APLICAÇÃO DO FILTRO DE KALMAN A UM SISTEMA DE POSICIONAMENTO DE VEÍCULO AQUÁTICO

André TEIXEIRA DE AQUINO; André LUIZ CARNEIRO DE ARAÚJO

- (1) Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Av. Treze de Maio, 2081 Benfica, e-mail: andret.aquino@gmail.com.br
- (2) Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Av. Treze de Maio, 2081 Benfica, e-mail: andreluiz@cefetce.br

RESUMO

Por ser um algoritmo capaz de estimar as variáveis de estado de sistemas lineares a partir de medidas ruidosas, o filtro de Kalman mostra-se como uma possível solução para amenizar o problema de ruído presente em sistemas de posicionamento. O problema de ruído ocorre principalmente quando os sensores que compõem o sistema possuem uma baixa precisão. Esse ruído pode causar uma instabilidade e uma redução da confiabilidade do sistema o que pode vir a prejudicar ou até mesmo torná-lo inviável para aplicação. Dentre as diversas soluções para reduzir esse problema, o filtro de Kalman mostra-se como uma ferramenta eficiente e de fácil aplicação e, por isso, cada vez mais utilizada para esse tipo de aplicação. O presente artigo propõe a aplicação do filtro de Kalman à dados de posição de um veículo aquático, obtidos através de um sistema de posicionamento, constatando assim a viabilidade e facilidade de sua utilização para esse tipo de aplicação.

Palavras-chave: sistema de posicionamento, filtro de Kalman

INTRODUÇÃO

Nos últimos anos a utilização do filtro de Kalman para a estimação de estados tem recebido inúmeras contribuições nas mais diversas áreas de aplicações. As aplicações destas contribuições variam de filtragem de trajetórias de veículos espaciais [1], estimação de estados em problema de rastreamento [2], localização em robótica móvel [3], dentre outras. Na filtragem de trajetória é realizada a filtragem de dados da trajetória de veículos espaciais via estimações de estado H_2 e H_∞ através das equações do filtro de Kalman. Em problemas de rastreamento o filtro de Kalman é utilizado na estimação de estados de um veículo de dinâmica desconhecida a partir de medidas de outro veículo. Já na localização em robótica móvel o filtro é utilizado para estimar a posição real do robô em ambientes discretizados permitindo assim a autonomia do robô.

Em sistemas de posiçionamento é comum existir uma diferença entre a posição calculada e a posição real que se deseja encontrar. Essa diferença muitas vezes é pequena e, dependendo da aplicação, torna-se irrelevante. Entretanto, diversos fatores, como ruído e uma baixa precisão dos sensores que compõe o sistema, podem contribuir para que essa diferença cresça e passe a prejudicar a aplicação. Nesses casos, para se obter medidas de posição confiáveis, é necessário utilizar técnicas para reduzir essa diferença e tornar o sistema novamente viável. Uma maneira simples e eficiente de resolver esse problema seria a aplicação do filtro de Kalman aos valores de posição, obtendo assim estimativas mais próximas da posição real.

Como forma de provar a eficiência e praticidade da utilização do filtro de Kalman para solucionar problemas de ruído em sistemas de posicionamento, foi aplicado o filtro de Kalman à dados de posição de um veículo aquático.

O filtro foi aplicado com a utilização de um software de modelagem matemática e o resultado foi analisado e discutido no artigo juntamente com a demonstração da forma de aplicação do filtro.

Com o objetivo de simplificar os cálculos, o filtro foi aplicado somente a duas dimensões (x e y).

O FILTRO DE KALMAN

O filtro de Kalman é um algoritmo recursivo simples e eficiente, capaz de estimar as variáveis de estado de sistemas lineares a partir de medidas ruidosas dos sensores que compõem o sistema. Por esta razão o filtro de Kalman é bastante utilizado em sistemas de navegação e rastreamento de veículos.

É considerado por muitos o grande avanço da teoria da estimação do século XX. Muitas realizações desde sua introdução talvez não fossem possíveis sem ele. [1]

O objetivo do filtro de Kalman em um sistema dinâmico é estimar, a cada instante e de forma ótima, a saída do sistema. Para isso é necessário conhecer a variável de estado (x_i) e saber que a variável de saída (y_i) está sendo contaminada por um ruído (u_i) e por uma perturbação (w_i)

Para a aplicação do filtro de Kalman é necessário, primeiramente, modelar o sistema através de uma equação linear. Por isso, a equação que definirá o sistema terá a estrutura semelhante à equação 1. Onde x é a variável do sistema, a é uma constante e w é a perturbação do sistema, que é uma variável aleatória com média zero e variância W.

$$x(k+1) = a \times x(k) + w(k)$$
 [Eq. 01]

Após a definição da equação linear, a aplicação do filtro de Kalman resume-se basicamente na utilização de cinco fórmulas que se referem às cinco etapas em que se divide a aplicação do filtro. Cada uma das etapas, bem como a sequência de aplicação, estão demonstradas na Figura 1 e serão detalhadas em seguida.

Figura 1 – Etapas e sequência de Aplicação do Filtro de Kalman

O calculo da estimativa inicial, que é a primeira etapa para a aplicação do filtro, é realizado através da multiplicação da estimativa anterior (X_e) pela constante do sistema linear (a). A primeira estimativa inicial, onde não se sabe qual a estimativa anterior, é definida de forma aleatória e por isso não é possível definir a variância de seu erro. A estimativa inicial é calculada através da equação 2.

$$X_i = a \times X_e(0)$$
 [Eq. 02]

Na segunda etapa, é calculada a variância do erro da estimativa inicial que é encontrada através da multiplicação dos valores da variância do erro da estimativa anterior (P), da variância da perturbação do

sistema (W) e novamente da constante do sistema linear (a). Como foi dito anteriormente, não é possível definir a variância do erro para a primeira estimativa inicial e por isso o valor dessa variância é definido de forma aleatória e com valor geralmente elevado. A variância da estimativa inicial é calculada através da equação 3.

$$PP = P \times a^2 \times W$$
 [Eq. 03]

Para as três últimas etapas, será inserido o ruído na medição de x(k), que é exatamente o ruído na medida dos sensores que compõe o sistema, obtendo assim um novo sistema linear com uma nova equação. A medida é y(k), a constante do sistema é M e o ruído é u(k) de variância U. A equação do novo sistema será semelhante à apresentada pela equação 4.

$$y(1) = M \times x(1) + u(1)$$
 [Eq. 04]

Na terceira etapa utilizamos a constante do novo sistema (M), a variância calculada na segunda etapa (PP) e a variância do erro da medida do sensor (U) para calcular o ganho de Kalman. O ganho de Kalman será utilizado para encontrar a nova estimativa $(X_e(1))$ e a variância do erro da nova estimativa (P) que são as duas últimas etapas. A equação 5 é utilizada para calcular o ganho de Kalman.

$$K = \frac{M \times PP}{PP \times M^2 + U}$$
 [Eq. 05]

Na quarta etapa faremos uma nova estimativa ($X_e(1)$) que será a saída do filtro, ou seja, a estimativa que desejamos encontrar. O cálculo dessa nova estimativa é feito através dos valores da estimativa inicial (X_i), do ganho de Kalman (K), da medida ruidosa (y(1)), que é o valor de entrada do filtro e para a aplicação do artigo serão as medidas de posição do veículo, e da constante do novo sistema (M). A equação 6 é utilizada para calcular a nova estimativa.

$$X_e(1) = X_p + K\{y(1) - M \times x_p\}$$
 [Eq. 06]

Na quinta e última etapa, será calculada uma nova variância, agora para o erro da nova estimativa. Para esse cálculo será necessário o valor da variância do erro da estimativa inicial (PP), da variância do erro da medida do sensor (U), do ganho de Kalman (K) e do valor da constante do novo sistema (M). A nova variância pode ser obtida através da equação 7.

$$P(1) = PP \times (1 - K \times M)^2 + (U \times K^2)$$
 [Eq. 07]

O valor da variância do erro da nova estimativa será utilizado para o cálculo da próxima estimativa inicial, reiniciando assim a sequência do filtro de Kalman.

APLICAÇÃO E RESULTADOS

Para a aplicação do filtro aos valores de posição do veículo aquático, inicialmente definimos as equações lineares referentes ao sistema com e sem ruído.

Como na aplicação temos um movimento retilíneo e uniforme que sofre uma perturbação, utilizamos a função horária do espaço ($s = S_0 + v \times t$) e adicionamos a perturbação (w) para modelar o sistema obtendo assim a seguinte relação:

$$\begin{bmatrix} S_x \\ S_y \\ V_x \\ V_y \end{bmatrix} = \begin{bmatrix} 1 & 0 & dt & 0 \\ 0 & 1 & 0 & dt \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} S0_x \\ S0_y \\ V0_x \\ V0_y \end{bmatrix} + w$$
[Eq. 08]

Para modelar o sistema com ruído, que são as posições (x e y) com a adição do ruído (u), teremos o seguinte modelo:

$$\begin{bmatrix} Y_x \\ Y_y \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} u_x \\ u_y \end{bmatrix}$$
 [Eq. 09]

Definidas as equações lineares, foram então definidos os valores de inicialização do filtro referentes à aplicação:

- Variância do erro da medida do sensor: U = 5;
- Variância da perturbação do sistema sem o ruído: W = 5;
- Primeiro valor de variância do erro da estimativa inicial: PP = 40.000;
- Primeira estimativa inicial (X_i): x = 0 e y = 10;

Para estabelecer uma referência e facilitar a análise dos resultados, foram geradas, a partir do modelo do sistema, as posições do veículo caso não houvesse o ruído, ou seja, para medidas com erro zero.

A Tabela 1 mostra os valores de posição antes da aplicação do filtro, após a aplicação do filtro e os valores para o erro igual a zero.

Tabela 1 - Resultados

Id	X (Antes)	X (Fitrado)	X (Erro Zero)	Y (Antes)	Y (Fitrado)	Y (Erro Zero)
1	0,2256	0,2256	-2,194	9,84	9,84	10,0
2	23,7659	23,765	18,4605	10,6243	10,6241	10,0
3	43,5079	44,1408	42,9952	13,0707	12,8858	10,0
4	57,3707	59,8943	57,9669	10,4021	11,0757	10,0
5	80,6458	79,9924	79,0768	8,788	9,1597	10,0
6	97,7779	98,568	98,8682	13,6542	12,6656	10,0
7	127,7865	122,4234	123,6219	11,8452	12,2196	10,0
8	142,6559	142,6837	140,1809	10,516	10,8898	10,0
9	154,8378	159,8916	157,5827	11,5018	11,3053	10,0
10	175,9876	178,3693	177,4855	8,8639	9,2943	10,0
11	206,8795	200,7609	203,8811	11,9149	11,2618	10,0
12	225,2001	222,0305	224,3323	10,6004	10,8077	10,0
13	244,535	242,8034	243,6561	11,3975	11,2944	10,0
14	253,3739	260,5241	257,1916	7,6581	8,3514	10,0
15	280,032	280,3451	279,5225	13,4339	12,2813	10,0
16	301,0883	300,4454	299,5552	10,9714	11,4441	10,0
17	319,2637	320,1346	320,6876	5,7132	6,774	10,0
18	336,4783	339,3123	338,7202	11,0508	9,881	10,0
19	357,3989	358,8145	357,8139	12,8495	12,4065	10,0
20	376,644	378,2622	379,0009	11,4278	11,875	10,0

Para facilitar a visualização dos resultados, os dados foram apresentados também de forma gráfica através da Figura 2:

Figura 2 - Resultados

Por fim, como forma de comprovar a redução do erro após a aplicação do filtro, foi calculado o erro médio quadrático antes e após a aplicação. Os resultados estão apresentados na Tabela 2:

Tabela 2 - Erro Médio Quadrático

Eixo	Antes	Depois	
X	5,6	4,215	
Y	4,2943	2,9644	

CONCLUSÃO

Através da análise dos resultados é possível concluir que houve uma redução do erro após a utilização do filtro. Essa redução se confirma através da análise do erro médio quadrático antes e depois da aplicação do filtro. Tanto para o eixo x, quanto para o eixo y, esse erro sofreu uma redução significativa.

AGRADECIMENTOS

Agradeço o apoio do CNPq através da bolsa de incentivo a pesquisa PIBIC/CNPq.

REFERÊNCIAS

[1] ABREU, P.A.J. Filtragem Robusta de Trajetórias de Veículos Espaciais. 2002. Tese (Mestrado em Engenharia de Eletricidade) – Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão, São Luis, 2002.

[2] FARIA, M.C.P; Souza, M.L.O. Aplicação do Filtro de Kalman para a Estimação de Estados em um Problema de Rastreamento. *In:* CONGRESSO TEMATICO DE DINAMICA E CONTROLE (SBMAC), 3, 2004. Ilha Solteira. São Paulo.

[3] SILVA, C.C.; Pereira, J.A. Implementação e Análise de localização em Robótica Móvel por Filtro de Kalman. *In*: IX ENCONTRO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO DO ITA, 2003, SÃO José dos Campos.