

Deep Dive 2

Feature Engineering - TF-IDF, Density Functions, Implement with NLTK, Spacy

Agenda

- 1. Recap Week 2
- 2. TF-IDF
- 3. Bag-of-Words
- 4. Document Similarity Use Cases
- 5. Implement with Google Colab
- 6. Questions?
- 7. Wrap-up and Next Steps

Recap - Week 2

- ML algorithms cannot work on the raw text directly
- Algorithms can only process numeric representation of an actual text
- FE techniques used to convert text into a matrix (or vector)
- Popular methods of feature extraction are:
 Bag-of-Words, TF-IDF

One-Hot Word Representations

word	The	cat	sat	oh	the	mat.
the cat	0	0 0	0 0	0 0	0	0 0
Nunique	-words					

Techniques to Understand Text

Shallow Parsing or Chunking

Named Entity Recognition (NER)

N-Grams

Shallow Parsing or Chunking

Named Entity Recognition

N-Grams

NLP Workflow

TF-IDF

- Term frequency-inverse document frequency
- Combination of two metrics: term frequency and inverse document frequency
- Commonly used in information retrieval

Feature Engineering for NLP

Goal of TF-IDF

- Text documents → vector models, based on word occurrence (without considering the exact ordering)
- Given: dataset of N text documents, TF and IDF defined as...
 - TF: count of a term "t" in a document "d"
 - IDF: logarithm of ratio of total documents (d) in the entire corpus and number of documents (d) containing the term "t"
- Together: relative importance of a term in a corpus

TF-IDF: Formula (1)

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

TF-IDF

Term x within document y

 $tf_{x,y}$ = frequency of x in y df_x = number of documents containing x N = total number of documents

$$TF_{ij} = \frac{f_{ij}}{n_j}$$

Equation (1)

Where f_{ij} is the frequency of term i in document j. n_j is the total number of words in document j.

$$IDF_i = 1 + log(\frac{N}{c_i})$$

Equation (2)

Where N is the total number of documents in the corpus. c_i is the number of documents that contain word i.

$$w_{ij} = TF_{ij} \times IDF_i$$

Equation (3)

Where w_{ij} is the TF-IDF score of term i in document j.

Source:

TF-IDF: Properties

- Compute for every word in every document
- Result: matrix with shape = #
 words * # documents
- A single value for 1 word →
 matrix of values when
 considering all documents

TF-IDF: Simple Example

3 Documents

- Document 1: "Machine learning teaches machine how to learn"
- Document 2: "Machine translation is my favorite subject"
- Document 3: "Term frequency and inverse document frequency is important"

- Compute f_{ij}: frequency of term i in document j, Equation 1
- Pure counting: each term i in documents 1-3
 - o f{i1}
 - o f{i2}
 - o f{i3}

f_{i1}	machine 2	learning 1	teaches	how 1	to 1	learn 1
	machine	translation	is	my	favorite	subject
f_{i2}	1	1	1	1	1	i
	term	frequency as	nd inve	rse docume	ent is	important
f.o	1	2	1 1	1	1	1

Source:

- Compute normalized term frequency TF_{ij}, Equation 1
- Each word in single document should divide total # words in that document

	machine	e learnin	g tea	ches	how	to	learn
TF_{i1}	0.29	0.14	0	.14	0.14	0.14	0.14
V. 520 St. 174	machine	e translati	ion	is	my	favorite	subject
TF_{i2}	0.17	0.17	0	.17	0.17	0.17	0.17
	term	frequency	and	inverse	docume	ent is	importan
TF_{i3}	0.125	0.25	0.125	0.125	0.125	0.125	0.125

• Compute IDF of each term i, Equation 2

Terms	IDF	
Machine	1.4	
learning	2.1	
teaches	2.1	
how	2.1	
to	2.1	
learn	2.1	
translation	2.1	
is	1.4	
my	2.1	
favorite	2.1	
subject	2.1	
Term	2.1	
frequency	2.1	
and	2.1	
inverse	2.1	
document	2.1	
important	2.1	

Source:

Compute TF-IDF for each word i in document j, Equation 3

	machine	learning	teaches	how	to	learn
$TFIDF_{i1}$	0.40	0.30	0.30	0.30	0.30	0.30
	machine	translation	is	my	favorite	subject

	term	frequency	and	inverse	document	is	important
$TFIDF_{i3}$	0.26	0.52	0.26	0.26	0.26	0.18	0.26

Source:

TF-IDF: Give a Query

Given a query: "machine learning" → compute TF-IDF

	TF	IDF	TF*IDF
machine	0.5	1.4	0.7
learning	0.5	2.1	1.05

	Document1	Document2	Document3
machine	0.4	0.23	0.0
learning	0.3	0	0.0

TF-IDF 💉

Bag-of-Words

Why a "bag"?

- Any information about the order or structure of words is discarded
- Only concerned with whether known words occur in the document, not where
- General intuition: similar documents have similar content

Bag-of-Words Model

- Transform tokens into a set of features
- Used in document classification, each word used as a feature for training the classifier
- Ex: review-based sentiment analysis

Bag-of-Words Model

- Each text document = numeric vector
- Each dimension = specific word (from the corpus)
- Value = frequency in document, occurrence (1/0), or weighted value

Bag-of-Words Model: Simple Example

"A Tale of Two Cities" by Charles Dickens

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness,

Step 1: Collect Data

- Data: first few lines of text from book
- Each line treated as a separate "document"
- Four lines = entire corpus of documents

Step 2: Design the Vocabulary

- Construct list of all words in the mode's vocabulary
- Only the unique words (note: we ignore case and punctuation)
- Our list: vocab of 10 words, from corpus of 24 words

- "it"
- "was"
- "the"
- "best"
- "of"
- · "times"
- "worst"
- "age"
- · "wisdom"
- · "foolishness"

Step 3: Create Document Vectors

- Score the words in each document
- Document of free text → vector
- Vector = input or output of model
- Vocab of 10 words → fixed-length vector
- Use 0/1 binary scoring

- "it" = 1
- "was" = 1
- "the" = 1
- "best" = 1
- "of" = 1
- "times" = 1
- "worst" = 0
- "age" = 0
- "wisdom" = 0
- "foolishness" = 0

Managing Vocabulary

- Vocab size Vector representation of documents
- Issue of sparse vector/representation
 - Memory, computational resources
- Decrease vocab size → text cleansing!
 - Ignore case
 - Ignore punctuation
 - Ignore stop words
 - Fix misspelled words
 - Stemming

Bag-of-Words **

Document Similarity - Use Cases

Document Similarity

- Use a distance (or similarity-based metric) to identify how similar two text documents are
- Based on features extracted from documents (i.e. bag-of-words, TF-IDF)

WOMEN WHO

Pairwise Similarity

Compute for each pair of documents in a corpus

Given: **D** documents in corpus **C**

D*D matrix: each row & column represents similarity score for a pair of documents, which represent indices at the row and column

Use Cases

- 1. Euclidean Distance
- 2. Cosine Similarity
- 3. Jaccard Similarity
- 4. Document Clustering with Similarity Features
- 5. Topic Models

Euclidean Distance (1)

- Compare shortest distance among two objects
- Use Pythagorean Theorem
- Output: score
 - Zero: both objects are identical

Euclidean Distance (2)

- Limitations:
 - Overcome the "count-the-common-words" approach
- Resolution → Cosine Similarity!

Cosine Similarity (1)

- Determine angle between two objects to find similarity
- Range of score: 0 to 1

Cosine Similarity (2)

- Most popular, widely-used metric
- Represent cosine of angle between feature vector representations of two text documents
 - Lower angle = closer + more similar

Cosine Similarity (3)

- Compare pairwise document similarity based on TF-IDF feature vectors
- sklearn: cosine_similarity() → call this function on matrix of vectors

	0	1	2	3	4	5	6	7
0	1.000000	0.820599	0.000000	0.000000	0.000000	0.192353	0.817246	0.000000
1	0.820599	1.000000	0.000000	0.000000	0.225489	0.157845	0.670631	0.000000
2	0.000000	0.000000	1.000000	0.000000	0.000000	0.791821	0.000000	0.850516
3	0.000000	0.000000	0.000000	1.000000	0.506866	0.000000	0.000000	0.000000
4	0.000000	0.225489	0.000000	0.506866	1.000000	0.000000	0.000000	0.000000
5	0.192353	0.157845	0.791821	0.000000	0.000000	1.000000	0.115488	0.930989
6	0.817246	0.670631	0.000000	0.000000	0.000000	0.115488	1.000000	0.000000
7	0.000000	0.000000	0.850516	0.000000	0.000000	0.930989	0.000000	1.000000

- Measure number of common words over all words
- More common = both objects should be similar

$$(A \cap B)/(A \cup B)$$

- Range of score: 0 to 1
 - Score = 1: identical

Document Clustering (1)

- Leverage unsupervised learning to group data points (i.e. documents) into groups/clusters
- Use hierarchical clustering algorithm to group similar documents, leverage document similarity features
- Two types of algorithms:
 - Agglomerative
 - Divisive

Document Clustering (2)

- Strategy: selection of linkage criterion choosing cluster pairs to merge at each step, based on optimal value of an objective function
- Ward's minimum variance method: find pair leading to minimum increase in total within-cluster variance after merging

	Document\Cluster 1	Document\Cluster 2	Distance	Cluster Size
0	2	7	0.253098	2
1	0	6	0.308539	2
2	5	8	0.386952	3
3	1	9	0.489845	3
4	3	4	0.732945	2
5	11	12	2.69565	5
6	10	13	3.45108	8

Document Clustering (3)

Visualization: dendrogram → better understanding!

Document Clustering (4)

Distance metric $\geq 1 \rightarrow$ obtain our cluster labels

	Document	Category	ClusterLabel
0	The sky is blue and beautiful.	weather	2
1	Love this blue and beautiful sky!	weather	2
2	The quick brown fox jumps over the lazy dog.	animals	1
3	A king's breakfast has sausages, ham, bacon, eggs, toast and beans	food	0
4	I love green eggs, ham, sausages and bacon!	food	0
5	The brown fox is quick and the blue dog is lazy!	animals	1
6	The sky is very blue and the sky is very beautiful today	weather	2
7	The dog is lazy but the brown fox is quick!	animals	1

Topic Models (1)

- Extract topic-based features from text documents
- Each topic represented as bag/collection of words/terms from the document corpus
- Various techniques:
 - Latent Semantic Indexing
 - Latent Dirichlet Allocation

Figure source: Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.

Topic Models (2)

- Extract K topics, from M documents
- Black-box algorithm
- Output: topic mixtures for each document → generate constituents of each topic from terms pointing to that topic

Topic Models (3)

- LDA decomposed into two components:
 - Document-topic matrix
 - Topic-term matrix
- Leverage scikit-learn for document-topic matrix

	T1	T2	Т3
0	0.832191	0.083480	0.084329
1	0.863554	0.069100	0.067346
2	0.047794	0.047776	0.904430
3	0.037243	0.925559	0.037198
4	0.049121	0.903076	0.047802
5	0.054901	0.047778	0.897321
6	0.888287	0.055697	0.056016
7	0.055704	0.055689	0.888607

Topic Models (4)

- Use B-o-W model-based features to build topic model-based features, using LDA
- Group documents based on their topic model feature representations, using K-means clustering

	Document	Category	ClusterLabel
0	The sky is blue and beautiful.	weather	2
1	Love this blue and beautiful sky!	weather	2
2	The quick brown fox jumps over the lazy dog.	animals	1
3	A king's breakfast has sausages, ham, bacon, eggs, toast and beans	food	0
4	I love green eggs, ham, sausages and bacon!	food	0
5	The brown fox is quick and the blue dog is lazy!	animals	1
6	The sky is very blue and the sky is very beautiful today	weather	2
7	The dog is lazy but the brown fox is quick!	animals	1

Document Similarity **V**

Theory Wrap-up & Next Steps

Recap

Google Colab Project

https://bit.ly/introtonlp-week3-notebook

Homework #1

Additional Resources

- Document Similarity using
 - Python: https://bit.ly/2BaChK2
- DataMites TF-IDF and
 - Bag-of-Words Techniques:
 - https://bit.ly/3jkGdZR
- Traditional Methods for Text
 - Data: https://bit.ly/2ZEEh6T

See you next week!

Questions?

Join us on <u>Slack</u> and post your questions to the #help-me channel