A $m_{\chi} = \inf \{f[\chi] \mid \chi \in \chi \ \{ \in M_{\chi} = \sup \{f[\chi] \mid \chi \in \chi \ \}, \ devenos$ $m_{\chi} = m_{\chi} - m_{\chi}$
Mostrar qu:
remos que um dado conjunto X limitado em 12ºm, então:
y, pm socilações de fom x;
$y'' = -\frac{1}{2} \times \mathbb{R}^{M}$ is excitações de f om χ' : $W\chi = \sup f[f]\chi - f[y] \cdot \chi_{yy} \in \chi \in W(f,\chi)$
M tomormos xcyc RM, então w(f; x/2 w(f; y/, pora uma função ser integrável duemos tomas um Eso e dados as partições xey em 12m temos que:
as particols Xey en 1km temos que:
S(f,y) - s(f,y) < E e S(f,x) -s(f,x) < E
Como E ie um valor muito pequevo temos que E E e pontanto também untegrável. Logo cro somarmos as dues designal dades temos:
$S(f,y) - \Delta(f,y) + S(f,x) - \Delta(f,x) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$
$S(f,y) + S(f,x) - \Delta(f,y) - \Delta(f,x) < \varepsilon$
Mas Mx = sup 3 f(x) gx ∈ X & ou Mpm = sup 3 f(RM) , x, y ∈ RM & ou
Mas Mx = sup 3 f(x) = x ∈ x € ou Mpm = sup 3 f(RM) : x, y ∈ RM € ou M(x,y) = sup 3 f(x,y) = 1 x, y ∈ RM € & como x cy, outar:
M(x,y) = sup of (x,y) of x,y & y & = My, o mesono vale para
my=inflf(x,y). x, y ∈ y €. Portanto a escilação é dado por wx, onde:
por wx; onde:
$W_{(x,y)} = Ayps(f(x,y), y, y \in y) - inf (f(x,y), y, y) \in y \in$
May = May - may => Wy = My - My - Wx = Mx - mx, e se tiver mos zex - wz = Wz - mz.