NANYANG TECHNOLOGICAL UNIVERSITY School of Electrical & Electronic Engineering

EE/IM4152 Digital Communications

Tutorial No. 10 (Sem 1, AY2016-2017)

1. Consider the coherent receiver of a binary communication system shown in Figure 1. The received signal is $r(t) = s_i(t) + n(t)$, $0 \le t \le T_b$, where the signal component $s_i(t)$ is equally likely to be $s_1(t)$ or $s_2(t)$, and n(t) is additive white Gaussian noise (AWGN) with mean zero and two-sided power spectral density $N_0/2$. The signals are given by

$$s_1(t) = -s_2(t) = \begin{cases} A/2, & 0 < t \le T_b/2 \\ -A, & T_b/2 < t \le T_b, \\ 0, & \text{otherwise} \end{cases}$$

where A is a constant and T_b denotes the bit duration. The reference signal $v(t) = s_1(t)$ is used to correlate the received signal r(t). The test statistic $Z(T_b) = a_i + n_0$ is compared with the optimum threshold $\gamma_0 = (a_1 + a_2)/2$ to decide whether $s_1(t)$ or $s_2(t)$ has been sent at the transmitter. The noise component n_0 is due to AWGN and a_i is the signal component of $Z(T_b)$ when $s_i(t)$ is sent.

- (a) Plot the waveforms of $s_1(t)$ and $s_2(t)$. Compute the average energy per bit E_b .
- (b) Express a_1 , a_2 and γ_0 in terms of E_b .
- (c) Find the mean and variance of the noise component n_0 in terms of E_b and N_0 .
- (d) Derive the bit-error rate (BER) of the coherent system in terms of Q-function, E_b and N_0 .

Figure 2

- 2. In our derivation of the matched filter, we have chosen polar signalling where only one basic pulse p(t) is used, as shown in Figure 2. Generally, in binary communication, there are two waveforms $s_1(t)$ and $s_2(t)$ representing binary 1 and binary 0, respectively. The optimum receiver for this case is shown in Figure 3.
 - (a) If the input signal is $s_i(t)$, i = 1, 2, find the signal component a_i at the output.
 - (b) Determine the mean and variance of the output noise when additive white Gaussian noise (AWGN), with mean zero and two-sided power spectral density $N_0/2$, is applied at the input of the receiver.
 - (c) Suppose the threshold is $\gamma_0 = (a_1 + a_2)/2$. The decision is $s_1(t)$ if $r(T_b) > \gamma_0$. Otherwise, the decision is $s_2(t)$. Derive the error probability of the receiver.

Figure 3

3. An information source generates 8 equiprobable messages every T_0 seconds, as shown in Figure 3. After modulation, the modulated waveform is transmitted over an additive white Gaussian noise (AWGN) channel. The two-sided power spectral density of AWGN is $N_0/2$. Each signal component is chosen from one of signal points $\{\mathbf{s}_1, \mathbf{s}_2, ..., \mathbf{s}_8\}$ in the signal space. Determine the optimum receiver and the corresponding error probability P_{eM} in terms of a, N_0 and Q-function.

