cap B)^C = (A \cup B) \cap ((A^C)^C \cup B^C)$$
 De Morgan's
$$= (A \cup B) \cap (A \cup B^C)$$
 Involution
$$= A \cup (B \cap B^C)$$
 Distributive
$$= A \cup \varnothing$$
 Complement
$$= A$$
 Identity

SetsSet relationsOperationsTheoremsCountingNext00000000000000000000000000000000000

Another proof

Show that $(A \cup B) \cap (A^C \cap B)^C$ is equal to A.

Proof techniques so far

- ▶ Proof by element (if $x \in A$ etc.)
- ▶ (dis)Proof by counterexample
- Proof using set laws
- Proof using Venn diagram

Sets	Set relations	Operations	Theorems	Counting	Next
00000	0000000	Operations oooooooo	00000000	Counting ●000000	0000

Counting items

- Sometimes we have sets with a discrete number of items in them.
- ▶ Counting the items in different parts of the sets is a useful skill.

 Sets
 Set relations
 Operations
 Theorems
 Counting
 Next

 00000
 00000000
 00000000
 0000000
 0000000
 0000000

Some simple counting

- $ightharpoonup A = \{1, 2, 3, 4, 5\} \text{ or } \{x : x \in \mathbb{N}, x \le 5\}$
- ▶ $B = \{2, 4, 6, 8, 10, 12\}$ or $\{x : x \in \mathbb{N}, x \text{ is even }, x \leq 12\}$
- $V = \{1...12\}$

SetsSet relationsOperationsTheoremsCountingNext00000000000000000000000000000000000000

Inclusion/exclusion

$$\mid A \cup B \mid = \mid A \mid + \mid B \mid - \mid A \cap B \mid$$

 Sets
 Set relations
 Operations
 Theorems
 Counting
 Next

 00000
 00000000
 00000000
 0000000
 0000000
 0000000

Example

- \blacktriangleright 100 students at a university (| U |)
- ► 50 enrolled in programming (| P |)
- \blacktriangleright 60 enrolled in music ($\mid M \mid$)
- ▶ 25 enrolled in both subjects ($|M \cap P|$)

- How many in programming or music? 85
- How many not in programming or music? 15
- ► How many in only programming?
- How many in only music?

 Sets
 Set relations
 Operations
 Theorems
 Counting
 Next

 00000
 00000000
 00000000
 00000000
 0000000
 0000000

Generalising, sort of

How does this work for three sets?

 $\mid A \cup B \cup C \mid = \mid A \mid + \mid B \mid + \mid C \mid - \mid A \cap B \mid - \mid A \cap C \mid - \mid B \cap C \mid + \mid A \cap B \cap C \mid$

Another example

100 of 120 computing students also study a language:

- 65 Italian (I)
- ▶ 45 Japanese (J)
- ▶ 42 Korean (K)
- ▶ 20 Italian and Japanese
- 25 Italian and Korean
- ► 15 Japanese and Korean

How many study all three languages?

Sets	Set relations	Operations	Theorems	Counting	Next
00000	0000000	00000000	00000000	000000	0000

Basic counting

Reflecting

- ▶ How can we define collections of objects?
- What is one approach to proving statements?
- What is the key principle for working with cardinalities of finite sets?

In which we look at the fundamentals of logic.

Questions I still have

Sets	Set relations	Operations	Theorems	Counting	Next
00000	0000000	00000000	00000000	000000	0000

Topics I need to review

