Kuliah 13

Text & Web Mining

Data Mining – Ilmu Komputer IPB

Data terstruktur

Sejauh ini kita berurusan dengan data terstruktur,

```
Attribute \rightarrow ValueOutlook \rightarrow SunnyAttribute \rightarrow ValueTemperature \rightarrow HotAttribute \rightarrow ValueWindy \rightarrow Yes...Humidity \rightarrow HighAttribute \rightarrow ValuePlay \rightarrow Yes
```

Umumnya data mining menggunakan data semacam ini

Tipe data yang kompleks

- Berkembangnya data kompleks
 - Data spasial: daat geografik, citra medis dan satelit
 - Data Multimedia: gambar, audio, dan video
 - Data Time-series : data perbankan & data saham
- Text data: kata yang mendeskripsikan objek World-Wide-Web: teks yang sangat tidak terstruktur dan data multimedia

Basisdata Teks

- Dalam prakteknya terdapat banyak basis data teks:
 - artikel berita
 - paper riset
 - buku
 - perpustakaan digital
 - e-mail
 - halaman web

 Berkembang dengan cepat baik dari segi jumlah maupun kepentingan (80%)

Text Mining

- Text mining merujuk pada data mining yang menggunakan dokumen teks sebagai data
- Hampir semua tugas Text Mining menggunakan metode Information Retrieval (IR) untuk praproses dokumen teks.
- Metode ini sedikit berbeda daripada metode praproses data yang digunakan dalam tabel relasional
- Web search juga berakar pada IR

Definisi Text Mining

 Discover useful and previously unknown "gems" of information in large text collections

Patterns

Trends

Associations

Definisi Text Mining

Text Mining adalah proses yang secara otomatis mengekstrak informasi komprehensif yang bermakna, berguna dan belum diketahui sebelumnya dari repositori dokumen tekstual

Text Mining

Data Mining (diaplikasinya ke data text)

+

basic linguistics

Definisi

- "yang tidak diketahui sebelumnya" ?
 - Definisi ketat
 - Informasi yang bahkan penulisnya tidak mengetahui
 - Contoh: menemukan metode baru untuk pertumbuhan rambut yang merupakan efek samping dari suatu prosedur
 - Definisi longgar
 - Menemukan kembali informasi yang telah ditulis pengarang dalam teksnya
 - Contoh: secara otomatis mengekstrak nama produk dari sebuah halaman web

Text Mining Tasks

· Diberikan:

- Sumber dokumen tekstual
- Kueri terbatas (berbasis teks) yang didefinisikan dengan baik

• Temukan:

- Kalimat dengan informasi relevan
- Ekstrak informasi relevan & abaikan informasi yang tidak relevan
- Hubungkan informasi & keluaran yang saling berhubungan dalam format yang sudah ditetapkan sebelumnya

Tasks yang terkait atau dapat diselesaikan dengan text mining

- Search dan retrieval
- Analisis semantic
- Clustering
- Kategorisasi
- Feature extraction
- Pembuatan Ontology
- Dynamic focusing

DM vs TM

	Data Mining	Text Mining
Objek yang diteliti	Data numerik dan kategorikal	Teks
Struktur objek	Basis data relasional	Free form texts
Tujuan	Memprediksi outcome dari situasi mendatang	Temu kembali informasi yang relevan, distill the meaning, menkategorikan dan penyampaian target
Metode	Machine learning: Symbolic Knowledge Acquisition Technology (SKAT), DT, NN, GA, MBR, MBA	Indexing, pemrosesan neural network khusus, linguistik, ontologies
Ukuran market saat ini	100,000 analysts pada perusahaan besar dan menengah	100,000,000 pekerja korporat dan pengguna individual
Kematangan	Implementasi yang luas sejak 1994	Implementasi yang luas mulai 2000

"Search" vs "Discover"

Search (goal-oriented)

Discover (opportunistic)

Structured Data

Unstructured Data (Text)

Data Retrieval

Information Retrieval Data Mining

Text Mining

Aplikasi Text Mining

- Pemasaran: Menemukan kelompok pembeli yang potensial berdasarkan profil teks pengguna
 - contoh, amazon
- Industri: Mengidentifikasi situs web kelompok pesaing
 - Produk pesaing dan harganya
- Pencarian kerja: mengidentifikasi parameter dalam pencarian pekerjaan
 - www.flipdog.com

Aplikasi Text Mining

- Search engines
- Enterprise portals
- Knowledge management systems
- e-Business systems
- Vertical applications:
 - Kategorisasi dan routing e-mail
 - Kategorisasi catatan call center
 - Sistem Customer-relationship management (CRM)

Text Mining Sample Text document **Documents Transformed** Representation Domain specific Learning models templates/models knowledge Learning Visualizations Working

Karakteristik teks: Outline

- Basis data tekstual berukuran besar
- Berdimensi tinggi
- Beberapa mode input
- Ketergantungan
- Ambiguitas
- Noisy data
- Teks yang tidak terstruktur dengan baik

Karakteristik teks

- Basis data tekstual ukuran besar
 - Pertimbangan efisiensi
 - Lebih dari 2,000,000,000 halaman web
 - Hampir semua publikasi juga tersedia alam bentuk elektronik
- Dimensi tinggi (Sparse input)
 - Pertimbangan setiap word/phrase sebagai sebuah dimensi
- Beberapa mode input
 - Sebagai contoh: Web mining: informasi mengenai pengguna dibangkitkan oleh semantics, mencari pola dan outside knowledge base.

Karakteristik teks

- Dependensi
 - Informasi yang relevan adalah hubungan conjunction yang kompleks dari word/phrase
 - Contoh: Kategorisasi dokumen. disambigu pronoun.
- Ambiguitas
 - Ambiguitas kata
 - Pronouns (he, she ...)
 - "buy", "purchase"
 - Ambiguitas semantik
 - The king saw the rabbit with his glasses. (8 makna)

Karakteristik teks

- Data yang mengandung noise
 - Contoh: kesalahan ejaan
- Teks yang tidak terstruktur dengan baik
 - Chat rooms
 - "r u available ?"
 - "Hey whazzzzz up"
 - Speech

Proses text mining

Proses text mining

- Praproses Text
 - Analisis teks Syntactic/Semantic
- Pembangkitan fitur
 - Bag of words
- Seleksi fitur
 - Simple counting
 - Statistics
- Text/Data Mining
 - Classification- Supervised learning
 - Clustering- Unsupervised learning
- Anlisis hasil

Analisis teks syntactic/semantic

- Part of Speech (pos) tagging
 - Tentukan pos yang sesuai untuk setiap word
 Contoh: John (noun) gave (verb) the (det) ball (noun)
 - ~98% accurate.
- Word sense disambiguation
 - Berbasis konteks atau berbasis proksimity
 - Sangat akurat
- Parsing
 - Membangkitkan parse tree (graf) untuk setiap kalimat
 - Setiap kalimat adalah graf yang berdiri sendiri

Pembangkitan fitur: Bag of words

- Dokumen teks direpresentasikan oleh word yang terdapat di dalamnya (dan kemunculannya)
 - Contoh., "Lord of the rings" → {"the", "Lord", "rings", "of"}
 - Sangat efisien
 - Membuat proses learning menjadi lebih sederhana dan mudah
 - Urutan kata tidak begitu penting untuk aplikasi tertentu.
- Stemming: mengidentifikasi kata dengan root-nya
 - contoh., flying, flew → fly
 - Mengurangi dimensionalitas
- Stop words: Kata-kata umum yang tidak membantu proses text mining
 - Contoh: "the", "a", "an", "you" ...

Pembangkitan fitur: D2K Example

Pembangkitan fitur: XML

- Search engine yang berorientasi pada keyword saat ini tidak dapat menangani kueri seperti ini
 - Find all books authored by "Scooby-Doo".
- XML: Extensible Markup Language
 - Dokumen XML memiliki struktur bersarang dimana setiap elemen berasosiasi dengan sebuah tag.
 - Tags menjelaskan semantik dari elemen.

```
<br/><book> <title> The making of a bad movie </title> <author> <name> Scooby-Doo </name> <affiliation> Cartoons </affiliation> </author> </book>
```

Seleksi fitur

- Mengurangi dimensi
 - Proses learning merupakan tugas yang sulit pada data dimensi yang tinggi
- Fitur tidak relevan
 - Tidak semua fitur membantu!
 - contoh, the existence of a noun in a news article is unlikely to help classify it as "politics" or "sport"

Seleksi fitur: D2K Example I

Seleksi fitur: D2K Example II

Text Mining: definisi klasifikasi

- Diberikan: koleksi dari record dengan label (training set)
 - Setiap record mengandung sekumpulan fitur (atribut), dan kelas true (label)
- Tentukan: model untuk kelas sebagai fungsi dari nilai-nilai fitur
- Tujuan: record yang belum ada sebelumnya diberi label seakurat mungkin
 - test set digunakan untuk menghitung akurasi model.
 Biasanya, Data yang diberikan dibagi ke dalam training set dan test set, training set digunakan untuk membangun model dan test set digunakan untuk validasi model

Text Mining: definisi Clustering

- Diberikan: sekumpulan dokumen dan similarity measure diantara dokumen
- Tentukan: clusters sedemikian sehingga:
 - Dokumen di dalam satu cluster mirip dengan dokumen lainnya.
 - Dokumen dalam cluster yang terpisah tidak mirip dengan dokumen lainnya

Tujuan:

Temukan kumpulan dokumeny yang tepat

Similarity Measures:

- Euclidean Distance jika atribut adalah kontinu
- Problem-specific Measure lainnya
 - contoh berapa banyak kata yang umum ada dalam dokumen-dokumen ini.

Contoh

GREAT Camera., Jun 3, 2004 Reviewer: **jprice174** from Atlanta, Ga.

I did a lot of research last year before I bought this camera... It kinda hurt to leave behind my beloved nikon 35mm SLR, but I was going to Italy, and I needed something smaller, and digital.

The pictures coming out of this camera are amazing. The 'auto' feature takes great pictures most of the time. And with digital, you're not wasting film if the picture doesn't come out. ...

Ringkasan:

Feature1: picture

Positive: 12

- The pictures coming out of this camera are amazing.
- Overall this is a good camera with a really good picture clarity.

...

Negative: 2

- The pictures come out hazy if your hands shake even for a moment during the entire process of taking a picture.
- Focusing on a display rack about 20 feet away in a brightly lit room during day time, pictures produced by this camera were blurry and in a shade of orange.

Feature2: battery life

. . .

Ekstraksi informasi

Posting from Newsgroup Telecommunications. Solaris Systems Administrator. 55-60K. Immediate need.

3P is a leading telecommunications firm in need of a energetic individual to fill the following position in the Atlanta office:

SOLARIS SYSTEM ADMINISTRATOR
Salary: 50-60K with full benefits
Location: Atlanta, Georgia no relocation
assistance provided

FILLED TEMPLATE

job title: SOLARIS SYSTEM ADMINISTRATOR

salary: 55-60K
city: Atlanta
state: Georgia

platform: SOLARIS

area: Telecommunications

Document

I am a Windows NT software engineer seeking a permanent position in a small quiet town 50 - 100 miles from New York City.

I have over nineteen years of experience in all aspects of development of application software, with recent focus on design and implementation of systems involving multithreading, client/server architecture, and anti-piracy. For the past five years, I have implemented Windows NT services in Visual C++ (in C and C++). I also have designed and implemented multithreaded applications in Java. Before working with Windows NT, I programmed in C under OpenVMS for 5 years.

Filled Template

title: Windows NT software engineer

location: New York City

language: Visual C++, C, C++, Java

platform: Windows NT, OpenVMS

area: multi-threading, client/server,

anti-piracy

years of experience: nineteen years

Klasifikasi: Contoh

categorical continuous

Ex#	Country	Marital Status	Income	Hooligan
1	England	Single	125K	Yes
2	England	Married		Yes
3	England	Single	70K	Yes
4	Italy	Married	40K	No
5	USA	Divorced	95K	No
6	England	Married	60K	Yes
7	England		20K	Yes
8	Italy	Single	85K	Yes
9	France	Married	75K	No
10	Denmark	Single	50K	No

	Country	Marital Status	Income	Hooligan	
	England	Single	75K	?	
	Turkey	Married	50K	?	
	England	Married	150K	?	
		Divorced	90K	?	
		Single	40K	?	Test
	Itlay	Married	80K	?	Set
\					
	ning et		Learn Classifi	_	Model

Klasifikasi teks: contoh

text class

Ех#		Hooligan
1	An English football fan	Yes
2	During a game in Italy	Yes
3	England has been beating France	Yes
4	Italian football fans were cheering	No
5	An average USA salesman earns 75K	No
6	The game in London was horrific	Yes
7	Manchester city is likely to win the championship	Yes
8	Rome is taking the lead in the football league	Yes

G Web Mining

Data mining - Ilmu Komputer IPB

Web Mining

WWW

Contoh: Ekstraksi data web

UIC

Ekstraksi item data (contoh bagian 1)

image1	EN7410 17-inch LCD Monitor Black/Dark charcoal		\$299.9 9		Add to Cart	(Delivery / Pick-Up)	Penny Shopping	Compare
image2	17-inch LCD Monitor		\$249.9 9		Add to Cart	(Delivery / Pick-Up)	Penny Shopping	Compare
image3	AL1714 17- inch LCD Monitor, Black		\$269.9 9		Add to Cart	(Delivery / Pick-Up)	Penny Shopping	Compare
image4	SyncMaste r 712n 17- inch LCD Monitor, Black	Was: \$369.9 9	\$299.9 9	Save \$70 After: \$70 mail- in- rebate(s)	Add to Cart	(Delivery / Pick-Up)	Penny Shopping	Compare

Apa itu Web Mining?

Mencari informasi menarik dan berguna dari konten dan penggunaan Web

- Web search : Google, Yahoo, MSN, Ask, ...
- Specialized search: contoh: http://www.google.com/shopping (comparison shopping), job ads (Flipdog)
- eCommerce :
 - Rekomentasi:contoh Netflix, Amazon
 - Memperbaiki tingkat konversi:

- produk terbaik berikutnya yang ditawarkan
- Iklan, contoh. Google Adsense
- Fraud detection: click fraud detection, ...
- Meningkatkan rancangan dan kinerja Web site

Web Mining

- Web mining teknik-teknik data mining untuk mencari dan mengekstrak secara otomatis informasi dari dokumen/layanan Web (Etzioni, 1996).
- Penelitian Web mining research integrasi dari beberapa komunitas penelitian (Kosala and Blockeel, Juli 2000) seperti:
 - Basis data (DB)
 - Information retrieval (IR)
 - Sub area machine learning (ML)
 - Natural language processing (NLP)

5/2/2019

Web Mining

- World Wide Web dapat memberikan lebih banyak tantangan dan kesempatan daripada area lainnya.
- Walaupun demikian, terdapat tantangan serius:
 - www berukuan besar
 - Kompleksitas halaman web lebih besar dari koleksi dokumen teks lainnya
 - Sangat dinamis
 - Keragaman yang luas dari penggunanya
 - Hanya sedikit porsi informasi yang benar-benar berguna

Seberapa besar ukuan Web?

Mengapa menambang Web?

- Web kaya akan informasi tekstual
 - Book/CD/Video stores (contoh, Amazon)
 - Informasi restoran (contoh, Zagat)
 - Harga mobil (contoh, Carpoint)
- Banyaknya data pada pola akses pengguna
 - Web logs mengandung urutan URL yang diakses oleh pengguna
- Menggali informasi yang "previously unknown"
 - People who ski also frequently break their leg.
 - Restaurants that serve sea food in California are likely to be outside San-Francisco

April 2019 Web Server Survey: 1,445,266,139 sites

Total number of websites (logarithmic scale)

http://news.netcraft.com/archives/category/web-server-survey/

Fitur unik pada Web

- Web adalah koleksi dokumen berukuran besar yang mengandung:
 - Informasi Hyper-link
 - Informasi akses dan penggunaan
- Web sangat dinamis
 - Halaman Web secara konstan dibangkitkan (dibuang)

Tantangan: Membangun algoritme Web mining baru untuk

- Eksploitasi hyper-links dan pola akses.
- Beradaptasi terhadap sumber dokumennya

Web Mining vs Data Mining

Struktur

- Web bukan merupakan relasi
- Informasi tekstual dan struktur linkage

Skala

- Data penggunaan berukuran besar dan berkembang secara cepat
- Data yang dibangkitkan per hari dapat dibandingkan dengan data warehouse konvensional terbesar

Kecepatan

- Seringkali perlu bereaksi untuk mengembangkan pola penggunaan secara real-time (contoh: merchandising)
- Manusia tidak terlibat dalam proses

Taksonomi Web Mining

Taksonomi Web Mining

halaman lainnya

Pendekatan-pendekatan Web Content Mining

- Pendekatan Information Retrieval
 - Membantu dan meningkatkan pencarian dan filtering informasi untuk pengguna biasanya berdasarkan pada profil pengguna yang disimpulkan atau diminta.
- Pendekatan basis data
 - Untuk memodelkan data pada Web dan mengintegrasikannya sedemikian sehingga kueri yang kompleks selain berbasis keywords dapat dilakukan.

5/2/2019

Web Content Mining

	IR View	DB View
View of Data	Unstructured Semi-structured	Semi-structured Web site as DB
Main Data	Text documents Hypertext documents	Hypertext documents
Representation	Bag of words, n-grams Terms, phrases Concepts or ontology Relational	Edge-labeled graph Relational
Methods	Machine Learning Statistics	ILP Association rules
Applications	Categorization Clustering Finding extraction rules Finding patterns in text User modeling	Finding frequent substructures Web site schema discovery

Isu dalam Web Content Mining

- Pengembangan alat cerdas untuk IR
 - Mencari kata kunci & frasa kunci
 - Menemukan aturan gramatikal & collocation
- Klasifikasi/kategorisasi hyperteks
 - Mengekstra frasa kunci dari dokumen html
- Ekstraksi model/aturan pembelajaran
 - Hierarchical clustering
 - Memprediksi keterhubungan kata
- Membangun web Query system (WebOQL, XMLQL)
- Mining multimedia data

5/2/2019

Web Structure Mining

View of Data	Links structure
Main Data	Links structure
Representation	Graph
Methods	Proprietary algorithms
Applications	Categorization
	Clustering

Web Structure Mining

- Untuk menemukan struktur link dari hyperlinks pada level antardokumen untuk membangun ringkasan struktur tentang situs web
 - Arah 1: berbasis hyperlinks, mengkategorikan halaman Web & informasi yang dibangun
 - Arah 2: menemukan struktur dari dokumen web itu sendiri
 - Arah 3: menemukan kealamiahan hierarki/jaringan hyperlinks pada situs web tertentu

Web Structure Mining

- Menemukan halaman web yang authorative
 - Menemukembalikan halaman yang tidak hanya relevan, tapi juga berkualitas tinggi/authorative terhadap topik
- Hyperlinks dapat merujuk authority
 - Web mengandung juga hyperlinks dari satu halaman ke halaman lain
 - Hyperlinks mengandung anotasi manusia berjumlah besar
 - Hyperlink yang merujuk ke halaman lain, dapat dipertimbangkan sebagai kesukaan pengarang terhadap halaman lain

5/2/2019

Web Usage Mining

View of Data	Interactivity
Main Data	Server logs Browser logs
Representation	Relational table Graph
Methods	Machine learning Statistics Association rules
Applications	Site construction, adaptation & management Marketing User modeling

Web Usage Mining

- Web usage mining juga disebut Web log mining
 - Teknik mining untuk menemukan pola penggunaan yang menarik dari data sekunder yang diturunkan dari interaksi pengguna ketika menjelajahi web

Web Usage Mining

- Aplikasi
 - Menargetkan kostumer yang potensial untuk produk elektronik
 - Memperluas kualitas dan pengantaran Internet Information Services kepada pengguna akhir.
 - Memperbaiki performa sistem web server
 - Mengidentifikasi lokasi iklan yang potensial
 - Memfasilitasi personalisasi/situs adaptif
 - Memperbaki desain situs
 - Deteksi fraud/intrusion
 - Memprediksi aksi pengguna

Potential Data Sources

Log Data – Analisis Sederhana

- Analisis statistik dari pengguna
 - Panjang path
 - Viewing time
 - Banyaknya page views
- Analisis statistik dari site
 - Halaman yang paling seting dilihat
 - Invalid URL yang paling umum terjadi

Web Log – Data Mining Applications

- Association rules
 - Find pages that are often viewed together
- Clustering
 - Cluster users based on browsing patterns
 - Cluster pages based on content
- Classification
 - Relate user attributes to patterns

Format umum data Log

- Remotehost: browser hostname or IP #
- Remote log name of user (almost always "-" meaning "unknown")
- Authuser: authenticated username
- Date: Date and time of the request
- "request": exact request lines from client
- Status: The HTTP status code returned
- Bytes: The content-length of response

SERVER LOGS

What's in a Typical Server Log?

<ip_addr><base_url> - <date><method><file><protocol><code><bytes><referrer><user_agent>

```
203.30.5.145 www.acr-news.org - [01/Jun/1999:03:09:21 -0600] "GRT /Calls/CWOM.html
HTTP/1.0 200 3942 http://www.lycos.com/cq1-
bin/pursuit?query:advertising+psychologyanaxhits=20acat=dir" "Hozilla/4.5 [en] (Win98; I) *
203.30.5.145 www.acr-news.org - [01/Jun/1999:03:09:23 -0600] "GRT
/Calls/Images/earthani.gif HTTP/1.0° 200 10689 "http://www.acr-news.org/Calls/OWOM.html"
"Hozilla/4.5 (en) (Win98; I)"
203.30.5.145 www.acr-news.org - [01/Jun/1999:03:09:24 -0600] "GRT /Calls/Images/line.gif
HTTP/1.0° 200 190 "http://www.acr-news.org/Calls/OWCH.html" "Mozilla/4.5 (en] (Win98; I)"
203.30.5.145 www.acr-news.org - [01/Jun/1999:03:09:25 -0600] "GRT /Calls/Images/red.gif
HTTP/1.0° 200 104 "http://www.acr-news.org/Calls/OWOM.html" "Mozilla/4.5 (en] (Win98; I)"
203.252.234.33 www.acr-news.org - [01/Jun/1999:03:32:31 -0600] "GET / HTTP/1.0" 200 4980 ""
"Hozilla/4.06 [en] (Win95; I)"
203.252.234.33 www.acr-news.org - [01/Jun/1999:03:32:35 -0600] "GET /Inages/line.gif
HTTP/1.0 200 190 http://www.acr-news.org/" "Mozilla/4.06 [en] (Win95; I)"
203.252.234.33 www.acr-news.org - [01/Jun/1999:03:32:35 -0600] "GET /Images/red.gif
HTTP/1.0 200 104 http://www.acr-news.org/ "Mozilla/4.06 [en] (Win95; I) "
203.252.234.33 www.acr-news.org - [01/Jun/1999:03:32:35 -0600] "GRT /Inages/earthan1.gif
HTTP/1.0 200 10689 "http://www.acr-news.org/" "Hozilla/4.06 (en] (Win95; I) "
203.252.234.33 www.acr-news.org - [01/Jun/1999:03:33:11 -0600] "CRT /CP.html HTTP/1.0" 200
3218 "http://www.acr-news.org/" "Mozilla/4.06 [en] (Win95; I)"
```

Fields

- Client IP: 128.101.228.20
- Authenticated User ID: -
- Time/Date: [10/Nov/1999:10:16:39 -0600]
- Request: "GET / HTTP/1.0"
- Status: 200
- Bytes: -
- Referrer: "-"
- Agent: "Mozilla/4.61 [en] (WinNT; I)"

5/2/2019

Ringkasan tipe data kompleks

- Area yang sedang berkembang dalam menambang tipe data yang kompleks:
 - Text mining dapat dilakukan cukup efektif, khususnya jika dokumen adalah semi terstruktur
 - Web mining lebih sulit dilakukan karena kurangnya struktur demikian (semi terstruktur)
 - Data mencakup dokumen teks, dokumen hypertext, link structure, dan logs
 - Mengandalkan unsupervised learning, kadang-kadang diikuti dengan supervised learning seperti klasifikasi