

Huazhong University of Science & Technology

Electronic Circuit of Communications

School of Electronic Information and Commnications

Jiaqing Huang

Dynamic Characteristics)

Output

 V_{BB}

> Static Characteristics: No Load

If has load, i_c \uparrow , R_L has voltage, $v_{\it CE}$ changes

ightharpoonup Dynamic Characteristics: Curve between i_c & v_{CE}

L

Output

 i_b

> When resonant, we have 2 circuit equations:

$$\begin{cases} v_{BE} = -V_{BB} + V_{bm} \cos \omega t \\ v_{CE} = V_{CC} - V_{cm} \cos \omega t \end{cases}$$

Cancel cos wt, Obtain

$$i_c = g_c(v_{BE} - V_{BZ})$$
 Transfer Equation

$$\int v_{BE} = -V_{BB} + V_{bm} \frac{V_{CC} - v_{CE}}{V_{cm}}$$

Obtain Dynamic Curve on i_c - v_{CE} Plane:

$$\begin{aligned} & i_c = g_c \left[-V_{BB} + V_{bm} \frac{(V_{CC} - v_{CE})}{V_{cm}} - V_{BZ} \right] \\ & = \left[-g_c \left(\frac{V_{bm}}{V_{cm}} \right) \right] \left[v_{CE} - \frac{V_{CC}V_{bm} - V_{BZ}V_{cm} - V_{BB}V_{cm}}{V_{bm}} \right] \\ & = g_d(v_{CE} - V_0) \end{aligned}$$

$$= g_d(v_{CE} - V_0)$$

$$\text{Intercept: } V_0$$

$$\text{Slope: } g_d = -g_c \left(\frac{V_{bm}}{V_{cm}} \right) = -g_c \frac{V_{bm}}{I_{cm1}R_n}$$

Negative Slope: Negative Resistance,
AC Energy Generator

Method 1: Line with slope g_d , goes through B Point

 i_c - v_{CE} Dynamic Curve

 \triangleright Method 2: Line pass points A & Q

$$\begin{cases} v_{BE} = -V_{BB} + V_{bm} \cos \omega t \\ v_{CE} = V_{CC} - V_{cm} \cos \omega t \end{cases}$$

$$(v_{CEmin}, i_{cmax})$$

$$\begin{cases} v_{BE} = -V_{BB} + V_{bm} \Rightarrow i_{cmax} = g_c(-V_{BB} + V_{bm} - V_{BZ}) \\ v_{CE} = V_{CC} - V_{cm} = v_{CEmin} \end{cases}$$

$$(V_{CC}, I_Q)$$

$$\begin{cases} v_{BE} = -V_{BB} \Rightarrow i_{CEmin} \end{cases}$$

$$(V_{CC}, I_Q)$$

$$\begin{cases} v_{BE} = -V_{BB} \Rightarrow I_Q = g_c(-V_{BB} - V_{BZ}) \\ v_{CE} = V_{CC} \end{cases}$$

$$\begin{cases} v_{BE} = -V_{BB} \Rightarrow I_Q = g_c(-V_{BB} - V_{BZ}) \\ v_{CE} = V_{CC} \end{cases}$$

 i_c - v_{CE} Dynamic Curve

- ightarrow Only change R_p
 - \triangleright Only change V_{CC}
 - \triangleright Only change $V_{bm}(V_{BB})$

Load Characteristics

If $V_{\it CC}$, $V_{\it bm}(V_{\it BB})$ do not change, Current/Voltage/ P_o/η_c will change with R_p

RF Power Amplifier- R_p

RF Power Amplifier- R_p

- > Features of Working State:
 - \succ Under Voltage State: Constant Current, $P_o\downarrow$, $\eta_c\downarrow$, $P_c\uparrow$;
 - > Over Voltage State: Constant Voltage, $P_o \downarrow$, η_c max; Middle Stage
 - \succ Critical State: P_o max, η_c high; Last Stage

Best State

RF Power Amplifier (Dynamic Characteristics) - Vcc

 $> R_p$, $V_{bm}(V_{BB})$ no change, V_{CC} vs. Over Voltage, Under Voltage

RF Power Amplifier (Dynamic Characteristics) - V_{bm}

 $> R_v$, V_{BB} , V_{CC} no change, $V_{bm} vs$. Over Voltage, Under Voltage

Ex 4-1 For a RF power amplifier, it is not effective to improve P_o by means of increasing V_{bm} . Analyze its reason and how to improve P_o effectively?

Summary

> Dynamic Characteristics (A B Q)

Power Amplifier Circuit

RF Power Amplifier—DC Power Supply Circuit

RF Power Amplifier—Collector Bias Circuit

> Include Series-fed & Parallel-fed

Parallel-fed

RF Power Amplifier—Collector Bias Circuit (Series-fed)

>> Series-fed Circuit:

 V_{cc} + Parallel Resonance + Power Amplifier Transistor

RF Power Amplifier—Collector Bias Circuit (Parallel-fed)

Parallel-fed Circuit:

 $V_{\it CC}$ // Parallel Resonance // Power Amplifier Transistor

RF Power Amplifier—Collector Bias Circuit (Comparison)

> Series-fed vs. Parallel-fed

RF Power Amplifier—Collector Bias Equivalent Circuit

Fig. (a): DC Power Supply

 \triangleright Fig. (b): 1 \times Harmonic Frequency

 \triangleright Fig. (c) : $\geq 2 \times$ Harmonic Frequency

Collector Bias Equivalent Circuit for Different Frequency

RF Power Amplifier—Base Reverse Bias Circuit

- \triangleright Series-fed: V_{BB} + Source + Power Amplifier Transistor
- \triangleright Parallel-fed: V_{BB} // Source // Power Amplifier Transistor

RF Power Amplifier—Base Reverse Bias Circuit (Self-Bias)

- \triangleright Fig(a):Base current I_{BO} on R_b to generate reverse bias voltage V_{BB}
- ightharpoonup Fig(b):Emitter current I_{EO} on R_e to generate reverse bias voltage V_{BB}
 - > Self Reverse Bias + Negative FeedBack, (For Stability)

C Frequency Multiplier

Class C Frequency Multiplier

> Objectives

- Decrease frequency of master oscillators, increase stability of frequency
- Obtain higher frequency as quartz crystal oscillators have upper limits
- Decrease intercoupling between input & output frequency, increase stability of frequency
- Increase frequency deviation (FM, PM)
- Increase bandwidth

> Method

Class C Frequency Multiplier

Class C Frequency Multiplier-Principle

- > Similar as RF Power Amplifier: Class C, Reversely Biased
- > Different: Parallel Resonant on n Times of Input Frequency

Class C Frequency Multiplier

$$i_c = I_{c0} + I_{cm1} \cos \omega t + I_{cm2} \cos 2\omega t + \dots + I_{cmn} \cos n\omega t + \dots$$

Class C Frequency Multiplier—Time & Frequency Domain

Class C Frequency Multiplier

Class C Frequency Multiplier — Filtering

- > For C Power Amplifier, easy to remove high frequency
- > For C Frequency Multiplier, not easy to remove low frequency
- > Increase Filtering Performance:
 - (1) Increase Q
 - (2) Adopt Absorption Circuit
 - (3) Increase Selectivity of BPF

Class C Frequency Multiplier— θ_c

 \triangleright How to determine θ_c

Depend on Multiplier n

- \rightarrow n=2 θ_c round 60°
- \triangleright n=3 θ_c round 40°