10.569 Synthesis of Polymers Prof. Paula Hammond

Lecture 12: Free Radical Kinetic Chain Length, MWD, Chain Transfer, Energetics

Energetics

General Equation

$$k = Ae^{\frac{-E}{RT}}$$

$$\ln k = \ln A - \frac{E}{RT}$$

For thermal decomposition of initiator

$$R_p = k_p [M] [M \cdot] = k_p \left(\frac{k_d}{k_t}\right)^{\frac{1}{2}} f^{\frac{1}{2}} [M] [I]^{\frac{1}{2}}$$
net rate "fudge factor" constant

Arrhenius expression:

$$\ln \left[k_p \left(\frac{k_d}{k_t}\right)^{\frac{1}{2}}\right] = \ln \left[A_p \left(\frac{A_d}{A_t}\right)^{\frac{1}{2}}\right] - \frac{\left[E_p + \frac{E_d}{2} - \frac{E_t}{2}\right]}{RT}$$
 constant w.r.t. Temp
$$E_p = \text{activation energy for propag. step}$$

$$\left[E_p + \frac{E_d}{2} - \frac{E_t}{2}\right] \text{is activation energy for polymerization}$$

$$E_R = E_p + \frac{E_d}{2} - \frac{E_t}{2}$$

Overall:

$$\ln R_p = \ln \left[A_p \left(\frac{A_d}{A_t} \right)^{\frac{1}{2}} \right] + \ln \left[\left(f[I] \right)^{\frac{1}{2}} [M] \right] - \frac{E_R}{RT}$$

Sample Values of E_p and E_t in kJ/mol

Monomers	E _p (kJ/mol)	E _t (kJ/mol)
Vinyl chloride	16	17.6
Methyl acrylate	29.7	22.2
Methyl metacrylate	26.4	11.9
Styrene	26.0	8.0

Initiator	E _d (kJ/mol)
AIBN	123.4
Acetyl Peroxide	136
Benzoyl Peroxide	124.3

On Average:
$$E_p \sim 20-30$$

 $E_t \sim 10-15$
 $E_d \sim 100-150$
 $\Rightarrow E_R = E_p + E_d/2 - E_t/2$
is dominated by E_d
 $E_R \sim 80-90$ kJ/mol

Because R_p is a positive number \rightarrow positive activation energy

If T
$$\uparrow$$
, k \uparrow e.g. if T \uparrow ~ 10°C, R_p \uparrow by 2-3x

(rate of polymerization increases by 2 or 3 times)

What about $\overline{p_n}$?

(assume no chain transfer)

$$\overline{p_n} = 2av$$
let a = 1 (coupling)

$$\overline{p_n} = 2\nu = \frac{k_p[M]}{(fk_dk_t[I])^{\frac{1}{2}}}$$

$$\ln \overline{p_n} = \ln \left[\frac{A_p}{(A_dA_t)^{\frac{1}{2}}} \right] + \ln \left[\frac{[M]}{(f[I])^{\frac{1}{2}}} \right] - \frac{\left[E_p - \frac{E_d}{2} - \frac{E_t}{2} \right]}{RT}$$

 \Rightarrow on average, get negative value for [] E term

$$\Rightarrow \frac{\left[E\overline{p_n}\right]}{RT}$$
 is negative

Thermodynamics

$$\Delta G = \Delta H - T \Delta S$$

should be negative for polymerization to take place

- 1. $\Delta H \to strongly$ exothermic rxns ΔH_p (enthalpy of propagation) $\to \sim$ -160 to -60 kJ/mol
- 2. $\Delta S \rightarrow$ lose entropy with polymerization $\Delta S \rightarrow \sim$ -90 to -120 J/(mol·K)

Usually ΔH is much larger than $T \Delta S$ term

 \Rightarrow negative $\triangle G$ (thermodynamically favorable to polymerize)

At certain Temp range, its possible for $\Delta G \rightarrow 0$ \Rightarrow get near equilibria conditioning

At equilibrium (or near):

$$-\frac{d[M]}{dt} = (k_p[M] - k_{dp})[M \cdot]$$

at equilibrium = 0

$$K_{eq} = \frac{ \begin{bmatrix} M_{n+1} \cdot \end{bmatrix}}{ \begin{bmatrix} M_n \cdot \end{bmatrix} \begin{bmatrix} M_{n+1} \cdot \end{bmatrix}} \text{ and } \begin{bmatrix} M_{n} \cdot \end{bmatrix} \text{ approx. equal}$$

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond

$$\begin{bmatrix} M_{eq} \end{bmatrix} = \frac{k_{dp}}{k_p} = \frac{1}{K_{eq}}$$
 equilibrium monomer concentration at a given temp

Will always define with respect to monomer conc or temperature.

Standard States Defns:

$$\Delta G^{o} = \Delta H^{o} - T\Delta S^{o} = -RT \ln K_{eq}$$

$$\Delta G = \Delta G^{o} + RT \ln K_{eq} = 0$$

$$\Delta H^{o} - T\Delta S^{o} = -RT_{c} \ln \frac{1}{[M]_{eq}}$$

$$= RT_{c} \ln[M]_{eq}$$

Solve for T:

$$T_c = \frac{\Delta H^o}{\Delta S^o + R \ln[M]_{eq}}$$
 "ceiling temp" [M]_{eq} defined as ratio:

 $[M]_{e}$ Equilibrium monomer conc $[M]_{s}^{o}$ Standard state monomer conc

= highest T for polymerization to occur

 $[M]_{s}^{o} = 1 M soln$ (or bulk conc'n)

$$\Rightarrow \ln \frac{[M]_e}{[M]_e^o} = \ln [M]_{eq} = \frac{\Delta H^o}{RT_c} - \frac{\Delta S^o}{R}$$

determine [M]_e from T

ceiling temperature term when no monomer conc is specified, is usually assuming that $[M]_c = [M]_{bulk}$

	(at 25°C)	
Examples	[M] _c (M)	T _c (assuming bulk monomer)
Vinyl acetate	1x10 ⁻⁴	
Methyl methacrylate		220°C
α-methyl styrene	2.2	61°C