Linear Sketching

Count Min Sketch
Count Sketch

EECS 477
Seth Pettie

Streaming & Sketching

- You need to maintain a vector $x \in \mathbb{Z}^u$ of integers. Initially x = 0.
 - Update (i, Δ) : Set $x(i) = x(i) + \Delta$.
 - Query(i): Return x(i).
 - Look at other types of queries later...
- "Incremental" : all Δ s are positive.
- "Strict Turnstyle": positive and negative Δ , but $\forall i. x(i) \geq 0$ at all times.

• $\Theta(u)$ space is necessary and sufficient. Problem solved!

Streaming & Sketching

- You need to maintain a vector $x \in \mathbb{Z}^u$ of integers. Initially x = 0.
 - Update (i, Δ) : Set $x(i) = x(i) + \Delta$.
 - Query(i): Return $\tilde{x}(i) = x(i) \pm Err(x)$.
 - Look at other types of queries later...
- "Incremental" : all Δ s are positive.
- "Strict Turnstyle": positive and negative Δ , but $\forall i. x(i) \geq 0$ at all times.

• Now how much space do you need? Depends a lot on what "Err(x)" is...

CountMin Sketch

• Theorem. A data structure of size $O(\epsilon^{-1} \log u)$ can handle **Update/Query** operations in $O(\log u)$ time. **Query** returns $\tilde{x}(i) = x(i) \pm ||x||_1$.

- " ℓ_1 -norm" $\|x\|_1 = \sum_{i=0}^{u-1} x(i)$. Manhattan distance
- " ℓ_2 -norm" (aka Euclidean norm) $||x||_2 = \sqrt{\sum_{i=0}^{u-1} x(i)^2}$.
- $F_2 = 2^{\text{nd}} \text{ moment} = ||x||_2^2 = \sum_{i=0}^{u-1} x(i)^2$.

CountMin Sketch

- Choose k hash functions $h_1, ..., h_k$: $[u] \rightarrow [m]$ from a 2-independent family.
- Allocate an $k \times m$ array A, initially all 0.
- Update (i, Δ) :
 - -For(j = 0; j < k; j + +)
 - $A[j, h_i(i)] += \Delta;$

$$E(I_{i'}) = \begin{cases} i' = i \\ \frac{1}{m} & i \neq i \end{cases}$$

Quy(i) =
$$min(A[j,h_j(i)])$$

= $O(K)$

$$\frac{1}{2}i, ho(i) = ho(i)$$

$$\frac{1}{2}i, ho(i) = ho(i)$$

$$\frac{1}{2}i, ho(i) = ho(i)$$

$$= \left(\frac{1}{2}i - \frac{1}{2}$$

• What is $E(A[0, h_0(i)]) = ?$ - Hint: indicators!

Query(i)

- $I_{i'}$: an indicator for the event that $h_0(i) = h_0(i')$.
- $E(A[0, h_0(i)]) = \sum_{i'=0}^{u-1} E(I_{i'}) \cdot x(i')$
- $= x(i) + (||x||_1 x(i))/m$
- How should we implement Query(i)?
- Return min $\{A[0, h_0(i)], ..., A[k-1, h_{k-1}(i)]\}$.

$$P(A[o,h_{0}(i)]-x(i)\geq err) \leq \frac{[(A[o,h_{0}(i)]-x(i))]}{err}$$

$$\leq \frac{||x||_{2}/m}{err} = \frac{u_{n,r}}{2} + \frac{1}{2}$$

$$err = (\frac{2}{m})||x||_{2}$$

$$P(\forall j A[o,h_{0}(j)]-x(j)\geq err) \leq (\frac{1}{2})^{k} = \frac{1}{m^{2}} \times 2 \log m$$

- Define Err = $\left(\frac{2}{m}\right) \|x\|_1$

What is
$$Pr(Ouerv(i) \notin$$

What is
$$Pr(Query(i) \notin A)$$

What is
$$Pr(Query(i) \notin |$$

What is
$$Pr(Query(i) \notin [$$

- What is $Pr(Query(i) \notin [x(i), x(i) + Err])$?

$$Pr(Query(i) \notin [x])$$

$$r(Query(i) \notin [$$

Markov's Ineq.

- $\Pr\left(A[j,h_j(i)]-x(i)>2\cdot E\left(A[j,h_j(i)]-x(i)\right)\right)<\frac{1}{2}$.

 - $-E\left(A[j,h_j(i)]-x(i)\right)<\frac{\|x\|_1}{m}=\frac{\mathrm{Err}}{2}.$
- Thus, $\Pr(A[j, h_i(i)] > x(i) + \text{Err}) < \frac{1}{2}$.
- Finally, $\Pr(\forall j. A[j, h_j(i)] > x(i) + \text{Err}) < \left(\frac{1}{2}\right)^k$.
- Set $k = 2\log u$, $m = 2\epsilon^{-1}$, then
- $\forall i. \text{Query}(i) \in [x(i), x(i) + \epsilon ||x||_1] \text{ with prob. } 1 1/u.$

Heavy Hitters

Want to implement

– HeavyHitters(): return a short list L that includes all (2ϵ) -heavy hitters: i s.t. $x(i) \ge 2\epsilon ||x||_1$.

- For i from 0 to u-1:
 - If Query $(i) \ge 2\epsilon ||x||_1$, add i to L.
- Claim: $|L| \leq \epsilon^{-1}$.
- Proof: Any $i \in L$ has $x(i) \ge \epsilon ||x||_1$.

Heavy Hitters

- Want to implement
 - HeavyHitters(): return a short list L that includes all (2ϵ) -heavy hitters: i s.t. $x(i) \ge 2\epsilon ||x||_1$.
- At most e^{-1} indices i at each level with $x(i) \ge 2e ||x||_1$.
- $O(\epsilon^{-1} \log^2 u)$ time to find them all.

Count Sketch

- CountMin Sketch: ℓ_1 error; good for finding 2ϵ -heavy hitters. (i s.t. $x(i) \ge 2\epsilon ||x||_1$)
- Count Sketch: ℓ_2 error; good for finding ℓ_2 2ϵ -heavy hitters: i s.t $x(i) \ge 2\epsilon ||x||_2$.
- Pick hash functions $h_0, ..., h_{k-1}: [u] \to [m]$ as before.
- Pick hash functions $g_0, ..., g_{k-1}$: $[u] \to \{-1,1\}$ from a 2-wise independent family.
- Update (i, Δ) :
 - For(j = 0; j < k; j + +)
 - $A[j, h_j(i)] += g_j(i) \cdot \Delta;$

K = 10/09u

Count Sketch

- What is $E(A[0, h_0(i)]) = ?$
- = $E(\sum_{i'} I_{i'} \cdot g(i')x(i'))$
- = $g(i)x(i) + \sum_{i'} E(I_{i'} \cdot g(i'))x(i') = g(i)x(i)$.
- $\operatorname{Var}(g(i)A[0,h_0(i)]) =$ $E\left(\left(\sum_{i'\neq i}g(i)g(i')I_{i'}\cdot x(i')\right)^2\right)$
- = $\sum_{i'\neq i} E(I_{i'}) \cdot x(i')^2 + \sum_{i'\neq i''} g(i')g(i'')I_{i'}I_{i''}x(i')x(x'')$
- $\leq ||x||_2^2/m = F_2/m$.

R(190(i) A Eo, hair] -x(i) >+) < E(CAEO, ho(i) -x(i))2) = t = & |1x113) w = 65.3 => 11×11/2/m = / (A now me det Deep albert mits begg 513

· Return median = j = k & gj(i) ATj, hj(i)]

in: if k > 60 in u, Queny returns x(i) & Ellyly

with pab 1-1/12

o Query (i)

Chernoff Bounds

- $X = X_1 + \cdots + X_n, X_i \in \{0,1\}, \text{ and } \Pr(X_i = 1) = p.$
- $\Pr(X > (1+\delta)np) < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{np} < e^{-\frac{\delta^2}{2+\delta}np}$.
- $\Pr(X < (1-\delta)np) < \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{np} < e^{-\frac{\delta^2}{2}np}$.

Back to Count Sketch

• $X = X_1 + \cdots + X_k$ defined so that

$$-X_j = \begin{cases} 0 & \text{if } g_j(i)A[j,h_j(i)] \text{ is good approx of } x(i) \\ 1 & \text{if } g_j(i)A[j,h_j(i)] \text{ is bad approx of } x(i) \end{cases}$$

$$-\Pr(X_j = 1) = \frac{1}{3} = p. \ E(X) = k/3.$$

• Query(i) could return a bad approx. if $X \ge k/2$.

•
$$\Pr(X \ge (1.5)E(X)) \le \left(\frac{e^{\frac{1}{2}}}{1.5^{1.5}}\right)^{E(X)} < e^{-.1\left(\frac{k}{3}\right)} < \frac{1}{u^2}$$

• The last inequality holds for $k = 60 \ln u$.

