"通信原理"课程简介(一)

课程性质:信息工程、通信工程及电子信息类专业核心专业基础课程

课程目的: 使学生掌握现代通信系统基本概念、 基本原理和基本技术

课程内容 (1):

以现代通信系统为背景、以通信系统模型 为主线,讲述通信系统的基本原理、基本技术 和系统性能的分析方法。为后续的专业课程学 习打下坚实的理论基础。

"通信原理"课程简介(二)

课程内容 (2):

- 基础知识(信息论/确定信号分析/随机信号分析)
- ■调制理论
- □ 模拟调制、解调, 抗噪声性能分析
- □ 数字调制、解调, 抗噪声性能分析
- ■编码理论
- □信源编码
- □信道编码
- 同步(载波同步、码元同步、帧同步、网同步)
- 新理论 ((Turbo、OFDM、MIMO、软件无线电…)

"通信原理"课程简介(三)

先修课程:

信号与系统、随机信号分析、数字信号处理、通信电子线路。

与先修课程及专业课程的关系:

承前启后, 桥梁纽带

通信原理

先修 课程 信号与系统

数字信号处理

随机信号分析通信电子线路

移做货通信

"通信原理"课程简介(四)

课程要回答的问题:

- 1、通信系统是如何工作的? (系统模型、编码理论、调制理论)
- 2、如何衡量通信系统的性能? (有效性、可靠性)
- 3、影响通信系统性能的因素有哪些? (信噪比、系统性能分析)

如何学好"通信原理"课程?

■ 课程特点:

- 1、理论性及实践性强;
- 2、物理概念多、数学表达式多、内容抽象;
- 3、与先修课程联系密切(信号与系统、随机信号分析)。

■ 学习方法:

- 1、多与实际联系(理论联系实际);
- 2、多复习先修课程内容。

"通信原理"课程简介(五)

使用教材

现代通信原理 2017年2月

罗新民、薛少 现代通信原理

第三版

出版社,

参考书目

- [1] 樊昌信等编,通信,
- [2]曹志刚、钱亚生,;
- [3] L.W.Couch II, 3

(第八版), 北京:

[4]罗新民、薛少丽、

题解答, 北京: 高

2006 出版社, 1992

及习

高等教育出版社

课程网站: http://cc.xjtu.edu.cn

课程内容

• 第一章: 绪论

• 第二章: 确定信号分析

• 第三章: 随机信号和噪声分析

• 第四章: 信号设计导论

• 第五章: 模拟调制系统

• 第六章:信源编码

· <u>第七章:</u>数字信号基带传 输系统

· <u>第八章:</u>数字载波传输 系统 • 第九章: 改进型数字调制系统

• 第十章: 差错控制编码

第一章络论

本章安排

绪论

- 通信技术的发展与展望
- 信息、信息量与信道容量
- 通信系统模型
- 通信系统主要性能指标

信息交流和传递方式:

- 近距离通信:表情、动作、面对面交流、讨论 (语言)、文字
- 远距离通信:烽火台、旌旗、旌鼓、信号灯
- 长距离通信: 电通信 (通信系统)

通信: 利用电信号进行的信息交流与传输。

通信系统:信息传输与交换所需的所有设备的总和。

信息社会:信息成为重要的社会资源,信息的开发利用成为社会生产力发展的重要标志!

Electrical source (Volta)

里程碑(1)

Telegraph (Morse)

麦克斯韦预言电磁 波辐射的存在

Maxwell

里程碑(2)

(A.G. Bell)

Hertz

赫兹验证无线 电波存在

里程碑(3)

1st wireless transmissions (Marconi)

马可尼跨海无线电通信试验成功

发明真空管

里程碑(4)

调幅广播(超外差接收机)

奈奎斯特 (Nyquist) 提出抽样定理

调频广播

瑞维斯 (A.H.Reeves) 发明PCM技术

电视广播

雷达、微波技术

数字计算机、 克拉克 (A.C.Clarke) 提出卫星通信设想

发明晶体管、C.E.Shannon发表信息论 (A Mathematical Theory of Communication)

里程碑(6)

贝尔实验室生产出 第一台实用的PCM 数字通信设备

发射第一颗卫星

第一颗通信卫星

1st public mobile telephone IMTS (Improved Mobile Telephone Services)

里程碑(7)

Digital Technology (1st digital switch)

1st analog cellular network (1G)

里程碑(8)

GSM communication (digital cellular network) (2G)

2020-2-26

1st analog onetwork (1

里程碑(8)

I communication (a.s.tal cellular network) (2G)

进入上世纪80年代后,通信技术突飞 猛进,出现了许多新技术:

- ISDN, SDH, ATM
- Bluetooth、ZigBee(WPAN)
- Wi-Fi (WLAN)、WiMAX(WMAN) (IEEE 802 无线标准系列: 802.15x, 802.11x, 802.16x, 802.20x)
- 3G、B3G、IMT-Advanced (4G)、5G、移动IP

4G改变生活,5G改变社会!

4G改变生活,5G改变社会!

- ✓ 1G打电话
- ✓ 2G聊QQ
- ✓ 3G刷微博
- ✓ 4G看视频
- ✓ 5G?

5G (The Fifth Generation Mobile Communication Technology) 特点

■ 高速率: 下行峰值速率10Gb/s (1.25GB/s)

■ 低时延: 毫秒级

■ 广覆盖: 100万用户/平方公里

5G应用场景

VR、车联网、物联网、无人驾驶、远程医疗…

5G关键技术

■ 毫米波 (30GHz-300GHz)

频率资源就像车厢,越高频率,车厢越多,装载信息就越 多,传输速率就越高

■微基站(小功率)

频率越高,传输距离越短,覆盖能力越弱。覆盖同一个区域,需要基站数量越多。

- Massive MIMO (Multiple-Input Multiple-Output 多根天线发送,多根天线接收,多天线技术)
- D2D (Device to Device设备到设备)

5G关键技术

■ 毫米波 (30GHz-300GHz)

频率资源就像车厢,频率越高,车厢越大,装载信息就越 多,传输速率就越高

5G通信能力

1]通信技术的发展和展望

5G关键技术

■微基站(小功率)

频率越高,传输距离越短 ,覆盖能力越弱。覆盖同一个 区域,需要基站数量越多。

5G时代,微基站随处可见!

问题: 基站在身边, 会不会对人体造成影响?

回答:基站数量越多,辐射反而越小!

(冬天,几个小功率取暖器比一个大功率取暖器好)

5G关键技术

■ Massive MIMO (Multiple-Input Multiple-Output 多根天线发送,多根天线接收,多天线技术)

5G关键技术

■ D2D (Device to Device设备到设备)

- □节约大量空中资源,减轻基站压力
- □控制消息还要通过基站,仍占用频谱资源

通信最终的目标: 个人通信 (PCN:Personal Communication Networks)---5W

- 任何人 (Whoever)
- 任何时候 (Whenever)
- 任何地方 (Wherever)
- 与另一个人 (Whomever)
- 任何方式 (Whatever)

Whoever, Wnenever, Wherevet, Whatever, Whomever!

Future

未来通信的要求

Subscriber

未来的通信终端:智能天线、软件无线电(DSP技术)

小结:

- 1、信息交流与传递是人类的基本需求;
- 2、随着技术的进步,通信手段越来越先进;
- 3、通信技术的进步离不开通信理论的指导,新的理论带来技术的飞跃。

上节课程内容

- •课程简介
- •课程特点
- •通信技术的发展与展望
- ·5G特点、应用及关键技术

小结:

- ✓ 信息交流与传递是人类的基本需求;
- ✓ 随着技术的进步,通信手段越来越先进;
- ✓ 通信技术的进步离不开通信理论的指导,新的理论 带来技术的飞跃。

1.2 信息、信息量与平均信息量

- 1.2.1 消息、信号及信息
- 1.2.2 信息量
- 1.2.3 平均信息量

1.2.1 消息、信号及信息

消息(message)

通信系统传输的对象,具有不同形式和内容。

如:气象中的温度、天气的变化,语音,图像画面,文字及计算机数据等。

消息是对事件的物理状态变化进行描述的一种具体形式,具有人们能感知的物理特性。

消息通常不能直接传输。

为传输消息,应把消息通过不同的传感器转换为信号。

1.2.1 消息、信号及信息

信号(signal)

信号是由消息转换来的可以被传输和处理的具体形式,是消息的运载工具(载体)。

电信号

随某参数(通常为t)变化的电量(电压、电流、电荷量、磁通量、电场强度、磁通量、电场强度、磁场强度…)。

1.2.1 消息、信号及信息

信息(information)

信息是消息或信号随机变化中的"不确定性" 是消息中所含的待知的本质内容。

确定的消息中不含有信息。

信息的主要特征:

- (1) 信息无体积和重量; (2) 信息易扩散和传递;
- (3) 信息具有依附性; (4) 信息可共享。

信息量(information content): 信息的度量。

1.2.1 消息、信号及信息

信息的度量---信息量

信息量I与消息出现的概率P(x)之间的关系、规律:

- (1) 信息量是概率的函数。
- (2) P(x)越小, I越大; 反之, I越小。 P(x)=1, I为零; P(x)=0, I为无穷大。

"9119" 對側番寫野楼 歐总统大獎有始此意情, 懷理之中。为震惊!"

1.2.2 信息量

信息的度量---信息量

信息量I与消息出现的概率P(x)之间的关系、规律:

- (1) 信息量是概率的函数。
- (2) P(x)越小, I越大; 反之, I越小。 P(x)=1, I为零; P(x)=0, I为无穷大。
- (3) 若干个互相独立事件构成的消息,所含信息量等于各独立事件信息量之和,也就是说,信息具有可加性。

信息量I与消息出现的概率P(x)之间的关系为:

$$I = \log_a \frac{1}{P(x)} = -\log_a P(x)$$

即:消息包含的信息量为消息出现概率的倒数的对数。

信息量单位:

a=2时,信息量单位为比特 (bit---binary unit);

a=e时,信息量的单位为条特(nat --- nature unit);

a=10时, 信息量的单位为哈特莱 (Hartley or decit)。

一般地说,离散信源产生多个独立的消息 (符号),每个消息发生的概率不同,故包含 的信息量也不相同。

$$\begin{bmatrix} x_1 & x_2 & x_3 & \dots & x_n \\ p(x_1) & p(x_2) & p(x_3) & \dots & p(x_n) \end{bmatrix}$$

描述离散信源的方法 --- 概率场

$$\sum_{i} p(x_i) = 1$$
 (完备性)

这时通常考虑信源的统计平均信息量(信源的

平均信息量或信源熵)。

单个独立离散消息的信息量为

$$I_{x_i} = \log_2 \frac{1}{p(x_i)} = -\log_2 p(x_i)$$

独立等概时信息量

若有M个独立等概出现的消息,每个消息出现的概率 为1/M,则每个消息的信息量为

$$I = \log_2\left(\frac{1}{P}\right) = -\log_2 1 / \frac{1}{M} = \log_2 M$$

M=2时,每个消息出现的概率为1/2,则消息的信息量为

$$I = -\log_2 1 / \frac{1}{2} = \log_2 2 = 1bit$$

 0
 1

 1/2
 1/2

结论: 一个等概二进制消息 (符号) 包含的信息量为1 bit。 (工程上定义一个二进制符号包含的信息量为1比特。)

若有M个独立等概的消息之一要传送,且满足 $M=2^k$ 时,此消息可用k个二进制(符号、脉冲)传递,即此消息包含的信息量为k比特。

$$I = \log_2 M = \log_2 2^k = k$$
 此特

独立等概时,信源平均信息量与单个离散消息的信息量相同。

独立不等概时平均信息量

$$\begin{bmatrix} x_1 & x_2 & x_3 & \dots & x_n \\ p(x_1) & p(x_2) & p(x_3) & \dots & p(x_n) \end{bmatrix}$$

$$p(x_1) \neq p(x_2) \neq ... \neq p(x_n)$$
 $\sum_{i} p(x_i) = 1$

消息Xi包含的信息量为:

$$I_i = -\log_2 p(x_i)$$

平均信息量(信源熵 Entropy)由每个消息的信息量按概率加权求和得到,即:

$$H(x) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$$
 bit/符号

如:一个信源由A、B、C三种符号组成,出现概率分别是P(A)、P(B)、P(C),则信源的平均信息量为

$$\overline{I} = -[P(A)\log_2 P(A) + P(B)\log_2 P(B) + P(C)\log_2 P(C)]$$

例1.1: 某信源的符号集由A、B、C、D和E组成,设备一个符号独立出现,出现的概率分别为1/4、1/8、1/8、3/16和5/16。试求该信源的平均信息量。

解:信源的平均信息量,即信源熵,为

$$H(x) = -\sum_{i=1}^{n} P(x_i) \log_2 P(x_i)$$

$$= -\left[\frac{1}{4} \log_2 \frac{1}{4} + \frac{1}{8} \log_2 \frac{1}{8} + \frac{1}{8} \log_2 \frac{1}{8} + \frac{3}{16} \log_2 \frac{3}{16} + \frac{5}{16} \log_2 \frac{5}{16}\right]$$

$$= 2.23$$
 比特/符号

条件平均信息量

当信源各符号出现不独立(统计相关)时,必须用条件 概率来计算信源的平均信息量,称为条件平均信息量。

特移概率矩阵
$$\begin{bmatrix} P(x_1/x_1) & P(x_1/x_2) & ... & P(x_1/x_n) \\ P(x_2/x_1) & P(x_2/x_2) & ... & P(x_2/x_n) \\ & ... & \\ P(x_n/x_1) & P(x_n/x_2) & ... & P(x_n/x_n) \end{bmatrix}$$

其中: $P(x_i/x_i)$ 为前一符号为 x_i , 后一符号为 x_i 的条件概率

48

条件平均信息量为:

$$H\left(x_{j}/x_{i}\right) = \sum_{i=1}^{n} P\left(x_{i}\right) \sum_{j=1}^{n} \left[-P\left(x_{j}/x_{i}\right) \log_{2} P\left(x_{j}/x_{i}\right)\right]$$

$$= -\sum_{i=1}^{n} \sum_{j=1}^{n} \left[P(x_i) P(x_j/x_i) \log_2 P(x_j/x_i) \right]$$

其中: $P(x_i)$ 为符号 x_i 出现概率

 $P(x_j/x_i)$ 为前一符号为 x_i ,后一符号为 x_j 的条件概率

例1.2 某离散信源由A、B两种符号组成, 其转移概率矩阵为

$$\begin{bmatrix} P(A/A) & P(A/B) \\ P(B/A) & P(B/B) \end{bmatrix} = \begin{bmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{bmatrix}$$

已知P(A)=1/4,P(B)=3/4,试求该信源的平均信息量。

解:由条件平均信息量计算式可得

$$H(x_{j}/x_{i}) = -\sum_{i=1}^{2} \sum_{j=1}^{2} \left[P(x_{i}) P(x_{j}/x_{i}) \log_{2} P(x_{j}/x_{i}) \right]$$

$$= -P(A) \left[P(A/A) \log_{2} P(A/A) + P(B/A) \log_{2} P(B/A) \right]$$

$$-P(B) \left[P(A/B) \log_{2} P(A/B) + P(B/B) \log_{2} P(B/B) \right]$$

$$= 0.532$$
 比特/符号

当A、B两个符号独立出现时, 信源的平均信息量为

$$(P(A)=1/4, P(B)=3/4)$$

$$H(x) = -\sum_{i=1}^{2} P(x_i) \log_2 P(x_i)$$

$$= -\frac{1}{4} \log_2 \frac{1}{4} - \frac{3}{4} \log_2 \frac{3}{4}$$

$$= 0.81 比特/符号$$

结论: 符号间统计独立时的信源熵大于符号间统计相关时的信源熵。

独立且等概时平均信息量

$$H(x) = -\sum_{i=1}^{n} \frac{1}{n} \log_2 \frac{1}{n} = \log_2 n$$

结论: 信源符号独立等概出现时的平均信息量最大。

连续信源的平均信息量

$$H(x) = -\int_{-\infty}^{\infty} f(x) \log_e f(x) dx$$

1.3 通信系统模型

- 1.3.1 通信系统一般模型
- 1.3.2 通信系统分类
- 1.3.3 模拟通信系统与数字通信系统

1.3.1通信系统一般模型

1.3.1通信系统一般模型

55

1.3.1通信系统一般模型

通信系统的各种答案统都积型避免地会受到噪声(干扰)的影响。为分析方便,将各种噪声对信号的影响集中表示在信道中。

按消息的传输媒质划分: 有线、无线

通信频段划分及应用

频率范围	符号	名称	波长	波段	应 用
30~300Hz	ELF	特低频	$10^4 \sim 10^3 \text{km}$		海底通信、电报
0.3~3kHz	VF	音频	$10^3 \sim 10^2 \text{km}$		数据终端、有线通信
3∼30kHz	VLF	甚低频	10 ² ~10km	超长波	导航、电话、电报、时标
30~300kHz	LF	低频	10∼1km	长波	导航、电力线通信、信标
0.3~3MHz	MF	中频	$10^3 \sim 10^2 \text{m}$	中波	广播、业余无线电、移动通信
3~30MHz	HF	高频	10²∼10m	短波	国际定点通信、军用通信、 广播、业余无线电
30~300MHz	VHF	甚高频	10~1m	米波	电视、调频广播、移动通信、 导航、空中管制
0.3~3 GHz	UHF	特高频	10²∼10cm	分米波	电视、雷达、遥控遥测、 点对点通信、移动通信
3∼30GHz	SHF	超高频	10∼1cm	厘米波	卫星和空间通信、微波接力、雷达
30~300GHz	EHF	极高频	10~1mm	毫米波	射电天文、雷达、微波接力

生活中的无线通信频率

中波广播: 535~1605KHz

短波广播: 2~24MHz

调频广播: 88~108MHz

西安音乐台: 98.8MHz; 西安交通台: 104.3MHz

电视广播: 48.5~92MHz (VHF Ch1~ Ch5)

167~223MHz (VHF Ch6~ Ch12)

470~958MHz (UHFCh13~ Ch68)

GSM手机:

上行 890~915MHz

下行 935~960MHz

按消息和信号的特点划分:电话、电报、图像、数据

按传输信号的特征划分:模拟通信系统、数字通信系统

模拟通信系统:传输模拟信号的系统。如:电视

数字通信系统:传输数字信号的系统。如:计算机通

信系统

模拟信号:参数取值连续变化的信号。

如:话音信号、图像信号。

数字信号:参数取值离散变化的信号。

如:电报信号、计算机输出信号、PCM编

码信号等。

模拟信号与数字信号的区别:

模拟信号的幅度取值连续且有无穷个状态。

数字信号的幅度取值离散且为有限个值。

注意:

模拟信号的取值在时间上不一定都连续,如PAM信号;数字信号的取值在时间上不一定都离散,如FSK信号。

结论:模拟信号与数字信号的主要区别在于信号的取值 状态是否有限,而不在于信号的取值随时间变化是否连续。

按调制方式划分:调幅、调频、调相

Data to be transmitted: 0 0 **Digital Input Basic steady wave Amplitude Shift Keying** Frequency Shift Keying **Phase Shift Keying**

按消息的传送方式划分:单工、半双工、双工

单工系统:消息只能单方向传送,如广播、电视。

发送

接收

半双工系统:消息能双方向传送,但不能同时进行,如对讲机。

发送

接收

B端

A端

按信道复用方式划分: FDM、TDM、CDM

上节课程主要内容(1)

- •消息、信号、信息、信息量
- •信息量与消息出现概率的关系
 - P(x)越小, I越大; 反之, I越小。
 - P(x)=1, I 为零; P(x)=0, I 为无穷大。
 - 信息具有可加性。

$$I = \log_a \frac{1}{P(x)} = -\log_a P(x)$$

确定的消息中不含有信息。

上节课程主要内容(2)

• 平均信息量(信源熵 Entropy) $H(x) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$ bit/符号 条件平均信息量;独立且等概时平均信息量

结论1: 符号问统计独立时的信源熵大于符号问统计相关时的信源熵。

结论2: 信源符号独立等概出现时的平均信息量最大。

• 通信系统一般模型

• 通信系统分类

模拟信号:幅度取值连续且有无穷个状态。

数字信号:幅度取值离散且为有限个值。

1.3.3 模拟通信系统与数字通信系统

数字通信系统模型

数字通信系统模型

数字通信系统模型

信源编码:提高系统的有效性。

信道编码(纠错编码):提高系统的可靠性。

模拟信号:幅度取值连续且有无穷个状态;信息寄托在波形之中。模拟通信系统:追求输出波形与输入一致。

数字信号:幅度取值离散且状态有限。信息寄托在状态之中。数字通信系统:追求输出状态与输入状态一致。

数字

系统

数字通信系统特点

数字通信系统具有以下优点:

- ①抗干扰能力强, 可靠性好;
- ②体积小, 功耗低, 易于集成;
- ③便于进行各种数字信号处理(压缩、存储等);
- ④有利于实现综合业务传输;
- 5便于加密。

不过,数字通信系统也有以下缺点:

- ①必须保证收发两端同步(码元同步、帧同步等);
- ②信号占用带宽大。

例如,传输一路模拟电话信号只需4KHz带宽,但传输一路PCM电话信号(速率为64 kb/s)需几十千赫兹带宽。

结论:

数字通信系统取代模拟通信系统成为未来通信技术的发展方向。

通信系统性能指标:有效性、可靠性、适应性、经济性、标准性、使用维修方便性。

主要性能指标:有效性(速度)、可靠性(质量)

有效性、可靠性相互制约、相互矛盾、相互转化。

有效性

- 模拟通信系统中: 带宽
- · 数字通信系统中: 码元传输速率; 信息传输速率; 系统频带利用率。

码元传输速率 (码元速率、传码率):

单位时间(每秒)内系统传输的码元符号的数目,单位为波特(Baud),用RB表示。

信息传输速率(信息速率、传信率):

单位时间(每秒)内系统传输的信息量多少,单位为此特/秒(bit/s, bps),用 Rb表示。

RB与Rb表的关系:

二进制时,

$$R_B = R_b$$

多进制(M进制)时,

$$R_b = R_B \log_2 M$$

系统频带利用率:

信息传输速率与系统带宽的比值,即, $\rho=R_b/B$ 单位为: 比特/秒/赫兹(b/s/Hz)。

可靠性

• 模拟通信系统中:

信噪比S/N

• 数字通信系统中:

误码率
$$P_e = \frac{错误接收码元数}{传输码元总数}$$

误信率 $P_b = \frac{$ 传错的比特数} 传输的比特总数

 P_b 与 P_o 的关条:

$$P_b = \frac{M}{2(M-1)} P_e$$

15香农信道容量公式

信道容量:信道所能传输的最大信息速率,用C表示。

$$C = \max R$$

对(离散)无扰信道:

$$R = rH(x)$$

其中: Y为信源每秒发送的符号个数。 H(x)为信源平均信息量。

对有扰信道:
$$H_R(x) = H(x) - H(x/y)$$

$$R = r[H(x) - H(x/y)]$$

对连续信道:

$$C = B \log_2 \left(1 + S/N \right)$$

------ 香农 (Shannon) 公式

其中: S/N 为加性高斯白噪声 (AWGN: Additive White Gaussian Noise) 信道中的信噪比。

B为信道带宽。

$$N = n_0 B$$

$$C = B \log_2(1 + S/N)$$

(1)
$$S/N \uparrow \rightarrow C \uparrow B \uparrow \rightarrow C \uparrow$$

$$N = n_0 B$$

(2)
$$S/N \rightarrow \infty, C \rightarrow \infty$$

(3)
$$\lim_{B\to\infty} C = \lim_{B\to\infty} \frac{S}{n_0} \log_2 e = 1.44 \frac{S}{n_0}$$

$$\lim_{B \to \infty} C = \lim_{B \to \infty} B \cdot \frac{n_0}{S} \cdot \frac{S}{n_0} \cdot \log_2 \left(1 + \frac{S}{n_0 B} \right)$$

$$= \lim_{B \to \infty} \frac{n_0 B}{S} \cdot \log_2 \left(1 + \frac{S}{n_0 B} \right) \cdot \frac{S}{n_0} \qquad \lim_{x \to \infty} x \log_2 (1 + \frac{1}{x}) = \log_2 e = 1.44$$

$$\lim_{x \to \infty} x \log_2(1 + \frac{1}{x}) = \log_2 e = 1.44$$

香农 (Shannon) 公式的意义 (续):

- (4) C一定时,B与S/N可互换。 $C = B\log_2(1+S/N)$ 这为扩频通信奠定了理论基础。
- (5) 若信源速率 $R \leq C$,则理论上可实现无差错传输。 若 R > C,则理论上不可实现无差错传输。

理想系统:实现了极限信息传输速度,且能做到任意小差错率的通信系统。

例1.3设一幅彩色图片由 3×10⁶ 个象素组成,每个象素有16 个亮度等级,并假设每个亮度等级等概率出现。现将该幅彩色图片在一信噪比为30dB的信道中传输,要求3分钟传完,试计算所需的信道带宽。

解:由于每个像素等概率出现16个亮度等级,故每个像素包含

的信息量为: $I_i = \log_2 16 = 4 bit$

一幅彩色图片包含的总信息量为: $I = 3 \times 10^6 \times \log_2 16 = 1.2 \times 10^7 \ bit$

要求3分钟传完该图片,故信道的信息传送速率为:

 $R = (1.2 \times 10^7) / (3 \times 60) \approx 6.67 \times 10^4 \ bit / s$

因为信息传输速率R必须小于或等于信道容量C,取

$$C = R = 6.67 \times 10^4 \ bit / s$$

又知信道中的信噪比为30dB,即S/N=1000,所以由香农公式,得到所需的信道带宽为

$$B = C/\log_2(1+S/N) = (6.67 \times 10^4)/\log_2(1+1000) \approx 6.67 \times 10^3 \ Hz$$

本章基本要求:

- ●了解通信技术的发展状况
- ●理解消息、信号、信息、信息量的概念
- ●掌握平均信息量计算方法
- ●理解通信系统模型中各组成部分的功能
- ●理解数字通信系统的特点
- ●理解系统的有效性、可靠性的概念
- ●掌握传输速率、误码率的计算方法
- ●理解香农公式的含义, 掌握信道容量计算方法

本章习题: pp.13

1-1、1-3、1-5、1-6、1-11、

1-12、1-15、1-16、1-18

