

Stat GR 5205 Lecture 8

Jingchen Liu

Department of Statistics Columbia University

Reduced model

$$SST = SSR(X_1) + SSE(X_1)$$

Full model

$$SST = SSR(X_1, X_2) + SSE(X_1, X_2)$$

Extra sums of squares

$$SSR(X_2|X_1) = SSE(X_1) - SSE(X_1, X_2)$$

▶ The coefficients of partial determination

$$R_{X_2|X_1}^2 = \frac{SSR(X_2|X_1)}{SSE(X_1)}$$

Reduced model

$$SST = SSR(X_1) + SSE(X_1)$$

► Full model

$$SST = SSR(X_1, X_2) + SSE(X_1, X_2)$$

Extra sums of squares

$$SSR(X_2|X_1) = SSE(X_1) - SSE(X_1, X_2)$$

The coefficients of partial determination

$$R_{X_2|X_1}^2 = \frac{SSR(X_2|X_1)}{SSE(X_1)}$$

► Reduced model

$$SST = SSR(X_1) + SSE(X_1)$$

▶ Full model

$$SST = SSR(X_1, X_2) + SSE(X_1, X_2)$$

Extra sums of squares

$$SSR(X_2|X_1) = SSE(X_1) - SSE(X_1, X_2)$$

► The coefficients of partial determination

$$R_{X_2|X_1}^2 = \frac{SSR(X_2|X_1)}{SSE(X_1)}$$

► Reduced model

$$SST = SSR(X_1) + SSE(X_1)$$

▶ Full model

$$SST = SSR(X_1, X_2) + SSE(X_1, X_2)$$

Extra sums of squares

$$SSR(X_2|X_1) = SSE(X_1) - SSE(X_1, X_2)$$

► The coefficients of partial determination

$$R_{X_2|X_1}^2 = \frac{SSR(X_2|X_1)}{SSE(X_1)}$$

ANOVA table

$$SST = SSR + SSE$$

$$R^2 = \frac{SSE}{SST}$$

Multiple correlation

source	sums of sq	d.f.	mean sum of sq	<i>F</i> -stat	<i>p</i> -value
Regression	SST	p-1	SST/(p-1)		
Residual	SSE	n-p	SSE/(n-p)		
Total	SST				

source	sum of sq	d.f.	mean sq	<i>F</i> -stat	<i>p</i> -value
regression	190	1	190	78	< 0.0001
residual	180	74	2.4		
total	370	75			

source	sum of sq	d.f.	mean sq	<i>F</i> -stat	<i>p</i> -value
between group	196	6	33	13	< 0.0001
residual	174	69	2.5		
total	370	75			

$$F - statisitc = \frac{(196 - 190)/5}{174/69} = 0.48$$

$$X = (x_{ij})_{n \times p}$$

Standardized covariates

$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij} = 0, \quad SD(x_j) = \frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \bar{x}_j) = 1$$

Uncorrelated covariates,

$$\sum_{i=1}^{n} x_{ij_1} x_{ij_2} = 0$$

$$X = (x_{ij})_{n \times p}$$

Standardized covariates

$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij} = 0, \quad SD(x_j) = \frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \bar{x}_j) = 1$$

Uncorrelated covariates,

$$\sum_{i=1}^n x_{ij_1} x_{ij_2} = 0$$

Uncorrelated covariates

$$X^{\top}X = I_{p \times p}$$

► The least-square estimate

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y = X^{\top}Y$$

Individual estimated coefficient

$$\hat{\beta}_j = \sum_{i=1}^n x_{ij} y_i$$

Uncorrelated covariates

$$X^{\top}X = I_{p \times p}$$

► The least-square estimate

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y = X^{\top}Y$$

Individual estimated coefficient

$$\hat{\beta}_j = \sum_{i=1}^n x_{ij} y_i$$

Uncorrelated covariates

$$X^{\top}X = I_{p \times p}$$

▶ The least-square estimate

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y = X^{\top}Y$$

Individual estimated coefficient

$$\hat{\beta}_j = \sum_{i=1}^n x_{ij} y_i$$

Variance

$$Var(\beta_j) = \sigma^2 \sum_{i=1}^n x_{ij}^2 = \sigma^2$$

Covariance

$$Cov(\beta_{j_1}, \beta_{j_2}) = \sum_{i=1}^{n} x_{ij_1} x_{ij_2} = 0$$

Variance

$$Var(\beta_j) = \sigma^2 \sum_{i=1}^n x_{ij}^2 = \sigma^2$$

Covariance

$$Cov(\beta_{j_1}, \beta_{j_2}) = \sum_{i=1}^{n} x_{ij_1} x_{ij_2} = 0$$

A paradox due to multicollinearity

$$y,x_1,x_2,...,x_p$$

With all covariates standardized, we consider

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

$$Var(\hat{\beta}_1) = \sigma^2/(n-1)$$

Consider

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_p x_p + \dots$$

$$Var(\tilde{\beta}) = \sigma^2(X^\top X)^{-1}$$

$$y, x_1, x_2, ..., x_p$$

With all covariates standardized, we consider

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

- $\qquad \qquad \mathsf{Var}(\hat{\beta}_1) = \sigma^2/(\mathsf{n}-1)$
- Consider

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... \beta_p x_p +$$

$$y,x_1,x_2,\dots,x_p$$

With all covariates standardized, we consider

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

- $Var(\hat{\beta}_1) = \sigma^2/(n-1)$
- Consider

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_p x_p + \varepsilon$$

$$ightharpoonup Var(\tilde{\beta}) = \sigma^2(X^\top X)^{-1}$$

$$y,x_1,x_2,...,x_p$$

With all covariates standardized, we consider

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

- $Var(\hat{\beta}_1) = \sigma^2/(n-1)$
- Consider

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... \beta_p x_p + \varepsilon$$

$$ightharpoonup Var(\tilde{\beta}) = \sigma^2(X^\top X)^{-1}$$

► Variance inflation factor (VIF)

$$\mathit{VIF}(eta_1) = rac{\mathit{Var}(ilde{eta}_1)}{\mathit{Var}(\hat{eta}_1)}$$

► A representation

$$VIF(\beta_1) = \frac{1}{1 - R_1^2}$$

where R_1^2 is the coefficient of determination of x_1 on x_2

► Variance inflation factor (VIF)

$$VIF(eta_1) = rac{Var(ilde{eta}_1)}{Var(\hat{eta}_1)}$$

A representation

$$VIF(\beta_1) = \frac{1}{1 - R_1^2}$$

where R_1^2 is the coefficient of determination of x_1 on x_2 , $x_3,...,x_p$.

Value-added plot

Display 11.4 p. 308

Response variable, design variables, and several covariates for 34 rats in the blood-brain barrier disruption experiment

	Response Variable	Design Variables Sacrifice Time (hours) Treatment		Covariates Days Post Inoculation Tumor Weight (10 ⁻⁴ grams) Weight Loss (grams) Initial Weight (grams) See				
Case	Brain tumor Count (per gm) Liver Count (per gm)							
	41081 / 1456164	0.5	BD	10	F	239	5.9	221
1	44286 / 1602171	0.5	BD	10	F	225	4.0	246
2 3 4 5	102926 / 1601936	0.5	BD	10	F	224	-4.9	61
3	25927 / 1776411	0.5	BD	10	F	184	9.8	168
4	42643 / 1351184	0.5	BD	10	F	250	6.0	164
6	31342 / 1790863	0.5	NS	10	F	196	7.7	260
7	22815 / 1633386	0.5	NS	10	F	200	0.5	27
7 8	16629 / 1618757	0.5	NS	10	F	273	4.0	308
9	22315 / 1567602	0.5	NS	10	F	216	2.8	93
10	77961 / 1060057		BD	10	F	267	2.6	73
11	73178 / 715581	3	BD	10	F	263	1.1	25
12	76167 / 620145	2	BD	10	F	228	0.0	133
13	123730 / 1068423	3	BD	10	F	261	3.4	203
14	25569 / 721436	3	NS	9	F	253	5.9	159
15	33803 / 1019352	3 3 3 3 3 3	NS	10	F	234	0.1	264
16	24512 / 667785	2	NS	10	F	238	0.8	34
17	50545 / 961097	3	NS	9	F	230	7.0	146
18	50690 / 1220677	3	NS	10	F	207	1.5	212
19	84616 / 48815	24	BD	10	F	254	3.9	155
20	55153 / 16885	24	BD	10	M	256	-4.7	190
21	48829 / 22395	24	BD	10	M	247	-2.8	101
22	89454 / 83504	24	BD	11	F	198	4.2	214
23	37928 / 20323	24	NS	10	F	237	2.5	224
24	12816 / 15985	24	NS	10	M	293	3.1	151
25	23734 / 25895	24	NS	10	M	288	9.7	285
26	31097 / 33224	24	NS	11	F	236	5.9	380
27	35395 / 4142	72	BD	11	F	251	4.1	39
28	18270 / 2364	72	BD	10	F	223	4.0	153
29	5625 / 1979	72	BD	10	M	298	12.8	164
30	7497 / 1659	72	BD	10	M	260	7.3	364
31	6250 / 928	72	NS	10	M	272	11.0	484
32	11519 / 2423	72	NS	11	F	226	2.2	168
33	3184 / 1608	72	NS	10	M	249	-4.4	191
34	1334 / 3242	72	NS	10	F	240	6.7	159

Display 11.5

p. 309

Log-log scatterplot of ratio of antibody concentration in brain tumor to antibody concentration in liver versus sacrifice time, for 17 rats given the barrier disruption infusion and 17 rats given a saline (control) infusion

Display 11.6

p. 312

Scatterplot of residuals versus fitted values from the fit of the logged response on a rich model for explanatory variables; brain barrier data

Deleted residual

$$d_{i} = y_{i} - \hat{y}_{i(i)} = \frac{y_{i} - \hat{y}_{i}}{1 - h_{i}} \quad Var(d_{i}) = \frac{\sigma^{2}}{1 - h_{i}}$$

Studentized residual

Studentized residual

$$StudRes_i = \frac{d_i}{SE(d_i)}$$

Another representation

$$StudRes_i = rac{y_i - \hat{y}_i}{SE(y_i - \hat{y}_i)} = rac{y_i - \hat{y}_i}{\hat{\sigma}\sqrt{1 - h_i}}$$

About the hat matrix

Studentized residual

Studentized residual

$$StudRes_i = \frac{d_i}{SE(d_i)}$$

Another representation

$$StudRes_i = \frac{y_i - \hat{y}_i}{SE(y_i - \hat{y}_i)} = \frac{y_i - \hat{y}_i}{\hat{\sigma}\sqrt{1 - h_i}}$$

About the hat matrix

Studentized residual

Studentized residual

$$StudRes_i = \frac{d_i}{SE(d_i)}$$

Another representation

$$StudRes_i = \frac{y_i - \hat{y}_i}{SE(y_i - \hat{y}_i)} = \frac{y_i - \hat{y}_i}{\hat{\sigma}\sqrt{1 - h_i}}$$

About the hat matrix

► About leverage

► Simple linear model

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$$

- Multiple regression
- ► Total leverage

- ► About leverage
- ► Simple linear model

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$$

- ► Multiple regression
- ▶ Total leverage

- ► About leverage
- ► Simple linear model

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$$

- Multiple regression
- ► Total leverage

- ► About leverage
- ► Simple linear model

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$$

- Multiple regression
- ► Total leverage

High leverage

An illustration of what is meant by "far from the average" of multiple explanatory variables when they are correlated

Leave-one-out measure

▶ DIFFITS

$$DIFFITS_i = \frac{\hat{y}_i - \hat{y}_{i(i)}}{\hat{\sigma}_{(i)}\sqrt{h_i}}$$

Leave-one-out measure

Cook's distance

$$D_i = \frac{\sum_j (\hat{y}_j - \hat{y}_{j(i)})^2}{p\sigma^2}$$

Another representation

$$D_i = \frac{(y_i - \hat{y}_i)^2}{p\sigma^2} \frac{h_i}{(1 - h_i)^2} = \frac{StudRes_i^2}{p} \frac{h_i}{1 - h_i}$$

Leave-one-out measure

DFBETAS

$$DFBETAS_{k(i)} = \frac{\beta_k - \beta_{k(i)}}{\sigma_{\sqrt{c_k}}}$$

Influential points

Three examples of influential cases in simple linear regression. The top row shows regression lines with and without the influential case included. The next three rows show the resulting case influence statistic plots: Cook's discovered residuals. The horizontal axes for the case statistic plots show the case numbers [-11] for the influential case).

