In [1]:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

In [2]:

df = pd.read_csv("https://raw.githubusercontent.com/jackiekazil/data-wrangling/master/data/
df.head()

Out[2]:

	Indicator	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN
2	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Andorra	Female	28	28.0	NaN
3	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Andorra	Both sexes	23	23.0	NaN
4	Life expectancy at birth (years)	Published	2012	Eastern Mediterranean	High- income	United Arab Emirates	Female	78	78.0	NaN
4										•

In [4]:

df1 = pd.read_csv("https://raw.githubusercontent.com/kjam/data-wrangling-pycon/master/data/
df1.head()

Out[4]:

	STATION	STATION_NAME	DATE	PRCP	SNWD	SNOW	TMAX	TMIN	WDF
0	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310101	46	-9999	-9999	-9999	-11	-999
1	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310102	107	-9999	-9999	50	11	-999
2	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310103	-9999	-9999	-9999	28	11	-999
3	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310105	13	-9999	-9999	39	11	-999
4	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310106	-9999	-9999	-9999	0	-22	-999
5 r	5 rows × 21 columns								
4									•

Question1 - Get the metadata from the above files

In [6]:

```
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4656 entries, 0 to 4655
```

Data columns (total 12 columns): Indicator 4656 non-null object **PUBLISH STATES** 4656 non-null object Year 4656 non-null int64 WHO region 4656 non-null object World Bank income group 4656 non-null object Country 4656 non-null object 4656 non-null object Sex Display Value 4656 non-null int64 Numeric 4656 non-null float64 0 non-null float64 Low 0 non-null float64 High 0 non-null float64 Comments

dtypes: float64(4), int64(2), object(6)

memory usage: 436.6+ KB

```
In [7]:
```

```
df1.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 117208 entries, 0 to 117207
Data columns (total 21 columns):
STATION
                117208 non-null object
STATION NAME
                117208 non-null object
                117208 non-null int64
DATE
PRCP
                117208 non-null int64
                117208 non-null int64
SNWD
                117208 non-null int64
SNOW
TMAX
                117208 non-null int64
                117208 non-null int64
TMIN
WDFG
                117208 non-null int64
                117208 non-null int64
PGTM
                117208 non-null int64
WSFG
WT09
                117208 non-null int64
                117208 non-null int64
WT07
WT01
                117208 non-null int64
                117208 non-null int64
WT06
                117208 non-null int64
WT05
                117208 non-null int64
WT04
WT16
                117208 non-null int64
WT08
                117208 non-null int64
WT18
                117208 non-null int64
                117208 non-null int64
WT03
dtypes: int64(19), object(2)
```

memory usage: 18.8+ MB

Question2 - Get the rows name from the above files

```
In [8]:
np.array(df.index)
Out[8]:
                       2, ..., 4653, 4654, 4655], dtype=int64)
array([
          0,
                1,
In [9]:
np.array(df1.index)
Out[9]:
                             2, ..., 117205, 117206, 117207], dtype=int64)
array([
            0,
                     1,
```

Question3 - Change any column name from the above file

In [10]:

df.rename(columns={'Indicator':'Indicator_Id'}).head()

Out[10]:

	Indicator_Id	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Lo
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	Nε
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	Nε
2	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Andorra	Female	28	28.0	Nε
3	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Andorra	Both sexes	23	23.0	Nε
4	Life expectancy at birth (years)	Published	2012	Eastern Mediterranean	High- income	United Arab Emirates	Female	78	78.0	Na
4										•

Question4 - Change the column name from any of the above file and store the changes made permanently

In [11]:

df.rename(columns={'Indicator':'Indicator_Id'},inplace=True)

In [12]:

df.head()

Out[12]:

	Indicator_Id	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Lo
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	Na
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	Na
2	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Andorra	Female	28	28.0	Na
3	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Andorra	Both sexes	23	23.0	Na
4	Life expectancy at birth (years)	Published	2012	Eastern Mediterranean	High- income	United Arab Emirates	Female	78	78.0	Na
4										•

Question5 - Change the name of multiple columns

In [13]:

df.rename(columns={'PUBLISH STATES':'Publication Status','WHO region':'WHO Region'},inplacε

In [14]:

df.head()

Out[14]:

	Indicator_Id	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0
2	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Andorra	Female	28	28.0
3	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Andorra	Both sexes	23	23.0
4	Life expectancy at birth (years)	Published	2012	Eastern Mediterranean	High- income	United Arab Emirates	Female	78	78.0
4									•

Question6 - Arrange the values of a particular column in ascending order

In [15]:

df.sort_values('Year').head()

Out[15]:

	Indicator_ld	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN
1270	Life expectancy at birth (years)	Published	1990	Europe	High- income	Germany	Male	72	72.0	NaN
3193	Life expectancy at birth (years)	Published	1990	Europe	Lower- middle- income	Republic of Moldova	Male	65	65.0	NaN
3194	Life expectancy at birth (years)	Published	1990	Europe	Lower- middle- income	Republic of Moldova	Both sexes	68	68.0	NaN
3197	Life expectancy at age 60 (years)	Published	1990	Europe	Lower- middle- income	Republic of Moldova	Male	15	15.0	NaN
4										•

Question7 - Arrange multiple column values in the ascending order

```
In [16]:
```

f.sort_values(by=['Indicator_Id','Country','Year','WHO Region','Publication Status'],ascendi

Out[16]:

	Indicator_ld	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Num
2798	Healthy life expectancy (HALE) at birth (years)	Published	2000	Eastern Mediterranean	Low- income	Afghanistan	Male	45	
3363	Healthy life expectancy (HALE) at birth (years)	Published	2000	Eastern Mediterranean	Low- income	Afghanistan	Both sexes	45	
4456	Healthy life expectancy (HALE) at birth (years)	Published	2000	Eastern Mediterranean	Low- income	Afghanistan	Female	45	ı
2245	Healthy life expectancy (HALE) at birth (years)	Published	2012	Eastern Mediterranean	Low- income	Afghanistan	Both sexes	49	
3689	Healthy life expectancy (HALE) at birth (years)	Published	2012	Eastern Mediterranean	Low- income	Afghanistan	Female	49	
4									•

Question8 - Make Country as the first column of the Dataframe

```
In [17]:
```

```
col = list(df)
col.insert(0,col.pop(col.index('Country')))
col
df = df.loc[:,col]
df.head(5)
```

Out[17]:

	Country	Indicator_Id	Publication Status	Year	WHO Region	World Bank income group	Sex	Display Value	Numeric
0	Andorra	Life expectancy at birth (years)	Published	1990	Europe	High- income	Both sexes	77	77.0
1	Andorra	Life expectancy at birth (years)	Published	2000	Europe	High- income	Both sexes	80	80.0
2	Andorra	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Female	28	28.0
3	Andorra	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Both sexes	23	23.0
4	United Arab Emirates	Life expectancy at birth (years)	Published	2012	Eastern Mediterranean	High- income	Female	78	78.0
4									>

Question9 - Get the column array using variable

```
In [19]:
```

Question10 - Get the subset rows 11,24,37

In [20]:

df.iloc[[11,24,37]]

Out[20]:

	Country	Indicator_Id	Publication Status	Year	WHO Region	World Bank income group	Sex	Display Value	Numeric	Lı
11	Austria	Life expectancy at birth (years)	Published	2012	Europe	High- income	Female	83	83.0	Ni
24	Brunei Darussalam	Life expectancy at age 60 (years)	Published	2012	Western Pacific	High- income	Female	21	21.0	Ni
37	Cyprus	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Female	26	26.0	Ni
4										•

Question11 - Get the subset rows excluding 5,12,23 and 56

In [21]:

df.drop([5,12,23,56]) Out[21]: World **Publication Bank Display** Country Indicator Id Year **WHO Region** Sex Numeric Low Hi **Status** income Value group Life expectancy High-Both 0 Andorra Published 1990 Europe 77 77.0 NaN N at birth income sexes (years) Life Both expectancy High-1 Andorra Published 2000 80 80.0 NaN Europe N at birth income sexes (years) Life expectancy High-2 Andorra Published 2012 Europe Female 28 28.0 NaN at age 60 income (years)

Part-II

In [22]:

users = pd.read_csv("https://raw.githubusercontent.com/ben519/DataWrangling/master/Data/use
users.head()

Out[22]:

	UserID	User	Gender	Registered	Cancelled
0	1	Charles	male	2012-12-21	NaN
1	2	Pedro	male	2010-08-01	2010-08-08
2	3	Caroline	female	2012-10-23	2016-06-07
3	4	Brielle	female	2013-07-17	NaN
4	5	Benjamin	male	2010-11-25	NaN

In [23]:

sessions = pd.read_csv("https://raw.githubusercontent.com/ben519/DataWrangling/master/Data/
sessions.head()

Out[23]:

	SessionID	SessionDate	UserID
0	1	2010-01-05	2
1	2	2010-08-01	2
2	3	2010-11-25	2
3	4	2011-09-21	5
4	5	2011-10-19	4

In [24]:

products = pd.read_csv("https://raw.githubusercontent.com/ben519/DataWrangling/master/Data/
products.head()

Out[24]:

	ProductID	Product	Price
0	1	А	14.16
1	2	В	33.04
2	3	С	10.65
3	4	D	10.02
4	5	Е	29.66

In [25]:

transactions = pd.read_csv("https://raw.githubusercontent.com/ben519/DataWrangling/master/D
transactions.head()

Out[25]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity
0	1	2010-08-21	7.0	2	1
1	2	2011-05-26	3.0	4	1
2	3	2011-06-16	3.0	3	1
3	4	2012-08-26	1.0	2	3
4	5	2013-06-06	2.0	4	1

Question12 - Join users to transactions, keeping all rows from transactions and only matching rows from user(left join)

In [26]:

```
users.columns
```

Out[26]:

Index(['UserID', 'User', 'Gender', 'Registered', 'Cancelled'], dtype='objec
t')

In [27]:

```
transactions.columns
```

Out[27]:

Index(['TransactionID', 'TransactionDate', 'UserID', 'ProductID', 'Quantit
y'], dtype='object')

In [28]:

```
transactions = pd.merge(transactions,users,on='UserID', how = 'left')
transactions
```

Out[28]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	C
0	1	2010-08-21	7.0	2	1	NaN	NaN	NaN	
1	2	2011-05-26	3.0	4	1	Caroline	female	2012-10-23	
2	3	2011-06-16	3.0	3	1	Caroline	female	2012-10-23	
3	4	2012-08-26	1.0	2	3	Charles	male	2012-12-21	
4	5	2013-06-06	2.0	4	1	Pedro	male	2010-08-01	
5	6	2013-12-23	2.0	5	6	Pedro	male	2010-08-01	
6	7	2013-12-30	3.0	4	1	Caroline	female	2012-10-23	
7	8	2014-04-24	NaN	2	3	NaN	NaN	NaN	
8	9	2015-04-24	7.0	4	3	NaN	NaN	NaN	
9	10	2016-05-08	3.0	4	4	Caroline	female	2012-10-23	
4									•

In [29]:

transactions = transactions.drop(columns=['User', 'Gender', 'Registered', 'Cancelled'])
transactions

Out[29]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity
0	1	2010-08-21	7.0	2	1
1	2	2011-05-26	3.0	4	1
2	3	2011-06-16	3.0	3	1
3	4	2012-08-26	1.0	2	3
4	5	2013-06-06	2.0	4	1
5	6	2013-12-23	2.0	5	6
6	7	2013-12-30	3.0	4	1
7	8	2014-04-24	NaN	2	3
8	9	2015-04-24	7.0	4	3
9	10	2016-05-08	3.0	4	4

Question13 - which transactions have a UserID not in users

In [30]:

transactions.isnull().sum()

Out[30]:

TransactionID TransactionDate 0 UserID ProductID 0 Quantity

dtype: int64

In [31]:

transactions['UserID'].isin(users['UserID'])]

Out[31]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity
0	1	2010-08-21	7.0	2	1
7	8	2014-04-24	NaN	2	3
8	9	2015-04-24	7.0	4	3

Question14 - Join Users to transactions, keeping only rows from transactions and users that match via UserID(inner join)

In [32]:

transactions.merge(users,how='inner', on='UserID')

Out[32]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	C
0	2	2011-05-26	3.0	4	1	Caroline	female	2012-10-23	
1	3	2011-06-16	3.0	3	1	Caroline	female	2012-10-23	
2	7	2013-12-30	3.0	4	1	Caroline	female	2012-10-23	
3	10	2016-05-08	3.0	4	4	Caroline	female	2012-10-23	
4	4	2012-08-26	1.0	2	3	Charles	male	2012-12-21	
5	5	2013-06-06	2.0	4	1	Pedro	male	2010-08-01	
6	6	2013-12-23	2.0	5	6	Pedro	male	2010-08-01	
4									•

Question15 - Join users to transactions, displayying all matching rows AND all non-matching rows(full outer join)

In [33]:

transactions.merge(users, how='outer', on='UserID')

Out[33]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered
0	1.0	2010-08-21	7.0	2.0	1.0	NaN	NaN	NaN
1	9.0	2015-04-24	7.0	4.0	3.0	NaN	NaN	NaN
2	2.0	2011-05-26	3.0	4.0	1.0	Caroline	female	2012-10-23
3	3.0	2011-06-16	3.0	3.0	1.0	Caroline	female	2012-10-23
4	7.0	2013-12-30	3.0	4.0	1.0	Caroline	female	2012-10-23
5	10.0	2016-05-08	3.0	4.0	4.0	Caroline	female	2012-10-23
6	4.0	2012-08-26	1.0	2.0	3.0	Charles	male	2012-12-21
7	5.0	2013-06-06	2.0	4.0	1.0	Pedro	male	2010-08-01
8	6.0	2013-12-23	2.0	5.0	6.0	Pedro	male	2010-08-01
9	8.0	2014-04-24	NaN	2.0	3.0	NaN	NaN	NaN
10	NaN	NaN	4.0	NaN	NaN	Brielle	female	2013-07-17
11	NaN	NaN	5.0	NaN	NaN	Benjamin	male	2010-11-25
4								•

Question16 - Determine which sessions occured on the same day each user registered

In [35]:

pd.merge(left=users, right = sessions, how='inner', left_on=['UserID', 'Registered'], right
Out[35]:

	UserID	User	Gender	Registered	Cancelled	SessionID	SessionDate
0	2	Pedro	male	2010-08-01	2010-08-08	2	2010-08-01
1	4	Brielle	female	2013-07-17	NaN	9	2013-07-17

Question17 - Build a dataset with every possible(UserID, ProductID)pair(cross join)

```
In [36]:
```

```
userDF = users.loc[:,'UserID':'UserID']
```

```
In [37]:
```

```
productDF = products.loc[:,'ProductID':'ProductID']
```

In [38]:

```
index = pd.MultiIndex.from_product([userDF.UserID, productDF.ProductID], names = ["UserID",
userIDproductIDdf = pd.DataFrame(index = index).reset_index()
print(userIDproductIDdf)
```

	UserID	ProductID
0	1	1
1	1	2
2	1	3
2	1	4
4	1	5
5 6	2	1
6	2 2	1 2
7	2	3
8	2 2	4
9	2	5
10	2 3 3 3	1
11	3	2
12	3	3
13	3	4
14	3	5
15	4	1
16	4	2
17	4	3
18	4	4
19	4	5
20	5	1
21	5	2
22	5 5	3
23		4 5
24	5	5

Question18 - Determine how much quantity of each product purchased by each user

In [39]:

```
user_product_Transdf = pd.merge(userIDproductIDdf, transactions, how='left', on=['UserID','
#print(user_product_Transdf) #Print the joined dataframe result

#Drop the unwanted column from the result dataframe and set to a new dataframe
user_product_TransdfResult = user_product_Transdf.drop(['TransactionID', 'TransactionDate']

#Set NaN values to zero(0) from result dataframe and set to a new dataframe
user_product_TransdfResult1 = user_product_TransdfResult.fillna(0)

print(user_product_TransdfResult1) # Print the fnal result
```

	UserID	ProductID	Quantity
0	1	1	0.0
1	1	2	3.0
2	1	3	0.0
3	1	4	0.0
4	1	5	0.0
5	2	1	0.0
6	2	2	0.0
7	2	3	0.0
8	2	4	1.0
9	2	5	6.0
10	3	1	0.0
11	3	2	0.0
12	3	3	1.0
13	3 3 3	4	1.0
14		4	1.0
15	3 3	4	4.0
16		5	0.0
17	4	1	0.0
18	4	2	0.0
19	4	3	0.0
20	4	4	0.0
21	4	5	0.0
22	5	1	0.0
23	5	2	0.0
24	5	3	0.0
25	5	4	0.0
26	5	5	0.0

Question19 -For each user, get each possible pair of pair transactions (TransactionID1, TransacationID2)

In [40]:

```
#transactions.head()
transactions1 = transactions.drop(['UserID'], axis=1)
pairOfTransdf = pd.merge(transactions, transactions, how='left', on=['UserID'])
print(pairOfTransdf.sort_values(by=['UserID'],ascending=[False]))
    TransactionID_x TransactionDate_x UserID
                                                     ProductID_x
                                                                    Quantity_x
0
                    1
                                               7.0
                                                                 2
                                                                              1
                              2010-08-21
1
                    1
                               2010-08-21
                                                7.0
                                                                 2
                                                                              1
21
                    9
                              2015-04-24
                                               7.0
                                                                 4
                                                                              3
20
                    9
                                                                              3
                              2015-04-24
                                               7.0
                                                                 4
                                                                 4
                                                                              4
24
                   10
                              2016-05-08
                                               3.0
23
                   10
                              2016-05-08
                                                3.0
                                                                 4
                                                                              4
22
                   10
                              2016-05-08
                                                3.0
                                                                 4
                                                                              4
                              2013-12-30
18
                    7
                                                3.0
                                                                 4
                                                                              1
                    7
17
                               2013-12-30
                                                3.0
                                                                 4
                                                                              1
                    7
                                                                              1
16
                              2013-12-30
                                                3.0
                                                                 4
15
                    7
                              2013-12-30
                                                3.0
                                                                 4
                                                                              1
                                                                              4
25
                   10
                                                                 4
                              2016-05-08
                                               3.0
9
                    3
                              2011-06-16
                                                3.0
                                                                 3
                                                                              1
                    3
8
                              2011-06-16
                                                3.0
                                                                 3
                                                                              1
7
                    3
                              2011-06-16
                                                3.0
                                                                 3
                                                                              1
                    3
6
                              2011-06-16
                                                                              1
                                                3.0
                                                                 3
                    2
5
                              2011-05-26
                                                3.0
                                                                 4
                                                                              1
                    2
4
                              2011-05-26
                                                3.0
                                                                 4
                                                                              1
                              2011-05-26
3
                    2
                                               3.0
                                                                 4
                                                                              1
                    2
2
                              2011-05-26
                                                3.0
                                                                 4
                                                                              1
                    5
                              2013-06-06
                                                                 4
                                                                              1
11
                                                2.0
13
                    6
                              2013-12-23
                                                2.0
                                                                 5
                                                                              6
14
                    6
                              2013-12-23
                                                2.0
                                                                 5
                                                                              6
12
                    5
                               2013-06-06
                                                                 4
                                                                              1
                                                2.0
                    4
                                                                 2
                                                                              3
10
                              2012-08-26
                                               1.0
19
                    8
                                                                 2
                                                                              3
                              2014-04-24
                                               NaN
                                            ProductID_y
    TransactionID_y TransactionDate_y
                                                           Quantity_y
0
                    1
                              2010-08-21
                                                        2
                                                                     1
                    9
1
                              2015-04-24
                                                       4
                                                                     3
                    9
                                                        4
                                                                     3
21
                              2015-04-24
                    1
                                                        2
                                                                     1
20
                              2010-08-21
24
                    7
                               2013-12-30
                                                        4
                                                                     1
23
                    3
                                                        3
                                                                     1
                              2011-06-16
22
                    2
                               2011-05-26
                                                        4
                                                                     1
                   10
                              2016-05-08
                                                        4
                                                                     4
18
17
                    7
                              2013-12-30
                                                        4
                                                                     1
                    3
                                                        3
                                                                     1
16
                               2011-06-16
                    2
15
                              2011-05-26
                                                        4
                                                                     1
25
                   10
                              2016-05-08
                                                        4
                                                                     4
9
                   10
                              2016-05-08
                                                        4
                                                                     4
8
                    7
                               2013-12-30
                                                        4
                                                                     1
7
                    3
                              2011-06-16
                                                        3
                                                                     1
                    2
6
                              2011-05-26
                                                        4
                                                                     1
5
                   10
                              2016-05-08
                                                        4
                                                                     4
4
                    7
                               2013-12-30
                                                        4
                                                                     1
3
                    3
                              2011-06-16
                                                        3
                                                                     1
2
                    2
                              2011-05-26
                                                        4
                                                                     1
                    5
                              2013-06-06
                                                        4
                                                                     1
11
                    5
13
                              2013-06-06
                                                        4
                                                                     1
                                                        5
                    6
14
                               2013-12-23
                                                                     6
12
                    6
                              2013-12-23
                                                        5
                                                                     6
```

1/30/2019			Project-1		
10	4	2012-08-26	2	3	
19	8	2014-04-24	2	3	

Question 20 - Join each user to his/her first occurring transaction in the transactions table

In [41]:

4

NaN

```
#users.head()
#transactions.head(10)
# first select the first transaction for each user
firstOccur_transactions = transactions.groupby('UserID').first().reset_index()
#drop the unwanted column(s)
firstOccur_transactions = firstOccur_transactions.drop(['TransactionDate'], axis=1)
firstOccur_transactionsByEachUser = pd.merge(users, firstOccur_transactions, how='left', or
print(firstOccur_transactionsByEachUser)
   UserID
               User Gender Registered
                                          Cancelled TransactionID ProductI
D
   \
            Charles
                       male 2012-12-21
0
        1
                                                NaN
                                                                4.0
                                                                           2.
0
        2
              Pedro
                       male 2010-08-01 2010-08-08
                                                                5.0
                                                                           4.
1
0
          Caroline female 2012-10-23 2016-06-07
2
                                                                2.0
                                                                           4.
0
            Brielle female 2013-07-17
3
        4
                                                NaN
                                                                NaN
                                                                           Na
N
4
           Benjamin
                       male 2010-11-25
                                                NaN
                                                                NaN
                                                                           Na
N
   Quantity
0
        3.0
        1.0
1
2
        1.0
3
        NaN
```

Question21 - Test to see if we can drop columns

In [42]:

```
data = firstOccur transactionsByEachUser
my_columns = list(data.columns)
my_columns
['UserID',
'User',
'Gender',
'Registered',
'Cancelled',
'TransactionID',
'TransactionDate',
'ProductID',
'Quantity']
list(data.dropna(thresh=int(data.shape[0] * .9), axis=1).columns) #set threshold to drop NA
['UserID', 'User', 'Gender', 'Registered']
missing_info = list(data.columns[data.isnull().any()])
missing info
['Cancelled', 'TransactionID', 'TransactionDate', 'ProductID', 'Quantity']
for col in missing_info:
    num_missing = data[data[col].isnull() == True].shape[0]
    print('number missing for column {}: {}'.format(col, num_missing))
print('--'*50)
print('Output: Count of missing data')
#number missing for column Cancelled: 3
#number missing for column TransactionID: 2
#number missing for column TransactionDate: 2
#number missing for column ProductID: 2
#number missing for column Quantity: 2
for col in missing info:
    num_missing = data[data[col].isnull() == True].shape[0]
    print('number missing for column {}: {}'.format(col, num_missing)) #count of missing dd
print('--'*50)
for col in missing info:
    percent_missing = data[data[col].isnull() == True].shape[0] / data.shape[0]
    print('percent missing for column {}:{}'.format(col, str(percent_missing)))
#Output of percentage missing data
#percent missing for column Cancelled: 0.6
#percent missing for column TransactionID: 0.4
#percent missing for column TransactionDate: 0.4
#percent missing for column ProductID: 0.4
#percent missing for column Quantity: 0.4
number missing for column Cancelled: 3
number missing for column TransactionID: 2
number missing for column ProductID: 2
number missing for column Quantity: 2
-----
Output: Count of missing data
number missing for column Cancelled: 3
number missing for column TransactionID: 2
number missing for column ProductID: 2
number missing for column Quantity: 2
   ______
percent missing for column Cancelled:0.6
percent missing for column TransactionID:0.4
```

percent missing for column ProductID:0.4
percent missing for column Quantity:0.4

In []: