STA732

Statistical Inference

Lecture 03: Sufficient Statistics

Yuansi Chen

Spring 2023

Duke University

https://www2.stat.duke.edu/courses/Spring23/sta732.01/

Recap from Lecture 02

Introduced exponential families: many good properties

- Natural parameter space is convex
- Easy joint density of i.i.d. random variables
- Easy sufficient statistics
- Easy moments

Goal of Lecture 03

- 1. Define sufficiency
- 2. Factorization theorem
- 3. Minimal sufficiency

Chap. 3 in Keener or Chap. 1.6 in Lehmann and Casella

Sufficiency

Motivation for sufficiency

Coin flipping experiment: suppose $X_1,\dots,X_n\stackrel{\text{i.i.d.}}{\sim}$ Bernoulli (θ) . Then the joint density is

$$\begin{split} p_{\theta}(X_1 = x_1, \dots, X_n = x_n) &= \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i} \\ &= \theta^{\sum_{i=1}^n x_i} (1-\theta)^{n-\sum_{i=1}^n x_i} \end{split}$$

Let $T(X)=\sum_{i=1}^n X_i.$ T(X) follows Binomial distribution $\operatorname{Binom}(n,\theta)$, with $p_{\theta}(T(X)=t)=\theta^t(1-\theta)^{n-t}\binom{n}{t}$

Motivation for sufficiency

Coin flipping experiment: suppose $X_1,\dots,X_n\stackrel{\text{i.i.d.}}{\sim}$ Bernoulli (θ) . Then the joint density is

$$\begin{split} p_{\theta}(X_1 = x_1, \dots, X_n = x_n) &= \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i} \\ &= \theta^{\sum_{i=1}^n x_i} (1-\theta)^{n-\sum_{i=1}^n x_i} \end{split}$$

Let $T(X)=\sum_{i=1}^n X_i$. T(X) follows Binomial distribution Binom (n,θ) , with $p_{\theta}(T(X)=t)=\theta^t(1-\theta)^{n-t}\binom{n}{t}$

It seems that to estimate θ it is sufficient to know T(X) , but T(X) did throw away data. How to justify?

Sufficient statistics

Suppose X has distribution from a family $\mathscr{P}=\{P_{\theta},\theta\in\Omega\}.$ T(X) is a sufficient statistics if for every t and θ , the conditional distribution of X under P_{θ} given T=t does not depend on θ .

Back to the coin flipping example

$$\begin{split} p_{\theta}(X = x \mid T = t) &= \frac{p_{\theta}(X = x, T = t)}{p_{\theta}(T = t)} \\ &= \frac{\theta^{\sum x_i} (1 - \theta)^{n - \sum x_i} \mathbf{1}_{\sum x_i = t}}{\theta^t (1 - \theta)^{n - t} \binom{n}{t}} \\ &= \frac{1}{\binom{n}{t}} \mathbf{1}_{\sum x_i = t} \end{split}$$

Conditioned on T(X)=t, X only takes values on sequences such that $\sum X_i=t$ and it is uniformly distributed. The conditional distribution does not depend on $\theta!$

Interpretation of sufficiency

Interpretation 1: sufficiency from generative model perspective

- We care about X because
 - X is generated according to P_{θ}
 - X can be used to infer properties of θ
- Sufficiency is saying that T(X) is informative enough for estimating θ
- We can think of data being generated in two stages
 - 1. Generate T: distribution depends on θ
 - 2. Generate $X \mid T$: distribution does not depend on θ

A graphical model for the data generation

We lose nothing (in terms of θ estimation) by considering T(X) alone.

Fake data generated from T is good enough

For the purpose of inferring properties of $\theta,$ The fake data \tilde{X} is as good as X

Interpretation 2: estimator using T(X) alone cannot be worse

Theorem 3.3 in Keener

Suppose T(X) is sufficient. Then for any estimator $\delta(X)$ of $g(\theta)$ there exists a randomized estimator based on T that has the same risk function as $\delta(X)$.

Interpretation 2: estimator using T(X) alone cannot be worse

Theorem 3.3 in Keener

Suppose T(X) is sufficient. Then for any estimator $\delta(X)$ of $g(\theta)$ there exists a randomized estimator based on T that has the same risk function as $\delta(X)$.

Proof sketch: generate \tilde{X} from T (random step), then $\delta(\tilde{X})$ should be as good as $\delta(X).$

Factorization theorem

Motivation for factorization theorem

- The sufficiency definition is hard to work with in practice
- There is a convenient way to verify sufficiency by factorizing the density

Factorization theorem

Theorem 3.6 in Keener

Let $\mathscr{P}=\{P_{\theta},\theta\in\Omega\}$ be a family of distributions dominated by μ $(P_{\theta}\ll\mu,\forall\theta)$. T is sufficient for \mathscr{P} iff there exists functions g_{θ},h such that

$$p_{\theta}(x) = g_{\theta}(T(x))h(x), \text{a.e.}$$

proof (see the rigorous proof in Keener 6.4):

Ex1: exponential family

 ${\cal T}(X)$ is sufficient statistics by factorization theorem

$$p_{\theta}(x) = e^{\eta(\theta)^{\intercal} T(x) - B(\theta)} h(x)$$

Ex2: joint distributuon of i.i.d. uniform

Suppose $X_1,\dots,X_n \overset{\text{i.i.d.}}{\sim} U[\theta,\theta+1]$. The joint density is

$$\begin{split} p_{\theta}(x) &= \prod_{i=1}^{n} \mathbf{1}_{\{\theta \leq x_{i} \leq \theta + 1\}} \\ &= \mathbf{1}_{\left\{\theta \leq x_{(1)}, \dots x_{(n)} \leq \theta + 1\right\}}. \end{split}$$

The order statistics $(X_{(i)})_{i=1}^n$ (where $X_{(k)}$ is the k-th smallest) is sufficient

Ex3: joint distribution invariant to permutations of \boldsymbol{X}_i

Suppose $X_1,\dots,X_n\stackrel{\text{i.i.d.}}{\sim}P^{(1)}_{\theta}$. The joint distribution P_{θ} is invariant to permutations of $X=(X_1,\dots,X_n)$. What are some sufficient statistics?

Ex3: joint distribution invariant to permutations of \boldsymbol{X}_i

Suppose $X_1,\dots,X_n\stackrel{\text{i.i.d.}}{\sim}P^{(1)}_{\theta}$. The joint distribution P_{θ} is invariant to permutations of $X=(X_1,\dots,X_n)$. What are some sufficient statistics?

- Order statistics
- · Empirical distribution

$$\hat{P}_n(\cdot) = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}(\cdot)$$

 $\text{ where } \delta_{X_i}(A) = \mathbf{1}_{X_i \in A}.$

In the above case, $p_{\theta}(X=x\mid T=t)$ is a combinatorial problem that does not depend on θ

Minimal sufficiency

Motivation for minimal sufficiency

Consider $X_1,\dots,X_n\stackrel{\text{i.i.d}}{\sim}\mathcal{N}(\theta,1).$ Among the four sufficient statistics

•
$$\sum_{i=1}^{n} X_i$$

•
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\bullet \ O(X) = \left(X_{(1)}, \dots, X_{(n)}\right)$$

$$\bullet \ X = (X_1, \dots, X_n)$$

which can be recovered from which?

Ordering of sufficient statistics

Proposition

If T(X) is sufficient and there exists f such that T(X)=f(S(X)), then S(X) is sufficient

proof: factorization theorem

Minimal sufficiency

We say T is minimal sufficient if

- T is sufficient
- ullet For any other sufficient statistics S, there exists f such that

$$T = f(S)$$

(a.e. *P*)

Example: which is minimal sufficient?

Suppose X_1,\dots,X_{2n} are i.i.d. from $\mathcal{N}(\theta,1)$, which of the following statistics is sufficient? is minimal?

•
$$\tilde{T} = \begin{pmatrix} \sum_{i=1}^{n} X_i \\ \sum_{i=n+1}^{2n} X_i \end{pmatrix}$$

•
$$\sum_{i=1}^{2n} X_i$$

Another way to check minimal sufficiency

Theorem 3.11 in Keener

Suppose $\mathscr{P}=\{P_{\theta}:\theta\in\Omega\}$ is a dominated family with densities $p_{\theta}(x)=g_{\theta}(T(x))h(x).$ If $p_{\theta}(x)\propto_{\theta}p_{\theta}(y)$ implies T(x)=T(y), then T is minimal sufficient.

Interpretation: ${\cal T}$ is sufficient, if there is one-to-one relation between the statistics and the likelihood shape

proof:

Ex1: minimal sufficient statistics in exponential family

$$p_{\theta}(x) = e^{\eta(\theta)^{\intercal} T(x) - B(\theta)} h(x)$$

Is T(X) minimal sufficient?

Ex2: two parameter Gaussian

Suppose $X \sim \mathcal{N}(\mu(\theta), \mathbb{I}_2), \theta \in \mathbb{R}$. $\mu(\theta) = a + \theta b$, for $a, b \in \mathbb{R}^2$. Which is sufficient, which is minimal sufficient?

- X
- $\bullet \ b^{\top} X$

Ex3: Laplace location family

Suppose $X_1,\dots,X_n\stackrel{\text{i.i.d.}}{\sim} p_{\theta}^{(1)}(x)=\frac{1}{2}e^{-|x-\theta|}.$ Then the joint density is

$$p_{\theta}(x) = \frac{1}{2^n} \exp\left\{-\sum_{i=1}^n |x_i - \theta|\right\}$$

Is the order statistics sufficient?

Summary

- Sufficient statistic T: when T is known, no information about θ is left
- Factorization theorem: is a convenient way to check sufficiency
- It is possible to order the sufficient statistics and define the minimal sufficient statistics.

What is next?

- Completeness
- Ancillarity
- Basu's theorem (relationship between sufficient and ancillary statistics)

Thank you