2 סטטיסטיקה

מטלה 2

עידן פוגרבינסקי – 325069565

עילי אבני 212778229

שאלה 3

 $R_{lpha}=(\mathcal{C}_n,\infty)$ ניזכר בכך שאזור דחייה הוא מקיים $p-value=\inf\{lpha:T(x^n)\in R_lpha\}$ על פי ההגדרה $p-value=\inf\{a:T(x^n)\geq \mathcal{C}_n\}$ כך מתקיים

, $\sup_{\theta \in \Theta_0} P_{\theta} ig(T(X^n) \geq C_p ig)$ המבחן הוא כי גודל המבחן, נראה כי גודל הקודמת עם ההגדרה לגודל המבחן, נראה כי גודל המבחן הוא החדמת עם ההסתברות שהמבחן חורג לאזור הדחייה תחת משפחת $\theta \in \Theta_0$

 $\sup_{\theta \in \Theta_0} P_{ heta}ig(T(X^n) \geq T(x^n)ig) \leq p$ אזי $T(x^n) \geq C_p$ אממ השארת האפס אממ אמו דוחים את ניזכר כי אנו דוחים את השארת האפס אממ

. כאשר p גודל המבחן

נניח בשלילה כי $p
otag \sup_{\theta \in \Theta_0} P_{\theta}ig(T(X^n) \geq T(x^n)ig)
otag p$ מאחר שהראנו את הטענה הקודמת, יתכן רק $\sup_{\theta \in \Theta_0} P_{\theta}ig(T(X^n) \geq T(x^n)ig) < p$ ש

נגדיר מבחן בו דוחים אממ $T(X^n) \geq T(x^n)$, מאחר ש $T(X^n) \geq T(x^n)$, מצאנו מבחן בו p נגדיר מבחן בו דוחים אממ p בימה H_0 בימה את בימה מבחן היא פועה מ P_{θ}

 $\sup_{\theta \in \Theta_0} P_{ heta}ig(T(X^n) \geq T(x^n)ig) = p = p - value$ ולכן

נתחיל לרשום את הביטויים ולפתח אותם, עד שנגיע לתוצאה המבוקשת

$$\begin{split} \beta(\theta_*) &= P\left(|W| > z_{\frac{\alpha}{2}} \left| \theta_* \right) = P\left(\left| \frac{\hat{\theta} - \theta_o}{\widehat{se}} \right| > Z_{\frac{\alpha}{2}} | \theta_* \right) = P\left(\left| \frac{\hat{\theta} - \theta_* + \theta_* - \theta_0}{\widehat{se}} \right| > Z_{\frac{\alpha}{2}} | \theta_* \right) = \\ &= P\left(\frac{\hat{\theta} - \theta_*}{\widehat{se}} + \frac{\theta_* - \theta_0}{\widehat{se}} > Z_{\frac{\alpha}{2}} \right) + P\left(\frac{\hat{\theta} - \theta}{\widehat{se}} + \frac{\theta_* - \theta_0}{\widehat{se}} < -Z_{\frac{\alpha}{2}} \right) = \\ &= P\left(\frac{\hat{\theta} - \theta_*}{\widehat{se}} > Z_{\frac{\alpha}{2}} + \frac{\theta_0 - \theta_*}{\widehat{se}} \right) + P\left(\frac{\hat{\theta} - \theta}{\widehat{se}} < -Z_{\frac{\alpha}{2}} + \frac{\theta_0 - \theta_*}{\widehat{se}} \right) \\ &= 1 - \Phi\left(Z_{\frac{\alpha}{2}} + \frac{\theta_0 - \theta_*}{\widehat{se}} \right) + \Phi\left(-Z_{\frac{\alpha}{2}} + \frac{\theta_0 - \theta_*}{\widehat{se}} \right) \end{split}$$

נימוק למעבר השלישי $rac{\hat{ heta}- heta_*}{\widehat{se}}$ מתפלג נורמלי

סעיף ב

נציין כי תחת הנחת האפס מתקיים: $heta_{n o\infty} heta_*$ וגם $heta_{\widehat{se}}$ אסימפטוטית נורמאלי בשילוב הטענות הללו $\widehat{se} heta_{n o\infty} heta_*$ מתקיים $0 heta_{n o\infty} heta_{n o\infty} heta_{n o\infty}$

$$. heta_0
eq heta_*$$
 ולכן $\theta_0 = \theta_*$ באשר ולכן $\frac{| heta_0 - heta_*|}{\hat{se}}$

נפצל למקרים:

$$\begin{split} \theta_0 < \theta_* \\ \frac{\theta_0 - \theta_*}{\widehat{se}} \xrightarrow[n \to \infty]{} - \infty & \Longrightarrow \lim_{n \to \infty} \Phi\left(Z_{\frac{\alpha}{2}} + \frac{\theta_0 - \theta_*}{\widehat{se}}\right) = \Phi(-\infty) = \lim_{n \to \infty} \Phi\left(-Z_{\frac{\alpha}{2}} + \frac{\theta_0 - \theta_*}{\widehat{se}}\right) = 0 \\ \lim_{n \to \infty} \beta(\theta_*) & = \lim_{n \to \infty} 1 - \Phi\left(Z_{\frac{\alpha}{2}} + \frac{\theta_0 - \theta_*}{\widehat{se}}\right) + \Phi\left(-Z_{\frac{\alpha}{2}} + \frac{\theta_0 - \theta_*}{\widehat{se}}\right) = 1 - 0 + 0 = 1 \end{split}$$

 $\theta_0 > \theta_*$

$$\frac{\theta_0 - \theta_*}{\widehat{se}} \xrightarrow[n \to \infty]{} \infty \Longrightarrow \lim_{n \to \infty} \Phi\left(Z_{\frac{\alpha}{2}} + \frac{\theta_0 - \theta_*}{\widehat{se}}\right) = \Phi(\infty) = \lim_{n \to \infty} \Phi\left(-Z_{\frac{\alpha}{2}} + \frac{\theta_0 - \theta_*}{\widehat{se}}\right) = 1 \quad \bullet$$

$$\lim_{n \to \infty} \beta(\theta_*) = \lim_{n \to \infty} 1 - \Phi\left(Z_{\frac{\alpha}{2}} + \frac{\theta_0 - \theta_*}{\widehat{se}}\right) + \Phi\left(-Z_{\frac{\alpha}{2}} + \frac{\theta_0 - \theta_*}{\widehat{se}}\right) = 1 - 1 + 1 = 1$$

 $. heta_0
eq heta_*$ נאשר ולכן $\lim_{n o \infty} eta(heta_*) = 1$ נאטר