

Theory of Computing – Examples

v.0.6 - 1/3/2023

Michele Amoretti Quantum Information Science University of Parma

Contents

1	Information Theory		1
	1.1	Entropy – Horse Racing	1
	1.2	Mutual Information – Binary Symmetric Channel	1
	1.3	Kolmogorov Complexity – Find the Random String	2
2	Computability		
	2.1	Mapping Reducibility vs. Turing Reducibility	2
	2.2	$\overline{A_{TM}}$ is not mapping reducible to A_{TM}	2
3	Computational Complexity		
	3.1	GCD – Euclidean Algorithm	3
	3.2	NP-Complete Problems	3

Quantum Information Science

University of Parma
Parco Area delle Scienze
43124 Parma
Italy
http://www.qis.unipr.it

Preface

This is a collection of examples related to the Theory of Computing part of the High Performance Computing course (M.Sc. in Computer Engineering, University of Parma).

1 Information Theory

1.1 Entropy – Horse Racing

Let us consider eight horses with win probabilities $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}\}$. To communicate the race winner, we may use 3 bits, as to enumerate the eight horses we need actually 3 bits. However, taking into account the fact that the horses have different probabilities of being announced as winners, we may choose a clever binary representation, namely:

$$0, 10, 110, 1110, 111100, 111101, 111110, 111111.$$

In this way, the average description length is 2 bits.

Let's now compute the entropy of the random variable X representing win announcements:

$$H(X) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{4}\log\frac{1}{4}... = 2$$
 bits (1)

We know that entropy is the average amount of information produced by a stochastic source of data. With this example, we have seen that the entropy of a random variable can be also interpreted as the *lower bound* on the average number of bits required to represent the random variable.

1.2 Mutual Information – Binary Symmetric Channel

Let us consider a noisy channel where an input bit b is received as \bar{b} with probability p (as b with probability 1-p), as illustrated in Fig. 1. This model, denoted as Binary Symmetric Channel, is the most simple model of noisy channel. Let us call X the random variable representing the transmitted bits, and Y the one representing the received bits. Their mutual information is

$$I(X;Y) = H(Y) - H(Y|X) = H(Y) - H_b(p)$$
(2)

where $H_b(p)$ is the binary entropy. The previous equation can be proved by observing that $\{Y|X=x\}$ is a Bernoulli random variable (when x is transmitted, the value of Y is x with probability 1-p and \bar{x} with probability p).

Figure 1: Binary Symmetric Channel model.

The channel capacity is

$$C = \max_{p(x)} I(X;Y) = \left(\max_{p(x)} H(Y)\right) - H_b(p) \tag{3}$$

To compute C, we observe that H(Y) is maximized to 1 when X has uniform distribution $(p(x) \text{ s.t. } p(0) = p(1) = \frac{1}{2})$, for which also Y has uniform distribution independently of p (the proof is left for exercise). On the other hand, $H_b(p)$ does not depend on p(x). Therefore, the channel capacity turns out to be:

$$C = 1 - H_b(p) = 1 + p \log p + (1 - p) \log(1 - p) \tag{4}$$

We can observe that, when p = 0 or p = 1, then C = 1. The minimum capacity, C = 1/2, arises when p = 1/2.

1.3 Kolmogorov Complexity – Find the Random String

Tell if the following strings are Kolmogorov random:

333333333 31415926535 84354279521

They all have the same probability 10^{-11} of being randomly extracted from the set of 11-digit strings. However, C(x) < 11 for the first string (which is $\{3\}^{11}$) and also for the second one (which is $\pi \cdot 10^{10}$). Only the last string is Kolmogorov random, having C(x) = 11.

2 Computability

2.1 Mapping Reducibility vs. Turing Reducibility

Let us recall the definition of mapping reducibility:

$$A \le_m B \Leftrightarrow [w \in A \Leftrightarrow f(w) \in B]. \tag{5}$$

This definition implies that, given w, there is a Turing Machine M^B that computes f(w) and, thanks to the oracle for B, tells whether $f(w) \in B$, i.e., $w \in A$. This means that M^B can decide A, i.e., that $A \leq_T B$. In conclusion, mapping reducibility implies Turing reducibility.

Instead, Turing reducibility does not imply mapping reducibility. Indeed, Turing reducibility means that there is an oracle Turing machine M^B able to decide A. This definition does not imply the existence of f() such that $w \in A \Leftrightarrow f(w) \in B$.

2.2 $\overline{A_{TM}}$ is not mapping reducible to A_{TM}

Let us define the language

$$\overline{A_{TM}} = \{(M, w) | M \text{ is a TM and } M \text{ rejects } w\}. \tag{6}$$

We know that A_{TM} is Turing-recognizable by a Universal Turing machine (UTM). Now we prove that $\overline{A_{TM}}$ is not Turing-recognizable.

If both languages were Turing-recognizable, then A_{TM} would be decidable, i.e., there would exist a TM that halts for all (M, w). Since we know that A_{TM} is not decidable, the initial assumption was wrong.

Now observe that, being $\overline{A_{TM}}$ not Turing-recognizable, there is no f() such that $[(M, w) \in \overline{A_{TM}} \Leftrightarrow f(M, w) \in A_{TM}]$. To have such an f(), we would need a Turing machine that recognizes $\overline{A_{TM}}$.

We conclude that $\overline{A_{TM}}$ is not mapping reducible to A_{TM} .

3 Computational Complexity

3.1 GCD - Euclidean Algorithm

Let us consider two positive integers a and b.

- 1. Find q_0 and r_0 s.t. $a = q_0 b + r_0$.
- 2. Find q_1 and r_1 s.t. $b = q_1 r_0 + r_1$.
- 3. Repeatedly solve $r_i = q_{i+2}r_{i+1} + r_{i+2}$ until $r_n = 0$.
- 4. $GCD(a,b) = r_{n-1}$.

Exercise: find GCD(125,75) using the Euclidean Algorithm.

3.2 NP-Complete Problems

- **SAT**. Given n Boolean variables $x_1, ..., x_n$, is there at least one configuration of the variables s.t. $f(x_1, ..., x_n) = 1$?
- **3SAT**. Given n Boolean variables $x_1, ..., x_n$ and a set of clauses that each one relates at most 3 variables, is there at least one configuration of the variables s.t. the clauses evaluate to 1?
- CircuitSAT. Given n Boolean variables $x_1, ..., x_n$ and a set of clauses $x_{i+1} = f_i(x_1, ..., x_i)$ with $i \ge n$, is there at least one configuration of the variables s.t. the clauses evaluate to 1?
- Map Coloring. Are k colors sufficient to color an arbitrary map so that no two adjacent features have the same color? With k=2, the answer can be found in polynomial time in the number of features (it is sufficient to find a vertex with an odd number of incident edges). With $k \geq 4$, it is always possible to color the map so that no two adjacent features have the same color. With k=3, the problem is NP-Complete.
- **3-Partition**. Given 3n numbers, decide whether they can be split into triples of equal sum.
- Bin Packing. We have an unlimited number of bins each of capacity B, and n objects of sizes s_1 , s_2 , etc. s.t. $0 < s_i \le B$. Given k, is there a packing using no more than k bins?

• Traveling Salesman Problem (TSP). Given a graph and an integer B, is there a cycle through all the vertices such that the total weight of the edges used is at most B?

REFERENCES 5

References

[1] S. Arora, B. Barak, Computational Complexity – A Modern Approach Cambridge University Press, 2009.

