

NCERT Solutions for Class 9 Maths

Chapter 1 – Number System

Exercise 1.5

1. Compute the value of each of the following expressions: Find:

(i) $64^{\frac{1}{2}}$

Ans: The given number is $64^{\frac{1}{2}}$.

By the laws of indices,

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$
, where $a > 0$.

Therefore,

$$64^{\frac{1}{2}} = \sqrt[2]{64}$$

$$=\sqrt[2]{8\times8}$$

=8

Hence, the value of $64^{\frac{1}{2}}$ is 8.

(ii)
$$32^{\frac{1}{5}}$$

Ans: The given number is $32^{\frac{1}{5}}$.

By the laws of indices,

$$a^{\frac{m}{n}} = \sqrt[m]{a^m}$$
, where $a > 0$

$$32^{\frac{1}{5}} = \sqrt[5]{32}$$

$$= \sqrt[5]{2 \times 2 \times 2 \times 2 \times 2}$$

$$=\sqrt[5]{2^5}$$

=2

Alternative Method:

By the law of indices $(a^m)^n = a^{mn}$, then it gives

$$=32^{\frac{1}{5}}=(2\times2\times2\times2\times2)^{\frac{1}{5}}$$

$$=(2^5)^{\frac{1}{5}}$$

$$=2^{\frac{5}{5}}$$

=2

Hence, the value of the expression $32^{\frac{1}{5}}$ is 2.

(iii)
$$125^{\frac{1}{5}}$$

Ans: The given number is $125^{\frac{1}{3}}$.

By the laws of indices

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$
 where $a > 0$.

Therefore,

$$125^{\frac{1}{3}} = \sqrt[3]{125}$$

Hence, the value of the expression $125^{\frac{1}{3}}$ is 5.

2. Compute the value of each of the following expressions: Find:

(i)
$$9^{\frac{3}{2}}$$

Ans: The given number is $9^{\frac{3}{2}}$.

By the laws of indices,

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$
 where $a > 0$.

Therefore,

$$9^{\frac{3}{2}} = \sqrt[2]{(9)^3}$$

$$=\sqrt[2]{9\times 9\times 9}$$

$$=\sqrt[2]{3\times3\times3\times3\times3\times3}$$

$$=3\times3\times3$$

$$= 27$$

Alternative Method:

By the laws of indices, $(a^m)^n = a^{mn}$, then it gives

$$9^{\frac{3}{2}} = (3 \times 3)^{\frac{3}{2}}$$

$$=(3^2)^{\frac{3}{2}}$$

$$=3^{2\times\frac{3}{2}}$$

$$=3^{3}$$

That is,

$$9^{\frac{3}{2}} = 27.$$

Hence, the value of the expression $9^{\frac{3}{2}}$ is 27.

(ii)
$$32^{\frac{2}{5}}$$

Ans: We know that $a^{\frac{m}{n}} = \sqrt[n]{a^m}$ where a > 0.

We conclude that $32^{\frac{2}{5}}$ can also be written as

$$\sqrt[5]{(32)^2} = \sqrt[5]{(2 \times 2 \times 2 \times 2 \times 2) \times (2 \times 2 \times 2 \times 2 \times 2)}$$

$$=2\times2$$

=4

Therefore, the value of $32^{\frac{2}{5}}$ is 4.

(iii)
$$16^{\frac{3}{4}}$$

Ans: The given number is $16^{\frac{3}{4}}$.

By the laws of indices,

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$
, where $a > 0$.

Therefore,

$$16^{\frac{3}{4}} = \sqrt[4]{(16)^3}$$

$$=\sqrt[4]{(2\times2\times2\times2)\times(2\times2\times2\times2)\times(2\times2\times2\times2)}$$

$$=2\times2\times2$$

=8

Hence, the value of the expression $16^{\frac{3}{4}}$ is 8.

Alternative Method:

By the laws of indices,

 $(a^m)^n = a^{mn}$, where a > 0.

Therefore,

$$16^{\frac{3}{4}} = (4 \times 4)^{\frac{3}{4}}$$

$$=(4^2)^{\frac{3}{4}}$$

$$2\times\frac{3}{4}$$

$$=(2^2)^{2\times\frac{3}{4}}$$

$$=2^{2\times2\times\frac{3}{4}}$$

$$=2^{3}$$

$$=8$$

Hence, the value of the expression is $16^{\frac{3}{4}} = 8$.

(iv)
$$125^{-\frac{1}{3}}$$

Ans: The given number is $125^{-\frac{1}{3}}$.

By the laws of indices, it is known that

$$a^{-n} = \frac{1}{a^n}$$
, where $a > 0$.

.Therefore,

$$125^{-\frac{1}{3}} = \frac{1}{125^{\frac{1}{3}}}$$

$$= \left(\frac{1}{125}\right)^{\frac{1}{3}}$$

$$\sqrt[3]{(\frac{1}{125})}$$

$$\sqrt[3]{(\frac{1}{5} \times \frac{1}{5} \times \frac{1}{5})}$$

$$=\frac{1}{5}$$

Hence, the value of the expression $125^{-\frac{1}{3}}$ is $\frac{1}{5}$.

3. Simplify and evaluate each of the expressions:

(i)
$$2^{\frac{2}{3}}.2^{\frac{1}{5}}$$

Ans: The given expression is $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$.

By the laws of indices, it is known that

 $a^m \cdot a^n = a^{m+n}$, where a > 0.

Therefore,

$$2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} = (2)^{\frac{2}{3} + \frac{1}{5}}$$

$$=(2)^{\frac{10+3}{15}}$$

$$=2^{\frac{13}{15}}$$

Hence, the value of the expression $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$ is $2^{\frac{13}{15}}$.

(ii)
$$\left(\frac{1}{3^3}\right)^7$$

Ans: The given expression is $\left(\frac{1}{3^3}\right)^7$.

It is known by the laws of indices that,

$$(a^m)^n = a^{mn}$$
, where $a > 0$.

Therefore,

$$\left(\frac{1}{3^3}\right)^7 = \left(\frac{1}{3^{21}}\right)$$

Hence, the value of the expression $\left(\frac{1}{3^3}\right)^7$ is $\left(\frac{1}{3^{21}}\right)$

(iii)
$$\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$$

Ans: The given number is $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$.

It is known by the Laws of Indices that

$$\frac{a^{m}}{a^{n}} = a^{m-n}$$
, where $a > 0$.

Therefore,

$$\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} = 11^{\frac{1}{2} - \frac{1}{4}}$$

$$=11^{\frac{2-1}{4}}$$

$$=11^{\frac{1}{4}}$$

Hence, the value of the expression $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$ is $11^{\frac{1}{4}}$.

(iv)
$$7^{\frac{1}{2}}.8^{\frac{1}{2}}$$

Ans: The given expression is $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$.

It is known by the Laws of Indices that

 $a^m \cdot b^m = (a \cdot b)^m$, where a > 0.

Therefore,

$$7^{\frac{1}{2}}.8^{\frac{1}{2}} = (7 \times 8)^{\frac{1}{2}}$$

$$=56^{\frac{1}{2}}$$

Hence, the value of the expression $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$ is $(56)^{\frac{1}{2}}$.