

Test report No. Page

Issued date FCC ID

: 11211969H : 1 of 37

: May 19, 2016 : ZVI-UDBP-RF8

RADIO TEST REPORT

Test Report No.: 11211969H

Applicant

URYU SEISAKU, LTD.

Type of Equipment

Equipment built-in 2.4GHz band transceiver module

Model No.

HTW-2401T

FCC ID

ZVI-UDBP-RF8

Test regulation

: FCC Part 15 Subpart C: 2015

Test Result

: Complied

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

2. The results in this report apply only to the sample tested.

3. This sample tested is in compliance with the above regulation.

4. The test results in this report are traceable to the national or international standards.

5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)

Date of test:

May 10 and 11, 2016

Representative test engineer:

Keisuke Kawamura

Engineer

Consumer Technology Division

Approved by:

Tsubasa Takayama

Engineer

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://japan.ul.com/resources/emc accredited/

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11211969H

 Page
 : 2 of 37

 Issued date
 : May 19, 2016

 FCC ID
 : ZVI-UDBP-RF8

REVISION HISTORY

Original Test Report No.: 11211969H

Revision	Test report No.	Date	Page revised	Contents
- (Original)	11211969Н	May 19, 2016	-	-
		_		

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.
Page
Issued date
FCC ID

: 11211969H : 3 of 37 : May 19, 2016 : ZVI-UDBP-RF8

CONTENTS PAGE SECTION 1: SECTION 2: SECTION 3: Operation of E.U.T. during testing......8 **SECTION 4: SECTION 5: SECTION 6: SECTION 7:** Radiated Spurious Emission 22 **APPENDIX 2: APPENDIX 3:**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11211969H

 Page
 : 4 of 37

 Issued date
 : May 19, 2016

 FCC ID
 : ZVI-UDBP-RF8

SECTION 1: Customer information

Company Name : URYU SEISAKU, LTD.

Address : 2-9-26, Higashinari-ku, Osaka 537-0003 Japan

Telephone Number : +81-6-6973-9444 Facsimile Number : +81-6-6973-5759 Contact Person : Hidekazu Kimura

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Equipment built-in 2.4GHz band transceiver module

Model No. : HTW-2401T

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC 5.0V
Receipt Date of Sample : April 18, 2016
Country of Mass-production : Japan

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: HTW-2401T (referred to as the EUT in this report) is a Equipment built-in 2.4GHz band transceiver module.

General Specification

Clock frequency(ies) in the system : Crystal: 16 MHz

Radio Specification

Equipment Type : Transceiver

Frequency of Operation : 2403MHz - 2478MHz

Channel Spacing : 1MHz Modulation : GFSK

Antenna Type : 1/4λ Dipole chip antenna

Antenna Gain : -2.13dBi Method of Frequency Generation : Synthesizer

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11211969H
Page : 5 of 37
Issued date : May 19, 2016
FCC ID : ZVI-UDBP-RF8

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C: 2015, final revised on November 23, 2015

*Some parts are effective on and after December 17, 2015 or December 23, 2015. The revision does not affect the test specification applied to the EUT.

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928MHz,

2400-2483.5MHz, and 5725-5850MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods IC: RSS-Gen 8.8	FCC: Section 15.207 IC: RSS-Gen 8.8	QP 31.0 dB, 0.15000 MHz, L AV 37.1 dB, 0.79670 MHz, L	Complied	-
6dB Bandwidth	FCC: KDB 558074 D01 DTS Meas Guidance v03r05 IC: -	FCC: Section 15.247(a)(2) IC: RSS-247 5.2(1)		Complied	Conducted
Maximum Peak Output Power	FCC: KDB 558074 D01 DTS Meas Guidance v03r05 IC: RSS-Gen 6.12	FCC: Section 15.247(b)(3) IC: RSS-247 5.4(4)	See data.	Complied	Conducted
Power Density	FCC: KDB 558074 D01 DTS Meas Guidance v03r05 IC: -	FCC: Section 15.247(e) IC: RSS-247 5.2(2)		Complied	Conducted
Spurious Emission Restricted Band Edges	FCC: KDB 558074 D01 DTS Meas Guidance v03r05 IC: RSS-Gen 6.13	IC: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	3.6 dB 7323.000 MHz, AV, Vert.	Complied	Conducted (below 30 MHz)/ Radiated (above 30 MHz) *1)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

FCC 15.31 (e)

This EUT provides stable voltage (DC 2.0~V) constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

The antenna is not removable from the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 DTS Meas Guidance v03r05 12.2.7.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

 Test report No.
 : 11211969H

 Page
 : 6 of 37

 Issued date
 : May 19, 2016

 FCC ID
 : ZVI-UDBP-RF8

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied	IC: RSS-Gen 6.6	IC: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2. Is EMC Lab.

Antenna terminal test Uncertainty (+/-)							
Power meter Conducted emission and Power density Conducted emission							
Below	Above	Below	1 GHz	3 GHz	18 GHz	26.5 GHz	Channel power
1 GHz	1 GHz	1 GHz	-3 GHz	-18 GHz	-26.5 GHz	-40 GHz	
0.9 dB	1.0 dB	1.4 dB	1.7 dB	2.8 dB	2.8 dB	2.9 dB	2.6 dB

	Conducted emission
Frequency range	using AMN(LISN)
	(<u>+</u> dB)
0.009 –	3.5 dB
0.15MHz	3.5 ub
0.15 - 30 MHz	2.9 dB

	Radiated emission
Test distance	(<u>+</u> dB)
	9 kHz - 30 MHz
3m	3.8 dB
10m	3.7 dB

	Radiated emission (Below 1GHz)					
Polarity	(3 m*)(<u>+</u> d	B)	(10 m*)(<u>+</u> dB)			
Tolarity	30 – 200 MHz	200 –	30 – 200 MHz	200 –		
	30 - 200 MHZ	1000MHz	30 – 200 MHZ	1000MHz		
Horizontal	4.9 dB	5.2 dB	4.9 dB	5.0 dB		
Vertical	4.6 dB	5.9 dB	5.0 dB	5.0 dB		

Radiated emission						
$(3 \text{ m*})(\underline{+}\text{dB}) \qquad (1 \text{ m*})(\underline{+}\text{dB}) \qquad (0.5 \text{ m*})(\underline{+}d$				(10 m*)(<u>+</u> dB)		
1 – 6GHz	6 – 18GHz	10 – 26.5 GHz	26.5 – 40GHz	1 -18 GHz		
5.1 dB	5.3 dB	5.1 dB	5.1 dB	5.3 dB		

^{*}M easurement distance

Conducted Emission test

The data listed in this test report has enough margin, more than the site margin.

Radiated emission test

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11211969H

 Page
 : 7 of 37

 Issued date
 : May 19, 2016

 FCC ID
 : ZVI-UDBP-RF8

3.5 Test Location

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measuremen t distance
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	_	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.6 shielded room	-	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	-	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	-	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	-	3.1 x 5.0 x 2.7	N/A	-	-
No.9 measurement room	-	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	-	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11211969H

 Page
 : 8 of 37

 Issued date
 : May 19, 2016

 FCC ID
 : ZVI-UDBP-RF8

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Mode(s)

Details of Operating Mode(s)

Test Item	Mode	Tested frequency
Conducted Emission,	Transmitting (Tx) ,PN9	2403MHz
Spurious Emission		2441MHz
(Conducted/Radiated)		2478MHz
6 dB Bandwidth		
Maximum Peak Output Power		
Power Density		
99% Occupied Bandwidth		

The system was configured in typical fashion (as a customer would normally use it) for testing.

*EUT has the power settings by the software as follows;

Power settings: 0dBm

Software: HTW2401T RF-TEST V1.00

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11211969H
Page : 9 of 37
Issued date : May 19, 2016
FCC ID : ZVI-UDBP-RF8

4.2 Configuration and peripherals

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT

Deser	ipuon or Lo i			_	_
No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Equipment built-in	HTW-2401T	810190001F	URYU SEISAKU,	EUT
	2.4GHz band			LTD.	
	transceiver module				
В	Equipment built-in	HTW-2401T	8101900020	URYU SEISAKU,	EUT
	2.4GHz band			LTD.	
	transceiver module				
C	Equipment built-in	HTW-2401T	8101900024	URYU SEISAKU,	EUT
	2.4GHz band			LTD.	
	transceiver module				

List of cables used

No.	Name	Length (m)	Shi	ield	Remarks
			Cable	Connector	
1	DC Power Cable	3.0	Unshielded	Unshielded	-

*EUT worked with each one channel.

S/N: 810190001F: L ch S/N: 8101900020: M ch S/N: 8101900024: H ch

It's equipment other than the transmission channel.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11211969H
Page : 10 of 37
Issued date : May 19, 2016
FCC ID : ZVI-UDBP-RF8

SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.

The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV
Measurement range : 0.15 MHz – 30 MHz

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11211969H
Page : 11 of 37
Issued date : May 19, 2016
FCC ID : ZVI-UDBP-RF8

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "11.0 Emissions in non-restricted frequency bands" of "558074 D01 DTS Meas Guidance v03r05".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below:

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(IC) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (IC).

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analy	zer	Spectrum Analyzer
Detector	QP	PK	AV *1)	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	Average Power Method:	RBW: 100 kHz
		VBW: 3 MHz	<u>12.2.5.2</u>	VBW: 300kHz
			RBW: 1 MHz	
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			Duty factor was added to	
		the results *4)		
Test Distance	3 m	3.75 m *2) (1 G	/ /	3.75 m *2) (1 GHz – 10 GHz),
		1 m *3) (10 GHz	z – 26.5 GHz)	1 m *3) (10 GHz – 26.5 GHz)

^{*1)} Average Power Measurement was performed based on 6. 0 & 12.2.5 of "KDB 558074 D01 DTS Meas Guidance v03r05"

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Distance Factor: $20 \times \log (3.75 \text{ m} / 3.0 \text{ m}) = 1.94 \text{ dB}$

^{*3)} Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

^{*4)} Some spurious evaluations were performed by Peak with Duty factor, since the spurious emission occurred in synchronization with carrier. In this case carrier frequency kept the worst duty cycle; refer page 20 and 21.

 Test report No.
 : 11211969H

 Page
 : 12 of 37

 Issued date
 : May 19, 2016

 FCC ID
 : ZVI-UDBP-RF8

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 M - 26.5 GHz Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11211969H
Page : 13 of 37
Issued date : May 19, 2016
FCC ID : ZVI-UDBP-RF8

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
6dB Bandwidth	20 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted Spurious Emission *4)	9kHz to 150kHz 150kHz to 30MHz	200 Hz 9.1 kHz	620 Hz 27 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Reference data

^{*3)} Section 10.2 Method PKPSD (peak PSD) of "KDB 558074 D01 DTS Meas Guidance v03r05".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

Test report No. : 11211969Н Page : 14 of 37 **Issued date** : May 19, 2016 FCC ID : ZVI-UDBP-RF8

APPENDIX 1: Test data

Conducted Emission

DATA OF CONDUCTED EMISSION TEST

Ise EMC Lab. No. 2 Semi Anechoic Chamber Date : 2016/05/10

Report No. : 11211969H

Temp./Humi. Engineer : 24deg. C / 45% RH : Shinichi Miyazono

 $Mode \ / \ Remarks \ : \ Tx_2441MHz$

LIMIT : FCC15. 207 QP FCC15. 207 AV

Examionav	Reading	Level	Corr.	Resu	ults	Lin		Mar	gin		
Frequency	QP	AV	Factor	QP	AV	QP	AV	QP	AV	Phase	Comment
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
0. 15000	21.5	0.8	13. 2	34. 7	14. 0	66. 0	56. 0	31. 3	42. 0	N	
0. 15000	21.8	0.9	13. 2	35. 0	14. 1	66. 0	56. 0	31.0	41. 9	L	
0. 17900	16. 1	-1.0	13. 2	29. 3	12. 3	64. 5	54. 5	35. 2	42. 3	N	
0. 18045	16.3	-0.9	13. 2	29. 5	12. 3	64. 5	54. 5	35. 0	42. 2	L	
0. 22540	-0.5	-5. 1	13. 2	12. 7	8. 1	62. 6	52. 6	49. 9	44. 5	N	
0. 22540	8.8	-2.4	13. 2	22. 0	10.8	62. 6	52. 6	40. 6	41.8	L	
0. 79525	-1.6	-4. 5	13.3	11.7	8.8	56.0	46. 0	44. 3	37. 2	N	
0. 79670	-1.7	-4.4	13.3	11.6	8. 9	56.0	46. 0	44. 4	37. 1	L	
3. 20215	-0.6	-5. 1	13.6	13.0	8. 5	56. 0	46. 0	43. 0	37. 5	N	
3. 20510	-0.4	-5.0	13.6	13. 2	8. 6	56.0	46. 0	42. 8	37. 4	L	
11. 35350	-1. 2	-5. 6	14. 3	13. 1	8. 7	60.0	50.0	46. 9	41. 3	N	
11. 42000	-1. 2	-5. 5	14. 3	13. 1	8.8	60.0	50.0	46. 9	41. 2	L	
										ł	
										ł	
										ł	
										ŀ	
										ŀ	
										l	
										ŀ	
										ŀ	
										ł	
										-	
										ŀ	
										- 1	

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11211969H

 Page
 : 15 of 37

 Issued date
 : May 19, 2016

 FCC ID
 : ZVI-UDBP-RF8

Conducted Emission

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11211969H
Date May 10, 2016
Temperature / Humidity 24 deg. C / 45 % RH
Engineer Shinichi Miyazono

Mode Tx

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11211969H

 Page
 : 16 of 37

 Issued date
 : May 19, 2016

 FCC ID
 : ZVI-UDBP-RF8

6dB Bandwidth

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11211969H
Date May 11, 2016
Temperature / Humidity 24 deg. C / 44 % RH
Engineer Keisuke Kawamura

Mode Tx

Frequency	6dB Bandwidth	Limit		
[MHz]	[MHz]	[kHz]		
2403	0.566	> 500		
2441	0.607	> 500		
2478	0.722	> 500		

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11211969H
Page : 17 of 37
Issued date : May 19, 2016
FCC ID : ZVI-UDBP-RF8

6dB Bandwidth

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11211969H

 Page
 : 18 of 37

 Issued date
 : May 19, 2016

 FCC ID
 : ZVI-UDBP-RF8

Maximum Peak Output Power

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11211969H
Date May 11, 2016
Temperature / Humidity 24 deg. C / 44 % RH
Engineer Keisuke Kawamura

Mode Tx

Freq.	Reading	Cable	Atten.	Re	sult	Liı	mit	Margin
		Loss	Loss					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2403	-8.59	0.97	10.09	2.47	1.77	30.00	1000	27.53
2441	-8.81	0.99	10.09	2.27	1.69	30.00	1000	27.73
2478	-9.02	1.00	10.09	2.07	1.61	30.00	1000	27.93

Sample Calculation:

Result = Reading + Cable Loss + Attenuator Loss

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11211969H

 Page
 : 19 of 37

 Issued date
 : May 19, 2016

 FCC ID
 : ZVI-UDBP-RF8

<u>Average Output Power</u> (Reference data for RF Exposure

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11211969H
Date May 11, 2016
Temperature / Humidity 24 deg. C / 44 % RH
Engineer Keisuke Kawamura

Mode Tx

Freq.	Reading	Cable	Atten.	Re	sult	Duty	Result		
		Loss	Loss	(Time average)		factor	(Burst power average		
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm] [mW]		[dBm]	[mW]	
2403	-9.04	0.97	10.09	2.02	1.59	0.28	2.30	1.70	
2441	-9.28	0.99	10.09	1.80	1.51	0.28	2.08	1.61	
2478	-9.50	1.00	10.09	1.59	1.44	0.28	1.87	1.54	

Sample Calculation:

Result (Time average) = Reading + Cable Loss + Attenuator Result (Burst power average) = Time average + Duty factor

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11211969H

 Page
 : 20 of 37

 Issued date
 : May 19, 2016

 FCC ID
 : ZVI-UDBP-RF8

Burst rate confirmation

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11211969H
Date May 10, 2016
Temperature / Humidity 22 deg. C / 50 % RH
Engineer Masafumi Niwa

Mode Tx

^{*}This is a waveform of transmission carrier.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11211969H
Page : 21 of 37
Issued date : May 19, 2016
FCC ID : ZVI-UDBP-RF8

<u>Burst rate confirmation</u> (Reference data for Peak with Duty factor)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11211969H
Date May 10, 2016
Temperature / Humidity 22 deg. C / 50 % RH
Engineer Masafumi Niwa

Mode Tx

Tx

*This is a waveform of transmission carrier.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11211969H

 Page
 : 22 of 37

 Issued date
 : May 19, 2016

 FCC ID
 : ZVI-UDBP-RF8

Radiated Spurious Emission

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11211969H

Date May 10, 2016 May 10, 2016
Temperature / Humidity 23 deg. C / 60 % RH 24 deg. C / 45 % RH
Engineer Masafumi Niwa Shinichi Miyazono (1-26.5GHz) (Below 1GHz)

Mode Tx 2403 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
-	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	35.667	QP	22.9	15.5	6.8	28.5	-	16.7	40.0	23.3	
Hori	193.415	QP	21.9	16.6	8.1	27.7	-	18.9	43.5	24.6	
Hori	208.000	QP	21.9	11.7	8.2	27.6	-	14.2	43.5	29.3	
Hori	216.000	QP	21.6	11.8	8.2	27.6	-	14.0	43.5	29.5	
Hori	240.000	QP	21.4	12.4	8.4	27.5	-	14.7	46.0	31.3	
Hori	557.334	QP	22.2	18.3	9.9	28.5	-	21.9	46.0	24.1	
Hori	2390.000	PK	63.1	27.6	5.0	34.8	-	60.9	73.9	13.0	
Hori	4806.000	PK	42.9	31.5	7.2	34.1	-	47.5	73.9	26.4	
Hori	7209.000	PK	45.0	36.1	8.5	34.1	-	55.5	73.9	18.4	
Hori	9612.000	PK	44.0	38.5	9.2	34.8	-	56.9	73.9	17.0	
Hori	4806.000	AV	34.4	31.5	7.2	34.1	0.3	39.3	53.9	14.6	
Hori	7209.000	AV	37.6	36.1	8.5	34.1	0.3	48.4	53.9	5.5	
Hori	9612.000	AV	35.9	38.5	9.2	34.8	0.3	49.1	53.9	4.8	
Vert	35.383	QP	23.7	15.6	6.8	28.5	-	17.6	40.0	22.4	
Vert	193.768	QP	21.7	16.6	8.1	27.7	-	18.7	43.5	24.8	
Vert	205.333	QP	21.8	11.6	8.2	27.7	-	13.9	43.5	29.6	
Vert	220.000	QP	21.6	11.9	8.2	27.6	-	14.1	46.0	31.9	
Vert	238.667	QP	21.4	12.3	8.4	27.5	-	14.6	46.0	31.4	
Vert	562.668	QP	22.2	18.4	9.9	28.5	-	22.0	46.0	24.0	
Vert	2390.000	PK	63.5	27.6	5.0	34.8	-	61.3	73.9	12.6	
Vert	4806.000	PK	44.5	31.5	7.2	34.1	-	49.1	73.9	24.8	
Vert	7209.000	PK	46.2	36.1	8.5	34.1	-	56.7	73.9	17.2	
Vert	9612.000	PK	45.1	38.5	9.2	34.8	-	58.0	73.9	15.9	
Vert	4806.000	AV	37.4	31.5	7.2	34.1	0.3	42.3	53.9	11.6	
Vert	7209.000	AV	39.1	36.1	8.5	34.1	0.3	49.9	53.9	4.0	
Vert	9612.000	AV	36.8	38.5	9.2	34.8	0.3	50.0	53.9	3.9	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty Factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz - 20log (3.75 m / 3.0 m) = 1.94 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Mai	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
2390.000	PK	63.1	63.5	27.6	5.0	34.8	-34.7	26.3	26.7	53.9	27.7	27.3	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier) + Duty factor (Refer to Burst rate confirmation sheet)

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2403.000	PK	101.3	27.6	5.0	34.8	99.1	-	-	Carrier
Hori	2400.000	PK	59.6	27.6	5.0	34.8	57.4	79.1	21.7	
Vert	2403.000	PK	101.4	27.6	5.0	34.8	99.2	-	-	Carrier
Vert	2400.000	PK	59.7	27.6	5.0	34.8	57.5	79.2	21.7	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amprifier)$

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11211969H

 Page
 : 23 of 37

 Issued date
 : May 19, 2016

 FCC ID
 : ZVI-UDBP-RF8

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11211969H
Date May 10, 2016
Temperature / Humidity 23 deg. C / 60 % RH
Engineer Masafumi Niwa (1-10GHz)

Mode Tx 2403 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11211969H
Page : 24 of 37
Issued date : May 19, 2016
FCC ID : ZVI-UDBP-RF8

Radiated Spurious Emission

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11211969H

Date May 10, 2016 May 10, 2016
Temperature / Humidity 23 deg. C / 60 % RH 24 deg. C / 45 % RH
Engineer Masafumi Niwa Shinichi Miyazono (1-26.5GHz) (Below 1GHz)

Mode Tx 2441 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	$\left[dBuV/m\right]$	$\left[dBuV/m\right]$	[dB]	
Hori	49.550	QP	24.6	10.5	7.0	28.5	-	13.6	40.0	26.4	
Hori	183.001	QP	21.9	16.3	8.0	27.8	-	18.4	43.5	25.1	
Hori	188.951	QP	21.8	16.4	8.1	27.7	-	18.6	43.5	24.9	
Hori	204.000	QP	21.8	11.6	8.1	27.7	-	13.8	43.5	29.7	
Hori	248.000	QP	21.4	12.5	8.4	27.4	-	14.9	46.0	31.1	
Hori	278.667	QP	21.2	13.1	8.6	27.4	-	15.5	46.0	30.5	
Hori	4882.000	PK	44.3	31.7	7.2	34.1	-	49.1	73.9	24.8	
Hori	7323.000	PK	44.1	36.3	8.6	34.1	-	54.9	73.9	19.0	
Hori	9764.000	PK	42.0	38.5	9.2	34.8	-	54.9	73.9	19.0	Noise Floor
Hori	4882.000	AV	36.2	31.7	7.2	34.1	0.3	41.3	53.9	12.6	
Hori	7323.000	AV	36.5	36.3	8.6	34.1	0.3	47.6	53.9	6.3	
Hori	9764.000	AV	34.7	38.5	9.2	34.8	-	47.6	53.9	6.3	Noise Floor
Vert	49.267	QP	22.8	10.6	7.0	28.5	-	11.9	40.0	28.1	
Vert	183.001	QP	22.0	16.3	8.0	27.8	-	18.5	43.5	25.0	
Vert	189.518	QP	21.7	16.5	8.1	27.7	-	18.6	43.5	24.9	
Vert	202.667	QP	21.7	11.5	8.1	27.7	-	13.6	43.5	29.9	
Vert	249.333	QP	21.4	12.6	8.4	27.4	-	15.0	46.0	31.0	
Vert	280.000	QP	21.2	13.1	8.6	27.4	-	15.5	46.0	30.5	
Vert	4882.000	PK	46.3	31.7	7.2	34.1	-	51.1	73.9	22.8	
Vert	7323.000	PK	45.8	36.3	8.6	34.1	-	56.6	73.9	17.3	
Vert	9764.000	PK	42.5	38.5	9.2	34.8	-	55.4	73.9	18.5	Noise Floor
Vert	4882.000	AV	39.5	31.7	7.2	34.1	0.3	44.6	53.9	9.3	
Vert	7323.000	AV	39.2	36.3	8.6	34.1	0.3	50.3	53.9	3.6	
Vert	9764.000	AV	34.4	38.5	9.2	34.8	-	47.3	53.9	6.6	Noise Floor

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty Factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz - 20log (3.75 m / 3.0 m) = 1.94 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11211969H

 Page
 : 25 of 37

 Issued date
 : May 19, 2016

 FCC ID
 : ZVI-UDBP-RF8

Radiated Spurious Emission

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11211969H

Date May 10, 2016 May 10, 2016
Temperature / Humidity 23 deg. C / 60 % RH 24 deg. C / 45 % RH
Engineer Masafumi Niwa Shinichi Miyazono (1-26.5GHz) (Below 1GHz)

Mode Tx 2478 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	33.117	QP	22.9	16.2	6.8	28.5	-	17.4	40.0	22.6	
Hori	48.983	QP	23.1	10.7	7.0	28.5	-	12.3	40.0	27.7	
Hori	98.000	QP	22.5	9.3	7.4	28.2	-	11.0	43.5	32.5	
Hori	314.667	QP	21.4	13.8	8.9	27.5	-	16.6	46.0	29.4	
Hori	628.000	QP	21.9	19.1	10.2	28.3	-	22.9	46.0	23.1	
Hori	921.329	QP	21.1	22.0	11.2	27.2	-	27.1	46.0	18.9	
Hori	2483.500	PK	68.5	27.7	5.1	34.7	-	66.6	73.9	7.3	
Hori	4956.000	PK	43.8	32.0	7.2	34.2	-	48.8	73.9	25.1	
Hori	7434.000	PK	43.2	36.4	8.5	34.1	-	54.0	73.9	19.9	
Hori	9912.000	PK	43.1	38.6	9.2	34.9	-	56.0	73.9	17.9	
Hori	4956.000	AV	36.4	32.0	7.2	34.2	0.3	41.7	53.9	12.2	
Hori	7434.000	AV	34.7	36.4	8.5	34.1	0.3	45.8	53.9	8.1	
Hori	9912.000	AV	35.2	38.6	9.2	34.9	0.3	48.4	53.9	5.5	
Vert	32.833	QP	23.6	16.2	6.8	28.5	-	18.1	40.0	21.9	
Vert	48.983	QP	22.8	10.7	7.0	28.5	-	12.0	40.0	28.0	
Vert	96.867	QP	22.7	9.1	7.4	28.2	-	11.0	43.5	32.5	
Vert	313.334	QP	21.4	13.8	8.9	27.5	-	16.6	46.0	29.4	
Vert	626.667	QP	21.9	19.1	10.1	28.3	-	22.8	46.0	23.2	
Vert	918.662	QP	21.2	21.9	11.2	27.3	-	27.0	46.0	19.0	
Vert	2483.500	PK	66.8	27.7	5.1	34.7	-	64.9	73.9	9.0	
Vert	4956.000	PK	46.4	32.0	7.2	34.2	-	51.4	73.9	22.5	
Vert	7434.000	PK	44.8	36.4	8.5	34.1	-	55.6	73.9	18.3	
Vert	9912.000	PK	44.0	38.6	9.2	34.9	-	56.9	73.9	17.0	
Vert	4956.000	AV	41.1	32.0	7.2	34.2	0.3	46.4	53.9	7.5	
Vert	7434.000	AV	36.4	36.4	8.5	34.1	0.3	47.5	53.9	6.4	
Vert	9912.000	AV	35.7	38.6	9.2	34.9	0.3	48.9	53.9	5.0	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty Factor

 * Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz $20 \log (3.75 \text{ m} / 3.0 \text{ m}) = 1.94 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Mai	gin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d]	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
2483.500	PK	68.5	66.8	27.7	5.1	34.7	-34.7	32.0	30.3	53.9	22.0	23.7	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier) + Duty factor (Refer to Burst rate confirmation sheet)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11211969H
Page : 26 of 37
Issued date : May 19, 2016
FCC ID : ZVI-UDBP-RF8

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11211969H
Date May 10, 2016
Temperature / Humidity 23 deg. C / 60 % RH
Engineer Masafumi Niwa (1-10GHz)

Mode Tx 2478 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11211969H
Page : 27 of 37
Issued date : May 19, 2016
FCC ID : ZVI-UDBP-RF8

Radiated Spurious Emission (Plot data, Worst case)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11211969H

Date May 10, 2016 May 10, 2016
Temperature / Humidity 23 deg. C / 60 % RH 24 deg. C / 45 % RH
Engineer Masafumi Niwa Shinichi Miyazono (1-26.5GHz) (Below 1GHz)

Mode Tx 2403 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11211969H

 Page
 : 28 of 37

 Issued date
 : May 19, 2016

 FCC ID
 : ZVI-UDBP-RF8

Power Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11211969H
Date May 11, 2016
Temperature / Humidity 24 deg. C / 44 % RH
Engineer Keisuke Kawamura

Mode Tx

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2403.00	-17.72	0.97	10.09	-6.66	8.00	14.66
2441.00	-18.24	0.99	10.09	-7.16	8.00	15.16
2478.00	-18.63	1.00	10.09	-7.54	8.00	15.54

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11211969H
Page : 29 of 37
Issued date : May 19, 2016
FCC ID : ZVI-UDBP-RF8

Power Density

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11211969H
Page : 30 of 37
Issued date : May 19, 2016
FCC ID : ZVI-UDBP-RF8

Conducted Spurious Emission

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11211969H
Date May 11, 2016
Temperature / Humidity 24 deg. C / 44 % RH
Engineer Keisuke Kawamura
Mode Tx 2403 MHz

Frequency	Reading	Cable	Attenator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
16.87	-98.8	0.01	9.8	-3.0	1	-92.0	300	6.0	-30.7	43.0	73.7	
299.00	-90.9	0.01	9.9	-3.0	1	-84.0	300	6.0	-22.8	18.0	40.8	

E = EIRP - 20 log (D) + Ground bounce + 104.8 [dBuV/m]

EIRP = Reading + Cable Loss + Attenator Loss + Antenna Gain + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11211969H
Page : 31 of 37
Issued date : May 19, 2016
FCC ID : ZVI-UDBP-RF8

Conducted Spurious Emission

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11211969H
Date May 11, 2016
Temperature / Humidity 24 deg. C / 44 % RH
Engineer Keisuke Kawamura
Mode Tx 2441 MHz

Frequency	Reading	Cable	Attenator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.58	-99.4	0.01	9.8	-3.0	1	-92.6	300	6.0	-31.3	46.3	77.6	
473.00	-88.9	0.01	9.9	-3.0	1	-82.1	300	6.0	-20.8	14.1	34.9	

 $E = EIRP - 20 \log (D) + Ground bounce + 104.8 [dBuV/m]$

EIRP = Reading + Cable Loss + Attenator Loss + Antenna Gain + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11211969H

 Page
 : 32 of 37

 Issued date
 : May 19, 2016

 FCC ID
 : ZVI-UDBP-RF8

Conducted Spurious Emission

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11211969H
Date May 11, 2016
Temperature / Humidity 24 deg. C / 44 % RH
Engineer Keisuke Kawamura
Mode Tx 2478 MHz

ſ	Frequency	Reading	Cable	Attenator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss	Loss	Gain	(Number			bounce	(field strength)			
	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Ī	9.94	-98.9	0.01	9.8	-3.0	1	-92.1	300	6.0	-30.9	47.6	78.5	
Ī	225.00	-91.3	0.01	9.9	-3.0	1	-84.5	300	6.0	-23.2	20.5	43.7	

 $E = EIRP - 20 \log (D) + Ground bounce + 104.8 [dBuV/m]$

EIRP = Reading + Cable Loss + Attenator Loss + Antenna Gain + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11211969H
Page : 33 of 37
Issued date : May 19, 2016
FCC ID : ZVI-UDBP-RF8

99% Occupied Bandwidth

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11211969H
Date May 11, 2016
Temperature / Humidity 24 deg. C / 44 % RH
Engineer Keisuke Kawamura

Mode Tx

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11211969H
Page : 34 of 37
Issued date : May 19, 2016
FCC ID : ZVI-UDBP-RF8

APPENDIX 2: Test instruments

Test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-02	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	RE/CE	2015/07/01 * 12
MOS-22	Thermo-Hygrometer	Custom	CTH-201	0003	RE/CE	2016/01/21 * 12
MJM-14	Measure	KOMELON	KMC-36	-	RE/CE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE/CE	-
MSA-14	Spectrum Analyzer	Agilent	E4440A	MY48250080	RE/CE	2015/10/07 * 12
MHA-06	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	254	RE	2016/02/29 * 12
MCC-168	Microwave Cable	Junkosha	MWX221	1408S016(1m) / 1409S492(5m)	RE	2015/09/24 * 12
MPA-10	Pre Amplifier	Agilent	8449B	3008A02142	RE	2016/01/19 * 12
MHA-02	Horn Antenna 18-26.5GHz	EMCO	3160-09	1265	RE	2016/02/29 * 12
MMM-01	Digital Tester	Fluke	FLUKE 26-3	78030611	CE/RE	2015/08/19 * 12
MHF-25	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	RE	2015/09/16 * 12
MBA-03	Biconical Antenna	Schwarzbeck	BBA9106	1915	RE	2015/10/11 * 12
MLA-21	Logperiodic Antenna(200-1000MH z)	Schwarzbeck	VUSLP9111B	911B-190	RE	2016/01/30 * 12
MPA-09	Pre Amplifier	Agilent	8447D	2944A10845	RE	2015/09/04 * 12
MLS-23	LISN(AMN)	Schwarzbeck	NSLK8127	8127-729	CE(EUT)	2015/07/10 * 12
MCC-13	Coaxial Cable	Fujikura	3D-2W(12m)/5D-2 W(5m)/5D-2W(0.8 m)/5D-2W(1m)	-	CE	2016/02/08 * 12
MAT-65	Attenuator(13dB)	JFW Industries, Inc.	50FP-013H2 N	-	CE	2016/01/14 * 12
MMM-07	DIGITAL HITESTER	Hioki	3805	051201150	AT	2016/01/18 * 12
MOS-19	Thermo-Hygrometer	Custom	CTH-201	0001	AT	2015/12/08 * 12
MPM-13	Power Meter	Anritsu	ML2495A	0824014	AT	2015/11/11 * 12
MPSE-18	Power sensor	Anritsu	MA2411B	0738174	AT	2015/11/11 * 12
MSA-16	Spectrum Analyzer	Agilent	E4440A	MY46186390	AT	2016/02/08 * 12
MAT-23	Attenuator(10dB) 1-18GHz	Orient Microwave	BX10-0476-00	-	AT	2016/03/18 * 12
MCC-163	Microwave Cable	Murata	MXGS83RK3000	-	AT	2015/11/10 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN