

& do not depend on process or pa e.a. U. H . S etc.

e.g. work, heat

THERMODYNAMIC PROPERTIES

EXTENSIVE

INTENSIVE

Properties which are dependent of matter (size & mass)present

e.g. Mass, volume, Internal energy heat capacity, Entropy, Enthalpy

of matter(size & mass) present in

e.g. Pressure, temperature, Melting point, density, Specific heat Surface tension etc

WORK

 $\triangle W = P \triangle V = \triangle nRT$ △W =Joule <

P → Pascal 1 atm = 1.01 × 10⁵ Pa 1 L atm = 101 J

FIRST LAW OF THERMODYNAMICS

(Based on Law of conservation of energy) $\triangle U = \triangle q + \triangle W$

SIGN CONVENTION

Spontaneity

ENTHALPY

 $\triangle H = \triangle U + \triangle n_a RT$

 $\Delta n_a = 0, \Delta H = \Delta U$

 $\Delta n_a > 0, \Delta H > \Delta U$ $\Delta n < 0, \Delta H < \Delta U$

All exothermic process are spontaneous

ENTROPY

S_{gas} > S_{liquid} > S_{solid}

ODYNAMIC

ERM

ENTROPY CHANGE

1) Isothermal

 $\triangle S = nR \ln \frac{V_2}{V} = nR \ln \frac{P_1}{P}$

2) Isochoric (PaT)

 $\Delta S = nC_v \ln \frac{T_2}{T} = nC_v \ln \frac{P_2}{P}$

 $\Delta S_{\text{total}} > 0$, Spontaneous

 $\Delta S_{total} = 0$, Equilibrium

 $\Delta S_{ ext{total}}$ < 0, Non-spontaneous

GIBBS FREE ENERGY

 $\triangle G = \triangle H - T \triangle S$

 ΔG < 0 Or (-)ve, Spontaneous

 $\Delta G > 0$ Or (+)ve, Non-spontaneous

 $\Delta G = 0$, Equilibrium

<mark>Equilibrium Temperature</mark>

$$T_e = \frac{\triangle H}{\triangle S}$$

Chemical Thermodynamics and Energetics

1) Heat of Reaction ($\triangle H_{max}$)

 $\Delta H_{ryn} = \Delta H_{products} - \Delta H_{reactants}$

2) Heat of Formation

Heat Change in formation of 1 mole of substance at 298 K and 1 atm Pressure

$$\frac{1}{2} N_2 + \frac{3}{2} H_2 \rightleftharpoons NH_3$$

$$A + B \rightleftharpoons C + C$$

 ΔH_{matter} = Heat of formation of products - Heat of formation of reactants

Standard enthalpy of formation (298 K, 1 atm) of element at it's standard state is zero e.a. $O_2(g) = 0$ $Cl_2(g) = 0$ $Br(g) \neq 0$ $Br_2(l) = 0$

3) Enthalpy of Combustion (1 mole, 298 K)

 $A + B \rightarrow C + D$

Enthalpy of a b c d

CH₄ + 2O₂→CO₂ + 2H₂O; △H_{combustion}

 $\Delta H_{\text{reaction}}$ = Heat of combustion of reactants - Heat of combustion of products = (a + b) - (c + d)

4) Heat of Neutralisation ($\triangle H = (-)ve$)

HCI + NaOH → NaCI + H2O ; A H_neutralization

S.A + S.B \rightarrow \triangle H = -13.7 k Cal = - 57 kJ

S.A + S.B > (S.A/S.B + W.A/W.B) -> W.A+W.B (Order of $\triangle H$ neutralisation)

PHYSICS WALLAH

BOND ENERGY

 $A + B \rightarrow C + D$

 $\Delta H_{reaction}$ = Bond energy of reactants - Bond energy of products = (a + b) - (c + d)

 $NH_3 \Rightarrow B.E = x$ B.E of N-H = $\frac{x}{3}$

Bond energy: a b

 $CH_A \Rightarrow B.E = x$ B.E of C-H = x

 $A \rightarrow B ; \triangle H$

 $B \rightarrow C : \triangle H_2$

 $A \rightarrow C$; $\triangle H_3 = \triangle H_1 + \triangle H_2$

 $A \rightarrow B : \triangle H = x$

 $B \rightarrow A : \land H = -x$

 $A \rightarrow B : \triangle H = x$

 $nA \rightarrow nB : \triangle H = nx$

ΔS ΔH $\Delta G = \Delta H - T \Delta S$ Spontaneity. (-) Spontaneous at all temp (+) Always Negative Non-spontaneous at all (+) Always Positive (-) temperature. +ve @ low temp. Non spontaneous at low temperature (+) (+) Spontaneous at ve @ high temp. high temperature Spontaneous at low -ve @ low temp. temperature, T< T_e (-) (-) Non spontaneous at +ve @ high temp. high temperature

HESS' LAW OF CONSTANT HEAT SUMMATION

