Первообразная

Определение 1. Функцию F(x), определенную на интервале (a,b), называют первообразной функции f(x), определенной на интервале (a,b), если для каждого $x\in (a,b)$ выполнено равенство

$$F'(x) = f(x)$$
.

Например, из справедливости равенства

$$(\sin 2x)' = 2\cos 2x$$

вытекает, что функция $F(x) = \sin 2x$ является первообразной функции $f(x) = 2\cos 2x$.

Замечание. Функция $F(x)=\sin 2x$ не является единственной первообразной функции $f(x)=2\cos 2x$, поскольку функция $F(x)=\sin 2x+10$, или функция $F(x)=\sin 2x-3$, или функции вида $F(x)=\sin 2x+c$, где c – любое число, также являются первообразными функции $f(x)=2\cos 2x$.

Справедлива следующая теорема, доказательство которой выходит за рамки школьного курса математики.

Теорема 1. Если функция F(x) является первообразной функции f(x) на интервале (a,b), то любая другая первообразная функции f(x) на интервале (a,b) имеет вид

$$F(x) + c$$
,

где C — некоторое число.

Неопределенный интеграл

Определение 2. Множество всех <u>первообразных</u> функции f(x) называют **неопределенным интегралом** от функции f(x) и обозначают

$$\int f(x)dx$$

Обозначение (1) читается так: «Неопределенный интеграл от функции f(x) по dx» .

Если F(x) является первообразной f(x), то в силу <u>теоремы 1</u> смысл формулы (1) заключается в следующем:

$$\int f(x) dx = \begin{bmatrix} \text{множество всех функций вида} \\ F(x) + c, \text{ где } c - \text{любое число} \end{bmatrix}$$

Однако для упрощения формулу (2) принято записывать в виде

$$\int f(x) dx = F(x) + c$$

В формуле (3) функцию f(x) называют **подынтегральной** функцией, выражение f(x) dx нызывают **подынтегральным выражением**, а число c называют **постоянной интегрирования**.

Операцию вычисления (взятия) интеграла по известной подынтегральной функции называют *интегрированием функции*.

Правила интегрирования. Замена переменной в неопределенном интеграле

Вычисление интегралов (<u>интегрирование</u>) основано на применении следующих правил, которые непосредственно вытекают из <u>правил вычисления</u> производных.

Правило 1 (интеграл от произведения числа на функцию). Справедливо равенство

$$\int k \cdot f(x) dx = k \cdot \int f(x) dx,$$

где k – любое число.

Другими словами, **интеграл от произведения числа на** функцию равен произведению этого числа на интеграл от функции.

Правило 2 (интеграл от суммы функций). Интеграл от суммы функций вычисляется по формуле

$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

то есть интеграл от суммы функций равен сумме интегралов от этих функций.

Правило 3 (интеграл от разности функций). Интеграл от разности функций вычисляется по формуле

$$\int \left[f(x) - g(x) \right] dx = \int f(x) dx - \int g(x) dx$$

то есть интеграл от разности функций равен разности интегралов от этих функций.

Правило 4 (интегрирование при помощи замены переменной). Из справедливости формулы

$$\int f(x) dx = F(x) + c$$

вытекает, что

$$\int f(\varphi(x)) \cdot \varphi'(x) dx = F(\varphi(x)) + c$$

если все входящие в формулу (4) функции $f(\varphi(x))$, $\varphi'(x)$, $F(\varphi(x))$ определены.

Доказательство правила 4. Воспользовавшись формулой для производной сложной функции, вычислим производную от правой части формулы (4):

$$\left[F(\varphi(x)) + c \right]' = F'(\varphi(x)) \cdot \varphi'(x) = f(\varphi(x)) \cdot \varphi'(x)$$

Мы получили <u>подынтегральную функцию</u> из левой части формулы (4), что и требовалось.

Замечание. Рассмотрим частный случай формулы (4), когда функция $\phi(x)$ является <u>линейной функцией</u>, то есть

$$\varphi(x) = kx + b ,$$

что k и b – произвольные числа, $k \neq 0$.

В этом случае

$$\varphi'(x) = k,$$

и формула (4) принимает вид

$$\int f(kx+b) dx = \frac{1}{k} F(kx+b) + c$$

Формула (5) часто используется при решении задач.

Таблица интегралов

Следующая **таблица** <u>неопределенных интегралов</u> составлена на основе <u>таблицы производных часто встречающихся функций,</u> а также на основе <u>таблицы производных сложных функций</u>

Основная формула	Обобщения
$\int dx = x + c$	$\int k \; dx = kx + c$, где k – любое число
$\int x^n dx = \frac{x^{n+1}}{n+1} + c$ где n – любое число, не равное $-$ 1	$\int (kx+b)^n dx = \frac{(kx+b)^{n+1}}{k(n+1)} + c$
	где n , k , b – любые числа, $k \neq 0$, $n \neq -1$
	$\int (\varphi(x))^n \cdot \varphi'(x) dx = \frac{(\varphi(x))^{n+1}}{n+1} + c,$
	где n – любое число, n $ eq -1$
$\int \frac{1}{x} dx = \ln x + c, x > 0$	$\int \frac{1}{kx+b} dx = \frac{1}{k} \ln (kx+b) + c,$
	где k , b – любые числа, $k \neq 0$, $kx + b > 0$
	$\int \frac{\varphi'(x)}{\varphi(x)} dx = \ln(\varphi(x)) + c,$
	где $\varphi(x) > 0$

$\int e^{x} dx = e^{x} + c$	$\int e^{kx+b}dx=rac{1}{k}e^{kx+b}+c$, где k , b – любые числа, $k eq 0$ $\int e^{\phi(x)}\cdot\phi'(x)dx=e^{\phi(x)}+c$
$\int a^{x} dx = \frac{a^{x}}{\ln a} + c$ где a – любое положительное число, не равное 1	$\int a^{kx+b} dx = \frac{a^{kx+b}}{k \cdot \ln a} + c \ ,$ где a – любое положительное число, не равное $1, \ k, \ b$ – любые числа, $k \neq 0$ $\int a^{\phi(x)} \cdot \phi'(x) dx = \frac{a^{\phi(x)}}{\ln a} + c \ ,$ где a – любое положительное число, не равное 1
$\int \sin x dx = -\cos x + c$	$\int \sin(kx+b) dx = -\frac{1}{k} \cos(kx+b) + c$, rде k , b – любые числа, $k \neq 0$ $\int \sin(\phi(x)) \cdot \phi'(x) dx = -\cos(\phi(x)) + c$
$\int \cos x dx = \sin x + c$	$\int \cos\left(kx+b ight) dx = rac{1}{k}\sin\left(kx+b ight) + c$, где k , b – любые числа, $k eq 0$ $\int \cos\left(\phi(x) ight) \cdot \phi'(x) dx = \sin\left(\phi(x) ight) + c$
$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + c$	$\int \frac{1}{\cos^2(kx+b)} dx = \frac{1}{k} \operatorname{tg}(kx+b) + c$

$x \neq \frac{\pi}{2} + \pi n, n = 0, \pm 1, \pm 2, \dots$	где k , b – любые числа, $k \neq 0$, $kx + b \neq \frac{\pi}{2} + n\pi$, $n = 0, \pm 1, \pm 2, \ldots$
	$\int \frac{\varphi'(x)}{\cos^2(\varphi(x))} dx = \operatorname{tg}(\varphi(x)) + c$
	$\varphi(x) \neq \frac{\pi}{2} + \pi n, n = 0, \pm 1, \pm 2, \dots$
$\int \frac{1}{\sin^2 x} dx = -\operatorname{ctg} x + c$ $x \neq \pi n, n = 0, \pm 1, \pm 2, \dots$	$\int \frac{1}{\sin^2(kx+b)} dx = -\frac{1}{k} \operatorname{ctg}(kx+b) + c$
	где k,b – любые числа, $k \neq 0$, $kx+b \neq n\pi, n=0,\pm 1,\pm 2,\ldots$
	$\int \frac{\varphi'(x)}{\sin^2(\varphi(x))} dx = -\operatorname{ctg}(\varphi(x)) + c$
	$\varphi(x) \neq \pi n, n = 0, \pm 1, \pm 2, \dots$
$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + c,$ $ x < 1$	$\int \frac{dx}{\sqrt{1-(kx+b)^2}} = \frac{1}{k}\arcsin(kx+b)+c,$
	где k , b – любые числа, $k \neq 0$, $\mid kx + b \mid < 1$
	$\int \frac{\varphi'(x) dx}{\sqrt{1 - (\varphi(x))^2}} = \arcsin(\varphi(x)) + c,$
	$ \varphi (x) < 1$

Примеры решения задач

Пример 1. Вычислить интеграл

$$\int \left(7x^6 + 8\sqrt{x} - \frac{2}{x} - 2\sqrt[3]{x^5} + \frac{4}{x^7} \right) dx$$

Решение. Воспользовавшись <u>свойствами степеней</u>, а затем <u>правилами интегрирования</u> и формулами из таблицы неопределенных интегралов, получаем

$$\int \left(7x^{6} + 8\sqrt{x} - \frac{2}{x} - 2\sqrt[3]{x^{5}} + \frac{4}{x^{7}}\right) dx =$$

$$= 7\int x^{6} dx + 8\int x^{\frac{1}{2}} dx - 2\int \frac{dx}{x} - 2\int x^{\frac{5}{3}} dx + 4\int x^{-7} dx =$$

$$= 7 \cdot \frac{x^{7}}{7} + 8 \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}} - 2\ln x - 2 \cdot \frac{x^{\frac{3}{3}}}{\frac{8}{3}} + 4\frac{x^{-6}}{(-6)} + c =$$

$$= x^{7} + \frac{16}{3}\sqrt{x^{3}} - 2\ln x - \frac{3}{4}\sqrt[3]{x^{\frac{3}{2}}} - \frac{2}{3x^{\frac{5}{2}}} + c$$

Ответ.

$$x^{7} + \frac{16}{3}\sqrt{x^{3}} - 2\ln x - \frac{3}{4}\sqrt[3]{x^{2}} - \frac{2}{3x^{6}} + c$$

Пример 2. Значение первообразной F(x) функции $f(x) = -4 \sin x$ в точке x=0 равно 9. Найти $F\left(\frac{\pi}{3}\right)$.

Решение. Поскольку

$$\int (-4\sin x) \, dx = 4\cos x + c,$$

ТО

$$F(x) = 4\cos x + c,$$

Подставляя в формулу (6) <u>значение</u> x=0, находим значение <u>постоянной интегрирования</u> c:

$$F(0) = 4 \cos 0 + c = 9,$$

 $4 + c = 9, \quad c = 5.$

Следовательно,

$$F(x) = 4\cos x + 5$$

Поэтому

$$F\left(\frac{\pi}{3}\right) = 4\cos\frac{\pi}{3} + 5 = 4\cdot\frac{1}{2} + 5 = 7$$

Ответ. 7

Пример 3. Найти <u>первообразную</u> F(x) функции

$$f(x) = e^{\cos x} \cdot \sin x$$

если $F(2\pi) = 2e + 3$.

Решение. Воспользовавшись формулой из таблицы неопределенных интегралов

$$\int e^{\varphi(x)} \cdot \varphi'(x) dx = e^{\varphi(x)} + c$$

для функции $\varphi(x) = \cos x$, получаем

$$\int e^{\cos x} \cdot \sin x \, dx = -e^{\cos x} + c$$

Следовательно,

$$F(x) = -e^{\cos x} + c$$

Подставляя в формулу (7) <u>значение</u> $x=2\pi$, находим значение <u>постоянной</u> интегрирования c:

$$F(2\pi) = -e^{\cos 2\pi} + c = -e + c = 2e + 3$$

Итак,

$$c = 3e + 3$$
.

Omsem. $F(x) = -e^{\cos x} + 3e + 3$

Пример 4. Вычислить интеграл

$$\int \frac{e^x dx}{1 + e^{2x}}$$

Решение. Воспользовавшись формулой из таблицы неопределенных интегралов

$$\int \frac{\varphi'(x) dx}{1 + (\varphi(x))^2} = \operatorname{arctg}(\varphi(x)) + c$$

для функции $\varphi(x) = e^x$, получаем

$$\int \frac{e^x dx}{1 + e^{2x}} = \int \frac{\left(e^x\right)' dx}{1 + \left(e^x\right)^2} = \arctan\left(e^x\right) + c$$

Omeem. $arctg(e^x) + c$