Alex Psomas: Lecture 14.

Events, Conditional Probability, Independence, Bayes' Rule

- 1. Probability Basics Review
- 2. Conditional Probability
- 3. Independence of Events
- 4. Bayes' Rule

Consequences of Additivity

Theorem

(a)
$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$
;

(inclusion-exclusion property)

(b)
$$Pr[A_1 \cup \cdots \cup A_n] \leq Pr[A_1] + \cdots + Pr[A_n];$$
 (union bound)

(c) If $A_1, ... A_N$ are a partition of Ω , i.e., pairwise disjoint and $\bigcup_{m=1}^{N} A_m = \Omega$, then

$$Pr[B] = Pr[B \cap A_1] + \cdots + Pr[B \cap A_N].$$

(law of total probability)

Proof:

(b) is obvious.

See next two slides for (a) and (c).

Probability Basics Review

Setup:

- ► Random Experiment. Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω. $\Omega = \{HH, HT, TH, TT\}$

(Note: Not $\Omega = \{H, T\}$ with two picks!)

▶ **Probability:**
$$Pr[\omega]$$
 for all $\omega \in \Omega$. $Pr[HH] = \cdots = Pr[TT] = 1/4$

- $\begin{array}{ll} \textbf{1.} & \textbf{0} \leq Pr[\omega] \leq \textbf{1.} \\ \textbf{2.} & \sum_{\omega \in \Omega} Pr[\omega] = \textbf{1.} \end{array}$
- ► Event. Set of the outcomes.

Inclusion/Exclusion

$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$

$$Pr[A] = x + y$$

$$Pr[B] = y + z$$

$$Pr[A \cap B] = y$$

$$Pr[A \cup B] = x + y + z$$

Probability is Additive

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events A_1, \ldots, A_n are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset, \forall k \neq m$, then

$$Pr[A_1 \cup \cdots \cup A_n] = Pr[A_1] + \cdots + Pr[A_n].$$

Proof:

Obvious.

Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Then.

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N.

Roll a Red and a Blue Die.

$$|E_1 \cup E_2| = |E_1| + |E_2| - |E_1 \cap E_2|$$

 E_1 = 'Red die shows 6'; E_2 = 'Blue die shows 6'

 $E_1 \cup E_2 =$ 'At least one die shows 6'

$$Pr[E_1] = \frac{6}{36}, Pr[E_2] = \frac{6}{36}, Pr[E_1 \cup E_2] = \frac{11}{36}.$$

Conditional Probability: A non-uniform example

Probability model

 $\Omega = \{ \text{Red, Green, Yellow, Blue} \}$

$$Pr[\text{Red}|\text{Red or Green}] = \frac{3}{7} = \frac{Pr[\text{Red} \cap (\text{Red or Green})]}{Pr[\text{Red or Green}]}$$

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space. Event A =first flip is heads: $A = \{HH, HT\}$.

New sample space: A; uniform still.

Event B =two heads.

The probability of two heads if the first flip is heads. The probability of B given A is 1/2.

Another non-uniform example

Consider $\Omega = \{1, 2, ..., N\}$ with $Pr[n] = p_n$. Let $A = \{3, 4\}, B = \{1, 2, 3\}$.

$$Pr[A|B] = \frac{p_3}{p_1 + p_2 + p_3} = \frac{Pr[A \cap B]}{Pr[B]}$$

A similar example.

Two coin flips. At least one of the flips is heads.

 \rightarrow Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}$; uniform.

Event A = at least one flip is heads. $A = \{HH, HT, TH\}$.

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if at least one flip is heads.

The probability of B given A is 1/3.

Yet another non-uniform example

Consider $\Omega = \{1, 2, ..., N\}$ with $Pr[n] = p_n$. Let $A = \{2, 3, 4\}, B = \{1, 2, 3\}$.

$$Pr[A|B] = \frac{p_2 + p_3}{p_1 + p_2 + p_3} = \frac{Pr[A \cap B]}{Pr[B]}$$

Conditional Probability.

Definition: The conditional probability of B given A is

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}$$

Emptiness..

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

 $\omega = (\text{bin of red ball}, \text{bin of blue ball}, \text{bin of green ball})$

$$Pr[B] = Pr[\{(a,b,c) \mid a,b,c \in \{1,3\}] = Pr[\{1,3\}^3] = \frac{8}{27}$$

$$Pr[A \cap B] = Pr[(3,3,3)] = \frac{1}{27}$$

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{(1/27)}{(8/27)} = 1/8$$
; vs. $Pr[A] = \frac{8}{27}$.

 $\it A$ is less likely given $\it B$: If second bin is empty the first is more likely to have balls in it.

More fun with conditional probability.

Toss a red and a blue die, sum is 4, What is probability that red is 1?

$$Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{3}$$
; versus $Pr[B] = 1/6$.

B is more likely given A.

Gambler's fallacy.

Flip a fair coin 51 times.

A = "first 50 flips are heads"

B = "the 51st is heads"

Pr[B|A]?

$$A = \{HH \cdots HT, HH \cdots HH\}$$

$$B \cap A = \{HH \cdots HH\}$$

Uniform probability space.

$$Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{2}.$$

Same as Pr[B].

The likelihood of 51st heads does not depend on the previous flips.

Yet more fun with conditional probability.

Toss a red and a blue die, sum is 7, what is probability that red is 1?

$$Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{6}$$
; versus $Pr[B] = \frac{1}{6}$.

Observing A does not change your mind about the likelihood of B.

Product Rule

Recall the definition:

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}.$$

Hence.

$$Pr[A \cap B] = Pr[A]Pr[B|A].$$

Consequently,

$$Pr[A \cap B \cap C] = Pr[(A \cap B) \cap C]$$

$$= Pr[A \cap B]Pr[C|A \cap B]$$

$$= Pr[A]Pr[B|A]Pr[C|A \cap B].$$

Product Rule

Theorem Product Rule

Let A_1, A_2, \dots, A_n be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1]\cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$$

Proof: By induction.

Assume the result is true for n. (It holds for n = 2.) Then,

$$Pr[A_1 \cap \dots \cap A_n \cap A_{n+1}] = Pr[A_1 \cap \dots \cap A_n] Pr[A_{n+1} | A_1 \cap \dots \cap A_n] = Pr[A_1] Pr[A_2 | A_1] \dots Pr[A_n | A_1 \cap \dots \cap A_{n-1}] Pr[A_{n+1} | A_1 \cap \dots \cap A_n],$$

so that the result holds for n+1.

Causality vs. Correlation

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- ► Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?

Correlation

An example.

Random experiment: Pick a person at random.

Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker.

Fact:

$$Pr[A|B] = 1.17 \times Pr[A].$$

Conclusion:

- Smoking increases the probability of lung cancer by 17%.
- ► Smoking causes lung cancer.

Proving Causality

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:

- ► A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)
- ▶ If B precedes A, then B is more likely to be the cause. (E.g., smoking.) However, they could have a common cause that induces B before A. (E.g., smart, CS70, Tesla.)

More about such questions later. For fun, check "N. Taleb: Fooled by randomness."

Correlation

Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$
$$\Leftrightarrow Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$
$$\Leftrightarrow Pr[B|A] = 1.17 \times Pr[B].$$

Conclusion:

- ▶ Lung cancer increases the probability of smoking by 17%.
- ► Lung cancer causes smoking. Really?

Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, B is the union of the disjoint sets $A_n \cap B$ for $n = 1, \dots, N$. Thus.

$$Pr[B] = Pr[A_1]Pr[B|A_1] + \cdots + Pr[A_N]Pr[B|A_N].$$

Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

$$Pr[B] = Pr[A_1]Pr[B|A_1] + \cdots + Pr[A_N]Pr[B|A_N].$$

Independence

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:

- ▶ When rolling two dice, A = sum is 7 and B = red die is 1 are independent;
- When rolling two dice, A = sum is 3 and B = red die is 1 are not independent;
- ► When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent;
- ► When throwing 3 balls into 3 bins, *A* = bin 1 is empty and *B* = bin 2 is empty are not independent;

Is you coin loaded?

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know $P[B|A] = 1/2, P[B|\bar{A}] = 0.6, Pr[A] = 1/2 = Pr[\bar{A}]$

Now,

$$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$$

= $(1/2)(1/2) + (1/2)0.6 = 0.55.$

Thus.

$$Pr[A|B] = \frac{Pr[A]Pr[B|A]}{Pr[B]} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6} \approx 0.45.$$

Independence and conditional probability

Fact: Two events A and B are **independent** if and only if

$$Pr[A|B] = Pr[A].$$

Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that

$$Pr[A|B] = Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = Pr[A] \Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B].$$

Is you coin loaded?

A picture:

Imagine 100 situations, among which

m := 100(1/2)(1/2) are such that \overline{A} and \overline{B} occur and n := 100(1/2)(0.6) are such that \overline{A} and \overline{B} occur.

Thus, among the m+n situations where ${\it B}$ occurred, there are ${\it m}$ where ${\it A}$ occurred.

Hence,

$$Pr[A|B] = \frac{m}{m+n} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6}.$$

Bayes Rule

Another picture: We imagine that there are N possible causes A_1, \ldots, A_N .

Imagine 100 situations, among which $100p_nq_n$ are such that A_n and B occur, for n = 1, ..., N.

Thus, among the $100\sum_{m}p_{m}q_{m}$ situations where *B* occurred, there are $100p_{n}q_{n}$ where A_{n} occurred.

Hence,

$$Pr[A_n|B] = \frac{p_n q_n}{\sum_m p_m q_m}.$$

Why do you have a fever?

Using Bayes' rule, we find

$$\textit{Pr}[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58$$

$$\textit{Pr}[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8}$$

$$\textit{Pr}[\text{Other}|\text{High Fever}] = \frac{0.85 \times 0.1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.42$$

These are the posterior probabilities. One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

Thomas Bayes

A Bayesian picture of Thomas Bayes.

Bayes' Rule Operations

Bayes' Rule is the canonical example of how information changes our opinions.

Testing for disease.

Let's watch TV!!

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

▶ Pr[A] = 0.0016, (.16 % of the male population is affected.)

▶ Pr[B|A] = 0.80 (80% chance of positive test with disease.)

► $Pr[B|\overline{A}] = 0.10$ (10% chance of positive test without disease.)

From http://www.cpcn.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do I have disease?

Pr[A|B]???

Thomas Bayes

Source: Wikipedia.

Bayes Rule.

Using Bayes' rule, we find

$$\label{eq:parameters} \textit{P[A|B]} = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.

Summary

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

► Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

- ▶ Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.
- ► Bayes' Rule:

$$Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_{m} Pr[A_m]Pr[B|A_m]}$$

 $Pr[A_n|B] = posterior probability; Pr[A_n] = prior probability$.

► All these are possible:

$$Pr[A|B] < Pr[A]; Pr[A|B] > Pr[A]; Pr[A|B] = Pr[A].$$