Sprawozdanie - tablice asocjacyjne, haszujce i drzewa binarne

200439

24 kwietnia 2014

Często zachodzi potrzeba szybkiego dostępu do danych przechowywanych w tablicy. Przeszukiwanie jej za każdym razem od początku do końca jest nieefektywne. Dlatego są używane struktury takie jak tablice haszujące oraz drzewa binarne.

Jako punkt odniesienia zbadany został czas zapisu i odczytu danych do tablicy asocjacyjnej zaimplementowanej na strukturze vector.

Wykres 1. Czas zapisu danych do tablicy asocjacyjnej zaimplementowanej na strukturze vector

Wykres 2. Czas odczytu elementu tablicy asocjacyjnej zaimplementowanej na strukturze vector

O wiele mniejsze czasy odnajdowania elementu uzyskuje się dla struktur takich jak tablica haszująca czy drzewo przeszukiwań binarnych.

Wykres 3. Czas zapisu danych do tablicy asocjacyjnej zaimplementowanej jako tablica mieszająca

Wykres 4. Czas odczytu danych tablicy asocjacyjnej zaimplementowanej jako tablica mieszająca

Wykres 5. Czas zapisu danych do drzewa binarnego

Wykres 6. Czas odczytu danych z drzewa binarnego

Poniżej przedstawione zostało zestawienie czasów odczytów i zapisów elementów:

Wykres 7. Czasy zapisu danych

Wykres 8. Czasy odczytu danych

	Tablica asocjacyjna		Tablica haszująca		Drzewo binarne	
	zapis	odczyt	zapis	odczyt	zapis	odczyt
10	50	13	24	10	5	2
50	87	14	85	14	50	3
100	151	28	169	11	179	4
200	391	27	430	12	782	5
500	1109	58	1345	15	4491	10
1000	1829	100	2962	19	17576	17
2500	8436	286	14214	15	63525	21
5000	28327	843	31612	30	238260	42
8000	78179	2057	58730	34	604088	67
10000	89807	1321	88644	39	956542	83
15000	255021	1967	203341	60	1534100	123
20000	310502	3169	468849	71	2620990	164
25000	410401	3475	513042	95	3051230	209
30000		4628		153		285

Tabela 1. Dane do wykresow, czasy podane w mikrosekundach

Z przeprowadzonych badań wynika, że najszybszy sposób dostępu do danych umożliwia tablica haszująca. Tablica asocjacyjna zbudowana na wektorze jest zdecydowanie najgorszym rozwiązaniem jeśli ważny jest dla nas czas odczytu daych z tablicy. Jeśli zaś ważnym czynnikiem jest czas zapisu do tablicy, najdłuższy czas wykonywane jest dodawanie elementów do drzewa binarnego.

Z powodu ograniczeń sprzętowych (praca na maszynie wirtualnej) symulacje przeprowadzono dla maksymalnie kilkudziesięciu tysięcy elementów, jednak nawet przy takiej ilości danych widać wyraźne różnice w czasach wykonania algorytmów.