3

Trigonometry - II

- Trigonometric functions of sum and difference of angles.
- Trigonometric functions of allied angles.
- Trigonometric functions of multiple angles.
- Factorization formulae.
- Trigonometric functions of angles of a triangle.

Let's Recall

In the previous chapter we have studied trigonometric functions in different quadrants.

3.1 Compound angle: Compound angles are sum or difference of given angles.

Following are theorems about trigonometric functions of sum and difference of two angles.

Let's Derive

Theorem : 1) For any two angles A and B, $\cos (A-B) = \cos A \cos B + \sin A \sin B$

Proof:

Draw a unit standard circle. Take points P and Q on the circle so that OP makes an angle A with positive X-axis and OQ makes an angle B with positive X-axis.

Fig. 3.1

$$\therefore m \angle XOP = A, \ m \angle XOQ = B. \text{ From figure OP}$$
$$= OO = 1$$

:. Co-ordinates of P and Q are (cosA,sinA) and (cosB, sinB) respectively.

 \therefore d(PQ)

$$= \sqrt{(\cos A - \cos B)^2 + (\sin A - \sin B)^2}$$

$$= \sqrt{\cos^2 A - 2\cos A \cos B + \cos^2 B + \sin^2 A - 2\sin A \sin B + \sin^2 B}$$

$$= \sqrt{(\cos^2 A + \sin^2 A) + (\cos^2 B + \sin^2 B) - 2(\cos A \cos B + \sin A \sin B)}$$

$$=\sqrt{1+1-2(\cos A\cos B+\sin A\sin B)}$$

$$= \sqrt{2 - 2(\cos A \cos B + \sin A \sin B)}$$

$$[d(PQ)]^2 = 2 - 2(\cos A \cos B + \sin A \sin B)...(1)$$

Now consider OQ as new X-axis. Draw new Y-axis perpendicular to it.

$$\therefore m \angle QOP = A - B$$

 \therefore Co-ordinates of P and Q are (cos (A-B), $\sin(A-B)$)

and (1,0) respectively.

$$P = (\cos (A-B), \sin (A-B), Q = (1,0)$$

$$\therefore d(PQ)$$

$$= \sqrt{[\cos(A-B)-1]^2 + [\sin(A-B)-0]^2}$$

$$= \sqrt{\cos^2(A-B)-2\cos(A-B)+1+\sin^2(A-B)}$$

$$= \sqrt{\cos^2(A-B) + \sin^2(A-B) + 1 - 2\cos(A-B)}$$

$$= \sqrt{1+1-2\cos(A-B)}$$

$$=\sqrt{2-2\cos(A-B)}$$

$$[d(PQ)]^2 = 2 - 2cos(A - B)....(2)$$

From equation (1) and (2) we get $2-2 \cos (A-B) = 2-2 (\cos A \cos B + \sin A \sin B)$ $\therefore -2 \cos (A-B) = -2 (\cos A \cos B + \sin A \sin B)$ $\therefore \cos (A-B) = \cos A \cos B + \sin A \sin B$

Theorem: 2) For any two angles A and B, cos(A+B) = cos A cos B - sin A sin BProof: We know that cos(x-y) = cosx cosy + sinx sinyPut x = A, y = -B we get cos(A+B) = cosA cosB + sinA (-sinB) $cos(-\theta) = cos\theta$, $sin(-\theta) = -sin\theta$ cos(A+B) = cosAcosB - sinA sinB

Results:

1)
$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

Proof: We know that $\cos(x-y) = \cos x \cos y + \sin x \sin y$
Put $x = \frac{\pi}{2}$, $y = \theta$ we get
$$\cos\left(\frac{\pi}{2} - \theta\right) = \cos\frac{\pi}{2}\cos\theta + \sin\frac{\pi}{2}\sin\theta$$

$$= 0.\cos\theta + 1.\sin\theta$$

$$= \sin\theta$$

Simillarly

2)
$$\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$$

 $\therefore \cos\left(\frac{\pi}{2} - \theta\right) = -\sin\theta$

3)
$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

4)
$$\sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta$$

5)
$$\tan\left(\frac{\pi}{2} - \theta\right) = \frac{\sin(\frac{\pi}{2} - \theta)}{\cos\left(\frac{\pi}{2} - \theta\right)} = \frac{\cos\theta}{\sin\theta} = \cot\theta$$

6)
$$\tan\left(\frac{\pi}{2} + \theta\right) = -\cot\theta$$

Theorem : 3) For any two angles A and B, $\sin (A-B) = \sin A \cos B - \cos A \sin B$

Proof: We know that $\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$ Putting $\theta = A - B$, we get

 $\sin (A-B) = \cos \left[\frac{\pi}{2} - (A-B)\right]$

$$=\cos\left(\left(\frac{\pi}{2}-A\right)+B\right)$$

$$= \cos\left(\frac{\pi}{2} - A\right) \cos B - \sin\left(\frac{\pi}{2} - A\right) \sin B$$

 $\therefore \sin(A-B) = \sin A \cos B - \cos A \sin B$

$$\left[\because \cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta, \sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta\right]$$

Theorem : 4) For any two angles A and B, $\sin (A+B) = \sin A \cos B + \cos A \sin B$ [verify]

Theorem: 5) For any two angles A and B,

$$\tan (A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

Proof: Consider $\tan (A+B) = \frac{\sin(A+B)}{\cos(A+B)}$

$$\frac{\sin A \cos B + \cos A \sin B}{}$$

$$= \frac{\frac{\cos A \cos B}{\cos A \cos B - \sin A \sin B}}{\cos A \cos B}$$
 (dividing numerator)

and demonator by $\cos A \cos B$)

$$= \frac{\frac{\sin A \cos B}{\cos A \cos B} + \frac{\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B} - \frac{\sin A \sin B}{\cos A \cos B}}$$

$$= \frac{\frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}}{1 - \frac{\sin A}{\cos A} \cdot \frac{\sin B}{\cos B}}$$

$$= \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$$

$$\therefore \tan (A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$$

Theorem: 6) For any two angles A and B,

$$\tan (A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$
 (Activity)

Results:

- 1) If none of the angles A,B and (A+B) is a multiple of π then, $\cot (A+B) = \frac{\cot A \cot B 1}{\cot B + \cot A}$
- 2) If none of the angles A,B and (A–B) is a multiple of π then, $\cot (A-B) = \frac{\cot A \cot B + 1}{\cot B - \cot A}$

Ex. 1) Find the value of cos 15°

Solution:
$$\cos 15^\circ = \cos(45^\circ - 30^\circ)$$

$$= \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \frac{1}{2}$$

$$= \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}$$

$$= \frac{\sqrt{3}+1}{2\sqrt{2}}$$

Ex. 2) Find the value of $\tan \frac{13\pi^c}{12}$

Solution:
$$\tan \frac{13\pi^c}{12} \tan \left(\pi^c + \frac{\pi^c}{12}\right)$$

$$= \frac{tan\pi + \tan\frac{\pi}{12}}{1 - tan\pi \tan\frac{\pi}{12}}$$

$$= \frac{0 + \tan\frac{\pi}{12}}{1 + 0 \times \tan\frac{\pi}{12}}$$

$$=$$
 $\tan \frac{\pi}{12}$

$$= \tan\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$$

$$= \frac{\tan\frac{\pi}{4} - \tan\frac{\pi}{6}}{1 + \tan\frac{\pi}{4} \tan\frac{\pi}{6}}$$

$$= \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \times \frac{1}{\sqrt{3}}}$$

$$= 2 - \sqrt{3}$$

Ex. 3) Show that
$$\frac{\sin(x+y)}{\sin(x-y)} = \frac{\tan x + \tan y}{\tan x - \tan y}$$

Solution : L.H.S. =
$$\frac{\sin(x+y)}{\sin(x-y)}$$

$$= \frac{\sin x \cos y + \cos x \sin y}{\sin x \cos y - \cos x \sin y}$$

(dividing numerator and denominator by $\cos x \cos y$)

$$= \frac{\frac{\sin x}{\cos x} + \frac{\sin y}{\cos y}}{\frac{\sin x}{\cos x} - \frac{\sin y}{\cos y}}$$

$$= \frac{tanx + tany}{tanx - tany}$$
$$= R.H.S.$$

Ex. 4) Show that : $\tan 3x \tan 2x \tan x = \tan 3x - \tan 2x - \tan x$

Solution: tan(3x) = tan(2x+x)

$$\therefore \tan (3x) = \frac{\tan 2x + \tan x}{1 - \tan 2x \tan x}$$

$$\therefore \tan 3x \left[1 - \tan 2x \tan x\right] = \tan 2x + \tan x$$

$$\therefore \tan 3x - \tan 3x \tan 2x \tan x = \tan 2x + \tan x$$

$$\therefore \tan 3x - \tan 2x - \tan x = \tan 3x \tan 2x \tan x$$

$$\therefore$$
 $\tan 3x \tan 2x \tan x = \tan 3x - \tan 2x - \tan x$

Ex. 5) Show that
$$\cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} - x\right)$$

= $\sqrt{2} \cos x$

Solution: L.H.S. =
$$\cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} - x\right)$$

= $\cos\frac{\pi}{4}\cos x - \sin\frac{\pi}{4}\sin x + \cos\frac{\pi}{4}\cos x$
+ $\sin\frac{\pi}{4}\sin x$
= $\frac{1}{\sqrt{2}}\cos x + \frac{1}{\sqrt{2}}\cos x$
= $\frac{2}{\sqrt{2}}\cos x = \sqrt{2}\cos x = R$. H.S.

Ex. 6) If $\tan A - \tan B = x$ and $\cot B - \cot A = y$ then show that

$$\cot (A-B) = \frac{1}{x} + \frac{1}{y}$$

Solution : $\cot B - \cot A = y$

$$\therefore \frac{1}{tanB} - \frac{1}{tanA} = y$$

$$\therefore \frac{tanA - tanB}{tanA tanB} = y$$

$$\therefore \frac{x}{\tan A \tan B} = y$$

$$\therefore \tan A \tan B = \frac{x}{y}$$

Now cot (A-B) =
$$\frac{1}{\tan(A-B)}$$

$$= \frac{1 + tanAtanB}{tanA - tanB}$$

$$= \frac{1 + \frac{x}{y}}{x} = \frac{x + y}{xy} = \frac{1}{y} + \frac{1}{x}$$

$$\therefore \cot (A-B) = \frac{1}{y} + \frac{1}{x}$$

Ex. 7) If

$$tan \propto = \frac{1}{\sqrt{x(x^2 + x + 1)}}$$
, $tan \beta = \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}}$ and $tan \gamma = \sqrt{x^{-3} + x^{-2} + x^{-1}}$

then show that

$$\infty + \beta = \gamma$$

Solution: We know that

$$\tan(\infty + \beta) = \frac{\tan \infty + \tan \beta}{1 - \tan \infty \tan \beta}$$

$$\therefore \tan (\alpha + \beta) =$$

$$= \left[\frac{\frac{1}{\sqrt{x(x^2 + x + 1)}} + \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}}}{1 - \frac{1}{\sqrt{x(x^2 + x + 1)}} \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}}} \right]$$

$$= \frac{(x+1)\sqrt{x^2+x+1}}{\sqrt{x}.x(x+1)}$$

$$= \sqrt{\frac{x^2}{x^3} + \frac{x}{x^3} + \frac{1}{x^3}}$$

$$= \sqrt{x^{-1} + x^{-2} + x^{-3}}$$

$$=$$
 tan γ

$$\therefore \alpha + \beta = \gamma$$

Ex. 8) If $\sin A + \sin B = x$ and $\cos A + \cos B = y$ then show that $\sin (A+B) = \frac{2xy}{x^2 + y^2}$

Solution:

$$y^{2} - x^{2} = (\cos A + \cos B)^{2} - (\sin A + \sin B)^{2}$$

$$= (\cos^{2} A - \sin^{2} A) + (\cos^{2} B - \sin^{2} B)$$

$$+ 2[\cos A \cos B - \sin A \sin B]$$

$$= \cos 2A + \cos 2B + 2 \cos (A + B)$$

$$= 2\cos\left[\frac{2A+2B}{2}\right].\cos\left[\frac{2A-2B}{2}\right]$$
$$+ 2\cos(A+B)$$

$$= 2\cos(A+B)\cos(A-B) + 2\cos(A+B)$$

$$= \cos (A+B) [2\cos (A-B)+2]$$
 [from (I)]

$$y^2-x^2 = \cos(A+B)(x^2+y^2)$$

$$\therefore \frac{y^2-x^2}{x^2+y^2} = \cos(A+B)$$

$$\therefore \sin(A+B) =$$

$$\therefore \sin (A+B) = \sqrt{1 - (\frac{y^2 - x^2}{y^2 + x^2})^2}$$

$$= \sqrt{\frac{(y^2 + x^2)^2 - (y^2 - x^2)^2}{(y^2 + x^2)^2}}$$

$$= \sqrt{\frac{y^4 + 2x^2y^2 + x^4 - y^4 + 2x^2y^2 - x^4}{(x^2 + y^2)^2}}$$

$$= \sqrt{\frac{4x^2y^2}{(x^2 + y^2)^2}}$$

$$= \frac{2xy}{x^2 + y^2}$$

EXERCISE 3.1

- 1) Find the values of
 - i) sin 15° ii) cos 75° iii) tan 105° iv) cot 225°
- 2) Prove the following.

i)
$$\cos(\frac{\pi}{2} - x)\cos(\frac{\pi}{2} - y) - \sin(\frac{\pi}{2} - x)\sin(\frac{\pi}{2} - y)$$
$$= -\cos(x + y)$$

ii)
$$\tan\left(\frac{\pi}{4} + \theta\right) = \frac{1 - \tan\theta}{1 + \tan\theta}$$

iii)
$$\left(\frac{1 + tanx}{1 - tanx} \right)^2 = \frac{\tan\left(\frac{\pi}{4} + x\right)}{\tan\left(\frac{\pi}{4} - x\right)}$$

- iv) $\sin[(n+1)A].\sin[(n+2)A]+\cos[(n+1)A].$ $\cos[(n+2)A] = \cos A$
- v) $\sqrt{2}\cos\left(\frac{\pi}{4}-A\right) = \cos A + \sin A$

vi)
$$\frac{\cos(x-y)}{\cos(x+y)} = \frac{\cot x \cot y + 1}{\cot x \cot y - 1}$$

vii)
$$\cos(x+y).\cos(x-y) = \cos^2 y - \sin^2 x$$

viii)
$$\frac{\tan 5A - \tan 3A}{\tan 5A + \tan 3A} = \frac{\sin 2A}{\sin 8A}$$

ix)
$$\tan 8\theta - \tan 5\theta - \tan 3\theta = \tan 8\theta \tan 5\theta \tan 3\theta$$

$$x) \quad \tan 50^\circ = \tan 40^\circ + 2 \tan 10^\circ$$

xi)
$$\frac{\cos 27^{\circ} + \sin 27^{\circ}}{\cos 27^{\circ} - \sin 27^{\circ}} = \tan 72^{\circ}$$

xii)
$$\tan 10^{\circ} + \tan 35^{\circ} + \tan 10^{\circ} \cdot \tan 35^{\circ} = 1$$

xiii)
$$\frac{\cot A \cot 4A + 1}{\cot A \cot 4A - 1} = \frac{\cos 3A}{\cos 5A}$$

xiv)
$$\frac{\cos 15^{\circ} - \sin 15^{\circ}}{\cos 15^{\circ} + \sin 15^{\circ}} = \frac{1}{\sqrt{3}}$$

3) If
$$\sin A = \frac{-5}{13}$$
, $\pi < A < \frac{3\pi}{2}$ and $\cos B = \frac{3}{5}$, $\frac{3\pi}{2} < B < 2\pi$

find i)
$$\sin(A+B)$$

ii)
$$\cos(A-B)$$

iii)
$$tan (A+B)$$

4) If
$$\tan A = \frac{5}{6}$$
, $\tan B = \frac{1}{11}$, prove that $A + B = \frac{\pi}{4}$

3.2 Trigonometric functions of allied angels.

Allied angles: If the sum or difference of the measures of two angles is either '0' or an integral multiple of $\frac{\pi}{2}$ then these angles are said to be allied angles.

If θ is the measure of an angle the

$$-\theta, \frac{\pi}{2} \pm \theta, \ \pi \pm \theta, \frac{3\pi}{2} \pm \theta, 2\pi - \theta$$
 are its allied angles.

We have already proved the following results:

1)
$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta, \cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta,$$

 $\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$

2)
$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$
, $\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$,
 $\tan\left(\frac{\pi}{2} + \theta\right) = -\cot\theta$

Similarly we can also prove the following results:

1)
$$\sin (\pi - \theta) = \sin \theta$$
, $\cos (\pi - \theta) = -\cos \theta$,
 $\tan (\pi - \theta) = -\tan \theta$

2)
$$\sin (\pi + \theta) = -\sin \theta$$
, $\cos (\pi + \theta) = -\cos \theta$,
 $\tan (\pi + \theta) = \tan \theta$

3)
$$\sin\left(\frac{3\pi}{2} - \theta\right) = -\cos\theta, \cos\left(\frac{3\pi}{2} - \theta\right) = -\sin\theta,$$

 $\tan\left(\frac{3\pi}{2} - \theta\right) = \cot\theta$

4)
$$\sin\left(\frac{3\pi}{2} + \theta\right) = -\cos\theta, \cos\left(\frac{3\pi}{2} + \theta\right) = \sin\theta,$$

 $\tan\left(\frac{3\pi}{2} + \theta\right) = -\cot\theta$

5)
$$\sin (2\pi - \theta) = -\sin \theta$$
, $\cos (2\pi - \theta)$
= $\cos \theta$, $\tan (2\pi - \theta) = -\tan \theta$

Above results are tabulated in following table.

allied angles/	- θ	$\frac{\pi}{2} - \theta$	$\frac{\pi}{2} + \theta$	$\pi - \theta$	π+ θ	$2\pi - \theta$	$2\pi + \theta$
Trigonometric functions							
sin	–sinθ	cosθ	cosθ	sinθ	-sinθ	-sinθ	sinθ
cos	cosθ	sinθ	-sinθ	-cos θ	-cosθ	cosθ	cosθ
tan	–tanθ	cotθ	-cotθ	–tan θ	tanθ	tanθ	tanθ

SOLVED EXAMPLES

Ex. 1) Find the values of

Solution:

i)
$$\sin (495^\circ) = \sin 495^\circ$$
 ii) $\cos 930^\circ$
 $= \sin (360^\circ + 135^\circ) = \cos (2 \times 360^\circ + 210^\circ)$
 $= \sin 135^\circ$ $= \cos 210^\circ$
 $= \sin (\frac{\pi}{2} + 45^\circ) = \cos (\pi + 30^\circ)$
 $= \cos 45^\circ = \frac{1}{\sqrt{2}} = -\cos 30^\circ = -\frac{\sqrt{3}}{2}$
iii) $\tan 840^\circ = \tan (2 \times 360^\circ + 120^\circ) = \tan 120^\circ = \tan (\frac{\pi}{2} + 30^\circ) = -\cot 30^\circ = -\sqrt{3}$

Ex. 2) Show that:

i)
$$\cos 24^\circ + \cos 55^\circ + \cos 125^\circ + \cos 204^\circ + \cos 300^\circ = \frac{1}{2}$$

Solution:

L.H.S. =
$$\cos 24^{\circ} + \cos 55^{\circ} + \cos 125^{\circ} + \cos 204^{\circ} + \cos 300^{\circ}$$

$$= \cos 24^{\circ} + \cos 55^{\circ} + \cos (180^{\circ} - 55^{\circ}) + \cos (180^{\circ} + 24^{\circ}) + \cos (360^{\circ} - 60^{\circ})$$

$$= \cos 24^{\circ} + \cos 55^{\circ} - \cos 55^{\circ} - \cos 24^{\circ}$$

$$+ \cos 60^{\circ}$$

$$= \cos 60^{\circ} = \frac{1}{2} = R.H.S.$$

ii) sec 840°.cot (-945°) + sin 600°.tan (-690°)
=
$$\frac{3}{2}$$

Solution:

sec
$$840^{\circ}$$
 = sec $(2 \times 360^{\circ} + 120^{\circ})$ = sec 120°
= sec $(90^{\circ} + 30^{\circ})$ = - cossec 30°
= -2

$$\cot (-945^\circ) = -\cot 945^\circ = -\cot (2 \times 360^\circ + 225^\circ)$$
$$= -\cot 225^\circ$$
$$= -\cot (180^\circ + 45^\circ) = -\cot 45^\circ = -1$$

$$\sin 600^{\circ}$$
 = $\sin (360^{\circ} + 240^{\circ}) = \sin 240^{\circ}$
= $\sin (180^{\circ} + 60^{\circ})$
= $-\sin 60^{\circ} = -\frac{\sqrt{3}}{2}$

$$\tan (-690^\circ) = -\tan 690^\circ = -\tan (2 \times 360 - 30^\circ)$$

= $-(-\tan 30^\circ)$
= $\tan 30 = \frac{1}{\sqrt{3}}$

L.H.S.

$$= \sec 840^{\circ}.\cot (-945^{\circ}) + \sin 600^{\circ} \tan (-690^{\circ})$$

$$= -2 \times -1 + \left(-\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}}\right)$$

$$= 2 - \frac{1}{2} = \frac{4-1}{2} = \frac{3}{2} = R. H. S$$

iii)
$$\frac{\cos ec(90^{\circ} - \theta).\sin(180^{\circ} - \theta)\cot(360^{\circ} - \theta)}{\sec(180^{\circ} + \theta)\tan(90^{\circ} + \theta)\sin(-\theta)} = 1$$

L.H.S.

$$= \frac{\cos(90^{\circ} - \theta).\sin(180^{\circ} - \theta)\cot(360^{\circ} - \theta)}{\sec(180^{\circ} + \theta)\tan(90^{\circ} + \theta)\sin(-\theta)}$$
$$= \frac{\sec\theta\sin\theta(-\cot\theta)}{(-\sec\theta)(-\cot\theta)(-\sin\theta)}$$

$$= \frac{-\sec\theta\sin\theta\cot\theta}{-\sec\theta\cot\theta\sin\theta} = 1 = \text{R.H.S.}$$

iv)
$$\frac{\cot\left(\frac{\pi}{2} + \theta\right)\sin(-\theta)\cot(\pi - \theta)}{\cos(2\pi - \theta)\sin(\pi + \theta)\tan(2\pi - \theta)} = -\csc\theta$$

L.H.S.

$$= \frac{\cot\left(\frac{\pi}{2} + \theta\right)\sin(-\theta)\cot(\pi - \theta)}{\cos(2\pi - \theta)\sin(\pi + \theta)\tan(2\pi - \theta)}$$

$$= \frac{(-\tan\theta)(-\sin\theta)(-\cot\theta)}{\cos\theta(-\sin\theta)(-\tan\theta)}$$

$$= \frac{-\cot\theta}{+\cos\theta}$$

$$= -\frac{\cos\theta}{\sin\theta} \times \frac{1}{\cos\theta} = \frac{1}{\sin\theta} = -\csc\theta = \text{R.H.S.}$$

Ex. 3) Prove the following:

i)
$$\sin \frac{\pi}{15} + \sin \frac{4\pi}{15} - \sin \frac{14\pi}{15} - \sin \frac{11\pi}{15} = 0$$

Solution: L.H.S

$$= \sin \frac{\pi}{15} + \sin \frac{4\pi}{15} - \sin \frac{14\pi}{15} - \sin \frac{11\pi}{15}$$

$$= \sin \frac{\pi}{15} + \sin \frac{4\pi}{15} - \sin (\pi - \frac{\pi}{15}) - \sin (\pi - \frac{4\pi}{15})$$

$$= \sin \frac{\pi}{15} + \sin \frac{4\pi}{15} - \sin \frac{\pi}{15} - \sin \frac{4\pi}{15}$$

$$= 0$$

= R.H.S.

ii)
$$\sin^2(\frac{\pi}{4} - x) + \sin^2(\frac{\pi}{4} + x) = 1$$

Solution: consider
$$\frac{\pi}{4} - x = y$$
 : $x = \frac{\pi}{4} - y$

L.H.S. =
$$\sin^2 \left(\frac{\pi}{4} - x \right) + \sin^2 \left(\frac{\pi}{4} + x \right)$$

= $\sin^2 y + \sin^2 \left(\frac{\pi}{4} + \frac{\pi}{4} - y \right)$
= $\sin^2 y + \cos^2 y$
= 1= R.H.S.

iii)
$$\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2$$

Solution: L.H.S.

$$= \sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8}$$

$$= \sin^{2} \frac{\pi}{8} + \sin^{2} \frac{3\pi}{8} + \sin^{2} \left(\frac{4\pi + \pi}{8}\right) + \sin^{2} \left(\frac{4\pi + 3\pi}{8}\right)$$

$$= \sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \left(\frac{\pi}{2} + \frac{\pi}{8}\right) + \sin^2 \left(\frac{\pi}{2} + \frac{3\pi}{8}\right)$$

$$= \sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8}$$

$$= 2 = R.H.S.$$

= 1 + 1

$$\cos^2\left(\frac{\pi}{10}\right) + \cos^2\left(\frac{2\pi}{5}\right) + \cos^2\left(\frac{3\pi}{5}\right) + \cos^2\left(\frac{9\pi}{10}\right) = 2$$

Solution: L.H.S

$$= cos^{2}\left(\frac{\pi}{10}\right) + cos^{2}\left(\frac{2\pi}{5}\right) + cos^{2}\left(\frac{3\pi}{5}\right) + cos^{2}\left(\frac{9\pi}{10}\right)$$

$$= cos^{2}\left(\frac{\pi}{10}\right) + cos^{2}\left(\frac{\pi}{2} - \frac{\pi}{10}\right) + cos^{2}\left(\frac{\pi}{2} + \frac{\pi}{10}\right) + cos^{2}\left(\pi - \frac{\pi}{10}\right)$$

$$= cos^{2}\left(\frac{\pi}{10}\right) + sin^{2}\left(\frac{\pi}{10}\right) + cos^{2}\left(\frac{\pi}{10}\right) + sin^{2}\left(\frac{\pi}{10}\right)$$

$$= 1+1$$

$$= 2 = R.H.S.$$

EXERCISE 3.2

- 1) Find the value of:
 - i) sin690°
- ii) sin (495°)
- iii) cos 315°
- iv) cos (600°)
- v) tan 225°
- vi) tan (- 690°)
- vii) sec 240°
- viii) sec (– 855°)
- ix) cosec 780°
- x) cot (-1110°)
- 2) Prove the following:

i)
$$\frac{\cos(\pi+x)\cos(-x)}{\sin(\pi-x)\cos(\frac{\pi}{2}+x)} = \cot^2 x$$

ii)
$$\cos\left(\frac{3\pi}{2} + x\right) \cos\left(2\pi + x\right) [\cot$$

$$\left(\frac{3\pi}{2} - x\right) + \cot(2\pi + x) = 1$$

iii)
$$\sec 840^{\circ}.\cot (-945^{\circ}) + \sin 600^{\circ} \tan (-690^{\circ})$$

= $\frac{3}{2}$

iv)
$$\frac{\cos \text{ec} (90^{\circ} - x) \sin (180^{\circ} - x) \cot (360^{\circ} - x)}{\sec (180^{\circ} + x) \tan (90^{\circ} + x) \sin (-x)} = 1$$

v)
$$\frac{\sin^3(\pi+x)\sec^2(\pi-x)\tan(2\pi-x)}{\cos^2(\frac{\pi}{2}+x)\sin(\pi-x)\csc^2-x} = \tan^3 x$$

vi)
$$\cos\theta + \sin(270^{\circ} + \theta) - \sin(270^{\circ} - \theta) + \cos(180^{\circ} + \theta) = 0$$

Let's Learn

3.3 Trigonometric functions of multiple angles.

Angles of the form 2 θ , 3 θ , 4 θ etc. are integral multiple of θ these angles are called multiple angles and angles of the form $\frac{\theta}{2}, \frac{3\theta}{2}$ etc. are called submultiple angles of θ .

3.3.1 Trigonometric functions of double angles (2θ)

Theorem: For any angle θ ,

1)
$$\sin 2\theta = 2\sin\theta \cos\theta = \frac{2\tan\theta}{1+\tan^2\theta}$$

2)
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1$$

= $1 - 2\sin^2 \theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$

3)
$$\tan 2\theta = \frac{2\tan \theta}{1-\tan^2 \theta}$$

Proof: 1) =
$$\sin 2\theta = \sin (\theta + \theta)$$

= $\sin \theta \cos \theta + \cos \theta \sin \theta$
= $2 \sin \theta \cos \theta \dots \dots (1)$
= $\frac{2 \sin \theta \cos \theta}{1}$
= $\frac{2 \sin \theta \cos \theta}{\sin^2 \theta + \cos^2 \theta}$

$$= \frac{2\sin\theta\cos\theta/\cos^2\theta}{(\sin^2\theta + \cos^2\theta/\cos^2\theta)}$$

$$= \frac{2\sin\theta\cos\theta}{\frac{\sin^2\theta}{\cos^2\theta} + 1}$$

$$= \frac{2\tan\theta}{1+\tan^2\theta} \dots (2)$$

From (1) and (2)

$$\sin 2\theta = 2\sin\theta\cos\theta = \frac{2\tan\theta}{1+\tan^2\theta}$$

2)
$$\cos 2\theta = \cos (\theta + \theta)$$

$$= \cos \theta \cos \theta - \sin \theta \sin \theta$$

$$= \cos^2 \theta - \sin^2 \theta \dots (1)$$

$$= \cos^2 \theta - (1 - \cos^2 \theta)$$

$$= \cos^2 \theta - 1 + \cos^2 \theta$$

$$= 2\cos^2 \theta - 1 \dots (2)$$

=
$$2 (1 - \sin^2 \theta) - 1$$

= $2 - 2\sin^2 \theta - 1$
= $1 - 2\sin^2 \theta$ (3)
= $\cos^2 \theta - \sin^2 \theta$

$$= \frac{\cos^2\theta - \sin^2\theta}{1}$$
$$= \frac{\cos^2\theta - \sin^2\theta}{\cos^2\theta + \sin^2\theta}$$

$$= \frac{\frac{\cos^2\theta - \sin^2\theta}{\cos^2\theta}}{\frac{\cos^2\theta + \sin^2\theta}{\cos^2\theta}}$$

$$= \frac{1 - \frac{\sin^2 \theta}{\cos^2 \theta}}{1 + \frac{\sin^2 \theta}{\cos^2 \theta}}$$
$$= \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \dots (4)$$

From (1), (2), (3) and (4) we get
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1$$

$$= 1 - 2\sin^2 \theta$$

$$= \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

3)
$$\tan 2\theta = \frac{2\tan\theta}{1+\tan^2\theta}$$

Simillarly,

Note that the substitution $2\theta = t$ transforms $\sin 2\theta = 2\sin \theta . \cos \theta$ into $\sin t = 2\sin \frac{t}{2} . \cos \frac{t}{2}$.

 $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ and $\cos t = \cos^2 \frac{t}{2} - \sin^2 \frac{t}{2}$

$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$
 and $\tan t = \frac{2 \tan \frac{t}{2}}{1 - \tan^2 \frac{t}{2}}$

Also if
$$\tan \frac{\theta}{2} = t$$
 then $\sin \theta = \frac{2t}{1-t^2}$

and
$$\cos\theta = \frac{1-t^2}{1+t^2}$$
 and $\tan\theta = \frac{2t}{1-t^2}$

3.3.2 Trigonometric functions of triple angle (3θ)

Theorem: 1) For any angle θ

1)
$$\sin 3\theta = 3\sin\theta - 4\sin^3\theta$$

2)
$$\cos 3\theta = 4\cos^3\theta - 3\cos\theta$$

3)
$$\tan 3\theta = \frac{3tan\theta - tan^3\theta}{1 - 3tan^2\theta}$$

Proof:

1)
$$\sin 3\theta = \sin (2\theta + \theta)$$

 $= \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$
 $= 2\sin \theta \cos \theta \cdot \cos \theta + (1 - 2\sin^2 \theta) \sin \theta$
 $= 2\sin \theta \cos^2 \theta + \sin \theta - 2\sin^3 \theta$
 $= 2\sin \theta (1 - \sin^2 \theta) + \sin \theta - 2\sin^3 \theta$
 $= 2\sin \theta - 2\sin^3 \theta + \sin \theta - 2\sin^3 \theta$
 $= 3\sin \theta - 4\sin^3 \theta$
 $\therefore \sin 3\theta = 3\sin \theta - 4\sin^3 \theta$

(Activity)

$$2)\cos 3\theta = \cos (2\theta + \theta)$$

3)
$$\tan 3\theta = \tan (2\theta + \theta)$$

$$= \frac{\tan 2\theta + \tan \theta}{1 - \tan 2\theta \tan \theta}$$

$$= \frac{\left(\frac{2\tan \theta}{1 - \tan^2 \theta}\right) + \tan \theta}{\left(1 - \frac{2\tan \theta}{1 - \tan^2 \theta}\right) \tan \theta}$$

$$= \frac{2\tan \theta + \tan \theta \left(1 - \tan^2 \theta\right)}{\frac{1 - \tan^2 \theta}{1 - \tan^2 \theta}}$$

$$= \frac{2\tan \theta + \tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$$

$$= \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$$

$$\therefore \tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$$

SOLVED EXAMPLES

Ex. 1) Prove that $1 + \tan\theta \tan \frac{\theta}{2} = \sec \theta$ Solution:

L.H.S =
$$1 + \tan \theta \tan (\frac{\theta}{2})$$

$$= 1 + \frac{\sin \theta}{\cos \theta} \cdot \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}$$

$$= 1 + \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}.\sin\frac{\theta}{2}}{\cos\theta\cos\frac{\theta}{2}}$$

$$= 1 + \frac{2\sin^2\frac{\theta}{2}}{\cos\theta}$$

$$= 1 + \frac{1 - \cos \theta}{\cos \theta}$$

$$= \frac{\cos\theta + 1 - \cos\theta}{\cos\theta}$$

$$= \frac{1}{\cos \theta} = \sec \theta = R.H.S$$

Ex. 2) Prove that $\tan 20^{\circ} \tan 40^{\circ} \tan 60^{\circ} \tan 80^{\circ} = 3$

Solution:

L.H.S.

$$= \tan 20^{\circ} \tan 40^{\circ} \tan 60^{\circ} \tan 80^{\circ}$$

$$= \tan 20^{\circ} \tan 40^{\circ}.\sqrt{3} \tan 80^{\circ}$$

$$= \sqrt{3} \tan 20^{\circ} \tan (60^{\circ} - 20^{\circ}) \tan (60^{\circ} + 20^{\circ})$$

$$= \sqrt{3} \tan 20^{\circ} \cdot \frac{\tan 60^{\circ} - \tan 20^{\circ}}{1 + \tan 60^{\circ} \tan 20^{\circ}} \cdot \frac{\tan 60^{\circ} + \tan 20^{\circ}}{1 - \tan 60^{\circ} \tan 20^{\circ}}$$

$$= \sqrt{3} \tan 20^{\circ} \cdot \frac{\sqrt{3} - \tan 20^{\circ}}{1 + \sqrt{3} \tan 20^{\circ}} \cdot \frac{\sqrt{3} + \tan 20^{\circ}}{1 - \sqrt{3} \tan 20^{\circ}}$$

$$= \sqrt{3} \tan 20^{\circ} \cdot \frac{3 - \tan^{2} 20^{\circ}}{1 - 3 \tan^{2} 20^{\circ}}$$

$$= \sqrt{3} \frac{3 \tan 20^{\circ} - \tan^{3} 20^{\circ}}{1 - 3 \tan^{2} 20^{\circ}}$$

$$= \sqrt{3} \tan [3 (20)]^{\circ}$$

$$= \sqrt{3} \tan 60^{\circ}$$

$$= \sqrt{3} \cdot \sqrt{3} = 3 = R. H. S$$

Ex. 3) Prove that $2\csc 2x + \csc x = \sec x \cdot \cot (x/2)$

Solution: L.H.S. =
$$2 \csc 2x + \csc x$$

= $\frac{2}{\sin 2x} + \frac{1}{\sin x}$
= $\frac{2}{2 \sin x \cos x} + \frac{1}{\sin x}$
= $\frac{1 + \cos x}{\sin x \cos x}$
= $\frac{2\cos^2(x/2)}{2\sin(x/2)\cos(x/2)\cos x}$
= $\frac{\cos(x/2)}{\sin(x/2)} \cdot \frac{1}{\cos x}$
= $\cot(x/2) \cdot \sec x = R. H. S.$

Ex. 4) Prove that
$$\frac{\cos^3 \theta - \cos 3\theta}{\cos \theta} + \frac{\sin^3 \theta + \sin 3\theta}{\sin \theta}$$

Solution: L.H.S.

$$= \frac{\cos^{3}\theta - \cos 3\theta}{\cos \theta} + \frac{\sin^{3}\theta + \sin 3\theta}{\sin \theta}$$

$$= \frac{\cos^{3}\theta - \left[4\cos^{3}\theta - 3\cos\theta\right]}{\cos \theta} + \frac{\sin^{3}\theta + \left[3\sin\theta - 4\sin^{3}\theta\right]}{\sin \theta}$$

$$= \frac{-3\cos^{3}\theta + 3\cos\theta}{\cos\theta} + \frac{3\sin\theta - 3\sin^{3}\theta}{\sin\theta}$$

$$= \frac{3\cos\theta(1 - \cos^{2}\theta)}{\cos\theta} + \frac{3\sin\theta(1 - \sin^{2}\theta)}{\sin\theta}$$

$$= 3\sin^{2}\theta + 3\cos^{2}\theta$$

$$= 3(\sin^{2}\theta + \cos^{2}\theta)$$

$$= 3(1) = 3 = \text{R.H.S.}$$
Ex. 5) Prove that $\frac{\tan 5A + \tan 3A}{\tan 5A - \tan 3A} = 4\cos^{2}A.\cos 4A$
Soln.: L.H.S.
$$= \frac{\tan 5A + \tan 3A}{\tan 5A - \tan 3A}$$

$$= \frac{\sin 5A}{\cos 5A} + \frac{\sin 3A}{\cos 3A}$$

$$= \frac{\sin 5A\cos^{3}A + \cos 5A\sin^{3}A}{\cos 5A\cos^{3}A - \cos 5A\sin^{3}A}$$

$$= \frac{\sin 5A\cos^{3}A + \cos 5A\sin^{3}A}{\cos 5A\cos^{3}A - \cos 5A\sin^{3}A}$$

$$= \frac{\cos 5A\cos^{3}A - \cos 5A\sin^{3}A}{\cos 5A\cos^{3}A - \cos 5A\sin^{3}A}$$

$$\frac{\sin A \cos A + \cos A \sin A}{\cos 5 A \cos 3 A}$$

$$= \frac{\sin 5 A \cos 3 A + \cos 5 A \sin 3 A}{\sin 5 A \cos 3 A - \cos 5 A \sin 3 A}$$

$$= \frac{\sin 8 A}{\sin 2 A} = \frac{2 \sin 4 A \cos 4 A}{\sin 2 A}$$

$$= \frac{2.2 \sin 2 A \cos 2 A \cos 4 A}{\sin 2 A}$$

$$= 4 \cos 2 A \cos 4 A = R. H. S.$$

Ex. 6) Show that , where
$$(\cos \theta + i\sin \theta)^3 = \cos 3\theta + i \sin 3\theta$$
, where $i^2 = -1$.

Solution: L.H.S.= $[\cos\theta + i \sin\theta]^3$

$$= \cos^3 \theta + 3 i \cos^2 \theta \sin \theta + 3 i^2 \cos \theta \sin^2 \theta + i^3 \sin^3 \theta$$

$$= \cos^3 \theta + 3i (1 - \sin^2 \theta) \sin \theta - 3\cos \theta \sin^2 \theta - i \sin^3 \theta$$

$$= \cos^3 \theta + 3i \sin \theta - 3i \sin^3 \theta - 3\cos \theta (1 - \cos^2 \theta) - i \sin^3 \theta$$

$$= \cos^3 \theta + 3i \sin \theta - 3i \sin^3 \theta - 3\cos \theta + 3\cos^3 \theta - i \sin^3 \theta$$

 $= [4\cos^3\theta - 3\cos\theta] + i[3\sin\theta - 4\sin^3\theta]$

 $= \cos 3\theta + i \sin 3\theta$

= R.H.S.

Ex. 7) Show that $4\sin\theta \cos^3\theta - 4\cos\theta \sin^3\theta = \sin 4\theta$

Solution:

L.H.S =
$$4\sin\theta \cos^3\theta - 4\cos\theta \sin^3\theta$$

= $4\sin\theta \cos\theta [\cos^2 - \sin^2\theta]$
= $2. (2\sin\theta \cos\theta) (\cos^2\theta - \sin^2\theta)$
= $2. \sin2\theta . \cos2\theta$
= $\sin 4\theta$
= R.H.S.

Ex. 8) Show that
$$\sqrt{\frac{1+\sin 2A}{1-\sin 2A}} = \tan \left(\frac{\pi}{4} + A\right)$$

Solution:

L.H.S. =
$$\sqrt{\frac{1+\sin 2A}{1-\sin 2A}}$$

$$= \sqrt{\frac{\sin^2 A + \cos^2 A + 2\sin A \cos A}{\sin^2 A + \cos^2 A - 2\sin A \cos A}}$$

$$= \sqrt{\frac{(\sin A + \cos A)^2}{(\cos A - \sin A)^2}}$$

$$= \frac{\sin A + \cos A}{\cos A - \sin A}$$

$$= \frac{\cos A + \sin A}{\cos A}$$

$$= \frac{\cos A + \sin A}{\cos A}$$

$$= \frac{1+\frac{\sin A}{\cos A}}{\cos A}$$

$$= \frac{1+\frac{\sin A}{\cos A}}{1-\frac{\sin A}{1-\tan A}}$$

$$= \frac{\tan \frac{\pi}{4} + \tan A}{1-\tan A}$$

$$= \frac{\tan \frac{\pi}{4} + \tan A}{1-\tan A}$$

$$= \frac{1-\tan \frac{\pi}{4} + \tan A}{1-\tan A}$$

$$= \tan\left(\frac{\pi}{4} + A\right)$$
$$= \text{R.H.S.}$$

Ex. 9) Find
$$\sin \frac{x}{2}$$
, $\cos \frac{x}{2}$, $\tan \frac{x}{2}$
if $\tan x = \frac{4}{3}$, x lies in II quadrant.

Solution: we know that $1 + \tan^2\theta = \sec^2\theta$

$$\sec^2 x = 1 + \left(-\frac{4}{3}\right)^2 = 1 + \frac{16}{9} = \frac{9+16}{9} = \frac{25}{9}$$
$$\sec x = \pm \frac{5}{3}$$

But x lies in II quadrant.

 \therefore secx is negative.

$$\therefore \sec x = -\frac{5}{3} \qquad \therefore \cos x = -\frac{3}{5}$$

$$\sin x = \sqrt{1 - \cos^2 x} = \sqrt{1 - (-\frac{3}{5})^2} = \sqrt{1 - \frac{9}{25}} = \pm \frac{4}{5}$$

$$\therefore \sin x = \frac{4}{5} \qquad [\therefore x \text{ lies in II quadrant}]$$

But
$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}} = \sqrt{\frac{1 - \left(-\frac{3}{5}\right)}{2}}$$

$$=\sqrt{\frac{5+3}{2\times 5}}=\sqrt{\frac{4}{5}}=\frac{2}{\sqrt{5}}$$

$$\cos\frac{x}{2} = \sqrt{\frac{1+\cos x}{2}} = \sqrt{\frac{1-\left(-\frac{3}{5}\right)}{2}}$$

$$= \sqrt{\frac{5-3}{2\times 5}} = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}}$$

$$\tan \frac{x}{2} = \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} = \sqrt{\frac{\frac{4}{5}}{\frac{1}{5}}} = \sqrt{\frac{4}{5} \times \frac{5}{1}} = \sqrt{4} = 2$$

$$\therefore \sin \frac{x}{2} = \frac{2}{\sqrt{5}}, \cos \frac{x}{2} = \frac{1}{\sqrt{5}}, \tan \frac{x}{2} = 2$$

Ex. 10) Find the value of
$$\tan \frac{\pi}{8}$$

Solution: let
$$x = \frac{\pi}{8}$$
 : $2x = \frac{\pi}{4}$

we have
$$\tan 2 x = \frac{2 \tan x}{1 - \tan^2 x}$$

$$\therefore \tan \frac{\pi}{4} = \frac{2\tan \frac{\pi}{8}}{1 - \tan^2 \frac{\pi}{8}}$$

$$let y = tan \frac{\pi}{8} \qquad \therefore 1 = \frac{2y}{1 - y^2}$$

$$\therefore 1 - v^2 = 2v$$

$$\therefore y^2 + 2y - 1 = 0$$

$$y = \frac{-2 + 2\sqrt{2}}{2} = -1 \pm \sqrt{2}$$

Since $\frac{\pi}{8}$ lies in I quadrant $y = \tan \frac{\pi}{8}$ positive

$$\therefore \tan \frac{\pi}{8} = \sqrt{2} - 1$$

Ex. 11) Prove that

$$\cos^2 x + \cos^2 \left(x + \frac{\pi}{3} \right) + \cos^2 \left(\pi - \frac{2\pi}{3} \right) = \frac{3}{2}$$

Solution: L.H.S.

$$= \cos^2 x + \cos^2 \left(x + \frac{\pi}{3}\right) + \cos^2 \left(\pi - \frac{2\pi}{3}\right)$$

$$= \frac{1+\cos 2x}{2} + \frac{1+\cos 2\left(x+\frac{\pi}{3}\right)}{2} +$$

$$\frac{1+\cos 2\left(x-\frac{2\pi}{3}\right)}{2}$$

$$= \frac{1}{2} \left[3 + \cos 2x + \cos \left(2x + \frac{2\pi}{3} \right) + \cos \left(2x - \frac{2\pi}{3} \right) \right]$$

$$= \frac{1}{2} \left[3 + \cos 2x + 2\cos 2x \cos \frac{2\pi}{3} \right]$$

$$= \frac{1}{2} \left[3 + \cos 2x + 2\cos 2x \cos \left(\pi - \frac{2\pi}{3} \right) \right]$$
$$= \frac{1}{2} \left[3 + \cos 2x - 2\cos 2x \cos \frac{\pi}{2} \right]$$

$$=\frac{1}{2}[3+\cos 2x - \cos 2x]$$

$$=\frac{3}{2}$$
 = R. H. S.

Ex. 12) Find
$$\sin \frac{\pi}{10}$$

Solution:
$$\frac{\pi^c}{10} = 18^\circ$$

Let,
$$\theta = 18^{\circ}$$
, $2\theta = 36^{\circ}$, $3\theta = 54^{\circ}$

We have
$$2\theta + 3\theta = 90^{\circ}$$

 $2\theta = 90^{\circ} - 3\theta$

$$\therefore \sin 2\theta = \sin (90^{\circ} - 3\theta)$$
$$2\sin \theta \cdot \cos \theta = \cos 3 \theta$$

$$\therefore \quad 2\sin\theta.\cos\theta = 4.\cos^3\theta - 3\cos\theta$$

$$2\sin\theta = 4.\cos^2\theta - 3$$

$$2\sin\theta = 4\left(1 - \sin^2\theta\right) - 3$$

$$2\sin\theta = 4 - 4\sin^2\theta - 3$$

$$4\sin^2\theta + 2\sin\theta - 1 = 0$$

$$\therefore \sin \theta = \frac{-2 \pm \sqrt{4 + (4)(4)(1)}}{2(4)}$$
$$= \frac{-2 \pm 2\sqrt{5}}{2(4)}$$

$$\therefore \sin \theta = \frac{-1 \pm \sqrt{5}}{4}$$

$$\therefore \sin \theta = \frac{-1+\sqrt{5}}{4}$$

[: θ is an acute angle]

$$\therefore \sin 18^\circ = \frac{-1+\sqrt{5}}{4}$$

$$\therefore \sin \frac{\pi}{10} = \frac{-1+\sqrt{5}}{4}$$

EXERCISE 3.3

1) Find values of : i) $\sin \frac{\pi}{8}$ ii) $\cos \frac{\pi}{8}$

2) Find $\sin 2x$, $\cos 2x$, $\tan 2x$ if $\sec x = \frac{-13}{5}$, $\frac{\pi}{2} < x < \pi$

3) Prove the following:

i)
$$\frac{1 - \cos 2\theta}{1 + \cos 2\theta} = \tan^2 \theta$$

ii) $(\sin 3x + \sin x)\sin x + (\cos 3x - \cos x)\cos x = 0$

iii)
$$(\cos x - \cos y)^2 + (\sin x - \sin y)^2 = 4\cos^2\frac{(x+y)}{2}$$

iv)
$$(\cos x - \cos y)^2 + (\sin x - \sin y)^2 = 4\sin^2 \frac{(x - y)}{2}$$

v) tan x + cot x = 2 cosec 2x

vi)
$$\frac{\cos x + \sin x}{\cos x - \sin x} - \frac{\cos x - \sin x}{\cos x + \sin x} = 2\tan 2x$$

vii)
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \cos 8x}}} = 2 \cos x$$

viii) $16 \sin\theta \cos\theta \cos 2\theta \cos 4\theta \cos 8\theta = \sin 16\theta$

ix)
$$\frac{\sin 3x}{\cos x} + \frac{\cos 3x}{\sin x} = 2\cot 2x$$

$$x) \quad \frac{\cos x}{1 + \sin x} = \frac{\cot\left(\frac{x}{2}\right) - 1}{\cot\left(\frac{x}{2}\right) + 1}$$

xi)
$$\frac{\tan\left(\frac{\theta}{2}\right) + \cot\left(\frac{\theta}{2}\right)}{\cot\left(\frac{\theta}{2}\right) - \tan\left(\frac{\theta}{2}\right)} = \sec\theta$$

xii)
$$\frac{1}{tan3A - tanA} - \frac{1}{cot3A - cotA} = \cot 2A$$

xiii)
$$\cos 7^{\circ} \cos 14^{\circ} \cos 28^{\circ} \cos 56^{\circ} = \frac{\sin 68^{\circ}}{16 \cos 83^{\circ}}$$

xiv)
$$\frac{\sin^2(-160^\circ)}{\sin^2 70^\circ} + \frac{\sin(180^\circ - \theta)}{\sin \theta} = \sec^2 20^\circ$$

xv)
$$\frac{2\cos 4x + 1}{2\cos x + 1} = (2\cos x - 1)(2\cos 2x - 1)$$

xvi)
$$\cos^2 x + \cos^2 (x + 120^\circ) + \cos^2 (x - 120^\circ) = \frac{3}{2}$$

xvii)
$$2\csc 2x + \csc x = \sec x \cot \left(\frac{x}{2}\right)$$

xviii)
$$4\cos x \cos \left(x + \frac{\pi}{3}\right) + \cos^2 \left(\pi - \frac{2\pi}{3}\right) = \cos 3x$$

xix)
$$\sin x \tan \left(\frac{x}{2}\right) + 2\cos x = \frac{2}{1 + \tan^2\left(\frac{x}{2}\right)}$$

3.4 Factorization formulae:

Formulae for expressing sums and differences of trigonometric functions as products of sine and cosine functions are called factorization formulae. Formulae to express products in terms of sums and differences are called defactorization formulae.

3.4.1 Formulae for conversion of sum or difference into product.

Theorem: 9) For any angles C and D,

1)
$$\sin C + \sin D = 2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$

2)
$$\sin C - \sin D = 2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$$

3)
$$\cos C + \cos D = 2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$

4)
$$\cos C - \cos D = -2 \sin\left(\frac{C+D}{2}\right) \sin\left(\frac{C-D}{2}\right)$$

= $2 \sin\left(\frac{C+D}{2}\right) \sin\left(\frac{D-C}{2}\right)$

Proof: We know that

Let,
$$A = \frac{C+D}{2}$$
 and $B = \frac{C-D}{2}$

$$\therefore$$
 A+B = C and A-B = D

using these values in equations

$$\sin (A + B) + \sin (A + B) = 2\sin A\cos B$$

$$\sin (A - B) + \sin (A - B) = 2\cos A\sin B$$

we get

$$\sin C + \sin D = 2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$

$$\sin C - \sin D = 2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$$

Simillarly

the equations,

$$\cos (A + B) = \cos A \cos B - \sin A \sin B \dots (3)$$

$$\cos (A - B) = \cos A \cos B + \sin A \sin B \dots (4)$$

gives,

$$\cos C + \cos D = 2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$

$$\therefore \cos C - \cos D = -2 \sin \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$$

$$\therefore \sin(-\theta) = \sin\theta$$

$$\therefore -\sin\left(\frac{C-D}{2}\right) = \sin\left(-\left(\frac{C-D}{2}\right)\right)$$
$$= \sin\left(\frac{D-C}{2}\right)$$

$$\therefore \cos C - \cos D = 2 \sin \left(\frac{C+D}{2} \right) \sin \left(\frac{D-C}{2} \right)$$

3.4.2 Formulae for conversion of product in to sum or difference :

For any angles A and B

- 1) $2\sin A \cos B = \sin (A + B) + \sin (A B)$
- 2) $2\cos A \sin B = \sin (A + B) \sin (A B)$
- 3) $2\cos A \cos B = \cos (A + B) + \cos (A B)$
- 4) $2\sin A \sin B = \cos (A B) \cos (A + B)$

SOLVED EXAMPLES

Ex. 1) Prove the following:

i)
$$\sin 40^{\circ} - \cos 70^{\circ} = \sqrt{3} \cos 80^{\circ}$$

ii)
$$\cos 40^{\circ} + \cos 50^{\circ} + \cos 70^{\circ} + \cos 80^{\circ}$$

= $\cos 20^{\circ} + \cos 10^{\circ}$

Solution:

i) LHS =
$$\sin 40^{\circ} - \cos 70^{\circ}$$

= $\sin (90^{\circ} - 50^{\circ}) - \cos 70^{\circ}$
= $\cos 50^{\circ} - \cos 70^{\circ}$
= $-2 \sin 60^{\circ} \sin (-10^{\circ})$
= $2 \sin 60^{\circ} \sin 10^{\circ}$
= $2 \times \frac{\sqrt{3}}{2} \cos 80 = \sqrt{3} \cos 80^{\circ}$
= R.H.S

L.H.S.

$$= \cos 40^{\circ} + \cos 50^{\circ} + \cos 70^{\circ} + \cos 80^{\circ}$$

$$= (\cos 80^{\circ} + \cos 40^{\circ}) + (\cos 70^{\circ} + \cos 50^{\circ})$$

$$= 2 \cos \left(\frac{80 + 40}{2}\right) \cos \left(\frac{80 - 40}{2}\right) + 2\cos \left(\frac{70 + 50}{2}\right) \cos \left(\frac{70 - 50}{2}\right)$$

$$= 2\cos 60^{\circ} \cos 20^{\circ} + 2\cos 60^{\circ} \cos 10^{\circ}$$

$$= 2 \cos 60^{\circ} (\cos 20^{\circ} + \cos 10^{\circ})$$

$$= 2 \frac{1}{2} (\cos 20^{\circ} + \cos 10^{\circ})$$

$$= \cos 20^{\circ} + \cos 10^{\circ} = R. H. S.$$

Ex. 2) Express the following as sum or difference of two trigonometric function:

i) $2 \sin 4\theta \cos 2\theta$

Solution : =
$$2 \sin 4\theta \cos 2\theta$$

= $\sin (4\theta + 2\theta) + \sin (4\theta - 2\theta)$
= $\sin 6\theta + \sin 2\theta$

ii)
$$4 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$$

$$= 2 \times \left[\cos\left(\frac{A+B}{2} - \frac{A-B}{2}\right) - \cos\left(\frac{A+B}{2} + \frac{A-B}{2}\right)\right]$$

- $= 2[\cos B \cos A]$
- $= 2\cos B 2\cos A$

Ex. 3) Show that

i)
$$\frac{\sin 8x + \sin 2x}{\cos 2x - \cos 8x} = \cos 3x$$

Solution: L.H.S

$$= \frac{\sin 8x + \sin 2x}{\cos 2x - \cos 8x}$$

$$= \frac{2\sin\left(\frac{8x+2x}{2}\right)\cos\left(\frac{8x-2x}{2}\right)}{2\sin\left(\frac{2x+8x}{2}\right)\sin\left(\frac{8x-2x}{2}\right)}$$

- $= \frac{2\sin 5x \cos 3x}{2\sin 5x \sin 3x}$
- $= \cot 3x$
- = R. H. S.

ii)
$$\frac{\sin 2 - \sin 2\beta}{\sin 2 - \sin 2\beta} = \frac{\tan(-\beta)}{\tan(-\beta)}$$

Solution:

L.H.S. =
$$\frac{\sin 2 \propto + \sin 2\beta}{\sin 2 \propto -\sin 2\beta}$$

$$= \frac{2\sin\left(\frac{2\propto+2\beta}{2}\right)\cos\left(\frac{2\propto-2\beta}{2}\right)}{2\cos\left(\frac{2\propto+2\beta}{2}\right)\sin\left(\frac{2\propto-2\beta}{2}\right)}$$

$$= \frac{\sin(\infty+\beta)}{\cos(\infty+\beta)} \cdot \frac{\cos(\infty-\beta)}{\sin(\infty-\beta)}$$

=
$$\tan (\alpha + \beta) \cdot \cot (\alpha - \beta)$$

$$= \frac{\tan(\infty+\beta)}{\tan(\infty-\beta)}$$

$$=$$
 $R. H.S.$

Ex. 4) Prove that following.

i)
$$\frac{\cos(7x-5y)+\cos(7y-5x)}{\sin(7x-5y)+\sin(7y-5x)} = \cot(x+y)$$

Solution: L.H.S.

$$= \frac{\cos(7x-5y)+\cos(7y-5x)}{\sin(7x-5y)+\sin(7y-5x)}$$

$$= \frac{2\cos\left(\frac{7x - 5y + 7y - 5x}{2}\right)\cos\left(\frac{7x - 5y - 7y + 5x}{2}\right)}{2\sin\left(\frac{7x - 5y + 7y - 5x}{2}\right)\cos\left(\frac{7x - 5y - 7y + 5x}{2}\right)}$$

$$= \frac{\cos(x+y)\cos(6x-6y)}{\sin(x+y)\cos(6x-6y)}$$

$$= \frac{\cos(x+y)}{\sin(x+y)} = \cot(x+y) = R. H. S.$$

ii)
$$\sin 6\theta + \sin 4\theta - \sin 2\theta = 4\cos\theta \sin 2\theta \cos 3\theta$$

Solution: L.H.S.

$$= \sin 6\theta + \sin 4\theta - \sin 2\theta$$

$$= 2\sin\left(\frac{6\theta + 4\theta}{2}\right)\cos\left(\frac{6\theta - 4\theta}{2}\right) - 2\sin\theta\cos\theta$$

=
$$2\sin 5\theta \cos \theta - 2\sin \theta \cos \theta$$

$$= 2 \cos\theta \left[\sin 5\theta - \sin\theta \right]$$

$$= 2\cos\theta \left[2\cos\left(\frac{5\theta+\theta}{2}\right)\sin\left(\frac{5\theta-\theta}{2}\right)\right]$$

$$= 2 \cos\theta.2\cos3\theta\sin2\theta$$

$$= 4 \cos\theta \sin 2\theta \cos 3\theta$$

$$=$$
 R.H.S.

iii)
$$\frac{\cos 3x \sin 9x - \sin x \cos 5x}{\cos x \cos 5x - \sin 3x \sin 9x} = \tan 8x$$

Solution: L.H.S.

$$= \frac{\cos 3x \sin 9x - \sin x \cos 5x}{\cos x \cos 5x - \sin 3x \sin 9x}$$

$$= \frac{2\cos 3x \sin 9x - 2\sin x \cos 5x}{2\cos x \cos 5x - 2\sin 3x \sin 9x}$$

$$= \frac{[\sin(3x+9x)-\sin(3x-9x)]-[\sin(x+5x)+\sin(x-5x)]}{[\cos(x+5x)+\cos(x-5x)]-[\cos(9x-3x)-\cos(3x+9x)]}$$

$$= \frac{\sin 12x - \sin(-6x) - \sin 6x - \sin(-4x)}{\cos 6x + \cos(-4x) - \cos 6x + \cos 12x}$$

$$= \frac{\sin 12x + \sin 6x - \sin 6x + \sin 4x}{\cos 6x + \cos 4x - \cos 6x + \cos 12x}$$

$$= \frac{\sin 12x + \sin 4x}{\cos 12x + \cos 4x}$$

$$=\frac{2\sin\left(\frac{12x+4x}{2}\right)\cos\left(\frac{12-4x}{2}\right)}{2\cos\left(\frac{12x+4x}{2}\right)\cos\left(\frac{12x-4x}{2}\right)}$$

$$=\frac{\sin 8x}{\cos 8x} = \tan 8x = \text{R.H.S.}$$

iv)
$$\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$$

Solution: L.H.S.

$$=$$
 $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}$

$$= \cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \frac{1}{2} \cdot \cos 80^{\circ}$$

$$=\frac{1}{2} [\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}]$$

$$= \frac{1}{4} \left[\cos(20^{\circ} + 40^{\circ}) + \cos(20^{\circ} - 40^{\circ}) \right] \cos 80^{\circ}$$

$$= \frac{1}{4} [\cos 60^{\circ}) + \cos (-20^{\circ})] \cos 80^{\circ}$$

$$= \frac{1}{4} \left[\frac{1}{2} \cos 80^{\circ} + \cos 20^{\circ} \cos 80^{\circ} \right]$$

$$= \frac{1}{4} \left[\frac{1}{2} \cos 80^{\circ} + \cos 20^{\circ} \cos 80^{\circ} \right]$$

$$=\frac{1}{8}\cos 80^{\circ} + \frac{1}{4} \cdot \frac{1}{2} \cdot 2\cos 20^{\circ} \cos 80^{\circ}$$

$$= \frac{1}{8}\cos 80^{\circ} + \frac{1}{8}[\cos (20 + 80) + \cos (20 - 80)]$$

$$= \frac{1}{8}\cos 80^{\circ} + \frac{1}{8}\left[\cos 100^{\circ} + \cos (-60)^{\circ}\right]$$

$$= \frac{1}{8} \left[\cos 80^{\circ} + \left[\cos 180^{\circ} - 80^{\circ} \right) \right] + \frac{1}{8} \times \frac{1}{2}$$

$$= \frac{1}{8} \left[\cos 80^{\circ} - \cos 80^{\circ} \right] + \frac{1}{16} = \frac{1}{16}$$

$$= R. H.S.$$

EXERCISE 3.4

1) Express the following as a sum or difference of two trigonometric function.

- i) $2\sin 4x \cos 2x$
- ii) $2\sin\frac{2\pi}{3}\cos\frac{\pi}{2}$
- iii) $2\cos 4\theta \cos 2\theta$
- iv) 2cos35° cos75°

2) Prove the following:

i)
$$\frac{\sin 2x + \sin 2y}{\sin 2x - \sin 2y} = \frac{\tan(x+y)}{\tan(x-y)}$$

ii) sin6x + sin 4x sin2x = 4cosx sin2x cos3x

iii)
$$\frac{\sin x - \sin 3x + \sin 5x - \sin 7x}{\cos x - \cos 3x - \cos 5x + \cos 7x} = \cot 2x$$

iv)
$$sin18^{\circ} cos39^{\circ} + sin6^{\circ} cos15^{\circ} = sin24^{\circ} cos33^{\circ}$$

v)
$$cos20^{\circ} cos40^{\circ} cos60^{\circ} cos80^{\circ} = \frac{1}{16}$$

vi)
$$sin20^{\circ} sin40^{\circ} sin60^{\circ} sin80^{\circ} = \frac{3}{16}$$

Let's Learn

3.5 Trigonometric functions of angles of a triangle

Notation: In \triangle ABC; $m \angle$ BAC = A,

$$m \angle ABC = B$$
, $m \angle ACB = C$

$$\therefore A + B + C = \pi$$

Result 1) In $\triangle ABC$, $A + B + C = \pi$

$$A + B = \pi - C$$

$$\therefore$$
 sin $(A+B) = \sin (\pi - C)$

$$\therefore$$
 sin $(A+B) = \sin C$

Simillarly:

$$\sin (B+C) = \sin A$$
 and

$$\sin (C+B) = \sin B$$

Result 2) In $\triangle ABC$, $A+B+C=\pi$

$$\therefore B + C = \pi - C$$

$$\therefore \cos(B+C) = \cos(\pi-A)$$

$$\therefore \cos(B+C) = -\cos A$$

Simillarly:

$$cos (A + B) = -cos C$$
 and
 $cos (C + A) = -cos B$

Result 3) for any $\triangle ABC$

i)
$$\sin\left(\frac{A+B}{2}\right) = \cos\frac{C}{2}$$

 $\sin\left(\frac{B+C}{2}\right) = \cos\frac{A}{2}$
 $\sin\left(\frac{C+A}{2}\right) = \cos\frac{B}{2}$

ii)
$$\cos\left(\frac{A+B}{2}\right) = \sin\frac{C}{2}$$

$$\cos\left(\frac{B+C}{2}\right) = \sin\frac{A}{2}$$

$$\cos\left(\frac{C+A}{2}\right) = \sin\frac{B}{2}$$

Proof.

i) In
$$\triangle ABC$$
, $A+B+C = \pi$ $\therefore A+B = \pi - C$

$$\therefore \left(\frac{A+B}{2}\right) = \frac{\pi - C}{2} = \frac{\pi}{2} - \frac{C}{2}$$

$$\sin\left(\frac{A+B}{2}\right) = \sin\left(\frac{\pi}{2} - \frac{C}{2}\right) = \cos\frac{C}{2}$$

$$\sin\left(\frac{A+B}{2}\right) = \cos\frac{C}{2}$$

Verify.

1)
$$\sin\left(\frac{B+C}{2}\right) = \cos\frac{A}{2}$$

$$2) \cos\left(\frac{B+C}{2}\right) = \sin\frac{B}{2}$$

ii) In
$$\triangle ABC$$
, $A+B+C=\pi$ $\therefore B+C=\pi-B$

$$\therefore \cos\left(\frac{A+C}{2}\right) = \cos\left(\frac{\pi}{2} - \frac{B}{2}\right) = \sin\frac{B}{2}$$

$$\therefore \cos\left(\frac{A+C}{2}\right) = \sin\frac{B}{2}$$

Verify.

1)
$$\cos\left(\frac{A+B}{2}\right) = \sin\frac{C}{2}$$

$$2) \cos\left(\frac{B+C}{2}\right) = \sin\frac{A}{2}$$

SOLVED EXAMPLES

Ex. 1) In $\triangle ABC$ prove that

i)
$$sin2A + sin2B - sin2C = 4cosA cosB sinC$$

Solution: L.H.S. = sin2A + sin2B - sin2C

$$= 2\sin\left(\frac{2A+2B}{2}\right)\cos\left(\frac{2A-2B}{2}\right) - \sin 2C$$

$$= 2\sin(A+B)\cos(A-B) - 2\sin C\cos C$$

=
$$2\sin(\pi - C)\cos(A - B) - 2\sin C\cos[\pi - (A + B)]$$

$$= 2\sin C \cos (A - B) + 2\sin C \cos (A + B)$$

$$= 2\sin C \left[\cos (A - B) + \cos(A + B)\right]$$

$$= 2 \sin C.2 \cos \left(\frac{A-B+A+B}{2}\right) \cos \left(\frac{A-B-A-B}{2}\right)$$

$$= 4 \sin C \cos A \cos B$$

$$= 4 \cos A \cos B \sin C$$

$$= R.H.S.$$

ii)
$$\cos A + \cos B + \cos C = 1 + 4\sin\frac{A}{2} \sin\frac{B}{2} \sin\frac{C}{2}$$

Solution : L.H.S = $\cos A + \cos B + \cos C$

$$= 2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) + 1 - 2 \sin^2 \frac{C}{2}$$

$$= 2 \cos \left(\frac{\pi}{2} - \frac{C}{2}\right) \cos \left(\frac{A - B}{2}\right) + 1 - 2 \sin^2 \frac{C}{2}$$

$$= 1 + 2\sin\frac{C}{2}\cos\left(\frac{A-B}{2}\right) - 2\sin^2\frac{C}{2}$$

$$= 1 + 2 \sin \frac{C}{2} \left[\cos \left(\frac{A - B}{2} \right) - \sin \frac{C}{2} \right]$$

$$= 1 + 2 \sin \frac{C}{2} \left[\cos \left(\frac{A - B}{2} \right) - \sin \left(\frac{\pi}{2} - \frac{A + B}{2} \right) \right]$$

$$= 1 + 2 \sin \frac{C}{2} \left[\cos \left(\frac{A - B}{2} \right) - \cos \left(\frac{A + B}{2} \right) \right]$$

$$= 1+2\sin\frac{C}{2}.2\sin\left(\frac{A-B+A+B}{4}\right)\sin\left(\frac{A+B-A+B}{4}\right)$$

$$= 1 + 4 \sin \frac{C}{2} \sin \frac{A}{2} \sin \frac{B}{2}$$

$$= 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

= R.H.S.

iii) $\sin^2 A + \sin^2 B - \sin^2 C = 2 \sin A \sin B \sin C$

Solution: L.H.S. = $\sin^2 A + \sin^2 B - \sin^2 C$

$$= \frac{1 - \cos 2A}{2} + \frac{1 - \cos 2B}{2} - \sin^2 C$$

$$= \frac{1}{2} [2 - \cos 2A - \cos 2B] - \sin^2 C$$

$$= 1 - \frac{1}{2} [\cos 2A + \cos 2B] - \sin^2 c$$

$$= 1 - \frac{1}{2} \cdot 2 \cos \left(\frac{2A + 2B}{2} \right) \cos \left(\frac{2A - 2B}{2} \right) - \sin^2 C$$

$$= 1 - \sin^2 C - \cos(A + B) + \cos(A - B)$$

$$=\cos^2 C - \cos\left[\pi - C\right] \cos\left(A - B\right)$$

$$=\cos^2C + \cos C\cos\left(A - B\right)$$

$$= \cos C \left[\cos C + \cos \left(A - B \right) \right]$$

$$= \cos C \left[\cos\left[\pi - (A+B)\right] + \cos\left(A-B\right)\right]$$

$$= \cos C \left[-\cos \left(A + B \right) + \cos \left(A - B \right) \right]$$

$$= \cos C \left[\cos (A-B) - \cos (A+B) \right]$$

$$= cosC.2\sin\left(\frac{A-B+A+B}{2}\right)\sin\left(\frac{A+B-A+B}{2}\right)$$

 $= 2\cos C \sin A \sin B$

 $= 2 \sin A \sin B \cos C$

= R. H.S.

iv) $\cot A \cot B + \cot B \cot + \cot C \cot A = 1$

Solution: In $\triangle ABC$, $A + B + C = \pi$

$$\therefore$$
 A + B = π – C

$$\therefore \tan (A+B) = \tan (\pi - C)$$

$$\therefore \frac{\tan A + \tan B}{1 - \tan A \tan B} = \tan (\pi - C)$$

$$\therefore \tan A + \tan B = -\tan C + \tan A \tan B \tan C$$

$$\therefore \tan A + \tan B + \tan C = \tan A \tan B \tan C$$

$$\therefore \frac{1}{\cot A} + \frac{1}{\cot B} + \frac{1}{\cot C} = \frac{1}{\cot A} \cdot \frac{1}{\cot B} \cdot \frac{1}{\cot C}$$

$$\therefore$$
 cot $A \cot B + \cot B \cot C + \cot C \cot A = 1$

v)
$$\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} = 1$$

Solution: In $\triangle ABC$, $A + B + C = \pi$

$$\therefore A + B = \pi - C \therefore \frac{A + B}{2} = \frac{\pi - C}{2} = \frac{\pi}{2} - \frac{C}{2}$$
$$\tan \left(\frac{A}{2} + \frac{B}{2}\right) = \tan \left(\frac{\pi}{2} - \frac{C}{2}\right)$$

$$\therefore \frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{1 - \tan\frac{A}{2}\tan\frac{B}{2}} = \cot\frac{C}{2}$$

$$\therefore \frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{1 - \tan\frac{A}{2}\tan\frac{B}{2}} = \frac{1}{\tan\frac{C}{2}}$$

$$\therefore \left[\tan \frac{A}{2} + \tan \frac{B}{2} \right] \tan \frac{C}{2} = 1 - \tan \frac{A}{2} \tan \frac{B}{2}$$

$$\therefore \tan \frac{A}{2} \tan \frac{C}{2} + \tan \frac{B}{2} \tan \frac{C}{2} = 1 - \tan \frac{A}{2} \tan \frac{B}{2}$$

$$\therefore \tan \frac{A}{2} \tan \frac{C}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{A}{2} \tan \frac{B}{2} = 1$$

vi)
$$\frac{\cos A - \cos B + \cos C + 1}{\cos A + \cos B + \cos C - 1} = \cot \frac{A}{2} \cot \frac{C}{2}$$

Solution: L.H.S. =
$$\frac{\cos A - \cos B + \cos C + 1}{\cos A + \cos B + \cos C - 1}$$

$$= \frac{\left[\cos A - \cos B\right] + \left[1 + \cos C\right]}{\left[\cos A + \cos B\right] - \left[1 - \cos C\right]}$$

$$= \frac{2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{B-A}{2}\right) + 2\cos^{2}\frac{C}{2}}{2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) + \left(-2\sin^{2}\frac{C}{2}\right)}$$

$$= \frac{2\sin\left(\frac{\pi}{2} - \frac{c}{2}\right)\sin\left(\frac{B - A}{2}\right) + 2\cos^2\frac{C}{2}}{2\cos\left(\frac{\pi}{2} - \frac{c}{2}\right)\cos\left(\frac{A - B}{2}\right) + \left(-2\sin^2\frac{C}{2}\right)}$$

$$= \frac{2\cos\frac{C}{2}\sin\left(\frac{B-A}{2}\right) + 2\cos^2\frac{C}{2}}{2\sin\frac{C}{2}\cos\left(\frac{A+B}{2}\right) - 2\sin^2\frac{C}{2}}$$

$$= \frac{\cos\frac{C}{2}\left[\sin\left(\frac{B-A}{2}\right) + \cos\frac{C}{2}\right]}{\sin\frac{C}{2}\left[\cos\left(\frac{A-B}{2}\right) - \sin\frac{C}{2}\right]}$$

$$= \cot \frac{C}{2} \frac{\left[\sin\left(\frac{A+B}{2}\right) + \sin\left(\frac{B-A}{2}\right)\right]}{\left[\cos\left(\frac{A-B}{2}\right) - \sin\left(\frac{\pi}{2} - \frac{A+B}{2}\right)\right]}$$

$$= \cot \frac{C}{2} \frac{\sin \left(\frac{A+B}{2}\right) + \sin \left(\frac{B-A}{2}\right)}{\cos \left(\frac{A-B}{2}\right) - \cos \left(\frac{A+B}{2}\right)}$$

$$= \cot \frac{C}{2} \cdot \frac{2 \sin \frac{\left(\frac{A+B}{2} + \frac{B-A}{2}\right)}{2} \cos \frac{\left(\frac{A+B}{2} - \frac{B-A}{2}\right)}{2}}{2 \sin \frac{\left(\frac{A-B}{2} + \frac{A+B}{2}\right)}{2} \sin \frac{\left(\frac{A+B}{2} - \frac{A-B}{2}\right)}{2}}$$

$$= \cot \frac{C}{2} \cdot \frac{2\sin \frac{B}{2}\cos \frac{A}{2}}{2\sin \frac{A}{2}\sin \frac{B}{2}}$$

$$= \cot \frac{C}{2} \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}}$$

$$= \cot \frac{C}{2} \cot \frac{A}{2}$$

= R.H.S.

EXERCISE 3.5

In $\triangle ABC$, $A + B + C = \pi$ show that

- 1) $\cos 2A + \cos 2B + \cos 2C$ = -1-4 $\cos A \cos B \cos C$
- 2) $\sin A + \sin B + \sin C$ = $4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$
- 3) $\cos A + \cos B \cos C$ = $4 \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2} - 1$
- 4) $\sin^2 A + \sin^2 B + \sin^2 C = 2\sin A \sin B \cos C$
- 5) $\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} \sin^2 \frac{C}{2}$ = $1 - 2\cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}$
- 6) $\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} = 1$
- 7) $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$
- 8) $\tan 2A + \tan 2B + \tan 2C = \tan 2A \tan 2B \tan 2C$
- 9) $\cos^2 A + \cos^2 B \cos^2 C = 1 2\sin A \sin B \cos C$

Let's Remember

1)
$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

2)
$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

3)
$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$

4)
$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

5)
$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$
, $\cos\left(\frac{\pi}{2} - \theta\right)$
= $\sin\theta$, $\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$

6)
$$\sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta, \cos\left(\frac{\pi}{2} + \theta\right)$$

= $\sin\theta$, $\tan\left(\frac{\pi}{2} + \theta\right) = -\cot\theta$,

7)
$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

8)
$$\tan (A + B) = \frac{tanA - tanB}{1 + \tan A tanB}$$

9)
$$\sin (\pi - \theta) = \sin \theta$$
, $\cos (\pi - \theta)$
= $-\cos \theta$, $\tan (\pi - \theta) = -\tan \theta$

10)
$$\sin (\pi + \theta) = -\sin\theta$$
, $\cos (\pi + \theta)$
= $-\cos \theta \tan (\pi + \theta) = \tan \theta$

11)
$$\sin\left(\frac{3\pi}{2} - \theta\right) = -\cos\theta, \cos\left(\frac{3\pi}{2} - \theta\right)$$

= $\sin\theta, \tan\left(\frac{3\pi}{2} - \theta\right) = \cot\theta$

12)
$$\sin\left(\frac{3\pi}{2} + \theta\right) = -\cos\theta$$
, $\cos\left(\frac{3\pi}{2} + \theta\right)$
= $\sin\theta$, $\tan\left(\frac{3\pi}{2} + \theta\right) = -\cot\theta$

13)
$$\sin (2\pi - \theta) = -\sin\theta$$
, $\cos (2\pi - \theta)$
= $\cos\theta$, $\tan (2\pi - \theta) = -\tan\theta$

14)
$$\sin 2\theta = 2\sin\theta\cos\theta = \frac{2\tan\theta}{1+\tan^2\theta}$$
$$\cos 2\theta = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1$$
$$= 1 - 2\sin^2\theta = \frac{1-\tan^2\theta}{1+\tan^2\theta}$$
$$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$$

15)
$$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$$

 $\sin 3\theta = 4\cos^3 \theta - 3\cos \theta$
 $\tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$

16)
$$\sin\theta = 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} = \frac{2\tan\frac{\theta}{2}}{1+\tan^2\frac{\theta}{2}}$$
$$\cos\theta = \cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2} = 2\cos^2\frac{\theta}{2} - 1$$
$$= 1 - 2\sin^2\frac{\theta}{2} = \frac{1 - \tan^2\frac{\theta}{2}}{1 + \tan^2\frac{\theta}{2}}$$
$$\tan\theta = \frac{2\tan\frac{\theta}{2}}{1 - \tan^2\frac{\theta}{2}}$$

17)
$$1 + \cos\theta = 2\cos^2\frac{\theta}{2}$$
, $1 - \cos\theta = 2\sin^2\frac{\theta}{2}$
 $1 + \cos^2\theta = 2\cos^2\theta$, $1 - \cos^2\theta = 2\sin^2\theta$

18)
$$\sin C + \sin D = 2\sin \left(\frac{C+D}{2}\right)\cos \left(\frac{C-D}{2}\right)$$

$$\sin C - \sin D = 2\cos \left(\frac{C+D}{2}\right)\sin \left(\frac{C-D}{2}\right)$$

$$\cos C + \cos D = 2\cos \left(\frac{C+D}{2}\right)\cos \left(\frac{C-D}{2}\right)$$

$$\cos C - \cos D = -2\sin \left(\frac{C+D}{2}\right)\sin \left(\frac{C-D}{2}\right)$$

$$\cos C - \cos D = 2\sin \left(\frac{C+D}{2}\right)\sin \left(\frac{D-C}{2}\right)$$

19)
$$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$$

 $2 \cos A \sin B = \sin (A + B) - \sin (A - B)$
 $2 \cos A \cos B = \cos (A + B) + \cos (A - B)$
 $2 \sin A \sin B = \cos (A - B) - \cos (A + B)$

20) For
$$\triangle ABC$$
,

$$\sin (A + B) = \sin C, \sin (B + C) = \sin A$$

$$\sin (A + C) = \sin B$$

$$\cos(A + B) = -\cos C, \cos (B + C) = -\cos A$$

$$\cos(A + C) = -\cos B$$

$$\sin \left(\frac{A + B}{2}\right) = \cos \frac{C}{2}, \sin \left(\frac{B + C}{2}\right)$$

$$= \cos \frac{A}{2}, \sin \left(\frac{A+C}{2}\right) = \cos \frac{B}{2}$$
$$\cos \left(\frac{A+B}{2}\right) = \sin \frac{C}{2}, \cos \left(\frac{B+C}{2}\right)$$

$$=\sin\frac{A}{2}$$
, $\cos\left(\frac{A+C}{2}\right) = \sin\frac{B}{2}$

Activity:

Verify the following.

i)
$$\sin 18^\circ = \sin \frac{\pi}{10} = \frac{\sqrt{5} - 1}{4} = \cos 72^\circ = \cos \frac{2\pi}{5}$$

ii)
$$\cos 36^\circ = \cos \frac{\pi}{5} = \frac{\sqrt{5} + 1}{4} = \sin 54^\circ = \sin \left(\frac{3\pi}{10}\right)$$

iii)
$$\sin 72^\circ = \sin \frac{2\pi}{5} = \sqrt{\frac{10 + 2\sqrt{5}}{4}} = \cos 18^\circ = \cos \frac{\pi}{10}$$

iv)
$$\sin 36^\circ = \sin \frac{2\pi}{5} = \sqrt{\frac{10 - 2\sqrt{5}}{4}} = \cos 54^\circ = \cos \frac{3\pi}{10}$$

v)
$$\sin 15^\circ = \sin \frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}} = \cos 75^\circ = \cos \frac{5\pi}{12}$$

vi)
$$\cos 15^\circ = \cos \frac{\pi}{12} = \frac{\sqrt{3} + 1}{2\sqrt{2}} = \sin 75^\circ = \sin \frac{5\pi}{12}$$

vii)
$$\tan 15^\circ = \tan \frac{\pi}{12} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \cot 75^\circ = \cot \frac{5\pi}{12}$$

viii)
$$\tan 75^\circ = \tan \frac{\pi}{12} = 2 + \sqrt{3}$$

= $\frac{\sqrt{3} + 1}{\sqrt{3} - 1} = \cot 15^\circ = \cot \frac{\pi}{12}$

ix)
$$\tan(22.5^\circ) = \tan\frac{\pi}{8}$$

= $\sqrt{2} - 1 = \cot 67.5 = \cot\frac{3\pi}{8}$

x)
$$\tan(67.5^\circ) = \tan\frac{3\pi}{8}$$

= $\sqrt{2} + 1 = \cot(22..5^\circ) = \cot\frac{\pi}{8}$

MISCELLANEOUS EXERCISE - 3

- Select correct option from the given alternatives.
- The value of $\sin (n+1) A \sin (n+2) A + \cos (n+2) A = \cos (n+2) A + \cos (n+2) A + \cos (n+2) A + \cos (n+2) A = \cos (n+2) A + \cos (n+$ $(n+a) A \cos (n+2) A$ is equal to
 - A) $\sin A$ B) $\cos A$
- C) $-\cos A$ D) $\sin 2A$
- If $\tan A \tan B = x$ and $\cot B \cot A = y$ then $\cot (A - B) = \dots$

 - A) $\frac{1}{v} \frac{1}{r}$ B) $\frac{1}{r} \frac{1}{v}$
 - C) $\frac{1}{x} + \frac{1}{y}$
- D) $\frac{xy}{y-y}$
- If $\sin\theta = n\sin(\theta + 2\alpha)$ then $\tan(\theta + \alpha)$ is equal to

 - A) $\frac{1+n}{2-n}$ tan α B) $\frac{1-n}{1+n}$ tan α
 - C) tan a
- D) $\frac{1+n}{1-n}$ tan α

- 4) The value of $\frac{\cos \theta}{1 + \sin \theta}$ is equal to.....

 - A) $\tan \left(\frac{\theta}{2} \frac{\pi}{4} \right)$ B) $\tan \left(-\frac{\pi}{4} \frac{\theta}{2} \right)$

 - C) $\tan \left(\frac{\pi}{4} \frac{\theta}{2} \right)$ D) $\tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right)$
- The value of $\cos A \cos (60^{\circ} A)\cos (60^{\circ} + A)$ 5) is equal to.....
 - A) $\frac{1}{2}$ cos 3A
- B) $\cos 3A$
- C) $\frac{1}{4} \cos 3A$
- D) $4\cos 3A$
- The value of 6)

$$\sin\frac{\pi}{14}\sin\frac{3\pi}{14}\sin\frac{5\pi}{14}\sin\frac{7\pi}{14}\sin\frac{9\pi}{14}\sin\frac{11\pi}{14}\sin\frac{13\pi}{14} \text{ is } \dots$$

- A) $\frac{1}{16}$ B) $\frac{1}{64}$ C) $\frac{1}{128}$ D) $\frac{1}{256}$
- If $\alpha + \beta + \varkappa = \pi$ then the value of 7) $\sin^2 \alpha + \sin^2 \beta - \sin^2 \varkappa$ is equal to.....
 - A) 2sina
- B) $2\sin\alpha\cos\beta\sin\alpha$
- C) 2sin \alpha sin\beta cos\cos
- D) $2\sin\alpha\sin\beta\sin\varkappa$
- Let 0 < A, $B < \frac{\pi}{2}$ satisfying the equation 8) $3\sin^2 A + 2\sin^2 B = 1$ and $3\sin^2 A - 2\sin^2 B = 0$ then A+2B is equal to....
 - A) π
- B) $\frac{\pi}{2}$ C) $\frac{\pi}{4}$ D) 2π
- In \triangle ABC if cot A cot B cot C > 09) then the triangle is....
 - A) Acute angled
- B) right angled
- C) obtuse angled
- D) isosceles right angled

- 10) The numerical value of tan20° tan80° cot50° is equal to.....

- A) $\sqrt{3}$ B) $\frac{1}{\sqrt{3}}$ C) $2\sqrt{3}$ D) $\frac{1}{2\sqrt{3}}$
- II) Prove the following.
- 1) $\tan 20^{\circ} \tan 80^{\circ} \cot 50^{\circ} = \sqrt{3}$
- 2) If $\sin \alpha \sin \beta \cos \alpha \cos \beta + 1 = 0$ then prove $\cot \alpha \tan \beta = -1$
- 3) $\cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}$
- 4) $\left(1 + \cos\frac{\pi}{8}\right) \left(1 + \cos\frac{3\pi}{8}\right) \left(1 + \cos\frac{5\pi}{8}\right) \left(1 + \cos\frac{7\pi}{8}\right) = \frac{1}{8}$
- 5) $\cos 12^\circ + \cos 84^\circ + \cos 156^\circ + \cos 132^\circ = -\frac{1}{2}$
- 6) $\cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} x\right) = \sqrt{2} \cos x$
- 7) $\frac{\sin 5x 2\sin 3x + \sin x}{\sin x} = \tan x$
- 8) $\sin^2 6x \sin^2 4x = \sin 2x \sin 10x$
- 9) $\cos^2 2x \cos^2 6x = \sin 4x \sin 8x$
- 10) $\cot 4x (\sin 5x + \sin 3x) = \cot x (\sin 5x \sin 3x)$
- 11) $\frac{\cos 9x \cos 5x}{\sin 17x \sin 3x} = -\frac{\sin 2x}{\cos 10x}$
- 12) If $\sin 2A = \lambda \sin 2B$ then prove that $\frac{\tan(A+B)}{\tan(A-B)} = \frac{\lambda+1}{\lambda-1}$
- 13) $\frac{2\cos 2A + 1}{2\cos 2A 1} = \tan(60^\circ + A) \tan(60^\circ A)$
- 14) $\tan A + \tan (60^{\circ} + A) + \tan (120^{\circ} + A) = -\tan 3A$
- 15) $3\tan^6 10^\circ 27 \tan^4 10^\circ + 33\tan^2 10^\circ = 1$

16)
$$\csc 48^{\circ} + \csc 96^{\circ} + \csc 192^{\circ} + \csc 384^{\circ} = 0$$

17)
$$3(\sin x - \cos x)^4 + 6(\sin x + \cos x)^2 + 4(\sin^6 x + \cos^6 x) = 13$$

18)
$$\tan A + 2 \tan 2A + 4\tan 4A + 8\cot 8A = \cot A$$

19) If
$$A + B + C = \frac{3\pi}{2}$$
 then $\cos 2A + \cos 2B + \cos 2C = 1 - 4\sin A \sin B \sin C$

20) In any triangle ABC,
$$sin A - cos B = cos C$$

then $\angle B = \pi/2$

21)
$$\frac{\tan^3 x}{1 + \tan^2 x} + \frac{\cot^3 x}{1 + \cot^2 x} = \sec x \csc x - 2\sin x \cos x$$

22)
$$\sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ} = \frac{\sqrt{3}}{8}$$

23)
$$\sin 18^\circ = \frac{\sqrt{5} - 1}{4}$$

24)
$$\cos 36^\circ = \frac{\sqrt{5} + 1}{4}$$

25)
$$\sin 36^\circ = \sqrt{\frac{10 - 2\sqrt{5}}{4}}$$

26)
$$\sin \frac{\pi^c}{8} = \frac{1}{2} \sqrt{2 - \sqrt{2}}$$

27)
$$\tan \frac{\pi}{8} = \sqrt{2} - 1$$

28)
$$tan6^{\circ} tan42^{\circ} tan66^{\circ} tan78^{\circ} = 1$$

29)
$$\sin 47^{\circ} + \sin 61^{\circ} - \sin 11^{\circ} - \sin 2^{\circ} = \cos 7^{\circ}$$

30)
$$\sqrt{3} \ cosec20^{\circ} - sec20^{\circ} = 4$$

31) In
$$\triangle ABC$$
, $\angle C = \frac{2\pi}{3}$ then prove that $\cos^2 A + \cos^2 B - \cos A \cos B = \frac{3}{4}$

(II)

	90°	120°	225°	240°	270°	315°	-120°	-150°	-180°
sin	1	$\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0
cos	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{2}$	0	$\frac{1}{\sqrt{2}}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	-1
tan	N.D.	$-\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	N.D.	-1	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	0
cosec	1	$\frac{2}{\sqrt{3}}$	$-\sqrt{2}$	$-\frac{2}{\sqrt{3}}$	-1	$-\sqrt{2}$	$-\frac{2}{\sqrt{3}}$	-2	N.D.
sec	N.D.	-2	$-\sqrt{2}$	-2	N.D.	$\sqrt{2}$	-2	$-\frac{2}{\sqrt{3}}$	-1
cot	0	$-\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	1	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	N.D.

-210°	-300°	-330°
$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$-\frac{1}{\sqrt{3}}$	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$
2	$\frac{2}{\sqrt{3}}$	2
$-\frac{2}{\sqrt{3}}$	2	$\frac{2}{\sqrt{3}}$
$-\sqrt{3}$	С	$\sqrt{3}$

- (8) $\cos \theta = \frac{2xy}{x^2 + y^2}$, $\tan \theta = \frac{x^2 y^2}{2xy}$
- (9) -1

3. TRIGONOMETRY - II

Exercise: 3.1

- Q.1 (i) $\frac{\sqrt{3}+1}{2\sqrt{2}}$ (ii) $\frac{\sqrt{3}-1}{2\sqrt{2}}$ (iii) $\frac{\sqrt{3}+1}{1-\sqrt{3}}$ (iv) 1
- Q.3 (i) $\frac{33}{65}$ (ii) $\frac{-16}{65}$ (iii) $\frac{-33}{56}$

Exercise: 3.2

- Q.1 (i) $-\frac{1}{2}$ (ii) $\frac{1}{\sqrt{2}}$ (iii) $\frac{1}{\sqrt{2}}$
 - (iv) $-\frac{1}{2}$ (v) 1 (vi) $\frac{1}{\sqrt{3}}$
- (2) (i) Positive (ii) Negative (iii) Negative
- $(3) \quad (i) \ IV \quad (ii) \ III \qquad (iii) \ II$
- (4) $\sin 1856 > \sin 2006$
- $(5) \sin (-310^{\circ})$

- (vii) -2 (viii) $-\sqrt{2}$ (ix) $\frac{2}{\sqrt{3}}$
- $(x) \sqrt{3}$

Exercise: 3.3

- Q.1 (i) $\sqrt{\frac{\sqrt{2}-1}{2\sqrt{2}}}$ OR $\frac{\sqrt{2}-\sqrt{2}}{2}$
 - (ii) $\sqrt{\frac{\sqrt{2}+1}{2\sqrt{2}}}$ OR $\frac{\sqrt{2+\sqrt{2}}}{2}$
- Q.2 $\frac{-120}{169}$, $\frac{-119}{169}$, $\frac{120}{119}$

Exercise: 3.4

- Q.1 (i) $\sin 6x + \sin 2x$ (ii) $\sin \frac{7\pi}{12} + \sin \frac{\pi}{12}$
- - (iii) $\cos 6\theta + \cos 2\theta$ (iv) $\cos 110^{\circ} + \cos 40^{\circ}$

MISCELLANEOUS EXERCISE - 3

- Q.1 (1) B
- (2) C (2) D
- (4) C
- (5) C

- (6) B
- (7) C
- (8) B (9) A (10) A

4. DETERMINANTS AND MARTICES

Exercise: 4.1

- Q.1 (i) -2 (ii) -10
- (iii) 46
- (iv) $abc + 2fgh af^2 bg^2 ch^2$
- Q.2 (i) x = 0, x = -1, x = 2 (ii) x = -2
- Q.3 x = 11, y = 52.

- Q.4 M_{11} =11, C_{11} = 11, M_{12} = 7, C_{12} = -7, $M_{13} = -3$, $C_{13} = -3$
 - $M_{21} = -23$, $C_{21} = 23$, $M_{22} = -11$, $C_{22} = -11$, $M_{23} = 19, C_{23} = -19$
 - $M_{31} = -5, C_{31} = -5, M_{32} = -5, C_{32} = 5,$ $M_{33} = 5, C_{33} = 5$
- Q.5 -28
- Q.6 2

Exercise: 4.2

- Q.1 (i) 0 (ii) 0
- (iii) 0
- Q.5 (i) $x = -\frac{7}{2}$ (ii) x = 1 or 2 or 3.
- Q.6 x = 0 or 12

Exercise: 4.3

- Q.1 (i) 1, 2, 3 (ii) -5, 3, 4 (iii) 2,2,-1

- (iv) $-\frac{1}{4}$, $\frac{1}{2}$, 1.
- Q.2 3, 5, 7
- Q.3 (1) Consistent (ii) Not Consistent (iii) Consistent
- Q.4 (i) 16 (ii) 2
- Q.5 (i) 16 sq. unit
- (ii) $\frac{25}{8}$ sq. unit
- (iii) 10 sq. unit
- Q.6 21 sq. unit
- $Q.7 \ 1 \ or -5$
- Q.8 (i) Collinear
- (ii) Non Collinear
- (iii) Collinear