0.1 Esercizio sui Taxi

In una città lavorano due compagnie di taxi: blue e verde, la maggior parte dei taxisti lavorano per la compagnia verde per cui si ha la seguente distribuzione di taxi in città: 85% di taxi verdi e 15% di taxi blu. Succede un incidente in cui è coinvolto un taxi. Un testimone dichiara che il taxi era blu. Era sera e buio, c'era anche un po' di nebbia ma il testimone ha una vista acuta, la sua affidabilità è stata valutata del 70%. Qual è la probabilità che il taxi fosse effettivamente blu? Quale deve essere l'affidabilità del testimone perché la probabilità che il taxi fosse effettivamente blu sia del 99%?

0.2 Esercizio sul Tumore al seno

Lo strumento principe per lo screaning per il tumore al seno è la radiografia (mammografia). Definiamo X la situazione della donna: X=sana, malata, che non conosciamo. Definiamo Y l'esito della mammografia: Y=positiva, negativa, che viene misurato. Sappiamo che la sensitività della mammografia è intorno al 90% (P(Y=positiva | X=malata)) e che la specificità sia anch'essa del 90% (P(Y=negativa | X=sana)). Qual è la probabilità che l'esame dia risultato positivo (P(Y=negativo)), sapendo che le donne malate sono lo 0,01% (P(X=nalata)=0,01%)? Qual è la percentuale di donne che hanno uno screening positivo, di essere effettivamente malate?

0.3 Esercizio delle Macchine [2]

Tre macchine, A B, e C, producono rispettivamente il 50%, il 40%, e il 10% del numero totale dei pezzi prodotti da una fabbrica. Le percentuali di produzione difettosa di queste macchine sono rispettivamente del 2%, 1% e 4%. Determinare la probabilità di estrarre un pezzo difettoso. Viene estratto a caso un pezzo che risulta difettoso. Determinare la probabilità che quel pezzo sia stato prodotto dalla macchina C.

0.4 Enunciare il teorema di Bayes

Data una partizione dello spazio degli eventi $A_1...A_n$, vale che:

$$P(A_i|E) = \frac{P(E|A_i)P(A_i)}{\sum_{j=1}^{n} P(E|A_j)P(A_j)}$$

0.5 Discutere l'analisi di varianza per un sistema lineare [4]

Svolgere un'analisi di varianza per un sistema lineare significa analizzare quanto la stima di un parametro possa variare nelle diverse misure dei dati relativi al problema. L'analisi consente di esaminare a matrice dei covarianti, misurare quanto varia una misura di una variabile al variare del rumore e misurare quanto covariano due misure di due variabilità. **L'indice di correlazione** di due variabili viene calcolato proprio per misurare quanto le variabili si trovino lungo una funzione.

0.6 Dimostrare che la stima ai minimi quadrati è equivalente alla stima a massima verosimiglianza nel caso di errore Gaussiano sui dati. Cosa fornisce? Come? [3]

Scriviamo il logaritmo negativo della verosimiglianza:

$$P(y_1, ..., y_n; n, b; x_1, ..., x_n) = -\sum_{i=1}^n \ln\left\{\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{y_i - mx_i - b}{\sigma}\right)^2\right]\right\}$$

$$= -\sum_{i=1}^n \ln\left(\frac{1}{\sqrt{2\pi}\sigma}\right) - \sum_{i=1}^n \left[-\frac{1}{2}\left(\frac{y_i - mx_i - b}{\sigma}\right)^2\right]$$
(2)

$$= -\sum_{i=1}^{n} \ln\left(\frac{1}{\sqrt{2\pi}\sigma}\right) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - mx_i - b)^2$$
 (3)

Massimizziamo la **likelyhood** ponendo a zero le derivate prime rispetto a *m*:

$$\frac{\partial P\left(y_1, ..., y_n; n, b; x_1, ..., x_n\right)}{\partial m} = \frac{\partial}{\partial m} \left[-\sum_{i=1}^n \ln\left(\frac{1}{\sqrt{2\pi}\sigma}\right) + \frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - mx_i - b\right)^2 \right]$$
(4)

$$=0+\frac{1}{2\sigma^2}\sum_{i=1}^{n}\left(y_i-mx_i-b\right)^22(-x_i) \tag{5}$$

$$= -\frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - mx_i - b)^2 x_i$$
 (6)

$$-\frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - mx_i - b)^2 x_i = 0$$

$$\sum_{i=1}^{n} (y_i - mx_i - b)^2 x_i = 0$$

$$m\left[\sum_{i=1}^{n} \left(x_i^2\right)\right] + q\left[\sum_{i=1}^{n} \left(x_i\right)\right] = \left[\sum_{i=1}^{n} \left(y_i x_i\right)\right]$$

Figure 1: Prima equazione

Massimizziamo la **likelyhood** ponendo a zero le derivate prime rispetto a q:

$$\frac{\partial P(y_1, ..., y_n; n, b; x_1, ..., x_n)}{\partial q} = \frac{\partial}{\partial q} \left[-\sum_{i=1}^n \ln\left(\frac{1}{\sqrt{2\pi}\sigma}\right) + \frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - mx_i - b\right)^2 \right]$$

$$\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - mx_i - b\right)^2$$
(7)

$$=0+\frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - mx_i - b)^2 2(-1)$$
 (8)

$$= \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - mx_i - b)^2$$
 (9)

$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - mx_i - b)^2 = 0$$

$$\sum_{i=1}^{n} (y_i - mx_i - b)^2 = 0$$

$$m\left[\sum_{i=1}^{n} (x_i)\right] + q\left[\sum_{i=1}^{n} (1)\right] = \left[\sum_{i=1}^{n} (y_i)\right]$$

Figure 2: Seconda equazione

Ponendo a sistema le equazioni così ottenute ottengo:

$$\begin{bmatrix} \begin{bmatrix} \sum_{i=1}^{n} (x_i^2) \end{bmatrix} & \begin{bmatrix} \sum_{i=1}^{n} (x_i) \end{bmatrix} \\ \begin{bmatrix} \sum_{i=1}^{n} (x_i) \end{bmatrix} & n \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \sum_{i=1}^{n} (y_i x_i) \end{bmatrix} \\ \begin{bmatrix} \sum_{i=1}^{n} (y_i) \end{bmatrix} \end{bmatrix}$$

Lo stesso problema visto dal punto di vista dei minimi quadrati è impostato nel seguente modo.

$$\begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & n \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

L'obbiettivo è trovare una x tale che $(Ax - b)^T (Ax - b)$ è minima (minimizzazione di residui). La soluzione si ottiene calcolando $A^T Ax = A^T b$.

$$A^{T} A = \begin{bmatrix} x_1 & \dots & x_n \\ 1 & \dots & n \end{bmatrix} \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & n \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \sum_{i=1}^n (x_i^2) \end{bmatrix} & \begin{bmatrix} \sum_{i=1}^n (x_i) \end{bmatrix} \\ \begin{bmatrix} \sum_{i=1}^n (x_i) \end{bmatrix} & n \end{bmatrix}$$

$$A^{T}b = \begin{bmatrix} x_1 & \dots & x_n \\ 1 & \dots & n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \left[\sum_{i=1}^{n} (y_i x_i) \right] \\ \left[\sum_{i=1}^{n} (y_i) \right] \end{bmatrix}$$

Ovvero:

$$\begin{bmatrix} \begin{bmatrix} \sum_{i=1}^{n} (x_i^2) \end{bmatrix} & \begin{bmatrix} \sum_{i=1}^{n} (x_i) \end{bmatrix} \\ \begin{bmatrix} \sum_{i=1}^{n} (x_i) \end{bmatrix} & n \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \sum_{i=1}^{n} (y_i x_i) \end{bmatrix} \\ \begin{bmatrix} \sum_{i=1}^{n} (y_i) \end{bmatrix} \end{bmatrix}$$

Che è la stessa soluzione ottenuta per la stima a massima verosimiglianza. Queste metodologie offrono una stima dei parametri di una funzione tramite la minimizzazione dei residui. La soluzione è quella che minimizza lo scarto quadratico medio dei residui, ovvero è a minima varianza.