Wybrane zagadnienia z geodezji wyższej Ćwiczenie nr 4 – sprawozdanie

Wykonanie:

Ćwiczenie zostało wykonane w języku programowania Python 3.10 z wykorzystaniem biblioteki numpy.

Dane wejściowe:

Dane z ćwiczenia 3.

nr = 15

Wyniki:

Zestawienie współrzędnych

	x_gk	y_gk	x_00	y_00	x_92	y_92
P1	5987333.979	114752.102	5985484.047	7483607.335	683142.845	614671.776
P2	5959512.261	115438.699	5957660.602	7483509.273	655340.602	615357.892
Р3	5988260.116	147533.794	5985484.047	7516392.665	684068.334	647430.520
P4	5960440.980	148416.660	5957660.602	7516490.727	656268.671	648312.768
P5	5973888.210	131584.215	5971572.324	7500049.031	669706.488	631492.106
P6	5973857.711	131536.011	5971543.205	7500000.000	669676.011	631443.936

Zestawienie pól powierzchni

P_elip	P_gk	P_00	P_92
915075126.393	918146744.826	917663338.597	916861789.275

Elementarna skala długości i zniekształcenia 1km

	m_gk	K_gk(1km)	m_00	K_00(1km)	m_92	K_92(1km)
P1	1.000162	0.162	1.000085	0.085	0.999462	-0.538
P2	1.000164	0.164	1.000087	0.087	0.999464	-0.536
Р3	1.000268	0.268	1.000191	0.191	0.999567	-0.433
P4	1.000271	0.271	1.000194	0.194	0.999571	-0.429
P5	1.000213	0.213	1.000136	0.136	0.999513	-0.487
P6	1.000213	0.213	1.000136	0.136	0.999513	-0.487

Elementarna skala pól powierzchni i zniekształcenia 1ha

	m^2_gk	K^2_gk(1ha)	m^2_00	K^2_00(1ha)	m^2_92	K^2_92(1ha)
P1	1.000323	3.23	1.000008	0.08	0.998762	-10.238
P2	1.000328	3.28	1.000010	0.10	0.998764	-10.236
Р3	1.000535	5.35	1.000114	1.14	0.998867	-10.133
P4	1.000542	5.42	1.000117	1.17	0.998870	-10.130
P5	1.000426	4.26	1.000058	0.58	0.998813	-10.197
P6	1.000425	4.25	1.000059	0.59	0.998813	-10.197

Wnioski:

Odwzorowanie Gaussa-Krugera zaczęto stosować, gdyż jego zachowanie kątów jest wygodne, ale niewłaściwe jest używanie go dla obszarów o dużej różnicy w szerokości geograficznej, gdyż punkty im bardziej się oddalają od południka środkowego, tym bardziej stają się niedokładne.

Układ 1992 jest zastosowaniem odzworowania Gaussa-Krugera dla Polski z południkiem środkowym 19°.

Układ 2000 też jest zastosowaniem odzworowania Gaussa-Krugera dla Polski, ale ma wiele południków środkowych. Pozwala to na zachowanie mniejszej maksymalnej odległości punktów od jakiegoś południka środkowego w układzie, co zmniejsza niedokładność tych punktów.