Analysis 1 IA Lent

Want a rigorous foundation from limits, convergence, continuity, differentiation and integration (and more)

1 Real Numbers

- Real numbers \mathbb{R} : totally ordered field with the <u>least upper bound property</u> (LUBP):
 - A set S is non empty and bounded above $\implies S$ has least upper bound (supremum) in $\mathbb R$
- Definition of upper bound and least upper bound
- Axiom of Archimedes: two equivalent versions $(\forall M)(\exists N \in \mathbb{N})N > M$ $(\forall \varepsilon > 0)(\exists N \in \mathbb{N})\frac{1}{N} < \varepsilon$
- \mathbb{Q} is dense in \mathbb{R} : given reals $a < b, \exists$ rational $\frac{p}{q} \in (a, b)$

2 Sequence and Series

Real Sequences

- A sequence (a_n) in X: a function $a: \mathbb{N} \to X$ (assigns an element in X to each natural number)
- Convergence: $(z_n) \to z \iff (\forall \varepsilon > 0)(\exists N)(\forall n > N) |z_n z| < \varepsilon$; given any $\varepsilon > 0$, can find N beyond which, z_n stay close to z
- Uniqueness of limits: $(z_n) \to a$ and $(z_n) \to b \implies a = b$
- Laws of limits: add, subtract, multiply, reciprocal
- If a <u>real</u> sequence (x_n) converges and $\forall n : x_n \geq a$, then $x_n \to x \geq a$
- Squeeze Theorem (for <u>real</u> sequences): If sequences $a_n \to c$, $b_n \to c$ and $\forall n : a_n \le c_n \le b_n$, then $c_n \to c$
- Bounded sequences, monotone sequences, subsequences

- Monotone Sequence Theorem (bounded above + monotone increasing ⇒ convergence): supremum is limit
- Sequence converges \implies any subsequence converges
- Monotone increasing sequence has a convergent subsequence \implies whole sequence converges
- Bolzano-Weierstrass Theorem (lion hunting): every bounded sequence has a convergent subsequence
- Cauchy Sequences: Cauchy \iff convergent in \mathbb{R} (General principle of convergence)
- Subsequence of Cauchy $\rightarrow a \implies$ Cauchy $\rightarrow a$
- Cauchy completeness
- (Nested interval property: in Gowers' notes)
- (\limsup and \liminf , converge \iff \limsup = \liminf)

Complex Sequences

- Definition of sequence, convergence are the same (absolute value to modulus)
- Bounded sequence: same definition
- Ordering does not exist: no Squeeze Theorem, Monotone Sequence Theorem
- Have Bolzano-Weierstrass Theorem for complex numbers
- Have Cauchy sequences \iff convergent in \mathbb{C}

Series

- Series = infinite sums, convergence in terms of sequence of partial sums
- Series converge \implies n-th term \rightarrow zero
- Convergence tests:

- Comparison test (real only):
 sequence bounded above and monotone increasing
- Absolute convergence (real and complex):

Real: separate into series with +ve/-ve terms, both converge by comparison, then difference also converges;

(converges absolutely \iff converges to the same limit for any rearrangement)

Complex: real and imaginary parts converge \implies complex series converge

- Strong comparison (complex):
 use real comparison + absolute
- Alternating series test (real):
 odd partial sums are bounded above and monotone decreasing,
 thus converge and even partial sums follow
- Ratio test (complex): sum of absolute value bounded above by a converging geometric series; bounded below by a GS diverging to ∞
- Cauchy condensation test (real): $\sum_{n=1}^{\infty} a_n \text{ converges } \iff \sum_{k=1}^{\infty} 2^k a_{2^k} \text{ converges}$
- (Abel's Test, Integral test, n-th root test)

3 Limits and continuity

Limits (of functions)

- Limit of function in \mathbb{C} : $\lim_{z \to a} f(z) = c$
 - \iff can make f(z) as close to c as possible by making z sufficiently close to a
 - \iff can approach c by $f(z_n)$ with any sequence $z_n \to a$

i.e.
$$(\forall \varepsilon > 0)(\exists \delta > 0) \colon 0 < |z - a| < \delta \implies 0 < |f(z) - c| < \varepsilon$$

i.e.
$$\forall (z_n) : z_n \in \mathbb{C} \setminus \{a\} \land z_n \to a \implies f(z_n) \to c$$

- Laws of limits follow from that of sequences
- Limit point: can get as close to the point as needed (e.g. by sequences) in subsets $A \subset \mathbb{C}$

Continuity

- Continuous as z = a: $f(x) \to f(y)$ as $x \to y$ \iff either not limit point or $\lim_{z \to a} f(z) = f(a)$ \iff any sequence $z_n \to a \implies f(z_n) \to f(a)$
- Continuous at all points in a set = continuous
- (Continuous induction)
- Intermediate value theorem: Given $f: [a, b] \to \mathbb{R}$ continuous, f(a) < 0 < f(b), then $\exists c \in [a, b]$ with f(c) = 0 (Open or closed interval in result does not matter)
- Maximum Value Theorem: Given $f:[a,b] \to \mathbb{R}$ continuous, then f is bounded and $\exists c \in [a,b]$ with $f(c) > f(x) \forall x \in [a,b]$ (i.e. f attains its inf and sup in the interval) (Need closed interval, as f may attain extrema at the bounds)
- Continuous bijection (must be either strictly increasing or decreasing) have continuous inverse
- (Cover of a set)

4 (Real) Differentiation

- A function $f:[a,b] \to \mathbb{R}: f$ is differentiable at $x=a:\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = c = f'(a)$ for some $c\in \mathbb{R}$
- Alternative characterisation: f differentiable at x with derivative f'(x) if: $f(x+h) = f(x) + hf'(x) + h\alpha(h)$, where $\alpha(h) \to 0$ as $h \to 0$
- Differentiable \implies continuous
- Sum rule, product rule, chain rule, quotient rule (prove that the remaining error term goes to 0)
- Global/local maxima/minima, interior point of an interval
- Differentiable at a local maximum or minimum interior point $c \implies f'(c) = 0$ (Reverse implication not true)

- Rolle's Theorem: Given $f:[a,b] \to \mathbb{R}$ continuous on [a,b], and differentiable on (a,b), if f(a)=f(b)=0, then $\exists c \in (a,b)$ with f'(c)=0
- Mean value theorem: Given $f:[a,b]\to\mathbb{R}$ continuous on [a,b], and differentiable on (a,b), then $\exists c\in(a,b)$ with $f'(c)=\frac{f(b)-f(a)}{b-a}$

Use MVT when we know everything about f' but want to deduce sth about f

- Derivative of constant/increasing/strictly increasing function
- Inverse function theorem: Given $f: I \to \mathbb{R}$ (I an interval) and $f'(x) > 0 \forall x \in I$, then $f^{-1}: f(I) \to I$ is continuous, differentiable, with derivative

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(y))}$$

• (L'Hôpital's Rule(s))

5 Power series

Want best polynomial approximation to functions, one way is match first k derivatives using a (unique) k-th degree polynomial:

• The k-th Taylor polynomial of f centred at a:

$$p_k(x) = \sum_{i=0}^k \frac{f^{(i)}(a)}{i!} (x-a)^i$$

• Taylor's Theorem (Lagrange Remainder): For k-times differentiable function f:

$$f(a+h) = \underbrace{\sum_{i=0}^{k-1} \frac{f^{(i)}(a)}{i!} h^i}_{p_{k-1}(a)} + \underbrace{\frac{f^{(k)}(a)}{k!} h^k}_{\text{remainder/error}}, \text{ for some } c \in (a,x)$$

- Differentiability classes: $C^n = n$ -times differentiable with continuous n-th derivative
- Taylor Series:

$$\sum_{i=0}^{\infty} \frac{f^{(i)}(a)}{i!} (x-a)^i$$

Complex Differentiation

- Complex differentiability: same definition, more restrictive (have nice properties, see future courses)
- (Partial differentiation: relation to complex differentiation by writing real part and imaginary parts as bivariate functions, Cauchy Riemann equations, complex differentiable functions satisfy Laplace's equation)
- Complex differentiable with F'(z) = 0 for $z \in B_r(c) = \{z \in \mathbb{C} : |z c| < r\}$ $\implies F$ is constant in $B_r(c)$
- Radius of convergence:

$$R = \sup \left\{ |z| : \sum a_n z^n \text{ converges} \right\},$$

$$|z| < R \implies \text{converges (strong comparison)}$$

$$|z| > R \implies \text{diverges (by definition)}$$

• Find radius of convergence by ratio test or *n*-th root test

Want to differentiate power series term by term:

- If $f(z) = \sum a_n z^n$, $g(z) = \sum n a_n z^{n-1}$, then f and g have the same radius of convergence
- Inside circle of convergence,

$$f(z+h) - f(z) - hg(z) = \sum a_n((z+h)^n - z^n - nhz^{n-1})$$

the whole thing is bounded for sufficiently small h, thus f is complex differentiable (in fact, infinitely differentiable)

• Derivatives of partial sums also approach the derivative of the Taylor Series

We then get the useful functions: exp, log, trig using power series, and define π using periodicity of trig

6 Integration

• Dissection: a finite subset

$$D = \{a_0, a_1, ..., a_n | a = a_0 < a_1 < \dots < a_n = b\} \subset [a, b]$$

- $\bullet \text{ Mesh} = \max\{a_i a_{i-1}\}\$
- Upper sum, Lower sum:

$$U(f, D) = \sum_{i=1}^{n} (a_i - a_{i-1}) \sup\{f(x) | a_{i-1} \le x \le a_i\}$$

$$L(f, D) = \sum_{i=1}^{n} (a_i - a_{i-1}) \inf\{f(x) | a_{i-1} \le x \le a_i\}$$

 $(\because integrable \implies \sup \text{ and inf exists } \implies \text{ boundedness})$

• For any dissection $D \subset D'$, (using a finer dissection)

$$U(f, D) \ge U(f, D')$$

$$L(f, D) \le L(f, D')$$

• Any D_1, D_2 : (compare with the common refinement $D_i \cup D_2$)

$$U(f, D_1) \ge L(f, D_2)$$

• So upper sums are bounded below, lower sums bounded above, i.e.

$$U(f) = \inf_{D} U(f, D)$$
 and $L(f) = \sup_{D} L(f, D)$ exist.

- $U(f) = L(f) \implies$ Riemann integrable: $\int_a^b f(x) dx = U(f) = L(f)$ (Boundedness is necessary)
- $\bullet\,$ Riemann's Integrability Criterion:

Riemann integrable $\iff \forall \varepsilon > 0 \exists$ dissection D s.t. $U(f,D) - L(f,D) < \varepsilon$

• Any increasing f on [a, b] is integrable

Properties of the integral

• Linearity: if $f, g: [a, b] \to \mathbb{R}$ integrable, then

$$\int_{a}^{b} (\lambda f(x) + \mu g(x)) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx$$

• If $f(x) \leq g(x) \forall x \in [a, b]$, then

$$\int_{a}^{b} f(x) \mathrm{d}x \le \int_{a}^{b} g(x) \mathrm{d}x$$

- f integrable $\implies |f|$ integrable
- Additivity: if $f:[a,b] \to \mathbb{R}$ is integrable, then the restriction of f to [a,c] and [c,b] are integrable for any $c \in [a,b]$ and

$$\int_{a}^{b} f(x) dx + \int_{a}^{c} f(x) dx = \int_{c}^{b} f(x) dx$$

- Continuous \implies Riemann integrable (on [a, b])
- Integrable on $[a, b] \iff$ integrable on [a, c], [c, b] for $c \in (a, b)$
- $\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$
- Product of integrable is integrable
- (Uniform continuity)
- (Bounded on [a, b] and continuous on $(a, b) \implies$ integrable)
- (Can restrict to only using uniformly spaced dissections: will get same results)

Fundamental Theorem of Calculus

- (V1) Suppose $f:[a,b]\to\mathbb{R}$ continuous, and define $F=\int_a^x f(x)\mathrm{d}x$, then F is differentiable and F'(x)=f(x) i.e. has anti-derivative
- (V2) Notes: F is $C^1 \implies \int_a^b F'(t) dt = F(b) F(a)$
- (FTC also true for F differentiable with F' integrable)
- (Differentiable \implies derivative integrable)

Stuff that follow from FTC

- Integration by substitution: chain rule
- Integration by parts: product rule
- Taylor's theorem with integral remainder: Given $f:[a,x]\to\mathbb{R}$ is C^k , then

$$f(x) = \underbrace{\sum_{i=0}^{k-1} \frac{f^{(i)}(a)}{i!} (x-a)^i}_{p_{k-1}(x)} + \underbrace{\int_a^x \frac{(x-a)^{k-1}}{(k-1)!} f^{(k)}(t) dt}_{\text{remainder}}$$

- Integral Test: Given $f: [1, \infty] \to \mathbb{R}$ decreasing and non negative, $\sum_{n=1}^{\infty} f(n)$ converges $\iff \int_{1}^{\infty} f(x) dx$ converges
- Improper integrals