

COMPUTER ORGANISATION (TỔ CHỨC MÁY TÍNH)

Combinational Circuits

Acknowledgement

- The contents of these slides have origin from School of Computing, National University of Singapore.
- We greatly appreciate support from Mr. Aaron Tan Tuck Choy for kindly sharing these materials.

Policies for students

- These contents are only used for students PERSONALLY.
- Students are NOT allowed to modify or deliver these contents to anywhere or anyone for any purpose.

WHERE ARE WE NOW?

- Number systems and codes
- Boolean algebra
- Logic gates and circuits
- Simplification
- Combinational circuits
- Sequential circuits
- Performance
- Assembly language
- The processor: Datapath and control
- Pipelining
- Memory hierarchy: Cache
- Input/output

Preparation: 2 weeks

Logic Design: 3 weeks

Computer organisation

COMBINATIONAL CIRCUITS

- Introduction
- Analysis Procedure
- Design Methods
- Gate-level (SSI) Design
- Block-Level Design
- Arithmetic Circuits
- Circuit Delays
- Look-Ahead Carry Adder

INTRODUCTION

- Two classes of logic circuits
 - Combinational
 - Sequential
- Combinational Circuit
 - Each output depends entirely on the immediate (present) inputs.

Sequential Circuit

 Each output depends on both present inputs and state.

ANALYSIS PROCEDURE

 Given a combinational circuit, how do you analyze its function?

- Steps:
 - 1. Label the inputs and outputs.
 - 2. Obtain the functions of intermediate points and the outputs.
 - 3. Draw the truth table.
 - 4. Deduce the functionality of the circuit

Α	В	(A+B)	(A'+B')	F1	F2
0	0	0	1	0	0
0	1	1	1	1	0
1	0	1	1	1	0
1	1	1	0	0	1

DESIGN METHODS

- Different combinational circuit design methods:
 - Gate-level design method (with logic gates)
 - Block-level design method (with functional blocks)
- Design methods make use of logic gates and useful function blocks
 - These are available as Integrated Circuit (IC) chips.
 - Types of IC chips (based on packing density): SSI, MSI, LSI, VLSI, ULSI.
- Main objectives of circuit design:
 - Reduce cost (number of gates for small circuits; number of IC packages for complex circuits)
 - Increase speed
 - Design simplicity (re-use blocks where possible)

GATE-LEVEL (SSI) DESIGN: HALF ADDER (1/2)

- Design procedure:
 - State problem
 Example: Build a Half Adder.
 - 2. Determine and label the inputs and outputs of circuit. Example: Two inputs and two outputs labelled, as shown below.

3. Draw the truth table.

Χ	Υ	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

GATE-LEVEL (SSI) DESIGN: HALF ADDER (2/2)

4. Obtain simplified Boolean functions.

Example:
$$C = X \cdot Y$$

 $S = X' \cdot Y + X \cdot Y' = X \oplus Y$

Χ	Υ	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

5. Draw logic diagram.

Half Adder

GATE-LEVEL (SSI) DESIGN: FULL ADDER (1/5)

- Half adder adds up only two bits.
- To add two binary numbers, we need to add 3 bits (including the *carry*).
 - Example:

Need Full Adder (so called as it can be made from two half adders).

$$\begin{array}{cccc}
X & & & & & & \\
Y & & & & & & \\
Z & & & & & & \\
\end{array}$$

$$\begin{array}{cccc}
Full & & & & \\
Adder & & & & \\
(X + Y + Z) & & & & \\
\end{array}$$

GATE-LEVEL (SSI) DESIGN: FULL ADDER (2/5)

Truth table:

Х	Υ	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Note:

Z - carry in (to the current position)

C - carry out (to the next position)

	_	C		
X	00	01	11	10
0			1	
1		1	1	1

Using K-map, simplified SOP form:

$$C = ?$$

$$S = ?$$

GATE-LEVEL (SSI) DESIGN: FULL ADDER (3/5)

Alternative formulae using algebraic manipulation:

$$C = X \cdot Y + X \cdot Z + Y \cdot Z$$

$$= X \cdot Y + (X + Y) \cdot Z$$

$$= X \cdot Y + ((X \oplus Y) + X \cdot Y) \cdot Z$$

$$= X \cdot Y + (X \oplus Y) \cdot Z + X \cdot Y \cdot Z$$

$$= X \cdot Y + (X \oplus Y) \cdot Z$$

$$S = X' \cdot Y' \cdot Z + X' \cdot Y \cdot Z' + X \cdot Y' \cdot Z' + X \cdot Y \cdot Z$$

$$= X' \cdot (Y' \cdot Z + Y \cdot Z') + X \cdot (Y' \cdot Z' + Y \cdot Z)$$

$$= X' \cdot (Y \oplus Z) + X \cdot (Y \oplus Z)'$$

$$= X \oplus (Y \oplus Z)$$

GATE-LEVEL (SSI) DESIGN: FULL ADDER (4/5)

Circuit for above formulae:

$$C = X \cdot Y + (X \oplus Y) \cdot Z$$

 $S = X \oplus (Y \oplus Z) = (X \oplus Y) \oplus Z$ (XOR is associative)

Full Adder made from two Half-Adders (+ an OR gate).

GATE-LEVEL (SSI) DESIGN: FULL ADDER (5/5)

Circuit for above formulae:

Full Adder made from two Half-Adders (+ an OR gate).

CS2100 Combinational Circuits 16

CODE CONVERTERS

 Code converter – takes an input code, translates to its equivalent output code.

- Example: BCD to Excess-3 code converter.
 - Input: BCD code
 - Output: Excess-3 code

BCD-TO-EXCESS-3 CONVERTER (1/2)

Truth table:

	BCD				Exce	ess-3	3	
	Α	В	С	D	W X Y Z			Z
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0
10	1	0	1	0	X	X	X	X
11	1	0	1	1	X	X	X	X
12	1	1	0	0	X	X	X	X
13	1	1	0	1	X	Х	X	X
14	1	1	1	0	X	X	Х	X
15	1	1	1	1	X	X	Х	X

K-maps:

BCD-TO-EXCESS-3 CONVERTER (2/2)

,	C	D				
Al		00	01	11	10	
	00		1	1	1	
	01	1				B
A	_11	X	X	X	X	
^	10		1	X	X	
		,			•	
	X)		

W	/ =	
X	=	?

$$Z = ?$$

BLOCK-LEVEL DESIGN

- More complex circuits can also be built using block-level method.
- In general, block-level design method (as opposed to gate-level design) relies on algorithms or formulae of the circuit, which are obtained by decomposing the main problem to sub-problems recursively (until small enough to be directly solved by blocks of circuits).
- Simple examples using 4-bit parallel adder as building blocks:
 - 1. BCD-to-Excess-3 Code Converter
 - 2. 16-bit Parallel Adder
 - 3. Adder cum Subtractor

CS2100 Combinational Circuits 20

4-BIT PARALLEL ADDER (1/4)

 Consider a circuit to add two 4-bit numbers together and a carry-in, to produce a 5-bit result.

5-bit result is sufficient because the largest result is:

$$1111_2 + 1111_2 + 1_2 = 11111_2$$

CS2100 Combinational Circuits 21

4-BIT PARALLEL ADDER (2/4)

- SSI design technique should not be used here.
- Truth table for 9 inputs is too big: $2^9 = 512$ rows!

$X_4X_3X_2X_1$	$Y_4Y_3Y_2Y_1$	C ₁	C ₅	S ₄ S ₃ S ₂ S ₁
0000	0000	0	0	0000
0000	0000	1	0	0001
0000	0001	0	0	0 0 0 1
	•••			
0 1 0 1	1101	1	1	0011
1111	1111	1	1	1111

Simplification becomes too complicated!

4-BIT PARALLEL ADDER (3/4)

- Alternative design possible.
- Addition formula for each pair of bits (with carry in),

$$C_{i+1}S_i = X_i + Y_i + C_i$$

has the same function as a full adder:

$$C_{i+1} = X_i \cdot Y_i + (X_i \oplus Y_i) \cdot C_i$$

 $S_i = X_i \oplus Y_i \oplus C_i$

$$C = 1100$$
 $X = 1010$
 $Y = 1111$
 $X + Y = 11001$

4-BIT PARALLEL ADDER (4/4)

Cascading 4 full adders via their carries, we get:

PARALLEL ADDERS

- Note that carry is propagated by cascading the carry from one full adder to the next.
- Called Parallel Adder because inputs are presented simultaneously (in parallel). Also called Ripple-Carry Adder.

BCD-TO-EXCESS-3 CONVERTER (1/2)

- Excess-3 code can be converted from BCD code using truth table:
- Gate-level design can be used since only 4 inputs.
- However, alternative design is possible.
- Use problem-specific formula:

Excess-3 code = BCD Code + 0011₂

		В	CD			Ехсе	ess-3	
	Α	В	С	D	W	X	Υ	Z
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0
10	1	0	1	0	Χ	Χ	Χ	Χ
11	1	0	1	1	Χ	Χ	Χ	Χ
12	1	1	0	0	Χ	Χ	Χ	Χ
13	1	1	0	1	Х	X	X	X
14	1	1	1	0	Χ	X	X	Χ
15	1	1	1	1	Χ	X	Χ	Χ

BCD-TO-EXCESS-3 CONVERTER (2/2)

Block-level circuit:

A BCD-to-Excess-3
Code Converter

16-BIT PARALLEL ADDER

- Larger parallel adders can be built from smaller ones.
- Example: A 16-bit parallel adder can be constructed from four 4-bit parallel adders:

A 16-bit parallel adder

$$\begin{array}{ccc}
\downarrow^{4} & = & \downarrow \downarrow \downarrow \downarrow \\
S_{4}..S_{1} & S_{4}S_{3}S_{2}S_{1}
\end{array}$$

4-BIT ADDER CUM SUBTRACTOR (1/3)

- Recall: Subtraction can be done via addition with 2scomplement numbers.
- Hence, we can design a circuit to perform both addition and subtraction, using a parallel adder and some gates.

4-BIT ADDER CUM SUBTRACTOR (2/3)

Recall:

$$X - Y = X + (-Y)$$

= $X + (2s complement of Y)$
= $X + (1s complement of Y) + 1$

- Design requires:
 - (1) XOR gates, and (2) S connected to carry-in.

4-BIT ADDER CUM SUBTRACTOR (3/3)

4-bit adder-cum-subtractor circuit:

REVISION: HALF ADDER

Half adder

REVISION:

Full adder

1

REVISION: PARALLEL ADDER

4-bit parallel adder

2 ways:

- Serial (one FA)
- Parallel (*n* FAs for *n* bits)

CS2100 Combinational Circuits 34

REVISION: CASCADING ADDERS

- Cascading 4 full adders (FAs) gives a 4-bit parallel adder.
 - Classical method: 9 input variables \rightarrow 29 = 512 rows in truth table!
- Cascading method can be extended to larger adders.
 - Example: 16-bit parallel adder.

EXAMPLE

- Application: 6-person voting system.
 - Use FAs and a 4-bit parallel adder.
 - Each FA can sum up to 3 votes.

MAGNITUDE COMPARATOR (1/4)

- Magnitude comparator: compares 2 values A and B, to check if A>B, A=B, or A<B.
- To design an n-bit magnitude comparator using classical method, it would require 2²ⁿ rows in truth table!
- We shall exploit regularity in our design.
- Question: How do we compare two 4-bit values A (a₃a₂a₁a₀) and B (b₃b₂b₁b₀)?

MAGNITUDE COMPARATOR (2/4) Let $A = A_3A_2A_1A_0$, $B = B_3B_2B_1B_0$; $x_i = A_i \cdot B_i + A_i' \cdot B_i'$

MAGNITUDE COMPARATOR (3/4)

Block diagram of a 4-bit magnitude comparator

MAGNITUDE COMPARATOR (4/4)

• A function F accepts a 4-bit binary value ABCD, and returns 1 if 3

A function F accepts a 4-bit binary value ABCD, and returns 1 if 3
 ≤ ABCD ≤ 12, or 0 otherwise. How would you implement F using
 magnitude comparators and a suitable logic gate?

A ₃ A ₂ A ₁ A ₀	4-bit Comp
B ₃ B ₂ B ₁ B ₀	(A < B) (A > B) (A = B)

```
A<sub>3</sub>
A<sub>2</sub>
A<sub>1</sub>
A<sub>1</sub>
Comp
A<sub>0</sub>

B<sub>3</sub>
(A < B)
B<sub>2</sub>
(A > B)
B<sub>1</sub>
(A = B)
```

CIRCUIT DELAYS (1/5)

• Given a logic gate with delay t. If inputs are stable at times $t_1, t_2, ..., t_n$, then the earliest time in which the output will be stable is:

$$\max(t_1, t_2, ..., t_n) + t$$

To calculate the delays of all outputs of a combinational circuit, repeat above rule for all gates.

CIRCUIT DELAYS (2/5)

 As a simple example, consider the full adder circuit where all inputs are available at time 0. Assume each gate has delay t.

CIRCUIT DELAYS (3/5)

More complex example: 4-bit parallel adder.

CS2100 43

CIRCUIT DELAYS (4/5)

Analyse the delay for the repeated block.

where X_i, Y_i are
S_i stable at 0t, while
C_i is assumed to be stable at mt.

Performing the delay calculation:

CIRCUIT DELAYS (5/5)

Calculating:

```
When i=1, m=0; S_1 = 2t and C_2 = 3t
When i=2, m=3; S_2 = 4t and C_3 = 5t
When i=3, m=5; S_3 = 6t and C_4 = 7t
When i=4, m=7; S_4 = 8t and C_5 = 9t
```

 In general, an n-bit ripple-carry parallel adder will experience the following delay times:

```
S_n = ?
C_{n+1} = ?
```

- Propagation delay of ripple-carry parallel adders is proportional to the number of bits it handles.
- Maximum delay: ?

FASTER CIRCUITS

- Three ways of improving the speed of circuits:
 - Use better technology (eg. ECL faster than TTL gates)
 BUT
 - Faster technology is more expensive, needs more power, lowerlevel of integrations
 - Physical limits (eg. speed of light, size of atom)
 - Use gate-level designs to two-level circuits! (use sumof-products/product-of-sums) BUT
 - Complicated designs for large circuits
 - Product/sum terms need MANY inputs!
 - Use clever look-ahead techniques BUT
 - There are additional costs (hopefully reasonable).

CS2100 Combinational Circuits 46

LOOK-AHEAD CARRY ADDER (1/6)

 Consider the FA, where intermediate signals are labelled as P_i and G_i:

$$P_i = X_i \oplus Y_i$$
$$G_i = X_i \cdot Y_i$$

■ The outputs C_{i+1}, S_i, in terms of P_i, G_i, C_i are:

$$S_i = P_i \oplus C_i \qquad \dots (1)$$

$$C_{i+1} = G_i + P_i \cdot C_i \qquad \dots (2)$$

Looking at equation (2):

 $G_i = X_i \cdot Y_i$ is a *carry generate* signal, and $P_i = X_i \oplus Y_i$ is a *carry propagate* signal.

LOOK-AHEAD CARRY ADDER (2/6)

 For 4-bit ripple-carry adder, the equations for the four carry signals are:

$$C_{i+1} = G_i + P_i \cdot C_i$$

 $C_{i+2} = G_{i+1} + P_{i+1} \cdot C_{i+1}$
 $C_{i+3} = G_{i+2} + P_{i+2} \cdot C_{i+2}$
 $C_{i+4} = G_{i+3} + P_{i+3} \cdot C_{i+3}$

These formulae are deeply nested, as shown here for C_{i+2}:

4-level circuit for $C_{i+2} = G_{i+1} + P_{i+1} \cdot C_{i+1}$

LOOK-AHEAD CARRY ADDER (3/6)

- Nested formulae/gates cause more propagation delay.
- Reduce delay by expanding and flattening the formulae for carries. Example, for C_{i+2}:

$$C_{i+2} = G_{i+1} + P_{i+1} \cdot C_{i+1}$$

$$= G_{i+1} + P_{i+1} \cdot (G_i + P_i \cdot C_i)$$

$$= G_{i+1} + P_{i+1} \cdot G_i + P_{i+1} \cdot P_i \cdot C_i$$

New faster circuit for C_{i+2}:

CS2100 Combinational Circuits 49

LOOK-AHEAD CARRY ADDER (4/6)

Other carry signals can be similarly flattened:

$$\begin{split} C_{i+3} &= G_{i+2} + P_{i+2} \cdot C_{i+2} \\ &= G_{i+2} + P_{i+2} \cdot (G_{i+1} + P_{i+1} \cdot G_i + P_{i+1} \cdot P_i \cdot C_i) \\ &= G_{i+2} + P_{i+2} \cdot G_{i+1} + P_{i+2} \cdot P_{i+1} \cdot G_i + P_{i+2} \cdot P_{i+1} \cdot P_i \cdot C_i \\ C_{i+4} &= G_{i+3} + P_{i+3} \cdot C_{i+3} \\ &= G_{i+3} + P_{i+3} \cdot (G_{i+2} + P_{i+2} \cdot G_{i+1} + P_{i+2} \cdot P_{i+1} \cdot G_i + P_{i+2} \cdot P_{i+1} \cdot P_i \cdot C_i) \\ &= G_{i+3} + P_{i+3} \cdot G_{i+2} + P_{i+3} \cdot P_{i+2} \cdot G_{i+1} + P_{i+3} \cdot P_{i+2} \cdot P_{i+1} \cdot G_i + P_{i+3} \cdot P_{i+2} \cdot P_{i+1} \cdot P_i \cdot C_i \end{split}$$

- Note that formulae gets longer with higher carries.
- Also, all carries are two-level sum-of-products expressions, in terms of the generate signals Gs, the propagate signals Ps, and the first carry-in C_i.

LOOK-AHEAD CARRY ADDFR (5/6)

 We employ lookahead formula in this lookahead-carry adder circuit:

LOOK-AHEAD CARRY ADDFR (6/6)

- The 74182 IC chip allows faster lookahead adder to be built.
- Assuming gate delay is t, maximum propagation delay for circuit is hence 4t
 - t to get generate and propagate signals
 - 2t to get the carries
 - t for the sum signals

QUICK REVIEW QUESTIONS

DLD pages 128 - 129
 Questions 6-1 to 6-4.

Q&A