1) A resistor has the following color bands: Yellow-Purple-Red-Gold. What is its resistance and
tolerance?
a) 4.7kΩ, 10%
b) 4.7kΩ, 5%
c) 47kΩ, 5%
d) 2.7kΩ, 5%

- 2) For the resistor in question #1, what is the range of possible values?
 - a) $4.23k\Omega 5.17k\Omega$
 - b) $4.465k\Omega 4.935k\Omega$
 - c) $44.65k\Omega 49.35k\Omega$
 - d) $2.565k\Omega 2.835k\Omega$
- 3) A $1k\Omega$ resistor has 3.3V across it. What is the current through the resistor?
 - a) 3300 A
 - b) 3.3 A
 - c) 303 A
 - d) 3.3 mA
- 4) A resistor has 1.5V across it, and 220mA through it. What is its resistance?
 - a) 0.33 Ω
 - b) 330 Ω
 - c) 0.147 Ω
 - d) 6.82 Ω
- 5) A 2A current source has 5V across it. How much power is it supplying?
 - a) 0.4 W
 - b) 2.5 W
 - c) 20 W
 - d) 10 W
- 6) A 2.7k Ω resistor dissipates 3W. What is the voltage across it?
 - a) 1.11 mV
 - b) 900 V
 - c) 30 V
 - d) 90 V

Figure 1

- 7) See figure 1. How much power is R₁ dissipating?
 - a) 0.5 W
 - b) 2 W
 - c) 25 mW
 - d) 5 W
- 8) See figure 1. How much power would R_1 dissipate if the polarity of E_1 was flipped?
 - a) 0 W
 - b) -2 W
 - c) 5 W
 - d) -5 W

Figure 2

- 9) See figure 2. What is I₁?
 - a) 500 mA
 - b) 400 mA
 - c) 250 mA
 - d) 100 mA
- 10) See figure 2. What is I₂?
 - a) 500 mA
 - b) 400 mA
 - c) 250 mA
 - d) 100 mA

Figure 3 same value.

11) See figure 3. What is the voltage across R₂ (polarity as shown)?

- a) 1 V
- b) 2 V
- c) 3 V
- d) 6 V

12) See figure 3. What is the voltage across R₄ (polarity as shown)?

- a) 1 V
- b) 2 V
- c) 3 V
- d) 6 V

Figure 4

- 13) See figure 4. What is the voltage across R₂ (Polarity as shown)?
- 14) See figure 4. What is the value of I_2 (Direction as shown)?
- 15) See figure 5. What is the value of I_S (Direction as shown)?

Figure 5

- 16) See figure 5. What are the values of I_1 , I_2 , and I_3 ?
- 17) See figure 5. How much total power is supplied by the two voltage sources?

Figure 6

- 18) See figure 6. What is the value of I_1 ?
- 19) See figure 6. What is the voltage across R₂ (polarity as shown)?
- 20) See figure 6. How much power is dissipated by R_4 ?

Figure 7

- 21) See figure 7. What is the voltage at V_c ?
- 22) See figure 7. What is the voltage across R_2 (polarity as shown)?
- 23) See figure 7. How much power is supplied by I_3 ?

Figure 8

- 24) See figure 8. What is the voltage at V_A ?
- 25) See figure 8. What is the voltage across R₁ (polarity as shown)?
- 26) See figure 8. How much power is supplied by I_1 ?

Figure 9

- 27) See Figure 9. For the Thevenin circuit external to points a and b, what is the Thevenin voltage?
- 28) What is the Thevenin resistance?
- 29) If this Thevenin circuit were converted to a current source, what would be the value of that current source?
- 30) What resistance would dissipate the maximum amount of power when connected to this network? What is the maximum power dissipated?

Figure 10

- 31) See Figure 10. What is the time constant when charging the capacitor?
- 32) See Figure 10. What is the time constant when discharging the capacitor?
- 33) See Figure 10. If the switch is closed at t = 0, at what time will the voltage across the capacitor equal 75V?

Figure 11

34) See Figure 11. The switch is closed at t = 0. Which equation describes the current through the inductor after this?

35) See figure 11. At t = 50ms, what is the voltage across the inductor?