Programme de khôlle de maths nº 6

Semaine du 3 Novembre

Cours

Chapitre 3: Ensembles et applications

- Egalité, inclusion d'ensembles
- Ensemble vide, ensemble $\mathcal{P}(E)$ des sous-ensembles d'un ensemble E, ensemble $F \setminus E = \{x \in F, x \notin E\}$.
- Union et intersection de deux ensembles, complémentaire dans un ensemble.
- Union et intersection d'une famille quelconque d'ensembles.
- Produit cartésien, n-uplet (définitions)
- Application $f: E \to F$, ensemble de départ, ensemble d'arrivée, image directe f(A) de $A \in \mathcal{P}(E)$, image réciproque $f^{-1}(B)$ de $B \in \mathcal{P}(F)$.
- Restriction d'une application, prolongement d'une application
- Injection, surjection, bijection. Application réciproque d'une bijection. Application identité. $f: E \to F$ est une bijection si et seulement si il existe $g: F \to E$ tel que $f \circ g = \mathrm{Id}_F$ et $g \circ f = \mathrm{Id}_E$ et alors $f^{-1} = g$.
- Dénombrement : arrangements, permutations, combinaisons.

Chapitre 4: Entiers, sommes et récurrences

- Nombres entiers, familles finies et dénombrables
- Sommes sur une partie finie de Z, relation de Chasles, changement d'indice, changement de sens de sommation
- Formules $\sum_{k=1}^{n} k$, $\sum_{k=0}^{n} q^k$, $\sum_{k=p}^{n} q^k$, formule de factorisation $x^n y^n = \sum_{k=0}^{n-1} x^k y^{n-k-1}$, formule du binôme de
- Récurrence simple, récurrence double, récurrence forte.

Questions de cours et exercices vus en classe

Pas de question de cours

Exercices

- 1. Démontrer que $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 2. Montrer que $f(B) \setminus f(A) \subset f(B \setminus A)$.
- 3. Montrer que si $A \cap B = A \cup B$ alors A = B.
- 4. Montrer que $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$
- 5. Si $f: E \to F$ et $g: F \to G$, montrer que $(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B))$ pour tout $B \subset G$.
- 6. Calcular $\sum_{k=0}^{n} (k+2)^2$.
- 7. Calculer $\sum_{k=0}^{n} \frac{1}{\sqrt{5^k}}$
- 8. Calculer $\sum_{k=2}^{n} 2^{n-k} x^k$ 9. Calculer $\sum_{k=0}^{n} (-1)^k \binom{n}{k}$
- 10. Montrer que pour tout entiers $n \ge 1$ et $0 \le k \le n$: $k \binom{n}{k} = n \binom{n-1}{k-1}$. En déduire la valeur de $\sum_{k=0}^{n} k \binom{n}{k}$.