ОВАиТК 3

Ковалев Алексей

1. Рассмотри гомоморфизм

$$\varphi\colon R\to R/I$$

$$\varphi \colon a \mapsto a + I$$

Этот гомоморфизм является сюръективным, значит $\varphi(J)$ – идеал в R/I. Причем $\varphi(J)=J/I$, то есть J/I – идеал в R/I.

Теперь рассмотрим отображение

$$\pi: R/I \to R/J$$

$$\pi: a+I \mapsto a+J$$

Для этого отображение верно $a+I=b+I\Rightarrow a-b\in I\subset J\Rightarrow a+J=b+J$. Тогда π – сюръективный гомоморфизм колец. Его ядро

$${\rm Ker}\, \pi = \{a+I \in R/I : a+J = 0+J\} = \{a+I \in R/I : a \in J\} = J/I$$

Отсюда по теореме о гомоморфизме

$$\frac{R/I}{\operatorname{Ker}\pi} = R/J$$

то есть

$$\frac{R/I}{J/I} = R/J$$

2. Для начала докажем, что множество нильпотентных элементов образует подкольцо в R. Пусть a и b – нильпотенты в R, $a^k=0$ и $b^n=0$. Во-первых, множество нильпотентных элементов замкнуто относительно умножения, так как

$$(ab)^{\max(n,k)} = a^{\max(n,k)}b^{\max n,k} = 0$$

Во-вторых, нильпотентные элементы образуют группу по сложению. Рассмторим $(a+b)^{n+k}$

$$(a+b)^{n+k} = \sum_{i=0}^{n+k} r_i a^i b^{n+k-i}$$

В этой сумме либо $i\geqslant k$, либо $n+k-i\geqslant n$, то есть каждое из слагаемых равно 0. Замкнутость относительно взятия противоположного элемента следует из того, что $(-a)^{2k}=((-a)^2)^k=(a^2)^k=a^{2k}=0$ (равентсво $(-a)^2=a^2$ вытекает из коммутативности кольца). 0 очевидно принадлежит множеству нипотентов. Значит нильпотенты действительно образуют подкольцо в R.

Покажем теперь, что для этого подкольца (назовем его K) выполнено свойство втягивания: если $a \in K$, то для произвольного $x \in R$ выполняется $(xa)^k = x^k a^k = 0$, то есть xa также нильпотент, то есть $xa \in K$. Множество нильпотентов – подкольцо, обладающее свойством втягивания, значит оно идеал.

3. Пусть кольцо R не содержит собственных левых и правых идеалов. Выберем какой-нибудь элемент $a \in R$, $a \neq 0$ и рассмотрим левый идеал I, порожденный этим элементом. Кольцо R не содержит собственных левых идеалов, значит I либо нулевой идеал, что невозможно из $a \neq 0$, либо I = R. Значит I совпадает со всем кольцом. Но тогда $1 \in I$, то есть $1 = ba \in R$, значит у a есть левый обратный. Аналогично у a есть правый обратный c, такой что $1 = ac \in R$. Равенство левого и правого обратных следует из b = b(ac) = bac = (ba)c = c. Значит в R можно делить, так как у каждого ненулевого $a \in R$ существует единственный обратный.

4. Пусть $J \subset Mat(n,R)$ – идеал в кольце матриц размера $n \times n$ над кольцом R . Докажем, что все значения,
которые встречаются в матрицах из J хотя бы раз, образуют идеал I в R .
Заметим, что если есть некоторая матрица $A \in J$, то умножением ее на матрицы из 0 и 1 можно получить
матрицу, в которой на любом месте стоит число a из матрицы A , а остальные числа – нули. Покажем, как
это делается: будем обозначать E_{ij} матрицу, у которой $e_{ij}=1,$ а все остальные элементы – нули. Тогда $E_{ij}A$
— матрица, i -ая строка которой равна j -ой строке матрицы $A;AE_{ij}$ — матрица, j -ый столбец которой равен
\emph{i} -ому столбцу матрицы \emph{A} . Таким образом, умножая \emph{A} слева и справа на матрицы такого вида мы можем
получить матрицу \widetilde{A} , у которой $\widetilde{a}_{kl}=a_{nm}$ для любых $k,l,n,m,$ а остальные элементы равны 0. Причем все
матрицы $\widetilde{A} \in J$, так как $A \in J$. Значит, умножая все такие матрцы и складывая их, можно получить все
суммы и произведение элементов из I , а так как J идеал, то и I – идеал.
$\overline{1}$ еперь покажем, что J состоит из всех матриц над I . Это следует из рассуждений, приведенных выше: любую
матрицу над I можно представить в качестве суммы матриц лишь с одним ненулевым элементом из I , а все
они лежат в J. Идеал является кольцом, поэтому замкнут относительно сложения, то есть сумма матриц из
идеала вновь даст матрицу из идеала.
5. Пусть I – максимальный идеал некоторого кольца R . Тогда по теореме о максимальном идеале R/I –
поле. В полях очевидно нет делитилей нуля, а значит I – простой идеал.

5. Пусть I — максимальный идеал некоторого кольца R. Тогда по теореме о максимальном идеале R/I — поле. В полях очевидно нет делитилей нуля, а значит I — простой идеал.

На два других вопроса ответ отрицательный. Построим контрпример для максимального идеала: пусть F — поле. Рассмотрим кольцо многочленов F[x] и поле рациональных функций F(x). Тогда между ними существует инъективный гомоморфизм $\varphi \colon F[x] \to F(x)$. В силу того, что F(x) — поле, максимальным идеалом в нем является нулевой идеал. Его проообразом является нулевой идеал в F[x], который не является максимальным, так как содержится, например, в (x). Максимальный идеал является простым, значит этот контрпример также является контрпримером для простого идеала.