MA139 Analysis 2, Assignment 1

Dyson Dyson

Question 1

Let $S = \sum_{n=1}^{\infty} \frac{x^n}{n}$. Using the ratio test, we find

$$r = \lim_{n \to \infty} \left| \frac{x^{n+1}}{n+1} \middle/ \frac{x^n}{n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{x^{n+1}n}{x^n(n+1)} \right|$$

$$= \lim_{n \to \infty} \left| x \frac{n}{(n+1)} \right|$$

$$= |x| \lim_{n \to \infty} \left| \frac{n}{(n+1)} \right|$$

$$= |x|$$

S converges when r < 1, so S converges when |x| < 1.

Note that the ratio test requires the terms to be nonzero, but the terms of S are only 0 when x = 0, and S clearly also converges in this case.

Now we check the edges of the radius of convergence. When $x=1,\,S$ is the harmonic series, which we know diverges.

When x = -1, $S = \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ and we can use the alternating series test. $\frac{1}{n}$ is decreasing, non-negative, and converges to 0, so S must converge by the alternating series test.

Therefore S converges when $-1 \le x < 1$.

Question 2

Let $S = \sum_{n=1}^{\infty} a_n x^n$ be the power series in which $a_n = \begin{cases} 1 & \text{if } n \text{ is prime} \\ 0 & \text{if } n \text{ is not prime} \end{cases}$. Then when 0 < x < 1, $\sum_{n=1}^{\infty} a_n x^n < \sum_{n=1}^{\infty} x^n = \frac{1}{1-x}$, so S converges. Likewise when -1 < x < 0, $\sum_{n=1}^{\infty} |a_n x^n| < \sum_{n=1}^{\infty} |x|^n = \frac{1}{1-|x|}$, so S converges absolutely. And S trivially converges when x = 0, so it converges when -1 < x < 1. Now we only need to check x = 1 and x = -1.

We know there are infinitely many primes, so $\sum_{n=1}^{\infty} a_n \to \infty$. And when x=1, $S=\sum_{n=1}^{\infty} a_n$, so S cannot converge.

Note that all prime number except 2 are odd. So when x = -1, $S = -1 + 1 + 1 + 1 + \cdots = -1 + \sum_{i=1}^{\infty} 1$, which clearly diverges to ∞ .

Therefore, S converges exactly when -1 < x < 1.

Question 3

Let $\sum a_n x^n$ be a power series with radius of convergence R, let $[-K,K] \subseteq (-R,R)$, and let $f(x) = \sum_{n=0}^{\infty} a_n x^n$.

It was proven in lectures that any convergent power series is continuous in its radius of convergence. Therefore f(x) is continuous in (-R,R) and therefore also in [-K,K].

Since f(x) is continuous in [-K, K], by the extreme value theorem, it is bounded on the interval and attains its bounds.

Question 4

Consider the sequence $\left(\frac{\mathrm{e}^n n!}{n^n}\right)$. The ratio of successive terms is

$$\frac{e^{n+1} (n+1)! n^n}{e^n n! (n+1)^{n+1}}$$

$$= \frac{e (n+1) n^n}{(n+1)^{n+1}}$$

$$= e \left(\frac{n}{n+1}\right)^n$$

$$= e \left(\left(1 + \frac{1}{n}\right)^{-n}\right)^{-1}$$

$$\to e (e)^{-1}$$

$$= 1$$

The ratio tends to 1. In particular, $\left(1+\frac{1}{n}\right)^n$ tends to e from below, so $\left(1+\frac{1}{n}\right)^{-n}$ tends to $\frac{1}{e}$ from above. Therefore the ratio of successive terms tends to 1 from above and the ratio is therefore always ≥ 1 , so the terms of the sequence are increasing.

The sequence $\left(\frac{\mathrm{e}^n n!}{n^n}\right)^2$ looks linear. Experimentally it has a gradient of 6.288747, which looks suspiciously like 2π . In fact, the line $y=2\pi x+1$ fits it almost exactly.

Figure 1: The first 10 terms of $\left(\frac{e^n n!}{n^n}\right)$

Figure 2: The first 10 terms of $\left(\frac{e^n n!}{n^n}\right)^2$

Figure 3: $\left(\frac{\mathrm{e}^n n!}{n^n}\right)^2$ in blue and $y=2\pi x+1$ in red