Boston Housing Price Analysis

Multilinear Regression Analysis on Housing Prices

Executive Summary

Boston Housing Price Analysis

- Combining socioeconomic (Istat, ptratio, black), environmental (nox, dis), structural (rm, tax, indus), and accessibility (rad, zn, chas, crim) variables provides a more balanced and accurate predictor of housing prices.
- 2. A cross-validation approach (LOOCV) was applied to evaluate model performance.
- 3. The model achieved a prediction error rate of ~15, an error of ~15 means the model is, on average, off by about \$15,000.
- 4. There is a significant improvement of error rate of simpler single-variable or lower-degree models (which showed errors in the 20–30+ range).

Context Definition

The Boston Housing Dataset is a derived from information collected by the U.S. Census Service concerning housing in the area of Boston MA.

The following describes the dataset columns:

- CRIM per capita crime rate by town
- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- **INDUS** proportion of non-retail business acres per town.
- CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)
- **RM** average number of rooms per dwelling
- AGE proportion of owner-occupied units built prior to 1940
- DIS weighted distances to five Boston employment centres
- RAD index of accessibility to radial highways
- TAX full-value property-tax rate per \$10,000
- PTRATIO pupil-teacher ratio by town
- B 1000(Bk 0.63)² where Bk is the proportion of blacks by town
- LSTAT % lower status of the population
- MEDV Median value of owner-occupied homes in \$1000's

Methodology & Tools Used

Methods:

- a. Multilinear Regression
- b. Cross-Validation

Tools:

- a. R
- b. ChatGPT

Key Findings

Most Correlated Variable with House price

Medv(Median Value of Owner-Occupied homes in \$1000's)

- 1. **LSTAT** % lower status of the population
- 2. **RM** average number of rooms per dwelling
- 3. **PTRATIO** pupil-teacher ratio by town
- 4. **INDUS** proportion of non-retail business acres per town.
- 5. **TAX** full-value property-tax rate per \$10,000

Boston Housing: House Price vs. Lower Status Population

House Price
vs
Lower Status
Population
Linear vs Polynomial

Higher Istat level decrease the house price

Boston Housing: House Price vs. Pupil-Teacher Ratio

House Price vs
Pupil-Teacher Ratio

Linear vs Polynomial

Higher ptratio (more student than teacher) decrease the house price

Boston Housing: House Price vs. Number of Rooms

House Price vs Number of Rooms

Linear vs Polynomial

More room increase the house price

Interactional model (Deeper insight)

- -More room in Istat dense area will decrease the price.
 Individually rm increase the house price but adding interaction, people see bigger house don't fit in the higher Istat dense area.
- High dense Istat area with high ptratio also decrease the price

Variable	Coefficient
lstat:rm	-1.26352
lstat:ptratio	-0.36864

Model Performance

Implementing LOOCV (Leave- one-out cross validation) on various model

Single variable Vs Multiple Variable

More variables leads to lower prediction error in this dataset.

Variable	Error Rate
Istat	38.89010
ptratio	63.24516
rm	44.21666
lstat+ nox+ptratio+tax+black+rad+dis+rm +nox+chas+zn+crim+indus	23.57196

Multivariate model on various degree

I used polynomial on lstat & rm and left other variable linear.

In the 2 degree model show sharp decline in error rate but the lowest is in the 5 degree and start to overfit in 9 degree

LOOCV Error for Polynomial Fits with Multiple Predictors

Conclusion

- Combining socioeconomic (Istat, ptratio, black), environmental (nox, dis), structural (rm, tax, indus), and accessibility (rad, zn, chas, crim) variables provides a more balanced and accurate predictor of housing prices.
- 2. A cross-validation approach (LOOCV) was applied to evaluate model performance.
- 3. The model achieved a prediction error rate of ~15, an error of ~15 means the model is, on average, off by about \$15,000.
- 4. There is a significant improvement of error rate of simpler single-variable or lower-degree models (which showed errors in the 20–30+range).

Linear model

```
Appendix
```

```
fit1 <- Im(medv~lstat, data=boston);summary(fit1)
fit4h <- Im(medv~ptratio, data = boston); summary(fit4h)
fit8 <- Im(medv~rm,boston); summary(fit8)
fit11 <- Im(medv~lstat*ptratio*rm,boston); summary(fit11)
                  Loocy with various variable
# Fit more varible
glm.fit6 <- glm(medv ~lstat+
nox+ptratio+tax+black+rad+dis+rm+nox+chas+zn+crim+indus
, data = Boston)
coef(glm.fit6)
#LOOCV (default K = n, so it's Leave-One-Out)
cv.error6 <- cv.glm(Boston, glm.fit6)
# Print LOOCV MSF
cv.error6$delta
cv.error6 <- rep(0, 10)
for (d in 1:10) {
glm.fit6 <- glm(medv ~ poly(lstat, d) + poly(rm, d) + ptratio +
nox+ tax + black + rad + dis + chas + zn + crim,
       data = Boston)
cv.error6[d] <- cv.glm(Boston, glm.fit6)$delta[1]
cv.error6
```