Math 635 Lecture 17

Thomas Cohn

3/1/21

Recall the setup from last time:

Defn: A vector field along f is a lift \tilde{f} of f to TM. I.e., \tilde{f} is defined such that the following diagram commutes:

$$D \xrightarrow{\tilde{f}} TM \\ \downarrow^{\pi} \\ M$$

Note that such a lift isn't unique!

Ex: One such lift is $\tilde{f} = \begin{cases} f_t \\ f_s \end{cases}$. For such a \tilde{f} , we can define $\frac{D}{dt}\tilde{f}$ and $\frac{D}{ds}\tilde{f}$ by restricting \tilde{f} to t and s curves, respectively.

Prop: $\frac{D}{dt}f_s = \frac{D}{ds}f_t$ at each (t,s).

Proof: We will compute in local coordinates (x^1, \ldots, x^n) . Let $X_i = \frac{\partial}{\partial x^i}$, $\forall i$. We write $f(t, s) = (x^1(t, s), \ldots, x^n(t, s))$, where $x^i(t, s) : \text{dom}(f) \to \mathbb{R}$. Note that we can write $f_s = \frac{\partial x^i}{\partial s} X_i(f(t, s))$, and likewise for f_t . We now compute

$$\frac{D}{dt}f_s = \frac{\partial^2 x^i}{\partial t \partial s} X_i + \frac{\partial x^i}{\partial s} \frac{D}{dt} X_i$$

We know $f_t = \frac{\partial x^j}{\partial t} X_j$, so because $\frac{D}{dt}$ is the covariant derivative with respect to f_t ,

$$\frac{D}{dt}X_i = \frac{\partial x^j}{\partial t}\nabla_{X_j}X_i \qquad \frac{D}{dt}f_s = \frac{\partial^2 x^i}{\partial t\partial s}X_i + \frac{\partial x^i}{\partial s}\frac{\partial x^j}{\partial t}\nabla_{X_j}X_i$$

Computing similarly, we also get

$$\frac{D}{ds}f_t = \frac{\partial^2 x^i}{\partial s \partial t} X_i + \frac{\partial x^i}{\partial t} \frac{\partial x^j}{\partial s} \nabla_{X_j} X_i$$

By Clairaut's theorem, $\frac{\partial^2 x^i}{\partial t \partial s} = \frac{\partial^2 x^i}{\partial s \partial t}$, so the first term of $\frac{D}{dt} f_s$ and $\frac{D}{ds} f_t$ are equal. Furthermore, because the Levi-Civita connection is torsion-free, $[X_i, X_j] = 0$, so $\nabla_{X_j} X_i = \nabla_{X_i} X_j$. This means we can swap the coefficients in the second term to show equality. We conclude that $\frac{D}{dt} f_s = \frac{D}{ds} f_t$. \square

Observe: We can ask if $\frac{D}{ds}$ and $\frac{D}{dt}$ commute. We'll see on Friday that the answer is no, because curvature comes into play.

We're now ready to prove Gauss' lemma...

Lemma: (Gauss' Lemma) In a normal neighborhood of p, radial geodesics are orthogonal to geodesic spheres.

Proof: Let $p \in M$ and $\varepsilon > 0$ such that $\exp_p : B_{\varepsilon}(0) \xrightarrow{\sim} \exp_p(B_{\varepsilon}(0))$ (with $B_{\varepsilon}(0) \subseteq T_pM$ and $\exp_p(B_{\varepsilon}(0)) \subseteq M$) is a diffeomorphism onto its image. Take $r \in (0, \varepsilon)$, so $S_r \subseteq T_pM$ is the sphere of radius r. Then choose any curve $s \mapsto c(s) \in S_r$, for an arbitrarily small domain $s \in (-\delta, \delta)$. Define $f(t, s) = \exp_p(tc(s))$. Illustration:

The key calculation we'll perform is $\frac{d}{dt} \langle f_t, f_s \rangle$; we want to show it's equal to 0. Well,

$$\frac{d}{dt} \langle f_t, f_s \rangle = \left\langle \frac{D}{dt} f_t, f_s \right\rangle + \left\langle f_t, \frac{D}{dt} f_s \right\rangle
\stackrel{(1)}{=} \langle 0, f_s \rangle + \left\langle f_t, \frac{D}{dt} f_s \right\rangle
= \left\langle f_t, \frac{D}{dt} f_s \right\rangle
\stackrel{(2)}{=} \left\langle f_t, \frac{D}{ds} f_t \right\rangle
= \frac{1}{2} \left\langle \frac{D}{ds} f_t, f_t \right\rangle + \frac{1}{2} \left\langle f_t, \frac{D}{ds} f_t \right\rangle
= \frac{1}{2} \frac{d}{ds} \langle f_t, f_t \rangle
\stackrel{(3)}{=} \frac{1}{2} \frac{d}{ds} ||c(s)^2||
= \frac{1}{2} \frac{d}{ds} r^2$$

with (1) because $t \mapsto \exp_p(tv) = G(1, p, tv) = G(t, p, v)$ is a geodesic, (2) because of the proposition from earlier, and (3) because $\langle f_t, f_t \rangle$ is constant with repsect to t, so we can choose to evaluate it at t = 0. Now, we can evaluate $\langle f_t, f_s \rangle|_{t=0} = \langle c(s), 0 \rangle = 0$, so we get that, for all $t, s, \langle f_t, f_s \rangle = 0$. \square

Why are we done? Well, we can find $f_t(t)$ by f(t, s = 0) WOLOG, so f(t, 0) is the velocity of the radial geodesic $t \mapsto \exp_p(tv(0))$, and f(t, 0) is an arbitrary tangent vector to the geodesic sphere $\exp_p(S_r)$. So we conclude that the tangent space of a point q on the geodesic sphere is perpendicular to the geodesic $\exp_p(tv)$, where $\exp_p(v) = q$.

Cor: If $U = \exp_p(B_{\varepsilon}(0))$ is a normal neighborhood of p, and $q \in U$, then the shortest path from p to q is $t \mapsto \exp_p(tv)$ $(0 \le t \le 1)$, where $\exp_p(v) = q$. (By path, we mean a continuous, piecewise smooth function, although we only need it to be C^1 for this proof.)

Proof: Assume $c:[0,1] \to U$, with c(0)=p and c(1)=q, is a smooth path, and its image is contained in U. Write $(\exp_p)^{-1}(c(t))=r(t)w(t)$, where $r(t)\geq 0$ and $||w(t)||\equiv 1$. Consider the family $f(r,t)=\exp_p(rw(t))$, so that c(t)=f(r(t),t). Then $\frac{dc}{dt}=\frac{dr}{dt}f_r+f_t$, and f_r and f_t are perpendicular for all t, so we can use the Pythagorean theorem to find

 $\left| \left| \frac{dc}{dt} \right| \right|^2 = \left| \left| \frac{dr}{dt} f_r \right| \right|^2 + \left| \left| f_t \right| \right|^2 = \left| \frac{dr}{dt} \right|^2 \left| \left| f_r \right| \right|^2 + \left| \left| f_t \right| \right|^2 = \left| \frac{dr}{dt} \right|^2 + \left| \left| f_t \right| \right|^2 \ge \left| \frac{dr}{dt} \right|^2$

Using this inequality, we can bound the length of c:

$$\ell(c) = \int_0^1 \left| \left| \frac{dc}{dt} \right| \right| dt \ge \int_0^1 \left| \frac{dr}{dt} \right| dt \ge \int_0^1 \frac{dr}{dt} dt = r(1) - r(0) = r(1)$$

But r(t) is the length of the radial geodesic $r \mapsto \exp_p(rw(1))$, joining p to q. (Note that equality holds iff $||f_t||^2 \equiv 0$, which is true iff c is the radial geodesic.)

Now, we must consider the case where the image of c is not contained in U. Well, there must be some $t_0 \in (0,1)$ s.t. $c(t_0)$ is on the geodesic sphere passing through q. We know the length of $c:[0,t_0]$ is no smaller than the length of a radial geodesic directly to q, so the inequality still holds. See the illustration below:

Cor: $d(p,q) = \inf(\ell(c))$, over the set of all c joining p and q, is actually a distance function.

We showed all the other parts earlier – the only thing left to check is that $d(p,q) = 0 \Rightarrow p = q$. We'll prove this by contraposition next time, but the idea is to assume that p and q are distinct, and then construct a normal neighborhood of p that doesn't contain q. Then we know that d(p,q) must be larger than the radius of the geodesic sphere, which is nonzero.