Step-1

Here, $A = 3\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$. Let us obtain M. We have, $M_{ij} = \int V_i V_j dx$.

Therefore,

$$M_{12} = \int_0^1 V_1 V_2 dx$$

Now, it should be clear that $V_1V_2 = 0$, when $0 \le x \le \frac{1}{3}$ or $\frac{2}{3} \le x \le 1$.

Further note that, when $\frac{1}{3} \le x \le \frac{2}{3}$, we have

$$V_1V_2 = (3x-1)(2-3x)$$

= 9x-2-9x²

Step-2

Therefore,

$$\int_{0}^{1} V_{1} V_{2} dx = \int_{\frac{1}{3}}^{\frac{2}{3}} (9x - 2 - 9x^{2}) dx$$

$$= 9 \left[\frac{x^{2}}{2} \right]_{\frac{1}{3}}^{\frac{2}{3}} - 2 \left[x \right]_{\frac{1}{3}}^{\frac{2}{3}} - 9 \left[\frac{x^{3}}{3} \right]_{\frac{1}{3}}^{\frac{2}{3}}$$

$$= \frac{9}{2} \left(\frac{1}{3} \right) - 2 \left(\frac{1}{3} \right) - \frac{9}{3} \left(\frac{7}{27} \right)$$

$$= \frac{1}{18}$$

Step-3

Thus, $M_{12} = \frac{1}{18}$.

It should be clear that $M_{21} = \frac{1}{18}$.

Step-4

Now obtain M_{11} . Note that $M_{11} = M_{22}$.

$$M_{11} = \int_0^1 (V_1)^2 \, dx$$

Consider

$$\int_{0}^{\frac{1}{3}} (V_{1})^{2} dx = \int_{0}^{\frac{1}{3}} 9x^{2} dx$$

$$= 9 \left[\frac{x^{3}}{3} \right]_{0}^{\frac{1}{3}}$$

$$= 3 \left[\frac{1}{27} \right]$$

$$= \frac{1}{9}$$

Similarly, $\int_{\frac{1}{3}}^{\frac{2}{3}} (V_1)^2 dx = \frac{1}{9}, \text{ by symmetry.}$

Therefore, $M_{11} = \frac{2}{9}$ and hence, $M_{22} = \frac{2}{9}$.

Therefore,

$$M = \begin{bmatrix} \frac{2}{9} & \frac{1}{18} \\ \frac{1}{18} & \frac{2}{9} \end{bmatrix}$$

Step-5

Consider the equation $Ax = \lambda Mx$

This is same as $(A - \lambda M)x = 0$.

Therefore, $\det(A - \lambda M) = 0$

Step-6

Thus, we get

$$0 = \begin{vmatrix} 6 - \frac{2\lambda}{9} & -3 - \frac{\lambda}{18} \\ -3 - \frac{\lambda}{18} & 6 - \frac{2\lambda}{9} \end{vmatrix}$$

$$= \left(6 - \frac{2\lambda}{9} \right)^2 - \left(3 + \frac{\lambda}{18} \right)^2$$

$$= 36 - \frac{24\lambda}{9} + \frac{4\lambda^2}{81} - \left(9 + \frac{6\lambda}{18} + \frac{\lambda^2}{324} \right)$$

$$0 = 27 - \frac{54\lambda}{18} + \frac{15\lambda^2}{324}$$

$$= \frac{5\lambda^2}{108} - 3\lambda + 27$$

Step-7

Therefore,

$$\lambda = \frac{9 \pm \sqrt{9 - 5}}{\frac{5}{54}}$$
$$= \frac{54}{5} (9 \pm 2)$$
$$= \frac{378}{5} \text{ or } \frac{594}{5}$$

Step-8

Therefore, the eigenvalues are $\begin{bmatrix} \frac{378}{5} \\ \frac{1}{5} \end{bmatrix}$ and $\begin{bmatrix} \frac{594}{5} \\ \frac{1}{5} \end{bmatrix}$.