Session 8: SVD, linear algebra & graphs

Optimization and Computational Linear Algebra for Data Science

Contents

- 1. Singular Value Decomposition
- 2. Graphs
- 3. Graph Laplacian
- 4. Spectral clustering

Midterm next week

- Thu. Oct. 29, the questions have to be downloaded from Gradescope between 00:01 AM and 9:59 PM.
- **Duration:** 1 hour and 40 minutes to work on the problems + 20 minutes to scan and upload your work.
- Upload your work as a single PDF.
- In case the upload does not work for you, email me your work.

Singular Value Decomposition

Singular Value decomposition

Theorem

Let $A\in\mathbb{R}^{n\times m}$. Then there exists two orthogonal matrices $U\in\mathbb{R}^{n\times n}$ and $V\in\mathbb{R}^{m\times m}$ and a matrix $\Sigma\in\mathbb{R}^{n\times m}$ such that $\Sigma_{1,1}\geq \Sigma_{2,2}\geq \cdots \geq 0$ and $\Sigma_{i,j}=0$ for $i\neq j$, that verify

$$A = U\Sigma V^{\mathsf{T}}.$$

L	OV	N-	-ra	ar	ıK	a	p	pı	ro	X	ın	18	It	10	n	

3/12

Singular Value Decomposition

Graphs

Graphs 4/12

Graph Laplacian

Graph Laplacian 5/12

Graph Laplacian

Definition

The Laplacian matrix of ${\cal G}$ is defined as

$$L = D - A$$
.

Graph Laplacian

Definition

The Laplacian matrix of G is defined as

$$L = D - A$$
.

For all
$$x \in \mathbb{R}^n$$
,

$$x^{\mathsf{T}} L x = \sum_{i \sim j} (x_i - x_j)^2,$$

Properties of the Laplacian

Graph Laplacian

For all
$$x \in \mathbb{R}^n$$
, $x^\mathsf{T} L x = \sum_{i \sim j} (x_i - x_j)^2$.

Properties of the Laplacian

Graph Laplacian

For all
$$x \in \mathbb{R}^n$$
, $x^\mathsf{T} L x = \sum_{i \sim j} (x_i - x_j)^2$.

Properties of the Laplacian

For all
$$x \in \mathbb{R}^n$$
, $x^\mathsf{T} L x = \sum_{i \sim j} (x_i - x_j)^2$.

Graph Laplacian

Spectal clustering with the Laplacian

Algorithm

Input: Graph Laplacian L, number of clusters k

- 1. Compute the first k eigenvectors v_1, \ldots, v_k of the Laplacian matrix L.
- 2. Associate to each node i the vector $x_i = (v_2(i), \dots, v_k(i))$.
- 3. Cluster the points x_1, \ldots, x_n with (for instance) the k-means algorithm.
- 4. Deduce a clustering of the nodes of the graph.

The case of two groups

For k=2 groups:

- 1. Compute the second eigenvector v_2 of the Laplacian matrix L.
- 2. Associate to each node i the number $x_i = v_2(i)$.
- 3. Cluster the nodes in:

$$S = \{i \mid v_2(i) \ge \delta\}$$
 and $S^c = \{i \mid v_2(i) < \delta\},$

for some $\delta \in \mathbb{R}$.

Why does this work?

Spectal clustering with the Laplacian

Spe	ectr	al c	lust	erir	ng a	sa	«re	lax	atio	on»	

12/12

Spectal clustering with the Laplacian

Questions?

Questions?

