MATLAB CHEAT SHEET

Throughout this document x and y will be either row or column vectors and A will always be a matrix. In all cases the entries are real numbers.

Basics	
clc	Clear command window
clear	Clear all variables
clf	Clear all plots
close all	Close all plots
doc function	Open help page for function
who	list variables on workspace
% This is a comment	Comments
ctrl-c	Abort the current operation. On mac 光+ . (the Command key and the pe- riod key) will also abort.
format short	Display 4 decimal places
format long	Display 15 decimal places
<pre>disp('text')</pre>	Print text

Defining and Changing Variables	
a = 3	Define variable a to be 3
b = 3e-5	Define variable b to be $0.00003 = 3e-5$
x = [1, 2, 3]	Set x to be the row vector $\left[1,2,3\right]$
x = [1; 2; 3]	Set x to be the column vector $[1,2,3]^T$
A = [1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12]	Set A to be a 3×4 matrix
x(2) = 7	Change x from $\left[1,2,3\right]$ to $\left[1,7,3\right]$
A(2,1) = 0	Change $A_{2,1}$ from $5\ { m to}\ 0$

Basic Arithmetic and Functions		
3*4, 7+4, 2-6, 8/3	2-6, 8/3 multiply, add, subtract and divide	
3^7	Compute 3^7	
sqrt(5)	Compute $\sqrt{5}$	
log(3)	Compute $\ln(3)$	
log10(100)	Compute $\log_{10}(100)$	
exp(3.5)	Compute $e^{3.5}$	
abs(-5)	Compute $ -5 $	
sin(5*pi/3)	Compute $\sin(5\pi/3)$	
floor(3.8)	Compute [3.8]	
ceil(3.8)	Compute [3.8]	

Constructing Matrices and Vectors	
zeros(12, 5)	Make a $12 imes 5$ matrix of zeros
ones(12, 5)	Make a $12 imes 5$ matrix of ones
A = []	make A an empty matrix
eye(5)	Make a 5×5 identity matrix
eye(12, 5)	Make a 12×5 identity matrix
linspace(1.4, 6.3, 1004)	Make a row vector with $1004~{\rm el}$ ements evenly spaced between $1.4~{\rm and}~6.3$
logspace(1.4, 6.3, 1004)	Make a row vector with 1004 elements that are logarithmically spaced between $10^{1.4}$ and $10^{6.3}$
7:15	Row vector of $7, 8, \ldots, 14, 15$
7:2:15	Row vector of $7, 9, 11, \ldots, 15$
4:-2:-2	Row vector of $4,2,\ldots,-2$

Operations on Matrices an	d Vectors
3 * x	Multiply every element of x by 3
x + 2	Add 2 to every element of x
x + y	Element-wise addition of two vectors \boldsymbol{x} and \boldsymbol{y}
A * y	Product of a matrix and vector
A * B	Product of two matrices
A .* B	Element-wise product of two matrices
A ^ 3	Square matrix \boldsymbol{A} to the third power
A .^ 3	Every element of \boldsymbol{A} to the third power
cos(A)	Compute the cosine of every element of \boldsymbol{A}
abs(A)	Compute the absolute values of every element of \boldsymbol{A}
Α'	Transpose of A
inv(A)	Compute the inverse of ${\cal A}$
det(A)	Compute the determinant of ${\it A}$
<pre>[eVecs, eVals]=eig(A)</pre>	Compute the eigenvectors (eVecs) and eigenvalues (eVals) of $\cal A$
<pre>[rows, cols] = size(A)</pre>	Get the size of A
numel(A)	Get the number of elements of ${\cal A}$

Constants	
pi	$\pi = 3.141592653589793$
i	Imaginary unit $\sqrt{-1}$
j	Imaginary unit $\sqrt{-1}$
NaN	Not a number (i.e. $0/0$)
Inf	Infinity
realmax	Largest positive floating-point number $1.7977 \cdot 10^{308}$
realmin	Smallest positive floating-point number 2.2251 \cdot 10^{-308}

Random Numbers	
rand(m,n)	returns an m by n matrix of random numbers sampled from a standard uniform distribution $\left[0,1\right]$
randn(m,n)	returns an m by n matrix of random numbers sampled from a standard Normal distribution with $\mu=0$ and $\sigma^2=1$

Slicing portions of Matrices or Vectors		
x(2:12)	The $2^{ m nd}$ to the $12^{ m th}$ elements of x	
x(2:end)	The 2^{nd} to the last elements of x	
x(1:3:end)	Every third element of x from the first to last	
A(5,:)	Get the 5^{th} row of A	
A(:,5)	:,5) Get the 5 th column of A	
A(5, 1:3)	Get the first to third elements in the 5 th row	

Array concatenation	
A = [x;y]	Concatenate arrays x and y vertically. x and y must have the same number of columns
A = [x y]	Concatenate arrays x and y horizontally. x and y must have the same number of rows

must have the same number of rows	
Summary statistics and others	
mean(x)	returns the mean value of the entries in vector \boldsymbol{x}
mean(A,1)	returns a row vector containing the mean of each column of ${\cal A}$
mean(A,2)	returns a column vector containing the mean of each row of ${\cal A}$
var(x)	returns the variance of the entries in vector \boldsymbol{x}
var(A,[],1)	returns a row vector containing the variance of each column of ${\cal A}$
var(A,[],2)	returns a column vector containing the variance of each row of ${\cal A}$
min(x)	returns the minimum value of the entries in vector \boldsymbol{x}
<pre>[minVal,idx] =min(A,[],1)</pre>	minVal returns a row vector with the minimum value of each column of A. idx returns a row vector with the indices at which the minimum of each column occurs. For max the syntax is the same.
<pre>[minVal,idx] =min(A,[],2)</pre>	minVal returns a column vector with the minimum value of each crow of A. idx returns a column vector with the indices at which the minimum of each row occurs. For max the syntax is the same.

Plotting	
figure	Create new empty figure window
<pre>subplot(m,n,p)</pre>	divides the current figure into an m- by-n grid and creates axes in the po- sition specified by p (MATLAB counts row-wise for subplot)
plot(x,y)	Plot y versus x (must be the same length)
<pre>scatter(x,y)</pre>	scatter plot of y versus x .
loglog(x,y)	Plot y versus x on a log-log scale (both axes have a logarithmic scale)
semilogx(x, y)	Plot y versus x with x on a log scale
semilogy(x, y)	Plot y versus x with y on a log scale
bar(x, y)	Bar chart. Draw bars of height y at locations specified by x
<pre>xlim([xmin xmax])</pre>	Force the x axis to be scaled between $x_{ m min}$ and $x_{ m max}$
<pre>ylim([ymin ymax])</pre>	Force the y axis to be scaled between $y_{ m min}$ and $y_{ m max}$
axis equal	Force the x and y axes to be scaled equally
title('A Title')	Add a title to the plot
<pre>xlabel('x label')</pre>	Add a label to the x axis
ylabel('y label')	Add a label to the y axis
legend('foo', 'bar')	Label 2 curves for the plot
grid	Add a grid to the plot
hold on	Multiple plots on single figure
hold off	Release hold on current figure

```
Loading Files
load('data.mat')
Load variables from file into workspace
```

```
Logicals

a = 10; % Assign a the value of 10
a == 5 % Test if a is equal to 5
false
a == 10 % Test if a is equal to 10
true
a >= 5 % Test if a is greater than or equal to 5
true
a < 11 % Test if a is less than 11
true
a ~= 4 % Test if a is not equal to 4
true
a > 1 && a ~= 10 % Test if a is greater than 1 AND
false % not equal to 10
a > 1 || a ~= 10 % Test if a is greater than 1 OR
true % not equal to 10
```

if x is a vector with N elements, this command returns a vector with N-1 elements as follows: $x_2-x_1,\,x_3-x_2,\,\ldots,\,x_N-x_{N-1}$

```
For loops

for k = 1:5
    disp(k);
end
```

```
conditional Statements

if a > 10
    disp('Greater than 10');
elseif a == 5
    disp('a is 5');
else
    disp('Neither condition met');
end
```

```
While loops

k = 0;
while k < 7
k = k + 1;
end
```

diff(x)

```
Functions

function output = addNumbers(x, y)
  output = x + y;
end

addNumbers(10, -5)
  5
```

```
Plotting
x = linspace(-3*pi, 3*pi, 1000);
y1 = sin(x);
y2 = cos(x);
figure;
% Set the axis limits
xlim([-3*pi, 3*pi]);
ylim([-1.5, 1.5]);
% Add axis labels
xlabel('x');
ylabel('y');
% Add a title
title('A plot of cos(x) and sin(x)');
% Add a legend
legend('sin(x)', 'cos(x)');
                   A plot of cos(x) and sin(x)
     1.5
                                              sin(x)
                                              cos(x)
      1
     0.5
     0
```

x = linspace(-3*pi, 3*pi, 1000); y1 = sin(x);y2 = cos(x);figure; % Set the axis limits xlim([-3*pi, 3*pi]); ylim([-1.5, 1.5]); % Add axis labels xlabel('x'); ylabel('y'); % Add a title title('A plot of cos(x) and sin(x)'); % Add a legend legend('sin(x)', 'cos(x)'); subplot(2,1,2) scatter(y1,y2); axis equal; title('scatter plot of sine vs. cosine'); xlabel(' sine '); ylabel(' cosine '); A plot of cos(x) and sin(x) sin(x) 0.5 -0.5 -1.5 -2 2 scatter plot of sine vs. cosine -0.5 sine

Plotting with subplots

-0.5

-1

-1.5

-5

0

5

MIT OpenCourseWare https://ocw.mit.edu/

9.40 Introduction to Neural Computation Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.