Mathematical Reasoning

13

DIRECTIONS: Given below question contains two statements: Statement-1(Assertion) and Statement-2(Reason). This question also has four alternative choices, only one of which is the correct answer. You have to select the correct choice.

1. Let *p* be the statement "*x* is an irrational number", *q* be the statement "*y* is a transcendental number", and *r* be the statement "*x* is a rational number iff *y* is a transcendental number". [2008]

Statement-1: r is equivalent to either q or p **Statement-2**: r is equivalent to $\sim (p \leftrightarrow \sim q)$.

- (a) Statement -1 is false, Statement-2 is true
- (b) Statement -1 is true, Statement-2 is true; Statement -2 is a correct explanation for Statement-1
- (c) Statement -1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement-1
- (d) Statement -1 is true, Statement-2 is false
- 2. The statement $p \to (q \to p)$ is equivalent to

[2008]

(a)
$$p \rightarrow (p \rightarrow q)$$

(b)
$$p \rightarrow (p \lor q)$$

(c)
$$p \rightarrow (p \land q)$$

(d)
$$p \rightarrow (p \leftrightarrow q)$$

DIRECTIONS: Given below question contains two statements: Statement-1(Assertion) and Statement 2(Reason). This question also has four alternative choices, only one of which is the correct answer. You have to select the correct choice.

3. Statement-1: $\sim (p \leftrightarrow \sim q)$ is equivalent to $p \leftrightarrow q$.

Statement-2: $\sim (p \leftrightarrow \sim q)$ is a tantology [2009]

(a) Statement-1 is true, Statement-2 is true;

Statement-2 is not a correct explanation for Statement-1.

- (b) Statement-1 is true, Statement-2 is false.
- (c) Statement-1 is false, Statement-2 is true.
- (d) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for statement-1
- **4.** Let S be a non-empty subset of R. Consider the following statement:
 - P: There is a rational number $x \in S$ such that x > 0.

Which of the following statements is the negation of the statement P? [2010]

- (a) There is no rational number $x \in S$ such than $x \le 0$.
- (b) Every rational number $x \in S$ satisfies $x \le 0$.
- (c) $x \in S$ and $x \le 0 \Rightarrow x$ is not rational.
- (d) There is a rational number $x \in S$ such that x < 0.
- 5. Consider the following statements [2011]

P: Suman is brilliant

Q: Suman is rich

R: Suman is honest

The negation of the statement "Suman is brilliant and dishonest if and only if Suman is rich" can be expressed as

(a)
$$\sim (Q \leftrightarrow (P \land \sim R))$$

(b)
$$\sim Q \leftrightarrow \sim P \wedge R$$

(c)
$$\sim (P \land \sim R) \leftrightarrow Q$$

(d)
$$\sim P \wedge (Q \leftrightarrow \sim R)$$

6. The only statement among the following that is a tautology is [2011RS]

(a)
$$A \wedge (A \vee B)$$

(b)
$$A \vee (A \wedge B)$$

www.crackjee.xyz

Mathematical Reasoning

м-79

- (c) $[A \land (A \rightarrow B)] \rightarrow B$
- (d) $B \rightarrow [A \land (A \rightarrow B)]$
- 7. The negation of the statement

"If I become a teacher, then I will open a school", is: [2012]

- (a) I will become a teacher and I will not open a school.
- (b) Either I will not become a teacher or I will not open a school.
- (c) Neither I will become a teacher nor I will open a school.
- (d) I will not become a teacher or I will open a school.
- 8. Consider

Statement-1: $(p \land \sim q) \land (\sim p \land q)$ is a fallacy. **Statement-2**: $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ is a tautology. [2013]

- (a) Statement-1 is true; Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is true; Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
- (c) Statement-1 is true; Statement-2 is false.
- (d) Statement-1 is false; Statement-2 is true.

- 9. The statement $\sim (p \leftrightarrow \sim q)$ is: [2014]
 - (a) a tautology
 - (b) a fallacy
 - (c) equavalent to $p \leftrightarrow q$
 - (d) equivalent to $\sim p \leftrightarrow q$
- 10. The negation of $\sim s \lor (\sim r \land s)$ is equivalent to : [2015]
 - (a) $s \lor (r \lor \sim s)$
- (b) $s \wedge r$
- (c) $s \wedge \sim r$
- (d) $s \wedge (r \wedge \sim s)$
- 11. The Boolean Expression

 $(p \land \neg q) \lor q \lor (\neg p \land q)$ is equivalent to:

[2016]

[2017]

- (a) $p \vee q$
- (b) $p \lor \sim q$
- (c) $\sim p \wedge q$
- (d) $p \wedge q$
- **12.** The following statement
- $(p \rightarrow q) \rightarrow [(\sim p \rightarrow q) \rightarrow q]$ is:
 - (a) a fallacy
 - (b) a tautology
 - (c) equivalent to $\sim p \rightarrow q$
 - (d) equivalent to $p \rightarrow \sim q$

						Ans	swerl	Key					
1	2	3	4	5	6	7	8	9	10	11	12		
None	(b)	(b)	(b)	(a)	(c)	(a)	(b)	(c)	(b)	(a)	(b)		

SOLUTIONS

1. (None)

p: x is an irrational number

q: y is a transcendental number

r: x is a rational number iff y is a transcendental number.

clearly $r : \sim p \leftrightarrow q$

Let us use truth table to check the equivalence of 'r' and 'q or p'; 'r' and

$$\sim (p \leftrightarrow \sim q)$$

				1	2		3
p	q	~p	~q	~p ↔ q	q or p	p↔~q	~(p \leftrightarrow ~q)
T	T	F	F	F	T	F	T
T	F	F	T	T	T	T	F
F	T	T	F	T	T	T	F
F	F	T	T	F	F	F	T

From columns (1), (2) and (3), we observe, none of the these statements are equivalent to each other.

- : Statement 1 as well as statement 2 both are false.
- :. None of the options is correct.
- **2. (b)** Let us make the truth table for the given statements, as follows:

р	q	p∨q	q→p	$p \rightarrow (q \rightarrow p)$	$p \rightarrow (p \lor q)$
T	T	T	T	T	T
T	F	T	T	T	T
F	T	T	F	T	T
F	F	F	Т	Т	Т

From table we observe

 $p \rightarrow (q \rightarrow p)$ is equivalent to $p \rightarrow (p \lor q)$

www.crackjee.xyz

м-80

3.

(b) The truth table for the logical statements, involved in statement 1, is as follows:

p	q	~ q	<i>p</i> ↔~ <i>q</i>	$\sim (p \leftrightarrow \sim q)$	$p \leftrightarrow q$
T	T	F	F	T	T
T	F	T	T	F	F
F	T	F	T	F	F
F	F	T	F	T	T

We observe the columns for $\sim (p \leftrightarrow \sim q)$ and $p \leftrightarrow q$ are identical, therefore $\sim (p \leftrightarrow \sim q)$ is equivalent to $p \leftrightarrow q$

Mathematics

But $\sim (p \leftrightarrow \sim q)$ is not a tautology as all entries in its column are not T.

: Statement-1 is true but statement-2 is false.

4. **(b)** P: there is a rational number $x \in S$ such that x > 0 \sim P: Every rational number $x \in S$ satisfies

if Suman is rich is expressed as

 $x \le 0$ Suman is brilliant and dishonest if and only

$$Q \leftrightarrow (P \land \sim R)$$

Negation of it will be $\sim (Q \leftrightarrow (P \land \sim R))$

6. (c)

Α	В	$A\vee B$	$A \wedge B$	$A \wedge (A \vee B)$	$A \vee (A \wedge B)$	$A \rightarrow B$	$A \wedge (A \to B)$	$[A \land (A \to B) \to B]$	$[B \to [A \land (A \to B)]$
T	F	T	F	T	T	F	F	T	T
F	Т	T	F	F	F	T	F	T	F
T	Т	Т	Т	T	T	T	T	Т	T
F	F	F	F	F	F	T	F	Т	T

- It is tautology.
- 7. (a) Let p: I become a teacher.

q: I will open a school

Negation of $p \rightarrow q$ is $\sim (p \rightarrow q) = p \land \sim q$ i.e. I will become a teacher and I will not open a school.

8. (b) Statement-2: $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$

$$\equiv (p \rightarrow q) \leftrightarrow (p \rightarrow q)$$

which is always true.

So statement 2 is true

Statement-1: $(p \land \neg q) \land (\neg p \land q)$

$$= p \land \sim q \land \sim p \land q$$

$$= p \land \sim p \land \sim q \land q$$

$$=f \land f = f$$

So statement-1 is true

Clearly equivalent to $p \leftrightarrow q$

10. (b) $\sim [\sim s \vee (\sim r \wedge s)]$

$$= s \land \sim (\sim r \land s)$$

$$= s \wedge (r \vee \sim s)$$

$$= (s \wedge r) \vee (s \wedge \sim s)$$

$$=(s \wedge r) \vee 0$$

$$= s \wedge r$$

11. (a) $(p \land \sim q) \lor q \lor (\sim p \land q)$

(1) $(p \land \sim q) \lor q \lor (\sim p \land q)$

$$\Rightarrow \{(p \lor q) \land (\sim q \lor q)\} \lor (\sim p \land q)$$

$$\Rightarrow \{(p \lor q) \land T\} \lor (\sim p \land q)$$

$$\Rightarrow (p \lor q) \lor (\sim p \land q)$$

$$\Rightarrow \{(p \lor q) \lor \sim p\} \land (p \lor q \lor q)$$

$$\Rightarrow T \land (p \lor q)$$

$$\Rightarrow p \lor q$$

12. (b) We have

p	q	~ p	$p \rightarrow q$	$\sim p \rightarrow q$	$(\sim p \rightarrow q) \rightarrow q$	$(p \to q) \to ((\sim p \to q) \to q)$
Т	F	F	F	T	F	T
T	Т	F	T	Т	T	T
F	F	Т	T	F	Т	T
F	т	Т	Т	Т	Т	Т

It is tautology.