

## Statistics Ex 7.3 Q11

## Answer:

Let the assumed mean be A = 20 and h = 8.

| Classinterval: | $Midvalue(x_i)$ : | frequency: $(f_i)$ | $d_i = x_i - A$ $= x_i - 20$ | $u_i = \frac{1}{h}(d_i)$ $= \frac{1}{h}(d_i)$ | $f_i u_i$           |
|----------------|-------------------|--------------------|------------------------------|-----------------------------------------------|---------------------|
| 0-8            | 4                 | 5                  | -16                          | -2                                            | -10                 |
| 8-16           | 12                | 6                  | -8                           | -1                                            | -6                  |
| 16-24          | 20                | 4                  | 0                            | 0                                             | 0                   |
| 24-32          | 28                | 3                  | 8                            | 1                                             | 3                   |
| 32-40          | 36                | 2                  | 16                           | 2                                             | 4                   |
|                |                   | $\sum f_i = 20$    |                              |                                               | $\sum f_i u_i = -9$ |

We know that mean,  $\overline{X} = A + h \left( \frac{1}{N} \sum f_i u_i \right)$ 

Now, we have  $N=\sum f_i=20,\;\sum f_iu_i=-9,\;h=8$  and A=20

Putting the values in the above formula, we get

$$\overline{X} = A + h \left(\frac{1}{N} \sum f_i u_i\right)$$

$$= 20 + 8 \left(\frac{1}{20} \times (-9)\right)$$

$$= 20 - \frac{72}{20}$$

$$= 20 - 3.6$$

$$= 16.4$$

Hence, the mean is 16.4.

## Answer:

Let the assumed mean be A = 60 and h = 20.

| Class interval: | $Midvalue(x_i)$ : | $\text{frequency}\left(f_i\right)$ | $d_i = x_i - A$ $= x_i - 60$ | $u_i = \frac{1}{h}(d_i)$ $= \frac{1}{20}(d_i)$ | $f_i u_i$           |
|-----------------|-------------------|------------------------------------|------------------------------|------------------------------------------------|---------------------|
| 10-30           | 20                | 5                                  | -40                          | -2                                             | -10                 |
| 30 - 50         | 40                | 8                                  | -20                          | -1                                             | -8                  |
| 50 - 70         | 60                | 12                                 | 0                            | 0                                              | 0                   |
| 70-90           | 80                | 20                                 | 20                           | 1                                              | 20                  |
| 90 -110         | 100               | 3                                  | 40                           | 2                                              | 6                   |
| 110-130         | 120               | 2                                  | 60                           | 3                                              | 6                   |
|                 |                   | $\sum f_i = 50$                    |                              |                                                | $\sum f_i u_i = 14$ |

We know that mean,  $\overline{X} = A + h \left( \frac{1}{N} \sum f_i u_i \right)$ 

Now, we have  $N = \sum f_i = 50$ ,  $\sum f_i u_i = 14$ , h = 20 and A = 60

Putting the values in the above formula, we have

$$\overline{X} = A + h \left(\frac{1}{N} \sum f_i u_i\right)$$

$$= 60 + 20 \left(\frac{1}{50} \times (14)\right)$$

$$= 60 + \frac{280}{50}$$

$$= 60 + 5.6$$

$$= 65.6$$

Hence, the mean is 65.6.

\*\*\*\*\*\*\*\*\* END \*\*\*\*\*\*\*