1.2 数列的极限

- 1.2.1 数列的定义
- 1.2.2 数列极限的概念
- 1.2.3 收敛数列的性质
- 1.2.4 子数列的概念

2.1. 数列的极限

2.1.1. 数列的定义

1. 定义:形如 x_1, x_2,x_n 的一列依次(序)排列的数

程之数则它是整数xnh 的函数.(整标函数)。

例: (1).
$$\frac{1}{2}$$
, $\frac{2}{3}$, $\frac{3}{4}$, ..., $\frac{n}{n+1}$, ...

(2). 2, 4, 6,
$$\cdots$$
, 2 n , \cdots

(3).
$$1, -1, 1, -1, \cdots, (-1)^{n-1}, \cdots$$

(4).
$$a+1, a-\frac{1}{2}, a+\frac{1}{3}, \dots, a+(-1)^{n-1}, \frac{1}{n}, \dots$$

2. 数列的特性

(1). 有界性 对数列 $\{x_n\}$, 若存在 M>0, 使所有的 x_n 有 $|x_n| \le M$, 则称数列 $\{x_n\}$ 为有界数列,否则称无界 **教存**在 M_1 , 对一切 x_n , 有 $x_n \ge M_1$, 则称 $\{x_n\}$ 有下 界 M_1 为存在 M_2 , 对一切 M_2 , 有 M_3 , 则称 $\{x_n\}$ 有上界 M_3

为一上界

注:可以证明:数列有界等价与数列既有上界又

有下界。

(2). 单调性 对数列 $\{x_n\}$, $\exists x_n \leq x_{n+1} \ (n=1,2,\cdots)$ 则 $\{x_n\}$ 为 递增数列 $\exists x_n \geq x_{n+1}, (n=1,2,\cdots)$ 则 $\{x_n\}$ 为递减数列.

1.2.2 数列的极

 A_n 逼近圆面积 S. 积

如图所示 , 可知正 n 边形的面积

$$A_n = nr^2 \sin \frac{\pi}{n} \cos \frac{\pi}{n}$$

$$(n = 3, 4, 5, \dots)$$

当 n 无限增大时 A_n 无限逼近 S.

(刘徽割圆术)

问题:如何刻画?

以
$$\{x_n\} = \{\frac{n}{n+1}\}$$
为例, $a = 1$ 为例.

换个说法: 当n 无限增大时 $_{,x_n}$ 趋近于定数a 等价于:

(接近可用 | 只要 4 充分大等价于只要 11 充分大学

 $|x_n-a|$ 可以任意小。(小到可以小于任意的数,条件是 n 充分大)。

给定
$$0.1$$
,只要 $n > 9$, $\frac{n}{n+1} - 1$ < 0.1 ,

给定
$$0.01$$
, 只要 $n > 99$, $\frac{n}{n+1} - 1 < 0.01$,

给定0.001, 只要
$$n > 999$$
, $\frac{n}{n+1} - 1 < 0.001$,

给定
$$\varepsilon > 0$$
,只要 $n > N = \left[\frac{1}{\varepsilon} - 1\right], \left|\frac{n}{n+1} - 1\right| < \varepsilon$.

1. 定义 $(\varepsilon - N)$

若对 $\forall \varepsilon > 0$,总 $\exists N > 0$,当n > N时就有 $|x_n - a| < \varepsilon$, 则称a为数列 $\{x_n\}$ 的极限,亦称 $\{x_n\}$ 收敛于a,记作 $\lim_{n \to +\infty} x_n = a$,或 $x_n \to a$ $(n \to \infty)$.

若极限不存在,则称数列发散。

- 注: (1). ε 是任意的,不等式 $|x_n a| < \varepsilon$ 刻画了 x_n 与a的无限接近。
 - (2).N与 ε 有关,但不是函数关系 $(\varepsilon \to N$ 不唯一).

任意大于N的数都可以充当N的角

(3). $\lim x_n = a$ 的几何意义:对于数列 $\{x_n\}$, 当n > N

时,所有的 x_n 都落在区间 ($a-\varepsilon, a+\varepsilon$) 内。

(4) 从定义中可以看出,若要用定义证明极限存在, 关键在于对

 $\forall \varepsilon > 0$,找出N, 当n > N时, $|x_n - a| < \varepsilon$ 成立。

例1. 证明 $\lim \frac{n}{}=1$. $n \to +\infty$ n + 1

证:记
$$x_n = \frac{n}{n+1}, \forall \varepsilon > 0,$$
要使 $|x_n - 1| = \frac{1}{n+1} < \varepsilon$

只要
$$n > \frac{1}{\varepsilon} - 1$$
, 今取 $N = \left[\frac{1}{\varepsilon} - 1\right]$, 则当 $n > N$ 时,

$$|x_n - 1| = \frac{1}{n+1} < \varepsilon$$
 $\therefore \lim_{n \to +\infty} \frac{n}{n+1} = 1$

例2. 证明
$$\lim_{n\to +\infty} q^{n-1} = 0$$
 ($|q| < 1$).

证:
$$\forall \varepsilon > 0$$
,要使 $|x_n - 0| = |q|^{n-1} < \varepsilon$,

只要
$$(n-1)\ln|q| < \ln \varepsilon$$
 即 $n > 1 + \frac{\ln \varepsilon}{\ln|q|}$

取
$$N = \left[1 + \frac{\ln \varepsilon}{\ln |q|}\right]$$
,则当 $n > N$ 时恒有
$$\left|q^{n-1} - 0\right| < \varepsilon$$

$$\therefore \lim_{n \to +\infty} q^{n-1} = 0.$$

例3. 试证:
$$\lim_{n\to+\infty}\frac{n^2-n+2}{3n^2+2n-4}=\frac{1}{3}$$

例3. 试证:
$$\lim_{n \to +\infty} \frac{n^2 - n + 2}{3n^2 + 2n - 4} = \frac{1}{3}$$
.
证: $\forall \varepsilon > 0$ (找 $N = ?$, 使当 $n > N$ 时 $\left| x_n - \frac{1}{3} \right| < \varepsilon$)

先考察
$$\left| \frac{n^2 - n + 2}{3n^2 + 2n - 4} - \frac{1}{3} \right| = \left| \frac{-5n + 10}{3(3n^2 + 2n - 4)} \right|$$

当 $n \ge 2$ 时,有 $5n - 10 \ge 0$,则

$$\left| \frac{-5n+10}{3(3n^2+2n-4)} \right| = \frac{5n-10}{3(3n^2+2n-4)}$$

$$<\frac{5n}{9n^2}<\frac{1}{n}$$

$$\left(要使 |x_n - a| < \varepsilon, 只要 \frac{1}{n} < \varepsilon, 即 n > \frac{1}{\varepsilon} 即 可 \right)$$

$$\therefore \forall \forall \varepsilon > 0, \exists N = \max \left\{ 2, \left[\frac{1}{\varepsilon} \right] \right\}, \exists n > N$$
时恒有

$$\left|\frac{n^2-n+2}{3n^2+2n-4}-\frac{1}{3}\right|<\varepsilon,$$

$$\mathbb{E}\lim_{n\to+\infty}\frac{n^2-n+2}{3n^2+2n-4}=\frac{1}{3}.$$

注: 用定义证明极限存在的步骤:

- (1) 考察 $|x_n-a|$.
- (2) 适当放大不等式,为方便有时可限定 n 大于某一数 N_1 ,解出 $n>N_2$.
- (3) 取 $N=max\{N_1,N_2\}$.
 - (4)整个叙述。

例 4 证明数列 $x_n = (-1)^{n+1}$ 是发散的.

证 设 $\lim_{n\to\infty} x_n = a$, 由定义 对于 $\varepsilon = \frac{1}{2}$,

则 $\exists N$,使得 $\exists n > N$ 时,有 $|x_n - a| < \frac{1}{2}$ 成立,

即当n > N时, $x_n \in (a - \frac{1}{2}, a + \frac{1}{2})$, 区间长度为 1.

而 x_n 无休止地反复取1,-1两个数,

不可能同时位于长度为1的区间内.

所以数列 $x_n = (-1)^{n+1}$ 是发散的.

事实上、{x,}是有界的,但却发散.

2.2.3. 收敛数列的性质.

性质 1.(唯一性) 收敛数列的极限必唯一.

证:(反证法 设
$$\lim_{n\to\infty} x_n = a$$
, $\lim_{n\to\infty} x_n = b$, 且 $a \neq b$.)
(不仿设 $a > b$).

有
$$|x_n-a|<\frac{a-b}{2}$$
.

即:
$$\frac{a+b}{2} < x_n < \frac{3a-b}{2}.$$

$$\exists N_2 > 0$$
, 当 $n > N_2$ 时, 有 $|x_n - b| < \frac{a - b}{2}$.

$$\mathbb{EP}: \frac{3b-a}{2} < x_n < \frac{a+b}{2}.$$

$$\Rightarrow a = b$$

性质 2. (有界性) 收敛数列 $\{x_n\}$ 必有界.

证:对
$$\varepsilon = 1, \exists N > 0, \ \exists n > N$$
时 $|x_n - a| < 1$

$$\therefore n > N$$
时 $|x_n| \le |x_n - a| + |a| < 1 + |a|$

$$\therefore \forall n, |x_n| \leq M = \max\{|x_1|, |x_2|, \cdots |x_N|, 1+|a|\}.$$

注:(1) 收敛必有界,但有界不一定收敛.如{(-1)"}

(2) 无界一定发散.

性质3.(保号性) 若
$$\lim_{n\to\infty} x_n = A$$
, 且 $A > 0$ (或 < 0) 则 $\exists N > 0$, 当 $n > N$ 时 $x_n > 0$ (< 0).

证:设
$$\lim_{n\to\infty}x_n=A>0$$
,

$$|x_n - A| < \frac{A}{2} \mathbb{P} - \frac{A}{2} < x_n - A < \frac{A}{2}$$

证:反证法.

1.2.4 子数列的概念

1.定义: 在数列 $\{x_n\}$ 中任意抽取无限多项并保持这些项在原数列 $\{x_n\}$ 中的先后次序,这样得到的一个数列称为原数列 $\{x_n\}$ 的子数列(或子列).

例如, $x_1, x_2, \dots, x_i, \dots x_n, \dots$

注: (1)在子数列 $\{x_{n_k}\}$ 中,一般项 x_{n_k} 是第k项,而 x_{n_k} 在原数列 $\{x_n\}$ 中却是第 n_k 项,显然, $n_k \ge k$.

(2) $\{x_{2k}\}$, $\{x_{2k-1}\}$ 常见的子数列。

2. 数列与子数列的关系

定理 收敛数列的任一子数列也收敛. 且极限相同.

注: 此定理可用来判别数列发散。只要找到 $\{x_n\}$

的一子列发散 或两子列不收敛到同一极限,

例 $\{x_n\}_{\text{plank}}$ $\{x_n\}_{\text$

内容小结

本节主要讨论了数列极限的概念.

本节要求理解数列极限的概念,了解数列极限的性质,会用极限定义对一些具体的数列的极限加以叙述及证明;了解子数列的概念,并会用子数列与数列极限的关系来判别极限的不存在.

作业:1-2 课外作业:书上习题 1.2