جمهورية مصر العربية وزارة التربية والتعليم امتحان تجريبي لشهادة الثانوية العامة لعام ٢٠١٦

الفيزياء الزمن: ثلاث ساعات

أجب عن أربعة أسئلة فقط مما يأتى:

السوال الأول:

(أ) أذكر تطبيقاً عملياً لكل مما يأتى:

١- الاسبكترومتر ٢- دائرة الرنين ٣- الوصلة الثنائية

٤- قلب الحديد المطاوع في المحول ٥- التجويف الرنيني في الليزر

(ب) أولاً: أشرح كيف يمكنك بطريقة عملية توضيح ظاهرة الحث المتبادل بأستخدم ملفين لولبيين ومصدر تيار مستمر وجلفانومتر – أرسم شكلاً تخطيطاً للدائرة الكهربية المستخدمة.

ثانياً: أذكر أحد العوامل التي يمكنك عن طريقها زيادة كل من الكميات الفيزيائية الأتية:

- ١- القوة الدافعة الكهربية العظمى المتولدة من دينامو التيار المتردد.
 - ٢- المقاومة الكهربية لبللورة الجرمانيوم النقى.
 - ٣- قدرة الأشعة السينية على النفاذ.
- (ج) وصل ملف حثه الذاتي H = 0.06 بمكثف سعته $\mu F = 5$ على التوالي ومولد تيار متردد تردده 400 Hz يعطى فرقاً في الجهد بين طرفيه 30V فإذا كانت مقاومة الدائرة $\Omega = 0$ أوجد:
 - أ المفاعلة الحثية للملف والمفاعلة السعوية للمكثف.

ب- معاوقة الدائرة ج- شدة التيار د- زاوية الطور بين التيار والجهد الكلى

السوال الثاني:

- (أ) ما المقصود بقولنا أن
- 1 1 الطول الموجى الحرج لمعدن Å 5000. 1 1 الطول الموجى الحرج لمعدن Å 1
- -7 القيمة الفعالة للتيار الكهربي المتردد = 5 أمبير. 3 -حساسية جلفانومتر = 20 درجة / ميكرو أمبير.

٥- المفاعله الحثية لملف حث 100 اوم

(ب) أولاً:

يبين الجدول المقابل بعض الأشعة الضوئية (وترددها وشدتها) المستخدمة في
دراسة الظاهرة الكهروضوئية عندما تسقط على سطح معدن دالة الشغل له
6.625 x 10^{-34} J.S = علما بأن ثابت بلانك ، $4.6375~{ m X}~10^{-19}~{ m J}$
١- أي من هذه الأشعة يحرر الإلكترونات من سطح المعدن، ولماذا؟
٢- أحسب القيمة العظم، لطاقة حركة الالكتر ونات المنبعثة.

الضوء	التردد (HZ)	الشدة
أصفر	5.5×10^{14}	متوسطة
أخضر	6×10^{14}	قوية
بنفسجى	7.5×10^{14}	ضعيفة

ثانياً: وصلت ثلاث مقاومات متماثلة معاً بعمود كهربي مهمل المقاومة الداخلية كما بالشكل.

١- وضح التغير الحادث في شدة التيار خلال العمود الكهربي عند

(R=o) استبدال (X) بسلك عديم المقاومة

٢- أوجد النسبة بين قراءة الأميتر قبل وبعد استبدال المقاومة (X).

(ج) أربع مقاومات قيمة كل منها Ω 12 Ω ، Ω 0، Ω 4 وصلت ببطارية قوتها

الدافعة الكهربية ∇ و مقاومتها الداخلية Ω 2 ، وجد أن شده التيار المار بالمقاومة Ω 4 ضعف قيمة التيار المار بالمقاومة Ω 2 .

- ١) وضح بالرسم طريقة توصيل هذه المقاومات.
 - ٢) احسب شدة التيار المار في البطارية.

السؤال الثالث:

(أ) إختر الإجابة الصحيحة:

- ۱- محول كهربي يتصل ملفه الابتدائي بجهد مستمر 110 فولت وعدد لفاته 100 لفة، وعدد لفات الملف الثانوي 10 لفات لذلك تكون e.m.f في الملف الثانوي (e.m.f 110 , 100V, 1100V, 0).
 - ٢- في ظاهرة كومتون ، يحدث لفوتون أشعة جاما زيادة في ... (كتلته سرعته طوله الموجي).
 - ٣- قدرة أشعة الليزر للوصول إلى مسافات بعيدة تشير إلى كبر ... (شدته تردده طوله الموجى).
- ٤- النسبة بين طول الفيروس الذي يتم تكبيره بالميكروسكوب الالكتروني والطول الموجى المصاحب للشعاع الالكتروني المستخدم
 ... (أكبر من واحد أقل من واحد يساوى واحد)
 - $\left(R, \frac{R}{5}, \frac{R}{4}\right)$ مقاومة ملفه R ، فتكون قيمة مجزىء التيار التي تقلل حساسيته إلى الخمس -0

يمثل الشكل المقابل بعض الإنتقالات للإلكترون في ذرة الهيدروجين أي انتقال منها: ١- يعطى أقصر طول موجى.

٢- يقع في سلسلة باشن.

٣- يعطى إشعاع في منطقة الضوء المنظور.

ثانياً: أكمل جدول التحقق:

- ج) ملف دینامو تیار متردد مکون من 500 لفة مساحة مقطع کل منها $100~{
 m cm}^2$ یدور بمعدل $1500~{
 m cm}^2$ دورة/ دقیقة فی فیض مغناطیسی منتظم کثافته $4.2X10^{-3}T$ أعتبر $\Pi = \frac{22}{7}$
 - ١- أوجد القوة الدافعة العظمى المتولدة في الملف.
 - ٢- القوة الدافعة المتولدة عندما يميل مستوى الملف بزاوية 60° مع اتجاه المجال.
 - ٣- القوة الدافعة المتولدة في الملف بعد مرور زمن 0.02 ثانية من الوضع العمودي على المجال.

السؤال الرابع:

(أ) أذكر أحد النتائج المترتبة على:

- ١- توصيل ملف حث مع مكثف بحيث تكون المفاعلة السعوية مساوية للمفاعلة الحثية في دائرة يتصل بها مصدر تيار متردد.
 - ٢- تسخين بلورة من السليكون بالنسبة لتركيز حاملات الشحنة.
 - ٣- انتقال الذرة المثارة من مستوى الإثارة إلى مستوى آخر اقل منه في الطاقة
 - ٤- وضع ساق من الألومونيوم بداخل ملف حث يمر به تيار متردد.
 - ٥- استخدام الموليبدنيوم (عدده الذرى 42) كهدف في مصعد أنبوبة كولدج بدلاً من التتجستن (عدده الذرى 74)
 - (ب) أولاً:
 - الحث الذاتى $\frac{L}{C}$ سعة المكثف. $\frac{L}{C}$ الحث الذاتى $\frac{L}{C}$ سعة المكثف.
 - سعة المكثف : C المقاومة : R الحث الذاتى ، R حث L:الحث المكثف : R هى وحدات R هى وحدات R
 - ٣- ما الكميات الفيزيائية التي تقاس بها الوحدات الآتية:

ثانيا:

 $V_{cc}=1.5V$ عندما تكون قيمه I_{C} ارسم دائرة الترانزستور كمفتاح في حالة التشغيل (on) ثم احسب قيمه تيار المجمع $R_{c}=500\Omega$ وفرق الجهد بين المجمع والباعث $V_{CE}=0.5~V_{CE}$

- 4A وعدد لفاته 400 لفة يمر فيه تيار كهربى شدته $10 cm^2$ وعدد $\mu = 4\pi \times 10^{-7} \text{ wb/Am}$
 - ١- كثافة الفيض المغناطيسي عند نقطة على محور الملف داخله.
 - ٢- معامل الحث الذاتي للملف.
 - ٣- القوة الدافعة المتوسطة الناتجة في الملف عندما ينعكس اتجاه التيار في فترة زمنية 0.1. ثانية.

السؤال الخامس:

(أ) قارن كل زوج مما يأتى:

- ١- تأثير زيادة تردد الضوء وزيادة شدة الضوء (من حيث عدد الالكترونات المنبعثة بالتأثير الكهروضوئي).
- ٢- المحرك الكهربي والجلفانومتر ذو الملف المتحرك (من حيث اتجاه التيار في الملف عند توصيله ببطارية).
 - ٣- الموتور والدينامو (من حيث دور نصفى الاسطوانة المعزولين).
 - ٤- شعاع الليزر والضوء العادي (من حيث النقاء الطيفي).
 - ٥- الأميتر الحراري والأميتر ذو الملف المتحرك (من حيث الفكرة التي بني عليها عمل كل منهما).

(ب) أولاً: في الدائرة الموضحة بالشكل بأستخدام قانونا كيرشوف أحسب كلاً من:

 $(V_{B2}, V_{B1}) - 1$

ب- فرق الجهد بين (e , b)

ثانياً: أكتب المصطلح العلمي لكل من:

- ۱- مقدار مساو عدديا للقوة الدافعة المتولدة في سلك مستقيم طوله متر يتحرك عمودي في مجال مغناطيسي منتظم بسرعة .1m/s
 - ٢- طيف انبعاث نتيجة انتقال الالكترونات في الذرة المثارة بعد انتهاء فترة العمر.
 - ٣-الحالة التي يكون فيها عدد الذرات في مستويات الإثارة العليا أكبر من عددها في المستويات الأدني.
- ج)—وصل ملف حث مقاومته الأومية 4 أوم فى دائرة كهربية مع مصدر تيار متردد يمكن تغير تردده (F) هرتز وبمعلومية فرق الجهد وشدة التيار المار فى الدائرة أمكن حساب المفاعلة الحثية X_L أوم للملف المقابلة لكل تردد (F) وسجلت النتائج الأتية:

F(H ₂)	7	14	21	28	35	42	y
$X_L\Omega$	4.4	8.8	13.2	17.6	S	16.4	30.8

أرسم علاقة بين التردد (F) بالهرتز على المحور الأفقى والمفاعلة الحثية X_L بالأوم على المحور الرأسى ومستعيناً بالرسم أوجد:

۲- الحث الذاتي للملف L

۱ - قبمة كل من S&Y

 $^{-}$ سعة المكثف الذى إذا وصل فى الدائرة الكهربية مع هذا الملف يجعلها فى حالة رنين عندما تكون المفاعة الحثية للملف 30.8Ω