Equivalences

- 1. $\forall x \forall y \phi$ is logically equivalent to $\forall y \forall x \phi$.
- 2. $\exists x \exists y \phi$ is (logically) equivalent to $\exists y \exists x \phi$.
- 3. $\neg \forall x A$ is equivalent to $\exists x \neg \phi$.
- 4. $\neg \exists x \phi$ is equivalent to $\forall x \neg \phi$.
- 5. $\forall x(\phi \wedge \psi)$ is equivalent to $\forall x\phi \wedge \forall x\psi$.
- 6. $\exists x(\phi \lor \psi)$ is equivalent to $\exists x\phi \lor \exists x\psi$.

Equivalences involving variables not occurring free

Suppose that x doesn't occur free in ϕ (for example, when x doesn't occur in ϕ at all — see slide 199 for free variables). Then 7–9 below hold. The restriction is necessary: see slide 191.

- 7. $\forall x \phi$ and $\exists x \phi$ are logically equivalent to ϕ . E.g., $\forall x \underbrace{\exists x P(x)}_{\phi}$ and $\exists x \underbrace{\exists x P(x)}_{\phi}$ are equivalent to $\underbrace{\exists x P(x)}_{\phi}$.
- 8. $\exists x(\phi \land \psi)$ is equivalent to $\phi \land \exists x\psi$, and $\forall x(\phi \lor \psi)$ is equivalent to $\phi \lor \forall x\psi$.
- 9. $\forall x(\phi \to \psi)$ is equivalent to $\phi \to \forall x\psi$, and $\exists x(\phi \to \psi)$ is equivalent to $\phi \to \exists x\psi$.
- 10. Note: if x does not occur free in ψ (x can occur free in ϕ) then $\forall x(\phi \to \psi)$ is equivalent to $\exists x\phi \to \psi$, and $\exists x(\phi \to \psi)$ is equivalent to $\forall x\phi \to \psi$.

 The quantifier changes! Watch out!

Renaming bound variables

- 11. Suppose that x is any variable, y is a variable that does not occur in ϕ , and ψ is got from ϕ by
 - replacing all *bound* occurrences of x in ϕ by y,
 - replacing all $\forall x$ in ϕ by $\forall y$, and
 - replacing all $\exists x \text{ in } \phi \text{ by } \exists y.$

Then ϕ is equivalent to ψ .

E.g., $\forall x \exists y \text{ Bought}(x, y)$ is equivalent to $\forall z \exists v \text{ Bought}(z, v)$.

 $\operatorname{Human}(x) \wedge \exists x \operatorname{Lecturer}(x) \text{ is equivalent to}$

 $\operatorname{Human}(x) \wedge \exists y \operatorname{Lecturer}(y).$

Equivalences/validities involving equality

- 12. t = t is valid (equivalent to \top), for any term t.
- 13. For any terms t, u, t = u is equivalent to u = t
- 14. (Leibniz principle) If ϕ is a formula, y doesn't occur in ϕ at all, and ψ is got from ϕ by replacing one or more free occurrences of x by y, then

$$x = y \to (\phi \leftrightarrow \psi)$$

is valid.

Example:

$$x = y \to (\forall z R(x, z) \leftrightarrow \forall z R(y, z))$$
 is valid.

Depending on ϕ , ψ , the following need *NOT* be logically equivalent (though always, the first \models the second):

- $\forall x(\phi \to \psi)$ and $\forall x\phi \to \forall x\psi$
- $\exists x(\phi \land \psi)$ and $\exists x\phi \land \exists x\psi$.
- $\forall x \phi \lor \forall x \psi$ and $\forall x (\phi \lor \psi)$.

An Example

Using equivalences show that the argument $\forall x(P(x) \rightarrow Q(x)) \models \forall xP(x) \rightarrow \forall xQ(x) \text{ is valid.}$

We take its corresponding implication formula and show that it's equivalent to \top .

$$\forall x (P(x) \to Q(x)) \to (\forall x P(x) \to \forall x Q(x)) \quad \text{[the original formula]}$$

$$\equiv \neg(\forall x (\neg P(x) \lor Q(x))) \lor \neg \forall x P(x) \lor \forall x Q(x) \quad \text{[by removing } \to \text{]}$$

$$\equiv \exists x \neg (\neg P(x) \lor Q(x)) \lor \exists x \neg P(x) \lor \forall x Q(x) \quad \text{[by } \neg \forall x \phi \equiv \exists x \neg \phi \text{]}$$

$$\equiv \exists x (\neg \neg P(x) \land \neg Q(x)) \lor \exists x \neg P(x) \lor \forall x Q(x) \quad \text{[De Morgan laws]}$$

$$\equiv \exists x (P(x) \land \neg Q(x)) \lor \exists x \neg P(x) \lor \forall x Q(x) \quad \text{[by removing } \neg \neg \text{]}$$

$$\equiv \exists x ((P(x) \land \neg Q(x)) \lor \neg P(x)) \lor \forall x Q(x) \quad [\exists x \phi \lor \exists x \psi \equiv \exists x (\phi \lor \psi)]$$

$$\exists x ((P(x) \lor \neg P(x)) \land (\neg Q(x) \lor \neg P(x))) \lor \forall x Q(x)$$
 [by distributivity of \lor]
$$\equiv \exists x (\top \land (\neg Q(x) \lor \neg P(x))) \lor \forall x Q(x)$$
 [by $\phi \lor \neg \phi \equiv \top$]
$$\equiv \exists x (\neg Q(x) \lor \neg P(x)) \lor \forall x Q(x)$$
 [by $\top \land \phi \equiv \phi$]
$$\equiv \exists x \neg Q(x) \lor \exists x \neg P(x) \lor \forall x Q(x)$$
 [by $\exists x \phi \lor \exists x \psi \equiv \exists x (\phi \lor \psi)$]
$$\equiv \neg \forall x Q(x) \lor \exists x \neg P(x) \lor \forall x Q(x)$$
 [by $\neg \forall x \phi \equiv \exists x \neg \phi$]
$$\equiv \neg \forall x Q(x) \lor \forall x Q(x) \lor \exists x \neg P(x)$$
 [by commutativity of \lor]
$$\equiv \top \lor \exists x \neg P(x)$$
 [by $\phi \lor \neg \phi \equiv \top$]
$$\equiv \top$$