4300337 - Lista de exercícios 2

Louis Bergamo Radial 8992822

17 de março de 2024

Exercício 1

Para que um corpo de massa m tenha uma energia cinética K, sua velocidade v satisfaz

$$\left(\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^2}}-1\right)mc^2=K.$$

Isolando v, obtemos

$$v = c\sqrt{1 - \left(\frac{1}{\frac{K}{mc^2} + 1}\right)^2}.$$

Assim, para que uma partícula tenha energia cinética igual a sua energia de repouso, sua velocidade é

$$v = \frac{\sqrt{3}}{2}c.$$

Pelo mesmo cálculo, para que uma bola de canhão de massa m=1 kg tenha a mesma energia cinética que um próton, de massa $m_p\approx 1.673\times 10^{-27}$ kg, de um raio cósmico em movimento com fator de Lorentz $\gamma=10^{11}$, sua velocidade deve ser

$$v = c \sqrt{1 - \left(\frac{1}{\frac{(\gamma - 1)m_p c^2}{mc^2} + 1}\right)^2}$$
$$= c \sqrt{1 - \left(\frac{1}{\frac{(\gamma - 1)m_p}{m} + 1}\right)^2}$$
$$\approx 5.483 \,\mathrm{m \, s^{-1}}.$$

- Exercício 2
- Exercício 3
- Exercício 4
- Exercício 5
- Exercício 6
- Exercício 7
- Exercício 8