Math 69: Logic Winter '23

Homework assigned January 30, 2023

Prof. Marcia Groszek Student: Amittai Siavava

Problem 5.

Show that the formula

$$x = y \rightarrow Pzfx \rightarrow Pzfy$$

(where f is a one-place function symbol and P is a two-place predicate symbol) is valid.

Suppose the formula is not valid. Then there exists some structure $\mathfrak A$ and some variable assignment s such that $\not\models_{\mathfrak A} x = y \to Pzfx \to Pzfy$, meaning:

$$\models_{\mathfrak{A}} (x = y)[s] \tag{5.1}$$

$$\models_{\mathfrak{A}} Pzfx[s] \tag{5.2}$$

$$\neq_{\mathfrak{A}} Pzfy[s]$$
(5.3)

Since $\models_{\mathfrak{A}} (x = y)[s]$, we have that $\overline{s}(x) = \overline{s}(y)$.

However, since $\overline{s}(x) = \overline{s}(y)$, we have that $\overline{s}(fx) = \overline{s}(fy)$:

$$\overline{s}(fx) = f^{\mathfrak{A}}(\overline{s}(x)) = f^{\mathfrak{A}}(\overline{s}(y)) = \overline{s}(fy).$$

Therefore, Pzfx[s] and Pzfy[s] are logically equivalent, so 5.2 and 5.3 are a contradiction, meaning that the formula is valid and any structure which does not satisfy the formula is inconsistent.

Amittai, S Math 69: Logic

Problem 26.

(a) Consider a fixed structure $\mathfrak A$ and define its *elementary type* to be the class of structures elementarily equivalent to $\mathfrak A$. Show that this class is EC_{Δ} .

Hint: Show that is is Mod Thm A

By definition, two structures $\mathfrak A$ and $\mathfrak B$ are elementarily equivalent if $\models_{\mathfrak A} \varphi \iff \models_{\mathfrak B} \varphi$ for all formulas φ . Therefore, the elementary type of $\mathfrak A$ is the class of all structures $\mathfrak B$ such that

- (b) Call a class \mathcal{K} of structures *elementarily closed* or ECL if whenever a structure belongs to \mathcal{K} then all elementarily equivalent structures also belong. Show that any such class is a union of EC $_{\Delta}$ classes. (A class that is a union of EC $_{\Delta}$ classes is said to be an EC $_{\Delta\Sigma}$ class; this notation is derived from topology.)
- (c) Conversely show that any class that is the union of EC_{Δ} classes is ECL.

Amittai, S Math 69: Logic

Problem 27.

Let \mathcal{L} be the language for first-order logic with two-place predicate symbols E and P and one-place function symbol f. (We are not assuming that \mathcal{L} has the equality symbol. On the other hand, we are not ruling out the possibility that \mathcal{L} has the equality symbol and/or any number of parameter symbols in addition to \forall , E, P, and f. Other symbols are not relevant to this question.)

Suppose A is a structure for L that is a model of the sentence

$$\forall x E x x$$

and of every sentence of the form

$$\forall x \forall y \forall z_1 \forall z_2 \dots \forall z_n (Exy \to (\alpha \to \alpha')).$$

where α is an atomic formula with variables included among $\{x, y, z_1, z_2, \dots, z_n\}$, and α' is obtained from α by replacing some (possibly none, possibly some but not all, possibly all) occurrences of x by y. Examples of sentences of this form are

$$\forall x \forall y (Exy \rightarrow (Exx \rightarrow Eyx)) \text{ and } \forall x \forall y \forall z (Exy \rightarrow (Ezfx \rightarrow Ezfy)).$$

An example of a sentence not of this form is

$$\forall x \forall y \forall z (Exy \rightarrow (Ezfy \rightarrow Ezfx)).$$

Show that $E^{\mathfrak{A}}$ is an equivalence relation on the universe $|\mathfrak{A}|$, that $P^{\mathfrak{A}}$ induces a well-defined relation on equivalence classes, and that $f^{\mathfrak{A}}$ induces a well-defined function on equivalence classes.

Let ${\mathfrak A}$ be a structure for ${\mathcal L}$ that is a model of the sentence

$$\forall x E x x$$

and of every sentence of the form

$$\forall x \forall y \forall z_1 \forall z_2 \dots \forall z_n (Exy \rightarrow (\alpha \rightarrow \alpha')).$$

where alpha is an atomic formula with variables included among $\{x,y,z_1,z_2,\ldots,z_n\}$, and α' is obtained from α by replacing some (possibly none, possibly some but not all, possibly all) occurrences of x by y. Let $s:V\to |\mathfrak{A}|$ be an assignment function such that $\models_{\mathfrak{A}} \forall x \forall y \forall z_1 \forall z_2 \ldots \forall z_n (Exy \to (\alpha \to \alpha'))$.

Let $a, b \in |\mathfrak{A}|$. We will show that $a \equiv b$ if and only if $E^{\mathfrak{A}}(a, b)$. Suppose $a \equiv b$. Then there exists $c \in |\mathfrak{A}|$ such that a = c and b = c. Since $a \equiv b$, we have that $E^{\mathfrak{A}}(a, b)$. Since a = c and b = c, we have that $E^{\mathfrak{A}}(a, c)$ and $E^{\mathfrak{A}}(b, c)$. Since $E^{\mathfrak{A}}(a, c)$ and $E^{\mathfrak{A}}(a, c)$, we have that $E^{\mathfrak{A}}(a, c)$. Since $E^{\mathfrak{A}}(a, c)$, we have that $E^{\mathfrak{A}}(a, c)$.

Suppose $E^{\mathfrak{A}}(a,b)$. Then there exists $c \in |\mathfrak{A}|$ such that a=c and b=c. Since $E^{\mathfrak{A}}(a,b)$, we have that $E^{\mathfrak{A}}(a,c)$ and $E^{\mathfrak{A}}(b,c)$. Since $E^{\mathfrak{A}}(a,c)$ and $E^{\mathfrak{A}}(b,c)$, we have that $E^{\mathfrak{A}}(c,c)$. Since $E^{\mathfrak{A}}(c,c)$, we have that a=c and b=c. Since a=c and b=c, we have that $a\equiv b$.