### 

Chapter 2: MULTIPLE INTEGRALS

#### CALCULUS 2

Faculty of Fundamental Science 1

Hanoi - 2022

1 2.1 Integral depends on a parameter

2 2.2 Double integrals

3 2.3. Triple integrals

#### Definition 2.1

Let  $f:[a,b]\times[c,d]\to\mathbb{R}$ , if for each fixed  $y\in[c,d]$  the function f(x,y) is integral over [a,b] on the x variable, we define the following function  $F:[a,b]\to\mathbb{R}$  as

$$F(y) = \int_{a}^{b} f(x, y) dx$$

is called an integral depending on a parameter. The function F(y) has the following properties:

### Theorem 2.1 (Continuity)

If the function f(x, y) is continuous on  $[a, b] \times [c, d]$  then F(y) is continuous on [c, d].

### Note 2.1

If f(x,y) is continuous on  $[a,b] \times [c,d]$ , and  $\alpha(y),\beta(y)$  are continuous on [c,d] with  $a \leq \alpha(y),\beta(y) \leq b, \ \forall y \in [c,d]$  then  $F(y) = \int\limits_{\alpha(y)}^{\beta(y)} f(x,y) dx$  is continuous on [c,d].

### Example 2.1

Let the function f(x) be continuous on [0,1]. Prove that

$$F(y) = \int_{0}^{1} \frac{y^{2} f(x)}{x^{2} + y^{2}} dx$$

is continuous on  $(0, +\infty)$ .

## Theorem 2.2 (Differentability)

If f(x,y) and  $\frac{\partial f}{\partial y}(x,y)$  are continuous on  $[a,b] \times [c,d]$ , then F(y)

differentiable on [c,d] and  $F'(y) = \int_{a}^{b} \frac{\partial f}{\partial y}(x,y)dx$ .

### Theorem 2.3 (Leibniz's Theorem)

Let f(x,y) and  $\frac{\partial f}{\partial y}(x,y)$  be continuous functions on  $[a,b]\times[c,d]$ , and  $\alpha(y),\beta(y)$  are differentiable functions on [c,d] with image on [a,b], that is,  $\alpha,\beta:[a,b]\to[c,d],\ \forall x\in[\alpha(y),\beta(y)]\subset[c,d]$ . We define  $F(y)=\int_{-\beta}^{\beta(y)}f(x,y)dx$ , then F(y) is differentiable on [c,d] and

$$F'(y) = f(\beta(y), y) \cdot \beta'(y) - f(\alpha(y), y) \cdot \alpha'(y) + \int_a^b \frac{\partial f}{\partial y}(x, y) dx.$$

### Example 2.2

Calculate the derivative of the following function

$$F(y) = \int_{0}^{1} \arctan \frac{x}{y} dx, \ y > 0.$$

### Theorem 2.4 (Integral)

Let f(x, y) be integrable over  $[a, b] \times [c, d]$ , then F(y) is integrable on [c, d] and

$$\int_{c}^{d} F(y)dy = \int_{c}^{d} \left( \int_{a}^{b} f(x,y)dx \right) dy = \int_{a}^{b} \left( \int_{c}^{d} f(x,y)dy \right) dx.$$

## Example 2.3

Calculating integrals

$$I = \int_{0}^{1} \frac{x^{b} - x^{a}}{\ln x} dx, \ b > a > 0.$$

#### Definition 2.2

1. Let  $f: D:=[a,+\infty)\times [c,d]\to \mathbb{R}$ , if for each fixed  $y\in [c,d]$  the function f(x,y) is integrable over  $[a,+\infty)$  on the x variable, we define

$$F(y) = \int_{a}^{+\infty} f(x, y) dx$$

is called an improper integral of depending on a parameter of y.

- 2. The function F(y) is called uniformly converge for each  $y \in [c, d]$ , if  $\forall \varepsilon > 0, \exists n_0 = n_0(\varepsilon, y) > 0, \ \forall b \ge n_0 \Rightarrow \left| \int_b^{+\infty} f(x, y) dx \right| < \varepsilon$ .
- 3. The function F(y) is called uniformly converge on the interval [c,d], if  $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}^*, \ \forall b \geq n_0 \Rightarrow \left| \int_{a}^{+\infty} f(x,y) dx \right| < \varepsilon, \ \forall y \in [c,d].$

## Theorem 2.5 (Weierstrass' theorem)

If the function  $\int_{a}^{+\infty} h(x)dx$  converges and  $|f(x,y)| \leq h(x), \ \forall (x,y) \in D$  then the function F(y) is uniformly converge on [c,d].

### Example 2.4

Prove that

$$\int_{1}^{+\infty} \frac{\cos(x+2y)}{x^2+y^2} dx$$

is continuous on  $\mathbb{R}$ .

#### Theorem 2.6

If the function f(x,y) is continuous on  $[a,+\infty)\times[c,d]$  and the function F(y) is uniformly convergent on [c,d] then then F(y) is continuous on [c,d].

## Example 2.5

Prove that

$$\int_{1}^{+\infty} \frac{x}{2+x^y} dx$$

is continuous on  $(2, +\infty)$ .

### Theorem 2.7

If the function f(x,y) is continuous on  $[a,+\infty)\times[c,d]$  and the function F(y) is uniformly convergent on [c,d] then F(y) is differentiable on [c,d] and

$$\int_{c}^{d} F(y)dy = \int_{c}^{d} \left( \int_{a}^{+\infty} f(x,y)dx \right) dy = \int_{a}^{+\infty} \left( \int_{c}^{d} f(x,y)dy \right) dx.$$

### Example 2.6

Given b > a > 0, calculate the following integral:

$$I = \int_{0}^{+\infty} \frac{e^{-ax} - e^{-bx}}{x} dx.$$

#### Theorem 2.8

Let f(x,y) be define on the D satisfying the following assumptions:

- 1) the function f(x,y) is continuous in the variable x on  $[a,+\infty)$  for each  $y\in [c,d],$
- 2) a function  $f'_y(x,y)$  is continuous in domain D,
- 3) the funtion F(y) converges for each  $y \in [c, d]$ ,
- 4) a integral  $\int_{a}^{\infty} f'_{x}(x,y)dx$  converges uniformly on the [c,d]

Therefor 
$$F'(y) = \int_{a}^{+\infty} f'_{x}(x, y) dx$$
.

### Example 2.6

Find the derivative of the function

$$F(y) = \int_{0}^{+\infty} \frac{1 - \cos xy}{xe^{2x}} dx, y \in (0, +\infty), \text{ and find the function } F(y).$$

## 2.2.1 Definition of double integrals

### Problem

Calculate the volume of the bounded domain V is given by:

- + (Oxy) is a plane.
- + The axis Oz and the standard curve L is the boundary of the finite closed domain  $D \subset (Oxy)$ .
- + The curved surface is the graph of a function of two variables  $z = f(x, y), (x, y) \in D.$



# 2.2.1 Definition of double integrals

### Definition

Let the function z = f(x, y) define on a closed domain  $D \subset \mathbb{R}^2$ .

- + Divide D into n small regions by a grid of curves, name and area the domains as  $\Delta S_i (i = 1, ..., n)$  and denoted  $d_i$  is the diameter of the second piece i.
- + Choose an arbitrary point  $M_i(x_j, y_j) \in \Delta S_i$ . Then  $I_n = \sum_{i=1}^n f(x_i, y_i) \Delta S_i$  is called the sum of the integrals of f(x, y) on the domain D D corresponds to the partition and how to choose the points  $M_1, M_2, \dots M_n$  as above when  $n \to \infty$  so that  $\max d_i \to 0$  but  $I_n$  does not depend on the partition  $\Delta S_i$  and how to choose  $M_i(x_i, y_j) \in \Delta S_i$  then number I is called the double integrals of f(x, y) on the domain D and the symbol is

$$\iint_D f(x,y)dS \quad \text{So } \iint_D f(x,y)dS = I = \lim_{\max d_i \to 0} \sum_{i=1}^n f(x_i, y_i) \Delta S_i$$

# 2.2.1 Definition of double integrals

#### Note

1) Since the double integral does not depend on the division of the domain D should be able to divide D by a grid of lines parallel to the coordinate axes Ox, Oy. Then  $dS = dx \cdot dy$ . Therefore, the double integral is denoted by

$$I = \iint_D f(x, y) dx dy$$

2) Like definite integrals, the symbol of a variable that is double integrated does not change the double integral, that is,

$$\iint_D f(x,y)dxdy = \iint_D f(u,v)dudv = I.$$

## 2.2.2 Integral conditions of double integrals

- If the function f(x, y) is integrable over the domain D then f(x, y) is bounded on the domain D (necessary condition of integrable function).
- If the function f(x,y) is continuous on the D, more general: If the function f(x,y) is only a discontinuity of type 1 on domain D, then it is integrable on the domain D.

# 2.2.3 Properties of double integrals

Let f(x, y), g(x, y) be integrable on D. Then, we have

- 1)  $\iint_D [f(x,y) \pm g(x,y)] dxdy = \iint_D f(x,y) dxdy \pm \iint_D g(x,y) dxdy$ .
- 2)  $\iint_D k \cdot f(x,y) dx dy = k \iint_D f(x,y) dx dy, \ \forall k.$
- 3) If  $D = D_1 \cup D_2$  and  $D_1 \cap D_2 = \emptyset$  then

$$\iint_D f(x,y)dxdy = \iint_{D_1} f(x,y)dxdy + \iint_{D_2} f(x,y)dxdy$$

# 2.2.3 Properties of double integrals

4) If  $f(x,y) \leq g(x,y), \forall (x,y) \in D$  then

$$\iint_D f(x,y) dx dy \leq \iint_D g(x,y) dx dy$$

5) , If f(x,y) is integral on D then |f(x,y)| is also integrable on D and

$$\left| \iint_D f(x,y) dx dy \right| \le \iint_D |f(x,y)| dx dy$$

6) If f(x,y) is integral on D and satisfies  $m \le f(x,y) \le M, \forall (x,y) \in D$  then

$$mS \le \iint_D f(x,y) dx dy \le MS.$$

where S is the area of the domain D.

# 2.2.4 Double integrals over rectangles

### Theorem 2.2.1 (Fubini's Theorem)

Let f(x, y) be continuous on  $D = [a, b] \times [c, d]$  (the domain D is a rectangular domain). We have

$$\iint\limits_D f(x,y)dxdy = \int\limits_a^b dx \bigg( \int\limits_c^d f(x,y)dy \bigg) = \int\limits_c^d dy \bigg( \int\limits_a^b f(x,y)dx \bigg).$$

### Example 2.2.1

Calculating integrals  $I = \iint_D (2x+y) dx dy$ , where  $D = [1,2] \times [0,2]$ .

### Example 2.2.2

Calculating integrals  $I = \iint_D xy^2 dxdy$ , where  $D = [0, 2] \times [0, 3]$ .

### Type I regions

A plane region D is said to be of type I if it lies between the graphs of two continuous functions of x, that is

$$D = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, g_1(x) \le y \le g_2(x) \}$$
. If  $f(x, y)$  is continuous on a type I region  $D$  then

$$I = \iint\limits_D f(x,y) dx dy = \int\limits_a^b dx \left( \int\limits_{g_1(x)}^{g_2(x)} f(x,y) dy \right).$$



## Example 2.2.3

Evaluate  $I = \iint\limits_D (x^2 + 2y) dx dy$ , where D is a region bounded by the parabolas  $y = 2x^2$  and  $y = 1 + x^2$ .

## Solution



### Type II regions

A plane region D is said to be of type II if it lies between the graphs of two continuous functions of y, that is

$$D = \{(x,y) \in \mathbb{R}^2 | c \le y \le d, \ h_1(y) \le x \le h_2(y) \}$$
. If  $f(x,y)$  is continuous on a type II region  $D$  then

continuous on a type II region D then

$$I = \iint\limits_D f(x,y) dx dy = \int\limits_c^d dx \left( \int\limits_{h_1(y)}^{h_2(y)} f(x,y) dx \right).$$



## Example 2.2.4

Evaluate  $I = \iint_D xy dx dy$ , where D is a region bounded by the parabolas

$$y = x - 1$$
 and  $y^2 = 2x + 6$ .

# Solution



### Example 2.2.5

Change the order of integration in double integrals

$$a)I = \int_{0}^{2} dx \int_{x}^{2x} f(x, y) dy.$$

.

$$b)J = \int_{-2}^{6} dy \int_{-\frac{y^2}{2} - 1}^{2-y} f(x, y) dx.$$

$$c)K = \int_{0}^{1} dx \int_{x}^{\sqrt{2-x^2}} f(x,y)dy.$$

# 2.2.5 Change of variables in double integrals

Let the function f(x,y) be continuous on the domain  $D \subset (Oxy)$  and assume the transformation  $(x,y) \to (u,v)$ :  $\left\{ \begin{array}{l} x = x(u,v) \\ y = y(u,v) \end{array} \right.$  satisfying the condition

- The above transformation is a bijective from  $\Delta$  to the domain D or  $(x,y) \in D \Leftrightarrow (u,v) \in \Delta$ .
- The x(u, v), y(u, v) are the continuous partial derivatives on the domain  $\Delta \subset (O'uv)$ .
- The Jacobi determinant is  $\frac{D(x,y)}{D(u,v)} \neq 0$  on the domain  $\Delta$  (or just zero at some isolated point) then

$$I = \iint_D f(x, y) dx dy = \iint_{\Delta} f[x(u, v), y(u, v)] \cdot \left| \frac{D(x, y)}{D(u, v)} \right| du dv.$$

# 2.2.5 Change of variables in double integrals

## Example 2.2.6

Calculating integrals  $I = \iint_D (x+y) dx dy$ , where D is y = -x, y = -x + 3, y = 2x - 1, y = 2x + 1.

### Solution



# 2.2.5 Change of variables in double integrals

### Example 2.2.7

Calculating integrals  $I = \iint_{2} x^{3} dx dy$ , where D is

$$y = \frac{1}{x}, y = \frac{2}{x}, y = x^2, y = \frac{x^2}{2}.$$

# 2.2.6 Double integrals in polar coordinates

### a. polar coordinate system

A polar coordinates are set of real numbers  $(r, \varphi)$  so that  $r = |\overrightarrow{OM}|, \varphi = (Ox, \overrightarrow{OM})$ 



# 2.2.6 Double integrals in polar coordinates

### b. calculate the double integrals

Set 
$$\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases} \Leftrightarrow \begin{cases} r = \sqrt{x^2 + y^2} \\ \tan \varphi = \frac{y}{x} \end{cases} \Rightarrow D \to \Delta = \begin{cases} (r, \varphi) \mid \begin{cases} 0 \le \varphi < 2\pi \\ 0 \le r < +\infty \end{cases} \end{cases}$$
$$J = \frac{D(x, y)}{D(r, \varphi)} = \begin{vmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{vmatrix} = r$$

Then the double integrals in polar coordinates has the form

$$I = \iint_D f(x, y) dx dy = \iint_{\Delta} f(r \cos \varphi, r \sin \varphi) r dr d\varphi.$$

# 2.2.6 Double integrals in polar coordinates

### Example 2.2.8

Calculate  $I = \iint_D \sqrt{x^2 + y^2} dx dy$ , where, the domain D is defined by

$$D = \{(x, y) : x^2 + y^2 \le 2Ry, x^2 + y^2 \ge 2Rx\}.$$

### Solution



### 1. Finding area of a plane regions

If f(x,y) = 1,  $\forall (x,y) \in D$  then the measure of the area of the domain D is calculated according to the formula  $S_D = \iint_D dx dy$ .

### Example 2.2.9

Calculate the area of the domain D given by

$$D = \{(x,y) : (x-1)^2 + y^2 = 1, (x-2)^2 + y^2 = 4, y = x, y = 0\}.$$



### 2. Computing volumes

If  $f(x,y) \ge 0$ ,  $\forall (x,y) \in D$  then the volume of the curved cylinder bounded by the function graph is calculated by the formula

$$V = \iint_D f(x, y) dx dy.$$

### Example 2.2.10

Calculate the volume of the figure V given by the following faces

$$z = x^2 + y^2$$
,  $y = x^2$ ,  $y = 1$ ,  $z = 0$ .

#### 3. Surface area

For surface  $(S): z = f(x,y), (x,y) \in D$  has partial derivatives  $f'_x, f'_y$  exist and are continuous on domain D. Then the surface area of S is defined as

$$A(S) = \iint_{D} \sqrt{1 + f_{x}^{\prime 2} + f_{y}^{\prime 2}} dx dy.$$

### Example 2.2.11

Find the area of the part of the paraboloid  $z = x^2 + y^2$  that lies under the plane z = 9.



### 4. Density mass

Suppose the lamina occupies a region D of the xy-plane and its density (in units of mass per unit area) at a point (x, y) in D is given by  $\rho(x,y)$ , where  $\rho$  is a continuous function on D. The density mass of the lamina is

$$m = \iint_{D} \rho(x, y) dx dy.$$

If the plate is homogenous, that is  $\rho(x,y) = \text{const}, \forall (x,y) \in D$ , choose  $\rho(x,y)=1, \forall (x,y)\in D$  then the mass of the plate D is calculated by the formula  $m = \iint_D dx dy = S_D$ 

#### 5. Center of mass

$$x_G = \frac{1}{m} \iint_D x \rho(x, y) dx dy, \ y_G = \frac{1}{m} \iint_D y \rho(x, y) dx dy,$$

where  $m = \iint_D \rho(x, y) dx dy$ .

Department of Mathematics

### 4. Density mass

Suppose the lamina occupies a region D of the xy-plane and its density (in units of mass per unit area) at a point (x, y) in D is given by  $\rho(x,y)$ , where  $\rho$  is a continuous function on D. The density mass of the lamina is

$$m = \iint\limits_{D} \rho(x, y) dx dy.$$

If the plate is homogenous, that is  $\rho(x,y) = \text{const}, \forall (x,y) \in D$ , choose  $\rho(x,y)=1, \forall (x,y)\in D$  then the mass of the plate D is calculated by the formula  $m = \iint_D dx dy = S_D$ 

### 5. Center of mass

$$x_G = \frac{1}{m} \iint_D x \rho(x, y) dx dy, \ y_G = \frac{1}{m} \iint_D y \rho(x, y) dx dy,$$

where  $m = \iint_D \rho(x, y) dx dy$ .

Department of Mathematics

#### 6. Moment of inertia

According to the definition of the moment of inertia of the particle about the Ox, Oy -axis and the origin O, we have

$$I_{Ox} = my^2$$
;  $I_{Oy} = mx^2$ ;  $I_{O} = m(x^2 + y^2)$ 

Moment of inertia of the plate about the axes Ox, Oy and the origin O are

$$I_{Ox} = \iint_D y^2 \rho(x, y) dx dy; I_{Oy} = \iint_D x^2 \rho(x, y) dx dy;$$
$$I_O = \iint_D \left(x^2 + y^2\right) \rho(x, y) dx dy.$$

# 2.2.7 Applications of double integrals

#### Example 2.2.12

Find the mass and center of mass of a triangular lamina with vertices (0,0),(1,0),and(0,2) if the density function is  $\rho(x,y)=1+3x+y$ . Solution



## 2.3.1 Definition of triple integrals

#### Problem

Calculate the mass of the non-homogeneous body V, given that the density is  $\rho = \rho(x,y,z), (x,y,z) \in V$ . Similar to the double integral, we divide V arbitrarily into n parts that do not step on each other. Name and volume of the parts  $\Delta V_i (i = \overline{1,n})$ . Choose an arbitrary point  $P_i(x_i,y_i,z_i) \in \Delta V_i$  and the  $d_i,(i=\overline{1,n})$  are diameters of  $\Delta V_i (i=\overline{1,n})$ . We have

$$m \approx \sum_{i=1}^{n} \rho(P_i) \Delta V_i = \sum_{i=1}^{n} \rho(x_i, y_i, z_i) \Delta V_i$$

The mass of the object is

$$m = \lim_{\max d_i \to 0} \sum_{i=1}^{n} \rho(x_i, y_i, z_i) \Delta V_i$$

## 2.3.1 Definition of triple integrals

#### **Definition**

Let the function f(x, y, z) define on the domain  $V \subset \mathbb{R}^3$ .

- Divide V into n pieces, name and volume of the piece are  $\Delta V_i (i = \overline{1,n})$ , the piece diameter symbol  $\Delta V_i$  is  $d_i$ ,  $i = \overline{1,n}$ .
- Choose an arbitrary point  $P_i(x_i, y_i, z_i) \in \Delta V_{i,i}(i = \overline{1, n})$ .
- The totals  $I_n = \sum_{i=1}^n f\left(x_i, y_i, z_i\right) \Delta V_i$  is called the sum of integrals the triple of the function f(x, y, z) taken over the domain V corresponds to a fraction plan and points  $P_i \in \Delta V_i$ ,  $(i = \overline{1, n})$ .. When  $n \to \infty$  such that  $\max d_i \to 0$ , we get  $I_n$  converges to  $I \in \mathbb{R}$  regardless of the partition  $\Delta V_i$  and how point  $P_i\left(x_i, y_i, z_i\right) \in \Delta V_i$  is chosen, the number I is called a triple integral of f(x, y, z) over the region V and denoted by

$$\iiint_{V} f(x, y, z)dV = I = \lim_{\max_{i} d_{i} \to 0} \sum_{i=0}^{n} f(x_{i}, y_{i}, z_{i}) \Delta V_{i}$$

# 2.3.1 Definition of triple integrals

#### Note

• Like the double integrals, the volume factor dV is replaced by dxdvdz and then the triple integral is usually denoted by

$$I = \iiint_V f(x, y, z) dx dy dz$$

• Similar to the double integrals, triple integrals do not depend on the notation of the variable being integrated

$$\iiint_V f(x,y,z) dx dy dz = \iiint_V f(u,v,w) du dv dw$$

- If the function f(x, y, z) is continuous on the closed, bounded domain  $V \in \mathbb{R}^3$ , then it's integrable on V.
- The integral conditions and properties of triple integrals are similar to the double integrals.

# 2.3.2 Triple integrals on the rectangular box

#### Theorem 2.3.1 (Fubini's Theorem)

If f(x, y, z) is continuous on the rectangular box  $V = [a, b] \times [c, d] \times [r, s]$ , then

$$\iiint\limits_V f(x,y,z)dxdydz = \int\limits_a^b \int\limits_c^a \int\limits_r^s f(x,y,z)dxdydz.$$

#### Example 2.3.1

Calculating integrals  $I = \iiint_V xyz^2 dxdydz$ , where

$$V = [0,1] \times [-1,2] \times [0,3].$$

## The region of type I



A solid region V is said to be of **type 1** if it lies between the graphs of two continuous functions of x and y, that is,

$$V = \{(x, y, z) | (x, y) \in D, u_1(x, y) \le z \le u_2(x, y)\}, \text{ then }$$

$$I = \iiint\limits_V f(x, y, z) dx dy dz = \iint\limits_D \left[ \int\limits_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) dz \right] dx dy.$$

where D is the projection of V onto xy-plane,  $z = u_1(x, y)$  is the lower surface and  $z = u_2(x, y)$  is the upper surface.

#### Example 2.3.2

Evaluate  $I = \iiint\limits_V z dx dy dz$ , where V is the solid tetrahedron bounded by the four planes x=0,y=0,z=0, and x+y+z=1.

#### Solution



#### The region of type II

If the projection D of V onto the xy-plane is of type II plane region, then

 $V = \{(x, y, z) | a \le x \le b, \ g_1(x) \le y \le g_2(x), \ u_1(x, y) \le z \le u_2(x, y)\},$  and we have



$$I = \iiint\limits_V f(x, y, z) dx dy dz = \int\limits_a^b dx \int\limits_{g_1(x)}^{g_2(x)} dy \int\limits_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) dz.$$

where D is the projection of V onto xy-plane,  $z = u_1(x, y)$  is the lower surface and  $z = u_2(x, y)$  is the upper surface.

#### Example 2.3.3

Evaluate  $\iiint\limits_V \sqrt{x^2+z^2} dx dy dz$ , where V is the solid tetrahedron bounded by the paraboloid  $y=x^2+z^2$  and the plane y=4. Solution

# $y = x^2 + z^2$

# 2.3.3 Change of variables in triple integrals

For the function f(x, y, z) to be continuous on the domain  $V \subset Oxyz$  and and assume the transformation

$$(x,y,z) \to (u,v.w) : \begin{cases} x = x(u,v),w \\ y = y(u,v,w), & (u,v,w) \in \Omega \\ z = z(u,v,w) \end{cases}$$
 satisfy the

#### conditions

- The above transformation is a bijective from  $\Omega$  to the domain V or  $(x,y,z) \in V \Leftrightarrow (u,v,w) \in \Omega$ .
- The x(u, v, w), y(u, v, w), z(u, v, w) are the continuous partial derivatives on the domain  $\Omega \subset (O'uvw)$ .
- The Jacobi determinant is  $J = \frac{D(x,y,z)}{D(u,v,w)} \neq 0$  on the domain  $\Omega$ , then

$$\iiint_V f(x,y,z)dxdydz = \iiint_Q f[x(u,v,w),y(u,v,w),z(u,v,w)]|J|duddydz$$

# 2.3.3 Change of variables in triple integrals

#### Example 2.3.4

Evaluate  $\iint_V (x+y)(x-z)dxdydz$ , where V is the bounded domain by the planes

$$x + y = 0$$
,  $x + y = 1$ ;  $y + z = 1$ ,  $y + z = 2$ ;  $x + y - z = 2$ ,  $x + y - z = 3$ .. Solution

Set

$$u=x+y, v=y+z, w=x+y-z$$
 
$$0 \leq u \leq 1, 1 \leq v \leq 2, 2 \leq w \leq 3$$

$$\frac{D(u, v, \mathbf{w})}{D(x, y, z)} = -1 \Rightarrow \frac{D(x, y, z)}{D(u, v, \mathbf{w})} = -1, (x + y)(x - z) = u(u - v)$$

$$I = \iiint_{\Omega} u(u-v)|-1|dudvdw = \int_{0}^{1} udu \int_{1}^{2} (u-v)dv \int_{2}^{3} dw = -\frac{5}{12}.$$

## 2.3.4 Triple integrals in cylindrical coordinates

#### Cylindrical coordinates

In the cylindrical coordinate system, a point P in three-dimensional space is represented by the ordered triple  $(r, \theta, z)$ , where r and  $\theta$  are polar coordinates of the projection of P onto the xy-plane and z is the directed distance from the xy-plane. The connections between cylindrical coordinates and rectangular coordinates are



## 2.3.4 Triple integrals in cylindrical coordinates

## Evaluating triple integrals with cylindrical coordinates

Set 
$$\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi & \text{then } V \to \Omega : \begin{cases} r \ge 0 \\ 0 \le \varphi < 2\pi \\ -\infty < z < +\infty \end{cases}.$$

The Jacobi determinant of the functions x,y,z in terms of  $r,\varphi,z$  are

$$J = \frac{D(x, y, z)}{D(r, \varphi, z)} = \begin{vmatrix} \cos \varphi & -r \sin \varphi & 0 \\ \sin \varphi & r \cos \varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = r.$$

The formula for triple integration in cylindrical coordinates is

$$I = \iiint_V f(x, y, z) dx dy dz = \iiint_{\Omega} f(r \cos \varphi, r \sin \varphi, z) r dr d\varphi dz.$$

# 2.3.4 Triple integrals in cylindrical coordinates

#### Example 2.3.5

Evaluate 
$$I = \iiint\limits_V (x^2 + y^2 + 3z^2) dx dy dz$$
, where

$$V = \{(x, y, z) | \sqrt{x^2 + y^2} \le z \le 2\}.$$

#### Spherical coordinates

The spherical coordinates of a point P in space are  $(\rho, \varphi, \theta)$ , where  $\rho$  is the distance from P to the origin,  $\varphi$  is the same angle as in cylindrical coordinates, and  $\theta$  is the angle between the positive z-axis and the line segment OP. Note that  $\rho \geq 0$ ,  $0 \leq \theta \leq \pi$ .



## Evaluating triple integrals with spherical coordinates

Set 
$$\begin{cases} x = r \cos \varphi \cos \theta \\ y = r \cos \varphi \sin \theta \text{ then } V \to \Omega : \begin{cases} r \ge 0 \\ 0 \le \varphi < 2\pi \\ 0 \le \theta \le \pi \end{cases}.$$

The Jacobi determinant of the functions x,y,z in terms of  $r,\varphi,z$  are

$$J = \frac{D(x, y, z)}{D(r, \varphi, \theta)} = \begin{vmatrix} \sin \theta \cos \varphi & -r \sin \theta \sin \varphi & r \cos \theta \cos \varphi \\ \sin \theta \sin \varphi & r \sin \theta \cos \varphi & r \cos \theta \sin \varphi \\ \cos \theta & 0 & -r \sin \theta \end{vmatrix} = -r^2 \sin \theta.$$

The formula for triple integration in spherical coordinates is

$$I = \iiint f(r\cos\varphi\cos\theta, r\cos\varphi\sin\theta, r\sin\theta)r^2\sin\theta dr d\varphi d\theta.$$

## Evaluating triple integrals with spherical coordinates

Set 
$$\begin{cases} x = r \cos \varphi \cos \theta \\ y = r \cos \varphi \sin \theta \text{ then } V \to \Omega : \begin{cases} r \ge 0 \\ 0 \le \varphi < 2\pi \\ 0 \le \theta \le \pi \end{cases}.$$

The Jacobi determinant of the functions x, y, z in terms of  $r, \varphi, z$  are

$$J = \frac{D(x, y, z)}{D(r, \varphi, \theta)} = \begin{vmatrix} \sin \theta \cos \varphi & -r \sin \theta \sin \varphi & r \cos \theta \cos \varphi \\ \sin \theta \sin \varphi & r \sin \theta \cos \varphi & r \cos \theta \sin \varphi \\ \cos \theta & 0 & -r \sin \theta \end{vmatrix} = -r^2 \sin \theta.$$

The formula for triple integration in spherical coordinates is

$$I = \iiint f(r\cos\varphi\cos\theta, r\cos\varphi\sin\theta, r\sin\theta)r^2\sin\theta dr d\varphi d\theta.$$

#### Example 2.3.6

Evaluate  $I = \iiint\limits_V \sqrt{x^2 + y^2 + z^2} dx dy dz$ , where

- a) V is the unit ball.
- b)  $V = \{(x, y, z) | x^2 + y^2 + z^2 \le 4 \}.$
- c)  $V = \{(x, y, z) | 0 \le z \le \sqrt{4 x^2 y^2} \}.$

#### 1. Volume

If f(x, y, z) = 1 for all point in V. Then the triple integral does represent the volume of V

$$V = \iiint\limits_V dV = \iiint\limits_V dx dy dz.$$

#### Example 2.3.7

Use triple integral to find the volume of the tetrahedron V bounded by the planes x+2y+z=2, x=2y, x=0, and z=0.



#### 2. Mass of a solid object

If the density function of a solid object that occupies the region V is  $\rho(x,y,z)$  (in units of mass per unit volume) at any given point (x,y,z), then its mass is

$$m = \iiint\limits_V \rho(x, y, z) dV = \iiint\limits_V \rho(x, y, z) dx dy dz.$$

#### 3. Moments

Its moments about the three coordinate planes are

$$I_{Ox} = \iiint_{V} (y^2 + z^2)\rho(x, y, z)dV, \quad I_{Oy} = \iiint_{V} (x^2 + z^2)\rho(x, y, z)dV$$

$$I_{Oz} = \iiint_V (x^2 + y^2) \rho(x, y, z) dV, \quad I_O = \iiint_V (x^2 + y^2 + z^2) \rho(x, y, z) dV.$$

#### 4. Center of mass

The center of mass is located at the point G, where

$$x_G = \frac{1}{m} \iiint_V x \rho(x, y, z) dV, \quad y_G = \frac{1}{m} \iiint_V y \rho(x, y, z) dV$$

$$z_G = \frac{1}{m} \iiint_V z \rho(x, y, z) dV, \quad m = \iiint_V \rho(x, y, z) dV.$$

#### Example 2.3.8

Find the center of mass (if the density is constant, the center of mass is called the centroid) of a solid of constant density that is bounded by the parabolic cylinder  $x = y^2$  and the planes x = z, z = 0, and x = 1.