1. Problem

Given the following set of functional dependencies on the attribute set $\{ABCDE\}$:

$$ACEB \to A$$
 (a)

$$CA \rightarrow BED$$
 (b)

$$EAC \rightarrow B$$
 (c)

$$A \to ED$$
 (d)

Which of the following are key candidates?

- (a) DA
- (b) DA
- (c) CD
- (d) EA
- (e) CA

Solution

- (a) False, because the closure does not contain all attributes: $\{DA\}^+ = \{DAE\}$.
- (b) False, because the closure does not contain all attributes: $\{DA\}^+ = \{DAE\}$.
- (c) False, because the closure does not contain all attributes: $\{CD\}^+ = \{CD\}$.
- (d) False, because the closure does not contain all attributes: $\{EA\}^+ = \{EAD\}$.
- (e) True, because the closure contains all attributes and no attribute can be removed from the key: $\{CA\}^+ = \{CABED\}$.

2. Problem

Given the following set of functional dependencies on the attribute set $\{ABCDE\}$:

$$AB \to CE$$
 (a)

$$EDAB \rightarrow A$$
 (b)

$$DC \to E$$
 (c)

$$DE \to AC$$
 (d)

$$DC \to EBA$$
 (e)

$$ADEB \rightarrow A$$
 (f)

For which functional dependency is a left reduction possible?

Solution

The following left sides can be reduced:

- (a) No reduction possible
- (b) Attribute E can be removed from the left side, because $\{DAB\}^+ = \{DABCE\}$ and E $\in \{DAB\}^+$.
- (c) No reduction possible
- (d) No reduction possible
- (e) No reduction possible
- (f) Attribute A can be removed from the left side, because $\{DEB\}^+ = \{DEBAC\}$ and A $\in \{DEB\}^+$.

3. Problem

Given the following set of functional dependencies on the attribute set $\{ABCDE\}$:

$$A \to E$$
 (a)

$$DECB \rightarrow A$$
 (b)

$$DBA \rightarrow C$$
 (c)

For which functional dependency is a right reduction possible?

Solution

The following right sides can be reduced:

- (a) No reduction possible
- (b) No reduction possible
- (c) No reduction possible