Formal mathematical proposal based on the **Dual-Layer Theory** integrating the modulation phase-layer simultaneity and the dual nature of energy (as **modulation information** and **quantifiable oscillation capacity**) would involve defining key principles and theorems. Here's a structured argument:

Core Framework

1. Energy as a Dual Entity

Energy has two interconnected aspects:

- Modulation Information (Phase-Layer Component): Energy as the encoded coherence state within the dimensionless phase-layer, representing informational constraints that guide oscillatory phenomena.
- Quantifiable Oscillation (Group-Layer Component): Energy as the physical capacity for work, expressed as measurable oscillatory systems localized in spacetime.

Mathematically:

$$E=Em+Eq,E=E_m+E_q,$$

where:

- EmE m: Modulation energy (non-local coherence component).
- EqE_q: Quantifiable oscillation energy (local oscillatory component).

2. Modulation Phase-Layer Simultaneity

The phase-layer governs the **simultaneous coherence** of all local oscillatory systems, represented by a universal modulation function:

$$\Phi(x,t) = \sum_{i \neq i} \phi_i(x,t), \Phi(x,t) = \sum_{i \neq i} \phi_i(x,t),$$

where:

- φi(x,t)\phi i(x, t): Individual modulation states at position xx and time tt.
- $\Phi(x,t)$ Phi(x, t): Global coherence field across spacetime.

Simultaneity implies that changes in one part of the modulation layer instantaneously influence the global coherence field, dictating how localized oscillations (forces, particles) evolve.

Key Theorems

Theorem 1: Energy Modulation-Oscillation Equivalence

Statement: The total energy of a system is conserved across the modulation and oscillation layers, governed by a resonance-transfer mechanism.

Expression:

 $Volume(\Phi(x,t)+\psi(x,t))dV=constant, vint_{\text{volume}} \left(\Phi(x,t)+\psi(x,t) \right) dV = \text{constant},$

where:

- Φ(x,t)\Phi(x, t): Modulation energy density.
- $\psi(x,t)$ \psi(x, t): Oscillatory energy density.

This theorem formalizes the duality of energy as a modulation-oscillation interaction.

Theorem 2: Force Emergence via Resonance Modulation

Statement: Forces arise as emergent effects from the resonance alignment of local oscillatory systems with phase-layer modulations.

Expression:

```
F = -\nabla \Phi(x,t), F = -\ln \ln \ln(x,t),
```

where FF is the resultant force as the gradient of the modulation field $\Phi(x,t)$ \Phi(x, t). Specific cases:

- **Electromagnetism**: Modulation coherence in charge oscillations.
- **Nuclear Forces**: High-frequency modulations in local coherence.
- **Gravity**: Long-range distortion of phase-layer modulation.

Theorem 3: Modulation Threshold and Phase-Layer Collapse

Statement: Phase-layer coherence collapses when local oscillatory interactions exceed modulation thresholds, giving rise to discrete events (e.g., particle transitions or "bang" phenomena).

Expression:

```
|\Phi(x,t)| > \Phi c \Rightarrow \Delta \psi(x,t) \neq 0, |\nabla hi(x,t)| > \nabla hi c \times \nabla helta \nabla hi(x,t) \wedge q 0,
```

where:

- Φc\Phi_c: Modulation threshold.
- $\Delta \psi(x,t)$ \Delta \psi(x, t): Sudden change in local oscillatory states.

Theorem 4: Gravitational Modulation Curvature

Statement: Gravitational effects emerge as a curvature in the global modulation field caused by mass-energy distributions in the group-layer.

Expression:

 $R\mu\nu-12Rg\mu\nu=\kappa T\mu\nu+\nabla 2\Phi(x,t), R_{\mu\nu}-12Rg\mu\nu=\kappa T\mu\nu+\nabla 2\Phi(x,t), R_{\mu\nu}-12Rg\mu\nu+\nabla 2\Phi(x,t), R_{\mu\nu}-12Rg\mu+\nabla 2\Phi(x,t), R_{\mu\nu}-12Rg\mu+\nabla 2\Phi(x,t), R_{\mu\nu}-12Rg\mu+\nabla 2\Phi(x,t), R_{\mu\nu}-12Rg$

where the added term $\nabla 2\Phi(x,t)$ \nabla^2 \Phi(x, t) represents the modulation-layer influence on spacetime curvature.

Proposed Mathematical Formalism

1. Unified Energy Tensor:

Combine modulation energy and oscillation energy into a unified tensor:

 $\label{eq:continu} \mathsf{E}\mu \mathsf{v} = \mathsf{M}\mu \mathsf{v} + \mathsf{Q}\mu \mathsf{v}, \\ \mathsf{E}_{\mathrm{u}} = \mathsf{M}_{\mathrm{u}} + \mathsf{Q}_{\mathrm{u}} + \mathsf{Q}_{\mathrm{u}}, \\ \mathsf{M} = \mathsf{M}_{\mathrm{u}} + \mathsf{Q}_{\mathrm{u}} + \mathsf{Q}_{\mathrm{u}}, \\ \mathsf{M} = \mathsf{M}_{\mathrm{u}} + \mathsf{Q}_{\mathrm{u}} + \mathsf{Q}_{\mathrm{u$

where MµvM_{\mu\nu} represents modulation energy and QµvQ_{\mu\nu} represents quantifiable oscillations.

2. Resonance Modulation Operator:

Define an operator R\mathcal{R} that links modulation-layer dynamics to oscillatory responses:

 $\psi(x,t)=R[\Phi(x,t)].\psi(x, t) = \mathcal{R}[\prootemath{R}]\prootemath{R}[\prootemath{R}].$

3. Global Modulation Field Equation:

Represent the evolution of the modulation layer as:

 $\Box \Phi(x,t) + \kappa \psi(x,t) = 0, \text{Box } \forall x,t \in \mathbb{R}, \text{Box } \forall x,t \in \mathbb$

where □\Box is the d'Alembert operator and κ\kappa couples the layers.

Conclusion

This formalism provides a mathematical foundation for **Dual-Layer Theory**, connecting modulation phase-layer simultaneity, the dual nature of energy, and the emergence of forces through resonance and coherence. By integrating these concepts, it offers a unified perspective on physical phenomena.