Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements

Table 1. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements						_
Eγ-keV	σ(Εγ)-barns	k ₀		Eγ-keV	σ(Εγ)-barns	k _o
Hydrogen (Z=1), <i>At.V</i>				rine (Z=9), cont		4 00(04) 40 F
¹ H 2223.24835(9) ² H <i>6250.243(3)</i>	0.3326(7) 0.000510/7\a	1.0000(21)	¹⁹ F	662.25(10) 665.207(18)	1.02(15)×10 ⁻⁴ 0.00149(6)	1.63(24)×10 ⁻⁵ 2.38(10) ×10 ⁻⁴
` '			19 ⊏	822.700(19)	2.20(9)×10 ⁻⁴	3.51(14)×10 ⁻⁵
Helium (Z=2), At. Wt.=			19 ⊏	978.19(5)	6.8(6)×10 ⁻⁵	1.08(10)×10 ⁻⁵
³ He 20520.46	4.2(12)×10 ⁻¹¹	3.2(9)×10 ⁻¹¹	19 ⊏	983.538(20)	0.00116(4)	1.85(6)×10 ⁻⁴
Lithium (Z=3), At.Wt.	= 6.941(2), σ_{ν} =	Q.045(3)	¹⁹ F	1045.98(3)	$1.79(8)\times10^{-4}$	2.86(13)×10 ⁻⁵
	$\int_{\alpha}^{\gamma} \sigma_{\alpha}^{\gamma} d^{\alpha}$	⁵ Li)=71.3(5)	¹⁹ F	1056.776(17)	0.00095(3)	1.52(5)×10 ⁻⁴
	0.00153(8)	0.00067(4)	¹⁹ F	1148.077(20) 1187.725(25)	0.000258(12) 4.5(3)×10 ⁻⁵	4.12(19)×10 ⁻⁵ 7.2(5)×10 ⁻⁶
⁷ Li 980.53(7)	0.00415(13)	0.00181(6)	19⋤	1282.15(4)	8.5(5)×10 ⁻⁵	1.36(8)×10 ⁻⁵
	0.00414(12) 0.0381(8)	0.00181(5) 0.0166(4)	19 ⊏	1309.126(17)	0.00076(3)	1.21(5)×10 ⁻⁴
	0.00151(9)	0.00066(4)	¹⁹ F ¹⁹ F	1371.520(24)	$1.44(7)\times10^{-4}$	2.30(11)×10 ⁻⁵
	0.00247(14)	0.00108(6)	¹⁹ F	1387.901(20) 1392.191(23)	0.00082(3)	1.31(5) × 10⁻⁴ 1.32(8)×10 ⁻⁵
Beryllium (Z=4), At. V	Vt =9.012182(3	3), $\sigma = 0.0088(4)$	¹⁹ F	1542.498(20)	8.3(5)×10 ⁻⁵ 0.000271(11)	4.32(18)×10 ⁻⁵
	0.00208(24)	ο.00070(8)	¹⁹ F	1633.53(3)d	0.0096(4)	0.00153[100%]
⁹ Be 2590.014(19)	0.00191(15)	0.00064(5)	¹⁹ F	1644.538(25)	7.3(6)×10 ⁻⁵	1.16(10)×10 ⁻⁵
⁹ Be 3367.448(25)	0.00285(22)	0.00096(7)	¹⁹ F	1843.688(20)	0.000600(23)	9.6(4)×10 ⁻⁵
⁹ Be 3443.406(20)	0.00098(7)	0.000330(24)	19 ⊢	1935.52(3)	7.3(5)×10 ⁻⁵	1.16(8)×10 ⁻⁵
⁹ Be 5956.53(3)	1.46(12)×10 ⁻⁴	4.9(4)×10 ⁻⁵	¹⁹ F	1970.726(20) 2009.52(6)	8.5(6)×10 ⁻⁵ 4.6(4)×10 ⁻⁵	1.36(10)×10 ⁻⁵ 7.3(6)×10 ⁻⁶
` ,	0.0058(5)	0.00195(17)	19 ⊏	2043.858(20)	$7.0(4)\times10^{-5}$	1.12(6)×10 ⁻⁵
Boron (Z=5), <i>At.Wt.</i> =	10.811(7), σ _γ =(0.104(20) ⁰ B)=764(25)	19 ⊏	2143.248(21)	1.95(8)×10 ⁻⁴	3.11(13)×10 ⁻⁵
100/- \ 477 505/0\	σ _α (΄		¹⁹ F	2179.091(20)	8.9(6)×10 ⁻⁵	1.42(10)×10 ⁻⁵
¹⁰ B(n,α) 477.595(3) ¹⁰ B <i>6739.67(17)</i>	71 6(25) 0.0113(10)	201(7) 0.0032(3)	19F	2194.159(21) 2229.75(9)	1.32(6)×10 ⁻⁴ 5.3(5)×10 ⁻⁵	2.11(10)×10 ⁻⁵ 8.5(8)×10 ⁻⁶
• ,	• ,	• •	19 ⊏	2255.83(3)	8.5(5)×10 ⁻⁵	1.36(8)×10 ⁻⁵
Carbon (Z=6), <i>At.Wt.</i> :			19 ⊏	2309.929(25)	4.5(3)×10 ⁻⁵	7.2(5)×10 ⁻⁶
	0.00124(3)	0.000313(8)	19 ⊏	2324.12(3)	1.18(5)×10 ⁻⁴	1.88(8)×10 ⁻⁵
¹² C 3683.920(9) ¹² C 4945.301(3)	0.00122(3) 0.00261(5)	0.000308(8) 0.000659(13)	¹⁹ F	2427.82(3)	1.89(8)×10 ⁻⁴	3.01(13)×10 ⁻⁵
¹³ C 8174.04(18)	1.09(6)×10 ⁻⁵	2.75(15)×10 ⁻⁶	¹⁹ F	2431.084(10) 2431.425(19)	0.000392(24) 7(3)×10 ⁻⁵	6.3(4) × 10 ⁻⁵ 1.1(5)×10 ⁻⁵
	• /	• •	19⋤	2447.574(21)	1.44(7)×10 ⁻⁴	2.30(11)×10 ⁻⁵
Nitrogen (Z=7), At.W	L=14.0007(2),	$σ_0(^{14}N)=1.82(3)$	19 ⊏	2469.34(3)	1.94(9)×10 ⁻⁴	3.09(14)×10 ⁻⁵
¹⁴ N 583.59(3)	0.000429(14)	9.3(3)×10 ⁻⁵	19 ⊏	2504.658(25)	3.8(4)×10 ⁻⁵	6.1(6)×10 ⁻⁶
¹⁴ NI 1678 291/14N	0.0063(3)	0.00136(7)	¹⁹ F	2519.02(3)	6.8(5)×10 ⁻⁵	1.08(8)×10 ⁻⁵
¹⁴ N 1681 24(5)	0.00129(8)	0.000279(17)	¹⁹ F	2529.212(18)	0.00061(3)	9.7(5)×10 ⁻⁵
¹⁴ NI 1853 022(10)	0.000508(10)	1.099(22)×10 ⁻⁴	19 ⊏	2529.553(18) 2623.16(3)	9(3)×10 ⁻⁵ 4.5(3)×10 ⁻⁵	1.4(5)×10 ⁻⁵ 7.2(5)×10 ⁻⁶
	0.01470(18)	0.00318(4)	¹⁹ F	2636.09(3)	9.6(5)×10 ⁻⁵	1.53(8)×10 ⁻⁵
	0.000289(16) 0.00323(4)	6.3(4)×10 ⁻⁵ 0.000699(9)	19 ⊏	2655.70(3)	7.6(6)×10 ⁻⁵	1.21(10)×10 ⁻⁵
¹⁴ N 2520 457(17)	0.00323(4) 0.00441(24)	0.00095(5)	¹⁹ F	2920.96(3)	9.6(5)×10 ⁻⁵	1.53(8)×10 ⁻⁵
¹⁴ N 2830 789(17)	0.00134(3)	0.000290(7)	19 ⊢ 19 ⊢	2930.284(21)	8.5(5)×10 ⁻⁵	1.36(8)×10 ⁻⁵
¹⁴ N 3013.482(21)	0.00057(5)	1.23(11)×10 ⁻⁴	¹⁹ F	2965.854(22) 3014.568(10)	9.3(5)×10 ⁻⁵ 0.000405(15)	1.48(8)×10 ⁻⁵ 6.46(24) ×10 ⁻⁵
	0.0071(4)	0.00154(9)	19┏	3025.10(3)	8.4(9)×10 ⁻⁵	1.34(14)×10 ⁻⁵
¹⁴ N 3855 577/10\	0.0115(6) 0.000626(16)	0.00249(13) 1.35(4)×10 ⁻⁴	¹⁹ F	3051.435(20)	0.000297(12)	4.74(19)×10 ⁻⁵
¹⁴ N 3884 242(18)	0.000436(13)	9.4(3)×10 ⁻⁵	¹⁹ F	3074.78(3)	1.86(8)×10 ⁻⁴	2.97(13)×10 ⁻⁵
¹⁴ N 4508 731(12)	0.0132(7)	0.00286(15)	¹⁹ F	3112.693(18) 3220.00(3)	2.36(9)×10 ⁻⁴	3.76(14)×10 ⁻⁵ 9.7(6)×10 ⁻⁶
¹⁴ N 5269.159(13)	0.0236(3)	0.00511(7)	19 ⊏	3293.23(4)	6.1(4)×10 ⁻⁵ 3.8(8)×10 ⁻⁵	6.1(13)×10 ⁻⁶
	0.01680(23)	0.00363(5)	19 F	3387.58(9)	6.1(5)×10 ⁻⁵	9.7(8)×10 ⁻⁶
¹⁴ N 5562 057(13)	0.0155(8) 0.0084(5)	0.00335(17) 0.00182(11)	19 ⊏	3488.06 4 (18)	0.00073(3)	1.16(5)×10 ⁻⁴
¹⁵ N 6128 63(4)d	5.90(12)×10 ⁻⁸	1.28×10 ⁻⁸ [100%]	¹⁹ F	3586.186(10)	0.000286(13)	4.56(21)×10 ⁻⁵
¹⁴ N 6322 428(12)	0.01450(22)	0.00314(5)	19 F	3589.45(3) 3679.79(3)	1.79(8)×10 ⁻⁴ 8.7(8)×10 ⁻⁵	2.86(13)×10 ⁻⁵ 1.39(13)×10 ⁻⁵
¹⁴ N 7298 983(17)	0.00746(12)	0.00161(3)	19 ⊏	3741.46(3)	5.7(5)×10 ⁻⁵	9.1(8)×10 ⁻⁶
	0.00330(6)	0.000714(13)	19 F	3823.093(24)	1.07(6)×10 ⁻⁴	1.71(10)×10 ⁻⁵
¹⁴ N 9148.98(5) ¹⁴ N 10829.120(12)	0.00129(6) 0.0113(8)	0.000279(13) 0.00244(17)	19 ⊏	3964.872(20)	0.000435(18)	6.9(3)×10 ⁻⁵
` .		` '	¹⁹ F	4046.504(23)	6.0(16)×10 ⁻⁵	1.0(3)×10 ⁻⁵
Oxygen (Z=8), <i>At.Wt.</i>			¹⁹ F	4081.71(3) 4094.85(10)	5.6(4)×10 ⁻⁵ 5.1(17)×10 ⁻⁵	8.9(6)×10 ⁻⁶ 8(3)×10 ⁻⁶
	3.15(22)×10 ⁻⁷ 1.77(11) × 10 ⁻⁴	6.0×10 ⁻⁸ [99%] 3.35(21) ×10 ⁻⁵	19 ⊏	4173.527(23)	1.66(7)×10 ⁻⁴	2.65(11)×10 ⁻⁵
¹⁶ ○ 1087 75(6)	1.58(7)×10 ⁻⁴	2.99(13)×10 ⁻⁵	¹⁹ F	4200.68(4)	1.11(6)×10 ⁻⁴	1.77(10)×10 ⁻⁵
¹⁷ ∩ 1081 05(a)	2.0(4)×10 ⁻⁷	3.8(8)×10 ⁻⁸	19 ⊏	4245.68(3)	9.5(5)×10 ⁻⁵	1.52(8)×10 ⁻⁵
¹⁶ O 2184.42(7)	1.64(7)×10 ⁻⁴	3.11(13)×10 ⁻⁵	¹⁹ F ¹⁹ F	4335.08(4)	4.6(4)×10 ⁻⁵	7.3(6)×10 ⁻⁶
¹⁶ O 3272.02(8)	3.53(23)×10 ⁻⁵	6.7(4)×10 ⁻⁶	¹⁹ F	4556.817(20) 4708.007(20)	0.000517(23) 5.1(4)×10 ⁻⁵	8.2(4)×10 ⁻⁵
Fluorine (Z=9), At. Wt	t.=18.9984032((5), σ _√ =0.0096(5)	19 F	4735.16(4)	5.6(4)×10 ⁻⁵	8.1(6)×10 ⁻⁶ 8.9(6)×10 ⁻⁶
¹⁹ F 166.700(20)	0.000413(18) [`]	6.6(3)×10 ⁻⁵	¹⁹ F	4756.957(23)	1.86(9)×10 ⁻⁴	2.97(14)×10 ⁻⁵
¹⁹ F 325.606(24)	4.0(3)×10 ⁻⁵	6.4(5)×10 ⁻⁶	19 ⊏	4951.90(3)	6.2(6)×10 ⁻⁵	9.9(10)×10 ⁻⁶
	2.01(8)×10 ⁻⁴	3.21(13)×10 ⁻⁵	¹⁹ F ¹⁹ F	5033.530(23)	0.00063(3)	1.00(5)×10 ⁻⁴
	0.00356(12) 0.00197(7)	0.000568(19) 0.000314(11)	¹⁹ F	5279.360(20) 5291.420(19)	0.000421(20) 2.35(11)×10 ⁻⁴	6.7(3) × 10 -5 3.75(18)×10 ⁻⁵
	2.24(14)×10 ⁻⁴	3.57(22)×10 ⁻⁵	19 F	5360.986(21)	1.17(5)×10 ⁻⁴	1.87(8)×10 ⁻⁵
<u> </u>				(= .)	(-)	- (-)::-

^aDeuterium isotopic cross section uncorrected for abundance

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

	Eγ-keV	σ(Εγ)-barns	k _o	E γ-keV	σ (Εγ)-barns	k _o
Fluo	rine (Z=9), cont			Sodium (Z=11), con		
¹⁹ F	5543.713(10)		6.5(3)×10 ⁻⁵	²³ Na 2025.139(22)	0.0341(8)	0.00450(11)
¹⁹ F ¹⁹ F	5554.51(3)	5.1(4)×10 ⁻⁵ 1.41(8)×10 ⁻⁴	8.1(6)×10 ⁻⁶ 2.25(13)×10 ⁻⁵	²³ Na 2027.104(25) ²³ Na 2030.318(23)	0.0038(5)	0.00050(7)
19 F	5616.933(23) 5935.179(20)	9.1(8)×10 ⁻⁵	1.45(13)×10 ⁻⁵	²³ Na 2071.78(3)	0.0219(7) 0.0059(3)	0.00289(9) 0.00078(4)
¹⁹ F	6016.802(16)	0.00094(4)	1.50(6)×10 ⁻⁴	[∠] 3Na 2208.40(3)	0.0259(9)	0.00341(12)
¹⁹ F	6600.175(16)	0.00096(3)	1.53(5)×10 ⁻⁴	[∠] 3Na 2361.026(21)	0.0084(3)	0.00111(4)
Neor	n (Z=10), <i>At.Wt</i> .	. =20.1797(6), σ _ν	=0.039(4)	²³ Na 2397.433(25) ²³ Na 2414.457(21)	0.0069(4)	0.00091(5)
²⁰ Ne	350.72(6)	0.0198(4)	0.00297(6)	²³ Na 2505.439(21)	0.0237(5) 0.0167(5)	0.00312(7) 0.00220(7)
²² Ne	439.986d	0.001400(5)	2.102×10 ⁻⁴ [99%]	[∠] 3Na 2517.81(3)	0.0699(15)	0.00921(20)
²⁰ Ne	768.55(7) 964.41(7)	2.5(4)×10 ⁻⁴ 0.00029(11)	3.8(6)×10 ⁻⁵ 4.4(17)×10 ⁻⁵	[∠] 3Na 2595.49(3)	0.0052(3)	0.00069(4)
²² Ne	1017.00(20)	0.00029(11) 0.0030(5)	0.00045(8)	²³ Na 2630.66(3) ²³ Na 2715.87(3)	0.00289(14) 0.00306(16)	0.000381(18) 0.000403(21)
²ºNe	1071.34(7)	0.0054(4)	0.00081(6)	[∠] 3Na 2752.271(23)	0.0654(12)	0.00862(16)
∠'Ne	: 1274.542(7)	0.0018(5)	0.00027(8)	[∠] °Na 2754.13(6)d	0.530(8)	0.0699[2.3%]
²² Ne	1364.8(3) 1822.40(20)	0.00091(12) 0.00052(5)	1.37(18)×10 ⁻⁴ 7.8(8)×10 ⁻⁵	²³ Na 2763.17(7)	0.0053(12)	0.00070(16)
²ºNe	1931.08(6)	0.00591(22)	0.00089(3)	²³ Na 2808.468(22) ²³ Na 2860.355(20)	0.0168(7) 0.0177(5)	0.00221(9) 0.00233(7)
′Ne	1979.89(6)	0.00306(17)	0.00046(3)	² Na 2865.534(22)	0.0130(4)	0.00233(7)
²² Ne	2013.8(4)	0.00040(5)	6.0(8)×10 ⁻⁵	[∠] 3Na 2904.89(3)	0.0059(3)	0.00078(4)
21NG	2035.67(20) 2082.5(4)	0.0245(25) 0.0011(3)	0.0037(4) 1.7(5)×10 ⁻⁴	²³ Na 2940.91(3)	0.00347(18)	0.000457(24)
∠'Ne	2165.9(7)	0.00084(21)	1.3(3)×10 ⁻⁴	²³ Na 2981.97(3) ²³ Na 3025.99(4)	0.0142(6) 0.0146(6)	0.00187(8) 0.00192(8)
′Ne	2203.58(6)	0.00238(23)	0.00036(4)	[∠] 3Na 3092.50(5)	0.0025(4)	0.00192(8)
²⁰ Ne	2437.84(25)	0.00036(7)	5.4(11)×10 ⁻⁵	[∠] 3Na 3093.79(8)	0.00280(20)	0.00037(3)
²² Ne	2793.94(5) 2819.22(16)	0.00900(11) 0.00052(5)	0.001352(17) 7.8(8)×10 ⁻⁵	[∠] 3Na 3096.78(3)	0.0199(7)	0.00262(9)
∠⁰Ne	2895.32(10)	0.00032(3) 0.00252(7)	0.000378(11)	²³ Na 3099.99(3) ²³ Na 3116.97(4)	0.0160(9) 0.00523(24)	0.00211(12) 0.00069(3)
∠'Ne	2987.8(5)	0.00086(22)	1.3(3)×10 ⁻⁴	²³ Na 3209.59(10)	0.00323(24)	0.00050(3)
∠'Ne	: 3181.8(16)	0.00048(12)	7.2(18)×10 ⁻⁵	[∠] 3Na 3214.22(4)	0.0054(4)	0.00071(5)
²⁰ Ne	3220.42(16) 3971.98(15)	0.00057(23) 0.00039(3)	9(4)×10 ⁻⁵ 5.9(5)×10 ⁻⁵	[∠] 3Na 3277.32(10)	0.00377(17)	0.000497(22)
²¹ Ne	4018.3(5)	0.00039(3)	1.4(4)×10 ⁻⁴	²³ Na 3369.94(4) ²³ Na 3409.39(3)	0.0133(4) 0.00237(11)	0.00175(5)
∠⁰Ne	4374.13(6)	0.01910(22)	0.00287(3)	²³ Na 3413.97(3)	0.00237(11)	0.000312(15) 0.000581(24)
∠'Ne	4634.83	0.00042(11)	6.3(17)×10 ⁻⁵	²³ Na 3504.94(3)	0.00676(23)	0.00089(3)
20Ne	4840.1(5) 5688.97(6)	0.00038(10) 0.00214(3)	5.7(15)×10 ⁻⁵ 0.000321(5)	[∠] 3Na 3546.00(3)	0.00454(22)	0.00060(3)
²ºNe	6760.06(6)	0.00214(3)	0.000321(3)	²³ Na 3587.460(25) ²³ Na 3643.655(20)	0.0596(11) 0.0067(3)	0.00786(15) 0.00088(4)
²¹ Ne	9087.3(5)	0.00028(7)	4.2(11)×10 ⁻⁵	[∠] °Na 3878.10(3)	0.0218(6)	0.00287(8)
		Wt.=22.989770(2). σ.=0.530(5)	²³ Na 3981.450(25)	0.0677(11)	0.00892(15)
²³ Na	90.9920(10)	0.235(3)	0.0310(4)	[∠] 3Na 4187,49(3)	0.0073(5)	0.00096(7)
²³ Na	472.202(9)d	0.478(4)	0.0630[100%]	²³ Na 5113.007(16) ²³ Na 5612.274(16)	0.00250(14) 0.0026(11)	0.000330(18) 0.00034(15)
²³ Na	499.381(5)	0.0143(3)	0.00189(4)	[∠] 3Na 5614.239(18)	0.005(3)	0.0007(4)
23Na	501.347(13) 563.1920(20)	0.00314(13) 0.0085(3)	0.000414(17) 0.00112(4)	[∠] 3Na 5617.452(17)	0.016(5)	0.0021(7)
∠³Na	· 711.967(10)	0.00430(22)	0.00057(3)	²³ Na 6395.478(15)	0.1000(20)	0.0132(3)
∠³Na	778.221(9)	0.0058(3)	0.00076(4)	Magnesium (Z=12),	At.Wt.=24.3050	0(6), σ _γ =0.0666(13)
²³ Na	781.435(11)	0.0175(5)	0.00231(7)	²⁴ Mg 389.670(21)	0.00586(24)	0.00073(3)
23Na	835.292(18) 869.210(9)	0.0109(3) 0.1080(13)	0.00144(4) 0.01424(17)	²⁴ Mg 585.00(3)	0.0314(11)	0.00392(14)
∠³Na	874.389(6)	0.0760(11)	0.01002(15)	²⁶ Mg <i>843.71(3)d</i> ²⁴ Mg 862.96(3)	0.00298(14) 0.000410(21)	0.000372[78%] 5.1(3)×10 ⁻⁵
²³Na	886.749(11)	0.00402(16)	0.000530(21)	²⁴ Ma 974.66(3)	0.00663(24)	0.00083(3)
23Na	1006.23(4)	0.00370(18)	0.000488(24)	^{∠o} Ma 984.88(4)	0.00064(4)	8.0(5)×10 ⁻⁵
∠³Na	1150.002(17) 1282.764(8)	0.00528(21) 0.0055(3)	0.00070(3) 0.00073(4)	²⁵ Mg 1003.14(3) ²⁵ Mg 1129.575(23)	0.00161(6)	2.01(8)×10 ⁻⁴
∠³Na	1322.262(14)	0.0062(3)	0.00082(4)	²⁵ Mg 1411.70(3)	0.00891(25) 0.00130(5)	0.00111(3) 1.62(6)×10 ⁻⁴
∠³Na	1337.73(4)	0.00313(20)	0.00041(3)	^{∠o} Ma 1615.11(4)	0.00070(4)	8.7(5)×10 ⁻⁵
23Na	1344.607(11)	0.0217(5)	0.00286(7)	²⁴ Ma 1712.92(4)	0.00118(7)	1.47(9)×10 ⁻⁴
23Na	1368.66(3)d 1373.751(8)	<i>0.530(8) 0.0079(19)</i>	0.0699[2.3%] 0.00104(25)	²⁵ Mg 1775.31(3) ²⁵ Mg 1808.668(22)	0.00129(5)	1.61(6)×10 ⁻⁴
∠³Na	1504.92(7)	0.00293(23)	0.00039(3)	^{∠o} Ma 1896.72(3)	0.0180(5) 0.00094(4)	0.00224(6) 1.17(5)×10 ⁻⁴
²³ Na	1562.470(21)	0.00256(20)	0.00034(3)	²⁴ Ma 1978.25(3)	0.00111(5)	1.38(6)×10 ⁻⁴
23Na	1620.49(4)	0.00294(22)	0.00039(3)	²³ Ma 2132.67(3)	0.00089(4)	1.11(5)×10 ⁻⁴
23Na	1633.080(23) 1636.293(21)	0.0074(4) 0.0250(7)	0.00098(5) 0.00330(9)	²³ Ma 2189.57(4)	0.000592(22)	7.4(3)×10 ⁻⁵
∠³Na	1712.43(20)	0.0112(6)	0.00148(8)	²⁵ Mg 2353.27(4) ²⁵ Mg 2426.12(3)	0.000447(21) 0.000519(20)	5.6(3)×10 ⁻⁵ 6.47(25)×10 ⁻⁵
²³Na	1885.421(14)	0.0039(3)	0.00051(4)	²⁴ Ma 2438.54(3)	0.00473(19)	0.000590(24)
²³ Na	1899.06(4)	0.0081(4)	0.00107(5)	²³ Ma 2510.02(4)	0.00058(3)	7.2(4)×10 ⁻⁵
23N2	1899.86(3) 1914.44(3)	0.0036(16) 0.00606(21)	0.00047(21) 0.00080(3)	²³ Ma 2523.65(4)	0.00100(4)	1.25(5)×10 ⁻⁴
²³ Na	1928.16(4)	0.00480(19)	0.000633(25)	²⁵ Mg 2541.21(3) ²⁴ Mg 2828.172(25)	0.00148(7) 0.0240(8)	1.85(9)×10 ⁻⁴ 0.00299(10)
²³ Na	1928.37(4)	0.0055(5)	0.00073(7)	[∠] °Ma 2881.64(3)	0.00272(14)	0.00233(10)
23Na	1950.112(23)	0.0087(3)	0.00115(4)	^{∠o} Ma 2938.159(25)	0.00094(4)	1.17(5)×10 ⁻⁴
	2019.50(8)	0.0025(3)	0.00033(4)	²⁴ Mg 3054.00(3)	0.0083(3)	0.00103(4)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Magnesium (Z=12), continued Septending Aluminum (Z=13), continued Aluminum (Z=13), continued Septending Aluminum (Z=13), continued Aluminum (Z=13), continued Aluminum (Z=13), continued Septending Sept	
2 ⁴ Mg 3301.41(3)	
2 ⁴ Mg 3301.41(3)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
Aluminum (Z=13), At.Wt.=26.981538(2), σ _x =0.231(3) 27 Al 7693.397(4) 0.0081(3) 0.00091(3) 0.00554(17)	
27A 30.6380(10) 0.0798(20) 0.00896(22)	
AI 30.6380(10) 0.0798(20) 0.00896(22)	
$\frac{2}{1}$	
²⁷ Al 831.426(22) 0.00269(7) 0.000302(8) ³⁰ Si 752.215(23) 0.00316(10) 0.000341(11)	
^{27}Al 851.420(22) 0.00209(7) 0.000302(8) ^{30}Si 1266.15(10)d 2.5(4)×10-6 2.7×10-7[12%]	
27Al 941.75(3) 0.00046(5) 0.000276(6) 28Si 1273.349(17) 0.0289(6) 0.00312(7) 27Al 982.951(10) 0.00902(14) 0.001013(16) 28Si 1446.176(22) 0.00134(13) 1.45(14)×10-4	
4/11 + 1042 = 600/40 0 00=== $4/10$ 0 000== $20/44$ $4/00$ 1 0= $4/00$ 1 00420 $4/4$ 1 20 $4/4$ 1 20 $4/4$	
27Al 1073.94(4) 0.00100(4) 1.12(5)×10 ⁻⁴ 28Si 2092.902(18) 0.00331(6) 0.00357(7)	
27Al 1073.94(4) 0.00100(4) 1.12(5)×10 ⁻⁴ 29Si 2235.227(22) 0.00250(11) 0.000270(12)	
^{27}Al 1125.289(14) 0.00083(4) 9.3(5)×10 ⁻⁵ ^{28}Si 2425.767(23) 0.00494(15) 0.000533(16) ^{27}Al 1193.476(22) 0.00097(4) 1.09(5)×10 ⁻⁴ ^{30}Si 2780.552(22) 0.00241(13) 0.000260(14)	
27 Al 1193.476(22) 0.00097(4) 1.09(5)×10 ⁻⁴ 30 Si 2780.552(22) 0.00241(13) 0.000260(14) 27 Al 1283.693(12) 0.00222(6) 2.49(7)×10 ⁻⁴ 30 Si 3054.321(23) 0.00245(14) 0.000264(15)	
²⁷ Al 1283.693(12) 0.00222(6) 2.49(7)×10 ⁻⁴ ³⁰ Si 3054.321(23) 0.00245(14) 0.000264(15) ²⁷ Al 1342.320(20) 0.00209(6) 2.35(7)×10 ⁻⁴ ²⁹ Si 3101.19(3) 0.00149(8) 1.61(9)×10 ⁻⁴	
27Al 1408.344(9) 0.00640(13) 0.000719(15) 28Si 3538.966(22) 0.1190(20) 0.01284(22)	
27AI 1526.246(12) 0.00339(9) 0.000381(10) 28Si 3660.713(23) 0.00703(21) 0.000759(23)	
²⁷ Al 1589.62(3) 0.00247(7) 0.000277(8) ²⁹ Si 3864.900(23) 0.00166(9) 1.79(10)×10 ⁻⁴ (27) Al 1622.877(18) 0.00989(15) 0.001111(17) ²⁸ Si 3954.39(3) 0.00449(19) 0.000484(21)	
2 ¹ /M 1705 500(22) 0 00080(5) 0 0(6)~10-5 2 ⁸ Si 4033 880(24) 0 1120(23) 0 01200(25)	
²⁷ AL 1778.92(3)d 0.232(4) 0.0261[95%] ²⁰ Si 5106.693(22) 0.0064(3) 0.00069(3)	
27 Al 1864.33(3) 0.00091(4) 1.02(5)×10-4 28 Si 6379.801(21) 0.0207(6) 0.00223(7)	
²⁷ Al 1927.527(25) 0.00262(7) 0.000294(8) ²⁹ Si 6743.25(3) 0.00170(9) 1.83(10)×10 ⁻⁴ ²⁷ Al 1983.978(14) 0.00207(8) 2.32(9)×10 ⁻⁴ ²⁸ Si 7199.199(23) 0.0125(4) 0.00135(4)	
4' N 2109 107(10) 0 005/0(11) 0 000617(12) 40S; 9/72 200(22) 0 00291(19) 0 000/11(10)	
4/ NT	/C\
27 A = 2470 70/3 0.0009/5 0.9/6 0.009	(O)
$^{27}\text{Al} 2255.37(3) 0.00109(5) 1.22(6)×10-4 ^{31}\text{F} 76.063(20) 0.039(3) 0.0036(3)$	
2/AL 2002 704/0\ A 00000/47\ A 004000/40\ **P 228 40L/\ LUULUUS\ LUUS\ LUUS\ LUUS\	
4'N 2451565(11) 0.00106(7) 1.10(9)×10-4 P 030.003(21) 0.0311(14) 0.00304(14)	
4/NL 9677 704/49) 0 00449/40) 0 000469/44) F /44 99(3) UUUTUT(3) 9 9(3)XTU	
2'AL 25QA 1Q3/Q\ A AAQA7/16\ A AAAAAAAAA A AAAAAAAAAAAAAAAAAAAAAAA	
$\frac{27(1)}{2700} \frac{2700}{62(2)} \frac{1}{100} \frac{1}$	
- 4'NI 2054 47/7\	
4/N 2022 206/6) 	
27.11 2203.446(40) 0.00344(7) 0.000374(8) 31P 1676.84(3) 0.00405(20) 0.000396(20)	
27 Al 3346 970(13) 0.00111(5) 1.25(6)×10-4 31 P 1739.14(5) 0.00201(10) 1.97(10)×10-4	
4/AL 9904 600/99\	
2/AL 2/GE 050/7) 	
$2^{7}A$ 3560.555(8) 0.00206(8) 2.31(9)×10-4	
27A $2709 020(44) 0.00099(9) 0.0(9),40.5 31P 2156 90(4) 0.0128(6) 0.00125(6)$	
- 4/NL 2790 226/12\- 0.00101/9\2.45(15)X1U∃	
27AI 3823.909(23) 0.00114(7) 1.28(8)×10-4 31P 2229.59(3) 0.00080(9) 7.8(9)×10-5	

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ (Ε γ)-barns	k _o		Eγ-keV	σ (Ε γ)-barns	k _o
Phosphorus (Z=15),			Chlo	rine (Z=17), <i>At.</i>		
³¹ P 2234.07(6)	0.00123(8)	1.20(8)×10 ⁻⁴	³⁵ CI	292.177(8)	0.0893(10)	0.00763(9)
³¹ P 2426.29(3) ³¹ P 2514.65(4)	0.00265(13)	0.000259(13)	³⁵ CI ³⁵ CI	436.222(4)	0.3090(20)	0.02641(17)
³¹ P 2514.65(4) ³¹ P 2579.27(6)	0.00156(9) 0.00082(6)	1.53(9)×10 ⁻⁴ 8.0(6)×10 ⁻⁵	3361	517 N72N/1N\	0.108(17) 7.58(5)	0.0092(15) 0.648(4)
³¹ P 2586 00(4)	0.0089(4)	0.00087(4)	99(:)	632 437151	0.1110(16)	0.00949(14)
³¹ P 2657 35(6)	0.00252(14)	2.47(14)×10 ⁻⁴	וי זיי	786.3020(10)	3.420(7)	0.2923(6)
³¹ P 2740.11(5)	0.00085(5)	8.3(5)×10 ⁻⁵			5.42(5)	0.463(4)
³¹ P 2863.01(7) ³¹ P 2885.99(3)	0.00359(18) 0.0064(3)	0.000351(18) 0.00063(3)	³⁵ Cl		0.1720(13) 0.100(16)	0.01470(11) 0.0085(14)
³¹ P 3058 17(4)	0.0004 (3)	0.00108(4)	აატ	1131.250(9)	0.626(3)	0.0535(3)
³¹ P 3185 61 <i>(</i> 3)	0.00326(12)	0.000319(12)	וי זיי	1169 7200/90\		0.065(3)
³¹ P 3273.98(4)	0.0083(3)	0.00081(3)	აატ	1164.8650(10)		0.762(3)
³¹ P 3365.98(5) ³¹ P 3444.06(5)	0.00112(5) 0.00121(5)	1.10(5)×10 ⁻⁴ 1.18(5)×10 ⁻⁴	³⁵ Cl	1170.946(4) 1327.405(9)	0.154(5) 0.4020(23)	0.0132(4) 0.03436(20)
³¹ P 3522 59(3)	0.0219(8)	0.00214(8)	וי זכנ	1070 070/10\	0.4020(23)	0.0090(3)
³¹ P 3548.73(4)	0.00135(6)	1.32(6)×10 ⁻⁴	აატ	1601.072(4)	1.210(7)	0.1034(6)
³¹ P 3554.31(5)	0.00084(4)	8.2(4)×10 ⁻⁵	3361	1627 (1/2)	0.094(5)	0.0080(4)
³¹ P 3899.89(3) ³¹ P 3922.87(7)	0.0294(10)	0.00288(10)	³⁵ CI ³⁵ CI	1610 206(0)	0.158(17) 0.174(5)	0.0135(15)
³¹ P 3922.87(7) ³¹ P 3926.48(5)	0.00302(12) 0.00368(14)	0.000295(12) 0.000360(14)	აა∩∣	1648.306(9) 1729.929(9)	0.174(3)	0.0149(4) 0.0091(10)
³¹ P 3930 52 <i>(</i> 5)	0.00108(5)	1.06(5)×10 ⁻⁴	3361	1707 02/01	0.177(6)	0.0151(5)
³¹ P 3957.10(3)	0.00102(5)	9.98(5)×10 ⁻⁵	യ∩	1828.49(4)	0.111(5)	0.0095(4)
³¹ P 4008.59(5) ³¹ P 4199.87(4)	0.00122(5)	1.19(5)×10 ⁻⁴	³⁵ Cl	1026 07/51	0.153(9)	0.0131(8)
³¹ P 4359 57 <i>(</i> 3)	0.0055(3) 0.00195(7)	0.00054(3) 1.91(7)×10 ⁻⁴	ויייייי	1050 3/6//\	4.10(3)	0.541(3) 0.350(3)
³¹ P 4364 30 <i>(</i> 4)	0.0073(3)	0.00071(3)	აატ	1975.22(7)	0.214(22)	0.0183(19)
³¹ P 4491.00(4)	0.00323(12)	0.000316(12)	3101	1090 04/71	0.045(4)	0.0038(3)
³¹ P 4628.94(4) ³¹ P 4661.07(4)	0.00082(10)	8.0(10)×10 ⁻⁵	³⁵ CI ³⁵ CI	2022.091(7)	0.161(6)	0.0138(5)
³¹ P 4661.07(4) ³¹ P 4671.37(3)	0.00568(21) 0.0194(7)	0.000556(21) 0.00190(7)	აა∩∣	2034.63(3) 2041.40(6)	0.239(5) 0.121(5)	0.0204(4) 0.0103(4)
³¹ P 4876 87 <i>(</i> 4)	0.00111(9)	1.09(9)×10 ⁻⁴			0.252(7)	0.0215(6)
³¹ P 4912.30(5)	0.00114(5)	1.12(5)×10 ⁻⁴	ויייייי	210//51	0.105(7)	0.0090(6)
³¹ P 5194.91(5) ³¹ P 5265.51(4)	0.00236(23)	2.31(23)×10 ⁻⁴	~~(7156 TUI/II	0.205(7)	0.0175(6)
³¹ P 5265.51(4) ³¹ P 5277.66(6)	0.0058(4) 0.00188(9)	0.00057(4) 1.84(9)×10 ⁻⁴	³⁵ CI	2166.90(20)d 2179.51(4)	<i>0.0568(15)</i> 0.12(5)	<i>0.00486[40%]</i> 0.010(4)
³¹ P 5699.99(4)	0.00102(4)	9.98(4)×10 ⁻⁵	וי זיי	2200 10(4)	0.123(5)	0.0105(4)
³¹ P 5705 37(3)	0.00428(16)	0.000419(16)	٠٠(.۱	77X4 /X/161	0.102(14)	0.0087(12)
³¹ P 5778.06(4) ³¹ P 6785.504(24)	0.00152(6)	1.49(6)×10 ⁻⁴	33CI	2311 38(4)	0.35(10)	0.030(9)
³¹ P 6785.504(24) ³¹ P 7422.022(25)	0.0267(15) 0.0082(3)	0.00261(15) 0.00080(3)	וי זיי	2468.1830(20) 2469.97(3)	0.097(8)	0.0083(7) 0.021(3)
³¹ P 7856.48(3)	0.00150(8)	1.47(8)×10 ⁻⁴	(.1	74/XIDI	0.101(20)	0.0086(17)
Sulfur (Z=16), At. Wt		=0.534(10)	33(3)	2489 74(9)	0.141(6)	0.0121(5)
³⁶ S 646 171(14)	4.5(5)×10 ⁻⁵	4.3(5)×10 ⁻⁶	35CI	2492.223(9)	0.11(4) 0.121(13)	0.009(3) 0.0103(11)
320 040 002/42\	0.347(6)	0.0328(6)	997 1	2537.25(7)	0.121(13)	0.0103(11)
³² S 1472.401(14)	0.00870(19)	0.000822(18)	აატ	2549.74(7)	0.090(15)	0.0077(13)
³⁴ S 1572.333(6) ³² S 1697.24(3)	0.00408(12) 0.01250(25)	0.000386(11) 0.001181(24)	³⁵ CI ³⁵ CI	2622.86(5)	0.178(6)	0.0152(5)
³² S 1964.86(3)	0.00659(22)	0.000623(21)	35 €1	2676.31(3) 2797.90(4)	0.533(4) 0.095(10)	0.0456(3) 0.0081(9)
³² S 1967.11(3)	0.00357(18)	0.000337(17)	യ∩	2800.96(12)	0.183(7)	0.0051(9)
³³ S 2127.491(12)	0.00246(10)	2.32(10)×10 ⁻⁴	യവ	2808.86(7)	0.10(5)	0.009(4)
³² S 2216.722(17) ³² S 2313.354(17)	0.01210(23) 0.00366(13)	0.001144(22) 0.000346(12)	യ∩	2810.988(9)	0.144(7)	0.0123(6)
³⁴ S 2347.695(7)	0.0060(3)	0.00057(3)	³⁵ Cl	2845.50(3) 2863.819(12)	0.349(3) 1.820(10)	0.0298(3) 0.1556(9)
³² S 2379.661(14)	0.208(5)	0.0197(5)	აატ	2866.9(5)	0.192(12)	0.0164(10)
³² S 2490.14(3)	0.0125(3)	0.00118(3)	აა∩	2876.49(5)	0.164(7)	0.0140(6)
³² S 2753.16(3) ³² S 2867.580(23)	0.0277(5) 0.00425(15)	0.00262(5) 0.000402(14)	³⁵ Cl	2896.212(8)	0.146(6)	0.0125(5)
³² S 2930.67(3)	0.0832(13)	0.000402(14)	აატ	2975.21(7) 2994.548(15)	0.377(4) 0.279(8)	0.0322(3) 0.0238(7)
³⁶ S 3103.36d	2.8(14)×10 ⁻⁵	2.7×10 ⁻⁶ [88́%]	აა∩	3001.07(5)	0.216(7)	0.0230(7)
32S 1964.86(3) 32S 1967.11(3) 33S 2127.491(12) 32S 2216.722(17) 32S 2313.354(17) 34S 2347.695(7) 32S 2379.661(14) 32S 2490.14(3) 32S 2753.16(3) 32S 2867.580(23) 32S 2930.67(3) 36S 3103.36d 32S 3220.588(17) 32S 3397.37(3) 32S 3723.54(4) 32S 4430.60(4) 34S 4637.981(14) 32S 4869.61(3) 32S 5420.574(24) 32S 5583.50(3) 32S 5887.96(3)	0.117(5)	0.0111(5)	აატ	3015.97(4)	0.328(3)	0.0280(3)
³² S 3369.70(4) ³² S 3397.37(3)	0.0271(5) 0.00544(15)	0.00256(5) 0.000514(14)	³⁵ CI ³⁵ CI	3061.82(4)	1.130(7)	0.0966(6)
³² S 3723.54(4)	0.00344(13)	0.000314(14)	აა∩	3116.04(5) 3332.87(8)	0.297(3) 0.241(7)	0.0254(3) 0.0206(6)
³² S 4430.60(4)	0.0262(6)	0.00248(6)	აატ	3374.7(11)	0.179(7)	0.0200(6)
³⁴ S 4637.981(14)	0.00734(22)	0.000694(21)	აა∩	3428.83(5)	0.271(3)	0.0232(3)
³² S 4869.61(3) ³² S 5047.10(3)	0.0650(13) 0.0163(4)	0.00614(12) 0.00154(4)	യ∩	3500.35(9)	0.100(6)	0.0085(5)
32S 5420.574(24)	0.308(7)	0.00134 (4) 0.0291(7)	³⁵ Cl	3561.37(7) 3566.32(4)	0.21(4) 0.093(24)	0.018(3) 0.0079(21)
³² S 5583.50(3)	0.0086(3)	0.00081(3)	აა∩∣	3589.16(13)	0.093(24)	0.0079(21)
	0.00373(17)	0.000353(16)	აატ	3599.350(9)	0.164(6)	0.0140(5)
³² S 7799.815(24) ³² S 8640.594(25)	0.0144(5) 0.0098(7)	0.00136(5) 0.00093(7)	³⁵ CI ³⁵ CI	3604.14(17)	0.119(6)	0.0102(5)
0 00 10.007(20)	3.0000(1)	2.00000(1)	აა∩	3634.75(3) 3749.91(10)	0.098(6) 0.096(5)	0.0084(5) 0.0082(4)
			35CI	3821.33(16)	0.320(10)	0.0002(4)
				. ,	. ,	. , ,

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Εγ)-barns	k _o		Eγ-keV	σ(Εγ)-barns	k ₀
Chlorine (Z=17), co	ntinued		Pota	ssium (Z=19), d		
³⁵ Cl 3825.22(13)	0.250(9)	0.0214(8)	³⁹ K	843.468(10)	0.0197(5)	0.00153(4)
35Cl 3827.06(12) 35Cl 3962.67(4)	0.238(17)	0.0203(15)	³⁹ K ³⁹ K	891.385(13)	0.019(4)	0.0015(3)
აა∟լ ა∪o∪ ∪o/o/	0.118(8) 0.331(7)	0.0101(7) 0.0283(6)	³⁹ K	1086.707(16) 1158.887(10)	0.0222(7) 0.1600(25)	0.00172(5) 0.01240(19)
³⁰ CI 40E4 2E(E)	0.194(8)	0.0265(0)	39 K	1247.193(11)	0.0784(13)	0.00608(10)
³³ CI 1022 67/7\	0.263(5)	0.0225(4)	³⁹ K ⁴⁰ K	1293.589(5)	0.0041(8)	0.00032(6)
³³ ℃I /1/20 20/0/	0.113(17)	0.0097(15)	³⁹ K ³⁹ K	1303.515(19)	0.0550(12)	0.00426(9)
³³ CI /120 72//\	0.095(10)	0.0081(9)	³⁹ K	1373.227(18)	0.0251(7)	0.00195(5)
³⁵ Cl 4298.33(4) ³⁵ Cl 4440.39(4)	0.122(10)	0.0104(9)	⁴⁰ K ³⁹ K	1460.822(6)	3.24(5) s ⁻¹ g ⁻¹	0.00274/7)
³⁰ CI 4524 97(4)	0.377(4) 0.148(7)	0.0322(3) 0.0127(6)	³⁹ K	1480.024(24) 1489.676(10)	0.0353(9) 0.0277(8)	0.00274(7) 0.00215(6)
30CI 1517 5/5\	0.146(8)	0.0127(0)	41 K	1524.6(3)d	0.02000(4)	0.001550[2.8%]
³⁰ CI 4646 45(0)	0.210(10)	0.0180(9)	³⁹ K ³⁹ K	1613.756(10)	0.1190(20)	0.00922(16)
30CI 4729 04(4)	0.223(9)	0.0191(8)	³⁹ K	1618.973(10)	0.1300(21)	0.01008(16)
³⁵ Cl 4944.36(4) ³⁵ Cl 4945.25(3)	0.379(8)	0.0324(7)	³⁹ K ³⁹ K	1704.656(23)	0.0244(8)	0.00189(6)
³⁰ ○ 4070 750/20\	0.194(18) 1.230(10)	0.0166(15) 0.1051(9)	39 K	1795.438(24) 1825.815(19)	0.0292(8) 0.0147(7)	0.00226(6) 0.00114(5)
³³ CI 4020 66(43)	0.10(6)	0.009(5)	³⁹ K ³⁹ K	1929.169(10)	0.0397(9)	0.00308(7)
³⁰ CI 5017 71/7\	0.161(8)	0.0138(7)	³⁹ K ³⁹ K	1956.515(24)	0.0406(11)	0.00315(9)
30CI E24E 0E9/21\	0.195(10)	0.0167(9)	³⁹ K	2007.69(3)	0.0513(12)	0.00398(9)
35Cl 5517.25(4) 35Cl 5584.525(23)	0.560(5)	0.0479(4)	³⁹ K ³⁹ K	2017.472(11)	0.0540(12)	0.00419(9)
³³ CI 5603 76(0)	0.158(11) 0.11(3)	0.0135(9) 0.009(3)	39 K	2039.924(18) 2047.301(11)	0.0519(13) 0.0537(13)	0.00402(10) 0.00416(10)
³³ CI 5703 59(6)	0.11(3)	0.0109(9)	³⁹ K ³⁹ K	2069.752(18)	0.0363(10)	0.00281(8)
30C 5715 244/21 \	1.820(16)	0.1556(14)	³⁹ K ³⁹ K	2073.793(19)	0.1370(24)	0.01062(19)
30CI E722 EE(2)	0.161(11)	0.0138(9)	³⁹ K	2153.86(3)	0.0158(7)	0.00122(5)
³⁵ Cl 5902.74(3) ³⁵ Cl 6086.804(20)	0.372(4)	0.0318(3)	³⁹ K ³⁹ K	2206.22(4)	0.0166(12)	0.00129(9)
³⁵ Cl 6086.804(20) ³⁵ Cl 6110.842(18)	0.295(15) 6.59(6)	0.0252(13) 0.563(5)	39K	2206.26(3) 2230.54(3)	0.0157(17)	0.00122(13)
³⁵ Cl 6267.63(4)	0.13(4)	0.011(3)	³⁹ K ³⁹ K	2290.420(19)	0.0202(10) 0.0582(13)	0.00157(8) 0.00451(10)
>>('I 6610 615/10\	2.530(23)	0.2163(20)	³⁹ K ³⁹ K	2346.22(4)	0.0138(7)	0.00107(5)
³³ Cl 6627 821(18)	1.470(16)	0.1257(14)	³⁹ K	2367.30(3)	0.0157(7)	0.00122(5)
30CI 6077 926/10\	0.741(10)	0.0633(9)	³⁹ K ³⁹ K	2389.245(10)	0.0301(10)	0.00233(8)
7413.968(18)	3.29(5)	0.281(4)	39K	2545.99(3) 2609.97(3)	0.0536(12)	0.00415(9)
³⁵ Cl 7790.330(18) ³⁵ Cl 8578.575(18)	2.66(3) 0.883(13)	0.227(3) 0.0755(11)	³⁹ K ³⁹ K	2614.18(3)	0.0213(7) 0.0165(6)	0.00165(5) 0.00128(5)
Argon (Z=18), <i>At.W</i>		` '	³⁹ K ³⁹ K	2638.866(24)	0.0144(6)	0.00112(5)
40 Ar 167.30(20)	0.53(5)	0.040(4)	39K	2726.780(24)	0.0225(9)	0.00174(7)
⁴⁰ Ar 348.7(3)	0.044(9)	0.0033(7)	³⁹ K ³⁹ K	2756.678(17) 2799.04(3)	0.0404(22) 0.0145(7)	0.00313(17)
⁴⁰ Ar 516 0(3)	0.167(17)	0.0127(13)	39 K	2806.42(3)	0.0256(9)	0.00112(5) 0.00198(7)
⁴⁰ Ar 518.7	0.0060(20)	0.00046(15)	³⁹ K ³⁹ K	2938.17(3)	0.0140(9)	0.00109(7)
⁴⁰ Ar 837.7(3)	0.063(7)	0.0048(5)	³⁹ K ³⁹ K	3055.30(3)	0.0464(12)	0.00360(9)
⁴⁰ Ar 867.3(6) ⁴⁰ Ar 1044.3(4)	0.0070(20) 0.040(8)	0.00053(15) 0.0030(6)	39K	3262.28(4)	0.0376(11)	0.00291(9)
⁴⁰ Ar 1186.8(3)	0.34(3)	0.0258(23)	³⁹ K ³⁹ K	3304.17(4) 3338.05(6)	0.0146(7) 0.036(17)	0.00113(5) 0.0028(13)
70 Nr 10 E / (1//1)	0.015(4)	0.0011(3)	391/	3348.72(3)	0.0172(8)	0.0028(13)
³⁶ Ar 1409.7(10)	0.0060(12)	0.00046(9)	3312	3403.58(3)	0.0167(8)	0.00129(6)
⁴⁰ Ar 1828.8(12) ⁴⁰ Ar 1881.5(10)	0.0070(20)	0.00053(15)	391/	3453.38(3)	0.0247(14)	0.00191(11)
⁴⁰ Ar 1881.5(10) ⁴⁰ Ar 2130.8(8)	0.009(3) 0.029(5)	0.00068(23) 0.0022(4)	³⁹ K ³⁹ K	3518.77(6)	0.0186(9)	0.00144(7)
⁴⁰ Ar 2432.5(8)	0.0055(14)	0.00042(11)	39 L /	3526.97(3) 3545.71(3)	0.0170(9) 0.0746(18)	0.00132(7) 0.00578(14)
³⁰ Ar 2490 8(8)	0.0088(22)	0.00067(17)	³⁹ K	3650.37(3)	0.0355(13)	0.00275(10)
⁴ Ar 2566.1(8)	0.018(4)	0.0014(3)	³⁹ K	3688.54(̀3)́	0.0276(11)	0.00214(9)
⁴⁰ Ar 2614.4(8) ⁴⁰ Ar 2771.9(8)	0.019(4)	0.0014(3)	³⁹ K	3694.91(4)	0.0231(10)	0.00179(8)
⁺ Ar 2781 8(15)	0.057(9) 0.011(3)	0.0043(7) 0.00083(23)	³⁹ K ³⁹ K	3736.81(3)	0.0193(6)	0.00150(5)
⁴ Ar 2810.6(8)	0.039(8)	0.0030(6)	³⁹ K	3778.97(4) 3911.43(5)	0.0143(7) 0.0168(9)	0.00111(5) 0.00130(7)
⁴⁰ Ar 2842 6(10)	0.0058(14)	0.00044(11)	39₁∕	3930.63(4)	0.0275(11)	0.00130(7)
⁴⁰ Ar 3089.5(10)	0.0070(20)	0.00053(15)	39⊾	3943.78(3)	0.0205(11)	0.00159(9)
³ Ar 3150 3(10)	0.026(5)	0.0020(4)	391/	3959.10(3)	0.0252(10)	0.00195(8)
⁴⁰ Ar 3365.6(10) ⁴⁰ Ar 3452.0(10)	0.028(6) 0.013(3)	0.0021(5) 0.00099(23)	³⁹ K ³⁹ K	3977.89(3)	0.0219(10)	0.00170(8)
⁴ Ar 3700.6(8)	0.065(7)	0.0049(5)	39 L /	4001.80(3) 4060.91(3)	0.0263(11)	0.00204(9) 0.00189(8)
⁺ Ar 4745.3(8)	0.36(4)	0.027(3)	391/	4135.586(23)	0.0244(10) 0.0563(17)	0.00169(6)
⁴⁰ Ar 5582.4(8)	0.077(8)	0.0058(6)	39 L /	4200.04(3)	0.0398(14)	0.00308(11)
³⁶ Ar 6298.9(10)	0.0076(19)	0.00058(14)	391/	4360.201(25)	0.0776(21)	0.00601(16)
Potassium (Z=19),	At.Wt.=39.0983	(1), σ _γ =2.06(19)	³⁹ K ³⁹ K	4384.88(3)	0.0247(11)	0.00191(9)
³⁹ K 29.8300(10)	1.380(20)	0.1070(16)	391∕	4507.03(3) 4670.76(3)	0.0159(9) 0.0138(9)	0.00123(7) 0.00107(7)
41K 106.836(7)	0.0320(6)	0.00248(5)	391/	4991.34(3)	0.0432(14)	0.00335(11)
³⁹ K 522.319(7) ³⁹ K 646.222(5)	0.0347(7)	0.00269(5)	391∕	5012.48(3)	0.0226(11)	0.00175(9)
⁴¹ K 681 937(8)	0.0451(8) 0.0149(5)	0.00350(6) 0.00115(4)	391/	5042.507(25)	0.0351(15)	0.00272(12)
³⁹ K 770.3050(20)	0.903(12)	0.0700(9)	³⁹ K ³⁹ K	5068.870(21)	0.0224(12)	0.00174(9)
	- \ -/	- 1-1	-~K	5173.196(21)	0.048(3)	0.00372(23)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Εγ)-barns	k ₀	Eγ-keV	σ(Εγ)-barns	k _o
Potassium (Z=19), o	continued		Scandium (Z=21), c	continued	
391/ 5300 040/46		0.0113(3)	⁴⁵ Sc 1015 22(3)	0.256(12)	0.0173(8)
391/ 5500 660/24\	0.066(4)	0.0051(3)	⁴⁰ Sc 1057 89(3)	0.322(14)	0.0217(9)
39K EEGE 113/30\		0.00884(23)	⁻ Sc 1082.52(4)	0.160(11)	0.0108(7)
³⁹ K 5729.308(22) ³⁹ K 5751.758(17)		0.00339(14)	[™] SC 1123 17(5)	0.380(14)	0.0256(9)
³⁹ K 5751.758(17) ³⁹ K 6998.758(14)		0.00837(23)	⁴⁵ Sc 1134.43(8) ⁴⁵ Sc 1166.45(6)	0.132(9)	0.0089(6)
³⁹ K 6998.758(14) ³⁹ K 7768.919(14)		0.00346(16) 0.0091(5)	45Sc 1227.77(4)	0.386(14) 0.332(13)	0.0260(9) 0.0224(9)
		` '	⁷ °Sc 1251 68(6)	0.101(9)	0.0068(6)
Calcium (Z=20), <i>At.</i>			⁴⁵ Sc 1251 69(6)	0.129(23)	0.0087(16)
⁴⁴ Ca 174.12(7) ⁴⁰ Ca 519.66(5)	0.0168(4)	0.00127(3) 0.00380(10)	⁴⁵ Sc 1268.87(6)	0.10(3)	0.0067(20)
⁴⁰ Ca 660.00(5)	0.0503(13) 0.00487(18)	0.00368(14)	⁴⁵ Sc 1270.49(3) ⁴⁵ Sc 1285.34(4)	0.269(13)	0.0181(9)
⁴⁰ Ca 727.17(5)	0.0117(4)	0.00088(3)	⁴⁵ Sc 1321.18(4)	0.373(19) 0.206(23)	0.0251(13) 0.0139(16)
⁴³ Са 1126.12(10)	0.00471(23)	0.000356(17)	⁴⁵ Sc 1321 96(4)	0.139(9)	0.0094(6)
⁴ Ca 1150.95(5)	0.0052(3)	0.000393(23)	⁴⁰ Sc 1335 05(3)	0.640(22)	0.0431(15)
⁴³ Ca 1156.94(12)	0.0088(4)	0.00067(3)	~Sc 1510 13(6)	0.13(4)	0.009(3)
⁴⁴ Ca 1260.62(6) ⁴⁰ Ca 1389.82(5)	0.00394(24) 0.0106(4)	0.000298(18) 0.00080(3)	⁴⁵ Sc 1575.27(3)	0.317(13)	0.0214(9)
⁴⁰ Ca 1481.67(5)	0.0051(3)	0.000386(23)	⁴⁵ Sc 1592.71(17) ⁴⁵ Sc 1618.36(6)	0.11(3)	0.0074(20)
⁴⁰ Ca 1670.60(6)	0.0069(3)	0.000522(23)	⁴⁵ Sc 1658.21(7)	0.362(19) 0.107(12)	0.0244(13) 0.0072(8)
⁴⁴ Ca 1725.71(7)	0.0090(4)	0.00068(3)	⁴⁰ Sc 1693 30(4)	0.465(19)	0.0313(13)
⁴ Ca 1942.67(3)	0.352(7)	0.0266(5)	⁴⁵ Sc 1707 94(5)	0.077(10)	0.0052(7)
⁴⁰ Ca 2001.31(3)	0.0659(15)	0.00498(11)	⁴⁵ Sc 1753.85(4) ⁴⁵ Sc 1763.12(10)	0.170(12)	0.0115(8)
⁴⁰ Ca 2009.84(3) ⁴⁶ Ca 2013.57(20)	0.0409(10) 2.9×10 ⁻⁵	0.00309(8)	⁴⁵ Sc 1763.12(10)	0.077(10)	0.0052(7)
⁴⁰ Ca 2290.43(5)	0.0077(4)	2.2×10 ⁻⁶ 0.00058(3)	⁴⁵ Sc 1777.43(11)	0.125(12)	0.0084(8)
⁴ Ca 2605.34(6)	0.0061(4)	0.00046(3)	⁴⁵ Sc 1803.69(12) ⁴⁵ Sc 1814.92(4)	0.075(9) 0.271(13)	0.0051(6) 0.0183(9)
⁴ Ca 2660.37(7)	0.0074(4)	0.00056(3)	⁷ °Sc 1829 68(6)	0.152(10)	0.0102(7)
⁴ Ca 2767.92(7)	0.0070(15)	0.00053(11)	⁴⁵ Sc 1857 59(4)	0.393(17)	0.0265(11)
⁴⁰ Ca 2810.06(5)	0.0167(5)	0.00126(4)	⁴⁵ Sc 1870 06(5)	0.206(13)	0.0139(9)
⁴⁸ Ca <i>3084.40(10)d</i> ⁴⁰ Ca 3584.77(7)	<i>0.00190(21)</i> 0.0100(5)	1. <i>44</i> ×10 ⁻⁴ [79%] 0.00076(4)	⁴⁵ Sc 1885.97(7)	0.090(11)	0.0061(7)
⁴ Ca 3609.80(6)	0.0283(9)	0.00214(7)	⁴⁵ Sc 1900.85(4) ⁴⁵ Sc 1913.59(6)	0.274(11) 0.077(7)	0.0185(7) 0.0052(5)
⁴ Ca 3759.48(7)	0.0117(5)	0.00088(4)	TYSC 1966 59(8)	0.080(8)	0.0054(5)
⁴ Ca 4418.52(5)	0.0708(18)	0.00535(14)	³⁰ Sc 1975 36(6)	0.078(8)	0.0053(5)
⁴⁰ Ca 4516.54(17)	0.0049(3)	0.000371(23)	³⁰ SC 2005 24(4)	0.351(11)	0.0237(7)
⁴⁰ Ca 4749.21(7) ⁴⁰ Ca 4962.79(7)	0.0134(7) 0.0067(4)	0.00101(5) 0.00051(3)	⁻ Sc 2058.84(9)	0.097(10)	0.0065(7)
⁴ °Ca <i>5146.19(21)</i>	0.00147(20)	1.11(15)×10 ⁻⁴	⁴⁵ Sc 2106.25(8) ⁴⁵ Sc 2110.20(10)	0.143(11) 0.117(11)	0.0096(7) 0.0079(7)
⁴⁴ Ca 5514.55(14)	0.0104(8)	0.00079(6)	⁷ °SC 2114 14(6)	0.210(13)	0.0142(9)
⁴ Ca 5692.53(6)	0.0067(5)	0.00051(4)	⁴⁰ Sc 2129.69(4)	0.101(10)	0.0068(7)
⁴² Ca <i>5885.87(16)</i> ⁴⁰ Ca 5900.02(6)	0.0024(4)	1.8(3)×10 ⁻⁴	³⁰ SC 2203 45(13)	0.102(10)	0.0069(7)
⁴⁰ Ca 6419.59(5)	0.0258(12) 0.176(5)	0.00195(9) 0.0133(4)	⁴⁵ Sc 2243.06(6) ⁴⁵ Sc 2351.59(15)	0.110(11)	0.0074(7)
	= =		45Sc 2362.36(9)	0.074(9) 0.085(9)	0.0050(6) 0.0057(6)
Scandium (Z=21), A			Sc 23/3 41(1/)	0.086(9)	0.0058(6)
⁴⁵ Sc 52.0110(10) ⁴⁵ Sc 142.528(8)d	0.87(3) <i>4.88(7)</i>	0.0586(20) <i>0.329[99%]</i>	⁴⁵ Sc 2404 82(7)	0.127(10)	0.0086(7)
⁴⁵ Sc 147.011(10)	6.08(9)	0.410(6)	10SC 2410 40(4)	0.087(9)	0.0059(6)
⁴⁵ Sc 216.44(4)	2.49(4)	0.168(3)	⁴⁵ Sc 2477.42(6) ⁴⁵ Sc 2502.20(10)	0.145(14)	0.0098(9)
⁴⁰ Sc 227.773(12)	7.13(11)	0.481(7)	45Sc 2635.55(8)	0.082(12) 0.301(15)	0.0055(8) 0.0203(10)
⁴⁵ Sc 228.716(12) ⁴⁵ Sc 280.726(12)	3.31(5) 0.248(7)	0.223(3) 0.0167(5)	~Sc 2667 03(11)	0.127(14)	0.0086(9)
45Sc 295.243(10)	3.97(11)	0.268(7)	⁴⁵ Sc 2693.90(9) ⁴⁵ Sc 2697.12(8)	0.107(14)	0.0072(9)
³ Sc 399.691(19)	0.202(7)	0.0136(5)	⁴⁵ Sc 2697.12(8)	0.084(14)	0.0057(9)
⁴⁵ Sc 402.87(5)	0.107(6)	0.0072(4)	⁴⁵ Sc 2721.37(16) ⁴⁵ Sc 2797.52(10)	0.096(8) 0.105(11)	0.0065(5) 0.0071(7)
⁴⁰ Sc 442.254(13)	0.096(6)	0.0065(4)	⁴⁵ Sc 2991.04(11)	0.092(14)	0.0062(9)
⁴⁵ Sc 478.14(13) ⁴⁵ Sc 486.026(21)	0.073(10) 0.593(14)	0.0049(7) 0.0400(9)	⁴⁵ Sc 2991.04(11) ⁴⁵ Sc 2995.96(11)	0.079(13)	0.0053(9)
45Sc 539.437(20)	0.738(19)	0.0497(13)	⁴⁵ Sc 3011.73(8) ⁴⁵ Sc 3049.06(7)	0.278(19)	0.0187(13)
⁴⁵ Sc 547.15(4)	0.373(12)	0.0251(8)	⁴⁵ Sc 3049.06(7)	0.106(12)	0.0071(8)
⁴ °Sc 554.44(4)	1.82(4)	0.123(3)	⁴⁵ Sc 3080.8(5) ⁴⁵ Sc 3265.48(7)	0.087(12) 0.146(14)	0.0059(8) 0.0098(9)
³ °Sc 584.785(13)	1.77(3)	0.1193(20)	⁴⁵ Sc 3281.87(8) ⁴⁵ Sc 3309.70(9)	0.08(4)	0.005(3)
⁴⁵ Sc 627.462(18) ⁴⁵ Sc 643.037(25)	2.23(5) 0.259(9)	0.150(3) 0.0175(6)	⁴⁵ Sc 3309.70(9)	0.08(3)	0.0054(20)
⁴⁵ Sc 685.71(3)	0.239(9)	0.0173(6)	⁴⁵ Sc 3351.10(12) ⁴⁵ Sc 3458.45(19)	0.121(14)	0.0082(9)
³³ Sc 711.21(6)	0.104(8)	0.0070(5)	30 3458.45(19)	0.156(15)	0.0105(10)
⁴³ Sc 721.841(17)	0.487(15)	0.0328(10)	⁴⁵ Sc 3596.86(10) ⁴⁵ Sc 3623.19(10)	0.077(14) 0.13(6)	0.0052(9) 0.009(4)
³⁰ Sc 773.851(17)	0.572(13)	0.0386(9)	⁴⁵ Sc 3799.13(8)	0.125(13)	0.0084(9)
⁴⁵ Sc 807.754(20) ⁴⁵ Sc 835.16(4)	0.523(13) 0.265(8)	0.0353(9) 0.0179(5)	⁴⁵ Sc 3799.13(8) ⁴⁵ Sc 3878.05(12)	0.088(11)	0.0059(7)
⁴⁵ Sc 843.494(23)	0.203(6)	0.0093(4)	⁴⁵ Sc 3999 48(12)	0.086(17)	0.0058(11)
⁴³ Sc 860.707(19)	0.396(13)	0.0267(9)	⁴⁵ Sc 4006.31(10) ⁴⁵ Sc 4021.46(9)	0.091(17) 0.092(17)	0.0061(11) 0.0062(11)
⁴⁵ Sc 899.27(5)	0.133(9)	0.0090(6)	⁴⁵ Sc 4059.52(8)	0.092(17)	0.0062(11)
⁴⁵ Sc 941.95(5)	0.107(24)	0.0072(16)	⁴⁵ Sc 4065.97(9)	0.079(19)	0.0053(13)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Eγ)-barns	k ₀	-	Eγ-keV	σ(Εγ)-barns	k ₀
Scandium (Z=21), c	ontinued		Titar	nium (Z=22), co	ntinued	
⁴⁵ Sc 4109.60(9)	0.073(10)	0.0049(7)	⁴⁷ Ti	983.517(4)	0.1140(16)	
⁴⁵ Sc 4173.36(17)	0.11(3)	0.0074(20)	⁴⁹ Ti ⁵⁰ Ti	1121.130(6)	0.0630(14)	0.00399(9)
⁴⁵ Sc 4231.81(16)	0.073(9)	0.0049(6)	48Ti	1166.6(4) (3.9×10 ⁻³	2.5×10 ⁻⁴
⁴⁵ Sc 4237.72(10) ⁴⁵ Sc 4293.30(21)	0.096(17) 0.073(11)	0.0065(11) 0.0049(7)	48 T i	1/09 662/7)	5.18(12) 0.297(5)	0.328(8) 0.0188(3)
⁴⁵ Sc 4377.46(8)	0.127(15)	0.0049(7)	49 T ;	1552 796(6)	0.0967(22)	0.00612(14)
40Sc 4465 89(13)	0.106(13)	0.0071(9)	40 T i	1595 0/1/5\	0.624(8)	0.0395(5)
⁴⁵ Sc 4498.85(11)	0.149(15)	0.0100(10)	48 T ;	1500 202(10)	0.0524(16)	0.00332(10)
°SC 4617.93(9)	0.089(15)	0.0060(10)	⁴⁸ Ti ⁴⁸ Ti	1761.974(7)	0.311(4)	0.01969(25)
⁴⁵ Sc 4679.04(18) ⁴⁵ Sc 4720.86(11)	0.112(14) 0.171(16)	0.0075(9) 0.0115(11)	40 T i	2026 1/7\	0.153Ò(24) 0.055(12)	0.00969(15) 0.0035(8)
⁴⁵ Sc 4823.18(9)	0.078(11)	0.0053(7)	48 + ;	2926 0/7	0.055(12)	0.0035(8)
⁴⁵ Sc 4883.71(13)	0.128(13)	0.0086(9)	40 T i	20/2 07/21	0.0614(18)	0.00389(11)
⁴⁵ Sc 4891.84(10)	0.094(12)	0.0063(8)	48 T :	2026 704(20)		0.00918(19)
⁴⁵ Sc 4919.38(11)	0.092(13)	0.0062(9)	⁴⁸ Ti ⁴⁸ Ti	3027.0(7)	0.13(3)	0.0082(19)
⁴⁵ Sc 4974.76(9) ⁴⁵ Sc 4993.58(10)	0.498(24) 0.177(15)	0.0336(16) 0.0119(10)	40 T i	2722 627(20)	0.1020(25) 0.0873(25)	0.00646(16) 0.00553(16)
⁴⁵ Sc 5085.09(10)	0.103(14)	0.0069(9)	48 T ;	2020 404(22)	0.0839(23)	0.00531(15)
⁴⁰ Sc 5128.48(12)	0.093(15)	0.0063(10)	40 T i	2022 1/7\	0.13(3)	0.0082(19)
⁴⁵ Sc 5163.42(10)	0.149(20)	0.0100(13)	48Ti	4713.859(25)	0.0661(21)	0.00418(13)
⁴⁵ Sc 5210.11(12)	0.085(15)	0.0057(10)	⁴⁸ Ti ⁴⁸ Ti	4881.394(15)	0.308(7)	0.0195(4)
⁴⁵ Sc 5267.04(7) ⁴⁵ Sc 5286.20(8)	0.38(3) 0.123(15)	0.0256(20) 0.0083(10)	7011	4966.802(15) 6418.426(14)	0.196(5) 1.96(6)	0.0124(3) 0.124(4)
⁴⁵ Sc 5335.89(8)	0.20(3)	0.0135(20)	48 T i	6555 011(1/1)	0.334(8)	0.0211(5)
⁴⁵ Sc 5346.19(10)	0.094(19)	0.0063(13)	⁴⁸ Ti	6760.084(14)	2.97(9)	0.188(6)
⁴⁵ Sc 5445.75(8)	0.170(19)	0.0115(13)	Vana	adium (Z=23), <i>A</i>	t.Wt.=50.94150	1), $\sigma = 4.96(4)$
⁴⁵ Sc 5481.62(9) ⁴⁵ Sc 5555.57(10)	0.142(19)	0.0096(13) 0.0053(9)	511/	17 152(6)	0.260(20)	0.0155(12)
45Sc 5583.82(10)	0.079(14) 0.118(16)	0.0033(9)	511/	22.764(3)	0.0700(20)	0.00416(12)
⁴⁵ Sc 5624.09(8)	0.198(20)	0.0133(13)	51 V	124 453(4)	0.23(5)	0.014(3)
⁴⁵ Sc 5665.71(9)	0.145(19)	0.0098(13)	51 V 51 V	125.082(3)	1.61(4)	0.0958(24)
⁴⁵ Sc 5678.79(13)	0.077(16)	0.0052(11)	51	295 N23/14)	0.253(6) 0.164(4)	0.0151(4) 0.00976(24)
⁴⁵ Sc 5743.38(7) ⁴⁵ Sc 5781.24(15)	0.184(17) 0.072(15)	0.0124(11) 0.0049(10)	51//	110 175(13)	0.249(6)	0.0148(4)
⁴⁵ Sc 5896.94(8)	0.42(3)	0.0283(20)	51	436 627/13\	0.397(9)	0.0236(5)
⁴⁵ Sc 5904.31(12)	0.084(17)	0.0057(11)	51V 51V	645.703(13)	0.769(17)	0.0457(10)
⁴⁵ Sc 5977.32(10)	0.075(12)	0.0051(8)	51//	608 104(13)	0.0180(10) 0.049(4)	0.00107(6) 0.00291(24)
⁴⁵ Sc 6046.15(9) ⁴⁵ Sc 6055.05(5)	0.144(19) 0.265(24)	0.0097(13) 0.0179(16)	51	712 907(19)	0.0597(23)	0.00251(24)
⁴⁵ Sc 6097.64(10)	0.082(12)	0.0055(8)	511/	703 5/6/13)	0.199(5)	0.0118(3)
⁴⁰ Sc 6170.22(4)	0.47(5)	0.032(3)	51 V	823.184(13)	0.320(8)	0.0190(5)
⁴⁵ Sc 6201.40(13)	0.073(8)	0.0049(5)	51V 51V	845.948(13) 886.631(21)	0.252(7)	0.0150(4)
⁴⁵ Sc 6300.79(8)	0.183(25)	0.0123(17)	51//	082 175/10)	0.0171(7) 0.0307(17)	0.00102(4) 0.00183(10)
⁴⁵ Sc 6309.27(11) ⁴⁵ Sc 6317.86(4)	0.075(8) 0.58(4)	0.0051(5) 0.039(3)	51\/	1001.583(21)	0.0651(21)	0.00387(12)
⁴⁰ Sc 6329.00(13)	0.185(22)	0.0125(15)	51//	1254 878(17)	0.0257(13)	0.00153(8)
³ Sc 6349.80(4)	0.53(4)	0.036(3)	51V	1270.951(15)	0.022(5)	0.0013(3)
⁴⁵ Sc 6364.43(9)	0.119(20)	0.0080(13)	511/	1272.67(3) 1307.279(17)	0.0291(21) 0.0410(19)	0.00173(12) 0.00244(11)
⁴⁵ Sc 6457.68(7) ⁴⁵ Sc 6468.55(13)	0.099(14) 0.122(21)	0.0067(9) 0.0082(14)	511/	1322.664(22)	0.047(10)	0.00244(11)
⁴⁵ Sc 6507.47(10)	0.122(21)	0.0072(8)	51	1322.98(3) ´	0.0260(21)	0.00155(12)
⁴⁵ Sc 6557.06(6) ⁴⁵ Sc 6640.96(6)	0.384(24)	0.0259(16)	51V 51V	1333.52(3)	0.0345(21)	0.00205(12)
⁴⁵ Sc 6640.96(6)	0.150(23)	0.0101(16)	511/	1358.498(19) 1401.641(16)	0.151(5) 0.070(4)	0.0090(3) 0.00416(24)
⁴⁵ Sc 6646.04(6) ⁴⁵ Sc 6716.79(4)	0.113(12)	0.0076(8)	51	1418.793(15)	0.068(4)	0.00416(24)
45Sc 6839.09(4)	0.312(22) 0.95(4)	0.0210(15) 0.064(3)	511/	1434.10(3)d	4.81(10)	0.286[91%]
→ ○SC 6840 34(4)	0.76(11)	0.051(7)	51 V	1558.843(18)	0.323(8)	0.0192(5)
⁴⁵ Sc 6874.18(7) ⁴⁵ Sc 7117.46(3)	0.125(14)	0.0084(9)	50V 51V	1609.220(20)	0.0359(17)	0.00214(10)
¹⁰ Sc 7117.46(3)	0.39(3)	0.0263(20)	511/	1611.758(25) 1622.296(25)	0.0236(15) 0.0206(7)	0.00140(9) 0.00123(4)
⁴⁵ Sc 7233.39(5) ⁴⁵ Sc 7489.58(3)	0.110(14) 0.077(12)	0.0074(9) 0.0052(8)	⁵¹ V	1634.068(22)	0.0359(19)	0.00123(4)
⁴⁵ Sc 7635 84(3)	0.40(3)	0.0032(8)	511/	1635.382(24)	0.020(4)	0.00119(24)
⁴⁰ Sc 7924.84(4)	0.095(18)	0.0064(12)	51 V	1664.192(17)	0.0519(24)	0.00309(14)
⁴⁵ Sc 8132.507(25)	0.48(3)	0.0324(20)	51V 51V	1732.563(20)	0.0161(16)	0.00096(10)
⁴⁵ Sc 8175.176(21)	1.80(6)	0.121(4)	511/	1775.431(21) 1777.961(19)	0.027(6) 0.169(13)	0.0016(4) 0.0101(8)
⁴⁵ Sc 8315.73(4) ⁴⁵ Sc 8470.363(20)	0.41(3) 0.120(14)	0.0276(20) 0.0081(9)	⁵¹ V	1952.964(14)	0.0677(25)	0.00403(15)
⁴⁵ Sc 8532.122(20)	0.89(4)	0.060(3)	51 _V	2020.749(18)	0.0214(17)	0.00127(10)
⁴⁵ Sc 8759.850(20)	0.168(16)	0.0113(11)	51V 51V	2083.652(14)	0.0339(19)	0.00202(11)
Titanium (Z=22), At	.Wt.=47.867(1).	σ. =6.08(19)	51V	2100.804(14) 2145.826(18)	0.0239(15) 0.140(4)	0.00142(9) 0.00833(24)
⁴⁸ Ti 137.504(8)	0.0542(9)	0.00343(6)	511/	2168.589(18)	0.0166(12)	0.00033(24)
⁴⁶ Ti <i>15</i> 9 3 <i>76(14</i>)	0.0090(8)	0.00057(5)	⁵¹ V	2410.436(21)	0.0253(17)	0.00151(10)
⁵⁰ Ti 320.076(6)d	0.00860(9)	0.000544[86%]	51V 51V	2422.18(3)	0.112(24)	0.0067(14)
⁴⁸ Ti 341.706(5)	1.840(21)	0.1165(13)		2841.64(3)	0.0333(19)	0.00198(11)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Vanadium (Z=23), continued	Eγ-keV	σ(Eγ)-barns	k _o	Eγ-keV	σ (Ε γ)-barns	k _o
\$\frac{9}{1}\frac{1}{9}\frac{1}{9}\frac{1}{9}\frac{1}{3}\frac{1}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac	Vanadium (Z=23), c	ontinued			ontinued	
5V 3577 (39) 0.0243(21) 0.00445(12) 5°C 8884 (365) 0.78(6) 0.045(3)	⁵¹ V 3032.60(9)	0.0249(20)	0.00148(12)	⁵⁰ Cr 8482.80(9)		
Syr 39(3)	⁵¹ V 3502.64(4)			⁵⁰ Cr 8510.77(8)		
Sylin	⁵¹ V 3534.07(3)			⁵³ Cr 8884.36(5)		
V 4416.821(23) 0.094(4) 0.00559(24) 0.00510(1) 0.0030(6) 0.0187(20) 0.00111(12) 0.	51V 3577.98(3)			⁵³ Cr 9719.06(5)	0.260(18)	0.0152(10)
9 1 4452 20(3)	51V 3/15.86(3)		: - : :	Manganese (Z=25),	At.Wt.=54.9380	049(9), σ _. =13.36(5)
5 V 472, 17(3) 0.18 6) 0.00111(1) 5 Mn 83.884(23) 1.74(3) 0.0960(17) 5 V 4883,379(24) 0.073(4) 0.00434(24) 5 Mn 104.611(23) 1.74(3) 0.0050(17) 5 V 4893,379(24) 0.073(4) 0.00434(24) 5 Mn 104.611(23) 1.74(3) 0.0050(17) 5 V 4982,394(4) 0.036(3) 0.0024(18) 5 Mn 123.64(4) 0.0612(23) 0.0038(13) 5 V 5142,363(23) 0.200(6) 0.0119(4) 5 Mn 185.281(21) 0.303(6) 0.0027(17) 5 V 5143,363(23) 0.384(4) 0.0242(24) 5 Mn 123.64(4) 0.0612(23) 0.0038(13) 5 V 5515,885(3) 0.384(4) 0.0242(24) 5 Mn 123.64(4) 0.0612(23) 0.0038(13) 5 V 5515,885(3) 0.384(4) 0.0242(24) 5 Mn 123.64(4) 0.0612(23) 0.0038(13) 5 V 5515,885(24) 0.019(3) 0.0013(18) 5 Mn 23.0095(24) 0.193(4) 0.0002(17) 5 V 5515,885(24) 0.019(3) 0.0013(18) 5 Mn 27.432(25) 0.0563(24) 0.0002(17) 5 V 5816,885(24) 0.019(6) 0.0256(24) 5 Mn 27.432(25) 0.0563(25) 5 V 5817,885(24) 0.019(6) 0.0256(24) 5 Mn 27.432(25) 0.0563(25) 5 V 5817,885(24) 0.019(6) 0.0256(24) 5 Mn 27.432(25) 0.0563(14) 5 V 5817,885(24) 0.019(6) 0.029(4) 5 Mn 27.432(25) 0.0563(14) 5 V 7162,8891(5) 0.056(4) 0.0333(24) 5 Mn 27.432(25) 0.0533(14) 5 V 7162,8891(5) 0.056(4) 0.0333(24) 5 Mn 28.432(25) 0.0563(14) 5 V 7162,8891(5) 0.056(4) 0.0333(24) 5 Mn 28.432(25) 0.0563(14) 5 V 7162,8891(5) 0.056(6) 0.0008(6) 0.0008(6) 0.0008(6) 0.0008(6) 5 V 7162,8891(5) 0.056(6) 0.0008(6) 0.00						
9. V 4883.7(3)	51\/ 4432.20(3)			⁵⁵ Mn 83.884(23)	3.11(5)	
5 V 4883.379 (24) 0.073 (4) 0.0043 (24) 5 Mn 187.7(4) 0.0526 (22) 0.00290 (12) 1 V 4982.94 (4) 0.0613 (3) 0.0021 (4 8) 5 Mn 188.521 (22) 0.330 (6) 0.0182 (3) 0.0033 (3) 0.0013 (3) 5 V 5210.143 (3) 0.244 (20) 0.0145 (2) 5 Mn 188.521 (22) 0.330 (6) 0.0182 (3) 0.0013 (3) 0.0013 (3) 5 Mn 212.033 (21) 2.13 (3) 0.1175 (7) 7 V 5515.813 (23) 0.39 (4) 0.0232 (24) 5 Mn 212.033 (21) 0.13 (3) 0.1175 (7) 7 V 5515.83 (24) 0.019 (3) 0.0013 (3) 5 Mn 220.039 (22) 0.186 (3) 0.0013 (3) 5 Mn 220.039 (22) 0.186 (3) 0.0013 (3) 5 Mn 220.039 (22) 0.186 (3) 0.0013 (3) 5 Mn 220.039 (3) 0.0013 (3) 0.	51\/ /772 17(3)		/	⁵⁵ Mn 104.611(23)		
5 V 514.53(23) 0.00214(18) 5 M 188.521(2) 0.00338(13) 0.00214(18) 5 V 514.53(23) 0.244(20) 0.0145(12) 5 M 188.521(2) 0.330(6) 0.0152(3) 0.0152(3) 0.00152(3)	51\/ \A883\37\(\)(2\A\)			⁵⁵ Mn 118.77(4)	0.0526(22)	
5-1y 5142.363(23) 0.200(6) 0.0119(4)	51// 4002 04(4)			⁵⁵ Mn 123.46(4)		
Sylv S10,143(19) 0.244(20) 0.0145(12) 5 5 5 5 5 5 5 5 5	51\/ 51 /2 363(23\			⁵⁵ Mn 188.521(22)		
51\times 5551.32(3) 0.027(3) 0.00161(18) 59Mn 230.096(24) 0.1934(6) 0.052(3) 51\times 5752.064(22) 0.366(24) 0.0218(14) 59Mn 274.32(5) 0.075(6) 0.0041(3) 51\times 5752.064(22) 0.366(24) 0.0218(14) 59Mn 274.32(5) 0.075(6) 0.0041(3) 51\times 580.022(19) 0.78(4) 0.046(24) 59Mn 314.398(20) 1.460(20) 0.0080(11) 51\times 5874.157(19) 0.49(6) 0.029(4) 59Mn 314.398(20) 1.460(20) 0.0081(11) 51\times 5874.157(19) 0.49(6) 0.029(4) 59Mn 335.502(24) 0.147(3) 0.00811(17) 51\times 7287.961(15) 0.056(4) 0.00331(24) 59Mn 354.12(4) 0.093(4) 0.00513(22) 51\times 7287.961(15) 0.056(4) 0.00331(24) 59Mn 354.12(22) 0.124(3) 0.0068417) 51\times 7310.721(15) 0.022(9) 0.0135(5) 59Mn 494.574(23) 0.388(7) 0.0214(4) 51\times 7310.721(15) 0.227(9) 0.0135(5) 59Mn 494.574(2) 0.084(2) 0.0053(2) 51\times 7310.721(15) 0.227(9) 0.0135(5) 59Mn 504.734(2) 0.006(4) 0.0053(2) 50\times 7310.721(15) 0.227(9) 0.0135(5) 59Mn 504.734(4) 0.006(2) 0.0053(2) 50\times 7310.721(15) 0.227(9) 0.0135(5) 0.0084(7) 0.	51V 5210.143(19)			55Mn 212.039(21)		
5 V 5783.68 (24) 0.019 (3) 0.00113(18) 5 Wh 271.198(27) 0.046(13) 1.5 V 5783.06 (22) 0.126(7) 0.0075(4) 5 Wh 274.32(5) 0.076(6) 0.0041(3) 1.5 V 5464.88 (718) 0.43(4) 0.025(624) 5 Wh 274.32(5) 0.0075(6) 0.0041(3) 1.5 V 5488.87(18) 0.43(4) 0.025(624) 5 Wh 274.32(5) 0.005(3114) 5 V 6974.157(19) 0.78(4) 0.0464(24) 5 Wh 334.19(22) 0.124(3) 0.005(31(22) 1.460(20) 0.005(55Mp 220 006(24)		
5 V 5752.064(22) 0.026(14) 0.0218(14) 5 V 5852.101(20) 0.126(7) 0.0075(4) 5 V 58517.282(19) 0.78(4) 0.0464(24) 5 V 58517.282(19) 0.78(4) 0.0464(24) 5 V 58517.282(19) 0.78(4) 0.0464(24) 5 V 7662.282(19) 0.78(4) 0.0515(24) 5 V 7662.282(19) 0.055(4) 0.0351(24) 5 V 7692.572(16) 0.056(4) 0.0033(24) 5 V 7692.572(16) 0.059(6) 0.0033(24) 5 V 7692.572(16) 0.059(6) 0.0033(24) 5 V 7692.572(16) 0.059(6) 0.0033(24) 5 V 7793.572(16) 0.089(6) 0.0733(23) 5 V 7793.673(10) 0.0244(14) 0.0723(23) 5 V 7602.24(14) 0.0723(24) 5 V 7602.24(14) 0.0033(25) 5 V 7602.24(14) 0.0034(25) 0.00				55Mn 271 108(22)		0.01003(22)
51V 6892.101/20 0.126(7)' 0.0075(4) 59Wn 334.098(20 1.460(20) 0.0805(11) 51V 6874.887(18) 0.43(4) 0.0256(24) 59Wn 335.502(24) 0.093(4) 0.00513(22) 51V 762.898(15) 0.59(4) 0.0351(24) 59Wn 375.192(22) 0.124(3) 0.00513(22) 51V 7897.971(15) 0.056(4) 0.0033(24) 59Wn 457.5192(22) 0.124(3) 0.00564(17) 51V 7293.572(16) 0.099(5) 0.0053(3) 59Wn 459.754(23) 0.210(5) 0.0013(6) 51V 7397.772(15) 0.227(9) 0.0135(5) 59Wn 459.754(2) 0.005(6) 0.0022(2) 1130(2) 0.0055(3) 59Wn 459.754(2) 0.055(3) 0.0013(6) 59Wn 565.61(2) 0.1130(20) 0.0055(3) 59Wn 459.754(2) 0.055(3) 0.0013(6) 59Wn 565.74(4) 0.095(4) 0.0053(22) 59Wn 565.74(4) 0.005(4) 0.0053(22) 59Wn 565.76(4) 0.005(4) 0.005(4) 59Wn 565.74(4) 0.005(4)				⁵⁵ Mn 274 32(5)		0.032(3)
	⁵¹ \/ 5892 101 <i>(</i> 20)	0.300(24) 0.126(7)		⁵⁵ Mn 314.398(20)		0.0805(11)
51V 6874.75(19) 0.49(6) 0.0464(24) 51V 762.898(15) 0.59(4) 0.0351(24) 51V 7762.898(15) 0.59(4) 0.00531(24) 51V 7293.572(16) 0.089(5) 0.0053(3) 51V 7307.721(15) 0.227(9) 0.0135(5) 51V 7307.721(15) 0.227(9) 0.0135(5) 52V 7307.721(15) 0.056(12) 0.1130(20) 0.00659(12) 52V 7307.721(15) 0.237(9) 0.0135(5) 52V 7307.721(15) 0.021(4) 0.00723(23) 52V 7307.721(15) 0.021(4) 0.00723(23) 52V 7307.731(15) 0.021(4) 0.00723(23) 52V 7307.749.09(3) 0.569(9) 0.0332(5) 52V 7307.749.09(3) 0.569(9) 0.0332(5) 52V 7307.749.09(3) 0.569(9) 0.0332(5) 52V 7307.749.09(3) 0.005(3) 0.0064(17) 52V 7307.749.09(3) 0.0065(2) 0.0098(3) 0.0064(17) 52V 7307.749.09(3) 0.0064(10) 0.001247(23) 0.0062(3) 0.0064(17) 52V 7307.749.09(3) 0.0065(2) 0.0098(3) 0.0064(17) 52V 7307.749.09(3) 0.0064(17) 0.00126(12) 0.00497(12)	51\/ 6464 887(48)			⁵⁵ Mn 335.502(24)		0.00811(17)
51V 7162.888(15) 0.59(4) 0.0351(24) 0.0351(24) 59Mn 355.192(14) 0.0083(1) 0.0084(17) 0.0051(3) 51V 7287.961(15) 0.056(4) 0.0033(24) 59Mn 454.378(21) 0.388(7) 0.214(4) 0.0016(3) 59Mn 459.754(23) 0.388(7) 0.214(4) 0.0016(3) 51V 7283.572(16) 0.089(5) 0.0053(3) 0.0053(3) 59Mn 499.57(4) 0.240(20) 0.210(5) 0.005(22) 0.0116(3) 6°Cr 27.997(7) 0.124(4) 0.00723(23) 0.124(4) 0.00723(23) 59Mn 466.754(20) 0.130(10) 0.0055(3) 0.0033(17) 0.0033(3) 6°Cr 74.90(3) 0.569(9) 0.0352(5) 0.032(5) 59Mn 467.54(20) 0.055(3) 0.0023(17) 0.0021(14) 59Mn 2043.99(5) 0.0527(2) 0.0022(11) 0.002(12%) 6°Cr 138.4849(22) 1.38(3) 0.0214(4) 0.001427(23) 0.0038(14) 0.0038(16) 0.0048(14) 0.0038(16) 0.0048(14) 0.0038(16) 0.0048(14) 0.0038(16) 0.0048(16) 0.0038(16) 0.0048(16) 0.0048(16) 0.0048(16) 0.0038(16) 0.0048(16) 0.0048(16) 0.0048(16) 0.0048(16) 0.	51\/ 6517 282 (10 \			⁵⁵ Mn 341.01(3)	0.0912(25)	0.00503(14)
51V 7162.888(15) 0.59(4) 0.0351(24) **Mn 375.192(22) 0.124(3) 0.00284(17) 51V 7293.572(16) 0.089(5) 0.00333(3) **Mn 454.378(21) 0.210(5) 0.0116(3) 51V 7310.727(15) 0.0272(16) 0.0272(1) 0.00222(11) **Mn 459.574(2) 0.0402(20) 0.00222(11) ***Cr 564.05(12) 0.1130(20) 0.0053(3) **Mn 504.74(4) 0.096(4) 0.0033(17) ***Cr 754.09(3) 0.569(9) 0.0332(5) **Mn 1870.72(4) 0.0221(12) 0.0033(17) ***Cr 834.84(22) 1.38(3) 0.0804(17) **Mn 1870.72(4) 0.0227(125) 0.0029(11/24) ***Gr 989.074(23) 0.0139(5) 0.0009(3) **Mn 1870.72(4) 0.0232(16) 0.0027(125) ***GC 1149.83(3) 0.0214(4) 0.00147(23) 5*Mn 206.281(4) 0.0134(3) 0.0021(13) ***GC 1149.83(3) 0.0244(4) 0.00142(23) 5*Mn 2175.91(5) 0.111(6) 0.0093(3) ***GC 1149.83(5) 0.0042(12) 0.0042(12) 5*Mn 2210.29(9) 0.080(6) 0.0044(3) ***GC 1149.83(5)	51\/ 687/ 157/10\			⁵⁵ Mn 354.12(4)		
51V 7310.721(15) 0.227(9) 0.0135(5) 5 Mm 459.754(23) 0.210(6) 0.00222(11) 5 Mm 504.74(4) 0.096(4) 0.00530(22) 6 Mm 504.74(4) 0.00530(22) 6 Mm 504.74(20) 0.055(12) 0.00530(17) 6 Mm 504.74(20) 0.055(12) 0.00530(17) 6 Mm 504.74(20) 0.055(12) 0.00530(17) 6 Mm 504.74(20) 0.055(14) 0.00530(17) 6 Mm 504.74(21) 0.00530(17) 0.00530(17) 6 Mm 504.74(21) 0.005	51\/ 7162 808 <i>(</i> 15)	0.59(4)	0.0351(24)	⁵⁵ Mn 375.192(22)		
61√ 7310.721(15) 0.227(9) 0.0135(5) SMM 694.73(4) 0.0402(20) 0.00222(11) Chromium (Z=24), At Wt.=51.9961(6), α = 3.07(15) SMM 694.73(4) 0.096(3) 0.055(3) 0.00303(17) 9°C C7 79(7) 0.124(4) 0.00723(23) 5MM 716.20(5) 0.055(3) 0.00303(17) 9°C C7 789.90(3) 0.569(9) 0.0052(5) 5MM 846.754(20)d 13.62(11) 0.722(612%) 9°C C7 834.849(22) 1.38(3) 0.0804(17) 5MM 2043.89(5) 0.0232(5) 5MM 2043.89(5) 0.0232(13) 9°C C7 889.9074(23) 0.0134(5) 0.0009(3) 5MM 2045.76(15) 0.0384(23) 0.00124(3) 9°C C7 1244.33(7) 0.0140(5) 0.00082(3) 5MM 2175.91(5) 0.111(4) 0.00122(21) 9°C C7 1784.70(4) 0.0760(20) 0.00082(3) 5MM 2217.99(16) 0.111(4) 0.00612(22) 9°C C7 101.56(5) 0.0545(14) 0.0013(8) 5MM 2203.05(5) 0.111(4) 0.00612(22) 9°C C7 201.56(5) 0.0545(14) 0.0013(8) 5MM 2203.05(7) 0.111(6) 0.0062(3) 9°C C7 201.56(5) <td>⁵¹V 7287.961(15)</td> <td></td> <td></td> <td>55Mn 454.378(21)</td> <td></td> <td></td>	⁵¹ V 7287.961(15)			55Mn 454.378(21)		
Chromium (Z=24), At.Wt.=51.9961(6), \(\alpha\) =3.07(15) Solid (Z 77, 97(7)				55Mp 400 57(4)		
Cor 7364, 34, 77. 3991(a), 6, 3.07(15) 30°C 77. 77(7) 1.24(4) 1.00723(23) 30°C 77. 79(7) 1.124(4) 1.00723(23) 30°C 77. 79(7) 1.130(20) 1.0065(91(2) 30°C 749. 90(3) 3.56(11) 3.62(11)	°¹√ 7310.721(15)	0.227(9)	0.0135(5)	55Mn 504 74(4)		
69Cr 279,7(7) 0.124(4) 0.00723(23) 55Mn 846,754(20)d 13.0(4) 0.226(12%) 59Cr 540,06(3) 0.130(20) 0.00659(9) 0.0322(5) 55Mn 2016,47(5) 0.00291(14) 3.62(11) 0.2001(2%) 59Cr 888,95(7) 0.015(5) 0.0009(3) 55Mn 2045,76(15) 0.0384(23) 0.0021(13) 59Cr 989,074(23) 0.0139(5) 0.0008(3) 55Mn 2045,76(15) 0.0384(23) 0.0021(13) 59Cr 1149,83(3) 0.0214(4) 0.001247(23) 55Mn 2045,76(15) 0.179(5) 0.0099(3) 59Cr 1288,002(0) 3.800(12)×10° 2.215×10° 12 55Mn 2013,78(16) 0.111(4) 0.00612(22) 59Cr 1784,70(4) 0.1760(20) 0.00497(12) 56Mn 2214,29(7) 0.112(6) 0.0062(3) 59Cr 1994,52(6) 0.0545(14) 0.00318(8) 56Mn 2273,23(11) 0.070(4) 0.00497(12) 59Cr 2320,8(3) 0.136(3) 0.079(3) 56Mn 2673,23(11) 0.070(4) 0.0038(6) 59Cr 2320,8(3) 0.136(3) 0.079(3) 56Mn 2673,23(11) 0.070(4) 0.0038(2) 59Cr 2368,8(5) 0.0	Chromium (Z=24), A	At.Wt.=51.9961	(6), ♂,=3.07(15)	⁵⁵ Mn 716.20(5)		
	⁵⁰ Cr 27.97(7)		•	⁵⁵ Mn 846.754(20)d	13.10(4)	
	⁵² Cr 564.05(12)	0.113Ò(20)		^{ວວ} Mn <i>1810.72(4)d</i>	3.62(Ì1)	
Sofc 989.074(23)	⁵⁰ Cr 749.09(3)	0.569(9)	0.0332(5)	⁵⁵ Mn 2016.47(5)		0.00291(14)
Section Sect	⁵³ Cr 834.849(22)			⁵⁵ Mn 2043.99(5)		
39Cr 1149,83(3) 0.0214(4) 0.001247(23) 39Mn 2113.05(4) dt 1.91(5) 0.00612(22) 59Cr 1528.00(20)d 3.800(12)×10⁻6 2.215×10⁻7[92%] 55Mn 2210.29(9) 0.080(5) 0.0044(3) 53Cr 1784.70(4) 0.1760(20) 0.0026(12) 55Mn 2210.29(9) 0.080(5) 0.0044(3) 53Cr 1994.52(6) 0.0545(14) 0.00318(8) 55Mn 2230.35(7) 0.191(8) 0.0105(4) 59Cr 2001.05(5) 0.0199(10) 0.00116(6) 55Mn 2677.20(19) 0.068(10) 0.0038(6) 52Cr 2105.8(5) 0.021(4) 0.00122(23) 55Mn 2830.32(11) 0.070(4) 0.0038(6) 52Cr 2320.8(3) 0.136(3) 0.00793(17) 55Mn 3203.77(11) 0.059(5) 0.0038(3) 59Cr 2348.52(7) 0.116(4) 0.00066(6) 55Mn 3267.77(7) 0.188(6) 0.0104(3) 59Cr 2520.179(8) 0.0404(12) 0.00153(7) 55Mn 3808.61(5) 0.303(10) 0.0167(6) 53Cr 2558.19(11) 0.0197(7) 0.00115(4) 55Mn 3804.121(13) 0.061(5) 0.0034(3) 52Cr 2669.8(5) 0.0263(12) 0.00153(7) 55Mn 3820.48(16) 0.044(6) 0.0034(3) 52Cr 3616.7(4) 0.0236(12) 0.00153(7) 55Mn 3820.48(16) 0.044(6) 0.0034(3) 52Cr 3616.7(4) 0.0236(1) 0.00152(7) 55Mn 3820.48(16) 0.044(6) 0.0024(3) 52Cr 3616.7(4) 0.0268(15) 0.0031(3) 55Mn 3820.48(16) 0.044(6) 0.0024(3) 52Cr 3616.7(4) 0.0268(15) 0.00153(7) 55Mn 3820.48(16) 0.044(6) 0.0024(3) 52Cr 3616.7(4) 0.0268(15) 0.00152(7) 55Mn 3979.0(3) 0.039(5) 0.0022(3) 53Cr 3817.97(6) 0.0675(24) 0.0033(14) 55Mn 3820.48(16) 0.044(6) 0.0024(3) 52Cr 4322.1(3) 0.0268(15) 0.00152(7) 55Mn 3979.0(3) 0.039(5) 0.0022(3) 53Cr 3817.90(6) 0.0675(24) 0.0033(3) 45 55Mn 44267.68(12) 0.078(6) 0.0033(3) 53Cr 4847.56(8) 0.0346(15) 0.0023(3) 55Mn 4446.06(20) 0.077(8) 0.0042(4) 55Mn 4445.06(20) 0.077(8) 0.0042(4) 55Mn 4445.06(20) 0.077(8) 0.0042(4) 55Mn 4484.06(20) 0.077(8) 0.0042(4) 55Mn 4847.56(8) 0.078(6) 0.0033(3) 55Cr 5858.7(9) 0.0266(21) 0.00140(23) 55Mn 4849.21(8) 0.073(6) 0.003(3) 55Cr 5858.7(9) 0.0266(21) 0.00140(23) 55Mn 4849.21(8) 0.076(6) 0.003(3) 55Cr 6849.85(17) 0.0056(9) 0.0024(1) 55Mn 4849.21(8) 0.056(6) 0.003(3) 55Cr 6849.85(17) 0.0056(9) 0.0024(1) 55Mn 4849.21(8) 0.055(6) 0.003(3) 55Cr 6849.85(17) 0.0056(9) 0.0024(1) 55Mn 5198.82(1) 0.076(7) 0.0066(6) 55Mn 5198.82(1) 0.076(7) 0.0066(6) 55Mn 5198.82(1) 0.077(7) 0.0066(530 = 600 074(00)	0.015(5)		55Mn 2045.76(15)		
SCF 1241.33(7)	50Cr 1140 93(3)			⁵⁵ Mn 2442 05(4)		
\$\frac{95Cr} 1528.00(20)d 3.800(12)\times 10^6 2.215\times 10^6 192\times 10^6 10.29(9) 0.080(5) 0.0044(3) 55\times 120.29(9) 0.112(6) 0.0062(3) 55\times 1294.42(7) 0.0081(10) 0.00116(6) 55\times 1294.42(7) 0.0081(10) 0.00116(6) 55\times 1294.42(7) 0.0081(10) 0.00386(6) 0.0048(6) 55\times 1294.42(7) 0.0081(10) 0.00386(6) 55\times 1294.42(7) 0.0081(6) 0.00386(2) 55\times 1294.42(7) 0.0081(6) 0.00386(2) 55\times 1294.42(7) 0.0081(6) 0.00386(6) 55\times 1294.42(7) 0.0081(6) 0.00386(6) 0.0038(3) 55\times 1294.42(7) 0.0081(10) 0.00996(6) 55\times 1294.42(7) 0.188(6) 0.0038(3) 55\times 1294.42(7) 0.188(6) 0.0038(3) 55\times 1294.42(7) 0.188(6) 0.0038(3) 55\times 1294.42(7) 0.188(6) 0.0038(3) 55\times 1294.42(7) 0.0038(6) 55\times 1294.42(7) 0.188(6) 0.0038(3) 55\times 1294.42(7) 0.0038(6) 55\times 1294.42(7) 0.0038(6) 55\times 1294.42(7) 0.0038(3) 55\times 1294.42(7) 0.0038(6) 55\times 1294.42(7) 0.0044(6) 0.0024(3) 55\times 1294.42(7) 0.0044(6) 0.0044(4) 55\times 1294.42(7) 0.0044(6) 0.0044(4) 55\times 1294.42(7) 0.0044(6) 0.0044(4) 55\times 1294.42(7) 0.0044(6) 0.0044(4) 0.00	53Cr 12/1 33(7)	}_{		55Mn 2175.03(4)0		
	⁵⁴ Cr 1528.00(20)d	3.800(12)×10		⁵⁵ Mn 2210.29(9)		
**SCF 1898.90(3)	⁵⁵ Cr 1784.70(4)	0.1760(20)		⁵⁵ Mn 2294.42(7)		
99Cr 1994.52(6) 0.0545(14) 0.00318(8) 99Mn 2469.99(12) 0.083(6) 0.0046(3) 99Cr 2010.05(5) 0.0199(10) 0.00116(6) 55Mn 2873.23(11) 0.070(4) 0.0038(6) 99Cr 2105.8(5) 0.021(4) 0.00122(23) 55Mn 2873.23(11) 0.070(4) 0.0038(2) 99Cr 2329.04(8) 0.186(3) 0.07084(17) 55Mn 2953.77(11) 0.069(5) 0.0038(3) 99Cr 2348.52(7) 0.0164(10) 0.00096(6) 55Mn 3002.85(15) 0.055(5) 0.0030(3) 99Cr 2376.49(5) 0.0362(9) 0.00211(5) 55Mn 3040.86(15) 0.303(10) 0.0197(7) 99Cr 2376.49(5) 0.0362(9) 0.00211(5) 55Mn 3408.61(5) 0.303(10) 0.0167(6) 99Cr 2376.49(5) 0.026(3) 0.00211(5) 55Mn 3408.61(5) 0.303(10) 0.0167(6) 99Cr 2376.49(5) 0.026(3) 0.0023(7) 55Mn 341.21(13) 0.061(5) 0.0034(3) 99Cr 2376.49(5) 0.026(3) 0.0023(7) 55Mn 341.21(13) 0.061(5) 0.0034(3) 99Cr 2366.8(5) 0.0263(12) 0.00153(7) 55Mn 3813.99(9) 0.088(8) 0.0049(4) 99Cr 3021.27(12) 0.0139(8) 0.00081(5) 55Mn 3820.48(16) 0.042(5) 0.0023(3) 99Cr 3177.78(15) 0.0234(8) 0.00165(5) 55Mn 3820.48(16) 0.042(5) 0.0023(3) 99Cr 3719.70(6) 0.0675(24) 0.00393(14) 55Mn 3879.0(3) 0.039(5) 0.0022(3) 99Cr 3719.70(6) 0.0675(24) 0.00393(14) 55Mn 3879.0(3) 0.039(5) 0.0022(3) 99Cr 322.1(3) 0.0269(15) 0.00157(9) 55Mn 4222.85(17) 0.066(5) 0.0036(3) 99Cr 4847.56(8) 0.0346(15) 0.00157(9) 55Mn 4222.85(17) 0.066(5) 0.0036(3) 99Cr 5268.9(5) 0.0044(17) 0.00107(10) 55Mn 4549.70(23) 0.056(6) 0.0034(3) 99Cr 5268.9(5) 0.050(6) 0.0029(4) 55Mn 4549.70(23) 0.056(6) 0.0034(3) 99Cr 5268.9(5) 0.050(6) 0.0029(4) 55Mn 4549.70(23) 0.056(6) 0.0034(3) 99Cr 5268.9(5) 0.050(6) 0.0029(4) 55Mn 4549.70(23) 0.056(6) 0.0039(3) 99Cr 5489.85(14) 0.044(4) 0.00140(23) 55Mn 4843.40(13) 0.073(10) 0.0040(6) 99Cr 5268.9(5) 0.050(6) 0.0029(4) 55Mn 4843.40(13) 0.073(10) 0.0040(6) 99Cr 5268.9(5) 0.050(6) 0.0029(4) 55Mn 4843.40(13) 0.073(10) 0.0040(6) 99Cr 5268.9(5) 0.050(6) 0.0029(4) 55Mn 4843.40(13) 0.073(10) 0.0040(6) 99Cr 5489.86(14) 0.024(4) 0.00140(23) 55Mn 4843.40(13) 0.073(10) 0.0040(6) 99Cr 5489.86(14) 0.024(4) 0.00140(23) 55Mn 4843.40(13) 0.055(6) 0.0033(3) 99Cr 5489.86(14) 0.028(17) 0.005(6) 0.0033(3) 55Mn 4843.40(13) 0.055(6) 0.0033(3) 99Cr	⁵⁰ Cr 1898.90(3)			⁵⁵ Mn 2330.55(7)		
9°Cr 2001.05(5) 0.0199(10) 0.00116(6) 9°Mn 2677.20(19) 0.0088(10) 0.0038(6) 5°Cr 2105.8(5) 0.021(4) 0.00122(23) 5°SMn 2873.23(11) 0.070(4) 0.0038(3) 5°Cr 2320.8(3) 0.136(3) 0.00793(17) 5°SMn 2953.77(11) 0.069(5) 0.0030(3) 5°Cr 2376.49(5) 0.0362(9) 0.00211(5) 5°SMn 3020.85(15) 0.055(5) 0.0030(3) 5°Cr 2376.49(5) 0.0362(9) 0.00211(5) 5°SMn 3408.61(5) 0.303(10) 0.0167(6) 5°Cr 2576.49(5) 0.0263(12) 0.00235(7) 5°SMn 3751.50(15) 0.054(5) 0.0030(3) 5°Cr 2601.79(8) 0.0404(12) 0.00235(7) 5°SMn 3751.50(15) 0.054(5) 0.0030(3) 5°Cr 2601.79(8) 0.0404(12) 0.00235(7) 5°SMn 3751.50(15) 0.054(5) 0.0030(3) 5°Cr 2601.79(8) 0.0263(12) 0.00153(7) 5°SMn 3813.99(9) 0.088(8) 0.0049(4) 5°Cr 3021.27(12) 0.0139(8) 0.00081(5) 5°SMn 3820.48(16) 0.042(5) 0.0023(3) 5°Cr 3177.78(15) 0.0234(8) 0.00136(5) 5°SMn 3979.0(3) 0.039(5) 0.0022(3) 5°Cr 3719.70(6) 0.0675(24) 0.00393(14) 5°SMn 3979.0(3) 0.039(5) 0.0022(3) 5°Cr 4322.1(3) 0.0269(15) 0.00152(7) 5°SMn 3979.0(3) 0.039(5) 0.0022(3) 5°Cr 4371.96(6) 0.0675(24) 0.00393(14) 5°SMn 4222.85(17) 0.066(5) 0.0036(3) 5°Cr 4847.56(8) 0.0346(15) 0.00202(9) 5°SMn 4267.69(12) 0.078(6) 0.0043(3) 5°Cr 5220.72(12) 0.0184(17) 0.00107(10) 5°SMn 4549.70(23) 0.056(6) 0.0043(3) 5°Cr 5268.9(5) 0.050(6) 0.0029(4) 5°SMn 4549.70(23) 0.056(6) 0.0031(3) 5°Cr 5493.99(12) 0.016(3) 0.0099(4) 5°SMn 4588.23(18) 0.053(5) 0.0029(3) 5°Cr 5493.99(12) 0.016(3) 0.0093(17) 5°SMn 4588.23(18) 0.053(5) 0.0029(3) 5°Cr 5493.99(12) 0.016(3) 0.0093(17) 5°SMn 4588.23(18) 0.053(6) 0.0038(3) 5°Cr 5493.99(12) 0.016(3) 0.0077(3) 5°SMn 4724.84(8) 0.281(10) 0.0155(6) 5°Cr 5493.99(12) 0.016(3) 0.0077(3) 5°SMn 4840.72(16) 0.064(6) 0.0036(3) 5°Cr 6434.89(17) 0.0056(9) 0.0036(3) 5°SMn 4990.28(21) 0.043(5) 0.0038(3) 5°Cr 6434.89(17) 0.0056(9) 0.0036(3) 5°SMn 5198.52(19) 0.073(10) 0.0040(4) 5°Cr 6370.15(10) 0.028(17) 0.0015(10) 5°SMn 5014.37(7) 0.737(20) 0.0040(4) 5°Cr 6370.15(10) 0.028(17) 0.0016(10) 5°SMn 5108.59(8) 0.043(5) 0.0024(3) 5°Cr 7361.12(8) 0.092(4) 0.0045(5) 5°SMn 5108.89(8) 0.412(13) 0.0052(4) 5°Cr 7361.12(8) 0.092(4) 0.0045(5) 5°SMn 5108.8	⁵⁵ Cr 1994.52(6)		0.00318(8)	⁵⁵ Mn 2469.99(12)		
\$2Cr 2339.04(8) 0.136(3) 0.00793(17) 55Mn 3002.85(15) 0.055(5) 0.0030(3) 50Cr 2348.52(7) 0.0164(10) 0.00096(6) 55Mn 3267.17(7) 0.188(6) 0.0104(3) 50Cr 2376.49(5) 0.0362(9) 0.00211(5) 55Mn 3267.17(7) 0.188(6) 0.0104(3) 55Cr 2558.19(11) 0.0197(7) 0.00115(4) 55Mn 3641.21(13) 0.061(5) 0.0034(3) 55Cr 2601.79(8) 0.0404(12) 0.00235(7) 55Mn 3813.99(9) 0.088(8) 0.0049(4) 50Cr 3021.27(12) 0.0139(8) 0.00081(5) 55Mn 3813.99(9) 0.088(8) 0.0049(4) 50Cr 3021.27(12) 0.0139(8) 0.00153(7) 55Mn 3820.48(16) 0.042(5) 0.0023(3) 55Cr 3177.78(15) 0.0234(8) 0.00136(5) 55Mn 3820.48(16) 0.042(5) 0.0023(3) 55Cr 3177.78(15) 0.0675(24) 0.00393(14) 55Mn 3979.0(3) 0.039(5) 0.0022(3) 55Cr 4847.56(8) 0.0346(15) 0.00157(9) 55Mn 4222.85(17) 0.066(5) 0.0036(3) 55Cr 4847.56(8) 0.0346(15) 0.00202(9) 55Mn 4379.90(16) 0.073(6) 0.0043(3) 55Cr 4847.56(8) 0.0180(10) 0.00156(6) 55Mn 4445.06(20) 0.077(8) 0.0042(4) 55Cr 5220.72(12) 0.0184(17) 0.00107(10) 55Mn 4445.06(20) 0.077(8) 0.0042(4) 55Cr 5268.9(5) 0.050(6) 0.0029(4) 55Mn 4568.56(10) 0.197(9) 0.0109(6) 55Cr 5268.15(11) 0.0465(25) 0.0027(1(5) 55Mn 4568.56(10) 0.197(9) 0.109(6) 55Cr 5268.9(5) 0.050(6) 0.0029(4) 55Mn 4463.40(13) 0.073(10) 0.0040(6) 55Cr 5268.9(5) 0.050(6) 0.0029(4) 55Mn 4469.70(23) 0.056(6) 0.0031(3) 55Cr 5706.94(16) 0.024(4) 0.00140(23) 55Mn 4463.40(13) 0.073(10) 0.0040(6) 55Cr 5268.9(5) 0.050(6) 0.0029(4) 55Mn 4469.70(23) 0.056(6) 0.0031(3) 55Cr 5706.94(16) 0.024(4) 0.00140(23) 55Mn 4463.40(13) 0.073(10) 0.0040(6) 55Cr 5617.9(3) 0.132(5) 0.0077(3) 55Mn 4868.23(18) 0.053(5) 0.0029(3) 55Cr 5617.9(3) 0.132(5) 0.0077(3) 55Mn 4840.72(16) 0.064(6) 0.0033(3) 55Cr 6282.90(9) 0.036(3) 0.00210(17) 55Mn 5034.60(15) 0.004(3) 55Cr 6245.89(17) 0.0056(9) 0.0035(5) 55Mn 4940.72(16) 0.064(6) 0.0033(3) 55Cr 6326.49(12) 0.024(4) 0.00140(23) 55Mn 4940.72(16) 0.064(6) 0.0038(3) 55Cr 6326.49(12) 0.0212(23) 0.00124(13) 55Mn 5034.60(15) 0.108(8) 0.0060(4) 55Cr 6370.15(10) 0.024(3) 0.0025(4) 55Mn 5180.89(8) 0.412(13) 0.0022(7) 55Mn 5180.89(8) 0.412(13) 0.0022(7) 55Mn 5180.89(8) 0.412(13) 0.0022(7) 55Mn 5180.89	⁵⁰ Cr 2001.05(5)			⁵⁵ Mn 2677.20(19)		
92CT 2320.8(3) 0.136(3) 0.00793(17) 39Mn 3002.85(15) 0.055(5) 0.0030(3) 95CT 2376.49(5) 0.0362(9) 0.00211(5) 55Mn 3408.61(5) 0.303(10) 0.0167(6) 53CT 2558.19(11) 0.0197(7) 0.0015(4) 55Mn 3641.21(13) 0.061(5) 0.0034(3) 52CT 2669.8(5) 0.0263(12) 0.00153(7) 55Mn 3813.99(9) 0.088(8) 0.0049(4) 50CT 3021.27(12) 0.0139(8) 0.00081(5) 55Mn 3820.48(16) 0.042(5) 0.0023(3) 52CT 3616.7(4) 0.0260(12) 0.00152(7) 55Mn 3827.8(3) 0.044(6) 0.0024(3) 52CT 3719.70(6) 0.0675(24) 0.0033(14) 55Mn 4222.85(17) 0.066(5) 0.0033(3) 53CT 4871.96(8) 0.0180(10) 0.00157(9) 55Mn 4267.69(12) 0.078(6) 0.0043(3) 53CT 5268.15(11) 0.0465(25) 0.0021(15) 55Mn 4445.06(20) 0.077(8) 0.004(3) 53CT 5268.15(11) 0.0465(25) 0.0027(115) 55Mn 4588.23(18) 0.043(3) 0.0042(4) 53CT 5489.85(14) 0.024(4) 0.00107(3)	⁵² Cr 2105.8(5)			55Mn 2873.23(11)		
39Cr 2348.52(7) 0.0164(10) 0.00096(6) 35Mn 3267.17(7) 0.188(6) 0.0104(3) 59Cr 2376.49(5) 0.0362(9) 0.00211(5) 55Mn 3408.61(5) 0.303(10) 0.0167(6) 53Cr 2558.19(11) 0.0197(7) 0.00115(4) 55Mn 3641.21(13) 0.061(5) 0.0030(3) 52Cr 2669.8(5) 0.0263(12) 0.00153(7) 55Mn 3813.99(9) 0.088(8) 0.0049(4) 50Cr 3021.27(12) 0.0139(8) 0.00081(5) 55Mn 3820.48(16) 0.042(5) 0.0023(3) 52Cr 3616.7(4) 0.0260(12) 0.00152(7) 55Mn 3927.8(3) 0.044(6) 0.0024(3) 52Cr 4322.1(3) 0.0269(15) 0.00152(7) 55Mn 4222.85(17) 0.066(5) 0.0036(3) 52Cr 4322.1(3) 0.0269(15) 0.00157(9) 55Mn 4267.69(12) 0.078(6) 0.0043(3) 53Cr 4871.96(8) 0.0346(15) 0.00202(9) 55Mn 4450.6(20) 0.077(8) 0.004(3) 53Cr 4871.96(8) 0.0184(17) 0.00105(6) 55Mn 4450.6(20) 0.077(8) 0.004(3) 53Cr 5268.9(5) 0.0506(6) 0.0027(4)	52Cr 2239.04(8)			55Mp 2002 95(15)		
39Cr 2376.49(5) 0.0362(9) 0.00211(5) 35Mn 3408.61(5) 0.303(10) 0.0167(6) 59Cr 2558.19(11) 0.0197(7) 0.00115(4) 55Mn 3641.21(13) 0.061(5) 0.0034(3) 59Cr 2669.8(5) 0.0263(12) 0.00153(7) 55Mn 3813.99(9) 0.088(8) 0.0049(4) 59Cr 3021.27(12) 0.0139(8) 0.00081(5) 55Mn 3820.48(16) 0.042(5) 0.0023(3) 53Cr 3177.78(15) 0.0234(8) 0.00156(5) 55Mn 3927.8(3) 0.044(6) 0.0022(3) 52Cr 3616.7(4) 0.0260(12) 0.00152(7) 55Mn 3979.0(3) 0.039(5) 0.0022(3) 52Cr 3719.70(6) 0.0675(24) 0.00393(14) 55Mn 3979.0(3) 0.036(5) 0.0036(3) 52Cr 4322.1(3) 0.0269(15) 0.00157(9) 55Mn 4226.86(17) 0.066(5) 0.0036(3) 53Cr 4871.96(8) 0.0346(15) 0.00202(9) 55Mn 4481.00 0.077(8) 0.0040(3) 53Cr 5268.15(11) 0.0465(25) 0.0027(15) 55Mn 4481.00 0.077(8) 0.0042(4) 50Cr 5268.9(5) 0.050(6) 0.0024(4) 55Mn	50Cr 2348 52(7)			⁵⁵ Mn 3267 17(7)		
\$\frac{50}{\cappa}\$Cr 2558.19(11) 0.0197(7) 0.00115(4) \$\frac{50}{50}\$Cr 2601.79(8) 0.0404(12) 0.00235(7) \$\frac{50}{50}\$Mn 3751.50(15) 0.054(5) 0.0030(3) \$\frac{50}{52}\$Cr 2609.8(5) 0.0263(12) 0.00153(7) \$\frac{50}{50}\$Mn 3813.99(9) 0.088(8) 0.0049(4) \$\frac{50}{50}\$Cr 3021.27(12) 0.0139(8) 0.00081(5) \$\frac{55}{50}\$Mn 3820.48(16) 0.042(5) 0.0023(3) \$\frac{50}{50}\$Cr 3177.78(15) 0.0234(8) 0.00136(5) \$\frac{55}{50}\$Mn 3927.8(3) 0.034(6) 0.0024(3) \$\frac{50}{52}\$Cr 3616.7(4) 0.0260(12) 0.00152(7) \$\frac{55}{50}\$Mn 3979.0(3) 0.039(5) 0.0022(3) \$\frac{50}{52}\$Cr 3719.70(6) 0.0675(24) 0.00393(14) \$\frac{55}{50}\$Mn 4222.85(17) 0.066(5) 0.0036(3) \$\frac{52}{50}\$Cr 4322.1(3) 0.0269(15) 0.00157(9) \$\frac{55}{50}\$Mn 4267.69(12) 0.073(6) 0.0043(3) \$\frac{53}{50}\$Cr 4871.96(8) 0.0180(10) 0.00105(6) \$\frac{55}{50}\$Mn 4475.06(20) 0.077(8) 0.0042(4) \$\frac{50}{50}\$Cr 5268.15(11) 0.0465(25) 0.0027(115) \$\frac{55}{50}\$Mn 4549.70(23) 0.056(6) 0.0031(3) \$\frac{52}{50}\$Cr 5268.9(5) 0.050(6) 0.0029(4) \$\frac{55}{50}\$Mn 4588.23(18) 0.053(5) 0.0029(3) \$\frac{55}{50}\$Cr 5489.85(14) 0.024(4) 0.00140(23) \$\frac{55}{50}\$Mn 4683.40(13) 0.073(10) 0.0040(6) \$\frac{55}{50}\$Cr 5493.99(12) 0.016(3) 0.0093(17) \$\frac{55}{50}\$Mn 4689.14(11) 0.120(9) 0.0066(5) \$\frac{55}{50}\$Cr 5268.9(5) 0.056(6) 0.0077(3) \$\frac{55}{50}\$Mn 4744.84(8) 0.281(10) 0.0155(6) \$\frac{55}{50}\$Cr 5888.72(9) 0.0266(21) 0.00155(12) \$\frac{55}{50}\$Mn 4840.72(16) 0.064(6) 0.0038(3) \$\frac{55}{50}\$Cr 5268.9(17) 0.085(7) 0.0050(4) \$\frac{55}{50}\$Mn 4949.21(8) 0.074(10) 0.0151(6) \$\frac{55}{50}\$Mn 4949.21(8) 0.0274(10) 0.0151(6) \$\frac{55}{50}\$Mn 4949.21(8) 0.0274(10) 0.0151(6) \$\frac{55}{50}\$Cr 6326.49(12) 0.0212(23) 0.00124(13) \$\frac{55}{50}\$Mn 5014.37(7) 0.737(20) 0.0467(11) \$\frac{55}{50}\$Cr 6890.11(7) 0.042(3) 0.0024(4) 0.0014(13) \$\frac{55}{50}\$Mn 5014.37(7) 0.737(0) 0.0028(3) \$\frac{55}{50}\$Cr 7909.91(6) 0.146(9) 0.0085(5) \$\frac{55}{50}\$Mn 5198.52(13) 0.095(7) 0.0050(4) \$\frac{55}{50}\$Mn 5198.52(13) 0.095(7) 0.0050(4) \$\frac{55}{50}\$Mn 5014.37(7) 0.737(20) 0.0046(7) 0	⁵⁰ Cr 2376.49(5)			⁵⁵ Mn 3408.61(5)		0.0167(6)
5°C r 2601,79(8) 0.0404(12) 0.00235(7) 55Mn 3751,50(15) 0.054(5) 0.0030(3) 5°C r 2669,8(5) 0.0263(12) 0.00153(7) 55Mn 3813,99(9) 0.088(8) 0.0049(4) 5°C r 3021,27(12) 0.0139(8) 0.00081(5) 55Mn 3820,48(16) 0.042(5) 0.0023(3) 5°C r 3177,78(15) 0.0234(8) 0.00152(7) 55Mn 3927,8(3) 0.044(6) 0.0024(3) 5°C r 3719,70(6) 0.0675(24) 0.00393(14) 55Mn 3979,0(3) 0.039(5) 0.0022(3) 5°C r 3719,70(6) 0.0675(24) 0.00393(14) 55Mn 4267,69(12) 0.078(6) 0.0043(3) 5°C r 4822,1(3) 0.0269(15) 0.00157(9) 55Mn 4267,69(12) 0.078(6) 0.0043(3) 5°C r 4871,96(8) 0.0346(15) 0.00202(9) 55Mn 4379,90(16) 0.073(6) 0.0040(3) 5°C r 5268,15(11) 0.0465(25) 0.0027(16) 55Mn 4445,90(20) 0.077(8) 0.0042(4) 5°C r 5268,9(5) 0.050(6) 0.0022(4) 55Mn 4549,70(23) 0.053(5) 0.0029(3) 5°C r 5493,99(12) 0.016(3) 0.0033(17)	⁵⁵ Cr 2558.19(11)	0.0197(7)		⁵⁵ Mn 3641.21(13)		
GCCT 2669.8(5) 0.0263(12) 0.00153(7) 3MN 3813.99(9) 0.088(8) 0.0049(4) 5°CT 3021.27(12) 0.0139(8) 0.00081(5) 55Mn 3820.48(16) 0.042(5) 0.0023(3) 5°CT 3177.78(15) 0.0234(8) 0.00152(7) 55Mn 3927.8(3) 0.044(6) 0.0024(3) 5°CT 3717.70(6) 0.0675(24) 0.0033(14) 55Mn 4222.85(17) 0.066(5) 0.0036(3) 5°CT 4847.56(8) 0.0346(15) 0.00202(9) 55Mn 4222.85(17) 0.066(5) 0.0043(3) 5°CT 4847.96(8) 0.0346(15) 0.00202(9) 55Mn 4267.69(12) 0.073(6) 0.0043(3) 5°CT 5220.72(12) 0.0180(10) 0.00105(6) 55Mn 4447.06(20) 0.077(8) 0.0042(4) 5°CT 5268.15(11) 0.0465(25) 0.0027(115) 55Mn 4549.70(23) 0.056(6) 0.0031(3) 5°CT 5489.89(5) 0.050(6) 0.0029(4) 55Mn 4588.23(18) 0.053(5) 0.0029(3) 5°CT 5489.89(14) 0.024(4) 0.00140(23) 55Mn 4689.14(11) 0.109(6) 0.0040(6) 5°CT 5617.9(3) 0.132(5) 0.0077(3)	⁵⁵ Cr 2601.79(8)	0.0404(12)	0.00235(7)	⁵⁵ Mn 3751.50(15)	0.054(5)	0.0030(3)
5°Cr 3177.78(15) 0.0234(8) 0.00136(5) 5°SMn 3927.8(3) 0.044(6) 0.0024(3) 5°Cr 3616.7(4) 0.0260(12) 0.00152(7) 5°SMn 3979.0(3) 0.039(5) 0.0022(3) 5°Cr 3719.70(6) 0.0675(24) 0.0039(14) 5°SMn 4222.85(17) 0.066(5) 0.0036(3) 5°Cr 4322.1(3) 0.0269(15) 0.00157(9) 5°SMn 4267.69(12) 0.078(6) 0.0043(3) 5°Cr 4847.56(8) 0.0346(15) 0.00202(9) 5°SMn 4379.90(16) 0.073(6) 0.0040(3) 5°Cr 4871.96(8) 0.0180(10) 0.00105(6) 5°SMn 4445.06(20) 0.077(8) 0.0042(4) 5°Cr 5268.15(11) 0.0465(25) 0.0027(15) 5°SMn 4549.70(23) 0.056(6) 0.0031(3) 5°Cr 5268.9(5) 0.050(6) 0.0029(4) 5°SMn 4588.23(18) 0.053(5) 0.0029(3) 5°Cr 5489.85(14) 0.024(4) 0.00440(23) 5°SMn 4683.14(11) 0.120(9) 0.0066(5) 5°Cr 54617.9(3) 0.132(5) 0.0077(3) 5°SMn 4689.14(11) 0.120(9) 0.0066(5) 5°3Cr 5998.90(7) 0.026(21) 0.00155(12) <td>⁵²Cr 2669 8(5)</td> <td></td> <td></td> <td>⁵⁵Mn 3813.99(9)</td> <td></td> <td></td>	⁵² Cr 2669 8(5)			⁵⁵ Mn 3813.99(9)		
53Cr 3719.70(6) 0.0260(12) 0.00152(7) 55Mn 4222.85(17) 0.066(5) 0.0036(3) 52Cr 4322.1(3) 0.0269(15) 0.00157(9) 55Mn 4222.85(17) 0.066(5) 0.0043(3) 53Cr 4847.56(8) 0.0346(15) 0.00157(9) 55Mn 4267.69(12) 0.078(6) 0.0040(3) 53Cr 4871.96(8) 0.0180(10) 0.00105(6) 55Mn 4445.06(20) 0.077(8) 0.0042(4) 50Cr 5220.72(12) 0.0184(17) 0.00107(10) 55Mn 4568.56(10) 0.197(9) 0.0109(5) 55Cr 5268.9(5) 0.050(6) 0.00271(15) 55Mn 4566.56(10) 0.197(9) 0.0109(5) 55Cr 5489.85(14) 0.024(4) 0.00140(23) 55Mn 4643.40(13) 0.073(10) 0.0040(6) 55Cr 5489.89(12) 0.016(3) 0.00093(17) 55Mn 4689.14(11) 0.120(9) 0.0066(5) 55Cr 5469.399(12) 0.016(3) 0.00093(17) 55Mn 4689.14(11) 0.120(9) 0.0066(5) 55Cr 5565.79(3) 0.132(5) 0.0077(3) 55Mn 4840.72(16) 0.064(6) 0.0035(3) 53Cr 5858.72(9) 0.0266(21) 0.00140(23) 55Mn 4840.72(16) 0.064(6) 0.0035(3) 55Cr 5908.80(7) 0.085(7) 0.0050(4) 55Mn 4874.52(13) 0.069(5) 0.0038(3) 55Cr 6245.89(7) 0.085(7) 0.0050(4) 55Mn 499.21(8) 0.274(10) 0.0151(6) 55Cr 6245.89(17) 0.0056(9) 0.00033(5) 55Mn 499.21(8) 0.274(10) 0.0151(6) 55Cr 6326.49(12) 0.0212(23) 0.00124(13) 55Mn 5014.37(7) 0.737(20) 0.0407(11) 55Cr 6645.61(8) 0.183(13) 0.0107(8) 55Mn 5110.97(22) 0.050(5) 0.0028(3) 55Cr 7399.91(6) 0.146(9) 0.085(5) 55Mn 5180.89(8) 0.412(13) 0.0927(7) 50Cr 7361.12(8) 0.092(4) 0.0036(23) 55Mn 5180.89(8) 0.412(13) 0.0927(7) 50Cr 7374.49(22) 0.080(4) 0.0036(23) 55Mn 5180.89(8) 0.412(13) 0.0057(7) 0.0052(4) 55Cr 7374.49(22) 0.080(4) 0.0036(23) 55Mn 5180.89(8) 0.412(13) 0.0073(7)	⁵⁰ Cr 3021.27(12)			⁵⁵ Mn 3820.48(16)		
52Cr 3719,70(6) 0.0675(24) 0.00393(14) 53Mn 4222.85(17) 0.066(5) 0.0036(3) 52Cr 4322.1(3) 0.0269(15) 0.00157(9) 55Mn 4267.69(12) 0.078(6) 0.0043(3) 53Cr 4847.56(8) 0.0180(10) 0.00105(6) 55Mn 4379.90(16) 0.077(8) 0.0042(4) 50Cr 5220.72(12) 0.0184(17) 0.00107(10) 55Mn 4445.06(20) 0.077(8) 0.0042(4) 50Cr 5268.15(11) 0.0465(25) 0.00271(15) 55Mn 4566.56(10) 0.197(9) 0.0109(5) 52Cr 5268.9(5) 0.050(6) 0.0029(4) 55Mn 4588.23(18) 0.053(5) 0.0029(3) 55Cr 5493.99(12) 0.016(3) 0.0093(17) 55Mn 4689.14(11) 0.120(9) 0.0066(5) 52Cr 5706.94(16) 0.024(4) 0.00140(23) 55Mn 4689.14(11) 0.120(9) 0.0066(5) 53Cr 5858.72(9) 0.0266(21) 0.00140(23) 55Mn 4840.72(16) 0.064(6) 0.0035(3) 53Cr 5899.80(7) 0.085(7) 0.0050(4) 55Mn 4949.21(8) 0.070(7) 0.0039(4) 55Cr 6326.49(12) 0.078(4) 0.0045(23) 55Mn 4949.21(8) 0.0274(10) 0.0151(6) 53Cr 6245.89(17) 0.0056(9) 0.00033(5) 55Mn 4949.21(8) 0.274(10) 0.0151(6) 53Cr 6245.89(17) 0.0056(9) 0.00033(5) 55Mn 4949.21(8) 0.274(10) 0.0151(6) 53Cr 6282.90(9) 0.036(3) 0.00210(17) 55Mn 4969.28(21) 0.043(5) 0.0024(3) 55Cr 6370.15(10) 0.028(17) 0.0016(10) 55Mn 5014.37(7) 0.737(20) 0.0040(11) 55Cr 6370.15(10) 0.028(17) 0.0016(10) 55Mn 5014.37(7) 0.737(20) 0.0040(11) 55Cr 6370.15(10) 0.028(17) 0.0016(10) 55Mn 5014.37(7) 0.737(20) 0.0028(3) 55Cr 7099.91(6) 0.146(9) 0.0085(5) 55Mn 5110.97(22) 0.050(5) 0.0028(3) 55Cr 7399.11(7) 0.042(3) 0.00245(17) 55Mn 5014.37(7) 0.737(20) 0.0046(7) 55Cr 6370.15(10) 0.028(17) 0.0016(10) 55Mn 5014.37(7) 0.737(20) 0.0046(7) 55Cr 7374.49(22) 0.092(4) 0.00245(17) 55Mn 5180.89(8) 0.412(13) 0.0022(7) 55Cr 7374.49(22) 0.080(4) 0.00466(23) 55Mn 5180.89(12) 0.132(13) 0.0073(7)	52Cr 2646.7(4)			55Mn 3927.8(3)		
53Cr 4322.1(3) 0.0269(15) 0.00157(9) 55Mn 4267.69(12) 0.078(6) 0.0043(3) 55Cr 4847.56(8) 0.0346(15) 0.00202(9) 55Mn 4379.90(16) 0.073(6) 0.0040(3) 0.0040(3) 0.00105(6) 55Mn 4445.06(20) 0.077(8) 0.0042(4) 0.00105(6) 55Mn 4445.06(20) 0.077(8) 0.0042(4) 0.00105(6) 0.00107(10) 0.00109(5) 0.0029(3) 0.0029(4) 0.0029(4) 0.0029(4) 0.0029(2) 0.0029(3) 0.0029(4) 0.0029(4) 0.0029(2) 0.0029(3) 0.0029(4) 0.0029(4) 0.0029(2)	53Cr 3719.70(6)			55Mn 4222 85(17)		
53Cr 4847.56(8) 0.0346(15) 0.00202(9) 53Mn 4379.90(16) 0.073(6) 0.0040(3) 53Cr 4871.96(8) 0.0180(10) 0.00105(6) 55Mn 4445.06(20) 0.077(8) 0.0042(4) 50Cr 5220.72(12) 0.0184(17) 0.00107(10) 55Mn 4549.70(23) 0.056(6) 0.0031(3) 53Cr 5268.15(11) 0.0465(25) 0.0027(15) 55Mn 4566.56(10) 0.197(9) 0.0109(5) 52Cr 5268.9(5) 0.050(6) 0.0029(4) 55Mn 4588.23(18) 0.053(5) 0.0029(3) 50Cr 5489.85(14) 0.024(4) 0.00140(23) 55Mn 4643.40(13) 0.073(10) 0.0040(6) 50Cr 5493.99(12) 0.016(3) 0.00093(17) 55Mn 4689.14(11) 0.120(9) 0.0066(5) 52Cr 5617.9(3) 0.132(5) 0.0077(3) 55Mn 4689.14(11) 0.120(9) 0.0066(5) 53Cr 5706.94(16) 0.024(4) 0.00140(23) 55Mn 4874.52(13) 0.064(6) 0.0035(3) 53Cr 5899.80(7) 0.085(7) 0.0050(4) 55Mn 4874.52(13) 0.069(5) 0.0038(3) 54Cr 6245.89(17) 0.0056(9) 0.00033(5)	⁵² Cr 4322 1(3)			⁵⁵ Mn 4267 69(12)		
5°C r 4871,96(8) 0.0180(10) 0.00105(6) 5°SMn 4445.06(20) 0.077(8) 0.0042(4) 5°C r 5220.72(12) 0.0184(17) 0.00107(10) 5°SMn 4549.70(23) 0.056(6) 0.0031(3) 5°S cr 5268.15(11) 0.0465(25) 0.00271(15) 5°SMn 4566.56(10) 0.197(9) 0.0109(5) 5°C r 5268.9(5) 0.050(6) 0.0029(4) 5°SMn 4588.23(18) 0.053(5) 0.0029(3) 5°C r 5489.85(14) 0.024(4) 0.00140(23) 5°SMn 4689.14(11) 0.120(9) 0.0040(6) 5°C r 5493.99(12) 0.016(3) 0.00077(3) 5°SMn 4689.14(11) 0.120(9) 0.0066(5) 5°C r 5617.9(3) 0.132(5) 0.0077(3) 5°SMn 4689.14(11) 0.120(9) 0.0066(5) 5°S cr 5706.94(16) 0.024(4) 0.00140(23) 5°SMn 4840.72(16) 0.064(6) 0.0035(3) 5°S cr 5858.72(9) 0.0266(21) 0.00155(12) 5°SMn 4874.52(13) 0.069(5) 0.0038(3) 5°S cr 5999.80(7) 0.085(7) 0.0056(7) 0.0056(9) 0.0036(3) 0.0045(12) 0.0046(12) 0.0046(12) 0.0046(12) <	⁵⁵ Cr 4847 56(8)			⁵⁵ Mn 4379.90(16)		
53Cr 5220.72(12) 0.0184(17) 0.00107(10) 53Mn 4549.70(23) 0.056(6) 0.0031(3) 53Cr 5268.9(5) 0.050(6) 0.0029(4) 55Mn 4586.56(10) 0.197(9) 0.0109(5) 50Cr 5268.9(5) 0.050(6) 0.0029(4) 55Mn 4588.23(18) 0.053(5) 0.0029(3) 50Cr 5489.85(14) 0.024(4) 0.00140(23) 55Mn 4643.40(13) 0.073(10) 0.0040(6) 52Cr 5617.9(3) 0.132(5) 0.0077(3) 55Mn 4689.14(11) 0.120(9) 0.0066(5) 53Cr 5706.94(16) 0.024(4) 0.00140(23) 55Mn 4840.72(16) 0.064(6) 0.0035(3) 53Cr 5858.72(9) 0.0266(21) 0.00155(12) 55Mn 4874.52(13) 0.069(5) 0.0038(3) 53Cr 5999.80(7) 0.085(7) 0.0050(4) 55Mn 490.736(19) 0.070(7) 0.0038(3) 54Cr 6245.89(17) 0.0056(9) 0.00033(5) 55Mn 499.28(21) 0.0274(10) 0.0151(6) 53Cr 6326.49(12) 0.0212(23) 0.00124(13) 55Mn 5014.37(7) </td <td>⁵⁵Cr 4871.96(8)</td> <td></td> <td></td> <td>⁵⁵Mn 4445.06(20)</td> <td>0.077(8)</td> <td></td>	⁵⁵ Cr 4871.96(8)			⁵⁵ Mn 4445.06(20)	0.077(8)	
52Cr 5268.15(11) 0.0465(25) 0.00271(15) 55Mn 4566.56(10) 0.197(9) 0.0109(5) 0.0029(3) 55Cr 5268.9(5) 0.050(6) 0.0029(4) 55Mn 4588.23(18) 0.053(5) 0.0029(3) 0.0029(1)	³⁰ Cr 5220 72(12)			⁵⁵ Mn 4549.70(23)	0.056(6)	
50Cr 5489.85(14) 0.024(4) 0.00140(23) 53Mn 4643.40(13) 0.073(10) 0.0040(6) 50Cr 5493.99(12) 0.016(3) 0.00093(17) 55Mn 4689.14(11) 0.120(9) 0.0066(5) 52Cr 5617.9(3) 0.132(5) 0.0077(3) 55Mn 4724.84(8) 0.281(10) 0.0155(6) 53Cr 5706.94(16) 0.024(4) 0.00140(23) 55Mn 4840.72(16) 0.064(6) 0.0035(3) 53Cr 5858.72(9) 0.0266(21) 0.00155(12) 55Mn 4874.52(13) 0.069(5) 0.0038(3) 53Cr 5999.80(7) 0.085(7) 0.0050(4) 55Mn 4907.36(19) 0.070(7) 0.0039(3) 50Cr 6134.58(9) 0.078(4) 0.00455(23) 55Mn 4934.09(18) 0.055(6) 0.0030(3) 54Cr 6245.89(17) 0.0056(9) 0.00033(5) 55Mn 4949.21(8) 0.274(10) 0.0151(6) 53Cr 6326.49(12) 0.0212(23) 0.0012(17) 55Mn 4969.28(21) 0.043(5) 0.0024(3) 53Cr 6326.49(12) 0.0212(23) 0.0016(10) 55Mn 5014.37(⁵⁵ Cr 5268.15(11)	0.0465(25)	. \. /	⁵⁵ Mn 4566.56(10)	0.197(9)	
50Cr 5493.99(12) 0.016(3) 0.00093(17) 55Mn 4689.14(11) 0.120(9) 0.0066(5) 52Cr 5617.9(3) 0.132(5) 0.0077(3) 55Mn 4724.84(8) 0.281(10) 0.0155(6) 53Cr 5706.94(16) 0.024(4) 0.00140(23) 55Mn 4840.72(16) 0.064(6) 0.0035(3) 53Cr 5858.72(9) 0.0266(21) 0.00155(12) 55Mn 4874.52(13) 0.069(5) 0.0038(3) 53Cr 5999.80(7) 0.085(7) 0.0050(4) 55Mn 4907.36(19) 0.070(7) 0.0039(4) 50Cr 6134.58(9) 0.078(4) 0.0045(23) 55Mn 4934.09(18) 0.055(6) 0.0030(3) 54Cr 6245.89(17) 0.0056(9) 0.00033(5) 55Mn 4949.21(8) 0.274(10) 0.0151(6) 53Cr 6326.49(12) 0.0212(23) 0.00124(13) 55Mn 4969.28(21) 0.043(5) 0.0024(3) 53Cr 6326.49(12) 0.022(17) 0.0016(10) 55Mn 5014.37(7) 0.737(20) 0.0407(11) <td>⁵²Cr 5268.9(5)</td> <td></td> <td></td> <td>55Mn 4588.23(18)</td> <td></td> <td></td>	⁵² Cr 5268.9(5)			55Mn 4588.23(18)		
52Cr 5617.9(3) 0.132(5) 0.0077(3) 53Mn 4724.84(8) 0.281(10) 0.0155(6) 53Cr 5706.94(16) 0.024(4) 0.00140(23) 55Mn 4840.72(16) 0.064(6) 0.0035(3) 53Cr 5858.72(9) 0.0266(21) 0.00155(12) 55Mn 4874.52(13) 0.069(5) 0.0038(3) 53Cr 5999.80(7) 0.085(7) 0.0050(4) 55Mn 4907.36(19) 0.070(7) 0.0039(4) 50Cr 6134.58(9) 0.078(4) 0.00455(23) 55Mn 4934.09(18) 0.055(6) 0.0030(3) 54Cr 6245.89(17) 0.0056(9) 0.00033(5) 55Mn 4949.21(8) 0.274(10) 0.0151(6) 53Cr 6326.49(12) 0.0212(23) 0.00124(13) 55Mn 4969.28(21) 0.043(5) 0.0024(3) 53Cr 6370.15(10) 0.028(17) 0.0016(10) 55Mn 5014.37(7) 0.737(20) 0.0407(11) 53Cr 6456.61(8) 0.183(13) 0.0107(8) 55Mn 5034.60(15) 0.108(8) 0.0060(4) 53Cr 7999.91(6) 0.146(9) 0.0085(5) 55Mn 5110.97(22) 0.050(5) 0.0028(3) 50Cr 7361.12(8) 0.092(4) 0.00536(23)	50Cr 5489.85(14)			55Mp 4690 14(11)		
53Cr 5706.94(16) 0.024(4) 0.00140(23) 53Mn 4840.72(16) 0.064(6) 0.0035(3) 53Cr 5858.72(9) 0.0266(21) 0.00155(12) 55Mn 4874.52(13) 0.069(5) 0.0038(3) 53Cr 5999.80(7) 0.085(7) 0.0050(4) 55Mn 4907.36(19) 0.070(7) 0.0039(4) 50Cr 6134.58(9) 0.078(4) 0.00455(23) 55Mn 4934.09(18) 0.055(6) 0.0030(3) 54Cr 6245.89(17) 0.0056(9) 0.00033(5) 55Mn 4949.21(8) 0.274(10) 0.0151(6) 53Cr 6282.90(9) 0.036(3) 0.00210(17) 55Mn 4969.28(21) 0.043(5) 0.0024(3) 53Cr 6326.49(12) 0.0212(23) 0.00124(13) 55Mn 5014.37(7) 0.737(20) 0.0407(11) 50Cr 6370.15(10) 0.028(17) 0.0016(10) 55Mn 5034.60(15) 0.108(8) 0.0060(4) 53Cr 6645.61(8) 0.183(13) 0.0107(8) 55Mn 5067.87(9) 0.265(12) 0.0146(7) 53Cr 7099.91(6) 0.146(9) 0.0085(5) 55Mn 5180.89(8)	52Cr 5617 Q(3)			55Mn 4724 84(8)		
53Cr 5858.72(9) 0.0266(21) 0.00155(12) 53Mn 4874.52(13) 0.069(5) 0.0038(3) 53Cr 5999.80(7) 0.085(7) 0.0050(4) 55Mn 4907.36(19) 0.070(7) 0.0039(4) 50Cr 6134.58(9) 0.078(4) 0.00455(23) 55Mn 4934.09(18) 0.055(6) 0.0030(3) 54Cr 6245.89(17) 0.0056(9) 0.00033(5) 55Mn 4949.21(8) 0.274(10) 0.0151(6) 53Cr 6282.90(9) 0.036(3) 0.00210(17) 55Mn 4969.28(21) 0.043(5) 0.0024(3) 53Cr 6326.49(12) 0.0212(23) 0.00124(13) 55Mn 5014.37(7) 0.737(20) 0.0407(11) 50Cr 6370.15(10) 0.028(17) 0.0016(10) 55Mn 5034.60(15) 0.108(8) 0.0060(4) 53Cr 6645.61(8) 0.183(13) 0.0107(8) 55Mn 5067.87(9) 0.265(12) 0.0146(7) 53Cr 7099.91(6) 0.146(9) 0.0085(5) 55Mn 5180.89(8) 0.412(13) 0.0227(7) 50Cr 7361.12(8) 0.092(4) 0.00536(23) 55Mn 5198.52(13) 0.095(7) 0.0052(4) 50Cr 7374.49(22) 0.080(4) 0.00466(23)	⁵⁵ Cr 5706 94(16)	0.132(3)		⁵⁵ Mn 4840 72(16)		
50Cr 5999.80(7) 0.085(7) 0.0050(4) 50Mn 4907.36(19) 0.070(7) 0.0039(4) 50Cr 6134.58(9) 0.078(4) 0.00455(23) 55Mn 4934.09(18) 0.055(6) 0.0030(3) 54Cr 6245.89(17) 0.0056(9) 0.00033(5) 55Mn 4949.21(8) 0.274(10) 0.0151(6) 53Cr 6282.90(9) 0.036(3) 0.00210(17) 55Mn 4969.28(21) 0.043(5) 0.0024(3) 53Cr 6326.49(12) 0.0212(23) 0.00124(13) 55Mn 5014.37(7) 0.737(20) 0.0407(11) 50Cr 6370.15(10) 0.028(17) 0.0016(10) 55Mn 5034.60(15) 0.108(8) 0.0060(4) 53Cr 6645.61(8) 0.183(13) 0.0107(8) 55Mn 55Mn 5110.97(22) 0.050(5) 0.0028(3) 53Cr 7099.91(6) 0.146(9) 0.0085(5) 55Mn 5180.89(8) 0.412(13) 0.0227(7) 50Cr 7361.12(8) 0.092(4) 0.00536(23) 55Mn 5198.52(13) 0.095(7)	⁵⁵ Cr 5858.72(9)			⁵⁵ Mn 4874.52(13)		
50Cr 6134.58(9) 0.078(4) 0.00455(23) 53Mn 4934.09(18) 0.055(6) 0.0030(3) 54Cr 6245.89(17) 0.0056(9) 0.00033(5) 55Mn 4949.21(8) 0.274(10) 0.0151(6) 53Cr 6282.90(9) 0.036(3) 0.00210(17) 55Mn 4969.28(21) 0.043(5) 0.0024(3) 53Cr 6326.49(12) 0.0212(23) 0.00124(13) 55Mn 5014.37(7) 0.737(20) 0.0407(11) 50Cr 6370.15(10) 0.028(17) 0.0016(10) 55Mn 5034.60(15) 0.108(8) 0.0060(4) 53Cr 6645.61(8) 0.183(13) 0.0107(8) 55Mn 5067.87(9) 0.265(12) 0.0146(7) 53Cr 6890.11(7) 0.042(3) 0.00245(17) 55Mn 5110.97(22) 0.050(5) 0.0028(3) 53Cr 7099.91(6) 0.146(9) 0.0085(5) 55Mn 5180.89(8) 0.412(13) 0.0227(7) 50Cr 7361.12(8) 0.092(4) 0.00536(23) 55Mn 5198.52(13) 0.095(7) 0.0052(4) 52Cr 7374.49(22) 0.080(4) 0.00466(23) 55Mn 5253.98(12	⁵⁵ Cr 5999 80(7)			⁵⁵ Mn 4907.36(19)		
Graduate	⁵⁰ Cr 6134.58(9)	0.078(4)	0.00455(23)	⁵⁵ Mn 4934.09(18)	0.055(6)	0.0030(3)
50Cr 6326.49(12) 0.0212(23) 0.00124(13) 0.00144.37(7) 0.737(20) 0.0407(11) 50Cr 6370.15(10) 0.028(17) 0.0016(10) 55Mn 5034.60(15) 0.108(8) 0.0060(4) 53Cr 6645.61(8) 0.183(13) 0.0107(8) 55Mn 5067.87(9) 0.265(12) 0.0146(7) 53Cr 6890.11(7) 0.042(3) 0.00245(17) 55Mn 5110.97(22) 0.050(5) 0.0028(3) 53Cr 7099.91(6) 0.146(9) 0.0085(5) 55Mn 5180.89(8) 0.412(13) 0.0227(7) 50Cr 7361.12(8) 0.092(4) 0.00536(23) 55Mn 5198.52(13) 0.095(7) 0.0052(4) 52Cr 7374.49(22) 0.080(4) 0.00466(23) 55Mn 5253.98(12) 0.132(13) 0.0073(7)	⁵⁴ Cr 6245 89(17)			⁵⁵ Mn 4949.21(8)		
50Cr 6370.15(10) 0.028(17) 0.0016(10) 50Mn 5034.60(15) 0.108(8) 0.0060(4) 53Cr 6645.61(8) 0.183(13) 0.0107(8) 55Mn 5067.87(9) 0.265(12) 0.0146(7) 53Cr 6890.11(7) 0.042(3) 0.00245(17) 55Mn 5110.97(22) 0.050(5) 0.0028(3) 53Cr 7099.91(6) 0.146(9) 0.0085(5) 55Mn 5180.89(8) 0.412(13) 0.0227(7) 50Cr 7361.12(8) 0.092(4) 0.00536(23) 55Mn 5198.52(13) 0.095(7) 0.0052(4) 52Cr 7374.49(22) 0.080(4) 0.00466(23) 55Mn 5253.98(12) 0.132(13) 0.0073(7)	53Cr 6282.90(9)			55Mp 5044 37(7)	0.043(5)	
53Cr 6645.61(8) 0.183(13) 0.0107(8) 55Mn 5067.87(9) 0.265(12) 0.0146(7) 0.042(3) 0.00245(17) 55Mn 5110.97(22) 0.050(5) 0.0028(3) 0.05Cr 7099.91(6) 0.146(9) 0.0085(5) 55Mn 5180.89(8) 0.412(13) 0.0227(7) 0.05Cr 7361.12(8) 0.092(4) 0.00536(23) 55Mn 5198.52(13) 0.095(7) 0.0052(4) 0.0052(4) 0.00466(23) 55Mn 5253.98(12) 0.132(13) 0.0073(7)	50Cr 6370 45(10)			55Mp 5034 60(45)		
53Cr 6890.11(7) 0.042(3) 0.00245(17) 55Mn 5110.97(22) 0.050(5) 0.0028(3) 55Cr 7099.91(6) 0.146(9) 0.0085(5) 55Mn 5180.89(8) 0.412(13) 0.0227(7) 55Cr 7361.12(8) 0.092(4) 0.00536(23) 55Mn 5198.52(13) 0.095(7) 0.0052(4) 55Cr 7374.49(22) 0.080(4) 0.00466(23) 55Mn 5253.98(12) 0.132(13) 0.0073(7)	53Cr 6645 61(R)			55Mn 5067 87(0)		
50Cr 7099.91(6) 0.146(9) 0.0085(5) 50Cr 7361.12(8) 0.092(4) 0.00536(23) 55Mn 5180.89(8) 0.412(13) 0.0227(7) 50Cr 7374.49(22) 0.080(4) 0.00466(23) 55Mn 5253.98(12) 0.132(13) 0.0073(7)	⁵⁵ Cr 6890.11(7)			⁵⁵ Mn 5110.97(22)		
⁵⁰ Cr 7361.12(8) 0.092(4) 0.00536(23) ⁵⁵ Mn 5198.52(13) 0.095(7) 0.0052(4) ⁵² Cr 7374.49(22) 0.080(4) 0.00466(23) ⁵⁵ Mn 5253.98(12) 0.132(13) 0.0073(7)	⁵⁵ Cr 7099.91(6)		0.0085(5)	⁵⁵ Mn 5180.89(8)		
⁵² Cr 7374.49(22) 0.080(4) 0.00466(23) ⁵⁵ Mn 5253.98(12) 0.132(13) 0.0073(7)	⁵⁰ Cr 7361.12(8)	0.092(4)	0.00536(23)	⁵⁵ Mn 5198.52(13)	0.095(7)	0.0052(4)
²² Cr 7938.46(23) 0.424(11) 0.0247(6) ³³ Mn 5403.7(3) 0.050(6) 0.0028(3)	⁵² Cr 7374.49(22)		0.00466(23)	⁵⁵ Mn 5253.98(12)	0.132(13)	
	⁵² Cr 7938.46(23)	0.424(11)	0.0247(6)	~Mn 5403.7(3)	0.050(6)	0.0028(3)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Eγ)-barns	k ₀	Eγ-keV	σ (Ε γ)-barns	k ₀
Manganese (Z=25),	continued		Iron (Z=26), continu	ed	<u> </u>
⁵⁵ Mn 5437 71(15)	0.087(7)	0.0048(4)	⁵⁶ Fe 4674.99(11)	0.0125(11)	0.00068(6)
⁵⁵ Mn 5527.08(8)	0.788(22)	0.0435(12)	⁵⁶ Fe 4724.54(10)	0.0075(11)	0.00041(6)
[∞] Mn 5/61 23(11)	0.200(12)	0.0110(7)	⁵⁶ Fe 4809,99(7)	0.0416(13)	0.00226(7)
⁵⁵ Mn 5920.39(8)	1.06(3)	0.0585(17)	⁵⁶ Fe 4948.70(11)	0.0173(10)	0.00094(5)
⁵⁵ Mn 6031.03(18)	0.067(7)	0.0037(4)	⁵⁴ Fe 5507.29(19)	0.0247(15)	0.00134(8)
⁵⁵ Mn 6104.29(12) ⁵⁵ Mn 6430.04(19)	0.213(10) 0.088(7)	0.0117(6) 0.0049(4)	⁵⁶ Fe 5920.449(21) ⁵⁶ Fe 6018.532(20)	0.225(5) 0.227(5)	0.0122(3) 0.0123(3)
⁵⁵ Mn 6783.74(12)	0.378(17)	0.0209(9)	⁵⁶ Fe 6380.67(3)	0.0187(20)	0.00101(11)
⁵⁵ Mn 6929.22(13)	0.248(12)	0.0137(7)	³⁰ Fe 7278.838(10)	0.137(4)	0.00743(22)
⁵⁵ Mn 7057.89(9)	1.22(3)	0.0673(17)	[∞] Fe 7631.136(14)	0.653(13)	0.0354(7)
⁵⁵ Mn 7159.63(10)	0.643(24)	0.0355(13)	⁵⁶ Fe 7645.5450(10)	0.549(11)	0.0298(6)
⁵⁵ Mn 7243.52(9) ⁵⁵ Mn 7270.14(12)	1.36(3) 0.362(15)	0.0750(17) 0.0200(8)	⁵⁴ Fe 8886.18(23) ⁵⁴ Fe 9297.68(19)	0.0162(12) 0.0747(25)	0.00088(7) 0.00405(14)
Iron (Z=26), At.Wt.=			Cobalt (Z=27), <i>At.W</i>		
⁵⁶ Fe 14.411(14)	0.149(3)	0.00809(16)	⁵⁹ Co <i>58.603(7)d</i>	0.411(4)	0.02113[75%]
⁵⁶ Fe 122.077(14)	0.096(3)	0.00521(16)	⁵⁹ Co 158.517(17)	1.200(15)	0.0617(8)
^{ро} Fe 136.488(14)	0.0118(3)	0.000640(16)	⁵⁹ Co 195.90(3)	0.190(4)	0.00977(21)
⁵⁶ Fe 230.270(13)	0.0274(5)	0.00149(3)	⁵⁹ Co 224.12(7)	0.106(23)	0.0055(12)
⁵ °Fe 287.025(19)	0.00218(15)	1.18(8)×10 ⁻⁴	^ο εCo 229.879(17)	7.18(8)	0.369(4)
⁵⁶ Fe 352.347(12)	0.273(3)	0.01481(16)	⁵⁹ Co 254.379(17)	1.290(16)	0.0663(8)
⁵⁶ Fe 366.758(10) ⁵⁴ Fe 411.57(21)	0.0497(7) 0.022(5)	0.00270(4) 0.0012(3)	⁵⁹ Co 277.161(17) ⁵⁹ Co 337.296(18)	6.77(8) 0.226(4)	0.348(4) 0.01162(21)
⁵⁶ Fe 569.885(19)	0.022(5)	0.0012(3)	⁵⁹ Co 349.954(24)	0.226(4)	0.00638(21)
^{ро} Fe 657.46(11)	0.0067(18)	0.000734(10)	^ο ⁸ Co 391.218(15)	1.080(14)	0.0555(7)
[∞] Fe 691.960(19)	0.1370(18)	0.00743(10)	^ο εCo 435.677(17)	0.789(10)	0.0406(5)
⁵ 'Fe 810.71(3)	0.0274(9)	0.00149(5)	^ο ⁸ Co 447.711(19)	3.41(4)	0.1754(21)
⁵⁷ Fe 863.80(5)	0.0072(4)	0.000391(22)	^ο 8Co 461.061(18)	0.519(9)	0.0267(5)
⁵⁷ Fe 867.4(4)	~0.007	~0.0004	⁵⁹ Co 484.257(16)	0.804(11)	0.0413(6)
⁵⁶ Fe 898.27(3) ⁵⁶ Fe 920.839(19)	0.0540(10) 0.0199(6)	0.00293(5) 0.00108(3)	⁵⁹ Co 497.269(16) ⁵⁹ Co 555.972(13)	2.16(4) 5.76(6)	0.1111(21) 0.296(3)
⁵⁶ Fe 1018.93(3)	0.0507(11)	0.00108(3)	⁵⁹ Co 602.71(4)	0.132(7)	0.0068(4)
²⁰ Fe 1260.448(19)	0.0684(11)	0.00371(6)	⁵⁸ Co 665.48(3)	0.0769(24)	0.00395(12)
⁵⁰ Fe 1358.540(22)	0.0211(6)	0.00115(3)	⁵⁸ Co. 680.15(3)	0.273(5)	0.0140(3)
⁵⁶ Fe 1612.786(18)	0.1530(22)	0.00830(12)	^ο εCo 717.310(18)	0.845(14)	0.0435(7)
⁵⁶ Fe 1627.197(20)	0.0100(5)	0.00054(3)	⁵⁹ Co 726.640(21)	0.448(10)	0.0230(5)
⁵⁷ Fe 1674.31(21) ⁵⁷ Fe 1674.49(6)	~0.007 ~0.007	~0.0004 ~0.0004	⁵⁹ Co 781.79(4) ⁵⁹ Co 785.628(21)	0.146(6) 2.41(7)	0.0075(3) 0.124(4)
^{об} Fe 1722.38(10)	0.0074(6)	0.00040(3)	⁵⁸ Co 798.97(7)	0.120(10)	0.0062(5)
⁵⁶ Fe 1725.288(21)	0.181(3)	0.00982(16)	⁵⁸ Co 854.06(4)	0.187(6)	0.0096(3)
^{об} Fe 1810.54(16)	0.0067(7)	0.00036(4)	⁵⁹ Co_862.30(6)	0.079(8)	0.0041(4)
⁵⁶ Fe 1965.39(15) ⁵⁶ Fe 2066.08(6)	0.0078(14)	0.00042(8)	⁵⁹ Co 883.11(4)	0.075(5)	0.0039(3)
⁵⁶ Fe 2129.47(7)	0.0146(7) 0.0206(7)	0.00079(4) 0.00112(4)	⁵⁹ Co 884.98(4) ⁵⁹ Co 901.28(3)	0.156(6) 0.418(9)	0.0080(3) 0.0215(5)
⁵⁴ Fe 2469.24(13)	0.0116(7)	0.00063(4)	⁵⁹ Co_908.37(3)	0.100(4)	0.00514(21)
⁵⁶ Fe 2526.34(7)	0.0112(5)	0.00061(3)	⁵⁹ Co 928.48(3)	0.145(9)	0.0075(5)
⁵⁶ Fe 2682 69(11)	0.0114(9)	0.00062(5)	⁵⁹ Co 930 612(23)	0.408(22)	0.0210(11)
³⁰ Fe 2697 10(11)	0.0090(9)	0.00049(5)	⁵⁹ Co 944.07(6)	0.18(7)	0.009(4)
⁵⁶ Fe 2721.21(4) ⁵⁶ Fe 2755.93(19)	0.0384(13)	0.00208(7)	⁵⁹ Co 945.314(17) ⁵⁹ Co 947.41(6)	0.98(4)	0.0504(21)
⁵⁶ Fe 2832.84(10)	0.015(5) 0.0142(22)	0.0008(3) 0.00077(12)	⁵⁹ Co 963.58(3)	0.121(7) 0.191(11)	0.0062(4) 0.0098(6)
⁵⁶ Fe 2835.82(7)	0.0067(14)	0.00077(12)	^{οs} Co 972.82(16)	0.082(8)	0.0030(0)
⁵⁶ Fe 2873.00(7)	0.0099(14)	0.00054(8)	⁵⁸ Co 1005.668(22)	0.127(6)	0.0065(3)
⁵⁶ Fe 2954.12(10)	0.0110(7)	0.00060(4)	⁵⁹ Co 1023.64(3)	0.22(3)	0.0113(15)
⁵⁶ Fe 3103.26(7)	0.0172(7)	0.00093(4)	⁵⁸ Co 1075.66(10)	0.099(7)	0.0051(4)
⁵⁶ Fe 3168,40(10)	0.0092(7)	0.00050(4)	⁵⁸ Co 1103.73(6)	0.277(12)	0.0142(6)
⁵⁶ Fe 3185.86(9) ⁵⁶ Fe 3225.33(7)	0.0183(8) 0.0105(7)	0.00099(4) 0.00057(4)	⁵⁹ Co 1117.76(8) ⁵⁹ Co 1206.47(3)	0.106(5) 0.072(11)	0.0055(3) 0.0037(6)
⁵⁶ Fe 3239.74(7)	0.0105(7)	0.00057(4)	⁵⁹ Co 1207.77(3)	0.072(11)	0.0037(6)
⁵⁶ Fe 3267.25(8)	0.0367(13)	0.00199(7)	⁵⁹ Co 1215.96(3)	0.520(9)	0.0267(5)
⁵⁶ Fe 3291.06(5)	0.0072(6)	0.00039(3)	^ο 8Co 1216.44(18)	0.24(22)	0.012(11)
⁵⁶ Fe 3356.67(12)	0.0098(6)	0.00053(3)	⁵⁹ Co 1226.78(5)	0.100(4)	0.00514(21)
⁵⁶ Fe 3413.13(5)	0.0449(14)	0.00244(8)	⁵⁹ Co 1238.566(24)	0.290(7)	0.0149(4)
⁵⁶ Fe 3436.66(9) ⁵⁷ Fe 3486.74(11)	0.045(4)	0.00244(22)	⁵⁹ Co 1274.32(4) ⁵⁹ Co 1277.46(3)	0.205(6)	0.0105(3)
⁵⁶ Fe 3776.90(6)	0.0114(6) 0.0075(7)	0.00062(3) 0.00041(4)	⁵⁹ Co 1283.22(7)	0.175(6) 0.194(6)	0.0090(3) 0.0100(3)
⁵⁴ Fe 3790.80(25)	0.0075(7)	0.00041(4)	⁵⁹ Co 1334.74(6)	0.155(9)	0.0080(5)
⁵⁶ Fe 3842.43(9)	0.0086(7)	0.00047(4)	⁵⁹ Co 1362.53(4)	0.092(6)	0.0047(3)
⁵⁶ Fe 3854.51(6)	0.0333(12)	0.00181(7)	⁵⁹ Co 1419.30(8)	0.077(6)	0.0040(3)
⁵⁶ Fe 3921.5(8)	0.036(4)	0.00195(22)	⁵⁹ Co 1472.04(3)	0.195(8)	0.0100(4)
⁵⁶ Fe 4218.27(5)	0.099(3)	0.00537(16)	⁵⁹ Co 1507.33(3)	0.463(9)	0.0238(5)
⁵⁶ Fe 4274.74(12) ⁵⁶ Fe 4378.56(8)	0.0141(8)	0.00077(4)	⁵⁹ Co 1515.720(25) ⁵⁹ Co 1553.65(3)	1.740(25) 0.120(6)	0.0895(13) 0.0062(3)
⁵⁶ Fe 4406.07(7)	0.0067(6) 0.0453(13)	0.00036(3) 0.00246(7)	⁵⁹ Co 1556.08(9)	0.120(6)	0.0062(3)
⁵⁶ Fe 4463.01(10)	0.0162(11)	0.00240(7)	⁵⁹ Co 1690.72(3)	0.215(14)	0.0031(3)
	\ /	(-)		\ /	\ /

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Γable I. Adopted Proi Eγ-keV	mpt and Decay σ(Εγ)-barns	k ₀	Eγ-keV	σ(Εγ)-barns	k _o
Cobalt (Z=27), cont	· · · · · · · · · · · · · · · · · · ·		Cobalt (Z=27), cont	• • •	
⁵⁹ Co 1692.83(5)	0.214(14)	0.0110(7)	⁵⁹ Co 5003.24(8)	0.264(11)	0.0136(6)
⁵⁹ Co 1703.91(10)	0.214(14)	0.0038(3)	⁵⁹ Co 5040.76(16)	0.264(11)	0.0044(4)
⁵⁹ Co 1774.65(4)	0.30(8)	0.015(4)	⁵⁹ Co 5068.69(9)	0.109(10)	0.0056(5)
⁵⁹ Co 1786.01(17)	0.157(9)	0.0081(5)	⁵⁹ Co 5127.84(9)	0.205(12)	0.0105(6)
⁵⁹ Co 1787.45(4)	0.08(5)	0.004(3)	⁵⁸ Co. 5150 08(9)	0.302(13)	0.0155(7)
⁵⁹ Co 1799.92(4) ⁵⁹ Co 1808.82(7)	0.269(7) 0.211(7)	0.0138(4) 0.0109(4)	⁵⁹ Co 5181.77(7) ⁵⁹ Co 5211.98(6)	0.912(23) 0.072(11)	0.0469(12) 0.0037(6)
⁵⁹ Co 1808.98(10)	0.211(7)	0.008(4)	⁵⁹ Co 5217.09(20)	0.072(11)	0.0037(6)
⁵⁹ Co 1818.58(5)	0.179(7)	0.0092(4)	⁵⁹ Co 5270.15(4)	0.404(11)	0.0208(6)
⁵⁹ Co 1830.800(25)	1.700(23)	0.0874(12)	⁵⁹ Co 5358.44(8)	0.160(8)	0.0082(4)
⁵⁹ Co 1844.96(8)	0.092(5)	0.0047(3)	⁵⁹ Co 5370.21(8)	0.188(9)	0.0097(5)
⁵⁹ Co 1852.70(3) ⁵⁹ Co 1888.77(4)	0.456(10) 0.089(6)	0.0234(5) 0.0046(3)	⁵⁹ Co 5510.56(6) ⁵⁹ Co 5602.97(4)	0.163(11) 0.434(16)	0.0084(6) 0.0223(8)
⁵⁹ Co 1933.82(8)	0.094(6)	0.0048(3)	⁵⁹ Co 5614.67(5)	0.399(15)	0.0205(8)
⁵⁹ Co 2022.51(16)	0.082(6)	0.0042(3)	⁵⁹ Co_5639.03(4)	0.379(15)	0.0195(8)
⁵⁹ Co 2032.83(7)	0.393(11)	0.0202(6)	⁵⁹ Co 5660.93(4)	1.89(6)	0.097(3)
⁵⁹ Co 2074.83(8) ⁵⁹ Co 2099.19(7)	0.102(9) 0.089(8)	0.0052(5) 0.0046(4)	⁵⁹ Co 5704.28(5) ⁵⁹ Co 5742.53(4)	0.177(9) 0.766(23)	0.0091(5) 0.0394(12)
⁵⁹ Co 2221.61(4)	0.261(8)	0.0134(4)	⁵⁹ Co 5852.04(5)	0.110(10)	0.0057(5)
⁵⁹ Co 2279.78(6)	0.079(11)	0.0041(6)	⁵⁹ Co 5925.89(4)	0.643(18)	0.0331(9)
⁵⁹ Co 2281.57(9)	0.123(11)	0.0063(6)	⁵⁸ Co 5975.98(4)	2.9(4)	0.149(21)
⁵⁹ Co 2309.66(10)	0.087(6)	0.0045(3)	⁵⁹ Co 6040.60(4)	0.166(13)	0.0085(7)
⁵⁹ Co 2319.46(10) ⁵⁹ Co 2453.82(20)	0.122(7) 0.072(5)	0.0063(4) 0.0037(3)	⁵⁹ Co 6110.81(6) ⁵⁹ Co 6149.99(7)	0.213(11) 0.186(9)	0.0110(6) 0.0096(5)
⁵⁹ Co 2527.12(7)	0.146(8)	0.0075(4)	⁵⁹ Co 6274.84(3)	0.222(11)	0.0114(6)
⁵⁹ Co 2557.46(21)	0.086(6)	0.0044(3)	^{ээ} Со 6283.91(4)	0.204(11)	0.0105(6)
⁵⁹ Co 2569.92(9)	0.154(7)	0.0079(4)	⁵⁹ Co 6485.99(3)	2.32(5)	0.119(3)
⁵⁹ Co 2607.47(10) ⁵⁹ Co 2680.64(24)	0.165(8) 0.11(3)	0.0085(4) 0.0057(15)	⁵⁹ Co 6706.01(3) ⁵⁹ Co 6877.16(3)	3.02(6) 3.02(6)	0.155(3) 0.155(3)
⁵⁹ Co 2692.02(15)	0.076(7)	0.0037(13)	⁵⁹ Co 6948.87(3)	0.249(11)	0.0128(6)
⁵⁹ Co 2727.19(13)	0.100(7)	0.0051(4)	⁵⁹ Co 6985.41(3)	1.05(13)	0.054(7) [′]
⁵⁹ Co 2740.06(18)	0.103(7)	0.0053(4)	⁵⁹ Co 7055.92(3)	0.666(19)	0.0342(10)
⁵⁹ Co 2790.22(20) ⁵⁹ Co 2900.50(24)	0.080(19) 0.076(20)	0.0041(10) 0.0039(10)	⁵⁹ Co 7203.22(3) ⁵⁹ Co 7214.42(3)	0.369(16) 1.38(3)	0.0190(8) 0.0710(15)
⁵⁹ Co 2926.19(18)	0.076(20)	0.0060(4)	⁵⁹ Co 7433.07(3)	0.083(7)	0.0043(4)
⁵⁹ Co 2978.11(17)	0.075(7)	0.0039(4)	⁵⁹ Co 7491.54(3)	1.16(3)	0.0596(15)
⁵⁹ Co 2995.43(13)	0.097(7)	0.0050(4)	Nickel (Z=28), At.W		5 =4.39(15)
⁵⁹ Co 3193.65(16) ⁵⁹ Co 3216.43(19)	0.089(6) 0.105(13)	0.0046(3) 0.0054(7)	⁶² Ni 155,500(16)	0.0666(12)	0.00344(6)
⁵⁹ Co 3238.16(19)	0.103(13)	0.0034(7)	⁶⁰ Ni 282 ₋ 917(18)	0.211(3)	0.01089(15)
⁵⁹ Co 3283.78(13)	0.101(8)	0.0052(4)	⁵ °Ni 339.420(11)	0.1670(21)	0.00862(11)
⁵⁹ Co 3335.29(14)	0.104(7)	0.0053(4)	⁶² Ni 362.385(18) ⁵⁸ Ni 464.978(12)	0.0342(5) 0.843(10)	0.00177(3)
⁵⁹ Co 3380.22(14) ⁵⁹ Co 3664.13(21)	0.210(10)	0.0108(5)	62Ni 483.351(20)	0.045(10)	0.0435(5) 0.000805(15)
⁵⁹ Co 3677.05(13)	0.080(9) ´ 0.109(8)	0.0041(5) 0.0056(4)	⁰² Ni 845.733(18)	0.0184(3)	0.000950(15)
⁵⁹ Co 3749.21(7)	0.415(13)	0.0213(7)	²⁰ Nii 977 077/11 \	0.236(3)	0.01219(15)
⁵⁸ Co 3815.20(19)	0.081(7)	0.0042(4)	61Ni 1172.84(5) 58Ni 1188.781(13)	0.0122(4)	0.000630(21)
⁵⁹ Co 3823.54(19) ⁵⁹ Co 3840.83(15)	0.073(7)	0.0038(4)	²⁰ Ni 13∩1 <u>4</u> 3 <u>4</u> (13)	0.0559(9) 0.052(3)	0.00289(5) 0.00268(15)
⁵⁹ Co 3897.02(17)	0.129(8) 0.092(7)	0.0066(4) 0.0047(4)	²⁰ Ni: 13/10 230(20)	0.0200(5)	0.00103(3)
⁵⁹ Co 3929.84(12)	0.272(11)	0.0140(6)	⁶⁴ Ni 1481 84(5)d	0.003300(7)	1.704×10 ⁻⁴ [13%]
⁵⁹ Co 3966.15(18)	0.239(11)	0.0123(6)	⁶⁰ Ni 1502.04(6) ⁵⁸ Ni 1536.920(16)	0.0154(4)	0.000795(21)
⁵⁹ Co 3994.92(24)	0.095(17)	0.0049(9)	⁵⁸ Ni 173/1687/16\	0.0194(5) 0.0172(4)	0.00100(3) 0.000888(21)
⁵⁹ Co 4026.26(12) ⁵⁹ Co 4032.03(18)	0.272(10) 0.208(9)	0.0140(5) 0.0107(5)	⁵⁸ Nii 1949 911(17)	0.0476(10)	0.00246(5)
⁵⁹ Co 4148.74(21)	0.086(21)	0.0044(11)	⁶⁰ Ni 2123 03/3\	0.0379(10)	0.00196(5)
⁵⁹ Co 4155.64(24)	0.128(8)	0.0066(4)	⁵⁸ Ni 2554.116(19) ⁵⁸ Ni 2842.130(17)	0.0431(9)	0.00223(5)
⁵⁹ Co 4208.01(12)	0.255(13)	0.0131(7)	⁵⁸ Ni 2842.130(17) ⁵⁸ Ni 3221.146(23)	0.0463(10) 0.0157(11)	0.00239(5) 0.00081(6)
	$\alpha \alpha \alpha \alpha (\alpha)$				
⁵⁹ Co 4212.56(14)	0.082(9)	0.0042(5) 0.0054(4)	⁵⁸ Ni: 3675 24/3\		0.00145(4)
⁵⁹ Co 4329.00(18) ⁵⁹ Co 4350.40(12)	0.105(8)	0.0054(4)	⁵⁸ Ni 3675.24(3) ⁵⁸ Ni 4858 59(3)	0.0281(7) 0.0442(10)	0.00145(4) 0.00228(5)
⁵⁹ Co 4329.00(18) ⁵⁹ Co 4350.40(12) ⁵⁹ Co 4370.46(19)	0.105(8) 0.091(13) 0.078(12)	0.0054(4) 0.0047(7) 0.0040(6)	⁵⁸ Ni 3675.24(3) ⁵⁸ Ni 4858.59(3) ⁵⁸ Ni 5312.674(24)	0.0281(7) 0.0442(10) 0.0536(13)	0.00145(4) 0.00228(5) 0.00277(7)
⁵⁹ Co 4329.00(18) ⁵⁹ Co 4350.40(12) ⁵⁹ Co 4370.46(19) ⁵⁹ Co 4377.29(19)	0.105(8) 0.091(13) 0.078(12) 0.119(10)	0.0054(4) 0.0047(7) 0.0040(6) 0.0061(5)	58Ni 3675.24(3) 58Ni 4858.59(3) 58Ni 5312.674(24) 58Ni 5435.77(4) 60Ni 5695.80(3)	0.0281(7) 0.0442(10) 0.0536(13) 0.0188(6)	0.00145(4) 0.00228(5) 0.00277(7) 0.00097(3)
⁵⁹ Co 4329.00(18) ⁵⁹ Co 4350.40(12) ⁵⁹ Co 4370.46(19) ⁵⁹ Co 4377.29(19) ⁵⁹ Co 4395.62(11)	0.105(8) 0.091(13) 0.078(12) 0.119(10) 0.128(11)	0.0054(4) 0.0047(7) 0.0040(6) 0.0061(5) 0.0066(6)	58Ni 3675.24(3) 58Ni 4858.59(3) 58Ni 5312.674(24) 58Ni 5435.77(4) 60Ni 5695.80(3) 58Ni 5817 219(20)	0.0281(7) 0.0442(10) 0.0536(13) 0.0188(6) 0.0416(12)	0.00145(4) 0.00228(5) 0.00277(7)
59Co 4329.00(18) 59Co 4350.40(12) 59Co 4370.46(19) 59Co 4377.29(19) 59Co 4395.62(11) 59Co 4547.05(11) 59Co 4607.00(7)	0.105(8) 0.091(13) 0.078(12) 0.119(10) 0.128(11) 0.115(9)	0.0054(4) 0.0047(7) 0.0040(6) 0.0061(5) 0.0066(6) 0.0059(5)	58Ni 3675.24(3) 58Ni 4858.59(3) 58Ni 5312.674(24) 58Ni 5435.77(4) 60Ni 5695.80(3) 58Ni 5817.219(20) 62Ni 5836.37(3)	0.0281(7) 0.0442(10) 0.0536(13) 0.0188(6) 0.0416(12) 0.1090(22) 0.0348(10)	0.00145(4) 0.00228(5) 0.00277(7) 0.00097(3) 0.00215(6) 0.00563(11) 0.00180(5)
59Co 4329.00(18) 59Co 4350.40(12) 59Co 4370.46(19) 59Co 4377.29(19) 59Co 4395.62(11) 59Co 4547.05(11) 59Co 4607.00(7) 59Co 4624.29(16)	0.105(8) 0.091(13) 0.078(12) 0.119(10) 0.128(11) 0.115(9) 0.311(13) 0.104(8)	0.0054(4) 0.0047(7) 0.0040(6) 0.0061(5) 0.0066(6) 0.0059(5) 0.0160(7) 0.0053(4)	58Ni 3675.24(3) 58Ni 4858.59(3) 58Ni 5312.674(24) 58Ni 5435.77(4) 60Ni 5695.80(3) 58Ni 5817.219(20) 62Ni 5836.37(3) 58Nii 5973.06(3)	0.0281(7) 0.0442(10) 0.0536(13) 0.0188(6) 0.0416(12) 0.1090(22) 0.0348(10) 0.0258(8)	0.00145(4) 0.00228(5) 0.00277(7) 0.00097(3) 0.00215(6) 0.00563(11) 0.00180(5) 0.00133(4)
59Co 4329.00(18) 59Co 4350.40(12) 59Co 4370.46(19) 59Co 4377.29(19) 59Co 4395.62(11) 59Co 4547.05(11) 59Co 4607.00(7) 59Co 4624.29(16) 59Co 4646.83(15)	0.105(8) 0.091(13) 0.078(12) 0.119(10) 0.128(11) 0.115(9) 0.311(13) 0.104(8) 0.081(10)	0.0054(4) 0.0047(7) 0.0040(6) 0.0061(5) 0.0066(6) 0.0059(5) 0.0160(7) 0.0053(4) 0.0042(5)	58Ni 3675.24(3) 58Ni 4858.59(3) 58Ni 5312.674(24) 58Ni 5435.77(4) 60Ni 5695.80(3) 58Ni 5817.219(20) 62Ni 5836.37(3) 58Ni 5973.06(3) 64Ni 6034.60(11)	0.0281(7) 0.0442(10) 0.0536(13) 0.0188(6) 0.0416(12) 0.1090(22) 0.0348(10) 0.0258(8) 0.013(3)	0.00145(4) 0.00228(5) 0.00277(7) 0.00097(3) 0.00215(6) 0.00563(11) 0.00180(5) 0.00133(4) 0.00067(15)
59Co 4329.00(18) 59Co 4350.40(12) 59Co 4370.46(19) 59Co 4377.29(19) 59Co 4395.62(11) 59Co 4547.05(11) 59Co 4607.00(7) 59Co 4624.29(16) 59Co 4646.83(15) 59Co 4666.15(10)	0.105(8) 0.091(13) 0.078(12) 0.119(10) 0.128(11) 0.115(9) 0.311(13) 0.104(8) 0.081(10) 0.085(8)	0.0054(4) 0.0047(7) 0.0040(6) 0.0061(5) 0.0066(6) 0.0059(5) 0.0160(7) 0.0053(4) 0.0042(5) 0.0044(4)	58Ni 3675.24(3) 58Ni 4858.59(3) 58Ni 5312.674(24) 58Ni 5435.77(4) 60Ni 5695.80(3) 58Ni 5817.219(20) 62Ni 5836.37(3) 58Ni 5973.06(3) 64Ni 6034.60(11) 58Ni 6105.215(22) 62Nii 6319.67(3)	0.0281(7) 0.0442(10) 0.0536(13) 0.0188(6) 0.0416(12) 0.1090(22) 0.0348(10) 0.0258(8) 0.013(3) 0.0706(17)	0.00145(4) 0.00228(5) 0.00277(7) 0.00097(3) 0.00215(6) 0.00563(11) 0.00180(5) 0.00133(4) 0.00067(15) 0.00365(9)
59Co 4329.00(18) 59Co 4350.40(12) 59Co 4370.46(19) 59Co 4377.29(19) 59Co 4395.62(11) 59Co 4547.05(11) 59Co 4607.00(7) 59Co 4624.29(16) 59Co 4646.83(15) 59Co 4666.15(10) 59Co 4706.11(13) 59Co 4731.06(17)	0.105(8) 0.091(13) 0.078(12) 0.119(10) 0.128(11) 0.115(9) 0.311(13) 0.104(8) 0.081(10) 0.085(8) 0.137(9)	0.0054(4) 0.0047(7) 0.0040(6) 0.0061(5) 0.0059(5) 0.0160(7) 0.0053(4) 0.0042(5) 0.0044(4) 0.0070(5)	58 Ni 3675.24(3) 58 Ni 4858.59(3) 58 Ni 5312.674(24) 58 Ni 5435.77(4) 60 Ni 5695.80(3) 58 Ni 5817.219(20) 62 Ni 5836.37(3) 58 Ni 5973.06(3) 64 Ni 6034.60(11) 58 Ni 6105.215(22) 62 Ni 6319.67(3) 58 Ni 6583.831(19)	0.0281(7) 0.0442(10) 0.0536(13) 0.0188(6) 0.0416(12) 0.1090(22) 0.0348(10) 0.0258(8) 0.013(3) 0.0706(17) 0.0236(9) 0.0830(20)	0.00145(4) 0.00228(5) 0.00277(7) 0.00097(3) 0.00215(6) 0.00563(11) 0.00180(5) 0.00133(4) 0.00067(15) 0.00365(9) 0.00122(5) 0.00429(10)
59Co 4329.00(18) 59Co 4350.40(12) 59Co 4370.46(19) 59Co 4377.29(19) 59Co 4395.62(11) 59Co 4547.05(11) 59Co 4607.00(7) 59Co 4624.29(16) 59Co 4646.83(15) 59Co 4666.15(10) 59Co 4706.11(13) 59Co 4731.06(17) 59Co 4884.30(10)	0.105(8) 0.091(13) 0.078(12) 0.119(10) 0.128(11) 0.115(9) 0.311(13) 0.104(8) 0.081(10) 0.085(8) 0.137(9) 0.089(8) 0.237(10)	0.0054(4) 0.0047(7) 0.0040(6) 0.0061(5) 0.0066(6) 0.0059(5) 0.0160(7) 0.0053(4) 0.0042(5) 0.0044(4) 0.0070(5) 0.0046(4) 0.0122(5)	58Ni 3675.24(3) 58Ni 4858.59(3) 58Ni 5312.674(24) 58Ni 5435.77(4) 60Ni 5695.80(3) 58Ni 5817.219(20) 62Ni 5836.37(3) 58Ni 5973.06(3) 64Ni 6034.60(11) 58Ni 6105.215(22) 62Ni 6319.67(3) 58Ni 6583.831(19) 62Ni 6837 50(3)	0.0281(7) 0.0442(10) 0.0536(13) 0.0188(6) 0.0416(12) 0.1090(22) 0.0348(10) 0.0258(8) 0.073(3) 0.0706(17) 0.0236(9) 0.0830(20) 0.458(8)	0.00145(4) 0.00228(5) 0.00277(7) 0.00097(3) 0.00215(6) 0.00563(11) 0.00180(5) 0.00133(4) 0.00067(15) 0.00365(9) 0.00122(5) 0.00429(10) 0.0236(4)
59Co 4329.00(18) 59Co 4350.40(12) 59Co 4370.46(19) 59Co 4377.29(19) 59Co 4395.62(11) 59Co 4547.05(11) 59Co 4607.00(7) 59Co 4624.29(16) 59Co 4646.83(15) 59Co 4666.15(10) 59Co 4731.06(17) 59Co 4884.30(10) 59Co 4893.76(10)	0.105(8) 0.091(13) 0.078(12) 0.119(10) 0.128(11) 0.115(9) 0.311(13) 0.104(8) 0.081(10) 0.085(8) 0.137(9) 0.089(8) 0.237(10) 0.217(11)	0.0054(4) 0.0047(7) 0.0040(6) 0.0061(5) 0.0066(6) 0.0059(5) 0.0160(7) 0.0053(4) 0.0042(5) 0.0044(4) 0.0070(5) 0.0046(4) 0.0122(5) 0.0112(6)	58Ni 3675.24(3) 58Ni 4858.59(3) 58Ni 5312.674(24) 58Ni 5435.77(4) 60Ni 5695.80(3) 58Ni 5817.219(20) 62Ni 5836.37(3) 58Ni 5973.06(3) 64Ni 6034.60(11) 58Ni 6105.215(22) 62Ni 6319.67(3) 58Ni 6583.831(19) 62Ni 6837.50(3) 60Ni 7536 637(25)	0.0281(7) 0.0442(10) 0.0536(13) 0.0188(6) 0.0416(12) 0.1090(22) 0.0348(10) 0.0258(8) 0.013(3) 0.0706(17) 0.0236(9) 0.0830(20) 0.458(8) 0.190(4)	0.00145(4) 0.00228(5) 0.00277(7) 0.00097(3) 0.00215(6) 0.00563(11) 0.00180(5) 0.00133(4) 0.00067(15) 0.00365(9) 0.00122(5) 0.00429(10) 0.0236(4) 0.00981(21)
59Co 4329.00(18) 59Co 4350.40(12) 59Co 4370.46(19) 59Co 4377.29(19) 59Co 4395.62(11) 59Co 4547.05(11) 59Co 4607.00(7) 59Co 4624.29(16) 59Co 4646.83(15) 59Co 4666.15(10) 59Co 4731.06(17) 59Co 4884.30(10)	0.105(8) 0.091(13) 0.078(12) 0.119(10) 0.128(11) 0.115(9) 0.311(13) 0.104(8) 0.081(10) 0.085(8) 0.137(9) 0.089(8) 0.237(10)	0.0054(4) 0.0047(7) 0.0040(6) 0.0061(5) 0.0066(6) 0.0059(5) 0.0160(7) 0.0053(4) 0.0042(5) 0.0044(4) 0.0070(5) 0.0046(4) 0.0122(5)	58Ni 3675.24(3) 58Ni 4858.59(3) 58Ni 5312.674(24) 58Ni 5435.77(4) 60Ni 5695.80(3) 58Ni 5817.219(20) 62Ni 5836.37(3) 58Ni 5973.06(3) 64Ni 6034.60(11) 58Ni 6105.215(22) 62Ni 6319.67(3) 58Ni 6583.831(19) 62Ni 6837 50(3)	0.0281(7) 0.0442(10) 0.0536(13) 0.0188(6) 0.0416(12) 0.1090(22) 0.0348(10) 0.0258(8) 0.073(3) 0.0706(17) 0.0236(9) 0.0830(20) 0.458(8)	0.00145(4) 0.00228(5) 0.00277(7) 0.00097(3) 0.00215(6) 0.00563(11) 0.00180(5) 0.00133(4) 0.00067(15) 0.00365(9) 0.00122(5) 0.00429(10) 0.0236(4)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

⁵⁸ Ni	e l (Z=28), conti i 8120.567(16)	nued		Copper (Z=29), cor	ntinued	
⁵⁸ Ni ⁵⁸ Ni	8120 567(16)					
⁵⁰ Ni	0120.007 (10)	0.133(3)	0.00687(15)	⁶⁵ Cu 1743.30(7)	0.014(4)	0.00067(19)
58	8533.509(17)	0.721(13)	0.0372(7)	⁶³ Cu 1852.57(8)	0.0141(10)	0.00067(5)
ONI	8998.414(15)	1.49(3)	0.0769(15)	63Cu 2141.61(12)	0.0091(5)	0.000434(24)
Copp	er (Z=29), <i>At.</i> V	/t.=63.546(3), o	_v =3.795(17)	⁶³ Cu 2153.51(5) ⁶³ Cu 2291.40(10)	0.0105(11) 0.0115(8)	0.00050(5) 0.00055(4)
⁶⁵ Си	89.08(4)	0.0970(17)	0.00463(8)	63Cu 2497.85(7)	0.0252(13)	0.00120(6)
™Cu	159.281(5)	0.648(10)	0.0309(5)	⁶³ Cu 2932.30(13)	0.0101(7)	0.00048(3)
[∞] Cu	184 618(13)	0.0106(9)	0.00051(4)	⁶³ Сц 3152.95(16)	0.0099(9)	0.00047(4)
63Cu	185.96(4)	0.244(3)	0.01164(14)	⁶³ Сц. 3315.5(3)	0.0097(7)	0.00046(3)
63Cu	202.950(8) 212.389(15)	0.193(3)	0.00920(14) 0.00173(4)	⁶³ Cu 3464.49(14)	0.0094(15)	0.00045(7)
63CH	214.99(7)	0.0362(9) 0.0112(14)	0.00173(4)	63Cu 3588.50(9)	0.0122(14)	0.00058(7)
^{oo} Cu	237.80(4)	0.0230(4)	0.001097(19)	⁶³ Cu 3844.49(15) ⁶³ Cu 4089.19(14)	0.0176(11) 0.0090(5)	0.00084(5) 0.000429(24)
™Си	247.58(6)	0.0119(15)	0.00057(7)	63Cu 4133.04(12)	0.0030(3)	0.000429(24)
⁰³Cu	261.33(8)	0.0095(14)	0.00045(7)	⁶³ Cu 4204.26(19)	0.0091(5)	0.000434(24)
™Cu	264.869(22)	0.0289(7)	0.00138(3)	⁶⁵ Cu 4286.55(15)	0.0121(6)	0.00058(3)
65 Cu	278.250(14)	0.893(15)	0.0426(7)	⁶³ Cu 4312.76(24)	0.0104(8)	0.00050(4)
63Cu	315.69(4) 318.80(4)	0.025Ò(4) 0.0120(4)	0.001192(19) 0.000572(19)	⁶³ Cu 4319.92(9)	0.047(5)	0.00224(24)
63CII	330.52(3)	0.0120(4)	0.000572(19)	⁶⁵ Cu 4384.92(9)	0.0206(12)	0.00098(6)
⁶³ C⊓	343.898(14)	0.215(4)	0.01025(19)	⁶³ Cu 4404.91(18) ⁶³ Cu 4443.9(3)	0.0111(5) ´ 0.0110(11)	0.000529(24) 0.00052(5)
⁶³ C⊓	376 80(3)	0.0250(6)	0.00119(3)	63Cu 4475.88(13)	0.0171(6)	0.00032(3)
°°Cu	384.45(5)	0.0700(14)	0.00334(7)	⁶³ Cu 4503.94(12)	0.0174(7)	0.00083(3)
[∞] Cu	385.77(3)	0.1310(18)	0.00625(9)	⁶³ Сц. 4563,20(7)	0.0112(5)	0.000534(24)
63Cu	436.909(20)	0.0112(4)	0.000534(19)	⁶³ Cu 4603.01(20)	0.0196(6)	0.00093(3)
63Cu	449.486(22) 460.78(3)	0.0382(10)	0.00182(5) 0.000682(24)	⁶³ Сц. 4658,55(9)	0.0278(7)	0.00133(3)
65CII	465.14(3)	0.0143(5) 0.1350(21)	0.00644(10)	63Cu 5019.16(12)	0.0100(15)	0.00048(7)
™Cu	467.95(5)	0.0668(14)	0.00319(7)	⁶⁵ Cu 5042.68(6) ⁶⁵ Cu 5047.56(7)	0.0346(14) 0.0206(14)	0.00165(7) 0.00098(7)
™Cu	494.81(5)	0.0242(6)	0.00115(3)	63Cu 5085.54(11)	0.0200(14)	0.000563(24)
™Cu	503.41(4)	0.0596(13)	0.00284(6)	⁶³ Cu 5151.98(15)	0.0096(4)	0.000458(19)
™Cu	533.25(11)	0.0148(8)	0.00071(4)	[©] Cu_5183.55(17)	0.0132(6)	0.00063(3)
65Cu	534.28(5)	0.021(6)	0.0010(3)	⁶³ Cu 5189.81(11)	0.0241(7)	0.00115(3)
63Cu	543.86(3) 579.75(3)	0.0256(5) 0.0898(15)	0.001221(24)	⁶⁵ Cu 5245.59(4)	0.043(3)	0.00205(14)
63Cu	608.766(23)	0.270(6)	0.00428(7) 0.0129(3)	⁶³ Cu 5258.73(7) ⁶⁵ Cu 5320.08(8)	0.0372(9)	0.00177(4)
™Cu	617.47(6)	0.0270(4)	0.001288(19)	63Cu 5408.64(17)	0.0362(21) 0.0144(6)	0.00173(10) 0.00069(3)
™Cu	632.24(4)	0.0092(4)	0.000439(19)	63Cu 5418.45(5)	0.0668(12)	0.00319(6)
™Cu	648.80(3)	0.102(3)	0.00486(14)	⁶³ Cu 5555.38(19)	0.0098(5)	0.000467(24)
°°Cu	662.69(4)	0.072(3)	0.00343(14)	⁶³ Сц 5614.96(12)	0.0178(6)	0.00085(3)
63C:	739.03(3)	0.0096(3)	0.000458(14)	⁶³ Cu 5636.11(7)	0.0147(5)	0.000701(24)
65Cu	767.77(3) 822.673(24)	0.0254(17) 0.0238(17)	0.00121(8) 0.00114(8)	⁶³ Cu 5771.47(9)	0.0183(8)	0.00087(4)
65Cu	831.14(4)	0.0160(10)	0.00076(5)	⁶³ Cu 5823.60(20) ⁶³ Cu 6010.80(5)	0.0108(22)	0.00052(10) 0.00274(6)
™Cu	878.17(5)	0.0421(20)	0.00201(10)	65Cu 6048.73(5)	0.0574(12) 0.0101(6)	0.00274(6)
⁰³ Cπ	897 N7(17)	0.0102(4)	0.000486(19)	⁶³ Cu 6063 24(9)	0.0218(6)	0.00104(3)
^{oo} Cii	927 ()5(3)	0.0119(3)	0.000568(14)	⁶³ Cu 6166.7(3)	0.0133(21)	0.00063(10)
١١.)٣٠	94h h5(/)	0.0091(8)	0.00043(4)	⁶⁵ Cu 6243.14(4)	0.0144(9)	0.00069(4)
65Cu	962.76(4) 972.11(3)	0.0152(9) 0.0115(7)	0.00072(4) 0.00055(3)	⁶³ Cu 6321.58(6)	0.0130(5)	0.000620(24)
65Cu	997.63(3)	0.0093(11)	0.00033(3)	⁶³ Cu 6394.76(5) ⁶³ Cu 6595.52(8)	0.0503(10)	0.00240(5) 0.00108(4)
°°Cu	1019.59(4)	0.0141(12)	0.00067(6)	65Cu 6600.63(4)	0.0227(8) 0.085(5)	0.00405(24)
°°Сп	1038 97(3)d	0.0598(13)	0.00285[88%]	⁶³ Cu 6617.66(5)	0.0407(11)	0.00194(5)
^{oo} Cu	1052.01(5)	0.0117(8)	0.00056(4)	⁶³ Cu 6673.15(9)	0.053(3)	0.00253(14)
63Cu	1076.44(4)	0.0097(5)	0.000463(24)	⁶³ Cu 6674.76(5)	0.0719(21)	0.00343(10)
63Cu	1081.72(3)	0.0117(3)	0.000558(14)	⁶⁵ Cu 6680.00(4)	0.081(6)	0.0039(3)
63Cu	1138.82(3) 1158.833(15)	0.0296(10) 0.0267(6)	0.00141(5) 0.00127(3)	⁶⁵ Cu 6790.72(4)	0.0155(10)	0.00074(5)
63Cu	1194.92(4)	0.0207(0)	0.00127(3)	⁶³ Cu 6988.68(5) ⁶³ Cu 7037.55(5)	0.126(6)	0.0060(3)
ооСп	1212 53(4)	0.0105(5)	0.000500(14)	65Cu 7065.72(4)	0.0140(7) 0.0132(8)	0.00067(3) 0.00063(4)
™Cu	1231.98(4)	0.0110(3)	0.000525(14)	63Cu 7169.51(5)	0.0132(8)	0.00052(3)
°°Cu	1241.52(9)	0.0345(16)	0.00165(8)	⁶³ Cu 7176.68(5)	0.0925(17)	0.00441(8)
™Cu	1242.61(9)	0.0181(22)	0.00086(10)	⁶³ Cu 7253.01(5)	0.1500(23)	0.00715(11)
63Cu	1298.10(3)	0.0147(7)	0.00070(3)	⁶³ Cu 7306.93(4)	0.321(17)	0.0153(8)
65C.	1320.25(8) 1355.16(3)	0.0263(10) 0.0133(16)	0.00125(5) 0.00063(8)	⁶³ Cu 7571.77(4)	0.0629(12)	0.00300(6)
63CH	1361.75(4)	0.0167(5)	0.00003(8)	63Cu 7637.40(4)	0.54(7)	0.026(3)
™Cu	1417.27(6)	0.0097(4)	0.000790(24)	⁶³ Cu 7756.36(4) ⁶³ Cu 7915.62(4)	0.0571(12) 0.869(20)	0.00272(6) 0.0414(10)
™Cu	1438.66(4)	0.013(6)	0.0006(3)			` '
^{oo} Cu	1439.37(5)	0.0111(16)	0.00053(8)	Zinc (Z=30), <i>At.Wt.</i>		
	1521.03(4)	0.0143(5)	0.000682(24)	⁶⁴ Zn 53.972(17)	0.0109(6)	0.00051(3)
⁶³ C⊓	1321.03(4)		0 004 (= (=)			
65Cu	1559.84(7)	0.0305(10)	0.00145(5)	⁶⁴ Zn 61.2530(20)	0.0290(9)	0.00134(4)
⁶⁵ Cu ⁶⁵ Cu	1559.84(7) 1582.50(4) 1637.46(5)		0.00145(5) 0.00045(3) 0.00064(7)	64Zn 61.2530(20) 66Zn 91.267(5) 66Zn 93.311(5)	0.0290(9) 0.0046(3) 0.0344(8)	0.00134(4) 2.13(14)×10 ⁻⁴ 0.00159(4)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Zinc (Z=30), continued	Eγ-keV	σ(Eγ)-barns	k _o	Eγ-keV	σ(Εγ)-barns	k ₀
Section Sect						
227, 207,067(22) 0.0101(3) 0.000488(14)	⁰⁴ Zn 153.095(21)			^{oo} Zn 4887.82(13)		
927, 393.530(7)	647 007 007(00)			67Zn 4899.63(19)	(
92.1 393.5307	667p 207.067(22)			687n 5220 78(11)		
## 147.30(4)	667n 300.219(7)			677n 5245 84(15)		
243.43(3) 0.0128(16) 0.00058(3) 2.5% 26 548.37(21) 0.0039(6) 1.8(3)\tau1\tau1\tau1\tau1\tau1\tau1\tau1\tau1	[∞] Zn 417.30(4)			°'Zn 5287.4(3)		
***27. \$38.634(18)	[∞] /n 434 ()3(3)			⁶⁷ 7n 5346 37(21)		
## 551.44(3)	°°Zn 438.634(18)d			°′Zn 5402.8(5)		
27. 184.29(7)	[∞] Zn 531.44(3)			[∞] ∕n 5474.02(10)		
- 274 749.28(7)	647n 653 51(7)			647n 5521.5(3)		
75.189(9)	[∞] Zn 749.29(7)			^o ⁴ ∠n 5559.82(15)		
***Page 19	⁶⁴ Zn 751.69(3)			[∞] Zn 5647.05(10)	/ ^ _ /	. \. /
- 79.4 44(3)	[∞] Zn 759.29(9)			°'Zn 5662.23(18)		
***Sp. 895.79(3)	64Zn 768.74(7)			677n 5677.3(3)		
***St. 578.0	677n 805 79(3)			647n 5776 31(10)		
**Tole	[∞] Zn 834.77(3)			°'Zn 5789.15(21)	'	
***Page 14.4 (a) ***Page 14.4 (b) ***Page 14.4 (c) ***Pag	⁰⁴ Zn 855.69(3)			[∞] /n 5909 4(3)		
***Page 582.44(7)	⁶⁴ Zn 864.43(6)			^{o4} Zn 6037.28(8)		
**September 1988.24(7)	647n 909.66(3)			687n 6484 75(40)		
**Page 198.35(6)	667n 958 24(7)			647n 6509 27(8)	`	
	⁰⁴ Zn 993.35(6)			[∞] Zn 6658.6(3)		
***Part 1047.32(f) 0.0036(5) 1.67(23)×10 ⁴ 9.72 6768.21(10) 0.0112(9) 0.00052(4) 672 n 1073.335(16) 0.356(5) 0.01649(23) 672 n 6867.5(3) 0.0254(17) 0.00118(8) 672 n 1126.100(25) 0.0229(6) 0.00106(3) 672 n 6810.58(11) 0.0194(14) 0.00090(7) 0.00047(6) 682 n 1178.55(9) 0.0033(9) 0.00034(4) 642 n 7069.20(7) 0.0204(3) 0.00994(14) 642 n 1262.58(6) 0.0033(16) 2.5(7)×10 ⁴ 672 n 1261.15(3) 0.0431(10) 0.00200(5) 642 n 7111.95(7) 0.0198(3) 0.000917(14) 642 n 1262.58(6) 0.0053(15) 2.5(7)×10 ⁴ 672 n 1281.30(2) 0.0061(6) 0.00028(3) 672 n 1300.96(6) 0.010(4) 0.00046(19) 672 n 1281.30(2) 0.0061(6) 0.00028(3) 672 n 1300.96(6) 0.010(4) 0.00046(19) 672 n 1340.14(3) 0.0457(15) 0.00046(19) 672 n 1340.14(3) 0.0457(15) 0.00038(3) 672 n 1340.34(2) 0.0033(7) 2.0(3)×10 ⁴ 672 n 1340.34(2) 0.0033(7) 2.0(3)×10 ⁴ 672 n 1340.34(2) 0.0053(3) 0.00031(3) 2.5(6)×10 ⁴ 7 1533.4(2) 0.0053(3) 0.0053(3) 0.0053(3) 0.0053(3) 0.0053(3) 0.0053(3) 0.0053(3) 0.0053(3) 0.0053(3) 0.0051(6) 2.4(3)×10 ⁴ 7 163 4.89(4) 0.0056(7) 0.013(6) 0.00058(3) 672 n 1873.46(4) 0.0260(10) 0.00120(5) 7 163 4.89(4) 0.0055(6) 0.00057(3) 7 163 4.89(4) 0.0055(6) 0.00057(3) 7 163 4.89(4) 0.0055(6) 0.00057(3) 7 163 4.89(4) 0.0055(6) 0.00057(3) 7 163 4.89(4) 0.0055(6) 0.00057(3) 7 163 4.89(4) 0.0055(6) 0.00057(3) 7 163 4.89(4) 0.0057(4) 0.00057(3) 7 163 4.89(4) 0.0057(4) 0.00057(3) 7 163 4.89(4) 0.0057(4) 0.00057(3) 7 163 4.89(4) 0.0057(4) 0.00057(3) 7 163 4.89(4) 0.0057(4) 0.00057(3) 7 163 4.89(4) 0.0057(4) 0.00057(3) 7 163 4.89(4) 0.0057(4) 0.00057(3) 7 163 4.89(4) 0.0057(4) 0.00057(3) 7 163 4.89(4) 0.0057(4) 0.00057(3) 7 163 4.89(4) 0.0057(4) 0.00057(3) 7 163 4.89(4) 0.0057(4) 0.00057(3) 7 163 4.89(4) 0.0057(4) 0.00057(3) 7 163 4.89(4) 0.0057(4) 0.0	[∞] ∠n 1007.809(25)			°'Zn 6701.79(12)		
***Part 1126.100(25) 0.0229(6) 0.00106(3) ***Part 8910.58(11) 0.0194(14) 0.00099(14) 687_2 1178.55(9) 0.0102(13) 0.00047(6) 687_2 1786.55(9) 0.0132(3) 0.00199(14) 687_2 1252.07(5) 0.0073(9) 0.00034(4) 647_2 7068.20(7) 0.0204(3) 0.000945(14) 647_2 1262.58(6) 0.0053(16) 2.5(7)×10-4 67_2 71718.50(7) 0.0198(3) 0.000917(14) 647_2 1262.58(6) 0.0053(16) 2.5(7)×10-4 67_2 71718.50(7) 0.0198(3) 0.000917(14) 647_2 1262.58(6) 0.0053(16) 2.5(7)×10-4 67_2 71718.50(7) 0.0198(3) 0.000917(14) 647_2 7123.02(8) 0.0061(6) 0.00028(3) 67_2 71300.96(6) 0.010(4) 0.00046(12) 647_2 7123.02(8) 0.00457(6) 0.00024(27) 67_2 71340.44(3) 0.0457(16) 0.00212(7) 67_2 71340.44(3) 0.0457(16) 0.00212(7) 67_2 71340.44(3) 0.0457(16) 0.00212(7) 67_2 71340.44(3) 0.0033(3) 0.0033(7) 0.00038(3) 647_2 71340.44(3) 0.0033(7) 0.0038(3) 647_2 71540.44(3) 0.0053(3	⁰⁴ Zn 1047.32(7)			°'Zn 6768.21(10)		
**SZR 1252.07(5) 0.0073(9) 0.00034(4) 6*Zn 7069.20(7) 0.0204(3) 0.000945(14) 6*Zn 1261.15(3) 0.0431(10) 0.00200(5) 6*Zn 7111.95(7) 0.0198(3) 0.000945(14) 6*Zn 1262.58(6) 0.0058(16) 0.0058(16) 0.00028(3) 6*Zn 71859.07(8) 0.0084(7) 0.00034(3) 0.000917(14) 6*Zn 1293.02(8) 0.0061(6) 0.00028(3) 6*Zn 7863.55(7) 0.1410(19) 0.00033(3) 6*Zn 1390.06(6) 0.010(4) 0.00046(19) 6*Zn 7863.55(7) 0.1410(19) 0.00053(9) 6*Zn 1340.14(3) 0.0457(16) 0.00212(7) 6*Zn 8314.37(8) 0.0105(5) 0.00068(3) 6*Zn 1354.42(5) 0.0103(9) 0.00048(4) 6*Zn 1415.67(5) 0.0043(7) 2.0(3)×10*4 Gallium (Z=31), \$At Wt=69.723(1), \$\tau=2.90(7)\$ 6*Zn 1593.03(8) 0.0052(7) 0.00038(3) 7*Ga 16.43(3) 0.078(5) 0.00063(3) 6*Zn 1593.03(8) 0.0052(7) 0.00038(3) 7*Ga 46.48(9) 0.0050(4) 2.17(17)×10*4 7*Ga 41.89(4) 0.0050(4) 0.0057(13) 6*Zn 1826.45(6) 0.0161(10) 0.00075(5) 7*Ga 103.25(3) 0.0522(11) 0.00057(13) 6*Zn 1826.45(6) 0.0161(10) 0.00075(5) 7*Ga 103.25(3) 0.0522(11) 0.00057(14) 6*Zn 1826.45(6) 0.0161(10) 0.00075(6) 7*Ga 103.25(3) 0.0522(11) 0.00057(4) 6*Zn 1838.12(3) 0.0718(8) 0.0051(6) 2.2(3)×10*4 7*Ga 18.89(4) 0.0035(9) 0.0051(4) 6*Zn 1838.12(3) 0.0718(8) 0.0056(7) 7*Ga 100.66(4) 0.0118(8) 0.00057(13) 6*Zn 1838.12(3) 0.0718(8) 0.0056(7) 7*Ga 110.06(4) 0.0118(8) 0.00057(13) 6*Zn 1838.12(3) 0.0718(8) 0.0033(8) 7*Ga 128.76(4) 0.0063(9) 0.00027(4) 7*Ga 120.67(4) 0.0118(8) 0.00057(13) 6*Zn 2205.73(8) 0.0059(9) 0.00027(4) 7*Ga 120.07(3) 0.0036(9) 0.00027(4) 7*Ga	67Zn 1077.335(16)			⁶⁷ Zn 6867.5(3)		
	687n 1126.100(25)) - (667n 6958 8(3)		
Page 14.156.1.56.3 **O.0053(15)** **O.0053(15)** **O.0053(15)** **O.0053(15)** **O.0053(15)** **O.0053(15)** **O.00053(3)** **O.0053(16)** **O.0053(16)** **O.0053(16)** **O.00053(3)** **O.0053(16)** **O.0053(19)** **O.0054(19)** **O.00	[∞] Zn 1252.07(5)			⁰⁴ Zn 7069.20(7)		
**Zh 1262.58(6)	°′7n 1261.15(3)			⁰⁴ Zn 7111.95(7)		
**Zh 1293.02(8)	⁰⁴ Zn 1262.58(6)			°′Zn 7188.40(8)		
"3" 1340.14(3) 0.0457(16) 0.00212(7) "5.2 R 8314.37(8) 0.01015(5) 0.000486(23) 64Zn 1354.42(5) 0.0103(9) 0.00048(4) "5.2 R 9314.37(8) 0.0103(6) 0.00063(3) 64Zn 1546.33(8) 0.0082(7) 0.00038(3) 6.0063(3) 6.0063(3) 6.0063(3) 64Zn 1593.0(3) 0.0053(13) 2.5(6)×10-4 7.6 a 16.43(3) 0.078(5) 0.0033(22) 68Zn 1813.18(8) 0.0260(10) 0.00120(5) 7.6 a 41.89(4) 0.0050(4) 2.17(17)×10-4 68Zn 1813.18(8) 0.0051(6) 2.4(3)×10-4 7.6 a 48.87(4) 0.013(3) 0.00057(13) 64Zn 1813.18(8) 0.0051(6) 2.4(3)×10-4 7.6 a 48.87(4) 0.0224(10) 0.00057(13) 64Zn 1813.18(8) 0.0051(6) 2.4(3)×10-4 7.6 a 88.8(4) 0.0224(10) 0.00057(13) 64Zn 1826.45(6) 0.0161(10) 0.00075(5) 7.7 Ga 110.6(4) 0.022(11) 0.00057(4) 67Zn 1820.45(6) 0.071(17) 0.00033(8) 7.7 Ga 110.6(4) 0.0118(8) 0.00057(4) 67Zn 2097.3(9) 0.026(9)(13) 0.00	⁰⁴ Zn 1293.02(8)			⁶⁴ Zn 7859.07(8)		
64Zn 1415-67(5)	677n 1340 14(3)			677n 8314 37(8)		
6-7Zn 1415.67(5) 0.0043(7) 2.0(3)×10-4 6-7Zn 1593.0(3) 0.0082(7) 0.00038(3) 6-4Zn 1593.0(3) 0.0053(13) 2.5(6)×10-4 6-7Zn 1593.0(3) 0.0053(13) 2.5(6)×10-4 6-7Zn 1593.0(3) 0.0051(6) 2.4(3)×10-4 6-7Zn 1573.46(4) 0.0260(10) 0.00120(5) 6-7Zn 1774.4.47(5) 0.0147(7) 0.00068(3) 6-6Zn 1813.18(8) 0.0051(6) 2.4(3)×10-4 6-7Zn 1826.45(6) 0.0161(10) 0.00075(5) 6-7Zn 1882.091(10) 0.0056(15) 0.00023(7) 6-7Zn 1882.091(10) 0.0056(15) 0.00023(7) 6-7Zn 1883.12(3) 0.0718(18) 0.00033(8) 6-7Zn 1883.12(3) 0.0718(18) 0.00033(8) 6-7Zn 1883.12(3) 0.0718(18) 0.00033(8) 6-7Zn 1883.12(3) 0.0718(18) 0.00033(8) 6-7Zn 2106.74(6) 0.0071(7) 0.00033(8) 71 Ga 121.01(3) 0.0142(6) 0.00062(3) 6-7Zn 2106.74(6) 0.0071(7) 0.00033(8) 71 Ga 122.01(3) 0.0142(6) 0.00062(3) 6-7Zn 2209.73(9) 0.0269(13) 0.00125(6) 71 Ga 132.07(11) 0.013(3) 0.00057(13) 6-7Zn 2212.101(6) 0.0071(17) 0.00033(8) 71 Ga 122.01(3) 0.0142(6) 0.00062(3) 6-7Zn 2347.58(14) 0.0048(7) 2.2(3)×10-4 6-7Zn 2347.58(14) 0.0048(7) 2.2(3)×10-4 6-7Zn 2347.58(14) 0.0059(9) 0.00027(4) 71 Ga 162.90(4) 0.021(5) 0.00091(22) 6-7Zn 2418.53(10) 0.0059(7) 0.00044(3) 66 a 187.84(3) 0.100(21) 0.00048(3) 6-7Zn 2698.91(17) 0.0063(8) 1.7(4)×10-4 6-7Zn 2698.91(17) 0.0063(8) 0.00032(4) 71 Ga 194.66(4) 0.107(21) 0.00465(9) 67 Ga 133.02(4) 0.005(21) 0.00091(22) 67 Ga 133.02(4) 0.005(21) 0.00091(22) 67 Ga 133.02(4) 0.005(21) 0.00091(22) 67 Ga 132.07(11) 0.014(3) 0.00057(10) 0.0003(8) 0.00	⁰⁴ Zn 1354.42(5)			⁶⁷ Zn 9120.06(7)		
64Zn 1593.0(3) 0.0053(13) 2.5(6)×10 ⁻⁴ 7'Ga 16.43(3) 0.078(5) 0.00339(22) 68Zn 1594.05(9) 0.0051(6) 2.4(3)×10 ⁻⁴ 7'Ga 41.89(4) 0.0050(4) 2.17(17)×10 ⁻⁴ 7'Ga 46.97(4) 0.0050(4) 2.17(17)×10 ⁻⁴ 7'Ga 46.97(4) 0.0050(4) 2.17(17)×10 ⁻⁴ 7'Ga 173.46(4) 0.0260(10) 0.00120(5) 7'Ga 79.75(4) 0.0224(10) 0.00057(13) 0.00557(13) 0.0051(6) 2.4(3)×10 ⁻⁴ 7'Ga 88.86(4) 0.0305(9) 0.00133(4) 0.0051(6) 2.4(3)×10 ⁻⁴ 7'Ga 88.86(4) 0.0305(9) 0.00133(4) 0.0057(13) 0.0057(13) 0.0056(15) 0.00026(7) 7'Ga 182.09(10) 0.0056(15) 0.00026(7) 7'Ga 110.06(4) 0.0118(8) 0.0051(4) 0.0018(8) 0.0051(4) 0.0018(8) 0.0051(4) 0.0018(8) 0.0051(4) 0.0018(8) 0.0051(4) 0.0018(8) 0.0051(4) 0.0057(13) 0.0057(13) 0.0057(13) 0.0057(13) 0.0057(13) 0.0057(13) 0.0057(13) 0.0057(13) 0.0057(13) 0.0057(13) 0.0057(13) 0.0057(13) 0.0057(13) 0.0057(13) 0.0059(9) 0.00033(8) 7'Ga 123.07(11) 0.013(3) 0.00057(13) 0.0057(13) 0.0059(9) 0.00027(4) 7'Ga 123.5(3) 0.0067(13) 0.0013(4) 0.0051(8) 0.0005(13) 0.0005(14) 0.0005(13) 0.0005(14) 0.0005(13) 0.0005(14) 0.0005(15) 0.0005(15) 0.0005(15) 0.0005(15) 0.0005(15) 0.0005(15) 0.0005(15) 0.0005(15) 0.0005(15) 0.0005(15) 0.0005(15) 0	⁰⁴ Zn 1415.67(5)				Wt = 69.723(1)	T =2 90(7)
68Zn 1594 05(9) 0.0051(6) 2.4(3)×10-4 // Ga 41.89(4) 0.0050(4) 2.17(17)×10-4 67Zn 1673.46(4) 0.0260(10) 0.00120(5) // Ga 46.97(4) 0.013(3) 0.00057(13) 67Zn 1744.47(5) 0.0147(7) 0.00068(3) // Ga 79.75(4) 0.0224(10) 0.00057(13) 68Zn 1813.18(8) 0.0051(6) 2.4(3)×10-4 // Ga 88.86(4) 0.0305(9) 0.0013(1) 64Zn 1826.45(6) 0.0161(10) 0.00075(5) // Ga 110.06(4) 0.0118(8) 0.00057(13) 67Zn 1883.12(3) 0.0718(18) 0.0033(8) // Ga 112.01(3) 0.0148(8) 0.00051(4) 64Zn 2087.44(9) 0.0071(7) 0.0033(8) // Ga 122.07(11) 0.0142(6) 0.0062(3) 64Zn 2087.44(9) 0.0071(7) 0.00033(3) // Ga 122.07(11) 0.013(3) 0.00057(13) 64Zn 2087.3(9) 0.0269(13) 0.00125(6) // Ga 122.07(11) 0.013(3) 0.00057(13) 68Zn 2344.60(8) 0.0100(12) 0.0004(6) // G	⁶⁷ Zn 1546.33(8)			⁷¹ Ga 16.43(3)		
67Zn 1734.6(a) 0.0260(10) 0.00147(7) 0.00068(3) 71 Ga 79.75(4) 0.0224(10) 0.00097(4) 68Zn 1813.18(8) 0.0051(6) 2.4(3)×10-4 7 Ga 88.86(4) 0.0305(9) 0.00133(4) 0.0026(7) 1820.09(10) 0.0056(15) 0.00026(7) 17 Ga 110.06(4) 0.0526(11) 0.00051(4) 0.0056(15) 0.00026(7) 17 Ga 110.06(4) 0.0526(11) 0.00051(4) 0.0118(8) 0.0051(4) 0.01883.12(3) 0.0718(18) 0.0033(8) 7 Ga 112.36(3) 0.155(3) 0.00674(13) 0.0728(14) 0.0028(7) 17 Ga 112.36(3) 0.155(3) 0.00674(13) 0.0028(7) 17 Ga 12.01(3) 0.0142(6) 0.00062(3) 0.0027(4) 0.0029(10) 0	687n 1593.0(3)			^{/1} Ga 41.89(4)		
68Zn 1813.18(8) 0.0051(6) 2.4(3)×10 ⁻⁴ 7' Ga 88.86(4) 0.035(9) 0.0013(4) 64Zn 1826.45(6) 0.0161(10) 0.00075(5) 7' Ga 103.25(3)d 0.0526(11) 0.00229(100%) 67Zn 1882.09(10) 0.0056(15) 0.00026(7) 7' Ga 110.06(4) 0.0118(8) 0.0051(4) 67Zn 1883.12(3) 0.0718(18) 0.0033(8) 7' Ga 112.36(3) 0.155(3) 0.00674(13) 64Zn 2087.44(9) 0.0047(6) 2.2(3)×10 ⁻⁴ 7' Ga 121.01(3) 0.0142(6) 0.00062(3) 67Zn 2106.74(6) 0.0071(7) 0.00033(3) 7' Ga 122.01(1) 0.0042(6) 0.00062(3) 0.0027(4) 67Zn 2209.73(9) 0.0269(13) 0.00125(6) 7' Ga 132.07(11) 0.013(3) 0.00057(13) 64Zn 2212.10(16) 0.0071(17) 0.00033(8) 7' Ga 145.14(3) 0.466(7) 0.0033(9) 0.00057(13) 64Zn 2212.10(16) 0.0011(17) 0.00033(8) 7' Ga 145.14(3) 0.466(7) 0.0033(9) 0.00057(13) 64Zn 22347.58(14) 0.0048(7) 2.2(3)×10 ⁻⁴ 7' Ga 162.90(4) 0.021(5) 0.0003(3) 67Zn 2347.58(14) 0.0048(7) 2.2(3)×10 ⁻⁴ 7' Ga 162.90(4) 0.021(5) 0.00091(22) 67Zn 2352.10(8) 0.0059(9) 0.00027(4) 7' Ga 184.09(3) 0.1040(21) 0.0045(9) 67Zn 2378.6(3) 0.0039(5) 1.81(23)×10 ⁻⁴ 7' Ga 184.09(3) 0.1040(21) 0.0045(9) 67Zn 2418.53(10) 0.0095(7) 0.00044(3) 7' Ga 184.09(3) 0.1040(21) 0.0045(9) 67Zn 248.6(8) 0.0037(8) 1.7(4)×10 ⁻⁴ 7' Ga 192.11(3) 0.194(3) 0.00843(13) 64Zn 2432.3(5) 0.0037(8) 1.7(4)×10 ⁻⁴ 7' Ga 194.66(4) 0.1070(21) 0.0046(9) 67Zn 2688.91(17) 0.0061(9) 0.00026(5) 7' Ga 194.66(4) 0.1070(21) 0.0046(9) 67Zn 2687.91(10) 0.0070(8) 0.00032(4) 7' Ga 194.66(4) 0.1070(21) 0.0046(9) 67Zn 2687.91(10) 0.0070(8) 0.00032(4) 7' Ga 210.37(11) 0.019(7) 0.0048(3) 67Zn 3331.21(20) 0.0048(4) 2.27(23)×10 ⁻⁴ 7' Ga 212.58(4) 0.0583(12) 0.00578(10) 67Zn 3857.91(10) 0.0046(6) 2.27(23)×10 ⁻⁴ 7' Ga 248.89(4) 0.038(8) 0.00149(4) 66Zn 4103.3(3) 0.0089(21) 0.00026(6) 7' Ga 248.89(4) 0.038(9) 0.0014(4) 7' Ga 246.91(20) 0.0343(8) 0.00149(4) 66Zn 4103.3(3) 0.0089(21) 0.00025(6) 7' Ga 266.14(3) 0.038(9) 0.0013(4) 66Zn 4103.3(3) 0.0089(21) 0.00025(6) 7' Ga 306.62(12) 0.0097(8) 0.0005(17) 66Zn 4430.69(14) 0.0055(13) 0.00025(6) 7' Ga 313.62(11) 0.0097(8) 0.0003(4) 66Zn 4430.69(14) 0.0055(13) 0.00025(6) 7' Ga 306.62(12) 0.0097(8) 0.00003(4) 66Zn 4	°'Zn 1673.46(4)			′ 'Ga 46.97(4)		
64Zn 1813.18(8) 0.0051(6) 2.4(3)×10-4 7 Ga 103.25(3)d 0.0526(11) 0.00029(10%)d 67Zn 1882.09(10) 0.0056(15) 0.00026(7) 7 Ga 110.06(4) 0.0118(8) 0.00051(4) 67Zn 1883.12(3) 0.0718(18) 0.00333(8) 7 Ga 112.36(3) 0.155(3) 0.00674(13) 64Zn 208.744(9) 0.0047(6) 2.2(3)×10-4 7 Ga 121.01(3) 0.0142(6) 0.0062(3) 67Zn 2106.74(6) 0.0071(7) 0.00033(3) 7 Ga 128.76(4) 0.0063(9) 0.00027(4) 67Zn 2209.73(9) 0.0269(13) 0.00125(6) 7 Ga 132.07(11) 0.013(3) 0.00057(13) 64Zn 221.210(16) 0.0071(17) 0.00033(8) 7 Ga 145.14(3) 0.466(7) 0.0203(3) 68Zn 2344.60(8) 0.0100(12) 0.00046(6) 7 Ga 153.78(3) 0.0319(8) 0.00139(4) 67Zn 2352.10(8) 0.0059(9) 0.00027(4) 7 Ga 162.90(4) 0.021(5) 0.00091(22) 67Zn 2352.10(8) 0.0059(9) 0.00027(4) 7 Ga 181.54(4) 0.040(3) 0.00142(13) 68Zn 2378.6(3) 0.0039(5) 1.81(23)×10-4 69Ga 187.84(3) 0.1040(21) 0.00452(9) 67Zn 2362.3(3) 0.0037(8) 1.7(4)×10-4 7 Ga 192.11(3) 0.194(3) 0.00452(9) 67Zn 2698.91(17) 0.0061(9) 0.00028(4) 7 Ga 192.11(3) 0.194(3) 0.00843(13) 67Zn 2698.91(17) 0.0061(9) 0.00028(4) 7 Ga 192.11(3) 0.194(3) 0.00843(13) 67Zn 2657.91(10) 0.007(8) 0.00032(4) 7 Ga 210.57(10) 0.033(8) 0.0013(6) 67Zn 2857.91(10) 0.007(8) 0.00032(4) 7 Ga 210.50(20) 0.0343(8) 0.00149(4) 67Zn 2857.91(10) 0.007(8) 0.00032(4) 7 Ga 210.50(20) 0.0343(8) 0.00149(4) 67Zn 2857.91(10) 0.007(8) 0.00032(4) 7 Ga 210.50(20) 0.0343(8) 0.00149(4) 67Zn 2857.91(10) 0.007(8) 0.00032(4) 7 Ga 210.50(20) 0.0343(8) 0.00149(4) 67Zn 2857.91(10) 0.007(8) 0.00032(4) 7 Ga 210.50(20) 0.0343(8) 0.00149(4) 67Zn 2857.91(10) 0.0046(6) 2.22(219)×10-4 7 Ga 228.97(4) 0.0379(10) 0.0068(6) 67Zn 2857.91(10) 0.0046(6) 7 Ga 228.97(4) 0.0379(10) 0.00165(4) 67Zn 3832.94(25) 0.0045(5) 2.22(23)×10-4 7 Ga 228.97(4) 0.0379(10) 0.00165(4) 67Zn 3458.14(17) 0.0048(4) 2.22(19)×10-4 7 Ga 228.97(4) 0.0379(10) 0.00165(4) 68Zn 437.82(1) 0.0045(5) 2.22(23)×10-4 7 Ga 228.97(4) 0.0379(10) 0.00165(4) 68Zn 437.82(3) 0.0045(4) 2.22(19)×10-4 7 Ga 264.03(4) 0.0238(9) 0.0013(4) 68Zn 437.92(10) 0.0045(11) 0.0005(5) 7 Ga 306.62(12) 0.0097(8) 0.00091(4) 68Zn 430.69(14) 0.0055(13) 0.00095(10) 7 Ga	°'Zn 1744.47(5)		0.00068(3)	' Ga 79.75(4)		
67Zn 1882.09\(^10) 0.0056\(^15\) 0.00026\(^17\) 7 Ga 110.06\(^1) 0.0118\(^8\) 0.00051\(^14\) 67Zn 1883.12\(^13\) 0.00718\(^18\) 0.00333\(^8\) 7 Ga 112.36\(^3\) 0.155\(^3\) 0.00674\(^13\) 0.0062\(^3\) 67Zn 2106.74\(^6\) 0.0071\(^7\) 0.00033\(^3\) 7 Ga 121.01\(^3\) 0.0142\(^6\) 0.00052\(^4\) 67Zn 2209.73\(^9\) 0.026\(^9\) 13 0.00125\(^6\) 7 Ga 128.76\(^4\) 0.0063\(^9\) 0.00057\(^13\) 0.64Zn 2212.10\(^16\) 0.0071\(^7\) 0.00033\(^8\) 7 Ga 128.76\(^4\) 0.013\(^3\) 0.00057\(^13\) 0.00057\(^13\) 0.64Zn 2212.10\(^16\) 0.0071\(^17\) 0.00033\(^8\) 7 Ga 145.14\(^3\) 0.466\(^7\) 0.0203\(^3\) 68Zn 2344.60\(^8\) 0.0100\(^12\) 0.0046\(^6\) 7 Ga 153.78\(^3\) 0.0319\(^8\) 0.00139\(^4\) 67Zn 2352.10\(^8\) 0.0085\(^9\) 0.00027\(^4\) 7 Ga 162.90\(^4\) 0.021\(^5\) 0.00091\(^2\) 0.0004\(^6\) 7 Ta 2352.10\(^8\) 0.0059\(^9\) 0.00027\(^4\) 7 Ga 181.54\(^4\) 0.040\(^3\) 0.0017\(^4\) 13 68Zn 2378.6\(^3\) 0.0039\(^5\) 1.81\(^23\) 10-4 7 Ga 181.54\(^4\) 0.040\(^3\) 0.1040\(^21\) 0.0045\(^9\) 67Zn 2352.10\(^8\) 0.0037\(^8\) 1.81\(^23\) 10-4 7 Ga 181.54\(^4\) 0.040\(^3\) 0.1040\(^21\) 0.0045\(^9\) 67Zn 2418.53\(^3\) 0.0037\(^8\) 1.81\(^23\) 10-4 7 Ga 181.54\(^4\) 0.040\(^3\) 0.1040\(^21\) 0.0045\(^9\) 67Zn 2482.3\(^5\) 0.0037\(^8\) 1.7\(^4\) 10-4 7 Ga 182.11\(^3\) 0.194\(^3\) 0.1080\(^21\) 0.0045\(^9\) 0.7 2 2648.75\(^21\) 0.0056\(^10\) 0.0026\(^5\) 7 Ga 192.11\(^3\) 0.194\(^3\) 0.1080\(^21\) 0.0045\(^9\) 0.7 2 2648.75\(^21\) 0.0056\(^10\) 0.00028\(^4\) 7 Ga 192.11\(^3\) 0.194\(^3\) 0.194\(^3\) 0.0083\(^3\) 67Zn 2658.7.91\(^10\) 0.0061\(^9\) 0.00028\(^4\) 7 Ga 210.50\(^21\) 0.1330\(^24\) 0.0058\(^3\) 0.003\(^3\) 67Zn 2658.7.91\(^10\) 0.0061\(^9\) 0.00032\(^4\) 7 Ga 210.50\(^21\) 0.034\(^8\) 0.0045\(^9\) 0.7 333.21\(^4\) 7 Ga 221.50\(^4\) 0.033\(^8\) 0.0045\(^9\) 0.0045\(^9\) 0.0032\(^4\) 7 Ga 210.50\(^22\) 0.034\(^8\) 0.005\(^8\) 0.005\(^8\) 0.0032\(^4\) 7 Ga 210.50\(^9\) 0.034\(^8\) 0.005\(^8\) 0.005\(^8\) 0.0032\(^4\) 7 Ga 2210.50\(^9\) 0.0343\(^8\) 0.0045\(^4\) 0.005\(^8\) 0.0032\(^4\) 7 Ga 2210.50\(^9\) 0.0343\(^8\) 0.0005\(^4\) 0.005\(^	[™] 7n 1813 18(8)			71Ga 103 25/3) d		
67Zn 1883.12(3)	677n 1882 09(10)			′ 'Ga 110.06(4)		
6°Zn 2087.44(9) 0.0047(6) 2.2(3)×10 ⁻⁴ 7 Ga 128.76(4) 0.0063(9) 0.00027(4) 6°Zn 2106.74(6) 0.0071(7) 0.00033(3) 7¹ Ga 128.76(4) 0.0063(9) 0.00027(4) 6°Zn 2209.73(9) 0.0269(13) 0.00125(6) 7¹ Ga 145.14(3) 0.466(7) 0.0203(3) 68Zn 2344.60(8) 0.0100(12) 0.00046(6) 7¹ Ga 153.78(3) 0.0319(8) 0.00139(4) 6°Zn 2347.58(14) 0.0048(7) 2.2(3)×10 ⁻⁴ 7¹ Ga 182.90(4) 0.021(5) 0.00091(22) 6°Zn 2378.6(3) 0.0039(5) 1.81(23)×10 ⁻⁴ 7¹ Ga 184.09(3) 0.1040(21) 0.0045(29) 6°Zn 2418.53(10) 0.0095(7) 0.00044(3) 6¹ Ga 187.84(3) 0.1040(21) 0.00469(9) 6 ² Zn 2418.53(10) 0.0095(7) 0.00044(3) 6¹ Ga 187.84(3) 0.1040(21) 0.00469(9) 6 ² Zn 2432.3(5) 0.0037(8) 1.7(4)×10 ⁻⁴ 7¹ Ga 192.11(3) 0.194(3) 0.00843(13) 6 ² Zn 2648.75(21) 0.0056(10) 0.00028(4) 7¹ Ga 197.94(5) 0.130(24) 0.00578(10) 6 ² Zn 2857.91(10) 0.0073(8) </td <td>°′<i>Z</i>n 1883.12(3)</td> <td></td> <td></td> <td>′¹Ga 112.36(3)</td> <td>0.155(3)</td> <td>0.00674(13)</td>	°′ <i>Z</i> n 1883.12(3)			′¹Ga 112.36(3)	0.155(3)	0.00674(13)
67Zn 2209.73(9) 0.0071(7) 0.00033(3) 7-Ga 132.07(11) 0.0005(9) 0.00027(13) 64Zn 2212.10(16) 0.0071(17) 0.00033(8) 7-Ga 132.07(11) 0.013(3) 0.00057(13) 68Zn 2344.60(8) 0.0100(12) 0.00046(6) 7-Ga 153.78(3) 0.0319(8) 0.00139(4) 67Zn 2347.58(14) 0.0048(7) 2.2(3)×10-4 7-Ga 162.90(4) 0.021(5) 0.00091(22) 67Zn 2352.10(8) 0.0059(9) 0.00027(4) 7-Ga 181.54(4) 0.040(3) 0.00174(13) 68Zn 2378.6(3) 0.0039(5) 1.81(23)×10-4 7-Ga 184.54(4) 0.040(3) 0.00174(13) 68Zn 2432.3(5) 0.0037(8) 1.7(4)×10-4 7-Ga 184.54(4) 0.1040(21) 0.00452(9) 67Zn 2648.75(21) 0.0056(10) 0.00028(4) 7-Ga 192.11(3) 0.194(3) 0.0045(9) 67Zn 2698.91(17) 0.0061(9) 0.00028(4) 7-Ga 197.94(5) 0.1330(24) 0.0075(8) 67Zn 3327.02(9) 0.0088(9) 0.00041(4) 7-Ga 210.50(20) 0.0343(8) 0.00149(4) 67Zn 3331.21(20) 0.0048(5) 2.27(23)×	⁰⁴ Zn 2087.44(9)	0.0047(6)	2.2(3)×10 ⁻⁴	' Ga 121.01(3)	0.0142(6)	0.00062(3)
64Zn 2212.10(16) 0.0071(17) 0.00033(8) 71Ga 145.14(3) 0.466(7) 0.0203(3) 0.00139(4) 0.0100(12) 0.00046(6) 71Ga 153.78(3) 0.0319(8) 0.00139(4) 0.00149(1) 0.00149(1) 0.00174(13) 0.00174(14	°′Zn 2106.74(6)		0.00033(3)	⁷¹ Ga 128.76(4)		
68Zn 2344.60(8) 0.0100(12) 0.00046(6) 71Ga 153.78(3) 0.0319(8) 0.00139(4) 67Zn 2357.58(14) 0.0048(7) 2.2(3)×10 ⁻⁴ 71Ga 162.90(4) 0.021(5) 0.00091(22) 67Zn 2352.10(8) 0.0059(9) 0.00027(4) 71Ga 181.54(4) 0.040(3) 0.00174(13) 68Zn 2378.6(3) 0.0039(5) 1.81(23)×10 ⁻⁴ 71Ga 184.09(3) 0.1040(21) 0.00452(9) 67Zn 2418.53(10) 0.0095(7) 0.00044(3) 69Ga 187.84(3) 0.1080(21) 0.00469(9) 64Zn 2432.3(5) 0.0037(8) 1.7(4)×10 ⁻⁴ 71Ga 192.11(3) 0.194(3) 0.00843(13) 67Zn 2698.91(17) 0.0056(10) 0.00028(4) 71Ga 194.66(4) 0.1070(21) 0.00465(9) 67Zn 2698.91(17) 0.0061(9) 0.00028(4) 71Ga 197.94(5) 0.1330(24) 0.00578(10) 67Zn 3287.02(9) 0.0088(9) 0.00032(4) 71Ga 210.37(11) 0.019(7) 0.0008(3) 64Zn 3331.21(20) 0.0048(4) 2.22(19)×10 ⁻⁴ 71Ga 212.58(4) 0.0583(12) 0.00253(5) 67Zn 3333.121(20) 0.0048(4) 2.22(19)×10 ⁻⁴ 71Ga 228.97(4) 0.0379(10) 0.00165(4) 67Zn 3832.94(25) 0.0048(5) 2.27(23)×10 ⁻⁴ 71Ga 246.91(20) 0.0118(19) 0.00051(8) 68Zn 4137.29(10) 0.0088(5) 1.67(23)×10 ⁻⁴ 71Ga 266.14(3) 0.038(9) 0.0013(4) 68Zn 4137.29(10) 0.0055(13) 0.00095(12) 71Ga 266.14(3) 0.0238(9) 0.00103(4) 68Zn 4430.69(14) 0.0055(13) 0.00025(6) 71Ga 306.62(12) 0.0038(9) 0.00103(4) 66Zn 458.29(4) 0.0050(13) 1.9(6)×10 ⁻⁴ 71Ga 266.14(3) 0.0361(11) 0.00157(5) 66Zn 4582.9(4) 0.0050(13) 1.9(6)×10 ⁻⁴ 71Ga 266.14(3) 0.0361(11) 0.00157(5) 66Zn 4582.9(4) 0.0050(13) 1.9(6)×10 ⁻⁴ 71Ga 266.14(3) 0.0361(11) 0.00157(5) 66Zn 4582.9(4) 0.0050(13) 1.9(6)×10 ⁻⁴ 71Ga 266.14(3) 0.0361(11) 0.00157(5) 66Zn 4582.9(4) 0.0050(10) 2.35(5)×10 ⁻⁴ 71Ga 313.62(11) 0.0029(8) 0.00091(4) 68Zn 4582.9(4) 0.0050(10) 2.35(5)×10 ⁻⁴ 71Ga 313.62(11) 0.0029(8) 0.00091(4) 66Zn 4582.9(4) 0.0050(10) 2.35(5)×10 ⁻⁴ 71Ga 313.62(11) 0.0059(8) 0.00091(4) 66Zn 4582.9(4) 0.0050(10) 2.35(5)×10 ⁻⁴ 71Ga 313.62(11) 0.0029(8) 0.00091(4) 66Zn 4582.9(4) 0.0050(10) 2.35(5)×10 ⁻⁴ 71Ga 313.62(11) 0.0029(8) 0.00091(4) 66Zn 4582.9(4) 0.0050(10) 2.35(5)×10 ⁻⁴ 71Ga 313.62(11) 0.0029(8) 0.00091(4) 66Zn 4582.9(4) 0.0050(10) 2.35(5)×10 ⁻⁴ 71Ga 313.62(11) 0.0059(8) 0.00091(4) 69Ga 318.87(3) 0.0059(14) 0.00057(6) 0.00037(⁶⁴ 7n 2209.73(9)			⁷¹ Ga 145.14(3)		
67Zn 2347.58(14) 0.0048(7) 2.2(3)×10-4 71Ga 162.90(4) 0.021(5) 0.00091(22) 67Zn 2352.10(8) 0.0059(9) 0.00027(4) 71Ga 181.54(4) 0.040(3) 0.00174(13) 68Zn 2378.6(3) 0.0039(5) 1.81(23)×10-4 71Ga 184.09(3) 0.1040(21) 0.00452(9) 67Zn 2418.53(10) 0.0095(7) 0.00044(3) 69Ga 187.84(3) 0.1080(21) 0.00469(9) 64Zn 2432.3(5) 0.0037(8) 1.7(4)×10-4 71Ga 192.11(3) 0.194(3) 0.00843(13) 67Zn 2648.75(21) 0.0056(10) 0.00028(4) 71Ga 194.66(4) 0.1070(21) 0.00465(9) 67Zn 2698.91(17) 0.0061(9) 0.00028(4) 71Ga 197.94(5) 0.1330(24) 0.00578(10) 67Zn 2857.91(10) 0.0070(8) 0.00032(4) 71Ga 210.37(11) 0.019(7) 0.0008(3) 64Zn 3109.05(25) 0.0073(10) 0.00034(5) 71Ga 210.50(20) 0.0343(8) 0.00149(4) 67Zn 3287.02(9) 0.0088(9) 0.00041(4) 71Ga 212.58(4) 0.0583(12) 0.00253(5) 67Zn 3331.21(20) 0.0049(5) 2.27(23)×10-4 71Ga 228.97(4) 0.0379(10) 0.00165(4) 67Zn 3832.94(25) 0.0048(4) 2.22(19)×10-4 71Ga 248.89(4) 0.0111(6) 0.00048(3) 66Zn 4071.4(4) 0.0036(5) 1.67(23)×10-4 71Ga 248.89(4) 0.136(8) 0.0059(4) 68Zn 4071.4(4) 0.0036(5) 1.67(23)×10-4 71Ga 264.03(4) 0.0238(9) 0.0013(4) 68Zn 4137.29(10) 0.0025(25) 0.00095(12) 71Ga 266.14(3) 0.036(11) 0.0059(4) 68Zn 4430.69(14) 0.0055(13) 0.00025(6) 71Ga 306.11(14) 0.015(4) 0.00065(17) 67Zn 4582.9(4) 0.00507(10) 2.35(5)×10-4 71Ga 313.62(11) 0.0209(8) 0.00091(4) 68Zn 4652.3(4) 0.0059(7) 0.00027(3) 69Ga 318.87(3) 0.059(14) 0.00257(6) 69Ga 344.79(7) 0.007(6) 0.00030(3) 0.0042(4) 647 4828.8(3) 0.0045(4) 2.08(19)×10-4 69Ga 318.87(3) 0.059(14) 0.00257(6) 69Ga 344.79(7) 0.007(6) 0.00030(3) 0.0048(6) 2.1(3)×10-4 69Ga 363.93(13) 0.0048(6) 2	⁶⁸ Zn 2344.60(8)			′ ¹Ga 153.78(3)		
68Zn 2378.6(3) 0.0059(9) 0.00027(4) 67Zn 2352.10(8) 0.0039(5) 1.81(23)×10-4 68Zn 2418.53(10) 0.0095(7) 0.00044(3) 69Ga 187.84(3) 0.1080(21) 0.00452(9) 69Ga 187.84(3) 0.1080(21) 0.00469(9) 69Ga 187.84(3) 0.1080(21) 0.00465(9) 69Ga 187.84(3) 0.1080(21) 0.1080(21) 0.1094(3) 69Ga 187.84(3) 0.1080(21) 0.1094(3) 69Ga 197.84(3) 0.1040(21) 0.1040(21) 69Ga 197.84(3) 0.1040(21) 69Ga 197.84(3) 0.1040(°′Zn 2347.58(14)			⁷¹ Ga 162.90(4)		
67Zn 2418.53(10) 0.0095(7) 0.00044(3) 71Ga 192.11(3) 0.194(3) 0.00843(13) 0.00843(13) 0.71Ga 192.11(3) 0.194(3) 0.00843(13) 0.00843(13) 0.71Ga 192.11(3) 0.194(3) 0.00843(13) 0.00843(13) 0.71Ga 194.66(4) 0.1070(21) 0.00465(9) 0.0026(5) 71Ga 197.94(5) 0.1330(24) 0.00578(10) 0.0070(8) 0.00032(4) 71Ga 210.37(11) 0.019(7) 0.0008(3) 0.0032(4) 71Ga 210.37(11) 0.019(7) 0.0008(3) 0.0032(4) 71Ga 210.37(11) 0.019(7) 0.0008(3) 0.0032(4) 71Ga 210.50(20) 0.0343(8) 0.00149(4) 0.0032(4) 0.00578(10) 0.0034(5) 71Ga 210.50(20) 0.0343(8) 0.00149(4) 0.0038(8) 0.00041(4) 71Ga 212.58(4) 0.0583(12) 0.00253(5) 0.0048(6) 0.0048(6) 0.0041(4) 71Ga 228.97(4) 0.0379(10) 0.00165(4) 0.00165(4) 0.00165(4) 0.00165(4) 0.00111(6) 0.00048(3) 0.0041(4) 0.0038(5) 0.0048(6) 0.0041(4) 0.0038(5) 0.0048(6) 0.0048(8) 0	°′Zn 2352.10(8)			71Ga 181.54(4)		
64Zn 2432.3(5)	677n 2419 52(10)			⁶⁹ Ga 187.84(3)		
67Zn 2648.75(21) 0.0056(10) 0.00026(5) 71Ga 194.66(4) 0.1070(21) 0.00465(9) 67Zn 2698.91(17) 0.0061(9) 0.00028(4) 71Ga 197.94(5) 0.1330(24) 0.00578(10) 0.00578(10) 0.0070(8) 0.00032(4) 71Ga 210.37(11) 0.019(7) 0.0008(3) 0.0034(5) 71Ga 210.50(20) 0.0343(8) 0.00149(4) 0.0572n 3287.02(9) 0.0088(9) 0.00041(4) 71Ga 212.58(4) 0.0583(12) 0.00253(5) 0.71Ga 3331.21(20) 0.0049(5) 2.27(23)×10-4 71Ga 231.06(4) 0.0111(6) 0.00048(3) 0.71Ga 231.06(4) 0.0111(6) 0.00048(3) 0.71Ga 231.06(4) 0.0111(6) 0.00048(3) 0.71Ga 231.06(4) 0.0111(6) 0.00048(3) 0.71Ga 248.89(4) 0.0111(6) 0.00048(3) 0.00149(4) 0.00149(647n 2432 3(5)			′¹Ga 192.11(3)		0.00843(13)
67Zn 2698.91(17) 0.0061(9) 0.00028(4) 71Ga 210.37(11) 0.019(7) 0.0008(3) 64Zn 3109.05(25) 0.0073(10) 0.00034(5) 71Ga 210.50(20) 0.0343(8) 0.00149(4) 67Zn 3287.02(9) 0.0088(9) 0.00041(4) 71Ga 212.58(4) 0.0583(12) 0.00253(5) 67Zn 3458.14(17) 0.0048(4) 2.22(19)×10-4 71Ga 231.06(4) 0.0111(6) 0.00048(3) 67Zn 3832.94(25) 0.0048(5) 2.22(23)×10-4 71Ga 246.91(20) 0.0118(19) 0.00051(8) 68Zn 4071.4(4) 0.0036(5) 1.67(23)×10-4 71Ga 248.89(4) 0.136(8) 0.0059(4) 68Zn 4137.29(10) 0.0025(25) 0.00095(12) 71Ga 264.03(4) 0.0361(11) 0.00157(5) 68Zn 4430.69(14) 0.0055(13) 0.00025(6) 71Ga 266.14(3) 0.0361(11) 0.00157(5) 68Zn 4582.9(4) 0.00507(10) 2.35(5)×10-4 71Ga 306.62(12) 0.0097(8) 0.00042(4) 64Zn 4582.9(4) 0.0059(7) 0.00027(3) 67Zn 4782.8(3) 0.0045(4) 2.08(19)×10-4 69Ga 318.87(3) 0.0070(6) 0.00030(3) 69Ga 363.93(13) 0.0048(6) 2.1(3)×10-4 69Ga 363.93(13) 0.0048(6) 2.1(3)×10-4	°'Zn 2648.75(21)			′¹Ga 194.66(4)	0.107Ò(21)	0.00465(9)
64Zn 3109.05(25) 0.0073(10) 0.00032(4) 71Ga 210.57(11) 0.019(7) 0.0008(3) 0.00149(4) 71Ga 212.58(4) 0.0343(8) 0.00149(4) 71Ga 212.58(4) 0.037(10) 0.00149(4) 71Ga 212.58(4) 0.037(10) 0.00149(5) 0.0049(5) 0.227(23)×10-4 71Ga 228.97(4) 0.0379(10) 0.00148(3) 0.0048(3) 0.0048(4) 0.00149(5) 0.0048(5) 0.0048(6) 0.00149(4) 0.00149(5) 0.0048(6) 0.00149(5) 0.0048(6) 0.00149(5) 0.0048(6) 0.00149(5) 0.0048(6) 0.00149(5) 0.0049(5) 0.0048(6) 0.00149(6) 0.00149(4) 0.0379(10) 0.00165(4) 0.00149(°′Zn 2698.91(17)	0.0061(9)	0.00028(4)	''Ga 197.94(5)		
67Zn 3287.02(9) 0.0088(9) 0.00041(4) 71Ga 212.58(4) 0.0379(10) 0.00165(4) 67Zn 3331.21(20) 0.0048(4) 2.22(19)×10-4 71Ga 228.97(4) 0.0379(10) 0.00165(4) 0.00111(6) 0.00048(3) 67Zn 3832.94(25) 0.0048(5) 2.22(23)×10-4 71Ga 246.91(20) 0.0118(19) 0.00051(8) 68Zn 4071.4(4) 0.0036(5) 1.67(23)×10-4 71Ga 248.89(4) 0.136(8) 0.0059(4) 68Zn 4103.3(3) 0.0089(21) 0.00041(10) 71Ga 266.14(3) 0.0238(9) 0.00103(4) 68Zn 4137.29(10) 0.0205(25) 0.00095(12) 71Ga 266.14(3) 0.0361(11) 0.00157(5) 68Zn 4430.69(14) 0.0055(13) 0.00025(6) 71Ga 306.11(14) 0.015(4) 0.00065(17) 67Zn 4504.5(4) 0.0042(13) 1.9(6)×10-4 71Ga 306.62(12) 0.0097(8) 0.00091(4) 68Zn 4652.3(4) 0.0059(7) 0.00027(3) 67Zn 4782.8(3) 0.0059(7) 0.00027(3) 69Ga 318.87(3) 0.0592(14) 0.0057(6) 0.00030(3) 69Ga 363.93(13) 0.0048(6) 2.1(3)×10-4 69Ga 363.93(13) 0.0048(6) 2.1(3)×10-4	°'Zn 2857.91(10)			⁷¹ Ga 210.37(11)		
67Zn 3331.21(20) 0.0049(5) 2.27(23)×10-4 71Ga 228.97(4) 0.0379(10) 0.00165(4) 67Zn 3458.14(17) 0.0048(4) 2.22(19)×10-4 71Ga 231.06(4) 0.0111(6) 0.00048(3) 67Zn 3832.94(25) 0.0048(5) 2.22(23)×10-4 71Ga 246.91(20) 0.0118(19) 0.00051(8) 68Zn 4071.4(4) 0.0036(5) 1.67(23)×10-4 71Ga 248.89(4) 0.136(8) 0.0059(4) 68Zn 4103.3(3) 0.0089(21) 0.00041(10) 71Ga 264.03(4) 0.0238(9) 0.00103(4) 68Zn 4137.29(10) 0.0205(25) 0.00095(12) 71Ga 266.14(3) 0.0361(11) 0.00157(5) 68Zn 4430.69(14) 0.0055(13) 0.00025(6) 71Ga 306.11(14) 0.015(4) 0.00065(17) 67Zn 4504.5(4) 0.0042(13) 1.9(6)×10-4 71Ga 306.62(12) 0.0097(8) 0.00042(4) 64Zn 4582.9(4) 0.00507(10) 2.35(5)×10-4 71Ga 313.62(11) 0.0209(8) 0.00014(4) 68Zn 4652.3(4) 0.0059(7) 0.00027(3) 69Ga 318.87(3) 0.0592(14) 0.00257(6) 69Ga 344.79(7) 0.0070(6) 0.00030(3) 64Zn 4795.0(11) 0.0037(9) 1.7(4)×10-4 69Ga 363.93(13) 0.0048(6) 2.1(3)×10-4	⁶⁷ Zn 3109.05(25)			⁷¹ Ga 212.58(4)		
67Zn 3458.14(17) 0.0048(4) 2.22(19)×10-4 71Ga 246.91(20) 0.01111(6) 0.00051(8) 68Zn 4071.4(4) 0.0036(5) 1.67(23)×10-4 71Ga 248.89(4) 0.136(8) 0.0059(4) 68Zn 4103.3(3) 0.0089(21) 0.00041(10) 71Ga 264.03(4) 0.0238(9) 0.00103(4) 68Zn 4137.29(10) 0.0205(25) 0.00095(12) 71Ga 266.14(3) 0.0361(11) 0.00157(5) 68Zn 4430.69(14) 0.0055(13) 0.00025(6) 71Ga 306.11(14) 0.015(4) 0.00065(17) 67Zn 4504.5(4) 0.0042(13) 1.9(6)×10-4 71Ga 306.62(12) 0.0097(8) 0.00042(4) 64Zn 4582.9(4) 0.00507(10) 2.35(5)×10-4 71Ga 313.62(11) 0.0209(8) 0.00091(4) 68Zn 4652.3(4) 0.0059(7) 0.00027(3) 69Ga 313.87(3) 0.0592(14) 0.0057(6) 69Ga 344.79(7) 0.0070(6) 0.00030(3) 64Zn 4828.4(3) 0.00676(11) 0.0037(9) 1.7(4)×10-4 69Ga 363.93(13) 0.0048(6) 2.1(3)×10-4	⁶⁷ Zn 3331.21(20)			^{/1} Ga 228.97(4)		
68Zn 4071.4(4) 0.0036(5) 1.67(23)×10-4 71Ga 248.89(4) 0.136(8) 0.0059(4) 68Zn 4103.3(3) 0.0089(21) 0.00041(10) 71Ga 264.03(4) 0.0238(9) 0.00103(4) 68Zn 4137.29(10) 0.025(25) 0.00095(12) 71Ga 266.14(3) 0.0361(11) 0.00157(5) 68Zn 4430.69(14) 0.0055(13) 0.00025(6) 71Ga 306.11(14) 0.015(4) 0.00065(17) 67Zn 4504.5(4) 0.0042(13) 1.9(6)×10-4 71Ga 306.62(12) 0.0097(8) 0.00042(4) 64Zn 4582.9(4) 0.00507(10) 2.35(5)×10-4 71Ga 313.62(11) 0.0209(8) 0.00091(4) 68Zn 4652.3(4) 0.0059(7) 0.00027(3) 69Ga 318.87(3) 0.0592(14) 0.00257(6) 69Ga 344.79(7) 0.0070(6) 0.00030(3) 64Zn 4795.0(11) 0.0037(9) 1.7(4)×10-4 69Ga 363.93(13) 0.0048(6) 2.1(3)×10-4	°′Zn 3458.14(17)			⁷¹ Ga 231.06(4)		
68Zn 4103.3(3) 0.0089(21) 0.00041(10) 71Ga 264.03(4) 0.0238(9) 0.00103(4) 68Zn 4137.29(10) 0.0205(25) 0.00095(12) 71Ga 266.14(3) 0.0361(11) 0.00157(5) 68Zn 4430.69(14) 0.0055(13) 0.00025(6) 71Ga 306.11(14) 0.015(4) 0.00065(17) 67Zn 4504.5(4) 0.0042(13) 1.9(6)×10-4 71Ga 306.62(12) 0.0097(8) 0.00042(4) 64Zn 4582.9(4) 0.00507(10) 2.35(5)×10-4 71Ga 313.62(11) 0.0209(8) 0.00091(4) 68Zn 4652.3(4) 0.0059(7) 0.00027(3) 69Ga 318.87(3) 0.0592(14) 0.00257(6) 69Ga 318.87(3) 0.0592(14) 0.00257(6) 69Ga 344.79(7) 0.0070(6) 0.00030(3) 64Zn 4795.0(11) 0.0037(9) 1.7(4)×10-4 69Ga 363.93(13) 0.0048(6) 2.1(3)×10-4	°'Zn 3832.94(25)	0.0048(5)	2.22(23)×10 ⁻⁴	71Ga 246.91(20)		
68Zn 4137.29(10) 0.0205(25) 0.00095(12) 71Ga 266.14(3) 0.0361(11) 0.00157(5) 68Zn 4430.69(14) 0.0055(13) 0.00025(6) 71Ga 306.11(14) 0.015(4) 0.00065(17) 67Zn 4504.5(4) 0.0042(13) 1.9(6)×10-4 71Ga 306.62(12) 0.0097(8) 0.00042(4) 64Zn 4582.9(4) 0.00507(10) 2.35(5)×10-4 71Ga 313.62(11) 0.0209(8) 0.00091(4) 68Zn 4652.3(4) 0.0059(7) 0.00027(3) 71Ga 315.40(6) 0.0275(9) 0.00120(4) 67Zn 4782.8(3) 0.0045(4) 2.08(19)×10-4 69Ga 318.87(3) 0.0592(14) 0.00257(6) 67Zn 4795.0(11) 0.0037(9) 1.7(4)×10-4 69Ga 344.79(7) 0.0070(6) 0.00030(3) 64Zn 4828.4(3) 0.00676(11) 0.003313(5) 69Ga 363.93(13) 0.0048(6) 2.1(3)×10-4	°∠n 4071.4(4)			⁷¹ Ga 264 03(4)		
68Zn 4430.69(14) 0.0055(13) 0.00025(6) 71Ga 306.11(14) 0.015(4) 0.00065(17) 0.0065(17) 0.0042(13) 1.9(6)×10-4 71Ga 306.62(12) 0.0097(8) 0.00042(4) 0.00507(10) 2.35(5)×10-4 71Ga 313.62(11) 0.0209(8) 0.00091(4) 0.0052(11) 0.0059(7) 0.00027(3) 71Ga 315.40(6) 0.0275(9) 0.00120(4) 0.00507(11) 0.0037(9) 0.0045(4) 2.08(19)×10-4 69Ga 318.87(3) 0.0592(14) 0.0057(6) 0.00120(6) 0.00	687n 4103.3(3)			^{/1} Ga 266.14(3)		
6 ⁷ Zn 4504.5(4)	[∞] Zn 4430.69(14)			′ 'Ga 306.11(14)	0.015(4)	0.00065(17)
68Zn 4582.9(4) 0.00507(10) 2.35(5)×10 ⁻⁴ 71Ga 315.40(6) 0.0275(9) 0.00120(4) 67Zn 4782.8(3) 0.0045(4) 2.08(19)×10 ⁻⁴ 69Ga 318.87(3) 0.0592(14) 0.00257(6) 67Zn 4795.0(11) 0.0037(9) 1.7(4)×10 ⁻⁴ 69Ga 344.79(7) 0.0070(6) 0.00030(3) 64Zn 4828.4(3) 0.00676(11) 0.00313(5) 69Ga 363.93(13) 0.0048(6) 2.1(3)×10 ⁻⁴	°'Zn 4504.5(4)	0.0042(13)	1.9(6)×1Ò ⁻⁴	′ ¹Ga 306.62(12)		
67Zn 4782.8(3) 0.0045(4) 2.08(19)×10-4 69Ga 318.87(3) 0.0592(14) 0.00257(6) 67Zn 4795.0(11) 0.0037(9) 1.7(4)×10-4 69Ga 344.79(7) 0.0070(6) 0.00030(3) 64Zn 4828.4(3) 0.00676(11) 0.000313(5) 69Ga 363.93(13) 0.0048(6) 2.1(3)×10-4	⁰⁴ Zn 4582.9(4)	0.00507(10)	$2.35(5)\times10^{-4}$	71Ga 313.62(11)		
67Zn 4795.0(11) 0.0037(9) 1.7(4)×10-4	677n 4792 9(2)			⁶⁹ Ga 318.87(3)		
64 7n 4828 4(3) 0.00676(11) 0.000313(5) 69 Ga 363.93(13) 0.0048(6) 2.1(3)×10 ⁻⁴	67Zn 4795 0(11)		2.00(18)×10 ⁻⁷	⁶⁹ Ga 344.79(7)		
<u>64Zn 4870.0(3) 0.00380(10) 1.76(5)×10-4</u> <u>63Ga 374.37(4) 0.0303(10) 0.00132(4)</u>	⁶⁴ 7n 4828 4(3)	0.00676(11)	0.000313(5)	⁶⁹ Ga 363.93(13)		
	⁶⁴ Zn 4870.0(3)	0.00380(10)	1.76(5)×10 ⁻⁴	~Ga 3/4.3/(4)	0.0303(10)	0.00132(4)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Gallium (Z=31), continued Gallium (Z=31), continued 7	Eγ-keV	σ(Εγ)-barns	k _o	Eγ-keV	σ(Εγ)-barns	k _o
Ga 390.66(4)					itinued	
"Ga 393.26(3) 0.021(3) 0.00091(13) (Ga 4761.5(4) 0.0078(9) 0.00034(4) (Ga 402.86(4) 0.0172(8) 0.00052(1) (Ga 402.86(4) 0.0172(8) 0.00075(4) (Ga 403.86(4) 0.0172(8) 0.00075(4) (Ga 403.89(4) 0.0172(8) 0.00075(4) (Ga 403.89(4) 0.0172(8) 0.00075(4) (Ga 403.89(4) 0.0179(9) 0.00033(6) (Ga 411.07(44) 0.019(5) 0.00083(2) (Ga 411.07(44) 0.019(5) 0.00084(6) (Ga 413.66(6) 0.0154(7) 0.00067(3) (Ga 488.85(3) 0.0191(14) 0.00083(6) (Ga 488.85(4) 0.0092(7) 0.00040(3) (Ga 488.81(4) 0.0027(8) 0.00094(4) (Ga 488.81(4) 0.0227(8) 0.00099(4) (Ga 508.193) 0.0074(1) (Ga 488.81(4) 0.0227(8) 0.00099(4) (Ga 508.193) 0.00042(6) (Ga 508.193) 0.00041(6) (Ga 508.193) 0.00042(6) (Ga 508.193) 0.00042(6) (Ga 508.194) 0.0005(6) (Ga 508.193) 0.00042(6) (Ga 508.194) 0.0005(6) (Ga 508.197(5) 0.0009(8) 0.00039(4) (Ga 508.35.66(6) 0.0057(1) (Ga 508.66(6) 0.0057(1) (Ga 508.295(6) 0.012(4) 0.00052(17) (Ga 523.357(25) 0.0034(4) 0.00150(8) (Ga 561.97(5) 0.0007(3) 0.00039(4) (Ga 508.33.46(6) 0.0057(15) 0.0007(4) (Ga 508.295(6) 0.009(4) (Ga 508.33.46(6) 0.0057(15) 0.0007(4) (Ga 508.295(6) 0.009(4) (Ga 508.33.46(6) 0.0057(15) 0.0007(4) (Ga 508.205(6) 0.00030(4) (Ga 508.334.13(18) 0.007(118) 0.0015(8) (Ga 509.43(24) 0.0055(17) 0.00067(3) (Ga 509.43(24) 0.0055(17) (Ga 509.43(24) 0.0055(17) (Ga 509.43(24) 0.0055(17) (Ga 509.43(24) 0.0005(17)	⁷¹ Ga 384.17(5)			⁷¹ Ga 4686.8(5)		
Ga 479.26(3)	' Ga 390.66(4)			71Ga 4719.2(9)		
Ga 402.86(4)	71Ca 393.26(3)			71Co 4761.5(4)		
Ga 408.44(20)	71Ga 402 86(4)			71Ga 4830 80(23)		
Ga 411.07(1)	⁷¹ Ga 408 44(20)			⁷¹ Ga 4868 2(3)		
Ga 411.13(4)	''Ga 411.07(14)			' 'Ga 4890.5(3)		
Ga 439.26(6)	' 'Ga 411.13(4)			⁶⁹ Ga 4955.2(4)		
'I'Ga 488.84(12) 0.0092(7) 0.00040(3) "9Ga 513.36(6) 0.0051(11) 2.2(5)×10-4 'I'Ga 488.81(4) 0.027(8) 0.00094(17) 'I'Ga 65 160.69(21) 0.0074(20) 0.00032(9) 'I'Ga 688.81(4) 0.0227(8) 0.00093(3) 'I'Ga 5195.1(5) 0.0074(20) 0.00032(9) 'I'Ga 565.64(25) 0.012(4) 0.00052(1) 'I'Ga 5195.1(5) 0.034(3) 0.00148(13) 'I'Ga 547.90(5) 0.0090(8) 0.00032(4) 'I'Ga 5223.37(7) 0.0157(13) 0.00068(6) 'I'Ga 564.29(5) 0.0078(3) 0.00033(4) 'I'Ga 5373.57(25) 0.034(19) 0.00150(8) 'I'Ga 564.29(5) 0.0097(3) 0.00030(4) 'I'Ga 5373.4(18) 0.027(118) 0.00118(8) 'I'Ga 607.27(6) 0.047(22) 0.0053(12) 2.3(5)×10-4 'I'Ga 539.4(5) 0.020(7) 0.0015(18) 0.00118(8) 'I'Ga 607.27(6) 0.078(13) 0.0030(4) 'I'Ga 539.4(5) 0.0049(10) 2.1(4)×10-4 'I'Ga 607.27(6) 0.078(13) 0.0030(4) 'I'Ga 539.4(5) 0.0027(118) 0.00018(18) 0.0027(118)	' 'Ga 439.26(6)			′ ¹Ga 5054.0(4)		
Ga 488.81(4)	''Ga 444.65(6)			''Ga 5091.8(9)		
Ga 488.81(4)	71Co 400 01(4)			71Co 5160 60(21)		
	71Ga 488 81(4)			69Ga 5189 2(9)		
	^{ວອ} Ga 508.19(3)			′ 'Ga 5195.1(5)		
Ga 547,90(5) 0.0090(8) 0.000339(1) 1 Ga 5233.57(25) 0.0344(19) 0.00150(8)	^{os} Ga 516.564(25)			' 'Ga 5223.3(7)		
1 Ga 561.97(5) 0.0078(3) 0.000339(3) 1 Ga 5272.7(6) 0.0057(15) 2.5(7)×10-4 1 Ga 579.55(12) 0.0097(3) 0.000422(13) 1 Ga 579.55(12) 0.0068(9) 0.00030(4) 1 Ga 579.55(12) 0.0068(9) 0.00030(4) 1 Ga 579.55(12) 0.0068(9) 0.00030(4) 1 Ga 5334.13(18) 0.027(118) 0.00118(8) 1 Ga 579.55(12) 0.0052(17) 0.00067(3) 1 Ga 5390.2(6) 0.0046(21) 0.00176(9) 1 Ga 619.63(6) 0.0053(12) 2.3(6)×10-4 1 Ga 5390.2(5) 0.0049(10) 2.1(4)×10-4 1 Ga 629.96(5) 0.0052(11) 2.3(5)×10-4 1 Ga 5390.2(5) 0.0049(10) 2.1(4)×10-4 1 Ga 629.96(5) 0.0052(11) 2.3(5)×10-4 1 Ga 5390.2(5) 0.0090(25) 0.00039(11) 1 Ga 629.96(5) 0.0490(22) 0.0273(2.4%) 1 Ga 5488.31(17) 0.0296(19) 0.00129(8) 1 Ga 629.96(5) 0.0490(22) 0.0273(2.4%) 1 Ga 5488.31(17) 0.0296(19) 0.00129(8) 1 Ga 639.943(24) 0.0133(7) 0.00080(3) 1 Ga 5497.6(5) 0.091(13) 0.00040(6) 1 Ga 639.943(24) 0.305(4) 0.01326(17) 1 Ga 5643.83(19) 0.00412(17) 0.0062(7) 1 Ga 5643.83(19) 0.1032(22) 0.0070(2.4%) 1 Ga 5577.0(6) 0.0058(18) 0.00025(8) 1 Ga 834.08(3) 0.1030(22) 0.0070(2.4%) 1 Ga 5601.75(25) 0.063(8) 0.00274(17) 1 Ga 5644.8(7) 0.0062(7) 1 Ga 848.4(20) 0.0111(9) 0.00044(4) 1 Ga 5721.1(13) 0.0003(7) 1 Ga 5644.8(7) 0.0065(21) 0.00033(7) 1 Ga 894.91(11) 0.0044(4) 0.0065(4) 1 Ga 5664.0(5) 0.0091(11) 0.00038(9) 1 Ga 894.91(11) 0.00048(4) 1 Ga 5721.1(13) 0.00018(9) 1 Ga 573.7(13) 0.0101(8) 0.00044(4) 1 Ga 5721.1(13) 0.0021(4) 0.00087(17) 1 Ga 100.7(125) 0.0073(8) 0.00032(4) 1 Ga 5864.4(5) 0.0091(11) 0.00065(7) 1 Ga 706.37(13) 0.0071(15) 0.00033(4) 1 Ga 5763.8(4) 0.0114(13) 0.0005(6) 1 Ga 1010.34(6) 0.0146(8) 0.00063(4) 1 Ga 5722.9(3) 0.021(113) 0.00092(6) 1 Ga 1010.34(6) 0.0146(8) 0.00063(4) 1 Ga 5722.9(3) 0.0011(13) 0.00092(6) 1 Ga 1010.34(6) 0.0146(8) 0.00063(4) 1 Ga 5783.8(4) 0.0114(13) 0.0005(6) 1 Ga 1051.25(17) 0.014(10) 0.00065(4) 1 Ga 5883.55(19) 0.0093(17) 1 Ga 1051.25(17) 0.014(10) 0.00065(1) 1 Ga 5883.55(19) 0.0093(17) 1 Ga 1051.25(17) 0.014(10) 0.00065(1) 1 Ga 5883.55(19) 0.0093(17) 1 Ga 1051.25(17) 0.014(10) 0.00065(1) 1 Ga 639.55(14) 0.013(12) 0.00095(6) 1 Ga 1217.5(9) 0.0075(21) 0.00033(4) 1 Ga 639.55(' 'Ga 547.90(5)			(Ga 5233.57(25)		
Ga 579.55(12)	^{os} Ga 561.97(5)		} (⁷¹ Ga 5272.7(6)		
Ga 601.21(6)	71Ga 564.29(5)			69Co 5313.3(8)		
Ga 603.24(4)	71Ga 601 21(6)d			⁷¹ Ga 5334.13(16)		
Ga 619.63(5)	⁷¹ Ga 603 24(4)			⁷¹ Ga 5340 45(25)		
1°Ga 629.96(5)t 0.490(22) 0.213(2.4%) 6°Ga 5488.31(17) 0.0099(11) 0.00039(11) 6°Ga 632.34(4) 0.0183(7) 0.00080(3) 7°Ga 5497.6(5) 0.0091(13) 0.00040(6) 6°Ga 651.09(3) 0.1030(22) 0.00448(10) 6°Ga 5510.0(4) 0.0047(9) 2.0(4)×10-4 6°Ga 661.09(3) 0.1030(22) 0.0072(2.4%) 7°Ga 5543.83(19) 0.0142(17) 0.00062(7) 7°Ga 766.17(16) 0.160(22) 0.0077[2.4%] 7°Ga 5543.83(19) 0.0142(17) 0.00052(8) 8°Ga 861.34(7) 0.0127(9) 0.00055(4) 7°Ga 5625.35(24) 0.0077(16) 0.0003(7) 9°Ga 868.3(3) 0.0071(15) 0.0003(17) 7°Ga 5625.35(24) 0.0077(16) 0.0003(7) 9°Ga 894.81(20) 0.0111(9) 0.00048(4) 7°Ga 5644.8(7) 0.0065(21) 0.00028(9) 9°Ga 994.91(7) 0.0149(10) 0.0054(4) 7°Ga 5664.0(5) 0.0099(11) 0.0003(7) 9°Ga 995.68(5) 0.0173(9) 0.00044(4) 7°Ga 5692.2(3) 0.0211(13) 0.00067(17) 9°Ga 63 100.271(25) 0.00073(8) <	′¹Ga 619.63(5)			' 'Ga 5390.2(5)		
(1) Ga 629.96(5) of (9) (2.9) 0.0213[2.4%] (9) Ga 5488.31(17) 0.0296(19) 0.00129(8) (9) Ga 651.09(3) 0.1030(22) 0.0048(10) (9) Ga 5510.0(4) 0.0047(9) 2.0(4)×10-4 (9) Ga 690.943(24) 0.305(4) 0.01326(17) (16 a 5543.83(19) 0.0142(17) 0.00062(7) (17) Ga 786.17(16) d. 0.160(22) 0.0070[2.4%] (16 a 5547.0(6) 0.0058(18) 0.0025(8) (17) Ga 834.08(3) d. 1.65(5) 0.0717[2.4%] (16 a 5601.75(25) 0.063(4) 0.00274(17) (9) Ga 868.3(3) 0.0071(15) 0.00031(7) (16 a 5644.8(7) 0.0065(21) 0.00033(7) (16 a 894.91(11) d. 0.35(3) 0.0149(10) 0.00048(4) (17 Ga 5651.3(4) 0.0134(20) 0.00043(5) (18 Ga 976.37(13) 0.0101(8) 0.00044(4) (16 a 5722.1(13) 0.020(4) 0.00087(25) (9) Ga 976.63(5) 0.0173(3) 0.00053(4) (17 Ga 5692.2(3) 0.0211(13) 0.00043(5) (17 Ga 1002.71(25) 0.0073(8) 0.0003(4) (16 a 5729.1(11) 0.0024(1) 0.00087(17) (18 Ga 1010.34(6) 0.0146(8) <th< td=""><td>''Ga 620.23(14)</td><td></td><td></td><td>' 'Ga 5487.2(13)</td><td>0.0090(25)</td><td>0.00039(11)</td></th<>	''Ga 620.23(14)			' 'Ga 5487.2(13)	0.0090(25)	0.00039(11)
0.003 0.1030(22) 0.00448(10) 0.0047(9) 0.0047(9) 0.0047(9) 0.0047(9) 0.0067(7) 0.0068(7) 0.0068(8) 0.0070(2.4%) 7.6a 5943.83(19) 0.0142(17) 0.00062(7) 0.00058(1) 0.00058(18) 0.00025(8) 0.0034(8) 0.00274(17) 0.0068(18) 0.000274(17) 0.0068(18) 0.000274(17) 0.0068(18) 0.000274(17) 0.0068(18) 0.000274(17) 0.0068(18) 0.000274(17) 0.0068(18) 0.000274(17) 0.0068(18) 0.00037(7) 0.0068(18) 0.00037(7) 0.0068(18) 0.00037(7) 0.0068(18) 0.00037(7) 0.0068(18) 0.00037(7) 0.0068(18) 0.00037(7) 0.0068(18) 0.00037(7) 0.0068(18) 0.00037(7) 0.00037(7) 0.0068(18) 0.00037(7) 0.00037(7) 0.00038(8) 0.0071(15) 0.00031(7) 7.6a 5644.8(7) 0.0065(21) 0.00038(9) 0.00038(9) 0.00038(9) 0.00038(9) 0.00038(9) 0.00038(9) 0.00038(9) 0.00038(9) 0.00038(9) 0.00038(9) 0.00038(9) 0.00038(9) 0.00038(9) 0.00038(9) 0.00038(9) 0.00038(9) 0.00038(9) 0.00038(9) 0.00038(19) 0.0	′¹Ga 629.96(5)d			⁰⁹ Ga 5488.31(17)		
"Ga 690.943(24)	⁶⁹ Ga 632.34(4)			11Ga 5497.6(5)		
71Ga 786.17(16)d 0.160(22) 0.0070(2.4%) 71Ga 5507.0(6) 0.0058(18) 0.00025(8) 71Ga 834.08(3)d 1.65(5) 0.0717[2.4%] 71Ga 5601.75(25) 0.063(4) 0.00274(17) 68Ga 8851.34(7) 0.0127(9) 0.00055(4) 71Ga 5625.35(24) 0.0077(16) 0.00033(7) 71Ga 894.84(20) 0.0111(9) 0.00048(4) 71Ga 5634.8(7) 0.0134(20) 0.00058(9) 71Ga 894.84(20) 0.0111(9) 0.00048(4) 71Ga 5651.3(4) 0.0134(20) 0.00058(9) 71Ga 894.91(11)d 0.35(3) 0.0152[2.4%] 71Ga 5664.0(5) 0.0099(11) 0.00043(5) 68Ga 904.91(7) 0.0149(10) 0.00065(4) 71Ga 5692.2(3) 0.0211(13) 0.00092(6) 71Ga 976.37(13) 0.0101(8) 0.00044(4) 71Ga 5692.2(3) 0.0211(13) 0.00092(6) 71Ga 995.68(5) 0.0173(9) 0.00075(4) 68Ga 5721.1(13) 0.020(4) 0.00087(17) 71Ga 1002.71(25) 0.0073(8) 0.00032(4) 71Ga 5779.11(18) 0.022(4) 0.00096(17) 71Ga 1012.34(6) 0.0146(8) 0.00063(4) 68Ga 5783.8(4) 0.0114(13) 0.00050(6) 68Ga 1014.99(8) 0.0077(7) 0.00033(3) 68Ga 5806.4(3) 0.0152(15) 0.00066(7) 71Ga 1050.69(5) 0.119(13) 0.0052(2.4%) 71Ga 5900.55(14) 0.013(14) 0.00057(6) 71Ga 1051.25(17) 0.0114(10) 0.00050(4) 71Ga 5919.38(15) 0.0131(12) 0.00057(5) 71Ga 1051.25(17) 0.0114(10) 0.00050(4) 71Ga 5919.38(15) 0.0131(12) 0.00057(5) 71Ga 1075.6(5) 0.0053(8) 2.3(4)×10-4 71Ga 5900.55(14) 0.0131(12) 0.00057(6) 71Ga 1270.5(5) 0.0078(9) 0.00034(4) 71Ga 6111.72(24) 0.055(4) 0.0039(17) 71Ga 1200.3(3) 0.0078(9) 0.00034(4) 71Ga 6111.72(24) 0.055(4) 0.00239(17) 71Ga 1217.5(9) 0.0075(21) 0.00033(9) 71Ga 6131.89(6) 0.0286(14) 0.00124(6) 69Ga 6386.4(3) 0.015(14) 0.00055(6) 71Ga 1217.5(9) 0.0075(21) 0.00033(9) 71Ga 6321.64(14) 0.0194(16) 0.00084(7) 69Ga 13306.73(12) 0.0140(20) 0.0066(19) 71Ga 6321.20(14) 0.0186(16) 0.00084(7) 69Ga 1359.53(17) 0.0148(11) 0.00064(5) 71Ga 6321.64(14) 0.0194(16) 0.00084(7) 69Ga 1359.53(17) 0.0148(11) 0.00055(6) 69Ga 6346.4(3) 0.0140(15) 0.00084(7) 69Ga 1359.53(17) 0.0148(11) 0.00064(5) 71Ga 6321.64(14) 0.0194(16) 0.00084(7) 69Ga 1359.53(17) 0.0148(11) 0.00065(6) 69Ga 6366.3(4) 0.00084(7) 69Ga 1359.53(17) 0.0148(11) 0.00065(6) 69Ga 6365.64(4) 0.017(3) 0.00084(7) 69Ga 1532.91(17) 0.0148(11) 0.00065(6) 69Ga 6366.61(4) 0	69Ga 600 043(24)			⁷¹ Ga 55/13/83/19)		
Ga 834.08(3)d	′ 'Ga 786.17(16)d			' 'Ga 5577.0(6)		
69Ga 851.34(7) 0.0127(9) 0.00055(4) 'Ga 5625.35(24) 0.0077(16) 0.00033(7) 69Ga 868.3(3) 0.0071(15) 0.00031(7) 71Ga 5644.8(7) 0.0065(21) 0.00028(9) 71Ga 894.84(20) 0.0111(9) 0.00048(4) 71Ga 5664.8(3) 0.0134(20) 0.00058(9) 71Ga 894.91(7) 0.0149(10) 0.00065(4) 71Ga 5664.0(5) 0.0099(11) 0.00043(5) 69Ga 976.37(13) 0.0101(8) 0.00044(4) 71Ga 5692.2(3) 0.0211(13) 0.00092(6) 71Ga 5692.2(3) 0.0211(13) 0.00087(17) 0.00087(17) 0.00087(17) 0.00087(17) 69Ga 995.68(5) 0.0173(9) 0.00075(4) 69Ga 5722.9(3) 0.0067(25) 0.00096(17) 69Ga 1010.34(6) 0.0073(8) 0.00032(4) 71Ga 5779.11(18) 0.022(4) 0.00096(17) 69Ga 1014.99(8) 0.0077(7) 0.00033(3) 69Ga 5806.4(3) 0.0152(15) 0.0006(7) 69Ga 1044.90(15) 0.0107(11) 0.00052(24%) 71Ga 5883.55(19) 0.0096(4) 0.0017(17) 71Ga 1055.0(5) 0.014(11) 0.00052(2	′ 'Ga 834.08(3)d			′ 'Ga 5601.75(25)		
Ga 894.84(20)	^{os} Ga 851.34(7)			' 'Ga 5625.35(24)		
Ga 894.91(11)	⁰³ Ga 868.3(3)			71Ga 5644.8(7)		
0°Ga 904.91(7) 0.0149(10) 0.00065(4) '1Ga 5692.2(3) 0.0211(13) 0.00092(6) 7¹Ga 975.37(13) 0.0101(8) 0.00044(4) '7¹Ga 5721.1(13) 0.020(4) 0.00087(17) 6⁰Ga 995.68(5) 0.0173(9) 0.00075(4) 6⁰Ga 5722.9(3) 0.00067(25) 0.00029(11) 7¹Ga 1002.7¹(25) 0.0073(8) 0.00032(4) 7¹Ga 5779.1¹(18) 0.022(4) 0.00096(17) 6⁰Ga 1014.99(8) 0.0077(7) 0.00033(3) 6⁰Ga 5806.4(3) 0.0152(15) 0.00066(7) 6⁰Ga 1044.99(8) 0.0017(11) 0.00047(5) 7¹Ga 5883.55(19) 0.0096(4) 0.00066(7) 6⁰Ga 1056.65(5) 0.0119(13) 0.0052[2.4%] 7¹Ga 5900.55(14) 0.0173(14) 0.00075(6) 7¹Ga 1075.6(5) 0.0053(8) 2.3(4)×10-4 7¹Ga 6007.25(14) 0.069(5) 0.00300(22) 6⁰Ga 1203.40(6) 0.0078(9) 0.00034(4) 7¹Ga 6111.72(24) 0.055(4) 0.0023(17) 7¹Ga 1200.3(3) 0.0075(21) 0.00034(4) 6⁰Ga 6134.5(5) 0.0058(14) 0.00025(6) 7¹Ga 1296.9(7) 0.0065(9) 0	71Ga 894.04 (20)			71Ga 5664 0(5)		
1 Ga 976.37(13) 0.0101(8) 0.00044(4) 1 Ga 57721.1(13) 0.020(4) 0.00087(17) 1 Ga 995.68(5) 0.0173(9) 0.00075(4) 1 Ga 57721.1(18) 0.022(4) 0.00096(17) 1 Ga 1002.71(25) 0.0073(8) 0.00032(4) 1 Ga 5779.11(18) 0.022(4) 0.00096(17) 1 Ga 5779.11(18) 0.022(4) 0.00050(6) 1 Ga 5779.11(18) 0.0152(15) 0.00066(7) 1 Ga 5779.11(18) 0.0152(15) 0.00057(5) 1 Ga 5779.11(18) 0.0152(15) 0.00057(5) 1 Ga 6779.12(15) 0.00067(10) 0	^{ов} Ga 904.91(7)	0.0149(10)		' 'Ga 5692.2(3)		
69Ga 995.68(5) 0.0173(9) 0.00075(4) 69Ga 5722.9(3) 0.00072(5) 0.00029(11) 71Ga 1002.71(25) 0.0073(8) 0.00032(4) 71Ga 5779.11(18) 0.022(4) 0.00096(17) 69Ga 1014.99(8) 0.0077(7) 0.00033(3) 69Ga 5806.4(3) 0.0152(15) 0.00066(7) 69Ga 1044.90(15) 0.0107(11) 0.00047(5) 71Ga 5883.55(19) 0.0096(4) 0.000417(17) 71Ga 1050.69(5)d 0.119(13) 0.0052[2.4%] 71Ga 5900.55(14) 0.0173(14) 0.00075(6) 71Ga 1051.25(17) 0.0114(10) 0.00050(4) 71Ga 5919.38(15) 0.0131(12) 0.00075(6) 71Ga 1051.25(17) 0.0114(10) 0.00050(4) 71Ga 5919.38(15) 0.0131(12) 0.00075(6) 71Ga 1051.25(17) 0.0114(10) 0.00050(4) 71Ga 6007.25(14) 0.0173(14) 0.00075(5) 69Ga 1140.37(4) 0.0422(16) 0.00183(7) 71Ga 611.72(24) 0.055(4) 0.00239(17) 71Ga 1200.3(3) 0.0078(9) 0.00034(4) 71Ga 612.757(14) 0.0227(23) 0.00099(10) 69Ga 1203.40(6) 0.0286(14) </td <td>''Ga 976.37(13)</td> <td></td> <td>0.00044(4)</td> <td>('Ga 5721.1(13)</td> <td></td> <td></td>	''Ga 976.37(13)		0.00044(4)	('Ga 5721.1(13)		
69Ga 1010.34(6) 0.0146(8) 0.00063(4) 69Ga 1014.99(8) 0.0077(7) 0.00033(3) 69Ga 5783.8(4) 0.0152(15) 0.00066(7) 71Ga 1044.90(15) 0.0107(11) 0.00047(5) 71Ga 5883.55(19) 0.0096(4) 0.000417(17) 71Ga 1050.69(5)d 0.119(13) 0.00052(2.4%) 71Ga 5990.55(14) 0.0173(14) 0.00075(6) 71Ga 1075.6(5) 0.0053(8) 2.3(4)×10-4 71Ga 6007.25(14) 0.069(5) 0.00300(22) 69Ga 1140.37(4) 0.0422(16) 0.00183(7) 71Ga 6007.25(14) 0.055(4) 0.00239(17) 71Ga 1200.3(3) 0.0078(9) 0.00034(4) 71Ga 6111.72(24) 0.055(4) 0.00239(17) 71Ga 1203.40(6) 0.0286(14) 0.00124(6) 69Ga 6134.5(5) 0.0058(14) 0.00025(6) 71Ga 1217.5(9) 0.0075(21) 0.00033(9) 71Ga 6190.14(17) 0.0218(19) 0.00095(8) 71Ga 1296.9(7) 0.0065(9) 0.00028(4) 69Ga 1306.73(12) 0.0140(20) 0.00061(9) 71Ga 6322.20(14) 0.0186(16) 0.00084(7) 69Ga 1359.50(9) 0.0148(11) 0.00064(5) 69Ga 1456.39(7) 0.0148(11) 0.00064(5) 69Ga 1518.21(8) 0.0219(13) 0.00095(6) 71Ga 1596.68(8)d 0.0732(16) 0.000318[2.4%] 69Ga 1621.55(12) 0.0096(10) 0.00042(4) 71Ga 652.55(12) 0.00018(2) 0.00042(4) 71Ga 6520.12(14) 0.017(3) 0.00074(13) 69Ga 1518.21(8) 0.0219(13) 0.00095(6) 71Ga 6520.12(14) 0.017(3) 0.00074(13) 69Ga 1518.21(8) 0.0219(13) 0.00095(6) 71Ga 6520.12(14) 0.017(3) 0.00074(13) 69Ga 1518.21(8) 0.0732(16) 0.00075(5) 71Ga 6520.12(14) 0.017(3) 0.00074(13) 69Ga 1518.21(8) 0.0732(16) 0.00075(5) 71Ga 6520.12(14) 0.017(3) 0.00074(13) 69Ga 1518.21(8) 0.00732(16) 0.00075(5) 71Ga 6520.12(14) 0.017(3) 0.00088(5) 71Ga 1596.68(8)d 0.0732(16) 0.00075(5) 71Ga 6520.12(14) 0.017(3) 0.00084(5) 69Ga 1518.51(17) 0.0168(11) 0.00075(5) 71Ga 6520.12(14) 0.017(3) 0.00074(13) 69Ga 1518.51(17) 0.0168(11) 0.00073(5) 71Ga 6520.12(14) 0.017(3) 0.00083(5) 71Ga 1596.68(8)d 0.0732(16) 0.00075(5) 71Ga 6520.12(14) 0.017(3) 0.00084(5) 69Ga 1518.51(17) 0.0	⁰⁹ Ga 995.68(5)			⁰⁹ Ga 5722.9(3)		
Ga 1014.99(8) 0.0077(7) 0.00033(3) 0.0077(7) 0.00047(5) 71Ga 1044.90(15) 0.0107(11) 0.00047(5) 71Ga 5883.55(19) 0.0096(4) 0.000417(17) 71Ga 1050.69(5)d 0.119(13) 0.0052[2.4%] 71Ga 5900.55(14) 0.0173(14) 0.00075(6) 71Ga 1075.6(5) 0.0053(8) 2.3(4)×10-4 71Ga 6007.25(14) 0.069(5) 0.00300(22) 71Ga 1200.3(3) 0.0078(9) 0.00034(4) 71Ga 6111.72(24) 0.055(4) 0.00239(17) 71Ga 1200.3(3) 0.0078(9) 0.00034(4) 71Ga 6127.57(14) 0.0227(23) 0.00099(10) 69Ga 1203.40(6) 0.0286(14) 0.00124(6) 69Ga 6134.5(5) 0.0058(14) 0.00025(6) 71Ga 1296.9(7) 0.0065(9) 0.00033(9) 71Ga 6190.14(17) 0.0218(19) 0.00095(8) 71Ga 1306.73(12) 0.0140(20) 0.00061(9) 71Ga 6311.64(14) 0.0194(16) 0.00084(7) 71Ga 1359.50(9) 0.0148(11) 0.00064(5) 71Ga 6322.20(14) 0.0186(16) 0.00084(7) 71Ga 1359.50(9) 0.0148(11) 0.00064(5) 71Ga 6358.61(14) 0.138(5) 0.00061(7) 71Ga 1464.00(7)d 0.0609(19) 0.00055(6) 71Ga 6358.61(14) 0.138(5) 0.00061(7) 71Ga 1532.91(17) 0.0172(12) 0.00075(5) 71Ga 6520.12(14) 0.017(3) 0.00074(13) 69Ga 1518.21(8) 0.0219(13) 0.00095(6) 71Ga 6520.12(14) 0.017(3) 0.00074(13) 69Ga 1518.21(8) 0.0073(5) 0.00058(6) 0.000318[2.4%] 69Ga 658(8)d 0.00732(16) 0.000318[2.4%] 69Ga 1621.55(12) 0.0093(10) 0.00084(3)	⁶⁹ Ga 1002.71(25)			⁶⁹ G2 5793 8(4)		
Ga 1044.90(15) 0.0107(11) 0.00047(5) 71Ga 5883.55(19) 0.0096(4) 0.000417(17) 71Ga 1050.69(5)d 0.119(13) 0.0052[2.4%] 71Ga 5900.55(14) 0.0173(14) 0.00075(6) 71Ga 1075.6(5) 0.0053(8) 2.3(4)×10-4 71Ga 6007.25(14) 0.069(5) 0.00300(22) 71Ga 1200.3(3) 0.0078(9) 0.00034(4) 71Ga 6111.72(24) 0.055(4) 0.00239(17) 71Ga 1200.3(3) 0.0078(9) 0.00034(4) 71Ga 6121.7.5(9) 0.0075(21) 0.00033(9) 71Ga 1217.5(9) 0.0075(21) 0.00033(9) 71Ga 1296.9(7) 0.0065(9) 0.00028(4) 69Ga 1306.73(12) 0.0140(20) 0.00061(9) 71Ga 6131.89(6) 0.0259(12) 0.00113(5) 69Ga 1359.50(9) 0.0148(11) 0.00064(5) 71Ga 1359.53(17) 0.0148(11) 0.00064(5) 71Ga 1464.00(7)d 0.069(19) 0.00073(5) 71Ga 1532.91(17) 0.0172(12) 0.00073(6) 0.00073(⁶⁹ Ga 1010.34(0)			⁶⁹ Ga 5806 4(3)		
71Ga 1050.69(5)d 0.119(13) 0.0052[2.4%] 71Ga 5900.55(14) 0.0173(14) 0.00075(6) 71Ga 1075.6(5) 0.0053(8) 2.3(4)×10-4 71Ga 6007.25(14) 0.069(5) 0.00300(22) 71Ga 1200.3(3) 0.0078(9) 0.00034(4) 71Ga 6127.57(14) 0.0227(23) 0.00099(10) 69Ga 1203.40(6) 0.0286(14) 0.00124(6) 71Ga 1217.5(9) 0.0075(21) 0.00033(9) 71Ga 6190.14(17) 0.0218(19) 0.00095(8) 71Ga 1296.9(7) 0.0065(9) 0.00028(4) 69Ga 1306.73(12) 0.0140(20) 0.00061(9) 71Ga 6311.64(14) 0.0194(16) 0.00084(7) 69Ga 1311.89(6) 0.0259(12) 0.00113(5) 71Ga 6322.20(14) 0.0186(16) 0.00081(7) 69Ga 1359.53(17) 0.0148(11) 0.00064(5) 71Ga 6358.61(14) 0.138(5) 0.0060(22) 69Ga 1456.39(7) 0.0148(11) 0.00073(5) 71Ga 6358.61(14) 0.138(5) 0.000000(22) 69Ga 1518.21(8) 0.0219(13) 0.00095(6) 71Ga 6520.12(14) 0.017(3) 0.00074(13) 69Ga 1532.91(17) 0.0172(12) 71Ga 1596.68(8)d 0.0732(16) 0.000318[2.4%] 69Ga 1621.55(12) 0.0096(10) 0.00042(4)	^{os} Ga 1044.90(15)			' 'Ga 5883.55(19)		
71 Ga 1075.6(5) 0.0053(8) 2.3(4)×10-4 71 Ga 6007.25(14) 0.069(5) 0.00300(22) 71 Ga 1140.37(4) 0.0422(16) 0.00183(7) 71 Ga 6111.72(24) 0.055(4) 0.00239(17) 71 Ga 1200.3(3) 0.0078(9) 0.00034(4) 71 Ga 6117.57(14) 0.0227(23) 0.00099(10) 71 Ga 1217.5(9) 0.0075(21) 0.00033(9) 71 Ga 6190.14(17) 0.0218(19) 0.00025(6) 71 Ga 1296.9(7) 0.0065(9) 0.00028(4) 69 Ga 1306.73(12) 0.0140(20) 0.00061(9) 71 Ga 6311.64(14) 0.0194(16) 0.00084(7) 71 Ga 6311.89(6) 0.0259(12) 0.00113(5) 71 Ga 6311.64(14) 0.0194(16) 0.00084(7) 71 Ga 1359.53(17) 0.0148(11) 0.00064(5) 71 Ga 6322.20(14) 0.0186(16) 0.00081(7) 71 Ga 1359.53(17) 0.0148(11) 0.00064(5) 71 Ga 6322.20(14) 0.0186(16) 0.00081(7) 71 Ga 1464.00(7) d 0.0609(19) 0.00265[2.4%] 69 Ga 1518.21(8) 0.0219(13) 0.00095(6) 71 Ga 1596.68(8) d 0.0732(16) 0.00075(5) 71 Ga 1596.68(8) d 0.0732(16) 0.00075(5) 69 Ga 1621.55(12) 0.0096(10) 0.00084(4) 71 Ga 6807.25(14) 0.017(3) 0.000084(5) 71 Ga 1596.68(8) d 0.0732(16) 0.00075(5) 69 Ga 1621.55(12) 0.0096(10) 0.00042(4) 71 Ga 6807.25(14) 0.0201(7) 0.00084(3)	′'Ga 1050.69(5)d			' 'Ga 5900.55(14)		
Ga 1140.37(4) 0.0422(16) 0.00183(7) 71Ga 6111.72(24) 0.055(4) 0.00239(17) 71Ga 1200.3(3) 0.0078(9) 0.00034(4) 71Ga 6127.57(14) 0.0227(23) 0.00099(10) 69Ga 1203.40(6) 0.00286(14) 0.00124(6) 71Ga 1217.5(9) 0.0075(21) 0.00033(9) 71Ga 6190.14(17) 0.0218(19) 0.00025(6) 71Ga 1296.9(7) 0.0065(9) 0.00028(4) 69Ga 1306.73(12) 0.0140(20) 0.00061(9) 71Ga 6311.64(14) 0.0194(16) 0.00084(7) 71Ga 1359.50(9) 0.0148(11) 0.00064(5) 71Ga 6322.20(14) 0.0186(16) 0.00081(7) 71Ga 1359.53(17) 0.0148(11) 0.00064(5) 69Ga 1359.53(17) 0.0148(11) 0.00064(5) 71Ga 6358.61(14) 0.138(5) 0.00600(22) 69Ga 1456.39(7) 0.0168(11) 0.00073(5) 71Ga 1464.00(7)d 0.0609(19) 0.00265[2.4%] 69Ga 1518.21(8) 0.0219(13) 0.00095(6) 71Ga 1596.68(8)d 0.0732(16) 0.00075(5) 71Ga 1596.68(8)d 0.0732(16) 0.00075(5) 69Ga 1621.55(12) 0.0096(10) 0.00042(4) 72Ge 68.750(17) 0.0201(7) 0.00084(3)	''Ga 1051.25(17)			''Ga 5919.38(15)		
71Ga 1200.3(3) 0.0078(9) 0.00034(4) 71Ga 6127.57(14) 0.0227(23) 0.00099(10) 69Ga 1203.40(6) 0.0286(14) 0.00124(6) 71Ga 1217.5(9) 0.0075(21) 0.00033(9) 71Ga 6134.5(5) 0.0058(14) 0.00025(6) 71Ga 1296.9(7) 0.0065(9) 0.00028(4) 71Ga 61306.73(12) 0.0140(20) 0.00061(9) 71Ga 6311.64(14) 0.0194(16) 0.00029(4) 71Ga 1311.89(6) 0.0259(12) 0.00113(5) 71Ga 6322.20(14) 0.0186(16) 0.00081(7) 71Ga 1359.50(9) 0.0148(11) 0.00064(5) 69Ga 1359.50(9) 0.0148(11) 0.00064(5) 71Ga 6358.61(14) 0.138(5) 0.00061(7) 71Ga 1359.53(17) 0.0168(11) 0.00073(5) 71Ga 1464.00(7)d 0.0609(19) 0.00265[2.4%] 69Ga 1518.21(8) 0.0219(13) 0.00095(6) 71Ga 1532.91(17) 0.0172(12) 0.00075(5) 71Ga 1596.68(8)d 0.0732(16) 0.0038[2.4%] 69Ga 1621.55(12) 0.0096(10) 0.00042(4) 72Ge 68.750(17) 0.0201(7) 0.00084(3)	⁶⁹ Ga 1140 37(4)			71Ga 6111 72(24)	0.069(5)	
69 Ga 1203.40(6) 0.0286(14) 0.00124(6) 0.063(14) 0.00025(6) 0.00025(6) 0.00033(9) 71 Ga 6190.14(17) 0.0218(19) 0.00095(8) 0.00095(8) 0.00095(8) 0.00067(10) 0.00095(8) 0.00067(10) 0.000029(4) 0.00067(10) 0.000029(4) 0.00067(10) 0.000029(4) 0.00067(10) 0.000029(4) 0.00067(10) 0.000029(4) 0.00067(10) 0.000029(4) 0.00067(10) 0.000029(4) 0.00067(10) 0.000029(4) 0.00067(10) 0.000029(4) 0.00067(10) 0.000084(7) 0.00084(7) 0.0186(16) 0.00084(7) 0.00084(7) 0.0186(16) 0.00084(7) 0.00061(7)	' 'Ga 1200.3(3)	0.0078(9)		('Ga 6127.57(14)		0.00099(10)
71Ga 1296.9(7) 0.0075(21) 0.00033(9) 71Ga 6190.14(17) 0.0218(19) 0.00095(8) 69Ga 1296.9(7) 0.0140(20) 0.00061(9) 71Ga 6321.64(14) 0.0194(16) 0.00084(7) 71Ga 6311.89(6) 0.0259(12) 0.00113(5) 71Ga 6322.20(14) 0.0186(16) 0.00081(7) 71Ga 1359.50(9) 0.0148(11) 0.00064(5) 71Ga 6322.20(14) 0.0186(16) 0.00061(7) 71Ga 1359.53(17) 0.0148(11) 0.00064(5) 71Ga 6358.61(14) 0.138(5) 0.00060(22) 69Ga 1456.39(7) 0.0168(11) 0.00073(5) 71Ga 1464.00(7)d 0.0609(19) 0.00265[2.4%] 69Ga 1518.21(8) 0.0219(13) 0.00095(6) 71Ga 1596.68(8)d 0.0732(16) 0.00318[2.4%] 69Ga 1621.55(12) 0.0096(10) 0.00042(4) 72Ge 68.750(17) 0.0201(7) 0.00084(3)	^{os} Ga 1203.40(6)	0.0286(14)	0.00124(6)	^{os} Ga 6134.5(5)		
69Ga 1306.73(12) 0.0140(20) 0.00061(9) 71Ga 6311.64(14) 0.0194(16) 0.00084(7) 71Ga 1359.50(9) 0.0148(11) 0.00064(5) 71Ga 6322.20(14) 0.0140(15) 0.00061(7) 71Ga 1359.53(17) 0.0148(11) 0.00064(5) 71Ga 6358.61(14) 0.138(5) 0.00600(22) 71Ga 1464.00(7)d 0.0609(19) 0.00265[2.4%] 71Ga 1532.91(17) 0.0172(12) 71Ga 1596.68(8)d 0.0732(16) 0.000318[2.4%] 71Ga 1596.68(8)d 0.0732(16) 0.0006(10) 0.0004(24) 71Ga 6311.64(14) 0.0194(16) 0.0186(16) 0.00084(7) 0.00061(7) 0.00060(17) 0.00061(7) 0.00060(17) 0.0006	('Ga 1217 5(9)			' 'Ga 6190.14(17)		
⁶⁹ Ga 1311.89(6) 0.0259(12) 0.00113(5) (⁶⁹ Ga 6322.20(14) 0.0186(16) 0.00081(7) (⁶⁹ Ga 1359.53(17) 0.0148(11) 0.00064(5) (⁷¹ Ga 6358.61(14) 0.138(5) 0.00600(22) (⁶⁹ Ga 1456.39(7) 0.0168(11) 0.00073(5) (⁷¹ Ga 1464.00(7)d 0.0609(19) 0.00265[2.4%] (⁷¹ Ga 6520.12(14) 0.017(3) 0.00074(13) (⁶⁹ Ga 1518.21(8) 0.0219(13) 0.00095(6) (⁷¹ Ga 1532.91(17) 0.0172(12) 0.00075(5) (⁷¹ Ga 1596.68(8)d 0.0732(16) 0.00318[2.4%] (⁶⁹ Ga 1621.55(12) 0.0096(10) 0.00042(4) (⁷² Ge 68.750(17) 0.0201(7) 0.00084(3)	(Ga 1296.9(7)			71Ca 6238.6(4)		
¹⁰ Ga 1359.50(9) 0.0148(11) 0.00064(5) 0.00064(5) 0.0140(15) 0.00061(7) 0.00061(19) 0.00061(19) 0.00072(19) 0.00073(5) 0.00073(5) 0.00073(19) 0.00074(13) 0.00074	69Ga 1311 89(6)			71Ga 6322 20(14)		: :(
⁷¹ Ga 1359.53(17) 0.0148(11) 0.00064(5) (9Ga 1456.39(7) 0.0168(11) 0.00073(5) (9Ga 6513.06(18) 0.0325(20) 0.00141(9) (9Ga 1518.21(8) 0.0219(13) 0.00095(6) (9Ga 1518.21(8) 0.0219(13) 0.00095(6) (71Ga 1532.91(17) 0.0172(12) (0.00075(5) (71Ga 1596.68(8)d 0.0732(16) 0.00318[2.4%] (9Ga 1621.55(12) 0.0096(10) 0.00042(4) (9Ga 1621.55(12) 0.0096(10) 0.00042(4) (9Ga 16358.61(14) 0.138(5) 0.00325(20) 0.00141(9) (9Ga 6520.12(14) 0.017(3) 0.00074(13) (9Ga 7002.30(16) 0.0203(12) 0.00088(5) (9Ga 1621.55(12) 0.0096(10) 0.00042(4) (9Ga 68.750(17) 0.0201(7) 0.00084(3)	^{os} Ga 1359.50(9)		: }_{	⁶⁹ Ga 6346.4(3)	} (
Ga 1456.39(7) 0.0168(11) 0.00073(5) σ ³ Ga 6513.06(18) 0.0325(20) 0.00141(9) σ ⁴ Ga 1464.00(7)d 0.0609(19) 0.00265[2.4%] σ ⁶⁹ Ga 1518.21(8) 0.0219(13) 0.00095(6) σ ⁹ Ga 7002.30(16) 0.0203(12) 0.00088(5) σ ⁶⁹ Ga 1596.68(8)d 0.0732(16) 0.00318[2.4%] σ ⁶⁹ Ga 1621.55(12) 0.0096(10) 0.00042(4) σ ⁷² Ge 68.750(17) 0.0201(7) 0.00084(3)	' 'Ga 1359.53(17)			′ 'Ga 6358.61(14)	0.138(5)	
⁰⁹ Ga 1518.21(8) 0.0219(13) 0.00095(6) 0.00075(5) 0.00075(5) 0.00073(12) 0.00088(5) 0.00075(5) 0.00073(12) 0.000318[2.4%] 0.000318[2.4%] 0.00042(4) 0.00	⁶⁹ Ga 1456.39(7)			⁶⁹ Ga 6513.06(18)		
Ga 1532.91(17) 0.0172(12) 0.00075(5) 0.00318[2.4%] Germanium (Z=32), At.Wt.=72.64(1), σ_{γ} =2.30(6) 0.00318[2.4%] 0.00042(4) Germanium (Z=32), At.Wt.=72.64(1), σ_{γ} =2.30(6) 0.00084(3)	69Ga 1518 21(8)			69Ga 7002 30(16)		
⁶⁹ Ga 1621.55(12) 0.0096(10) 0.00042(4) ⁷² Ge 68.750(17) 0.0201(7) 0.00084(3)	' Ga 1532.91(17)				()	()
⁶⁸ Ga 1621.55(12) 0.0096(10) 0.00042(4) = Ge 68.750(17) 0.0201(7) 0.00084(3)	''Ga 1596.68(8)d			Germanium (Z=32),		,
○○C2 1725 48(8)	⁰⁹ Ga 1621.55(12)	0.0096(10)		⁷² Ge 68.750(17)		
⁶⁹ Ga 1794.15(13) 0.0088(9) 0.00038(4) ⁷⁰ Ge 175.05(3)d 0.078(5) 0.00325[100%]	⁶⁹ Ga 1725.48(8)	0.0108(7)	0.00047(3)	⁷⁰ Ge 175.05(3)		
69 Ga 1846 5(3) $^{\prime}$ 0.0053(10) 2.3(4)×10-4 $^{\prime 4}$ Ge 177.49(4) 0.0118(5) 0.000492(21)	69Ga 1846 5(3)			′ ⁴ Ge 177.49(4)		
^{71}Ga 1861 00/6)d 0.000/100 0.0030312 4%1 ^{70}Ge 247.27(5) 0.0123(6) 0.000513(25)	⁷¹ Ga 1861.09(6)d			′ ⁰ Ge 247.27(5)	0.0123(6)	
⁶⁹ Ga 1866.6(5) 0.0060(17) 0.00026(7) ⁷⁴ Ge 253.21(5) 0.0609(16) 0.00254(7)	⁰⁹ Ga 1866.6(5)	0.0060(17)	0.00026(7)	⁷⁴ Ge 253.21(5)		
⁶⁸ Ga 1907.63(13) 0.0089(11) 0.00039(5) ¹ Ge 284.98(5) 0.0164(7) 0.0008(3)	⁰⁹ Ga 1907.63(13)			72Ge 284.98(5)		
69Ga 1930.5(3) 0.0058(11) 0.00025(5) 72Ge 297.41(3) 0.0414(12) 0.00173(5) 69Ga 2115.98(17) 0.0066(8) 0.00029(4) 70Ge 306.18(4) 0.0136(8) 0.00057(3)	°Ga 1930.5(3)			⁷⁰ Ge 306 18(4)		
⁶⁹ Ga 2142 88λ14\\ 0.0085\\\ 0\ 0.00271(8) \\ 0.00271(8)	69Ga 2142 88(14)			′ ² Ge 325.74(3)		
⁶⁹ Ga 2164.1(7) 0.0056(13) 2.4(6)×10 ⁻⁴ Ge 326.83(3) 0.058(5) 0.00242(21)	⁰⁹ Ga 2164.1(7)			′ ⁰ Ge 326.83(3)	0.058(5)	0.00242(21)
⁷¹ Ga 2201.91(13)d 0.52(4) 0.0226[2.4%] ⁷⁰ Ge 391.43(4) 0.0253(10) 0.00106(4)	''Ga 2201.91(13)d	0.52(4)		′ ⁰ Ge 391.43(4)		
''Ga 2491.6(3)d 0.17(4) 0.0074[2.4%] = Ge 430.34(5) 0.0161(7) 0.00067(3)	′ 'Ga 2491.6(3)d	0.17(4)		72Ge 430.34(5)		
74	71Ga 2507.40(12)d			⁷³ Ge 492.933(5)		
⁷¹ Ga 4543.3(5) 0.0104(11) 0.00045(5) ⁷⁰ Ge 499.87(3) 0.162(6) 0.00676(25)	' 'Ga 4543.3(5)			′ [∪] Ge 499.87(3)		
71 Ga $4578.2(7)$ 0.0058(12) 0.00025(5) 73 Ge 516.19(4) ~0.02 ~0.0008	′ 'Ga 4578.2(7)	0.0058(12)	0.00025(5)	⁷³ Ge 516.19(4)	~0.02	~0.0008
71Ga 4595.4(5) 0.0093(13) 0.00040(6) 70Ge 517.78(8) 0.0114(10) 0.00048(4)	' 'Ga 4595.4(5)	0.0093(13)	0.00040(6)	Ge 517.78(8)	0.0174(10)	0.00048(4)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

⁷³ Ge ⁷² Ge ⁷⁰ Ge	anium (Z=32), 531.654(7) 541.77(4)	continued 0.0133(7)	0.00055(3)	Germanium (Z=32), ⁷² Ge 6418.62(4)		
⁷² Ge :	531.654(7) 541.77(4)	0.0133(7)	0 00055(3)	/2Ca 6/10 60//\	0.0470/45	
′ ⁰ Ge :	541 77(4)			70GE 0410.02(4)	0.0178(15)	0.00074(6)
74Ge	570.07/5	0.0154(6)	0.000642(25)	⁷⁰ Ge 6707.43(3)	0.0388(25)	0.00162(10)
	572.27(5) 574.91(3)	0.018(4)	0.00075(17)	⁷² Ge 6716.00(4) ⁷³ Ge 6717.462(23)	0.0160(15)	0.00067(6)
73Ga	5 74 .91(3) 595.851(5)	0.0306(12) 1.100(24)	0.00128(5) 0.0459(10)	⁷⁰ Ge 6915.69(3)	0.020(5) 0.031(5)	0.00083(21) 0.00129(21)
⁷³ Ge	606.80(4)	0.015(12)	0.0006(5)	⁷³ Ge 7091.164(15)	0.0170(11)	0.00071(5)
′³Ge ∣	608.353(4)	0.250(6)	0.01043(25)	⁷³ Ge 7260.187(14)	0.0270(15)	0.00113(6)
′³Ge ˈ	701.509(8)	0.0642(19)	0.00268(8)	′ ⁰ Ge 7415.510(23)	0.016(5)	0.00067(21)
′ºGe ˈ	708.15(3)	0.0825(24)	0.00344(10)	⁷³ Ge 8030.317(13)	0.0117(9)	0.00049(4)
/3Ge	770.211(8)	0.0135(8)	0.00056(3)	⁷³ Ge 8498.388(13)	0.0120(9)	0.00050(4)
70Ge	788.60(7)	0.014(3)	0.00058(13)	⁷³ Ge 8731.744(13)		0.00053(3)
73Ge	808.14(4) 808.218(10)	0.030(5) 0.0197(18)	0.00125(21) 0.00082(8)	Arsenic (Z=33), At. V	Nt.=74.92160(2)), σ _√ =4.23(8)
70Ge	831.30(3)	0.0445(16)	0.00082(8)	⁷⁵ As 44.4250(10)	0.560(20)	0.0227(8)
′ºGe	851.70(13)	0.012(7)	0.0005(3)	^{/5} As 46.0980(10)	0.337(15)	0.0136(6)
′³Ge ¦	867.899(5)	0.553(12)	0.0231(5)	¹³ As 74.8720(10)	0.12(3)	0.0049(12)
′³Ge ≀	878.130(19)	0.0112(8)	0.00047(3)	⁷⁵ As 81.4110(20)	0.0107(15)	0.00043(6)
/3Ge	939.249(11)	0.0315(13)	0.00131(5)	⁷⁵ As 83.2840(10) ⁷⁵ As 86.7880(10)	0.0142(16) 0.579(11)	0.00057(7) 0.0234(4)
73Ce	961.055(7) 999.775(8)	0.129(4)	0.00538(17)	⁷⁵ As 91.3670(10)	0.0218(17)	0.00088(7)
70Ge	999.775(6) 1095.42(5)	0.0581(19) 0.053(5)	0.00242(8) 0.00221(21)	'SAS 116.7550(10)	0.107(18)	0.0043(7)
⁷⁰ Ge	1098.62(5)	0.0165(10)	0.000221(21)	⁽⁵ As 117 3320(10)	0.071(18)	0.0029(7)
⁷³ Ge	1101.282(6)	0.134(3)	0.00559(13)	'SAS 118 680(3)	0.0140(10)	0.00057(4)
′³Ge	1105.557(10)	0.0708(20)	0.00295(8)	'SAS 120.2580(10)	0.402(8)	0.0163(3)
′³Ge	1131.360(8)	0.0487(15)	0.00203(6)	⁷⁵ As 122.2470(10)	0.227(5)	0.00918(20)
⁷⁰ Ge	1139.27(6)	0.0441(23)	0.00184(10)	⁷⁵ As 127.5090(20) ⁷⁵ As 135.4110(10)	0.096(3)	0.00388(12)
73Ge	1150.441(22)	0.0127(8)	0.00053(3)	75 As 136.3430(10)	0.156(4) 0.031(3)	0.00631(16) 0.00125(12)
73Ge	1200.75(10) 1200.89(18)	~0.01 ~0.01	~0.0005 ~0.0005	'SAS 137 0270(10)	0.0391(19)	0.00128(8)
73Ge	1200.89(18)	~0.01	~0.0005	'SAS 141 2150(20)	0.0625(21)	0.00253(9)
′³Ge ˈ	1204.199(6)	0.141(4)	0.00588(17)	'SAS 142 4590(10)	0.0211(16)	0.00085(7)
′³Ge	1205.862(13)	0.0114(21)	0.00048(9)	¹³ As 144.5480(10)	0.1000(22)	0.00404(9)
′³Ge	1228.20(9)	0.0116(9)	0.00048(4)	⁷⁵ As 152.8430(20)	0.0114(13)	0.00046(5)
′°Ge	1250.55(10)	0.0110(21)	0.00046(9)	⁷⁵ As 155.0830(10) ⁷⁵ As 156.8900(20)	0.0423(19) 0.0136(18)	0.00171(8) 0.00055(7)
70Ge	1251.30(7) 1298.61(6)	0.032(9)	0.0013(4)	75 As 157.7450(10)	0.117(24)	0.0047(10)
73Ge	1332.081(11)	0.049(4) 0.0122(10)	0.00204(17) 0.00051(4)	'SAS 162 6820(10)	0.0257(19)	0.00104(8)
′ºGe	1378.73(6)	0.017(4)	0.00031(4)	'SAS 165.0490(10)	0.996(16)	0.0403(7)
′³Ge	1471.712(10)	0.083(3)	0.00346(13)	'SAS 178 ()19()(1())	0.0979(23)	0.00396(9)
′³Ge	1489.491(24)	0.0234(12)	0.00098(5)	⁷⁵ As 178.831(3)	0.0169(11)	0.00068(4)
^{/3} Ge	1509.719(11)	0.0422(17)	0.00176(7)	⁷⁵ As 180.121(3) ⁷⁵ As 180.2100(10)	0.0136(7) 0.0157(8)	0.00055(3) 0.00064(3)
73Ce	1513.41(8) 1513.74(9)	~0.01	~0.0005	75 As 186.0720(10)	0.0285(17)	0.000115(7)
73 G A	1573.87(3)	~0.01 0.0115(9)	~0.0005 0.00048(4)	'SAS 186 734(3)	0.0103(6)	0.000417(24)
^{/3} Ge	1617.539(14)	0.0197(12)	0.00082(5)	'SAS 187 3130(20)	0.0152(8)	0.00061(3) ´
′ºGe	1631.1(3)	0.0189(13)	0.00079(5)	/ ³ Λc 188 0620/10\	0.090(3)	0.00364(12)
′°Ge	1631.83(7)	0.0175(12)	0.00073(5)	⁷⁵ As 191.2620(20)	0.0117(17)	0.00047(7)
/3Ge	1635.84(7)	0.0138(11)	0.00058(5)	⁷⁵ As 193.273(3) ⁷⁵ As 198.8550(10)	0.0119(15)	0.00048(6)
73Ge	1640.749(12)	0.0128(10)	0.00053(4)	75 As 200.446(3)	0.089(3) 0.011(3)	0.00360(12) 0.00044(12)
73Ge	1712.780(20) 1755.86(3)	0.0129(9) 0.014(4)	0.00054(4) 0.00058(17)	'SAS 201 1800(20)	0.0140(18)	0.00057(7)
73Ge	1940.422(12)	0.0382(16)	0.00058(17)	⁽³ As 211.1470(10)	0.113(3)	0.00457(12)
′ ⁰ Ge	1964.98(5)	0.0112(11)	0.00047(5)	'SAS 220.3810(10)	0.0373(23)	0.00151(9)
⁷³ Ge ∶	2014.478(24)	0.0127(12)	0.00053(5)	⁽³ As 221.5320(10)	0.0534(25)	0.00216(10)
′³Ge∷	2073.746(14)	0.0205(14)	0.00086(6)	⁷⁵ As 224.004(4)	0.0126(12)	0.00051(5)
/3Ge /	4423.23(6)	0.014(3)	0.00058(13)	⁷⁵ As 225.7020(10) ⁷⁵ As 235.8770(10)	0.0803(24) 0.181(4)	0.00325(10) 0.00732(16)
74Ce	4423.81(8) 4706.98(23)	0.014(4)	0.00058(17)	⁷⁵ As 238.9960(10)	0.023(10)	0.00732(10)
70Ge	4881.79(4)	0.0151(13) 0.017(3)	0.00063(5) 0.00071(13)	'SAS 241 6580(10)	0.0262(13)	0.00106(5)
⁷³ Ge	5165.56(5)	0.017(3)	0.00071(13)	⁽³ As 246,2030(20)	0.0223(14)	0.00090(6)
⁷³ Ge	5361.77(6)	0.0111(12)	0.00046(5)	'SAS 256 0350(10)	0.045(11)	0.0018(4)
′ºGe :	5383.85(7)	0.0131(15)	0.00055(6)	^{'3} As 263.8940(10)	0.18(4)	0.0073(16)
′ºGe :	5450.69(5)	0.028(4)	0.00117(17)	⁷⁵ As 271.7540(10)	0.013(4)	0.00053(16)
′2Ge	5518.30(4)	0.0290(17)	0.00121(7)	⁷⁵ As 281.5750(10) ⁷⁵ As 297.248(10)	0.085(20)	0.0034(8) 0.00040(16)
72Ca	5650.80(6) 5740.07(10)	0.0115(12)	0.00048(5)	⁽³ As 297.5420(10)	0.010(4) 0.055(3)	0.00040(16)
70Ge	5740.07(10) 5817.17(4)	0.0151(15) 0.028(3)	0.00063(6) 0.00117(13)	'SAS 300 4610(10)	0.051(3)	0.00222(12)
′ºGe ∣	6036.90(6)	0.026(3)	0.00117(13)	^{'3} As 301.654(7)	0.0109(24)	0.00044(10)
′⁰Ge	6117.02(7)	0.043(6)	0.00179(25)	'SAS 306 639(9)	0.011(3)	0.00044(12)
730-	6199.96(5)	0.0120(13)	0.00050(5)	¹³ As 308 3190(10)	0.018(3)	0.00073(12)
Ge	6251 Q7 <i>Ì</i> 6\	0.0188(18)	0.00078(8)	⁷⁵ As 311.004(5)	0.0161(25)	0.00065(10)
′⁴Ge	0231.37(0)			1000 014 040101		
⁷⁴ Ge ⁷³ Ge	6265.84(6)	0.015(4) ´	0.00063(17)	⁷⁵ As 314.243(3)	0.031(3) 0.016(3)	0.00125(12)
⁷⁴ Ge ⁷³ Ge ⁷⁰ Ge	6265.84(6) 6276.35(6) 6320.19(5)			75As 314.243(3) 75As 322.572(4) 75As 326.9120(20) 75As 330.100(7)	0.031(3) 0.016(3) 0.015(3)	0.00125(12) 0.00065(12) 0.00061(12)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Eγ)-barns	k _o	Eγ-keV	σ(Eγ)-barns	k ₀
Arsenic (Z=33), con			Arsenic (Z=33), con	tinued	
⁷⁵ As 340.1560(20)	0.0413(21)	0.00167(9)	⁷⁵ As 5786.82(3)	0.026(4)	0.00105(16)
⁷⁵ As 352.3620(20)	0.071(3)	0.00287(12)	⁷⁵ As 5816.39(5)	0.0247(12)	0.00100(5)
⁽³ As 357.4070(10)	0.074(3)	0.00299(12)	⁷⁵ As 5834 21(7)	0.0210(11)	0.00085(4)
⁷⁵ As 360.3830(20)	0.0228(14)	0.00092(6)	⁷⁵ As 5854.92(13)	0.0218(16)	0.00088(7)
⁷⁵ As 363.9040(10)	0.059(3)	0.00239(12)	⁷⁵ As 5869.65(7)	0.015(4)	0.00061(16)
⁷⁵ As 378.976(3)	0.030(3)	0.00121(12)	⁷⁵ As 5877.68(6)	0.0276(14)	0.00112(6)
⁷⁵ As 379.3230(20) ⁷⁵ As 384.002(5)	0.0231(20) 0.0186(18)	0.00093(8) 0.00075(7)	⁷⁵ As 5884.72(3) ⁷⁵ As 5906.24(8)	0.0504(24) 0.0128(8)	0.00204(10) 0.00052(3)
75 As 394.231(8)	0.0131(20)	0.00073(7)	75 As 5900.24(8)	0.0128(8)	0.00052(3)
⁷⁵ As 399.3490(20)	0.0465(23)	0.00188(9)	⁷⁵ As 5942.97(9)	0.0119(7)	0.00048(3)
⁷³ As 402 7440(20)	0.061(3)	0.00247(12)	⁽³ As 5970 12(5)	0.0210(10)	0.00085(4)
⁷⁵ As 412.7930(20)	0.0117(12)	0.00047(5)	⁷⁵ As 5976.18(5)	0.0199(10)	0.00080(4)
'SAS 426.5750(10)	0.100(3)	0.00404(12)	⁷³ As 6006 34(5)	0.0297(15)	0.00120(6)
^{'3} As 428.187(3)	0.0130(14)	0.00053(6)	⁷⁵ As 6014.00(8)	0.0224(12)	0.00091(5)
⁷⁵ As 430.7920(20)	0.0134(12)	0.00054(5)	⁷⁵ As 6019.17(11)	0.0161(10)	0.00065(4)
⁷⁵ As 436.8030(10) ⁷⁵ As 460.7790(20)	0.0113(12) 0.0111(10)	0.00046(5) 0.00045(4)	⁷⁵ As 6027.524(22) ⁷⁵ As 6059.483(22)	0.020(3) 0.026(3)	0.00081(12) 0.00105(12)
75 As 463.647(3)	0.0333(23)	0.00043(4)	⁷⁵ As 6142.79(3)	0.014(3)	0.00103(12)
⁷³ As 467 965(13)	0.0165(19)	0.00067(8)	⁽³ As 6171 99(9)	0.0105(6)	0.000425(24)
¹⁵ As 471.0000(10)	0.203(5)	0.00821(20)	⁷⁵ As 6180.14(5)	0.0264(13)	0.00107(5)
'SAS 473.1540(10)	0.176(5)	0.00712(20)	⁽³ As 6203 57(4)	0.016(3)	0.00065(12)
⁷⁵ As 477.584(9)	0.0124(18)	0.00050(7)	⁷⁵ As 6223.06(3)	0.012(3)	0.00049(12)
⁽³ As 479 102(5)	0.0115(17)	0.00047(7)	⁽³ As 6231 24(4)	0.0413(19)	0.00167(8)
⁷⁵ As 480.137(6)	0.0126(18)	0.00051(7)	⁷⁵ As 6294.295(25)	0.064(6)	0.00259(24)
⁷⁵ As 487.393(4) ⁷⁵ As 494.105(7)	0.0139(20)	0.00056(8)	⁷⁵ As 6303.71(22)	0.024(4)	0.00097(16)
75 As 506.4970(20)	0.0100(17) 0.0283(23)	0.00040(7) 0.00114(9)	⁷⁵ As 6305.37(3) ⁷⁵ As 6342.976(15)	0.085(4) 0.010(3)	0.00344(16) 0.00040(12)
75 As 517.873(10)	0.024(3)	0.00097(12)	⁷⁵ As 6357.58(7)	0.0204(10)	0.00043(4)
⁷³ As 529,907(8)	0.0111(18)	0.00045(7)	'SAS 6370 124(9)	0.0274(13)	0.00111(5)
⁷³ As 550,460(3)	0.071(3)	0.00287(12)	^{'5} As 6388.768(10)	0.0329(18)	0.00133(7)
⁽³ As 554 937(24)	0.0230(24)	0.00093(10)	⁽³ As 6393 133(12)	0.032(4)	0.00129(16)
′°As 559.10(5)d	2.00(10)	0.081[1.3%]	^{'5} As 6403.761(12)	0.022(3)	0.00089(12)
⁷⁵ As 565.547(7)	0.0463(25)	0.00187(10)	⁷⁵ As 6419.378(23)	0.031(4)	0.00125(16)
⁷⁵ As 582.291(5) ⁷⁵ As 585.492(8)	0.0115(15) 0.0161(17)	0.00047(6) 0.00065(7)	⁷⁵ As 6465.17(12) ⁷⁵ As 6526.051(13)	0.0111(24) 0.0123(7)	0.00045(10) 0.00050(3)
75 As 624.685(6)	0.0225(20)	0.00003(7)	⁷⁵ As 6534.932(9)	0.0316(15)	0.00030(3)
⁷³ As 628.7440(10)	0.0116(17)	0.00047(7)	'SAS 6542 669(10)	0.0408(19)	0.00165(8)
⁷⁵ As 632.396(24)	0.0219(20)	0.00089(8)	^{'5} As 6583.556(10)	0.027(3)	0.00109(12)
⁷⁵ As 640.119(10)	0.0141(20)	0.00057(8)	'SAS 6587 038(13)	0.045(3)	0.00182(12)
⁷⁵ As 644.329(23)	0.015(3)	0.00061(12)	^{'3} As 6600.71(3)	0.0372(17)	0.00150(7)
⁷⁵ As 657.05(5)d	0.279(14)	0.0113[1.3%]	⁷⁵ As 6620.59(5)	0.0304(15)	0.00123(6)
⁷⁵ As 669.113(4) ⁷⁵ As 687.103(8)	0.0278(13) 0.010(5)	0.00112(5) 0.00040(20)	⁷⁵ As 6659.378(9) ⁷⁵ As 6691.241(9)	0.0227(11) 0.0246(12)	0.00092(4) 0.00100(5)
75 As 687.618(7)	0.0126(15)	0.00040(20)	⁷⁵ As 6699.744(8)	0.0109(7)	0.00100(3)
⁷⁵ As 706.783(4)	0.0339(22)	0.00137(9)	^{'3} As 6718.514(11)	0.0101(6)	0.000409(24)
⁷³ As 725,909(24)	0.0118(18)	0.00048(7)	⁷³ As 6778.047(9)	0.0143(9)	0.00058(4)
⁷⁵ As 731.840(9)	0.0102(17)	0.00041(7)	^{'3} As 6784.456(9)	0.0133(25)	0.00054(10)
⁷⁵ As 822.346(23)	0.0303(22)	0.00123(9)	⁷⁵ As 6808.872(8)	0.160(8)	0.0065(3)
⁷⁵ As 848.593(9) ⁷⁵ As 859.76(22)	0.0282(21)	0.00114(9) 0.00085(9)	⁷⁵ As 6810.898(8) ⁷⁵ As 6823.272(8)	0.56(3) 0.0133(8)	0.0227(12) 0.00054(3)
75 As 880.326(9)	0.0210(21) 0.0234(21)	0.00095(9)	75 As 6828.896(9)	0.0161(9)	0.00034(3)
^{'5} As 941.116(13)	0.0194(19)	0.00078(8)	^{'3} As 6857.474(8)	0.0168(10)	0.00068(4)
⁷³ As 942,240(8)	0.0161(8)	0.00065(3)	⁽³ As 6881.302(8)	0.0162(9)	0.00066(4)
⁷⁵ As 944.229(8)	0.0146(19)	0.00059(8)	⁷⁵ As 6926.635(8)	0.061(4)	0.00247(16)
^{'°} As 1216.08(5)d	0.155(8)	0.0063[1.3%]	⁽³ As 6976.101(9)	0.0130(21)	0.00053(9)
⁷⁵ As 5527.02(12)	0.0112(7)	0.00045(3)	⁷⁵ As 7020.139(8)	0.104(7)	0.0042(3)
⁷⁵ As 5533.94(3) ⁷⁵ As 5540.51(15)	0.151(7) 0.0131(9)	0.0061(3) 0.00053(4)	⁷⁵ As 7027.998(8) ⁷⁵ As 7048.154(8)	0.0534(25) 0.0103(21)	0.00216(10) 0.00042(9)
⁷⁵ As 5546.04(8)	0.0181(11)	0.00033(4)	⁷³ As 7063.648(8)	0.045(3)	0.00042(9)
⁷⁵ As 5568.99(5)	0.0354(18)	0.00143(7)	⁷⁵ As 7163.396(8)	0.0181(9)	0.00073(4)
⁷³ As 5580.21(3)	0.019(3)	0.00077(12)	'SAS 7208.183(8)	0.0127(7)	0.00051(3)
^{'3} As 5601.37(7)	0.0138(8)	0.00056(3)	¹⁵ As 7241.649(8)	0.0167(20)	0.00068(8)
⁷³ As 5612.9(4)	0.0103(21)	0.00042(9)	⁷⁵ As 7284.007(8)	0.036(3)	0.00146(12)
⁷⁵ As 5614.99(13)	0.015(3)	0.00061(12)	Selenium (Z=34), A	t.Wt.=78.96(3).	σ ₀ =12.0(7)
⁷⁵ As 5629.53(7) ⁷⁵ As 5645.75(8)	0.0181(11) 0.0119(7)	0.00073(4) 0.00048(3)	⁷⁶ Se 51.3610(10)	~0.03	~0.001
75 As 5655.22(6)	0.0172(9)	0.00048(3)	⁷⁶ Se 87.8660(10)	0.210(4)	0.00806(15)
⁷⁵ As 5663.81(3)	0.0172(9)	0.00070(4)	' ⁴ Se 112.3880(10)	0.0317(15)	0.00122(6)
⁷³ As 5675,89(3)	0.026(4)	0.00105(16)	'°Se 125.8440(10)	0.074(17)	0.0028(7)
^{'3} As 5684.20(4)	0.0414(19)	0.00167(8)	′°Se 139.2270(10)	0.543(9)	0.0208(4)
^{'3} As 5690.54(3)	0.023(4)	0.00093(16)	⁷⁴ Se 141.3140(20)	0.0246(21)	0.00094(8)
⁷⁵ As 5698.05(3)	0.0479(22)	0.00194(9)	⁷⁶ Se 161.9220(10) 6 ⁷⁶ Se 180.751(3)	0.0291(12)	0.0328[99%] 0.00112(5)
⁷⁵ As 5723.39(7) ⁷⁵ As 5757.22(3)	0.0160(9) 0.015(3)	0.00065(4) 0.00061(12)	⁷⁶ Se 200.4530(20)	0.233(9)	0.0089(4)
⁷⁵ As 5778.12(3)	0.0482(23)	0.0001(12)	⁷⁶ Se 231.4270(20)	0.105(3)	0.00403(12)
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				. ,

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Εγ)-barns	k _o	Eγ-keV	σ(Εγ)-barns	k ₀
Selenium (Z=34), co			Selenium (Z=34), co	ontinued	
⁷⁶ Se 238.9980(10)	2.06(3)	0.0791(12)	⁷⁶ Se 1578.621(7)	0.042(4)	0.00161(15)
⁷⁷ Se 248.43(8)	0.023(5)	0.00088(19)	⁷⁶ Se 1623.124(6)	0.063(5)	0.00242(19)
⁷⁶ Se 249.7880(10) ⁷⁶ Se 281.6400(20)	0.538(9) 0.124(5)	0.0206(4) 0.00476(19)	⁷⁶ Se 1677.06(3) ⁷⁶ Se 1712.75(5)	0.023(4) 0.023(3)	0.00088(15) 0.00088(12)
⁷⁴ Se 286.5710(20)	0.280(6)	0.01075(23)	⁷⁷ Se 1713.544(22)	0.163(8)	0.0063(3)
⁷⁴ Se 292.8430(20)	0.0297(21)	0.00114(8)	^{'o} Se 1714.739(10)	0.033(3)	0.00127(12)
⁷ °Se 297.2160(20)	0.337(7)	0.0129(3)	''Se 1721 43(8)	0.078(4)	0.00299(15)
'°Se 303.7930(20)	0.052(3)	0.00200(12)	[∞] Se 1724.88(18)	0.044(5)	0.00169(19)
⁷⁶ Se 331.2210(20) ⁷⁶ Se 368.733(4)	0.0526(25)	0.00202(10) 0.00100(12)	⁷⁶ Se 1790.24(7) ⁷⁶ Se 1847.93(5)	0.036(4)	0.00138(15)
⁷⁶ Se 378.9540(20)	0.026(3) 0.022(3)	0.00100(12)	⁷⁶ Se 1872.21(5)	0.046(4) 0.048(4)	0.00177(15) 0.00184(15)
"Se 384.9800(20)	0.032(5)	0.00123(19)	''Se 1923.32(10)	0.068(5)	0.00261(19)
'°Se 390.8920(20)	0.029(4)	0.00111(15)	'°Se 1963.15(7)	0.034(4)	0.00130(15)
'°Se 432.12(14)	0.0227(15)	0.00087(6)	'°Se 1980,40(5)	0.022(16)	0.0008(6)
⁷⁶ Se 439.4510(20) ⁸⁰ Se 467.81(10)	0.319(8) 0.128(4)	0.0122(3) 0.00491(15)	⁷⁷ Se 1995.871(6) ⁷⁶ Se 2035.26(5)	0.119(5) 0.043(5)	0.00457(19) 0.00165(19)
⁷⁶ Se 484.5440(20)	0.125(4)	0.00491(15)	⁷⁶ Se 2074.08(5)	0.043(3)	0.00103(19)
° [∪] Se 491.46(22)	0.022(3)	0.00084(12)	'°Se 2142.65(8)	0.040(4)	0.00154(15)
'°Se 504.7970(20)	0.024(5)	0.00092(19)	' ^o Se 2212.02(9)	0.033(3)	0.00127(12)
′°Se 518.1810(20)	0.273(7)	0.0105(3)	'°Se 2249.88(12)	0.0221(21)	0.00085(8)
⁷⁶ Se 520.6370(20) ⁷⁷ Se 545.297(12)	1.260(18) 0.0635(25)	0.0484(7) 0.00244(10)	⁷⁷ Se 2257.48(13) ⁷⁶ Se 2264.68(17)	0.022(3) 0.031(4)	0.00084(12) 0.00119(15)
⁷⁶ Se 565.7300(20)	0.0398(23)	0.00244(10)	''Se 2284 36(6)	0.054(5)	0.00119(13)
'°Se 568,0660(20)	0.103(8)	0.0040(3)	''Se 2319.4(4)	0.025(10)	0.0010(4)
' ^o Se 569.185(4)	0.024(8)	0.0009(3)	''Se 2391.87(10)	0.043(4)	0.00165(15)
'°Se 574.6420(20)	0.054(3)	0.00207(12)	''Se 2391.89(9)	0.038(7)	0.0015(3)
⁷⁶ Se 578.8550(20) ⁷⁶ Se 585.4320(20)	0.243(5) 0.077(4)	0.00933(19) 0.00296(15)	⁷⁶ Se 2417.59(12) ⁷⁷ Se 2572.70(8)	0.024(17) 0.025(4)	0.0009(7) 0.00096(15)
⁷⁶ Se 607.471(4)	0.077(4)	0.00296(13)	⁷⁶ Se 2590.77(5)	0.025(4)	0.00096(15)
'°Se 610.3800(20)	0.0345(21)	0.00132(8)	'°Se 2600.85(8)	0.0221(21)	0.00085(8)
'*Se 610.7130(20)	0.0316(22)	0.00121(8)	'°Se 2614.09(5)	0.047(S)	0.00180(19)
''Se 613.724(3)	2.14(5)	0.0821(19)	''Se 2674.47(6)	0.060(5)	0.00230(19)
⁷⁶ Se 645.8300(20) ⁷⁷ Se 687.251(5)	0.099(3) 0.063(5)	0.00380(12) 0.00242(19)	⁷⁶ Se 2749.78(15) ⁷⁷ Se 2769.87(8)	0.023(5) 0.035(3)	0.00088(19) 0.00134(12)
⁷⁷ Se 694.914(4)	0.443(10)	0.00242 (19)	⁷⁶ Se 2809.08(7)	0.034(24)	0.00134(12)
'°Se 707.9800(20)	0.0281(20)	0.00108(8)	' ^o Se 2872.93(9)	0.046(3)	0.00177(12)
'°Se 749,6060(20)	0.042(3)	0.00161(12)	''Se 2873.47(9)	0.061(8)	0.0023(3)
⁷⁶ Se 755.3920(20)	0.186(4)	0.00714(15)	⁷⁶ Se 2922.68(11)	0.0214(21)	0.00082(8)
⁷⁶ Se 817.8520(20) ⁷⁷ Se 828.188(12)	0.174(5) 0.0300(17)	0.00668(19) 0.00115(7)	⁷⁶ Se 2982.82(11) ⁷⁶ Se 3039.95(11)	0.030(9) 0.038(16)	0.0012(4) 0.0015(6)
'°Se 881.840(4)	0.040(3)	0.00113(7)	''Se 3072.64(13)	0.0257(17)	0.00099(7)
''Se 884.867(7)	0.100(6)	0.00384(23)	' ^o Se 3206.54(17)	0.027(14) ´	0.0010(5)
'°Se 885.8270(20)	0.262(7)	0.0101(3)	''Se 3242.39(12)	0.033(7)	0.0013(3)
⁷⁷ Se 889.095(9) ⁷⁶ Se 889.108(4)	0.096(6) 0.180(5)	0.00368(23) 0.00691(19)	⁷⁶ Se 3279.09(12) ⁷⁶ Se 3296.55(13)	0.023(4) 0.028(4)	0.00088(15)
'°Se 890.981(5)	0.083(4)	0.00031(13)	''Se_3385.13(12)	0.028(11)	0.00107(15) 0.0015(4)
'°Se 946.9760(20)	0.089(4)	0.00342(15)	''Se 3439.40(13)	0.028(3)	0.00107(12)
′°Se 951.809(6)	0.047(3)	0.00180(12)	′°Se 3466.82(17)	0.022(4)	0.00084(15)
⁷⁶ Se 990.377(4)	0.028(3)	0.00107(12)	⁷⁶ Se 3517.60(17)	0.032(5)	0.00123(19)
⁷⁶ Se 991.629(6) ⁷⁶ Se 1005.1770(20)	0.057(5) 0.117(5)	0.00219(19) 0.00449(19)	⁷⁶ Se 3550.31(20) ⁷⁶ Se 3620.46(17)	0.042(17) 0.028(4)	0.0016(7) 0.00107(15)
'°Se 1091.64(3)	0.026(5)	0.00100(19)	'°Se 3636.29(17)	0.030(4)	0.00107(15)
' ^o Se 1128.104(4)	0.023(4)	0.00088(15)	'°Se 3693.06(20)	0.024(9)	0.0009(4)
''Se 1144.952(16)	0.076(3)	0.00292(12)	'°Se 3700.14(12)	0.034(24)	0.0013(9)
⁷⁶ Se 1161.828(5) ⁷⁶ Se 1163.476(4)	0.079(4) 0.087(4)	0.00303(15) 0.00334(15)	⁷⁶ Se 3858.09(11) ⁷⁶ Se 3866.33(10)	0.037(6)	0.00142(23) 0.00092(19)
'°Se 1172.617(5)	0.058(3)	0.00334(15)	'°Se 3873.00(12)	0.024(5) 0.025(4)	0.00092(19)
'°Se 1186.973(3)	0.033(3)	0.00127(12)	'°Se 3901.06(17)	0.073(8)	0.0028(3)
'°Se 1194.111(10)	0.022(3)	0.00084(12)	'°Se 3945.94(17)	0.033(5)	0.00127(19)
''Se 1198.72(10)	0.0379(23)	0.00145(9)	'°Se 3968.30(13)	0.040(4)	0.00154(15)
⁸⁰ Se 1202.0(3) ⁷⁷ Se 1240.206(12)	0.037(3) 0.106(4)	0.00142(12) 0.00407(15)	⁷⁶ Se 4003.78(5) ⁷⁶ Se 4020.78(7)	0.025(4) 0.0225(16)	0.00096(15) 0.00086(6)
′°Se 1296.986(7)	0.100(4) 0.240(7)	0.0092(3)	'°Se 4056.54(11)	0.0225(16)	0.00119(19)
'°Se 1306.540(10)	0.061(6)	0.00234(23)	'°Se 4064.52(11)	0.0229(14)	0.00088(5)
''Se 1308.632(5)	0.317(8)	0.0122(3)	' ^o Se 4174.76(12)	0.037(7)	0.0014(3)
''Se 1338.817(12)	0.0354(19)	0.00136(7)	'°Se 4185.94(13)	0.042(10)	0.0016(4)
⁷⁶ Se 1378.172(7) ⁷⁷ Se 1382.159(6)	0.048(4) 0.069(3)	0.00184(15) 0.00265(12)	⁷⁶ Se 4243.49(13) ⁷⁶ Se 4354.79(9)	0.0220(13) 0.040(5)	0.00084(5) 0.00154(19)
' ^o Se_1384.131(6)	0.080(4)	0.00203(12)	' ^o Se 4367.73(15)	0.024(3)	0.00134(19)
′°Se 1395.42(3)	0.024(6)	0.00092(23)	' ^o Se 4378.36(8)	0.085(16)	0.0033(6)
'°Se 1402.471(4)	0.032(4)	0.00123(15)	'°Se 4435.83(11)	0.032(7)	0.0012(3)
⁷⁶ Se 1411.612(5) ⁷⁶ Se 1475.746(10)	0.115(6) 0.030(20)	0.00441(23) 0.0012(8)	⁷⁶ Se 4526.75(5) ⁷⁶ Se 4545.72(9)	0.115(8) 0.049(5)	0.0044(3) 0.00188(19)
'°Se 1529.27(15)	0.034(6)	0.0012(8)	' ^o Se 4565.56(5)	0.156(11)	0.00188(19)
⁷⁷ Se 1529.71(5)	0.061(13)	0.0023(5)	⁷⁶ Se 4609.57(7)	0.058(9)	0.0022(4)
					

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Εγ)-barns	k _o	Eγ-keV	σ (Ε γ)-barns	k _o
Selenium (Z=34), co	• • • • • • • • • • • • • • • • • • • •		Bromine (Z=35), co		
⁷⁶ Se 4641 97(5)	0.027(6)	0.00104(23)	⁷⁹ Br 274 532(5)	0.158(3)	0.00599(11)
⁷⁶ Se 4702.43(15)	0.023(4)	0.00088(15)	⁷⁹ Br 278.186(3)	0.0238(14)	0.00090(5)
⁷⁶ Se 4926.78(7) ⁷⁶ Se 4963.217(24)	0.048(8) 0.039(5)	0.0018(3) 0.00150(19)	81Br 278.3620(20) 81Br 287.7390(20)	0.014(5) 0.253(4)	0.00053(19) 0.00960(15)
^{(o} Se 5025 80(5)	0.150(12)	0.0058(5)	⁷⁹ Br 294.349(3)	0.1160(22)	0.00440(8)
^{(o} Se 5078 75(5)	0.033(11)	0.0013(4)	^{'*} Br 296 908(4)	0.0307(15)	0.00116(6)
⁶ Se 5098 56(10)	0.031(8)	0.0012(3)	¹⁹ Br 299 886(4)	8.0×10 ⁻²	3.0×10 ⁻³
⁷⁶ Se 5154.33(7) ⁷⁶ Se 5169.734(22)	0.053(5) 0.031(4)	0.00203(19) 0.00119(15)	⁷⁹ Br 303.02(5) ⁷⁹ Br 311.090(6)	0.008(3) 0.0080(12)	0.00030(11) 0.00030(5)
⁷⁶ Se 5206 60(9)	0.045(5)	0.00173(19)	^{/9} Br 314.982(3)	0.460(9)	0.0174(3)
^{(o} Se 5275 98(9)	0.024(9)	0.0009(4)	^{(*} Br 315 524(17)	0.030(8)	0.0011(3)
⁷⁶ Se 5600.995(21) ⁷⁶ Se 5703.864(23)	0.301(14)	0.0116(5) 0.00111(19)	81Br 315.770(5) 81Br 316.8510(20)	0.022(8) 0.017(5)	0.0008(3) 0.00064(19)
⁷⁶ Se 5795 473(21)	0 127(16)	0.0049(6)	⁽⁹ Br 321 937(8)	0.0262(18)	0.00099(7)
''Se 5813 24(10)	0.0269(13)	0.00103(5)	^(*) Br 329 551(4)	0.0213(16)	0.00081(6)
'°Se 6006.973(21)	0.289(20)	0.0111(8)	°'Br 339 881(3)	0.0134(14)	0.00051(5)
⁷⁶ Se 6016.113(21) ⁷⁷ Se 6049.20(13)	0.101(10) 0.0291(13)	0.0039(4) 0.00112(5)	⁷⁹ Br 343.405(3) ⁸¹ Br 345.0060(10)	0.118(4) 0.154(4)	0.00448(15) 0.00584(15)
' ^o Se 6231 597(21)	0.10(4)	0.0038(15)	⁷⁸ Br 345 580(4)	0.023(4)	0.00087(15)
[∞] Se 6232 9(5)	0.10(3)	0.0038(12)	°'Br 346.986(4)	0.0122(18)	0.00046(7)
⁷⁷ Se 6244.07(13)	0.043(3)	0.00165(12)	°'Br 350 3830(20)		0.00071(6)
⁷⁷ Se 6315.30(9) ⁷⁶ Se 6413.379(21)	0.044(3) 0.192(15)	0.00169(12) 0.0074(6)	⁷⁹ Br 366.604(4) ⁷⁹ Br 370.530(5)	0.233(6) 0.0171(19)	0.00884(23) 0.00065(7)
''Se 6498 52(12)	0 047(4)	0.00180(15)	^{(*} Br 370.531(3)	0.0171(9)	0.00065(3)
'°Se 6600.690(21)	0.623(20)	0.0239(8)	^{'*} Br 373 44(5)	0.0140(19)	0.00053(7)
⁷⁷ Se 6811.00(13) ⁷⁷ Se 6905.75(8)	0.0257(22) 0.0234(22)	0.00099(8) 0.00090(8)	81Br 374.1180(10) 79Br 377.397(14)	0.011(3) 0.0100(19)	0.00042(11) 0.00038(7)
''Se 7113 76(8)	0.037(3)	0.00090(8)	°'Br 379 988(12)	0.0190(19)	0.00038(7)
⁷ °Se 7179.492(21)	0.261(25)	0.0100(10)	^{'*} Br 385 598(11)	0.0232(9)	0.00088(3)
''Se 7209 15(6)	0.056(3)	0.00215(12)	' [®] Br 389.189(4)	0.0486(13)	0.00184(5)
⁷⁶ Se 7418.467(21) ⁷⁷ Se 7491.71(9)	0.350(13) 0.0295(15)	0.0134(5) 0.00113(6)	⁸¹ Br 397.147(3) ⁸¹ Br 400.906(20)	0.0125(18) 0.0234(16)	0.00047(7) 0.00089(6)
'*Se 7734 052(18)	0.13(6)	0.0050(23)	81Br 402 743(3)	0.0170(16)	0.00064(6)
''Se 8162 11(9)	0.058(3)	0.00223(12)	^{'8} Br 408.55(8)	0.0116(20)	0.00044(8)
⁷⁷ Se 8170.00(4) ⁷⁷ Se 8501.35(3)	0.054(4)	0.00207(15)	⁷⁹ Br 409.002(6) ⁷⁹ Br 414.04(7)	0.0150(20)	0.00057(8)
''Se 9188.52(3)	0.048(3) 0.150(8)	0.00184(12) 0.0058(3)	^{'*} Br 432 216(4)	0.0332(17) 0.0783(14)	0.00126(6) 0.00297(5)
''Se 9883.35(3)	0.220(22)	0.0084(8)	^{'8} Br 450.906(5)	0.0170(13)	0.00064(5)
⁷⁷ Se 10496.99(3)	0.0221(25)	0.00085(10)	^{'*} Br 452 611(5)	0.0679(24)	0.00258(9)
Bromine (Z=35), At.			⁷⁹ Br 455.830(3) ⁷⁹ Br 459.775(4)	0.0230(13) 0.0455(19)	0.00087(5) 0.00173(7)
⁸¹ Br 29.1130(10) ⁷⁹ Br 37.0520(20)d	0.1680(20)	0.00637(8)	°'Br 465 89(3)	0.026(4)	0.00099(15)
^{/9} Br 37 .054(3)	0.428(<i>12)</i> 0.160(10)	<i>0.0162[7.5%]</i> 0.0061(4)	⁸¹ Br 466.63(3) ⁷⁹ Br 468.980(3)	0.008(4) 0.29(3)	0.00030(15) 0.0110(11)
⁷⁹ Br 50.112(3)	0.0081(6)	0.000307(23)	^{'9} Br 470 619(16)	0.29(3)	0.00068(11)
^{/9} Br 59.471(4)	0.202(5)	0.00766(19) (^{'9} Br 479 082(10)	0.018(9)	0.0007(3)
⁸¹ Br 72.0210(20) ⁷⁹ Br 74.972(3)	0.0121(4) 0.0323(7)	0.000459(15) 0.00123(3)	^{'8} Br 482.813(21)	0.0120(20)	0.00046(8)
⁸¹ Br 85 267(7)	0.0096(4)	0.00123(3)	⁸¹ Br 483.886(3) ⁷⁹ Br 492.884(4)	0.042(18) 0.0292(10)	0.0016(7) 0.00111(4)
^{/9} Br 12/1028/3\	0.0268(5)	0.001016(19)	^{/9} Br 494 045(7)	0.009(5)	0.00034(19)
⁷⁹ Br 126.280(3) ⁷⁹ Br 146.904(3)	0.0174(4)	0.000660(15)	81Br 495 0380(20)	0.0342(14)	0.00130(5)
⁷⁹ Br 159 044(4)	0.0184(7) 0.0171(7)	0.00070(3) 0.00065(3)	⁷⁹ Br 498.19(3) ⁸¹ Br 512.488(20)	0.0336(13)	0.00127(5)
^{/9} Br 150 800(4)	0.0232(7)	0.00088(3)	⁷⁹ Br 520 247(7)	0.21(3) 0.0321(9)	0.0080(11) 0.00122(3)
⁷⁹ Br 175.084(3)	0.0173(12)	0.00066(5)	⁸¹ Br 538.219(20)	0.0109(10)	0.00041(4)
⁸¹ Br 184.6440(10) ⁷⁹ Br 195.602(4)	0.0258(12) 0.434(14)	0.00098(5) 0.0165(5)	81Br 541 856(9)	0.0151(23)	0.00057(9)
^{/9} Br 107 607/3\	0.0175(11)	0.00066(4)	⁷⁹ Br 542.515(6) ⁷⁹ Br 545.667(7)	0.114(5) 0.0094(14)	0.00432(19) 0.00036(5)
^{/9} Br 211 594(3)	0.0454(21)	0.00172(8)	⁷⁹ Br 549 559(3)	0.0593(14)	0.00225(5)
⁷⁹ Br 213.816(5)	0.0104(11)	0.00039(4)	⁸¹ Br 552.1730(20)	0.0161(11)	0.00061(4)
⁷⁹ Br 218.785(4) ⁷⁹ Br 219.377(3)	0.019(8) 0.399(14)	0.0007(3) 0.0151(5)	⁸¹ Br 554.3480(20) c ⁷⁹ Br 557.257(21)		0.0318(3)
°'Br 221.0950(20)	0.0123(14)	0.00047(5)	81Br 566 0000(20)	0.0315(23) 0.0551(12)	0.00119(9) 0.00209(5)
^{'8} Br 223.627(3)	0.153(5)	0.00580(19)	81Br 581 2860(20)	0.0231(11)	0.00203(3)
⁷⁹ Br 226.53(5) ⁷⁹ Br 234.320(3)	0.0080(20)	0.00030(8) 0.0078(4)	81Br 505 2120/20)	0.0177(11)	0.00067(4)
^{'8} Br 236.454(3)	0.205(10) 0.0372(23)	0.0078(4) 0.00141(9)	81Br 599.27(3) 79Br 604.61(5)	0.0124(9) 0.013(5)	0.00047(3) 0.00049(19)
^{'8} Br 244.237(3)	0.45(3) ´	0.0171(Ì1)	⁸¹ Br 608 115(19)	0.0438(13)	0.00049(19)
°'Br 244.8310(10)	0.15(5)	0.0057(19)	⁷⁹ Br 616 3/5)d	0.39(4)	0.0148[62%]
⁷⁹ Br 245.203(4) ⁸¹ Br 245.54(3)	0.80(3) 0.018(4)	0.0303(11) 0.00068(15)	⁸¹ Br 619.106(4)d	0.515(5)	0.01953(19)
⁰¹ Rr 250 2080(20)	0.0145(19)	0.00055(7)	⁷⁹ Br 630 710(12)	0.0308(12) 0.0224(13)	0.00117(5) 0.00085(5)
⁷⁹ Br 263 460(8)	0.0105(25)	0.00040(10)	^{/9} Br 636.681(8)	0.018(4)	0.00068(15)
°1Br 264.4350(10)		0.00133(11)	⁸¹ Br 643 291 <i>(</i> 6)	0.0373(20)	0.00141(8)
⁷⁹ Br 271.374(3)	0.462(7)	0.0175(3)	⁷⁹ Br 660.561(4)	0.082(3)	0.00311(11)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Table I. Adopted Prompt and $E\gamma$ -keV $\sigma(E\gamma)$ -	barns k _o	om Thermal Neutron C Εγ-keV	apture for all E σ(Εγ)-barns	iements, continu k _o
Bromine (Z=35), continued	barrio n ₀	Bromine (Z=35), co	. ,,	
⁷⁹ Br 678.69(4) 0.0089	(19) 0.00034(7)	⁷⁹ Br 7031 43(8)	0.0447(22)	0.00170(8)
⁸ Br 684.885(3) 0.050(3	3) 0.00190(11)	′°Br 7078.18(8)	0.0566(24)	0.00215(9)
⁷⁹ Br 684.94(5) 0.0120		⁷⁹ Br 7126.18(8)	0.0154(15)	0.00058(6)
⁷⁹ Br 686.930(5) 0.014(3 ⁸¹ Br 687.02(8) 0.0157	3) 0.00053(11) (20) 0.00060(8)	⁷⁹ Br 7168.08(8) ⁸¹ Br 7172.612(22)	0.0103(8) 0.0238(12)	0.00039(3) 0.00090(5)
^{'9} Br 689.994(16) 0.083(4	4) 0.00315(15)	81Br 7229.873(22)	0.0250(14)	0.00095(5)
°'Br 698.374(5)d 0.337(3	3) 0.01278(12)	°'Br 7301.888(22)	0.0101(8)	0.00038(3)
^{'8} Br 702.025(9) 0.0648		′°Br 7422.77(8)	0.0495(18)	0.00188(7)
81Br 716.14(8) 0.0420 81Br 717.756(20) 0.0373		⁷⁹ Br 7511.57(8) ⁷⁹ Br 7577.04(8)	0.0108(9) 0.108(3)	0.00041(3) 0.00410(11)
⁷⁹ Br 721.417(12) 0.026(6) 0.00099(23)	⁷⁹ Br 7610.73(8)	0.0093(8)	0.00035(3)
⁽⁹ Br 723.983(5) 0.019(3) 0.00072(11)	Krypton (Z=36), At	` '	` '
⁷⁹ Br 731.147(4) 0.0139 ⁸¹ Br 746.970(23) 0.0091	(6) 0.000527(23)	⁸² Kr 9.4050(10)d	0.122(24)	0.0044[17%]
⁸¹ Br 746.970(23) 0.0091 ⁷⁹ Br 751.014(10) 0.029((14) 0.00035(5) 3) 0.00110(11)	83Kr 367 7(5)	0.532(10)	0.0192(4)
^{'8} Br 755.728(11) 0.0126	(17) 0.00048(6)	83Kr 419 4(5)	0.630(10)	0.0228(4)
⁷⁸ Br 765.957(10) 0.0537		⁸³ Kr 425.30(11) ⁸³ Kr 448.11(11)	2.960(19) 0.590(19)	0.1070(7) 0.0213(7)
⁸¹ Br 776.517(3)d 0.990(⁷⁹ Br 809.28(3) 0.0084	10)	°3Kr 541 50(12)	0.295(12)	0.0213(7)
⁸ Br 816.578(20) 0.0191		°3Kr 546 98(12)	0.328(12)	0.0119(4)
^{'9} Br 827.31(4) 0.015(3	3) 0.00057(11)	°3Kr 605.5(4)	0.398(25)	0.0144(9)
81Br 827.828(6)d 0.285(3		⁸³ Kr 612.0(3) ⁸³ Kr 637.13(18)	0.42(3) 0.251(22)	0.0152(11) 0.0091(8)
⁷⁹ Br 830.856(14) 0.0413 ⁷⁹ Br 845.70(3) 0.0257		°3Kr 708 24(21)	0.231(22)	0.0080(8)
⁷⁹ Br 850.93(4) 0.0082	(14) 0.00031(5)	[∞] Kr 737 ()(9)	0.31(6)	0.0112(22)
⁸ Br 856.13(3) 0.0081		°3Kr 802 62(8)	1.520(22)	0.0550(8)
⁷⁹ Br 860.488(18) 0.0450	(19) 0.00171(7)	⁸³ Kr 881.74(11) ⁸³ Kr 919.79(19)	20.8(3) 0.222(17)	0.752(11) 0.0080(6)
⁷⁹ Br 876.59(4) 0.0111 ⁷⁹ Br 883.60(6) 0.0278	(7) 0.00042(3) (10) 0.00105(4)	[∞] Kr 938 12(13)	0.449(21)	0.0162(8)
⁸ Br 888,599(20) 0.0224	(15) 0.00085(6)	83Kr 943 36(14)	0.713(8)	0.0258(3)
^{'9} Br 889.949(11) 0.0128	(17) 0.00049(6)	^{oo} Kr 946 5(5)	0.447(19)	0.0162(7)
°'Br 895.87(5) 0.0213		⁸³ Kr 963.44(13) ⁸³ Kr 987.69(19)	0.660(22) 0.256(25)	0.0239(8) 0.0093(9)
⁷⁹ Br 908.97(9) 0.0144 ⁸¹ Br 910.73(3) 0.0400		°³Kr 1016 2(3)	1.08(7)	0.0391(25)
⁷⁹ Br 914.574(7) 0.0508		^{oo} Kr 1077 55(25)	0.47(3)	0.0170(11)
^{'8} Br 919.36(5) 0.016(3	3) 0.00061(11)	⁸³ Kr 1124.44(6) ⁸³ Kr 1213.42(12)	1.420(21)	0.0514(8)
⁸¹ Br 932.794(25) 0.0216 ⁷⁹ Br 933.823(12) 0.010(3	(10) 0.00082(4)	83Kr 1230.82(11)	8.28(17) 0.310(12)	0.299(6) 0.0112(4)
⁷⁹ Br 933.823(12) 0.010(3 ⁷⁹ Br 952.58(9) 0.0182		[∞] Kr 1293 20(13)	0.383(25)	0.0139(9)
⁸ Br 976.508(24) 0.0459	(13) 0.00174(5)	°3Kr 1331 89(13)	0.39(6)	0.0141(22)
⁽⁹ Br 977.431(12) 0.013(⁸³ Kr 1443.43(11) ⁸³ Kr 1463.86(6)	0.237(10) 7.10(8)	0.0086(4) 0.257(3)
⁸¹ Br 1013.03(3) 0.023(3) 0.023(3) 0.0167		[∞] Kr 1475 94(17)	2.4(4)×10 ⁻⁴	8.7(14)×10 ⁻⁶
81Br 1034.706(23) 0.0231		^{oo} Kr 1543 27(19)	0.486(17)	0.0176(6)
°'Br 1036.890(9) 0.0081	(7) 0.00031 (3)	[∞] Kr 1623 20(20)	0.327(15)	0.0118(5)
°'Br <i>1044.002(5)d 0.323(</i> 3	3) 0.01225(12)	⁸³ Kr 1656.15(18) ⁸³ Kr 1682.0(3)	0.28(5) 0.212(17)	0.0101(18) 0.0077(6)
⁸¹ Br 1079.99(5) 0.0350 ⁷⁹ Br 1087.46(3) 0.0092		⁰³ Kr 17 <u>4</u> 1 7(3)	0.437(19)	0.0158(7)
8 Br 1133 427(20) 0 0110		్లిKr 1897.79(8)	2.24(3)	0.0810(11)
⁷⁹ Br 1143 370(21) 0 0225		⁸³ Kr 1979.34(11) ⁸³ Kr 2160.48(7)	1.070(22)	0.0387(8)
⁷⁹ Br 1147.96(4) 0.0205 ⁸¹ Br 1157.506(25) 0.0210		83Kr 2160.48(7) 83Kr 2200.86(11)	0.577(15) 0.241(10)	0.0209(5) 0.0087(4)
⁸¹ Br 1157.506(25) 0.0210 ⁷⁹ Br 1175.25(3) 0.0116		⁸³ Kr 2544.72(19)	0.27(3)	0.0098(11)
⁷⁹ Br 1190.73(5) 0.0216		⁸³ Kr 6281.4(7)	2.7×10 ⁻¹	9.8×10 ⁻³
°'Br 1201 13(3) 0 0185		⁸³ Kr 6306.8(7) ⁸³ Kr 6519.1(7)	4.8×10 ⁻¹	1.7×10 ⁻² 3.2×10 ⁻²
⁷⁹ Br 1248.801(12) 0.0527 ⁸¹ Br 1317.473(10)d 0.314(⁸³ Kr 6803 5(8)	8.8×10 ⁻¹ 6.4×10 ⁻¹	2.3×10 ⁻²
⁷⁹ Br 1320 19(4) 0 012(9		⁸³ Kr 6880.7(7)	1.3×10 ⁺⁰⁰	4.7×10 ⁻²
^{'8} Br 1321.96(11) 0.0152	(14) 0.00058(5)	83Kr 6931.7(8)	5.4×10 ⁻¹	2.0×10 ⁻²
81Br 1474.880(10)d 0.1930		⁸³ Kr 7207.5(9)	2.5×10 ⁻¹	9.0×10 ⁻³
⁸¹ Br 6349.19(4) 0.0168 ⁸¹ Br 6360.18(3) 0.015(9)		Rubidium (Z=37),		
°'Br 6413.36(3) 0.0136		⁸⁵ Rb 54.01(6)	0.006(3)	2.1(11)×10 ⁻⁴
⁸¹ Br 6437 69(5) 0 0328	(17) 0.00124(6)	85Rb 59.75(6) 85Rb 84.85(8)	0.010(4) 0.0052(22)	0.00035(14) 1.8(8)×10 ⁻⁴
⁷⁹ Br 6533.28(8) 0.0196		[∞] Rh 96 87(10)	0.0032(22)	9(3)×10 ⁻⁵
⁷⁹ Br 6570.15(13) 0.0285 ⁸¹ Br 6570.27(3) 0.008(3		[∞] Rb 113.76(4)	0.00535(14)	1.90(5)×10 ⁻⁴
⁸¹ Br 6621 81(3) 0 0104		[∞] Rb 119 94(4)	0.00267(9)	9.5(3)×10 ⁻⁵
⁷⁹ Br 6643.30(8) 0.0318	(18) 0.00121(7)	⁸⁷ Rb 166.01(3) ⁸⁵ Rb 176.2(9)	0.00215(8) 0.0031(13)	7.6(3)×10 ⁻⁵ 1.1(5)×10 ⁻⁴
⁷⁹ Br 6668.16(11) 0.0306 ⁷⁹ Br 6689.13(9) 0.0321		°′Rh 196.34(3)	0.0031(13)	0.000342(7)
⁷⁹ Br 6689.13(9) 0.0321 ⁷⁹ Br 6701.38(9) 0.0168		[∞] Rb 198.96(10)	0.00266(9)	9.4(3)×10 ⁻⁵
°'Br 6746.030(22) 0.0386	(16) 0.00146(6)	⁸⁵ Rb 224.31(6) ⁸⁷ Rb 240.76(3)	0.00132(7)	4.68(25)×10 ⁻⁵
⁷⁹ Br 6894 78(8) 0 0101	(7) 0.00038(3)	85Rb 283.80(8)	0.00224(8) 0.00092(6)	7.9(3)×10 ⁻⁵ 3.26(21)×10 ⁻⁵
⁷⁹ Br 6977.51(8) 0.0110	(8) 0.00042(3)		2.2300=(0)	\ -

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Εγ)-barns	k ₀		Eγ-keV	σ (Ε γ)-barns	k_0
Rubidium (Z=37), co	ontinued		Stror	ntium (Z=38), <i>A</i>	t.Wt.=87.62(1),	
⁸⁵ Rb 316.13(4)	0.00138(8)	4.9(3)×10 ⁻⁵	84Sr	231.68(4)	0.0017(3)	5.9(10)×10 ⁻⁵
85Rb 322.80(4)	0.00254(10)	9.0(4)×10 ⁻⁵	87 Sr	388.526(22)d	0.0785(23)	0.00272[11%]
⁸⁷ Rb 362.62(5) ⁸⁵ Rb 362.78(9)	0.00314(12) 0.0061(22)	1.11(4)×10 ⁻⁴ 2.2(8)×10 ⁻⁴	86Sr	434.925(20) 484.822(14)	0.0346(8) 0.0315(12)	0.00120(3) 0.00109(4)
°′Rb 390 60(4)	0.00179(8)	6.3(3)×10 ⁻⁵	°′Sr	585.613(14)	0.0703(14)	0.00243(5)
⁸⁵ Rb 421.50(3)	0.0259(5)	0.000918(18)	°′Sr	850.657(12)	0.275(4)	0.00951(14)
°°Rh 487.89(4)	0.0494(12)	0.00175(4)	°′Sr	898.055(11)	0.702(10)	0.0243(4)
85Rb 514.57(4)	0.00653(20)	2.32(7)×10 ⁻⁴	87Sr	934.49(3)	0.024(4)	0.00083(14)
⁸⁵ Rb 529.9(9) ⁸⁵ Rb 536.48(4)	0.0031(13) 0.0167(5)	1.1(5)×10 ⁻⁴ 0.000592(18)	87 S r	1218.523(16) 1323.92(6)	0.0599(13) 0.013(3)	0.00207(5) 0.00045(10)
°°Rh 538 ₊66(4)	0.0169(5)	0.000599(18)	o'Sr	1368.677(25)	0.038(8)	0.0013(3)
°°Rb <i>555.61(3)d</i>	0.0407(10)	0.00144[98%]	°′Sr	1382 44(4)	0.0239(8)	0.00083(3)
°°Rh 556.82(3)	0.0913(24)	0.00324(9)	°′Sr	1407 89(5)	0.0104(20)	0.00036(7)
⁸⁵ Rb 565.37(4) ⁸⁵ Rb 638.93(5)	0.00383(10) 0.0101(13)	1.36(4)×10 ⁻⁴ 0.00036(5)	87 S r	1436.264(17) 1493.06(3)	0.0124(6) 0.0130(8)	0.000429(21) 0.00045(3)
°°Rb 640.20(10)	0.0032(7)	1.13(25)×10 ⁻⁴	o'Sr	1534 561(22)	0.0317(9)	0.00043(3)
⁸⁵ Rb 668 76(7)	0.00211(10)	7.5(4)×10 ⁻⁵	°′Sr	1565 48(5)	0.0136(12)	0.00047(4)
°°Rb 691.57(5)	0.00725(18)	0.000257(6)	°′Sr	1565 54(5)	0.027(4)	0.00093(14)
⁸⁵ Rb 726.98(5) ⁸⁵ Rb 747.67(4)	0.00421(15)	1.49(5)×10 ⁻⁴	87Sr	1706.62(4) 1717.804(23)	0.0231(8)	0.00080(3)
85 Rb 816.59(6)	0.00268(12) 0.0031(9)	9.5(4)×10 ⁻⁵ 1.1(3)×10 ⁻⁴	87 S r	1717.604(23)	0.0674(15) 0.0140(14)	0.00233(5) 0.00048(5)
°′Rb 834.79(6)	0.00197(13)	7.0(5)×10 ⁻⁵	°′Sr	1736 54(3)	0.018(3)	0.00062(10)
°°Rh 872.94(4)	0.0321(5)	0.001138(18)	°′Sr	1799.06(3)	0.0356(11)	0.00123(4)
°°Rb 881.50(4)	0.00480(17)	1.70(6)×10 ⁻⁴	°′Sr	1836.067(21)	1.030(18)	0.0356(6)
⁸⁵ Rb 913.12(6) ⁸⁵ Rb 944.49(9)	0.00497(15)	1.76(5)×10 ⁻⁴	87 Sr	2111.36(3) 2202.92(3)	0.0279(10)	0.00096(4) 0.00118(4)
85 Rb 945.72(7)	0.0035(13) 0.00390(15)	1.2(5)×10 ⁻⁴ 1.38(5)×10 ⁻⁴	87Sr	2276.52(3)	0.0341(10) 0.0431(13)	0.00118(4)
[∞] Rb 1026.55(6)	0.0218(4)	0.000773(14)	°′Sr	2391.09(3)	0.0471(15)	0.00163(5)
⁸⁹ Rb 1032.32(5)	0.0227(4)	0.000805(14)	°′Sr	2463.52(4)	0.0131(6)	0.000453(21)
85Rb 1076.64(20)d	0.0301(5)	0.001067[<0.1%]	°′Sr	2577.85(4)	0.0246(9)	0.00085(3)
⁸⁵ Rb 1105.52(10) ⁸⁷ Rb 1141.49(15)	0.0151(3) 0.00113(11)	0.000535(11) 4.0(4)×10 ⁻⁵	88 Sr	3009.39(3) 4078.39(5)	0.0575(15) <i>0.0055(</i> 9)	0.00199(5) 1.9(3)×10 ⁻⁴
⁸⁵ Rb 1178 86(10)	0.0044(13)	1.6(5)×10 ⁻⁴	°′Sr	4604 81(6)	0.0169(7)	0.000585(24)
°°Rb 1219.80(9)	0.00446(21)	1.58(7)×10 ⁻⁴	o'Sr	5161.37(5)	0.0138(6)	0.000477(21)
°′Rb 1245.20(6)	0.00253(12)	9.0(4)×10 ⁻⁵	°°Sr	5361.652(25)	0.0104(6)	0.000360(21)
⁸⁵ Rb 1304.48(4) ⁸⁵ Rb 1389.32(7)	0.0204(5) 0.00809(21)	0.000723(18) 0.000287(7)	87 Sr	5423.43(8) 5684.81(4)	0.0146(7) 0.0131(9)	0.000505(24) 0.00045(3)
85Rb 1438.31(4)	0.00200(15)	7.1(5)×10 ⁻⁵	87Sr	5791.07(4)	0.0131(9)	0.00043(3)
°°Rb 1666.74(9)	0.00774(23)	0.000274(8)	°′Sr	5999 31(5)	0.0109(6)	0.000377(21)
° ³ Rb 1890.7(4)	0.017(4)	0.00060(14)	°′Sr	6101 72(4)	0.0477(17)	0.00165(6)
⁸⁵ Rb 2130.59(17) ⁸⁵ Rb 2149.4(7)	0.0031(5)	1.10(18)×10 ⁻⁴	87 Sr	6266.87(4) 6660.40(3)	0.077(3)	0.00266(10) 0.00223(8)
85Rb 2179.33(16)	0.00153(19) 0.00168(17)	5.4(7)×10 ⁻⁵ 6.0(6)×10 ⁻⁵	87Sr	6671.58(4)	0.0644(23) 0.0132(7)	0.00223(8)
°°Rb 2353.43(17)	0.00122(9)	4.3(3)×10 ⁻⁵	°′Sr	6698.39(5)	0.0127(6)	0.000439(21)
°′Rb 2391.86(21)	0.00094(12)	3.3(4)×10 ⁻⁵	o/Sr	6885 1 <i>4(</i> 3)	0.0478(20)	0.00165(7)
⁸⁵ Rb 2461.41(17) ⁸⁵ Rb 2476.2(7)	0.00251(17)	8.9(6)×10 ⁻⁵	87Sr	6941.93(3) 7527.490(25)	0.0502(20) 0.0687(24)	0.00174(7) 0.00238(8)
85Rb 2568.8(5)	0.0013(4) 0.0017(4)	4.6(14)×10 ⁻⁵ 6.0(14)×10 ⁻⁵	86 Sr	8039.250(19)	0.0260(14)	0.00238(8)
^{oo} Rb 2585.58(16)	0.00240(18)	8.5(6)×10 ⁻⁵	87Sr	8378.069(23)	0.0197(7)	0.000681(24)
°′Rb 3690.17(20)	0.00184(18)	6.5(6)×10 ⁻⁵			Vt.=88.90585(2)	
⁸⁷ Rb 4640.79(25) ⁸⁷ Rb 5220.8(3)	0.00292(19)	1.04(7)×10 ⁻⁴	89🗸	176.923(22)	0.0129(7)	0.000440(24)
°'Rb 5886.30(24)	0.00176(18) 0.00217(17)	6.2(6)×10 ⁻⁵ 7.7(6)×10 ⁻⁵	89🗸	202.53(3)	0.289(7)	0.00985(24)
⁸⁵ Rb 6065.13(17)	0.0047(3)	1.67(11)×10 ⁻⁴	89Y	202.53(3)d	0.0018(5)	6.1×10 ⁻⁵ [10%]
°°Rb 6081.9(5)	0.00097(16)	3.4(6)×10 ⁻⁵	89 89 Y	574.106(20)	0.174(7)	0.00593(24)
°′Rb 6082.4(4)	0.00097(16)	3.4(6)×10 ⁻⁵	89∨	604.99(3) 776.613(18)	0.0084(7) 0.659(9)	0.000286(24) 0.0225(3)
⁸⁵ Rb 6143.2(4) ⁸⁵ Rb 6189.29(18)	0.00132(19) 0.0036(3)	4.7(7)×10 ⁻⁵ 1.28(11)×10 ⁻⁴	89∨	953.534(21)	0.0135(11)	0.00046(4)
°°Rb 6319.4(8)	0.00107(18)	3.8(6)×10 ⁻⁵	89🗸	1211.573(22)	0.0453(22)	0.00154(8)
°°Rb 6351.44(17)	0.00173(16)	6.1(6)×10 ⁻⁵	89 Y 89 Y	1214.060(23)	0.0096(12)	0.00033(4)
°°Rb 6385.11(25)	0.00148(19)	5.2(7)×10 ⁻⁵	89Y	1369.099(23)	0.0087(12)	0.00030(4)
⁸⁵ Rb 6471.37(17) ⁸⁵ Rb 6501.3(7)	0.0049(3)	1.74(11)×10 ⁻⁴	89🗸	1371.124(20) 1416.566(22)	0.0404(22) 0.0173(13)	0.00138(8) 0.00059(4)
85Rb 6520.11(18)	0.00165(19) 0.0064(4)	5.9(7)×10 ⁻⁵ 2.27(14)×10 ⁻⁴	89 ~	1558.459(23)	0.0163(11)	0.00056(4)
°°Rb 6831.64(10)	0.0064(4)	2.27(14)×10 ⁻⁴	89🗸	1571.604(22)	0.0148(11)	0.00050(4)
^{oo} Rb 6942.98(13)	0.00161(15)	5.7(5)×10 ⁻⁵	89 89 Y	1640.913(22)	0.0146(15)	0.00050(5)
[∞] Rb 7212.34(10)	0.00129(17)	4.6(6)×10 ⁻⁵	89∨	1760.964(23) 1780.70(6)	0.0086(10) 0.0082(18)	0.00029(3) 0.00028(6)
⁸⁵ Rb 7346.16(10) ⁸⁵ Rb 7545.10(13)	0.0059(3) 0.00099(14)	2.09(11)×10 ⁻⁴ 3.5(5)×10 ⁻⁵	89🗸	1815.15(3)	0.0062(16)	0.00026(6)
°°Rb 7624.07(11)	0.0114(5)	0.000404(18)	89∨	2139.11(4)	0.0101(12)	0.00034(4)
⁸⁵ Rb 8093.76(10)	0.00211(20)	7.5(7)×10 ⁻⁵	89 Y 89 Y	2196.10(3)	0.0107(10)	0.00036(3)
⁸⁵ Rb 8650.52(10)	0.0022(4)	7.8(14)×10 ⁻⁵	89🗸	2273.38(4) 2327.31(5)	0.0121(24) 0.0108(18)	0.00041(8) 0.00037(6)
			89 ~	2405.36(4)	0.0095(18)	0.00037(6)
			89 Y	2504.60(4)	0.0139(17)	0.00047(6)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

	Eγ-keV	σ(Εγ)-barns	k _o	Eγ-keV	σ (Ε γ)-barns	k ₀
Yttriun	n (Z=39), cont	inued		Zirconium (Z=40), c	ontinued	
	2546.68(3)	0.0219(17)	0.00075(6)	⁹¹ Zr 2132.84(3)	0.0014(3)	4.7(10)×10 ⁻⁵
	2589.56(5)	0.0137(15)	0.00047(5)	⁹² Zr 2190.2(5)	0.0044(5)	1.46(17)×10 ⁻⁴
	2749.181(24)	0.0246(19)	0.00084(7)	% Zr 2328.10(4)	0.0019(8)	6(3)×10 ⁻⁵
	2756.47(5)	0.0103(12)	0.00035(4)	⁹¹ Zr 2436.92(3)	0.0015(7)	5.0(23)×10 ⁻⁵
	2819.38(5)	0.0096(9)	0.00033(3)	⁹⁰ Zr 2533.2(5) ⁹¹ Zr 2537.17(19)	0.0037(14)	1.2(5)×10 ⁻⁴
	2847.23(7)	0.0096(9)	0.00033(3)	⁹¹ Zr 2537.17(19)	0.0014(5)	4.7(17)×10 ⁻⁵
89 🗸	2922.48(3) 3160.17(4)	0.0090(9) 0.0109(6)	0.00031(3) 0.000372(20)	⁹⁰ Zr 2557.8(8) ⁹⁰ Zr 2577.3(14)	0.016(4) 0.016(4)	0.00053(13) 0.00053(13)
89 🗸	3164.64(5)	0.0120(6)	0.000372(20)	⁹⁰ Zr 2640.1(8)	0.010(4)	0.00035(8)
89 🗸 🤈	3229.29(3)	0.0116(6)	0.000395(20)	⁹¹ 7r 2693 79(3)	0.006(3)	2.0(10)×10 ⁻⁴
89~ 3	3254.87(4)	0.0119(6)	0.000406(20)	⁹¹ Zr 2705.74(9)	0.0019(8)	6(3)×10 ⁻⁵
89 🗸 🤈	3282.41(4)	0.0192(10)	0.00065(3)	⁹⁰ Zr 3082.6(12)	0.0096(25)	0.00032(8)
⁸⁹ Y 3	3301.23(3)	0.0276(18)	0.00094(6)	917r 2271 26/2\	0.0020(5)	6.6(17)×10 ⁻⁵
89Y 3	3380.87(4)	0.0159(8)	0.00054(3)	⁹² 7r 3459 4(15)	0.00137(17)	4.6(6)×10 ⁻⁵
	3544.52(4)	0.0163(10)	0.00056(3)	°°∠r 3475.8(15)	0.019(5)	0.00063(17)
	3696.70(4)	0.0138(8)	0.00047(3)		0.0017(5)	5.6(17)×10 ⁻⁵
89 🗸 🤈	3713.08(4) 3870.79(5)	0.0078(4) 0.0089(5)	0.000266(14)	⁹⁰ Zr 3982.3(15) ⁹⁴ Zr 4104.3(3)	0.015(4) 0.0029(5)	0.00050(13) 9.6(17)×10 ⁻⁵
89🗸	4009.64(7)	0.0089(6)	0.000303(17) 0.000303(20)	927r 4278 1(7)	0.0029(3)	4.9(3)×10 ⁻⁵
89🗸	4098.82(3)	0.0108(6)	0.000368(20)	⁹² Zr 4278.1(7) ⁹¹ Zr 4994.61(18)	0.0027(5)	9.0(17)×10 ⁻⁵
891/	4107.68(3)	0.067(12)	0.0023(4)	917r 5006 56(16)	0.0049(7)	1.63(23)×10 ⁻⁴
89Y 4	4352.26(4)	0.0207(16)	0.00071(6)	⁹⁰ Zr 5150.3(9)	0.0017(12)	6(4)×10 ⁻⁵
89Y 2	4380.97(4)	0.0085(5)	0.000290(17)	90Zr 5150.3(9) 91Zr 5182.73(17) 91Zr 5263.42(17)	0.0019(4)	6.3(13)×10 ⁻⁵
	4490.91(3)	0.0093(6)	0.000317(20)	⁹¹ Zr 5263.42(17)	0.0064(8)	2.1(3)×10 ⁻⁴
	4660.75(3)	0.0088(5)	0.000300(17)	³² Zr 5309.9(7)	0.0024(4)	8.0(13)×10 ⁻⁵
89Y 6	5645.236(25)	0.029(3)	0.00099(10)	⁹¹ Zr 5372.23(17)	0.0016(4)	5.3(13)×10 ⁻⁵
	6080.171(22)	0.76(4)	0.0259(14)	⁹⁶ Zr 5574.9(4) ⁹¹ Zr 6295.13(16)	0.0023(4) 0.0279(20)	7.6(13)×10 ⁻⁵ 0.00093(7)
Zircon	ium (Z=40), <i>A</i>	t.Wt.=91.224(2), σ _γ =0.19(3)	⁹⁴ Zr 6357.8(4)	0.0026(4)	8.6(13)×10 ⁻⁵
$^{94}_{96}$ Zr 1	101.17(9)	0.0026(3)	8.6(10)×10 ⁻⁵		` '	` '
96Zr 1	160.94(10)	0.0111(7)	0.000369(23)	Niobium (Z=41), <i>At.</i>		
91 7 6	266.78(16)	0.0091(5)	0.000302(17)	⁹³ Nb 17.810(7) ⁹³ Nb 54.704(7)	0.0579(14)	0.00189(5)
91Zr 2	273.036(5) 403.898(13)	0.0029(4) 0.00137(25)	9.6(13)×10 ⁻⁵ 4.6(8)×10 ⁻⁵	93Nb 78.6680(10)	0.0058(7) 0.0169(3)	1.89(23)×10 ⁻⁴ 0.000551(10)
917r 2	448.217(5)	0.0067(3)	2.23(10)×10 ⁻⁴	⁹³ Nb 99.4070(10)	0.196(9)	0.0064(3)
917r 2	492.398(8)	0.0027(3)	9.0(10)×10 ⁻⁵	⁹³ Nb 113.4010(10)	0.117(3)	0.00382(10)
⁹¹ 7r <i>!</i>	560.958(3)	0.0285(5)	0.000947(17)	⁹³ Nb 135.47(6)	0.0029(9)	9(3)×10 ⁻⁵
⁹⁴ 7r <i>F</i>	569.5(3) ′	0.0013(3)	4.3(10)×10 ⁻⁵	⁹³ Nb 136.21(12)	0.0027(7)	8.8(23)×10 ⁻⁵
91Zr 5	571.171(5)	0.0022(3)	7.3(10)×10 ⁻⁵	⁹³ Nb 138.614(8)	0.0089(19)	0.00029(6)
90Zr 6	652.8(4)	0.0029(14)	1.0(5)×10 ⁻⁴	⁹³ Nb 140.10(3)	0.00226(21)	$7.4(7)\times10^{-5}$
	743.36(3)d	0.00101(6)	3.36×10 ⁻⁵ [2.0%]	⁹³ Nb 150.711(22) ⁹³ Nb 161.2610(20)	0.00201(21)	6.6(7)×10 ⁻⁵
91Zr 9	844.206(4) 902.861(8)	0.0095(4) 0.0047(5)	0.000316(13) 1.56(17)×10 ⁻⁴	93Nb 193.96(13)	0.0190(5) 0.0022(4)	0.000620(16) 7.2(13)×10 ⁻⁵
⁹¹ 7r 9	912.766(7)	0.0047(5)	0.000389(17)	⁹³ Nb 253.115(5)	0.1320(19)	0.00431(6)
917r (934.4640(10)	0.125(5)	0.00415(17)	⁹³ Nb 255.9290(20)	0.176(3)	0.00574(10)
⁹⁴ 7r (939.11(10)	0.0017(5)	5.6(17)×10 ⁻⁵	⁹³ Nb 270.45(4)	0.0046(3)	1.50(10)×10 ⁻⁴
⁹² 7r 9	946.6(5)	0.0020(5)	6.6(17)×10 ⁻⁵	⁹³ Nb 293.206(4)	0.0651(16)	0.00212(5)
³⁴ 7r (953.77(15)	0.0030(5)	9.97(17)×10 ⁻⁵	⁹³ Nb 309.915(8)	0.0690(17)	0.00225(6)
91Zr S	972.332(10)	0.0025(17)	8(6)×10 ⁻⁵	⁹³ Nb 319.703(14)	0.00320(23)	1.04(8)×10 ⁻⁴
	990.540(7)	0.0029(5)	9.6(17)×10 ⁻⁵	93Nb 329.178(12)	0.0108(4)	0.000352(13)
94Zr 1	1030.83(24) 1054.75(16)	0.0013(4) 0.0037(5)	4.3(13)×10 ⁻⁵ 1.23(17)×10 ⁻⁴	⁹³ Nb 329.185(10) ⁹³ Nb 337.527(7)	0.0080(9) 0.054(6)	0.00026(3) 0.00176(20)
⁹⁰ 7r 1	1067.5(7)	0.0037(3)	6(3)×10 ⁻⁵	93Nb 338.661(19)	0.0080(19)	0.00026(6)
⁹⁶ 7r 1	1102.67(6)	0.0235(8)	0.00078(3)	⁹³ Nb 355.3360(20)	0.0056(3)	1.83(10)×10 ⁻⁴
9 ¹ 7r 1	1132.126(4)	0.0100(7)	0.000332(23)	⁹³ Nb 450.98(9)	0.00238(20)	7.8(7)×10 ⁻⁵
⁹⁴ 7r 1	1198.25(19)	0.0042(5)	1.40(17)×10 ⁻⁴	⁹³ Nb 454.60(5)	0.00328(22)	1.07(7)×10 ⁻⁴
⁹⁰ 7r 1	1205.6(7)	0.042(5)	0.00140(17)	⁹³ Nb 456.20(10)	0.0058(7)	1.89(23)×10 ⁻⁴
91Zr 1	1222.44(4)	0.0018(4)	6.0(13)×10 ⁻⁵	⁹³ Nb 458.467(10)	0.0240(5)	0.000783(16)
	1248.100(12)	0.0038(4)	1.26(13)×10 ⁻⁴	⁹³ Nb 482.72(3)	0.0032(5)	1.04(16)×10 ⁻⁴
94Zr 1	1300.1(5)	0.0015(5)	5.0(17)×10 ⁻⁵ 8.3(17)×10 ⁻⁵	⁹³ Nb 484.14(5) ⁹³ Nb 499.426(8)	0.0073(6)	2.38(20)×10 ⁻⁴
	1323.20(25) 1405.159(3)	0.0025(5) 0.0301(10)	0.00100(3)	93Nb 518.113(12)	0.0648(18) 0.0579(13)	0.00211(6) 0.00189(4)
⁹² 7r 1	1425.2(4)	0.00287(20)	9.5(7)×10 ⁻⁵	93Nb 525.81(3)	0.0074(6)	2.41(20)×10 ⁻⁴
⁹¹ 7r 1	1463.814(8)	0.0017(7)	5.6(23)×10 ⁻⁵	⁹³ Nb 527.595(9)	0.0127(7)	0.000414(23)
⁹⁰ 7r 1	1465.7(7)	0.063(15)	0.0021(5)	⁹³ Nb 547.73(7)	0.0045(4)	1.47(13)×10 ⁻⁴
⁹² 7r 1	1650.1(5)	0.0029(12)	1.0(4)×10 ⁻⁴	⁹³ Nb 562.328(9)	0.0293(11)	0.00096(4)
9 ¹ 7r 1	1847.220(7)	0.0084(8)	0.00028(3)	⁹³ Nb 573.07(4)	0.0020(3)	6.5(10)×10 ⁻⁵
90Zr 1	1880.4(4)	0.016(4)	0.00053(13)	⁹³ Nb 583.837(11)	0.0022(3)	7.2(10)×10 ⁻⁵
⁹⁴ Zr 1	1892.9(4)	0.0034(7)	1.13(23)×10 ⁻⁴	93Nb 590.627(14)	0.0086(5)	0.000281(16)
	1917.2(9) 1956.66(4)	0.0017(8) 0.0035(5)	6(3)×10 ⁻⁵ 1.16(17)×10 ⁻⁴	⁹³ Nb 600.43(3) ⁹³ Nb 635.80(5)	0.0035(5) 0.0059(5)	1.14(16)×10 ⁻⁴ 1.92(16)×10 ⁻⁴
⁹¹ 7r 1	1974.91(4)	0.0033(5)	8.0(17)×10 ⁻⁵	93Nb 636.081(16)	0.0039(5)	1.40(16)×10 ⁻⁴
⁹¹ 7r 1	1988.71(3)	0.0024(5)	1.63(17)×10 ⁻⁴	⁹³ Nb 640.995(9)	0.0048(5)	1.57(16)×10 ⁻⁴
⁹⁰ 7r 2	2042.2(4)	0.032(8)	0.0011(3)	⁹³ Nb 642.62(4)	0.0069(5)	2.25(16)×10 ⁻⁴
	2105.16(5)	0.0025(5)	8.3(17)×10 ⁻⁵	⁹³ Nb 645.40(5)	0.0022(7)	7.2(23)×10 ⁻⁵

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Noblum (Z=41), continued Simb 672.05(5)	Eγ-keV	σ(Εγ)-barns	k _o	Eγ-keV	σ(Εγ)-barns	k ₀
Section Sect			_			/
Section Sect	93Nb 672.30(5)	(⁹³ Nb 2019.49(9)		
Section Sect	93Nb 689.79(5)) .(93Nb 2285.80(21)		8.5(16)×10 ⁻⁵
**Nb 0748.7f(111)	93Nh 711 47(4)			93Nh 2319.01(9)		7/3/×10 ·
Ship	⁹³ Nb 748.71(11)			⁹³ Nb 2896.68(12)		
**Nb 755.354(8)	⁹³ Nb 751.671(11)		` _ '	⁹³ Nb 2922.70(12)		
**SNN 582.247(11)	⁹³ Nb 755.354(8)			⁹³ Nb 3194.65(19)		
**SND 819(118)	⁹³ Nb 775.93(3)			⁹³ Nb 3241.04(12)		
**Nb 80.19(1(8)	93Nb 782.247(11)			93Nb 3260.34(12)		
**NN 81.264(7)	⁹³ Nb 801.91(18)			93Nb 3267.12(20)		
SNN 835.72(3)	⁹³ Nb 812.64(7)			⁹³ Nb 3319.93(12)		
Section Sect	⁹³ Nb 835.72(3)			⁹³ Nb 3343.94(12)		7.5(20)×10 ⁻⁵
**NN 871.066	93Nb 850.93(5)			93Nb 3353.64(12)		
**SNN 876.64(11)	93Nh 871.06d			93Nb 3367.04(12)		
**NN 878.61(5)	⁹³ Nb 876.64(11)			⁹³ Nb 3383.54(12)		
**SNB 893.42(5)	⁹³ Nb 878.61(5)			⁹³ Nb 3388.53(12)	} _ (
**No \$914.77(1)	⁹³ Nb 883.42(5)	}_(⁹³ Nb 3428.34(12)	} _ (
**Nb 931.476(15)	93Nb 894.45(11)	(93Nb 3430.66(20)		
**Nb 932.65(3)	93Nh 911 476(15)	}_(93Nb 3458 34(12)	\ _ \	
**Nb 944.61(4)	⁹³ Nb 932.65(3)			⁹³ Nb 3465.55(14)	} - (
Solid Soli	³³ Nb 944.61(4)			⁹³ Nb 3502.64(12)		
99Nb 1100.05(5)	⁹³ Nb 957.28(5)			⁹³ Nb 3508.04(12)		
98Nb 1100.05(5)	93Nb 976.71(4)			93Nb 3538.94(12)		
98Nb 1116.86(5) 0.0076(7) 2.48(23)×10-4 98Nb 3646.03(12) 0.0022(3) 7.2(10)×10-5 98Nb 1117.85(5) 0.0080(11) 0.00026(4) 98Nb 1112.55(7) 0.0062(8) 2.0(3)×10-4 98Nb 3668.03(12) 0.0023(3) 7.5(10)×10-5 98Nb 1122.55(7) 0.0106(13) 0.00035(4) 98Nb 1122.55(7) 0.0106(13) 0.00035(7) 98Nb 1122.55(7) 0.0106(13) 0.00035(7) 98Nb 1122.55(7) 0.0106(13) 0.00035(7) 98Nb 1123.87(6) 0.0175(15) 0.00037(7) 98Nb 1128.87(6) 0.0175(15) 0.00037(7) 98Nb 1151.47(7) 0.0071(6) 2.32(20)×10-4 98Nb 3680.54(12) 0.0023(3) 7.5(10)×10-5 98Nb 1158.45(5) 0.0037(7) 2.38(20)×10-4 98Nb 3720.63(12) 0.0033(6) 1.08(20)×10-4 98Nb 3745.55(14) 0.0033(4) 1.08(13)×10-4 98Nb 1191.06(3) 0.0137(7) 0.000447(23) 98Nb 1191.06(3) 0.0137(7) 0.000447(23) 98Nb 1214.31(10) 0.0073(7) 2.38(23)×10-4 98Nb 3780.54(12) 0.0020(22) 6.5(7)×10-5 98Nb 1219.01(7) 0.0050(6) 1.63(20)×10-4 98Nb 3837.31(12) 0.0020(5) 6.5(16)×10-5 98Nb 1219.01(7) 0.0050(6) 1.63(20)×10-4 98Nb 1227.8(4) 0.0114(7) 0.000372(23) 98Nb 1227.8(4) 0.0114(7) 0.000372(23) 98Nb 1230.13(7) 0.0051(7) 1.66(23)×10-4 98Nb 1230.13(7) 0.0051(6) 1.66(23)×10-4 98Nb 1240.20(6) 0.0058(6) 1.3(3)×10-4 98Nb	93Nh 11001.82(11)	} - (93Nb 3543.43(12)		6.8(20)×10 ⁻⁵ 8.8(10)×10-5
39Nb 1117.85(5) 0.0080(11) 0.00026(4) 39Nb 3646.03(12) 0.0023(3) 7.2(10)×10-5 39Nb 1118.54(3) 0.0026(8) 2.0(3)×10-4 39Nb 3658.53(12) 0.0023(3) 7.5(10)×10-5 39Nb 1128.97(6) 0.0176(15) 0.00057(5) 39Nb 1128.97(6) 0.0176(15) 0.00057(5) 39Nb 1128.97(6) 0.0176(15) 0.00057(5) 39Nb 1159.61(10) 0.0066(6) 2.32(20)×10-4 39Nb 3740.94(12) 0.0028(3) 9.1(10)×10-5 39Nb 1188.45(5) 0.0074(6) 2.41(20)×10-4 39Nb 3740.94(12) 0.0021(3) 6.8(10)×10-4 39Nb 1191.06(3) 0.137(7) 0.000474(723) 39Nb 1206.26(5) 0.0284(10) 0.0093(3) 39Nb 1206.26(5) 0.0284(10) 0.0093(3) 39Nb 1206.26(5) 0.0284(10) 0.0093(3) 39Nb 1216.09(9) 0.0021(5) 6.8(16)×10-5 39Nb 120.0003(6) 0.0021(5) 6.8(16)×10-5 39Nb 1222.41(9) 0.0051(6) 6.83(20)×10-4 39Nb 1227.8(4) 0.0114(7) 0.000372(23) 39Nb 1227.8(4) 0.0114(7) 0.000372(23) 39Nb 1227.8(4) 0.0114(7) 0.000372(23) 39Nb 1227.8(4) 0.0114(7) 0.000372(23) 39Nb 1225.8(9) 0.0098(7) 0.00031(23) 39Nb 1225.8(9) 0.0098(7) 0.000313(23) 39Nb 1225.8(9) 0.0098(7) 0.000313(23) 39Nb 1258.99(8) 0.0098(8) 1.9(3)×10-4 39Nb 1258.99(8) 0.0008(8) 1.9(3)×10-4 39Nb	⁹³ Nb 1106.86(5)			93Nb 3634.02(12)		
93Nb 1118.54(3)	⁹⁵ Nb 1117.85(5)	0.0080(11)		⁹³ Nb 3646.03(12)		
98Nb 1122.55(7)	⁹³ Nb 1118.54(3)			⁹³ Nb 3651.22(12)		
93Nb 1128.97(6)	93Nb 1120.54(7)			93Nb 3658.53(12)		
93Nb 1151.47(7)	93Nb 1122.55(7)		} _ (93Nb 3680 54(12)		9.1(20)×10 ⁻⁵ 9.1(10)×10-5
93Nb 1189.61(10)	⁹³ Nb 1151.47(7)	} '		⁹³ Nb 3720.63(12)		
93Nb 1188.45(5) 0.0074(6) 2.41(20)×10-4 93Nb 119.06(3) 0.0137(7) 0.000447(23) 93Nb 3745.55(14) 0.0020(22) 6.5(7)×10-5 93Nb 1214.31(10) 0.0073(7) 2.38(23)×10-4 93Nb 1216.09(9) 0.0021(5) 6.81(6)×10-5 93Nb 1219.01(7) 0.0050(6) 1.63(20)×10-4 93Nb 1229.41(9) 0.0121(7) 0.00039(23) 93Nb 3887.53(12) 0.0026(3) 8.5(10)×10-5 93Nb 1222.44(9) 0.0121(7) 0.000395(23) 93Nb 3888.74(12) 0.0045(6) 1.57(20)×10-4 93Nb 1222.44(9) 0.0121(7) 0.000395(23) 93Nb 3888.74(12) 0.0045(6) 1.57(20)×10-4 93Nb 1223.0.13(7) 0.0051(7) 1.66(23)×10-4 93Nb 1230.13(7) 0.0051(7) 1.66(23)×10-4 93Nb 1266.97(9) 0.0096(7) 0.000313(23) 93Nb 3892.83(12) 0.0022(3) 7.2(10)×10-5 93Nb 1266.97(9) 0.0059(8) 1.9(3)×10-4 93Nb 1258.90(8) 0.0039(8) 1.3(3)×10-4 93Nb 1273.72(7) 0.0052(12) 1.7(4)×10-4 93Nb 1273.72(7) 0.0052(12) 1.7(4)×10-4 93Nb 1308.1(4) 0.0068(13) 2.2(4)×10-4 93Nb 1308.1(4) 0.0068(13) 2.2(4)×10-4 93Nb 1391.52(7) 0.0095(7) 0.000316(23) 93Nb 3936.72(12) 0.0024(3) 7.8(10)×10-5 93Nb 1308.1(4) 0.0068(13) 2.2(4)×10-4 93Nb 1392.73(7) 0.0052(12) 1.7(4)×10-4 93Nb 1392.73(7) 0.0052(12) 1.7(4)×10-4 93Nb 1392.73(7) 0.0052(12) 1.7(4)×10-4 93Nb 1393.13(10-4 93Nb 1393	⁹³ Nb 1159.61(10)			⁹³ Nb 3740.94(12)	} _ (
93Nb 1206.26(5) 0.0284(10) 0.00033(3) 93Nb 3773.94(12) 0.0045(5) 1.47(16)×10-5 93Nb 1216.09(9) 0.0073(7) 2.38(23)×10-4 93Nb 3837.12(12) 0.0020(5) 6.5(16)×10-5 93Nb 1219.01(7) 0.0050(6) 1.63(20)×10-4 93Nb 3867.53(12) 0.0051(6) 1.57(20)×10-4 93Nb 1227.8(4) 0.0111(7) 0.000372(23) 93Nb 3887.713(12) 0.0048(6) 1.57(20)×10-4 93Nb 1227.8(4) 0.0114(7) 0.000372(23) 93Nb 3892.83(12) 0.0039(5) 1.27(16)×10-5 93Nb 1230.13(7) 0.0051(7) 1.66(23)×10-4 93Nb 3997.03(12) 0.00207(23) 6.8(8)×10-5 93Nb 1240.22(9) 0.0096(7) 0.000313(23) 93Nb 3997.03(12) 0.00207(23) 7.2(10)×10-5 93Nb 1256.97(9) 0.0059(8) 1.9(3)×10-4 93Nb 3919.65(12) 0.0023(3) 7.2(10)×10-5 93Nb 1264.5(7) 0.0021(5) 6.8(16)×10-5 93Nb 3927.83(12) 0.0024(3) 7.8(10)×10-5 93Nb 1264.5(7) 0.0022(5) 6.8(16)×10-5 93Nb 3931.73(12) 0.0024(3) 7.8(10)×10-5 93Nb 1291.52(7) 0.0097(7) 0.000316(23) 93Nb 3931.73(12) 0.0024(3) 7.8(10)×10-5 93Nb 1308.1(4) 0.0068(13) 2.2(4)×10-4 93Nb 3972.03(12) 0.0030(4) 9.8(13)×10-4 93Nb 1392.73(7) 0.015(8) 0.00034(3) 93Nb 3972.03(12) 0.0030(4) 9.8(13)×10-5 93Nb 1392.73(7) 0.0058(6) 1.40(16)×10-4 93Nb 4000.22(12) 0.0033(4) 1.08(13)×10-4 93Nb 1392.73(7) 0.0058(6) 1.57(20)×10-4 93Nb 4010.72(12) 0.0033(4) 1.08(13)×10-5 93Nb 1449.04(4) 0.0068(6) 1.57(20)×10-4 93Nb 4010.72(12) 0.0033(4) 1.08(13)×10-5 93Nb 1449.05(9) 0.0048(6) 1.57(20)×10-4 93Nb 4010.72(12) 0.0033(4) 1.08(13)×10-5 93Nb 1449.05(9) 0.0097(22) 0.00032(7) 93Nb 4109.03(12) 0.0027(3) 8.8(10)×10-5 93Nb 1481.19(13) 0.0048(6) 1.57(20)×10-4 93Nb 4153.82(12) 0.0022(3) 8.5(10)×10-5 93Nb 1481.19(13) 0.0028(5) 9.1(16)×10-5 93Nb 1496.88(11) 0.0029(6) 9.5(20)×10-5 93Nb 1496.01(2) 0.0033(7) 1.00033(7)	⁹³ Nb 1188.45(5)			⁹³ Nb 3745.55(14)		
93Nb 1214.31(10) 0.0073(7) 2.38(23)×10-4 93Nb 1216.09(9) 0.0021(5) 6.8(16)×10-5 93Nb 1219.01(7) 0.0050(6) 1.63(20)×10-4 93Nb 1229.11(9) 0.0121(7) 0.000395(23) 93Nb 3867.53(12) 0.0026(3) 8.5(10)×10-5 93Nb 1222.41(9) 0.0121(7) 0.000372(23) 93Nb 3888.74(12) 0.0051(6) 1.66(20)×10-4 93Nb 1223.013(7) 0.0051(7) 1.66(23)×10-4 93Nb 1230.13(7) 0.0051(7) 1.66(23)×10-4 93Nb 1240.02(9) 0.0096(7) 0.000313(23) 93Nb 1240.02(9) 0.0096(8) 1.9(3)×10-4 93Nb 1256.97(9) 0.0059(8) 1.9(3)×10-4 93Nb 1256.97(9) 0.0059(8) 1.9(3)×10-4 93Nb 1256.99(8) 0.0039(8) 1.3(3)×10-4 93Nb 1264.5(7) 0.0021(5) 6.8(16)×10-5 93Nb 1264.5(7) 0.0052(12) 1.7(4)×10-4 93Nb 1291.52(7) 0.0052(12) 1.7(4)×10-4 93Nb 1291.52(7) 0.0097(7) 0.000316(23) 93Nb 1391.66(19) 0.0043(5) 1.40(16)×10-4 93Nb 1392.73(7) 0.0105(8) 0.00034(3) 93Nb 1392.73(7) 0.0105(8) 0.00034(3) 93Nb 1392.73(7) 0.0068(15) 2.2(5)×10-4 93Nb 1440.05(9) 0.0068(15) 2.2(5)×10-4 93Nb 1442.0(4) 0.0068(16) 1.99(20)×10-4 93Nb 1445.9(7) 0.0095(6) 0.00032(7) 93Nb 1445.9(4) 0.0068(16) 1.99(20)×10-4 93Nb 1460.02(9) 0.0097(2) 0.00032(7) 93Nb 1478.58(14) 0.0028(5) 9.5(20)×10-5 93Nb 1481.19(13) 0.0039(8) 1.3(3)×10-4 93Nb 1481.19(13) 0.0039(8) 1.3(3)×10-4 93Nb 1481.9(13) 0.0039(8) 1.3(3)×10-4 93Nb 1481.9(13) 0.0039(8) 1.3(3)×10-4 93Nb 1481.9(13) 0.0039(8) 1.3(3)×10-5 93Nb 1481.9(13) 0.0039(8) 1.3(3)×10-6 93Nb 1481.9(13) 0.0039(8) 1.3(3)×10-6 93Nb 1482.9(1) 0.0028(5) 7.2(16)×10-5 93Nb 1483.8(10) 0.0022(6) 9.5(20)×10-5 93Nb 1483.8(10) 0.0022(6) 9.5(20)×10-5 93Nb 1481.9(13) 0.0034(5) 1.11(16)×10-6 93Nb 1763.20(10) 0.0034(5) 1.11(16)×10-6 93Nb 1763.20(10) 0.0034(5) 1.11(16)×10-6 93Nb 1881.96(10) 0.0034(5) 1.11(16)×10-6 93Nb 1881.96(10) 0.0034(5) 1.11(16)×10-6 93Nb 1881.96(10) 0.0034(6) 1.17(20)×10-5 93Nb 1881.96(10) 0.0034(6) 1.11(16)×10-	93Nb 1191.06(3)			93Nb 3760.94(12)	' '	
93Nb 1216.09(9)	93Nh 1214 31(10)			93Nh 3837 12(12)	}_(
\$\frac{95}{95}\thb 1219.01(7)\$	⁹³ Nb 1216.09(9)			⁹³ Nb 3867.53(12)		
93Nb 1227.8(4) 0.0114(7) 0.000372(23) 93Nb 3892.83(12) 0.0039(5) 1.27(16)×10-5 93Nb 1240.22(9) 0.0096(7) 0.000313(23) 93Nb 3907.03(12) 0.0022(3) 6.8(8)×10-5 93Nb 1256.97(9) 0.0098(8) 1.9(3)×10-4 93Nb 3912.73(12) 0.0022(3) 7.2(10)×10-5 93Nb 1258.90(8) 0.0039(8) 1.3(3)×10-4 93Nb 3919.65(12) 0.0038(7) 1.24(23)×10-4 93Nb 1258.90(8) 0.0039(8) 1.3(3)×10-4 93Nb 3927.83(12) 0.0026(3) 8.5(10)×10-5 93Nb 1264.5(7) 0.0021(5) 6.8(16)×10-5 93Nb 3938.72(12) 0.0024(3) 7.8(10)×10-5 93Nb 1291.52(7) 0.0097(7) 0.000316(23) 93Nb 3936.72(12) 0.0033(7) 1.08(23)×10-4 93Nb 1392.52(7) 0.0097(7) 0.000316(23) 93Nb 3972.03(12) 0.0034(4) 9.8(13)×10-5 93Nb 1308.1(4) 0.0068(13) 2.2(4)×10-4 93Nb 3978.62(12) 0.0033(4) 9.8(13)×10-5 93Nb 1392.73(7) 0.0105(8) 0.00034(3) 93Nb 4000.22(12) 0.0033(4) 1.08(13)×10-4 93Nb 1392.73(7) 0.0105(8) 0.00034(3) 93Nb 4010.72(12) 0.0033(4) 1.08(13)×10-4 93Nb 1394.0(4) 0.0058(13) 1.9(4)×10-4 93Nb 4010.72(12) 0.0033(4) 1.08(13)×10-4 93Nb 1394.0(4) 0.0058(13) 1.9(4)×10-4 93Nb 4010.72(12) 0.0033(4) 1.08(13)×10-4 93Nb 1419.39(11) 0.0048(6) 1.57(20)×10-4 93Nb 4090.53(12) 0.0021(4) 6.8(13)×10-5 93Nb 1442.0(4) 0.0061(6) 1.99(20)×10-4 93Nb 4191.31(12) 0.0027(3) 8.8(10)×10-5 93Nb 1478.58(14) 0.0029(6) 0.00032(7) 93Nb 4193.32(12) 0.0023(4) 6.8(10)×10-5 93Nb 1478.58(14) 0.0029(6) 9.5(20)×10-5 93Nb 1478.58(14) 0.0029(6) 9.5(20)×10-5 93Nb 1487.9(4) 0.0038(8) 1.3(3)×10-4 93Nb 4196.68(11) 0.0027(6) 8.8(20)×10-5 93Nb 1487.9(4) 0.0038(8) 1.3(3)×10-4 93Nb 4196.68(11) 0.0027(6) 8.8(20)×10-5 93Nb 1487.9(4) 0.0038(5) 1.10(6)×10-5 93Nb 1496.68(11) 0.0022(6) 9.5(20)×10-5 93Nb 1496.58(11) 0.0022(6) 9.5(20)×10-5 93Nb 1614.72(8) 0.0022(5) 7.2(16)×10-5 93Nb 4237.17(13) 0.0020(6) 9.5(20)×10-5 93Nb 16620.12(8) 0.0022(5) 7.2(16)×10-5 93Nb 4387.2(21) 0.0022(6) 9.5(20)×10-5 93Nb 1664.72(8) 0.0028(5) 9.1(16)×10-5 93Nb 4387.2(21) 0.0022(6) 7.2(20)×10-5 93Nb 1863.63(8) 0.0028(6) 9.1(20)×10-5 93Nb 4387.2(21) 0.0022(6) 7.2(20)×10-5 93Nb 1878.88(8) 0.0081(7) 0.0026(4(23) 93Nb 4387.2(21) 0.0022(6) 7.2(20)×10-5 93Nb 1878.88(8) 0.0081(7) 0.0026(4(23) 93Nb	⁹³ Nb 1219.01(7)	0.0050(6)		⁹³ Nb 3879.13(12)		
93Nb 1230.13(7) 0.0051(7) 1.66(23)×10-4 93Nb 3907.03(12) 0.0022(723) 6.8(8)×10-5 93Nb 1226.97(9) 0.0096(7) 0.000313(23) 93Nb 3912.73(12) 0.0022(3) 7.2(10)×10-5 93Nb 1256.97(9) 0.0059(8) 1.9(3)×10-4 93Nb 3912.65(12) 0.0038(7) 1.24(23)×10-4 93Nb 1256.90(8) 0.0039(8) 1.3(3)×10-4 93Nb 3927.83(12) 0.0026(3) 8.5(10)×10-5 93Nb 1264.5(7) 0.0051(5) 6.8(16)×10-5 93Nb 3931.73(12) 0.0024(3) 7.8(10)×10-5 93Nb 1273.72(7) 0.0052(12) 1.7(4)×10-4 93Nb 3936.72(12) 0.0033(7) 1.08(23)×10-4 93Nb 1393.8.1(4) 0.0068(13) 2.2(4)×10-4 93Nb 3978.62(12) 0.0030(4) 9.8(13)×10-5 93Nb 1308.1(4) 0.0068(13) 2.2(4)×10-4 93Nb 3978.62(12) 0.0033(4) 1.08(13)×10-5 93Nb 1301.66(19) 0.0043(5) 1.40(16)×10-4 93Nb 4010.72(12) 0.0033(4) 1.08(13)×10-4 93Nb 1392.73(7) 0.0105(8) 0.00034(3) 93Nb 4010.72(12) 0.0033(4) 1.08(13)×10-4 93Nb 1393.0(4) 0.0058(13) 1.9(4)×10-4 93Nb 4010.72(12) 0.0033(4) 1.08(13)×10-4 93Nb 1419.39(11) 0.0048(6) 1.57(20)×10-4 93Nb 4090.53(12) 0.0021(4) 6.8(13)×10-5 93Nb 1440.05(9) 0.0068(15) 2.2(5)×10-4 93Nb 4109.13(12) 0.0027(3) 8.8(10)×10-5 93Nb 1440.05(9) 0.0068(15) 2.2(5)×10-4 93Nb 4109.13(12) 0.0027(3) 8.8(10)×10-5 93Nb 1459.6(7) 0.0095(6) 0.000310(20) 93Nb 4130.33(12) 0.0021(4) 6.8(13)×10-5 93Nb 1481.19(13) 0.0029(6) 9.5(20)×10-5 93Nb 1481.19(13) 0.0039(8) 1.3(3)×10-4 93Nb 4193.82(12) 0.0021(3) 6.8(10)×10-5 93Nb 1487.9(4) 0.0039(8) 1.3(3)×10-4 93Nb 4193.82(12) 0.0021(3) 6.8(10)×10-5 93Nb 1487.9(4) 0.0039(8) 1.3(3)×10-4 93Nb 4196.68(11) 0.0027(6) 8.8(20)×10-5 93Nb 1487.9(4) 0.0039(8) 1.3(3)×10-4 93Nb 4196.68(11) 0.0027(6) 8.8(20)×10-5 93Nb 1614.72(8) 0.0022(5) 7.2(16)×10-5 93Nb 4260.84(12) 0.0036(6) 1.17(02)×10-5 93Nb 1620.12(8) 0.0022(5) 7.2(16)×10-5 93Nb 4260.84(12) 0.0036(6) 1.17(02)×10-5 93Nb 1660.83(8) 0.0028(6) 9.1(16)×10-5 93Nb 1487.88(8) 0.0081(7) 0.0026(6) 9.1(16)×10-5 93Nb 4389.04(11) 0.0027(6) 8.8(20)×10-5 93Nb 1878.88(8) 0.0081(7) 0.0026(6) 9.1(16)×10-5 93Nb 4389.04(11) 0.0027(7) 8.8(23)×10-5 93Nb 1878.88(8) 0.0081(7) 0.0026(6) 9.1(10)×10-5 93Nb 1878.88(8) 0.0081(7) 0.0026(6) 9.1(10)×10-5 93Nb 1878.88(8) 0.0081(7) 0.002	93Nb 1222.41(9)	(93Nb 3888.74(12)		
93Nb 1240.22(9) 0.0096(7) 0.000313(23) 93Nb 3912.73(12) 0.0022(3) 7.2(10)×10 ⁻⁵ 93Nb 1258.90(8) 0.0039(8) 1.3(3)×10 ⁻⁴ 93Nb 3919.65(12) 0.0026(3) 8.5(10)×10 ⁻⁵ 93Nb 1268.5(7) 0.0021(5) 6.8(16)×10 ⁻⁵ 93Nb 3931.73(12) 0.0024(3) 7.8(10)×10 ⁻⁵ 93Nb 12273.72(7) 0.0052(12) 1.7(4)×10 ⁻⁴ 93Nb 3931.73(12) 0.0024(3) 7.8(10)×10 ⁻⁵ 93Nb 1291.52(7) 0.0097(7) 0.000316(23) 93Nb 3978.03(12) 0.0033(7) 1.08(23)×10 ⁻⁴ 93Nb 1308.1(4) 0.0068(13) 2.2(4)×10 ⁻⁴ 93Nb 3978.03(12) 0.0033(4) 9.8(13)×10 ⁻⁵ 93Nb 1308.1(4) 0.0068(13) 2.2(4)×10 ⁻⁴ 93Nb 3978.62(12) 0.0033(4) 1.08(13)×10 ⁻⁵ 93Nb 1361.66(19) 0.0043(5) 1.40(16)×10 ⁻⁴ 93Nb 4000.22(12) 0.0033(4) 1.08(13)×10 ⁻⁴ 93Nb 1392.73(7) 0.0105(8) 0.0034(3) 93Nb 4010.72(12) 0.0033(4) 1.08(13)×10 ⁻⁴ 93Nb 1394.0(4) 0.0058(13) 1.9(4)×10 ⁻⁴ 93Nb 4015.91(12) 0.0055(7) 1.79(23)×10 ⁻⁴ 93Nb 1493.91(1) 0.0048(6) 1.57(20)×10 ⁻⁴ 93Nb 4090.53(12) 0.0021(4) 6.8(13)×10 ⁻⁵ 93Nb 1442.0(4) 0.0061(6) 1.99(20)×10 ⁻⁴ 93Nb 4109.13(12) 0.0027(3) 8.8(10)×10 ⁻⁵ 93Nb 1459.6(7) 0.0095(6) 0.000310(20) 93Nb 4130.33(12) 0.0063(7) 2.05(23)×10 ⁻⁴ 93Nb 1478.58(14) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 4191.06(12) 0.0026(3) 8.5(10)×10 ⁻⁵ 93Nb 1478.58(14) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 4191.06(12) 0.0026(6) 9.1(20)×10 ⁻⁵ 93Nb 1478.58(14) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 4190.68(11) 0.0027(6) 8.8(20)×10 ⁻⁵ 93Nb 1478.58(14) 0.0029(5) 7.2(16)×10 ⁻⁵ 93Nb 4190.68(11) 0.0027(6) 8.8(20)×10 ⁻⁵ 93Nb 1478.58(14) 0.0029(5) 7.2(16)×10 ⁻⁵ 93Nb 4190.68(11) 0.0027(6) 8.8(20)×10 ⁻⁵ 93Nb 1614.72(8) 0.0028(5) 9.1(16)×10 ⁻⁵ 93Nb 420.84(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 420.84(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 420.84(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 420.84(11) 0.0027(6) 8.8(23)×10 ⁻⁵ 93Nb 1614.72(8) 0.0034(5) 1.11(16)×10 ⁻⁶ 93Nb 420.84(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1614.72(8) 0.0034(5) 1.11(16)×10 ⁻⁶ 93Nb 420.84(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1620.12(8) 0.0024(5) 7.2(16)×10 ⁻⁵ 93Nb 420.84(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1863.63(8) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 4384.27(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1878.88(8) 0.	93Nb 1227.8(4)		0.000372(23) 1.66(23)×10-4	93Nh 3007 03(12)		
93Nb 1266.97(9)	⁹³ Nb 1240.22(9)		0.000313(23)	⁹³ Nb 3912.73(12)		
93Nb 1258.90(8) 0.0039(8) 1.3(3)×10 ⁻⁴ 93Nb 3927.83(12) 0.0026(3) 8.5(10)×10 ⁻⁵ 93Nb 1273.72(7) 0.0052(12) 1.7(4)×10 ⁻⁴ 93Nb 3936.72(12) 0.0033(7) 1.08(23)×10 ⁻⁴ 93Nb 1291.52(7) 0.0097(7) 0.000316(23) 93Nb 3972.03(12) 0.0030(4) 9.8(13)×10 ⁻⁵ 93Nb 1398.1(4) 0.0068(13) 2.2(4)×10 ⁻⁴ 93Nb 3978.62(12) 0.0033(4) 1.08(13)×10 ⁻⁵ 93Nb 1361.66(19) 0.0043(5) 1.40(16)×10 ⁻⁴ 93Nb 4000.22(12) 0.0033(4) 1.08(13)×10 ⁻⁴ 93Nb 1392.73(7) 0.0105(8) 0.00034(3) 93Nb 4010.72(12) 0.0033(4) 1.08(13)×10 ⁻⁴ 93Nb 1394.0(4) 0.0058(13) 1.9(4)×10 ⁻⁴ 93Nb 4010.72(12) 0.0033(4) 1.08(13)×10 ⁻⁴ 93Nb 1491.93(11) 0.0048(6) 1.57(20)×10 ⁻⁴ 93Nb 4015.91(12) 0.0055(7) 1.79(23)×10 ⁻⁴ 93Nb 1440.05(9) 0.0068(15) 2.2(5)×10 ⁻⁴ 93Nb 4090.53(12) 0.0021(4) 6.8(13)×10 ⁻⁵ 93Nb 1442.0(4) 0.0061(6) 1.99(20)×10 ⁻⁴ 93Nb 4191.31(2) 0.0027(3) 8.8(10)×10 ⁻⁵ 93Nb 1442.0(4) 0.0061(6) 1.99(20)×10 ⁻⁴ 93Nb 4191.32(12) 0.0027(3) 8.8(10)×10 ⁻⁵ 93Nb 1460.02(9) 0.0097(22) 0.00032(7) 93Nb 4115.32(12) 0.0026(3) 8.5(10)×10 ⁻⁵ 93Nb 1478.58(14) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 4143.52(12) 0.0021(3) 6.8(10)×10 ⁻⁵ 93Nb 1481.19(13) 0.0039(8) 1.3(3)×10 ⁻⁴ 93Nb 4191.06(12) 0.0014(21) 6.4(7)×10 ⁻⁵ 93Nb 1492.55(24) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4196.68(11) 0.0027(6) 8.8(20)×10 ⁻⁵ 93Nb 1492.55(24) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4293.68(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 1492.55(24) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4293.68(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 1678.05(17) 0.0033(5) 1.11(16)×10 ⁻⁵ 93Nb 4208.36(11) 0.0027(6) 8.8(20)×10 ⁻⁵ 93Nb 1678.05(17) 0.0033(5) 1.11(16)×10 ⁻⁵ 93Nb 4304.78(12) 0.0049(8) 1.6(3)×10 ⁻⁵ 93Nb 1678.05(17) 0.0033(5) 1.11(16)×10 ⁻⁵ 93Nb 4304.78(12) 0.0022(6) 7.2(20)×10 ⁻⁵ 93Nb 1878.88(8) 0.0084(5) 1.11(16)×10 ⁻⁴ 93Nb 4304.78(12) 0.0022(6) 7.2(20)×10 ⁻⁵ 93Nb 1878.88(8) 0.0084(5) 1.11(16)×10 ⁻⁴ 93Nb 4304.78(12) 0.0022(6) 7.2(20)×10 ⁻⁵ 93Nb 1878.88(8) 0.0081(7) 1.17(20)×10 ⁻⁵ 93Nb 4384.26(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1878.88(8) 0.0084(6) 1.17(20)×10 ⁻⁵ 93Nb 4384.26(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.17(20)×10 ⁻⁵ 93	⁹³ Nb 1256.97(9)	0.0059(8)	1.9(3)×10 ⁻⁴	⁹³ Nb 3919.65(12)	0.0038(7)	1.24(23)×10 ⁻⁴
93 Nb 1273.72(7) 0.0052(12) 1.7(4)×10-4 93 Nb 3936.72(12) 0.0033(7) 1.08(23)×10-5 93 Nb 1308.1(4) 0.0068(13) 2.2(4)×10-4 93 Nb 3978.62(12) 0.0034(4) 9.8(13)×10-5 93 Nb 1361.66(19) 0.0043(5) 1.40(16)×10-4 93 Nb 4000.22(12) 0.0033(4) 1.08(13)×10-4 93 Nb 1392.73(7) 0.0105(8) 0.00034(3) 93 Nb 4010.72(12) 0.0033(4) 1.08(13)×10-4 93 Nb 1394.0(4) 0.0058(13) 1.9(4)×10-4 93 Nb 4010.72(12) 0.0033(4) 1.08(13)×10-4 93 Nb 1491.93(11) 0.0048(6) 1.57(20)×10-4 93 Nb 4090.53(12) 0.0021(4) 6.8(13)×10-5 93 Nb 1440.05(9) 0.0068(15) 2.2(5)×10-4 93 Nb 4090.53(12) 0.0027(3) 8.8(10)×10-5 93 Nb 1442.0(4) 0.0061(6) 1.99(20)×10-4 93 Nb 4109.13(12) 0.0027(3) 8.8(10)×10-5 93 Nb 1478.58(14) 0.0029(6) 0.00031(20) 93 Nb 413.33(12) 0.0063(7) 2.05(23)×10-4 93 Nb 1478.58(14) 0.0029(6) 9.5(20)×10-5 93 Nb 1478.58(14) 0.0029(6) 9.5(20)×10-5 93 Nb 1481.19(13) 0.0039(8) 1.3(3)×10-4 93 Nb 4191.06(12) 0.0016(21) 6.4(7)×10-5 93 Nb 1487.9(4) 0.0039(8) 1.3(3)×10-4 93 Nb 4191.06(12) 0.0016(21) 6.4(7)×10-5 93 Nb 1487.9(4) 0.0039(8) 1.3(3)×10-4 93 Nb 4190.68(11) 0.0027(6) 8.8(20)×10-5 93 Nb 1614.72(8) 0.0022(5) 7.2(16)×10-5 93 Nb 4208.36(11) 0.0027(6) 8.8(20)×10-5 93 Nb 1614.72(8) 0.0028(5) 9.1(16)×10-5 93 Nb 4208.36(11) 0.0029(6) 9.5(20)×10-5 93 Nb 1678.05(17) 0.0033(5) 1.08(16)×10-4 93 Nb 4208.36(11) 0.0029(6) 9.5(20)×10-5 93 Nb 1678.05(17) 0.0033(5) 1.08(16)×10-5 93 Nb 4208.36(11) 0.0029(6) 9.5(20)×10-5 93 Nb 1678.05(17) 0.0034(5) 1.11(16)×10-4 93 Nb 4304.78(12) 0.0049(8) 1.6(3)×10-4 93 Nb 1678.05(17) 0.0034(5) 1.11(16)×10-5 93 Nb 4304.78(12) 0.0049(8) 1.6(3)×10-4 93 Nb 1863.63(8) 0.0028(6) 9.1(20)×10-5 93 Nb 4304.78(12) 0.0049(8) 1.6(3)×10-4 93 Nb 1863.63(8) 0.0028(6) 9.1(20)×10-5 93 Nb 4304.78(12) 0.0049(8) 1.6(3)×10-4 93 Nb 1863.63(8) 0.0028(6) 9.1(20)×10-5 93 Nb 4304.78(12) 0.0049(8) 1.6(3)×10-6 93 Nb 1863.63(8) 0.0028(6) 9.1(20)×10-5 93 Nb 4304.78(12) 0.0049(8) 1.6(3)×10-6 93 Nb 1863.63(8) 0.0028(6) 9.1(20)×10-5 93 Nb 4304.78(12) 0.0043(7) 1.40(23)×10-5 93 Nb 1863.63(8) 0.0024(4) 7.8(13)×10-6 93 Nb 4395.07(9) 0.0044(12) 1.4(4)×10-6 93 Nb 1974.93(9) 0	⁹³ Nb 1258,90(8)			⁹³ Nb 3927.83(12)		
93Nb 1291.52(7) 0.0097(7) 0.000316(23) 93Nb 3972.03(12) 0.0030(4) 9.8(13)×10-5 93Nb 1308.1(4) 0.0068(13) 2.2(4)×10-4 93Nb 3978.62(12) 0.0024(3) 7.8(10)×10-5 93Nb 1392.73(7) 0.0105(8) 0.00034(3) 93Nb 4000.22(12) 0.0033(4) 1.08(13)×10-4 93Nb 1392.73(7) 0.0105(8) 0.00034(3) 93Nb 4010.72(12) 0.0033(4) 1.08(13)×10-4 93Nb 1394.0(4) 0.0058(13) 1.9(4)×10-4 93Nb 4015.91(12) 0.0055(7) 1.79(23)×10-4 93Nb 1419.39(11) 0.0048(6) 1.57(20)×10-4 93Nb 4090.53(12) 0.0021(4) 6.8(13)×10-5 93Nb 1442.0(4) 0.0061(6) 1.99(20)×10-4 93Nb 4109.13(12) 0.0027(3) 8.8(10)×10-5 93Nb 1459.6(7) 0.0095(6) 0.000310(20) 93Nb 415.32(12) 0.0026(3) 8.5(10)×10-5 93Nb 1459.6(7) 0.0095(6) 0.000310(20) 93Nb 4130.33(12) 0.0063(7) 2.05(23)×10-4 93Nb 1481.19(13) 0.0039(8) 1.3(3)×10-4 93Nb 4193.52(12) 0.0028(6) 9.1(20)×10-5 93Nb 1481.19(13) 0.0039(8) 1.3(3)×10-4 93Nb 4191.58(12) 0.0028(6) 9.1(20)×10-5 93Nb 1487.9(4) 0.0039(8) 1.3(3)×10-4 93Nb 4191.06(12) 0.00196(21) 6.4(7)×10-5 93Nb 1492.55(24) 0.0022(5) 7.2(16)×10-5 93Nb 4208.36(11) 0.0027(6) 8.8(20)×10-5 93Nb 1620.12(8) 0.0022(5) 7.2(16)×10-5 93Nb 4208.36(11) 0.0029(6) 9.5(20)×10-5 93Nb 1620.12(8) 0.0022(5) 7.2(16)×10-5 93Nb 4208.36(11) 0.0029(6) 9.5(20)×10-5 93Nb 1620.12(8) 0.0022(5) 7.2(16)×10-5 93Nb 4208.36(11) 0.0029(6) 9.5(20)×10-5 93Nb 1620.12(8) 0.0024(5) 1.11(16)×10-6 93Nb 4304.78(12) 0.0049(8) 1.6(3)×10-4 93Nb 1678.05(17) 0.0033(5) 1.08(16)×10-4 93Nb 4304.78(12) 0.0029(6) 7.2(20)×10-5 93Nb 1638.36(8) 0.0084(5) 1.11(16)×10-4 93Nb 4304.78(12) 0.0022(6) 7.2(20)×10-5 93Nb 1863.63(8) 0.0081(7) 0.000264(23) 93Nb 4304.78(12) 0.0027(7) 8.8(23)×10-5 93Nb 1878.88(8) 0.0081(7) 0.000264(23) 93Nb 4384.27(11) 0.0027(7) 8.8(23)×10-5 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10-4 93Nb 4389.04(11) 0.0029(3) 9.5(10)×10-5 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10-4 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10-5 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10-5 93Nb 4389.04(11) 0.0029(3) 9.5(10)×10-5 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10-4 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10-5 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10-4 93Nb 4389.04(11) 0.00196(93Nb 1264.5(7)			93Nb 3931.73(12)		
93Nb 1308.1(4)	⁹³ Nb 1291 52(7)			93Nh 3972 03(12)		
93Nb 1361.66(19)	⁹³ Nb 1308.1(4)		2.2(4)×10 ⁻⁴	⁹³ Nb 3978.62(12)		7.8(10)×10 ⁻⁵
93Nb 1394.0(4) 0.0058(13) 1.9(4)×10 ⁻⁴ 93Nb 4015.91(12) 0.0055(7) 1.79(23)×10 ⁻⁴ 93Nb 1419.39(11) 0.0048(6) 1.57(20)×10 ⁻⁴ 93Nb 4090.53(12) 0.0021(4) 6.8(13)×10 ⁻⁵ 93Nb 1440.05(9) 0.0068(15) 2.2(5)×10 ⁻⁴ 93Nb 4109.13(12) 0.0027(3) 8.8(10)×10 ⁻⁵ 93Nb 1442.0(4) 0.0061(6) 1.99(20)×10 ⁻⁴ 93Nb 4115.32(12) 0.0026(3) 8.5(10)×10 ⁻⁵ 93Nb 1459.6(7) 0.0095(6) 0.000310(20) 93Nb 4130.33(12) 0.0063(7) 2.05(23)×10 ⁻⁴ 93Nb 1478.58(14) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 1481.19(13) 0.0039(8) 1.3(3)×10 ⁻⁴ 93Nb 4191.06(12) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1492.55(24) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 1614.72(8) 0.0028(5) 9.1(16)×10 ⁻⁵ 93Nb 1620.12(8) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 1763.20(10) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4304.78(12) 0.0022(6) 7.2(20)×10 ⁻⁵ 93Nb 1863.63(8) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 1881.96(10) 0.0036(7) 1.17(23)×10 ⁻⁴ 93Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁶ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁵ 93Nb 4389.04(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁵ 93Nb 4389.04(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁵ 93Nb 4389.04(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁵ 93Nb 4389.04(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁵ 93Nb 4389.04(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁵ 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁵ 93Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	⁹³ Nb 1361.66(19)			⁹³ Nb 4000.22(12)		
93Nb 1449.39(11) 0.0048(6) 1.57(20)×10 ⁻⁴ 93Nb 4090.53(12) 0.0021(4) 6.8(13)×10 ⁻⁵ 93Nb 1440.05(9) 0.0068(15) 2.2(5)×10 ⁻⁴ 93Nb 4109.13(12) 0.0027(3) 8.8(10)×10 ⁻⁵ 93Nb 1442.0(4) 0.0061(6) 1.99(20)×10 ⁻⁴ 93Nb 4115.32(12) 0.0026(3) 8.5(10)×10 ⁻⁵ 93Nb 1459.6(7) 0.0095(6) 0.000310(20) 93Nb 4130.33(12) 0.0063(7) 2.05(23)×10 ⁻⁴ 93Nb 1460.02(9) 0.0097(22) 0.00032(7) 93Nb 4143.52(12) 0.0021(3) 6.8(10)×10 ⁻⁵ 93Nb 1478.58(14) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 4153.82(12) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 1481.19(13) 0.0039(8) 1.3(3)×10 ⁻⁴ 93Nb 4191.06(12) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1492.55(24) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4208.36(11) 0.0027(6) 8.8(20)×10 ⁻⁵ 93Nb 1614.72(8) 0.0028(5) 9.1(16)×10 ⁻⁵ 93Nb 4208.36(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 1620.12(8) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4260.84(12) 0.0036(6) 1.17(20)×10 ⁻⁴ 93Nb 1763.20(10) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4304.78(12) 0.0049(8) 1.6(3)×10 ⁻⁴ 93Nb 1863.63(8) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 4304.78(12) 0.0049(8) 1.6(3)×10 ⁻⁴ 93Nb 1878.88(8) 0.0081(7) 0.00026(2(3) 93Nb 4304.78(12) 0.0043(7) 1.40(23)×10 ⁻⁴ 93Nb 1878.88(8) 0.0081(7) 0.00026(2(3) 93Nb 4381.26(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1881.96(10) 0.0036(7) 1.17(23)×10 ⁻⁴ 93Nb 4381.96(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1881.96(10) 0.0036(7) 1.17(23)×10 ⁻⁵ 93Nb 4389.04(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1919.51(8) 0.0024(4) 7.8(13)×10 ⁻⁵ 93Nb 4389.04(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁵ 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁵ 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁵ 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁵ 93Nb 4389.04(11) 0.00196(21) 1.4(4)×10 ⁻⁴ 93Nb 4389.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	⁹³ Nb 1392.73(7)			⁹³ Nb 4010.72(12)		
93Nb 1440.05(9) 0.0068(15) 2.2(5)×10 ⁻⁴ 93Nb 4109.13(12) 0.0027(3) 8.8(10)×10 ⁻⁵ 93Nb 1445.0(4) 0.0061(6) 1.99(20)×10 ⁻⁴ 93Nb 4115.32(12) 0.0026(3) 8.5(10)×10 ⁻⁵ 93Nb 1460.02(9) 0.0097(22) 0.00032(7) 93Nb 4143.52(12) 0.0021(3) 6.8(10)×10 ⁻⁵ 93Nb 1478.58(14) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 4153.82(12) 0.0021(3) 6.8(10)×10 ⁻⁵ 93Nb 1481.19(13) 0.0039(8) 1.3(3)×10 ⁻⁴ 93Nb 4191.06(12) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1492.55(24) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4208.36(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 1614.72(8) 0.0028(5) 9.1(16)×10 ⁻⁵ 93Nb 4208.36(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 1620.12(8) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4208.36(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 1678.05(17) 0.0033(5) 1.08(16)×10 ⁻⁴ 93Nb 4304.78(12) 0.0049(8) 1.6(3)×10 ⁻⁴ 93Nb 1763.20(10) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4304.78(12) 0.0049(8) 1.6(3)×10 ⁻⁴ 93Nb 1863.63(8) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 4330.80(12) 0.0022(6) 7.2(20)×10 ⁻⁵ 93Nb 1878.88(8) 0.0081(7) 0.000264(23) 93Nb 1881.96(10) 0.0036(7) 1.17(23)×10 ⁻⁴ 93Nb 4384.27(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1891.51(8) 0.0024(4) 7.8(13)×10 ⁻⁵ 93Nb 4384.27(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1919.51(8) 0.0024(4) 7.8(13)×10 ⁻⁵ 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	93Nh 1419 39(11)			93Nh 4015.91(12)	} . (
93Nb 1442.0(4) 0.0061(6) 1.99(20)×10 ⁻⁴ 93Nb 4115.32(12) 0.0026(3) 8.5(10)×10 ⁻⁵ 93Nb 1459.6(7) 0.0095(6) 0.000310(20) 93Nb 4130.33(12) 0.0063(7) 2.05(23)×10 ⁻⁴ 93Nb 1478.58(14) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 4153.82(12) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 1481.19(13) 0.0039(8) 1.3(3)×10 ⁻⁴ 93Nb 4191.06(12) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1487.9(4) 0.0039(8) 1.3(3)×10 ⁻⁴ 93Nb 4196.68(11) 0.0027(6) 8.8(20)×10 ⁻⁵ 93Nb 1492.55(24) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4208.36(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 1614.72(8) 0.0028(5) 9.1(16)×10 ⁻⁵ 93Nb 4208.36(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 1620.12(8) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4208.36(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 1678.05(17) 0.0033(5) 1.08(16)×10 ⁻⁴ 93Nb 4260.84(12) 0.0036(6) 1.17(20)×10 ⁻⁴ 93Nb 1763.20(10) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4304.78(12) 0.0049(8) 1.6(3)×10 ⁻⁴ 93Nb 1763.20(10) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4327.32(11) 0.0027(3) 8.8(10)×10 ⁻⁵ 93Nb 1878.88(8) 0.0081(7) 0.000264(23) 93Nb 1878.88(8) 0.0081(7) 0.000264(23) 93Nb 1881.96(10) 0.0036(7) 1.17(23)×10 ⁻⁴ 93Nb 4384.27(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1881.96(10) 0.0036(7) 1.17(23)×10 ⁻⁵ 93Nb 4384.27(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1919.51(8) 0.0024(4) 7.8(13)×10 ⁻⁵ 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁴ 93Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	⁹³ Nb 1440.05(9)			⁹³ Nb 4109.13(12)		
93Nb 1459.6(7) 0.0095(6) 0.000310(20) 93Nb 4130.33(12) 0.0063(7) 2.05(23)×10 ⁻⁴ 93Nb 1460.02(9) 0.0097(22) 0.00032(7) 93Nb 4143.52(12) 0.0021(3) 6.8(10)×10 ⁻⁵ 93Nb 1481.19(13) 0.0039(8) 1.3(3)×10 ⁻⁴ 93Nb 4191.06(12) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1492.55(24) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4208.36(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 1614.72(8) 0.0028(5) 9.1(16)×10 ⁻⁵ 93Nb 4237.17(13) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 1620.12(8) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4260.84(12) 0.0036(6) 1.17(20)×10 ⁻⁴ 93Nb 1716.16(8) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4304.78(12) 0.0049(8) 1.6(3)×10 ⁻⁴ 93Nb 1763.20(10) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4304.78(12) 0.0022(6) 7.2(20)×10 ⁻⁵ 93Nb 1863.63(8) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 4304.78(12) 0.0022(6) 7.2(20)×10 ⁻⁵ 93Nb 1863.63(8) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 4304.78(12) 0.0049(8) 1.6(3)×10 ⁻⁴ 93Nb 1878.88(8) 0.0081(7) 0.000264(23) 93Nb 4347.62(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1881.96(10) 0.0036(7) 1.17(23)×10 ⁻⁴ 93Nb 4384.27(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1919.51(8) 0.0024(4) 7.8(13)×10 ⁻⁵ 93Nb 4389.04(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁴ 93Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	⁹³ Nb 1442.0(4)	0.0061(6)	1.99(20)×10 ⁻⁴	⁹³ Nb 4115.32(12)	0.0026(3)	8.5(10)×10 ⁻⁵
93Nb 1478.58(14) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 4153.82(12) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 1481.19(13) 0.0039(8) 1.3(3)×10 ⁻⁴ 93Nb 4196.68(11) 0.0027(6) 8.8(20)×10 ⁻⁵ 93Nb 1492.55(24) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4208.36(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 1614.72(8) 0.0028(5) 9.1(16)×10 ⁻⁵ 93Nb 4237.17(13) 0.0020(5) 6.5(16)×10 ⁻⁵ 93Nb 1620.12(8) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4260.84(12) 0.0036(6) 1.17(20)×10 ⁻⁴ 93Nb 1678.05(17) 0.0033(5) 1.08(16)×10 ⁻⁴ 93Nb 4304.78(12) 0.0049(8) 1.6(3)×10 ⁻⁴ 93Nb 1716.16(8) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4304.78(12) 0.0022(6) 7.2(20)×10 ⁻⁵ 93Nb 1863.63(8) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 4327.32(11) 0.0027(3) 8.8(10)×10 ⁻⁵ 93Nb 1878.88(8) 0.0081(7) 0.000264(23) 93Nb 4347.62(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1881.96(10) 0.0036(7) 1.17(23)×10 ⁻⁴ 93Nb 4389.04(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1919.51(8) 0.0024(4) 7.8(13)×10 ⁻⁵ 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁴ 93Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	⁹³ Nb 1459.6(7)			⁹³ Nb 4130.33(12)	} _ (
93Nb 1481.19(13) 0.0039(8) 1.3(3)×10 ⁻⁴ 93Nb 4196.68(11) 0.0027(6) 8.8(20)×10 ⁻⁵ 93Nb 1492.55(24) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4208.36(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 1614.72(8) 0.0028(5) 9.1(16)×10 ⁻⁵ 93Nb 4237.17(13) 0.0020(5) 6.5(16)×10 ⁻⁵ 93Nb 1620.12(8) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4260.84(12) 0.0036(6) 1.17(20)×10 ⁻⁴ 93Nb 1678.05(17) 0.0033(5) 1.08(16)×10 ⁻⁴ 93Nb 4304.78(12) 0.0049(8) 1.6(3)×10 ⁻⁴ 93Nb 1716.16(8) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4314.26(12) 0.0022(6) 7.2(20)×10 ⁻⁵ 93Nb 1863.63(8) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 4327.32(11) 0.0027(3) 8.8(10)×10 ⁻⁵ 93Nb 1878.88(8) 0.0081(7) 0.000264(23) 93Nb 4381.96(10) 0.0036(7) 1.17(23)×10 ⁻⁴ 93Nb 4384.27(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1919.51(8) 0.0024(4) 7.8(13)×10 ⁻⁵ 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁴ 93Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	93Nb 1460.02(9)			93Nb 4143.52(12)		
93Nb 1487.9(4) 0.0039(8) 1.3(3)×10 ⁻⁴ 93Nb 4196.68(11) 0.0027(6) 8.8(20)×10 ⁻⁵ 93Nb 1492.55(24) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4208.36(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 1614.72(8) 0.0028(5) 9.1(16)×10 ⁻⁵ 93Nb 4237.17(13) 0.0020(5) 6.5(16)×10 ⁻⁵ 93Nb 1620.12(8) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4260.84(12) 0.0036(6) 1.17(20)×10 ⁻⁴ 93Nb 1716.16(8) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4304.78(12) 0.0049(8) 1.6(3)×10 ⁻⁴ 93Nb 1763.20(10) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4327.32(11) 0.0027(3) 8.8(10)×10 ⁻⁵ 93Nb 1863.63(8) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 4330.80(12) 0.0043(7) 1.40(23)×10 ⁻⁴ 93Nb 1878.88(8) 0.0081(7) 0.00264(23) 93Nb 4384.27(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1881.96(10) 0.0036(7) 1.17(23)×10 ⁻⁴ 93Nb 4384.27(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1919.51(8) 0.0024(4) 7.8(13)×10 ⁻⁵ 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁴ 93Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	⁹³ Nb 1481 19(13)			93Nh 4191 06(12)		6.1(20)×10 ⁻⁵
93Nb 1492.55(24) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4208.36(11) 0.0029(6) 9.5(20)×10 ⁻⁵ 93Nb 1614.72(8) 0.0028(5) 9.1(16)×10 ⁻⁵ 93Nb 4237.17(13) 0.0020(5) 6.5(16)×10 ⁻⁵ 93Nb 1620.12(8) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4260.84(12) 0.0036(6) 1.17(20)×10 ⁻⁴ 93Nb 1716.16(8) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4304.78(12) 0.0049(8) 1.6(3)×10 ⁻⁴ 93Nb 1763.20(10) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4327.32(11) 0.0027(3) 8.8(10)×10 ⁻⁵ 93Nb 1863.63(8) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 4330.80(12) 0.0043(7) 1.40(23)×10 ⁻⁴ 93Nb 1881.96(10) 0.0036(7) 1.17(23)×10 ⁻⁴ 93Nb 4384.27(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1919.51(8) 0.0024(4) 7.8(13)×10 ⁻⁵ 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁴ 93Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	⁹³ Nb 1487.9(4)			⁹³ Nb 4196.68(11)		8.8(20)×10 ⁻⁵
93Nb 1620.12(8) 0.0022(5) 7.2(16)×10 ⁻⁵ 93Nb 4260.84(12) 0.0036(6) 1.17(20)×10 ⁻⁴ 93Nb 1678.05(17) 0.0033(5) 1.08(16)×10 ⁻⁴ 93Nb 4304.78(12) 0.0049(8) 1.6(3)×10 ⁻⁴ 93Nb 1716.16(8) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4314.26(12) 0.0022(6) 7.2(20)×10 ⁻⁵ 93Nb 1863.63(8) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 4327.32(11) 0.0027(3) 8.8(10)×10 ⁻⁵ 93Nb 1878.88(8) 0.0081(7) 0.000264(23) 93Nb 4347.62(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1881.96(10) 0.0036(7) 1.17(23)×10 ⁻⁴ 93Nb 4384.27(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1919.51(8) 0.0024(4) 7.8(13)×10 ⁻⁵ 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁴ 93Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	⁹³ Nb 1492.55(24)	0.0022(5)	7.2(16)×10 ⁻⁵	⁹³ Nb 4208.36(11)	0.0029(6)	9.5(20)×10 ⁻⁵
93Nb 1678.05(17) 0.0033(5) 1.08(16)×10 ⁻⁴ 93Nb 4304.78(12) 0.0049(8) 1.6(3)×10 ⁻⁴ 93Nb 1716.16(8) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4314.26(12) 0.0022(6) 7.2(20)×10 ⁻⁵ 93Nb 1863.63(8) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 4330.80(12) 0.0043(7) 1.40(23)×10 ⁻⁴ 93Nb 1878.88(8) 0.0081(7) 0.000264(23) 93Nb 4347.62(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 181.96(10) 0.0036(7) 1.17(23)×10 ⁻⁴ 93Nb 4384.27(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1919.51(8) 0.0024(4) 7.8(13)×10 ⁻⁵ 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁴ 93Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	93Nb 4620 42(8)			93Nb 4237.17(13)		6.5(16)×10 ⁻⁵
93Nb 1716.16(8) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4314.26(12) 0.0022(6) 7.2(20)×10 ⁻⁵ 93Nb 1763.20(10) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4327.32(11) 0.0027(3) 8.8(10)×10 ⁻⁵ 93Nb 1863.63(8) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 4330.80(12) 0.0043(7) 1.40(23)×10 ⁻⁴ 93Nb 1878.88(8) 0.0081(7) 0.000264(23) 93Nb 4347.62(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1919.51(8) 0.0024(4) 7.8(13)×10 ⁻⁵ 93Nb 4384.27(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1919.51(8) 0.0052(6) 1.70(20)×10 ⁻⁴ 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁴ 93Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	93Nb 1620.12(6)			93Nh 4304.04(12)		
93Nb 1763.20(10) 0.0034(5) 1.11(16)×10 ⁻⁴ 93Nb 4327.32(11) 0.0027(3) 8.8(10)×10 ⁻⁵ 93Nb 1863.63(8) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 4330.80(12) 0.0043(7) 1.40(23)×10 ⁻⁴ 93Nb 1878.88(8) 0.0081(7) 0.000264(23) 93Nb 4347.62(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1919.51(8) 0.0024(4) 7.8(13)×10 ⁻⁵ 93Nb 4384.27(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁴ 93Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	³³ Nb 1716.16(8)			⁹³ Nb 4314.26(12)		
93Nb 1863.63(8) 0.0028(6) 9.1(20)×10 ⁻⁵ 93Nb 4330.80(12) 0.0043(7) 1.40(23)×10 ⁻⁴ 93Nb 1878.88(8) 0.0081(7) 0.000264(23) 93Nb 4347.62(11) 0.0027(7) 8.8(23)×10 ⁻⁵ 93Nb 1881.96(10) 0.0036(7) 1.17(23)×10 ⁻⁴ 93Nb 4384.27(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1919.51(8) 0.0024(4) 7.8(13)×10 ⁻⁵ 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁴ 93Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	⁹³ Nb 1763.20(10)	}_(1.11(16)×10 ⁻⁴	⁹³ Nb 4327.32(11)	0.0027(3)	8.8(10)×10 ⁻⁵
93Nb 1881.96(10) 0.0036(7) 1.17(23)×10 ⁻⁴ 93Nb 4384.27(11) 0.0029(3) 9.5(10)×10 ⁻⁵ 93Nb 1919.51(8) 0.0024(4) 7.8(13)×10 ⁻⁵ 93Nb 4389.04(11) 0.00196(21) 6.4(7)×10 ⁻⁵ 93Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁴ 93Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	⁹³ Nb 1863.63(8)			⁹³ Nb 4330.80(12)		
⁹³ Nb 1919.51(8) 0.0024(4) 7.8(13)×10 ⁻⁵ ⁹³ Nb 4389.04(11) 0.00196(21) 6.4(7)×10 ⁻⁵ ⁹³ Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁴ ⁹³ Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	93NP 1881 08(10)			93Nb 4347.62(11)		8.8(23)×10 ⁻⁵
93 Nb 1974.93(9) 0.0052(6) 1.70(20)×10 ⁻⁴ 93 Nb 4395.07(9) 0.0044(12) 1.4(4)×10 ⁻⁴	⁹³ Nb 1919.51(8)			93Nb 4389.04(11)		
93 Nb 2001.4(3) 0.0025(6) 8.2(20)×10 ⁻⁵ 93 Nb 4431.97(9) 0.0043(9) 1.4(3)×10 ⁻⁴	⁹³ Nb 1974.93(9)		1.70(20)×10 ⁻⁴	⁹³ Nb 4395.07(9)	0.0044(12)	1.4(4)×10 ⁻⁴
	⁹³ Nb 2001.4(3)	0.0025(6)		⁹³ Nb 4431.97(9)	0.0043(9)	

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Γable I. Adopted Pron Eγ-keV	npt and Decay σ(Εγ)-barns	k _o	Fγ-keV	apture for all ⊑ σ(Eγ)-barns	k _o
Niobium (Z=41), cor	• • • • • • • • • • • • • • • • • • • •	0	Niobium (Z=41), coi	- '- '-	
⁹³ Nb 4455.30(10)	0.0027(3)	8.8(10)×10 ⁻⁵	⁹³ Nb 6831.141(14)	0.0175(8)	0.00057(3)
⁹³ Nb 4459.03(11)	0.0030(6)	9.8(20)×10 ⁻⁵	⁹³ Nb 6915.546(15)	0.0024(3)	7.8(10)×10 ⁻⁵
⁹³ Nb 4466.50(10)	0.0028(3)	9.1(10)×10 ⁻⁵	⁹³ Nb 7186.449(14)	0.0089(6)	0.000290(20)
⁹³ Nb 4470.69(11) ⁹³ Nb 4501.43(10)	0.0033(7)	1.08(23)×10 ⁻⁴	Molybdenum (Z=42)), At.Wt.=95.94	(2), o _. =2.51(6)
93Nb 4505.78(10)	0.0056(7) 0.0029(3)	1.83(23)×10 ⁻⁴ 9.5(10)×10 ⁻⁵	⁹⁸ Mo <i>140.5110(10)</i> d		0.000872[<0.1%]
⁹³ Nb 4524.10(9)	0.0038(6)	1.24(20)×10 ⁻⁴	¹⁰⁰ Mo 180.711(15)	0.0017(4)	5.4(13)×10 ⁻⁵
³³ Nb 4538.64(9)	0.0058(7)	1.89(23)×10 ⁻⁴	⁹⁸ Mo <i>198.38(11)</i> ⁹⁴ Mo <i>204.20(5)</i>	0.0108(9)	0.00034(3)
⁹³ Nb 4553.99(10) ⁹³ Nb 4558.53(11)	0.0033(4) 0.0049(7)	1.08(13)×10 ⁻⁴ 1.60(23)×10 ⁻⁴	95Mo 349.77(4)	<i>0.0117(6)</i> 0.0327(13)	<i>0.000370(19)</i> 0.00103(4)
93Nb 4594.44(9)	0.0049(7)	1.53(23)×10 ⁻⁴	⁹⁵ Mo 369.68(9)	0.0319(19)	0.00101(6)
⁹³ Nb 4606.89(13)	0.0046(6)	1.50(20)×10 ⁻⁴	⁹⁵ Mo 480.57(3)	0.028(5)	0.00088(16)
⁹³ Nb 4629.91(9)	0.0049(7)	1.60(23)×10 ⁻⁴	⁹⁶ Mo 480.97(13) ⁹⁵ Mo 568.88(3)	0.0604(23) 0.0280(11)	0.00191(7) 0.00088(4)
⁹³ Nb 4635.44(9) ⁹³ Nb 4662.32(9)	0.0047(6) 0.0028(6)	1.53(20)×10 ⁻⁴ 9.1(20)×10 ⁻⁵	⁹⁵ Mo 591.21(3)	0.0200(11)	0.00100(4)
⁹³ Nb 4672.16(9)	0.0025(0)	2.12(23)×10 ⁻⁴	⁹⁵ Mo 608.744(14)	0.121(4)	0.00382(13)
⁹³ Nb 4681,99(9)	0.0059(7)	1.92(23)×10 ⁻⁴	⁹⁵ Mo 719.528(14)	0.310(10)	0.0098(3)
⁹³ Nb 4711.67(10)	0.0052(7)	1.70(23)×10 ⁻⁴	⁹⁵ Mo 721.54(4) ⁹⁷ Mo 723.338(19)	0.025(3) 0.051(11)	0.00079(10) 0.0016(4)
⁹³ Nb 4739.00(8) ⁹³ Nb 4749.12(9)	0.0153(9) 0.0038(6)	0.00050(3) 1.24(20)×10 ⁻⁴	⁹⁵ Mo 736.820(14)	0.119(4)	0.00376(13)
⁹³ Nb 4756.28(9)	0.0039(6)	1.27(20)×10 ⁻⁴	⁹⁵ Mo 778.221(10)	2.02(6)	0.0638(19)
⁹³ Nb 4772.35(8)	0.0045(7)	1.47(23)×10 ⁻⁴	⁹ Mo 787.39(3)	0.168(6)	0.00531(19)
93Nb 4791.62(13)	0.0071(7)	2.32(23)×10 ⁻⁴	⁹⁵ Mo 812.26(5) ⁹⁵ Mo 847.603(11)	0.0264(15) 0.324(9)	0.00083(5) 0.0102(3)
⁹³ Nb 4828.2(4) ⁹³ Nb 4913.65(9)	0.0057(6) 0.0078(7)	1.86(20)×10 ⁻⁴ 0.000254(23)	⁹⁵ Mo 849.85(3)	0.43(3)	0.0136(10)
⁹³ Nb 4927.94(8)	0.0073(7)	8.8(20)×10 ⁻⁵	⁹⁵ Mo 852.93(3)	0.0444(17)	0.00140(5)
⁹³ Nb 4942.7(4)	0.0029(3)	9.5(10)×10 ⁻⁵	⁹² Mo <i>943.6(3)</i>	0.0075(9)	2.4(3)×10 ⁻⁴
⁹³ Nb 4949.70(10)	0.0051(7)	1.66(23)×10 ⁻⁴	⁹⁵ Mo 968.46(5) ⁹⁵ Mo 1091.289(20)	0.0323(19) 0.201(6)	0.00102(6) 0.00635(19)
⁹³ Nb 4982.53(9) ⁹³ Nb 4997.97(8)	0.0078(7) 0.0033(6)	0.000254(23) 1.08(20)×10 ⁻⁴	⁹⁵ Mo 1106.36(4)	0.0309(18)	0.00098(6)
⁹³ Nb 5032.08(8)	0.0058(7)	1.89(23)×10 ⁻⁴	⁹⁵ Mo 1190.28(6)	0.0240(14)	0.00076(4)
⁹³ Nb 5052.89(9)	0.0022(5)	7.2(16)×10 ⁻⁵	⁹⁵ Mo 1200.10(3) ⁹⁷ Mo 1230.13(5)	0.124(4)	0.00392(13)
⁹³ Nb 5065.65(8) ⁹³ Nb 5070.27(7)	0.0034(6)	1.11(20)×10 ⁻⁴	⁹⁵ Mo 1317.35(8)	0.0253(15) 0.091(6)	0.00080(5) 0.00287(19)
93Nb 5087.36(8)	0.0102(8) 0.0030(5)	0.00033(3) 9.8(16)×10 ⁻⁵	⁹⁵ Mo 1497.742(17)	0.122(4)	0.00385(13)
⁹³ Nb 5103.34(7)	0.0232(12)	0.00076(4)	⁹⁵ Mo 1625.817(15)	0.0264(15)	0.00083(5)
⁹³ Nb 5129.16(8)	0.0034(5)	1.11(16)×10 ⁻⁴	⁹⁵ Mo 1702.78(4) ⁹⁵ Mo 1846.26(15)	0.0220(15) 0.022(3)	0.00069(5) 0.00069(10)
⁹³ Nb 5179.99(7) ⁹³ Nb 5193.62(18)	0.0072(7)	2.35(23)×10 ⁻⁴ 0.00037(3)	⁹⁵ Mo 1923.47(13)	0.0250(18)	0.00079(6)
⁹³ Nb 5207.96(9)	0.0114(8) 0.0072(7)	2.35(23)×10 ⁻⁴	⁹⁵ Mo 2011.87(5)	0.0226(16)	0.00071(5)
⁹³ Nb 5213.75(9)	0.00196(21)	6.4(7)×10 ⁻⁵	⁹⁵ Mo 2663.47(9)	0.0455(21)	0.00144(7)
⁹³ Nb 5252.52(9)	0.0080(8)	0.00026(3)	⁹⁵ Mo 5602.15(15) ⁹⁵ Mo 5711.98(12)	0.0242(17) 0.048(4)	0.00076(5) 0.00152(13)
⁹³ Nb 5257.70(9) ⁹³ Nb 5284.14(8)	0.00214(23) 0.0050(7)	7.0(8)×10 ⁻⁵ 1.63(23)×10 ⁻⁴	⁹⁵ Mo 6363.55(10)	0.0235(17)	0.00074(5)
⁹³ Nh 5290 46(8)	0.0022(3)	7.2(10)×10 ⁻⁵	⁹ Mo 6624.801(20)	0.027(10)	0.0009(3)
93Nb 5301.22(8) 93Nb 5307.94(8)	0.0031(6)	1.01(20)×10 ⁻⁴	⁹⁵ Mo 6919.05(9)	0.106(6)	0.00335(19)
⁹³ Nb 5307.94(8) ⁹³ Nb 5348.57(8)	0.0063(7)	2.05(23)×10 ⁻⁴	⁹⁵ Mo 7527.75(9)	0.0264(20)	0.00083(6)
³³ Nb 5363.82(8)	0.0082(7) 0.0073(7)	0.000267(23) 2.38(23)×10 ⁻⁴	Ruthenium (Z=44), A		
³³ Nb 5368.1(4)	0.0039(6)	1.27(20)×10 ⁻⁴	¹⁰⁴ Ru 75.251(25) ⁹⁸ Ru <i>89.69(10)</i>	0.0233(22) 0.0036(7)	0.00070(7) 1.08(21)×10 ⁻⁴
³³ Nb 5399.86(7)	0.0050(7)	1.63(23)×10 ⁻⁴	¹⁰⁴Ru 107 917(14)	0.0153(14)	0.00046(4)
⁹³ Nb 5447.70(7) ⁹³ Nb 5450.96(7)	0.0026(3) 0.0053(7)	8.5(10)×10 ⁻⁵ 1.73(23)×10 ⁻⁴	¹ ¹⁰⁰ Ru 127.18(8)	0.049(4)	0.00147(12)
⁹³ Nb 5496.24(10)	0.0205(14)	0.00067(5)	¹⁰² Ru 136.05(4)	0.066(6)	0.00198(18)
³³ Nb 5507.79(7)	0.0041(5)	1.34(16)×10 ⁻⁴	¹⁰⁴ Ru 143.206(9) ¹⁰⁴ Ru 159.303(16)	0.0206(20) 0.0179(20)	0.00062(6) 0.00054(6)
93Nb 5511.28(8)	0.0053(7)	1.73(23)×10 ⁻⁴	¹⁰² Ru 174.27(3)	0.076(7)	0.00228(21)
⁹³ Nb 5532.16(8) ⁹³ Nb 5572.33(8)	0.0027(5) 0.0037(5)	8.8(16)×10 ⁻⁵ 1.21(16)×10 ⁻⁴	³⁰ Ru <i>189.24(4)</i>	0.0099(11)	0.00030(3)
⁹³ Nb 5591.31(6)	0.0080(7)	0.000261(23)	¹⁰² Ru 250.78(6) ¹⁰² Ru 270.58(8)	0.0238(23)	0.00071(7)
⁹³ Nb 5607.32(8)	0.0041(5)	1.34(16)×10 ⁻⁴	102 Ru 294.66(4)	0.034(3) 0.071(6)	0.00102(9) 0.00213(18)
⁹³ Nb 5612.72(8) ⁹³ Nb 5645.93(7)	0.0037(5)	1.21(16)×10 ⁻⁴ 8.5(13)×10 ⁻⁵	¹⁰⁴Ru 301.75(5)	0.0192(19)	0.00058(6)
³³ Nb 5769.77(7)	0.0026(4) 0.0054(6)	1.76(20)×10 ⁻⁴	¹⁰⁴Ru 321.526(24)	0.0175(18)	0.00052(5)
³³ Nb 5880.80(9)	0.0035(4)	1.14(13)×10 ⁻⁴	¹⁰² Ru 346.23(6) ¹⁰⁴ Ru 358.57(7)	0.030(3) 0.0173(24)	0.00090(9)
³³ Nb 5895.01(7)	0.0183(8)	0.00060(3)	¹⁰²Ru 403.10(5)	0.062(6)	0.00052(7) 0.00186(18)
⁹³ Nb 5946.31(9) ⁹³ Nb 5954.41(10)	0.0045(6)	1.47(20)×10 ⁻⁴	⁹⁹ Ru 403.18(8)	0.050(10)	0.0015(3)
⁹³ Nb 5964.58(7)	0.0025(3) 0.0055(6)	8.2(10)×10 ⁻⁵ 1.79(20)×10 ⁻⁴	¹⁰¹ Ru 418.531(22)	0.033(4)	0.00099(12)
³³ Nb 5980.27(5)	0.0029(5)	9.5(16)×10 ⁻⁵	⁹⁹ Ru 424.87(5) ¹⁰² Ru 432.00(6)	0.0170(21) 0.0267(25)	0.00051(6) 0.00080(8)
³³ Nb 5995.47(3)	0.0033(5)	1.08(16)×10 ⁻⁴	¹⁰⁴Ru 462.93(7)	0.0257(23)	0.00075(9)
⁹³ Nb 6068.67(5) ⁹³ Nb 6292.06(11)	0.0026(4) 0.0033(4)	8.5(13)×10 ⁻⁵ 1.08(13)×10 ⁻⁴	'''Ru 468.69(4)	0.049(5)	0.00147(15)
⁹³ Nb 6331.751(16)	0.0033(4)	9.5(13)×10 ⁻⁵	¹º¹Ru 475.0950(20)	0.98(9)	0.029(3)
⁹³ Nb 6434.833(18)	0.0047(4)	1.53(13)×10 ⁻⁴	¹⁰² Ru 500.96(10) ⁹⁹ Ru 518.92(4)	0.0175(19) 0.026(3)	0.00052(6) 0.00078(9)
⁹³ Nb 6595.867(18)	0.0020(3)	6.5(10)×10 ⁻⁵	1.0 0.0.02(1)	0.020(0)	3.00010(0)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Εγ)-barns	-	Eγ-keV	σ(Εγ)-barns	k _o
Ruthenium (Z=44),	• • • • • • • • • • • • • • • • • • • •	k ₀	Rhodium (Z=45), co	• • • • • • • • • • • • • • • • • • • •	<u> </u>
⁹⁹ Ru 539.538(15)	1.53(13)	0.046(4)	¹⁰³ Rh 100 74(4)	4.96(10)	0.146(3)
¹⁰² Ru 545.44(5)	0.0253(25)	0.00076(8)	¹⁰³ Rh 105.40(6)	0.47(4)	0.0138(12)
¹⁰² Ru 554.54(7) ¹⁰⁴ Ru 562.70(6)	0.027(3) 0.028(3)	0.00081(9) 0.00084(9)	¹⁰³ Rh 118.10(3) ¹⁰³ Rh 119.50(3)	0.570(15) 1.5(3)	0.0168(4) 0.044(9)
¹⁰²Ru 562.86(12)	0.020(3)	0.00051(12)	¹⁰³ Rh 127.20(3)	5.27(21)	0.155(6)
⁹⁹ Ru 590.91(6)	0.053(5)	0.00159(15)	¹⁰³ Rh 129.37(3)	0.465(20)	0.0137(6)
¹⁰¹ Ru 627.970(22) ¹⁰¹ Ru 631.22(4)	0.176(16) 0.30(3)	0.0053(5) 0.0090(9)	¹⁰³ Rh 131.86(6) ¹⁰³ Rh 134.54(3)	0.437(24) 6.8(4)	0.0129(7) 0.200(12)
⁹⁹ Ru 631.48(6)	0.017(5)	0.00051(15)	¹⁰³ Rh 135.16(4)	0.66(16)	0.200(12)
¹⁰¹ Ru 636.86(6)	0.033(3)	0.00099(9)	¹⁰³ Rh 137.65(3)	0.45(4)	0.0133(12)
¹⁰⁴ Ru 640.16(7) ¹⁰¹ Ru 680.57(6)	0.0171(22) 0.0162(22)	0.00051(7) 0.00049(7)	¹⁰³ Rh 138.74(4) ¹⁰³ Rh 146.72(3)	0.54(4) 1.5(3)	0.0159(12) 0.044(9)
⁹⁹ Ru 686.907(17)	0.52(5)	0.0156(15)	¹⁰³ Rh 157.00(3)	1.05(3)	0.0309(9)
¹⁰¹ Ru 692,28(9)	0.025(3)	0.00075(9)	¹⁰³ Rh 159.49(3)	0.380(16)	0.0112(5)
¹⁰¹ Ru 695.53(9) ¹⁰¹ Ru 697.31(15)	0.039(5) 0.020(3)	0.00117(15) 0.00060(9)	¹⁰³ Rh 161.55(4) ¹⁰³ Rh 165.20(4)	1.00(3) 0.89(4)	0.0294(9) 0.0262(12)
⁹⁹ Ru 700,53(3)	0.018(3)	0.00054(9)	¹⁰³ Rh 168.21(5)	0.45(10)	0.013(3)
⁹⁹ Ru 710.70(4)	0.034(3)	0.00102(9)	¹⁰³ Rh 169.16(5)	2.88(19)	0.085(6)
¹⁰⁴ Ru <i>724.30(3)d</i> ⁹⁹ Ru 734.60(6)	0.0760(11) 0.0254(25)	<i>0.00</i> 228[7.4%] 0.00076(8)	¹⁰³ Rh 170.08(6) ¹⁰³ Rh 177.64(4)	0.64(19) 1.85(12)	0.019(6) 0.054(4)
¹⁰¹ Ru 739,614(21)	0.0196(20)	0.00059(6)	¹⁰³ Rh 178.66(4)	3.27(14)	0.096(4)
¹⁰¹ Ru 766.82(10)	0.019(3)	0.00057(9)	¹⁰³ Rh 180.87(3)	22.6(15)	0.67(4)
⁹⁹ Ru 822.579(22) ⁹⁹ Ru 836.20(3)	0.137(12) 0.029(5)	0.0041(4) 0.00087(15)	¹⁰³ Rh 186.04(3) ¹⁰³ Rh 196.55(5)	1.50(5) 0.80(16)	0.0442(15) 0.024(5)
⁹⁹ Ru 849.23(4)	0.030(3)	0.00090(9)	¹⁰³ Rh 198,89(4)	0.52(10)	0.015(3)
¹⁰¹ Ru 940.42(3)	0.038(4)	0.00114(12)	¹⁰³ Rh 202,85(6)	1.6(3)	0.047(9)
¹⁰¹ Ru 1046.498(3) ¹⁰² Ru 1075.37(14)	0.103(9) 0.0188(21)	0.0031(3) 0.00056(6)	¹⁰³ Rh 213.05(3) ¹⁰³ Rh 215.340(22)	1.27(3) 5.20(12)	0.0374(9) 0.153(4)
¹⁰¹ Ru 1103.062(22)	0.100(9)	0.0030(3)	¹⁰³ Rh 215.36(3)	1.54(12)	0.045(4)
¹⁰¹ Ru 1105.54(6)	0.055(5)	0.00165(15)	¹⁰³ Rh 216.54(8)	5.0(10)	0.15(3)
⁹⁹ Ru 1107.20(5) ⁹⁹ Ru 1207.93(8)	0.0236(24) 0.022(6)	0.00071(7) 0.00066(18)	¹⁰³ Rh 217.82(3) ¹⁰³ Rh 218.44(4)	7.38(13) 0.30(6)	0.217(4) 0.0088(18)
⁹⁹ Ru 1266.58(4)	0.0178(20)	0.00053(6)	¹⁰³ Rh 219.85(4)	0.480(19)	0.0141(6)
⁹⁹ Ru 1325.51(4) ⁹⁹ Ru 1341.50(3)	0.034(4)	0.00102(12)	¹⁰³ Rh 222.74(5) ¹⁰³ Rh 235.93(6)	0.26(3)	0.0077(9)
⁹⁹ Ru 1362.111(24)	0.137(12) 0.111(13)	0.0041(4) 0.0033(4)	¹⁰³ Rh 245.07(5)	0.345(10) 0.29(4)	0.0102(3) 0.0085(12)
⁹⁹ Ru 1365,29(4)	0.023(3)	0.00069(9)	¹⁰³ Rh 245.45(4)	0.387(17)	0.0114(5)
⁹⁹ Ru 1520.71(8) ⁹⁹ Ru 1523.10(3)	0.022(3) 0.034(4)	0.00066(9) 0.00102(12)	¹⁰³ Rh 246.61(5) ¹⁰³ Rh 247.55(5)	0.27(5) 0.387(17)	0.0080(15) 0.0114(5)
⁹⁹ Ru 1535.75(19)	0.0155(21)	0.00102(12)	¹⁰³ Rh 261.38(5)	1.09(3)	0.0321(9)
³³ Ru 1559.51(6)	0.027(3)	0.00081(9)	¹⁰³ Rh 266.84(3)	2.66(17)	0.078(5)
¹⁰¹ Ru 1568.383(20) ⁹⁹ Ru 1627.32(3)	0.044(4) 0.129(12)	0.00132(12) 0.0039(4)	¹⁰³ Rh 269.18(3) ¹⁰³ Rh 273.62(3)	1.42(11) 0.814(18)	0.042(3) 0.0240(5)
⁹⁹ Ru 1701.11(7)	0.032(3)	0.00096(9)	¹⁰³ Rh 284.36(4)	0.26(3)	0.0077(9)
¹⁰²Ru 1730.6(3)	0.0176(23)	0.00053(7)	¹⁰³ Rh 286.18(8)	0.42(4)	0.0124(12)
⁹⁹ Ru 1827.09(5) ⁹⁹ Ru 1865.04(4)	0.045(4) 0.028(3)	0.00135(12) 0.00084(9)	¹⁰³ Rh 303.59(5) ¹⁰³ Rh 305.7(3)	0.794(17) 1.070(21)	0.0234(5) 0.0315(6)
³³ Ru 1929.77(4)	0.025(3)	0.00075(9)	¹⁰³ Rh 317.07(4)	0.74(3)	0.0218(9)
' [∨] 2Ru 1959.30(7)	0.210(19)	0.0063(6)	¹⁰³ Rh 323.48(4)	1.54(19)	0.045(6)
⁹⁹ Ru 1996.62(6) ¹⁰² Ru 2074.98(20)	0.0223(25) 0.022(3)	0.00067(8) 0.00066(9)	¹⁰³ Rh 324.64(4) ¹⁰³ Rh 333.44(3)	0.57(9) 3.27(8)	0.017(3) 0.0963(24)
⁹⁹ Ru 3016.61(9)	0.0175(21)	0.00052(6)	¹⁰³ Rh 352.99(3)	0.668(19)	0.0197(6)
⁹⁹ Ru 3981.1(3) ¹⁰² Ru 4627.38(14)	0.0186(24) 0.0187(24)	0.00056(7)	¹⁰³ Rh 352.99(3) ¹⁰³ Rh 356.82(3)	0.668(19)	0.0197(6)
¹⁰⁴ Ru 4943.1(3)	0.0167(24)	0.00056(7) 0.00060(9)	¹⁰³ Rh 370.48(7)	0.668(19) 0.429(18)	0.0197(6) 0.0126(5)
¹⁰⁰ Ru 6266.6(3)	0.018Ò(13)	0.00054(4)	¹⁰³ Rh 374.826(23)	1.300(25)	0.0383(7)
¹⁰¹ Ru 6274.68(4) ⁹⁹ Ru 6340.59(6)	0.017(3) 0.024(4)	0.00051(9) 0.00072(12)	¹⁰³ Rh 379.823(5) ¹⁰³ Rh 382.24(3)	0.301(21) 0.374(25)	0.0089(6) 0.0110(7)
¹⁰¹ Ru 6627.200(20)	0.024(4)	0.00072(12)	¹⁰³ Rh 385.10(3)	0.819(19)	0.0110(7)
¹⁰¹ Ru 6978.81(16)	0.041(5)	0.00123(15)	¹⁰³ Rh 391.18(5)	0.358(17)	0.0105(5)
⁹⁹ Ru 7103.08(8) ⁹⁹ Ru 7792.04(3)	0.018(3)	0.00054(9) 0.0040(4)	¹⁰³ Rh 403.96(11) ¹⁰³ Rh 408.16(4)	0.350(15) 0.293(18)	0.0103(4) 0.0086(5)
	0.132(13) • W = 103 0055	` '	¹⁰³ Rh 420.62(3)	2.06(4)	0.0607(12)
Rhodium (Z=45), At	0.25(5)	<i>0(2),</i> σ _γ =1 45.0(20) 0.0074(15)	¹⁰³ Rh 427.44(3)	1.12(3)	0.0330(9)
¹⁰³ Rh 35.56(13)	0.65(7)	0.0191(21)	¹⁰³ Rh 431.91(12) ¹⁰³ Rh 440.55(3)	0.461(23) 2.23(10)	0.0136(7) 0.066(3)
¹⁰³ Rh 46.20(5)	0.37(5)	0.0109(15)	¹⁰³ Rh 459.69(6)	0.555(17)	0.0163(5)
¹⁰³ Rh <i>51.50(3)d</i> ¹⁰³ Rh 51.50(3)	<i>5.2(3)</i> 16.0(4)	<i>0.153[90%]</i> 0.471(12)	¹⁰³ Rh 470.40(3)	2.61(7)	0.0769(21)
¹⁰³ Rh 55.46(4)	0.76(15)	0.022(4)	¹⁰³ Rh 482.230(25) ¹⁰³ Rh 497.80(4)	1.78(6) 0.88(4)	0.0524(18) 0.0259(12)
¹⁰³ Rh 80.80(3)	0.73(16)	0.021(5)	¹⁰³ Rh 503.00(13)	0.23(6)	0.0068(18)
¹⁰³ Rh 83.74(3) ¹⁰³ Rh 85.19(3)	0.63(14) 3.2(3)	0.019(4) 0.094(9)	¹⁰³ Rh 529.98(5)	0.885(21)	0.0261(6)
¹⁰³ Rh 85,97(4)	0.30(6)	0.0088(18)	¹⁰³ Rh 538.04(3) ¹⁰³ Rh 542.31(8)	2.43(7) 0.48(3)	0.0716(21) 0.0141(9)
¹⁰³ Rh 97.14(3)	19.5(4)	0.574(12)	¹⁰³ Rh 550.87(8)	0.31(3)	0.0091(9)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Εγ)-barns	k _o	Eγ-keV	σ(Εγ)-barns	k ₀
Rhodium (Z=45), co			Palladium (Z=46), c		
¹⁰³ Rh 555.81(4)d	3.14(9)	0.092[98%]	¹⁰⁵ Pd 1168.16(8)	0.0588(22)	0.00167(6)
¹⁰³ Rh 562.78(4)	0.299(22)	0.0088(7)	¹⁰⁵ Pd 1397.54(7)	0.089(3)	0.00253(9)
¹⁰³ Rh 574.07(5)	0.539(20)	0.0159(6)	¹⁰⁵ Pd 1572.54(7)	0.207(25)	0.0059(7)
¹⁰³ Rh 577.92(5) ¹⁰³ Rh 597.65(3)	0.342(19) 0.997(23)	0.0101(6) 0.0294(7)	¹⁰⁵ Pd 1909.40(11) ¹⁰⁵ Pd 1927.25(10)	0.0423(20) 0.041(3)	0.00120(6) 0.00117(9)
103 Rh 609.55(12)	0.58(3)	0.0294(7)	105Pd 1988.14(12)	0.041(3)	0.00177(9)
¹⁰³ Rh 633,45(6)	0.239(17)	0.0070(5)	¹⁰⁵ Pd 2484.73(25)	0.052(4)	0.00148(11)
¹⁰³ Rh 680.61(6)	0.25(5)	0.0074(15)	10°Pd 4794.02(12)	0.112(10)	0.0032(3)
¹⁰³ Rh 689.47(5)	0.35(8)	0.0103(24)	¹⁰⁸ Pd 5212.31(12)	0.061(5)	0.00174(14)
¹⁰³ Rh 695.38(7)	1.07(3)	0.0315(9)	¹¹⁰ Pd <i>5531.9(4)</i>	0.0120(20)	0.00034(6)
¹⁰³ Rh 702.72(7)	0.869(25)	0.0256(7)	Silver (Z=47), At.W	t.=107.8682(2).	ர =63.3(8)
¹⁰³ Rh 707.67(6) ¹⁰³ Rh 710.69(5)	0.843(25)	0.0248(7)	¹⁰⁹ Ag 68.36(4)	0.113(8)	0.00317(22)
103 Rh 718.26(6)	0.46(4) 0.267(10)	0.0135(12) 0.0079(3)	¹⁰⁹ Ag 72 -67(5)	~0.9	~0.03
¹⁰³ Rh 720.58(9)	0.297(9)	0.0073(3)	¹⁰′Aa 78.91(4)	3.90(12)	0.110(3)
¹⁰³ Rh 722.81(4)	0.255(11)	0.0075(3)	¹ [∪] ⁹ Aa 79.91(6)	~1.0	~0.03
¹⁰³ Rh 734.90(7)	0.68(5)	0.0200(15)	¹⁰³ Aa 93.34(5)	0.5(3)	0.014(8)
¹⁰³ Rh 762.83(6)	0.339(21)	0.0100(6)	¹⁰⁷ Ag 101.55(8)	0.189(20)	0.0053(6)
¹⁰³ Rh 787.12(4)	1.16(3)	0.0342(9)	¹⁰⁹ Ag 105.95(6) ¹⁰⁷ Ag 110.24(7)	0.87(13) 0.273(22)	0.024(4) 0.0077(6)
¹⁰³ Rh 790.43(12) ¹⁰³ Rh 791.41(7)	0.7(4)	0.021(12)	107Ag 113.51(6)	0.52(3)	0.0146(8)
103Rh 817.71(8)	0.84(5) 0.5(3)	0.0247(15) 0.015(9)	¹⁰³Ad 117.45(8)	3.85(7)	0.1082(20)
¹⁰³ Rh 834.94(7)	0.277(13)	0.0082(4)	¹⁰³Aa 124.86(5)	0.158(12)	0.0044(3)
¹⁰³ Rh 868,28(6)	0.56(3)	0.0165(9)	''' Aa 143.94(4)	0.121(5)	0.00340(14)
¹⁰³ Rh 872.24(4)	0.44Ò(16)	0.0130(5)	¹⁰′ Aa 147.11(4)	0.114(5)	0.00320(14)
¹⁰³ Rh 907.66(7)	0.28(6)	0.0082(18)	¹⁰⁷ Ag 148.79(3)	0.214(6)	0.00601(17)
¹⁰³ Rh 951.96(6)	1.090(24)	0.0321(7)	109 Ag 152.58(4) 107 Ag 155.22(11)	0.326(6) 0.081(13)	0.00916(17) 0.0023(4)
¹⁰³ Rh 5798.18(14)	0.59(3)	0.0174(9)	109Ag 161.69(5)	0.217(8)	0.0023(4)
¹⁰³ Rh 5917.43(5) ¹⁰³ Rh 6046.79(6)	1.31(4) 0.88(4)	0.0386(12) 0.0259(12)	' ⁰⁰ Aa 166 62(4)	0.295(10)	0.0083(3)
103Rh 6082.98(7)	0.58(4)	0.0239(12)	''' Aa 178.32(4)	0.208(8)	0.00584(22)
¹⁰³ Rh 6110.21(6)	0.278(19)	0.0082(6)	'°' Ad 191.39(3)	1.81(5)	0.0509(14)
¹⁰³ Rh 6172.33(5)	0.75(3)	0.0221(9)	''' Aa 192.90(3)	2.20(6)	0.0618(17)
¹⁰³ Rh 6211.62(4)	0.89(3)	0.0262(9)	¹⁰⁹ Ag 194.56(14)	~0.2	~0.006
¹⁰³ Rh 6354.87(7)	0.46(3)	0.0135(9)	¹⁰⁹ Ag 195.33(6) ¹⁰⁹ Ag 198.72(4)	0.50(3) 7.75(13)	0.0140(8) 0.218(4)
¹⁰³ Rh 6785.66(4)	0.470(20)	0.0138(6)	''' Ag 201.31(6)	0.45(3)	0.0126(8)
Palladium (Z=46), A	\t.Wt.=106.42(1) , σ _γ =6.9(4)	10' An 204 ()2(9)	0.088(22)	0.0025(6)
¹⁰⁸ Pd 113.4010(10)	0.335(5)	0.00954(14)	¹⁰ 'Aa 206.46(3)	3.58(7)	0.1006(20)
¹⁰⁶ Pd 115.86(7)	0.0141(13)	0.00040(4)	''' Ag 212.30(4)	0.26(4)	0.0073(11)
¹⁰² Pd <i>118.68(3)</i> ¹⁰⁸ Pd 152.9420(10)	0.0042(11)	1.2(3)×10 ⁻⁴	¹⁰⁷ Ag 215.15(4) ¹⁰⁹ Ag 220.77(10)	1.55(3)	0.0435(8) ~0.002
108Pd 178.0340(10)	0.1450(22) 0.1090(22)	0.00413(6) 0.00310(6)	109 Ag 231.46(5)	~0.08 0.224(12)	0.0063(3)
108 Pd 188.9900(10)	1 0.0273(15)	0.00078[89%]	¹⁰³Aa 235.62(4)	4.62(7)	0.1298(20)
¹ ¹⁰ °Pd 197.346(5)	0.0650(20)	0.00185(6)	¹⁰ 'Aa 236.85(4)	1.95(3)	0.0548(8)
¹⁰⁸ Pd 211.8840(20)	0.0540(18)	0.00154(5)	¹⁰³ Ad 236 .89(7)	1.3(9)	0.037(25)
¹⁰⁸ Pd 245.0790(20)	0.250(4)	0.00712(11)	1°'_Ag 237.63(3)	0.26(5)	0.0073(14)
¹⁰⁸ Pd 266.3430(20)	0.0515(12)	0.00147(3)		0.327(11)	0.0092(3)
¹⁰⁸ Pd 276.289(6) ¹⁰⁴ Pd 280.65(6)	0.0562(18) <i>0.0158(14)</i>	0.00160(5) <i>0.00045(4</i>)	¹⁰⁷ Ag 244.56(6) ¹⁰⁷ Ag 249.15(6)	0.146(20) 0.087(7)	0.0041(6) 0.00244(20)
108Pd 291.4350(20)	0.1040(20)	0.00296(6)	109 Ag 252.17(5)	0.096(6)	0.00244(20)
¹⁰⁸ Pd 325.2840(20)	0.208(3)	0.00592(9)	¹⁰′ Aa 259.17(3)	1.560(25)	0.0438(7)
¹⁰⁸ Pd 326.8690(20)	0.0793(20)	0.00226(6)	¹⁰ ' Ag 262.31(6)	0.161(11)	0.0045(3)
¹⁰⁸ Pd 333.960(4)	0.1110(25)	0.00316(7)	¹⁰⁹ Aa 267 08(3)	2.73(6)	0.0767(17)
¹⁰⁸ Pd 339.5290(20)	0.195(3)	0.00555(9)	¹⁰³Aa 269.05(4)	0.6(5)	0.017(14)
¹⁰⁸ Pd 359.4290(20) ¹⁰⁸ Pd 378.1890(20)	0.120(3)	0.00342(9)	109 Ag 269.97(4)	0.565(25)	0.0159(7)
108Pd 428.409(4)	0.0411(20) 0.0504(21)	0.00117(6) 0.00144(6)	109Ag 282.66(6) 107Ag 286.91(4)	0.079(10) 0.400(25)	0.0022(3) 0.0112(7)
105Pd 429.63(4)	0.145(3)	0.00413(9)	¹⁰⁷ Ag 294.39(3)	2.05(12)	0.058(3)
¹⁰⁸ Pd 433.5640(20)	0.097(3)	0.00276(9)	¹⁰′Aa 295 22(18)	0.10(4)	0.0028(11)
¹⁰⁵ Pd 511.843(20)	4.00(4) ´	0.1139(11)	¹⁰⁷ Aa 299.95(3)	1.15(̇5)́	0.0323(14)
¹⁰⁵ Pd 616.192(20)	0.629(9)	0.0179(3)	''' Aa 301 75(7)	0.187(15)	0.0053(4)
¹⁰⁵ Pd 621.95(6)	0.126(7)	0.00359(20)	¹⁰⁹ Ag 302.83(13)	0.129(14)	0.0036(4)
¹⁰⁸ Pd 685.914(8) ¹⁰⁵ Pd 717.356(22)	0.042(7) 0.777(9)	0.00120(20) 0.0221(3)	¹⁰⁹ Ag 304.43(15) ¹⁰⁹ Ag 316.88(3)	0.135(9) 0.206(7)	0.00379(25) 0.00579(20)
¹⁰⁵ Pd 748.34(5)	0.0802(23)	0.00221(3)	107 Ag 320.36(6)	0.206(7)	0.00579(20)
¹⁰⁸ Pd 754.894(9)	0.0474(18)	0.00228(7)	¹⁰ 'Aa 328.99(3)	0.795(12)	0.00230(20)
¹⁰⁵ Pd 804.33(4)	0.091(3)	0.00259(9)	¹⁰³Aa 338 74(3)	0.595(10)	0.0167(3)
¹⁰⁵ Pd 846.29(10)	0.0452(18)	0.00129(5)	¹⁰ ' Aa 349,95(3)	0.70(4)	0.0197(11)
¹⁰⁵ Pd 848.16(6)	0.1000(25)	0.00285(7)	''' Aa 350,99(9)	0.145(12)	0.0041(3)
¹⁰⁸ Pd 1019.872(9) ¹⁰⁵ Pd 1045.82(3)	0.0467(25)	0.00133(7)	¹⁰⁹ Ag 357.82(5)	0.561(22)	0.0158(6)
¹⁰⁵ Pd 1050.31(4)	0.321(7) 0.360(8)	0.00914(20) 0.01025(23)	¹⁰⁹ Ag 360.41(3) ¹⁰⁷ Ag 365.41(23)	1.55(3) 0.16(4)	0.0435(8) 0.0045(11)
¹⁰⁵ Pd 1053.68(9)	0.057(3)	0.00162(23)	¹⁰⁹ Aa 366.97(10)	0.10(4)	0.0043(11)
¹⁰⁵ Pd 1128.03(3)	0.323(6)	0.00920(17)	¹⁰⁷ Ag 372.1(3)	0.09(3)	0.0025(8)
					

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Εγ-keV	σ(Eγ)-barns	k _o	Εγ-keV	σ(Εγ)-barns	k _o
Silver (Z=47), conti		/	Silver (Z=47), conti		
¹⁰⁷ Ag 376.71(9)	0.294(13)	0.0083(4)	¹⁰⁷ Ag 796.15(8)	0.38(4)	0.0107(11)
¹⁰⁹ Ag 378.11(6) ¹⁰⁷ Ag 380.90(3)	0.744(20)	0.0209(6)	¹⁰⁷ Ag 812.10(6) ¹⁰⁷ Ag 819.26(8)	0.131(5)	0.00368(14)
109 Ag 380.97(15)	1.59(3) 0.7(5)	0.0447(8) 0.020(14)	107Ag 845.19(14)	0.291(6) 0.085(19)	0.00818(17) 0.0024(5)
107Ag 384.31(13)	0.7(3)	0.020(14)	107 Ag 881.01(7)	0.003(19)	0.0024(3)
'°' Aa 386.18(13)	0.192(24)	0.0054(7)	''' Aa 895,48(3)	0.376(8)	0.01056(22)
103Ag 387,99(7)	0.121(21)	0.0034(6)	''' An 918 97(11)	0.124(22)	0.0035(6)
''' Aa 396.25(4)	0.138(6)	0.00388(17)	''' Aa 938,04(5)	0.186(6)	0.00523(17)
¹⁰⁷ Ag 399.87(7)	0.093(6)	0.00261(17)	¹⁰⁷ Ag 960.13(4)	0.199(10)	0.0056(3)
¹⁰⁹ Ag 408.61(4) ¹⁰⁷ Ag 410.31(6)	0.459(9)	0.01290(25)	¹⁰⁷ Ag 972.69(7) ¹⁰⁷ Ag 1013.11(3)	0.078(9)	0.00219(25)
109 Ag 416.93(5)	0.142(6) 0.243(13)	0.00399(17) 0.0068(4)	107Ag 1013.11(3)	0.698(13) 0.225(8)	0.0196(4) 0.00632(22)
¹⁰³Aa 427.96(16)	0.273(11)	0.0077(3)	'°' Ad 1079 68(13)	0.165(15)	0.0046(4)
10' Aa 429.09(7)	0.253(11)	0.0071(3)	¹⁰³Aa 5539.17(21)	0.106(9)	0.00298(25)
¹⁰³Aa 431.36(7)	0.248(13)	0.0070(4)	¹⁰³Aa 5545 6(3)	0.106(12)	0.0030(3)
¹⁰⁷ Ag 437.713(15)	0.079(10)	0.0022(3)	10°Ag 5554.8(3)	0.111(10)	0.0031(3)
¹⁰⁷ Ag 438.26(12)	0.191(11)	0.0054(3)	¹⁰⁹ Ag 5580.62(19)	0.302(14)	0.0085(4)
¹⁰⁷ Ag 439.69(12) ¹⁰⁷ Ag 441.79(8)	0.216(11) 0.181(21)	0.0061(3) 0.0051(6)	109 Ag 5615.11(20) 109 Ag 5642.24(22)	0.208(11) 0.199(12)	0.0058(3) 0.0056(3)
¹⁰³Aa 446.10(7)	0.183(10)	0.0051(0)	108Ag 5701.49(19)	0.716(18)	0.0201(5)
103Ag 450.80(7)	0.098(16)	0.0028(5)	¹⁰³Aa 5710.22(20)	0.229(10)	0.0064(3)
¹⁰³ Aa 461.56(6)	0.265(16)	0.0074(5)	¹⁰³Aa 5773.12(21)	0.225(9)	0.00632(25)
¹⁰⁷ Ag 464.04(12)	0.236(20)	0.0066(6)	¹⁰⁹ Ag 5795.0(3)	0.513(14)	0.0144(4)
¹⁰⁷ Ag 465.37(6) ¹⁰⁹ Ag 468.65(7)	0.46(3) 0.166(9)	0.0129(8) 0.00466(25)	¹⁰⁹ Ag 5913.3(5) ¹⁰⁹ Ag 5996.81(10)	0.084(7) 0.154(7)	0.00236(20) 0.00433(20)
107 Ag 479.36(7)	0.095(12)	0.00400(23)	109 Ag 6022.46(10)	0.154(7)	0.00433(20)
' [™] Aa 484.18(8)	0.253(18)	0.0071(5)	¹⁰³ Aa 6034 70(11)	0.080(6)	0.00225(17)
'''' Aa 485.68(13)	0.098(7)	0.00275(20)	100Ag 6057.25(9)	0.663(19)	0.0186(5)
109Ag 488.66(6)	0.149(12)	0.0042(3)	103Aa 6101 98(11)	0.080(5)	0.00225(14)
¹⁰⁹ Ag 495.71(3) ¹⁰⁷ Ag 497.57(8)	1.080(18) 0.157(9)	0.0303(5) 0.00441(25)	¹⁰⁷ Ag 6268.80(24) ¹⁰⁷ Ag 6372.7(9)	0.146(7) 0.11(4)	0.00410(20) 0.0031(11)
107 Ag 499.97(4)	0.265(13)	0.0074(4)	108Ag 6540.92(9)	0.259(11)	0.0073(3)
''' Aa 522,43(9)	0.125(7)	0.00351(20)	''' Aa 6707 6(3)	0.083(7)	0.00233(20)
¹⁰⁸ Aa 524.47(3)	0.804(11)	0.0226(3)	¹⁰³Aa 6807.13(11)	0.083(3)	0.00233(8)
¹⁰⁹ Ag 526.07(8)	0.364(7)	0.01023(20)	¹⁰⁷ Ag 6892.1(3)	0.079(6)	0.00222(17)
¹⁰⁷ Ag 527.23(5) ¹⁰⁹ Ag 536.13(3)	0.371(10) 1.090(16)	0.0104(3) 0.0306(5)	¹⁰⁷ Ag 6977.2(3) ¹⁰⁷ Ag 7065.3(3)	0.121(8) 0.103(8)	0.00340(22) 0.00289(22)
¹⁰³Aa 544.14(5)	0.34(3)	0.0096(8)	¹º′Aa 7078.5(3)	0.291(13)	0.0082(4)
'°³Aa 549.56(3)	1.540(24)	0.0433(7)	¹⁰⁷ Ag 7271.8(3)	0.284(14)	0.0080(4)
¹⁰⁷ Ag 563.91(5)	0.191(6)	0.00537(17)	Cadmium (Z=48), A	t.Wt.=112.411(8), ♂,=2522(50)
¹⁰⁷ Ag 572.10(6) ¹⁰⁷ Ag 574.77(3)	0.080(6) 0.299(7)	0.00225(17) 0.00840(20)	¹¹³ Cd 95.88(4)	21.2(6)	0.572(16)
¹ [∪] °Aa 586.85(3)	0.459(8)	0.01290(22)	¹¹⁰ Cd 171.3(3)	57(6)	1.54(16)
108Aa 593.86(4)	0.484(11)	0.0136(3)	110Cd 245.3(3)	274(25)	7.4(7)
''' Aa 599,87(4)	0.37(3)	0.0104(8)	¹¹⁰ Cd 284.3(3) ¹¹⁰ Cd 342.2(3)	29(3) 1.0×10 ⁺⁰²	0.78(8) 2.7×10+ ⁰⁰
¹⁰⁹ Ag 610.33(15)	0.105(25) 0.09(3)	0.0029(7) 0.0025(8)	113Cd 558.32(3)	1860(30)	50.1(8)
¹⁰⁷ Ag 611.98(18) ¹⁰⁹ Ag 614.15(8)	0.09(3)	0.0025(8)	¹¹³ Cd 576 04(3)	107.0(17)	2.88(5)
¹⁰⁷ Ag 616.89(4)	0.20(4)	0.0056(11)	'''Cd <i>617.54(15</i>)	2.9(4)	0.078(11)
¹⁰⁷ Ag 616.89(4) ¹⁰⁹ Ag 620.07(5)	0.40(5)	0.0112(14)	110Cd 620.3(3)	38(4)	1.02(11)
'°' Aa 626,41(4)	0.39(6)	0.0110(17)	¹¹³ Cd 648.79(10) ¹¹³ Cd 651.19(3)	34.1(9) 358(5)	0.919(24) 9.65(13)
¹⁰⁷ Ag 629.499(20) ¹⁰⁹ Ag 632.47(10)	0.12(3) 0.42(12)	0.0034(8) 0.012(3)	113Cd 654,47(4)	34.1(9)	0.919(24)
107 Ag 636.53(4)	0.31(11)	0.009(3)	113Cd 707.39(3)	29.3(5)	0.790(13)
'°' Aa 640 18(4)	0.24(6)	0.0067(17)	¹¹³ Cd 725.19(3)	107.0(13)	2.88(4)
¹⁰ /Aa 652.041(20)	0.117(19)	0.0033(5)	¹¹³ Cd 748.04(6) ¹¹³ Cd 805.85(3)	37(3) 134.0(18)	1.00(8)
¹⁰ ⁹ Aa 652 96(5)	0.255(12)	0.0072(3)	113 Cd 1209.65(4)	134.0(18) 122.0(19)	3.61(5) 3.29(5)
109 Ag 655.02(11) 109 Ag 657.50(10)d	0.107(14) 1.86(5)	0.0030(4) 0.0523[99%]	113Cd 1283.45(4)	47.5(9)	1.281(24)
¹⁰′Aa 662.55(11)	0.088(12)	0.0025(3)	¹¹³ Cd 1300.98(5)	31.1(11)	0.84(3)
¹⁰′ Aa 664 91(3)	0.329(22)	0.0092(6)	113Cd 1364.30(4)	123.0(21)	3.32(6)
¹⁰ ′Aa 670.53(7)	0.104(17)	0.0029(5)	¹¹³ Cd 1370.55(5) ¹¹³ Cd 1399.54(4)	30.2(9) 97.7(15)	0.814(24) 2.63(4)
¹⁰⁷ Ag 674.07(6) ¹⁰⁷ Ag 685.8(3)	0.094(16)	0.0026(5)	¹¹³ Cd 1489.53(4)	68.5(11)	1.85(3)
107 Ad 687 48(8)	0.081(20) 0.35(5)	0.0023(6) 0.0098(14)	113Cd 1660.36(5)	66.7(13)	1.80(4)
¹⁰⁹ Aa 698.44(6)	0.158(6)	0.00444(17)	113Cd 1826.19(7)	25.2(7)	0.679(19)
'°' Ad /18 1/(6)	0.199(12)	0.0056(3)	¹¹³ Cd 2102.39(8)	24.0(9)	0.647(24)
¹⁰⁹ Ag 724.75(5)	0.393(14)	0.0110(4)	¹¹³ Cd 2398.27(12) ¹¹³ Cd 2455.93(7)	22.4(8) 87.3(18)	0.604(22) 2.35(5)
¹⁰⁷ Ag 746.21(19) ¹⁰⁹ Ag 748.40(6)	0.088(10) 0.328(9)	0.0025(3) 0.00921(25)	¹¹³ Cd 2550.30(8)	38.7(11)	1.04(3)
¹⁰³ Ag 75() 77(4)	0.529(11)	0.00921(23)	113Cd 2659.96(7)	64.0(15)	1.73(4)
¹⁰⁹ Aa 767.01(5)	0.31(4)	0.0087(11)	¹¹³ Cd 2767.67(13)	22.4(13)	0.60(4)
¹⁰³Aa 773 32(8)	0.22(3)	0.0062(8)	¹¹³ Cd 2799.98(9) ¹¹³ Cd 2999.69(12)	27.6(9) 29.1(14)	0.744(24) 0.78(4)
¹⁰⁷ Ag 781.21(11) ¹⁰⁹ Ag 785.57(5)	0.094(22) 0.34(4)	0.0026(6) 0.0096(11)	113Cd 3109.08(12)	28.6(12)	0.77(3)
	0.0 1(1)	3.0000(11)		. ,	. ,

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Eγ)-barns	k _o	Eγ-keV	σ(Eγ)-barns	k _o
Cadmium (Z=48), co			Indium (Z=49), cont		
¹¹³ Cd 3218.96(12)	19.0(9)	0.512(24)	¹¹⁵ In 518.119(12)	3.15(22)	0.083(6)
¹¹³ Cd 5824.31(16) ¹¹³ Cd 5934.39(20)	69.1(18)	1.86(5) 0.52(3)	115 In 521.501(9) 115 In 540.382(8)	1.97(14)	0.052(4)
	19.3(10)		115 540.362(8) 115 In 548.720(9)	0.60(4) 2.01(14)	0.0158(11) 0.053(4)
Indium (Z=49), At.W			¹¹³ ln 555 47(11)	0.7(5)	0.018(13)
¹¹⁵ ln 22.796(7)	7(3)	0.18(8)	¹¹⁵ In 556 169(8)	1.6(9)	0.042(24)
115 n 60.9160(10)	15.8(11)	0.42(3)	'''In 556.845(21)	4.7(3)	0.124(8)
¹¹⁵ In 76.7580(20) ¹¹⁵ In 84.3080(20)	0.41(3)	0.0108(8)	¹¹⁵ In 560 095(9)	0.85(5)	0.0224(13)
115 04.3000(20)	1.32(9) 22.1(16)	0.0348(24) 0.58(4)	¹¹⁵ In 567.596(20)	0.94(7)	0.0248(18)
¹¹⁵ ln 95.380(4)	1.0(4)	0.026(11)	115 In 577.523(18) 115 In 602.36(4)	1.92(14) 2.86(20)	0.051(4) 0.075(5)
¹¹⁵ ln 96.036(5)	11.4(14)	0.30(4)	115In 608.422(11)	3.51(25)	0.093(7)
¹¹⁵ ln 96.062(3)	24.6(18)	0.65(5)	'''In 622 57(11)	0.83(5)	0.0219(13)
¹¹⁵ In 112.4540(20) ¹¹⁵ In 114.997(3)	1.38(9)	0.0364(24)	'' ³ In 633 740(11)	1.54(11)	0.041(3)
115In 126.3720(20)	0.47(3) 4.0(3)	0.0124(8) ´ 0.106(8)	¹¹⁵ In 634.288(9)	1.68(13)	0.044(3)
¹¹⁵ In 138.326(8)d	5.11(18)	0.135[30%]	¹¹⁵ In 647.72(8) ¹¹⁵ In 654.95(7)	1.18(9) 0.47(3)	0.0311(24) 0.0124(8)
¹¹³ In 140 4560(20)	1.58(11)	0.042(3)	¹¹³ In 657 084(11)	1.52(11)	0.040(3)
115In 141.1700(20)	2.63(18)	0.069(5)	¹¹⁵ ln 662 115(10)	0.44(3)	0.0116(8)
115In 149.6700(20) 115In 155.272(3)	0.69(5)	0.0182(13)	¹¹³ In 693 29(9)	1.83(13)	0.048(3)
1155.272(3) 115ln 159.932(4)	2.48(18) 1.07(7)	0.065(5) 0.0282(18)	'''In 706 21(10)	0.40(9)	0.0106(24)
115ln 162.393(3)d	15.8(8)	0.417[100%]	¹¹⁵ In 746.978(9)	0.71(5) 1.52(11)	0.0187(13) 0.040(3)
¹¹³ In 163 802(8)	0.67(5)	0.0177(13)	¹¹⁵ In 771.01(8) ¹¹⁵ In 792.16(6)	1.34(9)	0.0354(24)
¹¹⁵ ln 171.059(5)	3.44(25)	0.091(7)	¹¹⁵ In 807 897(25)	0 44(3)	0.0116(8)
115 n 173.886(6)	4.1(3)	0.108(8)	115In 818.70(20)d	17.8(7)	0.470[30%]
¹¹⁵ In 175.066(4) ¹¹⁵ In 186.2100(20)	1.12(7) 26.6(18)	0.0296(18) 0.70(5)	'''In 819 ()4(11)	2.59(18)	0.068(5)
¹¹⁵ In 196.738(5)	0.89(7)	0.0235(18)	¹¹⁵ In 847.54(8) ¹¹⁵ In 992.10(10)	2.15(16) 0.91(7)	0.057(4) 0.0240(18)
¹¹³ In 202 602(3)	2.70(20)	0.071(5)	115 ln 1097.30(20)d	87.3(17)	2.30[30%]
¹¹⁵ ln 213.625(12)	0.64(5)	0.0169(13)	119In 1293 54(15)d	131(3)	3.46[30%]
115In 234.618(11)	0.71(25)	0.019(7)	119In 1507.40(20)d	<i>15.5</i> (5)	0.409[30%]
¹¹⁵ In 235.275(4) ¹¹⁵ In 240.30(3)	4.9(3) 0.44(3)	0.129(8) 0.0116(8)	'''In <i>1753.8(6)d</i>	3.82(12)	0.101[30%]
115In 267.960(20)	0.52(4)	0.0137(11)	¹¹⁵ In 2112.1(4)d ¹¹⁵ In 5333.54(18)	24.1(7)	0.636[30%]
115ln 272.9660(20)	33.1(24)	0.87(6)	11 5333.34(16) 115 In 5347.4(6)	0.89(7) 0.362(25)	0.0235(18) 0.0096(7)
¹¹⁵ In 284.914(4)	4.5(3)	0.119(8)	¹¹³ ln 5358.9(5)	0.51(4)	0.0135(11)
¹¹³ In 287.726(19)	0.20(5)	0.0053(13)	¹¹⁵ ln 5410 56(19)	0.53(4)	0.0140(11)
¹¹⁵ In 290.952(15) ¹¹⁵ In 293.393(15)	2.55(18) 0.40(16)	0.067(5) 0.011(4)	¹¹⁵ In 5891.89(17)	2.10(14)	0.055(4)
¹¹⁵ In 293.644(14)	1.38(11)	0.036(3)	Tin (Z=50), At.Wt.=1	18.710(7), σ _ν =0).54(5)
¹¹⁵ ln 295.515(17)	2.86(20)	0.075(5)	¹²⁰ Sn 60.66(15)	0.0052(7)	1.33(18)×10 ⁻⁴
¹¹⁵ In 298.664(3)	9.4(7)	0.248(18)	¹²² Sn 125.80(7) ¹¹⁶ Sn 158.65(6) ¹²⁴ Sn 187.67(7)	0.00178(9)	<i>1</i> 51(23)√10-5
¹¹⁵ In 300.388(4) ¹¹⁵ In 305.108(8)	0.45(3)	0.0119(8)	110Sn 158.65(6)	0.0145(3)	0.000370(8)
¹¹⁵ In 315 053(12)	1.30(9) 0.69(5)	0.0343(24) 0.0182(13)	1479n 221 00/2014	0.00363(12) 0.00830(20)	9.3(3)×10 ⁻⁵ 2.12×10 ⁻⁴ [77%]
115 In 318.48(4) 115 In 320.895(8)	0.60(4)	0.0158(11)	115Sn 416.99(4) 115Sn 463.242(17)	0.00251(11)	6.4(3)×10 ⁻⁵
¹¹⁵ In 320.895(8)	2.30(16)	0.061(4)	¹¹⁵ Sn 463.242(17)	0.0128(3) ´	0.000327(8)
	0.7(3)	0.018(8)	(d) 528.85(b)	0.00425(14)	1.08(4)×10 ⁻⁴
115 In 335.450(10) 115 In 337.687(8)	9.1(7)	0.240(18)	¹¹⁶ Sn 552.90(9) ¹¹⁹ Sn 703.87(7)	0.00137(13)	3.5(3)×10 ⁻⁵
11012 220 45/4)	2.52(18) 0.47(11)	0.067(5) 0.012(3)	¹¹⁵ Sn 733,89(3)	0.0078(3) 0.00925(21)	1.99(8)×10 ⁻⁴ 2.36(5)×10 ⁻⁴
110ln 36/1005/20\	0.53(4)	0.0140(11)	¹¹⁷ Sn 813.26(7)	0.0071(3)	1.81(8)×10 ⁻⁴
115In 272 1/0/2/\	0.38(3)	0.0100(8)	¹¹⁵ Sn 818.721(14)	0.0128(4)	0.000327(10)
115 In 375.149(24) 115 In 375.969(12) 115 In 384.421(11)	2.66(20)	0.070(5)	¹¹ 'Sn 827.37(8)	0.00361(23)	9.2(6)×10 ⁻⁵
110In 225 111/2\	2.9(7) 12.1(9)	0.077(18) 0.319(24)	¹¹⁶ Sn 861.39(10) ¹²⁰ Sn 869.38(8)	0.00191(19) 0.00320(22)	4.9(5)×10 ⁻⁵ 8.2(6)×10 ⁻⁵
¹¹⁵ In 387.636(13)	0.344(25)	0.0091(7)	¹¹⁸ Sn 897.28(8)	0.00320(22)	9.4(5)×10 ⁻⁵
110In 303 00/11)	0.39(3)	0.0103(8)	¹²⁰ Sn 908.89(8)	0.00307(19)	7.8(5)×10 ⁻⁵
110ln 206 406/42)	0.51(4)	0.0135(11)	¹²² Sn 920.87(7)	0.00404(21)	1.03(5)×10 ⁻⁴
115 In 410.433(11) 115 In 416.86(3)d	0.69(5)	0.0182(13)	¹¹⁸ Sn 920.87(7)	0.00404(21)	1.03(5)×10 ⁻⁴
¹¹⁵ In //22 213/11)	43.0(18) 1.70(13)	1.13[30%] 0.045(3)	¹¹⁹ Sn 925.90(6) ¹²⁰ Sn 925.90(6)	0.0097(3) 0.0097(3)	2.48(8)×10 ⁻⁴ 2.48(8)×10 ⁻⁴
¹¹⁵ ln 433.723(8)	6.0(4)	0.045(3) 0.158(11)	¹¹⁵ Sn 931.819(23)	0.0097(3)	0.000283(8)
¹¹⁵ In 443,229(13)	0.58(4)	0.0153(11)	¹²⁰ Sn 943.20(12)	0.00150(17)	3.8(4)×10 ⁻⁵
¹¹⁵ ln 447.531(11)	0.39(3)	0.0103(8)	¹¹⁵ Sn 972.619(17)	0.0158(5)	0.000403(13)
¹¹⁵ In 471.349(11) ¹¹⁵ In 475.906(10)	4.3(3)	0.113(8)	¹¹⁹ Sn 988.67(7)	0.00668(22)	1.71(6)×10 ⁻⁴
115In 480 314/10)	1.88(13) 0.63(5)	0.050(3) 0.0166(13)	¹¹⁶ Sn 1004.49(8) ¹²⁰ Sn 1041.60(14)	0.00388(18) 0.00189(20)	9.9(5)×10 ⁻⁵ 4.8(5)×10 ⁻⁵
¹¹⁵ In 490.374(12)	0.80(11)	0.0166(13)	¹¹ /Sn 1050.66(9)	0.00189(20)	7.5(6)×10 ⁻⁵
¹¹⁵ In //02 532/11 \	3.31(24)	0.087(6)	¹¹⁸ Sn 1065.17(13)	0.00233(22)	5.5(5)×10 ⁻⁵
115In 497 670(19)	0.67(5)	0.0177(13)	¹¹ /Sn 1095.18(10)	0.0067(3)	1.71(8)×10 ⁻⁴
¹¹⁵ In 499 875(8)	0.37(3)	0.0098(8)	¹¹⁵ Sn 1097.323(18)	0.0039(5)	9.96(13)×10 ⁻⁵
¹¹⁵ In 515.661(8) ¹¹⁵ In 517.957(20)	0.60(4)	0.0158(11)	¹²⁰ Sn 1101.25(16) ¹¹⁵ Sn 1115.15(4)	0.00322(25)	8.2(6)×10 ⁻⁵
¹¹⁵ ln 517.957(20)	2.8(4)	0.074(11)	<u> </u>	0.00150(16)	3.8(4)×10 ⁻⁵

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Table I. Adopted Pron	npt and Decay	Gamma Rays fron	n Thermal Neutron Ca	apture for all E	lements, continu
Eγ-keV	σ (Ε γ)-barns	k _o	Eγ-keV	σ (Ε γ)-barns	k ₀
Tin (Z=50), continue			Antimony (Z=51), co		
¹¹⁵ Sn 1118.95(5)	0.00155(22)	4.0(6)×10 ⁻⁵	¹²¹ Sb 61.4130(10)	0.75(18)	0.019(5)
¹¹⁹ Sn 1171.28(6) ¹¹⁷ Sn 1173.66(8)	0.0879(13) 0.0050(3)	0.00224(3) 1.28(8)×10 ⁻⁴	¹²¹ Sb 67.5940(10) ¹²¹ Sb 71.4670(10)	0.0082(22) 0.095(22)	2.0(6)×10 ⁻⁴ 0.0024(6)
'' [®] Sn 1184 19(8)	0.0051(3)	1.30(8)×10 ⁻⁴	¹²¹ Sb 76.0590(10)	0.039(9)	0.0024(0)
113Sn 1200 56(12)	0.00163(22)	4.2(6)×10 ⁻⁵	'4'Sb 78.0910(10)	0.48(11)	0.012(3) ´
¹¹⁸ Sn 1202 70(12)	0.0022(3)	5.6(8)×10 ⁻⁵	' ² 'Sb 86 7140(10)	0.0080(19)	2.0(5)×10 ⁻⁴
¹¹⁷ Sn 1229.64(6) ¹¹⁸ Sn 1249.62(7)	0.0673(13) 0.0052(3)	0.00172(3) 1.33(8)×10 ⁻⁴	123 Sb 87.601 121 Sb 88.2690(10)	0.212(8) 0.083(19)	0.00528(20)
¹¹⁰ Sn 1252 119(23)	0.00348(19)	8.9(5)×10 ⁻⁵	123 Sb 88.3850(10)	0.0196(11)	0.0021(5) 0.00049(3)
¹¹³ Sn 1291.99(3)	0.0050(10)	1.3(3)×10 ⁻⁴	¹²¹ Sb 101.5520(10)	0.028(6)	0.00070(15)
^{□10} Sn 1293.591(15)	0.1340(21)	0.00342(5)	¹²³ Sb 103.6510(10)	0.063(5)	0.00157(12)
¹¹⁵ Sn 1356.846(20) ¹¹⁹ Sn 1415.76(10)	0.0075(3)	1.91(8)×10 ⁻⁴ 7.4(5)×10 ⁻⁵	121Sb 105.8160(10) 121Sb 113.8870(10)	0.21(5)	0.0052(12)
'''Sn 1447 ()9(14)	0.00291(19) 0.00212(21)	5.4(5)×10 ⁻⁵	121 Sb 114.8680(10)	0.014(3) 0.31(7)	0.00035(8) 0.0077(17)
'''Sn 1508 43(11)	0.0058(3)	1.48(8)×10 ⁻⁴	'4'Sb 115.4210(10)	0.0110(25)	0.00027(6)
¹¹³ Sn 1546 40(6)	0.00140(15)	3.6(4)×10 ⁻⁵	121Sb 121.4970(10)	0.40(9)	0.0100(22)
¹¹⁵ Sn 1550.71(18) ¹¹⁵ Sn 1650.72(6)	0.00170(16) 0.0021(3)	4.3(4)×10 ⁻⁵ 5.4(8)×10 ⁻⁵	¹²¹ Sb 124.0290(10) ¹²³ Sb 133.8390(10)	0.037(9)	0.00092(22)
'''Sn 1695 0(3)	0.0021(3)	3.5(6)×10 ⁻⁵	¹²³ Sb 137.9190(10)	0.056(4) 0.0207(10)	0.00139(10) 0.000515(25)
¹¹³ Sn 1702 67(3)	0.00169(17)	4.3(4)×10 ⁻⁵	¹²¹ Sb 141.4390(10)	0.060(14)	0.0015(4)
¹¹³ Sn 1711 17(7)	0.00151(19)	3.9(5)×10 ⁻⁵	¹²³ Sh 143 2080(10)	0.028(4)	0.00070(10)
¹¹⁵ Sn 1886.09(7) ¹¹⁵ Sn 1900.72(5)	0.0026(3)	6.6(8)×10 ⁻⁵	¹²¹ Sb 148.238 ¹²¹ Sb 148.6540(10)	0.26(6)	0.0065(15)
115Sn 1926 02(19)	0.0025(3) 0.0014(6)	6.4(8)×10 ⁻⁵ 3.6(15)×10 ⁻⁵	121 Sb 149.9720(10)	0.016(4) 0.013(3)	0.00040(10) 0.00032(8)
'' ³ Sn 1934 93(18)	0.0027(4)	6.9(10)×10 ⁻⁵	'4'Sb 153.3850(10)	0.0085(11)	2.1(3)×10 ⁻⁴
¹¹⁸ Sn 1975 73(18)	0.0016(3)	4.1(8)×10 ⁻⁵	¹²³ Sb 155.1780(10)	0.081(9)	0.00202(22)
¹¹⁷ Sn 2042.74(10) ¹¹⁵ Sn 2050.76(5)	0.0067(4)	1.71(10)×10 ⁻⁴ 6.4(10)×10 ⁻⁵	¹²¹ Sb 166.4510(10) ¹²³ Sb 167.6050(10)	0.074(4) 0.046(4)	0.00184(10)
¹¹⁸ Sn 2077 80(8)	0.0025(4) 0.0016(6)	4.1(15)×10 ⁻⁵	'4'Sb 173.7880(20)	0.046(4)	0.00114(10) 0.00048(3)
'' [®] Sn 2097.01(9)	0.0048(3)	1.23(8)×10 ⁻⁴	¹²³ Sb 173.7990(10)	0.0171(9)	0.000426(22)
110Sn 2112.302(16)	0.0152(5)	0.000388(13)	'4'Sb 177,4070(10)	0.0085(20)	2.1(5)×10 ⁻⁴
¹¹⁵ Sn 2148.03(5) ¹¹⁵ Sn 2211.69(8)	0.0021(4) 0.0018(6)	5.4(10)×10 ⁻⁵ 4.6(15)×10 ⁻⁵	121Sb 184.0480(10) 123Sb 185.1190(10)	0.031(7) 0.0116(17)	0.00077(17) 0.00029(4)
¹¹⁰ Sn 2220.00(23)	0.0018(6)	4.9(13)×10 ⁻⁵	¹²¹ Sb 194.0850(10)	0.0534(18)	0.00029(4)
¹¹⁰ Sn 2225 40(3)	0.0082(5)	2.09(13)×10 ⁻⁴	'4'Sb 201.5950(10)	0.091(3)	0.00226(8)
¹¹⁸ Sn 2244 19(6)	0.0029(10)	7(3)×10 ⁻⁵	¹²¹ Sb 204.5580(10)	0.0354(15)	0.00088(4)
¹¹⁹ Sn 2355.3 ¹¹⁹ Sn 2420.83(15)	1.8×10 ⁻³ 0.0029(3)	4.6×10 ⁻⁵ 7.4(8)×10 ⁻⁵	121Sb 217.4170(20) 121Sb 229.7080(10)	0.0118(8) 0.021(5)	0.000294(20) 0.00052(12)
¹¹⁰ Sn 2585 57(3)	0.0023(3)	1.20(10)×10 ⁻⁴	'4'Sb 232.1880(10)	0.039(3)	0.00097(8)
'''Sn 2677 47(20)	0.0022(3)	5.6(8)×10 ⁻⁵	¹²¹ Sb 233.1690(10)	0.0996(24)	0.00248(6)
¹¹⁵ Sn 2707.43(6) ¹¹⁷ Sn 2738.1	0.0024(6)	6.1(15)×10 ⁻⁵	¹²³ Sb 246.3260(20) ¹²³ Sb 252.841(3)	0.0586(21)	0.00146(5)
11 ³ Sn 2843 82(5)	2.0×10 ⁻³ 0.0032(4)	5.1×10 ⁻⁵ 8.2(10)×10 ⁻⁵	121 Sb 255.4980(10)	0.0468(24) 0.030(4)	0.00116(6) 0.00075(10)
¹¹³ Sn 2907.53(18)	0.0027(5)	6.9(13)×10 ⁻⁵	141Sb 256.2270(10)	0.019(6)	0.00047(15)
113Sn 2960 03(4)	0.0023(3)	5.9(8)×10 ⁻⁵	141Sb 261 6790(10)	0.0087(16)	2.2(4)×10 ⁻⁴
¹¹⁵ Sn 2985.00(25) ¹¹⁵ Sn 3088.55(5)	0.0025(8) 0.00184(19)	6.4(20)×10 ⁻⁵ 4.7(5)×10 ⁻⁵	123Sb 265.629(6) 123Sb 269.3960(20)	0.024(4) 0.0093(25)	0.00060(10) 2.3(6)×10 ⁻⁴
'''Sn 3330 6(4)	0.0016(5)	4.1(13)×10 ⁻⁵	'4'Sh 272 2670(10)	0.019(3)	0.00047(8)
'''Sn 3333 75(5)	0.0061(5)	1.56(13)×10 ⁻⁴	141Sb 274.0010(10)	0.031(6)	0.00077(15)
'''Sn 3658.30(17)	0.0022(4)	5.6(10)×10 ⁻⁵	¹²³ Sb 275.2780(20)	0.0135(8)	0.000336(20)
¹¹⁵ Sn 4013.00(11) ¹¹⁵ Sn 4392.56(8)	0.00169(16) 0.00148(16)	4.3(4)×10 ⁻⁵ 3.8(4)×10 ⁻⁵	121 Sb 275.4400(10) 123 Sb 276.2670(20)	0.0306(16) 0.0095(5)	0.00076(4) 2.36(12)×10 ⁻⁴
¹¹³ Sn 4695 80(8)	0.0031(3)	7.9(8)×10 ⁻⁵	'4'Sb 282.6500(10)	0.274(7)	0.00682(17)
¹¹³ Sn 4780 1(4)	0.0048(5)	1.23(13)×10 ⁻⁴	121Sb 286.5180(20)	0.034(3)	0.00085(8)
¹¹⁵ Sn 4809.43(9)	0.00165(16)	4.2(4)×10 ⁻⁵	¹²³ Sb 288.0170(20)	0.018(6)	0.00045(15)
¹¹⁵ Sn 5173.5(7) ¹¹⁵ Sn 5361.91(6)	0.0016(4) 0.0043(4)	4.1(10)×10 ⁻⁵ 1.10(10)×10 ⁻⁴	¹²³ Sb 313.938(3) ¹²³ Sb 313.990(6)	0.015(4) 0.0317(24)	0.00037(10) 0.00079(6)
¹¹⁵ Sn 5423.57(11)	0.00188(21)	4.8(5)×10 ⁻⁵	¹²³ Sb 322.1140(20)	0.036(3)	0.00090(8)
'' ⁵ Sn 5449 51(5)	0.00191(19)	4.9(5)×10 ⁻⁵	'4'Sh 330 555(3)	0.058(3)	0.00144(8)
¹¹⁵ Sn 5562.35(6) ¹¹⁵ Sn 5904.65(6)	0.0021(5)	5.4(13)×10 ⁻⁵	¹²¹ Sb 331.3030(20)	0.011(3)	0.00027(8)
115Sn 6229.57(6)	0.00223(17) 0.00159(16)	5.7(4)×10 ⁻⁵ 4.1(4)×10 ⁻⁵	123 Sb 331.4600(20) 121 Sb 332.2860(10)	0.048(3) 0.101(3)	0.00119(8) 0.00251(8)
'''Sn 6335 30(12)	0.0023(3)	5.9(8)×10 ⁻⁵	¹²³ Sb 334.980(3)	0.028(3)	0.00070(8)
¹¹⁸ Sn 6335.89(5)	0.0014(3)	3.6(8)×10 ⁻⁵	¹²³ Sb 338.2980(20)	0.0142(16)	0.00035(4)
¹¹⁵ Sn 6603.27(4) ¹¹⁵ Sn 7450.97(3)	0.00168(19)	4.3(5)×10 ⁻⁵	123 Sb 351.567(3) 121 Sb 378.1380(20)	0.0344(20)	0.00086(5)
117Sn 9327.5(11)	0.00137(14) 0.00204(20)	3.5(4)×10 ⁻⁵ 5.2(5)×10 ⁻⁵	¹²³ Sb 384.533(3)	0.0500(18) 0.069(3)	0.00124(5) 0.00172(8)
Antimony (Z=51), A	, ,		¹²³ Sb 390.4960(20)	0.008(3)	$2.0(8)\times10^{-4}$
123 Sb 39.96	0.028(6)	1), 6 _γ =5.13(12) 0.00070(15)	141Sb 392.3340(20)	0.0121(25)	0.00030(6)
¹²³ Sb 40.8040(10)	0.028(8) 0.10(3)	0.00070 (15)	¹²³ Sb 410.285(7) ¹²¹ Sb 418.8240(20)	0.0127(20) 0.013(3)	0.00032(5) 0.00032(8)
¹²³ Sb 44.0910(10)	0.016(3)	0.0004Ò(8)	¹²¹ Sb 419 925(5)	0.013(3)	0.00032(8)
¹²¹ Sb 45.7330(10)	0.027(7)	0.00067(17)	' ² 'Sb 422.231(3)	0.022(5)	0.00055(12)
¹²¹ Sb 45.8480(10) ¹²¹ Sb 46.8350(10)	0.0076(21) 0.0082(25)	1.9(5)×10 ⁻⁴ 2.0(6)×10 ⁻⁴	¹²¹ Sb 437.601(18) ¹²³ Sb 441.9270(20)	0.0175(18)	0.00044(5) 0.000251(17)
	2.2.20=(=0)		<u> </u>	0.0101(7)	0.000231(17)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Eγ)-barns	k _o	Eγ-keV	σ(Eγ)-barns	k ₀
Antimony (Z=51), co	ontinued		Tellurium (Z=52), co	ontinued	
¹²¹ Sb 453.7470(20)	0.011(3)	0.00027(8)	¹²³ Te 602.729(17)	2.46(16)	0.058(4)
¹²³ Sb 455.240(13) / 123Sb 462.001(4)	0.0095(7) 0.0097(23)	2.36(17)×10 ⁻⁴ 2.4(6)×10 ⁻⁴	¹²³ Te 645.819(20) ¹²⁵ Te 666.3100(20)	0.263(22) 0.045(5)	0.0062(5) 0.00107(12)
¹²³ Sb 466.964(3)	0.0037(23)	0.00029(6)	¹²³ Te 709.18(6)	0.045(3)	0.00167(12)
¹²³ Sb 473.1350(20)	0.013(4)	0.00032(10)	¹²³ Te 713.79(3)	0.058(5)	0.00138(12)
' ² 'Sb 485.35(4)	0.0212(21)	0.00053(5)	¹²³ Te 722.772(25)	0.52(4)	0.0123(10)
¹²¹ Sb 491.215(5)	0.0344(16)	0.00086(4)	¹²³ Te 790.74(3)	0.025(4)	0.00059(10)
¹²¹ Sb 501.034(3) ¹²³ Sb 501.151(4)	0.0076(21) 0.0129(10)	1.9(5)×10 ⁻⁴ 0.000321(25)	¹²³ Te 1054.51(4) ¹²³ Te 1325.50(3)	0.063(5) 0.074(6)	0.00150(12) 0.00176(14)
' ² 'Sb 513.96(4)	0.0356(21)	0.000321(23)	¹²³ Te 1355,00(6)	0.025(3)	0.00059(7)
' ² 'Sb 542.304(17)	0.0267(20)	0.00066(5)	¹²³ Te 1376.09(6)	0.039(4)	0.00093(10)
'4'Sb 546.056(10)	0.0313(20)	0.00078(5)	¹²³ Te 1436.55(3)	0.098(9)	0.00233(21)
¹²³ Sb 555.057(5) ¹²¹ Sb 564.24(4)d	0.021(5)	0.00052(12)	¹²³ Te 1461.82(13) ¹²³ Te 1488.88(5)	0.028(7)	0.00066(17)
121 Sb 564.4720(20)	2.700(5) 0.0532(25)	0.06720[<0.1%] 0.00132(6)	¹²³ Te 1579.50(8)	0.120(9) 0.072(10)	0.00285(21) 0.00171(24)
¹²³ Sb 571.051(4)	0.0080(20)	2.0(5)×10 ⁻⁴	¹²³ Te 1691.06(6)	0.073(7)	0.00173(17)
¹²³ Sb 598.656(3)	0.055(4)	0.00137(10)	¹²³ Te 1720.15(5)	0.083(8)	0.00197(19)
¹²¹ Sb 603.65(4)	0.019(3)	0.00047(8)	¹²⁴ Te 1851.37(10)	0.030(3)	0.00071(7)
¹²¹ Sb 631.82(3) ¹²³ Sb 634.003(15)	0.0586(16) 0.0101(14)	0.00146(4) 0.00025(4)	¹²³ Te 1918.71(7) ¹²³ Te 1998.24(7)	0.047(4) 0.035(4)	0.00112(10) 0.00083(10)
¹²³ Sb 647.012(13)	0.0113(24)	0.00028(6)	¹²³ Te 2038.91(6)	0.064(7)	0.00152(17)
¹²¹Sb 692.65(4)d	0.146(5)	0.00363[<0.1%]	¹²³ Te 2078.76(9)	0.031(3)	0.00074(7)
¹²³ Sb 695.372(13)	0.008(3)	2.0(8)×10 ⁻⁴	¹²³ Te 2091.21(8)	0.031(3)	0.00074(7)
¹²³ Sb 704.145(6)	0.009(3)	2.2(8)×10 ⁻⁴	¹²³ Te 2144.20(5)	0.034(4)	0.00081(10)
¹²¹ Sb 718.52(4) ¹²³ Sb 723.49(3)	0.015(6) 0.016(3)	0.00037(15) 0.00040(8)	¹²³ Te 2214.56(10) ¹²³ Te 2385.57(5)	0.027(3) 0.034(4)	0.00064(7) 0.00081(10)
¹²³ Sb 737.717(7)	0.012(3)	0.00030(8)	¹²³ Te 2609.36(10)	0.039(4)	0.00093(10)
' ² 'Sb 746.861(17)	0.030(3)	0.00075(8)	¹²³ Te 2746.92(5)	0.138(11)	0.0033(3)
¹²³ Sb 763.44(3)	0.0169(24)	0.00042(6)	¹²³ Te 2783.15(10)	0.035(3)	0.00083(7)
¹²³ Sb 768.364(6) ¹²³ Sb 775.395(7)	0.0114(24) 0.015(6)	0.00028(6)	¹²³ Te 2974.83(14) ¹²³ Te 3152.85(12)	0.025(3) 0.026(3)	0.00059(7) 0.00062(7)
121 Sb 796.61(4)	0.015(4)	0.00037(15) 0.00037(10)	¹³⁰ Te 3347.35(10)	0.027(3)	0.00064(7)
' ² 'Sb 824.952(17)	0.040(3)	0.00100(8)	¹²³ Te 3543.10(10)	0.039(4)	0.00093(10)
' ² 'Sb 842.91(7)	0.017(10)	0.00042(25)	¹²⁰ Te 3721.75(12)	0.0209(21)	0.00050(5)
¹²³ Sb 862.996(7)	0.009(4)	2.2(10)×10 ⁻⁴	¹²³ Te 5668.13(13)	0.037(3)	0.00088(7)
¹²¹ Sb 921.00(7) ¹²³ Sb 972.024(17)	0.075(4) 0.015(3)	0.00187(10) 0.00037(8)	¹²³ Te 5880.59(11) ¹²³ Te 6211.61(12)	0.034(4) 0.0262(25)	0.00081(10) 0.00062(6)
¹²³ Sb 1020.942(10)	0.015(5)	0.00037(12)	¹²⁰ Te <i>6287.6(4)</i>	0.0023(7)	5.5(17)×10 ⁻⁵
¹²³ Sb 5224.99(24)	0.0083(23)	2.1(6)×10 ⁻⁴	¹²³ Te 6322.95(8)	0.099(8)	0.00235(19)
¹²³ Sb 5338.31(23)	0.0078(25)	1.9(6)×10 ⁻⁴	¹²³ Te 7332.04(8)	0.027(4)	0.00064(10)
¹²³ Sb 5407.83(6) ¹²³ Sb 5446.51(5)	0.014(5) 0.008(3)	0.00035(12) 2.0(8)×10 ⁻⁴	lodine (Z=53), At.W	t.=126.90447(3 ₎), σ _γ =6.20(20)
' ² 'Sb 5558.3(4)	0.0149(21)	0.00037(5)	¹²⁷ l 27.3620(10)	0.43(4)	0.0103(10)
' ² 'Sb 5563.43(24)	0.0210(25)	0.00052(6)	¹²⁷ l 42.767(4) ¹²⁷ l 52.385(3)	0.038(5)	0.00091(12)
¹²¹ Sb 5600.4(3)	0.016(3)	0.00040(8)	¹²⁷ i 58 1100(20)	0.167(19) 0.28(4)	0.0040(5) 0.0067(10)
¹²³ Sb 5604.45(5) ¹²¹ Sb 5619.2(4)	0.012(3) 0.015(3)	0.00030(8) 0.00037(8)	¹²⁷ I 58.734(4)	0.028(3)	0.00067(7)
' ² 'Sb 5685.1(3)	0.0141(21)	0.00037(5)	¹²⁷ I 67.120(3)	~0.1	~0.002 ` ′
¹²¹ Sh 5775 50(25)	0.011(7)	0.00027(17)	127 68.256(4) 127 96.637(3)	0.023(13)	0.0005(3)
' ² 'Sb 5787.62(25)	0.0093(17)	2.3(4)×10 ⁻⁴	¹²⁷ I 96.637(3) ¹²⁷ I 102.344(5)	0.0156(22) 0.0165(21)	0.00037(5) 0.00039(5)
¹²¹ Sb 5800.65(24) ¹²³ Sb 5868.78(5)	0.0107(19) 0.034(4)	0.00027(5) 0.00085(10)	¹²⁷ I 106.2490(10)	0.066(5)	0.00059(5)
¹²¹ Sb 5885.19(9)	0.054(4)	0.0003(10)	¹²⁷ l 124.2810(20)	0.180(13)	0.0043(3)
'4'Sb 6009.58(8)	0.020(3)	0.00050(8)	¹²⁷ I 126.989(3) ¹²⁷ I 131.8640(20)	0.031(3)	0.00074(7)
¹²³ Sb 6048.36(5)	0.018(3)	0.00045(8)	127I 131.8640(20) 127I 133.3940(10)	0.016(3) 0.049(6)	0.00038(7) 0.00117(14)
¹²³ Sb 6082.89(5) ¹²¹ Sb 6163.62(7)	0.018(3)	0.00045(8)	127 133.6110(10)	1.42(10)	0.0339(24)
123 Sb 6335.72(5)	0.0121(18) 0.017(3)	0.00030(5) 0.00042(8)	¹²⁷ l 134.911(3) 1	0.015(11)	0.0004(3)
¹²³ Sb 6363.76(5)	0.025(4)	0.00062(10)	¹²⁷ I 142.1370(20)	0.140(14)	0.0033(3)
¹²³ Sb 6379.80(5)	0.044(6)	0.00110(15)	4071 177.020(0)	0.0157(24)	0.00037(6)
¹²³ Sb 6456.54(5)	0.0077(20)	1.9(5)×10 ⁻⁴	¹²⁷ I 147.105(3) ¹²⁷ I 153.011(3)	0.101(8) 0.209(14)	0.00241(19) 0.0050(3)
¹²³ Sb 6467.40(5) ¹²¹ Sb 6494.91(7)	0.021(4) 0.0076(24)	0.00052(10) 1.9(6)×10 ⁻⁴	¹²⁷ I 156.5060(20)	0.116(10)	0.00277(24)
¹²¹Sb 6523.52(7)	0.075(3)	0.00187(8)	¹²⁷ 160.7570(10)	0.187(16)	0.0045(4)
¹²¹ Sb 6728.06(7)	0.044(4)	0.00110(10)	¹²⁷ I 164.1390(20)	0.040(4)	0.00096(10)
¹²¹Sb 6744.74(7)	0.0090(16)	2.2(4)×10 ⁻⁴	100.0000(20)	0.124(12) 0.0227(20)	0.0030(3)
¹²¹ Sb 6806.15(7)	0.0102(11)	0.00025(3)	¹²⁷ I 224.098(3)	0.0227(20)	0.00054(5) 0.0017(7)
Tellurium (Z=52), A		, σ _γ =4.6(4)	¹²⁷ l 231.245(3)	0.017(4)	0.00041(10)
¹³⁰ Te <i>149.716(5)d</i>	0.0630(11)	0.00150[51%]	¹²⁷ I 235.900(4)	0.028(3)	0.00067(7)
¹³⁰ Te 296.017(16)	0.029(3)	0.00069(7)	¹²⁷ I 248.7410(20)	0.11(4)	0.0026(10)
¹²³ Te 353.820(23) ¹²² Te 440.04(4)	0.100(8) <i>0.0100(14)</i>	0.00237(19) 2. <i>4</i> (3)×10 ⁻⁴	¹²⁷ I 251.534(5) ¹²⁷ I 255.517(5)	0.025(3) 0.028(3)	0.00060(7) 0.00067(7)
¹²⁴ Te 443.53(4)	0.030(3)	0.00071(7)	1271 250.017(0)	0.0251(24)	0.00060(6)
¹²³ Te 557.46(4)	0.038(4)	0.00090(10)	127 259.040(4) 268.305(3)	0.080(8)	0.00191(19)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

	Eγ-keV	σ(Eγ)-barns	k _o	Eγ-keV	σ(Εγ)-barns	k _o
	ne (Z=53), conti			Xenon (Z=54), conti		
127 ₁	282.611(12)	0.0193(20)	0.00046(5)	¹³¹ Xe 1171.29(6)	0.217(19)	0.0050(4)
127 127	283.968(4)	0.028(3)	0.00067(7)	¹³¹ Xe 1298.09(7)	0.12(3)	0.0028(7)
127	291.511(7)	0.0172(21)	0.00041(5)	¹³¹ Xe 1317.93(8)	0.89(7)	0.0205(16)
127	297.393(17)	0.0155(25)	0.00037(6)	¹²⁹ Xe 1482.06(9)	0.112(16)	0.0026(4)
127	301.906(5) 310.419(6)	0.17(6) 0.0166(18)	0.0041(14) 0.00040(4)	¹³¹ Xe 1519.83(8) ¹³¹ Xe 1801.58(6)	0.131(25) 0.272(22)	0.0030(6) 0.0063(5)
127	314.349(4)	0.060(5)	0.00040(4)	¹³¹ Xe 1888.05(8)	0.272(22)	0.0052(5)
127	325.35(4)	0.020(3)	0.00048(7)	¹³¹ Xe 1985.71(10)	0.54(5)	0.0125(12)
127	330.801(5)	0.0146(21)	0.00035(5)	¹³¹ Xe 2713.93(10)	0.079(9)	0.00182(21)
127	344.758(7)	0.100(9) ´	0.00239(21)	¹³ 1Xe 3699.40(15)	0.082(16)	0.0019(4)
127	364.640(3)	0.0211(25)	0.00050(6)	¹³ 1Xe 4734.85(17)	0.071(10)	0.00164(23)
127	369.358(17)	0.0170(21)	0.00041(5)	¹³ 1Xe 4841.70(14)	0.107(15)	0.0025(4)
127 127	374.218(5)	0.041(7)	0.00098(17)	¹³¹ Xe 5078.91(18)	0.106(16)	0.0024(4)
127	374.456(7)	0.028(6)	0.00067(14)	¹²⁹ Xe 5956.18(18) ¹³¹ Xe 6380.62(13)	0.16(3)	0.0037(7)
127	385.447(5) 388.911(5)	0.086(7) 0.022(3)	0.00205(17) 0.00053(7)	¹³¹ Xe 6467.09(12)	0.21(3) 1.33(19)	0.0048(7) 0.031(4)
127	392.002(3)	0.045(14)	0.0011(3)			
¹²⁷	392.687(6)	0.028(9)	0.00067(21)	Cesium (Z=55), At. I		
¹²⁷ I	398.975(4)	0.018(3)	0.00043(7)	¹³³ Cs 11.2450(20)	0.142(7)	0.00324(16)
¹²⁷ I	416.579(6)	0.065(5)	0.00155(12)	¹³³ Cs 17.2130(20)	0.110(18)	0.0025(4)
127 127	420.826(7)	0.139(18)	0.0033(4)	¹³³ Cs 38.6240(20) ¹³³ Cs 48.790(20)	0.080(12)	0.0018(3)
127	442.901(10)d		0.01421[51%]	133 Cs 60.0300(10)	0.345(10) 0.443(14)	0.00787(23) 0.0101(3)
127	458.056(9)	0.0266(23)	0.00064(6)	¹³³ Cs 67.2540(20)	0.088(5)	0.00201(11)
127	502.607(18) 528.91(9)	0.061(5) 0.054(5)	0.00146(12) 0.00129(12)	¹³³ Cs 73.5660(20)	0.117(19)	0.0027(4)
127	557.43(4)	0.027(3)	0.00129(12)	¹³³ Cs 74.0460(20)	0.14(3)	0.0032(7)
127	4950.10(7)	0.037(10)	0.00088(24)	¹³³ Cs 87.2520(20)	0.107(4)	0.00244(9)
127	5018.648(17)	0.024(11)	0.0006(3)	¹³³ Cs 93.1850(20)	0.043(3)	0.00098(7)
¹²⁷ I	5091.988(12)	0.015(7)	0.00036(17)	¹³³ Cs 113.7650(20)	0.777(15)	0.0177(3)
127	5096.357(17)	0.024(8)	0.00057(19)	¹³³ Cs 114.3270(20)	0.05(3)	0.0011(7)
127 127	5197.957(12)	0.032(14)	0.0008(3)	¹³³ Cs 116.3740(20) ¹³³ Cs 116.612(4)	1.39(12) 1.44(12)	0.032(3)
127	5298.245(12)	0.031(7)	0.00074(17)	133 Cs 117.1730(20)	0.04(3)	0.033(3) 0.0009(7)
127	5463.453(12) 5482.853(12)	0.018(6) 0.018(13)	0.00043(14) 0.0004(3)	¹³³ Cs 118.3630(20)	0.230(7)	0.00524(16)
127	5524.28(5)	0.015(13)	0.0004(3)	¹³³ Cs 120.588(3)	0.414(10)	0.00944(23)
127	5559.662(12)	0.044(22)	0.00030(12)	¹³³ Cs 127.5000(20)	d 0.310(11)	0.00707[11%]
127	5574.501(12)	0.021(5)	0.00050(12)	¹³³ Cs 130.2320(20)	1.410(21)	0.0322(5)
127	5725.929(12)		0.0005(3)	¹³³ Cs 131.171(3)	0.054(5)	0.00123(11)
127	6307.586(6)	0.024(8)	0.00057(19)	¹³³ Cs 133.5860(20)	0.038(3)	0.00087(7)
127	6692.417(5)	0.037(8)	0.00088(19)	¹³³ Cs 137.7530(20) ¹³³ Cs 142.7680(20)	0.030(4)	0.00068(9) 0.00166(9)
Xend	on (Z=54), <i>At.W</i>	t.=131.293(6), c	5. =24(3)	133 Cs 174.3040(20)	0.073(4) 0.420(11)	0.00166(9) 0.00958(25)
¹³¹ Xe	e 324.80(16)	0.09(5)	0.0021(12)	¹³³ Cs 176.4040(20)	2.47(4)	0.0563(9)
124X6	e 335.46(16)	0.0054(12)	1.2(3)×10 ⁻⁴	¹³³ Cs 177.068(3)	0.098(16)	0.0022(4)
120X6	e 403.1(3)	0.0106(23)	2.4(5)×10 ⁻⁴	¹³³ Cs 179.0180(20)	0.15(5)	0.0034(11)
130X6	e <i>404.8(</i> 3)	0.0096(23)	2.2(5)×10 ⁻⁴	¹³³ Cs 180.0770(20)	0.087(7)	0.00198(16)
131 X	e 455.490(3)d	0.00350(6)	8.08×10 ⁻⁵ [91%]	133Cs 186.8400(20)	0.282(9)	0.00643(21)
131	e 471.72(12) e 483.66(10)	0.19(3) 0.55(4)	0.0044(7)	¹³³ Cs 189.8320(20) ¹³³ Cs 193.7250(20)	0.093(10)	0.00212(23)
131	= 505.84(8)	0.40(3)	0.0127(9) 0.0092(7)	133 Cs 194.724(3)	0.042(9) 0.045(9)	0.00096(21) 0.00103(21)
129X	e 510.33(8)	0.33(7)	0.0076(16)	133 Cs 198.3010(20)	1.100(19)	0.0251(4)
131X6	e 522.78(7)	0.273(22)	0.0063(5)	¹³³ Cs 200.847(4)	0.135(10)	0.00308(23)
129X6	e 536.17(9)	1.71(24)	0.039(6)	¹³³ Cs 205.615(3)	1.560(25)	0.0356(6)
131X6	e 546.95(11)	0.094(16)	0.0022(4)	¹³³ Cs 207.675(4)	0.093(6)	0.00212(14)
131X6	e 570.13(7)	0.188(15)	0.0043(4)	¹³³ Cs 209.5460(20)	0.073(6)	0.00166(14)
131V	€ 586.17(5)	0.48(7)	0.0111(16)	¹³³ Cs 211.3190(10)	0.223(10)	0.00508(23)
136 V	e 600.19(8) e <i>600.99(8)</i>	0.52(4)	0.0120(9)	¹³³ Cs 218.341(3) ¹³³ Cs 219.7530(20)	0.309(9)	0.00705(21)
131	e 621.13(10)	<i>0.010(3)</i> 0.085(8)	2.3(7)×10 ⁻⁴ 0.00196(18)	133 Cs 232.165(3)	0.344(9) 0.125(9)	0.00784(21) 0.00285(21)
131 X	e 630.29(4)	1.41(11)	0.0325(25)	133 Cs 234.3340(20)	1.070(23)	0.0244(5)
131X6	e 667.79(6)	6.7(5)	0.155(12)	¹³³ Cs 245.8620(20)	0.740(15)	0.0169(3)
129X6	e 668.59(15)	0.17(9)	0.0039(21)	¹³³ Cs 254.740(3)	0.069(7)	0.00157(16)
131X6	e 670.02(10)	0.22(3)	0.0051(7)	¹³³ Cs 256.6210(20)	0.235(8)	0.00536(18)
131X6	∍ 772.72(4)	1.78(14)	0.041(3)	¹³³ Cs 261.1640(20)	0.401(11)	0.00914(25)
131X	e 812.45(10)	0.082(8)	0.00189(18)	¹³³ Cs 263.8260(20)	0.079(7)	0.00180(16)
131 V	e 832.43(12) e 889.54(8)	0.108(15)	0.0025(4)	¹³³ Cs 268.987(3) ¹³³ Cs 271.3490(20)	0.199(6)	0.00454(14)
131 _V ,	954.65(12)	0.084(8) 0.076(8)	0.00194(18) 0.00175(18)	133 Cs 272.212(4)	0.127(15) 0.069(12)	0.0029(3) 0.0016(3)
131 X	9 984.54(9)	0.073(18)	0.00173(18)	¹³³ Cs 277.6310(20)	0.066(5)	0.00150(11)
131X6	e 1028.86(6)	0.40(3)	0.0021(4)	¹³³ Cs 279.648(3)	0.065(5)	0.00148(11)
129X6	e 1096.49(7)	0.087(12)	0.0020(3)	¹³³ Cs 284.987(3)	0.044(5)	0.00100(11)
131X6	e 1115.34(9)	0.149(20)	0.0034(5)	¹³³ Cs 293.295(3)	0.185(9)	0.00422(21)
131V	1122.33(10)	0.119(17)	0.0027(4)	¹³³ Cs 295.431(3)	0.231(10)	0.00527(23)
131V	e 1136.13(7) e 1140.84(11)	0.45(4)	0.0104(9)	¹³³ Cs 302.463(3)	0.13(4)	0.0030(9)
_ X6	z 1140.04(TT)	0.067(9)	0.00155(21)	¹³³ Cs 303.164(3)	0.055(6)	0.00125(14)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

l able I. Adopted Pron Eγ-keV	npt and Decay σ(Εγ)-barns	Gamma Rays from k ₀	n Thermal Neutron C Εγ-keV	apture for all ε σ(Εγ)-barns	lements, continu k _o
	` ''	<u> </u>	Cesium (Z=55), con	. ,,	<u> </u>
Cesium (Z=55), con: 133 Cs 305.058(3)		0.00420(46)	133 Cs 591.680(5)		0.00074/40)
¹³³ Cs 307.015(4)	0.061(7) 1.45(3)	0.00139(16) 0.0331(7)	¹³³ Cs 601.381(5)	0.031(8) 0.080(9)	0.00071(18) 0.00182(21)
133 Cs 309.776(3)	0.237(9)	0.00540(21)	¹³³ Cs 601.775(5)	0.034(11)	0.00182(21)
¹³³ Cs 317.0720(20)	0.149(10)	0.00340(23)	¹³³ Cs 603.457(5)	0.061(8)	0.00139(18)
¹³³ Cs 329,060(3)	0.055(6)	0.00125(14)	¹³³ Cs 610.896(4)	0.068(6)	0.00155(14)
¹³³ Cs 338.027(6)	0.043(6)	0.00098(14)	¹³³ Cs 623.831(9)	0.055(8)	0.00125(18)
¹³³ Cs 345.358(5)	0.075(7)	0.00171(16)	¹³³ Cs 628.595(4)	0.097(7)	0.00221(16)
¹³³ Cs 347.148(7)	0.073(6)	0.00166(14)	¹³³ Cs 633.809(6)	0.112(7)	0.00255(16)
¹³³ Cs 347.152(4)	0.030(4)	0.00068(9)	¹³³ Cs 645.453(5)	0.248(13)	0.0057(3)
¹³³ Cs 349.846(3) ¹³³ Cs 356.157(4)	0.030(6) 0.445(12)	0.00068(14)	¹³³ Cs 646.195(3) ¹³³ Cs 648.511(4)	0.064(11) 0.233(13)	0.00146(25) 0.0053(3)
133 Cs 356.345(3)	0.443(12)	0.0101(3) 0.0032(16)	133 Cs 663.171(4)	0.255(15)	0.00353(21)
¹³³ Cs 365.8570(20)	0.04(3)	0.0009(7)	¹³³ Cs 663,407(3)	0.07(3)	0.0016(7)
¹³³ Cs 365.859(6)	0.103(6)	0.00235(14)	¹³³ Cs 666,017(4)	0.089(8)	0.00203(18)
¹³³ Cs 367.870(5)	0.173(8)	0.00394(18)	¹³³ Cs 678.271(5)	0.078(13)	0.0018(3)
¹³³ Cs 371.7380(20)	0.131(7)	0.00299(16)	¹³³ Cs 681.247(4)	0.110(24)	0.0025(6)
¹³³ Cs 377.311(5)	0.310(9)	0.00707(21)	¹³³ Cs 682.562(4)	0.12(3)	0.0027(7)
¹³³ Cs 381.628(5) ¹³³ Cs 384.290(5)	0.066(7)	0.00150(16)	¹³³ Cs 688.625(4) ¹³³ Cs 691.434(5)	0.058(10)	0.00132(23)
133 Cs 386.855(3)	0.034(7) 0.163(9)	0.00078(16) 0.00372(21)	133Cs 692.670(3)	0.030(10) 0.037(6)	0.00068(23) 0.00084(14)
¹³³ Cs 391.3960(20)	0.080(7)	0.00372(21)	¹³³ Cs 695.340(6)	0.037(0)	0.00089(23)
¹³³ Cs 393,535(5)	0.065(8)	0.00148(18)	¹³³ Cs 701.38(21)	0.036(10)	0.00082(23)
¹³³ Cs 402.491(4)	0.051(10)	0.00116(23)	¹³³ Cs 703.290(5)	0.043(10)	0.00098(23)
¹³³ Cs 405,484(4)	0.079(12)	0.0018(3)	¹³³ Cs 708.417(5)	0.220(11)	0.00502(25)
¹³³ Cs 408.483(7)	0.032(12)	0.0007(3)	¹³³ Cs 708.646(4)	0.105(14)	0.0024(3)
¹³³ Cs 412.448(5)	0.051(13)	0.0012(3)	¹³³ Cs 712.268(5)	0.113(9)	0.00258(21)
¹³³ Cs 417.277(4) ¹³³ Cs 421.052(5)	0.095(17) 0.086(8)	0.0022(4)	¹³³ Cs 722.343(5) ¹³³ Cs 730.033(4)	0.116(11)	0.00265(25)
133 Cs 422.491(6)	0.029(6)	0.00196(18) 0.00066(14)	133Cs 741.277(4)	0.045(8) 0.071(9)	0.00103(18) 0.00162(21)
¹³³ Cs 426,258(4)	0.041(7)	0.00093(16)	¹³³ Cs 770.544(5)	0.104(11)	0.00102(21)
¹³³ Cs 434.334(3)	0.066(7)	0.00150(16)	¹³³ Cs 799,668(4)	0.075(10)	0.00171(23)
¹³³ Cs 438.9920(20)	0.140(9)	0.00319(21)	¹³³ Cs 799.904(4)	0.029(6)	0.00066(14)
¹³³ Cs 442.8430(20)	0.316(12)	0.0072(3)	¹³³ Cs 814.739(6)	0.056(13)	0.0013(3)
¹³³ Cs 444.465(7)	0.114(9)	0.00260(21)	¹³³ Cs 820.763(7)	0.059(11)	0.00135(25)
¹³³ Cs 450.2370(20) ¹³³ Cs 450.345(3)	0.07(3)	0.0016(7)	¹³³ Cs 852.574(5)	0.034(8)	0.00078(18)
133 Cs 451.4250(20)	0.99(5) 0.058(10)	0.0226(11) 0.00132(23)	¹³³ Cs 861.766(7) ¹³³ Cs 868.99(10)	0.070(9) 0.140(11)	0.00160(21) 0.00319(25)
133 Cs 454.0870(20)	0.056(11)	0.00132(25)	¹³³ Cs 869.099(4)	0.140(11)	0.00319(25)
¹³³ Cs 458.357(6)	0.072(5)	0.00164(11)	¹³³ Cs 880.343(4)	0.114(14)	0.0026(3)
¹³³ Cs 461.180(5)	0.099(5)	0.00226(11)	¹³³ Cs 894.509(7)	0.103(12)	0.0023(3)
¹³³ Cs 464,481(4)	0.095(5)	0.00217(11)	¹³³ Cs 894.808(7)	0.052(16)	0.0012(4)
¹³³ Cs 479.624(6)	0.030(10)	0.00068(23)	¹³³ Cs 901.360(5)	0.053(11)	0.00121(25)
¹³³ Cs 485.038(3)	0.094(10)	0.00214(23)	¹³³ Cs 904.288(4)	0.040(11)	0.00091(25)
¹³³ Cs 486.200(5) ¹³³ Cs 487.388(4)	0.08(3) 0.047(6)	0.0018(7) 0.00107(14)	¹³³ Cs 911.784(7) ¹³³ Cs 912.021(7)	0.177(14) 0.057(8)	0.0040(3) 0.00130(18)
133Cc 100 813(1)	0.042(10)	0.00096(23)	133Cs 930 112(15)	0.126(9)	0.00130(10)
133Cs 495 593(3)	0.077(11)	0.00176(25)	¹³³ Cs 931 72(15)	0.073(8)	0.00166(18)
°°CS 502.840(3)	0.256(13)	0.0058(3)	""US 935.69(11)	0.130(9)	0.00296(21)
¹³³ Cs 508.077(3)	0.057(10)	0.00130(23)	¹⁰⁰ Cs 966.454(5)	0.168(13)	0.0038(3)
¹³³ Cs 508.380(3)	0.053(10)	0.00121(23)	¹³³ Cs 985.863(5)	0.078(12)	0.0018(3)
¹³³ Cs 510.795(3) ¹³³ Cs 517.601(7)	1.54(3)	0.0351(7)	¹³³ Cs 986.100(5) ¹³³ Cs 998.502(7)	0.027(9)	0.00062(21)
133 Cs 519.101(4)	0.028(21) 0.349(18)	0.0006(5) 0.0080(4)	133Cs 1009.2(5)	0.103(11) 0.05(3)	0.00235(25) 0.0011(7)
¹³³ Cs 519 321(3)	0.086(14)	0.0020(3)	¹³³ Cs 1028.394(7)	0.038(15)	0.0009(3)
¹³³ Cs 524 1500(20)	0.151(23)	0.0034(5)	¹³³ Cs 1034.519(4)	0.028(8)	0.00064(18)
¹³³ Cs 525.356(4)	0.39(3)	0.0089(7)	¹³³ Cs 1045,251(7)	0.120(11)	0.00274(25)
¹³³ Cs 525.592(3)	0.13(6)	0.0030(14)	¹³³ Cs 1072.547(6)	0.066(19)	0.0015(4)
¹³³ Cs 526 072(4)	0.03(3)	0.0007(7)	¹³³ Cs 1077.557(6)	0.209(12)	0.0048(3)
¹³³ Cs 528.409(6) ¹³³ Cs 529.504(6)	0.08(3)	0.0018(7)	¹³³ Cs 1077.794(5)	0.088(12)	0.0020(3)
133 Cs 529.891(4)	0.519(23) ~0.03	0.0118(5) ~0.0007	¹³³ Cs 1102.473(5) ¹³³ Cs 1114.65(21)	0.047(8) 0.049(10)	0.00107(18) 0.00112(23)
¹³³Cs 539.180(4)	0.360(11)	0.00821(25)	133 Cs 1118.04(16)	0.049(10)	0.00112(23)
¹³³ Cs 539,416(4)	0.18(7)	0.0041(16)	¹³³ Cs 1209.54(11)	0.138(11)	0.00315(25)
¹³³ Cs 540.679(9)	0.134(8)	0.00306(18)	¹³³ Cs 5493.52(23)	0.230(19)	0.0052(4)
¹³³ Cs 554.642(5)	0.206(9)	0.00470(21)	¹³³ Cs 5505.46(20)	0.333(22)	0.0076(5)
¹³³ Cs 559 084(3)	0.076(10)	0.00173(23)	¹³³ Cs 5572.00(25)	0.249(20)	0.0057(5)
¹³³ Cs 561.964(5)	0.130(10)	0.00296(23)	¹³³ Cs 5625.091(17)	0.111(13)	0.0025(3)
¹³³ Cs 564.019(4) ¹³³ Cs 567.483(4)	0.040(8) 0.052(9)	0.00091(18) 0.00119(21)	¹³³ Cs 5637.056(17) ¹³³ Cs 5728.747(17)	0.277(21) 0.087(16)	0.0063(5) 0.0020(4)
¹³³ Cs 570 825(3)	0.032(9)	0.00119(21)	¹³³ Cs 5748.392(17)	0.146(15)	0.0020(4)
¹³³ Cs 574.574(4)	0.061(12)	0.0014(3)	¹³³ Cs 5790.920(17)	0.137(13)	0.0031(3)
¹³³ Cs 576.060(4)	0.073(14)	0.0017(3)	¹³³ Cs 5802.823(18)	0.120(13)	0.0027(3)
¹³³ Cs 576,296(3)	0.038(21)	0.0009(5)	¹³³ Cs 5899.368(17)	0.116(12)	0.0026(3)
¹³³ Cs 579.131(4)	0.038(10)	0.00087(23)	¹³³ Cs 5914.935(17)	0.047(8)	0.00107(18)
¹³³ Cs 584.180(3)	0.027(14)	0.0006(3)	¹³³ Cs 5949.884(22)	0.045(10)	0.00103(23)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Eγ)-barns	k _o	Eγ-keV	σ (Ε γ)-barns	k ₀
Cesium (Z=55), con	tinued		Barium (Z=56), con	tinued	
¹³³ Cs 5975.068(17)	0.027(10)	0.00062(23)	¹³⁷ Ba 1717.16(20)	0.0071(8)	1.57(18)×10 ⁻⁴
¹³³ Cs 5978.636(17)	0.099(14)	0.0023(3)	¹³⁷ Ba 1727.32(10)	0.0056(4)	1.24(9)×10 ⁻⁴
¹³³ Cs 6051.426(17) ¹³³ Cs 6138.534(17)	0.240(20) 0.061(8)	0.0055(5) 0.00139(18)	¹³⁷ Ba 1745.07(6) ¹³⁵ Ba 1842.90(11)	0.0035(4) 0.0054(7)	7.7(9)×10 ⁻⁵ 1.19(15)×10 ⁻⁴
¹³³ Cs 6149,955(17)	0.038(6)	0.00139(10)	138Ba 1853.30(12)	0.0034(7)	1.63(13)×10 ⁻⁴
¹³³ Cs 6175.412(17)	0.252(16)	0.0057(4)	¹³⁰ Ba 1898.68(5)	0.0305(10)	0.000673(22)
¹³³ Cs 6189.235(17)	0.191(14)	0.0044(3)	¹³⁰ Ba 1951.9(5)	0.009(6)	2.0(13)×10 ⁻⁴
¹³³ Cs 6197.392(17)	0.035(8)	0.00080(18)	¹³⁵ Ba 1955.19(19)	0.0031(9)	6.8(20)×10 ⁻⁵
¹³³ Cs 6247.267(17) ¹³³ Cs 6307.046(17)	0.038(6) 0.044(10)	0.00087(14) 0.00100(23)	¹³⁵ Ba 1993.15(16) ¹³⁷ Ba 2023.55(8)	0.0044(11) 0.0091(6)	9.7(24)×10 ⁻⁵ 2.01(13)×10 ⁻⁴
¹³³ Cs 6320.400(17)	0.050(8)	0.00100(23)	¹³⁵ Ba 2080.04(5)	0.0031(0)	1.63(11)×10 ⁻⁴
¹³³ Cs 6439.794(16)	0.082(8)	0.00187(18)	¹³⁵ Ba 2128.73(9)	0.0114(6)	0.000252(13)
¹³³ Cs 6514.114(16)	0.044(7)	0.00100(16)	¹³⁷ Ba 2207.85(5)	0.0038(6)	8.4(13)×10 ⁻⁵
¹³³ Cs 6697.590(16)	0.224(17)	0.0051(4)	¹³⁷ Ba 2210.82(16)	0.0038(8)	8.4(18)×10 ⁻⁵
¹³³ Cs 6714.802(16) ¹³³ Cs 6831.169(16)	0.090(11) 0.035(4)	0.00205(25) 0.00080(9)	¹³⁷ Ba 2217.84(8) ¹³⁸ Ba 2242.58(13)	0.044(5) 0.0116(13)	0.00097(11) 0.00026(3)
	` '	` '	¹³ 'Ba 2401.96(15)	0.0031(3)	6.8(7)×10 ⁻⁵
Barium (Z=56), <i>At.</i> W			¹³³ Ba 2485,20(8)	0.00349(24)	7.7(5)×10 ⁻⁵
¹³⁵ Ba 66.32(16) ¹³⁵ Ba 87.08(13)	0.0067(6) 0.0093(6)	1.48(13)×10 ⁻⁴	¹³⁰ Ba 2537.72(10)	0.0102(7)	2.25(15)×10 ⁻⁴
¹³⁵ Ba 157.3(4)	0.0093(6)	2.05(13)×10 ⁻⁴ 1.26(24)×10 ⁻⁴	¹³⁸ Ba 2566.0(11)	0.009(5)	2.0(11)×10 ⁻⁴
¹³⁵ Ba 158.58(12)	0.0077(4)	1.70(9)×10 ⁻⁴	¹³⁷ Ba 2582.87(8) ¹³⁸ Ba 2593.42(11)	0.0033(3) 0.0187(8)	7.3(7)×10 ⁻⁵ 0.000413(18)
¹³°Ba <i>165.8570(10)</i> d	1 0.074(8)	0.00163[21%]	¹³⁷ Ba 2639.20(7)	0.0184(16)	0.000413(10)
¹³ 'Ba 191.65(10)	0.0081(3)	1.79(7)×10 ⁻⁴	¹³⁰ Ba 2662.66(5)	0.00401(16)	8.8(4)×10 ⁻⁵
¹³⁴ Ba 220.969(17)	0.0067(5)	1.48(11)×10 ⁻⁴	¹³ Ba 2806.29(11)	0.0032(4)	7.1(9)×10 ⁻⁵
¹³⁵ Ba 273.77(11) ¹³⁶ Ba 283.58(6)	0.0079(5) 0.0404(12)	1.74(11)×10 ⁻⁴ 0.00089(3)	¹³⁵ Ba 2976.64(17)	0.0181(7)	0.000399(15)
¹³ 'Ba 325.11(7)	0.00368(19)	8.1(4)×10 ⁻⁵	¹³⁵ Ba 3045.19(23) ¹³⁷ Ba 3049.93(12)	0.00336(16) 0.0037(3)	7.4(4)×10 ⁻⁵ 8.2(7)×10 ⁻⁵
¹³ Ba 364.32(13)	0.00407(20)	9.0(4)×10 ⁻⁵	¹³⁷ Ba 3099.89(14)	0.0037(3)	7.1(11)×10 ⁻⁵
¹³⁷ Ba 408.88(7)	0.0096(6)	2.12(13)×10 ⁻⁴	¹³ 'Ba 3338.60(10)	0.0090(5)	1.99(11)×10 ⁻⁴
¹³⁸ Ba 454.73(5) ¹³⁷ Ba 462.78(4)	0.0853(22)	0.00188(5)	¹³⁵ Ba 3435.5(4)	0.0043(5)	9.5(11)×10 ⁻⁵
¹³⁶ Ba 480.41(6)	0.0660(16) 0.00350(16)	0.00146(4) 7.7(4)×10 ⁻⁵	¹³⁷ Ba 3503.94(17)	0.0046(4)	1.02(9)×10 ⁻⁴
¹³⁴ Ba 480.543(24)	0.00320(20)	7.1(4)×10 ⁻⁵	¹³⁸ Ba 3641.12(9) ¹³⁷ Ba 3643.59(3)	0.0562(16) 0.0033(17)	0.00124(4) 7(4)×10 ⁻⁵
¹³⁷ Ba 516.76(8)	0.0083(6)	1.83(13)×10 ⁻⁴	¹³⁴ Ba 3676.5(5)	0.0035(17)	9.9(7)×10 ⁻⁵
¹³⁷ Ba 546.95(5)	0.00604(23)	1.33(5)×10 ⁻⁴	¹³ 'Ba 3739.50(12)	0.0042(5)	9.3(11)×10 ⁻⁵
¹³⁸ Ba 627.29(5) ¹³⁸ Ba 665.98(9)	0.294(6)	0.00649(13)	¹³⁷ Ba 3965.98(13)	0.00342(22)	7.5(5)×10 ⁻⁵
¹³⁵ Ba 671.60(9)	0.0053(3) 0.0045(3)	1.17(7)×10 ⁻⁴ 9.9(7)×10 ⁻⁵	¹³⁷ Ba 4025.52(14)	0.0038(4)	8.4(9)×10 ⁻⁵
¹³⁵ Ba 732.49(7)	0.0238(8)	0.000525(18)	¹³⁷ Ba 4025.70(14) ¹³⁷ Ba 4083.64(16)	0.0038(8) 0.0067(6)	8.4(18)×10 ⁻⁵ 1.48(13)×10 ⁻⁴
¹³⁵ Ba 746.6(4)	0.0031(3)	6.8(7)×10 ⁻⁵	¹³⁸ Ba 4095.84(9)	0.155(4)	0.00342(9)
¹³⁷ Ba 754.03(7)	0.0067(3)	1.48(7)×10 ⁻⁴	¹³ 'Ba 4103.50(19)	0.0032(5)	7.1(11)×10 ⁻⁵
¹³⁵ Ba 760.31(11) ¹³⁵ Ba 818.514(12)	0.0073(5) 0.212(4)	1.61(11)×10 ⁻⁴ 0.00468(9)	¹³⁷ Ba 4114.45(19)	0.00329(24)	7.3(5)×10 ⁻⁵
¹³⁷ Ba 871.66(6)	0.0124(4)	0.000274(9)	¹³⁷ Ba 4166.05(12) ¹³⁶ Ba 4242.98(8)	0.0052(3) 0.0087(10)	1.15(7)×10 ⁻⁴ 1.92(22)×10 ⁻⁴
¹³⁵ Ba 880.01(17)	0.0042(5)	9.3(11)×10 ⁻⁵	¹³⁷ Ba 4251.82(13)	0.0057(10)	1.26(9)×10 ⁻⁴
¹³⁵ Ba 981.61(9)	0.0040(3)	8.8(7)×10 ⁻⁵	¹³ /Ba 4279.55(14)	0.0039(5)	8.6(11)×10 ⁻⁵
¹³⁷ Ba 1009.73(5) ¹³⁷ Ba 1041.42(8)	0.0167(5)	0.000369(11)	¹³ 'Ba 4280.25(16)	0.0038(3)	8.4(7)×10 ⁻⁵
¹³⁸ Ba 1047.73(6)	0.00422(22) 0.0319(10)	9.3(5)×10 ⁻⁵ 0.000704(22)	¹³⁷ Ba 4288.15(14)	0.0059(3)	1.30(7)×10 ⁻⁴
¹³⁵ Ba 1048.0730(20)	0.025(4)	0.00055(9)	¹³⁷ Ba 4323.34(14) ¹³⁷ Ba 4331.24(16)	0.0079(4) 0.0091(12)	1.74(9)×10 ⁻⁴ 2.0(3)×10 ⁻⁴
¹³⁰ Ba 1103.43(8)	0.0044(4)	9.7(9)×10 ⁻⁵	¹³⁷ Ba 4331.94(14)	0.0090(6)	1.99(13)×10 ⁻⁴
¹³ 'Ba 1147.11(7)	0.0150(5)	0.000331(11)	¹³ 'Ba 4369.47(10)	0.0069(5)	1.52(11)×10 ⁻⁴
¹³⁵ Ba 1235.29(12) ¹³⁵ Ba 1261.52(7)	0.0148(7)	0.000327(15) 0.00210(11)	¹³⁷ Ba 4445.44(12)	0.0039(3)	$8.6(7) \times 10^{-5}$
¹³ 'Ba 1264.54(10)	0.095(5) 0.00352(22)	7.8(5)×10 ⁻⁵	¹³⁷ Ba 4597.95(22) ¹³⁷ Ba 4689.43(9)	0.0044(4) 0.0140(8)	9.7(9)×10 ⁻⁵ 0.000309(18)
¹³⁵ Ba 1310.21(9)	0.0094(7)	2.07(15)×10 ⁻⁴	¹³⁶ Ba 4723.38(8)	0.0140(8)	0.000583(18)
¹³ Ba 1343.53(8)	0.0087(4)	1.92(9)×10 ⁻⁴	¹³⁷ Ba 4773.79(15)	0.0063(4)	1.39(9)×10 ⁻⁴
¹³⁵ Ba 1404.08(9)	0.0051(5)	1.13(11)×10 ⁻⁴	¹³⁷ Ba 4967.90(6)	0.0098(7)	2.16(15)×10 ⁻⁴
¹³⁴ Ba 1415.30(19) ¹³⁸ Ba 1420.41(9)	0.0067(5) 0.0090(5)	1.48(11)×10 ⁻⁴ 1.99(11)×10 ⁻⁴	¹³⁷ Ba 5107.54(17)	0.0060(4)	1.32(9)×10 ⁻⁴
¹³ /Ba 1435.77(4)	0.308(7)	0.00680(15)	¹³⁷ Ba 5272.88(10) ¹³⁵ Ba 5312.42(17)	0.0088(10) 0.0082(3)	1.94(22)×10 ⁻⁴ 1.81(7)×10 ⁻⁴
¹³⁷ Ba 1444.91(5)	0.0801(20)	0.00177(4)	¹³⁷ Ba 5448.42(11)	0.0052(3)	1.17(13)×10 ⁻⁴
¹³⁷ Ba 1495,58(9)	0.0104(7)	2.30(15)×10 ⁻⁴	¹³⁷ Ba 5730.81(6)	0.0617(20)	0.00136(4)
¹³⁵ Ba 1537.0(5) ¹³⁵ Ba 1551.01(6)	0.0049(13)	1.1(3)×10 ⁻⁴	¹³⁷ Ba 5972.26(9)	0.0044(3)	$9.7(7)\times10^{-5}$
¹³ 'Ba 1555.32(11)	0.0231(9) 0.00433(23)	0.000510(20) 9.6(5)×10 ⁻⁵	¹³⁷ Ba 6028.60(8)	0.0093(6)	2.05(13)×10 ⁻⁴
¹³⁸ Ba 1558.16(8)	0.0078(5)	1.72(11)×10 ⁻⁴	¹³⁵ Ba 6062.37(23) ¹³⁷ Ba 6421.67(8)	0.00516(14) 0.00337(19)	1.14(3)×10 ⁻⁴ 7.4(4)×10 ⁻⁵
¹³³ Ba 1572.12(18)	0.0055(10)	1.21(22)×10 ⁻⁴	¹³⁶ Ba 6621.99(8)	0.00337(19)	7.5(13)×10 ⁻⁵
¹³⁵ Ba 1581.46(6)	0.0096(7)	2.12(15)×10 ⁻⁴	¹³⁵ Ba 8288.93(5)	0.00349(11)	7.70(24)×10 ⁻⁵
¹³⁷ Ba 1614.18(11) ¹³⁷ Ba 1614.68(10)	0.015(7)	0.00033(15)	¹³⁵ Ba 9107.41(4)	0.00635(23)	1.40(5)×10 ⁻⁴
¹³ 'Ba 1619.88(15)	0.0147(10) 0.00328(24)	0.000324(22) 7.2(5)×10 ⁻⁵			
¹³⁵ Ba 1666.69(9)	0.0047(5)	1.04(11)×10 ⁻⁴			
¹³⁵ Ba 1714.09(9)	0.0076(12)	1.7(3)×10 ⁻⁴			

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Εγ)-barns	k _o	Eγ-keV	σ(Εγ)-barns	k _o
Lanthanum (Z=57), A	At.Wt.=138.905		Lanthanum (Z=57),	continued	
¹³⁹ La 14.2380(20)	0.028(6)	0.00061(13)	¹³⁹ La 1020.392(20)	0.0535(20)	0.00117(4)
	0.0103(11) 0.169(8)	2.25(24)×10 ⁻⁴	¹³⁹ La 1055.038(20) ¹³⁸ La 1215.72(22)	0.015(5)	0.00033(11)
¹³⁸ La 34.6460(10)	0.0220(20)	0.00369(17) 0.00048(4)	¹³⁰ La 1219.79(17)	0.019(4) 0.026(4)	0.00041(9) 0.00057(9)
¹³⁸ La 45.913(6)	0.0120(7)	0.000262(15)	¹³⁰ l a 1435.795(10)	0.539(7) s ⁻¹ g ⁻¹	,
¹³⁹ a 54.9440(10)	0.143(7)	0.00312(15)	¹³⁰ La 1537.7(3)	0.009(3)	2.0(7)×10 ⁻⁴
	0.208(8) 0.0137(5)	0.00454(17) 0.000299(11)	¹³⁹ La 1596.21(4)d ¹³⁹ La 2345.21(6)	5.84(9) 0.0164(6)	0.1274[<0.1%] 0.000358(13)
¹³⁹ l a 132 695(3)	0.0146(6)	0.000233(11)	¹³⁹ l a 2512 55(17)	0.0194(7)	0.000330(13)
¹³⁸ La 155.560(5)	0.192(7)	0.00419(15)	¹³⁹ La 2517.04(8)	0.0353(13)	0.00077(3)
	0.489(18)	0.0107(4)	¹³⁹ La 2521.40(5)d ¹³⁹ La 2532.39(4)	0.2120(23)	0.00463[<0.1%]
¹³⁸ l a 169 392(10)	0.0119(12) 0.0382(14)	0.00026(3) 0.00083(3)	¹³⁸ l a 2538 82(7)	0.0188(7) 0.0119(5)	0.000410(15) 0.000260(11)
¹³⁸ La 209.127(4)	0.0431(16)	0.00094(4)	¹³⁸ La 2555.76(4)	0.0231(9)	0.000504(20)
¹³⁹ l a 215 02(16)	0.025(6)	0.00055(13)	¹³⁸ l a 2561 85(3)	0.0259(10)	0.000565(22)
	0.78(3) 0.111(4)	0.0170(7) 0.00242(9)	¹³⁹ La 2564.79(3) ¹³⁹ La 2598.16(4)	0.0373(14) 0.0231(9)	0.00081(3) 0.000504(20)
¹³⁸ a 237.660(4)	0.320(12)	0.0070(3)	¹³⁸ l a 2607 17(3)	0.0344(13)	0.000304(20)
¹³⁸ l a 255 040(5)	0.017(4)	0.00037(9)	¹³⁸ l a 2611 6(3)	0.0086(3)	1.88(7)×10 ⁻⁴
¹³⁹ La 258.875(22)	0.0233(9)	0.000508(20)	¹³⁸ La 2617.76(4)	0.0149(6)	0.000325(13)
	0.502(19) 0.0640(24)	0.0110(4) 0.00140(5)	¹³⁹ La 2637.97(6) ¹³⁹ La 2640.00(3)	0.0084(5) 0.0160(6)	1.83(11)×10 ⁻⁴ 0.000349(13)
¹³⁸ l a 283 617(16)	0.0409(15)	0.00089(3)	¹³⁸ l a 2661 55(4)	0.0263(10)	0.000574(22)
¹³⁸ La 287.408(22)	0.013(4)	0.00028(9)	¹³⁸ La 2668.00(4)	0.0247(9)	0.000539(20)
	0.73(3)	0.0159(7)	¹³⁹ La 2677.63(12) ¹³⁹ La 2688.09(3)	0.0100(4)	2.18(9)×10 ⁻⁴
¹³⁸ l a 305 04(8)	0.0167(6) 0.0147(6)	0.000364(13) 0.000321(13)	¹³⁸ l a 2692 30(6)	0.0254(10) 0.0115(7)	0.000554(22) 0.000251(15)
¹³⁹ La 310.14(3)	0.0184(7)	0.000401(15)	¹³⁹ La 2698.19(4)	0.0185(7)	0.000404(15)
່ ^{ວອ} ໄລ <i>328.762(8)d</i>	1.250(18)	0.0273[<0.1%]	¹³⁸ La 2702.38(6)	0.0109(4)	2.38(9)×10 ⁻⁴
	0.0140(5) 0.370(14)	0.000305(11) 0.0081(3)	¹³⁹ La 2710.62(4) ¹³⁹ La 2714.63(3)	0.0117(4) 0.0141(5)	0.000255(9) 0.000308(11)
¹³⁸ La 426.49(3)	0.0435(16)	0.00095(4)	¹³⁹ La 2724.26(4)	0.0141(3)	0.000308(11)
່າ ^{ວອ} ໄ a 432.493(12)d	0.1780(18)	0.00388[<0.1%]	¹³⁸ l a 2735 13(4)	0.0188(7)	0.000410(15)
¹³⁹ La 478.05(5)	0.0407(15)	0.00089(3)	¹³⁹ l a 2739 00(4)	0.0200(8)	0.000436(17)
120	<i>2.79(4)</i> 0.081(3)	0.0609[<0.1%] 0.00177(7)	¹³⁹ La 2747.65(4) ¹³⁹ La 2757.726(24)	0.0198(8) 0.0515(19)	0.000432(17) 0.00112(4)
¹³⁸ La 528.34(11)	0.0197(7)	0.000430(15)	¹³⁹ l a 2764 51(4)	0.0289(11)	0.000631(24)
¹³⁸ La 538.854(12)	0.0455(17)	0.00099(4)	¹³⁹ La 2767.58(4)	0.0287(11)	0.000626(24)
	0.098(4)	0.00214(9)	¹³⁹ La 2799.65(6) ¹³⁹ La 2804.82(4)	0.0109(4)	2.38(9)×10 ⁻⁴
¹³⁸ l a 567.386(12)	0.0602(23) 0.335(13)	0.00131(5) 0.0073(3)	¹³⁸ l a 2837 50(4)	0.0203(8) 0.0195(7)	0.000443(17) 0.000425(15)
¹³⁸ La 592.05(18)	0.0128(5)	0.000279(11)	¹³⁹ La 2852.55(4)	0.0139(5)	0.000303(11)
¹³⁸ a 595.099(12)	0.103(4)	0.00225(9)	¹³⁸ l a 2863 06(3)	0.073(3)	0.00159(7)
	0.0522(20) 0.0517(20)	0.00114(4) 0.00113(4)	¹³⁹ La 2880.60(6) ¹³⁹ La 2896.63(6)	0.0101(4) 0.0081(5)	2.20(9)×10 ⁻⁴ 1.77(11)×10 ⁻⁴
¹³⁸ La 628.314(12)	0.0284(11)	0.000620(24)	¹³⁹ l a 2903 65(5)	0.0001(3)	2.44(9)×10 ⁻⁴
¹³⁹ l a 640 88(3)	0.0534(20)	0.00117(4)	່າ ^{ວອ} ໄລ 2013 16(<u>4</u>)	0.0124(5)	0.000271(11)
¹³⁹ La 658.278(12) ¹³⁹ La 667.594(14)	0.103(4)	0.00225(9)	¹³⁹ La 2916.89(4) ¹³⁹ La 2919.73(6)	0.0130(8)	0.000284(17)
139 a 708.244(14)	0.058Ò(22) 0.134(5)	0.00127(5) 0.00292(11)	¹³⁹ La 2925.00(3)	0.0086(3) 0.0435(16)	1.88(7)×10 ⁻⁴ 0.00095(4)
¹³⁹ l a 710 07(3)	0.0668(25)	0.00146(6)	¹³⁸ l a 2961 34(4)	0.0262(10)	0.000572(22)
¹³⁸ l a 711 22(20)	0.0164(6)	0.000358(13)	¹³⁹ La 2969.27(4)	0.0409(15)	0.00089(3)
	0.212(8) 0.0125(5)	0.00463(17) 0.000273(11)	¹³⁹ La 2977.35(5) ¹³⁹ La 2985.02(6)	0.0164(6) 0.0100(4)	0.000358(13) 2.18(9)×10 ⁻⁴
¹³⁹ l a 736 777(14)	0.0388(15)	0.000273(11)	¹³⁹ l a 2988 53(3)	0.0458(17)	0.00100(4)
¹³⁸ La 744.71(3)	0.010(4)	2.2(9)×10 ⁻⁴	¹³⁸ La 2998.36(5)	0.0136(5)	0.000297(11)
¹³⁹ La 751.637(18)d	0.2650(23)	0.00578[<0.1%]	¹³⁹ La 3017.070(24) ¹³⁹ La 3031.27(4)	0.0671(25)	0.00146(6)
¹³⁹ l a 782 733(20)	0.0127(5) 0.0396(15)	0.000277(11) 0.00086(3)	¹³⁸ l a 3035 56(3)	0.0330(12) 0.0518(20)	0.00072(3) 0.00113(4)
¹³⁹ l a 787 3(4)	0.008(4)	1.7(9)×10 ⁻⁴	¹³⁹ l a 3040 94(4)	0.0294(11)	0.000641(24)
¹³⁰la <i>788 742</i>	0.273(5) s ⁻¹ g ⁻¹	0.000050(40)	¹³⁹ l a 3051 49(5)	0.0183(7)	0.000399(15)
	0.0162(6) 1.430(12)	0.000353(13) 0.0312[<0.1%]	¹³⁹ La 3057.66(6) ¹³⁹ La 3078.80(6)	0.0194(7) 0.0130(5)	0.000423(15) 0.000284(11)
¹³⁹ l a 848 99(3)	0.0290(11)	0.0312[<0.1%] 0.000633(24)	139 a 3082.979(24)	0.140(5)	0.000284 (11)
¹³⁹ l a 863 28(3)	0.0149(6)	0.000325(13)	¹³⁹ l a 3091 30(6)	0.0114(4)	2.49(9)×10 ⁻⁴
່ ^{ວອ} ໄລ 867.846(20)d	0.337(4)	0.00735[<0.1%]	¹³⁸ l a 3095 50(4)	0.0191(7)	0.000417(15)
¹³⁹ l a 882 21(3)	0.0558(21) 0.0343(13)	0.00122(5) 0.00075(3)	¹³⁹ La 3112.38(3) ¹³⁹ La 3115.94(3)	0.0320(12) 0.0176(7)	0.00070(3) 0.000384(15)
່ ^{ວອ} ໄ a 887 70(11)	0.0222(8)	0.00073(3)	¹³⁹ l a 3119 05(4)	0.0178(8)	0.000354(13)
່ອ a 919.550(23)d	0.1630(18)	0.00356[<0.1%]	¹³⁸ l a 3137 21(4)	0.0239(9)	0.000521(20)
	0.422(4)	0.00921[<0.1%]	¹³⁹ La 3142.75(3) ¹³⁹ La 3155.06(6)	0.0320(12)	0.00070(3) 1.96(7)×10 ⁻⁴
¹³⁹ l a 986 74(3)	0.0236(9) 0.008(4)	0.000515(20) 1.7(9)×10 ⁻⁴	¹³⁹ l a 3163 792(24)	0.0090(3) 0.0324(12)	0.00071(3)
¹³⁹ l a 991 859(20)	0.0487(18)	0.00106(4)	¹³⁹ l a 3174 77(4)	0.0135(5)	0.000295(11)
¹³⁹ La 1006.153(20)	0.0347(13)	0.00076(3)	¹³⁹ La 3189.09(3)	0.0538(20)	0.00117(4)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Εγ-keV	σ(Eγ)-barns	k ₀	Eγ-keV	σ (Ε γ)-barns	k _o
Lanthanum (Z=57),	continued		Cerium (Z=58), cont		
¹³⁹ La 3197.52(6)	0.0213(8)	0.000465(17)	¹³⁸ Ce 1347.24(13)	0.0028(3)	6.1(7)×10 ⁻⁵
¹³⁹ La 3213.35(4)	0.0144(5)	0.000314(11)	¹⁴⁰ Ce 1385.74(6)	0.0060(6)	1.30(13)×10 ⁻⁴
¹³⁹ La 3219.80(3)	0.0300(11)	0.000655(24)	¹⁴⁰ Ce 1497.03(12)	0.0062(9)	1.34(19)×10 ⁻⁴
¹³⁹ La 3265.263(24) ¹³⁹ La 3281.248(24)	0.0532(20) 0.0506(19)	0.00116(4) 0.00110(4)	¹⁴⁰ Ce 1527.61(6) ¹⁴² Ce 1587.90(11)	0.0027(3) 0.0028(3)	5.8(7)×10 ⁻⁵ 6.1(7)×10 ⁻⁵
139 La 3318.99(4)	0.0319(12)	0.00110(4)	¹⁴⁰ Ce 1673.95(9)	0.0023(4)	7.1(9)×10 ⁻⁵
¹³⁹ La 3341.48(4)	0.0090(5)	1.96(11)×10 ⁻⁴	¹⁴ºCe 1747.90(7)	0.0078(7)	1.69(15)×10 ⁻⁴
¹³⁸ La 3359.88(3)	0.0120(7)	0.000262(15)	¹⁴⁰ Ce 1808.67(6)	0.0038(4)	8.2(9)×10 ⁻⁵
¹³⁹ La 3383.39(3)	0.0242(9)	0.000528(20)	¹⁴² Ce 2203.36(10)	0.0039(5)	8.4(11)×10 ⁻⁵
¹³⁹ La 3395.44(4)	0.0161(6)	0.000351(13)	¹⁴⁰ Ce 2905.37(7)	0.0058(5)	1.25(11)×10 ⁻⁴
¹³⁹ La 3404.81(4) ¹³⁹ La 3417.24(4)	0.0171(6)	0.000373(13) 0.000395(15)	¹⁴² Ce 2931.94(14) ¹⁴⁰ Ce 3002.41(6)	0.0029(3)	6.3(7)×10 ⁻⁵ 2.25(17)×10 ⁻⁴
139 La 3424.29(3)	0.0181(7) 0.0232(14)	0.000393(13)	140 Ce 3018.24(7)	0.0104(8) 0.0114(10)	2.47(22)×10 ⁻⁴
¹³⁹ La 3425.399(24)	0.058(3)	0.00127(7)	¹⁴⁰ Ce 3092.19(8)	0.0072(6)	1.56(13)×10 ⁻⁴
¹³⁹ La 3437.83(4)	0.0247(9)	0.000539(20)	¹⁴⁰ Ce 3238.52(6)	0.0066(6)	1.43(13)×10 ⁻⁴
¹³⁹ La 3442.20(3)	0.0410(15)	0.00089(3)	¹⁴⁰ Ce 3434.50(8)	0.0039(4)	8.4(9)×10 ⁻⁵
¹³⁹ La 3459.91(3) ¹³⁹ La 3477.14(3)	0.0199(8)	0.000434(17)	¹⁴⁰ Ce 3619.46(5) ¹⁴² Ce 3990.70(15)	0.0095(8)	2.05(17)×10 ⁻⁴ 8.2(9)×10 ⁻⁵
139 La 3488.77(3)	0.0444(17) 0.0170(6)	0.00097(4) 0.000371(13)	142Ce 4282.22(12)	0.0038(4) 0.0037(4)	8.0(9)×10 ⁻⁵
¹³⁹ La 3564.87(4)	0.0130(5)	0.000284(11)	¹⁴⁰ Ce 4291.08(4)	0.053(4)	0.00115(9)
¹³⁹ La 3580.90(4)	0.0129(5)	0.000281(11)	¹⁴² Ce 4336.46(8)	0.0251(20)	0.00054(4)
¹³⁸ La 3596.45(4)	0.0157(6)	0.000343(13)	¹⁴⁰ Ce 4766.10(5)	0.113(8)	0.00244(17)
¹³⁹ La 3606.467(24) ¹³⁹ La 3610.026(24)	0.0556(21)	0.00121(5)	Praseodymium (Z=5	59), <i>At.Wt.</i> =140	0.90765(2), _⊙ =11.5(3)
139 La 3665.631(24)	0.0548(21) 0.135(5)	0.00120(5) 0.00295(11)	¹⁴¹ Pr 32.276(3)	0.055(11)	0.00118(24)
¹³⁹ La 3679.641(24)	0.139(5)	0.00303(11)	¹⁴¹ Pr 54.5530(20)	0.022(4)	0.00047(9)
¹³⁹ La 3683.89(3)	0.0322(21)	0.00070(5)	¹⁴¹ Pr 55.957(3)	0.014(3)	0.00030(7)
¹³⁹ La 3691.35(3)	0.0350(13)	0.00076(3)	¹⁴¹ Pr 60.0630(20) ¹⁴¹ Pr 64.5050(20)	0.134(14)	0.0029(3)
¹³⁹ La 3718.321(24) ¹³⁹ La 3727.700(24)	0.0384(15)	0.00084(3)	141 Pr 68.6110(20)	0.137(6) 0.116(6)	0.00295(13) 0.00249(13)
139 La 3735.30(4)	0.073(3) 0.0170(6)	0.00159(7) 0.000371(13)	¹⁴ Pr 84.998(3)	0.207(11)	0.00445(24)
¹³⁹ La 3738.56(4)	0.0352(13)	0.00077(3)	¹⁴ Pr 86.37(7)	0.085(7)	0.00183(15)
¹³⁹ La 3744.87(4)	0.0234(9)	0.000511(20)	¹⁴¹ Pr 104.570(3)	0.0397(13)	0.00085(3)
¹³⁹ La 3821.40(4)	0.0131(9)	0.000286(20)	¹⁴¹ Pr 115.528(4) ¹⁴¹ Pr 124.5680(20)	0.0419(13) 0.0339(18)	0.00090(3)
¹³⁹ La 3900.979(24)	0.0531(20)	0.00116(4)	141 Pr 126.8460(20)	0.307(15)	0.00073(4) 0.0066(3)
¹³⁹ La 3951.14(3) ¹³⁹ La 3973.56(4)	0.0198(8) 0.0120(5)	0.000432(17) 0.000262(11)	¹⁴ Pr 140.9050(20)	0.479(10)	0.01030(22)
¹³⁸ La 4044.182(21)	0.0297(11)	0.000648(24)	¹⁴ Pr 153.28(3)	0.0135(7)	0.00029Ò(15)
¹³⁹ La 4060.007(20)	0.0297(11)	0.000648(24)	¹⁴¹ Pr 159.1230(20)	0.0122(7)	0.000262(15)
¹³⁹ La 4105.897(20)	0.0238(9)	0.000519(20)	¹⁴¹ Pr 176.8630(20) ¹⁴¹ Pr 182.786(4)	1.06(4)	0.0228(9) 0.0081(3)
¹³⁹ La 4125.31(3) ¹³⁹ La 4389.505(14)	0.0183(7)	0.000399(15)	¹⁴¹ Pr 185.62(7)	0.377(14) 0.017(4)	0.00037(9)
139 La 4416.22(3)	0.255(10) 0.247(9)	0.00556(22) 0.00539(20)	¹⁴¹ Pr 187.85(5)	0.048(12)	0.0010(3)
¹³⁹ La 4502.647(13)	0.164(6)	0.00358(13)	¹⁴ Pr 200.526(4)	0.0379(12)	0.00082(3)
¹³⁹ La 4558.891(13)	0.0488(18)	0.00106(4)	¹⁴¹ Pr 231.18(4)	0.0127(10)	0.000273(22)
¹³⁹ La 4842.695(7)	0.661(25)	0.0144(6)	¹⁴¹ Pr 251.53(4) ¹⁴¹ Pr 268.38(4)	0.0172(19) 0.0166(8)	0.00037(4) 0.000357(17)
¹³⁹ La 4888.606(7) ¹³⁹ La 4998.250(6)	0.150(6) 0.0145(8)	0.00327(13) 0.000316(17)	¹⁴ Pr 294 87(3)	0.0275(18)	0.00059(4)
139La 5097.726(6)	0.68(3)	0.000310 (17)	¹⁴¹ Pr 360.64(3)	0.0342(19)	0.00074(4)
¹³⁹ La 5126.257(6)	0.114(4)	0.00249(9)	¹⁴ Pr 403.976(24)	0.0322(14)	0.00069(3)
¹³⁹ La 5130.939(6)	0.0159(9)	0.000347(20)	¹⁴¹ Pr 415.17(5) ¹⁴¹ Pr 460.16(4)	0.0122(10) 0.057(3)	0.000262(22)
¹³⁹ La 5160.902(6)	0.089(5)	0.00194(11)	141 Pr 508.78(4)	0.104(10)	0.00123(7) 0.00224(22)
Cerium (Z=58), At. V			¹⁴ Pr 528.219(23)	0.0579(19)	0.00125(4)
¹³⁶ Ce 254.29(5)d	2.0(6)×10 ⁻⁴	4.3×10 ⁻⁶ [1.0%]	¹⁴¹ Pr 546.448(15)	0.148(4)	0.00318(9)
¹³⁸ Ce 255.65(6)	0.0082(7)	1.77(15)×10 ⁻⁴	¹⁴¹ Pr 557.75(3)	0.15(4)	0.0032(9)
¹⁴⁰ Ce 475.04(4) ¹³⁶ Ce <i>513.7(4)</i>	0.082(7) 0.0021(5)	0.00177(15) 4.5(11)×10 ⁻⁵	¹⁴¹ Pr 560.495(23) ¹⁴¹ Pr 570.111(14)	0.150(7) 0.112(5)	0.00323(15) 0.00241(11)
¹⁴⁰ Ce 661.99(5)	0.241(15)	0.0052(3)	¹⁴¹ Pr 573.28(4)	0.112(3)	0.00241(11)
¹⁴⁰ Ce 671.64(5)	0.0057(5)	1.23(11)×10 ⁻⁴	¹⁴¹ Pr 619.29(4)	0.152(4)	0.00327(9)
¹⁴² Ce 737.43(7)	0.026(3)	0.00056(7)	¹⁴¹ Pr 630.04(3)	0.16(6)	0.0034(13)
¹⁴² Ce 765.97(5)	0.0145(12)	0.00031(3)	¹⁴¹ Pr 633.34(4)	0.113(4)	0.00243(9)
¹⁴² Ce 789.40(8) ¹⁴² Ce 808.35(6)	0.0050(6) 0.0102(9)	1.08(13)×10 ⁻⁴ 2.21(19)×10 ⁻⁴	¹⁴¹ Pr 645.720(24) ¹⁴¹ Pr 684.59(3)	0.311(7) 0.098(22)	0.00669(15) 0.0021(5)
¹⁴² Ce 820.07(8)	0.0026(3)	5.6(7)×10 ⁻⁵	¹⁴¹ Pr 698.65(3)	0.098(22)	0.0047(13)
¹⁴² Ce 862.23(7)	0.0044(4)	9.5(9)×10 ⁻⁵	¹⁴¹ Pr 705.309(24)	0.0399(20)	0.00086(4)
¹⁴² Ce 915.03(7)	0.0086(11)	1.86(24)×10 ⁻⁴	¹⁴¹ Pr 718.014(24)	0.0435(21)	0.00094(5)
¹⁴² Ce 987.69(9) ¹⁴⁰ Ce 1052.58(5)	0.0040(5)	8.7(11)×10 ⁻⁵	¹⁴¹ Pr 729.233(14) ¹⁴¹ Pr 737.65(7)	0.0712(23)	0.00153(5)
142 Ce 1107.66(5)	0.0051(5) 0.040(3)	1.10(11)×10 ⁻⁴ 0.00087(7)	141Pr 746.973(14)	0.0396(17) 0.146(4)	0.00085(4) 0.00314(9)
¹⁴⁰ Ce 1146.68(4)	0.0096(9)	2.08(19)×10 ⁻⁴	¹⁴¹ Pr 772.566(24)	0.044(16)	0.0009(3)
¹⁴² Ce 1153.97(5)	0.0146(12)	0.00032(3)	¹⁴¹ Pr 790.306(24)	0.051(3)	0.0011Ò(7)
¹⁴² Ce 1165.71(8)	0.0040(4)	8.7(9)×10 ⁻⁵	¹⁴¹ Pr 801.29(4)	0.10(3)	0.0022(7)
¹⁴⁰ Ce 1288.69(5) ¹⁴⁰ Ce 1331.63(7)	0.0076(6) 0.0058(5)	1.64(13)×10 ⁻⁴ 1.25(11)×10 ⁻⁴	¹⁴¹ Pr 804.91(7) ¹⁴¹ Pr 822.65(7)	0.0455(25) 0.0179(15)	0.00098(5) 0.00038(3)
	0.0000(0)	1.20(11)/10	11 022.00(1)	3.0170(10)	3.30000(0)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ (Ε γ)-barns	k _o	Eγ-keV	σ (Ε γ)-barns	k_0
Praseodymium (Z=5	-		Praseodymium (Z=	-	
¹⁴¹ Pr 864.98(3)	0.14(3)	0.0030(7)	¹⁴¹ Pr 5698.445(6)	0.0117(14)	0.00025(3)
¹⁴¹ Pr 893.16(4)	0.053(3)	0.00114(7)	¹⁴¹ Pr 5770.736(6)	0.0371(23)	0.00080(5)
¹⁴¹ Pr 956.84(3) ¹⁴¹ Pr 974.47(4)	0.091(7) 0.076(22)	0.00196(15) 0.0016(5)	¹⁴¹ Pr 5825.286(5) ¹⁴¹ Pr 5843.026(5)	0.040(3) 0.147(6)	0.00086(7) 0.00316(13)
¹⁴¹ Pr 992 .00(4)	0.138(10)	0.0010(3) 0.00297(22)			` '
¹⁴ Pr 1006.361(22)	0.153(8)	0.00329(17)	Neodymium (Z=60),		
¹⁴ Pr 1024 10(3)	0.048(3)	0.00103(7)	¹⁴⁸ Nd <i>165.0870(10)</i> ¹⁵⁰ Nd <i>189.0530(10)</i>	0.032(8)	0.00067(17)
¹⁴¹ Pr 1102.51(4)	0.056(3)	0.00120(7)	143 Nd 201.86(7)	0.020(7) 0.343(23)	<i>0.00042(15)</i> 0.0072(5)
¹⁴¹ Pr 1150.946(21) ¹⁴¹ Pr 1575.6(5)d	0.141(5) <i>0.426(12)</i>	0.00303(11) <i>0.0092[1.8%]</i>	¹⁴⁸ Nd 211 309(7)d	0.0370(16)	0.00078[18%]
¹⁴¹ Pr 3532 83(3)	0.026(3)	0.00056(7)	¹⁴⁶ Nd 314.675(4)	0.0280(24)	0.00059(5)
¹⁴ Pr 3535.33(3)	0.026(3)	0.00056(7)	¹⁴³ Nd 426.73(5)	0.574(15)	0.0121(3)
¹⁴¹ Pr 3549.71(3)	0.0288(24)	0.00062(5)	¹⁴⁵ Nd 453.89(5) ¹⁴³ Nd 476.82(5)	3.03(8) 1.93(5)	0.0637(17) 0.0405(11)
¹⁴¹ Pr 3556.85(3) ¹⁴¹ Pr 3563.23(3)	0.0127(17) 0.0110(23)	0.00027(4) 2.4(5)×10 ⁻⁴	¹⁴² Nd 563.87(3)	0.74(3)	0.0155(6)
¹⁴ Pr 3582.48(3)	0.0236(21)	0.00051(5)	¹⁴⁵ Nd 589 46(6)	0.97(4)	0.0204(8)
¹⁴¹ Pr 3587 84(3)	0.0128(17)	0.00028(4)	¹⁴³ Nd 618.062(19)	13.4(3)	0.282(6)
¹⁴¹ Pr 3591.03(3)	0.0139(19)	0.00030(4)	¹⁴³ Nd 696.499(10) ¹⁴⁵ Nd 735.85(9)	33.3(23) 0.479(13)	0.70(5) 0.0101(3)
¹⁴¹ Pr 3599.14(3) ¹⁴¹ Pr 3602.51(3)	0.0234(24) 0.054(3)	0.00050(5) 0.00116(7)	¹⁴² Nd 742 .106(22)	3.8(4)	0.080(8)
¹⁴¹ Pr 3620 02(3)	0.024(3)	0.00052(7)	¹⁴³ Nd 778.58(4)	0.791(20)	0.0166(4)
¹⁴¹ Pr 3629.19(3)	0.020(4)	0.00043(9)	¹⁴³ Nd 814 .12(3)	4.98(12)	0.1046(25)
¹⁴¹ Pr 3645.82(3)	0.015(3)	0.00032(7)	¹⁴³ Nd 834.9(5) ¹⁴³ Nd 863.89(8)	0.333(24) 1.07(4)	0.0070(5) 0.0225(8)
¹⁴¹ Pr 3650.20(3) ¹⁴¹ Pr 3651.73(3)	0.061(3) 0.0127(8)	0.00131(7) 0.000273(17)	¹⁴³ Nd 864.301(10)	4.27(11)	0.0223(6)
¹⁴ Pr 3654.47(3)	0.060(4)	0.000273(17)	¹⁴³ Nd 980 60(4)	1.21(3)	0.0254(6)
¹⁴¹ Pr 3664 35(3)	0.0193(25)	0.00042(5)	¹⁴³ Nd 1136 92(6)	0.669(18)	0.0141(4)
¹⁴¹ Pr 3678 37(3)	0.034(3)	0.00073(7)	¹⁴³ Nd 1357.04(8) ¹⁴³ Nd 1376.19(7)	0.337(9) 0.751(20)	0.00708(19) 0.0158(4)
¹⁴¹ Pr 3690.27(3) ¹⁴¹ Pr 3713.73(3)	0.0107(19) 0.047(3)	2.3(4)×10 ⁻⁴ 0.00101(7)	¹⁴³ Nd 1413.16(4)	1.90(5)	0.0399(11)
¹⁴¹ Pr 3742 46(3)	0.047(3)	0.00101(7)	¹⁴³ Nd 1418.07(10)	0.353(11)	0.00742(23)
¹⁴¹ Pr 3762 26(3)	0.0177(24)	0.00038(5)	¹⁴³ Nd 1481.95(8)	0.608(21)	0.0128(4)
¹⁴¹ Pr 3771 88(3)	0.023(3)	0.00049(7)	¹⁴³ Nd 1515.84(9) ¹⁴³ Nd 1560.796(14)	0.455(13) 0.404(11)	0.0096(3) 0.00849(23)
¹⁴¹ Pr 3776.46(3) ¹⁴¹ Pr 3790.37(3)	0.0117(8) 0.140(6)	0.000252(17) 0.00301(13)	¹⁴³ Nd 1671.74(10)	0.404(11)	0.00049(23)
¹⁴¹ Pr 3800.04(3)	0.0144(23)	0.00031(13)	¹⁴³ Nd 1895.74(16)	0.387(12)	0.00813(25)
¹⁴¹ Pr 3811 64(3)	0.0231(23)	0.00050(5)	¹⁴⁴ Nd <i>4</i> 836.36(25)	0.32(3)	0.0067(6)
¹⁴¹ Pr 3862.86(3)	0.0199(25)	0.00043(5)	¹⁴² Nd 5381.19(7) ¹⁴³ Nd 6255.99(17)	0.49(4) 1.50(12)	0.0103(8) 0.0315(25)
¹⁴¹ Pr 3871.70(3) ¹⁴¹ Pr 3892.63(3)	0.0164(23) 0.039(3)	0.00035(5) 0.00084(7)	¹⁴³ Nd 6502 22(17)	3.18(17)	0.067(4)
¹⁴¹ Pr 3902.50(3)	0.0117(20)	0.00025(4)	¹⁴⁵ Nd 7110.98(8)	0.368(11)	0.00773(23)
¹⁴ Pr 3911.07(3)	0.042(3)	0.00090(7)	Samarium (Z=62), A	t.Wt.=150.36(3)	, σ.= 5621(80)
¹⁴¹ Pr 3923.07(3) ¹⁴¹ Pr 3941.19(3)	0.023(3)	0.00049(7)	¹⁵⁴ Sm <i>104 320(5)d</i>	1.43(4)	0.0288[55%]
141 Pr 3947.09(3)	0.0153(25) 0.0169(23)	0.00033(5) 0.00036(5)	¹⁵² Sm 127 297/3)	4.1(3)	0.083(6)
¹⁴ Pr 4000.97(3)	0.0187(24)	0.00040(5)	150 Sm 167.77(5) 149 Sm 333.97(4)	0.73(13)	0.015(3)
¹⁴¹ Pr 4012 20(3)	0.027(3)	0.00058(7)	149 Sm 403.02(3)	4790(60) 85.2(16)	96.5(12) 1.72(3)
¹⁴¹ Pr 4058.05(3)	0.0133(16)	0.00029(3)	148Sm 439 40(4)	2860(150)	58(3)
¹⁴¹ Pr 4090.15(3) ¹⁴¹ Pr 4120.77(3)	0.0137(16) 0.0130(16)	0.00029(3) 0.00028(3)	~Sm485 95(7)	72(3)	1.45(6)
¹⁴ Pr 4134.04(3)	0.0408(25)	0.00088(5)	¹⁴⁰ Sm505.51(3)	528(80)	10.6(16)
¹⁴ Pr 4163.89(3)	0.035(3)	0.00075(7)	¹⁴⁷ Sm <i>550.10(9)</i> ¹⁴⁹ Sm 584.27(3)	9.6(6) 480(70)	0.193(12) 9.7(14)
¹⁴¹ Pr 4177.00(3)	0.0387(25)	0.00083(5)	¹⁴⁸ Sm675 83(3)	172(7)	3.47(14)
¹⁴¹ Pr 4252.14(3) ¹⁴¹ Pr 4276.54(3)	0.032(3) 0.044(4)	0.00069(7) 0.00095(9)	148Sm712 20(3)	267(4)	5.38(8)
¹⁴ Pr 4325.50(3)	0.0124(17)	0.00033(3)	148Sm731 20(4)	54(4)	1.09(8)
¹⁴ Pr 4347.62(3)	0.0166(18)	0.00036(4)	¹⁴⁹ Sm 737.44(4) ¹⁴⁹ Sm748.13(4)	597(8) 67.9(20)	12.03(16) 1.37(4)
¹⁴¹ Pr 4372.53(3)	0.0269(22)	0.00058(5)	104Sm 819 880(5)	0.153(10)	0.00308(20)
¹⁴¹ Pr 4440.54(3) ¹⁴¹ Pr 4449.26(3)	0.0252(20) 0.0228(19)	0.00054(4) 0.00049(4)	¹⁴⁸ Sm831 78(5)	62.7(17)	1.26(3)
¹⁴ Pr 4496.44(3)	0.0228(19)	0.00049(4)	¹⁴⁸ Sm859 86(4)	88(4)	1.77(8)
¹⁴ Pr 4579.64(3)	0.0126(17)	0.00027(4)	¹⁴⁹ Sm869.29(3) ¹⁴⁹ Sm1165.76(5)	119(6) 61(3)	2.40(12) 1.23(6)
¹⁴¹ Pr 4592.28(3)	0.0165(19)	0.00035(4)	¹⁴⁸ Sm1170.59(4)	230(10)	4.64(20)
¹⁴¹ Pr 4692.120(22) ¹⁴¹ Pr 4722.82(4)	0.291(10) 0.083(4)	0.00626(22) 0.00179(9)	¹⁴⁸ Sm1177 3(4)	57(3)	1.15(6)
¹⁴ Pr 4731.284(9)	0.003(4)	0.00179(9)	¹⁴⁸ Sm1193.84(4)	106(3)	2.14(6)
¹⁴ Pr 4801.22(3)	0.140(8)	0.00301(17)	¹⁴⁹ Sm1247.04(8) ¹⁴⁹ Sm1262.07(10)	51(3) 62(5)	1.03(6) 1.25(10)
¹⁴ Pr 4864.91(4)	0.0112(16)	2.4(3)×10 ⁻⁴	¹⁴⁹ Sm1321.95(7)	62(5) 76(9)	1.53(18)
¹⁴¹ Pr 5020.41(7) ¹⁴¹ Pr 5052.750(24)	0.0135(17) 0.0329(21)	0.00029(4) 0.00071(5)	¹⁴⁹ Sm1350.39(5)	94(12)	1.89(24)
¹⁴ Pr 5096.081(15)	0.0329 (21) 0.208(8)	0.00071(5) 0.00447(17)	Europium (Z=63), A		
¹⁴ Pr 5137.972(24)	0.098(4)	0.00211(9)	¹⁵¹ Eu 19.700(10)	59(30)	1.2(6)
¹⁴ Pr 5140.72(3)	0.269(11)	0.00579(24)	¹⁵¹ Eu 48.31(17)	18Ì(7Ô)	3.6(14)
¹⁴¹ Pr 5206.03(4) ¹⁴¹ Pr 5666.170(6)	0.033(3) 0.379(15)	0.00071(7) 0.0082(3)	¹⁵¹ Eu 52.39(9)	55(3)	1.10(6)
55551116(5)	3.3.5(.3)	- (-)			

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Εγ)-barns	k _o	Eγ-keV	σ(Εγ)-barns	k ₀
Europium (Z=63), co	ontinued		Gadolinium (Z=64),	continued	
¹⁵¹ Eu 65.1(3)	16(8)	0.32(16)	¹⁵⁷ Gd 824.127(24)	133(8)	2.56(15)
¹⁵³ Eu 68.23(9) ¹⁵³ Eu 71.24(12)	69(20)	1.4(4)	¹⁵⁵ Gd 841.218(12) ¹⁵⁷ Gd 852.885(25)	80(24)	1.5(5)
151 Eu 73.21(9)	45(14) 106(22)	0.9(3) 2.1(4)	157 Gd 852.947(9)	194(5) 202(30)	3.74(10) 3.9(6)
¹⁵³ Eu 74.86(12)	43(12)	0.86(24)	¹⁵ Gd 867.682(11)	83(4)	1.60(8)
¹³¹ Eu 77.23(4)	187(13)	3.7(3)	¹⁵ Gd 870.690(25)	127(19)	2.4(4)
¹⁵¹ Eu 87.13(11) ¹⁵¹ Eu 88.31(12)	29(3) 42(5)	0.58(6) 0.84(10)	¹⁵⁷ Gd 870.815(25) ¹⁵⁷ Gd 870.877(9)	434(11) 216(40)	8.36(21) 4.2(8)
¹³¹ Eu 89.847(6)	1430(30)	28.5(6)	¹³ Gd 874.93(3)	151(5)	2.91(10)
¹⁵¹ Eu 91.20(10)	20(10)	0.40(20)	¹⁵ Gd 879.29(3)	139(5)	2.68(10)
¹⁵³ Eu 100.86(23) ¹⁵¹ Eu 103.34(13)	24(5)	0.48(10)	¹⁵⁷ Gd 897.502(10) ¹⁵⁷ Gd 897.611(10)	1200(50)	23.1(10)
¹⁵⁵ Eu 106,57(14)	48(5) 42(6)	0.96(10) 0.84(12)	157 Gd 915.017(10)	1090(50) 394(10)	21.0(10) 7.59(19)
¹³¹ Eu 111.0(3)	22(6)	0.44(12)	¹⁵ (Gd 917.378(25)	262(16)	5.0(3)
¹³¹ Eu 113.1(3)	15(5)	0.30(10)	¹⁵⁷ Gd 917.54(3)	268(7)	5.16(13)
¹⁵¹ Eu 117.54(10) ¹⁵¹ Eu 121.71(11)	14.7(22) 17.7(25)	0.29(4) 0.35(5)	¹⁵⁷ Gd 922.466(20) ¹⁵⁷ Gd 942.404(11)	98(8) 120(11)	1.89(15) 2.31(21)
¹⁵¹ Eu 124.01(16)	25(3) ´	0.50(6)	¹⁵⁷ Gd 944.174(10)	3090(70)	59.5(13)
¹⁵⁵ Fu 125 19(16)	25(3)	0.50(6)	¹⁵ (Gd 953.067(21)	73(6)	1.41(12)
¹⁵³ Eu 129.06(12) ¹⁵¹ Eu 132.71(10)	14.7(16) 20.7(13)	0.29(3) 0.41(3)	¹⁵⁷ Gd 954.296(10) ¹⁵⁵ Gd 959.774(12)	89(15) 147(50)	1.7(3) 2.8(10)
¹⁵¹ Eu 135,42(9)	27.8(14)	0.55(3)	¹⁵⁷ Gd 960.082(11)	216(17)	4.2(3)
¹³¹ Eu 140.19(9)	21(4)	0.42(8)	¹⁵⁵ Gd 960.553(14)	84(40)	1.6(8)
¹⁵¹ Eu 143.54(8) ¹⁵³ Eu 154.14(9)	43(3) 22(3)	0.86(6) 0.44(6)	¹⁵⁷ Gd 962.104(10) ¹⁵⁵ Gd 969.877(18)	2050(130) 172(50)	39.5(25)
¹⁵¹ Eu 167.01(13)	18.9(19)	0.38(4)	¹³ (Gd 977.121(10)	1440(21)	3.3(10) 27.8(4)
¹³¹ Eu 169,28(9)	54.8(22)	1.09(4)	¹⁵⁵ Gd 987.908(21)	144(40)	2.8(8)
¹⁵¹ Eu 171.95(9) ¹⁵³ Eu 179.83(13)	40(3)	0.80(6)	¹⁵⁷ Gd 998.398(9)	559(40)	10.8(8)
151 151 152 153 153 153 153 153 153 153 153 153 153	20(3) 23(3)	0.40(6) 0.46(6)	¹⁵⁷ Gd 1000.859(10) ¹⁵⁷ Gd 1004.058(9)	93(4) 404(22)	1.79(8) 7.8(4)
¹⁹⁹ Eu 187,37(8)	31.2(14)	0.62(3)	¹³ Gd 1007.340(20)	105(4)	2.02(8)
¹⁵¹ Eu 190.96(11)	19.7(14)	0.39(3)	¹³ (Gd 1010.19(3)	232(7)	4.47(13)
¹⁵¹ Eu 193.11(13) ¹⁵¹ Eu 199.12(10)	28.3(20) 25.5(15)	0.56(4) 0.51(3)	¹⁵⁷ Gd 1034.45(4) ¹⁵⁵ Gd 1040.430(12)	142(5) 209(60)	2.74(10) 4.0(12)
¹³¹ Eu 203,63(10)	18.4(14)	0.37(3)	¹⁰⁰ Gd 1065.136(12)	410(120)	7.9(23)
¹⁵¹ Eu 206,53(8)	58.7(20)	1.17(4)	¹⁵⁵ Gd 1067.185(12)	160(50)	3.1(10)
¹⁵¹ Eu 208.51(18) ¹⁵¹ Eu 221.30(8)	16.1(21) 73(3)	0.32(4) 1.46(6)	155Gd 1079.25(3) 157Gd 1097.002(10)	87(30) 662(15)	1.7(6) 12.8(3)
¹³¹ Eu 233,22(14)	15.9(23)	0.32(5)	¹³ 'Gd 1107.612(9)	1830(40)	35.3(8)
¹³¹ Eu 244,88(24)	26.3(22)	0.52(4)	¹³ Gd 1116.624(12)	419(9)	8.07(17)
¹⁵¹ Eu 246.5(3) ¹⁵¹ Eu 260.66(9)	15(3) 15.9(18)	0.30(6) 0.32(4)	¹⁵⁷ Gd 1119.163(10) ¹⁵⁷ Gd 1141.458(10)	1180(30) 530(30)	22.7(6) 10.2(6)
¹³¹ Eu <i>2</i> 73,65(8)	17.3(12)	0.345(24)	¹³ (Gd 1145,225(9)	82(9) ´	1.58(17)
¹⁵³ Eu 281.78(9) ¹⁵¹ Eu 285.10(9)	20.4(8)	0.407(16)	¹⁵⁵ Gd 1154.102(12) ¹⁵⁵ Gd 1158.986(12)	290(170)	6(3) 9(3)
153 Eu 299.83(8)	23.2(18) 24.0(6)	0.46(4) 0.479(12)	¹⁵⁵ Gd 1168.874(13)	490(150) 140(40)	9(3) 2.7(8)
¹³¹ Eu 841.570(5)d	223(Š)	<i>4.45[3.6%]</i>	¹⁰⁰ Gd 1174.058(13)	110(30)	2.1(6)
¹⁵¹ Eu 963.390(12)d	183.0(16)	3.65[3.6%]	¹⁵⁷ Gd 1180.328(9) ¹⁵⁵ Gd 1180.36(4)	223(21)	4.3(4)
Gadolinium (Z=64),			¹³ (Gd 1183.968(10)	189(60) 958(60)	3.6(12) 18.5(12)
¹⁵⁷ Gd 79.5100(10)	4010(100)	77.3(19)	¹³ (Gd 1185.988(9)	160Ò(9Ó)	30.8(17)
¹⁵⁴ Gd <i>86.5470(10)</i> ¹⁵⁵ Gd 88.9670(10)	<i>0.57(9)</i> 1380(40)	0.0110(17) 26.6(8)	¹⁵⁵ Gd 1187.120(21) ¹⁵⁷ Gd 1187.122(9)	340(100)	6.6(19) 27.4(17)
¹³² Gd 109.7600(10)	0.089(4)	0.00172(8)	¹³ (Gd 1219.947(9)	1420(90) 242(12)	4.66(23)
¹⁵⁷ Gd 181.931(4) ¹⁵⁵ Gd 199.2130(10)	7200(300)	139(6)	¹⁵⁵ Gd 1222.349(12)	139(40)	2.7(8)
157 Gd 255.654(4)	2020(60) 350(19)	38.9(12) 6.7(4)	¹⁵⁵ Gd 1230.789(23) ¹⁵⁷ Gd 1237.625(9)	390(120) 208(9)	7.5(23)
¹⁵ Gd 277.544(7)	493(12)	9.50(23)	¹⁵⁵ Gd 1242.481(17)	204(60)	4.01(17) 3.9(12)
¹⁵⁵ Gd 296.526(3) ¹⁶⁰ Gd <i>360.940(20)d</i>	187(5)	3.60(10)	¹⁵⁵ Gd 1250.637(21)	113(30)	2.2(6)
¹⁵ Gd 528,024(8)	<i>0.199(5)</i> 97(11)	<i>0.00384[91%]</i> 1.87(21)	¹⁵⁷ Gd 1255.980(10) ¹⁵⁷ Gd 1259.837(9)	109(4) 417(10)	2.10(8) 8.04(10)
¹⁵⁷ Gd 539.608(5)	144(5)	2.78(10)	13'Gd 1263.478(10)	641(15)	8.04(19) 12.4(3)
¹⁵ Gd 595.728(7)	75(3)	1.45(6)	¹⁵⁵ Gd 1277.508(18)	180(̇50)́	3.5(10)
¹⁵⁷ Gd 606.400(8) ¹⁵⁵ Gd 626.275(8)	271(8) 73(22)	5.22(15) 1.4(4)	¹⁵⁷ Gd 1278.932(9) ¹⁵⁷ Gd 1301.093(9)	228(12)	4.39(23)
¹⁵ Gd 637.474(12)	114(4)	2.20(8)	¹⁵ (Gd 1323.387(10)	213(6) 641(16)	4.10(12) 12.4(3)
¹⁵ Gd 675.43(3)	76(5)	1.46(10)	¹³ Gd 1327.154(9)	294(̈9) ´	5.67(17)
¹⁵⁷ Gd 688.892(11) ¹⁵⁷ Gd 743.066(21)	122(7) 177(5)	2.35(13) 3.41(10)	¹⁵⁵ Gd 1366.473(18) ¹⁵⁷ Gd 1372.805(10)	97(30) 195(15)	1.9(6) 3.8(3)
¹⁵ Gd 750.109(10)	118(11)	2.27(21)	¹⁵ Gd 1377.86(8)	87(5)	3.6(3) 1.68(10)
¹⁵ Gd 768.37(3)	221(11)	4.26(21)	¹³ Gd 1405.877(10)	101(4)	1.95(8)
¹⁵⁷ Gd 780.174(10) ¹⁵⁷ Gd 782.28(3)	1010(22) 134(5)	19.5(4) 2.58(10)	¹⁵⁷ Gd 1437.910(10) ¹⁵⁵ Gd 1449.849(21)	276(10) 106(30)	5.32(19)
¹⁵⁷ Gd 814.602(10)	89(8)	1.72(15)	¹⁵ (Gd 1517.419(10)	219(18)	2.0(6) 4.2(4)
¹⁵⁷ Gd 820.107(24)	118(7)	2.27(13)	¹⁵⁷ Gd 1530.279(12)	107(8)	2.06(15)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Εγ)-barns	k ₀	Eγ-keV	σ (Ε γ)-barns	k _o
Gadolinium (Z=64),	continued		Terbium (Z=65), cor	ntinued	
¹⁵⁷ Gd 1587.806(10)	105(4)	2.02(8)	¹⁵⁹ Tb 97.503(3)	0.50(6)	0.0095(11)
¹⁵⁷ Gd 1663.561(11) ¹⁵⁵ Gd 1682.081(19)	105(8) 108(30)	2.02(15) 2.1(6)	¹⁵⁹ Tb 97.967(3) ¹⁵⁹ Tb 101.0660(20)	0.077(19) 0.023(5)	0.0015(4) 0.00044(10)
¹⁵ Gd 1692.30(6)	88(13)	1.70(25)	¹⁵⁹ Tb 104.0670(20)	0.15(3)	0.00044(10)
¹⁵ Gd 1774.37(12)	122(40)	2.4(8)	¹³⁹ Tb 108.943(5)	0.026(5)	0.00050(10)
¹⁵⁷ Gd 1781.711(10) ¹⁵⁷ Gd 1815.045(11)	91(22) 92(20)	1.8(4) 1.8(4)	¹⁵⁹ Tb 112.3730(20) ¹⁵⁹ Tb 117.950(4)	0.089(10)	0.00170(19) 0.00053(10)
¹⁵ Gd 1856.41(3)	147(50)	2.8(10)	¹⁵⁹ Tb 131.058(5)	0.028(5) 0.064(8)	0.00033(10)
¹³ Gd 1944.269(20)	181(24)	3.5(5)	¹³⁹ Th 135.5970(20)	0.39(4)	0.0074(8)
¹⁵⁷ Gd 1956.29(12) ¹⁵⁵ Gd 1965.970(25)	175(21) 80(25)	3.4(4) 1.5(5)	¹⁵⁹ Tb 138.5840(10) ¹⁵⁹ Tb 140.784(6)	0.052(6) 0.107(12)	0.00099(11) 0.00204(23)
¹⁵ Gd 2023.778(20)	114(30)	2.2(6)	¹⁵⁹ Tb 150.603(3)	0.144(15)	0.00204(23)
¹⁵ Gd 2073.593(11)	84(7)	1.62(13)	159Th 153.6870(20)	0.44(5)	0.0084(10)
¹⁵⁷ Gd 2180.474(22) ¹⁵⁷ Gd 2196.56(16)	159(50) 120(12)	3.1(10) 2.31(23)	¹⁵⁹ Tb 158.9430(20) ¹⁵⁹ Tb 163.2420(20)	0.111(12) 0.105(11)	0.00212(23) 0.00200(21)
¹⁵ Gd 2203.51(11)	151(10)	2.91(19)	¹⁵⁹ Tb 176.833(3)	0.070(9)	0.00133(17)
¹³ Gd 2259.983(23)	92(6)	1.77(12)	¹³⁹ Tb 178.674(5)	0.049(8)	0.00093(15)
¹⁵⁷ Gd 2314.82(12) ¹⁵⁷ Gd 2459.07(18)	142(6) 75(6)	2.74(12) 1.45(12)	¹⁵⁹ Tb 178.881(3) ¹⁵⁹ Tb 179.832(7)	0.42(8) 0.023(4)	0.0080(15) 0.00044(8)
¹⁵ Gd 2515.41(20)	88(6)	1.70(12)	¹³⁹ Tb 181.864(5)	0.072(13)	0.00137(25)
¹³ Gd 2577.32(15)	100(6)	1.93(12)	¹³⁹ Tb 184,456(5)	0.11(3)	0.0021(6)
¹⁵⁷ Gd 2617.93(16) ¹⁵⁷ Gd 2678.60(16)	100(6) 101(20)	1.93(12) 1.9(4)	¹⁵⁹ Tb 185.187(7) ¹⁵⁹ Tb 193.431(4)	0.094(17) 0.37(4)	0.0018(3) 0.0071(8)
¹³ Gd 2702.34(14)	116(5)	2.24(10)	¹⁵⁹ Tb 209.738(6)	0.055(6)	0.00105(11)
¹⁵ Gd 2799.39(17)	87(7)	1.68(13)	¹³⁹ Tb 215.026(6)	0.036(5)	0.00069(10)
¹⁵⁷ Gd 3520.6(3) ¹⁵⁷ Gd 3700.3(4)	83(9) 99(17)	1.60(17) 1.9(3)	¹⁵⁹ Tb 221.029(6) ¹⁵⁹ Tb 228.252(11)	0.022(4) 0.032(4)	0.00042(8) 0.00061(8)
¹⁵ Gd 3989.3(4)	103(22)	2.0(4)	¹⁵⁹ Tb 234.724(7)	0.026(5)	0.00050(10)
¹³ Gd 4058.48(18)	74(5)	1.43(10)	¹³⁹ Th 236.094(6)	0.032(6)	0.00061(11)
¹⁵⁷ Gd 4310.0(3) ¹⁵⁷ Gd 4925.25(13)	76(5) 235(8)	1.46(10) 4.53(15)	¹⁵⁹ Tb 238.653(7) ¹⁵⁹ Tb 241.809(5)	0.023(5) 0.035(8)	0.00044(10) 0.00067(15)
¹⁵ Gd 5058.37(17)	105(5)	2.02(10)	¹⁵⁹ Tb 242.548(5)	0.018(4)	0.00034(8)
¹⁵ Gd 5179.16(16)	110(6)	2.12(12)	¹³⁹ Th 242.973(12)	0.219(24)	0.0042(5)
¹⁵⁷ Gd 5239.83(17) ¹⁵⁷ Gd 5250.2(4)	83(10) 103(17)	1.60(19) 2.0(3)	159Tb 243.277(6) 159Tb 248.062(5)	0.16(3) 0.30(3)	0.0031(6) 0.0057(6)
¹³ Gd 5403.38(20)	120(5)	2.31(10)	¹⁵⁹ Tb 255.038(6)	0.112(16)	0.0021(3)
¹⁵⁷ Gd 5542.93(12) ¹⁵⁷ Gd 5582.26(15)	112(5)	2.16(10)	¹⁵⁹ Tb 255.927(6) ¹⁵⁹ Tb 257.541(4)	0.052(9)	0.00099(17)
¹⁵ Gd 5592.95(21)	155(6) 91(4)	2.99(12) 1.75(8)	¹³⁹ Th 258.565(9)	0.045(7) 0.033(6)	0.00086(13) 0.00063(11)
¹⁵ Gd 5609.80(20)	75(4)	1.45(8)	¹⁵⁹ Tb 262.964(11)	0.022(6)	0.00042(11)
¹⁵⁷ Gd 5661.19(16) ¹⁵⁷ Gd 5677.28(5)	124(5) 138(15)	2.39(10) 2.7(3)	¹⁵⁹ Tb 264.989(5) ¹⁵⁹ Tb 270.762(7)	0.031(7) 0.102(12)	0.00059(13) 0.00194(23)
¹⁵ Gd 5784.15(5)	105(5)	2.02(10)	¹³⁹ Th 274.385(11)	0.021(4)	0.00040(8)
¹⁵ Gd 5903.39(6)	457(14)	8.8(3)	¹³⁹ Tb 275.707(5)	0.124(14)	0.0024(3)
¹⁵⁷ Gd 6419.82(5) ¹⁵⁷ Gd 6671.73(5)	131(6) 83(4)	2.52(12) 1.60(8)	¹⁵⁹ Tb 277.818(6) ¹⁵⁹ Tb 278.152(7)	0.093(11) 0.025(6)	0.00177(21) 0.00048(11)
¹⁵⁷ Gd 6750.11(5)	965(30)	18.6(6)	¹³⁹ Th 278 803(7)	0.083(11)	0.00158(21)
Terbium (Z=65), At.			¹³⁸ Tb 282.698(5)	0.049(8)	0.00093(15)
¹⁵⁹ Tb 15.413(6)	0.071(12)	0.00135(23)	¹⁵⁹ Tb 283.289(7) ¹⁵⁹ Tb 284.148(9)	0.052(9) 0.087(11)	0.00099(17) 0.00166(21)
¹⁵⁹ Th 29.0170(20)	0.21(4)	0.0040(8)	¹³⁹ Th 287 738(9)	0.029(5)	0.00055(10)
159Tb 32.652(3) 159Tb 33.1590(10)	0.19(3) 0.22(4)	0.0036(6) 0.0042(8)	¹³⁹ Th 288,212(5)	0.126(14)	0.0024(3)
¹⁵⁹ Tb 41.8900(10)	0.64(10)	0.0122(19)	¹⁵⁹ Tb 290.625(10) ¹⁵⁹ Tb 295.757(9)	0.052(7) 0.062(8)	0.00099(13) 0.00118(15)
¹⁵⁹ Tb 50.8690(10)	0.60(15)	0.011(3)	¹⁰⁹ Th 302 735(13)	0.086(10)	0.00164(19)
¹⁵⁹ Tb 54.1290(10) ¹⁵⁹ Tb 59.6430(10)	0.60(15) 0.48(6)	0.011(3) 0.0092(11)	159Tb 303.114(10) 159Tb 308.102(9)	0.042(8) 0.056(8)	0.00080(15)
¹³⁹ Th 62 374(6)	0.052(15)	0.0010(3)	¹³⁹ Tb 310.470(5)	0.177(21)	0.00107(15) 0.0034(4)
¹⁵⁹ Tb 63.6860(10)	1.46(16)	0.028(3)	¹⁵⁹ Th 310 804(6)	0.019(5)	0.00036(10)
¹⁵⁹ Tb 64.1100(20) ¹⁵⁹ Tb 64.8240(20)	1.2(3) 0.13(4)	0.023(6) 0.0025(8)	¹⁵⁹ Tb 315.857(5) ¹⁵⁹ Tb 316.564(9)	0.118(14)	0.0023(3)
¹⁵⁹ Th 68 413(3)	0.035(14)	0.0007(3)	¹⁵⁹ Tb 317.597(5)	0.027(5) 0.121(15)	0.00051(10) 0.0023(3)
¹⁵⁹ Tb 75.0500(10)	1.78(18)	0.034(3)	¹⁵⁹ Th 319 862(6)	0.132(15)	0.0025(3)
¹⁵⁹ Tb 75.7880(10) ¹⁵⁹ Tb 78.137(7)	0.14(4) 0.034(18)	0.0027(8) 0.0006(3)	159Tb 323.809(6) 159Tb 339.487(5)	0.022(4) 0.35(4)	0.00042(8)
¹³⁹ Th 78.8670(10)	0.19(4)	0.0036(8)	¹³⁹ Th 339.821(6)	0.33(4) 0.040(9)	0.0067(8) 0.00076(17)
¹⁵⁹ Tb 79.099(6) ¹⁵⁹ Tb 83.8940(20)	0.43(6)	0.0082(11)	¹³⁹ Th 340 780(6)	0.069(9)	0.00132(17)
¹⁵⁹ Tb 87.7150(10)	0.050(10) 0.160(19)	0.00095(19) 0.0031(4)	¹⁵⁹ Tb 341.731(6) ¹⁵⁹ Tb 345.581(8)	0.089(15) 0.041(8)	0.0017(3) 0.00078(15)
¹⁵⁹ Tb 89.4080(20)	0.21(3)	0.0040(6)	¹³⁹ Th 347.032(6)	0.041(8)	0.00078(13)
¹⁵⁹ Tb 92.7590(10) ¹⁵⁹ Tb 93.3060(20)	0.052(16) 0.218(25)	0.0010(3) 0.0042(5)	¹³⁹ Th 348 924(13)	0.053(10)	0.00101(19)
¹⁵⁹ Tb 94.0440(20)	0.052(14)	0.0042(3)	¹⁵⁹ Tb 351.095(9) ¹⁵⁹ Tb 352.027(10)	0.176(22) 0.020(4)	0.0034(4) 0.00038(8)
¹⁵⁹ Tb 94.829(3)	0.071(11)	0.00135(21)	¹³⁹ Tb 352.514(6)	0.160(21)	0.0031(4) ´
¹⁵⁹ Tb 97.194(10)	0.024(8)	0.00046(15)	¹⁵⁹ Tb 356.224(10)	0.117(17)	0.0022(3)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Table I. Adopted Prof		-		-	lements, continue
Eγ-keV	σ (Ε γ)-barns	k _o	Eγ-keV	σ (Ε γ)-barns	k _o
Terbium (Z=65), co	ntinued		Terbium (Z=65), cor	ntinued	
159Tb 357.748(5)	0.26(3)	0.0050(6)	¹⁵⁹ Tb 5860.03(23)	0.036(8)	0.00069(15)
¹⁵⁹ Tb 359.960(10)	0.048(9)	0.00092(17)	159Tb 5890.70(7)	0.137(19)	0.0026(4)
¹⁵⁹ Tb 361.680(14) ¹⁵⁹ Tb 363.821(6)	0.095(12)	0.00181(23) 0.0023(3)	¹⁵⁹ Tb 5896.46(7) ¹⁵⁹ Tb 5953.58(7)	0.023(7)	0.00044(13) 0.00196(25)
159Tb 370.320(7)	0.120(15) 0.057(7)	0.0023(3)	159Tb 5993.73(7)	0.103(13) 0.114(15)	0.00190(23)
¹³⁸ Tb 372.980(6)	0.070(8)	0.00133(15)	¹⁵⁹ Tb 6138.03(7)	0.110(15)	0.0021(3)
¹³⁹ Tb 373.055(12)	0.074(13)	0.00141(25)	¹³⁹ Tb 6218.56(7)	0.190(22)	0.0036(4)
¹³⁹ Tb 374.678(6)	0.099(11)	0.00189(21)	¹⁵⁹ Tb 6235.53(7)	0.020(6)	0.00038(11)
¹⁵⁹ Tb 376.515(9) ¹⁵⁹ Tb 378.740(8)	0.039(9) 0.024(8)	0.00074(17)	¹⁵⁹ Tb 6241.78(7) ¹⁵⁹ Tb 6269.43(7)	0.072(10)	0.00137(19) 0.00055(11)
159Tb 398.252(14)	0.024(5)	0.00046(15) 0.00046(10)	159Tb 6311.32(7)	0.029(6) 0.028(6)	0.00053(11)
¹⁵⁹ Th 399.512(9)	0.074(11)	0.00141(21)			` '
¹³⁹ Tb 403.800(13)	0.028(6)	0.00053(11)	Dysprosium (Z=66),		
¹⁵⁹ Tb 406.214(12)	0.027(6)	0.00051(11)	¹⁶⁴ Dy 50.4310(20) ¹⁶⁴ Dy 7 2.765(3)	33.9(15) 7.1(3)	0.63(3) 0.132(6)
¹⁵⁹ Tb 413.492(9) ¹⁵⁹ Tb 414.870(6)	0.066(12) 0.132(24)	0.00126(23) 0.0025(5)	¹⁰³ Dv 73.392(8)	1.70(24)	0.032(5)
159Tb 420.630(8)	0.132(24)	0.0023(3)	¹⁰⁴ Dv 77.520(3)	2.7(5)	0.050(9)
¹³⁹ Th 427.158(9)	0.147(17)	0.0028(3)	101Dv 80.64(7)	16.5(5)	0.308(9)
¹⁵⁹ Tb 430.905(14)	0.023(4)	0.00044(8)	¹⁶⁴ Dy 83.395(3)	3.51(20)	0.065(4)
¹⁵⁹ Tb 432.079(13)	0.021(8)	0.00040(15)	¹⁶⁴ Dy 108.159(3)d ¹⁶⁴ Dy 116.768(4)	<i>13.6(5)</i> 3.28(17)	<i>0.254[97%]</i> 0.061(3)
¹⁵⁹ Tb 437.445(9) ¹⁵⁹ Tb 442.212(14)	0.077(16)	0.0015(3)	¹⁰⁴ Dv 139.102(4)	6.16(19)	0.115(4)
159Tb 447.390(9)	0.077(12) 0.10(3)	0.00147(23) 0.0019(6)	¹⁰⁴ Dv 156.245(5)	1.82(10)	0.0339(19)
¹⁵⁹ Tb 448.105(12)	0.054(10)	0.00103(19)	103Dv 168.838(5)	4.7(6)	0.088(11)
¹⁵⁹ Tb 451.617(10)	0.21(3)	0.0040(6)	¹⁰⁴ Dv 178.382(5)	1.8(3)	0.034(6)
¹³⁹ Tb 453,266(10)	0.033(12)	0.00063(23)	¹⁶⁴ Dy 184.257(4) ¹⁶¹ Dy 185.19(9)	146(15) 39.1(12)	2.7(3) 0.729(22)
¹⁵⁹ Tb 455.783(10) ¹⁵⁹ Tb 459.519(10)	0.029(12)	0.00055(23)	¹⁶³ Dy 215.082(21)	3.07(17)	0.057(3)
159Tb 464.264(17)	0.085(12) 0.192(21)	0.00162(23) 0.0037(4)	102Dv 250.8900(20)	5.2(6)	0.097(11)
¹⁵⁹ Tb 492,460(13)	0.024(6)	0.00046(11)	¹⁰¹ Dv 260.11(7)	8.3(3)	0.155(6)
¹³⁹ Tb 496.916(17)	0.041(9)	0.00078(17)	¹⁰⁴ Dv 271.727(9)	2.90(17)	0.054(3)
¹⁵⁹ Tb 519.790(14)	0.059(13)	0.00113(25)	¹⁶³ Dy 277.500(16) ¹⁶¹ Dy 282.89(7)	1.51(16) 7.8(3)	0.028(3) 0.145(6)
¹⁵⁹ Tb 521.308(21) ¹⁵⁹ Tb 525.194(17)	0.046(12)	0.00088(23)	¹⁰³ Dv 294.575(13)	2.78(19)	0.052(4)
159Tb 525.933(17)	0.080(17) 0.22(3)	0.0015(3) 0.0042(6)	'''Dv 311.39(15)	2.1(4)	0.039(8)
¹⁵⁹ Th 529.054(10)	0.022(8)	0.00042(15)	¹⁰² Dv 316.3090(10)	3.0(4)	0.056(8)
¹³⁹ Tb 530.981(24)	0.037(10)	0.00071(19)	¹⁶¹ Dy 321.84(12) ¹⁶⁴ Dy 331.126(8)	1.74(25)	0.032(5)
¹⁵⁹ Tb 532.689(21) ¹⁵⁹ Tb 532.733(9)	0.129(16)	0.0025(3)	161Dy 334.08(8)	4.5(4) 4.9(4)	0.084(8) 0.091(8)
159Tb 542.840(21)	0.15(3) 0.034(8)	0.0029(6) 0.00065(15)	¹⁰² Dv 338.5310(20)	1.50(17)	0.028(3)
¹³⁹ Tb 544.922(10)	0.064(10)	0.00122(19)	¹⁰⁴Dv 343.312(4)	3.2(4)	0.060(8)
¹⁵⁹ Tb 545.661(10)	0.056(11)	0.00107(21)	104Dv 345.860(12)	1.8(3)	0.034(6)
¹⁵⁹ Tb 554.509(6)	0.021(7)	0.00040(13)	¹⁶² Dy 347.9050(20) ¹⁶⁴ Dy 349.248(10)	1.84(22) 14.7(6)	0.034(4) 0.274(11)
¹⁵⁹ Tb 585.575(17) ¹⁵⁹ Tb 598.656(14)	0.054(8)	0.00103(15)	¹⁰² Dv 351.1490(10)	10.9(9)	0.203(17)
139Th 600 206(24)	0.020(6) 0.155(18)	0.00038(11) 0.0030(3)	10 ⁴ Dv 352.581(10)	1.7(4̀) ´	0.032(8)
¹⁵⁹ Th 611 513(24)	0.034(9)	0.00065(17)	10 ² Dv 354.2360(10)	3.5(21)	0.07(4)
100 In 625 994(21)	0.027(7)	0.00051(13)	164 Dy 354.353(8) 164 Dy 357.686(8)	3.3(10)	0.062(19)
159Tb 634.737(24)	0.037(7)	0.00071(13)	161 Dy 361.70(10)	2.4(4) 4.1(4)	0.045(8) 0.076(8)
¹⁵⁹ Tb 5184.2(3) ¹⁵⁹ Tb 5199.9(3)	0.023(9) 0.033(8)	0.00044(17) 0.00063(15)	¹⁰⁴ Dv 368.727(8)	1.6(3)	0.030(6)
¹⁵⁹ Th 5204 5(3)	0.040(9)	0.00076(17)	10 ⁴ Dv 380.020(8)	4.1(4)	0.076(8)
¹⁵⁹ Th 5225 0(3)	0.040(13)	0.00076(25)	104Dv 385.9840(20)	34.8(10)	0.649(19)
¹³⁹ Th 5228 45(25)	0.052(12)	0.00099(23)	162 Dy 389.7530(10) 164 Dy 392.651(7)	7.7(7) 11.3(5)	0.144(13) 0.211(9)
¹⁵⁹ Tb 5238.1(3) ¹⁵⁹ Tb 5245.6(3)	0.026(10) 0.061(13)	0.00050(19) 0.00116(25)	¹⁰⁴ Dv 396.208(4)	2.4(9)	0.045(17)
¹⁵⁹ Th 5250 2(3)	0.064(12)	0.00110(23)	104Dv 399.726(6)	2.0(4)	0.037(8)
¹⁵⁹ Th 5259 2(3)	0.022(5)	0.00042(10)	¹⁰² Dv 401.9440(10)	1.62(19)	0.030(4)
¹⁰⁹ Th 5288 99(25)	0.027(7)	0.00051(13)	¹⁶⁴ Dy 403.059(6)	3.5(4)	0.065(8)
¹⁵⁹ Tb 5306.9(3)	0.021(6)	0.00040(11)	¹⁶⁴ Dy 411.651(5) ¹⁶⁴ Dy 414.985(7)	35.1(10) 31(5)	0.655(19) 0.58(9)
¹⁵⁹ Tb 5373.1(4) ¹⁵⁹ Tb 5461.09(25)	0.024(5) 0.029(7)	0.00046(10) 0.00055(13)	10 ² Dv 415.0610(20)	1.57(19)	0.029(4)
¹³⁹ Th 5516 2(5)	0.019(7)	0.00036(13)	¹⁶⁴ Dv 420.833(3)	11.8(11)	0.220(21)
¹³⁹ Th 5524 2(3)	0.051(13)	0.00097(25)	102Dv 421.8440(10)	7.1(9)	0.132(17)
¹³⁹ Th 5551 8(3)	0.029(5)	0.00055(10)	164 Dy 425.346(10) 161 Dy 427.57(13)	2.4(7)	0.045(13)
¹⁵⁹ Tb 5607.07(7) ¹⁵⁹ Tb 5611.6(3)	0.042(9)	0.00080(17)	¹⁶² Dv 427.6800(10)	1.66(25) 1.86(22)	0.031(5) 0.035(4)
¹⁵⁹ Th 5661 8(5)	0.025(5) 0.037(7)	0.00048(10) 0.00071(13)	¹⁶⁴ Dv 430.451(8)	4.2(3)	0.078(6)
¹⁵⁹ Th 5682 5(3)	0.027(7)	0.00071(13)	¹⁰⁴ Dv 447.893(7)	17.4(5)	0.324(9)
¹⁵⁹ Th 5696 8(3)	0.034(6)	0.00065(11)	¹º⁴D∨ 465.416(6)	38.0(10)	0.709(19)
¹⁵⁹ Th 5710 36(7)	0.029(5)	0.00055(10)	¹⁶⁴ Dy 470.227(7) ¹⁶⁴ Dy 474.22(7)	9.3(6) 6.4(4)	0.173(11) 0.119(8)
¹⁵⁹ Tb 5754.34(21) ¹⁵⁹ Tb 5776.37(7)	0.031(8)	0.00059(15)	¹⁶⁴ Dv 474.95(4)	3.3(10)	0.119(8)
¹³⁹ Th 5782 28(7)	0.120(17) 0.041(9)	0.0023(3) 0.00078(17)	¹⁶² Dv 475.3880(10)	1.71(21)	0.032(4)
159Tb 5842.29(7)	0.054(10)	0.00103(19)	¹⁶⁴ Dy 477.061(6)	22(7) ´	0.41(1̀3)
	. ,	. ,			_

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Εγ)-barns	k _o	Eγ-keV	σ(Εγ)-barns	k ₀
Dysprosium (Z=66)		0.205(0)	Dysprosium (Z=66)		0.044(0)
¹⁶⁴ Dy 477.08(4) ¹⁶⁴ Dy 496.931(5)	15.8(5) 44.9(11)	0.295(9) 0.837(21)	¹⁶⁴ Dy 1646.80(15) ¹⁶⁴ Dy 1671.84(13)	2.2(3) 3.6(5)	0.041(6) 0.067(9)
¹⁰⁴ Dv 499.395(6)	13.0(10)	0.242(19)	101Dy 1717.18(13)	3.0(4)	0.056(8)
¹⁰⁴Dv 500.37(8)	10.3(5)	0.192(9)	10 ⁴ Dv 1722.27(13)	3.2(4)	0.060(8)
¹⁶⁴ Dy 500.587(6) ¹⁶⁴ Dy 506.47(4)	10(3)	0.19(6)	¹⁶⁴ Dý 1737.35(15) ¹⁶¹ Dy 1781.5(3)	3.8(4)	0.071(8)
164Dy 508.96(4)	6.4(4) 9.5(6)	0.119(8) 0.177(11)	164 Dy 1806.00(25)	3.5(6) 2.4(5)	0.065(11) 0.045(9)
104Dv 519.05(7)	1.5(3)	0.028(6)	'''Dv 1823.7(7)	1.9(5)	0.035(9)
¹⁰⁴Dv 524.41(6)	4.7(5)	0.088(9)	104Dv 1835.40(18)	3.2(6)	0.060(11)
¹⁶⁴ Dy 529.46(7) ¹⁶⁴ Dy 529.54(8)	3.0(10) 2.5(4)	0.056(19) 0.047(8)	¹⁶⁴ Dy 1866.28(13) ¹⁶⁴ Dy 2019.4(3)	2.6(4) 2.5(5)	0.048(8) 0.047(9)
¹⁰⁴ D∨ 538.609(8)	69.2(19)	1.29(4)	¹⁰⁴Dv 2091.58(11)	2.6(5)	0.048(9)
¹⁰⁴ Dv 546.54(4)	3.7(4)	0.069(8)	101Dv 2110.01(16)	3.6(4)	0.067(8)
¹⁶⁴ Dy 556.932(7) ¹⁶⁴ Dy 565.567(4)	2.2(4) 5.1(5)	0.041(8) 0.095(9)	¹⁶⁴ Dy 2113.91(11) ¹⁶⁴ Dy 2164.34(11)	4.0(4) 3.1(4)	0.075(8) 0.058(8)
¹⁰⁴ Dv 569.53(7)	8.3(25)	0.15(5)	10 ⁴ Dv 2226.92(19)	2.7(5)	0.050(9)
¹⁰⁴ Dv 569.79(6)	9.7(5)	0.181(9)	¹⁰⁴ Dv 2242.3(3)	3.3(5)	0.062(9)
¹⁶¹ Dy 572.7(4) ¹⁶¹ Dy 572.88(7)	2.2(9) 1.65(12)	0.041(17) 0.0308(22)	¹⁶⁴ Dy 2259.3(3) ¹⁶⁴ Dy 2272.0(6)	2.8(5) 3.6(7)	0.052(9) 0.067(13)
¹⁰⁴ D∨ 583.982(5)	24(7)	0.45(13)	¹⁰⁴Dv 2305.5(3)	2.2(5)	0.041(9)
¹⁰⁴Dv 596.71(4)	5.1(3)	0.095(6)	¹⁰⁴ Dv 2313.8(4)	7.2(6)	0.134(11)
¹⁶⁴ Dy 613.13(9) ¹⁶¹ Dy 647.50(12)	2.5(3) 3.11(21)	0.047(6)	¹⁶⁴ Dy 2369.89(24) ¹⁶⁴ Dy 2412.2(4)	4.2(6)	0.078(11)
163 Dy 673.71(4)	1.7(4)	0.058(4) 0.032(8)	164 Dy 2552.64(19)	2.6(6) 5.3(6)	0.048(11) 0.099(11)
¹⁶³ Dv 688.36(4)	4.7 (4)	0.088(8)	¹⁰⁴ Dy 2593.02(19)	3.0(5)	0.056(9)
¹⁰¹ Dv 697.16(9)	3.3(3)	0.062(6)	104Dv 2606.94(19)	4.1(5)	0.076(9)
¹⁶¹ Dy 711.41(12) ¹⁶³ Dy 754.75(4)	2.28(22) 6.4(4)	0.043(4) 0.119(8)	¹⁶⁴ Dy 2635.0(3) ¹⁶² Dy 2660.1(4)	3.0(5) 6.6(11)	0.056(9) 0.123(21)
¹⁰³ Dv 761.76(4)	4.1(3)	0.076(6)	¹⁰⁴ Dy 2683.54(24)	2.4(5)	0.045(9)
161Dv 795.27(8)	6.8(4)	0.127(8)	¹⁰⁴Dv 2702.83(21)	6.9(22)	0.13(4)
¹⁶¹ Dy 807.46(7) ¹⁶¹ Dy 842.48(22)	12.1(5) 1.6(4)	0.226(9) 0.030(8)	¹⁶⁴ Dy 2823.8(4) ¹⁶⁴ Dy 2832.15(21)	1.7(5) 1.9(5)	0.032(9) 0.035(9)
161Dv 842.5(4)	1.48(25)	0.028(5)	¹⁰⁴ Dy 2840.1(3)	3.8(5)	0.071(9)
¹⁶¹ Dy 882.27(6) ¹⁶¹ Dy 888.13(7)	18.3(6) 10.4(5)	0.341(11) 0.194(9)	¹⁶⁴ Dy 2854.48(21) ¹⁶⁴ Dy 2863.5(4)	4.0(5) 5.1(5)	0.075(9) 0.095(9)
101Dv 917.16(10)	5.4(5)	0.101(9)	¹⁰⁴Dv 2872.20(21)	4.5(5)	0.084(9)
¹° ⁴ Dy 922.11(7)	1.6(6)	0.030(11)	¹⁰⁴ Dy 2931.8(3)	2.7(5)	0.050(9)
¹⁶¹ Dy 933.70(23) ¹⁶⁴ Dy 933.94(8)	3.1(7) 4.6(7)	0.058(13) 0.086(13)	¹⁶⁴ Dy 2950.37(19) ¹⁶⁴ Dy 2999.9(4)	4.5(5) 1.7(4)	0.084(9) 0.032(8)
161Dv 944.40(7)	7.2(3)	0.134(6)	¹⁰⁴Dv 3012.42(17)	7.8(5)	0.145(9)
161Dv 976.83(13)	3.4(3)	0.063(6)	¹⁰⁴ Dy 3035.55(15)	10.9(6)	0.203(11)
¹⁶¹ Dy 979.98(9) ¹⁶¹ Dy 994.64(7)	8.5(4) 9.2(4)	0.159(8) 0.172(8)	¹⁶⁴ Dy 3071.02(24) ¹⁶⁴ Dy 3098.52(24)	3.8(5) 2.1(4)	0.071(9) 0.039(8)
104Dv 994.87(7)	5.6(17)	0.10(3)	¹⁰⁴Dv 3105.83(21)	5.8(5)	0.108(9)
101Dv 1008.42(22)	2.0(3)	0.037(6)	¹⁰⁴ Dy 3114.06(19)	7.4(6)	0.138(11)
¹⁶⁴ Dy 1018.35(8) ¹⁶¹ Dy 1025.5(3)	3.7(12) 1.7(4)	0.069(22) 0.032(8)	¹⁶⁴ Dy 3169.10(24) ¹⁶⁴ Dy 3198.3(3)	3.3(4) 1.6(3)	0.062(8) 0.030(6)
' ^o 'Dv 1058.41(9)	5.9(4)	0.110(8)	""DV 3238.1(3)	4.7(̇5)́	0.088(9)
¹⁶⁴ Dy 1059.63(9) ¹⁶⁴ Dy 1064.18(9)	2.2(7)	0.041(13)	¹⁶⁴ Dy 3276.05(13) ¹⁶⁴ Dy 3315.0(3)	6.1(5)	0.114(9)
104Dv 1074.59(9)	2.2(6) 4.5(14)	0.041(11) 0.08(3)	104Dv 3443.39(11)	3.0(4) 10.6(16)	0.056(8) 0.20(3)
101Dv 1091.99(13)	2.7(4)	0.050(8)	¹⁰⁴ Dv 3537.9(3)	3.2(5)	0.060(9)
¹⁶¹ Dy 1108.53(10) ¹⁶⁴ Dy 1110.06(9)	5.1(4) 2.6(7)	0.095(8) 0.048(13)	¹⁶⁴ Dy 3555.71(20) ¹⁶⁴ Dy 3608.5(4)	4.7(5) 3.1(4)	0.088(9) 0.058(8)
¹⁰¹ Dv 1124.81(9)	4.0(3)	0.075(6)	¹⁰⁴Dv 3628.2(3)	1.9(4)	0.035(8)
¹⁰¹ Dv 1129.40(9)	5.7(4)	0.106(8)	¹⁰⁴ Dv 3772.33(18)	3.1(4)	0.058(8)
¹⁶¹ Dy 1158.2(3) ¹⁶¹ Dy 1185.0(3)	2.1(4) 1.5(4)	0.039(8) 0.028(8)	¹⁶⁴ Dy 3819.95(15) ¹⁶⁴ Dy 3840.49(24)	2.7(5) 4.9(6)	0.050(9) 0.091(11)
¹⁰¹ Dv 1187.7(3)	1.6(4)	0.030(8)	¹⁰⁴ Dv 3885.46(13)	5.2(4)	0.097(8)
¹⁰¹ Dv 1195.37(12)	3.6(4)	0.067(8)	104Dv 3944.8(3)	2.2(3)	0.041(6)
¹⁶¹ Dy 1219.6(3) ¹⁶⁴ Dy 1260.19(13)	2.7(10) 2.0(6)	0.050(19) 0.037(11)	¹⁶⁴ Dy 3960.93(15) ¹⁶⁴ Dy 4067.73(9)	4.7(4) 2.5(4)	0.088(8) 0.047(8)
101Dv 1260.66(21)	3.2(5)	0.060(9)	¹⁰⁴ Dv 4083.81(14)	4.3(4)	0.080(8)
¹⁰¹ Dv 1276.3(6)	1.9(4)	0.035(8)	¹⁰⁴ Dv 4123.97(8)	13.1(9)	0.244(17)
¹⁶¹ Dy 1276.78(12) ¹⁶¹ Dy 1308.5(3)	6.3(6) 1.7(4)	0.117(11) 0.032(8)	¹⁶⁴ Dy 4155.82(8) ¹⁶⁴ Dy 4459.45(8)	2.1(3) 1.6(3)	0.039(6) 0.030(6)
¹⁰¹ Dv 1316.7(5)	1.5(4)	0.028(8)	¹⁰⁴ Dv 4607.48(6)	1.9(4)	0.035(8)
¹⁶¹ Dy 1371.4(3) ¹⁶⁴ Dy 1410.99(8)	2.4(4) 4.6(5)	0.045(8) 0.086(9)	¹⁶⁴ Dy 4612.84(7) ¹⁶⁴ Dy 4635.84(5)	5.7(5) 2.6(4)	0.106(9) 0.048(8)
¹⁰⁴ Dv 1433.33(8)	1.9(4)	0.035(8)	¹⁰⁴ Dv 5110.77(3)	6.1(9)	0.046(6)
¹⁰⁴ Dv 1483.76(8)	3.6(4)	0.067(8)	¹º⁴D∨ 5142.29(3)	15.7(10)	0.293(19)
¹⁶¹ Dy 1573.95(23) ¹⁶⁴ Dy 1596.37(15)	1.7(3) 2.5(4)	0.032(6) 0.047(8)	¹⁶⁴ Dy 5145.62(3) ¹⁶⁴ Dy 5177.25(3)	8.4(24) 6.6(5)	0.16(5) 0.123(9)
¹⁰⁴ Dv 1604.4(3)	1.7(4)	0.032(8)	¹⁶¹ Dv 5450.27(25)	2.1(4)	0.039(8)
164Dy 1616.1(3)	1.5(4)	0.028(8)	164Dy 5557.26(3)	28.7(14)	0.54(3)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Eγ)-barns	k ₀	Eγ-keV	σ(Eγ)-barns	k _o
Dysprosium (Z=66),			Holmium (Z=67), co		
¹⁶⁴ Dy 5607.69(3)	35.9(16)	0.67(3)	¹⁶⁵ Ho 534.572(11)	0.16(3)	0.0029(6)
¹⁶⁰ Dy <i>6087.25</i> (13)	0.85(5)	0.0159(9)	¹⁶⁵ Ho 538.259(8) ¹⁶⁵ Ho 542.780(4)	0.152(21) 1.94(13)	0.0028(4) 0.0356(24)
Holmium (Z=67), <i>At</i>			¹⁶⁵ Ho 543.676(5)	1.00(5)	0.0184(9)
¹⁶⁵ Ho 19.8290(20)	0.57(8)	0.0105(15)	¹⁶⁵ Ho 554.400(11)	0.32(7)	0.0059(13)
¹⁶⁵ Ho 38.494(5) ¹⁶⁵ Ho 54.2400(10)	0.179(20) 1.41(4)	0.0033(4) 0.0259(7)	¹⁶⁵ Ho 576.902(16)	0.203(17)	0.0037(3)
165 Ho 57.521(6)	0.17(3)	0.0239(7)	¹⁶⁵ Ho 577.141(11) ¹⁶⁵ Ho 613.768(6)	0.37(6) 0.332(22)	0.0068(11) 0.0061(4)
¹⁶⁵ Но 69.7610(10)	1.09(6)	0.0200(11)	¹⁶⁵ Ho 624.234(8)	0.212(16)	0.0039(3)
¹⁶⁵ Ho 72.8870(10)	0.17(3)	0.0031(6)	¹⁶⁵ Ho 633.641(8)	0.36(3)	0.0066(6)
¹⁶⁵ Ho 76.4670(10) ¹⁶⁵ Ho 76.7270(10)	0.179(20) 0.33(3)	0.0033(4) 0.0061(6)	¹⁶⁵ Ho 689.72(3)	0.44(3)	0.0081(6)
¹⁶⁵ Но 80.574(8)d	3.87(5)	0.0711[1.3%]	¹⁶⁵ Ho 734.258(16) ¹⁶⁵ Ho 4855.89(3)	0.253(18) 0.146(18)	0.0046(3) 0.0027(3)
¹⁶⁵ Но 82.4710(20)	0.42(3)	0.0077(6)	¹⁶⁵ Ho 4945.18(5)	0.214(19)	0.0039(4)
¹⁶⁵ Ho 87.5950(20) ¹⁶⁵ Ho 94.628(6)	0.71(4) 0.156(23)	0.0130(7) 0.0029(4)	¹⁶⁵ Ho 5108.66(7)	0.33(3)	0.0061(6)
¹⁶⁵ Но 98.8590(10)	0.130(23)	0.0029(4)	¹⁶⁵ Ho 5128.946(13) ¹⁶⁵ Ho 5181.841(20)	0.171(17) 0.253(20)	0.0031(3) 0.0046(4)
¹⁶⁵ Но 105.516(3)	0.234(16)	0.0043(3)	¹⁶⁵ Ho 5213.240(21)	0.260(24)	0.0048(4)
¹⁶⁵ Ho 108.2000(20)	0.40(3)	0.0073(6)	¹⁶⁵ Ho 5428.441(9)	0.223(23)	0.0041(4)
¹⁶⁵ Ho 111.3260(20) ¹⁶⁵ Ho 116.8360(10)	0.294(20) 8.1(4)	0.0054(4) 0.149(7)	¹⁶⁵ Ho 5524.219(11)	0.192(20)	0.0035(4)
¹⁶⁵ Ho 126.230(3)	0.55(4)	0.0101(7)	¹⁶⁵ Ho 5813.531(7) ¹⁶⁵ Ho 5870.477(9)	0.54(4) 0.224(20)	0.0099(7) 0.0041(4)
¹⁰⁰ Ho 136.6650(20)	14.5(7)	0.266(13)	¹⁶⁵ Но 5871.573(6)	0.196(18)	0.0036(3)
¹⁰⁰ Ho 140.122(5)	0.27(3)	0.0050(6)	¹⁶⁵ Ho 6052.654(6)	0.188(19)	0.0035(4)
¹⁶⁵ Ho 149.309(3) ¹⁶⁵ Ho 163.353(7)	2.25(12) 0.223(15)	0.0413(22) 0.0041(3)	Erbium (Z=68), At. V	Vt.=167.259(3).	თ,= 156.8(19)
¹⁶⁵ Ho 167.453(5)	0.55(3)	0.0101(6)	¹⁶² Er <i>69.4(6)</i>	0.35(14)	0.0063(25)
¹⁶⁵ Ho 169.715(5)	0.150(14)	0.0028(3)	¹⁶ /Er 79.8040(10)	18.2(8)	0.330(14)
¹⁶⁵ Ho 179.036(5) ¹⁶⁵ Ho 181.0870(20)	0.220(16)	0.0040(3)	¹⁶⁷ Er 98.9850(10) ¹⁶⁷ Er 99.2910(10)	3.73(14)	0.0676(25)
165 Ho 186.579(4)	0.94(5) 0.197(22)	0.0173(9) 0.0036(4)	167 Er 184.2850(10)	2.2(3) 56(5)	0.040(5) 1.01(9)
¹⁰⁰ Ho 197.342(3)	0.34(3)	0.0062(6)	¹¹ ⁰ Er <i>198.0(6</i>)	0.36(9)	0.0065(16)
¹⁶⁵ Ho 199.700(5)	0.48(3)	0.0088(6)	¹⁰ /Er 198.2440(10)	29.9(16)	0.54(3)
¹⁶⁵ Ho 210.309(4) ¹⁶⁵ Ho 221.186(4)	0.180(15) 2.05(11)	0.0033(3) 0.0377(20)	¹⁶⁶ Er <i>207.801(3)d</i> ¹⁶⁷ Er 217.4220(10)	2.15(8) 2.66(10)	<i>0.0390[100%]</i> 0.0482(18)
¹⁶⁵ Ho 231.960(7)	0.23(5)	0.0042(9)	¹⁰ 'Er 255.9310(10)	0.76(3)	0.0138(5)
¹⁶⁵ Но 233.116(8)	0.38(4)	0.0070(7)	¹⁰ 'Er 284.6560(20)	13.7(12)	0.248(22)
¹⁶⁵ Ho 239.132(4)	2.25(12)	0.0413(22)	¹⁶⁶ Er 346.553(10)	0.83(4)	0.0150(7)
¹⁶⁵ Ho 245.010(5) ¹⁶⁵ Ho 257.806(11)	0.47(5) 0.18(4)	0.0086(9) 0.0033(7)	¹⁶⁷ Er 396.5320(10) ¹⁶⁷ Er 422.3180(10)	0.69(4) 1.56(6)	0.0125(7) 0.0283(11)
¹⁶⁵ Ho 265.983(10)	0.170(14)	0.0031(3)	¹⁶ /Er 447.5170(20)	3.07(11)	0.0556(20)
¹⁶⁵ Ho 267.241(6)	0.199(15)	0.0037(3)	¹⁶ /Er 457.6660(20)	0.80(4)	0.0145(7)
¹⁶⁵ Ho 289.124(14) ¹⁶⁵ Ho 290.617(7)	1.16(6) 0.96(5)	0.0213(11) 0.0176(9)	¹⁶⁷ Er 527.8840(10) ¹⁶⁶ Er 531.46(3)	0.88(5) 0.92(7)	0.0159(9) 0.0167(13)
¹⁶⁵ Ho 297.905(4)	0.188(14)	0.0035(3)	¹⁰ 'Er 543.6620(20)	2.01(9)	0.0364(16)
¹⁶⁵ Но 304.617(6)	1.34(7)	0.0246(13)	¹⁶ /Er 546.9600(20)	1.02(5)	0.0185(9)
¹⁶⁵ Ho 328.239(10)	0.391(23)	0.0072(4) 0.0191(11)	¹⁶⁷ Er 559.5080(20) ¹⁶⁷ Er 568.8260(20)	2.36(10)	0.0428(18)
¹⁶⁵ Ho 333.614(5) ¹⁶⁵ Ho 335.585(6)	1.04(6) 0.33(7)	0.0191(11)	167 Er 601.6060(20)	1.20(6) 0.70(4)	0.0217(11) 0.0127(7)
¹⁶⁵ Ho 343.540(6)	0.203(13)	0.00373(24)	¹⁰ 'Er 631.7050(20)	7.9(3)	0.143(5)
¹⁶⁵ Ho 357.056(5)	0.162(12)	0.00298(22)	¹⁶ /Er 638.711(3)	1.04(6)	0.0188(11)
¹⁶⁵ Ho 371.772(5) ¹⁶⁵ Ho 391.819(7)	1.56(8) 0.51(5)	0.0287(15) 0.0094(9)	¹⁶⁷ Er 645.7600(20) ¹⁶⁷ Er 673.655(3)	0.96(5) 0.56(3)	0.0174(9) 0.0101(5)
¹⁶⁵ Ho 401.595(8)	1.07(9)	0.0094(9)	¹⁶ /Er 713.2440(10)	0.69(5)	0.0101(3)
¹⁶⁵ Ho 410.265(6)	1.23(7)	0.0226(13)	¹⁶ /Er 715.1610(20)	1.92(8)	0.0348(14)
¹⁶⁵ Ho 411.087(12)	0.40(12)	0.0073(22)	¹⁶⁷ Er 719.5460(20) ¹⁶⁷ Er 720.3850(20)	1.09(20)	0.020(4)
¹⁶⁵ Ho 412.030(8) ¹⁶⁵ Ho 416.550(5)	0.32(7) 0.42(4)	0.0059(13) 0.0077(7)	167 Er 730.6580(10)	1.54(16) 11.6(4)	0.028(3) 0.210(7)
¹⁶⁵ Ho 425.300(21)	0.69(17)	0.013(3)	¹⁶ /Er 737.664(3)	1.20(6)	0.0217(11)
¹⁶⁵ Ho 426.012(5)	2.88(15)	0.053(3)	¹⁶ /Er 741.3650(20)	6.72(24)	0.122(4)
¹⁶⁵ Ho 427.196(6) ¹⁶⁵ Ho 442.231(21)	0.21(5) 0.22(3)	0.0039(9) 0.0040(6)	¹⁶⁷ Er 748.280(3) ¹⁶⁷ Er 790.0140(20)	1.35(7) 0.68(4)	0.0245(13) 0.0123(7)
¹⁶⁵ Но 443.148(8)	0.164(12)	0.0040(0)	¹⁶ /Er 798.8940(20)	2.18(9)	0.0395(16)
¹⁶⁵ Ho 455.567(11)	0.78(4)	0.0143(7)	¹⁶ /Er 808.927(3)	0.81(10)	0.0147(18)
¹⁶⁵ Ho 457.349(11)	0.213(17)	0.0039(3)	¹⁶ /Er 811.0500(20)	1.72(22)	0.031(4)
¹⁶⁵ Ho 463.927(6) ¹⁶⁵ Ho 467.227(5)	0.245(18) 0.162(17)	0.0045(3) 0.0030(3)	¹⁶⁷ Er 812.289(3) ¹⁶⁷ Er 815.9890(20)	1.4(3) 42.5(15)	0.025(5) 0.77(3)
¹⁶⁵ Но 481.354(18)	0.45(7)	0.0083(13)	¹⁶ /Er 821.1680(20)	6.2(3)	0.112(5)
¹⁶⁵ Ho 487.538(6)	0.394(24)	0.0072(4)	¹⁶ /Er 823.3810(20)	1.34(10)	0.0243(18)
¹⁶⁵ Ho 489.436(4) ¹⁶⁵ Ho 496.932(6)	1.15(6)	0.0211(11)	¹⁶⁷ Er 825.727(3) ¹⁶⁷ Er 829.9480(10)	0.89(9)	0.0161(16)
165 Ho 509.094(24)	0.16(3) 0.332(22)	0.0029(6) 0.0061(4)	¹⁶ /Er 853.4810(10)	4.12(19) 7.5(3)	0.075(3) 0.136(5)
¹⁶⁵ Но 512.770(6)	0.323(22)	0.0059(4)	¹⁶ /Er 862.3500(20)	1.16(6)	0.0210(11)
¹⁶⁵ Ho 524.250(22)	0.260(17)	0.0048(3)	¹⁶ /Er 914.9420(10)	6.99(24)	0.127(4)
¹⁶⁵ Ho 533.644(21)	0.303(20)	0.0056(4)	¹⁶⁷ Er 928.9330(20)	1.55(8)	0.0281(14)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Εγ)-barns	k ₀	Eγ-keV	σ(Εγ)-barns	k ₀
Erbium (Z=68), cont	inued		Thulium (Z=69), cor	ntinued	
¹⁶⁷ Er 932.2660(20)	0.83(5)	0.0150(9)	¹⁶⁹ Tm 69.9880(10)	0.19(7)	0.0034(13)
¹⁶⁷ Er 965.9330(20) ¹⁶⁷ Er 999.8150(20)	0.83(5) 0.99(6)	0.0150(9) 0.0179(11)	¹⁶⁹ Tm 75.83 ¹⁶⁹ Tm 87.5210(10)	0.94(8) 1.29(3)	0.0169(14) 0.0231(5)
10'Fr 1012 1810(20)	1.42(7)	0.0257(13)	109Tm 87.5700(10)	0.29(6)	0.0052(11)
16'Fr 1025.368(4)	0.97(6)	0.0176(11)	109Tm 89 905	0.116(21)	0.0021(4)
¹⁶⁷ Er 1144.133(3) ¹⁶⁷ Er 1147.0040(20)	0.58(5)	0.0105(9) 0.0167(11)	¹⁶⁹ Tm 105.162 ¹⁶⁹ Tm 107.9560(10)	0.780(23) 0.110(13)	0.0140(4) 0.00197(23)
10'Er 1167.373(4)	1.98(8)	0.0359(14)	109Tm 111.0050(10)	0.327(16)	0.00197(23)
¹⁰ 'Er 1173.577(4)	0.71(5)	0.0129(9)	109Tm 114.544	3.19(6)	0.0572(11)
¹⁶⁷ Er 1196.4640(20) ¹⁶⁷ Er 1229.045(4)	0.82(5) 0.63(5)	0.0149(9) 0.0114(9)	¹⁶⁹ Tm 130.027 ¹⁶⁹ Tm 144.4790(10)	0.94Ò(25) 1.2(4)	0.0169(5) 0.022(7)
¹⁰ 'Er 1274.530(6)	0.69(10)	0.0125(18)	¹⁰⁹ Tm 144.48	5.96(11)	0.1069(20)
16'Fr 1276.2680(20)	0.73(11)	0.0132(20)	109Tm 149.7180(10)	7.11(12)	0.1275(22)
¹⁶⁷ Er 1277.6150(20) ¹⁶⁷ Er 1279.088(6)	2.82(16) 0.97(13)	0.051(3) 0.0176(24)	¹⁶⁹ Tm 153.6680(10) ¹⁶⁹ Tm 156.0030(10)	0.098(15) 0.119(17)	0.0018(3) 0.0021(3)
¹⁰ 'Er 1310.022(3)	1.65(8)	0.0299(14)	109Tm 161.7200(10)	0.270(17)	0.0048(3)
¹⁶⁷ Er 1323.9270(20) ¹⁶⁷ Er 1331.2870(20)	1.69(8)	0.0306(14)	¹⁶⁹ Tm 165.735 ¹⁶⁹ Tm 171.8550(10)	3.29(6)	0.0590(11)
¹⁰ 'Fr 1351 656(4)	1.94(9)	0.0246(13) 0.0351(16)	109Tm 176 5240(10)	0.391(18) 0.34(3)	0.0070(3) 0.0061(5)
¹⁰ 'Fr 1353 805(6)	0.56(5)	0.0101(9)	¹⁰⁹ Tm 180.993	3.85(14)	0.0691(25)
¹⁶⁷ Er 1355.1(3) ¹⁶⁷ Er 1392.181(4)	0.94(12) 1.27(6)	0.0170(22) 0.0230(11)	¹⁶⁹ Tm 198.2340(10) ¹⁶⁹ Tm 198.5260(10)	0.094(21) 0.96(3)	0.0017(4) 0.0172(5)
¹⁰ 'Fr 1515 93(4)	0.57(5)	0.0230(11)	¹⁰⁹ Tm 204 -448	8.72(19)	0.156(3)
¹⁰ 'Fr 1515 948(20)	0.72(12)	0.0130(22)	109Tm 204.7820(10)	0.25(7)	0.0045(13)
¹⁶⁷ Er 1581.18(6) ¹⁶⁷ Er 1649.803(7)	0.57(6) 0.58(6)	0.0103(11) 0.0105(11)	¹⁶⁹ Tm 219.706 ¹⁶⁹ Tm 231.8330(10)	3.64(6) 0.60(3)	0.0653(11) 0.0108(5)
¹⁰ 'Fr 1767 00(3)	0.91(7)	0.0165(13)	109Tm 235.1890(10)	1.18(4)	0.0212(7)
16'Er 1834.085(7)	1.45(9)	0.0263(16)	¹⁰⁹ Tm 237.2390(10)	5.52(10)	0.0990(18)
¹⁶⁷ Er 1835.690(4) ¹⁶⁷ Er 1942.513(6)	0.65(6) 0.88(7)	0.0118(11) 0.0159(13)	¹⁶⁹ Tm 242.6220(10) ¹⁶⁹ Tm 256.4550(10)	1.28(4) 0.096(15)	0.0230(7) 0.0017(3)
¹⁰ 'Fr 2046 97(3)	0.56(6)	0.0101(11)	109Tm 260.3410(10)	0.103(14)	0.0017(3)
¹⁰ 'Fr 2522 76(6)	0.59(9)	0.0107(16)	109Tm 266.8830(10)	0.134(15)	0.0024(3)
¹⁶⁷ Er 4628.7(3) ¹⁶⁷ Er 4643.4(3)	1.02(21) 1.7(4)	0.018(4) 0.031(7)	¹⁶⁹ Tm 268.5510(10) ¹⁶⁹ Tm 288.1840(20)	0.210(17) 0.172(10)	0.0038(3) 0.00309(18)
¹⁶ /Fr 4647.4(3)	0.87(18)	0.016(3)	109Tm 303 6180(20)	0.137(13)	0.00246(23)
¹⁶⁷ Er 4653.2(3) ¹⁶⁷ Er 4671.4(3)	1.18(24)	0.021(4)	¹⁶⁹ Tm 311.0190(10) ¹⁶⁹ Tm 342.7130(10)	2.50(5)	0.0448(9)
¹⁶ /Fr 4715 4(3)	0.95(20) 0.98(20)	0.017(4) 0.018(4)	109Tm 343.5520(10)	0.14(3) 0.360(16)	0.0025(5) 0.0065(3)
¹⁰ 'Er 4745.4(3)	1.3(3)	0.024(5)	109Tm 352.9890(20)	0.547(23)	0.0098(4)
¹⁶⁷ Er 4752.2(3) ¹⁶⁷ Er 4759.5(3)	0.58(12) 0.74(15)	0.0105(22) 0.013(3)	¹⁶⁹ Tm 359.3570(20) ¹⁶⁹ Tm 360.8270(20)	0.14(3) 0.089(24)	0.0025(5) 0.0016(4)
¹⁶ /Fr 4800 76(7)	1.4(4)	0.025(7)	109Tm 367.5560(20)	0.185(18)	0.0033(3)
¹⁰⁰ Er 4908.73(17)	0.41(14)	0.0074(25)	109Tm 370 5220(20)	0.16(3)	0.0029(5)
¹⁶⁷ Er 4921.42(22) ¹⁶⁷ Er 5001.79(6)	0.61(6) 0.88(25)	0.0111(11) 0.016(5)	¹⁶⁹ Tm 371.1720(20) ¹⁶⁹ Tm 384.0790(20)	0.153(22) 1.95(5)	0.0027(4) 0.0350(9)
¹⁶ /Fr 5031 73(19)	0.84(24)	0.015(4)	109Tm 384,2850(20)	0.19(4)	0.0034(7)
¹⁶⁷ Er 5114.2(3) ¹⁶⁷ Er 5169.82(18)	1.02(24)	0.018(4)	¹⁶⁹ Tm 388.1810(20) ¹⁶⁹ Tm 396.758(4)	0.099(16)	0.0018(3)
10'Er 5200 0(3)	0.56(5) 0.67(16)	0.0101(9) 0.012(3)	108 Lm 400 1150(20)	0.099(10) 0.717(19)	0.00178(18) 0.0129(3)
'°'Er 5213.15(15)	1.4(3)	0.025(5)	109Tm 400.6640(20)	0.20(5)	0.0036(9)
¹⁶⁷ Er 5292.80(6) ¹⁶⁷ Er 5297.19(3)	0.63(7) 0.6(3)	0.0114(13) 0.011(5)	¹⁶⁹ Tm 408.3570(10) ¹⁶⁹ Tm 411.5060(20)	0.239(13) 2.37(5)	0.00429(23) 0.0425(9)
10'Er 5359.62(5)	0.62(7)	0.011(3)	109Tm 413 1330(10)	0.162(17)	0.0029(3)
¹⁰ 'Er 5372.79(6)	0.9(4)	0.016(7)	109Tm 424.6940(20)	0.556(25)	0.0100(5)
¹⁶⁷ Er 5378.65(17) ¹⁶⁷ Er 5406.02(9)	0.8(4) 0.8(4)	0.014(7) 0.014(7)	¹⁶⁹ Tm 426.783(3) ¹⁶⁹ Tm 429.0390(20)	0.186(18) 0.308(24)	0.0033(3) 0.0055(4)
¹⁰ 'Er 5468.71(3)	0.73(15)	0.013(3)	¹⁰⁹ Tm 440.5100(20)	0.13(3)	0.0023(5)
¹⁶ /Fr 5508.66(3)	0.66(14)	0.0120(25)	¹⁶⁹ Tm 442.1490(10) ¹⁶⁹ Tm 446.328(3)	0.51(4)	0.0091(7)
¹⁶⁷ Er 5866.25(3) ¹⁶⁷ Er 5878.24(3)	0.77(16) 0.78(7)	0.014(3) 0.0141(13)	¹⁰⁹ Tm 454,2720(20)	1.62(4) 0.295(20)	0.0291(7) 0.0053(4)
¹⁶ /Er 5943.28(3)	0.95(20)	0.017(4)	169Tm 456.0460(10)	1.16(4)	0.0208(7)
¹⁶⁷ Er 5950.86(3) ¹⁶⁷ Er 6137.87(3)	0.87(18) 0.57(6)	0.016(3) 0.0103(11)	¹⁶⁹ Tm 457.4070(10) ¹⁶⁹ Tm 457.4100(20)	0.48(12) 0.557(25)	0.0086(22) 0.0100(5)
¹⁶⁷ Er 6155.99(3)	1.5(3)	0.0103(11)	109Tm 468,4740(20)	0.45(4)	0.0081(7)
16'Er 6201.88(3)	0.73(15)	0.013(3)	¹⁰⁹ Tm 468 7760(20)	0.41(8)	0.0074(14)
¹⁶⁶ Er 6228.54(18) ¹⁶⁷ Er 6229.62(3)	1.41(15) 1.54(9)	0.026(3) 0.0279(16)	¹⁶⁹ Tm 472.6610(10) ¹⁶⁹ Tm 473.5790(10)	0.60(5) 0.15(4)	0.0108(9) 0.0027(7)
¹⁰ /Er 6360.23(3)	1.34(9)	0.0279(10)	¹⁰⁹ Tm 477,027(4)	0.13(4)	0.0027(7)
¹⁶⁷ Er 6677.27(3)	1.02(6)	0.0185(11)	¹⁰⁹ Tm 481 3490(20)	0.109(22)	0.0020(4)
Thulium (Z=69), <i>At.</i> I			¹⁶⁹ Tm 485.210(4) ¹⁶⁹ Tm 496.5720(20)	0.140(22) 0.80(3)	0.0025(4) 0.0144(5)
¹⁶⁹ Tm 38.713	0.279(6)	0.00500(11)	¹⁰⁹ Tm 499.0260(20)	0.40(8)	0.0072(14)
¹⁶⁹ Tm 63.9550(20) ¹⁶⁹ Tm 66.098	0.17(8) 0.51(10)	0.0030(14) 0.0091(18)	¹⁶⁹ Tm 499.5560(20) ¹⁶⁹ Tm 505.018(7)	0.88(3) 0.90(3)	0.0158(5) 0.0161(5)
¹⁶⁹ Tm 68.649	1.75(23)	0.031(4)	¹⁶⁹ Tm 505.341(9)	0.84(3)	0.0151(5)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Eγ)-barns	k ₀	Eγ-keV	σ(Eγ)-barns	k ₀
Thulium (Z=69), cor			Thulium (Z=69), cor		
¹⁶⁹ Tm 512.1370(20)	1.96(5)	0.0352(9)	¹⁶⁹ Tm 987.453(3)	0.30(3)	0.0054(5)
¹⁶⁹ Tm 512.6080(20) ¹⁶⁹ Tm 517.053(4)	0.108(22)	0.0019(4)	¹⁶⁹ Tm 995.714(4) ¹⁶⁹ Tm 998.253(4)	0.106(23)	0.0019(4)
169Tm 523.3590(20)	0.15(3) 0.48(3)	0.0027(5) 0.0086(5)	169Tm 1000.898(10)	0.200(25) 0.23(4)	0.0036(5) 0.0041(7)
¹⁰⁹ Tm 532.4280(20)	0.59(3)	0.0106(5)	109Tm 1018.431(10)	0.28(6)	0.0050(11)
¹⁰⁹ Tm 532.858(3)	0.12(3)	0.0022(5)	¹⁶⁹ Tm 1027.820(12)	0.26(4)	0.0047(7)
¹⁰⁹ Tm 535.8280(10)	1.18(4)	0.0212(7)	109Tm 1040.1330(10)	0.25(7)	0.0045(13)
¹⁶⁹ Tm 537.9910(20)	1.00(4)	0.0179(7)	¹⁶⁹ Tm 1043.108(12)	0.19(4)	0.0034(7)
¹⁶⁹ Tm 551.5140(20) ¹⁶⁹ Tm 562.4440(20)	1.29(25) 0.85(3)	0.023(5) 0.0152(5)	¹⁶⁹ Tm 1045.353(12) ¹⁶⁹ Tm 1061.868(14)	0.18(4) 0.49(10)	0.0032(7) 0.0088(18)
¹⁰⁹ Tm 565.2770(20)	1.58(4)	0.0132(3)	¹⁶⁹ Tm 1070.969(6)	0.30(6)	0.0054(11)
¹⁰⁹ Tm 569.1730(20)	1.02(3)	0.0183(5)	¹⁶⁹ Tm 1101.996(3)	0.10(3)	0.0018(5)
¹⁰⁹ Tm 569.5440(20)	0.44(9)	0.0079(16)	¹⁶⁹ Tm 1140.192(4)	0.62(12)	0.0111(22)
¹⁶⁹ Tm 573.017(4)	0.30(9)	0.0054(16)	¹⁶⁹ Tm 1154.112(12)	0.18(4)	0.0032(7)
¹⁶⁹ Tm 581.2690(20) ¹⁶⁹ Tm 585.1540(10)	0.32(7) 0.60(4)	0.0057(13) 0.0108(7)	¹⁶⁹ Tm 1171.966(11) ¹⁶⁹ Tm 1178.905(4)	0.14(3) 0.56(4)	0.0025(5) 0.0100(7)
109Tm 589.0850(10)	0.58(10)	0.0104(18)	¹⁶⁹ Tm 1184.563(14)	0.20(3)	0.0036(5)
¹⁰⁹ Tm 590.2270(20)	1.27(10)	0.0228(18)	¹⁶⁹ Tm 1210.678(11)	0.36(7)	0.0065(13)
¹⁰⁹ Tm 599.1890(20)	0.155(25)	0.0028(5)	¹⁰⁹ Tm 1226.345(12)	0.120(22)	0.0022(4)
¹⁶⁹ Tm 601.9780(20)	0.13(3)	0.0023(5)	¹⁶⁹ Tm 1238.136(10)	0.107(21)	0.0019(4)
¹⁶⁹ Tm 603.9900(20) ¹⁶⁹ Tm 610.0310(20)	1.40(5) 0.18(4)	0.0251(9) 0.0032(7)	¹⁶⁹ Tm 1265.057(12) ¹⁶⁹ Tm 1354.71(7)	0.210(24) 0.128(23)	0.0038(4) 0.0023(4)
¹⁶⁹ Tm 611.6590(10)	0.83(4)	0.0032(7)	¹⁶⁹ Tm 4641.4(4)	0.32(3)	0.0023(4)
¹⁰⁹ Tm 619.423(3)	0.23(4)	0.0041(7)	¹⁰⁹ Tm 4732.6(4)	0.58(5)	0.0104(9)
¹⁰⁹ Tm 621.812(3)	0.12(3)	0.0022(5)	¹⁶⁹ Tm 4773.8(8)	0.16(3)	0.0029(5)
¹⁶⁹ Tm 623.1420(10)	0.27(4)	0.0048(7)	¹⁶⁹ Tm 4922.1(5)	0.26(3)	0.0047(5)
¹⁶⁹ Tm 632.4310(20) ¹⁶⁹ Tm 637.900(3)	0.74(3) 1.25(4)	0.0133(5)	¹⁶⁹ Tm 4987.0(6) ¹⁶⁹ Tm 5061.6(8)	0.16(3)	0.0029(5)
169Tm 637.9020(20)	1.8(3)	0.0224(7) 0.032(5)	¹⁶⁹ Tm 5075.3(5)	0.103(21) 0.39(4)	0.0018(4) 0.0070(7)
109Tm 640.7790(20)	0.70(3)	0.0126(5)	¹⁶⁹ Tm 5124.1(5)	0.28(4)	0.0050(7)
¹⁰⁹ Tm 648.7440(20)	0.24(4)	0.0043(7)	¹⁶⁹ Tm 5149.1(6)	0.31(4)	0.0056(7)
¹⁶⁹ Tm 650.3720(10)	1.45(5)	0.0260(9)	¹⁶⁹ Tm 5158.2(6)	0.47(5)	0.0084(9)
¹⁶⁹ Tm 658.913(5) ¹⁶⁹ Tm 664.9160(10)	1.56(5)	0.0280(9)	¹⁶⁹ Tm 5216.5(9) ¹⁶⁹ Tm 5326.80(11)	0.092(25)	0.0017(5)
169Tm 669.656(4)	0.30(4) 0.31(4)	0.0054(7) 0.0056(7)	¹⁶⁹ Tm 5353.72(11)	0.18(3) 0.19(3)	0.0032(5) 0.0034(5)
¹⁰⁹ Tm 670.753(7)	0.12(4)	0.0022(7)	109Tm 5381.18(11)	0.18(3)	0.0032(5)
¹⁰⁹ Tm 679.5820(20)	0.15(3)	0.0027(5)	¹⁶⁹ Tm 5399.03(11)	0.143(25)	0.0026(5)
¹⁶⁹ Tm 680.5480(20)	0.41(3)	0.0074(5)	¹⁰⁹ Tm 5412.95(11)	0.39(5)	0.0070(9)
¹⁶⁹ Tm 693.2840(10) ¹⁶⁹ Tm 694.085(13)	0.30(3) ~0.1	0.0054(5) ~0.002	¹⁶⁹ Tm 5423.08(11) ¹⁶⁹ Tm 5431.26(11)	0.24(3) 0.23(3)	0.0043(5) 0.0041(5)
169Tm 703.6280(10)	1.32(4)	~0.002 0.0237(7)	¹⁶⁹ Tm 5443.88(11)	0.150(25)	0.0047(5)
¹⁰⁹ Tm 707.8490(10)	0.50(10)	0.0090(18)	¹⁰⁹ Tm 5451.91(11)	0.148(25)	0.0027(5)
¹⁰⁹ Tm 709.381(3)	0.107(21)	0.0019(4)	¹⁶⁹ Tm 5513.01(11)	0.16(5)	0.0029(9)
¹⁶⁹ Tm 710.7670(20)	0.60(3)	0.0108(5)	¹⁶⁹ Tm 5683.40(11)	0.104(21)	0.0019(4)
¹⁶⁹ Tm 711.1330(20) ¹⁶⁹ Tm 714.433(5)	0.33(7) 0.089(20)	0.0059(13) 0.0016(4)	¹⁶⁹ Tm 5728.48(11) ¹⁶⁹ Tm 5731.36(11)	0.26(3) 1.17(22)	0.0047(5) 0.021(4)
¹⁰⁹ Tm 719.2610(20)	1.01(3)	0.0010(4) 0.0181(5)	¹⁰⁹ Tm 5737.51(11)	1.42(7)	0.0255(13)
¹⁶⁹ Tm 720 8210(20)	0.57(3)	0.0102(5)	¹⁶⁹ Tm 5809 69(11)	0.147(20)	0.0026(4)
¹⁶⁹ Tm 724.585(3)	0.68(3)	0.0122(5)	109Tm 5858.03(11)	0.41(4)	0.0074(7)
¹⁶⁹ Tm 739.794(4)	0.108(18)	0.0019(3)	109Tm 5898.56(11)	0.35(4)	0.0063(7)
¹⁶⁹ Tm 744.765(7) ¹⁶⁹ Tm 748.2310(20)	0.124(19) 0.102(20)	0.0022(3) 0.0018(4)	¹⁶⁹ Tm 5908.27(11) ¹⁶⁹ Tm 5941.47(11)	0.49(4) 1.51(7)	0.0088(7) 0.0271(13)
¹⁰⁹ Tm 781.278(7)	0.20(4)	0.0016(4)	¹⁶⁹ Tm 5943.09(11)	1.03(20)	0.018(4)
¹⁰⁹ Tm 781.279(7)	0.19(4)	0.0034(7)	¹⁶⁹ Tm 6001.61(11)	0.99(10)	0.0178(18)
¹⁰⁹ Tm 781.832(4)	0.090(20)	0.0016(4)	¹⁶⁹ Tm 6354.59(11)	0.42(4)	0.0075(7)
¹⁶⁹ Tm 784.900(4)	0.18(4)	0.0032(7)	¹⁶⁹ Tm 6387.37(11)	1.48(7)	0.0265(13)
¹⁶⁹ Tm 790.216(4) ¹⁶⁹ Tm 800.424(6)	0.17(3) 0.122(23)	0.0030(5) 0.0022(4)	¹⁶⁹ Tm 6442.10(11) ¹⁶⁹ Tm 6553.10(11)	0.47(3) 0.65(13)	0.0084(5) 0.0117(23)
109Tm 810 7260(20)	0.157(21)	0.0022(4)		` '	` '
¹⁶⁹ Tm 815.624(4)	0.76(3)	0.0136(5)	Ytterbium (Z=70), A		
109Tm 818 5070(20)	0.233(20)	0.0042(4)	¹⁷⁰ Yb 19.3940(20) ¹⁷⁴ Yb 41.2180(20)	0.021(5)	0.00037(9) 0.019(5)
¹⁶⁹ Tm 824.0610(20)	0.318(22)	0.0057(4)	174Yb 46.7510(20)	1.1(3) 0.25(8)	0.019(3)
¹⁶⁹ Tm 844.677(9) ¹⁶⁹ Tm 854.337(4)	0.147(18) 1.41(4)	0.0026(3) 0.0253(7)	¹⁶⁸ Yb 62.7190(10)	0.064(12)	0.00112(21)
¹⁰⁹ Tm 866 522(6)	0.353(24)	0.0063(4)	1/0Yb 66.720(10)	0.024(6)	0.00042(11)
¹⁶⁹ Tm 869,401(4)	0.235(23)	0.0042(4)	¹⁰⁸ Yb 75.0400(10)	0.015(3)	0.00026(5)
109Tm 886.5560(20)	0.230(24)	0.0041(4)	¹⁷³ Yb 76.99(6) ¹⁷¹ Yb 78.7430(10)	0.40(4) 0.67(10)	0.0070(7)
¹⁶⁹ Tm 890.047(3) ¹⁶⁹ Tm 920.507(9)	0.17(4)	0.0030(7)	1/3Yb 86.11(7)	0.67(10) 0.164(18)	0.0117(18) 0.0029(3)
169Tm 928.265(4)	0.113(24) 0.37(3)	0.0020(4) 0.0066(5)	¹⁶⁸ Yb 87.3840(10)	0.016(3)	0.0023(5)
¹⁰⁹ Tm 943.522(4)	0.24(3)	0.0043(5)	'' ⁴ Yb 87.9690(20)	0.26(6)	0.0046(11)
¹⁶⁹ Tm 956.145(3)	0.33(6)	0.0059(11)	1/3Yb 88.26(11)	0.044(8)	0.00077(14)
¹⁰⁹ Tm 959.201(4)	0.28(3)	0.0050(5)	¹⁷⁴ Yb 89.9570(20) ¹⁷⁴ Yb 95.2730(20)	0.066(16) 0.20(5)	0.0012(3) 0.0035(9)
¹⁶⁹ Tm 959.220(9) ¹⁶⁹ Tm 973.121(12)	0.45(9)	0.0081(16)	174Yb 100.759(4)	0.20(5) 0.019(7)	0.0033(12)
1111313.141(14)	0.10(4)	0.0018(7)		2.2.V(.)	5.5555(. 2)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ (Ε γ)-barns	k _o	Eγ-keV	σ (Ε γ)-barns	k ₀
Ytterbium (Z=70), co		0.00==(0)	Ytterbium (Z=70), c		0.00400(40)
¹⁷³ Yb 102.60(5) ¹⁷⁴ Yb 104.5260(20)	0.44(5)	0.0077(9)	¹⁷⁴ Yb 602.841(8) ¹⁷⁴ Yb 618.09(4)	0.072(10)	0.00126(18)
174Yb 113.805(4)d	0.43(11) <i>0.417(14</i>)	0.0075(19) <i>0.00730[<0.1%]</i>	168Yb 622.127(11)	0.020(4) 0.034(6)	0.00035(7) 0.00060(11)
'' ^o Yb <i>125.23(18)</i>	0.007(3)	1.2(5)×10 ⁻⁴	¹⁰⁰ Yb 623.026(7)	0.035(6)	0.00061(11)
¹⁷³ Yb 138.27(6)	0.058(7)	0.00102(12)	1/4Yb 624.692(9)	0.026(4)	0.00046(7)
1/4Yb 142.0240(20)	0.032(8)	0.00056(14)	1/4Yb 635.22(4)	0.078(13)	0.00137(23)
¹⁷⁴ Yb 142.478(3)	0.021(5)	0.00037(9)	168Yb 635.348(7)	0.103(17)	0.0018(3)
¹⁶⁸ Yb 144.5760(10) ¹⁷³ Yb 148.72(9)	0.016(3) 0.031(5)	0.00028(5) 0.00054(9)	¹⁶⁸ Yb 635.418(7) ¹⁷⁴ Yb 639.261(9)	0.103(17) 1.43(17)	0.0018(3) 0.025(3)
¹⁶⁸ Yb 156,8980(10)	0.031(3)	0.00067(12)	1/4Yb 657.441(11)	0.031(8)	0.00054(14)
1/4Yb 163.012(5)	0.132(25)	0.0023(4)	¹⁰⁸ Yb 660.180(11)	0.016(3)	0.00028(5)
'' ⁴ Yb 172.167(4)	0.118(22)	0.0021(4)	1/3Yb 661.5(3)	0.024(6)	0.00042(11)
¹⁷³ Yb 175.30(5) ¹⁷¹ Yb 181.529(3)	0.58(6)	0.0102(11)	¹⁷⁰ Yb 669.95(7) ¹⁷⁴ Yb 680.17(4)	0.120(15)	0.0021(3)
168Yb 191.2140(10)	0.53(6) 0.22(4)	0.0093(11) 0.0039(7)	174Yb 680.67(14)	0.034(6) 0.031(7)	0.00060(11) 0.00054(12)
1/3Yb 198,29(12)	0.023(4)	0.00040(7)	1/3Yb 684.74(10)	0.052(8)	0.00091(14)
¹⁷³ Yb 223.00(8)	0.029(̀4)́	0.00051(7)	¹⁷³ Yb 689.8(4)	0.015(5)	0.00026(̈9) ´
¹⁷⁴ Yb 231.502(6)	0.060(8)	0.00105(14)	¹⁶⁸ Yb 690.968(10)	0.037(6)	0.00065(11)
¹⁷⁴ Yb 232.435(3) ¹⁷³ Yb 243.68(19)	0.025(4) 0.018(4)	0.00044(7) 0.00032(7)	¹⁷⁴ Yb 697.29(4) ¹⁷⁰ Yb 698.36(11)	0.034(8) 0.052(7)	0.00060(14) 0.00091(12)
174Yb 246.778(14)	0.016(4)	0.00032(1)	174Yb 707.45(4)	0.032(7)	0.00031(12)
'' ⁴ Yb 255.338(5)	0.033(10)	0.00058(18)	¹⁰⁰ Yb 719,969(22)	0.141(15)	0.0025(3)
1/4Yb 267.538(5)	0.073(10)	0.00128(18)	1/4Yb 725.975(21)	0.015(5)	0.00026(9)
¹⁷³ Yb 274.90(7)	0.044(6)	0.00077(11)	¹⁶⁸ Yb 726.422(11)	0.049(6)	0.00086(11)
¹⁷⁴ Yb 282.522(14)d ¹⁷¹ Yb 287.138(3)	<i>0.666(22)</i> 0.062(11)	0.0117[<0.1%] 0.00109(19)	¹⁷⁴ Yb 729.218(9) ¹⁷⁴ Yb 740.17(5)	0.128(16) 0.038(11)	0.0022(3) 0.00067(19)
1/4Yb 288.626(17)	0.002(11)	0.00103(13)	1/4Yb 742.0(4)	0.076(12)	0.00007(19)
'' ⁴ Yb 311.276(5)	0.26(4)	0.0046(7)	¹⁰⁸ Yb 761.850(10)	0.039(7)	0.00068(12)
¹⁷³ Yb 341.27(16)	0.026(5)	0.00046(9)	1/3Yb 762.65(8)	0.069(9)	0.00121(16)
¹⁷⁴ Yb 363.938(6)	0.80(12)	0.0140(21)	¹⁷⁴ Yb 767.169(9)	0.151(25)	0.0026(4)
¹⁶⁸ Yb 378.616(3) ¹⁷⁴ Yb 389.422(5)	0.033(6) 0.032(5)	0.00058(11) 0.00056(9)	¹⁷⁰ Yb 774.42(9) ¹⁷⁴ Yb 800.409(16)	0.042(6) 0.111(16)	0.00074(11) 0.0019(3)
'' ⁴ Yb 392.114(11)	0.097(12)	0.00170(21)	^{1/4} Yb 811.427(9)	0.92(16)	0.016(3)
1/4Yb 396.329(20)d	1.42(5)	0.0249[<0.1%]	1/4Yb 812.019(11)	0.10(3)	0.0018(5)
'' ² Yb 399.17(4)	0.111(12)	0.00194(21)	1/4Yb 816.14(4)	0.132(21)	0.0023(4)
¹⁷⁴ Yb 400.996(15) ¹⁷⁴ Yb 405.156(6)	0.015(4)	0.00026(7)	¹⁷⁴ Yb 825.22(7) ¹⁶⁸ Yb 827.193(11)	0.154(24)	0.0027(4)
174Yb 406.05(14)	0.040(6) 0.111(14)	0.00070(11) 0.00194(25)	174Yb 841.627(16)	0.023(4) 0.138(17)	0.00040(7) 0.0024(3)
1/4Yb 406.548(5)	0.118(18)	0.0021(3)	1/4Yb 852.951(20)	0.049(13)	0.00086(23)
1/3Yb 411.48(11)	0.021(4)	0.00037(7)	'''Yb 854.504(22)	0.020(4)	0.00035(7)
¹⁷⁴ Yb 423.219(11)	0.045(7)	0.00079(12)	¹⁷¹ Yb 857.621(7)	0.208(25)	0.0036(4)
¹⁷⁴ Yb 428.613(12) ¹⁷⁴ Yb 436.173(5)	0.61(7) 0.52(6)	0.0107(12) 0.0091(11)	¹⁷⁴ Yb 858.05(5) ¹⁷⁴ Yb 866.027(11)	0.045(10) 0.017(7)	0.00079(18) 0.00030(12)
'' ⁴ Yb 436,472(16)	0.037(8)	0.00065(14)	1/4Yb 869.60(4)	0.100(18)	0.0018(3)
¹⁷⁴ Yb 452.80(14)	0.019(3)	0.00033(5)	10Yb 869.7(15)	0.026(6)	0.00046(11)
¹⁷⁴ Yb 453.299(6)	0.031(6)	0.00054(11)	'' ⁴ Yb 871.695(9)	0.24(4)	0.0042(7)
¹⁷⁴ Yb 465.033(11) ¹⁷⁴ Yb 468.079(19)	0.06(4) 0.022(4)	0.0011(7) 0.00039(7)	¹⁷⁴ Yb 894.47(5) ¹⁷⁴ Yb 905.0(4)	0.066(13) 0.045(12)	0.00116(23) 0.00079(21)
1/4Yb 476 606(11)	0.022(4)	0.00039(7)	¹⁷⁰ Yb 906.15(14)	0.040(7)	0.00079(21)
'' ⁴ Yb 476,643(8)	0.015(4)	0.00026(7)	'''Yb 912.145(9)	0.049(8)	0.00086(14)
^{1/4} Yb 477.391(5)	0.75(8)	0.0131(14)	170Yb 923.4(3)	0.019(6)	0.00033(11)
¹⁷⁴ Yb 482.071(11) ¹⁷¹ Yb 490.444(8)	0.23(3)	0.0040(5) 0.00030(4)	¹⁷⁴ Yb 941.22(5) ¹⁷⁴ Yb 945.21(4)	0.082(15) 0.069(15)	0.0014(3)
¹⁷⁴ Yb 496 414(11)	0.0172(24) 0.023(7)	0.00030(4)	¹⁷⁴ Yb 947.01(23)	0.069(15)	0.0012(3) 0.00133(21)
¹⁷⁴ Yb 497.717(10)	0.022(5)	0.00039(9)	1/4Yb 953.996(11)	0.095(24)	0.0017(4)
'' ⁴ Yb 498.315(9)	0.076(11)	0.00133(19)	1/4Yb 957.477(20)	0.017(7)	0.00030(12)
¹⁷⁴ Yb 505.05(5)	0.030(8)	0.00053(14)	174Yb 960.34(4)	0.015(7)	0.00026(12)
¹⁷⁴ Yb 511.784(11) ¹⁷⁴ Yb 514.868(7)d	0.34(5) 9 <i>.0(</i> 9)	0.0060(9) <i>0.158[100%]</i>	¹⁷¹ Yb 961.489(8) ¹⁷⁰ Yb 963.15(9)	0.120(17) 0.117(14)	0.0021(3) 0.00205(25)
'' ⁴ Yb 518.491(11)	0.037(9)	0.00065(16)	^{1/1} Yb 964.197(10)	0.117(14) 0.229(25)	0.00203(23) 0.0040(4)
1/1Yb 528.289(7)	0.024(3)	0.00042(5)	1/4Yb 982,44(5)	0.129(23)	0.0023(4)
¹⁷⁴ Yb 534.735(9)	0.50(6)	0.0088(11)	1/4Yb 988.22(4)	0.088(19)	0.0015(3)
¹⁷⁴ Yb 548.841(12) ¹⁷⁴ Yb 553.002(11)	0.020(7)	0.00035(12)	¹⁷⁰ Yb 990.18(15) ¹⁷¹ Yb 995.79(4)	0.051(11)	0.00089(19)
1/4Yb 556,090(8)	0.091(13) 0.066(11)	0.00159(23) 0.00116(19)	1/4Yb 1005,49(23)	0.020(3) 0.033(10)	0.00035(5) 0.00058(18)
'''Yb 558.935(8)	0.020(3)	0.00035(5)	1/4Yb 1006.00(25)	0.054(17)	0.0009(3)
'' ⁴ Yb 565.242(11)	0.039(8)	0.00068(14)	¹⁷⁴ Yb 1009.5(4)	0.082(17)	0.0014(3)
¹⁷³ Yb 570.30(19)	0.028(6)	0.00049(11)	¹⁷¹ Yb 1021.4(3)	0.0182(25)	0.00032(4)
¹⁷⁴ Yb 571.915(8) ¹⁶⁸ Yb 572.700(7)	0.047(7) 0.049(8)	0.00082(12) 0.00086(14)	¹⁷⁴ Yb 1022.62(23) ¹⁷¹ Yb 1026.315(17)	0.035(13) 0.0151(19)	0.00061(23) 0.00026(3)
¹⁶⁸ Yb 576.398(10)	0.024(4)	0.00042(7)	'''Yb 1039.150(7)	0.22(3)	0.0039(5)
'''Yb 576.4(3)	0.020(3)	0.00035(5)	1/3Yb 1055.83(18)	0.037(7)	0.00065(12)
¹⁷⁴ Yb 577.28(5)	0.046(8)	0.00081(14)	'''Yb 1070.475(15)	0.025(3)	0.00044(5)
¹⁶⁸ Yb 590.695(10) ¹⁷¹ Yb 602.469(5)	0.090(15) 0.030(4)	0.0016(3) 0.00053(7)	¹⁷¹ Yb 1076.246(6) ¹⁷¹ Yb 1093.674(9)	0.52(6) 0.24(3)	0.0091(11) 0.0042(5)
10 002,703(0)	5.000(1)	0.00000(1)	10 1033.017(3)	J.27(J)	0.007£(0)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ (Ε γ)-barns	k_0	Eγ-keV	σ(Εγ)-barns	k _o
Ytterbium (Z=70), c	ontinued		Ytterbium (Z=70), c	ontinued	
¹⁷⁰ Yb 1099.82(19)	0.040(7)	0.00070(12)	¹⁷¹ Yb 2115.56(4)	0.039(7)	0.00068(12)
¹⁷⁴ Yb 1115.5(3)	0.11(3)	0.0019(5)	¹⁷¹ Yb 2133.85(7)	0.043(6)	0.00075(11)
¹⁷¹ Yb 1117.892(7) ¹⁷¹ Yb 1119.780(8)	0.086(14)	0.00151(25)	¹⁷³ Yb 2171.4(3) ¹⁷¹ Yb 2195.09(5)	0.059(12)	0.00103(21)
174Yb 1122.3(10)	0.46(6) 0.09(3)	0.0081(11) 0.0016(5)	¹⁷¹ Yb 2234.17(10)	0.066(11) 0.042(11)	0.00116(19) 0.00074(19)
¹⁷³ Yb 1129.81(17)	0.128(17)	0.0010(3)	¹⁷¹ Yb 2238.19(3)	0.052(12)	0.00074(13)
'' ^o Yb 1138.9(3)	0.042(13)	0.00074(23)	¹⁷¹ Yb 2263.11(3)	0.042(11)	0.00074(19)
'''Yb 1143.017(8)	0.106(13)	0.00186(23)	'''Yb 2296.47(4)	0.035(7)	0.00061(12)
'''Yb 1152.16(5)	0.021(3)	0.00037(5)	'''Yb 2327.57(8)	0.094(19)	0.0016(3)
¹⁷¹ Yb 1154.989(6)	0.099(13)	0.00173(23)	¹⁷³ Yb 2388.7(4)	0.036(10)	0.00063(18)
¹⁷⁴ Yb 1187.7(3) ¹⁶⁸ Yb 1207.44(7)	0.054(17)	0.0009(3)	¹⁷¹ Yb 2401.37(3) ¹⁷⁴ Yb 3632.3(10)	0.20(3)	0.0035(5)
168Yb 1221.20(3)	0.018(4) 0.015(3)	0.00032(7) 0.00026(5)	174Yb 3661.2(14)	0.40(10) 0.043(10)	0.0070(18) 0.00075(18)
¹⁶⁸ Yb 1232,902(13)	0.018(3)	0.00020(5)	¹⁷⁴ Yb 3714.7(5)	0.23(6)	0.0040(11)
¹⁶⁸ Yb 1263.261(19)	0.024(5)	0.00042(9)	¹⁷⁴ Yb 3740.8(14)	0.043(10)	0.00075(18)
1/0Yb 1265.10(22)	0.081(12)	0.00142(21)	¹⁷⁴ Yb 3776.2(23)	0.040(10)	0.00070(18)
'''Yb 1288.873(12)	0.019(3)	0.00033(5)	¹⁷⁴ Yb 3782.9(19)	0.057(14)	0.00100(25)
¹⁷³ Yb 1292.2(4)	0.036(9)	0.00063(16)	¹⁷⁴ Yb 3823.8(14)	0.026(6)	0.00046(11)
168Yb 1295.620(13) 174Yb 1296.3(3)	0.017(3) 0.046(17)	0.00030(5)	¹⁷⁴ Yb 3842.1(14) ¹⁷⁴ Yb 3854.4(11)	0.074(18)	0.0013(3)
173Yb 1308.53(11)	0.046(17) 0.168(19)	0.0008(3) 0.0029(3)	10 3854.4(11) 173Yb 3868.0(4)	0.085(16) 0.103(14)	0.0015(3) 0.00180(25)
¹⁷¹ Yb 1326.286(7)	0.055(7)	0.00096(12)	174Yb 3885.0(4)	0.72(17)	0.013(3)
¹⁷³ Yb 1353.21(22)	0.041(9)	0.00072(16)	'' ⁴ Yb 3929.3(4)	0.38(9)	0.0067(16)
'' ^o Yb 1371.3(4)	0.023(8)	0.00040(14)	¹⁷⁴ Yb 3978.2(19)	0.020(5)	0.00035(9)
¹⁶⁸ Yb 1374.45(7)	0.021(4)	0.00037(7)	¹⁷⁴ Yb 4129.6(19)	0.026(6)	0.00046(11)
¹⁷⁴ Yb 1378.22(7)	0.42(12)	0.0074(21)	¹⁷⁴ Yb 4138.6(19)	0.023(6)	0.00040(11)
¹⁷⁴ Yb 1378.7(10)	0.046(17)	0.0008(3)	¹⁷⁴ Yb 4174.9(13)	0.088(21)	0.0015(4)
¹⁷³ Yb 1381.48(14) ¹⁷¹ Yb 1387.243(7)	0.129(16) 0.142(18)	0.0023(3) 0.0025(3)	¹⁷⁴ Yb 4195.0(4) ¹⁷⁴ Yb 4454.3(4)	0.058(14) 0.026(6)	0.00102(25) 0.00046(11)
171Yb 1398.07(4)	0.134(16)	0.0023(3)	174Yb 4465.9(4)	0.020(0)	0.00040(11)
¹⁶⁸ Yb 1410.40(14)	0.015(8)	0.00026(14)	¹⁷³ Yb 4716.5(7)	0.027(8)	0.00047(14)
¹⁶⁸ Yb 1432.33(7)	0.016(4)	0.00028(7)	¹⁷⁴ Yb 4830.2(4)	0.25(6)	0.0044(11)
'''Yb 1450.264(20)	0.032(5)	0.00056(9)	¹⁷⁴ Yb 5011.0(4)	0.18(4)	0.0032(7)
¹⁷³ Yb 1456.65(23)	0.083(15)	0.0015(3)	¹⁷⁴ Yb 5266.3(4)	1.4(6)	0.025(11)
¹⁷¹ Yb 1465.985(7)	0.095(11)	0.00166(19)	¹⁷⁴ Yb 5307.5(4)	0.020(5)	0.00035(9)
¹⁷⁰ Yb 1469.79(17) ¹⁷¹ Yb 1470.401(12)	0.096(16) 0.058(7)	0.0017(3) 0.00102(12)	¹⁷¹ Yb 5539.05(5) ¹⁷¹ Yb 5691.58(9)	0.083(11) 0.020(3)	0.00145(19) 0.00035(5)
171Yb 1476.81(4)	0.038(7)	0.00102(12)	¹⁷⁰ Yb 5712.5(6)	0.020(3)	0.00033(3)
1/3Yb 1480.63(24)	0.050(12)	0.00088(21)	¹⁷¹ Yb 5824.85(6)	0.0172(23)	0.00030(4)
1/0Yb 1493.3(4)	0.027(10)	0.00047(18)	¹⁷¹ Yb 6009.65(6)	0.0148(19)	0.00026(3)
¹⁶⁸ Yb 1505.32(6)	0.018(4)	0.00032(7)	¹⁶⁸ Yb 6779.90(11)	0.058(7)	0.00102(12)
¹⁷¹ Yb 1521.197(16)	0.193(24)	0.0034(4)	Lutetium (Z=71), At	.Wt.=174.967(1), $\sigma = 76.6(23)$
¹⁷³ Yb 1529.19(15)	0.070(10)	0.00123(18)	¹⁷⁵ Lu 38.7460(10)	0.38(12)	0.0066(21)
¹⁷¹ Yb 1529.779(9) ¹⁷³ Yb 1533.99(14)	0.095(12) 0.103(13)	0.00166(21) 0.00180(23)	¹⁷⁵ Lu 46.4590(10)	0.26(7)	0.0045(12)
¹⁷³ Yb 1552.0(3)	0.103(13)	0.00056(16)	1/5Lii 66 2400(10)	0.28(4)	0.0048(7)
'''Yb 1553 54(25)	0.026(5)	0.00046(9)	1/3 u 71.5170(10)	3.96(22)	0.069(4)
¹⁷¹ Yb 1584.114(12)	0.037(6)	0.00065(11)		0.160(20)	0.0028(4)
'''Yb 1589.06(4)	0.037(5)	0.00065(9)	¹⁷⁶ Lu 88.36(4)	7.1(4) s ⁻¹ g ⁻¹	0.0405(7)
¹⁷¹ Yb 1599.939(16)	0.125(16)	0.0022(3)	¹⁷⁶ Lu 94.129(8) ¹⁷⁶ Lu 111.705(12)	0.72(4) 1.03(5)	0.0125(7) 0.0178(9)
¹⁷¹ Yb 1608.522(9) ¹⁷¹ Yb 1621.960(12)	0.081(11)	0.00142(19)	¹⁷⁵ Lu 112.9220(10)	1.15(7)	0.0179(12)
171 Yb 1631.792(20)	0.030(4) 0.054(7)	0.00053(7) 0.00095(12)	1/°Lu 112.9500(10)	d 3.47(16)	0.060[<0.1%]
1/3Yb 1638.36(17)	0.22(3)	0.0039(5)	'' ⁰ l u 115 651(8)	0.144(22)	0.0025(4)
1/3Yb 1679.70(14)	0.161(19)	0.0028(3)	'' ^o Lu 119.836(3)	1.32(22)	0.023(4)
'''Yb 1696.12(3)	0.029(4)	0.00051(7)	¹⁷⁶ Lu 121.620(3)	5.24(17)	0.091(3)
¹⁷¹ Yb 1715.35(4)	0.090(11)	0.00158(19)	175Lu 129.7730(10)	0.18(3)	0.0031(5)
¹⁷³ Yb 1730.9(3)	0.030(8)	0.00053(14)	¹⁷⁶ Lu 135.802(19) ¹⁷⁶ Lu 138.607(5)	0.37(3) 6.79(24)	0.0064(5) 0.118(4)
¹⁷¹ Yb 1742.889(10) ¹⁷¹ Yb 1770.58(4)	0.024(5)	0.00042(9)	¹⁷⁵ Lu 139.3830(10)	0.75(24)	0.0043(7)
1770.56(4) 173Yb 1775.1(3)	0.073(22) 0.052(11)	0.0013(4) 0.00091(19)	¹⁷⁶ Lu 144.745(5)	1.33(8)	0.0230(14)
¹⁷¹ Yb 1786.76(3)	0.032(11)	0.00091(19)	1/0Lu 145.870(4)	1.52(9)	0.0263(16)
'''Yb 1815.84(3)	0.073(10)	0.00128(18)	¹′°Lu 147.165(5)	4.96(19)	0.086(3)
'''Yb 1849.32(4)	0.046(6)	0.00081(11)	¹⁷⁶ Lu 147.167(5)	3.7(7)	0.064(12)
'''Yb 1877.64(3)	0.035(5)	0.00061(9)	176Lu 150.392(3)	13.8(4)	0.239(7)
¹⁷³ Yb 1920.6(3)	0.040(10)	0.00070(18)	¹⁷⁵ Lu 153.4670(10) ¹⁷⁶ Lu 162.492(4)	0.55(5) 5.32(17)	0.0095(9)
¹⁷¹ Yb 1930.76(5)	0.070(9)	0.00123(16)	176 Lu 162.492(4)	5.32(17) 0.97(5)	0.092(3) 0.0168(9)
¹⁷¹ Yb 1956.39(3) ¹⁷¹ Yb 1968.29(3)	0.028(4)	0.00049(7)	176 Lu 171.869(7)	1.74(6)	0.0301(10)
171 Yb 1968.29(3) 171 Yb 1997.515(21)	0.061(14) 0.044(7)	0.00107(25) 0.00077(12)	1/3Lu 182.4220(10)	0.46(10)	0.0080(17)
¹⁷³ Yb 2003.14(25)	0.045(10)	0.00077(12)	1/6Lu 185.593(8)	3.42(12)	0.0592(21)
1/1Yb 2009.50(5)	0.074(12)	0.00130(21)	1/°Lu 187.970(23)	1.39(6)	0.0241(10)
^{1/1} Yb 2024.16(3)	0.081(12)	0.00142(21)	¹⁷⁵ Lu 188.2870(10)	0.29(4)	0.0050(7)
¹⁷³ Yb 2093.9(3)	0.026(8)	0.00046(14)	¹⁷⁶ Lu 191.492(9) ¹⁷⁵ Lu 192.2120(10)	0.62(12)	0.0107(21)
¹⁷¹ Yb 2102.90(3)	0.040(5)	0.00070(9)	Lu 132.2120(10)	1.08(14)	0.0187(24)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Εγ)-barns	k ₀	Eγ-keV	σ(Εγ)-barns	k ₀
Lutetium (Z=71), co	ntinued		Lutetium (Z=71), co	ntinued	
¹⁷⁶ Lu 195.565(8)	0.63(5)	0.0109(9)	¹⁷⁶ Lu 1305.18(8)	0.36(3)	0.0062(5)
¹⁷⁵ Lu 197.550(14)	0.30(14)	0.0052(24)	¹⁷⁶ Lu 1381.01(6)	0.30(3)	0.0052(5)
¹⁷⁵ Lu 201.5680(10)	0.78(12)	0.0135(21)	¹⁷⁶ Lu 4866.8(5)	0.25(5)	0.0043(9)
¹⁷⁶ Lu 201.83(4) ¹⁷⁶ Lu 207.797(8)	37.9(22) s ⁻¹ g ⁻¹ 1.00(5)		¹⁷⁶ Lu 5016.6(5) ¹⁷⁶ Lu 5023.6(3)	0.215(18)	0.0037(3) 0.0030(4)
¹⁷⁶ Lu 208.3660(10) d	1.00(3)	0.0173(9) 0.104[<0.1%]	176 Lu 5319.45(24)	0.176(24) 0.167(19)	0.0030(4)
'' ^o l ii 209 492(24)	0.298(25)	0.0052(4)	'' ^o Lu 5323.12(13)	0.145(15)	0.0025(3)
''°Lu 212.841(15)	0.16(3) ´	0.0028(5)	¹⁷⁹ Lu 5331.80(20)	0.16(4)	0.0028(̈7)
'' ^o l u 213 965(8)	0.34(6)	0.0059(10)	'' ³ Lu 5331.94(20)	0.19(4)	0.0033(7)
¹⁷⁵ Lu 217.0030(10) ¹⁷⁵ Lu 219.2830(20)	0.35(10) 0.20(8)	0.0061(17)	¹⁷⁶ Lu 5343.91(25) ¹⁷⁶ Lu 5465.7(3)	0.26(3)	0.0045(5)
175 Lu 225.4030(10)	1.73(8)	0.0035(14) 0.0300(14)	176 Lu 5570.12(10)	0.218(16) 0.385(24)	0.0038(3) 0.0067(4)
¹⁷⁹ Lu 227 9970(10)	0.57(7)	0.0099(12)	''°Lu 5601.87(25)	0.327(25)	0.0057(4)
''°Lu 228.708(10)	0.178(21)	0.0031(4)	1/°Lu 5728.00(10)	0.23(3)	0.0040(5)
'''l u 233 7410(20)	0.41(10)	0.0071(17)	'' ^o Lu 5769.72(10)	0.184(18)	0.0032(3)
¹⁷⁶ Lu 235.892(15) ¹⁷⁵ Lu 238.6710(10)	0.81(4)	0.0140(7)	¹⁷⁶ Lu 6803.92(9)	0.38(8)	0.0066(14)
176 176 176 176 176 176	0.20(6) 0.45(8)	0.0035(10) 0.0078(14)	Hafnium (Z=72), At.	Wt.=178.49(2),	σ _γ =119(3)
'' ^o l u 247 255(15)	0.247(23)	0.0043(4)	¹⁷⁸ Hf 45.8570(10)	1.21(7)	0.0205(12)
¹⁷⁹ Lu 251.1990(20)	0.16(3)	0.0028(5)	¹⁷⁷ Hf 62.820(21)	5.26(16)	0.089(3)
¹′°Lu 259.401(16)	1.89(8)	0.0327(14)	¹⁷⁷ Hf 93.182(6) ¹⁷⁹ Hf 93.3240(20)	13.3(9)	0.226(15) 0.0136(9)
¹⁷⁵ Lu 263.7290(10) ¹⁷⁶ Lu 264.581(6)	0.59(10)	0.0102(17)	178Hf 105.8940(20)	0.80(5) 0.335(10)	0.00569(17)
176 175 175 175 175 175 175 175 175 175 175	0.76(11) 3.64(13)	0.0132(19) 0.0630(23)	'''Hf 122.8970(10)	0.432(16)	0.0073(3)
¹⁷⁹ Lu 277 6830(10)	0.20(6)	0.0035(10)	'' ⁴ Hf <i>125.7(10</i>)	0.2000(20)	0.00340(3)
1/3Lu 284.6410(10)	0.75(6)	0.0130(10)	'''Hf 144.530(3)	0.384(13)	0.00652(22)
'' ^o l u 301 098(6)	0.73(4)	0.0126(7)	¹⁷⁸ Hf 161.1890(20) ¹⁷⁸ Hf 193.3100(10)	0.57(10)	0.0097(17)
¹⁷⁶ Lu 306.84(4)	45.2(24) s ⁻¹ g ⁻¹		178Hf 202.2840(20)	1.1(3) 0.65(13)	0.019(5) 0.0110(22)
¹⁷⁵ Lu 310.1870(10) ¹⁷⁶ Lu 313.350(8)	1.49(8) 0.40(3)	0.0258(14) 0.0069(5)	'''Hf 213.439(7)	29.3(7)	0.497(12)
'''l u 319.036(8)	3.83(13)	0.0663(23)	1/8Hf 214.3410(20)	5.7(6)	0.097(10)
¹′°Lu 322.865(19)	0.31(3)	0.0054(5)	''°Hf 214.3410(20)	d 16.3(3)	0.277[99%]
'' ^o l u 329 59(3)	0.181(21)	0.0031(4)	¹⁷⁹ Hf 215.426(8) ¹⁷⁹ Hf 235.020(7)	2.77(17)	0.047(3)
¹⁷⁵ Lu 335.8480(20)	1.32(8)	0.0229(14)	178Hf 239.1660(10)	0.38(9) 0.293(24)	0.0065(15) 0.0050(4)
¹⁷⁶ Lu 336.323(15) ¹⁷⁶ Lu 346.37(3)	0.19(3) 0.35(6)	0.0033(5) 0.0061(10)	'''Hf 244.3130(20)	0.58(4)	0.0098(7)
1/9 u 348 084(9)	0.84(4)	0.0145(7)	'''Hf 244.544(13)	0.97(14)	0.0165(24)
¹′°Lu_360.096(10)	0.29(9)	0.0050(16)	'''Hf 245.2950(20)	0.58(4)	0.0098(7)
1/°l u 364 58(4)	0.62(3)	0.0107(5)	¹⁷⁷ Hf 256.6010(20) ¹⁷⁸ Hf 258.6230(20)	0.426(20)	0.0072(3)
¹⁷⁶ Lu 367.433(11)	2.23(8)	0.0386(14)	177Hf 273.166(3)	0.44(10) 0.305(16)	0.0075(17) 0.0052(3)
¹⁷⁶ Lu 393.389(11) ¹⁷⁶ Lu 413.665(13)	0.54(3) 0.93(4)	0.0094(5) 0.0161(7)	'''Hf 277.2080(20)	0.47(3)	0.0080(5)
''°Lu 430,452(15)	0.147(21)	0.0025(4)	'''Hf 289.5570(20)	0.67(4)	0.0114(7)
1/6Lu 436.505(13)	0.145(20)	0.0025(4)	¹⁷⁸ Hf 303.9880(20)	3.38(9)	0.0574(15)
¹⁷⁶ Lu 457.944(15)	8.3(3)	0.144(5)	¹⁷⁷ Hf 325.559(4) ¹⁷⁹ Hf 332.275(11)	6.69(17) 0.73(17)	0.114(3) 0.012(3)
¹⁷⁶ Lu 475.46(3) ¹⁷⁵ Lu 520.5500(20)	0.287(16)	0.0050(3)	'''Hf 339 1990(20)	1.28(6)	0.012(3)
¹⁷⁹ Lu 527 5090(20)	0.20(4) 0.32(5)	0.0035(7) 0.0055(9)	'''Hf 348.369(4)	0.60(8)	0.0102(14)
1/9 ii 544 602(18)	0.210(13)	0.00364(23)	'''Ht 426 380(5)	0.35(3)	0.0059(5)
1/6 u 547 866(16)	0.306(17)	0.0053(3)	¹⁷⁷ Hf 497.893(3)	1.11(11)	0.0188(19)
¹⁷⁶ Lu 550.288(15)	0.490(21)	0.0085(4)	¹⁷⁶ Hf 508.29(9) ¹⁷⁷ Hf 547.374(5)	1.05(6) 0.40(4)	0.0178(10) 0.0068(7)
¹⁷⁶ Lu 552.073(15) ¹⁷⁵ Lu 563.9420(20)	0.67(3) 0.51(4)	0.0116(5) 0.0088(7)	'''Hf 596.894(4)	0.34(13)	0.0058(22)
¹⁷⁹ Lu 578 198(3)	0.20(8)	0.0035(14)	1/8Hf 729.515(4)	0.53(5)	0.0090(9)
¹¹°l ⊔ 606 65(7)	0.182(15)	0.0032(3)	'''Hf 921.822(5)	0.84(5)	0.0143(9)
'' ⁰ l u 671 908(15)	0.259(21)	0.0045(4)	¹⁷⁷ Hf 961.919(5) ¹⁷⁷ Hf 970.066(7)	0.76(7)	0.0129(12)
¹⁷⁶ Lu 689.77(6)	0.31(5)	0.0054(9)	178Hf 1003.650(4)	0.32(8) 0.89(5)	0.0054(14) 0.0151(9)
¹⁷⁶ Lu 695.033(16) ¹⁷⁵ Lu 709.553(4)	0.296(25) 0.21(7)	0.0051(4) 0.0036(12)	'''Hf 1016.663(6)	0.30(13)	0.0051(22)
'' ^o Lu 716.470(17)	0.189(16)	0.0033(3)	¹⁷⁹ Hf 1059.66(4)	0.32(3)	0.0054(5)
1/01 11 761 564(20)	2.60(9)	0.0450(16)	1/8Hf 1065.45(3)	1.94(5)	0.0329(9)
¹⁷⁵ l u 834 810(3)	0.20(11)	0.0035(19)	¹⁷⁷ Hf 1077.844(5)	2.40(6)	0.0407(10)
¹⁷⁵ Lu 838.643(3)	0.89(10)	0.0154(17)	¹⁷⁷ Hf 1081.454(6) ¹⁷⁷ Hf 1102.824(5)	2.82(7) 2.96(8)	0.0479(12) 0.0503(14)
¹⁷⁶ Lu 864.52(8) ¹⁷⁶ Lu 899.12(6)	0.191(16) 0.423(25)	0.0033(3) 0.0073(4)	'''Hf 1143.737(7)	1.84(6)	0.0312(10)
¹¹°Lu 907.86(6)	0.42(3)	0.0073(4)	'''Hf 1167.072(6)	3.95(10)	0.0671(17)
'' ⁹ l u 907 961(18)	0.35(5)	0.0061(9)	'''Hf 1174.635(5)	4.8(7)	0.081(12)
¹⁷⁶ l u 916 24(4)	0.439(25)	0.0076(4)	¹⁷⁷ Hf 1175.357(7) ¹⁷⁷ Hf 1183.504(8)	2.6(5)	0.044(9)
1/3 u 1000 846(18)	0.15(10)	0.0026(17)	179Hf 1197.92(8)	1.42(5) 0.44(6)	0.0241(9) 0.0075(10)
¹⁷⁶ Lu 1036.39(8) ¹⁷⁶ Lu 1061.97(6)	0.169(16) 0.45(4)	0.0029(3) 0.0078(7)	'''Hf 1205.975(5)	1.26(23)	0.021(4)
¹¹°Lu 1080.24(6)	0.68(4)	0.0078(7)	'''Hf 1207.213(5)	3.9(3)	0.066(5)
'' ^o l u 1088 11(4)	0.83(4)	0.0144(7)	'''Hf 1226.532(6)	1.30(5)	0.0221(9)
1/6 u 1215 36(13)	0.139(14)	0.00241(24)	¹⁷⁷ Hf 1229.287(8) ¹⁷⁷ Hf 1232.172(5)	4.26(11) 1.35(6)	0.0723(19) 0.0229(10)
¹⁷⁶ Lu 1233.84(6)	0.187(19)	0.0032(3)	111 1232.172(3)	1.55(0)	0.0223(10)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Eγ)-barns	k ₀	Eγ-keV	σ(Εγ)-barns	k _o
Hafnium (Z=72), cor			Tantalum (Z=73), co		
¹⁷⁷ Hf 1247.379(5)	0.49(4)	0.0083(7)	¹⁸¹ Ta 156.0880(20)	0.233(6)	0.00390(10)
¹⁷⁷ Hf 1254.913(7) ¹⁷⁷ Hf 1269.372(6)	0.40(4)	0.0068(7)	¹⁸¹ Ta 156.2300(20) ¹⁸¹ Ta 159.048(3)	0.046(3)	0.00077(5)
177 177 177 177 177 177 177 177 177 177	2.26(7) 0.99(5)	0.0384(12) 0.0168(9)	¹⁸¹ Ta 167.413(3)	0.0449(23) 0.031(3)	0.00075(4) 0.00052(5)
177 Hf 1310.071(5)	1.45(5)	0.0246(9)	'°'Ta 168.130(4)	0.033(9)	0.00055(15)
'''Hf 1330.109(5)	2.08(8)	0.0353(14)	¹⁸¹ Ta <i>171.580(3)d</i>	0.005400(11)	9.044×10 ⁻⁵ [65%]
'''Hf 1333.832(5)	1.71(9)	0.0290(15)	'°'Ta 171.580(3)	0.029(4)	0.00049(7)
¹⁷⁷ Hf 1340.447(6)	2.38(10)	0.0404(17)	¹⁸¹ Ta 173.2050(20)	1.210(25)	0.0203(4)
¹⁷⁷ Hf 1344.841(5) ¹⁷⁷ Hf 1403.267(20)	0.59(5)	0.0100(9)	¹⁸¹ Ta 178.6250(20) ¹⁸¹ Ta 190.334(3)	0.072(6)	0.00121(10)
177Hf 1420.651(6)	0.51(4) 1.81(8)	0.0087(7) 0.0307(14)	¹⁸¹ Ta 195.1080(20)	0.183(7) 0.075(4)	0.00306(12) 0.00126(7)
'''Hf 1496.448(21)	0.44(3)	0.0075(5)	¹⁸¹ Ta 210.5460(20)	0.064(4)	0.00107(7)
¹⁷⁷ Hf 1542.416(7)	0.55(8)	0.0093(14)	'°'Ta 214.2070(20)	0.0481(23)	0.00081(4)
'''Hf 1649.794(6)	0.367(22)	0.0062(4)	'°'Ta 233.7080(20)	0.065(3)	0.00109(5)
¹⁷⁸ Hf 1649.81(10) ¹⁷⁷ Hf 1725.094(10)	0.46(4) 0.46(5)	0.0078(7) 0.0078(9)	¹⁸¹ Ta 237.2880(20) ¹⁸¹ Ta 244.809(4)	0.050(6) 0.032(3)	0.00084(10)
177Hf 1848.821(8)	0.46(5)	0.0078(9)	¹⁸¹ Ta 252.7710(20)	0.032(3)	0.00054(5) 0.00057(13)
¹° ⁰ Hf 1895.38(16)	0.54(5)	0.0092(9)	¹⁸¹ Ta 260.094(4)	0.052(17)	0.0009(3)
'''Hf 1904.272(10)	0.71(6)	0.0121(10)	'°'Ta 267.907(3)	0.027(4)	0.00045(7)
¹⁷⁷ Hf 1927.998(7)	0.30(5)	0.0051(9)	¹⁸¹ Ta 270.4030(20)	2.60(6)	0.0435(10)
¹⁷⁷ Hf 1957.294(12) ¹⁷⁸ Hf 3497.81(25)	0.31(4)	0.0053(7)	¹⁸¹ Ta 287.131(3) ¹⁸¹ Ta 290.362(3)	0.054(6)	0.00090(10)
178Hf 4336.18(4)	0.31(5) 0.35(4)	0.0053(9) 0.0059(7)	¹⁸¹ Ta 297.125(3)	0.027(7) 0.17(3)	0.00045(12) 0.0028(5)
''°Hf 4343.69(4)	0.44(5)	0.0075(9)	'°'Ta 322.554(4)	0.048(3)	0.00080(5)
'' ⁹ Hf 4915.2(6)	0.35(5)	0.0059(9)	'°'Ta 346.465(5)	0.110(6)	0.00184(10)
'''Hf 5068.3(5)	0.32(5)	0.0054(9)	'°'Ta 360.518(3)	0.177(7)	0.00296(12)
¹⁷⁷ Hf 5260.9(5) ¹⁷⁷ Hf 5294.9(5)	0.36(6)	0.0061(10)	¹⁸¹ Ta 373.881(6) ¹⁸¹ Ta 377.2460(20)	0.052(3)	0.00087(5)
177Hf 5575.22(16)	0.34(5) 0.41(4)	0.0058(9) 0.0070(7)	¹⁸¹ Ta 382.203(3)	0.127(4) 0.074(3)	0.00213(7) 0.00124(5)
'' ⁹ Hf 5647.71(11)	0.38(4)	0.0065(7)	'°'Ta 401.238(3)	0.044(3)	0.00074(5)
¹80Hf 5649.60(21)	0.33(18)	0.006(3)	¹°¹Ta 402.623(3)	1.180(23)	0.0198(4)
¹80Hf 5695.48(17)	1.09(9)	0.0185(15)	¹⁸¹ Ta 443.6080(20)	0.036(3)	0.00060(5)
¹⁷⁸ Hf 5723.809(22)	1.97(10)	0.0334(17)	¹⁸¹ Ta 473.803(6)	0.032(3)	0.00054(5)
¹⁷⁷ Hf 5807.42(16) ¹⁷⁷ Hf 6111.85(16)	0.35(5) 0.92(6)	0.0059(9) 0.0156(10)	¹⁸¹ Ta 478.685(5) ¹⁸¹ Ta 480.034(3)	0.054(3) 0.091(4)	0.00090(5) 0.00152(7)
¹⁷⁷ Hf 6357.14(16)	0.32(5)	0.0054(9)	¹⁸¹ Ta 489,590(4)	0.027(4)	0.00045(7)
Tantalum (Z=73), At			'°'Ta 499.118(6)	0.050(4)	0.00084(7)
¹⁸¹ Ta 47.8120(20)	0.13(3)	0.0022(5)	'°'Ta 501.068(3)	0.029(3)	0.00049(5)
¹⁸¹ Ta 54.4710(20)	0.052(13)	0.0022(3)	¹⁸¹ Ta 509.967(5) ¹⁸¹ Ta 512.355(4)	0.054(13)	0.00090(22)
¹⁸¹ Ta 59.693(3)	0.042(13)	0.00070(22)	¹⁸¹ Ta 514.110(4)	0.165(9) 0.033(4)	0.00276(15) 0.00055(7)
¹⁸¹ Ta 71.900(4)	0.060(15)	0.00100(25)	'°'Ta 530.593(4)	0.0266(23)	0.00045(4)
¹⁸¹ Ta 72.932(4)	0.054(15)	0.00090(25)	'°'Ta 603.15(3)	0.035(3)	0.00059(5)
¹⁸¹ Ta 73.519(4) ¹⁸¹ Ta 74.2680(20)	0.06(3) 0.077(22)	0.0010(5) 0.0013(4)	'°'Ta 3982.2(3)	0.032(7)	0.00054(12)
¹⁸¹ Ta 76.549(6)	0.029(13)	0.0013(4)	¹⁸¹ Ta 4045.81(23) ¹⁸¹ Ta 4053.82(22)	0.030(3)	0.00050(5) 0.00057(5)
¹⁸¹ Ta 82.876(4)	0.029(13)	0.00049(22)	¹⁸¹ Ta 4219.98(25)	0.034(3) 0.037(4)	0.00037(3)
'°'Ta 92.480(3)	0.065(9)	0.00109(15)	'°'Ta 4315.43(19)	0.084(7)	0.00141(12)
¹⁸¹ Ta 94.1680(20)	0.051(7)	0.00085(12)	¹⁸¹ Ta 4443.9(3)	0.031(4)	0.00052(7)
¹⁸¹ Ta 95.156(3) ¹⁸¹ Ta 97.467(3)	0.081(9) 0.065(9)	0.00136(15) 0.00109(15)	¹⁸¹ Ta 4482.95(25)	0.042(6)	0.00070(10)
¹⁸¹ Ta 97.8320(20)	0.139(7)	0.00103(13)	¹⁸¹ Ta 4536.05(25) ¹⁸¹ Ta 4566.6(3)	0.032(4) 0.032(4)	0.00054(7) 0.00054(7)
¹⁸¹ Ta 99.8310(20)	0.127(7)	0.00213(12)	¹⁸¹ Ta 4579.5(3)	0.035(4)	0.00059(7)
¹⁸¹ Ta 100.5540(20)	0.060(11)	0.00100(18)	¹⁸¹ Ta 4618.08(22)	0.044(4)	0.00074(7)
¹⁸¹ Ta 104.1130(20) ¹⁸¹ Ta 107.863(3)	0.037(6)	0.00062(10)	¹⁸¹ Ta 4691.73(25)	0.040(4)	0.00067(7)
¹⁸¹ Ta 114.3150(10)	0.131(14) 0.280(9)	0.00219(23) 0.00469(15)	¹⁸¹ Ta 4781.95(18)	0.105(7)	0.00176(12)
¹⁸¹ Ta 114.3760(20)	0.110(20)	0.0018(3)	¹⁸¹ Ta 4792.76(25) ¹⁸¹ Ta 4802.55(25)	0.048(4) 0.037(4)	0.00080(7) 0.00062(7)
¹⁸¹ Ta 114.674(3)	0.193(20)	0.0032(3)	¹⁸¹ Ta 4832.97(25)	0.037(4)	0.00050(5)
¹⁸¹ Ta 118.8950(20)	0.108(8)	0.00181(13)	¹⁸¹ Ta 4980.12(22)	0.033(3)	0.00055(5)
¹⁸¹ Ta 119.516(3) ¹⁸¹ Ta 119.6980(20)	0.039(6)	0.00065(10)	¹⁸¹ Ta 5005.52(21)	0.042(3)	0.00070(5)
¹⁸¹ Ta 121.5340(20)	0.038(6) 0.031(3)	0.00064(10) 0.00052(5)	¹⁸¹ Ta 5245.79(6)	0.051(4)	0.00085(7)
¹⁸¹ Ta 122.613(3)	0.037(6)	0.00062(10)	¹⁸¹ Ta 5343.26(6) ¹⁸¹ Ta 5792.39(6)	0.048(4) 0.034(3)	0.00080(7) 0.00057(5)
¹⁸¹ Ta 122.675(3)	0.092(4)	0.00154(7)	¹⁸¹ Ta 5964.95(6)	0.138(8)	0.00037(3)
¹⁸¹ Ta 122.9730(20)	0.075(9)	0.00126(15)	¹⁸¹ Ta 6062.78(6)	0.087(4)	0.00146(7)
¹⁸¹ Ta 125.126(3) ¹⁸¹ Ta 133.8770(20)	0.030(4)	0.00050(7) 0.0106(12)	Tungsten (Z=74), A		σ.=18.39(16)
¹⁸¹ Ta 139.4560(20)	0.63(7) 0.094(10)	0.0106(12) 0.00157(17)	¹⁸² W 46 - 4840(10)	0.192(10)	ο.00316(16)
¹⁸¹ Ta 139.6610(20)	0.029(3)	0.00049(5)	¹⁸² W 52.5290(10)	0.128(11)	0.00211(18)
¹⁸¹ Ta 141.2450(20)	0.062(9)	0.00104(15)	186W 59.03(4)	0.208(7)	0.00343(12)
¹⁸¹ Ta 142.261(5)	0.042(13)	0.00070(22)	¹⁸⁶ W 72.002(4)d	1.32(3)	0.0218[1.4%]
¹⁸¹ Ta 143.156(7) ¹⁸¹ Ta 146.7740(20)	0.061(9) 0.141(4)	0.00102(15) 0.00236(7)	¹⁸⁶ W 77.39(3) ¹⁸² W 84.7130(10)	0.134(5) 0.0261(16)	0.00221(8) 0.00043(3)
¹⁸¹ Ta 154.0850(20)	0.082(3)	0.00230(7)	¹⁸² W 99.0790(10)	0.155(13)	0.00256(21)
. , ,	· · ·	. , _		. ,	· , , , , , , , , , , , , , , , , , , ,

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Εγ)-barns	k _o	Eγ-keV	σ(Εγ)-barns	k ₀
Tungsten (Z=74), co			Tungsten (Z=74), co		
¹⁸⁶ W 101.80(5)	0.0129(22)	2.1(4)×10 ⁻⁴	¹⁸³ W 724.39(3)	0.0179(23)	0.00030(4)
¹⁸² W 107.9320(10) ¹⁸² W 109.738(7)	0.144(12)	0.00237(20)	¹⁸⁶ W 725.94(6) ¹⁸⁶ W 738.73(5)	0.023(4)	0.00038(7)
183W 111.216(9)	0.0201(16) 0.195(6)	0.00033(3) 0.00321(10)	184W 744.86(24)	0.040(3) 0.030(14)	0.00066(5) 0.00049(23)
100W 124 05(5)	0.051(11)	0.00084(18)	¹⁸⁶ W 745 80(6)	0.053(3)	0.00043(23)
186W 127.43(4)	0.129(5)	0.00213(8)	¹⁰⁴ W 757 2(3)	0.048(22)	0.0008(4)
186W 128 92(6)	0.0207(24)	0.00034(4)	¹⁸³ W 757 324(23)	0.028(3)	0.00046(5)
¹⁸⁶ W 134.247(7)d	1.050(20)	0.0173[1.4%]	¹⁸⁶ W 762.78(5)	0.047(4)	0.00077(7)
¹⁸⁶ W 142.90(8) ¹⁸⁶ W 145.79(3)	0.0206(18) 0.970(21)	0.00034(3) 0.0160(4)	¹⁸⁴ W 768.33(22) ¹⁸⁶ W 772.89(5)d	0.015(7) 0.490(10)	2.5(12)×10 ⁻⁴ 0.00808[1.4%]
¹⁸⁶ W 149 05(7)	0.0393(22)	0.00065(4)	186W 782.12(6)	0.22(3)	0.0036(5)
¹⁸⁶ W 157 46(4)	0.0319(14)	0.000526(23)	186W 788 79(7)	0.070(5)	0.00115(8)
¹⁸² W 160 5280(10)	0.0183(12)	0.000302(20)	183W 792.059(16)	0.119(6)	0.00196(10)
¹⁸² W 162.315(8)	0.187(5)	0.00308(8)	¹⁸⁶ W 803.33(6)	0.034(3)	0.00056(5)
¹⁸⁶ W 171.69(7) ¹⁸⁴ W 173.680(20)	0.0097(10) 0.0155(16)	1.60(16)×10 ⁻⁴ 0.00026(3)	¹⁸⁶ W 814.20(6) ¹⁸⁶ W 816.13(5)	0.0436(25) 0.104(4)	0.00072(4) 0.00171(7)
¹⁸⁶ W 197 56(16)	0.027(5)	0.00045(8)	¹⁸² W 817 557(17)	0.0157(13)	0.000259(21)
100\// 201 44(5)	0.319(8)	0.00526(13)	¹⁸⁴ W 822 76(20)	0.0176(24)	0.00029(4)
186W 204 .83(4)	0.148(4)	0.00244(7)	100W 831 65(10)	0.092(16)	0.0015(3)
¹⁸² W 208.817(7)	0.0231(25)	0.00038(4)	¹⁸⁴ W 838.5(4)	0.014(6)	2.3(10)×10 ⁻⁴
¹⁸² W 209.876(9) ¹⁸³ W 215.340(13)	0.014(3) 0.0107(10)	2.3(5)×10 ⁻⁴ 1.76(16)×10 ⁻⁴	¹⁸⁶ W 840.18(5) ¹⁸² W 846.33(6)	0.143(5) 0.0221(22)	0.00236(8) 0.00036(4)
100W 225.86(4)	0.113(17)	0.0019(3)	186W 866 18(7)	0.068(3)	0.00030(4)
103W 226 743(10)	0.067(16)	0.0011(3)	186W 872 64(8)	0.040(3)	0.00066(5)
¹⁰⁰ W 227.34(7)	0.024(4)	0.00040(7)	¹⁸⁶ W 877 51(8)	0.030(3)	0.00049(5)
¹⁸² W 246.0600(10)	0.0280(12)	0.000462(20)	¹⁸⁶ W 880.89(9)	0.045(3)	0.00074(5)
¹⁸³ W 252.854(11) ¹⁸⁶ W 273.10(5)	0.101(3) 0.272(7)	0.00166(5) 0.00448(12)	182W 888.08(3) 184W 888.9(3)	0.076(13) 0.026(12)	0.00125(21) 0.00043(20)
100W 289 94(5)	0.0603(22)	0.00448(12)	103W 891 27(4)	0.020(12)	0.00043(20)
102W 291 724(7)	0.0453(19)	0.00075(3)	100W 891.59(6)	0.136(5)	0.00224(8)
¹⁰⁰W 294 73(8)	0.0097(16)	1.6(3)×10 ⁻⁴	183W 894 735(16)	0.075(4)	0.00124(7)
¹⁸³ W 294.958(14)	0.0106(11)	1.75(18)×10 ⁻⁴	¹⁸³ W 903.274(17)	0.115(5)	0.00190(8)
186W 303.25(4) 182W 313.0160(10)	0.044(3) 0.054(4)	0.00073(5) 0.00089(7)	¹⁸⁶ W 909.04(10) ¹⁸⁴ W 912.1(3)	0.092(4) 0.028(3)	0.00152(7) 0.00046(5)
100W 318 015(12)	0.034(4)	0.00035(5)	186W 913 63(6)	0.020(3)	0.00049(5)
100W 354 78(6)	0.0452(24)	0.00075(4)	¹⁸² W 927 294(18)	0.0235(18)	0.00039(3)
¹°¹W 365 44(11)	0.0155(15)	0.000256(25)	186W 930 08(8)	0.018(4)	0.00030(7)
¹⁸⁶ W 376.70(5)	0.0453(18)	0.00075(3)	¹⁸⁶ W 933.46(7)	0.0133(11)	2.19(18)×10 ⁻⁴
¹⁸⁶ W 390.59(11) ¹⁸⁶ W 423.75(7)	0.0126(12) 0.0497(22)	2.08(20)×10 ⁻⁴ 0.00082(4)	¹⁸⁶ W 936.54(8) ¹⁸² W 941.02(5)	0.0130(11) 0.0117(11)	2.14(18)×10 ⁻⁴ 1.93(18)×10 ⁻⁴
¹⁰⁰W 473 88(7)	0.055(5)	0.00091(8)	¹⁸⁶ W 941 04(8)	0.0276(13)	0.000455(21)
186W 479.550(22) d	2.59(5) ⁽	0.0427[1.4%]	¹⁸² W 960 29(17)	0.0101(21)	1.7(4)×10 ⁻⁴
¹°°W 494 64(7)	0.0123(16)	2.0(3)×10 ⁻⁴	10 4 W 976 2(3)	0.016(7)	0.00026(12)
¹⁸⁶ W 500.08(6) ¹⁸⁶ W 531.17(7)	0.0491(23)	0.00081(4)	¹⁸⁶ W 979.68(16) ¹⁸² W 979.871(18)	0.016(16)	0.0003(3)
186W 541.09(7)	0.052(3) 0.0190(23)	0.00086(5) 0.00031(4)	186W 989.11(7)	0.102(10) 0.036(4)	0.00168(16) 0.00059(7)
186W 547 81(17)	0.022(4)	0.00036(7)	186W 1004 94(8)	0.015(6)	2.5(10)×10 ⁻⁴
100\/\/ 551 52(4)d	0.603(14)	0.00994[1.4%]	104W 1005.9(4)	0.022(10)	0.00036(16)
¹°°₩ 557.16(5)	0.125(5)	0.00206(8)	¹⁸³ W 1010.177(23)	0.036(3)	0.00059(5)
¹⁸⁴ W 569.65(22) ¹⁸⁶ W 577.30(5)	0.0166(17) 0.191(5)	0.00027(3) 0.00315(8)	¹⁸⁶ W 1012.05(6) ¹⁸⁶ W 1018.43(8)	0.041(5) 0.036(4)	0.00068(8) 0.00059(7)
¹⁰⁴ W 579 8(3)	0.021(10)	0.00313(6)	186W 1025.94(12)	0.033(8)	0.00054(13)
104W 580 49(23)	0.021(10)	0.00035(16)	¹8²W 1026.373(17)	0.161(15)	0.00265(25)
¹⁰⁰W 588 34(7)	0.0216(19)	0.00036(3)	104W 1031 3(3)	0.031(14)	0.00051(23)
103W 607 60(5)	0.0112(16)	1.8(3)×10 ⁻⁴	¹⁸⁶ W 1057.51(7)	0.029(3)	0.00048(5)
¹⁸⁶ W 611.30(5) ¹⁸⁶ W 616.20(6)	0.066(3) 0.059(3)	0.00109(5) 0.00097(5)	¹⁸⁶ W 1071.09(5) ¹⁸⁶ W 1082.34(8)	0.053(3) 0.061(4)	0.00087(5) 0.00101(7)
186W 618-26(4)d	0.746(17)	0.00097(3) 0.0123[1.4%]	186W 1084.97(12)	0.022(3)	0.00101(7)
100W 625.519(10)d	0.129(3)	0.00213[1.4%]	¹8²W 1100 73(13)	0.024(5)	0.00040(8)
¹⁰⁰W 629 19(17)	0.022(3)	0.00036(5)	186W 1103 58(21)	0.050(13)	0.00082(21)
¹°⁰W 635 35(5)	0.036(4)	0.00059(7)	¹⁸⁶ W 1106.96(20)	0.027(3)	0.00045(5)
¹⁸⁴ W 636.4(4) ¹⁸⁴ W 640.02(24)	0.044(20) 0.055(25)	0.0007(3) 0.0009(4)	183W 1121.392(24) 184W 1125.3(3)	0.0144(15) 0.046(21)	2.37(25)×10 ⁻⁴ 0.0008(4)
100W 640 43(7)	0.033(23)	0.00053(5)	186W 1134 90(7)	0.040(21)	0.00045(5)
¹⁰⁰W 657 54(7)	0.083(5)	0.00137(8)	186W 1139 48(5)	0.031(3)	0.00051(5)
¹°°W 661.36(8)	0.032(4)	0.00053(7)	186W 1153 37(12)	0.014(8)	2.3(13)×10 ⁻⁴
¹⁸⁴ W 663.49(21)	0.029(3)	0.00048(5)	¹⁸⁴ W 1153.5(3) ¹⁸⁴ W 1180.8(3)	0.011(5)	1.8(8)×10 ⁻⁴
¹⁸⁶ W 670.34(5) ¹⁸⁴ W 674.5(3)	0.0452(25) 0.019(9)	0.00075(4) 0.00031(15)	184W 1195.63(23)	0.08(4) 0.031(14)	0.0013(7) 0.00051(23)
¹86W 685.73(4)d	3.24(7)	0.0534[1.4%]	102W 1262 10(5)	0.037(14)	0.00031(23)
100W 694.38(5)	0.073(3)	0.00120(5)	100W 1269 91(9)	0.031(8)	0.00051(13)
¹⁸² W 694 64(4)	0.0230(19)	0.00038(3)	100W 1275 01(3)	0.032(6)	0.00053(10)
¹⁸² W 696.77(5) ¹⁸³ W 710.28(5)	0.022(6)	0.00036(10) 1.9(3)×10 ⁻⁴	¹⁸³ W 1319.77(5) ¹⁸⁴ W 1328.3(4)	0.0134(18)	2.2(3)×10 ⁻⁴
¹⁸³ W 711.59(6)	0.0118(17) 0.0108(15)	1.9(3)×10 ⁻⁴ 1.78(25)×10 ⁻⁴	¹⁸² W 1347.37(13)	0.015(3) 0.019(11)	2.5(5)×10 ⁻⁴ 0.00031(18)
	3.3 . 33(10)	5(20)/(10		3.3.3(11)	3.33301(10)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Ey-keV			-	Gamma Rays from		-	•
1847,6(8)	·		σ (Ε γ)-barns	k _o	Eγ-keV	σ (Ε γ)-barns	k_0
1386, 22(3)	Tungsten (Z=74), co	ntinued		Tungsten (Z=74),	continued	
1498.113 0.0176(22) 0.00028(4)	¹⁸⁴ W 1347.	.6(8)	0.020(9)		¹⁸⁶ W 4158.13(21)	0.043(5)	
1412.03163 0.01765 0.00028(6)	¹⁸³ W 1386.	.22(3)			¹⁸² W 4162.33(17)	0.0122(15)	
1424.42(5)	183W 4442	.1(3)			182W 4219.2(8)		
130.98(5)	182\N 1412.	.03(16)			186\W 4246.61(4)		
1470.92(5)	183\// 1/30	.42(5) .08(5)			182 _W 4249.66(7)	0.113(6)	` ` · <i>'</i>
150.07 150.07 150.07 150.00 1	102W 1470	92(5)		1.73(23)×10 · 1.6(7)×10-4	¹⁸⁶ W 4331 63(8)		
1509.68(13)	102W 1504	07(9)		1.65(18)×10 ⁻⁴	102\W 4367 18(4)	0.026(3)	
1585.18(13)	102W 1509	68(13)		0.00036(5)	¹⁸² W 4379 77(5)		
1869 1968 476 0.0103(2) 2.1(5)×10 ⁻⁴ 180W 4448.10(9) 0.0124(23) 2.0(4)×10 ⁻⁴ 180W 4481.10(9) 0.0022(10) 0.00036(16) 0.00036(1	102W 1556	18(13)			100\M 4384 20(9)	0.057(5)	0.00094(8)
1919.44 0.0194 0.0093(7) 1.6(4)×10 ⁴ 1	103W 1569	9(3)		2.1(5)×10 ⁻⁴	180W 4448.10(9)	0.048(3)	
1945.14(15)	183W 4040	.47(9)			184W 4460.59(9)		
1949.69(7)	183 _M 1045	.4(4) 14(15)	0.019(4)		186 _W 4409.1(6)	0.022(10)	
1995.48(21)	103\N 1949	69(7)			¹⁸² W 4518 11(5)	0.030(10)	
1998 2014.85(5)	103W 1995	48(21)			104W 4535 5(3)	0.08(4)	
1989 2035.64(17) 0.025(3) 0.00041(5) 1.50 4.552.86(14) 0.026(3) 0.00043(5) 1.50	103W 2014	85(5)	0.0104(15)		186W 4557 49(11)	0.025(5)	
1989 2135.08(21) 0.013(3) 2.1(5)x10-4 1989 2137.49(8) 0.0023(1) 0.0026(1) 1989 2137.49(8) 0.015(4) 0.0025(116) 1989 2237.1(4) 0.030(16) 0.00030(7) 1889 4684.64(13) 0.015(4) 0.015(4) 0.0024(12) 1889 2367.1(4) 0.030(16) 0.0005(3) 1889 4684.64(13) 0.015(4) 0.0024(12) 1889 2368.64(13) 0.015(4) 0.003(16) 0.0005(7) 1889 4684.40(8) 0.150(7) 0.00247(12) 1889 2368.464(13) 0.0025(7) 0.00247(12) 1889 2368.464(13) 0.0065(7) 1889 4684.40(8) 0.150(7) 0.00247(12) 1889 2368.464(13) 0.0065(1) 1889 2684.40(8) 0.017(8) 0.0003(7) 1889 4684.40(8) 0.017(8) 0.0003(14) 0.0005(7) 1889 4684.40(8) 0.017(8) 0.0003(14) 0.0005(7) 1889 4684.40(8) 0.017(8) 0.0003(14) 0.0005(17) 1889 4684.40(8) 0.017(8) 0.0003(14) 0.0005(17) 1889 4684.40(8) 0.017(8) 0.00028(13) 0.0003(16) 1889 2708.4(3) 0.026(4) 0.00043(7) 1889 4986.2(3) 0.019(9) 0.00031(15) 1889 2738.4(3) 0.032(4) 0.00053(7) 1889 2738.4(3) 0.032(4) 0.00053(7) 1889 2738.4(3) 0.033(4) 0.00053(7) 1889 2738.4(3) 0.033(4) 0.00053(7) 1889 2738.4(3) 0.0114(16) 1.9(3)x10-4 1889 2393.4(4) 0.014(4) 2.3(7)x10-4 1889 2566.22(4) 0.0112(12) 0.0003(15) 1889 2656.22(4) 0.0112(12) 0.0003(16) 1889 2565.22(4) 0.0112(12) 0.0003(15) 1889 2565.0(28) 0.015(21) 0.0003(15) 1889 2565.0(28) 0.003(3) 0.0004(16) 1889 2565.22(4) 0.0112(12) 0.0003(15) 1889 2565.0(28) 0.0115(14) 0.0004(14) 1889 2565.22(4) 0.0112(12) 0.0004(14) 1889 2565.22(4) 0.0003(15) 1889 2565.22(4) 0.0003(15) 1889 2565.22(4) 0.0003(15) 1889 2656.22(4) 0.0003(15) 1889 2656.22(4) 0.0003(15) 1889 2656.22(4) 0.0003(15) 1889 2656.22(4) 0.0003(15) 1889 2656.22(4) 0.0003(15) 1889 2656.22(4) 0.0003(15) 1889 2656.22(4) 0.0003(15) 1889 2656.22(4) 0.0003(15) 1889 2656.22(4) 0.0003(15) 1889 2656.22(4) 0.	100W 2035	64(17)	0.025(3)		102\W 4562.86(14)	0.026(3)	0.00043(5)
	103W 2135	08(21)	0.013(3)		104W 4573.7(3)	0.104(9)	
186W 2293.1(7) 0.011(3) 1.8(5)×10 ⁴ 1.8(¹⁸³ W 2183.	.29(8)		\ '	186W 4574.94(8)	0.152(10)	
180 2367.1(4) 0.0301(6) 0.0005(3) 180 0.0005(3) 180 0.0005(3) 180 0.0005(3) 180 0.0005(3) 180 0.0005(3) 180 0.150(7) 0.0024(12) 180 0.2414 0.0005(7) 180 0.4748.7(4) 0.06(3) 0.0003(1(4) 0.0005(7) 180 0.4748.7(4) 0.06(3) 0.0003(1(4) 0.0005(7) 180 0.0005(7) 0.0005(8) 0.0005(8) 0.0005(16) 0.0005(8) 0.0005(16)	186 _M 2284.	.32(19)	0.018(4)		182 _W 4626.35(7)	0.124(7)	
	186 _M 2293.	.1(7) 1(4)			186W 4650 40(7)	0.013(4)	
1980 2481.30(25) 0.031(4) 0.00051(7) 198W 4748.7(4) 0.06(3) 0.0010(5) 198W 2584.20(18) 0.031(4) 0.00035(7) 198W 4981.79(25) 0.0119(23) 2.0(4)×10 ⁴ 198W 2584.20(18) 0.024(4) 0.00040(7) 188W 4980.5(9) 0.017(8) 0.00028(13) 198W 2798.4(3) 0.026(4) 0.00043(7) 188W 4980.5(9) 0.017(8) 0.00028(13) 198W 2738.4(3) 0.026(4) 0.00035(7) 188W 4980.5(9) 0.016(22) 0.016(22) 0.00028(13) 198W 2738.4(3) 0.032(4) 0.00053(7) 188W 5015.52(20) 0.016(22) 0.00028(13) 198W 2738.4(3) 0.032(4) 0.00053(7) 188W 5015.52(20) 0.016(22) 0.00028(13) 198W 2831.98(20) 0.023(4) 0.00054(7) 188W 5091.05(25) 0.07(3) 0.0012(5) 198W 2831.98(20) 0.023(4) 0.00038(7) 188W 2564.88(6) 0.00038(7) 188W 2939.4(4) 0.014(4) 2.3(7)×10 ⁻⁴ 188W 2565.22(4) 0.0122(12) 2.01(20)×10 ⁻⁴ 188W 3055.01(20) 0.0290(25) 0.00048(4) 188W 3285.00(8) 0.015(14) 1.90(23)×10 ⁻⁴ 188W 3055.01(20) 0.025(3) 0.00048(4) 188W 3285.00(8) 0.015(14) 1.90(23)×10 ⁻⁴ 188W 3143.2(5) 0.086(19) 0.0014(3) 188W 3143.2(5) 0.086(19) 0.0014(3) 188W 3153.9(10) 0.061(20) 0.0010(3) 188W 3153.9(10) 0.061(20) 0.0010(3) 188W 3199.2(25) 0.037(3) 0.00048(4) 188W 3297.5(8) 0.00048(4) 188W 3297.5(8) 0.00048(4) 188W 3297.5(8) 0.00038(7) 188W 3353.9(10) 0.0004(4) 0.00068(7) 188W 353.2(11) 0.010(24) 0.00068(7) 188W 353.2(11) 0.010(24) 0.00068(7) 188W 3353.9(10) 0.00061(20) 0.0016(3) 188W 353.2(10) 0.0007(4) 188W 3376.15(18) 0.0007(4) 0.00068(7) 188W 3376.15(18) 0.0007(4) 0.00068(7) 188W 353.2(14) 0.003(3) 0.00049(6) 188W 360.24(4) 0.010(4) 0.00068(7) 188W 360.24(4) 0.010(4) 0.00068(7) 188W 360.24(4) 0.010(4) 0.00068(7) 188W 360.24(4) 0.016(4) 0.00068(7) 188W 360.24(4) 0.016(4) 0.00068(7) 188W 360.24(4) 0.016(4) 0.00068(7) 188W 360.24(4) 0.016(4) 0.0006	100W 2369	9(3)			100\N/ 4684 40(8)	0.052(5)	
186W 2566.0(3) 0.021(4) 0.00035(7) 184W 4981.79(25) 0.0119(23) 2.0(4)×10-4 186W 2689.5(3) 0.024(4) 0.00040(7) 184W 4980.5(9) 0.017(8) 0.00028(13) 186W 2727.5(4) 0.021(11) 0.00035(18) 183W 5015.52(20) 0.0162(20) 0.00027(3) 186W 2727.5(4) 0.021(11) 0.00035(18) 183W 5015.52(20) 0.0162(20) 0.00027(3) 186W 2738.4(3) 0.032(4) 0.00054(7) 184W 5991.05(25) 0.07(3) 0.0012(5) 186W 2738.4(3) 0.032(4) 0.00054(7) 185W 5014.05(25) 0.07(3) 0.0012(5) 186W 2849.3(3) 0.033(4) 0.00054(7) 185W 5164.43(3) 0.19(3) 0.0031(5) 186W 2839.3(4) 0.014(4) 2.3(7)×10-4 186W 2939.4(4) 0.014(4) 2.3(7)×10-4 186W 2939.4(4) 0.014(4) 2.3(7)×10-4 186W 2039.3(4) 0.0054(7) 186W 2039.3(4) 0.015(3) 2.5(5)×10-4 186W 3097.3(4) 0.015(3) 2.5(5)×10-4 186W 3148.2(5) 0.066(19) 0.0014(3) 186W 3225.15(17) 0.042(6) 0.00068(7) 183W 5795.50(9) 0.016(120) 0.00038(7) 186W 3225.15(17) 0.042(6) 0.00068(7) 183W 5795.50(9) 0.016(123) 0.00038(15) 186W 3225.15(17) 0.042(6) 0.00068(7) 183W 6148.3(3) 0.016(23) 0.00038(15) 186W 3425.2(4) 0.010(23) 0.00048(7) 183W 6148.8(3) 0.044(4) 0.00068(7) 183W 6488.8(3) 0.045(4) 0.00068(17) 183W 6488.8(3) 0.045(4) 0.	100W 2481	30(25)			¹⁸² W 4719 90(5)		
186W 2584.20(18) 0.031(4) 0.00051(7) 186W 4989.5(5) 0.017(8) 0.00028(13) 186W 2708.4(3) 0.026(4) 0.00043(7) 184W 4980.5(9) 0.017(8) 0.00028(13) 186W 2775.7(4) 0.021(11) 0.00035(18) 185W 5015.52(20) 0.0162(20) 0.00027(3) 186W 2738.4(3) 0.032(4) 0.00053(7) 184W 5091.05(25) 0.07(3) 0.0012(5) 186W 2738.4(3) 0.032(4) 0.00054(7) 185W 5016.52(20) 0.0162(20) 0.00027(3) 186W 2738.4(3) 0.033(4) 0.00054(7) 185W 5016.52(20) 0.07(3) 0.0012(5) 186W 2738.4(3) 0.033(4) 0.00054(7) 185W 516.55(10) 0.0114(16) 1.9(3)×10 ⁴ 186W 2831.98(20) 0.023(4) 0.00038(7) 182W 2939.4(4) 0.014(4) 2.3(7)×10 ⁴ 186W 2526.52(4) 0.0122(12) 2.01(20)×10 ⁴ 186W 3055.01(20) 0.0290(25) 0.00048(4) 186W 3055.01(20) 0.0290(25) 0.00048(4) 186W 3055.01(20) 0.0290(25) 0.00044(3) 186W 3141.78(20) 0.025(3) 0.00041(5) 186W 3142.5(5) 0.066(19) 0.0014(3) 186W 3142.5(5) 0.066(19) 0.0014(3) 186W 3153.9(10) 0.061(20) 0.0014(3) 186W 3153.9(10) 0.061(20) 0.0014(3) 186W 3754.53(21) 0.0112(18) 1.8(3)×10 ⁴ 186W 3207.0(3) 0.030(4) 0.00049(7) 183W 5796.19(9) 0.023(9) 0.00038(15) 186W 3207.1(5) 0.0006(15) 185W 3423.0(4) 0.00038(15) 186W 3225.15(17) 0.042(6) 0.00068(17) 183W 5796.19(9) 0.023(9) 0.00038(15) 186W 3325.15(17) 0.042(6) 0.00068(17) 183W 5796.19(9) 0.023(9) 0.00038(15) 186W 3325.15(17) 0.042(6) 0.00068(17) 183W 5796.19(9) 0.023(19) 0.00068(15) 185W 3423.0(4) 0.00068(17) 185W 3423.0(4)	100W 2556	0(3)			104\N 4748 7(4)	0.06(3)` ´	
186W 2689.5(3) 0.024(4) 0.00040(7) 187W 4986.2(3) 0.017(8) 0.00028(13) 186W 2727.5(4) 0.021(11) 0.00035(18) 183W 5015.52(20) 0.0162(20) 0.00027(3) 186W 2738.4(3) 0.032(4) 0.00054(7) 184W 5091.05(25) 0.07(3) 0.0012(5) 186W 2760.3(3) 0.032(4) 0.00054(7) 184W 5091.05(25) 0.07(3) 0.0012(5) 186W 2849.3(3) 0.033(4) 0.00054(7) 182W 5164.3(3) 0.19(3) 0.0031(5) 186W 2849.3(3) 0.033(4) 0.00054(7) 182W 5265.62(4) 0.0122(12) 2.01(20)×10-4 186W 2393.4(4) 0.014(4) 2.3(7)×10-4 186W 5261.68(6) 0.86(4) 0.01427(7) 186W 3097.3(4) 0.015(3) 2.5(5)×10-4 186W 3144.78(20) 0.025(3) 0.00041(5) 186W 3193.9(10) 0.0061(20) 0.0014(3) 186W 3193.9(10) 0.0061(20) 0.0014(3) 186W 3193.9(10) 0.0061(20) 0.0014(3) 186W 3262.5(11) 0.0112(18) 1.8(7)×10-4 186W 3262.5(11) 0.0004(15) 186W 3262.5(11) 0.0004(15) 186W 3262.5(11) 0.0004(15) 186W 3262.5(11) 0.0004(15) 186W 3262.5(11) 0.0004(16) 186W 3262.5(11) 0.0006(16) 186W 3262.5(100W 2584	20(18)		0.00051(7)	104W 4931 79(25)	0.0119(23)	$2.0(4)\times10^{-4}$
186W 2727.5(4) 0.021(11) 0.00035(18) 169W 5015.52(20) 0.0162(20) 0.00027(3) 186W 2760.3(3) 0.033(4) 0.00054(7) 183W 5011.5(5)(0) 0.0114(16) 1.9(3)×10 ⁻⁴ 186W 2849.3(3) 0.023(4) 0.00038(7) 182W 516.55(10) 0.0114(16) 1.9(3)×10 ⁻⁴ 186W 2849.3(3) 0.033(4) 0.00054(7) 182W 5266.22(4) 0.0122(12) 2.01(20)×10 ⁻⁴ 186W 2939.4(4) 0.014(4) 2.3(7)×10 ⁻⁴ 186W 5281.68(6) 0.86(4) 0.0142(7) 186W 3055.01(20) 0.0290(25) 0.00048(4) 186W 5285.00(8) 0.0115(14) 1.90(23)×10 ⁻⁴ 186W 3097.3(4) 0.015(3) 2.5(5)×10 ⁻⁴ 186W 5285.00(8) 0.0115(14) 1.90(23)×10 ⁻⁴ 186W 3141.78(20) 0.025(3) 0.00041(5) 186W 3141.78(20) 0.061(20) 0.0014(3) 183W 5534.37(11) 0.0112(18) 1.8(3)×10 ⁻⁴ 186W 3191.92(25) 0.037(3) 0.00041(5) 183W 5796.19(9) 0.023(9) 0.00038(15) 186W 3225.15(17) 0.042(6) 0.00069(10) 183W 5796.19(9) 0.023(9) 0.00038(15) 186W 3225.15(17) 0.042(6) 0.00069(10) 183W 5796.19(9) 0.023(9) 0.00038(15) 186W 3225.15(17) 0.042(6) 0.00069(10) 183W 5796.19(9) 0.023(9) 0.00038(15) 186W 3324.4(4) 0.015(3) 2.5(5)×10 ⁻⁴ 186W 3493.4(4) 0.00049(7) 183W 5796.19(9) 0.023(9) 0.00038(15) 186W 3324.4(4) 0.015(3) 2.5(5)×10 ⁻⁴ 186W 6189.75(7) 0.0264(24) 0.00044(4) 186W 3376.15(18) 0.041(4) 0.00068(7) 182W 6189.75(7) 0.0264(24) 0.00097(7) 186W 3492.67(17) 0.051(4) 0.00068(7) 183W 779.58(3) 0.45(4) 0.00097(7) 186W 3492.67(17) 0.051(4) 0.00064(7) 183W 779.58(3) 0.45(4) 0.00097(7) 186W 3492.67(17) 0.051(4) 0.00064(7) 183W 7410.99(7) 0.071(1) 0.00097(7) 186W 3492.67(17) 0.063(5) 0.00004(7) 183W 7410.99(7) 0.071(1) 0.00097(7) 186W 3350.17(1) 0.003(3) 0.0004(6) 183W 7410.99(7) 0.071(4) 0.00097(7) 186W 3364.4(4) 0.011(3) 1.8(5)×10 ⁻⁴ 186W 379.05(1) 0.064(4) 0.00066(7) 183W 740.99(7) 0.071(1) 0.00067(8) 186W 37	100W 2689	5(3)			104\M 4980 5(9)	0.017(8)	
186W 2738.4(3) 0.032(4) 0.00054(7) 186W 2831.98(20) 0.023(4) 0.00054(7) 186W 2849.3(3) 0.033(4) 0.00054(7) 186W 2849.3(3) 0.033(4) 0.00054(7) 186W 2849.3(3) 0.033(4) 0.00054(7) 186W 2852.2(4) 0.0122(12) 2.01(20)×10 ⁻⁴ 186W 2939.4(4) 0.014(4) 2.3(7)×10 ⁻⁴ 186W 2939.4(4) 0.014(4) 2.3(7)×10 ⁻⁴ 186W 2855.01(20) 0.0290(25) 0.00048(4) 186W 2855.01(20) 0.025(3) 0.00041(5) 186W 3505.01(20) 0.025(3) 0.00041(5) 186W 348.2(5) 0.086(19) 0.0014(3) 186W 348.2(5) 0.086(19) 0.0014(3) 186W 348.2(5) 0.086(19) 0.0014(3) 186W 348.2(5) 0.061(20) 0.0010(3) 184W 5754.53(21) 0.0112(18) 1.8(3)×10 ⁻⁴ 186W 3207.0(3) 0.03(4) 0.00049(7) 183W 5797.50(9) 0.0161(23) 0.00027(4) 186W 3225.15(17) 0.042(6) 0.00069(10) 183W 5797.50(9) 0.0161(23) 0.00027(4) 186W 3314.4(4) 0.015(3) 2.5(5)×10 ⁻⁴ 182W 6044.82(7) 0.036(3) 0.00027(4) 186W 3323.0(4) 0.010(3) 2.5(5)×10 ⁻⁴ 183W 6044.82(7) 0.036(3) 0.00027(4) 186W 3367.15(18) 0.041(4) 0.00068(7) 183W 6044.82(7) 0.0236(19) 0.00038(15) 186W 33267.15(1) 0.041(4) 0.00068(7) 183W 6048.82(7) 0.0236(19) 0.00039(3) 186W 3443.2(4) 0.039(12) 0.00064(20) 183W 6048.54(8) 0.0074(7) 186W 3344.2(4) 0.039(12) 0.00064(20) 183W 6507.75(7) 0.00264(24) 0.00044(4) 186W 3356.13(14) 0.00066(7) 183W 6507.75(7) 0.0098(9) 0.00039(3) 186W 3364.56(17) 0.051(4) 0.00066(7) 185W 3560.2(4) 0.011(7) 0.00066(7) 186W 3360.2(4) 0.011(7) 0.00066(7) 186W 3364.56(17) 0.060(4) 0.00066(7) 185W 6507.75(7) 0.0098(9) 0.0017(7) 186W 3364.56(17) 0.051(4) 0.00066(7) 185W 3600.2(4) 0.0017(7) 186W 3364.56(17) 0.063(6) 0.0017(6) 185W 6507.75(7) 0.0098(9) 0.0017(7) 186W 3360.2(4) 0.0017(4) 0.00066(7) 186W 3360.2(4) 0.0017(4) 0.00066(7) 186W 3360.2(4) 0.0017(4) 0.00066(7) 186W 3360.2(4) 0.00	186W 2708.	.4(3)	0.026(4)		183W 5045 50(20)	0.019(9)	0.00031(15)
186 W 281.98(20) 0.023(4) 0.00054(7) 186 W 2849.3(3) 0.033(4) 0.00054(7) 186 W 2849.3(3) 0.012(2) 0.012(2) 0.00048(4) 186 W 3097.3(4) 0.015(3) 2.5(5)×10 ⁻⁴ 186 W 3097.3(4) 0.015(3) 2.5(5)×10 ⁻⁴ 186 W 3097.3(4) 0.0054(7) 186 W 3097.3(4) 0.0054(7) 186 W 3097.3(4) 0.0054(7) 186 W 3148.2(5) 0.086(19) 0.0014(3) 186 W 3482.2(5) 0.086(19) 0.0014(3) 186 W 3148.2(5) 0.086(19) 0.0014(3) 186 W 3148.2(5) 0.037(3) 0.00041(5) 186 W 3191.92(25) 0.037(3) 0.00061(5) 183 W 5796.19(9) 0.023(9) 0.00038(15) 186 W 3225.15(17) 0.042(6) 0.00069(10) 183 W 5795.19(9) 0.023(9) 0.00038(15) 186 W 3225.15(17) 0.042(6) 0.00069(10) 183 W 5795.75(9) 0.0161(23) 0.00027(4) 186 W 3376.15(18) 0.041(4) 0.00068(7) 183 W 6144.28(3) 0.174(11) 0.00287(18) 186 W 3343.2(4) 0.039(3) 0.00049(5) 183 W 6144.28(3) 0.174(11) 0.00287(18) 186 W 3443.2(4) 0.039(3) 0.00049(5) 183 W 6189.75(7) 0.026(24) 0.00044(4) 186 W 3469.40(14) 0.033(3) 0.00049(5) 183 W 6189.75(7) 0.025(19) 0.00039(3) 186 W 3452.8(9) 0.055(10) 0.00099(7) 183 W 6189.75(7) 0.076(4) 0.00071(7) 186 W 3628.8(9) 0.055(10) 0.00099(7) 183 W 6189.75(7) 0.076(4) 0.00017(7) 186 W 3529.6(8)(18) 0.041(4) 0.00066(7) 183 W 6190.75(7) 0.071(4) 0.00017(7) 186 W 3529.6(8)(18) 0.041(4) 0.00066(1) 183 W 6190.75(7) 0.071(4) 0.0017(7) 186 W 3534.56(17) 0.063(5) 0.00044(7) 183 W 6190.77(7) 0.071(4) 0.0017(7) 186 W 3549.56(17) 0.063(5) 0.00043(5) 185 W 3696.2(4) 0.011(3) 1.8(5)×104 186 W 3774.59(21) 0.063(3) 0.00043(5) 186 W 3774.59(21) 0.063(3) 0.00043(5) 186 W 3793.905(17) 0.069(4) 0.00066(13) 187 Re 72.047(9) 0.41(5) 0.0007(8) 186 W 3774.59(21) 0.063(3) 0.00043(5) 186 W 3901.8(4) 0.0014(7)	186\\\\ 2727.	.5(4) 4(2)			184W 5015.52(20)	0.0162(20)	
186W 2831.98(20) 0.023(4) 0.00038(7) 162W 5261.68(6) 0.0122(12) 2.01(20)×10 ⁻⁴ 186W 2939.4(4) 0.014(4) 2.3(7)×10 ⁻⁴ 186W 5261.68(6) 0.86(4) 0.0142(7) 186W 3097.3(4) 0.015(3) 2.5(5)×10 ⁻⁴ 186W 5261.68(6) 0.05(21) 0.00038(7) 186W 3114.78(20) 0.025(3) 0.00041(5) 185W 5265.00(8) 0.0115(14) 1.90(23)×10 ⁻⁴ 186W 3114.78(20) 0.025(3) 0.00041(3) 185W 5320.72(6) 0.05(21) 0.0100(4) 186W 3119.9(225) 0.037(3) 0.00061(5) 185W 5764.53(21) 0.0112(18) 1.8(7)×10 ⁻⁴ 186W 3191.92(25) 0.037(3) 0.00061(5) 183W 5764.53(21) 0.0112(18) 1.8(7)×10 ⁻⁴ 186W 3207.0(3) 0.030(4) 0.00049(7) 183W 5797.50(9) 0.0161(23) 0.00027(4) 186W 3225.15(17) 0.042(6) 0.00069(10) 183W 6024.82(7) 0.036(3) 0.00027(4) 186W 3314.4(4) 0.015(3) 2.5(5)×10 ⁻⁴ 185W 6184.28(3) 0.174(11) 0.00287(18) 186W 323.0(4) 0.030(3) 0.00049(5) 183W 6189.75(7) 0.0264(24) 0.00044(4) 186W 3423.0(4) 0.030(3) 0.00049(5) 183W 6289.64(7) 0.025(19) 0.00039(3) 186W 3423.0(4) 0.030(3) 0.00049(5) 183W 6289.64(7) 0.025(19) 0.00039(3) 186W 343.2(4) 0.030(3) 0.00049(5) 183W 6289.64(7) 0.025(19) 0.00039(3) 186W 3452.8(9) 0.055(10) 0.00091(16) 183W 6289.64(7) 0.025(7) 0.00091(17) 186W 3354.56(17) 0.060(4) 0.00094(7) 185W 6408.64(8) 0.043(4) 0.00071(7) 186W 3359.69(8) 0.040(4) 0.0006(67) 185W 6408.64(8) 0.043(4) 0.00071(7) 186W 350.0(7) 0.060(4) 0.00096(7) 185W 6408.64(8) 0.043(4) 0.00071(7) 186W 350.0(7) 0.060(4) 0.00096(7) 185W 6408.64(8) 0.06(4) 0.00096(7) 185W 6408.64(8) 0.00056(7) 185W 6408.64(8) 0.00056(7) 185W 6408.64(8) 0.00056(7) 185W 6408.64(8) 0.00056(7) 185W 330.0(7) 0.060(4) 0.00096(7) 185W 6408.64(8) 0.00056(7)	186 _M 2760	. 4 (3) 3(3)			183 _W 5116 55(10)	0.07(3)	
186W 2849.3(3) 0.033(4) 0.00054(7) 186W 2856.22(4) 0.0122(12) 2.01(20)×10 ⁻⁴ 186W 3095.01(20) 0.0290(25) 0.00048(4) 186W 3265.00(8) 0.0115(14) 1.90(23)×10 ⁻⁴ 186W 3097.3(4) 0.015(3) 2.5(5)×10 ⁻⁴ 186W 5285.00(8) 0.0115(14) 1.90(23)×10 ⁻⁴ 186W 3144.78(20) 0.025(3) 0.00041(5) 186W 5320.72(6) 0.605(21) 0.0100(4) 186W 3144.78(20) 0.066(19) 0.0014(3) 186W 5320.72(6) 0.05(21) 0.00038(7) 186W 3143.8(16) 0.066(19) 0.0014(3) 186W 5534.37(11) 0.0114(1) 1.8(7)×10 ⁻⁴ 186W 3191.92(25) 0.037(3) 0.00061(5) 183W 5796.19(9) 0.023(9) 0.0038(15) 186W 3207.0(3) 0.030(4) 0.00049(7) 183W 5797.50(9) 0.0161(23) 0.00027(4) 186W 3267.1(5) 0.0101(24) 1.7(4)×10 ⁻⁴ 182W 6144.28(3) 0.174(11) 0.00287(18) 186W 3344.4(4) 0.015(3) 2.5(5)×10 ⁻⁴ 182W 6190.78(3) 0.45(4) 0.00044(4) 186W 3323.0(4) 0.030(3) 0.00049(5) 183W 6607.78(3) 0.45(4) 0.0074(7) 186W 3452.8(9) 0.055(10) 0.00917(10) 183W 6507.75(7) 0.098(9) 1.62(15)×10 ⁻⁴ 186W 3452.8(9) 0.055(10) 0.00091(16) 183W 6507.75(7) 0.098(9) 1.62(15)×10 ⁻⁴ 186W 3452.8(9) 0.055(10) 0.00044(7) 183W 6507.75(7) 0.098(9) 1.62(15)×10 ⁻⁴ 186W 3369.40(14) 0.103(6) 0.00170(10) 183W 6507.75(7) 0.098(9) 1.62(15)×10 ⁻⁴ 186W 3369.40(14) 0.103(6) 0.00170(10) 183W 6507.75(7) 0.098(9) 1.62(15)×10 ⁻⁴ 186W 3369.40(14) 0.103(6) 0.000170(10) 185W 3501.14(14) 0.034(8) 0.00056(17) 186W 3501.14(14) 0.034(8) 0.00056(17) 185R 63.5820(20) 0.64(11) 0.009(13) 186W 3369.2(14) 0.011(4) 0.00084(7) 186W 3369.2(14) 0.011(4) 0.00084(7) 186W 3369.2(14) 0.011(4) 0.00084(7) 186W 3369.2(14) 0.011(4) 0.00084(7) 186W 3369.2(14) 0.011(4) 0.0008(17) 186W 3369.2(14) 0.011(4) 0.0008(17) 186W 3369.2(14) 0.011(4) 0.0008(17) 186W 3369.2(14) 0.011(4) 0.0008(17) 186W 3369.2(14) 0.011(4) 0	100W 2831	98(20)			¹°²₩ 5164,43(3)	0.19(3)	0.0031(5)
186W 2939.4(4) 0.014(4) 2.3(7)×10 ⁻⁴ 169W 5261.68(6) 0.86(4) 0.0142(7) 186W 3095.01(20) 0.0290(25) 0.00048(4) 183W 5285.00(8) 0.005(21) 0.0100(4) 186W 3114.78(20) 0.025(3) 0.00041(5) 186W 5346.50(6) 0.0023(4) 0.00038(7) 186W 3148.2(5) 0.086(19) 0.0014(3) 183W 5534.37(11) 0.011(4) 1.8(7)×10 ⁻⁴ 186W 3191.92(25) 0.037(3) 0.00061(5) 183W 5534.37(11) 0.011(4) 1.8(7)×10 ⁻⁴ 186W 3207.0(3) 0.033(4) 0.00049(7) 183W 5794.53(21) 0.0112(18) 1.8(3)×10 ⁻⁴ 186W 3207.0(3) 0.030(4) 0.00049(7) 183W 5797.50(9) 0.0161(23) 0.00027(4) 186W 3205.15(177) 0.042(6) 0.00068(7) 183W 5797.50(9) 0.0161(23) 0.00027(4) 186W 3267.1(5) 0.011(24) 1.7(4)×10 ⁻⁴ 182W 6144.28(3) 0.174(11) 0.00287(18) 186W 33414.4(4) 0.015(3) 2.5(5)×10 ⁻⁴ 183W 6189.75(7) 0.0264(24) 0.00044(4) 186W 3423.0(4) 0.039(12) 0.00064(20) 183W 6298.64(7) 0.025(19) 0.00038(1) 186W 3434.2(4) 0.039(12) 0.00064(20) 183W 6308.54(8) 0.043(4) 0.0007(17) 186W 3452.8(9) 0.055(10) 0.00091(16) 183W 6299.78(7) 0.0098(9) 1.62(15)×10 ⁻⁴ 186W 3452.8(9) 0.055(10) 0.00084(7) 183W 7299.78(7) 0.0159(17) 0.0026(3) 186W 3459.69(18) 0.040(4) 0.00066(7) 183W 7410.99(7) 0.015(11) 0.0017(7) 186W 3529.69(18) 0.040(4) 0.00066(7) 183W 7410.99(7) 0.015(17) 0.0038(3) 0.0004(5) 185Re 56.48(3) 0.106(20) 0.0017(1) 186W 370.0017(1) 0.034(8) 0.00056(13) 186W 370.0017(1) 0.034(8) 0.00056(13) 186W 370.0017(1) 0.0034(8) 0.00056(13) 186W 370.0017(1) 0.0034(8) 0.00056(13) 186W 370.0017(1) 0.0034(8) 0.00056(13) 186W 370.0017(1) 0.0034(8) 0.00056(13) 186W 370.0017(1) 0.00084(7) 186W 370.0017(1) 0.00084(1) 0.00084(1) 0.00084(1) 0.00086(1) 0.00086(1)	100W 2849	3(3)			102\N 5256 22(4)	0.0122(12)	
168\() 3097.3(4)	100/1/ 2030	4(4)	0.014(4)		100W 5261.68(6)		0.0142(7)
186 W 314.78 20 0.025(3) 0.00041(5) 186 W 5754.53(21) 0.011(4) 1.8(7)×10 ⁻⁴ 186 W 3153.9(10) 0.061(20) 0.0010(3) 184 W 5754.53(21) 0.011(21(8) 1.8(3)×10 ⁻⁴ 186 W 3191.92(25) 0.037(3) 0.00061(5) 183 W 5795.59(9) 0.023(9) 0.00038(15) 186 W 3207.0(3) 0.030(4) 0.00049(7) 183 W 5797.50(9) 0.0161(23) 0.00027(4) 186 W 3225.15(17) 0.042(6) 0.00069(10) 183 W 5797.50(9) 0.0161(23) 0.00027(4) 186 W 3267.1(5) 0.0101(24) 1.7(4)×10 ⁻⁴ 182 W 6144.28(3) 0.174(11) 0.00287(18) 186 W 3376.15(18) 0.041(4) 0.00068(7) 182 W 6189.75(7) 0.0264(24) 0.00044(4) 186 W 3376.15(18) 0.041(4) 0.00068(7) 183 W 6189.75(7) 0.0254(24) 0.00044(4) 186 W 3452.8(9) 0.055(10) 0.0003(1) 183 W 6408.54(8) 0.043(4) 0.00071(7) 186 W 3468.40(14) 0.103(6) 0.00170(10) 183 W 6408.54(8) 0.043(4) 0.00071(7) 186 W 3452.8(9) 0.055(10) 0.00034(7) 183 W 6408.54(8) 0.043(4) 0.00071(7) 186 W 356.77(7) 0.051(4) 0.00084(7) 183 W 6408.54(8) 0.043(4) 0.00071(7) 186 W 3529.69(18) 0.040(4) 0.00066(7) 183 W 7299.78(7) 0.0058(9) 1.62(15)×10 ⁻⁴ 186 W 3577.2(4) 0.051(4) 0.00064(7) 185 Re 40.3510(20) 0.61(11) 0.0099(18) 186 W 3577.2(4) 0.060(4) 0.00066(7) 185 Re 63.5820(20) 8.01(4) 0.033(3) 0.00043(5) 187 Re 63.5820(20) 8.01(4) 0.00067(8) 186 W 377.59(21) 0.026(3) 0.00043(5) 187 Re 63.5820(20) 8.01(4) 0.00067(8) 186 W 377.59(21) 0.026(3) 0.00043(5) 187 Re 53.5820(20) 8.01(4) 0.017(7) 186 W 377.59(21) 0.026(3) 0.00043(5) 187 Re 63.5820(20) 0.64(9) 0.0017(1) 186 W 374.59(21) 0.026(3) 0.00043(5) 187 Re 63.5820(20) 0.64(9) 0.0017(1) 186 W 374.59(21) 0.026(3) 0.00043(5) 187 Re 73.50(20) 0.0017(1) 187 Re 73.50(20) 0.0017(1) 187 Re 73.50(20) 0.0017(1) 187 Re	100W 3055	01(20)			100\W 5285 00(8)		
186W 3148.2(5) 0.086(19) 0.0014(3) 186W 5534.37(11) 0.0114(1) 1.8(7)×10 ⁻⁴ 186W 3191.92(25) 0.037(3) 0.00061(5) 183W 5796.19(9) 0.023(9) 0.00038(15) 186W 3207.0(3) 0.030(4) 0.00049(7) 183W 5797.50(9) 0.0161(23) 0.00027(4) 186W 3225.15(17) 0.042(6) 0.00069(10) 183W 6024.82(7) 0.036(3) 0.00059(5) 186W 3267.1(5) 0.0101(24) 1.7(4)×10 ⁻⁴ 182W 6144.28(3) 0.174(11) 0.00287(18) 186W 3314.4(4) 0.015(3) 2.5(5)×10 ⁻⁴ 182W 6194.28(3) 0.174(11) 0.00287(18) 186W 3443.2(4) 0.030(3) 0.00049(5) 183W 6199.78(3) 0.45(4) 0.0074(7) 186W 3443.2(4) 0.039(12) 0.00064(20) 183W 6289.64(7) 0.0235(19) 0.00039(3) 186W 3443.2(4) 0.039(12) 0.00064(20) 183W 6607.75(7) 0.0086(9) 1.62(15)×10 ⁻⁴ 186W 3452.8(9) 0.055(10) 0.00064(7) 183W 7299.78(7) 0.0159(17) 0.00026(3) 186W 3452.8(9) 0.055(10) 0.00084(7) 183W 7299.78(7) 0.0159(17) 0.00026(3) 186W 3577.2(4) 0.003(4) 0.00054(7) 185W 3529.69(18) 0.040(4) 0.00066(7) 185W 3577.2(4) 0.016(4) 0.00054(7) 185Re 40.3510(20) 0.61(11) 0.0099(18) 186W 3777.2(4) 0.016(4) 0.00056(7) 186W 3797.2(4) 0.016(4) 0.00056(7) 186W 3797.2(4) 0.016(4) 0.00056(13) 186W 3797.2(4) 0.016(4) 0.00056(13) 186W 3797.4(5)(21) 0.034(8) 0.00056(13) 187Re 74.8600(20) 8.0(49) 0.0017(3) 186W 3777.4(5)(21) 0.063(3) 0.00043(5) 187Re 74.8600(20) 0.106(20) 0.0017(3) 186W 3774.59(21) 0.026(3) 0.00043(5) 187Re 74.8600(20) 0.113(19) 0.0018(3) 186W 3774.59(21) 0.026(3) 0.00043(5) 187Re 74.8600(20) 0.113(19) 0.0014(15) 186W 3901.8(3) 0.024(3) 0.00084(7) 185Re 87.264(3) 0.106(20) 0.0017(4) 186W 3901.8(3) 0.024(3) 0.00084(7) 185Re 87.264(3) 0.106(20) 0.0017(4) 186W 3901.8(3) 0.026(3) 0.00048(7) 187Re 87.264(3) 0.106(20) 0.0017(4) 186W 3901.8(3) 0.0026(3) 0.00033(5) 187Re 74.8600(20)	186W 3097.	.3(4)		2.5(5)×10 ⁻⁴	186W 5320.72(6)		
186 W 3191.92(25)	186\\\\ 21.40	.78(ZU) .2(5)			183 _M 5524 27(11)	0.023(4)	
186 W 3207.0(3)	¹⁰⁰W 3153	9(10)			104\N 5754 53(21)	0.011(4)	
186 W 3225.15(17)	100W 3191	92(25)			103W 5796 19(9)	0.023(9)	
186 W 3267.1(5)	100W 3207	0(3)		\ '	103\W 5797 50(9)	0.0161(23)	
186 W 3314.4(4)	100W 3225	15(17)			103W 6024 82(7)	0.036(3)	
186 W 3423.0(4)	186W 3267.	.1(5)			102W 6144.28(3)		
186W 3443.2(4)	186W 3314.	.4(4)			182W 6189.75(7)		0.00044(4)
186W 3452.8(9)	186\\\\ 3376.	.15(16) .0(4))-(}_{	183 _W 6280 64(7)		
186W 3452.8(9) 0.055(10) 0.00091(16) 183W 7299.78(7) 0.0098(9) 1.62(15)×10 ⁻⁴ 186W 3492.67(17) 0.051(4) 0.00084(7) 183W 7299.78(7) 0.0159(17) 0.00026(3) 186W 3510.72(19) 0.033(4) 0.00054(7) 186W 3529.69(18) 0.040(4) 0.00066(7) 185Re 40.3510(20) 0.61(11) 0.0099(18) 186W 3561.14(14) 0.060(4) 0.00099(7) 185Re 59.0100(20) 5.5(8) 0.090(13) 186W 3577.2(4) 0.016(4) 0.00026(7) 185Re 59.0100(20) 5.5(8) 0.090(13) 186W 3739.05(17) 0.069(4) 0.00014(7) 187Re 63.5820(20) 8.0(14) 0.130(23) 186W 3739.05(17) 0.069(4) 0.00014(7) 185Re 74.8630(20) 1.29(8) 0.0210(13) 186W 3847.8(4) 0.051(4) 0.051(4) 0.0003(5) 187Re 74.8630(20) 1.29(8) 0.0210(13) 186W 3847.8(4) 0.051(4) 0.0003(5) 187Re 87.26(4) 0.011(3) 1.8(5)×10 ⁻⁴ 187Re 87.26(4) 0.012(4) 0.0017(4) 186W 3901.8(3) 0.024(3) 0.00043(5) 187Re 87.26(4) 0.022(4) 0.011(3) 1.8(5)×10 ⁻⁴ 187Re 87.26(4) 0.084(4) 0.0137(7) 186W 3901.8(3) 0.024(3) 0.00043(5) 187Re 87.26(4) 0.022(4) 0.0017(4) 187Re 92.356(3) 0.25(4) 0.0018(3) 187Re 92.366(3) 0.25(4) 0.0017(4) 186W 3901.8(3) 0.024(3) 0.00043(5) 187Re 92.366(3) 0.25(4) 0.0017(4) 186W 3901.8(3) 0.024(3) 0.00043(5) 187Re 92.356(3) 0.25(4) 0.0017(4) 186W 3901.8(3) 0.024(3) 0.00040(5) 187Re 92.356(3) 0.25(4) 0.0017(4) 186W 3904.8(7) 0.005(6) 0.00082(16) 187Re 92.356(3) 0.25(4) 0.0017(4) 186W 3904.8(7) 0.006(6) 0.00082(16) 187Re 92.356(3) 0.25(4) 0.0037(4) 186W 3904.8(7) 0.006(6) 0.00082(16) 187Re 90.368(3) 0.115(24) 0.0017(4) 186W 3904.8(4) 0.013(3) 0.0003(5) 187Re 103.310(4) 0.43(3) 0.0007(5) 187Re 103.310(4) 0.43(3) 0.0007(5) 186Re 103.310(4) 0.43(3) 0.0007(5) 186Re 103.310(4) 0.43(3) 0.0007(5) 186Re 103.310(4) 0.43(3) 0.0007(5) 186Re 103.310(4) 0.43(3) 0.0005(6) 186Re 103.310	100/// 3443	2(4)	0.030(3)		100 VV 6408 54(8)		
186W 3492.67(17) 0.051(4) 0.00084(7) 183W 7299.78(7) 0.0159(17) 0.00026(3) 183W 7410.99(7) 0.071(4) 0.00117(7) 186W 3510.72(19) 0.033(4) 0.00066(7) 186W 3529.69(18) 0.040(4) 0.00066(7) 186W 3534.56(17) 0.063(5) 0.00104(8) 185Re 40.3510(20) 0.61(11) 0.0099(18) 186W 3577.2(4) 0.016(4) 0.00099(7) 185Re 56.408(3) 0.106(20) 0.0017(3) 185Re 59.0100(20) 5.5(8) 0.0090(13) 186W 3710.1(4) 0.034(8) 0.00056(13) 187Re 63.5820(20) 8.0(14) 0.130(23) 186W 3739.05(17) 0.069(4) 0.00114(7) 187Re 72.047(9) 0.41(5) 0.0067(8) 186W 3774.59(21) 0.026(3) 0.00043(5) 187Re 74.8630(20) 1.29(8) 0.0014(15) 186W 3847.8(4) 0.051(4) 0.00084(7) 185Re 87.264(3) 0.102(24) 0.0017(4) 186W 3864.4(4) 0.011(3) 1.8(5)×10 ⁻⁴ 185Re 87.264(3) 0.102(24) 0.0017(4) 187Re 87.264(3) 0.103(2) 0.0018(3) 186W 3901.8(3) 0.024(3) 0.00043(5) 187Re 87.264(3) 0.84(4) 0.0137(7) 186W 3901.8(3) 0.024(3) 0.00048(5) 187Re 87.4860(20) 0.113(19) 0.0018(3) 186W 3902.2(4) 0.017(3) 0.00028(5) 187Re 87.4860(20) 0.113(19) 0.0018(3) 187Re 87.4860(20) 0.113(19) 0.0018(3) 187Re 87.4860(20) 0.113(19) 0.0018(3) 187Re 87.4860(20) 0.113(19) 0.0018(3) 187Re 92.356(3) 0.25(4) 0.0041(7) 187Re 92.356(3) 0.25(4) 0.0041(7) 187Re 92.356(3) 0.25(4) 0.0017(4) 182W 4014.17(5) 0.050(10) 0.00082(16) 187Re 99.698(3) 0.115(24) 0.0017(4) 182W 4014.17(5) 0.029(6) 0.00048(10) 187Re 103.310(4) 0.43(3) 0.0070(5) 187Re 103.310(4)	100/// 3452	8(9)			103\M 6507 75(7)		
186W 3492.67(17) 0.051(4) 0.00084(7) 186W 3510.72(19) 0.033(4) 0.00054(7) 186W 3529.69(18) 0.040(4) 0.00066(7) 186W 3534.56(17) 0.063(5) 0.00104(8) 186W 3534.56(17) 0.063(5) 0.00104(8) 185Re 40.3510(20) 0.61(11) 0.0099(18) 185Re 50.000(20) 0.0017(3) 185Re 50.000(20) 5.5(8) 0.00017(3) 185Re 59.0100(20) 5.5(8) 0.090(13) 185Re 61.927(4) 0.51(7) 0.0083(11) 186W 3710.1(4) 0.034(8) 0.00056(13) 187Re 63.5820(20) 8.0(14) 0.130(23) 186W 3739.05(17) 0.069(4) 0.00114(7) 187Re 72.047(9) 0.41(5) 0.0067(8) 186W 374.59(21) 0.026(3) 0.00043(5) 187Re 74.8630(20) 1.29(8) 0.0210(13) 186W 3804.7(4) 0.020(3) 0.00043(5) 187Re 85.323(7) 0.109(21) 0.0018(3) 186W 3804.7(4) 0.051(4) 0.00084(7) 186W 3804.4(4) 0.011(3) 1.8(5)×10 ⁻⁴ 187Re 87.264(3) 0.84(4) 0.0017(4) 187Re 87.264(3) 0.84(4) 0.0017(7) 186W 3901.8(3) 0.024(3) 0.00043(5) 187Re 87.264(3) 0.84(4) 0.0017(7) 186W 3901.8(3) 0.024(3) 0.00040(5) 187Re 87.264(3) 0.84(4) 0.0017(7) 186W 3901.8(3) 0.024(3) 0.00040(5) 187Re 87.4800(20) 0.113(19) 0.0018(3) 187Re 87.264(3) 0.84(4) 0.0017(7) 186W 3901.8(3) 0.024(3) 0.00040(5) 187Re 92.356(3) 0.25(4) 0.0041(7) 188W 3904.8(18) 0.034(9) 0.00056(15) 187Re 99.698(3) 0.115(24) 0.0017(4) 188W 4026.21(10) 0.019(3) 0.00084(10) 187Re 103.310(4) 0.43(3) 0.0070(5) 188W 4026.21(10) 0.019(3) 0.0003(5) 187Re 103.310(4) 0.43(3) 0.0070(5) 188W 4026.21(10) 0.018(3) 0.0003(5) 187Re 107.425(3) 0.352(25) 0.0057(4) 188W 4028.8(5) 0.051(11) 0.00084(18) 187Re 107.425(3) 0.352(25) 0.0057(4) 188W 4028.2(10) 0.051(4) 0.0090(7) 187Re 107.425(3) 0.352(25) 0.0057(4) 188W 4028.2(10) 0.051(4) 0.00084(18) 187Re 107.425(3) 0.352(25) 0.0057(4) 188W 4028.2(10) 0.091(3) 0.0003(5) 187Re 107.425(3) 0.352(25) 0.	100\/\/ 3469	40(14)			103W 7299 78(7)		
186	100W 3492	67(17)			¹⁸³ W 7410.99(7)	0.071(4)	0.00117(7)
186W 3534.56(17) 0.063(5) 0.00104(8) 186W 3534.56(17) 0.063(5) 0.00104(8) 186W 3577.2(4) 0.016(4) 0.00099(7) 183W 3696.2(4) 0.011(3) 1.8(5)×10-4 186W 3739.05(17) 0.069(4) 0.00114(7) 186W 3739.05(17) 0.069(4) 0.00114(7) 186W 3774.59(21) 0.026(3) 0.00043(5) 186W 3804.7(4) 0.05(4) 0.00084(7) 186W 386.4(4) 0.05(4) 0.00084(7) 186W 386.4(4) 0.05(4) 0.00084(7) 186W 386.4(4) 0.05(4) 0.00113(5) 186W 386.4(4) 0.05(4) 0.00084(7) 186W 386.4(3) 0.104(3) 0.00043(5) 187Re 72.047(9) 0.41(5) 0.0067(8) 187Re 74.8630(20) 1.29(8) 0.0104(15) 187Re 74.8630(20) 1.29(8) 0.0104(15) 187Re 74.8630(20) 1.29(8) 0.0104(15) 187Re 74.8630(20) 1.29(8) 0.0104(15) 187Re 74.8630(20) 1.29(8) 0.0114(1) 185Re 86.83(3) 0.102(24) 0.0011(3) 185Re 87.264(3) 0.84(4) 0.011(3) 186W 3886.4(3) 0.014(3) 2.3(5)×10-4 187Re 87.4800(20) 0.113(19) 0.0018(3) 186W 3901.8(3) 0.024(3) 0.00028(5) 187Re 92.356(3) 0.25(4) 0.0017(4) 186W 3904.87(18) 0.034(9) 0.00056(15) 187Re 92.356(3) 0.25(4) 0.0017(4) 186W 4014.17(5) 0.050(10) 0.00082(16) 185Re 99.698(3) 0.115(24) 0.0017(4) 186W 4018.1(5) 0.029(6) 0.00048(10) 185Re 103.310(4) 0.43(3) 0.0070(5) 186W 4082.8(5) 0.051(11) 0.00084(18) 187Re 105.8620(20) 1.77(8) 0.0288(13) 186W 4082.8(5) 0.051(11) 0.00084(18) 185Re 108.336(5) 0.085(19) 0.0057(4) 186W 383(6,1) 0.055(4) 0.0007(7) 186Re 103.336(5) 0.085(19) 0.0014(3)	186W 3510.	.72(19)	\ '		Rhenium (Z=75).	At.Wt.=186.207(1), σ.= 91.5(10)
186W 3561.14(14) 0.060(4) 0.00099(7) 185Re 56.408(3) 0.106(20) 0.0017(3) 186W 3577.2(4) 0.016(4) 0.00026(7) 185Re 59.0100(20) 5.5(8) 0.090(13) 186W 3770.1(4) 0.034(8) 0.00056(13) 187Re 61.927(4) 0.51(7) 0.0083(11) 186W 3739.05(17) 0.069(4) 0.00114(7) 187Re 72.047(9) 0.41(5) 0.0067(8) 186W 3760.9(3) 0.026(3) 0.00043(5) 187Re 74.5690(20) 0.64(9) 0.0104(15) 186W 3804.7(4) 0.020(3) 0.00043(5) 187Re 85.323(7) 0.109(21) 0.0018(3) 186W 3847.8(4) 0.051(4) 0.00084(7) 185Re 87.264(3) 0.102(24) 0.0017(4) 186W 3886.4(3) 0.014(3) 2.3(5)×10-4 187Re 87.4800(20) 0.81(4) 0.0137(7) 186W 3901.8(3) 0.024(3) 0.00040(5) 187Re 87.264(3) 0.84(4) 0.0137(7) 186W 3964.87(18) 0.034(9) 0.00056(15) 187Re 92.356(3) 0.25(4) 0.0017(4) 186W 4018.1(5) 0.029(6) 0.00048(10) 185Re 99.698(3	186\\\\ 3529.	.69(18) 56(17)			¹⁸⁵ Re 40.3510(20)	0.61(11)	
186W 3577.2(4) 0.016(4) 0.00026(7) 185Re 59.0100(20) 5.5(8) 0.090(13) 183W 3696.2(4) 0.011(3) 1.8(5)×10-4 185Re 61.927(4) 0.51(7) 0.0083(11) 186W 3710.1(4) 0.034(8) 0.00056(13) 187Re 63.5820(20) 8.0(14) 0.130(23) 186W 3739.05(17) 0.069(4) 0.00114(7) 187Re 72.047(9) 0.41(5) 0.0067(8) 186W 3760.9(3) 0.026(3) 0.00043(5) 185Re 74.5690(20) 0.64(9) 0.0104(15) 186W 3804.7(4) 0.020(3) 0.00033(5) 187Re 74.8630(20) 1.29(8) 0.0210(13) 186W 3847.8(4) 0.051(4) 0.00084(7) 185Re 85.323(7) 0.109(21) 0.0018(3) 186W 3886.4(3) 0.011(3) 1.8(5)×10-4 185Re 87.264(3) 0.84(4) 0.017(4) 186W 3901.8(3) 0.024(3) 0.00040(5) 187Re 87.4800(20) 0.113(19) 0.0018(3) 186W 3964.87(18) 0.034(9) 0.00056(15) 185Re 92.356(3) 0.25(4) 0.0041(7) 186W 4018.1(5) 0.029(6) 0.0004(6) 185Re 99.698(3)	186 _W 3561	.30(17) 14(14)			¹⁸⁵ Re 56.408(3)	0.106(20)	
183W 3696.2(4) 0.011(3) 1.8(5)×10 ⁻⁴ 185Re 61.927(4) 0.51(7) 0.0083(11) 186W 3710.1(4) 0.034(8) 0.00056(13) 187Re 63.5820(20) 8.0(14) 0.130(23) 186W 3739.05(17) 0.069(4) 0.00114(7) 187Re 72.047(9) 0.41(5) 0.0067(8) 186W 3760.9(3) 0.026(3) 0.00043(5) 187Re 74.5690(20) 0.64(9) 0.0104(15) 186W 3804.7(4) 0.020(3) 0.00033(5) 187Re 85.323(7) 0.109(21) 0.0018(3) 183W 3847.8(4) 0.051(4) 0.00084(7) 185Re 86.83(3) 0.102(24) 0.0017(4) 186W 3886.4(3) 0.011(3) 1.8(5)×10 ⁻⁴ 185Re 87.264(3) 0.84(4) 0.017(4) 186W 3901.8(3) 0.024(3) 0.00040(5) 187Re 87.4800(20) 0.113(19) 0.0018(3) 186W 3964.87(18) 0.034(9) 0.00056(15) 185Re 99.3610(20) 0.230(24) 0.0037(4) 182W 4014.17(5) 0.050(10) 0.00082(16) 185Re 99.698(3) 0.115(24) 0.0019(4) 182W 4064.48(9) 0.018(3) 0.00031(5) 187	100W 3577	2(4)			¹⁸⁵ Re 59.0100(20)	5.5(8) ´	
186W 3710.1(4) 0.034(8) 0.00056(13) 187Re 72.047(9) 0.41(5) 0.0067(8) 0.0005(8) 0.00043(5) 185Re 74.5690(20) 0.64(9) 0.0104(15) 0.0067(8) 187Re 74.5690(20) 0.64(9) 0.0104(15) 0.0067(8) 0.00067(8) 0.00043(5) 187Re 74.5690(20) 0.64(9) 0.0104(15) 0.00067(8) 0.00043(5) 187Re 85.323(7) 0.109(21) 0.0018(3) 0.00048(10) 0.00044(10) 0.00044(10) 0.00044(10) 0.00044(10) 0.00044(10) 0.00044(10) 0.00044(10) 0.00044(10) 0.00044(10) 0.00044(10) 0.00044(10) 0.00044(10) 0.00084(10) 0.00044(10) 0.00084(10) 0.00044(10) 0.00084(10) 0.00044(10) 0.00044(10) 0.00084(10) 0.00044(10) 0.00084	103W 3696	2(4)			¹⁰⁰ Re 61.927(4)	0.51(7)	
186W 3739.05(17) 0.069(4) 0.00114(7) 186W 3760.9(3) 0.026(3) 0.00043(5) 187Re 74.5690(20) 0.64(9) 0.0104(15) 187Re 74.5690(20) 0.64(9) 0.0210(13) 187Re 74.5690(20) 1.29(8) 0.0210(13) 187Re 85.323(7) 0.109(21) 0.0018(3) 0.0018(3) 0.0014(3) 0.00084(7) 185Re 86.83(3) 0.102(24) 0.0017(4) 185Re 87.264(3) 0.84(4) 0.0117(4) 185Re 87.264(3) 0.84(4) 0.0137(7) 186W 3886.4(3) 0.014(3) 2.3(5)×10-4 187Re 87.4800(20) 0.113(19) 0.0018(3) 187Re 92.356(3) 0.25(4) 0.0041(7) 186W 3964.87(18) 0.034(9) 0.00028(5) 187Re 92.4640(20) 1.07(6) 0.0174(10) 186W 3964.87(18) 0.034(9) 0.00056(15) 185Re 99.3610(20) 0.230(24) 0.0037(4) 185Re 99.698(3) 0.115(24) 0.0019(4) 186W 4018.1(5) 0.029(6) 0.00048(10) 187Re 103.310(4) 0.43(3) 0.0070(5) 182W 4064.48(9) 0.018(3) 0.00030(5) 185Re 106.550(4) 0.27(4) 0.0044(7) 186W 4082.8(5) 0.051(11) 0.00084(18) 187Re 107.425(3) 0.352(25) 0.0057(4) 186W 4082.8(5) 0.051(11) 0.00084(18) 187Re 107.425(3) 0.352(25) 0.0057(4) 186W 4082.8(5) 0.051(11) 0.00084(18) 187Re 107.425(3) 0.352(25) 0.0057(4) 0.0014(3)	100W 3710	1(4)		0.00056(13)	¹⁶⁷ Re 63.5820(20)	8.0(14)	
186W 3774.59(21) 0.026(3) 0.00043(5) 187 Re 74.8630(20) 1.29(8) 0.0210(13) 186W 3804.7(4) 0.020(3) 0.00033(5) 187 Re 85.323(7) 0.109(21) 0.0018(3) 186W 3847.8(4) 0.051(4) 0.00084(7) 185 Re 86.83(3) 0.102(24) 0.0017(4) 183W 3864.4(4) 0.011(3) 1.8(5)×10-4 185 Re 87.264(3) 0.84(4) 0.0137(7) 186W 3901.8(3) 0.024(3) 0.00040(5) 187 Re 92.356(3) 0.25(4) 0.0041(7) 186W 3920.2(4) 0.017(3) 0.00028(5) 185 Re 92.4640(20) 1.07(6) 0.0174(10) 182W 4014.17(5) 0.050(10) 0.00082(16) 185 Re 99.3610(20) 0.230(24) 0.0019(4) 182W 4026.21(10) 0.019(3) 0.00031(5) 187 Re 103.310(4) 0.43(3) 0.0070(5) 182W 4064.48(9) 0.018(3) 0.00031(5) 187 Re 105.8620(20) 1.77(8) 0.0288(13) 186W 4082.8(5) 0.051(11) 0.00084(18) 187 Re 106.550(4) 0.27(4) 0.0057(4) 186W 4110 24(10) 0.059(4) 0.00987(7)	100W 3739	05(17)			185Da 74 5600(20)	0.41(5)	
186W 3804.7(4) 0.020(3) 0.00033(5) 187 Re 85.323(7) 0.109(21) 0.0018(3) 186W 3847.8(4) 0.051(4) 0.00084(7) 185 Re 86.83(3) 0.102(24) 0.0017(4) 183W 3864.4(4) 0.011(3) 1.8(5)×10-4 185 Re 87.264(3) 0.84(4) 0.0137(7) 186W 3901.8(3) 0.024(3) 0.00040(5) 187 Re 92.356(3) 0.25(4) 0.0041(7) 186W 3920.2(4) 0.017(3) 0.00028(5) 187 Re 92.4640(20) 1.07(6) 0.0174(10) 186W 3964.87(18) 0.034(9) 0.00056(15) 185 Re 99.3610(20) 0.230(24) 0.0037(4) 1886W 4018.1(5) 0.029(6) 0.00048(10) 185 Re 103.310(4) 0.43(3) 0.0070(5) 182W 4064.48(9) 0.018(3) 0.00031(5) 187 Re 105.5620(20) 1.77(8) 0.0288(13) 186W 4082.8(5) 0.051(11) 0.00084(18) 187 Re 107.425(3) 0.352(25) 0.0057(4) 186W 4119.24(10) 0.059(4) 0.00987(7) 185 Re 108.336(5) 0.085(19) 0.0007(4)	186W 3760.	.9(3)			187Re 74.3690(20)	0.04(9) 1 20(8)	
186W 3847.8(4) 0.051(4) 0.00084(7) 185Re 86.83(3) 0.102(24) 0.0017(4) 183W 3864.4(4) 0.011(3) 1.8(5)×10-4 185Re 87.264(3) 0.84(4) 0.0137(7) 186W 3886.4(3) 0.014(3) 2.3(5)×10-4 187Re 87.4800(20) 0.113(19) 0.0018(3) 186W 3901.8(3) 0.024(3) 0.00040(5) 187Re 92.356(3) 0.25(4) 0.0041(7) 186W 3920.2(4) 0.017(3) 0.00028(5) 187Re 92.4640(20) 1.07(6) 0.0174(10) 186W 3964.87(18) 0.034(9) 0.00056(15) 185Re 99.3610(20) 0.230(24) 0.0037(4) 182W 4014.17(5) 0.050(10) 0.00082(16) 185Re 99.698(3) 0.115(24) 0.0019(4) 186W 4018.1(5) 0.029(6) 0.00048(10) 187Re 103.310(4) 0.43(3) 0.0070(5) 182W 4064.48(9) 0.018(3) 0.00030(5) 185Re 105.550(4) 0.27(4) 0.0044(7) 186W 4012.2(10) 0.059(4) 0.00987(7) 185Re 108.336(5) 0.085(19) 0.0057(4)	186\\\\ 3774.	.59(ZT) 7(4)	0.026(3)		'°'Re 85.323(7)	0.109(21)	
183W 3864.4(4) 0.011(3) 1.8(5)×10-4 185Re 87.264(3) 0.84(4) 0.0137(7) 186W 3886.4(3) 0.014(3) 2.3(5)×10-4 187Re 87.4800(20) 0.113(19) 0.0018(3) 186W 3901.8(3) 0.024(3) 0.00040(5) 187Re 92.356(3) 0.25(4) 0.0041(7) 186W 3920.2(4) 0.017(3) 0.00028(5) 187Re 92.4640(20) 1.07(6) 0.0174(10) 182W 4014.17(5) 0.050(10) 0.00082(16) 185Re 99.698(3) 0.115(24) 0.0019(4) 182W 4026.21(10) 0.019(3) 0.00031(5) 187Re 105.8620(20) 1.77(8) 0.0288(13) 182W 4064.48(9) 0.018(3) 0.00030(5) 185Re 106.550(4) 0.27(4) 0.0044(7) 186W 4082.8(5) 0.051(11) 0.00084(18) 187Re 107.425(3) 0.352(25) 0.0057(4) 186W 4119.24(10) 0.059(4) 0.0097(7) 185Re 108.336(5) 0.085(19) 0.0014(3) <td>100W 3847</td> <td>8(4)</td> <td></td> <td></td> <td>¹⁰⁰Re 86.83(3)</td> <td></td> <td></td>	100W 3847	8(4)			¹⁰⁰ Re 86.83(3)		
186W 3886.4(3) 0.014(3) 2.3(5)×10-4 187 Re 92.356(3) 0.25(4) 0.0041(7) 186W 3901.8(3) 0.024(3) 0.00040(5) 187 Re 92.356(3) 0.25(4) 0.0041(7) 186W 3920.2(4) 0.017(3) 0.00028(5) 187 Re 92.4640(20) 1.07(6) 0.0174(10) 182W 4014.17(5) 0.050(10) 0.00082(16) 185 Re 99.3610(20) 0.230(24) 0.0037(4) 186W 4018.1(5) 0.029(6) 0.00048(10) 185 Re 103.310(4) 0.43(3) 0.0070(5) 182W 4026.21(10) 0.019(3) 0.00031(5) 187 Re 105.8620(20) 1.77(8) 0.0288(13) 182W 4064.48(9) 0.018(3) 0.00030(5) 187 Re 107.425(3) 0.27(4) 0.0044(7) 186W 4082.8(5) 0.051(11) 0.00084(18) 187 Re 107.425(3) 0.352(25) 0.0057(4) 186W 4119.24(10) 0.059(4) 0.0097(7) 185 Re 108.336(5) 0.085(19) 0.0014(3)	103W 3864	4(4)			¹⁸⁵ Re 87.264(3)	0.84(4)	
186W 3901.8(3) 0.024(3) 0.00040(5) 187Re 92.356(3) 0.25(4) 0.0041(7) 186W 3920.2(4) 0.017(3) 0.00028(5) 187Re 92.4640(20) 1.07(6) 0.0174(10) 182W 4014.17(5) 0.050(10) 0.00082(16) 185Re 99.3610(20) 0.230(24) 0.0037(4) 0.0037(4) 186W 4018.1(5) 0.029(6) 0.00048(10) 187Re 103.310(4) 0.43(3) 0.0070(5) 182W 4026.21(10) 0.019(3) 0.00031(5) 187Re 105.8620(20) 1.77(8) 0.0288(13) 182W 4064.48(9) 0.018(3) 0.00030(5) 185Re 106.550(4) 0.27(4) 0.0044(7) 186W 4082.8(5) 0.051(11) 0.00084(18) 185Re 107.425(3) 0.352(25) 0.0057(4) 186W 4119.24(10) 0.059(4) 0.0097(7) 185Re 108.336(5) 0.085(19) 0.0014(3)	100W 3886	4(3)			¹⁰⁷ Re 87.4800(20)	0.113(19)	
186W 3920.2(4) 0.017(3) 0.00028(5) 185Re 92.4440(20) 1.07(6) 0.0174(10) 185W 4014.17(5) 0.050(10) 0.00082(16) 185Re 99.698(3) 0.115(24) 0.0019(4) 0.0070(5) 185W 4026.21(10) 0.019(3) 0.00031(5) 185Re 103.310(4) 0.43(3) 0.0070(5) 182W 4064.48(9) 0.018(3) 0.00030(5) 185Re 106.550(4) 0.27(4) 0.0044(7) 186W 4082.8(5) 0.051(11) 0.00084(18) 185Re 107.425(3) 0.352(25) 0.0057(4) 186W 4119.24(10) 0.059(4) 0.0097(7) 185Re 108.336(5) 0.085(19) 0.0014(3)	100/1/ 3901	8(3)	0.024(3)	0.00040(5)	187Po 02 4640(20)	U.25(4)	
182W 4014.17(5) 0.050(10) 0.00082(16) 185Re 99.698(3) 0.115(24) 0.0019(4) 186W 4018.1(5) 0.029(6) 0.00048(10) 185Re 103.310(4) 0.43(3) 0.0070(5) 182W 4066.21(10) 0.019(3) 0.00031(5) 185Re 105.8620(20) 1.77(8) 0.0288(13) 186W 4082.8(5) 0.051(11) 0.00084(18) 187Re 107.425(3) 0.352(25) 0.0057(4) 186W 4119.24(10) 0.059(4) 0.0097(7) 185Re 108.336(5) 0.085(19) 0.0014(3)	100W 3920	2(4)			185Re 00 3610(20)	1.0/(0) 0.230(24)	
186W 4018.1(5) 0.029(6) 0.00048(10) 185Re 103.310(4) 0.43(3) 0.0070(5) 182W 4026.21(10) 0.019(3) 0.00031(5) 187Re 105.8620(20) 1.77(8) 0.0288(13) 182W 4064.48(9) 0.018(3) 0.00030(5) 185Re 106.550(4) 0.27(4) 0.0044(7) 186W 4082.8(5) 0.051(11) 0.00084(18) 187Re 107.425(3) 0.352(25) 0.0057(4) 186W 4119.24(10) 0.059(4) 0.0097(7) 185Re 108.336(5) 0.085(19) 0.0014(3)	182 _M 4044	.87(18) 17(5)		} (¹⁰⁰ Re 99.698(3)	0.230(24)	
182W 4026.21(10) 0.019(3) 0.00031(5) 185Re 105.8620(20) 1.77(8) 0.0288(13) 0.00030(5) 185Re 106.550(4) 0.27(4) 0.0044(7) 0.00084(18) 186W 4082.8(5) 0.051(11) 0.00084(18) 185Re 107.425(3) 0.352(25) 0.0057(4) 0.0007(7) 185Re 108.336(5) 0.085(19) 0.0014(3)	100W 4018	1(5)			¹⁸⁵ Re 103.310(4)	0.43(3)	
182W 4064.48(9) 0.018(3) 0.00030(5) 185Re 106.550(4) 0.27(4) 0.0044(7) 186W 4082.8(5) 0.051(11) 0.00084(18) 187Re 107.425(3) 0.352(25) 0.0057(4) 186W 4119.24(10) 0.059(4) 0.0097(7) 185Re 108.336(5) 0.085(19) 0.0014(3)	¹⁸² W 4026	21(10)		: }_\ '	¹⁸ /Re 105.8620(2 (D) 1.77(8)	
186W 4082.8(5) 0.051(11) 0.00084(18) 187Re 107.425(3) 0.352(25) 0.0057(4) 186W 4119.24(10) 0.059(4) 0.0007(7) 185Re 108.336(5) 0.085(19) 0.0014(3)	102W 4064	48(9)	0.018(3)		¹⁸⁵ Re 106.550(4)	0.27(4)	0.0044(7)
100\N/ A110 2A(10\	100W 4082	8(5)	0.051(11)	0.00084(18)	¹⁰ ′Re 107.425(3)		
	100\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	.24(10)			185Pe 110 240(4)		
	100VV 4136.	.61(17)	0.034(5)	0.00056(8)	116 110.240(4)	0.003(10)	0.0014(3)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Eγ)-barns	k _o	Eγ-keV	σ(Εγ)-barns	k ₀
Rhenium (Z=75), co		0.0004(45)	Rhenium (Z=75), co		0.044(4)
¹⁸⁵ Re 111.337(4) ¹⁸⁷ Re 111.590(3)	0.58(9) 0.45(5)	0.0094(15) 0.0073(8)	¹⁸⁵ Re 257.447(9) ¹⁸⁵ Re 260.67(7)	0.87(23) 0.13(3)	0.014(4) 0.0021(5)
¹⁸⁵ Re 111.679(5)	0.43(3)	0.0073(8)	185 Re 261.264(15)	0.13(3)	0.0021(5)
¹⁸⁵ Re 111.814(4)	0.37(7)	0.0060(11)	¹⁸⁵ Re 263.367(5)	0.106(24)	0.0017(4)
¹⁸⁷ Re 115.155(3)	0.43(5)	0.0070(8)	¹⁸ Re 266.155(20)	0.125(15)	0.00203(24)
¹⁸ 'Re 115.155(3)	0.28(3)	0.0046(5)	¹⁸ /Re 274.298(5)	0.80(6)	0.0130(10)
¹⁸⁵ Re 117.94(10)	0.22(4)	0.0036(7)	¹⁸⁷ Re 275.510(9)	0.51(4)	0.0083(7)
¹⁸⁵ Re 118.196(4) ¹⁸⁵ Re 122.521(4)	0.106(20) 0.74(4)	0.0017(3) 0.0120(7)	¹⁸⁷ Re 284.590(17) ¹⁸⁵ Re 285.095(23)	0.27(5) 0.41(4)	0.0044(8) 0.0067(7)
¹⁸⁵ Re 123.507(6)	0.16(3)	0.0026(5)	¹⁸⁵ Re 287.0(3)	0.12(3)	0.0020(5)
¹⁸⁵ Re 127.354(3)	0.43(4)	0.0070(7)	¹⁸⁷ Re 290.665(6)	3.5(4)	0.057(7)
¹⁸⁷ Re 128.553(4)	0.105(12)	0.00171(20)	¹⁸ /Re 291.492(8)	0.94(7)	0.0153(11)
¹⁸⁷ Re 129.973(4) ¹⁸⁷ Re 131.080(4)	0.090(15)	0.00146(24)	¹⁸⁷ Re 299.130(9)	0.151(14)	0.00246(23)
185 Re 137.157(8)d	0.42(5) 5.29(3)	0.0068(8) 0.0861[<0.1%]	¹⁸⁷ Re 300.210(4) ¹⁸⁵ Re 307.673(16)	0.70(5) 0.34(3)	0.0114(8) 0.0055(5)
¹⁸ /Re 138.725(5)	0.19(3)	0.0031(5)	¹⁰⁰ Re 316.457(9)	2.21(10)	0.0360(16)
¹⁸⁵ Re 139.417(6)	0.136(19)	0.0022(3)	10'Re 317.38(5)	0.083(17)	0.0014(3)
¹⁸⁵ Re 140.095(5)	0.27(5)	0.0044(8)	¹⁸⁷ Re 318.37(3)	0.25(3)	0.0041(5)
¹⁸⁵ Re 141.257(5) ¹⁸⁷ Re 141.760(4)	0.19(3) 1.46(8)	0.0031(5) 0.0238(13)	¹⁸⁵ Re 319.374(9) ¹⁸⁷ Re 352.11(3)	0.18(3) 0.116(16)	0.0029(5) 0.0019(3)
187 187 185 185 185 185 185 185 185 185 185 185	0.090(15)	0.00146(24)	185 Re 355.646(17)	0.115(16)	0.0019(3)
¹⁸⁵ Re 143.917(4)	0.55(8)	0.0090(13)	¹⁰⁰ Re 358.11(10)	0.236(19)	0.0038(3)
¹⁸⁵ Re 144.152(5)	1.8(3)	0.029(5)	¹⁸⁵ Re 360.36(7)	0.449(25)	0.0073(4)
¹⁸⁵ Re 144.157(4)	0.15(15)	0.0024(24)	10'Re 362.712(9)	0.46(3)	0.0075(5)
¹⁸⁷ Re 145.155(5) ¹⁸⁷ Re 145.155(5)	0.44(5) 0.28(3)	0.0072(8) 0.0046(5)	¹⁸⁵ Re 363.612(8) ¹⁸⁷ Re 376.816(10)	0.16(4) 0.083(16)	0.0026(7) 0.0014(3)
¹⁸⁵ Re 147.415(5)	0.60(9)	0.0040(3)	¹⁸⁵ Re 378.384(9)	0.54(3)	0.0014(5)
¹⁸⁵ Re 147.417(6)	0.47(5)	0.0076(8)	¹⁸⁵ Re 390.854(23)	1.15(5)	0.0187(8)
¹⁸⁵ Re 148.989(4)	0.29(7)	0.0047(11)	1°'Re 406.555(9)	0.18(4)	0.0029(7)
¹⁸⁵ Re 149.520(5)	0.44(5)	0.0072(8)	¹⁸⁵ Re 407.05(16)	0.102(24)	0.0017(4)
¹⁸⁷ Re 150.970(4) ¹⁸⁵ Re 151.688(3)	0.24(3) 1.15(7)	0.0039(5) 0.0187(11)	¹⁸⁵ Re 410.74(15) ¹⁸⁵ Re 411.496(10)	0.10(3) 0.14(3)	0.0016(5) 0.0023(5)
¹⁸⁷ Re 155.041(4)d	7.16(25)	0.117[2.0%]	¹⁸⁵ Re 413.19(5)	0.16(4)	0.0026(7)
¹⁸ /Re 156.424(4)	0.73(8)	0.0119(13)	¹⁸⁷ Re 423.525(21)	0.12(3)	0.0020(5)
¹⁸⁷ Re 158.730(20)	0.15(4)	0.0024(7)	¹⁸⁷ Re 426.112(9)	0.13(3)	0.0021(5)
¹⁸⁵ Re 164.466(8) ¹⁸⁷ Re 167.327(3)	0.085(21) 1.46(6)	0.0014(3) 0.0238(10)	¹⁸⁵ Re 439.09(23) ¹⁸⁵ Re 469.79(10)	0.14(5) 0.09(3)	0.0023(8) 0.0015(5)
¹⁸⁵ Re 167.735(4)	0.20(4)	0.0033(7)	¹⁸⁵ Re 479.6(3)	0.30(13)	0.0049(21)
¹⁸⁵ Re 169.434(4)	0.108(23)	0.0018(4)	¹⁸⁷ Re 493.23(6)	0.10(3)	0.0016(5)
¹⁸⁵ Re 174.267(3)	0.382(24)	0.0062(4)	¹⁸⁵ Re 496.57(14)	0.15(4)	0.0024(7)
¹⁸⁵ Re 176.103(5) ¹⁸⁵ Re 176.552(8)	0.18(3)	0.0029(5)	¹⁸⁷ Re 518.575(9)	0.24(6)	0.0039(10)
¹⁸⁷ Re 178.138(5)	0.31(3) 0.26(3)	0.0050(5) 0.0042(5)	¹⁸⁵ Re 550.77(23) ¹⁸⁷ Re 556.81(6)	0.15(4) 0.13(4)	0.0024(7) 0.0021(7)
¹⁸ /Re 178.839(6)	0.20(3)	0.0033(5)	¹⁸⁵ Re 585.4(3)	0.18(3)	0.0029(5)
¹⁸⁵ Re 179.448(6)	0.115(21)	0.0019(3)	¹⁸⁵ Re 608.25(14)	0.25(3)	0.0041(5)
¹⁸⁷ Re 181.942(5)	0.388(25)	0.0063(4)	¹⁸⁷ Re 609.04(3)	0.25(3)	0.0041(5)
¹⁸⁷ Re 188.813(6) ¹⁸⁷ Re 189.33(11)	0.98(10) 0.284(24)	0.0159(16) 0.0046(4)	¹⁸⁵ Re 645.02(14) ¹⁸⁵ Re 680.49(10)	0.18(3) 0.34(3)	0.0029(5) 0.0055(5)
¹⁸⁵ Re 189 346(8)	0.33(5)	0.0054(8)	¹⁸⁵ Re 759.94(14)	0.17(5)	0.0028(8)
¹⁸ /Re 193.342(3)	0.43(3)	0.0070(5)	¹⁰⁰ Re 761.47(23)	0.17(5)	0.0028(8)
¹°°Re 199.337(16)	0.91(4)	0.0148(7)	¹⁰⁰ Re 796.1(3)	0.31(3)	0.0050(5)
¹⁸⁷ Re 199.513(5) ¹⁸⁵ Re 200.997(7)	1.02(10) 0.098(16)	0.0166(16) 0.0016(3)	¹⁸⁵ Re 3933.7(8) ¹⁸⁵ Re 4079.0(8)	0.09(4) 0.14(3)	0.0015(7) 0.0023(5)
¹⁸⁷ Re 205.342(4)	0.096(16)	0.0016(3)	¹⁸⁵ Re 4099.8(10)	0.14(3)	0.0023(5)
¹⁸ /Re 207.853(4)	4.44(21)	0.072(3)	¹⁸⁵ Re 4129.4(8)	0.100(24)	0.0016(4)
¹⁸⁷ Re 208.843(7)	0.98(10)	0.0159(16)	¹⁸⁵ Re 4178.1(5)	0.088(22)	0.0014(4)
¹⁸⁵ Re 209.785(4) ¹⁸⁵ Re 210.698(4)	0.14(3) 1.50(10)	0.0023(5) 0.0244(16)	¹⁸⁵ Re 4455.7(23) ¹⁸⁵ Re 4611.3(5)	0.11(3) 0.081(20)	0.0018(5) 0.0013(3)
¹⁸ /Re 211.53(3)	0.27(5)	0.0244(16)	¹⁸⁵ Re 4631.7(23)	0.085(23)	0.0013(3)
¹⁸⁵ Re 214.647(4)	2.53(14)	0.0412(23)	¹⁸⁵ Re 4663.7(4)	0.24(3)	0.0039(5)
¹⁸⁷ Re 216.033(4)	0.30(7)	0.0049(11)	¹⁸⁵ Re 4743.5(8)	0.113(21)	0.0018(3)
¹⁸⁷ Re 219.445(7) ¹⁸⁵ Re 219.74(5)	0.67(9)	0.0109(15)	¹⁸⁵ Re 4773.7(5) ¹⁸⁵ Re 4860.7(5)	0.18(3)	0.0029(5)
185Re 223.016(5)	0.081(15) 0.24(6)	0.00132(24) 0.0039(10)	185 Re 4871.7(8)	0.37(4) 0.11(3)	0.0060(7) 0.0018(5)
¹⁸ /Re 223.544(5)	0.083(9)	0.00135(15)	¹⁸⁷ Re 4888.6(3)	0.141(25)	0.0023(4)
¹⁸⁷ Re 227.083(6)	1.78(12)	0.0290(20)	¹⁸⁷ Re 4893.4(3)	0.081(17)	0.0013(3)
¹⁰⁰ Re 232,100(16)	0.36(7)	0.0059(11)	¹⁸⁷ Re 4916.3(3)	0.102(21)	0.0017(3)
¹⁸⁵ Re 232.111(9) ¹⁸⁷ Re 236.627(4)	0.24(4) 1.45(10)	0.0039(7) 0.0236(16)	¹⁸⁷ Re 4958.7(5) ¹⁸⁷ Re 4973.1(5)	0.14(3) 0.15(3)	0.0023(5) 0.0024(5)
10'Re 238.450(5)	0.147(24)	0.0024(4)	¹⁸ /Re 4987.9(4)	0.13(3)	0.0024(3)
¹⁸ /Re 246.33(3)	0.091(14)	0.00148(23)	¹⁸⁷ Re 5000.8(4)	0.17(4)	0.0028(7)
¹⁸⁷ Re 251.243(5)	1.80(23)	0.029(4)	¹⁸⁵ Re 5007.0(5)	0.27(4)	0.0044(7)
¹⁸⁵ Re 251.842(15) ¹⁸⁵ Re 254.998(4)	0.58(16) 1.15(5)	0.009(3) 0.0187(8)	¹⁸⁷ Re 5012.60(25) ¹⁸⁷ Re 5020.6(4)	0.18(3) 0.098(23)	0.0029(5) 0.0016(4)
¹⁸⁷ Re 256.924(3)	0.66(23)	0.011(4)	¹⁸⁵ Re 5027.9(4)	0.098(23)	0.0047(8)
	(/	· · · · · · · · · · · · · · · · · · ·		(-/	\-/-/

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ (Ε γ)-barns	k _o	Eγ-keV	σ (Ε γ)-barns	k _o
Rhenium (Z=75), co	ontinued		Osmium (Z=76), co	ntinued	
¹⁸⁵ Re 5048.8(6)	0.096(23)	0.0016(4)	¹⁹⁰ Os 339.61(5)	0.055(3)	0.00088(5)
¹⁸⁷ Re 5049.3(3)	0.16(3)	0.0026(5)	¹⁸⁸ Os 343.473(20)	0.051(16)	0.00081(25)
¹⁸⁷ Re 5073.28(23) ¹⁸⁷ Re 5080.3(4)	0.43(5) 0.098(23)	0.0070(8) 0.0016(4)	¹⁹⁰ Os 343.61(6) ¹⁹⁰ Os 345.92(10)	0.046(3) 0.034(4)	0.00073(5) 0.00054(6)
185 Re 5080.7(8)	0.098(23)	0.0015(4)	188Os 346.871(25)	0.034(4)	0.00034(0)
'°'Re 5134.8(3)	0.25(6)	0.0041(10)	10'Os 347.24(17)	0.023(4)	0.00037(6)
¹⁸⁵ Re 5137.6(6)	0.39(4)	0.0063(7)	¹⁹⁰ Os 349,25(6)	0.051(4)	0.00081(6)
¹⁸⁷ Re 5167.6(3)	0.14(3)	0.0023(5)	¹⁹⁰ Os 352,56(9)	0.041(5)	0.00065(8)
¹⁸⁵ Re 5176.3(5)	0.18(3)	0.0029(5)	¹⁸⁹ Os 353.85(5)	0.0213(24)	0.00034(4)
¹⁸⁷ Re 5224.37(7) ¹⁸⁵ Re 5276.7(5)	0.081(20) 0.14(3)	0.0013(3) 0.0023(5)	¹⁹⁰ Os 355.80(10) ¹⁸⁹ Os 358.71(5)	0.025(4) 0.033(4)	0.00040(6) 0.00053(6)
¹⁸⁷ Re 5314.86(9)	0.083(20)	0.0014(3)	¹⁹⁰ Os 359.01(7)	0.047(4)	0.00075(6)
1°'Re 5348.62(6)	0.20(3)	0.0033(5)	¹°⁵Os 361.137(6)	0.466(15)	0.00742(24)
¹⁰⁰ Re 5353.10(13)	0.13(3)	0.0021(5)	¹⁹⁰ Os 362.36(15)	0.040(9)	0.00064(14)
¹⁸⁷ Re 5371.95(6) ¹⁸⁵ Re 5493.19(13)	0.090(19)	0.0015(3)	¹⁹⁰ Os 365.04(12) ¹⁹⁰ Os 366.33(5)	0.035(5)	0.00056(8)
185 Re 5601.53(13)	0.114(18) 0.109(18)	0.0019(3) 0.0018(3)	189Os 371.261(5)	0.097(6) 0.574(14)	0.00155(10) 0.00914(22)
'°'Re 5614.74(6)	0.092(17)	0.0015(3)	¹⁹⁰ Os 397.270(10)	0.038(6)	0.00061(10)
¹⁸⁵ Re 5644.95(15)	0.088(16)	0.0014(3)	109Os 397.394(14)	0.115(5)	0.00183(8)
1°'Re 5688.91(6)	0.120(17)	0.0020(3)	¹°°Os 400.84(22)	0.022(6)	0.00035(10)
¹⁸⁷ Re 5702.21(6) ¹⁸⁵ Re 5708.74(13)	0.100(16)	0.0016(3)	¹⁹⁰ Os 403.25(5)	0.065(4)	0.00104(6)
185 Re 5709.49(20)	0.115(17) 0.098(24)	0.0019(3) 0.0016(4)	¹⁸⁹ Os 407.175(22) ¹⁸⁹ Os 407.517(15)	0.060(7) 0.134(5)	0.00096(11) 0.00213(8)
'°'Re 5715.61(6)	0.086(16)	0.0014(3)	100Os 410.602(21)	0.028(9)	0.00045(14)
¹⁸⁵ Re 5856.86(13)	0.140(15)	0.00228(24)	¹⁹⁰ Os 413.23(4)	0.103(5)	0.00164(8)
'°'Re 5871.65(6)	0.299(23)	0.0049(4)	¹⁹⁰ Os 423.76(7)	0.044(4)	0.00070(6)
¹⁸⁵ Re 5910.44(13)	0.60(4)	0.0098(7)	¹⁸⁶ Os 427.07(17)	0.022(4)	0.00035(6)
¹⁸⁵ Re 6005.30(13) ¹⁸⁵ Re 6032.96(13)	0.081(11) 0.090(12)	0.00132(18) 0.00146(20)	¹⁸⁴ Os 431.45(20) ¹⁸⁹ Os 431.68(3)	0.09(3) 0.036(4)	0.0014(5) 0.00057(6)
¹⁸⁵ Re 6079.87(13)	0.155(13)	0.00140(20)	¹⁹⁰ Os 434.16(12)	0.030(4)	0.00051(6)
¹⁸⁵ Re 6120.22(13)	0.182(16)	0.0030(3)	¹⁹⁰ Os 442.18(12)	0.022(4)	0.00035(6)
Osmium (Z=76), At		$\sigma = 16.0(11)$	¹°°Os 447.79(7)	0.0213(19)	0.00034(3)
¹⁸⁴ Os 37.18(13)	0.034(6)	0.00054(10)	¹⁹⁰ Os 453.69(24)	0.022(5)	0.00035(8)
¹⁹⁰ Os 57,480(10)	0.10(3)	0.0016(5)	¹⁸⁸ Os 454.794(21) ¹⁹² Os 455.47(24)	0.028(9) 0.025(5)	0.00045(14) 0.00040(8)
¹⁹⁰ Os 57.74(6)	0.081(6)	0.00129(10)	188 Os 469.682(21)	0.023(3)	0.00040(8)
¹⁸⁸ Os 59.079(16)	0.046(5)	0.00073(8)	¹⁹² Os 471.60(25)	0.021(5)	0.00033(8)
¹⁹⁰ Os 67.24(20) ¹⁹² Os 73.43(4)	0.021(4)	0.00033(6)	¹⁹⁰ Os 475.33(16)	0.032(6)	0.00051(10)
184Os 90.95(15)	0.174(8) 0.030(15)	0.00277(13) 0.00048(24)	¹⁸⁷ Os 478.04(4)	0.523(14)	0.00833(22)
¹⁹² Os 131.26(5)	0.0291(17)	0.00046(3)	¹⁹⁰ Os 480.85(12) ¹⁹⁰ Os 485.87(20)	0.043(7) 0.027(7)	0.00069(11) 0.00043(11)
¹⁹⁰ Os 138,070(10)	0.0239(16)	0.000381(25)	10'Os 487.62(12)	0.027(7)	0.00070(11)
¹⁹² Os 138.92(3)d	0.0467(22)	0.00074[1.1%]	¹⁹⁰ Os 495,68(9)	0.035(7)	0.00056(11)
¹⁸⁷ Os 155.10(4) ¹⁸⁴ Os 158.40(10)	1.19(3)	0.0190(5)	¹⁹⁰ Os 499.77(8)	0.054(5)	0.00086(8)
190 Os 172.50(10)	0.025(7) 0.025(4)	0.00040(11) 0.00040(6)	¹⁸⁸ Os 505.861(20) ¹⁸⁴ Os 512.84(5)	0.021(4)	0.00033(6)
¹⁹⁰ Os 175.80(4)	0.189(8)	0.00301(13)	187Os 514.76(9)	0.084(8) 0.038(4)	0.00134(13) 0.00061(6)
¹°°Os 177 42(20)	0.021(4)	0.00033(6)	¹⁸⁴ Os 521 9(3)	0.024(5)	0.00038(8)
¹⁸⁹ Os 182.02(10)	0.027(7)	0.00043(11)	¹⁹⁰ Os 527.60(3)	0.300(10)	0.00478(16)
¹⁹⁰ Os 182.30(10) ¹⁸⁹ Os 186.7180(20)	0.043(5) 2.08(5)	0.00069(8) 0.0331(8)	¹⁹⁰ Os 537.75(4)	0.121(6)	0.00193(10)
¹⁹⁰ Os 194.25(8)	0.028(3)	0.00045(5)	¹⁸⁴ Os 538.8(4) ¹⁸⁴ Os 539.40(24)	0.023(7) 0.022(4)	0.00037(11) 0.00035(6)
¹⁸⁹ Os 198,084(21)	0.056(7)	0.00089(11)	¹⁹⁰ Os 545,29(13)	0.022(4)	0.00033(0)
¹⁹² Os 204.42(4)	0.081(4)	0.00129(6)	¹°°Os 550.17(5)	0.021(4)	0.00033(6)
¹⁸⁴ Os 222.38(14) ¹⁸⁹ Os 223.810(7)	0.021(7) 0.052(4)	0.00033(11) 0.00083(6)	¹⁸⁹ Os 557.978(5)	0.84(3)	0.0134(5)
¹⁹⁰ Os 229,93(4)	0.032(4)	0.000115(6)	¹⁸⁹ Os 569.344(20) ¹⁸⁴ Os 589.87(19)	0.694(25) 0.034(5)	0.0111(4) 0.00054(8)
¹⁹⁰ Os 235,24(3)	0.184(6)	0.00293(10)	189 Os 605.26(3)	0.034(3)	0.00180(6)
¹⁹⁰ Os 239.890(10)	0.080(4)	0.00127(6)	¹⁸ 'Os 623.92(11)	0.036(4)	0.00057(6)
¹⁹² Os 242.41(4)	0.069(4)	0.00110(6)	¹⁸⁹ Os 630.985(23)	0.023(4)	0.00037(6)
¹⁹² Os 254.39(5) ¹⁹² Os 265.71(3)	0.0368(22) 0.101(3)	0.00059(4) 0.00161(5)	¹⁸⁷ Os 633.14(4)	0.585(16)	0.00932(25)
¹88Os 272.82(4)	0.242(6)	0.00386(10)	¹⁸⁷ Os 635.02(5) ¹⁹⁰ Os 636.7(3)	0.405(12) 0.028(6)	0.00645(19) 0.00045(10)
¹⁹⁰ Os 275.34(3)	0.173(5)	0.00276(8)	¹⁹² Os 655.61(13)	0.025(3)	0.00043(10)
¹⁹⁰ Os 291.650(10)	0.047(3)	0.00075(5)	1900s 664 18(9)	0.036(4)	0.00057(6)
¹⁹⁰ Os 295.030(10) ¹⁹² Os 295.41(5)	0.030(5)	0.00048(8)	¹⁸ 'Os 672.64(11)	0.045(4)	0.00072(6)
190 Os 304.71(6)	0.055(4) 0.073(4)	0.00088(6) 0.00116(6)	103(Os 725.11(5)	0.081(5)	0.00129(8)
¹⁹⁰ Os 305.020(10)	0.073(4)	0.00035(6)	¹⁸⁹ Os 768.653(15) ¹⁹⁰ Os 768.67(10)	0.037(3) 0.046(5)	0.00059(5) 0.00073(8)
¹⁹² Os 307,080(10)	0.026(3)	0.00041(5)	¹⁹² Os 786.64(15)	0.040(3)	0.00073(6)
¹⁹⁰ Os 307.21(10)	0.026(3)	0.00041(5)	¹°′Os 810 60(11)	0.035(3)	0.00056(5)
¹⁹⁰ Os 314.72(10) ¹⁹⁰ Os 316.45(11)	0.039(3)	0.00062(5)	10'Os 824.43(11)	0.052(4)	0.00083(6)
187Os 322.98(6)	0.030(4) 0.242(9)	0.00048(6) 0.00386(14)	¹⁸⁷ Os 826.79(10) ¹⁸⁹ Os 829.07(3)	0.029(3)	0.00046(5)
¹⁹⁰ Os 332.690(10)	0.055(5)	0.00088(8)	¹⁸⁷ Os 829.62(12)	0.056(6) 0.109(16)	0.00089(10) 0.00174(25)
	` /	. , ,	33 323.32(12)	330(10)	3.3317 1(20)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Εγ-keV	σ(Εγ)-barns	k ₀	om Thermal Neutron C Eγ-keV	σ(Εγ)-barns	k _o
Osmium (Z=76), co	ntinued		Osmium (Z=76), co	ntinued	
¹⁸⁷ Os 844 68(14)	0.024(4)	0.00038(6)	¹⁸⁷ Os 4812.6(3)	0.049(7)	0.00078(11)
¹⁸⁹ Os 928.06(5)	0.085(5)	0.00135(8)	¹⁸ 'Os 4919.6(3)	0.037(3)	0.00059(5)
'°'Os 931.31(8)	0.073(5)	0.00116(8)	¹⁸⁷ Os 4959.35(25)	0.021(5)	0.00033(8)
¹⁹² Os 951.14(5) ¹⁸⁷ Os 987.33(13)	0.089(4) 0.031(4)	0.00142(6) 0.00049(6)	¹⁹⁰ Os 5010.7(3) ¹⁹⁰ Os 5036.9(3)	0.029(6) 0.041(6)	0.00046(10) 0.00065(10)
189 Os 987.41(7)	0.031(4)	0.00049(0)	187Os 5096.77(22)	0.047(0)	0.00059(11)
¹⁸⁹ Os 1011.09(10)	0.031(4)	0.00049(6)	¹⁹⁰ Os 5146.63(14)	0.409(20)	0.0065(3)
'°'Os 1017.84(20)	0.043(4)	0.00069(6)	¹⁸ Os 5172.38(25)	0.031(6)	0.00049(10)
¹⁸⁹ Os 1103.08(8)	0.047(5)	0.00075(8)	¹⁸⁷ Os 5223.66(21)	0.0215(21)	0.00034(3)
¹⁸⁹ Os 1114.77(5) ¹⁸⁹ Os 1117.79(8)	0.060(5)	0.00096(8)	¹⁸⁷ Os 5250.4(7) ¹⁹² Os 5277.11(22)	0.029(6) 0.116(15)	0.00046(10)
187 0s 1149.77(8)	0.033(5) 0.079(6)	0.00053(8) 0.00126(10)	189 Os 5315.8(3)	0.024(7)	0.00185(24) 0.00038(11)
¹⁸⁹ Os 1154,47(16)	0.029(9)	0.00046(14)	¹⁹⁰ Os 5341.4(3)	0.074(12)	0.00118(19)
¹⁹⁰ Os 1155.76(15)	0.042(5)	0.00067(8)	¹⁸⁸ Os 5364.5(4)	0.028(7)	0.00045(11)
¹⁸⁷ Os 1174.82(20)	0.038(7)	0.00061(11)	¹⁸⁷ Os 5366.38(21)	0.028(7)	0.00045(11)
¹⁸⁹ Os 1174.95(9) ¹⁸⁷ Os 1191.92(17)	0.080(6) 0.034(5)	0.00127(10) 0.00054(8)	¹⁸⁸ Os 5371.8(4) ¹⁸⁸ Os 5416.0(4)	0.023(7) 0.053(20)	0.00037(11) 0.0008(3)
189 189 195.95(11)	0.034(3)	0.00034(8)	188 Os 5483.1(4)	0.033(20)	0.00078(13)
¹⁸ 'Os 1209.62(13)	0.063(6)	0.00100(10)	¹⁸ Os 5484.35(24)	0.049(8)	0.00078(13)
¹⁸⁹ Os 1213.91(13)	0.031(6)	0.00049(10)	¹⁰⁹ Os 5502.8(6)	0.021(6)	0.00033(10)
¹⁰⁹ Os 1249.14(6)	0.035(5)	0.00056(8)	¹⁸⁷ Os 5528.34(22)	0.038(7)	0.00061(11)
¹⁸⁹ Os 1254.76(20) ¹⁸⁹ Os 1265.85(12)	0.041(5) 0.029(5)	0.00065(8)	¹⁸⁹ Os 5529.1(7) ¹⁸⁷ Os 5573.17(15)	0.045(8)	0.00072(13)
189 187 187 187 187 187 187 187 187 187 187	0.029(5)	0.00046(8) 0.00056(8)	192 Os 5583.70(20)	0.052(6) 0.076(7)	0.00083(10) 0.00121(11)
1°′Os 1307.9(3)	0.025(3)	0.00040(5)	¹⁸⁹ Os 5599.6(7)	0.024(5)	0.00038(8)
¹⁸⁹ Os 1311,29(8)	0.031(3)	0.00049(5)	¹⁸ Os 5641.20(23)	0.023(4)	0.00037(6)
¹⁸ 'Os 1322.72(14)	0.037(4)	0.00059(6)	¹⁹⁰ Os 5674.5(4)	0.038(7)	0.00061(11)
¹⁸⁷ Os 1332.35(20)	0.05(3)	0.0008(5)	¹⁸⁹ Os 5680.3(3)	0.045(9)	0.00072(14)
¹⁸⁷ Os 1332.53(25) ¹⁸⁹ Os 1382.66(11)	0.040(4) 0.026(3)	0.00064(6) 0.00041(5)	¹⁹⁰ Os 5683.87(21) ¹⁸⁷ Os 5702.93(15)	0.167(13) 0.050(8)	0.00266(21) 0.00080(13)
¹⁸⁹ Os 1383,59(23)	0.026(4)	0.00041(6)	¹⁸⁶ Os 5703.4(7)	0.050(8)	0.00080(13)
¹⁰⁹ Os 1384.7(4)	0.023(5)	0.00037(8)	¹⁸⁹ Os 5749.8(10)	0.026(6)	0.00041(10)
109Os 1412.00(13)	0.0272(22)	0.00043(4)	¹⁸⁹ Os 5782.7(3)	0.024(6)	0.00038(10)
¹⁸⁹ Os 1429.31(11)	0.028(5)	0.00045(8)	¹⁸⁹ Os 5873.5(3)	0.030(6)	0.00048(10)
¹⁸⁷ Os 1435.74(14) ¹⁸⁹ Os 1436.94(14)	0.055(10) 0.045(6)	0.00088(16) 0.00072(10)	¹⁸⁹ Os 5881.67(19) ¹⁸⁸ Os 5885.7(4)	0.035(6) 0.041(7)	0.00056(10) 0.00065(11)
¹⁸ 'Os 1452.88(19)	0.024(4)	0.00072(10)	¹⁸ Os 5920.60(14)	0.044(6)	0.00070(10)
'°'Os 1457.56(11)	0.059(5)	0.00094(8)	109Os 5933.06(13)	0.096(8)	0.00153(13)
¹⁸ 'Os 1465.36(13)	0.048(5)	0.00076(8)	¹⁸⁴ Os 6155.8(3)	0.044(6)	0.00070(10)
¹⁸⁹ Os 1489.05(8)	0.031(6)	0.00049(10)	¹⁸⁹ Os 6246.81(12) ¹⁸⁹ Os 6409.53(14)	0.026(3)	0.00041(5)
¹⁸⁹ Os 1512.11(19) ¹⁸⁹ Os 1546.20(9)	0.039(7) 0.049(7)	0.00062(11) 0.00078(11)	184Os 6587.21(25)	0.026(3) 0.093(13)	0.00041(5) 0.00148(21)
¹⁸ Os 1574.48(14)	0.031(6)	0.00049(10)	¹⁸⁹ Os 7234.19(11)	0.044(4)	0.00070(6)
¹⁰⁹ Os 1616.03(11)	0.033(6)	0.00053(10)	¹⁸⁹ Os 7792.14(11)	0.034(3)	0.00054(5)
¹⁸⁹ Os 1672,42(8)	0.035(6)	0.00056(10)	¹⁸⁷ Os 7834.30(8)	0.0247(23)	0.00039(4)
¹⁸⁹ Os 1680.73(16) ¹⁸⁹ Os 1732.0(3)	0.053(6) 0.024(5)	0.00084(10) 0.00038(8)	¹⁸⁷ Os 7989.40(7)	0.0208(14)	0.000331(22)
189 187 187 187 187 187 187 187 187 187 187	0.024(3)	0.00036(8)	Iridium (Z=77), At. V		
'°'Os 1802.35(13)	0.035(5)	0.00056(8)	¹⁹¹ lr 23.9670(20)	0.170(14)	0.00268(22)
109Os 1883.37(19)	0.027(9)	0.00043(14)	¹⁹¹ Ir 26.2260(20) ¹⁹³ Ir 39.2160(10)	0.132(9)	0.00208(14)
'°'Os 1957.46(13)	0.027(6)	0.00043(10)	1931r 43 1100/10\	0.17(11) 0.9(3)	0.0027(17) 0.014(5)
¹⁸⁷ Os 2011.29(20) ¹⁸⁷ Os 2022.95(14)	0.021(5) 0.053(6)	0.00033(8) 0.00084(10)	191 ir 18 0570/10\	5.7(4)	0.090(6)
187Os 2098.77(22)	0.0208(24)	0.00033(4)	191 lr (0.370(1))	0.122(10)	0.00192(16)
¹⁸ 'Os 2131,44(14)	0.052(6)	0.00083(10)	¹⁹¹ Ir 49.9560(20)	0.115(9)	0.00181(14)
¹⁸ Os 2193,17(24)	0.031(6)	0.00049(10)	¹⁹¹ Ir 50.782(8) ¹⁹¹ Ir 54.3210(20)	0.132(11)	0.00208(17)
¹⁸⁷ Os 2214.6(3)	0.039(7)	0.00062(11)	1931r 54 4030(10)	0.54(20) 0.12(8)	0.009(3) 0.0019(13)
¹⁸⁷ Os 2261.21(14) ¹⁸⁷ Os 2286.54(14)	0.077(7) 0.052(8)	0.00123(11) 0.00083(13)	191 _{1r} 50 0440/40\	5.3(3)	0.084(5)
187 Os 2306.04(21)	0.032(0)	0.00034(3)	¹⁹¹ lr 66.822(8)	1.31(13)	0.0207(20)
1°′Os 2505.13(24)	0.040(5)	0.00064(8)	¹⁹¹ Ir 69.252(3)	0.25(7)	0.0039(11)
¹⁸ Os 2606.38(21)	0.023(5)	0.00037(8)	193 r 69.4740(20) 191 r 72.0240(20)	0.19(14)	0.0030(22)
¹⁸⁷ Os 2623.10(21)	0.023(5)	0.00037(8)	191 _{1r} 72 328(4)	0.6(3) 0.28(9)	0.009(5) 0.0044(14)
¹⁸⁷ Os 2817.11(25) ¹⁸⁷ Os 3021.7(3)	0.026(5) 0.026(3)	0.00041(8) 0.00041(5)	191 _{1r} 77 260/2\	0.38(11)	0.0060(17)
187 Os 3069.9(3)	0.028(5)	0.00041(3)	¹⁹¹ lr 77.9470(10)	4.8(4)	0.076(6)
'°'Os 3110.00(18)	0.0273(19)	0.00043(3)	¹⁹³ lr 82.3350(10)	0.5(3)	0.008(5)
¹⁸ Os 3176.9(3)	0.025(5)	0.00040(8)	191 lr 83.965(8) 191 lr 84.2740(20)	0.18(9)	0.0028(14)
¹⁹² Os 3980.58(25)	0.035(4)	0.00056(6)	1931r 84 2840(10)	7.7(4) 1.0(6)	0.121(6) 0.016(10)
¹⁸⁸ Os 4222.8(5) ¹⁹² Os 4530.27(22)	0.052(6)	0.00083(10)	191 _{1r} 96 9240(20)	0.65(13)	0.0102(20)
¹⁹⁰ Os 4556 2(3)	0.090(8) 0.035(7)	0.00143(13) 0.00056(11)	191 ir 88 7340/10\	3.67(24)	0.058(4)
¹⁹⁰ Os 4666.6(3)	0.024(6)	0.00038(10)	¹⁹¹ Ir QO 7030/20 \	1.25(15)	0.0197(24)
¹⁹² Os 4694.4(3)	0.025(5)	0.00040(8)	¹⁹¹ Ir 90.857(3) ¹⁹³ Ir 93.1630(10)	0.20(4)	0.0032(6)
¹⁸⁷ Os 4749.98(22)	0.042(6)	0.00067(10)	¹⁹³ lr 93.1630(10)	0.3(3)	0.005(5)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Eγ)-barns	k _o	Eγ-keV	σ(Εγ)-barns	k _o
Iridium (Z=77), cont		(-)	Iridium (Z=77), cont		
¹⁹¹ Ir 95.056(6) ¹⁹¹ Ir 95.470(4)	0.24(5)	0.0038(8)	¹⁹¹ lr 193.718(3) ¹⁹³ lr 193.9300(20)	0.83(11)	0.0131(17)
1931r OF FEOD(10)	0.9(3) 0.8(5)	0.014(5) 0.013(8)	1911 405 400/4)	0.27(73)	0.0033(20) 0.0043(11)
191 ₁ , 07 247/2\	0.25(5)	0.0039(8)	1931, 105 5270(10)	0.21(13)	0.0043(11)
1911r 07 240/41	0.36(14)	0.0057(22)	1911 407 004/7)	0.73(19)	0.012(3)
1911r 00 524/4)	0.32(5)	0.0050(8)	197.061(7) 193lr 198.8370(20)	0.15(9)	0.0024(14)
¹⁹¹ Ir 99.603(6) ¹⁹³ Ir 100.4030(20)	0.24(13)	0.0038(20)	191 lr 199.174(7) 191 lr 199.418(5)	1.07(18)	0.017(3)
1911, 101 012(0)	0.13(8) 0.13(4)	0.0020(13) 0.0020(6)	1911 204 444/5	0.14(4) 0.21(6)	0.0022(6) 0.0033(10)
191ir 105 150/3\	0.14(6)	0.0020(0)	1911, 202 045/25	0.27(4)	0.0043(6)
1911r 107 015/2)	0.20(7)	0.0032(11)	1911 200 220/4)	3.70(18)	0.058(3)
191 lr 107.013(3) 191 lr 107.132(4) 191 lr 108.0300(20)	0.23(6)	0.0036(10)	1911r 207 201/5\	0.50(6)	0.0079(10)
		0.0413(19)	¹⁹¹ lr 208.440(6) ¹⁹¹ lr 210.352(5)	0.70(9)	0.0110(14)
1911 110 252/21	0.11(3) 0.53(7)	0.0017(5) 0.0084(11)	1911 040 054/5	0.75(8) 0.75(8)	0.0118(13) 0.0118(13)
1911, 111 025/25	0.99(11)	0.0156(17)	1911, 240 254/5)	2.1(4)	0.033(6)
1931, 442 2240/40\	1.7(4)	0.027(6)	1931 040 0400/00\	0.15(10)	0.0024(16)
¹⁹³ Ir 115.4730(10) ¹⁹³ Ir 117.8790(10)	0.5(3)	0.008(5)	¹⁹¹ Ir 215.117(5) ¹⁹¹ Ir 215.5110(20)	0.23(4)	0.0036(6)
191 ₁ , 110 260/3\ (0.4(3) 0.15(3)	0.006(5) 0.0024(5)	191 r 246 4040/20\	0.24(4) 0.65(9)	0.0038(6) 0.0102(14)
1911, 110 7000(10)	0.56(7)	0.0024(3)	1911. 04C 00E/4\	5.57(24)	0.088(4)
1911, 404 400(2)	0.17(7)	0.0027(11)	1911 224 00/40)	0.83(16)	0.0131(25)
¹⁹¹ lr 122.596(3)	0.41(7)	0.0065(11)	¹⁹¹ Ir 223.176(6)	0.18(3)	0.0028(5)
1911 426 0E0/2\		0.016(10)	1931 005 4400/00\	0.18(11)	0.0028(17)
1931r 122 9700/20\	1.86(10)	0.0293(16) 0.0028(16)	1911 - 226 2000/20\	0.12(7) 4.0(4)	0.0019(11) 0.063(6)
1911r 422 025/6)	0.19(5)	0.0030(8)	1931 000 0000/40/	0.20(12)	0.0032(19)
1931r 126 1000(20)	0.17(11)	0.0027(17)	¹⁹¹ Ir 226.722(5)	0.19(4)	0.0030(6)
191 lr 136.1250(10) 191 lr 136.213(3)	6.5(9)	0.102(14)	¹⁹³ lr 228.0650(20)	0.12(8)	0.0019(13)
1911r 426 7040/40\	4.0(5) 2.20(21)	0.063(8) 0.035(3)	1911 004 000/0\	0.48(11) 0.95(13)	0.0076(17) 0.0150(20)
1911, 120 2400/20\		0.0084(11)	1911 222 007/4)	0.20(4)	0.0130(20)
¹⁹³ lr 138.6880(10)	0.8(5)	0.013(8)	1931 224 0400/201	0.44(13)	0.0069(20)
1911r 120 726/5\	0.27(4)	0.0043(6)	1911, 244 067/7)	0.65(13)	0.0102(20)
¹⁹¹ lr 140.257(6) ¹⁹¹ lr 140.814(6)	0.32(5)	0.0050(8)	193 lr 245.1090(20) 193 lr 245.4920(20)	0.14(9)	0.0022(14)
1931, 142 5040(40)	0.16(5) 0.6(3)	0.0025(8) 0.009(5)	1911 040 400/0\	0.33(22) 0.15(4)	0.005(4) 0.0024(6)
1911r 111 Q10/1\)	0.57(9)	0.0090(14)	1911 246 000(4)	0.32(9)	0.0050(14)
1911r 444 002/E)	3.1(4)	0.049(6)	1931 040 0000(00)	0.24(15)	0.0038(24)
193 lr 145.2220(10) 191 lr 148.821(3)		0.0017(11)	193 lr 252.2750(10) 191 lr 252.499(12)		0.0017(11)
1911, 440 000/01	1.08(12) 1.08(12)	0.0170(19) 0.0170(19)	1911 251 277/1	0.5(3) 1.08(11)	0.008(5) 0.0170(17)
1931, 440 0240/40)	1.4(9)	0.022(14)	1931. 000 0400/00\	0.36(13)	0.0057(20)
¹⁹¹ Ir 151 (50(5)	0.26(5)	0.0041(8)	1911r 250 220/5)	0.24(5)	0.0038(8)
¹⁹¹ Ir 151.5640(20) ¹⁹³ Ir 152.4080(10)	2.89(20)	0.046(3)	191 lr 261.953(6) 191 lr 262.03(10)	2.02(23)	0.032(4)
1931- 450 040/44\	0.37(23) 0.55(13)	0.006(4) 0.0087(20)		3.05(18) 0.14(8)	0.048(3) 0.0022(13)
1901 150 0550/10\	0.5(3)	0.0087(20)		0.86(10)	0.0022(13)
1911- 456 0070/20)	1.02(12)	0.0161(19)	1911- 004 000(7)	0.57(7)	0.0090(11)
191 lr 156.654(3) 191 lr 158.180(4)	2.76(12)	0.0435(19)	193 lr 264.7680(20) 191 lr 267.415(4)	0.8(5)	0.013(8)
1931, 160 0250(20)	0.15(4)	0.0024(6)	¹⁹¹ lr 267.415(4) ¹⁹³ lr 271.6810(20)	0.93(21)	0.015(3)
1931- 460 0000/40)	0.34(11) 0.4(3)	0.0054(17) 0.006(5)	1911, 272 225/01	0.6(4) 0.49(8)	0.009(6) 0.0077(13)
1931r 162 7740(20)	0.24(15)	0.0038(24)	191 ₁ , 272 226/7\	0.72(17)	0.011(3)
1911- 460 050(6)	0.14(3)	0.0022(5)	1911, 272 560/51	0.18(6)	0.0028(10)
¹⁹³ lr 165.3800(20) ¹⁹³ lr 165.4500(20)	0.27(23)	0.004(4)	¹⁹¹ Ir 275.0380(20) ¹⁹³ Ir 275.2990(10)	0.74(16)	0.0117(25)
191ir 166 000/6\ (0.35(22) 0.89(10)	0.006(4) 0.0140(16)	191 _{1r} 276 797(4)	0.6(4) 0.55(12)	0.009(6) 0.0087(19)
1911r 466 425/4)	0.24(4)	0.0038(6)	1911 070 400/0\	0.42(5)	0.0066(8)
191ir 460 406/3)	3.05(13)	0.0481(20)	1931, 270 E040/40)	1.8(11)	0.028(17)
¹⁹¹ Ir 169.542(5) ¹⁹¹ Ir 169.542(4)	0.52(7)	0.0082(11)	191 lr 284.074(6) 191 lr 284.947(3)	1.95(15)	0.0307(24)
1931- 460 5660(40)	0.52(7) 0.24(15)	0.0082(11) 0.0038(24)	1931, 200 4240/201	0.52(7) 0.12(7)	0.0082(11) 0.0019(11)
¹⁹³ lr 169.8760(10)	0.24(13)	0.0038(24)	191 _{1r} 202 274(4)	0.42(12)	0.0019(11)
1911, 470 000(0)	0.53(24)	0.008(4)	1931. 202 544/44/4	1.76(6)	0.0277[1.8%]
¹⁹¹ lr 174.139(8)	0.21(4)	0.0033(6)	193 r 294.5300(20) 191 r 296.257(8)	0.41(25)	0.006(4)
191 ₁ , 176 012/2\ (0.15(10) 0.6(4)	0.0024(16) 0.009(6)	1911r 200 476/9)	0.65(17) 0.13(4)	0.010(3) 0.0020(6)
1911- 477 040/7	0.28(6)	0.009(8)	1911, 202 005/01	1.20(11)	0.0020(6) 0.0189(17)
191 _{1r} 470 0290/20\	2.1(5)	0.033(8)	1911r 205 449/4)	0.45(10)	0.0071(16)
¹⁹¹ Ir 183.626(3)	1.0(4)	0.016(6)	¹⁹³ lr 308.9740(10)	0.6(4)	0.009(6)
1911, 107 501/2	0.92(22) 0.43(5)	0.015(4) 0.0068(8)	1911" 340 00/40)	0.26(8) 0.61(10)	0.0041(13) 0.0096(16)
1911, 100 201/25	0.43(3)	0.008(4)	1931r 211 (060/10)	0.16(10)	0.0025(16)
¹⁹¹ Ir 189.100(7)	0.47(18)	0.007(3)	¹⁹¹ lr 311.630(6)	0.23(6)	0.0036(10)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

i abie i	. Adopted Pron Eγ-keV	npt and Decay σ(Εγ)-barns	K ₀	n ine	rmai Neutron C Eγ-keV	apture for all b. σ(Εγ)-barns	iements, continu k _o
Iridiu	ım (Z=77), cont	• "	<u> </u>	Iridi	um (Z=77), con		<u> </u>
193 _{lr}	314 0520(10)		0.004(3)	193 _{lr}	/021 1//)	0.18(4)	0.0028(6)
1911-	316.061(7)	2.4(4)	0.038(6)	1911.	4000 O(0)	0.11(4)	0.0017(6)
	322.510(5)	0.51(11)	0.0080(17)	' o ' Ir	443X 4731	0.25(9)	0.0039(14)
¹⁹³ lr ¹⁹¹ lr	328.448(14)d	9.1(3)	0.143[1.8%]	¹⁹¹ lr	4942.92(18)	0.52(4)	0.0082(6)
1931	333.864(6) 337.5240(20)	1.53(10) 0.62(21)	0.0241(16) 0.010(3)	191	40FF 0(0)	0.31(4) 0.15(7)	0.0049(6) 0.0024(11)
193 r	340 8130(20)		0.013(8)	. ~ . Ir	44hh 5/3)	0.13(7)	0.0024(11)
1911	351.689(4)	10.9(4)	0.172(6)	191	4070 40/47	0.35(3)	0.0055(5)
¹⁹³ lr ¹⁹¹ lr		0.5(3)	0.008(5)	'''Ir	4980 57(15)	0.82(4)	0.0129(6)
¹⁹¹ lr	358.320(8) 365.440(7)	0.34(9) 1.15(10)	0.0054(14) 0.0181(16)	¹⁹¹ lr	4985.93(14) 4993.32(15)	0.58(3) 0.40(4)	0.0091(5) 0.0063(6)
1931	274 E020/20\	2.11(12)	0.0333(19)	1911.	E002 4(2)	0.40(4)	0.0055(6)
		0.50(12)	0.0079(19)			0.21(4)	0.0033(6)
193 r	390 9620(10)	0.6(4)	0.009(6)	¹⁹¹ lr	E000 E1/1E)	0.66(6)	0.0104(10)
193 r	405.3660(20) 407.3150(20)	0.11(7)	0.0017(11)	1911.	E027 E(2)	0.67(6)	0.0106(10)
193 r	<i>4</i> 11 988/10\	0.13(8) 0.12(8)	0.0020(13) 0.0019(13)			0.22(4) 0.57(6)	0.0035(6) 0.0090(10)
ı ə i Ir	418 138(6)	3.45(15)	0.0544(24)	1911.	EO 46 4(6)	0.12(3)	0.0019(5)
191Ir	432 716(6)	1 85(7)	0.0292(11)	1911.	EOEO 4E(00)	0.26(3)	0.0041(5)
193 r 193 r	458.3070(20) 460.2560(20)	0.41(25)	0.006(4)	¹⁹³ lr	EOCC E(0)	0.20(3)	0.0032(5)
193 r	4365 1(3)	0.8(5) 0.22(3)	0.013(8) 0.0035(5)	1931.	E074 00(24)	0.15(3) 0.28(3)	0.0024(5) 0.0044(5)
193 r	4368 5(4)	0.14(3)	0.0022(5)	191 i r	5085 45(20)	0.266(25)	0.0042(4)
193 r	4383 5(4)	0.11(3)	0.0017(5)	1911.	E004 40/40\	0.37(5)	0.0058(8)
193 r 193 r	4395.64(18) 4401.28(18)	0.39(3)	0.0061(5)	1911	5091.19(17)	0.52(3)	0.0082(5)
193 r	<i>44</i> 26 1(3)	0.35(3) 0.23(3)	0.0055(5) 0.0036(5)	1991r	5109 0(3)	0.14(3) 0.19(3)	0.0022(5) 0.0030(5)
193 r	<i>444</i> 2 1(8)	0.14(3)	0.0022(5)	1911.	5109.6(6)	0.11(7)	0.0017(11)
193 r	4455 3(4)	0.13(3)	0.0020(5)			0.12(3)	0.0019(5)
193 r	4460.5(4) 4495.88(21)	0.18(3)	0.0028(5)	¹⁹¹ lr	5123.3(3)	0.20(3)	0.0032(5)
¹⁹¹ lr	4505 9(4)	0.44(4) 0.20(3)	0.0069(6) 0.0032(5)	1911.	E420 06/44\	0.90(5) 0.39(4)	0.0142(8) 0.0061(6)
ı ə i Ir	4521 3(4)	0.12(4)	0.0019(6)	' o ' Ir	514/51/17)	1.29(6)	0.0203(10)
¹⁹¹ lr	4531 28(19)	0.61(5)	0.0096(8)	¹⁹¹ lr ¹⁹³ lr	5153.1(3)	0.26(3)	0.0041(5)
191Ir	4556.8(8) 4563.5(9)	0.18(7)	0.0028(11)	1911	5158.23(22)	0.36(3)	0.0057(5)
1911r	4571 8(5)	0.14(11) 0.23(4)	0.0022(17) 0.0036(6)			0.96(6) 0.34(4)	0.0151(10) 0.0054(6)
193 r	4577 9(4)	0.16(3)	0.0025(5)	1911.	5184.38(25)	0.20(6)	0.0032(10)
193 r	4584 4(3)	0.21(4)	0.0033(6)	193 r	5185 2(4)	0.34(4)	0.0054(6)
191Ir	4591.30(17) 4601.64(24)	0.57(4) 0.22(4)	0.0090(6)	¹⁹¹ lr	5194.52(24) 5198.64(21)	0.34(5)	0.0054(8)
¹⁹ 1lr	4611 6(6)	0.22(4)	0.0035(6) 0.0017(11)	191,	E210 02(17)	0.38(4) 0.72(5)	0.0060(6) 0.0114(8)
193 r	4612 5(3)	0.19(3)	0.0030(5)	' o ' Ir	574X ロンロンス	0.20(3)	0.0032(5)
¹⁹³ lr ¹⁹¹ lr	4618.0(4)	0.13(3)	0.0020(5)	¹⁹¹ lr ¹⁹¹ lr	5261.14(17)	0.51(4)	0.0080(6)
193.	4640.0(6) 4643.2(3)	0.15(6) 0.33(5)	0.0024(10) 0.0052(8)	101.		0.85(6) 0.73(5)	0.0134(10) 0.0115(8)
	4646.47(13)	0.26(5)	0.0032(8)			0.75(3)	0.0024(6)
1911	4663.36(21)	0.18(3)	0.0028(5)	1931.	E046 6(0)	0.20(4)	0.0032(6)
¹⁹¹ lr ¹⁹³ lr	4668.09(17)	0.36(3)	0.0057(5)	¹⁹¹ lr	E227 E2/40\	0.71(5)	0.0112(8)
191	4678.7(3) 4711.6(4)	0.18(3) 0.17(3)	0.0028(5) 0.0027(5)	1911.	E2 47 4 (2)	0.54(5) 0.18(3)	0.0085(8) 0.0028(5)
1931	4712.8(3)	0.28(3)	0.0027(5)	191,	E2E7 ()(16)	1.03(6)	0.0020(3)
1911	4729.1(3)	0.167(25)	0.0026(4)	1911.	EOTE 44/44\	0.288(24)	0.0045(4)
¹⁹¹ lr ¹⁹³ lr	4734.2(3)	0.45(9)	0.0071(14)	¹⁹¹ lr ¹⁹¹ lr	5384.82(20)	0.224(22)	0.0035(4)
1911	4734.52(23) 4750.18(15)	0.46(3) 0.38(3)	0.0073(5) 0.0060(5)	1911,	E 420 E 7/22\	0.40(3) 0.201(22)	0.0063(5) 0.0032(4)
1911	4755.28(20)	0.39(3)	0.0061(5)	1911,	E121 21/12\	0.78(4)	0.0123(6)
1911	4765.66(17)	0.245(24)	0.0039(4)	191,	E110 CO(17)	0.51(4)	0.0080(6)
¹⁹¹ lr ¹⁹¹ lr	4779.82(15) 4801.4(3)	0.32(3)	0.0050(5)	¹⁹¹ lr ¹⁹¹ lr	5458.91(18)	0.60(5)	0.0095(8)
1911	4809.72(23)	0.12(3) 0.44(4)	0.0019(5) 0.0069(6)	1931.	E 467 O(2)	0.31(7) 0.59(7)	0.0049(11) 0.0093(11)
1911	4817.3(3)	0.28(4)	0.0044(6)	191,	E 102 O (1)	0.17(6)	0.0033(11)
¹⁹¹ lr ¹⁹³ lr	4826.1(4)	0.11(3)	0.0017(5)	1931.	E 407 40/04\	0.58(4)	0.0091(6)
1911	4826.9(4)	0.20(4)	0.0032(6)	¹⁹¹ lr	E 40E 27/22\	0.19(3)	0.0030(5)
1931,	4838.3(4) 4839.34(20)	0.15(4) 0.41(4)	0.0024(6) 0.0065(6)	191,	5517 04(17)	0.22(3) 0.76(4)	0.0035(5) 0.0120(6)
1911	4849.6(3)	0.15(3)	0.0024(5)	1911.	EE94 79/49\	1.39(6)	0.0219(10)
¹⁹¹ lr ¹⁹³ lr	4854.8(5)	0.28(5)	0.0044(8)	¹⁹¹ lr ¹⁹¹ lr	EEEO 10/01\	0.163(22)	0.0026(4)
1911	4855.5(3)	0.48(4)	0.0076(6)	191,	EEGO 4/3\	1.71(8)	0.0270(13) 0.0106(6)
1911	4859.30(23) 4866.97(12)	0.45(4) 0.68(4)	0.0071(6) 0.0107(6)	1931.	EE76 00/7\	0.67(4) 0.121(24)	0.0019(6)
1911	4875.03(18)	0.33(4)	0.0052(6)	191,	EEOE 62(12)	0.72(4)	0.0114(6)
¹⁹¹ lr ¹⁹¹ lr	4893.82(23)	0.35(3)	0.0055(5)	¹⁹¹ lr ¹⁹³ lr	EG10 EE/10\	1.06(5)	0.0167(8)
¹⁹¹ lr	4898.53(19) 4916.5(3)	0.41(4) 0.29(5)	0.0065(6) 0.0046(8)	¹⁹³ lr	5630.33(7) 5642.90(7)	0.315(24) 0.293(25)	0.0050(4) 0.0046(4)
	1010.0(0)	3.20(0)	3.00 10(0)		00 12.00(1)	0.200(20)	J.55 10(1)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Eγ-keV	σ(Εγ)-barns	-	Fγ-keV	σ(Εγ)-barns	k _o
Iridium (Z=77), con		k ₀	Platinum (Z=78), co		<u>^</u>
1911, 5054 07(44)	0.39(3)	0.0061(5)	¹⁹⁵ Pt 5254 70(8)	0.41(3)	0.0064(5)
1911	0.38(3)	0.0060(5)	¹⁹⁵ Pt 5261.0(6)	0.097(14)	0.00151(22)
1911 FCC7 04/2\	2.68(10)	0.0423(16)	¹⁹⁵ Pt 5306.9(3)	0.118(14)	0.00183(22)
191 lr 5681.1(3) 191 lr 5689.06(3)	0.165(19)	0.0026(3)	¹⁹⁵ Pt 5393.05(16)	0.113(10)	0.00176(16)
1911, 5700 60/0\	1.73(7)	0.0273(11) 0.0019(3)	¹⁹⁵ Pt 5451.93(14) ¹⁹⁵ Pt 5612.62(11)	0.078(7)	0.00121(11)
1911, 5707 0/01	0.122(17) 0.27(4)	0.0019(3)	195 Pt 5722.40(9)	0.14(3) 0.071(5)	0.0022(5) 0.00110(8)
1931 EZOO OZ/Z \	1.15(5)	0.0181(8)	¹⁹⁵ Pt 5759.22(10)	0.084(12)	0.00130(19)
1911, 5746 00/21	0.190(18)	0.0030(3)	¹⁹⁵ Pt 5952.95(7)	0.086(16)	0.00134(25)
191 lr 5757.18(3) 193 lr 5757.65(7)	0.49(6)	0.0077(10)	¹⁹⁵ Pt 6003.37(8)	0.073(4)	0.00113(6)
1911. EZOS 04/S)	0.42(4) 1.34(6)	0.0066(6) 0.0211(10)	¹⁹⁵ Pt 6033.69(7)	0.109(6)	0.00169(9)
1931, 5700 40/7	0.43(4)	0.0068(6)	Gold (Z=79), At.Wt.:		
1911 == =000 22/2\	0.48(3)	0.0076(5)	¹⁹⁷ Au 35.8240(10)	0.41(5)	0.0063(8)
191 lr 5817.7(4) 193 lr 5821.51(7)	0.113(25)	0.0018(4)	¹⁹⁷ Au 55.1810(10) ¹⁹⁷ Au 66.3950(10)	2.90(12) 0.42(12)	0.0446(18) 0.0065(18)
¹⁹³ lr 5821.51(7) ¹⁹¹ lr 5829.70(3)	0.48(3)	0.0076(5)	197 Au 75.171(6)	0.390(23)	0.0060(18)
1911 FOCC 20/2\	0.16(5) 0.73(6)	0.0025(8) 0.0115(10)	197 Au 82.3560(10)	2.3(4)	0.035(6)
1911r EOGG 07/2\	0.79(5)	0.0125(8)	¹⁹⁷ Au 82.5240(10)	1.4(3)	0.022(5)
1911 FOOF C7/2\	0.45(4)	0.0071(6)	¹⁹⁷ Au 83.144(6)	0.17(7)	0.0026(11)
191 lr 5909.64(3) 193 lr 5917.68(7)	0.23(3)	0.0036(5)	¹⁹⁷ Au 91.0050(10) ¹⁹⁷ Au 97.2500(20)	0.294(15) 2.1(5)	0.00452(23) 0.032(8)
1931 [007 00/7]	0.34(3) 0.33(3)	0.0054(5) 0.0052(5)	197 Att 101.9390(10)	0.953(17)	0.0147(3)
1931 FOF (20/7)	0.74(4)	0.0032(3)	¹⁹⁷ Au 103 5610(10)	0.338(15)	0.00520(23)
1911r EDEO 20/21	1.79(8)	0.0282(13)	¹⁹⁷ Au 108 9120(20)	0.270(14)	0.00415(22)
1911	0.75(4)	0.0118(6)	¹⁹⁷ Au 122.6520(10)	0.81(13)	0.0125(20)
191 r 5972.13(3) 193 r 5984.28(7)	0.254(21)	0.0040(3)	¹⁹⁷ Au 123.7860(10) ¹⁹⁷ Au 131.9340(20)	0.83(13) 0.17(6)	0.0128(20) 0.0026(9)
1911 - 6004 53/31	0.212(21) 0.257(21)	0.0033(3) 0.0041(3)	¹⁹⁷ Au 132 850(4)	0.17(0)	0.0020(9)
1931, GO22 EO/7)	0.237(21)	0.0047(3)	¹⁹⁷ Au 135 612(6)	0.10(3)	0.0015(5)
1911r 6070 26/2\	0.29(9)	0.0046(14)	¹⁹⁷ Au 137 448(6)	0.13(5)	0.0020(8)
1911r 6002 40/2\	2.62(11)	0.0413(17)	¹⁹⁷ Au 137.7630(10) ¹⁹⁷ Au 137.999(5)	0.347(24)	0.0053(4)
¹⁹¹ lr 6093.26(3)	0.56(4)	0.0088(6)	197 Au 142.9270(20)	0.17(5) 0.161(16)	0.0026(8) 0.00248(25)
Platinum (Z=78), At	t.Wt.=195.078(2	?), σ _γ =10.3(4)	¹⁹ 'Au 144.6050(10)	0.18(4)	0.0028(6)
¹⁹⁴ Pt 211.4060(20)	0.0293(10)	0.000455(16)	¹⁹ 'Au 145.1540(10)	0.46(13)	0.0071(20)
¹⁹⁵ Pt 326.353(3) ¹⁹⁵ Pt 332.985(4)	0.511(10)	0.00794(16)	¹⁹⁷ Au 146.3460(20)	0.43(4)	0.0066(6)
195Pt 355.6840(20)	2.580(25) 6.17(6)	0.0401(4) 0.0958(9)	¹⁹⁷ Au 146.6700(10) ¹⁹⁷ Au 154.7940(20)	0.28(5) 0.38(6)	0.0043(8) 0.0058(9)
¹⁹⁵ Pt 393 346(5)	0.066(4)	0.00103(6)	¹⁹ 'Au 154.797(5)	0.239(10)	0.00368(15)
¹⁹⁵ Pt 446 624(4)	0.0963(21)	0.00150(3)	¹⁹ 'Au 158.4360(10)	1.250(18)	0.0192(3)
¹⁹⁵ Pt 521.161(5)	0.338(10)	0.00525(16)	¹⁹ 'Au 158.479(11)	0.67(9)	0.0103(14)
¹⁹⁸ Pt <i>542.98(4)d</i> ¹⁹⁵ Pt 672.894(3)	<i>0.039Ò(3)</i> 0.179(4)	<i>0.000606[45%]</i> 0.00278(6)	¹⁹⁷ Au 164.7130(10) ¹⁹⁷ Au 166.2280(10)	0.21(3) 0.279(11)	0.0032(5) 0.00429(17)
¹⁹⁵ Pt 779 608(5)	0.179(4)	0.00276(0)	¹⁹ 'Au 168.3340(10)	3.60(22)	0.055(3)
¹⁹⁵ Pt 1005,878(5)	0.139(3)	0.00216(5)	¹⁸ 'Au 169.9550(10)	0.126(25)	0.0019(4)
¹⁹⁵ Pt 1047 007(11)	0.181(4)	0.00281(6)	¹⁹⁷ Au 170.1030(10)	1.66(22)	0.026(3)
¹⁹⁵ Pt 1091.334(6) ¹⁹⁵ Pt 1248.774(10)	0.181(4) 0.099(3)	0.00281(6) 0.00154(5)	¹⁹⁷ Au 170.3990(20) ¹⁹⁷ Au 175.3070(20)	0.38(5) 0.10(8)	0.0058(8) 0.0015(12)
¹⁹⁰ Pt 1305 57(3)	0.099(3)	0.00134(5)	¹⁹⁷ Au 180.8640(10)	0.63(11)	0.0013(12)
195Pt 1321 541(15)	0.081(3)	0.00126(5)	¹⁹⁷ Au 188.1670(20)	0.63(15)	0.0097(23)
¹⁹⁵ Pt 1358,31(6)	0.076(4)	0.00118(6)	¹⁹ 'Au 191.1870(20)	0.18(3)	0.0028(5)
¹⁹⁵ Pt 1439.35(5) ¹⁹⁵ Pt 1491.625(16)	0.067(3) 0.135(4)	0.00104(5) 0.00210(6)	¹⁹⁷ Au 192.3920(10) ¹⁹⁷ Au 192.9440(10)	3.9(18) 1.70(22)	0.06(3) 0.026(3)
¹⁹⁵ Pt 1497.950(11)	0.135(4)	0.00210(6)	197 Au 202.9920(20)	0.229(6)	0.026(3)
¹⁹⁵ Pt 1510 75(5)	0.083(3)	0.00129(5)	¹⁹⁷ Au 204.1580(10)	0.513(10)	0.00789(15)
¹⁹⁵ Pt 1531 84(3)	0.122(4)	0.00190(6)	¹⁹⁷ Au 204.1620(10)	0.59(10)	0.0091(15)
¹⁹⁵ Pt 1532.435(12)	0.066(18)	0.0010(3)	¹⁹⁷ Au 206.2230(10)	0.199(6)	0.00306(9)
¹⁹⁵ Pt 1562.76(4) ¹⁹⁵ Pt 1677.223(15)	0.083(3) 0.087(4)	0.00129(5) 0.00135(6)	¹⁹⁷ Au 213.0650(10) ¹⁹⁷ Au 214.858(3)	0.094(13) 0.19(5)	0.00145(20) 0.0029(8)
180Pt 1713 67(10)	0.007(4)	0.00140(6)	¹⁹⁷ Au 214.9710(10)	9.0(12)	0.138(18)
¹⁹⁵ Pt 1737 278(16)	0.087(4)	0.00135(6)	¹⁹ 'Au 215.2950(20)	0.19(3)	0.0029(5)
¹⁹⁵ Pt 1802 269(10)	0.146(4)	0.00227(6)	¹⁹⁷ Au 218.8300(10)	0.141(22)	0.0022(3)
¹⁹⁵ Pt 1825.685(8) ¹⁹⁵ Pt 1888.116(12)	0.091(4) 0.080(4)	0.00141(6) 0.00124(6)	¹⁹⁷ Au 219.4190(20) ¹⁹⁷ Au 234.6000(20)	0.42(4) 0.091(12)	0.0065(6) 0.00140(18)
¹⁹⁵ Pt 1968 858(13)	0.103(4)	0.00124(6)	¹⁹ 'Au 236.0450(10)	4.1(5)	0.063(8)
¹⁹⁵ Pt 1978 46(3)	0.163(5)	0.00253(8)	¹⁹⁷ Au 236.1710(20)	0.26(6)	0.0040(9)
¹⁹⁵ Pt 2309 20(9)	0.066(14)	0.00103(22)	¹⁹ 'Au 245.314(6)	0.111(18)	0.0017(3)
¹⁹⁵ Pt 2311.44(3) ¹⁹⁵ Pt 2527.81(3)	0.134(4)	0.00208(6)	¹⁹⁷ Au 247.5730(10) ¹⁹⁷ Au 248.739(3)	5.56(8)	0.0855(12)
195Pt 4949 0(4)	0.07(3) 0.069(20)	0.0011(5) 0.0011(3)	¹⁹ 'Au 260.8820(10)	0.111(16) 0.83(13)	0.00171(25) 0.0128(20)
¹⁹⁶ Pt 5098 1(7)	0.003(20)	0.00144(9)	¹⁹⁷ Au 261.4040(10)	5.3(20)	0.08(3)
¹⁹⁵ Pt 5098 5(7)	0.10(3)	0.0016(5)	¹⁹ 'Au 266.6470(10)	0.26(3)	0.0040(5)
¹⁹⁵ Pt 5173.4(3)	0.136(6)	0.00211(9)	¹⁹ 'Au 269.0730(20)	0.155(24)	0.0024(4)
¹⁹⁵ Pt 5185.3(3)	0.085(5)	0.00132(8)	¹⁹⁷ Au 271.1380(20)	0.104(16)	0.00160(25)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Gold (Z-79), continued Gold (Z-70), continued Gold (Eγ-keV	σ(Eγ)-barns	k _o	Eγ-keV	σ(Eγ)-barns	k ₀
				Gold (Z=79), contin		
"Au 276-072(3)	¹⁹⁷ Au 271.2280(20)	0.170(24)		¹⁹⁷ Au 579.297(3)		
277 2460(20) 0.277(8) 0.00426(8) 197 0.00427(2) 197 0.00177(14) 0.00160(22) 197 0.00160(3) 197 0.0016	197 Au 271.8940(10)	0.40(13)		197 Au 584.800(10)		
284.1990(20)	197 Au 275.072(3)			197 Au 600 432(4)		
29. 29.	¹⁹ 'Au 284 1090(20)			197 Au 612 7240(20)		
"Au 283.12(0)	¹⁹⁷ Au 291.7240(20)			¹⁸ ' Au 612.799(6)		
1974 131 1394 130 147 16	181 Au 293 1210(20)			¹⁹ ' Au 625 4280(20)		0.0068(6)
1974 134	18" Au 307 7180(10)			¹⁸ ' Au 631,660(9)		
**************************************	197 Au 311.9040(20)			197 Au 632.275(3)		
1974 1982 14840(20) 1.48(19) 0.023(3) 1974 687.293(5) 0.126(17) 0.0019(3) 1974	¹⁸ ' Au 324 900(5)	0 104(14)		187 Au 640 669(3)		
1974 328.740(10) 0.111(14) 0.00171(22) 1974 655.528(4) 0.21(3) 0.0032(5) 1974 338.388(02) 0.111(14) 0.00171(122) 1974 655.528(4) 0.21(3) 0.0037(8) 1974 197	19' Au 328 4840(20)	1.48(19)		'°' Au 647.293(5)		
1974 333, 3380(20)	¹⁸ ' Au 328 740(10)	0.111(14)	0.00171(22)	¹⁹ 'Au 655.528(4)	0.21(3)	0.0032(5)
1974 139 1910 10	18" Au 333 8380(20)	0.111(14)		18' Au 655,569(3)		
1974 346.9505(20)	197 Δι. 330 2010(20)			¹⁹⁷ Δμ 661 451(10)		
1974 347.8800(20)	18' Au 346,9050(20)			¹⁸ ' Au 668,561(7)		
197Au 350.8280(10	18' Au 347.8800(20)			'°' Au 672.6550(10)		
197Au 364.0240(20)	¹⁹⁷ Au 350.8280(10)			¹⁹ 'Au 673,503(8)		
197Au 364.030(b)	197 Au 355.5300(20)			197 Au 678.208(10)		
197 Au 368.2510(20)	197 Au 364.0240(20)			¹⁹⁷ Δμ 682 804(5)		
197Au 371.0790(20)	¹⁹ 'Au 368.2510(20)		/ _ /	¹⁹ ' Au 686,865(5)		' '
197 Au 373.1450(20)	¹⁹⁷ Au 371.0790(20)			13' Au 688,968(10)		
197 Au 378.2991(20) 0.178(23) 0.0027(4) 197 Au 692.972(6) 0.094(18) 0.0014(3) 197 Au 383.284(4) 0.24(3) 0.0037(5) 197 Au 702.474(5) 0.15(5) 0.0023(8) 197 Au 383.284(4) 0.22(3) 0.0037(5) 197 Au 724.23(6) 0.115(18) 0.0018(3) 197 Au 398.104(4) 0.100(8) 0.00154(12) 197 Au 724.23(6) 0.115(18) 0.0018(3) 197 Au 398.295(6) 0.096(13) 0.00148(20) 197 Au 728.299(6) 0.161(19) 0.0025(3) 197 Au 411.802d 94.30(19) 1.451(-0.1%] 197 Au 728.299(6) 0.161(19) 0.0017(3) 197 Au 411.802d 94.30(19) 1.451(-0.1%] 197 Au 728.291(10) 0.104(14) 0.00160(22) 197 Au 414.88400(20) 0.70(5) 0.018(14) 197 Au 740.000(20) 0.310(21) 0.0048(3) 197 Au 440.3290(20) 0.9(4) 0.014(6) 197 Au 740.000(20) 0.310(21) 0.0048(3) 197 Au 441.070(5) 0.7(5) 0.011(8) 197 Au 744.000(20) 0.310(21) 0.0048(3) 197 Au 444.3910(20) 0.56(7) 0.011(8) 197 Au 745.202(4) 0.33(6) 0.0051(3) 197 Au 444.3910(20) 0.56(7) 0.011(8) 197 Au 745.202(4) 0.33(6) 0.0051(3) 197 Au 444.58.62(7) 0.118(15) 0.0182(23) 197 Au 765.131(6) 0.163(22) 0.0025(3) 197 Au 449.5700(20) 0.50(6) 0.0077(9) 197 Au 765.131(6) 0.163(22) 0.0025(3) 197 Au 445.507(0) 0.141(22) 0.0022(3) 197 Au 767.960(6) 0.096(14) 0.00148(22) 197 Au 456.26(4) 0.007(14) 0.00148(22) 197 Au 458.054(20) 0.29(4) 0.0045(6) 197 Au 776.532(6) 0.198(19) 197 Au 776.532(6) 0.198(19) 197 Au 776.532(6) 0.198(19) 197 Au 776.632(6) 0.118(19) 0.0018(3) 197 Au 485.638(5) 0.16(3) 0.0025(5) 197 Au 783.230(5) 0.111(23) 0.0017(4) 197 Au 511.167(6) 0.111(22) 0.0025(6) 197 Au 786.739(10) 0.26(115) 0.0018(3) 197 Au 485.638(5) 0.16(3) 0.0025(6) 197 Au 786.739(10) 0.26(115) 0.0018(3) 197 Au 485.638(5) 0.16(3) 0.0025(6) 197 Au 786.739(10) 0.26(115) 0.0018(3) 197 Au 485.638(5) 0.16(3) 0.0025(6) 197 Au 786.739(10) 0.26(115) 0.0018(3) 197 Au 511.517(20) 0.88(11) 0.0018(3) 197 Au 520.746(6) 0.19(8) 0.0025(6) 197 Au 786.739(10) 0.26(115) 0.0018(3) 197 Au 520.746(6) 0.19(8) 0.0025(6) 197 Au 786.739(10) 0.0016(3) 197 Au 520.746(6) 0.19(8) 0.0025(6) 197 Au 788.53(6) 0.13(3) 0.0020(5) 197 Au 520.746(6) 0.19(8) 0.0025(6) 197 Au 880.612(7) 0.104(14) 0.0016(0.22) 197 Au	¹⁹ 'Au 373.1450(20)			187 Au 690,046(6)	0.388(20)	
197Au 383.284(4) 0.24(3) 0.0037(5) 197Au 724.623(6) 0.115(18) 0.0078(11) 197Au 396.104(4) 0.100(8) 0.00154(12) 197Au 728.297(6) 0.161(19) 0.0025(3) 197Au 398.295(6) 0.096(13) 0.00148(20) 197Au 728.297(6) 0.161(19) 0.0025(3) 197Au 411.802d 94.30(19) 1.451[-6.1%] 197Au 728.297(6) 0.111(20) 0.0017(3) 197Au 411.802d 94.30(19) 1.451[-6.1%] 197Au 728.291(10) 0.104(14) 0.00160(22) 197Au 418.800(20) 0.70(9) 0.108(14) 197Au 740.0000(20) 0.310(21) 0.0048(3) 197Au 440.3290(20) 0.9(4) 0.014(6) 197Au 740.0000(20) 0.310(21) 0.0048(3) 197Au 444.3290(20) 0.5(7) 0.01(8) 197Au 444.850(20) 0.104(14) 0.0015(6) 197Au 745.202(4) 0.33(6) 0.0051(9) 197Au 444.3910(20) 0.56(7) 0.0086(11) 197Au 745.202(4) 0.33(6) 0.0051(9) 197Au 444.562(7) 0.118(15) 0.00182(23) 197Au 764.011(3) 0.3(3) 0.005(5) 197Au 448.562(7) 0.118(15) 0.00182(23) 197Au 765.131(6) 0.163(22) 0.0023(3) 197Au 448.562(7) 0.141(22) 0.0022(3) 197Au 767.96(6) 0.096(14) 0.00148(22) 197Au 456.1570(20) 0.141(22) 0.0022(3) 197Au 767.96(6) 0.096(14) 0.00148(22) 197Au 456.51570(20) 0.141(22) 0.0022(3) 197Au 767.96(6) 0.096(14) 0.00148(22) 197Au 458.36(4) 0.0026(6) 197Au 776.836(6) 0.096(14) 0.00148(22) 197Au 458.36(4) 0.0026(6) 197Au 776.532(6) 0.118(19) 0.0018(3) 197Au 448.5638(5) 0.16(3) 0.0025(6) 197Au 776.532(6) 0.118(19) 0.0018(3) 197Au 456.38(6) 0.16(3) 0.0025(6) 197Au 776.532(6) 0.118(19) 0.0018(3) 197Au 456.38(6) 0.16(3) 0.0025(6) 197Au 776.532(6) 0.118(19) 0.0018(3) 197Au 456.38(6) 0.18(3) 0.0025(6) 197Au 776.532(6) 0.118(19) 0.0018(3) 197Au 456.38(6) 0.18(3) 0.0025(6) 197Au 776.532(6) 0.118(19) 0.0018(3) 197Au 456.03(6) 0.18(19) 0.0018(3) 197Au 456.03(6) 0.096(14) 0.0018(12) 197Au 456.03(6) 0.096(14) 0.0018(13) 197Au 456.03(6) 0.096(14) 0.0018(13	¹⁹⁷ Au 378.2990(20)	0.178(23)		13' Au 692,972(6)		
197Au 393.884(5) 0.22(3) 0.0034(5) 197Au 728.239(6) 0.116(19) 0.0025(3) 197Au 398.295(6) 0.096(13) 0.00148(20) 197Au 728.239(6) 0.161(19) 0.0025(3) 197Au 398.295(6) 0.096(13) 0.00148(20) 197Au 728.239(6) 0.111(20) 0.0017(3) 197Au 418.8400(20) 0.70(9) 0.0108(14) 197Au 732.221(10) 0.104(14) 0.00160(22) 197Au 418.8400(20) 0.70(9) 0.0108(14) 197Au 734.252(10) 0.104(15) 0.0048(3) 197Au 444.391(20) 0.7(5) 0.014(6) 197Au 744.8580(20) 0.104(15) 0.0048(3) 197Au 444.391(20) 0.7(5) 0.014(6) 197Au 744.5220(4) 0.33(6) 0.0051(9) 197Au 444.391(20) 0.104(15) 0.0018(14) 197Au 744.5220(4) 0.33(6) 0.0051(9) 197Au 444.391(20) 0.104(15) 0.0018(14) 197Au 744.5220(4) 0.33(6) 0.0051(9) 197Au 444.527(3) 0.104(15) 0.0018(14) 197Au 746.071(3) 0.33(6) 0.005(5) 197Au 444.527(3) 0.104(15) 0.0018(21) 197Au 746.73(5) 0.133(18) 0.0020(3) 197Au 444.527(20) 0.104(15) 0.0018(21) 197Au 746.73(5) 0.133(18) 0.0020(3) 197Au 444.527(0) 0.0018(21) 197Au 746.73(5) 0.133(18) 0.0020(3) 197Au 448.75(27(3) 0.104(12) 0.0018(21) 197Au 766.11(3) 0.3(3) 0.005(5) 197Au 448.75(27(3) 0.104(12) 0.0018(22) 197Au 767.866(5) 0.096(14) 0.00148(22) 197Au 456.1570(20) 0.141(22) 0.0022(3) 197Au 767.866(5) 0.096(14) 0.00148(22) 197Au 456.547(4) 0.47(6) 0.0072(9) 197Au 770.858(5) 0.096(14) 0.00148(22) 197Au 458.370(4) 0.16(3) 0.0025(5) 197Au 770.858(5) 0.206(17) 0.0032(3) 197Au 448.75(20(20) 0.17(6) 0.0025(5) 197Au 776.632(6) 0.118(19) 0.0018(3) 197Au 464.7620(20) 0.17(6) 0.0025(5) 197Au 776.786(5) 0.118(19) 0.0018(3) 197Au 456.588(5) 0.16(3) 0.0025(5) 197Au 770.858(5) 0.111(23) 0.0017(4) 197Au 464.7620(20) 0.17(6) 0.0025(5) 197Au 776.786(5) 0.111(23) 0.0017(4) 197Au 464.7620(20) 0.17(6) 0.0025(5) 197Au 776.786(6) 0.118(19) 0.0016(3) 197Au 464.7620(20) 0.17(6) 0.0025(5) 197Au 776.788(5) 0.111(23) 0.0017(4) 197Au 464.7620(20) 0.17(6) 0.0025(5) 197Au 776.858(5) 0.111(23) 0.0017(4) 197Au 464.7620(20) 0.17(6) 0.0025(5) 197Au 776.858(5) 0.111(23) 0.0017(4) 197Au 465.588(5) 0.111(23) 0.0017(4) 197Au 465.588(5) 0.111(23) 0.0017(4) 197Au 465.588(5) 0.111(23) 0.0016(6) 197Au 776.588	197 Au 383 284(4)	3. 0(4) 0.24(3)		197Δμ 702 474(5)		
197Au 298.104(4) 0.100(8) 0.00154(12) 197Au 728.997(6) 0.111(20) 0.0017(3) 197Au 278.9926(6) 0.70(9) 1.451(-0.1%) 197Au 738.997(6) 0.111(20) 0.0017(3) 197Au 411.802d 94.30(19) 1.451(-0.1%) 197Au 741.8020 0.104(14) 0.00160(22) 197Au 440.3290(20) 0.9(4) 0.014(6) 197Au 744.8580(20) 0.104(15) 0.00160(23) 197Au 441.070(5) 0.7(5) 0.011(8) 197Au 744.8580(20) 0.104(15) 0.0051(9) 197Au 444.3910(20) 0.56(7) 0.0086(11) 197Au 745.220(4) 0.33(6) 0.0051(9) 197Au 447.527(3) 0.10(4) 0.0015(6) 197Au 745.220(4) 0.33(6) 0.0051(9) 197Au 447.527(3) 0.10(4) 0.0015(6) 197Au 745.231(6) 0.163(22) 0.0025(3) 197Au 445.65(27) 0.118(15) 0.00182(23) 197Au 745.85(6) 0.096(14) 0.00148(22) 197Au 449.5700(20) 0.50(6) 0.0077(9) 197Au 767.886(5) 0.096(14) 0.00148(22) 197Au 456.1570(20) 0.141(22) 0.0022(3) 197Au 767.866(5) 0.096(14) 0.00148(22) 197Au 456.1570(20) 0.141(22) 0.0022(3) 197Au 767.866(6) 0.096(14) 0.00148(22) 197Au 458.370(4) 0.16(3) 0.0025(5) 197Au 770.858(5) 0.206(17) 0.0032(3) 197Au 448.5638(6) 0.16(3) 0.0025(5) 197Au 768.678(6) 0.006(14) 0.00148(12) 197Au 458.370(4) 0.16(3) 0.0025(5) 197Au 786.733(6) 0.118(19) 0.0018(3) 197Au 485.638(6) 0.16(3) 0.0025(5) 197Au 786.731(3) 0.021(11) 0.0018(3) 197Au 60.0018(3) 0.16(4) 0.0025(6) 197Au 786.731(3) 0.021(11) 0.0018(3) 197Au 502.407(8) 0.16(4) 0.0025(6) 197Au 786.731(3) 0.0017(4) 197Au 502.407(8) 0.16(4) 0.0025(6) 197Au 786.731(3) 0.0017(4) 0.0017(4) 197Au 502.407(8) 0.16(4) 0.0025(6) 197Au 786.731(3) 0.0017(4) 0.0017(4) 197Au 502.407(8) 0.16(4) 0.0025(6) 197Au 786.731(3) 0.0017(4) 0.0017(4) 197Au 502.407(8) 0.16(4) 0.0025(6) 197Au 786.731(3) 0.0025(6) 0.197(6) 0.0025(6) 197Au 786.731(3) 0.0025(6) 0.197(4) 0.0025(6) 197Au 502.5002(6) 0.197(6) 0.0025(6) 197Au 502.5002(6) 0.197(6) 0.0025(6) 197Au 502.5002(6) 0.197(6) 0.0025(6) 197Au 502.5002(6) 0.197(6) 0.0025(6) 197Au 502.5002(6) 0.104(6) 0.0025(6) 197Au 502.5002(6) 0.104(6) 0.0025(6) 197Au 502.5002(6) 0.	¹⁸ ' Au 393 884(5)			¹⁹ 'Au 724.623(6)		
197Au 418.820	19' Au 396 104(4)			¹⁸ ' Au 728,239(6)		
197 Au 4418.8400(20) 0.70(9) 0.0108(14) 197 Au 740.0000(20) 0.310(21) 0.0048(3) 197 Au 441.070(5) 0.7(5) 0.011(8) 197 Au 745.220(4) 0.33(6) 0.0051(9) 197 Au 444.3910(20) 0.56(7) 0.0086(11) 197 Au 745.073(5) 0.133(18) 0.0020(3) 197 Au 444.7.527(3) 0.10(4) 0.0015(6) 197 Au 746.073(5) 0.133(18) 0.0025(3) 197 Au 444.552(7) 0.118(15) 0.00182(23) 197 Au 767.91(13) 0.3(3) 0.005(5) 197 Au 448.552(7) 0.118(15) 0.00182(23) 197 Au 767.960(6) 0.096(14) 0.00148(22) 197 Au 448.652(7) 0.118(12) 0.0022(3) 197 Au 767.960(6) 0.096(14) 0.00148(22) 197 Au 456.287(4) 0.16(3) 0.0025(5) 197 Au 776.983(6) 0.18(19) 197 Au 456.287(4) 0.16(3) 0.0025(5) 197 Au 776.983(6) 0.118(19) 197 Au 458.370(4) 0.16(3) 0.0025(5) 197 Au 776.932(6) 0.118(19) 0.0018(3) 197 Au 485.638(5) 0.16(3) 0.0025(5) 197 Au 788.733(10) 0.261(15) 0.00402(23) 197 Au 485.638(5) 0.16(3) 0.0025(6) 197 Au 788.733(10) 0.261(15) 0.00402(23) 197 Au 509.175(4) 0.37(9) 0.0057(14) 197 Au 786.73(10) 0.0261(15) 0.0022(6) 197 Au 511.5170(20) 0.16(6) 0.19(7) 0.0022(11) 197 Au 805.248(8) 0.13(3) 0.0025(5) 197 Au 511.5170(20) 0.68(11) 0.0105(17) 197 Au 805.248(8) 0.13(3) 0.0025(5) 197 Au 511.5170(20) 0.16(6) 0.0025(9) 197 Au 815.954(7) 0.0023(3) 197 Au 522.351(4) 0.036(6) 0.104(14) 0.0015(17) 197 Au 805.248(8) 0.13(3) 0.0020(5) 197 Au 522.351(4) 0.096(12) 0.106(4) 0.0025(9) 197 Au 815.954(7) 0.0023(3) 197 Au 522.351(4) 0.096(12) 0.0014(14) 0.00160(22) 197 Au 815.954(7) 0.004(15) 197 Au 522.351(4) 0.096(12) 0.0016(18) 197 Au 822.572(5) 0.104(17) 0.0016(3) 197 Au 523.51(4) 0.096(12) 0.0014(18) 0.005(18) 197 Au 822.572(5) 0.104(17) 0.0016(3) 197 Au 523.514(0.006(12) 0.104(14) 0.00160(12) 197 Au 831.470(5) 0.153(19) 0.0024(3) 197 Au 524.752(3) 0.27(8) 0.006(8) 197 Au 838.156(5) 0.13(3) 0.0020(5) 197 Au 525.1340(20) 0.35(6) 0.006(8) 197 Au 838.156(5) 0.13(3) 0.0020(5) 197 Au 526.584(5) 0.006(6) 0.006(6) 197 Au 838.516(6) 0.15(3) 0.003(6) 197 Au 527.584(6) 0.006(6) 0.006(6) 197 Au 838.616	¹⁸ ' Au 398 295(6)			¹⁹ 'Au 728,997(6)		
197Au 444.03290(20) 0.9(4) 0.014(6) 197Au 744.8580(20) 0.104(15) 0.0016(0(23) 197Au 444.070(5) 0.7(5) 0.011(8) 197Au 746.073(5) 0.33(6) 0.0051(9) 197Au 444.3910(20) 0.56(7) 0.0086(11) 197Au 746.073(5) 0.133(18) 0.0020(3) 197Au 444.562(7) 0.118(15) 0.00182(23) 197Au 767.886(5) 0.096(14) 0.005(6) 197Au 449.5700(20) 0.50(6) 0.0077(9) 197Au 767.886(5) 0.096(14) 0.00148(22) 197Au 449.5700(20) 0.141(22) 0.0022(3) 197Au 767.886(5) 0.096(14) 0.00148(22) 197Au 456.1570(20) 0.141(22) 0.0022(3) 197Au 767.858(5) 0.206(17) 0.0032(3) 197Au 456.287(4) 0.47(6) 0.0072(9) 197Au 770.858(5) 0.206(17) 0.0032(3) 197Au 458.0540(20) 0.29(4) 0.0045(6) 197Au 770.858(5) 0.206(17) 0.0032(3) 197Au 458.0540(20) 0.29(4) 0.0045(6) 197Au 778.632(6) 0.118(19) 0.00148(3) 197Au 458.638(5) 0.16(3) 0.0025(5) 197Au 787.632(6) 0.111(23) 0.0017(4) 197Au 464.7620(20) 0.17(6) 0.0026(9) 197Au 787.83230(5) 0.111(23) 0.0017(4) 197Au 464.7620(20) 0.17(6) 0.0026(9) 197Au 787.8313(13) 0.04(19) 0.0016(3) 197Au 56.38(5) 0.16(3) 0.0025(5) 197Au 788.731(10) 0.261(15) 0.0040(23) 197Au 56.38(6) 0.16(4) 0.0025(6) 197Au 781.311(13) 0.104(19) 0.0016(3) 197Au 510.427(6) 0.19(7) 0.0029(11) 197Au 801.7050(20) 0.19(4) 0.0023(3) 197Au 510.427(6) 0.19(7) 0.0029(11) 197Au 801.7050(20) 0.19(4) 0.0029(6) 197Au 511.507(6) 0.111(22) 0.0017(3) 197Au 806.248(8) 0.13(3) 0.0020(5) 197Au 511.507(6) 0.111(22) 0.0017(3) 197Au 815.0507(4) 197Au 511.507(6) 0.104(14) 0.00160(22) 197Au 815.954(7) 0.104(20) 0.0016(3) 197Au 511.5170(20) 0.36(1) 0.004(17) 197Au 815.954(7) 0.104(20) 0.0016(3) 197Au 522.351(4) 0.096(12) 0.004(18) 197Au 824.834(4) 0.31(5) 0.0024(3) 197Au 522.351(4) 0.096(12) 0.004(8) 197Au 831.470(5) 0.153(19) 0.0024(3) 197Au 522.351(4) 0.096(12) 0.004(18) 197Au 831.470(5) 0.153(19) 0.0024(3) 197Au 522.351(4) 0.096(12) 0.004(12) 197Au 831.470(5) 0.153(19) 0.0024(3) 197Au 522.351(4) 0.096(12) 0.00148(18) 197Au 831.470(5) 0.153(19) 0.0024(3) 197Au 523.660(20) 0.19(6) 0.006(6) 197Au 831.66(6) 0.004(14) 0.00160(22) 197Au 831.66(6) 0.004(14) 0.00160(22) 197Au 831.66(6) 0.004(14) 0.00	¹⁹⁷ Au 411.802d			197 Au 732.221(10)		
197Au 4441.070(5) 0.7(5) 0.011(8) 197Au 745.220(4) 0.33(6) 0.0051(9) 197Au 444.3910(20) 0.56(7) 0.0086(11) 197Au 746.073(5) 0.133(18) 0.0020(3) 197Au 447.527(3) 0.10(4) 0.0015(6) 197Au 764.073(5) 0.133(18) 0.0025(5) 197Au 449.5700(20) 0.50(6) 0.0077(9) 197Au 764.011(3) 0.3(3) 0.005(6) 197Au 449.5700(20) 0.50(6) 0.0077(9) 197Au 767.886(5) 0.096(14) 0.00148(22) 197Au 456.1570(20) 0.141(22) 0.0022(3) 197Au 767.960(6) 0.096(14) 0.00148(22) 197Au 458.287(4) 0.47(6) 0.0072(9) 197Au 776.936(6) 0.096(14) 0.00148(22) 197Au 458.370(4) 0.16(3) 0.0025(5) 197Au 776.932(6) 0.118(19) 0.0018(3) 197Au 458.370(4) 0.16(3) 0.0025(5) 197Au 786.793(10) 0.261(15) 0.00402(23) 197Au 485.638(5) 0.16(3) 0.0025(5) 197Au 786.793(10) 0.261(15) 0.00402(23) 197Au 566.538(5) 0.16(3) 0.0025(6) 197Au 786.793(10) 0.261(15) 0.0024(3) 197Au 509.175(4) 0.37(9) 0.0057(14) 197Au 596.217(5) 0.148(22) 0.0023(3) 197Au 510.427(6) 0.19(7) 0.0029(11) 197Au 801.7050(20) 0.19(4) 0.0029(6) 197Au 511.5170(20) 0.68(11) 0.0105(17) 197Au 801.7050(20) 0.19(4) 0.0029(6) 197Au 511.5170(20) 0.68(11) 0.005(5) 197Au 822.572(5) 0.104(17) 0.006(3) 197Au 515.132(6) 0.104(14) 0.0025(9) 197Au 825.483(4) 0.31(5) 0.0040(5) 197Au 529.1650(20) 0.19(4) 0.0029(12) 197Au 831.56(5) 0.104(17) 0.0016(3) 197Au 529.1650(20) 0.19(4) 0.0029(12) 197Au 831.56(5) 0.104(17) 0.0016(3) 197Au 529.1650(20) 0.19(4) 0.0029(12) 197Au 831.56(5) 0.104(17) 0.0016(3) 197Au 542.3670(20) 0.35(5) 0.0054(6) 197Au 831.56(5) 0.104(17) 0.0016(3) 197Au 542.3670(20) 0.35(5) 0.0064(8) 197Au 831.56(5) 0.13(3) 0.0024(3) 197Au 542.3670(20) 0.19(4) 0.0029(12) 197Au 838.156(5) 0.13(3) 0.0024(3) 197Au 544.086(5) 0.52(5) 0.006(9) 0.006(9) 197Au 881.63(6) 0.148(25) 0.0023(4) 197Au 544.086(5) 0.52(6) 0.006(14) 0.0016(22) 197Au 885.688(6)	197 Au 440 3290(20)			197 Δτι 744 8580(20)		
197 Au 444.3910(20)	191 Au 441 070(5)			18' Au 745 220(4)		
197 Au 447.527(3)	197 Au 444 3910(20)	0.56(7)		'°' Au 746.073(5)		0.0020(3)
197 Au 449.5700(20)	¹⁸ ' Au 447 527(3)			¹⁸ ' Au 764.011(3)		
197 Au 456.1570(20)	¹⁹⁷ Au 448.562(7)	0.118(15)		¹⁹⁷ Au 765.131(6)		
197, Au 456,287(4) 0.47(6) 0.0072(9) 197, Au 776,0858(5) 0.206(17) 0.0032(3) 197, Au 458,0540(20) 0.29(4) 0.0045(6) 197, Au 776,0823(6) 0.118(19) 0.0018(3) 197, Au 458,370(4) 0.16(3) 0.0025(5) 197, Au 786,793(10) 0.261(15) 0.00402(23) 197, Au 464,7620(20) 0.17(6) 0.0025(6) 197, Au 786,131(13) 0.104(19) 0.0016(3) 197, Au 502,407(8) 0.16(4) 0.0025(6) 197, Au 786,131(13) 0.104(19) 0.0016(3) 197, Au 502,407(8) 0.16(4) 0.0025(6) 197, Au 786,131(13) 0.104(19) 0.0027(4) 197, Au 509,175(4) 0.37(9) 0.0057(14) 197, Au 509,175(4) 0.37(9) 0.0057(14) 197, Au 509,175(4) 0.37(9) 0.0029(1) 197, Au 510,427(6) 0.19(7) 0.0029(1) 197, Au 510,427(6) 0.19(7) 0.0029(1) 197, Au 511,067(6) 0.111(22) 0.0017(3) 197, Au 801,7050(20) 0.19(4) 0.0029(6) 197, Au 511,5170(20) 0.68(11) 0.0105(17) 197, Au 806,248(8) 0.13(3) 0.0020(5) 197, Au 512,5790(20) 0.16(6) 0.0025(9) 197, Au 810,100(7) 0.26(3) 0.0040(5) 197, Au 515,132(6) 0.104(14) 0.00160(22) 197, Au 812,5790(20) 0.16(3) 197, Au 515,132(6) 0.104(14) 0.00160(22) 197, Au 822,572(5) 0.104(17) 0.0016(3) 197, Au 510,502(0) 0.19(8) 0.0029(12) 197, Au 821,543(4) 0.31(5) 0.0048(8) 197, Au 520,746(6) 0.35(5) 0.0054(8) 197, Au 522,351(4) 0.096(12) 0.00148(18) 197, Au 523,144 0.096(12) 0.00148(18) 197, Au 523,514(4) 0.096(12) 0.00148(18) 197, Au 523,514(4) 0.096(12) 0.00148(18) 197, Au 529,1550(20) 1.9(10) 0.005(15) 197, Au 839,516(5) 0.13(3) 0.0016(25) 197, Au 529,1550(20) 1.9(10) 0.005(15) 197, Au 529,1550(20) 0.104(14) 0.00160(22) 197, Au 886,15(15) 0.003(14) 197, Au 529,156(15) 0.005(16) 197, Au 529,156(15) 0.005(16) 197, Au 529,156(15) 0.005(16) 197, Au 529,156(15) 0.005(16)	197 Au 456 1570(20)			197 Au 767 .000(3)		
197Au 458.0540(20) 0.29(4) 0.0025(5) 197Au 1786.632(6) 0.118(19) 0.0018(3) 197Au 458.370(4) 0.16(3) 0.0025(5) 197Au 4788.230(5) 0.111(23) 0.0017(4) 197Au 486.638(5) 0.16(3) 0.0025(5) 197Au 788.793(10) 0.261(15) 0.00402(23) 197Au 485.638(5) 0.16(3) 0.0025(5) 197Au 788.131(13) 0.104(19) 0.0016(3) 197Au 502.407(8) 0.16(4) 0.0025(6) 197Au 784.158(7) 0.178(24) 0.0027(4) 197Au 509.175(4) 0.37(9) 0.0057(14) 197Au 794.158(7) 0.148(22) 0.0023(3) 197Au 509.175(4) 0.19(7) 0.0029(11) 197Au 801.7050(20) 0.19(4) 0.0029(6) 197Au 511.607(6) 0.111(22) 0.0017(3) 197Au 806.248(8) 0.13(3) 0.0020(5) 197Au 511.5170(20) 0.68(11) 0.0105(17) 197Au 810.100(7) 0.26(3) 0.0040(5) 197Au 515.132(6) 0.104(14) 0.00160(22) 197Au 815.954(7) 0.104(20) 0.0016(3) 197Au 516.0620(10) 0.35(5) 0.0054(8) 197Au 822.572(5) 0.104(17) 0.0016(3) 197Au 522.351(4) 0.096(12) 0.0048(8) 197Au 831.470(5) 0.153(19) 0.0024(3) 197Au 522.351(4) 0.096(12) 0.00148(18) 197Au 833.906(6) 0.104(16) 0.00160(25) 197Au 522.351(4) 0.096(12) 0.00148(18) 197Au 833.906(6) 0.104(16) 0.00160(25) 197Au 529.954(4) 0.39(5) 0.35(4) 0.0054(6) 197Au 838.156(5) 0.13(3) 0.0020(5) 197Au 529.954(4) 0.39(5) 0.0054(6) 197Au 839.516(5) 0.13(3) 0.0016(3) 197Au 520.351(4) 0.0060(8) 197Au 839.516(5) 0.13(3) 0.00160(25) 197Au 529.564(4) 0.39(5) 0.0054(6) 197Au 839.516(5) 0.13(3) 0.0016(3) 197Au 529.954(4) 0.39(5) 0.0060(8) 197Au 848.650(4) 0.148(25) 0.0023(4) 197Au 529.954(4) 0.39(5) 0.0060(8) 197Au 884.650(4) 0.148(25) 0.0023(4) 197Au 529.954(4) 0.39(5) 0.0060(8) 197Au 886.671(4) 0.006(6) 0.006(6) 197Au 529.660(6) 0.148(25) 0.0023(4) 197Au 529.680(20) 0.126(17) 0.0019(3) 197Au 886.614(4) 0.006(6)(2) 197Au 886.671(4) 0.006(6)(2) 197Au 529.680(20)	¹⁸ ' Au 456.287(4)	0.47(6)		¹⁸ ' Au 770,858(5)		
197 Au 486.7620(20)	18' Au 458,0540(20)	0.29(4)		¹⁸ ' Au 776.632(6)		0.0018(3)
197Au 502.407(8)	¹⁹⁷ Au 458.370(4)	0.16(3)		¹⁹⁷ Au 783.230(5)	0.111(23)	
197 Au 502.407(8)	197 Δτ. 485, 638(5)	0.17(b) 0.16(3)		¹⁹⁷ Δμ 788 131(13)		
197 Au 510.427(6)	¹⁸ 'Au 502.407(8)			¹³ ' Au 794 158(7)		
197 Au 510.427(6) 0.19(7) 0.0029(11) 197 Au 801.7050(20) 0.19(4) 0.0029(6) 197 Au 511.067(6) 0.111(22) 0.0017(3) 197 Au 806.248(8) 0.13(3) 0.0020(5) 197 Au 511.5170(20) 0.68(11) 0.0105(17) 197 Au 810.100(7) 0.26(3) 0.0040(5) 197 Au 511.5170(20) 0.16(6) 0.0025(9) 197 Au 815.954(7) 0.104(20) 0.0016(3) 197 Au 515.132(6) 0.104(14) 0.00160(22) 197 Au 822.572(5) 0.104(17) 0.0016(3) 197 Au 516.0620(10) 0.35(5) 0.0054(8) 197 Au 825.483(4) 0.31(5) 0.0048(8) 197 Au 520.746(6) 0.19(8) 0.0029(12) 197 Au 831.470(5) 0.153(19) 0.0024(3) 197 Au 522.351(4) 0.096(12) 0.00148(18) 197 Au 833.906(6) 0.104(16) 0.00160(25) 197 Au 525.1340(20) 0.35(4) 0.0054(6) 197 Au 838.156(5) 0.13(3) 0.0020(5) 197 Au 525.1340(20) 0.35(4) 0.0054(6) 197 Au 838.156(5) 0.13(3) 0.0020(5) 197 Au 529.1650(20) 1.9(10) 0.029(15) 197 Au 839.516(5) 0.73(20) 0.011(3) 197 Au 529.954(4) 0.39(5) 0.0060(8) 197 Au 846.216(7) 0.104(24) 0.0016(4) 197 Au 540.3010(20) 0.49(23) 0.008(4) 197 Au 854.178(6) 0.093(18) 0.0023(4) 197 Au 542.3670(20) 0.104(14) 0.00160(22) 197 Au 863.082(6) 0.148(25) 0.0023(4) 197 Au 542.3670(20) 0.104(14) 0.00160(22) 197 Au 863.082(6) 0.148(25) 0.0023(4) 197 Au 552.467(3) 0.104(14) 0.00160(22) 197 Au 863.082(6) 0.148(25) 0.0023(4) 197 Au 565.880(20) 0.126(17) 0.0019(3) 197 Au 885.638(6) 0.17(3) 0.0026(5) 197 Au 565.880(20) 0.126(17) 0.0019(3) 197 Au 886.612(4) 0.15(3) 0.0026(5) 197 Au 573.388(13) 0.126(17) 0.0018(22) 197 Au 898.612(4) 0.15(3) 0.0023(5) 197 Au 573.388(13) 0.126(17) 0.0018(22) 197 Au 992.478(6) 0.38(6) 0.0058(9) 197 Au 573.3960(4) 0.33(4) 0.0056(6) 197 Au 574.370(5) 0.148(20) 0.0055(8) 197 Au 992.478(6) 0.38(6) 0.0058(9) 197 Au 574.370(5) 0.148(20) 0.0023(3) 197 Au 992.478(6) 0.36(6) 0.0048(18) 197 Au 574.370(5) 0.148(20) 0.0055(8) 197 Au 992.478(6) 0.36	¹⁸ ' Au 509.175(4)	0.37(9)	0.0057(14)	¹⁸ ' Au 796.217(5)	0.148(22)	0.0023(3)
197Au 511.5170(20) 0.68(11) 0.0105(17) 197Au 810.100(7) 0.26(3) 0.0040(5) 197Au 512.5790(20) 0.16(6) 0.0025(9) 197Au 815.954(7) 0.104(20) 0.0016(3) 197Au 515.132(6) 0.104(14) 0.00160(22) 197Au 822.572(5) 0.104(17) 0.0016(3) 197Au 516.0620(10) 0.35(5) 0.0054(8) 197Au 825.483(4) 0.31(5) 0.0048(8) 197Au 520.746(6) 0.19(8) 0.0029(12) 197Au 831.470(5) 0.153(19) 0.0024(3) 197Au 522.351(4) 0.096(12) 0.00148(18) 197Au 833.906(6) 0.104(16) 0.00160(25) 197Au 524.752(3) 0.27(8) 0.0042(12) 197Au 836.432(3) 0.76(3) 0.0117(5) 197Au 525.1340(20) 0.35(4) 0.0054(6) 197Au 838.156(5) 0.13(3) 0.0020(5) 197Au 529.954(4) 0.39(5) 0.0060(8) 197Au 839.516(5) 0.73(20) 0.011(3) 197Au 540.3010(20) 0.49(23) 0.008(4) 197Au 854.178(6) 0.093(18) 0.0014(3) 197Au 544.008(5) 0.52(5) 0.0080(8) 197Au 854.650(4) 0.148(25) 0.0023(4) 197Au 542.3670(20) 0.104(14) 0.00160(22) 197Au 854.650(4) 0.148(25) 0.0023(4) 197Au 552.467(3) 0.104(14) 0.00160(22) 197Au 868.771(4) 0.364(15) 0.00560(23) 197Au 565.784(5) 0.38(5) 0.005(8) 197Au 885.638(6) 0.17(3) 0.0015(3) 197Au 565.810(3) 0.43(6) 0.006(8) 197Au 885.638(6) 0.17(3) 0.0026(5) 197Au 573.388(13) 0.126(17) 0.0019(3) 197Au 888.613(6) 0.21(5) 0.0032(8) 197Au 573.388(13) 0.126(17) 0.0019(3) 197Au 891.613(3) 0.096(23) 0.0015(4) 197Au 573.388(13) 0.126(17) 0.0019(3) 197Au 891.613(3) 0.096(23) 0.0015(4) 197Au 573.388(13) 0.126(17) 0.0019(3) 197Au 991.436(6) 0.38(6) 0.0058(9) 197Au 573.388(13) 0.126(17) 0.0019(3) 197Au 991.436(6) 0.036(6) 0.0046(9) 197Au 573.386(14) 0.036(6) 0.0046(9) 197Au 574.381(3) 0.006(4) 0.0046(9) 197Au 574.381(3) 0.06(6) 0.0046(9) 197Au 574.	¹⁹⁷ Au 510.427(6)			¹⁸ 'Au 801.7050(20)	0.19(4)	
197 Au 512.5790(20) 0.16(6) 0.0025(9) 197 Au 815.954(7) 0.104(20) 0.0016(3) 197 Au 515.132(6) 0.104(14) 0.00160(22) 197 Au 825.4783(4) 0.31(5) 0.0048(8) 197 Au 520.746(6) 0.19(8) 0.0029(12) 197 Au 831.470(5) 0.153(19) 0.0024(3) 197 Au 522.351(4) 0.096(12) 0.00148(18) 197 Au 833.906(6) 0.104(16) 0.00160(25) 197 Au 524.752(3) 0.27(8) 0.0042(12) 197 Au 834.432(3) 0.76(3) 0.0117(5) 197 Au 525.1340(20) 0.35(4) 0.0054(6) 197 Au 838.156(5) 0.13(3) 0.0020(5) 197 Au 529.1650(20) 1.9(10) 0.029(15) 197 Au 839.516(5) 0.73(20) 0.011(3) 197 Au 529.954(4) 0.39(5) 0.0060(8) 197 Au 839.516(5) 0.73(20) 0.011(3) 197 Au 540.3010(20) 0.49(23) 0.008(4) 197 Au 846.216(7) 0.104(24) 0.0016(4) 197 Au 544.08(5) 0.52(5) 0.0080(8) 197 Au 839.516(5) 0.13(3) 0.0023(4) 197 Au 544.08(5) 0.52(5) 0.0080(8) 197 Au 884.650(4) 0.148(25) 0.0023(4) 197 Au 544.08(5) 0.52(5) 0.0080(8) 197 Au 863.082(6) 0.148(25) 0.0023(4) 197 Au 548.9350(20) 0.67(9) 0.0103(14) 197 Au 863.082(6) 0.148(25) 0.0023(4) 197 Au 555.6890(20) 0.126(17) 0.0016(0(22) 197 Au 872.827(4) 0.096(18) 0.0015(3) 197 Au 565.784(5) 0.38(5) 0.0058(8) 197 Au 885.638(6) 0.17(3) 0.0023(8) 197 Au 573.388(13) 0.50(7) 0.0077(11) 197 Au 885.638(6) 0.17(3) 0.0023(5) 197 Au 573.388(13) 0.126(17) 0.0018(2) 197 Au 885.638(6) 0.17(3) 0.0023(6) 197 Au 573.388(13) 0.126(17) 0.0018(2) 197 Au 885.638(6) 0.15(3) 0.0023(5) 197 Au 573.388(13) 0.126(17) 0.0018(2) 197 Au 988.612(4) 0.15(3) 0.0023(5) 197 Au 573.388(13) 0.126(17) 0.00148(22) 197 Au 988.612(4) 0.15(3) 0.0023(5) 197 Au 573.388(13) 0.126(17) 0.00148(22) 197 Au 913.776(4) 0.30(6) 0.0048(9) 197 Au 573.386(4) 0.148(20) 0.0051(6) 197 Au 913.776(4) 0.30(6) 0.0048(9) 197 Au 574.370(5) 0.148(20) 0.0023(3) 197 Au 916.435(6) 0.25(4) 0.0038(6) 197 Au 574.370(5) 0.148(20) 0.0051(6) 197 Au 927.421(4) 0.31(12) 0.0048(18) 197 Au 574.370(5) 0.148(20) 0.0055(8) 197 Au 933.998(6) 0.126(22) 0.0019(3) 197 Au 574.370(5) 0.148(14) 0.00160(22) 197 Au 933.998(6) 0.126(2	197 Au 511.067(6)			197 Au 806.248(8)		
197 Au 515.132(6)	197 Au 511.5170(20)			197 Au 815 954(7)		
197 Au 516.0620(10) 0.35(5) 0.0054(8) 197 Au 831.470(5) 0.153(19) 0.0024(3) 197 Au 522.351(4) 0.096(12) 0.00148(18) 197 Au 833.906(6) 0.104(16) 0.00160(25) 197 Au 524.752(3) 0.27(8) 0.0042(12) 197 Au 836.432(3) 0.76(3) 0.0117(5) 197 Au 525.1340(20) 0.35(4) 0.0054(6) 197 Au 838.156(5) 0.13(3) 0.0020(5) 197 Au 529.1650(20) 1.9(10) 0.029(15) 197 Au 839.516(5) 0.73(20) 0.011(3) 197 Au 529.954(4) 0.39(5) 0.0060(8) 197 Au 846.216(7) 0.104(24) 0.0016(4) 197 Au 540.3010(20) 0.49(23) 0.008(4) 197 Au 854.178(6) 0.093(18) 0.0014(3) 197 Au 544.3670(20) 0.104(14) 0.00160(22) 197 Au 854.650(4) 0.148(25) 0.0023(4) 197 Au 548.9350(20) 0.67(9) 0.0103(14) 197 Au 868.771(4) 0.364(15) 0.00560(23) 197 Au 552.467(3) 0.104(14) 0.00160(22) 197 Au 872.827(4) 0.096(18) 0.0015(3) 197 Au 555.6890(20) 0.126(17) 0.0019(3) 197 Au 872.827(4) 0.096(18) 0.0015(3) 197 Au 565.784(5) 0.38(5) 0.0068(8) 197 Au 881.6308(6) 0.17(3) 0.0026(5) 197 Au 573.388(13) 0.126(17) 0.0019(3) 197 Au 891.613(3) 0.096(23) 0.0015(4) 197 Au 573.388(13) 0.126(17) 0.0019(3) 197 Au 992.478(6) 0.38(6) 0.0058(9) 197 Au 573.388(13) 0.126(17) 0.0019(3) 197 Au 992.478(6) 0.38(6) 0.0058(9) 197 Au 573.3960(4) 0.33(4) 0.0051(6) 197 Au 992.478(6) 0.38(6) 0.0058(9) 197 Au 573.3960(4) 0.33(4) 0.0051(6) 197 Au 992.478(6) 0.38(6) 0.0046(9) 197 Au 574.370(5) 0.148(20) 0.0023(3) 197 Au 992.478(6) 0.38(6) 0.0048(18) 197 Au 574.370(5) 0.148(20) 0.0055(8) 197 Au 992.478(6) 0.38(6) 0.0048(18) 197 Au 574.370(5) 0.148(20) 0.0055(8) 197 Au 992.478(6) 0.25(4) 0.0038(6) 197 Au 574.370(5) 0.148(20) 0.0055(8) 197 Au 992.478(6) 0.25(4) 0.0048(18) 197 Au 574.370(5) 0.148(20) 0.0055(8) 197 Au 992.478(6) 0.25(4) 0.0048(18) 197 Au 574.370(5) 0.148(20) 0.0055(8) 197 Au 992.478(6) 0.25(4) 0.0018(8) 197 Au 574.370(5) 0.104(14)	¹³′ Au 515.132(6)	0.104(14)		¹⁹ 'Au 822.572(5)		
197 Au 522.351(4)	¹⁹ 'Au 516 0620(10)	0.35(5)	0.0054(8)	¹⁹ ' Au 825 483(4)		
197 Au 524.752(3)	¹⁹⁷ Au 520.746(6)			¹⁹⁷ Au 831.470(5)		
197 Au 525.1340(20) 0.35(4) 0.0054(6) 197 Au 838.156(5) 0.73(20) 0.011(3) 197 Au 529.954(4) 0.39(5) 0.0060(8) 197 Au 846.216(7) 0.104(24) 0.0016(4) 197 Au 540.3010(20) 0.49(23) 0.008(4) 197 Au 542.3670(20) 0.104(14) 0.00160(22) 197 Au 854.650(4) 0.148(25) 0.0023(4) 197 Au 548.9350(20) 0.67(9) 0.0103(14) 197 Au 868.771(4) 0.364(15) 0.00560(23) 197 Au 548.9350(20) 0.126(17) 0.00160(22) 197 Au 872.827(4) 0.096(18) 0.0015(3) 197 Au 555.6890(20) 0.126(17) 0.0019(3) 197 Au 885.638(6) 0.17(3) 0.0026(5) 197 Au 565.784(5) 0.38(5) 0.0058(8) 197 Au 885.638(6) 0.17(3) 0.0026(5) 197 Au 573.388(13) 0.50(7) 0.0077(11) 197 Au 898.612(4) 0.15(3) 0.0023(5) 197 Au 573.388(13) 0.126(17) 0.0019(3) 197 Au 902.478(6) 0.38(6) 0.0058(9) 197 Au 573.746(6) 0.096(14) 0.00148(22) 197 Au 913.776(4) 0.30(6) 0.0058(9) 197 Au 573.960(4) 0.33(4) 0.005(5) 197 Au 573.960(4) 0.33(4) 0.005(6) 197 Au 574.370(5) 0.148(20) 0.0023(3) 197 Au 574.370(5) 0.148(20) 0.0055(8) 197 Au 574.370(5) 0.148(20) 0.0055(8) 197 Au 574.370(5) 0.148(20) 0.0055(8) 197 Au 574.574.733(10) 0.004(14) 0.00160(22) 197 Au 573.986(6) 0.126(22) 0.0019(3) 197 Au 574.574.733(10) 0.004(14) 0.00160(22) 197 Au 573.986(6) 0.126(22) 0.0019(3) 197 Au 574.574.733(10) 0.004(14) 0.00160(22) 197 Au 574.370(5) 0.148(20) 0.0055(8) 197 Au 574.370(5) 0.148(20) 0.0055(8) 197 Au 574.370(5) 0.148(20) 0.0055(8) 197 Au 574.370(5) 0.104(14) 0.00160(22) 197 Au 574.370(6) 0.0019(3) 0.0019(3) 197 Au 574.574.733(10) 0.004(14) 0.00160(22)	197 Δυ 524.752(3)			¹⁹⁷ Δμ 836 432(3)		/
197 Au 529.1650(20) 1.9(10) 0.029(15) 197 Au 839.516(5) 0.73(20) 0.011(3) 0.096(13) 197 Au 540.3010(20) 0.49(23) 0.008(4) 197 Au 542.3670(20) 0.104(14) 0.00160(22) 197 Au 854.650(4) 0.148(25) 0.0023(4) 197 Au 544.008(5) 0.52(5) 0.0080(8) 197 Au 854.89350(20) 0.67(9) 0.0103(14) 197 Au 868.771(4) 0.364(15) 0.00560(23) 197 Au 552.467(3) 0.104(14) 0.00160(22) 197 Au 872.827(4) 0.096(18) 0.0015(3) 197 Au 555.6890(20) 0.126(17) 0.0019(3) 197 Au 885.638(6) 0.17(3) 0.0026(5) 197 Au 565.784(5) 0.38(5) 0.0058(8) 197 Au 885.638(6) 0.17(3) 0.0026(5) 197 Au 571.683(3) 0.50(7) 0.0077(11) 197 Au 891.613(3) 0.096(23) 0.0015(4) 197 Au 573.388(13) 0.126(17) 0.0019(3) 197 Au 898.612(4) 0.15(3) 0.0023(5) 197 Au 573.388(13) 0.126(17) 0.0019(3) 197 Au 898.612(4) 0.15(3) 0.0023(5) 197 Au 573.388(13) 0.126(17) 0.0019(3) 197 Au 902.478(6) 0.38(6) 0.0058(9) 197 Au 573.386(4) 0.33(4) 0.0051(6) 197 Au 573.3960(4) 0.33(4) 0.0051(6) 197 Au 573.960(4) 0.33(4) 0.0051(6) 197 Au 574.370(5) 0.148(20) 0.0023(3) 197 Au 913.776(4) 0.30(6) 0.0046(9) 197 Au 574.370(5) 0.148(20) 0.0023(3) 197 Au 927.421(4) 0.31(12) 0.0048(18) 197 Au 574.733(10) 0.104(14) 0.00160(22) 197 Au 928.995(6) 0.126(22) 0.0019(3) 197 Au 574.733(10) 0.104(14) 0.00160(22) 197 Au 933.928(6) 0.47(14) 0.0072(22)	187 Au 525 1340(20)			¹³′ Au 838 156(5)		
197 Au 529.954(4)	19' Au 529.1650(20)			187 Au 839,516(5)	0.73(20)	
197 Au 542.3670(20)	18' Au 529,954(4)			¹⁹ ' Au 846.216(7)		
197 Au 544.008(5) 0.52(5) 0.0080(8) 197 Au 863.082(6) 0.148(25) 0.0023(4) 197 Au 548.9350(20) 0.67(9) 0.0103(14) 197 Au 868.771(4) 0.364(15) 0.00560(23) 197 Au 552.467(3) 0.104(14) 0.00160(22) 197 Au 872.827(4) 0.096(18) 0.0015(3) 197 Au 555.6890(20) 0.126(17) 0.0019(3) 197 Au 877.308(4) 0.21(5) 0.0032(8) 197 Au 565.784(5) 0.38(5) 0.0058(8) 197 Au 885.638(6) 0.17(3) 0.0026(5) 197 Au 565.810(3) 0.43(6) 0.0066(9) 197 Au 891.613(3) 0.096(23) 0.0015(4) 197 Au 571.683(3) 0.50(7) 0.0077(11) 197 Au 898.612(4) 0.15(3) 0.0023(5) 197 Au 573.388(13) 0.126(17) 0.0019(3) 197 Au 902.478(6) 0.38(6) 0.0058(9) 197 Au 573.746(6) 0.096(14) 0.00148(22) 197 Au 913.776(4) 0.30(6) 0.0046(9) 197 Au 573.960(4) 0.33(4) 0.0051(6) 197 Au 916.435(6) 0.25(4) 0.0038(6) 197 Au 574.370(5) 0.148(20) 0.0023(3) 197 Au 927.421(4) 0.31(12) 0.0048(18) 197 Au 574.381(3) 0.36(5) 0.0055(8) 197 Au 928.995(6) 0.126(22) 0.0019(3) 197 Au 574.733(10) 0.104(14) 0.00160(22) 197 Au 933.928(6) 0.47(14) 0.0072(22)	197 Au 540.3010(20)			197 Au 854.178(6)		
197 Au 548,9350(20) 0.67(9) 0.0103(14) 197 Au 868.771(4) 0.364(15) 0.00560(23) 197 Au 552,467(3) 0.104(14) 0.00160(22) 197 Au 872.827(4) 0.096(18) 0.0015(3) 197 Au 555.6890(20) 0.126(17) 0.0019(3) 197 Au 877.308(4) 0.21(5) 0.0032(8) 197 Au 565.784(5) 0.38(5) 0.0058(8) 197 Au 885.638(6) 0.17(3) 0.0026(5) 197 Au 565.810(3) 0.43(6) 0.0066(9) 197 Au 891.613(3) 0.096(23) 0.0015(4) 198 Au 571.683(3) 0.50(7) 0.0077(11) 197 Au 898.612(4) 0.15(3) 0.0023(5) 197 Au 573.388(13) 0.126(17) 0.0019(3) 197 Au 902.478(6) 0.38(6) 0.0058(9) 197 Au 573.746(6) 0.096(14) 0.00148(22) 197 Au 913.776(4) 0.30(6) 0.0046(9) 197 Au 573.960(4) 0.33(4) 0.0051(6) 197 Au 927.421(4) 0.31(12) 0.0048(18) 197 Au 574.370(5) 0.148(20) 0.0055(8) 197 Au 928.995(6) 0.126(22) 0.0019(3) 197 Au 574.381(3) 0.36(5)	197 Au 542.3670(20)			197 Δτ. 863 082(6)		
197 Au 552.467(3) 0.104(14) 0.00160(22) 197 Au 872.827(4) 0.096(18) 0.0015(3) 197 Au 555.6890(20) 0.126(17) 0.0019(3) 197 Au 877.308(4) 0.21(5) 0.0032(8) 197 Au 565.784(5) 0.38(5) 0.0058(8) 197 Au 885.638(6) 0.17(3) 0.0026(5) 197 Au 565.810(3) 0.43(6) 0.0066(9) 197 Au 891.613(3) 0.096(23) 0.0015(4) 197 Au 573.388(13) 0.126(17) 0.0077(11) 197 Au 898.612(4) 0.15(3) 0.0023(5) 197 Au 573.388(13) 0.126(17) 0.0019(3) 197 Au 902.478(6) 0.38(6) 0.0058(9) 197 Au 573.746(6) 0.096(14) 0.00148(22) 197 Au 913.776(4) 0.30(6) 0.0046(9) 197 Au 574.370(5) 0.148(20) 0.0023(3) 197 Au 916.435(6) 0.25(4) 0.0048(18) 197 Au 574.381(3) 0.36(5) 0.0055(8) 197 Au 927.421(4) 0.31(12) <td< td=""><td>18' Au 548 9350(20)</td><td></td><td></td><td>¹⁹'Au 868.771(4)</td><td></td><td></td></td<>	18' Au 548 9350(20)			¹⁹ 'Au 868.771(4)		
197 Au 555.6890(20) 0.126(17) 0.0019(3) 197 Au 877.308(4) 0.21(5) 0.0032(8) 197 Au 565.784(5) 0.38(5) 0.0058(8) 197 Au 885.638(6) 0.17(3) 0.0026(5) 197 Au 565.810(3) 0.43(6) 0.0066(9) 197 Au 891.613(3) 0.096(23) 0.0015(4) 197 Au 573.388(13) 0.126(17) 0.0077(11) 197 Au 898.612(4) 0.15(3) 0.0023(5) 197 Au 573.388(13) 0.126(17) 0.0019(3) 197 Au 902.478(6) 0.38(6) 0.0058(9) 197 Au 573.746(6) 0.096(14) 0.00148(22) 197 Au 913.776(4) 0.30(6) 0.0046(9) 197 Au 574.370(5) 0.148(20) 0.0023(3) 197 Au 916.435(6) 0.25(4) 0.0048(18) 197 Au 574.381(3) 0.36(5) 0.0055(8) 197 Au 928.995(6) 0.126(22) 0.0019(3) 197 Au 574.733(10) 0.104(14) 0.00160(22) 197 Au 933.928(6) 0.47(14) <t< td=""><td>¹⁹'Au 552.467(3)</td><td>0.104(14)</td><td>0.00160(22)</td><td>¹⁸'Au 872.827(4)</td><td>0.096(18)</td><td>0.0015(3)</td></t<>	¹⁹ 'Au 552.467(3)	0.104(14)	0.00160(22)	¹⁸ 'Au 872.827(4)	0.096(18)	0.0015(3)
197 Au 565.810(3) 0.43(6) 0.0066(9) 197 Au 891.613(3) 0.096(23) 0.0015(4) 0.0073(5) 197 Au 573.388(13) 0.126(17) 0.0019(3) 197 Au 902.478(6) 0.38(6) 0.0058(9) 197 Au 573.746(6) 0.096(14) 0.00148(22) 197 Au 913.776(4) 0.30(6) 0.0046(9) 197 Au 573.960(4) 0.33(4) 0.0051(6) 197 Au 916.435(6) 0.25(4) 0.0038(6) 197 Au 574.370(5) 0.148(20) 0.0023(3) 197 Au 927.421(4) 0.31(12) 0.0048(18) 197 Au 574.381(3) 0.36(5) 0.0055(8) 197 Au 928.995(6) 0.126(22) 0.0019(3) 197 Au 574.733(10) 0.104(14) 0.00160(22) 197 Au 933.928(6) 0.47(14) 0.0072(22)	¹⁹ 'Au 555 6890(20)			¹⁹ ' Au 877 308(4)		
197 Au 571.683(3) 0.50(7) 0.0077(11) 197 Au 898.612(4) 0.15(3) 0.0023(5) 197 Au 573.388(13) 0.126(17) 0.0019(3) 197 Au 902.478(6) 0.38(6) 0.0058(9) 197 Au 573.746(6) 0.096(14) 0.00148(22) 197 Au 913.776(4) 0.30(6) 0.0046(9) 197 Au 573.960(4) 0.33(4) 0.0051(6) 197 Au 916.435(6) 0.25(4) 0.0038(6) 197 Au 574.370(5) 0.148(20) 0.0023(3) 197 Au 927.421(4) 0.31(12) 0.0048(18) 197 Au 574.381(3) 0.36(5) 0.0055(8) 197 Au 928.995(6) 0.126(22) 0.0019(3) 197 Au 574.733(10) 0.104(14) 0.00160(22) 197 Au 933.928(6) 0.47(14) 0.0072(22)	Au 565.784(5)			Au 883.838(b) 197 _{Au 8} 91.613(3)		
197 Au 573.388(13) 0.126(17) 0.0019(3) 197 Au 902.478(6) 0.38(6) 0.0058(9) 197 Au 573.746(6) 0.096(14) 0.00148(22) 197 Au 913.776(4) 0.30(6) 0.0046(9) 197 Au 573.960(4) 0.33(4) 0.0051(6) 197 Au 916.435(6) 0.25(4) 0.0038(6) 197 Au 574.370(5) 0.148(20) 0.0023(3) 197 Au 927.421(4) 0.31(12) 0.0048(18) 197 Au 574.381(3) 0.36(5) 0.0055(8) 197 Au 928.995(6) 0.126(22) 0.0019(3) 197 Au 574.733(10) 0.104(14) 0.00160(22) 197 Au 933.928(6) 0.47(14) 0.0072(22)	¹³′Au 571.683(3)		0.0077(11)	¹⁸ ' Au 898.612(4)		
197 Au 573.746(6) 0.096(14) 0.00148(22) 197 Au 913.776(4) 0.30(6) 0.0046(9) 197 Au 573.960(4) 0.33(4) 0.0051(6) 197 Au 916.435(6) 0.25(4) 0.0038(6) 197 Au 574.370(5) 0.148(20) 0.0023(3) 197 Au 927.421(4) 0.31(12) 0.0048(18) 197 Au 574.381(3) 0.36(5) 0.0055(8) 197 Au 928.995(6) 0.126(22) 0.0019(3) 197 Au 574.733(10) 0.104(14) 0.00160(22) 197 Au 933.928(6) 0.47(14) 0.0072(22)	¹⁹ 'Au 573.388(13)		0.0019(3)	¹⁹ 'Au 902.478(6)		
¹⁹⁷ Au 573.960(4) 0.33(4) 0.0051(6) ¹⁹⁷ Au 916.435(6) 0.25(4) 0.0038(6) ¹⁹⁷ Au 574.370(5) 0.148(20) 0.0023(3) ¹⁹⁷ Au 927.421(4) 0.31(12) 0.0048(18) ¹⁹⁷ Au 574.381(3) 0.36(5) 0.0055(8) ¹⁹⁷ Au 928.995(6) 0.126(22) 0.0019(3) ¹⁹⁷ Au 574.733(10) 0.104(14) 0.00160(22) ¹⁹⁷ Au 933.928(6) 0.47(14) 0.0072(22)	¹⁹ ' Au 573 746(6)	0.096(14)	0.00148(22)	¹⁹ 'Au 913.776(4)	0.30(6)	
¹⁹⁷ Au 574.381(3)	197 Au 573.960(4)	0.33(4)		197 Au 916.435(6)		
¹⁹⁷ Au 574,733(10) 0.104(14) 0.00160(22) ¹⁹⁷ Au 933,928(6) 0.47(14) 0.0072(22)	¹⁹⁷ Au 574.381(3)			197 Au 927.421(4)		
¹⁹⁷ Au 577.3020(20) 0.27(3) 0.0042(5) ¹⁹⁷ Au 946.453(5) 0.096(13) 0.00148(20)	¹⁹⁷ Au 574.733(10)	0.104(14)	0.00160(22)	¹⁹ 'Au 933.928(6)	0.47(14)	
	¹⁹⁷ Au 577.3020(20)	0.27(3)		¹⁹⁷ Au 946.453(5)	0.096(13)	0.00148(20)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

	-	-	Thermal Neutron C	-	
Eγ-keV	σ(Εγ)-barns	k _o	Eγ-keV	σ(Εγ)-barns	k _o
Gold (Z=79), continu		0.0040(0)	Gold (Z=79), contin		0.0000(4.4)
¹⁹⁷ Au 947.971(6) ¹⁹⁷ Au 952.503(7)	0.32(4) 0.19(3)	0.0049(6) 0.0029(5)	¹⁹⁷ Au 1554.420(5) ¹⁹⁷ Au 4951.85(10)	0.25(9)	0.0038(14)
197 Au 971.8180(20)	0.13(4)	0.0029(5)	¹⁹⁷ Au 4957.83(10)	0.156(16) 0.63(11)	0.00240(25) 0.0097(17)
¹⁹ ' Au 978 936(8)	0.141(20)	0.0022(3)	¹³ ' Au 4975.87(10)	0.161(16)	0.00248(25)
187 Au 983 082(7)	0.096(14)	0.00148(22)	¹⁸ ' Att 4981 55(10)	0.09(3)	0.0014(5)
¹⁹ ' Au 985 002(6)	0.104(25)	0.0016(4)	¹⁹ ' Au 4998 68(10)	0.31(4)	0.0048(6)
¹⁹⁷ Au 993.654(6)	0.21(5)	0.0032(8)	¹⁹⁷ Au 5007.08(10)	0.113(15)	0.00174(23)
¹⁹⁷ Au 999.682(4) ¹⁹⁷ Au 1000.447(4)	0.23(3) 0.104(22)	0.0035(5) 0.0016(3)	¹⁹⁷ Au 5025.11(10) ¹⁹⁷ Au 5036.63(10)	0.113(16) 0.18(7)	0.00174(25) 0.0028(11)
131 Att 1005 487(6)	0.133(24)	0.0020(4)	'°' Au 5040 15(10)	0.18(7)	0.0028(11)
¹⁹ 'Au 1006 100(3)	0.096(15)	0.00148(23)	187 Att 5080 60(10)	0.152(15)	0.00234(23)
'°' Au 1018 136(6)	0.11(3)	0.0017(5)	13' Au 5088 46(10)	0.50(8)	0.0077(12)
¹⁹⁷ Au 1018.426(4) ¹⁹⁷ Au 1028.199(5)	0.18(3)	0.0028(5)	¹⁹⁷ Au 5102.85(10) ¹⁹⁷ Au 5110.17(10)	0.87(13)	0.0134(20)
197 Au 1028.564(6)	0.10(3) 0.46(7)	0.0015(5) 0.0071(11)	' ³ ' Au 5116 11(10)	0.156(11) 0.161(13)	0.00240(17) 0.00248(20)
¹⁸ Au 1038 274(3)	0.184(14)	0.00283(22)	¹⁸ ' Au 5140 74(10)	0.395(18)	0.0061(3)
187 Au 1046 323(7)	0.111(16)	0.00171(25)	187 Att 5148 90(10)	0.46(8)	0.0071(12)
¹⁹ ' Au 1047 121(6)	0.155(20)	0.0024(3)	¹⁸ ' Au 5153 21(10)	0.119(14)	0.00183(22)
¹⁹⁷ Au 1047.847(5) ¹⁹⁷ Au 1049.231(6)	0.096(14) 0.104(17)	0.00148(22)	¹⁹⁷ Au 5174.08(10) ¹⁹⁷ Au 5205.39(10)	0.334(16)	0.00514(25)
¹⁹ 'Au 1050 701(5)	0.104(17)	0.0016(3) 0.0043(8)	'°' Au 5218 35(10)	0.16(6) 0.272(20)	0.0025(9) 0.0042(3)
¹⁸ Au 1054 055(5)	0.16(3)	0.0025(5)	'°' Au 5225 49(10)	0.42(9)	0.0065(14)
13' Au 1060 888(7)	0.19(3)	0.0029(5)	187 Au 5246 72(10)	0.51(20)	0.008(3)
¹⁹ Au 1064 436(8)	0.096(13)	0.00148(20)	¹⁹ ' Au 5271 86(10)	0.38(20)	0.006(3)
¹⁹⁷ Au 1064.998(7) ¹⁹⁷ Au 1076.761(5)	0.15(4) 0.111(21)	0.0023(6) 0.0017(3)	¹⁹⁷ Au 5279.44(10) ¹⁹⁷ Au 5302.86(10)	0.524(20)	0.0081(3)
' ³ ' Au 1079 197(5)	0.111(21)	0.0017(3)	'°' Au 5355 00(10)	0.19(10) 0.401(16)	0.0029(15) 0.00617(25)
'°' Au 1081 54(4)	0.096(25)	0.0015(4)	13' Au 5473 96(10)	0.21(6)	0.0032(9)
¹⁹ Au 1085 605(5)	0.19(3)	0.0029(5)	137 Att 5493 81(10)	0.42(10)	0.0065(15)
13' Au 11()1 942(4)	0.170(23)	0.0026(4)	¹⁸ ' Au 5524 66(10)	0.80(14)	0.0123(22)
¹⁹⁷ Au 1106.951(5) ¹⁹⁷ Au 1107.562(9)	0.19(4) 0.52(10)	0.0029(6) 0.0080(15)	¹⁹⁷ Au 5540.41(10) ¹⁹⁷ Au 5620.62(10)	0.17(6) 0.34(9)	0.0026(9) 0.0052(14)
197 Au 1109 196(4)	0.49(10)	0.0075(15)	19" Att 5710 52(10)	1.27(17)	0.0032(14)
¹³ ' Au 1111 461(7)	0.37(6)	0.0057(9)	¹⁸ ' Au 5722 94(10)	0.55(16)	0.0085(25)
18' Au 1114 585(6)	0.178(24)	0.0027(4)	¹⁹ ' Au 5767 01(10)	0.09(3)	0.0014(5)
¹⁹⁷ Au 1128.417(6) ¹⁹⁷ Au 1132.895(8)	0.141(19)	0.0022(3)	¹⁹⁷ Au 5808.50(10)	0.24(9)	0.0037(14)
197 Au 1148.562(6)	0.25(5) 0.27(4)	0.0038(8) 0.0042(6)	¹⁹⁷ Au 5839.57(10) ¹⁹⁷ Au 5879.74(10)	0.16(8) 0.30(8)	0.0025(12) 0.0046(12)
¹³′Au 1150.671(9)	0.25(4)	0.0038(6)			
¹⁸ Au 1157 2330(20)	0.13(4)	0.0020(6)	Mercury (Z=80), At.		
¹³ ' Au 1179 882(7)	0.12(5)	0.0018(8)	¹⁹⁶ Hg <i>133.98(5)d</i> ¹⁹⁶ Hg <i>308.07(11)</i>	0.0155(4) 0.79(7)	2.34×10 ⁻⁴ [1.4%] 0.0119(11)
¹⁹⁷ Au 1183.796(6) ¹⁹⁷ Au 1187.936(4)	0.32(5) 0.15(4)	0.0049(8)	¹⁹⁹ Hg 367.947(9)	251(5)	3.79(8)
¹⁹⁷ Au 1189.904(10)	0.10(3)	0.0023(6) 0.0015(5)	²⁰ 'Ha <i>4</i> 39.50(8)	0.52(7)	0.0079(11)
¹⁸⁷ Δ11 1195 597(6)	0.148(22)	0.0023(3)	¹⁹⁹ Ha 540 927(7)	2.75(9)	0.0415(14)
¹⁹⁷ Au 1200.827(8) ¹⁹⁷ Au 1210.691(4)	0.104(16)	0.00160(25)	133Ha 579 295(11)	7.64(23)	0.115(4)
¹⁹⁷ Au 1210.691(4)	0.20(3)	0.0031(5)	¹⁹⁹ Hg 661.403(11) ¹⁹⁹ Hg 688.953(7)	22.3(5) 2.83(11)	0.337(8) 0.0428(17)
¹⁹⁷ Au 1216.453(5) ¹⁹⁷ Au 1225.938(6)	0.21(3) 0.27(4)	0.0032(5) 0.0042(6)	""Ha 851.30(5)	2.69(9)	0.0426(17)
¹⁸ Au 1239 572(5)	0.49(8)	0.0075(12)	¹⁹⁹ Ha 886,153(10)	13.5(11)	0.204(17)
¹⁸ Au 1252 166(9)	0.126(23)	0.0019(4)	¹³³ Ha 1147,222(11)	7.79(23)	0.118(4)
'°' Au 1272 140(5)	0.096(16)	0.00148(25)	¹⁹⁹ Hg 1202.328(10) ¹⁹⁹ Hg 1205.717(11)	12.0(3)	0.181(5)
¹⁹⁷ Au 1274.975(5) ¹⁹⁷ Au 1281.377(7)	0.26(4)	0.0040(6)	¹⁹⁹ Hg 1225.476(11)	13.5(5) 12.3(3)	0.204(8) 0.186(5)
¹³ ' Au 1283 442(7)	0.49(12) 0.35(11)	0.0075(18) 0.0054(17)	¹³³ Ha 1254,099(12)	7.56(23)	0.114(4)
13' Au 1297 124(6)	0.43(10)	0.0066(15)	¹⁹⁹ Ha 1262.941(11)	21.5(5)	0.325(8)
¹⁹ ' Au 1301 041(6)	0.15(6)	0.0023(9)	¹³³ Ha 1273,497(10)	10.6(3)	0.160(5)
137 Au 1304 825(5)	0.25(5)	0.0038(8)	¹⁹⁹ Hg 1350.354(10) ¹⁹⁹ Hg 1362.971(10)	4.10(16) 5.93(19)	0.0619(24) 0.090(3)
¹⁹⁷ Au 1306.851(5) ¹⁹⁷ Au 1308.164(4)	0.70(9) 0.118(25)	0.0108(14)	¹⁹⁹ Ha 1407.942(20)	9.53(23)	0.144(4)
¹⁸ ' Au 1316 318(5)	0.21(4)	0.0018(4) 0.0032(6)	¹⁹⁹ Ha 1467.92(5)	3.31(13)	0.0500(20)
137 Au 1324 356(14)	0.19(3)	0.0029(5)	¹⁹⁹ Ha 1488.825(11)	2.92(14)	0.0441(21)
'°' Au 1335 515(12)	0.16(4)	0.0025(6)	¹⁹⁹ Hg 1514.903(10)	2.68(13)	0.0405(20)
'°' Au 1338 164(5)	0.118(22)	0.0018(3)	¹⁹⁹ Hg 1557.65(9) ¹⁹⁹ Hg 1557.94(4)	2.6(8) 2.87(14)	0.039(12) 0.0434(21)
¹⁹⁷ Au 1344.153(6) ¹⁹⁷ Au 1361.477(5)	0.16(3)	0.0025(5)	¹³³ Ha 1570.273(12)	29.6(7)	0.447(11)
¹⁸ Au 1363 345(4)	0.27(4) 0.26(4)	0.0042(6) 0.0040(6)	¹⁹⁹ Ha 1604.322(11)	4.07(17)	0.061(3)
1379 390(6)	0.141(22)	0.0022(3)	¹⁹⁹ Ha 1693.296(11)	56.2(16)	0.849(24)
¹⁹ ' Au 1396 133(6)	0.141(22)	0.0022(3)	¹³³ Ha 1718,299(12)	8.47(23)	0.128(4)
¹³ ' Au 1431 641(6)	0.15(4)	0.0023(6)	¹⁹⁹ Hg 1758.97(6) ¹⁹⁹ Hg 2002.083(13)	3.33(14) 24.3(9)	0.0503(21) 0.367(14)
¹⁹⁷ Au 1431.949(4) ¹⁹⁷ Au 1445.373(5)	0.23(4) 0.14(3)	0.0035(6) 0.0022(5)	¹⁹⁹ Ha 2271.90(3)	6.05(23)	0.091(4)
¹⁸ ' Au 1487.130(4)	0.14(3)	0.0022(3)	¹⁹⁹ Ha 2296.310(23)	2.89(17)	0.044(3)
13' Au 1487 599(7)	0.20(4)	0.0031(6)	¹⁹⁹ Ha 2639.85(3)	11.6(3)	0.175(5)
¹⁹⁷ Au 1530.698(6)	0.30(5)	0.0046(8)	¹⁹⁹ Hg 2818.26(5)	3.42(16)	0.0517(24)

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

	- Eγ-keV	σ (Ε γ)-barns	k_0		Eγ-keV	σ (Ε γ)-barns	k _o
Merc	ury (Z=80), co	ntinued		Thalli	ium (Z=81), co	ntinued	
¹⁹⁹ Hg	2901.25(5)	4.63(19)	0.070(3)	²⁰³ TI	949.88(8)	0.0479(15)	0.000710(22)
199Ho	2920 90(4)	4.99(23)	0.075(4)	203TI	1013.27(9)	0.0217(12)	0.000322(18)
' JagHo	13186 21(5)	11.3(4)	0.171(6)	²⁰³ TI ²⁰³ TI	1063.00(9)	0.0185(10)	0.000274(15)
199⊔a	3216.63(9) 3269.19(5)	2.93(17) 3.96(18)	0.044(3) 0.060(3)	203 T ı	1093.02(8) 1110.37(8)	0.0353(12) 0.0413(12)	0.000523(18) 0.000612(18)
199Ha	3288.85(4)	13.3(4)	0.201(6)	203 T ı	1121.29(7)	0.0600(17)	0.000890(25)
, aaHu	ı 4373 37(8)	3.70(23)	0.056(4)	203 - 1	1134.01(9)	0.0133(7)	1.97(10)×10 ⁻⁴
199Ho	4575 36(6)	4.23(23)	0.064(4)	203 - 1	1155.43(7)	0.0605(17)	0.000897(25)
, aaHu	i 4675 44(9)	13.0(4)	0.196(6)	²⁰³ TI ²⁰³ TI	1234.69(7)	0.0746(25)	0.00111(4)
199⊔g	4739.43(5) 4759.09(6)	30.1(8) 12.4(4)	0.455(12) 0.187(6)	203 - 1	1706.20(16) 1741.01(8)	0.0091(15) 0.0548(25)	1.35(22)×10 ⁻⁴ 0.00081(4)
199Ha	4811.64(9)	3.70(23)	0.056(4)	203 T ı	1756.27(12)	0.0348(23)	0.00040(4)
, aaHu	1 4842 07(6)	20.0(6)	0.302(9)	203 - 1	4076.7(6)	0.0072(15)	1.07(22)×10 ⁻⁴
199Hd	14954.47(5)	4.01(23)	0.061(4)	203 - 1	4101.4(4)	0.0086(25)	1.3(4)×10 ⁻⁴
, aaHu	14974.98(7)	5.22(23)	0.079(4)	²⁰³ TI ²⁰³ TI	4115.08(17)	0.0222(17)	0.000329(25)
199µ	5050.07(5) 5388.43(5)	20.0(6)	0.302(9)	203 T ı	4195.98(14)	0.0373(22)	0.00055(3)
199Ho	5658.24(4)	17.5(5) 27.5(7)	0.264(8) 0.415(11)	203 T ı	4225.47(17) 4286.3(8)	0.045(3) 0.0057(15)	0.00067(4) 8.5(22)×10 ⁻⁵
, aaHu	5967.02(4)	62.5(15)	0.944(23)	203 - 1	4200 0Ò(24)	0.0210(22)	0.00031(3)
, aaHu	16309.96(4)	4.0(3)	0.060(5)	203 T ı	1212 EE(12)	0.034(3)	0.00050(4)
199Ha	ı 6397.37(4)	3.7(3)	0.056(5)	203 T I	4402.60(15)	0.0208(15)	0.000308(22)
	6457.98(4)	23.1(8)	0.349(12)	²⁰³ TI ²⁰³ TI	4439.3(3)	0.0094(15)	1.39(22)×10 ⁻⁴
Thall	ium (Z=81), <i>At</i>	:.Wt.=204.3833(2), σ _ν =3.44(6)	203 T ı	4495.74(13) 4540.62(15)	0.043(4) 0.0413(25)	0.00064(6) 0.00061(4)
²⁰³ TI	77.07(22)	0.011(5)	1.6 [′] (7)×10 ⁻⁴	203 T ı	4570.0(3)	0.0180(20)	0.00027(3)
203 T I	132 11(14)	0.0062(10)	9.2(15)×10 ⁻⁵	203 T ı	4600.95(16)	0.0292(22)	0.00043(3)
203 1	139.94(9) 145.88(10)	0.400(7)	0.00593(10)	203 T ı	4687.58(12)	0.098(4)	0.00145(6)
203TI	145.88(10)	0.0054(5) 0.0144(6)	8.0(7)×10 ⁻⁵ 2.14(9)×10 ⁻⁴	²⁰³ TI ²⁰³ TI	4705.83(14)	0.058(3)	0.00086(4)
203TI	154 01(9)	0.0926(17)	0.001373(25)	203 T ı	4715.3(4) 4752.24(11)	0.0131(20) 0.148(5)	1.9(3)×10 ⁻⁴ 0.00219(7)
203TI	157 32(10)	0.0061(5)	9.0(7)×10 ⁻⁵	203 T I	4804.4(4)	0.0138(20)	2.0(3)×10 ⁻⁴
203TI	171 88(9)	0.0109(5)	$1.62(7)\times10^{-4}$	203 T I	4841.40(15)	0.090(4)	0.00133(6)
203 1	178.78(11) 198.33(8)	0.0050(5)	7.4(7)×10 ⁻⁵	203 T ı	4867.5(6)	0.0074(20)	1.1(3)×10 ⁻⁴
205TI	265.86(9)	0.0408(10) 0.0210(7)	0.000605(15) 0.000311(10)	²⁰³ TI ²⁰³ TI	4913.57(11)	0.164(5)	0.00243(7)
203	284 81(12)	0.0052(5)	7.7(7)×10 ⁻⁵	203 T I	4980.97(20) 5014.61(15)	0.036(3) 0.058(3)	0.00053(4) 0.00086(4)
203TI	286 88(11)	0.0058(5)	8.6(7)×10 ⁻⁵	203 T ı	5130.50(23)	0.058(4)	0.00086(6)
203TI	292 26(8)	0.0983(20)	0.00146(3)	203 T I	5180.38(12)	0.141(5)	0.00209(7)
203 11	304.86(9) 310.31(9)	0.0225(12)	0.000334(18)	203 T I	5238.4(3)	0.0156(20)	2.3(3)×10 ⁻⁴
203TI	318.88(8)	0.0245(12) 0.325(6)	0.000363(18) 0.00482(9)	²⁰³ TI ²⁰³ TI	5261.48(13)	0.084(4)	0.00125(6)
203TI	325 85(8)	0.0301(10)	0.000446(15)	203 T I	5279.86(12) 5404.41(12)	0.207(6) 0.147(5)	0.00307(9) 0.00218(7)
203TI	330 09(9)	0.0267(10)	0.000396(15)	ZUSTI	5451.07(14)	0.079(3)	0.00210(7)
²⁰⁵ TI ²⁰³ TI	220 00/01	0.0267(10)	0.000396(15)	203 T I	5520.3(4)	0.0183(25)	0.00027(4)
203-	331.76(9)	0.0371(10)	0.000550(15)	203TI	5522 25/12\	0.131(5)	0.00194(7)
	336.96(10) 347.96(8)	0.0080(6) 0.361(10)	1.19(9)×10 ⁻⁴ 0.00535(15)	²⁰³ TI ²⁰³ TI	5603.28(13)	0.282(10)	0.00418(15)
205 T I	369.18(7)	0.016(3)	2.4(4)×10 ⁻⁴	200 TI	5641.57(12) 5852.5(5)	0.316(7) 0.0072(15)	0.00469(10) 1.07(22)×10 ⁻⁴
203 T ı	369.65(24)	0.0047(12)	7.0(18)×10 ⁻⁵	205 T I	5867.8(4)	0.0072(13)	1.35(25)×10 ⁻⁴
²⁰³ TI ²⁰³ TI	383.99(8)	0.0341(12)	0.000506(18)	203 TI	5890.2(4)	0.0067(17)	9.9(25)×10 ⁻⁵
²⁰³ TI	389.48(11)	0.0079(7)	1.17(10)×10 ⁻⁴	203TI	5917.48(16)	0.084(4)	0.00125(6)
203 T ı	44C 04/47\	0.0862(20) 0.0069(12)	0.00128(3) 1.02(18)×10 ⁻⁴	²⁰³ TI ²⁰³ TI	6025.21(24)	0.0222(25)	0.00033(4)
²⁰³ TI	418 27(11)	0.0141(12)	2.09(18)×10 ⁻⁴	203 T I	6118.79(23) 6166.61(14)	0.0232(20) 0.166(6)	0.00034(3) 0.00246(9)
203 T I	424 81(8)	0.1200(25)	0.00178(4)	203 T I	6183.05(15)	0.081(4)	0.00120(6)
∠∪3TI	471 90(8)	0.116(3)	0.00172(4)	205 T I	6197.8(4)	0.0109(17)	1.62(25)×10 ⁻⁴
²⁰³ TI	483.29(12)	0.0082(10)	1.22(15)×10 ⁻⁴	203TI	6222.57(16)	0.065(4)	0.00096(6)
203 T ı	100 26/21)	0.096(4) 0.008(3)	0.00142(6) 1.2(4)×10 ⁻⁴	²⁰³ TI ²⁰⁵ TI	6336.11(22)	0.0245(22)	0.00036(3)
203 T ı	562 21/Q\	0.0356(15)	0.000528(22)	²⁰³ TI	6504.3(6) 6514.57(15)	0.0040(10) 0.129(5)	5.9(15)×10 ⁻⁵ 0.00191(7)
203 ⊤ i	597 N1/1N\	0.0109(10)	1.62(15)×10 ⁻⁴	203 T I	6654.71(25)	0.0104(12)	1.54(18)×10 ⁻⁴
²⁰³ TI	591 13(9)	0.0225(10)	0.000334(15)		` '	` ,	
203TI	624.46(8)	0.0413(10)	0.000612(15)	20651	(Z=0Z), At. Wt.	=207.2(1), σ _γ =0 .	
203 T I	626.54(8) 629.12(8)	0.0388(10) 0.0388(10)	0.000575(15) 0.000575(15)	204ph	569.702d 6729.38(9)	0.0014(3) 0.00320(10)	2.0×10 ⁻⁵ [100%] 4.68(15)×10 ⁻⁵
203TI	649 30(15)	0.0366(10)	1.57(15)×10 ⁻⁴	²⁰⁰Pb	6737.62(10)	0.00320(10)	1.01(3)×10 ⁻⁴
203TI	678 01(8)	0.0361(15)	0.000535(22)	²⁰⁷ Pb	7367.78(7)	0.137(3)	0.00200(4)
∠∪3TI	714 86(24)	0.0074(12)	1.10(18)×10 ⁻⁴				(2), σ _ν =0.0338(7)
203TI	732 09(9)	0.064(3)	0.00095(4)	209 _{Q} ;	46.58(12)	0.00043(9)	$6.2(13)\times10^{-6}$
203TI	737.12(8) 764.13(9)	0.118(5) 0.0316(12)	0.00175(7) 0.000469(18)	²⁰⁹ Bi	63.59(5)	1.8(4)×10 ⁻⁴	2.6(6)×10 ⁻⁶
200 T I	202 20/2014	3.5(6)×10 ⁻⁶	5.2×10 ⁻⁸ [90%]	^{∠∪9} Bi	64 94(6)	2.1(13)×10 ⁻⁴	3.0(19)×10 ⁻⁶
202 ' '	010 14(0)	0.0279(10)	0.000414(15)	^{∠∪9} Bi	65 24(20)	1.8(4)×10 ⁻⁴	2.6(6)×10 ⁻⁶
203TI	818.14(8)	0.0273(10)	0.000111(10)	200-			- (4) (0
²⁰³ TI ²⁰³ TI ²⁰³ TI	873.16(8) 931.39(8)	0.168(4) 0.0257(12)	0.00249(6) 0.000381(18)	^{∠∪9} Bi	91.29(5) 92.48(13)	0.0005(3) 2.5(4)×10 ⁻⁴	7(4)×10 ⁻⁶ 3.6(6)×10 ⁻⁶

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

Figher G(Fy)-harps k FykeV G(Fy)-harps k

Eγ-keV	σ(Eγ)-barns	k ₀	Eγ-keV	σ(Εγ)-barns	k ₀
Bismuth (Z=83), co			Bismuth (Z=83), co		_
²⁰⁹ Bi 116.49(9)	0.00054(21)	8(3)×10 ⁻⁶	²⁰⁹ Bi 4165.36(5)	0.00173(24)	2.5(4)×10 ⁻⁵
²⁰⁹ Bi 154.86(6)	2.5(4)×10 ⁻⁴	3.6(6)×10 ⁻⁶	²⁰⁹ Bi 4171.05(9)	0.0171(22)	2.5(3)×10 ⁻⁴
²⁰⁹ Bi 154.89(5) ²⁰⁹ Bi 162.19(11)	0.0013(5)	1.9(7)×10 ⁻⁵	²⁰⁹ Bi 4256.65(5) ²⁰⁹ Bi 4284.80(6)	0.0024(3)	3.5(4)×10 ⁻⁵
²⁰⁹ Bi 162.27(6)	0.008(3) 0.00162(21)	1.2(4) × 10 ⁻⁴ 2.3(3)×10 ⁻⁵		0.00042(7)	6.1(10)×10 ⁻⁶
²⁰⁹ Bi 183 04(6)	1.8(8)×10 ⁻⁴	2.6(12)×10 ⁻⁶	Thorium (Z=90), <i>At</i>	.Wt.=232.0381(1), σ _γ = 7.35(3)
^{∠∪} ⁹ Bi 311 23(11)	2.0(4)×10 ⁻⁴	2.9(6)×10 ⁻⁶	²³² Th 39.92(13)	0.0029(4)	3.8(5)×10 ⁻⁵
²⁰⁹ Bi 319.78(4)	0.0115(14)	1.67(20)×10 ⁻⁴	²³² Th 44.36(14)	0.0031(4)	4.0(5)×10 ⁻⁵
²⁰⁹ Bi 347 92(9)	$2.1(4)\times10^{-4}$	$3.0(6)\times10^{-6}$	²³² Th 53.71(12)	0.0139(10)	1.82(13)×10 ⁻⁴
²⁰⁹ Bi 347.93(5)	1.8(8)×10 ⁻⁴	2.6(12)×10 ⁻⁶	²³² Th 57.41(15) ²³² Th 63.810(10)	0.0068(9) 10.7(5) s ⁻¹ g ⁻¹	8.9(12)×10 ⁻⁵
²⁰⁹ Bi 392.82(9) ²⁰⁹ Bi 408.77(7)	2.4(4)×10 ⁻⁴	3.5(6)×10 ⁻⁶	²³² Th 77.09(15)	0.09(3)	0.0012(4)
²⁰⁹ Bi 563.06(7)	0.00043(7) 2.1(8)×10 ⁻⁴	6.2(10)×10 ⁻⁶ 3.0(12)×10 ⁻⁶	²³² Th 140.880(10)	0.85(18) s ⁻¹ g ⁻	1
²⁰⁹ Bi 563 14(7)	0.00051(7)	7.4(10)×10 ⁻⁶	²³² Th 201.75(12)	0.0079(8)	1.03(10)×10 ⁻⁴
^{∠∪9} Bi 610.92(11)	1.8(4)×10 ⁻⁴	2.6(6)×10 ⁻⁶	²³² Th 211.86(11)	0.0191(17)	2.49(22)×10 ⁻⁴
²⁰⁹ Bi 644 36(8)	2.5(4)×10 ⁻⁴	3.6(6)×10 ⁻⁶	²³² Th 229.08(11)	0.0163(13)	2.13(17)×10 ⁻⁴
²⁰⁹ Bi 645 82(6)	0.00047(7)	6.8(10)×10 ⁻⁶	²³² Th 256.25(11) ²³² Th 263.06(14)	0.093(17)	0.00121(22)
²⁰⁹ Bi 673.97(5)	0.0026(4)	3.8(6)×10 ⁻⁵	²³² Th 277.48(11)	0.0073(17) 0.0312(25)	9.5(22)×10 ⁻⁵ 0.00041(3)
²⁰⁹ Bi 769.21(6) ²⁰⁹ Bi 774.91(10)	0.00078(10) 0.00054(21)	1.13(15)×10 ⁻⁵ 8(3)×10 ⁻⁶	²³² Th 281.40(11)	0.0170(14)	2.22(18)×10 ⁻⁴
²⁰⁹ Bi 774 92(7)	0.00034(21)	2.0(3)×10 ⁻⁵	²³² Th 286.16(25)	0.0028(7)	3.7(9)×10 ⁻⁵
^{∠∪9} Bi 808 77(7)	0.00042(16)	6.1(23)×10 ⁻⁶	²³² Th 311.91(10)	0.0187(10)	2.44(13)×10 ⁻⁴
²⁰⁹ Bi 808 79(7)	0.00119(16)	1.73(23)×10 ⁻⁵	²³² Th 316.64(10)	0.0397(18)	0.000518(24)
^{∠∪9} Bi 826 98(13)	2.0(3)×10 ⁻⁴	$2.9(4)\times10^{-6}$	²³² Th 319.08(10) ²³² Th 320.98(13)	0.082(3)	0.00107(4)
²⁰⁹ Bi 855.45(14)	1.8(4)×10 ⁻⁴	2.6(6)×10 ⁻⁶	²³² Th 327.80(10)	0.0072(8) 0.0269(16)	9.4(10)×10 ⁻⁵ 0.000351(21)
²⁰⁹ Bi 900.07(7) ²⁰⁹ Bi 900.22(9)	0.00035(13)	5.1(19)×10 ⁻⁶	²³² Th 329.88(11)	0.0203(10)	0.000331(21)
²⁰⁹ Bi 912.77(10)	0.00102(14) 0.00034(5)	1.48(20)×10 ⁻⁵ 4.9(7)×10 ⁻⁶	²³² Th 331.37(11)	0.0291(19)	0.000380(25)
^{∠∪9} Bi 971 82(7)	0.00026(9)	3.8(13)×10 ⁻⁶	²³² Th 335.92(10)	0.089(4) ´	0.00116(S) ´
²⁰⁹ Bi 971 83(9)	0.00072(9)	1.04(13)×10 ⁻⁵	²³² Th 354.27(10)	0.0408(20)	0.00053(3)
^{∠∪9} Bi 1012 53(7)	0.00064(9)	9.3(13)×10 ⁻⁶	²³² Th 365.28(16)	0.0060(9)	7.8(12)×10 ⁻⁵
²⁰⁹ Bi 1013.03(13)	2.1(8)×10 ⁻⁴	3.0(12)×10 ⁻⁶	²³² Th 366.79(16) ²³² Th 370.35(15)	0.0061(9) 0.0044(8)	8.0(12)×10 ⁻⁵ 5.7(10)×10 ⁻⁵
²⁰⁹ Bi 1118.21(19) ²⁰⁹ Bi 1156.34(14)	2.1(4)×10 ⁻⁴ 2.0(4)×10 ⁻⁴	3.0(6)×10 ⁻⁶ 2.9(6)×10 ⁻⁶	²³² Th 384.7(3)	0.0030(8)	3.9(10)×10 ⁻⁵
²⁰⁹ Bi 1175 48(12)	0.00048(7)	7.0(10)×10 ⁻⁶	²³² Th 427.24(17)	0.0040(7)	5.2(9)×10 ⁻⁵
^{2∪3} Di 12∩2 52/11\	0.00077(12)	1.12(17)×10 ⁻⁵	²³² Th 432.15(13)	0.0076(8)	$9.9(10)\times10^{-5}$
^{∠∪9} Bi 1203 61(8)	2.1(8)×10 ⁻⁴	$3.0(12)\times10^{-6}$	²³² Th 472.30(10) ²³² Th 506.22(13)	0.165(8)	0.00215(10)
²⁰⁹ Bi 1203.61(10)	2.1(8)×10 ⁻⁴	3.0(12)×10 ⁻⁶	²³² Th 522.73(10)	0.0075(11) 0.102(5)	9.8(14)×10 ⁻⁵ 0.00133(7)
²⁰⁹ Bi 1211.11(15) ²⁰⁹ Bi 1226.30(6)	0.00031(5) 0.00042(7)	4.5(7)×10 ⁻⁶ 6.1(10)×10 ⁻⁶	²³² Th 531.58(10)	0.0404(23)	0.00053(3)
²⁰⁹ Bi 1337 09(6)	0.00042(7)	2.3(3)×10 ⁻⁵	²³² Th 535.08(17)	0.0062(11)	8.1(14)×10 ⁻⁵
²⁰⁹ Bi 1360 16/15\	2.0(4)×10 ⁻⁴	2.9(6)×10 ⁻⁶	²³² Th 539.66(10)	0.061(3)	0.00080(4)
^{∠∪9} Ri 1307 83/11\	0.00033(5)	$4.8(7)\times10^{-6}$	²³² Th 548.23(11) ²³² Th 553.36(13)	0.042(10)	0.00055(13)
²⁰⁹ Bi 1430.29(14) ²⁰⁹ Bi 1465.52(14)	0.00027(4)	3.9(6)×10 ⁻⁶	²³² Th 556.93(11)	0.011(3) 0.040(10)	1.4(4)×10 ⁻⁴ 0.00052(13)
209B: 1/8//30/8/	0.00026(4) 0.00034(5)	3.8(6)×10 ⁻⁶ 4.9(7)×10 ⁻⁶	²³² Th 561.25(11)	0.033(8)	0.00043(10)
209D: 4FOC 40/7\	0.00073(10)	1.06(15)×10 ⁻⁵	²³² Th 566 63(10)	0.19(5)	0.0025(7)
400D; 160E 70/17\	2.1(4)×10 ⁻⁴	$3.0(6)\times10^{-6}$	²³² Th 569.15(16)	0.008(3)	1.0(4)×10 ⁻⁴
²⁰⁹ Bi 1658.34(7) ²⁰⁹ Bi 1708.84(9)	0.00035(5)	5.1(7)×10 ⁻⁶	²³² Th 578.02(9) ²³² Th 580.16(19)	0.105(5) 0.0125(21)	0.00137(7) 1.6(3)×10 ⁻⁴
²⁰⁹ Bi 1708.84(9) ²⁰⁹ Bi 1708.92(10)	0.00071(10)	1.03(15)×10 ⁻⁵	²³² Th 583.27(9)	0.0123(21)	0.00364(14)
209D: 1756 25/11/	2.2(8)×10 ⁻⁴ 2.4(4)×10 ⁻⁴	3.2(12)×10 ⁻⁶ 3.5(6)×10 ⁻⁶	²³² Th 586.02(10)	0.045(3)	0.00059(4)
209D: 102/107/15\	0.00054(8)	7.8(12)×10 ⁻⁶	²³² Th 593.23(10)	0.043(3)	0.00056(4)
²⁰⁹ Bi 1839 74(13)	0.00046(7)	6.7(10)×10 ⁻⁶	²³² Th 605.41(10)	0.054(4)	0.00071(5)
²⁰⁹ Bi 2026.66(15)	0.00037(7)	5.4(10)×10 ⁻⁶	²³² Th 612.45(9) ²³² Th 622.95(11)	0.018(3) 0.0125(15)	2.4(4)×10 ⁻⁴ 1.63(20)×10 ⁻⁴
²⁰⁹ Bi 2496.69(16) ²⁰⁹ Bi 2505.35(7)	0.00034(7) 0.0021(3)	4.9(10)×10 ⁻⁶ 3.0(4) ×10 ⁻⁵	²³² Th 632.09(12)	0.0125(13)	1.37(12)×10 ⁻⁴
²⁰⁹ Bi 2570.29(7)	0.0021(3)	4.5(7)×10 ⁻⁶	²³² Th 659.56(16)	0.0173(20)	2.3(3)×10 ⁻⁴
²⁰⁸ Bi 2598 33(8)	0.00166(24)	2.4(4)×10 ⁻⁵	²³² Th 662.0(3)	0.0101(18)	1.32(24)×10 ⁻⁴
²⁰⁹ Bi 2614 55(12)	0.00027(5)	3.9(7)×10 ⁻⁶	²³² Th 665.11(10)	0.084(4)	0.00110(5)
²⁰⁹ Bi 2624 34(7)	0.00154(21)	2.2(3)×10 ⁻⁵	²³² Th 681.81(9) ²³² Th 684.96(13)	0.079(4)	0.00103(5)
²⁰⁹ Bi 2828.29(7)	0.00179(24)	2.6(4)×10 ⁻⁵	²³² Th 696.57(14)	0.0117(16) 0.0139(17)	1.53(21)×10 ⁻⁴ 1.82(22)×10 ⁻⁴
²⁰⁹ Bi 2898.17(8) ²⁰⁹ Bi 3081.27(10)	0.00080(12) 0.00145(20)	1.16(17)×10 ⁻⁵ 2.1(3)×10 ⁻⁵	²³² Th 703.1(5)	0.0073(18)	9.5(24)×10 ⁻⁵
^{∠∪9} Bi 3141 75(8)	0.00143(20)	5.9(10)×10 ⁻⁶	²³² Th 705.17(11)	0.050(4)	0.00065(5)
^{∠∪9} D; 221/16//2\	0.00061(9)	8.8(13)×10 ⁻⁶	²³² Th 714.23(10)	0.052(3)	0.00068(4)
^{∠∪} aB! 3330 66(10)	$2.1(4)\times10^{-4}$	3.0(6)×10 ⁻⁶	²³² Th 721.60(22) ²³² Th 735.25(14)	0.0073(15)	9.5(20)×10 ⁻⁵
²⁰⁹ Bi 3268.99(9) ²⁰⁹ Bi 3356.60(8)	2.2(5)×10 ⁻⁴	3.2(7)×10 ⁻⁶	²³² Th 741.02(15)	0.0123(16) 0.0122(16)	1.61(21)×10 ⁻⁴ 1.59(21)×10 ⁻⁴
²⁰⁹ Ri 3306 16/7\	0.00167(24) 0.00170(24)	2.4(4)×10 ⁻⁵ 2.5(4)×10 ⁻⁵	²³² Th 752.05(16)	0.0122(10)	1.85(25)×10 ⁻⁴
²⁰⁹ Bi 3407 4(3)	2.5(5)×10 ⁻⁴	3.6(7)×10 ⁻⁶	²³² Th 768.58(23)	0.0091(15)	1.19(20)×10 ⁻⁴
209D: 3610 94/6)	2.1(5)×10 ⁻⁴	3.0(7)×10 ⁻⁶	²³² Th 777.8(4)	0.0034(14)	4.4(18)×10 ⁻⁵
²⁰⁹ Bi 3632 77(7)	0.00136(20)	2.0(3)×10 ⁻⁵	²³² Th 780.8(3) ²³² Th 785.86(22)	0.0052(15) 0.0097(18)	6.8(20)×10 ⁻⁵ 1.27(24)×10 ⁻⁴
²⁰⁹ Bi 4054.57(6) ²⁰⁹ Bi 4101.76(6)	0.0137(18) 0.0089(12)	2.0(3)×10 ⁻⁴ 1.29(17)×10 ⁻⁴	²³² Th 797.79(9)	0.0416(20)	0.00054(3)
D: 4101.70(0)	0.0000(12)	1120(11)/10		,	<u> </u>

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

			om Thermal Neutron C		
Eγ-keV Thorium (Z=90), co	σ(Εγ)-barns	k _o	Eγ-keV	σ(Εγ)-barns	k ₀
²³² Th 808.53(11)		0.000277(10)	Thorium (Z=90), cor	0.0123(12)	1 61/16\\\10-4
²³² Th 814.75(10)	0.0212(14) 0.0196(13)	0.000277(18) 0.000256(17)	²³² Th 3245.2(5)	0.0123(12)	1.61(16)×10 ⁻⁴ 3.9(10)×10 ⁻⁵
²³² Th 834.83(14)	0.059(5)	0.00077(7)	²³² Th 3260.9(3)	0.0056(9)	7.3(12)×10 ⁻⁵
²³² Th 846.0(5)	0.013(3)	1.7(4)×1Ò ⁻⁴	²³² Th 3276.3(4)	0.0063(10)	8.2(13)×10 ⁻⁵
²³² Th 849.4(7)	0.005(3)	7(4)×10 ⁻⁵	²³² Th 3287.94(14)	0.0165(14)	2.15(18)×10 ⁻⁴
²³² Th 860.61(13) ²³² Th 869.69(14)	0.047(5) 0.0138(11)	0.00061(7) 1.80(14)×10 ⁻⁴	²³² Th 3294.9(3) ²³² Th 3326.21(17)	0.0051(9) 0.0102(10)	6.7(12)×10 ⁻⁵ 1.33(13)×10 ⁻⁴
²³² Th 872.13(11)	0.0268(15)	0.000350(20)	²³² Th 3341.90(13)	0.0168(13)	2.19(17)×10 ⁻⁴
²³² Th 907.44(14)	0.0081(10)	1.06(13)×10 ⁻⁴	²³² Th 3363.3(3)	0.0051(8)	6.7(10)×10 ⁻⁵
²³² Th 913.74(17)	0.0063(10)	8.2(13)×10 ⁻⁵	²³² Th 3377.84(13)	0.0135(12)	1.76(16)×10 ⁻⁴
²³² Th 918.70(13) ²³² Th 941.79(13)	0.0096(10) 0.0103(11)	1.25(13)×10 ⁻⁴ 1.35(14)×10 ⁻⁴	²³² Th 3391.3(3) ²³² Th 3398.09(13)	0.0044(8) 0.0191(14)	5.7(10)×10 ⁻⁵ 2.49(18)×10 ⁻⁴
²³² Th 968.78(9)	0.132(6)	0.00172(8)	²³² Th 3436.17(12)	0.0211(15)	0.000276(20)
²³² Th 996.7(3)	0.0067(16)	8.8(21)×10 ⁻⁵	²³² Th 3448.42(10)	0.0233(16)	0.000304(21)
²³² Th 1013.84(11)	0.037(3)	0.00048(4)	²³² Th 3461.45(24)	0.0069(10)	9.0(13)×10 ⁻⁵
²³² Th 1031.1(3) ²³² Th 1034.27(11)	0.0040(10) 0.0165(14)	5.2(13)×10 ⁻⁵ 2.15(18)×10 ⁻⁴	²³² Th 3473.00(8) ²³² Th 3502.4(3)	0.057(3) 0.0049(9)	0.00074(4) 6.4(12)×10 ⁻⁵
²³² Th 1044.58(14)	0.0112(12)	1.46(16)×10 ⁻⁴	²³² Th 3509.43(14)	0.0170(14)	2.22(18)×10 ⁻⁴
²³² Th 1055,60(14)	0.0105(12)	1.37(16)×10 ⁻⁴	²³² Th 3524.9(5)	0.0120(12)	1.57(16)×10 ⁻⁴
²³² Th 1096.9(4)	0.0050(13)	6.5(17)×10 ⁻⁵	²³² Th 3530.96(13)	0.0397(24)	0.00052(3)
²³² Th 1100.98(11) ²³² Th 1116.9(3)	0.0211(16) 0.0060(12)	0.000276(21) 7.8(16)×10 ⁻⁵	²³² Th 3548.5(3) ²³² Th 3602.66(19)	0.0038(8) 0.0119(10)	5.0(10)×10 ⁻⁵ 1.55(13)×10 ⁻⁴
²³² Th 1125,46(19)	0.0079(13)	1.03(17)×10 ⁻⁴	²³² Th 3614.88(23)	0.0057(7)	7.4(9)×10 ⁻⁵
²³² Th 1145,37(17)	0.0123(15)	1.61(20)×10 ⁻⁴	²³² Th 3635.17(20)	0.0073(8)	9.5(10)×10 ⁻⁵
²³² Th 1152.1(4)	0.0052(15)	6.8(20)×10 ⁻⁵	²³² Th 3653.0(4)	0.0034(6)	4.4(8)×10 ⁻⁵
²³² Th 1154.5(4) ²³² Th 1164.6(4)	0.0056(15) 0.0047(13)	7.3(20)×10 ⁻⁵ 6.1(17)×10 ⁻⁵	²³² Th 3712.29(24) ²³² Th 3724.86(16)	0.0049(6) 0.0086(8)	6.4(8)×10 ⁻⁵ 1.12(10)×10 ⁻⁴
²³² Th 1184.9(6)	0.0036(13)	4.7(17)×10 ⁻⁵	²³² Th 3735.59(12)	0.0115(9)	1.50(12)×10 ⁻⁴
²³² Th 2485,2(3)	0.0090(17)	1.18(22)×10 ⁻⁴	²³² Th 3746.40(16)	0.0072(7)	9.4(9)×10 ⁻⁵
²³² Th 2503.5(3)	0.0107(18)	1.40(24)×10 ⁻⁴	²³² Th 3755.05(13)	0.0098(9)	1.28(12)×10 ⁻⁴
²³² Th 2524.7(4) ²³² Th 2543.3(5)	0.0087(16) 0.013(3)	1.14(21)×10 ⁻⁴ 1.7(4)×10 ⁻⁴	²³² Th 3802.96(17) ²³² Th 3861.50(22)	0.0071(7) 0.0057(7)	9.3(9)×10 ⁻⁵ 7.4(9)×10 ⁻⁵
²³² Th 2546.8(8)	0.0076(23)	1.0(3)×10 ⁻⁴	²³² Th 3946.42(10)	0.0268(15)	0.000350(20)
²³² Th 2551.9(4)	0.010(4)	1.3(5)×10 ⁻⁴	²³² Th 3971.83(22)	0.0041(5)	5.4(7)×10 ⁻⁵
²³² Th 2557.8(5) ²³² Th 2590.0(10)	0.0069(17)	9.0(22)×10 ⁻⁵	²³² Th 4016.6(3) ²³² Th 4045.00(13)	0.0037(6) 0.0118(9)	4.8(8)×10 ⁻⁵
²³² Th 2596.76(23)	0.0069(20) 0.0118(18)	9(3)×10 ⁻⁵ 1.54(24)×10 ⁻⁴	²³² Th 4073.33(19)	0.0060(7)	1.54(12)×10 ⁻⁴ 7.8(9)×10 ⁻⁵
²³² Th 2630.1(3)	0.0071(19)	9.3(25)×10 ⁻⁵	²³² Th 4201.85(16)	0.0110(9)	1.44(12)×10 ⁻⁴
²³² Th 2640.8(4)	0.0110(18)	1.44(24)×10 ⁻⁴	²³² Th 4215.0(4)	0.0033(5)	4.3(7)×10 ⁻⁵
²³² Th 2653.2(3) ²³² Th 2659.39(21)	0.010(4) 0.013(4)	1.3(5)×10 ⁻⁴ 1.7(5)×10 ⁻⁴	²³² Th 4246.78(15) ²³² Th 4450.54(21)	0.0093(7) 0.0043(5)	1.21(9)×10 ⁻⁴ 5.6(7)×10 ⁻⁵
²³² Th 2671.7(6)	0.0085(18)	1.11(24)×10 ⁻⁴	²³² Th 4769.66(25)	0.0047(7)	6.1(9)×10 ⁻⁵
²³² Th 2689.4(8)	0.008(3)	1.0(4)×10 ⁻⁴	²³² Th 4787.0(6)	0.0037(7)	4.8(̀9)́×10 ⁻⁵
²³² Th 2703.55(24) ²³² Th 2712.56(22)	0.014(5)	1.8(7)×10 ⁻⁴	Uranium (Z=92), At.	Wt.=238.02891	(3), ₅ ,=3.374(20)
²³² Th 2719.67(18)	0.013(4) 0.016(3)	1.7(5)×10 ⁻⁴ 2.1(4)×10 ⁻⁴	1390- 20 0000(40)-	0.0381(11)	0.000485[<0.1%]
^{∠3∠} Th 2732 7(5)	0.008(3)	1.0(4)×10 ⁻⁴	²³⁵ U 31.60(5)	0.10(3) s ⁻¹ g ⁻¹	
²³² Th 2739 8(3)	0.0072(14)	9.4(18)×10 ⁻⁵	²³⁵ U 34.70(10) ²³⁵ U 41.4(3)	0.2100(15) s ⁻¹ 0.17(12) s ⁻¹ g ⁻¹	g-¹
²³² Th 2744.7(3) ²³² Th 2758.3(4)	0.0081(15) 0.0063(14)	1.06(20)×10 ⁻⁴ 8.2(18)×10 ⁻⁵	23511 44 06(45)	0.35(6) s ⁻¹ g ⁻¹	
²³² Th 2771.3(4)	0.0030(14)	3.9(16)×10 ⁻⁵	²³⁸ U 43.5330(10)d	0.110(3)	0.00140[53%]
²³² Th 2784.5(3)	0.0075(15)	9.8(20)×10 ⁻⁵	²³⁵ U 51.22(10) ²³⁵ U 54.25(5)	0.20(4) s ⁻¹ g ⁻¹	1
²³² Th 2807.08(18)	0.0110(17)	1.44(22)×10 ⁻⁴	23511 72 70/201	0.1700(12) s ⁻¹ 0.630(5) s ⁻¹ g ⁻¹	
²³² Th 2821.9(3) ²³² Th 2824.9(3)	0.0110(20) 0.0144(22)	1.4(3)×10 ⁻⁴ 1.9(3)×10 ⁻⁴	²³⁸ U 74.6640(10)d	1.300(3)	0.01655[53%]
²³² Th 2838.0(3)	0.0059(15)	7.7(20)×10 ⁻⁵	²³⁵ U 75.02(5)	0.35(6) s ⁻¹ g ⁻¹	<u> </u>
²³² Th 2851.0(3)	0.0077(15)	1.01(20)×10 ⁻⁴	²³⁵ U 76.198(4) ²³⁵ U 96.090(20)	0.046(6) s ⁻¹ g ⁻¹	1
²³² Th 2880.86(17) ²³² Th 2924.3(3)	0.0093(14)	1.21(18)×10 ⁻⁴ 1.07(14)×10 ⁻⁴	238Np 406 4220/2014	0.52(7) s ⁻¹ g ⁻¹	0.00920[<0.1%]
²³² Th 2945.0(4)	0.0082(11) 0.0033(9)	4.3(12)×10 ⁻⁵	4001 100 160/201	8.9(3) s ⁻¹ g ⁻¹	0.00020[10.170]
²³² Th 2970,49(21)	0.0064(10)	8.4(13)×10 ⁻⁵	²³⁵ U 115.45(5) ²³⁵ U 120.35(5)	0.17(6) s ⁻¹ g ⁻¹	
²³² Th 2980,69(18)	0.0084(11)	1.10(14)×10 ⁻⁴	23811 127 201/51	0.1500(11) s ⁻¹ 0.0099(20)	g ⁻¹ 1.26(25)×10 ⁻⁴
²³² Th 2989.93(25) ²³² Th 3009.9(3)	0.0066(10) 0.0051(10)	8.6(13)×10 ⁻⁵ 6.7(13)×10 ⁻⁵	23811 422 7000/40\	0.38(8)	0.0048(10)
²³² Th 3044.7(4)	0.0031(10)	4.0(16)×10 ⁻⁵	²³⁵ U 136.55(5) ` ´	0.0690(5) s ⁻¹ g	-1
²³² Th 3056.43(23)	0.0084(12)	1.10(16)×10 ⁻⁴	²³⁵ U 140.76(4) ²³⁵ U 143.760(20)	1.27(12) s ⁻¹ g ⁻¹	1
²³² Th 3070.6(4)	0.0039(12)	5.1(16)×10 ⁻⁵	²³⁵ 11 450 020/20 1	63.0(7) s ⁻¹ g ⁻¹ 0.46(6) s ⁻¹ g ⁻¹	
²³² Th 3087.34(17) ²³² Th 3118.4(9)	0.0086(24) 0.0040(10)	1.1(3)×10 ⁻⁴ 5.2(13)×10 ⁻⁵	²³⁵ U 163.330(20)	29.2(3) s ⁻¹ g ⁻¹	
²³² Th 3127.73(25)	0.0058(11)	7.6(14)×10 ⁻⁵	²³⁸ U 169.089(10)	0.012(4)	1.5(5)×10 ⁻⁴
²³² Th 3132.80(17)	0.0087(10)	1.14(13)×10 ⁻⁴	²³⁵ U 182.61(5) ²³⁵ U 185.715(5)	1.96(12) s ⁻¹ g ⁻¹	1
²³² Th 3148.23(10) ²³² Th 3173.87(19)	0.0208(14)	0.000272(18)	²³⁸ 11 102 056/15)	329(4) s ⁻¹ g ⁻¹ 0.0039(20)	5.0(25)×10 ⁻⁵
²³² Th 3184.94(17)	0.0089(10) 0.0079(10)	1.16(13)×10 ⁻⁴ 1.03(13)×10 ⁻⁴	²³⁵ U 194.940(10)	3.62(7) s ⁻¹ g ⁻¹	3.0(20)/110
²³² Th 3196.66(12)	0.0171(13)	2.23(17)×10 ⁻⁴	²³⁵ U 198.900(20)	0.24(4) s ⁻¹ g ⁻¹	

Table I. Adopted Prompt and Decay Gamma Rays from Thermal Neutron Capture for all Elements, continued

 $\mathbf{k_0}$

0.00047(10) 1.5(5)×10-4 2.0(5)×10-4 1.01(25)×10-4 0.00038(8) 1.8(5)×10-4 1.3(5)×10-4 1.3(5)×10-4 1.3(5)×10-4 1.3(5)×10-4 0.00025(8)

0.00025(8) **0.00255(13)** 1.5(5)×10⁻⁴ 9(3)×10⁻⁵ 9(4)×10⁻⁵ 1.0(4)×10⁻⁴ 9(3)×10⁻⁵ 6.0(20)×10⁻⁵ 2.0(8)×10⁻⁴

2.0(8)×10-4 1.5(5)×10-4 1.3(4)×10-4 1.3(4)×10-5 8.9(6)×10-5 5.1(13)×10-5 5.7(4)×10-5 5.3(5)×10-5 0.00053(4) 1.86(13)×10-4 1.55(10)×10-5 4.8(4)×10-5 8.7(6)×10-5 0.000330(18) 0.000337(4) 9.3(5)×10-5

•	abie i.	_ :	·	amma Rays fromعد	ınerr		·	
		Eγ-keV	σ(Εγ)-barns	k _o		Eγ-keV	σ(Εγ)-barns	
	Urani	um (Z=92), con			Urani	um (Z=92), con		
	²³⁵ U	202.110(20)	6.21(13) s ⁻¹ g ⁻¹		²³⁸ U	1029.32(5)	0.037(8)	
	235U	205.311(10)	28.8(4) s ⁻¹ g ⁻¹	0.0044575.0.40/1	²³⁸ U	1048.85(8)	0.012(4)	
	²³⁵ U	209.7530(20)d	0.0909(13)	0.001157[<0.1%]	²³⁸ U	1060.82(8)	0.016(4)	
	²³⁵ U	215.28(3) 221.380(20)	0.167(17) s ⁻¹ g ⁻ 0.69(6) s ⁻¹ g ⁻¹	•	23811	1062.48(6) 1066.82(12)	0.0079(20) 0.030(6)	
	238Nn	228.1830(10)d	0.09(0) S ·g ·	0.00364[<0.1%]	23811	1089.50(5)	0.030(6)	
	230	228.78(5)	0.0400(3) s ⁻¹ g	1	23811	1110.27(6)	0.010(4)	
	235[]	233.50(3)	0.17(3) s ⁻¹ g ⁻¹		23811	1149.8(3)	0.010(4)	
	235[]	240.87(3)	0.43(4) s ⁻¹ g ⁻¹		23811	1152.80(6)	0.010(4)	
	²³⁵ U		0.023(3)	0.00029(4)	238U	1155.05(4)	0.010(4)	
	²³⁵ U ²³⁸ U	246.84(4)	0.305(17) s ⁻¹ g ⁻	0.00040(45)	²³⁸ U ²³⁵ U	1167.01(4)	0.020(6)	
	²³⁵ U	250.062(7)	0.034(12)	0.00043(15)	23811	1279.01(10) ^f	0.200(10) 0.012(4)	
	²³⁵ U	275.129 275.43(10)	0.30(3) s ⁻¹ g ⁻¹ 0.040(12) s ⁻¹ g ⁻	1	23811	2998.5(5) 3089.4(5)	0.0071(24)	
	238 _{Nin}	277.5990(10)d	0.382(6)	0.00486[<0.1%]	23811	3114.2(5)	0.007(3)	
	233	289.56(4)	0.0400(3) s ⁻¹ g		23811	3121.7(5)	0.008(3)	
	²³⁵ U	291.65(3)	0.23(3) s ⁻¹ g ⁻¹		²³⁸ U	3175.2(5)	0.0067(22)	!
	²³⁸ U		0.016(6)	2.0(8)×10 ⁻⁴	238U	3191.7(5)	0.0047(16)	
	²³⁵ U	297.00(10) ^f	0.220(20)	0.00280(25)	²³⁸ U	3197.2(5)	0.016(6)	
	238	300.00(10) 315.880(3)d	0.016(3)	2.0(4)×10 ⁻⁴ 0.000541[<0.1%]	²³⁸ U	3220.1(5)	0.012(4)	
	²³⁰ NIn	334.3100(20)d	0.0425(8)	0.000341[<0.1%]	23811	3233.2(5) 3286.12(20)	0.010(3) 0.0040(3)	
	233	345.90(3)	0.23(3) s ⁻¹ g ⁻¹	0.000700[<0.178]	23811	3296.5(3)	0.0070(5)	
	235[]	387.82(3)	0.23(3) s ⁻¹ g ⁻¹		238[]	3312.8(5)	0.0040(10)	
	23811	451.213(23)	0.010(4)	1.3(5)×10 ⁻⁴	23811	3445.44(6)	0.0045(3)	:
	²³⁸ U	478.79(8)	0.012(4)	1.5(5)×10 ⁻⁴	²³⁸ U	3564.45(9)	0.0042(4)	:
	²³⁸ U	496.753(11)	0.034(8)	0.00043(10)	²³⁸ U	3583.10(7)	0.042(3)	
	²³⁸ U		0.073(3)	0.00093(4)	²³⁸ U	3611.78(9)	0.0146(10)	
	²³⁸ U	535.45(5) 537.26(3)	0.028(6) 0.0079(20)	0.00036(8)	238U	3639.39(6) 3651.36(6)	0.0122(8)	
	139	537.261(9)d	0.066(3)	1.01(25)×10 ⁻⁴ 0.00084[<0.1%]	23811	3739.59(13)	0.0069(5) 0.0038(3)	
	230	539.278(12)	0.099(20)	0.00126(25)	23811	3844.56(21)	0.0068(5)	
	238[]	542.085(12)	0.024(6)	0.00031(8)	23811	3982.69(5)	0.0259(14)	
	238[]	552.069(5)	0.207(5)	0.00264(6)	238[]	3991.25(5)	0.0241(12)	
	238U	554.054(8)	0.085(20)	0.00108(25)	238U	4060.35(5)	0.186(3)	
	²³⁸ U	554.10(8)	0.028(6)	0.00036(8)	²³⁸ U	4067.02(5)	0.0073(4)	
	²³⁸ U	562.027(22) 563.17(3)	0.032(10) 0.014(4)	0.00041(13) 1.8(5)×10 ⁻⁴		f spontaneous	fission to 1347	е
	23811	580.340(13)	0.043(10)	0.00055(13)				
	23811	582.034(9)	0.016(4)	2.0(5)×10 ⁻⁴				
	23811	588.88(3)	0.024(6)	0.00031(8)				
	²³⁸ U	590.39(3)	0.034(12)	0.00043(15)				
	²³⁸ U	592.309(13)	0.045(12)	0.00057(15)				
	²³⁸ U	593.612(5)	0.108(24)	0.0014(3)				
	238ı ı	600.284(10) 605.581(9)	0.030(8) 0.053(12)	0.00038(10) 0.00067(15)				
	23811	611.38(3)	0.014(4)	1.8(5)×10 ⁻⁴				
	238[]	612.253(5)	0.23(5)	0.0029(6)				
	238[]	629.722(9)	0.073(20)	0.00093(25)				
	²³⁸ U	638.505(12)	0.041(12)	0.00052(15)				
	²³⁸ U	669.385(13)	0.0039(20)	5.0(25)×10 ⁻⁵				
	²³⁸ U	673.307(12)	0.010(4)	1.3(5)×10 ⁻⁴				
	238	681.355(9) 687.853(8)	0.012(4) 0.028(8)	1.5(5)×10 ⁻⁴ 0.00036(10)				
	23811	689.907(11)	0.043(10)	0.00055(13)				
	238	715.832(9)	0.022(6)	0.00028(8)				
	23811	767.86(21)	0.020(6)	0.00025(8)				
	238U	787.15(7)	0.020(6)	0.00025(8)				
	²³⁸ U	794.21(8)	0.020(6)	0.00025(8)				
	²³⁸ U	799.12(7)	0.0079(20)	1.01(25)×10 ⁻⁴				
	238	819.868(21) 828.04(21)	0.010(4) 0.024(6)	1.3(5)×10 ⁻⁴ 0.00031(8)				
	238	831.837(19)	0.053(12)	0.00067(15)				
	238	842.42(8)	0.024(6)	0.00031(8)				
	²³⁸ U	853.23(4)	0.055(12)	0.00070(15)				
	²³⁸ U	893.30(10)	0.016(4)	2.0(5)×10 ⁻⁴				
	²³⁵ U	909.06(6)	0.026(4)	0.00033(5)				
	23811	943.14(7)	0.082(10)	0.00104(13)				
	238	961.06(4) 990.49(3)	0.0039(20) 0.010(4)	5.0(25)×10 ⁻⁵ 1.3(5)×10 ⁻⁴				
	23811	1007.03(6)	0.0079(20)	1.01(25)×10 ⁻⁴				
	238	1007.03(6)	0.0079(20)	1.01(25)×10 ⁻⁴				
	23511	1014.1(10)	0.026(4)	0.00033(5)				
	238	1021.25(4)	0.0079(20)	1.01(25)×10 ⁻⁴				
	²³⁸ U	1021.25(4)	0.0079(20)	1.01(25)×10 ⁻⁴				