

802.11b/g/n Single-Chip Wi-Fi Micro Controller M88WI6800-K

Data Sheet

Revision Number: 0.1 Revision Date: Nov. 17, 2016

Montage Technology Proprietary and Confidential

Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH MONTAGE PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN MONTAGE'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, MONTAGE ASSUMES NO LIABILITY WHATSOEVER, AND MONTAGE DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF MONTAGE PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Montage may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Montage reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Other names and brands may be claimed as the property of others.

Do not disclose or distribute to any third party without written permission of Montage.

Copyright © Montage Technology Group Limited and/or its affiliated companies. All rights reserved.

Preface

This data sheet is the primary reference for the 802.11b/g/n Single-Chip Wi-Fi Micro Controller - M88WI6800-K. It includes complete pin information, functional description, register description and electrical specifications for engineers who may evaluate or use the device.

Conventions

The following conventions are used in this data sheet for easy and effective explanation.

- Cross-references are highlighted in blue for your attention. You can click on them to jump to the target pages.
- Number representation
 - A hexadecimal number is represented by xxxxH or n'hxxxx (h/H: hexadecimal; n: number of bits).
 - A binary number is represented by xxxxB or n'bxxxx (b/B: binary; n: the number of bits). Sometimes the binary number with only one bit is also represented by '0' or '1'.
 - Other numbers should be considered as decimal numbers unless otherwise stated.

Terms and Abbreviations

Term	Definition	Term	Definition
ADC	Analog to Digital Converter	PHY	Physical layer device
AGC	Automatic Gain Control	QoS	Quality of Service
AMPDU	Aggregated MAC Protocol Data Unit	RF	Radio Frequency
AP	Access Point	SDR	Single Data Rate
BBP	Baseband Processor	SNAP	Subnetwork Access Protocol
BOM	Bill of Material	SPI	Serial Programming Interface
DDR	Dual Data Rate	TR	Transmit / Receive (T/R)
LAN	Local Area Network	UART	Universal Asynchronous Receiver/Transmitter
LLC	Logical Link Control	UDP	User Datagram Protocol
MAC	Media Access Controller	WAPI	WLAN Authentication and Privacy Infrastructure
MIC	Message Integrity Check	WEP	Wireless Encryption Protocol
MSDU	MAC Service Data Unit	WLAN	Wireless Local Area Network
NAT	Network Address Translation	WMM	Wi-Fi Multimedia
NVRAM	Non-Volatile Random Access Memory	WMM-PS	WMM-Power Save
OS	Operating System	WPA	Wi-Fi Protected Access
PA	Power Amplifier	WPS	Wi-Fi Protected Setup

Revision History

Revision		Revision Date		Changes		
	Number	Nevision Date	Page Number	Description		
	0.1	Nov. 17, 2016	-	Change Part Number from <i>M88WI8000</i> to <i>M88WI6800-K</i> .		
	0.0	July 15, 2016	-	Initial Release		

Table of Contents

Pre	face		iii
Fea	tures .		1
App	olicatio	ons	1
Ger	neral D	Description	1
Fur	ctiona	al Block Diagram	2
1	Pin Ir	nformation	3
	1.1	Pin Assignment	
	1.2	Pin List	4
	1.3	Pin Description	5
2	Elect	rical Characteristics	
	2.1	Absolute Maximum Ratings	7
	2.2	Recommended Operating Conditions	7
	2.3	DC Electrical Characteristics	8
	2.4	Current Consumption	8
3	Mech	nanical Package Data	9

List of Figures

Figure 1.	Functional Block Diagram for M88WI6800-K	2
Figure 2.	QFN48 Pin Assignment	3
Figure 3.	QFN48 Package Outline	Ś

List of Tables

Table 1.	Signals By Pin Number	4
	Pin Description	
	Absolute Maximum Ratings	
	Recommended Operating Conditions	
Table 5.	DC Electrical Characteristics	8
	Current Consumption	

802.11b/g/n Single-Chip Wi-Fi Micro Controller M88WI6800-K

Features

Wi-Fi:

- Compatible with IEEE 802.11 b/g/n standards
 - 802.11b: 1, 2, 5.5, 11Mbps;
 - 802.11g: 6, 9, 12, 24, 36, 48, 54Mbps;
 - 802.11n: Support PHY rate up to 150Mbps.
- Support 1T1R, 20MHz/40MHz bandwidth operation
- Integrated MAC/BB/RF/PA, TR switch & Balun
- Integrated Auto Calibration
- Integrated high-efficiency DC-DC converter
- Integrated OTP NVRAM for adapter information
- Support TCP/IP Transparent Transmission
- Support Soft-AP, Station & AP/Station modes; QoS-WMM, WMM-PS; Wi-Fi Direct
- Support TCP/IP Transparent Transmission
- Security support for 64/128 WEP, WPA, WPA2, WAPI
- Support multiple BSSID
- · Support protocols offload

Micro Processor:

- 32-bit micro processor with over 200MIPS
- User programmable memory larger than 100 kBytes
- 32 kHz watchdog timer

Peripheral Interfaces:

- 18 usable GPIOs with interrupt support
- 4 hardware PWM drivers with 8-bit duty cycle resolution
- 2 12-bit AD converters
- Multiplexed UART ports
- Multiplexed SPI Flash interface
- AT command can be supported by UART

Package:

6x6mm QFN48

Applications

- Internet of Things
- Industrial control
- Home automation
- Smart plug
- · Lighting / Metering
- Network consumer devices

General Description

M88WI6800-K is a single-chip Wi-Fi micro controller with SPI Flash / UART interface. The chip fully complies with IEEE 802.11b/g/n 1T1R 2.4 GHz standards.

M88WI6800-K integrates a 32-bit micro processor, a 802.11n MAC, a baseband processor and a 2.4 GHz RF transceiver including power amplifier, low noise amplifier and RF T/R switch into a single die. Robust RF calibration algorithms, such as IQ-imbalance correction, Tx LO leakage removal and Rx DC offset cancellation, are built-in to alleviate the radio front-end impairments in RF/Analog circuits. The baseband processor, designed with adaptive channel estimation, enhanced boundary detector and soft-decision Viterbi decoder, is capable of providing mitigation even in severe multi-path environments. The 32-bit processor core with over 200MIPS and over 100 kByte programmable memory is embedded with TCP/IP protocol stack. In addition, the chip comes with 32 kHz low-speed clock timers, 2 12-bit ADCs with voltage range of 0 V - 3.3 V, 4 channel hardware PWM drivers with tunable frequency range and maximum 18 GPIOs with interrupt control. It contains also a power management unit and a high-efficiency DC-DC converter for cost effective system implementation.

M88WI6800-K is available in 6x6mm QFN48 package. It is an ideal solution for network enabled applications, such as Internet of Things, with few external circuit components and minimized PCB size. The networking system built with the chip can operate in Station mode, Soft-AP mode or AP/Station mode.

Functional Block Diagram

Figure 1. Functional Block Diagram for M88WI6800-K

1 Pin Information

1.1 Pin Assignment

Figure 2. QFN48 Pin Assignment

1.2 Pin List

Table 1. Signals By Pin Number

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	RF_TR_P	13	VDDA33	25	GNDA	37	VDD33
2	RF_TR_N	14	VDDA33	26	BUCK_LX	38	GPIO10 / SPI_CS
3	VDDA33	15	GNDA	27	VDDA33	39	GPIO11 / SPI_DO
4	WLAN_LED	16	GPIO0 / UART0_TXD	28	ADC_IN1	40	GPIO12 / SPI_DI
5	PD_N	17	GPIO1 / UART0_RXD	29	ADC_IN0	41	GPIO13 / SPI_CK
6	VDDA33	18	GPIO2	30	VDDA33	42	GPIO14
7	PM_RES	19	GPIO3	31	GPIO6 / PWM0 / UART1_TXD	43	GPIO16
8	VDDA33	20	VDD33	32	GPIO7 / PWM1 / UART1_RXD	44	GPIO17
9	VDDA33	21	GNDD	33	GPIO8 / PWM2	45	GPIO18
10	VDDA33	22	VDD12	34	GPIO9 / PWM3	46	VDDA33
11	XI	23	GPIO4	35	VDD12	47	VDDA33
12	XO	24	GPIO5	36	GNDD	48	VDDA33

1.3 Pin Description

Table 2. Pin Description (Sheet 1 of 2)

Pin Name	Pin No.	Type ¹	Description		
		RF	Transceiver Interface		
RF_TR_P	1	RF	Differentia RF input/output (plus), or Single-ended RF input/output.		
RF_TR_N	2	RF	Differentia RF input/output (minus), or GNDA for Single-ended mode.		
	•	DC	DC Converter Interface		
BUCK_LX	26	AO	Analog output of DCDC converter.		
	•		ADC Input Interface		
ADC_IN1	28	Al	Analog input 1 of ADC.		
ADC_IN0	29	Al	Analog input 0 of ADC.		
			GPIOs		
GPIO[3:0]	19,18,17,16	I/O	General purpose input/output pins.		
GPIO[5:4]	24,23	I/O	General purpose input/output pins.		
GPIO[9:6]	34,33,32,31	I/O	I/O General purpose input/output pins.		
GPIO10	38	I/O	I/O General purpose input/output pin. This is also a Boot-strap pin which should be pulled High .		
GPIO11	39	I/O	General purpose input/output pin. This is also a Boot-strap pin which should be pulled Low .		
GPIO12	40	I/O	General purpose input/output pin.		
GPIO13	41	I/O	General purpose input/output pin. This is also a Boot-strap pin which should be pulled Low .		
GPIO[18:16] & GPIO14	45,44,43,42	I/O	General purpose input/output pins.		
	•	Mult	iplexed UART Interfaces		
UART0_RXD	17	I	UART receive pin. This pin is multiplexed with GPIO1.		
UART0_TXD	16	0	UART transmit pin. This pin is multiplexed with GPIO0.		
UART1_RXD	32	I	UART receive pin. This pin is multiplexed with GPIO7. It shall be connected to an external pulled-up resistor of 10 k Ω .		
UART1_TXD	31	0	UART transmit pin. This pin is multiplexed with GPIO6.		
	•	Mι	ultiplexed PWM Drivers		
PWM[3:0]	34,33,32,31	0	PWM driver outputs. These pins are multiplexed with GPIO[9:6].		

Table 2. Pin Description (Sheet 2 of 2)

Pin Name	Pin No.	Type ¹	Description
		Multip	olexed SPI Flash Interface
SPI_CS	38	0	SPI flash device selection signal output. This pin is multiplexed with GPIO10.
SPI_DO	39	0	SPI flash data output line. This pin is multiplexed with GPIO11.
SPI_DI	SPI flash data input line. This pin is multiplexed with GPIO12.		
SPI_CK	41	0	SPI flash clock output. This pin is multiplexed with GPIO13.
			LED Driver
WLAN_LED	4	I/O	WLAN activity LED driver. The WLAN LED blinks when there is traffic on the port. This is also a Boot-strap pin which should be pulled Low .
	<u> </u>	XTAL, Sys	stem Control & Miscellaneous
XI	11	Al	40 MHz quartz crystal input, or 40 MHz reference clock input with XO pin left floating.
XO	12	AO	40 MHz quartz crystal output.
PD_N	5	1	External power down pin. Low active. The pin shall be connected to an external pulled-up resistor of 10 k Ω .
PM_RES	7	AIO	Reference resistor. A 1.2 $k\Omega$ resistor in 1% is required to be tied to ground.
			Power & Ground
VDD33	20,37	Power	3.3 V power supply for digital I/O pads.
VDD12	22,35	Power	1.2 V power supply for digital core.
VDDA33	3,6,8,9,10,13,14, 27,30,46,47,48	Power	3.3 V power supply for analog part.
GNDD	21,36	Ground	Digital ground.
GNDA	15,25	Ground	Analog ground.

^{1.} In the Type column: "I" stands for Digital Input; "O" for Digital Output; "I/O" for Digital Input/Output; "AI" for Analog Input; "AO" for Analog Output; "AIO" for Analog Input/Output.

2 Electrical Characteristics

2.1 Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings¹

Symbol	Parameter	Rat	Unit	
Symbol	rarameter	Min.	Max.	Onit
VDDA33	3.3V Power Supply for Analog	-0.3	3.6	V
VDD33	3.3V Power Supply for Digital I/Os	-0.3	3.6	V
VDD12	1.2V Power Supply for Digital Core	-0.3	1.5	V
V _{IN}	Voltage on Input Pins	-0.5	VDD33+0.5	V
T _{STG}	Storage Temperature	-40	+125	°C
V _{ESD}	ESD Protection (HBM)	-	TBD	V

^{1.} Stresses above the absolute maximum ratings may cause permanent damage to the device. Exposure to conditions beyond the absolute maximum ratings may affect the life and reliability of the device.

2.2 Recommended Operating Conditions

Table 4. Recommended Operating Conditions¹

Symbol	Parameters	Min.	Тур.	Max.	Unit
VDDA33	Analog Part Supply Voltage	2.97	3.3	3.6	V
VDD33	Digital Part DC Supply Voltage for Digital I/O	2.97	3.3	3.6	V
VDD12	Digital Part DC Supply Voltage for Digital Core	1.14	1.2	1.26	V
T _A	Operating Ambient Temperature	-10	-	70	°C

^{1.} Device functionality is not guaranteed at any conditions beyond the recommended operating conditions.

2.3 DC Electrical Characteristics

Table 5. DC Electrical Characteristics

Symbol	Parameters	Min.	Тур.	Max.	Unit
V _{IL}	Low Level Input Voltage (for LVTTL)	-0.28		0.6	V
V _{IH}	High Level Input Voltage (for LVTTL)	2.0		3.6	V
V _{T-}	Schmitt Trigger Negative Going Threshold Voltage (for LVTTL)	0.68		1.36	V
V _{T+}	Schmitt Trigger Positive Going Threshold Voltage (for LVTTL)	1.36		1.7	V
V _{OL}	Low Level Output Voltage (OL = 1.6~14mA)	-0.28		0.4	V
V _{OH}	High Level Output Voltage (OH = 1.6~14mA)	2.4		VDD33+0.33	V

2.4 Current Consumption

Table 6. Current Consumption

Symbol	Condition	Min.	Тур.	Max.	Unit
	Sleep mode		TBD		mA
	Rx Active, HT40, MCS7		TBD		mA
L	RX Power saving, DTIM=1		TBD		mA
^I total	RX Listen		TBD		mA
	TX HT40, MCS7 @13dBm		TBD		mA
	TX CCK, 11Mbps @19dBm		TBD		mA

3 Mechanical Package Data

Figure 3. QFN48 Package Outline

Contact Information

Montage Technology (Shanghai) Co., Ltd.

Address: 6/F, Block A, Technology Building, 900 Yishan Road, Shanghai 200233, China

Phone: +86-21-6128-5678 **Fax:** +86-21-5426-3132

E-mail: infosh@montage-tech.com **Website:** www.montage-tech.com

Montage Technology, Inc.

Address: 101 Metro Drive, Suite 500, San Jose, CA 95110, USA

Phone: +1-408-982-2788 **Fax:** +1-408-982-2789

E-mail: infosv@montage-tech.com **Website:** www.montage-tech.com

Montage Sales Contact in Korea

Address: Suite 604, 6th Fl., B-dong, Woolim Lions Valley 5 Cha, Galmachi-ro 302, Jungwon-gu, Seongnam-si,

Gyeonggi-do, 462-739 Korea **Phone:** +82-70-8247-4520

E-mail: infosk@montage-tech.com **Website:** www.montage-tech.com

FCC

Federal Communications Commission (FCC) Statement

15.21

You are cautioned that changes or modifications not expressly approved by the part responsible for compliance could void the user's authority to operate the equipment.

15.105(b)

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -Reorient or relocate the receiving antenna.
- -Increase the separation between the equipment and receiver.
- -Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -Consult the dealer or an experienced radio/TV technician for help.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1) this device may not cause harmful interference and
- 2) this device must accept any interference received, including interference that may cause undesired operation of the device.

FCC RF Radiation Exposure Statement:

- 1. This Transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- 2. This equipment complies with RF radiation exposure limits set forth for an uncontrolled environment.

FCC RF Radiation Exposure Statement:

- 1. This Transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- 2. For body worn operation, this device has been tested and meets FCC RF exposure guidelines. When used with an accessory that contains metal may not ensure compliance with FCC RF exposure guidelines.

End Product Labeling

This transmitter module is authorized only for use in devices where the antenna may be installed such that 20 centimeter may be maintained between the antenna and users. The final end product must be labeled in visible area with the following: "Contains FCC ID: 2AEDFWM6800K"

Manual Information to the End user

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.

The end user manual shall include all required regulatory information/warning as show in this manual.

NCC

低功率電波輻射性電機管理辦法

第十二條: 經型式認證合格之低功率射頻電機,非經許可,公司、商號或使用者均不得擅自變更頻率、加大功率或變更原設計之特性及功能。

第十四條: 低功率射頻電機之使用不得影響飛航安全及干擾合法通信;經發現有干擾 現象時,應立即停用,並改善至無干擾時方得繼續使用。低功率射頻電機需忍受合法 通信或工業、科學及醫療用電波輻射性電機設備之干擾。

此模組於取得認證後將依規定於模組本體標示審驗合格標籤,並要求平台廠商於平台 上標示「本產品內含射頻模組:ID編號」字樣。