U	nclassif	ied	
SECURIT / CL	ASSIFICATION	OF THE	PAGE

REPORT DOCUMENTATION PAGE						Form Approved OMB No. 0704-0188		
1a. REPORT SECURITY CLASSIFICATION			1b. RESTRICTIVE MARKINGS					
Unclassified Za. SECURITY CLASSIFICATION AUTHORITY			3. DISTRIBUTION/AVAILABILITY OF REPORT					
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE			Approved for public release; distribution is unlimited					
4. PERFORMING ORGANIZATION REPORT NUMBER(S)			5. MONITORING ORGANIZATION REPORT NUMBER(S)					
		ORGANIZATION mic Institute	(If applicable)	7a. NAME OF MONITORING ORGANIZATION ONR, Code 333				
6c. ADDRESS (City, State, and ZIP Code)			7b. ADDRESS (City, State, and ZIP Code)					
Troy, NY 12180-3590			800 North Quincy St., Room 504 Arlington, VA 22217					
	8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL (If applicable)			9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
ONR, Code				N-00014-94				
	City, State, and			PROGRAM	UNDING NUMBERS	TASK	WORK UNIT	
		., Room 504		ELEMENT NO.	NO.	NO.	ACCESSION NO.	
_	, VA 22217 ude Security Cl			601153N	02402	010		
Gas-Phase Kinetics Measurements for Underwater Explosives 12. PERSONAL AUTHOR(S) Arthur Fontiin 13a. TYPE OF REPORT Annual 13b. TIME COVERED FROM 10/15/95TO 10/14/96 1996/10/1 15. PAGE COUNT 6								
70. 3017 22.00			18. SUBJECT TERMS (C		e if necessary and	identify by	v block number)	
17.	COSATI	CODES SUB-GROUP	Explosives	Rea	ction Kinetic	s		
FIELD			Fluoro-Nitramin					
			Boron	BO ₂				
To aid in the development of boron-enhanced fluoronitramino explosives, the kinetics of individual reactions are measured over wide temperature ranges. The following rate expressions, in cm ³ molecule- $^{1}s^{-1}$, were obtained. For BO ₂ + H ₂ \rightarrow HOBO + H k(500-1250 K) = 3.6x10- 11 exp(-4198 K/T), for BO + CO ₂ \rightarrow BO ₂ + CO k(780-1200 K) < 2.7x10- 14 , for BO ₂ + CO \rightarrow BO + CO ₂ k(1000 K) < 6.0x10- 14 , for BO + O ₂ \rightarrow BO ₂ + O k(300-960 K) = 7.9x10- 12 exp(161 K/T).								
		SILITY OF ABSTRACT		Unclassif			eres evanos	
22a. NAME OF RESPONSIBLE INDIVIDUAL Dr. Richard S. Miller				22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL 333				
				1	CECLIBITY	CI ASSIEICA	TION OF THIS PAGE	

PROGRESS

Introduction

Our goals are:

- (1) to make accurate measurements, over wide temperature ranges, of rate coefficients for boron combustion in C/H/N/O/F environments, of importance to the development of new underwater explosives, and
- (2) to use the measurements to obtain a further understanding, to allow predictions for additional reactions occurring with such explosives.

Reactions for study are selected on the basis of modeling studies.¹⁻⁴ The results, in turn, allow improvement of the models. In the past year measurements have been made on

$$BO_2 + H_2 \rightarrow HOBO + H$$

$$BO + CO_2 \stackrel{\rightarrow}{\leftarrow} BO_2 + CO$$

$$BO + O_2 \rightarrow BO_2 + O$$
(1)
(2a, b)
(3)

A High-Temperature Fast-Flow Reactor (HTFFR) was used to measure rate coefficients for reaction 1 and upper limits for 2a and 2b. The High-Temperature Photochemistry (HTP) technique was used to obtain an upper limit for 2a, as well as to measure rate coefficients for reaction 3.

Experimental

The HTFFR and HTP reactors and procedures have been described frequently. 5 The reactions were studied in Ar bath gas under pseudo first-order conditions with BO or BO2 as the minor reactant. For BO production in the HTFFR studies, a mixture of B and N atoms was produced by passing a trace of diborane, B2H6, mixed with N2 in Ar bath gas through a microwave discharge. NO was added downstream to produce O atoms, via $N + NO \rightarrow N2 + O$, which resulted in BO formation, Fig. 1. BO2 was produced by reacting BCl3 with the products resulting from passing a CO2/Ar mixture through a microwave discharge, Fig. 2. For the HTP studies, BO radicals were produced by multi-photon dissociation of BCl2(OCH3).6

The relative [BO] was monitored via laser-induced fluorescence of the $A^2\Pi - X^2\Sigma$ (1,1) transition at 436 nm, pumped at 403.55 nm on the (1,0) transition.⁷ Relative [BO2] was monitored by pumping the $B^2\Sigma - X^2\Pi$ (000-000) transition at 406.7 nm and observing the $A^2\Pi - X^2\Pi$ (002-000) transition at 435.8 nm.⁸

Results

$BO_2 + H_2$

Rate coefficient measurements were made from 500 - 1250 K, at total pressures from 4.1 - 9.3 mbar, corresponding to total concentrations of 3.0×10^{16} to 6.7×10^{16}

molecules cm⁻³, average gas velocities from 21 to 106 m s⁻¹, and reaction zone lengths selected at 10 or 20 cm. The data were fitted to a $k(T) = A \exp(-E/T)$ expression, by weighted linear regression,⁹ to yield

$$k_I(500-1250 \text{ K}) = 3.6 \times 10^{-11} \exp(-4198 \text{ K/}T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 (4)

This result is compared in Fig. 3 to the expression $k_I(T) = 3.0 \times 10^{-12} \exp(-1475 \text{ K/T}) \text{ cm}^3$ molecule-1 s-1 estimated by Brown et. al., 1-3 which may be seen to differ significantly. The primary temperature range of interest for boron combustion is $1800 - 3000 \text{ K.}^{1-4}$ Extrapolation of eq. 4 to these temperatures would result in rate coefficients approximately 3 - 5 times greater than used in these models.

$BO + CO_2$

This reaction was studied between 780 to 1200 K in an HTFFR, and yielded the upper limit

$$k_{2a}(780 - 1200 \text{ K}) < 2.7 \text{ x } 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 (5)

Measurements by the HTP technique mirrored this result:

$$k_{2a}(300 - 870 \text{ K}) < 9.6 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 (6)

The Brown et. al. model uses $k_{2a} = 1.8 \times 10^{-11} \, T^{0.37} \exp(-7900 \, \text{K/T}) \, \text{cm}^3 \text{molecule}^{-1} \, \text{s}^{-1}$, which at 1200 K is more than an order of magnitude larger than the upper limit of eq. 6 and would indicate a fast reaction in the 1800 - 3000 K range.

The reverse reaction, 2b, was studied at 1000 K and gave an upper limit

$$k_{2b}(1000 \text{ K}) < 6.0 \text{ x } 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 (7)

Based on the Gibbs free energy of reaction 2a, -14.6 kJ mol⁻¹ at 1000 K, and its experimental upper limit (eq. 5), the upper limit at 1000 K for reaction 2b is calculated to be 4.7 x 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹, consistent with eq. 7. To help understand why reactions 2a and b are so slow we plan to make *ab initio* calculations to find transition states and associated activation barriers.

$BO + O_2$

This reaction was studied over the 300 to 960 K temperature range at pressures from 67 to 271 mbar (9.7 x 10¹⁷ to 6.5 x 10¹⁸ molecules cm⁻³). At temperatures of 300, 500, and 950 K the reaction was found to be pressure independent. The results may be seen to be in agreement with the study by Stanton et. al., Fig. 4; those authors had limited the pressure dependence study to room temperature. The combined data sets were fitted as above to yield

$$k_3(300 - 960 \text{ K}) = 7.9 \times 10^{-12} \exp(161 \text{ K/T}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 (8)

Department of Chemical Engineering High-Temperature Reaction Kinetics Laboratory Dr. Arthur Fontijn, Director: (518) 276-6508

Research collaborators: (518) 276-6945

October 1, 1996

Defense Technical Information Center Building 5, Cameron Station Alexandria, VA 22304-6145

Reference: Grant No. N00014-94-1-0097

Gentlemen:

Enclosed please find the contractually required 2 copies of the annual report on the referenced grant.

Sincerely,

Arthur Fontijn

Professor & Head of the Department

AF:jm Enc.

PLANS

Reactions to be studied will be selected on the basis of the ongoing Aerodyne-Princeton modeling work.¹⁻³ These include the reactions of BO with N_2O , HCl, and HF, and of BF with BF₃, O_2 , and O_2 .

As already mentioned, we plan ab initio studies in an attempt to explain the low reactivity of reaction (2).

In last year's progress report, we reported on the BO + HCl reaction. There are three exothermic spin-allowed exit channels for this reaction: HBO + Cl₂, OBCl + H, and BCl + OH. By making use of an HTFFR mass-spectrometer facility, developed recently with other support, ¹⁰ we plan to try to distinguish between these.

PARTICIPANTS AND CONTACTS

G.T. Dalakos was fully supported by this grant. For the HTP work he received assistance from J-D.R. Rocha for the HTFFR he worked with D.P. Belyung, who is supported by an AFOSR-AASERT grant and Q. Zhang, who is supported by NSF. We thank Dr. R.A. Yetter for several informative discussions.

PUBLICATIONS AND AWARDS

- 1. D.P. Belyung, G.T. Dalakos, Q. Zhang, J-D.R. Rocha, and A. Fontijn, "Wide-Temperature Range Studies of BO and BO₂ Reactions", Extended Abstract for presentation at the Eastern States Section of the Combustion Institute meeting, December 9-11, 1996.
- 2. G.T. Dalakos, "BO Reactions Over A Wide Temperature Range", M.Sc. Thesis, Rensselaer Polytechnic Institute, Troy, NY, May 1996.

REFERENCES

- 1. Brown, R. C.; Kolb, C. E.; Yetter, R. A.; Dryer, F. L.; Rabitz, H. Combust. Flame. 1995, 101, 221.
- 2. Brown, R. C.; Kolb, C. E.; Cho, S. Y.; Yetter, R. A.; Dryer, F. L.; Rabitz, H. Int. J. Chem. Kin. 1994, 26, 319.
- 3. Brown, R. C.; Kolb, C. E.; Cho, S. Y.; Yetter, R. A.; Rabitz, H.; Dryer, F. L. In Gas-Phase Metal Reactions, Fontijn, A., Ed.; Elsevier: Amsterdam, 1992; Chapter 27.
- 4. Pasternak, L. Combust. Flame. 1992, 90, 259.
- 5. Fontijn, A.; Futerko, P. M. In Gas-Phase Metal Reactions; Fontijn, A., Ed.; Elsevier: Amsterdam, 1992; Chapter 6.
- 6. Stanton, C. T.; Garland, N. L.; Nelson, H. H. J. Phys. Chem. 1991, 95, 8741.

- 7. Pearse, R. W. B.; Gaydon, A. G.: The Identification of Molecular Spectra, 4th ed., Chapman and Hall, London, 1976, p. 57.
- 8. Johns, J. W. C. Can. J. Phys. 1961, 39, 1738.
- 9. Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.: Numerical Recipes. Cambridge University: Cambridge, 1986; Chapter 14.
- 10. Belyung, D.P.; Hranisavljevic, J.; Kashireninov, O.E.; Santana, G.M.; Fontijn, A.; Marshall, P., Laser-Induced Fluorescence and Mass-Spectrometric Studies of the Cu + HCl Reactions Over a Wide Temperature Range. Formation of HCuCl, J. Phys. Chem., in press.

Figure 1. Schematic of the HTFFR BO production method

Figure 3. Summary of the BO₂ + H₂ rate coefficients

Figure 2. Schematic of the HTFFR BO₂ production method

Figure 4. Summary of the BO + O₂ rate coefficients