Taller de Probabilidad y Estadística Taller 3, 4 y ejercicios Adicionales con python

Taller 4

Distribución de Poisson

Ejercicio 1: Accidentes de tránsito

En una intersección muy concurrida, el promedio histórico de accidentes de tránsito es de 3 accidentes por mes. La alcaldía implementó nueva señalización y quiere evaluar su impacto.

Pregunta

Si la tasa de accidentes sigue siendo la misma, ¿cuál es la probabilidad de que en un mes se registren a lo sumo 2 accidentes?

Datos: $\lambda = 3$ Solución:

$$P(X \le 2) = P(0) + P(1) + P(2)$$

$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

$$P(0) = 0.0498, \quad P(1) = 0.1494, \quad P(2) = 0.2240$$

$$P(X < 2) = 0.4232$$

Respuesta

La probabilidad de tener a lo sumo 2 accidentes en un mes es 42.32%.

Ejercicio 2: Correos recibidos

Una persona recibe en promedio 6 correos electrónicos por hora.

Pregunta

¿Cuál es la probabilidad de recibir exactamente 8 correos en una hora?

Datos: $\lambda = 6, x = 8$

$$P(X=8) = \frac{e^{-6} \cdot 6^8}{8!} = 0.1033$$

Respuesta

La probabilidad de recibir exactamente 8 correos en una hora es 10.33%.

Distribución Normal

Ejercicio 1: Producción de botellas

Pregunta

¿Qué porcentaje de botellas contiene entre 495 ml y 510 ml si la máquina llena botellas de 500 ml con desviación estándar de 5 ml?

Datos: $\mu = 500, \sigma = 5$

$$z_1 = \frac{495 - 500}{5} = -1, \quad z_2 = \frac{510 - 500}{5} = 2$$

$$P(495 < X < 510) = P(Z > -1) - P(Z > 2) = 0.8413 - 0.0228 = 0.8185$$

Respuesta

El 81.85% de las botellas contiene entre 495 y 510 ml.

Ejercicio 2: Tiempo de atención médica

Pregunta

¿Cuál es la probabilidad de que un paciente sea atendido en más de 30 minutos si la atención sigue distribución normal con $\mu = 25$ y $\sigma = 4$?

$$z = \frac{30 - 25}{4} = 1.25, \quad P(X > 30) = P(Z > 1.25) = 0.1056$$

Respuesta

La probabilidad de que un paciente espere más de 30 minutos es 10.56%.

Taller 3

Ejercicio 1: Probabilidad conjunta continua - Cafetería

En una cafetería, el tiempo de espera para ser atendido (X) y el tiempo de consumo del café (Y) se miden en minutos. Se sabe que ambos varían entre 0 y 10 minutos, y que siguen una distribución conjunta uniforme:

$$f(x,y) = \frac{1}{100}, \quad 0 < x < 10, \ 0 < y < 10$$

Pregunta

Verifica que f(x, y) es una densidad válida. Calcula la probabilidad de que una persona espere menos de 3 minutos y consuma su café en menos de 5 minutos.

Verificación de densidad:

$$\int_0^{10} \int_0^{10} f(x,y) \, dy \, dx = \int_0^{10} \int_0^{10} \frac{1}{100} \, dy \, dx = \frac{1}{100} \cdot 10 \cdot 10 = 1$$

Cálculo de probabilidad:

$$P(X < 3, Y < 5) = \int_0^3 \int_0^5 \frac{1}{100} \, dy \, dx = \frac{1}{100} \cdot 3 \cdot 5 = 0.15$$

Respuesta

La densidad es válida y la probabilidad de que una persona espere menos de 3 minutos y consuma su café en menos de 5 minutos es 0.15 (15%).

Confirmación con Python:

Densidad uniforme 2D
f_xy = 1/100
P = f_xy * 3 * 5
print(P) # 0.15

Ejercicio 2: Probabilidad conjunta discreta - Extracción de bolas

Una urna contiene 3 bolas rojas y 2 bolas azules. Se extraen 2 bolas sin reemplazo. Sea X = número de bolas rojas, Y = número de bolas azules.

La función de probabilidad conjunta es:

$$f(x,y) = \begin{cases} \frac{\binom{3}{x}\binom{2}{y}}{\binom{5}{2}}, & x+y=2\\ 0, & \text{otro caso} \end{cases}$$

Pregunta

Calcula la probabilidad de extraer dos bolas rojas: P(X = 2, Y = 0).

Cálculo:

$$P(X = 2, Y = 0) = \frac{\binom{3}{2}\binom{2}{0}}{\binom{5}{2}} = \frac{3 \cdot 1}{10} = 0.3$$

Respuesta

La probabilidad de extraer dos bolas rojas es 0.3 (30%).

Confirmación con Python:

from math import comb

$$P = comb(3,2) * comb(2,0) / comb(5,2)$$

print(P) # 0.3

Ejercicios adicionales - Caso discreto y continuo

Caso discreto

Aplicación Binomial

Pregunta

Un fabricante de bombillas sabe que la probabilidad de que una bombilla sea defectuosa es 0.02. Se inspeccionan 50 bombillas. ¿Cuál es la probabilidad de que exactamente 2 bombillas estén defectuosas?

$$P(X=2) = {50 \choose 2} (0.02)^2 (0.98)^{48} \approx 0.27$$

Respuesta

La probabilidad de que exactamente 2 bombillas sean defectuosas es 27%.

Confirmación con Python:

from scipy.stats import binom

$$n = 50$$

$$p = 0.02$$

$$x = 2$$

```
prob = binom.pmf(x, n, p)
print(prob) # Output: 0.2702 aprox.
```

Caso continuo

Aplicación Exponencial

Pregunta

El tiempo de vida de una batería sigue una distribución exponencial con media 200 horas. ¿Cuál es la probabilidad de que dure más de 250 horas?

$$\lambda = 1/200 = 0.005, \quad P(X > 250) = e^{-0.005 \cdot 250} = 0.2865$$

Respuesta

La probabilidad de que la batería dure más de 250 horas es 28.65%.

Confirmación con Python:

```
from scipy.stats import expon
lambda_ = 1/200
x = 250

prob = expon.sf(x, scale=1/lambda_)
print(prob) # Output: 0.2865 aprox.
```