

Advanced CV methods Tracking patches

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme, Fakulteta za računalništvo in informatiko, Univerza v Ljubljani

Consider motion of patches of pixels

Select a region of interest in the first frame.

Assuming the object will not move by too much in consecutive frames, re-localize the object (target) in each frame.

A high-level view of tracking

- Assume some model of the target (e.g., template)
- Assume estimated position in the previous time-step

Target localization

Correspondence problem

Previous image

Localized target

Extract a template T(x)

New image I(x)

The goal is to align a template image T(x) to an input image I(x). How to measure the quality of the alignment?

Similarity measure

- Quantify the similarity between the visual model and the target region
- Straight-forward: compare pixel intensities
- "Sum of squared differences" (SSD)

Naïve localization

• Greedy approach: calculate the SSD for all displacements and select the point where similarity is maximal – the distance is the smallest!

But usually we can assume our starting position is "close" to the right one!

Can we do better?

How would we find the bottom of a valley?

- 1. Decide which way is up/down
- 2. Move downward by some step
- 3. Continue until the bottom is reached

Mathematically: Known as "the Gradient descent"

• Gradient points toward *increase* of *f* .

Move in the opposite direction of the gradient

Move in the opposite direction of the gradient

A simple recursive algorithm

Straight-forward in n-D

A 2D example

2D similarity map

Visualize as a 3D surface

Straight-forward in n-D

- Initialize x_0
- Iterate: $\mathbf{x}_k = \mathbf{x}_{k-1} \alpha \nabla f_{|_{\mathbf{x}_{k-1}}}$

2D similarity map

Visualize as a 3D surface

The tools we've got so far

• We know how to minimize a cost function $E(p_1, p_2, ..., p_N)$, w.r.t. ${\pmb p}$, where

 $\mathbf{p} = [p_1, p_2, ..., p_N]^T$ are parameters of our model.

• We know how to compute $E(p_1, p_2)$.

 p_1

 $E(p_1,p_2)$

Next: Require *deformation*

model that depends on p.

• Introduce a warp function W(x) that warps image onto the coordinate frame of the template – we can think about the warp as a transformation model W(x; p) that takes coordinate x and transforms it according to parameters p.

• Simple example:

Translation to left-up in x by 5 and y by 10.

Popular parametric 2D transformations

Richard Szeliski: Computer Vision – algorithms and applications (Section 2.1.2)

- Rigid body motion
 - Rotate, translate

$$x' = x \cos p_1 - y \sin p_1 + p_2$$
 $p = [p_1, p_2, p_3]^T$
 $y' = x \sin p_1 + y \cos p_1 + p_3$

$$p = \left[p_1, p_2, p_3 \right]^T$$

Compact matrix notation for W(x; p):

$$W(\mathbf{x}; \mathbf{p}) = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \cos p_1 - y \sin p_1 + p_2 \\ x \sin p_1 + y \cos p_1 + p_3 \end{bmatrix} = \begin{bmatrix} \cos(\mathbf{p}_1) & -\sin(\mathbf{p}_1) & p_2 \\ \sin(\mathbf{p}_1) & \cos(\mathbf{p}_1) & p_3 \end{bmatrix} \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$$

- Affine motion
 - Rotation, translation, scale, shear

$$x' = p_1 x + p_2 y + p_3$$

 $y' = p_4 x + p_5 y + p_6$

$$p = [p_1, p_2, p_3, p_4, p_5, p_6]^T$$

• Compact matrix notation for W(x; p):

$$W(x;p) = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} p_1 x + p_2 y + p_3 \\ p_4 x + p_5 y + p_6 \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 \\ p_4 & p_5 & p_6 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

How many free parameters?

Degrees of freedom DoF (dim. of p)

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} oldsymbol{I} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	3	lengths	
similarity	$\left[\begin{array}{c c} s\boldsymbol{R} & t\end{array}\right]_{2\times 3}$	4	angles	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Richard Szeliski: <u>Computer Vision – algorithms and applications</u> (Section 2.1.2)

Tracking as gradient ascent/descent

- Lucas-Kanade tracker
- Initially published in 1981 as an image registration method¹.
- Improved many times, most importantly by Carlo Tomasi².
- Also part of the OpenCV library.
- Single algorithm and results published in a premium journal³.
- Our derivations will follow³
 - See Section 2 in that paper.
 - If you're interested: See other Sections for improvements of LK and the results obtained by these.

¹ Lucas and Kanade. An iterative image registration technique with an application to stereo vision. ICAI, 1981.

² Shi and Tomasi. Good features to track. CVPR, 1994.

³ Baker and Matthews. Lucas-Kanade 20 years on: A unifying framework. IJCV, 2004.

- Task: Find the warp W(x; p) parameterized by p, that aligns the image I(x) with a template T(x).
- For example, the warp could be a translation, i.e.,

$$W(\mathbf{x};\mathbf{p}) = \begin{bmatrix} x + p_1 \\ y + p_2 \end{bmatrix},$$

but in general W(x; p) can be arbitrary.

• Problem formulation – Find the parameter values of \boldsymbol{p} that minimize the image differences:

$$E(p) = \sum_{x} (I(W(x;p)) - T(x))^{2}$$

$$E(p) = \sum_{x} (I(W(x;p)) - T(x))^{2}$$

Finding minimum of E(p) w.r.t. p is a nonlinear optimization problem.

We therefore assume we have initial guess of p and search for the best increment Δp .

$$E(p, \Delta p) = \sum_{x} (I(W(x; p+\Delta p)) - T(x))^{2}$$

Iterative solution (think of gradient descent):

$$p \leftarrow p + \Delta p$$

• Task: Find the best Δp : $\Delta p = \arg\min_{\Delta p} E(\mathbf{p}, \Delta p)$ $E(\mathbf{p}, \Delta p) = \sum_{\mathbf{r}} \left(I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta p)) - \mathbf{T}(\mathbf{x}) \right)^2 \qquad \qquad \text{Would have been easy if} \\ E(p) \text{ was quadratic in } \Delta p \dots$

• To simplify, linearize $I(W(x; p + \Delta p))$ at p:

$$I(W(x; p + \Delta p)) \approx I(W(x; p)) + \nabla I^{T} \frac{dW}{dp} \Delta p$$

$$\nabla I = \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix}_{W(x, p)}$$
Jacobian

Note: This is a gradient of image I evaluated at W(x; p), i.e., ∇I is computed in the coordinate frame of I and then warped back into the coordinate frame of I by the current estimate of the warp W(x, p).

Jacobians of displacement models

• Translation
$$W(x;p) = \begin{bmatrix} \tilde{x} \\ \tilde{y} \end{bmatrix} = \begin{bmatrix} x + p_1 \\ y + p_2 \end{bmatrix}$$

$$\frac{dW(\mathbf{x}; \mathbf{p})}{d\mathbf{p}} = \begin{bmatrix} \frac{\partial \tilde{x}}{\partial p_1} & \frac{\partial \tilde{x}}{\partial p_2} \\ \frac{\partial \tilde{y}}{\partial p_1} & \frac{\partial \tilde{y}}{\partial p_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$W(x;p) = \begin{bmatrix} p_1 x + p_3 y + p_5 \\ p_2 x + p_4 y + p_6 \end{bmatrix}$$

$$\frac{dW(\mathbf{x};\mathbf{p})}{dp} = ???$$

$$J(\mathbf{W}) = \begin{bmatrix} \frac{\partial f_1}{\partial p_1} & \cdots & \frac{\partial f_1}{\partial p_n} \\ \frac{\partial f_2}{\partial p_1} & \cdots & \frac{\partial f_2}{\partial p_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial p_1} & \cdots & \frac{\partial f_m}{\partial p_n} \end{bmatrix}$$

Some pre-computed Jacobians

Transform	Matrix	Parameters p	Jacobian J
translation	$\left[\begin{array}{ccc} 1 & 0 & t_x \\ 0 & 1 & t_y \end{array}\right]$	(t_x, t_y)	$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$
Euclidean	$ \begin{bmatrix} c_{\theta} & -s_{\theta} & t_x \\ s_{\theta} & c_{\theta} & t_y \end{bmatrix} $	(t_x, t_y, θ)	$\begin{bmatrix} 1 & 0 & -s_{\theta}x - c_{\theta}y \\ 0 & 1 & c_{\theta}x - s_{\theta}y \end{bmatrix}$
similarity	$\left[\begin{array}{ccc} 1+a & -b & t_x \\ b & 1+a & t_y \end{array}\right]$	(t_x, t_y, a, b)	$\left[\begin{array}{cccc} 1 & 0 & x & -y \\ 0 & 1 & y & x \end{array}\right]$
affine	$ \begin{bmatrix} 1 + a_{00} & a_{01} & t_x \\ a_{10} & 1 + a_{11} & t_y \end{bmatrix} $	$(t_x, t_y, a_{00}, a_{01}, a_{10}, a_{11})$	$\left[\begin{array}{cccccc} 1 & 0 & x & y & 0 & 0 \\ 0 & 1 & 0 & 0 & x & y \end{array}\right]$
projective	$\begin{bmatrix} 1 + h_{00} & h_{01} & h_{02} \\ h_{10} & 1 + h_{11} & h_{12} \\ h_{20} & h_{21} & 1 \end{bmatrix}$	$(h_{00}, h_{01}, \dots, h_{21})$	(see Section 6.1.3)

Richard Szeliski: Computer Vision – algorithms and applications (6.1.1.)

Recall the original cost function, i.e.,

$$E(p, \Delta p) = \sum_{x} (I(W(x; p + \Delta p)) - T(x))^{2}$$

Plugging the linearized term into the above eq. gives

$$E(p, \Delta p) \approx \sum_{x} \left(I(W(x; p)) + \nabla I^{T} \frac{dW}{d\mathbf{p}} \Delta p - T(x) \right)^{2}$$

• Observe that $E(\mathbf{p}, \Delta p)$ is quadratic in Δp which means that $E(\mathbf{p}, \Delta p)$ can be directly minimized w.r.t. Δp :

$$\frac{\partial E(\mathbf{p}, \Delta p)}{\partial \Delta p} \equiv 0 \qquad \Delta p = ?$$

$$\frac{\partial E(\mathbf{p}, \Delta p)}{\partial \Delta p} \equiv 0$$

$$\Delta p = H^{-1} \sum_{x} \left[\nabla I^{T} \frac{dW}{d\mathbf{p}} \right]^{T} \left[T(\mathbf{x}) - I(W(\mathbf{x}; \mathbf{p})) \right]$$

 Where H can be interpreted as a Gauss-Newton approximation of the Hessian

$$H = \sum_{x} \left[\nabla I^{T} \frac{dW}{d\mathbf{p}} \right]^{T} \left[\nabla I^{T} \frac{dW}{d\mathbf{p}} \right]$$

Iterative solution (think of gradient descent):

- Guess initial parameters p.
- Construct a linearized cost function $E(p, \Delta p)$ evaluated at p.
- Minimize $E(p, \Delta p)$ w.r.t. Δp .

LK Implementation

Start with initial **p** and iterate:

- 1. Warp image I(x) with W(x; p).
- 2. Warp the gradient image $\nabla I(x)$ with W(x; p).
- 3. Evaluate the Jacobian $\frac{\partial W}{\partial p}$ at (x; p) and compute the steepest descent image $\nabla I^T \frac{dW}{dp}$.
- 4. Compute the Hessian $H = \sum_{x} \left[\nabla I^{T} \frac{dW}{d\mathbf{p}} \right]^{T} \left[\nabla I^{T} \frac{dW}{d\mathbf{p}} \right]^{T}$
- 5. Compute increment $\Delta p = H^{-1} \sum_{x} \left[\nabla I^{T} \frac{dW}{d\mathbf{p}} \right]^{T} \left[T(\mathbf{x}) I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$
- 6. Update parameters: $p \leftarrow p + \Delta p$

Until $\Delta p < \epsilon$

LK Implementation

$$\Delta p = H^{-1} \sum_{x} \left[\nabla I^{T} \frac{dW}{d\mathbf{p}} \right]^{T} \left[T(\mathbf{x}) - \mathbf{I}(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$$

Baker and Matthews. Lucas-Kanade 20 years on: A unifying framework. IJCV, 2004.

Gradient descent visualization

Assume that warp is translation only

$$W(x; p) = \begin{bmatrix} \tilde{x} \\ \tilde{y} \end{bmatrix} = \begin{bmatrix} x + p_1 \\ y + p_2 \end{bmatrix}$$

Speeded up Lucas Kanade

 The original LK, spends a lot of computation on warping the image and its derivatives.

• The paper¹ suggests a simplification.

Original:

$$E(\Delta p) = \sum_{x} (I(W(x; p+\Delta p)) - T(x))^{2}$$

New:

$$E(\Delta p) = \sum_{x} (I(W(x;p)) - T(W(x;\Delta p)))^{2}$$

"The Inverse Compositional Algorithm" (see paper¹, Section 3.2 for details of derivation)

¹Baker and Matthews. Lucas-Kanade 20 years on: A unifying framework. IJCV, 2004.

Lucas-Kanade Inverse Compositional Algorithm

Pre-compute (!!):

- Evaluate gradient ∇T of template T(x).
- Evaluate Jacobian $dW/d\boldsymbol{p}$.
- Compute steepest descent images $\nabla T^T \frac{dW}{dp}$.
- Compute hessian $H = \sum_{x} \left[\nabla T^{T} \frac{dW}{d\mathbf{p}} \right]^{T} \left[\nabla T^{T} \frac{dW}{d\mathbf{p}} \right]^{T}$

Iterate:

- 1. Warp image I(x) with W(x; p)
- 2. Compute steepest descent $\sum_{x} \left[\nabla T^{T} \frac{dW}{d\mathbf{p}} \right]^{T} \left[I(W(x;p)) T(x) \right]$
- 3. Compute increment $\Delta p = H^{-1} \sum_{x} \left[\nabla T^{T} \frac{dW}{d\mathbf{p}} \right]^{T} \left[I(W(x;p)) T(x) \right]$
- 4. Update parameters $W(x;p) \leftarrow W(x;p) \circ W(x;\Delta p)^{-1}$

(Just for the sake of completeness – no need to learn by heart)

Lucas Kanade ICA

$$\Delta p = H^{-1} \sum_{x} \left[\nabla T^{T} \frac{\partial W}{\partial p} \right]^{T} \left[I(W(x; p)) - T(x) \right]$$

Stays fixed during Iterations.

Baker and Matthews. Lucas-Kanade 20 years on: A unifying framework. IJCV, 2004.

What are good features to track?

- Which patches (templates) T(x) should we consider?
- Remember this discussion at LK flow estimation?

Let's look at the maths...

- Which patches (templates) T(x) should we consider?
- The ones for which we can solve the updates

$$\Delta p = H^{-1} \sum_{x} \left[\nabla I^{T} \frac{dW}{d\mathbf{p}} \right]^{T} \left[T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$$

Stability depends on whether the Hessian is invertible

$$H = \sum_{x} \left[\nabla I^{T} \frac{dW}{d\mathbf{p}} \right]^{T} \left[\nabla I^{T} \frac{dW}{d\mathbf{p}} \right]$$

What are good features to track?

Assume that the warp function is pure translation

$$W(\mathbf{x}; \mathbf{p}) = (\mathbf{x} + p_1, \mathbf{y} + \mathbf{p}_2)$$

$$H = \sum_{\mathbf{r}} \left[\nabla I^T \frac{dW}{d\mathbf{p}} \right]^T \left[\nabla I^T \frac{dW}{d\mathbf{p}} \right]$$

$$\frac{dW(\mathbf{x}; \mathbf{p})}{d\mathbf{p}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Note that the Jacobian is not necessarily constant in general, but for the translational motion it is constant!

Then we can show that the **H** is in fact

$$H = \begin{bmatrix} \sum_{x} I_{x}^{2} & \sum_{x} I_{x}I_{y} \\ \sum_{x} I_{x}I_{y} & \sum_{x} I_{y}^{2} \end{bmatrix}$$
 This is used in the Harris corner detector!

Verify this by

Means that corners make good features to track.

Tracking patches

Without checking similarity with the initial patch

With checking similarity with the initial patch

Approach: remove a patch if similarity to initial template drops below a threshold.

People counting by clustering KLT

Vincent Rabaud and Serge Belongie, Counting Crowded Moving Objects [pdf] [poster] CVPR 2006, New York, NY.

Tracking facial points by LK ICA

>200 frames per second

[1] Iain Matthews and Simon Baker, "Active Appearance Models Revisited," International Journal of Computer Vision, Vol. 60, No. 2, 2004 [2] Simon Baker, Iain Matthews, Jing Xiao, Ralph Gross, Takeo Kanade, and Takahiro Ishikawa, "Real-Time Non-Rigid Driver Head Tracking for Driver Mental State Estimation," 11th World Congress on Intelligent Transportation Systems, October, 2004.

Motion stabilization and stitching

- LK can be used for motion compensation
- We can consider the entire image as template

Choose a pseudo-perspective transform for W(x;p)
 (pseudo-perspective is approximation for perspective)

Motion stabilization and stitching

- LK can be used for motion compensation
- We can consider the entire image as template

SaadAli, Mubarak Shah, COCOA -Tracking in Aerial Imagery, ISR, 2006

Tracking by sparse flow

- Apply Lucas Kanade (pyramidal) to estimate sparse flow.
- Fit a parametric model to the flows, e.g., affine, by least squares or RANSAC, (or by a simple median if the model is simple enough).

For least squares and RANSAC, see Richard Zseliski: Computer Vision – algorithms and applications (6.1.1-6.1.4)

Tracking by a grid of flow vectors

 Apply a grid of LK flows and estimate reliability of each computed flow vector.

Tomas Vojir and Jiri Matas, "<u>The Enhanced Flock of Trackers</u>". *Registration and Recognition in Images and Videos - Studies in Computational Intelligence*, Springer 2014. (<u>bib</u>)

LK combination with deep features

 "Recent" work proposed learning deep features such that the cost function optimized in LK tracker becomes smooth with a large attraction perimeter

References on LK

Recommended read:

- Baker and Matthews. Lucas-Kanade 20 years on: A unifying framework. IJCV, 2004.
 - At least the section on basic Lucas&Kanade optimization

If you are interested in some milestone papers:

- Lucas and Kanade. An iterative image registration technique with an application to stereo vision. ICAI, 1981.
- Shi and Tomasi. Good features to track. CVPR, 1994.