

Politechnika Śląska Wydział Automatyki, Elektroniki i Informatyki

Projekt inżynierski

Wykorzystanie sieci neuronowych do detekcji ziaren w obrazach termowizyjnych

Autor: Maciej Ziaja

Kierujący pracą: dr inż. Sebastian Budzan

	Streszczenie
Tematem pracy jest	

Deklaracja

Deklaruję że...

Podziękowania

Pragnę podziękować...

Spis treści

1	Wstęp									
	1.1	Motyv	wacja projektu	1						
	1.2	Cel pi	racy	1						
2	Zał	ożenia	projektowe i wykorzystane narzędzia	2						
	2.1	Analiz	zowane pyły rud miedzi	2						
	2.2	Rodza	aje termowizji i idea wykorzystania pomiarów termowizyjnych	2						
	2.3	Kame	era termowizyjna FLIR A320	2						
		2.3.1	Opis sprzętowy wykorzystywanej kamery	2						
		2.3.2	Oprogramowanie do obsługi kamery	4						
	2.4	Narzę	edzia programistyczne	5						
		2.4.1	Język programowania Python	5						
		2.4.2	Biblioteka przetwarzania obrazu scikit-image	5						
		2.4.3	Interfejs sieci neuronowych Keras i biblioteka TensorFlow	5						
3	Ana	aliza i	ekstrakcja danych z kamery termowizyjnej	6						
	3.1	Proce	s pomiarowy i budowa zbioru danych	6						
	3.2	Analiz	za zebranych obrazów termowizyjnych	6						
		3.2.1	Prezentacja przykładowej serii pomiarowej	6						
		3.2.2	Przetwarzanie danych wizyjnych	6						
		3.2.3	Poprawa jakości obrazu	6						
		3.2.4	Automatyczny odczyt zakresu pomiarowego temperatur z ob-							
			razu	6						
	3.3	Poszu	kiwanie zależności użytecznych w klasyfikacji	6						
		3.3.1	Rozważane możliwości użycia cech obrazu w klasyfikacji	6						
		3.3.2	Wybór algorytmu detekcji ziaren	6						
		3.3.3	Algorytm śledzenia ziaren w serii zdjęć	6						
		3.3.4	Wizualizacja zebranych cech i ocena ich użyteczności	6						

Rozdział: SPIS TREŚCI

4	Prototypowanie sieci neuronowej klasyfikującej ziarna miedzi													
	4.1	Budowa prototypu sieci neuronowej												
		4.1.1 Dobór struktury sieci												
		4.1.2 Trening sieci neuronowej												
	4.2	Walidacja i ocena działania sieci												
5	Poc	Podsumowanie												

Wstęp

- 1.1 Motywacja projektu
- 1.2 Cel pracy

Założenia projektowe i wykorzystane narzędzia

- 2.1 Analizowane pyły rud miedzi
- 2.2 Rodzaje termowizji i idea wykorzystania pomiarów termowizyjnych

2.3 Kamera termowizyjna FLIR A320

Przedmiotem projektu jest analiza obrazów pochodzących z przemysłowej kamery termowizyjnej FLIR A320. Jest to kamera łącząca wysoką jakość pomiaru z nowoczesnymi funkcjami integracji z oprogramowaniem komputerowym. Urządzenie łączy się z komputerem za pomocą kabla ethernetowego, pozwalając na kontrolę z poziomu oprogramowania oraz bibliotek programistycznych. Dodatkowo kamera posiada możliwość planowania automatycznych pomiarów, alarmów, funkcje analityczne oraz wbudowany serwer internetowy.

2.3.1 Opis sprzętowy wykorzystywanej kamery

Kamera ma postać podłużnego korpusu, do którego swobodnie można podłączać pasujące obiektywy. Na rysunku 2.1 przedstawiono zdjęcie wykorzystywanego urządzenia. Egzemplarz kamery znajdujący się w laboratorium termowizji Politechniki Śląskiej został wyposażony w obiektyw typu makro, pozwalający oglądać ziarna rud miedzi w bardzo dużym powiększeniu. Kamera cechuje się następującymi parametrami:

• typ detektora: niechłodzony mikrobolometr

- rozdzielczość: 320 na 240 pikseli,
- częstotliwość odświeżania: 9Hz do 30Hz
- szerokość otworu: f1.3,
- autofokus z wbudowanym silnikiem,
- zakres pomiarowy temperatur:
 - 1. od -15° C do 50° C,
 - 2. od 0°C do 350°C,
- dokładność: \pm 2°C lub \pm 2% odczytu,
- zakres wykrywanego widma promieniowania: 7.5μm do 13μm.

Rysunek 2.1: Kamera termowizyjna FLIR A320

Kamera wykrywa temperaturę przez detektor zwany bolometrem, który mierzy energię niesioną przez fale elektromagnetyczne w spektrum podczerwieni. Kiedy fala pada na detektor kamery, temperatura komórek matrycy rośnie i zwiększa się ich rezystancja elektryczna, co wpływa na natężenie prądu przepływającego przez obwody w czujniku. Wartości natężenia prądu są mierzone, a na ich podstawie określana jest mierzona temperatura.

Zakres temperatur kamery jest odpowiedni do przeprowadzenia eksperymentów z pomiarami metodą termowizji aktywnej. Próbki planuje się podgrzewać do

temperatury maksymalnie około 80°C, wartość ta mieści się w zakresie pracy urządzenia. Dokładność kamery jest zadowalająca, próbne materiały nagraniowe wskazały, że na zdjęciach widocznych jest wiele szczegółów i detali badanego materiału. Przy klasyfikacji obrazów i wzorców stygnięcia materiału jest to bardziej istotne niż liczbowa dokładność pomiarowa przyrządu.

W porównaniu ze zwykłymi, współczesnymi aparatami rozdzielczość kamery termowizyjnej może wydawać się bardzo mała. Należy sobie jednak uzmysłowić, że w standardowych aparatach piksele mają rozkład Bayera, a wartości składowych koloru są interpolowane. W kamerze termowizyjnej każdy piksel dokonuje pełnego pomiaru wartości temperatury, dlatego bezpośrednie porównanie rozdzielczości używanego przyrządu z popularnymi aparatami może być mylące. Oczywiście większa rozdzielczość kamery byłaby pożądana, jednak jej obecne możliwości pozwalają na szczegółowe pomiary i obserwacje wielu detali ziaren rud miedzi.

2.3.2 Oprogramowanie do obsługi kamery

Jedną z najważniejszych cech kamery jest łatwość jej integracji z oprogramowaniem komputerowym. Kamerę można obsługiwać za pomocą programu FLIR Tools. Pozwala on na podgląd obrazu z kamery oraz wykonywanie zdjęć termowizyjnych. Producent dostarcza również bibliotekę LabVIEW pozwalającą na zaawansowaną pracę z kamerą. Do obsługi stanowiska został napisany program używający tych bibliotek, który pozwala na nagrywanie materiałów wideo przy pomocy kamery. Nagrane materiały maja własnościowy format firmy FLIR, jednak można je odtwarzać w programie FLIR Tools. Program pozwala także na eksport stopklatek z nagrania, w postaci plików jpg. Przy obsłudze narzedzia ważne jest ustawianie zakresu temperatur na obrazie. Wybrany zakres decyduje w jaki sposób wartości temperatury są mapowane na kolory w obrazie zawarte w tablicy LUT. Program oferuje tablice w skali szarości, takie zostały użyte w projekcie, możliwy jest także wybór tablic w postaci kolorowych gradientów. Wybór zakresu wpływa na wyglad wyświetlanego obrazu oraz eksportowanych stopklatek. Jego nieodpowiedni dobór może skutkować zbyt ciemnym, jasnym, lub mało kontrastowym obrazem. Aby zapewnić najlepsze wykorzystanie nagrań z kamery oraz powtarzalny charakter eksportu stopklatek korzystano z opcji automatycznego doboru zakresu temperatur, jaki jest wbudowany w program FLIR Tools.

- 2.4 Narzędzia programistyczne
- 2.4.1 Język programowania Python
- 2.4.2 Biblioteka przetwarzania obrazu scikit-image
- 2.4.3 Interfejs sieci neuronowych Keras i biblioteka TensorFlow

Analiza i ekstrakcja danych z kamery termowizyjnej

- 3.1 Proces pomiarowy i budowa zbioru danych
- 3.2 Analiza zebranych obrazów termowizyjnych
- 3.2.1 Prezentacja przykładowej serii pomiarowej
- 3.2.2 Przetwarzanie danych wizyjnych
- 3.2.3 Poprawa jakości obrazu
- 3.2.4 Automatyczny odczyt zakresu pomiarowego temperatur z obrazu
- 3.3 Poszukiwanie zależności użytecznych w klasyfikacji
- 3.3.1 Rozważane możliwości użycia cech obrazu w klasyfikacji
- 3.3.2 Wybór algorytmu detekcji ziaren
- 3.3.3 Algorytm śledzenia ziaren w serii zdjęć
- 3.3.4 Wizualizacja zebranych cech i ocena ich użyteczności

Prototypowanie sieci neuronowej klasyfikującej ziarna miedzi

- 4.1 Budowa prototypu sieci neuronowej
- 4.1.1 Dobór struktury sieci
- 4.1.2 Trening sieci neuronowej
- 4.2 Walidacja i ocena działania sieci

Rozdział 5 Podsumowanie

Spis rysunków

2.1	Kamera	termowizyjna	FLIR	A320									

Spis tablic

Spis listingów

Bibliografia

[1] Michel Goossens, Frank Mittelbach, Alexander Samarin. The LATEX Companion. Addison-Wesley, 1993.