ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Московский технический университет связи и информатики

Кафедра систем радиосвязи

Лабораторная работа № 12

Исследование телевизионного канала, образованного на аппаратуре "ЭЛЕКТРОНИКА-СВЯЗЬ"

Составил в 1991 г. А.И.Юдин, канд. техн. наук, доцент

Новая редакция в 2008г. Сухорукова И.Ю., доцент

ЦЕЛЬ РАБОТЫ

- 1. Изучить технические данные, структурную схему и конструктивное выполнение оконечного телевизионного статива (ОТВ) «Электроника-связь» и порядок измерения основных параметров аппаратуры.
- 2. Ознакомиться со способом образования телевизионного ствола при использовании статива ОТВ.
- 3. Измерить основные электрические характеристики канала изображения и канала звукового сопровождения.
- 4. Оценить качество изображения при разных значениях длины пролета и множителя ослабления поля свободного пространства.

ДОМАШНЕЕ ЗАДАНИЕ

- 1. Изучить технические данные, структурную схему и принцип работы статива ОТВ по приложению 1.
- 2. Нарисовать структурные схемы тракта передачи и приема статива.
- 3. Ознакомиться со схемой измерительно-коммутационной панели (ИКП) по приложению 2 и порядком измерения основных параметров статива.
- 4. (выполняется студентами **4-го курса** для получения допуска к выполнению лабораторной работы)

Рассчитать для рабочей частоты f = 6 ГГц, шумовой полосы приемника Пш = 40 МГц и соответствующих исходных данных:

а) ослабление сигнала при распространении в свободном пространстве в дБ

$$acb = 20lg (4\pi R/\lambda)$$
, дБ (12.1)

длину волны и длину пролета подставлять в одинаковых единицах измерения

б) суммарное ослабление сигнала на пролете в дБ

$$a_{\text{СУМ}} = a_{\text{СВ}} - g_{\text{Пер}} - g_{\text{Пр}} + a \phi \text{ пер} + a \phi \text{ пр}$$
, дБ (12.2)

в) коэффициент системы для телевизионного ствола в дБ

$$K_{TB} = 158,4 + 10 lg P \pi - \mathbf{1} III , дБ$$
 (12.3)

г) минимально допустимое значение множителя ослабления на пролете в дБ

$$Vmin = 49 + acym - Ktb$$
, дБ (12.4)

д) уровень мощности сигнала на входе приемника при отсутствии замираний на пролете в дБВт

$$p_{\text{с.вх.0}} = 10 \lg \text{Рп} - \text{асум}, \text{дБВт}$$
 (12.5)

е) уровень мощности сигнала на входе приемника в дБВт при замирании сигнала на пролете для значений V = 0, -6, -10, -20, -30, -40, -43, -46, -50, -60 дБ

$$p_{\text{с.вх.расч}} = p_{\text{с.вх.0}} + V$$
, дБВт (12.6)

ж) уровень мощности шума на входе приемника в дБВт

$$p_{\text{III.BX}} = 10 \lg (k T_0 \Pi_{\text{III}}) + \mathbf{n}_{\text{III}}, \text{дБВт}$$
 (12.7)

з) отношение сигнал/шум на входе приемника в дБ для значений V=0, -6, -10, -20, -30, -40, -43, -46, -50, -60 дБ

$$q_{\text{вх.расч}} = p_{\text{с.вх}} - p_{\text{ш.вх}}$$
, дБ (12.8)

и) отношение сигнал/шум на выходе канала изображения в дБ для значений V = 0, -6, -10, -20, -30, -40, -43, -46, -50, -60 дБ , где Пш в МГц

$$q_{\text{вых.расч}} = 10 \lg (3\Pi \text{ш}) + 9,69 + q_{\text{вх}}, \text{дБ}$$
 (12.9)

 κ) построить диаграмму уровней для пролета заданной протяженности при трех значениях множителя ослабления: V = 0, -6, Vmin.

Результаты расчетов по пунктам е)...и) свести в табл.12.14 (см. описание к лабораторной работе).

ЛАБОРАТОРНОЕ ЗАДАНИЕ

- 1. Изучить размещение блоков в стативе и выполнение соединений между ними.
- 2. Проверить работоспособность и измерить электрические характеристики статива в режиме работы «на себя».
- 3. Используя измерительно-коммутационную панель, образовать телевизионный канал передачи. Проверить диаграмму уровней канала изображения.
- 4. Снять сквозную амплитудно-частотную характеристику канала изображения.
- 5. Для заданной в исходных данных для домашнего задания длине пролета измерить визометрическое напряжение теплового шума в канале изображения и определить отношение квадратов напряжения размаха сигнала изображения и визометрического напряжения шума для различных значений множителя ослабления (от 0 до минус 60 дБ).
- 6. Оценить визуально влияние величины отношения сигнал/шум на входе приемника на качество передаваемого изображения.
- 7. Проверить диаграмму уровней в звуковых каналах, измерить отношение сигнал/шум на их выходах и оценить качество передачи звукового сопровождения.
- 8. Оценить качественные показатели канала изображения на однопролетной РРЛ при переприеме по ПЧ и сигналу изображения.

СОДЕРЖАНИЕ ОТЧЕТА

Отчет выполняется каждым студентом индивидуально.

Он должен содержать:

- 1. Основные технические данные системы «Электроника-связь» и статива ОТВ.
- 2. Функциональные схемы передающего и приемного трактов статива (рис. 12.5, 12.6).
- 3. Результаты домашнего расчета (для студентов 4-го курса).

- 4. Таблицы результатов измерения неравномерности АЧХ в каналах изображения и звука (табл.12.1 ... 12.3) и соответствующие им графики с указанием на графиках норм на неравномерность.
- 5. Диаграмму уровней пролета РРЛ (для студентов 4-го курса).
- 6. Результаты измерений и расчетов отношения сигнал/шум в канале изображения для статива ОТВ и при образовании канала передачи в виде таблицы 12.4, приведенной в п.3.3, и графика зависимости Q_{вых} от V.
- 7. Результаты измерений и расчетов отношения сигнал/шум в канале звукового сопровождения при образовании канала передачи для двух значений V.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Назначение статива ОТВ.
- 2. Какую частоту и вид модуляции имеет сигнал на выходе (входе) статива.
- 3. Нарисуйте спектр группового сигнала на входе частотного модулятора.
- 4. Поясните назначение поднесущих частот.
- 5. Покажите прохождение сигналов звукового сопровождения и сигнала изображения в передающем и приемном трактах статива.
- 6. Поясните принцип работы частотного модулятора. Объясните принцип работы ФАПЧ.
- 7. Зачем нужны ПсКТВ в блоке ТВ Пд и ВсКТВ в блоке ТВ Пм?
- 8. Какие виды станционных измерений выполняются при проверке статива ОТВ?
- 9. Как проверяется диаграмма уровней канала изображения?
- 10. Как проверяется неравномерность АЧХ тракта изображения и каналов звукового сопровождения и вещания?
- 11. Как определяется отношение размаха сигнала изображения к визометрическому напряжению шума в канале?
- 12. Зачем нужен визометрический фильтр?
- 13. Для чего при измерениях шумов в тракте ко входу каналов подключаются нагрузочные сопротивления?

СПИСОК ЛИТЕРАТУРЫ

- **1.** Радиорелейные и спутниковые системы передачи: Учебник для вузов / Под ред. А.С. Немировского. М.: Радио и связь, 1986. с. 110-112, 114-115, 172,173, 253, 254.
- **2.** Маковеева М.М. Радиорелейные линии связи: Учебник для техникумов. М.: Радио и связь, 1988. с. 27-29, 62, 63, 75,76, 138-142, 200.

ПОРЯДОК ВЫПОЛНЕНИЯ

Меры безопасности

До начала работы необходимо внимательно изучить описание статива, четко представлять назначение и функциональную взаимосвязь всех его блоков. Приступая к работе, необходимо убедиться в наличии соединения статива со станционным заземлением. Перед включением приборов в сеть проверить, соединены ли их корпуса с корпусом статива. При повреждении блока питания статива надлежит отключить его от питающей сети. Запрещается вынимать блоки из статива при включенном блоке питания.

1. ПРОВЕРКА РАБОТОСПОСОБНОСТИ СТАТИВА ОТВ

Перед выполнением измерений необходимо убедиться в работоспособности статива. Проверка проводится в следующей последовательности:

- 1. Соединить на ИКП кабельной перемычкой гнезда Выход ОКОНЕЧНОЙ СТОЙКИ (Вых. ПЧ) и Вход ОКОНЕЧНОЙ СТОЙКИ (Вх. ПЧ), как показано на рис.12.1.
 - 2. Включить блок питания стойки Б5-47 (см. рис.12.1).

Рис. 12.1. Блок питания Б5-47 и ИКП (соединения для работы в режиме «на себя»)

3. Включить ИКП тумблером ВКЛ.

4. Поставить тумблер на блоке питания ОТВ в положение ВКЛ. После этого должны засветиться зеленые светодиоды ПЧ, ПС и ПОДН. ЧАСТ. в обоих блоках СК (см.

рис.12.2).

Рис. 12.2. Блок питания и СК ОТВ «Электроника-связь»

5. Проверить наличие напряжения ПЧ на выходе статива, для чего нажать кнопку ПЧ на блоке СК передающей части. Стрелка прибора должна отклониться до 50-70 мкА.

Провести аналогичную операцию в приемной части статива. Показания прибора должны быть те же. В случае несоответствия, записать показания приборов.

6. Проверить исправность схемы сигнализации и контроля. Для этого нажать на обеих СК кнопки КОНТРОЛЬ ПЧ. При исправном стативе в режиме работы «на себя» должны светиться зеленые светодиоды ПЧ, ПС и Подн. Част. 1, 2, 3 и 4, расположенные на панелях блоков СК трактов приема и передачи.

При отсутствии какого-либо контролируемого сигнала гаснет соответствующий зеленый светодиод.

Если снять перемычку между гнездами ВЫХОД ПЧ и ВХОД ПЧ на ИКП, то на блоке СК приемной части все зеленые светодиоды погаснут.

- 7. Проверить диаграмму уровней тракта изображения. Для этого:
- а) нагрузить гнездо ВЫХОД ТВ на ИПК сопротивлением 75 Ом;
- б) к гнезду ВХОД ТВ подключить генератор стандартных сигналов Г4-102 (Г4-106);
- в) подсоединить к параллельным гнездам ВХОД ТВ милливольтметр ВЗ-38 (ВЗ-39);
- г) подать от Γ 4-102 (Γ 4-106) сигнал с частотой 1,5 М Γ ц и регулируя напряжение на генераторе, установить по показанию милливольтметра напряжение 355 мB;

- д) нажать поочередно на обеих панелях СК статива ОТВ кнопки ТВ. Показания приборов должны составлять 50-70 мкА. В случае несоответствия, записать показания приборов;
- е) поставить переключатель П2 на ИКП в положение РАБОТА;
- ж) переключить милливольтметр в гнезда ВЫХОД ТВ через нагрузочное сопротивление 75 Ом. Прибор должен показать 355 ± 20 мВ, что соответствует напряжению размаха полного сигнала изображения $1\pm0,05$ В. В случае несоответствия, записать показания милливольтметра.
 - 8. Проверить диаграмму уровней звуковых каналов. Для этого:
- а) к гнездам ВХОД ЗВУКА на ИКП подключить генератор звуковых частот ГЗ-111;
- б) к параллельным гнездам подключить милливольтметр ВЗ-38 (ВЗ-39);
- в) установить на генераторе Γ 3-111 рабочую частоту 1 к Γ ц и регулируя напряжение на генераторе, установить по показанию милливольтметра напряжение равное 775 мB;
- г) нажать в обоих блоках СК статива ОТВ кнопки ЗВ;
- д) нажать кнопку 1 на панели ИЗв Пд статива ОТВ. Прибор на блоке СК передающей части должен показать 50-70 мкА. В случае несоответствия, записать показания прибора;
- е) нажать кнопку 1 панели ИЗв Пм статива ОТВ. Прибор на СК приемной части должен показать примерно то же значение, что и в передающей части. В случае несоответствия, записать показания прибора;
- ж) с помощью переключателя П1 на ИКП подсоединить ВХОД Зв к 1-му каналу звука;
- 3) переключить милливольтметр в гнезда ВЫХ. Зв. Он должен показать 775±70 мВ. В случае несоответствия, записать показания прибора;
- и) повторить пункты 7 д) ... 7 з) для 2-го, 3-го и 4-го каналов звукового сопровождения.

Убедившись в работоспособности статива OTB, перейти к измерению его основных характеристик.

2. ИЗМЕРЕНИЕ ОСНОВНЫХ ЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК СТАТИВА ОТВ (СТАНЦИОННЫЕ ИЗМЕРЕНИЯ)

Измерение основных характеристик рекомендуется проводить в следующей последовательности.

- 1. Измерить величину эффективного напряжения на выходе канала изображения и определить неравномерность АЧХ в режиме работы статива «на себя». Для этого:
- а) к гнездам ВХОД ТВ ИКП подключить генератор стандартных сигналов Γ 4-106 (Γ 4-102) и установить частоту 0,1 М Γ μ ;
- б) подключить к параллельным гнездам ВХОД ТВ на ИКП милливольтметр ВЗ-38 (ВЗ-39);
- в) регулируя напряжение на генераторе, по показанию милливольтметра установить $U_{BX} = 300 \text{ MB}$;
- г) нагрузить коаксиальное гнездо ВЫХОД ТВ сопротивлением 75 Ом, а через нагрузку подсоединить милливольтметр;
- д) поставить (проверить) переключатель П2 на ИКП в положение РАБОТА и измерить напряжение на выходе канала изображения Uвых.тв;
 - е) записать показание милливольтметра в табл.12.1;
 - ж) повторить измерения Uвых.тв на частотах: 0,2; 0,5; 1; 2; 3; 4; 5; 5,5; 6 и 6,5 МГц;
 - з) рассчитать неравномерность $AYX \Delta a$ по формуле:

$$\Delta a = 20 \lg \left(\frac{U_{BbIX,TB}(f)}{U_{BbIX,TB}(0,2)} \right), \text{ дБ}$$
 (12.10)

Результаты расчета записать в табл. 12.1.

и) построить соответствующий график, на который наносятся допустимые значения неравномерности АЧХ (см. технические данные статива ОТВ).

Результаты измерения и расчета неравномерности AЧX тракта изображения при работе статива ОТВ в режиме «на себя»

Таблица 12.1

									_		
F, МГц	0,1	0,2	0,5	1,0	2,0	3,0	4,0	5,0	5,5	6,0	6,5
$U_{\text{вых.тв}}$, м B											
Δa , дБ											

2. Определить отношение квадратов напряжения размаха сигнала изображения и визометрического напряжения шума. Для этого:

- а) к гнезду ВХОД ТВ на ИКП подключить сопротивление 75 Ом;
- б) перевести выключатель $\Pi 2$ из положения РАБОТА в положение ВИЗОМЕТР. ФИЛЬТР;
- в) подключить милливольтметр к гнездам ВЫХ. ВИЗОМЕТР.ФИЛЬТРА и измерить напряжение шума на выходе демодулятора сигнала изображения Uш.мд;
- г) рассчитать отношение сигнала изображения к визометрическому напряжению шума по формуле:

$$q = 20\lg\left(\frac{0.7U_{BbIX}}{Um.м∂}\right), \text{дБ},$$
 (12.11)

где Uвых = 1,0 B – номинальное значение размаха напряжения изображения на выходе статива.

д) сравнить рассчитанное значение с допустимым (см. технические данные статива ОТВ).

3. Измерить величину эффективного напряжения на выходе звукового канала и определить неравномерность АЧХ. Для этого:

- а) подключить к гнездам ВХОД ЗВУКА на ИКП генератор звуковых частот ГЗ-111;
- б) к параллельным гнездам подключить милливольтметр;
- в) с помощью переключателя П1 подсоединить ВХОД ЗВУКА к требуемому каналу. Требуемый канал звука определяется по результатам проверки диаграммы уровней (см. п.1.7);
- Γ) установить частоту генератора Γ 3-111 равной 0,04 к Γ ц и регулируя напряжение на генераторе, установить по показанию милливольтметра напряжение равное 250 мB;
- д) переключить милливольтметр в эти гнезда и измерить напряжение Uвых.зв. Записать показания милливольтметра в табл.12.2;

Таблица 12.2

F, кГц	0,04	0,06	0,125	0,25	0,5	0,8	1,0	2,0	4,0	8,0	10,0	13,0	15,0
$U_{\text{вых.3в}}$,													
мВ													
∆а , дБ													

- е) повторить измерения Uвых.зв для частот генератора 0,06; 0,125; 0,25; 0,5; 0,8; 1,0; 2; 4; 8; 10; 13 и 15 к Γ ц;
 - ж) рассчитать неравномерность АЧХ по формуле:

$$\Delta_{\mathcal{A}_{3B}} = 20 \lg \left(\frac{U_{BbIX}(f)}{U_{BbIX}(1\kappa \Gamma \mu)} \right), \text{ дБ},$$
 (12.12)

Результаты расчета записать в табл.12.2. Указать номер канала звука, в котором проводились измерения.

з) построить соответствующий график, на который также наносятся допустимые значения неравномерности АЧХ (см. технические данные статива ОТВ).

3. ИЗМЕРЕНИЕ ОСНОВНЫХ ХАРАКТЕРИСТИК КАНАЛА ИЗОБРАЖЕНИЯ

- 1. Перед измерениями следует образовать канал для передачи телевизионного изображения. Для этого необходимо на ИКП обеих станций (см. рис.12.3):
- а) соединить коаксиальными перемычками гнезда Выход ОКОНЕЧНОЙ СТАНЦИИ (Вых. ПЧ) и Вход ПЕРЕДАТЧИКА;
- б) соединить коаксиальными перемычками гнезда Выход ПРИЕМНИКА и Вход ОКОНЕЧНОЙ СТАНЦИИ (Вх. ПЧ).

Рис.12.3. Блок питания Б5-47 и ИКП (соединения для образования канала передачи изображения)

2. Измерить АЧХ в канале изображения. Для этого:

На передающей станции

- а) к гнездам ВХОД ТВ ИКП подключить генератор стандартных сигналов Γ 4-106 (Γ 4-102) и установить частоту 0,1 М Γ II;
- б) подключить к параллельным гнездам ВХОД ТВ на ИКП милливольтметр ВЗ-38 (ВЗ-39);
- в) регулируя напряжение на генераторе, по показанию милливольтметра установить $U_{BX} = 300 \text{ MB}$;
 - г) поставить (проверить) переключатель П2 на ИКП в положение РАБОТА.

На приемной станции

- а) установить на ИКП заданную в исходных данных длину пролета и множитель ослабления V=0 дБ;
- б) нагрузить коаксиальное гнездо ВЫХОД ТВ сопротивлением 75 Ом, а через нагрузку подсоединить милливольтметр ВЗ-38 (ВЗ-39);
- в) поставить (проверить) переключатель П2 на ИКП в положение РАБОТА и измерить напряжение на выходе канала изображения Uвых.тв;
 - г) записать показание милливольтметра в табл.12.3;

Результаты измерения и расчета неравномерности AЧХ тракта изображения при организации канала изображения

Таблица 12.3

F, МГц	0,1	0,2	0,5	1,0	2,0	3,0	4,0	5,0	5,5	6,0	6,5
U _{вых.тв} , мВ											
Ла , дБ											

- д) повторить измерения Uвых.тв, устанавливая частоты: 0,2; 0,5; 1; 2; 3; 4; 5; 5,5; 6 и 6,5 МГц на генераторе **передающей станции**;
 - е) рассчитать неравномерность $AYX \Delta a$ по формуле (12.10).

Результаты расчета записать в табл. 12.3.

- ж) построить соответствующий график, на который также наносятся допустимые значения неравномерности АЧХ (см. технические данные статива ОТВ).
 - 3. Измерить зависимость тепловых шумов на выходе канала изображения от величины множителя ослабления на пролете. Для этого:

На передающей станции подсоединить к гнезду ВХОД ТВ сопротивление 75 Ом.

На приемной станции

- а) перевести переключатель П2 из положения РАБОТА в положение ВИЗОМЕТР.ФИЛЬТР;
 - б) подключить милливольтметр к гнездам ВЫХ. ВИЗОМЕТР.ФИЛЬТРА;
- в) с помощью регулировки ГЛУБИНЫ ЗАМИРАНИЙ последовательно изменять величину множителя ослабления Vot 0 до -60 дБ (от 0 до Vmin через 10 дБ, а далее через 2...3дБ);
- г) посредством милливольтметра измерять визометрическое напряжение шумов Uш.виз. Записать результаты измерения в табл.12.4;
- д) рассчитать отношение сигнала изображения к визометрическому напряжению шума по формуле (12.13):

$$q_{BMX} = 10 \lg \left(\frac{Uc^2}{U^2 w.виз. - U^2 w.м \partial} \right)$$
, дБ (12.13)

где Uc = 700 мB; Uш.мд – визометрическое напряжение тепловых шумов модема (статива ОТВ), измеренное в п.2.2.

Рассчитанные значения $q_{вых}$ записать в табл.12.4;

е) построить график зависимости $q_{вых}$ от V.

Качественные показатели канала изображения однопролетной РРЛ протяженностью ...км

Таблица 12.4

Параметр	Единицы	Велич	нина мн	южите.	ля осла	бления	, ν, дБ			
	измерений	0	-10	-20	-30	-40	-43	-46	-50	-60
Рс.вх.расч	дБВт									
д вх.расч	дБ									
д вых.расч	дБ									
Uш.виз	мВ									
qвых	дБ									
качество изображения	-									

Примечания: $P_{III.BX} = д_{BT}; v_{min} = д_{B};$ $q_{BX}(v_{min}) = g_{B}; q_{BMX}(v_{min}) = g_{B}.$

4. Оценить влияние глубины замираний сигнала на пролете на качество передачи сигнала изображения. Для этого:

На передающей станции

- а) к гнезду ВХОД ТВ на ИКП подсоединить датчик телевизионного сигнала;
- б) поставить (проверить) переключатель П2 на ИКП в положение РАБОТА.

На приемной станции

- а) к гнезду ВЫХОД ТВ на ИКП подключить *приемник телевизионного сигнала* (монитор);
- б) поставить (проверить) переключатель П2 на ИКП в положение РАБОТА.
- в) с помощью регулировки ГЛУБИНЫ ЗАМИРАНИЙ последовательно изменять величину множителя ослабления Vot 0 до -60 дБ (от 0 до Vmin через 10 дБ, а далее через 2...3дБ);
- г) для каждого значения множителя ослабления дать визуальную оценку качества изображения по пятибалльной системе. При этом руководствоваться следующей шкалой качества:
 - 5 отличное (влияние шумов незаметно);
 - 4 хорошее (влияние шумов заметно, но не мешает);
 - 3 удовлетворительное (влияние шумов заметно, немного мешает);
 - 2 плохое (влияние шумов мешает, надоедает);
 - 1 очень плохое (влияние шумов сильно мешает).

Результаты оценки занести в табл. 12.4.

Отметить значение множителя ослабления, при котором прием сигнала прекращается (пропадает пилот-сигнал на приемном конце, о чем свидетельствует выключение зеленого светодиода ПС на стативе OTB).

5. Оценить влияние длины пролета на качество передаваемого ТВ сигнала. Для этого:

На приемной станции

- а) установить на ИКП переключатель ДЛИНА ПРОЛЕТА R=30 км и V=Vmin , рассчитанное для этой длины пролета;
- б) изменять ДЛИНУ ПРОЛЕТА от 30 до 75 км, оценивать качество приема по использованной ранее шкале качества. Результаты оценки записать в табл.12.5 а.

Оценка влияние длины пролета на качество передаваемого TB сигнала при длине пролета $R=30~{\rm km}~u~Vmin=~\partial E$

Таблица 12.5 а

R, км	30	38	48	60	75
качество					
изображения					

в) повторить оценку влияния длины пролета для R=38 км и V=Vmin; R=48 км и V=Vmin. Результаты оценки записать в табл.12.5 б и табл.12.5.в соответственно.

Оценка влияние длины пролета на качество передаваемого TB сигнала при длине пролета R=38 км и $Vmin=\partial B$

Таблица 12.5 б

R, км	30	38	48	60	75
качество	-				
изображения					

Оценка влияние длины пролета на качество передаваемого TB сигнала при длине пролета R=48 км и $Vmin=\partial B$

Таблица 12.5 в

R, км	30	38	48	60	75
качество	-	-			
изображения					

- г) по окончании измерений поставить переключатель ДЛИНА ПРОЛЕТА на 30 км, переключатель ГЛУБИНА ЗАМИРАНИЙ на 0 дБ.
 - **6.** Оценить влияние тепловых шумов в канале звукового сопровождения. Для этого:

На передающей станции

- а) подключить к гнездам ВХОД ЗВУКА на ИКП генератор звуковых частот ГЗ-111;
- б) к параллельным гнездам подключить милливольтметр;
- в) установить частоту генератора ГЗ-111 равной 1,0 кГц и регулируя напряжение на генераторе, установить по показанию милливольтметра напряжение равное 775 мВ.

На приемной станции

- д) установить (проверить) регулировку ГЛУБИНЫ ЗАМИРАНИЙ так, чтобы величина множителя ослабления V=0.

После этого:

- е) На передающей станции выключить питание звукового генератора ГЗ-111;
- ж) **На приемной станции** измерить напряжение шумов на выходе канала звукового сопровождения Uш.зв, мВ;

з) рассчитать отношение сигнал-шум в канале звукового сопровождения по формуле (12.14):

$$q$$
3 e = 201g $\left(\frac{775}{Uw.3e}\right)$ + Kn , дБ, (12.14)

где Kn = 4 дБ – псофометрический коэффициент, учитывающий, что измерение шумов проводилось без псофометрического фильтра.

- и) сравнить рассчитанное значение с допустимым (см. технические данные статива ОТВ);
- к) **На приемной станции** установить ГЛУБИНУ ЗАМИРАНИЙ V = Vmin и повторит пункты ж) . . . 3).

7. Окончание работы.

На обеих станциях:

- а) выключить измерительные приборы (генератор Г4-106 (Г4-102) и милливольтметры);
- б) выключить ИКП тумблером ВКЛ;
- в) поставить тумблер на блоке питания ОТВ в положение ВЫКЛ;
- г) выключить блок питания стойки Б5-47

ПРИЛОЖЕНИЕ 1

Радиорелейная система «Электроника-связь-6-1»

Общие сведения

Радиорелейная система (РРС) «Электроника-связь-6-1» (ЭС-6-1) — типичный представитель радиорелейного оборудования второго поколения, характеризуемого широким использованием полупроводниковых приборов и интегральных схем, высокой степенью унификации и автоматизации, а также сравнительно небольшим энергопотреблением, что позволяет использовать аккумуляторные батареи в качестве резервного источника питания. Оборудование позволяет организовать до четырех широкополосных дуплексных стволов в диапазоне 5670...6170 МГц (средняя длина волны 5,07 см).

Каждый высокочастотный (ВЧ) ствол обеспечивает передачу группового спектра сигналов, в который входят: либо сигнал многоканальной телефонии (1920 каналов ТЧ), сигналы служебной связи, телеуправления и телесигнализации; либо сигнал черно-белого или цветного телевидения с четырьмя каналами звуковых сигналов, передаваемых на поднесущих частотах.

Радиотехническое оборудование питается от сети постоянного тока 24 B ± 10%.

Основные технические данные ЭС-6-1

Мощность передатчика, Рп	3 или 1 Вт;
Коэффициент шума приемника, $n_{\text{ш}}$	4,5 дБ;
Ширина полосы пропускания приемника, Пш	40 МГц;
Система резервирования	поствольная 3+1;
Верхняя частота линейного спектра:	
- при передаче МТС	8524 кГц;
- при передаче ТВ-сигнала	9023 кГц;

Девиация частоты на канал (при передаче МТС)	140 кГц;
Основные типы антенн:	
- РПА-2П-2, коэффициент усиления, g	43 дБ;
- АДЭ-3.5, коэффициент усиления, д	40,5 дБ.

Оконечный телевизионный статив

Статив ОТВ предназначен для работы в телевизионном стволе РРЛ, оборудованной аппаратурой «Электроника-Связь». Статив устанавливается на оконечных и узловых станциях.

Статив обеспечивает:

- образование линейного спектра ТВ сигнала;
- генерирование сигнала промежуточной частоты (ПЧ);
- модуляцию ПЧ сигналом линейного спектра;
- демодуляцию сигнала ПЧ;
- выделение из линейного спектра сигнала изображения и сигналов звукового сопровождения.

Технические данные ОТВ

Размах напряжения полного сигнала изображения на входе и выходе статива1±0,0	5 B
Эффективное значение напряжения звукового сигнала на входе и выходе0,775±0,0	
Номинальное значение частоты сигнала ПЧ на выходе статива	
Эффективное напряжение сигнала ПЧ на выходе статива	
Эффективное напряжение сигнала ПЧ на выходе статива	
Крутизна модуляционной характеристики, приведенная ко входу статива, 8±0,2 МГ	
Входные и выходные сопротивления статива по видеосигналу и ПЧ	OM.
Неравномерность АЧХ тракта изображения статива:	"Г.
- в полосе частот до 5 МГц	дь;
- в полосе частот от 5 до 5,5 МГц	
- в полосе частот от 5,5 МГц до 6 МГц	ДЬ.
Отношение размаха сигнала изображения к визометрическому	г
напряжению шума	дь.
Значения понесущих частот: 7000±10; 7360±10; 7765±10; 8215±10 кГц.	
Неравномерность АЧХ в звуковых каналах:	
40 105 E 10 15 E	_
- в полосе частот 40125 Гц и 1015 кГц не более +0,2 дБ, -0,65	
- в полосе 125 Γ ц10 к Γ ц	
- в полосе 125 Γ ц10 к Γ ц	дБ.
- в полосе 125 Γ ц10 к Γ ц	дБ.
- в полосе 125 Γ ц10 к Γ ц	дБ. дБ.
- в полосе 125 Γ ц 10 к Γ ц не более $\pm 0,2$ Отношение напряжения сигнала к псофометрическому значению шума в звуковых каналах не менее 80 Дифференциальное усиление тракта изображения не более 1	дБ. дБ. %.
- в полосе $125 \ \Gamma$ ц $10 \ \kappa$ Γ ц	дБ. дБ. %. 21°.
- в полосе 125 Гц10 кГц	дБ. %. %. 1°. нс.
- в полосе $125 \ \Gamma$ ц $10 \ \kappa$ Γ ц	дБ. %. %. 1°. нс.
- в полосе 125 Гц10 кГц	дБ. %. %. 1°. нс.
- в полосе 125 Γ ц 10 к Γ ц не более ±0,2 Отношение напряжения сигнала к псофометрическому значению шума в звуковых каналах не менее 80 Дифференциальное усиление тракта изображения не более 1 Дифференциальная фаза не более 1 Время нарастания фронта импульса испытательного сигнала №2 МККР не более 100 Выброс не более ± Амплитудное значение девиации поднесущей частоты, вызываемой звуковым сигналом, 0,775 В 100±10 к	дБ. %. e 1°. нс. 3%.
- в полосе 125 Гц10 кГц не более ±0,2 Отношение напряжения сигнала к псофометрическому значению шума в звуковых каналах не менее 80 Дифференциальное усиление тракта изображения не более 1 Дифференциальная фаза не более Время нарастания фронта импульса испытательного сигнала №2 МККР не более ± Амплитудное значение девиации поднесущей частоты,	дБ. %. e 1°. нс. 3%.
- в полосе 125 Γ ц 10 к Γ ц не более ±0,2 Отношение напряжения сигнала к псофометрическому значению шума в звуковых каналах не менее 80 Дифференциальное усиление тракта изображения не более 1 Дифференциальная фаза не более 1 Время нарастания фронта импульса испытательного сигнала №2 МККР не более 100 Выброс не более ± Амплитудное значение девиации поднесущей частоты, вызываемой звуковым сигналом, 0,775 В 100±10 к	дБ. %. %. 1°. нс. 3%.
- в полосе 125 Гц10 кГц не более ±0,2 Отношение напряжения сигнала к псофометрическому значению шума в звуковых каналах не менее 80 Дифференциальное усиление тракта изображения не более 1 Дифференциальная фаза не более Время нарастания фронта импульса испытательного сигнала №2 МККР не более 100 Выброс не более ± Амплитудное значение девиации поднесущей частоты, вызываемой звуковым сигналом, 0,775 В 100±10 к Эффективное значение девиации ПЧ, вызываемой сигналом	дБ. %. e 1°. нс. 3%. eГц. eГц.
- в полосе 125 Гц. 10 кГц не более ±0,2 Отношение напряжения сигнала к псофометрическому значению шума в звуковых каналах не менее 80 Дифференциальное усиление тракта изображения не более 1 Дифференциальная фаза не более Время нарастания фронта импульса испытательного сигнала №2 МККР не более 100 Выброс не более ± Амплитудное значение девиации поднесущей частоты, вызываемой звуковым сигналом, 0,775 В 100±10 к Эффективное значение девиации ПЧ, вызываемой сигналом поднесущей частоты 320±30 к	дБ. %. e 1°. нс. 3%. eГц. eГц.

- в полосе частот до 100 Гц	не более 0,6 %;
- в полосе частот выше 100 Гц	не более 0,3 %.
Девиация ПЧ, вызываемая пилот-сигналом	100±10 кГп.

Структурная схема статива ОТВ

Статив ОТВ «ЭС-6-1» состоит из двух частей: передающей и приемной. Передающая часть предназначена для образования линейного спектра ТВ сигнала, генерирования сигнала ПЧ и его модуляции линейным спектром. Приемная часть обеспечивает демодуляцию сигнала ПЧ и выделение линейного спектра сигнала изображения и сигналов звукового сопровождения.

Обобщенная структурная схема статива приведена на рис. 12.4.

В передающую часть входят:

- блоки усилителей звука (Ус Зв Пд);
- модуляторы звука (Мд Зв);
- устройство образования линейного спектра ТВ сигнала (ТВ Пд);
- частотный модулятор (ЧМд);
- устройства сигнализации и контроля (СК).

Приемная часть состоит из:

- блоков демодулятора промежуточной частоты (Дм ПЧ);
- устройства разделения линейного спектра ТВ сигнала (ТВ Пм);
- демодуляторов (Дм Зв);
- усилителей звука (Ус Зв Пм);
- устройства СК.

Рис. 12.4. Обобщенная структурная схема статива ОТВ

Принцип работы статива ОТВ

Принцип работы статива ОТВ удобнее разобрать по функциональной схеме. <u>Работа на передачу (см. рис.12.5).</u>

Сигнал изображения поступает на разъем Вх. ТВ панели вводов и далее на вход блока ТВ Пд. Звуковые сигналы с четырех разъемов панели вводов Вх Зв. 1... Вх Зв. 4 поступают на блок Ус.Зв.Пд, где усиливаются в усилителях низкой частоты (Ус.Зв.Пд) и далее поступают на блок Мд Зв. В этом блоке происходит частотная модуляция поднесущих звука, имеющих значения: 7000, 7360, 7765 и 8215 кГц соответственно, поступающих на вторые входы модуляторов (на схеме не показаны) сигналами звукового сопровождения. Затем промодулированные поднесущие отводятся для контроля в блок СК и поступают в блок сложения поднесущих (СП), где происходит их объединение. Далее промодулированные поднесущие подаются в блок ТВ Пд. В этот блок входят: предыскажающий контур ТВ сигнала (ПсК ТВ), фильтр нижних частот (ФНЧ) с верхней частотой пропускания 6,5 МГц и фазокорректирующий контур (ФК). ПсКТВ ослабляет компоненты сигнала изображения на частотах ниже 1,5 МГц, в том числе колебания строчной частоты и ее гармоник, что облегчает требования к передаточной характеристике частотного модулятора ЧМд. ФК обеспечивает коррекцию фазовых искажений, создаваемых ФНЧ. Из блока ТВ Пд линейный спектр (групповой сигнал) поступает на вход ЧМд. Сюда же подается пилот-сигнал, полученный в стабилизированном кварцем генераторе пилот-сигнала (ГПС) с частотой fnc = 9023 кГц.

После предварительного усиления групповой сигнал, состоящий из сигнала изображения, промодулированных поднесущих звука и пилот-сигнала, поступает на вход частотномодулированного генератора (ЧМГ).

ЧМГ представляет собой автогенератор, собранный на транзисторе VT1 по схеме индуктивной трехточки (рис.12.7). Модуляция осуществляется изменением емкости варикапа VD1 со сверхрезким переходом, включенного в колебательную систему автогенератора, которая состоит из элементов L1, L2, L3 и переменной емкости варикапа. Цепочки R1, C1 и R2, C2 уменьшают реакцию входной проводимости транзистора на колебательный контур. Напряжение смещения на VD1 подается с выхода системы ФАПЧ и составляет 7,6...8,0 В. С выхода ЧМГ (ЧМ сигнал со средней частотой 70 МГц) поступает на усилитель промежуточной частоты (см. рис.12.5).

Для формирования полосы пропускания тракта ПЧ используется ФНЧ с верхней частотой 90 МГц и полосовой фильтр с полосой 57...82 МГц. В тракте ПЧ установлен фазовый корректор (ФК), который позволяет корректировать групповое время запаздывания (ГВЗ) в пределах 2...8 нс и изменять неравномерность АЧХ. Напряжение 0,4 В с выхода УПЧ подается на разъем Вых. ПЧ.

Для стабилизации средней частоты $\Pi \Psi = 70~M\Gamma$ ц в ЧМд предусмотрена фазовая автоподстройка частоты (ФАПЧ), в состав которой входят:

- делитель основной частоты 70 МГц (Дел.1);
- делитель опорной частоты, создаваемой кварцевым генератором Γ с f=2187,5 к Γ ц (Дел 2);
- ключевой фазовый детектор ФД;
- фильтр НЧ выходного управляющего напряжения;
- защитные схемы.

Делитель опорного сигнала Дел 2 понижает его частоту в 2^{18} раз, т.е. до 8,345 Гц. Делитель основного сигнала снижает ПЧ в 2^{23} раз. Если средняя частота сигнала ПЧ равна 70 МГц, то на выходе Дел.1 также будет 8,345 Гц. При уходе ПЧ в ту или другую сторону частота на выходе делителя также будет изменяться.

С выходов делителей сигналы поступают в Φ Д. Если частоты этих сигналов одинаковы, то на выходе фазового детектора (Φ Д) будет постоянное напряжение, равное минус 4,7 В. В том случае, когда промежуточная частота отклоняется от номинального значения,

изменится напряжение смещения на варикапе VD1, что приведет к изменению емкости колебательного контура, а, следовательно, и частоты генерируемых колебаний.

На случай выхода из строя хотя бы одного делителя частоты предусмотрена защита ЧМд, которая состоит из двух ключевых схем, управляемых диодами Д1 и Д2, и стабилизированного напряжения -4,7 В. При пропадании сигнала на выходе делителя пропадает и напряжение на выходе диода. В результате ключевая схема срабатывает и на варикап подается напряжение -4,7 В. Работа ЧМГ не нарушается, но стабильность его частоты уже не обеспечивается.

В системе ФАПЧ предусмотрен светодиод, сигнализирующий о том, что напряжение на выходе отличается от -4,7 В на величину $\pm 0,7$ В, т.е. в момент выхода ФАПЧ из «синхронизма».

На блок СК с блоков ТВ Пд, УсЗв Пд, Мд Зв и ЧМд подаются постоянные напряжения, свидетельствующие о наличии сигналов изображения, звука, поднесущих частот, промежуточной частоты и пилот-сигнала. О наличии этих сигналов сигнализируют зеленые светодиодные индикаторы. При пропадании одного из этих сигналов гаснет соответствующий зеленый светодиод, загорается светодиод красного свечения АВАРИЯ и подается сигнал аварии на аппаратуру телесигнализации и телеуправления (через разъем на панели вводов).

Рис.12.5. Функциональная схема передающей части статива ОТВ

Рис. 12.6. Функциональная схема приемной части статива ОТВ

Рис.12.7. Автогенератор с ЧМ на варикапе в колебательном контуре

Работа на прием (см. рис.12.6).

ЧМ сигнал с разъема Вход ПЧ панели вводов поступает на вход блока Дм ПЧ. Пройдя через усилитель промежуточной частоты (УПЧ); ФК, корректирующий сквозную характеристику ГВЗ; полосовой фильтр с его ФК; ограничитель амплитуд ОА и ФНЧ, предназначенный для уменьшения гармоник сигнала ПЧ, возникающих при ограничении сигнала, далее поступает на вход частотного демодулятора ЧДм. Последний выполнен на расстроенных контурах. На выходе ЧДм установлен видеоусилитель (ВУ). С его выхода сигнал подается в блок ТВПм, где происходит разделение поднесущих и сигнала изображения. Блок ТВПм содержит ФК, ФНЧ, восстанавливающий контур (ВсК ТВ) и видеоусилитель.

Выделенные в блоке ТВ Пм поднесущие звука поступают в блок Дм Зв, где усиливаются и с помощью фильтров разделения поднесущих (РП), разделяются и подаются в демодуляторы звука, где осуществляется демодуляция поднесущих, откуда в блок УЗвПм поступают сигналы звукового сопровождения в исходной полосе частот. С выхода этого блока звуковые сигналы подаются на разъемы Вых.ЗВ1...Вых.ЗВ4.

В приемной части статива предусмотрена подача контрольных напряжений из блоков Дм ПЧ, ТВ Пм, Дм Зв, УЗв Пм на блок СК, который функционирует аналогично ранее описанному блоку СК передающей части.

Конструктивное оформление статива ОТВ

Блоки и панели ОТВ расположены в вертикальном стативе с размерами: высота – 2000 мм, ширина – 130 мм и глубина – 225 мм.

На панели вводов, расположенной вверху статива, находятся гнезда: ВХОД ВИДЕО, ВХОД ПЧ, ВЫХОД ПЧ,- 24 В, КОНТР.ВЫХ.ТВ, ВХ.ЗВ.4, ВХ.ЗВ.3, ВХ.ЗВ.2, ВХ.ЗВ.1, АВАРИЯ, ВЫХ.ТВ, ВЫХ.ЗВ.4, ВЫХ.ЗВ.3, ВЫХ.ЗВ.2, ВЫХ.ЗВ.1, с помощью которых оборудование подключается к приемо-передатчику, источникам и потребителям сигнала изображения и звука.

На лицевой части статива расположены следующие блоки и платы (сверху вниз):

- панель включения, содержащая тумблер и предохранитель;
- блок сигнализации и контроля передающей части СК, на котором расположены микроамперметр с кнопочным переключателем на 3 положения (ПЧ, ТВ и ЗВ), 6 зеленых светодиодов (ПЧ, ПС, 1-2-3-4 поднесущие частоты) и один красный АВАРИЯ.;
- блок усилителей звука передающей части УсЗв Пд, состоящий из двух блоков УНЧ Пд (усилители НЧ передающие) и блока ИЗв Пд (индикатор звука передающий). На панели ИЗв Пд расположены кнопочный переключатель на четыре положения для контроля звука в соответствующих каналах и два гнезда для подключения внешнего измерительного прибора;
- -блок модуляторов звука Мд ЗВ, в который входят четыре блока модуляторов поднесущих частот Мд и блок сложения поднесущих СП. На последнем имеются коаксиальный разъем ВЫХ.ПОДН. и два гнезда для подключения внешнего прибора;
- блок телевизионный передающий ТВ Пд, состоящий из блоков ПсКТВ (предыскажающий контур телевизионный), ФНЧ (фильтр нижних частот) и ФК (фазовый корректор). Блок ПсКТВ содержит также два гнезда для подключения внешнего прибора. На панели ФК имеются коаксиальный разъем ГС (групповой сигнал) и два гнезда для подключения внешнего прибора;
- блок частотного модулятора ЧМд, в котором расположены пять коаксиальных разъемов (Вх.ФАПЧ, Вх. ГС, Вх. ПС, Вых.ПЧ2, Вых. ПЧ1) и светодиод ФАПЧ;
- блок сигнализации и контроля приемной части СК, аналогичный блоку СК передающей части;
- блок демодуляторов звука Дм.Зв, состоящий из четырех демодуляторов поднесущих Дм, приемного блока усилителей поднесущих частот УППм и блока разделения поднесущих РП. В блоке УППм установлены коаксиальный разъем на два подключения внешнего прибора;
- блок телевизионный приемный ТВ Пм, в который входят блоки ФНЧ, ФК, ВсКТВ (восстанавливающий контур телевизионный) и ВУ (блок видеоусилителя). Последний содержит два коаксиальных разъема Видео-2 и Видео-1, а также две пары гнезд для подключения внешнего прибора;
- блок демодулятора промежуточной частоты Дм ПЧ, на передней стороне которого установлены четыре коаксиальных разъема (Вход Пч, Вых. ПЧ, Вых.ГС и Вых. АОгр).

Описание измерительно-коммутационной панели

Для проведения измерений и коммутации каналов и тракта ПЧ в лабораторной работе предусмотрена измерительно-коммутационная панель (ИПК), являющаяся составной частью лабораторного стенда. Гнезда ИПК соединены с соответствующими разъемами статива ОТВ, как показано на рис.12.8.

Панель позволяет осуществлять следующие виды соединений:

- ко входу канала изображения (ВХОД ТВ) может быть подключен генератор стандартных сигналов или источник телевизионного сигнала;
- к выходу канала изображения (ВЫХОД ТВ) может быть подключен измерительный милливольтметр или ТВ приемник (монитор);
- ко входу любого канала звука (BX.3B1...BX.3B.4) может быть подключен генератор звуковых сигналов или звуковое сопровождение ТВ программы;
- к выходу звукового канала (ВЫХ.3В.1...ВЫХ.3В4) может быть подключен измерительный прибор или контрольный громкоговоритель (ТВ монитор).

С помощью гнезд ВЫХОД ПЧ и ВХОД ПЧ можно осуществлять работу в режиме «на себя» или осуществлять коммутацию с приемо-передатчиком, используя разъемы ВХОД Пд и ВЫХОД Пм.

Для подключения милливольтметра на ИКП предусмотрены контрольные гнезда, соединенные с соответствующими входными и выходными разъемами.

Так как в процессе выполнения лабораторной работы проводится измерение визометрического напряжения шума, то с помощью тумблера П2 «РАБОТА – ВИЗОМ.ФИЛЬТР» гнездо ВЫХ.ТВ может быть подключено либо напрямую к блоку ТВПм статива ОТВ, либо через визометрический фильтр, смонтированный на ИКП.

Рис.12.8. Измерительно-коммутационная панель