

Perception-Driven Soft-Edge Occlusion for Optical See-Through Head-Mounted Displays

Xiaodan Hu

TU Graz

Yan Zhang

SJTU

Alexander Plopski

TU Graz

NAIST

Yuta Itoh

UTokyo

Monica Perusquía-

Hernández

NAIST

Naoya Isoyama

Otsuma Women's University

Hideaki Uchiyama Kiyoshi Kiyokawa

NAIST

Background

Bright Ambient Light

Bright ambient light can cause issues for cameras, the human visual system, and optical see-through head-mounted displays (OST-HMDs)

Bright view for camera and human eyes

Semi-transparent virtual image in an OST-HMD

Background

Selective Light Attenuation by Occlusion Mask

Attenuated view

Related Work

Occlusion Devices Using SLMs

Occlusion mask is often achieved using transmissive and reflective spatial light modulators (SLMs)

Adaptive Dynamic Range Camera (Nayar & Branzoi, 2003)

Image Processing

Smart Dimming Sunglasses (Hu et al., 2024) Vision Augmentation

Add-on Occlusion for HoloLens 1 (Zhang et al., 2023) OST-HMDs

Related Work

Soft-Edge and Hard-Edge Occlusion

Soft-edge occlusion

Compact but blurry

Defocused occlusion mask

(Itoh et al., 2017)

Hard-edge occlusion

Sharp but bulky

Lenses align focus for both

Eyepiece Crystalline Retina Scene and occlusion mask

(Wilson & Hua, 2021)

Related Work

Soft-edge Occlusion on a Single LCD

Completely blocking all light rays requires expanding the occlusion mask

[1] Itoh, Y., Hamasaki, T., & Sugimoto, M. (2017). Occlusion Leak Compensation for Optical See-Through Displays Using a Single-Layer Transmissive Spatial Light Modulator. *IEEE Transactions on Visualization and Computer Graphics*, 23(11), 2463–2473. https://doi.org/10.1109/TVCG.2017.2734427

Human Visual Perception of Blur

Does the human visual system work the same way?

How much do we need to expand the mask?

Perception-Driven Soft-Edge Occlusion

A ring-based quantitative pattern guides users to select the optimal mask size

Complete occlusion:

only the white ring remains visible

Real scene

View through occlusion masks

Experimental Setup

We developed a model of pupil size and user-preferred mask size based on the point spread function (PSF)

Calibration and Evaluation

- Calibration is only required at the central field of view at far distance
- Evaluation is conducted with patterns at four locations

Results

Individual Differences Across 20 Participants

Preference Calibration Results

- Slope: sensitivity of preferred mask size to pupil variation
- Intercept: perceived blur border

Results

Evaluation Results for Different Size Masks

Results

Narrower Blurry Borders

Masks that theoretically cause occlusion leaks can appear smaller in human visual perception

The blurry borders perceived by the human eye are **narrower** than theoretical predictions

Summary

- Perception-driven soft-edge occlusion on a single transmissive LCD achieves complete occlusion in human vision
- First user study on expanded soft-edge occlusion in human vision
- Participants perceive different mask sizes under the same pupil sizes
- Human eyes perceive narrower blurry borders of the soft-edge occlusion than theoretical predictions

Perception-Driven Soft-Edge Occlusion for Optical See-Through Head-Mounted Displays

Xiaodan Hu

Zhang

Alexander Plopski

Yuta Itoh

Monica
PerusquíaHernández

Naoya Isoyama

Hideaki Uchiyama

Kiyoshi Kiyokawa

Thank you for attending

