Exercise 6.1

$$\frac{1}{A} = \int_{-1}^{2} \left[f(x) - g(x) \right] dx$$

$$= \int_{2}^{2} (x^2 + 4 - x) dx$$

$$= \left[\frac{7^3}{3} + 7 - \frac{7^2}{2} \right]_{4}^{2}$$

$$=\frac{9}{2}$$

2.
$$A = \int_0^q \left[\sqrt{x} - \left(-\frac{x}{q} \right) \right] dx$$

$$= \left[\frac{2x^{34}}{3} + \frac{x^2}{8}\right]_0^4$$

3.
$$A = \int_{1}^{2} \left(\gamma - \frac{1}{y^{2}} \right) d\gamma$$

$$= \left[\frac{y^2}{2} + \frac{1}{y}\right]^2$$

4. A=
$$\int_{0}^{2} \left[\left(2 - \frac{1}{2} \right) + \left(\frac{1}{2} \right) \right] dy$$

= $\left[2y - \frac{y^{3}}{3} + \frac{y^{2}}{2} \right]_{0}^{2}$
= $\frac{10}{2}$

(a) integrating with respecting tox,

$$A = \int_{0}^{2} (2x - x^{2}) dx$$

$$= \left[x^{2} - \frac{x^{2}}{3} \right]_{0}^{2} = \frac{4}{3}$$

(b) Integrating with respect to y,

$$A = \int_0^{9} \left(\sqrt{19} - \frac{4}{2}\right) dy$$

$$= \left[\frac{24^{3/2}}{3} - \frac{4^2}{4}\right]_0^{9}$$

$$= \frac{9}{3}$$

(a) Integrating with respect to 2

$$A = \int_{0}^{1} [(2\sqrt{2}) - (-2\sqrt{2})] dx +$$

=
$$\int_{0}^{1} 4\pi dx + \int_{2}^{4} (2\pi - 2x + 4)dx = \frac{8}{3} + \frac{29}{3} = 9$$

(b) Integrating with new pect to y

$$A = \int_{-2}^{4} \left[\left(\frac{4}{2} + 2 \right) - 4^{2}/4 \right] dy$$

$$= \left[\frac{y^2}{9} + 2y - \frac{y^3}{12} \right]_{-2}^{4}$$

7.
$$A = \int_{\frac{1}{4}}^{1} (\sqrt{x} - x^{2}) dx$$

$$= \left[\frac{2x^{3/2}}{3} - \frac{x^{3}}{3} \right]_{\frac{1}{4}}^{1}$$

(3,-2)

$$\theta = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (0 - \cos 2x) dx$$

$$= \left[-\frac{\sin 2x}{2}\right]^{\frac{7}{2}}$$

$$A = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} [Siny-o]dy$$

So,
$$A = \int_{-1}^{2} \left[(2+2) - \chi^2 \right] dx = \left[\frac{\chi^2}{2} + 2\chi - \frac{\chi^3}{3} \right]_{-1}^{2}$$

$$= \left[\frac{\chi^2}{2} + 2\chi - \frac{\chi^3}{3} \right]_{-1}^2$$

$$A = \int_{1}^{e} \left[\frac{1}{4} - 0 \right] dy$$

$$= \left[\ln y \right]_{1}^{e} = 1$$

$$|x| = \frac{2}{1+x^2}$$

$$x = \frac{2}{1+x^2}$$

$$\Rightarrow x + x^3 - 2 = 0$$

$$\chi = \frac{2}{1+x^2}$$

$$3-x = -\frac{1}{5}x + 7$$

$$A = \int_{-5}^{1} \left[\left(-\frac{3}{5} 2 + 7 \right) - (3 - 2) \right] dx + \int_{3}^{5} \left[\left(-\frac{3}{5} 2 + 7 \right) - \left(3 + 1 \right) \right] dx$$

$$= \int_{-5}^{1} \left(\frac{4}{5} 2 + 9 \right) dx + \int_{3}^{5} \left(6 - \frac{6}{5} 2 \right) dx$$

$$= \left[\frac{4}{10} + 42 \right]_{-5}^{2} + \left[62 - \frac{61}{10} \right]_{3}^{5} = \frac{42}{5} + \frac{48}{5} = 24$$

18. 4=2 , 4=92 , 4= -4+2

For bounded area between

Y=4x and Y=x is As.

and y-fore bounded area between

Y=-x+2 and Y=x is As.

For A₃,
$$A_{1}=x+2 \Rightarrow 51 \pm 2 \Rightarrow 7 = \frac{2}{5}$$

So, A₁ = $\int_{0}^{\frac{2}{5}} \left[A_{1}-x \right] dx$ = $\int_{0}^{\frac{2}{5}} 3x dx$ = $\left[\frac{3x^{2}}{2} \right]_{0}^{\frac{2}{5}}$

For A₂, $-x+2 = x \Rightarrow 2x = 2 \Rightarrow x = 4$

So, A₁ = $\int_{\frac{2}{5}}^{1} \left[(-x+2) - x \right] dx$ = $\int_{\frac{2}{5}}^{1} \left(-2x+2 \right) dx = \left[-\frac{2x^{2}}{2} + 2x \right]_{\frac{2}{5}}^{1}$

So, A₂ A₃ + A₂ = $\frac{3}{5}$