

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика, искусственный интеллект и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе № 3 по курсу «Методы вычислений» на тему: «Метод парабол» Вариант № 15

Студент	ИУ7-21М (Группа)	(Подпись, дата)	<u>Миронов</u> Γ. А. (И. О. Фамилия)
Преподаватель		(Подпись, дата)	Власов П. А. (И. О. Фамилия)

1 Выполнение индивидуального задания

1.1 Цель работы

Изучение метода парабол для решения задачи одномерной оптимизации.

1.2 Постановка задачи

Необходимо:

- 1. реализовать метод парабол в сочетании с методом золотого сечения в виде программы на ЭВМ.
- 2. провести решение задачи

$$\begin{cases} f(x) \to \min \\ x \in [a, b] \end{cases}$$

для данных индивидуального варианта для лабораторной работы N 1.

3. организовать вывод на экран графика целевой функции, найденной точки минимума $(x^*, f(x^*))$ и последовательности отрезков $(x_{1,i}, x_{3,i})$, содержащих точку искомого минимума (для последовательности отрезков следует предусмотреть возможность "отключения" вывода ее на экран).

Индивидуальный вариант целевой функции:

$$\sinh\left(\frac{3x^4 - x + \sqrt{17} - 3}{2}\right) + \sin\left(\frac{5^{1/3}x^3 - 5^{1/3}x + 1 - 4 * 5^{1/3}}{-x^3 + x + 2}\right),\,$$

при [a, b] = [0, 1].

Метод парабол

Общая идея метода заключается в том, что целевая функция аппроксимируется квадратичной функцией, точку минимума которой можно найти аналитически. При этом точка минимума аппроксимирующей функции принимается в качестве приближения точки минимума исходной целевой функции.

Выбираются пробные точки x_1, x_2, x_3 внутри рассматриваемого интервала [a,b], так что:

- 1. $x_1 < x_2 < x_3$.
- 2. $f(x_1) \ge f(x_2) \le f(x_3)$, где по крайней мере одно неравенство является строгим.

В силу унимодальности целевой функции можно утверждать, что точка минимума x*, как и x_2 удовлетворяет условию $x^* \in [x_1, x_3]$.

В методе парабол в качестве аппроксимирующей функции используется квадратичная. Она проходит через точки $(x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3)).$

Уравнение параболы:

$$g(x) = a_0 + a_1(x - x_1) + a_2(x - x_1)(x - x_2)$$

$$\begin{cases} a_0 = f_1 \\ a_1 = \frac{f_2 - f_1}{x_2 - x_1} \\ a_2 = \frac{1}{x_3 - x_2} \left[\frac{f_3 - f_1}{x_3 - x_1} - \frac{f_2 - f_1}{x_2 - x_1} \right] \\ \overline{x} = \frac{1}{2} \left[x_1 - x_2 - \frac{a_1}{a_2} \right] \end{cases}$$

1.3 Схема алгоритма

Рисунок 1.1 – Схема алгоритма

1.4 Текст программы

Π истинг $1.1-\Phi$ айл main.m

```
function lab03()
  clc();
  clf();
```

```
debugFlg = 1;
    delayS = 0.8;
   a = 0;
   b = 1;
    eps = 1e-6;
    fplot(@f, [a, b]);
   hold on;
   % pause(3);
    parabolic_method(a, b, eps, debugFlg, delayS);
    legend("off");
end
function parabolic_method(a, b, eps, debugFlg, delayS)
   tau = (sqrt(5)-1) / 2;
   1 = b - a;
   x1 = b - tau*1;
   x2 = a + tau*1;
   f1 = f(x1);
   f2 = f(x2);
    fprintf('----Golden ratio method (looking for initial
      points x1, x2, x3) ----- n';
    i = 0;
    if debugFlg
        fprintf(', 2d: t [a, b] = [\%.10f, \%.10f], f(a) = \%.10f,
           f(b) = %.10f\n', i, a, b, f(a), f(b));
        line([a b], [f(a) f(b)], 'color', 'b');
        hold on;
    end
    while l > 2*eps
        i = i + 1;
        if debugFlg
            line([a b], [f(a) f(b)], 'color', 'b');
            hold on;
        end
        if f1 <= f2
```

```
b = x2;
       1 = b - a;
       new_x = b - tau*1;
       new_f = f(new_x);
       if f1 < new_f
          x3 = x2; f3 = f2;
          x2 = x1; f2 = f1;
          x1 = new_x; f1 = new_f;
          break;
       end
       x2 = x1;
                      f2 = f1;
       x1 = new_x;
                      f1 = new_f;
   else
       a = x1;
       1 = b - a;
       new_x = a + tau*1;
       new_f = f(new_x);
       if f2 <= new_f
           x1 = a;
           x3 = new_x; f3 = new_f;
           break;
       end
       x1 = x2; f1 = f2;
       x2 = new_x; f2 = new_f;
   end
   if debugFlg
       fprintf(' %2d:\t [a, b] = [%.10f, %.10f], f(a) =
          \%.10f, f(b) = \%.10f\n', i, a, b, f(a), f(b));
       line([a b], [f(a) f(b)], 'color', 'r');
       hold on;
       pause(delayS);
   end
if debugFlg
```

end

```
fprintf('Found x1 = \%.10f, x2 = \%.10f, x3 = \%.10f\n',
       x1, x2, x3);
    scatter(x1, f1, 'green', 'filled');
    scatter(x2, f2, 'green', 'filled');
    scatter(x3, f3, 'green', 'filled');
    line([x1 x3], [f1 f3], 'color', 'b');
    hold on;
    pause(delayS*2);
end
if 1 \le 2*eps
    x_res = (a+b)/2;
    f_{res} = f(x_{res});
    if debugFlg
        scatter(x_res, f_res, 'r', 'filled');
        fprintf('RESULT: %2d iterations, x=%.10f,
           f(x) = %.10 f n', i, x_res, f_res);
    end
    return;
end
fprintf('-----\n');
a1 = (f2 - f1) / (x2 - x1);
a2 = ((f3 - f1)/(x3 - x1) - (f2 - f1)/(x2 - x1)) / (x3 - x2);
x_{-} = 1 / 2 * (x1 + x2 - a1/a2);
f_{-} = f(x_{-});
for i = 1:1000
    old_x_ = x_;
    if f_- > f2
        temp = f_{;} f_{ } = f2; f2 = temp;
        temp = x_{-}; x_{-} = x_{-}; x_{-} = temp;
    end
    if x_- > x_2
        x1 = x2; f1 = f2;
        x2 = x_{;} f2 = f_{;}
```

```
x3 = x2; f3 = f2;
            x2 = x_{;} f2 = f_{;}
        end
        if debugFlg
            fprintf(', 2d:\t [x1, x3] = [\%.10f, \%.10f], f(x1) =
               %.10f, f(x3) = %.10f\n', i, x1, x3, f1, f3);
            fprintf('Current min point: x=\%.10f, f(x)=\%.10f\n',
               x_, f_);
            % line([x1 x3], [f1 f3], 'color', 'b');
            plot(x_, f_, 'xk');
            hold on;
            pause(delayS);
        end
        a1 = (f2 - f1) / (x2 - x1);
        a2 = ((f3 - f1)/(x3 - x1) - (f2 - f1)/(x2 - x1)) / (x3 -
           x2);
        x_{-} = 1 / 2 * (x1 + x2 - a1/a2);
        f_{-} = f(x_{-});
        if abs(old_x_ - x_) \le eps
            break
        end
    end
    x_res = x_;
    f_res = f_;
    if debugFlg
        scatter(x_res, f_res, 'r', 'filled');
        fprintf('RESULT: %2d iterations, x=\%.10f, f(x)=\%.10f\n',
           i, x_res, f_res);
    end
end
function y = f(x)
    k = power(5, 1/3);
```

else

```
y = sinh((3 * power(x,4) - x + sqrt(17) - 3) / 2) + sin((k *
    power(x, 3) - k * x + 1 - 2 * k) ./ (-power(x,3) + x +
    2));
end
```

1.5 Результаты расчетов для задачи из индивидуального варианта.

Таблица 1.1 – Результаты расчетов

$N_{\overline{0}}$ Π/Π	ϵ	N	x^*	$f(x^*)$
1	1e-2	2	0.4381262644	-0.5511546082
2	1e - 4	7	0.4423213847	-0.5511898772
3	1e - 6	12	0.4423638093	-0.5511898808