Wärme- und Stoffübertragung I

Einführung in die instationäre Wärmeleitung

Prof. Dr.-Ing. Reinhold Kneer Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Lernziele

- Kategorisierung von instationären Problemen
 - Verständnis und Abstraktion des Problems
 - Problemreduktion und Auswahl der geeigneten Lösungsstrategie

- Körper homogener Temperatur
 - Ent-Dimensionierung des Problems
 - Dimensionslose Kennzahlen
 - Mathematisches Lösen der DGL

Rückblick: Fourier'sche Differentialgleichung

"Spiegelei braten"

Instationäre Wärmeleitung

3-D Erhaltungsgleichung ohne Advektion und Quelle

$$\rho c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right)$$

Wie lassen sich instationäre Probleme kategorisieren?

Temperatur eines Körpers:

homogen (Bi ≪ 1)

Quelle:

[1] Lee, Soochan et al. "Hot Spot Cooling and Harvesting CPU Waste Heat Using Thermoelectric Modules." (2014). [2] www.travelportal.cz

nicht homogen

Wie lassen sich instationäre Probleme kategorisieren?

Temperatur eines Körpers:

homogen (Bi ≪ 1)

Temperature innerhalb den Körper:

Quelle: www.mychicagosteak.com/steak-university/done-perfection-guide-steak-doneness/

Wie lassen sich instationäre Probleme kategorisieren?

Wie lässt sich das Problem vereinfachen?

Rückblick der Biot-Zahl

→ Welche Voraussetzungen müssen erfüllt sein für eine homogene Körpertemperatur?

Bi ≪ 1

- homogene Temperatur im Körper
- W_{λ} vernachlässigbar
- häufig bei Körpern mit hoher Wärmeleitfähigkeit

Bi ≈ 1

- ähnliche Anteile von Wärmeleitung und Konvektion
- $W_{\lambda} \approx W_{\alpha}$

$Bi \gg 1$

- Hoher
 Wärmeleitwiderstand
- $W_{\lambda} \gg W_{\alpha}$
- häufig bei Körpern mit niedriger Wärmeleit- fähigkeit

Temperatur einer Kupferkugel T(t) mit Anfangstemperatur T_0

Umgebung T_U

Energie Bilanz

Änderung innerer Energie = zugeführte Wärme

$$\frac{dU}{dt} = -\dot{Q}_{\text{Konvekion}}$$

$$\rho c_p V \frac{dT}{dt} = -\alpha A (T - T_U)$$

Dimensionslose Übertemperatur

$$\Theta^* = \frac{T - T_0}{T_H - T_0}$$

$$\frac{d\Theta^*}{dt} = \frac{1}{T_U - T_0} \frac{dT}{dt}$$

Einsetzen

$$\frac{d\Theta^*}{dt} + \frac{\alpha A}{\rho c_p V} \cdot \underbrace{\frac{(T - T_0) - (T_U - T_0)}{T_U - T_0}}_{\Theta^* - 1} = 0$$

Temperatur einer Kupferkugel T(t) mit Anfangstemperatur T_0

Umgebung T_U

Gleichung für die Temperatur T(t)

$$\frac{d\Theta^*}{\Theta^* - 1} = -\frac{\alpha A}{\rho c_p V} dt$$

Integration mit Anfangsbedingung

$$\Theta^*_{0} = \frac{T_0 - T_0}{T_U - T_0} = 0$$

$$\int_{\Theta^*_{0}}^{*} \frac{d\Theta^*}{\Theta^* - 1} = -\frac{\alpha A}{\rho c_p V} \int_{0}^{t} dt$$

Ergebnis

$$\ln\left(\frac{\Theta^* - 1}{\Theta^*_0 - 1}\right) = \ln(1 - \Theta^*) = -\frac{\alpha A}{\rho c_p V} t$$

$$\Theta^* = 1 - e^{-\frac{\alpha A}{\rho c_p V} t}$$

Temperatur einer Kupferkugel T(t)mit Anfangstemperatur T_0

Umgebung T_{II}

Ergebnis

$$\Theta^* = 1 - e^{-\frac{\alpha A}{\rho c_p V} t}$$

Rückblick: Biot-Zahl

$$Bi = \frac{\alpha L}{\lambda}$$
 mit $L = \frac{d}{2}$

ggf.
$$Bi = \frac{\ddot{a}u\&eren}{inneren}$$
 Widerstand $\ll 1$

Definition: Fourier-Zahl

$$Fo = \frac{\lambda t}{\rho c_p L^2} = \frac{at}{L^2}$$

$$mit a = \frac{\lambda}{\rho c_p}$$

Einschub: Fourier-Zahl

Ent-Dimensionierung der Erhaltungsgleichung

$$\rho c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) \qquad T = T^* \cdot T_{\text{ref}}$$
$$t = t^* \cdot t_{\text{ref}}$$

$$T = T^* \cdot T_{\text{ref}}$$

$$t = t^* \cdot t_{\text{ref}}$$

$$x = x^* \cdot L$$

Hinweis: Mit * gekennzeichnete Größen sind dimensionslos T_{ref} , t_{ref} und L sind Referenzgrößen

$$\frac{\rho c_p T_{\text{ref}}}{t_{\text{ref}}} \frac{\partial T^*}{\partial t^*} = \frac{T_{\text{ref}} \lambda}{L^2} \frac{\partial}{\partial x^*} \left(\frac{\partial T^*}{\partial x^*} \right)$$

$$\frac{\partial T^*}{\partial t^*} = \frac{\lambda t_{\text{ref}}}{\rho c_p L^2} \frac{\partial}{\partial x^*} \left(\frac{\partial T^*}{\partial x^*} \right)$$

$$\frac{\partial T^*}{\partial t^*} = Fo \frac{\partial^2 T^*}{\partial x^{*2}}$$

Definition

Die Fourier-Zahl ist ein dimensionsloser Zeitparameter.

Sie beschreibt die Dauer eines thermischen Prozesses im Verhältnis zur Dauer des Wärmetransportes.

Temperatur einer Kupferkugel T(t) mit Anfangstemperatur T_0

Umgebung T_U

Ergebnis

$$\Theta^* = 1 - e^{-[Bi \cdot Fo]}$$

Wie lässt sich das Problem vereinfachen?

Halbunendliche Körper

Wo ändert sich die Temperatur zu Beginn des Experiments?

→ mathematisch gesehen überall!!

Solange sich die Temperatur "rechts" nicht signifikant geändert hat, ist die Randbedingung auf der rechten Seite unerheblich

Definition: Halbunendlicher Körper

Objekt, bei dem eine Temperaturänderung, die auf der einen Seite aufgeprägt wird, noch nicht signifikant zur anderen Seite vorgedungen ist.

Differenzialgleichung in 1D

$$\rho c_p \frac{\partial T}{\partial t} = \lambda \frac{\partial^2 T}{\partial x^2} \rightarrow \text{analytische L\"osung}$$

(Video "Halbunendliche-Platte")

Wie lässt sich das Problem vereinfachen?

Sonstiges

Vorgefertigte Lösungen: Heisler Diagramm in dimensionsloser Form (im Video "Dimensionslose Kennzahlen und Heisler Diagramme")

Lässt sich das Problem nicht vereinfachen, so sind numerische Verfahren das Mittel der Wahl.

Aufheizen einer Pfanne mit Bratgut

Verständnisfragen

Unter welcher Voraussetzung ist die Temperatur innerhalb eines Körpers als homogen anzunehmen? Welche dimensionslose Kennzahl kann hierfür herangezogen werden?

Was beschreibt die Fourier-Zahl?

