Uncertainty-based arbitration between incremental and episodic control over decisions

Jonathan Nicholas and Daphna Shohamy

Department of Psychology and Zuckerman Mind Brain Behavior Institute, Columbia University

Background

- Decisions between two familiar options can be made by consulting value averaged over many episodes or value from a single episode
- Artificial agents benefit from single experiences when there is high uncertainty about incrementally constructed value^{1,2,3}

Do humans use value encoded in a single shot when average value is more uncertain?

Methods: Experiment One

Training Phase

- Trials consisted of separate choices between either incremental cues (circles with average value) or episodic cues (trial-unique objects)
- Each cue's value was learned over 300 trials split between choice type

Testing Phase

- Following training, participants chose directly between the learned incremental cues and previously seen episodic cues over 150 trials
- We predicted that participants would be more sensitive to the value of episodic cues when the incremental cue option was uncertain

250 participants were recruited from Amazon Mechanical Turk

Results: Experiment One

Certain incremental cues were chosen more frequently than uncertain incremental cues ($\beta_u = 0.20$, 95% HDI = [0.12, 0.29])

(Old Object Value * Certainty | Subject)

- More valuable episodic cues were chosen more frequently ($\mbox{\ensuremath{\beta_{\mu}}} = 0.96, 95\%$ HDI = [0.80, 1.12])
- A reliable interaction between certainty and value was not observed (β_{μ} = 0.04, 95% HDI = [-0.05, 0.12])
- Results suggest that participants use both incremental and episodic sources of value, but do not integrate them when learned separately

Methods: Experiment Two

Single Integrated Phase

- Based on experiment one, we developed a second experiment that integrated incremental and episodic sources of value in a single cue
- Participants chose between two "card decks", each with its own average value and trial-unique objects over 180 trials
- Objects from the previous 5-30 trials could be repeated a single time
- 100 participants were recruited from Amazon Mechanical Turk

Email: jonathan.nicholas@columbia.edu | Code: github.com/boomsbloom/noisyoneshot

Results: Experiment Two

P(Choose Old) ~ Old Object Value * Certainty * Time + (Old Object Value * Certainty * Time | Subject)

- More valuable repeated objects were chosen more frequently (β_{μ} = 1.69, 95% HDI = [1.30, 2.11])
- More valuable repeated objects were chosen more often when the deck was uncertain ($\[mathbb{G}_u = -0.27, 95\% \]$ HDI = [-0.55,-0.01])
- This interaction was observed to depend on when choices occurred during the experiment ($\Re_u = 0.40$, 95% HDI = [0.16, 0.66])
- Results support the hypothesis that humans are more likely to use value encoded in a single shot when average value is more uncertain

Conclusions

- Incremental and episodic sources of value do not appear to compete for control over decision making when learned separately
- When both sources of value are learned from the same cue, participants engage in greater episodic control when it is difficult to construct veridical average value
- This suggests that humans sample individual episodes for valuebased decisions according to a tradeoff between computational expense and noisy estimation

References & Acknowledgements

¹Lengyel, M. & Dayan, P. (2008) *Advances in Neural Information Processing Systems 20*:889–896 ²Blundell, C. et al. (2016) *arXiv:1606.04460*

³Santoro, A., Frankland, P.W., & Richards, B.A. (2016) *Journal of Neuroscience 36*(48), 12228–12242

Research supported by grants from the NSF Graduate Research Fellowship Program and NSF Collaborative Research in Computational Neuroscience (GG011240)

Software: Python (jupyter, numpy, pandas, seaborn, pymc3, bambi), JavaScript (jsPsych), Apache HTTP Server