Training Neural Networks

6.036 Introduction to Machine Learning

Feedforward Neural Networks

- Representation
 - Input, hidden layers, output
 - Parameters/weights
 - Activation functions
- Each layer computes some function of the previous layer
- Inputs mapped in a feed-forward fashion to output

Training Neural Networks

- Given a training dataset $S_n = \{(x^{(i)}, y^{(i)}), i = 1 ... n\}$, estimate weights θ to minimize the average loss over the training examples
- $\bullet \quad \theta = \{W_{ij}, W_{0j}, V_j, V_0\}$

Training using SGD

```
initialize network parameters 	heta
repeat (until some stopping criteria are met)
     pick a random example t from the training set
    compute prediction: F(x^{(t)}; \theta)
    compute error/loss: Loss (y^{(t)}F(x^{(t)};\theta))
    compute gradient of the error: \nabla_{\theta} \operatorname{Loss} \left( y^{(t)} F(x^{(t)}; \theta) \right)
    update weights: \theta \leftarrow \theta - \eta \nabla_{\theta} \text{Loss}\left(y^{(t)}F(x^{(t)};\theta)\right)
```

Gradients for Single-Layer Networks

Computing gradient analytically

$$\frac{\partial}{\partial V_i} \operatorname{Loss}\left(y^{(t)} F(x^{(t)}; \theta)\right) =$$

$$= \frac{\partial}{\partial V_i} \operatorname{Loss}(y^{(t)} z^{(t)})$$

$$= \left[\frac{\partial}{\partial z^{(t)}} \operatorname{Loss}(y^{(t)} z^{(t)}) \right] \left[\frac{\partial z^{(t)}}{\partial V_i} \right] =$$

$$= \left[\frac{\partial}{\partial z^{(t)}} \operatorname{Loss}(y^{(t)} z^{(t)}) \right] \left[\frac{\partial \left(\sum_{j=1}^{d} x_{j}^{(t)} V_{j} + V_{0} \right)}{\partial V_{i}} \right] =$$

$$= \begin{bmatrix} -y^{(t)} & \text{if } \operatorname{Loss}(y^{(t)}z^{(t)}) > 0 \\ 0 & \text{otherwise} \end{bmatrix} \begin{bmatrix} x_i^{(t)} \end{bmatrix}$$

Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

$$z^{(t)} = \sum_{j=1}^{d} x_j^{(t)} V_j + V_0$$
$$F(x^{(t)}; \theta) = f(z^{(t)}) = z^{(t)}$$

Training using SGD

```
initialize network parameters \theta = \{V_0, ..., V_d\}
repeat (until some stopping criteria are met)
     pick a random example t from the training set
     compute prediction: F(x^{(t)}; \theta)
     compute error/loss: Loss (y^{(t)}F(x^{(t)};\theta))
     compute gradient of the error: \nabla_{\theta} \text{Loss}\left(y^{(t)}F(x^{(t)};\theta)\right)
     update weights: \theta \leftarrow \theta - \eta \nabla_{\theta} \text{Loss}\left(y^{(t)}F(x^{(t)};\theta)\right)
                               V_i \leftarrow V_i + \eta x_i^{(t)} y^{(t)}, i = 1 \dots d
                               V_0 \leftarrow V_0 + \eta \, \gamma^{(t)}
```

SGD for 2-Layer Neural Network

Parameters $\theta = \{W_{ij}, W_{0j}\} \& \{V_j, V_0\}$

$$z_j = \sum_{i=1}^d x_i W_{ij} + W_{0j}$$

$$f(z_j) = \max\{0, z_j\}$$

$$z = \sum_{j=1}^{m} f(z_j)V_j + V_0$$

$$F(x;\theta)=z$$

Updates for V_j

Parameters $\theta = \{W_{ij}, W_{0j}\} \& \{V_j, V_0\}$

$$z_j = \sum_{i=1}^{d} x_i W_{ij} + W_{0j}$$

$$F(x; \theta)$$
 $f(z_j) = \max\{0, z_j\}$

$$z = \sum_{j=1}^{m} f(z_j)V_j + V_0$$

$$F(x;\theta)=z$$

Updates for V_j are the same as for the single-layer network Replace $x_i^{(t)}$ with $f(z_j^{(t)})$

$$V_j \leftarrow V_j + \eta_k y^{(t)} f(z_j^{(t)}), \quad j = 1, \dots, m$$

Updates for W_{ij}

Parameters $\theta = \{W_{ij}, W_{0j}\} \& \{V_j, V_0\}$

$$z_j = \sum_{i=1}^{d} x_i W_{ij} + W_{0j}$$

$$F(x; \theta)$$
 $f(z_j) = \max\{0, z_j\}$

$$z = \sum_{j=1}^{m} f(z_j) V_j + V_0$$

$$F(x;\theta) = z$$

To compute $\frac{\partial}{\partial v_i} \text{Loss}\left(y^{(t)}F(x^{(t)};\theta)\right)$, we could start by writing

Loss $(y^{(t)}F(x^{(t)};\theta))$ as a function of the network parameters θ . And then compute the partial derivatives ... Instead, we can use the chain rule to derive a compact algorithm: back-propagation

Updates for W_{ij}

Parameters $\theta = \{W_{ij}, W_{0j}\} \& \{V_j, V_0\}$

$$z_j = \sum_{i=1}^{d} x_i W_{ij} + W_{0j}$$

$$F(x; \theta)$$
 $f(z_j) = \max\{0, z_j\}$

$$z = \sum_{j=1}^{m} f(z_j)V_j + V_0$$

$$F(x;\theta) = z$$

$$\frac{\partial}{\partial W_{ij}} \operatorname{Loss}(y^{(t)} z^{(t)}) = \left[\frac{\partial}{\partial z^{(t)}} \operatorname{Loss}(y^{(t)} z^{(t)}) \right] \left[\frac{\partial z^{(t)}}{\partial f(z_j^{(t)})} \right] \left[\frac{\partial f(z_j^{(t)})}{\partial z_j^{(t)}} \right] \left[\frac{\partial z^{(t)}}{\partial W_{ij}} \right]$$

$$= \begin{bmatrix} -y^{(t)} & \text{if } \operatorname{Loss}(y^{(t)}z^{(t)}) > 0 \\ 0 & \text{otherwise} \end{bmatrix} \begin{bmatrix} V_j \end{bmatrix} \begin{bmatrix} z_j^{(t)} > 0 \end{bmatrix} [x_i]$$

Back-propagation

- The process of propagating the gradients backwards towards the input layer is called **back-propagation**
- Back-propagation is based on applying the chain rule of derivatives back through the model
- Back-propagation can be applied the same way to compute gradients in networks with multiple hidden layers
- Computing derivatives can be reused between layers

$$\frac{\partial}{\partial W_{ij}} \operatorname{Loss}(y^{(t)} z^{(t)}) = \left[\frac{\partial}{\partial z^{(t)}} \operatorname{Loss}(y^{(t)} z^{(t)}) \right] \left[\frac{\partial z^{(t)}}{\partial f(z_j^{(t)})} \right] \left[\frac{\partial f(z_j^{(t)})}{\partial z_j^{(t)}} \right] \left[\frac{\partial z_j^{(t)}}{\partial W_{ij}} \right]$$

$$= \begin{bmatrix} -y^{(t)} & \text{if } \operatorname{Loss}(y^{(t)} z^{(t)}) > 0 \\ 0 & \text{otherwise} \end{bmatrix} \begin{bmatrix} V_j \end{bmatrix} \begin{bmatrix} z_j^{(t)} > 0 \end{bmatrix} \begin{bmatrix} z_j^{(t)} \\ z_j^{(t)} \end{bmatrix} \begin{bmatrix} z_j^{(t)} \\ z_j^{(t)} \end{bmatrix} \begin{bmatrix} z_j^{(t)} \\ z_j^{(t)} \end{bmatrix}$$

Updates for W_{ij}

Parameters $\theta = \{W_{ij}, W_{0j}\} \& \{V_j, V_0\}$

$$z_j = \sum_{i=1}^{d} x_i W_{ij} + W_{0j}$$

$$F(x; \theta)$$
 $f(z_j) = \max\{0, z_j\}$

$$z = \sum_{j=1}^{m} f(z_j)V_j + V_0$$

$$F(x;\theta) = z$$

$$W_{ij} \leftarrow W_{ij} + \eta_k x_i^{(t)} [[z_j^{(t)} > 0]] V_j y^{(t)}, \quad i = 1, \dots, d, \ j = 1, \dots, m$$

Initialization

What happens when all weights are initialized to 0?

$$V_j \leftarrow V_j + \eta_k y^{(t)} f(z_j^{(t)}), \quad j = 1, \dots, m$$

 $W_{ij} \leftarrow W_{ij} + \eta_k x_i^{(t)} [[z_j^{(t)} > 0]] V_j y^{(t)}, \quad i = 1, \dots, d, \ j = 1, \dots, m$

Initialization

What happens when all weights are initialized to 0?

$$V_j \leftarrow V_j$$

$$W_{ij} \leftarrow W_{ij}$$

Initialization

- Typically random
 - Zero mean and variance $1/d^2$

2 Hidden Units

Randomly initialized weights (zero offset)

tanh activation

2 Hidden Units

Randomly initialized weights (zero offset)
 tanh activation

2 Hidden Units: Training

2 Hidden Units: Training

After ~ 10 passes through the data

2 Hidden Units: Training

After ~ 10 passes through the data

10 Hidden Units

 Randomly initialized weights (zero offset) for the hidden units

10 Hidden Units

 After ~ 10 epochs the hidden units are arranged in a manner sufficient for the task (but not otherwise perfect)

• 2 hidden units can no longer solve this task

• 2 hidden units can no longer solve this task

Architectural Variations...

- Increasing the number of hidden units
 - More powerful decision boundary
 - Easier to fit the data

Architectural Variations...

- Increasing the number of hidden units
 - More powerful decision boundary
 - Easier to fit the data

Architectural Variations...

- Increasing the number of hidden units
 - More powerful decision boundary
 - Easier to fit the data

Representational Power

- 1 layer: Linear decision surface
- 2+ layers can represent any function assuming non-trivial non-linearity
- For fully connected models 2 or 3 layers seems the most that can be effectively trained
- Regarding number of units/layer:
 - Parameters grows with (units/layer)²

Architectures

- How to select:
 - Depth
 - Width
 - Parameter count
- Manual selection of features has turned into manual selection of architectures

Convolutional Neural Networks

- LeCun et al. 1989
- Neural network with specialized connectivity structure

Application to ImageNet

- ~14 million images, 20K classes
- Images gathered from Internet
- Human labeled via Amazon Mechanical Turk

Goal

- Image recognition
- Image → class label

Krizhevsky et al. [NIPS 2012]

- Same model as LeCun'98 but
 - Bigger (8 layers)
 - 7 hidden layers, 650K neurons, 60M parameters
 - More data $(10^6 \text{ vs } 10^3 \text{ images})$
 - GPU implementation (50x speedup over CPU)
 - Trained on 2 GPUs for a week
 - Better regularization

ImageNet Classification 2012

- Krizhevsky et al. 16.4% error (top-5)
- Next best (non-convent) 26.2% error

Components of Each Layer

Pixels/Features

Filtering

- Convolutional
 - Dependencies are local
 - Translation invariance
 - Tied filter weights (few parameters)

Feature Maps

Non-linearity

- Rectified linear function
 - Applied per-pixel
 - Output = max(0,input)

Input feature map

Pooling

- Spatial Pooling
 - Non-overlapping/overlapping regions
 - Sum or max
 - Invariance to small transformations
 - Larger receptive field

Max

Sum

Pooling

Pooling across feature groups

Normalization

Contrast normalization (across feature maps)

feature map

feature map after normalization

AlexNet Architecture

Summary

- Feedforward neural networks can be trained effectively using SGD
- Back-propagation
 - relies on applying chain rule to compute error gradient with respect to the network parameters
- CNN neural network with a specialized connectivity structure
 - state-of-the-art for many computer vision problems