# Theoretical Analysis and Warehouse Design for Retail Return Fraud Analytics 02-19-2018

Anurag Jain
Faisal Ahmad
Mohsin Asif
Naren Sham
Smarak Das

University of Cincinnati, Lindner College of Business

- Data Warehousing and BI

# **Table of Contents**

| Executive Summary:              | 2  |
|---------------------------------|----|
| Introduction:                   | 3  |
| Literature Review:              | 3  |
| Theoretical Analysis:           | 5  |
| Database Analysis:              | 7  |
| DW Architecture:                | 8  |
| DW Model                        | 10 |
| Key Figures and Characteristics | 12 |
| ETL Process for Sam's Club EDW  | 13 |
| Discussion and Conclusion       | 16 |
| APPENDIX – A                    | 18 |
| Store visit info cube           | 18 |
| Key figures                     | 18 |
| Sources:                        | 22 |

#### **Executive Summary:**

Theft, either by consumers or employees, is an ongoing concern for many retailers. This theft costs retailers nearly 1.5% of their total sales per year. There are multiple ways in which customers and employees commit fraud. SAM's Club is facing similar problems and in this report we are providing a possible to solution to proactively detect fraud. We have suggested an Enterprise Data Warehouse using Hub and Spoke architecture with two InfoCubes, Store Visits and Item Scan enabling swift and effective decision making. There are, however, some limitations to the structure we have suggested. It is not creating a unit of measure dimension for the currencies in all transaction tables because the geographies in consideration right now are only from the US and hence the currency is assumed to be in USD. Secondly, we do not have inventory tracking in this model for processing return. We discuss the possible solution to these limitations towards the end of this report. As a future improvement, we can automate the update of dimension tables that would enable near real-time analysis of daily transactions. The decision support system is currently being provided by SAP BusinessObjects which provides tabular data to the decision makers to view their metrics. This can be improvised by using third party visualization tools and connecting the data-marts through ODBC connectors, thus helping business users understand their numbers better and take effective decisions.

#### Introduction:

Retail fraud, also called as shoplifting, is a serious offence according to the US law. A customer or an employee, if caught and proven guilty, can be sentenced up to five years in prison or fined up to 10,000 USD. Despite this law, retail fraud is on the rise and accounts for 1.5% to 7% of all the retail sales putting a major dent in company income. A rise in theft suggest that retailers must proactively prevent theft even before it happens by taking appropriate measures. One of the steps companies could take is employing the power of business intelligence using cutting edge BI and warehousing tools such as SAP BW/BI for speedy analysis of daily transactions and returns data.

In this report we have analyzed the database populated with real sales data of a major named as SAM's Club. After analyzing the database, we suggest building a hub & spoke data warehouse design using SAP BW/BI. This data warehouse will feed our data mart, having a snow flake schema, that will contain important facts regarding daily sales and returns. We have defined the grain of the fact table after rigorous team analysis to address many tough business questions regarding fraud. We aim to deliver real time analytics to our customer Sam's Club, so its management can prevent fraud even before it causes major dent in their sales.

#### Literature Review:

According to our literature review, we found that retail fraud in the retail industry ranges from 1.5 to 7% per annual sales of an average company. This is a major concern for many retailers, but they still haven't taken serious steps to curb this menace. Today, retailers routinely find

themselves fighting against the manipulation of their financial statements, POS transactions, collusion among vendors, shoplifting and refund fraud, and many different other schemes. All reports, suggest that implementing analytics solutions especially related to data warehousing to analyze daily sales could drastically reduce theft in stores.

According to a recent Time Money article, the retail industry, in 2016, faced losses of nearly 50 billion USD due to retail fraud mainly because of customer and employees. In a survey on 83 major retailers who own multiple brands in USA, The National Retail Federation measured that inventory losses increased to 1.44% of the entire retail sales in USA. These losses measured in the survey included shoplifting, theft by employees, admin error, and vendor fraud. It was revealed that 36.5% of missing inventory was due to shoplifting by outside customers. Around 30% of inventory shrinkage was due to employee theft followed by Administrative errors accounting for 21.3% of inventory shrinkage; Vendor fraud accounted for 5.4%. The average cost of each shoplifting incident is 799 USD whereas the cost of each employee theft is estimated to be 1923 USD. Still many retailors did not take any action against such thefts.

In a similar article, Forbes reported that retailers in United States are losing \$60 Billion a year to shrinkage. \$57 Billion in 2014, this is an increase of nearly 5%. Additionally, employee theft was identified as the biggest reason for retail losses. American retailers generally put losses owing to staff ahead of losses owing to external shrink. The study was conducted on 91 retailers with annual sales totaling \$844.6 billion.

All the major articles on preventing retail fraud emphasize on employing latest technology and tools to curb losses. Apart from installing cameras across the store, RFID scanners, and assigning

unique bar codes to each product, these articles emphasize on employing business intelligence and data warehousing tools to detect fraud. Some of the major vendor and their tools

| Vendor               | Tool                          |
|----------------------|-------------------------------|
| Teradata Corporation | Teradata EDW                  |
| SAP                  | BW/BI                         |
| Oracle               | Exadata                       |
| Amazon Web Services  | Redshift                      |
| IBM                  | Cognos                        |
| Informatica          | Informatica Power Center, MDM |

## **Theoretical Analysis:**

Although there are many ways fraud is committed in a retail store, but the major ones are committed by customers and store employees. In this section we will discuss various customers and employees commit fraud.

## **Customer Fraud:**

| Risk                                           | Mitigation Strategy                                        |
|------------------------------------------------|------------------------------------------------------------|
| Wardrobing: This is the phenomenon where       | <ul> <li>An item must be returned to same store</li> </ul> |
| customer buys a product with an intention to   | where it was purchased within 7 days of the                |
| return the product for full refund after using | purchase with original receipt and product                 |
| it. For instance, a student may buy a book for | tags                                                       |
| an open book exam and return it after the      | <ul> <li>A customer may not return more than a</li> </ul>  |
| exam.                                          | fixed number of times within a specified                   |
|                                                | time                                                       |

| Return of stolen Items: Customer may            | Assign unique product SKU to each product and     |
|-------------------------------------------------|---------------------------------------------------|
| legitimately buy a product from a store and     | track returned item against that code.            |
| return to the store with an original receipt to |                                                   |
| grab another product of the same                |                                                   |
| specifications and return it for cash.          |                                                   |
| Receipt fraud: Customer may use a               | Returned without member card and the              |
| legitimate receipt of some other customer       | customer who is trying to return on another       |
| and try to get a refund.                        | receipt will have to bring the same card it which |
|                                                 | sale was made                                     |
| Returning product to the wrong store:           | Item must be returned to the store where it was   |
| Customer may buy a product from a cheaper       | purchased from                                    |
| store and try to return it to a different store |                                                   |
| for higher price refund.                        |                                                   |
| Credit Card Fraud: Customer may buy a           | Return will be issued to the same credit card it  |
| product from a stolen credit card and try to    | was purchased from and there will not be any      |
| return it for cash refund.                      | cash refund without verification from the owner   |
|                                                 | of the credit card.                               |

# **Employee Fraud:**

| Risk                                           | Mitigation Strategy                      |
|------------------------------------------------|------------------------------------------|
| Discount Fraud: When an employee               | Number of discounts given by an internal |
| misuses his power to use discount              | employee should be limited to a certain  |
| codes/coupons to sell items to his             | number.                                  |
| friends/family or sells items at higher prices |                                          |
| online.                                        |                                          |

| Not recording a return: When an employee     | Money cannot be paid out unless the return is |
|----------------------------------------------|-----------------------------------------------|
| does not intentionally record a return and   | recorded into the system                      |
| steals the item while money goes out of      |                                               |
| company in refund.                           |                                               |
| Price modification: May misuse his rights    | Price changing must be validated by two       |
| to lower the price of the product to buy it  | separate employees and proper rights should   |
| and increase price later to the usual price. | be allocated to prevent unauthorized price    |
|                                              | change                                        |
| False return: Employee enters a false        | Return must be processed at a separate        |
| return and pays out money to someone         | counter and must be reconciled with the       |
| when no actual item is returned.             | physical item at the end of the day           |

## **Database Analysis:**

Whenever a new customer visits a store and checks out at the cashier, a transaction is generated and is stored in a normalized database. The aim of this database is to implement data integrity and efficient storage of data. These databases are designed for fast storage of data and avoid redundancy. To attain this, redundant data is split in to a different table and are related to each other using foreign keys. Although this database architecture is good for capturing data efficiently, it is not good for performing analysis on historical data. The select performance is poor thus we need to convert this database into a flat structure which contains less relations and avoids multiple joins. For this reason, dimensional model is preferred for running analysis.

To convert our normalized model to a dimensional model, we analyzed which columns are getting populated on every transaction and which are not. The ones which are growing with every transaction are used in the fact table and the ones which are categorical are used in dimension

tables. We aggregate the fact values to get summarized results. This reduces our effort of aggregating during querying for analysis and gives more meaningful insights. Data from different source systems are accumulated and cleansed. Finally, analysis is performed on this aggregated model.

#### **Data Warehouse Architecture:**

We suggest employing the Dependent Data Mart and Operational Data Store (Hub-and-Spoke) architecture. Here, we source our data from the various OLTP (Transactional) systems and stage the data. We then perform our transformation and cleansing of the data. The transformed data is moved to the Enterprise Data Warehouse (EDW), where it is stored in a uniformly consistent structure. The data in the EDW is stored with historical data and the it can only be updated here. The EDW is the source for our data marts which is connected to end user presentation tools for decision making support.

We use SAP BW for our cleansing, ETL, data warehousing and data mart creation. In our design, we have two target Infocubes – *Visit* and *Item Scan*, which act as our data marts. The Infocubes have conformed dimensions of member, operator, items, brand, category and store between them. The *Visit* Infocube contains the item details of each member visit and the *Item Scan* contains the details with granularity of each item for every member visit. The development method starts with loading the master data and dimension tables (characteristics) initially and then loading the transactional data on a regular basis. The master data is initially defined and their text and attribute values are set. This data is rarely updated, in case of new data definitions.

The transactional data is loaded daily at the close of business from the source systems. A job is run post the cleansing and transformations performed in the PSA. A process chain can be scheduled to load the transformed data into the EDW (Data Store Object). The data is stored indefinitely in the DSO with the characteristics linked to the corresponding transaction table fields.

The data marts get their inputs from the EDW and are used for performing analysis and specific business questions about the OLTP data at hand. Here, we use a visit data mart which analyses the daily visit data, the operator performing the transaction, the member visiting, the store and the sale details of the transaction. The item Infocube provides analysis about the item level details, such as each item bought, the member buying and item cost.

A drill through analysis of the data marts can be performed by creating an additional data mart from the data marts, to answer questions related to each item within a visit by a member (shown below). The facts are both recording data at the granularity of a second. The data in the dimension tables are to be rarely updated. They are updated on an incremental basis every month, or by a need to update basis, if an additional product is added into the catalog, or a new employee joins the ranks. The transactional data, as mentioned, is updated daily from all the available source systems during non-business hours such as middle of the night. This is because the daily transactional data needs to be available for analysis at the data mart as soon as possible to enable decision making.

Larger Infocubes are accommodated by the creation of *multiproviders* available in the SAP BW environment. As they store, they correspond to the logical data mart which only store the queries or views required for analysis. This helps in saving storage space and allows ad-hoc analysis.

The summary of our architecture is provided below:

- Hub and Spoke Architecture with a staging layer and enterprise data warehouse
- Subject oriented Infocubes created for analysis with a snowflake structure, conformed dimensions and uniform granularity.
- Dimensions updated monthly and daily incremental refresh of transactional data.
- Provision for additional infocubes on top of the visit and item infocubes for drill through analysis
- Process chains to enable serial updating of data to the infocubes
- Provision of logical data marts in the form of multi providers

#### **DW Model**

We have proposed a two fact tables dimensional model with total seven dimensions. The two fact tables are "VISIT\_FACT\_TABLE" which captures the details of a store visit and "ITEM SCAN FACT TABLE" which stores the details based on Items purchased. "ITEM SCAN FACT TABLE" and "VISIT FACT TABLE" is connected to four dimension tables namely "MEMBER\_INDEX\_DIM\_TABLE" which stores the details of every store member, "OPERATOR DIM TABLE" stores Operators details present the at store. "DATE\_TIME\_DIM\_TABLE" which stores the conformed date and time dimension of transaction and "STORE\_INFORMATION\_DIMENSION" that captures the detailed information of that store. The other fact table "ITEM SCAN FACT TABLE" is connected to "MEMBER INDEX DIM TABLE", "DATE TIME DIM TABLE", "STORE INFORMATION DIMENSION" and "ITEM DIM TABLE" which has all the details about the purchased item.

The "ITEM\_DIM\_TABLE" is further connected to the "VENDOR\_DIM\_TABLE" which has the vendor details for every item "BRAND\_DIM\_TABLE" and "CATEGORY\_DIM\_TABLE" which store the brand and category details

We have implemented the "Hub and spoke model" with "type 2" changes architecture with snowflaking and hierarchical schema structure.



Using this model, we can answer below business questions:

| Question                 | Response                                                          |
|--------------------------|-------------------------------------------------------------------|
| Are there certain stores | This can be found by referring to STORE_ID in the                 |
| that have more returns   | ITEM_SCAN_FACT_TABLE, we can analyse for stores with a high       |
| than others?             | count of refund code                                              |
| Are there certain times  | To find certain times that are more likely to have returns we can |
| that are more likely to  | analyze the ITEM_SCAN_FACT_TABLE for DATE_TIME_ID which           |
| have returns?            | can help us find times with highest number of returns             |
| Are there certain        | If there are certain employees who accept more returns, then they |
| employees who process    | can be found by analysis of VISIT_FACT_TABLE with high            |
| more returns?            | OPERATOR_ID count                                                 |
| Are there certain        | This can be found by looking for high MEMBERSHIP_ID count         |
| customers who return     | against returns in the VISIT_FACT_TABLE                           |
| more items?              |                                                                   |
| Are certain products     | These questions can be answered by querying                       |
| returned more often      | ITEM_SCAN_FACT_TABLE and its dimensions.                          |
| than others?             |                                                                   |

Answering these questions will help us in taking actions and making strategies to avoid fraud.

## **Key Figures and Characteristics**

The Infocubes, Info-objects, Key figures, and characteristics that Sam's club data warehouse will be using are attached in the *Appendix A* of this report.

## **ETL Process for Sam's Club EDW**

Master Data Flow: The master data of each dimension must be defined through the SAP
 BW Master data flow. The Member Index Dimension is created by loading its characteristics
 Texts and Attributes as referred from the UA\_SAMSCLUB\_SMALL tables.



The primary steps for creating the Master Data Flow are as follows:

- Create Data Flow (Extract): The data flow is created from the extracting of transactional database tables from the Sam's club database.
- Add Member InfoObject: The member InfoObject is mapped to the flow and used for Metadata management.
- Create Data Source: The data source is created and scrubbing of the data by removing NULL values is done in this process.
- Create Transformation for Attributes: The attributes of Member Index and different dimensions are transformed and mapped in this flow.
- Load and data transfer: The attributes data from the transactional database tables are loaded into the dimensional tables.

- Create Transformation for Texts: The textual fields are transformed and mapped in this flow.
- Load and data transfer: The textual data from the transactional tables are loaded into the dimensional tables.

#### **Transactional Data Flow**

The proposed EDW architecture contains two Fact Tables, Visit Fact and Item Scan Fact. These two fact tables should be created as two InfoCubes for analyzing and reporting the data using the above dimensional and transactional table data.



The primary steps for created the Master Data Flow are as following: -

 Create Data Flow (Extract): The data flow is created from the extracting of transactional database tables from the Sam's club database.

- Create Data Source: The data source is created and scrubbing of the data by removing NULL values is done in this process.
- Create InfoPackage and load PSA: The InfoPackage is created and data are loaded from the PSA.
- Create DataStoreObject: The DSO of each fact tables are created for storing the data of
  each Store visits and Item scan fact tables.
- Create Transformation: The transactional table fields are mapped and transformed using this step to each fact key figures and characteristics.
- Load and data transfer to DSO: The data from the transactional tables are loaded into the DSO.
- Activate Data in DataStoreObject: The DSO are activated using this step.
- **Assign InfoCube:** The InfoCube which is created for each Fact Table, Store Visit and Item scan are assigned to the DSO flow.
- Create Transformation: The transformation from DSO to Infocube of both Store visit and Item scan is performed in this step. Total Cost and Retail is calculated by Unit price and quantity.
- Load and data transfer: The data is then loaded from DSO to Infocubes in this step.

Hence, from each of the above steps we can conclude the ETL processes used for the EDW:



- Extract: The Data flow creation in Master data and transaction data flow from the transactional data source of Sam's club database table.
- Metadata management: The creation of InfoObject and creation of new Data source is the step where the Mapping of the metadata is performed.
- Scrub and Cleanse: The step to create the data source and load the data from the transactional tables also involves the data cleansing step where null and empty values are removed.
- Transform: This step is performed during the attribute mapping in Master data and DSO to
  InfoCube transformation flow where Quantity and UnitCost or UnitRetail is used to calculate
  the total cost of each item scan.
- **Load:** This step is performed in both Master data creation and Transactional data flow to start the data transfer process where the data from DSO is loaded into the InfoCubes.

#### **Discussion and Conclusion**

Our suggestions will enable SAM's Club to create an Enterprise Data Warehouse using Hub and Spoke architecture with two InfoCubes, Store Visits and Item Scan enabling swift and effective decision making enabling SAM's club to answer tough business questions and detect fraud as quickly as possible. There, however, are some limitations to the structure we have suggested. It is not creating a unit of measure dimension for the currencies in all transaction tables because the geographies in consideration right now are only from the US and hence the currency is assumed to be in USD. This limitation can be overcome by adding a unit dimension in case the business expands geographically. Also, the addition of Inventory tracking would enable a more

robust analysis of Retail Return Fraud, both from the customer and employee standpoint, which has been provisioned for in our Data Warehouse model.

For future improvement on the current design, the system can be integrated with automation processes. An automated update of dimension tables would enable near real-time analysis of daily transactions. For instance, the addition of an operator as soon as they are onboard into the dimension table. Similarly, the addition of a new product on its release to the market will enable an automated update to the item dimension table. The decision support system is currently being provided by SAP BusinessObjects which provides tabular data to the decision makers to view their metrics. This can be improvised by using third party visualization tools and connecting the data-marts through ODBC connectors, thus helping business users understand their numbers better and take effective decisions.

## APPENDIX – A

## Store visit info cube

# **Key figures**

| SOURCE FIELD       | InfoObject Description                    |
|--------------------|-------------------------------------------|
| VISIT_NBR          | The Visit Number generated for each visit |
| STORE_ID           | The Store ID of the store                 |
| MEMBERSHIP_ID      | The membership ID of the customer         |
| OPERATOR_ID        | The employee ID of the store              |
| DATE_TIME_ID       | The date and time of transaction          |
| TENDER_AMT         | The total tender amount                   |
| SALES_TAX_AMT      | The sales tax amount                      |
| TOTAL_VISIT_AMT    | The total visit amount                    |
| REFUND_CODE        | The Refund code                           |
| TOT_UNIT_COST      | The total unit cost                       |
| TOT_UNIQUE_ITM_CNT | The total unique item count               |
| TOT_SCAN_CNT       | The total scan item count                 |

## **Dimensions**

| DIMENSIONS        | <u>Description</u>                    |
|-------------------|---------------------------------------|
| MEMBER_INDEX      | This dimension stores customer info   |
| OPERATOR          | This dimension stores employee info   |
| DATE_TIME         | This dimension store transaction data |
|                   | time                                  |
| STORE_INFORMATION | This dimension has the store info     |

# Item\_Scan Info Cube

# **Key Figures**

| SOURCE FIELD        | InfoObject Description            |
|---------------------|-----------------------------------|
| STORE_ID            | The Store ID of the store         |
| ITEM_ID             | The Item Id scanned in each visit |
| MEMBER_ID           | The Customer Id of the member     |
| DATE_TIME_ID        | The date and time of transaction  |
| ITEM_QUANTITY       | The total number of items         |
| TOTAL_SCAN_AMOUNT   | The total scan amount             |
| TOTAL_COST_AMOUNT   | The total cost amount of item     |
| TOTAL RETAIL AMOUNT | The total retail amount of item   |
| RETURN_CODE         | Return Code of the item           |

## Dimensions

| <u>DIMENSIONS</u> | <u>Description</u>                 |
|-------------------|------------------------------------|
| STORE_INFORMATION | This dimension has stores info     |
| DATE_TIME         | This dimension stores date info    |
| MEMBER_INDEX      | This dimension store member info   |
| ITEM              | This dimension stores of Item info |

## **Store\_Information Dimension Characteristics**

| SOURCE FIELD     | InfoObject Description        |
|------------------|-------------------------------|
| STORE_ID         | The Store ID key of the store |
| STORE_NBR        | The store id of the store     |
| STORE_NAME       | The Store name                |
| REGION_NBR       | The Region number             |
| CITY             | The city                      |
| STATE            | The state                     |
| ZIP_CODE         | The zip code                  |
| MANAGER_NAME     | The manager name              |
| OPEN_SUNDAY_FLAG | Open Sunday flag              |
| GEOGRAPHIC_ZONE  | Geographic zone               |

# **Date\_Time Dimension Characteristics**

| SOURCE FIELD | InfoObject Description    |
|--------------|---------------------------|
| DATE_TIME_ID | The date time ID          |
| DAY          | The calendar day          |
| YEAR         | The calendar year         |
| MONTH        | The month                 |
| HOUR         | The hour of transaction   |
| MINUTES      | The minute of transaction |
| SECONDS      | Seconds of transaction    |

## **Item Dimension Characteristics**

| SOURCE FIELD       | InfoObject Description   |
|--------------------|--------------------------|
| ITEM_ID            | The item id              |
| ITEM_VEND_ID       | The vendor id            |
| ITEM_BRAND_ID      | The brand id             |
| ITEM_NBR           | The item number          |
| SIZE_DESC          | The item size            |
| MFG_NBR            | The manufacturing number |
| UNIT_COST_AMOUNT   | The unit cost            |
| UNIT_RETAIL_AMOUNT | The retail cost          |
| COLOR_DESC         | The item color           |

# Member\_Index Dimension Characteristics

| SOURCE FIELD     | InfoObject Description |
|------------------|------------------------|
| MEMBERSHIP_ID    | The membership id      |
| MEMBERSHIP_NBR   | The customer number    |
| MEMBER_TYPE      | The membership type    |
| MEMBER_STATUS_CD | The member status      |
| ISSUING_CLUB_NBR | The issuing club id    |
| RENEWAL_DATE     | The renewal date       |
| JOIN_DATE        | The join date          |

| ELITE_STAT_CODE     | The elite status                |
|---------------------|---------------------------------|
| BUS_CR_TYPE_STAT_CD | The business credit card status |
| SECONDARY_CARD_CNT  | The secondary card count        |
| CMPLMNTRY_CARD_CNT  | The complementary card count    |
| LAST_RENEWAL_DATE   | Last renewal date               |

## **Operator Dimension Characteristics**

| SOURCE FIELD        | InfoObject Description  |
|---------------------|-------------------------|
| OPERATOR_ID         | The operator id         |
| OPERATOR_NBR        | The employee number     |
| OPERATOR_NAME       | The employee name       |
| OPERATOR_START_DATE | The employee start date |
| OPERATOR_PHONE      | The employee phone      |
| OPERATOR_ADDRESS    | The employee address    |

#### **Sources:**

http://time.com/money/4829684/shoplifting-fraud-retail-survey/

http://www.monitis.com/blog/top-5-data-warehouses-on-the-market-today/

http://deloitte.wsj.com/cio/2014/03/17/using-analytics-to-detect-retail-fraud/

https://www.forbes.com/sites/nicoleleinbachreyhle/2015/10/07/new-report-identifies-us-

retailers-lose-60-billion-a-year-employee-theft-top-concern/#44d706c080eb

Decision Support and Business Intelligence Systems 9th Edition by Turban, Sharda, Delen