第3节角的取舍(★★★)

强化训练

1. (2022 •四川雅安期末 •★★) 记 △ABC 的内角 A, B, C 的对边分别为 a, b, c, $(a^2 - b^2 + c^2)$ tan $B = \sqrt{3}ac$,

则
$$B =$$
____.

答案: $\frac{\pi}{3}$ 或 $\frac{2\pi}{3}$

解析: 所给等式中有 $a^2-b^2+c^2$ 这一结构, 想到余弦定理推论,

由余弦定理推论, $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$,所以 $a^2 + c^2 - b^2 = 2ac\cos B$,

代入 $(a^2-b^2+c^2)\tan B = \sqrt{3}ac$ 可得 $2ac\cos B\tan B = \sqrt{3}ac$,所以 $\sin B = \frac{\sqrt{3}}{2}$,

又 $0 < B < \pi$, 所以 $B = \frac{\pi}{3}$ 或 $\frac{2\pi}{3}$. (无其它条件限制,两个解都可取)

2. (2022 • 浙江台州期末 • ★★)在 $\triangle ABC$ 中, $a = 3\sqrt{2}$,c = 3,A = 45°,则 $\triangle ABC$ 的最大内角为()

(A)
$$105^{\circ}$$
 (B) 120° (C) 135° (D) 150°

(B)
$$120^{\circ}$$

$$(C) 135^{\circ}$$

(D)
$$150^{\circ}$$

答案: A

解析: 已知两边一对角,可用正弦定理先求另一边对角,

由正弦定理,
$$\frac{a}{\sin A} = \frac{c}{\sin C}$$
, 所以 $\sin C = \frac{c \sin A}{a} = \frac{3 \sin 45^{\circ}}{3\sqrt{2}} = \frac{1}{2}$,

本题给了a和c,应由大边对大角来判断C能否取钝角,

因为a > c,所以A > C,从而C为锐角,故 $C = 30^{\circ}$,所以 $B = 180^{\circ} - A - C = 105^{\circ}$.

3. $(2023 \cdot \text{全国乙卷 } \bullet \bigstar \star \star \star \star)$ 在 $\triangle ABC$ 中,内角 A,B,C 的对边分别为 a,b,c,若 $a \cos B - b \cos A = c$,

且
$$C=\frac{\pi}{5}$$
,则 $B=$ ()

$$(A) \frac{\pi}{10}$$

(B)
$$\frac{\pi}{5}$$

(C)
$$\frac{3\pi}{10}$$

(A)
$$\frac{\pi}{10}$$
 (B) $\frac{\pi}{5}$ (C) $\frac{3\pi}{10}$ (D) $\frac{2\pi}{5}$

答案: C

解析: 所给边角等式每一项都有齐次的边, 要求的是角, 故用正弦定理边化角分析,

因为 $a\cos B - b\cos A = c$,所以 $\sin A\cos B - \sin B\cos A = \sin C$,故 $\sin(A - B) = \sin C$ ①,

已知 C, 先将 C 代入, 再利用 $A+B+C=\pi$ 将①中的 A 换成 B 消元,

因为
$$C = \frac{\pi}{5}$$
,所以 $A + B = \pi - C = \frac{4\pi}{5}$,故 $A = \frac{4\pi}{5} - B$,代入①得 $\sin(\frac{4\pi}{5} - 2B) = \sin\frac{\pi}{5}$ ②,

因为 $A+B=\frac{4\pi}{5}$,所以 $0 < B < \frac{4\pi}{5}$,故 $-\frac{4\pi}{5} < \frac{4\pi}{5} - 2B < \frac{4\pi}{5}$,结合②可得 $\frac{4\pi}{5} - 2B = \frac{\pi}{5}$,所以 $B = \frac{3\pi}{10}$.

4. $(2022 \cdot 全国乙卷节选 \cdot \star \star \star \star)$ 记 ΔABC 的内角 A, B, C 的对边分别为 a, b, c, 已知 $\sin C \sin(A-B) = \sin B \sin(C-A)$, 若 A = 2B, 求 C.

 \mathbf{m} : (有A=2B,可代入已知的三角等式中,将其化简)

因为A=2B,且 $\sin C\sin(A-B)=\sin B\sin(C-A)$,所以 $\sin C\sin B=\sin B\sin(C-2B)$ ①,

(观察发现可约去 $\sin B$, 先通过分析B的范围,来看看 $\sin B$ 是否可能为0)

由 A=2B 可得 A>B, 所以 B 为锐角, 故 $\sin B>0$, 所以式①可化为 $\sin C=\sin(C-2B)$,

(要由此式得到 C 和 C-2B 的关系,得研究此二角的范围)

因为 $0 < B < \frac{\pi}{2}$,所以 $-\pi < -2B < 0$,又 $0 < C < \pi$,所以两不等式相加可得 $-\pi < C - 2B < \pi$ ②,

又因为 $\sin C > 0$, 所以 $\sin(C-2B) > 0$, 结合②可得 $0 < C-2B < \pi$, 所以 C = C-2B 或 $C + (C-2B) = \pi$,

若C=C-2B,则B=0,不合题意,舍去;

若
$$C+(C-2B)=\pi$$
,则 $B=C-\frac{\pi}{2}$,又 $A=2B$,所以 $A=2C-\pi$,

故
$$A+B+C=(2C-\pi)+(C-\frac{\pi}{2})+C=\pi$$
,解得: $C=\frac{5\pi}{8}$.

5. $(\star\star\star\star)$ 已知锐角 $\triangle ABC$ 的三个内角 A, B, C 的对边分别是 a, b, c, 且 $\frac{a+b}{\cos A+\cos B}=\frac{c}{\cos C}$, 求角 C.

解:(已知的等式左右都有齐次的边,可边化角)

因为 $\frac{a+b}{\cos A + \cos B} = \frac{c}{\cos C}$,所以 $\frac{\sin A + \sin B}{\cos A + \cos B} = \frac{\sin C}{\cos C}$,故 $\sin A \cos C + \sin B \cos C = \sin C \cos A + \sin C \cos B$,

(观察可发现将相同角的项组合,能用差角公式合并)

所以 $\sin A \cos C - \sin C \cos A = \sin C \cos B - \sin B \cos C$, 故 $\sin(A - C) = \sin(C - B)$ ①,

(要由上式研究角的关系,得分析角的范围)因为 ΔABC 是锐角三角形,所以A,B,C∈ $(0,\frac{\pi}{2})$,

由
$$0 < C < \frac{\pi}{2}$$
 可得 $-\frac{\pi}{2} < -C < 0$,与 $0 < A < \frac{\pi}{2}$ 相加可得 $-\frac{\pi}{2} < A - C < \frac{\pi}{2}$, 同理, $-\frac{\pi}{2} < C - B < \frac{\pi}{2}$,

结合
$$y = \sin x$$
 在 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上 \angle 知式①等价于 $A - C = C - B$,

所以
$$A+B=2C$$
 ,又 $A+B=\pi-C$,所以 $\pi-C=2C$,故 $C=\frac{\pi}{3}$.