	UBC 150	c1 344 Gai	me Theory	
	Deriving	mixed Nash	equilibria	
	Rik Blok	mixed Nash and Christo	ph Hauert	
- 44				
Outline:	general 2x2 maximize es 1) graphi 2) standa 3) end po	payoff m	atrix	
	· maximize e	spected uti	lity	
	1) graphi	cally	1.	
	2) standa	ard optimize	ation	
	3) end po	oints shorte	uľ	
	· interpretation	h		
(20)	2x2 parett	matrice:		
Seneral	2×2 payoff call Nash's exis	tance theore	m: even f	Birth
1/20	ame has at le	east one Na	sh paulibrium	n (NL)
J	me nos ar r	0/16/14	of equilibring.	(114)
" mix	Chrissy A, & b, B C, y d, S	Rikky plays	I with prob.	p, else II
		Chrissy 11	/ u'	9 " 2.
Payoffs:	Chrissy 1 2 a, & b, B c, y d, S	Probabilitie	ς(!
1	Chrissy		Chr.	ssy
	1 2		19	1-9
p., 1	a, x, b, β	p.// p	pg 1	0(1-9)
KIKKY TT		KIKKY	1 (1 10) (1	10/10/1
41	c, 8 a, 0	1-12	1 (1-10)9 (1-	(1-q)
o evno-	tal atilities.			
· R:LL	1/20 /1= naa	+ 10/1-1/6+	(1-10)ac +(1-	n)(1-a) d
11/1/	ted utilities: y: UR= pqa	יפקרוקי	(1)75 (1)	
	ssy: Uc=pgx			
	/ - / /	1 - 1.	PIA	

- when $q = q^*$ Rikky has no preference for p (indifferent)
- · when $q \neq q^*$ Rikky always has a clear preference,
- p=0 or p=1

 Exercise: do same derivation for Chrissy.

 Q: What value of p* makes Chrissy indifferent?

A:
$$p^* = \frac{\gamma - \delta}{\beta - \alpha + \gamma - \delta}$$

Maximize Rikky's expected utility: 2) Standard optimization

Aside:
$$y = 0$$

$$\frac{dy}{dx} = 0$$

· Rikky can optimize UR by requiring zero slope as a function of p:

$$\frac{dU_R}{dp} = qa + (l-q)b - qc - (l-q)d$$

$$= 0 \longrightarrow q^* = \frac{b-d}{c-a+b-d}$$

· is it a maximum or minimum? A: Both, because UR = constant when q = q*. Doesn't depend on p. when q=q* Rikky is indifferent—any p gives same payoff

· Exercise: repeat for Chrissy.
Q: what is condition that optimizes Chrissy's A: Chrissy becomes indifferent when $p^{+} = \frac{\gamma - \delta}{\beta - \alpha + \gamma - \delta}$ Maximize Rikky's expected utility:
3) Endpoints shortcut · Chrissy chooses q* to make Rikky indifferent to pure strategies, p=0 or p=1 $U_{R}(0,q^{*}) = U_{R}(1,q^{*})$ $0+0+q^*c+(1-q^*)d=q^*a+(1-q^*)b+0+0$ · Exercise: Do same derivation to find p*. -> works because if Un the same at endpoints (p=0,1) then same for all p. Interpretation: · Chrissy can choose 9* to make Rikky indifferent
and Rikky 11 p* 11 Chrissy 11

—> Rikky should choose 9=9*?

No! 9 is Chrissy's strategy!

page 5	(p* a*) is a mixed NF because both
,	(p*,9*) is a mixed NE because both are indifferent (no incentive to switch)
Summar	e general 2×2 payoff matrix mixed strategies how to maximize expected utility 1) graphical 2) standard optimization 3) end points shortcut mixed NE
	· mixed strategies
	· how to maximize expected utility
	1) graphical
	2) standard optimization
	3) end points shortcut
	· mixed NE
	· twist : playing mixed NF strategy
	· twist: playing mixed NE strategy makes other player indifferent
	makes the player mounterent