Всероссийская олимпиада школьников по физике

11 класс, зональный этап, 1998/99 год

Задача 1. На горизонтальном столе на расстоянии $l_0 = 50$ см друг от друга находятся бруски массами m и 12m, к которым прикреплена пружина (рис.). Вначале пружина не деформирована. Затем бруски раздвинули вдоль поверхности стола, увеличив расстояние между ними на 32 см, и отпустили без

начальной скорости. На сколько и как изменится (увеличится или уменьшится) по сравнению с l_0 расстояние между брусками после прекращения движения? Считать, что бруски и ось пружины находятся всегда на одной прямой. Известно, что подвешенный на этой пружине брусок массой m растягивает её на a=30 см. Коэффициент трения скольжения между брусками и столом $\mu=0,1$.

мэ 2 вн кэтишанэм 🗸

Задача 2. Рабочим веществом тепловой машины являются ν молей идеального одноатомного газа, которые совершают замкнутый цикл, состоящий из линейной зависимости давления p от объёма V на участке 1-2, изобарического процесса 2-3 и линейной зависимости давления от объёма 3-1 (рис.). Величины p_0 , V_0 считать известными. Найдите:

- 1) объём V_3 и температуру T_3 в точке 3;
- 2) работу A газа за цикл;
- 3) коэффициент полезного действия тепловой машины.

$$\frac{8}{52} = n \ (5 \ ; 0 \ d \frac{5}{6}) = A \ (5 \ ; \frac{6}{3} \frac{0 \ d }{3}) = ET \ , 0 \ \frac{5}{6} = EV \ (1)$$

Задача 3. Параллельные проводящие неподвижные шины расположены в горизонтальной плоскости на расстоянии l друг от друга (рис.). Однородное магнитное поле индукцией B направлено вертикально. К шинам подсоединена катушка индуктивностью L. По шинам может скользить без трения проводящая перемычка массой m, оставаясь перпендикулярной шинам и не теряя с ними электрического контакта. В некоторый момент перемычке сообщают скорость v_0 вдоль шин.

- 1) Опишите движение перемычки и найдите характерное время её движения.
- 2) На какое максимальное расстояние сможет удалиться перемычка от первоначального положения?

Сопротивлением катушки, шин, перемычки и подводящих проводов пренебречь.

$$\boxed{\frac{\overline{J_m} V_{0^{0}}}{I B} = A \ (2 \ ; \frac{\overline{J_m}}{\overline{c_1 c_2}} \sqrt{\pi c} = T \ (1)}$$

ЗАДАЧА 4. На гладкой горизонтальной непроводящей поверхности расположены три небольших по размерам шарика массой m и зарядом q каждый, связанные двумя нерастяжимыми непроводящими нитями длиной a каждая. Шарики удерживают в положении, когда нити составляют угол, близкий к 180° (рис.). Затем шарики отпускают. Найдите период свободных малых колебаний системы.

$$\frac{\varepsilon_{pMb}}{\zeta_{pAb}} \sqrt{\pi \zeta} = T$$

Задача 5. Электрическая цепь состоит из источника ЭДС \mathscr{E} , резистора сопротивлением R, сверхпроводящих катушек индуктивностями L_1 и L_2 , конденсатора ёмкостью C и ключей K_1 и K_2 (рис.). Ключ K_1 замыкают. После достижения в цепи установившегося режима замыкают ключ K_2 и тут же размыкают ключ K_1 .

Найдите:

- 1) силу тока, протекающего через катушку L_1 в установившемся режиме после замыкания ключа K_1 ;
- 2) максимальное напряжение на конденсаторе после размыкания ключа K_1 .

$$\boxed{\frac{L_1 L_2}{(cL_1 + L_2)} \sqrt{\frac{3}{R}} = 0U \text{ (2 } ; \frac{3}{R} = 0I \text{ (1)}$$

