See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231716457

New Steroidal Hydroxyketones and Closely Related Diols from the Marine Sponge Cliona copiosa

ARTICLE in JOURNAL OF NATURAL PRODUCTS · JUNE 2004

Impact Factor: 3.8 · DOI: 10.1021/np50089a005

CITATIONS READS

39 32

3 AUTHORS, INCLUDING:

SEE PROFILE

NEW STEROIDAL HYDROXYKETONES AND CLOSELY RELATED DIOLS FROM THE MARINE SPONGE CLIONA COPIOSA

G. NOTARO, V. PICCIALLI, and D. SICA*

Dipartimento di Chimica Organica e Biologica, Università di Napoli, via Mezzocannone 16, 1-80134 Napoli

ABSTRACT.— Δ^5 -3 β -Hydroxy-7-ketosteroids 1–7, Δ^5 -3 β ,7 β -dihydroxysterols 8–13, and Δ^5 -3 β ,7 α -dihydroxysterols 14–17 were isolated from the sponge *Cliona copiosa*, and the structures were elucidated by spectroscopic methods and chemical correlation with known compounds.

In recent years many new polyoxygenated steroids have been isolated from marine sponges (1). Recently, we reported the isolation of six new $3\beta,5\alpha,6\beta$ -trihydroxysterols with a saturated nucleus from the marine sponge *Cliona copiosa* Sarà 1959 (order Hadromerida, family Clionidae) collected in the Bay of Naples (2). We now report the isolation and characterization from the same organism of several dioxygenated sterols: Δ^5 -3 β -hydroxy-7-ketosteroids 1–7 and the structurally related Δ^5 -3 β ,7 β - and Δ^5 -3 β ,7 α -dihydroxysterols 8–13 and 14–17, respectively. Sterols 1, 3, 4, 6, 9, 11, 13,

15, and 17 are new compounds, while the remaining have been previously isolated from marine (3) and terrestrial environments (4,5). In recent years attention have been given to Δ^5 -3 β ,7 α - and Δ^5 -3 β ,7 β -hydroxysterols for their biological activities (4,6).

RESULTS AND DISCUSSION

Fresh tissues of the sponge were extracted with Me₂CO and CHCl₃-MeOH (1:1), the solvent was removed, and the resulting aqueous suspension was extracted with Et₂O. The Et₂O-soluble material was chromatographed on a Si gel column, using CHCl₃ and increasing concentrations of MeOH in CHCl₃ as eluent, followed by hplc on a Si gel column to yield the polar sterol fractions. Repeated reversed-phase hplc gave the pure compounds **1–17**.

 Δ^{5} -3 β -Hydroxy-7-Ketosteroids.—The molecular formula of the most abundant ketosterol 2 was determined as C27H44O2 by high resolution mass measurement of the molecular ion at m/z 400.3370 and 13 C-nmr data. The uv spectrum showed absorption at λ max 237 nm (ϵ =9850), while the ir spectrum contained hydroxyl absorption at ν max 3391 and another absorption at 1671 cm⁻¹ that indicated the presence of an α , β unsaturated ketone group. This was confirmed by analysis of ¹³C-nmr data that showed a carbonyl resonance at δ 202.40, double bond resonances at δ 165.23 and 126.27, and a hydroxymethine signal at δ 70.61. The ¹H-nmr spectrum of 2 showed signals for olefinic and hydroxymethine protons at δ 5.69 (d, H-6) and 3.67 (bm, H_a-3), respectively, and resonances for five methyl groups of a cholestane carbon skeleton: singlets at δ 0.68 and 1.19 (H₃-18 and H₃-19, respectively), a doublet at δ 0.92 (H₃-21), and a pair of doublets at δ 0.857 and 0.862 (H₃-26 and H₃-27). The ¹³C-nmr spectrum of 2 showed that the side chain of this sterol was of the cholesterol type (7). These data suggested that compound 2 was previously synthesized 3β-hydroxycholest-5-en-7-one (8). Data from ¹H nmr COSY-45, ¹³C nmr, and mass spectra (see Experimental) were in good agreement with this structure that was confirmed by comparison of spectral data with those of an authentic sample synthesized according to Parish et al. (8).

The mass spectra of compounds 1–7 contained common fragment ions at m/z 287 [M-side chain]⁺, 269 [M-H₂O and side chain]⁺, and 245, deriving from ring D fission (9), indicating that all components of the sterol mixture possessed identical nuclei and varied only in the side chains. This was supported by ¹H-nmr spectra that showed identical chemical shift values for the H-3, H₂-4, H-6, H-8, H₃-18, and H₃-19 protons. Therefore, we only had to establish their side chain structures to complete the structural determination of each compound.

The ketosterol **1** had the molecular formula $C_{26}H_{40}O_2$, deduced by hrms of the molecular ion at m/z 384.3051. The mass spectrum contained ion peaks at m/z 287 $[M-C_7H_{13}]^+$ 285 $[M-C_7H_{13}-2H]^+$ and 269 $[M-C_7H_{13}-H_2O]^+$ that established the presence of a C_7H_{13} side chain containing a double bond. The ion peak at m/z 314 $[M-C_5H_{10}]^+$ indicated that the side chain unsaturation was located at the Δ^{22} position (10). 1H -nmr decoupling experiments confirmed the location of the double bond at Δ^{22} , allowing the entire structural fragment C-21–C-26(C-27) to be built up. These data and the value of the coupling constant (15.4 Hz) between the H-22 and H-23 protons indicated for this sterol the structure of (22*E*)-3 β -hydroxy-24-norcholesta-5,22-dien-7-one [1].

The ketosterol 3 had the composition $C_{27}H_{42}O_2$ by hrms of the molecular ion at m/z 398.3168. The mass spectrum contained significant fragment peaks at m/z 287 $[M-C_8H_{15}]^+$, 285, and 269 and a peak at 314 $[M-C_6H_{12}]^+$ characteristic of a Δ^{22} sterol possessing a C_8H_{15} side chain (10). Further support for the side chain of 3 was obtained by decoupling experiments and comparison of 1H -nmr data of 3 with those exhibited by a number of other steroids having a trans Δ^{22} -cholesterol-type side chain. The coupling constant between H-22 and H-23 (J=14.7 Hz) agrees with the E configuration of the Δ^{22} double bond. Thus the structure of this ketosterol must be (22E)-3 β -hydroxycholesta-5,22-dien-7-one [3].

The ketosterol 4 was found to have a molecular formula of $C_{28}H_{44}O_2$ by hrms of the molecular ion at m/z 412.3353. The mass spectrum contained significant fragment peaks at m/z 287 $[M-C_9H_{17}]^+$, 285, 269, 369 $[M-C_3H_7]^+$, and 314 $[M-C_7H_{14}]^+$ characteristic of a sterol possessing a C_9H_{17} side chain with an unsaturation at Δ^{22} (10). The ¹H-nmr chemical shifts for the side chain protons of this ketosterol were consistent with those of an authentic sample of brassicasterol. Thus, the structure was tentatively

formulated as (22E,24R)-3 β -hydroxy-24-methylcholesta-5,22-dien-7-one [4]. This was confirmed by the ¹H-nmr spectrum, which showed the expected four doublets of the C-21,C-28,C-26, and C-27 methyl group protons at δ 1.02, 0.91, 0.82, and 0.83, respectively, and by decoupling experiments.

The molecular formula of the ketosterol 5 was determined as $C_{28}H_{44}O_2$ on the basis of hrms of the molecular ion at m/z 412.3347. The ¹H-nmr and mass spectral data clearly indicated that compound 5 was the C-24 epimer of the ketosterol 4. In fact, in the ¹H-nmr spectrum of 5 the H₃-21 doublet appeared upfield at δ 1.01 (J=6.6 Hz) when compared to the corresponding H₃-21 signal (1.02) for the sterol 4 (11). Hence, 5 must be formulated as (22E,24S)-3 β -hydroxy-24-methylcholesta-5,22-dien-7-one.

The ketosterols **6** and **7** could not be separated by reversed-phase hplc. They each had the molecular formula $C_{29}H_{48}O_2$ established by hrms on the molecular ion at m/z 428.3638. In their mass spectrum the fragment ions at m/z 287 [$M-C_{10}H_{21}$]⁺ and 269 indicated the presence of a saturated $C_{10}H_{21}$ side chain. The side chain methyl signals for both isomers were assigned by comparison of the ¹H-nmr spectrum of the isolated ketosterols with the ¹H-nmr spectra of authentic samples of sitosterol and clionasterol. The main difference in the ¹H-nmr spectrum of the two epimers **6** and **7** was observed in the chemical shift of the Me-29 triplet which is more deshielded in the 24*S* epimer **6** (δ 0.85) than in the 24*R* epimer **7** (δ 0.84) (12). Thus, the structures of **6** and **7** were formulated as (24S)-3 β -hydroxy-24-ethylcholest-5-en-7-one and (24R)-3 β -hydroxy-24-ethylcholest-5-en-7-one, respectively.

 Δ^5 -3 β ,7 β -DIHYDROXYSTEROLS AND Δ^5 -3 β ,7 α -DIHYDROXYSTEROLS.—The sponge *C. copiosa* also contained the 3 β ,7 β -diols **8–13** and 3 β ,7 α -diols **14–17**. Compound **8** and its 7 α epimer **14** have not been found as naturally occurring sterols but have been previously synthesized (6,13). The structures of **8** and **14** were confirmed by comparison of their ¹H-nmr and mass spectral data (see Experimental) with those of authentic samples prepared by LiAlH₄ reduction of **2** (13). The stereochemistry of the 7-hydroxymethine group of compounds **8** and **14** was proven by comparison of the chemical shift value and shape of the olefinic proton at C-6 that in the 400 MHz ¹H-nmr spectrum appeared at δ 5.29 (dd, J=2.2 and 2.2 Hz) in the 7 β epimer **8** and at δ 5.60 (d, J=5.5 Hz) in 7 α epimer **14** (6,13).

Sterols 9–13 showed spectral properties similar to those of cholest-5-ene- 3β , 7β -diol 8 (see Experimental). This established an identical sterol nucleus in all six metabolites, which differed only in the side chain structures. These were determined based on reference to data of model compounds 2–7.

Spectral data (see Experimental) also indicated that compounds 14-17 possessed an identical Δ^5 -3 β ,7 α -diol nucleus but differed in their side chain structures that were determined in the same way as those of 8-13. Sterols 14, 15, 16, and 17 had the side chains identical to those found in sterols 2, 3, 4, and 5, respectively.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—The ¹H-nmr spectra were recorded on a Bruker WM-400 spectrometer, and ¹³C-nmr spectra were obtained on a Varian 200 spectrometer operating at 50.3 MHz. The ¹H chemical shifts were referenced to the residual CHCl₃ signal (7.26 ppm). J values are given in Hertz. The ¹³C chemical shifts were referenced to the solvent (CDCl₃, 77.0 ppm). Low resolution mass spectra were determined at 70 eV with an AEI MS 30 mass spectrometer. High resolution mass spectra were recorded on a Kratos MS 50 spectrometer. Ir spectra were obtained with a Perkin-Elmer 1760-X Ft-ir. Hplc was carried out with a Varian 2510 pump and a Waters Associates R403 differential refractometer. Melting points were determined on a Kofler apparatus and are uncorrected.

EXTRACTION AND ISOLATION.—The sponge C. copiosa, identified by Dr. G. Corriero, University of Genova, was collected in the Bay of Naples at a depth of 15 m. A voucher specimen is on file at our

laboratories. Fresh collected specimens (213 g dry wt after extraction) were extracted once with Me_2CO and twice with $CHCl_3$ -MeOH (1:1) at room temperature. The extracts were combined and concentrated under reduced pressure to obtain an aqueous suspension which was extracted with Et_2O . The organic layer was dried over Na_2SO_4 and the solvent removed to obtain an oily residue (9.4 g) that was chromatographed on an open Si gel column (400 g, 72×5.5 cm) using $CHCl_3$ and increasing amounts of MeOH in $CHCl_3$ as eluent. Fractions (200 ml) were collected and checked by 1H nmr for sterol content.

The fractions 58–66 (166.8 mg), eluted with CHCl₃-MeOH (97:3), that contained 3 β -hydroxy-5-en-6-one steroids **1–7** were purified by hplc on a Si gel column (Hibar LiChrosorb Si-60, 250×10 mm), using CHCl₃-MeOH (99:1) as the mobile phase, and rechromatographed on reversed-phase hplc on a Hibar Superspher RP-18 (250×4 mm) column eluted with MeOH-H₂O (92:8) to give pure steroids **1** (1.3 mg), **2** (31 mg), **3** (5.1 mg), **4** (1.6 mg), **5** (3.9 mg), and **6** and **7** together (2.1 mg).

The fractions 68–69 (170 mg) were further separated by hplc on the above Si gel column eluted with CHCl₃-MeOH (99.5:0.5) into the 3β , 7β - (8–13) and 3β , 7α -dihydroxysterol (14–17) fractions. Final separation of the above fractions was achieved by reversed-phase hplc on the above column eluted with MeOH-H₂O (88:12) to give 8 (2.5 mg), 9 (0.9 mg), 10 (0.7 mg), 11 (1.4 mg), 12 and 13 together (1.5 mg), 14 (2.1 mg), 15 (0.5 mg), 16 (0.5 mg), and 17 (1.6 mg).

 $(22E) - 3\beta - Hydroxy - 24 - norcholesta - 5, 22 - dien - 7 - one \textbf{[1]}. — Ft-ir (film) \nu \ max \ 3390, \ 1670 \ cm^{-1}; uv \lambda \ max \ (CHCl_3) \ 237 \ nm \ (\varepsilon = 9800); \ ^1H \ nmr \ (CDCl_3) \ \delta 5.69 \ (1H, \ d, J = 1.5 \ Hz, \ H-6), \ 5.27 \ (1H, \ dd, J = 15.4 \ and \ 5.9 \ Hz, \ H-23), \ 5.18 \ (1H, \ dd, J = 15.4 \ and \ 8.1 \ Hz, \ H-22), \ 3.67 \ (1H, \ bm, \ H_{ux}-3), \ 2.51 \ (1H, \ ddd, J = 14.7, \ 5.1 \ and \ 2.2 \ Hz, \ H_{eq}-4), \ 2.39 \ (1H, \ ddd, J = 14.7, \ 14.7, \ and \ 1.5 \ Hz, \ H_{ux}-4), \ 2.24 \ (1H, \ dd, J = 11.0 \ and \ 11.0 \ Hz, \ H-8), \ 2.19 \ (1H, \ m, \ H-25), \ 1.99 \ (m, \ overlapped, \ H-20), \ 1.20 \ (3H, \ s, \ H_3-19), \ 1.00 \ (3H, \ d, J = 6.6 \ Hz, \ H_3-21), \ 0.94 \ (6H, \ d, J = 6.6 \ Hz, \ H_3, 26 \ and \ H_3-27) \ and \ 0.69 \ (3H, \ s, \ H_3-18); \ hrms \ m/z \ (rel. \ int.) \ [M]^+ \ 384.3051 \ (calcd \ for \ C_{26}H_{40}O_2 \ 384.3029) \ (81), \ [M-H_2O]^+ \ 366.2925 \ (C_{26}H_{38}O) \ (3), \ [M-C_3H_{10}]^+ \ 314.2239 \ (C_{21}H_{30}O_2) \ (100), \ [M-side \ chain \ - H_2O]^+ \ 269.1895 \ (C_{19}H_{27}O_2) \ (92), \ [M-side \ chain \ - 2H]^+ \ 285.1865 \ (C_{19}H_{25}O_2) \ (36), \ [M-side \ chain \ - H_2O]^+ \ 269.1895 \ (C_{19}H_{25}O) \ (17), \ [M-ring \ D]^+ \ 245.1543 \ (C_{16}H_{21}O_2) \ (2).$

 3β -Hydroxycholest-5-en-7-one [2].—Mp 170–171° [petroleum ether-CHCl₃ (1:1)] [lit. (14) mp 171–172°]; Ft-ir (film) ν max 3391, 1671 cm⁻¹; uv λ max (CHCl₃) 237 nm (ϵ =9850); [α]D -78 (c=0.29, CHCl₃); ¹H nmr (CDCl₃) δ 5.69 (1H, d, J=1.5 Hz, H-6), 3.67 (1H, bm, H_{xr}-3), 2.50 (1H, ddd, J=14.7, 5.1 and 2.2 Hz, H_{eq}-4), 2.39 (1H, ddd, J=14.7, 14.7 and 1.5 Hz, H_{xr}-4), 2.24 (1H, dd, J=11.0 and 11.0 Hz, H-8), 1.19 (3H, s, H₃-19), 0.92 (3H, d, J=6.7 Hz, H₃-21), 0.862 (3H, d, J=6.7 Hz, H₃-26 or H₃-27), 0.857 (3H, d, J=6.7 Hz, H₃-27 or H₃-26), 0.68 (3H, s, H₃-18); ¹³C nmr (CDCl₃) [assignments were made by comparison with published values (7)] δ 36.46 (C-1), 31.29 (C-2), 70.61 (C-3), 41.90 (C-4), 165.23 (C-5), 126.27 (C-6), 202.40 (C-7), 45.52 (C-8), 50.07 (C-9), 38.38 (C-10), 21.34 (C-11), 38.82 or 39.58 (C-12), 41.90 (C-13), 50.07 (C-14), 26.41 (C-15), 28.60 (C-16), 54.91 (C-17), 12.07 (C-18), 17.40 (C-19), 35.80 (C-20), 18.96 (C-21), 36.28 (C-22), 23.92 (C-23), 39.58 or 38.82 (C-24), 28.09 (C-25), 22.64 (C-26), 22.88 (C-27); hrms m/z (rel. int.) [M]* 400.3370 (calcd for C₂₇H₄₄O₂ 400.3341) (100), [M-Me]* 385.3087 (C₂₆H₄₁O₂)(4), [M-H₂O]* 382.3220 (C₂₇H₄₂O)(5), [M-H₂O-Me]* 367.2950 (C₂₆H₃₉O)(13), 287.2025 (C₁₉H₂₇O₂) (11), 269.1919 (C₁₉H₂₅O) (2), 245.1550 (C₁₆H₂₁O₂) (4).

(22E)-3β-Hydroxycholesta-5,22-dien-7-one [3].—Ft-ir (film) ν max 3390, 1671 cm⁻¹; uv λ max (CHCl₃) 238 nm (ϵ =9900); [α]D -93 (ϵ =0.19, CHCl₃); ¹H nmr (CDCl₃) δ 5.68 (1H, d, J=1.5 Hz, H-6), 5.30 (1H, dt, J=14.7 and 6.6 Hz, H-23), 5.20 (1H, dd, J=14.7 and 7.3 Hz, H-22), 3.67 (1H, bm, H_m-3), 2.51 (1H, ddd, J=14.7, 5.1 and 2.2 Hz, H_{eq}-4), 2.39 (1H, ddd, J=14.7, 14.7 and 1.5 Hz, H_m-4), 2.24 (1H, dd, J=11.0 and 11.0 Hz, H-8), 2.00 (1H, m, H-20), 1.83 (2H, dd, J=6.6 and 6.6 Hz, H₂-24), 1.58 (m, overlapped, H-25), 1.20 (3H, s, H₃-19), 1.01 (3H, d, J=6.6 Hz, H₃-21), 0.86 (6H, d, J=6.6 Hz, H₃-26 and H₃-27), 0.69 (3H, s, H₃.18); hrms m/z (rel. int.) [M]⁺ 398.3168 (calcd for C₂₇H₄₂O₂, 398.3174) (80), [M-H₂O]⁺ 380.3060 (C₂₇H₄₀O) (12), [M-C₆H₁₂]⁺ 314.2241 (C₂₁H₃₀O₂) (70), 287.2014 (C₁₉H₂₇O₂) (100), 285.1870 (C₁₉H₂₅O₂) (51), 269.1889 (C₁₉H₂₅O) (36), 245.1530 (C₁₆H₂₁O₂) (10).

 $(22E,24R)-3\beta-Hydroxy-24-methylcholesta-5,22-dien-7-one~ \cite{4}.—Ft-ir~ (film)~v~max~ 3392,~1672~cm^{-1};~uv~\lambda~max~ (CHCl_3)~237~nm~ ($\epsilon=9800);~^1H~nmr~ (CDCl_3)~\delta~5.69~ (1H,~d,~J=1.5~Hz,~H-6),~5.19~ (2H,~m,~H-22~and~H-23),~3.68~ (1H,~bm,~H_{sc}-3),~2.51~ (1H,~ddd,~J=14.7,~5.1,~and~2.2~Hz,~H_{cq}-4),~2.39~ (1H,~ddd,~J=14.7,~14.7,~and~1.5~Hz,~H_{sc}-4),~2.24~ (1H,~dd,~J=11.0~and~11.0~Hz,~H-8),~2.01~ (1H,~m,~H-20),~1.84~ (1H,~sextet,~J=6.1~Hz,~H-24),~1.46~ (1H,~septet,~J=6.6~Hz,~H-25),~1.20~ (3H,~s,~H_3-19),~1.02~ (3H,~d,~J=6.6~Hz,~H_3-21),~0.91~ (3H,~d,~J=6.6~Hz,~H_3-28),~0.83~ (3H,~d,~J=6.6~Hz,~H_3-26~or~H_3-27),~0.82~ (3H,~d,~J=6.6~Hz,~H_3-27~or~H_3-26),~0.69~ (3H,~s,~H_3-18);~hrms~m/z~ (rel.~int.)~ [M]^+~412.3353~ (calcd~for~C_{28}H_{44}O_2,~412.3341)~ (71),~ [M-Me]^+~397.3117~ (C_{27}H_{41}O_2)~ (5),~ [M-H_2O]^+~394.3245~ (C_{28}H_{42}O)~ (18),~ [M-H_2O-Me]^+~379.3023~ (C_{27}H_{39}O)~ (5),~ [M-C_7H_{14}]^+~314.2216~ (C_{21}H_{30}O_2)~ (68),~ [M-C_3H_1]^+~369.2800~ (C_{25}H_{37}O_2)~ (24),~351.2667~ (C_{25}H_{35}O)~ (6),~287.2025~ (C_{19}H_{27}O_2)~ (100),~285.1875~ (C_{19}H_{25}O_2)~ (47),~269.1888~ (C_{19}H_{25}O)~ (40),~245.1530~ (C_{16}H_{21}O_2)~ (13),~227.1415~ (C_{19}H_{19}O)~ (8).$

 $(22E,24S)-3\beta-Hydroxy-24-metbylcholesta-5,22-dien-7-one~ \cite{5}. —Ft-ir~ (film)~ \nu~ max~ 3391,~ 1672~ cm^{-1};~ uv~ \lambda~ max~ (CHCl_3)~ 238~ nm~ ($\epsilon=9850);~ [\alpha] D~ -62~ ($\epsilon=0.19, CHCl_3);~ ^1H~ nmr~ (CDCl_3)~ \delta~ 5.68~ (1H,~d,~J=1.5~ Hz,~H-6),~ 5.17~ (2H,~m,~H-22~ and~H-23),~ 3.67~ (1H,~bm,~H_{ar}-3),~ 2.50~ (1H,~dd,~J=14.7,~ 5.1~ and~ 2.2~ Hz,~H_{eq}-4),~ 2.39~ (1H,~ddd,~J=14.7,~ 14.7,~ and~ 1.5~ Hz,~H_{ar}-4),~ 2.24~ (1H,~dd,~J=11.0~ and~ 11.0~ Hz,~H-8),~ 2.01~ (1H,~m,~H-20),~ 1.84~ (1H,~sextet,~J=6.1~ Hz,~H-24),~ 1.46~ (1H,~septet,~J=6.6~ Hz,~H-25),~ 1.20~ (3H,~s,~H_3-19),~ 1.01~ (3H,~d,~J=6.6~ Hz,~H_3-21),~ 0.91~ (3H,~d,~J=6.6~ Hz,~H_3-28),~ 0.84~ (3H,~d,~J=6.6~ Hz,~H_3-26~ or~H_3-27),~ 0.82~ (3H,~d,~J=6.6~ Hz,~H_3-27~ or~H_3-26),~ 0.69~ (3H,~s,~H_3-18);~ hrms~m/z~ (rel.~int...)~ [M]^+~ 412.3347~ (calcd~ for~C_{28}H_{44}O_2,~ 412.3341)~ (60),~ [M-Me]^+~ 397.3130~ (C_{27}H_{41}O_2)~ (13),~ [M-H_2O]^+~ 394.3230~ (C_{28}H_{42}O)~ (16),~ [M-H_2O-Me]^+~ 379.3015~ (C_{27}H_{39}O)~ (7),~ [M-C_7H_{14}]^+~ 314.2246~ (C_{21}H_{30}O_2)~ (78),~ [M-C_3H_1]^+~ 369.2813~ (C_{25}H_{37}O_2)~ (19),~ 287.2020~ (C_{19}H_{27}O_2)~ (100),~ 285.1860~ (C_{19}H_{25}O_2)~ (45),~ 269.1884~ (C_{19}H_{25}O)~ (36),~ 245.1553~ (C_{16}H_{21}O_2)~ (16),~ 227.1447~ (C_{19}H_{19}O)~ (12).$

 $(24S)-3\beta-Hydroxy-24-ethylcbolest-5-en-7-one \cite{G} and (24R)-3\beta-hydroxy-24-ethylcbolest-5-en-7-one \cite{G} and (24R)-3\beta-hydroxy-24-ethylcbolest-24-eth$

Cholest-5-ene-3 β , 7β -diol [8].—Ft-ir (film) ν max 3421 cm⁻¹; $[\alpha]D + 3$ (c=0.12, CHCl₃) {lit. (13) $[\alpha]D + 3$ }; 1H nmr (CDCl₃) δ 5.29 (1H, dd, J=2.2 and 2.2 Hz, H-6), 3.85 (1H, bdd, J=7.7 and 2.2 Hz, H₀-7), 3.54 (1H, bm, H₁₁-3), 2.34 (1H, ddd, J=13.7, 4.9 and 1.6 Hz, H₁₂-4), 2.25 (1H, bdd, J=13.7 and 13.7 Hz, H₁₁-4), 1.05 (3H, s, H₃-19), 0.92 (3H, d, J=6.0 Hz, H₃-21), 0.86 (6H, d, J=6.7 Hz, H₃-26 and H₃-27), 0.69 (3H, s, H₃-18); hrms m/z (rel. int.) [M]⁺ 402.3534 (calcd for C₂₇H₄₆O₂, 402.3397)(8), [M-H₂O]⁺ 384.3396 (C₂₇H₄₄O) (100), [M-H₂O-15]⁺ 369.3165 (C₂₆H₄₁O) (4), [M-2H₂O]⁺ 366.3280 (C₂₇H₄₂O (48), [M-2H₂O-15]⁺ 351.3029 (C₂₆H₃₉O)(8), [M-side chain -H₂O]⁺ 271.2066 (C₁₉H₂₇O) (4), [M-side chain -2H₂O]⁺ 253.1962 (C₁₉H₂₅) (9), [M-H₂O and ring D fission]⁺ 229.1582 (C₁₆H₂₁) (1) [M-2H₂O and ring D fission]⁺ 211.1486 (C₁₆H₁₉) (7).

(22E)-Cholesta-5,22-diene-3 β ,7 β -diol {9}.—Ft-ir (film) ν max 3421 cm⁻¹; [α]D 34 (c=0.09, CHCl₃); ¹H nmr (CDCl₃) δ 5.30 (1H, ddd, J=15.4, 6.0, and 6.0 Hz, H-23), 5.29 (1H, dd, J=2.2 and 2.2 Hz, H-6), 5.20 (1H, dd, J=15.4 and 7.1 Hz, H-22), 3.84 (1H, bdd, J=7.7 and 2.2 Hz, H_{α}-7), 3.54 (1H, bm, H_{α}-3), 2.34 (1H, ddd, J=13.7, 4.9, and 1.6 Hz, H_{α}-4), 2.25 (1H, bdd, J=13.7 and 13.7 Hz, H_{α}-4), 1.05 (3H, s, H₃-19), 1.01 (3H, d, J=6.6 Hz, H₃-21), 0.86 (6H, d, J=6.7 Hz, H₃-26 and H₃-27), 0.70 (3H, s, H₃-18); ms m/z [M] $^+$ 400, [M-H₂O] $^+$ 382, [M-2H₂O] $^+$ 364, 289, 271, 253.

(22E,24R)-24-Methylcholesta-5,22-diene-3β,7β-diol [10].—Ft-ir (film) ν max 3420 cm⁻¹; ¹H nmr (CDCl₃) δ 5.29 (1H, dd, J=2.2 and 2.2 Hz, H-6), 5.18 (2H, m, H-22 and H-23), 3.85 (1H, bdd, J=7.7 and 2.2 Hz, H_α-7), 3.54 (1H, bm, H_ω-3), 2.34 (1H, ddd, J=13.7, 4.9, and 1.6 Hz, H_ω-4), 2.25 (1H, bdd, J=13.7 and 13.7 Hz, H_ω-4), 1.05 (3H, s, H₃-19), 1.02 (3H, d, J=6.6 Hz, H₃-21), 0.91 (3H, d, J=6.6 Hz, H₃-28), 0.83 (3H, d, J=6.7 Hz, H₃-26 or H₃-27), 0.82 (3H, d, J=6.6 Hz, H₃.27 or H₃-26), 0.70 (3H, s, H₃-18); ms m/z [M]⁺ 414, [M-H₂O]⁺ 396, [M-2H₂O]⁺ 378, [M-side chain]⁺ 289, 287, 271, 253.

(22E,24S)-24-Methylcholesta-5,22-diene-3 β ,7 β -diol {11}.—Fr-ir (film) ν max 3422 cm⁻¹; [α]D = 6 (ϵ =0.14, CHCl₃); ¹H nmr (CDCl₃) δ 5.29 (1H, dd, J=2.2 and 2.2 Hz, H-6), 5.18 (2H, m, H-22 and H-23), 3.85 (1H, bdd, J=7.7 and 2.2 Hz, H_{α}-7), 3.54 (1H, bm, H_{α}-3), 2.34 (1H, ddd, J=13.7, 4.9, and 1.6 Hz, H_{α}-4), 2.25 (1H, bdd, J=13.7, and 13.7 Hz, H_{α}-4), 1.05 (3H, s, H₃-19), 1.01 (3H, d, J=6.6 Hz, H₃-21), 0.91 (3H, d, J=6.6 Hz, H₃-26), 0.70 (3H, s, H₃-18); mass spectral data are identical with those of 10.

Cholest-5-ene-3 β , 7 α -diol [14].—Ft-ir (film) ν max 3420 cm⁻¹; { α]D -98 (ϵ =0.17, CHCl₃) {lit. (13) { α]D -91}; ¹H nmr (CDCl₃) δ 5.60 (1H, d, J=5.6 Hz, H-6), 3.84 (1H, bs, W_{12} =11 Hz, H_{β} -7), 3.61 (1H, bm, H_{α} -3), 2.36 (1H, dd, J=13.7 and 8.2 Hz, H_{cq} -4), 2.28 (1H, dd, J=13.7 and 13.7 Hz, H_{α} -4), 0.92 (3H, d, J=6.0, H_{3} -21), 1.00 (3H, s, H_{3} -19), 0.86 (6H, d, J=6.7, H_{3} -26 and H_{3} -27), 0.70 (3H, s, H_{3} -18); mass spectral data are identical with those of **8**.

(22E)-Cholesta-5,22-diene-3 β ,7 α -diol [15].—Ft-ir (film) ν max 3421 cm⁻¹; [α]D -76.7 (c=0.05, CHCl₃); ¹H nmr (CDCl₃) δ 5.60 (1H, d, J=5.5 Hz, H-6), 5.29 (1H, ddd, J=15.4, 6.0 and 6.0 Hz, H-23), 5.20 (1H, dd, J=15.4 and 7.1 Hz, H-22), 3.84 (1H, bs, $W_{1/2}$ =11 Hz, H_{β} -7), 3.61 (1H, bm, H_{sx} -3), 2.36 (1H, dd, J=13.7 and 8.2 Hz, H_{sc} -4), 2.28 (1H, dd, J=13.7 and 13.7 Hz, H_{sc} -4), 1.03(3H, d, J=6.7 Hz, H_{3} -21), 1.00 (3H, s, H_{3} -19), 0.86 (6H, d, J=6.7 Hz, H_{3} -26 and H_{3} -27), 0.70 (3H, s, H_{3} -18); mass spectral data are identical with those of 9.

(22E,24R)-24-Methylcholesta-5,22-diene-3 β ,7 α -diol [16].—Ft-ir (film) ν max 3421 cm⁻¹; ¹H nmr (CDCl₃) δ 5.60 (1H, d, J=5.5 Hz, H-6), 5.19 (1H, dd, J=14.8 and 6.6 Hz, H-23), 5.15 (1H, dd, J=14.8 and 6.0 Hz, H-22), 3.84 (1H, bs, $W_{1/2}$ =11 Hz, H_{β} -7), 3.61 (1H, bm, $H_{\alpha z}$ -3), 2.36 (1H, dd, J=13.7 and 8.2 Hz, $H_{\alpha z}$ -4), 2.28 (1H, dd, J=13.7 and 13.7 Hz, $H_{\alpha z}$ -4), 1.02 (3H, d, J=6.6 Hz, H_{3} -21), 1.00 (3H, s, H_{3} -19), 0.91 (3H, d, J=6.6 Hz, H_{3} -28), 0.83 (3H, d, J=6.7 Hz, H_{3} -26 or H_{3} -27), 0.82 (3H, d, J=6.6 Hz, H_{3} -27 or H_{3} -26), 0.70 (3H, s, H_{3} -18); mass spectral data are identical with those of 10.

 $(22\text{E},24\text{S})-24-\textit{Methylcholesta-5},22-\textit{diene-3}\beta,7\alpha-\textit{diol}\,[17].--\text{Ft-ir}\,(\text{film})\,\nu\,\text{max}\,3423\,\text{cm}^{-1}; [\alpha]\text{D}\,-73.3\,(c=0.08,\text{CHCl}_3);\,\,^1\text{H}\,\text{nmr}\,(\text{CDCl}_3)\,\delta\,5.60\,(1\text{H},\,\text{d},J=5.5\,\text{Hz},\text{H-6}),\,5.19\,(1\text{H},\,\text{dd},J=14.8\,\text{and}\,6.6\,\text{Hz},\,\text{H-23}),\,5.15\,(1\text{H},\,\text{dd},J=14.8\,\text{and}\,6.0\,\text{Hz},\,\text{H-22}),\,3.84\,(1\text{H},\,\text{bs},\,\text{W}_{1/2}=11\,\text{Hz},\,\text{H}_{\beta}-7),\,3.61\,(1\text{H},\,\text{bm},\,\text{H}_{eq}-3),\,2.36\,(1\text{H},\,\text{dd},J=13.7\,\text{and}\,8.2\,\text{Hz},\,\text{H}_{eq}-4),\,2.28\,(1\text{H},\,\text{dd},J=13.7\,\text{and}\,13.7\,\text{Hz},\,\text{H}_{eq}-4),\,1.01\,(3\text{H},\,\text{d},J=6.6\,\text{Hz},\,\text{H}_3-21),\,1.00\,(3\text{H},\,\text{s},\,\text{H}_3-19),\,0.91\,(3\text{H},\,\text{d},J=6.6\,\text{Hz},\,\text{H}_3-28),\,0.83\,(3\text{H},\,\text{d},J=6.7\,\text{Hz},\,\text{H}_3-26\,\text{or}\,\text{H}_3-27),\,0.82\,(3\text{H},\,\text{d},J=6.6\,\text{Hz},\,\text{H}_3-27\,\text{or}\,\text{H}_3-26),\,0.70\,(3\text{H},\,\text{s},\,\text{H}_3-18);\,\text{mass spectral data are identical with those of}\,11.$

Synthesis of 3 β -hydroxycholest-5-en-7-one {2}, cholest-5-ene-3 β ,7 β -Diol [8], and its 7 α EPIMER 14.—3 β -hydroxycholest-5-en-7-one {2} was synthesized starting from cholest-5-en-3 β -ol 3-acetate and PCC following the procedure described by Parish *et al.* (8) for cholest-5-en-3 β -ol 3-benzoate. Reduction of compound 2 with LiAlH₄ in Et₂O at 35° for 1.5 h as described by Shoppee and Newman (13) afforded a 5:1 mixture of the 7 β and 7 α epimers of cholest-5-ene-3 β ,7-diol, which were separated by hplc on a Hibar LiChrosorb Si-60 column (250×10 mm) using CHCl₃-MeOH (99.5:0.5) as eluent. All spectral data of compounds 8 and 14 are in agreement with the literature values (6,13). The ¹H-nmr and mass spectra of synthetic products 2, 8, and 14 were identical in all respects with those of the natural products.

ACKNOWLEDGMENTS

This research was supported by M.U.R.S.T. Mass spectral data were provided by the Servizio di Spettrometria di Massa del CNR e dell'Universita' di Napoli. The assistance of the staff is gratefully acknowledged. We also thank the Stazione Zoologica di Napoli for supplying the sponge.

LITERATURE CITED

- 1. D.J. Faulkner, Nat. Prod. Rep., 7, 269 (1990), and references cited therein.
- 2. G. Notaro, V. Piccialli, and D. Sica, J. Nat. Prod., 54, 1570 (1991).
- 3. J.A. Findlay and A.D. Patil, Can. J. Chem., 63, 2406 (1985).
- 4. G. Schroeder, M. Rohmer, J.P. Beck, and R. Anton, Phytochemistry, 19, 2213 (1980).
- 5. M. Della Greca, P. Monaco, and L. Previtera, J. Nat. Prod., 53, 1430 (1990).
- 6. V. Kumar, A. Amann, G. Ourisson, and B. Luu, Synth. Commun., 17, 1279 (1987).
- 7. J.W. Blunt and J.B. Stothers, Org. Magn. Reson., 9, 439 (1977).
- 8. E.J. Parish, S. Chitrakorn, and T.-Y. Wei, Synth. Commun., 16, 1371 (1986).
- 9. L. Tokes, G. Jones, and D. Djerassi, J. Am. Chem. Soc., 90, 5465 (1968).
- 10. S.G. Wyllie and C. Djerassi, J. Org. Chem., 33, 305 (1968).
- 11. Y. Hirano and C. Djerassi, J. Org. Chem., 47, 2420 (1982).
- 12. I. Rubinstein, L.J. Goad, A.D.H. Clague, and L.J. Mulheirn, Phytochemistry, 15, 195 (1976).
- 13. C.W. Shoppee and B.C. Newman, J. Chem. Soc. C, 981 (1968).
- 14. E.J. Parish and A.D. Scott, J. Org. Chem., 48, 4766 (1983).

Received 24 March 1992