DESENVOLVIMENTO DE SOFTWARE PARA WEB

A Internet e Arquitetura Cliente Servidor Prof. Bruno Góis Mateus (brunomateus@ufc.br)

Índice

- A Internet
- World Wide Web (WWW)
- Arquitetura Cliente Servidor

AINTERNET

A Internet

- Rede mundial de computador
 - Comunicam-se através dos protocolos TCP/IP

A Internet

- Começou com o rede do Departamento de Defesa dos Estados Unidos chamada <u>ARPANET</u> (1960s-70s)
- Os serviços iniciais eram:
 - Correspondência online(e-mail)
 - Transferência de arquivos
- Foi aberta para os interesses comerciais no final da década de 80s
 - A World Wide Web foi criada em 1989-91 por <u>Tim Berners-Lee</u>
 - Os primeiros navegadores a se tornarem popular foram lançados em: 1994 Netscape, 1995 IE
 - Amazon.com abriu em 1995 e o Google abriu em Janeiro de 1996

Aspectos chaves da Internet

- As subredes s\(\tilde{a}\)o independentes
- Os computadores podem entrar e sair dinamicamente da rede
- Construída sob padrões abertos;
- A ausência de um controle centralizado (em grande parte)
- Qualquer pessoa pode utilizar

Organizações

- Internet Engineering Task Force <u>IETF</u>: Padrões do Protocolo IP
- Corporation for Assigned Names and Numbers <u>ICANN</u>:
 - Decide sobre o níveis mais altos de domínio
- World Wide Web Consortium W3C: Padrões WEB

Modelo de referência OSI

- Arquitetura em camadas
 - Sete camadas

A pilha de protocolos da Internet

Camada		Exemplo
Aplicação	Implementa comunicação específica para cada tipo de programa	HTTP, SMTP, FTP, SSH, Telnet, SIP, RDP, IRC, SNMP, NNTP, POP3, IMAP, BitTorrent, DNS, Ping
Transporte	Adiciona confiabilidade a camada de rede	TCP, UDP, RTP, SCTP, DCCP
Rede	Protocolo IP	IP (IPv4, IPv6), ARP, RARP, ICMP, IPsec
Enlace	Protocolos básicos de hardware	Ethernet, 802.11 (WiFi), 802.1Q (VLAN), 802.1aq (SPB), 802.11g, HDLC, Token ring, FDDI, PPP,Switch ,Frame relay,
Física	Dispositivos ethernet, cabo coaxiais, fibra ótica, modens	Modem, RDIS, RS-232, EIA-422, RS-449, Bluetooth, USB,

Protocolo IP

- Um protocolo simples para tentar enviar dados entre computadores
- Identifica unicamente um host da rede
- Cada dispositivo possui um endereço IP de 32 bits, divididos em 4 números de 8 bits (0-255)
 - Atribuído a cada interface

Portas

- Identificam os processos origem e destino
- Viabilizam a comunicação fim-a-fim
- Sistema operacional oferece interface para especificar e acessar portas

Permitem comunicação com diversas aplicações na

mesma máquina

Protocolo UDP

- Funciona como uma ponte para o protocolo IP
- Comunicação sem conexão e não confiável
 - Entrega não garantida
- Análogo ao sistema de correio
- Mais rápido que TCP
- Usado em:
 - Pequena quantidade de dados;
 - Meios de comunicação seguros;
 - Serviços que podem perder pequenas porções de informações.

Protocolo TCP

- Utiliza o conceito de conexão para identificar os dois pontos envolvidos na comunicação
- Análogo a uma chamada telefônica
- Entrega garantida
- A comunicação é identificada por um par de endpoints.
- Um endpoint é um par na forma
 - Host, Port
 - Ex: (128.9.0.21, 1184) (128.10.2.3,25)
- Endpoints permitem que uma determinada porta possa ser compartilhada por múltiplas conexões

(128.9.0.32, 1184) (128.10.2.3, 25)

(128.2.1.27, 1184) (128.10.2.3, 25)

A WORLD WIDE WEB

Servidores e Navegadores

- Servidores Web
 - Software que escutam as requisições por recursos
 - Apache
 - Micro\$oft Internet Server (IIS)
- Navegadores Web
 - Buscam e mostram os documentos disponibilizados por um servidor web
 - Firefox
 - Chrome
 - Safari
 - Opera
 - Spartan
 - Dolphin

Domain Name System (DNS)

- Um conjunto de servidores que mapeiam os nomes para os endereços IP
 - www.ufc.br. -> 200.17.41.185
- A maioria dos sistemas operacionais mantém um cache local chamados de hosts file
 - Windows: C:/Windows/system32/drivers/etc/hosts
 - Mac: /private/etc/hosts
 - Linux: /etc/hosts

URI

URN

URL

Uniform Resource Idenfier

- Identificador de Recursos Uniforme
 - É uma cadeia de caracteres usada para identificar ou denominar um recurso na Internet.
- Pode ser classificada como um localizador (URL) ou um nome (URN), ou ainda como ambos.
 - Exemplos:
 - URN urn:isbn:0-486-27557-4 urn:issn:1535-3613
 - URL file:///home/pedro/Desktop/RomeuEJulieta.pdf http://example.org/absolute/URI/path/to/resource.txt ftp://example.org/resource.txt

Uniform Resource Locator

- Localizador de Recursos Universal
- Uma URL é uma URI que, além de identificar um recurso, provê meios de agir sobre, obter e representar este recurso, descrevendo seu mecanismo de acesso primário ou a localização na "rede".
- É o endereço de um recurso disponível em uma rede.
- Estrutura:
 - protocolo://máquina[:porta]/caminho/recurso

Uniform Resource Locator

http://www.w3.org/Addressing/URL/uri-spec.html
protocolo host path

- Ao colocar uma URL no navegador, ele irá fazer:
 - Perguntar ao servidor DNS pelo endereço IP do site www.w3.org
 - Conectar ao endereço IP utilizando a porta 80
 - Pedir ao servidor a página: GET /Addressing/URL/uri-spec.html
 - Mostrar o resultado na tela do dispositivo

Protocolo

 Define o formato e a ordem das mensagens trocadas entre duas ou mais entidades de comunicação, bem como as ações tomadas na transmissão e/ou recepção de uma mensagem ou outro evento." [Kurose, 2009]

- "regras que governam" a sintaxe, semântica e sincronização da comunicação.
- Podem ser implementados pelo hardware, software ou por uma combinação dos dois.

Protocolo Humano e Protocolo de Rede

Protocolo HTTP

- Hypertext Transfer Protocol (Protocolo de Transferência de Hipertexto)
 - Usado desde 1990.
 - Protocolo de comunicação utilizado para transferir dados por intranets e World Wide Web.
 - Normalmente o servidor usa a porta 80.
 - Responsável pelo tratamento de pedidos / respostas entre cliente e servidor Web.
 - Forma padronizada de comunicação entre clientes e servidores da Web.
 - Serve para transferência de texto e dados binários.

Protocolo HTTP

- Sem estado (stateless):
 - Não existe informações sobre o estado das conexões
 - Próxima ação independe da anterior
 - Realiza apenas uma ação por vez

Protocolo HTTP

- Funcionamento:
 - o cliente envia uma mensagem de requisição de um recurso;
 - o servidor envia uma mensagem de resposta ao cliente.
- Composição das mensagens:
 - Cabeçalho
 - Corpo (opcional em certos casos)

Requisição HTTP

- Composição:
 - Linha inicial (Request-Line)
 - método (Method)
 - Identificação do URI (Request-URI)
 - versão do HTTP (HTTP-Version) utilizado
 - Linhas de cabeçalhos (Request-header)
 - Linha em branco obrigatória
 - Corpo de mensagem opcional.

Requisição HTTP

Métodos usados em requisições HTTP

- GET Solicita algum recurso
 - Dados são anexados à URL, ficando visíveis ao usuário
- POST Envia dados referentes ao recurso especificado para serem processados.
 - Dados são incluídos no corpo do comando.
- PUT Envia certo recurso.
- DELETE Exclui o recurso.
- HEAD Variação do GET em que o recurso não é retornado.
 - Usado para obter metainformações por meio do cabeçalho da resposta, sem ter que recuperar todo o conteúdo.

Métodos usados em requisições HTTP

- TRACE Ecoa o pedido, de maneira que o cliente possa saber o que os servidores intermediários estão mudando em seu pedido.
- OPTIONS Recupera os métodos HTTP que o servidor aceita.
- CONNECT Converte a conexão de requisição em um túnel TCP/IP transparente, geralmente para facilitar a comunicação encriptada através de um proxy HTTP sem encriptação.
- PATCH Usado para aplicar modificações parciais em um recurso.

Resposta HTTP

- Composição:
 - Linha inicial ou linha de status (Status-Line)
 - Versão do protocolo HTTP (HTTP-Version)
 - Código de status (Status-Code) da resposta, que fornece o resultado da requisição
 - Frase de justificativa (Reason-Phrase) que descreve o código do status.
 - Linhas de cabeçalhos (Response header)
 - Linha em branco obrigatória
 - Corpo de mensagem opcional

Resposta HTTP

Código de retorno

- É formado por três dígitos e o primeiro dígito representa a classe que pertence classificada em cinco tipos:
 - 1xx: Informational (Informação):
 - Utilizada para enviar informações para o cliente de que sua requisição foi recebida e está sendo processada;
 - 2xx: Success (Sucesso)
 - Indica que a requisição do cliente foi bem sucedida;
 - 3xx: Redirection (Redirectionamento):
 - Informa a ação adicional que deve ser tomada para completar a requisição;
 - 4xx: Client Error (Erro no cliente):
 - Avisa que o cliente fez uma requisição que não pode ser atendida;
 - 5xx: Server Error (Erro no servidor):
 - Ocorreu um erro no servidor ao cumprir uma requisição válida.
- O protocolo HTTP define somente alguns códigos em cada classe, mas cada servidor pode definir seus próprios códigos.

- Sites como o amazon, mercadolivre, americanas, parecem "sabe quem eu sou."
 - Como eles fazem isso?
 - Como é que um cliente se identifica com o servidor?
 - Como é que o servidor fornece conteúdo específico para cada cliente?
- Lembrete: HTTP é um protocolo que não guarda estados, ele simplesmente permite que um navegador para solicitar um documento

 Uma pequena quantidade de informação enviada por um servidor para um servidor para o navegador, e depois enviado de volta pelo navegador em futuras solicitações de página

- Têm muitos usos:
 - Autenticação
 - Acompanhamento do usuário
 - Mantendo as preferências do usuário, carrinhos de compras, etc
- Dados de um cookie consiste em um par nome/valor único
 - Enviado no cabeçalho HTTP de o cliente GET ou POST
- Pode estar na memória do navegador ou armazenada no disco.

- Quando o navegador solicita uma página, o servidor pode enviar de volta um cookie (s) com ele
- Se o servidor tiver enviado anteriormente os cookies do navegador, o navegador irá enviá-los de volta em solicitações

- Informações contidas em um Cookie
 - Nome
 - Valor
 - Servidor
 - Caminho
 - Enviar
 - Validade

Cookie de rastreamento

lotofbanners.com

- Uma empresa de publicidade pode colocar um cookie no seu computador quando você visita um site, e vê-lo quando você visita
- Portanto, eles podem dizer que a mesma pessoa (você), visitou os dois sites
- Pode ser contrariado, dizendo o seu browser para não aceitar "cookies de terceiros"

Durante quanto tempo um cookie existe?

- Cookie da sessão: o tipo padrão; um cookie temporário que é armazenado apenas na memória do navegador
 - Quando o navegador é fechado, cookies temporários serão apagados
 - Não pode ser utilizado para rastrear a longo prazo informação
 - Mais seguro, porque não há outros programas que o navegador possa acessá-los
- Cookie persistente: uma que é armazenado em um arquivo no computador do navegador
 - Pode rastrear informações de longo prazo
 - Potencialmente menos seguro, porque os usuários (ou programas que correm) pode abrir arquivos de cookies, ver / alterar valores

Mitos e fatos sobre cookies

Mitos:

- Os cookies são como worms/vírus e podem apagar os dados do disco rígido do usuário.
- Cookies são uma forma de spyware e pode roubar suas informações pessoais.
- Os cookies gerar popups e spam.
- Cookies são usados para a publicidade.

Fatos:

- Os cookies são apenas dados, e não o código do programa.
- Os cookies não podem apagar ou ler informações do computador do usuário.
- Os cookies são geralmente anônimos (não contêm informações pessoais).
- Os cookies podem ser usados rastrear seus hábitos de visualização em um determinado site.

ARQUITETURA CLIENTE/SERVIDOR

Arquitetura Cliente/Servidor

Servidor

- Processo que oferece um serviço;
- Aceita uma requisição através da rede, executa o serviço e retorna o resultado.

Cliente

- Processo que requisita um serviço;
- Geralmente possui uma interface com o usuário.

Arquitetura Cliente/Servidor

- Um servidor espera por requisições em uma porta conhecida, reservada para o serviço.
- Um cliente aloca uma porta arbitrária disponível e não reservada.

Socket

- Conjunto de funções para permitir a utilização do sistema de comunicação por processos no sistema operacional.
- Socket: Endereço IP + Porta

Comunicação entre Cliente e Servidor WEB

Comunicação entre Cliente e Servidor WEB

Web Browser

Papéis

- Servidor Web
 - Interpreta requisições HTTP do cliente.
 - Gera uma resposta para o cliente.
 - Devolve resposta HTTP ao cliente.
- Cliente Web
 - Envia requisições HTTP ao Servidor Web.
 - Processa respostas HTTP recebidas.

O que vem por aí

Fundamentos de HTML