

Título

Trabajo Fin de Máster

Escuela Técnica Superior de Ingeniería Informática

Ingeniería de Sistemas de Decisión

Curso 2015-2016

José Ignacio Escribano Pablos

Tutores: *Tutores*

Índice general

Ín	dice general	i
Ín	dice de figuras	iii
Ín	dice de tablas	v
1	Introducción	1
2	Conclusiones 2.1. Mejoras y futuro trabajo	3
A	Teoría de grafos	5

Índice de figuras

A.1.	. Ejemplo de grafo			•			6
	2. Ejemplo de grafo completo						
A.3.	B. Ejemplo de unión de unión e intersección de grafos						7
A.4.	l. Ejemplo de subgrafos de un grafo						7
A.5.	5. Ejemplo de grafo dirigido con bucle						ç
A.6.	6. Ejemplo de grafo ponderado						ç
A.7.	7. Ejemplo de grafo de dominancia						10
A.8.	B. Ejemplo de grafo complementario						10

Índice de tablas

Introducción

Conclusiones

2.1 Mejoras y futuro trabajo

Teoría de grafos

La teoría de grafos es la rama de las matemáticas que estudia los grafos, objetos matemáticos que constan de dos elementos: los nodos o vértices y las aristas.

A continuación, introduciremos el concepto de grafo, algunas operaciones que se pueden realizar con ellos y algunos de los tipos de grafos que utilizaremos a lo largo de la memoria.

Definición 1. Un grafo (o grafo no dirigido) es un par G = (V, E) de conjuntos que satisfacen que $E \subseteq V^2$ y $V \cap E = \emptyset$. Los elementos de V se denominan vértices (o nodos) del grafo G y los elementos de E se denominan arcos (o aristas). Una arista entre los véctices $x, y \in V$ se denota como xy o $yx \in E$.

La forma usual de representar un grafo es dibujar un punto (o círculo) por cada vértice y unir dos de estos dos puntos (o círculos) con una línea para formar un arco. Cómo estén dibujados los vértices y los arcos es irrelevante. sólo importa qué pares de nodos forman una arista y cuáles no.

Ejemplo 1. La Figura A.1 muestra la representación gráfica de un grafo. Matemáticamente, el grafo es el par (V,E) donde

$$V = \{A, B, C, D\}$$

$$E = \{\{A, B\}, \{A, C\}, \{B, C\}, \{C, D\}\}$$

Definición 2. Se llama orden de un grafo G al número de vértices de dicho grafo. Se denota como |G|.

Un grafo G se dice que es finito si $|G| < \infty$. Si $|G| = \infty$ se dice que el grafo G es infinito.

Ejemplo 2. El grafo de la Figura A.1 es un grafo finito, puesto que el número de vértices del grafo es 4.

Figura A.1: Ejemplo de grafo

Definición 3. Dos vértices $x, y \in V$ del grafo G = (V, E) se dicen adyacentes si existe una arista entre x e y (o $xy \in E$).

Definición 4. Un grafo se dice completo si todos sus vértices son adyacentes.

Ejemplo 3. El grafo de la Figura A.2 es completo ya que todos sus vértices son adyacentes. En efecto, el vértice A tiene una arista que lo une con los nodos B, C y D. De la misma forma, se comprueba para los vértices B, C y D.

Figura A.2: Ejemplo de grafo completo

Definición 5. Sean G = (V, E) y G' = (V', E') dos grafos. Decimos que G y G' son isomorfos, y escribimos $G \simeq G'$, si existe una biyección $\phi: V \to V'$ tal que $xy \in E \iff$ $\phi(x)\phi(y)\in E'\ \ \forall x,y\in V.$ La aplicación ϕ recibe el nombre de isomorfismo. Si G=G', ϕ se dice que es un automorfismo.

Podemos definir operaciones sobre grafos, como la unión o la intersección.

Definición 6. Sean G = (V, E) y G' = (V', E') dos grafos, se definen la unión y la intersección de grafos como

$$G \cup G' := (V \cup V', E \cup E')$$
$$G \cap G' := (V \cap V', E \cap E')$$

Si $G \cap G' = \emptyset$, entonces $G \vee G'$ son disjuntos.

Ejemplo 4. La Figura A.3 muestra la unión e intersección de grafos. Si G y G' son respectivamente

$$G = (\{A, B, C, D, E\}, \{\{A, B\}, \{B, C\}, \{B, D\}, \{C, E\}, \{D, E\}\}))$$

$$G' = (\{C, D, E, F\}, \{\{C, D\}, \{C, E\}, \{D, F\}, \{E, F\}\}))$$

Por definición,

$$G \cup G' = (\{A, B, C, D, E, F\}, \{\{A, B\}, \{B, C\}, \{B, D\}, \{C, E\}, \{D, E\}, \{C, D\}, \{D, F\}, \{E, F\}\})$$

$$G \cap G' = (\{C, E\}, \{\{C, E\}\})$$

Figura A.3: Ejemplo de unión de unión e intersección de grafos

Definición 7. Sean G = (V, E) y G' = (V', E') dos grafos. Si $V' \subseteq V$ y $E' \subseteq E$, se dice que G' es un subgrafo de G (y G es un supergrafo de G').

Ejemplo 5. La figura A.4 muestra algunos de los subgrafos de G = (V, E) donde

$$V = \{A,B,C,D,E\}$$

$$E = \{\{A,B\},\{A,C\},\{A,E\},\{B,D\},\{B,E\},\{C,D\},\{D,E\},\{C,E\}\}$$
 Del mismo modo, $G' = (V',E')$ y $G'' = (V'',E'')$ donde

$$E' = \{\{A, B\}, \{A, C\}, \{B, D\}, \{C, D\}\}\}$$

$$V'' = \{A, B, C, D, E\}$$

$$E'' = \{\{A, B\}, \{A, C\}, \{B, D\}, \{C, D\}, \{B, E\}\}\}$$

 $V' = \{A, B, C, D\}$

Se ve claramente que $V' \subseteq V$ y $E' \subseteq E$, por lo que G' es un subgrafo de G (o G es un supergrafo de G'). Análogo para G''.

Figura A.4: Ejemplo de subgrafos de un grafo G

Definición 8. Sea G = (V, E) un grafo (no vacío). El grado de un vértice $v \in V$, denotado por $d_G(v) = d(v)$, se define como el número de vértices adyacentes a v.

Si todos los vértices de G tienen el mismo grado k, el grafo G es regular.

Definición 9. Se define el grado medio de un grafo G = (V, E) como el número

$$d(G) = \frac{1}{|V|} \sum_{v \in V} d(v) \tag{A.1}$$

Definición 10. Un camino es un grafo no vacío P = (V, E) de la forma

$$V = \{x_0, x_1, \dots, x_k\}$$
 $E = \{x_0 x_1, x_1 x_2, \dots, x_{k-1} x_k\}$

donde $x_i \neq x_j \ \forall i \neq j$.

Los vértices x_0 y x_k se denominan final del camino P. Los vértices x_1, \ldots, x_k se denominan vértices interiores del camino P.

El número de aristas del camino se denomina longitud del camino.

Definición 11. Un grafo no vacío G se dice conexo si cualquier par de vértices están unidos por un camino de G.

Definición 12. Sea G=(V,E) un grafo. Un subgrafo conexo maximal de G se llama componente conexa de G.

Definición 13. Un clique es un conjunto de nodos mutuamente conectados entre sí.

Ejemplo 6. Un triángulo es un clique formado por tres nodos.

Definición 14. Un grafo dirigido (o digrafo) es un par (V, E) de conjuntos disjuntos (de vértices y de aristas) junto con dos funciones init : $E \to V$ y ter : $E \to V$ que asigna a cada arista e un vértice inicial init(e) y un vértice terminal ter(e).

La arista e se dice dirigida desde init(e) hasta ter(e).

Si init(e) = ter(e), la arista e se dice que es un bucle.

Ejemplo 7. La Figura A.5 muestra la representación gráfica un grafo dirigido. Matemáticamente, es el par (V, E) donde

$$V = \{A, B, C, D\}$$

$$E = \{\{A, B\}, \{A, C\}, \{C, C\}, \{B, C\}, \{C, D\}\}$$

junto con las funciones init : $E \to V$ y ter : $E \to V$ definidas de la siguiente manera:

Además la arista $\{C, C\}$ es un bucle porque $\operatorname{init}(\{C, C\}) = \operatorname{ter}(\{C, C\}) = C$.

Figura A.5: Ejemplo de grafo dirigido con bucle

Definición 15. Un grafo dirigido D = (V', E') es una orientación de un grafo (no dirigido) G = (V, E) si V = V' y E = E' y {init(e), ter(e)} = {x, y} $\forall e = xy \in E$.

Definición 16. Un grafo ponderado es un grafo con una función $w: E \to \mathbb{R}$, es decir, que w asocia un número real a cada arista. Esta función recibe el nombre de función peso.

Ejemplo 8. El grafo G = (V, E) con

$$V = \{A, B, C\} \tag{A.2}$$

$$E = \{ \{A, B\}, \{A, C\}, \{B, C\} \}$$
(A.3)

es un grafo. Si le añadimos la función $w: E \to \mathbb{R}$ definida de la siguiente forma, G es un grafo ponderado (ver Figura A.6).

$$\begin{aligned} \mathbf{w}: & E & \rightarrow & \mathbb{R} \\ & \{A,B\} & \mapsto & e \\ & \{A,C\} & \mapsto & 5 \\ & \{B,C\} & \mapsto & \pi \end{aligned}$$

Figura A.6: Ejemplo de grafo ponderado

Definición 17. Dado un grafo ponderado G=(V,E) y w : $E\to\mathbb{R}$, decimos que una arista $e\in E$ incide en el vértice $v\in V$, si $\mathrm{ter}(e)=v$.

Definición 18. La fuerza de un vértice en un grafo ponderado se define como la suma de todos los pesos de sus aristas incidentes.

Definición 19. Un grafo de dominancia G=(V,E) es un grafo dirigido tal que para todo $x,y\in V$ se cumple una de las dos condiciones siguientes, pero no ambas simultáneamente:

- ightharpoonup init(xy) = x y ter(xy) = y
- $\blacktriangleright \ \operatorname{init}(xy) = y \quad \ \mathbf{y} \quad \ \operatorname{ter}(xy) = x$

Ejemplo 9. Si consideramos el grafo de la Figura A.7, vemos que para todo vértice $x,y\in\{A,B,C,D\}$ se cumple alguna de las dos condiciones anteriores, pero no ambas simultáneamente. Por ejemplo, para los vértices A,D se cumple que init $(\{A,D\})=A$ y ter $(\{A,D\})=D$, pero no se cumple la otra condición. De la misma se comprueban los vértices restantes.

Figura A.7: Ejemplo de grafo de dominancia

Definición 20. Llamamos grafo complementario de G=(V,E), y lo denotamos como \overline{G} al grafo que tiene como conjunto de vértices V y como conjunto de aristas, las aristas que no están unidas de G.

Ejemplo 10. La Figura A.8 muestra un grafo G y su correspondiente grafo complementario \overline{G} . Las aristas que no están unidas en G, sí lo están en \overline{G} .

Figura A.8: Ejemplo de grafo complementario