Probabilistic logic and statistical inference

STATISTICAL THINKING IN PYTHON (PART 1)

Justin Bois

Lecturer at the California Institute of Technology

Repeats of 50 measurements of petal length

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 1)

Random number generators and hacker statistics

STATISTICAL THINKING IN PYTHON (PART 1)

Justin Bois

Lecturer at the California Institute of Technology

Hacker statistics

• Uses simulated repeated measurements to compute probabilities.

¹ Image: artist unknown

¹ Image: Heritage Auction

The np.random module

- Suite of functions based on random number generation
- np.random.random(): draw a number between 0 and 1

The np.random module

- Suite of functions based on random number generation
- np.random.random(): draw a number between 0 and 1

Bernoulli trial

• An experiment that has two options, "success" (True) and "failure" (False).

Random number seed

- Integer fed into random number generating algorithm
- Manually seed random number generator if you need reproducibility
- Specified using np.random.seed()

Simulating 4 coin flips

```
import numpy as np
np.random.seed(42)
random_numbers = np.random.random(size=4)
random_numbers
array([ 0.37454012, 0.95071431, 0.73199394, 0.59865848])
heads = random_numbers < 0.5
heads
array([ True, False, False, False], dtype=bool)
np.sum(heads)
```


Simulating 4 coin flips

```
n_all_heads = 0 # Initialize number of 4-heads trials
for _ in range(10000):
    heads = np.random.random(size=4) < 0.5
    n_heads = np.sum(heads)
    if n_heads == 4:
        n_all_heads += 1</pre>
n_all_heads / 10000
```

0.0621

Hacker stats probabilities

- Determine how to simulate data
- Simulate many many times
- Probability is approximately fraction of trials with the outcome of interest

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 1)

Probability distributions and stories: The Binomial distribution

STATISTICAL THINKING IN PYTHON (PART 1)

Justin Bois

Lecturer at the California Institute of Technology

Probability mass function (PMF)

• The set of probabilities of discrete outcomes

Discrete Uniform PMF

Tabular

Graphical

Probability distribution

• A mathematical description of outcomes

Discrete Uniform distribution: the story

The outcome of rolling a single fair die is

- Discrete
- Uniformly distributed.

Binomial distribution: the story

- The number r of successes in n Bernoulli trials with probability p of success, is Binomially distributed
- The number r of heads in 4 coin flips with probability 0.5 of heads, is Binomially distributed

Sampling from the Binomial distribution

```
np.random.binomial(4, 0.5)
```

2

```
np.random.binomial(4, 0.5, size=10)
```

```
array([4, 3, 2, 1, 1, 0, 3, 2, 3, 0])
```

The Binomial PMF

```
samples = np.random.binomial(60, 0.1, size=10000)

n = 60

p = 0.1
```


The Binomial CDF

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
x, y = ecdf(samples)
_ = plt.plot(x, y, marker='.', linestyle='none')
plt.margins(0.02)
_ = plt.xlabel('number of successes')
_ = plt.ylabel('CDF')
plt.show()
```

The Binomial CDF

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 1)

Poisson processes and the Poisson distribution

STATISTICAL THINKING IN PYTHON (PART 1)

Justin Bois

Lecturer at the California Institute of Technology

Poisson process

 The timing of the next event is completely independent of when the previous event happened

Examples of Poisson processes

- Natural births in a given hospital
- Hit on a website during a given hour
- Meteor strikes
- Molecular collisions in a gas
- Aviation incidents
- Buses in Poissonville

Poisson distribution

- The number r of arrivals of a Poisson process in a given time interval with average rate of? arrivals per interval is Poisson distributed.
- The number r of hits on a website in one hour with an average hit rate of 6 hits per hour is Poisson distributed.

Poisson PMF

Poisson Distribution

- Limit of the Binomial distribution for low probability of success and large number of trials.
- That is, for rare events.

The Poisson CDF

```
samples = np.random.poisson(6, size=10000)
x, y = ecdf(samples)
_ = plt.plot(x, y, marker='.', linestyle='none')
plt.margins(0.02)
_ = plt.xlabel('number of successes')
_ = plt.ylabel('CDF')
plt.show()
```

The Poisson CDF

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 1)

