PROJECT MANAGEMENT

NETWORK PROBLEMS

Network Problems Example

Gas Pipe connections
Water Pipelines
Infrastructure Projects
Book writing Project
Transportation Problem
Metro Stations
Planar Graphs
Social network
Computer Network

Network Problems: There are mainly two types of network problems

- **Network Routing Problems**
- **Network Scheduling Problem**

Network Routing Problems

- · Shortest Route Alg.
 - Minimal Spaning tree
 - Maximal flow problem (Alg.
 - Minimum cut flow Alg.
 - Seven Bridge Problem
 - · Euler Path | Hamiltonian | Graph Theory
 - Sensor Networks
 - Algo address to Social Network !

Project Management

Network Scheduling Problem

Schedule (Time, Completion,) **

. Infrastruce Project
. Write reasearch article
. Write program.

Example of a Project (Infrastructure Project)

Activities of the project

- Clear the site
- 2. Survey and Layout
- 3. Rough Grade
- 4. Excavate for sewer
- Excavate for electrical manhole
- 6. Install electrical manhole
- Construct the boundary wall.

Example of a Project (Book Writing Project/Research project)

Activities of the project

- Manuscript reading by author
- Sample pages prepared by the typesetter
- 3. Book cover Design
- 4. Preparations of diagrams used in book
- Authors approval of sample pages
- Book typesetting
- 7. Author's proof reading of typeset pages
- 8. Author checks artwork
- Production of printing plates
- 10. Book Production and binding

Steps of Scheduling a Project

- Identify Activities ✓
- Identify activities dependencies
- Identify network to execute the project
- Identify Resource Optimization

To do above

We start representing project as a network comprised of activities and analyze the network to understand the time /cost optimization.

Example of a Project (Book Writing Project/Research project)

./	*	◆
Activity Activity Description	Predecessor Activity	Duration(days)
A	¥	5
B Sample pages prepared by the typesetter		3
C —> Book cover Design	=	4
D	-	7
E	A <u>,B</u>	3
F Book typesetting	<u>E</u>	5
G — Author's proof reading of typeset pages	F	2
H — Author checks artwork	D	2
Production of printing plates	G, H	3
J -> Book Production and binding	C,I	7

Now represent above project as a network comprised of given activities and analyze the network to understand the time completion of project.

Project Mangement Determinisitic (Critical Path Method) > I (Program Evaluation and Review Technique · CPM model.

Example of a Project (Book Writing Project/Research project)

4/	V		
Activity	Activity Description	Predecessor Activity	Duration(days)
AV	Manuscript reading by author	•	5
B 🗸	Sample pages prepared by the typesetter		3
C 🗸	Book cover Design	-	4
D 🗸	Preparations of diagrams used in book	-	7
E	Authors approval of sample pages	A,B	3
F	Book typesetting	E	5
G	Author's proof reading of typeset pages	F	2
Н	Author checks artwork	D	2
1	Production of printing plates	G, H	3
J ✓	Book Production and binding	C,I	7

Now represent above project as a network comprised of given activities and analyze the network to understand the time completion of project.

Basic Components :>

· Activity

· Node DA (Event) bestart End 5 completion)

· Sucessor Activity

A B C

Error

· Loop (Network are not comprised of loop O

· Dangling (Incomplete join of an activity

(Not Allowed!)

Rules of Network Construction

- 1. Each activity is represented by one and only one arrow.
 - 2. start and End node must be identified.
 - 3. Nodes should be labelled.
 - 4. Between any pair of nodes; there should be only one activity

Or two nodes cannot have simultaneous end
start or simultaneous end

Arrows should be straight

6. • An event cannot occur until all incoming activities into it have been completed.

· An activity council start unless all the preceding activities on which it depends, have been completed.

• Dunny activities should only be introduced if about the management

absolutely necessary.

Example 1: Consider a project having some activities; the activities list and their preceding activities list is given below:

- · A, B are starting activities
- · A, B precede C
- · B precede D and E
- · A and B precede F
- · F and D precede G & H
- · C and G precede I
- E, H and I are terminal activities

Project: A is starting activity and precede Band C,

C precedes D and E,

F follows E and D is precedor of F

Example : Project: Activities: A B C D E F G H I
Precedent: - A A B A BE C D, F G

Drow a network to given project.

Calculating Completion time of a project (Critical Path Analysis)

Sunday, 26 April 2020

8:15 AM

In Previous video;

- · Activities | Proceeding activities in Project
- (Drawing) Netwoork

Total auration (Completion time of a Project)

Identify activities of project as critical or
non-critical activities

Introduction to Crashing in Critical Path activities to further optimise. The results as per requirement

or ned.

Define: For any activity, we define;

- · Earliest occurence line (starting time) of event $i = Es_i$
- Latest occurence time (completion time) of event; = LC; time duration of an activity (i, i) = tij

We we following technique to calculate Esi

· Forward Pass Calculation to find Esi

et
$$E_1 = 0$$

 $E_2 = E_1 + \text{time taken by next activity (all events)}$
choose maximum

consider the project; В Activity B,E Preceding 10 must need to calculate Earlist time) the network Dumny (0)

An activity (i,j) will be critical if it satisfies
following Critical Activity: Esi ty 111
Lci y VLID Esi=Lci V (ii) Eg; = Lc; V (III) Esj-Esi = Lcj-Lci = tij

If any one of above condition is not satisfied then it is a non-critical activity.

A path which comprises only critical activities; spans entire retwork is called critical path. Critical Path: (Longest duration)

6 Activity B,E E,F -Preceding _ activities 3 Time (Duration) (in days) Construct the network. Find completion time of project and identify critical Path. (i) (ii) D(3) A(10) -F(1) B(7) E6=20 (i) Esi=Lci critical Path. 1727374750000 FFG (11) Es; = Lcj (ii) Esj-Esi = Lcj - Lci = tij

consider the project; Activity Preceding activities 6 8 7 1 (in days) Calculate line duration of project and identify Critical Path. V(i) Construct the network E=11, 6=21 E4=13, 14=13 (5) A2545657 H(8) Critical Path. Time: 26 day

Example 5: consider the project; Activity 8 Time (in days) Is construct the network. (ii) Calculate time duration of project and identify Critical Path.

 $E_{3}=8$ $L_{3}=10$ $L_{6}=11$

Float (or slack) of an Activity and Event

he free or delay or a gap of time occurence in a project Thursday, 30 April 2020 7:00 AM

Event float: The float (or slack) of an event is the difference between its latest time (Li) and its earliest time (Ei).

Event float = Li-Ei

Eg: $E_{2}=8\sqrt{1}$ $L_{2}=10$ $L_{1} > E_{1}$ $E_{2}=8\sqrt{1}$ $L_{2} > E_{2}=2$ $E_{2}=8\sqrt{1}$ $L_{1} > E_{1}$ $E_{2}=10$ $E_{1} > E_{2}=2$ $E_{2}=10$ $E_{2}=10$ $E_{1} > E_{2}=2$

(ii) Free float: (For an activity); this is free float time; by which an activity can be delayed without delaying in its immediate successor activities.

$$FF = E_j - (E_i + t_{ij}) \ge 0$$

(111) Independent Floar. It is that portion of the cour float within which an activity can be delayed for slart without offering floats of the preceding activities. IF = (Ej - Li) - tij (IF may be -re) $E_1 = 30$ $E_1 = 39$ $E_2 = 39$ $E_1 = 38$ $E_2 = 39$ $E_2 = 39$ $E_1 = 57$ IF=(E2-L1)-t1 $= E_2 - (L_1 + t_1)$ = 39- (38+19) =-18 40 Remarks: (i) Li ? Ei; => Independent float < Free float < Total Float

successor allactivities

preceding successor allactivities

not delay
in project (ii) An activity is critical if its total float is zero.

(FF=0 = it is a critical activity.

Example: Calculate free float of activities in given network.

Activities Normal Solution:
$$(6,6)$$
 $\frac{1}{7}$ $(3,13)$ $\frac{1}{8}$ $(21,31)$

1-2 $\frac{1}{6}$ $\frac{1}{1}$ $\frac{1}$

The end