Heap buffer overflow in weighted sparse count ops

High mihaimaruseac published GHSA-pg59-2f92-5cph on Sep 24, 2020

tensorflow, tensorflow-cpu, tensorflow-gpu (tensorflow)

Patched versions 2.3.0 2.3.1

Description

Impact

The SparseCountSparseOutput and RaggedCountSparseOutput implementations don't validate that the weights tensor has the same shape as the data. The check exists for ${\tt DenseCountSparseOutput}\ , where\ both\ tensors\ are\ fully\ specified:$

```
tensorflow/tensorflow/core/kernels/count_ops.cc
Lines 110 to 117 in @e68f4d
               context, weights.shape() == data.shape(),
112
113
                    errors::InvalidArgument(
                     "Weights and data must have the same shape. Weight shape: ", weights.shape().DebugString(),
"; data shape: ", data.shape().DebugString()));
114
115
```

In the sparse and ragged count weights are still accessed in parallel with the data:

```
tensorflow/tensorflow/core/kernels/count_ops.cc
Lines 199 to 201 in @e68f4d
         } else if (use_weights) {
            per_batch_counts[batch][value] += weight_values(idx);
```

But, since there is no validation, a user passing fewer weights than the values for the tensors can generate a read from outside the bounds of the heap buffer allocated for the weights.

Patches

We have patched the issue in 3cbb917 and will release a patch release.

We recommend users to upgrade to TensorFlow 2.3.1.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

This vulnerability is a variant of GHSA-p5f8-gfw5-33w4

CVE ID

CVE-2020-15196

Weaknesses

No CWEs