1. Evaluate

$$\sin(\arctan(\frac{5}{12}) - \arctan(-\frac{4}{3}))$$

2. Assuming all angles are in the first quadrant, rewrite the following trigonometric function to an algebraic function. Also, find the domain of the function $f(\mathbf{x})$. Express the domain of function f(x) in the interval notation.

$$f(x) = \sin(\arcsin\frac{1}{x} + \arctan x)$$

3. Solve for x if $x \in [0, 2\pi)$

$$\sin\left(x + \frac{\pi}{6}\right) - \sin\left(x - \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

4. Solve for x if $x \in (0, \pi)$

 $4\sec x = \tan x + 4$

5. Verify the following identity

$$\frac{1-\sin x}{1+\sin x} = \left(\sec x - \tan x\right)^2$$

6. Evaluate $\tan \frac{5\pi}{12}$ without a calculator.