A hollow cylinder of radius a is fixed with its axis horizontal. A particle P, of mass m, moves in part of a vertical circle of radius a and centre O on the smooth inner surface of the cylinder. The speed of P when it is at the lowest point A of its motion is $\sqrt{\frac{7}{2}ga}$.

The particle P loses contact with the surface of the cylinder when OP makes an angle θ with the upward vertical through O.

Show that $\theta = 60^{\circ}$.	

© UCLES 2020 9231/32/M/J/20