Convocatoria Extraordinaria

Apellidos y Nombre .		
D.N.I	_ Firma	

- 1. Demostrar por inducción que $2^{2n}+15n-1$ es múltiplo de 9 para todo natural n.
- 2. Encontrar el número entero x que satisface las condiciones siguientes:

$$\begin{cases} 3x^2 + 3x + 2 \equiv 0 \mod 5 \\ 3x \equiv 2 \mod 7 \\ 0 \le x \le 34 \end{cases}$$

- 3. Factorizar $p(x)=2x^5+2x^4+3x^3+3x^2-2x-2$ como producto de factores irreducibles en $\mathbb{Q}[x]$ y $\mathbb{C}[x]$.
- 4. Sean los conjuntos:

 $\mathcal{A}=\{$ números reales del intervalo[0,1)en cuyo desarrollo decimal nunca aparece el dígito 3 $\},$

 $\mathcal{B} = \{ \text{ números obtenidos al sustituir } x \text{ e } y \text{ por números racionales arbitrarios}$ en la fórmula : $e^x + \sin(\pi^2 y) \},$

 $\mathcal{C} = \mathcal{P}(\mathbb{Z}) = \text{ conjunto de todos los subconjuntos de los enteros,}$

$$\mathcal{D}=\mathbb{Q}\times\mathbb{Q}\times\mathbb{Q}\times\mathbb{Q}.$$

 $\ensuremath{\mathcal{C}}$ Cuáles, entre estos conjuntos, son equipotentes o biyectables? Responder razonadamente.