Detecting Cancer Metastases on Gigapixel Pathology Images

Applied Deep Learning - Fall '19 Ankita Agrawal (aa4229), Sarang Gupta (sg3637)

Table Of Contents

Detecting Cancer Metastases

- Problem Statement And Motivation
- 2. Description of Data
 - Data Source
 - Dataset At Different Zoom Level
- 3. Methodology
 - Data Generation, Train Test Split, Metrics
 - Flowchart
- 4. Modelling
 - Experimentation
 - InceptionV3 As Base Model
 - Model Configuration
 - Results
- 5. Generating Heatmap
 - Test Image 1/2/3
- 6. Model Usage And Discussion
- 7. Limitations and Challenges
- 8. Future Scope

Problem Statement And Motivation

Detecting Cancer Metastases

- Breast cancer is a most common and deadliest cancer spread across the world
- A key challenge for pathologists in assessing lymph node status is the large area of tissue that has to be examined to identify metastases which is both time intensive and sensitive process
- Sometimes the pathologists might even miss small metastases
- The goal of our solution is to create a automated detection tool to detect metastases in whole-slide images of lymph node sections from female breasts using deep learning

3

Description of Data

Data Source

Mask Image

- Dataset comprises of whole slide images of sentinel lymph nodes of breast cancer patients
- Original dataset comprised of 400 images. For computational simplicity we have subsampled 22 images
- Each of these 22 images have a mask which points to cancer cells located in the slide
- Each slide image is ~2GB and mask is ~300MB
- Each slide image can also be magnified up to
 40x
- As per the different zoom level each slide can be categorized into 8 levels with 0 being the highest resolution (40x) and 7 being the lowest resolution

Description of Data

Dataset At Different Zoom Level

Healthy Cell

Tumor Cell

Level 1

Tumor Cell

Level 3

Healthy Cell

Tumor Cell

Level 4

Tumor Cell

5

Data Generation, Train Test Split, Metrics

Data Generation: Every image is processed using **open slide** library. Each image is further divided into smaller patches of image size **(299 x 299)** using a stride of 299 at zoom levels (level 0 - 5)

For ex:

- For levels 0, 1, 2 the image resolution is very high resulting in exponential no of patches, hence these patches are randomly sub-sampled
- Data sanity is maintained by selecting patches with at least 30% tissue cells

Data Ingestion: Image Data Generator by Tensor FLow is used which generates batch of images (**batch size = 32** here) with real time data augmentation

The generator directly reads the image files from the file directory

Train Test Split

- Model is trained on 18 images and tested on 3 images
- The validation data comprises of random 20% patches that are generated using 18 training images

- Precision, Recall and AUC are used to judge model capability given that it is classification problem
- Heat Map depicting prediction probability is an another way which is used to test our model performance

Data Generation, Train Test Split, Metrics

Data Generation: Every image is processed using **open slide** library. Each image is further divided into smaller patches of image size **(299 x 299)** using a stride of 299 at zoom levels (level 0 - 5)

For ex:

- For levels 0, 1, 2 the image resolution is very high resulting in exponential no of patches, hence these patches are randomly sub-sampled
- Data sanity is maintained by selecting patches with at least 30% tissue cells

Data Ingestion: Image Data Generator by Tensor FLow is used which generates batch of images (**batch size = 32** here) with real time data augmentation

The generator directly reads the image files from the file directory

Train Test Split

- Model is trained on 18 images and tested on 3 images
- The validation data comprises of random 20% patches that are generated using 18 training images

- Precision, Recall and AUC are used to judge model capability given that it is classification problem
- Heat Map depicting prediction probability is an another way which is used to test our model performance

Data Generation, Train Test Split, Metrics

Data Generation: Every image is processed using **open slide** library. Each image is further divided into smaller patches of image size **(299 x 299)** using a stride of 299 at zoom levels (level 0 - 5)

For ex:

- For levels 0, 1, 2 the image resolution is very high resulting in exponential no of patches, hence these patches are randomly sub-sampled
- Data sanity is maintained by selecting patches with at least 30% tissue cells

Data Ingestion: Image Data Generator by Tensor FLow is used which generates batch of images (**batch size = 32** here) with real time data augmentation

The generator directly reads the image files from the file directory

Train Test Split

- Model is trained on 18 images and tested on 3 images
- The validation data comprises of random 20% patches that are generated using 18 training images

- Precision, Recall and AUC are used to judge model capability given that it is classification problem
- Heat Map depicting prediction probability is an another way which is used to test our model performance

Data Generation, Train Test Split, Metrics

Data Generation: Every image is processed using **open slide** library. Each image is further divided into smaller patches of image size **(299 x 299)** using a stride of 299 at zoom levels (level 0 - 5)

For ex:

- For levels 0, 1, 2 the image resolution is very high resulting in exponential no of patches, hence these patches are randomly sub-sampled
- Data sanity is maintained by selecting patches with at least 30% tissue cells

Data Ingestion: Image Data Generator by Tensor FLow is used which generates batch of images (**batch size = 32** here) with real time data augmentation

The generator directly reads the image files from the file directory

Train Test Split

- Model is trained on 18 images and tested on 3 images
- The validation data comprises of random 20% patches that are generated using 18 training images

- Precision, Recall and AUC are used to judge model capability given that it is classification problem
- Heat Map depicting prediction probability is an another way which is used to test our model performance

Data Generation, Train Test Split, Metrics

Data Generation: Every image is processed using **open slide** library. Each image is further divided into smaller patches of image size **(299 x 299)** using a stride of 299 at zoom levels (level 0 - 5)

For ex:

- For levels 0, 1, 2 the image resolution is very high resulting in exponential no of patches, hence these patches are randomly sub-sampled
- Data sanity is maintained by selecting patches with at least 30% tissue cells

Data Ingestion: Image Data Generator by Tensor FLow is used which generates batch of images (**batch size = 32** here) with real time data augmentation

The generator directly reads the image files from the file directory

Train Test Split

- Model is trained on 18 images and tested on 3 images
- The validation data comprises of random 20% patches that are generated using 18 training images

- Precision, Recall and AUC are used to judge model capability given that it is classification problem
- Heat Map depicting prediction probability is an another way which is used to test our model performance

Data Generation, Train Test Split, Metrics

Data Generation: Every image is processed using **open slide** library. Each image is further divided into smaller patches of image size **(299 x 299)** using a stride of 299 at zoom levels (level 0 - 5)

For ex:

- For levels 0, 1, 2 the image resolution is very high resulting in exponential no of patches, hence these patches are randomly sub-sampled
- Data sanity is maintained by selecting patches with at least 30% tissue cells

Data Ingestion: Image Data Generator by Tensor FLow is used which generates batch of images (**batch size = 32** here) with real time data augmentation

The generator directly reads the image files from the file directory

Train Test Split

- Model is trained on 18 images and tested on 3 images
- The validation data comprises of random 20% patches that are generated using 18 training images

- Precision, Recall and AUC are used to judge model capability given that it is classification problem
- Heat Map depicting prediction probability is an another way which is used to test our model performance

Flowchart

Experimentation

Experiment at different zoom level

Zoom Level	Tumor Patches	Healthy Patches	AUC
1	6507	5925	0.9598
2	2006	5227	0.8624
3	16257	3143	0.8607
4	3982	1130	0.7413
3, 4, 5	974	460	0.7245

Experiment at a Model Level:

- Simple Architecture: The baseline model is built using a simple neural network using 2 convolutional layers with max pooling and dropout. This model is underfitting so we moved onto a complex network
- 2. **VGG16:** We experiment with pretrained model VGG16. This model gives a lesser recall and hence is not the best model to train on this data
- InceptionV3: The best performing model is pretrained model on 'imagenets' weight. This model outperforms other models in terms of precision, recall and auc

We experiment with this model in following ways

Only on Level 1, Only on Level 2, and On Level 3, 4 and

5. The results of which can be seen on the table here

InceptionV3 As Base Model

InceptionV3 model is made up of symmetric and asymmetric building blocks, including convolutions, average pooling, max pooling, concats, dropouts, and fully connected layers. Batchnorm is used extensively throughout the model and applied to activation inputs.

- Pre trained Inception Model with 'imagenets' weights are fine tuned by retraining
- The top layer of InceptionV3 model is replaced by GMP layer and Dense layer with sigmoid activation on 1 node (binary classification problem)
- Learning Rate of 0.001 is used with RMSprop optimizer

Model Configuration

Hyperparameters

Optimizer	RMSProp	
Learning Rate	0.0001	
Rho	0.95	
Epochs	10	
Batch Size	32	

Callback

```
monitor='val_auc',
save_best_only=True, mode='auto',
save weights only=False
```

Summary

Model: "sequential"

Layer (type)	Output	Shape	Param #
inception_v3 (Model)	(None,	8, 8, 2048)	21802784
global_average_pooling2d (Gl	(None,	2048)	0
dense (Dense)	(None,	1)	2049
Total params: 21,804,833 Trainable params: 21,770,401 Non-trainable params: 34,432			

Class Weights

```
weight_for_0 = (1 / neg_count)*(neg_count+pos_count)/2.0
weight_for_1 = (1 / pos_count)*(neg_count+pos_count)/2.0
class weight = {0: weight for 0, 1: weight for 1}
```

Results

Level 1

Best AUC: 0.9598 **Precision:** 0.9760 **Recal:** 0.9465

Predicted 1 0 1 1221 69 0 30 1144

Level 2

Best AUC: 0.8624 **Precision:** 0.8814

Recal: 0.5213

		1	0	
	1	208	191	
I	0	28	1013	

Predicted

Generating Heatmap

Test Image 1

Predictions are done on individual 299 x 299 patches fed into the trained model. Output of the final dense layer are combined and plotted to generate heatmap.

Input

Output

Actual

Generating Heatmap

Test Image 2

Predictions are done on individual 299 x 299 patches fed into the trained model. Output of the final dense layer are combined and plotted to generate heatmap.

Input

Output

Actual

Generating Heatmap

Test Image 3

Predictions are done on individual 299 x 299

patches fed into the trained model. Output of the final dense layer are combined and plotted to generate heatmap.

Output

Actual

Level 2

Model Usage And Discussion

An Assistive tool not a Replacement

- Our model can act as an assistive tool for pathologists
- The success of our model (high precision, recall and auc) holds a great promise to reduce the workload of the pathologists while at the same time **reduce the subjectivity in diagnosis**
- This model is of a high clinical relevance especially for organizations with limited resource capabilities
- It can be placed as a **first line of defence to help the smaller organizations** diagnose the underlying disease timely if it may exist

Limitations And Challenges

An Assistive tool not a Replacement

- Each image is in Gigabytes with upto 10⁶ x 10⁶ pixels which are difficult to process at once
- Extracting patches on zoom level 0 for a single images takes about ~40-60 minutes Training requires high computational power. It would take upto 3-6 hours to train a dataset of 15k images on a single zoom level
- Due to lack of accessibility to private computing resources on cloud, our models are trained using publicly available Google Colab
- Colab only provides ~10 hours of GPU access in a day which incurred lot of wait time
- Number of **read** and **write operation** on a Google Drive directory are also limited. This costed us additional efforts and time on creating duplicate directories for seamless model training
- It took several iterations of model **training** and **fine tuning** to figure out the **right threshold values** for the minimum tissue cell percentage. Patches below the threshold were omitted out of the dataset

Future Scope

Data for Good

- Scale this model to train with a larger dataset and predict on additional unseen images
- Build an end-to-end pipeline or web tool
 where doctors can input the patient's slide
 image and receive a prediction and mask
 image all in real time. This would help and
 guide the doctors towards a better inspection
- Create awareness about this tool and technology in the cancer community. Many might think it to be unreliable thus it is important to spread this tool as an automated assistance which comes at no cost and overhead

Acknowledgement

We would like to extend our gratitude to our course instructor **Prof. Josh Gordon** and the TAs for their support and guidance throughout the course of the semester and the project

References

- https://arxiv.org/abs/1703.02442
- https://camelyon16.grand-challenge.org/Home/
- https://openslide.org/
- https://github.com/openslide/openslide-python/ tree/master/examples/deepzoom

