Probabilistic Graphical Models Homework 1

Antonin Berthon
October 2018

1 Exercice 1: learning in discrete graphical model

Let z and x be two discrete random variables such that $p(z=m)=\pi_m$ and $p(x=k|z=m)=\theta_{k,m}$ with $k \in [1, K], m \in [1, M]$. The maximization of the log-likelihood (see Appendix) gives:

$$\forall m \in [1, M], \quad \hat{\pi}_m = \frac{n(z)_m}{n}$$

$$\forall m \in \llbracket 1, M \rrbracket, k \in \llbracket 1, K \rrbracket, \quad \hat{\theta}_{m,k} = \frac{n(z, x)_{m,k}}{n(z)_m}$$

where
$$n(z)_m = \sum_{i=1}^n \mathbb{1}_{(z^i = m)}$$
 and $n(z, x)_{m,k} = \sum_{i=1}^n \mathbb{1}_{(z^i = m)} \mathbb{1}_{(x^i = k)}$.

2 Exercice 2.1(a): LDA

We consider the following model:

$$y \sim \mathcal{B}(\pi)$$
 and $x|y = j \sim \mathcal{N}(\mu_j, \Sigma)$

The maximization of the log likelihood yields:

$$\hat{\pi} = \frac{\sum_{i=1}^{n} \mathbb{1}_{(y_i = 1)}}{n}, \quad \hat{\mu}_j = \frac{\sum_{i=1}^{n} \mathbb{1}_{(y_i = j)} x_i}{\sum_{i=1}^{n} \mathbb{1}_{(y_i = j)}} \text{ for } j = 0, 1, \quad \hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=0,1} \mathbb{1}_{(y_i = j)} (x_i - \hat{\mu}_j)^T (x_i - \hat{\mu}_j)$$

Also, p(y=1|x) is analogous to a logistic regression : $p(y=1|x) = \sigma(b^Tx + a)$ with:

$$a = \log \frac{\pi}{1 - \pi} - \frac{1}{2} \left(\mu_1^T \Sigma \mu_1 - \mu_0^T \Sigma \mu_0 \right), \quad b = \Sigma^{-1} (\mu_0 - \mu_1)$$

3 Exercice 2.5(a): QDA

We now consider different covariance matrix for each class:

$$u \sim \mathcal{B}(\pi)$$
 and $x|y=i \sim \mathcal{N}(\mu_i, \Sigma_i)$

The MLE estimators are now:

$$\hat{\pi} = \frac{\sum_{i=1}^{n} \mathbb{1}_{(y_i = 1)}}{n}, \quad \hat{\mu}_j = \frac{\sum_{i=1}^{n} \mathbb{1}_{(y_i = j)} x_i}{\sum_{i=1}^{n} \mathbb{1}_{y_i = j}} \text{ for } j = 0, 1, \quad \hat{\Sigma}_j = \frac{\sum_{i | y_i = j} (x_i - \hat{\mu_j})^T (x_i - \hat{\mu_j})}{\sum_{i=1}^{n} \mathbb{1}_{y_i = j}} \text{ for } j = 0, 1$$

Also we have $p(y=1|x) = \sigma(-\frac{1}{2}x^TMx + b^Tx + a)$ with

$$\boxed{M = \Sigma_1^{-1} - \Sigma_0^{-1}, \ b^T = \mu_1^T \Sigma_1^{-1} - \mu_0^T \Sigma_0^{-1}, \ a = \log \frac{\pi \sqrt{\det \Sigma_0}}{(1 - \pi) \sqrt{\det \Sigma_1}} - \frac{1}{2} \left(\mu_1^T \Sigma_1^{-1} \mu_1 - \mu_0^T \Sigma_0^{-1} \mu_0 \right)}$$

4 Dataset A

Classification error (in %)			
Model	Train	Test	
LDA	1.33	2.00	
Logistic reg. ^a	0.00	3.53	
Linear reg.	1.33	2.07	
QDA	0.67	2.00	

- arrhe logistic regression is compute using the IRLS algorithm with an error term = 10^{-3} .
- All four methods perform better on the training data than on the test data.
- The logistic regression seems to overfit the data (very low training error but relatively high test error). To avoid this we can add a regularization term.
- The QDA seems to overfit the data as well since it assumes a more complex distribution compared to the actual one.
- The LDA and linear methods have very similar performances.

5 Dataset B

Classification error (in %)			
Model	Train	Test	
LDA	3.00	4.15	
Logistic reg.	2.00	4.25	
Linear reg.	3.00	4.15	
QDA	1.33	2.00	

- Again, all four methods perform better on the training data than on the test data.
- The QDA performs better than the LDA since the hypothesis of equal variance do not hold here.
- Generative modelling with QDA outperforms the logistic regression in this context where the assumptions it makes hold and there is relatively few data to learn from.
- The LDA and Linear Regression perform similarly.

6 Dataset C

Classification error (in %)			
Model	Train	Test	
LDA	5.50	4.23	
Logistic reg.	4.00	2.30	
Linear reg.	5.50	4.23	
QDA	5.25	3.83	

- Here, all four methods performs better on the test data than on the training data. While this is surprising, it is probably due to a different proportion of data points found in the small bottom cluster that are easier to classify (1/4 of data points in training data vs. 1/3 in test data).
- As for the other data sets, the LDA and Linear method have identical performances which shows the similarity in their underlying assumptions.
- The Logistic Regression performs better than the other methods since it is the only method that do not rely on a Gaussian assumption, which do not hold here.

7 Appendix

7.1 Exercise 1: Discrete model

Let z and x be two discrete random variables such that $p(z=m)=\pi_m$ and $p(x=k|z=m)=\theta_{k,m}$ with $k\in [\![1,K]\!], m\in [\![1,M]\!]$. We also introduce the variables $(Z_m)_m$ and $(X_k)_k$ such that $Z_m=\mathbbm{1}_{z=m}$ and $X_k=\mathbbm{1}_{x=k}$

Given $((x_1, z_1), ..., (x_n, z_n))$ n i.i.d observations, the likelihood of such observations is:

$$p(\pi, \theta) = \prod_{i=1}^{n} \mathbb{P}_{\pi}(z = z_i) \mathbb{P}_{\theta}(x = x_i | z = z_i) = \prod_{i=1}^{n} \prod_{m=1}^{M} \left(\pi^{Z_m^i} \prod_{k=1}^{K} \theta_{m,k}^{X_k^i Z_m^i} \right)$$

We compute the log-likelihood:

$$\log p(\pi, \theta) = \sum_{i=1}^{n} \left(\sum_{m=1}^{M} Z_{m}^{i} \log \pi_{m} + \sum_{m=1}^{M} \sum_{k=1}^{K} X_{k}^{i} Z_{m}^{i} \log \theta_{m,k} \right)$$
$$= \sum_{m=1}^{M} n(z)_{m} \log \pi_{m} + \sum_{m=1}^{M} \sum_{k=1}^{K} n(z, x)_{m,k} \log \theta_{m,k}$$

where $n(z)_m = \sum_{i=1}^n \mathbb{1}_{(z^i = m)}$ and $n(z, x)_{m,k} = \sum_{i=1}^n \mathbb{1}_{(z^i = m)} \mathbb{1}_{(x^i = k)}$.

Since $\log p$ is strictly concave w.r to π_m and $\theta_{m,k}^{i=1}$ for all $k \in [1, K]$, $m \in [1, M]$, it has a unique global maximum on the set $\mathcal{D} = \left\{\pi, \theta \middle| \sum_{i=m}^{M} \pi_m = 1, \sum_{i=m}^{M} \sum_{i=1}^{K} \theta_{m,k} = 1\right\}$

The two terms above depend only of the $(\pi_m)_m$ and the $(\theta_{m,k})_{m,k}$ respectively, so we optimize then separatly:

$$\sum_{m=1}^{M} n(z)_m \log \pi_m = \sum_{m=1}^{M} n(z)_m \log \left(\frac{\pi_m}{n(z)_m} n \frac{n(z)_m}{n} \right)$$

$$= \sum_{m=1}^{M} n(z)_m \log \left(\frac{\pi_m}{n(z)_m} n \right) + C$$

$$\leq \sum_{m=1}^{M} n(z)_m \left(\frac{\pi_m}{n(z)_m} n - 1 \right) + C$$

with $C = \sum_{m=1}^{M} n(z)_m \log \frac{n(z)_m}{n}$ a constant. Also,

$$\sum_{m=1}^{M} n(z)_m \left(\frac{\pi_m}{n(z)_m} n - 1 \right) = n \underbrace{\left(\sum_{m=1}^{M} \pi_m \right)}_{=1} - \underbrace{\sum_{m=1}^{M} n(z)_m}_{=n} = 0$$

Therefore $\sum_{m=1}^{M} n(z)_m \log \pi_m \leq C$ with equality if $\forall m \in [1, M], \pi_m = \hat{\pi_m} = \frac{n(z)_m}{n}$ Since $\sum_{m=1}^{M} n(z)_m \log \pi_m$ is strictly concave in π_m , $\hat{\pi} = (\hat{\pi_m})_m$ is its unique global optimum. Similarly,

$$\sum_{m=1}^{M} \sum_{k=1}^{K} n(z, x)_{m,k} \log \theta_{m,k} = \sum_{m=1}^{M} \sum_{k=1}^{K} n(z, x)_{m,k} \log \left(\frac{\theta_{m,k}}{n(z, x)_{m,k}} n(z)_{m} \right) + C'$$

$$\leq \sum_{m=1}^{M} \sum_{k=1}^{K} n(z, x)_{m,k} \left(\frac{\theta_{m,k}}{n(z, x)_{m,k}} n(z)_{m} - 1 \right) + C'$$

with
$$C' = \sum_{m=1}^{M} \sum_{k=1}^{K} n(z, x)_{m,k} \log \left(\frac{n(z, x)_{m,k}}{n(z)_m} \right)$$

Since

$$\sum_{m=1}^{M} \sum_{k=1}^{K} n(z, x)_{m,k} = n$$

and

$$\sum_{m=1}^{M} \sum_{k=1}^{K} \theta_{m,k} n(z)_m = \sum_{m=1}^{M} n(z)_m \sum_{k=1}^{K} \theta_{m,k} = \sum_{m=1}^{M} n(z)_m = n$$

We have $\sum_{m=1}^{M} \sum_{k=1}^{K} n(z,x)_{m,k} \left(\frac{\theta_{m,k}}{n(z,x)_{m,k}} n(z)_m - 1 \right) = 0$ Therefore,

$$\sum_{m=1}^{M} \sum_{k=1}^{K} n(z, x)_{m,k} \log \theta_{m,k} \le C'$$

with equality if $\forall k \in [\![1,K]\!], \forall m \in [\![1,M]\!], \theta_{m,k} = \frac{n(x,z)_{m,k}}{n(z)_m}$, which is the optimal point because of the strict concavity of the objective function.

In conclusion, the MLE estimators for this model are:

$$\forall k \in [\![1,K]\!], \forall m \in [\![1,M]\!], \quad \widehat{\widehat{\pi_m}} = \frac{n(z)_m}{n}, \quad \widehat{\widehat{\theta_{m,k}}} = \frac{n(x,z)_{m,k}}{n(z)_m}$$

NB: Here we make the assumption that all classes (m, k) are found at least once in the data. If it is not the case for a given pair (m_0, k_0) , we simply consider the set $[1, M] \times [1, K] \setminus \{(m_0, k_0)\}$

7.2 Exercise 2.1: LDA model

We consider the following model:

$$y \sim \mathcal{B}(\pi)$$
 and $x|y=i \sim \mathcal{N}(\mu_i, \Sigma)$

Given $((x_1, y_1), ..., (x_n, y_n))$ n i.i.d observations, the log-likelihood of such observations is:

$$\log p(\pi, \mu_0, \mu_1, \Sigma) = \sum_{i=1}^{n} \left[\underbrace{y_i \log(\pi) + (1 - y_i) \log(1 - \pi)}_{i=1} - \log(\sqrt{(2\pi)^d |\Sigma|}) - \underbrace{\frac{1}{2} \sum_{j=0,1} (x_i - \mu_j)^T \Sigma^{-1} (x_i - \mu_j) \mathbb{1}_{(y_i = j)}}_{B} \right]$$

In order to maximize with respect to π , μ and Σ , we will consider respectively A, B and C.

• $\sum_{i=1}^{n} y_i \log(\pi) + (1 - y_i) \log(1 - \pi)$ is strictly concave in π because of the strict concavity of the log function. Therefore, the optimization problem

$$\max_{\pi} \quad \log p(\pi, \mu, \Sigma)$$
s.t. $\pi \in]0, 1[$

can be solved by setting the gradient of the objective function to 0:

$$\frac{\partial}{\partial \pi} \log p(\pi, \mu, \Sigma) = \frac{n(y)}{\pi} + \frac{n - n(y)}{1 - \pi} = 0 \Longleftrightarrow \boxed{\pi = \hat{\pi} = \frac{n(y)}{n}}$$

with n(y) the number of y^i equal to 1.

• The optimization process in order to find μ_j is the same for j=0 or j=1. Let's consider j=0:

$$\sum_{i=1}^{n} -\frac{1}{2} (x_i - \mu_0)^T \Sigma^{-1} (x_i - \mu_0) \mathbb{1}_{(y_i = 0)} = -\frac{1}{2} \sum_{i=1}^{n} Tr(\Sigma^{-1} (x_i - \mu_0) (x_i - \mu_0)^T) \mathbb{1}_{(y_i = 0)}$$

This function is differentiable and concave in μ_0 as a quadratic function with a negative leading coefficient.

Therefore, the problem

$$\max_{\mu_0} \log p(\pi, \mu_0, \mu_1, \Sigma)$$
s.t $\mu_0 \in [0, 1]$

admits a unique optimal solution $\hat{\mu_0}$ such that $\frac{\partial}{\partial \mu_0} \log p(\pi, \hat{\mu_0}, \mu_1, \Sigma) = 0$

$$\implies \sum_{i=1}^{n} \Sigma^{-1} (x_i - \hat{\mu_0}) \mathbb{1}_{(y_i = 0)} = 0 \iff \widehat{\mu_0} = \frac{1}{n(y)_0} \sum_{\substack{i=1 \ y_i = 0}}^{n} x_i$$

Respectively for μ_1 :

$$\hat{\mu}_1 = \frac{1}{n(y)_1} \sum_{\substack{i=1\\y_i=1}}^n x_i$$

• Since the MLE estimators $\hat{\pi}$, $\hat{\mu_0}$ and $\hat{\mu_1}$ that we found so far do not depend on Σ , the MLE estimator for Σ is found by maximizing $\log p(\hat{\pi}, \hat{\mu_0}, \hat{\mu_1}, \cdot)$, which is equivalent to the following problem:

$$\max_{\Sigma} -\frac{n}{2} \log \det \Sigma - \frac{1}{2} Tr(\Sigma^{-1} \hat{M})$$

s.t. $\Sigma \in \mathcal{S}^d_{++}$

where
$$\hat{M} = \sum_{i=1}^{n} \sum_{j=0,1} \mathbb{1}_{(y_i=j)} (x_i - \hat{\mu_j}) (x_i - \hat{\mu_j})^T$$

The objective function of this optimization problem is not concave because $A \mapsto -\log \det A$ is convex. However, we introduce $\Lambda = \Sigma^{-1}$. The problem is now equivalent to

$$\begin{aligned} \max_{\Lambda} \quad & \frac{n}{2} \log \det \Lambda - \frac{1}{2} Tr(\Lambda \hat{M}) \\ \text{s.t.} \quad & \Lambda \in \mathcal{S}_{++}^d \end{aligned}$$

where the objective function is concave as the sum of a concave function and a linear function, and the feasible set is convex.

Therefore, it admits an optimal point in $\hat{\Lambda}$ such that, with $f: A \mapsto \frac{n}{2} \log \det A - \frac{1}{2} Tr(A\hat{M})$,

$$\frac{\partial}{\partial \Lambda} f(\hat{\Lambda}) = \frac{n}{2} \hat{\Lambda}^{-1} - \frac{1}{2} \hat{M} = 0 \iff \hat{\Lambda}^{-1} = \frac{1}{n} \hat{M}$$

Therefore,

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=0,1} \mathbb{1}_{(y_i=j)} (x_i - \hat{\mu}_j)^T (x_i - \hat{\mu}_j)$$

NB: here we assume that \hat{M} is invertible.

Link to logistic regression

Here we detail how, in such a model, p(y = 1|x) compares to a logistic regression. We express p(y|x) by keeping only the terms that depend on y:

$$p(y|x) = p(y)p(x,y)$$

$$\propto \pi^{y}(1-\pi)^{1-y} \exp\left(-\frac{1}{2}(x-\mu_{1})^{T}\Sigma^{-1}(x-\mu_{1})y - \frac{1}{2}(x-\mu_{0})^{T}\Sigma^{-1}(x-\mu_{0})(1-y)\right)$$

$$\propto \pi^{y}(1-\pi)^{1-y} \exp\left(-\frac{1}{2}y(2(\mu_{0}-\mu_{1})^{T}\Sigma^{-1}x + \mu_{1}^{T}\Sigma^{-1}\mu_{1} - \mu_{0}^{T}\Sigma^{-1}\mu_{0})\right)$$

$$\propto \exp(ya + yb^{T}x)$$

with

$$a = \log \frac{\pi}{1-\pi} - \frac{1}{2}(\mu_1 \Sigma^{-1} \mu_1 - \mu_0 \Sigma^{-1} \mu_0), \text{ and } b = -(\Sigma^{-1})^T (\mu_0 - \mu_1)$$

Finally, we obtain p(y = 1|x) by normalizing (thus cancelling all the terms of the product that are constant in y):

$$p(y = 1|x) = \frac{\exp(a + b^T x)}{1 + \exp(a + b^T x)} = \sigma(a + b^T x)$$

7.3 Exercise 2.5: QDA model

We consider different covariance matrix for each class:

$$y \sim \mathcal{B}(\pi)$$
 and $x|y=j \sim \mathcal{N}(\mu_i, \Sigma_i)$

Given $((x_1, y_1), ..., (x_n, y_n))$ n i.i.d observations, the log-likelihood of such observations is:

$$\log p(\pi, \mu_0, \mu_1, \Sigma) = \sum_{i=1}^n \left[y_i \log(\pi) + (1 - y_i) \log(1 - \pi) - \mathbb{1}_{(y_i = 1)} \left(\log(\sqrt{(2\pi)^d |\Sigma_1|}) + \frac{1}{2} (x_i - \mu_1)^T \Sigma_1^{-1} (x_i - \mu_1) \right) - \mathbb{1}_{(y_i = 0)} \left(\log(\sqrt{(2\pi)^d |\Sigma_0|}) + \frac{1}{2} (x_i - \mu_0)^T \Sigma_0^{-1} (x_i - \mu_0) \right) \right]$$

• The optimization with respect to π is the same as in the Linear Discriminant Analysis, *i.e*:

$$\hat{\pi} = \frac{n(y)}{n}$$

• The same goes for each μ_j :

For
$$j = 0, 1$$
, $\hat{\mu}_j = \frac{1}{n(y)_j} \sum_{\substack{i=1 \ y_i = j}}^n x_i$

• Again, the MLE estimators $\hat{\pi}$, $\hat{\mu_0}$ and $\hat{\mu_1}$ that we found so far do not depend of Σ_0 and Σ_1 , we can compute $\hat{\Sigma}_0$ (resp. $\hat{\Sigma}_1$) by maximizing $-\log p(\hat{\pi}, \hat{\mu_0}, \hat{\mu_1}, \cdot, \Sigma_1)$ (resp. $-\log p(\hat{\pi}, \hat{\mu_0}, \hat{\mu_1}, \Sigma_0, \cdot)$), under the condition that both $\hat{\Sigma}$ do not depend of each other. Because of the symmetry of the terms depending on the Σ_j in the log-likelihood function, the optimization process in order to find each $\hat{\Sigma}_j$ is the same for both j=0 and j=1. For j=0, we have the following optimization problem:

$$\max_{\Sigma_0} -\frac{n}{2} \log \det \Sigma_0 - \frac{1}{2} Tr(\Sigma_0^{-1} \hat{M}_0)$$

s.t.
$$\Sigma_0 \in \mathcal{S}_{++}^d$$

where
$$\hat{M}_0 = \sum_{\substack{i=1\\ y_i=0}}^n (x_i - \hat{\mu_0})(x_i - \hat{\mu_0})^T$$
.

Similarly to the LDA, we introduce $\Lambda_0 = \Sigma_0^{-1}$ so that the objective function $f_0 : A \mapsto \frac{n(y)_0}{2} \log \det A - \frac{1}{2} Tr(A\hat{M}_0)$ is differentiable and convex. Since the feasible set \mathcal{S}_{++}^d is also convex, we compute $\hat{\Lambda}$ the global maximum with:

$$\frac{\partial}{\partial \Lambda_0} f_0(\hat{\Lambda_0}) = \frac{n(y)_0}{2} \hat{\Lambda_0}^{-1} - \frac{1}{2} \hat{M_0} = 0 \iff \hat{\Lambda_0}^{-1} = \frac{1}{n(y)_0} \hat{M_0}$$

Hence,

$$\widehat{\Sigma_0} = \frac{1}{n(y)_0} \sum_{\substack{i=1\\y_i=0}}^n (x_i - \hat{\mu_0})^T (x_i - \hat{\mu_0}) \text{ and similarly } \widehat{\Sigma_1} = \frac{1}{n(y)_1} \sum_{\substack{i=1\\y_i=1}}^n (x_i - \hat{\mu_1})^T (x_i - \hat{\mu_1})$$

Then, we have:

$$p(y|x) \propto \pi^{y} (1-\pi)^{1-y_{i}} \exp\left(-\frac{y}{2}(x-\mu_{1})^{T} \Sigma_{1}^{-1}(x-\mu_{1}) - \frac{1-y}{2}(x-\mu_{0})^{T} \Sigma_{0}^{-1}(x-\mu_{0})\right)$$

$$\cdot \exp\left(-\frac{y}{2} \log \det \Sigma_{1} - \frac{1-y}{2} \log \det \Sigma_{0}\right)$$

$$\propto \pi^{y} (1-\pi)^{1-y_{i}} \exp\left(-\frac{1}{2} y x^{T} (\Sigma_{1}^{-1} - \Sigma_{0}^{-1}) x + y (\mu_{1}^{T} \Sigma_{1}^{-1} - \mu_{0}^{T} \Sigma_{0}^{-1}) x - \frac{1}{2} y (\mu_{1}^{T} \Sigma_{1}^{-1} \mu_{1} - \mu_{0}^{T} \Sigma_{0}^{-1} \mu_{0})\right)$$

$$\cdot \exp\left(-\frac{y}{2} \log \frac{\det \Sigma_{1}}{\det \Sigma_{0}}\right)$$

$$\propto \exp\left(-\frac{1}{2} y x^{T} M x + y b^{T} x + y a\right)$$

where

$$M = \Sigma_1^{-1} - \Sigma_0^{-1}, \quad b^T = \mu_1^T \Sigma_1^{-1} - \mu_0^T \Sigma_0^{-1}, \quad a = \log \frac{\pi \sqrt{\det \Sigma_0}}{(1 - \pi)\sqrt{\det \Sigma_1}} - \frac{1}{2} \left(\mu_1^T \Sigma_1^{-1} \mu_1 - \mu_0^T \Sigma_0^{-1} \mu_0\right)$$

Finally,

$$p(y=1|x) = \frac{\exp(-\frac{1}{2}x^TMx + b^Tx + a)}{1 + \exp(-\frac{1}{2}x^TMx + b^Tx + a)} = \sigma(-\frac{1}{2}x^TMx + b^Tx + a)$$