1 a) Hallar la ecuación de la recta que pasa por el punto de abscisa 4 de la recta $\frac{x-2}{2} = 1 - y = z - 3$, siendo paralela a la recta de ecuación $\{y = \lambda \mid \lambda \in \Re$.

paralela a la recta de ecuación
$$\begin{cases} x = 9 - \lambda \\ y = \lambda \\ z = 2 + 3 \lambda \end{cases}$$

- b) Sabiendo que A = (x, y, z), B = (1, -1, 2), C = (-3, 2, 1), $|A| = \sqrt{14}$, A es perpendicular a (0;3;-1). Determine x, y, $z \in \Re$ para que A, B, y C sean coplanares.
- c) Determine "k ∈ ??" para que la distancia del punto (1, 2, 3) a la recta de ecuación:

$$(x, y, z) = (1, 0, 1) + \lambda (1, k, 0) \lambda \in \Re$$
 sea igual a $\sqrt{5}$.

 $\vec{A} = x\vec{i} + y\vec{j} + \vec{k}$; $\vec{B} = 3\vec{i} + 2\vec{j}$ y $\vec{C} = 2\vec{i} + \vec{j} - \vec{k}$ 2-Dado los vectores determine los valores de "x" e "y" tal que:

a)
$$\vec{A} = \vec{B} - \vec{C}$$

- b) El vector \vec{A} sea perpendicular a \vec{B} y a \vec{C}
- 3) Dados los vectores $\vec{C} = (a-1, -a, -\frac{1}{3})$, $\vec{D} = (4, 2, -1)$ y $\vec{E} = (1, 2, -2)$ encontrar a \in N para que la proyección escalar de \vec{C} sobre \vec{E} + \vec{D} sea

4) Dados
$$\pi_1: x + y = 1$$
 $\pi_2: x + y + z - 3 = 0$

- a. Calcular la distancia desde el punto P $\in \pi_2$, de abscisa y cota nula, al plano π_1
- b. Hallar la ecuación de la recta paralela a π_1 y π_2 ; que pasa por (-1,0,2)

L- Califique con V (verdadero) o F (falso) las siguientes proposiciones justificando en cada caso su respuesta:

- a) La gráfica de la ecuación $x^2 + y^2 2x + a = 0$ es una circunferencia si a < 1.
- b) La ecuación de la hipérbola cuyos vértices reales son A₁(0,3), A₂(0,-3) y sus focos F₁(0,5) F₂(0,-5)

es
$$\frac{y^2}{16} - \frac{x^2}{9} = 1$$

- c) La ecuación de la elipse con centro C (0, 0) y eje focal el eje x es: $\frac{x^2}{b} + \frac{y^2}{a} = 1$. Siendo a semieje mayor, y b semieje menor.
- 6. a) Identifique la cónica de ecuación y²+6x+10y +19 = 0, encuentre todos sus elementos y grafique.
- b) Encuentre la ecuación canónica de la circunferencia concéntrica con la cónica de ecuación $\frac{(x-1)^2}{0} + \frac{(y+4)^2}{16} = 1$ y que pasa por el punto P(1, 0).
- c) Grafique ambas cónicas en un mismo sistema de ejes coordenados.
- d) Determine el valor de "k", de manera tal que las rectas de ecuaciones $\frac{x}{2} + \frac{y}{k} = 3$ y 4x y = 0 sean paralelas.