Oplossingen Mechanics 2013 TODO October 11, 2013

Contents

1	Part 1			
	1.1	Κ1	3	
	1.2	Κ2	3	
	1.3	Κ3	3	
	1.4	Κ4	4	
	1.5	31	4	
	1.6	32	4	
	1.7	33	4	
2	Part 2			
	2.1	ζ1	4	
	2.2	ζ_2	5	
	2.3		5	
	2.4	31	5	
	2.5	32	5	
	2.6	33	5	
3	Par	3	5	
	3.1	_	5	
	3.2	ζ_2	5	
	3.3	Κ3	5	
	3.4	ζ4	5	
	3.5	31	5	
	3.6	32	6	
	3.7	33	6	
	3.8		6	
	J.O	34	•	

- 1 Part 1
- 1.1 K1
- 1.2 K2
- 1.3 K3

gegeven

$$a = 0.5m, \, \theta = 30^{\circ}, \, v_O = 2\frac{m}{s}.$$

gevraagd

 $v_{cx}, v_{cy}, a_{cx}, a_{cy}$

berekeningen

De plaats van C en A in functie van de hoek valt af te leiden via Pythagoras.

$$r_c = \begin{pmatrix} 2a\cos\left(\theta(t)\right) \\ 2a\sin\left(\theta(t)\right) \end{pmatrix}$$
 en $r_a = \begin{pmatrix} 2a\cos\left(\theta(t)\right) \\ 0 \end{pmatrix}$

Hieruit leiden we de snelheid en de versnelling af.

$$v_c = \begin{pmatrix} -2a\sin\left(\theta(t)\right) \cdot \omega(t) \\ 2a\cos\left(\theta(t)\right) \cdot \omega(t) \end{pmatrix} \text{ en } r_a = \begin{pmatrix} -2a\sin\left(\theta(t)\right) \cdot \omega(t) \\ 0 \end{pmatrix}$$

$$a_c = \begin{pmatrix} \alpha(t) \cdot (-2a\sin(\theta(t)) - 2a\cos(\theta(t)) \cdot \omega(t)^2 \\ \alpha(t) \cdot (2a\cos 5(\theta(t)) - 2a\sin(\theta(t)) \cdot \omega(t)^2 \end{pmatrix} \text{ en } r_a = \begin{pmatrix} \alpha(t) \cdot (-2a\sin(\theta(t)) - 2a\cos(\theta(t)) \cdot \omega(t)^2 \\ 0 \end{pmatrix}$$

We zien dat de bewegingen van A en C precies gelijk zijn in de x richting. We kennen nu ook de volledige plaatsfunctie van A.

$$r_a = \begin{pmatrix} 2a\cos(\theta(t)) \\ 0 \end{pmatrix} = \begin{pmatrix} v_O \\ 0 \end{pmatrix} \cdot t + \begin{pmatrix} 2a\cos\theta \\ 0 \end{pmatrix}$$

Dit is in functie van t. Hier halen we θ in functie van t uit.

$$\theta(t) = \arccos\left(\frac{v_O t + 2a\cos\theta}{2a}\right)$$

In deze vergelijking weten we alles.

- 1.4 K4
- 1.5 B1
- 1.6 B2
- 1.7 B3
- 2 Part 2
- 2.1 K1

gegeven

$$|v| = 900 \tfrac{km}{h} = 250 \tfrac{m}{s}$$

gevraagd

$$n:n\leq r$$

berekeningen

We weten dat $a_n = \frac{v^2}{r}$ en $a_t = \frac{dv}{dt}$.

$$a_t = \frac{d(250)}{dt} = 0$$

$$a_n = \frac{|v|^2}{r} \le 4g$$
$$\frac{|v|^2}{4g} \le r$$

Antwoord

$$n = \frac{|v|^2}{4g} = \frac{250^2}{4 \cdot 10} = 1562.5m$$

- 2.2K2
- 2.3 K3
- 2.4 B1
- 2.5B2
- 2.6 $\mathbf{B3}$
- Part 3 3
- 3.1 K1
- 3.2K2
- 3.3 K3
- 3.4 K4
- 3.5 B1

gegeven

$$d(A, B) = d = 200m$$

$$d(A,B) = d = 200m$$

$$v_{zwemmer} = 1.8 \frac{km}{u} = 0.5 \frac{m}{s}$$
Geval a,b:
$$v_{water} = 0.54 \frac{km}{u} = 0.15 \frac{m}{s}$$
Geval c:

$$v_{water} = 0.54 \frac{km}{m} = 0.15 \frac{m}{m}$$

$$v_{water} = 0 \frac{m}{s}$$

Geval a:

$$\widehat{v_{water},AB} = 0^{\circ}$$

Geval b:

$$\widehat{v_{water}, AB} = 30^{\circ}$$

gevraagd

$$\Delta t_{A\to B} + \Delta t_{B\to A}$$

berekeningen

$$t = \frac{\Delta x}{\Delta t}$$

a)

$$\begin{split} \Delta t_{A \rightarrow B} &= \frac{d}{v_{zwemmer} + \cdot v_{water}} = \frac{200}{0.5 + 0.15} = 307s \\ \Delta t_{B \rightarrow A} &= \frac{d}{v_{zwemmer} + \cdot v_{water}} = \frac{200}{0.5 - 0.15} = 571s \end{split}$$

Antwoord: $\Delta t_{A\to B} + \Delta t_{B\to A} = 879 \text{ s.}$

b)

De zwemmer moet nu de hoek waaronder hij zwemt ten opzichte van AB zodat hij in een rechte lijn zwemt voor een waarnemer op de oever.

$$\sin\theta \cdot v_{zwemmer} + \sin(-30^{\circ}) \cdot v_{water} = 0 \Leftrightarrow \theta = \arcsin\frac{(\sin(30^{\circ}) \cdot v_{water})}{v_{zwemmer}}$$

$$\Delta t_{A \to B} = \frac{d}{\cos \theta v_{zwemmer} + \cos (-30^{\circ}) v_{water}} = 320s$$

$$\Delta t_{B \to A} = \frac{d}{\cos \theta v_{zwemmer} - \cos{(-30^{\circ})} v_{water}} = 549s$$

Antwoord: $\Delta t_{A \to B} + \Delta t_{B \to A} = 869 \text{ s.}$

c)

$$\Delta t_{A \to B} = \frac{d}{v_{zwemmer}} = \Delta t_{B \to A} = 400$$

Antwoord: $\Delta t_{A\to B} + \Delta t_{B\to A} = 800 \text{ s.}$

- 3.6 B2
- 3.7 B3
- 3.8 B4