2022-2023 学年线性代数 I (H) 期中

任课老师: 吴志祥 考试时长: 90 分钟

一、(10分)讨论当 a 取何值时,下列方程组有解? 无解?

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 1 \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = a \\ x_2 + 2x_3 + 2x_4 + 6x_5 = 3 \end{cases}$$

$$5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = 2$$

- 二、(10 分) 证明向量组 $\{2\alpha_1 + \alpha_2, 2\alpha_2 + \alpha_3, 2\alpha_3 + \alpha_1\}$ 线性无关的充分必要条件是向量组 $\{\alpha_1, \alpha_2, \alpha_3\}$ 线性无关.
- 三、 $(10 \, \beta)$ 已知向量 $\alpha_1 = (1, 2, 4, 3)^{\mathrm{T}}, \quad \alpha_2 = (1, -1, -6, 6)^{\mathrm{T}}, \quad \alpha_3 = (-2, -1, 2, -9)^{\mathrm{T}}, \quad \alpha_4 = (1, 1, -2, 7)^{\mathrm{T}}, \quad \beta = (4, 2, 4, a)^{\mathrm{T}}.$
 - (1) 求子空间 $W = \text{span}(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 的维数和一组基;
 - (2) 求 a 的值, 使得 $\beta \in W$, 并求 β 在 (1) 中选取的基下的坐标.
- 四、(10 分)设 $\{\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4\}$ 是欧式空间 V 的一组标准正交基, $W = \operatorname{span}(\alpha_1, \alpha_2, \alpha_3)$,其中 $\alpha_1 = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4, \alpha_2 = 3\varepsilon_1 + 3\varepsilon_2 \varepsilon_3 \varepsilon_4, \alpha_3 = -2\varepsilon_1 + 6\varepsilon_3 + 8\varepsilon_4$.
 - (1) 求 α_1, α_2 的夹角;
 - (2) 求 W 的一组标准正交基.
- 五、(10 分)已知 $f_1 = 1 x$, $f_2 = 1 + x^2$, $f_3 = x + 2x^2$ 是 $\mathbf{R}[x]_3$ 中三个元素, σ 是 $\mathbf{R}[x]_3$ 上的线性变换且满足 $\sigma(f_1) = 2 + x^2$, $\sigma(f_2) = x$, $\sigma(f_3) = 1 + x + x^2$.
 - (1) 证明: f_1, f_2, f_3 构成 $\mathbf{R}[x]_3$ 的一组基;
 - (2) 求 σ 在基 { f_1, f_2, f_3 } 下的矩阵;
 - (3) $\mbox{if } f = 1 + 2x + 3x^2, \ \mbox{if } \sigma(f).$

$$\sigma(x_1, x_2, x_3) = (x_1 + 2x_2 + 3x_3, -x_1 + 2x_2 - x_3, 0),$$

$$\tau(x_1, x_2, x_3) = (x_2, x_3, 0).$$

- (1) 求 $r(\sigma + \tau)$ 和 $r(\sigma \tau)$;
- (2) $\Re \operatorname{im} \sigma + \ker \sigma$.

- 七、(10 分)设 $M_n(\mathbf{R})$ 是实数域 \mathbf{R} 上所有 n 阶矩阵组成的集合. 设 $W = \{A \in M_n(\mathbf{R}) \mid a_{ji} = ka_{ij}, i \leq j\}$, 求当 k = 0, 1, 2 时,W 的一组基和维数.

$$V_1 = \operatorname{span}(\alpha_1 + 2\alpha_2 + \dots + n\alpha_n)$$

$$V_2 = \left\{ k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_n \alpha_n \middle| k_1 + \frac{k_2}{2} + \dots + \frac{k_n}{n} = 0 \right\}$$

证明:

- (1) V_2 是 V 的子空间;
- (2) $V = V_1 \oplus V_2$.
- 九、(20分)判断下列命题的真伪,若它是真命题,请给出简单的证明;若它是伪命题,给出理由或举反例将它否定.
 - (1) $\forall n \geq 2$,不存在非零实线性映射 $f: M_n(\mathbf{R}) \to \mathbf{R}$ 使得 f(AB) = f(A)f(B);
 - (2) 设 W_1, W_2 是线性空间 V 的两个子空间, $W_1 \cup W_2 = W_1 + W_2$ 当且仅当 $W_1 \subseteq W_2$ 或 $W_2 \subseteq W_1$;
 - (3) 设 α, β 是欧式空间 V 中两个线性无关向量,且 $\frac{2(\alpha, \beta)}{(\alpha, \alpha)}$ 和 $\frac{2(\alpha, \beta)}{(\beta, \beta)}$ 都是不大于 零的整数,则 α 和 β 的夹角只可能是 $\frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{5\pi}{6};$
 - (4) n 是一个大于 1 的整数, $W = \{(x_1, x_2, \dots, x_n) \in \mathbb{C}^n \mid x_1^2 + x_2^2 + \dots + x_n^2 = 0\}$ 是复线性空间 \mathbb{C}^n 的一个子空间.