

# Circuit Theory and Electronics Fundamentals

Lecture 13: Diode circuit properties

- Incremental model of independent and dependent sources
- Incremental impedance of passive components
- Diodes in series
- Diodes in parallel
- Temperature effect
- Optical transmitter/receiver system



## Incremental model of independent sources



$$V = constant$$

$$dv = 0$$

$$r_v = \frac{dv}{di} = 0$$

An independent voltage source is a short-circuit in incremental terms!



$$i=constant$$
 $di=0$ 

$$g_i = \frac{di}{dv} = 0 \Rightarrow r_i = \frac{1}{g_i} = \infty$$

An independent current source is an open-circuit in incremental terms!



## Incremental model of dependent sources



$$v = kx$$
 $dv = k dx$ 

Dependent sources remain dependent sources in incremental terms!



$$i = kx$$
  
 $di = k dx$ 



# Incremental model of linear passive components



$$v = Ri$$
 $dv = R di$ 



$$\phi = Li$$
 $d \phi = L di$ 

$$q = C v$$
  
 $dq = C dv$ 

Passive linear components unchanged in incremental terms!



#### **Diodes in series**

$$i=I_{S}(e^{\frac{v}{\eta V_{T}}}-1)$$

$$v = \frac{v_X}{n}$$

$$i_X = I_S(e^{\frac{v_X}{n \eta V_T}} - 1)$$

Diode equation

All diodes have same voltage because all have same current





### Diodes in series: incremental resistance

$$r_{x} = \frac{\eta_{X} V_{T}}{I_{S} e^{\frac{V_{X}}{\eta_{X} V_{T}}}} = \frac{n \eta V_{T}}{I_{S} e^{\frac{n V_{D}}{n \eta V_{T}}}} = n \frac{\eta V_{T}}{I_{S} e^{\frac{V_{D}}{\eta V_{T}}}} = n r_{d}$$
 Series of incremental resistances!





#### Diodes in parallel

$$i=I_{S}(e^{\frac{v}{\eta V_{T}}}-1)$$

 $i_x = ni$ 

$$i_X = n I_S(e^{\frac{v_X}{\eta V_T}} - 1)$$

Diode equation

All diodes have same current because all have same voltage

n diodes ( $I_s$ ,  $\eta$ ) in parallel









### Diodes in parallel: incremental resistance

$$r_{x} = \frac{\eta_{X} V_{T}}{I_{SX} e^{\frac{V_{X}}{\eta_{X} V_{T}}}} = \frac{\eta V_{T}}{n I_{S} e^{\frac{V_{D}}{\eta V_{T}}}} = \frac{r_{d}}{n}$$

Parallel of incremental resistances!



 $V_{X}$ 



#### **Temperature effect**

$$i_D = I_S(e^{\frac{V_D}{\eta V_T}} - 1)$$

$$V_T = \frac{kT}{a}$$
  $V_T$  increase lowers current

$$I_{S} = q S n_{i}^{2} \left( \frac{1}{N_{D}} \sqrt{\frac{D_{p}}{\tau_{p}}} + \frac{1}{N_{A}} \sqrt{\frac{D_{n}}{\tau_{n}}} \right)$$
 the temperature... - Quantum mechanics - Statistical mechanics

- The diode equation suggests the current decreases exponentially with the temperature
- But I<sub>S</sub> is a complex function of the temperature...

 $I_S\!\propto\!2^{\frac{1}{10}}$  Each 10°C doubles the current Is **Conclusion:** diode Stronger effect than decrease due to  $V_{\tau}$  *current increases with T* 

 $N_D$ : Donor (impurity that **D**onates electrons) concentration in n-side

Acceptor (impurity that Accept electrons) concentration in p-side  $N_A$ :

S: Junction cross-sectional area

Diffusion coefficients for holes and electrons – T dependent

Lifetime for holes and electrons – also T dependent



#### **Temperature risk**

- Temperature increases I<sub>s</sub>
- I<sub>s</sub> increases i<sub>D</sub>
- Excess current can heat up and burn material
- Protect your material!





### Diode protection resistor from temperature effect

- Temperature increases i<sub>D</sub>
- i<sub>D</sub> increases v<sub>R</sub>
- $v_R$  decreases  $v_D$ :  $v_R + v_D = v_S$  (constant, KVL)
- v<sub>D</sub> decreases i<sub>D</sub>
- This is called a negative feedback loop
- Resistor stabilizes i<sub>D</sub> and protects diode!!



$$i_{D} = I_{S} \left( e^{\frac{V_{D}}{\eta V_{T}}} - 1 \right)$$

$$v_{R} = R i_{D}$$



### Optical Transmitter / Receiver System





### **Light Emitting Diode (LED) Transmitter**



Diode idealised model  $(V_{ON}, R_{ON})$ 

Light (photons)

Light intensity (W/m²) proportional to current

R<sub>p</sub>: Protection resistor

$$i_{TX}(t) = \frac{v_{S}(t) - V_{ON}}{R + R_{ON}}$$
 $l_{I}(t) = K_{TX}i_{TX}(t)$ 

$$l_{I}(t) = K_{TX} i_{TX}(t)$$

$$I_{TX} = \frac{V_S - V_{ON}}{R + R_{ON}}$$

$$L_I = K_{TX} I_{TX}$$

Total current

Light intensity

Operating point DC current

#### **Applications**

- Signalling, e.g. **ON/OFF light**
- Character displays
- Infrared light for remote controls
- Etc



#### Photo Diode (PD) Receiver





#### Receiver Incremental Model



Diode reversely biased has large incremental resistor r<sub>d</sub>

Resistor  $r_d$  in parallel with  $R_{RX}$  can be neglected



#### **Photo Diode Received Signal**



$$v_{rx}(t) = R_{RX} K_{RX} l_i(t)$$

$$v_{rx}(t) = \frac{R_{RX} K_{RX} K_{TX}}{R_{TX} + R_{ON}} v_s(t)$$

$$l_{i}(t) = l_{I}(t) - L_{I}$$

$$l_{I}(t) = K_{TX} i_{TX}(t)$$

$$l_{I}(t) = K_{TX} \frac{v_{S}(t) - V_{ON}}{R_{TX} + R_{ON}}$$

$$v_{S}(t) = V_{S} + v_{S}(t)$$

$$L_{I} = K_{TX} \frac{V_{S} - V_{ON}}{R + R_{ON}}$$

$$l_i(t) = \frac{K_{TX}}{R_{TX} + R_{ON}} v_s(t)$$



#### Conclusion

- Incremental model of independent and dependent sources
- Incremental impedance of linear passive components
- Diodes in series
- Diodes in parallel
- Temperature effect
- Optical transmitter/receiver system