- Which of the following describe equivalence relations?
 For those that are not equivalence relations, specify
 which of (R), (S), and (T) fail, and illustrate the failures
 with examples.
 - (a) L₁||L₂ for straight lines in the plane if L₁ and L₂ are the same or are parallel.
 - (b) L₁⊥L₂ for straight lines in the plane if L₁ and L₂ are perpendicular.
 - (c) p₁ ~ p₂ for Americans if p₁ and p₂ live in the same state.
 - (d) p₁ ≈ p₂ for Americans if p₁ and p₂ live in the same state or in neighboring states.
 - (e) p₁ ≈ p₂ for people if p₁ and p₂ have a parent in common.
 - (f) p₁ ≅ p₂ for people if p₁ and p₂ have the same mother.
- For each example of an equivalence relation in Exercise 1, describe the members of some equivalence class.
- Let S be a set. Is equality, i.e., "=", an equivalence relation?
- **4.** Define the relation \equiv on \mathbb{Z} by $m \equiv n$ in case m n is even. Is \equiv an equivalence relation? Explain.
- 5. If G and H are both graphs with vertex set {1,2,...,n}, we say that G is isomorphic to H, and write G ≃ H, in case there is a way to label the vertices of G so that it becomes H. For example, the graphs in Figure 3, with vertex set {1,2,3}, are isomorphic by relabeling f(1) = 2, f(2) = 3, and f(3) = 1.

Figure 3

- (a) Give a picture of another graph isomorphic to these two.
 - (b) Find a graph with vertex set {1, 2, 3} that is not isomorphic to the graphs in Figure 3, yet has three edges, exactly one of which is a loop.
 - (c) Find another example as in part (b) that isn't isomorphic to the one you found in part (b) [or the ones in Figure 3].
 - (d) Show that \simeq is an equivalence relation on the set of all graphs with vertex set $\{1, 2, \dots, n\}$.

- 6. Can you think of situations in life where you'd use the term "equivalent" and where a natural equivalence relation is involved?
- 7. Define the relation \approx on \mathbb{Z} by $m \approx n$ in case $m^2 = n^2$.
 - (a) Show that ≈ is an equivalence relation on Z.
 - (b) Describe the equivalence classes for ≈. How many are there
- 8. (a) For $m, n \in \mathbb{Z}$, define $m \sim n$ in case m n is odd. Is the relation \sim reflexive? symmetric? transitive? Is \sim an equivalence relation?
 - (b) For a and b in \mathbb{R} , define $a \sim b$ in case $|a b| \leq 1$. One could say that $a \sim b$ in case a and b are "close enough" or "approximately equal." Answer the questions in part (a).
- 9. Consider the functions g and h mapping \mathbb{Z} into \mathbb{N} defined by g(n) = |n| and $h(n) = 1 + (-1)^n$.
 - (a) Describe the sets in the partition {g[←](k) : k is in the codomain of g} of Z. How many sets are there?
 - (b) Describe the sets in the partition {h[←](k) : k is in the codomain of h} of Z. How many sets are there?
- **10.** On the set $\mathbb{N} \times \mathbb{N}$ define $(m, n) \sim (k, l)$ if m + l = n + k.
 - (a) Show that \sim is an equivalence relation on $\mathbb{N} \times \mathbb{N}$.
- (b) Draw a sketch of N × N that shows several equivalence classes.
- 11. Let Σ be an alphabet, and for w₁ and w₂ in Σ* define w₁ ~ w₂ if length(w₁) = length(w₂). Explain why ~ is an equivalence relation, and describe the equivalence classes.
- 12. Let P be a set of computer programs, and regard programs p₁ and p₂ as equivalent if they always produce the same outputs for given inputs. Is this an equivalence relation on P? Explain.