Pauta Ayudantía 12 Análisis Funcional

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

17 de noviembre de 2022

Problema 1. Sea H espacio de Hilbert y (e_n) base ortonormal. Decimos que un operador $T \in \mathcal{L}(H)$ es un operador de Hilbert-Schmidt si

$$\sum_{n\in\mathbb{N}} \|T(e_n)\|_H^2 < +\infty$$

- 1. Demuestre que la definición anterior no depende de la base ortonormal. Muestre también que T es Hilbert-Schmidt si y solo si T' es Hilbert-Schmidt.
- 2. Demuestre que el conjunto de operadores Hilbert-Schmidt es un subespacio vectorial de $\mathcal{L}(H)$.

Sobre el espacio vectorial de operadores Hilbert-Schmidt, denotado HS(H), podemos definir la norma:

$$||T||_{HS} = \left(\sum_{n \in \mathbb{N}} ||T(e_n)||_H^2\right)^{1/2}$$

- 3. Muestre que $||T|| \leq ||T||_{HS}$.
- 4. Demuestre que el espacio de operadores Hilbert-Schmidt sobre H es Banach. Más aún, pruebe que es Hilbert.

En lo que sigue considere $H = L^2(\Omega)$ con $\Omega \subseteq \mathbb{R}^n$ abierto. Sea $K \in L^2(\Omega \times \Omega)$ y defina el operador

$$T: H \to H, \quad (Tu)(x) = \int_{\Omega} K(x, y)u(y)dy$$

5. Muestre que el operador $T \in HS(H)$ y que $||T||_{HS(H)} = ||K||_{L^2(\Omega \times \Omega)}$.

Indicación: Si (e_n) es una base ortonormal de $L^2(\Omega)$ demuestre que $(e_n e_m)$ es base ortonormal de $L^2(\Omega \times \Omega)$.

6. Demuestre que todo operador $T \in HS(H)$ es de la forma anterior y que $||T||_{HS} = ||K||_{L^2(\Omega \times \Omega)}$.

Demostración.

1. Sea (f_n) otra base ortonormal de H. Notemos entonces que por el Teorema de Fubini

$$\sum_{n\in\mathbb{N}}\|Te_n\|_H^2=\sum_{n\in\mathbb{N}}\sum_{m\in\mathbb{N}}|\langle Te_n,f_m\rangle|^2=\sum_{m\in\mathbb{N}}\sum_{n\in\mathbb{N}}|\langle e_n,T'f_m\rangle|^2=\sum_{m\in\mathbb{N}}\|T'f_m\|_H^2$$

Entonces, considerando $f_m=e_m$ en la identidad anterior, repitiendo el mismo cálculo para T' y recordando que T'' = T en espacios de Hilbert, tenemos

$$\sum_{n \in \mathbb{N}} ||Te_n||_H^2 = \sum_{m \in \mathbb{N}} ||T'e_m||_H^2 = \sum_{n \in \mathbb{N}} ||T''f_n||_H^2 = \sum_{n \in \mathbb{N}} ||Tf_n||_H^2$$

El hecho que T' sea Hilbert-Schmidt se desprende de los cálculos anteriores.

2. Basta emplear desigualdad triangular:

$$\sum_{n \in \mathbb{N}} \|(S+T)(e_n)\|_H^2 \le \sum_{n \in \mathbb{N}} \|S(e_n)\|_H^2 + \sum_{n \in \mathbb{N}} \|Te_n\|_H^2$$

MAT227 UTFSM

3. Si $x \in H$ es unitario, podemos construir una sucesión ortonormal (e_n) tal que $\{x\} \cup \{e_n\}$ sea una base ortonormal de H. Luego

$$||Tx||_H^2 \le ||Tx||_H^2 + \sum_{n \in \mathbb{N}} ||Te_n||_H^2 = ||T||_{HS}^2 \quad \forall x \in \overline{B_H(0,1)}$$

y tomando supremo se sigue la desigualdad.

4. Sea $(T_n) \subseteq HS(H)$ sucesión de Cauchy. La desigualdad anterior nos dice entonces que T_n es Cauchy en $\mathcal{L}(H)$, así que existe $T \in \mathcal{L}(H)$ tal que $T_n \to T$ en $\mathcal{L}(H)$. Probamos simultáneamente que $T \in HS(H)$ y $T_n \to T$ en HS(H).

Sea $\varepsilon > 0$ y (e_n) base ortonormal de H. Como T_n es Cauchy en HS(H) existe $N \in \mathbb{N}$ tal que $||T_m - T_n||_{HS}^2 \le \varepsilon$ para todos $m, n \ge N$. Luego para todo $k \in \mathbb{N}$

$$\sum_{i=1}^{k} \|(T_m - T_n)e_j\|_H^2 \le \|T_m - T_n\|_{HS}^2 < \varepsilon$$

Haciendo $m \to \infty$

$$\sum_{j=1}^{k} \|(T_n - T)e_j\|_H^2 \le \varepsilon$$

y dado que lo anterior es válido para cualquier $k \in \mathbb{N}$, tomando $k \to \infty$

$$||T_n - T||_{HS}^2 = \sum_{n \in \mathbb{N}} ||(T_m - T)e_n||_H^2 \le \varepsilon$$

Lo anterior muestra que $T_n - T \in HS(H)$, y dado que este es un espacio vectorial $T = T_n - (T_n - T) \in HS(H)$ y por los cálculos anteriores $T_n \to T$ en HS(H). Así, HS(H) es Banach. Por último, no es difícil ver que dada una base ortonormal (e_n) de H entonces

$$\langle T, S \rangle_{HS(H)} : \sum_{n \in \mathbb{N}} \langle T(e_n), S(e_n) \rangle_H \qquad \forall T, S \in HS(H)$$

define un producto interno en HS(H) que induce la norma definida.

5. Consideremos un operador integral de la forma anterior con $K \in L^2(\Omega \times \Omega)$. Entonces

$$||Tu||_H^2 = \int_{\mathbb{R}^n} |Tu(x)|^2 dx = \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} K(x, y) u(y) dy \right|^2 dx$$

$$\leq \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} K(x, y)^2 dy \right) \left(\int_{\mathbb{R}^n} u(y)^2 dy \right) dx$$

$$\leq \int_{\Omega \times \Omega} K(x, y)^2 dy dx \int_{\Omega} u(y)^2 dy$$

$$= ||K||_{L^2(\Omega \times \Omega)}^2 ||u||_{L^2(\Omega)}^2$$

es decir $T \in \mathcal{L}(H)$ y más aún $||T||_{\mathcal{L}(H)} \le ||K||_{L^2(\Omega \times \Omega)}$. Consideremos $(e_n) \subseteq L^2(\Omega)$ base ortonormal. Probamos en primer lugar que $(e_n e_m)_{n,m \in \mathbb{N}}$ es base ortonormal de $L^2(\Omega \times \Omega)$. La ortonormalidad es directa pues

$$\langle e_n e_m, e_k e_j \rangle_{L^2(\Omega \times \Omega)} = \langle e_n, e_k \rangle_{L^2(\Omega)} \langle e_m, e_j \rangle_{L^2(\Omega)} = \delta_{nk} \delta_{mj} = \delta_{(n,m)((k,j))}$$

Para demostrar que es base entonces debemos ver que su ortogonal es $\{0\}$. Para ello consideramos $u \in L^2(\Omega \times \Omega)$ tal que $\langle u, e_n e_m \rangle_{L^2(\Omega \times \Omega)} = 0$ para todo $(n, m) \in \mathbb{N}^2$. Tenemos entonces

$$0 = \int_{\Omega} \left(\int_{\Omega} u(x, y) e_m(y) dy \right) e_n(x) dx \qquad \forall n \in \mathbb{N}$$

MAT227 UTFSM

así que la función $x \mapsto \int_{\Omega} u(x,y)e_m(y)dy$ es cero etp para cada $m \in \mathbb{N}$. Podemos entonces considerar

$$A_m = \left\{ x \in \Omega \middle| \int_{\Omega} u(x, y) e_m(y) dy \neq 0 \right\}$$

el cual es un conjunto de medida nula, y por lo tanto $A = \bigcup_{m \in \mathbb{N}} A_m$ tiene medida nula. Así, fuera de A se tiene que $x \mapsto \int_{\Omega} u(x,y) e_m(y) dy$ es cero para todo $m \in \mathbb{N}$ y en consecuencia para cada $x \in \Omega \setminus A$ $u(x,\cdot) = 0$ ctp, y por el Teorema de Fubini

$$\int_{\Omega \times \Omega} |u(x,y)|^2 dy dx = \int_{\Omega \setminus A} \int_{\Omega} |u(x,y)|^2 dy dx = 0$$

así que u = 0 en $L^2(\Omega \times \Omega)$. Ahora,

$$||T||_{HS(H)}^2 = \sum_{n \in \mathbb{N}} ||T(e_n)||_H^2 = \sum_{n \in \mathbb{N}} \sum_{k \in \mathbb{N}} |\langle T(e_n), e_k \rangle_H|^2$$

Por otro lado, podemos escribir K en términos de la base:

$$K = \sum_{n,k \in \mathbb{N}} \langle K, e_n e_k \rangle e_n e_k \quad \Rightarrow \quad \|K\|_{L^2(\Omega \times \Omega)}^2 = \sum_{n,k \in \mathbb{N}} |\langle K, e_n e_k \rangle|^2$$

y ahora calculamos que

$$\langle T(e_n), e_k \rangle_H = \int_{\Omega} \int_{\Omega} K(x, y) e_n(y) e_k(x) dy dx = \langle K, e_n e_k \rangle_{L^2(\Omega \times \Omega)}$$

y por lo tanto

$$||T||_{HS(H)}^2 = \sum_{n \in \mathbb{N}} \sum_{k \in \mathbb{N}} |\langle T(e_n), e_k \rangle_H|^2 = ||K||_{L^2(\Omega \times \Omega)}^2$$

6. Sea $T \in HS(H)$. Definimos

$$K_n(x,y) = \sum_{j,k \le n} \langle T(e_j), e_k \rangle e_j(x) e_k(y) \quad \forall n \in \mathbb{N}$$

las cuales están en $L^2(\Omega \times \Omega)$ pues son sumas finitas de funciones en este espacio. Vemos que para m > n

$$\iint_{\Omega \times \Omega} |K_n(x,y) - K_m(x,y)|^2 dy dx = \sum_{j=n+1}^m \sum_{k=1}^m |\langle T(e_j), e_k \rangle|^2 + \sum_{j=1}^n \sum_{k=n+1}^m |\langle T(e_j), e_k \rangle|^2$$

$$\leq \sum_{j=n+1}^\infty \sum_{k=1}^\infty |\langle T(e_j), e_k \rangle|^2 + \sum_{j=1}^\infty \sum_{k=n+1}^\infty |\langle T(e_j), e_k \rangle|^2$$

y como $T \in HS(H)$ las series anteriores convergen así que la sucesión (K_n) es Cauchy en $L^2(\Omega \times \Omega)$ por lo que converge a un cierto K. Denotemos por T_K al operador integral de K y veamos entonces que $T = T_K$. Para cada e_k en la base tenemos la escritura

$$T_K(e_m) = \sum_{k \in \mathbb{N}} \langle T_K(e_m), e_k \rangle e_k$$

y notando que

$$\langle T_K(e_m), e_k \rangle = \langle K, e_m e_k \rangle = \lim_{n \to \infty} \langle K_n, e_m e_k \rangle = \langle T(e_m), e_k \rangle$$

y entonces $T_K(e_m) = T(e_m)$ para todo $m \in \mathbb{N}$.

MAT227 UTFSM

Problema 2. Sea $(X, \|\cdot\|_X)$ espacio Banach y $T \in \mathcal{L}(X)$. Para $\lambda \in \mathbb{R}$ dado, el operador resolvente $R_{\lambda} : X \to X$ se define como el único operador tal que

$$R_{\lambda} \circ (\lambda I - T)(x) = (\lambda I - T) \circ R_{\lambda}(x) = x \quad \forall x \in X$$

es decir, el operador inverso de $\lambda I - T$ de existir.

1. Demuestre que si $|\lambda| > ||T||_{\mathcal{L}(X)}$ entonces R_{λ} está bien definido, $R_{\lambda} \in \mathcal{L}(X)$ y

$$||R_{\lambda}||_{\mathcal{L}(X)} \le \frac{1}{|\lambda| - ||T||_{\mathcal{L}(X)}}$$

2. Sea $(\lambda_k)_{k\in\mathbb{N}}\subseteq \rho(T)$ convergente a $\lambda\in R$. Demuestre que si (R_{λ_k}) es acotada en $\mathcal{L}(X)$ entonces $\lambda\in\rho(T)$ y $R_{\lambda_k}\to R_{\lambda}$ en $\mathcal{L}(X)$.

Demostración.

1. En clases se vio que el espectro de un operador en un espacio de Banach verifica que $\sigma(T) \subseteq [-\|T\|_{\mathcal{L}(X)}, \|T\|_{\mathcal{L}(X)}]$, así que si $|\lambda| > \|T\|_{\mathcal{L}(X)}$ entonces $\lambda \in \rho(T)$ y por lo tanto R_{λ} está bien definido. Además $R_{\lambda} \in \mathcal{L}(X)$ gracias al teorema de la aplicación abierta. Ahora, note que $\lambda R_{\lambda}(x) = x + T \circ R_{\lambda}(x)$ y entonces

$$|\lambda| \|R_{\lambda}(x)\|_{X} \leq \|x\|_{X} + \|T\|_{\mathcal{L}(X)} \|R_{\lambda}(x)\|_{X} \quad \Rightarrow \quad \|R_{\lambda}(x)\|_{X} \leq \frac{\|x\|_{X}}{|\lambda| - \|T\|_{\mathcal{L}(X)}} \quad \forall x \in X$$

y tomando supremo sobre la bola unitaria se tiene el resultado.

2. Sean $\lambda, \mu \in \mathbb{R} \setminus [-\|T\|_{\mathcal{L}(X)}, \|T\|_{\mathcal{L}(X)}]$. Por la parte anterior R_{μ}, R_{λ} están bien definidos y están en $\mathcal{L}(X)$. Es claro entonces que

$$\begin{split} R_{\lambda} - R_{\mu} &= R_{\lambda} \circ (\mu I - T) \circ R_{\mu} - R_{\lambda} \circ (\lambda I - T) \circ R_{\mu} \\ &= \mu R_{\lambda} \circ R_{\lambda} - R_{\lambda} \circ T \circ R_{\mu} - \lambda R_{\lambda} \circ R_{\mu} + R_{\lambda} \circ T \circ R_{\mu} \\ &= (\mu - \lambda) R_{\lambda} \circ R_{\mu} \end{split}$$

Sea entonces $(\lambda_k) \subseteq \rho(T)$ tal que $\lambda_k \to \lambda$. Entonces (R_{λ_k}) está bien definida. Supongamos que es acotada y tomemos K > 0 tal que $\sup_{k \in \mathbb{N}} \|R_{\lambda_k}\|_{\mathcal{L}(X)} < K$. Por la propiedad anterior

$$||R_{\lambda_k} - R_{\lambda_i}||_{\mathcal{L}(X)} \le |\lambda_k - \lambda_i| ||R_{\lambda_k} \circ R_{\lambda_i}||_{\mathcal{L}(X)} \le K^2 |\lambda_k - \lambda_i|$$

y dado que (λ_k) converge entonces (R_{λ_k}) es Cauchy y converge a cierto $R \in \mathcal{L}(X)$. Ahora, por definición del operador resolvente

$$R_{\lambda_k} \circ (\lambda_k I - T)(x) = (\lambda_k I - T) \circ R_{\lambda_k}(x) = x \qquad \forall x \in X, \forall k \in \mathbb{N}$$

y tomando $k \to \infty$ se tiene que

$$R \circ (\lambda I - T)(x) = (\lambda I - T) \circ R(x) = x \quad \forall x \in X$$

de donde deducimos que $R = R_{\lambda}$ y así $\lambda \in \rho(T)$.