https://doi.org/10.1016/j.techfore.2023.123011

Revealing the Influence of AI and Its Interfaces on Job Candidates' Honest and Deceptive

Impression Management in Asynchronous Video Interviews

Hung-Yue Suena*, Kuo-En Hunga

^aDepartment of Technology Application and Human Resource Development, National Taiwan Normal University, Taipei City, Taiwan. R.O.C.

Abstract

Automated video interviews powered by artificial intelligence (AI) are increasingly being adopted by employers to screen job candidates despite concerns regarding the humanity and transparency of AI. Accordingly, researchers and practitioners advocate overcoming these concerns by refining AI interfaces in terms of tangibility, immediacy, and transparency. However, AI video interviews featuring different interfaces may impact interviewees' tendencies to engage in impression management behaviors (IMs), which can either improve or impair personnel selection validity. This study addressed calls for research to investigate the issues mentioned above by conducting a field study to explore the ways in which AI and AI interfaces affect candidates' IMs in asynchronous video interviews (AVIs). We developed three AVI interfaces and measured real job applicants' self-reported IMs across four experimental treatments. We found that different AI interfaces could increase or decrease candidates' honest IMs and deceptive IMs in different ways. An exploratory analysis also found that candidates' interview anxiety could be mitigated by an AI interface.

Keywords: Anthropomorphism, avatar, chatbot, AI opacity, human-AI interaction (HAII), applicant faking

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011

1 Introduction

According to Harvard Business Review, up to 86% of employers have adopted automated video interviews powered with artificial intelligence (AI) to screen their job candidates (Jaser et al., 2022). Different from traditional interviews that rely on face-to-face interaction, phone interviews, or synchronous video interviews (SVIs) (e.g., Microsoft Teams, Skype, WebEx, Zoom), such automated video interviews rely on two essential components: asynchronous video interview platforms (AVIs) and AI algorithms.

AVIs refer to one-way interviews where candidates respond to questions while being recorded on a webcam, which interviewers can review at a later time (Lukacik et al., 2022). Additionally, the rise of AI applications has led to the inclusion of AI algorithms in AVIs to aid in hiring recommendations (Langer et al., 2017; 2019ab). Known as AI-powered AVIs (AI-AVIs), these interviews use a combination of acoustic and image recognition along with machine learning to evaluate candidates' verbal, paraverbal, and nonverbal communication cues. This helps employers screen job applicants during the initial stage of personnel selection (Hickman et al., 2022; Su et al., 2021).

Although the use of AI-AVIs is rising in the post-COVID era (Kim and Heo, 2022), "no humanity" and "no transparency" are concerns about applying this technology in hiring (Jaser et al., 2022). Accordingly, some AI-AVI vendors endow the tools with interfaces of anthropomorphism and transparency (see Glikson and Woolley, 2020) to diminish concerns. For example, job candidates can see a human-like virtual agent and perceive tangibility in Robot Vera (ai.robotvera.com). Job candidates can obtain responses from a chatbot in the same manner as human communication online and can experience immediacy by way of Paradox Olivia

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011

(paradox.ai). Job candidates can be informed how the AI will assess them and feel transparency in HireVue (hirevue.com). The earlier version of HireVue did not have any apparent AI interface.

Previous research on AI-AVI has primarily focused on its technical aspects (Su et al., 2021), as well as its social factors on various impacts, such as interviewer ratings (Suen et al., 2019a), interviewee perception (Nørskov et al., 2023), trust (Suen and Hung, 2023), discrimination (Köchling and Wehner, 2020), ethics (Hunkenschroer and Luetge, 2022), and bias detection (Wall and Schellman, 2021), in the interdisciplinary field of technology and social behaviors. However, there is still insufficient understanding of how job candidates present themselves differently across AI interfaces in AI-AVI.

During employment interviews, job seekers aim to present themselves in a favorable light to influence the interviewer's evaluation and increase their chances of receiving a job offer (Swider et al., 2016). This communication strategy is known as impression management (IM) and can be honest or deceptive, with the latter involving faking or dishonesty (Amaral et al., 2019). While honest IM may enhance selection validity, deceptive IM can introduce bias into hiring decisions (Bourdage et al., 2018). Previous studies have indicated that experienced interviewers struggle to detect and identify interviewees' IM behaviors (IMs), which can distort or inflate interview evaluation (Roulin et al., 2015). This effect holds even in highly structured interviews (Amaral et al., 2019).

AI-AVIs offer the advantages of cost savings and convenience in screening job applicants (Woods et al., 2020) and have been linked to increased completion rates for job applications (van Esch et al., 2019). However, it is uncertain how AI and its interfaces may affect candidates' IMs compared to non-AI in AVI conditions (Basch et al., 2020). Although AVIs can improve the

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011

personnel selection process (Lukacik et al, 2022; Woods et al., 2020), AI-mediated AVIs may influence candidates' behavior and compromise selection validity (Basch et al., 2020; Bill and Melchers, 2023).

Therefore, it is crucial for both scholars and practitioners to determine whether job candidates exhibit different IMs during AI video interviews since these behaviors can significantly affect hiring decisions and introduce biases (Langer et al., 2019a), thereby altering employers' selection validity (Basch et al., 2020). As a result, studies on human-AI interactions have called for research on job candidates' self-presentation (Jalagat and Aquino, 2022; Treem et al., 2020) and digital personnel selection interviews (Basch et al., 2020; Nørskov et al., 2023; Roulin et al., 2021).

As mentioned, AI-AVI is characterized by AVI, AI, and AI interfaces. AVI involves the automatic software-based interview process (as opposed to SVI, which is conducted by human interviewers via video conference software). AI involves the complete or partial evaluation of interviewee performance using AI algorithms. AI interfaces can have various features, such as tangibility, immediacy, and transparency (Suen and Hung, 2023). This study aims to investigate the effects of AI-AVI on job candidates' IMs, specifically 1) whether job candidates exhibit different honest/deceptive IMs in an AI-based AVI than in a non-AI-based AVI (AI-AVI vs. non-AI-AVI) and 2) whether job candidates exhibit different honest/deceptive IMs across AI interfaces with or without tangibility, immediacy, and transparency in the AI-AVI.

To address these research questions, the authors created AI interfaces to represent tangibility using a 2-D affinitive avatar designed based on anthropomorphism principles (Waytz et al., 2014) and uncanny valley theory (Mori, 1970). To convey immediacy, they developed a

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011 chatbot based on a standard script (Adamopoulou and Moussiades, 2020). To achieve transparency, they provided a text description explaining how the AI assesses an interviewee, following the approach described in Bedué and Fritzsche (2022).

To answer these research questions, the authors conducted four experimental studies in a real hiring environment to examine candidates' self-reported IMs using different analogies: 1)

AI-AVI group vs. non-AI-AVI group; 2) AI-AVI with vs. without tangibility; 3) AI-AVI with vs. without immediacy; and 4) AI-AVI with vs. without transparency.

This study delves into AI-AVI, encompassing AVI, AI, and varied AI interfaces. It seeks to discern the effects of AI-AVI on candidates' IMs, particularly examining differences in honest versus deceptive IMs between AI-based and non-AI-based AVIs. The research also evaluates how IMs vary across AI interfaces with features such as tangibility, immediacy, and transparency. Through four experimental studies in real hiring scenarios, the influence of different AI-AVI conditions on candidates' self-reported IMs was assessed.

As the use of AI-AVI in personnel selection becomes increasingly prevalent, there are growing concerns about its transparency and human touch. While the advantages of AI-AVI are clear, there remains a significant research gap in discerning how candidates' self-presentation shifts across varied AI interfaces. Our study seeks to bridge this gap by delving deep into the intricacies of IMs within AI-AVI, with a particular focus on interfaces defined by tangibility, immediacy, and transparency. Through our rigorous real-world experiments, we aim to elucidate which AI interview interfaces can foster candidates' honest IM behaviors while mitigating deceptive behaviors, thereby enhancing the integrity of the hiring process.

2 Background and Hypotheses

In the context of job interviews, candidates often prioritize creating a favorable impression, sometimes even over presenting themselves truthfully, to enhance their chances of being hired (Hartwell et al., 2019). This process, known as IMs, involves conscious or subconscious efforts to control the perceptions others have of them (Goffman, 1959, Marcus, 2009). IMs can be broadly categorized into two types: honest and deceptive. Honest IMs, as identified by Bourdage et al. (2018), involve genuine self-presentation tactics such as honest self-promotion (showcasing qualifications attractively), honest ingratiation (genuinely complimenting the employer or interviewer), and honest defensiveness (describing actions taken to avert negative outcomes). In contrast, deceptive IMs, as categorized by Levashina and Campion (2007), involve tactics such as slight image creation (presenting a slightly embellished image), extensive image creation (crafting a completely false image), image protection (omitting negative information), and dishonest ingratiation (pleasing the interviewer irrespective of the actual selection criteria). Notably, certain IM tactics, such as honest and dishonest ingratiation, are not applicable in situations where no interviewer is present, such as in AVIs, and were thus excluded from this study.

The efficacy of honest IMs in forecasting job performance is acknowledged, yet its influence on the hiring process is still a matter of debate (Wilhelmy et al., 2021). Conversely, the use of deceptive IMs by candidates to enhance their hiring prospects (Ho et al., 2021) could compromise the integrity of the interview process (Amaral et al., 2019). As AVI and AI have become common tools for screening job candidates during employment interviews (Gupta et al., 2018; Jatobá et al., 2019), it is crucial to investigate how applicants react to AVI (Lukacik et al.,

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011

2022) and AI (Mirowska and Mesnet, 2022), particularly concerning IMs (Woods et al., 2020).

This is because job candidates are now compelled to interview with machines that have a lower social presence, providing them with less opportunity to manage the impressions they make (Basch et al., 2020; Bill and Melchers, 2022). According to Lukacik et al.'s (2022) literature review, there is no empirical research examining job candidates' actual IMs through automated video interviews, despite the prevalence of this practice.

2.1 Job Candidates' IMs in an AI-AVI (without Tangibility, Immediacy, and Transparency) vs. Non-AI-AVI

As previously discussed, AVIs, also known as recorded or interface interviews, involve job candidates answering predetermined interview questions using a webcam and software application instead of interacting with a real person. Employers can view the recorded responses at any time (Lukacik et al., 2022). Some AVI service providers, such as hirevue.com and retorio.com, install AI that can automatically infer interviewees' self-reported and interviewers' observed personality traits (Suen et al., 2019b, 2020), interview performance or interviewability (Naim et al., 2018), interpersonal communication skills (Rao et al., 2017), or other trait-based competencies (Su et al., 2021) based on the captured audio-visual expressions of interviewees (Çeliktutan and Gunes, 2017). The AI can also provide real-time hiring recommendations by extracting verbal or nonverbal cues from both the interviewee and the interviewer (Nguyen et al., 2014).

The model of faking likelihood suggests that a job candidate's familiarity with the personnel selection process can impact their IMs (Levashina and Campion, 2006). When a

candidate is familiar with the criteria used by a human interviewer to evaluate them, they are more likely to engage in self-promotion or deception to match those criteria. However, if a candidate is unsure about how an AI assesses their interview performance in an AI-AVI environment, honest and deceptive IMs may not differ, as the candidate is unaware of the AI's assessment criteria (Langer et al., 2020). As AI is often perceived as a black box and is challenging for job candidates to understand (Köchling et al., 2022; Langer et al., 2019b), the candidate may not intend to engage in honest or deceptive IMs differently when interacting with an AI-AVI without any associated tangibility, immediacy, or transparency interfaces or when speaking to a void in a non-AI-AVI. Based on this, the following hypotheses are proposed:

Hypothesis 1-1: Interviewees' honesty IMs do not significantly differ between AI-AVIs without tangibility, immediacy, or transparency and non-AI-AVIs.

Hypothesis 1-2: Interviewees' deceptive IMs do not significantly differ between AI-AVIs without tangibility, immediacy, or transparency and non-AI-AVIs.

2.2 Job Candidates' IMs in AI-AVI with vs. without an Interface Based on Tangibility, Immediacy, and Transparency

Long's (2001) social interface theory proposes that computer interfaces can elicit responses from users that resemble interpersonal interaction if they possess humanizing features, leading to a level of interaction comparable to human-to-human interaction. Therefore, in automated video interviews, interviewees tend to respond to computer interfaces with humanizing features in the same manner as they would to humans (Gerich, 2012), including both honest and deceptive IMs (Langer et al., 2020). Given the increasing integration of AI in various domains, Shareef et al.

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011 (2023) underscored the significance of machine autonomy and social interaction in shaping human actions. This underscores the relevance of our research examining the effects of AI interview interfaces on the behaviors of job candidates.

Glikson and Woolley (2020) suggest that there are various embodiments of AI, including AI-enabled robots, AI-enabled virtual agents, and embedded AI applications. In the context of AI-AVIs, virtual agents (e.g., Vera.ai) and embedded AI (e.g., HireVue.com) are commonly used as commercial solutions to evaluate job candidates and provide hiring decision support (Suen et al., 2019a). These AI interfaces may possess human-like features such as tangibility, immediacy, and transparency (Glikson and Woolley, 2020). Tangibility refers to AI's ability to be perceived or touched by audiences and its ability to touch another human (Liu and London, 2016). Immediacy behaviors determine the interpersonal closeness perceived by audiences through AI's nonverbal responsiveness and human interaction (Kreps and Neuhauser, 2013). Transparency involves audiences understanding what and how AI assesses and decides things, as well as the rules and logic behind it (Hoff and Bashir, 2015).

Drawing from social interface theory, job candidates tend to exhibit both honest and deceptive IMs when interacting with AI-AVIs that emulate human characteristics, such as tangibility and immediacy. This mirrors their behaviors with human interviewers. Shareef et al. (2021) emphasized that users' inclination to embrace a system is heightened when they feel confident in operating it and when the system exudes a sense of social engagement. Analogously, in AI-mediated interviews, the candidates' behaviors are profoundly shaped by their perceptions of the AI interface, with a particular emphasis on its perceived tangibility and immediacy.

Research has found that interviewees' self-promotion behaviors are desirable because they can influence human interviewers' judgments and yield better interview ratings (Amaral et al., 2019). As a result, interviewees exhibit greater levels of honest IMs when AI interfaces possess human-like features such as tangibility or immediacy compared to when they do not possess such features in AI-AVIs. The following hypotheses are thus postulated:

Hypothesis 2a-1: Interviewees are more inclined to exhibit honest IMs in AI-based AVIs equipped with tangibility interfaces than in those without tangibility

Hypothesis 2b-1: Interviewees are more likely to display honest IMs in AI-based AVIs that have immediacy interfaces than in those without immediacy.

In line with the faking likelihood model in employment interviews (Levashina and Campion, 2006), interviewees are less likely to engage in deceptive IMs when they perceive a higher risk of detection. The introduction of AI in AVIs adds a layer of complexity to this dynamic. Drawing from the concept of 'social presence' as introduced by Short, Williams, and Christie (1976), certain media can evoke a sense of tangibility and immediacy, making users feel as if they are in the presence of another sentient being. Their work posits that the richer the medium, the higher the social presence, and consequently, the more 'real' the interaction feels. In the context of AI-AVIs, when an AI interface exhibits human-like characteristics, such as tangibility or immediacy, it can significantly enhance the perceived social presence. As a result, interviewees might feel as if they are being observed more closely, even if it is by a machine. This heightened sense of observation can deter them from engaging in deceptive IMs, as they

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011 might believe that AI, with its advanced algorithms, can more easily detect inconsistencies or fabrications in their responses.

Building on the principles of media richness theory (Daft and Lengel, 1986) and the foundational concept of social presence (Short et al., 1976), the evolution of AI technology suggests an enhanced capability for machines to discern nuanced cues indicative of deception. This technological prowess underscores the potential of AI-AVIs, especially those with tangible or immediate interfaces, to act as deterrents against deceptive IMs. When interacting with such advanced AI-AVIs, interviewees might sense an omnipresent monitoring entity, transcending the confines of the screen. This heightened awareness, coupled with the AI's human-like characteristics, could amplify their perception of being scrutinized, making deceptive IMs seem more transparent and riskier. Consequently, this could lead to a decline in deceptive behaviors during interviews (see Law et al., 2016). Thus, we propose the following:

Hypothesis 2a-2: Interviewees are expected to exhibit lower levels of deceptive IMs in Albased AVIs with tangibility compared to those without tangibility.

Hypothesis 2b-2: Interviewees are expected to exhibit lower levels of deceptive IMs in Albased AVIs with immediacy compared to those without immediacy.

Despite AI transparency being required by stakeholders to promote fairness, trust, and legal compliance, intentional opacity may also be required to avoid users gaming AI modeling and rules (Langer and König, 2023). When job candidates have prior knowledge about the interview rating criterion, they may manipulate information and present a distorted image to enhance criterion-related incidences, referred to as deceptive IMs, as suggested by the model of faking likelihood in employment interviews (Levashina and Campion, 2006). In contrast, some

relevant information or self-presentation, such as honest IMs for self-promotion or self-protection, may be overshadowed within the limited timeframe. Given that transparency of the AI assessment criteria in AI-AVIs may inform job candidates on how to present themselves to improve their selection chances, they may engage in strategic impression management by altering their honest and deceptive IMs to conform to the AI's perceived criteria. Thus, the following hypotheses are proposed:

Hypothesis 2c-1: Job candidates tend to exhibit more honest IMs in AI-based AVIs without transparency than in AI-AVIs with transparency.

Hypothesis 2c-2: Job candidates tend to exhibit less deceptive IMs in AI-based AVIs without transparency than in AI-AVIs with transparency.

3 Method

To examine the impact of AI and its three primary interfaces on job candidates' honest/deceptive IMs in an AVI context, we conducted four experiments, all of which were carried out in a real hiring setting. To evaluate Hypotheses 1-1 and 1-2, Analogy 1 compared the honest/deceptive IMs displayed by actual job candidates in AI-AVIs that lacked tangibility, immediacy, and transparency with those exhibited in non-AVIs. In Analogy 2, we tested Hypotheses 2a-1 and 2a-2 by comparing the instances of IMs displayed in AI-AVI that had tangibility with those in AI-AVI that lacked tangibility. In Analogy 3, we compared the instances of IMs displayed in AI-AVI that had immediacy with those in AI-AVI that lacked immediacy to test Hypotheses 2b-1 and 2b-2. Analogy 4 was used to evaluate Hypotheses 2c-1 and 2c-2 by comparing the instances of IMs displayed in AI-AVI that possessed transparency with those in AI-AVI that lacked transparency.

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011

3.1 Participants and Procedure

We aimed to achieve an optimal sample size and used G*Power (Faul et al., 2009) to recruit 68 interviewees for each analogy based on the minimum acceptable level in multivariate analysis of variance (MANOVA): effect size f^2 (V) = 0.15, alpha = 0.05, power = 0.8, groups = 2, variables = 2. After the data collection, we had 63 valid responses for analogy 1 and 130 ones for analogies 2, 3, and 4. This was after excluding 10 participants who did not finish the survey and another 8 who did not meet the manipulation check criteria. In total, our analysis incorporated data from 152 participants: 22 from the non-AI-AVI group and 130 from the AI-AVI group. Breaking it down, the non-AI-AVI group had 22 participants, and the AI-AVI group without any interfaces had 41, making it 63 participants for analogy 1. For the tangible AI-AVI, immediate AI-AVI, and transparent AI-AVI groups, there were 27, 30, and 32 participants, respectively. When combined with the 41 from the AI-AVI group without interfaces, the total for analogies 2, 3, and 4 was 130 participants.

Participants were recruited from a professional employer organization through an academic-industry cooperation agreement with the authors' institute. The employer organization provides staffing services to help employers hire employees for various job functions. After completing an AVI as part of the initial stage of preemployment selection facilitated by the employer organization, participants were invited to participate in the study and received a gift card worth USD 18 as compensation. The study was presented to participants as voluntary and academic in nature, following Powell et al.'s (2021) approach. We only recorded the video interview's identification number, and we guaranteed participants that their self-reported

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011 responses would not be shared with anyone and would not impact the hiring decision. The AVI with optional AI was provided and created by the authors, as depicted in Figure 1.

Figure 1. AVI Screen Used in This Study

Prior to the formal experiment, we carried out a pilot test involving 30 part-time master's students engaged in HR professions to refine our study process, measures, and treatments. Once we were confident in the robustness of these elements, we collaborated with the employer organization's administrative team to enlist 152 real job applicants to partake in and finalize the primary study. The 30 pilot test participants had an average age of 35.8, with 60% being female and an average HR recruitment experience of 8.9 years. The demographic data of the formal experiment participants can be found in Table 1.

Each participant was asked to answer five behavioral-based structured interview questions used by the employer organization that aimed to evaluate their interpersonal communication proficiency, which is important for various job roles. An example of a question asked was, "Describe a situation where you expressed an idea that you knew your colleagues would oppose." The questions took approximately 15-20 minutes to complete, and each question

was displayed on a separate screen. The interviewees were given one minute to generate or think about a response and three minutes to answer each question, while the recording began for each question. Although the interviewees could view a live recording preview window on their smartphone screen, they could not request a rerecord or review of their recorded responses before proceeding to the next question. As per König et al. (2007), we did not disclose the criteria used to assess their responses by either the AI or human rater.

To investigate the effect of AI on IMs in AVI, participants in the AI groups were informed that their performances would be analyzed by an AI algorithm, while those in the non-AI group were told that their performances would be evaluated by a human rater. This information was displayed on the screen during the testing period before the formal AVI began.

To investigate the effect of AI tangibility on IMs in AVI, we displayed a 2D female avatar with a moderate degree of human likeness on the top left corner of the screen for the tangible AI group, as depicted on the left side of Figure 2. Tastemirova et al. (2022) discovered that subtle expressions of happiness in digital humans enhance positive perceptions of AI among audiences. They recommended using static and slow facial cues to heighten the human-like appearance of AI. Consistent with this, our study features an avatar that blinks, nods, and smiles with moderate intensity at a fixed frequency, aiming to evoke anthropomorphism (Waytz et al., 2014) and sidestep the uncanny valley effect (Mori, 1970), as depicted on the right side of Figure 2. In contrast, the intangible AI used in this context was displayed solely as a void (Glikson and Woolley, 2020).

Figure 2. An AI with Tangibility in the AVI

To examine the impact of AI immediacy on IMs in AVI, we created a text-based chatbot with a standard script that included a voice-tracking signal. This was integrated into the AI-AVI to simulate the immediacy of a human-like conversation through text messages (Adamopoulou and Moussiades, 2020), as depicted in Figure 3.

Figure 3. An AI with Immediacy in the AVI

To investigate the impact of AI transparency on IMs in AVI, a text description was displayed on the screen prior to the formal AI-AVI: "During the entire interview process, an AI algorithm will be used to analyze your personality traits based on your facial expressions and head movements." As noted by Bedué and Fritzsche (2022), providing a description of the AI's functionality helped the interviewees to better understand how the AI was operating and increased their ability to interpret the AI's assessment after the fact. Moreover, this text description fulfills the requirements of the Illinois Artificial Intelligence Video Interview Act (the AIVI Act) (see Glasser and Franchilli, 2022), which mandates disclosure of "how the AI works and what general types of characteristics it uses to evaluate applicants" to the interviewees.

3.2 Manipulation Check

We conducted a manipulation check to ensure that the interviewees correctly perceived the independent variables in our treatment. We asked all participants in both the AI-AVI and non-AI-AVI groups to indicate whether they received information that their interview would be evaluated by either an AI algorithm or a human rater.

To assess the "tangibility" of the AI treatment, we asked all participants in the AI-AVI groups whether they saw a virtual AI interviewer on the screen during the interview. They were asked to answer "YES" or "NO". Additionally, we asked all participants in the AI-AVI groups whether they felt that the interview software interacted with them and responded to them. They were asked to answer "YES" or "NO" to assess the "immediacy" of the AI treatment.

To evaluate the "transparency" of the AI treatment, the interviewees in the AI-AVI groups were asked whether they received information about how the AI would evaluate their interview performance, and if so, they were asked to indicate whether they answered "YES" or "NO".

Those who failed to correctly identify their treatment condition were excluded from the analysis, resulting in the removal of 2 participants for AI, 2 for tangibility, 3 for immediacy, and 1 for transparency, for a total of 8 excluded participants.

3.3 Measures and Analysis

After the video interviews, the participants were directed to an online questionnaire platform to complete the following self-reported measures:

3.3.1 Honest and Deceptive IMs

We followed the approach of Powell and colleagues (2021) to measure the display of honest and deceptive IMs by candidates during interviews using Bourdage et al.'s (2018) validated five-point IM scale, ranging from 1 (to no extent) to 5 (to a very great extent). This scale comprises 8 items that gauge honest IMs, focusing on self-promotion and honest defensive tactics, and 10 items that evaluate deceptive IMs, emphasizing slight image creation, extensive image creation, and image protection. We excluded two items from the original slight image creation category, as they were not aligned with the context of our study and lacked relevance in scenarios without an interviewer's presence. These items were "I distorted my answers based on the comments or reactions of the interviewer" and "I distorted my answers to emphasize what the interviewer was looking for". The self-reported IM items are presented in Table 1.

In addition, we investigated whether the applicants' self-reported scores were reliable by asking one additional question drawn from the research conducted by Powell et al. (2021) at the end of the survey: "How confident are you that your responses from this questionnaire will be kept confidential?" Answers to this question had a mean of 4.48 and a standard deviation (SD) of 0.77, indicating that participants' self-responses were not contaminated by the use of IM.

Table 1. Self-Reported IM Scale Items.

	I made sure to let the interviewer/assessor know about my job credentials.
	I made sure the interviewer/assessor was aware of my skills and abilities.
	I let the interviewer/assessor know how my qualifications were well-suited for the position.
	I brought up my past work experience to make the interviewer aware of my competence.
Honest IMs	I gave the interviewer/assessor an honest account of why I lacked control over past negative events that came up during the interview.
	I recounted to the interviewer/assessor the steps I had taken to prevent the recurrence of negative events or occurrences in my past.
	I shared my past regrets about how I handled certain situations and how I would improve in the future.
	I gave reasons why I felt I benefited positively from a negative event I was responsible for.
	I inflated the fit between my values and goals and the values and goals of the organization.
	I exaggerated my responsibilities in my previous jobs.
	I told fictional stories prepared in advance of the interview to best present my credentials.
Deceptive IMs	I made up stories about my work experiences that were well developed and logical.
	I invented some work situations or accomplishments that did not truly occur.
	When I did not have a good answer, I borrowed the work experiences of other people and made them sound like my own.
	When asked directly, I did not mention my true reason for quitting previous jobs.
	When asked directly, I did not mention some problems I had in past jobs.

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change*, 198, 123011.

nups://aoi.org/1	0.1016/j.tech10re.2023.123011
_	I covered up some "skeletons in my closet."
	I clearly separated myself from my past work experiences that would reflect
	poorly on me.

3.3.2 Interview Anxiety

We drew inspiration from Powell et al. (2021), who identified a correlation between job candidates' interview anxiety and their propensity to use deceptive IMs. They posited that candidates, when feeling uncertain about their self-presentation during an interview, could lean toward deceptive IMs under the impression that revealing their true selves might not be advantageous. Essentially, as job candidates' confidence in their interview performance wanes, their anxiety levels rise, subsequently influencing their use of both honest and deceptive IMs. To assess interview anxiety, we adapted and employed McCarthy et al.'s (2009) four-item scale. This scale uses a five-point Likert-type format, ranging from 1 (strongly disagree) to 5 (strongly agree), to capture self-assessments of interview performance, mirroring the interview anxiety as presented in Table 2. This approach aligns with Powell et al.'s (2021) methodology, where interview anxiety was considered a control variable. However, there were no significant associations between anxiety and either type of IM in our research.

Table 2. Self-Rated Interview Performance Items.

I think I performed well in the interview.
I expect to be one of the top scorers in this interview.
I think my interview score will be relatively low. reverse coded
I performed poorly in this interview. reverse coded

3.3.3 Demographics

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011

The demographic information collected from the interviewees, such as age, sex, education, work experience, job function, and prior experience with AVI, was consistent across all four studies.

To examine the hypotheses, a one-way MANOVA was used to analyze the effects of the AI and its three interfaces on honest and deceptive IMs when the two dependent variables were correlated (Bourdage et al., 2018).

4 Results

4.1 Means, Standard Deviations, Intercorrelations, and Scale Reliability

Means (M), standard deviations (SDs), intercorrelations, and scale reliability (i.e., Cronbach's α) among the variables are shown in Table 3.

The intercorrelations among AI and the other variables were computed based on the observations of AI-AVI without the three interfaces and non-AI-AVI for analogy 1, and the intercorrelations among tangibility, immediacy, transparency, and the other variables were computed based on the AI-AVI observations for analogies 2, 3, and 4. The Cronbach's α values for all three self-reported measures (honest IMs, deceptive IMs, and interview anxiety) were higher than the generally accepted threshold of 0.7 (Hair et al., 2019).

Table 3. Means, Standard Deviations, Intercorrelations, and Scale Reliability

Variables	M	SD	1	2	3	4	5	6	7	8	9	10	11	12
1. Honest IMs	3.93	0.68	(.90)											
2. Deceptive IMs	1.91	0.66	25**	(.87)										
3. AI ^a	1.65	0.48	08	06										
4. Tangibility ^a	1.21	0.41	.21**	18*										
5. Immediacy ^a	1.23	0.42	.20*	17										
6. Transparency ^a	1.25	0.43	23**	.21										

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011

<u> </u>														
7. Interview anxiety	3.65 0	.94	.01	.11	.09	.10	22**	10	(.87)					
8. Sex ^b	0.32 0	.47 -	11	.04	06	10	06	.12	10					
9. Age	27.63 8	.19	.00	.06	14	13	13	.03	26**	08				
10. Education ^c	1.72 0	.65	.10	10	.16	.14	09	.13	.15	09	05			
11. Work experience	5.16 5	.74	.05	.05	12	.12	.12	.11	32**	09	.87**	15		
12. AVI experience	1.07 1	.26	.14	.08	.04	.15	.07	12	.10	11	.00	.02		
13. Applied job function ^a														
Human Resources	0.31 0	.46	.13	12	.15	.06	04	07	.15	10	.31**	.31**	37**	.13
Financial	0.28 0	.45	.12	.06	15	.10	03	11	.03	07	08	08	.14	.05
Information Technology	0.16 0	.37 -	.15	.14	.01	12	.04	.14	09	.26**	19*	19*	14	11
Operation	0.11 0	.31	.02	.00	.00	11	.07	12	07	15	31**	31**	.33**	.00

^{*}p<.05; **p<.01

In line with previous research (e.g., Bourdage et al., 2018; Powell et al., 2021), there was a modest correlation between honest and deceptive IMs in automated video interviews. However, contrary to our expectations, interview anxiety did not predict either type of IM in these interviews. Previous research (Powell et al., 2021) has suggested that interviewees may experience less anxiety when using the computer to engage in deceptive IM compared to face-to-face interviews. This effect may be particularly pronounced when the interviewees are unaware that the computer is monitoring their IMs in the same way as a human interviewer. As a result, we did not control for interview anxiety when testing our hypotheses. Last, the interviewees' demographic characteristics were not significantly associated with either type of IM in this study.

All hypothesized intercorrelations were supported in the initial findings from the Pearson correlation analysis, except for the lack of a significant association between AI immediacy and deceptive IMs. Subsequent MANOVAs were used to compare significant differences in the sample means using various analogies.

a. Dummy coding

b. Male=1; Female=0

c. Master=2; Bachelor=1; High School=0

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011

Prior to conducting the MANOVA for our research hypotheses, we applied Box's M-test to verify the homogeneity of covariance matrices across each analogy group. Concurrently, the Shapiro–Wilk test was used to determine the multivariate normality within each analogy group. For all analogies, neither Box's M-test nor the Shapiro–Wilk test yielded significant results (p>.05), indicating that the data satisfied the assumptions of both homogeneity of covariance matrices and normality.

4.2 MANOVA Statistics

To examine both honest and deceptive IMs simultaneously across analogies and experimental groups, as hypothesized, we conducted a chi-square analysis and ANOVA to determine whether there were any statistically significant differences in interviewee demographics across the experimental groups prior to conducting MANOVA. We found no statistically significant factors across the experimental groups for the various analogies; therefore, demographic variables were not treated as covariates in the MANOVA. Descriptive statistics for each experimental group across treatments for analogies 1-4 are presented in Table 4.

Table 4. Descriptive Statistics by Analogy and Experimental Group.

Dependent Variable	Analogy	Group	M	SD	N
		AI-AVI	4.04	0.69	41
	1.AI	Non-AI-AVI	4.06	0.55	22
		Total	4.04	0.64	63
		Tangible AI-AVI	4.19	0.61	27
	2. Tangibility*	Intangible AI-AVI	3.84	0.71	103
II . IM		Total	3.91	0.70	130
Honest IMs		Immediate AI-AVI	3.95	0.69	30
	3. Immediacy*	Nonimmediate AI-AVI	3.80	0.74	100
		Total	3.91	0.70	130
		Transparent AI-AVI	3.63	0.65	32
	4. Transparency**	Nontransparent AI-AVI	4.01	0.69	98
		Nontransparent AI-AVI	3.91	0.70	130
Deceptive IMs	1. AI	AI-AVI	1.79	0.59	41

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011.

•	Non-AI-AVI	2.00	0.64	22
	Total	1.86	0.61	63
	Tangible AI-AVI	1.68	0.54	27
Tangibility*	Intangible AI-AVI	1.95	0.68	103
	Total	1.90	0.67	130
	Immediate AI-AVI	1.86	0.64	30
Immediacy	Nonimmediate AI-AVI	2.01	0.74	100
	Total	1.90	0.67	130
	Transparent AI-AVI	2.11	0.72	32
4. Transparency*	Nontransparent AI-AVI	1.83	0.64	98
	Total	1.90	0.67	130

^{**}p<.01; *p<.05

We have presented the results of the MANOVA alongside the individual ANOVA data in Table 5.

Table 5. Results of MANOVA and ANOVAs for Four Analogy Groups

Analogy Group	df (Effect)	df (Error)	Approx. F	p	Wilks' Λ	ANOVA (F value)	partial η ²	Cohen's d	p _{tukey}
1. AI	1	61	1.84	0.17	0.94	Honest IM (H): 1.09 Deceptive IM (D): 1.01			H: 0.72 D: 0.06
2. Tangibility	1	128	3.64	0.03	0.95	Honest IM (H): 4.67* Deceptive IM (D): 4.32*			H: 0.03* D: 0.04*
3. Immediacy	1	128	3.56	0.04	0.95	Honest IM (H): 4.44* Deceptive IM (D): 1.30		-	H: 0.04* D: 0.26
4. Transparency	1	128	11.96	0.00	0.84	Honest IM (H): 21.93** Deceptive IM (D): 4.55*			H: 0.00** D: 0.04*

^{**}p<.01; *p<.05

In analogy 1, no notable differences were observed in either honest or deceptive IMs between the AI-AVI and non-AI-AVI groups. This finding suggests that interviewees exhibit similar IMs in AVI regardless of whether AI evaluates their performance when the AI lacks interfaces of tangibility, immediacy, or transparency and when the interviewees are speaking to the void. Thus, H1-1 and H1-2 were supported.

In analogy 2, the MANOVA revealed a marked difference in both honest and deceptive IMs between the tangible AI-AVI and intangible AI-AVI. Further analysis through ANOVA

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011 suggests that interviewees display increased honest IMs and decreased deceptive IMs when interacting with a tangible AI-AVI compared to an intangible AI-AVI. Consequently, both H2a-1 and H2a-2 received empirical support.

In analogy 3, the MANOVA revealed a notable difference in honest IMs between the immediate AI-AVI and nonimmediate AI-AVI. However, the individual ANOVA results indicated no significant variation in deceptive IMs. The ANOVA results suggest that interviewees exhibit more honest IMs in AI-AVI with immediacy than in AI-AVI without immediacy, but they exhibit similar deceptive IMs in AI-AVI regardless of the AI's immediacy. One possible explanation is the "automation as a tool or teammate paradigm," where individuals view automation as a "tool" that they can direct and control or as a "teammate" that can assist them in accomplishing a task. This could apply to the interaction between computer users and an AI system, such as "ChatGPT," that offers immediate responses. In this study, interviewees may have viewed the chatbot as more of a tool or teammate that can help their self-promotion or defensive IMs (i.e., honest IMs) than a "leader" that would monitor their deception as in the "automation as leader paradigm." Therefore, H2b-1 was supported, but H2b-2 was not.

In analogy 4, the MANOVA revealed significant variations in both honest and deceptive IMs between the transparent AI-AVI and the nontransparent AI-AVI groups. According to the ANOVA findings, interviewees tend to display fewer honest IMs and engage more in deceptive IMs when interacting with a transparent AI-AVI compared to a nontransparent AI-AVI.

Consistent with König et al.'s (2007) research on face-to-face employment interviews, when job candidates can identify the criteria, their interview ratings are distorted, and the selection validity is impaired. Therefore, H2c-1 and H2c-2 were supported.

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011

4.3 Exploratory Analysis

Because a statistically significant correlation between interview anxiety and AI immediacy was found (r = -.22, p <.01), as shown in Table 3, we conducted an exploratory study by ANOVA to examine whether AI immediacy decreases candidates' interview anxiety in AVI. The exploratory result confirmed the above assumption (F (1, 128) = 6.42; p <.05; partial η 2 =.05). Post hoc comparisons using Tukey's HSD test indicated that the mean score of interview anxiety for the immediate AI-AVI group (M = 3.27, SE = 0.19) was significantly lower than that for the nonimmediate AI-AVI group (M = 3.75, SE = 0.09). The mean difference was -0.48, 95% CI [-0.85 to -0.11], p =.01, with a medium effect size (Cohen's d = -0.53). The exploratory results indicate that job candidates feel less anxiety when they talk to an AI-AVI with immediacy than when they talk to an AI-AVI without immediacy.

5 Discussion

While the nonhumanity and nontransparency of AI-AVI are concerns that have been expressed by some researchers, this AI-powered system continues to be in demand during the initial stage of personnel selection by employers. Many AI-AVI vendors try to overcome these concerns by redesigning and refining their AI interfaces, such as tangibility, immediacy, and transparency. However, whether AI interfaces alleviate or aggravate IM is another concern for employment interviews, especially for the types of job interviewees' IMs that may impair selection validity. This field study addresses the call for research (Basch et al., 2020; Jalagat and Aquino, 2022;

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011
Roulin et al., 2021) to explore how AI and its interfaces affect job candidates' honest and deceptive IMs by 4 analogies in an AVI.

5.1 Key Findings and Insights

Our research reveals that the absence of three human-like interfaces in an AI-AVI does not significantly alter job candidates' IMs compared to a non-AI-AVI. Echoing the observations of Bill and Melchers (2023) and Köchling et al. (2022), candidates might view AI as distinctly nonhuman, potentially accounting for the minimal behavioral variance observed. When an AI-AVI embodies tangibility through an avatar, there is a notable rise in candidates' honest IMs and a decline in deceptive IMs. This suggests that the AI, when personified, is perceived as a virtual interviewer capable of discerning and evaluating IMs.

Conversely, when an AI-AVI manifests immediacy via a chatbot, honest IMs amplify, but deceptive IMs remain unchanged. This could be attributed to the AI being seen as a supportive entity or partner, aiding candidates in genuine self-presentation, as opposed to an overseeing entity that might scrutinize deceptive behaviors. Additionally, candidates tend to feel less anxious interacting with an immediate AI, possibly viewing it as a collaborative tool rather than a judgmental overseer.

Last, when AI-AVI offers transparency through preinterview text explanations, there is a decline in honest IMs and a surge in deceptive IMs. This might stem from candidates' attempts to exploit the system, emphasizing certain criteria while downplaying others, thereby reducing their focus on genuine self-promotion and defensiveness, which may not align with the AI's assessment parameters (such as personality traits in these studies).

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011

5.2 Academic Implications

Anchored in the foundational frameworks of job candidates' IMs, the propensity for faking in employment interviews, social interface theory, and AI interface classification, our research carves out distinct academic advancements. First, we augment the existing interviewee performance model (Huffcutt et al., 2011), pinpointing and addressing nuances specific to the automated video interview landscape (Hickman et al., 2022). Moreover, our exploration delves deeply into the factors that drive individuals to engage in deceptive behaviors during interviews, particularly when navigating interactions with AI-driven interview platforms (Levashina and Campion, 2006).

A standout contribution of our work is the intricate examination of transparency dynamics within AI video interviews. We caution against the unchecked advocacy for AI transparency, positing that it might inadvertently pave the way for candidates to strategize and exploit AI evaluations, thereby diluting the authenticity of the interview outcomes (Langer and König, 2023). In doing so, we also heed the academic call to understand the ripple effects of interview transparency on candidate behaviors (Levashina et al., 2014).

In essence, our rigorous empirical approach not only deepens the comprehension of human-AI interplay but also enriches the discourse on IM strategies within the AI-AVI context, extending the narrative on user-centric AI paradigms (e.g., Kim and Im, 2023; Nørskov et al., 2022; Langer et al., 2019b).

5.3 Practical Implications

Our research offers indispensable insights that hold significant ramifications for practitioners, especially those involved in automated video interview platforms. First, a pivotal discovery from our study is the neutrality of AI in AVIs concerning candidates' IMs. Regardless of candidates' awareness of AI evaluations, their propensity for honest or deceptive IMs remains unchanged. This underscores the robustness of AI-driven processes, ensuring that the integrity of the selection process remains uncompromised.

Moreover, we present a compelling case for the integration of a 2D cartoon avatar in AI-AVIs. Such a representation not only humanizes the AI but also fosters an environment where candidates are more inclined toward genuine self-presentation, thereby enhancing the overall validity of the selection process.

Furthermore, our recommendation to incorporate a text-based chatbot augmented with a voice tracking feature is grounded in its potential to amplify candidates' honesty and simultaneously mitigate any interview-related apprehensions. This ensures a more authentic and comfortable interview experience for the candidates.

Last, while the discourse around AI often leans heavily toward transparency, our findings advocate for a more nuanced approach. Embracing intentional opacity can serve as a deterrent against deceptive behaviors, promoting a more authentic self-presentation. Consequently, we advise against overclarifying AI assessment rules to candidates before an automated video interview, resonating with the established stance against excessive transparency in traditional face-to-face interviews (König et al., 2007).

5.4 Limitations and Future Research

There are several avenues for future research to address the limitations of this study. First, although we tried to mitigate response bias by incorporating a safeguard in the participation invitation (Powell et al., 2021), self-reported IMs might still be susceptible to bias. Future research could employ machine learning models to detect IMs from interviewees' facial expressions rather than relying solely on self-report measures (e.g., Monaro et al., 2022).

Second, our study was conducted in a jurisdiction where the use of AI video interviews in employment selection was not legally restricted. Future research should replicate our experiments in different contexts that have varying laws, levels of user acceptance, and digital maturity for AI-AVIs.

Last, our findings are constrained by our specific interface designs, which might influence user behaviors differently. Future research could explore crafting varied avatar images or robots with distinct emotional expressions to showcase tangibility (e.g., Nørskov et al., 2022; Şengün et al., 2022; Tastemirova et al., 2022). They could also use natural language processing (NLP) to create AI chatbots that exude immediacy (e.g., Baabdullah et al., 2022; Balakrishnan et al., 2022) or design varied interpretable messages to highlight transparency (e.g., Haque et al., 2022; John-Mathews, 2022). Furthermore, this study did not explore the interaction effects between different interface attributes. For instance, whether the combination of tangible AI with immediacy has a distinct impact on interviewees' behaviors is a direction worth investigating in future research.

6 Conclusions

The emergence of AVIs and AI has significantly impacted how employers screen job candidates, resulting in significant changes in personnel selection (Allal-Chérif et al., 2021; Gonzalez et al., 2022). However, an important issue that arises from this transformation is the impact of automated video interviews on the actual IMs of job candidates.

The field study provides vital insights into the ways in which AI and its interfaces impact job candidates' IMs in an AVI. The study revealed various impacts of AI tangibility, immediacy, and transparency on candidates' IMs and interview anxiety. As a result, AVI vendors and users may wish to consider redesigning and refining their AI interfaces to enhance personnel selection validity. We are confident that our study will encourage further research into these critical human-AI social interactions, leading to more profound insights into the impact of AI on personnel selection and decision-making.

References

- Adamopoulou, E., & Moussiades, L. (2020). Chatbots: history, technology, and applications.

 *Machine Learning with Applications, 2, 100006.

 https://doi.org/10.1016/j.mlwa.2020.100006.
- Allal-Chérif, O., Aránega, A. Y., & Sánchez, R. C. (2021). Intelligent recruitment: How to identify, select, and retain talents from around the world using artificial intelligence.
 Technological Forecasting and Social Change, 169, 120822.
 https://doi.org/10.1016/j.techfore.2021.120822.
- Amaral, A. A., Powell, D. M., & Ho, J. L. (2019). Why does impression management positively influence interview ratings? The mediating role of competence and warmth. *International Journal of Selection and Assessment*, 27, 315–327. https://doi.org/10.1111/ijsa.12260.
- Baabdullah, A. M., Alalwan, A. A., Algharabat, R. S., Metri, B., & Rana, N. P. (2022). Virtual agents and flow experience: An empirical examination of AI-powered chatbots.

 Technological Forecasting and Social Change, 181, 121772.

 https://doi.org/10.1016/j.techfore.2022.121772.
- Balakrishnan, J., Abed, S. S., & Jones, P. (2022). The role of meta-UTAUT factors, perceived anthropomorphism, perceived intelligence, and social self-efficacy in chatbot-based services? *Technological Forecasting and Social Change*, *180*, 121692. https://doi.org/10.1016/j.techfore.2022.121692
- Basch, J. M., Melchers, K. G., Kurz, A., Krieger, M., & Miller, L. (2020). It takes more than a good camera: which factors contribute to differences between face-to-face interviews and videoconference interviews regarding performance ratings and interviewee perceptions?

- Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011 *Journal of Business and Psychology, 36*, 921–940. https://doi.org/10.1007/s10869-020-09714-3.
- Bedué, P., & Fritzsche, A. (2022). Can we trust AI? An empirical investigation of trust requirements and guide to successful AI adoption. *Journal of Enterprise Information Management*, 35(2), 530–549. https://doi.org/10.1108/jeim-06-2020-0233.
- Bill, B., & Melchers, K. G. (2023). Thou Shalt not Lie! Exploring and testing countermeasures against faking intentions and faking in selection interviews. *International Journal of Selection and Assessment*, 31, 22–44. https://doi.org/10.1111/ijsa.12402
- Bingley, W. J., Curtis, C., Lockey. S., Bialkowski, A., Gillespie, N., Haslam, S. A., Ko, R. K. L., Steffens, N., Wiles, J., & Worthy, T. (2023). Where is the human in human-centered AI?

 Insights from developer priorities and user experiences. *Computers in Human Behavior*, 141, 107617.
- Bourdage, J. S., Roulin, N., & Tarraf, R. (2018). "I (might be) just that good": honest and deceptive impression management in employment interviews. *Personnel Psychology*, 71, 597–632. https://doi.org/10.1111/peps.12285.
- Çeliktutan, O., & Gunes, H. (2017). Automatic prediction of impressions in time and across varying context: personality, attractiveness and likeability. *IEEE Transactions on Affective Computing*, 8, 29–42. https://doi.org/10.1109/TAFFC.2015.2513401.
- Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. *Behavior Research Methods*, 41, 1149–1160. https://doi.org/10.3758/BRM.41.4.1149.
- Daft, R. L., & Lengel, R. H. (1986). Organizational information requirements, media richness,

- Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011 and structural design. *Management Science*, 32(5), 554–571.
- Gerich, J. (2012). Video-enhanced self-administered computer interviews, in: Silva, C.N. (Ed.),
 Online Research Methods in Urban and Planning Studies: Design and Outcomes. IGI
 Global, Hershey, PA, pp. 99–119. https://doi.org/10.4018/978-1-4666-0074-4
- Glasser, N. M., & Franchilli, A. J. (2022). What principles of explainability and transparency should an employer consider when using video interviewing and similar automated hiring tools? *Workforce Bulletin*. https://www.workforcebulletin.com/2022/05/24/what-principles-of-explainability-and-transparency-should-an-employer-consider-when-using-video-interviewing-and-similar-automated-hiring-tools/
- Glikson, E., & Woolley, A. W. (2020). Human trust in artificial intelligence: review of empirical research. *Academy of Management Annals*, *14*, 627–660. https://doi.org/10.5465/annals.2018.0057.
- Goffman, E. (1959). The Presentation of Self in Everyday Life. Doubleday & Company, Garden City, NY.
- Gonzalez, M. F., Liu, W., Shirase, L., Tomczak, D. L., Lobbe, C. E., Justenhoven, R., & Martin, N. R. (2022). Allying with AI? Reactions toward human-based, AI/ML-based, and augmented hiring processes. *Computers in Human Behavior*, *130*, 107179. https://doi.org/10.1016/j.chb.2022.107179
- Gupta, P., Fernandes, S. F., & Jain, M. (2018). Automation in recruitment: a new frontier.

 Journal of Information Technology Teaching Cases, 8, 118–125.

 https://doi.org/10.1057/s41266-018-0042-x.
- Haan, M., Ongena, Y. P., Vannieuwenhuyze, J. T. A., & de Glopper, K. (2017). Response

- Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011
 - behavior in a video-web survey: a mode comparison study. *Journal of Survey Statistics* and *Methodology*, 5, 48–69. https://doi.org/10.1093/jssam/smw023.
- Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis.

 Prentice-Hall, Hoboken, NJ.
- Haque, A. B., Islam, A. K. M. N., & Mikalef, P. (2023). Explainable Artificial Intelligence (XAI) from a user perspective: A synthesis of prior literature and problematizing avenues for future research. *Technological Forecasting and Social Change*, 186, 122120. https://doi.org/10.1016/j.techfore.2022.122120
- Hartwell, C. J., Johnson, C. D., & Posthuma, R. A. (2019). Are we asking the right questions? Predictive validity comparison of four structured interview question types. *Journal of Business Research*, 100, 122–129. https://doi.org/10.1016/j.jbusres.2019.03.026.
- Hickman, L., Bosch, N., Ng, V., Saef, R., Tay, L., Woo, S. E. (2022). Automated video interview personality assessments: reliability, validity, and generalizability investigations. *Journal of Applied Psychology*, 107, 1323–1351. https://doi.org/10.1037/apl0000695.
- Ho, J. L., Powell, D. M., & Stanley, D. J. (2021). The relation between deceptive impression management and employment interview ratings: A meta-analysis. *Canadian Journal of Behavioural Science*, *53*(2), 164–174. https://doi.org/10.1037/cbs0000223
- Hoff, K. A., & Bashir, M. (2015). Trust in automation: integrating empirical evidence on factors that influence trust. *Human Factors*, *57*, 407–434.
 https://doi.org/10.1177/0018720814547570.
- Huffcutt, A. I., Van Iddekinge, C. H., Roth, P. L. (2011). Understanding applicant behavior in employment interviews: a theoretical model of interviewee performance. *Human*

- Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011 *Resource Management Review, 21*, 353–367. https://doi.org/10.1016/j.hrmr.2011.05.003.
- Hunkenschroer, A. L., & Luetge, C. (2022). Ethics of AI-enabled recruiting and selection: a review and research agenda. *Journal of Business Ethics*, *178*, 977–1007. https://doi.org/10.1007/s10551-022-05049-6.
- Jalagat, R. C., & Aquino, P. G. (2022). The usefulness of information communication technology (ICT) in the recruitment and selection of employees during covid 19, in: Aquino, P.G., Jalagat, R.C. (Eds.), Effective Public Administration Strategies for Global "New Normal". Springer Nature Singapore, Singapore, pp. 19–34.
- Jaser, Z., Petrakaki, D., Starr, R., & Oyarbide-Magaña, E. (2022). Where automated job interviews fall short. *Harvard Business Review*. https://hbr.org/2022/01/where-automated-job-interviews-fall-short.
- Jatobá, M., Santos, J., Gutierriz, I., Moscon, D., Fernandes, P. O., & Teixeira, J. P. (2019). Evolution of artificial intelligence research in human resources. *Procedia Computer Science*, *164*, 137–142. https://doi.org/10.1016/j.procs.2019.12.165.
- John-Mathews, J-M. (2022). Some critical and ethical perspectives on the empirical turn of AI interpretability. *Technological Forecasting and Social Change*, *174*, 121209. https://doi.org/10.1016/j.techfore.2021.121209.
- Kim, J.-Y., & Heo, W. (2022). Artificial intelligence video interviewing for employment: perspectives from applicants, companies, developer and academicians. *Information Technology & people*, *35*, 861–878. https://doi.org/10.1108/ITP-04-2019-0173
- Kim, J., & Im, I. (2023). Anthropomorphic response: Understanding interactions between humans and artificial intelligence agents. *Computers in Human Behavior*, *139*, 107512.

- Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011 https://doi.org/10.1016/j.chb.2022.107512
- Kim, D., Song, Y., Kim, S., Lee, S., Wu, Y., Shin, J., & Lee, D. (2023). How should the results of artificial intelligence be explained to users? Research on consumer preferences in user-centered explainable artificial intelligence. *Technological Forecasting and Social Change*, 188, 122343. https://doi.org/10.1016/j.techfore.2023.122343.
- Köchling, A., Wehner, M. C. & Warkocz, J. (2022). Can I show my skills? Affective responses to artificial intelligence in the recruitment process", *Review of Managerial Science*, https://doi.org/10.1007/s11846-021-00514-4.
- Köchling, A., & Wehner, M.C. (2020). Discriminated by an algorithm: a systematic review of discrimination and fairness by algorithmic decision-making in the context of HR recruitment and HR development. *Business Research*, *13*, 795–848. https://doi.org/10.1007/s40685-020-00134-w.
- König, C.J., Melchers, K. G., Kleinmann, M., Richter, G. M., & Klehe, U.-C. (2007). Candidates' ability to identify criteria in nontransparent selection procedures: evidence from an assessment center and a structured interview. *International Journal of Selection and Assessment*, 15, 283–292. https://doi.org/10.1111/j.1468-2389.2007.00388.x.
- Kreps, G.L., & Neuhauser, L. (2013). Artificial intelligence and immediacy: designing health communication to personally engage consumers and providers. *Patient Education and Counseling*, 92, 205–210. https://doi.org/10.1016/j.pec.2013.04.014.
- Langer, M., & König, C. J. (2023). Introducing a multi-stakeholder perspective on opacity, transparency and strategies to reduce opacity in algorithm-based human resource management. *Human Resource Management Review*, 33(1), 100881.

- Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011 https://doi.org/10.1016/j.hrmr.2021.100881.
- Langer, M., König, C. J., & Hemsing, V. (2020). Is anybody listening? The impact of automatically evaluated job interviews on impression management and applicant reactions. *Journal of Managerial Psychology*, 35, 271–284. https://doi.org/10.1108/JMP-03-2019-0156.
- Langer, M., König, C. J., & Krause, K. (2017). Examining digital interviews for personnel selection: applicant reactions and interviewer ratings. *International Journal of Selection and Assessment*, 25, 371–382. https://doi.org/10.1111/ijsa.12191.
- Langer, M., König, C. J., & Papathanasiou, M. (2019a). Highly automated job interviews: acceptance under the influence of stakes. International Journal of Selection and Assessment, 27, 217–234. https://doi.org/10.1111/ijsa.12246.
- Langer, M., König, C. J., Sanchez, D. R. -P., & Samadi, S. (2019b). Highly automated interviews: applicant reactions and the organizational context. *Journal of Managerial Psychology*, *35*, 301–314. https://doi.org/10.1108/JMP-09-2018-0402.
- Law, S. J., Bourdage, J., & O'Neill, T. A. (2016). To fake or not to fake: antecedents to interview faking, warning instructions, and its impact on applicant reactions. *Frontiers in Psychology*, 7, 1–13. https://doi.org/10.3389/fpsyg.2016.01771.
- Levashina, J., & Campion, M. A. (2006). A model of faking likelihood in the employment interview. *International Journal of Selection and Assessment*, *14*, 299–316. https://doi.org/10.1111/j.1468-2389.2006.00353.x.
- Levashina, J., & Campion, M. A. (2007). Measuring faking in the employment interview: development and validation of an interview faking behavior scale. *Journal of Applied*

- Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011 *Psychology*, 92, 1638–1656. https://doi.org/10.1037/0021-9010.92.6.1638.
- Levashina, J., Hartwell, C. J., Morgeson, F. P., & Campion, M. A. (2014). The structured employment interview: narrative and quantitative review of the research literature. *Personnel Psychology*, 67, 241–293. https://doi.org/10.1111/peps.12052.
- Liu, X., & London, K. (2016). T.A.I: a tangible AI interface to enhance human-artificial intelligence (AI) communication beyond the screen, in: Proceedings of the 2016 ACM
 Conference on Designing Interactive Systems. Association for Computing Machinery,
 Brisbane, QLD, Australia, pp. 281–285.
- Long, N. (2001). Development Sociology: Actor Perspectives. Routledge, New York, NY.
- Lukacik, E. R., Bourdage, J. S. and Roulin, N. (2022), "Into the void: A conceptual model and research agenda for the design and use of asynchronous video interviews", Human Resource Management Review, Vol. 32 No. 1, Article No. 100789. https://doi.org/10.1016/j.hrmr.2020.100789
- Marcus, B. (2009). 'Faking' from the applicant's perspective: a theory of self-presentation in personnel selection settings. *International Journal of Selection and Assessment*, *17*, 417–430. https://doi.org/10.1111/j.1468-2389.2009.00483.x.
- McCarthy, J., Hrabluik, C., & Jelley, R. B. (2009). Progression through the ranks: assessing employee reactions to high-stakes employment testing. *Personnel Psychology*, *62*, 793–832. https://doi.org/10.1111/j.1744-6570.2009.01158.x.
- Mirowska, A., & Mesnet, L. (2022). Preferring the devil you know: Potential applicant reactions to artificial intelligence evaluation of interviews. *Human Resource Management Journal*, 32(2), 364–383. https://doi.org/10.1111/1748-8583.12393

- Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011
- Monaro, M., Maldera, S., Scarpazza, C., Sartori, G., & Navarin, N. (2022). Detecting deception through facial expressions in a dataset of videotaped interviews: a comparison between human judges and machine learning models. *Computers in Human Behavior, 127*, 107063. https://doi.org/10.1016/j.chb.2021.107063.
- Mori, M. (1970). Bukimi no tani [The uncanny valley]. Energy, 7, 33–35.
- Naim, I., Tanveer, M. I., Gildea, D., & Hoque, M. E. (2018). Automated analysis and prediction of job interview performance. *IEEE Transactions on Affective Computing*, *9*, 191–204. https://doi.org/10.1109/TAFFC.2016.2614299.
- Nguyen, L. S., Frauendorfer, D., Mast, M. S., & Gatica-Perez, D. (2014). Hire me: computational inference of hirability in employment interviews based on nonverbal behavior. *IEEE Transactions on Multimedia*, *16*, 1018–1031. https://doi.org/10.1109/TMM.2014.2307169.
- Nørskov, S., Damholdt, M. F., Ulhøi, J. P., Jensen, M. B., Mathiasen, M. K., Ess, C. M., & Seibt, J. (2022). Employers' and applicants' fairness perceptions in job interviews: using a teleoperated robot as a fair proxy. *Technological Forecasting and Social Change*, 179, 121641. https://doi.org/10.1016/j.techfore.2022.121641.
- Powell, D. M., Bourdage, J. S., & Bonaccio, S. (2021). Shake and fake: the role of interview anxiety in deceptive impression management. *Journal of Business and Psychology*, *36*, 829–840. https://doi.org/10.1007/s10869-020-09708-1.
- Rao, S. B. P., Rasipuram, S., Das, R., & Jayagopi, D. B. (2017). Automatic assessment of communication skill in non-conventional interview settings: a comparative study, in:Proceedings of the 19th ACM International Conference on Multimodal Interaction.

- Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011
 Association for Computing Machinery, Glasgow, UK, pp. 221–229.
- Roulin, N., Bangerter, A., & Levashina, J. (2015). Honest and deceptive impression management in the employment interview: can it be detected and how does it impact evaluations?

 *Personnel Psychology, 68, 395–444. https://doi.org/10.1111/peps.12079.
- Roulin, N., Langer, M., & Bourdage, J. S. (2021). "I" feel(s) left out: the importance of information and communication technology in personnel selection research. *Industrial and Organizational Psychology*, *14*, 423–427. https://doi.org/10.1017/iop.2021.79.
- Şengün, S., Mawhorter, P., Bowie-Wilson, J., Audeh, Y., Kwak, H., & Harrell, D. F. (2022).

 Contours of virtual enfreakment in fighting game characters. *Technological Forecasting*and Social Change, 180, 121707. https://doi.org/10.1016/j.techfore.2022.121707.
- Shareef, M. A., Ahmed, J. U., Giannakis, M., Dwivedi, Y. K., Kumar, V., Butt, I., & Kumar, U. (2023). Machine autonomy for rehabilitation of elderly people: A trade-off between machine intelligence and consumer trust. *Journal of Business Research*, *164*, 113961. https://doi.org/10.1016/j.jbusres.2023.113961.
- Shareef, M. A., Kumar, V., Dwivedi, Y. K., Kumar, U., Akram, M. S., & Raman, R. (2021). A new health care system enabled by machine intelligence: Elderly people's trust or losing self control. *Technological Forecasting and Social Change*, *162*, 120334. https://doi.org/10.1016/j.techfore.2020.120334
- Short, J., Williams, E., & Christie, B. (1976). *The social psychology of telecommunications*. John Wiley & Sons.
- Su, Y. -S., Suen, H. -Y., & Hung, K. -E. (2021). Predicting behavioral competencies automatically from facial expressions in real-time video-recorded interviews. *Journal of*

Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011 *Real-Time Image Processing, 18*, 1011–1021. https://doi.org/10.1007/s11554-021-01071-

5.

- Suen, H.-Y., & Hung, K.-E. (2023). Building Trust in Automatic Video Interviews using Various AI Interfaces: Tangibility, Immediacy, and Transparency. *Computers in Human Behavior*, 143, 107713. https://doi.org/10.1016/j.chb.2023.107713
- Suen, H. -Y., Chen, M. Y. -C., & Lu, S. -H. (2019a). Does the use of synchrony and artificial intelligence in video interviews affect interview ratings and applicant attitudes?

 Computers in Human Behavior, 98, 93–101. https://doi.org/10.1016/j.chb.2019.04.012.
- Suen, H. -Y., Hung, K. -E., & Lin, C. -L. (2020). Intelligent video interview agent used to predict communication skill and perceived personality traits. *Human-centric Computing and Information Sciences*, *10*, 3. https://doi.org/10.1186/s13673-020-0208-3.
- Suen, H. -Y., Hung, K. E., & Lin, C. L. (2019b). TensorFlow-based automatic personality recognition used in asynchronous video interviews. *IEEE Access*, 7, 61018–61023. https://doi.org/10.1109/ACCESS.2019.2902863.
- Swider, B. W., Barrick, M. R., & Harris, T. B. (2016). Initial impressions: what they are, what they are not, and how they influence structured interview outcomes. *Journal of Applied Psychology*, *101*, 625–638. https://doi.org/10.1037/apl0000077.
- Tastemirova, A., Schneider, J., Kruse, L. C., Heinzle, S., & Brocke, J. V. (2022).

 Microexpressions in digital humans: Perceived affect, sincerity, and trustworthiness.

 Electronic Markets, 32(3), 1603–1620. https://doi.org/10.1007/s12525-022-00563-x
- Treem, J. W., Leonardi, P. M., & van den Hooff, B. (2020). Computer-mediated communication in the age of communication visibility. *Journal of Computer-Mediated Communication*,

- Suen, H. Y., & Hung, K. E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. *Technological Forecasting and Social Change, 198*, 123011. https://doi.org/10.1016/j.techfore.2023.123011
 25, 44–59. https://doi.org/10.1093/jcmc/zmz024.
- van Esch, P., Black, J.S., & Ferolie, J. (2019). Marketing AI recruitment: the next phase in job application and selection. *Computers in Human Behavior*, 90, 215–222. https://doi.org/10.1016/j.chb.2018.09.009.
- Wall, S., & Schellman, H. (2021). We tested AI interview tools. Here's what we found. *MIT Technology Review*. https://www.technologyreview.com/2021/07/07/1027916/we-tested-ai-interview-tools/.
- Waytz, A., Heafner, J., & Epley, N. (2014). The mind in the machine: anthropomorphism increases trust in an autonomous vehicle. *Journal of Experimental Social Psychology*, *52*, 113–117. https://doi.org/10.1016/j.jesp.2014.01.005.
- Wesche, J. S., Langer, M., Sonderegger, A., & Landers, R. (2022). Editorial to the virtual special issue: human-automation interaction in the workplace: a broadened scope of paradigms.

 *Computers in Human Behavior, 134, 107335. https://doi.org/10.1016/j.chb.2022.107335.
- Wilhelmy, A., Roulin, N., & Wingate, T. G. (2021). Does it take two to tango? Examining how applicants and interviewers adapt their impression management to each other. *Journal of Business and Psychology*, *36*, 1053–1076. https://doi.org/10.1007/s10869-020-09720-5.
- Woods, S.A., Ahmed, S., Nikolaou, I., Costa, A. C., Anderson, N. R. (2020). Personnel selection in the digital age: a review of validity and applicant reactions, and future research challenges. *European Journal of Work and Organizational Psychology*, *29*, 64–77. https://doi.org/10.1080/1359432X.2019.1681401.