Advice for Applying Machine Learning

Quiz, 5 questions

1 point

1.

You train a learning algorithm, and find that it has unacceptably high error on the test set. You plot the learning curve, and obtain the figure below. Is the algorithm suffering from high bias, high variance, or neither?

High variance

High bias

Neither

1 point

2.

Suppose you have implemented regularized logistic regression Advice for Applying Machine Learning

Quiz, Equelatisify what object is in an image (i.e., to do object

recognition). However, when you test your hypothesis on a new		
set of images, you find that it makes unacceptably large		
errors with its predictions on the new images. However, your		
hypothesis performs well (has low error) on the		
training set. Which of the following are promising steps to		
take? Check all that apply.		
Try increasing the regularization parameter λ .		
Try evaluating the hypothesis on a cross validation set rather than the test set.		
Try using a smaller set of features.		
Try decreasing the regularization parameter $\lambda.$		
1 point		
3. Suppose you have implemented regularized logistic regression		
to predict what items customers will purchase on a web		
shopping site. However, when you test your hypothesis on a new		
set of customers, you find that it makes unacceptably large		
errors in its predictions. Furthermore, the hypothesis		
performs poorly on the training set. Which of the		
following might be promising steps to take? Check all that		
apply.		
Try adding polynomial features.		
Try evaluating the hypothesis on a cross validation set rather than the test set.		
Try decreasing the regularization parameter $\lambda.$		
Use fewer training examples.		

Advice for Applying Machine Learning

5 questi	one.
poin	
4.	
Vhich	of the following statements are true? Check all that apply.
	Suppose you are training a regularized linear regression model. The recommended way to choose what value of regularization parameter λ to use is to choose the value of λ which gives the lowest test set error.
	The performance of a learning algorithm on the training set will typically be better than its performance on the test set.
	Suppose you are training a regularized linear regression model. The recommended way to choose what value of regularization parameter λ to use is to choose the value of λ which gives the lowest training set error.
	Suppose you are training a regularized linear regression model. The recommended way to choose what value of regularization parameter λ to use is to choose the value of λ which gives the lowest cross validation error.
Nhich	of the following statements are true? Check all that apply. If a learning algorithm is suffering from high variance, adding more training examples is likely to
	improve the test error.
	A model with more parameters is more prone to overfitting and typically has higher variance.
	If the training and test errors are about the same, adding more features will not help improve the results.
	If a learning algorithm is suffering from high bias, only adding more training examples may not improve the test error significantly.
	understand that submitting work that isn't my own may result in permanent failure of this course o
de	eactivation of my Coursera account.
Le	earn more about Coursera's Honor Code
	chan chi hoi
	Submit Quiz

Advice for Applying Machine Learning

Quiz, 5 questions

