Assignment 2

NITIN MUKESH

Analog IC Design

April 17, 2022

Problem 1

Design a single stage Differential Amplifier for the specs: Max.Power=5mW, Gain = 40 DB, B.W =100KHz. ICMR 1 to 3V, VDD=3V, VSS=0.

In Designing of these circuits $\frac{W}{L}$ has been chosen depending on the other parameters. Calculation for each of them is done in the excel sheet which is attached in this document. Design of single stage Differential Amplifier:

Note: **Region 2** is for saturation region.

Figure 1: Schematic & DC operating Points

Figure 2: GAIN wrt Frequency

Figure 3: DC Analysis

Problem 2

Design a single stage Differential Amplifier for the specs: Max.Power=5mW, Gain = 40 DB, B.W = 100 KHz. ICMR 0 to 2V, VDD=3V, VSS=0.

Figure 5: Schematic & DC operating Points

Figure 6: Transient Response

Figure 7: DC Analysis

Figure 8: GAIN wrt Frequency

April 17, 2022

	Α	В		D	E			Н	I		K		М	N	0	P	Q
1	slew rate	Un	Cox	W/L	Vgs	Vth	(Vgs-Vth)^2	Lamda p,n	Iss	11=13	12=14	Rout	f	С	Idminf	Idminsr	UpCox
2	2.94E-04	3.00E-04	1.00E+00	1.00E+00	2.00E+00	6.00E-01	1.96E+00	1.00E-02	6.00E-04	3.00E-04	3.00E-04	1.67E+05	1.00E+05	5.00E-12	1.57E-04	5.00E-04	6.00E-05
3																	
4																	
5	slew rate	CI		Power	Ismax	Vdd	Vss	(W/L)3	Vdsat1	(W/L)1	Vdsat5	(W/L)5	Vdsat3				
6	1.00E+08	5.00E-12		5.00E-03	1.67E-03	3.00E+00	0.00E+00	2.78E+01	1.00E+00	2.00E+00	-6.00E-01	1.11E+01	6.00E-01				
7									4.47E-01	1.00E+01	-4.72E-02	1.79E+03			i		
8																	
9	Vicmax	Vicmin						!							!		
10	3.00E+00	1.00E+00						i							i		
11																	
12																	
13								i							i		
14	Q5. for ICMR	0 to 2V						i							i		
15																	
16																	
17	(W/L)3		(W/L)5	(W/L)1	Vicmax	Vicmin		Vsd5							i		
18	3.00E-03	3	5.00E+00	5.56E+00	2.00E+00	0.00E+00		4.00E+00									
19	4.00E+01																
20 21																	
21																	

Figure 9: Excel Sheet Used for Calculations