M5Stack 用 AquesTalk pico LSI モジュール基板

市販の音声合成専用 LSI「Aques Talk pico LSI」(別売) を M-BUS モジュールとして M5Stack に取り付けるための半完成基板です。

詳細は、以下を参照ください。

GitHub 「PCB-MBUS-AquesTalk-pico-LSI」

https://github.com/botanicfields/PCB-MBUS-AquesTalk-pico-LSI Qiita「AquesTalk pico LSI を M5Stack の I2C, UART, SPI で動かす」

https://qiita.com/BotanicFields/items/fff644f408c291e5a5f0

AquesTalk pico LSI の詳細は、データシートを参照ください。

ATP3011: https://www.a-quest.com/archive/manual/atp3011_datasheet.pdf
ATP3012: https://www.a-quest.com/archive/manual/atp3012_datasheet.pdf

1. 特徴

- ① AquesTalk pico LSI (28 ピン DIP タイプ) 1 個を搭載できます。
- ② ATP3011, ATP3012 の両方に対応しています。
- ③ パワーアンプ (LM4871) を内蔵し、スピーカーを直接駆動できます。
- ④ AquesTalk pico LSI を 3.3V で動作させ、M-BUS に直結できます。
- ⑤ プロトモジュール (別売) のモールドを流用し、M5Stack に取り付けできます。
- ⑥ スピーカー以外のケーブル接続が不要です。
- ⑦ DIP スイッチで動作モード・通信モードを設定できます。
- ⑧ インタフェースを I2C, UART, SPI から選べます。
- ⑨ AquesTalk pico LSI の音声出力を M-BUS から取り込めます。
- ⑩ M5Stack のリセットで Aques Talk pico LSI をリセットします。
- ① スタンドアロンモードのためのランドがあります。

2. 商品内容

- M-BUS モジュール基板(半完成品)1枚(V04)
- ② スピーカーケーブル1組(2ピンPH相当コネクタ付き、20cm片端ストリップ済)
- ③ 説明書(本書)

※基板 V04L01 と V04L02 は、製作上の都合による区別であり、機能・レイアウト共に全く同じです。

3. 別途必要なもの

① AquesTalk pico LSI (秋月電子通商扱い) 音声合成 L S I

ATP3011F1-PU (ゆっくりな女性の音声) https://akizukidenshi.com/catalog/g/gI-06220/

ATP3011F4-PU (かわいい女性の音声)

ATP3011M6-PU (男性の音声)

ATP3012F6-PU (女性の音声明瞭版)

ATP3012R5-PU (小型ロボットの音声)

https://akizukidenshi.com/catalog/g/gI-05665/

https://akizukidenshi.com/catalog/g/gI-06225/

https://akizukidenshi.com/catalog/g/gI-09973/

https://akizukidenshi.com/catalog/g/gI-11517/

② M5Stack 用プロトモジュール (スイッチチサイエンス扱い) https://www.switch-science.com/catalog/3650/

- ③ スピーカー: $4\sim8\Omega$ 程度、1W 以上が望ましいです。
- ④ 工具類: ハンダ、ハンダごて、ニッパー、六角レンチ(1.5mm)、カッター、ピンセットなど
- ⑤ M5Stack: サンプルプログラムは、M5Stack Core Basic で動作確認しています。
- ⑥ Arduino-IDE が動作する環境

4. モジュール基板の組み立て

① AquesTalk pico LSI の取り付け

AquesTalk pico LSI (28 ピン DIP パッケージ)を 1 個搭載できます。ATP3011 と ATP3012 とでは 取り付け穴が異なります。基板上のシルク印刷に従ってピンを差し込み、ハンダ付けします。ハンダ付 け後、基板裏面から飛び出しているピンを短く切ってください。IC ソケットは使用できません。プロト

モジュールのモールドに収まらなくなります。

② モールドの取り付け

プロトモジュール (別売) のモールドおよびネジ4 本を流用して、M5Stack の M-BUS モジュールに仕立 てることができます。モールドを基板に取り付ける前 に、ボリュームやスピーカー出力コネクタの部分をモ ールドから切り取ります。

左: ATP3011 右:ATP3012

- ③ スピーカーの接続:以下から選択ください。
 - (1) 付属のケーブルで J4 とスピーカー (付属せず) を接続します。GND には接続しないでください。
 - (2) J5 にスピーカーを接続することができます。GND には接続しないでください。
 - (3) M5Stack(Core1)の内蔵スピーカーを使用できます。ATP3011 の場合は JP8 を、ATP3012 の場 合は JP9 をショートしてください。M5Stack 本体から GPIO25 を使用しないでください。Core2 は内蔵スピーカーの回路構成が異なるため、この方法は使えません。

5. モジュールの設定

① DIP スイッチ

動作モードおよび使用するインタフェース(通信モード)に合わせて、モジュール基板上の DIP スイッチを設定します。設定にはピンセットなどが必要です。おすすめは I2C 接続です。出荷時の設定は、セーフモード、I2C 接続です。

	DIP スイッチ						
1	2	3	4	動作モード	通信モード	備考	
OFF	OFF	OFF	ON	コマンド入力モード	I2C	I2C アドレスは EEPROM に設定した値	
						(初期値 0x2E)	
OFF	ON	OFF	ON	セーフモード	I2C	I2C アドレスは強制的に 0x2E	
OFF	OFF	OFF	OFF	コマンド入力モード	UART	設定されたスピードで動作 (*1)	
OFF	ON	OFF	OFF	セーフモード	UART	強制的に 9600bps で動作	
OFF	-	ON	OFF	-	SPI mode 3	-	
OFF	-	ON	ON	-	SPI mode 0	サンプルプログラムは SPI mode 0 で動作	
ON	OFF	-	-	スタンドアロンモード	-	PC0-3 の信号入力によりプリセットメッ	
						セージを選択して再生	
ON	ON	-	-	デモモード	-	プリセットメッセージを順番に自動再生	

^(*1) ATP3011 の場合 SLEEP 解除後の'?'送信で自動設定。ATP3012 の場合 EEPROM に設定

② ハンダジャンパ

モジュール基板裏面のジャンパ JP1-JP9 をハンダで短絡(クローズ)することにより、GPIO と AquesTalk pico LSI の信号ピンを接続できます。

ジャンパ	GPIO	AquesTalk pico LSI	出荷時設定
JP1	16	UART-TX	オープン
JP2	19	SPI-MISO	オープン
JP3	5	SPI-SS	オープン
JP4	13	SLEEP	オープン
JP5	35	Analog Out of ATP3011	オープン
JP6	35	Analog Out of ATP3012	オープン
JP7	GND	Shut Down of Power Amplifier	クローズ
JP8	25	Analog VR Out of ATP3011	オープン
JP9	25	Analog VR Out of ATP3012	オープン

(1) JP1, JP2, JP3

使用するインタフェースに合わせて JP1, JP2, JP3 をハンダで短絡(クローズ)します。I2C の場合は JP1, JP2, JP3 を全てオープンのままで使用できます。他の用途に影響がなければ JP1, JP2, JP3 を 短絡(クローズ)することで全てのインタフェースを使用可能です。

(2) JP4

AquesTalk pico LSI の SLEEP ピンを GPIO13 に接続できます。GPIO13 = Low で AquesTalk pico LSI がスリープ状態になります。ATP3011 の UART 接続において 9600bps より速い速度が必要な場合、「セーフモード」ではなく「コマンド入力モード」とし、速度設定のために SLEEP を使用します。

(3) JP5, JP6

AquesTalk pico LSI の音声出力を GPIO35 から M5Stack に取り込むことができます。ATP3011 の場合は IP5 を、ATP3012 の場合は IP6 をハンダで短絡(クローズ)します。

(4) JP7

パワーアンプのシャットダウン(SD: Shut Down)信号を GND に接続し、パワーアンプを常に動作状態とします。JP7 のハンダを取り除く(オープン)と、AquesTalk pico LSI の PLAY 信号(負極性)がシャットダウン信号となり、パワーアンプの消費電力を減らすことができます。この設定では音声再生の前後でノイズが発生します。

(5) JP8, JP9

AquesTalk pico LSI の音声出力をボリューム調節後に GPIO25 経由で M5Stack 内蔵アンプ・スピーカーに接続することができます。ATP3011 の場合は JP8 を、ATP3012 の場合は JP9 をハンダで短絡(クローズ)します。

6. サンプルプログラム

以下からダウンロードしてください。

GitHub 「PCB-MBUS-AquesTalk-pico-LSI」

https://github.com/botanicfields/PCB-MBUS-AquesTalk-pico-LSI

7. 基板裏面、表面

以上