Certification Enablement Workshop - AWS Cloud Practitioner

Pre-read and Objectives for the Workshop

Pre-read

- An understanding of <u>AWS Cloud Concepts</u>
- Basic understanding of <u>security and compliance</u> within AWS Cloud
- Ability to distinguish AWS Core Services.
- Knowledge of <u>economics of AWS Cloud</u>

Objectives for the Workshop

- Ability to understand value of AWS Cloud
- Knowledge of <u>AWS Shared Responsibility Model</u>
- An understanding of best practices related to security
- Ability to identify AWS services for common use cases
- An understanding of AWS core services including compute, database, network and storage
- Knowledge on AWS economics, cloud costs and billing practices.

Cloud Concepts-26%

Defining the AWS Cloud and its value proposition, identifying aspects of AWS Cloud Economics, understanding different cloud architecture design principle

Security and Compliance-25%

Defining AWS Shared Responsibility model, defining AWS cloud security and compliance concepts, identifying AWS access management capabilities, identifying different resources for security support

Technology-33%

Defining methods of deploying and operating in AWS Cloud, defining the AWS global infrastructure, identifying core AWS services, identifying resources for technology support

Billing and pricing-16%

Comparing various pricing model for AWS, recognizing various account structures in relation to AWS billing and pricing, identifying resources available for billing support

- 1.1 Define the AWS Cloud and its value proposition
- 1.2 Identify aspects of AWS Cloud economics
- 1.3 Explain the different cloud architecture design principles

1.1 Define the benefits of the AWS cloud including

Define the AWS Cloud and its value proposition

Identify aspects of AWS Cloud economics

Explain the different cloud architecture design principles

AWS Cloud and its Value Proposition

AWS Cloud

Amazon Web Services

AWS S3

DynamoDB

Cloud front

AWS Cloud

AWS Facts and Figures

Launched in 2006

Pay-as-you-go

Scalable, Virtual

Unlimited Compute, Storage, Bandwidth

IaaS, PaaS, SaaS, FaaS, CaaS

VPN,
AWS Direct Connect,
Public Internet

AWS Value Proposition

Agility

Elasticity

Flexibility

Scalability

AWS Value Proposition

Reliability

High Availability

Economy of Scale

Pay as you go

Security

Use Cases for Scalability

Use Cases for Elasticity

E-Commerce

Streaming Services

Seven S of Organizational Agility

Use Cases for Pay as You Go

Use cases for Pay as you go model

Benefits of Cloud Computing

- ☐ Fixed Expenses instead of variable expenses
- Massive Economy of Scale
- ☐ Stop guessing about capacities
- Better speed and improved agility
- ☐ Stop spending money on data centers
- ☐ Go global in minutes

1.2 Identify aspects of AWS Cloud economics

Define items that would be part of a Total Cost of Ownership proposal

Identify which operations will reduce costs by moving to the cloud

AWS Cloud Economics

AWS Cloud Economics

Initial Cost

Migration cost

Duration to move

Monthly bill

Benefits of AWS Cloud Economics

Financial Benefits on Using AWS

Data Person Singulation of the state of the

94%

Less time lost to unplanned downtime \$36.5_M

Additional revenue per year per organization

14%

Average higher productivity, for 2,808 users per organization

Total Cost of Ownership (TCO) - Elements

AWS Cloud pricing calculators

AWS TCO Calculator

AWS Simple Monthly Calculator

Cost Optimization Pillars

Right Sized Infrastructure **Increase Elasticity** Leverage the right pricing model Optimize storage Measure, monitor, and improve

1.3 Explain the different cloud architecture design principles

Design for failure

Decouple components versus monolithic architecture

Implement elasticity in the cloud versus on-premises

Think parallel

Cloud Architecture Design Principles

Design Principles

Design for Failure

Assume everything fails. Then, design backward.

Where possible, use redundancy to prevent single points from bringing down an entire system.

Design for Failure

Create a secondary (standby) database server and replicate the data.

Secondary server picks up the load.

Monolithic architecture vs Decouple components

Monolithic Architecture

Decouple components

Decouple components

Design architectures with independent components.

Anti-pattern

InfoSys® | Education, Training and Assessment

Best practice

Elasticity

Contract when resources are no longer needed

Automatically acquire and Procure resources release resources when needed

Implement elasticity in the cloud

Where possible, automate the provisioning, termination, and configuration of resources.

Application server crashes Administrator manually launches and configures new server Users manually notify administrator

Think Parallel

Distribute the incoming requests across multiple asynchronous web servers

Think parallel

Experiment with parallel architectures

Think parallel

Experiment with parallel architectures

Three Servers Working on the same job for 1 hour parallelly

Well-Architected Framework

Summary

In This Module you have learnt the below Cloud Concepts

- AWS Cloud and its value proposition
- Aspects of AWS Cloud economics
- Different cloud architecture design principles

Sample Questions

Which of the following benefit you get when you use AWS Cloud? (Select Two)

- A. Capital expenditure (Capex) is swapped with variable expenses
- B. Companies require more IT staffs
- C. Fixed monthly bills for customers irrespective of what resources they use.
- D. Companies gain better agility for their businesses
- E. All time free storage in Amazon S3

Answer: A,D

Which design principle of AWS Cloud Architecture offers distribution of workloads among multiple Availability Zones?

- A. Design for failure
- B. Design for agility
- C. Automation implementation
- D. Implement elasticity

Answer: A

Which of the following is a critical design concept for architecting cloud applications?

- A. Use the largest instance possible
- B. Implement elasticity
- C. Provision capacity for peak load
- D. Use the Scrum development process

Answer: B

Which pillar of the AWS Well-Architected Framework is supported by the design philosophy of performing operations as code?

- A. Operational excellence
- B. Performance efficiency
- C. Reliability
- D. Security

Answer: A

What is raised when a business deploys web servers across several AWS Regions?

- A. Coupling
- B. Availability
- C. Security
- D. Durability

Answer: B