

Sistema online de disección de protocolos en trazas de paquetes

Indice

- Introducción
- Prototipo
 - Python
 - MySQL
 - Grafana
- Tiempos de ejecución
 - Tiempos de procesado
 - Tiempos de visualización
- Conclusiones y mejoras

Introducción

- El aumento del número de dispositivos con acceso a Internet y sus reducidos costes, el incremento del ancho de banda de las redes y la gran cantidad de contenido disponible ha provocado que el volumen de información transmitida sea mayor.
- El análisis de las capturas de tráfico se complica.
- Se ha elaborado un complemento a una herramienta previa [1] para obtener información global de la captura.

[1]: Arellano Lahuerta, L. (2017). Prototipo analizador de tramas online. Trabajo Fin de Grado. Pamplona: Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación.

Prototipo

- Consiste en un lector de capturas de tráfico de red.
- Procesa y almacena los paquetes.
- Permite visualizar la traza.

Capa 2			Capa 3		Capa 4		Otro
MAC or	gen MAC destino	Ethertype	IP origen	IP destino	Puerto origen	Puerto destino	Timestamp

27 octubre 2020 Fermín Lassa Iglesias 4

Prototipo

Prototipo

- Python: Lenguaje de programación de alto nivel. Permite realizar prototipos y pruebas de concepto debido a su sencillez y la gran cantidad de librerías existentes.
- MySQL: Gestor de bases de datos relacionales de gran popularidad.
 Permite crear distintas bases de datos, tablas y usuarios.
- Grafana: Aplicación web de código abierto que permite visualizar de manera interactiva métricas almacenadas en distintas fuentes de datos. Permite monitorizar sistemas en tiempo real.

Prototipo: Python

Prototipo: MySQL

Field	Type	Null	Key	Default	Extra
packetID	int(11)	NO	PRI	NULL	auto_increment
srcMAC	varchar(17)	NO		NULL	
dstMAC	varchar(17)	NO		NULL	
etherType	varchar(6)	NO		NULL	
srcIP	varchar(15)	NO		NULL	
dstIP	varchar(15)	NO		NULL	
protocol	tinyint(1) unsigned	YES		NULL	
srcPort	smallint(2) unsigned	YES		NULL	
dstPort	smaillint(2) unsigned	YES		NULL	
timestamp	timestamp	NO		CURRENT_TIMESTAMP	

27 octubre 2020 Fermín Lassa Iglesias 12

Prototipo: MySQL

27 octubre 2020 Fermín Lassa Iglesias 13

Prototipo: Grafana

Prototipo: Grafana

Tiempos de ejecución

- Se quiere analizar la capacidad de procesado y el tiempo necesario para visualizar las trazas.
- Se ha utilizado tres trazas para simular los comportamientos más habituales [2].
 - Navegación web (39Mb): 59.635 paquetes
 - Vídeo a 1080p (120Mb): 136.797 paquetes
 - Descarga de ficheros (1Gb): 1.061.088 paquetes

[2]: Labayen, Víctor & Magaña, Eduardo & Morató, Daniel & Izal, Mikel. (2020). Online classification of user activities using machine learning on network traffic.

Computer Networks. 181. 107557.10.1016/j.comnet.2020.107557.

Tiempos de procesado

• Procesar bloques de paquetes antes de almacenarlos.

	1 paquete	10 paquetes	100 paquetes	1.000 paquetes	10.000 paquetes	20.000 paquetes	50.000 paquetes	100.000 paquetes
$39 \mathrm{Mb}$	150.07s	27.68s	11.08s	8.35s	7.40s	9.02s	7.63s	6.78s
$120 \mathrm{Mb}$	443.89s	114.98s	39.17s	19.52s	19.21s	20.00s	19.20s	18.05s
$1 \mathrm{Gb}$	3599.27s	865.21s	323.95s	165.18s	137.14s	140.2s	124.38s	118.88s

- Bloques de 100.000 paquetes para lectura de capturas.
- Bloques de 10.000 paquetes para captura en tiempo real.

Tiempos de visualización

	Paquetes por protocolo	Nº de IPs y MACs	Últimos 50 paquetes	Paquetes por segundo
Peticiones (39Mb)	186ms	394ms	$300 \mathrm{ms}$	$298 \mathrm{ms}$
Procesado (39Mb)	$2 \mathrm{ms}$	$< 1 \mathrm{ms}$	$1 \mathrm{ms}$	$<1 \mathrm{ms}$
Peticiones (120Mb)	318ms	$493 \mathrm{ms}$	$531 \mathrm{ms}$	$468 \mathrm{ms}$
Procesado (120Mb)	$3 \mathrm{ms}$	$< 1 \mathrm{ms}$	1ms	$<1 \mathrm{ms}$
Peticiones (1Gb)	1.02s	2.44s	2.43s	$2.46 \mathrm{ms}$
Procesado (1Gb)	$2 \mathrm{ms}$	$< 1 \mathrm{ms}$	<1 ms	$<1 \mathrm{ms}$

	Direcciones IP origen	Direcciones IP destino	Puertos origen	Puertos destino
Peticiones (39Mb)	$398 \mathrm{ms}$	$327 \mathrm{ms}$	244ms	$297 \mathrm{ms}$
Procesado (39Mb)	$1 \mathrm{ms}$	<1 ms	$1 \mathrm{ms}$	$<1 \mathrm{ms}$
Peticiones (120Mb)	$646 \mathrm{ms}$	$645 \mathrm{ms}$	$420 \mathrm{ms}$	$411 \mathrm{ms}$
Procesado (120Mb)	$<1 \mathrm{ms}$	$<1 \mathrm{ms}$	<1 ms	<1 ms
Peticiones (1Gb)	2.83s	2.84s	1.46s	1.56s
Procesado (1Gb)	$<1 \mathrm{ms}$	<1ms	<1 ms	<1 ms

Conclusiones y mejoras

- Complemento sencillo pero potente y fácil de usar.
- Permite visualizar trazas en un tiempo aceptable.
- Traducir el código a C e integrar con la herramienta previa.
- Securizar y testear el código.
- Añadir nuevos protocolos y paneles a Grafana.
- Evaluar el uso de bases de datos no relacionales para optimizar los tiempos de visualización.

