

IT-Sicherheit

Symmetrische Kryptographie

Prof. Dr. Dominik Merli, Prof. Dr. Lothar Braun

Sommersemester 2020

Hochschule Augsburg - Fakultät für Informatik

Begriffserklärung

Kryptographie

- griechisch kryptós = versteckt, verborgen, geheim
- griechisch gráphein = schreiben
- · Früher: Wissenschaft der Geheimschriften
- · Heute: Wissenschaft der Informations- und Datensicherheit
- Oft synonym: Kryptologie

Kryptoanalyse/Kryptanalyse

- · Früher: Wissenschaft der Untersuchung verschlüsselter Nachrichten
- · Heute: Wissenschaft der Analyse von diversen kryptographischen Verfahren

Symmetrische Kryptographie

· Wichtigste Eigenschaft

 Gleicher, geheimer Schlüssel auf beiden Seiten (Sender und Empfänger)

· Weitere Eigenschaften

- · Hohe Performance möglich
- · Relativ kleine/leichtgewichtige Implementierungen möglich

Geschichte der Kryptographie

Caesar-Chiffre - 1. Jh. v. Chr.

- · Angeblich von Julius Caesar eingesetzt
- Substitution mit einem verschobenen Alphabet, z.B. ROT13
- · Kann einfach gebrochen werden (nur 26 Möglichkeiten)
- · Beispiel (um drei Buchstaben nach rechts verschoben):

Klartext	а	b	С	d	е	f	g	h	i	j	k	l	m
Geheimtext	Х	У	Z	а	b	С	d	е	f	g	h	i	j

Klartext	n	0	р	q	r	S	t	u	V	W	Х	У	Z
Geheimtext	k	l	m	n	0	р	q	r	S	t	u	V	W

Vigenère-Chiffre - 16. Jh.

- · Entwickelt von Blaise de Vigenère
- · Nutzt ein Schlüsselwort und mehrere Alphabete
- Kryptoanalyse: Buchstabenhäufigkeit, Schüsselwortperiode (erstmals gebrochen durch Charles Babbage Mitte 19. Jh.)
- Beispiel (mit reduzierten Alphabeten):

	Klartext								
el	a	b	С	d					
Schlüssel	b	С	d	а					
	С	d	а	b					
	d	а	b	С					

Kerckhoffs Prinzip - 19. Jh.

- · Sechs Prinzipien für den Entwurf kryptographischer Systeme
- · Beschrieben durch Auguste Kerckhoff
- · Kontext: Militärische Kryptographie
- Wichtigste Forderung:
 - · Geheimhaltung des Verfahrens darf nicht von Nöten sein
 - · d.h. Gegner/Angreifer können nichts daraus lernen
 - · d.h. der Schlüssel ist das einzige Geheimnis

One-Time Pad - Ende 19. Jh.

- · Kombination einer Nachricht mit einem gleich langen Schlüssel
- · Kann nicht gebrochen werden, wenn gilt:
 - Schlüssel ist zufällig gewählt
 - · Schlüssel wurde noch nie zuvor genutzt
 - · Schlüssel wird komplett geheim gehalten
- Beispiel XOR
 - Nachricht ⊕ Schlüssel
 - \cdot 0110101011010111 \oplus 1010101110110011

Enigma - 1918

- Entwickelt von Arthur Scherbius am Ende des 1. Weltkriegs
- Polyalphabetische Substitution durch elektrische Pfade und Rotorscheiben
- Meist mit täglich wechselnden Schlüsseln genutzt
- Im großen Stil gebrochen mit Maschinen von Alan Turing (1939/1940)

Karsten Sperling, Public Domain

QUIZ: Geschichte der Kryptographie (twbk.de)

Caesar nutze bereits im 1. Jh. v. Chr. eine Substitution zum Verschlüsseln von Nachrichten. Richtig oder falsch?

- A) Definitiv Richtig!
- B) Falsch, Substitution wurde erst später genutzt!

QUIZ: Geschichte der Kryptographie (twbk.de)

Seit Ende des 19. Jh. ist das One-Time Pad bekannt und wird auch heute noch in diversen Anwendungen eingesetzt. Richtig oder falsch?

- A) Richtig, es kommt selbst auf jedem Smartphone zum Einsatz!
- B) Falsch, ein One-Time Pad ist total unpraktisch!

Moderne symmetrische Chiffren

Grundlagen

- Klartext-Nachricht M
- Geheimtext-Nachricht C
- Symmetrischer Schlüssel *K*
- Verschlüsselungsfunktion $Enc_K()$
- Entschlüsselungsfunktion $Dec_K()$

$$C = Enc_K(M)$$

$$M = Dec_K(C)$$

Sicherheitsniveau

- · Schlüssellänge als Indikator für Sicherheitslevel
 - · z.B. 56-bit, 64-bit, 80-bit, 128-bit, 192-bit, 256-bit, 512-bit
- · Sicherheitslevel gibt möglichen Schlüsselraum an
 - · z.B. 64-bit für 2⁶⁴ mögliche Schlüssel
 - Ist ein Schlüsselbit bekannt, reduziert sich der Suchraum um den Faktor 2

Block- und Strom-Chiffren

· Block-Chiffren

- · Verarbeiten Klar-/Geheimtexte Block für Block
- · Feste Anzahl von Bits in einem Block

· Strom-Chiffren

- · Verknüpfen einen Klartext-Strom mit einem Schlüssel-Strom
- · Verknüpfung erfolgt Bit für Bit

Data Encryption Standard (DES) - 1977

- Entstanden aus Arbeiten von Horst Feistel (IBM)
- Standardisiert im Jahr 1977
- Schlüssellänge: 56-bit (+ 8 Paritätsbits)
 - · Gilt heutzutage als unsicher
 - 1999 innerhalb von 22 Stunden und 15 Minuten gebrochen
- · Blockgröße: 64-bit
- · Basiert auf einem Feistel-Netzwerk mit 16 Runden

Feistel-Netzwerk / Feistel-Chiffre

Triple DES (3DES) - 1998

- DES wird auf jeden Block dreifach angewendet (K1, K2, K3)
- Gesamte Schlüssellänge: 3 ⋅ 56 = 168 Bits
- · Mehrere Attacken gegen 3DES bekannt
- · Einschätzung durch NIST: 80-bit Sicherheit

$$C = Enc_{K3}(Dec_{K2}(Enc_{K1}(M)))$$

$$M = Dec_{K1}(Enc_{K2}(Dec_{K3}(C)))$$

Advanced Encryption Standard (AES) - 2001

- · Gewinner des NIST AES Wettbewerbs (1997 2000)
- · Entwickelt von Vincent Rijmen und Joan Daemen
- Ursprünglicher Name: Rijndael (niederländisch)
- Standardisiert in FIPS PUB 197 und ISO/IEC 18033-3
- · Basiert auf einem Substitutions-Permutations-Netzwerk
- · Blockgröße: 128-bit
- · Schlüssel: 128-bit (10 Runden), 192-bit (12 R.), 256-bit (14 R.)

AES Zustand (engl. state)

· Besteht aus 16 Bytes in einer 4x4 Matrix

state =
$$\begin{bmatrix} b_0 & b_4 & b_8 & b_{12} \\ b_1 & b_5 & b_9 & b_{13} \\ b_2 & b_6 & b_{10} & b_{14} \\ b_3 & b_7 & b_{11} & b_{15} \end{bmatrix}$$

AES Ablauf

- 1) Schlüssel-Expansion für *R* Runden (10, 12 oder 14)
- 2) Initiale Runde (r = 0)
 - a) AddRoundKey(key[0])
- 3) Weitere Runden (r = 1...R 1)
 - a) SubBytes()
 - b) ShiftRows()
 - c) MixColumns()
 - d) AddRoundKey(key[r])
- 4) Letzte Runde (r = R)
 - a) SubBytes()
 - b) ShiftRows()
 - c) AddRoundKey(key[R])

AES SubBytes()

AES ShiftRows()

Matt_Crypto (Wikipedia), Public Domain

AES MixColumns()

AES AddRoundKey()

AES Implementierung und Nutzung

Implementierung

- · Effiziente Implementierung möglich (Hardware/Software)
- · Vielzahl von freien Bibliotheken verfügbar
- · Von manchen Prozessoren unterstützt, z.B. Intel AES-NI

Nutzung

- · Festplatten- und Dateiverschlüsselung
- · Nutzdatenverschlüsselung in Transport Layer Security (TLS)
- · Viele weitere Einsatzmöglichkeiten ...

QUIZ: Advanced Encryption Standard (twbk.de)

Die Blockgröße von AES beträgt 128-bit für 128-bit Schlüssel und 256-bit für 256-bit Schlüssel. Richtig oder falsch?

- A) Richtig!
- B) Falsch!

QUIZ: Advanced Encryption Standard (twbk.de)

AES ist der Nachholger von DES, aber DES kann auch heut noch guten Gewissens eingesetzt werden. Richtig oder falsch?

- A) Richtig!
- B) Falsch!

Betriebsmodi für Block-Chiffren

- Electronic Code Book Mode (ECB)
- · Cipher Block Chaining Mode (CBC)
- · Cipher Feedback Mode (CFB)
- Output Feedback Mode (OFB)
- Counter Mode (CTR)
- XOR-Encrypt-XOR Mode (XEX)
- XEX-based Tweaked-Codebook Mode with Ciphertext Stealing (XTS)
- · Und viele weitere ...

Electronic Codebook (ECB) mode encryption

WhiteTimberwolf (Wikipedia), Public Domain

Cipher Block Chaining (CBC) mode encryption

WhiteTimberwolf (Wikipedia), Public Domain

Verschlüsselung im CTR Modus

Counter (CTR) mode encryption

WhiteTimberwolf (Wikipedia), Public Domain

Initialisierungs-Vektor (IV)

- · Manchmal auch "Nonce" (number used once) genannt
- · Muss unbedingt passend zum Modus gewählt werden
 - · Darf meist nur einmal benutzt werden
 - · Muss manchmal zufällig/pseudo-zufällig gewählt sein

Weitere symmetrische Chiffren

· Block-Chiffren

- PRESENT → Lightweight Cryptography
- \cdot Threefish \to Keine S-Box, Blockgrößen bis 1024-bit
- \cdot Simon/Speck o Sehr effizient, entwickelt von NSA
- ullet Serpent o Zweiter Platz bei AES Wettbewerb
- \cdot Camellia o Moderne Feistel Cipher
- ...

· Strom-Chiffren

- RC4 \rightarrow Eine der ersten Stromchiffren, heute unsicher
- \cdot Salsa/ChaCha \rightarrow Moderne Add-Rotate-XOR Chiffren
- ...

