Q4

(a)

n	Optimal sequence	M(n, 0)
1	[+ -]	2
2	[+ o -]	3
3	[+ 0 0 -]	4
4	[+ +]	4
5	[++-0-]	5
6	[++0]	5
7	[++o-o-]	6
8	[++00]	6
9	[+++]	6
10	[+++0-]	7
11	[+++-0]	7
12	[+++0]	7
13	[+++o-o-]	8
14	[+++o-o]	8
15	[+++00]	8
16	[++++]	8
17	[++++0-]	9
18	[++++0]	9
19	[++++-0]	9
20	[++++0]	9
21	[++++oo-]	10

(b)

Base case $(n = s^2, s \in Z)$

Each item represent the moving distance during each time steps.

The number of items represent number of time steps, that is M.

$$1 + 2 + 3 + ... + s + (s-1) + (s-2) + ... + 1 + 0 = s^2$$
'+' * s
'-' * s

Let $s^2 = n$, so $s = \sqrt{n}$, and M(n, 0) = $2\sqrt{n} = 2\sqrt{n}$ if $s(s+1) < n <= (s+1)^2$, $s \in Z$:

we change from the base case formula and avoid breaking the continuity.

formula	n (s+1) ²
$1 + 2 + 3 + + (s+1) + s + (s-1) + (s-2) + + 1 + 0 = s^2$	
-1	(s+1) ² -1
-1 -1	(s+1) ² -2
-1 -1 -1	$(s+1)^2-3$
•••	•••
-1 -1 -1 -11	(s+1) ² -s
-1 * ¹ s	That is s(s+1) +1

The number of items is still 2(s+1), means M(n,0) = 2s+2 if $s^2 < n <= s(s+1)$, $s \in Z$:

formula	n
$1 + 2 + 3 + \dots + (s+1) + s + (s-1) + (s-2) + \dots + 1 + 0 = s^2$	$(s+1)^2$
/-(s+1)\	$(s+1)^2 - (s+1)$
-(s+1) -1	$(s+1)^2 - (s+2)$
-(s+1) -1 -1	$(s+1)^2 - (s+3)$
•••	•••
-(s+1) -1 -1 -11	$(s+1)^2 - (s+s)$

That is $s^2 + 1$

Remove this item!

The number of items is 2s+1, means M(n,0) = 2s+1

We conclude that:

$$\mathsf{M}(\mathsf{n},0) = \begin{bmatrix} 2\sqrt{n} \end{bmatrix} = \begin{cases} 2s+1, & \text{if } s^2 < n \le s(s+1) \\ 2s+2, & \text{if } s(s+1) < n \le (s+1)^2 \end{cases}$$

(c)

We assume that the object start from S' with a velocity of 0, and keep speeding up to S, when it arrived S, it has the speed of k, the location of S' should be $(1 + 2 + 3 + ... + k) = -\frac{1}{2}k(k+1)$ far away from S. Let n' = S' to G, starts with 0 speed and ends with 0 speed.

$$M(n', 0) = M(n, k) + k$$

We use the formula from part(b):

$$M(n', 0) = \left[2\sqrt{n'}\right]$$

We already know that n' = n + $\frac{1}{2}$ k(k+1)

So M(n, k) = M(n', 0) - k
=
$$\left[2\sqrt{n + \frac{1}{2}k(k+1)} \right]$$
 - k

(d)

If the distance between S and G is smaller than S to G'(the smallest distance for decelerating from volecity of k)= $\frac{1}{2}$ k(k-1):

The object will first arrived at G' and turn back to G.

Let S'S =
$$\frac{1}{2}$$
k(k+1); SG = n; SG' = $\frac{1}{2}$ k(k-1);
So GG' = SG' - SG = $\frac{1}{2}$ k(k-1) - n
M(SG') = k
M(GG', 0) = $\left[\frac{1}{2} \sqrt{\frac{1}{2}} k(k-1) - n \right]$

Because the object will first arrived at G' and turn back to G. The real time steps is M(SG', k) + M(GG', 0)

That is M(n, k) = k +
$$\left[2\sqrt{\frac{1}{2}k(k-1) - n} \right]$$

(e)

$$h(r, c, u, v, rG, cG) = max(M(r-r_G, u), M(c-c_G, v))$$