Universidade Federal do Ceará

Departamento de Computação

Disciplina: Métodos Numéricos

Prof. João Paulo do Vale Madeiro

LISTA DE EXERCÍCIOS 2

- 1) Determine a raiz real de $f(x) = 5x^3 5x^2 + 6x 2$:
- (a) Graficamente.
- (b) Usando o método da bissecção para localizar a raiz. Use as aproximações iniciais $x_l = 0$ e $x_u = 1$ e itere até que o erro estimado ε_a fique abaixo de um nível $\varepsilon_s = 10\%$.
- 2) Determine a raiz real de $f(x) = -25 + 82x 90x^2 + 44x^3 8x^4 + 0.7x^5$:
- (a) Graficamente;
- (b) Usando o método da bissecção para determinar a raiz até $\varepsilon_s = 10\%$. Use as aproximações iniciais $x_l = 0.5$ e $x_u = 1.0$.
- (c) Faça os mesmos cálculos do item anterior, mas use o método da falsa posição e $\varepsilon_s = 0.2\%$.
- 3) Localize a primeira raiz não-trivial de *sen* $x = x^3$, onde x está em radianos. Use uma técnica gráfica e a bissecção com o intervalo inicial de 0,5 a 1. Faça os cálculos até que ε_a seja menor do que $\varepsilon_s = 2\%$. Faça também uma verificação do erro substituindo sua resposta final na equação original.
- 4) Determine a raiz real positiva de $ln(x^4) = 0.7$ (a) usando três iterações do método da bissecção, com aproximações iniciais $x_l = 0.5$ e $x_u = 2$, e (b) usando três iterações do método da falsa posição, com as mesmas aproximações iniciais que em (a). Compare os erros relativos aproximados ao final das iterações entre os dois métodos.
- 5) Determine a raiz real de f(x) = (0.8 0.3x)/x:
 - (a) Analiticamente;
 - (b) Graficamente;

- (c) Usando três iterações do método da falsa posição e aproximações iniciais 1 e 3. Calcule o erro aproximado (ε_a) e o erro verdadeiro (ε_v) depois de cada iteração. Há algum problema com o resultado?
- 6) Encontre a raiz quadrada positiva de 18 usando o método da falsa posição até $\varepsilon_s = 0.5\%$. Use aproximações iniciais $x_l = 4$ e $x_u = 5$.
- 7) Dada $f(x) = -2x^6 1.5x^4 + 10x + 2$. Use a bissecção para determinar o máximo dessa função. Use aproximações iniciais $x_l = 0$ e $x_u = 1$ e faça iterações até que o erro relativo aproximado fique abaixo de 5%.