Prove
$$P(n)$$
: $F_{1} = 2 - d^{n} - ne^{n}$

BE

 $P(0)$: $F_{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$
 $P(1)$: $2 - 2^{n} - 1(2^{n}) = 2 - 1 - \frac{1}{2} = \frac{1}{2}$
 $P(1)$: $2 - 2^{n} - 1(2^{n}) = 2 - 1 - \frac{1}{2} = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} - K = \frac{1}{2}$
 $P(1)$: $\frac{1}{2} = 2 - 2^{n} -$