20

5

oligonucletide having a net positive charge would migrate toward the negative electrode in an electrical field.

The term "net negative charge" when used in reference to an oligonucletide, including modified oligonucleotides, indicates that the sum of the charges present (*i.e.*, R-NH³⁺ groups on thymidines, the N3 nitrogen of cytosine, presence or absence or phosphate groups, etc.) under the desired reaction conditions is -1 or lower. An oligonucletide having a net negative charge would migrate toward the positive electrode in an electrical field.

The term "polymerization means" refers to any agent capable of facilitating the addition of nucleoside triphosphates to an oligonucleotide. Preferred polymerization means comprise DNA polymerases.

The term "ligation means" refers to any agent capable of facilitating the ligation (i.e., theformation of a phosphodiester bond between a 3'-OH and a 5'-P located at the termini of two strands of nuceic acid). Preferred ligation means comprise DNA ligases and RNA ligases.

The term "reactant" is used herein in its broadest sense. The reactant can comprise an enzymatic reactant, a chemical reactant or ultraviolet light (ultraviolet light, particulary short wavelength ultraviolet light is known to break oligonucleotide chains). Any agent capable of reacting with an oligonucleotide to either shorten (*i.e.*, cleave) or elongate the oligonucleotide is encompsased within the term "reactant."

The term "adduct" is used herein in its broadest sense to indicate any compound or element which can be added to an oligonucleotide. An adduct may be charged (postively or negatively) or may be charge neutral. An adduct may be added to the oligonucleotide via covalent or non-covalent linkages. Examples of adducts, include but are not limited to indodicarbocyanine dye amidites, amino-substituted nucleotides, ethidium bromide, ethidium homodimer, (1,3-propanediamino)propidium, (diethylenetriamino)propidium, thiazole orange, (N-N'-tetramethyl-1,3-propanediamino)propyl thiazole orange, (N-N'-tetramethyl-1,2-ethanediamino)propyl thiazole orange, thiazole orange-thiazole orange homodimer (TOTO), thiazole orandethiazole blue heterodimer (TOTAB), thiazole orange-ethidium heterodimer 1 (TOED1),

30

25

5

thiazole orange-ethidium heterodimer 2 (TOED2) and florescien-ethidium heterodimer (FED), psoralens, biotin, streptavidin, avidin, etc.

Where a first oligonucleotide is complementary to a region of a target nucleic acid and a second oligonucleotide has complementary to the same region (or a portion of this region) a "region of overlap" exists along the target nucleic acid. The degree of overlap will vary depending upon the nature of the complementarity (see, e.g., region "X" in Figs. 29 and 67 and the accompanying discussions).

As used herein, the term "purified" or "to purify" refers to the removal of contaminants from a sample. For example, recombinant Cleavase® nucleases are expressed in bacterial host cells and the nucleases are purified by the removal of host cell proteins; the percent of these recombinant nucleases is thereby increased in the sample.

The term "recombinant DNA molecule" as used herein refers to a DNA molecule which is comprised of segments of DNA joined together by means of molecular biological techniques.

The term "recombinant protein" or "recombinant polypeptide" as used herein refers to a protein molecule which is expressed from a recombinant DNA molecule.

As used herein the term "portion" when in reference to a protein (as in "a portion of a given protein") refers to fragments of that protein. The fragments may range in size from four amino acid residues to the entire amino acid sequence minus one amino acid.

"Nucleic acid sequence" as used herein refers to an oligonucleotide, nucleotide or polynucleotide, and fragments or portions thereof, and to DNA or RNA of genomic or synthetic origin which may be single- or double-stranded, and represent the sense or antisense strand. Similarly, "amino acid sequence" as used herein refers to peptide or protein sequence.

"Peptide nucleic acid" ("PNA") as used herein refers to a molecule which comprises an oligomer to which an amino acid residue, such as lysine, and an amino group have been added. These small molecules, also designated anti-gene agents, stop

25

20

20

25

5

transcript elongation by binding to their complementary strand of nucleic acid [Nielsen PE et al. (1993) Anticancer Drug Des. 8:53-63].

As used herein, the term "substantially purified" refers to molecules, either nucleic or amino acid sequences, that are removed from their natural environment, isolated or separated, and are at least 60% free, preferably 75% free, and most preferably 90% free from other components with which they are naturally associated. An "isolated polynucleotide" or "isolated oligonucletide" is therefore a substantially purified polynucleotide.

DESCRIPTION OF THE INVENTION

The present invention relates to methods and compositions for treating nucleic acid, and in particular, methods and compositions for detection and characterization of nucleic acid sequences and sequence changes.

The present invention relates to means for cleaving a nucleic acid cleavage structure in a site-specific manner. In particular, the present invention relates to a cleaving enzyme having 5' nuclease activity without interfering nucleic acid synthetic ability.

This invention provides 5' nucleases derived from thermostable DNA polymerases which exhibit altered DNA synthetic activity from that of native thermostable DNA polymerases. The 5' nuclease activity of the polymerase is retained while the synthetic activity is reduced or absent. Such 5' nucleases are capable of catalyzing the structure-specific cleavage of nucleic acids in the absence of interfering synthetic activity. The lack of synthetic activity during a cleavage reaction results in nucleic acid cleavage products of uniform size.

The novel properties of the nucleases of the invention form the basis of a method of detecting specific nucleic acid sequences. This method relies upon the amplification of the detection molecule rather than upon the amplification of the target sequence itself as do existing methods of detecting specific target sequences.

DNA polymerases (DNAPs), such as those isolated from E. coli or from thermophilic bacteria of the genus Thermus, are enzymes that synthesize new DNA