IN THE SPECIFICATION

Please replace the paragraph [0012] at line 24 page 2 to line 3, page 3 with the following rewritten paragraph:

[0012] Fig. 3 is a schematic diagram showing an example of the multi-layer film laminated as above. In Fig. 3, a multi-layer film having L layers in total is formed on the substrate 3 with a refractive index of n_s . The layer the farthest from the substrate 3 is a first layer, the underneath layer is a second layer, layers below them are thus denoted in order and the nearest layer to the substrate is an L-th layer. The first layer has a refractive index of n_l , the second layer has a refractive index of n_2 , a j-th layer has a refractive index of n_j , the L-1 layer has a refractive index of n_{L-1} , and the L-th layer has a refractive index of n_L . The first layer has a physical thickness of n_l , the second layer has a physical thickness of n_l , the layer has a physical thickness of n_l , the L-1 layer has a physical thickness of n_l , and the L-th layer has a physical thickness of n_l . The optical thickness is obtained by multiplying the refractive index by the physical thickness. For example, the optical thickness in the j-th layer is $n_j d_j$.

Please replace the paragraph [0054] at page 9, lines 21-26, with the following rewritten paragraph:

[0054] Now, the procedure for obtaining the function f(t) is described. First, the film 4 in each layer $n_1, n_2, \dots n_j, n_{95}, n_{96}$ is numbered starting from the one the farthest from the substrate 3 as shown in Fig. 1. Assuming that the film 4 in the j-th layer is now being formed, characteristic matrices of from the film 4 in the ninety-sixth layer to the film 4 in the (j + 1)-th layer which have already been formed are given as M_b . Then M_b can be expressed by Equation 5 collectively.