Compressed Sensing using Generative Models

Salim Amoukou & Julie Loisel

March 6, 2019

Outline

- Motivation
- 2 Generative models
- 3 Theorical Results
- 4 Experiments

Outline

- Motivation
- ② Generative models
- 3 Theorical Results
- 4 Experiments

CS formalization

- Observation: $y = Ax^*$ and A
- Goal: Recover x^*
- Assumption: x is natural in some sense

In our case: x^* is an image and we suppose it's sparse in some basis.

Sparsity in a basis is good, but...

- Sparsity in a basis is a good model representation for image.
- But now, we have generative model which can model the density of an image like: Vae or GAN.

Outline

- Motivation
- 2 Generative models
- 3 Theorical Results
- 4 Experiments

Generative model?

- Goal: Estimate the density of our data
- Utility: Can sample new data with the estimate density

The challenge of modeling image \rightarrow Interaction between pixels Interaction between pixels \rightarrow More difficult the models are to train

Latent space

- Let take $x \in \mathbb{R}^{28*28}$ a digit in MNIST.
- Laten space: \mathbb{R}^k where every vectors contains k pieces of essential information needed to draw an image.

Problem \leftarrow How to define the latent vectors ? (digit, angle, width...) **Solution** \leftarrow VAE

VAE approch: There is no simple interpretation of the dimensions of z and samples of z can be drawn from a normal distribution.

VAE

Key argument: Any distribution in d dimensions can be generated by applying a sufficiently complicated function to a normally distributed vector u of dimension d.

Deep learning to the rescue: this complicated function will be modeled by a neural network, and can be broke in two phases:

Simple interpretaion of the training step

Loss function:

$$l_i(heta,\phi) = -\mathbb{E}_{z \sim q_{ heta}(z \mid x_i)}[\log p_{\phi}(x_i \mid z)] + \mathbb{KL}(q_{ heta}(z \mid x_i) \mid\mid p(z))$$

Generative function: we can resume generative model like a deterministic function $G: \mathbb{R}^k \to \mathbb{R}^n$ that take random gaussian and sample random variable according to our data's density.

What can we do with generative model? (Invert Gan)

- Given an image x_1 , how do we invert the gan : find z_1 such that $G(z_1) \approx x_1$
- Just define a loss, $L(z) = ||G(z) x_1||$
- Do gradient descent on z (Neural net fixed)

Invert GAN: inpanting

- Given an image x_1 with only some pixels observable
- How do we invert gan, find z_1 such that $G(z_1)$ is close to the real image x_1
- Just define a loss, $L(z) = ||AG(z) Ax_1||$
- Do gradient descent on z (Neural net fixed)

Invert GAN: super-resolution

- Given an image x_1 with blurred pixels observable
- How do we invert gand: find z_1 such that $G(z_1)$ is close to the real image x_1
- Just define a loss, $L(z) = ||AG(z) Ax_1||$
- Do gradient descent on z (Neural net fixed)

Compressed-sensing with generative model

- We need to assume that x^* is the range of a good generative model.
- How do we recovery x^* from noisy linear measurements $y = Ax^* + \epsilon$
- What happened to sparsity?

Our algorithm?

Find the z that minimise the $loss(z) = ||AG(z) - Ax^*||$ We also define two error:

- measurement-error = $||AG(z) Ax^*||$
- reconstruction-error = $||G(z) x^*||$

Do we control the reconstruction error?

Outline

- Motivation
- 2 Generative models
- 3 Theorical Results
- 4 Experiments

Ensuring good recovery

In class, we were talking about **Exact Recovery**:

$$RIP(s) \iff ER(s)$$

Definition (RIP)

 $\forall x \in \Sigma_s$

$$(1 - \delta)||x||_2^2 \le ||Ax||_2^2 \le (1 + \delta)||x||_2^2$$

Why was RIP nice?

- Quantitative criterion
- Gaussian matrices

Robust recovery

When the model is noisy, we are not talking about Exact Recovery but robustness.

Definition

A reconstruction algorithm $\Delta : \mathbb{R}^m \to \mathbb{R}^n$ is **robust** to noise if for all x s-spasre vector and for all noise vector η :

$$||x - \Delta(Ax + \eta)|| \le c||\eta||$$

Which condition on A can lead us to robust recovery?

REC

$REC \Rightarrow Robust Recovery$

Definition

A satisfies REC for a constant $\gamma > 0$ if $\forall x \in \Sigma_s$,

$$||Ax|| \ge \gamma ||x||$$

We need to find a condition which:

- does not rely on sparsity
- implies good recovery

Definition: S-REC condition

Definition

Let $S \subseteq \mathbb{R}^n$. For some parameters $\gamma > 0$, $\delta \ge 0$, a matrix $A \in \mathbb{R}^{m \times n}$ is said to satisfy S-REC(S, γ , δ) if $\forall x_1, x_2 \in S$,

$$||A(x_1-x_2)|| \ge \gamma ||x_1-x_2|| - \delta$$

S-REC implies recovery

Let $A \in \mathbb{R}^{m \times n}$ such that :

- satisfies $S REC(S, \gamma, \delta)$ with probability 1 p.
- $\forall x \in \mathbb{R}^n$, $||Ax|| \le 2||x||$ with probability 1 p.

Let \hat{x} minimize approximatively ||y - Ax|| over S:

•
$$||y - A\hat{x}|| \le \min_{x \in S} ||y - Ax|| + \epsilon$$

Then, with probability 1-2p:

$$||\hat{x} - x^*|| \le \left(\frac{4}{\gamma} + 1\right) \min_{x \in S} ||x^* - x|| + \frac{1}{\gamma} (2||\eta|| + \epsilon + \delta)$$

Goal

Our goal is now to find a sensing matrix A which satisfies $S - REC(S, \gamma, \delta)$ with probability 1-p, such that $||y - A\hat{x}|| \le \min_{x \in S} ||y - Ax|| + \epsilon$

We can show two theorems based on different hypothesis on our generative model G: $\mathbb{R}^k \to \mathbb{R}^n$

- G is L-Lipschitz
- G is a d-layer neural network using ReLU activations

G L-Lipschitz

If G is L-Lipschtitz, the proof is familiar:

- ϵ -net: a $\frac{\delta}{L}$ net N of $\mathcal{B}^k(r)$ gives a δ -net G(N) of $G(\mathcal{B}^k(r))$
- construct $T = \{G(x) G(z')|z, z' \in N\}$ pairwise differences
- concentration argument (subgamma)
- Johnson-Lindenstraus
- union bound on all vectors in T

First Theorem

Theorem

Let $G : \mathbb{R}^k \to \mathbb{R}^n$ be a generative model such that G is L-Lipschitz. Let $A \in \mathbb{R}^{m \times n}$ be a random gaussian matrix for $m = \mathcal{O}(kd \log(\frac{Lr}{\delta}))$, scaled so $A_{i,j} \sim \mathcal{N}(0,\frac{1}{m})$.

For any $x^* \in \mathbb{R}^n$ and any observation $y = Ax^* + \eta$, let \hat{z} minimize $||y - AG(z)||_2$ over $||\hat{z}||_2 \le r$ to within additive ϵ of the optimum.

Then with $1 - e^{-\Omega(m)}$ probability,

$$||G(\hat{x}) - x^*||_2 \le \min_{\substack{z^* \in \mathbb{R}^k \\ ||\hat{z}||_2 \le r}} ||G(z^*) - x^*||_2 + 3||\eta||_2 + 2\epsilon + 2\delta$$

G d-layer ReLU

Now, let's consider the G as a d-layer neural network and suppose there are at most c nodes per layer.

- each node is an hyperplane in \mathbb{R}^k
- ullet c nodes \Rightarrow at most c different hyperplanes
- $\mathcal{O}(c^k)$ k-faces in the inout

 $\Rightarrow G(\mathbb{R}^k)$ is a union of c^{kd} different k-faces in \mathbb{R}^n

G d-layer ReLU

As $G(\mathbb{R}^k)$ is a union of c^{kd} different k-faces

 \Rightarrow we just have to find a matrix A satisfying the $S - REC(S, \gamma, \delta)$ for S a single k-face in \mathbb{R}^n .

The case of a single k-face

Oblivious embedding space: S preserve isometry in a k-dimension subspace $E \subset \mathbb{R}^n : E = \{Ux : x \in \mathbb{R}^d\}$ with U orthogonal ie: $\forall x \in \mathbb{R}^k ||SUx|| \in (1 \pm \epsilon)||x||$.

Claim: Let $S \in \mathbb{R}^{m*n}$ an iid normal gaussian for $m = O(\frac{k}{\epsilon^2})$, then S is a OES for any k-dimension subspace.

Proof.

- Let take $S_d = \{x \in \mathbb{R}^k : ||x|| = 1\}$
- $\exists N \in \mathbb{R}^n$ net such that $|N| = O(e^k)$, so for a fixed x JL $\Rightarrow \frac{SUx}{\sqrt{m}}$ $\in (1 \pm \epsilon)$
- $\forall x \in S_d, \exists x' \in \mathbb{N}$ such that $||x x'|| < \frac{\epsilon}{n}$ with high probability
- $||SUx SUx'|| \le ||SU|| ||x x'|| \le n \frac{\epsilon}{n} \le \epsilon$

Second Theorem

Theorem

Let $G: \mathbb{R}^k \to \mathbb{R}^n$ be a generative model from a d-layer neural network using ReLU activations.

Let $A \in \mathbb{R}^{m \times n}$ be a random gaussian matrix for $m = \mathcal{O}(kd \log(n))$, scaled so $A_{i,j} \sim \mathcal{N}(0, \frac{1}{m})$.

For any $x^* \in \mathbb{R}^n$ and any observation $y = Ax^* + \eta$, let \hat{z} minimize $||y - AG(z)||_2$ to within additive ϵ of the optimum.

Then with $1 - e^{-\Omega(m)}$ probability,

$$||G(\hat{x}) - x^*||_2 \le 6 \min_{z^* \in \mathbb{R}^k} ||G(z^*) - x^*||_2 + 3||\eta||_2 + 2\epsilon$$

Outline

- Motivation
- 2 Generative models
- 3 Theorical Results
- 4 Experiments

Approximately sparse

Sparse vs non Sparse

Sparse image

Non sparse image

Results

Measurement error or Reconstruction error

(b) Results on celebA

Source:

• Compressed Sensing using Generative Models [Ashish Bora, Ajil Jalal, Eric Price, Alexandros G. Dimakis]