

Cursul #07

Rețelistică și Internet

Give a person a fish and you feed them for a day; teach that person to use the Internet and they won't bother you for weeks.

You know it's love when you memorize her IP number to skip DNS overhead.

Suport de curs

- Utilizarea sistemelor de operare
 - Capitolul 11 Rețelistică și Internet

Transformarea Internetului

IoT

Ce este o rețea?

- Staţii/noduri (hosts) interconectate
- Legături fizice (fir, wireless) și logice (conexiune) între stații
- Stațiile comunică între ele, rulează aplicații de rețea
- Rețele sunt conectate la alte rețele
- Internet: totalitatea rețelelor interconectate de pe planetă

Comunicare între dispozitive

- Dispozitivele participante trebuie să primească nume
- Dispozitivele trebuie să fie suficient de precis localizate – să aibă o adresă
- Participanții trebuie să identifice rutele prin care se pot contacta
- Trebuie să stabilească câteva reguli simple de comunicare - protocoale

Protocol de rețea

- Un protocol = reguli care stabilesc modul în care două dispozitive schimbă informații
- Entitățile participante la comunicare cunosc protocolul
 - Formulează secvențe cerere răspuns (requestreply)

Rețea locală

- Formată din mai multe **stații** legate între ele
 - · Stații: calculator, laptop, telefon mobil, server etc
- Conectarea stațiilor în rețeaua locală se realizează printr-un echipament de rețea numit switch
- **Switch:** transferă informația între calculatoare aflate în aceeși rețea locală folosind interfețele lor de rețea Ethernet, bazându-se pe **adresa MAC**

Adresa MAC

- Un număr cu o lungime de 48 de biți, care identifică în mod unic fiecare interfață de rețea Ethernet;
 - Adresare plată, neierarhică
- Este înscrisă din fabrică într-o memorie ROM de pe placă
 - Nu poate fi schimbată de pe placă, dar poate fi schimbată software

Comunicare între rețele

- Pentru a putea accesa alte rețele sau Internetul, trebuie ca un echipament să aibă și o legătură la altă rețea/Internet
- Acest echipament poate fi o stație, un server, sau un echipament de rețea dedicat numir ruter
- Transferul informației din rețeaua locală spre Internet se bazează pe adresa IP

Protocolul IP

- Protocolul dominant care asigură conectivitate în Internet
- Adresarea IP este ierarhică
- Cea mai recentă versiune: IPv6
 - Rezolvă criza de adrese IPv4
- Adresa IPv6 este un număr de 128 biți
 - Progres lent față de ritmul tehnologiilor actuale
 - Infrastructură globală greu de transformat

Adresa IPv4

- 32 de biți scriși în 4 grupuri de câte 8 biți
 - Fiecare grup e scris în format zecimal
- O adresă IP are două componente:
 - Prima parte = adresa rețelei care include stația
 - A doua parte = adresa **stației** în cadrul rețelei.
- Delimitarea dintre adresa stației și adresa rețelei este dată de masca de rețea

Masca de rețea

- · Are o lungime de 32 de biți
- Formată prin setarea biților de rețea și stație
 - Biţi reţea = 1
 - Biţi staţii = 0
- Exemplu: dacă avem 24 de biți de 1 consecutivi, masca de rețea este /24 sau 255.255.255.0

Adresa de rețea și de broadcast

- Adresa de broadcast: adresă de difuzare, pachetele sunt primite de toate stațiile din rețeaua locală
- · Acestea nu pot fi folosite ca și adrese de stații
- Pentru a identifica adresa de rețea se efectuează un ŞI logic (&) între adresa IP și masca de rețea
- Pentru a identifica adresa de broadcast a rețelei se efectuează SAU logic (|) între adresa IP și negatul măștii de rețea

Exemplu:

- Stația cu adresa IP 192.168.0.1 și masca de subrețea 255.255.0.0 (/16)
- Pentru adresa de subrețea:

```
11000000 10101000 00000000 00000001 - 192.168.0.1
11111111 1111111 00000000 00000000 - 255.255.0.0
```

11000000 10101000 00000000 00000000 - 192.168.0.0

Pentru adresa de broadcast:

```
11000000 10101000 00000000 00000001 - 192.168.0.1
00000000 00000000 11111111 1111111 - 255.255.0.0
```

11000000 10101000 111111111 11111111 - 192.168.255.255

Configurarea interfețelor

- Are un aspect fizic, legat de hardware și un aspect logic, legat de protocoale și software
- Conexiunea fizică: codifică informația sub formă de:
 - Semnale electrice: cablu UTP
 - Semnale optice: fibră optică
 - Semnale electromagnetice: legături fără fir

Port vs interfață

- Concepte folosite interschimbabil
- Fizic vs logic:
 - Interfață fizică: comunicare printr-un anumit mediu și protocol (ex. Ethernet)
 - Port fizic: punctul de contact cu exteriorul al unei interfețe fizice
 - Interfață logică: configurația realizată peste o interfață fizică
 - Port logic: adresă care permite unei interfețe logice să gestioneze mai multe conexiuni simultan

Configurare adresă IP

- Se realizează în două moduri:
 - Prin configurare **temporară** (static sau dinamic)
 - Prin configurare **permanentă** (static sau dinamic)
- Static vs. dinamic
 - Static = parametri configurați manual de administrator
 - Dinamic = parametri configurați automat

Configurare temporară

- Efectul este imediat,
- După ce se repornește SO, aceste configurări dispar
- Au efect imediat și se aplică ușor

Statică:

• se folosește comanda ifconfig (folosită fără parametrii, se identifică informații despre interfețele active)

```
ubuntu:/home/razvan# ifconfig eth0 10.1.1.3 netmask 255.255.255.0
ubuntu:/home/razvan# ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:14:D1:38:73:A6
   inet addr:10.1.1.3 Bcast:10.1.1.255 Mask:255.255.255.0
```

Dinamică:

Se realizează prin intermediul unui client DHCP, precum dhclient sau dhcpd

Configurare permanentă

- Efectul nu este imediat
 - Configurația nu se aplică după salvarea fișierului, ci după repornirea SO

Static și Dinamic:

 Se realizează interacționând cu fișierul /etc/network/interfaces

```
iface eth0 inet static
    address 10.1.1.2
    netmask 255.255.255.0
    network 10.1.1.0
    broadcast 10.1.1.255
    gateway 10.1.1.1
    dns-nameservers 10.1.1.1
```


Gateway

- Conectează două rețele, astfel încât dispozitivele din cele două rețele să poată comunica
- Se află la periferia rețelei și poate îndeplini adesea funcții de protecție și filtrare a traficului, și de asemenea convertește traficul dintr-un protocol în altul
- De obicei îndeplinită de un ruter
- Specificarea temporară pentru o adresă de gateway se realizează prin intermediul unei rute
- Ruta default gateway este folosită întotdeauna ca un ultim efort în încercarea de a accesa o destinație pentru care dispozitivul curent nu are o rută definită

Tabela de rutare

- O rută reprezintă calea de parcurs pentru pachete în drumul lor spre destinație
- · Aceste se rețin în tabela de rutare
- Pentru fiecare rută se reține: adresa destinației (aceasta poate fi adresa unui echipament sau adresa întregii rețele), masca de rețea și adresa echipamentului de rețea spre care se transmit informațiile pentru a putea ajunge la destinație.

```
ubuntu:/home/razvan# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use
Iface
localnet * 255.255.255.0 U 0 0 0 eth0
```


DHCP

- DHCP (Dynamic Host Configuration Protocol) este cel mai utilizat protocol în scopul configurării dinamice
- Pentru a beneficia de acest suport trebuie ca în rețeaua locală să existe un server de DHCP.
- Serverului îi este fixată plaja de adrese IP pe care le poate atribui stațiilor și de asemenea configurările corespunzătoare de rețea.
- Configurările dinamice permit atribuirea automată a parametrilor precum adresă IP, mască de rețea, server de DNS, gateway.

Serviciul DNS

- Reţinerea unor nume este mai facilă decât cea a unui număr de adrese IP => a apărut serviciul DNS (Domain Name System)
- Corespondența între o adresă IP și un șir de caractere
- Pentru serviciile de DNS sunt necesare servere specializate; pentru a le accesa e necesară cunoașterea adresei lor IP

Configurare DNS

- Adresele serverelor DNS se pot configura în fișierul /etc/resolv.conf
- Exemplu:

```
search localdomain
nameserver 10.1.1.1
nameserver 217.115.138.24
nameserver 128.107.241.185
```

- nameserver defineşte adresa pentru un server DNS
- Configurările se aplică imediat

Aliasuri

- Etichete asociate unor adrese de IP și funcționează similar cu cel de DNS
- 2 diferențe majore față de DNS:
 - Etichetele nu trebuie să respecte aceleași convenții ca cele ale numelor de domenii DNS
 - Dacă pentru DNS se folosesc servere dedicate, când discutăm despre aliasurile este vorba doar de interogarea fișierului /etc/hosts

```
ubuntu:/home/razvan# cat /etc/hosts
127.0.0.1 localhost ubuntu
127.0.1.1 ubuntu
#Servers
10.1.1.100 print.mydomain.ro my-
print-server
10.1.1.101 ftp.mydomainro my-ftp-
server
192.168.1.150 mail-server
# The following lines are desirable
for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
```


Verificarea conectivității

PING

- Utilizat pentru verificarea conexiunii între două stații într-o rețea ce folosește protocolul IP
- Primește ca parametru adresa IP a destinației
- Se trimite un ECHO REQUEST către destinație, iar dacă răspunsul destinație se întoarce la sursă, conexiunea dintre ele este validată și funcționează; în caz contrar, nu funcționează

Traceroute

- Utilizat folosit pentru a valida calea urmată de pachete pe traseul între sursă și destinație
- Acesta va afișa un mesaj pentru fiecare echipament de rețea prin care trec mesajele în drumul lor spre destinație.
- Folosește câmpul TTL (Time To Live) definit în antetul fiecărui pachet de date transmis

Probleme uzuale

- Două abordări pentru diagnoza problemelor:
 - De jos în sus (bottom-up)
 - De sus în jos (top-down)
- Ce e sus și ce e jos?
 - Top / Up = Aplicaţii
 - Bottom / Down = Conexiunile fizice

Abordare bottom-up

- Pagina web www.google.ro nu poate fi accesată:
 - Testarea legăturii fizice;
 - Testarea conexiunii spre un gateway, care oferă legătura stației către Internet;
 - Verificarea disponibilității și a configurării corecte a serverului **DNS**, pentru a se putea realiza adresarea către site-ul dorit;
 - Verificarea conectivității către alte servere, pentru a detecta dacă situația este specifică serverului respectiv sau generică.

Protocoale de comunicare

- Scopul unei rețele este acela de a asigura comunicația și interoperabilitatea între două aplicații
- Rețelele trebuie să împacheteze informația, să o transmită pe mediul fizic, să se asigure că a ajuns la destinație, să analizeze răspunsul și să realizeze toți pași astfel încât acest obiectiv sa fie atins
- Protocoalele sunt cele care trebuie să asigure suportul, iar la rândul lui protocolul trebuie respectat de toate echipamentele disponibile într-o rețea

Modelul client - server

- Interacțiunea asimetrică
- Două roluri diferite:
 - Serverul oferă serviciul clientului
 - Clientul solicită serverului facilitățile aferente
- Clientul poate fi un proces sau o aplicație
- Modelul implică existența unui număr mai mare al clienților decât al serverelor

Modelul peer-to-peer

- Interacțiune simetrică
 - Partenerii în comunicație, numiți peers, solicită și oferă unul altuia servicii
 - Experiența unei colaborări simultane
- · Este un model client-server ascuns
 - Fiecare partener are, în cadrul implementării, atât rol de server cât și de client
- Exemplu: BitTorrent, DirectConnect, eDonkey, Skype

Servicii Internet

- O clasificare a serviciilor internet în funcție de nevoia rezolvată și de tipul de tehnologie folosită poate fi următoarea:
 - Servicii de comunicare:
 - Poșta electronică/e-mail (SMTP, POP3, IMAP)
 - Mesagerie instantanee
 - · Servicii de transfer de fișiere:
 - Protocolul FTP
 - Serviciul web:
 - Protocoalele HTTP, HTTPS
 - · Servicii de conexiune la distanță:
 - ssh, telnet

Serviciul de e-mail

- Primul serviciu folosit în Internet
- Transmiterea de mesaje text între utilizatorii diverselor sisteme de pe Interne
- Nu este conversație instant, precum în cazul chat-ului
- Mesajele sunt stocate în căsuțe poștale
- Destinatarul și expeditorul sunt îndentificați prin adrese de e-mail

Client local de e-mail

- Citire și transmitere de mesaje
 - Citire cu protocolul POP3 sau IMAP
 - Transmitere cu protocolul SMTP (către server)
- Citire cu POP3
 - Mesajul este copiat/salvat pe stația locală
 - Utilizatorul poate să își citească mesajele salvate offline
- Citire cu IMAP
 - Mesajele sunt "accesate", nu copiate
 - · Se copiază doar header-ele, nu mesaje întregi
- Clienți de e-mail:
 - Microsoft Outlook, Kmail, Mozilla Thunderbird
 - Pine, Mutt, Gnus

Transferul fișierelor

- Descărcam fișiere publice de pe paginile web, folosind protocolul HTTP
- Dacă dorim să descărcăm fișiere private sau să încărcăm fișiere pe un server, există protocoale precum FTP sau SSH File Transfer Protocol (ambele au model clientserver)
- Putem partaja fișiere și pe modelul peer-topeer prin protocolul BitTorrent
 - Peers = participanții la sistem
 - Swarm = "roiul" colectiv de contribuitori

Serviciul World Wide Web

- Spațiu de informație
- Printre cele mai cunoscute servicii din Internet – oferă acces la resurse și alte servicii
- NU trebuie confundat cu Internetul
 - Web-ul este un serviciu ce funcționează deasupra Internetului
- Servicii bazate pe www:
 - Engine-uri de căutare (Google)
 - Rețele de socializare (Facebook)
 - Webmail (Gmail, Yahoo)

Concepte www

- Trei tehnologii de bază
 - URL (Uniform Resource Locator)
 - HTTP (Hypertext Transfer Protocol)
 - HTML (Hypertext Markup Language)
- URL: identificator al resursei
 - Protocol://hostname/path/to/resource
- HTTP: protocolul folosit în web pentru accesarea paginilor web (HTTPS – HTTP secure)
- HTML:
 - Limbaj de descriere, folosit pentru a putea reda informații, imagini și alte resurse pe o pagină web
 - Informațiile sunt afișate de un navigator (browser)

Servere și clienți web

- Servere web
 - Apache Web Server
 - Microsoft IIS
 - Lighttpd, nginx
- Clienți web (browsere, navigatoare)
 - Microsoft Internet Explorer 6, 7, 8
 - Mozilla Firefox 3.5, 3.6
 - Opera
 - Netscape Navigato
 - Lynx, w3m

WGET și CURL

- Ambele sunt folosite pentru descărcarea resurselor cu suport pentru protocoale web precum HTTP și HTTPS și FTP iar în cazul curl, IMAP, SFTP și altele
- Primesc un URL si pe baza lui descarcă resursa web identificată

```
razvan@einherjar:~$ wget http://elf.cs.pub.ro/uso/curs-09-handout.pdf
[...]
2014-11-15 16:15:17 (8.59 MB/s) - 'curs-09-handout.pdf' saved
[2064143/2064143]
```


SSH

- Secure shell
- Protocol pentru comunicare sigură, criptată
- Folosit pentru conexiune la distanță (ssh)
 - ssh username@hostname
- O dată realizată conexiunea la distanță se pot rula comenzi ca într-un shell obișnuit
- Folosită pe sisteme cu acces SSH, putem transfera fișiere, într-un mod sigur, cu comanda scp
 - scp local_file username@hostname:path

Atacuri cibernetice

Computer Networks

- Andrew S. Tannenabum
- Ediţia a 5-a, 2010
- Privire de ansamblu a rețelelor de calculatoare (întreaga stivă)
- Stil degajat de prezentare, ușor de înțeles
- Folosită ca suport pentru multe cursuri de rețelistică

Jon Postel

- Unul din principalii contribuitori la dezvoltarea Internetului
- Editorul RFC (Request For Comments) – protocolul IP, circa 200 RFC-uri
- Director al IANA (Internet Assigned Numbers Authority)
- Administrator al domeniului .us din DNS

Cisco

- Cisco Systems, Inc
- Fondată în 1984
- San Francisco (de unde și numele și sigla)
- Echipamente de rețea
- Produse pentru uz în Internet și pentru "home users"
- Program de certificări (CCNA, CCNP, CCIE)
- Cisco Networking Academy

OpenFlow

- Idee apărută în 2008, încă în dezvoltare
- Permite delegarea deciziilor de rutare/comutare/forwarding de la switch/ruter altundeva (în software)
- OpenFlow Switch + OpenFlow Controller
- Oferă flexibilitate
- Combinat cu soluții de virtualizare
- Adoptat în ultima perioadă, de majoritatea producătorilor de echipamente de rețea
- http://www.openflow.org/

Cuvinte cheie

- Rețea
- Switch
- Ruter
- Gateway
- Servicii de rețea
- Protocol
- Client-Server
- Peer-to-peer
- Internet
- FTP, HTTP, wget, SSH
- E-mail
- www