Data Structures and Algorithms

Lecture 10: AVL Trees

Department of Computer Science & Technology
United International College

Problem with BST

- The cost for all the operations are bounded by the tree height
- Worst case height of a binary search tree is n-1

All the operations are O(n)

- Goal: Keep the height of a binary search tree O(log(n))
- Solution: (somehow) Balanced binary search trees

Balanced Trees

- Suggestion 1: the left and right subtrees of root have the same height
 - Tree height is O(n)
- Suggestion 2: every node must have left and right subtrees of the same height
 - Too rigid to be useful
- Our choice: for each node, the height of the left and right subtrees can differ at most 1

AVL Tree

AVL Tree

- An AVL tree is a binary search tree in which
 - for every node in the tree, the height of the left and right subtrees differ by at most 1.
- Height of subtree
 - Number of edges to the deepest leaf
- Height of an empty subtree
 - _ -1

AVL Tree Examples

An AVL Tree

Not An AVL Tree WHY?

Not An AVL Tree WHY?

Height of an AVL Tree

 To analyze the relation between tree height and the number of nodes in a tree, we list the minimum AVL trees of all heights

Relation: $N_h = 1 + N_{h-1} + N_{h-2}$

Height of an AVL Tree

- It can be proved that the height of an AVL tree is O(log(n))
 - HOW?
- Further, an AVL tree is a BST
- Therefore, all the operations on an AVL tree take O(log(n)) time
- The AVL tree property must be maintained on each
 - insert
 - delete

Insertion

- Basically follows insertion strategy of BST
 - But may cause violation of AVL tree property
- Restore the destroyed balance if needed

Valid AVL tree

Insert 9

Restore AVL property

Some Observation

- After an insertion, only nodes that are on the path from the insertion point to the root might have their balance altered
 - Because only those nodes have their subtrees altered
- Rebalance the tree at the deepest such node guarantees that the entire tree satisfies the AVL property
 - Insertion increases the height of the altered subtree by 1
 - Rebalance decreases the height of the altered subtree by 1
 - No height change!

Different Cases for Rebalance

- Denote the node that must be rebalanced α
 - Case 1: an insertion into the left subtree of the left child of α
 - Case 2: an insertion into the right subtree of the left child of α
 - Case 3: an insertion into the left subtree of the right child of $\boldsymbol{\alpha}$
 - Case 4: an insertion into the right subtree of the right child of $\boldsymbol{\alpha}$
- Cases 1&4 are mirror image symmetries with respect to α , as are cases 2&3

Rotations

- Rebalance of AVL tree are done with simple modification to tree, known as rotation
- Insertion occurs on the "outside" (i.e., left-left or right-right) is fixed by single rotation of the tree
- Insertion occurs on the "inside" (i.e., left-right or right-left) is fixed by double rotation of the tree
- Animation: https://visualgo.net/bn/bst

Insertion Algorithm

- 1. Insert the new key as a new leaf just as in ordinary binary search tree
- 2. Trace the path from the new leaf towards the root. For each node x encountered, check if heights of left(x) and right(x) differ by at most 1
 - If yes, proceed to parent(x)
 - If not, restructure by doing either a single rotation or a double rotation
- Note: once we perform a rotation at a node x, we won't need to perform any rotation at any ancestor of x.

Single Right Rotation to Fix Case 1 (left-left)

K2 is unbalanced

K1 is perfectly balanced

- Suppose that height(Z) = h
 - What is height(X)?
 - What is height(Y)?
- Note
 - Before insertion, the tree is balanced
 - After insertion, k₂ is case 1 unbalanced.

Single Right Rotation Example

Node 2 is new

Case 1: Single right Rotation

Single Left Rotation to Fix Case 4 (right-right)

K2 is unbalanced

K2 is perfectly balanced

- Case 4 is symmetric to case 1
- Insertion takes O(log(n)) time
- Single rotation takes O(1) time

Total cost: O(log(n))

Single Rotation Example

Sequentially insert 3, 2, 1, 4, 5, 6 to an AVL Tree

• If we continue to insert 7, 16, 15, 14, 13, 12, 11, 10, 8, 9

Single Rotation Fails to fix Case 2&3

Case 2: violation in k2 because of insertion in subtree Y

Single rotation result

- Single rotation fails to fix case 2&3
- Take case 2 as an example (case 3 is a symmetry to it)
 - The problem is: subtree Y is too deep
 - Single rotation doesn't make it any less deep

Single Rotation Fails

- What shall we do?
- We need to rotate twice
 - Double Rotation

