α) Η διαίρεση $P(x):(x^2-4)$ φαίνεται παρακάτω

$$\begin{array}{c|cccc}
x^{5} - 4x^{3} - x^{2} + \alpha x + \beta & x^{2} - 4 \\
-x^{5} + 4x^{3} & x^{3} - 1 \\
\hline
-x^{2} + \alpha x + \beta & \\
x^{2} & -4 \\
\hline
\alpha x + \beta - 4 &
\end{array}$$

- β) Από το α) ερώτημα έχουμε ότι το υπόλοιπο της διαίρεσης P(x): (x^2-4) είναι το πολυώνυμο $\alpha x+\beta-4$. Όμως από την εκφώνηση δίνεται ότι είναι το πολυώνυμο 4x+1. Συνεπώς τα πολυώνυμα $\alpha x+\beta-4$ και 4x+1πρέπει να είναι ίσα, δηλαδή $\alpha=4$ και $\beta=5$.
- γ) Για $\alpha = 4$ και $\beta = 5$ έχουμε $P(x) = x^5 4x^3 x^2 + 4x + 5$.
 - i. Η ταυτότητα της διαίρεσης P(x): (x^2-4) είναι $P(x) = (x^2-4)(x^3-1)+4x+1$.
 - ii. Αξιοποιώντας την ταυτότητα της διαίρεσης που βρήκαμε παραπάνω έχουμε $P(x) < 4x + 1 \Leftrightarrow (x^2 4)(x^3 1) + 4x + 1 < 4x + 1 \Leftrightarrow (x^2 4)(x 1)(x^2 + x + 1) < 0.$

Το πρόσημο του πολυωνύμου $\Pi(x) = (x^2-4)(x-1)(x^2+x+1)$ φαίνεται στον παρακάτω πίνακα.

x	-∞	-2	1 2	+∞
$x^2 - 4$	+	o -	- 0	+
x-1	-	- (+	+
$x^2 + x + 1$	+	+	+	+
П(х)	-	0 + 0	- 0	+

Συνεπώς η ζητούμενη ανίσωση αληθεύει για κάθε $x \in (-\infty, -2) \cup (1, 2)$.