学院	姓名		_ 学号_			任课	老师		选课号	
	·密·······封	······线··	以	内·	答		无	···········效	•••••	
电子科技大学工	二零零_	五 至	二零	零 <u>_</u> 六	学	年第_		学期期	末	_考试
_电磁场与波 课程考	法题 A	券 (1 ′	20 分钟	b) 老ì	武形式.	闭卷	老-	試日期 2	006年	7月6日
	<i></i>	C \	<u> </u>	1	-V/D-V•	147 6		M H 793 2	.00 <u>.0</u> _	<u> </u>
课程成绩构成:平时_分	10	分,	月中	10	分, <u> </u>	实验	10	分,;	期末	70
_	二三	. 四	Ŧi.	六	七	八	九	+	合计	
一. 填空题(毎空15	分 ,共 3	30分)							
1. 对于时谐电磁场	汤, 麦克斯	「韦第一)	方程的复	夏数形.	式 $\nabla imes ar{I}$	$\vec{I} = \underline{}$,其物	物理意义
是		; ;	第二方	程的复	数形式	$\nabla \times \overline{E}$	=			_,其物
理意义是					。对	于静态	电磁均	汤,这 两	5个方程	是分别为
$\nabla \times \overline{H} = \underline{\hspace{1cm}}$	、 ∇	$7 \times \vec{E} = $			_,它们	门是各	自独立	的。		
2. 时变电磁场中引	入矢量位	立 Ā ,场:	量 B =				5			
3. 线性和各向同性			_			_			,	
	0	1 1 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	, <u> </u>			_ ·			·	
4. 瞬时能流密度	矢量(孠	龙瞬 时坡	印廷矢	:量)	$\vec{S}(\vec{r},t)$	=			,其物]理意义
是										
5. 镜像法的理论机									0	
6.均匀平面波在自	由空间(参数为 ϵ	$S_0 = \frac{1}{4}$	1	-F/m,	$\mu_0 = 4\pi$	$\tau \times 1^{-0}$	$H/m,\sigma$	=0) =	的频率
<i>f</i> ₀=100MHz、波长										
时,频率 <i>f</i> =										
7. 均匀平面波在导										
场的相位 										: ⊣ 7

学院	姓名 _		_ 学号		任课老师		
	密	···封········线··	以	内答·	题	····无·····	····效····

- 8. 临界角 $\theta_c = \arcsin(\sqrt{\frac{\varepsilon_2}{\varepsilon_1}})$,产生全反射的条件是______。
- 9. 布儒斯特角 $\theta_b = \arctan(\sqrt{\frac{\varepsilon_2}{\varepsilon_1}})$,产生全透射的条件是______。

- 12. 电偶极子的远区辐射场的振幅与距离 r 成______比,辐射场有方向性,其方向性函数为_____。
- 二. **选择填空题**(3选1,每小题1分,共10分)
- 1. 空气($\varepsilon_1=\varepsilon_0$)和电介质($\varepsilon_2=4\varepsilon_0$)的分界面是 z=0 的平面。若已知空气中的电场强度 $\overline{E_1}=\overline{e_x}2+\overline{e_z}4$,则电介质中分界面上的电场强度 $\overline{E_2}=$ ()。
- a. $\overrightarrow{e_x} 2 + \overrightarrow{e_z}$; b. $\overrightarrow{e_x} 2 + \overrightarrow{e_z} 4$; c. $\overrightarrow{e_x} 0.5 + \overrightarrow{e_z}$
- 2.以下三个矢量函数中,只有()才是表示磁感应强度的矢量。
- a. $\overline{B_1} = \overline{e_x}ax + \overline{e_y}by$; b. $\overline{B_2} = \overline{e_x}ay + \overline{e_y}bx$; c. $\overline{B_3} = \overline{e_x}x^2 + \overline{e_y}xy$
- 3.在导电媒质中,传导电流密度 $\overline{J_c}$ 与位移电流密度 $\overline{J_d}$ 的相位()。
- a. 相同 ; b. 相差 45° ; c. 相差 90°
- 4. 用场矢量的复数形式计算平均坡印廷矢量的正确公式是()。

a.
$$\overline{S_{av}} = \frac{1}{2} \operatorname{Re} \left[\overline{E} \times \overline{H} \right]$$
; b. $\overline{S_{av}} = \frac{1}{2} \operatorname{Re} \left[\overline{E}^* \times \overline{H}^* \right]$; c. $\overline{S_{av}} = \frac{1}{2} \operatorname{Re} \left[\overline{E} \times \overline{H}^* \right]$

\simeq	位
7	DT:

5.只有()才是自由空间均匀平面波的电场的正确表示式。

a.
$$\overrightarrow{E} = \overline{e_x} 10 \cos(2\pi \times 10^8 t - 2\pi z)$$
 ; b. $\overrightarrow{E} = \overline{e_x} 10 \cos(2\pi \times 10^8 t - \pi z)$

b.
$$\vec{E} = \vec{e_x} 10 \cos(2\pi \times 10^8 t - \pi z)$$

c.
$$\overrightarrow{E} = \overrightarrow{e_x} 10 \cos(2\pi \times 10^8 t - \frac{2\pi}{3} z)$$

6.在良导体中,趋肤深度(或穿透深度)与波的频率以及媒质参数的关系式为()。

a.
$$\delta = \pi f \mu \sigma$$

a.
$$\delta = \pi f \mu \sigma$$
 ; b. $\delta = \frac{1}{\sqrt{\pi f \mu \sigma}}$; c. $\delta = \sqrt{\pi f \mu \sigma}$

c.
$$\delta = \sqrt{\pi f \mu \sigma}$$

7.均匀平面波在良导体中传播时,衰减常数 α 和相位常数 β 的大小满足()。

a.
$$\alpha \gg \beta$$

b.
$$\alpha \approx \ell$$

a.
$$\alpha >> \beta$$
 ; b. $\alpha \approx \beta$; c. $\alpha << \beta$

8.均匀平面波对理想介质分界面垂直入射时,反射系数为()。

a.
$$\Gamma = \frac{2\eta_1}{\eta_1 + \eta_2}$$

a.
$$\Gamma = \frac{2\eta_1}{\eta_1 + \eta_2}$$
; b. $\Gamma = \frac{2\eta_2}{\eta_1 + \eta_2}$; c. $\Gamma = \frac{\eta_2 - \eta_1}{\eta_1 + \eta_2}$

c.
$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_1 + \eta_2}$$

9.在矩形波导中,只有当工作波长 λ 与波系的截止波长 λ 。满足关系式(),波才能传播。

a.
$$\lambda < \lambda_a$$

a.
$$\lambda < \lambda_c$$
 ; b. $\lambda > \lambda_c$; c. $\lambda = \lambda_c$

c.
$$\lambda = \lambda$$

10.在电偶极子的远区,电磁波是()。

三. 计算题 (1、2、3、4 为必作题; 5、6 任选一题; 共 60 分)

1. (12 分)具有两层同轴电介质的圆柱形电容器,内导体半径 r_0 =1cm;内层介质的相对介电常数 ε_{r_1} =3,外层介质的相对介电常数 ε_{r_2} =2,其横截面如图。为了使两层电介质中的最大电场强度相等,且内、外两层间的电压也相等,试确定两层电介质的厚度。

2. (14 分)同轴线的内导体半径为 a,外导体的内半径为 b (外导体的厚度可忽略不计),材料为金属铜,磁导率为 μ_0 ;内、外导体之间填充聚乙烯,其磁导率也为 μ_0 ;设同轴线中的电流为 I,横截面如图。

试求: (1) 同轴线内导体中以及内、外导体之间的磁场强度分布:

(2) 同轴线单位长度的外自感。

学院

3. (14分) 在无源的自由空间中, 电场强度的表示式为

$$\vec{E}(z,t) = \vec{e_x} 1000 \cos(1.26 \times 10^8 t - kz)$$
 V/m

- (1) 写出电场强度的复数表示式 $\overline{E}(z)$;
- (2) 应用麦克斯韦方程求出与 $\overline{E}(z,t)$ 相应的磁场强度 $\overline{H}(z,t)$;
- (3) 求平均坡印廷矢量 $\overline{S_{av}}$ 。

- 4. (14 分)无源空间中(媒质参数为 $\varepsilon = 9\varepsilon_0$, $\mu = \mu_0$, $\sigma = 0$),已知均匀平面波的电场复数表示式为 $E(x) = 10(e_y + je_z)e^{-j25x}$ v/m
 - (1) 确定均匀平面波的传播方向和频率;
 - (2) 求出与 $\overline{E}(x)$ 相应的磁场表示式 $\overline{H}(x)$;
 - (3) 描述该均匀平面波的极化形式;
 - (4) 当该均匀平面波垂直入射到理想导体平面时,求该反射波的电场表示式,并描述其极化特性。
- 5. $(6\, \mathcal{G})$ 有一正弦均匀平面波从空气中斜射入到 z=0 的理想导体平面上,如图示。已知入射波的电场为 $\overline{E_i}(x,z)=\overline{e_v}10e^{-j(6x+8z)}$ v/m
 - (1) 求均匀平面波的波长 A;
- (2) 求入射角 θ_i ;
- (3) 求入射波的磁场 $\overline{H}_i(x,z)$;
- (4) 求反射波的电场 $\overline{E}_{r}(x,z)$ 。

学院	姓名	学号	任课老师	选课号
		·····线·········以··········内···		······效······

6. (6分) 在接地的导体平面上有一个半径为a 的半球形凸起部分,半球的球心在导体平面上,如图示。今在半球对称轴上离球心h 处放一个点电荷q,若指定采用镜像法求解上半空间任一点的电位,试绘图标明镜像电荷的位置和量值。

附录:圆柱坐标系和球坐标系下梯度、散度、旋度和拉普拉斯运算公式

(a) 圆柱坐标系

$$\nabla u = \vec{e}_{\rho} \, \frac{\partial u}{\partial \rho} + \vec{e}_{\varphi} \, \frac{\partial u}{\rho \partial \varphi} + \vec{e}_{z} \, \frac{\partial u}{\partial z} \, , \quad \nabla \bullet \, \vec{A} = \frac{\partial}{\rho \partial \rho} (\rho A_{\rho}) + \frac{\partial}{\rho \partial \varphi} A_{\varphi} + \frac{\partial}{\partial z} A_{z} \, ,$$

$$\nabla \times \vec{A} = \frac{1}{\rho} \begin{vmatrix} \vec{e}_{\rho} & \rho \vec{e}_{\varphi} & \vec{e}_{z} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \varphi} & \frac{\partial}{\partial z} \\ A_{\alpha} & \rho A_{\alpha} & A_{z} \end{vmatrix}, \qquad \nabla^{2} u = \frac{\partial}{\rho \partial \rho} (\rho \frac{\partial u}{\rho}) + \frac{\partial^{2} u}{\rho^{2} \partial \varphi^{2}} + \frac{\partial^{2} u}{\partial z^{2}}$$

(b) 球坐标系

$$\nabla u = \vec{e}_r \frac{\partial u}{\partial r} + \vec{e}_\theta \frac{\partial u}{r \partial \theta} + \vec{e}_\phi \frac{\partial u}{r \sin \theta \partial \varphi}, \quad \nabla \bullet \vec{A} = \frac{\partial}{r^2 \partial r} (r^2 A_r) + \frac{\partial}{r \sin \theta \partial \theta} (\sin \theta A_\theta) + \frac{\partial}{r \sin \theta \partial \varphi} A_\phi$$

$$\nabla \times \vec{A} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \vec{e}_r & r\vec{e}_\theta & r\sin \theta \vec{e}_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \varphi} \\ A_r & rA_\theta & r\sin \theta A_\varphi \end{vmatrix}, \quad \nabla^2 u = \frac{\partial}{r^2 \partial r} (r^2 \frac{\partial u}{r}) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial u}{\partial \theta}) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \varphi^2}$$

A 卷"计算题"参考答案与评分标准

(12 分) 1. 解:设外导体的内半径为 b,内外两层电介质的分界面半径为 a,设内导体上 单位长度所带电荷为ρ; 利用高斯定理得

$$(2 分) \overline{E_1} = \overline{e_\rho} \frac{\rho_l}{2\pi\varepsilon_l \rho} = \overline{e_\rho} \frac{\rho_l}{2\pi \times 3\varepsilon_0 \rho} \quad r_0 \le \rho \le a$$

$$(2 \%) \qquad \overline{E_2} = \overline{e_\rho} \frac{\rho_l}{2\pi\varepsilon_2 \rho} = \overline{e_\rho} \frac{\rho_l}{2\pi \times 2\varepsilon_0 \rho} \quad a \le \rho \le b$$

(1分)
$$\overline{\mathbb{m}} E_{1\max}|_{\rho=r_0} = \frac{\rho_l}{6\pi\varepsilon_0 \times 10^{-2}}$$

$$(1 / 1) \qquad E_{2 \max} \Big|_{\rho=a} = \frac{\rho_l}{4\pi\varepsilon_0 a}$$

由 $E_{1\text{max}} = E_{2\text{max}}$, 得 $a = 1.5 \times 10^{-2} m = 1.5 cm$

内、外两层间的电压分别为

(2
$$\not$$
)
$$U_1 = \int_{r_0}^{a} \overline{E_l} \cdot \overline{d\rho} = \int_{10^{-2}}^{1.5 \times 10^{-2}} \frac{\rho_l}{6\pi \varepsilon_0 \rho} d\rho = \frac{\rho_l}{6\pi \varepsilon_0} \ln 1.5$$

$$(2 \ \cancel{f}) \qquad \qquad U_2 = \int_a^b \overline{E_2} \cdot \overline{d\rho} = \int_{1.5 \times 10^{-2}}^b \frac{\rho_l}{4\pi\varepsilon_0 \rho} d\rho = \frac{\rho_l}{4\pi\varepsilon_0} \ln \frac{b}{1.5 \times 10^{-2}}$$

由 $U_1 = U_2$, 求得

$$\ln b = \frac{4\ln 1.5 + b\ln \left(1.5 \times 10^{-2}\right)}{6}$$

故 $b = 1.96 \times 10^{-2} = 1.96 cm$

- 则得: 内介质层的厚度= $a-r_0=1.5-1=0.5$ cm
- (1分) 外介质层的厚度=b-a=1.96-1.5=0.46cm

(14 分) 2. 解: (1) 内导体中的电流密度
$$\bar{J} = e_z \frac{I}{\pi a^2}$$
 (2 分)

据安培环路定律求得内导体中的电磁场强度为

学院

姓名

学号

任课老师

冼课号

$$(2 \cancel{f}) \qquad \overline{H}_i = \overline{e_\phi} \frac{I'}{2\pi\rho} = \overline{e_\phi} \frac{1}{2\pi\rho} \cdot \frac{I}{\pi a^2} \pi \rho^2 = \overline{e_\phi} \frac{I\rho}{2\pi a^2} \qquad 0 \le \rho \le a$$

内、外导体间的磁场则为

$$(2 分) \overline{H_o} = \overline{e_\phi} \frac{I}{2\pi\rho} \quad a \le \rho \le b$$

(2) 穿过轴向为单位长度、宽度为 dp 构成的面积元

$$\overline{ds} = \overline{e_{\phi}} 1 d\rho = \overline{e_{\phi}} d\rho$$
 的磁通为

(2
$$\Re$$
)
$$d\Psi_0 = \overline{B_0} \cdot \overline{dS} = \frac{\mu_0 I}{2\pi\rho} d\rho$$

(2分) 则
$$L_0 = \frac{\Psi_0}{I} = \frac{\mu_0}{2\pi} \ln \frac{b}{a}$$

(14分)3. 解 (1)对自由空间, $v=v_0=3\times 10^8 m/s$,故

(2
$$\frac{6}{7}$$
) $k_0 = \frac{\omega}{v_0} = \frac{1.26 \times 10^8}{3 \times 10^8} = 0.42 \, rad \, / m$

(2) 据
$$\nabla \times \overline{E} = -j\omega\mu_0\overline{H}$$
 得

$$\begin{aligned} \overline{H}(z) &= -\frac{1}{j\omega\mu_0} \nabla \times \overline{E}(z) = -\overline{e_y} \frac{1}{j\omega\mu_0} \frac{\partial E_x}{\partial z} \\ &= \overline{e_y} \frac{1000k}{\omega\mu_0} e^{-jkz} = \overline{e_y} \frac{420}{1.26 \times 10^8 \times 4\pi \times 10^{-7}} e^{-j0.42z} \\ &= \overline{e_y} 2.65 e^{-j0.42z} A/m \end{aligned}$$

(2分) 故
$$\overline{H}(z,t) = \text{Re}[\overline{H}(z)e^{j\omega t}] = \overline{e_y} 2.65\cos(1.26 \times 10^8 t - 0.42z)$$
 A/m

$$(4 / T) \qquad (3) \quad \overline{S_{av}} = \frac{1}{2} \text{Re}[\overline{E}(z) \times \overline{H^*}(z)] = \frac{1}{2} \text{Re}[\overline{e_x} 1000 e^{-j0.42z} \times \overline{e_y} 2.65 e^{-j0.42z}] = \overline{e_z} 1325 w / m^2$$

学号

任课老师

选课号

相速
$$v = \frac{v_0}{\sqrt{\varepsilon_r}} = \frac{3 \times 10^8}{\sqrt{9}} = 10^8 m/s$$

而相位常数 k = 25rad/m

$$\omega = kv = 25 \times 10^8 \, rad \, / s$$

$$f = \frac{\omega}{2\pi} = \frac{25}{2\pi} \times 10^8 \, Hz$$

(2) 据 $\nabla \times \overline{E} = -i\omega \mu_0 \overline{H}$ 得

$$\overline{H}(x) = -\frac{1}{j\omega\mu_0}\nabla\times\overline{E}(x) = -\frac{1}{j\omega\mu_0}\begin{vmatrix} \overline{e_x} & \overline{e_y} & \overline{e_z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & E_y & E_z \end{vmatrix} = -\frac{1}{j\omega\mu_0}(-\overline{e_y}\frac{\partial E_z}{\partial x} + \overline{e_z}\frac{\partial E_y}{\partial x})$$

$$(4 / \vec{j}) = -\frac{1}{j\omega\mu_0} \{ -\overline{e_y} [j10e^{-j25x} (-j25)] + \overline{e_z} \frac{\partial E_y}{\partial x} [j10e^{-j25x} (-j25)] \}$$

$$= \frac{25 \times 10e^{-j25x}}{j\omega\mu_0} (-j\overline{e_y} + \overline{e_z}) = \frac{1}{4\pi} (-j\overline{e_y} + \overline{e_z})e^{-j25x} \quad A/m$$

更及 $\overline{H}(x) = \frac{1}{\eta} \overline{e_x} \times \overline{E}(x) = \frac{1}{\eta / \sqrt{\varepsilon_r}} \overline{e_x} \times 10(\overline{e_y} + j\overline{e_z}) e^{-j25x}$ $= -\frac{10}{40\pi} (-j\overline{e_y} + \overline{e_z}) e^{-j25x} = \frac{1}{4\pi} (-j\overline{e_y} + \overline{e_z}) e^{-j25x} \quad A/m$

式中
$$\eta = \sqrt{\frac{\mu_0}{\varepsilon_r \varepsilon_0}} = \sqrt{\frac{\mu_0}{9\varepsilon_0}} = 40\pi \quad \Omega$$

(2分) (3) 沿+x 轴方向传播的左旋圆极化波

(4) 反射系数 Γ=-1, 故反射波电场为

(3
$$frac{h}{2}$$
)
$$\overline{E_r}(x) = -10(\overline{e_v} + j\overline{e_z})e^{j25x}$$

(1分) 可见,反射波是-x 轴方向传播的右旋圆极化波。

$$\vec{k_i} = \vec{e_i} k_i = (\vec{e_x} \sin \theta_i + \vec{e_z} \cos \theta_i) k_i$$

入射波的相位因子为

$$e^{-j\overline{k_i}\cdot\overline{r}} = e^{-jk_i(\overline{e_x}\sin\theta_i + \overline{e_z}\cos\theta_i)\cdot(\overline{e_x}x + \overline{e_z}z)} = e^{-j(k_i\sin\theta_ix + k_iz\cos\theta_i)}$$

对此题给条件,得 $k_i \sin \theta_i = 6$, $k_i \cos \theta_i = 8$, 故 $k_i = \sqrt{k_x^2 + k_z^2} = \sqrt{6^2 + 8^2} = 10$

(2分) 则
$$\lambda = \frac{2\pi}{k_i} = \frac{2\pi}{10} = 0.628m$$

(2) $\pm k_{ix} = k_x \sin \theta_i$

(1分) 得
$$\sin \theta_i = \frac{k_{ix}}{k_i} = \frac{6}{10} = 0.6$$
,故 $\theta_i = 36.9^\circ$

或 由
$$k_{iz} = k_i \cos \theta_i$$

得
$$\cos \theta_i = \frac{k_{iz}}{k_i} = \frac{8}{10} = 0.8$$
,故 $\theta_i = 36.9^\circ$

(1分) (3)入射波传播方向的单位矢量为

$$\overrightarrow{e_i} = \frac{\overrightarrow{k_i}}{k} = \frac{\overrightarrow{e_x} 6 + \overrightarrow{e_z} 8}{10} = 0.6 \overrightarrow{e_x} + 0.8 \overrightarrow{e_z}$$

故
$$\overline{H_i}(x,z) = \frac{1}{\eta_0} \overline{e_i} \times \overline{E_i}(x,z) = \frac{1}{120\pi} (-\overline{e_x} + \overline{e_z} + \overline$$

(1分) (4) 据斯耐尔反射定律, $\theta_r = \theta_i = 36.9^\circ$

而反射波波矢量 $\overline{k_r} = \overline{e_r} k_r = k_r (\overline{e_x} \sin \theta_r - \overline{e_z} \cos \theta_r) = \overline{e_x} 6 - \overline{e_z} 8$

又在理想导体平面上,垂直极化波的反射系数 $\Gamma_{\perp} = -1$

$$\iiint \overrightarrow{E_r}(x,z) = -\overrightarrow{e_y} 10e^{-j(6x-8z)} \quad V/m$$

(6分) 6. 解:综合应用点电荷对接地导体平面和接地导体球面的镜像法,得

$$(2 \%) \quad q_1 = -\frac{aq}{h}, \quad b = \frac{a^2}{h}$$

$$(2 分) \dot{q_2} = -q$$

$$(2 / h) q_3 = -q_1 = \frac{aq}{h}$$

