Thariq Shanavas

in thariq-shanavas

thariqshanavas.com

J 720-935-9886

Summary

Prospective Physics PhD. graduate (Expected July 2025) from the University of Colorado Boulder with two pending patents and 6 years of experience in laser systems, photonic integrated circuits, and optical sensors.

Education

Expected July 2025

Ph.D. Physics, University of Colorado, Boulder

Spring 2019

B.S. Electrical Engineering, Indian Institute of Technology, Mumbai

Skills

Simulation and Design: Comsol, Lumerical, Custom Physics Modeling (Nonlinear Optics, Monte Carlo, etc.), PIC Design and Dispersion Engineering, Numerical Methods (ODE Solving, Fourier Analysis)

Experimental: Lithography, Free-Space and Fiber Optical Circuit Design, Electronics (Circuit and PCB Design, Soldering, Troubleshooting), Instrument Control, FPGA and Microcontroller Programming

Programming: Python, C, Matlab, Linux Shell scripting, VHDL, Verilog

Employment History

University of Colorado, Boulder (Advisor: Prof. Juliet Gopinath) PhD Candidate, Physics

Aug 2019 - Present

- **(Patent Pending)** Demonstrated the smallest (200 µm) optical gyroscope to date, with size-normalized performance metrics matching or exceeding the best reported figures. [1]
- (Patent Pending) Developed a finite difference solver for Maxwell's equations in highly scattering media, with $O(n^{2.37})$ complexity vs. $O(n^3)$ for existing methods. [3]
- Prototyped the first cascaded forward Brillouin laser in a microresonator platform, with a record low pump power of 1 mW.

Tyndall National Institute, Ireland (Advisor: Prof. Paul Townsend) Internship

May - July 2018

• Demonstrated 20 Gbps data rates over a fiber-optic network designed for 10 Gbps using machine learning to reduce error rate.

High Energy Accelerator Research Organization, Japan (Advisor: Prof. Manobu Tanaka) Nov – Dec 2017 Internship

 Wrote an FPGA framework for processing and digitizing data from a fast semiconductor-based subatomic particle detector.

University of Alberta, Canada (Advisor: Prof. Karthik Shankar) Internship

May - July 2017

• Developed a theoretical framework for surface plasmon resonances in metamaterial surfaces. [6]

Publications and Patents

Journal Articles

- **T. Shanavas**, G. Kreuper, J. Zhu, W. Park, and J. T. Gopinath, "Nonlinear symmetry breaking to enhance the sagnac effect in a microresonator gyroscope," *In preparation*, 2025, U.S. Provisional Patent Application No. 63/784,713, filed April 7, 2025.
- **T. Shanavas**, W. Park, and J. T. Gopinath, "A new mechanism for optical frequency combs: Phase-locking a cascaded brillouin laser," *In preparation*, 2025.
- **T. Shanavas**, R. R. McLeod, M. E. Siemens, and J. T. Gopinath, "Fast finite difference solver for optical microscopy in deep biological tissue," *Optics Letters*, vol. 49, no. 15, pp. 4417–4420, 2024, U.S. Patent Application No. 19/210,929, filed May 16, 2025.
- M. Grayson, B. Xu, **T. Shanavas**, *et al.*, "Fabrication and characterization of high quality gesbse reflowed and etched ring resonators," *Optics Express*, vol. 30, no. 17, pp. 31 107–31 121, 2022.
- **T. Shanavas**, M. Grayson, B. Xu, M. Zohrabi, W. Park, and J. T. Gopinath, "Cascaded forward brillouin lasing in a chalcogenide whispering gallery mode microresonator," *APL Photonics*, vol. 7, no. 11, 2022.
- 6 S. Farsinezhad, **T. Shanavas**, N. Mahdi, *et al.*, "Core–shell titanium dioxide–titanium nitride nanotube arrays with near-infrared plasmon resonances," *Nanotechnology*, vol. 29, no. 15, p. 154 006, 2018.

Conference Proceedings

- **T. Shanavas**, R. R. McLeod, M. E. Siemens, and J. T. Gopinath, "Comparison of coherent and incoherent donut beams for deep tissue sted microscopy," in *2023 Conference on Lasers and Electro-Optics (CLEO)*, Optica Publishing Group, 2023.
- B. Xu, M. Grayson, **T. Shanavas**, J. T. Gopinath, and W. Park, "Dispersion control of high-quality ge23sb7s70 reflowed wedge resonators," in 2023 Conference on Lasers and Electro-Optics (CLEO), Optica Publishing Group, 2023.
- **T. Shanavas**, M. B. Grayson, M. Zohrabi, W. Park, and J. T. Gopinath, "Cascaded forward brillouin scattering in a chalcogenide microsphere," in *2022 Conference on Lasers and Electro-Optics (CLEO)*, Optica Publishing Group, 2022.

References

Available on Request