

Kepler's Equation Validity

Orbital Limits of Kepler's Equation

Conceptually, Kepler's equation is valid for all values of 'e' including 1.0.

However, we note from \mathbf{E} - $\boldsymbol{\theta}$ relation that as value of 'e' increases, value of 'E' decreases, for same ' $\boldsymbol{\theta}$ '.

Orbital Limits of Kepler's Equation

We also **see** that for e = 1, Kepler's equation **reduces** to the following **form.**

$$E - \sin E = 0$$
 $(a = \infty; n = 0; M = n \cdot \Delta t = 0)$

Thus, the only **possible** solution is E = 0, for all ' Δt '.

In view of the above, we need an alternate approach.

TOF for Parabolic Trajectories

Parabolic Trajectory Time Solution

We know that ' Δt ' for any conic section can be obtained from the following relation.

$$TOF = t_{\mathcal{B}} - t_{\mathcal{A}} = \frac{h^3}{\mu^2} \int_{\theta_{\mathcal{A}}}^{\theta_{\mathcal{B}}} \frac{1}{(1 + e \cos \theta)^2} d\theta$$

Parabolic Trajectory Time Solution

Thus, for e = 1, it can be re-written as,

$$t_B - t_A = \frac{h^3}{4\mu^2} \int_{\theta_A}^{\theta_B} \frac{d\theta}{\cos^4(\frac{\theta}{2})}$$

' Δt ' can be **obtained** by carrying out the **integration**.

Time Solution

Integration can be performed by using the trigonometric identity for $\sec^2(\theta/2)$, as shown below.

$$\sec^{4}\left(\frac{\theta_{2}}{2}\right) = \sec^{2}\left(\frac{\theta_{2}}{2}\right) \left[1 + \tan^{2}\left(\frac{\theta_{2}}{2}\right)\right]$$
$$t_{B} - t_{A} = \Delta t = \frac{h^{3}}{2\mu^{2}} \left(\tan\frac{\theta}{2} + \frac{1}{3}\tan^{3}\frac{\theta}{2}\right)_{\theta_{A}}^{\theta_{B}}$$

't' is ∞ at apogee ($\theta = 180^{\circ}$), where 'v' = '0' and 'r' = ∞ .

Nature of Parabolic \(\Delta t \) Solution

An important feature of Δt solution for a parabolic path is that unlike ellipse, angle θ is always less than $\pm 180^{\circ}$, due to apogee being undefined (or infinite).

Thus, **practical** solutions for ' Δt ' (or ' $\Delta \theta$ ') on a **parabolic** path are for a **finite** distance, 'r'.

Summary

As was **noted** earlier, TOF **solution** for parabolic trajectories can be **obtained** by direct integration of the **time** equation.

We also **note** that Kepler's equation, as **formulated** for an elliptic orbit, **breaks** down for e = 1.

TOF for Hyperbolic Trajectories

Hyperbolic Trajectories

If **spacecraft** have $\varepsilon > 0$, these move on a **hyperbolic** path.

Similar to **parabolic** case, in these **cases** also, we **need** to know how **long** it would take to **reach** a specific point and thus, **need** a process to arrive at **hyperbolic** Δt .

Hyperbolic Trajectory Relation

Hyperbola is **characterized** by $\varepsilon > 0$, resulting in 'a' < 0 while, 'p', which is a physical **distance**, is positive.

Thus, we need to **rewrite** the basic conic section **relations**, in the context of **hyperbola**.

Hyperbolic Trajectory Relation

The applicable conic relations are as follows.

$$p = (-a)(e^2 - 1), \quad r_p = (-a)(e - 1); \quad r_a = (a)(e + 1)$$

We see that while, both 'p' and 'r_p' are positive, 'r_a' is negative, because 'r' crosses ' ∞ ' at $\cos\theta = (-1/e)$.

Hyperbolic \(\Delta t \) Solution Strategy

One way to **arrive** at the **solution** for hyperbola is to perform **explicit** integration of **time** equation for e > 1.

In this regard, we can **examine** the elliptic orbit **integral** for its **possible** re-interpretation, when e > 1.

Hyperbolic \(\Delta t \) Solution Strategy

Another option is to **examine** the possibility of using **Kepler's** equation in the context of a **hyperbolic** path.

This can be done by **identifying** an applicable auxiliary **geometry** that can be **used** to set up ' Δt ' **relations.**

Hyperbolic Trajectory Features

Applicable **auxiliary geometry** is arrived at by considering hyperbolic **features** as shown alongside.

Here, ' δ ' is angle **between** asymptotes at $\mathbf{r} = \pm \infty$, and is related to ' \mathbf{e} ', as follows.

$$\delta = 2\sin^{-1}\frac{1}{e}$$

Auxiliary Hyperbola Concept

In this case, we employ an **equilateral** (rectangular) hyperbola ($\mathbf{e} = \sqrt{2}, \delta = 90^{\circ}$), as shown below.

Hyperbola Features

We see that the **direction** of eccentricity vector **reverses**, with origin being **outside** of the hyperbola.

This is same as $\mathbf{a} < \mathbf{0}$ and $\mathbf{a}(1 - \mathbf{e}) < \mathbf{r} < \infty$, which permits us to define 'F' such that $\mathbf{r} = \mathbf{a}(1 - \mathbf{e} \cosh F)$, similar to what is done for **elliptic** orbits ($\mathbf{r} = \mathbf{a}\{1 - \mathbf{e} \cosh F\}$).

Hyperbola Features

It is seen that **minimum** value of 'coshF' is 1, so that **minimum** value of r is '(-a)(e-1)', which is r_p .

It is to be noted that here, 'F' can take any value between $-\infty$ and $+\infty$.

Hyperbolic \(\Delta t \) Formulation

We can **employ** ellipse – hyperbola (or **conic** section) **similarity** to arrive at $\mathbf{E} - \mathbf{F}$ transformation, as follows.

$$E = \pm iF$$
, $i = \sqrt{-1}$; $0 < E < 2\pi$, $-\infty < F < +\infty$

Hyperbolic Kepler's Equation

This **permits** us to write **hyperbolic** form of Kepler's **equation**, as given below.

$$\cosh F = \frac{e + \cos \theta}{1 + e \cos \theta}; \quad M = e \sinh F - F$$

The sign of 'F' is resolved on the **basis** of sign of ' θ '. i.e. F < 0 for $\theta < 0$, under the **constraint** that get $M > F > \theta$.

Hyperbolic \(\Delta t \) Solution Features

We can now **find** the explicit **expression** ' Δ t' based on the **hyperbolic** relations, by using **applicable** hyperbolic and trigonometric **identities**, which is as given **below**.

$$\Delta t = \left\{ \sqrt{\frac{\left(-a\right)^3}{\mu}} \right\} M = \left\{ \sqrt{\frac{\left(-a\right)^3}{\mu}} \right\} \left\{ \frac{e\left(\sqrt{e^2 - 1}\right)\sin\theta}{1 + e\cos\theta} - \ln\frac{\sqrt{e + 1} + \sqrt{e - 1}\tan\left(\frac{\theta}{2}\right)}{\sqrt{e + 1} - \sqrt{e - 1}\tan\left(\frac{\theta}{2}\right)} \right\}$$

It is **interesting** to note that above **expression** is also the exact time **integral** for e > 1.

Summary

In **conclusion**, we see that TOF for **hyperbolic** trajectories is obtained by a **suitable** extension of the Kepler's equation **derived** for elliptic orbits.

This is **due** to the fact that both these are the **solutions** of the same conic **section** relation.