Differential- und Integralrechnung, Wintersemester 2024-2025

9. Vorlesung

Definition

Seien $\emptyset \neq M \subseteq \mathbb{R}^n$ offen, $f: M \to \mathbb{R}$ und $j \in \{1, ..., n\}$. Ist f in allen Punkten von M partiell nach x_j differenzierbar, dann heißt f auf M partiell nach x_j differenzierbar und die Funktion $\frac{\partial f}{\partial x_j} \colon M \to \mathbb{R}$, die jedem Punkt $a \in M \mapsto \frac{\partial f}{\partial x_j}(a) \in \mathbb{R}$ zuordnet, die partielle Ableitung (erster Ordnung) von f nach x_j .

Definition

Seien $M \subseteq \mathbb{R}^n$ offen, $f: M \to \mathbb{R}$, $a \in M$ und $i, j \in \{1, ..., n\}$. Ist f auf M partiell nach x_i differenzierbar und ist $\frac{\partial f}{\partial x_i}: M \to \mathbb{R}$ in a partiell nach x_i differenzierbar, dann nennt man

$$\frac{\partial^2 f}{\partial x_j \partial x_i}(a) := \frac{\partial \left(\frac{\partial f}{\partial x_i}\right)}{\partial x_j}(a)$$

die partielle Ableitung zweiter Ordnung von f nach (x_i, x_i) in a.

Bezeichnung

$$\text{Ist } i=j, \text{ so setzt man } \frac{\partial^2 f}{\partial x_i^2}(a) := \frac{\partial^2 f}{\partial x_i \partial x_i}(a).$$

Definition: Seien $M \subseteq \mathbb{R}^n$ offen, $f: M \to \mathbb{R}$, $a \in M$. Die Funktion f nennt man in a zweimal partiell differenzierbar, falls alle partiellen Ableitungen zweiter Ordnung von f in a existieren. In diesem Fall nennt man die Matrix

$$H_{f}(a) := \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(a) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(a) & \dots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(a) \\ \vdots & \vdots & \dots & \vdots \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(a) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(a) & \dots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(a) \end{pmatrix}$$

die Hesse-Matrix von f in a.

Die Funktion f nennt man (auf M) zweimal partiell differenzierbar, falls f in allen Punkten von M zweimal partiell differenzierbar ist.

Definition

Seien $\emptyset \neq M \subseteq \mathbb{R}^n$ offen. Eine Funktion $f: M \to \mathbb{R}$ nennt man zweimal stetig partiell differenzierbar, in Zeichen $f \in C^2(M)$, falls f zweimal partiell differenzierbar ist und alle partiellen Ableitungen erster und zweiter Ordnung von f stetig sind.

Th6 (Schwarz)

Seien $\emptyset \neq M \subseteq \mathbb{R}^n$ offen und $f \in C^2(M)$. Dann ist

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}, \ \forall \ i, j \in \{1, ..., n\}.$$