Kernel Belief Propagation

February 22, 2021

Motivation

- Difficult to derive belief propagation messages for continuous RVs with complex densities, which typically rely on easy to compute conditionals (ie conjugacy or discrete)
- Instead, rewrite messages using nonparametric representations of densities, i.e. sums of points in some space with no explicit parameters
- Approach extends to any domain on which kernels can be defined, such as strings and graphs

Why is this interesting?

► Background is relevant for spectral + kernel methods in latent variable models

▶ Keyword overlap with recent work in efficient attention

Preview: Comparison with Performer-style Inference

- Both do inference in embedded space using kernels
- ▶ 3 terms in complexity: size of state space, feature dimension, number of samples
- Performer relies on explicit computation of inner products with RFF, so complexity is a function of feature dimension and size of state space
- ▶ KBP emphasizes approximate nonparametric inference, complexity is a function of number of samples. Feature dimension is always avoided with kernel trick. Approximations are made to reduce dependence on number of samples.

Learning in Markov Random Fields

Pairwise MRF (typically parameterize log potentials)

$$\mathbb{P}(X) \propto \prod_{s,t \in \mathcal{E}} \Psi_{st}(X_s, X_t) \prod_{s \in \mathcal{V}} \Psi(X_s).$$

- Estimate gradients wrt log potentials by computing edge and node marginals via inference, ie the beliefs $\mathbb{B}(X_s, X_t)$ and $\mathbb{B}(X_s)$
- ▶ Belief propagation is an algorithm for performing inference

Belief Prop (BP)

- ▶ BP propagates messages from nodes to neighbours iteratively until convergence
- Messages from node t to s

$$m_{ts}(X_s) = \int_{X_t \in \mathcal{X}} \Psi_{st}(X_s, X_t) \Psi_t(X_t) \prod_{u \in \delta(t) \setminus \{s\}} m_{ut}(X_t) dX_t$$

Belief at s

$$\mathbb{B}(X_s) = \Psi_s(X_s) \prod_{t \in \delta(s)} m_{ts}^*(X_s),$$

with fixed point messages m^*

- ▶ The integrals in the messages may be difficult to compute
- ► Solution: Rewrite messages as an expectation (by dividing by fixed point messages)¹, then approximate conditional

$$egin{aligned} m'_{ts}(X_s) &= \int_{\mathcal{X}} \mathbb{P}^*(X_t \mid X_s) \prod_{u \in \delta(t) \setminus \{s\}} m'_{ut}(X_t) dX_t \ &= \mathbb{E}_{X_t \mid X_s} \left[\prod_{u \in \delta(t) \setminus \{s\}} m'_{ut}(X_t)
ight] \end{aligned}$$

- Requires fully observed model, otherwise stuck with original integral
- ► *Take closer look at reparameterization (eqns 1-4), discuss how that affects algorithm

¹Is this an existence statement about messages? ←□→←②→←②→←②→ € → ◆②→

Issues with Nonparametric BP Baselines

- ▶ NPBP baselines are Gaussian Mixture BP (Sudderth et al, 2003) and Particle BP (Ihler and McAllester, 2009)
- ▶ They claim NPBP requires a 2-step process of estimating conditional $\mathbb{P}^*(X_t \mid X_s)$, then computing messages
- Kernel BP reduces this to a single step of matrix-vector products

High Level Overview of Kernel Belief Propagation

► Embed messages in RKHS

- Approximate expectations via observed samples
- Compute messages with inner products

Warmup: Kernel Mean Embedding

- ► Kernel mean embeddings map distributions into Hilbert spaces
- ► Can approximate embedding in RKHS via sampling

Kernel Mean Embedding

Definition:

$$\mu_X(\cdot) = \mathbb{E}_X[\phi_X(\cdot)],$$
 with feature map $\phi = k(x,\cdot) \in \mathscr{H}$

- Goal in this paper is to write everything as an inner product and then apply kernel trick
- Using the reproducing property and linearity:

$$\mathbb{E}_{X}[f(X)] = \mathbb{E}_{X}[\langle f, \phi_{X} \rangle] = \langle f, \mathbb{E}_{X}[\phi_{X}] \rangle = \langle f, \mu_{X} \rangle, \forall f \in \mathcal{H},$$

so we can write expected functions of RVs as inner products

Consider categorical distribution with $\phi(\mathbf{x})$ one-hot: $\mu_X = P(X)$.

Kernel Mean Embedding: Empirical Estimation

- Some notation: With samples $\{X^n\}_{n=1}^N \sim \mathbb{P}(X)$, let $\Phi = [\phi(X^1), \cdots, \phi(X^N)] \in \mathbb{R}^{D \times N}$ be the feature matrices (assuming finite dim D feature space)
- We can approximate $\mu_X pprox \Phi^{\top} \mathbf{1}/m$
- ▶ Will use Φ again later, in the form of kernel matrix $K = Φ^TΦ$

- Embed conditional probability function as an operator
- Conditioning operator is a family of functions of y indexed by

- Going to need a series of definitions
- ▶ Goal is to write $\mathbb{E}_{Y|X}[g(Y)]$ as an inner product
 - Recall that messages were rewritten as conditional expectations wrt other messages
 - ightharpoonup We consider the case when g is a message
- Will get there by defining the conditional mean embedding then applying similar derivation as marginal mean embedding

- ▶ Two Hilbert spaces \mathcal{H}, \mathcal{G} for RVs X, Y
- Define uncentered cross-covariance operator

$$C_{YX} = \mathbb{E}_{YX}[\varphi_Y \otimes \phi_X],$$

for $f \in \mathcal{H}, g \in \mathcal{G}$ and $C_{YX} : \mathcal{H} \to \mathcal{G}$

Has property

$$\mathbb{E}_{YX}[g(Y)f(X)] = \langle g, C_{YX}f \rangle = \langle g \otimes f, C_{YX} \rangle,$$

which extends the evaluation property to two variables. (Can have Y=X for autocorrelation) Pf:

$$\mathbb{E}_{YX}[g(Y)f(X)] = \mathbb{E}_{YX}[\langle g, \phi_Y \rangle \langle f, \phi_X \rangle]$$

$$= \mathbb{E}_{YX}[\langle g, \langle f, \phi_X \rangle \phi_Y \rangle]$$

$$= \mathbb{E}_{YX}[\langle g, (\phi_X \otimes \phi_Y)f \rangle]$$

$$= \langle g, \mathbb{E}_{YX}[\phi_X \otimes \phi_Y]f \rangle$$

$$= \langle g, C_{YX}f \rangle$$

► Consider the property $C_{XX}\mathbb{E}_{Y|X}[g(Y) \mid X] = C_{XY}g$ (Fukumitsu 2004). Pf: $\forall f \in \mathcal{H}$.

$$\begin{aligned} \langle f, C_{XX} \mathbb{E}_{Y|X}[g(Y) \mid X] \rangle &= \mathbb{E}_{X}[f(X) \mathbb{E}_{Y|X}[g(Y) \mid X]] \\ &= \mathbb{E}_{XY}[f(X)g(Y)] \\ &= \langle f, C_{XY}g \rangle \end{aligned}$$

Using the above property,

$$\mathbb{E}_{Y|X=x}[g(Y) \mid X = x] = \langle \mathbb{E}_{Y|X}[g(Y) \mid X], \phi_x \rangle$$
$$= \langle C_{XX}^{-1} C_{XY} g, \phi_x \rangle$$
$$= \langle g, C_{YX} C_{XX}^{-1} \phi_x \rangle$$

Conditional Mean Embedding: Empirical Estimation

- ► Samples $\{X^n\}_{n=1}^N \sim \mathbb{P}(X), \{Y^n\}_{n=1}^N \sim \mathbb{P}(Y),$
- ► Feature matrices (assuming finite feature dim)

$$\Phi = [\phi(X^1), \cdots, \phi(X^N)] \in \mathbb{R}^{D \times N},$$

$$\Upsilon = [\varphi(Y^1), \cdots, \varphi(Y^N)] \in \mathbb{R}^{D \times N},$$

with feature maps ϕ, φ for Hilbert spaces \mathscr{H}, \mathscr{G} of functions from $\mathcal{X} \mapsto \mathbb{R}, \mathcal{Y} \mapsto \mathbb{R}$ respectively

• We can approximate cross-covariance operator with $C_{YX} \approx \Upsilon \Phi^{\top}/m$

Product Space Embeddings

- We have to deal with multiple neighbours and messages
- Consider product Hilbert space $\mathscr{H}^{\otimes} = \prod_{i} \mathscr{H}_{i}$ and product feature map ξ , so that $\xi(x) = \bigotimes_{i} \phi_{i}(x)$, the feature maps of the underlying spaces
- ▶ Recall tensor product $(f \otimes g)h = \langle g, h \rangle f$ where $f, g, h \in \mathscr{H}$
- For the case of message passing, generalizes to $\prod_i \langle f, \phi(x) \rangle = \langle \otimes_u f, \xi(x) \rangle$
- Not totally clear on the details, but can view $\xi(x)$ as just another function

Kernel Belief Propagation Messages

Back to message passing:

$$\begin{split} m_{ts}(x_s) &= \mathbb{E}_{Xt|x_s} [\prod_{u \in \delta(t) \setminus \{s\}} m_{ut}(X_t)] \\ &= \mathbb{E}_{Xt|x_s} [\prod_{u \in \delta(t) \setminus \{s\}} \langle m_{ut}, \phi_{X_t} \rangle] \\ &= \mathbb{E}_{Xt|x_s} [\langle \otimes_{u \setminus s} m_{ut}, \xi_{X_t} \rangle] \\ &= \langle \otimes_{u \setminus s} m_{ut}, \mathbb{E}_{Xt|x_s} [\xi_{X_t}] \rangle \\ &= \langle \otimes_{u \setminus s} m_{ut}, C_{X_t^{\otimes} X_s} C_{X_s X_s}^{-1} \phi_{x_s} \rangle \end{split}$$

And that's it! Now for empirical estimation and efficient computation

Empirical Estimation

- ► Key point: Avoids ever instantiating tensor products.²
- N data points, D feature dim
- ► Feature matrices $\Phi, \Upsilon, \Phi^{\otimes} : R^{D \times N}$ for X_t, X_s, X_t^{\otimes} and kernels $K = \Phi^{\top}\Phi, L = \Upsilon^{\top}\Upsilon$

$$m_{ts}(x_s) = \langle \otimes_{u \setminus s} m_{ut}, C_{X_t \times X_s} C_{X_s \times X_s}^{-1} \phi_{x_s} \rangle$$

$$\approx \langle \otimes_{u \setminus s} \Phi \beta_{ut}, \Phi^{\otimes} L^{-1} \phi_{x_s} \Upsilon^{\top} \rangle$$

$$= (\odot_{u \setminus s} K \beta_{ut})^{\top} L^{-1} \Upsilon^{\top} \phi_{x_s},$$

where $\beta_{ut} \in \mathbb{R}^N$ is some function of K, L and neighouring β .³

- ▶ Upfront $O(N^3)$ matrix inversion cost, $O(|\delta^*|N^2)$ cost per message
- Approximations use low-rank approximations of kernel matrices and tensor product to limit dependence on N and $|\delta^*|$

 $^{^2}$ This is what messed up the runtime in my version of kernelized inference. Not sure if this transfers to our setting, but likely does since it seems to be a property of tensor products.

Conclusion

Approximations not applicable in Performer setting, would just subsample and reweight timesteps

Definitions

- ightharpoonup Domain \mathcal{X}
- ▶ Hilbert space \mathscr{H} of functions on $\mathcal{X} \mapsto \mathbb{R}$ with inner product $\langle \cdot, \cdot \rangle$, kernel K, and feature map ϕ
- The point evaluation property, ie that function evaluation is an inner product,

$$\langle f, K(x, \cdot) \rangle = f(x),$$

implies the reproducing property:

$$\langle K(x,\cdot), K(y,\cdot) \rangle = K(x,y) = \langle \phi(x), \phi(y) \rangle$$

Theorem Notes

▶ Riesz representation theorem: If operator $\mathcal{A}: \mathcal{H} \to \mathbb{R}$ is bounded, then there exists a representer $g_{\mathcal{A}} \in \mathcal{H}$ st

$$A[f] = \langle f, g_{\mathcal{A}} \rangle, \forall f \in \mathscr{H}.$$

Point evaluation property: In an RKHS, consider the evaluation functional $\mathcal{F}_{\mathbf{x}}(f) = f(\mathbf{x})$. Riesz representation theorem tells us there exists a representer $k_{\mathbf{x}}: \mathcal{H} \to \mathbb{R}$ st

$$\mathcal{F}_{\mathbf{x}}(f) = \langle f, k_{\mathbf{x}} \rangle = f(\mathbf{x}),$$

referred to as the reproducing kernel for the point \mathbf{x} .

▶ The reproducing property is a special case of the point evaluation property. Consider the kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, and define $f(\mathbf{x}) = k(\mathbf{y}, \mathbf{x})$ for all $\mathbf{y} \in \mathcal{X}$. Applying the point evaluation property yields

$$f(\mathbf{x}) = \langle k(\mathbf{x}, \cdot), k(\mathbf{y}, \cdot) \rangle,$$

where $k(\mathbf{x}, \cdot)$ is the canonical feature map denoted by $\phi: \mathcal{X} \to \mathscr{H}$.

► Alternatively you can start by assuming the kernel is positive

Refs