Алгоритм Просеивания для решения задачи SVP

Елена Киршанова

Курс "Криптография на решетках"

Задача SVP

Часть I

Поиск кратчайшего вектора Shortest Vector Problem

В задаче поиска кратчайшего вектора (SVP) требуется найти $\mathbf{v}_{\mathsf{shortest}} \in \mathcal{L}$:

$$\|\mathbf{v}_{\text{shortest}}\| = \lambda_1(\mathcal{L})$$

Поиск кратчайшего вектора \underline{S} hortest \underline{V} ector \underline{P} roblem

В задаче поиска кратчайшего вектора (SVP) требуется найти $\mathbf{v}_{\mathsf{shortest}} \in \mathcal{L}$:

$$\|\mathbf{v}_{\text{shortest}}\| = \lambda_1(\mathcal{L})$$

Упрощение: поиск аппроксимации (γ -SVP) к $\mathbf{v}_{\mathsf{shortest}}$:

$$||\mathbf{v}_{\mathsf{short}}|| \leq \gamma \cdot \lambda_1(\mathcal{L})$$

Асимптотическая сложность SVP (o()) опущены)

$$||\mathbf{v}_{\mathsf{shortest}}|| \leq \sqrt{n} \cdot \det(\mathcal{L})^{1/n}$$

 $||\mathbf{v}_{\mathsf{short}}|| \leq \gamma \cdot ||\mathbf{v}_{\mathsf{shortest}}||$

Асимптотическая сложность SVP (o()) опущены)

$$\begin{aligned} ||\mathbf{v}_{\mathsf{shortest}}|| &\leq \sqrt{n} \cdot \det(\mathcal{L})^{1/n} \\ ||\mathbf{v}_{\mathsf{short}}|| &\leq \gamma \cdot ||\mathbf{v}_{\mathsf{shortest}}|| \\ &\underbrace{\mathsf{NP-hard}} \quad 2^{\mathsf{c} \cdot n} \text{ or } 2^{\mathsf{c} \cdot n \log n} \quad 2^{\beta}, \ \mathsf{BKZ} \qquad \mathsf{poly}(n), \ \mathsf{LLL} \ \mathsf{Время} \\ &\underbrace{2^{\log^{1-\varepsilon} n} \quad \mathsf{poly}(n)}_{(\mathsf{Крипто})} \quad 2^{\frac{n}{\beta} \log \beta} \quad 2^{\frac{n \log \log n}{\log n}} \end{aligned}$$

- Просеивание (эвристический): Время(exactSVP) = $2^{0.292n}$
- Перечисление (enumeration): Время(exactSVP) $\equiv 2^{(1/2e)n\log n}$

Память $=2^{0.2075n}$

 \square амять = $\operatorname{poly}(n)$

Алгоритмы для SVP

Алгоритм	Время	Память			
Детерминированные алгоритмы:					
Перечисление	$n^{(1/2e)n+o(n)}$	poly(n)			
Диаграмма Вороного	$2^{2n+o(n)}$	$2^{n+o(n)}$			
Вероятностные алгоритмы:					
Гауссова выборка	$2^{n+o(n)}$	$2^{n+o(n)}$			
Просеивание — С док-вом — Эвристические:	$2^{2.465n+o(n)}$	$2^{1.325n+o(n)}$			
– 2-просеивание	$2^{0.415n+o(n)}$	$2^{0.208n+o(n)}$			
– 2-просеивание+ LSH	$2^{0.292n+o(n)}$	$2^{0.208n+o(n)}$			
— 3-просеивание	$2^{0.396n+o(n)}$	$2^{0.1887n+o(n)}$			

Часть II

Алгоритмы просеивания

Насколько большим должно быть |L|?

Предположение: вектора (нормализованные) в |L| равномерно независимо распределены в S^{n-1} .

Насколько большим должно быть |L|?

Предположение: вектора (нормализованные) в |L| равномерно независимо распределены в S^{n-1} .

Улучшенное просеивание с хэшированием

Как достичь $T = 2^{0.292n + o(n)}$?

Использовать метод "Ближнего соседа"(Near Neighbour)! (aka Locality-Sensitive techniques)

Улучшенное просеивание с хэшированием

Как достичь
$$T = 2^{0.292n + o(n)}$$
?

Использовать метод "Ближнего соседа"(Near Neighbour)! (aka Locality-Sensitive techniques)

$$\begin{aligned} ||\mathbf{x}_1 - \mathbf{x}_2|| &< ||\mathbf{x}_1|| \iff \\ ||\mathbf{x}_1 - \mathbf{x}_2||^2 &< ||\mathbf{x}_1||^2 \iff \\ ||\mathbf{x}_1||^2 - 2\langle \mathbf{x}_1, \mathbf{x}_2 \rangle + ||\mathbf{x}_2||^2 &< ||\mathbf{x}_1||^2 \iff \\ \langle \mathbf{x}_1, \mathbf{x}_2 \rangle &> \frac{1}{2} ||\mathbf{x}_2||^2 \end{aligned}$$

Locality-sensitive filtering (Фильтрация по расстоянию) [BGJ15, BDGL16]

Анализ I

1. Как эффективно найти релевантные центры u_i ? [MO15, BDGL16]: Взять в качестве u_i кодовые слова из некоторого кода

$$u \in C_1 \times C_2 \times \ldots \times C_t =: U,$$

 C_i -сферический код длины o(n).

Для получения всех центров, содержащих $x = [x_1 | x_2 | \dots | x_t]$, декодируем x_i относительно C_i .

Анализ I

1. Как эффективно найти релевантные центры u_i ? [MO15, BDGL16]: Взять в качестве u_i кодовые слова из некоторого кода

$$u \in C_1 \times C_2 \times \ldots \times C_t =: U,$$

 C_i -сферический код длины o(n).

Для получения всех центров, содержащих $x = [x_1|x_2|\dots|x_t]$, декодируем x_i относительно C_i .

2. Для каждого $x \in L$: нахождение всех релевантных $u_i \in U$ (построение хэш-таблиц)

$$T_{\mathsf{Update}} = |U| \cdot \Pr_{u_i \in \mathcal{S}^{n-1}} [\langle u_i, x \rangle < \alpha] = |U| \cdot (1 - \alpha^2)^{n/2}.$$

Анализ I

1. Как эффективно найти релевантные центры u_i ? [MO15, BDGL16]: Взять в качестве u_i кодовые слова из некоторого кода

$$u \in C_1 \times C_2 \times \ldots \times C_t =: U,$$

 C_i -сферический код длины o(n).

Для получения всех центров, содержащих $x = [x_1 | x_2 | \dots | x_t]$, декодируем x_i относительно C_i .

2. Для каждого $x \in L$: нахождение всех релевантных $u_i \in U$ (построение хэш-таблиц)

$$T_{\mathsf{Update}} = |U| \cdot \Pr_{u_i \in \mathcal{S}^{n-1}} [\langle u_i, x \rangle < \alpha] = |U| \cdot (1 - \alpha^2)^{n/2}.$$

3. Запрос для каждого $x \in L$:

$$T_{\mathsf{Query}} = |U| \cdot \Pr_{u_i \in \mathcal{S}^{n-1}} \left[\langle u_i, x \rangle < \beta \right] = |U| \cdot (1 - \beta^2)^{n/2}.$$

|U|?

Анализ II

$$|U|$$
?

$$|U|$$
 определено $P=1/|U|$ при условии $\langle x_3 \, , x_4
angle = 1/2$

1.
$$\langle u, x_3 \rangle = \alpha$$

$$2. \langle u, x_4 \rangle = \beta$$

$$P = \Pr_{u \in \mathcal{S}^{n-1}} \left[\langle u, x_3 \rangle = \alpha, \langle u, x_4 \rangle = \beta \mid \langle x_3, x_4 \rangle = 1/2 \right]$$
$$= \frac{\left(\det \begin{pmatrix} 1 & \alpha & \beta \\ \alpha & 1 & c \\ \beta & c & 1 \end{pmatrix} \right)^{n/2}}{\left(\det \begin{pmatrix} 1 & c \\ c & 1 \end{pmatrix} \right)^{n/2}}.$$

Для
$$lpha=eta=c=1/2$$
, $P^{-1}=\left(\frac{3}{2}\right)^{n/2}=2^{0.292n}$

Анализ II

$$|U|$$
?

$$|U|$$
 определено $P=1/|U|$ при условии $\langle x_3 \, , x_4
angle = 1/2$

1.
$$\langle u, x_3 \rangle = \alpha$$

$$2. \langle u, x_4 \rangle = \beta$$

$$P = \Pr_{u \in \mathcal{S}^{n-1}} \left[\langle u, x_3 \rangle = \alpha, \langle u, x_4 \rangle = \beta \mid \langle x_3, x_4 \rangle = 1/2 \right]$$
$$= \frac{\left(\det \begin{pmatrix} 1 & \alpha & \beta \\ \alpha & 1 & c \\ \beta & c & 1 \end{pmatrix} \right)^{n/2}}{\left(\det \begin{pmatrix} 1 & c \\ c & 1 \end{pmatrix} \right)^{n/2}}.$$

Анализ II

$$|U|$$
?

$$|U|$$
 определено $P=1/|U|$ при условии $\langle x_3 \;, x_4
angle = 1/2$

1.
$$\langle u, x_3 \rangle = \alpha$$

$$2. \langle u, x_4 \rangle = \beta$$

$$P = \Pr_{u \in \mathcal{S}^{n-1}} \left[\langle u, x_3 \rangle = \alpha, \langle u, x_4 \rangle = \beta \mid \langle x_3, x_4 \rangle = 1/2 \right]$$
$$= \frac{\left(\det \begin{pmatrix} 1 & \alpha & \beta \\ \alpha & 1 & c \\ \beta & c & 1 \end{pmatrix} \right)^{n/2}}{\left(\det \begin{pmatrix} 1 & c \\ c & 1 \end{pmatrix} \right)^{n/2}}.$$

Для
$$lpha=eta=c=1/2$$
, $P^{-1}=\left(\frac{3}{2}\right)^{n/2}=2^{0.292n}$

3-Просеивание [BLS16, HK17, HKL18]: уменьшение затрат памяти Идея: насыщать пространство, пока тройки векторов не

станут давать короткие суммы

3-Просеивание [BLS16, HK17, HKL18]: уменьшение затрат памяти

Идея: насыщать пространство, пока тройки векторов не станут давать короткие суммы

3-Просеивание [BLS16, HK17, HKL18]: уменьшение затрат памяти

Идея: насыщать пространство, пока тройки векторов не станут давать короткие суммы

• Размер списка

$$|L| = |L|^3 \cdot \Pr[||\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3|| \text{ small }]$$

• Для 3-Просеивания имеем

$$|L|=2^{0.179n}, \;\;\;$$
 сравним с $2^{0.208n}$ для 2-Sieve $T=2^{0.359n}, \;\;\;$ сравним с $2^{0.292n}$ для 2-Sieve

Улучшенное 3-просеивание с хэшированием

Часть III

Решение челленджей SVP алгоритмами просеивания ¹

¹или Как получить автомат

- TU Darmstadt предлагает решить задачу 1.05-SVP ²
- Для "случайных" решёток вида:

$$B = \begin{pmatrix} p & x_1 & \dots & x_{n-1} \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

• Рекорд (до 2019) принадлежал Teruya et al.: решение 1.05-SVP в решётке ранга 150-dim алгоритмом перечисления за 2^{22} core-часов

²https://www.latticechallenge.org/svp-challenge/halloffame.php

Решения 1.05-SVP с помощью алгоритма G6K³

SVP dim	γ	Sieve Wall time	Total CPU time	Memory usage
	1 00000	4.1.4.01	40501	2.42 6:5
155	1.00803	$14d \ 16h$	1056d	246 GiB
153	1.02102	$11d \ 15h$	911d	139 GiB
151	1.04411	$11d\ 19h$	457.5d	160 GiB
149	0.98506	60h 7m	4.66kh	59 GiB
147	1.03863	123h $29m$	4.79kh	67.0 GiB
145	1.04267	$39h \ 3m$	1496h	37.7 GiB

³https://github.com/fpll1/g6k

Темы для исследований

- Поведение алгоритма на ортогональных решетках
- Устранение эвристик
- Практические ускорения для реальных криптосистем
- Формулировка алгоритма для норм ℓ_{∞}, ℓ_1
- Формулировка просеивания для алгебраической нормы.