



- ·Alana Corsi
- · Fabiane Florencio de Souza
- · Regina Negri Pagani
- · João Luiz Kovaleski

## Najważniejsze pytanie:

Jak analiza big data może pomóc w przypadku epidemii/pandemii?







Metody wykrywania, które mogą przewidywać wiedzę na temat epidemii lub pandemii, można osiągnąć poprzez monitorowanie wyszukiwania w Internecie terminów związanych ze zdrowiem.

| Text Mining  Statistical Models | Statistical Analysis           | Mathematical Models | Predictive Models | Regression     | Netv  | Artificial Neural<br>Networks |  |
|---------------------------------|--------------------------------|---------------------|-------------------|----------------|-------|-------------------------------|--|
|                                 | Pearson Or Pearson Correlation |                     |                   |                |       |                               |  |
|                                 |                                | What-if-Scenario    | Crowdsourcing     |                | SVR   | Spearman's<br>Correlation     |  |
|                                 | HealthMap                      | SPSS                | AutoRegres        | AutoRegression |       | Hadoop<br>MapReduce           |  |
|                                 |                                | LASSO               | ARGO              |                | GLEAM |                               |  |

# Źródła Big Data, które można wykorzystać do wspierania, zapobiegania i kontroli pandemii :





#### Dane Internetu rzeczy:

W środowisku medycznym to są dane o stanie w czasie rzeczywistym dotyczące pacjentów, personelu medycznego.

Jeśli chodzi o pacjentów, obejmuje to głównie:

- -twarz
- -odcisk palca
- -tęczówkę
- -genetykę

#### Dane urządzenia mobilnego:

- Dane urządzeń mobilnych odnoszą się głównie do danych generowanych przez telefony komórkowe.
- Dane telefoniczne umożliwiają ekspertom śledzenie, czy ludzie mieli kontakt z zakażonymi przypadkami. To pomaga identyfikować i izolować te zakażone osoby oraz leczyć je z wyprzedzeniem.





#### Platformy:

- Facebook
- Twitter
- Weibo
- WeChat

# Dane z mediów społecznościowych:

 Analizując w czasie rzeczywistym zgromadzone dane na tych platformach społecznościowych, możemy uzyskać głębsze zrozumienie czasu i geograficzne położenie przenoszenia chorób.





### Dane nawigacji, wyszukiwarki i handlu elektronicznego:

 potencjalne informacje mogą odśledzić rozwój choroby i przechwytywać uwagę ludzi na niektóre choroby.



 Dane genetyczne patogenów odgrywają ważną rolę w poszukiwaniu źródła wirusa, opracowywaniu leków i szczepionek oraz badaniach klinicznych diagnoza.



# Drzewo transmisji wirusów



Figure 5. Nextstrain platform analysis of new coronavirus transmission genome [39].

- Mutacje są pokazane jako kolorowe kółka. Po prawej stronie pokazuje odpowiednie sekwencje, także z mutacjami przedstawionymi jako kolorowe kółka.
- Sekwencje są połączone płaską pionową linią, co oznacza, że nie ma różnic między nimi - ich sekwencje są identyczne.



 Obecnie rządy wszystkich krajów wykorzystują wizualne analizy dużych zbiorów danych w czasie rzeczywistym

Zastosowanie analizy dużych zbiorów danych w zapobieganiu i kontroli COVID-19: Wizualizacja kluczowych wskaźników COVID, takich jak dane dotyczące przypadków, rozmieszczenie epidemii, sytuacja epidemiczna trendy i raporty o najgorętszych punktach.

