Revisiting the Approximate Carathéodory Problem via the Frank-Wolfe Algorithm

Cyrille W. Combettes

Joint work with Sebastian Pokutta

Conference on Data Science and Optimization Fields Institute, Toronto, Canada

November 20th, 2019

Table of contents

- Introduction
- 2 The Frank-Wolfe algorithm
- 3 Sparsity bounds via Frank-Wolfe
- 4 The Fully-Corrective Frank-Wolfe algorithm

Theorem (Carathéodory [1907])

Theorem (Carathéodory [1907])

Every point in the convex hull of a set $V \subset \mathbb{R}^n$ is the convex combination of at most n+1 points in V.

• In \mathbb{R}^2 , every point in conv(\mathcal{V}) is the convex combination of at most 3 points in \mathcal{V}

Theorem (Carathéodory [1907])

Every point in the convex hull of a set $\mathcal{V} \subset \mathbb{R}^n$ is the convex combination of at most n+1 points in \mathcal{V} .

• In \mathbb{R}^2 , every point in conv(\mathcal{V}) is the convex combination of at most 3 points in \mathcal{V}

Theorem (Carathéodory [1907])

Every point in the convex hull of a set $V \subset \mathbb{R}^n$ is the convex combination of at most n+1 points in V.

• In \mathbb{R}^2 , every point in conv(\mathcal{V}) is the convex combination of at most 3 points in \mathcal{V}

Theorem (Carathéodory [1907])

- In \mathbb{R}^2 , every point in conv(\mathcal{V}) is the convex combination of at most 3 points in \mathcal{V}
- Can we reduce n+1 when we can afford an ϵ -approximation?

Theorem (Carathéodory [1907])

- In \mathbb{R}^2 , every point in $conv(\mathcal{V})$ is the convex combination of at most 3 points in \mathcal{V}
- Can we reduce n+1 when we can afford an ϵ -approximation?

Theorem (Carathéodory [1907])

- In \mathbb{R}^2 , every point in conv(\mathcal{V}) is the convex combination of at most 3 points in \mathcal{V}
- Can we reduce n+1 when we can afford an ϵ -approximation?

Theorem (Carathéodory [1907])

- In \mathbb{R}^2 , every point in conv(\mathcal{V}) is the convex combination of at most 3 points in \mathcal{V}
- Can we reduce n+1 when we can afford an ϵ -approximation?

Theorem (Carathéodory [1907])

- In \mathbb{R}^2 , every point in conv(\mathcal{V}) is the convex combination of at most 3 points in \mathcal{V}
- Can we reduce n+1 when we can afford an ϵ -approximation?
- Define the sparsity of x as the minimum number of vertices necessary to form x as a convex combination

Problem

Find $x \in \text{conv}(\mathcal{V})$ with high sparsity satisfying $\|x - x^*\|_{\rho} \leqslant \epsilon$.

Problem

Find $x \in \text{conv}(\mathcal{V})$ with high sparsity satisfying $||x - x^*||_p \leqslant \epsilon$.

 Applications in game theory, combinatorial optimization, and machine learning

Problem

Find $x \in \text{conv}(\mathcal{V})$ with high sparsity satisfying $||x - x^*||_p \leqslant \epsilon$.

 Applications in game theory, combinatorial optimization, and machine learning

Theorem

Problem

Find $x \in \text{conv}(\mathcal{V})$ with high sparsity satisfying $||x - x^*||_p \leq \epsilon$.

 Applications in game theory, combinatorial optimization, and machine learning

Theorem

Let $p \geqslant 2$. Then there exists $x \in \text{conv}(\mathcal{V})$ with sparsity $\mathcal{O}(pD_p^2/\epsilon^2)$ satisfying $\|x - x^*\|_p \leqslant \epsilon$, where $D_p = \sup_{v,w \in \mathcal{V}} \|w - v\|_p$.

• This result is independent of the space dimension *n*

Problem

Find $x \in \text{conv}(\mathcal{V})$ with high sparsity satisfying $||x - x^*||_p \leqslant \epsilon$.

 Applications in game theory, combinatorial optimization, and machine learning

Theorem

- This result is independent of the space dimension *n*
- The bound is tight [Mirrokni et al., 2017]

Problem

Find $x \in \text{conv}(\mathcal{V})$ with high sparsity satisfying $||x - x^*||_p \leqslant \epsilon$.

 Applications in game theory, combinatorial optimization, and machine learning

Theorem

- This result is independent of the space dimension n
- The bound is tight [Mirrokni et al., 2017]
- Probabilistic proofs by Pisier [1981] and Barman [2015]

Problem

Find $x \in \text{conv}(\mathcal{V})$ with high sparsity satisfying $||x - x^*||_p \leqslant \epsilon$.

 Applications in game theory, combinatorial optimization, and machine learning

Theorem

- This result is independent of the space dimension n
- The bound is tight [Mirrokni et al., 2017]
- Probabilistic proofs by Pisier [1981] and Barman [2015]
- Deterministic proof by Mirrokni et al. [2017] using mirror descent [Nemirovsky and Yudin, 1983] on the dual problem

Problem

Find $x \in \text{conv}(\mathcal{V})$ with high sparsity satisfying $||x - x^*||_p \leqslant \epsilon$.

 Applications in game theory, combinatorial optimization, and machine learning

Theorem

- This result is independent of the space dimension n
- The bound is tight [Mirrokni et al., 2017]
- Probabilistic proofs by Pisier [1981] and Barman [2015]
- Deterministic proof by Mirrokni et al. [2017] using mirror descent [Nemirovsky and Yudin, 1983] on the dual problem
- Can we solve $\min_{x \in conv(\mathcal{V})} ||x x^*||_p$ by sequentially picking up vertices?

Frank & Wolfe [1956], Levitin & Polyak [1966]

- 1: $x_0 \in \mathcal{V}$
- 2: **for** t = 0 **to** T 1 **do**
- 3: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$
- 4: $x_{t+1} \leftarrow x_t + \gamma_t (v_t x_t)$
- 5: end for

$$f(x) = \|x - x^*\|_2^2$$

Frank & Wolfe [1956], Levitin & Polyak [1966]

Algorithm Frank-Wolfe (FW)

1: $x_0 \in \mathcal{V}$

2: **for** t = 0 **to** T - 1 **do**

3: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$

4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$

5: end for

$$f(x) = \|x - x^*\|_2^2$$

Frank & Wolfe [1956], Levitin & Polyak [1966]

- 1: $x_0 \in \mathcal{V}$
- 2: **for** t = 0 **to** T 1 **do**
- 3: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$
- 4: $x_{t+1} \leftarrow x_t + \gamma_t (v_t x_t)$
- 5: end for

$$f(x) = \|x - x^*\|_2^2$$

Frank & Wolfe [1956], Levitin & Polyak [1966]

- 1: $x_0 \in \mathcal{V}$
- 2: **for** t = 0 **to** T 1 **do**
- 3: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$
- 4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t x_t)$
- 5: end for

$$f(x) = \|x - x^*\|_2^2$$

Frank & Wolfe [1956], Levitin & Polyak [1966]

- 1: $x_0 \in \mathcal{V}$
- 2: **for** t = 0 **to** T 1 **do**
- 3: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$
- 4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t x_t)$
- 5: end for

$$f(x) = \|x - x^*\|_2^2$$

Frank & Wolfe [1956], Levitin & Polyak [1966]

- 1: $x_0 \in \mathcal{V}$
- 2: **for** t = 0 **to** T 1 **do**
- 3: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$
- 4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t x_t)$
- 5: end for

$$f(x) = \|x - x^*\|_2^2$$

Frank & Wolfe [1956], Levitin & Polyak [1966]

- 1: $x_0 \in \mathcal{V}$
- 2: **for** t = 0 **to** T 1 **do**
- 3: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$
- 4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t x_t)$
- 5: end for

$$f(x) = \|x - x^*\|_2^2$$

Frank & Wolfe [1956], Levitin & Polyak [1966]

Algorithm Frank-Wolfe (FW)

1: $x_0 \in \mathcal{V}$

2: **for** t = 0 **to** T - 1 **do**

3: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$

4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$

5: end for

• FW minimizes f over conv(V) by sequentially picking up vertices

$$f(x) = \|x - x^*\|_2^2$$

Frank & Wolfe [1956], Levitin & Polyak [1966]

- $1:\ x_0\in \mathcal{V}$
- 2: **for** t = 0 **to** T 1 **do**
- 3: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$
- 4: $x_{t+1} \leftarrow x_t + \gamma_t (v_t x_t)$
- 5: end for
 - FW minimizes f over conv(V) by sequentially picking up vertices
 - The final iterate x_T has sparsity at most T+1

$$f(x) = \|x - x^*\|_2^2$$

Frank & Wolfe [1956], Levitin & Polyak [1966]

- 1: $x_0 \in \mathcal{V}$
- 2: **for** t = 0 **to** T 1 **do**
- 3: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$
- 4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t x_t)$
- 5: end for
 - FW minimizes f over conv(V) by sequentially picking up vertices
 - The final iterate x_T has sparsity at most T+1
 - This is like a greedy method for the approximate Carathéodory problem!

$$f(x) = \|x - x^*\|_2^2$$

• Apply FW to $f(x) = \|x - x^*\|_p^2$ and count the number of iterations T to achieve ϵ^2 -convergence: $\|x_T - x^*\|_p^2 \le \epsilon^2$

- Apply FW to $f(x) = \|x x^*\|_p^2$ and count the number of iterations T to achieve ϵ^2 -convergence: $\|x_T x^*\|_p^2 \le \epsilon^2$
- Then x_T has sparsity at most T+1 and satisfies $\|x_T-x^*\|_p \leqslant \epsilon$

- Apply FW to $f(x) = \|x x^*\|_p^2$ and count the number of iterations T to achieve ϵ^2 -convergence: $\|x_T x^*\|_p^2 \leqslant \epsilon^2$
- Then x_T has sparsity at most T+1 and satisfies $||x_T-x^*||_p \leqslant \epsilon$
- Classical convergence results of FW and variants require smoothness and/or strong convexity of f w.r.t. a norm $\|\cdot\|$

- Apply FW to $f(x) = \|x x^*\|_p^2$ and count the number of iterations T to achieve ϵ^2 -convergence: $\|x_T x^*\|_p^2 \le \epsilon^2$
- Then x_T has sparsity at most T+1 and satisfies $||x_T-x^*||_p \leqslant \epsilon$
- Classical convergence results of FW and variants require smoothness and/or strong convexity of f w.r.t. a norm $\|\cdot\|$

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle \leqslant \frac{L}{2} ||y - x||^2$$

- Apply FW to $f(x) = \|x x^*\|_p^2$ and count the number of iterations T to achieve ϵ^2 -convergence: $\|x_T x^*\|_p^2 \leqslant \epsilon^2$
- Then x_T has sparsity at most T+1 and satisfies $||x_T-x^*||_p \leqslant \epsilon$
- Classical convergence results of FW and variants require smoothness and/or strong convexity of f w.r.t. a norm $\|\cdot\|$

$$\frac{S}{2}||y-x||^2 \leqslant f(y) - f(x) - \langle \nabla f(x), y-x \rangle \leqslant \frac{L}{2}||y-x||^2$$

- Apply FW to $f(x) = \|x x^*\|_p^2$ and count the number of iterations T to achieve ϵ^2 -convergence: $\|x_T x^*\|_p^2 \le \epsilon^2$
- Then x_T has sparsity at most T+1 and satisfies $||x_T-x^*||_p \leqslant \epsilon$
- Classical convergence results of FW and variants require smoothness and/or strong convexity of f w.r.t. a norm $\|\cdot\|$

$$\frac{S}{2}||y - x||^2 \le f(y) - f(x) - \langle \nabla f(x), y - x \rangle \le \frac{L}{2}||y - x||^2$$

• For $p \ge 2$, $f(x) = \|x - x^*\|_p^2$ is smooth w.r.t. $\|\cdot\|_p$ but it is strongly convex only when p = 2

- Apply FW to $f(x) = \|x x^*\|_p^2$ and count the number of iterations T to achieve ϵ^2 -convergence: $\|x_T x^*\|_p^2 \leqslant \epsilon^2$
- Then x_T has sparsity at most T+1 and satisfies $||x_T-x^*||_p \leqslant \epsilon$
- Classical convergence results of FW and variants require smoothness and/or strong convexity of f w.r.t. a norm $\|\cdot\|$

$$\frac{S}{2}||y - x||^2 \leqslant f(y) - f(x) - \langle \nabla f(x), y - x \rangle \leqslant \frac{L}{2}||y - x||^2$$

- For $p \ge 2$, $f(x) = \|x x^*\|_p^2$ is smooth w.r.t. $\|\cdot\|_p$ but it is strongly convex only when p = 2
- Replace strong convexity with a weaker condition: the PL inequality w.r.t. || · || [Polyak, 1963, Łojasiewicz, 1963]

$$f(x) - \min_{\mathbb{R}^n} f \leqslant \frac{1}{2\mu} \|\nabla f(x)\|_*^2$$

The approximate Carathéodory problem via FW

- Apply FW to $f(x) = \|x x^*\|_p^2$ and count the number of iterations T to achieve ϵ^2 -convergence: $\|x_T x^*\|_p^2 \le \epsilon^2$
- Then x_T has sparsity at most T+1 and satisfies $||x_T-x^*||_p \leqslant \epsilon$
- Classical convergence results of FW and variants require smoothness and/or strong convexity of f w.r.t. a norm $\|\cdot\|$

$$\frac{S}{2}||y-x||^2 \leqslant f(y) - f(x) - \langle \nabla f(x), y-x \rangle \leqslant \frac{L}{2}||y-x||^2$$

- For $p \ge 2$, $f(x) = \|x x^*\|_p^2$ is smooth w.r.t. $\|\cdot\|_p$ but it is strongly convex only when p = 2
- Replace strong convexity with a weaker condition: the PL inequality w.r.t. || · || [Polyak, 1963, Łojasiewicz, 1963]

$$f(x) - \min_{\mathbb{R}^n} f \leqslant \frac{1}{2\mu} \|\nabla f(x)\|_*^2$$

• For $p \ge 2$, $f(x) = ||x - x^*||_p^2$ is 2(p-1)-smooth and 2-PL w.r.t. $||\cdot||_p$

Sparsity bounds via FW convergence rates

Levitin & Polyak [1966], Guélat & Marcotte [1986], Jaggi [2013], Garber & Hazan [2015]

- $p \ge 2$
- ullet $\mathcal{C} \subset \mathbb{R}^n$ be a compact convex set
- $\bullet \ \, \mathcal{V} \subseteq \partial \mathcal{C} \ \, \text{be the compact set of interest (e.g., } \mathcal{C} = \mathsf{conv}(\mathcal{V}))$
- We want a sparse approximate convex decomposition of $x^* \in conv(\mathcal{V})$

Sparsity bounds via FW convergence rates

Levitin & Polyak [1966], Guélat & Marcotte [1986], Jaggi [2013], Garber & Hazan [2015]

- $p \geqslant 2$
- ullet $\mathcal{C} \subset \mathbb{R}^n$ be a compact convex set
- $V \subseteq \partial C$ be the compact set of interest (e.g., C = conv(V))
- We want a sparse approximate convex decomposition of $x^* \in conv(\mathcal{V})$

Assumptions	FW rate	Sparsity bound
-	$\frac{4(p-1)D_p^2}{t+2}$	$\frac{4(p-1)D_p^2}{\epsilon^2} = \mathcal{O}\left(\frac{pD_p^2}{\epsilon^2}\right)$
\mathcal{C} is S_p -strongly convex	$\frac{\max\{9(p-1)D_p^2,1152(p-1)^2/S_p^2\}}{(t+2)^2}$	$\mathcal{O}\left(\frac{\sqrt{p}D_p + p/S_p}{\epsilon}\right)$
$x^* \in \operatorname{relint}_{ ho}(\mathcal{C})$ with radius $r_{ ho}$	$\left(1-rac{1}{ ho-1}rac{r_ ho^2}{D_ ho^2} ight)^t\epsilon_0$	$\mathcal{O}\left(\frac{pD_p^2}{r_p^2}\ln\left(\frac{1}{\epsilon}\right)\right)$

Sparsity bounds via FW convergence rates

Levitin & Polyak [1966], Guélat & Marcotte [1986], Jaggi [2013], Garber & Hazan [2015]

- $p \geqslant 2$
- \circ $\mathcal{C} \subset \mathbb{R}^n$ be a compact convex set
- $\mathcal{V} \subseteq \partial \mathcal{C}$ be the compact set of interest (e.g., $\mathcal{C} = \mathsf{conv}(\mathcal{V})$)
- We want a sparse approximate convex decomposition of $x^* \in conv(\mathcal{V})$

Assumptions	FW rate	Sparsity bound
-	$\frac{4(p-1)D_p^2}{t+2}$	$rac{4(p-1)D_p^2}{\epsilon^2}=\mathcal{O}\left(rac{pD_p^2}{\epsilon^2} ight)$
C is S_p -strongly convex	$\frac{\max\{9(p-1)D_p^2,1152(p-1)^2/S_p^2\}}{(t+2)^2}$	$\mathcal{O}\left(\frac{\sqrt{p}D_p + p/S_p}{\epsilon}\right)$
$x^* \in \operatorname{relint}_{p}(\mathcal{C})$ with radius r_p	$\left(1-rac{1}{p-1}rac{r_p^2}{D_p^2} ight)^t\epsilon_0$	$\mathcal{O}\left(\frac{pD_p^2}{r_p^2}\ln\left(\frac{1}{\epsilon}\right)\right)$

• FW adapts to the geometry of the problem to yield higher sparsity

Algorithm Frank-Wolfe (FW)

- 1: $x_0 \in \mathcal{V}$
- 2: **for** t = 0 **to** T 1 **do**
- 3: $v_t \leftarrow \arg\min\langle \nabla f(x_t), v \rangle$
- 4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t x_t)$
- 5: end for

Algorithm Frank-Wolfe (FW)

```
1: x_0 \in \mathcal{V}

2: for t = 0 to T - 1 do

3: v_t \leftarrow \underset{v \in \mathcal{V}}{\arg\min} \langle \nabla f(x_t), v \rangle

4: x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)

5: end for
```

• Selected vertices in FW may be redundant, can we fix this?

Algorithm Frank-Wolfe (FW)

- 1: $x_0 \in \mathcal{V}$ 2: **for** t = 0 **to** T - 1 **do** 3: $v_t \leftarrow \underset{v \in \mathcal{V}}{\arg\min} \langle \nabla f(x_t), v \rangle$ 4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$ 5: **end for**
 - Selected vertices in FW may be redundant, can we fix this?

Algorithm Fully-Corrective Frank-Wolfe (FCFW)

```
1: x_0 \in \mathcal{V}

2: S_0 \leftarrow \{x_0\}

3: for t = 0 to T - 1 do

4: v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg min}} \langle \nabla f(x_t), v \rangle

5: S_{t+1} \leftarrow S_t \cup \{v_t\}

6: x_{t+1} \leftarrow \underset{conv(S_{t+1})}{\operatorname{arg min}} f
```

7: end for

Algorithm Frank-Wolfe (FW)

```
1: x_0 \in \mathcal{V}

2: for t = 0 to T - 1 do

3: v_t \leftarrow \underset{v \in \mathcal{V}}{\arg\min} \langle \nabla f(x_t), v \rangle

4: x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)

5: end for
```

• Selected vertices in FW may be redundant, can we fix this?

Algorithm Fully-Corrective Frank-Wolfe (FCFW)

```
1: x_0 \in \mathcal{V}

2: S_0 \leftarrow \{x_0\}

3: for t = 0 to T - 1 do

4: v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg min}} \langle \nabla f(x_t), v \rangle

5: S_{t+1} \leftarrow S_t \cup \{v_t\}

6: x_{t+1} \leftarrow \underset{\operatorname{conv}(S_{t+1})}{\operatorname{arg min}} f
```

7: end for

Algorithm Frank-Wolfe (FW)

```
1: x_0 \in \mathcal{V}

2: for t = 0 to T - 1 do

3: v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg min}} \langle \nabla f(x_t), v \rangle

4: x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)
```

5: end for

7: end for

• Selected vertices in FW may be redundant, can we fix this?

Algorithm Fully-Corrective Frank-Wolfe (FCFW)

```
1: x_0 \in \mathcal{V}

2: S_0 \leftarrow \{x_0\}

3: for t = 0 to T - 1 do

4: v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg min}} \langle \nabla f(x_t), v \rangle

5: S_{t+1} \leftarrow S_t \cup \{v_t\}

6: x_{t+1} \leftarrow \underset{conv(S_{t+1})}{\operatorname{arg min}} f
```

- We randomly generated 1000 vertices and $x^* \in conv(V)$
- Here arbitrarily chose p = 4

• Here x^* is generated by a convex combination of only 50 vertices

• Here x^* is generated by a convex combination of only 50 vertices

 FCFW obtains an exact convex decomposition of x* once it picks up all its vertices

FCFW matches the theoretical lower bound!

FCFW matches the theoretical lower bound!

• Can we derive a precise convergence rate for FCFW?

Thank you!

https://arxiv.org/pdf/1911.04415.pdf

References

- S. Barman. Approximating Nash equilibria and dense bipartite subgraphs via an approximate version of Carathéodory's theorem. *STOC*, 2015.
- C. Carathéodory. Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. *Mathematische Annalen*, 1907.
- M. Frank and P. Wolfe. An algorithm for quadratic programming. *Naval Research Logistics Quarterly*, 1956.
- D. Garber and E. Hazan. Faster rates for the Frank-Wolfe method over strongly-convex sets. *ICML*, 2015.
- E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Computational Mathematics and Mathematical Physics, 1966.
- S. Łojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. *Colloques Internationaux du CNRS*, 1963.
- V. Mirrokni, R. Paes Leme, A. Vladu, and S. C.-W. Wong. Tight bounds for approximate Carathéodory and beyond. *ICML*. 2017.
- A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley, 1983.
- G. Pisier. Remarques sur un résultat non publié de B. Maurey. Séminaire d'Analyse Fonctionnelle, École Polytechnique, 1981.
- B. T. Polyak. Gradient methods for the minimisation of functionals. *USSR Computational Mathematics and Mathematical Physics*, 1963.