Laboratório de Sistemas Digitais Aula Teórica-Prática 3

Ano Letivo 2017/18

Modelação em VHDL de circuitos aritméticos e comparadores Introdução à parametrização de componentes

Conteúdo

- Circuitos aritméticos
 - Operadores aritméticos em VHDL
- Operações com quantidades Signed e Unsigned
- Modelação de comparadores em VHDL
- Introdução à parametrização de componentes em VHDL
 - Definição em VHDL
 - Instanciação em diagrama lógico e em VHDL

Exemplo de Circuito Aritmético – Somador Binário de 4 bits

Entity

```
entity Adder4 is
    port(operand0 : in std_logic_vector(3 downto 0);
        operand1 : in std_logic_vector(3 downto 0);
        result : out std_logic_vector(3 downto 0));
end Adder4;
```


Somador Binário de 4 bits

Architecture

- Diversas abordagens de modelação possíveis em VHDL
 - Instanciar e interligar as portas lógicas necessárias (estrutural)
 - Escrever as equações lógicas para cada saída
 - Escrever a expressão aritmética da saída

Vamos apresentar e analisar as diversas abordagens, com ênfase na última das três...

Modelação Estrutural do Somador

Abordagem da parte I do guião prático 3: modelar em VHDL um Full Adder de 1 bit (Entity FullAdder + Architecture contendo as equações lógicas); instanciar e interligar 4 FullAdder para construir um somador de 4 bits (Entity Adder4 + Architecture).

TPC: modelar o somador de 4 bits num único ficheiro (**Entity Adder4** + **Architecture**) através das equações lógicas.

Modelação Comportamental do Somador (sem Carry In/Out)

```
library IEEE;
                                        Recomendação: usar sempre
use IEEE.STD LOGIC 1164.all;
                                        std logic( vector)
use IEEE.NUMERIC STD.all;
                                        nos portos da entidade
entity Adder4 is
    port(operand0 : in std logic vector(3 downto 0);
         operand1 : in std logic vector(3 downto 0);
         result : out std logic vector(3 downto 0));
end Adder4;
architecture Behavioral of Adder4 is
begin
    result <= std logic vector(unsigned(operand0) +</pre>
                                 unsigned(operand1));
end Behavioral;
                         Conversão entre tipos:
Para que serve a biblioteca
                         std logic vector(...) e unsigned(...)
IEEE.NUMERIC STD?
```

Adição da Saída Carry Out

```
library IEEE;
 use IEEE.STD LOGIC 1164.all;
 use IEEE.NUMERIC STD.all;
                                                                    operand0
 entity Adder4 is
                                                                      carryOut
     port(operand0 : in std logic vector(3 downto 0);
          operand1 : in std logic vector(3 downto 0);
                                                                      + result
          result : out std logic vector(3 downto 0);
          carryOut : out std logic);
 end Adder4;
                                                                    operand1
 architecture Behavioral of Adder4 is
     signal s operand0, s operand1, s result : unsigned(4 downto 0);
                                                                    Operador "&" -
 begin
     s operand0 <= '0' & unsigned(operand0);</pre>
                                                                    concatenação /
     s operand1 <= '0' & unsigned(operand1);</pre>
                                                                   justaposição
     s result <= s operand0 + s operand1;</pre>
     result <= std logic vector(s result(3 downto 0));
     carryOut <= std logic(s result(4)); -- std logic(...) opcional</pre>
 end Behavioral:
Definição formal dos tipos unsigned e signed de VHDL em IEEE.NUMERIC STD:
type unsigned is array (natural range <> ) of std logic;
type signed is array (natural range <> ) of std logic;
```

TPC: O que seria necessário fazer para incluir também um "carryIn"?

Outros Operadores Aritméticos e Lógicos (ALU de 4 bits)

```
library IEEE;
use IEEE.STD LOGIC 1164.all;
                                                                  ALU4
use IEEE.NUMERIC STD.all;
                                                                operand0
                                                                   multHi
entity ALU4 is
    port(operation: in std logic vector(2 downto 0);
                                                                    result
                                                                operand1
         operand0 : in std logic vector(3 downto 0);
         operand1 : in std logic vector(3 downto 0);
                                                                 operation
         result
                  : out std logic vector(3 downto 0);
         multHi
                  : out std logic vector(3 downto 0));
```

end ALU4;

Operation	
000	+
001	-
010	*
011	/
100	rem
101	and
110	or
111	xor

A saída **result** disponibiliza o resultado da operação realizada.

No caso das multiplicações, os 4 bits mais significativos do resultado são disponibilizados em multHi.


```
architecture Behavioral of ALU4 is
                                                               Arquitetura da
  signal s multRes : std logic vector(7 downto 0);
begin
                                                                   ALU de 4 bits
  s multRes <= std logic vector(unsigned(operand0) *</pre>
                                  unsigned(operand1));
  process(operation, operand0, operand1, s multRes)
  begin
                                           Utilização de sinais numa arquitetura para comunicação entre
    case operation is
                                           vários "blocos funcionais" (processos e atribuições concorrentes).
        when "000" =>
            result <= std logic vector(unsigned(operand0) + unsigned(operand1));</pre>
        when "001" =>
            result <= std logic vector(unsigned(operand0) - unsigned(operand1));</pre>
        when "010" =>
            result <= s multRes(3 downto 0) ;</pre>
        when "011" =>
            result <= std logic vector(unsigned(operand0) / unsigned(operand1));</pre>
        when "100" =>
            result <= std logic vector(unsigned(operand0) rem unsigned(operand1));</pre>
        when "101" =>
                                                     Assumindo:
            result <= operand0 and operand1;</pre>
                                                     Operand0 = "0100" e Operand1 = "1110"
        when "110" =>
                                                     Determine manualmente em decimal o resultado de
            result <= operand0 or operand1;</pre>
                                                     cada operação. Simule e compare os resultados.
        when others =>
            result <= operand0 xor operand1;</pre>
                                                     Nesta implementação perde-se o carry/borrow out
                                                     do bit 3 da "+" e "-". Proponha uma solução.
    end case;
  end process;
  multHi <= s multRes(7 downto 4) when (operation = "010") else (others => '0');
```

end Behavioral;


```
Operações com
architecture Behavioral of ALU4 is
  signal s multRes : std logic vector(7 downto 0);
begin
                                                          Quantidades
  s multRes <= std logic vector(signed(operand0) *</pre>
                                 signed(operand1));
  process(operation, operand0, operand1, s multRes)
                                                                Signed
 begin
    case operation is
        when "000" =>
            result <= std logic vector(signed(operand0) + signed(operand1));</pre>
        when "001" =>
            result <= std logic vector(signed(operand0) - signed(operand1));</pre>
        when "010" =>
            result <= s multRes(3 downto 0);</pre>
        when "011" =>
            result <= std logic vector(signed(operand0) / signed(operand1));</pre>
        when "100" =>
            result <= std logic vector(signed(operand0) rem signed(operand1));</pre>
        when "101" =>
            result <= operand0 and operand1;</pre>
                                                   Adições e subtracões de quantidades
        when "110" =>
                                                   com ou sem sinal representadas em
            result <= operand0 or operand1;</pre>
                                                   complemento para 2 são realizadas da
        when others =>
                                                   mesma forma. O mesmo não acontece
            result <= operand0 xor operand1;</pre>
                                                   com as multiplicações e divisões!
    end case;
  end process;
            <= s multRes(7 downto 4) when (operation = "010") else (others => '0');
 multHi
end Behavioral:
   Assumindo: Operand0 = "0100" e Operand1 = "1110"
```

Determine manualmente em decimal o resultado de cada operação. Simule e compare os resultados.

Comparadores em VHDL

```
library IEEE;
                                                  Comparador de 4 bits
use IEEE.STD LOGIC 1164.all;
use IEEE.NUMERIC STD.all;
                                                  =, \neq, < (com e sem sinal)
entity Cmp4 is
    port(operand0 : in std logic vector(3 downto 0);
         operand1 : in std logic vector(3 downto 0);
                                                            operand0
         equal : out std logic;
                                                                          Cmp4
         notEqual : out std logic;
         ltSigned : out std logic;
         ltUnsigned : out std logic);
end Cmp4;
                                                               Assumindo:
architecture Behavioral of Cmp4 is
                                                               Operand0 = "0100"
begin
                                                               Operand1 = "1110"
    equal
              <= '1' when (operand0 = operand1) else
                                                               Determine o resultado de
                  101;
                                                               cada comparação.
              <= '1' when (operand0 /= operand1) else
    notEqual
                  101;
    ltSigned
              <= '1' when (signed(operand0) < signed(operand1)) else</pre>
                  101:
    ltUnsigned <= '1' when (unsigned(operand0) < unsigned(operand1)) else</pre>
                  101;
end Behavioral;
```

equal

notEqua

ltUnsianed

Exemplo de Motivação dos Componentes Parametrizáveis

- Passos de modelação com componentes convencionais (<u>sem</u> utilizar componentes parametrizáveis):
 - Modelar somador de 4 bits (Adder4.vhd)
 - Modelar somador de 5 bits (Adder5.vhd)
 - Instanciar 2 somadores de 4 bits, 1 somador de 5 bits e interligá-los (e.g. TripleAdder.vhd)
- E se no mesmo ou noutros projetos fossem utilizados somadores com outras dimensões?
 - Teríamos de possuir um módulo para cada dimensão do somador?

Somador de 5 bits com Carry Out

```
library IEEE;
use IEEE.STD LOGIC 1164.all;
use IEEE.NUMERIC STD.all;
                                                                      operand0
entity Adder5 is
                                                                        carryOut
    port(operand0 : in std logic vector(4 downto 0);
         operand1 : in std logic vector(4 downto 0);
                                                                        + result
         result
                 : out std logic vector(4 downto 0);
         carryOut : out std logic);
end Adder5;
                                                                      operand1
architecture Behavioral of Adder5 is
    signal s operand0, s operand1, s result : unsigned(5 downto 0);
begin
    s operand0 <= '0' & unsigned(operand0);</pre>
    s operand1 <= '0' & unsigned(operand1);</pre>
    s result <= s operand0 + s operand1;</pre>
           <= std logic vector(s result(4 downto 0));</pre>
    result
    carryOut <= std logic(s result(5));</pre>
end Behavioral:
```

Modelo semelhante ao Adder4 diferindo apenas na dimensão dos vetores!

Instanciação e Ligação dos Somadores Convencionais

```
adder 1: entity WORK.Adder4 (Behavioral)
                                                              Adder4
          port map(operand0 => A,
                                                              operand0
                                                               carryOut
                     operand1 => B,
                     result \Rightarrow E(3 downto 0),
                     carryOut => E(4));
                                                              operand1
adder 2: entity WORK.Adder4 (Behavioral)
                                                                adder 1
          port map(operand0 => C,
                     operand1 => D,
                                                              Adder4
                     result \Rightarrow F(3 downto 0),
                                                              operand0
                     carryOut => F(4));
                                                               carryOut
                                                               + result
adder 3: entity WORK.Adder5(Behavioral)
          port map(operand0 => E,
                                                              operand1
                     operand1 => F,
                                                                adder 2
                     result => G,
                                            A, B, C, D – sinais ou portos de entrada (4 bits)
                     carryOut => open);
```


E, F - sinais (5 bits)

Componentes Parametrizáveis (em VHDL)

O que são?

 Componentes em que algumas das suas caraterísticas podem ser especificadas (especializadas) aquando da sua instanciação (e.g. número de bits de um somador, multiplexador, etc.)

Para que servem?

 Evitar bibliotecas "enormes" com todas as especializações e variantes possíveis de todos os componentes standard (e.g. somadores de 1, 2, 3, ..., 30, 31, 32, ... bits)

Como fazer?

- Criação do componente (em VHDL) descrever o comportamento e estrutura genérica do componente baseada em generic constants (ou parâmetros) definidos na interface do componente (entity)
- Utilização do componente
 - Em VHDL instanciar o componente, ligando os portos e atribuindo valores concretos às generic constants
 - Em diagramas lógicos definir um símbolo, instanciar o componente e definir valores concretos para os parâmetros

Somador de "N" bits com Carry Out

```
library IEEE;
use IEEE.STD LOGIC 1164.all;
use IEEE.NUMERIC STD.all;
                                       positive = inteiro positivo
entity AdderN is
    generic (N : positive := 4); Valor por omissão do generic - útil apenas para facilitar a simulação
    port(operand0 : in std logic vector(N - 1 downto 0);
         operand1 : in std logic vector(N - 1 downto 0);
         result : out std logic vector(N - 1 downto 0);
         carryOut : out std logic);
                                                                                AdderN
end AdderN:
                                                                              operand0
                                                                                carryOut
architecture Behavioral of AdderN is
                                                                                 + result
    signal s operand0, s operand1, s result : unsigned(N downto 0);
                                                                              operand1
begin
                                                                              (N:positive)
    s operand0 <= '0' & unsigned(operand0);</pre>
    s operand1 <= '0' & unsigned(operand1);</pre>
    s result <= s operand0 + s operand1;</pre>
    result <= std logic vector(s result(N - 1 downto 0));
    carryOut <= std logic(s result(N));</pre>
                                                       Implementação em função de "N",
end Behavioral:
                                                       com "N" definido em compile time
```

Instanciação e Ligação dos Somadores Parametrizáveis (em diagrama lógico)

A, B, C, D – sinais ou portos de entrada (4 bits) E, F – sinais (5 bits) G – sinal ou porto de saída (5 bits)

Instanciação e Ligação dos Somadores Parametrizáveis (em VHDL)

adder 1: entity WORK.AdderN (Behavioral) => 4) Atribuição "obrigatória" de um valor concreto ao generic "N" generic map(N port map (operand0 => A, AdderN **Portos** operand1 => B, operand0 result => E(3 downto 0), carryOut do somador carryOut => E(4)); + result operand1 AdderN adder 2: entity WORK.AdderN(Behavioral) operand0 N=>4generic map (N =>4adder 1 carryOut port map(operand0 => C, + result operand1 => D, AdderN result => F(3 downto 0), operand1 operand0 N=>5carryOut => F(4));carryOut adder 3 + result adder 3: entity WORK.AdderN(Behavioral) generic map (N => 5)operand1 port map(operand0 => E, adder 2 operand1 => F, A, B, C, D – sinais ou portos de entrada (4 bits) result => G, E, F - sinais (5 bits)

G – sinal ou porto de saída (5 bits)

carryOut => open);

Comparador Parametrizável de <u>N</u> bits

```
library IEEE;
use IEEE.STD LOGIC 1164.all;
entity EqCmpN is
  generic (size : positive := 8); Valor por omissão do generic
  port(dataIn0 : in std logic vector((size - 1) downto 0);
        dataIn1 : in std logic vector((size - 1) downto 0);
        equOut : out std logic);
end EqCmpN;
                                                           size
                                                     dataIn0 —/
                                                                   equOut
architecture Behavioral of EqCmpN is
                                                     dataIn1 —
begin
  equOut <= '1' when (dataIn0 = dataIn1) else
              101;
                        TPC: Substitua o comparador fixo de 4 bits do trabalho prático
end Behavioral;
                         1, por uma instanciação deste comparador parametrizável
                        (com size = 4). Implemente e teste no kit DE2-115.
```

Mux 2→1 Parametrizável de N bits

```
library IEEE;
use IEEE.STD LOGIC 1164.all;
entity Mux2N is
                   : positive := 8); Valor por omissão do generic
  generic (size
  port(selection : in std logic;
       dataIn0
                   : in std logic vector((size - 1) downto 0);
       dataIn1
                   : in std logic vector((size - 1) downto 0);
                   : out std_logic_vector((size - 1) downto 0));
       dataOut
end Mux2N;
                                                          size
                                                      dataIn0-
                                                                  size
                                                                     - dataOut
                                                          size
architecture Behavioral of Mux2N is
                                                      dataln1 <del>//</del>
begin
  dataOut <= dataIn1 when (selection = '1') else
                                                             selection
              dataIn0;
end Behavioral;
```

Comentários Finais

- No final desta aula e do trabalho prático 3 de LSDig, deverá ser capaz de:
 - Descrever componentes com operações aritméticas simples (+, -, *, /, rem)
 - Usar adequadamente as bibliotecas e os tipos
 std_logic(_vector), signed e unsigned do VHDL e as respetivas funções de conversão entre tipos
 - Modelar comparadores (<, =, ≠, >; signed e unsigned)
 - Usar adequadamente sinais numa arquitetura
- ... bom trabalho prático 3, disponível no site da UC 😊
 - elearning.ua.pt
- Os componentes parametrizáveis serão objeto de estudo no trabalho prático 5