שיעור *7* רדוקציה

7.1 מ"ט המחשבת את פונקציה

הגדרה 7.1 מ"ט המחשבת פונקציה

 $x \in \Sigma^*$ אם לכל את מחשבת מ"ט מ"ט $f: \Sigma^* \to \Sigma^*$ אומרים פהינתן פונקציה

- וגם f(x) אוב בסוף בסוף $q_{
 m acc}$ מגיעה מגיעה M
 - f(x) על סרט הפלט של M רשום •

7.1 הערה

מ"ט שמחשבת פונקציה עוצרת תמיד.

הגדרה 7.2 מ"ט המחשבת פונקציה

 $f:\Sigma^* \to \Sigma^*$ אומרים מ"ט חישבה אם היימת $f:\Sigma^* \to \Sigma$ אומרים כי

דוגמה 7.1

$$f_1(x) = xx . (7.1)$$

.חשיבה $f_1(x)$

דוגמה 7.2

$$f_2(x) = \begin{cases} x & |x| \text{ in } \\ xx & |x| \text{ in } \end{cases}$$
 (7.2)

.חשיבה $f_2(x)$

דוגמה 7.3

$$f_3(x) = \begin{cases} \langle M' \rangle & x = \langle M \rangle \\ \langle M^* \rangle & x \neq \langle M \rangle \end{cases}$$
 (7.3)

כאשר

.ט שמקבלת כל קלט M^*

מ"ט המקבלת את השפה M' ullet

$$L(M') = \{ w \in \Sigma^* \mid ww \in L(M) . \}$$

ואם כן, (M^*) חשיבה כי ניתן לבנות מ"ט שבודקת האם (M) האם (M) אם לא, מחזירה קידוד קבוע (M). ואם כן, מחזירה קידוד (M) ע"י הוספת מעברים המשכפלים את הקלט בתחילת הקידוד (M)

דוגמה 7.4

$$f_4(x) = \begin{cases} 1 & x = \langle M \rangle \land \langle M \rangle \in L(M) \\ 0 & \text{אחרת} \end{cases}$$
 (7.4)

 $.\langle M \rangle$ לא עוצרת לM -ו $x = \langle M \rangle$ קלטים ייתכנו כי חשיבה לא $f_4(x)$

7.2 רדוקציות

הגדרה 7.3 רדוקציות

בהינתן שתי שפות ל-1, $L_2\subseteq \Sigma^*$ אומרים כי גיתנת לרדוקציה ל- $L_1,L_2\subseteq \Sigma^*$ ומסמנים

$$L_1 \leqslant L_2$$
,

אם $f: \Sigma^* \to \Sigma^*$ המקיימת:

- חשיבה f (1
- $x \in \Sigma^*$ לכל (2

$$x \in L_1 \quad \Leftrightarrow \quad f(x) \in L_2 \ .$$

דוגמה 7.5

נתונות השפות

$$L_1 = \left\{ x \in \{0,1\}^* \mid \mathsf{ink'} \mid x \mid \right\} \; ,$$
 $L_2 = \left\{ x \in \{0,1\}^* \mid \mathsf{ink'} \mid x \mid \right\} \; .$

הוכיחו כי

$$L_1 \leqslant L_2$$
.

פתרון:

נגדיר את הפונקציה

$$f(x) = egin{cases} 1 & \text{iik} & |x|, \\ 10 & \text{iik} & |x| \end{cases}$$

הוכחת הנכונות:

$$f(x) \in L_2$$
 אי-זוגי $|f(x)| \Leftarrow f(x) = 1 \Leftarrow |x| \Leftarrow x \in L_1$

$$f(x) \notin L_2$$
 אני $|f(x)| \Leftarrow f(x) = 10 \Leftarrow x$ אי-זוגי $|x| \Leftarrow x \notin L_1$

משפט 7.1 משפט הרדוקציה

לכל שתי שפות $L_1,L_2\subseteq \Sigma^*$ אם קיימת רדוקציה

$$L_1 \leqslant L_2$$

אזי התנאים הבאים מתקיימים:

$$L_1 \in R \quad \Leftarrow \quad L_2 \in R \quad \text{(1)}$$

$$L_1 \in RE \iff L_2 \in RE$$
 (2)

$$L_1 \in RE \iff L_2 \in RE$$
 (2)
 $L_1 \notin R \implies L_2 \notin R$ (3)
 $L_1 \notin RE \implies L_2 \notin RE$ (4)

$$L_1 \notin RE \implies L_2 \notin RE$$
 (4)

הוכחה: מכיוון ש-

:קיימת פונקציה f חשיבה המקיימת

$$x \in L_1 \quad \Leftrightarrow \quad f(x) \in L_2$$

 $.x \in \Sigma^*$ לכל

f מ"ט המחשבת את M_f

$\underline{L}_1 \in R \Leftarrow \underline{L}_2 \in R$ נוכיח (1)

 $.L_2$ את מ"ט המכריעה את M_2 מ"ט המכריעה את $.L_1$ המכריעה את M_1

M_1 אור של

x על קלט $= M_1$

- M_f בעזרת f(x) את מחשבת . 1
- . מריצה את f(x) על M_2 את מריצה . 2

 $.L_1$ מכריעה את מכריעה M_1

- A_1 את את מקבלת את מקבלת את M_2 \Leftrightarrow $f(x) \in L_2$ \Leftrightarrow $x \in L_1$ אם
 - x את את $M_1 \quad \Leftarrow \quad f(x)$ אם $M_2 \quad \Leftarrow \quad f(x) \notin L_2 \quad \Leftarrow \quad x \notin L_1$ אם •

$L_1 \in RE \Leftarrow L_2 \in RE$ נוכיח (2)

 $.L_2$ את המקבלת מ"ט מ"ט תהי $.L_1$ את המקבלת את המקבלת מ"ט מ"ט נבנה מ"ט אונ

M_1 התאור של

x על קלט $= M_1$

- M_f בעזרת f(x) את מחשבת .1
- . ועונה כמוה. f(x) על M_2 את מריצה מריצה .2

 $:L_1$ את מקבלת M_1 נוכיח כי

- x את את מקבלת את מקבלת את מקבלת את $M_2 \quad \Leftarrow \quad f(x) \in L_2 \quad \Leftarrow \quad x \in L_1$ אם •
- A_1 את את את את את את את את את אח אם אל M_2 אם א M_2 אר את את את אח אם אס י

(3)

(4)

כלל 7.1

אם רדוקציה שקיימת כי שפה להוכיח שפה אחרת בוחרים שפה לשהי לשהי שקיימת רדוקציה שפה אחרת להוכיח כי שפה כלשהי רדוקציה ש

$$L \leqslant L'$$
.

לדודמה:

$$L \leqslant L_{\rm acc}$$

(R כנ"ל לגבי)

ומראים שקיימת רדוקציה עם רוצים להוכיח שפה אחרת בוחרים בוחרים לשהי לשהי שקיימת להוכיח אם רוצים שקיימת בוחרים שפה \bullet

$$L' \leqslant L$$
.

לדוגמה

$$L_{\rm d} \leqslant L$$

(R כנ"ל לגבי(R)

דוגמה 7.6

 $L_{
m halt}=ig\{\langle M,w
angle\ \mid\ w$ נתונות השפות במר ו- $L_{
m acc}=ig\{\langle M,w
angle\ \mid\ w\in L(M)ig\}$ וי- $L_{
m acc}\leqslant L_{
m halt}$ ע"י רדוקציה בוכיחו כי $L_{
m acc}\notin R$ הוכיחו כי

פתרון:

נבנה פונקציה f חשיבה ומקיימת

$$x \in L_{\mathrm{acc}} \quad \Leftrightarrow \quad f(x) \in L_{\mathrm{halt}} .$$

w' מקבלת את $M' \Leftarrow w$ מקבלת את מקבלת M' מקבלת את את $M' \Leftarrow w$ אורה את א $M' \Leftrightarrow w$ אוררת את א $M' \Leftrightarrow w$ אוצרת את א $M' \Leftrightarrow w$

$$f(x) = \begin{cases} \langle M', w \rangle & : x = \langle M, w \rangle \\ \langle M_{\text{loop}}, \varepsilon \rangle & : x \neq \langle M, w \rangle \end{cases}$$

כאשר

- .ט שלא עוצרת על אף קלט מ"ט שלא עוצרת אר $M_{
 m loop}$
- מ"ט המתנהגת כמו M פרט למקומות בהם M עצרה ודחתה, M' תיכנס ללולאה אינסופית. M'

נכונות הרדוקציה

 $x=\langle M,w
angle$ חשיבה כי ניתן לבנות מ"ט שתבדוק האם f

 $\langle M_{
m loop}, w
angle$ אם לא, תחזיר קידוד קבוע

M עני ביצוע שינויים לוקלים בקידוד של עני ביצוע עני עניי קידוד אינו או ואם כן, תחזיר אינו של

$$x \in L_{
m acc} \quad \Leftrightarrow \quad f(x) \in L_{
m halt}$$
 נוכיח כי

 $x \in L_{\mathrm{acc}}$ אם

$$w \in L(M)$$
 -1 $x = \langle M, w \rangle \Leftarrow$

$$w$$
 את ומקבלת את עוצרת ומקבלת אר $f(x) = \langle M', w
angle \Leftarrow$

$$f(x) \in L_{\text{halt}} \Leftarrow$$

:אם אז שני מקרים $x \notin L_{\mathrm{acc}}$

:1 מקרה

$$f(x)
otin L_{
m halt} \quad \Leftarrow \quad arepsilon$$
 לא עוצרת על $M_{
m loop}$ ו- $f(x) = \langle M_{
m loop}, arepsilon
angle \quad \Leftarrow \quad x
otin \langle M, w
angle$

מקרה 2:

שני מקרים:
$$=\langle M',w \rangle \in w \notin L(M)$$
 שני מקרים: $=\langle M,w \rangle$

$$f(x)
otin L_{ ext{halt}} \quad \Leftarrow \quad w$$
 לא עוצרת על $M' \quad \Leftarrow \quad w$ לא עוצרת או M

$$f(x)
otin L_{ ext{halt}} \quad \Leftarrow \quad w$$
 לא עוצרת על $M' \quad \Leftarrow \quad w$ דוחה את M

לסיכום, הוכחנו רדוקציה 7.1, ומכיוון ש- $L_{
m acc} \notin R$ (משפט 6.4) אז ממשט הרדוקציה ומכיוון ש- $L_{
m acc} \leqslant L_{
m halt}$ מתקיים . $L_{
m halt} \notin R$

דוגמה 7.7

נתונה השפה

$$L_{\Sigma^*} = \{ \langle M \rangle \mid L(M) = \Sigma^* \}$$

ונתונה השפה

$$\bar{L}_{\Sigma^*} = \{ \langle M \rangle \mid L(M) \neq \Sigma^* \} \cup \{ x \neq \langle M \rangle \} .$$

הוכיחו כי:

$$L_{\Sigma^*} \notin RE$$
 (x

$$L_{\Sigma^*} \notin R$$
 (2

$$ar{L}_{\Sigma^*}
otin RE$$
 ()

פתרון:

נוכיח כי $L_{\Sigma^*} \notin R$ ע"י רדוקציה

$$L_{\rm acc} \leqslant L_{\Sigma^*}$$
.

נבנה פונקציה חשיבה f המקיימת

$$x \in L_{\mathrm{acc}} \quad \Leftrightarrow \quad f(x) \in L_{\Sigma^*} .$$

$$\begin{array}{cccc} L(M') = \Sigma^* & \Leftarrow & w \in L(M) \\ L(M') \neq \Sigma^* & \Leftarrow & w \notin L(M) \end{array}$$

$$f(x) = \begin{cases} \langle M' \rangle & : x = \langle M, w \rangle \\ \langle M_{\varnothing} \rangle & : x \neq \langle M, w \rangle \end{cases}$$

כאשר

- . מ"ט שדוחה כל קלט $M_{\varnothing} \, \bullet \,$
- . ועונה על על w על את ומריצה את מ-x מתעלמת היא מ"ט שעל כל קלט א, מתעלמת מ-M'

אבחנה:

$$L(M') = \begin{cases} \Sigma^* & : w \in L(M) \\ \varnothing & : w \notin L(M) \end{cases}$$

נכונות הרדוקציה:

 $x = \langle M, w \rangle$ חשיבה ליניתן לבנות מ"ט שתבדוק האם f

 $\langle M_{\varnothing} \rangle$ אם לא תחזיר קידוד קבוע

. אם כן, תחזיר קידוד w וכותב ע"י שמוחק את שמוחק ל- M ל- ע"י הוספת ע"י קידוד $\langle M' \rangle$ אם כן, תחזיר אם כן, ע"י הוספת אם אם כן

נוכיח כי

$$x \in L_{\mathrm{acc}} \iff f(x) \in L_{\Sigma^*}$$

 \Leftarrow $L(M')=\Sigma^*$ ולפי האבחנה $f(x)=\langle M'
angle$ \Leftrightarrow $w\in L(M)$ -1 $x=\langle M,w
angle$ \Leftrightarrow $x\in L_{\mathrm{acc}}$ אם $f(x)\in L_{\Sigma^*}$

אם מקרים: $x \in L_{\mathrm{acc}}$ אם

$$f(x) \notin L_{\Sigma^*} \quad \Leftarrow \quad L\left(M_{\varnothing}
ight) = arnothing f(x) = \langle M_{\varnothing}
angle \quad \Leftarrow \quad x
eq \langle M, w
angle \quad$$

$$f(x)
otin L_{\Sigma^*} \quad \Leftarrow \quad L\left(M'
ight) = arnothing$$
 ולפי האבחנה $f(x) = \langle M'
angle \quad \Leftarrow \quad w
otin L(M) - 1 \ x = \langle M, w
angle \quad x = \langle M, w
angle$ מקרה 2):

לסיכום, הוכחנו רדוקציה $L_{
m acc} \notin R$ ומכיוון ש- $L_{
m acc} \leqslant L_{\Sigma^*}$ אז ממשט הרדוקציה . $L_{
m acc} \leqslant L_{\Sigma^*}$ מעקיים . $L_{\Sigma^*} \notin R$

דוגמה 7.8

נתונה השפה

$$L_{d} = \{ \langle M \rangle \mid \langle M \rangle \notin L(M) \}$$

ונתונה השפה

$$\bar{L}_{acc} = \{ \langle M, w \rangle \mid w \notin L(M) \} \cup \{ x \neq \langle M, w \rangle \} .$$

הוכיחו כי

ע"י רדוקציה $ar{L}_{
m acc}
otin RE$

$$L_{\rm d} \leqslant \bar{L}_{\rm acc}$$
.

פתרון:

נבנה פונקציה חשיבה f המקיימת

$$x \in L_{\mathrm{d}} \quad \Leftrightarrow \quad f(x) \in L_{\mathrm{acc}} .$$

$$w' \notin L(M') \iff \langle M \rangle \notin L(M)$$

 $w' \in L(M') \iff \langle M \rangle \in L(M)$

$$f(x) = \begin{cases} \langle M, \langle M \rangle \rangle & : x = \langle M \rangle \\ \langle M^*, \varepsilon \rangle & : x \neq \langle M \rangle \end{cases}$$

כאשר M^* המ"ט שמקבלת כל קלט.

נכונות הרדוקציה:

 $x=\langle M,w
angle$ חשיבה כי ניתן לבנות מ"ט שתבדוק האם f

 $.\langle M^*, \varepsilon \rangle$ אם קידוד קידור תחזיר אם אם א

 $\langle M,\langle M \rangle
angle$ אם כן, תחשב

נוכיח כי

$$x \in L_{\mathsf{d}} \quad \Leftrightarrow \quad f(x) \in \bar{L}_{\mathsf{acc}}$$

$$\iff \langle M \rangle \notin L(M) \text{ -1 } f(x) = \langle M, \langle M \rangle \rangle \quad \iff \quad \langle M \rangle \notin L(M) \text{ -1 } x = \langle M \rangle \quad \iff \quad x \in L_{\operatorname{d}} \text{ dec}$$

$$f(x) \in \bar{L}_{\operatorname{acc}}$$

אם $x \notin L_{\mathsf{d}}$ שני מקרים:

$$f(x)
otin ar{L}_{
m acc} \quad \Leftarrow \quad arepsilon \in L\left(M^*
ight)$$
 וו $f(x) = \langle M^*, arepsilon
angle \quad \Leftarrow \quad x
otin \langle M, w
angle \quad = \langle M, w
angle$ מקרה ב

$$f(x)
otin ar{L}_{
m acc} \quad \Leftarrow \quad \langle M
angle \in L(M)$$
 רו $f(x) = \langle M, \langle M
angle
angle \quad \Leftarrow \quad \langle M
angle \in L(M)$ רו $f(x) = \langle M, w
angle \quad \Leftrightarrow \quad \langle M
angle \in L(M)$ רו $f(x) = \langle M, w
angle \quad \Leftrightarrow \quad \langle M
angle \in L(M)$

לסיכום, הוכחנו רדוקציה 1.1, ומכיוון ש- $L_{
m d} \notin RE$ (משפט 6.3) אז ממשט הרדוקציה 1.1, מתקיים , לסיכום, הוכחנו רדוקציה $L_{
m d} \leqslant ar{L}_{
m acc}$

משפט 7.2 משפט הרדוקציה בין שפות משלימות

 $ar{L}_1\leqslantar{L}_2$ אדי קיימת רדוקציה, $L_1\leqslant L_2$ אדי קיימת רדוקציה

הוכחה:

אם ∃ רדוקציה

$$L_1 \leqslant L_2$$

אזי \exists פונקציה חשיבה f המקיימת

$$x \in L_1 \quad \Leftrightarrow \quad f(x) \in L_2$$

ולכן עבור אותה פונקציה f היא גם חשיבה וגם מקיימת

$$x \in \bar{L}_1 \quad \Leftrightarrow \quad f(x) \in \bar{L}_2$$

ולכן

$$\bar{L}_1 \leqslant \bar{L}_2$$
.

7.3 דוגמאות בשימוש של משפט הרדוקציה בין שפות משלימות (משפט 7.2)

דוגמה 7.9

הוכחנו בדוגמה 7.7 רדוקציה

$$L_{\rm acc} \leqslant L_{\Sigma^*}$$
 .

לכן לפי משפט 7.2 קיימת רדוקציה

$$\bar{L}_{\rm acc} \leqslant \bar{L}_{\Sigma^*}$$
 .

 $ar{L}_{\Sigma^*}
otin RE$ מכיוון ש- $ar{L}_{\mathrm{acc}}
otin RE$, אזי ממשט הרדוקציה 7.1 מתקיים

דוגמה 7.10

הוכחנו בדוגמה 7.8 רדוקציה

$$L_{\rm d} \leqslant \bar{L}_{\rm acc}$$
 .

לכן לפי משפט 7.2 קיימת רדוקציה

$$\bar{L}_{\rm d} \leqslant L_{\rm acc}$$
 .

 $ar{L}_{
m d} \in RE$ מתקיים 7.1 מתקיים אזי ממשט הרדוקציה ל-גר ער.

7.4 דוגמאות בשימוש של משפט הרדוקציה (משפט 7.4