Chapitre 18 – Description de la lumière par un flux de photons – Corrigé

QCM

1 La proposition A est une bonne réponse.

La proposition B n'est pas une bonne réponse car l'aspect ondulatoire de la lumière ne permet pas d'expliquer l'effet photoélectrique. Avec l'aspect ondulatoire, il y aurait une intensité lumineuse seuil, par exemple.

La proposition C n'est pas une bonne réponse car l'aspect ondulatoire de la lumière ne permet pas d'expliquer l'effet photoélectrique, donc ce n'est pas la dualité onde-particule qui permet d'expliquer l'effet photoélectrique.

2 La proposition A n'est pas une bonne réponse car l'effet photoélectrique ne se produit qu'à partir d'une certaine fréquence.

La proposition B est une bonne réponse.

La proposition C n'est pas une bonne réponse car l'effet photoélectrique ne se produit qu'à partir d'une certaine fréquence.

3 La proposition A n'est pas une bonne réponse car l'effet photoélectrique se produit pour une longueur d'onde inférieure ou égale à une valeur seuil, donc pas supérieure.

La proposition B est une bonne réponse car :

$$\lambda_{\rm S} = \frac{\rm c}{v_{\rm S}} = \frac{3,00 \times 10^8}{1,2 \times 10^{15}} = 2,5 \times 10^{-7} \text{ m} = 250 \text{ nm}$$

La proposition <mark>C</mark> est une bonne réponse.

La proposition A n'est pas une bonne réponse car cette énergie est souvent fournie par un photon, mais elle ne sert pas à extraire un photon.

La proposition B est une bonne réponse.

La proposition C n'est pas une bonne réponse car le travail d'extraction est l'énergie à fournir pour extraire un électron, donc ce n'est pas l'énergie libérée.

La proposition A est une bonne réponse car : $W = h \cdot v = 6,63 \times 10^{-34} \times 1,2 \times 10^{15} = 8,0 \times 10^{-19} \text{ J}$. La proposition B n'est pas une bonne réponse car le calcul est faux.

La proposition C n'est pas une bonne réponse car le calcul est faux.

La proposition A est une bonne réponse car l'énergie apportée par un photon est en partie fournie pour extraire l'électron. L'énergie excédentaire est l'énergie cinétique de l'électron, donc $h \cdot v = E_{c \text{ électron}} + W.$

La proposition B est une bonne réponse car

 $W = h \cdot v_s$, donc:

$$h \cdot v = E_{c \text{ électron}} + h \cdot v_{s}$$

La proposition C n'est pas une bonne réponse car $h \cdot v = E_{c \text{ électron}} + W$.

7 La proposition A n'est pas une bonne réponse car la résistance est une caractéristique d'un matériau.

La proposition B est une bonne réponse.

La proposition C est une bonne réponse.

8 La proposition A n'est pas une bonne réponse car le rendement est, par définition :

$$\eta = \frac{P_{\text{fournie}}}{P_{\text{reçue}}} \times 100 = \frac{P_{\text{\'electrique}}}{P_{\text{lumineuse}}} \times 100 \text{ et non l'inverse.}$$

La proposition B n'est pas une bonne réponse car le rendement est, par définition :

$$\eta = \frac{E_{\text{fournie}}}{E_{\text{reçue}}} \times 100 = \frac{E_{\text{électrique}}}{E_{\text{lumineuse}}} \times 100 \text{ et non l'inverse.}$$

La proposition C est une bonne réponse.

La proposition A est une bonne réponse La proposition B n'est pas une bonne réponse car le générateur est la cellule photovoltaïque.

La proposition C n'est pas une bonne réponse car le voltmètre doit être en dérivation et il faut une résistance variable pour avoir différents couples (*U*, *I*).

- **10 1.** Sur le schéma, on voit que la lumière (représentée par des vagues) extrait des électrons (représentés par des ronds) d'un matériau.
- **2. a.** La fréquence seuil est la fréquence minimale de la lumière qui peut extraire un électron d'un matériau.
- **b.** La fréquence seuil se situe entre 4.3×10^{-14} Hz (pas d'électron extrait) et 5.5×10^{-14} Hz (électrons extraits).
- **14 a.** L'effet photoélectrique se produit pour un rayonnement tel que 500 nm $\leq \lambda_S$ donc pour Cs, K et Ba.

b. Pour
$$v = 7.5 \times 10^{14} \, \text{Hz}$$
, $\lambda = \frac{c}{v} = \frac{3.00 \times 10^8}{7.5 \times 10^{14}} = 400 \, \text{nm}$.

L'effet photoélectrique se produit pour un rayonnement tel que 400 nm $\leq \lambda_S$ donc pour Cs, K et Ba.

c. L'effet photoélectrique se produit pour chaque matériau car les UV sont présents avant toutes les longueurs d'onde seuil des matériaux.

- **16 1. a**. Le travail d'extraction est l'énergie à fournir pour extraire un électron d'un matériau. Il se note *W* et s'exprime en joule, de symbole J.
- **b.** $W = h \cdot v_S$, avec v_S la fréquence seuil du matériau.

c.
$$W = \frac{h \cdot c}{\lambda_S}$$

2. En appliquant les relations $v_S = \frac{1}{\lambda_S}$ et $W = \frac{h \cdot c}{\lambda_S}$, on obtient :

Matériau	Fréquence seuil	Longueur d'onde seuil			
Ag	$1,1\times10^{15}\text{Hz}$	0,27 μm			
Pt	4,5 × 10 ¹⁴ Hz	0,67 μm			
Cs	1,6 × 10 ¹⁵ Hz	0,19 μm			
Ca	6,7 × 10 ¹⁴ Hz	0,45 μm			

Matériau	Travail d'extraction			
Ag	7,4 × 10 ⁻¹⁹ J			
Pt	3,0 × 10 ⁻¹⁹ J			
Cs	1,1 × 10 ⁻¹⁸ J			
Ca	4,4×10 ⁻¹⁹ J			

3. Plus la longueur d'onde seuil *augmente* et plus le travail d'extraction *diminue*.

Plus la fréquence seuil *augmente* et plus le travail d'extraction *augmente*.

- **18 1. a.** On a : $E_{photon} = h \cdot v = W + E_{c}$
- **b.** On utilise la conservation de l'énergie.

2. a.
$$E_c = h \cdot v - W$$

AN:

$$E_c = 6.63 \times 10^{-34} \times 6.0 \times 10^{14} - 2.29 \times 1.602 \times 10^{-19}$$

= 3.1 × 10⁻²⁰ J.

b.
$$E_c = \frac{1}{2}m \cdot v^2$$
 donc $v = \sqrt{\frac{2E_c}{m}}$.

AN:
$$v = \sqrt{\frac{2 \times 3,1 \times 10^{-20}}{9,11 \times 10^{-31}}} = 2,6 \times 10^5 \text{ m} \cdot \text{s}^{-1}$$

- **1. a.** Le capteur de lumière utilise l'effet photoélectrique car il produit de l'électricité lorsqu'il reçoit la lumière diffusée par la fumée.
- **b.** La DEL (ou diode électroluminescente) utilise l'effet électroluminescent pour émettre de la lumière.

- **2. a.** Dans le capteur de lumière, il y a absorption de photon.
- **b.** La DEL émet de la lumière, donc elle émet des photons.
- **3.** Si la lumière de la DEL est diffusée par les particules de fumée, elle atteint le capteur de lumière qui, par effet photoélectrique, engendre un courant. Ce courant déclenchera une alarme.
- 23 Une erreur s'est glissée dans le spécimen du professeur. Il faut lire U = 0,10 V. Cette erreur a été corrigée dans le manuel de l'élève et les manuels numériques.

1.
$$P_{\text{lumineuse}} = E \cdot S$$

AN:
$$P_{\text{lumineuse}} = \frac{7\ 000}{100} \times 0.05 \times 0.04 = 0.14 \text{ W}$$

2.
$$P_{\text{électrique}} = U \cdot I$$

AN:
$$P_{\text{électrique}} = 0.18 \times 0.10 = 0.018 \text{ W}$$

3. a.
$$\eta = \frac{P_{\text{électrique}}}{P_{\text{lumineuse}}} \times 100$$

AN:
$$\eta = \frac{0.018}{0.14} \times 100 = 13 \%$$

- **b.** Un rendement de 13 % signifie que 13 % de l'énergie lumineuse est convertie en énergie électrique et que 87 % de l'énergie lumineuse est « perdue » par réflexion ou convertie sous forme d'énergie thermique.
- **1.** La cellule photoélectrique convertit l'intensité lumineuse en électricité.
- 2. L'effet photoélectrique.
- **3.** Cet effet doit avoir lieu pour toute la lumière visible, donc pour la réponse **b.** :

$$\lambda_s \leq 800 \text{ nm}.$$

- **27 1.** L'effet photoélectrique désigne l'extraction d'électrons d'un matériau sous l'effet d'une onde électromagnétique.
- 2. L'effet photoélectrique a lieu pour $\lambda \leqslant \lambda_{\text{S}}.$ Par définition, le travail d'extraction du zinc s'ex-

prime :
$$W(Zn) = \frac{h \cdot c}{\lambda_S}$$
.

Donc
$$\lambda_S = \frac{h \cdot c}{W(Zn)}$$

AN:
$$\lambda_S = \frac{6,63 \times 10^{-34} \times 3,00 \times 10^8}{3,36 \times 1,602 \times 10^{-19}}$$

= 3.70 × 10⁻⁷ m = 370 nm

 $\lambda \le 370$ nm correspond à des raies d'émission dans le domaine des ultraviolets.

3. La conservation de l'énergie du photon s'exprime :

$$h \cdot v = E_c + W(Zn)$$
.

$$E_{\rm c} = \frac{{\sf h}\cdot{\sf c}}{\lambda} - W({\sf Z}{\sf n})$$

AN:

$$E_{c} = \frac{6,63 \times 10^{-34} \times 3,00 \times 10^{8}}{302 \times 10^{-9}} - 3,36 \times 1,602 \times 10^{-19}$$
$$= 1,20 \times 10^{-19} \text{ J}$$

29 1.

lampe à incandescence

2.

3. a. On calcule $P = U \cdot I$ pour chaque valeur de U:

U (V)	20,8	19,9	18,8	17,5	15,8	13,5	7,5	4,4	0,061
P (W)	0	0,906	1,58	2,03	2,37	2,34	1,50	0,924	0,014

On trace P = f(U).

On lit la valeur maximale : $P_{\text{électrique}} = 2,4 \text{ W}.$

b.
$$\eta = \frac{P_{\text{électrique}}}{P_{\text{lumineuse}}} \times 100$$

Or $P_{\text{lumineuse}} = E \cdot S$, où E est l'éclairement.

$$\eta = \frac{2.4}{97 \times 0.25} \times 100 = 10 \%$$

c. Un rendement de 10 % signifie que 10 % de l'énergie lumineuse est convertie en énergie électrique et que 90 % de l'énergie lumineuse est « perdue » par réflexion ou convertie sous forme d'énergie thermique. Ce rendement n'est pas très élevé mais correspond au rendement moyen d'une cellule photovoltaïque.