מבוא וסדר ראשון

הגדרות כלליות

- $F(x,y,y',\dots,y^{(n)})=0$ מד"ר: קשר מהצורה
 - סדר: סדר הנגזרת הגבוהה ביותר.
- מעלה: החזקה של הנגזרת מהסדר הגבוה ביותר (לאחר שהמשוואה פולינומיאלית בנגזרות).
- תנאי התחלה: מד"ר מסדר n דורשת n תנאי התחלה לקביעת ulletפתרון פרטי.
- $a_n(x)y^{(n)} + \cdots + a_0(x)y = R(x)$ לינאריות: אם ניתן לכתוב כ-
- G(x,y)=C), סתום (עם קבועים), פרטי (עם ת"ה), סתום \bullet סינגולרי (לא נובע מהכללי).
- y'=f(x,y) משפט קיום ויחידות (פיקארד): לבעיית התחלה ulletפתרון קיים (x_0,y_0) אם רציפות במלבן רציפות f,f_y^\prime אם $y(x_0)=y_0$

משוואות פריקות (Separable)

- M(x)dx + N(y)dy = 0 או y' = f(x)g(y) צורה:
 - $\int \frac{dy}{g(y)} = \int f(x)dx + C$ פתרון: •
- המאפסים $y=y_0$ הערה חשובה: יש לבדוק בנפרד פתרונות קבועים $y=y_0$. בחלוקה בחלים לאיבוד" את אכן ייתכן שהם , $g(y_0)$ את

משוואות הומוגניות

- y' = f(y/x) :בורה:
- פתרון: הצבה $z=y/x \implies y'=z'x+z$ המשוואה הופכת פתרון: הצבה לפריקה: $\frac{dz}{f(z)-z}=\frac{dx}{x}$

משוואות "כמעט הומוגניות"

 $(a_1x+b_1y+c_1)dx+(a_2x+b_2y+c_2)dy=0$ צורה.

- מצא (x_0,y_0) מצא נק' חיתוך ($a_1b_2
 eq a_2b_1$) משרים נחתכים X, Y - Xהמשוואה הופכת המשוואה $X = X + x_0, y = Y + y_0$
- המשוואה $.t=a_1x+b_1y$ הצב ($a_1b_2=a_2b_1$) המשוואה הופכת לפריקה.

משוואות מדויקות

- M(x,y)dx+N(x,y)dy=0 צורה: בורה. $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ אם ורק אם פריים •
- הפתרון הוא $\phi(x,y)$ הפתרון היים פוטנציאל $\phi(x,y)$ הפתרון הוא $.\phi(x,y) = C$
- : אינטגרל על N לפי x וחשב, אינטגרל על M לפי אינטגרל פי ϕ מציאת ϕ

$$\phi(x,y) = \int M(x,y) dx + \int N(x,y) dy$$

 $\phi(x,y)=C$ התעלם מהאיברים שחוזרים פעמיים. הפתרון הוא

(μ) גורם אינטגרציה

מטרה. הופך משוואה לא מדויקת למדויקת.

- $rac{1}{N}(M_y-N_x)=f(x)\implies \mu(x)=e^{\int f(x)dx}$ אם •
- $\frac{1}{M}(N_x-M_y)=g(y)\Longrightarrow \mu(y)=e^{\int g(y)dy}$ אם $\mu(y)=e^{\int g(y)dy}$. $\mu=\frac{1}{Mx+Ny}$, $\mu=\frac{1}{Mx+Ny}$, $\mu=\frac{1}{Mx+Ny}$

משוואות לינאריות מסדר ראשון

- y' + P(x)y = Q(x) צורה:
- $\mu(x) = e^{\int P(x) dx}$: גורם אינטגרציה.
- $y(x)=rac{1}{\mu(x)}\left(\int \mu(x)Q(x)dx+C
 ight)$ הפתרון הכללי:
 - $y(x) = y_h(x) + y_p(x)$ מבנה: •

משוואת ברנולי

- $(t \neq 0, 1), y' + P(x)y = Q(x)y^t$ פורה: •
- :הופכת את המשוואה ללינארית $z=y^{1-t}$ הצבה פתרון: z' + (1-t)P(x)z = (1-t)Q(x)

מד"ר מסדר שני

הורדת סדר (מקרים מיוחדים)

- z'=y'' ,z(x)=y' הצב (F(x,y',y'')=0) אורה 1: חסר yמתקבלת מד"ר מסדר 1, הפתרון הסופי הוא התקבלת מד"ר מסדר 1. $y(x) = \int z(x)dx + C_2$
- y''=y''=z, ואז z(y)=y' הצב (F(y,y',y'')=0), ואז ulletמתקבלת מד"ר מסדר 1, $F(y,z,z\frac{dz}{dy})=0$. לאחר מציאת . $z\frac{dz}{dy}$ $\frac{dy}{dx}=z(y)$ את, פותרים, z(y)

מד"ר לינארית, מקדמים קבועים - הומוגנית

$$.ay'' + by' + cy = 0$$
 צורה.

- $ar^2 + br + c = 0$ משוואה אופיינית: •
- $oldsymbol{:}r_1,r_2$ הפתרון $y_h(x)$ תלוי בשורשים ullet
- $y_h(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$.1. ממשיים ושונים:
 - $y_h(x) = (C_1 + C_2 x)e^{rx}$.2 ממשי כפול:
 - נ. מרוכבים צמודים ($r=lpha\pm ieta$):
 - $y_h(x) = e^{\alpha x} (C_1 \cos(\beta x) + C_2 \sin(\beta x))$
- על ריבוי בעל המשוואה האופיינית בעל ריבוי הרחבה לסדר כל שורש r $(C_1+C_2x+\cdots+$ תורם לפתרון ההומוגני איבר מהצורה k $.C_k x^{k-1})e^{rx}$

מד"ר לינארית, מקדמים קבועים - לא הומוגנית

.ay'' + by' + cy = R(x) צורה.

- $y(x)=y_h(x)+y_p(x)$ פתרון כללי: •
- y_p אמציאת (מקדמים לא ידועים) למציאת שיטת הניחוש שיטת
- בנה קבוצה, R(x) ימין על אגף ימין (S): בהתבסס בהתבסס על בניית קבוצת הניחוש (S).
- הכוללת את כל הפונקציות שמופיעות ב-R(x) וכל הנגזרות Sהבלתי תלויות-לינארית שלהן. השתמש בטבלה הבאה:

אז קבוצת הניחוש S מכילה את האיברים	אם מכיל איבר מהצורה $R(x)$	
$\left\{x^n, x^{n-1}, \dots, x, 1\right\}$	(פולינום) $P_n(x)$	
$\{e^{\alpha x}\}$	$e^{\alpha x}$	
$\{\sin(\beta x),\cos(\beta x)\}$	$\cos(\beta x)$ או $\sin(\beta x)$	
שילובים (לפי מכפלות)		
$\{x^n e^{\alpha x}, \dots, e^{\alpha x}\}$	$P_n(x)e^{\alpha x}$	
$\{e^{\alpha x}\sin(\beta x), e^{\alpha x}\cos(\beta x)\}$	$e^{\alpha x}\sin(\beta x)$	
$ \begin{cases} x^k \sin(\beta x), x^k \cos(\beta x) \mid k = \\ 0, \dots, n \end{cases} $	$P_n(x)\sin(\beta x)$	
$\begin{cases} \{x^k e^{\alpha x} \sin(\beta x), x^k e^{\alpha x} \cos(\beta x) \mid \\ k = 0, \dots, n\} \end{cases}$	$P_n(x)e^{\alpha x}\sin(\beta x)$	

- כל בירוף לינארי של כל y_p הוא בירוף לינארי של כל 2. (A,B,C...) האיברים בקבוצה S עם מקדמים לא
- 3. בדיקת תהודה (Resonance) ותיקון: אם איבר כלשהו בניחוש הראשוני y_p הוא גם פתרון של המשוואה ההומוגנית (y_h), קיימת $oldsymbol{k}$ תהודה. התיקון: יש להכפיל את כל הניחוש ב x^k , כאשר החזקה השלמה החיובית הנמוכה ביותר שמבטלת את כל החפיפות $.y_h$ עם

מד"ר לינארית, מקדמים כלליים

$$.y'' + P(x)y' + Q(x)y = R(x)$$
 צורה.

 y_1 שלב 1: מציאת פתרון הומוגני •

- $1 + P(x) + Q(x) = 0 \implies y_1 = e^x$ אם -
- $1 P(x) + Q(x) = 0 \implies y_1 = e^{-x}$ אם -
 - $P(x) + xQ(x) = 0 \implies y_1 = x$ אם -
- $m^2 + mP(x) + Q(x) = 0 \implies y_1 = e^{mx}$ אם -

טכניקות נוספות

שימוש בקשר ההופכי: אם המשוואה y'=f(x,y) מסובכת, נסוulletלפתור את $\frac{dx}{dy} = \frac{1}{f(x,y)}$ עבור x(y) עבור עבור .x(y)-הופכת ללינארית

משוואת קלרו

- y = xy' + f(y') צורה: •
- y = Cx + f(C) : פתרון כלליי
- (p=y' פתרון המערכת (עם פתרון סינגולרי:

$$\begin{cases} y = xp + f(p) \\ x + f'(p) = 0 \end{cases}$$

אינטגרלים נפוצים

C) האינטגרל (ללא קבוע	הפונקציה
$\frac{x^{n+1}}{n+1} (n \neq -1)$	$\int x^n dx$
$\ln x $	$\int \frac{1}{x} dx$
$\frac{1}{a}e^{ax}$	$\int e^{ax} dx$
$-\frac{1}{a}\cos(ax)$	$\int \sin(ax) dx$
$\frac{1}{a}\sin(ax)$	$\int \cos(ax) dx$
$\frac{1}{a} \arctan\left(\frac{x}{a}\right)$	$\int \frac{1}{x^2 + a^2} dx$
$\arcsin\left(\frac{x}{a}\right)$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx$
$x \ln(x) - x$	$\int \ln(x) dx$
$-\ln \cos(x) $	$\int \tan(x) dx$
tan(x)	$\int \sec^2(x) dx$

זהויות טריגונומטריות

- $\sin^2(x) + \cos^2(x) = 1 \bullet$
- $\tan^2(x) + 1 = \sec^2(x) \bullet$ $\cot^2(x) + 1 = \csc^2(x) \bullet$
- $\sin(2x) = 2\sin(x)\cos(x) \bullet$
- $\cos(2x) = \cos^2(x) \sin^2(x) \quad \bullet$
 - $\cos(2x) = 2\cos^2(x) 1 \bullet$ $\cos(2x) = 1 - 2\sin^2(x) \bullet$
- $\cos(x \pm y) = \cos(x)\cos(y) \mp \bullet$ $\sin(x)\sin(y)$

 $\sin(x \pm y) = \sin(x)\cos(y) \pm \bullet$

 $\cos(x)\sin(y)$

 $\sin^2(x) = \frac{1 - \cos(2x)}{2} \bullet$ $\cos^2(x) = \frac{1 + \cos(2x)}{2} \bullet$

טור חזקות פונקציה $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ e^x $\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$ sin(x) $\cos(x)$ $\sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$ sinh(x) $\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$ $\cosh(x)$ $\sum_{k=0}^{\infty} x^k$ $\frac{1}{1-x}$

טורי טיילור שימושיים (סביב 0)

:(הורדת סדר) y_2 מציאת •

:כאשר , $y_p=u_1y_1+u_2y_2$

פתרוו בעזרת טורים

 $y_2(x) = y_1(x) \int \frac{e^{-\int P(x)dx}}{y_1(x)^2} dx$

• שלב 3: פתרון לא-הומוגני (וריאציית פרמטרים) הפתרון הפרטי הוא

 $u_1'(x) = -\frac{y_2 R}{W(y_1, y_2)}$

 $u_2'(x) = \frac{y_1 R}{W(y_1, y_2)}$

3. **איחוד אינדקסים:** סדר את כל הטורים כך שהחזקה תהיה אחידה

לאפס x^k לאפס המקדם את השווה את (Recursion). 4

קבועים (קבועים) a_0,a_1 חישוב מקדמים את כל הביע את הביע הביע. 5

 (a_{2k}) באמצעות את כל המקדמים הזוגיים (a_{2k}) באמצעות .6 ואת כל המקדמים האי-זוגיים (a_{2k+1}) באמצעות הפתרון $y(x) = a_0 \cdot y_{\text{even}}(x) +$:הכללי יתפצל באופן טבעי לשני טורים

פונקציה

ln(1+x)

 $(1+x)^{\alpha}$

 $y_h = C_1 y_1 + C_2 y_2$ הפתרון ההומוגני הכללי הוא:

. (נק' רגולרית) שיטה. מציאת פתרון סביב $x_0=0$

y,y',y'' את טורי החזקות של .2. מצבה במד"ר: הצב את טורי הצבה .2

 $y=\sum_{n=0}^{\infty}a_nx^n$:ו. הנחת הפתרון: .1

וגבולות הסכימה זהים. (x^k)

ומצא קשר בין המקדמים.

.($a_0 = y(0), a_1 = y'(0)$ שרירותיים,

$\sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^k}{k}$ $-\sum_{k=1}^{\infty} \frac{x^k}{k}$ ln(1-x) $\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2k+1}$ arctan(x) $\sum_{k=1}^{\infty} kx^{k-1}$ $\frac{1}{(1-x)^2}$

טור חזקות

 $\sum_{k=0}^{\infty} (-1)^k x^k$

 $\sum_{k=0}^{\infty} \binom{\alpha}{k} x^k$

משוואת אוילר-קושי

 $a_1 \cdot y_{\text{odd}}(x)$

- $ax^2y'' + bxy' + cy = 0$ צורה: •
- העבילית מובילה מובילה $y=x^m$ פתרון: נחש פתרון: פתרון: הצבה מובילה אינדיציאלית m עבור (עזר)

$$am(m-1) + bm + c = 0$$

- m_1, m_2 הפתרון תלוי בשורשי המשוואה העזר, ullet
- $y(x) = C_1 |x|^{m_1} + C_2 |x|^{m_2}$.1 ממשיים ושונים:
 - $y(x) = (C_1 + C_2 \ln |x|)|x|^m$.2. ממשי כפול:
 - :($m=lpha\pm ieta$) מרוכבים צמודים 3

$$y(x) = |x|^{\alpha} \left[C_1 \cos(\beta \ln|x|) + C_2 \sin(\beta \ln|x|) \right]$$

שיטות אינטגרציה

• אינטגרציה בחלקים:

$$\int u \, dv = uv - \int v \, du$$

• שיטת ההצבה (שינוי משתנה):

$$\int f(g(x))g'(x) dx = \int f(u) du, \quad u = g(x)$$

שימושי כאשר חלק מהאינטגרנד הוא נגזרת של ביטוי פנימי.

- $rac{P(x)}{Q(x)}$ שברים חלקיים: לחישוב אינטגרל של פונקציה רציונלית ullet(Q קטנה ממעלת P (כאשר מעלת)
- -או ריבועיים איר לינאריים אורמים לגורמים לגורמים ער את פרק את פרק אורמים לגורמים לגורמים אורמים איר פרק את המכנה ער לגורמים לגורמים לגורמים איר פריקים.
 - (ב) רשום את השבר כסכום של שברים חלקיים:
 - $\frac{A}{ax+b}$ תורם: (ax+b) תורם: $-\frac{A_1}{ax+b}+\cdots+\frac{A_k}{(ax+b)^k}$ תורם: $(ax+b)^k$ תורם: $-\frac{Ax+B}{ax^2+bx+c}$ תורם: $-\frac{Ax+B}{ax^2+bx+c}$
- ע"י השוואת מונים או הצבת (ג) ע"י הקבועים את מצא את (ג) ערכי x נוחים.