SOLUTION

Name:	
Section:	

ID:

L1

Q. 1: [2 marks] Consider the following quantum circuit:

What is the state at $|\psi 1\rangle$, $|\psi 2\rangle$

and $|\psi 3\rangle$ if the input at q[0] and q[1] is:

Input at q[0] & q[1]	Output at ψ1⟩	Output at $ \psi 2\rangle$	Output at ψ3⟩ (There is measurement here)
$\frac{ 00\rangle - 11\rangle}{\sqrt{2}} \qquad \frac{ 00\rangle - 10\rangle}{\sqrt{2}}$	1007 - 1107	110>	q[0]=
	ive to the character to be to -		q[1]= <i>O</i>
01> + 10>	1017+1117	101>	q[0]= O
$\sqrt{2}$ $\sqrt{2}$	12	Steroliest, h. He ogo	q[1]= /

Q. 2: [2 marks] Consider the following quantum circuit:

 $|\psi\rangle$

Suppose that the input to the circuit is |000). What is the output of this circuit?

Habib University CS-314/PHYS 300: Quantum Computing [Quiz 02] Fall Semester 2024 Q. 3: [2 marks] Consider the functions on bit strings f1, f2: $\Sigma^n \to \Sigma$, where $\Sigma = \{0, 1\}$

$$f1(x) = \frac{1 + (-1)^{2x}}{2}$$
 for all x , $f2(x) = \frac{1 + (-1)^x}{2}$ for all x , where x is an arbitrary bit string.

Can the Deutsch-Jozsa Algorithm be used to distinguish between these two functions. Give a 'Yes' or 'No' answer with a brief explanation.

$$f(x)$$
 is a constant function.
 $f(x)$ is a balanced function.
Hence DJ- Algorithm can be used.

Q. 4: [4 marks] In the following scenario, Alice and Bob share the following state:

$$\frac{1}{2} \quad (|\phi^{+}\rangle \otimes X |\psi\rangle + |\phi^{-}\rangle \otimes XZ |\psi\rangle + |\psi^{+}\rangle \otimes |\psi\rangle + |\psi^{-}\rangle \otimes Z |\psi\rangle)$$

Alice has the first and second qubits, Bob has the third [Note that $|\psi\rangle$ is an arbitrary qubit, i.e., $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, while $|\phi+\rangle$, $|\phi^-\rangle$, $|\psi+\rangle$ and $|\psi^-\rangle$ are Bell States.].

Consider the following steps in a protocol:

- 1. Suppose that Alice measures her two qubits using a circuit to distinguish between one of the four Bell states $|\phi+\rangle$, $|\psi^-\rangle$, $|\psi+\rangle$ and $|\psi^-\rangle$. She sends this result to Bob.
- 2. Based on the results of Alice state what operation(s) should Bob apply on his qubit to recover the arbitrary qubit $|\psi\rangle$? State the step(s) in the table below:

Alice's result	Bob should	
\phi + \rangle	(1) Apply X on his qubit.	
<i>ø</i> ->	(2) Apply X followed by Z (i.e. Z)	
\psi + \rangle	(3) Do nothing (or apply identity)	
\psi^>	(4) Apply Z on his qubit.	