Digitális technika

VIII. Szinkron tárolók, órajel Szinkron és aszinkron hálózatok tervezése

Az állapot változást az órajel ütemezi, de erre többféle megoldás létezik:

Kapuzott tároló

ÉS kapukkal lehet engedélyezni - tiltani a bemeneteket ►

Ez még nem igazi szinkron tároló! (csak aszinkron)

Él-vezérelt tároló

Az órajel szint változására történik a bemenetek érzékelése, és az állapot változás → és a kimenet változása

Lehet: pozitív él-vezérelt (órajel 0 → 1 átmenete) vagy negatív él-vezérelt (az órajel 1 → 0 átmenete)

pl. pozitív él-vezérelt JK tároló működése

pl. negatív él-vezérelt JK tároló működése

Master-slave tároló

1. ütem (C=1)

bemenetek beírása master-ba, slave ilyenkor leválasztva (bemenetei az ÉS kapukon keresztül 0-t kapnak) → slave őrzi a régi állapotát

2. ütem (C=0)

master bemenetei letiltva, slave bemenetei engedélyezve → master tartalma átíródik a slave-ba, és a kimeneten is megjelenik az új állapot

8.2. Gyakorló feladatok

1. Rajzold be a negatív él-vezérelt JK tároló kimenetét (Q)

2. Add meg az alábbi működésű tároló igazságtáblázatát

8.3. D tároló

Rajzjele, működése

C – clock ---> órajel bemenet Ez a tároló is csak szinkron lehet, az órajel határozza meg, hogy mikor vált állapotot !!

igazságtáblázata

D	Q ^t	Q ^{t+1}
0	0	0
0	1	0
1	0	1
1	1	1

Állapot diagram

pozitív él-vezérelt működése

8.4. Reteszelt tároló

data-lock-out

Érzéketlen az óraimpulzus tartama alatti bemeneti változásokra

8.5. T tároló

Rajzjele, működése

T=1 ---> a tároló állapotot vált!
T=0 ---> a tároló marad a régi
állapotban

C – clock ---> órajel bemenet Ez a tároló is csak szinkron lehet

> Lényegében egy JK tároló, J és K bemeneteit összekötve, és elnevezve T-vel!

igazságtáblázata

Q ^t	Q ^{t+1}
0	0
1	1
0	1
1	0
	0 1 0

Állapot diagram

8.6. Ismétlés, Gyakorlás

1. Rajzold be a pozitív él-vezérelt T tároló kimenetét (Q)

2. Rajzold be a negatív él-vezérelt D tároló kimenetét (Q)

8.6. Ismétlés, Gyakorlás

1. Megoldás. Rajzold be a pozitív él-vezérelt T tároló kimenetét (Q)

2. Megoldás. Rajzold be a negatív él-vezérelt D tároló kimenetét (Q)

általában bármelyik tárolóval az összes többi megvalósítható

1. minta feladat: D tároló megvalósítása T tárolóval

D	Q ^t	Q ^{t+1}	Т		Q ^t	Q ^{t+1}	Т		D	Qt	Q ^{t+1}	Т
0	0	0	?	-	0	0	0 —	•	0	0	0	0
0	1	0	?	•	0	1	1 \		0	1	0	1
1	0	1	?		1	0	1		1	0	1	1
1	1	1	?		1	1	0 —	-	1	1	1	0

T tárolót hogyan kell vezérelni, hogy a megfelelő Q¹ → Q¹+1 állapotváltozás létrejöjjön

1. minta feladat

2. minta feladat: JK tároló D tárolóval megvalósítva

2. minta feladat

J	K	Q ^t	D
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

1. mintafeladat

Tervezd meg JK tároló felhasználásával!

Α	В	q	Q
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Meg kell határozni, hogy az adott sorokban lévő állapot átmenet ($q \rightarrow Q$) eléréséhez hogyan kell vezérelni a felhasználandó tároló bemeneteit (most J és K) \rightarrow a tároló állapotdiagramja adja a segítséget ! Ahol valamelyik bemenet 0 és 1 is lehet, az határozatlan ! \rightarrow x (vagy -)

JK tároló állapot diagramja:

JK 10

JK

10

K

X

X

Χ

Χ

1. mintafeladat, megoldás

A kitöltött állapot átmeneti tábla

1. mintafeladat, megoldás folytatása

vezérlési függvények

$$K = \overline{A}$$

Most a kimenetről nincs q visszacsatolva (előfordul, hogy kiesik egyszerűsítéskor), De a JK tárolón belül van visszacsatolás!!

Kapcsolási rajz

8.9. Gyakorló feladatok

1. Add meg az alábbi működésű tároló állapot diagramját

Α	В	Q ^t	Q ^{t+1}
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

* Tervezd meg D tároló felhasználásával!

2. Add meg az alábbi működésű tároló igazságtáblázatát

* Tervezd meg T tároló felhasználásával!

8.9. Gyakorló feladatok

1. Megoldás. Add meg az alábbi működésű tároló állapot diagramját

* Tervezd meg D tároló felhasználásával!

D tároló esetén Q^{t+1} = D !! ezért úgy kell vezérelni, hogy D legyen egyenlő Q^{t+1} értékével

Α	В	Qt	Q ^{t+1}	D	
0	0	0	1	?	
0	0	1	0	?	
0	1	0	1	?	
0	1	1	0	?	
1	0	0	1	?	
1	0	1	1	?	
1	1	0	0	?	
1	1	1	1	?	

A folyamat, a lépések hasonlók mint szinkron hálózatok esetén

- de nincs órajel!
- megvalósítás aszinkron tárolókkal, vagy egyszerűen visszacsatolt kombinációs hálózattal

1. mintafeladat

Az alábbi ütemdiagrammal megadott sorrendi hálózat megvalósítása RS tárolóval Az ütemdiagram az idő diagramhoz hasonló, de itt vonal jelzi az 1-es és a vonal hiánya a 0-s szintet

állapot tábla

igazságtáblázat

AB

^Q 0

állapot diagram

kimeneti tábla

Kimenet
$$\rightarrow$$
 Z= $\overline{q}*A$

Állapot átmeneti tábla

Α	В	q	Q	S	R
0	0	0	0	0	_
0	0	1	0	0	1
0	1	0	0	0	_
0	1	1	1	_	0
1	0	0	1	1	0
1	0	1	1	_	0
1	1	0	0	0	_
1	1	1	1	_	0

Kapcsolási rajz

$$S=A*\overline{B}$$
 $R=\overline{A}*\overline{B}$ $Z=\overline{q}*A$

1. mintafeladat, b. verzió

Megoldás visszacsatolt kombinációs hálózattal → kiindulás közvetlenül az állapottáblából (és a kimeneti táblából)

8.11. Gyakorló feladatok

1. Adott egy aszinkron hálózat (tároló) kimeneti függvénye

$$Y^{n+1} = \overline{A} + B*Y^n$$

Add meg a hálózat kapcsolási rajzát, igazságtáblázatát, és állapot diagramját

2. Adott egy aszinkron hálózat (tároló) igazságtáblázata

С	D	Q ^t	Q ^{t+1}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Add meg a hálózat állapot diagramját és kapcsolási rajzát

8.11. Gyakorló feladatok megoldásai

1. megoldás

		00 01		
AB 10 11	0	AB 10	1	AB 00 01 11