

# CJ대한통운 미래기술 챌린지 2024

# 다차종 배송 차량 라우팅

TES물류기술연구소



# 과제설명 (1/2)

## ■ 제약조건을 만족하며 최소 비용 배차문제를 푸는 알고리즘 구현

| 과제 내용  | <ul><li>다양한 종류의 차량을 사용해 최소 비용으로 모든 착지 주문을 처리할 수 있는 라우팅 알고리즘 개발</li><li>알고리즘을 통해 주어진 제약조건을 준수하여 배송 주문을 차량에 배정하고 최적 경로를 산출</li></ul>                                                                                                                                                                                                                                                                                                                                         |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 제공 데이터 | <ul> <li>수요: 주문 ID, 착지ID, 착지 위경도, 진입조건, 하역가능시간, PLT, 중량, 하역작업시간 (6일 분량 데이터)</li> <li>차량: 차량 ID, 최대 적재중량, 최대 적재 PLT, 최대 회전 수, 회전별 최대 착지 수, 기본 단가, 회전 추가비용, 거리당 단가 (제공 차량: 1톤, 2.5톤, 3.5톤, 5톤, 11톤), 차량업무가능시간</li> <li>센터: 센터 ID, 센터 위경도, 센터업무가능시간, 상차시간</li> <li>경로 산출을 위한 착지 및 센터 간의 Origin-Destination matrix (Integer)</li> <li>출력 양식 샘플 (Order_Result.csv, Veh_Result.csv)</li> <li>대한통운 Git Hub ID (알고리즘 소스코드 공유용)</li> <li>Ubuntu docker image download 경로</li> </ul> |
| 제출 데이터 | <ul> <li>알고리즘 설명자료: 알고리즘 구조, 구동환경 정보</li> <li>알고리즘 소스코드 (Git repository 내 private 으로 업로드; 과제 제출시 경로 제출; 대한통운 ID 협력자 등록 필수)</li> <li>주문별 결과 (Order_Result.csv): 주문ID, 착지ID, 중량, PLT, 할당 차량, 배송 순서, 이동거리, 이동 소요시간 등</li> <li>차량별 결과 (Veh_Result.csv): 총 할당 주문, 사용된 중량 capa., 사용된 PLT capa., 운송 총 비용 등</li> </ul>                                                                                                                                                             |
| 개발 환경  | ㅇ 개발 언어 : Python<br>ㅇ 개발 환경 : 당사 Docker Image 제공 (제공된 Docker 이미지 내에서만 개발 必)                                                                                                                                                                                                                                                                                                                                                                                                |
| 제약 사항  | <ul> <li>주어진 Time windows 내에 모든 주문을 배송 완료</li> <li>사용 가능 차량 대수 제한 없음</li> <li>차량별 최소 적재율 제한 없음</li> <li>차량: capa. (적재중량, PLT), 최대 회전수, 회전별 최대 착지수 준수</li> <li>착지: 업무시간 (하역가능시간), 차량 진입 톤급 제한 준수</li> </ul>                                                                                                                                                                                                                                                                 |
| 평가 요소  | o 6일 동안의 총 운송비 최소화<br>o 제약조건 준수 및 모든 주문 처리<br>o 연산 소요시간 (Max 1 Hour)                                                                                                                                                                                                                                                                                                                                                                                                       |

## 과제설명 (2/2)

## ■ 제공 데이터 및 결과 예시

## 1) 제공 데이터 예시

차량

| 필드명        | 예시       |
|------------|----------|
| 차량 ID      | MF202201 |
| 최대적재중(kg)  | 2500     |
| 최대적재량(PLT) | 2.8      |
| 최대 회전 수    | 2        |
| 최대 착지 수    | 5        |
| 톤급         | 1        |
| 기본요금       | 150,000  |
| 거리당 요금     | 0.7      |
| 착지당 요금     | 30,000   |

주문

| 필드명     | 예시         |  |
|---------|------------|--|
| 주문번호    | ORD_0524_1 |  |
| 용적(CBM) | 1.5        |  |
| 중량(kg)  | 45         |  |
| 하차위치    | V050       |  |
| 大ト丁!    |            |  |

#### 착지

| 필드명       | 예시           |
|-----------|--------------|
| 착지ID      | S_4          |
| 진입조건      | 3500         |
| 하차가능시간    | 11:00 -13:00 |
| 하차소요시간(m) | 50           |

#### 터미널

| 필드명   | 예시  |
|-------|-----|
| 터미널ID | T01 |

## 2) 배차 결과 (시각화 예시)



## 예선과제(온라인제출) 진행방식/평가방법

■ 사전 제공한 문제를 풀 수 있는 코드와 풀이 결과를 온라인으로 제출

#### 평가 방법

- 공고된 문제를 풀 수 있는 알고리즘 코드 및 풀이 결과를 온라인으로 제출
  - GIT PRIVATE REPOSITORY 내에 코드 푸쉬 (구동 환경 및 코드 실행 방법이 명시된 README 작성 必)
  - COLLABORATOR 설정 후 URL 제출
- 알고리즘 평가
  - 제한사항: VRP를 풀 수 있는 라이브러리 사용 금지. 그 외의 SCIENTIFIC LIBRARY 류는 모두 사용 가능 (PANDAS, NUMPY, NETWORKX, ETC.)
  - GIT을 통해 제출된 코드가 명시된 DOCKER 컨테이너 개발 환경 하에서 빌드 및 실행 가능해야 함
  - 연산시간: 최대 1시간
- 풀이 결과 평가
  - 평가 항목: 포맷 일치(예제 제공), 제약조건 준수
- 코드 작동, 결과 재현, 결과 정합성 패스하면 예선 평가 합격