DOI: 10.34010/komputika.v8i2.2254

ISSN: 2252-9039 (print) ISSN: 2655-3198 (online)

Penerapan Logika Fuzzy Mamdani untuk Prediksi Pengadaan Peralatan Rumah Tangga Rumah Sakit

Sri Nurhayati^{1*}, Iman Immanudin²

^{1,2)}Program Studi Sistem Komputer, Fakultas Teknik dan Ilmu Komputer, Universitas Komputer Indonesia Jl. Dipati Ukur No. 112 – 116, Bandung, Indonesia 40132

*email: sri.nuthayati@email.unikom.ac.id

ABSTRAK – Penelitian ini bertujuan untuk menganalisis apakah logika fuzzy mamdani dapat digunakan untuk memprediksi pengadaaan peralatan rumah tangga rumah sakit. Untuk menunjang pelayanan di dalam rumah sakit, tentu saja dibutuhkan peralatan serta fasilitas guna terlaksananya tujuan dari rumah sakit itu sendiri. Salah satu fasilitas untuk menunjang pelayanan rumah sakit adalah peralatan rumah tangga seperti lampu pasien, nampan, standar infus, trolly obat, dan lain-lain. Proses pengadaaan peralatan rumah tangga dilakukan dengan membuat perkiraan dari banyak dan sedikitnya jumlah peralatan yang tersedia. Kegiatan ini dilakukan karena jumlah kebutuhan setiap tahunnya berbeda-beda. Karena ketidakpastian dari jumlah kebutuhan, maka dibutuhkan logika fuzzy untuk memecahkan masalah ini. Setiap data yang digunakan pada logika fuzzy ditentukan nilai himpunan fuzzynya, fungsi keanggotaan, rule yang digunakan, fungsi implikasi, dan defuzzyfikasi. Proses nilai tengah galat persen atau MPE (Mean Percentage Error) digunakan untuk melihat nilai kebenaran dari perhitungan jumlah pengadaaan peralatan. Proses prediksi jumlah pengadaan peralatan rumah tangga dilakukkan dengan menggunakan data input jumlah stok peralatan dan jumlah kondisi peralatan yang rusak. Hasil dari penelitian menunjukkan bahwa logika fuzzy mamdani dapat digunakan untuk prediksi peralatan rumah tangga dengan tingkat kebenaran 80,1%.

Kata kunci : Prediksi; Ketidakpastian; Logika fuzzy; Mean Percentage Error.

Application of Fuzzy Mamdani Logic for Procurement Predictions Hospital Household Appliances

ABSTRACT – This study aims to analyze whether the Mamdani fuzzy logic can be used to predict the availability of hospital household equipment. To support services in hospitals, of course equipment and facilities are needed to carry out the objectives of the hospital itself. One of the facilities to support hospital services is household equipment such as patient lights, trays, standard infusion, drug trolly, and others. The process of procuring household appliances is done by estimating the amount and the least amount of equipment available. This activity is carried out because the number of needs each year varies. Because of the uncertainty of the number of requirements, fuzzy logic is needed to solve this problem. Each data used in fuzzy logic is determined the value of the fuzzy set, the membership function, the rules used, the implication function, and defuzzyfication. The median error process or MPE (Mean Percentage Error) is used to see the truth value from the calculation of the number of available equipment. The process of predicting the number of household equipment procurement is done by using input data on the number of equipment stock and the number of conditions of damaged equipment. The results of the study indicate that the Mamdani fuzzy logic can be used for household equipment predictions with an 80.1% truth level.

Keywords: Prediction; Uncertainty; Fuzzy Logic; Mean Percentage Error.

1. PENDAHULUAN

Sebagai salah satu layanan kesehatan, rumah sakit diharapkan dapat memberikan layanan yan gbaik dan berkualitas terhadap pasiennya. Oleh karena itu dibutuhkan peralatan dan fasilitas agar tercapainya harapan tersebut [1]. Salah satu peralatan yang dibutuhkan di rumah sakit adalah peralatan rumah tangga seperti lampu pasien, nampan, standar infus, *trolly* obat, dan lain-lain.

Untuk melakukan pengadaaan peralatan rumah tangga dilakukan dengan membuat perkiraan dari banyak dan sedikitnya jumlah peralatan yang Kegiatan ini dilakukan karena jumlah tersedia. kebutuhan setiap tahunnya berbeda-beda. Tentunya pada saat melakukan pengadaan peralatan rumah tangga akan melibatkan besarnya dana yang harus dikeluarkan. Pada saat melakukan proses pengadaan akan mengakibatkan tidak semua kebutuhan peralatan terpenuhi atau sering terjadi penumpukan pada peralatan tertentu, sedangkan anggaran dana telah terbagi untuk keperluan instansi yang lain. Proses prediksi merupakan sebuah proses memperkirakan sutu kebutuhan secara sistematis berdasarkan informasi masa lalu dan sekarang yang dimiliki [2][3]. Tujuan proses prediksi adalah mengurangi kesalahan selisih dari kebutuhan data yang akan dipenuhi, dan harapannya hasil prediksi dapat diperkecil. Logika fuzzy adalah logika yang dapat digunakan untuk menganalisisi masalah yang mengandung ketidakpastian, salah satu contohnya proses prediksi. Logika ini dianggap mampu untuk memetakan suatu input ke dalam suatu output tanpa mengabaikan faktor - faktor yang ada [4] [5].

Beberapa penelitian yang dijadikan referensi untuk penelitian ini adalah penelitian yang yang membahas penggunaan logika fuzzy untuk sistem prediksi, penelitian itu antara lain "Penerapan Metode Fuzzy Mamdani untuk Memprediksi Jumlah Produksi Minyak Sawit Berdasarkan Persediaan dan Jumlah Permintaan (Studi Kasus PT Perkebunan Mitra Ogan Baturaja)" oleh , Sukandy, M. Dwi, T. Basuki and S. Puspasari [6], serta dari penelitian dengan judul "Penerapan Metode Fuzzy Mamdani Untuk Memprediksi Jumlah Produksi Karet (Studi Kasus: Data Persediaan Dan Permintaan Produksi Karet Pada PTP NUSANTARA XIV (PERSERO) Kebun Awaya, Teluk Elaputih, Maluku-Indonesia)", oleh Rahakbauw D, Rianekuay F, Lesnussa Y [7], dari penelitian tersebut metode mamdani sudah dapat digunakan memprediksi jumlah produksi.

Selain itu penelitian lain yang digunakan untuk referensi adalah penggunaan metode fuzzy mamdani untuk pengambilan keputusan yaitu pada penelitian yang berjudul "The Coffee Roasting Process Using Fuzzy Mamdani. In *lop Conference Series: Materials Science And Engineering*" oleh S. Nurhayati dan D. Permana [8]. Pada penelitian tersebut telah dibuktikan bahwa metode tersebut sudah dapat dilakukkan untuk pengambilan keputusan.

Dari permasalahan tersebut maka akan diterapkan logika fuzzy mamdani untuk memprediksi pengadaan peralatan rumah tangga rumah sakit dengan tujuan untuk menganalisis apakah logika

fuzzy mamdani dapat digunakan untuk memprediksi pengadaaan peralatan rumah tangga rumah sakit.

2. METODA DAN BAHAN

Data yang digunakan pada penelitian ini adalah data sekunder. Data tersebut berasal dari salah satu Rumah Sakit yang ada di kota Bandung. Jenis data yang dipakai adalah data jumlah persediaan peralatan pada tahun 2016 terdiri dari jenis peralatan, jumlah stok yang tersedia, dan kondisi dari peralatan tersebut., data tersebut dapat dilihat pada tabel 1.

Untuk proses pengolahan data, variable input yang digunakan adalah jumlah stok peralatan dan jummlah kondisi peralatan, sedangkan untuk variable output adalah jumlah pengadaan peralatan. Data tersebut akan digunakan untuk untuk memperkirakan pengadaan peralatan rumah tangga rumah sakit tahun 2017.

Untuk proses prediksi pengadaan peralatan rumah tangga rumah sakit dengan menerapkan logika fuzzy, terdiri dari beberapa tahapan antara lain [9]:

- a. Membuat himpunan fuzzy dimana baik variable input maupun variable output. Pada penelitian ini variabel yang input yang digunakan adalah jumlah stok dan jumlah kondisi barang, sedangkan variabel output adalah jumlah pengadaan peralatan. Untuk tiap variable input dan output memiliki lebih dari satu himpunan fuzzy. Dikarenakan tingkat kebutuhan dari setiap peralatan berbeda maka himpunan fuzzy dari setiap peralatan juga berbeda.
- Setelah membuat himpunan fuzzy dari vartiabel input dan output kemudian dilakukkan membuat aturan fuzzy, dimana fungsi yang digunakann adalah fungsi min.
- Membuat fungsi komposisi dengan menggunakan metode max, dan melakukan penegasan (defuzzy) menggunakan metode centroid.
- d. Kemudian akan dihitung nilai kebenaran dari logika fuzzy yang digunakan. Untuk menghitung nilai kebenaran menggunakan nilai tengah galat persen atau MPE (*Mean Percentage Error*) persamaan dari MPE adalah sebagai berikut [10]:

$$MPE = \frac{\sum_{t=1}^{n} \frac{Y_t}{y_t} x \, 100\%}{n} \tag{1}$$

Dimana Xi adalah nilai data asli amatan ke – i, Fi adalah nilai ramalan amatan ke – i dan n adalah banyak data.

a. Fungsi kenggotaan untuk variabel pengajuan peralatan adalah sebagai berikut :

Tabel 1. Persediaan Peralatan Rumah Tangga Tahun 2016

No	Jenis Barang / Alat	Stok	Kondisi Barang Rusak
1	Lemari Emergency	50	25
2	Light Cast	30	60
3	Handtaizer	100	43
4	Meja Pasien	52	40
5	Nampan	100	26
6	Tempat Tidur Biasa	80	10
7	Tempat Tidur Fungsional	93	12
8	Lampu Kunci Duplikat	150	35
9	Lampu Senter	50	10
10	Standar Infus	110	41
11	Lampu Sudut	50	52
12	Baskom Mandi Pasien	60	70
13	Standar Waskom Double	35	8
14	Over Bed Tabel	40	65
15	Trolly Obat	45	95
16	Trolly Balut	34	59
17	AC	25	53

3. HASIL DAN PEMBAHASAN

Proses perhitungan pengadaan peralatan jumah tangga rumah sakit menggunakan fuzzy mamdani dengan tahap sebagai berikut:

3.1. Penentuan Himpunan fuzzy

Dalam menentukan prediksi pengadaan peralatan didasarkan pada data stok barang dan data jumlah kondisi barang yang rusak. Dikarenakan setiap peralatan mempunyai tingkat kebutuhan yang berbeda maka himpunan fuzzy dari setiap peralatan juga berbeda. Adapun himpunan fuzzy untuk variabel stok dan kondisi barang rusak dapat dilihat pada tabel 2 dan 3, sedangkan untuk variabel pengadaan dapat dilihat pada 4.

Berdasarkan tabel 2, 3 dan 4 dibuatlah nilai keanggotaan dan fungsi dari setiap peralatan. Dikarenakan setiap peralatan mempunyai himpunan fuzzy yang berbeda maka nilai dan fungsinya juga berbeda.

Untuk perhitungan variabel output atau nilai pengadaan dari peralatan rumah tangga rumah sakit mengambil contoh peralatan lemari emergency. Dari tabel 2, 3, dan 4 untuk peralatan lemari emergency di dapat didapat nilai kengagotaan untuk variabel input jumlah stok dan kondisi peralatan, dan variabel output pengadaan peralatan, nilai keanggotaan dapat dilihat pada gambar 1.

Dari gambar 1 nilai keanggotaan peralatan lemari emergency, maka fungsi keanggotaan dari setiap variabel adalah sebagai berikut:

Gambar 1. Nilai Keanggotaan Untuk lemari Emergency

a. Fungsi keanggotaan untuk variabel input jumlah stok adalah sebagai berikut :

$$\mu sedikit = \begin{cases} 1; x \le 20\\ \frac{30-x}{10}; 20 \le x \le 30\\ 0; x \ge 30 \end{cases}$$
 (2)

$$\mu sedang = \begin{cases} 0; x \le 20 \ atau \ x \ge 40 \\ ; \frac{x-20}{20}; \ 20 \le x \le 30 \\ \frac{40-x}{10}; \ 30 \le x \le 40 \end{cases}$$
(3)

$$\mu banyak = \begin{cases} 0; x \le 30\\ \frac{x-30}{10}; 30 \le x \le 30\\ 1; x \ge 40 \end{cases}$$
 (4)

b. Fungsi kenggotaan untuk variabel kondisi barang rusak adalah sebagai berikut:

$$\mu sedikit = \begin{cases} 1; x \le 20\\ \frac{40-x}{20}; 20 \le x \le 40\\ 0; x \ge 40 \end{cases}$$
 (5)

$$\mu sedang = \begin{cases} 0; x \le 20 \ atau \ x \ge 60 \\ ; \frac{x-20}{20}; \ 20 \le x \le 40 \\ 2; 40 \le x \le 40 \end{cases}$$
 (6)

$$\mu banyak = \begin{cases} \frac{0; x \le 40}{20}; & 40 \le x \le 60\\ 1; & x \ge 60 \end{cases}$$
 (7)

$$\mu sedikit = \begin{cases} 1; x \le 20\\ \frac{40-x}{20}; 20 \le x \le 40\\ 0; x \ge 40 \end{cases}$$
 (8)

$$\mu sedang = \begin{cases} 0; x \le 20 \ atau \ x \ge 60 \\ ; \frac{x-20}{20}; \ 20 \le x \le 40 \\ 2; 40 \le x \le 40 \end{cases}$$
 (9)

$$\mu banyak = \begin{cases} 0; x \le 40\\ \frac{x-40}{20}; 40 \le x \le 60\\ 1; x \ge 60 \end{cases}$$
 (10)

3.2. Penentuan Fuzzy rule

Tahapan ini dilakukkan unuk membuat aturan fuzzy dari ketiga himpunan yautu himpunan jumlah stok peralatan, kondisi peralatan, dan pengadaan peralatan. Aturan ini digunakan untuk membuat fungsi komposisi aturan. Dari data yang sudah ada maka didapat 9 aturan Fuzzy yang akan dipakai dalam sistem ini, dengan susunan aturan IF stok IS ... AND kondisi barang IS ... THEN produksi IS

Tabel 2 Himpunan Fuzzy Variabel Stok

No	Jenis Barang / Alat	Semesta Pembicaraan	Himpunan Fuzzy		
NO			Sedikit	Sedang	Banyak
1	Lemari Emergency	[0-60]	[0-20]	[20-40]	[30 60]
2	Light Cast	[0-100]	[0-40]	[40-80]	[60-100]
3	Handtaizer	[0-200]	[0-50]	[50-150]	[100-200]
4	Meja Pasien	[0-80]	[0-20]	[20-60]	[40-80]
5	Nampan	[0-150]	[0-60]	[60-120]	[90-150]
6	Tempat Tidur Biasa	[0-120]	[0-30]	[30-90]	[60-120]
7	Tempat Tidur Fungsional	[0-120]	[0-30]	[30-90]	[60-120]
8	Lampu Kunci Duplikat	[0-250]	[0-50]	[50-200]	[125-250]
9	Lampu Senter	[0-100]	[0-20]	[20-60]	[40-100]
10	Standar Infus	[0-150]	[0-50]	[50-100]	[75-150]
11	Lampu Sudut	[0-120]	[0-20]	[20-80]	[50-120]
12	Baskom Mandi Pasien	[0-120]	[0-20]	[20-80]	[50-120]
13	Standar Waskom Double	[0-60]	[0-20]	[20-40]	[30-60]
14	Over Bed Tabel	[0-120]	[0-20]	[20-80]	[50-120]
15	Trolly Obat	[0-120]	[0-20]	[20-80]	[50-120]
16	Trolly Balut	[0-60]	[0-20]	[20-40]	[30-60]
17	AC	[0-60]	[0-20]	[20-40]	[30-60]

Tabel 3. Himpunan Fuzzy Variabel Kondisi Barang Rusak

	Tabel 5. Himpunan ruzzy variabel Kondisi barang Kusak					
No	Jenis Barang / Alat	Semesta	Himpunan Fuzzy			
		Pembicaraan	Sedikit	Sedang	Banyak	
1	Lemari Emergency	[0-100]	[0-20]	[20-60]	[40 100]	
2	Light Cast	[0-100]	[0-30]	[30-70]	[50-100]	
3	Handtaizer	[0-150]	[0-50]	[50-100]	[75-150]	
4	Meja Pasien	[0-80]	[0-30]	[30-60]	[45-80]	
5	Nampan	[0-100]	[0-30]	[30-60]	[45-100]	
6	Tempat Tidur Biasa	[0-60]	[0-20]	[20-50]	[35-60]	
7	Tempat Tidur Fungsional	[0-60]	[0-10]	[10-40]	[25-60]	
8	Lampu Kunci Duplikat	[0-100]	[0-30]	[30-60]	[45-100]	
9	Lampu Senter	[0-100]	[0-20]	[20-60]	[40-100]	
10	Standar Infus	[0-100]	[0-30]	[30-60]	[45-150]	
11	Lampu Sudut	[0-100]	[0-30]	[30-60]	[45-100]	
12	Baskom Mandi Pasien	[0-100]	[0-30]	[30-60]	[45-100]	
13	Standar Waskom Double	[0-100]	[0-20]	[20-60]	[40-80]	
14	Over Bed Tabel	[0-100]	[0-30]	[30-60]	[45-100]	
15	Trolly Obat	[0-100]	[0-30]	[30-60]	[45-100]	
16	Trolly Balut	[0-100]	[0-20]	[20-60]	[40-80]	
17	AC	[0-100]	[0-20]	[20-60]	[40-80]	

Tabel 4. Himpunan Fuzzy Variabel Pengadaan

Na	Jenis Barang / Alat	Semesta	Himpunan Fuzzy			
No		Pembicaraan	Sedikit	Sedang	Banyak	
1	Lemari Emergency	[0-30]	[0-5]	[5-15]	[15 30]	
2	Light Cast	[0-100]	[0-20]	[20-60]	[40-100]	
3	Handtaizer	[0-150]	[0-50]	[0-100]	[75-150]	
4	Meja Pasien	[0-100]	[0-60]	[60-90]	[75-100]	
5	Nampan	[0-100]	[0-60]	[60-110]	[75-100]	
6	Tempat Tidur Biasa	[0-150]	[0-10]	[10-30]	[20-50]	
7	Tempat Tidur Fungsional	[0-50]	[0-10]	[10-30]	[20-50]	
8	Lampu Kunci Duplikat	[0-50]	[0-30]	[30-60]	[45-100]	
9	Lampu Senter	[0-50]	[0-5]	[5-25]	[15-50]	
10	Standar Infus	[0-150]	[0-50]	[50-100]	[75-150]	
11	Lampu Sudut	[0-80]	[0-30]	[30-60]	[45-80]	
12	Baskom Mandi Pasien	[0-200]	[0-70]	[70-150]	[110-200]	
13	Standar Waskom Double	[0-50]	[0-10]	[10-30]	[20-50]	
14	Over Bed Tabel	[0-150]	[0-50]	[50-100]	[75-150]	
15	Trolly Obat	[0-150]	[0-50]	[50-100]	[75-150]	
16	Trolly Balut	[0-150]	[0-50]	[50-100]	[75-150]	
17	AC	[0-80]	[0-20]	[20-60]	[40-80]	

Dari tabel 2, 3 dan 4 maka aturan (rule) yang digunakan untuk mendapatkan output berupa nilai prediksi untuk pengadaan peralatan terdiri dari 9 aturan (rule). Aturan tersebut dapat dilihat pada tabel 5.

Tabel 5. Aturan (rule) yang digunakan

Kondisi				
No	Stok	barang	Pengajuan	
		Rusak		
R1	Sedikit	Sedikit	Sedikit	
R2	Sedikit	Sedang	Sedikit	
R3	Sedikit	Banyak	Sedikit	
R4	Sedang	Sedikit	Sedikit	
R5	Sedang	Sedang	Sedikit	
R6	Sedang	Banyak	Sedikit	
R7	Banyak	Sedikit	Sedikit	
R8	Banyak	Sedang	Banyak	
R9	Banyak	Banyak	Banyak	

3.3. Fungsi Implikasi

Tahapan ini digunakan untuk mencari fungsi impikasi. Untuk fungsi implikasi pada perhitungan fuzzy digunakan fungsi Min.

Sebagai contoh diambil data untuk peralatan lemari emergency, dimana variabel jumlah stok peralatan 50 dan variabel jumlah kondisi barang rusak 25, dan variabel jumpah pengadaan 8.

Maka nilai dari setiap aturannya adalah sebagai berikut:

R1 : min(0; 0.8; 0.6) = 0

R2: min (0; 0,3; 0,6) = 0 R3: min (0; 0; 0,6) = 0 R4: min (0; 0,8; 0,6) = 0 R5: min (0; 0,3; 0,6) = 0,3 R6: min (0; 0; 0,6) = 0 R7: min (1; 0,8; 0,6) = 0,6 R8: min (1; 0,3; 0,6) = 0,6

R9 : min(1; 0; 0) = 0

Komposisi aturan yang digunakan untuk data tersebut maka didapat fungsi keanggotaan komposisi sebagai berikut :

$$\mu(z) = \begin{cases} 0.3 ; z \ge 5\\ \frac{z-5}{6} ; 5 \le z \le 11\\ 0.6 ; 11 \le z \le 15.5\\ \frac{20-z}{4.5} ; 15.5 \le z \le 20 \end{cases}$$
 (11)

3.4. Defuzzyfikasi

Defuzzyfikasi merupakan tahapan terakhir yang dilakukan terhadap proses *fuzzifikasi* untuk mendapatkan nilai tegas dilakukan dengan *metode weighted average*. Nilai ini digunakan untuk variabel output yaitu variabel pengadaan peralatan. Defuzzifikasi dilakukan dengan menggunakan metode centroid.

Untuk peralatan lemari mergency, daerah solusi fuzzy dapat dilihat pada gambar 2. Dimana untuk mencari nilai titik pusat (z) dilakukan dengan membagi daerah menjadi 4 bagian yaitu A1, A2, A3, dan A4. Luas dari setiap daerah adalah adalah D1,

Tabel 7. Hasil Perbandingan Perhitungan Menggunakan Fuzzy

No	Jenis Barang / Alat	Pengadaan	Fuzzy	Error	MSE
1	Lemari Emergency	8	7	1	12,5
2	Light Cast	50	43	7	14
3	Handtaizer	101	106	5	4,95
4	Meja Pasien	52	55	3	5,77
5	Nampan	42	32	10	23,81
6	Tempat Tidur Biasa	3	3	0	0
7	Tempat Tidur Fungsional	5	7	2	40
8	Lampu Kunci Duplikat	50	52	2	4
9	Lampu Senter	10	13	3	30
10	Standar Infus	55	60	5	9,09
11	Lampu Sudut	30	40	10	33,33
12	Baskom Mandi Pasien	101	104	3	2,97
13	Standar Waskom Double	18	14	4	22,22
14	Over Bed Tabel	80	71	9	11,25
15	Trolly Obat	91	76	15	16,48
16	Trolly Balut	85	84	1	1,18
17	AC	20	38	18	90

D2, D3, dan D4, dan momen nilai kengagotaannya adalah M1, M2, M3, dan M4.

Dari gambar 2, didapat total nilai momen keanggotaannya adalah 58,95 dan luas daerah fuzzynya adalah 8,25, sehingga titik pusat atau nilai fuzzyfikasinya adalah 58,95/8,25 = 7,2.

Gambar 2. Solusi daerah fuzzy

Dari perhitungan tersebut, maka jumlah lemari emergency yang dapat diajukan untuk pengadaan sebanyak 7 buah.

Setelah dilakukan perhitungan untuk 17 peralatan yang ada di tabel 1, maka hasil perhitunan perbandingan perhitungan fuzzy dapat dilihat pada tabel 6.

Dari tabel 7, diperoleh rata-rata persentase kesalahan dari perhitungan fuzzy yang digunakan adalah 321,56 dibagi 17 atau sama dengan 18,9%. Sedangkan tingkat kebenaran dari hasil perhitungan tersebut adalah 100 % dikurangi 18,9% atau sama dengan 81,1%.

Dari data tersebut disimpulkan bahwa hasil perhitungan fuzzy dapat digunakan untuk perkiraan pengadaan peralatan rumah tangga rumah sakit

4. KESIMPULAN

Dari hasil dan pembahasan pada penelitian ini mendapatkan kesimpulan bahwa logika fuzzy mamdani dapat digunakan untuk prediksi pengadaan peralatan rumah tangga rumah sakit berdasarkan jumlah stok peralatan yang ada dan jumlah kondisi peralatan yang rusak. Logika fuzzy juga dapat digunakan karena tingkat kebenaran mencapai 81,1 %.

Saran untuk penelitian berikutnya adalah agar lebih memperhatikan semesta pembicaraan dari setiap himpunan fuzzy yang digunakan, serta lebih diperhatikan variable input yang digunakan untuk menentukan perkiraan pengadaan peralatan rumah tangga rumah sakit.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Universitas Komputer Indonesia yang sudah mendanai sehingga penulis dapat menyelesaikan penelitian ini.

DAFTAR PUSTAKA

- [1] W. Adisasmito, "Sistem Kesehatan Nasional," PT. Rajagrafindo Persada, 2007.
- [2] T. D. Andini and P. Auristandi, "Peramalan Jumlah Stok Alat Tulis Kantor di UD Achmad

- Jaya Menggunakan Metode Double Exponential Smoothing," J. Ilm. Teknol. Inf. Asia, 2016.
- [3] M. S. Mustaqbal, R. F. Firdaus, and H. Rahmadi, "(Studi Kasus: Aplikasi Prediksi Kelulusan SNMPTN)," Penguji. Apl. Menggunakan Black Box Test. Bound. Value Anal. (Studi Kasus Apl. Prediksi Kelulusan SNMPTN), 2015.
- [4] S. Kusumadewi & H. Purnomo, *Aplikasi Logika Fuzzy untuk Pendukung Keputusan*. Yogyakarta: Graha Ilmu, 2004.
- [5] E. A. Nugroho, "Sistem Pengendali Lampu Lalulintas Berbasis Logika Fuzzy," J. SIMETRIS, 2017
- [6] D. M. Sukandy, A. T. Basuki, and S. Puspasari, "Penerapan Metode Fuzzy Mamdani Untuk Memprediksi Jumlah Produksi Minyak Sawit Berdasarkan Data Persediaan Dan Jumlah Permintaan (Studi Kasus Pt Perkebunan Mitra Ogan Baturaja)," Progr. Stud. Tek. Inform., 2014.
- [7] D. L. Rahakbauw, F. J. Rianekuay, and Y. A. Lesnussa, "Penerapan Metode Fuzzy Mamdani Untuk Memprediksi Jumlah Produksi Karet (Studi Kasus: Data Persediaan Dan Permintaan Produksi Karet Pada PTP NUSANTARA XIV (PERSERO) Kebun Awaya, Teluk Elaputih, Maluku-Indonesia)," J. Ilm. Mat. dan Terap. Vol. 16, No.1, 2019.
- [8] S. Nurhayati and D. Pramanda, "The Coffee Roasting Process using Fuzzy Mamdani," in *IOP Conference Series: Materials Science and Engineering*, 2018.
- [9] H. Sutisna and N. C. Basjaruddin, "SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PEKERJAAN MENGGUNAKAN METODE FUZZY MAMDANI STUDI KASUS: AMIK BSI TASIKMALAYA," J. Inform., 2016.
- [10] A. de Myttenaere, B. Golden, B. Le Grand, and F. Rossi, "Mean Absolute Percentage Error for regression models," *Neurocomputing*, 2016.