9.8 Appello 2014-07-21

9.8.1 Esercizio 1

Enunciare e dimostrare il teorema di Rice

Soluzione

Il teorema di Rice asserisce che le proprietà non banali di un programma non sono ricorsive.

Ovvero dato $A \subseteq \mathbb{N}$ saturo e tale che $A \neq \mathbb{N}$ e $\neq \emptyset$, A è ricorsivo.

Questo si dimostra per riduzione $K \leq_m A$.

Sia e_0 un programma che calcola la funzione sempre indefinita ($\phi_{e_0} = \emptyset$). Questo programma può essere in A o in \overline{A} . Assumiamo che sia in \overline{A} .

Sia e_1 un programma in A, ed esiste perché $A \neq \emptyset$.

Serve quindi una funzione tale che $x \in K \Leftrightarrow f(x) \in A$.

Possiamo definire

$$g(x,y) = \begin{cases} \phi_{e_1}(y) & x \in K \\ \phi_{e_0}(y) = \uparrow \forall y & x \notin K \end{cases} = \phi_{e_1} \cdot \mathbb{1} \left(SC_K(x) \right)$$

g è calcolabile e totale, quindi per il teorema SMN esiste $f: \mathbb{N} \to \mathbb{N}$ calcolabile e totale, tale che $g(x,y) = \phi_{f(x)}(y)$.

f è funzione di riduzione perché

- $x \in K$: $\phi_{f(x)}(y) = g(x,y) = \phi_{e_1}(y) \forall y$ e quindi dal momento che A è saturo e che $e_1 \in A$, anche $f(x) \in A$.
- $x \notin K$: $\phi_{f(x)}(y) = g(x, y) = \uparrow = \phi_{e_0}(y) \forall y$ e quindi, dato che $e_0 \notin A$, anche $f(x) \notin A$, perché se $f(x) \in A$, anche e_0 dovrebbe essere in A dato che calcolano la stessa funzione.

Segue quindi che A non è ricorsivo, se $e_0 \notin A$. Assumendo invece che $e_0 \in A$, si può osservare che il complementare di un insieme saturo è anch'esso saturo e che se $B = \overline{A}$, $\overline{B} = A$ e $e_0 \in \overline{B}$ e quindi vale la dimostrazione precedente.

9.8.2 Esercizio 2

Esiste una funzione totale non calcolabile $f: \mathbb{N} \to \mathbb{N}$ tale che la funzione $g: \mathbb{N} \to \mathbb{N}$ definita per ogni $x \in \mathbb{N}$, da $g(x) = f(x) \div x$ sia calcolabile? Fornire un esempio di f oppure dimostrare che tale funzione non esiste.

Soluzione

Si esiste:

$$f(x) = \mathcal{X}_K(x) = \begin{cases} 1 & x \in K \\ 0 & x \notin K \end{cases}$$

(funzione caratteristica dell'insieme K, è noto che non è calcolabile). Con questa funzione si ha che:

$$g(x) = \begin{cases} 0 & x \ge 1 \\ 1 & x = 0 \text{ e } f(x) = 1 \\ 0 & x = 0 \text{ e } f(x) = 0 \end{cases} = \begin{cases} 0 & x \ge 1 \\ 1 & x = 0 \text{ e } x \in K \\ 0 & x = 0 \text{ e } x \notin K \end{cases} = \begin{cases} 0 & x \ge 1 \\ 1 & x = 0 \text{ e } \phi_x(x) \downarrow 0 \end{cases}$$

g risulta quindi essere calcolabile in quanto viene definita per casi e utilizzando solamente funzioni calcolabili. $\phi_x(x)$ può essere calcolato utilizzando la funzione universale.

verificar il caso in cui f(x) vale

9.8.3 Esercizio 3

Una funzione parziale è iniettiva quando per ogni $x, y \in dom(f)$, se f(x) = f(y), allora x = y. Studiare la ricorsività di $A = \{x | \phi_x$ è iniettiva $\}$.

Soluzione

L'insieme è saturo perché descrive una proprietà non banale delle funzioni calcolate dai programmi che appartengono all'insieme

Probabilmente A non è RE, perché per provare se una funzione è iniettiva è necessario verificare tutti i valori del dominio.

La funzione

$$f(x) = \begin{cases} x & x \le 3 \\ 0 & \text{altrimenti} \end{cases}$$

non è iniettiva e quindi non appartiene ad A, ma ammette una parte finita $\vartheta \in A$:

$$\vartheta = \begin{cases} x & x \leq 3 \\ \uparrow & \text{altrimenti} \end{cases}$$

e quindi per il teorema di Rice Shapiro, A non è RE.

Per quanto riguarda \overline{A} non si può fare lo stesso ragionamento perché una funzione iniettiva ha tutte le parti finite iniettive, e sembra valere anche il viceversa.

Per vedere se una funzione non è iniettiva, basta trovare x, y tali che $x \neq y$ e f(x) = f(y) e quindi stabilire l'appartenenza ad \overline{A} sembra essere semi-decidibile.

$$SC_{\overline{A}}(x) = \mathbb{Y} \left(\mu w. \left(\underbrace{S\Big(x, (w)_1, (w)_2, (w)_3\Big)}_{a = (w)_1 \in W_x} \wedge \underbrace{S\Big(x, (w)_4, (w)_5, (w)_6\Big)}_{b = (w_4) \in W_x} \wedge \left(\underbrace{(w)_1 \neq (w)_4}_{a \neq b} \right) \wedge \left(\underbrace{(w)_2 = (w)_5}_{\phi_x(a) = \phi_x(b)} \right) \right) \right)$$

 $SC_{\overline{A}}$ è calcolabile per composizione di funzioni calcolabili (quasi, l'uguaglianza e la disuguaglianza sono predicati, ma la loro funzione caratteristica è calcolabile) e quindi \overline{A} è RE.

9.8.4 Esercizio 4

Studiare la ricorsività di $B = \{x | x \in W_x \setminus \{0\}\}\$

Soluzione

B sembra essere RE, perché molto simile a K.

$$SC_B(x) = \begin{cases} 1 & x \in K \land x \neq 0 \\ \uparrow & x = 0 \\ \uparrow & x \notin K \end{cases} = \mathbb{1} \left(\mu w.\overline{sg}(x) \right) \cdot SC_K(x)$$

 SC_B è calcolabile per composizione di funzioni calcolabili e quindi B è RE.

 $\overline{B} = \{x | \phi_x(x) \uparrow\} \cup \{0\} = \overline{K} \cup \{0\}$ e quindi $\overline{K} \cup \{0\} \subseteq \overline{B}$. Essendo \overline{K} non RE si può effettuare la riduzione $\overline{K} \leq_m \overline{B}$ utilizzando come funzione la funzione identità e quindi anche \overline{B} non è RE.

9.8.5Esercizio 5

Enunciare il secondo teorema di ricorsione e dimostrare che esiste $n \in \mathbb{N}$ tale che $W_n = E_n$ $\{kn \mid k \in \mathbb{N}\}\$

Soluzione

Il teorema asserisce che data una funzione $f : \mathbb{N} \to \mathbb{N}$ calcolabile e totale, $\exists e \in \mathbb{N}$ tale che $\phi_e = \phi_{f(e)}$.

$$g(x,y) = \begin{cases} x \cdot y & \text{se } x \neq \text{multiplo di } y \\ \uparrow & \text{altrimenti} \end{cases} = xy \cdot \mathbb{1} \left(\mu z. |zx - y| \right)$$

ed è calcolabile perché definita utilizzando funzioni calcolabili, quindi per SMN esiste $f : \mathbb{N} \to \mathbb{N}$

calcolabile e totale tale che $g(x,y) = \phi_{f(x)}(y) \forall y$ e tale che $W_{f(x)} = E_{f(x)} = \{kx \mid k \in \mathbb{N}\}.$ Per il secondo teorema di ricorsione, esiste $x \in \mathbb{N}$ tale che $\phi_x = \phi_{f(x)}$ e quindi tale che $W_x = E_x = W_{f(x)} = E_{f(x)} = \{kx \mid k \in \mathbb{N}\}\$