Identificación de noticias falsas mediante procesamiento del lenguaje

```
In [1]:

import pandas as pd
import numpy as np
import re
```

data = pd.read_csv("D:/MiniProyectos_Python/Fake_News_RF/dataset_fake_news/fake_or_real_news.csv")
data.head()

Out[2]:

	Unnamed: 0	title	text	label
0	8476	You Can Smell Hillary's Fear	Daniel Greenfield, a Shillman Journalism Fello	FAKE
1	10294	Watch The Exact Moment Paul Ryan Committed Pol	Google Pinterest Digg Linkedin Reddit Stumbleu	FAKE
2	3608	Kerry to go to Paris in gesture of sympathy	U.S. Secretary of State John F. Kerry said Mon	REAL
3	10142	Bernie supporters on Twitter erupt in anger ag	— Kaydee King (@KaydeeKing) November 9, 2016 T	FAKE
4	875	The Battle of New York: Why This Primary Matters	It's primary day in New York and front-runners	REAL

Dividimos en Train-Test

```
In [3]:

X = data[["title","text"]]
Y = data.label
```

In [4]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)
```

Mediante la siguiente función eliminamos stop words, elementos extraños y devolvemos las palabras en sus lemmas y lower.

In [6]:

X_train_title = X_train.title.apply(procesar_frase)

Bag of words: Uso de CountVectorizer

Se convierte cada palabra en una columna, añadiendo un 1 si se encuentra la palabra en un determinado corpus o un 0 si no.

In [7]:

```
from sklearn.feature_extraction.text import CountVectorizer

corpus = X_train_title
vect = CountVectorizer()
matriz = vect.fit_transform(corpus)
bag_words = pd.DataFrame(matriz.toarray(), columns = vect.get_feature_names())
bag_words
```

Out[7]:

	00	000	00pm	01	04	05	06	08	10	100	_	zone	ztech	zuckerberg	zuesse	zulu	вам	праздником	ребята	спасибо	الفادمون
0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
-																					
5063	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
5064	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
5065	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
5066	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
5067	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0

5068 rows × 7876 columns

Uso de: Random Forest Feature Selection Para obtener las palabras más útiles y que mejor ayuden a predecir la variable criterio de verdad, aplicaré un Random forest para extraer las variables más usadas y con mayor importancia dentro del modelo:

In [8]:

from sklearn.ensemble import ExtraTreesClassifier
from sklearn.feature_selection import SelectFromModel

```
def best_features (X,Y):
    clf = ExtraTreesClassifier(n_estimators=100)
    clf = clf.fit(X, Y)
    clf.feature_importances_
    model = SelectFromModel(clf, prefit=True)
    feature_idx = model.get_support()
    feature_name = X.columns[feature_idx]
    X_best = model.transform(X)
    X_best = model.transform(X)
    X_best = pd.DataFrame(X_best, columns= feature_name)
    print(X.shape[1], X_best.shape[1])
    return X_best
```

In [9]:

X_best = best_features(bag_words,Y_train)

7876 1379

Aplicar preprocesado a X_test:

```
In [10]:
```

```
#Procesar texto:
X_procesado = X_test.title.apply(procesar_frase)

#Aplicar countvectorizer custom:
vector = CountVectorizer()
matriz_custom = vector.fit(X_best)  #Usar X_best como partida
matriz = vector.transform(X_test.title)  # Aplicar a X_test

X_test_title = pd.DataFrame(matriz.toarray(), columns = vector.get_feature_names())
X_test_title
```

Out[10]:

	000	10	106	11	12	13	16	18	20	200	_	would	wrong	ww3	year	yemen	yes	york	you	young	your
0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
-																					
1262	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
1263	0	0	0	0	0	0	0	0	1	0		0	0	0	0	0	0	0	0	0	0
1264	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
1265	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
1266	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0

1267 rows x 1379 columns

Random Forest: Clasificación

In [11]:

```
from sklearn.ensemble import RandomForestClassifier
#...
model = RandomForestClassifier(n_estimators=100 )
model.fit(X_best, Y_train)
Y_pred_title = model.predict(X_test_title)

from sklearn.metrics import accuracy_score
score=accuracy_score(Y_test,Y_pred_title)
print(f'Accuracy: {round(score*100,2)}%')
```

Accuracy: 78.93%

Observamos la importancia que tiene cada variable en el modelo

In [12]:

```
feat importances = pd.Series(model.feature_importances_, index=X_best.columns)
feat_importances.nlargest(10).plot(kind='barh');
```


Con solo conocer el titulo se puede predecir con un Accuracy entorno al 80% si la noticia será falsa o no.

¿Qué palabras son las más usadas en un texto falso?

In [13]:

```
data_words = X_best.join(Y_train)

top_words = data_words.groupby(['label']).sum().T

top_words["dif"] = abs(top_words["FAKE"]-top_words["REAL"])

top_words.sort_values(by="dif", ascending=False).head(20)
```

Out[13]

label	FAKE	REAL	dif
in	341	414	73
be	499	442	57
hillary	175	208	33
to	554	525	29
new	107	80	27
trumn	343	369	26

label	FAKE 62	REAL 82	dif 20
kill	12	32	20
vote	39	20	19
sanders	48	29	19
bernie	37	19	18
it	79	96	17
video	59	75	16
obama	108	124	16
time	16	32	16
after	58	74	16
your	11	27	16
fbi	54	39	15
they	46	31	15
man	9	24	15

Aquí se muestran las palabras más usadas en cada una de las noticias clasificadas como Fake/Real y la diferencia de uso en unas u otras. Así por ejemplo noticias que tengan en su titulo "be" y derivados (is,was...)("is Donald Trump...?") tienden a ser más falsas que verdaderas.

Mientras que otras noticias que usan vocabulario como "kill" o "video" tienden más a ser ciertas

Una vez hecho un bag of words con el titulo y buscado las palabras que mejor permiten predecir si la noticia es falsa o verdadera se obtiene un Accuracy de entorno al 80%, no está mal. No obstante también se posee la información del texto de la noticia en el dataset para lo cual se puede usar un TfidVectorizer

In [14]

```
from sklearn.feature_extraction.text import TfidfVectorizer
TF=TfidfVectorizer(stop_words='english', max_df=0.7, max_features=1200)  #Realizar un filtro con stop_words
#Aplicar TF al conjunto y obtener cada columna con el nombre de la palabra a la que refiere
TF_train=TF.fit_transform(X_train.text)
TF_train = pd.DataFrame(TF_train.toarray(), columns = TF.get_feature_names())
#Aplicar el mismo filtro al conjunto test
TF_test=TF.transform(X_test.text)
TF_test = pd.DataFrame(TF_test.toarray(), columns = TF.get_feature_names())
```

TF-IDF es las contracción de: term frequency - inverse document frequency: Esto se basa en un modelo muy simple:

Wt,d = TFt,d log (N/DFt)

Para un término (t) en un documento (d), la importancia del termino (wt) viene determinada por:

- TFt: Numero de veces que aparece el término t en el documento d (frecuencia)
- DFt: Numero de documentos que contienen el término t
- N: numero de documentos que se evalúan

Un analisis de la ecuacion sería lo siguiente: La importancia de t (wt) aumenta a medida que aumenta el numero de veces que aparece en el documento, pero desciende drásticamente si ese mismo término aparece también en otros documentos. Es decir quee: Un término es mas importante cuando aparece muchas veces en un documento y pocas veces en todos los documentos.

```
In [15]:
```

Accuracy: 90.37%

Un 90.37% de predicción gracias a usar el texto, bueno, TF es un modelo más avanzado y el texto posee mucha mas información que el titulo, por eso era predecible el porcentaje alto.