République Islamique de Mauritanie Ministère de l'Education Nationale et de la Réforme du Système Educatif Direction des Examens et des Concours

BACCALAUREAT 2024 Session Normale Epreuve: MATHEMATIQUES

Série : M & TMGM Coefficient : 9 & 6 Durée : 4h

Exercice 1 (3 points)

On considère l'équation (E): 104x-17y=278 d'inconnu le couple (x,y), x et y étant des entiers.

1. a) Justifier que l'équation (E) admet des solutions
b) Vérifier que le couple (3,2) est solution de (E) puis résoudre (E).

2. Soit p un entier naturel qui s'écrit $\overline{1ab1b}$ en base 6 et $\overline{1aabb0}$ en base 4.
a) Montrer que le couple (a,b) est solution de (E).
b) Déterminer a et b puis écrire p en base 10.
3. Soit (x,y) une solution de (E). Montrer que $x \equiv 3[17]$ puis en déduire que $x^{2024} + 1 \equiv 0[17]$ 0.5pt

Exercice 2 (3 points)

Pour tout entier naturel n, on pose $I_n = \int_{e^{-1}}^1 x(1 + \ln x)^n dx$ et $u_n = \frac{(-2)^n}{n!} I_n$

- Montrer que la suite (I_n) est décroissante et positive.
 Montrer que ∀n ≥ 0; 2I_{n+1} + (n+1)I_n = 1. Déduire que ∀n ≥ 0; 1/(n+3) ≤ I_n ≤ 1/(n+1)
 0.75pt
- 3. a) Montrer que $u_n = u_{n+1} + \frac{(-2)^n}{(n+1)!}$; $\forall n \ge 0$
- b) Vérifier que $\forall n \geq 3$, $\left| \frac{\mathbf{u}_{n+1}}{\mathbf{u}_n} \right| \leq \frac{1}{2}$ puis en déduire $\lim_{n \to +\infty} \mathbf{u}_n$.
- c) Déterminer $\lim_{n\to+\infty} \sum_{p=0}^{n} \frac{(-2)^p}{(p+1)!}$.

Exercice 3 (5 points)

Le plan complexe est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$.

Pour tout nombre complexe z on pose $P(z) = z^3 - (2+2i)z^2 + 11z + 38 + 8i$.

- 1.a) Calculer P(-2) puis déterminer les complexes a et b tels que $P(z) = (z+2)(z^2+az+b)$
- b) Résoudre, dans \mathbb{C} , l'équation P(z) = 0. On note z_1, z_2 et z_3 les solutions de cette équation avec $Im(z_1) > Im(z_2) > Im(z_3)$
- 2. On considère les points A, B et C d'affixes respectives z_1, z_2 et z_3 .
- a) Placer les points A, B et C. 0.75pt
- b) Montrer que le point D d'affixe 6 est le barycentre de $\{(A,3);(B,-4);(C,5)\}$. 0.5pt
- 3. On définit l'ellipse E, dont A et B sont deux sommets et dont C est un foyer.

 a) Reconnaître l'ave focal de F et en déduire que D est un 3e sommet de F
- a) Reconnaître l'axe focal de E et en déduire que D est un 3° sommet de E.
 b) Préciser le centre et le 4° sommet de E.
 0.5pt
 0.5pt
- c) Justifier que $\frac{(x-2)^2}{16} + \frac{y^2}{25} = 1$ est une équation de E, puis construire E. 0.75pt

Exercice 4 (4 points)

On considère la fonction numérique f définie sur \mathbb{R} par $f(x) = \frac{x}{e^{2x}}$ et soit (C) sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$ d'unité graphique 2 cm. 1.a) Montrer que $\lim f(x) = -1$. Interpréter graphiquement. 0,5pt b) Montrer que $\lim_{x \to \infty} f(x) = 0$. Interpréter graphiquement. 0,5pt c) Dresser le tableau de variation de f. 0,5pt 2. Soit h la restriction de f sur $I = \left| \frac{1}{2}; +\infty \right|$. a) Montrer que h réalise une bijection de I sur un intervalle J à déterminer. 0,5pt b) Dresser le tableau de variation de h⁻¹ (h⁻¹ étant la réciproque de h). 0,5pt 3.a) Déterminer une équation de la tangente T à (C) au point d'abscisse 0. 0,5pt b) Construire la courbe (C) et la courbe (C') de h^{-1} dans le repère $(0; \vec{i}, \vec{j})$ 0,5pt 4) Soit A l'aire de la partie du plan délimitée par (C), l'axe des abscisses et les 0,5pt droites d'équations $x = \frac{1}{2}$ et x = 1. Montrer que $\frac{1}{2e^2 - 2} \le A \le \frac{1}{4e - 2}$.

Exercice 5 (5 points)

ABC est un triangle isocèle en A tel que $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{2\pi}{3} [2\pi]$, I est le milieu de [BC] et $D = S_I(A)$. Soient J, K, L les milieux respectifs de [DC], [CA], [DJ] et soit Γ le cercle circonscrit au triangle ADC.

1° Faire une figure. 1pt 2°a) Montrer qu'il existe un unique déplacement r tel que r(C) = D et r(K) = I. 0,5pt b) Vérifier que r est une rotation puis déterminer son angle et son centre. 1pt 3° Soit f l'isométrie plane telle que f(C) = A, f(A) = D et f(D) = Ba) Montrer que f est un antidéplacement. 0,5pt b) Justifier que f est une symétrie glissante puis donner sa forme réduite. 0,5pt 4° Soit s la similitude directe qui transforme A en D et C en J. 0,5pt a) Déterminer le rapport et un angle de s. b) Montrer que le centre Ω de s appartient à Γ . 0,25pt c) Déterminer s(K) puis en déduire que Ω , C, K et L sont cocycliques. 0,5pt d) Soit M un point de Γ diffèrent de Ω , et M' = s(M), montrer que la droite (MM')0,25pt passe par un point fixe à préciser.

Fin.