EE 231A Information Theory Lecture 17 Broadcast Channels

- A. Introduction to Broadcast Channels
- B. Achievable rates on the broadcast channel
- C. Degraded broadcast channels
- D. Binary Symmetric Degraded Broadcast Channel
- E. Gaussian Degraded Broadcast Channel
- F. Coding Theorem for degraded broadcast channels

1

Part 17A:

Introduction to Broadcast Channels

Television and Lectures

- Standard Television Broadcast: W_0 only.
- HDTV and standard TV simultaneously transmitted: Standard TV is W_0 . Extra info for HDTV is W_1 .
- Lecturer in a classroom $H(W_1) > H(W_2)$, $H(W_2|W_1) \neq 0$. W_1 and W_2 are both non-zero entropy, but W_0 is hopefully significant.

Part 17B:

Achievable Rates on Broadcast Channels

7

Definition of achievable rate pair

- A rate pair (R_1,R_2) is said to be achievable for the broadcast channel if there exists a sequence of $\left((2^{nR_1},2^{nR_2}),n\right)$ codes with $P_e^{(n)} \to 0$.
- Where

$$P_e^{(n)} = P(g_1(Y_1^n) \neq W_1 org_2(Y_2^n) \neq W_2)$$

Definition of Capacity Region

- The capacity region of the broadcast cannul is the closure of the set of achievable rate pairs, or more generally tuples.
- The capacity region of the broadcast channel depends only on the conditional marginal distributions $p(y_1|x)$ and $p(y_2|x)$.

Orthogonal Broadcast Channel Rate Region (assuming independent power constraints)

11

Achievable triple for common information

- A rate pair (R_0, R_1, R_2) is said to be achievable for the broadcast channel with common information if there exists a sequence of $\left((2^{nR_0}, 2^{nR_1}, 2^{nR_2}), n\right)$ codes with $P_e^{(n)} \to 0$.
- Where
- $P_e^{(n)} = P(g_1(Y_1^n) \neq W_0, W_1 \text{ or } g_2(Y_2^n) \neq W_0, W_2)$

Part 17C:

Degraded Broadcast Channels

13

Physically Degraded Broadcast Channels

A broadcast channel is said to be physically degraded if

$$p(y_1, y_2|x) = p(y_1|x) p(y_2|y_1).$$

$$(W_0, W_1, W_2)$$
Encoder
$$(W_0, W_1, W_2)$$

$$p(y_1|x)$$

$$y_1$$

$$p(y_2|y_1)$$

$$y_2$$

• A broadcast channel is said to be *stochastically* degraded if for some distribution $p(y_2|y_1)$

$$p(y_2|x) = \sum_{y_1} p(y_1|x) p(y_2|y_1).$$

.4

Degraded Broadcast Channel Capacity Region

• The capacity region for sending independent information over the degraded broadcast channel $X \to Y_1 \to Y_2$ is the convex hull of the closure of all (R_1, R_2) satisfying

$$R_2 \le I(U; Y_2)$$

$$R_1 \le I(X; Y_1 | U)$$

For some joint distribution $p(u)p(x|u)p(y_1,y_2|x)$ Where $|\mathcal{U}| \leq \min\{|\mathcal{X}|,|\mathcal{Y}_1|,|\mathcal{Y}_2|\}$.

15

Channel Capacity Region with Common Information

• (Theorem 15.6.3) In general, if the rate pair (R_1,R_2) is achievable for a broadcast channel with independent information, the rate $\operatorname{triple}(R_0,R_1-R_0,R_2-R_0)$ provided that $R_0 \leq \min(R_1,R_2)$.

Channel Capacity Region with Common Information for a Degraded Channel

• (Theorem 15.6.4) If the rate pair (R_1, R_2) is achievable for a broadcast channel with independent information, the rate triple $(R_0, R_1, R_2 - R_0)$ provided that $R_0 \le R_2$.

17

Part 17D:

Binary Symmetric Degraded Broadcast Channel

Physically Degraded BSC

$$p_2 = p_1(1 - \alpha) + (1 - p_1)\alpha$$

$$\alpha = \frac{p_2 - p_1}{1 - 2p_1}$$

19

Achievable Rates for degraded BSC

• Let's use the equations:

$$\begin{aligned} R_2 &\leq I(U;Y_2) \\ R_1 &\leq I(X;Y_1|U) \end{aligned}$$

Achievable Rates for degraded BSC

• Let's use the equations:

$$R_2 \le I(U; Y_2)$$

$$R_1 \le I(X; Y_1 | U)$$

- $R_2 \le I(U; Y_2) = H(Y_2) H(Y_2|U) \le 1 H(\beta * p_2)$
- $\beta * p_2 = \beta(1 p_2) + (1 \beta)p_2$
- $R_1 \le I(X; Y_1|U) = H(Y_1|U) H(Y_1|X, U)$
- $R_1 \le I(X; Y_1|U) = H(\beta * p_1) H(Y_1|X)$
- $R_1 \le I(X; Y_1|U) = H(\beta * p_1) H(p_1)$

23

Achievable Rates for degraded BSC

• So the answer is:

$$R_2 \le 1 - H(\beta * p_2)$$

 $R_1 \le H(\beta * p_1) - H(p_1)$

With
$$\beta=0$$
, $\beta*p_2=p_2$ and $\beta*p_1=p_1$ so that
$$R_2 \leq 1-H(p_2)$$

$$R_1 \leq 0$$

Using Thm 15.6.4 in this case, for common information we can achieve $(1 - H(p_2), 0,0)$ so that all the information is common information.

Part 17E:

Gaussian Degraded Broadcast Channel

25

Part 17E:

Degraded Broadcast Channel Coding Theorem