HW 13 Engr 1181 Problem 1 taken from MATLAB by Gilat Chapt 6 Problem 13 4th edition.

Problem 1 Part 1) 2 pts. Write a program using a loop that determines the expansion expression below that is used to estimate π .

$$\sqrt{12} \sum_{n=0}^{m} (-\frac{1/3)^n}{(2n+1)}$$

You will need to use format long. See page 13. Use from n=0 to m=20. (\sum means sum all the individual values.)

Part 2) 1 pt. Compare your result with the value of pi by calculating the % error.

x	у
-1	-3.5
2	45.1
5	392.5
8	1459.9
11	3668.5
14	7439.5
17	13194.1

Problem 3) You have the following data for Time and Temperature for a very cold Cryogenic system.

	Temp (deg
Time (s)	K)
1.21	2.99
1.8	3.42
3.01	4.06
3.67	4.33
4.69	4.70
5.49	4.96
7.12	5.41
8.01	5.62

- a) Graph Temperature vs. Time. Use xlabel, ylabel and title.
- b) Find the equation for the relationship between Temperature and Time. You expect the data to fit an equation of the form $T = At^{(1/3)}$ where T = Temperature in degree Kelvin and t = Time in seconds.

Hint: Take the cube root of all the time values then fit Temperature as a straight line function with $t^{(1/3)}$. You can use the command polyfit or other line fitting method in Matlab. The slope will be A.