Examen Parual 1 Norman Danul Viante Oiellana

Problema 1

3

(1)
$$\binom{32}{5} = 201,376$$

 $\binom{20}{3} \binom{12}{2} = \frac{75,240}{201,376} = 0.373$

$$\binom{32}{2} = 490 \qquad \frac{496}{201,376} = 0.002$$

- 1) B={&,A,A,S}
 - 1) OFB
 - 2) 1) \$ = 5
 - 11) 5 = 4
 - $(n) \tilde{A} = A$
 - 14) A = A
 - 3) 1) OUS = { S} EB
 - n) QUA = { A] EB
 - mil DUA = {AYEB
 - 1V) AUA = { 53 E B
 - v) AUS = { 5 } EB
 - vi) AUS = { S} EB
 - P/: Bes una sigma algebra

2) So A & B intends P(A) < P(B)

Dem: como B = A U (B-A)

P(B) = P(A) + P(B-A)

Entends:

P(B) A & B intends P(A) < QED.

Problema 3

a)
$$P(P/M) = 0.7$$
 $P(N/M) = 0.3$
 $P(P/H) = 0.4$ $P(N/H) = 0.6$
 $P(H) = 0.25$ $P(M) = 0.75$
 $P(H/N) = \frac{(0.25)(0.6)}{(0.25)(0.6) + (0.75)(0.3)}$
 $= \frac{0.15}{0.15 + 0.225} = 0.4$

b)
$$p(M)P(P/M) + P(H)P(P/H)$$

 $(0.75 + 0.7) + (0.25 + 0.4)$
 $0.525 + 0.1 = 0.025$

Problema 4

- a) (0.02)(0.02) = 0.0004
- b) No tune razon, No tune razon purque cada saito que da el paracaidista es un evento independiente.

Problema 5

4)
$$P(A_1) = 0.1$$

 $P(A_2) = 0.15$
 $P(A_1 \cap A_2) = 0.3$
 $P(A_1 \cup A_2) = (0.1 + 0.15) - 0.3 = 0.22$
 $P(A_1 \cup A_2) = (0.1 + 0.15)$

b)
$$P(A1/A2) = \frac{0.03}{0.15} = 0.2$$

Problema 6

$$P(A) = 0.8$$

 $P(B) = 0.7$

b)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= $P(A) + P(B) - P(A \cap B) \le 1$
= $P(A) + P(B) - P(A \cap B)$
 $(0, 7 + 0, 8) - 1 \le P(A \cap B)$
 $0, 5 \le P(A \cap B)$

- c) El valor maximo de PCAnB) es 0.7
- d) No perque Ay B son mutuamente excluyentes six solo si (AnB) = 0