Computational Thinking Logic

Barnaby Martin

Department of Computing Science

Lecture 3

More on Propositional Logic

Distribution Laws

- Whereas De Morgan's Laws allow us to simplify formulae with respect to negations
 - we often have "combinations" of disjunctions and conjunctions.
- The Distributive Law of Disjunction over Conjunction is

Of
$$(b \cdot C)$$
 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ (and similarly $(q \land r) \lor p \equiv (q \lor p) \land (r \lor p)$) and the Distributive Law of Conjunction over Disjunction is $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ (and similarly $(q \lor r) \land p \equiv (q \land p) \lor (r \land p)$).

Just as before, there are the generalised Distributive Laws

$$X \wedge (Y_1 \vee Y_2 \vee ... \vee Y_n) \equiv (X \wedge Y_1) \vee (X \wedge Y_2) \vee ... \vee (X \wedge Y_n)$$
$$X \vee (Y_1 \wedge Y_2 \wedge ... \wedge Y_n) \equiv (X \vee Y_1) \wedge (X \vee Y_2) \wedge ... \wedge (X \vee Y_n).$$

- Of course
 - we can apply these laws to combinations of formulae and to sub-formulae
 - not just with propositional variables.

- We defined propositional logic using the connectives {∧, ∨, ¬, ⇒, ⇔}
 - but we could have chosen other connectives.
- We say that a set @ of logical connectives is functionally complete if any propositional formula is
 - equivalent to one constructed using only the connectives from C.

In fact,
$$\{\land, \lor, \neg\}$$
 is functionally complete. $(\neg P \Rightarrow \neg Q) \Rightarrow (\neg Q \Rightarrow P)$

- Let φ be a propositional formula involving the variables $p_1, p_2, ..., p_n$.
- Build the truth table for φ and let f be some truth assignment (i.e., row) that evaluates to true.

p_1	p_2	 p_n	φ
Т	F	F	Т

- Suppose that in this truth assignment f
 - each p_i has the truth value v_i.
- Build a conjunction χ_f of literals as follows: for each *i*
 - if v_i is true then include the literal p_i in the conjunction χ_f
 - if v_i is false then include the literal $\neg p_i$ in the conjunction χ_f

Example

Consider the following truth table for φ

p	q	r	S	φ	p	q	r	S	φ
T	Т	Т	Т	F	F	Т	Т	Т	F
Т	Т	Т	F	F	F	Т	Т	F	F
Т	Т	F	Т	$T \leftarrow f_1$	F	Т	F	Т	F
Т	Т	F	F	F	F	Т	F	F	$T \leftarrow f_4$
Т	F	Т	Т	F	F	F	Т	Т	F
Т	F	Т	F	F	F	F	Т	F	F
Т	F	F	Т	$T \leftarrow f_2$	F	F	F	Т	F
Т	F	F	F	$T \leftarrow f_3$	F	F	F	F	$T \leftarrow f_5$

So

Ya: True v False v False v False - True

- We defined propositional logic using the connectives {∧, ∨, ¬, ⇒, ⇔}
 - but we could have chosen other connectives.
- We say that a set @ of logical connectives is functionally complete if any propositional formula is
 - equivalent to one constructed using only the connectives from e.
- In fact, {∧, ∨, ¬} is functionally complete.
 - Let φ be a propositional formula involving the variables $p_1, p_2, ..., p_n$.
 - Build the truth table for φ and let f be some truth assignment (i.e., row) that evaluates to true.

p_1	p_2	 p_n	φ
Т	F	F	Т

- Suppose that in this truth assignment f
 - each p_i has the truth value v_i.
- Build a conjunction χ_f of literals as follows: for each *i*
 - if v_i is true then include the literal p_i in the conjunction χ_f
 - if v_i is *false* then include the literal $\neg p_i$ in the conjunction χ_f .

- Now let ψ be the disjunction of all those conjunctions χ_f we have just built
 - remember, we only build disjunctions corresponding to the rows of the truth table evaluating to *true*.
- We claim that φ and ψ are logically equivalent.
 - Suppose that f is some truth assignment making φ true
 - so, we have indeed built the conjunction χ_f .
 - Key point
 - the only truth assignment making the conjunction χ_f *true* is the truth assignment f itself.
 - In particular, the truth assignment f must make χ_f true
 - e.g., with regard to the truth assignment f in the example, χ_f is

$$p_1 \wedge \neg p_2 \wedge \ldots \wedge \neg p_n$$

which is made *true* only by the truth assignment f.

Hence, f makes ψ true.

Conversely

- suppose that g is some truth assignment making ψ true
 - so, at least one conjunct, χ_f say, is made *true* by g
- but the only truth assignment making χ_f true is f
 - hence, f = g
- the reason χ_f appears as a conjunct is because f makes φ true
 - so, g = f is a truth assignment making φ *true*.

Consequently, for any truth assignment f

- f satisfies φ if, and only if, f satisfies ψ
 - that is, $\varphi \equiv \psi$.

Our proof yields even more

- every formula of propositional logic is equivalent to a formula in disjunctive normal form (d.n.f.)
 - a disjunction of conjunctions of literals
- also, every truth table is the truth table of some propositional formula.

Conjunctive normal form

- Let φ be some formula of propositional logic.
- The formula ¬φ is equivalent to one in disjunctive normal form
 - that is, one of the form

$$\chi_1 \vee \chi_2 \vee \ldots \vee \chi_m$$

where each χ_i is a conjunction of literals.

So, φ is equivalent to the formula

$$\neg(\chi_1 \vee \chi_2 \vee \ldots \vee \chi_m)$$

which in turn, by using generalised De Morgan's Laws, is equivalent to

$$\neg \chi_1 \wedge \neg \chi_2 \wedge \ldots \wedge \neg \chi_m$$

- Each $-\chi_i$ is equivalent to a disjunction of literals
 - by again using generalised De Morgan's Laws.
- Thus
 - every formula of propositional logic is logically equivalent to a conjunction of disjunctions of literals, i.e., a conjunction of clauses
 - that is, every formula of propositional logic is equivalent to a formula in conjunctive normal form (c.n.f.).

A spot of practice

• We wish to convert the formula $\varphi = ((\neg p \land q) \lor r) \land \neg ((r \land p) \lor \neg q)$ into c.n.f.

p	q	r	$((\neg p \land q) \lor r) \land \neg((r \land p) \lor \neg q)$	$\neg \phi$
Т	Т	Т	FTFTTT F FTTTTFT	Т
Т	Т	F	FTFTFF FTFFTFFT	Т
Т	F	Т	FTFFTT F FTTTTTF	Т
Т	F	F	FTFFFF F FFFT TTF	Т
F	Т	Т	TFTTTT TTTFFFFT	F
F	Т	F	TFTTTF T TFFFFFT	F
F	F	Т	TFFFTT F FTFFTTF	Т
F	F	F	TFFFFFFFFTTF	Т

So, ¬φ is equivalent to

$$(p \land q \land r) \lor (p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r).$$

Hence, φ is equivalent to the c.n.f. formula

$$(\neg p \lor \neg q \lor \neg r) \land (\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor q \lor r) \land (p \lor q \lor \neg r) \land (p \lor q \lor r).$$

Converting to c.n.f. syntactically

- We can often establish normal forms "syntactically".
- Consider the formula

$$\phi \quad ((\neg p \land q) \lor r) \land \neg ((r \land p) \lor \neg q)
\equiv ((\neg p \lor r) \land (q \lor r)) \land (\neg (r \land p) \land q)
\equiv (\neg p \lor r) \land (q \lor r) \land ((\neg r \lor \neg p) \land q)
\equiv (\neg p \lor r) \land (q \lor r) \land (((\neg r \land q) \lor \neg p) \land ((\neg r \land q) \lor q))
\equiv (\neg p \lor r) \land (q \lor r) \land (\neg r \lor \neg p) \land (q \lor \neg p) \land (\neg r \lor q) \land q
\equiv (\neg p \lor r) \land (q \lor r) \land (\neg r \lor \neg p) \land (q \lor \neg p) \land (\neg r \lor q) \land q$$

- In the "semantic" approach, i.e., using truth tables
 - we are stuck with the exponentially-sized truth table.
- However, with the "syntactic" approach, i.e., using known equivalences
 - we can often achieve our aims much more quickly
 - · though this often requires cunning!

An application: SAT-solving

- The power of propositional logic is quite remarkable
 - computationally complex problems can be described using the logic.
- The aim of SAT-solving is
 - to encode a problem X as a propositional formula φ so that
 - a solution to X corresponds to φ having a satisfying truth assignment
 - to employ algorithms to solve the satisfiability problem (SAT) for φ (and so X).
- The SAT problem is to decide if a propositional formula has a satisfying truth assignment. It is extremely hard to solve.
 - in fact, it is NP-complete, even if the formula is given in c.n.f.
 - so takes time exponential in the size of the formula to solve (probably!).
- However, modern-day SAT-solvers can give extremely good results
 - note that all modern day SAT-solvers need their inputs to be in c.n.f.
- SAT-solving is a thriving research area
 - http://www.satlive.org.

An application: SAT-solving

- Consider the graph G shown opposite where the problem is
 - to decide whether the vertices can be coloured red, yellow, or blue such that
 - if two vertices are joined by an edge then they must be coloured differently. the balls are either red, yellow or blue
- Consider the formula ϕ defined as

 $(r_1 \vee y_1 \vee b_1) \wedge (r_2 \vee y_2 \vee b_2) \wedge \ldots \wedge (r_6 \vee y_6 \vee b_6)$ Jeach bull only has 3 $7 \wedge (\neg r_1 \vee \neg y_1) \wedge (\neg r_1 \vee \neg b_1) \wedge (\neg b_1 \vee \neg y_1)$ one colour $\wedge (\neg r_2 \vee \neg y_2) \wedge (\neg r_2 \vee \neg b_2) \wedge (\neg b_2 \vee \neg y_2)$ $\land \dots \land (\neg r_6 \lor \neg y_6) \land (\neg r_6 \lor \neg b_6) \land (\neg b_6 \lor \neg y_6)$ $\wedge (\neg r_1 \vee \neg r_2) \wedge (\neg b_1 \vee \neg b_2) \wedge (\neg y_1 \vee \neg y_2)$ $\wedge (\neg r_1 \vee \neg r_5) \wedge (\neg b_1 \vee \neg b_5) \wedge (\neg y_1 \vee \neg y_5)$ $(\neg r_5 \lor \neg r_6) \land (\neg b_5 \lor \neg b_6) \land (\neg y_5 \lor \neg y_6)$

G can be 3-coloured

if and only if

φ has a satisfying truth assignment.

An application: SAT-solving

- A clause is a non-tautological disjunction of literals.
- If every clause contains exactly k literals, then we obtain the k-SAT problem.
- It is known that k-SAT is polynomial-time solvable if k=2 but NP-complete for k>=3.
- Suppose we consider formulas where
 - every clause contains exactly k distinct literals
 - every variable appears in at most s clauses

This yields the (k,s)-SAT problem.

2-2-SAT

- It is known: every instance of (3,3)-SAT is satisfiable, but (3,4)-SAT is NP-complete.
- Iwama and Takaki (Satisfiability of 3CNF formulas with small clause/variable-ratio. DIMACS Series in Disc. Math. and Theoret. Comput. Sc, 35 (1997) 315–334) proved that
 - every instance of (3,4)-SAT with at most 3 variables occurring in four clauses is satisfiable.
 - there exists an instance of (3,4)-SAT with 9 variables occurring in four clauses that is not satisfiable.

Research question: Can we close this gap?

See also S. Hoory and S. Szeider, Computing unsatisfiable k-SAT instances with few occurrences per variable, Theoretical Computer Science 337(2005) 347–359.