

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика, искусственный интеллект и системы управления»	
КАФЕЛРА «П	рограммное обеспечение ЭВМ и информационные технологии»	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОЙ РАБОТЕ

HA TEMY:

«Мобильное приложение для изучения японского языка»

Студент <u>ИУ7-61Б</u> (Группа)	(Подпись, дата)	Корниенко К. Ю. (И. О. Фамилия)
Руководитель курсовой работы	(Подпись, дата)	<u>Шибанова Д. А.</u> (И. О. Фамилия)

СОДЕРЖАНИЕ

\mathbf{B}	ВЕД	ЕНИЕ	3
1	Ана	алитический раздел	4
	1.1	Использование цифровых технологий в изучении языков	4
	1.2	Базы данных, системы управления базами данных	4
	1.3	Выбор Системы Управления Базами Данных	5
	1.4	Обзор существующего программного обеспечения для упроще-	
		ния изучения японского языка	6
2	Koi	нструкторский раздел	7
3	Tex	нологический раздел	8
4	Исо	следовательский раздел	9
3.	АКЛ	ЮЧЕНИЕ	10
\mathbf{C}	пис	сок использованных источников	12
П	РИЛ	ЮЖЕНИЕ А	13

ВВЕДЕНИЕ

В последние годы распространена идея использования цифровых технологий для помощи студентам в преодолении трудностей, связанных с изучением японского языка, таких как сложная система письма, грамматика и синтаксис, а также необходимость запоминания большого количества новых слов и символов [1]. Также рассматривается применение сетевого обучения, как парадигмы в дистанционном обучении для улучшения взаимодействия между учащимися путем создания виртуальных общностей учащихся [2].

Одной из наиболее важных проблем, с которым сталкивается человек при изучении японского языка — сложная система письма которая включает в себя два алфавита и иероглифику. Оптическое распознавание символов может облегчить изучение японского языка, преобразуя изображения, содержащие японский язык, в текстовые документы, для более легкой обработки, перевода и изучения иероглифов [3].

Цель работы — разработать мобильное приложение для упрощения изучения японского языка.

Для достижения поставленной цели, необходимо выполнить следующие задачи:

- провести анализ вариантов представления текстов и словарей на японском языке в базе данных;
- провести анализ систем управления базами данных и обосновать выбор используемой в разработке приложения системы для хранения данных;
- выполнить проектирование базы данных;
- описать взаимодействие компонентов системы;
- разработать интерфейс доступа к базе данных;
- исследовать производительность при работе со строками в хранимых процедурах и на стороне клиента.

1 Аналитический раздел

В данном разделе представлен обзор существующего ПО и подходов к упрощению изучения японского языка с помощью систем оптического распознавания текстов. Также введены основные сведения о построении баз данных для текстов на японском языке и словарей иероглифики.

1.1 Использование цифровых технологий в изучении языков

Использование цифровых технологий в изучении японского языка является актуальным и эффективным подходом для изучения японского языка и повышения мотивации в процессе изучения [4]. Проблемы, с которыми сталкиваются изучающие японский язык, включают необходимость запоминания большого количества новых слов и иероглифов, а также сложности в понимании контекста и культурных отличий.

Во время круглого стола по технологиям для усточнивого развития, организованного ЮНЕСКО в Париже в 2013 г., проведенные исследования и изученные отчеты, выделяющие значительное преимущество применения информационных технологий в изучении языков и в преподавании, позволили сделать вывод о главенствующей роли цифровизации в формировании коллективных знаний [5].

1.2 Базы данных, системы управления базами данных

База данных (БД) — это компьютеризированная система, основное назначение которой — хранить информацию, предоставляя пользователям средства ее извлечения и модификации [6, с. 46]. Базы данных используются для различных целей, таких как управление бизнесом, научные исследования и медицинские записи.

Система управления базами данных (СУБД) - это программное обеспечение, которое позволяет пользователям создавать, управлять и обрабатывать данные в БД [7, с. 10—12]. СУБД предоставляет интерфейс для работы с данными, а также обеспечивает безопасность и целостность данных.

СУБД и БД тесно связаны, поскольку системы управления базами

данных обеспечивают доступ к данным, хранящимся в БД, и позволяют пользователям выполнять операции с данными.

1.3 Выбор Системы Управления Базами Данных

Для разработки мобильного приложения, которое будет преобразовывать фотографии текстов на японском языке в текстовые документы, может быть использована как реляционная система управления базами данных, так и нереляционная. При разработке приложения будет использована реляционная система управления базами данных, так как она позволяет оформить ролевую модель и хранить структурированные данные [8].

Реляционные системы управления базами данных характеризуются использованием реляционной модели управления, отличающуюся табличной формой представления данных, а также применением формальной математики и реляционных вычислений для обрабатываемых данных [9].

Данные, в реляционных моделях, представляют собой двумерный массив и характеризуются следующими особенностями:

- любая составляющая таблицы является одной составляющей данных;
- любой столбец имеет свое уникальное имя;
- отсутствие одинаковых строк в таблице;
- все составляющие в столбцах имеют однородный тип;
- строки и столбцы имеют произвольный порядок [10].

Основные современные СУБД основаны на реляционной модели данных, на таблице 1.1 представлен сравнительный анализ некоторых из них.

Таблица 1.1 – Сравнительный анализ реляционных СУБД

СУБД	Лицензия	Масштабируемость	Скорость вы-	
СУБД	лицензия	масштаопруемость	полнения запросов	
MSSQL [11]	проприетарная	вертикальная,	высокая	
		комплексная		
MariaDB [12]	GNU GPL	вертикальная	средняя	
	открытый			
PostgreSQL [13]	исходный	вертикальная	высокая	
	код			

PostgreSQL обладает высокой производительностью и безопасностью [10], а также является бесплатным программным продуктом с открытым исходным кодом, что делает его доступным для использования при разработке мобильного приложения. Кроме того, PostgreSQL имеет хорошую поддержку хранимых процедур и триггеров, имеет хорошую поддержку для языков SQL и Unicode, что важно для работы с японским языком. Например, PostgreSQL поддерживает полнотекстовый поиск на японском языке и имеет встроенную поддержку для японских иероглифов [13], что делает его хорошим выбором для разрабатываемого приложения.

1.4 Обзор существующего программного обеспечения для упрощения изучения японского языка

Таблица 1.2 – Обзор приложений для упрощения изучения японского языка

ПО	Duolingo	Memrise	Lingodeer	WaniKani
	Бесплатно с	Бесплатно с	Бесплатно с	
Цена	платными	платными	платными	платно
	функциями	функциями	функциями	
	поровол	поровол	поровол	кана,
Типы	перевод,	перевод,	перевод,	кандзи,
упражнений	аудирование, грамматика	аудирование,	аудирование, грамматика	слова,
	грамматика	грамматика	трамматика	грамматика

2 Конструкторский раздел

3 Технологический раздел

4 Исследовательский раздел

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Мухтарова A. A. Использование ИТ-технологий при изучении английского и японского языка // Умная цифровая экономика. 2022. Т. 2, N = 3. С. 34 = 41.
- 2. Cheng T. Applying networked learning to improve learner interactions: A new paradigm of teaching and learning in ODL // Asian Association of Open Universities Journal. 2013. T. 8. C. 67—85. DOI: 10.1108/AA0UJ-08-02-2013-B006.
- 3. Recognizing modern Japanese magazines by combining Deep Learning with language models / N. T. Nguyen [и др.] // 2021 13th International Conference on Knowledge and Systems Engineering (KSE). 2021. С. 1—6. DOI: 10.1109/KSE53942.2021.9648643.
- 4. Sasanti N. S. Japanese Language Learning Consistency in the Digital Era // Jurnal Ilmiah Lingua Idea. 2022. T. 13. C. 207—219.
- Febrianty F., Ricardo R. Information Technology for Japanese Learning //
 IOP Conference Series: Materials Science and Engineering. 2019. T. 662,
 № 2. C. 022117. DOI: 10.1088/1757-899X/662/2/022117. URL: https://dx.doi.org/10.1088/1757-899X/662/2/022117.
- 6. Дейт К. Д. Введение в системы баз данных. М. : Издательский дом "Вильямс", 2005.
- 7. Elmasri R., Navathe S. B. Fundamentals of Database Systems / под ред. M. Hirsch. London : Pearson, 2010.
- 8. A Malik A Burney F. A. A Comparative Study of Unstructured Data with SQL and NO-SQL Database Management Systems // Journal of Computer and Communications. 2020. T. 8. C. 59—71. DOI: 10.4236/jcc. 2020.84005.
- 9. $\mathit{Meŭep\ M}$. Теория реляционных баз данных. М. : Мир, 1987.
- 10. K H Bacuльева Γ . \mathcal{A} . X. Реляционные базы данных // Colloquium-Journal. Warszawa, 2020. С. 22—23.
- 11. Microsoft: SQL Server. [Электронный Ресурс]. Режим Доступа: https://www.microsoft.com/en-us/sql-server/ (дата обращения: 13.04.2023).

- 12. MariaDB Server: The open source relational database. [Электронный Pecypc]. Режим Доступа: https://mariadb.org/ (дата обращения: 13.04.2023).
- 13. PostgreSQL: The World's Most Advanced Open Source Relational Database. [Электронный Ресурс]. Режим Доступа: https://www.postgresql.org/(дата обращения: 13.04.2023).

приложение а