Информатика и программирование

Операционные системы

Доцент кафедры ИВТ, к.т.н. Проскурин Александр Викторович

Содержание лекции

- > Определение операционной системы.
- > Историй операционных систем.
- > Классификация операционных систем.
- > Управление процессами.

Операционная система (ОС)

Система команд компьютера образует машинный язык, имеющий от 50 до 300 команд.

На этом языке осуществляется преобразование, модификация и перемещение данных между устройствами.

Операционная система предназначена для того, чтобы скрыть от пользователя эти операции, избавив его от непосредственного общения с аппаратурой, предоставляя ему более удобную систему команд.

Операционная система (ОС) — это совокупность программ, управляющих работой всех устройств компьютера и процессом выполнения прикладных программ.

История. Первый этап

□ 1945 − 1955 гг.
□ Были созданы ламповые вычислительные устройства и
появился принцип программы, хранящейся в памяти
машины.
Программирование осуществлялось исключительно на
машинном языке.
□ Каждая программа на компьютере нуждалась в полной
спецификации оборудования, а также в своих
собственных драйверах для ввода и вывода.
□ Вычислительная система выполняла одновременно
только одну операцию.

История. Второй этап

□ 1955 — 1965 гг.			
□ Появление	полупроводник	овых эле	ментов –
транзисторов вместо	часто перегора:	вших электр	онных ламп
привело к повышения	ю надежности к	омпьютеров	•
Появляются р	оедакторы о	связей,	библиотеки
математических и слу	ужебных подпр	ограмм.	
□ Появляются перв	вые системы	пакетной	обработки,
которые просто автом	матизируют зап	уск одной пр	ограммы за
другой и тем самы	м увеличивают	коэффицие	нт загрузки
процессора.			
□ Пакетные операц	ионные систем	1Ы .	

История. Третий этап

□ 1965 – 1980 гг. □ Переход от транзисторов к интегральным микросхемам. ■ Появление магнитного диска — в отличие от магнитной ленты, используемой ранее, для магнитного диска не важен порядок чтения информации, что привело к дальнейшему развитию вычислительных систем. ■ Появление систем подкачки данных — введение этой системы техники пакетные позволило совместить операции ввода-вывода одного реальные задания (программы) с выполнением вычислений другого задания (программы). Многозадачные операционные системы.

Мультипрограммирование

Для реализации многозадачности была реализована идея мультипрограммирования, которая заключается в следующем:

- пока одна программа выполняет операцию ввода-вывода, процессор не простаивает, как это происходило при однопрограммном режиме, а выполняет другую программу.
- Когда операция ввода-вывода заканчивается, процессор возвращается к выполнению первой программы.

Особенности мультипрограммирования

- **Реализация защитных механизмов** программы не должны иметь самостоятельного доступа к распределению ресурсов.
- Наличие прерываний.
 - Внешние прерывания оповещают ОС о том, что произошло асинхронное событие, например завершилась операция ввода-вывода.
 - Внутренние прерывания возникают, когда выполнение программы привело к ситуации, требующей вмешательства ОС.
- Развитие параллелизма в архитектуре.

Роль ОС при мультипрограммировании

- Организация интерфейса между прикладной программой и ОС при помощи системных вызовов.
- Организация очереди из заданий в памяти и выделение процессора одному из заданий потребовало планирования использования процессора.
- Сохранение содержимого регистров и структур данных при переключении на другое задание.
- Стратегии управления памятью.
- Организация хранения информации на внешних носителях и организация доступа к ним.

История. Четвертый этап

⊔ С 1980 г.						
□ Резкое	возрастание	степени	интегра	ации и	снижен	ие
стоимости	микросхем	м. Комі	льютер	стал	доступ	ен
отдельному	человеку.					
☐ B cepe,	дине 80-х	стали	бурно	развива	ться се	ти
компьютеро	ов, в том чи	сле персо	нальных	а, работа	ающих п	ЮД
управление	м сетевых и	ли распр	еделенні	ых опер	ационні	ЫХ
систем.						
□ Появляет	гся возмо	жность	одновре	еменной	рабо	ТЫ
нескольких	пользовател	ей на одно	ой компь	ютерной	й системе	Э.

ОС как виртуальная машина

ОС позволяет **сконцентрироваться на взаимодействии высокоуровневых компонентов** системы, игнорируя детали их реализации.

Архитектура большинства компьютеров на уровне машинных команд очень неудобна для использования прикладными программами.

ОС избавляет программистов не только от необходимости напрямую работать с аппаратурой, но и предоставляет **набор команд более высокого уровня**.

Основные функции ОС

- Исполнение запросов программ (ввод и вывод данных, запуск и остановка других программ и др.).
- Загрузка программ в оперативную память и их выполнение.
- Стандартизованный доступ к периферийным устройствам.
- Управление оперативной памятью (распределение между процессами, организация виртуальной памяти).
- Управление доступом к данным на энергонезависимых носителях, организованным в той или иной файловой системе.
- Обеспечение пользовательского интерфейса.
- Сохранение информации об ошибках системы.

Ресурсы ОС

OC, основываясь на потребностях и возможностях своего активного ресурса и с учетом предоставленного в распоряжение пассивного ресурса, выполняет поставленные перед ней задачи.

Классификация ОС

Исходя из особенностей алгоритмов управления ресурсами и аппаратуры возможна различная классификация операционных систем.

По числу одновременно выполняемых задач

ОС могут быть разделены на два класса:

- Однозадачные (например, MS-DOS) в основном выполняют функцию предоставления пользователю виртуальной машины, делая более простым и удобным процесс взаимодействия пользователя с компьютером. Однозадачные ОС включают средства управления периферийными устройствами, средства управления файлами, средства общения с пользователем.
- **Многозадачные** (ОС семейства Windows, Linux, UNIX) кроме вышеперечисленных функций, управляют разделением совместно используемых ресурсов, таких как процессор, оперативная память, файлы и внешние устройства.

Многозадачные ОС

Многозадачные ОС подразделяются на три типа:

- Системы пакетной обработки (ОС ЕС) без непосредственного доступа пользователя, а с предварительным сбором и формированием всего блока (пакета) программ, подлежащих выполнению. Максимальная пропускная способность.
- Системы с разделением времени (Unix, Windows, Linux) каждой задаче выделяется небольшой квант процессорного времени, ни одна задача не занимает процессор надолго. Удобство и эффективность работы пользователя.
- Системы реального времени (QNX, VxWorks) выдерживает заранее заданные интервалы времени между запуском программы и получением результата.

По числу одновременно работающих пользователей

ОС могут быть разделены на два класса:

- Однопользовательские (MS-DOS, Windows 3.x).
- Многопользовательские (Windows NT, Linux, UNIX).

Главным отличием многопользовательских систем от однопользовательских является наличие **средств защиты информации каждого пользователя от несанкционированного доступа** других пользователей.

Не всякая многозадачная система является многопользовательской и не всякая однопользовательская ОС является однозадачной.

По числу процессоров

OC могут быть разделены по отсутствию или наличию средств поддержки многопроцессорной обработки:

- Однопроцессорные.
- Многопроцессорные:
 - Асимметричные целиком выполняется только на одном из процессоров системы, распределяя прикладные задачи по остальным процессорам.
 - *Симметричные* полностью децентрализована и использует все количество процессоров, разделяя их между системными и прикладными задачами.

По типу аппаратуры

На свойства операционной системы непосредственное влияние оказывают аппаратные средства, на которые она ориентирована.

ОС для:

мейнфреймов

серверов

персональных компьютеров

кластеров (распределенные)

бытовой техники (встраиваемые)

ОС для мейнфреймов

Самые сложные из операционных систем — **ОС для мейнфреймов**, которые ориентированы на обработку множества одновременных заданий, большинству из которых требуется огромное количество операций ввода/вывода.

Такие системы обычно выполняют три вида операций:

- пакетную обработку;
- обработку транзакций;
- разделение времени.

Примером операционной системы для мэйнфреймов является z/OS.

Серверные ОС

Серверные ОС одновременно обслуживают множество пользователей и делят между ними программно-аппаратные ресурсы ЭВМ.

Варианты серверных ОС с некоторыми специальными возможностями обслуживают многопроцессорные компьютерные системы.

ОС обеспечивают блокировку файлов и записей, что необходимо для их совместного использования; ведение справочников имен сетевых ресурсов; обработку запросов удаленного доступа к собственной файловой системе и базе данных; управление очередями запросов удаленных пользователей к своим периферийным устройствам.

Unixware, Windows Server, FreeBSD.

ОС для персональных компьютеров

Основной особенностью **ОС** для персональных компьютеров является предоставление удобного интерфейса для одного пользователя.

Широко используются для работы с текстом, электронными таблицами, доступа в Интернет, развлечений и т.д.

Основные ОС в этой категории – Windows 7, 10, 11, Linux (Ubuntu, Debian и т.д.).

Распределенные и встраиваемые ОС

Распределенная (кластерная) ОС внешне выглядит как обычная автономная система. Пользователь не знает и не должен знать, где хранятся его файлы и где выполняются его программы — на локальной или удаленной машине.

Примеры ОС этого типа: OpenVMS, MOSIX, Univa Grid Engine.

Встраиваемые ОС обычно используются в случаях, когда компьютер управляет конкретным устройством (например, бытовой техникой). Часто выполняют небольшое количество операций.

Управление ресурсами

Важной функцией ОС является управление имеющимися ресурсами.

	Основные ресурсы современных вычислительных систем:
	Процессоры и их ядра.
	Основная (оперативная) память.
	Таймеры (микросхема, вырабатывающая сигналы для учета
вр	емя работы процессора с процессами).
	Диски (внешние запоминающие устройства).
	Периферийные устройства.
	Сетевые устройства.
	Наборы данных.

Программа и процесс

Программа – **статический объект**, представляющий собой файл с кодами и данными.

Программа в процессе исполнения является динамическим, активным объектом. Для его описания используется понятие процесс.

Понятие процесса характеризует некоторую совокупность набора исполняющихся команд, ассоциированных с ним ресурсов и текущего момента его выполнения (значения регистров, программного счетчика, состояние стека и значения переменных), находящуюся под управлением операционной системы.

В большинстве современных ОС дополнительно к процессу введено понятие **поток** или нить (thread), обозначающее выполнение более мелкой части работы в рамках одного процесса.

Подсистема управления процессами

Важной частью ОС, непосредственно влияющей на функционирование вычислительной машины, является подсистема управления процессами.

Для ОС процесс представляет собой единицу работы, заявку на потребление системных ресурсов.

Управление ресурсами включает в себя следующие общие задачи:

- Планирование ресурсов.
- Удовлетворение запросов на ресурсы.
- Отслеживание состояния и учёт использования ресурсов.
- Разрешение конфликтов между процессами.

Состояния процесса

В мультипрограммной системе поток может находиться в одном из 3-х состояний:

- **выполнение** активное состояние, во время которого он имеет все необходимые ресурсы и непосредственно выполняется процессором;
- ожидание пассивное состояние, находясь в котором поток заблокирован по своим внутренним причинам (ожидает осуществление события), например: завершение ввода/вывода.
- **готовность** пассивное состояние, в котором поток заблокирован в связи с внешними по отношению к нему обстоятельствами (он имеет все ресурсы, но процессор занят выполнением другого потока).

Состояния процесса в однопоточной системе

В однопроцессорной однопоточной системе в любой момент времени активным может быть только один процесс, количество заблокированных и готовых не ограничено.

В состоянии выполнения в однопроцессорной системе может находиться один поток, а остальные потоки занимают очереди ожидающих и готовых к выполнению.

Выбор процесса и передача ему управления называется диспетчеризацией, а системная программа, выполняющая её – диспетчер.