AIB_13_Section4_Project

흉부 X - ray 이미지를 통한 코로나 및 폐질환 판별 딥러닝 모델 개발

AI_13_김강호

목차

1. 데이터 소개 & 가설

4. 학습모델 해석

2. 프로젝트 목표 및 기대효과

5. 가설 검증

3. 모델 개발과정

목차

1. 데이터 소개 & 가설

4. 학습모델 해석

2. 프로젝트 목표 및 기대효과

5. 가설 검증

3. 모델 개발과정

• 데이터 종류 : 4가지 상태의 흉부 X-ray 이미지

(A). 정상상태 – Normal (B). 코로나 감염상태 - COVID (C). 바이러스성 폐렴 - Viral pneumonia (D). 폐 음영 - Lung Opacity

1. 데이터 소개 & 가설
 4. 학습모델 해석

2. 프로젝트 목표 및 기대효과5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

• 데이터 종류 : 4가지 상태의 흉부 X-ray 이미지

✓ X-ray 이미지의 총 수 : 21165 개

상태	데이터 개수(개)
정상상태(Normal)	10192
코로나 감염상태(COVID)	3616
바이러스성 폐렴(Viral pneumonia)	1345
폐 음영(Lung Opacity)	6012

Ratio of dataset labels

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

2. 프로젝트 목표 및 기대효과5. 가설 검증

3. 모델 개발과정6. 프로젝트 회고

•이미지 분석

- ✓ 정상상태(A)를 제외한 (B) (D)의 X-ray 상태는 폐가 뿌옇게 나옴
- ✓ 코로나인지 폐질환인지 구별하기 어려운 경우 존재
- ✓ 숙달된 의료진이 아니고서는 구별이 어려울 수 있음
 - 1. 데이터 소개 & 가설
 - 4. 학습모델 해석

- 2. 프로젝트 목표 및 기대효과
- 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

• 가설

이미지 분석

- ✓ 정상상태(A)를 제외한 (B) (D)의 X-ray 상태는 폐가 뿌옇게 나옴
- ✓ 코로나인지 폐질환인지 구별하기 어려운 경우 존재
- ✓ 숙달된 의료진이 아니고서는 구별이 어려울 수 있음

가설

입러닝 모델이 4가지 클래스에 대한 X-ray 이미지 패턴을 학습해서 환자 상태를 잘 분류할 수 있다!!

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

- 2. 프로젝트 목표 및 기대효과
- 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

목차

1. 데이터 소개 & 가설

4. 학습모델 해석

2. 프로젝트 목표 및 기대효과

5. 가설 검증

3. 모델 개발과정

2. 프로젝트 목표 및 기대효과

• 목표

✓ 흉부 x-ray 이미지의 **코로나 및 폐질환 진단**용 **딥러닝 모델** 개발

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

- 2. 프로젝트 목표 및 기대효과
- 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

2. 프로젝트 목표 및 기대효과

• 딥러닝 모델의 기대효과

✓ 의료진의 진단보조 → 휴먼 에러 방지, 판독시간 감소

✓ 환자의 입장 : 조기 진단 → 치료결과 ↑

✓ 의료진의 입장 : 인력 낭비 감소

^{1.} 데이터 소개 & 가설

^{2.} 프로젝트 목표 및 기대효과5. 가설 검증

^{3.} 모델 개발과정6. 프로젝트 회고

목차

1. 데이터 소개 & 가설

4. 학습모델 해석

2. 프로젝트 목표 및 기대효과

5. 가설 검증

3. 모델 개발과정

1. 데이터 소개 & 가설
 4. 학습모델 해석

2. 프로젝트 목표 및 기대효과5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

1. 데이터 전처리

2. 모델학습

- X-ray 이미지의 데이터프레임(df)
 - ✓ 구성목적 : 이미지와 해당 이미지의 X-ray 상태(레이블)을 쉽게 불러오 기 위함
 - ✓ os 라이브러리로 이미지의 경로 및 이미지의 폴더이름 추출, 저장
 - ✓ file_pathes : 이미지의 경로, labels : 이미지의 실제 X-ray 상태

1 TO 1	0	/content/c
	1	/content/c
	2	/content/d
	3	/content/c
	4	/content/d

,			file_pathes	labels
	0	/content/drive/MyDrive/Colab N	lotebooks/Section	COVID
•	1	/content/drive/MyDrive/Colab N	lotebooks/Section	COVID
	2	/content/drive/MyDrive/Colab N	lotebooks/Section	COVID
	3	/content/drive/MyDrive/Colab N	lotebooks/Section	COVID
	4	/content/drive/MyDrive/Colab N	lotebooks/Section	COVID

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

- 2. 프로젝트 목표 및 기대효과
- 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

1. 데이터 전처리

2. 모델학습

- 데이터프레임(df) 분할
 - ✓ 모델학습 및 평가를 위해 train_df, valid_df, test_df로 분할
 - ✓ 데이터프레임 분할을 위해 train_test_split 사용

```
train_df dummy_df = train_test_split(df, train_size = 0.9, shuffle = True,
random_state = 123)
valid_df: test_df=train_test_split(dummy_df, train_size = 0.5,
shuffle = True, random_state = 123)
```

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

- 2. 프로젝트 목표 및 기대효과
- 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

1. 데이터 전처리

2. 모델학습

- Train_df[©]| Undersampling
 - ✓ 불균형 데이터를 그대로 학습 : 학습모델의 낮은 성능을 보임

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

- 2. 프로젝트 목표 및 기대효과
- 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

1. 데이터 전처리

2. 모델학습

3. 모델평가

- Train_df의 Undersampling
 - ✓ 불균형데이터 처리 : Oversampling, Undersampling
 - ✓ 학습시간 절약을 위해 Undersampling 사용하여 데이터프레임의 레이블 별 정보를 balanced하게 통일 – sample 함수, for, if 문을 사용

Normal 9194 Lung_Opacity 5385 COVID 3275 Viral Pneumonia 1194 Name: labels, dtype: int64

		Courts
Viral Pneumonia	11	94
Normal	11	94
COVID	11	94
Lung_Opacity	11	94
Name: labels, dtype	e:	int64

Indercampling 호 레이트 count

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

- 2. 프로젝트 목표 및 기대효과
- 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

1. 데이터 전처리

2. 모델학습

- ImageDataGenerator
 - ✓ Data Augmentation(데이터 증강), 데이터 파이프라인 구축
- Flow_from_dataframe
 - ✓ 데이터프레임에서 ImageDataGenerator로 데이터를 원활하게 전송

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

- 2. 프로젝트 목표 및 기대효과
- 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

1. 데이터 전처리

🤰 2. 모델학습

3. 모델평가

- 사전학습 모델 EfficientNetB1 사용
 - ✓ 이유 : X-ray 이미지 분류 분야에서 다른 사전학습 모델과 비교할 때, 성 능이 좋고 참고자료가 많았음

Table 4. Classification results using Strategy II.

Deep learning	Evaluation Parameters				
Models	Accuracy	Precision	Sensitivity	F1 Score	
EfficientNetB1	96.13%	97.25%	96.50%	97.50%	
NasNetMobile	94.81%	95.50%	95%	95.25%	
MobileNetV2	93.96%	94.50%	95%	94.50%	

참고논문:

- 1. Khan, E.; Rehman, M.Z.U.; Ahmed, F.; Alfouzan, F.A.; Alzahrani, N.M.; Ahmad, J. Chest X-ray Classification for the Detection of COVID-19 Using Deep Learning Techniques. Sensors 2022, 22, 1211. https://doi.org/10.3390/s22031211
- 2. Ravi, V., Acharya, V. & Alazab, M. A multichannel EfficientNet deep learning-based stacking ensemble approach for lung disease detection using chest X-ray images. *Cluster Comput* (2022). https://doi.org/10.1007/s10586-022-03664-6

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

- 2. 프로젝트 목표 및 기대효과
- 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

1. 데이터 전처리 2. 모델학습

3. 모델평가

• 학습모델 구성

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

2. 프로젝트 목표 및 기대효과 5. 가설 검증

6. 프로젝트 회고

3. 모델 개발과정

1. 데이터 전처리 2. 모델학습

3. 모델평가

• 학습모델 구성

Base_model : EfficientNetB1 Batchnormalization - 과적합, gradient vanishing 문제 해결 Regularizer 적용(가중치 감소) – 과적합 예방 Dropout – 과적합 예방 Output : activation = 'softmax'

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

2. 프로젝트 목표 및 기대효과 5. 가설 검증

6. 프로젝트 회고

3. 모델 개발과정

1. 데이터 전처리 2. 모델학습

3. 모델평가

• 학습모델 구성

Base_model: EfficientNetB1 Batchnormalization - 과적합, gradient vanishing 문제 해결 Regularizer 적용(가중치 감소) – 과적합 예방 Dropout – 과적합 예방 Output : activation = 'softmax'

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

- 2. 프로젝트 목표 및 기대효과
- 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

1. 데이터 전처리 2. 모델학습

3. 모델평가

• 학습모델 구성

Base_model : EfficientNetB1 Batchnormalization - 과적합, gradient vanishing 문제 해결 Regularizer 적용(가중치 감소) – 과적합 예방 Dropout – 과적합 예방 Output : activation = 'softmax'

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

2. 프로젝트 목표 및 기대효과 5. 가설 검증

3. 모델 개발과정

1. 데이터 전처리 2. 모델학습

3. 모델평가

• 학습모델 구성

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

2. 프로젝트 목표 및 기대효과 5. 가설 검증

6. 프로젝트 회고

3. 모델 개발과정

1. 데이터 전처리 2. 모델학습

3. 모델평가

• 학습모델 구성

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

2. 프로젝트 목표 및 기대효과 5. 가설 검증

3. 모델 개발과정

1. 데이터 전처리

🤰 2. 모델학습

- · Callback 함수
 - ✓ 딥러닝 모델의 학습을 효율적으로 수행하기 위해 구성된 함수
 - ✓ 딥러닝 모델이 실행의 분기점(train 시작과 끝, train batch의 시작과 끝, train epoch의 시작과 끝)마다 모델의 학습을 효율적으로 수행하도록 하는 여러 기능들로 구성.
 - ▶ 성능 개선 여지 X -> 학습중단
 - ▶ 성능 개선 여지 X -> Learning Rate를 조절해 모델의 개선 유도
 - ▶ 특정 Epochs 마다 학습을 계속할 것인지 여부를 묻는 기능

```
class LRA(keras.callbacks.Callback):

def __init__(self, model, base_model, patience, stop_patience, threshold, factor, dwell, batches, initial_epoch, epochs, ask_epoch):
    super(LRA, self).__init__()
    self.model = model
    self.base_model = base_model
    self.patience = patience # 학습률이 조정되기 전에 개선되지 않은 Epoch의 수를 지정한다.
    self.stop_patience = stop_patience # 훈련을 중지하기 위해 개선 없이 얼마나 Ir을 조정할 것인지 지정
```

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

- 2. 프로젝트 목표 및 기대효과
- 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

1. 데이터 전처리

🤰 2. 모델학습

- 모델학습 진행
 - ✓ 콜백함수를 객체화 하고 모델학습을 진행

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

- 2. 프로젝트 목표 및 기대효과
- 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

1. 데이터 전처리

2. 모델학습

🕻 3. 모델평가

• 모델평가

✓ 테스트 셋으로 학습된 모델을 평가한 뒤 모델 저장

```
tr_plot(history,0)
save_dir=r'./'
subject='covid'
acc=model.evaluate( test_gen, batch_size=test_batch_size, verbose=1, steps=test_steps, return_dict=False)[1]*100
msg=f'accuracy on the test set is {acc:5.2f} %'
print_in_color(msg, (0,255,0),(55,65,80))
save_id=str (model_name + '-' + subject +'-'+ str(acc)[:str(acc).rfind('.')+3] + '.h5')
save_loc=os.path.join(save_dir, save_id)
model.save(save_loc)
```

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

- 2. 프로젝트 목표 및 기대효과
- 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

목차

1. 데이터 소개 & 가설

4. 학습모델 해석

2. 프로젝트 목표 및 기대효과

5. 가설 검증

3. 모델 개발과정

4. 학습모델 해석

• Epochs에 따른 Loss와 Accuracy의 변화

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

- 2. 프로젝트 목표 및 기대효과
- 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

4. 학습모델 해석

• Classification Report (Test set 예측결과)

Classification Report:						
	precision	recall	f1-score	support		
COVID	0.98	0.99	0.98	164		
Lung_Opacity	0.89	0.94	0.91	317		
Normal	0.96	0.92	0.94	501		
Viral Pneumonia	0.93	1.00	0.96	77		
accuracy			0.94	1059		
macro avg	0.94	0.96	0.95	1059		
weighted avg	0.94	0.94	0.94	1059		

- ✓ Test set 정확도 : 94%
 - ➤ Chance Level: 25%
- ✓ 테스트 셋 : 데이터 개수의 불균형
- ✓ 불균형 데이터 >> f1-score중요
- ✓ 모든 범주의 F1 score : 0.9 이상
- ✓ 희귀 케이스에서 분류성능 양호

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

- 2. 프로젝트 목표 및 기대효과
- 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

목차

1. 데이터 소개 & 가설

4. 학습모델 해석

2. 프로젝트 목표 및 기대효과

5. 가설 검증

3. 모델 개발과정

5. 가설 검증

• 가설

✔ 딥러닝 모델이 X-ray 이미지 패턴을 학습해서 환자 상태를 잘 분류할 수 있다!!

• 결론

✓ 이번 테스트셋에 한정해서는, **잘 학습된 딥러닝 모델**이 X-ray 이미지 의 정상상태와 코로나, 폐 질환 상태 등을 잘 분류할 수 있다.

1. 데이터 소개 & 가설

2. 프로젝트 목표 및 기대효과5. 가설 검증

3. 모델 개발과정

4. 학습모델 해석

목차

1. 데이터 소개 & 가설

4. 학습모델 해석

2. 프로젝트 목표 및 기대효과

5. 가설 검증

3. 모델 개발과정

6. 프로젝트 회고

• 긍정적인 점

- ✓ 모델 성능이 잘 나왔으며, 의료분야에서의 실용적인 문제를 해결한 것 같은 느낌이 들어 뿌듯했다.
- ✓ 프로젝트를 진행하면서, 기존에 알고 있던 딥러닝 관련 지식이 전체적으로 좀 더 정리되는 느낌을 받아서 기분이 좋았다.
 - ▶ 딥러닝이 여전히 어렵긴 하지만 흥미가 점점 더 생기는 느낌이 든다.

- 1. 데이터 소개 & 가설
- 4. 학습모델 해석

- 2. 프로젝트 목표 및 기대효과
- 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

6. 프로젝트 회고

• 아쉬운 점

- ✓ 사전학습 모델과 다른 사람들의 코드를 상당수 인용
 - ▶ 코드에 대한 이해를 완전히 하지 못함
 - 내가 직접 학습모델을 최적화 할 기회가 적었음
- ✓ 데이터셋에 대한 아쉬운 점
 - ▶ 데이터의 개수가 그렇게 많지 않았음
 - ▶ 인종이나 나이, 성별 등에 대한 데이터가 없었음
 - .: 이번 딥러닝 학습모델의 일반화는 무리

1. 데이터 소개 & 가설 4. 학습모델 해석 2. 프로젝트 목표 및 기대효과 5. 가설 검증

- 3. 모델 개발과정
- 6. 프로젝트 회고

부록 Test 1 결과

accuracy on the test set is 92.45 %

Errors by Class on Test Set

Confusion matrix

부록 Test 2 결과

accuracy on the test set is 92.54 %

training accuracy: 97.194 validation accuracy: 94.045

test accuracy: 92.54

Errors by Class on Test Set

Confusion matrix

Classification Report:					
	precision	recall	f1-score	support	
COVID Lung_Opacity Normal Viral Pneumonia	0.96 0.92 0.93 0.87	1.00 0.88 0.92 1.00	0.98 0.90 0.92 0.93	164 317 501 77	
accuracy macro avg weighted avg	0.92 0.93	0.95 0.93	0.93 0.93 0.93	1059 1059 1059	

부록 Test 3 결과

accuracy on the test set is 93.96 %

training accuracy : 98.199 validation accuracy : 94.234

test accuracy: 93.96

Errors by Class on Test Set

Confusion matrix

Classification Report:						
	precision	recall	f1-score	support		
COVID	0.98	0.99	0.98	164		
Lung_Opacity	0.89	0.94	0.91	317		
Normal	0.96	0.92	0.94	501		
Viral Pneumonia	0.93	1.00	0.96	77		
accuracy			0.94	1059		
macro avg	0.94	0.96	0.95	1059		
weighted avg	0.94	0.94	0.94	1059		