Kapitel 1: Digitale Bilder und ihre Eigenschaften

Prof. Ingrid Scholl Bildverarbeitung WS 2018/2019

1. Kapitel: Digitale Bilder und ihre Eigenschaften

Inhalt:

- 1. Digitales Foto
- 2. Mathematisches Modell eines digitalen Bildes
- 3. Bildtypen
 - Farbbild, Grauwertbild, Indexbild, Binärbild
- 4. Farbempfindung und Farbsysteme
 - add./subtr. Farbsystem, RGB, CMY, HSV, YIQ, YIV, CIE XYZ
- 5. Digitalisierung: Abtastung und Ortsauflösung
 - Aliasing, Moiré-Effekt, Shannon'sches Abtasttheorem
- 6. Eigenschaften digitaler Bilder

X

Digitales Foto

Definitionsbereich:

Ausdehnung in x- und y-Bereich und der Wellenlänge λ

$$x_{\min} \le x \le x_{\max}$$
, $y_{\min} \le y \le y_{\max}$, $\lambda_{\min} \le \lambda \le \lambda_{\max}$

Wertebereich: Intensität abhängig von λ

$$I_{\min} \le I(x, y, \lambda) \le I_{\max}$$

Wertebereiche sind beschränkt, typischerweise mit 8 Bit \in [0,255] für $\lambda = \{ Rot, Grün, Blau \}$

Bild besteht aus Bildelementen (**pic**ture **el**ements = Pixel)

Mathematisches Modell eines Farbbildes

- Als rechteckige Bildmatrix I mit M Zeilen und N **Spalten**
- > y ist der Zeilenindex (y-te Zeile)
- x ist der Spaltenindex (x-te Spalte)
- \triangleright I(x,y, λ) ist der Intensitätswert an der Position (x,y)

Modell:

• $G_{\lambda} = \{0,1,..., g-1\}$ Wertemenge der Intensitäten

 I(x,y,λ) Bildmatrix des Bildes

Farbkanal **■** λ .

• x = 1,..., MM Bildspalten

• y = 1,..., NN Bildzeilen

(x,y) Ortskoordinaten des Bildpunktes

• $I(x,y,\lambda) \in G_{\lambda}$ Intensität des Bildpunktes

Farbbild RGB (3 Kanal-Bild)

Jede Farbe wird durch ein (rot, grün, blau)-Tripel repräsentiert.

rot

grün

blau

RGB-Bild:

288 x 432 x 3 373.248 Bytes

Farbbild

Pro Pixel ein RGB-Wert

Grauwertbilder (1-Kanal-Bilder)

- Funktionswert = Intensität des Signals über einen bestimmten Wellenlängenbereich (meist aus dem sichtbaren Bereich)
- Methoden der BV meist für Grauwertbilder entwickelt
- Bei Mehr-Kanal-Bildern kanalunabhängige Anwendung der Methoden
- i.d.Regel sind die Grauwerte $g \in \{0,1, ..., 255\}$, somit wird pro Grauwert 1 Byte benötigt, bei CT-Röntgenbildern kann $g_{max} = 4096 = 2^{12}$ sein

Indexbilder mit Video Lookup Tabelle (VLT) als Hash-Tabelle

Beispiel:

Die RGB- Farbintensität eines Pixels mit Grauwert 17 wird aus der Farbtabelle (VLT) mit dem Index 17 repräsentiert. Vorteil: Speicherplatzersparnis. Die dazugehörigen Bilder nennt man Indexbilder. Video-Lookup-Tabelle (VLT)

Indexbild X - Beispiel

>> figure, imshow(X,map);

>> figure, imshow(X);

map =

0	0	0
0.0627	0.0627	0.0314
0.2902	0.0314	0
0	0	1.0000
0.2902	0.0627	0.0627
0.3882	0.0314	0.0941
0.4510	0.0627	0
0.2588	0.1608	0.0627
0.0941	0.2588	0.0314

Indexbild X - Pixel region

Schwarz/Weiß-Bilder - Binärbilder

Schwellwert T festlegen, geg. Bildmatrix I(x,y):

 $I(x,y) \ge T$, dann erhält I(x,y) = 1 (weiß)

I(x,y) < T, dann erhält I(x,y) = 0 (schwarz)

Grauwertmenge reduziert sich auf $G = \{0,1\}, 1$ Bit/Pixel

Anzeige meist mit den Grauwerten 0 und 255

RGB

Grauwertbild

Binärbild

Farbempfindung

Welche Wellenlängen sind für uns sichtbar?

- Farbe wird durch Licht erzeugt
- Licht ist eine elektromagnetische Welle

$$c = \lambda \cdot f$$

Lichtgeschwindigkeit = Wellenlänge · Frequenz

Physiologischer Aspekt: Farbempfindung

Trifft Licht mit einer bestimmten Wellenlänge (monochromatisches Licht) auf das Auge, so wird eine Farbempfindung hervorgerufen.

"Farbe ... ist ein durch das Auge vermittelter Sinneseindruck. also eine Gesichtsempfindung."

Die relative spektrale Empfindlichkeit für alle vier Arten von Photorezeptoren auf der Netzhaut des menschlichen Auges.

Farbsysteme:

Additives und subtraktives Farbsystem, RGB, CMY, HSV, YIQ, YIV
CIE - XYZ

Additives und subtraktives Farbmodell

Additives Farbsystem Monitore

Subtraktives Farbsystem Drucktechnik

RGB

- > 3 Farbwerte Rot, Grün und Blau
- Additives Farbsystem
- > Nicht wahrnehmungsangepaßt
- > Ungeeignet zur Farbmessung oder Farbverschiebung

FH AACHEN UNIVERSITY OF APPLIED SCIENC

Umwandlung von RGB in ein Grauwertbild

Einfachste Form: (schlecht, da es nicht der Farbempfindung entspricht)

$$y = \frac{R + G + B}{3}$$

Subjektive Wahrnehmung von Rot oder Grün ist wesentlich höher als von der Farbe blau, daher gewichtete Summe für die Helligkeit Y (Luminanz):

$$Y = w_R \cdot R + w_G \cdot G + w_B \cdot B$$

Codierung für NTSC TV-Farbsignale (s. YIQ-Farbraum):

$$w_R = 0.2999$$
 $w_G = 0.587$ $w_B = 0.114$

$$Y = 0.2999 \cdot R + 0.587 \cdot G + 0.114 \cdot B$$

CMY - Farbmodell

- Subtraktives Farbsystem
- Grundfarben Cyan, Magenta und Gelb (yellow)
- Gegenüberliegende Ecken im Würfel sind die Komplementärfarben Rot, Grün und Blau

Verwendung in der Drucktechnik

Beispiel: bei 8 Bit Farbtiefe

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} 255 \\ 255 \\ 255 \end{pmatrix} - \begin{pmatrix} C \\ M \\ Y \end{pmatrix}$$

$$\begin{pmatrix} C \\ M \\ Y \end{pmatrix} = \begin{pmatrix} 255 \\ 255 \\ 255 \end{pmatrix} - \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

Auswahl einiger Farbsysteme

Gerätespezifische Farbsysteme:

- > YIQ Helligkeit Y, Farbton I, Sättigung Q (NTSC)
- YUV Helligkeit Y, Farbton U, Farbton V (PAL)
- ➤ YC_bC_r Helligkeit Y, Unterschied zwischen Blau- und einem Referenzwert (C_b) und Unterschied zwischen Rotund einem Referenzwert (C_r) (Digitales Video)

Geräteunabhängige Farbsysteme:

- > XYZ standardisierter CIE Farbraum
- HSV wahrnehmungsangepaßtes Farbmodell
- Lab verwendet die CIE Spezifikation und skaliert die Helligkeit mehr wahrnehmungsangepaßt

Matlab: makecform und applycform

HSV - Farbmodell

H = Hue (Farbton) als Winkelmaß

S = Saturation (Sättigung)

V = Value (Intensität, Helligkeit)

Geeignet für BV-Aufgaben:

bei denen der Farbton analysiert werden soll (H-Wert).

bei denen die Helligkeit farberhaltend angepasst werden soll.

Darstellung von HSV als Zylinderkoordinaten

RGB nach HSV

Umrechnung RGB nach HSV

Achse V entspricht der Diagonalen des RGB-Würfels: V = max{r, g, b}

Die Werte H und S können aus der Position des Punktes in jenem Sechseck berechnet werden, das durch Projektion des kleinsten, den RGB -Punkt beinhaltenden Würfels erzeugt wird.

Umrechnung: RGB - HSV

```
RGB to HSV (Foley and VanDam)

max = maximum of rgb

min = minimum of rgb

V = max

S = (max - min) / max

if S = 0, H is undefined,

else delta = max-min

if R = max, H = (g-b)/delta

if G = max, H = 2 + (b-r)/delta

if B = max, H = 4 + (r-g)/delta

H = H*60

if H < 0, H = H + 360
```

r, g, b \in [0;1] normiert

```
HSV to RGB (Foley and VanDam)
if S = 0 and H = undefined,
            R = G = B = V
lif H = 360, H = 0
H = H / 60
li = floor(H)
f = H - i
 = V*(1-S)
 = V*(1-(S*f))
t = V*(1 - (S * (1-f)))
if i = 0, R = v, G = t, B = p
if i = 1, R = q, G = v, B = p
lif i = 2, R = p, G = v, B = t
if i = 3, R = p, G = q, B = v
if i = 4, R = t, G = p, B = v
| if i = 5, R = v, G = p, B = q |
where floor is the C floor
   function.
```

Beispiel: Umrechnung von RGB nach HSV

Welche HSV -Darstellung haben die RGB - Werte (64, 128, 32)?

Im RGB -Einheitswürfel entspricht dies

$$\left(\frac{64}{255}, \frac{128}{255}, \frac{32}{255}\right) = (0.251, 0.5020, 0.1255)$$

Farbe im Bereich Gelb ... Grün

Beispiel: Umrechnung von RGB nach HSV

Welche HSV -Darstellung haben die RGB - Werte (64, 128, 32)?

Im RGB -Einheitswürfel entspricht dies

$$\left(\frac{64}{255}, \frac{128}{255}, \frac{32}{255}\right) = (0.251, 0.5020, 0.1255)$$

120° Griin Gelb 60° Weiß 180° Cyan Rot 0° Schwarz 240° Blan Magenta 300°

Farbe im Bereich Gelb ... Grün

$$h = 60^{\circ} \text{ bis } 120^{\circ}$$

$$V = \max\{r,g,b\} = 0.5020$$

$$S = (V - \min\{r,g,b\}) / V = (0.5020 - 0.1255) / 0.5020 = 0.75$$

$$delta = \max-\min = 0.5020 - 0.1255 = 0.3765$$

$$H = 2 + (b-r)/delta = 2 + (0.1255 - 0.251)/0.3765 = 1,6667$$

$$H = H*60 = 100$$

FH AACHEN UNIVERSITY OF APPLIED SCIENCE

YIQ Farbraum (NTSC)

- Verwendet von NTSC Farbfernsehsystemen (USA)
- > Geeignet zur Umwandlung in ein Grauwertbild (Y-Kanal)
- RGB YIQ Farbtransformation für eine spezif. NTSC-Version: $R,G,B,Y \in [0,1], I \in [-0.5957,0.5957], Q \in [-0.5226,0.5226]$

$$\begin{pmatrix} Y \\ I \\ Q \end{pmatrix} = \begin{pmatrix} 0.299 & 0.587 & 0.114 \\ 0.595716 & -0.274453 & -0.321263 \\ 0.211456 & -0.522591 & 0.311135 \end{pmatrix} \cdot \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} 1 & 0.9563 & 0.6210 \\ 1 & -0.2721 & -0.6474 \\ 1 & -1.1070 & 1.7046 \end{pmatrix} \cdot \begin{pmatrix} Y \\ I \\ Q \end{pmatrix}$$

- > Verwendet von PAL Farbfernsehsystemen
- Geeignet zur Umwandlung in ein Grauwertbild (identisch zu Y-Kanal vom YIQ-Farbbild)
- > RGB YUV Farbtransformation:

$$R, G, B, Y \in [0, 1], \quad U \in [-0.436, 0.436], \quad V \in [-0.615, 0.615]$$

$$\begin{pmatrix} Y \\ U \\ V \end{pmatrix} = \begin{pmatrix} 0.299 & 0.587 & 0.114 \\ -0.14713 & -0.28886 & 0.436 \\ 0.615 & -0.515 & -0.100 \end{pmatrix} \cdot \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1.13983 \\ 1 & -0.39465 & -0.58060 \\ 1 & 2.03211 & 0 \end{pmatrix} \cdot \begin{pmatrix} Y \\ U \\ V \end{pmatrix}$$

$$WR = 0.299$$

 $WB = 0.114$
 $WG = 1 - WR - WB = 0.587$
 $Y = WR \cdot R + WG \cdot G + WB \cdot B$
 $U = 0.436 \cdot (B - Y)/(1 - WB)$
 $V = 0.615 \cdot (R - Y)/(1 - WR)$

Standardisierte XYZ-Farbsystem (CIE)

Basiert auf 3 imaginären Primärkomponenten X, Y, Z, die so gewählt wurden, dass alle sichtbaren Farben mit nur positiven Komponenten beschrieben werden können.

Die sichtbaren Farben liegen in einer 3D-Region (Form eines Zuckerhutes oder Hufeisens), wobei nicht alle (X,Y,Z)-Komponenten technisch realisierbar sind.

Der RGB-Farbwürfel wird verzerrt im XYZ-Farbraum dargestellt.

CIE XYZ - RGB - CMYK - Vergleich

Projektion auf eine Ebene liefert die Form eines Hufeisens

Normierung auf gleiche Helligkeit liefert die xy-Ebene

CIE-Normfarbtafel

1931 von der CIE (Commission Internationale de l'Eclairage) definiert

Internationaler, geräteunabhängiger Standard zur Farbspezifikation mit einem universellen Farbraum

Künstliche X, Y, Z Primärfarben zur additiven Darstellung aller Farben

Jeder Punkt des Diagramms repräsentiert eine Farbe

Alle Farben auf der Strecke zwischen 2 Farbpunkten durch Mischen der Farben der Endpunkte

Alle Punkte innerhalb eines Dreiecks durch Mischen der Farben der Eckpunkte

Standardisierte XYZ-Farbsystem (CIE)

Y ist die Helligkeit, X und Z die Farbtöne

X, Y, Z gegeben:

$$x = \frac{X}{X + Y + Z}, \quad y = \frac{Y}{X + Y + Z}, \quad z = \frac{Z}{X + Y + Z}$$
$$x + y + z = 1$$

Im CIE-Diagramm werden die (x,y)-Werte angezeigt, da:

$$z = 1 - x - y$$

Berechnung der X,Y,Z-Primärfarben, wenn eine Farbe im (x,y)-Diagramm ausgewählt wurde und die Helligkeit Y gegeben ist:

$$X = x \cdot \frac{Y}{y}$$
 und $Z = z \cdot \frac{Y}{y}$

Absoluter Neutralpunkt (Weißpunkt): $x = y = \frac{1}{3}$ (X = Y = Z = 1)

CIE Normbeleuchtung - Weißpunkte

Dxx	Temp.	X _w	Y _w	Z _w	X	у
D50	5000° K	0.96429	1.00000	0.82510	0.3457	0.3585
D65	6500° K	0.95045	1.00000	1.08905	0.3127	0.3290
N	-	1.00000	1.00000	1.00000	1/3	1/3

D50:

Farbtemperatur ca. 5000°K (Glühlampenbeleuchtung), Referenzbeleuchtung von reflektierenden Bildern (gedruckte Fotos)

D65:

Farbtemperatur ca. 6500°K (Tageslichtbeleuchtung), Normweißlicht für emittierende Ausgabegeräte (Bildschirme)

RGB Working Space	Reference White	RGB to XYZ [M]	XYZ to RGB [M] ⁻¹
		0.632670 0.228457 0.000000	1.75526 -0.544134 0.00634681
		0.204556 0.737352 0.00951424	-0.483679 1.50688 -0.0175762
BestRGB	D50	0.126995 0.0341908 0.815696	-0.253000 0.0215528 1.22570
		0.488718 0.176204 0.000000	2.37067 -0.513885 0.00529818
		0.310680 0.812985 0.0102048	-0.900040 1.42530 -0.0146949
CIE	E=N	0.200602	-0.470634 0.0885814 1.00940
		0.606734 0.298839 0.000000	1.91049 -0.984310 0.0583744
		0.173564 0.586811 0.0661196	-0.532592 1.99845 -0.118518
NTSC	С	0.200112 0.114350 1.11491	-0.288284 -0.0282980 0.898611
		0.430587 0.222021 0.0201837	3.06313 -0.969258 0.0678674
		0.341545 0.706645 0.129551	-1.39328 1.87599 -0.228821
PAL / SECAM	D65	0.178336 0.0713342 0.939234	-0.475788 0.0415557 1.06919
		0.412424 0.212656 0.0193324	3.24071 -0.969258 0.0556352
		0.357579 0.715158 0.119193	-1.53726 1.87599 -0.203996
sRGB	D65	0.180464 0.0721856 0.950444	-0.498571 0.0415557 1.05707
		0.716105 0.258187 0.000000	1.46281 -0.521793 0.0349342
		0.100930 0.724938 0.0517813	-0.184062 1.44724 -0.0968931
WideGamut	D50	0.147186 0.0168748 0.773429	-0.274361 0.0677228 1.28841

CIE XYZ nach CIELab Farbraum

- Helligkeit L*
- Farbwert a* = r-g
- ➤ Farbwert b* = g-b
- > Trennt am besten die Helligkeit L von den Farbwerten a,b
- Wahrnehmungsangepasst
- uniforme Farbabstände
- geräteunabhängige Farbbearbeitung möglich

$$L^* = 116 \cdot h \left(\frac{Y}{Y_W} \right) - 16$$

$$a^* = 500 \cdot \left[h \left(\frac{X}{X_W} \right) - h \left(\frac{Y}{Y_W} \right) \right]$$

$$b^* = 200 \cdot \left[h \left(\frac{Y}{Y_W} \right) - h \left(\frac{Z}{Z_W} \right) \right]$$

$$h(q) = \begin{cases} \sqrt[3]{q} & \text{mit } q > 0.008856 \\ 7.78q + 16/116 & \text{mit } q \le 0.008856 \end{cases}$$

Nachteil: aufwendige **Transformation!**

Bildeigenschaften:

- Diskretisierung,
- Orts- und Farbauflösung,
- Quantisierung,
- Mehr-Kanalbild,
- Pseudofarben (Look up table),
- Grauwertbild,
- Binärbild
- Abtastfehler (Aliasing)
- Pixelnachbarschaften

Diskretisierung der Funktion $I(x, y, \lambda)$

> Ortsauflösung: Zerlegung des Ortsbereiches (x,y)

Abbildung auf MxN Bildelementen (m,n) mit

$$m = \left[M \cdot \frac{x - x_{\min}}{x_{\max} - x_{\min}} \right] \text{ und } n = \left[N \cdot \frac{y - y_{\min}}{y_{\max} - y_{\min}} \right]$$

mit

$$x_{\min} \le x < x_{\max}, y_{\min} \le y < y_{\max}$$

Die Ortsauflösung des Bildes wird durch die Anzahl der Pixel je Zeile bzw. Spalte bestimmt

Diskretisierung der Funktion R(x, y, λ)

Zerlegung des Spektralbereiches λ in drei Spektralkanäle (rot, grün und blau):

$$0 \le I_{rot}(m,n), I_{grün}(m,n), I_{blau}(m,n) \le I_{max}$$

Die Anzahl der unterschiedlichen Werte bestimmt die **Kontrastauflösung**.

Die **Quantisierung** ist die Begrenzung auf z.Bsp. 256 Werte mit $I_{\lambda} \in [0,255]$ bei 8 Bit

Ortsauflösung – Anzahl der Pixel

Farbauflösung – Anzahl der Farben

Fehler bei der Digitalisierung

Fehler 1. Art: Abtastungsfehler - Aliasing

Fehler 2. Art: Quantisierungsfehler –

zu geringe Farbtiefe, körnige Bilder

Beispiel:

I(x,y) und digitalisiertes 2D-Signal $(x_i, y_i, I(x_i, y_i))$

	X ₀	X ₁	X ₂	
У ₀	$I(x_0,y_0)$	$I(x_1,y_0)$	$I(x_2,y_0)$	
y ₁	$I(x_0,y_1)$	$I(x_1,y_1)$	$I(x_2,y_1)$	
y ₂	$I(x_0,y_2)$	$I(x_1,y_2)$	$I(x_2,y_2)$	

Nullpunkt oben links

Abtastproblem: Aliasing

Original

Abgetastet

Rekonstruiert

Aliasing: Moiré-Effekt bei Abtastung

Frequenz nimmt zur Bildmitte hin zu

Moiré-Effekt (frz. *moirer*, "moirieren; marmorieren")

Man spricht von einem Moiré-Effekt, wenn neue Linien (*Moiré-Muster*) durch Überlagerung von Rastern oder Linien entstehen.

Beispiel:

Digitale Abtastung (z.Bsp. beim Scannen) von periodischen Strukturen (karierte Hemden, Liniengrafiken)

Moiré-Muster treten insbesondere auf, wenn periodische Strukturen mit Frequenzen abgetastet werden, die niedriger sind als die doppelte Frequenz der Strukturen selbst (siehe Nyquist-Shannon-Abtasttheorem).

Fazit:

mit der doppelten maximalen Frequenz, die im Bild vorkommt, abtasten.

Nyquist-Shannonsche Abtasttheorem

Signal mit minimal vorkommender Frequenz f_{min} und maximal vorkommender Frequenz f_{max}

Bandbreite =
$$\{f_{min}, f_{max}\}$$

Abtastfrequenz nach dem Shannon'schen Abtasttheorem:

$$f_{abtast} > 2 (f_{max} - f_{min})$$

d.h. es muß mindestens mit der doppelten Bandbreite abgetastet werden. I.d.R. ist $f_{min} = 0$, dann muß mindestens mit der doppelten maximal vorkommenden Frequenz abgetastet werden, um eine Unterabtastung und resultierende Moiré-Effekte zu vermeiden.

Aufgabe

Gegeben sei eine Strichzeichnung mit einer minimalen Linienbreite von 0.1 mm.

Frage:

Welche Rasterung würden Sie wählen? Bzw. mit wie vielen Bildpunkten sollte ein Quadratmillimeter digitalisiert werden?

> Nach dem Shannon'schen Abtasttheorem muss mit der doppelten Frequenz abgetastet werden. D.h. 2 Abtastwerte pro 0.1mm = 20 Werte pro mm $1\text{mm}^2 = 20 \cdot 20 = 400 \text{ Bildpunkte}$

Aufgabe

Gegeben sei eine Strichzeichnung mit einer minimalen Linienbreite von 0.1 mm.

Frage:

Welche Rasterung würden Sie wählen? Bzw. mit wie vielen Bildpunkten sollte ein Quadratmillimeter digitalisiert werden?

Bildeigenschaften:

- > Nachbarschaft
- > Zusammenhängende Regionen
- > Pfade
- Distanzmaße auf Nachbarschaften

Nachbarschaft

Quadratische Gitter:

> 4-er Nachbarschaft: (x,y-1), (x, y+1), (x-1,y) und (x+1,y)

> 8-er Nachbarschaft:

4-er Nachbarschaft und zusätzlich die diagonalen Bildpunkte (x-1,y-1), (x+1,y-1), (x-1,y+1), (x+1,y+1)

Hexagonale Gitter:

> **6-er Nachbarschaft** über gemeinsame Kante

Warum wichtig? Z.Bsp. Wenn man einzelne Segmente zählt. Diese können sich in der 4-er-Nachbarschaft. diagonal berühren und werden dann trotzdem getrennt gezählt.

Pfad und zusammenhängendes Gebiet

Pfad: Folge von benachbarten Pixeln unter gleicher Homogenitätsbedingung (z.Bsp. gleicher Intensitätswert)

Der Pfad ist **geschlossen**, wenn Anfangspixel = Endpixel ist. Andernfalls ist er offen.

Zusammenhängendes Gebiet:

Menge aller Pixel, zwischen denen Pfade existieren

Rand: Folge von Pixeln eines zusammenhängenden Gebiets, die zum Gebiet gehören und zu Pixeln benachbart sind, die nicht dazu gehören.

Hier zwischen sollte ein Pfad sein

Distanzmaße

Euklidische Distanz:

$$D_e(x_1, y_1, x_2, y_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Schachbrettdistanz bei 8-er Nachbarschaft:

$$D_8(x_1, y_1, x_2, y_2) = \max\{|x_1 - x_2|, |y_1 - y_2|\}$$

Cityblock- oder Manhattan-Distanz bei 4-er Nachbarschaft:

$$D_4(x_1, y_1, x_2, y_2) = |x_1 - x_2| + |y_1 - y_2|$$

Euklidische Distanz

Cityblock-Distanz

Schachbrettdistanz

Zusammenfassung

Farbräume: Normfarbtafel, RGB, CMY, HSV

Digitale Bilder als 2D-Funktion mit endlichem und ganzzahligen Definitionsbereich

Pixel, Grauwert, Farben als RGB-Werte codiert

Bilder auf beliebigen Gittern

4- und 8-er Nachbarschaft

Distanzmaße

Zusammenhängende Gebiete und deren Eigenschaften

Vielen Dank für die Aufmerksamkeit!

FH Aachen
Fachbereich Elektrotechnik und Informationstechnik
Prof. Ingrid Scholl
Eupenerstr. 70
52066 Aachen
T +49. 241. 6009 52177
scholl@fh-aachen.de
www.fh-aachen.de