Київський національний університет ім.Т.Шевченка

Фізичний факультет

КІЛЬЦЯ НЬЮТОНА

Автор: Холоімов Валерій

5 мая 2021 г.

1 Вступна частина

Теоретичні відомості

Механізм утворення кілець Ньютона – інтерференція у тонкій плівці повітря, яка утворюється, якщо притиснути лінзу до скляної пластинки. Тоді, за рахунок змінної товщини плівки, власне і будуть спостерігатися кільця – інтерференційні максимуми та мінімуми. Різниця ходу виражається формулою

$$\Delta = 2\delta_m + \frac{\lambda}{2}$$

тут
$$\delta_m = \frac{r^2_m}{2R}$$

тут $\delta_m=\frac{r^2_m}{2R}$ Звідси, а також з умов утворення мінімумів $\Delta=m\lambda+\frac{\lambda}{2}$ одержуємо:

$$r_m = \sqrt{mR\lambda}$$

Для максимумів аналогічно

$$r_m = \sqrt{(m + \frac{1}{2})R\lambda}$$

2 Практична частина

2.1 Визначення радіуса кривизни лінзи R

Встановлюємо зелений світофільтр $\lambda = 555$. Робимо виміри для світлих смуг

Номер кільця	Радіус кільця, мм	Радіус кривизни лінзи, м
1	3,18	12,14703
2	4,0975	12,10055
3	4,87	12,20947
4	5,51	12,1562
5	6,07	12,0704
6	6,575	11,98354
7	7,02	11,83914
8	7,425	11,68641
9	7,365	10,28795
10	7,72	10,2271
11	8,085	10,24163
12	8,9075	11,43691

Усереднюємо і отримуємо радіус кривизни $R=11,53,\epsilon_R=4,4\%$

2.2 Визначення довжини хвилі червоного скла

Вважаємо радіус відоомим, тоді отримуємо:

Номер кільця	Радіус кільця, мм	Довжина хвилі, нм
1	3,365	654,7109
2	4,425	679,2931
3	5,245	681,7005
4	5,93	677,7469
5	6,53	672,4103
6	7,1	672,6266
7	7,56	660,9263
8	8,065	663,6827
9	7,975	580,642
10	8,855	647,6771
11	9,035	615,6433
12	9,595	638,779
13	9,925	632,8459
14	10,26	629,6474

Отримані результати для хвилі червоного кольору: $\lambda = 651, \epsilon_{\lambda} = 2,6\%$

2.3 Визначення довжини хвилі синього світла

Номер кільця		Радіус кільця, мм	Довжина хвилі, нм
	1	3,29	375,5108
	2	3,915	379,8098
	3	4,68	422,1336
	4	5,32	446,304
	5	5,795	448,088
	6	6,345	465,556
	7	6,775	468,349

Отримані результати для хвилі синього кольору: $\lambda = 429, \epsilon_{\lambda} = 8,6\%$

3 Висновки

Ми дослідили явище утворення кілець Ньютона та встановили залежності радіусу кілець r_m від довжини хвилі λ та радіусу кривизни дзеркала R. Визначити радіус кривизни лінзи та довжину хвилі червоного світла вдалося з високою точністю, а виміряти довжину хвилі синього світла вдалося не так точно, вірогідно, експериментальні дані були неточні. Похибки виникають в процесі замірів, оскільки важко визначити де саме знаходиться максимум чи мінімум, а не просто якісь добре чи погано освітлені точки. В цілому, результати задовільні і співпадають з очікуваними.