Programming constructs in 2 calculus e function that takes a single argument χ . Ma single argument multiple arguments f(x,y) = M $f: \chi \times (\lambda y. M)$ (fa)b "Currying" after mathematician Haskell Corry $(\lambda x. \lambda y. x+y)$ 3 $(\lambda y. 3+y)$ 23+2=5

Church Booleans

tru = $\lambda t. 2f. t$ 3 functions

fls = $\lambda t. 2f. f$ 3 that take two arguments

NOT = $\lambda x. (\alpha fls) tru$ poply a to fk then tru

tru/fls

if a is he" it returns the first

argument fls

if x is "false" it redurns the second tru

conditional

if (b) then y else w

cond = 2l. 2m. 2n. (l m) n

cond tru v w

= (2l. 2m. 2n. l m n) tru v w

> (2m. 2n. tru m n) y w

tru v w

> tru v w

> tru v w

AND =
$$\lambda p. \lambda q. (pq) p$$

 $(pq) \in \mathbb{I}s$
 $OR = \lambda p. \lambda q. (pp) q$
 $pair = \lambda f. \lambda s. \lambda b. b f s$
 $fst = \lambda p. p tru$
 $Snd = \lambda p. p f ls$
 $create(V, w)$
 $pair v w \rightarrow \lambda b. b v w$
 $fst (pair v w)$
 $fst (\lambda b. b v w)$
 $= (\lambda p. p tru) (\lambda b. b v w)$
 $\rightarrow (\lambda b. b v w)$
 $\rightarrow (\lambda b. b v w)$

Church Numerals

$$C_0 = \lambda s. \lambda z. z$$
 $\lambda t. z$
 $\lambda t. z$

Proc =
$$\lambda n$$
. λs . $\lambda \pm$. s . n s t .

Temove lambdas

instat

add

 λs back

inc
$$(\lambda s', \lambda t', t')$$

 $\rightarrow \lambda s, \lambda t, s$ $((\lambda s', \lambda t', t') s t)$
 $\rightarrow \lambda s, \lambda t, s$ t

Homes = λm . λn . m (plus n) C. λz . $S \leq S \leq S \leq N$. λz . $S \leq S \leq S \leq N$. $\lambda \leq S \leq S \leq N$.

Z (As, Az. Z) (Ax. Fls) tru (As, Az. SZ) (Ax. Fls) tru (As, Az. SZ) (Ax. Fls) tru (Ax. Fls) tru (Ax. Fls) tru Exponentiation

 M^{n}

exp = 2 m. 2 n. n m