

Lecture 1 – Introduction and Number systems

Dr. Aftab M. Hussain,
Assistant Professor, PATRIOT Lab, CVEST

Chapter 1 (first half)

Introductions

- B. Tech in IIT Roorkee (2009):
- After B. Tech.:
 - Design Engineer, Analog Devices India (2011)
- Joined KAUST as M.S. in 2011
- Continued as Ph.D. from Jan 2013
- Postdoc in Harvard University up to Jan 2018
- Asst. Prof., CVEST, IIITH

 Total of 80+ research papers and 7 patents in the last 6 years

Courses

- Digital Systems and Microcontrollers (DSM) [UG1 core]
 - Digital logic
 - Basic digital circuits
 - Basics of microcontrollers
- Embedded Systems Workshop [CS UG2 core]
- Communications and Controls in IoT [ECE UG2 elective]
- Flexible Electronics [Open Elective]
 - Materials for flexible electronics
 - Processes and applications

About the course

- Name: Digital Systems and Microcontrollers (DSM)
- Textbook:
 - M. Morris Mano and Michael D. Ciletti, "Digital Design"
- Logistics:
 - Three 1-hour lectures per week
 - One 3-hour lab per week
 - One 1-hour tut per week

Faculty: Dr. Aftab M. Hussain (lectures)

Dr. Harikumar Kandath (labs)

About the course

• Grading scheme:

Quizzes (x2)	10
Midsem	20
Lab reports (x9)	15
Lab exam	20
End semester	35
Total	100

About the course

Counting

• Lets relearn counting...

Counting

• Lets relearn counting...

0 1

2

3

4

5

6

7

8

9

10

- The number system:
 - Put symbols in specific places/positions to denote their "power"
 - The base or the radix of the decimal number system is 10

24-11-2021

Various number systems

- Octal number system
 - The base or radix is 8
 - The symbols are: 0, 1, 2, 3, 4, 5, 6, 7
- Hexadecimal number system
 - The base or radix is 16
 - The symbols are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Binary number system
 - The base or radix is 2
 - The symbols are: 0, 1

- We denote the base of the number using a suffix subscript: (10395)
- In general a number $(a_4 a_3 a_2 a_1 a_0) = (a_4 r^4 + a_3 r^3) + a_2 r^2 + a_1 r^1 + a_0 r^0$

Conversions to decimal

Octal number system

•
$$(110)_8 = 1*8^2 + 1*8^1 + 0*8^0 = (72)_{10}$$

- $(777)_8 =$
- Hexadecimal number system
 - $(110)_{16} = 1*16^2 + 1*16^1 + 0*16^0 = (272)_{10}$
 - $(BAD)_{16} =$
- Binary number system
 - $(110)_2 = 1*2^2 + 1*2^1 + 0*2^0 = (6)_{10}$
 - (101010)₂ =

Conversions from decimal

161210 16CA

- Algorithm:
 - Divide by radix
 - Save the remainder
 - Repeat
 - Arrange remainders in reverse order
- Octal number system
 - 912
 - 75
- Hexadecimal number system
 - 1729
 - 133
- Binary number system
 - 21
 - 10

Conversions from Oct/Hex to Binary

- From Oct/Hex to binary, we can take a short cut because the bases are (2)³ and (2)⁴ respectively
- For octal: take each digit and convert it individually into three bits
- For hex: take each digit and convert it individually into four bits

- Hexadecimal number system
 - (DEAD)₁₆

• (70)₈

(FEED)₁₆

Conversions from Binary to Oct/Hex

- The reverse course can be taken for converting binary to oct or hex
- For octal: take three bits and convert it individually into a symbol
- For hex: take *four* bits and convert it individually into a symbol

- Octal number system
 - (110101011)₂
 (11010111101)₂
- Hexadecimal number system
 - (11101011)₂
 - (110000110)₂
 - (101011111)₂