随机变量数字特征

Didnelpsun

目录

1	一维	随机变量数字特征	1
	1.1	数学期望	1
		1.1.1 概念	1
		1.1.2 性质	1
	1.2	方差标准差	2
		1.2.1 概念	2
		1.2.2 性质	2
	1.3	切比雪夫不等式	2
	1.4	常用分布数字特征	3
2	二维	随机变量数字特征	3
	2.1	数学期望	3
	2.2	协方差相关系数	4
		2.2.1 概念	4
		2.2.2 性质	4
3	独立	性与相关性	5
	3.1	分布判断独立性	6
	3.2	数字特征判断相关性	6
	3.3	基本判别流程	6

有时候研究随机变量,其是没有具体的概率分布的,而对于这种类型我们只用研究其数学特征就可以了。

1 一维随机变量数字特征

1.1 数学期望

1.1.1 概念

设 X 是随机变量, Y 是 X 的函数, Y = g(X)。

定义: 若 X 是离散型随机变量,其分布列为 $p_i = P\{X = x_i\}$ $(i = 1, 2, \cdots)$,若级数 $\sum\limits_{i=1}^{\infty} x_i p_i$ 绝对收敛,则称随机变量 X 的数学期望存在,并将级数和 $\sum\limits_{i=1}^{\infty} x_i p_i$ 称为随机变量 X 的**数学期望**,记为 E(X) 或 EX,即 $EX = \sum\limits_{i=1}^{\infty} x_i p_i$,否则 X 数学期望不存在。(数学期望实际上是一种加权的合理平均值)

若级数 $\sum\limits_{i=1}^{\infty}g(x_i)p_i$ 也绝对收敛,则称 Y=g(X) 的数学期望 E[g(X)] 存在,且 $E[g(X)]=\sum\limits_{i=1}^{\infty}g(x_i)p_i$,否则 g(X) 的数学期望不存在。

定义: 若 X 是连续型随机变量,其概率密度为 f(x)。若积分 $\int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x$ 绝对收敛,则称 X 的数学期望存在,且 $EX = \int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x$,否则 X 的数学期望不存在。

若积分 $\int_{-\infty}^{+\infty} g(x)f(x) dx$ 绝对收敛,则称 g(X) 的数学期望存在, $E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x) dx$,否则 g(X) 的数学期望不存在。

1.1.2 性质

- 对任意常数 a_i 和随机变量 X_i $(i=1,2,\cdots,n)$ 有 $E\left(\sum_{i=1}^n a_i X_i\right) = \sum_{i=1}^n a_i E X_i$,其中 Ec=c, E(aX+c)=aEX+c, $E(X\pm Y)=EX\pm EY$ 。
- 若 XY 相互独立,则 $E(XY) = EX \cdot EY$, $E[g_1(X), g_2(Y)] = E[g_1(X)] \cdot E[g_2(Y)]$,一般若 X_1, X_2, \dots, X_n 相互独立,则 $E\left(\prod_{i=1}^n X_i\right) = \prod_{i=1}^n EX_i$, $E\left[\prod_{i=1}^n g_i(X_i)\right] = \prod_{i=1}^n E[g_i(X_i)] \circ$

1.2 方差标准差

1.2.1 概念

定义: 设 X 是随机变量,若 $E[(X-EX)^2]$ 存在,则称 $E[(X-EX)^2]$ 为 X 的方差,记为 D(X) 或 DX,即 $DX = E[(X-EX)^2] = E(X^2) - (EX)^2 = EX^2 - E^2 X$ 。称 \sqrt{DX} 为 X 的标准差或均方差,记为 $\sigma(X)$,称随机变量 $X^* = \frac{X-EX}{\sqrt{DX}}$ 为 X 的标准化随机变量,此时 $EX^* = 0$, $DX^* = 1$ 。

当 X 为离散型随机变量时 $D(X) = \sum_{i=1}^{\infty} [x_i - E(X)]^2 p_i$,当 X 为连续型随机变量时 $D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) \, \mathrm{d}x$ 。

1.2.2 性质

- $DX \ge 0$, $E(X^2) = DX + (EX)^2 \ge (EX)^2$.
- Dc = 0
- $D(aX+b)=a^2DX$.
- $D(X \pm Y) = DX + DY \pm 2Cov(X, Y) = DX + DY \pm 2E[(X EX)(Y EY)]$.
- 若 XY 相互独立,则 $D(aX \pm bY) = a^2 DX + b^2 DY$,一般若 X_1, X_2, \dots, X_n 相互独立, $g_i(x)$ 为关于 x 的连续函数,则 $D\left(\sum_{i=1}^n a_i X_i\right) = \sum_{i=1}^n a_i^2 DX_i$, $D\left[\sum_{i=1}^n g_i(X_i)\right] = \sum_{i=1}^n D[g_i(X_i)]$ 。

1.3 切比雪夫不等式

定义: 若随机变量 X 的方差 DX 存在,则对任意 $\epsilon > 0$,有 $P\{|X - EX| \ge \epsilon\} \le \frac{DX}{\epsilon^2}$ 或 $P\{|X - EX| < \epsilon\} \ge 1 - \frac{DX}{\epsilon^2}$ 。

 $P\{|X-EX|\geqslant\epsilon\}$ 即代表变量与期望的差距大于某个值的概率,DX 就是方差,DX 越小证明波动越小,波动在 ϵ 外的概率就越小,反之同理,而 ϵ 越小,则 $\frac{DX}{\epsilon^2}$ 越大,则代表 X 靠近期望 EX 的概率越大,反之同理。

证明: 若 X 是连续型随机变量,令 $|X - EX| \ge \epsilon = D$,则 $P\{|X - EX| \ge \epsilon\}$ $\{EX\} = \int_D f(x) \, \mathrm{d}x$,又该区间上 $|X - EX| \ge \epsilon$, $\{EX\} : \frac{(X - EX)^2}{\epsilon^2} \ge 1$ 。 $\int_D f(x) \, \mathrm{d}x \le \int_{\epsilon^2} \frac{(X - EX)^2}{\epsilon^2} f(x) \, \mathrm{d}x \le \int_{-\infty}^{+\infty} \frac{(X - EX)^2}{\epsilon^2} f(x) \, \mathrm{d}x$

$$= \frac{1}{\epsilon^2} \int_{-\infty}^{+\infty} (X - EX)^2 f(x) \, \mathrm{d}x = \frac{DX}{\epsilon^2} \, .$$

可以用于估算随机变量在某范围中取值的概率,也可以证明某些收敛性问题(如数学统计章节中的一致性)。

例题:设 XY 为随机变量,数学期望都是 2,方差分别为 1 和 4,相关系数为 0.5,尝试估计估计概率 $P\{|X-Y|\geqslant 6\}$ 。

解: 令
$$Z = X - Y$$
,∴ $EZ = E(X - Y) = EX - EY = 2 - 2 = 0$,所以 $P\{|X - Y| \ge 6\} = P\{|X - Y - 0| \ge 6\} = P\{|Z - EZ| \ge 6\} \le \frac{DZ}{6^2} = \frac{3}{36} = \frac{1}{2}$ 。

1.4 常用分布数字特征

分布	分布列 p_i 或概率密度 $f(x)$	期望	方差
0-1 分布	$P\{X=k\} = p^k(1-p)^{1-k}, \ k=0,1$	p	p(1-p)
B(1,p)	$F\{X=k\}=p\ (1-p) ,\ k=0,1$		
二项分布	$P\{X=k\} = C_n^k p^k (1-p)^{n-k}, \ k=0,\cdots,n$	np	nn(1 n)
B(n,p)	$F\{X=k\}=C_n p\ (1-p) \qquad , \ k=0,\cdots,n$		np(1-p)
泊松分布	λ^k	λ	λ
$P(\lambda)$	$P\{X=k\} = \frac{\lambda^k}{k!}e^{-\lambda}, k = 0, \dots$		
几何分布	$D(V \mid h) (1 m)k-1 m \mid h 1$	1	1-p
G(p)	$P\{X=k\} = (1-p)^{k-1}, \ p, k = 1, \cdots$	\overline{p}	$\frac{1-p}{p^2}$
正态分布	$1 \qquad 1 \qquad e^{-\frac{(x-\mu)^2}{2}} \qquad x \in D$	μ	σ^2
$N(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in R$		
均匀分布	f(m) 1	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
U(a,b)	$f(x) = \frac{1}{b-a}, \ a < x < b$	2	12
指数分布	$f(x) = \lambda e^{-\lambda x}, \ x > 0$	$\frac{1}{\lambda}$	1
$E(\lambda)$	$f(x) = \lambda e^{-xx}, x > 0$	$\overline{\lambda}$	$\frac{1}{\lambda^2}$

2 二维随机变量数字特征

2.1 数学期望

定义: 若 XY 为随机变量,g(X,Y) 为 XY 的函数,如果 (X,Y) 为离散型随机变量,其联合分布为 $p_{ij} = P\{X = x_i, Y = y_i\}$ $(i,j = 1,2,\cdots)$,若级数 $\sum_{i} \sum_{j} g(x_i,y_j) p_{ij}$ 绝对收敛,则 $E[g(X,Y)] = \sum_{i} \sum_{j} g(x_i,y_j) p_{ij}$; 如果 (X,Y) 为连

续型随机变量,其概率密度为 f(x,y), 若积分 $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dxdy$ 绝对 收敛, 则定义 $E[g(X,Y)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) \, \mathrm{d}x \mathrm{d}y$ 。

协方差相关系数 2.2

2.2.1 概念

定义: 若随机变量 XY 的方差存在且 DX > 0, DY > 0, 则称 E[(X - X)]EX(Y-EY)] 为随机变量 X 与 Y 的**协方差**,记为 Cov(X,Y),即 Cov(X,Y) = $E[(X-EX)(Y-EY)] = E(XY-XEY-YEX+EXEY) = E(XY)-EX\cdot EY \circ$

其中
$$E(XY) = \begin{cases} \sum_{i} \sum_{j} x_i y_j P\{X = x_i, Y = y_j\} \\ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy f(x, y) \, \mathrm{d}x \, \mathrm{d}y \end{cases}$$
 。

从定义来看,方差 DX 就是自己的协方差 Cov(X,X)。

协方差也可以标准化,已知 $X^* = \frac{X - EX}{\sqrt{DX}}$, $Y^* = \frac{Y - EY}{\sqrt{DY}}$,则 $Cov(X^*, Y^*)$ $= Cov(\frac{X - EX}{\sqrt{DX}}, \frac{Y - EY}{\sqrt{DY}}) = \frac{Cov(X - EX, Y - EY)}{\sqrt{DX}\sqrt{DY}}$ $= \frac{Cov(X, Y) - Cov(X, EY) - Cov(EX, Y) + Cov(EX, EY)}{\sqrt{DX}\sqrt{DY}} = \frac{Cov(X, Y)}{\sqrt{DX}DY}$ 定义: $\rho_{XY} = \frac{Cov(X, Y)}{\sqrt{DX}\sqrt{DY}}$ 为随机变量 XY 的相关系数。若 $\rho_{XY} = 0$,则

相关系数是描述随机变量 XY 之间的线性关系,绝对值越靠近 1 则越线性 相关。相关系数为 0 不代表没有其之间没有关系,也可能存在非线性关系。

2.2.2性质

- 对称性: Cov(X,Y) = Cov(Y,X), $\rho_{XY} = \rho_{YX}$, Cov(X,X) = DX, $\rho_{XX} = 1$.
- 线性性: Cov(X,c)=0, Cov(aX+b,Y)=aCov(X,Y), $Cov(X_1+X_2,Y)=aCov(X,Y)$ $Cov(X_1, Y) + Cov(X_2, Y)$ or $\left(\sum_{i=1}^n a_i X_i, Y\right) = \sum_{i=1}^n Cov(X_i, Y)$ or
- 若 XY 相互独立,则 Cov(X,Y) = 0。 $D(\sum X) = \sum DX$ 。
- $D(X \pm Y) = DX + DY \pm 2Cov(X, Y)$.
- 相关系数有界性: $|\rho_{XY}| \leq 1$ 。
- 线性关系下的相关系数: 若 Y = aX + b,则 $\rho_{XY} = \begin{cases} 1, & a > 0 \\ -1, & a < 0 \end{cases}$ 。

例题:设随机变量 XY 的概率分布分别为:

X	0	1	_	\overline{Y}	-1	0	
\overline{P}	1/3	2/3		P	1/3	1/3	

1

1/3

且 $P\{X^2 = Y^2\} = 1$ 。

- (1) 求随机变量 (X,Y) 的概率分布。
- (2) 求 Z = XY 的概率分布。
- (3) 求 XY 的相关系数 ρ_{XY} 。
- (1) 解:根据已知的题目条件可以知道对应的边缘概率分布:

Y X	-1	0	1	X 边缘
0				1/3
1				2/3
Y 边缘	1/3	1/3	1/3	1

又 $P\{X^2 = Y^2\} = 1$,所以 $P\{X^2 \neq Y^2\} = 0$,所以 $X = \pm Y$,解得:

Y X	-1	0	1	 X 边缘
0	0	1/3	0	1/3
1	1/3	0	1/3	2/3
Y 边缘	1/3	1/3	1/3	1

(2) 解: Z = XY 的可能取值为-1, 0, 1。所以根据表格:

3 独立性与相关性

相关性是线性相关性。

• 独立则一定不相关,但是不相关不一定独立。

- 如果相关则一定不独立。
- 如果 (X,Y) 服从二维正态分布,则 XY 独立与 XY 不相关是充要条件。

3.1 分布判断独立性

都是通过分布情况判断独立性:

- $F(x,y) = F_X(x) \cdot F_Y(y)$.
- $f(x,y) = f_X(x) \cdot f_Y(y)$.
- $P\{X = x_i, Y = y_j\} = P\{X = x_i\} \cdot P\{Y = y_j\}$.

3.2 数字特征判断相关性

通过相关系数 ρ_{XY} 来判断是否存在线性相关性。

$$\rho_{XY} = 0 \Leftrightarrow Cov(X,Y) = 0 \Leftrightarrow E(XY) = EX \cdot EY \Leftrightarrow D(X \pm Y) = DX + DY \circ$$

3.3 基本判别流程

当讨论随机变量 XY 的相关性独立性时:

- 1. 计算 Cov(X,Y) = E(XY) EXEY 判断是否为 0。
- 2. 当 $Cov(X,Y) \neq 0$ 时则 XY 相关不独立。
- 3. 当 Cov(X,Y) = 0 时则 XY 不相关。
- 4. 若 P(XY) = P(X)P(Y) 则 XY 不相关但独立, 否则不相关不独立。

例题:设随机变量 X 的概率密度为 $f(x)=\frac{1}{2}e^{-|x|}$, $x\in(-\infty,+\infty)$ 。证明 X 与 |X| 不相关且不独立。

解:
$$Cov(X,Y) = EXY - EXEY = EX|X| - EXE|X|$$
。
其中 $EX = \int_{-\infty}^{+\infty} x \cdot \frac{1}{2} e^{-|x|} dx = 0$, $EXY = \int_{-\infty}^{+\infty} x \cdot \frac{1}{2} e^{-|x|} |x| dx = 0$ 。
∴ $\rho_{XY} = 0$, 从而 XY 不相关。

$$\ \, \diamondsuit \,\, X \leqslant a, \ \, \boxtimes \, P\{X \leqslant a\} \, \circ \,\, \overrightarrow{\textstyle \text{m}} \,\, P\{|X| \leqslant a\} = P\{-a \leqslant X \leqslant a\} \, < P\{X \leqslant a\} \, \circ \,\,$$

$$\therefore P\{X \leqslant a, |X| \leqslant a\} = P\{|X| \leqslant a\}, \quad \mathbb{Z} P\{X \leqslant a\} < 1.$$

$$\therefore P\{X\leqslant a, |X|\leqslant a\}\neq P\{|X|\leqslant a\}\cdot P\{|X|\leqslant a\}, \ \text{所以不独立}.$$