Hyperfréquences

Élément 2 : Théorie des Lignes de Transmission

- ☐ Les lignes de transmission
- ☐ L'Abaque de Smith
- ☐ Systèmes d'adaptation

> Soit une ligne de transmission d'impédance caractéristique Z

$$Z_i = Z_0 = Z_T$$
 Toute la puissance est transmise à la charge.

$$Z_i = Z_0 \neq Z_T$$
 Réflexion vers le générateur.

$$Z_i \neq Z_0 = Z_T$$
 — La source ne transmet pas à la ligne toute la puissance.

$$Z_i \neq Z_0 \neq Z_T$$
 Réflexion s'effectue au niveau de la charge et du générateur.

Adaptation d'impédance

L'adaptation d'impédances permet d'optimiser le transfert d'une puissance électrique entre une source et une charge.

Il faut que la puissance reçue soit maximale au niveau de la charge.

- ➤ On peut utiliser :
- ✓ Adaptation à éléments localisés
- **✓** Adaptation par stub

Condition d'adaptation

$$P_A = P_S (1 - |\Gamma|^2)$$
 avec $\Gamma = \frac{Z - Z_c}{Z + Z_c}$

V Pour maximiser la puissance transmise à la charge, il faut annuler le coefficient de réflexion Γ en entrée de l'antenne : $\Gamma = 0$

La puissance transmise est maximale si les deux impédances sont *conjuguées*

$$Z = Rs - jXs$$

L'adaptation à éléments localisés

Les circuits LC se présentent sous forme de L, de Té, de Pi ou parfois de combinaisons plus complexes.

- ✓ Les transformateurs L-C sont largement utilisés dans la conception des circuits d'adaptation d'impédance micro-ondes à basse fréquences.
- ✓ Un des réseaux d'adaptation les plus simples est le réseau en L.

L'adaptation à éléments localisés

> Réseau en L

✓ Il se compose de deux éléments réactifs, condensateur ou self, dont l'un est en série et l'autre en parallèle :

$$\Rightarrow B = \frac{X_L \pm \sqrt{R_L/Z_o} \cdot \sqrt{R_L^2 + X_L^2 - Z_o \cdot R_L}}{R_L^2 + X_L^2} \quad \text{et} \quad X = \frac{1}{B} + \frac{X_L \cdot Z_o}{R_L} - \frac{Z_o}{B \cdot R_L}$$

✓ Une inductance pour une valeur positive et une capacité pour une valeur négative .

L'adaptation à éléments localisés : abaque de Smith

❖ Il y a donc 8 configurations possibles, mais toutes ne permettent pas de ramener n'importe quelle impédance de charge à l'impédance caractéristique de la ligne.

❖ Le choix du type de réseau se fait en fonction du lieu de coefficient de réflexion sur l'abaque de Smith.

L'adaptation à éléments localisés : abaque de Smith

✓ L'adaptation d'impédance par un circuit en L consiste donc à allez de la charge au générateur en 2 arcs de cercles :

Parallèle:

- Se déplacer sur des cercles de conductance constante, jusqu'au cercle Z = 1 + jX
- Ajouter une réactance -jX en série pour atteindre le centre de l'abaque.

Série:

- Se déplacer sur des cercles de résistance constante, jusqu'au cercle Y = 1 + jB.
- Ajouter une réactance -jB en parallèle pour atteindre le centre de l'abaque.

L'adaptation à éléments localisés

Exemple : soit une charge Z=25-j15Ω, dans un système de 50 Ω. Utiliser un réseau en L pour adapter la charge.

Solution 1

- 1) Placer Z sur l'abaque de Smith
- 2) Ajouter une inductance en série
- 3) Ajouter un condensateur en parallèle

Solution 2

- 1) Placer Z
- 2) Ajouter un condensateur en série
- 3) Ajouter une inductance en parallèle

L'adaptation à éléments localisés

- ✓ **Aux fréquences élevées**, son utilisation présente une limitation due à la difficulté qu'engendre la réalisation de ses composantes.
- ✓ Aux fréquences inférieures à 3 Ghz, les éléments passifs occupent beaucoup plus d'espace que les composants actifs.
- ☐ Lorsque l'on utilise un réseau comprenant un condensateur et une self uniquement, l'adaptation d'impédance est réalisée parfaitement sur une **fréquence particulière**.
- ⇒ Pour envisager une adaptation d'impédance sur une plus **grande largeur de bande** il faut **multiplier le nombre de cellules.**

Adaptation par stub

➤ Un « **stub** » est un tronçon de transmission dont une extrémité est soit en court-circuit soit en circuit ouvert et dont l'autre extrémité est placée soit en série soit en parallèle sur une ligne de transmission à une certaine distance de la charge

L'impédance d'entrée d'un stub court circuit (ou circuit ouvert) s'écrit en fonction de l'impédance caractéristique Zc, de la constante de propagation β et de la longueur l.

Court circuit
$$Z_e = jZ_c tg\beta l$$

Circuit ouvert
$$Z_e = Z_c / jtg\beta l$$

L'impédance ramenée est purement imaginaire et sera utilisée pour annuler la partie imaginaire de la charge à adapter (ou la partie imaginaire de la charge transformée par un tronçon de ligne).

Adaptation par stub

- \triangleright les deux paramètres ajustables sont la distance L_d entre la charge et le stub, et la susceptance ou la réactance produite par le stub.
 - ✓ <u>Stub en parallèle</u> : le principe d'adaptation consiste à choisir L_d de façon à ce que l'admittance vue à cette distance de la charge soit de la forme :

$$Y_c + jB$$

Alors, la susceptance du stub est choisie comme étant -iB, annulant ainsi la partie réactive.

✓ <u>Stub en série</u> : la distance est choisie de façon à ce que l'impédance vue à la distance soit de la forme :

$$Z_c + jX$$

La réactance du stub est alors choisie comme étant -jX

Adaptation par stub : exemple d'un Stub en série

- ✓ La ligne d'impédance caractéristique Z_c est chargée en A par une impédance complexe Za
- Positionner le point A
- Tracer le cercle des ROS constant passant par A jusqu'à le cercle des
- r = 1 en tournant dans le sens horaire. On obtient le point **B**

L'arc FF' correspond à la longueur de Ld

déterminer Ls dont la réactance est celle du point C',
symétrique du point C et dont la réactance est celle du point B.

Adaptation par stub : exemple d'un Stub en parallèle

✓ La ligne d'impédance caractéristique Z_c est chargée en A par une impédance complexe Z_a

Déterminer Ld:

- Dessiner le cercle de ROS constant passant par A
- Déterminer le point A', symétrique de A par rapport au centre.
- Du point A' et en tournant dans le sens horaire, trouver le point **B** qui est à l'intersection du cercle de ROS et le cercle des résistances égales à 1.

➤ L'arc A'B ou (GH) correspond à la longueur de ligne Ld

Adaptation par stub : exemple d'un Stub en parallèle

Déterminer Ls:

Du point **B** on arrivera au point **C** qui est situé à l'intersection du cercle des réactances constantes et du cercle des résistances nulles

- Reporter le point **C'**, symétrique de C par rapport à l'axe horizontal. Passer de l'admittance à l'impédance
- On a un stub en court-circuit : partir du point 0
 jusqu'au point D correspond à la longueur de Ls
 - Pour un stub en circuit-ouvert, **partir du point F**jusqu'au point D.

- ✓ Cette technique permet d'obtenir une adaptation dans le cas où l'adaptation par simple *Stub* présente une contrainte de positionnement de celui-ci à une distance critique de la charge. Cependant, on ne peut pas adapter toutes les charges.
- ✓ Elle consiste à placer en parallèle sur la ligne principale deux stubs, séparés par une distance fixe (le plus souvent $\lambda/8$)
- ✓ Il est possible de choisir une distance arbitraire à partir de la charge pour le premier *Stub*. *On peut* aussi choisir une autre distance arbitraire entre le premier et deuxième *Stub*.
- L'adaptation s'effectue en calculant la longueur des deux *Stubs*.

- ➤ Chaque stub a un rôle différent :
- Le premier stub doit être ajusté pour que la partie réelle de l'admittance vue à la distance du second stub soit égale à Y₀₁.

■ Le deuxième stub élimine la partie imaginaire de l'admittance de la charge vue à sa position d=d_{stub1}+d_{stub2}

- Procédure d'adaptation
- ✓ Placer (Z) et (Y) sur l'abaque
- ✓ De la charge on se déplace vers le générateur de d1. On trouve alors le cercle des admittances cste+jx

Procédure d'adaptation

✓ On prend le cercle 1+jx que l'on fait tourner de d2 vers la charge.

✓ On trouve deux solutions pour l'admittance du premier stub :

$$y(s1) = y2 - y1$$

$$y'(s1) = y2b - y1$$

✓ Admittances purement imaginaires que l'on reporte sur l'abaque pour trouver la longueur du premier stub (B1 et B2).

✓ Les admittances y3 et y3b sont trouvées par rotation de d2 des admittances y2 et y2b .

On compense ces parties imaginaires par les points C1 ou C2 ce qui donne la longueur de 12

Exercice

$$\lambda = 10 \text{ cm}$$

- Calculer la petite valeur ℓ_2 permettant d'obtenir une impédance réelle au point E.

Ligne quart d'onde

Un tronçon de ligne Quart d'onde permet une transformation d'impédance :

$$Zo = Z_c \frac{Z_r + jZ_c \tan \beta l}{Z_c + jZ_r \tan \beta l}$$

$$\beta \ell = \beta \frac{\lambda}{4} = \frac{2\pi}{\lambda} \frac{\lambda}{4} = \frac{\pi}{2}$$

d'où $\tan \beta \ell \rightarrow \infty$

Adaptation par ligne quart d'onde

• On peut utiliser une ligne $\lambda/4$ pour transformer une charge réelle a une autre impédance réelle.

Cette technique est connue par sa simplicité, elle concerne encore une adaptation uni-fréquentielle du fait que sa longueur est seulement $\lambda/4$ à une seule fréquence.