Vorlesung Baumautomaten (Mitschrift)

Benedikt Elßmann (3720358) be57xocu@studserv.uni-leipzig.de

Universität Leipzig

11. April 2019

Inhaltsverzeichnis

0	Ein	leitung	2
	Bäume und Baumautomaten		
	1.1	Definition Rangalphabet	3
		Definition Term, Tree	
		Definition Höhe	
		Definition Position	
		Definition der Label an den Positionen	
		Definition Sub-Baum	
		Definition Baumautomat	
	1.8	Definition Lauf/Run	5
	1.9	Lemma	6

0 Einleitung

Automaten lesen Wörter $w = a_1 \dots a_n$ und geben "accept" aus oder nicht. Dafür gibt es Erweiterungen, wie etwa:

- gewichtete Automaten, das heißt der Output ist ein Semiringelement
- Automaten mit Gedächtnis (Stack)
- Automaten über anderen Strukturen
 - $-\omega$ -Wörter $w = a_1 \dots a_n$
 - Graphen
 - Bäume
 - Kombinationen dieser

Typische Fragestellungen:

- Ausdrucksstärke
- Darstellung als rationale Ausdrücke (Kleene)
- Darstellung als Grammatik
- Darstellung als Logik

1 Bäume und Baumautomaten

Wir betrachten über $A = \{a, b\}$ den Automaten \mathcal{A} :

mit $L(A) = b^*aba^*$.

Betrachtung des Wortes $w = baba \in L(A)$:

Der eindeutige erfolgreiche Lauf für w lässt sich darstellen als:

 $q_0baba \rightarrow bq_0aba \rightarrow baq_1ba \rightarrow babq_2a \rightarrow babaq_2 \in F$ (Finalzustand)

Baumautomaten funktionieren analog. Unser erstes Beispiel wird

Akzeptiert mit dem Lauf:

mit $q_f \in F$

1.1 Definition Rangalphabet

Ein paar (Σ, rk) , wobei Σ eine endliche Menge von Symbolen und $rk : \Sigma \to \mathbb{N}$ eine Abbildung ist, heißt Rangalphabet.

Für $f \in \Sigma$ heißt rk(f) der Rang (oder die Stelligkeit) von f.

Intuitiv: rk(f) ist die Anzhal der Kinder von f in einem Baum. Insbesondere ist die Anzhal der Kinder für jedes Symbol fest.

Gilt rk(f) = n, schreiben wir auch $f^{(n)}$ statt f. wir schreiben:

- 0-stellige Symbole (Konstanten) a, b, \ldots
- unär, binär, ... f, g, ...

Wir setzen $\Sigma^{(n)} = \{ f \in \Sigma | rk(f) = n \}$

 In

f ist also
$$rk(f) = 2, rk(b) = 0$$
f b

1.2 Definition Term, Tree

Sei (Σ, rk) ein Rangalphabet. Die Menge T_{Σ} der Bäume üeber Σ ist induktiv definiert durch:

- $\Sigma^0 \subseteq T_{\Sigma}$
- $f^{(n)} \in \Sigma$. $t_1, \ldots, t_n \in T_{\Sigma}$, dann ist $f(t_1, \ldots, t_n) \in T_{\Sigma}$

Intuitiv sind t_1, \ldots, t_n die Kinder von f.

Z.B. ist

1.3 Definition Höhe

Sei (Σ, rk) ein Rangalphabet. Die Höhe ht ist gegeben durch:

- für $a^{(0)} \in \Sigma : ht(a) = 1$.
- für $f(t_1, ..., t_n) \in T_{\Sigma} : ht(f) = 1 + max\{ht(t_i) | i \in \{i, ..., n\}\}$

Ziel: Zugriff auf einen Knoten innterhalb eines Baumes und deren Label. Dafür ordenen wir den Knoten Positionen zu. Das geht induktiv wie foelgt:

1.4 Definition Position

Sei (Σ, rk) ein Rangalphabet. Die Positionenmenge ist definiert durch:

- für $a^{(0)} \in T_{\Sigma}$ ist $Pos(a) = \{\varepsilon\}$
- für $f(t_1, \ldots, t_n) \in T_{\Sigma}$ ist $Pos(f(t_1, \ldots, t_n)) = \{\varepsilon\} 1 \cdot Pos(t_1) \cup \cdots \cup n \cdot Pos(t_n)$

Beispiel:

Betrachtung von f(f(a,b),b) bzw.

$$Pos(f) = \{\varepsilon, 1, 2, 1.1, 1.2\}$$

1.5 Definition der Label an den Positionen

Für einen Term der Form $t = f(t_1, \dots, t_n)$ ist das Symbol t(p) in t an p-ter Position induktiv definert durch:

- $t(\varepsilon) = f$
- $t(ip) = t_i(p), i \in \{1, ..., n\}$

Beispiel: Betrachtung von f(f(a,b),b)

Dann ist

$$t(\varepsilon) = f$$

$$t(1) = t(1 \cdot \varepsilon) = t_1(\varepsilon) = f$$

$$t(2) = t(2 \cdot \varepsilon) = t_2(\varepsilon) = b$$

$$t(1.1) = t_1(1) = a$$

$$t(1.2) = t_2(1) = b$$

1.6 Definition Sub-Baum

Für T_{Σ} ist ein Sub-Baum $t_{|p}$ an p-ter Position wie folgt definiert:

•
$$Pos(t_{|p}) = \{i|pi \in Pos(t)\}$$

• $\forall q \in Pos(t_{|p} \text{ ist } t_{|p}(q) = t(pq)$

Wir schreiben $t[u]_p$ für den Baum, der entsteht, wenn man in t den sub-Baum $t_{|p}$ durch n ersetzt.

1.7 Definition Baumautomat

Ein Buamautomat \mathcal{A} ist ein 4-Tupel (Q, Σ, F, Δ) , wobei:

 $Q\dots$ endliche Menge an Zusänden

 $\Sigma \dots$ Rangalphabet, wobei $\Sigma \cup Q \neq \emptyset$

 $F \cdots \subseteq Q$ Finalzustände

 $\Delta \dots$ Menge von Regeln

$$r: f(q_1 \dots q_n) \to q$$

für $q, q_1, \dots, q_n \in Q$, für $a^{(0)} \in T_{\Sigma}: a \to q$

Beispiel:

$$\mathcal{A} = \{ \{q_a, q_b, q_f\}, \{a^{(0)}, b^{(0)}, f^{(2)}\}, \{q_f\}, \Delta \}
\text{mit } \Delta = \{a \to q_a, b \to q_b, f(q_a, q_b) \to q_a, f(q_a, q_b), f(q_a, q_b) \to q_f \}$$

1.8 Definition Lauf/Run

Sei $\mathcal{A} = (Q, \Sigma, F, \Delta)$ ein Baumautomat und $t \in T_{\Sigma}$. Ein Lauf r für t von \mathcal{A} ist ein Term mit

- Pos(r) = Pos(t)
- Ist t(p) = a ein Blatt, dann ist $r(p) = q_a$, nur wenn $(a \to q_a) \in \Delta$
- Ist $t(p) = f^{(m)}$, dann ist r(p) = q, wenn $(f(q_1, \dots, q_n) \to q) \in \Delta$ und $r(p_i) = q_i, i \in \{1, \dots, n\}$

Ein Lauf ist erfolgreich, wenn $r(\varepsilon) \in F$. Der Automat \mathcal{A} akzeptiert t, falls es einen erfolgreichen Lauf für t von \mathcal{A} gibt.

Wir bezeichnen mit $L(A) = \{t \in T_{\Sigma} | A \text{ akzeptiert } t\}$ die von A erkannte Baumsprache. Eine Sprache $L \subseteq T_{\Sigma}$ heißt erkennbar, falls ein Baumautomat A existiert mit L = L(A).

Um einzelne Schritte von Baumautomaten zu formalisieren, betrachten wir die move relation $\to_{\mathcal{A}}$, definiert wie folgt:

Gegeben sei $\mathcal{A} = (Q, \Sigma, F, \Delta)$, dann ist $t \to_{\mathcal{A}} t'$ mit $t, t' \in T_{\Sigma \cup Q}$, falls

- $t(p) = f^{(n)}$
- $t(pi) = q_i$ für $i \in \{1, \dots, n\}$ und p_i sind Blätter
- $(f(q_1,\ldots,q_n)\to q)\in\Delta$
- und $t' = t[q]_p$

Mit $\to_{\mathcal{A}}^*$ bezeichnen wir die transitive Hülle von $\to_{\mathcal{A}}$.

1.9 Lemma

Sei $\mathcal{A}=(Q,\Sigma,F,\Delta)$ ein Baumautomat. Dann ist $L(\mathcal{A})=\{t\in T_{\Sigma}|t\to_{\mathcal{A}}^*q \text{ mit } q\in F\}(=Z)$

Beweis: $L(A) \subseteq Z$:

Wir zeigen: Es existiert ein Run r für t von \mathcal{A} mit $r(\varepsilon) = q$, dann ist $t \to_{\mathcal{A}}^* q$

Inuktionsannahme:

 $t = a^{(0)} \in T_{\Sigma}$. Dann gilt $a \in L(\mathcal{A})$, falls ein Lauf r existiert mit $r(a) = q_a$ und $(a \to q_a) \in \Delta$. Dann folgt $a \to_{\mathcal{A}}^* q_a$. Sei nun $t = f(t_1, \ldots, t_n)$

Induktionsvoraussetzung:

Falls für t_1, \ldots, t_n Läufe r_i existieren mit $r_i(\varepsilon) = q_i$, dann gilt auch $t_i \to_{\mathcal{A}}^* q_i$ mit $i \in \{1, \ldots, n\}$

Induktionsschritt:

zu zeigen: Es existiert ein Lauf r für t mit $r(\varepsilon) = q$, dann $t \to_{\mathcal{A}}^* q$. Sei also r ein Lauf mit $r(\varepsilon) = q$. Dann ist $r(i) = q_i, i \in \{1, \dots, n\}$, mit $(f(q_1, \dots, q_n) \to q) \in \Delta$. Laut Induktionsvoraussetzung gilt nun, $t_i \to_{\mathcal{A}}^* q_i, i \in \{1, \dots, n\}$. Damit $t = f(t_1, \dots, t_n) \to_{\mathcal{A}}^* f(q_1, t_2, \dots, t_n) \to_{\mathcal{A}}^* \dots \to_{\mathcal{A}}^* f(q_1, \dots, q_n)$ Des weiteren haben wir die regel $f(q_1, \dots, q_n) \to q$, das heißt $f(q_1, \dots, q_n) \to_{\mathcal{A}}^* q$.

Insgesamt also $t \to_{\mathcal{A}}^* q$

Beweis: $L(Z \subseteq A)$: analog

Einige Beispiele für Baumautomaten:

1. Sei
$$B = (\{q_0, q_1\}, \{0^{(0)}, 1^{(0)}, \neg^{(1)}, \wedge^{(2)}, \vee^{(2)} \{q_1\}, \Delta\})$$
 mit $\Delta = \{0 \to q_0, 1 \to q_1, \neg(q_0) \to q_1, \neg(q_1) \to q_0, \land (q_0, q_0) \to q_0, \land (q_0, q_1) \to q_0, \land (q_1, q_0) \to q_0, \land (q_1, q_1) \to q_1 \lor (q_0, q_0) \to q_0, \lor (q_0, q_1) \to q_1, \lor (q_1, q_0) \to q_1, \lor (q_1, q_1) \to q_1\}$

Beispiellauf:

Betrachten
$$\mathcal{A} = (\{q_a, q_b, q_f\}, \{a^{(0)}, b^{(0)}, f^{(3)}, g^{(2)}\}, \{q_f\}, \Delta)$$
 mit $\Delta = \{a \to q_a, b \to q_b, g(q_a, q_b) \to q_f, f(q_a, q_f, q_b) \to q_f\}$

Beispiellauf:

 \mathcal{A} akzeptiert also alle Bäume der Form:

3. Simulation eines Wortautomaten: (siehe Übung)