CS110 Principles of Computer Systems

Mendel Rosenblum

http://cs110.stanford.edu

Today's Goals

- Describe the course
 - Course staff introduction
 - Course administrative details
 - Grading
 - -Course content
- Computer systems introduction
 - What we mean by systems.
 - Why are computer systems interesting?

Course Personnel

Instructor: Mendel Rosenblum

TAs:

Tirthankar (Ty) Chatterjee

Rafael Moreno Ferrer

Chris Lengerich

Jim Liu

Rory MacQueen

Shizhi Wang

Class electronic communication

- Students & Staff → Students & Staff
 - Piazza Discussion Forum via website
- Students → Staff
 - Mail cs110-win1213-staff@lists.stanford.edu
- Staff → Students
 - Mail sent to all registered students
- My Email: mendel@cs.stanford.edu

Prerequisites

- Formal:
 - CS107 and (CS103 or CS103B)
- Practical:
 - Basic computer architecture
 - Low level C programming
 - Pointers, strings, etc.

Course Material

Textbook available at Stanford Bookstore

Principles of Computer System Design: An Introduction Jerome H. Saltzer and M. Frans Kaashoek.

First 6 chapters in textbook (also available online)

Rest of book available via class website and as a reader

- Lecture notes distributed in class
 - Also available as PDF files on website
 - Leftover paper copies available Gates Hall 3rd floor between A and B wings

Discussion Sections

- Meet once a week for 50 minutes
 - Discuss material related to assignments
 - You are responsible for this material
- Enroll in a section via the course website
 - Sections have enrollment limits

Assignments

Four assignments spread out over the quarter

- 1st out on Friday, 4th due last day of class
- Done individually
- Two parts: Programming, Discussion/design

Subjects:

- 1. Naming/layering File system archeology
- 2. Concurrency
- 3. Performance
- 4. Distributed systems

Disclaimer

- Relationship between programming assignments and lectures different from intro CS classes
 - CS110 is about concepts
 - Example: Layering
- Analogy with writing courses and writing assignments in other courses

Policies: Semi-tough Love

- Late policy: Don't get behind
 - 10% penalty per 24-hour day
 - Nothing after five (5) 24-hour days
- Exceptions for special circumstances
 - 3 free 24-hour "late days"
 - Can be used together
- Assignments are done individually
 - Stanford Honor Code
 - Checking software may be deployed

Exams

- Midterm Exam:
 - In class on Monday, February 11th
- Final Exam:
 - Friday, March 22nd 8:30-11:30AM
 - Note: Last day of finals
 - Let me know now if you have a conflict
- Exams are closed book and closed notes

Grading

- Give me sign you understand and can apply the course material
- Grading formula:
 - 50% Assignments
 - 15% Midterm Exam
 - -35% Final Exam

Some extra credit will be available

Traditional Systems Teaching

Traditional courses:

- Computer Architecture
- Operating Systems
- Networks
- Database Systems
- Programming languages
- Software Engineering
- Security

Too many course so:

- Take 3 of the above
- Take (OS or Compilers) and 2 of the above

Course Goals

- Learn principles and abstractions for engineering computer systems of all kinds
 - Principles not laws, more like rules of thumb
 - What works and what doesn't work
- Learn how systems work
 - Computer Scientist vs. Computer User
 - Break through the magic
- Install a Systems Perspective in you

Course Organization

- Lectures and textbook readings
 - Cover many concepts
 - Example usages
 - Evaluation: Exam questions
- Assignments and discussion sections
 - Learn by doing
 - Cover few concepts in depth
 - Evaluation: Assignment grade

Examples of Computer Systems

What's interesting?

Example: www.facebook.com

- Fault tolerance
 - Failure of computers, rack computers, possible even data center.
- Coordination of concurrent activities
 - Inside machine with many users
- Geographically separated but linked data
 - For fast access on East Coast Have friends there.
- Vast quantities of stored information
 - Uploads 24 million photos a day, > 1 petabytes
- Protection from mistakes and intentional attacks
 - Someone who is not your friend should not see your data.
- Interactions with many people
 - The whole point of the website

CS110 Course – Part 1

- Introduction to Computer Systems
 - Complexity, abstractions
- Modularization, Naming and Layering
 - Memory, interpreters, communication links
- Client-Server Architecture
 - RPC, indirection, peer to peer
- Client-Server within a Machine (Virtualization)
 - Bounded buffers, threads, concurrency, virtual memory

CS110 Course – Part 2

- Performance
 - Design approaches, multi-level memories, scheduling
- Networking
 - Layers, sockets
- Protection and Security
 - Authentication, access control, cryptography
- Review of systems concepts
 - Case studies

What is a Computer System?

Definition: A **system** is a set of **interconnected components** that has an **expected behavior** observed at the **interface** with its **environment**.

Definition: A **computer system** is a system intended to store, process, or communicate information under automatic control.

A **system** is a set ... observed at the **interface** with its **environment**.

Divides World Up

- Everything is either:
 - Part of system

or

Part of the environment

- www.facebook.com
 - System: data center full of hardware and software, network connections, etc.
 - Environment: other sites, electricity, network backbone, weather, etc

Environment

A system ... has an expected behavior observed

Behavior depends on point of view

- Different points of view on same system
- Example: Facebook.com
 - Website: Render pages in a browser
 - Eye balls viewing page Ad revenue
 - Distributed system:
 - Compute, storage, communication
 - Communication mechanism:
 - Compare with eVite or email for setting up a party
 - Menlo Park traffic city planner:
 - Impact of new campus

... system is a set of interconnected components that ...

Observed at different granularity

- Systems built out of Subsystems
 - Like Powers of Ten film
- Example: Facebook.com

Website: My page and friends walls

Data base server: x86 box, Linux, MySQL

Caching disk controller

Microcontroller on disk controller

Computer Systems are Special

Like other systems, except:

- Not limited by physical laws or theories.
 - Pile software together
 - Limited by human understanding
- Underlying technology changes fast
 - Example: Moore's law for semiconductors
 - Designs get obsolete fast
- Use computers systems to design new systems

CS110 is about dealing with this.

Action items for next class

- 1. Enroll in class and a discussion section
- 2. Get textbook
- 3. Read Chapter 1 (Pages 1 to 39) for Wednesday's lecture.