Concise Explanation of IP 2003-65428

[Claim 1] A pulley thrust control system for a belt type continuously variable transmission, in which a drive pulley and a driven pulley are connected through a belt, and in which a speed change ratio can be varied continuously by varying an effective diameter of both pulleys, wherein:

a thrust ratio between a thrust of the drive pulley and a thrust of the driven pulley is detected to control a pulley thrust based on a changing state of the detected thrust ratio.

[Claim 2] The pulley thrust control system for a belt type continuously variable transmission according to claim 1, wherein:

the pulley thrust is controlled approximately to a changing point of an inclination of the change in the thrust ratio.

[Claim 3] The pulley thrust control system for a belt type continuously variable transmission according to claim 2, wherein:

the inclination of the thrust ratio is detected on a steady basis while varying the pulley thrust;

a process of compensating a time delay in the detected inclination; and
the changing point of the inclination is detected based on a signal of which the time
delay is compensated.

[Claim 4] The pulley thrust control system for a belt type continuously variable transmission according to claim 3, wherein:

a period to compensate the time delay is changed in accordance with the inclination.

[Claim 5] The pulley thrust control system for a belt type continuously variable transmission according to claim 3 or 4, wherein:

the process of compensating the time delay includes a highpass filter processing in which a low-frequency signal of the detected inclination is cut.

[Claim 6] The pulley thrust control system for a belt type continuously variable transmission according to any of Claim 1 to 5, wherein:

the changing state of the thrust ratio is detected by varying the pulley thrust at a preset cycle.

Paragraphs [0156] to [0163]

[0156] Since an experiment is conducted in the same way as controlling a vehicle using an actual CTV, according to the embodiment, the belt clamping pressure (the secondly thrust) can be set to an appropriate value in a short time.

[0157] Next, here will be described a specific method of the off-line setting of the belt clamping pressure.

[0158] First of all, as shown in Fig.32, a condition is set to the same torque (the same input torque) and the same speed change ratio (the input torque and the speed change ratio are constant) (at Step S61). Next, the secondly thrust is lowered and the change in the thrust ratio at the time is detected (at Step S62). Then, it is judged whether or not the state is the limit where a macro slip starts, based on a point where the thrust ratio after the peak turns to rise, or on a point where the thrust ratio declines in preset value (at Step S63). In

case the macro slip limit is judged, the maximum friction coefficient is calculated based on this judgment (at Step S64). Then, an appropriate secondly thrust is determined based on the maximum friction coefficient (at Step S65). Here, the calculation of the maximum friction coefficient and setting of the belt clamping pressure (i.e., the secondly thrust) is performed by any of the following methods.

[0159] (i) Preparing a belt clamping pressure (the secondly thrust) control map, by presuming a point where the declining thrust ratio (i.e., the primary thrust/the secondly thrust) after the peak starts rising drastically as the macro slip limit, and by multiplying the secondly thrust at that occasion by a requisite safe factor.

[0160] (ii) Calculating a belt clamping pressure (the secondly thrust) by presuming a point where the declining thrust ratio (i.e., the primary thrust/the secondly thrust) after the peak starts rising drastically as the macro slip limit, by finding the maximum friction coefficient on the basis of the secondly thrust, the input torque and the speed change ratio at the occasion, by calculating the minimum requisite secondly thrust using the maximum friction coefficient, and by adding a requisite thrust margin to the minimum requisite secondly thrust.

[0161] (iii) Preparing a belt clamping pressure (the secondly thrust) control map, by presuming a point where the thrust ratio (the primary thrust/the secondly thrust) declines in a preset value from the peak as the macro slip limit, and by multiplying the secondly thrust at that occasion by a requisite safe factor.

[0162] (iv) Calculating a belt clamping pressure (the secondly thrust) by presuming a point where the thrust ratio (the primary thrust/the secondly thrust) declines in a preset value from the peak as the macro slip limit, by finding the maximum friction coefficient on the basis of the secondly thrust, the input torque and the speed change ratio at the occasion, by calculating the minimum requisite secondly thrust using the maximum friction coefficient,

and by adding a requisite thrust margin to the minimum requisite secondly thrust.

[0163] (v) Preparing a belt clamping pressure (the secondly thrust) control map, by multiplying the secondly at the point where the thrust ratio (the primary thrust/the secondly thrust) is at its peak by the requisite safe factor (1 or larger).

[Fig. 3 2]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顯公開番号 特開2003-65428 (P2003-65428A)

(43)公開日 平成15年3月5日(2003.3.5)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
F16H 61/02		F16H 61	1/02 3 J 5 5 2
9/00	•	. 9	9/00 D
•			p: 68
#F16H 59:68		63: 06	
63: 06		O.	s. 60
		審查請求	未請求 請求項の破17 OL (全 27 頁)
(21) 出願番号	特顯2002-56101(P2002-56101)	(71)出願人	000003609
•			株式会社受田中央研究所
(22)出頤日	平成14年3月1日(2002.3.1)		愛知県愛知郡長久手叮大字長湫字機道41番
(may believe be			地の1
(31) 優先衛主張番号	钟頭2001−58513(P2001−58513)	(71)出願人	000003207
(平成13年3月2日(2001.3.2)	(1.5)	トヨタ自動車株式会社
(32) 似先日	• • • • •		愛知県豊田市トヨタ叮1番地
(33) 優先檔主張国	日本(JP)	(70) Replace	西澤 将幸
(31) 假先約主張番号	特頭2001-177738 (P2001-177738)	(72)発明者	
(32)	平成13年6月12日(2001.6.12)		愛知県愛知郡長久手叮大字長湫字横道41番
(33)	日本(JP)		地の1 株式会社登田中央研究所内
		(74)代理人	100075258
			弁理士 吉田 研二 (外2名)
			最終頁に続く

(54) 【発明の名称】 ベルト式無段変速線のブーリ推力制御装置

(57)【要約】

【課題】 プーリ推力を適切な値に制御する。

【解決手段】 駆動プーリ推力算出手段44における駆動プーリ推力と、従動プーリ推力算出手段48における従動プーリ推力とから、推力比算出手段50で推力比を算出する。推力比変化状態同定手段52は、推力比と、従動プーリ推力とから従動プーリ推力の変化に対する推力比変化のピークを検出する。そして、この推力比ピークにあるように従動プーリ推力を維持する。

【特許請求の範囲】

10

【請求項1】 駆動プーリと従動プーリとをベルトで接続し、両プーリの実効径を変更することで変速比が連続的に変更可能であるベルト式無段変速機のプーリ推力制御装置であって、

駆動プーリの推力と、従動プーリの推力の推力比を検出 し、この推力比の変化状態に基づいてプーリ推力を制御 するベルト式無段変速機のプーリ推力制御装置。

【請求項2】 請求項1に記載の装置において、

前記推力比の変化における傾きの変化点付近になるよう 10 に、プーリ推力を制御するベルト式無段変速機のプーリ 推力制御装置。

【請求項3】 請求項2に記載の装置において、

前記プーリ推力を変更しながら推力比の傾きを随時検出するとともに、検出した傾きについて時間遅れを補償する処理を行い、時間遅れを補償された信号に基づいて傾きの変化点を検出するベルト式無段変速機のプーリ制御装置。

【請求項4】 請求項3に記載の装置において、

前記時間遅れの補償は、そのときの傾きに応じて、遅れ 20 補償の時間が変更されるベルト式無段変速機のプーリ制 御装置。

【請求項5】 請求項3または4に記載の装置において、

前記時間遅れを補償する処理は、随時検出される傾きに ついて低周波信号をカットするハイパスフィルタ処理で ある無段変速機のプーリ制御装置。

【請求項6】 請求項 $1\sim5$ のいずれか1つに記載の装置において、

前記プーリ推力を所定の周期で変更し、推力比の変化状 30 態を検出するベルト式無段変速機のプーリ推力制御装 置。

【請求項7】 請求項 $1\sim6$ のいずれか1つに記載の装置において、

前記推力比は、駆動プーリおよび従動プーリの推力を制御する油圧を計測することによって検出するベルト式無段変速機のプーリ推力制御装置。

【請求項8】 請求項 $1\sim6$ のいずれか1つに記載の装置において、

前記推力比は、駆動プーリおよび従動プーリの推力を制御する油圧の指令値から検出するベルト式無段変速機のプーリ推力制御装置。

【請求項9】 請求項1~8のいずれか1つに記載の装置において、

前記推力比に代えて、推力比に駆動プーリと従動プーリ のベルト掛かり径の比を乗算して算出した平均摩擦係数 比を採用し、この平均摩擦係数比の変化状態に基づいて プーリ推力を制御するベルト式無段変速機のプーリ推力 制御装置。

【請求項10】 駆動プーリと従動プーリとをベルトで 50

接続し、両プーリの実効径を変更することで変速比が連 続的に変更可能であるベルト式無段変速機のプーリ推力 制御装置であって、

推力比の変化状態に基づいてプーリ推力を制御する制御 マップを修正するプーリ推力制御装置。

【請求項11】 駆動プーリと従動プーリとをベルトで接続し、両プーリの実効径を変更することで変速比が連続的に変更可能であるベルト式無段変速機のプーリ推力制御装置であって、

略同一入力トルクで、略同一変速比という条件下で、いずれかの一方のプーリ推力を減少させ、そのときの推力 比の変化状態に基づいてベルトとプーリの摩擦状態を算 出し、この摩擦状態に基づいて、前記いずれか一方のプーリ推力を決定するベルト式無段変速機のプーリ推力制 御装置。

【請求項12】 駆動プーリと従動プーリとをベルトで接続し、両プーリの実効径を変更することで変速比が連続的に変更可能であるベルト式無段変速機の制御マップ作成方法であって、

入力トルク、変速比が略一定という条件下で、いずれかの一方のプーリ推力を減少させ、そのときの推力比の変化状態に基づいてベルトとプーリの摩擦状態を算出し、この摩擦状態に基づいて、前記いずれか一方のプーリ推力を決定し、これによってプーリ推力制御のための制御マップを作成するベルト式無段変速機の制御マップ作成方法。

【請求項13】 請求項11の装置において、 いずれかの一方のプーリ推力を減少させ、推力比の減少 から上昇への変化に基づきベルトとプーリの摩擦状態を 算出するベルト式無段変速機のプーリ推力制御装置。

【請求項14】 請求項12の方法において、 いずれかの一方のプーリ推力を減少させ、推力比の減少 から上昇への変化に基づきベルトとプーリの摩擦状態を 算出するベルト式無段変速機の制御マップ作成方法。

【請求項15】 駆動プーリと従動プーリとをベルトで接続し、両プーリの実効径を変更することで変速比が連続的に変更可能であるベルト式無段変速機のプーリ推力制御装置であって、

略同一入力トルクで、略同一変速比という条件下で、い ずれかの一方のプーリ推力を減少させ、そのときの推力 比の変化状態に基づいてベルトとプーリの摩擦状態の変 化を検出するプーリ推力制御装置。

【請求項16】 駆動プーリと従動プーリとをベルトで接続し、両プーリの実効径を変更することで変速比が連続的に変更可能であるベルト式無段変速機のプーリ推力制御装置であって、

略同一入力トルクで、略同一変速比という条件下で、いずれかの一方のプーリ推力を減少させ、そのときの推力 比の大きさに基づいてベルトとプーリの摩擦状態の変化 を検出するプーリ推力制御装置。

【請求項17】 駆動プーリと従動プーリとをベルトで接続し、両プーリの実効径を変更することで変速比が連続的に変更可能であるベルト式無段変速機のプーリ推力制御装置であって、

略同一入力トルクで、略同一変速比という条件下で、いずれかの一方のプーリ推力を減少させ、そのときの推力 比にピークが存在するか否かを判定し、ピークが存在しない場合に、摩擦状態の悪化を判定するプーリ推力制御 装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、駆動プーリ(プライマリプーリ)と従動プーリ(セカンダリプーリ)とをベルトで接続し、両プーリの実効径を変更することで変速比が連続的に変更可能であるベルト式無段変速機のプーリ推力制御装置、特にそのプーリのベルト挟み込み圧力である推力制御に関する。

[0002]

【従来の技術】従来より、自動車などの動力伝達における変速機に、変速比を連続的に変更可能な無段変速機が 20 知られている。この無段変速機としては、駆動プーリ (プライマリプーリ)と従動プーリ(セカンダリプーリ)とをベルトで接続し、この駆動プーリおよび従動プーリの実効径を変更するベルト式無段変速機が広く採用されている。

【0003】このベルト式無段変速機では、略円錐形状のシーブを向かい合わせてプーリを形成し、シーブ間距離を変更することでプーリの実効径を変更する。このプーリ実効径の変更のためのシーブの駆動には通常油圧が用いられ、この油圧によるプーリのベルト狭圧力(プーリ推力)を制御している。また、ベルトは、多数のブロックをひも状のフープで固定したタイプのものが利用される。

【0004】このようなベルト式無段変速機においては、変速比を決定するために一方のプーリ(例えば駆動プーリ)の推力が決定され、他方のプーリ(例えば従動プーリ)において滑りが発生しないようにプーリ推力が決定される。

【0005】ここで、この従動プーリにおけるプーリ推力は、十分大きくすればベルト滑りを確実に防止できるが、動力伝達の効率が悪くなるという問題がある。一方、プーリ推力を小さくするとベルト滑りが発生し、動力伝達が十分行えなくなるという問題があった。

【0006】すなわち、図22に示すように、ベルト滑りが発生せずにトルクを伝達できる伝達許容トルクに対する実際に伝達する伝達トルクの比(伝達トルク/伝達許容トルク)が大きくなるに従って、伝達効率が上がるとともにベルト滑り率も少しずつ上昇する。そして、この比が1.0に近づいたときに、ベルト滑り率が急激に上昇してマクロスリップが発生し、これに従って伝達効50

率も落ちるという特性を示す。

【0007】従来は、ベルト滑りを検出し、これが所定量になるようにプーリ推力を設定していた。これによって、ベルト滑りを抑制し、伝達効率を高めることができる。

[0008]

【発明が解決しようとする課題】しかし、このような従来のプーリの推力制御においては、ベルト滑りそのものを観測しているため、ある程度の滑りを許容することになる。そして、外乱が入ったり、プーリの伝達トルクに大きな変化があった場合等に、大きなベルト滑り(マクロスリップ)が発生しやすいという問題があった。

【0009】本発明は、上記課題に鑑みなされたものであり、適切なプーリ推力制御が行えるベルト式無段変速機のプーリ推力制御装置を提供することを目的とする。 【0010】

【課題を解決するための手段】本発明は、駆動プーリと 従動プーリとをベルトで接続し、両プーリの実効径を変 更することで変速比が連続的に変更可能であるベルト式 無段変速機のプーリ推力制御装置であって、駆動プーリ の推力と、従動プーリの推力の推力比を検出し、この推 力比の変化状態に基づいてプーリ推力を制御することを 特徴とする。

【0011】推力比のピークはベルトの大きな滑り(マクロスリップ)が発生する少し前の段階にある。また、動力の伝達効率のピークもこの近辺にある。そこで、推力比の変化状態に応じてプーリ推力を制御することによって、適切なプーリ推力制御が行える。

【0012】また、前記推力比の変化における傾きの変化点付近になるように、プーリ推力を制御することが好適である。推力比ピークはマクロスリップ発生の直前にあり、動力伝達効率の最高点もマクロスリップ発生の直前にある。そこで、この制御によって、適切なプーリ推力制御が行える。

【0013】また、前記プーリ推力を変更しながら推力 比の傾きを随時検出するとともに、検出した傾きについ て時間遅れを補償する処理を行い、時間遅れを補償され た信号に基づいて傾きの変化点を検出することが好適で ある。このように時間遅れを補償することで、より適切 な推力制御を行うことができる。

【0014】また、前記時間遅れの補償は、そのときの傾きに応じて、遅れ補償の時間が変更されることが好適である。これによって、収束を遅らせることなく、かつ正確に傾きの変化点を検出することができる。

【0015】また、前記時間遅れを補償する処理は、随時検出される傾きについて低周波信号をカットするハイパスフィルタ処理であることが好適である。ハイパスフィルタによって、効果的な時間補償を行うことができる。なお、ハイパスフィルタの場合、カットオフ周波数を制御することで、補償する時間を制御することができ

Į

る。従って、傾きに応じてカットオフ周波数を変更する ことで、適切な傾きの変化点検出が行える。

【0016】また、前記プーリ推力を所定の周期で変更し、推力比の変化状態を検出することが好適である。このようにプーリ推力を周期的に変更することで、推力比ピークを容易に検出できる。

【0017】また、前記推力比は、駆動プーリおよび従動プーリの推力を制御する油圧を計測することによって検出することが好適である。油圧の計測によって、プーリ推力を容易に計測することができる。

【0018】また、従動プーリ推力と推力比との位相の変化状態により推力余裕を容易に検出できる。

【0019】また、前記推力比は、駆動プーリおよび従動プーリの推力を制御する油圧の指令値から検出することが好適である。これによって、油圧センサなどの検出手段を省略することができる。

【0020】また、前記推力比に代えて、推力比に駆動プーリと従動プーリのベルト掛かり径の比を乗算して算出した平均摩擦係数比を採用し、この平均摩擦係数比の変化状態に基づいてプーリ推力を制御することが好適で 20 ある。

【0021】平均摩擦係数比は、速度比に応じて変化するため、変速比が変化しても好適な推力制御を行うことができる。

【0022】また、本発明は、駆動プーリと従動プーリとをベルトで接続し、両プーリの実効径を変更することで変速比が連続的に変更可能であるベルト式無段変速機のプーリ推力制御装置であって、推力比の変化状態に基づいてプーリ推力を制御する制御マップを修正することを特徴とする。これによって、常に最適な推力制御を行うことができる。

【0023】また、本発明は、駆動プーリと従動プーリとをベルトで接続し、両プーリの実効径を変更することで変速比が連続的に変更可能であるベルト式無段変速機のプーリ推力制御装置であって、略同一入力トルクで、略同一変速比という条件下で、いずれかの一方のプーリ推力を減少させ、そのときの推力比の変化状態に基づいてベルトとプーリの摩擦状態を算出し、この摩擦状態に基づいて、前記いずれか一方のプーリ推力を決定することを特徴とする。

【0024】また、駆動プーリと従動プーリとをベルトで接続し、両プーリの実効径を変更することで変速比が連続的に変更可能であるベルト式無段変速機の制御マップ作成方法であって、入力トルク、変速比が略一定という条件下で、いずれかの一方のプーリ推力を減少させ、そのときの推力比の変化状態に基づいてベルトとプーリの摩擦状態を算出し、この摩擦状態に基づいて、前記いずれか一方のプーリ推力を決定し、これによってプーリ推力制御のための制御マップを作成することを特徴とする。

【0025】このように、本発明によれば、実際の無段変速機を用いて、適切なプーリ推力を決定することができる。

【0026】また、いずれかの一方のプーリ推力を減少させ、推力比の減少から上昇への変化に基づきベルトとプーリの摩擦状態を算出することが好適である。

【0027】また、本発明は、駆動プーリと従動プーリとをベルトで接続し、両プーリの実効径を変更することで変速比が連続的に変更可能であるベルト式無段変速機のプーリ推力制御装置であって、略同一入力トルクで、略同一変速比という条件下で、いずれかの一方のプーリ推力を減少させ、そのときの推力比の変化状態に基づいてベルトとプーリの摩擦状態の変化を検出することを特徴とする。

【0028】このように、摩擦状態の経時的な変化を検出することで、より適切なプーリ推力制御が行える。

【0029】また、本発明は、駆動プーリと従動プーリとをベルトで接続し、両プーリの実効径を変更することで変速比が連続的に変更可能であるベルト式無段変速機のプーリ推力制御装置であって、略同一入力トルクで、略同一変速比という条件下で、いずれかの一方のプーリ推力を減少させ、そのときの推力比の大きさに基づいてベルトとプーリの摩擦状態の変化を検出することを特徴とする

【0030】また、駆動プーリと従動プーリとをベルトで接続し、両プーリの実効径を変更することで変速比が連続的に変更可能であるベルト式無段変速機のプーリ推力制御装置であって、略同一入力トルクで、略同一変速比という条件下で、いずれかの一方のプーリ推力を減少させ、そのときの推力比にピークが存在するか否かを判定し、ピークが存在しない場合に、摩擦状態の悪化を判定することを特徴とする。

[0031]

【発明の実施の形態】以下、本発明の実施形態について、図面に基づいて説明する。

【0032】「第1実施形態」図1は、第1実施形態の全体構成を示す図である。エンジンからの入力軸10には、シーブ12a、12bからなる駆動プーリ12が接続されている。この駆動プーリ12は、固定シーブ12bが油圧装置14からの油圧で移動可能になっている。お、油圧装置14からの油圧は、油圧制御弁15によって調整できる。従って、油圧制御弁15を制御することで、可動シーブ12bの軸方向位置を制御することで、可動シーブ12a、12bは、略円錐状であり、対向する面同士の間隔が外側に向けて広がっている。そこで、油圧装置14からの油圧によってであり、対向する面同士の間隔が外側に向けて広がっている。そこで、油圧装置14からの油圧によってで、カーブ12bが固定シーブ12a、12bの間隔が狭くなり、プーリ12の実効径が大きくなる。反対に、油圧装置14からの油圧

によって可動シーブ12bが固定シーブ12aから離れ ることによって、両シーブ12a、12bの間隔が広く なり、駆動プーリ12の実効径が小さくなる。

7

【0033】駆動プーリ12には、ベルト16が掛けら れ、これによって駆動プーリ12と従動プーリ18が接 続されている。このベルト16は、平板状のブロックを 多数積層し、これをフープで締め付けて構成されてい る。

【0034】また、従動プーリ18は、駆動プーリ12 と同様の構成を有しており、略円錐状の固定シープ18 aと可動シーブ18bが対向して配置されており、可動 シーブ18 bが油圧装置20によって移動可能になって いる。従動プーリ18においても、可動シーブ18bが 固定シーブ18a側に近づくことによって、従動プーリ 18の実効径が大きくなり、離れることによって実効径 が小さくなる。また、従動プーリ18には、車輪に動力 を伝達する出力軸22が接続されている。

【0035】そして、駆動プーリ12と、従動プーリ1 8の油圧圧力を制御することによって、駆動プーリ12 と従動プーリ18の実効径を決定し、変速比を制御す る。ここで、本実施形態では、駆動プーリ12におい て、変速比を決定するための油圧制御を行い、従動プー リ18において、最適伝達効率での動力伝達のための油 圧制御を行う。なお、この油圧により発生する力は、ベ ルト16を挟んだ駆動プーリ12および従動プーリ18 におけるベルト16を挟む軸方向の力であり、これをプ ーリ推力と呼ぶ。すなわち、駆動プーリ12および従動 プーリ18のプーリ推力を適切なものに制御することに よって、指令に応じた変速比とするとともに、ベルト1 6の滑りを防止しつつ、動力伝達効率を適切なものに維 30 持する。

【0036】次に、このような制御のための構成につい て説明する。まず、速度比指令値決定手段30は、車 速、アクセル踏み込み量などの車両情報に基づいて、変 速比に対応する駆動プーリ12と、従動プーリ18との 回転速度比である速度比指令値を決定する。この速度比 指令値は、駆動側油圧指令値決定手段32に供給され る。一方、入力軸10の回転数は駆動側回転数検出手段 34によって検出され、出力軸22の回転数は従動側回 転数検出手段36で検出され、これら回転数が速度比算 40 出手段38に供給され、ここで入力軸10と、出力軸2 2の速度比が算出される。算出された速度比は駆動側油 圧指令値決定手段32に供給される。

【0037】駆動側油圧指令値決定手段32は、速度比 指令値決定手段30から供給される速度比指令値と、速 度比算出手段38から供給される実際の速度比を比較 し、駆動側油圧指令値を決定する。油圧を上昇すること で、駆動プーリ12の実効径を大きくでき変速比が大き くなるため、指令通りの速度比になるように油圧指令値 を決定する。なお、速度比と変速比は一対一の関係にあ 50 り、いずれかの用語を適宜使用する。

【0038】決定された油圧指令値は、駆動側油圧指令 値調整手段40に供給される。この駆動側油圧指令値調 整手段40には、油圧装置14の出力油圧である駆動側 油圧を検出する駆動側油圧検出手段42の油圧検出値が 供給されており、駆動側油圧指令値調整手段は、油圧指 今値と、油圧検出値とに基づいて駆動側油圧制御弁15 を制御して油圧装置14による油圧をフィードバック制 御する。

【0039】また、駆動側回転数検出検出手段34と、 駆動側油圧検出手段42の検出値は、駆動プーリ推力算 出手段44に供給される。駆動側回転数検出手段34 は、油圧から駆動プーリ12の軸方向の力を計算すると ともに、回転数から遠心力を計算し、駆動プーリ12に よるベルト16への締め付け力である駆動プーリ推力を 算出する。

【0040】一方、従動側の油圧装置20の油圧は従動 側油圧検出手段46によって検出され、従動プーリ推力 算出手段48に供給される。この従動プーリ推力算出手 段48には、従動側回転数検出手段36の検出値も供給 されており、従動プーリ推力算出手段48はこれら検出 値から従動プーリにおける推力を算出する。

【0041】そして、駆動プーリ推力算出手段44で算 出された駆動プーリ12の推力と、従動プーリ推力算出 手段48に算出された従動プーリ18の推力は、推力比 算出手段50に供給され、ここで駆動プーリ推力/従動 側推力により推力比が算出される。

【0042】推力比算出手段50で算出された推力比 は、推力比変化状態同定手段52に供給される。推力比 変化状態同定手段52には、従動プーリ推力算出手段4 8からの従動プーリ18の推力も供給されており、これ らに基づいて推力変化に応じた推力比の変化状態を同定 する。

【0043】この推力比変化状態同定手段52の出力 は、従動側油圧指令値決定手段54に供給される。従動 側油圧指令値決定手段54は、供給される推力比の変化 状態から、推力の変化に応じた推力比の変化の方向が反 転する場所(推力比のピークの場所)を検出し、この点 に従動プーリ18の推力を制御するべく油圧指令値を決 定する。決定された油圧指令値には、油圧加振手段56 からの低周波の加振信号が加算され、これが従動側油圧 指令値調整手段58に供給される。すなわち、加振信号 によって、従動側油圧指令値は、目標値のまわりで周期 的に変化することになる。

【0044】従動側油圧指令値調整手段58には、従動 側油圧検出手段46からの検出値が供給されており、従 動側油圧指令値調整手段58は、油圧装置20の油圧が 指令通りになるように従動側油圧制御弁60をフィード バック制御する。

【0045】このように、本実施形態においては、駆動

a

プーリ12の推力を制御して、駆動側と従動側の速度比(変速比)が指令通りになるようにする。一方、従動プーリ推力と駆動プーリ推力の比である推力比の、従動プーリ推力の変化に対する変化状態から、推力比が変化する点(ピーク)に位置するように従動プーリ推力を制御する。

【0046】ここで、この推力比の変化状態に基づく推力制御について説明する。図2に速度比(1以上)と入力トルクが一定という条件の下で、従動プーリ推力を変更したときの推力比および駆動プーリ、従動プーリ内の 10 アクティブアーク変化率の特性を示す。ここで、アクティブアークは、プーリにおける動力伝達に寄与する部分をいう。

【0047】図における右側の従動プーリ推力を十分高くした条件から従動プーリ推力を徐々に低下させてアクティブアークおよび各プーリ推力を検出する実験を行った。従動プーリ推力を減少することによって、アクティブアークは徐々に増加するが、推力比は、図において破線で示した点(ピーク)まで増加し、その後低下する。

【0048】図3~図8には、ベルト16位置に応じた 20 ベルトの伝達(ブロック押しつけ力)およびフープ張力 の状態を示している。ここで、ベルト位置A~Bは、ベ ルト16が駆動プーリ12に巻き付いているが、ベルト 16の移動力(ブロック押しつけ力)には寄与していな い部分、B~Cは駆動プーリ側のアクティブアーク、D \sim E は、従動プーリ側の単に巻き付いている部分、E \sim Fが従動側アクティブアークである。そして、駆動プー リ上におけるフープ張力の面積からアクティブアークの ブロック押しつけ力を減算したP1+P2の面積が駆動 プーリに作用する推力(駆動プーリ推力)、従動プーリ 上におけるフープ張力の面積からアクティブアークのブ ロック押しつけ力を減算したS1+S2の面積が従動プ ーリに作用する推力(従動プーリ推力)である。また、 各プーリにおけるフープ張力のうち、P1、S1はフー プ張力がブロック押しつけ力より大きな領域、P2、S 2はフープ張力がブロック押しつけ力より小さな領域で ある。なお、アクティブアークの上方に位置しているフ ープ張力の面積が、伝達トルク(ブロック押しつけ力) に対応して必要なベルト16への力である。

【0049】図3、図4は、従動プーリ18の推力を十分大きなものとして、推力に余裕のある状態を示している。この状態では、全体的にフープ張力が十分大きい。このため、アクティブアークは小さくても必要なブロック押しつけ力を得ることができる。

【0050】図5、図6は、図3、図4の状態から推力 を減少させた状態を示している。この場合、アクティブ アークの面積の変化はそれほど大きくなく、推力のうち P1、S1の減少が支配的である。減少度合いとして は、P1の減少量 Δ P1>S1の減少量 Δ S1であるが、P2の面積がS2の面積より十分に大きい(P2> 50

>S2)。このため、推力比(P1+P2)/(S1+S2)は、増加する。

【0051】図7、図8は、図5、図6の状態からさらに推力を減少した状態を示している。この状態では、アクティブアークの増加が大きくなり、特に P 2の減少と S 2の増加が支配的になる。従って、推力比(P1+P2)/(S1+S2)は、減少する。

【0052】このように、アクティブアークの変化率が大きくなるときに、増加していた推力比が減少し始める。この点は、ベルト16の大きな滑り(マクロスリップ)が生じ始める若干前の段階である。すなわち、図22において、伝達効率が最高となる点の近傍である。

【0053】なお、この現象は、速度比が1以下の場合や、推力が一定で入力トルクが増加して推力余裕が減少する場合にも生じることが確認されている。

【0054】図9には、各種の速度比における従動プーリ推力(セカンダリ推力)に応じた推力比および伝達効率の特性を示す。このように、従動プーリ推力を下げていくと、大きな滑り(マクロスリップ)が始まり、伝達効率が急激に落ちる。しかし、この直前において、推力比ピークを迎える。この推力比ピークは、伝達効率は十分高い点であるが効率は十分高い点であるが、速度比が大きいより前であるが、速度比が大きくなる。達り比が大きいほど、推力減少による伝達効率の増加が大きいほど、推力減少による伝達効率の増加が大きいほど、推力減少による伝達効率の増加が大きいほど、推力減少による伝達効率の増加が大きいた表に表が表される。従って、速度比が大きい場合において、推力とした表に表の制御することによる伝達効率改善の効果が大きいと考えられる。従って、高速巡航時において、本度施形態の制御の効果が大きいことが分かる。

【0055】このような現象について、オイラー理論を用いて説明できる。図10は、オイラー理論による現象の説明図であり、アクティブアークが急激に増加し始める位置に推力比ピークが存在することが分かる。これより、推力比ピーク付近にプーリ推力(セカンダリ推力)を制御することで、マクロスリップの発生を防止しつつ、動力伝達効率の高い点に推力を制御できることが分かる。なお、アクティブアークが100%に達すると、大きな滑り(マクロスリップ)が始まるため、プーリ推力(セカンダリ推力)をこの点(マクロスリップが始まる点)より高く維持することは重要である。

【0056】本実施形態では、従動プーリ18における推力を油圧加振手段56によって変化させ、これにともなう推力比の変化状態を検出する。そして、この変化状態が増加と減少の間で変化する点(推力比ピーク)を見つけ、この点に従動プーリ推力をコントロールする。そこで、ベルト16のマクロスリップの発生を防止しつつ、動力伝達効率を最高点付近に維持することができる。

【0057】次に、推力比の変化状態(推力比ピーク)

から推力制御値を決定する手法の具体例について説明する。

【0058】(i)位相変化を検出する手法 推力制御を行うプーリ推力と推力比の位相を、±180 。の範囲で推定するために2次以上のモデルを持ち、モ デルのパラメータを逐次型最小自乗法で推定する。な お、1次のモデルでは、位相を±90。の範囲でしか推 定できない。

【0059】まず、プーリ推力に正弦波を入力したときの推力比変化を同定モデル(2次)に入力し、逐次最小 10 自乗法によりモデルパラメータを推定する。そして、推定されたモデルパラメータを用い、同定モデルの所定周波数における位相を推定する。

【0060】推定位相(位相遅れ)が所定以上変化したポイントあるいは推定位相が所定値に達したポイントを推定比ピークとし、これより位相が進んでいる領域を同位相、遅れている領域を逆位相とする。逆位相領域は、推力余裕がある領域であり、同位相領域は推力余裕がなくなっている領域である。

【0061】そこで、この加振周波数に対する同定モデルの推定位相が同相であればプーリ推力(従動プーリ推力:セカンダリ推力)を減少し、逆相であればプーリ推力を増加させるように制御すればよい。

【0062】(ii)ゲイン変化を検出する手法 上述の(i)と同様に2次以上のモデルを用いて、ここ にプーリ推力および推力比を入力して、モデルパラメー タを逐次最小自乗法で推定する。そして、同定モデルの 所定周波数におけるゲインを求め、プーリ推力を減少さ せていくときに、モデルのゲインが減少傾向から増加傾 向に転じたポイントを推力比ピークとする。

【0063】すなわち、プーリ推力を減少させていくときにゲインが減少または維持される領域は推力余裕がある領域であり、プーリ推力を減少させていくときにゲインが増加する領域は推力余裕がなくなっている領域である。

【0064】(i i i) 位相およびゲインを用いる手法上述の(i) と同様に2次以上のモデルを用いて、モデルパラメータを逐次最小自乗法で推定する。そして、同定モデルの所定周波数における位相とゲインの両方を利用して、推力比ピークを求める。すなわち、(i)、

(ii)の両方のチェック結果に応じて推力ピークを求める。これによって、より適切な制御が行える。

【0065】(iv)勾配0の検出による手法プーリ推力を下げていったときに推力変化を検出し、推力比の勾配が0になったポイントを推力比ピークとする。プーリ推力を下げていったときに推力比の勾配が増加方向であれば推力余裕のある領域であり、プーリ推力を下げていったときに推力比の勾配が減少方向であれば推力余裕がなくなっている領域である。

【0066】(v)推力比の最大を検出する手法

基本的には、上述の(i v)と同様であるが、プーリ推力を下げていったときに推力変化を検出し、推力比の最大値を検出する。

【0067】ここで、(i)の手法が現実的であり、これについて図11に基づいて、説明する。従動プーリ推力と、算出された推力比は、推力比変化状態同定手段(位相余裕算出手段)52の逐次型最小自乗同定部52aに入力され、ここで2次以上の同定モデルについてのモデルパラメータが最小自乗法によって推定される。そして、推定されたモデルパラメータは位相算出部52bに入力され、ここで推定されたモデルパラメータを利用して所定周波数における位相を算出する。この周波数は、加振周波数に対応したものである。

【0068】なお、逐次最小自乗法自体は一般的に知られた手段であり、例えば「システム制御情報ライブラリー9 システム同定入門、pp.71-86、朝倉書店(1994/5)」に解説されているため、その説明を省略する。

【0069】そして、得られた推定位相は、従動側油圧指令値決定手段54の推力操作量マップ54aに入力される。この推力操作量マップ54aは、予め位相に対する推力操作量(油圧)を記憶しているものであり、推定位相の入力によって対応する操作量を出力する。次に、出力された操作量は、加算器54bに入力され、ここで1周期前の推力指令値に加算され、推力指令値(油圧指令値)が得られる。

【0070】このように、推力操作量マップ54aを予め用意しておくことで、位相に対する油圧操作量を適切なものにできる。また、油圧操作量の決定には、推力操30 作量マップ54aを用いる方法の他に、目標位相を維持するように、PID制御などのフィードバック制御を用いてもよい。

【0071】また、推力比の勾配0または勾配の値が0をクロスする点を検出する手法も好適である。以下、これについて説明する。

【0072】図24に示すように、推力比の接線の傾きkと切片y0を用い、出力プーリ推力をx、推力比をyとした場合、動作点におけるこれらの関係は、

 $y = k \cdot x + y \ 0$

40 で表される。

【0073】出力プーリ推力xと推力比yは、上述したようにプーリシリンダの油圧を検出することなどにより得られる。x, yの信号に基づき、動作点での傾きkと切片y0を最小自乗法などにより時々刻々同定する。そして、同定された傾きが0となる点を検出すれば、推力比曲線の頂点となる出力プーリ推力点が検出でき、伝達効率が最大となる出力プーリ推力が決定できる。

【0074】「傾きkと切片y0の同定」次に、傾きk と切片y0の同定方法について、さらに具体的に説明す 50 る。まず、上述の接線の式を次のように時系列のデータ

の式に書き換える。

[0075]

 $y(i) = [k(i)y0(i)] \cdot [x(i)1]^{T}$ ここで、iは現サンプリング時点を表し、Tは転置を表す。また、この式を次のように書き換える。

【0076】 y $(i) = \theta$ (i) $\cdot \xi$ (i) ここで、下付の e は、推定値を表す。また、右辺の θ e

(i) 及び ξ (i) は次の通りである。

*【0077】 θ 。 $(i) = [k \cdot y \cdot 0 \cdot (i)]^T$ $\xi(i) = [x(i) \cdot 1]$ また、出力プーリ推力x、推力比yは、ローパスフィルタ処理を施し、高周波ノイズ成分が除去された信号とする。そして、上記3式から、例えば最小自乗法として固定トレース法を用いて、 θ 。を以下のように算出する。【0078】

$$\theta_{\bullet} = \theta_{\bullet} (i-1) - \Gamma (i-1) \cdot \xi (i)$$

$$/ (1+\xi (i)^{T} \cdot \Gamma (i-1) \cdot \xi (i))$$

$$\cdot (\xi (i) \cdot \theta_{\bullet} (i-1) - y (i))$$

$$\lambda (i) = 1 - \| \Gamma (i-1) \cdot \xi (i) \|^{2}$$

$$/ (1+\xi (i)^{T} \cdot \Gamma (i-1) \cdot \xi (i)) / t \Gamma (\Gamma (0))$$

$$\Gamma (i) = 1/\lambda (i)$$

$$\cdot (\Gamma (i-1) - \Gamma (i-1) \cdot \xi (i) \cdot \xi (i)^{T} \cdot \Gamma (i-1)$$

$$/ (1+\xi (i)^{T} \cdot \Gamma (i-1) \cdot \xi (i))$$

このようにして、 θ 。を求めることでk。(i), y0。
(i) を求めることができる。

【0079】「ハイパスフィルタ処理」図25に、出力推力x及び推力比yの信号を用い上記3式を用いて同定 20 された傾きkを示す。図25には、出力プーリ推力に対する推力比、時間に対する推力比を合わせて示してある。図25(b)は、27秒付近からsin波のトルク外乱を印加しているため、推力比の時間波形がのこぎり状になっている。

【0080】図25から、ケース1の場合、推力比が頂点となる時間は240秒付近、同定された傾きが0を横切る点(頂点検出時間)は、280秒付近となっている。また、ケース2の場合、同様に32秒、38秒付近となっている。このように、推力比が頂点となる時間から頂点を検出するまでに遅れ時間 Δ t が生じていることが分かる。

【0081】図26は、実験データを基に、0秒の時点から頂点に至るまでの出力プーリ推力に対する推力比曲線を一次近似し、一次の近似係数の絶対値を横軸に、遅れ時間 Δ t を縦軸にとって整理した結果である。この図26から、近似係数が大きいほど遅れ時間 Δ t が大きくなっていることが分かる。すなわち、推力比変化が大きいほど同定遅れが大きいといえる。

【0082】このような傾きkの同定遅れに対し、ハイ 40パスフィルタを用いて補償を行う。図25から出力プーリ推力に対する推力比の曲線は頂点をすぎるまで傾きkがなだらかに変化し、頂点をすぎた後急激に変化していることが分かる。ハイパスフィルタを用いて、なだらかに変化する部分の定常値を除去し、急激に変化する部分のみを抽出する。ただし、定常値を除去している間に外乱トルクなどによって、推力比の頂点を越えてしまう可能性がある。そこで、ハイパスフィルタによる定常値除去は素早く行う必要がある。除去に要する時間は、初期値の大きさと時定数に依存する。傾きkは初期応答後、50

収束してある値(初期値)に落ち着くが、図25に示す ように収束する値は条件によって異なる。

【0083】図25(b)の場合、初期応答の後の絶対値が大きく、定常値除去に時間を要することが予想される。そこで、収束値を初期値に拘わらず0近傍へ素早く収束させるため、傾きkの値に応じてハイパスフィルタの時定数を刻々変化させる。

【0084】図27に、ハイパスフィルタの時定数変更の処理をを示すフローチャートを示す。まず、傾きkをカットオフ周波数2 Hzのハイパスフィルタ処理し(S11)、このハイパス値の絶対値をとり(S12)、得られた絶対値を1 Hzのローパスフィルタ処理する(S13)。このようにして、そのときの傾きkの絶対値が得られる。

【0085】そして、絶対値が第1のしきい値 t h r 1 以上かを判定する(S 1 4)。この判定で Y E S であれば、推定開始後 t 1 秒経過したかを判定する(S 1 5)。この判定で Y E S であれば、ローパスフィルタ値が第2 のしきい値 t h t 2 以下かを判定する(S 1 6)。

【0086】この判定でYESであれば、傾きk(i)が負であるかを判定する(S17)。そして、この判定でYESであれば、カットオフ周波数 f(i) について、

 $f(i) = \alpha k(i)^{n}$

【0087】次に、カットオフ周波数 f (i)が0.0 05以上であるかを判定する(S19)。そして、S1 4、15、16、17、19の判定において、NOの場合には、カットオフ周波数 f (i)=0.0005Hz 50 にセットする(S20)。

14

【0088】そして、このようにしてカットオフ周波数 f(i) がセットされるため、時定数T(i) = 1/2 $\pi f(i)$ に、ハイパスフィルタの時定数をセットする (S21)。

【0089】 これによって、傾きkの絶対値がthr1以上であり、かつ推定からt1秒経過後であり、ローパス値がthr2以下である場合に、初期応答が終了したと判定してハイパスフィルタのf(i)を傾きkに応じた大きな値に設定する。一方、初期応答の際には、ハイパスフィルタの時定数は、初期値である31.83秒に*10

*セットされ、またkの絶対値がthr1以下になった場合(ほぼ収束段階に至った場合)には、ハイパスフィルタの時定数を初期値である31.83sにセットする。このようにして、ハイパスフィルタによって効果的な遅れ時間の補償が行える。

【0090】また、ハイパスフィルタ処理は、図27に基づき、決定された時定数T(i)を用いて次式により行う。

[0091]

$$k_{h}(i) = F1(i) \cdot k_{h}(i-1) + F2(i) \cdot (k(i)-k(i-1))$$

$$F1(i) = -(dt-2 \cdot T(i)) / (dt+2 \cdot T(i))$$

$$F2(i) = 2 \cdot T(i) / (dt+2 \cdot T(i))$$

ここで、 k_h は、傾きkのハイパス値、d t はサンプリング周期である。

【0092】「しきい値変更」このようにして、傾き k についてハイパスフィルタを利用して遅れ補償を行うが、推力比の頂点は、この傾き k = 0の点である。しかし、単純にハイパス値(ハイパスフィルタで処理した傾 20き k)が0以上になったかどうかで伝達効率最大点を検出すると、正確なピークの検出が行えない場合もある。そこで、ハイパス値があるしきい値を超えた時に最大点である判定する。しきい値Thrは、次式で設定する。

Thr>0.02以上の場合は、<math>thr=0.02 ここで、kmは現時点から過去2秒間のデータ(点数20点)のハイパス値 k_h の平均値(最小値は0)、k σ は k_h の標準偏差である。2秒という値は、CVT の応答周期1秒の2倍である。

[0093] Thr= $km+4 \cdot k\sigma$

【0094】「伝達効率最大点の検出」傾きkの初期応答終了後、上式で設定したしきい値をハイパス値が超えたかどうかで、推力比頂点付近であること検出する。その結果、伝達効率最大点が検出される。

【0095】図28は、上記処理に基づき推力比頂点を 検出した結果である。図28より、初期応答後の収束値 に拘わらず、推力比頂点となる時点がほぼ正確に検出で きていることが分かる。

【0096】以上のようにして、ベルト式CVTの伝達 効率最大点を検出することができる。なお、上記例で は、傾きkの同定遅れに対してハイパスフィルタを用い て補償したが、しきい値を傾きkの初期応答収束値に応 じて変更することも可能である。

【0097】「構成」ここで、上述のような傾きkの変化状態から伝達効率最大点を検出する処理を行う装置について図29に基づいて説明する。まず、入力プーリ推力及び出力プーリ推力がそれぞれの検出回路によって検出され、これらがローパスフィルタ1a,1bに入力され、ここで高周波ノイズが除去される。ローパス処理された入力プーリ推力と出力プーリ推力は、わり算回路250

に入力され、ここで入力プーリ推力が出力プーリ推力で 除算され、推力比が計算される。

【0098】そして、わり算回路2で得られた推力比と、ローパスフィルタ1bからのローパス処理された出力プーリ推力は、傾き同定部3に入力され、ここで傾きが随時検出される。この処理は上述したように、最小自乗法などにより傾きk(i)と切片y0(i)を推定することによって行う。

【0099】得られた傾きkは、ハイパスフィルタ4に供給され、ここで所定の時定数でハイパス処理され、遅れ時間補償がなされる。一方、傾きkは時定数設定部5にも供給され、時定数設定部5は上述のようにして、ハイパスフィルタ4の時定数を設定する。

【0100】そして、ハイパスフィルタ4において得られる傾きkのハイパス値は判定部6に供給され、上述の30 しきい値Thrと比較され、しきい値Thrを超えた時点で、推力比のピークと判定する。ここで、判定部6で用いるしきい値は、上述のようにして、しきい値設定部7で算出され、設定される。

【0 1 0 1】 このような構成により、推力比についての傾きkの変化状態から、推力比のピーク、すなわち伝達効率最大点を検出することができる。

【0102】次に、従動プーリ推力(油圧)を正弦波で加振した場合の推力比の変化について、図12、13に基づいて説明する。

【0103】従動プーリ推力に対する推力比の値は、図 12に示すとおりであり、推力を下げていくと、推力比 は徐々に上昇し、ピークを越えると急激に減少する。

【0104】推力に余裕のあるピークの右側の領域における正弦波の入力(A)に対する推力比出力(A)は、図に示すように、ゲインは小さく、逆位相である。一方、ピークを越えた後の入力(B)に対する推力比出力(B)は、図に示すようにゲインが大きく、同位相になる。従って、上述の(i)~(v)ような手法は、このような変化を検出している。

【0105】ここで、図13には、従動プーリ推力の加

振周波数(セカンダリ油圧加振周波数)に対するゲイン (dB)、位相(dB)の変化について示している。これより、加振周波数 $1\sim10$ H z 程度の範囲では、推力比ピークを越えた推力余裕がない場合のゲインおよび位相がその他推力比ピーク前のものと離れていて識別可能であることが分かる。特に、位相の変化では、加振周波数 $1\sim10$ H z 程度で、推力比ピークを容易に判定できることが分かる。

【0106】実際に、従動プーリ推力を推力比ピークを目標に制御した場合の実験結果を図14に示す。まず、制御が開始されることによって、位相の推定が開始される。この時点で、従動プーリ推力は十分高いため、位相は逆位相になる。一方、制御の開始によって油圧が減少し、伝達効率がアップする。そして、推力比位相を同位相と逆位相の境である-90°(所定の位相遅れ)に制御することで、油圧を適切な値として、伝達効率をアップできることが確認できた。

【0107】また、油圧加振手段56を取り除き、油圧 (推力)を意図的には振動させなくてもよい。すなわち、積極的な加振手段を設けなくても、実際の制御においては、油圧は変動し、ここにはいろいろな周波数がのっている。そこで、その中で、好適な数Hz(例えば2Hz)の周波数についての応答を検出することで、上述と同様の処理を行うことができる。

【0108】この油圧加振手段56を省略した場合の制御結果を図15に示す。このように、油圧を積極的に加振しなくても、従動プーリ18の推力を制御して、推力比ピークに維持することができる。

【0109】「他の構成例」次に、従動プーリにおいて速度比を制御する場合の構成例を図16に示す。この図16の例では、従動プーリ12により速度比を制御し、駆動プーリ12において、推力比をピークに維持するように駆動プーリ12の推力を制御する。

【0110】このために、従動側油圧指令値決定手段54は、速度比指令値決定手段30および速度比算出手段38からの信号に基づいて従動側油圧指令値を決定する。一方、推力比変化状態同定手段52は、推力比算出手段44からの駆動プーリ推力と駆動プーリ推力算出手段44からの駆動プーリ推力とから、推力比の駆動側12の推力変化に対する変化状態を同定する。そして、この同定結40果に基づいて、駆動側油圧指令値決定手段32が駆動側油圧を決定する。さらに、この駆動側油圧指令値に対し、油圧加振手段56からの加振信号が加えられ、駆動側油圧が加振される。

【0111】このように、この実施形態では、駆動側油 圧を制御して、推力比がピークに付近になるように駆動 側推力を制御する。これによっても、上述の実施形態と 同様の作用効果が得られる。

【0112】なお、このように、駆動プーリ12と従動 プーリ18のいずれを速度比決定のために利用し、推力 50

制御用に利用するかは、任意に選択できるものであり、 以下の実施形態のいずれもこの図16の構成を採用する ことができる。

【0113】図17に、油圧指令値を用いて推力を推定する実施形態を示す。この実施形態においては、従動側油圧検出手段46および駆動側油圧検出手段42を省略している。また、油圧検出値がないため、検出値に基づくフィードバック制御ができないため、駆動側油圧指令値調整手段40および従動側油圧指令値調整手段58も省略されている。

【0114】そして、従動側油圧制御弁60に供給される油圧指令値を従動プーリ推力算出手段48に供給し、 駆動側油圧制御弁15に供給される油圧指令値を駆動プーリ推力算出手段44に供給している。

【0115】ここで、油圧指令値と推力比の関係を調べた結果を図18に示す。このように、油圧指令値を徐々に減少していくことで、推力比の変化状態が得られる。これより、油圧指令値が油圧検出値とほぼ同等に取り扱えることが分かる。なお、油圧指令値については、ローパスフィルタにより、高周波成分を除去している。

【0116】このように、油圧に油圧指令値を代用しても、同様の作用効果が得られることが分かる。

【0117】図19には、回転変動が小さいと仮定できる場合の構成例が示されている。この構成では、駆動側回転数検出手段34からの回転数の駆動プーリ推力算出手段44への供給が省略され、また従動側回転数検出手段36からの回転数の従動プーリ推力算出手段48への供給が省略されている。従って、駆動プーリ推力算出手段44および従動プーリ推力算出手段48では、回転数を考慮せずにプーリ推力を算出するが、回転数の影響が少ないため問題はない。低速走行時などでは、この手法が好適であり、これによって演算負荷を大幅に減少できる。

【0118】図20には、駆動トルク変動を用いて推力 比をピークに制御する構成例を示す。この例では、入力 軸10において伝達している駆動トルクを駆動トルク検 出手段70によって検出する。また、駆動トルク加振手 段72によって、駆動トルクに数Hz程度の振動が与え られる。

【0119】そして、推力比変化状態同定手段52は、 駆動トルクの変化に対する推力比の変化状態から適切な プーリ推力を算出する。すなわち、上述した例では、駆動トルクが一定として、プーリ推力と推力比の関係を調べているが、駆動トルクについて所定の変動を与え、その変動に対応する推力比の応答をみれば、プーリ推力を変動させて推力比の変動をみたものと等価になる。すなわち、駆動トルクを大きくすることは、プーリ推力を小さくしたことと等価である。そこで、駆動トルクを大きくしたことに対する推力比の変化状態に基づいて、プーリ推力を制御することで、推力比をピークに維持するこ

19

とができる。ここで、入力である駆動トルクの位相と、 出力である推力比の位相の関係は、図1の場合とは反対 となっており、従って、駆動トルクの加振の位相と、出 力である推力比の位相が同位相であれば推力に余裕があ り、推力を減少させ、逆位相であれば推力が不足してい ないため推力を上昇すればよい。

【0120】なお、この場合においても、駆動トルクを 意図的に振動させる必要はなく、駆動トルク加振手段7 2を省略することもできる。

【0121】また、図20の例では、駆動トルクを変動 させたが、これに代えて、地面からの外乱による推力比 変化からプーリ推力を制御することもできる。

【0122】例えば、地面からの外乱によるタイヤに対 する負荷トルクを検出し、これに対する推力比の変動を 検出し、これと推力比の関係からプーリ推力を制御する ことができる。これは、駆動トルクを変動させるのと基 本的に同様の手法である。

【0123】また、地面からの外乱により、タイヤ回転 数が減少すると、従動プーリ回転数減少により遠心油圧 が減少する。この回転数の減少はプーリ推力を減少させ たことに対応する。そこで、タイヤ回転数または従動プ ーリ回転数の変動と、推力比の変動の関係から、推力比 が所定値に維持できるようにプーリ推力を制御すればよ い。なお、駆動プーリ推力は、速度比を制御するために 制御される。

【0124】さらに、上述の例では、いずれも推力比ピ ークを維持するように制御を行った。この推力比に代え て、平均摩擦係数の比を採用することもでき、これによ っても、推力最適化制御が行える。

【0125】各変数を、Ti=入力トルク、µp=駆動 プーリとベルト間の平均摩擦係数、Fp=駆動プーリの 推力、Rp=駆動プーリにおけるベルト掛かり径、Ip **=駆動プーリの回転慣性、dNp=駆動プーリの回転加** 速度、T=ベルトが伝達しているトルク、μs=従動プ ーリとベルト間の平均摩擦係数、Fs=従動プーリの推 力、Rs=従動プーリにおけるベルト掛かり径と定義す る。

【0126】この場合、

[数1] $T i = I p \cdot d N p + \mu p \cdot F p \cdot R p = I p$ $\cdot dNp+T$

 $T = \mu s \cdot F s \cdot R s$

 $\mu p = (T i - I p \cdot d N p) / (F p \cdot R p)$ $\mu s = (T i - I p \cdot d N p) / (F s \cdot R s)$ となる。

【0127】ここで、平均摩擦係数の比をとると、

【数2】 $\mu s / \mu p = F p \cdot R p / F s \cdot R s = (F p)$ $/Fs) \cdot (Rp/Rs)$ となる。

【0128】変速比を一定とした場合、掛かり径の比R p / R sは一定となるので、推力比F p / F sと、平均 50 T e、変速比yなどを引数とした制御マップによって与

摩擦係数の比μ s / μ p は、比例することになり、平均 摩擦係数比を推力比に代えることができる。

【0129】従って、推力比に代えて平均摩擦係数の比 を用いても、上述と同様のプーリ推力最適化制御が可能 になる。特に、平均摩擦係数の比を用いることにより、 変速比を代えた場合の推力比の変化をキャンセルするこ とができる。すなわち、上述の掛かり径の比を考慮する ことで、変速比がいずれであっても平均摩擦係数の比を みればよいことになる。

【0130】図21には、平均摩擦係数の比からプーリ 推力を制御するための構成が示されている。ベルト掛か り径検出手段80は、駆動プーリ12および従動プーリ 18のベルト掛かり径をそれぞれ検出する。

【0131】このベルト掛かり径検出手段80として は、ベルトの掛かり径をベルトブロックの頂部位置とし て検出することが考えられる。これは、光学式、磁気式 などの非接触変位計で計測することが可能である。ま た、プーリの軸方向位置によりシーブ間距離が決定さ れ、これによってベルト掛かり径が決定される。そこ で、プーリ軸方向位置を測定してもよい。さらに、変速 比から算出してもよい。

【0132】ベルト掛かり径検出手段の検出値は、平均 摩擦係数比算出手段82に供給される。この摩擦係数比 算出手段82には、推力比算出手段50からの推力比も 供給されており、ここで上述の数2に記載された式によ り、推力比を平均摩擦係数の比に置き換える。そして、 得られた平均摩擦係数の比が平均摩擦係数比変化状態同 定手段84に供給され、ここで平均摩擦係数の比がピー ク付近に位置するようにプーリ推力を制御する。この推 定手法は上述の推力比ピークの算出と同様に行うことが できる。そして、この平均摩擦係数の比のピークについ てのデータが従動側油圧指令値決定手段54に供給さ れ、油圧指令値が決定される。

【0133】このように、平均摩擦係数の比を利用する ことによって、上述のように変速比が異なっていてもプ ーリ推力を最適制御することができる。

【0134】さらに、上述の実施形態においては、推力 比ピークまたは平均摩擦係数比のピークを検出し、これ らがピーク位置になるようにプーリ推力を制御した。し 40 かし、これらの関係をマップに記憶しておき、推力比を 決定する各種条件から最適推力を直接出力できるように してもよい。また、このマップは、実際の走行状態に応 じて算出した推力比ピークに応じて学習して書き換える ことが好適である。これによって、高速な応答を確保で きるとともに、演算したのと同様に推力比、平均摩擦係 数比のピークになるようにプーリ推力比を制御すること ができる。

【0135】また、図23は、プーリ推力を制御する油 圧の指令値を、エンジン回転速度Ne、エンジントルク

える形式の制御系において、推力比ピーク推定法を用い て制御マップを修正することができるプーリ推力制御の 構成を示したものである。この例は、駆動プーリ12に より速度比(変速比)制御のための油圧(プライマリ油 圧)制御を行い、従動プーリ18においてプーリ推力制 御のための油圧(セカンダリ油圧)制御を行う。

【0136】変速比(速度比)に応じてプライマリ油圧 を制御するプライマリ制御系100からのプライマリ油 圧は駆動プーリ12に供給される。一方、セカンダリ油 圧制御系102からのセカンダリ油圧は従動プーリ18 10 に供給される。

【0137】そして、プライマリ油圧およびセカンダリ 油圧が推力比ピーク推定器104に供給され、この推力 比ピーク推定器104が供給両油圧から推力比の変化状 態を検出し、プーリ推力比ピークに対応するセカンダリ 油圧を推定する。推定された推力比ピークに該当するセ カンダリ油圧指令値は、スイッチ106に供給される。

【0138】一方、推力比ピーク推定器104の出力 は、安全率乗算器108で安全率(1より若干大きい数 字)を乗算した後制御マップ(セカンダリ油圧制御マッ プ) 110に供給される。この制御マップ110は、エ ンジン回転速度Ne、エンジントルクTe、変速比yを 引数として、推力比ピークに対応するセカンダリ油圧指 令値を出力するものである。そして、推力比ピーク推定 器104から供給される値(セカンダリ油圧指令値) と、そのとき出力しようとするセカンダリ油圧指令値の 関係から制御マップを修正する。そして、制御マップ1 10の出力であるセカンダリ油圧指令値もスイッチ10 6に供給される。

【0139】スイッチ106は、推力比ピーク推定器1 04における推定期間中のみ、推力比ピーク推定器10 4からのセカンダリ油圧指令値を選択し、他の期間は制 御マップ110からのセカンダリ油圧指令値をセカンダ リ油圧制御系102に供給する。

【0140】実際に車両に搭載して制御する場合には、 制御マップ110を用いてセカンダリ油圧を制御した方 が処理が容易であり、通常走行時はこの制御系を用い る。一方、車両には、個体差があり、一般的な制御マッ プをそのまま適用することはできない。そこで、所定の テスト走行により、推力比ピークの推定を行い、この結 40 果に基づいて制御マップ110を修正し、その後の走行 では、制御マップ110を利用してセカンダリ油圧を制 御する。さらに、車両の特性は経時変化する。そこで、 定期的に推力比ピーク推定器104による推定を行い、 制御マップ110を更新修正する。

【0141】このような、制御マップ110の修正につ いて、以下に説明する。

【0142】まず、上述のように、通常走行時は、プー リ推力を制御する油圧の指令値(セカンダリ油圧指令 値)は、制御マップ110からの値を採用する。

【0143】そして、適宜推力比ピーク推定器104を 利用した推定を行う。この手順は、個体差の修正の場合 も同様である。

【0144】学習時(推力ピーク推定時)は、スイッチ 106は推力比ピーク推定器104からのセカンダリ油 圧指令値を採用する。そして、プーリ推力が徐々に下が るように油圧指令値をゆっくり、例えばランプ波形状に 変化させ、このときのプーリ推力比の変化を観測し、推 力比ピークを迎えた時点の油圧指令値を記録する。

【0145】ここで、プーリ推力比のピークはプーリ推 力比の勾配の変化で求めてもよいし、推定位相が所定値 以上になった時点をとってもよい。また、推定位相が所 定値以上変化した時点をとってもよい。

【0146】この油圧指令値の記録を終了した場合に は、スイッチ106により油圧指令値をセカンダリ油圧 制御マップ110からの値に戻す。そして、推力比ピー クを迎えた時点で参照される制御マップ110の値(制 御マップ110において出力される値)を、記録した制 御指令値に所定の安全率を掛けた値となるように、書き 換える。

【0147】このようにして、制御マップ110をその ときの状態に基づいて、書き換えることができ、制御マ ップ110を適切なマップに維持することができる。

【0148】次に、さらに他の実施形態について説明す る。この実施形態では、実際走行時ではなく、工場にお ける生産時などにおいて、オフラインで初期の制御マッ プを作成する。すなわち、金属製のベルトを用いるCV Tにおけるベルト狭圧力をオフラインで設定する実施形 態について、説明する。なお、本実施形態においても変 **凍比制御のためにプライマリ推力を制御し、ベルト狭圧** 力制御のためにセカンダリプーリ推力を制御することと する。従って、本実施形態では、ベルト狭圧力は、セカ ンダリプーリ推力である。

【0149】この実施形態の主要構成は、図30に示す とおりであり、上述した実施形態で説明したように、推 力比を算出する推力比算出回路200を有している。そ して、この推力比算出回路200において得た推力比お よび従動側プーリ(セカンダリプーリ)推力がベルト狭 圧力のオフライン設定部204に供給される。

【0150】金属ベルト式CVTにおいて、同一入力ト ルク、同一変速比を維持した状態でベルト狭圧力(セカ ンダリ推力)を低下させると、図31に示すように、一 度推力比が大きくなってからベルト滑り直前に推力比が 小さくなり始める。そして、効率最高点近傍で推力比が ピークを持つ。

【0151】また、マクロスリップに入ると、出力側 (プライマリプーリ側) の回転速度が小さくなる。そこ で、速度比制御系が見かけ上速度比を合わそうとしてプ ライマリ推力を上昇させるため、この推力比は急上昇を 50 始める。

【0152】ここで、この推力比が急上昇し始めるポイ ントがマクロスリップが始まるマクロスリップ限界であ る。従って、このときの入力トルクとセカンダリ推力お よび速度比から、ベルト・プーリ間の最大摩擦係数が算

【0153】このようにして、求められた最大摩擦係数 を用いることにより、最低限必要なベルト狭圧力(セカ ンダリ推力)を算出できる。そこで、この最低限必要な ベルト狭圧力に、必要な狭圧力余裕度を足すことで、適 切なベルト狭圧力(セカンダリ推力)を設定できる。ま た、このようにして求めた最大摩擦係数に基づいて、適 切なセカンダリ推力を決定することができる。そこで、 走行時に用いられるエンジン回転速度、エンジントル ク、変速比等を引数とし、最適なセカンダリ推力を求め る制御マップを作成することができる。

【0154】また、マクロスリップを起こさずに最大摩 擦係数を推定することもできる。この場合、推力比がピ ーク値から所定値低下した点をマクロスリップ限界と判 定する。この点は、実際にマクロスリップが発生するポ イントより少し手前である。しかし、算出される最大摩 20 擦係数の誤差は小さく、十分実用可能な制御マップを作 成することができる。

【0155】従来は、固定プーリ比の装置に、ベルトを 掛けた状態でトルクを上昇させていき、滑り率が既定値 を超えたトルクからベルト・プーリ間の最大摩擦係数を 求め、これに基づいてベルト狭圧力(セカンダリ推力) を算出していた。しかし、この従来例の場合、固定プー リ比の装置を用いているため、トルクがかかった状態で のプーリの姿勢の違いなどにより、実車における最大摩 擦係数とずれが生じる。また、ベルト滑りを起こされる 試験を繰り返すため、最大摩擦係数を求めるのに要する 時間が多大となる。

【0156】本実施形態によれば、実際のCVT変速機 を用いて車両の制御と同じ方式で実験するために、短時 間に適正なベルト狭圧力(セカンダリ推力)を設定でき る。

【0157】次に、このようなベルト狭圧力のオフライ ン設定の具体的な手法について説明する。

【0158】まず、図32に示すように、同一トルク (同一入力トルク)、同一変速比の条件(入力トルクお よび変速比が一定)に設定する(S61)。次に、セカ ンダリ推力を低下させ、その時の推力比の変化を検出す る(S62)。そして、推力比のピークをすぎた後の推 力比が増加に移る点または推力比が所定値減少した点に 基づいてマクロスリップが始まる限界かを判定する(S 63)。そして、この判定の結果、マクロスリップ限界 と判定された場合には、これに基づいて最大摩擦係数を 算出する(S64)。次に、算出された最大摩擦係数に 基づき、適切なセカンダリ推力を決定する(S65)。 ここで、最大摩擦係数の算出およびベルト狭圧力(セカ ンダリ推力)の設定は、以下のいずれかの方法による。 【0159】(i)推力比(プライマリ推力/セカンダ **リ推力)がピークを過ぎて低下している状態から急上昇** し始める点をマクロスリップ限界とし、この時のセカン ダリ推力に必要な安全率をかけることによって、ベルト 狭圧力(セカンダリ推力)制御マップを作成する。

【0160】(ii)推力比(プライマリ推力/セカン ダリ推力) がピークを過ぎて低下している状態から急上 昇し始める点をマクロスリップ限界とし、この時のセカ ンダリ推力、入力トルク、速度比より、最大摩擦係数を 求め、この最大摩擦係数を用いて最低必要なセカンダリ 推力を算出し、これに必要な余裕推力を足し合わせるこ とで、ベルト狭圧力(セカンダリ推力)を算出する。

【0161】 (i i i) 推力比(プライマリ推力/セカ ンダリ推力)がピーク値から所定値低下した点をマクロ スリップ限界とし、この時のセカンダリ推力に必要な安 全率をかけることによって、ベルト狭圧力(セカンダリ 推力)制御マップを作成する。

【0162】 (i v) 推力比(プライマリ推力/セカン ダリ推力) がピーク値から所定値低下した点をマクロス リップ限界とし、この時のセカンダリ推力、入力トル ク、速度比より、最大摩擦係数を求め、この最大摩擦係 数を用いて最低必要なセカンダリ推力を算出し、これに 必要な余裕推力を足し合わせることで、ベルト狭圧力 (セカンダリ推力)を算出する。

【0163】(v)推力比(プライマリ推力/セカンダ リ推力) がピーク値となった点のセカンダリに必要な安 全率 (1以上) をかけて、ベルト狭圧力 (セカンダリ推 力)制御マップを作成する。

【0164】次に、さらに他の実施形態について説明す る。この実施形態では、ベルト・プーリ間の摩擦係数 (最大摩擦係数)の変化を検出する。すなわち、駆動プ ーリ、従動プーリ間には、ベルトが掛け渡され、このベ ルトによって動力伝達を行っている。このベルトは、通 常金属で形成され、複数のブロックをフープで締め付け る構成になっており、ブロックが各プーリとCVTオイ ルを介し接触し、プロックプーリ間の摩擦力を利用して ベルト/プーリ間の動力伝達が行われる。

【0165】しかし、このベルト(具体的にはブロッ ク) は、使用しているうちにその表面状態が変化する。 また、プロックとプーリ間に介在するCVTオイルも経 時変化する。従って、ベルトとプーリ間の摩擦係数は経 時的に変化する。

【0166】そして、この摩擦係数が変化すると、ベル ト滑りが発生するタイミングなども変化する。そこで、 摩擦係数の変化に応じて、推力制御を変更することが好 ましい。本実施形態では、このベルト・プーリ間の摩擦 係数を検出する。

【0167】この実施形態の主要構成は、図33に示す 50 とおりであり、上述した実施形態で説明したように、推

力比を算出する推力比算出回路200を有している。そ して、この推力比算出回路200において得た推力比お よび従動側プーリ(セカンダリプーリ)推力が最大摩擦 係数低下検出回路202に供給される。なお、本実施形 態においても変速比制御のためにプライマリ推力を制御 し、ベルト狭圧力制御のためにセカンダリプーリ推力を 制御することとする。

【0168】最大摩擦係数低下検出回路202には、速 度比、入力トルクなども供給されており、最大摩擦係数 低下検出回路202は、これら入力されてくる情報に基 10 づいて、ベルトとプーリ間の摩擦係数の低下を検出す る。

【0169】まず、金属製のベルト(金属ベルト)と、 CVTオイルが初期状態であり、油オンも適正な範囲に ある場合はベルトとプーリ間の摩擦係数が十分に大き い。この場合、同一入力トルク、同一変速比を維持した 状態でセカンダリ推力を低下させると、図34のよう に、一度推力比が大きくなってからベルト滑り直線に推 力比が小さくなり始め、効率最高点近傍で推力比がピー クを持つ。これについては上述したとおりである。

【0170】ここで、金属ベルト、CVTオイルの経時 変化や油温の変化により、ベルト・プーリ間の摩擦係数 が下がると、図34に示すように、セカンダリ推力の変 化に対する推力比の変化量が小さくなる。そして、限度 以上に摩擦係数が下がった場合には、推力比ピークが現 れなくなる。また、推力比の値が、摩擦係数の低下に伴 い小さくなってくる。

【0171】従って、セカンダリ推力による推力比の変 化を基準品 (新品) と比較することでベルト・プーリ間 の摩擦係数が低下したことを検出することができ、また 30 推力比ピークが検出できなくなったことで、摩擦係数が 限度以上に下がったこと検出することができる。

【0172】そこで、本実施形態では、次のようにし て、摩擦係数の低下を検出する。

【0173】(i)図35に示すように、まず、入力ト ルクと減速比がほぼ一定と認められるか否かを判定する (S31)。この判定でYESであれば、セカンダリプ ーリ推力に対する推力比の勾配が負の領域(推力余裕が ある領域)を判定する(S32)。この推力比は、セカ ンダリプーリ推力を若干変動させて、推力比の変化をみ 40 ることで行える。これは、上述した実施形態で説明した ものと同様である。

【0174】そして、推力比の勾配が負の領域であれ ば、セカンダリプーリ推力を変化させて、そのときの推 力比の変化状態から摩擦係数の変化を推定する(S3 3)。そして、摩擦係数の変化状態に基づいて、セカン ダリプーリの推力を上昇させる(S34)。すなわち、 得られた摩擦係数の変化から摩擦係数を変更して、セカ ンダリプーリ推力の設定を学習補正する。これによっ て、摩擦係数は変化しても、適切な推力を供給すること 50 そして、この判定で、推力比ピークが検出されなくなっ

ができる。特に、この制御によれば、推力に余裕のある 状態で、この摩擦係数変化の検出が行えるため、ベルト 滑りの危険性を回避した上で、摩擦係数の変化を検出す ることができる。

【0175】 S33の摩擦係数変化の推定は、具体的に は、次のようにして行うことができる。

【0176】まず、セカンダリ推力の変化に対する推力 比の変化勾配が既定値以下になったか否かを判定する。 そして、この勾配が規定値以下になった場合に、ベルト ・プーリ間の摩擦係数が低下したと判定し、セカンダリ プーリ推力を上昇させる。

【0177】また、ベルト・プーリ間の摩擦係数の変化 による、セカンダリ推力変化に対する推力比の変化勾配 の変化を事前に検定して記憶しておく。そして、検出し たセカンダリ推力変化に対する推力比の変化勾配からべ ルト・プーリ間の摩擦係数を算出して、セカンダリプー リ推力を設定する。

【0178】 (i i) また、入力トルクと減速比がほぼ 一定と認められる時の推力比自体の大きさから摩擦係数 の変化を推定し、セカンダリプーリ推力の設定を学習補 正することもできる。

【0179】すなわち、図36に示すように、入力トル クと減速比がほぼ一定と認められるか否かを判定する (S41)。この判定でYESであれば、そのときの推 力比の大きさから摩擦係数が変化したかを判定する(S 42)。そして、摩擦係数が変化したと判定された場合 には、セカンダリプーリの推力を摩擦係数の変化に応じ て上昇させる(S43)。

【0180】この手法によれば、プーリ推力をわざわざ 変更することなく、容易に摩擦係数を検出することがで きる。

【0181】ここで、S42の判定としては、検出した 推力比が出荷状態の推力比から規定値以上下がった場合 に、ベルト・プーリ間の摩擦係数が低下したと判定する ことができる。

【0182】また、ベルト・プーリ間の摩擦係数の変化 による推力比の変化を事前に検定、記憶しておき、検出 した推力比からベルト・プーリ間の摩擦係数を算出し て、算出された摩擦係数に基づいて、セカンダリプーリ の推力を設定することもできる。

【0183】 (i i i) さらに、推力比ピークが検出さ れなくなったことによって、ベルトの交換の必要性を検 出することもできる。

【0184】すなわち、図37に示すように、入力トル クと減速比がほぼ一定と認められるか否かを判定する (S51)。この判定でYESであれば、セカンダリプ ーリ推力に対する推力比の勾配が正(推力余裕がなくな った領域)までセカンダリプーリ推力を下げていき、推 力比ピークが検出されるか否かを判定する(S52)。

た場合に、ベルト・プーリ間の摩擦係数が所定以上(限界以上)低下したと判定する(S53)。これによって、摩擦係数の限界以上の低下を検出できる。S53でYESの場合には、ベルトの交換が必要である旨の表示などを行い、交換を促す(S54)。

【0185】以上のように、本実施形態によって、推力 比の状態に応じて、ベルト・プーリ間摩擦係数の変化を 検出することができ、検出結果に応じてプーリ推力制御 の補正が可能となる。

【0186】このようにして、本実施形態によれば、次 10 のような効果が得られる。

【0187】CVTオイルの温度により、ベルト・プーリ間の摩擦係数が低下している場合には、これを検知してベルト狭圧力を上昇させ、ベルト滑りの発生を防止できる。

【0188】また、金属ベルトやCVTオイルの経時変化により、ベルト・プーリ間の摩擦係数が低下している場合には、これを検知してベルト狭圧力を上昇させ、ベルト滑りの発生を防止できる。

【0189】さらに、基準値以上にベルト・プーリ間の 20 摩擦係数が低下した場合に、ベルト交換の警告を出すこ とができる。

[0190]

【発明の効果】以上説明したように、本発明によれば、 推力比の変化状態に基づいてプーリ推力を制御する。こ の推力比のピークはベルトの大きな滑り(マクロスリップ)が発生する少し前の段階にある。また、動力の伝達 効率のピークもこの近辺にある。そこで、推力比の変化 状態に応じてプーリ推力を制御することによって、適切 なプーリ推力制御が行える。

【0191】また、推力比ピークはマクロスリップ発生の直前にあり、動力伝達効率の最高点もマクロスリップ発生の直前にある。そこで、前記推力比の変化における傾きの変化点付近となるように、プーリ推力を制御することによって、適切なプーリ推力制御が行える。

【0192】また、傾きについて時間遅れを補償する処理を行うことで、より適切な推力制御を行うことができる。

【0193】また、傾きに応じて、遅れ補償の時間が変更することで、収束を遅らせることなく、かつ正確に傾 40きの変化点を検出することができる。

【0194】また、時間遅れを補償する処理をハイパスフィルタ処理とすることで、効果的な時間補償を行うことができる。

【0195】また、プーリ推力を周期的に変更することで、推力比ピークを容易に検出できる。

【0196】また、駆動プーリおよび従動プーリの推力 を規定する油圧を計測することによって、プーリ推力を 容易に計測することができる。

【0197】また、駆動プーリおよび従動プーリの推力 50

を規定する油圧の指令値から検出することによって、油 圧センサなどの検出手段を省略することができる。

【0198】また、前記推力比に代えて、推力比に駆動プーリと従動プーリのベルト掛かり径の比を乗算して算出した平均摩擦係数比を採用し、この平均摩擦係数比の変化状態に基づいてプーリ推力を制御することが好適である。平均摩擦係数比は、速度比に応じて変化するため、変速比が変化しても好適な推力制御を行うことができる。

【図面の簡単な説明】

【図1】 実施形態に係るベルト式無段変速機のプーリ 推力制御装置の全体システム構成を示す図である。

【図2】 従動プーリ推力に対する推力比およびアクティブアークの関係を示す図である。

【図3】 推力に余裕がある場合のブロック押しつけ力 を示す図である。

【図4】 推力に余裕がある場合のフープ張力、プーリ 推力を示す図である。

【図5】 推力が低下した場合のブロック押しつけ力を示す図である。

【図6】 推力に低下した場合のフープ張力、プーリ推力を示す図である。

【図7】 推力がさらに低下した場合のブロック押しつけ力を示す図である。

【図8】 推力にさらに低下した場合のフープ張力、プーリ推力を示す図である。

【図9】 推力と伝達効率、推力比の関係を示す図である。

【図10】 オイラー理論による減少を説明する図であ 30 る。

【図11】 推力指令値の生成のための構成を示す図である。

【図12】 推力比の特性を示す図である。

【図13】 油圧加振周波数と位相、ゲインの関係を示す図である。

【図14】 油圧、伝達効率、推力比位相の関係を示す 図である。

【図15】 油圧を加振しない場合の推力比位相と油圧 位相の関係を示す図である。

) 【図 1 6】 従動側で速度比を制御する場合のシステム 構成を示す図である。

【図17】 油圧指令値を用いて推力を推定する場合の システム構成を示す図である。

【図18】 油圧指令値を用いた推力比特性を示す図である。

【図19】 回転数が小さいと仮定できる場合のシステム構成を示す図である。

【図20】 駆動トルク変動を利用する場合のシステム構成を示す図である。

【図21】 平均摩擦係数比を利用する場合のシステム

構成を示す図である。

【図22】 伝達トルクとベルト滑り率および伝達効率の関係を示す図である。

【図23】 制御マップ110の更新のための構成を示す図である。

【図24】 動作点での推力比の接線による近似方法を示す図である。

【図25】 傾きkの同定結果を示す図である。

【図 2 6 】 推力比の変化に対する遅れ時間 ∆ t を示す 図である。

【図27】 ハイパスフィルタの時定数Tの決定を示すフローチャートである。

【図28】 推力比頂点の検出結果を示す図である。

【図29】 推力比の傾きから推力比頂点を検出するための構成を示すブロック図である。

【図30】 さらに他の実施形態の主要部の構成を示す 図である。

【図31】 セカンダリ推力と推力比の関係を示す図である。

*【図32】 さらに他の実施例の動作を説明するフロー チャートである。

【図33】 さらに他の実施形態の主要部の構成を示す 図である。

【図34】 セカンダリ推力と推力比の関係を示す図である。

【図35】 さらに他の実施例の動作の一例を説明するフローチャートである。

【図36】 さらに他の実施例の動作の一例を説明する 10 フローチャートである。

【図37】 さらに他の実施例の動作の一例を説明するフローチャートである。

【符号の説明】

10 入力軸、12 駆動プーリ、16 ベルト、18 従動プーリ、44駆動プーリ推力算出手段、48 従動プーリ推力算出手段、52 推力比変化状態同定手段、54 従動側油圧指令値決定手段、56油圧加振手段、58 従動側指令値調整手段、60 従動側油圧制御弁。

【図1】

推力比算出回路

推力比算出回路

【図17】

【図19】 速度比算出手段 速度比指令值 決定手段 38 動倒油圧指令值 決定手段 驅動側油圧 令值調整手段 駆動倒油圧 検出手段 駆動側回転数 検出手段 從動倒油圧 制御弁 58 從動倒油圧 抽出手段 從動倒油圧 增令值劃整手的 従助ブーリ 推力算出手段 36 56 油圧 加張手段 48 ,52 推力比查化状態 同定手段 從動例油圧指令値 決定手段 *5*4 推力此算出手段

[図20]

【図29】

【図21】

ハイパスフィルケの特定数での決定

【図35】

[図36]

推力比頂点の検出結果

フロントページの続き

(72)発明者 山口 裕之

愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内

(72)発明者 鈴木 秀之

愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内

(72)発明者 羽田 昌敏

愛知県愛知郡長久手町大字長湫字横道41番

地の1 株式会社豊田中央研究所内

(72)発明者 樽谷 一郎

愛知県愛知郡長久手町大字長湫字横道41番

地の1 株式会社豊田中央研究所内

(72)発明者 大澤 正敬

愛知県愛知郡長久手町大字長湫字横道41番

地の1 株式会社豊田中央研究所内

(72)発明者 長沢 裕二

愛知県愛知郡長久手町大字長湫字横道41番

地の1 株式会社豊田中央研究所内

(72)発明者 岩月 邦裕

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(72)発明者 中脇 康則

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(72)発明者 星屋 一美

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(72)発明者 鴛海 恭弘

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

Fターム(参考) 3J552 MAO7 NAO1 NBO1 PA12 SA34

SA35 SA36 TA06 VA13Z

VA18W