AMPLIFICADOR OPERACIONAL

Relatório 05 de ELT 311

Wérikson F. O. Alves - 96708 Universidade Federal de Viçosa (UFV), Viçosa, Brasil e-mails: werikson.alves@ufv.br

Resumo

Este relatório contempla a analise de amplificador operacional aplicada a diversos sinais de entradas diferentes para circuitos diferentes. Ao final, são apresentados os resultados acerca dos circuitos simulados.

Introdução

O amplificador operacional é um componente que permite a aplicação de um sinal de entrada e obter, para esta entrada, um sinal amplificado na saída, podendo ser invertido, maior/menor, ou com formatos de onda diferente da entrada.

Dependendo da disposição de resistores e/ou capacitores é possível obter diferentes respostas para o circuito, logo para este relatório serão simulados três circuitos diferentes apresentando, em seguida, seus respectivos resultados.

Objetivos

Portanto, os objetivos deste relatório são conhecer, entender e analisar o seu funcionamento e suas características básicas mais importantes. Além disto, verificar a operação de um amplificador inversor e a existência de terra virtual. Por fim, analisar e entender o funcionamento dos Amp-Op's funcionando como diferenciador e integrador.

Materiais e Métodos

- 01 Resistor de 1.2 k Ω :
- 02 Resistor de 10 kΩ;
- 02 Resistor de 1 k Ω ;

- 01 Resistor de 100 Ω ;
- 01 Capacitor de 0,01 μ F;
- 01 Capacitor de 0,1 μ F;
- 01 Amplificador Operacional 741.

Parte teórica

Analisando a folha de dados do amplificador operacional 741, para $V_{CC}=\pm 15 \mathrm{V}$ e temperatura ambiente (25°C) foram obtidos os dados solicitados na Tabela 1 e sua respectiva definição, contidos na Tabela 2.

Tabela 1: Características básicas do Amplificador 741.

Características	Min.	Tip.	Max.	Unidade
V_{IO}	-	2	6	mV
I_{IO}	-	20	200	nA
I_{IB}	-	80	500	nA
V_{ICR}	±12	±13	-	V
V_{OM}	-	±14	-	V
A_{VD}	20	200	-	V/mV
r_i	0,3	2	-	$M\Omega$
r_o	-	75	-	Ω
C_i	-	1,4	-	pF
CMRR	70	90	-	dB
I_{CC}	-	1,7	2,8	mA
P_D	-	50	85	mW
Largura de banda		1		MHz
de ganho unitário	_	1	-	MITIZ
T_r	_	0,3	_	μ s
tempo de subida	_	-	_	,
SR	-	0,5	-	V/μs
Fonte de tensão	_	_	±18	V
VCC			110	<u> </u>
Dissipação interna	_	_	500	mW
de potência			300	111 77
Tensão de entrada	_	_	±30	V
diferencial	_	_		v
Tensão de				
entrada para	-	-	±15	V
qualquer entrada				

Tabela 2: Descrição dos parâmetros.

	escrição dos parametros.	
Características	Descrição	
V_{IO}	Tensão de offset	
V10	de entrada	
I_{IO}	Corrente de offset	
110	de entrada	
I_{IB}	Corrente de polarização	
118	de entrada	
	Faixa sobre a qual a tensão	
V_{ICR}	de entrada em modo-comum	
	pode variar	
T/	Valor máximo que o	
V_{OM}	sinal de saída pode atingir	
1	Ganho de tensão de	
A_{VD}	malha aberta do amp-op	
	Resistência de entrada do	
r_i	amp-op, quando medida sob	
	condições de malha aberta	
	Resistência de saída	
r_o	do amp-op	
C_i	Capacitância de entrada	
CMRR	Razão de rejeição	
CIVIKK	de modo-comum	
I_{CC}	Corrente de alimentação	
P_D	Dissipação total de potência	
Largura de	Faixa da frequência cujo	
banda de	o ganho é acima de	
ganho unitário	0,707 do valor máximo	
T_r	tempo de subida	
SR	Taxa de inclinação	
	com ganho unitário	
Fonte de	Tensão de alimentação	
tensão VCC	do amp-op	
Dissipação	Potência dissipada	
interna de	internamente	
potência	pelo componente	
Tensão de	Diferença máxima de	
entrada	tensão suportada pelos	
diferencial	terminais do amp-op	
Tensão de		
entrada para	Tensão máxima suportada	
qualquer	por um terminal de entrada	
entrada		

Parte prática

Inversor

Para a primeira etapa, com base na Figura 1, as resistências Ra e Rb formam um circuito atenuador, o qual permite aplicar pequenos sinais a entrada do amplificador no nó B, desta forma pode-se calcular o ganho global do circuito por meio de duas LKC, uma no nó B e outra

em C:

$$\frac{V_B - V_A}{R_a} + \frac{V_B - 0}{R_b} + \frac{V_B - V_C}{R_1} = 0 \tag{1}$$

$$\frac{V_C - V_B}{R_1} + \frac{V_C - V_D}{R_2} = 0 (2)$$

Sabendo que $V_C=0$ e que $V_D=V_o$ ao desenvolver as equações e substituir uma em outra, obtém-se:

$$V_{o} = -V_{A} \cdot \left(\frac{R_{2}R_{b}}{R_{b}R_{1} + R_{a}R_{1} + R_{a}R_{b}}\right)$$
(3)
$$V_{o} = \frac{-10 \cdot V_{A}}{111}$$

Em seguida, foi simulado o circuito mostrado na Figura 1, na qual a entrada está em aberto obtendo os resultados apresentados na Figura 2.

Figura 1: Amp-op Atenuador-Inversor: Entrada em aberto.

1	A.V	B.V	C.V	D.V
	6.36e-05	6.36e-05	0.0007	0.00616

Figura 2: Resposta para entrada em aberto.

Depois, foi simulado o circuito da Figura 3 na qual a entrada foi aterrada, obtendo os seguintes resultados, Figura 4.

Figura 3: Amp-op Atenuador-Inversor: Entrada aterrada.

A.V	B.V	C.V	D.V
0	6.31e-05	0.0007	0.00617

Figura 4: Resposta para entrada aterrada.

Para a Figura 5 a entrada se encontra alimentada com +10 V, desta forma obtendo os resultados na Figura 6.

Figura 5: Amp-op Atenuador-Inversor: Entrada +10 V.

A.V	B.V	C.V	D.V
10	0.0902	0.000705	-0.895

Figura 6: Resposta para entrada +10 V.

Por fim, foi simulado o circuito da Figura 7, na qual a entrada foi alimentada por -10 V, chegando-se no resultados da Figura 8.

Figura 7: Amp-op Atenuador-Inversor: Entrada -10 V.

A.V	B.V	C.V	D.V
-10	-0.09	0.000695	0.907

Figura 8: Resposta para entrada -10 V.

Por meio destes resultados, podemos ver que esta configuração inverte a polaridade do sinal de entrada na saída e diminui o valor em relação a entrada por meio de um ganho (menor que 1), o qual é comprovado pela Equação 3.

Diferenciador

Para a segunda etapa, foi simulado o circuito de um Amp-op diferenciador. Foram aplicados 3 sinais de entrada diferentes sendo estes uma onda senoidal (Figura 9), quadrada (Figura 10) e triangular (Figura 11), assim obtendo as suas devidas respostas, Figuras 12, 13 e 14, respectivamente, como pode ser visto a seguir:

Figura 9: Amp-op Diferenciador: Entrada senoidal.

Figura 10: Amp-op Diferenciador: Entrada quadrada.

Figura 11: Amp-op Diferenciador: Entrada triangular.

Figura 12: Resposta para entrada senoidal.

Figura 13: Resposta para entrada quadrada.

Figura 14: Resposta para entrada triangular.

Portanto, pôde-se observar que a característica de inversor ainda permanece ativa nesse circuito. Além disto, pôde-se comprovar que o sinal de saída foi derivado em relação ao sinal de entrada.

Integrador

Para a última etapa, foi simulado um circuito de ampop integrador aplicado com diferentes sinais de entrada, logo para uma entrada senoidal, Figura 15, foi obtido o sinal de saída, Figura 16:

Figura 15: Amp-op Integrador: Entrada senoidal.

Figura 16: Resposta para entrada senoidal.

Para a entrada sendo um sinal quadrado, foi obtido o seguinte sinal de saída:

Figura 17: Amp-op Integrador: Entrada quadrada.

REFERÊNCIAS REFERÊNCIAS

Figura 18: Resposta para entrada quadrada.

E por último foi simulado um sinal de onda triangular, obtendo o sinal de saída na Figura 20.

Figura 19: Amp-op Integrador: Entrada triangular.

Figura 20: Resposta para entrada triangular.

Semelhantemente ao diferenciador, foi observado que

o sinal de saída foi integrado em relação ao sinal de entrada, além de também ter sua polaridade invertida.

Conclusão

Portanto, através destes resultados, vemos que cada configuração provoca uma mudança especifica no sinal de saída, logo, pode-se combinar várias configurações em cascata a fim de obter sinais de saída mais complexos, ou seja, pegando o sinal de saída de um e tornando-o o sinal de entrada de outro.

Referências

- [1] R. L. Boylestad and L. Nashelsky, *Dispositivos ele-trônicos e teoria de circuitos*, vol. 6. Prentice-Hall do Brasil, 1984.
- [2] "All datasheet-lm741 datasheet (pdf)-fairchild semiconductor https://www.alldatasheet.com/datasheetpdf/pdf/53589/fairchild/lm741.html."