4. INTEGRAIS IMPRÓPRIAS (RESUMO)

Até agora, estudamos a integral definida de uma função contínua em um determinado intervalo fechado [a, b]. Ou seja, foi preciso que nossas integrais definidas tivessem duas propriedades:

- ▶ 1ª) que o domínio da integração de a a b, fosse finito;
- ▶ 2ª) que a imagem do integrando fosse finita nesse domínio.

Entretanto, na prática nós frequentemente encontramos problemas que fazem com que não se cumpram uma ou as duas condições. Nestes casos, temos o que chamamos de integrais impróprias.

Em diversas aplicações, especialmente em estatística, é necessário por exemplo, considerar a área de uma região que se estende indefinidamente para a direita ou para a esquerda ao longo do eixo x.

4.1. Integrais Impróprias com limites de integração infinitos

Definição 4.1: Integrais com limites infinitos de integração são integrais impróprias. Assim,

1) Se f é contínua para todo $x \ge a$, ou seja, se f é contínua em $[a, +\infty)$, então

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx.$$
 (4.1)

2) Se f é contínua para todo $x \le b$, ou seja, se f é contínua em $(-\infty, b]$, então

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx.$$
 (4.2)

3) Se f é contínua para todo x, ou seja, se f é contínua em $(-\infty, +\infty)$, então

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx, \qquad (4.3)$$

onde c é um número real qualquer.

Observação:

- i. Em (4.1) e (4.2) se o limite existe e é finito, a integral imprópria converge e o limite é o valor da integral imprópria. Caso contrário, dizemos que a integral imprópria diverge.
- ii. Em (4.3), a integral do lado esquerdo converge se as duas integrais do lado direito também forem convergentes. Se isso não ocorre a integral diverge e não tem valor.

iii. Em (4.3) tomando c = 0 e usando (4.1) e (4.2), temos:

$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{a \to -\infty} \int_{a}^{0} f(x)dx + \lim_{b \to +\infty} \int_{0}^{b} f(x)dx.$$

Logo, podemos escrever o item 3) da definição 4.1 dada acima, da seguinte forma:

"Se f é contínua para todo x, ou seja, se f é contínua em $(-\infty, +\infty)$, então

$$\int_{-\infty}^{+\infty} f(x) dx = \lim_{a \to -\infty} \int_{a}^{0} f(x) dx + \lim_{b \to +\infty} \int_{0}^{b} f(x) dx.$$

Exemplo 4.1: Verifique se as integrais impróprias abaixo convergem ou divergem.

a)
$$I = \int_{-\infty}^{2} \frac{dx}{(4-x)^2}$$

Solução: Por definição $I = \lim_{a \to -\infty} \int_a^2 \frac{dx}{(4-x)^2}$.

• Calculando a integral indefinida $\int \frac{dx}{(4-x)^2}$

Pelo Método da substituição, fazendo $u=4-x\Rightarrow \frac{du}{dx}=-1\Rightarrow dx=-du$. Daí,

$$\int \frac{dx}{(4-x)^2} = \int -\frac{du}{u^2} = -\int u^{-2}du = -\frac{u^{-1}}{(-1)} + C = \frac{1}{4-x} + C.$$

• Calculando a integral definida $\int_a^2 \frac{dx}{(4-x)^2}$, pelo TFC:

$$\int_{a}^{2} \frac{dx}{(4-x)^{2}} = \frac{1}{4-x} \Big|_{a}^{2} = \frac{1}{2} - \frac{1}{4-a}.$$

• Calculando a integral imprópria:

$$I = \lim_{a \to -\infty} \int_{a}^{2} \frac{dx}{(4-x)^{2}} = \lim_{a \to -\infty} \left(\frac{1}{2} - \frac{1}{4-a} \right) = \frac{1}{2}.$$

Logo, a integral imprópria converge.

b)
$$I = \int_{-\infty}^{+\infty} \frac{dx}{x^2+3}$$
.

Solução: Por definição $I = \lim_{a \to -\infty} \int_a^0 \frac{dx}{x^2 + 3} + \lim_{b \to +\infty} \int_0^b \frac{dx}{x^2 + 3}$.

• Calculando a integral indefinida $\int \frac{dx}{x^2+3}$. Pela tabela das integrais:

$$\int \frac{dx}{x^2+3} = \frac{1}{\sqrt{3}} \operatorname{arctg} \frac{x}{\sqrt{3}} + C.$$

• Calculando as integrais definidas pelo TFC:

$$\int_{a}^{0} \frac{dx}{x^{2} + 3} = \frac{1}{\sqrt{3}} \operatorname{arctg} \frac{x}{\sqrt{3}} \Big|_{a}^{0} = \frac{1}{\sqrt{3}} \underbrace{\operatorname{arctg} 0}_{=0} - \frac{1}{\sqrt{3}} \operatorname{arctg} \frac{a}{\sqrt{3}} = -\frac{1}{\sqrt{3}} \operatorname{arctg} \frac{a}{\sqrt{3}}$$

e

$$\int_{0}^{b} \frac{dx}{x^{2} + 3} = \frac{1}{\sqrt{3}} \operatorname{arct} g \frac{x}{\sqrt{3}} \Big|_{0}^{b} = \frac{1}{\sqrt{3}} \operatorname{arct} g \frac{b}{\sqrt{3}} - \frac{1}{\sqrt{3}} \underbrace{\operatorname{arct} g 0}_{=0} = \frac{1}{\sqrt{3}} \operatorname{arct} g \frac{b}{\sqrt{3}}.$$

• Calculando a integral imprópria:

$$I = \lim_{a \to -\infty} \left(-\frac{1}{\sqrt{3}} \operatorname{arctg} \frac{a}{\sqrt{3}} \right) + \lim_{b \to +\infty} \left(\frac{1}{\sqrt{3}} \operatorname{arctg} \frac{b}{\sqrt{3}} \right) = -\frac{1}{\sqrt{3}} \cdot \left(-\frac{\pi}{2} \right) + \frac{1}{\sqrt{3}} \cdot \frac{\pi}{2} = \frac{\pi}{\sqrt{3}}.$$

Logo, a integral imprópria converge.

c)
$$I = \int_0^{+\infty} senx dx$$
.

Solução: Por definição $I = \lim_{b \to +\infty} \int_0^b senx \, dx$.

• Calculando a integral definida $\int_0^b senx \, dx$, pelo TFC:

$$\int_{0}^{b} senx \, dx = -cosx|_{0}^{b} = -cosb - (-cos \, 0) = -cos \, b + 1.$$

• Calculando a integral imprópria:

 $I = \lim_{b \to +\infty} \int_0^b senx \, dx = \lim_{b \to +\infty} (-\cos b + 1)$, e este limite não existe, pois quando $b \to +\infty$, cos b oscila entre -1 e 1.

Logo, a integral imprópria diverge.

Exemplo 4.2: Para quais valores de p a integral $\int_1^\infty \frac{dx}{x^p}$ converge? Quando a integral converge, qual é o seu valor? (Exercício)

Teorema 4.1: Sejam f e g funções contínuas em $[a, +\infty)$ tais que $0 \le f(x) \le g(x), \forall x \in [a, +\infty)$

- i) Se $\int_a^{+\infty} g(x)dx$ converge, então $\int_a^{+\infty} f(x)dx$ também converge.
- ii) Se $\int_a^{+\infty} f(x)dx$ diverge, então $\int_a^{+\infty} g(x)dx$ também diverge.

Exemplo 4.3. Mostre que a integral imprópria $\int_1^{+\infty} \frac{x}{x^3+1} dx$ converge.

Exemplo 4.4. Mostre que a integral imprópria $\int_1^{+\infty} \frac{\sqrt{2}}{\sqrt{1+x}} dx$ diverge.

4.2. Integrais impróprias com integrandos infinitos

Definição4.2: Integrais de funções que se tornam infinitas em um ponto dentro do intervalo de integração são integrais impróprias.

1) Se f é contínua em (a, b], então

$$\int_{a}^{b} f(x)dx = \lim_{r \to a^{+}} \int_{r}^{b} f(x)dx.$$
 (4.4)

2) Se f é contínua em [a, b), então

$$\int_{a}^{b} f(x)dx = \lim_{s \to b^{-}} \int_{a}^{s} f(x)dx.$$
 (4.5)

3) Se f é contínua em $[a, c) \cup (c, b]$, então

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$
 (4.6)

Observação:

- i. Em (4.4) e (4.5) se o limite é finito, a integral imprópria converge e o limite é o valor da integral imprópria. Caso contrário, a integral imprópria diverge.
- ii. Em (4.6), a integral do lado esquerdo converge se as duas integrais do lado direito também forem convergentes. Se isso não ocorre a integral diverge e não tem valor.
- iii. Usando (4.4) e (4.5), podemos escrever a equação (4.6) da seguinte forma:

$$\int_a^b f(x)dx = \lim_{s \to c^-} \int_a^s f(x)dx + \lim_{r \to c^+} \int_r^b f(x)dx.$$

Exemplo 4.5: Verifique a convergência das integrais abaixo.

a)
$$\int_{1}^{2} \frac{1}{2-x} dx$$

Solução: O integrando $f(x) = \frac{1}{2-x}$ é contínuo em [1,2), mais se torna infinito quando $x \to 2$. Daí,

$$\int_{1}^{2} \frac{1}{2-x} dx = \underbrace{\lim_{s \to 2^{-}} \int_{1}^{s} \frac{1}{2-x} dx}_{\text{Cálc Auxiliar}} = \lim_{s \to 2^{-}} (-\ln|2-x|) \Big|_{1}^{s}$$

$$= \lim_{s \to 2^{-}} (-\ln|2-s| + \ln|2-1|) = \lim_{s \to 2^{-}} (-\ln|2-s| + 0) = \infty.$$

Portanto, a integral diverge.

$$\mathbf{b}) \int_0^3 \frac{dx}{(x-2)^{2/3}}$$

Solução: O integrando $f(x) = \frac{1}{(x-2)^{2/3}}$ é contínuo em [0,2) \cup (2,3], mais se torna infinito quando $x \to 2$. Daí,

$$\int_0^3 \frac{dx}{(x-2)^{2/3}} = \int_0^2 \frac{dx}{(x-2)^{2/3}} + \int_2^3 \frac{dx}{(x-2)^{2/3}}.$$

Onde:

$$\int_{0}^{2} \frac{dx}{(x-2)^{2/3}} = \lim_{s \to 2^{-}} \int_{0}^{s} \frac{dx}{(x-2)^{2/3}} = \lim_{s \to 2^{-}} \left[3. (x-2)^{1/3} \right] \Big|_{0}^{s}$$
$$= \lim_{s \to 2^{-}} \left[3. (s-2)^{1/3} - 3. (0-2)^{1/3} \right] = -3. (-2)^{\frac{1}{3}} = 3\sqrt[3]{2}.$$

e

$$\int_{2}^{3} \frac{dx}{(x-2)^{2/3}} = \lim_{r \to 2^{+}} \int_{r}^{3} \frac{dx}{(x-2)^{2/3}}(x) dx = \lim_{r \to 2^{+}} \left[3. (x-2)^{1/3} \right]_{r}^{3}$$
$$= \lim_{r \to 2^{+}} \left[3. (3-2)^{1/3} - 3. (r-2)^{1/3} \right] = 3.$$

Daí,

$$\int_0^3 \frac{dx}{(x-2)^{2/3}} = 3\sqrt[3]{2} + 3.$$

Logo, a integral converge.

Cálculo auxiliar:

Item a) $\int \frac{1}{2-x} dx$. Pelo Método da substituição, fazendo $u = 2 - x \Rightarrow \frac{du}{dx} = -1 \Rightarrow dx = -du$. Daí,

$$\int \frac{1}{u}(-du) = -\int \frac{du}{u} = -\ln|2-x| + C.$$

Item b) $\int \frac{dx}{(x-2)^{2/3}}$. Pelo Método da substituição, fazendo $u=x-2 \Rightarrow du=dx$. Daí,

$$\int \frac{dx}{(x-2)^{2/3}} = \int \frac{du}{u^{2/3}} = \int u^{-2/3} du = \frac{u^{1/3}}{1/3} + C = 3.(x-2)^{1/3} + C.$$

c)
$$\int_0^1 \frac{dx}{\sqrt{1-x}}$$

d)
$$\int_0^4 \frac{dx}{(x-2)^{2/3}}$$

e)
$$\int_0^\infty e^x dx$$

f)
$$\int_{-\infty}^{0} e^{x} dx$$

Teorema 4.2: Sejam $f \in g$ funções contínuas em (a, b] tais que $0 \le f(x) \le g(x), \forall x \in (a, b]$.

- i) Se $\int_a^b g(x)dx$ converge, então $\int_a^b f(x)dx$ também converge.
- ii) Se $\int_a^b f(x)dx$ diverge, então $\int_a^b g(x)dx$ também diverge.

Exemplo 4.6. Mostre que a integral imprópria $\int_0^1 \frac{e^x}{\sqrt{x}} dx$ converge.

Exemplo 4.7. Mostre que a integral imprópria $\int_0^1 \frac{\sqrt{1+x^2}}{x} dx$ diverge.

4.4 Aplicando as integrais impróprias no cálculo de áreas

Exemplo 4.6: Encontrar a área sob o gráfico da curva $y = \left(\frac{1}{2}\right)^x$, $para x \ge 1$. Represente-a graficamente.

Exemplo 4.8: É possível encontrar um número finito que represente a área da região abaixo da curva $y = \frac{1}{\sqrt{x}}$, no intervalo (0,16].

1ª Lista de Exercícios - Unidade II

1. Investigar as integrais impróprias seguintes: (Verificar se converge ou diverge)

a) $\int_{-\infty}^{0} e^{2x+1} dx$	b) $\int_{-\infty}^{0} x. e^{-x^2} dx$	c) $\int_{7}^{+\infty} \frac{1}{(x-5)^2} dx$
d) $\int_1^{+\infty} \frac{dx}{\sqrt{x}}$	e) $\int_{e}^{\infty} \frac{dx}{x \ln^3 x} dx$	f) $\int_{-\infty}^{+\infty} \frac{4x^3}{(x^4+3)^2} dx$
$g) \int_{-\infty}^{0} \frac{e^x}{3 - 2e^x} dx$	$h) \int_0^1 \frac{1}{\sqrt{1-x}} dx$	i) $\int_{1}^{+\infty} re^{-rx} dx, r > 0$

- 2. Encontrar a área sob o gráfico da curva $y = \frac{2}{\sqrt{x}}$, para $x \ge 1$. Represente-a graficamente.
- 3. Seja a > 0. Mostre que a integral imprópria $\int_a^\infty \frac{dx}{x^p}$ converge se p > 1 e diverge se $p \le 1$.

Gabarito

Q1)	b) $-\frac{1}{2}$;	c) $\frac{1}{\pi}$;	d)	e) $\frac{1}{2}$;	$g)\frac{\log 3}{3}$	h)-2	i)
1	converge	converg	diverge	2	;converg	converg	diverg
a) $\frac{1}{2}$;conv	Converge	converg		converge	,converg	e	e

Referências:

FLEMMING, D. M. e GONÇALVES, M. B. Cálculo A. Editora McGraw Hill.

CLARK, Marcondes Rodrigues. Cálculo de funções de uma variável real/ Marcondes Rodrigues Clark, Osmundo Alves de Lima. – Teresina: EDUFPI, 2012.