

Boron Nitride Modulates Polymer Electrolyte Conductivity

Colby A. Snyder, Dr. Shreyas S. Pathreeker, Dr. George Papamokos, & Professor Russell J. Composto November 29, 2023

The case for safer sodium-ion electrolytes

- Sodium is 100x less expensive than lithium
- Ourrent electrolytes are flammable and risk thermal runaway
- Safer electrolytes are important for grid-scale energy storage

Thermal runaway is a major battery safety issue

Composite polymer electrolytes are promising

Fig. 1. Liquid (left) vs. polymer (right) electrolyte

Fig. 2. (adapted from Cheng et al., 2014). Ions can only move through amorphous domains

Boron nitride is an interesting CPE filler

- Hexagonal boron nitride (BN) may interact with Na+ and NO3- ions
- BN increases the transference number of PEO-LiTFSI electrolytes
 - Li+–BN binding energy: -157.6 kJ/mol
 - TFSI⁻—BN binding energy: -166.51 kJ/mol

Phase 1: Prepare and cast solutions

- PEO, NaNO₃, and h-BN mixed in water
- 0.3 wt.% and 3 wt% h-BN, 4:1 and 24:1 ether O:Na+ ratios, and controls (9 samples)
- Solutions cast on 1 in² glass slides (381 µm-thick)

Phase 2: Dry in vacuum oven

- Hot plate at 120°C for 1h
- Vacuum oven at 120°C for 16h
- Vacuum chamber at 25°C for 1h

PEO Film, 25 mm²

PEO crystal with 3% BN, 1.5 mm²

Phase 3: Characterize Samples

Structural Characterization

- Differential Scanning Calorimetry (DSC)
- X-Ray Diffraction (XRD)
- Fourier Transform Infrared Spectroscopy (FTIR)

Electrochemical Characterization

Electrochemical Impedance Spectroscopy (EIS)

Cryostat (EIS)

Adding BN affects PEO crystallinity

- Differential
 Scanning
 Calorimetry shows
 heat of melting
- Increasing BN to 0.3% increases crystallinity
- Crystallinity decreases at 3%
- Overall increased crystallinity could hinder ion mobility

Crystallinity affects ionic conductivity

Ionic conductivity is highest for BN-free samples, showing the effect of increased crystallinity

Conclusions

- Adding BN can increase PEO crystallinity via enhanced nucleation
- The effect of increased crystallinity dominates, decreasing ionic conductivity
- Sodium CPE properties may be tailored by changing the geometry of filler materials

Acknowledgements

I'd like to thank the following people and organizations for making this project possible: Vagelos Integrated Program in Energy Research (VIPER), NSF grant FMRG-2134715, Ben Ferko, Steve Szewczyk, Mohamed Hassan, Professor Eric Detsi, Katie Sun, and my mentor, Shreyas Pathreeker.

Supplementary Information

Phase 4: Compare to DFT Calculations

99

- Significant BN-salt binding energies
- Trends differ from lithium-ion literature

Complexation Energy (kcal/mol)

BN decreases PEO-NaNO₃ complexation

- PEO complexes with Na+, decreasing crystallinity
- FTIR peaks (840 and 1100 cm⁻¹) broaden with salt
- Peaks narrow when BN is added

XRD peak area varies with h-BN loading

For salt-doped samples, total peak area (crystallinity) increases with 0.3% h-BN then decreases with 3% h-BN

Additional XRD from Trial 2

No significant
NaNO3 peaks
appear in the
24:1 XRD traces

Baseline-Corrected XRD, 24:1 Samples, 17-35 degrees, degree 5 fit

Ionic Conductivity and XRD Peak Area

• Ionic conductivity follows the trend $IC_{No h-BN} > IC_{3.0\%} > IC_{0.3\%}$

• Interestingly, crystallinity follows the inverse trend $X_{No h-BN} < X_{3.0\%} < X_{0.3\%}$

Salt Crystal image (4:1 NaNO3, 3%

DSC on polymer electrolytes

DSC shows the concentration-dependent effect of

PEO-NaNO₃ system is soluble in H₂O

