Math 321 Lecture 7

Yuchong Pan

January 16, 2019

1 The Space C(X) (Cont'd)

Let (X, d) be any metric space. Then C(X) is the space of real-valued or complex-valued continuous functions on X. C(X) is always a vector space on \mathbb{R} or \mathbb{C} . If X is **compact**, then C(X) is also a metric space, with respect to the uniform norm: $||f - g||_{\infty} = \sup_{x \in X} |f(x) - g(x)|$.

Questions:

- 1. Suppose X is compact, so that C(X) is a metric space. What are the compact subsets of C(X)?
- 2. **Know:**

uniform convergence \Rightarrow pointwise convergence pointwise convergence \Rightarrow uniform convergence

pointwise convergence + equicontinuity \Rightarrow uniform convergence.

1.1 Arzela-Ascoli Theorem

Theorem 1 (Arzela-Ascoli). Let (X,d) be a **compact** metric space. Let $\mathcal{F} \subseteq C(X)$. Then \mathcal{F} is compact if and only if \mathcal{F} is closed, uniform bounded $(\exists M > 0 \text{ s.t. } ||F|| < M \ \forall F \in \mathcal{F})$ and equicontinuous.

Recall that $\mathcal{G} \subseteq C(X)$ where X is compact is **equicontinuous** if for all $\epsilon > 0$, there exists $\delta = \delta(\epsilon)$ such that for all $x, y \in X$ with $d(x, y) < \delta$, one has $|f(x) - f(y)| < \epsilon$ for all $f \in \mathcal{G}$.

Examples:

- 1. $\mathcal{G} = \{$ all constant functions $\}$ is equicontinuous but not uniformly bounded; $AA \Rightarrow \mathcal{G}$ is not compact.
- 2. $\mathcal{G} = \{f_n(x) = x^n; x \in [0, 1]\}$ is uniformly bounded by 1, but not equicontinuous (Exercise). Check that δ_n has to go to zero as $n \to \infty$ (near 1).
- 3. $\mathcal{G} = \{$ all constant functions $f(x) = k, k \in [0,1] \}$ is equicontinuous and uniformly bounded.
- 4. Any finite collection of continuous functions on a compact metric space is both equicontinuous and uniformly bounded.

Math 321 Lecture 7 Yuchong Pan

5. $\mathcal{G} = \left\{x^n; x \in \left[0, \frac{1}{2}\right]\right\} \subseteq C\left[0, \frac{1}{2}\right]$ and $\mathcal{G} = \left\{\frac{x}{n}; x \in [0, 1]\right\}$ are equicontinuous and uniformly bounded.

6. The space of polynomials on [0,1] is neither equicontinuous nor uniformly bounded.

Exercise: Show that if $f_n, f \in C(X)$ where X is compact, $f_n \to f$ uniformly on X, then $\mathcal{F} = \{f_n : n \ge 1\} \cup \{f\}$ is equicontinuous and uniformly bounded.

Proof of Theorem 1. Step 1: Assume \mathcal{F} is compact. Show that \mathcal{F} is closed, uniformly bounded and equicontinuous.

- \bullet \mathcal{F} is closed because compactness implies closedness in any metric space.
- \mathcal{F} is uniformly bounded: \mathcal{F} compact $\Rightarrow \mathcal{F}$ totally bounded i.e., $\forall \epsilon > 0, \exists f_1, f_2, \dots, f_M \in C(X) \text{ s.t. } \mathcal{F} \subseteq \bigcup_{j=1}^M B(f_j; \epsilon)$

Choose $\epsilon = 1$. Then

$$\mathcal{F} \subseteq \bigcup_{j=1}^{M} \underbrace{\left\{ f \in C(X) : \|f - f_j\|_{\infty} < 1 \right\}}_{=B(f_j;1)}.$$

Thus, for any $f \in \mathcal{F}$, there exists f_j such that $||f - f_j||_{\infty} < 1$; i.e.,

$$|f(x)| \le |f(x) - f_j(x)| + |f_j(x)| \le ||f - f_j||_{\infty} + ||f_j|| < 1 + N,$$

where $N = \max\{\|f_j\| : 1 \le j \le M\} < \infty$.

• \mathcal{F} is equicontinuous: Fix any $\epsilon > 0$.

Since \mathcal{F} is totally bounded, identify $f_1, \ldots, f_M \in C(X)$ such that

$$\mathcal{F} \subseteq \bigcup_{j=1}^{M} B\left(f_{j}; \frac{\epsilon}{3}\right). \tag{*}$$

For every $1 \leq j \leq M$, there exists $\delta_j = \delta_j(\epsilon) > 0$ such that

$$d(x,y) < \delta_j \xrightarrow{f \text{ is continuous}} |f_j(x) - f_j(y)| < \frac{\epsilon}{3} \quad \forall x, y \in X.$$
 (**)

Set $\delta = \min(\delta_1, \delta_2, \dots, \delta_M) > 0$. We need to show that this δ works for all $f \in \mathcal{F}$:

$$|f(x) - f(y)| \le |f(x) - f_i(x)| + |f_i(x) - f_i(y)| + |f_i(y) - f(y)|,$$

where $1 \leq j \leq M$ is chosen so that $||f - f_j|| < \frac{\epsilon}{3}$ (by (*)). Thus,

$$|f(x) - f(y)| < 2||f - f_j|| + \frac{\epsilon}{3}$$
 by (**)
$$< 2 \cdot \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

whenever $d(x,y) < \delta$.

(Proof unfinished.)