Лабораторная работа № 5

Имитационное моделирование

Королев И.А.

Российский университет дружбы народов, Москва, Россия

Докладчик

- Королев Иван Андреевич
- · Студент, НФИбд-01-22
- Российский университет дружбы народов

Цель работы

Построение модели эпидемии (SIR) в xcos, с помощью блока Modelica и в OpenModelica.

Задание

Задание

- 1. Необходимо реализовать модель эпидемии в хсоѕ
- 2. Необходимо реализовать модель эпидемии с помощью блока Modelica в xcos
- 3. Выполнить упражнение построения модели эпидемии в OpenModelica
- 4. Задание для самостоятельного выполнения. Требуется:
- реализовать модель SIR с учётом процесса рождения / гибели особей в хсоѕ (в том числе и с использованием блока Modelica), а также в OpenModelica;
- построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр μ);
- сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

Теоретическое введение

Модель SIR предложена в 1927 г. (W. O. Kermack, A. G. McKendrick). С описанием модели можно ознакомиться, например в [1]. Предполагается, что особи популяции размера N могут находиться в трёх различных состояниях: * S (susceptible, уязвимые) — здоровые особи, которые находятся в группе риска и могут подхватить инфекцию; * I (infective, заражённые, распространяющие заболевание) — заразившиеся переносчики болезни; * R (recovered/removed, вылечившиеся) — те, кто выздоровел и перестал распространять болезнь (в эту категорию относят, например, приобретших иммунитет или умерших). Внутри каждой из выделенных групп особи считаются неразличимыми по свойствам.

Выполнение лабораторной работы

Зафиксируем начальные данные: β = 1, ν = 0, 3, s(0) = 0, 999, i(0) = 0, 001, r(0) = 0.

В меню моделирования устанавливаем переменные окружения

~	Установить контекст	+	×
символиче использую Эти инстру	здесь ввести инструкции Scilab для определения ских параметров, используемых в определениях блока, щего инструкции Scilab. ккции выполняются если только подтверждены (т. е. вы на ОК и каждый раз схема загружается).		
beta=1, nu=	:0.3		
	ОК Отмен	нить	.]

Рис. 1: beta, nu

Для реализации модели потребуется: * CLOCK_c — запуск часов модельного времени; * CSCOPE — регистрирующее устройство для построения графика; * TEXT_f — задаёт текст примечаний; * MUX — мультиплексер, позволяющий в данном случае вывести на графике сразу несколько кривых; * INTEGRAL_m — блок интегрирования * GAINBLK_f — в данном случае позволяет задать значения коэффициентов β и ν ; * SUMMATION — блок суммирования; * PROD_f — поэлементное произведение двух векторов на входе блока.

Добавляем эти блоки из палитры инструментов и строим с их помощью данную систему дифференциальных уравнений:

$$\begin{cases} \dot{s} = -\beta s(t)i(t); \\ \dot{i} = \beta s(t)i(t) - \nu i(t); \\ \dot{r} = \nu i(t), \end{cases}$$

где eta – скорость заражения, u – скорость выздоровления.

Реализованная модель эпидемии. Выходы трёх блоков интегрирования соединяем с мультиплексором

Рис. 2: Реализованная модель эпидемии

В параметрах верхнего блока интегрирования задаем значения s(0) = 0, 999, который отвечает за здоровых особей.

Рис. 3: Начальные значения для верхнего блока интегрирования

В параметрах среднего блока интегрирования задаем значения i(0) = 0, 001, который отвечает за переносчиков болезни.

Рис. 4: Начальные значения для среднего блока интегрирования

В нижнем блоке интегрирования начальные значения по умолчанию заданы нулю, как в нашем условии. Данная часть отвечает за тех, кто имеет иммунитет.

Далее, устанавливаем конечное время интегрирования. Оно равно 30

Рис. 5: Конечное время интегрирования

Результат моделирования представлен, где черной линией обозначен график s(t) (динамика численности уязвимых к болезни особей), красная линия r(t) — динамику численности выздоровевших особей, наконец, зеленая линия i(t) — динамику численности заражённых особей. Пересечение трёх линий определяет порог эпидемии.

Реализация модели с помощью блока Modelica в xcos

Реализация модели с помощью блока Modelica в xcos

Рис. 7: Модель эпидемии

блока Modelica в хсоѕ

Реализация модели с помощью

Реализация модели с помощью блока Modelica в xcos

Указываем параметры для блока реализации. Переменные на входе ("beta", "nu") и выходе ("s", "i", "r") блока заданы как внешние ("E").

Указываем начальные значения для

Задаем переменные beta, nu.

s, i, r и пишем систему уравнения.

Задаем переменные beta, nu. Указываем начальные значения для s, i, r и пишем систему уравнения.

блока Modelica в хсоѕ

Реализация модели с помощью

Реализация модели с помощью блока Modelica в xcos

Результат работы модели. Он идентичен с реализацией в хсох.

Рис. 9: Модель эпидемии Modelica

Выполнение упражнени построения модели эпидемии в OpenModelica

Выполнение упражнени построения модели эпидемии в OpenModelica

Задаем все начальные параметры с помощью parameter Real, как было в реализациях хсоs. Записываем систему уравнения, реализация очень сильно схожа с реализацией с помощью блока Modelica в хсоs

```
model lab
      parameter Real ss = 0.999:
      parameter Real ii = 0.001;
      parameter Real rr = 0;
      parameter Real beta = 1;
      parameter Real nu = 0.3:
      Real s(start=ss):
      Real i(start=ii):
      Real r(start=rr);
    equation
       der(s)=-beta*s*i;
   der(i)=beta*s*i-nu*i;
13
       der(r)=nu*i:
14
    end lab:
```

Рис. 10: Реализация модели эпидемии в OpenModelica

Выполнение упражнени построения модели эпидемии в OpenModelica

Выполнение упражнени построения модели эпидемии в OpenModelica

Результат модели. Результат идентичен с построением с помощью других способов, значит все выполнено правильно.

Рис. 11: Модель эпидемии в OpenModelica

Задание для самостоятельного выполнения. Реализация с

помощью xcos

Задание для самостоятельного выполнения. Реализация с помощью хсоѕ

Необходимо реализовать такую же модель эпидемии, только с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica.

Задание для самостоятельного выполнения. Реализация с

помощью xcos

Так выглядит система уравнения:

$$\begin{cases} \dot{s} = -\beta s(t)i(t) + \mu(N - s(t)); \\ \dot{i} = \beta s(t)i(t) - \nu i(t) - \mu i(t); \\ \dot{r} = \nu i(t) - \mu r(t), \end{cases}$$

где μ — константа, которая равна коэффициенту смертности и рождаемости.

Задание для самостоятельного выполнения. Реализация с

помощью xcos

Задание для самостоятельного выполнения. Реализация с помощью хсоѕ

Реализуем эту модель в xcos. Тут нам понадобятся три блока суммирования и 4 блока констант (добавляется константа ν).

В меню моделирования устанавливаем переменные

окружения.

В меню моделирования устанавливаем переменные окружения.

Рис. 12: Переменные окружения

Задание для самостоятельного выполнения. Реализация с

помощью xcos

Задание для самостоятельного выполнения. Реализация с помощью хсоѕ

Рис. 13: Реализация модели эпидемии с учетом процесса рождения / гибели особей с помощью хсоѕ

выполнения. Реализация с

Задание для самостоятельного

помощью xcos

Задание для самостоятельного выполнения. Реализация с помощью хсоѕ

Рис. 14: Модель эпидемии при beta=1, nu=0.1, mu=0.1

Задание для самостоятельного выполнения. Реализация с

помощью блока Modelica в xcos

Задание для самостоятельного выполнения. Реализация с помощью блока Modelica в xcos

Рис. 15: Реализация модели эпидемии с учетом процесса рождения / гибели особей с помощью блока Modelica в xcos

Задание для самостоятельного выполнения. Реализация с

помощью блока Modelica в xcos

Задание для самостоятельного выполнения. Реализация с помощью блока Modelica в xcos

Переменные на входе ("beta", "nu", "mu") и выходе ("s", "i", "r") блока заданы как внешние ("E").

Рис. 16: Параметры блока реализации

Задание для самостоятельного выполнения. Реализация с

помощью блока Modelica в xcos

Задание для самостоятельного выполнения. Реализация с помощью блока Modelica в xcos

Задаем переменные beta, nu, mu. Указываем начальные значения для s, i, r и пишем систему уравнения.

Задание для самостоятельного выполнения. Реализация с

помощью блока Modelica в xcos

Задание для самостоятельного выполнения. Реализация с помощью блока Modelica в хсоs

Рис. 18: Модель эпидемии при beta=1, nu=0.1, mu=0.1

Задание для самостоятельного выполнения. Реализация в

OpenModelica

Задание для самостоятельного выполнения. Реализация в OpenModelica

```
model lab
      parameter Real ss = 0.999;
      parameter Real ii = 0.001;
      parameter Real rr = 0:
      parameter Real beta = 1:
      parameter Real nu = 0.1:
      parameter Real mu = 0.1;
      Real s(start=ss);
      Real i(start=ii);
      Real r(start=rr):
11
    equation
       der(s)=-beta*s*i+mu*i+mu*r;
13
       der(i)=beta*s*i-nu*i-mu*i;
14
       der(r)=nu*i-mu*r:
15
    end lab:
```

Рис. 19: Реализация модели с учетом процесса рождения / гибели особей эпидемии в OpenModelica

выполнения. Реализация в

Задание для самостоятельного

OpenModelica

Задание для самостоятельного выполнения. Peaлизация в OpenModelica

Результат модели. Результат идентичен с построением с помощью других способов, значит все выполнено правильно.

Рис. 20: Модель эпидемии с учетом процесса рождения / гибели особей в OpenModelica

Результаты на различных параметрах.

Результаты на различных параметрах.

При mu=0.6, nu=0.1, beta=1

```
🖷 🎿 🧧 🚺 Доступный на запись | Model | Вид Текст | lab | /home/openmodelica/Do
      model lab
        parameter Real ss = 0.999:
        parameter Real ii = 0.001;
        parameter Real rr = 0;
        parameter Real beta = 1;
        parameter Real nu = 0.1:
        parameter Real mu = 0.6
        Real s(start=ss);
  9
        Real i(start=ii);
 10
        Real r(start=rr):
 11 equation
         der(s)=-beta*s*i+mu*i+mu*r;
      der(i)=beta*s*i-nu*i-mu*i;
 14
         der(r)=nu*i-mu*r:
     end lab:
```

Рис. 21: Результаты на различных параметрах.

Результаты на различных параметрах.

Результаты на различных параметрах.

Рис. 22: Результаты на различных параметрах.

Результаты на различных параметрах.

Результаты на различных параметрах.

При mu=0.6, nu=0.6, beta=1

```
🖶 🚜 🗐 🕦 Доступный на запись | Model | Вид Текст | lab | /home/openmodelica/Documents/test1.mo
     model lab
       parameter Real ss = 0.999;
       parameter Real ii = 0.001:
      parameter Real rr = 0:
      parameter Real beta = 1;
       parameter Real nu = 0.6:
      parameter Real mu = 0.6;
       Real s(start=ss);
       Real i(start=ii);
 10
      Real r(start=rr);
 11 equation
       der(s)=-beta*s*i+mu*i+mu*r;
       der(i)=beta*s*i-nu*i-mu*i;
 14
       der(r)=nu*i-mu*r;
 15 end lab:
```

Рис. 23: Результаты на различных параметрах.

Результаты на различных параметрах.

Результаты на различных параметрах.

Рис. 24: Результаты на различных параметрах.

Результаты на различных параметрах.

Результаты на различных параметрах.

Исходя из анализа графиков, можно сделать вывод, что чем выше значение любого из параметров, тем быстрее система достигает стационарного состояния. При высоком коэффициенте заражения ☐ система быстро проходит через пик развития эпидемии и достигает стационарного состояния.

Выводы

Построил модели эпидемии (SIR) в xcos, с помощью блока Modelica и в OpenModelica.

Список литературы

Список литературы