Конспекты к экзамену по теории вероятностей

 $\mathrm{June}\ 2,\ 2016$

Contents

1	Teop	рия ве	роятностей	5
	1.1	Списо	к вопросов к экзаменам	6
	1.2	Событ	чя, Классификация событий, Действия над событиями	7
		1.2.1	Def. (σ -алгебра)	7
		1.2.2	Def. (Событие)	7
		1.2.3	Def. (Элементарное событие)	7
		1.2.4	Def. (Невозможное событие)	7
		1.2.5	Def. (Достоверное событие)	7
		1.2.6	Def. (Несовместные события)	7
	1.3	Вероя	тность и её свойства	8
		1.3.1	Def. (Функция множеств)	8
		1.3.2	Def. (Аддитивность)	8
		1.3.3	Def. (σ -аддитивность)	8
		1.3.4	Def. (Mepa)	8
		1.3.5	Def. (Вероятность)	8
		1.3.6	Def. (Измеримое пространство)	9
		1.3.7	Def. (Пространство с вероятностью)	9
		1.3.8	Свойства σ -аддитивных функций, меры и вероятности	9
	1.4	Частн	ые случаи: классическая, геометрическая и статистическая	I
			ТНОСТЬ	11
	1.5	TODO):	11
	1.6	Услові	ная вероятность. Независимость. Теорема о умножении	12
		1.6.1	Def. (Условная вероятность)	12
		1.6.2	Пример	12
		1.6.3	Свойства	12
		1.6.4	Теорема о умножении	13
		1.6.5	Def. (Независимые события)	13
		1.6.6	Свойства независимых событий	13
		1.6.7	Независимость систем событий	13
	1.7	Закон	полной вероятности. Формула Байеса	15
		1.7.1	Формула полной вероятности	15
		1.7.2	Формула Байеса	15
	1.8	Незаві	исимость испытаний. Схема Бернулли	16
		1.8.1	Def. (Bernoulli trial)	16
		1.8.2	Пример	16
		1.8.3	Def. (Схема Бернулли)	16
		1.8.4	Формализация	16
	1.9	Преде.	льные теоремы в схеме Бернулли	18
	-	1.9.1	Th. (Пуассона-Бернулли)	18
		1.9.2	Тh. (Локальная теорема Муавра-Лапласа)	18
	1.10		йные величины. Дискретные и непрерывные случайные	
	0		ины. Смешанные случайные величины	20
			Def. (Разбиние, индуцированное функцией)	20
			Def (Счётнозначная измеримая функция)	20

	1.10.3 Def. (Элементарная случайная величина)	20
	1.10.4 Def. (Распределение элементарной случайной величины)	20
	1.10.5 Пример	21
	1.10.6 Def. (Функция распределения элементарной случайной	
	величины)	21
	1.10.7 Def.1 (Измеримая функция)	21
	1.10.8 Def.2 (Измеримая функция — альтернативное определени	re) 21
	1.10.9 TODO	21
	1.10.10 Def. (Случайная величина)	21
	1.10.11 Def. (Функция распределения)	22
	1.10.12 Дискретные и непрерывные случайные величины	22
	1.10.13 Способы задания распределения случайной величины.	22
1.11	Функции распределения. Плотность вероятности	23
	1.11.1 Def. (Функция распределения)	23
1.12	Th	23
	1.12.1 Дискретная мера	23
	1.12.2 Абсолютно-непрерывная мера	23
	1.12.3 Сингулярные меры	24
	1.12.4 Функция распределения случайной величины	24
1.13	Многомерные случайные величины. Их функции распределения	
	и плотности их вероятности	25
1.14	Независимые случайные величины. Их функции распределения	
	и плотности вероятности	26
	1.14.1 Def. (Независимые случайные величины)	26
	1.14.2 Lemma (О умножениях)	26
	1.14.3 Функция распределения	26
	1.14.4 Плотность распределения	26
1.15	Функции распределения функций случайных величин	27
	1.15.1 Def. (Борелевская функция)	27
	1.15.2 Def. (Борелевская фунция от случайной величины)	27
	$1.15.3$ Задача: найти функцию F_Y распределения Y	27
1.16	Плотность вероятности функции от случайной величины	28
	1.16.1 Def. (Борелевская функция)	28
	1.16.2 Def. (Борелевская фунция от случайной величины)	28
	$1.16.3$ Задача: найти плотность f_Y по данной плотности f_X .	28
1.17	Плотность вероятности суммы, произведения и частного	30
	1.17.1 Плотность суммы	30
	1.17.2 Плотность произведения	30
1.18	Интеграл Стилтьеса	31
	Математическое ожидание случайной величины и функции	
	случайной величины	32
	1.19.1 Def. (Интеграл простой неотрицательной функции)	32
	1.19.2 Def. (Интеграл неотрицательной измеримой функции)	32
	1.19.3 Def. (Интеграл измеримой функции)	32
	1.19.4 Def. (Интеграл по множеству)	32
	1.19.5 Def. (Интегрируемая функция)	32

	1.19.6 Свойства интеграла	32				
	1.19.7 Def. (Математическое ожидание)	33				
1.20	Дисперсия случайной величины	34				
	1.20.1 Def. (Дисперсия)					
	1.20.2 Def. (stddev)	34				
1.21	Моменты случайной величины. Коэффициент корреляции.					
	Коэффициенты асимметрии и эксцесса. Квантиль распределения 35					
	1.21.1 Def. (k-й момент случайной величины)	35				
	1.21.2 Def. (k-й абсолютный момент случайной величины)	35				
	1.21.3 Def. (k-й центрированный момент)	35				
	1.21.4 Def. (Ковариация)	35				
	1.21.5 Def. (Ковариация векторных случайных величин)	36				
	1.21.6 Def. (Коэффициент ассиметрии)	36				
	1.21.7 Def. (Коэффициент эксцесса)	36				
	1.21.8 Def. (Квантиль распределения)	36				
	1.21.9 Def. (Медиана)	37				
	1.21.10 Def. (Мода)	37				
1.22	Характеристическая функция	38				
	1.22.1 Def. (Характеристическая функция)	38				
	1.22.2 Характеристическая функция дискретной г.v. $X \dots$	38				
	1.22.3 Характеристическая функция непрерывной r.v. X	38				
	1.22.4 Свойства	38				
1.23	Теорема обращения и единственности	39				
1.24	Сходимость случайных последовательностей. ЦПТ для одинаково-					
	распределённых случайных величин	40				
	1.24.1 Def. (Случайная последовательность)	40				
	1.24.2 Def. (Сходимость $noumu$ - $всюду$)	40				
	1.24.3 Тh. (Критерий ae сходимости)	40				
	1.24.4 Def. (Сходимость по мере)	40				
	1.24.5 Def. (Сходимость по вероятности)	40				
	1.24.6 Def. (Сходимость почти-наверное)	40				
	Предельная теорема Муавра-Лапласа. Связь с ЦПТ	41				
1.26	Неравенство Чебышёва. Закон больших чисел	42				
	1.26.1 Неравенство Чебышёва					
	1.26.2 Закон больших чисел	42				

1 Теория вероятностей

Конспект к экзамену

1.1 Список вопросов к экзаменам

- 1. События, Классификация событий, Действия над событиями
- 2. Вероятность и её свойства
- 3. Частные случаи: классическая, геометрическая и статистическая вероятность
- 4. Условная вероятность. Независимость. Теорема о умножении
- 5. Закон полной вероятности. Формула Байеса
- 6. Независимость испытаний. Схема Бернулли
- 7. Предельные теоремы в схеме Бернулли
- 8. Случайные величины. Дискретные и непрерывные случайные величины. Смешанные случайные величины
- 9. Функции распределения. Плотность вероятности
- 10. Многомерные случайные величины. Их функции распределения и плотности их вероятности
- 11. Независимые случайные величины. Их функции распределения и плотности вероятности
- 12. Функции распределения функций случайных величин
- 13. Плотность вероятности.
- 14. Плотность вероятности суммы, произведения и частного
- 15. Интеграл Стилтьеса
- 16. Математическое ожидание случайной величины и функции случайной величины
- 17. Дисперсия случайной величины
- 18. Моменты случайной величины. Коэффициент корреляции. Коэффициенты асимметрии и эксцесса. Квантиль распределения
- 19. Характеристическая функция
- 20. Теорема обращения и единственности
- 21. Сходимость случайных последовательностей. ЦПТ для одинаковораспределённых случайных величин
- 22. Предельная теорема Муавра-Лапласа. Связь с ЦПТ
- 23. Неравенство Чебышёва. Закон больших чисел

1.2 События, Классификация событий, Действия над событиями

Пусть дано некоторое пространство Ω . Множество всевозможных подмножеств Ω будем обозначать $S(\Omega)$

1.2.1 Def. (σ -алгебра)

 σ -алгеброй пространства Ω , называется класс $\mathcal F$ множеств $A\subset \Omega$, такой что

1. для любого не более чем счётного числа множеств $A_j \in \mathcal{F}$ имеет место

$$\bigcup_{j \in J} A_j \in \mathcal{F}$$
$$\bigcap_{j \in J} A_j \in \mathcal{F}$$

2. $\forall A \in \mathcal{F}$ $A^{\complement} \in \mathcal{F}$

Следствия из определения Полагая, что объединение по пустому множеству индексов есть пустое множество, а пересечение по пустому множеству индексов есть всё пространство, получаем

- 1. $\emptyset \in \mathcal{F}$
- 2. $\Omega \in \mathcal{F}$

1.2.2 Def. (Событие)

Множества A из класса $\mathcal F$ называются измеримыми множествами, или событиями

1.2.3 Def. (Элементарное событие)

Элементы ω пространства Ω называются элементарными событиями

1.2.4 Def. (Невозможное событие)

Пустое множество ∅ называется невозможным событием

1.2.5 Def. (Достоверное событие)

Всё пространство Ω называется достоверным событием

1.2.6 Def. (Несовместные события)

Два события A и B называются несовместными, если $AB=\emptyset$

1.3 Вероятность и её свойства

1.3.1 Def. (Функция множеств)

Функцией множеств называется функция вида $\phi: S(\Omega) \mapsto \mathbb{K}$, где \mathbb{K} — числовое поле, быть может расширенное специальным числом ∞ . Далее будут рассматриваться функции множества вида $\phi: S(\Omega) \mapsto \mathbb{R}$ или $\phi: S(\Omega) \mapsto [-\infty, +\infty]$

1.3.2 Def. (Аддитивность)

Фукция множеств $\phi: S(\Omega) \mapsto \mathbb{K}$ называется аддитивной, если для любого конечного числа взаимно-непересекающихся множеств $A_1, \dots, A_n \in \Omega$ выполняется равенство

$$\sum_{j=1}^{n} \phi A_j = \phi \sum_{j=1}^{n} A_j$$

1.3.3 Def. (σ -аддитивность)

Функция множеств $\phi:S(\Omega)\mapsto \mathbb{K}$ назвывается σ -аддитивной, если для любого не более чем счётного числа взаимно-непересекающихся множеств $A_j, j\in J$ выполняется равенство

$$\sum_{j \in J} \phi A_j = \phi \sum_{j \in J} A_j$$

Где сумма по $j \in J$ в левой части равенства понимается в смысле суммы либо абсолютно сходящегося, либо расходящегося к $+\infty$ числового ряда. Сумма в правой части представляет собой либо сумму конечного числа взаимно-непересекающихся множеств, либо $\limsup_n \sum_{j=j_1}^{j_n} A_j$

1.3.4 Def. (Mepa)

Mерой называется σ -аддитивная неотрицательная функция множеств $\mu: \mathcal{F} \mapsto [0, +\infty]$, определённая на σ -алгебре \mathcal{F}

1.3.5 Def. (Вероятность)

Если мера \mathbb{P} такова, что $\mathbb{P}\Omega=1$, то она называется *нормированной* мерой, или *вероятностью*. То есть pr — вероятность, если:

- 1. $\mathbb{P}: \mathcal{F} \mapsto [0,1]$ (неотрицательность)
- 2. $\mathbb{P}A = 1$ (нормированность)
- 3. $\sum_{j} \mathbb{P} A_{j} = \mathbb{P} \sum_{j} A_{j}$ (σ -аддитивность)

1.3.6 Def. (Измеримое пространство)

Измеримым пространством называется пара (Ω, \mathcal{F}) , состоящая из

- \bullet пространства Ω
- ullet σ -алгебры ${\mathcal F}$ измеримых множеств из Ω

1.3.7 Def. (Пространство с вероятностью)

Пространством с вероятностью называется тройка $(\Omega, \mathcal{F}, \mathbb{P})$, состоящая из

- пространства Ω
- σ -алгебры ${\mathcal F}$ измеримых множеств (событий) из Ω
- вероятности $\mathbb{P}: \mathcal{F} \mapsto [0,1]$

1.3.8 Свойства σ -аддитивных функций, меры и вероятности

Пусть дано измеримое пространство (Ω, \mathcal{F}) .

- Если некоторая аддитивная функция ϕ множеств конечна хотя бы на одном множестве $A \in \mathcal{F}$, то $\phi \emptyset = 0$, так как $\mu A = \mu (A + \emptyset) = \mu A + \mu \emptyset$ Пусть дана некоторая мера $\mu : \mathcal{F} \mapsto [0, +\infty]$, конечная хотя бы на одном множестве A. Тогда:
- $\mu\emptyset=0$ так как мера σ -аддитивна, а по условию ещё и конечна
- $\mu A \cup B = \mu A + \mu B \mu A B$ так как в виду аддитивности и очевидных разбиений множеств A и $A \cup B$

$$\mu A = \mu AB + \mu AB^{\complement}$$

$$\mu A \cup B = \mu B + \mu AB^{\complement}$$

$$\mu A - \mu A \cup B = \mu AB - \mu B$$

$$\mu A + \mu B - \mu AB = \mu A \cup B$$

• $A_1 \subset A_2 \subset \ldots \implies \mu A_1 \leq \mu A_2 \leq \ldots$ (монотонность)

$$A_{2} = A_{1} + A_{2}A_{1}^{\complement}$$

$$\mu A_{2} = \mu A_{1} + \mu A_{2}A_{1}^{\complement}$$

$$\mu \geq 0$$

$$\mu A_{2} \geq \mu A_{1}$$

$$A_{n} = A_{1} + A_{2}A_{1}^{\complement} + A_{3}A_{2}^{\complement}A_{1}^{\complement} + \dots$$

• $\mu \cup A_j \leq \sum \mu A_j$ (суб-аддитивность)

$$\begin{split} \cup_{j=1}^{\infty} A_j &= A_1 + A_2 A_1^{\complement} + \dots \\ A_2 A_1^{\complement} &\subset A_2 \\ A_3 A_2^{\complement} A_1^{\complement} &\subset A_3 \\ \dots \\ \mu A_2 &\leq \mu (A_2 A_1^{\complement}) \\ \mu A_n &\leq \mu (A_{n-1} A_{n-2} \dots A_1) \end{split}$$

• $A\subset B\implies \mu(B-A)=\mu B-\mu A$ $A(B-A)=\emptyset$, т.е. A и B-A не пересекаются, а значит имеет место аддитивность:

$$A \cup (B - A) = A + (B - A)$$

$$\mu A \cup (B - A) = \mu A + \mu (B - A)$$

$$\mu (B - A) = \mu A - \mu B$$

Если же данная мера — вероятность \mathbb{P} , то

1.
$$\mathbb{P}A = 1 - \mathbb{P}A^{\mathbb{C}}$$

 $1 = \mathbb{P}\Omega = \mathbb{P}A + \mathbb{P}A^{\mathbb{C}}$

1.4 Частные случаи: классическая, геометрическая и статистическая вероятность

1.5 TODO:

- Классическое определение вероятности
- Геометрическое определение
 - Метрические пространства
 - Объём
 - Центр масс (математическое ожидание)
- Механика
 - Тела, плотность
 - Центр тяжести
- Статистическое определение вероятности

1.6 Условная вероятность. Независимость. Теорема о умножении

1.6.1 Def. (Условная вероятность)

 $\mathit{Условной}$ вероятностью $\mathbb{P}_A B$ события B при данном событии A называется отношение $\frac{\mathbb{P} A B}{\mathbb{P} A}$

1.6.2 Пример

Например, в случае классической вероятности:

•
$$\mathbb{P}A = \frac{N(A)}{N(\Omega)}$$

•
$$\mathbb{P}AB = \frac{N(AB)}{N(\Omega)}$$

•
$$\mathbb{P}_A B = \frac{N(AB)}{A}$$

1.6.3 Свойства

•
$$\mathbb{P}_A A = 1$$

•
$$\mathbb{P}_A \emptyset = 0$$

•
$$\mathbb{P}_A \sum_j B_j = \frac{\sum_j \mathbb{P}B_j}{\mathbb{P}A} = \sum_j \frac{\mathbb{P}B_j}{\mathbb{P}A} = \sum_j \mathbb{P}_A B_j$$

•
$$\mathbb{P}_A \geq 0$$

•
$$\mathbb{P}_A B \leq \mathbb{P}_A A = 1, \forall B, \quad \text{так как } \forall B \quad AB \subset A$$

Отсюда следует

Утверждение

- 1. Для любого события A условная вероятность при данном A является вероятностью на вероятностном пространстве $(\Omega A, \mathcal{F}_A)$ где $\mathcal{F}_A = \{AB : B \in \mathcal{F}\}$. То есть
 - 1. $\mathbb{P}_A: \mathcal{F}_A \mapsto [0,1]$ (неотрицательность)
 - 2. $\mathbb{P}_A A = 1$ (нормированность)

3.
$$\sum_{j} \mathbb{P}_{A} B_{j} = \mathbb{P}_{A} \sum_{j} B_{j}$$
 (σ -аддитивность)

2. Любую вероятность можно считать условной вероятностью при некотором событии (условии).

1.6.4 Теорема о умножении

$$\mathbb{P}AB = \mathbb{P}_A B \mathbb{P}A = \mathbb{P}_B A \mathbb{P}B$$

$$\begin{split} \mathbb{P}AB &= \frac{\mathbb{P}AB}{\mathbb{P}A} \mathbb{P}A = \mathbb{P}_AB\mathbb{P}A \\ \mathbb{P}AB &= \frac{\mathbb{P}AB}{\mathbb{P}B} \mathbb{P}B = \mathbb{P}_BA\mathbb{P}B \end{split}$$

1.6.5 Def. (Независимые события)

Естественно положить, что событие B не зависит от события A, если знание того факта, что A совершилось, никак не влияет на знания о событии B, то есть: $\mathbb{P}_A B = \mathbb{P} B$. Подробнее: $\mathbb{P}_A B = \frac{\mathbb{P} A B}{\mathbb{P} A} = \mathbb{P} B$. На этой основе положим определение, допускающее в т.ч. нулевые события.

События A, B называются независимыми, если $\mathbb{P}AB = \mathbb{P}A\mathbb{P}B$

1.6.6 Свойства независимых событий

Если A и B независимы, то

1.
$$\mathbb{P}_B A = \frac{\mathbb{P}AB}{\mathbb{P}B} = \mathbb{P}A$$

2.
$$A^{\complement}, B$$
 — независимы

3.
$$A.B^{\complement}$$
 — независимы

$$A = AB + AB^{\complement}$$

$$\mathbb{P}AB^{\complement} = \mathbb{P}A - \mathbb{P}AB = \mathbb{P}A - \mathbb{P}A\mathbb{P}B = \mathbb{P}A(1 - \mathbb{P}B) = \mathbb{P}A\mathbb{P}B^{\complement}$$

- 4. $A^{\complement}, B^{\complement}$ независимы
- 5. Если
 - 1. A, B_1 независимы
 - $2. A, B_2$ независимы
 - 3. B_1, B_2 независимы То $A, B_1 + B_2$ независимы
- 6. Два несовместных события независимы

1.6.7 Независимость систем событий

Def. (**Независимые алгебры**) Алгебры $\mathcal{F}_1, \mathcal{F}_2$ называются независимыми, если независимы любые два множества $A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2$

Def. (**Независимые события**) Говорят, что n событий A_1, A_2, \ldots, A_n — независимы (статистически независимы) в совокупности, если $\forall k = \overline{1,n}$ $\forall \{m_j\}, \quad 1 \leq m_j \leq n, \quad m_j < m_{j+1}, \quad j = \overline{1,k}$

$$\mathbb{P}A_{m_1}A_{m_2}\dots A_{m_k} = \mathbb{P}A_{m_1}\mathbb{P}A_{m_2}\dots\mathbb{P}A_{m_k}$$

Def. (Независимые алгебры) Алгебры $\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_n$ называются независимыми, если любые $A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2, \dots, A_n \in \mathcal{F}_n$ независимы

1.7 Закон полной вероятности. Формула Байеса

1.7.1 Формула полной вероятности

Пусть $\{A_j, j \in J\}$ — разбиение пространства Ω (полная группа несовместных событий). Тогда $\forall B$ $B = \sum_j BA_j$, а потому $\forall B$ $\mathbb{P}B = \sum_j \mathbb{P}BA_j$. Но $\mathbb{P}BA_j = \frac{\mathbb{P}BA_j}{\mathbb{P}A_j}\mathbb{P}A_j = \mathbb{P}A_j\mathbb{P}_{A_j}B$.

$$\mathbb{P}B = \sum_{j} \mathbb{P}_{A_j} B \mathbb{P}A_j$$

1.7.2 Формула Байеса

Пусть даны два события A,B, такие что $\mathbb{P}A,\mathbb{P}B>0.$ Тогда, как установлено выше:

$$\begin{split} \mathbb{P}AB &= \frac{\mathbb{P}AB}{\mathbb{P}B}\mathbb{P}B = \mathbb{P}B\mathbb{P}_BA \\ \mathbb{P}AB &= \frac{\mathbb{P}AB}{\mathbb{P}A}\mathbb{P}A = \mathbb{P}A\mathbb{P}_AB \\ \mathbb{P}B\mathbb{P}_BA &= \mathbb{P}A\mathbb{P}_AB \\ \mathbb{P}_BA &= \frac{\mathbb{P}A\mathbb{P}_AB}{\mathbb{P}B} \end{split}$$

Последняя формула носит имя формулы Байеса:

$$\mathbb{P}_B A = \frac{\mathbb{P} A \mathbb{P}_A B}{\mathbb{P} B}$$

Более того, если A_1, A_2, \ldots, A_n — разбиение Ω , то

$$\begin{split} \mathbb{P}_{A_j} B &= \frac{\mathbb{P}B\mathbb{P}_B A_j}{\mathbb{P}A_j} \\ \mathbb{P}B &= \sum_j \mathbb{P}A_j \mathbb{P}_{A_j} B \\ \mathbb{P}_B A_k &= \frac{\mathbb{P}A_k B}{\mathbb{P}B} = \frac{\mathbb{P}B\mathbb{P}_{A_k} B}{\mathbb{P}B} = \frac{\mathbb{P}B\mathbb{P}_{A_k} B}{\sum_j \mathbb{P}A_j \mathbb{P}_{A_j} B} \end{split}$$

Это — расширенная формула Байеса:

$$\mathbb{P}_B A_k = \frac{\mathbb{P}B \mathbb{P}_{A_k} B}{\sum_j \mathbb{P}A_j \mathbb{P}_{A_j} B}$$

События A_1,A_2,\ldots,A_n , образующие разбиение Ω называют $\mathit{гипотезамu}$, вероятность $\mathbb{P}A_i$ называют $\mathit{anpuophoй}$ вероятностью гипотезы, а условные вероятности \mathbb{P}_BA_i называют $\mathit{anocmepuophыmu}$ вероятностями гипотез A_i при наступлении события B

1.8 Независимость испытаний. Схема Бернулли

1.8.1 Def. (Bernoulli trial)

Эксперимент (случайная величина X), исходом которого является либо успех с вероятностью p, либо неудача с вероятностью (1-p), называется bernoulli trial. При этом говорят, что r.v. X распределена по Бернулли с параметром p и пишут $X \sim \text{Bern}(p)$

1.8.2 Пример

Любому событию A соответствует индикатор I_A . Очевидно, он является r.v. распределённой по Бернулли с параметром $p = \mathbb{P}A$: $I_A \sim \mathrm{Bern}(\mathbb{P}A)$. Обратно, любая случайная величина с распределением Бернулли является индикатором некоторого события.

1.8.3 Def. (Схема Бернулли)

Пусть теперь эксперимент состоит в последовательном проведении n экспериментов Бернулли с одинаковой вероятностью успеха p, а результат записывается в виде строки $(a_1, a_2, \ldots, a_n), a_i \in \{0, 1\}.$

Пространство Ω элементарных событий имеет вид $\Omega = \{\omega = (a_1, a_2, \dots, a_n), a_i \in \{0, 1\}\}$. Каждому исходу ω соответствует "вес" $p_\omega = p^k (1-p)^{n-k} \ k = \sum_j a_j$ — число "успехов", n-k — число "неудач".

Рассмотрим событие, состоящее в получении k "успехов" и г.v. X — число "успехов". Вес каждого такого события — $p_{\omega} = p^k (1-p)^{n-k}$. Всего различных таких событий — $\binom{n}{k}$. Вероятность этого события — $\mathbb{P}\{X=k\}=\binom{n}{k}p_{\omega}=p^k(1-p)^{n-k}$. Говорят, что рассматриваемая случайная величина X имеет биномиальное распределение $\{\mathbb{P}A_0,\mathbb{P}A_2,\ldots,\mathbb{P}A_n\}$, задаваемое функций масс $k\mapsto \mathbb{P}\{X=k\}$.

1.8.4 Формализация

```
\begin{split} \Omega &= \{\omega = (a_1, a_2, \dots, a_n), a_i \in \{0, 1\}\}. \\ \mathcal{F} &= S(\Omega) = \{A: A \subset \Omega\}. \\ \mathbb{P}(\{\omega\}) &:= p_\omega = p^k (1-p)^{n-k}. \text{ Отсюда в виду аддитивности } \mathbb{P} \colon \\ \mathbb{P}(A) &= \sum_{\omega \in A} \mathbb{P}\{\omega\} = \sum_{\omega \in A} p_\omega \\ &\quad \text{Рассмотрим события } A_k = \{\omega: a_k = 1\}, \ \bar{A}_k = \{\omega: a_k = 0\}. \\ \text{Введём } \sigma\text{-алгебры } \mathcal{F}_k = \{A_k, \bar{A}_k, \emptyset, \Omega\}. \\ &\quad \text{Ясно, что } \mathbb{P}A_k = p, \mathbb{P}\bar{A}_k = 1-p \text{ и, при } i \neq j, \\ \mathbb{P}A_iA_j &= \mathbb{P}A_i\mathbb{P}A_j = p^2, \\ \mathbb{P}A_i\bar{A}_j &= \mathbb{P}A_i\mathbb{P}\bar{A}_j = pq, \\ \mathbb{P}\bar{A}_i\bar{A}_j &= \mathbb{P}A_i\mathbb{P}\bar{A}_j = q^2. \\ &\quad \text{Аналогично, } A_1, A_2, \dots, A_n \text{ — независимы. Отсюда, алгебры } \mathcal{F}_1, \dots \mathcal{F}_n \\ &\quad \text{— независимы.} \end{split}
```

Вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$ имеет структуру прямого произведения вероятностных пространств:

Если даны вероятностные пространства $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1), \dots (\Omega_n, \mathcal{F}_n, \mathbb{P}_n)$. Их прямое произведение — вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$, в котором

1.
$$\Omega = \prod_{i=1}^n \Omega_i = \{\omega = (\omega_1, \dots, \omega_n) : \omega_i \in \Omega_i, i = \overline{1, n}\}$$

2. $\mathcal{F}=\prod_{j=1}^n\mathcal{F}_j$ — минимальная σ -алгебра, порождённая цилиндрами $\prod_{j=1}^nA_j, A_j\in\mathcal{F}_j.$

3.
$$\mathbb{P} = \prod_{j=1}^{n} \mathbb{P}_{j}$$

Возвращаясь к нашему частному случаю,

$$\Omega_{j} = \{0, 1\}
\mathcal{F}_{j} = \{\{0\}, \{1\}, \emptyset, \Omega_{j}\}
\mathbb{P}\{1\} = p
\mathbb{P}\{0\} = 1 - p
\Omega = \{\omega = (a_{1}, \dots, a_{n}) : a_{i} \in \Omega_{j}, j = \overline{1, n}\}
\mathcal{F} = \{A = A_{1} \times A_{2} \times \dots \times A_{n} : A_{j} \in \mathcal{F}_{j}\}
p_{\omega} = p_{1}(a_{1})p_{2}(a_{2}) \dots p_{n}(a_{n})
\mathbb{P}A = \sum_{a_{j} \in \mathcal{F}_{j}, j = \overline{1, n}} p_{1}(a_{1}) \dots p_{n}(a_{n})
\mathbb{P}\{\omega\} = p^{k}(1 - p)^{n - k}$$

Это и описывает схему Бернулли.

Предельные теоремы в схеме Бернулли

Пусть дана последовательность серий испытаний Бернулли, в которой n-й эксперимент состоит в последовательном проведении n испытаний Бернулли с вероятностью усреха p_n .

$$\Omega = \prod_{j=1}^{n} \Omega_j, \ \Omega_j = \Omega_i,
\mathcal{F} = S(\Omega),$$

$$\mathcal{F} = S(\Omega)$$

$$A \subset \Omega_j$$

$$A_{nk} = A^{\mathbf{C}} \times \ldots \times A^{\mathbf{C}} \times A \times A^{\mathbf{C}} \times \ldots \times A^{\mathbf{C}},$$

 $X_{nk}=I_{A_{nk}}$ — индикатор события A в i-м испытании. $S_n=\sum_{j=1}^n X_k$ — число появлений события A в n-ной серии.

Заметим:
$$1 = (p_n + q_n)^n = \sum_{k=1}^n \binom{n}{k} p_n^m q_n^{n-m}$$
.

$$\mathbb{E}X_{nk} = p_n, \ \mathbb{E}X_{nk}^2 = p_n^2, \ \sigma^2 X_{nk} = p_n^2 - p_n^2 = p_n q_n.$$

$$X_{nk}, k = \overline{1, n}$$
 — попарно независимые.
Заметим: $1 = (p_n + q_n)^n = \sum_{k=1}^n \binom{n}{k} p_n^m q_n^{n-m}$.
 $\mathbb{E} X_{nk} = p_n$, $\mathbb{E} X_{nk}^2 = p_n^2$, $\sigma^2 X_{nk} = p_n - p_n^2 = p_n q_n$.
 $\mathbb{E} S_n = \sum_{k=1}^n \mathbb{E} X_{nk} = np_n$, $\sigma^2 S_n = \sum_{k=1}^n \sigma^2 X_{nk} = np_n q_n$.

1.9.1 Th. (Пуассона-Бернулли)

Если

$$\begin{cases} \lim_{n \to \infty} p_n = 0 \\ \lim_{n \to \infty} np_n = \lambda > 0 \end{cases}$$

To

$$\lim_{n \to \infty} \mathbb{P}[S_n = k] = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = \overline{1, n}$$

Действительно:

$$\mathbb{P}[S_n = k] = \binom{n}{k} p^k q^{n-k} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} = \frac{n!}{k!(n-k)!} (\frac{\lambda}{n})^k (1-\frac{\lambda}{n})^{n-k} = \frac{n(n-1)\cdots(n-k+1)\lambda^k (1-\frac{\lambda}{n})^k}{m!n^k (1-\frac{\lambda}{n})^k}$$

Переходя к пределу по базе $n \to \infty$:

$$\mathbb{P}[S_n = k] \to \frac{\lambda^k}{m!} e^{-\lambda}$$

Тh. (Локальная теорема Муавра-Лапласа)

Если

- 1. $\lim_{n\to\infty} p_n = 0$
- 2. $\lim_{n\to\infty} np_n = \lambda > 0$
- 3. Величина $x_k = \frac{k np_n}{\sqrt{np_nq_n}}$, где k число успехов, равномерно ограничена

To
$$P_n(k) = \frac{1}{\sqrt{2\pi n p_n q_n}} \exp(-\frac{x_k^2}{2})(1 + \alpha_n(k))$$

$$\sqrt{2\pi n p_n q_n}$$

$$x \approx \frac{k - n p_n}{n p_n q_n}$$

1.10 Случайные величины. Дискретные и непрерывные случайные величины. Смешанные случайные величины

Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ — пространство с вероятностью.

1.10.1 Def. (Разбиние, индуцированное функцией)

Всякая функция $X:\Omega\mapsto\Omega'$ индуцирует разбиение пространства Ω , образованное прообразами $X^{-1}(\omega')$ точек $\omega'\in\Omega'$. Функия X называется *постоянной* на множестве $X^{-1}(\omega')$. Если индуцированное разбиение конечно или счётно, то функция X называется, соответственно, конечнозначной или счётнозначной.

Всякую счётнозначную функцию X можно записать в виде $X = \sum_{j \in J} I_{A_j} \omega \prime_j$ Где I_A — индикатор.

$$I_A(\omega) = \begin{cases} 0 & \omega \notin A \\ 1 & \omega \in A \end{cases}$$

1.10.2 Def. (Счётнозначная измеримая функция)

Счётнозначной *измеримой* функцией называется функция вида $X = \sum_j I_{A_j} \omega \prime_j$, где множества A_j измеримы $(A_j \in \mathcal{F})$.

Пусть даны два измеримых пространства $(\Omega, \mathcal{F}), (\Omega', \mathcal{F}')$. Счётнозначная функция $X = \sum_j I_{A_j} \omega'_j, \quad A_j \in \mathcal{F}$ называется элементарной функцией, а если функция ещё и конечнозначна, то она называется простой.

1.10.3 Def. (Элементарная случайная величина)

Элементарной случайной величиной называется конечная числовая измеримая счётнозначная функция $X:\Omega\mapsto\mathbb{R}$. Конечнозначная случайная величина называется простой.

Такое задание случайной величины даёт представление о её распределении в (Ω, \mathcal{F}) . На практике же часто возникает вопрос о распределении случайной величины на множестве её значений.

Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ — вероятностное пространство, $X : \Omega \mapsto \tilde{\mathcal{X}}$ — элементарная случайная величина, $\mathcal{X} = \{x_1, x_2, \ldots\}$ — множество её значений. Рассмотрим вероятность $\mathbb{P}_X : S(\mathcal{X}) \mapsto [0, 1]$, индуцируемую на \mathcal{X} случайной величиной X формулой $\mathbb{P}_X(A) = \mathbb{P}\{\omega : X(\omega) \in A\}, A \in S(\mathcal{X})$

Значения этих вероятностей определяются вероятн
стями $\mathbb{P}_X(x_j)=\mathbb{P}\{\omega:X(\omega)=x_j\},\quad x_j\in\mathcal{X}$

1.10.4 Def. (Распределение элементарной случайной величины)

Числовая последовательность ($\mathbb{P}_X(x_1), \mathbb{P}_X(x_2), \ldots$) называется распределением вероятностей случайной величины X.

1.10.5 Пример

Случайная величина $X: \Omega \mapsto \mathbb{R}$ принимающая лишь два значения — 0 или 1 — имеет распределение Бернулли. Для неё $\mathbb{P}_X(x) = p^x (1-p)^{1-x}$.

1.10.6 Def. (Функция распределения элементарной случайной величины)

Функцией распределения элементарной случайной величины X называется функция $F_X: \mathcal{X} \mapsto [0,1]$, определяемая формулой

$$F_X(x) = \mathbb{P}\{\omega : X(\omega) \le x\} = \sum_{x_i \le x} \mathbb{P}_X(x_i)$$

$$\mathbb{P}_X(x_i) = F_X(x_i) - F_X(x_i - 0)$$

Где
$$F_X(x_i - 0) = \lim_{t \uparrow x_i} F_X(t)$$

Есть разные способы расширить определение измеримой функции и классы измеримых по этим определениям функций, вообще говоря, не совпадают.

Заметим, что элементы σ -алгебры, индуцированной отображением X измеримы ($\in \mathcal{F}$). Расширяя это свойство:

1.10.7 Def.1 (Измеримая функция)

 $\mathit{Измеримой}$ называется функция $X:\Omega\mapsto\Omega\prime$, относительно которой прообразы измеримых множеств измеримы.

1.10.8 Def.2 (Измеримая функция — альтернативное определение)

Если в Ω \prime введено понятие предела, то *измеримыми функциями*, в смысле этого предела, называются пределы сходящихся последовательностей простых функций (или равномерные пределы элементарных функций).

Пусть дано пространство с вероятностью $(\Omega, \mathcal{F}, \mathbb{P})$

1.10.9 TODO

- R
- Борелева алгебра
- Измеримость
- Эквивалентность двух определений в случае Борелевой алгебры

1.10.10 Def. (Случайная величина)

 $\mathit{Cлучайной}$ величиной называется конечная числовая измеримая функция $X:\Omega\mapsto\mathbb{R}$

1.10.11 Def. (Функция распределения)

1.10.12 Дискретные и непрерывные случайные величины

Def. (Дискретная случайная величина) Дискретная случайная величина := элементарная случайная величина. Определяется функцией распределения масс (PMF).

Def. (**Непрерывная случайная величина**) := случайная величина, определяемая непрерывной функцией плотности распределения вероятности.

1.10.13 Способы задания распределения случайной величины Дискретная случайная величина

Ряд распределения

Многоугольник распределения

Непрерывная случайная величина

Функция распределения

Плотность распределения

1.11 Функции распределения. Плотность вероятности

Def. (Функция распределения)

Под функцией распределения, обозначаемой F с индексами или без, понимают определённую на ℝ неубывающую непрерывную слева функцию с значениями в отрезке [0, 1]

Очевидно, что величины $F(-\infty) := \lim_{x \to -\infty} F(x) = \inf F, \ F(+\infty) :=$ $\lim_{x \to +\infty} F(x) = \sup F, \ F(x) = F(x-0) := \lim_{x_n \uparrow x} F(x_n) = \sup F(t), \ F(x-t) = \lim_{x_n f(x)} F(x) = \sup_{x_n f(x)} F(x) = \sup_$ $0) := \lim_{x_n \downarrow x} F(x_n) = \inf_{t > x} F(t)$

существуют и лежат в отрезке [0,1].

Функция распределения всегда является функцией распределения некоторой измеримой функции, определённой на |*Omega*.

Если вдобавок $(F(-\infty) = 0) \land (F(+\infty) = 1)$, то F является функцией распределения некоторой случайной величины.

1.12Th.

Пусть F — функция распределения некоторой r.v. Тогда $\exists! \mathbb{P}$, такая что $\forall a < b$

$$\mathbb{P}[a,b) = F(b) - F(a)$$

Действительно, пусть $\mathcal{F} = \mathcal{B}$ — борелева алгебра, а вероятность множества $A = \sum_{j} [a_j, b_j)$ задаётся соотношением $\mathbb{P} A = \sum_{j} F(b_j) - F(a_j)$.

1.12.1 Дискретная мера

Дискретной называют меру, функция распределения которой кусочно-постоянна, меняет свои значения в точках x_1, x_2, \dots $\mathbb{P}\{x_k\} = \Delta F(x_k) = F(x_k + 0)$ – $F(x_k-0), \sum_k \mathbb{P}\{x_k\}=1$. Набор чисел p_1,p_2,\ldots , где $p_k=\mathbb{P}\{x_k\}$ называется дискретным распределением вероятностей, а функция F распределения называется дискретной функцией распределения.

1.12.2Абсолютно-непрерывная мера

Абсолютно-непрерывной называют меру, соотвествующую функции распределения F, для которой $\exists f : \mathbb{R} \mapsto \mathbb{R}_+$, такая что

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

Где \int — интеграл Римана (а в общем случае — Лебега).

Функция f называется плотностью распределения вероятностей, а Fназывается абсолютно-непрерывной функцией распределения. Ясно, что любая f, интегрируемая по $\mathbb R$ и такая что $\int_{-\infty}^{+\infty} f(t) \mathrm{d}t = 1$,

определяет некоторую функцию распределения.

1.12.3 Сингулярные меры

Меры, функции распределения которых непрерывны, но число точек роста образует несчётное множество.

1.12.4 Функция распределения случайной величины

Пусть дана функция X. Вероятностная мера \mathbb{P}_X на (\mathbb{R},\mathcal{B}) , определяемая формулой $\mathbb{P}_X(B) = \mathbb{P}\{\omega : X(\omega) \in B\}$, $\forall B \in \mathcal{B}$ называется *распределением вероятностей r.v. X на (\mathbb{R},\mathcal{B}) .

Функция $F_X=\mathbb{P}\{\omega:X(\omega)\leq x\},\quad \forall x\in\mathbb{R}$ называется функцией распределения случайной величины X.

Дискретная г.v. Для элементарной г.v. $X=\sum_j x_j I_{A_j}$ мера \mathbb{P}_X может быть представлена в виде $\mathbb{P}_X(B)=\sum_{x_j\in B}\mathbb{P}\{x_j\}$, где $\mathbb{P}\{x_j\}=\Delta F_X(x_j)$

Непрерывная г.v. г.v. X называется *непрерывной*, если её функция распределения непрерывна по x.

r.v. X называется абсолютно-непрерывной, если $\exists f: \mathbb{R} \mapsto \mathbb{R}_+$, называемая плотностью, такая что

$$F_X(x) = \int_{-\infty}^x f_X(t) dt, \quad \forall x \in \mathbb{R}$$

1.13 Многомерные случайные величины. Их функции распределения и плотности их вероятности

// Аналогично: // Ввести борелеву алгебру // меру Лебега-Стилтьеса // интеграл Лебега // функции распределения

1.14 Независимые случайные величины. Их функции распределения и плотности вероятности

1.14.1 Def. (Независимые случайные величины)

Случайные величины $X_t, t \in T$ независимы, если для каждого конечного класса $(S_{t_1}, \ldots, S_{t_n})$ борелевских множеств в \mathbb{R}

$$\mathbb{P} \cap_{k=1}^n [X_{t_k} \in S_{t_k}] = \prod_{k=1}^n \mathbb{P}[X_{t_k} \in S_{t_k}]$$

1.14.2 Lemma (О умножениях)

Если X_1, \ldots, X_n независимы, то

$$\mathbb{E}\prod_{k=1}^{n}X_{k}=\prod_{k}\mathbb{E}X_{k}$$

Докажем для n=2. Пусть сначала X,Y — неотрицательные простые (или элементарные): $X=\sum_j x_j I_{A_j}, \ Y=\sum_k y_k I_{B_k}$. Вез ограничения будем считать как x_j , так и y_k различными, положив $A_j=[X=x_j],\ B_k=[Y=y_k]$.

$$\mathbb{E}XY = \mathbb{E}\sum_{jk} x_j y_k I_{A_j B_k} = \sum_{jk} x_j y_k \mathbb{P}A_j \mathbb{P}B_k = \sum_j x_j \mathbb{P}A_j \sum_k y_k \mathbb{P}B_k = \mathbb{E}X\mathbb{E}Y$$

Общий случай: (ТОDО; см. Лоэв, Теория вероятностей, ИИЛ, 1962, с. 240)

1.14.3 Функция распределения

$$X = (X_1, \ldots, X_n)$$

$$F_X(x_1, \dots, x_n) = \mathbb{P}[X_1 \le x_1, \dots, X_n \le x_n = \mathbb{P}[X_1 \le x_1] \dots \mathbb{P}[X_n \le x_n] = F_{X_1}(x_1) \dots F_{X_n}(x_n)$$

1.14.4 Плотность распределения

$$f_X = \frac{\partial^n F}{\partial x} = \frac{\partial^n F}{\partial x_1 \cdots \partial x_n} = \frac{\partial F}{\partial x_1} \cdots \frac{\partial F}{\partial x_n} = f_{X_1} \cdots f_{X_n}$$

1.15 Функции распределения функций случайных величин

1.15.1 Def. (Борелевская функция)

Борелевской называется измеримая функция вида $g:(\mathbb{R}^n,\mathcal{B}^n)\mapsto(\mathbb{R}^m,\mathcal{B}^m)$. То есть функция, относительно которой прообразами борелевских множеств являются борелевские множества.

1.15.2 Def. (Борелевская фунция от случайной величины)

Пусть $X=(X_1,\ldots,X_n)$ — r.v. на $(\Omega,\mathcal{F},\mathbb{P})$. $\Psi_j,j=\overline{1,k}$ — борелевские функции $\Psi_j:X(\Omega)\mapsto\mathbb{R}.$ $\Psi=(\Psi_1,\ldots,\Psi_k),\Psi:X(\Omega)\mapsto\Gamma,$ $\Gamma\subset\mathbb{R}^k$ — отображение из области $X(\Omega)$ значений r.v. X в область k-мерного вещественного пространства.

 $Y=(Y_1,\ldots,Y_k), \quad Y_j=\Psi_j(X)^1$ — случайная величина $Y:\Omega\mapsto \Gamma$ (доказать: композиция борелевской ф-ии и случайной величины есть случайная величина).

Пусть F_X — функция распределения r.v. X.

1.15.3 Задача: найти функцию F_Y распределения Y

$$F_Y(y) = \mathbb{P}\{Y(\omega) \le y\} = \mathbb{P}\{\Psi(X(\omega)) \le y\}$$

Будем искать функцию распределения F_Y по заданной плотности f_X .

1. Пусть k = n = 1.

X — непрерывная r.v., f_X — плотность. $Y = \Psi(X)$.

Найдём F_Y : $F_Y(y)=\mathbb{P}\{\Psi(X)\leq y\}=\int_{\{x:\psi(x)\leq y\}}f_X(x)\mathrm{d}x$

2. $1 \le k \le n$

 $X = (X_1, \dots, X_n) \ f_X : X(\Omega) \mapsto \mathbb{R}_+$ — плотность.

 $Y = (Y_1, \dots, Y_k) = (\Psi_1(X), \dots, \Psi_k(X))$ — r.v.

$$F_Y(y) = \mathbb{P}(\Psi(X) \le y) = \int \cdots \int_{\{x: \Psi(x) \le y\}} f_X(x) dx,$$

где $x = (x_1, ..., x_n), y = (y_1, ..., y_n), dx = dx_1 ... dx_n$

¹ имеется в виду $\Psi_i \circ X$, т.е. $\omega \mapsto \Psi_i(X(\omega))$

1.16 Плотность вероятности функции от случайной величины

1.16.1 Def. (Борелевская функция)

Борелевской называется измеримая функция вида $g:(\mathbb{R}^n,\mathcal{B}^n)\mapsto(\mathbb{R}^m,\mathcal{B}^m)$. То есть функция, относительно которой прообразами борелевских множеств являются борелевские множества.

1.16.2 Def. (Борелевская фунция от случайной величины)

Пусть $X=(X_1,\ldots,X_n)$ — r.v. на $(\Omega,\mathcal{F},\mathbb{P})$. $\Psi_j,j=\overline{1,k}$ — борелевские функции $\Psi_j:X(\Omega)\mapsto\mathbb{R}$. $\Psi=(\Psi_1,\ldots,\Psi_k),\Psi:X(\Omega)\mapsto\Gamma,\quad\Gamma\subset\mathbb{R}^k$ — отображение из области $X(\Omega)$ значений r.v. X в область k-мерного вещественного пространства. $Y=(Y_1,\ldots,Y_k),\quad Y_j=\Psi_j(X)$ — случайная величина $Y:\Omega\mapsto\Gamma$

1.16.3 Задача: найти плотность f_{Y} по данной плотности f_{X}

- 1. $f_Y(y_1,\ldots,y_k) = \frac{\partial^k F(y_1,\ldots,y_k)}{\partial y_1\ldots\partial y_k}$
- 2. $A = \Psi^{-1}(B) \mathbb{P}\{Y(\omega) \in B\} = \mathbb{P}\{X(\omega) \in A\} \int \cdots \int_B f_Y(y_1, \dots, y_k) dy_1 \dots dy_k = \int \cdots \int_A f_X(x_1, \dots, x_n) dx_1 \dots dx_n$
- 3. В частности, пусть k = n.

$$\Psi \in C^{\infty}(X(\Omega), \Gamma), \Psi \uparrow, x = \Psi^{-1}(y)$$

$$J(y) = \frac{\partial \Psi^{-1}}{\partial y} = \begin{vmatrix} \frac{\partial \Psi_1^{-1}(y)}{\partial y_1} & \dots & \frac{\partial \Psi_1^{-1}(y)}{\partial y_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial \Psi_n^{-1}(y)}{\partial y_1} & \dots & \frac{\partial \Psi_n^{-1}(y)}{\partial y_n} \end{vmatrix}$$

$$f_Y(y) = f_X(\Psi(y)) \left| \frac{\partial \Psi^{-1}}{\partial y} \right|$$

Пример:

$$X \sim \mathcal{N}(0,1)$$
.

$$f_X = \frac{1}{\sqrt{2\pi}} \exp{-\frac{x^2}{2}}.$$

$$Y = aX + b, a \neq 0. \ X = \frac{Y - b}{a}.$$

$$J = \frac{1}{a}$$

$$f_Y(y) = f_X(\Psi^{-1}(y))|J(y)| = \frac{1}{|a|\sqrt{2\pi}} \exp{-\frac{(y-b)^2}{2a^2}}$$

To есть $Y \sim \mathcal{N}(b, |a|)$.

4. Пусть k < n. ' $X = (X_1, \dots, X_n), Y = (\Psi_1(X), \dots, \Psi_k(X))$

Введём

$$Y^* = (Y_1, \dots, Y_n) := (\Psi_1(X), \dots, \Psi_k(X), X_{k+1}, \dots, X_n)$$

$$y^* = (y_1, \dots, y_n) \in \mathbb{R}^n, y = (y_1, \dots, y_k) \in \Gamma$$
$$f_{Y^*}(y^*) = f_X(\Psi_1^{-1}(y_1, \dots, y_k), \dots, \Psi_k^{-1}(y_1, \dots, y_k), y_{k+1}, \dots, y_n)$$

$$f_{Y}(y) = \int \cdots \int_{-\infty}^{+\infty} f_{Y^{*}}(y) dy_{k+1} \dots dy_{n} =$$

$$= \int \cdots \int_{-\infty}^{+\infty} f_{X}(\Psi_{1}^{-1}(y_{1}, \dots, y_{k}), \dots, \Psi_{k}^{-1}(y_{1}, \dots, y_{k}), y_{k+1}, \dots, y_{n}) |J(y)| dy_{k+1} \dots dy_{n}$$

1.17 Плотность вероятности суммы, произведения и частного

1.17.1 Плотность суммы

Пусть $X=(X_1,X_2),\,Y=X_1+X_2,\,f_X$ — плотность. Необходимо найти $f_Y.$ Введём $Y_2=X_2$ и вектор $Y^\star=(Y,Y_2).$

$$\begin{cases} X_1 & = Y - Y_2 \\ X_2 & = Y_2 \end{cases}$$

$$J(y^*) = \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = 1$$

$$f_{Y^*}(y) = f_X(\Psi(y))|J(y)| = f_X(y - y_2, y_2)|1|$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f_X(y - y_2, y_2) dy_2$$

1.17.2 Плотность произведения

Пусть $X = (X_1, X_2), Y = X_1 X_2. Y^* = (Y_1, Y_2) := (Y, X_2).$

$$\begin{cases} X_1 = \frac{Y}{Y_2} \\ X_2 = Y_2 \end{cases}$$

$$J(y^*) = \begin{vmatrix} \frac{1}{y_2} & y_1 \frac{1}{y_2^2} \\ 0 & 1 \end{vmatrix} = \frac{1}{y_2}$$

$$f_Y(y) = -\int_{-\infty}^0 f_X(\frac{y}{y_2}, y_2) \left| \frac{1}{y_2} \right| dy_2 + \int_0^{+\infty} f_X(\frac{y}{y_2}, y_2) \left| \frac{1}{y_2} \right| dy_2$$

1.18 Интеграл Стилтьеса

Пусть $g \in C[a,b), \ F:[a,b) \mapsto \mathbb{R}$ — неубывающая, непрерывная слева, ограниченной вариации.

 $P = \{a_j, j = \overline{1, n}\}$ — разбиение [a, b] с отмеченными точками $\xi = \{\xi_j, j = \overline{1, n}\}$. $\lambda(P) = \max \operatorname{diam}[a_j, a_{j-1}]$ — параметр разбиения. В пространстве $\mathcal{P} = \{(P, \xi)\}$ существует база $\lambda(P) \to 0$.

Введём интегральные суммы $\sigma(g, P, \xi) = \sum_{j=1}^n g(\xi_j)(F(a_j) - F(a_{j-1})).$ Если существует конечный предел этих интегральных сумм по базе $\lambda(P) \to 0$, то он называется Интегралом Стилтьеса функции g по интегрирующей функцие F.

$$\int_a^b g(t)\mathrm{d}F(t) = \lim_{\lambda(P)\to 0} \sigma(g,P,\xi)$$

Математическое ожидание случайной величины и функции случайной величины

1.19.1 Def. (Интеграл простой неотрицательной функции)

Интеграл простой неотрицательной функции $X = \sum_{i=1}^m x_i I_{A_i}$ на Ω есть величина

$$\int_{\Omega} X \mathrm{d}\mu = \sum_{j=1}^{m} x_j \mu A_j$$

1.19.2 Def. (Интеграл неотрицательной измеримой функции)

Неотрицательная измеримая функция представима в виде $X = \lim_n X_n$ предела неубывающей сходящейся последовательности простых функций: $X_n \uparrow X$. Её интеграл по Ω определим как

$$\int_{\Omega} X d\mu = \lim_{n} \int_{\Omega} X_{n} d\mu$$

1.19.3 Def. (Интеграл измеримой функции)

Всякая измеримая функция представима в виде $X = X^+ - X^-$. Интеграл по Ω такой функции определим как

$$\int_{\Omega} X d\mu = \int_{\Omega} X^{+} d\mu - \int_{\Omega} X^{-} d\mu$$

1.19.4 Def. (Интеграл по множеству)

Интеграл измеримой функции X по измеримому множеству $A \in \mathcal{F}$ определим как

$$\int_A X \mathrm{d}\mu = \int_{\Omega} X I_A \mathrm{d}\mu$$

1.19.5 Def. (Интегрируемая функция)

Функция X называется интегрируемой по множеству A, если $\int_A X \mathrm{d}\mu$ существует и конечен.

1.19.6 Свойства интеграла

Интеграл по множеству является линейным функционалом из пространства

интегрируемых функций: $\int_A \cdot : X \mapsto \int_\Omega X \mathrm{d}\mu$. Пусть $X = \sum_{j=1}^n x_j I_{A_j}, Y = \sum_{k=1}^m y_k I_{B_k}$ И пусть существуют и конечны $\int_A X, \int_A Y$ и $\int_A X + \int_A Y$. Тогда

$$\int_A \alpha X d\mu = \sum_j \alpha x_j \mathbb{P} A_j = \alpha \sum_j x_j \mathbb{P} A_j = \alpha \int_A X d\mu.$$

$$\int_{A} X + Y d\mu = \sum_{j,k} (x_j + y_k) I_{A_j} I_{B_k} = \sum_{j} x_j I_{A_j} + \sum_{k} y_k I_{B_k} = \int_{A} X d\mu + \int_{A} Y d\mu$$

 $\int_{A}X+Y\mathrm{d}\mu=\sum_{j,k}(x_{j}+y_{k})I_{A_{j}}I_{B_{k}}=\sum_{j}x_{j}I_{A_{j}}+\sum_{k}y_{k}I_{B_{k}}=\int_{A}X\mathrm{d}\mu+\int_{A}Y\mathrm{d}\mu$ Общий случай доказывается предельным переходом. Нужно только уметь доказывать, что $\forall X\exists X_{n}\quad X_{n}\uparrow X$ (как?). Тогда для неотрицательной измеримой функции монотонная последовательность $\int_A X_n \mathrm{d}\mu$ имеет предел (конечный или бесконечный) и нужно доказать единственность (как?).

1.19.7 Def. (Математическое ожидание)

 $\mathit{Mamemamuческим}$ ожиданием случайной величины $X:\Omega\mapsto\mathbb{R}$ называется интеграл $\int_{\Omega} X d\mathbb{P}$ по Ω .

1.20 Дисперсия случайной величины

1.20.1 Def. (Дисперсия)

Дисперсией $\mathbb{D}X$ случайной величины X называется величина

$$\mathbb{D}X = \mathbb{E}[(X - \mathbb{E}X)^2]$$

Заметим, что $\mathbb{E}(X-\mathbb{E}X)^2=\mathbb{E}[X^2-2X\mathbb{E}X+(\mathbb{E}X)^2]=\mathbb{E}X^2-\mathbb{E}X\mathbb{E}2X+(\mathbb{E}X)^2=\mathbb{E}X^2-(\mathbb{E}X)^2$, то есть

$$\mathbb{D}X = \mathbb{E}X^2 - (\mathbb{E}X)^2$$

1.20.2 Def. (stddev)

Стандартным отклонением г
v \boldsymbol{X} называется величина

$$\sigma X = +\sqrt{\mathbb{D}X}$$

1.21 Моменты случайной величины. Коэффициент корреляции. Коэффициенты асимметрии и эксцесса. Квантиль распределения

Математические ожидание степеней случайной величины назыаются её моментами

1.21.1 Def. (k-й момент случайной величины)

k-й момент случайной величины X есть $\mathbb{E} X^k, k>0$

1.21.2 Def. (k-й абсолютный момент случайной величины)

k-й абсолютный момент r.v. X есть $\mathbb{E}|X|^k, k>0$

k-й момент случаной величины может не существовать, в то время как k-й абсолютный момент всегда существует, быть может бесконечный. А так как интегрируемость эквивалентна абсолютной интегрируемости, то из конечности k-го абсолютного момента $\mathbb{E}|X|^k$ вытекает существование и конечность k-го момента $\mathbb{E}X^k$.

Кроме того из неравенства $\forall k' \leq k \quad (|X|^{k'} \leq 1 + |X|^k)$ вытекает, что конечность k-го абсолютного момента означает существование и конечность всех (в т.ч. абсолютных) моментов меньших порядков.

1.21.3 Def. (k-й центрированный момент)

k-й центрированный момент r.v. X есть $\mathbb{E}(X - \mathbb{E}X)^k$

Видно, что $\mathbb{D}X$ есть k-й центрированный момент второго порядка.

1.21.4 Def. (Ковариация)

Пусть X,Y — случайные величины и \exists конечные $\mathbb{E} X,\mathbb{E} Y$. Их ковариацией называется величина

$$cov(X, Y) = \mathbb{E}((X - \mathbb{E}X)(Y - \mathbb{E}Y))$$

Если cov(X, Y) = 0, говорят, что X и Y не коррелированны.

NB: Если X, Y независимы, то cov(X, Y) = 0

Пусть $0 < \mathbb{D}X, \mathbb{D}Y < \infty$. Тогда величина

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{\mathbb{D}X\mathbb{D}Y}}$$

называется коэффициентом коррелляции r.v. X и Y.

Свойства:

- 1. $|\rho(X,Y)| < 1$
- 2. $|\rho(X,Y)|=1 \implies X,Y$ линейно-зависимы
- 3. $Y = aX + b, a \neq 0 \implies |\rho(X,Y)| = 1$

4.
$$X,Y$$
 — независимы $\implies \rho(X,Y)=0$

Пусть $X = (X_1, \dots, X_n)$ – r. вектор, компоненты которого имеют конечный второй момент. Матрицей ковариаций r. вектора X называют матрицу

$$R = (\operatorname{cov}(X_i, X_i))_{n \times n}$$

Видно, что R — симметричная, кроме того она неотрицательно определена:

$$\forall \lambda_i \in \mathbb{R} \quad \sum_{i,j}^n R_{ij} \lambda_i \lambda_j = \mathbb{E} \left[\sum_{i=1}^n (X_i - \mathbb{E}X_i) \lambda_i \right]^2 \ge 0$$

1.21.5 Def. (Ковариация векторных случайных величин)

Представляет собой корреляционную матрицу. Пусть $X=(X_1,\dots,X_n), Y=(Y_1,\dots,Y_n).$

$$cov(X,Y) = (cov(X_i,Y_j))_{n \times n} = \begin{pmatrix} cov(X_1,Y_1) & \cdots & cov(X_1,Y_n) \\ \vdots & \ddots & \vdots \\ cov(X_n,Y_1) & \cdots & cov(X_n,Y_n) \end{pmatrix}$$

Пусть $\mu_k = \mathbb{E}(X - \mathbb{E}X)^3$ — центральный момент k-го порядка, $\sigma = +\sqrt{\mathbb{D}X}$ — стандартное отклонение.

1.21.6 Def. (Коэффициент ассиметрии)

Коэффициентом ассиметрии r.v. X называется величина

$$\gamma_1 = \frac{\mu_3}{\sigma^3} = \frac{\mathbb{E}(X - \mathbb{E}X)^3}{(\mathbb{D}X)^{\frac{1}{3}}}$$

Если распределение симметрично относительно математического ожидания, то его коэффициент асимметрии равен нулю.

1.21.7 Def. (Коэффициент эксцесса)

Коэффициентом эксцесса r.v. X называется величина

$$\gamma_2 = \frac{\mu_4}{\sigma^4} - 3$$

1.21.8 Def. (Квантиль распределения)

Квантиль распределения r.v. X порядка $p \in [0,1] :=$ значение $x_p \in X(\Omega) : F(x_p) = p.$

1.21.9 Def. (Медиана)

Медианой называется квантиль порядка $p=\frac{1}{2}$

1.21.10 Def. (Мода)

Точка $x \in X(\Omega)$, в которой плотность f_X принимает наибольшее значение. Если такая точка единственная, гу называется унимодальной, иначе полимодальной.

1.22 Характеристическая функция

1.22.1 Def. (Характеристическая функция)

Распределению задаваемому функцией распределения F соответствует единственная характеристическая функция g

$$g(u) = \int e^{iux} dF(x), \quad u \in \mathbb{R}$$

1.22.2 Характеристическая функция дискретной r.v. X

$$g_X(u) = \sum_{j=1}^m e^{iux_j} \mathbb{P}[X = x_j]$$

1.22.3 Характеристическая функция непрерывной г.v. X

$$g_X(u) = \int_{-\infty}^{+\infty} e^{iux} f_X(u) \mathrm{d}x$$
, где f_X — плотность.

1.22.4 Свойства

- 1. $|g_X(t)| \le 1$
- 2. $g_X(0) = 1$
 - 1. $q_X(t) = \mathbb{E}e^{iuX}$
 - 2. $q_X(0) = \mathbb{E}e^0 = 1$
- 3. $g_X(-t) = \overline{g_X(t)}$
- 4. Если Y = a + bX, то $g_Y = e^{iub}g_X(au)$
- 5. Если X_1,\dots,X_n независимые, $Y=\sum_j X_j,$ то

$$g_Y(t) = \prod_{j=1}^n g_{X_j}(t)$$

Действительно:

$$g_Y(t) = \mathbb{E}e^{iYt} = \mathbb{E}e^{\sum_j iX_jt} = \mathbb{E}\prod_{j=1}^n e^{iX_jt} = \prod_{j=1}^n \mathbb{E}e^{iX_jt} = \prod_{j=1}^n g_{X_j}(t)$$

1.23 Теорема обращения и единственности

Пусть F_X, g_X — функция распределения и характеристическая функция rv X, соответственно.

Тогда для любых точек непрерывности функции ${\cal F}_X$ имеет место равенство

$$F_X(x_2) - F_X(x_1) = \int_{-\infty}^{+\infty} \frac{-e^{ix_1t} - e^{ix_2t}}{it} g_X(t) dt$$

1.24 Сходимость случайных последовательностей. ЦПТ для одинаково-распределённых случайных величин

1.24.1 Def. (Случайная последовательность)

... Пусть $(\Omega, \mathcal{F}, \mu)$ — пространство с мерой.

1.24.2 Def. (Сходимость noumu-всюду)

Говорят, что последовательность измеримых функций X_n сходится noumu-всюду к функции X, если она сходится к X везде, кроме нулевого множества.

1.24.3 Тh. (Критерий ае сходимости)

$$X_n \xrightarrow{\text{a.e.}} X \iff \forall \varepsilon > 0 \quad \mu \cup_n \cap_v [|X - X_n| \ge \varepsilon] = 0$$

1.24.4 Def. (Сходимость по мере)

Говорят, что X_n сходится по мере к X, если

$$\forall \varepsilon > 0 \quad \mu[|X_n - X| \ge \varepsilon] \to 0$$

Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ — вероятностное пространство.

1.24.5 Def. (Сходимость по вероятности)

Говорят, что X_n сходится по вероятности к X, если

$$\forall \varepsilon > 0 \quad \mathbb{P}[|X_n - X| \ge \varepsilon] \to 0$$

1.24.6 Def. (Сходимость почти-наверное)

Говорят, что X_n сходится *почти-наверное* к X, если

$$\mathbb{P} \cup_{k > n} [|X_k - X| \ge \varepsilon] \to 0$$

1.25 Предельная теорема Муавра-Лапласа. Связь с ЦПТ

1.26 Неравенство Чебышёва. Закон больших чисел

1.26.1 Неравенство Чебышёва

Пусть X — r.v., то $\forall \varepsilon > 0$

$$\mathbb{P}[|X| > \varepsilon] \le \frac{1}{\varepsilon^2} \mathbb{E} X$$

так как

$$\mathbb{E} X^2 = \mathbb{E} X^2 I_{[|X| < \varepsilon]} + \mathbb{E} X^2 I_{[|X| \ge \varepsilon]} \ge \mathbb{E} X^2 I_{[|X| \ge \varepsilon]} \ge \varepsilon^2 \mathbb{E} I_{[|X| \ge \varepsilon]} = \varepsilon^2 \mathbb{P}[|X| \ge \varepsilon]$$

1.26.2 Закон больших чисел

Пусть X_1, X_2, \ldots — последовательность случайных независимых величин, таких что

$$\mathbb{E} X_j = m_j$$
 $\mathbb{D} X_j - \delta_j^2 < C < +\infty$ Тогда

$$\frac{1}{n} \sum_{j=1}^{n} X_j \xrightarrow{\mathbb{P}} \frac{1}{n} \sum_{j=1}^{n} m_j$$