Lecture 8: Signed Measures and Radon-Nikodym Derivative

Tianpei Xie

Aug. 2nd., 2015

Contents

1	Sign	ned Measure	2
	1.1	Definitions	2
	1.2	Decomposition of Signed Measure	3
	1.3	Lebesgue-Radon-Nikodym Theorem	5
2	Exe	ercise	10

1 Signed Measure

1.1 Definitions

- Definition (Signed Measure)
 - Let (X, \mathcal{B}) be a measure space. A <u>signed measure</u> on (X, \mathcal{B}) is a function $\nu : \mathcal{B} \to [-\infty, +\infty]$ such that
 - 1. (**Emptyset**) $\nu(\emptyset) = 0$;
 - 2. (Finiteness in One Direction) ν assumes at most one of the values $\pm \infty$;
 - 3. (*Countable Additivity*) if $\{E_j\}$ is a sequence of disjoint sets in \mathscr{B} , then $\nu\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} \nu(E_j)$, where the latter converges absolutely if $\nu\left(\bigcup_{j=1}^{\infty} E_j\right)$ is finite.
- **Definition** A measure μ is *finite*, if $\mu(X) < \infty$; μ is σ -finite, if $X = \bigcup_{k=1}^{\infty} U_k$, $\mu(U_k) < \infty$.
- Example If μ_1, μ_2 are measures on \mathscr{B} and at least one of them is finite, then $\nu = \mu_1 \mu_2$ is a signed measure.
- Example If μ is a measure on \mathscr{B} and $f: X \to [-\infty, +\infty]$ is a measurable function such that at least one of $\int_X f_+ d\mu$ and $\int_X f_- d\mu$ is finite (in which case, f is called an **extended** μ -integrable function). Then ν defined as $\nu(E) = \int_X f \mathbb{1}_E d\mu$ is a signed measure.
- Remark Every signed measure can be represented as one of these two forms
 - 1. $\nu = \mu_+ \mu_-$, where at least one of μ_+, μ_- is a finite measure;
 - 2. μ is measure on \mathscr{B} , and $f: X \to [-\infty, +\infty]$ is extended μ -integrable with at least one of f_+ and f_- finite integrable. Then $\nu(A) = \int_X f \mathbb{1} \{A\} d\mu$ is a signed measure.
- Like unsigned measure, we have monotone downward and upward convergence:

Proposition 1.1 Let ν be a **signed measure** on (X, \mathcal{B}) .

1. (Upwards monotone convergence) If $E_1 \subseteq E_2 \subseteq ...$ are \mathscr{B} -measurable, then

$$\nu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \nu(E_n) = \sup_n \nu(E_n). \tag{1}$$

2. (Downwards monotone convergence) If $E_1 \supseteq E_2 \supseteq ...$ are \mathscr{B} -measurable, and $\nu(E_n) < \infty$ for at least one n, then

$$\nu\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \nu(E_n) = \inf_n \nu(E_n). \tag{2}$$

• Definition (Positive Measure)

If ν is a signed measure on (X, \mathcal{B}) , a **set** $E \in \mathcal{B}$ is called **positive** (resp. **negative**, **null**) for ν if $\nu(F) \geq 0$ (resp. $\nu(F) \leq 0$, $\nu(F) = 0$) for **all** \mathcal{B} -**measurable subset** of E (i.e. $F \in \mathcal{B}$ such that $F \subseteq E$).

In other word, E is ν -positive, ν -negative, ν -null if and only if $\nu(E \cap M) > 0$, $\nu(E \cap M) < 0$, $\nu(E \cap M) = 0$ for any M. Thus if $\nu(E) = \int_X f \mathbb{1}\{E\} d\mu$, then it corresponds to $\underline{f \geq 0}$, $f \leq 0$ and f = 0 for μ -almost everywhere $x \in E$.

• Lemma 1.2 [Folland, 2013]

Any measureable subset of a positive set is positive, and the union of any countable positive set is positive.

Proof: The first part is clear from the definition. Let P_1, \ldots , be countable collection of positive sets. Note that any finite collection $\bigcup_{k=1}^{n-1} P_k$ is positive by definition. Consider $Q_n = P_n - \bigcup_{k=1}^{n-1} P_k$. Since $Q_n \subset P_n$, Q_n is positive and $\bigcup_{k=1}^{\infty} Q_k = \bigcup_{k=1}^{\infty} P_k$ with disjoint Q_k . Hence for any $E \subset \bigcup_{k=1}^{\infty} P_k$, then $\nu(E) = \nu(\bigcup_{k=1}^{\infty} (E \cap Q_k)) = \sum_{k=1}^{\infty} \nu(E \cap Q_k) > 0$.

• Remark For two measures μ, ν on (X, \mathcal{B}) among which at least one of them is finite, the expression $\mu \geq \nu$ on E means that for every $F \subseteq E \in \mathcal{B}$, $(\mu - nu)(F) \geq 0$. That is, E is a positive set of $(\mu - nu)$.

1.2 Decomposition of Signed Measure

- Remark Given a signed measure ν , we can *partition* the space X into positive set (i.e. all of its measurable subsets have positive measure) and negative set (i.e. all of its measurable subsets have negative measure).
- Theorem 1.3 (The Hahn Decomposition Theorem)[Folland, 2013] If ν is a signed measure on (X, \mathcal{B}) , there exists a positive set P and a negative set N for ν such that $P \cup N = X$ and $P \cap N = \emptyset$. If P', N' is another such pair, then $P\Delta P' = N\Delta N'$ is null w.r.t. ν .

Proof: Without loss of generality, assume that ν does not take value $+\infty$. Let m be the supremum of $\nu(E)$ as E ranges over all positive sets; thus there is a sequence $\{P_j\}$ of positive sets such that $\nu(P_j) \to m$. Let $P = \bigcup_{j=1}^{\infty} P_j$. By the lemma and the proposition above, P is positive and $\nu(P) = m$, which is finite. We claim that N = X - P is negative. To this end, we assume that N is not negative, and derive for a contradiction.

First, notice that N cannot contain any nonnull positive sets. Indeed, if $E \subset N$ is positive, then $\nu(E) > 0$, and $E \cup P$ is positive with $\nu(E \cup P) = \nu(E) + \nu(P) > m$, which violates the assumption.

Second, if $A \subset N$, $\nu(A) > 0$, there exists $B \subset A$, with $\nu(B) > \nu(A)$. Indeed, since A cannot be positive, there exists $C \subset A$ with $\nu(C) < 0$; thus if B = A - C, we have $\nu(B) = \nu(A) - \nu(C) > \nu(A)$.

If N is not negative, then we can specify a sequence of subsets $\{A_j\}$ of N and a sequence of positive integers $\{n_j\}$ as follows: n_1 is the smallest integer for which there exists a set $B \subset N$ with $\nu(B) > 1/n_1$, and let A_1 be the set as defined above. And n_j is the smallest integer for which there exists a set $B \subset A_{j-1}$ with $\nu(B) \ge \nu(A_{j-1}) + 1/n_j$ and A_j is such a set.

Let $A = \bigcap_{j=1}^{\infty} A_j$. Then $\infty > \nu(A) = \lim_{j \to \infty} \nu(A_j) > \sum_{j=1}^{\infty} \frac{1}{n_j}$ with $n_j \to \infty$. But once again, there exists $B \subset A$ with $\nu(B) \ge \nu(A) + 1/n$ for some integer n. For j sufficiently large, we have $n < n_j$, and $B \subset A_{j-1}$, which violates the construction of A_{j-1} . So N is not negative is untenable.

Finally, if P', N' is another pair of sets as stated, we have $P - P' \subset P$ and $P - P' \subset N'$, so that P - P' is both positive and negative, thus it is a null set.

- **Definition** [Folland, 2013, Resnick, 2013] The decomposition of $X = P \cup N$ as X is a disjoint union of a positive set and a negative set is called a Hahn decomposition for ν .
- Remark Note that the Hahn decomposition is usually **not unique** as the ν -null set can be transferred between subparts P and N. To find unique decomposition, we need the following concepts:
- **Definition** [Folland, 2013] Two signed measures μ, ν on (X, \mathcal{B}) are <u>mutually singular</u>, or that ν is <u>singular</u> w.r.t. to μ , or vice versa, if and only if there exists a <u>partition</u> $E, F \in \mathcal{B}$ of X such that $E \cap F = \emptyset$ and $E \cup F = X$, E is null for μ and F is null for ν . Informal speaking, mutual singular means that μ and ν "live on disjoint sets". We describe it using perpendicular sign

$$\mu \perp \nu$$

• Theorem 1.4 (The Jordan Decomposition Theorem)[Folland, 2013] If ν is a signed measure on (X, \mathcal{B}) , there exists unique positive measure ν_+ and ν_- such that

$$\nu = \nu_+ - \nu_-$$
 and $\nu_+ \perp \nu_-$.

Proof: Let $X = P \cup N$ be the *Hahn decomposition* for ν and define $\nu_+(E) = \nu(E \cap P)$ and $\nu_-(F) = -\nu(F \cap N)$. Then clearly, $\nu = \nu_+ - \nu_-$ and $\nu_+ \perp \nu_-$.

If also $\nu = \mu_+ - \mu_-$ and $\mu_+ \perp \mu_-$, let $E, F \in \mathcal{B}$ be a partition of X as $E \cap F = \emptyset$ and $E \cup F = X$, and $\mu_+(F) = \mu_-(E) = 0$. Then $X = E \cup F$ is another Hahn decomposition, so $P\Delta E$ is ν -null. Therefore, for any $A \in \mathcal{B}$, $\mu_+(A) = \nu(A \cap E) = \nu(A \cap P) = \nu_+(A)$ and likewise $\nu_- = \mu_-$.

• Definition The two positive measures ν_+, ν_- are called the **positive** and **negative variations** of ν , and $\nu = \nu_+ - \nu_-$ is called the **Jordan decomposition** of ν .

Furthermore, define the **total variations** of ν as the measure $|\nu|$ such that

$$|\nu| = \nu_+ + \nu_-.$$

- Proposition 1.5 Let ν, μ be signed measures on (X, \mathcal{B}) and $|\nu|$ is the total variations of ν . Then
 - 1. $E \in \mathcal{B}$ is ν -null if and only if $|\nu|(E) = 0$
 - 2. $\nu \perp \mu$ if and only if $|\nu| \perp \mu$ if and only if $(\nu_+ \perp \mu) \wedge (\nu_- \perp \mu)$.
- Proposition 1.6 If ν_1, ν_2 are signed measures that both omit $\pm \infty$, then $|\nu_1 + \nu_2| \leq |\nu_1| + |\nu_2|$
- Exercise 1.7 Let ν be a signed measure on (X, \mathcal{B}) .
 - 1. $L^1(\nu) = L^1(|\nu|)$;

2. If $f \in L^1(\nu)$, then

$$\left| \int_X f d\nu \right| \leq \int_X |f| \, d \, |\nu|$$

3. If $E \in \mathcal{B}$, then

$$|\nu|(E) = \sup \left\{ \left| \int_{E} f d\nu \right| : |f| \le 1 \right\}$$

- **Remark** We recall that ν assume at most one of values on $\pm \infty$:
 - 1. If ν does not take $+\infty$, then $\nu_+(X) = \nu(P) < \infty$ is a finite measure;
 - 2. if ν does not take $-\infty$, then $\nu_{-}(X) = -\nu(N) < \infty$ is a finite measure.

In particular, if the range of ν is contained in \mathbb{R} , then ν is bounded.

- Remark We observe that ν is of form $\nu(E) = \int_E f d\mu$ where $|\nu| = \mu$ and $f = \mathbb{1}_P \mathbb{1}_N$ and $X = P \cup N$ being a Hahn decomposition for ν .
- Remark (Integration with respect to Signed Measure) Let ν be signed measures on (X, \mathcal{B}) and $\nu = \nu_+ - \nu_-$ is the Jordan decomposition of ν then

$$\int_X f d\nu = \int_X f d\nu_+ - \int_X f d\nu_-$$

for all $f \in L^1(X, \nu)$.

• **Definition** A signed measure ν is called σ -finite if $|\nu|$ is σ -finite.

1.3 Lebesgue-Radon-Nikodym Theorem

• **Definition** [Folland, 2013]

Suppose ν is a signed measure on (X, \mathcal{B}) and μ is a positive measure on (X, \mathcal{B}) . Then ν is said to be absolutely continuous w.r.t. μ and write

$$\nu \ll \mu$$

if $\nu(E) = 0$ for every $E \in \mathscr{B}$ for which $\mu(E) = 0$.

- Proposition 1.8 Suppose ν is a signed measure on (X, \mathcal{B}) , ν_+, ν_- are positive and negative variation of ν and $|\nu|$ is the total variation. Then $\nu \ll \mu$ if and only if $|\nu| \ll \mu$ if and only if $(\nu_+ \ll \mu) \wedge (\nu_- \ll \mu)$.
- Remark Absolutly continuity is in a sense antithesis (i.e. direct opposite) of mutual singularity. More precisely, if $\nu \perp \mu$ and $\nu \ll \mu$, then $\nu = 0$, since E, F are disjoint sets such that $E \cup F = X$, and $\mu(E) = |\nu|(F) = 0$, then $\nu \ll \mu$ implies that $|\nu|(E) = 0$. One can extend the notion of absolute continuity to the case where μ is a signed measure (namely, $\nu \ll \mu$ iff $\nu \ll |\mu|$), but we shall have no need of this more general definition.
- Theorem 1.9 (ϵ - δ Language of Absolute Continuity of Measures) Let ν is a finite signed measure and μ is a positive measure on (X, \mathcal{B}) . Then $\nu \ll \mu$ if and only if for every $\epsilon > 0$, there exists a $\delta > 0$ such that $|\nu(E)| < \epsilon$, whenever $\mu(E) < \delta$.

Proof: Since $\nu \ll \mu$ iff $|\nu| \ll \mu$ and $|\nu(E)| \leq |\nu|(E)$, it suffices to assume that $\nu = |\nu|$ is positive.

"\(\Rightarrow\)", if the $\epsilon - \delta$ condition is not satisfied, there exists $\epsilon > 0$, for all $n \in \mathbb{N}$ we can find $E_n \in \mathcal{B}$, with $\mu(E_n) < \frac{1}{2^n}$ and $\nu(E_n) \geq \epsilon$.

Let $F_k = \bigcup_{n=k}^{\infty} E_n$ and $F = \bigcap_{k \geq 1} F_k$. Then $\mu(F_k) \leq \sum_{n=k}^{\infty} \frac{1}{2^n} = 2^{1-k}$, so $\mu(F) = 0$. But $\nu(F_k) \geq \epsilon$ for all k, and hence since ν is finite, $\nu(F) = \lim_{k \to \infty} \nu(F_k) \geq \epsilon$. Thus it is false that $\nu \ll \mu$.

- Remark If μ is a measure and f is extended μ -integrable, then the signed measure ν defined via $\nu(E) = \int_E f d\mu$ is absolutely continuous w.r.t. μ ; it is finite if and only if f is absolutely integrable. For any complex-valued $f \in L^1(\mu)$, the preceding theorem can be applied to $\Re(f)$ and $\Im(f)$.
- Corollary 1.10 If $f \in L^1(X, \mu)$, for every $\epsilon > 0$, there exists a $\delta > 0$, such that $\left| \int_E f d\mu \right| < \epsilon$ whenever $\mu(E) < \delta$.
- **Definition** For a signed measure ν defined via $\nu(E) = \int_E f d\mu$ for all $E \in \mathcal{B}$, we use the notation to express the relationship

$$d\nu = f d\mu$$
.

Sometimes, by a slight abuse of language, we shall refer to "the signed measure $f d\mu$ "

• Lemma 1.11 [Folland, 2013] Suppose that ν and μ are finite measures on (X, \mathcal{B}) . Either $\nu \perp \mu$, or there exists $\epsilon > 0$ and $E \in \mathcal{B}$ such that $\mu(E) > 0$ and $\nu \geq \epsilon \mu$ on E, i.e. E is a **positive set for** $\nu - \epsilon \mu$.

Proof: Let $X = P_n \cup N_n$ be a Hahn decomposition on (X, \mathcal{B}) for $\nu - n^{-1}\mu$ and let $P = \bigcup_{n=1}^{\infty} P_n$ and $N = \bigcap_{n=1}^{\infty} N_n$. Then N is a negative set for $\nu - n^{-1}\mu$ for all n, i.e., $0 \le \nu(N) \le n^{-1}\mu(N)$ for all n, so $\nu(N) = 0$. If $\mu(P) = 0$, then $\nu \perp \mu$; if $\mu(P) > 0$, then $\mu(P_n) > 0$ for some n, and P_n is positive set for $\nu - n^{-1}\mu$.

• Theorem 1.12 (Lebesgue-Radon-Nikodym Theorem)[Folland, 2013] Let ν be a σ -finite signed measure and μ be a σ -finite positive measure on (X, \mathcal{B}) . There exists unique σ -finite signed measure λ , ρ on (X, \mathcal{B}) such that

$$\lambda \perp \mu$$
, and $\rho \ll \mu$, and $\nu = \lambda + \rho$.

In particular, if $\nu \ll \mu$, then

$$d\nu = f d\mu$$
, for some f .

Proof: We proof it under different cases:

- Case 1: Suppose that ν, μ are finite positive measures and let

$$\mathcal{F} \equiv \left\{ f: X \to [0, \infty]: \int_E f d\mu \le \nu(E), \ \forall \, E \in \mathscr{B} \right\}.$$

Note that $0 \in \mathcal{F}$. Also for $g, f \in \mathcal{F}$, then $h = \max\{f, g\} \in \mathcal{F}$, since for $A = \{x : f(x) \ge g(x)\}$,

$$\int_E h d\mu = \int_{E \cap A} f d\mu + \int_{E \backslash A} g d\mu \leq \nu(E \cap A) + \nu(E \backslash A) = \nu(E).$$

Let $a = \sup \{ \int f d\mu \mid f \in \mathcal{F} \}$, noting that $a < \nu(X) < \infty$. There exists a sequence of functions $\{ f_n, n \geq 1 \} \subset \mathcal{F}$ such that $\lim_{n \to \infty} \int f_n d\mu \to a$. Let $g_n = \max \{ f_1, \dots, f_n \}$ and $\underline{f} = \sup_{n \geq 1} \underline{f_n}$. Clearly, $g_n \in \mathcal{F}$ and $g_n \to f$, μ -a.e. Also $\int g_n d\mu \geq \int f_n d\mu$. Since $\{g_n\}$ is monotone increasing, by monotone convergence theorem, $\lim_{n \to \infty} \int g_n d\mu = \int f d\mu = a$ and $f \in \mathcal{F}$.

We claim that $\underline{d\lambda} = \underline{d\nu} - f\underline{d\mu}$ (, which is a positive finite measure since $f \in \mathcal{F}$), is $\underline{singular}$ w.r.t. $\underline{\mu}$. By the lemma above, if not, then there exist a set E and $\epsilon > 0$ such that $\mu(E) > 0$ and $\lambda(E) \ge \epsilon \mu(E)$. Then $\epsilon \mathbb{1}_E d\mu \le \mathbb{1}_E d\lambda \le d\lambda = d\nu - fd\mu$ and the function $(f + \epsilon \mathbb{1}_E) \in \mathcal{F}$. But $\int (f + \epsilon \mathbb{1}_E) d\mu = a + \epsilon \mu(E) > a$, which violates the assumption on a.

Thus the existence of λ , f and $d\rho = fd\mu$ is proved. For uniqueness, if also $d\nu = d\lambda' + f'd\mu$, we have that $d\lambda - d\lambda' = (f' - f)d\mu$. But $(\lambda - \lambda') \perp \mu$, while $(f' - f)d\mu \ll d\nu$; hence $d\lambda - d\lambda' = 0$ and f' = f μ -a.e. Thus we are done in the finite measure cases.

- Case 2: suppose that ν, μ are σ -finite positive measures. Then X is a countable disjoint union of μ -finite sets and a countable disjoint union of ν -finite sets; by taking their intersections, we have a disjoint collection $\{A_j\} \subset \mathcal{B}$ such that $\mu(A_j)$ and $\nu(A_j)$ are both finite and $X = \bigcup_j A_j$.

Define $\mu_j(E) = \mu(E \cap A_j)$ and $\nu_j(E) = \nu(E \cap A_j)$. Use the prove above, $d\nu_j = d\lambda_j + f_j d\mu_j$, where $\lambda_j \perp \mu_j$. Since $\mu_j(A_j^c) = \nu_j(A_j^c) = 0$, then we have $\lambda_j(A_j^c) = \nu_j(A_j^c) - \int_{A_j^c} f_j d\mu_j = 0$, and we may assume that $f_j = 0$ on A_j^c .

Let $\lambda = \sum_{j=1}^{\infty} \lambda_j$ and $f = \sum_{j=1}^{\infty} f_j$. Then $d\nu = d\lambda + f d\mu$, $\lambda \perp \mu$, and $d\lambda$ and $f d\mu$ are σ -finite, as desired. Uniqueness follows as above.

- General Case: If ν is a signed measure, just apply the preceding argument to ν_+ , ν_- and subtract the results.
- **Definition** The decomposition $\nu = \rho + \lambda$, where $\lambda \perp \mu$ and $\rho \ll \mu$, is called the **Lebesgue** decomposition of ν with respect to μ .
- **Definition** If $\nu \ll \mu$, then according to the Lebesgue-Radon-Nikodym theorem, $d\nu = f d\mu$ for some f, where f is called the **Radon-Nikodym derivative** of ν w.r.t. μ and is denoted as

$$f := \frac{d\nu}{d\mu} \quad \Rightarrow \quad d\nu = \frac{d\nu}{d\mu}d\mu.$$

• Remark By Lebesgue decomposition, a signed measure ν can be represented as

$$d\nu = d\lambda + fd\mu$$

• Remark (*Jordan Decomposition vs. Lebesgue Decomposition*)
We see *two unique decompositions*: the Jordan decomposition and the Lebesgue decomposition. We can make a comparison:

- 1. Both of these two are decompositions of a signed measure ν .
- 2. Both of these two decompositions separate ν into two **mutually signular** sub-measures of ν .
- 3. Both of these two decompositions are *unique*

On the other hand,

- 1. The Jordan decomposition is to split a signed measure ν itself into two positive measures, i.e. ν_+ and ν_- that are mutually singular $(\nu_+ \perp \nu_-)$.
- 2. The Lebesgue decomposition is to split a signed measure ν with respect to a postive measure μ . The result is two-fold: 1) two mutually singular sub-measures $\lambda \perp \rho$ 2) their relationship with μ is opposite: $\lambda \perp \mu$, i.e. their support do not overlap; $\rho \ll \mu$, i.e. its support lies within support of μ .
- 3. Note that λ, ρ from the Lebesgue decomposition is **not** necessarily **positive**. But both ν and μ need to be σ -finite which is not required for the Jordan decomposition.
- Proposition 1.13 [Folland, 2013] Suppose ν is σ -finite signed measure and λ , μ are σ -finite measure on (X, \mathcal{B}) such that $\nu \ll \mu$ and $\mu \ll \lambda$.
 - 1. If $g \in L^1(X, \nu)$, then $g\left(\frac{d\nu}{d\mu}\right) \in L^1(X, \mu)$ and

$$\int g d\nu = \int g \, \frac{d\nu}{d\mu} \, d\mu$$

2. We have $\nu \ll \lambda$, and

$$\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda}, \quad \lambda \text{-a.e.}$$

Proof: 1. By Radon-Nikodym theorem, the expression holds if $g = 1 \{E\}$ for any $E \nu$ -measureable, i.e.

$$\nu(E) = \int \mathbb{1} \{E\} d\nu = \int \mathbb{1} \{E\} \left(\frac{d\nu}{d\mu}\right) d\mu.$$

Note that for any simple function $g = \sum_{s=1}^{m} g_s \mathbb{1} \{E_s\}$ for finitely many ν -measureable set E, due to the linearity, the expression

$$\int g d\nu = \sum_{s=1}^{m} g_s \int \mathbb{1} \{E_s\} d\nu = \sum_{s=1}^{m} g_s \int \mathbb{1} \{E_s\} \left(\frac{d\nu}{d\mu}\right) d\mu = \int g\left(\frac{d\nu}{d\mu}\right) d\mu$$

hold. Then for any nonnegative integrable function g, there exists a monotone increasing sequence $g_n \leq g_{n+1}$ converges to g ν -a.e.

$$\int g d\nu = \limsup_{\substack{g_n \leq g, \\ g_n \text{ simple}}} \int g_n d\nu = \limsup_{\substack{g_n \leq g, \\ g_n \text{ simple}}} \int g_n \left(\frac{d\nu}{d\mu}\right) d\mu = \int g \left(\frac{d\nu}{d\mu}\right) d\mu$$

The last equality comes from monotone convergence theorem. For absolutely integrable function $g = g_+ - g_-$ with g_+, g_- both nonnegative integrable function. The expression hold by linearity.

2. Let $g = \mathbb{1}\{E\}\left(\frac{d\nu}{d\mu}\right)$ and replace ν, μ with μ, λ , we have

$$\int \mathbb{1}\left\{E\right\}d\nu = \int \mathbb{1}\left\{E\right\}\left(\frac{d\nu}{d\mu}\right)d\mu = \int \mathbb{1}\left\{E\right\}\left(\frac{d\nu}{d\mu}\right)\frac{d\mu}{d\lambda}d\lambda$$

for any E measureable. Therefore,

$$\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda}, \quad \lambda\text{-}a.e. \quad \blacksquare$$

- Corollary 1.14 If $\mu \ll \lambda$ and $\lambda \ll \mu$, then $(d\lambda/d\mu)(d\mu/d\lambda) = 1$ a.e. (with respect to either λ or μ).
- Proposition 1.15 If μ_1, \ldots, μ_n are measures on (X, \mathcal{B}) , then there exists a measure μ such that $\mu_i \ll \mu$ for all $i = 1, \ldots, n$, namely, $\mu = \sum_{i=1}^n \mu_i$.
- Exercise 1.16 (Conditional Expectation) Let (X, \mathcal{B}, μ) be a finite measure space, \mathscr{F} is a sub- σ -algebra of \mathscr{B} , and $\nu = \mu|_{\mathscr{F}}$. Show that if $f \in L^1(X, \mu)$, there exists $g \in L^1(X, \nu)$ (thus g is \mathscr{F} -measureable) such that $\int_E f d\mu =$ $\int_E g d\nu$ for all $E \in \mathscr{F}$; if g' is another such function then g = g' ν -a.e.

In probability theory, where $(X, \mathcal{B}) \equiv (\Omega, \mathcal{A})$, $f \equiv X$ is a random variable, then $g \equiv \mathbb{E}[X|\mathcal{F}]$ is called **the conditional expectation of** X **on** \mathcal{F} , which is \mathcal{F} -measure random variable.

Proof: We can define a signed measure λ on (X, \mathcal{B}) as $d\lambda = f d\mu$, i.e. $\lambda \ll \mu$. We claim that $\lambda|_{\mathscr{F}} \ll \nu = \mu|_{\mathscr{F}}$. Then by Radon-Nikodym theorem, there exists a \mathscr{F} -measureable function

$$g = \frac{\lambda|_{\mathscr{F}}}{\mu|_{\mathscr{F}}},$$

so that for every $E \in \mathcal{F}$,

$$\lambda(E) = \lambda|_{\mathscr{F}}(E) = \int_{E} \frac{\lambda|_{\mathscr{F}}}{\mu|_{\mathscr{F}}} d\mu|_{\mathscr{F}}$$
$$= \int_{E} g d\nu.$$

and $\lambda(E) = \int_E f d\mu$, which shows the result.

To show the claim is true, we see that $\nu(E) = \mu(E)$ and $\lambda|_{\mathscr{F}}(E) = \lambda(E)$ for every $E \in \mathscr{F}$ and $\lambda \ll \mu$, so for any $\epsilon > 0$, there exists $\delta > 0$, such that if $\mu(E) < \delta$, then $\lambda(E) < \epsilon$. It is equivalent to say $\nu(E) < \delta$ implies $\lambda|_{\mathscr{F}}(E) < \epsilon$, which proves the claim.

• Remark Note that similarly, the *conditional distribution* $P(A|\mathscr{F}) = \mathbb{E} [\mathbb{1}_A | \mathscr{F}]$ is a random variable. Also, $\mathbb{E} [X|Y] = \mathbb{E} [X|\sigma(Y)]$, where $\sigma(Y)$ is the sub- σ -algebra induced by $Y^{-1}(\mathcal{B}(\mathbb{R})) \subset \mathscr{B}$.

$$\mathbb{E}\left[X|Y\right](\omega_y) = \int_{\Omega_x} K(\omega_y, d\omega_x) Z_{\omega_y}(\omega_x) P(d\omega_x)$$

where $K: \Omega_Y \times \mathscr{B}_X \to [0,1]$ is the transition kernel, $Z_{\omega_y}(\omega_x) = Z(\omega_x, \omega_y) = (X(\omega_x), Y(\omega_y))$.

2 Exercise

- Exercise 2.1 Show that if λ is a signed measure and μ is a positive measure on (X, \mathcal{B}) , then $\lambda \ll \mu$ implies that λ_+, λ_- and $|\lambda|$ are absolutely continuous with respect to μ .
- Exercise 2.2 Show that if λ is a signed measure and μ is a positive measure on (X, \mathcal{B}) , then $|\lambda| \perp \mu$ implies that λ_+, λ_- are singular with respect to μ .
- Exercise 2.3 Let X = [0,1] and \mathscr{B} be the Borel σ -algebra. If μ is the counting measure on \mathscr{B} and λ is the Lebesgue measure on \mathscr{B} , then λ is a finite measure and $\lambda \ll \mu$, but the Radon-Nikodym theorem fails.

References

Gerald B Folland. Real analysis: modern techniques and their applications. John Wiley & Sons, 2013.

Sidney I Resnick. A probability path. Springer Science & Business Media, 2013.