A Study On Statistical Models Of Credit Risk

Ajay Pirabaharan, Alexander Watson, Jake Denton, Jinghan XI, Liping Wen, Mingyang LI

Introduction

Context

- A credit score is a metric which acts as a measure of an individual's risk of defaulting (failing to repay) on a loan.
- Everyone over the age of 18 has a credit score, which not only determines whether or not a loan application is approved but also how much it will cost to borrow the money (interest).
- So, what **factors** are considered when a credit score is evaluated?

Motivation

- Organisations need to define the specific set of rules that classifies a loan as "bad".
- Basel Committee on Banking Supervision defines default essentially as a delinquency stage of 90 days or more.

Structure

- The variables are studied in order to get a preliminary understanding and then the **data is cleaned**.
- Models themselves are fitted and analysed, including Logistic Regression, Basic Decision Trees and Random Forests.
- Compare to existing models used in industry, how the models may be appropriate and how to improve the models.

Understanding the data

Variable	1	2	3	4	5	6	7	8	9	10	11
Min	0	0	0	0	0	0	0	0	0	0	0
1st Q	0	0.03	41	0	0.2	3400	5	0	0	0	0
Median	0	0.15	52	0	0.4	5400	8	0	1	0	0
Mean	0.06	6.05	52.3	0.42	353	6670	8.45	0.27	1.02	0.24	0.76
3rd Q	0	0.56	63	0	0.9	8249	11	0	2	0	1
Max	1	50708	109	98	329664	3008750	58	98	54	98	20
N/A's	0	0	0	0	0	29731	0	0	0	0	3924

Table 1: The Summary Data for all variables.

- Define the **response variable** as the number of times a person experienced 90 days past due delinquency or worse (1).
- Observe that the **mean** for this variable is 0.06, implying the dataset is **imbalanced**.
- 29731 observations which have at least one variable **missing** belongs to monthly income (6) and the number of dependents (11).
- The missing data will be replaced by the **median values**.
- The median is a sensible prediction as it **isn't skewed** by unusually small/large data.

Cleaning the Data

The **Pearson correlation** between the variables is shown in the table.

All correlations **higher than 0.4** are explored in further detail.

Variables	1	2	3	4	5	6	7	8	9	10	11
1	1	0.24	-0.1	0.12	0.06	-0.02	-0.03	0.11	-0.02	0.1	0.04
2	0.24	1	-0.26	0.11	0.06	-0.03	-0.17	0.1	-0.08	0.09	0.08
3	-0.1	-0.26	1	-0.05	-0.08	0.03	0.18	-0.05	0.06	-0.04	-0.21
4	0.12	0.11	-0.05	1	-0.03	-0.01	-0.05	0.98	-0.03	-0.98	0
5	0.06	0.16	-0.08	-0.03	1	-0.05	0.35	-0.05	0.52	-0.05	0.1
6	-0.02	-0.03	0.03	-0.01	-0.05	1	0.09	-0.01	0.14	-0.01	0.06
7	-0.03	-0.17	0.18	-0.05	0.35	0.09	1	-0.07	0.42	-0.06	0.04
8	0.11	0.1	-0.05	0.98	-0.05	-0.01	-0.07	1	-0.04	0.99	-0.01
9	-0.02	-0.08	0.06	-0.03	0.52	0.14	0.42	-0.04	1	-0.04	0.13
10	0.1	0.09	-0.04	0.98	-0.05	-0.01	-0.06	0.99	-0.04	1	-0.01
11	0.04	0.08	-0.21	0	0.1	0.06	0.04	-0.01	0.13	-0.01	1

Table 2.3: The Pearson correlation between each of our variables.

- Observation of Age being 0 is initially removed.
- **High correlation** between the variables representing the number of times someone pays a specified number of days past due (4,8,10).
- This is caused by **cluster of observations** with high values of 98 and **removed** to lower correlation.
- Values of the variable representing the Revolving Utilization above 1 are changed to 1.
- This is due to restriction that the max can be 1 from the description of the variable.

Logistic Regression

1. Model Introduction

Logistic Function:
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_{10} X_{10}}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_{10} X_{10}}}$$

Logistic Regression Model:
$$\log \left(\frac{p(X)}{1 - p(X)} \right) = \beta_0 + \beta_1 X_1 + \dots + \beta_{10} X_{10}$$

The Likelihood Function:
$$l(\boldsymbol{\beta}) = \prod_{i:y_{i=1}} p(x_i) \prod_{i':y_{i'=1}} (1 - p(x_{i'}))$$

Predictors: $X_1, X_2, ..., X_{10}$,

Coefficients: $\beta_0, \beta_1, \dots, \beta_{10}$,

Response Variable: Y=0 or 1

The probability of default: p(X) = p(Y = 1|X)

Log-Odds: $\log \left(\frac{p(X)}{1 - p(X)} \right)$

2. Checking the assumptions

- The observations should be independent of each other.
- There should be little or no multicollinearity between the independent variables.
- The independent variables should be linearly related to the log odds.
- A large sample size.

Our data satisfies these 4 assumptions.

3. The fitted Logistic Regression model

Intercept& predictors	Estimate	Odds ratio	z value
(Intercept)	-3.407	0.033	-50.698
Revolving Utilization Of Unsecured Lines	2.049	7.759	49.017
age	-0.018	0.982	-16.177
Number Of Time 30.59 Days Past Due Not Worse	0.426	1.531	31.809
DebtRatio	-3.184e-05	0.99997	-2.471
MonthlyIncome	-2.259e-05	0.99998	-6.185
NumberOfOpenCreditLinesAndLoans	0.031	1.032	10.108
Number Of Times 90 Days Late	0.702	2.017	34.766
NumberRealEstateLoansOrLines	0.097	1.102	7.486
Number Of Time 60.89 Days Past Due Not Worse	0.598	1.818	21.782
NumberOfDependents	0.036	1.037	3.007

Preserving all the predictors, fit a model using **training data** (70% of the cleaned data), the summary findings are shown. The estimated coefficient > 0, or the odds ratio > 1: an **increase in the predictor** is associated with an **increase in the probability of default.**

3. The fitted Logistic Regression model

According to the absolute value of the z statistic, the importance of the predictors are shown in the figure.

The top 4 important predictors are:

- RevolvingUtilizationOfUnsecuredLines,
- NumberOfTimes90DaysLate,
- NumberOfTime30.59DaysPastDueNotWorse,
- NumberOfTime60.89DaysPastDueNotWorse,

The last three of which all belong to the late payment history.

4. Predictive Ability

Use the test data (30% of the cleaned data) to **predict** the probability of default.

Threshold

Probability → Binary Variable → Confusion Matrix → ROC Curve → Threshold, Sensitivity, Specificity

Probability threshold: an observation is predicted as default, i.e. Y=1, if the probability exceeds the threshold. **Confusion matrix**:

Confusion Matrix	True 0	True 1
Predicted 0	TN	FN
Predicted 1	FP	TP

Y=1 is called Positive, denoted by P; Y=0 is called Negative, denoted by N, Correct classifications on the diagonal.

Two performance metrics:

- **Sensitivity (TPR)** = True Positive Rate: TP/(TP+FN)
- **1-specificity (FPR)**=False Positive Rate: FP/(FP+TN)

(Accuracy does not make much sense in this highly unbalanced data set.)

4. Predictive Ability

ROC curve: created by plotting TPR against FPR for various thresholds.

Select a threshold of 0.5:

	True 0	True 1
Predict 0	41624	2481
Predict 1	331	482

• Sensitivity = 16.3% & Specificity = 99.2%

Choose the point on the top left corner suggesting the threshold of 0.06336881:

	True 0	True 1
Predict 0	32578	683
Predict 1	9377	2280

Sensitivity = 76.9% & Specificity = 77.6%

Since ROC curve does not deal with the different cost between the false negatives and false positives, **more analysis is needed**, if the specific weight of the cost was given.

5. Methods tried to improve the model and compared with the fitted model

- Principal Component Analysis (PCA)
 After using the PCA, there are still 8 predictors, with the model becoming much harder to interpret.
- Altering the training data set
 Weight the 1s and 0s in the training data, such that n times as many 0s as 1s, n=1,2,...14, n=5 is chosen to be compared with the fitted model.

Comparison:

The ROC curves are almost the same, and the metrics are very close.

Models	Sensitivity	Specificity
The fitted model	76.9%	77.6%
PCA	76.2%	78.5%
Altered Data	78.5%	76.5%

ROC curves of altering the data or not

Decision Trees and Gini Impurity

- Root→Decision→Leaf
- Data passed through tree based upon conditions at each decision node.
- At the leaf node, the **prediction** is given by the dominant class of the response variable in the group.
- **Aim**: Find a condition that splits the two classes of data into the purest subsets.

Need to maximise the greedy algorithm!

$$G = \sum_{i=1}^{C} p(i) (1 - p(i))$$
 $Gini\ Gain = G_{before} - \sum_{i=1}^{C} Proportion * G_{after}$

Tree 1:

- Fitted using 60% representative sample
- Only one condition for the prediction
- Not accurate with 1s (low sensitivity 17%)
- Accurate with 0s (high specificity 99%)
- 5.6% offered loan have delinquency

	True 0	True 1
Predict 0	27696	1640
Predict 1	274	336

Tree 2:

- Fitted using balanced data (7500 0/1s)
- Up to three variables conditioned upon
- Improved sensitivity (85.2%)
- Reasonable specificity (67.6%)
- 1.5% offered loan have delinquency

	True 0	True 1
Predict 0	18912	291
Predict 1	9058	1685

Random Forest

Random Forest consists of a **multitude of decision trees** that operate as an ensemble, with the data passing through all the trees individually. The output is based upon the number of trees that predict value 1 or value 0.

Variables	Mean decrease in Gini coefficient
RevolvingUtilizationOfUnsecuredLines	968.03
Age	103.95
NumberOfTime30.59DaysPastDueNotWorse	508.37
DebtRatio	17.58
MonthlyIncome	21.03
NumberOfOpenCreditLinesAndLoans	44.09
NumberOfTimes90DaysLate	516.99
NumberRealEstateLoansOrLines	17.13
NumberOfTime60.89DaysPastDueNotWorse	231.29
NumberOfDependents	2.26

X dataset N, features N, features TREE #2 TREE #3 TREE #1 TREE #4 CLASS D CLASS II CLASS C MAJORITY VOTING FINAL CLASS 100 trees are True 0 True 1 used, each Predict 0 19554 326 allowed up to 8 leaf nodes at first. Predict 1 8416 1650 (Model 1)

Advantages:

- •Solving both classification and regression problems
- •The model is also good at estimating missing data values

Disadvantages:

•A black box model

	True 0	True 1
Predict 0	19596	289
Predict 1	8347	1687

100 trees are used, each allowed up to 20 leaf nodes at first. (Model 2)

Comparing the Models

Model	Sensitivity %	Specificity %
Logistic	76.9	77.6
Decision Tree	85.3	67.6
Random Forest	85.4	70.1

Importance Of Variables

- Most important predictors are proportion of available credit used and payment history in all models
- Logistic regression predictions are influenced more by the other predictors

Other Considerations

- White-box/black-box?
- Probability or prediction?
- Number of variables utilised

Discussions

Model Issues:

- Imbalanced data... Combine variables?
- Variables only take 2 years of payment history into account
- Alternatives for variables/other variables to consider?

How Do The Models Compare To FICO?

- Payment History (35%)
- Amounts Owed (30%)
- Other aspects...

Further Research

How to improve our models

- Combining the variables for the number of times someone is 90 days late with serious delinquency
- Increasing the number of 1s in the dataset
- Weighting 0 observations less than the 1s (using for example grid search)
- Cost function

Other popular models

- Neural Networks
- Support Vector Machine

Conclusion

Aim

• To build and analyse algorithms which are able to predict the probability that an individual will default on a loan.

Method and outcome

- Decision Tree (85.3% sensitivity and 67.6% specificity).
- Random Forest (85.4% sensitivity and 70.1% specificity).
- Logistic Regression (76.9% sensitivity and 77.6% specificity with a threshold of 0.06336881).
- Logistic Regression gives more information regarding a single individual's risk and has flexibility in picking a balanced sensitivity and specificity.

The Most Important Variables

- The revolving utilisation variable.
- The variables which represent history of late payments.

How could models be improved

- Combining the variables for delinquency with 90 days late payments
- Adding variables
- Considering alternatives to variables like age