Appello di Giugno

Fisica Nucleare e Subnucleare I

21 Giugno 2022

Esercizio 1

Una sorgente di 241 Am emette particelle α di energia cinetica $E_{\alpha}=5.5\,\mathrm{MeV}$, che vengono fatte impattare su una lamina di oro ($^{197}_{79}$ Au), con densità $\rho=19\,300\,\mathrm{kg/m^3}$ spessa $\delta=50\,\mu\mathrm{m}$. Un rivelatore, avente una sezione efficace $S=10\,\mathrm{cm^2}$ è posto a una distanza $d=1\,\mathrm{m}$ dalla lamina, e conta le particelle α diffuse a diversi angoli θ , come in figura. Tra il punto di interazione e il rivelatore di particelle c'è il vuoto.

La sezione d'urto differenziale di interazione è descritta dalla formula di Rutherford

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left[\frac{zZ\alpha(\hbar c)}{4E}\right]^2 \frac{1}{\sin^4(\theta/2)}$$

- 1. Si calcoli la frazione di angolo solido sotteso dal contatore di particelle α .
- 2. Si stimi l'intensità minima della sorgente (numero di particelle α al secondo) per avere almeno 10 conteggi/s nel rivelatore, quando questo è posto a un angolo $\theta = 60^{\circ}$ rispetto alla direzione di volo del fascio incidente.
- 3. Se le particelle α possono essere accelerate a piacere, l'energia può essere sufficiente per produrre il mesone J/ψ tramite la:

$$\alpha + p \rightarrow J/\psi + \alpha + p$$

Si calcoli l'energia minima delle particelle α affinché la reazione possa avvenire (assumendo i protoni del bersaglio fermi).

Soluzione dell'esercizio 1

1. L'angolo solido sotteso dal rivelatore, che si può approssimare come un dischetto di superficie $S=10\,\mathrm{cm}^2$ posto a una distanza $d=1\,\mathrm{m}$ dal punto di interazione, vale

$$\Delta\Omega = \frac{S}{d^2} = 1 \times 10^{-3} \, \mathrm{sr}$$

La frazione di angolo solido corrispondente è perciò $\Delta\Omega/(4\pi)=0.008\%$.

2. La sezione d'urto vista dal rivelatore posto a $\theta=60^\circ$ è data da:

$$\sigma = \left[\frac{zZ\alpha(\hbar c)}{4E_{\alpha}}\right]^{2} \frac{\Delta\Omega}{\sin^{4}(\theta/2)} = \left[\frac{2\times79\times197\,\mathrm{MeV\,fm}}{137\times4\times5.5\,\mathrm{MeV}}\right]^{2} \frac{1\times10^{-3}}{0.0625} = 1.71\,\mathrm{fm^{2}} = 1.71\times10^{-26}\,\mathrm{cm^{2}}$$

La frequenza degli eventi osservati dipende dalla sezione d'urto e dal numero di bersagli per unità di volume nella lamina d'oro attraversata. L'oro ha numero atomico A = 197, e quindi la frequenza è:

$$f = I_{\alpha} \rho \times \delta \frac{N_A}{A} \sigma$$

dove I_{α} è l'inensità (numero di particelle α al secondo), e $N_A = 6.02 \times 10^{23}$ è il numero di Avogadro. Per avere la condizione richiesta, cioè una $f > 10 \, \mathrm{s}^{-1}$ si deve avere:

$$I_{\alpha} > \frac{A}{\rho \delta N_A} \frac{f}{\sigma} = \frac{197}{19.3 \,\mathrm{g/cm^3} \times 5 \times 10^{-3} \,\mathrm{cm} \times 6.02 \times 10^{23}} \frac{10}{1.71 \times 10^{-26} \,\mathrm{cm^2}} \approx 1.99 \times 10^6 \,\mathrm{s^{-1}} = 1.99 \,\mathrm{MHz}$$

3. La soglia della reazione è data in energia cinetica della particella α da:

$$T_{\alpha}^{\text{soglia}} = \frac{(m_p + m_{\alpha} + m_J)^2 - (m_p + m_{\alpha})^2}{2m_p} = m_J + \frac{m_J^2 + 2m_J m_{\alpha}}{2m_p} = 20.5 \,\text{GeV}$$

L'energia totale della particella α è data da:

$$E_{\alpha}^{min} = T_{\alpha}^{\text{soglia}} + m_{\alpha} = 24.3 \,\text{GeV}$$

Esercizio 2

L'esperimento Super-Kamiokande studia l'interazione di anti-neutrini muonici $\bar{\nu}_{\mu}$ con un rivelatore composto da un enorme bersaglio d'acqua (n=1.33) circondato da rivelatori di fotoni.

- 1. Scrivere una reazione in cui un $\bar{\nu}_{\mu}$, interagendo con un nucleone del bersaglio, produca un muone o un antimuone nello stato finale, e specificare che interazione è responsabile per tale processo.
- 2. I muoni prodotti hanno impulso medio di $p=500\,\mathrm{MeV/c}$ e producono luce Čerenkov nell'acqua, a una distanza media di $L=10\,\mathrm{m}$ dai rivelatori di fotoni. Determinare il diametro medio D degli anelli Čerenkov prodotti, quando raggiungono i rivelatori dei fotoni, come schematizzato in figura.

Soluzione dell'esercizio 2

1. La reazione in questione sarà del tipo:

$$\bar{\nu}_{\mu} + p/n \to \mu^{\pm} + X$$

Per bilanciare la reazione bisogna conservare: la carica elettrica Q, il numero barionico B, e il numero leptonico muonico L_{μ} . La soluzione è:

$$\bar{\nu}_{\mu} + p \rightarrow \mu^{+} + n$$

L'interazione responsabile per questa reazione è necessariamente la forza debole, dato che i neutrini interagiscono solo debolmente.

2. Se i muoni hanno p=500 MeV, allora hanno $E=\sqrt{p^2+m^2}=511$ MeV, e quindi $\beta=p/E=0.978$ e $\gamma=E/m=511/106=4.82$. (La luce Čerenkov è emessa dato che $\beta>1/n=0.75$.) L'angolo Čerenkov θ_C è dato da:

$$\theta_C = \cos^{-1}\left(\frac{1}{\beta n}\right) = 0.69$$

Il raggio R dell'anello prodotto a una distanza $L=10~\mathrm{m}$ si trova con la trigonometria:

$$\tan \theta_C = \frac{R}{L}$$

$$\Rightarrow R = L \tan \theta_C = 8.3 \text{ m}$$

Il diametro D sarà dunque D = 2R = 16.6 m.

Esercizio 3

Un fascio composto da protoni, positroni e particelle α con impulso $p=1\,\mathrm{GeV/c}$ entra in una regione lunga $L=1\,\mathrm{m}$ in cui è presente un campo magnetico B orientato nella direzione ortogonale al moto, come in figura.

3

- 1. Determinare l'intensità del campo B in modo che all'uscita dello spettrometro magnetico le particelle α si siano discostate di almeno d=3 cm da protoni e positroni. Mettersi nell'approssimazione in cui il raggio di curvatura è molto maggiore di L.
- 2. Dopo il campo magnetico, protoni e positroni passano attraverso un contatore Čerenkov (Č) con indice di rifrazione n = 1.1. Determinare se positroni e protoni producono o meno luce Čerenkov.
- 3. Successivamente, i protoni e positroni colpiscono un assorbitore di piombo ($^{207}_{82}$ Pb, $\rho = 0.0113$ kg/cm³, $X_0 = 0.56$ cm, $\langle I_{ion} \rangle = 845$ eV) lungo $l_{Pb} = 5$ cm. Determinare se protoni e positroni sono completamente assorbiti nel piombo. (Approssimare la perdita di energia per ionizzazione a quella prevista al minimo di ionizzazione. Si trascurino le differenze in termine di ionizzazione tra positroni e altre particelle cariche, la correzione di shell e l'effetto densità. Si trascuri poi l'effetto delle interazioni nucleari.)

Soluzione dell'esercizio 3

1. Visto che tutte le particelle hanno lo stesso impulso, nella regione di campo magnetico subiranno una forza di Lorentz p = qRB che sarà la stessa per positroni e protoni (che hanno la stessa carica) e doppia per le particelle α (che ha carica doppia). La deviazione x dalla direzione iniziale, dopo una regione di campo magnetico B lunga L è data da:

$$x = q \frac{BL^2}{2n}$$

Quindi:

$$d = x_{\alpha} - x_{e,p} = (q_{\alpha} - q_{e,p}) \frac{BL^2}{2p}$$

E quindi, ricavando B:

$$B = \frac{2dp}{(q_{\alpha} - q_{e,p})L^2}$$

Passando a unità naturali:

$$B[{\rm T}] = \frac{2d[{\rm m}]p[{\rm GeV}]}{0.3L^2[{\rm m}^2]} = \frac{2\cdot 0.03\cdot 1}{0.3\cdot 1^2} = 0.2~{\rm T}$$

- 2. Le particelle producono luce Čerenkov se hanno $\beta > 1/n = 0.91$. Un impulso p = 1 GeV corrisponde a $\beta_e \approx 1$ per positroni, e a $\beta_p \approx 0.73$ per protoni. Quindi solo i positroni producono luce Čerenkov.
- 3. Per i protoni dobbiamo considerare la perdita di energia per ionizzazione: usando la perdita al minimo di ionizzazione di circa 1.7 MeV g⁻¹ cm² · $\rho_{Pb} \approx 19.2$ MeV/cm (dove si è moltiplicato per la densità del piombo dopo averla trasformata in g/cm³). Si ha quindi una perdita di energia per ionizzazione all'interno del piombo pari a:

$$\Delta E_{ion} = \left(\frac{dE}{dx}\right) \cdot d_{Pb} = 19.2 \cdot 5 = 96 \text{ MeV}$$

Quindi i protoni non sono assorbiti.

Se si volesse usare la formula di Bethe-Bloch approssimata per calcolare la perdita di energia per ionizzazione:

$$-\frac{1}{\rho} \frac{\mathrm{d}E}{\mathrm{d}x} = C \frac{Z}{A} \left(\frac{z}{\beta}\right)^2 \left[\log \frac{2m_e c^2 (\beta \gamma)^2}{\langle I \rangle} - \beta^2 \right]$$

usando la costante $C \approx 0.3\,\mathrm{MeV/gcm^2}$, i valori dati per il piombo: Z=82 e A=207, e la carica del protone z=1, in unità di cariche elementari si ottiene:

$$-\frac{1}{\rho}\frac{\mathrm{d}E}{\mathrm{d}x} \approx 1.54\,\mathrm{MeVg^{-1}cm^2}$$

e quindi allo stesso modo calcoliamo la perdita di energia per ionizzazione moltiplicando per la densità e il percorso nel piombo:

$$\Delta E_{ion} = \frac{1}{\rho} \left(\frac{dE}{dx} \right) \cdot \rho \cdot d_{Pb} = 87 \,\text{MeV}$$

e quindi circa lo stesso valore che abbiamo usato usando l'approssimazione di m.i.p..

Per i positroni, oltre all'energia persa per ionizzazione, bisogna tenere in considerazione anche le perdite di energia per radiazione. Infatti si può verificare che la loro energia è maggiore dell'energia critica del piombo ($E_C \approx 700\,MeV/Z \approx 8\,MeV$). Dopo 5 cm di piombo, i positroni avranno perso in media un'energia pari a:

$$\Delta E = E(1 - \exp\{-l_{Pb}/X_0\}) = 999.9 \text{ MeV}$$

Quindi, se si sommano le energie perse dai positroni per ionizzazione e radiazione, si può concludere che sono assorbiti nel piombo.

Part.	$ m M \ [MeV/c^2]$	I	I_3	$J^{P(C)}$	В	S	τ [s]
π^+	139.6	1	1	0-	0	0	$2.6 \ 10^{-8}$
π^-	139.6	1	-1	0-	0	0	$2.6 \ 10^{-8}$
π^0	135.0	1	0	0-+	0	0	8.4×10^{-17}
K^+	493.7	1/2	1/2	0-	0	1	$1.2 \ 10^{-8}$
K^-	493.7	1/2	-1/2	0-	0	-1	$1.2 \ 10^{-8}$
K^0	497.6	1/2	-1/2	0-	0	1	non definita
\overline{K}^0	497.6	1/2	1/2	0-	0	-1	non definita
p	938.272	1/2	1/2	$1/2^{+}$	1	0	stabile
n	939.565	1/2	-1/2	$1/2^{+}$	1	0	8.79×10^{2}
ϕ^0	1019.5	0	0	1	0	0	1.54×10^{-22}
$ ho^0$	770	1	0	1	0	0	4.5×10^{-24}
ρ^+	770	1	1	1-	0	0	4.5×10^{-24}
ρ^-	770	1	-1	1-	0	0	4.5×10^{-24}
$\frac{f_2^0}{d(pn)}$	1275.5	0	0	2++	0	0	6.76×10^{-21}
d(pn)	1875.6	0	0	1+	2	0	stabile
$\alpha({}_{2}^{4}He)$	3727.4	0	0	0+	4	0	stabile
Λ^0	1115.7	0	0	$1/2^{+}$	1	-1	2.63×10^{-10}
Σ^+	1189.4	1	1	$1/2^{+}$	1	-1	8.01×10^{-11}
Σ^0	1192.6	1	0	$1/2^{+}$	1	-1	7.4×10^{-20}
$ \begin{array}{c c} \Sigma^{+} \\ \Sigma^{0} \\ \hline \Sigma^{-} \\ \hline \Xi^{0} \\ \hline \Xi^{-} \end{array} $	1197.3	1	-1	$1/2^{+}$	1	-1	1.48×10^{-10}
Ξ^0	1314.9	1/2	1/2	$1/2^{+}$	1	-2	2.90×10^{-10}
Ξ-	1321.7	1/2	-1/2	1/2+	1	-2	1.64×10^{-10}
Ξ^{0*}	1531.8	1/2	1/2	$3/2^{+}$	1	-2	7.23×10^{-23}
Ξ^{0*} J/ψ	3096.9	0	0	1	0	0	7.2×10^{-21}

Tabella 1: Massa (M), isospin $(I, e \text{ sua terza componente } I_3)$, spin (J), parità (P), coniugazione di carica (C), stranezza (S), numero barionico (B) e vita media (τ) di diverse particelle adroniche.

Part.	${ m M~[MeV/c^2]}$	τ [s]
e^-	0.511	stabile
$\overline{\mu^-}$	105.6	2.2×10^{-6}
τ^{-}	1776	2.9×10^{-13}
$\nu_{e/\mu/ au}$	0	stabile

Tabella 2: Massa (M) e vita media (τ) dei leptoni.

Costanti utili:

- $\hbar c = 197 \,\mathrm{MeV}\,\mathrm{fm}$
- \bullet costante di normalizzazione per $\frac{\mathrm{d}E}{\mathrm{d}x}$ di ionizzazione: $C=0.307~\mathrm{MeV~g^{-1}~cm^2}$