New Syllabus NESA Questions:

1) C

2) D

Past HSC Questions:

<u>2018:</u>

5) B

24)

Question 24 (b)

Criteria	Marks
Provides correct calculation of magnitude and direction of current	3
Provides some steps to calculate the magnitude of the current	
OR	2
Substitutes into a relevant equation and shows direction of current	
Substitutes into a relevant equation	
OR	1
Shows direction of current	

Sample answer:

$$I_1 = 20 \text{ A}, \quad I_2 = 20 \text{ A}, \quad I_3 = ?$$

$$d_1 = 0.3, \qquad d_2 = 0.75$$

$$\frac{F_1}{I} = \frac{F_2}{I}$$
, therefore $\frac{kI_1I_2}{d_1} = \frac{kI_2I_3}{d_2}$

So
$$\frac{20 \times 20}{0.3} = \frac{20I_3}{0.75}$$
, thus $I_3 = 50$ A travelling in the same direction as Y.

<u>2017:</u>

16) D

<u>2015:</u>

7) C

9) B

2013:

Question 25 (a)

Criteria	Marks
Identifies correct direction	1

Sample answer:

To the left

OR

Towards the conductor P

Question 25 (b)

Criteria	Marks
Demonstrates correct process to calculate the force experienced by Q	3
Demonstrates logical process to calculate force P or force R on Q	2
Partial substitution into a relevant equation	1

Sample answer:

$$\frac{F}{l} = \frac{kI_1I_2}{d}$$

Force R on Q

$$F = \frac{2 \times 10^{-7} \times 6 \times 2}{5 \times 10^{-3}} \qquad F = \frac{2 \times 10^{-7} \times 2 \times 2}{2.5 \times 10^{-3}}$$

$$F = \frac{2 \times 10^{-7} \times 2 \times 2}{2.5 \times 10^{-3}}$$

$$F = 4.8 \times 10^{-4} \text{ N}$$

$$F = 3.2 \times 10^{-4} \text{ N}$$

Total force =
$$4.8 \times 10^{-4} \,\text{N} + 3.2 \times 10^{-4} \,\text{N}$$

Total force =
$$8 \times 10^{-4}$$
 Newtons

2012:

8) A

17) B

2010:

Question 28

Sample answer:

The magnetic field is into the page.

$$F = BI\ell$$

$$B = \frac{F}{I\ell}$$

$$= \frac{9.8 \times 7 \times 10^{-4}}{0.3 \times 0.2} = 0.114...T$$
= 0.11 T to 2 sig. fig.

2009:

9) A

Question 23 (a)

Sample answer:

W2 experiences a force toward W1

Answers could include:

W₂ experiences a force to the left

Question 23 (b)

Sample answer:

$$F = \frac{k I_1 I_2 \ell}{d}$$

$$6.9 \times 10^{-4} = \frac{2 \times 10^{-7} \times I^2 \times 2.5}{5 \times 10^{-2}}$$

$$I = \sqrt{\frac{6.9 \times 10^{-4} \times 5 \times 10^{-2}}{2 \times 10^{-7} \times 2.5}}$$

$$I = 8.3 \text{ A}$$

Question 23 (c)

Answers could include:

 W_2 experiences a force of attraction to W_1 as the wires carry currents in the same direction.

W2 also experiences a force of attraction toward W_3 . However this force is smaller as the distance between W_2 and W_3 is larger than between W_1 and W_2 . As $F = \frac{kI_1 I_2 \ell}{d}$, force must be smaller as d is larger. As a result the net force on W_2 is one of attraction toward W_1 but it is now reduced in magnitude due to the presence of W_3 .

Before 2009 there were no answers given for short answer please use a book like Excel Physics

2008:

6) A

2006:

6) A

7) D

2003:

9) C

2002:

7) A

2001:

14) C