Example
$$\left(\frac{1}{f}\right)^{1} = -\frac{1}{f^{2}}$$

- using product rate with $g = \frac{1}{3}$, or Jg = 1:

$$0 = (19)' = 1'9 + 19'$$
, so $9' = -\frac{1}{1} = -\frac{1}{1}^2$

All the derivatives from Calculus we are une obisonous, This is not duality, as we can prove every single one in principle.

Pheorem 5 (Chain rule)

Let $j: D \to \mathbb{R}$ be differentiable at a, $g: f(D) \to \mathbb{R}$ be differentiable at b = f(a). Then $g \circ f: D \to \mathbb{R}$ is differentiable at a and $(g \circ f)'(a) = g'(f(a)) f'(a)$

$$\frac{\text{Idea for formila:}}{X-a} = \frac{g \circ f(x) - g \circ f(a)}{g(x) - g \circ f(a)} = \frac{g \circ f(x) - g \circ f(a)}{g(x) - f(a)} \cdot \frac{f(x) - f(a)}{x - a}$$

and it hooks like we can easily take limits on the right-hand side. The problem is that f(x)-J(a) might be zero for $x \neq a$. We need a different proof:

Proof by Lemma 2 we have

(1)
$$\int (x) = \int (a) + \int (a) (x-a) + r(x)(x-a)$$

(2)
$$g(y) = g(b) + g'(b) (y-b) + S(y) (y-b)$$

with $\lim_{x\to a} r(x) = 0$ and $\lim_{x\to a} s(y) = 0$ and we define s(b) > 0.

$$g \circ J(k) = g(5) + (g'(6) + S(J(x))) (J(x) - b)$$

$$= g(5) + (g'(6) + S(J(x))) (J(a) + r(x)) (x-a)$$

$$= g(5) + g'(6) J'(a) (x-a) + f(x) (x-a)$$

where
$$t(x) = s(y(x)) \int_{-\infty}^{\infty} f(x) + g'(x) + s(y(x)) + r(x)$$

Now lim f(x) = 0 and thing in go of is differentiable at a will $(g \circ f)'(\alpha) = g'(f)(\alpha) = g'(f(\alpha)) f'(\alpha)$

7. The Mean Value Theorem

Theorem 6 If a further $f: [a,b] \to \mathbb{R}$ has a maximum (or minimum) at $C \in (a,b)$ and is differentiable at C, then f'(c) = 0

Proof (for maximum only): Let $d = f'(e) = \lim_{x \to a} \frac{f(x) - f(e)}{x - e}$.

Then $d = \lim_{x \to c^{+}} \frac{\int_{-\infty}^{\infty} (x) - \int_{-\infty}^{\infty} (e)}{x - c} \leq 0$

and $d = \lim_{k \to c} \frac{\int_{-\infty}^{\infty} |x| - \int_{-\infty}^{\infty} |x|}{|x| - c} > 0$

as $\int (x) - \int (c) \le 0$ for all $x \in \mathbb{D}$. Therefore d = 0 [15 jan 3]

Theorem 7 (Rolle) let $f: [a,b] \rightarrow \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). If f(a) = f(b) = 0 then there exists $c \in (a,b)$ such that f'(c) = 0

Proof De consider three cases:

- (1) f(x)=0 for all $x \in (a,b)$. Then f'(x)=0 for all $x \in (a,b)$
- (2) f(x) > 0 for some $x \in (a,b)$. Then f is maximal at some $c \in [a,b]$ and $f(c) \ge f(x) > 0 = f(a) = f(b)$. Therefore $c \in (a,b)$ and, by Theorem b, f'(c) = 0.
- (3) J(x) <0 for some × ∈ (as). (orthogo as in (2).

Theorem 8 (Mean Value Theorem) Let $f: [a, S] \to IR$ be continuous on [a, S] and difform tiable on (a, S).

Then ther exist $c \in (a, s)$ such that

$$\int_{0}^{1}(c) = \frac{\int_{0}^{1}(c) - \int_{0}^{1}(c)}{1 - a} \int_{0}^{1}(c)$$

Proof Consider the auxiliary Junction

$$h(x) = (x-a)(f(b)-f(a)) - (b-a)(f(x)-f(a))$$

h is continuous on [a,s] and differtiable on (a,s),

and h(a) = 0 = h(b). By Rolle's theorem

ther exist a ce (a,s) sud that h'(c) = 0. As,

$$0 = h'(c) = \int_{0}^{1} (s) - \int_{0}^{1} (a) - \int_{0}^{1} - a \int_{0}^{1} (c) = \int_{0}^{1} (c) - \int_{0}^{1} (a) \int_{0}^{1} (c) = \int_{0}^{1} (c) \int_{0}^$$

Geometric interpretation: There exists a largest to the graph of f blief is parallel to the secont through (a, f(a)) and (5, f(6)).

This theorem has many reportant consequences: For more, use give a stiple application.

Let J = [0.5] & dontinuous on TaisTad differentiale on (a.6). Theorem 9 (a) if f(x) > 0 for all x & (a,5), then f is strictly increwing on [a,b]: $x_i < x_i$ implies $f(x_i) < f(x_i)$ (b) if f(x) co for all xE(a,s) then f is strictly decreasing on [a,b]: $x_1 > x_2$ implies $f(x_1) > f(x_2)$. Proof (a) Let x, x & [a,5] will x, <xc. Applying the Mean Value Thronon to for [x,xz], we have that there exists a ce (x,xz) with

 $\frac{4(x^3)-\sqrt{(x^3)}}{x^3-x^3}=4(c)>0$ Therefore $f(x_1) - f(x_1) > 0$. (6) similarly. \overline{D}

Example $\int_{0}^{\infty} \mathbb{R} = \mathbb{R$

 $\int_{0}^{1}(x) \times 0$ on (-1,1), $\int_{0}^{1}(x) \times 0$ or $(-\alpha,-1) \cup (1,\infty)$

thurfare of is strictly decreasing on (-1,1) and strictly increasing on [x: 1x1]

f(0)=0 , $f(\pm 1)=\mp \frac{2}{3}$

Theorem 10 Let $J := [a_15] \rightarrow \mathbb{R}$ be continuous on $[a_15]$ and differentiable on (a_1b) .

If J(x) > 0 for all $x \in (a_1b)$, then J is constant on $[a_15]$, i.e. J(x) = J(a) for all $x \in [a_15]$.

Proof let $x \in (a, b]$ and apply the Mean Value Theorem to f on [a, x]:

Thur exists $a \in (a, x)$ such that $\frac{f(x)-f(a)}{x-a} = f'(c) = 0$.

Thurfor f(x)=f(a)

3. The Exponential Function

Definition 11 A differentiable function $f: \mathbb{R} \to \mathbb{R}$ with

(a) f'(x) = f(x) for all $x \in \mathbb{R}$ (b) f(0) = 1

is called exponential function

Remarks We will show hator that $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ satisfies this definition. For now, we shall assum existence of such a function.

Properties of in exponential perion

 $(A) \quad \int_{0}^{\infty} (x) \, \int_{0}^{\infty} (-x) = 1$

Proof: Diffortiate h(x) = J(x) J(-x) : h'(x) = J(x) J(-x) + J(x) J'(-x) + J(x) J'(-x) = 0.

By Theorem 10, h is constant, and h(0) = f(0)f(0) = 1, so h(x) = 1

 \Box

(B) {(s) \$ 0 for all xell?

Proof: If f(x)=0. for some $x \in \mathbb{R}$ then 0=f(x)f(-x)=1, a contradiction. I

(C) Let $g:\mathbb{R}\to\mathbb{R}$ be differtable with g'=g. Then there exists a $C\in\mathbb{R}$ such that g=cf.

from Consider $h(x) = \frac{g(x)}{g(x)}$. By (B), I is defined on the final differentiable.

 $h'(x) = \frac{g'(x) \int (x) - g(x) \int (x)}{\int (x)} = 0$, therefore his constant, h(x) = c

Thus g(x) = c g(x)

(D) Definition (1 determines of uniquely

Proof Assume of satisfies Definition (1. Then (C) replies y=cf

As g(0) =1 = f(0) we have c=1, so g= f;

We will wik f(x) = exp(x) for J defined by Definition 11.

Theorem 12 For all a, S esR, $\exp(a+b) = \exp(a) \exp(b)$

Proof Consider $g(x) = \exp(a+x)$. Then $g'(x) = \exp(a+x) = g(x)$, so $\exp(a+x) = c \exp(x)$ by (c).

For x=0, $\exp(a) \ge c$, so that $\exp(a+b) = c \exp(b) = \exp(a) \exp(b)$

(orollary For a & IR and n & IN, exp(na) = (exp(a))

Proof: Mak induction: n=1: exp(a) = (exp(a)) n= n+1: exp(n+1) = ex

(E) exp(x)>0 for all x E/R

Proof exp is difformable, therefore continuous. $\exp(x)$ to for othe $x \in \mathbb{R}$. $\exp(x) = 1$, and if then was an $x \in \mathbb{R}$ with $\exp(x) < 0$, then the tentomediate Value Theorem would reply that there was a $c \in \mathbb{R}$ such that $\exp(c) = 0$. D

(F) exp(x) is shirtly increasing

From $\exp'(x) = \exp(x) > 0$ and Thorn 9

(9)