date: thursday, march 14, 2024 Special Domains: UFDs During the next few lectures, learn about special classes of domain's. Assumptions R is a commutative ring with identity 1_R and D is an integral domain a divides b, written all if b = ac for some c aeR is a unit if exists ueR such that au=1 a and b are associates if exists a unit u such that a=ub p is irreducible if whenever p=ab, a or b is a unit p is a prime if whenever plab, then pla or plb Lemma: If peD is prime, then p is irreducible. Proof Suppose p=ab. So plab. Because p is prime, pla or plb. If pla, a=pc. Thus p=pcb. Can cancel p since D a domain. So 1=cb. So b is a unit. Same result if plb. eg. If peD is irreducible, may not be prime. In $\mathbb{Q}[x^2, xy, y^2]$ <- all polynomials in x^2, xy, y^2 . We have xy is irreducible (can't factor into two degree 1 terms). But xy is not prime since $(xy)(x^2)(y^2)$, but $xy+x^2$ and $xy+x^2$. Def: An integral domain D is a unique factorization domain (UFD) 净 ① every O≠a∈D that is not a unit can be written as a=pip2...pr with p. irreducible. ② if $a=p...p_r$ and $a=q...q_s$ with p_i,q_i irreducible, then r=s and pi,qi are associates (after relabelling)

eq. Z is an UFD since every a EZ can be written uniquely as a=(-1)t'ph...ps with p; prime Cunit in Z eq. $20 = 2 \times 2 \times 5 = (-2) \times (2) \times (-5)$ eg. Not all integral domains are UFDs. Set $S = \mathcal{E}f\mathcal{E}IR[x]If = 0. + 0x + 0.2x^2 + ... + a_nx^n 3$ \hat{L} coefficient of $\chi=0$ This is a subring of IR[%] that is an integral domain. In this ring, χ^2 is irreducible (can't factor as a product of two degree 1 polynomials). Also, χ^3 is irreducible. Consider $\chi^6 = (\chi^2)(\chi^2)(\chi^2) = (\chi^3)(\chi^3) < -$ two factorizations! PIDs Defⁿ: A domain is a principal ideal domain (PID) if every ideal of D is principal. eq. \mathbb{Z} , F[x]Goal: All PIDs are UFDs. Lemma: Let a, b & D. Then ① alb iff $\langle b \rangle \subseteq \langle a \rangle$ (to divide is to contain) @ a and b are associates iff (a>=(b> 3 a is a unit iff (a) = DProof ①"=>"Given alb. so b=ac and be(a). Then $\langle b \rangle \subseteq \langle a \rangle$. "<=" Since $b \in \langle b \rangle \subseteq \langle a \rangle$, b = ac for some c. So alb. @"=>"If a and b are associates, a=ub and u"a=b. So bla and alb. By 1, $\langle b \rangle \subseteq \langle a \rangle \subseteq \langle b \rangle$. So $\langle a \rangle = \langle b \rangle$. "<="Given $\langle a \rangle = \langle b \rangle$, so $\langle a \rangle \subseteq \langle b \rangle$ and $\langle b \rangle \subseteq \langle a \rangle$. So bla and alb. So a=bc and b=at. So a=atc. So 1=tc. So c is a

unit. So a and b are associates.
$\mathfrak{S}=$ a is a unit so au=1 <=> a=1·u ⁻¹ . So all and 1 a. Thus, $\langle \alpha \rangle = \langle 1 \rangle = D$.
"<="Exercise.
Theorem: Let D be a PID. Then p is irreducible iff $\langle p \rangle$ is a maximal ideal.
Proof
"=>"Suppose p irreducible and $\langle p \rangle \subseteq \langle a \rangle$. So alp. Since p is irreducible, a is an associate of p or a unit. If it is an associate $\langle p \rangle = \langle a \rangle$. If a a unit, $\langle a \rangle = D$. So $\langle p \rangle$ is maximal
"<="Suppose p=ab. We have $\langle p \rangle \subseteq \langle a \rangle$. Since $\langle p \rangle$ is maximal, $\langle p \rangle = \langle a \rangle$ or $\langle a \rangle = D$. If $\langle a \rangle = D$, a is a unit. If $\langle p \rangle = \langle a \rangle$, a
is an associate of p, so b is a unit. So p is irreducible.
Corrollary: Let D be a PID. Then p is prime iff p is irreducible.
Proof "=>" Always true.
"<="Suppose p is irreducible. So <p> is a maximal ideal and thut a prime ideal. If abe (ie. plab), then ae or be</p>
Note: In \mathbb{Z} and $F[x]$, prime=irreducible.