Normalization × Normal Forms

Normalization is done through decomposing tables based on series of normal forms.

There are 11 normal forms:

UNF	1NF	2NF	3NF	EKNF	BCNF	4NF	ETNF	5NF	DKNF	6NF
(1970)	(1971)	(1971)	(1971)	(1982)	(1974)	(1977)	(2012)	(1979)	(1981)	(2003)

But we only consider UNF, 1NF, 2NF, 3NF and BCNF.

Normalization × Normal Forms

3NF

2NF

Normalization × U-1,2,3NF

U-1NF: Requiring existence of "the key" in the table

2NF: Requiring that non-key attributes be dependent on "the whole key".

3NF: Requiring that non-key attributes be dependent on "nothing but the key"

 Both 2NF and 3NF are concerned equally with ALL Candidate Keys of a table and not just any one key

O If there is no non-key, i.e., all attributes are part of at least a candidate key, then table is already in 2NF and 3NF.

In 3NF, a non-key attribute is able to be a determinant of a key attribute!

Boyce-Codd NF | BCNF | $\frac{3.5NF}{5.5NF}$, requires that at least one of the following conditions hold for all functional dependencies like X \rightarrow Y of a table:

- I) $X \rightarrow Y$ is trivial, i.e., $Y \subseteq X$
- II) X is a Super Key (left side must be super key!)

The different between BCNF and 3NF is ...

Boyce-Codd NF | BCNF | 3.5NF, requires that at least one of the following conditions hold for all functional dependencies like $X \rightarrow Y$ of a table:

- I) $X \rightarrow Y$ is trivial, i.e., $Y \subseteq X$
- II) X is a Super Key

The different between BCNF and 3NF is: In 3NF if Y is a Candidate Key, X is could be a non-key i.e., a key attribute can depend on a non-key attribute or partial key

In BCNF X must be a Super Key i.e., a key attribute can depend only on Super Keys

E.g. T(A, B, C) with functional dependencies as AB \rightarrow C and C \rightarrow B

2NF? If not, decompose T to comply with 2NF.

3NF? If not, decompose T to comply with 3NF.

BCNF? If not, decompose T to comply with BCNF.

E.g. T(A, B, C) with functional dependencies as AB \rightarrow C and C \rightarrow B {AB} is the only candidate key

C is the only non-key, totally depends on the candidate key \rightarrow 2NF C is not dependent on any other non-key \rightarrow 3NF

C → B is violating BCNF since B is a key attribute but depends on C which is not a Super Key! C → A

To make it BCNF, move C \rightarrow B to a new table, i.e., T(A, B)
T'(C, B)

Interview						
ClientNo	InterviewDay	InterviewTime	StaffNo	RoomNo		
76	13	10.30	05	G101		
56 74	13	12.00	05	G101		
74	13	12.00	37	G102		
56	01	10.30	05	G102		

Interview						
ClientNo	InterviewDay	InterviewTime	StaffNo	RoomNo		
76	13	10.30	05	G101		
56	13	12.00	05	G101		
74	13	12.00	37	G102		
56	01	10.30	05	G102		

CK1: ClientNo, InterviewDay → InterviewTime, StaffNo, RoomNo CK2: StaffNo, InterviewDay, InterviewTime → ClientNo, RoomNo CK3: RoomNo, InterviewDay, InterviewTime → ClientNo, StaffNo

StaffNo, InterviewDay → RoomNo

In UNF, since has a super key
In 1NF, since has no multivalued or composite attribute
In 2NF, since there is no non-key attribute
In 3NF, since there is no non-key attribute
Not in BCNF, since {StaffNo, InterviewDay} is not Super Key

Interview						
ClientNo	InterviewDay	InterviewTime	StaffNo			
76	13	10.30	05			
56	13	12.00	05			
74	13	12.00	37			
56	01	10.30	05			

CK1: ClientNo, InterviewDay → InterviewTime, StaffNo, RoomNo

CK2: StaffNo, InterviewDay, InterviewTime → ClientNo, RoomNo

CK3: RoomNo, InterviewDay, InterviewTime → ClientNo, StaffNo

InterviewDay	StaffNo	RoomNo
13	05	G101
13	05	G101
13	37	G102
01	05	G102

StaffNo, InterviewDay → RoomNo

Data Odyssey vs. Normalization

My personal view:

Normalization is blind to semantics, real world, ...

It's a good check but not the ultimate solution:)

Denormalization

Courses

Organizations

Content Collection

Home

Notifications Dashboard

Add Module

Personalize Page

Student Evaluations of Teaching (SET) are now available. This is your chance to provide feedback on your courses!

SETs do not apply for Continuing Education courses such as IB,AQ, and ELIP courses.

Instructions for completing SET: http://ask.uwindsor.ca/app/answers/detail/a_id/176

▼ Tools

My Announcements

My Courses

Get Help

Home

RATE MY PROFESSORS

Find a professor

O Professor name

I want to find a professor at a school