*** Applied Machine Learning Fundamentals *** **k**-Nearest Neighbors

Daniel Wehner, M.Sc.

SAPSE / DHBW Mannheim

Winter term 2022/2023

Lecture Overview

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Probability Density Estimation

Unit V Regression

Unit VI Classification I

Unit VII Evaluation

Unit VIII Classification II

Unit IX Clustering

Unit X Dimensionality Reduction

Agenda for this Unit

- Introduction
 Overview of the Algorithm
 Derivation of the Algorithm
- Distance Metrics Properties of Distance Metrics Minkowski, Manhattan, Euclidean Cosine Similarity
- 8 k-nearest Neighbors Algorithm General Procedure Calculation of Distances

Prediction of the Class Label

- 4 Choice of k
 Danger of Overfitting
 Selection Strategies
- Summary
 Self-Test Questions
 Lecture Outlook
 Recommended Literature and further Reading
 Meme of the Day

Section: Introduction

Wrap-Up

Introduction

- Basic idea: Predict the class label based on nearby known examples
- Instance-based learning, a. k. a. lazy learning

We do not learn any model, the data speaks for itself!

Wrap-Up

Derivation of the Algorithm

Unconditional density:

$$p(x) = \frac{k}{n \cdot v}$$

Class priors:

$$p(\mathcal{C}_j) = \frac{n_j}{n}$$

Remember non-parametric density estimation?

Combine them using Bayes' theorem:

$$p(\mathcal{C}_j|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_j) \cdot p(\mathcal{C}_j)}{p(\mathbf{x})} = \frac{\frac{k_j}{n_j \cdot \nu} \cdot \frac{n_j}{n}}{\frac{k}{n_j \cdot \nu}} = \frac{k_j}{k}$$
(1)

Section: Distance Metrics

Distance Metrics

- How to measure the distance between two data points u and v?
 ⇒ distance metrics
- Let d be a function $d:(u,v)\mapsto \mathbb{R}^+$ (including 0)
- Function *d* has the following properties:
 - $\mathbf{0}$ d(u, v) = d(v, u) (commutativity)
 - $\mathbf{2} d(u, v) = 0 \Rightarrow u = v$
 - 3 $d(u, k) \leq d(u, v) + d(v, k)$ (triangle inequality)

Distance Metrics (Ctd.)

Minkowski distance:

$$d_{p}(u,v) = \left(\sum_{j=1}^{m} |x_{j}^{(u)} - x_{j}^{(v)}|^{p}\right)^{1/p}$$
 (2)

Manhattan distance: (p = 1)

Euclidean distance:
$$(p = 2)$$

$$d_1(u, v) = \sum_{i=1}^{m} |x_j^{(u)} - x_j^{(v)}|$$

$$d_2(u, v) = \sqrt{\sum_{j=1}^m |x_j^{(u)} - x_j^{(v)}|^2}$$

Distance Metrics (Ctd.)

Cosine Similarity

- Similarity metrics are an alternative to distance metrics
- Example: Cosine similarity
- The cosine similarity of two vectors **a** and **b** is the cosine of the angle:

$$\cos \measuredangle(\mathbf{a}, \mathbf{b}) = \frac{\mathbf{a}^{\mathsf{T}} \mathbf{b}}{\|\mathbf{a}\| \cdot \|\mathbf{b}\|} = \frac{\sum_{j=1}^{m} a_{j} \cdot b_{j}}{\sqrt{\sum_{j=1}^{m} (a_{j})^{2}} \cdot \sqrt{\sum_{j=1}^{m} (b_{j})^{2}}}$$
(3)

The dot product is defined as:

$$\mathbf{a}^{\mathsf{T}}\mathbf{b} = \|\mathbf{a}\| \cdot \|\mathbf{b}\| \cdot \cos \angle(\mathbf{a}, \mathbf{b}) \tag{4}$$

Wrap-Up

Cosine Similarity (Ctd.)

Section: k-nearest Neighbors Algorithm

Prediction with k-Nearest Neighbors (Ctd.)

k-nearest neighbors algorithm:

- Calculate the distances between the new data point and all data points in the data set
- 2 Sort the data points by distances in ascending order (sort in descending order if similarity metrics are used)
- 3 Look at the first k examples and count how often each class occurs
- 4 Predict the class with the maximum score

Calculation of Distances

V	<i>x</i> ₁	<i>X</i> ₂	C	$d_2(u, v)$
1	0.66	0.24	1	0.23
2	0.25	0.79	1	0.67
3	0.16	0.81	1	0.73
4	0.57	0.21	1	0.13
5	0.21	0.72	1	0.62
6	0.66	0.27	1	0.24
7	0.27	0.11	0	0.19
8	0.39	0.13	0	0.07
9	0.39	0.86	0	0.71
10	0.44	0.67	0	0.52
11	0.31	0.33	0	0.23
12	0.03	0.51	0	0.55
÷	:	:	:	:

•
$$\mathbf{x}^{(u)} = (0.45, 0.15)$$

Calculate the Euclidean
 distance between x^(u) and all
 other data points x^(v)

Prediction is expensive!

2/3/4 Prediction of the Class Label

- Let *k* be set to 10
- Step 2: Sort data set by distances
 (cf. table on the right)
- Step 8: Count class occurrences
 - Class 0: 3
 - Class 1: 7
- Step **4**: Predict class 1!

<i>x</i> ₁	<i>X</i> ₂	C	$d_2(u, v)$
0.51	0.17	1	0.06
0.39	0.13	0	0.07
0.52	0.17	1	0.08
0.43	0.23	0	0.08
0.47	0.03	0	0.12
0.52	0.26	1	0.13
0.57	0.21	1	0.13
0.53	0.25	1	0.13
0.58	0.12	1	0.14
0.59	0.13	1	0.14
÷	:	:	÷

Section: Choice of *k*

How to choose k?

The choice of k is important:

$$k = 1$$
 (2 overfitting 2)

$$k = 30$$
 (about right)

How to choose k? (Ctd.)

- First of all, it is recommended to use odd values for k
 (no tie-breaking necessary)
- Compute k depending on the size of the data set \mathcal{D} :

$$k = \sqrt{\frac{n}{2}}$$
 or $k = \sqrt{n}$ (5)

• Other strategy: Evaluate different k on a dev set and choose the best one

How to choose k? (Ctd.)

Section: Wrap-Up

Summary

- The basic idea is to classify unknown instances based on nearby examples
- The algorithm is an example for instance-based learning
- Distance metrics allow to calculate the distance between data points:
 - Manhattan distance
 - Euclidean distance
 - Cosine similarity
- Choose the value of *k* wisely:
 - Too small: Overfitting
 - Too large: Underfitting

Self-Test Questions

- **1** Outline the *k*-nearest neighbors algorithm.
- What is instance-based learning (in contrast to model-based learning)?
- 3 How can you compute distances? What properties do distance metrics have?
- What is the intuition behind the triangle inequality?
- **5** How can you choose k?
- **6** Suppose you have a data set comprising n = 50 examples. If you set k = n, what class does the algorithm predict?
- What are advantages and disadvantages of the algorithm?

Summary
Self-Test Questions
Lecture Outlook
Recommended Literature and further Readin,
Meme of the Day

What's next...?

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Probability Density Estimation

Unit V Regression

Unit VI Classification I

Unit VII Evaluation

Unit VIII Classification II

Unit IX Clustering

Unit X Dimensionality Reduction

Summary Self-Test Questions Lecture Outlook Recommended Literature and further Reading Meme of the Day

Recommended Literature and further Reading I

[1] Machine Learning

Tom Mitchell. McGraw-Hill Science. 1997.

 \rightarrow <u>Link</u>, cf. chapter 8.2

Meme of the Day

Thank you very much for the attention!

Topic: *** Applied Machine Learning Fundamentals *** k-Nearest Neighbors

Term: Winter term 2022/2023

Contact:

Daniel Wehner, M.Sc.
SAPSE / DHBW Mannheim
daniel.wehner@sap.com

Do you have any questions?