Combinazioni lineari

Sottospazi di \mathbb{R}^n (finitamente generati)

Sommario

Combinazioni lineari

Sottospazi di \mathbb{R}^n (finitamente generati)

Combinazioni lineari di vettori

Definizioni

Dato

$$S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k} \subseteq \mathbb{R}^n$$

• un vettore $\mathbf{w} \in \mathbb{R}^n$ è combinazione lineare dei vettori di S iff esistono $x_1, x_2, \ldots, x_k \in \mathbb{R}$ tali che

$$\mathbf{w} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \cdots + x_k \mathbf{v}_k = \sum_{j=1}^k x_j \mathbf{v}_j.$$

Combinazioni lineari di vettori

Definizioni

Dato

$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$$

▶ un vettore $\mathbf{w} \in \mathbb{R}^n$ è *combinazione lineare* dei vettori di S iff esistono $x_1, x_2, \ldots, x_k \in \mathbb{R}$ tali che

$$\mathbf{w} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \cdots + x_k \mathbf{v}_k = \sum_{j=1}^{m} x_j \mathbf{v}_j.$$

$$\mathcal{L}(S) = \{ \mathbf{w} : \mathbf{w} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_k \mathbf{v}_k, \text{ con } \mathbf{v}_k, \dots, \mathbf{v}_k \in \mathbb{R} \}$$

Combinazioni lineari di vettori

Definizioni

Dato

$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$$

sa solo se

▶ un vettore $\mathbf{w} \in \mathbb{R}^n$ è *combinazione lineare* dei vettori di S iff esistono $x_1, x_2, \ldots, x_k \in \mathbb{R}$ tali che

$$\mathbf{w} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_k \mathbf{v}_k = \sum_{j=1}^K x_j \mathbf{v}_j.$$

$$\mathcal{L}(S) = \{ \mathbf{w} : \mathbf{w} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_k \mathbf{v}_k, \text{ con } x_1, \dots, x_k \in \mathbb{R} \}$$

▶ Possiamo dire che $\mathbf{w} \in \mathcal{L}(S)$ se, costruendo una matrice \mathbf{A}_S le cui colonne sono i vettori $\mathbf{v}_1, \dots, \mathbf{v}_k$, risulta che il sistema

$$\mathbf{A}_{S}\mathbf{x} = \mathbf{w} \sum_{j=1}^{k} x_{j}\mathbf{v}_{j} = \mathbf{w} \qquad \mathbf{A}_{S} = \begin{pmatrix} | & | & \dots & | \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \dots & \mathbf{v}_{k} \\ | & | & \dots & | \end{pmatrix}$$

ammette soluzioni.

Esempio.

$$S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$$
 $\mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 1 \\ \frac{1}{2} \\ 2 \end{pmatrix},$

▶ Preso $\mathbf{w} = (w_1, w_2, w_3)^T$ risulta $\mathbf{w} \in \mathcal{L}(S)$ se e solo se esistono $x_1, x_2, x_3 \in \mathbb{R}$ tali che

$$x_{1}\begin{pmatrix}2\\1\\0\end{pmatrix}+x_{2}\begin{pmatrix}0\\0\\1\end{pmatrix}+x_{3}\begin{pmatrix}1\\\frac{1}{2}\\2\end{pmatrix}=\begin{pmatrix}w_{1}\\w_{2}\\w_{3}\end{pmatrix}$$
Incogh (6)

Combinazioni lineari

Esempio.

$$S = \{\textbf{v}_1, \textbf{v}_2, \textbf{v}_3\} \qquad \textbf{v}_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \quad \textbf{v}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad \textbf{v}_3 = \begin{pmatrix} 1 \\ \frac{1}{2} \\ 2 \end{pmatrix},$$

▶ Preso $\mathbf{w} = (w_1, w_2, w_3)^T$ risulta $\mathbf{w} \in \mathcal{L}(S)$ se e solo se esistono $x_1, x_2, x_3 \in \mathbb{R}$ tali che

$$\begin{cases} 2x_1 + x_3 = w_1 \\ x_1 + \frac{1}{2}x_3 = w_2 \\ x_2 + 2x_3 = w_3 \end{cases}$$

$$S = \{\textbf{v}_1, \textbf{v}_2, \textbf{v}_3\} \qquad \textbf{v}_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \quad \textbf{v}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad \textbf{v}_3 = \begin{pmatrix} 1 \\ \frac{1}{2} \\ 2 \end{pmatrix},$$

▶ Preso $\mathbf{w} = (w_1, w_2, w_3)^T$ risulta $\mathbf{w} \in \mathcal{L}(S)$ se e solo se esistono $x_1, x_2, x_3 \in \mathbb{R}$ tali che

$$\underbrace{\begin{pmatrix} 2 & 0 & 1 \\ 1 & 0 & \frac{1}{2} \\ 0 & 1 & 2 \end{pmatrix}}_{\mathbf{A}_{S}} \underbrace{\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}}_{\mathbf{x}} = \underbrace{\begin{pmatrix} w_{1} \\ w_{2} \\ w_{3} \end{pmatrix}}_{\mathbf{w}}$$

1-130/vo

Combinazioni lineari

Indipendenza lineare

▶ I vettori di

$$S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$$

sono detti tra loro linearmente indipendenti iff

$$\sum_{j=1}^k x_j \mathbf{v}_j = \mathbf{0} \implies x_1 = x_2 = \dots = x_k = 0.$$

(altrimenti sono detti linearmente dipendenti.)

ightharpoonup Cioè: il sistema $\mathbf{A}_S \mathbf{x} = \mathbf{0}$ ha l'unica soluzione

$$x_1 = x_2 = \cdots = x_k = 0.$$

- ► Cioè (2): l'unico modo per combinare linearmente i vettori di S nel vettore nullo è di usare coefficienti <u>tutti nulli</u>.
- ► S è detto anche insieme libero.

Osservazioni

Proprietà.

Vale che:

- (i) Se S è un insieme libero, allora $\mathbf{0} \notin S$. (ii) Se S è un insieme libero e $S' \subseteq S$, allora S' è un insieme libero.
 - (iii) Se S_1 , S_2 sono insiemi liberi, $S_1 \cap S_2$ è un insieme libero.
 - (i) Per assurdo: se $\mathbf{0} \in S$ allora

$$\sum_{j=1}^{k} x_j \mathbf{v}_j = \mathbf{0} \qquad \text{con } x_1 \neq 0, x_2 = \dots = x_k = 0.$$

(ii) Per assurdo: se S' non è libero esistono x'_i tali che

$$\sum_{\mathbf{v}_j \in S'} x_j' \mathbf{v}_j = \mathbf{0}$$
 x_j' non tutti nulli, $\mathbf{v}_j \in S'$

allora:
$$\sum_{\mathbf{v}_i \in S} x_j \mathbf{v}_j = \mathbf{0} \text{ con } x_j = \begin{cases} x_j = x_j' & \text{se } \mathbf{v}_j \in S' \\ x_j = 0 & \text{se } \mathbf{v}_j \in S \setminus S' \end{cases}$$

(iii) Caso particolare di (ii).

Definizioni equivalenti

Proprietà. Dato $S = \{\mathbf{v}_1, \dots, k_k\}$, sono condizioni equivalenti:

- (i) $x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_k \mathbf{v}_k = \mathbf{0} \implies x_1 = x_2 = \dots = x_k = 0.$
- (ii) $\mathbf{0} \notin S$, e per nessun nessun \mathbf{v}_j risulta $\mathbf{v}_j \in \mathcal{L}(S \setminus {\{\mathbf{v}_j\}})$.
- (iii) ogni $\mathbf{w} \in \mathcal{L}(S)$ si esprime con un'unica combinazione lineare $\mathbf{w} = \sum_{j=1}^k x_j \mathbf{v}_j$ (i coefficienti x_j sono univocamente determinati).

(i)
$$\Longrightarrow$$
 (ii). $\mathbf{0} \notin S$. Se per assurdo $\mathbf{v}_j = \sum_{\mathbf{v}_p \in S \setminus \{\mathbf{v}_j\}} x_p \mathbf{v}_p$: $\bigvee_{\mathbf{v}_p \in S \setminus \{\mathbf{v}_j\}} x_p \mathbf{v}_p$. $\bigvee_{\mathbf{v}_p \in S \setminus \{\mathbf{v}_j\}} x_p \mathbf{v}_p$.

(ii)
$$\Rightarrow$$
 (iii). Se per assurdo $\mathbf{w} = \sum_{j=1}^{k} x_j \mathbf{v}_j$, $\mathbf{w} = \sum_{j=1}^{k} y_j \mathbf{v}_j$ con $(x_1, \dots, x_k) \neq (y_1, \dots, y_k)$ segue:
$$\sum_{j=1}^{k} x_j \mathbf{v}_j = \sum_{j=1}^{k} y_j \mathbf{v}_j \implies \sum_{j=1}^{k} (x_j - y_j) \mathbf{v}_j = \sum_{j=1}^{k} z_j \mathbf{v}_j = \mathbf{0}.$$

Definizioni equivalenti

Se per assurdo $z_1 \neq 0$:

$$\mathbf{v}_1 = \sum_{j=2}^k -rac{z_j}{z_1}\mathbf{v}_j \implies \mathbf{v}_1 \in \mathcal{L}(\mathbf{v}_2,\ldots,\mathbf{v}_k) \lor \mathbf{v}_1 = \mathbf{0}.$$

Quindi
$$z_1=0$$
. Analogamente si dimostra $z_2,\ldots,z_k=0$. Se $z_2\neq 0$:

$$\sum_{j=2}^k z_j \mathbf{v}_j = \mathbf{0} \implies \mathbf{v}_2 = \sum_{j=3}^k -\frac{z_j}{z_2} \mathbf{v}_j \implies \mathbf{v}_2 \in \mathcal{L}(\mathbf{v}_3,\ldots,\mathbf{v}_k) \vee \mathbf{v}_2 = \mathbf{0}.$$

(iii) \Longrightarrow (i). Banale.

Mannario

Combinazioni linear

Sottospazi di \mathbb{R}^n (finitamente generati)

$$ightharpoonup V = \mathcal{L}(S)$$
 con

$$S = {\mathbf{v}_1, \ldots, \mathbf{v}_k} \subseteq \mathbb{R}^n$$
.

- Le operazioni di somma vettoriale e di prodotto numero-vettore sono interne a V.
 - (i) Se $\mathbf{u}, \mathbf{w} \in V$, si ha ancora $(\mathbf{u} + \mathbf{w}) \in V$.
 - (ii) Se $\mathbf{w} \in V$, per qualunque $a \in \mathbb{R}$ si ha ancora $a\mathbf{w} \in V$.

$$\mathbf{u} + \mathbf{w} = \sum_{j=1}^{k} x_j \mathbf{v}_j + \sum_{j=1}^{k} y_j \mathbf{v}_j = \sum_{j=1}^{k} (x_j + y_j) \mathbf{v}_j$$
$$a\mathbf{w} = a \sum_{j=1}^{k} y_j \mathbf{v}_j = \sum_{j=1}^{k} (ay_j) \mathbf{v}_j$$

Sottospazi

- $ightharpoonup \mathcal{L}(S)$ è un sottospazio di \mathbb{R}^n .
- ▶ Gli elementi di *S* sono detti *generatori* di *V*, e *S* è un suo *insieme generatore*.
- ▶ Uno spazio ha infiniti possibili insiemi generatori.

Sottospazi

$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}, \ S' = \{\mathbf{v}_2, \dots, \mathbf{v}_k\}$$

Proprietà. Se $\mathbf{v}_1 \in \mathcal{L}(S')$, allora $\mathcal{L}(S) = \mathcal{L}(S')$.

- $\blacktriangleright \mathcal{L}(S') \subseteq \mathcal{L}(S)$. $\bullet \circ \mathsf{WV}_{1}$
- $\mathbf{v}_1 = \sum_{j=2}^k x_j \mathbf{v}_j (3)$
- ▶ Sia $\mathbf{w} \in \mathcal{L}(S)$.

$$\mathbf{w} = \sum_{j=1}^{k} y_j \mathbf{v}_j =$$

$$= y_1 \mathbf{v}_1 + \sum_{j=2}^{k} y_j \mathbf{v}_j =$$

$$= y_1 \sum_{j=2}^{k} x_j \mathbf{v}_j + \sum_{j=2}^{k} y_j \mathbf{v}_j =$$

$$= \sum_{j=2}^{k} (y_1 x_j + y_j) \mathbf{v}_j \implies \mathbf{w} \in \mathcal{L}(S').$$

• Quindi $\mathcal{L}(S) \subseteq \mathcal{L}(S')$.

Sottospazi

Concetti e risultati importanti

- Un insieme generatore di un sottospazio V è detto base di V se e solo se è anche un insieme libero.
- ► Tutte le (infinite) basi di un sottospazio V hanno la stessa cardinalità.
 - La cardinalità delle basi di V è detta dimensione diV.

Osservazione. Da qualunque insieme di generatori si può sempre estrarre una base dello spazio generato. (Secondo definizione) $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ $V = \mathcal{L}(S)$

```
S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \qquad \mathbf{v} = \infty \{S\}
: Poni \ B := \emptyset;
```

```
1: Poni B := \emptyset;

2: for \langle \text{ogni } \mathbf{v}_i \in S \rangle do

3: if \mathbf{v}_i \neq \mathbf{0} e \mathbf{v}_i \notin \mathcal{L}(B) then

4: Poni B := B \cup \{\mathbf{v}_i\};

5: else

6: Scarta \mathbf{v}_i;

7: end if

8: end for
```

Cardinalità delle basi

Teorema. Data una base B di $V = \mathcal{L}(B)$ e un vettore $\mathbf{w} \in V \setminus \{0\}$, esiste un <u>unico</u> elemento $\mathbf{v} \in B$ tale che

$$(B \cup \{\mathbf{w}\}) \setminus \{\mathbf{v}\})$$
 sia una base di V .

- ► Sia $B = \{ \mathbf{v}_1, \dots, \mathbf{v}_k \}$.
- ▶ $B \cup \{\mathbf{w}\}$ genera $V := \mathcal{L}(B \cup \{\mathbf{w}\})$.
- ► Metodo degli scarti successivi su

$$\mathbf{w}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k.$$

- ▶ w non viene scartato. > 9674 € (114)
- ▶ Viene scartato un $\mathbf{v}_p \in B$.

Cardinalità delle basi

Unicità dello scarto.

 \triangleright Se per assurdo un altro \mathbf{v}_q venisse scartato:

Bisulta
$$\mathbf{v}_p = x_0 \mathbf{w} + \sum_{j=1}^{p-1} x_j \mathbf{v}_j \quad (x_0 \neq 0).$$

Risulta $\mathbf{v}_p = x_0 \mathbf{w} + \sum_{j=1}^{p-1} x_j \mathbf{v}_j \quad (x_0 \neq 0).$

- Risulta $\mathbf{v}_q = y_0 \mathbf{w} + \sum_{j=1}^{p-1} y_j \mathbf{v}_j + \sum_{j=p+1}^{q-1} y_j \mathbf{v}_j \quad (y_0 \neq 0)$
- ► Alloraticate W

$$\mathbf{w} = \sum_{j=1}^{p-1} -\frac{x_j}{x_0} \mathbf{v}_j + \frac{1}{x_0} \mathbf{v}_p$$

$$\mathbf{w} = \sum_{j=1}^{p-1} -\frac{y_j}{y_0} \mathbf{v}_j + \sum_{j=p+1}^{q-1} -\frac{y_j}{y_0} \mathbf{v}_j + \frac{1}{y_0} \mathbf{v}_q$$

ASSURDO

Cardinalità delle basi

Teorema. Tutte le basi di $V = \mathcal{L}(S)$ hanno la stessa cardinalità.

- ► Sia $B_1 = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$, $B_2 = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_q\}$.
- Per assurdo: p < q.
- Usando il metodo degli scarti successivi:

$$\mathbf{w}_1, \mathbf{v}_1, \dots, \mathbf{v}_p \rightarrow \mathbf{w}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$$
 $\mathbf{w}_2, \mathbf{w}_1, \mathbf{v}_2, \dots, \mathbf{v}_p \rightarrow \mathbf{w}_2, \mathbf{w}_1, \mathbf{v}_3, \dots, \mathbf{v}_p$
 $\cdots \cdots \cdots \cdots \rightarrow \mathbf{w}_p, \dots, \mathbf{w}_1$
wase di V . ASSURDO.

 $\mathbf{w}_p, \dots, \mathbf{w}_1$ base di V. ASSURDO.

Matrici di trasformazione, sottospazi e basi

▶ Siano $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$, **T** una matrice di trasformazione $n \times n$.

Proprietà.

- (i) $\mathbf{v}_1, \dots, \mathbf{v}_k$ sono linearmente indipendenti se e solo se $\mathbf{T}\mathbf{v}_1, \dots, \mathbf{T}\mathbf{v}_k$ sono linearmente indipendenti.
- (ii) $\mathbf{w} \in \mathcal{L}(\{\mathbf{v}_1, \dots, \mathbf{v}_k\})$ se e solo se $\mathbf{T}\mathbf{w} \in \mathcal{L}(\{\mathbf{T}\mathbf{v}_1, \dots, \mathbf{T}\mathbf{v}_k\})$.

Riduzione di Gauss Jordan e basi

Riduzione di Gauss-Jordan

 $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \to \mathbf{A}_S$. L'indipendenza lineare tra colonne è legata al sistema

$$\mathbf{A}_{S}\mathbf{x}=\mathbf{0}.$$

Nomenclatura. $\mathcal{L}(S)$ è lo spazio delle colonne della matrice \mathbf{A}_{S} .

$$(\mathbf{A}_{S} \mid \mathbf{0}) \rightarrow (\mathbf{A}_{S}' \mid \mathbf{0}) = \begin{pmatrix} 1 & 0 & \dots & 0 & \alpha_{1,k+1} & \dots & \alpha_{1n} & 0 \\ 0 & 1 & \dots & 0 & \alpha_{2,k+1} & \dots & \alpha_{2n} & 0 \\ \dots & \dots & \dots & \dots & \vdots \\ 0 & 0 & \dots & 1 & \alpha_{k,k+1} & \dots & \alpha_{kn} & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & 0 \end{pmatrix} .$$

$$\mathbf{D}_{ind_{f}} = \mathbf{A}_{ind_{f}} = \mathbf{A}_{ind$$

- dipendenze lineari e si estrae una base dello spazio delle colonne.
- ▶ La dimensione dello spazio delle colonne di una matrice A è detto rango di $\mathbf{A} - \rho(\mathbf{A})$.
- $\triangleright \rho(\mathbf{A})$ corrisponde anche al numero di equazioni non ridondanti/contraddittorie di ogni sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Soluzioni di base di un sistema di equazioni lineari

Sistema ridotto (senza equazioni contraddittorie)

$$(\mathbf{A} \mid \mathbf{b}) \to (\mathbf{A}' \mid \mathbf{b}') = \begin{pmatrix} 1 & 0 & \dots & 0 & \alpha_{1,k+1} & \dots & \alpha_{1n} & \beta_1 \\ 0 & 1 & \dots & 0 & \alpha_{2,k+1} & \dots & \alpha_{2n} & \beta_2 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & \alpha_{k,k+1} & \dots & \alpha_{kn} & \beta_k \\ \hline 0 & 0 & \dots & 0 & 0 & \dots & 0 & \beta_{k+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & \beta_{k+1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & \beta_m \end{pmatrix} .$$

$$\text{def workship} \begin{cases} x_1 = \beta_1 - \sum_{j=k+1}^n \alpha_{1j}x_j \\ x_2 = \beta_2 - \sum_{j=k+1}^n \alpha_{2j}x_j \\ \dots & \dots & \dots \\ x_k = \beta_k - \sum_{j=k+1}^n \alpha_{kn}x_j \end{cases}$$

- $ightharpoonup x_1, \ldots, x_k$ variabili di base; x_{k+1}, \ldots, x_n variabili fuori base.
- ► La soluzione

$$\begin{array}{ccc} x_i = \beta_k & & i = 1, \dots, k \\ \hline x_i = 0 & & i = k+1, \dots, n \end{array}$$

è l'unica soluzione che ha $x_{k+1}, \ldots, x_n = 0$ ed è chiamata <u>soluzione di</u> base (associata alle colonne $1, \ldots, k$) del sistema.

