Rotary Encoder

- Upper lines show clockwise signaling
- Lower lines show counter clockwise signaling
- A and B are the two encoder output signals
- dotted vertical lines are encoder steps (rest position) (usually 12 or 24 steps per rev)

- signaling of real encoder with bouncing
- 1. Encoder is in rest position when signals are either "11" or "00"
- 2. Problem: signals are not ideal, due to mechanic function, bouncing of signals
 - -> Input interrupt is a bad idea
- 3. Solution: 1ms timer based interrupt, should be sufficient for e.g. menu control. Read of signal status every interrupt
- 4. In CW, signal A changes its state first; In CCW, signal B changes its state first
 - -> Need of old and new signal status
- 5. Based on a status register, decision whether to count up or down, or do nothing

١,	· /	V	V	V	امام ۸	D ald	^	
	X	X	X	l X	A old	1 B 010 1	- A	1 B 1
					_ 1	_ 1		

Count up (cw) while following bit patterns apply: 1011 and 0100 Count down (ccw) while following bit patterns apply: 0111 and 1000