Lab12: RC회로 학번: 22200034 이름: 곽도현

1. 실험에서 측정한 RC 회로의 scope 파형(.csv)을 plot 하시오 (1점)

(excel, python, matlab 등을 이용)

실측값

#Device Nam		oscope Acquis				
	er: SN:21015	1Δ2R6Δ6				
	2024-05-23 1					
#Sample rate		7.10.07.203				
#Samples: 8192						
		Type: Edge C	ondition: R	isina Level:	500 mV Hvs	t.: Auto HoldOff: 0 s
		V/div Offset: 0			,.	
#Channel 2: I	Range: 500 m'	V/div Offset: 0	٧			
#Wavegen Cl	nannel 1: Runr	ning				
#Mode: Simp		-				
#Type: Squar	e					
#Frequency: !	50 Hz					
#Amplitude:	500 mV					
#Offset: 500	mV					
#Symmetry: !	50 %					
#Phase: 0 °						
Time (s)		Channel 2 (V)				
-0.0255954	-0.006185	0.0447123				
-0.0255892						
-0.0255829						
-0.0255767						
-0.0255704						
-0.0255642		0.0447123				
-0.0255579		0.0447123				
-0.0255517		0.0447123				
-0.0255454		0.0447123				
-0.0255392						
-0.0255329						
-0.0255267	-0.006185	0.0447123				
	-0.0110185					
-0.0255142						
-0.0255079	-0.006185	0.0447123				

2. 실험에서 측정하여 캡처한 RC 회로의 rising time을 plot하고, 이 값을 사용하여 RC회로의 시정수를 계산하는 과정을 보이시오 (2점)

(rising time 으로부터 시정수, tau 값을 계산하는 것임)

위와 같이 rising time(0.1~0.9V 의 Δt)은 3.1534ms 임을 알 수 있다.

시정수는 시스템이 특정 입력에 대해 응답하여 최종 값의 약 63.2%에 도달하는 데 걸리는 시간이다. 10%에서 90%로 변하는 데 걸리는 시간, 즉 rising time 을 이용하여,

$$\tau = \frac{T_r}{\ln(9)}$$
 식을 도출할 수 있다. 3.1534ms / $\ln(9) = 1.4351741886$ ms

3. RC회로에서 시정수가 가지는 의미를 설명하시오 (2점)

회로의 시정수가 작을수록 응답의 감쇄속도는 더 빨라지고, 시정수가 클수록 응답의 감쇄속도는 더 느려진다. 시정수의 5 배 시간 이후에는 응답이 초기값의 1%보다 더 작은 값으로 감쇄된다(즉 정상상태에 도달한다).

$$v(t) = V_0 e^{-t/RC}$$

위 식을 미분하면, 시정수는 감쇄 속도가 일정하다고 가정할 때, 초기 감쇄 속도(초기 시각에서의 기울기)이며, v/V0 가 1 에서 0 으로 감쇄하는 데 걸리는 시간임을 알 수 있다.

또, 커패시터는 전압 소스로부터 충전될 때 일정한 시간 동안 전기를 저장하므로 시정수 τ 는 커패시터의 전압이 최종 값의 약 63%에 도달하는 데 걸리는 시간이고, 시정수 τ 는 커패시터의 전압이 초기 값의 약 37%로 감소하는 데 걸리는 시간이다.

그리고, RC 회로에서 1 차 미분방정식의 해를 구하기 위한 아래의 식이 성립하려면 시정수는 RC 와 같아야 하므로 그 의의가 있다.

$$-\frac{K_2}{\tau} e^{-t/\tau} + \frac{K_1}{RC} + \frac{K_2}{RC} e^{-t/\tau} = \frac{V_S}{RC}$$