

While the song is playing...

Draw a mental model / concept map of last lectures content on data visualisation.

Recap

- Joins
- advanced data vis

(My) Motivation for missing data

From "Using decision trees to understand structure in missing data"

Example

San Francisco weather data

|| Date | Wind | Temp ||

Using the R package: **GSODR**

(Global Surface Summary of the Day)

Written by Adam Sparks github.com/ropensci/GSODR

Your Turn: These gaps are missing values! What are some reasons this might be a problem?

Some thoughts

- What is missing?
- Why are they missing?
- How can we summarise and explore this?

One way to show missing data

Wait, What?

What people think dealing with missing data looks like

What dealing with missing data actually looks like

What I want dealing with missing data to be like

Learn more

Overview

- 1. What even are missing values
- 2. How to start looking at missing data
- 3. How to start exploring missing data
- 4. How to impute (fill in) Missing values

What are missing values?

Missing values are values that should have been recorded but were not.

NA = **N**ot **A**vailable.

How do I check if I have missing values?

```
x < -c(1, NA, 3, NA, NA, 5)
library(naniar)
any_na(x)
[1] TRUE
are_na(x)
[1] FALSE TRUE FALSE TRUE TRUE FALSE
n_{miss}(x)
[1] 3
prop_miss(x)
[1] 0.5
```

Working with missing data

NA + [anything] = NA

```
heights

Sophie Dan Fred
165 177 NA

sum(heights)

[1] NA
```

Working with missing data

na.rm = TRUE will removes missings

```
sum(heights, na.rm = TRUE)
[1] 342
```

Use this power responsibly!

You can remove most of or all of your data:

Z	y	X
1	1	NA
2	2	NA
3	3	NA
4	NA	4
5	NA	5
6	NA	6
NA	7	7
NA	8	8
NA	9	9

23/83

You can remove most of or all of your data:

vis_miss(dat_df)

You can remove most of or all of your data:

```
na.omit(dat_df)
## [1] x y z
## <0 rows> (or 0-length row.names)
```

wat?

X	y	Z
NA	4	4
NA	2	2
NA	3	3
4	NA	4
5	NA	5
6	NA	6
7	7	NA
8	8	NA
9	9	AA

X	y	Z
NA	4	1
NA	2	2
NA	3	3
4	NA	4
5	NA	5
6	NA	6
7	7	NA
8	8	NA
9	9	NA

X	у	Z
NA	4	1
NA	2	2
NA	3	3
4	NA	4
5	NA	5
6	NA	6
7	7	NA
8	8	NA
9	9	NA

X	у	Z
NA	4	1
NA	2	2
NA	3	3
4	NA	4
5	NA	5
6	NA	6
7	7	NA
8	8	NA
9	9	NA

Takehome:

- na.rm or na.omit can remove entire rows containing missings
- This is bad because you can lose data sometimes all your data!
 This might not be what you anticipate!
- It can also mean that you are removing / censoring observations.

You can introduce bias - what happens when you remove the NAs?

temp	location
27	inside
26	inside
NA	outside
29	inside
NA	outside
20	outside
21	outside
24	inside

Your turn:

- Open rstudio.cloud
- go to exercise-5a-intro-missing.Rmd
- If you want to use R / Rstudio on your laptop:
 - Install R + Rstudio (see <u>Stuart Lee's Guide</u>)
 - open RStudio
 - type the following:

```
# install.packages("usethis")
library(usethis)
use_course("https://ida.numbat.space/exercises/5a/ida-exercise-5a.zip")
```

Introduction to missingness summaries

Basic summaries of missingness:

- n_miss
- n_complete

Dataframe summaries of missingness:

- miss_var_summary
- miss_case_summary

These functions work with group_by

Missing data summaries: Variables

Missing data summaries: Cases

```
miss_case_summary(dat_sf_clean)
## # A tibble: 405 x 3
     case n_miss pct_miss
##
     <int> <int> <dbl>
##
##
        89
                      66.7
##
       182
                4 66.7
       188
                      66.7
       271
                      66.7
##
                      50
                      50
##
        10
                      50
        29
                      50
        37
                      50
        39
                      50
## # ... with 395 more rows
```

Missing data tabulations: variables

Missing data tabulations: cases

Using summaries with group_by

```
dat_sf_clean %>%
 group_by(month) %>%
 miss_var_summary()
## # A tibble: 60 x 4
## # Groups: month [12]
  month variable n_miss pct_miss
##
  <dbl> <chr> <int> <dbl>
## 1 1 temp_min
                         7 11.5
    1 temp_max
                         7 11.5
##
  3 1 temp_avg
                7 11.5
  4 1 wind_speed_max
                         4 6.56
##
## 5 1 date
                              0
##
  6 2 temp_min
                           12.8
  7 2 temp_max
                           12.8
## 8 2 temp_avg
                           12.8
       2 wind_speed_max
                         4 10.3
    2 date
                              0
## # ... with 50 more rows
```

Your Turn

Open exercise-5a-summarise-missings.Rmd

Introduction to missing data visualisations in naniar

- Visualisation can quickly capture an idea or thought.
- naniar provides a friendly family of missing data visualization functions.
- Each visualization corresponds to a data summary.
- Visualisations help you operate closer to the speed of thought.

Get a bird's eye view of the missing data

vis_miss(dat_sf_clean)

Get a bird's eye view of the missing data

vis_miss(dat_sf_clean, cluster = TRUE)

Look at missings in cases

gg_miss_var(dat_sf_clean)

Look at missings in cases

gg_miss_case(dat_sf_clean)

Look at missings in variables

gg_miss_var(dat_sf_clean, facet = month)

Visualizing missingness patterns

gg_miss_upset(dat_sf_clean)

Visualizing factors of missingness

gg_miss_fct(x = dat_sf_clean, fct = month)

Your turn

• complete exercise-5a-visualise-missings.Rmd

```
miss_*
    gg_miss_*
miss_var_*
    gg_miss_var

miss_case_*
gg_miss_case
```

Representing Missing Values in a Tidy Way

Tidy Data

Variables in columns
Observations in Rows
One value per cell

Data Shadow

Variable ends in NA
Values are missing (NA) or not
(!NA)

Tidy Missing Data

bind_shadow(data)

bind_shadow()

```
bind_shadow(dat_sf_clean) %>% glimpse()
## Rows: 405
## Columns: 12
## $ date
            <date> 2017-01-02, 2017-01-03, 2017-01-04, 2017-01-05, 2017-01-
## $ month
            ## $ temp_min
            <dbl> 5.9, 8.4, 10.4, 5.8, 4.4, NA, NA, 11.9, 11.9, NA, 6.7, 5.
## $ temp_max
            <dbl> 10.5, 11.1, 14.5, 9.4, 9.1, NA, NA, 16.0, 14.6, NA, 11.2,
## $ temp_avg
            <dbl> 8.4, 9.7, 12.4, 8.1, 6.4, NA, NA, 13.5, 13.2, NA, 8.5, 7.
## $ wind_speed_max
           <dbl> 5.1, 5.1, 6.7, 5.1, 5.1, 8.8, 8.2, 7.2, 7.7, 8.2, 5.1, 4.
## $ date NA
            ## $ month NA
            ## $ temp_min_NA
            ## $ temp_max_NA
## $ temp_avg_NA
```

Shadows In Practice: Explore one variable

```
dat_sf_clean %>%
  ggplot(aes(x = wind_speed_max)) +
  geom_density()
```


Shadows In Practice: Explore one variable

In Practice: Explore two variables

Impute shadow values into our realm

impute_below()

Impute missing values from the shadows into our realm

```
dat_sf_clean %>%
 slice(5:10) %>%
 mutate(temp_avg_shift = impute_below(temp_avg)) %>%
 select(temp_avg, temp_avg_shift)
## # A tibble: 6 x 2
## temp_avg temp_avg_shift
## <dbl> <dbl>
## 1 6.4 6.4
## 2 NA 5.73
## 3 NA 5.74
## 4 13.5 13.5
## 5 13.2 13.2
            5.53
## 6 NA
```

geom_miss_point()

Facets!

Exploring imputed values

Imputation is the process of filling in missing values with some other estimate

What about this imputation thing?

What about this imputation thing?

They are **invisible!**

Where are the imputed values?

Tidy Missing Data reveals the imputations!

Shadows make things clearer!

Example data: oceanbuoys

```
oceanbuoys
## # A tibble: 736 x 8
      year latitude longitude sea_temp_c air_temp_c humidity wind_ew wind_ns
##
              <dbl>
     <db1>
                        <db1>
                                   <db1>
                                              <db1>
                                                      <db1>
                                                              <dbl>
                                                                      <dbl>
##
      1997
                                    27.6
                                               27.1
                                                       79.6
                                                              -6.40
##
                  0
                         -110
                                                                       5.40
                                    27.5
                                                       75.8
                                                              -5.30
                                                                       5.30
##
   2 1997
                  0
                         -110
                                               27.0
                                    27.6
                                               27
                                                       76.5
                                                              -5.10
                                                                       4.5
##
      1997
                  0
                         -110
##
      1997
                  0
                         -110
                                    27.6
                                               26.9
                                                       76.2
                                                              -4.90
                                                                       2.5
                                               26.8
##
      1997
                  0
                         -110
                                    27.6
                                                       76.4
                                                              -3.5
                                                                       4.10
                                                              -4.40
##
      1997
                  0
                         -110
                                    27.8
                                               26.9
                                                       76.7
                                                                       1.60
##
      1997
                  0
                         -110
                                    28.0
                                               27.0
                                                       76.5
                                                              -2
                                                                       3.5
##
      1997
                  0
                         -110
                                    28.0
                                               27.1
                                                        78.3
                                                              -3.70
                                                                       4.5
##
      1997
                  0
                         -110
                                    28.0
                                               27.2
                                                       78.6
                                                              -4.20
                                                                       5
   10
      1997
                         -110
                                    28.0
                                               27.2
                                                        76.9
                                                              -3.60
                                                                       3.5
## # ... with 726 more rows
```

Start looking at missing values

vis_miss(oceanbuoys)

Missing value patterns

gg_miss_upset(oceanbuoys)

Missings Tend to get ignored by most software

```
ggplot(oceanbuoys,
  aes(x = sea_temp_c,
      y = humidity)) +
  geom_point() +
  theme(aspect.ratio = 1)
```


Add missings to plot with geom_miss_point()

Facet By year

Understanding missing dependencies

Strategies for working with missing values

- Small fraction of cases have several missings (around 5%) explore data, and possibly drop the cases
- A variable or two, out of many, have a lot of missings, drop the variables

Strategies for working with missing values

- If missings are small in number, but located in many cases and variables, you need to impute these values, to do most analyses
- Designing the imputation should take into account dependencies that you have seen between missingness and existing variables.
- For the ocean buoys data this means imputation needs to be done separately by year

Common ways to impute values

- (Usually bad) Simple parametric: use the mean or median of the complete cases for each variable
- (Better) More complex: use models to predict missing values
- (Best) Multiple imputation: Use a statistical distribution, e.g. normal model and simulate a value (or set of values, hot deck imputation) for the missings.

Setup for missings

tao_shadow <- bind_shadow(oceanbuoys)</pre> tao_shadow # A tibble: 736 x 16 ## year latitude longitude sea_temp_c air_temp_c humidity wind_ew wind_ns year_NA <db1> <dbl> <db1> <dbl> <dbl> <dbl> <dbl> ## <dbl> <fct> 27.1 ## 1997 0 -110 27.6 79.6 -6.405.40 !NA ## 1997 0 -110 27.5 27.0 75.8 -5.30 5.30 !NA ## 1997 0 -110 27.6 27 76.5 -5.104.5 !NA ## 1997 0 -110 27.6 26.9 76.2 -4.90 2.5 ! NA ## 1997 0 -110 27.6 26.8 76.4 -3.5 4.10 !NA ## 1997 0 -110 27.8 26.9 76.7 -4.401.60 !NA ## 1997 0 -110 28.0 27.0 76.5 -2 3.5 INA ## 1997 0 -110 28.0 27.1 78.3 -3.704.5 ! NA ## 1997 0 -110 28.0 27.2 78.6 -4.205 ! NA ## 10 1997 0 -110 28.0 27.2 76.9 -3.603.5 INA ## # ... with 726 more rows, and 6 more variables: longitude_NA <fct>, sea_temp_c_NA <fc air_temp_c_NA <fct>, humidity_NA <fct>, wind_ew_NA <fct>, wind_ns_NA <fct> ## #

Imputing the Mean (ignoring year).

```
tao_imp_mean <- tao_shadow %>%
  mutate(sea_temp_c = impute_mean(sea_temp_c),
        air_temp_c = impute_mean(air_temp_c))
tao_shadow
## # A tibble: 736 x 16
      year latitude longitude sea_temp_c air_temp_c humidity wind_ew wind_ns year_NA
##
##
     <db1>
             <db1>
                       <db1>
                                  <db1>
                                            <db1>
                                                    <db1>
                                                            <db1>
                                                                   <dbl> <fct>
##
     1997
                 0
                        -110
                                  27.6
                                             27.1
                                                     79.6
                                                            -6.40
                                                                    5.40 !NA
##
     1997
                 0
                        -110
                                  27.5
                                             27.0
                                                     75.8 -5.30
                                                                    5.30 !NA
                                             27
                                                     76.5 -5.10
##
     1997
                        -110
                                  27.6
                                                                    4.5 !NA
                 0
##
     1997
                        -110
                                  27.6
                                             26.9
                                                     76.2
                                                            -4.90
                                                                    2.5 !NA
##
     1997
                 0
                        -110
                                  27.6
                                             26.8
                                                     76.4 -3.5
                                                                    4.10 !NA
##
      1997
                 0
                        -110
                                  27.8
                                             26.9
                                                     76.7 -4.40
                                                                    1.60 !NA
##
   7 1997
                  0
                        -110
                                  28.0
                                             27.0
                                                     76.5
                                                            -2
                                                                    3.5
                                                                        ! NA
##
     1997
                        -110
                                  28.0
                                             27.1
                                                     78.3
                                                            -3.70
                                                                    4.5 !NA
##
      1997
                 0
                        -110
                                  28.0
                                             27.2
                                                     78.6
                                                            -4.20
                                                                    5
                                                                         INA
##
  10
      1997
                        -110
                                  28.0
                                             27.2
                                                     76.9
                                                            -3.60
                                                                    3.5
                                                                         ! NA
## # ... with 726 more rows, and 6 more variables: longitude_NA <fct>, sea_temp_c_NA <fc
      air_temp_c_NA <fct>, humidity_NA <fct>, wind_ew_NA <fct>, wind_ns_NA <fct>
```

Imputing the Mean (ignoring year).

Impute Mean by year

```
tao_shadow <- tao_shadow %>%
  group_by(year) %>%
  mutate(sea_temp_c = impute_mean(sea_temp_c),
        air_temp_c = impute_mean(air_temp_c))
```

by year

Your Turn:

- lab quiz open (requires answering questions from Lab exercise)
- go to rstudio.cloud and finish final exercise

Resources

- R-miss-Tastic
- <u>naniar</u>
- <u>visdat</u>