Package 'priorinference'

February 5, 2021			
Type Package			
Title Prior Inference Package			
Version 0.1.0			
Author Martin V. Butz, Hania Gaber Elkersh, Asya Achimova, Gregory Scontras			
Maintainer Hania Gaber Elkersh <hania.elkersh@student.uni-tuebingen.de></hania.elkersh@student.uni-tuebingen.de>			
Description This package contains all the functions of the common code of the prior inference and terance choice models.This package was designed to analyze and model data for Experiments 1 and 2 in the paper Learning about others: Modeling social inference through ambiguity resolution (Achimova et al. 2020).			
<pre>URL http://www.socsci.uci.edu/~gscontra/experiments/prior_inference/ 4-pilot-training/prior-inference.html</pre>			
<pre>http://www.socsci.uci.edu/~gscontra/experiments/prior_inference/ 3-pilot-utterance-choice/prior-inference.html</pre>			
License MIT License			
Encoding UTF-8			
LazyData true			
Suggests testthat, knitr, rmarkdown RoxygenNote 7.1.1			
Imports			
VignetteBuilder knitr			
R topics documented:			
allFeatureTypesNew allObjects allObjectsToUtterancesMappings allUtterances allUtterancesNew bestInfGainUtterance determineSpeakerPostListPrefs determineSpeakerPostListPrefsSimpleRSA 1			

2 R topics documented:

determineSpeakerPostListPrefsSimpleRSAWithPriorPref	
determineUttToObjectProbs	. 13
determine Valid Utterances	. 14
getBestInfGainUttPreferences	15
getConstellationCode	
getObjectPreferencePriors	18
getPreferencesPrior	20
getSimpleBestInfGainUttPreferences	21
getSimpleBestInfGainUttPreferencesFTF	. 22
getSimpleBestInfGainUttPreferencesIterative	24
getSpeakerUtterancePriors	
getSpeakerUtteranceUniformPrior	. 27
getUtteranceChoiceConstellationCode	. 28
KLdivergence	29
literalListener	29
mapObjectToUtterances	
pragmaticListener	
pragmaticSpeaker	
RSAModelKLDiv3paramsAllValuesConsidered	34
RSAModelKLDiv3paramsAllValuesConsidered_simpleRSA	
RSAModelKLDiv3paramsOnlyAvailableFeatureValuesConsidered	
RSAModelKLDiv3paramsOnlyAvailableFeatureValuesConsidered_simpleRSA	
RSAModelKLDiv3params_simpleRSA4TrialsIndependent	
RSAModelKLDiv3params_simpleRSA4TrialsIterative	
RSAModelLL1_1	
RSAModelLL1_1simpleRSA	
RSAModelLL1_1simpleRSA4TrialsIndependent	
RSAModelLL1_1simpleRSA4TrialsIndependent_notObey.1	
RSAModelLL1_1simpleRSA4TrialsIndependent_notObey.2	46
RSAModelLL1_1simpleRSA4TrialsIterative	
RSAModelLL1_1simpleRSA4TrialsIterative_notObey.1	
RSAModelLL1_1simpleRSA4TrialsIterative_notObey.2	
RSAModelLL1_1simpleRSA_notObey.1	
RSAModelLL1_1simpleRSA_notObey.2	
RSAModelLL1_1_notObey.1	
RSAModelLL1_2	
RSAModelLL1 2simpleRSA	
RSAModelLL1_2simpleRSA4TrialsIndependent	
RSAModelLL1_2simpleRSA4TrialsIndependent_pref.2	
RSAModelLL1_2simpleRSA4TrialsIterative	
RSAModelLL1_2simpleRSA4TrialsIterative_pref.2	
RSAModelLL1_2simpleRSA_pref2	
RSAModelLL1 3	
RSAModelLL2 n1	
RSAModelLL2 n2	
RSAModelLL2 n3	
RSAModelLL2_simpleRSA	
RSAModelLL2_simpleRSA4TrialsIndependent	
RSAModelLL2_simpleRSA4TrialsIterative	
RSAModelLL3	
RSAModelUttKLDivParamA	
RSAModelUttKLDivParamAB	
	, 0

RSAModelUttKLDivParamABC
RSAModelUttKLDivParamABCD4
RSAModelUttKLDivParamABD4
RSAModelUttKLDivParamAC
RSAModelUttKLDivParamACD4
RSAModelUttKLDivParamAD4
RSAModelUttKLDivParamAD4B.2
RSAModelUttKLDivParamB
RSAModelUttKLDivParamBC
RSAModelUttKLDivParamBCD4
RSAModelUttKLDivParamBD4
RSAModelUttKLDivParamBD4A.2
RSAModelUttKLDivParamC
RSAModelUttKLDivParamCD4
RSAModelUttKLDivParamD4
RSAModelUttKLDivParamD4A.2
RSAModelUttKLDivParamD4AB.2
RSAModelUttKLDivParamD4B.2
RSAModelUttKLDiv_3params
RSAModelUttKLDiv_4params
simpleBestInfGainUtterance
simpleBestInfGainUtteranceWithPrefPriorAll
simpleListener
simplePragmaticSpeaker
simplePragmaticSpeakerWithPrefPriorAll
SimpleRSAModelUttKLDivFTFParamA
SimpleRSAModelUttKLDivFTFParamA.2
SimpleRSAModelUttKLDivFTFParamAB
SimpleRSAModelUttKLDivFTFParamABK
SimpleRSAModelUttKLDivFTFParamAK
SimpleRSAModelUttKLDivFTFParamAK.2
SimpleRSAModelUttKLDivFTFParamB
SimpleRSAModelUttKLDivFTFParamB.2
SimpleRSAModelUttKLDivFTFParamBK
SimpleRSAModelUttKLDivFTFParamBK.2
SimpleRSAModelUttKLDivFTFParamK
SimpleRSAModelUttKLDivFTFParamK.2.0
SimpleRSAModelUttKLDivFTFParamK.2.2
SimpleRSAModelUttKLDivParamA
SimpleRSAModelUttKLDivParamA.2
•
SimpleRSAModelUttKLDivParamA.2_independent
SimpleRSAModelUttKLDivParamA.2_iterative
SimpleRSAModelUttKLDivParamAB
SimpleRSAModelUttKLDivParamABK
SimpleRSAModelUttKLDivParamABK_independent
SimpleRSAModelUttKLDivParamABK_iterative
SimpleRSAModelUttKLDivParamAB_independent
SimpleRSAModelUttKLDivParamAB_iterative
SimpleRSAModelUttKLDivParamAK
SimpleRSAModelUttKLDivParamAK.2
SimpleRSAModelUttKLDivParamAK.2_independent
Authorek A A Ivrogen Tilk i Linv Param A K. / Tierafive 179

4 allFeatureTypesNew

SimpleRSAModelUttKLDivPar	ramAK_independent
SimpleRSAModelUttKLDivPar	ramAK_iterative
SimpleRSAModelUttKLDivPar	ramA_independent
SimpleRSAModelUttKLDivPar	ramA_iterative
SimpleRSAModelUttKLDivPar	ramB
SimpleRSAModelUttKLDivPar	ramB.2
SimpleRSAModelUttKLDivPar	ramB.2_independent
SimpleRSAModelUttKLDivPar	ramB.2_iterative
SimpleRSAModelUttKLDivPar	ramBK
SimpleRSAModelUttKLDivPar	ramBK.2
SimpleRSAModelUttKLDivPar	ramBK.2_independent
SimpleRSAModelUttKLDivPar	ramBK.2_iterative
SimpleRSAModelUttKLDivPar	ramBK_independent
SimpleRSAModelUttKLDivPar	ramBK_iterative
SimpleRSAModelUttKLDivPar	amB_independent
SimpleRSAModelUttKLDivPar	ramB_iterative
SimpleRSAModelUttKLDivPar	amK
SimpleRSAModelUttKLDivPar	ramK.2.0
SimpleRSAModelUttKLDivPar	amK.2.0_independent
SimpleRSAModelUttKLDivPar	amK.2.0_iterative
SimpleRSAModelUttKLDivPar	ramK.2.2
	amK.2.2_independent
SimpleRSAModelUttKLDivPar	amK.2.2_iterative
	amK_independent
*	ramK_iterative
-	params
	paramsFTF
	params_independent
	params_iterative
UniformModelKLDiv	
-	
X4_rawData	
Index	166

allFeatureTypesNew All feature types

Description

A vector of all object features: ('shape','pattern','color')

Usage

allFeatureTypesNew

Format

An object of class character of length 3.

allObjects 5

Description

The matrix contains 3³ types of objects.

It essentially specifies the 3 feature expressions for each object thus, the matrix maps objects to matching utterances. The matrix contains strings of all possible feature values of the objects.

The index mapping of the strings are contained in the matrix allobjectsToUtterancesMappings.

Usage

allObjects

Format

An object of class matrix (inherits from array) with 27 rows and 3 columns.

Examples

```
## Not run:
output:
    shape
           pattern color
[1,] cloud
            solid
                    blue
            solid
                    blue
[2,] circle
           solid
[3,] square
                   blue
[4,] cloud striped blue
[5,] circle striped blue
[6,] square striped blue
[7,] cloud dotted
                   blue
[8,] circle dotted blue
[9,] square dotted blue
[10,] cloud
            solid
                      red
[11,] circle solid
                      red
[12,] square solid
                      red
[13,] cloud striped
                      red
[14,] circle striped
                      red
[15,] square striped
                      red
[16,] cloud dotted
                      red
[17,] circle dotted
                      red
[18,] square dotted
                      red
[19,] cloud
             solid
                      green
[20,] circle
             solid
                      green
[21,] square solid
                      green
[22,] cloud striped
                      green
[23,] circle striped
                      green
[24,] square striped
                      green
[25,] cloud dotted
                      green
[26,] circle dotted
                      green
[27,] square dotted
                      green
```

End(Not run)

```
all Objects To Utterances Mappings All\ objects\ to\ utterances\ mappings
```

Description

The matrix contains 3³ types of objects.

It essentially specifies the 3 feature expressions for each object thus, the matrix maps objects to matching utterances. The matrix contains the index mapping of all possible feature values:

```
cloud = 1, circle = 2, square = 3
solid = 4, striped = 5, dotted = 6
blue = 7, red = 8, green = 9
```

The strings of the index mapping are contained in the matrix allobjects.

Usage

all Objects To Utterances Mappings

Format

An object of class matrix (inherits from array) with 27 rows and 3 columns.

Examples

Not run:

```
output:
     [,1] [,2] [,3]
[1,]
[2,]
      2
           4
                7
[3,]
      3
           4
               7
               7
[4,]
      1
           5
       2
               7
[5,]
           5
[6,]
                7
       3
           5
[7,]
       1
           6
                7
[8,]
       2
           6
                7
[9,]
       3
           6
                7
[10,]
        1
            4
                 8
[11,]
        2
            4
                 8
[12,]
        3
            4
                 8
[13,]
        1
            5
                 8
        2
            5
[14,]
                 8
[15,]
            5
        3
                 8
            6
[16,]
        1
                 8
[17,]
            6
        2
                 8
[18,]
            6
                 8
        3
[19,]
            4
        1
[20,]
        2
            4
[21,]
        3
[22,]
        1
[23,]
            5
                 9
[24,]
```

allUtterances 7

```
[25,] 1 6 9 [26,] 2 6 9 [27,] 3 6 9 ## End(Not run)
```

allUtterances

All utterances

Description

```
A vector that contains all feature values:
('cloud', 'circle', 'square', 'solid', 'striped', 'dotted', 'blue', 'red', 'green')
```

Usage

allUtterances

Format

An object of class character of length 9.

Details

The difference between this matrix and the allUtterancesNew is that the 'dotted' pattern is called *polka-dotted*.

allUtterancesNew

All utterances (new)

Description

```
A vector that contains all feature values: ('cloud', 'circle', 'square', 'solid', 'striped', 'polka-dotted', 'blue', 'red', 'green')
```

Usage

allUtterancesNew

Format

An object of class character of length 9.

Details

The difference between this vector and the allUtterances is that the 'polka-dotted' pattern is called *dotted*.

8 bestInfGainUtterance

bestInfGainUtterance Best information gain utterances

Description

Full-RSA

The ultimate function that determines the utterance preferences of a rather "informed", "pragmatic" speaker considering all possible scenarios. That is, hypothetically, all utterances are considered. Additionally, the resulting inferred listener's object preferences are computed assuming the listener picks a certain object and has certain object preferences.

U(utt | listener's object preference priors) is computed. The utility is determined as the information gain between prior and posterior of the determined listener's object preferences.

Usage

```
bestInfGainUtterance(
   preferencesPrior,
   validUtterances,
   currentObjects,
   uttToObjProbs,
   objectPreferenceSoftPriors,
   alpha = 1,
   klValueFactor = 1
)
```

Arguments

preferencesPrior

A vector of the length the validUtterances vector + 1.

It constructed as such:

preferencesPrior <-rep(1/(length(validUtterances)+1),length(validUtterances)+1).</pre>

The vector contains the probability mass over all feature values present in the scenario plus a "no preference" case.

Gives a prior preferences distribution over the feature values in the scene.

validUtterances

A vector of utterances that correspond to all feature values present in the current objects in the scene.

For example, it only makes sense to utter "red" in a scene if there are red objects present.

currentObjects

A vector of three values in $\{1, \ldots, 27\}$ specifying the target and the other two objects in the scene.

The target is the first object in the vector (index = 1).

uttToObjProbs

A matrix.

The rows map each possible utterance that corresponds to each present feature value of the current objects. The number of rows of the matrix match the length of the validUtterances vector.

The columns represent the three objects in the scene.

This reflects the obedience-parameter and which objects match the respective utterance. The matrix shows the probability that a certain object is chosen following a certain utterance, that is valid in the scene.

bestInfGainUtterance 9

objectPreferenceSoftPriors

A list of preference priors for all valid utterances based on the object in the

The list has as many rows as the length of the validUtterances vector + 1.

Each row in the list contains a vector of length 3, as there are three objects in the

The extra row is for the case of no preferences whatsoever, i.e. uniform prior over all three objects in the scene.

alpha A parameter between 0 and 1. (Here it's set to = 1)

Exponential scaling of the speaker choosing the utterance that maximizes the

chance of the listener getting the target object right.

klValueFactor A parameter that can be negative, 0 or positive (Here it is set to = 1):

zero Don't care about learning about the feature preferences of the listener **positive** Care about learning about the feature preferences of the listener

negative Trying to pick non-ambiguous utterances

Value

A vector containing the normalized probability over utterances given the listener's object preference priors.

The utterance with the highest probability is the one that maximizes the information gain for the speaker.

The vector has the same length as the validUtterances vector.

```
currentObjects <- c(1,2,3)
allObjects[currentObjects,]
output:
      shape
              pattern color
shape pattern color
[1,] "cloud" "solid" "blue"
[2,] "circle" "solid" "blue"
[3,] "square" "solid" "blue"
bestInfGainUtterance(preferencesPrior, validUtterances,
currentObjects,uttToObjProbs, objectPreferenceSoftPriors,
alpha=1, klValueFactor=1)
output:
[1] 0.0 0.0 0.0 0.5
Since the all the objects present in the scene are solid and blue,
uttering solid or blue, would be optimal to learn something
about the shape preferences of the listener.
This means the speaker would have the best information gain.
```

determineSpeakerPostListPrefs

Determine speaker's inference of the posterior listener preferences

Description

Full-RSA

This function calculates the speaker's posterior guess of the feature value preferences of the listener. That means how the speaker infers the preferences of the listener based on the object choice.

Usage

```
determineSpeakerPostListPrefs(
  currentObjects,
  featureUtt,
  softPrefValue,
  notObeyInst,
  alpha
)
```

Arguments

currentObjects $\,$ A vector of three values in {1, ..., 27} specifying the target and the other two

objects in the scene.

The target is the first object in the vector (index = 1).

featureUtt One of the values $\{1,2,3\}$ specifying which feature is uttered (i.e. shape = 1 /

texture = 2 / or color = 3).

softPrefValue A parameter value between [0,infinity) (The larger the higher the tendency

towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick green, blue or red objects.

notObeyInst Determines the extent to which the instruction of the speaker is obeyed by the

listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick green, blue or red objects even if the utterance

is "red".

alpha A parameter value between 0 and 1.

Exponential scaling of the speaker choosing the utterance that maximizes the

chance of the listener getting the target object right.

Value

A vector of length 9. It contains the speaker's inference of the feature value preferences of the listener.

 ${\tt determineSpeakerPostListPrefsSimpleRSA}$

Determine speaker's inference of the posterior listener preferences

Description

Simple RSA

This function calculates the speaker's posterior guess of the feature value preferences of the listener. That means how the speaker infers the preferences of the listener based on the object choice.

Usage

```
determineSpeakerPostListPrefsSimpleRSA(
  currentObjects,
  featureUtt,
  softPrefValue,
  notObeyInst
)
```

Arguments

currentObjects A vector of three values in $\{1, \ldots, 27\}$ specifying the target and the other two

objects in the scene.

The target is the first object in the vector (index = 1).

featureUtt One of the values {1,2,3} specifying which feature is uttered (i.e. shape = 1/

texture = 2 / or color = 3).

softPrefValue A parameter value between [0,infinity) (The larger the higher the tendency

towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

notObeyInst Determines the extent to which the instruction of the speaker is obeyed by the

listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

Value

A vector of length 9. It contains the speaker's inference of the feature value preferences of the listener.

determine Speaker PostList Prefs Simple RSAW ith Prior Prior Prefs Simple RSAW ith P

Determine speaker's inference of the posterior listener preferences (iterative setting)

Description

Simple RSA

This function calculates the speaker's posterior guess of the feature value preferences of the listener in the iterative setting. That means how the speaker infers the preferences of the listener based on the object choice.

Usage

```
determineSpeakerPostListPrefsSimpleRSAWithPriorPref(
  currentObjects,
  featureUtt,
  softPrefValue,
  notObeyInst,
  priorPrefAll
)
```

Arguments

currentObjects A vector of three values in $\{1, \ldots, 27\}$ specifying the target and the other two

objects in the scene.

The target is the first object in the vector (index = 1).

featureUtt One of the values {1,2,3} specifying which feature is uttered (i.e. shape = 1/

texture = 2 / or color = 3).

softPrefValue A parameter value between [0,infinity) (The larger the higher the tendency

towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

notObeyInst Determines the extent to which the instruction of the speaker is obeyed by the

listener.

(0 = full obedience, infinity = full instruction ignorance).

Example

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick green, blue or red objects even if the utterance

is "red".

priorPrefAll A vector of length 9.

Probability mass over all feature values.

Gives a prior preferences distribution over all (nine) feature values.

Details

This is the iterative version of the function determineSpeakerPostListPrefsSimpleRSA

Value

A vector of length 9. It contains the speaker's inference of the feature value preferences of the listener.

Examples

```
determineSpeakerPostListPrefsSimpleRSAWithPriorPref(currentObjects,
featureUtt, softPrefValue, notObeyInst, priorPrefAll)
output:
```

determineUttToObjectProbs

Determine utterances to object probabilities

Description

This function determines maps the valid utterances to the corresponding objects in the scene. It then determines the probability of choosing an object based on the valid utterances in the scene.

Usage

```
determineUttToObjectProbs(
  validUtterances,
  currentObjects,
 mapObjToUtt,
 notObeyInst
)
```

Arguments

validUtterances

A vector of utterances that correspond to all feature values present in the current objects in the scene.

For example, it only makes sense to utter "red" in a scene if there are red objects present.

currentObjects A vector of three values in range {1,...,27} specifying the target and the other

two objects in the scene.

The target is the first object in the vector (index = 1).

mapObjToUtt

A 3x3 matrix. Values in the matrix are in range $\{1-9\}$.

rows: The current objects in the scene

columns: Features of the objects

notObeyInst

Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick green, blue or red objects even if the utterance is "red".

14 determine Valid Utterances

Details

This function is only used in X9

Value

A matrix. The rows map each possible utterance that corresponds to each present feature value of the current objects. The columns represent the three objects in the scene.

This reflects the obedience-parameter and which objects match the respective utterance. The matrix shows the probability that a certain object is chosen following a certain utterance, that is valid in the scene. The number of rows of the matrix match the length of the validUtterances vector.

Examples

```
\tt determineUttToObjectProbs(validUtterances, currentObjects, mappedObjToUtt, notObeyInst)
    [,1] [,2] [,3]
[1,] 1.00 0.00 0.00
[2,] 0.00 1.00 0.00
[3,] 0.00 0.00 1.00
[4,] 0.33 0.33 0.33
[5,] 0.33 0.33 0.33
Example:
To see which objects are present in the scene run:
allObjects[currentObjects,]
output:
      shape pattern color
[1,] "cloud" "solid" "blue"
[2,] "circle" "solid" "blue"
[3,] "square" "solid" "blue"
The columns correspond to the three objects in the scene:
A solid blue cloud, a solid blue circle and a solid blue square.
If the utterance is circle the probability of choosing circle is 1,
while the probability for the cloud and the square is 0.
If the utterance is blue the probability of choosing the cloud,
```

```
determineValidUtterances
```

The same goes for the utterance solid.

Determine valid utterances

the circle or the square is 1/3, since all three objects are blue.

Description

The relevant utterances are determined based on the features of the current objects present in the scene.

Usage

```
determineValidUtterances(currentObjects)
```

Arguments

currentObjects A vector of three values in range {1, ..., 27} specifying the target and the other two objects.

The target is the first object in the vector (index = 1).

Value

A vector of utterances that correspond to all feature values present in the current objects in the scene.

Examples

```
currentObjects <- c(1,2,3)

determineValidUtterances(currentObjects)

output: [1] 1 2 3 4 7

To see which objects are present in the scene run:
allObjects[currentObjects,]

output:

    shape    pattern color
[1,] "cloud" "solid" "blue"
[2,] "circle" "solid" "blue"
[3,] "square" "solid" "blue"

Based on this output you can see that the indices in the validUtterances vector refer to:
cloud = 1, circle = 2, square = 3, solid = 4 and blue = 7.</pre>
```

```
getBestInfGainUttPreferences
```

Get the utterances for the speaker's best information gain

Description

Full-RSA

Determines the optimal utterance for the best information gain.

These are based on the valid utterances determined from the current objects in the scene.

The inferred listener's object preferences are computed assuming the listener picks a certain object and has certain object preferences.

Usage

```
getBestInfGainUttPreferences(
  currentObjects,
  softPrefValue,
  notObeyInst,
  alpha,
  klValueFactor
)
```

Arguments

currentObjects A vector of three values in $\{1, \ldots, 27\}$ specifying the target and the other two

objects in the scene.

The target is the first object in the vector (index = 1).

softPrefValue A parameter value between [0, infinity) (The larger the value the higher the

tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

notObeyInst Determines the extent to which the instruction of the speaker is obeyed by the

listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks red objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance

is "red".

alpha A parameter value between 0 and 1.

Exponential scaling of the speaker choosing the utterance that maximizes the

chance of the listener getting the target object right.

klValueFactor A parameter that can be negative, 0 or positive:

zero Don't care about learning about the feature preferences of the listener

positive Care about learning about the feature preferences of the listener

negative Trying to pick non-ambiguous utterances

Details

This function uses the function {bestInfGainUtterance}.

Value

A vector containing the normalized probability over utterances given the listener's object preference priors.

The utterance with the highest probability is the one that maximizes the information gain for the speaker.

The vector has the same length as the validUtterances vector.

getConstellationCode 17

Examples

```
In the case of these objects being in a scene:
```

```
[shape] [pattern] [color]
[1,] "cloud" "solid" "blue"
[2,] "circle" "solid" "blue"
[3,] "square" "solid" "blue"

and these being the indices for the valid utterances:

[1] 1 2 3 4 7 (cloud, circle, square, solid, blue)

Then uttering solid or blue would be best in order to gain information about the shape preferences of the listener:
getBestInfGainUttPreferences(currentObjects, softPrefValue, notObeyInst, alpha, klValueFactor)

output:
[1] 0.0 0.0 0.0 0.5 0.5
```

You can see here that the indices with the highest probability, namely 4 and 5, correspond to the indices in the validUtterance vector for the feature values 4 (solid) (index = 4) and 7 (blue) (index = 5).

getConstellationCode Get object constellation code

Description

This function determines the ambiguity classes. These are determined by answering this question: What properties does target object share with other objects?

This allows you to group together the trials that have the same levels of ambiguity.

Usage

```
getConstellationCode(objectConstellation, chosenFeature)
```

Arguments

objectConstellation

A vector of three values in range $\{1, \ldots, 27\}$ specifying the target and the other two objects in the scene.

The target is the first object in the vector (index = 1).

chosenFeature

A value {1,2 or 3} that specifies, which one of the three feature values (shape, texture or color) of the chosen object was used as the utterance.

Example

utterance was "red", means chosen feature is color (chosenFeature = 3).

Value

A list of three rows (length of the objectConstellation vector). Each row..

Examples

```
getConstellationCode(objectConstellation, chosenFeature)
output:
[[1]]
[1] 1 1 3 2 3 2

[[2]]
[1] 1 2 3

[[3]]
[1] 1 2 3

To see which object are in the object constellation run:
allObjects[objecConstellation,]
output:
    shape pattern color
[1,] "cloud" "solid" "blue"
[2,] "circle" "solid" "blue"
[3,] "square" "solid" "blue"
```

```
getObjectPreferencePriors
```

Get priors of object preferences of the listener

Description

Determine the priors of object preferences of the listener.

These are automatically derived from the valid utterances in the scene (i.e. derived from all features of the current objects).

Usage

```
getObjectPreferencePriors(validUtterances, currentObjects, type, uttToObjProbs)
```

Arguments

validUtterances

A vector of utterances that correspond to all feature values present in the current objects in the scene.

For example, it only makes sense to utter "red" in a scene if there are red objects present.

currentObjects A vector of three values in range $\{1,\ldots,27\}$ specifying the target and the other

two objects in the scene.

The target is the first object in the vector (index = 1).

type Is set to 0: Hard priors or >0: Soft priors with specified softness

uttToObjProbs

A matrix. The rows map each possible utterance that corresponds to each present feature value of the current objects. The columns represent the three objects in the scene.

This reflects the obedience-parameter and which objects match the respective utterance. The matrix shows the probability that a certain object is chosen following a certain utterance, that is valid in the scene. The number of rows of the matrix match the length of the validUtterances vector.

Details

This function is only used in X9

Value

A list of preference priors for all valid utterances based on the objects in the scene.

The list has as many rows as the length of the validUtterances vector + 1.

Each row in the list contains a vector of length 3, as there are three objects in the scene.

The extra row is for the case of no preferences whatsoever, i.e. uniform prior over all three objects in the scene.

```
getObjectPreferencePriors(validUtterances, currentObjects, type, uttToObjProbs)
output:
[[1]]
[1] 0.85 0.077 0.077
ΓΓ277
[1] 0.077 0.85 0.077
[[3]]
[1] 0.077 0.077 0.85
ΓΓ4]]
[1] 0.33 0.33 0.33
ΓΓ5]]
[1] 0.33 0.33 0.33
[[6]]
[1] 0.33 0.33 0.33
Example:
To see which objects are present in the scene run:
allObjects[currentObjects,]
output:
shape pattern color
[1,] "cloud" "solid" "blue"
[2,] "circle" "solid" "blue"
[3,] "square" "solid" "blue"
```

20 getPreferencesPrior

```
The validUtterances vector: [1] 1 2 3 4 7

The rows of the list 1-6 refer to the valid utterances in the scene.

Example:

If we take a look at row 4 of the list:
[[4]]
[1] 0.33 0.33 0.33

We can see that the preference prior of the listener is 1/3 for each of the objects, if the utterance is "solid".

The last row (6) in the list contains a uniform prior over the present objects in the scene.
```

getPreferencesPrior

Get prior preferences of the listener

Description

Simple RSA

Usage

getPreferencesPrior(targetFeature)

Arguments

targetFeature

A value between 1 and 3, specifying which feature type- color, shape, or patternis considered (for preferences).

Value

A vector of length 9. It contains a uniform prior over the three features of the specified feature type and zeros for the other feature values.

```
getSimpleBestInfGainUttPreferences
```

Get the utterances for the speaker's best information gain

Description

Simple RSA

Determines the optimal utterance for the best information gain.

These are based on the valid utterances determined from the current objects in the scene.

The inferred listener's object preferences are computed assuming the listener picks a certain object and has certain object preferences.

Usage

```
getSimpleBestInfGainUttPreferences(
  currentObjects,
  softPrefValue,
  notObeyInst,
  klValueFactor
)
```

Arguments

currentObjects A vector of three values in $\{1, \ldots, 27\}$ specifying the target and the other two

objects in the scene.

The target is the first object in the vector (index = 1).

softPrefValue A parameter value between [0,infinity) (The larger the value the higher the

tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick green, blue or red objects.

notObeyInst Determines the extent to which the instruction of the speaker is obeyed by the

listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick green, blue or red objects even if the utterance

is "red".

klValueFactor A parameter that can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener

negative Trying to pick non-ambiguous utterances

Details

 $This \ function \ uses \ the \ function \ \verb|simpleBestInfGainUtterance|.$

Value

A vector containing the normalized probability over utterances given the listener's object preference priors.

The utterance with the highest probability is the one that maximizes the information gain for the speaker.

The vector has the same length as the validUtterances vector.

Examples

```
In the case of these objects being in a scene:
```

```
[shape] [pattern] [color]
[1,] "cloud" "solid" "blue"
[2,] "circle" "solid" "blue"
[3,] "square" "solid" "blue"
and these being the indices for the valid utterances:
[1] 1 2 3 4 7 (cloud, circle, square, solid, blue)
Then uttering solid or blue would be best in order to gain information about the shape preferences of the listener:
getSimpleBestInfGainUttPreferences(currentObjects, softPrefValue, notObeyInst, klValueFactor)
output:
[1] 0.0 0.0 0.0 0.5 0.5
You can see here that the indices with the highest probability, namely 4 and 5, correspond to the indices in the validUtterance vector for the feature values 4 (solid) (index = 4) and 7 (blue) (index = 5).
```

```
{\tt getSimpleBestInfGainUttPreferencesFTF}
```

Feature Type Focus: Get the utterances for the speaker's best information gain

Description

Simple RSA

Determines the optimal utterance for the best information gain.

These are based on the valid utterances determined from the current objects in the scene.

The inferred listener's object preferences are computed assuming the listener picks a certain object and has certain object preferences.

Utterances of the feature type focus are filtered out (e.g. if you are interested in color preferences - so you are not allowed to utter colors!) validUtterancesFTF correspond to all features present in the current objects except those of the featureTypeFocus!

Usage

```
getSimpleBestInfGainUttPreferencesFTF(
  currentObjects,
  featureTypeFocus,
  softPrefValue,
  notObeyInst,
  klValueFactor
)
```

Arguments

currentObjects A vector of three values in {1,...,27} specifying the target and the other two objects in the scene.

The target is the first object in the vector (index = 1).

featureTypeFocus

A value between 1-3. It specifies the feature the speaker is interested to know more about and is not allowed to utter. (shape = 1, pattern = 2, color = 3).

softPrefValue

A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

notObeyInst

Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

1s "rec

klValueFactor

A parameter that can be negative, 0 or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener

negative Trying to pick non-ambiguous utterances

Value

A vector containing the normalized probability over utterances given the listener's object preference priors.

The utterance with the highest probability is the one that maximizes the information gain for the speaker.

The vector has the same length as the validUtterancesFTF vector.

```
In the case of these objects being in a scene:
    [shape] [pattern] [color]
[1,] "cloud" "solid" "blue"
```

```
[2,] "circle" "solid" "blue"
[3,] "square" "solid" "blue"
and these being the indices for the valid utterances:
[1] 1 2 3 4 7 (cloud, circle, square, solid, blue)
Since you are interested in shape (featureTypeFocus = 1) you are only
allowed to utter "solid" (index = 4) or "blue" (index = 7):
validUtterancesFTF:
[1] 4 7
Then uttering solid or blue would be best in order to gain
information about the shape preferences of the listener:
getSimpleBestInfGainUttPreferencesFTF (currentObjects, featureTypeFocus,
softPrefValue, notObeyInst, klValueFactor)
output:
[1] 0.0 0.0 0.0 0.5 0.5
You can see here that the indices with the highest probability, namely 4 and 5,
correspond to the indices in the validUtterance vector for the feature
values 4 (solid) (index = 4) and 7 (blue) (index = 5).
```

 ${\tt getSimpleBestInfGainUttPreferencesIterative}$

Get the utterances for the speaker's best information gain (iterative setting)

Description

Simple RSA

Determines the optimal utterance for the best information gain.

These are based on the valid utterances determined from the current objects in the scene.

The inferred listener's object preferences are computed assuming the listener picks a certain object and has certain object preferences.

Usage

```
getSimpleBestInfGainUttPreferencesIterative(
  preferencesPriorAll,
  currentObjects,
  softPrefValue,
  notObeyInst,
  klValueFactor,
  targetFeature
)
```

Arguments

preferencesPriorAll

A vector of length 9.

Probability mass over all feature values.

Gives a prior preferences distribution over all (nine) feature values.

currentObjects A vector of three values in {1, ..., 27} specifying the target and the other two

objects in the scene.

The target is the first object in the vector (index = 1).

softPrefValue A parameter value between [0, infinity) (The larger the value the higher the

tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

notObeyInst Determines the extent to which the instruction of the speaker is obeyed by the

listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick green, blue or red objects even if the utterance

is "red".

klValueFactor A parameter that can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener

negative Trying to pick non-ambiguous utterances

targetFeature A value between 1 and 3, specifying which feature type-color, shape, or pattern-

is considered (for preferences).

Details

This function is only used in X9.

 $This is the iterative \ version \ of \ {\tt getSimpleBestInfGainUttPreferences}$

Value

A vector containing the normalized probability over utterances given the listener's object preference priors.

The utterance with the highest probability is the one that maximizes the information gain for the speaker.

posterior preferences over feature values: 3 dimensional array for simulated preferences.

rows: utterances, columns: preferences, blocks: objects.

Examples

 ${\tt getSimpleBestInfGainUttPreferencesIterative} (preferencesPriorAll, \ currentObjects, \ softPrefValue, \ notObeyInst, \ klValueFactor, \ targetFeature)$

output:

```
[[1]]
[1] 0.25 0.25 0.25 0.00 0.00 0.25
[[2]]
, , 1
     [,1][,2][,3]
                                           [,6]
                                                      [,7] [,8] [,9]
                       [,4]
                                 [,5]
[1,]
                     0.3334166
                               0.33325
                                          0.3333333
                                                      0
                                                           0
            0
                0
[2,]
       0
            0
               0
                     0.3334166 0.33325
                                          0.3333333
                                                      0
                                                           0
                                                                0
[3,]
       0
            0
               0
                     0.3334167 0.33325
                                         0.3333333
                                                      0
                                                           0
                                                                0
                     0.0000000 0.00000 0.0000000
[4,]
       0
           0
              0
                                                      0
                                                           0
                                                                0
[5,]
       0
                     0.0000000 0.00000 0.0000000
[6,]
                     0.3334166 0.33325
                                         0.3333333
                                                                0
, , 2
      [,1] [,2] [,3]
                                   [,5]
                                                     [,7] [,8] [,9]
                       [,4]
                                            [,6]
[1,]
                     0.3334166
                                0.33325
                                          0.3333333
                                                           0
           0
                0
                                                       0
                                0.33325
[2,]
       0
            0
                0
                     0.3334166
                                          0.3333333
                                                       0
                                                           0
                                                                0
[3,]
       0
            0
                0
                     0.3334167
                                0.33325
                                          0.3333333
                                                      0
                                                           0
                                                                0
[4,]
       0
            0
                0
                     0.0000000
                                0.00000
                                          0.0000000
                                                      0
                                                           0
                                                                0
[5,]
       0
            0
                0
                     0.0000000
                                0.00000
                                          0.0000000
                                                       0
                                                           0
                                                                0
[6,]
       0
                0
                     0.3334166
                                0.33325
                                          0.3333333
                                                                0
, , 3
      [,1] [,2] [,3]
                         [,4]
                                   [,5]
                                            [,6]
                                                      [,7] [,8] [,9]
                     0.3331667 0.3334999 0.3333333
[1,]
           0
                                                           0
                0
                                                       0
                                                                0
[2,]
                     0.3331667 0.3334999 0.3333333
                                                           0
                                                                0
       0
            0
                0
                                                       0
              0
[3,]
                     0.3331668 0.3334999 0.3333333
                                                           0
                                                                0
       0
            0
                                                       0
[4,]
       0
            0
              0
                     0.0000000 0.0000000 0.0000000
                                                       0
                                                           0
                                                                0
[5,]
       0
            0
                     0.0000000 0.0000000 0.0000000
                                                       0
                                                           0
                                                                0
[6,]
                     0.3331667 0.3334999 0.3333333
```

getSpeakerUtterancePriors

Get the speaker's utterances' priors

Description

Full-RSA

This function determines the prior utterance preferences of the speaker.

Usage

getSpeakerUtterancePriors(validUtterances)

Arguments

validUtterances

A vector of utterances that correspond to all feature values present in the current objects in the scene.

For example, it only makes sense to utter "red" in a scene if there are red objects present.

Value

A vector of priors as numeric values.

Examples

```
getSpeakerUtterancePriors(validUtterances)
output:
[1] 0.2 0.2 0.2 0.2 0.2
```

getSpeakerUtteranceUniformPrior

Speaker's uniform priors for utterances

Description

Simple RSA

Determines the prior utterance preferences of the speaker.

Usage

getSpeakerUtteranceUniformPrior(validUtterances)

Arguments

validUtterances

A vector of utterances that correspond to all feature values present in the current objects in the scene.

For example, it only makes sense to utter "red" in a scene if there are red objects present.

Value

A vector of the same length as the validUtterances vector.

It contains numeric values of the prior utterance preferences of the speaker.

```
getSpeakerUtteranceUniformPrior(validUtterances)
output:
[1] 0.17 0.17 0.17 0.17 0.17
@details
This function is used in X9.
```

```
getUtteranceChoiceConstellationCode
```

Get utterance-choice's constellation code

Description

Method that determines the utterance choice constellation code.

It also determines the resulting feature-order, the object-order and the feature-value-order.

The feature-order depends on the individual feature value ambiguities.

Usage

```
getUtteranceChoiceConstellationCode(objectConstellation)
```

Arguments

```
objectConstellation
```

A vector of three values in range $\{1, \ldots, 27\}$ specifying the target and the other two objects in the scene.

The target is the first object in the vector (index = 1).

Value

A list of four rows.

First row: resultCode

Second row: featureOrder

Thrid row: objectOrder

Fourth row: featureValueOrder

```
getUtteranceChoiceConstellationCode(objectConstellation)
output:
[[1]]
[1] "331"

[[2]]
[1] 3 2 1

[[3]]
[1] 1 2 3

[[4]]
[1] 7 4 1 2 3

To see which object are in the object constellation run:
allObjects[objectConstellation,]
output:
    shape pattern color
```

KLdivergence 29

```
[1,] "cloud" "solid" "blue"
[2,] "circle" "solid" "blue"
[3,] "square" "solid" "blue"
```

KLdivergence

Calculate Kullback-Leibler divergence

Description

Divergence measure.

Simple KL divergence function- with small offset to tolerate p = 0 / q = 0

Usage

```
KLdivergence(p, q)
```

Arguments

p Probability distribution.

q Probability distribution.

Details

Full-RSA and Simple-RSA

Value

A scalar value (The divergence between p and q).

literalListener

Literal listener function

Description

Full-RSA

Literal listener function according to assigned listener's object preferences.

Usage

literalListener(utterance, listenerObjectPreferences, uttToObjProbs)

Arguments

utterance

The uttered word by the speaker that the listener hears.

An index referring to one of the values in the vector validUtterances.

listenerObjectPreferences

One of the rows of the list of preference priors for all valid utterances based on the object in the scene.

The list has as many rows as the length of the validUtterances vector + 1.

Each row in the list contains a vector of length 3, as there are three objects in the scene.

The extra row is for the case of no feature preferences whatsoever, i.e. uniform prior over all three objects in the scene.

uttToObjProbs

A matrix. The rows map each possible utterance that corresponds to each present feature value of the current objects. The columns represent the three objects in the scene.

This reflects the obedience-parameter and which objects match the respective utterance. The matrix shows the probability that a certain object is chosen following a certain utterance, that is valid in the scene. The number of rows of the matrix match the length of the validUtterances vector.

Value

P(obj | utt, listener's object preferences)

A Vector of length 3. It includes the normalized probability of choosing each of the three objects in the scene, given the utterance and the listener's object preferences.

Examples

```
listenerObjectPreferences <- objectPreferenceSoftPriors[[3]]
literalListener(utterance, listenerObjectPreferences, uttToObjProbs)
output:
[1] 1 0 0</pre>
```

mapObjectToUtterances Map objects to utterances

Description

Determining the specific mapping of objects to utterances that applies given the present objects in the scene.

Usage

```
mapObjectToUtterances(currentObjects)
```

Arguments

currentObjects A vector of three values in range {1, . . . , 27} specifying the target and the other two objects.

The target is the first object in the vector (index = 1).

pragmaticListener 31

Details

This function is only used in X9

Value

```
A 3x3 matrix. Values in the matrix are in range {1-9}. rows: Objects; columns: Feature values of the objects
```

Examples

```
currentObjects \leftarrow c(1,2,3)
mapObjectToUtterances(currentObjects)
output:
     [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2
             4
                  7
[3,]
             4
To see which objects are present in the scene run:
allObjects[currentObjects,]
output:
shape pattern color
[1,] "cloud" "solid" "blue"
[2,] "circle" "solid" "blue"
[3,] "square" "solid" "blue"
Based on this output you can see that the indices output matrix vector refer
to the following feature values:
cloud = 1, circle = 2, square = 3, solid = 4 and blue = 7.
```

pragmaticListener

Pragmatic listener function samples over the speaker

Description

Full-RSA

Determines the probability of the listener choosing a certain object given the speaker's utterance and her own object preferences.

P(obj | utt, listener's object preferences).

It essentially infers which object it should pick under a certain literal listener preference.

Usage

```
pragmaticListener(
  utterance,
  listenerObjectPreferences,
  validUtterances,
```

32 pragmaticListener

```
currentObjects,
  uttToObjProbs,
  alpha
)
```

Arguments

utterance

The uttered word by the speaker that the listener hears.

An index referring to one of the values in the vector validUtterances.

listenerObjectPreferences

One of the rows of the list of preference priors for all valid utterances based on the object in the scene.

The list has as many rows as the length of the validUtterances vector + 1.

Each row in the list contains a vector of length 3, as there are three objects in the scene.

The extra row is for the case of no feature preferences whatsoever, i.e. uniform prior over all three objects in the scene.

validUtterances

A vector of utterances that correspond to all feature values present in the current objects in the scene.

For example, it only makes sense to utter "red" in a scene if there are red objects present.

currentObjects Vector of three values in $\{1, \ldots, 27\}$ specifying the target and the other two objects.

The target is the first object in the vector (index = 1).

uttToObjProbs

A matrix. The rows map each possible utterance that corresponds to each present feature value of the current objects. The columns represent the three objects in the scene.

This reflects the obedience-parameter and which objects match the respective utterance. The matrix shows the probability that a certain object is chosen following a certain utterance, that is valid in the scene. The number of rows of the matrix match the length of the validUtterances vector.

alpha

A parameter between 0 and 1.

Exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.

Value

A vector of the normalized probability of the listener choosing a certain object given the speaker's utterance and her own object preferences.

```
listenerObjectPreferences <- objectPreferenceSoftPriors[[2]]</pre>
\verb|pragmaticListener| (utterance, listenerObjectPreferences,
validUtterances, currentObjects, uttToObjProbs, alpha)
output:
[1] 1 0 0
To see which object are in the object constellation run:
```

pragmaticSpeaker 33

```
allObjects[currentObjects,]
output:
     [,1]     [,2]     [,3]
[1,] "cloud" "solid" "blue"
[2,] "circle" "solid" "blue"
[3,] "square" "solid" "blue"
```

pragmaticSpeaker

Pragmatic Speaker function

Description

Full-RSA

This pragmatic speaker considers all "imaginable" (i.e. implemented) preference distributions - over objects - of the listener.

It starts with a prior assumption over the possible preferences of the listener. Then it infers the posterior over these preferences given an object choice of the listener i.e. P(listener's feature value preferences | utterance, object choice by the listener, prior over preferences)

Usage

```
pragmaticSpeaker(
  utterance,
  obj,
  preferencesPrior,
  validUtterances,
  currentObjects,
  uttToObjProbs,
  objectPreferenceSoftPriors,
  alpha
)
```

Arguments

utterance

The uttered word by the speaker that the listener hears.

An index referring to one of the values in the vector validUtterances.

obj

The object chosen by the listener. A value referring to the index 1,2 or 3.

preferencesPrior

A vector of length 9.

Probability mass over all feature values present in the scenario plus a "no preference" case.

Gives a prior preferences distribution over all (nine) feature values.

validUtterances

A vector of utterances that correspond to all feature values present in the current objects in the scene.

For example, it only makes sense to utter "red" in a scene if there are red objects present.

currentObjects A vector of three values in {1,...,27} specifying the target and the other two objects in the scene.

The target is the first object in the vector (index = 1).

uttToObjProbs

A matrix. The rows map each possible utterance that corresponds to each present feature value of the current objects. The columns represent the three objects in the scene

This reflects the obedience-parameter and which objects match the respective utterance. The matrix shows the probability that a certain object is chosen following a certain utterance, that is valid in the scene. The number of rows of the matrix match the length of the validUtterances vector.

objectPreferenceSoftPriors

A list of preference priors for all valid utterances based on the object in the scene.

The list has as many rows as the length of the validUtterances vector + 1.

Each row in the list contains a vector of length 3, as there are three objects in the scene.

The extra row is for the case of no feature preferences whatsoever, i.e. uniform prior over all three objects in the scene.

alpha

A parameter between 0 and 1.

Exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.

Value

A vector with the same as the validUtterances vector.

Normalized posterior probability over preferences- given the utterance, the object choice by the listener, and prior over preferences of the listener.

Examples

```
pragmaticSpeaker(utterance, obj, preferencesPrior, validUtterances,
currentObjects, uttToObjProbs, objectPreferenceSoftPriors, alpha)
```

output:

[1] 0.17 0.17 0.17 0.17 0.17 0.17

RSAModel KLDiv3 params All Values Considered

RSA model Kullback-Leibler divergence determination (all feature values considered)

Description

Full-RSA

The function calculates the optimal parameter values of the free parameters by estimating the log-likelihood of the RSA model given model parameters and data. It also determines the actual RSA model Kullback-Leibler divergence.

3 parameter optimization considering all feature values (also the ones not present in the scene), i.e. feature values of shape, texture and color.

Usage

RSAModelKLDiv3paramsAllValuesConsidered(data, par1, par2, par3)

Arguments

data A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

par1

softness parameter Specifies how much actual feature priorities come into play in the object choice (The larger the higher the tendency towards uniform liking).

par2

non-obedience parameter The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance).

par3

alpha parameter An exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelKLDiv3paramsAllValuesConsidered_simpleRSA

Simple RSA model Kullback-Leibler divergence determination (all feature values considered)

Description

Simple RSA

The function calculates the optimal parameter values of the free parameters by estimating the log-likelihood of the RSA model given model parameters and data. It also determines the actual RSA model Kullback-Leibler divergence.

3 parameter optimization considering all feature values (also the ones not present in the scene), i.e. feature values of shape, texture and color.

Usage

RSAModelKLDiv3paramsAllValuesConsidered_simpleRSA(data, par1, par2)

Arguments

data A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

par1

softness parameter The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)

par2

non-obedience parameter The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance).

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelKLDiv3paramsOnlyAvailableFeatureValuesConsidered

RSA model Kullback-Leibler divergence determination (available feature values only)

Description

Full-RSA

The function calculates the optimal parameter values of the free parameters by estimating the log-likelihood of the RSA model given model parameters and data. it also determines the actual RSA model Kullback-Leibler divergence.

3 parameter optimization considering only the available feature values present in the scene, i.e. feature values of shape, texture and color.

Usage

```
RSAModelKLDiv3paramsOnlyAvailableFeatureValuesConsidered(
  data,
  par1,
  par2,
  par3
)
```

Arguments

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

par1

softness parameter Specifies how much actual feature priorities come into play in the object choice (The larger the higher the tendency towards uniform liking).

par2 **non-obedience parameter** The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance).

par3 **alpha parameter** An exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.

Details

This function is used in the functions RSAModelLL1_1, RSAModelLL1_1_notObey.1, RSAModelLL1_2, RSAModelLL1_3, RSAModelLL2_n1, RSAModelLL2_n2, RSAModelLL2_n3, RSAModelLL3.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelKLDiv3paramsOnlyAvailableFeatureValuesConsidered_simpleRSA

Simple RSA model Kullback-Leibler divergence determination (available feature values only)

Description

Simple RSA

The function calculates the optimal parameter values of the free parameters by estimating the log-likelihood of the RSA model given model parameters and data. It also determines the actual RSA model Kullback-Leibler divergence.

3 parameter optimization considering only the available feature values present in the scene, i.e. feature values of shape, texture and color.

Usage

```
RSAModelKLDiv3paramsOnlyAvailableFeatureValuesConsidered_simpleRSA( data, par1, par2)
```

Arguments

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

par1

softness parameter The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)

par2

non-obedience parameter The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance).

Details

```
This function is used in RSAModelLL1_1simpleRSA, RSAModelLL1_1simpleRSA_notObey.1, RSAModelLL1_1simpleRSA_notObey.2, RSAModelLL1_2simpleRSA, RSAModelLL1_2simpleRSA, RSAModelLL1_2simpleRSA.
```

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelKLDiv3params_simpleRSA4TrialsIndependent

Simple RSA model Kullback-Leibler divergence determination (for independent trials)

Description

Simple RSA

The function calculates the optimal parameter values of the free parameters by estimating the log-likelihood of the RSA model given model parameters and data. It also determines the actual RSA model Kullback-Leibler divergence.

2 parameter optimization considering only the available feature values present in the scene, i.e. feature values of shape, texture and color.

Usage

RSAModelKLDiv3params_simpleRSA4TrialsIndependent(data, par1, par2)

Arguments

data A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

par1

softness parameter The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)

par2

non-obedience parameter The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance).

Details

This function is used in RSAModelLL1_1simpleRSA4TrialsIndependent,

RSAModelLL1_1simpleRSA4TrialsIndependent_notObey.1,

RSAModelLL1_1simpleRSA4TrialsIndependent_notObey.2,

 $RSAModel LL1_2 simple RSA4 Trials Independent,\\$

 $RSAModel LL1_2 simple RSA4Trials Independent_pref.2,$

 $RSAModel LL2_simple RSA4Trials Independent.$

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

 $RSAModel KLDiv3params_simple RSA4Trials Iterative$

Simple RSA model Kullback-Leibler divergence determination (iterative setting)

Description

Simple RSA

The function calculates the optimal parameter values of the free parameters by estimating the loglikelihood of the RSA model given model parameters and data. It also determines the actual RSA model Kullback-Leibler divergence.

2 parameter optimization considering only the available feature values present in the scene, i.e. feature values of shape, texture and color.

Usage

RSAModelKLDiv3params_simpleRSA4TrialsIterative(data, par1, par2)

Arguments

data A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

softness parameter The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)

non-obedience parameter The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction)ignorance).

par2

par1

42 RSAModelLL1_1

Details

```
This function is used in RSAModelLL1_1simpleRSA4TrialsIterative, RSAModelLL1_1simpleRSA4TrialsIterative_notObey.1, RSAModelLL1_1simpleRSA4TrialsIterative_notObey.2, RSAModelLL1_2simpleRSA4TrialsIterative,
```

Normodelle 1_251mpleNorMini Talbiter ative,

RSAModelLL1_2simpleRSA4TrialsIterative_pref.2,

RSAModelLL2_simpleRSA4TrialsIterative.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL1_1

Cost function for one parameter optimization. Optimizing softness. Non-obedience fixed at 0.

Description

Full-RSA

1 parameter optimization; The softness parameter is optimized.

The non-obedience parameter and the alpha parameter are fixed.

Usage

```
RSAModelLL1_1(params, data)
```

Arguments

params

One value vector, which specifies one of three parameters to be optimized:

- 1. softPrefValue parameter is optimized, i.e. The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience parameter is fixed at 0, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance)
- 3. alpha parameter is fixed at 1, i.e. An exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.

data

A Matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

This function uses RSAModelKLDiv3paramsOnlyAvailableFeatureValuesConsidered.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL1_1simpleRSA

Cost function for one parameter optimization. Optimizing softness. Non-obedience fixed at 0.

Description

Simple RSA

1 parameter optimization; The softness parameter is optimized.

The non-obedience parameter is fixed.

Usage

RSAModelLL1_1simpleRSA(params, data)

Arguments

params

One value vector specifying one of the two parameters to be optimized:

- 1. softPrefValue parameter is optimized, i.e. The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience parameter is fixed at 0, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance).

data

A Matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat] [7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3] **1:OC1** Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

This function uses RSAModelKLDiv3paramsOnlyAvailableFeatureValuesConsidered_simpleRSA.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

$RSAModel LL1_1 simple RSA4 Trials Independent$

Cost function for one parameter optimization (for independent trials). Optimizing softness. Non-obedience is fixed at 0.

Description

Simple RSA

1 parameter optimization; The softness parameter is optimized.

The non-obedience parameter is fixed.

Usage

RSAModelLL1_1simpleRSA4TrialsIndependent(params, data)

Arguments

params

One value vector, which specifies one of two parameters to be optimized:

- 1. softPrefValue is optimized, i.e.The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience is fixed at 0, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance)

data A Matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

 $This\ function\ uses\ RSAModel KLDiv3params_simple RSA4Trials Independent.$

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL1_1simpleRSA4TrialsIndependent_notObey.1

Cost function for one parameter optimization (for independent trials). Optimizing softness. Non-obedience is fixed at 0.1.

Description

Simple RSA

1 parameter optimization; The softness parameter is optimized.

The non-obedience parameter is fixed.

Usage

RSAModelLL1_1simpleRSA4TrialsIndependent_notObey.1(params, data)

Arguments

params

One value vector, which specifies one of two parameters to be optimized:

- 1. softPrefValue is optimized, i.e.The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience is fixed at 0.1, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance)

data

A Matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

This function uses RSAModelKLDiv3params_simpleRSA4TrialsIndependent.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

 $RSAModel LL1_1 simple RSA4 Trials Independent_not 0 be y. 2$

Cost function for one parameter optimization (for independent trials). Optimizing softness. Non-obedience is fixed at 0.2.

Description

Simple RSA

1 parameter optimization; The softness parameter is optimized.

The non-obedience parameter is fixed.

Usage

RSAModelLL1_1simpleRSA4TrialsIndependent_notObey.2(params, data)

Arguments

params

One value vector, which specifies one of two parameters to be optimized:

- 1. softPrefValue is optimized, i.e.The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience is fixed at 0.2, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance)

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

This function uses RSAModelKLDiv3params_simpleRSA4TrialsIndependent.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL1_1simpleRSA4TrialsIterative

Cost function for one parameter optimization (iterative setting). Optimizing softness. Non-obedience fixed at 0.

Description

Simple RSA

1 parameter optimization; The softness parameter is optimized.

The non-obedience parameter is fixed.

Usage

RSAModelLL1_1simpleRSA4TrialsIterative(params, data)

Arguments

params

One value vector, which specifies one of two parameters to be optimized:

- 1. softPrefValue is optimized,i.e. The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience (default = 0), i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance)

data

A Matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

This function uses RSAModelKLDiv3params_simpleRSA4TrialsIterative.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL1_1simpleRSA4TrialsIterative_notObey.1

Cost function for one parameter optimization (iterative setting). Optimizing softness. Non-obedience fixed at 0.1.

Description

Simple RSA

1 parameter optimization; The softness parameter is optimized.

The non-obedience parameter is fixed.

Usage

RSAModelLL1_1simpleRSA4TrialsIterative_notObey.1(params, data)

Arguments

params

One value vector, which specifies one of two parameters to be optimized:

- 1. softPrefValue is optimized, i.e. The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience is fixed at 0.1, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance)

data

A Matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

 $This\ function\ uses\ RSAModel KLDiv3params_simple RSA4Trials Iterative.$

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL1_1simpleRSA4TrialsIterative_notObey.2

Cost function for one parameter optimization (iterative setting). Optimizing softness. Non-obedience fixed at at 0.2

Description

Simple RSA

1 parameter optimization; The softness parameter is optimized.

The non-obedience parameter is fixed.

Usage

RSAModelLL1_1simpleRSA4TrialsIterative_notObey.2(params, data)

Arguments

params

One value vector, which specifies one of two parameters to be optimized:

- 1. softPrefValue is optimized, i.e. The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience is fixed at 0.2, i.e The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance)

data

A Matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

This function uses RSAModelKLDiv3params_simpleRSA4TrialsIterative.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL1_1simpleRSA_notObey.1

Cost function for one parameter optimization. Optimizing softness. Non-obedience fixed at 0.1.

Description

Simple RSA

1 parameter optimization; The softness parameter is optimized.

The non-obedience parameter is fixed.

Usage

RSAModelLL1_1simpleRSA_notObey.1(params, data)

Arguments

params

One value vector specifying one of the two parameters to be optimized:

- 1. softPrefValue parameter is optimized, i.e. The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience is fixed at 0.1, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance)

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

 $This function uses RSAModel KLDiv3 params Only Available Feature Values Considered_simple RSA.$

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL1_1simpleRSA_notObey.2

Cost function for one parameter optimization. Optimizing softness. Non-obedience fixed at 0.2.

Description

Simple RSA

1 parameter optimization; The softness parameter is optimized.

The non-obedience parameter is fixed.

Usage

RSAModelLL1_1simpleRSA_notObey.2(params, data)

Arguments

params

One value vector specifying one of the two parameters to be optimized:

- 1. softPrefValue parameter is optimized, i.e. The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience is fixed at 0.2, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance)

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

 $This function \ uses \ RSAModel KLDiv3params Only Available Feature Values Considered_simple RSA.$

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

```
RSAModelLL1_1_notObey.1
```

Cost function for one parameter optimization. Optimizing softness. Non-obedience fixed at 0.1.

Description

Full-RSA

1 parameter optimization; The softness parameter is optimized.

The non-obedience parameter and the alpha parameter are fixed.

Usage

```
RSAModelLL1_1_notObey.1(params, data)
```

Arguments

params

One value vector specifying one of the three parameters to be optimized:

- 1. softPrefValue parameter is optimized, i.e. The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience parameter is fixed at 0.1, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance)

54 RSAModelLL1_2

3. alpha parameter is fixed at 1, i.e. An exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

 $This\ function\ uses\ RSAModel KLDiv3 params Only Available Feature Values Considered.$

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

 $RSAModelLL1_2$

Cost function for one parameter optimization. Optimizing non-obedience. Softness fixed at 0.

Description

Full-RSA

1 parameter optimization; The non-obedience parameter is optimized.

The softness parameter and the alpha parameter are set to certain values.

Usage

RSAModelLL1_2(params, data)

Arguments

params

One value vector specifying one of the three parameters to be optimized:

- 1. softPrefValue parameter is fixed at 0, i.e. The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience parameter is optimized, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance).
- 3. alpha parameter is fixed at 1, i.e. An exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

 $This\ function\ uses\ RSAModel KLDiv3 params Only Available Feature Values Considered.$

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

$RSAModel LL1_2 simple RSA$

Cost function for one parameter optimization. Optimizing non-obedience. Softness is fixed at 0.2.

Description

Simple RSA

1 parameter optimization; The non-obedience parameter is optimized.

The softness parameter is fixed.

Usage

RSAModelLL1_2simpleRSA(params, data)

Arguments

params

One value vector specifying one of the two parameters to be optimized:

- 1. softPrefValue parameter is fixed at 0, i.e. The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience parameter is optimized, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance).

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

 $This \ function \ uses \ RSAModel KLDiv3 params Only Available Feature Values Considered_simple RSA.$

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL1_2simpleRSA4TrialsIndependent

Cost function for one parameter optimization (for independent trials). Optimizing non-obedience. Softness is fixed at 0.

Description

Simple RSA

1 parameter optimization; The non-obedience parameter is optimized.

The softness parameter is fixed.

Usage

RSAModelLL1_2simpleRSA4TrialsIndependent(params, data)

Arguments

params

One value vector, which specifies one of two parameters to be optimized:

- 1. softPrefValue is is fixed at 0, i.e.The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience is optimized, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance)

.

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

This function uses RSAModelKLDiv3params_simpleRSA4TrialsIndependent.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL1_2simpleRSA4TrialsIndependent_pref.2

Cost function for one parameter optimization (for independent trials). Optimizing non-obedience. Softness is fixed at 0.2.

Description

Simple RSA

1 parameter optimization; The non-obedience parameter is optimized.

The softness parameter is fixed.

Usage

RSAModelLL1_2simpleRSA4TrialsIndependent_pref.2(params, data)

Arguments

params

One value vector, which specifies one of two parameters to be optimized:

- 1. softPrefValue is is fixed at 0.2, i.e.The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience is optimized, The extent to which the instruction of the speaker is obeyed by the listener. #' (0 = full obedience, infinity = full instruction ignorance)

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

This function uses RSAModelKLDiv3params_simpleRSA4TrialsIndependent.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL1_2simpleRSA4TrialsIterative

Cost function for one parameter optimization (iterative setting). Optimizing non-obedience. Softness fixed at at 0.

Description

Simple RSA

1 parameter optimization; non-obedience parameter is optimized.

The softness parameter is fixed.

Usage

RSAModelLL1_2simpleRSA4TrialsIterative(params, data)

Arguments

params

One value vector, which specifies one of two parameters to be optimized:

- 1. softPrefValue is fixed at 0, i.e.The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience is optimized, i.e. The extent to which the instruction of the speaker is obeyed by the listener. #' (0 = full obedience, infinity = full instruction ignorance)

data

A Matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

This function uses RSAModelKLDiv3params_simpleRSA4TrialsIterative.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL1_2simpleRSA4TrialsIterative_pref.2

Cost function for one parameter optimization (iterative setting). Optimizing non-obedience. Softness fixed at at 0.2.

Description

Simple RSA

1 parameter optimization; non-obedience parameter is optimized.

The softness parameter is fixed.

Usage

RSAModelLL1_2simpleRSA4TrialsIterative_pref.2(params, data)

Arguments

params

One value vector, which specifies one of two parameters to be optimized:

- 1. softPrefValue is fixed at 0.2, i.e.The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience is optimized, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance)

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat] [7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3] **1:OC1** Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

This function uses RSAModelKLDiv3params_simpleRSA4TrialsIterative.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL1_2simpleRSA_pref2

Cost function for one parameter optimization. Optimizing non-obedience. Softness is fixed at 0.2.

Description

Simple RSA

1 parameter optimization; The non-obedience parameter is optimized.

The softness parameter is fixed.

Usage

RSAModelLL1_2simpleRSA_pref2(params, data)

Arguments

params

One value vector specifying one of the two parameters to be optimized:

- 1. softPrefValue is fixed at 0.2, i.e. The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience parameter is optimized, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance).

62 RSAModelLL1_3

data A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

 $This function \ uses \ RSAModel KLDiv3 params Only Available Feature Values Considered_simple RSA.$

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL1_3

Cost function for one parameter optimization. Optimizing alpha. Softness and non-obedience fixed at 0.

Description

Full-RSA

1 parameter optimization; The alpha parameter is optimized.

The softness parameter and the non-obedience parameter are fixed.

Usage

RSAModelLL1_3(params, data)

RSAModelLL2_n1 63

Arguments

params

One value vector specifying one of the three parameters to be optimized:

1. softPrefValue parameter is fixed at 0, i.e. The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)

- 2. non-obedience parameter is fixed at 0, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance).
- 3. alpha parameter is optimized, i.e. An exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

 $This \ function \ uses \ RSAModel KLDiv3 params Only Available Feature Values Considered.$

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL2_n1 Cost function for two parameter optimization. Optimizing non-obedience and alpha. Softness fixed at 0.

64 RSAModelLL2_n1

Description

Full-RSA

2 parameter optimization; The non-obedience and alpha parameters are optimized.

The softness parameter is fixed.

Usage

RSAModelLL2_n1(params, data)

Arguments

params

Two value vector, which specifies two of three parameters (n1=not the first, n2=not the second, n3= not the third) to be optimized:

- 1. softPrefValueparameter fixed at 0, i.e. The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience parameter is optimized, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance).
- 3. alpha parameter is optimized, i.e. An exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

 $This\ function\ uses\ RSAModel KLDiv3 params Only Available Feature Values Considered.$

RSAModelLL2_n2 65

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL2_n2

Cost function for two parameter optimization. Optimizing softness and alpha. Non-obedience fixed at 0.

Description

Full-RSA

2 parameter optimization; The softness and alpha parameters are optimized.

The non-obedience parameter is fixed.

Usage

RSAModelLL2_n2(params, data)

Arguments

params

Two value vector, which specifies two of three parameters (n1 = not the first, n2 = not the second, n3 = not the third) to be optimized:

- 1. softPrefValue parameter is optimized, i.e. The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience parameter is fixed at 0, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance).
- 3. alpha parameter is optimized, i.e. An exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

66 RSAModelLL2_n3

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

 $This\ function\ uses\ RSAModel KLDiv3 params Only Available Feature Values Considered.$

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL2_n3

Cost function for two parameter optimization. Optimizing softness and non-obedience. Alpha fixed at 1.

Description

Full-RSA

2 parameter optimization; The softness parameter and the non-obedience parameter are optimized. The alpha parameter is fixed.

Usage

RSAModelLL2_n3(params, data)

Arguments

params

Two value vector, which specifies two of three parameters (n1 = not the first, n2 = not the second, n3 = not the third) to be optimized:

- 1. softPrefValue parameter is optimized, i.e. The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience parameter is optimized, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance).
- 3. alpha parameter is fixed at 1, i.e. An exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

 $This\ function\ uses\ RSAModel KLDiv3 params Only Available Feature Values Considered.$

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL2_simpleRSA Cost function for two parameter optimization. Optimizing softness and non-obedience.

Description

Simple RSA

2 parameter optimization; The softness and non-obedience parameter are optimized.

Usage

RSAModelLL2_simpleRSA(params, data)

Arguments

params

Two value vector specifying two of the two parameters to be optimized:

- 1. softPrefValue parameter is optimized, i.e. The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking).
- 2. non-obedience parameter is fixed at 0.1, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance).

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

 $This function \ uses \ RSAModel KLDiv3 params Only Available Feature Values Considered_simple RSA.$

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

 $RSAModel LL2_simple RSA4Trials Independent$

Cost function for two parameter optimization (for independent trials). Optimizing softness and non-obedience.

Description

Simple RSA

2 parameter optimization; The softness and non-obedience parameter are optimized.

Usage

RSAModelLL2_simpleRSA4TrialsIndependent(params, data)

Arguments

params

Two value vector, which specifies two of two parameters to be optimized:

- 1. softPrefValue is optimized, i.e.The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience is optimized, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance)

data A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

 $This \ function \ uses \ RSAModel KLDiv3params_simple RSA4Trials Independent.$

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL2_simpleRSA4TrialsIterative

Cost function for one parameter optimization (iterative setting). Optimizing softness and non-obedience.

Description

Simple RSA

2 parameter optimization; softPrefValue and non-obedience are optimized.

Usage

RSAModelLL2_simpleRSA4TrialsIterative(params, data)

70 RSAModelLL3

Arguments

params

Two value vector, which specifies two of two parameters to be optimized:

- 1. softPrefValue is optimized, i.e.The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience is optimized, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance)

data

A Matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

 $This \ function \ uses \ RSAModel KLDiv3params_simple RSA4Trials Iterative.$

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelLL3

Cost function for three parameter optimization. Optimizing softness, non-obedience and alpha.

Description

Full-RSA

3 parameter optimization; The softness parameter, the non-obedience and the alpha parameter are optimized.

RSAModelLL3 71

Usage

RSAModelLL3(params, data)

Arguments

params

Three value vector, which specifies all three model parameters to be optimized:

- 1. softPrefValue parameter is optimized, i.e., The strength of "preferring one entity over others". (The larger the value the higher the tendency towards uniform liking)
- 2. non-obedience parameter is optimized, i.e. The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance).
- 3. alpha parameter is optimized, i.e. An exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Details

This function uses RSAModelKLDiv3paramsOnlyAvailableFeatureValuesConsidered.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelUttKLDivParamA

Cost function for one parameter optimization for the utterance choice experiments. Optimizing softness. Non-obedience and klValueFactor are fixed.

Description

Full-RSA

Softness is optimized.

Non-obedience is fixed at 0 and klValueFactor at 1.

Usage

RSAModelUttKLDivParamA(par, data)

Arguments

par

One value vector, which specifies one of three parameters to be optimized:

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses RSAModelUttKLDiv_3params.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelUttKLDivParamAB

Cost function for two parameter optimization for the utterance choice experiments. Optimizing softness and non-obedience. klValueFactor is fixed.

Description

Full-RSA

Softness and non-obedience are optimized.

klValueFactor is fixed at 1.

Usage

RSAModelUttKLDivParamAB(params, data)

Arguments

params

Two value vector specifying the two parameters to be optimized.

1. softness A parameter value between [0,infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick green, blue or red objects.

2. non-obedience: Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks red objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses RSAModelUttKLDiv_3params.

Value

RSAModelUttKLDivParamABC

Cost function for three parameter optimization for the utterance choice experiments. Optimizing softness, non-obedience and klValueFactor.

Description

Full-RSA

Softness, non-obedience and klValueFactor are optimized.

Usage

RSAModelUttKLDivParamABC(params, data)

Arguments

params

Three value vector specifying the three parameters to be optimized.

1. softness: A parameter value between [0,infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

2. non-obedience: Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

3. klValueFactor: A parameter that can be negative, 0 or positive (Here it is set to = 1):

zero Don't care about learning about the feature preferences of the listener **positive** Care about learning about the feature preferences of the listener **negative** Trying to pick non-ambiguous utterances

data A matrix with data rows.

 $column\ structure:\ [1:0C1,0C2,0C3,4:numUtt0ptions,7-X:TurkerSliderValues]$

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses RSAModelUttKLDiv_3params.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelUttKLDivParamABCD4

Cost function for four parameter optimization for the utterance choice experiments. Optimizing softness, non-obedience, alpha and klValue-Factor.

Description

Full-RSA

Softness, non-obedience, alpha and klValueFactor are optimized.

Usage

RSAModelUttKLDivParamABCD4(params, data)

Arguments

params

Four value vector specifying four of the four parameters to be optimized:

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick green, blue or red objects.

2. non-obedience: Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

3. alpha: A parameter value between 0 and 1. Exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.

4. klValueFactor can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener **negative** Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses RSAModelUttKLDiv_4params.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelUttKLDivParamABD4

Cost function for three parameter optimization for the utterance choice experiments. Optimizing softness, non-obedience and klValueFactor. Alpha is fixed.

Description

Full-RSA

Softness, non-obedience and klValueFactora re optimized.

Alpha is fixed at 1.

Usage

RSAModelUttKLDivParamABD4(params, data)

Arguments

params

Three value vector specifying three of the four parameters to be optimized:

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

2. non-obedience: Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "*red*". **infinity:** Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "*red*".

klValueFactor can be negative, zero or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses RSAModelUttKLDiv_4params.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelUttKLDivParamAC

Cost function for two parameter optimization for the utterance choice experiments. Optimizing softness and klValueFactor. Non-obedience is fixed.

Description

Full-RSA

Softness and klValueFactor are optimized.

Non-obedience is fixed at 0.

Usage

RSAModelUttKLDivParamAC(params, data)

Arguments

params

Two value vector specifying the two parameters to be optimized.

1. softness: A parameter value between [0,infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

2. klValueFactor: A parameter that can be negative, 0 or positive (Here it is set to = 1):

zero Don't care about learning about the feature preferences of the listener **positive** Care about learning about the feature preferences of the listener **negative** Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses RSAModelUttKLDiv_3params.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelUttKLDivParamACD4

Cost function for three parameter optimization for the utterance choice experiments. Optimizing softness, alpha and klValueFactor. Non-obedience is fixed.

Description

Full-RSA

Softness, alpha and klValueFactor are optimized.

Non-obedience is fixed at 0.

Usage

RSAModelUttKLDivParamACD4(params, data)

Arguments

params

Three value vector specifying three of the four parameters to be optimized:

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

- 2. alpha: A parameter value between 0 and 1. Exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.
- 3. klValueFactor can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener **negative** Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses RSAModelUttKLDiv_4params.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelUttKLDivParamAD4

Cost function for two parameter optimization for the utterance choice experiments. Optimizing Softness and klValueFactor. Non-obedience and alpha are fixed.

Description

Full-RSA

Softness and klValueFactor are optimized.

Non-obedience is set to 0.

Alpha is set to 1.

Usage

RSAModelUttKLDivParamAD4(params, data)

Arguments

params

Two value vector specifying two of the four parameters to be optimized:

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick green, blue or red objects.

2. klValueFactor can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listener positive Care about learning about feature preferences of the listener

negative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses RSAModelUttKLDiv_4params.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelUttKLDivParamAD4B.2

Cost function for two parameter optimization for the utterance choice experiments. Optimizing softness and klValueFactor. Non-obedience and alpha are fixed.

Description

Full-RSA

Softness and klValueFactor are optimized.

Non-obedience is fixed at 0.2.

Alpha is fixed at 1.

Usage

RSAModelUttKLDivParamAD4B.2(params, data)

Arguments

params

Two value vector specifying two of the four parameters to be optimized:

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

2. klValueFactor can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener

negative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses $RSAModelUttKLDiv_4params$.

Value

RSAModelUttKLDivParamB

Cost function for one parameter optimization for the utterance choice experiments. Optimizing non-obedience. Softness and klValueFactor are fixed.

Description

Full-RSA

Non-obedience is optimized.

Softness is fixed at 0 and klValueFactor at 1.

Usage

RSAModelUttKLDivParamB(par, data)

Arguments

par

One value vector, which specifies one of three parameters to be optimized:

1. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks red objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses RSAModelUttKLDiv_3params.

Value

RSAModelUttKLDivParamBC

Cost function for two parameter optimization for the utterance choice experiments. Optimizing non-obedience and klValueFactor. Softness is fixed.

Description

Full-RSA

Non-obedience and klValueFactor are optimized.

Softness is fixed at 0.

Usage

RSAModelUttKLDivParamBC(params, data)

Arguments

params

Two value vector specifying the two parameters to be optimized.

1. non-obedience: Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

2. klValueFactor can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener **negative** Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses RSAModelUttKLDiv_3params.

Value

RSAModelUttKLDivParamBCD4

Cost function for three parameter optimization for the utterance choice experiments. Optimizing non-obedience, alpha and klValueFactor. Softness is fixed.

Description

Full-RSA

Non-obedience, alpha and klValueFactor are optimized.

Softness is fixed at 0.

Usage

RSAModelUttKLDivParamBCD4(params, data)

Arguments

params

Three value vector specifying three of the four parameters to be optimized:

1. non-obedience: Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red". **infinity:** Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

2. alpha: A parameter value between 0 and 1. Exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.

3. klValueFactor can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener **negative** Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses RSAModelUttKLDiv_4params.

Value

RSAModelUttKLDivParamBD4

Cost function for two parameter optimization for the utterance choice experiments. Optimizing non-obedience and klValueFactor. Softness and alpha are fixed.

Description

Full-RSA

Non-obedience and klValueFactor are optimized.

Softness is fixed at 0.

Alpha is fixed at 1.

Usage

RSAModelUttKLDivParamBD4(params, data)

Arguments

params

Two value vector specifying two of the four parameters to be optimized:

1. non-obedience: Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red". **infinity:** Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

2. klValueFactor can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listenerpositive Care about learning about feature preferences of the listenernegative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses RSAModelUttKLDiv_4params.

Value

RSAModelUttKLDivParamBD4A.2

Cost function for two parameter optimization for the utterance choice experiments. Optimizing non-obedience and klValueFactor. Softness and alpha are fixed.

Description

Full-RSA

Non-obedience and klValueFactor are optimized.

Softness is fixed at 0.2.

Alpha is fixed at 1.

Usage

RSAModelUttKLDivParamBD4A.2(params, data)

Arguments

params

Two value vector specifying two of the four parameters to be optimized:

1. non-obedience: Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "*red*". **infinity:** Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "*red*".

2. klValueFactor can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listenerpositive Care about learning about feature preferences of the listenernegative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses RSAModelUttKLDiv_4params.

Value

RSAModelUttKLDivParamC

Cost function for one parameter optimization for the utterance choice experiments. Optimizing klValueFactor. Softness and non-obedience are fixed.

Description

Full-RSA

klValueFactor is optimized.

softness and non-obedience parameter are fixed at 0.

Usage

RSAModelUttKLDivParamC(par, data)

Arguments

par

One value vector, which specifies one of three parameters to be optimized:

klValueFactor can be negative, zero or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.2:OC2 Object 2. A value between 1 and 27.3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

 $\textbf{7-X:} \textbf{TurkerSliderValues} \ \textbf{These columns contain the participants' slider values}.$

Details

This function uses $RSAModelUttKLDiv_3params$.

Value

RSAModelUttKLDivParamCD4

Cost function for two parameter optimization for the utterance choice experiments. Optimizing alpha and klValueFactor. Softness and non-obedience are fixed.

Description

Full-RSA

Alpha and klValueFactor are optimized.

Softness and non-obedience are fixed at 0.

Usage

RSAModelUttKLDivParamCD4(params, data)

Arguments

params

Two value vector specifying two of the four parameters to be optimized:

- 1. alpha: A parameter value between 0 and 1. Exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.
- klValueFactor: can be negative, zero or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27. **2:OC2** Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses RSAModelUttKLDiv_4params.

Value

RSAModelUttKLDivParamD4

Cost function for one parameter optimization for the utterance choice experiments. Optimizing klValueFactor. Softness, non-obedience and alpha are fixed.

Description

Full-RSA

klValueFactor is optimized.

Softness and non-obedience are set to 0. Alpha is fixed at 1.

Usage

RSAModelUttKLDivParamD4(params, data)

Arguments

params

One value vector specifying the parameter to be optimized.

klValueFactor can be negative, zero or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.2:OC2 Object 2. A value between 1 and 27.3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses $RSAModelUttKLDiv_4params$.

Value

RSAModelUttKLDivParamD4A.2

Cost function for one parameter optimization for the utterance choice experiments. Optimizing klValueFactor. Softness, non-obedience and alpha are fixed.

Description

Full-RSA

Softness is fixed at 0.2.

non-obedience is fixed at 0.

Alpha is fixed at to 1.

Usage

RSAModelUttKLDivParamD4A.2(params, data)

Arguments

params

One value vector specifying the parameter to be optimized.

1. klValueFactor can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listenerpositive Care about learning about feature preferences of the listener

negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses $RSAModelUttKLDiv_4params$.

Value

RSAModelUttKLDivParamD4AB.2

Cost function for one parameter optimization for the utterance choice experiments. Optimizing klValueFactor. Softness, non-obedience and alpha are fixed.

Description

Full-RSA

klValueFactor is optimized.

Softness and non-obedience are fixed at 0.2.

Alpha is fixed at 1.

Usage

RSAModelUttKLDivParamD4AB.2(params, data)

Arguments

params

One value vector specifying the parameter to be optimized.

1. klValueFactor can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener

negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

 $column\ structure:\ [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]$

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses $RSAModelUttKLDiv_4params$.

Value

RSAModelUttKLDivParamD4B.2

Cost function for one parameter optimization for the utterance choice experiments. Optimizing klValueFactor. Softness, non-obedience and alpha are fixed.

Description

Full-RSA

klValueFactor is optimized.

Softness is fixed at 0.

Non-obedience is fixed at 0.2.

Alpha is fixed at 1.

Usage

RSAModelUttKLDivParamD4B.2(params, data)

Arguments

params

One value vector specifying the parameter to be optimized.

1. klValueFactor can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listenerpositive Care about learning about feature preferences of the listener

negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses RSAModelUttKLDiv_4params.

Value

RSAModelUttKLDiv_3params

Main cost function for three parameter optimization for the utterance choice experiments. Optimizing softness, non-obedience and klValue-Factor.

Description

Full-RSA

Actual RSA model Kullback-Leibler divergence determination for the utterance choice experiments.

Softness, non-obedience and klValueFactor are optimized.

Usage

RSAModelUttKLDiv_3params(data, par1, par2, par3)

Arguments

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

par1

softness parameter A parameter value between [0,infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

par2

non-obedience parameter Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks red objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

par3

klValueFactor A parameter that can be negative, 0 or positive (Here it is set to = 1):

zero Don't care about learning about the feature preferences of the listenerpositive Care about learning about the feature preferences of the listenernegative Trying to pick non-ambiguous utterances

Details

This function uses getBestInfGainUttPreferences.

And is used by RSAModelUttKLDivParamA,

RSAModelUttKLDivParamB,

RSAModelUttKLDivParamC.

RSAModelUttKLDivParamBC,

RSAModelUttKLDivParamAC,

RSAModelUttKLDivParamAB,

RSAModelUttKLDivParamABC.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

RSAModelUttKLDiv_4params

Main cost function for four parameter optimization for the utterance choice experiments. Optimizing softness, non-obedience, alpha and klValueFactor.

Description

Full-RSA

The actual RSA model Kullback-Leibler divergence determination for utterance choice experiments.

Softness, non-obedience, alpha and klValueFactor are optimized.

Usage

RSAModelUttKLDiv_4params(data, par1, par2, par3, par4)

Arguments

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUtt0ptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27. 2:OC2 Object 2. A value between 1 and 27. 3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

softness parameter A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers red objects, she will always pick the red object in the

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

par1

par2 **non-obedience parameter** Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick green, blue or red objects even if the

utterance is "red".

alpha parameter A parameter value between 0 and 1.

This parameter is an exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object

right.

par4 klValueFactor can be negative, 0 or positive:

> zero Don't care about learning about the feature preferences of the listener positive Care about learning about the feature preferences of the listener negative Trying to pick non-ambiguous utterances

Details

par3

This function uses getBestInfGainUttPreferences.

And is used by

RSAModelUttKLDivParamD4,

RSAModelUttKLDivParamD4A.2,

RSAModelUttKLDivParamD4B.2,

RSAModelUttKLDivParamD4AB.2,

RSAModelUttKLDivParamAD4,

RSAModelUttKLDivParamBD4,

RSAModelUttKLDivParamAD4B.2,

RSAModelUttKLDivParamBD4A.2,

RSAModelUttKLDivParamCD4,

RSAModelUttKLDivParamBCD4,

RSAModelUttKLDivParamACD4,

RSAModelUttKLDivParamABD4,

RSAModelUttKLDivParamABCD4.

Value

```
simpleBestInfGainUtterance
```

Best information gain utterances

Description

Simple RSA

The ultimate function that determines the utterance preferences of a speaker, who wants to learn about the listener's preferences. The speaker considers all relevant utterances given the currentObjects. He also considers all prior feature value preferences (of the listener) and all possible object choices.

NOTE: This can be manipulated to make the speaker focus on one particular feature type preference by setting the other feature value preferences to zero!

The function infers the resulting posterior feature value preferences of the listener in the particular scenario. It computes the Kullback-Leibler divergence between the expected prior and inferred posterior feature value preferences and finally determines the utility value for the considered utterance in the imagined scenario, adding this utility to all scenarios for each considered utterance.

The utility is determined as the expected information gain between prior and posterior of the determined listener's object preferences.

Usage

```
simpleBestInfGainUtterance(
  preferencesPrior,
  validUtterances,
  currentObjects,
  uttToObjProbs,
  objectPreferenceSoftPriors,
  klValueFactor = 1
)
```

Arguments

preferencesPrior

A vector of the length the validUtterances vector + 1.

It constructed as such:

preferencesPrior <-rep(1/(length(validUtterances)+1),length(validUtterances)+1).</pre>

The vector contains the probability mass over all feature values present in the scenario plus a "no preference" case.

Gives a prior preferences distribution over the feature values in the scene.

validUtterances

A vector of utterances that correspond to all feature values present in the current objects in the scene.

For example, it only makes sense to utter "red" in a scene if there are red objects

currentObjects A vector of three values in {1,...,27} specifying the target and the other two objects in the scene.

The target is the first object in the vector (index = 1).

uttToObjProbs

A matrix. The rows map each possible utterance that corresponds to each present feature value of the current objects. The columns represent the three objects in the scene.

This reflects the obedience-parameter and which objects match the respective utterance. The matrix shows the probability that a certain object is chosen following a certain utterance, that is valid in the scene. The number of rows of the matrix match the length of the validUtterances vector.

objectPreferenceSoftPriors

A list of preference priors for all valid utterances based on the object in the scene.

The list has as many rows as the length of the validUtterances vector + 1.

Each row in the list contains a vector of length 3, as there are three objects in the scene.

The extra row is for the case of no feature preferences whatsoever, i.e. uniform prior over all three objects in the scene.

klValueFactor

(here set to = 1) can be negative, 0 or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener **negative** Trying to pick non-ambiguous utterances

Value

A vector containing the normalized probability over utterances given the listener's object preference priors.

The utterance with the highest probability is the one that maximizes the information gain for the speaker.

The vector has the same length as the validUtterances vector.

Examples

```
allObjects[currentObjects,]
shape pattern color
[1,] "cloud" "solid" "blue"
[2,] "circle" "solid" "blue"
[3,] "square" "solid" "blue"

simpleBestInfGainUtterance(preferencesPrior, validUtterances, currentObjects, uttToObjProbs, objectPreferenceSoftPriors, klValueFactor = 1)

output:
[1] 0.0 0.0 0.0 0.5

Since the all the objects present in the scene are solid and blue, uttering solid or blue, would be optimal to learn something about the shape preferences of the listener.
This means the speaker would have the best information gain.
```

```
\verb|simpleBestInfGainUtteranceWithPrefPriorAll| \\
```

Iterative utterance choice function. Utterance preferences of a speaker, who wants to learn about the listener's preferences

Description

Simple RSA

This function calculates the utility of the utterances. The utterance with the highest utility delivers the best information gain for the speaker about the feature preferences of the listener.

This function is used in the iterative scenarios.

Usage

```
simpleBestInfGainUtteranceWithPrefPriorAll(
 preferencesPriorAll,
 validUtterances,
  currentObjects,
 uttToObjProbs,
  objectPreferenceSoftPriors,
 klValueFactor = 1,
  targetFeature,
  utterancePrior
)
```

Arguments

preferencesPriorAll

A vector of length 9.

validUtterances

A vector of utterances that correspond to all feature values present in the current objects in the scene.

For example, it only makes sense to utter "red" in a scene if there are red objects present.

currentObjects Vector of three values in {1,...,27} specifying the target and the other two objects.

The target is the first object in the vector (index = 1).

uttToObjProbs

A matrix. The rows map each possible utterance that corresponds to each present feature value of the current objects. The columns represent the three objects in the scene.

This reflects the obedience-parameter and which objects match the respective utterance. The matrix shows the probability that a certain object is chosen following a certain utterance, that is valid in the scene. The number of rows of the matrix match the length of the validUtterances vector.

objectPreferenceSoftPriors

A list of preference priors for all valid utterances based on the object in the

The list has as many rows as the length of the validUtterances vector + 1.

Each row in the list contains a vector of length 3, as there are three objects in the scene.

The extra row is for the case of no feature preferences whatsoever, i.e. uniform prior over all three objects in the scene.

klValueFactor (here set to = 1) can be negative, 0 or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener **negative** Trying to pick non-ambiguous utterances

targetFeature A value between 1 and 3, specifying which feature type-color, shape, or pattern-

is considered (for preferences).

utterancePrior A vector of the same length of the validUtterances vector. It contains zeros.

utterancePrior <-rep(0,length(validUtterances))</pre>

Details

iterative-version of simpleBestInfGainUtterance

Value

posterior preferences over feature values: 3 dimensional array for simulated preferences.

rows: utterances, columns: preferences, blocks: objects.

It contains the normalized probability over utterances given the listener's object preference priors.

U(utterances | listener's object preference priors).

0.66 0.33 0 0

Examples

[4,] 0.065

[5,]

```
simpleBestInfGainUtteranceWithPrefPriorAll(preferencesPriorAll,
validUtterances, currentObjects, uttToObjProbs,
objectPreferenceSoftPriors, klValueFactor = 1, targetFeature, utterancePrior)
output:
[[1]]
[1] 0 0 0 0.26 0.088 0.65
[[2]]
, , 1
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,]
     0
           0
                  0
                        0
                            0
                                 0
                                     0
[2,]
     0
            0
                  0
                        0
                            0
                                 0
                                      0
                                          0
                                               0
[3,]
     0
            0
                  0
                        0
                            0
                                 0
                                     0
                                          0
                                               0
          0.0065 0.33 0
[4,] 0.66
                            0
                                 0
                                     0
                                          0
                                              0
[5,] 0
           0
                  0
                        0
                            0
                                 0
                                     0
                                          0
                                              0
                 0.01 0
[6,] 0.98
           0.01
                                              0
, , 2
           [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
     [,1]
[1,]
           0
                  0
                        0
                            0
                                 0
                                      0
                                          0
     0
[2,]
      0
             0
                  0
                        0
                            0
                                 0
                                          0
                                               0
[3,]
      0
             0
                  0
                        0 0
                                 0
                                          0
                                              0
```

simpleListener 99

[6,]	0.01	0.98	0.01	0	0	0	0	0	0	
, , 3										
	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	
[1,]	0	0	0	0	0	0	0	0	0	
[2,]	0	0	0	0	0	0	0	0	0	
[3,]	0	0	0	0	0	0	0	0	0	
[4,]	0	0	0	0	0	0	0	0	0	
[5,]	0.33	0.33	0.33	0	0	0	0	0	0	
[6,]	0.0097	0.0097	0.98	0	0	0	0	0	0	

simpleListener

Simple Listener function

Description

Simple RSA

The simple listener function determines the listener's object choice given the present objects in the scene and her preferences.

P(obj | utt, listener's object preferences)

Usage

simpleListener(utterance, uttToObjProbs, listenerObjectPreferences)

Arguments

utterance

The uttered word by the speaker that the listener hears.

An index referring to one of the values in the vector validUtterances.

uttToObjProbs

A matrix. The rows map each possible utterance that corresponds to each present feature value of the current objects. The columns represent the three objects in

the scene.

This reflects the obedience-parameter and which objects match the respective utterance. The matrix shows the probability that a certain object is chosen following a certain utterance, that is valid in the scene. The number of rows of the matrix match the length of the validUtterances vector.

listenerObjectPreferences

One of the rows of the list of preference priors for all valid utterances based on the object in the scene.

The list has as many rows as the length of the validUtterances vector + 1.

Each row in the list contains a vector of length 3, as there are three objects in the scene.

The extra row is for the case of no feature preferences whatsoever, i.e. uniform prior over all three objects in the scene.

Value

A Vector of length 3. It includes the normalized probability of choosing each of the three objects in the scene, given the utterance and the listener's object preferences.

Examples

```
simpleListener(utterance, uttToObjProbs, listenerObjectPreferences)
output:
[1] 1 0 0
```

simplePragmaticSpeaker

Simple pragmatic speaker function

Description

Simple RSA

The simple pragmatic speaker considers all "imaginable" (i.e. implemented) preference distributions over objects of the listener. It starts with a prior assumption over the possible listener's preferences. It then infers the posterior over these preferences given the listener makes a particular object choice. P(listener's feature value preferences | utterance, object choice by the listener, prior over listener's feature value preferences)

Usage

```
simplePragmaticSpeaker(
  utterance,
 obj,
 preferencesPrior,
  validUtterances,
  currentObjects,
 uttToObjProbs,
 objectPreferenceSoftPriors
)
```

Arguments

utterance

The uttered word by the speaker that the listener hears.

An index referring to one of the values in the vector validUtterances.

obi

The object chosen by the listener. A value referring to the index 1,2 or 3.

preferencesPrior

A vector of length 9.

Probability mass over all feature values present in the scenario plus a "no preference" case.

Gives a prior preferences distribution over all (nine) feature values.

validUtterances

A vector of utterances that correspond to all feature values present in the current objects in the scene.

For example, it only makes sense to utter "red" in a scene if there are red objects

currentObjects A vector of three values in {1,...,27} specifying the target and the other two objects in the scene.

The target is the first object in the vector (index = 1).

uttToObjProbs

A matrix. The rows map each possible utterance that corresponds to each present feature value of the current objects. The columns represent the three objects in the scene.

This reflects the obedience-parameter and which objects match the respective utterance. The matrix shows the probability that a certain object is chosen following a certain utterance, that is valid in the scene. The number of rows of the matrix match the length of the validUtterances vector.

objectPreferenceSoftPriors

A list of preference priors for all valid utterances based on the object in the scene.

The list has as many rows as the length of the validUtterances vector + 1.

Each row in the list contains a vector of length 3, as there are three objects in the scene.

The extra row is for the case of no feature preferences whatsoever, i.e. uniform prior over all three objects in the scene.

Value

A vector with the same as the validUtterances vector.

Normalized posterior probability over preferences- given the utterance, the object choice by the listener, and prior over preferences of the listener.

Examples

```
simplePragmaticSpeaker(utterance, obj, preferencesPrior,
validUtterances, currentObjects, uttToObjProbs, objectPreferenceSoftPriors)
output:
[1] 0.17 0.17 0.17 0.17 0.17 0.17
```

simple Pragmatic Speaker With Pref Prior All

Simple pragmatic speaker with all prior preferences

Description

Simple RSA

The simple pragmatic speaker considers all "imaginable" (i.e. implemented) preference distributions over objects of the listener.

Starting with a prior assumption over the possible listener's preferences. It then infers the posterior over these preferences given the listener makes a particular object choice. P(listener's feature value preferences | utterance, object choice by the listener, prior over listener's feature value preferences).

Usage

```
simplePragmaticSpeakerWithPrefPriorAll(
  utterance,
  obj,
  preferencesPriorAll,
```

```
validUtterances,
  currentObjects,
 uttToObjProbs,
 objectPreferenceSoftPriors
)
```

Arguments

utterance

The uttered word by the speaker that the listener hears.

An index referring to one of the values in the vector validUtterances.

obj

The object chosen by the listener. A value referring to the index 1,2 or 3.

preferencesPriorAll

A vector of length 9.

Probability mass over all feature values.

Gives a prior preferences distribution over all (nine) feature values.

preferencesPriorAll <-rep(1/9,9)</pre>

validUtterances

A vector of utterances that correspond to all feature values present in the current objects in the scene.

For example, it only makes sense to utter "red" in a scene if there are red objects present.

currentObjects Vector of three values in {1,...,27} specifying the target and the other two objects.

The target is the first object in the vector (index = 1).

uttToObjProbs

A matrix. The rows map each possible utterance that corresponds to each present feature value of the current objects. The columns represent the three objects in the scene.

This reflects the obedience-parameter and which objects match the respective utterance. The matrix shows the probability that a certain object is chosen following a certain utterance, that is valid in the scene. The number of rows of the matrix match the length of the validUtterances vector.

objectPreferenceSoftPriors

A list of preference priors for all valid utterances based on the object in the

The list has as many rows as the length of the validUtterances vector + 1.

Each row in the list contains a vector of length 3, as there are three objects in the

The extra row is for the case of no feature preferences whatsoever, i.e. uniform prior over all three objects in the scene.

Value

A vector of length 9. It contains the normalized probability over preferences (priors).

Examples

```
simplePragmaticSpeakerWithPrefPriorAll(utterance, obj,
preferencesPriorAll, validUtterances,
currentObjects, uttToObjProbs, objectPreferenceSoftPriors)
output:
```

SimpleRSAModelUttKLDivFTFParamA

Feature Type Focus: Cost function for one parameter optimization for the utterance choice experiments. Optimizing softness. Non-obedience and klValueFactor are fixed.

Description

Simple RSA

Softness is optimized.

Non-obedience is fixed at 0. klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivFTFParamA(par, data)

Arguments

par

One value vector, which specifies one of three parameters to be optimized:

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses SimpleRSAModelUttKLDiv_3paramsFTF.

Value

SimpleRSAModelUttKLDivFTFParamA.2

Feature Type Focus: Cost function for one parameter optimization for the utterance choice experiments. Optimizing softness. Non-obedience and klValueFactor are fixed.

Description

Simple RSA

Softness is optimized.

Non-obedience is fixed at 0.2. klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivFTFParamA.2(par, data)

Arguments

par

One value vector specifying one of the three parameters to be optimized.

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses $SimpleRSAModelUttKLDiv_3paramsFTF$.

Value

SimpleRSAModelUttKLDivFTFParamAB

Feature Type Focus: Cost function for two parameter optimization for the utterance choice experiments. Optimizing softness and non-obedience. klValueFactor is fixed.

Description

Simple RSA

Softness and non-obedience are optimized.

klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivFTFParamAB(params, data)

Arguments

params

Two value vector specifying two of the three parameters to be optimized.

1. softPrefValue: A parameter value between [0,infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick green, blue or red objects.

2. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks red objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

data A matrix with data rows.

 $column \ structure: \ [1:0C1,0C2,0C3,4:numUtt0ptions,7-X:TurkerSliderValues]$

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses SimpleRSAModelUttKLDiv_3paramsFTF.

Value

SimpleRSAModelUttKLDivFTFParamABK

Feature Type Focus: Cost function for two parameter optimization for the utterance choice experiments. Optimizing softness, non-obedience and klValueFactor.

Description

Simple RSA

Softness, non-obedience and klValueFactor are optimized.

Usage

SimpleRSAModelUttKLDivFTFParamABK(params, data)

Arguments

params

Three value vector specifying three of the three parameters to be optimized.

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

2. non-obedience:This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

3. klValueFactor: A parameter that can be negative, 0 or positive: zero Don't care about learning about feature preferences of the listener positive Care about learning about feature preferences of the listener negative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses $SimpleRSAModelUttKLDiv_3paramsFTF$.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

SimpleRSAModelUttKLDivFTFParamAK

Feature Type Focus: Cost function for two parameter optimization for the utterance choice experiments. Optimizing softness and klValue-Factor. Non-obedience is fixed.

Description

Simple RSA

Softness and klValueFacto are optimized.

Non-obedience is fixed at 0.

Usage

SimpleRSAModelUttKLDivFTFParamAK(params, data)

Arguments

params

Two value vector specifying the two parameters to be optimized.

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

2. klValueFactor can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener **negative** Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses SimpleRSAModelUttKLDiv_3paramsFTF.

Value

SimpleRSAModelUttKLDivFTFParamAK.2

Feature Type Focus: Cost function for two parameter optimization for the utterance choice experiments. Optimizing softness and klValue-Factor. Non-obedience is fixed.

Description

Simple RSA

Softness and klValueFactor are optimized.

Non-obedience is fixed at 0.2.

Usage

SimpleRSAModelUttKLDivFTFParamAK.2(params, data)

Arguments

params

Two value vector specifying the two parameters to be optimized.

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

2. klValueFactor: A parameter can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener

negative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses SimpleRSAModelUttKLDiv_3paramsFTF.

Value

SimpleRSAModelUttKLDivFTFParamB

Feature Type Focus: Cost function for one parameter optimization for the utterance choice experiments. Optimizing non-obedience. Softness and klValueFactor are fixed.

Description

Simple RSA

Non-obedience is optimized.

Softness is fixed at 0. klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivFTFParamB(par, data)

Arguments

par

One value vector, which specifies one of three parameters to be optimized:

1. non-obedience, This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks red objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses SimpleRSAModelUttKLDiv_3paramsFTF.

Value

SimpleRSAModelUttKLDivFTFParamB.2

Feature Type Focus: Cost function for one parameter optimization for the utterance choice experiments. Optimizing non-obedience. Softness and klValueFactor are fixed.

Description

Simple RSA

Non-obedience is optimized.

Softness is fixed at 0.2. klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivFTFParamB.2(par, data)

Arguments

par

One value vector specifying one of the three parameters to be optimized.

1. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks red objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses SimpleRSAModelUttKLDiv_3paramsFTF.

Value

SimpleRSAModelUttKLDivFTFParamBK

Feature Type Focus: Cost function for two parameter optimization for the utterance choice experiments. Optimizing non-obedience and kl-ValueFactor. Softness is fixed.

Description

Simple RSA

Non-obedience and klValueFactor are optimized.

Softness is fixed at 0.

Usage

SimpleRSAModelUttKLDivFTFParamBK(params, data)

Arguments

params

Two value vector specifying the two parameters to be optimized.

1. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

2. klValueFactor can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener **negative** Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses SimpleRSAModelUttKLDiv_3paramsFTF.

Value

SimpleRSAModelUttKLDivFTFParamBK.2

Feature Type Focus: Cost function for two parameter optimization for the utterance choice experiments. Optimizing non-obedience and kl-ValueFactor. Softness is fixed.

Description

Simple RSA

Non-obedience and klValueFactor are optimized.

Softness is fixed at 0.2.

Usage

SimpleRSAModelUttKLDivFTFParamBK.2(params, data)

Arguments

params

Two value vector specifying two of the three parameters to be optimized.

1. non-obedience: Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

klValueFactor: A parameter that can be negative, 0 or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses SimpleRSAModelUttKLDiv_3paramsFTF.

Value

SimpleRSAModelUttKLDivFTFParamK

Feature Type Focus: Cost function for one parameter optimization for the utterance choice experiments. Optimizing klValueFactor. Softness and non-obedience are fixed.

Description

Simple RSA

klValueFactor is optimized.

Softness and non-obedience are fixed at 0.

Usage

SimpleRSAModelUttKLDivFTFParamK(par, data)

Arguments

par

One value vector, which specifies one of three parameters to be optimized:

klValueFactor: A parameter that can be negative, zero or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.2:OC2 Object 2. A value between 1 and 27.3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses $SimpleRSAModelUttKLDiv_3paramsFTF$.

Value

 ${\tt SimpleRSAModelUttKLDivFTFParamK.2.0}$

Feature Type Focus: Cost function for one parameter optimization for the utterance choice experiments. Optimizing klValueFactor. Softness and non-obedience are fixed.

Description

Simple RSA

klValueFactor is optimized.

Softness is fixed at 0.2. Non-obedience is fixed at 0.

Usage

SimpleRSAModelUttKLDivFTFParamK.2.0(par, data)

Arguments

par

One value vector specifying one of the three parameters to be optimized.

klValueFactor: A parameter that can be negative, 0 or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.2:OC2 Object 2. A value between 1 and 27.3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses $SimpleRSAModelUttKLDiv_3paramsFTF$.

Value

SimpleRSAModelUttKLDivFTFParamK.2.2

Feature Type Focus: Cost function for one parameter optimization for the utterance choice experiments. Optimizing klValueFactor. Softness and non-obedience are fixed.

Description

Simple RSA

klValueFactor is optimized.

Softness and non-obedience are fixed at 0.2.

Usage

SimpleRSAModelUttKLDivFTFParamK.2.2(par, data)

Arguments

par

One value vector specifying one of the three parameters to be optimized.

klValueFactor: A parameter that can be negative, 0 or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.2:OC2 Object 2. A value between 1 and 27.3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses $SimpleRSAModelUttKLDiv_3paramsFTF$.

Value

SimpleRSAModelUttKLDivParamA

Cost function for one parameter optimization for the utterance choice experiments. Optimizing softness. Non-obedience and klValueFactor are fixed.

Description

Simple RSA

Softness is optimized. Non-obedience is fixed at 0. klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivParamA(par, data)

Arguments

par

One value vector, which specifies one of three parameters to be optimized:

1. softPrefValue: A parameter value between [0,infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick green, blue or red objects.

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This is the non-iterative version of SimpleRSAModelUttKLDivParamA_iterative.

This function uses SimpleRSAModelUttKLDiv_3params.

Value

 ${\tt SimpleRSAModelUttKLDivParamA.2}$

Cost function for one parameter optimization for the utterance choice experiments. Optimizing softness. Non-obedience and klValueFactor are fixed.

Description

Simple RSA

Softness is optimized.

Non-obedience is fixed at 0.2.

klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivParamA.2(par, data)

Arguments

par

One value vector specifying one of the three parameters to be optimized.

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

 $This is the non-iterative \ version \ of \ {\tt SimpleRSAModelUttKLDivParamA.2_iterative}.$

This function uses SimpleRSAModelUttKLDiv_3params.

Value

 ${\tt SimpleRSAModelUttKLDivParamA.2_independent}$

Cost function for one parameter optimization for the utterance choice experiments. (independent and iterative setting) Optimizing softness. Non-obedience and klValueFactor are fixed.

Description

Simple RSA

Softness is optimized.

Non-obedience is fixed at 0.2. klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivParamA.2_independent(par, data)

Arguments

par

One value vector specifying one of the three parameters to be optimized.

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

 $This\ function\ uses\ {\tt SimpleRSAModelUttKLDiv_3params_independent}.$

Value

SimpleRSAModelUttKLDivParamA.2_iterative

Cost function for one parameter optimization for the utterance choice experiments. (iterative setting) Optimizing softness. Non-obedience and klValueFactor are fixed.

Description

Simple RSA

Softness is optimized.

Non-obedience is fixed at 0.2. klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivParamA.2_iterative(par, data)

Arguments

par

One value vector specifying one of the three parameters to be optimized.

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,6: picked utterance]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

6: picked utterance The utterance picked by the participant.

Details

This is the iterative version of SimpleRSAModelUttKLDivParamA. 2.

This function uses SimpleRSAModelUttKLDiv_3params_iterative.

Value

SimpleRSAModelUttKLDivParamAB

Cost function for two parameter optimization for the utterance choice experiments. Optimizing softness and non-obedience. klValueFactor is fixed.

Description

Simple RSA

Softness and non-obedience are optimized.

klValueFactor parameter is fixed at 1.

Usage

SimpleRSAModelUttKLDivParamAB(params, data)

Arguments

params

Two value vector specifying two of the three parameters to be optimized.

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

2. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This is the non-iterative version of $SimpleRSAModelUttKLDivParamAB_iterative$.

This function uses SimpleRSAModelUttKLDiv_3params.

Value

SimpleRSAModelUttKLDivParamABK

Cost function for three parameter optimization for the utterance choice experiments. Optimizing softness and non-obedience and klValueFactor.

Description

Simple RSA

Softness, non-obedience and klValueFactor are optimized.

Usage

SimpleRSAModelUttKLDivParamABK(params, data)

Arguments

params

Three value vector specifying three of the three parameters to be optimized.

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

2. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

klValueFactor: A parameter that can be negative, 0 or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This is the non-iterative version of SimpleRSAModelUttKLDivParamABK_iterative.

This function uses SimpleRSAModelUttKLDiv_3params.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

SimpleRSAModelUttKLDivParamABK_independent

Cost function for three parameter optimization for the utterance choice experiments. (independent and iterative setting) Optimizing softness, non-obedience and klValueFactor.

Description

Simple RSA

Softness, non-obedience and klValueFactor are optimized.

Usage

SimpleRSAModelUttKLDivParamABK_independent(params, data)

Arguments

params

Three value vector specifying three of the three parameters to be optimized.

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers red objects, she will always pick the red object in the

infinity: It is as likely for the listener to pick green, blue or red objects.

2. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick green, blue or red objects even if the utterance is "red".

3. klValueFactor: A parameter that can be negative, 0 or positive:

zero Don't care about learning about feature preferences of the listener positive Care about learning about feature preferences of the listener negative Trying to pick non-ambiguous utterances

A matrix with data rows. data

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

This function uses SimpleRSAModelUttKLDiv_3params_independent.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

SimpleRSAModelUttKLDivParamABK_iterative

Cost function for three parameter optimization for the utterance choice experiments. (iterative setting) Optimizing softness, non-obedience and klValueFactor.

Description

Simple RSA

Softness, non-obedience and klValueFactor are optimized.

Usage

SimpleRSAModelUttKLDivParamABK_iterative(params, data)

Arguments

params

Three value vector specifying three of the three parameters to be optimized.

1. softPrefValue: A parameter value between [0,infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

2. non-obedience:This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

klValueFactor: A parameter that can be negative, 0 or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,6: picked utterance]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

6: picked utterance The utterance picked by the participant.

This is the iterative version of SimpleRSAModelUttKLDivParamABK.

This function uses SimpleRSAModelUttKLDiv_3params_iterative.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

 $SimpleRSAModelUttKLDivParamAB_independent$

Cost function for two parameter optimization for the utterance choice experiments. (independent and iterative setting) Optimizing softness and non-obedience. klValueFactor is fixed.

Description

Simple RSA

Softness and non-obedience are optimized.

klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivParamAB_independent(params, data)

Arguments

params

Two value vector specifying two of the three parameters to be optimized.

1. softPrefValue: A parameter value between [0,infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

2. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

data A matrix with data rows.

 $column \ structure: \ [1:0C1,0C2,0C3,4:numUtt0ptions,7-X:TurkerSliderValues]$

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

This function uses SimpleRSAModelUttKLDiv_3params_independent.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

 ${\tt SimpleRSAModelUttKLDivParamAB_iterative}$

Cost function for two parameter optimization for the utterance choice experiments. (iterative setting) Optimizing softness and nonobedience. klValueFactor is fixed.

Description

Simple RSA

Softness and non-obedience are optimized.

klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivParamAB_iterative(params, data)

Arguments

params

Two value vector specifying two of the three parameters to be optimized.

1. softPrefValue: A parameter value between [0,infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

2. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,6: picked utterance]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

6: picked utterance The utterance picked by the participant.

This is the iterative version of SimpleRSAModelUttKLDivParamAB.

This function uses SimpleRSAModelUttKLDiv_3params_iterative.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

 ${\tt SimpleRSAModelUttKLDivParamAK}$

Cost function for two parameter optimization for the utterance choice experiments. Optimizing Softness and klValueFactor. Non-obedience is fixed.

Description

Simple RSA

Softness and klValueFactor are optimized.

Non-obedience parameter is fixed at 0.

Usage

SimpleRSAModelUttKLDivParamAK(params, data)

Arguments

params

Two value vector specifying the two parameters to be optimized.

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

2. klValueFactor: A parameter that can be negative, zero or positive: zero Don't care about learning about feature preferences of the listener positive Care about learning about feature preferences of the listener negative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

This is the non-iterative version of SimpleRSAModelUttKLDivParamAK_iterative.

This function uses SimpleRSAModelUttKLDiv_3params.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

 ${\tt SimpleRSAModelUttKLDivParamAK.2}$

Cost function for two parameter optimization for the utterance choice experiments. Optimizing softness and klValueFactor. Non-obedience is fixed.

Description

Simple RSA

Optimizing softness and klValueFactor.

Non-obedience is fixed at 0.2.

Usage

SimpleRSAModelUttKLDivParamAK.2(params, data)

Arguments

params

Two value vector specifying the two parameters to be optimized.

1. softPrefValue: A parameter value between [0,infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

2. klValueFactor: A parameter can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener **negative** Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

 $This is the non-iterative \ version \ of \ {\tt SimpleRSAModelUttKLDivParamAK.2_iterative}.$

This function uses SimpleRSAModelUttKLDiv_3params.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

SimpleRSAModelUttKLDivParamAK.2_independent

Cost function for two parameter optimization for the utterance choice experiments. (independent and iterative setting) Optimizing softness and klValueFactor. Non-obedience is fixed.

Description

Simple RSA

Softness and klValueFactor are optimized.

Non-obedience is fixed at 0.2.

Usage

SimpleRSAModelUttKLDivParamAK.2_independent(params, data)

Arguments

params

Two value vector specifying the two parameters to be optimized.

1. softPrefValue: A parameter value between [0,infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

klValueFactor: A parameter that can be negative, zero or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses $SimpleRSAModelUttKLDiv_3params_independent$.

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

SimpleRSAModelUttKLDivParamAK.2_iterative

Cost function for two parameter optimization for the utterance choice experiments. (iterative setting) Optimizing softness and klValueFactor. Non-obedience is fixed.

Description

Simple RSA

Softness and klValueFactor are optimized.

Non-obedience is fixed at 0.2.

Usage

SimpleRSAModelUttKLDivParamAK.2_iterative(params, data)

Arguments

params

Two value vector specifying the two parameters to be optimized.

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

2. klValueFactor can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener **negative** Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUtt0ptions,6: picked utterance]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

6: picked utterance The utterance picked by the participant.

Details

This is the iterative version of SimpleRSAModelUttKLDivParamAK.2.

 $This \ function \ uses \ {\tt SimpleRSAModelUttKLDiv_3params_iterative}.$

Value

SimpleRSAModelUttKLDivParamAK_independent

Cost function for two parameter optimization for the utterance choice experiments. (independent and iterative setting) Optimizing softness and klValueFactor. Non-obedience is fixed.

Description

Simple RSA

Softness and klValueFactor are optimized.

Non-obedience is fixed at 0.

Usage

SimpleRSAModelUttKLDivParamAK_independent(params, data)

Arguments

params

Two value vector specifying the two parameters to be optimized.

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

klValueFactor: A parameter that can be negative, zero or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses SimpleRSAModelUttKLDiv_3params_independent.

Value

 ${\tt SimpleRSAModelUttKLDivParamAK_iterative}$

Cost function for two parameter optimization for the utterance choice experiments. (iterative setting) Optimizing softness and klValueFactor. Non-obedience is fixed.

Description

Simple RSA

Softness and klValueFactor are optimized.

Non-obedience is fixed at 0.

Usage

SimpleRSAModelUttKLDivParamAK_iterative(params, data)

Arguments

params

Two value vector specifying the two parameters to be optimized.

- 1. softPrefValue, i.e., the strength of preferring one entity over others.
- klValueFactor can be negative, zero or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUtt0ptions,6: picked utterance]

1:OC1 Object 1. A value between 1 and 27.2:OC2 Object 2. A value between 1 and 27.3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

6: picked utterance The utterance picked by the participant.

Details

This is the iterative version of SimpleRSAModelUttKLDivParamAK

This function uses SimpleRSAModelUttKLDiv_3params_iterative.

Value

 $SimpleRSAModelUttKLDivParamA_independent$

Cost function for one parameter optimization for the utterance choice experiments. (independent and iterative setting) Optimizing softness. Non-obedience and klValueFactor are fixed.

Description

Simple RSA

Softness is optimized.

Non-obedience is fixed at 0. klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivParamA_independent(par, data)

Arguments

par

One value vector, which specifies one of three parameters to be optimized:

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses SimpleRSAModelUttKLDiv_3params_independent.

Value

SimpleRSAModelUttKLDivParamA_iterative

Cost function for one parameter optimization for the utterance choice experiments. (iterative setting) Optimizing softness. Non-obedience and klValueFactor are fixed.

Description

Simple RSA

Softness is optimized.

Non-obedience is fixed at 0. klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivParamA_iterative(par, data)

Arguments

par

One value vector, which specifies one of three parameters to be optimized:

1. softPrefValue: A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,6: picked utterance]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

6: picked utterance The utterance picked by the participant.

Details

This is the iterative version of SimpleRSAModelUttKLDivParamA.

 $This\ function\ uses\ {\tt SimpleRSAModelUttKLDiv_3params_iterative}.$

Value

SimpleRSAModelUttKLDivParamB

Cost function for one parameter optimization for the utterance choice experiments. Optimizing non-obedience. Non-obedience and klValue-Factor are fixed.

Description

Simple RSA

Non-obedience is optimized.

softness parameter is fixed at 0. klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivParamB(par, data)

Arguments

par

One value vector, which specifies one of three parameters to be optimized:

1. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This is the non-iterative version of SimpleRSAModelUttKLDivParamB_iterative.

This function uses SimpleRSAModelUttKLDiv_3params.

Value

SimpleRSAModelUttKLDivParamB.2

Cost function for one parameter optimization for the utterance choice experiments. Optimizing non-obedience. Softness and klValueFactor are fixed.

Description

Simple RSA

Non-obedience is optimized.

Softness is fixed at 0.2.

klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivParamB.2(par, data)

Arguments

par

One value vector specifying one of the three parameters to be optimized.

1. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

 $This is the {\it non-iterative} \ version \ of \ {\it SimpleRSAModelUttKLDivParamB.2_iterative}$

This function uses SimpleRSAModelUttKLDiv_3params.

Value

 ${\tt SimpleRSAModelUttKLDivParamB.2_independent}$

Cost function for one parameter optimization for the utterance choice experiments. (independent and iterative setting) Optimizing non-obedience. Softness and klValueFactor are fixed.

Description

Simple RSA

Non-obedience is optimized.

Softness is fixed at 0.2. klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivParamB.2_independent(par, data)

Arguments

par

One value vector specifying one of the three parameters to be optimized.

1. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks red objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses $SimpleRSAModelUttKLDiv_3params_independent$.

Value

SimpleRSAModelUttKLDivParamB.2_iterative

Cost function for one parameter optimization for the utterance choice experiments. (iterative setting) Optimizing non-obedience. Softness and klValueFactor are fixed.

Description

Simple RSA

Non-obedience is optimized.

Softness is fixed at 0.2 klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivParamB.2_iterative(par, data)

Arguments

par

One value vector specifying one of the three parameters to be optimized.

1. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks red objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,6: picked utterance]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

6: picked utterance The utterance picked by the participant.

Details

This is the iterative version of SimpleRSAModelUttKLDivParamB.2

This function uses SimpleRSAModelUttKLDiv_3params_iterative.

Value

SimpleRSAModelUttKLDivParamBK

Cost function for two parameter optimization for the utterance choice experiments. Optimizing non-obedience and klValueFactor. Softness is fixed.

Description

Simple RSA

Non-obedience and klValueFactor are optimized.

Softness parameter is fixed at 0.

Usage

SimpleRSAModelUttKLDivParamBK(params, data)

Arguments

params

Two value vector specifying the two parameters to be optimized.

1. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "*red*". **infinity:** Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "*red*".

klValueFactor: A parameter that can be negative, zero or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

 $This is the non-iterative \ version \ of \ \verb|SimpleRSAModelUttKLDivParamBK_iterative|.$

This function uses SimpleRSAModelUttKLDiv_3params.

Value

SimpleRSAModelUttKLDivParamBK.2

Cost function for two parameter optimization for the utterance choice experiments. Optimizing non-obedience and klValueFactor. Softness is fixed.

Description

Simple RSA

Non-obedience and klValueFactor are optimized. Softness is fixed at 0.2.

Usage

SimpleRSAModelUttKLDivParamBK.2(params, data)

Arguments

params

Two value vector specifying two of the three parameters to be optimized.

1. non-obedience: Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red". **infinity:** Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

2. klValueFactor: A parameter that can be negative, 0 or positive: zero Don't care about learning about feature preferences of the listener positive Care about learning about feature preferences of the listener negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

 $column\ structure:\ [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]$

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This is the non-iterative version of SimpleRSAModelUttKLDivParamBK.2_iterative.

This function uses SimpleRSAModelUttKLDiv_3params.

Value

SimpleRSAModelUttKLDivParamBK.2_independent

Cost function for two parameter optimization for the utterance choice experiments. (independent and iterative setting) Optimizing non-obedience and klValueFactor. Softness is fixed.

Description

Simple RSA

Non-obedience and klValueFactor are optimized.

Softness is fixed at 0.2.

Usage

SimpleRSAModelUttKLDivParamBK.2_independent(params, data)

Arguments

params

Two value vector specifying two of the three parameters to be optimized.

1. non-obedience: Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

klValueFactor: A parameter that can be negative, 0 or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses SimpleRSAModelUttKLDiv_3params_independent.

Value

SimpleRSAModelUttKLDivParamBK.2_iterative

Cost function for two parameter optimization for the utterance choice experiments. (iterative setting) Optimizing non-obedience and klValueFactor. Softness is fixed.

Description

Simple RSA

Non-obedience and klValueFactor are optimized.

Softness is fixed at 0.2.

Usage

SimpleRSAModelUttKLDivParamBK.2_iterative(params, data)

Arguments

params

Two value vector specifying two of the three parameters to be optimized.

1. non-obedience: Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "*red*". **infinity:** Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "*red*".

klValueFactor: A parameter that can be negative, 0 or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,6: picked utterance]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

6: picked utterance The utterance picked by the participant.

Details

This is the iterative version of SimpleRSAModelUttKLDivParamBK.2.

This function uses SimpleRSAModelUttKLDiv_3params_iterative.

Value

SimpleRSAModelUttKLDivParamBK_independent

Cost function for two parameter optimization for the utterance choice experiments. (independent and iterative setting) Optimizing non-obedience and klValueFactor. Softness is fixed.

Description

Simple RSA

Non-obedience and klValueFactor is optimized.

Softness is fixed at 0.

Usage

SimpleRSAModelUttKLDivParamBK_independent(params, data)

Arguments

params

Two value vector specifying the two parameters to be optimized.

1. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

2. klValueFactor: A parameter that can be negative, zero or positive: zero Don't care about learning about feature preferences of the listener positive Care about learning about feature preferences of the listener negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses SimpleRSAModelUttKLDiv_3params_independent.

Value

SimpleRSAModelUttKLDivParamBK_iterative

Cost function for two parameter optimization for the utterance choice experiments. (iterative setting) Optimizing non-obedience and klValueFactor. Softness is fixed.

Description

Simple RSA

Non-obedience and klValueFactor are optimized.

Softness is fixed at 0.

Usage

SimpleRSAModelUttKLDivParamBK_iterative(params, data)

Arguments

params

Two value vector specifying the two parameters to be optimized.

1. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red". **infinity:** Listener as likely to pick *green*, *blue* or *red* objects even if the

utterance is "red".

2. klValueFactor can be negative, zero or positive:

zero Don't care about learning about feature preferences of the listener **positive** Care about learning about feature preferences of the listener **negative** Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,6: picked utterance]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

6: picked utterance The utterance picked by the participant.

Details

 $This is the iterative \ version \ of \ {\tt SimpleRSAModelUttKLDivParamBK}$

This function uses SimpleRSAModelUttKLDiv_3params_iterative.

Value

SimpleRSAModelUttKLDivParamB_independent

Cost function for one parameter optimization for the utterance choice experiments. (independent and iterative setting) Optimizing non-obedience. Softness and klValueFactor are fixed.

Description

Simple RSA

Non-obedience is optimized.

Softness is fixed at 0. klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivParamB_independent(par, data)

Arguments

par

One value vector, which specifies one of three parameters to be optimized:

1. non-obedience: This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks red objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This function uses SimpleRSAModelUttKLDiv_3params_independent.

Value

SimpleRSAModelUttKLDivParamB_iterative

Cost function for one parameter optimization for the utterance choice experiments. (iterative setting) Optimizing non-obedience. Softness and klValueFactor are fixed.

Description

Simple RSA

Non-obedience is optimized.

Softness is fixed at 0. klValueFactor is fixed at 1.

Usage

SimpleRSAModelUttKLDivParamB_iterative(par, data)

Arguments

par

One value vector, which specifies one of three parameters to be optimized:

1. non-obedience, This parameter determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks red objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,6: picked utterance]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

6: picked utterance The utterance picked by the participant.

Details

This is the iterative version of SimpleRSAModelUttKLDivParamB

This function uses SimpleRSAModelUttKLDiv_3params_iterative.

Value

SimpleRSAModelUttKLDivParamK

Cost function for one parameter optimization for the utterance choice experiments. Optimizing klValueFactor. Softness and non-obedience are fixed.

Description

Simple RSA

klValueFactor is optimized.

Softness and non-obedience parameter are fixed at 0.

Usage

SimpleRSAModelUttKLDivParamK(par, data)

Arguments

one value vector, which specifies one of three parameters to be optimized:

klValueFactor: A parameter that can be negative, zero or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.2:OC2 Object 2. A value between 1 and 27.3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This is the non-iterative version of SimpleRSAModelUttKLDivParamK_iterative.

This function uses SimpleRSAModelUttKLDiv_3params.

Value

 ${\tt SimpleRSAModelUttKLDivParamK.2.0}$

Cost function for one parameter optimization for the utterance choice experiments. Optimizing klValueFactor. Softness and non-obedience are fixed.

Description

Simple RSA

klValueFactor is optimized.

Softness is fixed at 0.2. Non-obedience is fixed at 0.

Usage

SimpleRSAModelUttKLDivParamK.2.0(par, data)

Arguments

par One value vector specifying one of the three parameters to be optimized.

klValueFactor: A parameter that can be negative, 0 or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.2:OC2 Object 2. A value between 1 and 27.3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This is the non-iterative version of SimpleRSAModelUttKLDivParamK.2.0_iterative.

This function uses SimpleRSAModelUttKLDiv_3params.

Value

 ${\tt SimpleRSAModelUttKLDivParamK.2.0_independent}$

Cost function for one parameter optimization for the utterance choice experiments. (independent and iterative setting) Optimizing klValue-Factor. Softness and non-obedience are fixed.

Description

Simple RSA

klValueFactor is optimized.

Softness is fixed at 0.2. Non-obedience is fixed at 0.

Usage

SimpleRSAModelUttKLDivParamK.2.0_independent(par, data)

Arguments

par

One value vector specifying one of the three parameters to be optimized:

klValueFactor: A parameter that can be negative, 0 or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.2:OC2 Object 2. A value between 1 and 27.3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

 $This \ function \ uses \ {\tt SimpleRSAModelUttKLDiv_3params_independent}.$

Value

SimpleRSAModelUttKLDivParamK.2.0_iterative

Cost function for one parameter optimization for the utterance choice experiments. (iterative setting) Optimizing klValueFactor. Softness and non-obedience are fixed.

Description

Simple RSA

klValueFactor is optimized.

Softness is fixed at 0.2. Non-obedience is fixed at 0.

Usage

SimpleRSAModelUttKLDivParamK.2.0_iterative(par, data)

Arguments

par One value vector specifying one of the three parameters to be optimized.

klValueFactor: A parameter that can be negative, 0 or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,6: picked utterance]

1:OC1 Object 1. A value between 1 and 27.2:OC2 Object 2. A value between 1 and 27.3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

6: picked utterance The utterance picked by the participant.

Details

This is the iterative version of SimpleRSAModelUttKLDivParamK.2.0.

 $This \ function \ uses \ {\tt SimpleRSAModelUttKLDiv_3params_iterative}.$

Value

SimpleRSAModelUttKLDivParamK.2.2

Cost function for one parameter optimization for the utterance choice experiments. Optimizing klValueFactor. Softness and non-obedience are fixed.

Description

Simple RSA

klValueFactor is optimized.

Softness and klValueFactor are fixed at 0.2.

Usage

SimpleRSAModelUttKLDivParamK.2.2(par, data)

Arguments

par One value vector specifying one of the three parameters to be optimized.

klValueFactor: A parameter that can be negative, 0 or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.2:OC2 Object 2. A value between 1 and 27.3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

This is the non-iterative version of SimpleRSAModelUttKLDivParamK.2.2_iterative

This function uses SimpleRSAModelUttKLDiv_3params.

Value

SimpleRSAModelUttKLDivParamK.2.2_independent

Cost function for one parameter optimization for the utterance choice experiments. (independent and iterative setting) Optimizing klValue-Factor. Softness and non-obedience are fixed.

Description

Simple RSA

klValueFactor is optimized.

Softness and non-obedience are fixed at 0.2.

Usage

SimpleRSAModelUttKLDivParamK.2.2_independent(par, data)

Arguments

par

One value vector specifying one of the three parameters to be optimized.

klValueFactor: A parameter that can be negative, 0 or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.2:OC2 Object 2. A value between 1 and 27.3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

 $This \ function \ uses \ {\tt SimpleRSAModelUttKLDiv_3params_independent}.$

Value

SimpleRSAModelUttKLDivParamK.2.2_iterative

Cost function for one parameter optimization for the utterance choice experiments. (iterative setting) Optimizing klValueFactor. Softness and non-obedience are fixed.

Description

Simple RSA

klValueFactor is optimized.

Softness and non-obedience are fixed at 0.2.

Usage

SimpleRSAModelUttKLDivParamK.2.2_iterative(par, data)

Arguments

par

One value vector specifying one of the three parameters to be optimized.

klValueFactor: A parameter that can be negative, 0 or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,6: picked utterance]

1:OC1 Object 1. A value between 1 and 27.2:OC2 Object 2. A value between 1 and 27.3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

6: picked utterance The utterance picked by the participant.

Details

This is the iterative version of SimpleRSAModelUttKLDivParamK.2.2

 $This \ function \ uses \ {\tt SimpleRSAModelUttKLDiv_3params_iterative}.$

Value

SimpleRSAModelUttKLDivParamK_independent

Cost function for one parameter optimization for the utterance choice experiments. (independent and iterative setting) Optimizing klValue-Factor. Softness and non-obedience are fixed.

Description

Simple RSA

klValueFactor is optimized.

Softness and non-obedience are fixed at 0.

Usage

SimpleRSAModelUttKLDivParamK_independent(par, data)

Arguments

par

One value vector specifying one of the three parameters to be optimized:

klValueFactor: A parameter that can be negative, 0 or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.2:OC2 Object 2. A value between 1 and 27.3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

Details

 $This \ function \ uses \ {\tt SimpleRSAModelUttKLDiv_3params_independent}.$

Value

 ${\tt SimpleRSAModelUttKLDivParamK_iterative}$

Cost function for one parameter optimization for the utterance choice experiments. (iterative setting) Optimizing klValueFactor. Softness and non-obedience are fixed.

Description

Simple RSA

klValueFactor is optimized.

Softness and non-obedience are fixed at 0.

Usage

SimpleRSAModelUttKLDivParamK_iterative(par, data)

Arguments

par

One value vector, which specifies one of three parameters to be optimized:

klValueFactor: A parameter that can be negative, zero or positive:
 zero Don't care about learning about feature preferences of the listener
 positive Care about learning about feature preferences of the listener
 negative Trying to pick non-ambiguous utterances

data

A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,6: picked utterance]

1:OC1 Object 1. A value between 1 and 27.2:OC2 Object 2. A value between 1 and 27.3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

6: picked utterance The utterance picked by the participant.

Details

This is the iterative version of SimpleRSAModelUttKLDivParamK.

 $This \ function \ uses \ {\tt SimpleRSAModelUttKLDiv_3params_iterative}.$

Value

SimpleRSAModelUttKLDiv_3params

Main cost function for three parameter optimization for the utterance choice experiments. Optimizing softness, non-obedience and klValue-Factor.

Description

Simple RSA

Actual RSA model Kullback-Leibler divergence determination for the utterance choice experiments.

Softness, non-obedience and klValueFactor are optimized.

Usage

SimpleRSAModelUttKLDiv_3params(data, par1, par2, par3)

Arguments

par1

par2

data A matrix with data rows.

column structure:

[1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27. **2:OC2** Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

softness parameter A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

non-obedience parameter Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

par3 **klValueFactor** A parameter that can be negative, 0 or positive:

zero Don't care about learning about the feature preferences of the listener **positive** Care about learning about the feature preferences of the listener **negative** Trying to pick non-ambiguous utterances

Details

```
This function is used in
SimpleRSAModelUttKLDivParamA,
SimpleRSAModelUttKLDivParamB,
SimpleRSAModelUttKLDivParamK,
SimpleRSAModelUttKLDivParamBK,
SimpleRSAModelUttKLDivParamAK,
SimpleRSAModelUttKLDivParamAK.2,
SimpleRSAModelUttKLDivParamA.2,
SimpleRSAModelUttKLDivParamB.2,
SimpleRSAModelUttKLDivParamK.2.2,
SimpleRSAModelUttKLDivParamK.2.0,
SimpleRSAModelUttKLDivParamBK.2,
SimpleRSAModelUttKLDivParamBK.2,
SimpleRSAModelUttKLDivParamABK.
```

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

```
{\tt SimpleRSAModelUttKLDiv\_3paramsFTF}
```

FeatureTypeFocus: Main cost function for three parameter optimization for the utterance choice experiments. Optimizing softness, non-obedience and klValueFactor.

Description

Simple RSA

Actual RSA model Kullback-Leibler divergence determination for the utterance choice experi-

Softness, non-obedience and klValueFactor are optimized.

Usage

```
SimpleRSAModelUttKLDiv_3paramsFTF(data, par1, par2, par3)
```

Arguments

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUttOptions,7-X:TurkerSliderValues]

1:OC1 Object 1. A value between 1 and 27.2:OC2 Object 2. A value between 1 and 27.3:OC3 Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

7-X:TurkerSliderValues These columns contain the participants' slider values.

par1 softness parameter A parameter value between [0, infinity) (The larger the value the higher the tendency towards uniform liking).

Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers *red* objects, she will always pick the *red* object in the scene.

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

non-obedience parameter Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

par3 **klValueFactor** A parameter that can be negative, 0 or positive:

zero Don't care about learning about the feature preferences of the listener **positive** Care about learning about the feature preferences of the listener **negative** Trying to pick non-ambiguous utterances

Details

par2

This function uses getSimpleBestInfGainUttPreferencesFTF.

This function is used in SimpleRSAModelUttKLDivFTFParamA,

SimpleRSAModelUttKLDivFTFParamB,

SimpleRSAModelUttKLDivFTFParamK,

SimpleRSAModelUttKLDivFTFParamBK,

SimpleRSAModelUttKLDivFTFParamAK,

SimpleRSAModelUttKLDivFTFParamAK.2,

SimpleRSAModelUttKLDivFTFParamA.2,

SimpleRSAModelUttKLDivFTFParamB.2,

SimpleRSAModelUttKLDivFTFParamK.2.2,

SimpleRSAModelUttKLDivFTFParamK.2.0,

SimpleRSAModelUttKLDivFTFParamBK.2,

SimpleRSAModelUttKLDivFTFParamAK.2,

SimpleRSAModelUttKLDivFTFParamAB,

 ${\tt SimpleRSAModelUttKLDivFTFParamABK}.$

Value

 $SimpleRSAModelUttKLDiv_3params_independent$

Main cost function for three parameter optimization for the utterance choice experiments. Optimizing softness, non-obedience and klValue-Factor. (independent and iterative setting)

Description

Simple RSA

Actual RSA model Kullback-Leibler divergence determination for utterance choice experiments. Softness, non-obedience and klValueFactor are optimized.

Usage

SimpleRSAModelUttKLDiv_3params_independent(data, par1, par2, par3)

Arguments

rguments		
data	A matrix with data rows.	
	<pre>column structure: [1:0C1,0C2,0C3,4:numUttOptions,6: picked utterance]</pre>	
	1:OC1 Object 1. A value between 1 and 27.	
	2:OC2 Object 2. A value between 1 and 27.	
	3:OC3 Object 3. A value between 1 and 27.	
	4:numUttOptions The number of valid utterances in the scene.	
	6: picked utterance The utterance picked by the participant.	
par1	softness parameter Specifies how much actual feature priorities come into play in the object choice (The larger the higher the tendency towards uniform liking).	
par2	non-obedience parameter The extent to which the instruction of the speaker is obeyed by the listener. (0 = full obedience, infinity = full instruction ignorance).	
par3	klValueFactor A parameter that can be negative, 0 or positive:	
	zero Don't care about learning about the feature preferences of the listener	
	positive Care about learning about the feature preferences of the listener	

negative Trying to pick non-ambiguous utterances

Details

 $This \ function \ uses \ {\tt getSimpleBestInfGainUttPreferencesIterative}.$

This function is used in

SimpleRSAModelUttKLDivParamA_independent, SimpleRSAModelUttKLDivParamB_independent, SimpleRSAModelUttKLDivParamK_independent, SimpleRSAModelUttKLDivParamBK_independent, SimpleRSAModelUttKLDivParamAK_independent, SimpleRSAModelUttKLDivParamAK.2_independent,

```
SimpleRSAModelUttKLDivParamA.2_independent,
SimpleRSAModelUttKLDivParamB.2_independent,
SimpleRSAModelUttKLDivParamK.2.2_independent,
SimpleRSAModelUttKLDivParamK.2.0_independent,
SimpleRSAModelUttKLDivParamBK.2_independent,
SimpleRSAModelUttKLDivParamAB_independent,
{\tt SimpleRSAModelUttKLDivParamABK\_independent}.
```

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

SimpleRSAModelUttKLDiv_3params_iterative

Main cost function for three parameter optimization (iterative setting). Optimizing softness, non-obedience and klValueFactor.

Description

Simple RSA

Actual RSA model Kullback-Leibler divergence determination for the utterance choice experiments.

Softness, non-obedience and klValueFactor are optimized.

Usage

```
SimpleRSAModelUttKLDiv_3params_iterative(data, par1, par2, par3)
```

Arguments

data A matrix with data rows.

column structure: [1:0C1,0C2,0C3,4:numUtt0ptions,6: picked utterance]

1:OC1 Object 1. A value between 1 and 27. 2:OC2 Object 2. A value between 1 and 27. **3:OC3** Object 3. A value between 1 and 27.

4:numUttOptions The number of valid utterances in the scene.

6: picked utterance The utterance picked by the participant.

softness parameter A parameter value between [0, infinity) (The larger the par1

value the higher the tendency towards uniform liking). Value reflects how categorical the listener's preferences are:

0: The listener always picks her preferred object.

If the listener prefers red objects, she will always pick the red object in the

infinity: It is as likely for the listener to pick *green*, *blue* or *red* objects.

160 speaker

par2 **non-obedience parameter** Determines the extent to which the instruction of the speaker is obeyed by the listener.

(0 = full obedience, infinity = full instruction ignorance).

Example:

0: Listener always picks *red* objects following the utterance "red".

infinity: Listener as likely to pick *green*, *blue* or *red* objects even if the utterance is "red".

par3 **klValueFactor** A parameter that can be negative, 0 or positive:

zero Don't care about learning about the feature preferences of the listener **positive** Care about learning about the feature preferences of the listener **negative** Trying to pick non-ambiguous utterances

Details

This is the iterative version of SimpleRSAModelUttKLDiv_3params.

This function is used in

SimpleRSAModelUttKLDivParamA_iterative,

SimpleRSAModelUttKLDivParamB_iterative,

SimpleRSAModelUttKLDivParamK_iterative,

SimpleRSAModelUttKLDivParamBK_iterative,

SimpleRSAModelUttKLDivParamAK_iterative,

SimpleRSAModelUttKLDivParamAK.2_iterative,

SimpleRSAModelUttKLDivParamA.2_iterative,

SimpleRSAModelUttKLDivParamK.2.2_iterative,

SimpleRSAModelUttKLDivParamK.2.0_iterative,

SimpleRSAModelUttKLDivParamBK.2_iterative,

SimpleRSAModelUttKLDivParamAB_iterative,

 $SimpleRSAModelUttKLDivParamABK_iterative.$

Value

Minimized Kullback-Leibler divergence and the optimal parameters.

speaker

Speaker function

Description

Full-RSA

This function determines the utterances that increase the likelihood of the listener picking the object the speaker is referring to.

Usage

```
speaker(obj, listenerObjectPreferences, validUtterances, uttToObjProbs, alpha)
```

speaker 161

Arguments

obj

A vector of three values in $\{1, \ldots, 27\}$ specifying the target and the other two objects in the scene.

The target is the first object in the vector (index = 1).

listenerObjectPreferences

One of the rows of the list of preference priors for all valid utterances based on the object in the scene.

The list has as many rows as the length of the validUtterances vector + 1.

Each row in the list contains a vector of length 3, as there are three objects in the scene

The extra row is for the case of no feature preferences whatsoever, i.e. uniform prior over all three objects in the scene.

validUtterances

A vector of utterances that correspond to all feature values present in the current objects in the scene.

For example, it only makes sense to utter "red" in a scene if there are red objects present.

uttToObjProbs

A matrix. The rows map each possible utterance that corresponds to each present feature value of the current objects. The columns represent the three objects in the scene.

This reflects the obedience-parameter and which objects match the respective utterance. The matrix shows the probability that a certain object is chosen following a certain utterance, that is valid in the scene. The number of rows of the matrix match the length of the validUtterances vector.

alpha

A parameter between 0 and 1.

Exponential scaling of the speaker choosing the utterance that maximizes the chance of the listener getting the target object right.

Value

P(utt | obj, listener's object preferences)

[1] 0.6 0.0 0.0 0.2 0.2

A vector of normalized probability for a certain utterance given object and listener's object preferences.

The vector has the same length as the validUtterances vector.

Examples

```
listenerObjectPreferences <- objectPreferenceSoftPriors[[3]]
speaker(obj, listenerObjectPreferences, validUtterances, uttToObjProbs, alpha)
output:</pre>
```

162 UniformModelKLDiv

UniformModelKLDiv

Uniform Model Kullback-Leibler divergence determination

Description

Full-RSA

Divergence of the observed distribution from the uniform distribution over preferences.

Usage

UniformModelKLDiv(data)

Arguments

data

A matrix with data rows.

column structure:

[1:OC1,OC2,OC3,4:UUFeat, 5:Q1Feat,6:Q2Feat]

[7:Q1AnswerV1,V2,V3, 10:Q2AnswerV1,V2,V3]

1:OC1 Object 1. A value between 1 and 27.

2:OC2 Object 2. A value between 1 and 27.

3:OC3 Object 3. A value between 1 and 27.

4:UUFeat Uttered feature. A number between 1 and 3. (1: shape, 2: pattern, 3: color)

5:Q1Feat Questioned feature 1. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

6:Q2Feat Questioned feature 2. A number between 1 and 3. (1: shape, 2: pattern, 3: color).

Example: If you utter "blue" (feature: color), then you can learn something about shape and texture preferences.

7:Q1AnswerV1, V2, V3 The columns 7-9 contain the participants' slider values for the first questioned feature.

10:Q2AnswerV1, V2, C3 The columns 10-12 contain the participants' slider values for the second questioned feature.

Value

X3_rawData 163

X3_rawData

Experiment 2 raw data (epistemic utterance choice)

Description

This file contains the raw data from the utterance choice experiment.

Usage

X3_rawData

Format

A data frame with the following columns:

workerid Participant's ID

item Unique ID of a stimulus

slide_number Indicates trial order.

condition A six-digit code that infers to which category the item belongs. In this experiment, it is only necessary to identify classes that have potentially ambiguous utterances.

language Participant self-reported native language

pref1-pref9 Utterance 1-9.

response1- response9 The value to which the slider (1-9) was adjusted by the participant. Indicates how useful an utterance is for finding out listener preferences. The corresponding property that they are rating is stored under pref1-9. Can be in range 0-1.

Small numbers mean less useful, larger numbers mean more useful.

obj1, **obj2**, **obj3** A three-digit code referring to the object that the speaker intends to signal by the utterance (obj1), or to one of the other two objects present in the scene (obj2, obj3).

The first digit of the code refers to shape, the second digit to texture, and the third digit to color of the object.

1 Shape: 1 cloud, 2 circle, 3 square

2 Texture: 1 solid, 2 striped, 3 polka-dotted

3 Color: 1 blue, 2 red, 3 green

Example: If the target is a solid blue square the code would be: 311.

ambiguous Marks whether a trial contains any ambiguous utterances.

numFeatures The number of feature values present in a scene.

For example, if we have 3 red objects, all of them solid, 1 square, 1 cloud, 1 circle, then the number of features would be 5.

Value in range 3-9.

X4_rawData

Experiment 1 raw data (inferring preferences)

Description

This file contains the raw data from prior inference experiment.

Usage

X4_rawData

Format

A data frame with the following columns:

workerid Participant's ID

item Unique ID of a stimulus

slide_number Indicates trial order.

language Participant self-reported native language

pref1-pref6 The feature preference of the listener ('red things', 'clouds', 'striped things', etc.). It is the corresponding property that the participants are rating.

response1-response6 The value to which the slider (1-6) was adjusted by the participant. The corresponding property that they are rating is stored under pref1-6. Can be in range 0-1. The value indicates how much a listener likes objects with a particular property. Small numbers mean less liked, larger numbers mean property is preferred.

target, obj3 A three-digit code referring to the object that the speaker intends to signal by the utterance (target), or to one of the other two objects present in the scene (obj2, obj3). The first digit of the code refers to shape, the second digit to texture, and the third digit to color of the object.

1 Shape: 1 cloud, 2 circle, 3 square

2 Texture: 1 solid, 2 striped, 3 polka-dotted

3 Color: 1 blue, 2 red, 3 green

Example: If the target is a solid blue square the code would be: 311.

utterance Speaker's utterance. A speaker chooses among the features present in the scene. All possible utterances include: 'cloud', 'circle', 'square', 'solid', 'striped', 'polka-dotted', 'blue', 'red', 'green'.

itemCode A six-digit code that indicates to which category the item belongs. The categorization takes into account how many objects the utterance could possibly refer to, and what properties the target object shares with other objects in the scene. Each category consists of 3 tuples of 2 digits and refers to one feature, where the first tuple always refers to the uttered feature, other features are ordered from most ambiguous to less ambiguous. The more objects share the feature value of the target object, the more ambiguous the feature is. In the example below feature 1 is color since the utterance is 'blue', feature 2 is pattern since the target object shares its pattern (solid) with two other objects. Feature 3 is shape since the target object shares its shape only with one other object. Feature order determines the order of tuples.

The first digit in each tuple would then denote how many objects share the value of the picked object for the corresponding feature. We also reordered the objects so that the picked object would be the first. In the experiment, the target object could take any place in the sequence.

X4_rawData 165

Example: solid blue square, solid blue circle, solid green square.

Ambiguity class: 213222.

Utterance: 'blue'

Target object: blue solid square

How to read code: First tuple: 21 (color)

2: two objects (the target object + 1 more object) share color.

1: the target object shares color with the second object

Second tuple: 32 (pattern)

3: three objects share the pattern 'solid'.

2: the target object shared the pattern with 2nd and 3rd objects

Third tuple 22 (shape)

2: two objects (the target object + 1 more object) share shape.

2: the target object shares shape with the third object.

The third object is not a possible competitor for being chosen, since the utterance is 'blue', and the object is green.

If a tuple starts with '3' or '1' the second digit would simply denote whether the other objects have different values for that feature or the same (See the second tuple above).

ambiguous Refers to whether the utterance of the speaker is ambiguous or not.

Example: In a scenario with a blue solid circle, a blue striped square and a red polka-dotted cloud. The utterance 'blue' is ambiguous.

Index

* datasets	pragmaticListener, 31
allFeatureTypesNew, 4	pragmaticSpeaker, 33
allObjects, 5	
allObjectsToUtterancesMappings, 6	RSAModelKLDiv3params_simpleRSA4TrialsIndependent,
allUtterances, 7	39, 45–47, 58, 59, 69
allUtterancesNew, 7	RSAModelKLDiv3params_simpleRSA4TrialsIterative,
X3_rawData, 163	41, 48, 50, 51, 60, 61, 70
X4_rawData, 164	RSAModelKLDiv3paramsAllValuesConsidered,
, . <u></u>	34
allFeatureTypesNew, 4	RSAModelKLDiv3paramsAllValuesConsidered_simpleRSA,
allObjects, 5, 6	35
allObjectsToUtterancesMappings, 5, 6	RSAModelKLDiv3paramsOnlyAvailableFeatureValuesConsider
allUtterances, 7, 7	37, 43, 54, 55, 63, 64, 66, 67, 71
allUtterancesNew, 7, 7	RSAModelKLDiv3paramsOnlyAvailableFeatureValuesConsider
,,,,	38, 44, 52, 53, 56, 62, 68
bestInfGainUtterance, 8	RSAModelLL1_1, 38, 42
,	RSAModelLL1_1_notObey.1, 38, 53
determineSpeakerPostListPrefs, 10	RSAModelLL1_1simpleRSA, 39, 43
determineSpeakerPostListPrefsSimpleRSA,	RSAModelLL1_1simpleRSA4TrialsIndependent,
11, <i>1</i> 2	40, 44
$\tt determineSpeakerPostListPrefsSimpleRSAWithPr$	iRSAModelLL1_1simpleRSA4TrialsIndependent_notObey.1,
12	40, 45
<pre>determineUttToObjectProbs, 13</pre>	RSAModelLL1_1simpleRSA4TrialsIndependent_notObey.2,
determineValidUtterances, 14	
	40,46
<pre>getBestInfGainUttPreferences, 15, 93, 94</pre>	RSAModelLL1_1simpleRSA4TrialsIterative,
<pre>getConstellationCode, 17</pre>	42, 48
<pre>getObjectPreferencePriors, 18</pre>	RSAModelLL1_1simpleRSA4TrialsIterative_notObey.1, 42,49
getPreferencesPrior, 20	•
<pre>getSimpleBestInfGainUttPreferences, 21,</pre>	RSAModelLL1_1simpleRSA4TrialsIterative_notObey.2,
25	42,50
<pre>getSimpleBestInfGainUttPreferencesFTF,</pre>	RSAModelLL1_1simpleRSA_notObey.1, 39,
22, 157	51
<pre>getSimpleBestInfGainUttPreferencesIterative,</pre>	RSAModelLL1_1simpleRSA_notObey.2, 39,
24, 158	52
getSpeakerUtterancePriors, 26	RSAModelLL1_2, 38, 54
getSpeakerUtteranceUniformPrior, 27	RSAModelLL1_2simpleRSA, 39, 55
getUtteranceChoiceConstellationCode,	RSAModelLL1_2simpleRSA4TrialsIndependent,
28	40, 57
	RSAModelLL1_2simpleRSA4TrialsIndependent_pref.2,
KLdivergence, 29	40, 58
,	RSAModelLL1_2simpleRSA4TrialsIterative,
literalListener, 29	42, 59
	RSAModelLL1_2simpleRSA4TrialsIterative_pref.2,
mapObjectToUtterances, 30	42, 60

INDEX 167

RSAModelLL1_2simpleRSA_pref2, 39, 61	SimpleRSAModelUttKLDiv_3paramsFTF,
RSAModelLL1_3, 38, 62	103–115, 156
RSAModelLL2_n1, <i>38</i> , 63	SimpleRSAModelUttKLDivFTFParamA, 103,
RSAModelLL2_n2, <i>38</i> , 65	157
RSAModelLL2_n3, <i>38</i> , 66	SimpleRSAModelUttKLDivFTFParamA.2, 104,
RSAModelLL2_simpleRSA, 39, 67	157
RSAModelLL2_simpleRSA4TrialsIndependent, 40,68	SimpleRSAModelUttKLDivFTFParamAB, 105, 157
RSAModelLL2_simpleRSA4TrialsIterative,	SimpleRSAModelUttKLDivFTFParamABK, 106,
<i>42</i> , 69 RSAModelLL3, <i>38</i> , 70	157
RSAModelUttKLDiv_3params, 72–74, 78, 81,	SimpleRSAModelUttKLDivFTFParamAK, 107, 157
82, 86, 92	
	SimpleRSAModelUttKLDivFTFParamAK.2,
RSAModelUttKLDiv_4params, 76, 77, 79, 80,	108, 157
83–85, 87–91, 93	SimpleRSAModelUttKLDivFTFParamB, 109,
RSAModelUttKLDivParamA, 72, 93	157
RSAModelUttKLDivParamAB, 73, 93 RSAModelUttKLDivParamABC, 74, 93	SimpleRSAModelUttKLDivFTFParamB.2, 110,
	157
RSAModelUttKLDivParamABCD4, 75, 94	SimpleRSAModelUttKLDivFTFParamBK, 111,
RSAModelUttKLDivParamABD4, 76, 94	157
RSAModelUttKLDivParamAC, 77, 93	SimpleRSAModelUttKLDivFTFParamBK.2,
RSAModelUttKLDivParamACD4, 78, 94	112, <i>157</i>
RSAModelUttKLDivParamAD4, 79, 94	SimpleRSAModelUttKLDivFTFParamK, 113,
RSAModelUttKLDivParamAD4B.2, 80, 94	157
RSAModelUttKLDivParamB, 81, 93 RSAModelUttKLDivParamBC, 82, 93	SimpleRSAModelUttKLDivFTFParamK.2.0,
	114, <i>157</i>
RSAModelUttKLDivParamBCD4, 83, 94	SimpleRSAModelUttKLDivFTFParamK.2.2,
RSAModelUttKLDivParamBD4, 84, 94 RSAModelUttKLDivParamBD4A.2, 85, 94	115, 157
RSAModelUttKLDivParamC, 86, 93	SimpleRSAModelUttKLDivParamA, 116, 133, 156
RSAModelUttKLDivParamCD4, 87, 94	
RSAModelUttKLDivParamD4, 88, 94	SimpleRSAModelUttKLDivParamA.2, 117, 119, 156
RSAModelUttKLDivParamD4A.2, 89, 94	
RSAModelUttKLDivParamD4AB.2, 99, 94	SimpleRSAModelUttKLDivParamA.2_independent, 118, 159
RSAModelUttKLDivParamD4B.2, 91, 94	SimpleRSAModelUttKLDivParamA.2_iterative,
RSAPIOGETOCCREDITYFAI AIIID4B. 2, 91, 94	117, 119, 160
-i1D4TCC-iH44	SimpleRSAModelUttKLDivParamA_independent,
simpleBestInfGainUtterance, 21, 95, 98	132, <i>158</i>
<pre>simpleBestInfGainUtteranceWithPrefPriorAll, 97</pre>	SimpleRSAModelUttKLDivParamA_iterative,
	116, 133, 160
simpleListener, 99 simplePragmaticSpeaker, 100	SimpleRSAModelUttKLDivParamAB, 120, 126,
simplerragmaticSpeakerWithPrefPriorAll,	156
101	SimpleRSAModelUttKLDivParamAB_independent,
SimpleRSAModelUttKLDiv_3params, 116,	124, <i>159</i>
117, 120, 121, 127, 128, 134, 135,	SimpleRSAModelUttKLDivParamAB_iterative,
138, 139, 146, 147, 150, 155, 160	120, 125, 160
SimpleRSAModelUttKLDiv_3params_independent,	SimpleRSAModelUttKLDivParamABK, 121,
118, 123, 125, 128, 130, 132, 136,	124, 156
140, 142, 144, 148, 151, 153, 158	SimpleRSAModelUttKLDivParamABK_independent,
SimpleRSAModelUttKLDiv_3params_iterative,	122, <i>159</i>
119, 124, 126, 129, 131, 133, 137,	SimpleRSAModelUttKLDivParamABK_iterative,
141, 143, 145, 149, 152, 154, 159	121, 123, 160
- · - , - · - , - · · · , - · · · , - · · - • • • · · · · • • • · · · · · ·	,,

168 INDEX

```
SimpleRSAModelUttKLDivParamAK, 126, 131,
                                                SimpleRSAModelUttKLDivParamK_iterative,
                                                         146, 154, 160
                                                speaker, 160
SimpleRSAModelUttKLDivParamAK.2, 127,
        129, 156
{\tt SimpleRSAModelUttKLDivParamAK.2\_independent,} \ \ {\tt UniformModelKLDiv}, 162
        128, 158
                                                X3_rawData, 163
SimpleRSAModelUttKLDivParamAK.2_iterative,
                                                X4_rawData, 164
        128, 129, 160
SimpleRSAModelUttKLDivParamAK_independent,
        130, 158
SimpleRSAModelUttKLDivParamAK_iterative,
        127, 131, 160
SimpleRSAModelUttKLDivParamB, 134, 145,
        156
SimpleRSAModelUttKLDivParamB.2, 135,
        137, 156
SimpleRSAModelUttKLDivParamB.2_independent,
        136, 159
SimpleRSAModelUttKLDivParamB.2_iterative,
        135, 137
SimpleRSAModelUttKLDivParamB_independent,
        144, 158
SimpleRSAModelUttKLDivParamB_iterative,
        134, 145, 160
SimpleRSAModelUttKLDivParamBK, 138, 143,
        156
SimpleRSAModelUttKLDivParamBK.2, 139,
        141, 156
SimpleRSAModelUttKLDivParamBK.2_independent,
        140, 159
SimpleRSAModelUttKLDivParamBK.2_iterative,
        139, 141, 160
SimpleRSAModelUttKLDivParamBK_independent,
        142, 158
SimpleRSAModelUttKLDivParamBK_iterative,
        138, 143, 160
SimpleRSAModelUttKLDivParamK, 146, 154,
SimpleRSAModelUttKLDivParamK.2.0, 147,
        149, 156
SimpleRSAModelUttKLDivParamK.2.0_independent,
        148, 159
SimpleRSAModelUttKLDivParamK.2.0_iterative,
        147, 149, 160
SimpleRSAModelUttKLDivParamK.2.2, 150,
        152, 156
SimpleRSAModelUttKLDivParamK.2.2_independent,
        151, 159
SimpleRSAModelUttKLDivParamK.2.2_iterative,
        150, 152, 160
SimpleRSAModelUttKLDivParamK_independent,
        153, 158
```