EXERCICES TIRÉS DE L'EXAMEN FINAL H2013

Problème no. 1 (25 points)

Considérons le régulateur de courant montré dans la figure suivante.

La diode D_1 possède les caractéristiques suivantes: tension en conduction $V_F = 0.7 \text{ V}$.

La diode Zener 1N4728A possède les caractéristiques suivantes: V_Z = 3.3 V, r_Z = 10 Ω , courant minimal I_{ZK} = 1 mA. Le transistor TIP41C possède les caractéristiques suivantes: V_{BE} = 0.7 V, gain en courant β = 80, tension V_{CE} de saturation V_{CE} (sat) = 1.0 V, résistance de sortie r_o = $\Delta V_{CE}/\Delta I_C$ = 1.5 k Ω .

- a) Calculer le courant I_o que le régulateur fournit à une charge R_L = 5 Ω. (8 points)
 Déterminer la plage de valeur de la charge (R_{Lmin}, R_{Lmax}) qu'on peut utiliser avec cette source de courant. (5 points)
- b) Déterminer la résistance interne R_o de la source de courant. (6 points)
- c) Dans le cas où $R_L = 2 \Omega$, calculer la puissance dissipée dans le transistor TIP41C. (6 points)

Problème no. 2 (25 points)

Considérons l'amplificateur différentiel à transistors bipolaires montré dans la figure suivante.

Les transistors sont identiques et possèdent les caractéristiques suivantes: V_{BE} = 0.7 V, gain en courant β = 100, résistance de sortie r_0 = ∞ .

- a) Calculer (sans négliger les courants de base) la valeur DC des courants et des tensions du circuit: I_{C4} , I_{C3} , I_{C2} , I_{C1} , V_{B1} , V_{B2} , V_{E2} , V_{C2} , V_{C1} . (8 points)
- b) À partir des résultats de la question a, **calculer** la transconductance g_m des transistors Q₁ et Q₂. (3 points) **Tracer** le modèle petit signal de l'amplificateur. (4 points)
- c) À l'aide du modèle petit signal, calculer les quantités suivantes:
 - Gain différentiel en tension $A_d = \frac{V_o}{V_{in}}$ (4 points)
 - Résistance d'entrée R_{in} (3 points)
 - Résistance de sortie R_o (3 points)

Problème no. 3 (25 points)

Considérons l'amplificateur à deux étages montré dans la figure suivante.

Le MOSFET Q_1 possède les caractéristiques suivantes: tension de seuil de conduction $V_t = 1$ V, paramètre de transconductance $k_n = 4$ mA/V², résistance de sortie $r_0 = \infty$.

Le transistor bipolaire Q_2 possède les caractéristiques suivantes: tension base-émetteur V_{BE} = 0.7 V, gain en courant β = 100, résistance de sortie r_0 = ∞ .

- a) Calculer la valeur DC des courants et des tensions du circuit: I_{D1}, I_{C2}, et V_{G1}, V_{S1}, V_{D1}, V_{E2}. (7 points)
- b) À partir des résultats de la question a, **calculer** la transconductance g_{m1} du MOSFET Q_1 et la transconductance g_{m2} du transistor bipolaire Q_2 . (4 points)

Tracer le modèle petit signal de l'amplificateur. (4 points)

- c) À l'aide du modèle petit signal, **calculer** les quantités suivantes:
 - Gain en tension sans charge $A_{vo} = \frac{v_{oNL}}{v_{in}}$ (4 points)
 - Résistance d'entrée R_{in} (3 points)
 - Résistance de sortie R_o (3 points)

Problème no. 4 (25 points)

Considérons l'amplificateur de puissance classe B à transistors bipolaires montré dans la figure suivante.

Dans ce problème, les caractéristiques électriques des transistors TIP41C et TIP42C sont: V_{BE} = 0.7 V, gain en courant β = 60, tension V_{CE} de saturation V_{CE} (sat) = 1.5 V.

L'amplificateur différentiel A_1 possède les caractéristiques suivantes: gain en tension sans charge A_{vo1} = 1000, résistance d'entrée R_{in1} = 10 k Ω , résistance de sortie R_0 = 100 Ω .

a) On élimine la rétroaction AC en utilisant une résistance $R_1 = 0 \Omega$. On obtient ainsi un *amplificateur sans rétroaction* (fonctionnement en boucle ouverte)

Déterminer les caractéristiques de l'amplificateur sans rétroaction: gain en tension sans charge A_{vo} , résistance d'entrée R_{in} , résistance de sortie R_{o} . (6 points)

b) On remet la valeur de la résistance R_1 à 1.8 k Ω On obtient ainsi un *amplificateur avec rétroaction* (fonctionnement en boucle fermée)

Calculer le facteur de rétroaction B. (2 points)

Déterminer les caractéristiques de l'amplificateur avec rétroaction: gain en tension sans charge A_{vof} , résistance d'entrée R_{inf} , résistance de sortie R_{of} . (6 points)

c) On désire délivrer à la charge $R_L = 4 \Omega$ une puissance de $P_o = 20 \text{ W}$.

Calculer l'amplitude V_m de la tension de sortie $v_o(t)$ (3 points)

Déduire l'amplitude I_m du courant de sortie i_o(t) (2 points)

Calculer la puissance P_{DC} fournie par les deux sources d'alimentation +15 V et -15 V (4 points)

Déduire la puissance P_D dissipée dans les deux transistors Q_1 et Q_2 . (2 points)