МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Лекция 9

Повтор

8.5. Проверка независимости бинарных признаков (таблица 2×2)

Пусть имеется *п* объектов, выбранных случайно из большой совокупности. Каждый объект характеризуется двумя признаками, которые могут или присутствовать, или отсутствовать в каждом из объектов. Возникает вопрос, имеется ли связь между этими признаками. Например, влияет ли форма собственности на рентабельность производства (А— частная собственность, А— общественная собственность, В — рентабельно, В — нерентабельно), влияет ли курение на легочные заболевания и т.д.?

Проверяется гипотеза H о независимости признаков A и B. Если обозначить $p_{\rm A} = {\rm P}\{{\rm A}\}$, $p_{\rm B} = {\rm P}\{{\rm B}\}$, то гипотеза о независимости сводится к следующему: $P\{AB\} = p_A p_B,$ (9)

т. е. вероятность встретить сочетание признаков A и B равна произведению вероятностей встретить А и встретить В. В результате анализа на присутствие признаков могут появиться события

$$AB$$
, $A\overline{B}$, $\overline{A}B$, $\overline{A}\overline{B}$.

Пусть эти комбинации появились соответственно:

$$v_1$$
, v_2 , v_3 , v_4

число раз.

Гипотеза о независимости А и В сводится к гипотезе о том, что вероятности этих событий

$$p_1^0 = p_A p_B$$
, $p_2^0 = p_A (1 - p_B)$, $p_3^0 = (1 - p_A) p_B$, $p_4^0 = (1 - p_A) (1 - p_B)$ соответственно. Вероятности p_A и p_B — два неизвестных параметра.

Образуем случайную величину X^2 , зависящую от неизвестных параметров:

$$X^{2}(v_{1}, v_{2}, v_{3}, v_{4}, p_{A}, p_{B}) = \sum_{i=1}^{4} \frac{(v_{i} - np_{i}^{0}(p_{A}, p_{B}))^{2}}{np_{i}^{0}(p_{A}, p_{B})}$$

Решив задачу на минимум X^2 по $p_{\scriptscriptstyle A}$ и $p_{\scriptscriptstyle B}$, найдем оценки, которые получатся такими, как мы ожидаем:

$$\hat{p}_A = \frac{v_1 + v_2}{n}, \ \hat{p}_B = \frac{v_1 + v_3}{n}$$

Подставив $\hat{p}_{\scriptscriptstyle A}$ и $\hat{p}_{\scriptscriptstyle B}$ в X^2 получим:

$$|\tilde{X}^2 = X^2(v_1, v_2, v_3, v_4, \hat{p}_A, \hat{p}_B)|$$

 $ilde{X}^2 = X^2(extbf{v}_1, extbf{v}_2, extbf{v}_3, extbf{v}_4, \hat{p}_A, \hat{p}_B)$. При истинности H статистика $ilde{X}^2$ асимптотически распределена по $\chi^2_{4-2-1} = \chi^2_1$ — хи-квадрат с одной (4-1-2=1) степенью свободы . Пусть

Примечание [МА1]: Поправить в скобках v_1 , v_2 , v_3 , v_4

задано α . Из условия $\alpha=P\{\tilde{X_1}^2>h\}\approx P\{\chi_1^2>h\}$ находим порог h. Итак, если $\tilde{X}^2\geq h$, то гипотезу H отклоняем.

Приведем окончательные рабочие формулы. Для этого представим данные в следующей таблице 2×2:

	A	\overline{A}	
B	v_{11}	v_{12}	$\nu_{1\bullet} = \nu_{11} + \nu_{12}$
\overline{B}	ν_{21}	ν_{22}	$v_{2\bullet} = v_{21} + v_{22}$
	$\mathbf{v}_{\bullet 1} = \mathbf{v}_{11} + \mathbf{v}_{21}$	$\mathbf{v}_{\bullet 2} = \mathbf{v}_{12} + \mathbf{v}_{22}$	n

Если провести необходимые выкладки, получим следующую формулу:

$$\tilde{X}^{2} \equiv n \frac{\left(v_{11}v_{22} - v_{12}v_{21}\right)^{2}}{v_{11}v_{22}v_{11}v_{22}}, \qquad (10)$$

где в круглых скобках в числителе стоит квадрат определителя матрицы, а в знаменателе — произведение частных сумм (точка в обозначениях — суммирование по соответствующему индексу). Конец повтора

8.6. Обобщение. Проверка гипотезы о независимости признаков (таблица сопряженности признаков)

Предположим, имеется большая совокупность объектов, каждый из которых обладает двумя признаками A и B. Признак A имеет m уровней: A_1 , A_2 ... A_m , а признак B — k уровней: B_1 , B_2 ... B_k . Пусть уровень A_i встречается с вероятностью $P(A_i)$, а уровень B_j — с вероятностью $P(B_j)$. Независимость признаков A и B означает, что

$$P(A_i B_j) = P(A_i) \cdot P(B_j), i = 1, 2...m, j = 1, 2...k,$$

т.е. вероятность встретить комбинацию A_iB_j равна произведению вероятностей. Пусть признаки определены на n объектах, случайно извлеченных из совокупности; v_{ij} — число объектов, имеющих комбина-

цию
$$A_iB_j$$
, $\sum_{i=1}^{m}\sum_{j=1}^{k}v_{ij}=n$.

	B ₁		B_{j}		B_k	Σ
A ₁	ν_{11}	•••	v_{1j}	•••	v_{1k}	$V_{1\bullet}$
:	:				:	:
A_i	V_{i1}	•••	V_{ij}	•••	V_{ik}	$V_{i\bullet}$
:					;	:
A_{mi}	V_{m1}	•••	V_{mj}	•••	V_{mk}	$V_{m\bullet}$
Σ	$V_{ullet 1}$	•••	$V_{ullet j}$	•••	$V_{ullet k}$	n

По совокупности наблюдений $\{v_{ij}\}$ (таблица $m \times k$) требуется проверить гипотезу H о независимости признаков A и B. Независимость означает, что вероятность встретить сочетание A_i и B_i равна произведению:

$$P(A_i B_i) = P(A_i) P(B_i).$$

Задача сводится к случаю с неизвестными параметрами, которыми являются вероятности

$$P(A_i)$$
, $i = 1, 2...m$ u $P(B_j)$, $j = 1, 2...k$,

всего (m-1) + (k-1). В выражение для статистики Пирсона входят неизвестные вероятности :

$$X^{2} = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{v_{ij}^{2}}{nP(A_{i})P(B_{j})} - n$$
 (8)

Оценки этих вероятностей по минимуму X^2 приводят к вполне понятным значениям:

$$\widehat{P}(A_i) = \frac{1}{n} \sum_{i=1}^k \mathbf{v}_{ij} \equiv \frac{\mathbf{v}_{i\bullet}}{n}, \qquad \widehat{P}(B_j) = \frac{1}{n} \sum_{i=1}^m \mathbf{v}_{ij} \equiv \frac{\mathbf{v}_{\bullet j}}{n}$$

(точка в обозначениях — суммирование по соответствующему индексу) и статистика (8) принимает вид:

$$\widetilde{X}^{2} = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{v_{ij}^{2}}{n\widehat{P}(A_{i})\widehat{P}(B_{j})} - n = n \left(\sum_{i=1}^{m} \sum_{j=1}^{k} \frac{v_{ij}^{2}}{v_{i \bullet} v_{\bullet j}} - 1 \right).$$
 (11)

Если гипотеза H верна, то по теореме Фишера статистика \widetilde{X}^2 асимптотически распределена по закону хи-квадрат с числом степеней свободы

$$f = mk - 1 - (m - 1) - (k - 1) = (m - 1)(k - 1),$$

Мы можем определить вероятность получить наше значение \tilde{X}^2 (-меры различия), которое мы получили, если H верна:

$$P\{\text{получить} \ge \tilde{X}^2 | H \} \approx P\{\chi_f^2 \ge \tilde{X}^2 \} \le \alpha;$$
 (12)

если она мала, то гипотезу о независимости признаков следует отклонить.

Ясно, что по (11), (12) можно проверять независимость двух случайных величин, разбив диапазоны их значений на *m* и *k* частей.

8.7. Проверка гипотезы об однородности выборок

Пусть имеется k выборок объемами n_i , i = 1, 2...m, извлеченных из различных совокупностей (например, имеем наблюдения доходов Z служащих в городе A и в городе B; можно ли считать, что распределения доходов одинаковы?).

Измеряемая величина в каждой из выборок может иметь k уровней B_i , j=1,2...k. Пусть p_{ij} — истинная (неизвестная) вероятность получить \mathbf{Z}_j в i-й совокупности. Требуется проверить гипотезу H о том, что исходные совокупности распределены одинаково, т.е.

$$p_{ij} = q_i$$
.

Обозначим v_{ij} — число наблюдений в i-й выборке, имеющих уровень $\frac{Z}{i}$, причем $\sum_{j} v_{ij} \equiv v_{i \bullet} = n_i$, $\sum_{i} n_i = n$. Имеем таблицу наблюдений размером $m \times k$, аналогично предыдущему разделу 8.5.

	B_1		B_{j}		B_k	Σ
1-я совокуп- ность	ν_{11}	•••	V_{1j}	•••	V_{1k}	$v_{1\bullet} = n_1$
:	:					:
і-я совокупность	V_{i1}	•••	V_{ij}	•••	V_{ik}	$v_{i\bullet} = n_i$
:	:				:	:
<u>т-я совокуп-</u> ность	V_{m1}	•••	V_{mj}	•••	V_{mk}	$v_{m\bullet} = n_m$
Σ	$V_{\bullet 1}$	•••	$V_{ullet j}$	•••	$V_{ullet k}$	n

Если H верна, то имеем неизвестные параметры $q_1, q_2...q_k$. Если бы они были известны, можно было бы определить теоретические частоты и составить статистику

$$X^{2}(q_{1},...,q_{m}) = \sum_{i=1}^{m} \left(\sum_{j=1}^{k} \frac{(v_{ij} - n_{i}q_{j})^{2}}{n_{i}q_{j}} \right) = \sum_{i=1}^{m} \left(\sum_{j=1}^{k} \frac{v_{ij}^{2}}{n_{i}q_{j}} - n_{i} \right),$$
 (13)

причем $\sum\limits_{j=1}^{k} \frac{(\, \mathbf{v}_{ij} - \mathbf{n}_i \mathbf{q}_{\,j} \,)^2}{\, \mathbf{n}_i \mathbf{q}_{\,i} \,}$ при истинности H приближено подчинялась бы

распределению хи-квадрат с (k-1) степенями свободы, а вся сумма в (13) — распределению хи-квадрат с m (k-1) степенями свободы в силу независимости выборок.

Но вероятности $q_1, q_2...q_m$ неизвестны. Определяем оценки для них, полагая, что Н верна:

$$\hat{q}_{j} = \frac{1}{n} \sum_{i,j}^{m} v_{ij}$$

и после подстановки оценок количество степеней свободы уменьшится на число(k-1) оцененных параметров и станет равным

$$f = m(k-1) - (k-1) = (k-1)(m-1).$$

Статистика \tilde{X}^2 и вся процедура проверки гипотезы примет вид, аналогичный (11), (12) при проверке гипотезы о независимости. Решающая

статистика:
$$\widetilde{X}^2 = n \left(\sum_{i=1}^k \sum_{j=1}^m \frac{\mathbf{v}_{ij}^2}{\mathbf{v}_{i\bullet} \mathbf{v}_{\bullet j}} - 1 \right).$$

Если $P\{\chi_f^2 \geq \tilde{X}^2\} \leq \alpha$, то гипотезу об однородности следует отклонить.

§ 9. Критерий согласия Колмогорова

Проверяется гипотеза H о том, что последовательность независимых наблюдений ξ_1 , $\xi_2...\xi_n$ извлечена из совокупности с непрерывной функцией распределения F(x).

Эту задачу мы уже решали с помощью критерия хи-квадрат Там была одна мера различия между гипотезой и наблюдениями, здесь – другая. Там был общий метод (для произвольных гипотез) построения решающей статистики, здесь – частный метод (и более простой) для проверки Н о заданной непрерывной ф.р.

Построим вариационный ряд $\xi_{(1)} \le \xi_{(2)} \le ... \le \xi_{(n)}$ и функцию эмпирического распределения $F_n^*(x)$. Мерой различия (можно говорить качества согласования) эмпирического и гипотетического распределения примем максимальное отклонение функции эмпирического распределения $F_n^*(x)$ от гипотетического F(x), то есть верхняя грань модуля разности

$$D_n = \sup_{x} \left| F_n^*(x) - F(x) \right|.$$

Замечателен тот факт, что распределение статистики D_n при истинности H не зависит от F(x) [4, таблицы Бльшева и Смирнова], и потому критическое значение определяется.

Процедура проверки гипотезы Н:

- вычисляется D_n ;
- выбирается порог λ_1 (о выборе порога, см. ниже);
- если $D_n \ge \lambda_1$, то H отклоняется.

Критическое значение λ_1 выбирается так, чтобы обеспечить заданную вероятность ошибки при истинности H:

$$P\{\text{отклонить } H \mid H\} = P\{D_{\scriptscriptstyle n} \geq \lambda_{\scriptscriptstyle 1} \mid H\} = \alpha$$
 .

 α - задаваемый уровень значимости. В таблицах [4] имеются значения $\lambda_1(n,\alpha)$ для значений $\alpha=1,\,2,\,5,\,10,\,20$ %, n=1(1)100. Там же имеются асимптотические формулы.

Оказывается, что для любой непрерывной $F(\cdot)$ при $n \to \infty$ для распределения статистики $D_{\scriptscriptstyle n}$ при истинности гипотезы H справедливо соотношение:

$$P\{D_n\sqrt{n} \ge \lambda \mid H\} \xrightarrow[n \to \infty]{} P(\lambda) \equiv 1 - K(\lambda),$$

где $K(\lambda) = \sum_{k=-\infty}^{\infty} (-1)^k \, e^{-2k^2\lambda^2}$ — функция распределения Колмогорова.

Этот факт при $n \ge 20$ позволяет простым способом приближенно обеспечить заданную вероятность ошибки первого рода (уровень значимости)

$$\alpha = P\{D_n \sqrt{n} \ge \lambda | H\} \approx P(\lambda)$$
.

🖬 Рис. 12. График функции *Р*(λ)

График функции $P(\lambda)$ условно показан

на рис. 12. Итак, λ выбирается по таблицам как функция α : $\lambda(\alpha)$, т.е.

$$P\{D_n\sqrt{n} \ge \lambda(\alpha)|H\} \approx \alpha \Rightarrow \lambda_1 \approx \frac{\lambda(\alpha)}{\sqrt{n}}$$
,

и если $D_{\scriptscriptstyle n} \geq \lambda_{\scriptscriptstyle 1} = \frac{\lambda(\alpha)}{\sqrt{n}}$, то H отклоняется.

На рис.12 показаны две характерные точки функции P(λ):

при
$$\alpha$$
 = 0,02 $\lambda(\alpha) \approx 1,5$,

при
$$\alpha = 10^{-3}$$
 $\lambda(\alpha) \approx 2.0$.

Для $\lambda > 2,5$ хорошим приближением является $P(\lambda) \approx 2e^{-2\lambda^2}$, причем с ростом n точность улучшается.

§ 10. Различение двух простых гипотез 10.1. Фиксированный объем наблюдений

Пусть имеется совокупность наблюдений $x = (x_1, x_2...x_n)$, являющихся реализацией случайных величин $\xi \equiv (\xi_1, \xi_2...\xi_n)$, относительно которой имеется два предположения (гипотезы):

- 1. H_0 : ξ распределена по закону $p_0(x)$;
- 2. H_1 : ξ распределена по закону $p_1(x)$.

(если ξ — непрерывна, то $p_0(x)$, $p_1(x)$ — плотности, если дискретна — вероятности). По наблюдениям x требуется принять одно из двух решений:

или «верна H_0 » (это решение обозначим 0), или «верна H_1 » (решение 1).

Ясно, что дело сводится к определению решающей функции $\delta(x)$, имеющей два значения 0 и 1, т.е. к определению разбиения $\Gamma = (\Gamma_0, \Gamma_1)$ пространства X всех возможных значений x:

$$\delta(\mathbf{x}) = \begin{cases} 0, \text{ если } \mathbf{x} \in \Gamma_0, \\ 1, \text{ если } \mathbf{x} \in \Gamma_1. \end{cases}$$

При использовании любой решающей функции $\delta(x)$ возможны ошибки двух типов:

- 1) ошибка первого рода принятие H_1 при истинности H_0 ;
- 2) ошибка второго рода принятие H_0 при истинности H_1 . Для любой решающей функции имеем две условные вероятности:

$$\alpha = P(\text{принять } H_1 \mid H_0) = \int_{\Gamma_1} p_0(x) dx,$$
 (1)
 $\beta = P(\text{принять } H_0 \mid H_1) = \int_{\Gamma_0} p_1(x) dx,$

которые называются вероятностями ошибок первого и второго рода

соответственно (рис. 13). Хотелось бы иметь α и β близкими к нулю, но из (1) ясно, что если одна из них уменьшается, например, α (за счет уменьшения Γ_1), то другая, β , увеличивается (за счет увеличения Γ_0 ; $\Gamma_0 \cup \Gamma_1 = X$, $\Gamma_0 \setminus \Gamma_1 = \emptyset$. Существуют различные подходы к

определению оптимального правила. Рис. 13. Вероятности ошибок α и β

Байесовский подход

Будем считать, что многократно сталкиваемся с проблемой выбора между H_0 и H_1 . В этом случае можно говорить о частоте, с которой истинна H_0 (или H_1), т.е. о том, что истинность H_0 (или H_1) — событие случайное, причем вероятность события, когда верна H_0 , а когда верна H_1 , известны:

$$P(H_0) = q_0, P(H_1) = q_1, q_0 + q_1 = 1.$$

Кроме того, будем считать, что

при каждой ошибке первого рода несем потери W_0 (вероятность этого события $P(H_0)$ $P(принять <math>H_1 \mid H_0)$),

а при ошибке второго рода — потери W_1 (с вероятностью $P(H_1)$ $P(принять <math>H_0 \mid H_1)$).

Если пользуемся правилом δ (с разбиением Γ), то средний штраф от однократного использования:

$$R(\Gamma) = q_0 \cdot \alpha(\Gamma) \cdot W_0 + q_1 \cdot \beta(\Gamma) \cdot W_1. \tag{1a}$$

Назовем правило δ (соответственно, разбиение $\Gamma \equiv (\Gamma_0, \, \Gamma_1)$) в байесовском смысле оптимальным, если

$$R(\Gamma) = \min_{\Gamma'} R(\Gamma')$$
.

Оказывается справедливой следующая теорема.

Теорема. Оптимальным является правило, для которого область Γ_1 принятия гипотезы H_1 определяется соотношением:

$$\Gamma_1 = \left\{ x : \frac{p_1(x)}{p_0(x)} \ge h \equiv \frac{q_0 W_0}{q_1 W_1} \right\}.$$
(2)

Действительно, пусть T = (T_0, T_1) — произвольное разбиение; для него средние потери

$$R(T) = q_0 \cdot \alpha(T) \cdot W_0 + q_1 \cdot \beta(T) \cdot W_1 = q_0 W_0 \int_{T_1} p_0(x) dx + q_1 W_1 \int_{T_0} p_1(x) dx - q_1 W_1 \int_{T_1} p_1(x) dx + q_1 W_1 \int_{T_1} p_1(x) dx.$$

Здесь во второй строке добавлено и вычтено одно и то же слагаемое. После объединения интегралов получаем

$$R(T) = q_0 W_0 \int_{T_1} [q_0 W_0 p_0(x) - q_1 W_1 p_1(x)] dx + q_1 W_1.$$

Очевидно, для того чтобы получить минимальное значение средних потерь, в область интегрирования T_1 нужно включить те точки, в которых подынтегральная функция в квадратных скобках отрицательна, т.е.

$$q_0W_0p_0(x) - q_1W_1p_1(x) < 0$$
,

что дает в эквивалентной записи оптимальную область Γ_1 в (2).

Замечание. В частном случае, если $\hat{W}_0 = W_1 = 1$, то $\hat{R}(\hat{\Gamma})$ в (1а) имеет смысл безусловной вероятности ошибки, а соответствующее оптимальное правило называется правилом "идеального наблюдателя" или правилом Зигерта- Котельникова.