Singular Value Decomposition

An application to Big Data

Davide Sferrazza

January 8, 2023

Università degli Studi di Palermo

Outline

- 1 Singular Value Decomposition
 - What is it?
 - How can singular values be computed?

2 References

Singular Value Decomposition

Theorem

Given a matrix $A \in \mathbb{R}^{m \times n}$, it can always be found a decomposition such that

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ and $\Sigma \in \mathbb{R}^{m \times n}$.

U and V are two orthogonal matrices and Σ is a diagonal matrix, namely:

$$(\Sigma)_{ij} = \begin{cases} 0, & i \neq j \\ \sigma_i, & i = j \end{cases}$$

where $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$, $p = \min\{m, n\}$.

The non-zero entries of Σ , denoted by σ_i , are called *singular values*.

They are arrenged in a nonincreasing order by convention.

The column vectors u_i of U are called *left singular vectors* and those v_i of V are called *right singular vectors*.

Since in general $m \neq n$, we have:

$$A = \sum_{i=1}^{p} \boldsymbol{u_i} \sigma_i \boldsymbol{v_i}^T$$

Theorem

If for some r *such that* $1 \le r < p$ *we have*

$$\sigma_1 \ge \ldots \ge \sigma_r > \sigma_{r+1} = \ldots = \sigma_p = 0$$

then

- rank(A) = r
- $A = \sum_{i=1}^{r} \boldsymbol{u_i} \sigma_i \boldsymbol{v_i}^T$

This means that all other p-r dimensions of matrix A are linear combinations of the first r.

Lower rank approximation

Let $A \in \mathbb{R}^{m \times n}$ be a matrix whose rank is rank(A) = r.

If for a fixed integer value k < r we define

$$A_k = \sum_{i=1}^k \sigma_i \boldsymbol{u_i} \boldsymbol{v_i}^T \tag{1}$$

and

$$\mathcal{B} = \left\{ B \in \mathbb{R}^{m \times n} : rank(B) = k \right\}$$

then

$$\min_{B \in \mathcal{B}} \|A - B\|_2 = \|A - A_k\|_2 = \sigma_{k+1}$$

This result tell us that A_k represents the best approximation (considering the *spectral norm*) of rank k of matrix A.

Singular values computation

To compute the singular values, consider the transponse of $\cal A$ given its decomposition:

$$A^T = (U\Sigma V^T)^T = V\Sigma^T U^T$$

The symmetric matrix A^TA is equal to:

$$A^T A = (V \Sigma^T U^T)(U \Sigma V^T) = V \Sigma^T \Sigma V^T$$

Furthermore, this equation can be written as:

$$A^T A V = V \Sigma^T \Sigma$$

This means that the diagonal entries of the square matrix $\Sigma^T \Sigma$, which are the square of the singular values, are the eigenvalues of matrix $A^T A$ and V is the matrix of eigenvectors.

Singular values computation

Similarly, consider the product of AA^T . It is equal to:

$$AA^T = (U\Sigma V^T)(V\Sigma^T U^T) = U\Sigma \Sigma^T U^T$$

Which means that:

$$AA^TU = U\Sigma\Sigma^T$$

Hence U is the matrix of eigenvectors of AA^T .

Since rank(A)=r, only the first r eigenvalues of AA^T and A^TA are non-zero.

References

References i

References

- Aggarwal, Charu C et al. Data mining: the textbook. Vol. 1. Springer, 2015.
- Dua, Dheeru and Casey Graff. *UCI Machine Learning Repository*. 2017. URL: http://archive.ics.uci.edu/ml.
- Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. *Mining of massive data sets*. Cambridge university press, 2020.
- Monegato, Giovanni. Metodi e algoritmi per il calcolo numerico. Clut, 2008.
- SYNAPSE. gene expression cancer RNA-Seq Data Set. url: https://www.synapse.org/#!Synapse:syn4301332.

References ii

Van Loan, Charles F and G Golub. "Matrix computations (Johns Hopkins studies in mathematical sciences)". In: *Matrix Computations* (1996).