Departamento de Matemática - IMECC - Unicamp MA211- Segundo Semestre de 2019 Prova 1 - 19/09/2019 (5^a - Tarde)

Turma	
	Turma

Questões	Notas
Q1	
Q2	
Q3	
Q4	
Q5	
Total	

- Desligue o celular.
- \bullet A prova contém cinco questões. Resolva cada questão em sua respectiva folha.
- Não retire o grampo da prova nem destaque páginas da prova.
- Não é permitido o uso de calculadoras.
- Respostas sem justificativas não serão consideradas.

Justifique suas respostas!

Questão 1. (2.0 pontos) Considere a função de duas variáveis definida por

$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

- (a) f é contínua em (0,0)? Justifique.
- (b) Calcule $f_x(0,0) \in f_y(0,0)$.

Questão 2. (2.0 pontos) Considere a função

$$f(x,y) = \frac{y^2}{x}.$$

- a) Determine a taxa de variação máxima de f no ponto (2,4). Em que direção isso ocorre ?
- b) No ponto (2,2) determine, se possível, um vetor unitário u tal que $D_u f(2,2) = 2\sqrt{5}$. Justifique sua resposta.

Questão 3. (2.0 pontos) Determine e classifique os pontos críticos da função

$$f(x,y) = \exp(4y - x^2 - y^2).$$

Obs: $\exp(t) = e^t$.

Questão 4. (2.0 pontos) Use o método dos multiplicadores de Lagrange para determinar os valores de máximo e mínimo de $f(x,y)=x^2y$ restrita à curva dada por $x^2+y^2=3$. Em que pontos tais valores são atingidos?

Questão 5. (2.0 pontos) Considere a superfície S definida pela equação

$$\operatorname{sen}(x) + \operatorname{sen}(y) + \operatorname{sen}(z) = 1,$$

onde a variável z é dada implicitamente em função de x e de y.

- a) Calcule a equação do plano tangente à S no ponto $\Big(\frac{\pi}{2},0,0\Big).$
- b) Calcule $\frac{\partial z}{\partial x} \left(0, \frac{\pi}{6}, \frac{\pi}{6}\right)$, e $\frac{\partial z}{\partial y} \left(0, \frac{\pi}{6}, \frac{\pi}{6}\right)$.

Departamento de Matemática - IMECC - Unicamp MA211- Segundo Semestre de 2019 Prova 1 - 19/09/2019 (5^a - Tarde)

GABARITO

Nome:	
RA:	Turma

Questões	Notas
Q1	
Q2	
Q3	
Q4	
Q5	
Total	

- Desligue o celular.
- A prova contém cinco questões. Resolva cada questão em sua respectiva folha.
- Não retire o grampo da prova nem destaque páginas da prova.
- Não é permitido o uso de calculadoras.
- Respostas sem justificativas não serão consideradas.

Justifique suas respostas!

Questão 1. (2.0 pontos) Considere a função de duas variáveis definida por

$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

(1,0) (a) f é contínua em (0,0)? Justifique. (1,0) (b) Calcule $f_x(0,0)$ e $f_y(0,0)$.

a) fé continua em (0,0) se lim
$$f(x,y) = f(0) = 0$$
.

Temos que
$$\frac{x^3+y^3}{x^2+y^2} = \frac{x^2}{x^2+y^2} \cdot x + \frac{y^2}{x^2+y^2} \cdot y$$

$$0 \le \left| \frac{x^{3} + y^{3}}{x^{2} + y^{2}} \right| = \left| \frac{x^{2}}{x^{2} + y^{2}} \cdot x + \frac{y^{2}}{x^{2} + y^{2}} \cdot y \right|$$

$$\le \left| \frac{x^{2}}{x^{2} + y^{2}} \right| = \left| \frac{x^{2}}{x^{2} + y^{2}} \cdot x + \frac{y^{2}}{x^{2} + y^{2}} \cdot y \right|$$

$$\lim_{(x,y)\to(0,0)} (|x|+|y|) = 0 \Rightarrow \lim_{(x,y)\to(0,0)} \left| \frac{|x^3+y^3|}{|x^2+y^2|} \right| = 0$$

pelo teorema do sanduiche

=>
$$\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0) => f(x,y) => f(x,y) => (0,0)$$
.

b) Não podemos diferenciar simplesmente a expressa de f para (x,y) + (0,0) e tirar o limite. Isso nas garante que fx e fy sejam contínuos em (0,0).

Isso parque o denominador dessa expressat X³+y³ é nulo em (0,0).

Precisamos entos utilizar a definição das

derivados parciais:

fx(xo,yo) = lim f(xo+h,yo)-f(xo,yo)
h->0
h

fy(xo, yo) = lim f(xo, yo+h)-f(xo, yo).

Assim, $f_{x}(0,0) = \lim_{h\to 0} f_{(0+h,0)} - f_{(0,0)} = \lim_{h\to 0} \frac{h^{3}/h^{2} - 0}{h}$

- lim (1) = 1. 00,74

0,4

 $f_y(0,0) = \lim_{h\to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h\to 0} \frac{h^3/h^2}{h} = \lim_{h\to 0} \frac{h}{h} = \frac{1}{0,44}$

$$f(x,y) = \frac{y^2}{x}.$$

- a) Determine a taxa de variação máxima de f no ponto (2, 4). Em que direção isso ocorre?
- (1,0) b) No ponto (2,2) determine, se possível, um vetor unitário u tal que $D_u f(2,2) = 2\sqrt{5}$. Justifique sua resposta.

a) A taxa de variago máxima de
$$f$$
 em (x_0, y_0) é doda por $|\nabla f(x_0, y_0)|$ e ocorre na direct de ∇f , is to \hat{e} , na direct $\hat{u} = \frac{\nabla f(x_0, y_0)}{|\nabla f(x_0, y_0)|}$.

Temos
$$\nabla f(x,y) = \left(-\frac{y^2}{x^2}, \frac{zy}{x}\right)$$
. No ponto $(z,4)$,

$$\nabla f(z,4) = \left(-\frac{4^2}{2^2}, \frac{z\cdot 4}{2}\right) = \left(-4,4\right).$$

A taxa de variação máxima de f em (2,4)

Ela ocorre na direga

$$\hat{u} = \frac{\nabla f(z,4)}{|\nabla f(z,4)|} = \frac{1}{|z|} (-1,1) = \frac{1}{|z|} (-\hat{c} + \hat{f}).$$

b) Seja û um veter unitário.

Entos Daf(xo, yo) = Vf(xo, yo) · û.

Para (xo, yo) = (z, z), tenos do item anterior

 $\nabla f(x,y) = \left(-\frac{x^2}{4}, \frac{zy}{2}\right) \Rightarrow \nabla f(z,z) = \left(-1,2\right).$

Entos, para qualquer û,

17f1é a taxa de variaga máxima da funçã

en un dade perte. En particular,

para qualquer û,

|Daf(z,z)| < 215, de modo que na existe retor unitário à tal que Daf(z,z) = 215. Questão 3. (2.0 pontos) Determine e classifique os pontos críticos da função

$$f(x,y) = \exp(4y - x^2 - y^2).$$

Obs: $\exp(t) = e^t$.

Os partos críticos de f sat os partos (xo, 40) tais que

7f (xo, yo) = 0. Temos 9,20,2

77f(x,y) = (fx(x,y), fy(x,y)), onde

fx(x,y) = -2x exp[4y-x2-y2]

fy(x,y) = (4-zy) exp[4y-x2-y2].

Assim, se $\nabla f(x_0, y_0) = 0$, devenoster

 $\begin{cases} f_{x}(x_{0}, y_{0}) = 0 \implies x_{0} = 0 \\ f_{y}(x_{0}, y_{0}) = 0 \implies 4 - 2y_{0} = 0 \implies y_{0} = 2 \end{cases}$

Logo, (0,2) é ounier ponto critico de f.

Para classificarmos esse ponto crítico, la devenos calcular f_{xx}(0,2), f_{yy}(0,2) e f_{xy}(0,2), assim como o determinante

•
$$f_{xx}(x,y) = \frac{1}{3x} \left[-2x \exp(4y - x^2 - y^2) \right]$$

= $-2x (-2x) \exp[4y - x^2 - y^2] - 2 \exp[4y - x^2 - y^2]$
= $2(2x^2 - 1) \exp[4y - x^2 - y^2]$

$$= \int_{x_{x}}^{x} (0,z) = -2e^{4}$$

•
$$f_{yy}(x,y) = \frac{2}{2y} \left[(4-2y) \exp(4y-x^2-y^2) \right]$$

$$=$$
) $f_{yy}(0,2) = -2e^4$ 0/3

$$\int_{xy} (x,y) = \frac{\partial}{\partial y} (f_x)(x,y)$$

$$= \frac{\partial}{\partial y} \left[-2x \exp(4y - x^2 - y^2) \right]$$

= -2x (4-2y) exp [4y-x2-y2)

 $\Rightarrow f_{xy}(0,2) = 0.$

Assim, D = (-2e4).(-2e4) - 0 = 4e8 > 0.

Além disso, fx(0,2) <0.

Segue então dessas duas desigualdades que (0,2) é máximo local de f.

Questão 4. (2.0 pontos) Use o método dos multiplicadores de Lagrange para determinar os valores de máximo e mínimo de $f(x,y) = x^2y$ restrita à curva dada por $x^2 + y^2 = 3$. Em que pontos tais valores são atingidos?

Seja q (x,y) = x²+y²=3 a equação para a curva C sobre a qual que remos calcular os extremos de f. Pelo método dos multiplicadores de Lagrange, os pontos críticos (xo,yo) de f sobre C satis fazem $\nabla f(xo,yo) = \lambda \nabla g(xo,yo)$. Temos

 $\nabla f(x,y) = (2xy, x^2)$

 $\nabla g(x,y) = (2x, 2y)$

=> $\int_{X^2} 2xy = \lambda.2x$

Aplicando a restrict $g(x,y) = x^2 + y^2 = 3$, temos $3y^2 = 3 \Rightarrow y^2 = 1 \Rightarrow y = \pm 1 \Rightarrow x = \pm \sqrt{2}$

Temos enter quatro pontos:

Alem disso,

$$f(-12,-1)=f(12,-1)=-2$$

$$f(-12,1) = f(\sqrt{2},1) = +2$$

Doutro caso é x=0. Pela restrigo x²+y²=3, temo y=±13

$$f(0,-13)=f(0,13)=0.$$

ofatinge valor minimo - 2 em (-12,-1) e (12,-1)

· fatinge valor máximo +2 m (-12,1) e (12,1)

Questão 5. (2.0 pontos) Considere a superfície S definida pela equação

$$\operatorname{sen}(x) + \operatorname{sen}(y) + \operatorname{sen}(z) = 1,$$

onde a variável z é dada implicitamente em função de x e de y.

(1,0) a) Calcule a equação do plano tangente à S no ponto $(\frac{\pi}{2},0,0)$.

 $(\bot,0)$ b) Calcule $\frac{\partial z}{\partial x} (0,\frac{\pi}{6},\frac{\pi}{6})$, $e \frac{\partial z}{\partial y} (0,\frac{\pi}{6},\frac{\pi}{6})$.

a) Vamos definir F(x,y,z)= Den(x)+Den(y)+Den(z).

Ento Sé a superfécie de nével de F

dada par F(x, 4, 3) = 1.

Oplano tongente a Sem (xo, yo, 30) é ento

 $F_{x}(x_{0},y_{0},3_{0})(x-x_{0})+F_{y}(x_{0},y_{0},3_{0})(y-y_{0})+F_{z}(x_{0},y_{0},3_{0})(z-3_{0})=0.$

=) $(0)(x_0)(x_0)(x_0) + (0)(y_0)(y_0)(y_0) + (0)(y_0)(y_0) = 0$.

No ponto (xo, yo, 30) = (T/z, 0, 0), temos

cos (x0) = cos (T/2) = 0, cos (y0) = cos (30) = cos (0) = 1.

A equaçõe de plane targente a Sem(T/2,0,0) éentes

$$y + 2 = 0$$
. $0,5$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

Tenos entas

$$\frac{\partial z}{\partial x} = -\frac{\cos(x)}{\cos(x)} \quad e \quad \frac{\partial z}{\partial y} = -\frac{\cos(y)}{\cos(x)}.$$

No porto (0, 11/6, 11/6), cos (11/6) = 13/2 e cos (0) = 1

=>
$$\frac{\partial^2}{\partial x}$$
 (0, $\pi/6$, $\pi/6$) = $-\frac{1}{\sqrt{3}}$ = $-\frac{2}{\sqrt{3}}$ 0, z