

iSenseTekTechnology, Inc

Approval Sheet

Model : Bl	LE module (nRF51xxx)
Part No :	SBLE1810-P51xxxxxA
	ISBLE1506-A51xxxxxA

Datasheet Version: v2.1

Date: 2016/07/14

Approved	Checked	Designed

Custome	r name	:		
Mode1	:			
P/N	:			

Checked	Received

Index

1.	Ο	verall Introduction	3
1.1		Applications	3
1.2	2	Features	4
2.	P	/N Number Define	5
3.	M	lodule Dimension	6
3.1		Product Dimensions	6
3.2	2	Pin Descriptions	7
3.3	3	PCB Layout Guide	12
4.	M	lain Chip Solution	13
5.	S	hipment Packing Information	13
6.	S	pecification	14
6.1		Absolute Maximum Ratings	14
6.2	2	Operation Conditions	15
6.3	3	Electrical Specifications	15
6.3	3.1	Radio Transceiver	15
6.3	3.2	Transmitter Specifications	16
6.3	3.3	Receiver Specifications	17
6.3	3.4	Radio Timing Parameters	19
6.3	3.5	RSSI Specifications	19
6.3	3.6	CPU	19
6.3	3.7	Power Management	20
7.	Re	ference Circuit	21
7.1		Schematic with Internal LDO	21
7.2	2	Schematic with Internal DC/DC Converter	22
8.	D	evelopment Kit	23
9.	Α	ntenna Forbidden Zone Description	25
10.	S	tatements	27
11.	D	Oocument History	28

1. Overall Introduction

iSenseTek's ISBLE is a Bluetooth smart (Bluetooth low energy or BLE) module designed based on Nordic solution. The feature of the module.

- Based on the Nordic nRF51822 SoC
- Multiple protocol of BLE & RF 2.4GHz & ANT+ upon customer preference
- Dimension:

Length	Width	Height	Part No
18 ± 0.3mm	10 ± 0.3mm	1.95 ± 0.2mm	ISBLE1810-P51xxxxxA
15 ± 0.3mm	6 ± 0.3mm	2 ± 0.2mm	ISBLE1506-A51xxxxxA

- Low power requirements, Ultra-low peak, Average and idle mode power Consumption
- Compatible with a large installed based of mobiles phones, tablets and computers
- Fully coverage of wireless applications
- BLE & RF transmission switching may help products to fit all operation system
- BLE & RF transmission switching may help products to fit all kinds of hardwares

1.1 Applications

Computer peripherals and I/O devices

- Mouse
- Keyboard
- Multi-touch trackpad

Interactive entertainment devices

- Remote control
- Gaming controller

Beacons

Personal area networks

- Health/fitness sensor and monitor devices
- Medical devices
- Key-fobs + Wrist watch
- Remote control toys

1.2 Features

2.4GHz transceiver

- -93 dBm sensitivity in Bluetooth® low energy mode
- 250 kbps, 1 Mbps, 2 Mbps supported data rates
- TX Power -20 to +4 dBm in 4 dB steps
- TX Power -30 dBm Whisper mode
- RSSI (1 dB resolution)

ARM® Cortex™-M0 32 bit processor

Serial Wire Debug (SWD)

Memory

- 256 kB or 128 kB embedded flash program memory
- 16 kB or 32 kB RAM

Flexible Power Management

- Supply voltage range 1.8 V to 3.6 V
- 4.2 μs wake-up using 16 MHz RCOSC
- 0.6 μA at 3 V OFF mode
- 1.2 μA at 3 V in OFF mode + 1 region RAM retention
- 2.6 µA at 3 V ON mode, all blocks IDLE

S100 series Soft Device ready

On-air compatibility with nRF24L series

8/9/10 bit ADC - 8 configurable channels

32 General Purpose I/O Pins

One 32 bit and two 16 bit timers with counter mode

SPI Master/Slave

Low power comparator

Temperature sensor

Two-wire Master (I2C compatible)

UART (CTS/RTS)

CPU independent Programmable Peripheral Interconnect (PPI)

Quadrature Decoder (QDEC)

AES HW encryption

Real Timer Counter (RTC)

2. P/N Number Define

Figure 1: P/N Number Define

3. Module Dimension

3.1 Product Dimensions

ISBLE1810-P51xxxxxA

Figure 2 : Product Dimensions (ISBLE1810-P51xxxxxA)

Figure 3 : Product Dimensions (ISBLE1506-A51xxxxxA)

3.2 Pin Descriptions

ISBLE1810-P51xxxxxA

Figure 4: Module Pin Descriptions (ISBLE1810-P51xxxxxA)

Pin NO.	Name	Pin function	Description
1	GND	Ground	The pad must be connected to a solid ground plane
2	GND	Ground	The pad must be connected to a solid ground plane
3	GND	Ground	The pad must be connected to a solid ground plane
4	P0.21	Digital I/O	General-purpose digital I/O
5	P0.22	Digital I/O	General-purpose digital I/O
6	P0.23	Digital I/O	General-purpose digital I/O
7	P0.24	Digital I/O	General-purpose digital I/O
8	P0.25	Digital I/O	General-purpose digital I/O
9	AVDD	Power	Analog power supply
10	P0.29	Digital I/O	General-purpose digital I/O
11	P0.28	Digital I/O	General-purpose digital I/O
12	DCC	Power	DC/DC output voltage to external LC filter
13	VDD_NRF	Power	Power supply
14	VDD_NRF	Power	Power supply

Pin NO.	Name	Pin function	Description
15	GND	Ground	The pad must be connected to a solid ground plane
16	GND	Ground	The pad must be connected to a solid ground plane
	P0.26	Digital I/O	General-purpose digital I/O
17	AIN0	Analog input	ADC input 2
	XL2	Analog output	Connector for 32.768KHz crystal
	P0.27	Digital I/O	General-purpose digital I/O
18	AIN1	Analog input	ADC input 2
	XL1	Analog output	Connector for 32.768KHz crystal
19	P0.30	Digital I/O	General-purpose digital I/O
20	P0.00	Digital I/O	General-purpose digital I/O
20	AREF0	Analog input	ADC Reference voltage
21	P0.01	Digital I/O	General-purpose digital I/O
21	AIN2	Analog input	ADC input 2
22	P0.02	Digital I/O	General-purpose digital I/O
22	AIN3	Analog input	ADC input 3
23	P0.03	Digital I/O	General-purpose digital I/O
20	AIN4	Analog input	ADC input 4
24	P0.04	Digital I/O	General-purpose digital I/O
- 1	AIN5	Analog input	ADC input 5
25	P0.05	Digital I/O	General-purpose digital I/O
	AIN6	Analog input	ADC input 6
	P0.06	Digital I/O	General-purpose digital I/O
26	AIN7	Analog input	ADC input 7
	AREF1	Analog input	ADC Reference voltage
27	P0.07	Digital I/O	General-purpose digital I/O
28	N.C.	1	I
29	GND	Ground	The pad must be connected to a solid ground plane
30	P0.08	Digital I/O	General-purpose digital I/O
31	P0.09	Digital I/O	General-purpose digital I/O
32	P0.10	Digital I/O	General-purpose digital I/O
33	P0.11	Digital I/O	General-purpose digital I/O
34	P0.12	Digital I/O	General-purpose digital I/O
35	P0.13	Digital I/O	General-purpose digital I/O
36	P0.14	Digital I/O	General-purpose digital I/O
37	P0.15	Digital I/O	General-purpose digital I/O
38	P0.16	Digital I/O	General-purpose digital I/O

Pin NO.	Name	Pin function	Description
39	P0.17	Digital I/O	General-purpose digital I/O
40	SWDIO	Digital I/O	Also HW debug and flash programming I/O
40	RESET	Digital I/O	System reset(active low).
41	SWDCLK	Digital input	HW debug and flash programming. Connect a 12K ohm
41	SWDCLK	Digital input	resister to GND for flash programming .
42	P0.18	Digital I/O	General-purpose digital I/O
43	P0.19	Digital I/O	General-purpose digital I/O
44	P0.20	Digital I/O	General-purpose digital I/O
45	GND	Ground	The pad must be connected to a solid ground plane
46	GND	Ground	The pad must be connected to a solid ground plane

^{1.} Digital I/O pad with 5mA source/sink capability.

Table 1 : Pin function (ISBLE1810-P51xxxxxA)

Figure 5 : Module Pin Descriptions (ISBLE1506-A51xxxxxA)

Pin NO.	Name	Pin function	Description
1	P0.18	Digital I/O	General-purpose digital I/O
2	P0.20	Digital I/O	General-purpose digital I/O
3	SWDCLK	Digital input	HW debug and flash programming. Connect a 12K ohm resister to GND for flash programming.
	SWDIO	Digital I/O	Also HW debug and flash programming I/O
4	RESET	Digital I/O	System reset(active low)
5	P0.17	Digital I/O	General-purpose digital I/O
6	P0.19	Digital I/O	General-purpose digital I/O
7	P0.16	Digital I/O	General-purpose digital I/O
8	P0.15	Digital I/O	General-purpose digital I/O
9	P0.12	Digital I/O	General-purpose digital I/O
10	P0.11	Digital I/O	General-purpose digital I/O
11	P0.09	Digital I/O	General-purpose digital I/O
12	P0.08	Digital I/O	General-purpose digital I/O
13	P0.14	Digital I/O	General-purpose digital I/O
14	P0.13	Digital I/O	General-purpose digital I/O
15	P0.10	Digital I/O	General-purpose digital I/O
16	GND	Ground	The pad must be connected to a solid ground plane
17	P0.07	Digital I/O	General-purpose digital I/O
40	P0.05	Digital I/O	General-purpose digital I/O
18	AIN6	Analog input	ADC input 6
	P0.06	Digital I/O	General-purpose digital I/O
19	AIN7	Analog input	ADC input 7
	AREF1	Analog input	ADC Reference voltage
20	P0.03	Digital I/O	General-purpose digital I/O
20	AIN4	Analog input	ADC input 4
21	P0.01	Digital I/O	General-purpose digital I/O
21	AIN2	Analog input	ADC input 2
22	P0.02	Digital I/O	General-purpose digital I/O
22	AIN3	Analog input	ADC input 3
23	P0.00	Digital I/O	General-purpose digital I/O
23	AREF0	Analog input	ADC Reference voltage
24	GND	Ground	The pad must be connected to a solid ground plane
25	DCC	Power	DC/DC output voltage to external LC filter
26	P0.04	Digital Input	General-purpose digital I/O
20	AIN5	Analog input	ADC input 5

Pin NO.	Name	Pin function	Description
27	P0.31	Digital I/O	General-purpose digital I/O
28	P0.30	Digital I/O	General-purpose digital I/O
29	VCC_nRF	Power	Power supply
30	AVDD	Power	Analog power supply
31	P0.29	Digital I/O	General-purpose digital I/O
32	P0.28	Digital I/O	General-purpose digital I/O
	P0.27	Digital I/O	General-purpose digital I/O
33	AIN1	Analog input	ADC input 1
	XL1	Analog input	Connector for 32.768KHz crystal
	P0.26	Digital I/O	General-purpose digital I/O
34	AIN0	Analog input	ADC input 0
	XL2	Analog output	Connector for 32.768KHz crystal
35	P0.24	Digital I/O	General-purpose digital I/O
36	P0.21	Digital I/O	General-purpose digital I/O
37	P0.22	Digital I/O	General-purpose digital I/O
38	P0.25	Digital I/O	General-purpose digital I/O
39	P0.23	Digital I/O	General-purpose digital I/O
40	RF	RFout	2.4GHz 50ohm RF out, not need to mount.
41	GND	Ground	The pad must be connected to a solid ground plane
42	GND	Ground	The pad must be connected to a solid ground plane

^{1.} Digital I/O pad with 5mA source/sink capability.

Table 2 : Pin function (ISBLE1506-A51xxxxxA)

3.3 PCB Layout Guide

• ISBLE1810-P51xxxxA

Figure 6: PCB Layout Guide (ISBLE1810-P51xxxxxA)

Figure 7: PCB Layout Guide (ISBLE1506-A51xxxxxA)

4. Main Chip Solution

RF IC	Crystal Frequency
Nordic nRF51822-QFAA	16MHz
Nordic nRF51822-CEAA	16MHz

Table 3: Main Chip Solution

5. Shipment Packing Information

Part Number	Package
ISBLE1810-P51822ACA	500 PCS/BOX
ISBLE1506-A51822ACA	500 PCS/BOX

Table 4: Shipment Packing Information

ISBLE1810-P51xxxxxA

Figure 8 : Packing Information (ISBLE1810-P51xxxxxA)

Figure 9 : Packing Information (ISBLE1810-P51xxxxxA)

6. Specification

6.1 Absolute Maximum Ratings

Maximum ratings are the extreme limits the chip can be exposed to without causing permanent damage. Exposure to absolute maximum ratings for prolonged periods of time may affect the reliability of the chip.

Table 5 specifies the absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
Supply voltages				
VDD		-0.3	+3.9	V
DEC2			2	V
VSS			0	V
I/O pin voltage				
VIO		-0.3	VDD+0.3	V
Environmental QFN48	package			
Storage temperature		-40	+125	°C
MSL	Moisture Sensitivity Level		2	
ESD HBM	Human Body Model		3	kV
ESD CDM	Charged Device Model		750	V
Environmental WLCSP	package			
Storage temperature		-40	+125	°C
MSL	Moisture Sensitivity Level		1	
ESD HBM	Human Body Model		4	kV
ESD CDM	Charged Device Model		500	V
Flash memory				
Endurance		20000 ¹		Write /
Eliquiance		20000		erase cycles
Retention		10 years at 40 °C		
Retention		50 years at 25 °C		
Number of times an addres	S			
can be written between			2	times
erase cycles				

^{1.} Flash endurance is 20,000 erase cycles. The smallest element of flash that can be written is a 32 bit word.

Table 5 : Absolute maximum ratings

6.2 Operation Conditions

The operating conditions are the physical parameters that the chip can operate within as defined in Table 6.

Symbol	Parameter	Notes	Min.	Тур.	Max.	Units
VDD	Supply voltage, internal LDO setup		1.8	3.0	3.6	V
VDD	Supply voltage, DC/DC converter setup		2.1	3.0	3.6	V
VDD	Supply voltage, low voltage mode setup	1	1.75	1.8	1.95	V
t _{R_VDD}	Supply rise time (0 V to VDD)	2			100	ms
T_A	Operating temperature		-25	25	75	°C

^{1.} DEC2 shall be connected to VDD in this mode.

Table 6: Operating conditions

6.3 Electrical Specifications

6.3.1 Radio Transceiver

• General radio characteristics

Symbol	Parameter	Notes	Min.	Тур.	Max.	Units	Test Level
f _{OP}	Operating frequencies.	1 MHz channel spacing	2400		2483	MHz	N/A
PLL _{res}	PLL programming resolution.			1		MHz	N/A
Δf_{250}	Frequency deviation at 250 kbps.			±170		kHz	2
Δf_{1M}	Frequency deviation at 1 Mbps.			±170		kHz	2
Δf_{2M}	Frequency deviation at 2 Mbps.			±320		kHz	2
Δf_{BLE}	Frequency deviation at BLE.		±225	±250	±275	kHz	4
bps _{FSK}	On-air data rate.		250		2000	kbps	N/A

Table 7: General radio characteristics

• Radio current consumption

Symbol	Parameter	Notes	Min.	Тур.	Max.	Units	Test
Symbol	Farameter	Notes	IVIIII.				Level
I _{TX,+4dBm}	TX only run current at P_{OUT} = +4 dBm.	1		16		mA	4
I _{TX,0dBm}	TX only run current at $P_{OUT} = 0$ dBm.	1		10.5		mA	4
I _{TX,-4dBm}	TX only run current at P _{OUT} = -4 dBm.	1		8		mA	2
I _{TX,-8dBm}	TX only run current at P _{OUT} = -8 dBm.	1		7		mA	2

^{2.} The on-chip power-on reset circuitry may not function properly for rise times outside the specified interval.

Symbol	Parameter	Notes	Min.	Тур.	Max.	Units	Test Level
I _{TX,-12dBm}	TX only run current at P _{OUT} = -12 dBm.	1		6.5		mA	2
I _{TX,-16dBm}	TX only run current at P _{OUT} = -16 dBm.	1		6		mA	2
I _{TX,-20dBm}	TX only run current at P_{OUT} = -20 dBm.	1		5.5		mA	2
I _{TX,-30dBm}	TX only run current at P_{OUT} = -30 dBm.	1		5.5		mA	2
I _{START,TX}	TX startup current.	2		7		mA	1
I _{RX,250}	RX only run current at 250 kbps.			12.6		mA	1
I _{RX,1M}	RX only run current at 1 Mbps.			13		mA	4
I _{RX,2M}	RX only run current at 2 Mbps.			13.4		mA	1
I _{START}	RX startup current.	3		8.7		mA	1

- 1. Valid for data rates 250 kbps, 1 Mbps, and 2 Mbps.
- 2. Average current consumption (at 0 dBm TX output power) for TX startup (130 μs), and when changing mode from RX toTX (130 μs).
- 3. Average current consumption for RX startup (130 μ s), and when changing mode from TX to RX (130 μ s).

Table 8 : Radio current consumption

6.3.2 Transmitter Specifications

Symbol	Description	Min.	Tvn	Max.	Units	Test
Symbol	Description	IVIIII.	Тур.	IVIAX.	UIIIIS	Level
P_{RF}	Maximum output power.		4		dBm	4
P_{RFC}	RF power control range.	20	24		dB	2
P_{RFCR}	RF power accuracy.			±4	dB	1
P _{WHISP}	RF power whisper mode.		-30		dBm	2
P_{BW2}	20 dB bandwidth for modulated carrier (2 Mbps).		1800	2000	kHz	2
P _{BW1}	20 dB bandwidth for modulated carrier (1 Mbps).		950	1100	kHz	2
P _{BW250}	20 dB bandwidth for modulated carrier (250 kbps).		700	800	kHz	2
P _{RF1.2}	1st Adjacent Channel Transmit Power.			20	dD.a	0
	±2 MHz (2 Mbps).			-20	dBc	2
D	2nd Adjacent Channel Transmit Power.			45	dD.a	0
P _{RF2.2}	±4 MHz (2 Mbps).			-45	dBc	2
D	1st Adjacent Channel Transmit Power.			20	dD.a	0
P _{RF1.1}	±1 MHz (1 Mbps).			-20	dBc	2
D	2nd Adjacent Channel Transmit Power.			40	-ID -	0
P _{RF2.1}	±2 MHz (1 Mbps).			-40	dBc	2
D	1st Adjacent Channel Transmit Power.			0.5	-ID -	0
P _{RF1.250}	±1 MHz (250 kbps).			-25	dBc	2
D	2nd Adjacent Channel Transmit Power.			40	dD.	0
P _{RF2.250}	±2 MHz (250 kbps).			-40	dBc	2

Symbol	Description	Min.	Тур.	Max.	Units	Test Level
t _{TX,30}	Maximum consecutive transmission time,			16	ms	1
	f_{TOL} < ±30 ppm.					
t _{TX,60}	Maximum consecutive transmission time,			4	ms	1
	$f_{TOL} < \pm 60 \text{ ppm}.$			4		1

Table 9 : Transmitter specifications

6.3.3 Receiver Specifications

Symbol	Description	Min.	Тур.	Max.	Units	Test Level
Receiver operat	ion					
PRX _{MAX}	Maximum received signal strength at < 0.1% PER.		0		dBm	1
PRX _{SENS,2M}	Sensitivity (0.1% BER) at 2 Mbps.		-85		dBm	2
PRX _{SENS,1M}	Sensitivity (0.1% BER) at 1 Mbps.		-90		dBm	2
PRX _{SENS,250k}	Sensitivity (0.1% BER) at 250 kbps.		-96		dBm	2
P _{SENS} IT 1 Mbps BLE	Receiver sensitivity: Ideal transmitter.		-93		dBm	2
P _{SENS} DT 1 Mbps BLE	Receiver sensitivity: Dirty transmitter.1		-91		dBm	2
RX selectivity -	modulated interfering signal ²					
	2 Mbps					
C/I _{CO}	C/I co-channel.		12		dB	2
C/I _{1ST}	1 st ACS, C/I 2 MHz.		-4		dB	2
C/I _{2ND}	2 nd ACS, C/I 4 MHz.		-24		dB	2
C/I _{3RD}	3 rd ACS, C/I 6 MHz.		-28		dB	2
C/I _{6th}	6 th ACS, C/I 12 MHz.		-44		dB	2
C/I _{Nth}	N th ACS, C/I f _i > 25 MHz.		-50		dB	2
	1 Mbps					
C/I _{CO}	C/I co-channel (1 Mbps).		12		dB	2
C/I _{1ST}	1 st ACS, C/I 1 MHz.		4		dB	2
C/I _{2ND}	2 nd ACS, C/I 2 MHz.		-24		dB	2
C/I _{3RD}	3 rd ACS, C/I 3 MHz.		-30		dB	2
C/I _{6th}	6 th ACS, C/I 6 MHz.		-40		dB	2
C/I _{12th}	12 th ACS, C/I 12 MHz.		-50		dB	2
C/I _{Nth}	N th ACS, C/I f _i > 25 MHz.		-53		dB	2

Symbol	Description	Min.	Тур.	Max.	Units	Test Level
	250 kbps					
C/I _{CO}	C/I co-channel.		4		dB	2
C/I _{1ST}	1 st ACS, C/I 1 MHz.		-10		dB	2
C/I _{2ND}	2 nd ACS, C/I 2 MHz.		-34		dB	2
C/I _{3RD}	3 rd ACS, C/I 3 MHz.		-39		dB	2
C/I _{6th}	6 th ACS, C/I fi > 6 MHz.		-50		dB	2
C/I _{12th}	12 th ACS, C/I 12 MHz.		-55		dB	2
C/I _{Nth}	N^{th} ACS, C/I $f_i > 25$ MHz.		-60		dB	2
	Bluetooth Low Energy RX selectivity					
C/I _{CO}	C/I co-channel.		10		dB	2
C/I _{1ST}	1 st ACS, C/I 1 MHz.		1		dB	2
C/I _{2ND}	2 nd ACS, C/I 2 MHz.		-25		dB	2
C/I3+N	ACS, C/I (3+n) MHz offset $[n = 0, 1, 2,]$.		-51		dB	2
C/IImage	Image blocking level.		-30		dB	2
C/IImage±1MHz	Adjacent channel to image blocking level (±1 MHz).		-31		dB	2
RX intermodula	tion ³					
P_IMD _{2Mbps}	IMD performance, 2 Mbps, 3rd, 4th, and 5th offset channel.		-41		dBm	2
P_IMD _{1Mbps}	IMD performance, 1 Mbps, 3rd, 4th, and 5th offset channel.		-40		dBm	2
P_IMD _{250kbps}	IMD performance, 250 kbps, 3rd, 4th, and 5th offset channel.		-36		dBm	2
P_IMD _{BLE}	IMD performance, 1 Mbps BLE, 3rd, 4th, and 5th offset channel.		-39		dBm	2

^{1.} As defined in the Bluetooth Core Specification v4.0 Volume 6: Core System Package (Low Energy Controller Volume).

Table 10 : Receiver specifications

^{2.} Wanted signal level at PIN = -67 dBm. One interferer is used, having equal modulation as the wanted signal. The input power of the interferer where the sensitivity equals BER = 0.1% is presented.

^{3.} Wanted signal level at PIN = -64 dBm. Two interferers with equal input power are used. The interferer closest in fre-quency is not modulated, the other interferer is modulated equal with the wanted signal. The input power of interferers where the sensitivity equals BER = 0.1% is presented.

6.3.4 Radio Timing Parameters

Symbol	Description	250 k	1 M	2 M	BLE	Jitter	Units
t _{TXEN}	Time between TXEN task and READY event.	132	132	132	140	0	μs
t _{TXDISABLE}	Time between DISABLE task and DISABLED event when the radio was in TX.	10	4	3	4	1	μs
t _{RXEN}	Time between the RXEN task and READY event.	130	130	130	138	0	μs
t _{RXDISABLE}	Time between DISABLE task and DISABLED event when the radio was in RX.	0	0	0	0	1	μs
t _{TXCHAIN}	TX chain delay.	5	1	0.5	1	0	μs
t _{RXCHAIN}	RX chain delay.	12.5	3	2	3	0	μs

Table 11 : Radio timing

6.3.5 RSSI Specifications

Symbol	Description	Notes	Min.	Тур.	Max.	Units	Test Level
RSSI _{ACC}	RSSI accuracy.	Valid range			±6	dB	2
ACC	reor accuracy.	-50 dBm to -80 dBm.				Q.D	_
RSSI _{RESOLUTION}	RSSI resolution.			1		dB	1
RSSI _{PERIOD}	Sample period.		8.8			μs	1
RSSI _{CURRENT}	Current consumption in		050				1
	addition to IRX.			250		μA	1

Table 12: RSSI specifications

6.3.6 CPU

Symbol	Description	Min.	Тур.	Max.	Units	Test Level
I _{CPU, FLASH}	Run current at 16 MHz (XOSC). Executing code from flash memory.		4.1		mA	2
I _{CPU, RAM}	Run current at 16 MHz (XOSC). Executing code from RAM.		2.4		mA	1
I _{START, CPU}	CPU startup current.		600		μΑ	1
t _{START, CPU}	IDLE to CPU execute.	0			μs	1

Table 13: RSSI specifications

6.3.7 Power Management

Symbol	Description	Min.	Тур.	Max.	Units	Test Level
I _{OFF}	Current in SYSTEM OFF, no RAM retention.		0.6 ¹		μΑ	2
I _{OFF, RET, 8k}	Additional current in SYSTEM OFF per retained RAM block (8 kB).		0.6 ¹		μΑ	2
I _{OFF2ON}	OFF to CPU execute transition current.		400		μΑ	1
t _{OFF2ON}	OFF to CPU execute.		9.6	10.6	μs	1
I _{ON,16k}	SYSTEM-ON base current with 16 kB RAM enabled.		2.6 ¹		μΑ	2
I _{ON,32k}	SYSTEM-ON base current with 32 kB RAM enabled.		3.8 ¹		μΑ	2
t _{1V2}	Startup time for 1V2 regulator.		2.3		μs	1
I _{1V2XO16}	Current drawn by 1V2 regulator and 16 MHz XOSC when both are on at the same time.		810 ²		μΑ	1
I _{1V2XO32}	Current drawn by 1V2 regulator and 32 MHz XOSC when both are on at the same time.		840 ²		μΑ	1
I _{1V2RC16}	Current drawn by 1V2 regulator and 16 MHz RCOSC when both are on at the same time.		880 ²		μΑ	1
I _{1V2XO16,1M}	For HFCLK in 1 MHz mode3. Current drawn by 1V2 regulator and 16 MHz XOSC when both are on at the same time.		520 ²		μΑ	1
I _{1V2XO32,1M}	For HFCLK in 1 MHz mode3. Current drawn by 1V2 regulator and 32 MHz XOSC when both are on at the same time.		560 ²		μΑ	1
I _{1V2RC16,1M}	For HFCLK in 1 MHz mode3. Current drawn by 1V2 regulator and 16 MHz RCOSC when both are on at the same time.		630 ²		μΑ	1
t _{xo}	Startup time for the clock management system when the XTAL is in standby.		2.3		μs	1
t _{1V7}	Startup time for 1V7 regulator.		2	3.6	μs	1
I _{1V7}	Current drawn by 1V7 regulator.		105		μΑ	2
F _{DCDC}	DC/DC converter current conversion factor.	0.65 4		1.2 4		1

^{1.} Add 1 μA to the current value if the device is used in Low voltage mode.

Table 14 : Power management

^{2.} This number includes the current used by the automated power and clock management system.

^{3.} For details on 1 MHz mode, see Section 4.2 "Timer/counters (TIMER)" on page 33.

^{4.} FDCDC will vary depending on VDD and internal radio current consumption (IDD). Please refer to the nRF51 Series Refer-ence Manual, v3.0 or later, for a method to calculate IDD,DCDC. See Figure 11 on page 51 for a DC/DC conversion factor chart.

7. Reference Circuit

7.1 Schematic with Internal LDO

Figure 10 : Schematic with internal LDO

7.2 Schematic with Internal DC/DC Converter

Figure 11: Schematic with internal DC/DC converter

8. Development Kit

• Development Kit for ISBLE1810

Figure 12 : Development Kit for ISBLE1810

- Support USB to UART for DTM use
- Button *4 and LED *4
- 32 Pin GPIO to 2.54mm Female Pin Holder
- Support Module Test Socket

• Development Kit for ISBLE1506

Figure 13 : Development Kit for ISBLE1506

- Support USB to UART for DTM use
- Button *4 and LED *4
- 32 Pin GPIO to 2.54mm Female Pin Holder
- Support Module Test Socket

9. Antenna Forbidden Zone Description

The PCB and mechanism design need to meet antenna forbidden zone description Table. Otherwise affect the efficiency of the antenna.

ISBLE1810-P51xxxxxA

Figure 14: Antenna Forbidden Zone Description (ISBLE1810-P51xxxxxA)

Material \ Dimension	Α	В	С	D
FR4 (without Copper)	≥ 1 mm	≧ 3mm	≧ 1mm	≧ 3mm
FR4 (with Copper)	≧4mm	≥ 7mm	$\geq 10 mm$	≧4mm
Metal	$\geq 4mm$	≥ 3.5mm	$\geq 10 mm$	≧ 3mm
Plastic	≥ 1 mm	≥ 1 mm	≥ 1 mm	≧ 3mm

Table 15: Antenna Forbidden Zone List (ISBLE1810-P51xxxxxA)

Figure 15 : Antenna Forbidden Zone Description (ISBLE1506-P51xxxxxA)

Material \ Dimension	A	В	С	D
FR4 (without Copper)	≧ 2mm	≧ 3mm	≧ 0.5mm	≧ 5mm
FR4 (with Copper)	≧ 6mm	≧ 6mm	≧ 3mm	≧8mm
Metal	≧ 6mm	≧ 6mm	≧ 3mm	≧8mm
Plastic	$\geq 2mm$	≧ 2mm	≥ 0.5mm	\geq 3.5mm

Table 16: Antenna Forbidden Zone List (ISBLE1506-P51xxxxxA)

10. Statements

Federal Communications Commission (FCC) Statement

15.21

You are cautioned that changes or modifications not expressly approved by the part responsible for compliance could void the user's authority to operate the equipment.

15.105(b)

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1) this device may not cause harmful interference, and
- 2) this device must accept any interference received, including interference that may cause undesired operation of the device.

FCC RF Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specific operating instructions for satisfying RF exposure compliance. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Note: The end product shall have the words "Contains Transmitter Module FCC ID: 2AI2V-ISBLE1810X5 "

11. Document History

Revision	Date	Description/Changes
1.0	2014/01/22	First Release
1.1	2014/09/18	Update EVB information
2.0	2016/04/25	New Approval Sheet
2.1	2016/07/14	 Modify ISBLE1506-A51xxxxxA capacitive C8 \ C9 position. Update P/N Number Define. P5 ISBLE1506-A51xxxxxA & ISBLE1810-P51xxxxxA add shielding Marking and test point for PCB Bottom layer. P6 Update PCB layout guide information. P12 Update development kit information & Photos. P23 \ 24 Add RF Exposure Warning Statement. P28