

App Dev League

Day 4: CNNs

Agenda

- 1. Review Day 3
- 2. CNNs
- 3. Kahoot
- 4. Project

Artificial Intelligence

- → Human intelligence shown in machines
- → Machinery that learns from experience
- → Examples: Google/Siri assistant, self-driving cars, recommendation algorithms

ML Model Architectures

- → Linear Regression
- → Logistic Regression
- → Random Forests
- → Neural Networks
- → CNNs

Neural Networks

- → Main type of ML Model
- → Simulates Human Brain
- → Made of interconnected "neurons"
- → Each neuron has an input, decider, and output
- → Neuron weighs inputs and uses activation function to create output
- → Network has input, output, and hidden layers
- → Forward/Back Propagation adjust parameters to increase model accuracy
- → Activation Functions help networks identify patterns in data

Applications of Convolutional Networks:

- → Self driving cars
 - Need to detect other cars so it can avoid collisions
 - Uses CNNs to analyze sections of images to determine if there is a vehicle/pedestrian

Convolutional Neural Networks

- → Convolutional Neural Networks (CNNs) are used for image classification, segmentation and processing
- → Similar to normal Neural Networks, but have convolutional layers instead of normal dense layers
- Convolutional layers apply filters to the original image and then a feature map is generated for each filter
- → An activation function will then decide if a feature is present in the image or not

How a Convolutional Neural Network works

- → Decrease width and increase "depth"
 - Improves feature extraction
 - Makes it easier for another network to identify features WHILE maintaining important data

The Convolutional Layer

- Starts with the Convolutional Kernel
 - The kernel scans over the input in steps
 - ◆ The length of the step is the **stride length**
 - The kernel itself is a matrix; the sum of the products of the corresponding element in the kernel and the element in the image is placed in the corresponding cell of the output
 - In this case, the matrix is

1	0	1
0	1	0
1	0	1

 The matrix formed after the kernel traverses the entire input is called the convolved matrix.

Pooling

- Similarly to the Convolutional Layer, the Pooling layer is responsible for reducing the spatial size of the Convolved Feature.
 - This is to decrease the computational power necessary to process the input
- There are two types of Pooling: Max Pooling and Average Pooling.
 - Max Pooling returns the maximum value from the portion of the image covered by the Kernel.
 - Average Pooling returns the average of all the values from the portion of the image covered by the Kernel.

More Resources

Towards Data Science

Andrew Ng Coursera Course on CNNs

THANKS!

ANY QUESTIONS?

You can find more info @

- https://www.appdevleague.org
- https://linktr.ee/AppDevLeague

