# Decision Tree Learning

[read Chapter 3] [recommended exercises 3.1, 3.4]

- Decision tree representation
- ► ID3 learning algorithm
- Entropy, Information gain
- Overfitting

# Decision Tree for *PlayTennis*



### A Tree to Predict C-Section Risk

Learned from medical records of 1000 women

```
Negative examples are C-sections
[833+,167-] .83+ .17-
Fetal_Presentation = 1: [822+,116-] .88+ .12-
 Previous_Csection = 0: [767+,81-].90+.10-
  Primiparous = 0: [399+,13-].97+.03-
  Primiparous = 1: [368+,68-].84+.16-
   Fetal_Distress = 0: [334+,47-].88+.12-
     Birth_Weight < 3349: [201+,10.6-] .95+ .05-
     Birth_Weight \geq 3349: [133+,36.4-] .78+ .22-
   Fetal_Distress = 1: [34+,21-].62+.38-
 Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+.29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-
```

#### **Decision Trees**

#### Decision tree representation:

- ▶ Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

#### How would we represent:

- ▶ ∧, ∨, XOR
- $(A \wedge B) \vee (C \wedge \neg D \wedge E)$
- ▶ M of N

### When to Consider Decision Trees

- Instances describable by attribute—value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data

#### Examples:

- Equipment or medical diagnosis
- Credit risk analysis
- Modeling calendar scheduling preferences

### Top-Down Induction of Decision Trees

Main loop:

A the "best" decisionattribute for node

Assign A as decision attribute for node

For each value of A, create new descendant of node

Sort training examples to leaf nodes

If training examples perfectly classified

Then STOP

Else iterate over new leaf nodes (1)

Which attribute is best?





### Entropy



- S is a sample of training examples
- ▶  $p_{\oplus}$  is the proportion of positive examples in S
- ▶  $p_{\ominus}$  is the proportion of negative examples in S
- Entropy measures the impurity of S

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$



### Entropy

 $Entropy(S) = expected number of bits needed to encode class <math>(\oplus \text{ or } \ominus)$  of randomly drawn member of S (under the optimal, shortest-length code)

### Why?

Information theory: optimal length code assigns  $-\log_2 p$  bits to message having probability p.

So, the expected number of bits to encode  $\oplus$  or  $\ominus$  of random member of S:

$$p_{\oplus}(-\log_2 p_{\oplus}) + p_{\ominus}(-\log_2 p_{\ominus})$$

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$



### Information Gain

Gain(S, A) =expected reduction in entropy due to sorting on A

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$





# Training Examples

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |  |
|-----|----------|-------------|----------|--------|------------|--|
| D1  | Sunny    | Hot         | High     | Weak   | NO         |  |
| D2  | Sunny    | Hot         | High     | Strong | NO         |  |
| D3  | Overcast | Hot         | High     | Weak   | YES        |  |
| D4  | Rain     | Mild        | High     | Weak   | YES        |  |
| D5  | Rain     | Cool        | Normal   | Weak   | YES        |  |
| D6  | Rain     | Cool        | Normal   | Strong | NO         |  |
| D7  | Overcast | Cool        | Normal   | Strong | YES        |  |
| D8  | Sunny    | Mild        | High     | Weak   | NO         |  |
| D9  | Sunny    | Cool        | Normal   | Weak   | YES        |  |
| D10 | Rain     | Mild        | Normal   | Weak   | YES        |  |
| D11 | Sunny    | Mild        | Normal   | Strong | YES        |  |
| D12 | Overcast | Mild        | High     | Strong | YES        |  |
| D13 | Overcast | Hot         | Normal   | Weak   | YES        |  |
| D14 | Rain     | Mild        | High     | Strong | NO         |  |

### Selecting the Next Attribute –1

#### Which attribute is the best classifier?





# Selecting the Next Attribute – 2 {D1, D2, ..., D14} [9+,5-]Outlook Sunny Overcast Rain {D1,D2,D8,D9,D11} {D3,D7,D12,D13} {D4,D5,D6,D10,D14} [2+,3-][4+,0-][3+,2-]Yes

# Hypothesis Space Search by ID3



# Hypothesis Space Search by ID3

- Hypothesis space is complete!
  - ► Target function surely in there...
- Outputs a single hypothesis (which one?)
  - ► Can't play 20 questions...
- No backtracking
  - Local minima...
- Statisically-based search choices
  - Robust to noisy data...
- Inductive bias: approx "prefer shortest tree"

#### Inductive Bias in ID3

Note *H* is the power set of instances *X* Does that imply Unbiased? Not really...

- ► Preference for short trees, and for those with high information gain attributes near the root
- ▶ Bias is a preference for some hypotheses, rather than a restriction of hypothesis space H
- Occam's razor: prefer the shortest hypothesis that fits the data

### Occam's Razor

#### Why prefer short hypotheses?

#### Argument in favor:

- Fewer short hyps. than long hyps.
- ightarrow a short hyp that fits data unlikely to be coincidence
- ightarrow a long hyp that fits data might be coincidence

#### Argument opposed:

- There are many ways to define small sets of hyps
- e.g., all trees with a prime number of nodes that use attributes beginning with "Z"
- What's so special about small sets based on size of hypothesis??

# Overfitting in Decision Trees

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No



# Overfitting

Consider error of hypothesis h over

- training data: error<sub>train</sub>(h)
- entire distribution D of data: error<sub>D</sub>(h)

Hypothesis  $h \in H$  **overfits** training data if there is an alternative hypothesis  $h' \in H$  such that

 $error_{train}(h) < error_{train}(h') h'$ : greater error on training data

#### and

 $error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h') \ h'$ : smaller error on test data

### Overfitting in Decision Tree Learning



### **Avoiding Overfitting**

### How can we avoid overfitting?

- Stop growing when data split not statistically significant
- Grow full tree, then post-prune

#### How to select "best" tree:

- Measure performance over training data
- Measure performance over separate validation data set
- MDL:

```
\mathsf{MIN}_{tree}\left\{ \mathit{size}(\mathit{tree}) + \mathit{size}(\mathit{misclassifications}(\mathit{tree})) \right\}
```

# Reduced-Error Pruning

Split data into training and validation set

Do until further pruning is harmful:

- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it).
- Greedily remove the one that most improves validation set accuracy.

#### **Effect**

Produces smallest version of most accurate subtree

### Q

What if data is limited?

# Effect of Reduced-Error Pruning



# Rule Post-Pruning

- 1. Convert tree to equivalent set of rules
- 2. Prune each rule independently of others
- 3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)

# Converting A Tree to Rules -1



# Converting A Tree to Rules – 2

```
 \begin{array}{ll} \mathsf{IF} & (\mathit{Outlook} = \mathit{Sunny}) \land (\mathit{Humidity} = \mathit{High}) \\ \mathsf{THEN} & \mathit{PlayTennis} = \mathit{No} \\ \\ \mathsf{IF} & (\mathit{Outlook} = \mathit{Sunny}) \land (\mathit{Humidity} = \mathit{Normal}) \\ \mathsf{THEN} & \mathit{PlayTennis} = \mathit{Yes} \\ \\ \ldots \\ \end{array}
```

### Continuous Valued Attributes

#### Create a discrete attribute to test continuous

- ► Temperature = 82.5
- (Temperature > 72.3) = t, f/1, 0

| Temperature: | 40 | 48 | 60  | 72  | 80  | 90 |
|--------------|----|----|-----|-----|-----|----|
| PlayTennis:  | No | No | Yes | Yes | Yes | No |
| Temperature: | 0  | 0  | 0   | 0   | 1   | 1  |
| PlayTennis:  | No | No | Yes | Yes | Yes | No |

# Attributes with Many Values

#### Issue:

- ▶ If attribute has many values, Gain will select it
- Imagine using Date as attribute

Approach: Use GainRatio instead

$$GainRatio(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}$$

$$SplitInformation(S, A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

where  $S_i$  is subset of S for which A has value  $v_i$ 

### Attributes with Costs

#### Consider

- medical diagnosis, BloodTest has cost \$150
- ▶ robotics, Width\_from\_1ft has cost 23 sec.

How to learn a consistent tree with low expected cost? One approach: replace gain by

$$\frac{Gain^2(S,A)}{Cost(A)}.$$
$$2^{Gain(S,A)} - 1$$

$$\frac{2^{Gain(S,A)}-1}{(Cost(A)+1)^w}$$

where  $w \in [0, 1]$  determines importance of cost

# Unknown Attribute Values: some examples missing values of *A*

- 1. Use training example anyway, sort through tree
  - ▶ If node *n* tests *A*, assign most common value of *A* among other examples sorted to node *n*
  - ► Assign most common value of *A* among other examples with same target value
  - Assign probability  $p_i$  to each possible value  $v_i$  of A
    - ightharpoonup Assign fraction  $p_i$  of example to each descendant in tree
- 2. Classify new examples in same fashion