Multi-Hypervisor Nested Virtual Machines

Yaohui Hu, Siddhesh Phadke, Kartik Gopalan, Michael R.Hines*

Computer Science, Binghamton University

*IBM Research Labs, Yorktown Heights

Contacts: yhu15@binghamton.edu, kartik@binghamton.edu

Traditional Nested Virtualization

Non-nested Virtual Machines Ne

Nested Virtual Machines

Benefits

- **Users** can run their own hypervisors in IaaS clouds.
- ❖ Live migration of hypervisors + guest VMs as a single entity.
- * Hypervisor-level intrusion detection/prevention.

Limitation

- > Presently, an L2 VM can run on only one L1 hypervisor at a time.
 - ➤ L2 VM cannot run on multiple co-located L1 hypervisors.
- ➤ E.g: An L2 VM cannot simultaneously run on a commodity L1 hypervisor and another L1 hypervisor providing intrusion-detection.

Multi-Hypervisor Nested Virtualization

Objective

Develop systems support to run unmodified Nested VMs simultaneously on multiple hypervisors.

Hypervisor

Level-0

 $\clubsuit H1$, H2, H3, and H4 are Level-1 hypervisors.

 $\clubsuit V1$, V2, V3, and V4 are Level-2 VMs.

 $\clubsuit V1$ runs only on H1 as a traditional nested VM.

 $\clubsuit V2$ runs on H1 and H2.

 $\clubsuit V$ 3 runs on H2, H3 and H4.

 $\star V4$ runs on H4, and L0.

Resource Distribution

Memory Mapping

Nested EPT Mode Shadow-on-EPT Mode L2 VA SPTb L2 VA SPTa, L2 Page Table L2 Page Table Shadow Shadow EPTa_ L2 GPA L2 GPA EPTb L1a L1b L1a L1b Page Table Page Table Page Table Page Table L1b GPA L1a GPA L1a GPA L1b GPA **EPTa EPTa EPTb EPTb** LO HPA LO HPA

Challenges

- 1. Sharing the L2 memory across multiple L1s
 - o Two modes: Shadow-on-EPT and Nested EPT.
- 2. Distributing L2 vCPUs across multiple L1s
- 3. Forwarding inter-processor interrupts (IPIs) across L1s
- 4. Distributing I/O using virtio or direct device assignment.

Prototype and Performance

Current Status

- ➤ Developed prototype to run L2 VM on two L1 hypervisors running KVM/QEMU (as in V2)
- Memory mapping uses shadow-on-EPT mode.Ongoing work on Nested EPT mode
- ➤ Virtio-based I/O distribution.
 - ➤Ongoing work on direct assignment.

Kernbench						
	Host	Guest	Nested	Span		
Run time (sec)	136.15	146.31	634.70	674.79		
STD dev.	8.09	1.13	8.79	9.68		
% overhead						
vs. host	_	7.5	366.2	395.6		
% overhead						
vs. guest	-	-	333.8	361.2		
% overhead						
vs. nested	_	_	_	6.3		
%CPU	97	90	100	100		

netperi							
	Host	Guest	Nested	Span			
Throughput	940.5	930.17	343.92	311.36			
(Mbps)							
STD dev.	0.38	0.64	26.12	12.82			
% degradation							
vs. host	_	1.1	63.4	66.9			
% degradation							
vs. guest	_	-	63.3	66.5			
% degradation							
vs. nested	_	_	_	9.5			

