# Produit scalaire - TEST pour s'auto-évaluer

Dans le Test Moodle les questions seront proposées dans l'ordre ci-dessous.

#### Question 1:

Dans un repère orthonormé, on donne les points A(-2;3) et B(4;-1). La longueur AB est égale à :

 $\sqrt{52}$ 

52

 $\sqrt{8}$ 

 $\sqrt{20}$ 

#### **CORRECTION:**

$$\overrightarrow{AB} \begin{vmatrix} 4 - (-2) = 6 \\ -1 - 3 = -4 \end{vmatrix}$$
 donc  $\overrightarrow{AB} = \|\overrightarrow{AB}\| = \sqrt{6^2 + (-4)^2} = \sqrt{36 + 16} = \sqrt{52}$ 

#### Question 2:

Dans un repère orthonormé  $(0, \vec{i}, \vec{j})$ ,

1) on donne les vecteurs  $\vec{u}egin{pmatrix}1\\-3\end{pmatrix}$  et  $\vec{v}egin{pmatrix}-5\\-2\end{pmatrix}$ 

le produit scalaire  $\vec{u} \cdot \vec{v}$  est égal à

2) on donne les vecteurs  $\vec{u} = -2\vec{i} + 3\vec{j}$  et  $\vec{v} = 0, 5\vec{i} - \vec{j}$ 

le produit scalaire  $\vec{u} \cdot \vec{v}$  est égal à

#### **CORRECTION:**

1) 
$$\vec{u} \cdot \vec{v} = xx' + yy' = 1 \times (-5) + (-3) \times (-2) = -5 + 6 = 1$$

2) On a donc 
$$\vec{u} \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$
 et  $\vec{v} \begin{pmatrix} 0.5 \\ -1 \end{pmatrix}$  donc  $\vec{u} \cdot \vec{v} = -2 \times 0.5 + 3 \times (-1) = -4$ 

#### Question 3:

## Calculer les produits scalaires suivants :



 $\overrightarrow{AB} \cdot \overrightarrow{AC} =$ 

 $\overrightarrow{AB} \cdot \overrightarrow{CA} =$ 

 $\overrightarrow{AB} \cdot \overrightarrow{BC} =$ 

 $\overrightarrow{BC} \cdot \overrightarrow{BA} =$ 

#### **CORRECTION:**

Soit H le projeté orthogonal de C sur (AB). On a alors :

1) 
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH} = 6 \times 2 = 12$$

2) 
$$\overrightarrow{AB} \cdot \overrightarrow{CA} = -\overrightarrow{AB} \cdot \overrightarrow{AC} = -12$$

3) 
$$\overrightarrow{AB} \cdot \overrightarrow{BC} = \overrightarrow{AB} \cdot \overrightarrow{BH} = -6 \times 4 = -24$$

4) 
$$\overrightarrow{BC} \cdot \overrightarrow{BA} = \overrightarrow{BA} \cdot \overrightarrow{BC} = -\overrightarrow{AB} \cdot \overrightarrow{BC} = -(-24) = 24$$

## Question 4:

ABDC est un parallélogramme.



1) 
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} (AB^2 + AC^2 - BC^2) =$$

2) Une autre expression de  $\overrightarrow{AB} \cdot \overrightarrow{AC}$  est :

$$\frac{1}{2}(AD^2 - AB^2 - AC^2) \qquad \frac{1}{2}(AB^2 + AC^2 - AD^2) \qquad \frac{1}{2}(BC^2 - AD^2)$$

3) En déduire la valeur exacte de AD.

$$AD = \sqrt{97}$$
  $AD = 7$   $AD = \sqrt{170}$ 

#### **CORRECTION:**

1) 
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} \left( \|\overrightarrow{AB}\|^2 + \|\overrightarrow{AC}\|^2 - \|\overrightarrow{AB} - \overrightarrow{AC}\|^2 \right) = \frac{1}{2} (AB^2 + AC^2 - BC^2)$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} (8^2 + 3^2 - 7^2) = 12$$

2) 
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} (AD^2 - AB^2 - AC^2)$$

3) 
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} [AD^2 - 8^2 - 3^2] = \frac{1}{2} [AD^2 - 73]$$

Or 
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 12$$
 donc  $\frac{1}{2} (AD^2 - 73) = 12$ 

$$AD^2 - 73 = 24$$
  $AD^2 = 97$  donc  $AD = \sqrt{97} \approx 9,85$ 

#### Question 5:

Observer bien le codage de la figure géométrique ci-dessous et calculer les trois produits scalaires demandés.



1) 
$$\overrightarrow{AC} \cdot \overrightarrow{AF} = 12\cos(70^{\circ}) \quad 7\cos(70^{\circ}) \quad 12\sin(70^{\circ}) \quad 4.1$$

2) 
$$\overrightarrow{CB} \cdot \overrightarrow{CG} =$$

3) 
$$\overrightarrow{CF} \cdot \overrightarrow{CG} = 20\cos(50^\circ) \quad 20\cos(70^\circ) \quad 20\cos(130^\circ) \quad -3.75$$

#### **CORRECTION:**

1) 
$$\overrightarrow{AC} \cdot \overrightarrow{AF} = AC \times AF \times \cos(\widehat{CAF}) = 4 \times 3 \times \cos(\widehat{CAF}) = 12 \cos(\widehat{CAF})$$

2) 
$$\overrightarrow{CB} \cdot \overrightarrow{CG} = CA \times CG \times \cos(\widehat{BCG}) = 5 \times 5 \times \cos(\widehat{60}^{\circ}) = 25 \times \frac{1}{2} = 12,5$$

3) On a CF = 4; CG = 5 et l'angle 
$$\widehat{FCG}$$
 mesure  $180^{\circ} - 70^{\circ} - 60^{\circ} = 50^{\circ}$  donc  $\widehat{CF} \cdot \widehat{CG} = CF \times CG \times \cos(\widehat{FCG}) = 4 \times 5 \times \cos(50^{\circ}) = 20 \cos(50^{\circ})$ 

#### Question 6:

ABCD est un rectangle de longueur AB=12 et de largeur BC=6. E est le milieu de [AB] et F le milieu de [BC].



Quelles sont les **deux expressions les plus adaptées** pour calculer le produit scalaire **DE . DF** ?

On utilise le repère orthonormé (A,  $\frac{\overrightarrow{AB}}{\|\overrightarrow{AB}\|}$ ,  $\frac{\overrightarrow{AD}}{\|\overrightarrow{AD}\|}$ ) dans lequel les coordonnées de  $\overrightarrow{DE}$  et  $\overrightarrow{DF}$  sont faciles à trouver et on utilise la formule  $\overrightarrow{u} \cdot \overrightarrow{v} = xx' + \gamma y'$ 

On utilise la formule  $\overrightarrow{DE} \cdot \overrightarrow{DF} = DE \times DF \times \cos(\widehat{EDF})$ 

On utilise la formule  $\overline{DE}$  .  $\overline{DF} = \frac{1}{2} \big( DE^2 + DF^2 - EF^2 \big)$ 

On utilise la formule  $\overline{DE} \cdot \overline{DF} = \frac{1}{2} \Big( \| \overline{DE} + \overline{DF} \|^2 - \| \overline{DE} \|^2 - \| \overline{DF} \|^2 \Big)$ 

On utilise la décomposition  $\overrightarrow{DE} \cdot \overrightarrow{DF} = (\overrightarrow{DA} + \overrightarrow{AE}) \cdot (\overrightarrow{DC} + \overrightarrow{CF})$ 

Soit H le projeté orthogonal de E sur (DF). On utilise alors la formule  $\overrightarrow{DE} \cdot \overrightarrow{DF} = \overrightarrow{DH} \cdot \overrightarrow{DF}$ 

#### **CORRECTION:**

• On utilise le repère orthonormé (A,  $\frac{\overrightarrow{AB}}{\|\overrightarrow{AB}\|}$ ,  $\frac{\overrightarrow{AD}}{\|\overrightarrow{AD}\|}$ )

dans lequel les coordonnées de  $\overrightarrow{DE}$  et  $\overrightarrow{DF}$  sont faciles à trouve et on utilise la formule  $\vec{u} \cdot \vec{v} = xx' + yy'$ 

Complément: Dans ce repère, 
$$\overrightarrow{DE}\begin{pmatrix} 6 \\ -6 \end{pmatrix}$$
 et  $\overrightarrow{DF}\begin{pmatrix} 12 \\ -3 \end{pmatrix}$ 

$$\overrightarrow{DE} \cdot \overrightarrow{DF} = 6 \times 12 + (-6) \times (-3) = 72 + 18 = 90$$

• On peut aussi utiliser la décomposition

$$\overrightarrow{\mathbf{DE}} \cdot \overrightarrow{\mathbf{DF}} = (\overrightarrow{\mathbf{DA}} + \overrightarrow{\mathbf{AE}}) \cdot (\overrightarrow{\mathbf{DC}} + \overrightarrow{\mathbf{CF}})$$

Complément: en développant, on obtient

$$\overrightarrow{DE} \cdot \overrightarrow{DF} = \overrightarrow{DA} \cdot \overrightarrow{DC} + \overrightarrow{DA} \cdot \overrightarrow{CF} + \overrightarrow{AE} \cdot \overrightarrow{DC} + \overrightarrow{AE} \cdot \overrightarrow{CF}$$

$$\overrightarrow{DE} \cdot \overrightarrow{DF} = 0 + 6 \times 3 + 6 \times 12 + 0$$

$$\overrightarrow{DE} \cdot \overrightarrow{DF} = 90$$

### Question 7:

EFG est un triangle tel que EF=4, EG = 5 et FG = 6



1) En utilisant la formule avec les normes, on obtient :

$$\overrightarrow{\mathbf{EF}} \cdot \overrightarrow{\mathbf{EG}} =$$

2) En utilisant la formule avec le cosinus, on obtient :

$$\overrightarrow{EF} \cdot \overrightarrow{EG} = 20 \cos(\widehat{FEG}) \qquad \overrightarrow{EF} \cdot \overrightarrow{EG} = 9 \cos(\widehat{FEG})$$

$$\overrightarrow{EF} \cdot \overrightarrow{EG} = 24 \cos(\widehat{FEG}) \qquad \overrightarrow{EF} \cdot \overrightarrow{EG} = 30 \cos(\widehat{FEG})$$

3) En utilisant les deux expressions de  $\overrightarrow{EF} \cdot \overrightarrow{EG}$  précédentes on en déduit la valeur exacte de  $\cos(\widehat{FEG})$ . Laquelle ?

$$\cos{(\widehat{\mathrm{FEG}})} = \frac{1}{8} \qquad \cos{(\widehat{\mathrm{FEG}})} = \frac{1}{4} \qquad \cos{(\widehat{\mathrm{FEG}})} = \frac{4}{5} \qquad \cos{(\widehat{\mathrm{FEG}})} = \frac{5}{18}$$

4) Donner alors une valeur arrondie à 0,1 près de l'angle  $\widehat{\text{FEG}}$  .

#### **CORRECTION:**

1) 
$$\overline{\mathbf{EF}} \cdot \overline{\mathbf{EG}} = \frac{1}{2} \left( \|\overline{\mathbf{EF}}\|^2 + \|\overline{\mathbf{EG}}\|^2 - \|\overline{\mathbf{EF}} - \overline{\mathbf{EG}}\|^2 \right) = \frac{1}{2} \left( \mathbf{EF}^2 + \mathbf{EG}^2 - \mathbf{FG}^2 \right)$$

$$\overline{\mathbf{EF}} \cdot \overline{\mathbf{EG}} = \frac{1}{2} \left( 4^2 + 5^2 - 6^2 \right) = \frac{5}{2}$$

2) 
$$\overrightarrow{EF} \cdot \overrightarrow{EG} = EF \times EG \times \cos(\widehat{FEG}) = 20 \cos(\widehat{FEG})$$

3) 
$$20\cos(\widehat{\text{FEG}}) = \frac{5}{2}$$
 et donc  $\cos(\widehat{\text{FEG}}) = \frac{5}{2} \times \frac{1}{20} = \frac{1}{8}$ 

4) 
$$\cos(\widehat{\text{FEG}}) = \frac{1}{8} \text{ donc } \widehat{\text{FEG}} \approx 82.8^{\circ} \text{ valeur arrondie à 0,1° près}$$

## **Question 8:**

Dans un repère orthonormé, on donne les points :

$$A(-1;1); B(6;2,5) et C(-2;6)$$



- 1)  $\overrightarrow{AB} \cdot \overrightarrow{AC} =$
- 2) Les droites (AB) et (AC) sont-elles perpendiculaires?

#### **CORRECTION:**

1) 
$$\overrightarrow{AB} \begin{pmatrix} 6-(-1)=7\\ 2,5-1=1,5 \end{pmatrix}$$
  $\overrightarrow{AC} \begin{pmatrix} -2-(-1)=-1\\ 6-1=5 \end{pmatrix}$  donc  $\overrightarrow{AB} \cdot \overrightarrow{AC} = 7 \times (-1) + 1,5 \times 5 = -7 + 7,5 = 0,5$ 

2) Le produit scalaire  $\overrightarrow{AB}$ .  $\overrightarrow{AC}$  n'est pas nul donc les droites (AB) et (AC) ne sont pas perpendiculaires.

#### Question 9:

ABCD est un rectangle de longueur AB = 5 cm et de largeur AD = 4 cm. E est un point mobile sur [CD]. On désigne par x la longueur DE.



1) Exprimer en fonction de x le produit scalaire  $\overrightarrow{AE} \cdot \overrightarrow{DB}$ .

$$\overrightarrow{AE} \cdot \overrightarrow{DB} = 5x - 16$$

$$\overrightarrow{AE} \cdot \overrightarrow{DB} = -4 x - 20$$

$$\overrightarrow{AE} \cdot \overrightarrow{DB} = -4 x + 20$$

$$\overrightarrow{AE} \cdot \overrightarrow{DB} = 5x + 16$$

2) Où faut-il placer le point E pour que les droites (DB) et (AE) soient perpendiculaires ?

à 3,2 cm de D

au milieu de [CD]

Il faut placer E sur le point C

à 3 cm de D.

#### **CORRECTION:**

1) \* On peut utiliser le repère orthonormé (A,  $\frac{\overrightarrow{AB}}{\|\overrightarrow{AB}\|}$ ,  $\frac{\overrightarrow{AD}}{\|\overrightarrow{AD}\|}$ 

Dans ce repère, 
$$\overrightarrow{AE} \begin{pmatrix} x \\ 4 \end{pmatrix}$$
 et  $\overrightarrow{DB} \begin{pmatrix} 5 \\ -4 \end{pmatrix}$  donc  $\overrightarrow{AE} \cdot \overrightarrow{DB} = x \times 5 + 4 \times (-4) = 5 \ x - 16$ 

\* On peut aussi utiliser une décomposition des vecteurs  $\overrightarrow{AE}$  et  $\overrightarrow{DB}$  $\overrightarrow{AE} \cdot \overrightarrow{DB} = (\overrightarrow{AD} + \overrightarrow{DE}) \cdot (\overrightarrow{DA} + \overrightarrow{AB})$ 

$$\overrightarrow{AE} \cdot \overrightarrow{DB} = \overrightarrow{AD} \cdot \overrightarrow{DA} + \overrightarrow{AD} \cdot \overrightarrow{AB} + \overrightarrow{DE} \cdot \overrightarrow{DA} + \overrightarrow{DE} \cdot \overrightarrow{AB}$$

$$\overrightarrow{AE} \cdot \overrightarrow{DB} = 4 \times (-4) + 0 + 0 + 5 \times x$$

$$\overrightarrow{AE} \cdot \overrightarrow{DB} = 5x - 16$$

2) On veut que ce produit scalaire soit nul donc il faut choisir x de telle sorte que 5x-16=0 donc  $x=\frac{16}{5}=3,2$ 

Il faut placer le point E à 3,2 cm de D.

## Produit scalaire - TEST complémentaire

#### **Question 1:**

ABCD est un rectangle de longueur AB=6 et de largeur AD=4.

E est le milieu de [CD] et F est le milieu de [BC].

Calculer les différents produits scalaires demandés.

Un exemple : Calcul de  $\overrightarrow{DE} \cdot \overrightarrow{DB}$  .

C est le projeté orthogonal de B sur (DE) donc :

$$\overrightarrow{DE} \cdot \overrightarrow{DB} = \overrightarrow{DE} \cdot \overrightarrow{DC} = 3 \times 6 = 18$$



## **CORRECTION:**

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AB} = 36$  B est le projeté orthogonal de C sur (AB)

 $\overrightarrow{DB} \cdot \overrightarrow{DA} = \overrightarrow{DA} \cdot \overrightarrow{DA} = 16$  A est le projeté orthogonal de B sur (DA)

 $\overrightarrow{AB} \cdot \overrightarrow{CD} = 6 \times (-6) = -36$   $\overrightarrow{AB}$  et  $\overrightarrow{CD}$  sont colinéaires

 $\overrightarrow{AB} \cdot \overrightarrow{BC} = 0$   $\overrightarrow{AB}$  et  $\overrightarrow{BC}$  sont orthogonaux

 $\overrightarrow{AE} \cdot \overrightarrow{AB} = \overrightarrow{AH} \cdot \overrightarrow{AB} = 3 \times 6 = 18$  H désigne le milieu de [AB]

 $\overrightarrow{EF} \cdot \overrightarrow{CD} = \overrightarrow{EC} \cdot \overrightarrow{CD} = 3 \times (-6) = -18$  C est le projeté orthogonal de F sur (CD)

 $\overrightarrow{ED} \cdot \overrightarrow{EF} = \overrightarrow{ED} \cdot \overrightarrow{EC} = 3 \times (-3) = -9 \qquad \text{C est le projeté orthogonal de F}$  sur (ED)

 $\overrightarrow{AC} \cdot \overrightarrow{CF} = \overrightarrow{BC} \cdot \overrightarrow{CF} = 4 \times (-2) = -8$  B est le projeté orthogonal de A sur (CF)

## Question 2:

ABCD est un rectangle de longueur AB=6 et de largeur AD=4. E est le milieu de [CD] et F est le milieu de [BC].

## Partie A:

$$\overrightarrow{AE} \cdot \overrightarrow{AF} =$$

Indication : utiliser un repère orthonormé ou une décomposition des vecteurs  $\overline{AE}$  et  $\overline{AF}$ 



#### **CORRECTION:**

\* On utilise le repère orthonormé (A,  $\frac{\overrightarrow{AB}}{\|\overrightarrow{AB}\|}$ ,  $\frac{\overrightarrow{AD}}{\|\overrightarrow{AD}\|}$ )

Dans ce repère, 
$$\overrightarrow{AE} \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
 et  $\overrightarrow{AF} \begin{pmatrix} 6 \\ 2 \end{pmatrix}$ 

donc 
$$\overrightarrow{AE} \cdot \overrightarrow{AF} = 3 \times 6 + 4 \times 2 = 26$$

\* Avec une décomposition des vecteurs  $\overrightarrow{AE}$  et  $\overrightarrow{AF}$  :

$$\overrightarrow{AE} \cdot \overrightarrow{AF} = (\overrightarrow{AD} + \overrightarrow{DE}) \cdot (\overrightarrow{AB} + \overrightarrow{BF}) = \overrightarrow{AD} \cdot \overrightarrow{AB} + \overrightarrow{AD} \cdot \overrightarrow{BF} + \overrightarrow{DE} \cdot \overrightarrow{AB} + \overrightarrow{DE} \cdot \overrightarrow{BF}$$

$$\overrightarrow{AE} \cdot \overrightarrow{AF} = 0 + 4 \times 2 + 3 \times 6 + 0$$

$$\overrightarrow{AE} \cdot \overrightarrow{AF} = 26$$

#### **Question 3:**

ABCD est un rectangle de longueur AB=6 et de largeur AD=4. E est le milieu de [CD] et F est le milieu de [BC].



Partie B:

1) Calculer les longueurs AE et AF **AE=** 

**AF=** 8 
$$\sqrt{40}$$
  $\sqrt{32}$ 

2) On en déduit que  $\overrightarrow{AE} \cdot \overrightarrow{AF} = 5\sqrt{40} \times \cos(\widehat{EAF})$   $5\sqrt{32} \times \cos(\widehat{EAF})$   $7\sqrt{40} \times \cos(\widehat{EAF})$ 

#### **CORRECTION:**

1) Les triangles ADE et ABF sont rectangles en D et en B donc :

$$AE = \sqrt{4^2 + 3^2} = 5$$
  $AF = \sqrt{6^2 + 2^2} = \sqrt{40}$ 

2)  $\overrightarrow{AE} \cdot \overrightarrow{AF} = AE \times AF \times \cos(\widehat{EAF}) = 5\sqrt{40} \times \cos(\widehat{EAF})$ 

#### Question 4:

ABCD est un rectangle de longueur AB=6 et de largeur AD=4. E est le milieu de [CD] et F est le milieu de [BC].

Aux questions précédentes, on a obtenu :

$$\overrightarrow{AE} \cdot \overrightarrow{AF} = 26$$
 (Partie A)

$$\overrightarrow{AE} \cdot \overrightarrow{AF} = 5\sqrt{40} \times \cos(\widehat{EAF})$$
 (Partie B)

#### Partie C:

1) En déduire la valeur exacte de  $\cos(\widehat{\mathbf{EAF}})$  .

$$\cos(\widehat{EAF}) = \frac{26}{5\sqrt{40}}$$

$$\cos(\widehat{EAF}) = \frac{5\sqrt{40}}{26}$$

$$\cos(\widehat{EAF}) = 130\sqrt{40}$$

$$\cos(\widehat{EAF}) = 0.8$$



2) Donner alors une valeur approchée à 0,1° près l'angle  $\widehat{EAF}$  .

**Réponse :**  $\widehat{EAF} \approx$ 

## **CORRECTION:**

1)  $\overrightarrow{AE} \cdot \overrightarrow{AF} = 26$  et  $\overrightarrow{AE} \cdot \overrightarrow{AF} = 5\sqrt{40} \times \cos(\widehat{EAF})$ 

Donc 
$$5\sqrt{40} \times \cos(\widehat{EAF}) = 26$$
 et donc  $\cos(\widehat{EAF}) = \frac{26}{5\sqrt{40}}$ 

2) A la calculatrice, on obtient :  $\widehat{\mathbf{EAF}} \! \approx \! \mathbf{34,7}^{\, \circ} \,$  arrondi à 0,1° près

#### Question 5:

Dans le repère orthonormé ci-dessous, on a placé trois points A, B et C. H est le projeté orthogonal de C sur (AB).

Donner la valeur exacte de AH.

$$AH = \frac{9\sqrt{17}}{17}$$
  $AH = \frac{15\sqrt{17}}{17}$   $AH = \frac{9}{\sqrt{5}}$   $AH = \sqrt{5}$ 



### **CORRECTION:**

#### Méthode:

On calcule le produit scalaire  $\overrightarrow{AB} \cdot \overrightarrow{AC}$  de deux façons différentes.

Première façon : avec les coordonnées

$$\overrightarrow{AB} \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
 et  $\overrightarrow{AC} \begin{pmatrix} -3 \\ 3 \end{pmatrix}$  donc  $\overrightarrow{AB} \cdot \overrightarrow{AC} = 4 \times (-3) + 1 \times 3 = -9$ 

Deuxième façon : avec le projeté orthogonal

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH} = -AB \times AH$$
 Or  $AB = \|\overrightarrow{AB}\| = \sqrt{4^2 + 1^2} = \sqrt{17}$  donc  $\overrightarrow{AB} \cdot \overrightarrow{AC} = -\sqrt{17} \times AH$ 

Les deux expressions du produit scalaire sont égales donc :

$$-9 = -\sqrt{17} \times AH$$
 donc  $AH = \frac{9}{\sqrt{17}} = \frac{9\sqrt{17}}{17} \approx 2.18$