

Compilation Principle 编译原理

第4讲: 词法分析(4)

张献伟

xianweiz.github.io

DCS290, 3/3/2022

Review Questions

- Q1: how does RE, NFA, DFA relate to each other?
 L(RE) ≡ L(NFA) ≡ L(DFA)
- Q2: NFA → DFA, time and space complexity

Time: NFA-O($|X|*N^2$) DFA-O(|X|)

Space: NFA-O(N), DFA-O(2N)

Q3: RE of the NFA?

• Q4: start state of the equivalent DFA? ε-closure(A) = {A, B}

	0	1	2
AB	AB	ВС	
(BC)		ВС	С
(0)			С

 ϵ -closure(move({AB}, 0)) = ϵ -closure({A}) \Longrightarrow {A, B}

 ϵ -closure(move({AB}, 1)) = ϵ -closure({B,C}) \Longrightarrow {B, C}

NFA DFA: Minimization[最小化]

- Any DFA can be converted to its minimum-state equivalent DFA
 - Discover sets of equivalent states
 - Represent each such set with just one state
- Two states are equivalent if and only if[等价]:
 - $\forall \alpha \in \Sigma$, transitions on α lead to equivalent states
 - α -transitions to distinct sets \Rightarrow states must be in distinct sets

Initial: {A}, {BC, AC}

For {BC, AC} Initial sets: {non-accepting states}, {accepting states}

- BC on '0' \rightarrow AC, AC on '0' \rightarrow AC
- BC on '1' \rightarrow BC, AC on '1' \rightarrow BC
- No way to distinguish BC from AC on any string starting with '0' or '1'

Final: {A}, {BCAC}
https://beople.cs.umass.edu/~moss/610-slides/06.pdf

NFA DFA: Minimization (cont.)

- States BC and AC do not need differentiation
 - Should be merged into one

Minimization Algorithm

The algorithm

- Partitioning the states of a DFA into groups of states that cannot be distinguished (i.e., equivalent)[组内状态不可区分]
- Each groups of states is then merged into a single state of the min-state DFA
- For a DFA $(\Sigma, S, n, F, \delta)$
 - The initial partition P_0 , has two sets {F} and {S-F}
 - Splitting a set (i.e., partitioning a set s by input symbol α)
 - \blacksquare Assume q_a and $q_b \in S$, and $\delta(q_a, \alpha) =$ q_x and $\delta(q_b, \alpha) = q_v$
 - \Box If q_x and q_y are not in the same set, then **s** must be split (i.e., α splits **s**)
 - One state in the final DFA cannot have 山大學 two transitions on lpha

P <- {F}, {S-F}

T <- { }

while (P is still changing)

for each state $s \in P$

for each $\alpha \in \Sigma$

if T ≠ P then

P <- T

 $T \leftarrow T \cup S_1 \cup S_2$

partition s by α into s_1 and s_2

Example

- P0: $s_1 = \{S, A, B\}, s_2 = \{C, D, E, F\}$
- For s₁, further splits into {S}, {A}, {B}
 - a: S --> A \in s₁, A --> C \in s₂, B --> A \in s₁ \Longrightarrow a distincts s₁
 - b: S --> B ∈ s_1 , A --> B ∈ s_1 , B --> D ∈ s_2 \Longrightarrow b distincts s_1
- For s₂, all states are equivalent
 - a: C --> C ∈ s_2 , D --> F ∈ s_2 , E --> F ∈ s_2 , F --> C ∈ $s_2 \Longrightarrow$ a doesn't
 - b: C --> E ∈ s_2 , D --> D ∈ s_2 , E --> D ∈ s_2 , F --> E ∈ s_2 \Longrightarrow b doesn't

Implementation in Practice[实际实现]

- Lex: RE \rightarrow NFA \rightarrow DFA \rightarrow Table
 - Converts regular expressions to NFA
 - Converts NFA to DFA
 - Performs DFA state minimization to reduce space
 - Generate the transition table from DFA
 - Performs table compression to further reduce space
- Most other automated lexers also choose DFA over NFA
 - Trade off space for speed

Lexical Analyzer Generated by Lex

- A Lex program is turned into a transition table and actions, which are used by a FA simulator
- Automaton recognizes matching any of the patterns

Lex: Example

- Three patterns, three NFAs
- Combine three NFAs into a single NFA
 - Add start state 0 and ε-transitions

Lex: Example (cont.)

- NFA's for lexical analyzer
- Input: aaba
 - ϵ -closure(0) = {0, 1, 3, 7}
 - Empty states after reading the fourth input symbol
 - There are no transitions out of state 8
 - Back up, looking for a set of states that include an accepting state
 - State 8: a*b+ has been matched
 - Select aab as the lexeme, execute action₃
 - \blacksquare Return to parser indicating that token w/ pattern $p_3=a*b+$ has been found

Lex: Example (cont.)

- DFA's for lexical analyzer
- Input: abba
 - Sequence of states entered: 0137 \rightarrow 247 \rightarrow 58 \rightarrow 68
 - At the final a, there is no transition out of state 68
 - \blacksquare 68 itself is an accepting state that reports pattern $p_2 = abb$

How Much Should We Match?[匹配多少]

- In general, find the longest match possible
 - We have seen examples
 - One more example: input string aabbb ...
 - Have many prefixes that match the third pattern
 - Continue reading b's until another a is met
 - Report the lexeme to be the intial a's followed by as many b's as there are
- If same length, rule appearing first takes precedence
 - String abb matches both the second and third
 - We consider it as a lexeme for p₂, since that pattern listed first

```
a { action_1 }
abb { action_2 }
a*b+ { action_3 }
```


How to Match Keywords?[匹配关键字]

- Example: to recognize the following tokens
 - Identifiers: letter(letter | digit)*
 - Keywords: if, then, else
- Approach 1: make REs for keywords and place them before REs for identifiers so that they will take precedence
 - Will result in more bloated finite state machine
- Approach 2: recognize keywords and identifiers using same RE but differentiate using special keyword table
 - Will result in more streamlined finite state machine
 - But extra table lookup is required
- Usually approach 2 is more efficient than 1, but you can implement approach 1 in your projects for simplicity

The Conversion Flow[转换流程]

- Outline: RE → NFA → DFA → Table-driven
 Implementation
 - 3 Converting DFAs to table-driven implementations
 - 1 Converting REs to NFAs (M-Y-T algorithm)
 - Converting NFAs to DFAs (subset construction)
 - 3' DFA minimization (partition algorithm)

Beyond Regular Languages

- Regular languages are expressive enough for tokens
 - Can express identifiers, strings, comments, etc.
- However, it is the weakest (least expressive) language
 - Many languages are not regular
 - C programming language is not
 - □ The language matching braces "{{{...}}}" is also not
 - FA cannot count # of times char encountered
 - $L = {a^nb^n | n ≥ 1}$
 - Crucial for analyzing languages with nested structures (e.g. nested for loop in C language)

- We need a more powerful language for parsing
 - Later, we will discuss context-free languages (CFGs)

RE/FA is NOT Powerful Enough

- $L = \{a^nb^n \mid n \ge 1\}$ is NOT a Regular Language
 - Suppose L were the language defined by regular expression
 - Then we could construct a DFA D with k states to accept L
 - Since D has only k states, for an input beginning with more than k a's,
 D must enter some state twice, say s;
 - Suppose that the path from s_i back to itself is labeled with a^{j-i}
 - Since a^ib^i is in L, there must be a path labeled b^i from s_i to an accepting state f
 - But, there is also a path from s_0 through s_i to f labelled a^ib^i
 - Thus, D also accepts a^jb^j, which is not in L, contradicting the assumption that L is the language accepted by D
 path labeled a^{j-i}

RE/FA is NOT Powerful Enough(cont.)

- $L = \{a^nb^n \mid n \ge 1\}$ is not a Regular Language
 - Proof → Pumping Lemma (泵引理)
 - FA does not have any memory (FA cannot count)
 - □ The above L requires to keep count of a's before seeing b's

- Matching parenthesis is not a RL
- Any language with nested structure is not a RL
 - if ... if ... else ... else
- Regular Languages
 - Weakest formal languages that are widely used

Compilation Principle 编译原理

第4讲: 语法分析(1)

张献伟

xianweiz.github.io

DCS290, 3/3/2022

Compilation Phases[编译阶段]

Syntax Analysis[语法分析]

- Second phase of compilation[第二阶段]
 - Also called as parser
- Parser obtains a string of tokens from the lexical analyzer[以token作为输入]
 - Lexical analyzer reads the chars of the source program, groups them into lexically meaningful units called lexemes
 - and produces as output **tokens** representing these lexemes
 - Token: <token name, attribute value>
 - Token names are used by parser for syntax analysis
 - tokens → parse tree/AST
- Parse tree[分析树]
 - Graphically represent the syntax structure of the token stream

Parsing Example

• Input: if(x==y) ... else ...[源程序输入]

• Parser input (Lexical output)[语法分析输入]

• Parser output[语法分析输出]

Parsing Example (cont.)

- Example: <id, x> <op, *> <op, %>
 - Is it a valid token stream in C language? YES
 - Is it a valid statement in C language (x *%)? NO

- Not every string of tokens are valid
 - Parser must distinguish between valid and invalid token strings
- We need a method to describe what is valid string?
 - To specify the syntax of a programming language

How to Specify Syntax?

- How can we specify a syntax with nested structures?
 - Is it possible to use RE/FA?
 - L(Regular Expression) ≡ L(Finite Automata)
- RE/FA is not powerful enough
 - $-L = {a^nb^n | n≥1}$ is not a Regular Language
- Example: matching parenthesis: # of '(' == # of ')'

```
-(x+y)*z
```

$$-((x+y)+y)*z$$

$$-((x+y)+y)+y)*z$$

What Language Do We Need?

- C-language syntax: **Context Free Language** (CFL)[上下文无 关语言] e.g., 'else' is always 'else', wherever you place it
 - A broader category of languages that includes languages with nested structures
- Before discussing CFL, we need to learn a more general way of specifying languages than RE, called **Grammars**[文 法]
 - Can specify both RL and CFL
 - and more ...

- Everything that can be described by a regular expression can also be described by a grammar
 - Grammars are most useful for describing nested structures

Concepts

• Language[语言]

- Set of strings over alphabet
 - String: finite sequence of symbols
 - Alphabet: finite set of symbols

• Grammar[文法]

 To systematically describe the syntax of programming language constructs like expressions and statements

• Syntax[语法]

- Describes the proper form of the programs
- Specified by grammar

Grammar[文法]

- Formal definition[形式化定义]: 4 components **{T, N, s, δ}**
- T: set of terminal symbols[终结符]
 - Basic symbols from which strings are formed
 - Essentially tokens leaves in the parse tree
- N: set of non-terminal symbols[非终结符]
 - Each represents a set of strings of terminals internal nodes
 - E.g.: declaration, statement, loop, ...
- s: start symbol[开始符号]
 - One of the non-terminals
- σ: set of productions[产生式]
 - Specify the manner in which the terminals and non-terminals can be combined to to form strings
 - _ "LHS → RHS": left-hand-side produces right-hand-side

Grammar (cont.)

• Usually, we can only write the σ [简写]

- Merge rules sharing the same LHS[规则合并]
 - $-\alpha \rightarrow \beta_1, \alpha \rightarrow \beta_2, ..., \alpha \rightarrow \beta_n$
 - $-\alpha \rightarrow \beta_1 \mid \beta_2 \mid ... \mid \beta_n$

$$G = (\{id, +, *, (,)\}, \{E\}, E, P)$$

$$P = \{E \rightarrow E + E,$$

$$E \rightarrow E * E,$$

$$E \rightarrow (E),$$

$$E \rightarrow id \}$$

$$G: E \rightarrow E + E,$$

$$E \rightarrow E * E,$$

$$E \rightarrow (E),$$

$$E \rightarrow id \}$$

