UNIVERSITY OF TORONTO Faculty of Arts and Sciences

AUGUST 2012 EXAMINATIONS

MAT244H1Y

Instructor: Fang Gu

Duration - 3 hours

No Aids Allowed

Last Name:	 		
Given Name:			
Student Number :	 	· · · · · · · · · · · · · · · · · · ·	

Question	Points	Score
1	16	
2	18	
3	18	
4	18	
5	12	
6	18	
Total:	100	

1. (16 points) Find the general solution of the differential equation

$$y' = \frac{y^2 + xy}{x^2}$$

and solve the initial value problem y(1) = 1. (Hint: Make a substitution $z = \frac{y}{x}$)

2. (18 points) Find the general solution of the equation

$$t^2y'' - 2ty' + 2y = 3t^2 - t, \qquad t > 0.$$

3. (18 points) Find the general solution of the differential equation

$$u^{(4)} - 3v''' + 3v'' - v' = 1 + 2t + 6e^t$$

4. (18 points) Solve the system of differential equations

$$\mathbf{x}' = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} t \\ 3e^t \end{pmatrix}$$

5. For the system of differential equations

$$\begin{cases} x' = \frac{1}{2}\sin(x) - \sin(y), \\ y' = \frac{1}{2}\sin(y) - \sin(x). \end{cases}$$

- (a) (4 points) Linearize the system at a critical point (x_0, y_0) of your choice;
- (b) (4 points) Describe the type of the critical point (x_0, y_0) of the linearized and of the original system;
- (c) (4 points) Sketch the phase portraits of the linearized and the original system near this critical point (x_0, y_0) .

6. For the following equation:

$$x'' = -x^3 + 4x$$

- (a) (2 points) Reduce to a first order system with $y=x^{\prime}$
- (b) (4 points) Find solution in the form H(x,y) = C
- (c) (6 points) Find critical points and classify them (i.e. specify whether they are nodes, saddles, etc. and stability)
- (d) (6 points) On (x, y)-plane sketch the phase portrait

			•