

planetmath.org

Math for the people, by the people.

elementary matrix

Canonical name ElementaryMatrix
Date of creation 2013-03-22 18:30:38
Last modified on 2013-03-22 18:30:38

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 13

Author CWoo (3771)
Entry type Definition
Classification msc 15-01
Related topic MatrixUnit

Related topic Gaussian Elimination
Defines elementary operation

Defines elementary column operation
Defines elementary row operation
Defines basic diagonal matrix
Defines transposition matrix
Defines row replacement matrix

Elementary Operations on Matrices

Let M be the set of all $m \times n$ matrices (over some commutative ring R). An operation on M is called an *elementary row operation* if it takes a matrix $M \in \mathbb{M}$, and does one of the following:

- 1. interchanges of two rows of M,
- 2. multiply a row of M by a non-zero element of R,
- 3. add a (constant) multiple of a row of M to another row of M.

An elementary column operation is defined similarly. An operation on M is an elementary operation if it is either an elementary row operation or elementary column operation.

For example, if $M = \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix}$, then the following operations correspond respectively to the three types of elementary row operations described above

1.
$$\begin{pmatrix} a & b \\ e & f \\ c & d \end{pmatrix}$$
 is obtained by interchanging rows 2 and 3 of M ,

1.
$$\begin{pmatrix} a & b \\ e & f \\ c & d \end{pmatrix}$$
 is obtained by interchanging rows 2 and 3 of M ,

2. $\begin{pmatrix} a & b \\ rc & rd \\ e & f \end{pmatrix}$ is obtained by multiplying $r \neq 0$ to the second row of M ,

3.
$$\begin{pmatrix} a & b \\ c & d \\ sa+e & sb+f \end{pmatrix}$$
 is obtained by adding to row 1 multiplied by s to row 3 of M .

Some immediate observation: elementary operations of type 1 and 3 are always invertible. The inverse of type 1 elementary operation is itself, as interchanging of rows twice gets you back the original matrix. The inverse of type 3 elementary operation is to add the negative of the multiple of the first row to the second row, thus returning the second row back to its original form. Type 2 is invertible provided that the multiplier has an inverse.

Some notation: for each type k (where k = 1, 2, 3) of elementary operations, let $E_c^k(A)$ be the set of all matrices obtained from A via an elementary column operation of type k, and $E_r^k(A)$ the set of all matrices obtained from A via an elementary row operation of type k.

Elementary Matrices

Now, assume R has 1. An $n \times n$ elementary matrix is a (square) matrix obtained from the identity matrix I_n by performing an elementary operation. As a result, we have three types of elementary matrices, each corresponding to a type of elementary operations:

- 1. transposition matrix T_{ij} : an matrix obtained from I_n with rows i and j switched,
- 2. basic diagonal matrix $D_i(r)$: a diagonal matrix whose entries are 1 except in cell (i, i), whose entry is a non-zero element r of R
- 3. row replacement matrix $E_{ij}(s)$: $I_n + sU_{ij}$, where $s \in R$ and U_{ij} is a matrix unit with $i \neq j$.

For example, among the 3×3 matrices, we have

$$T_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad D_3(r) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r \end{pmatrix}, \quad \text{and} \quad E_{32}(s) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & s & 1 \end{pmatrix}$$

For each positive integer n, let $\mathbb{E}^k(n)$ be the collection of all $n \times n$ elementary matrices of type k, where k = 1, 2, 3.

Below are some basic properties of elementary matrices:

- $T_{ij} = T_{ji}$, and $T_{ij}^2 = I_n$.
- $D_i(r)D_i(r^{-1}) = I_n$, provided that r^{-1} exists.
- $E_{ij}(s)E_{ij}(-s) = I_n$.
- $\det(T_{ij}) = -1$, $\det(D_i(r)) = r$, and $\det(E_{ij}(s)) = 1$.
- If A is an $m \times n$ matrix, then

$$E_c^k(A) = \{AE \mid E \in \mathbb{E}^k(n)\}$$
 and $E_r^k(A) = \{EA \mid E \in \mathbb{E}^k(m)\}.$

• Every non-singular matrix can be written as a product of elementary matrices. This is the same as saying: given a non-singular matrix, one can perform a finite number of elementary row (column) operations on it to obtain the identity matrix.

Remarks.

- One can also define elementary matrix operations on matrices over general rings. However, care must be taken to consider left scalar multiplications and right scalar multiplications as separate operations.
- The discussion above pertains to elementary linear algebra. In algebraic K-theory, an elementary matrix is defined only as a row replacement matrix (type 3) above.