中山大学本科生期末考试

学年学期: 2019 学年第 2 学期

考试科目:《激光原理与器件》(A卷)

姓 名:

学	院/系:物理学院	学 号:		
考证	式方式: 开卷	年级专业:	2017 级光电信息科	学与工程
考证	式时长: 120 分钟	班 别:		
任识	果老师: 丘志仁、文锦辉			
警	示 《中山大学授予学士学位工作细则》	第八条:"	考试作弊者,不授予等	学士学位。"
	以下为试题区域,共二道大题 25 小题,总分	▶ 100 分,考生	请在答题纸上作答	
-,	填空题(请将正确答案编号及内容写在	答题纸上,	共12小题,每小题2分	,共24 分)
1.	单位立体角内,辐射体单位投影面积的转	福 射通量 密度	度 N 不依赖方向时,	我们说这表面
	按(1)定律辐射。(2)		定律描述黑体	总辐射为正比
	于温度的四次方。对于每一温度,必有一	·个发射辐射	为最大的波长,这个	波长可由(3)
	定律算出。			
2.	在 Q 开关激光器的理论描述和设计中,	$\Delta n_i / \Delta n_t$ 是	一个极为重要的参量	。其量值直接
	影响到(1)、(2)	以及	总体 (3)	.0
3.	由于气体粒子具有一系列(1)的	J量子能级,	而不象固体工作物质	所具备的那样
	宽的(2)带。故此,气体激光器	驱动方式很	少采用(3)	的方法,而
	多采用激励的方法。			
4.	短腔激光器可以获得(1)激光	冶输出,长 腔	医加短腔的复合腔也能	获得单纵模激
	光输出;其他情况相同情况下,(2)		腔激光器输出激光	谱宽更窄。
5.	啁秋脉冲指的是不同的(1)成	艺分按时间序	列处于脉冲的不同的	部分。而群速
	度色散补偿元件对啁秋脉冲产生(2)_	作	用。超短脉冲压缩色	散补偿技术有
	(3)			
6.	谐振腔中的每一个稳定的驻波就是腔的一	一个振荡模。	每个振荡模有一定的	J(1);
	一定的(2)(或者); -	一定的(3)	0	
7.	锁模激光产生的超短脉冲可以采用频域与	与时域的两种	中方法来分析,这两种	分析方法的描
	述函数分别为(1)		和	

	(2)
	唯一对应的获得。
8.	激光谐振腔的两个主要作用是提供(1)和(2)。
9.	Q开关染料是一种非线性吸收介质,染料置于腔内,在激励的初始阶段,染料吸收造成腔内
	高(1),此时腔呈"关闭"态;随着激励的增加,工作物质粒子数反转密度
	(2),形成超辐射的强荧光,使染料吸收趋于(3),突然变透明。
	腔呈"接通"态,激光振荡产生一个巨脉冲。
10.	在均匀加宽激光器中,几个满足阈值条件的纵模在振荡过程中互相(1),结果
	总是靠近(2)的一个纵模得胜,形成稳定振荡,其它(3)都被
	抑制而熄灭。理想情况下,均匀加宽稳态激光器的输出应是(4) 纵模的,其频
	率总是落在谱线中 心 附近。
11	如果一个纵向电光调制器没有起偏器,入射的自然光(1) 得到光强调制。原
11.	因是自然光没有固定的(2)方向,当它通过电光晶体后没有(3)位相
	差;
12	左; 如果引起加宽的物理因素对每一个原子都是等同的,则这种加宽称为(1) 加
12.	
	宽。(2)加宽是原子体系中每一个原子只对谱线内与它的表观中心频率相
	应的部分有贡献。自然加宽、碰撞加宽及晶格振动加宽均属(3)加宽类型。
	多普勒加宽和固体晶格缺陷属于(4)加宽。
二、	. 问答与综合题(请在答题纸上解答,共 13 小题,共 76 分)
1.	如下图带偏振器的调 Q 激光器原理图中,电光晶体上应加半波电压 $V_{\lambda/2}$ 还是四分之一波
	电压 V _{λ/4} , 为什么? (5分)
	工作物质 偏振器 1 电光晶体 偏振器 2
	词 Q 激光输出
	
	全反镜 V 全反镜
)	一台绘图业好谢业界绘山油长 1.55 mm 业

2. 一台掺饵光纤激光器输出波长 1.55 μm、光腰半径 0.5mm 的准直 TEM₀₀ 高斯光束。今用焦距为 20mm 的透镜聚焦,则当透镜至光腰的距离分别为 1000mm, 100mm 和 10mm 时,计算各聚焦光斑的大小

和位置。(7分)

3. 已知下图所示谐振腔腔长 L=2m,凹面镜曲率半径 R=2m,透镜焦距 F=2m。画出该谐振腔的等效透镜光路,算出腔内光束的往返矩阵,并且判断谐振腔的稳定性。(6分)

- 4. 简述 He-Ne 激光器和 CO_2 激光器的瓶颈效应分别是怎样形成的,各自采用什么方法来降低这个效应的影响?(6分)
- 5. 有一多纵模激光器纵模数是 500 个,激光器的腔长 1.5m,输出的平均功率为 1 瓦,认为各纵模振幅相等。(1)试求在锁模情况下,光脉冲的周期,宽度和峰值功率各是多少?(2)采用声光损耗调制元件锁模时,调制器上加电压 $V(t) = V_m \cos(\omega_m t)$,试问电压的频率是多大?(6 分)
- 6. 某一分子的能级 E_4 到三个较低能级 E_1 、 E_2 和 E_3 的自发跃迁几率分别为 $A_{43}=5*10^7 \text{s}^{-1}$, $A_{42}=1*10^7 \text{s}^{-1}$, $A_{41}=3*10^7 \text{s}^{-1}$,试求该分子 E_4 能级的自发辐射寿命 τ_4 。若 $\tau_1=5*10^{-7} \text{s}$, $\tau_2=6*10^{-9} \text{s}$, $\tau_3=1*10^{-8} \text{s}$,在对 E_4 连续激发且达到稳态时,试求相应能级上的粒子数比值 n_1/n_4 , n_2/n_4 和 n_3/n_4 ,并说明这时候在哪两个能级间实现了布居粒子数反转(6 分)
- 7. 一台 *Nd:YAG* 激光器谐振腔长度为 160mm,两个球面镜的曲率半径分别为 100mm 和 250mm; *Nd:YAG* 棒的长度为 80mm,折射率 1.82,其两个表面到两边腔镜的距离分别 为 20mm 和 60mm。若考虑热透镜效应,求该激光器稳定运转时对应的激光棒屈光度的 范围。(6分)
- 8. 下图是四块镜子组成的复合腔,其中斜的镜子是耦合输出镜子,推导该复合腔的纵模间距,并简述其单纵模选择工作原理(假设 $l_2 > l_1$)。(6 分)

复合腔选模

- 9. 激光增益介质单渡越放大与什么因素有关?对于某种激光增益介质,要提高单渡越增益放大的措施? (6分)
- 10. 三能级与四能级系统激光阈值抽运强度与什么因素有关? 关系如何? (6分)
- 11. 调 Q 激光器和锁模激光器都可使用饱和吸收体,它们之间的差别是什么? 半导体饱和吸收镜一般来说半导体的吸收有两个特征弛豫时间,带内载流子的相干时间(coherent carrier dynamics)及带内热平衡 (intraband thermalization) 弛豫时间和带间跃迁 (interband transition) 弛豫时间,它们在什么量级和起到什么作用? (6)
- 12. 振幅调制的锁模激光、频率调制的锁模激光和对碰锁模方法的激光系统中,输出激光的 频谱带宽与脉冲宽度乘积是多少? 其物理含义是什么? 理论上那种情况下获得脉冲宽 度最小? (6分)
- 13. 激光器理论极限带宽由什么因素引起的?如何获得单模激光器的超窄线宽或者接近理论极限? He-Ne 激光器理论极限带宽是什么量级? (6分)

(真空中光速 $c=3\times10^8$ [m/s]; 普朗克常数 $h=6.626\times10^{-34}$ [J•s])