63

National Water Quality Network

ANNUAL COMPILATION OF DATA October 1, 1960 - September 30, 1961

115 060

70 614

N, AND WELFARE blic Health Service

National Water Quality Network

ANNUAL COMPILATION OF DATA

October 1, 1960-September 30, 1961

A Federal, State and local cooperative report on water quality determinations of surface waters at selected locations throughout the United States

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE
Public Health Service, Division of Water Supply and Pollution Control • Washington 25, D.C.

RELATED PUBLICATIONS:

National Water Quality Network
Annual Compilation of Data, October 1, 1957-September 30, 1958
Public Health Service Publication No. 663 (1958 Edition)

National Water Quality Network Statistical Summary of Selected Data, October 1, 1957-September 30, 1958 Public Health Service Publication No. 663—Supplement I

National Water Quality Network Annual Compilation of Data, October 1, 1958-September 30, 1959 Public Health Service Publication No. 663 (1959 Edition)

National Water Quality Network
Annual Compilation of Data, October 1, 1959-September 30, 1960
Public Health Service Publication No. 663 (1960 Edition)

National Water Quality Network

Plankton Population Dynamics, July 1, 1959–June 30, 1961

Public Health Service Publication No. 663—Supplement 2

PUBLIC HEALTH SERVICE PUBLICATION NO. 663
(1961 Edition)

ACKNOWLEDGMENT

To increase the usefulness of the water quality data, annual compilations since 1958, including this one, have presented preliminary and unadjusted flow data for gauging stations at or near most of the National Water Quality Network sampling points. Final data may be obtained directly from the agency concerned. Any studies using the provisional flow data herein compiled should verify the data prior to completion of reports on such studies. For making the flow information available for this publication, grateful acknowledgment is made by the Public Health Service to:

The International Boundary and Water Commission, United States and Mexico

The U.S. Department of the Interior Bureau of Reclamation • Geological Survey

The U.S. Department of the Army

Corps of Engineers • Lake Survey

FOREWORD

This is the fourth annual compilation of data from the National Water Quality Network of the Public Health Service. Again the data have revealed some very interesting findings which can be usefully applied to facilitate water quality evaluation.

As in each of the years the Network has functioned, an increasing number of State and other non-Federal agencies have taken an active interest in the field of water quality measurement. This is directly attributable to the mounting need for nationwide conservation of water resources. Our own Network was increased from 72 to 93 stations during this data year, and continual expansion is planned toward a goal of 300 stations.

The Public Health Service gratefully acknowledges the assistance to our Network of the many local, State, interstate, and Federal agencies concerned with water quality management. The success of this program depends, in large measure, upon their continued interest and support.

> GORDON E. McCallum, D. Sc., Assistant Surgeon General, Chief, Division of Water Supply and Pollution Control

CONTENTS

Page

iii

ANALYTICAL AND FLOW DATA INDEX

STATION	Radioactivity Determinations	Plankton Populations	Organic Chemicals	Chemical, Physical and Bacteriological Analyses	Flow Data	Strontium 90	Trace Elements	
	Page No.	Page No.	Page No.	Page No.	Page No.	Page No.	Page No.	
Allegheny River at Pittsburgh, Pa.	27	28	29	30–31	32	535	541	
Animas River at Cedar Hill, N. Mex.	33-34	35	36	37–38	39	535	541	
Apalachicola River at Chattahoochee, Fla.	40	41	42	. 43	44	535	541	
Arkansas River at Pendelton Ferry, Ark. near Ponca City, Okla. at Coolidge, Kans.	45 49 54	46 50 55	_	47 51–52 56–57	48 53 58	535 535 535	541 541 541	
Big Sioux River below Sioux Falls, S. Dak.	59	60		61	62	535	541	
Chattahoochee River at Columbus, Ga. at Atlanta, Ga.	63 69	64 70	65 71	66-67 72-73	68 74	535 535	541 541	
Colorado River at Yuma, Ariz. above Parker Dam, Ariz-	75	76	77	78–79	80	535	541	
Calif. near Boulder City, Nev. at Page, Ariz. at Loma, Colo.	81 87 93–94 100	82 88 95 101	83 89 96 102	84-85 90-91 97-98 103	86 92 99 104	535 535 535 535	541 541 541 541	
Columbia River at Clatskanie, Oreg. at Bonneville, Oreg. at McNary Dam, Oreg. at Pasco, Wash. at Wenatchee, Wash.	105-106 112 117 121-122 128	107 113 118 123 129	108 114 119 124 130	109-110 115 125-126 131-132	111 116 120 127 133	535 535 535 535 535	541 541 541 541 541	

Dash (—) indicates no determination made.

ANALYTICAL AND FLOW DATA INDEX-Continued

STATION	Radioactivity Determinations	Plankton Populations	Organic Chemicals	Chemical, Physical and Bacteriological Analyses	Flow Data	Strontium 90	Trace Elements
STATION	Page No.	Page No.	Page No.	Page No.	Page No.	Page No.	Page No.
Connecticut River below Northfield, Mass.	134	135	136	137	138	535	542
Cumberland River at Clarksville, Tenn.	139	140	_	141	142	535	
Delaware River at Philadelphia, Pa. at Martins Creek, Pa.	143 149	144 150	145 —	146-147 151-152	148 153	535 535	542 542
Escambia River at Century, Fla.	154	155	156	157	158	535	542
Great Lakes Lake Erie at Buffalo, N.Y.	159	160	* 161	162–163	164	535	542
Lake Huron, Detroit River at Detroit, Mich.	165	166	167	168-169	170	535	542
Lake Huron, St. Clair River at Port Huron, Mich. Lake Michigan at Gary, Ind.	171–172 178	173 179	174 180	175–176 181–182	177 183	535 535	542 542
Lake Michigan at Milwaukee, Wis.	184-185	186	187	188–189	190	535	542
Lake Superior, St. Mary's River at Sault Ste. Marie, Mich.	191	192	193	194–195	196	535	542
Lake Superior at Duluth, Minn.	197	198	199	200–201	202	535	542
Hudson River below Poughkeepsie, N.Y.	203	204	205	206–207	208	535	542
Illinois River at Peoria, Ill.	209	210	211	212	213	535	542
Kanawha River at Winfield Dam, W. Va.	214	215	216	217–218	219	535	542

ANALYTICAL AND FLOW DATA INDEX—Continued

STATION	Radioactivity Determinations	Plankton Populations	Organic Chemicals	Chemical, Physical and Bacteriological Analyses	Flow Data	Strontium 90	Trace Elements
	Page No.	Page No.	Page No.	Page No.	Page No.	Page No.	Page No.
Klamath River at Keno, Oreg.	220-221	222	223	224	225	536	542
Little Miami River at Cincinnati, Ohio	226-227	228	229	230–231	232	536	543
Merrimack River above Lowell, Mass.	233	234	235	236	237	536	543
Mississippi River at New Orleans, La. at Vicksburg, Miss. at Delta, La. at West Memphis, Ark. at Cape Girardeau, Mo. at East St. Louis, Ill. at Burlington, Iowa at Dubuque, Iowa at Lock & Dam No. 3 below St. Paul, Minn.	238 	239 247 252 258 264 270 274	240 244 248 253 259 265 271 275	241-242 249 254-255 260-261 266-267 276 281-282	243 245 250 256 262 268 272 277	536 536 536 536 536 536 536	543
Missouri River at St. Louis, Mo. at Kansas City, Kans. at St. Joseph, Mo. at Omaha, Nebr. at Bankton, S. Dak. at Yismarck, N. Dak. at Williston, N. Dak.	284 290 296 303 309 315 321	285 291 297 304 310 316 322	286 292 298 305 311 317 323	287-288 293-294 299-301 306-307 312-313 318-319 324-325	289 295 302 308 314 320 326	536 536 536 536 536 536 536	543 543 543 543 543 543
Monongahela River at Pittsburgh, Pa.	327	328	329	330	331	536	543
North Platte River above Henry, Nebr.	332	333	334	335	336	536	543

ANALYTICAL AND FLOW DATA INDEX—Continued

STATION	Radioactivity Determinations	Plankton Populations	Organic Chemicals	Chemical, Physical and Bacteriological Analyses	Flow Data	Strontium 90	Trace Elements
	Page No.	Page No.	Page No.	Page No.	Page No.	Page No.	Page No.
Ohio River at Cairo, Ill. at Evansville, Ind. at Louisville, Ky. at Cincinnati, Ohio. at Huntington, W. Va. at East Liverpool, Ohio	337 343 349 354 360 367	338 344 350 355 361 368	339 345 351 356 362 369	340–341 346–347 352 357–358 363–365	342 348 353 359 366 370	536 536 536 536 536 536	544 544 544 544 544
Ouachita River at Bastrop, La.	371	372		373	374	536	544
Platte River above Plattsmouth, Nebr.	375	376		377	378	536	544
Potomac River at Great Falls, Md. at Williamsport, Md.	379 385	380 386	381 387	382–383 388–389	384 390	536 536	544 544
Rainy River at Baudette, Minn.	391	392			393	536	
Red River (North) at Grand Forks, N. Dak.	394	395	396	397-398	399	536	544
Red River (South) at Alexandria, La. at Index, Ark. at Denison, Tex.	400 404 409	401 405 410	411	402 406–407 412–414	403 408 415	536 536 536	544 544 544
Rio Grande at Brownsville, Tex. at Laredo, Tex. at El Paso, Tex. below Alamosa, Colo.	416 422 428 433	417 423 429 434	418 424 430	419–420 425–426 431 435	421 427 432 436	536 536 536 536	544 544 544 544

ANALYTICAL AND FLOW DATA INDEX—Continued

STATION	Radioactivity Determinations	Plankton Populations	Organic Chemicals	Chemical, Physical and Bacteriological Analyses	Flow Data	Strontium 90	Trace Elements
	Page No.	Page No.	Page No.	Page No.	Page No.	Page No.	Page No.
Roanoke River at John H. Kerr Dam and Reservoir, Va.	437	438	439	_	440	537	
Sabine River near Ruliff, Tex.	441–442	443	444	445	446	537 537	545 545
St. Lawrence River at Massena, N.Y.	447	448	449	450	451	537	542
San Juan River at Shiprock, N. Mex.	452	453	454	455	456	537	545
Savannah River at Port Wentworth, Ga. at North Augusta, S.C.	457–458 464	459 465	460 466	461–462 467–468	463 469	537 537	545 545
Schuylkill River at Philadelphia, Pa.	470	471	472	473-474	475	537	545
Shenandoah River at Berryville, Va.	476	477	_	478	479	537	545
Snake River at Wawawai, Wash. at Weiser, Idaho	480 486	481 487	482	483–484 488	485 489	537 537	545 545
South Platte River at Julesburg, Colo.	490	491	492	_	493	537	545
Susquehanna River at Conowingo, Md. at Sayre, Pa.	494 500	495 501	496 502	497–498 503–504	499 505	537 537	545 545

ANALYTICAL AND FLOW DATA INDEX-Continued

	Radioactivity Determinations	Plankton Populations	Organic Chemicals	Chemical, Physical and Bacteriological Analyses	Flow Data	Strontium 90	Trace Elements
STATION	Page No.	Page No.	Page No.	Page No.	Page No.	Page No.	Page No.
Tennessee River at Bridgeport, Ala. at Chattanooga, Tenn.	506 511	507 512	508 513	509 514–515	510 516	537 537	545 545
Tombigbee River below Columbus, Miss.			517	_	518	537	
Truckee River at Farad, Calif., below Calif Nev. Border	519	520	. —		521	537	545
Yakima River at Richland, Wash.	522	523	524	525	526	537	545
Yellowstone River near Sidney, Mont.	527	528	529	530-531	532	537	545

The National Water Quality Network

The Public Health Service program for providing fundamental information on the quality of the Nation's waters stems from Public Law 660, approved July 9, 1956, as amended by Public Law 87–88, July 20, 1961. Section 4(c) thereof states: ". . . the Secretary (of Health, Education, and Welfare) shall in cooperation with other Federal, State, and local agencies having related responsibilities, collect and disseminate basic data on chemical, physical, and biological water quality insofar as such data or other information relate to water pollution and the prevention and control thereof."

To fulfill this responsibility, the National Water Quality Network collects, interprets, and disseminates:

- a. Information on changes in water quality at key points in river systems, as such quality may be affected by changes in water use and development.
- b. Continuous information on the nature and extent of pollutants affecting water quality.
- c. Data which will be useful in the development of comprehensive water resources programs.
- d. Data which will assist State, interstate, and other agencies in their water pollution control programs, and in the selection of sites for legitimate water uses.

Some 50 sampling stations were established when the program started, October 1, 1957. By September 30, 1961, the number had grown to 93.

Each sampling location satisfies one or more of the following criteria:

- a. Major waterways used for public water supply, propagation of fish and wildlife, recreational purposes, and agricultural, industrial, and other legitimate uses.
 - b. Interstate, coastal, and international boundary waters.
- c. Waters on which activities of the Federal Government may have an impact.

Sampling station sites are fixed only after consultation with local, State, Federal and other agencies having related interests.

Active local participation is important in this operation. It assures maximum development of all information valuable both locally and nationally. Program costs are shared by the Federal Government and state and local agencies, those of the latter through contributions of laboratory and sampling manpower. Specifically, the State and local agencies perform certain of the conventional chemical analyses and collect samples for the newer, more complex examinations. The Public Health Service, in turn, performs the more complex determinations and makes the results available to the participants and to the public. In addition, the consultation, training facilities, and other resources of the Public Health Service are available to the cooperating agencies.

Locations of sampling stations in operation as of September 30, 1961 are shown on page 12. Descriptions of the stations, participating agencies, and other pertinent information are presented on pages 13 through 20.

Only after careful screening of needs in water resource development was a pattern set for analyses of water samples.

All Network samples are examined for:

- a. Radioactivity.
 - (1) Gross alpha.
 - (2) Gross beta.
 - (3) Strontium 90.
- b. Plankton populations.
- c. Coliform organisms.
- d. Organic chemicals.
- e. Biochemical, chemical, and physical measurements, including biochemical oxygen demand (BOD), dissolved oxygen (DO), chemical oxygen demand (COD), chlorine demand, ammonia nitrogen, hydrogen ion concentration (pH), color turbidity, temperature, alkalinity (or acidity), hardness, chloride, sulfate, phosphates and total dissolved solids.
- f. Sodium, potassium, boron, selenium and trace elements.

Samples for groups c and e, above, were collected and

analyzed weekly. Samples for organic chemicals were collected and analyzed monthly and plankton organism examinations were conducted semimonthly. Water samples for analysis of suspended and dissolved alpha and beta radioactivity were submitted every second week during the first eleven months of the 1960-61 water year from those stations at which counts were close to background. Samples were submitted weekly from all new stations and from those stations at which counts were significantly above background. During the month of September, 1961 samples were collected weekly at all stations. Strontium 90 analyses were made on composites of samples accumulated over 3-month periods, except where indicated otherwise. Generally, one-fourth of the stations were scheduled for this determination during each 3-month period. The stations were selected so that at least one analysis was obtained for each river basin during each quarter, with at least one analysis at each station during the water year. Sodium, potassium, boron, selenium and trace metals were determined on 4-month composites of weekly samples. New parameters which are developed and found significant will be included as the program continues.

Analytical Methods and Reliability of Data

The physical, chemical, and biochemical data included in this publication are the result of cooperative efforts of the agencies listed in column 6, pages 13–20. In general, most of these measurements were contributed by their laboratories. While it is recognized that individual laboratories make minor modifications to meet local conditions, the methods used in most cases are those published in the 11th edition, "Standard Methods for the Examination of Water and Wastewater." For uniformity, the chlorine demand test is reported on the basis of the starch-iodide titration procedure, and the chemical oxygen demand test is restricted to the use of 0.025 N reagents.

To assure continued reliability in the published data, frequent analysis of reference samples by each cooperating

laboratory constitutes an integral part of the overall program. Periodically a synthetic standard sample is provided to each participant for reference analysis. The reported results are reviewed. Any significant errors are called to the attention of the reporting laboratory and, after the cause of the errors has been determined, the previously submitted data are either corrected or discarded. From these findings, the analyses reported in this compilation are believed to be accurate to $\pm\,10$ percent of the reported values.

The analytical methods used by the Public Health Service laboratories are described in the discussion of water quality parameters which follows, and are covered by several of the references listed in the Bibliography.

Water Quality Parameters

In the assessment of water quality all of the legitimate purposes for which raw waters can be used, and which may be affected by pollution, must be considered. These may range from the minimum requirements necessary for navigation to the ultimate in water quality demanded for special industrial processing. Quality needs differ considerably, therefore, according to water use.

For domestic use, water must be free of disease organisms, clear, colorless, taste- and odor-free, and have a relatively low dissolved mineral content. Agricultural water is judged primarily on its mineral content, especially with respect to the ratio of sodium to other cations, and the presence of boron. Water for fish propagation and recreational purposes must be relatively free from domestic and industrial pollution and must be able to sustain an active flora of the smaller aquatic organisms on which fish and wildlife feed. Industrial water quality demands run the gamut from the complete absence of minerals to a requirement of low temperature, the critical factor in water used for cooling. The effects of radioactive materials on these uses have not yet been fully appraised.

The various laboratory examinations made as part of this program are discussed below.

Radioactivity

Radioactivity, long recognized as a contaminant of water from natural sources, has continued to grow in importance and health significance with the development of nuclear energy for both military and peaceful uses. Consequently, levels must be measured continually as new sources are established.

Gross alpha and beta measurements are made on both suspended and dissolved solids in the raw surface water samples. The total radioactivity in the dissolved solids provides a rough measure of the levels which may be found in a treated water, where water treatment removes substantially all of the suspended matter.

Alpha levels reflect largely the activity added by uranium and thorium daughters. Beta activity levels generally reflect the variable contamination resulting from fallout and discharges from nuclear energy installations, institutions utilizing radioactive materials, and other manmade sources.

Gross levels are most informative in evaluating long-term trends or changes in water quality. By themselves, however, they are of limited value in assessing radiation exposure. Where gross results are consistently over the maximum permissible concentrations for mixed fission products, the identity of the specific radionuclides involved must be established.

Because of its significance in the environment, the concentration of Strontium 90 in the total solids is also reported. The levels found were all low and considerably less than the limit (10 $\mu\mu$ c/1) specified in the Public Health Service Drinking Water Standards (22, 23). Decreases in Strontium 90 levels were observed at all stations of the National Water Quality Network with the exception of one Mississippi River station where very slight increases were observed. The period (1960–61 water year) may be used to establish a base line for Strontium 90 levels for the National Water Quality Network.

Populations of Plankton

Many aquatic organisms are sensitive to the various substances which enrich or pollute water. Some of these develop only in relatively clean water, while others may be stimulated to live and multiply in the presence of certain types of pollutants, especially household sewage and certain kinds of industrial wastes. On the other hand, excessive toxic substances may reduce or eradicate planktonic crops. Large populations of algae are sometimes induced to develop by mineralized products of sewage decomposition when nitrates and phosphates are made available as nutrients. Planktonic organisms are also important because of their ability to concentrate a wide variety of radionuclides. Impoundment of water by navigation or hydroelectric dams often increases the density of planktonic blooms.

The plankton data give the numbers, kinds and occurrences of algae and other aquatic microorganisms in the water. This information is useful in determining the pollutional status of any water resource, and in indicating the relative numbers of organisms which may cause problems in the treatment and use of water.

These organisms interfere with water use through shortening of filter runs in treatment plants, and by causing tastes, odors, coloration and various chemical and physical changes in the water environment. By regular and frequent reference to the plankton counts, it is possible to determine the procedures that will be required in treating the water for use.

In the stream or lake itself, many planktonic organisms are known to improve water quality by providing food and oxygen for desirable aquatic life and by aiding in the recovery of polluted water. They may form unsightly blooms, mats and slime growths; release toxic products which kill fish and other animals; and, upon dying and decomposing, exert a biochemical oxygen demand which uses up all oxygen in the water.

Domestic and industrial wastes influence the kinds and numbers (or diversity) of organisms. Hence, plankton may reflect changes in water quality resulting from changes in the wastes containing suspended and dissolved substances. In addition, each geologic area of the United States has a distinctive phytoplankton flora.

Relatively low phytoplankton counts ordinarily occur at sampling stations on the Great Lakes, the Columbia River, and on many rivers in the Southeast. Such stations as Ponca City, Okla., Peoria, Ill., and Minneapolis, Minn., show extremely high counts, but with lower species diversity. Waters receiving heavy organic waste loads at Winfield, W. Va., on the Kanawha River and on the upper Ohio River, however, show low plankton counts, probably resulting from toxic effects.

Data on plankton dynamics will be particularly useful in water quality evaluation when they have been recorded over a long period to indicate variations in kinds and numbers from month to month and from year to year.

Counting Procedures

The identification and enumeration procedures aim for maximum accuracy in the data reported. They strive to simplify and standardize methods of enumerating each of the many organisms observed. The volume of samples analyzed is relatively large, which tends to produce greater accuracy. Organisms are identified to genus or generic group; the diatoms are further identified to species.

Sampling is conducted semi-monthly. Each sample consists of three liters of raw water, collected directly from the stream or a treatment plant intake. The sample is preserved during shipment by adding 100 ml. of preservative solution (0.16 percent Thimerosal plus 1 percent Lugol's solution).

Phytoplankters are counted on the Sedgwick-Rafter slide. The analysis for nannoplankton is made by counting a 100-mm. strip on the Sedgwick-Rafter slide, using a 200× mag-

nification. The tiny centric and pennate diatoms (those not forming filaments or colonies) are identified from specially prepared hyrax slides using 900× magnification and apochromatic resolution.

Rotifers, crustacea and other microinvertebrates are enumerated under a compound microscope at $100 \times$ magnification. A raw liter sample is settled and the sediment, when necessary, is washed of colloidal material and tiny silt particles. These microinvertebrates are counted in a special slide measuring $80 \times 50 \times 2$ mm. These animals are known to be heavy consumers of phytoplankton and organic detritus, and they are an important link in the food chain supporting fish populations.

Identification of diatom species and their proportional census is done from incinerated frustules of diatoms settled and washed from a liter of sample. The washed sediment containing the diatoms is dried on a warming table on a number one coverglass, and this sediment is ashed in place on the coverslip on a red-hot hotplate. This method does not appear to change the minute identification markings of the siliceous cell walls and enables the two valves (epitheca and hypotheca), as well as the groups of cells attached to one another to remain in a natural grouping, so that Sedgwick-Rafter counts and proportional counts can be matched. Chemical cleaning was abandoned because bubbling separated the valves and distorted natural cell grouping and tended to inflate the actual count. Permanent slide mounts are made with hyrax medium. The technique of settling, washing in distilled water and mounting does not appear to alter the uniformity of the diatom species composition. Proportional counts are made with 90-power oil immersion apochromatic objectives and 10-power oculars containing a Whipple micrometer grid. Random strip counts are made until the total number of units reaches two hundred to three hundred.

Proportional counting of diatoms from permanent slides is on a modified unit-area basis, in which each single cell or each portion of a natural aggregate occupying up to 300 square microns (μ^2) is tallied as one unit, cells or aggregates occupying

from 300 to 1,000 μ^2 as two, those 1,000 to 2,500 μ^2 as three, those 2,500 to 5,000 μ^2 as four and those over 5,000 μ^2 as five. The Whipple grid makes this scaling simple. This system gives a slight weighting to the larger specimens and colonies, which are seldom numerically abundant, but it is basically the same as the Sedgwick-Rafter count used for enumerating the other phytoplankters. About 95 percent of the cells or clumps naturally fall into size class one or two.

Organic Chemicals

The Nation's water resources continue to receive increasing quantities of organic contaminants. Since 1940 the chemical industry, particularly in the manufacture of synthetic and petrochemicals, has experienced an enormous expansion that shows every sign of continuing. Each year millions of pounds of synthetic detergents, insecticides, herbicides, and similar domestic products find their way into our streams from household sewers, industrial waste discharges, and land runoff.

Effective and economical treatment methods for most of the complex organic materials remain to be developed. Even where treatment exists, residues may remain in sufficient quantity to cause water damage. These stable residues persist through sewage treatment, biological and chemical action of the stream, and water treatment processes, and finally reach the consumer in drinking water.

The presence of some of these materials, even at concentrations considerably less than 1 part per million, may impair water quality, most noticeably in production of tastes and odors. Fishflesh tainting, also quickly noticed by the consumer, is another damage. Effects on water treatment, many of which are ill-defined at present, and impairment of water quality for industrial uses are being reported with increasing frequency. Essentially nothing is known of the possible immediate or long-term effects of these materials on human health. Such information is urgently needed.

The usual sanitary analyses are not effective in measuring

these newer organic contaminants. Yet it is essential to know something of their concentrations and character. A method known as the "Carbon Adsorption Technique," developed by the Public Health Service, permits the concentration of these organic compounds from a large volume of water. Elution of the adsorbed materials with organic solvents, followed by chemical separation and testing, provides useful information concerning organic pollution and for assaying river systems for these substances.

Field studies, replicate samples taken simultaneously from the same source, and subsequent replicate analysis, indicate a reproducibility for a single source, of ± 10 percent. Moreover, experiments conducted in the laboratory with known solutions of organic substances indicate that adsorption efficiencies may approach 100 percent under carefully controlled conditions. However, data from many individual samples collected on different river systems strongly suggest that the adsorption efficiency may vary because of differences in the adsorbability of the particular substances present at a sampling site. The results of desorption efficiency tests run in the laboratory range from 50 to 90 percent. Therefore, comparison of results on a quantitative basis should be approached with caution.

Following continuous flow of about 5,000 gallons of water through the carbon adsorption column over a 7- to 10-day period, material on the carbon adsorption column is extracted with two solvents, chloroform and alcohol.

The extracts are weighed, and the concentration of these materials in the water sampled is then computed. Results are recorded in parts per billion (micrograms per liter). Clean waters may contain 20 to 50 ppb. of chloroform extractables and 50 to 100 ppb. of alcohol extractables. Polluted waters contain several times these concentrations.

Chloroform Extracts

The organic residue recovered from the carbon adsorp-

tion column by chloroform is very complex. It is desirable to separate the crude extract into certain broad chemical classes, and this can be done on the basis of solubility differences. The various classes or groups and their general significance are discussed briefly below.

Ether Insolubles

This group is usually a brown, humus-like powder, apparently composed to a large extent of carboxylic acids, ketones, and alcohols of complicated structure. Origin of the group, which is an indicator of "old" pollution, is believed to be partially oxidized sewage and industrial wastes. For example, the Ohio River at Cincinnati has been exposed to much industrial and sewage pollution, and hence large amounts of ether insoluble materials are found. Streams with little or no pollution history have little or no ether insolubles. Chloroform extracts contain from 0 to 30 percent of ether insoluble material.

Water Solubles

These substances are largely acidic and undistillable at moderate temperatures, but their solubility in ether indicates that the molecules are smaller and probably simpler than the ether-solubles. On the other hand, their water solubility practically requires the presence of several functional groups, such as hydroxy-acid, keto-acid, and keto-alcohol. Such compounds probably originate from partial oxidation of hydrocarbons or they may be natural substances. They have very little odor. These materials usually make up 10 to 20 percent of the total extract.

Weak Acids

This group is characterized by being removed from ether solution with sodium hydroxide but not with sodium bicarbonate. Phenols are the best known weak acids, and if present in the water, appear in this group. Other weakly acidic com-

pounds include certain enols, imides, sulfonamides, and some sulfur compounds. This group of materials also occurs in nature. The weak acids are odorous, and commonly constitute 5 to 20 percent of the chloroform extract.

Strong Acids

These acids are usually carboxylic acids such as acetic, benzoic, salicylic, or butyric. Although classified as strong in reference to carbonic acid, they are actually weak when compared with a mineral acid, such as sulfuric. Many of the compounds are used industrially, but may also be produced by natural processes, such as fermentation. Some of the materials are highly odorous. This fraction makes up from 5 to 20 percent of the total. The significance of the strong acids can be interpreted only in the light of stream pollution conditions.

Bases

These compounds are organic amines. Such materials as aniline and pyridine are amines of commerce. Lower amines may occur as a result of decomposition. Although odorous, the low concentrations found are not likely to cause objectionable conditions. However, in the case of specific amine-containing wastes the compounds can be of considerable significance. Generally, only 1 or 2 percent of the total extract is made up of the bases.

Neutrals

This group frequently constitutes the major portion of the chloroform extract. Neither basic nor acidic, the materials are less reactive and tend to persist in streams longer than many other types. Hydrocarbons, aldehydes, ketones, esters, and ethers are examples of neutral materials. The group lends itself to further fractionation by means of chromatographic separation into aliphatic, aromatic, and oxygenated subgroups: Aliphatics: This portion represents petroleum type hydrocarbons in a considerable state of purity, and is usually made up of mineral oil type of material. The percentage of aliphatics present yields important information about the possible source of pollution, since petroleum is the most likely source.

Aromatics: These are principally the coal tar hydrocarbons such as benzene, toluene, and a host of others, and their presence in any significant amount is a reliable indication of industrial pollution. Further, the materials can frequently be identified by infrared spectrophotometry. Some aromatic compounds which have been found in our rivers—and in our drinking water—include DDT, aldrin, phyenyl ether, orthonitrochlorobenzene, pyridine, phenol, and others. The materials are highly odorous, and may also be toxic. Their appearance in any quantity as pollutants should receive careful evaluation.

Oxygenated compounds (Oxys): These are the neutral compounds containing oxygen, such as aldehydes, ketones, and esters. They may have originated by direct discharge or may represent oxidation products from both natural and industrial materials. They help to indicate the "age" of the pollution, since pollution exposed to oxidation forces for a long time would be expected to contain large amounts of oxys. The oxy materials are odorous.

Losses

Manipulative losses inherent in this type of separation may amount to 10 to 15 percent. Losses greater than this may indicate that volatile components were lost from the sample. Such volatiles may have significance as pollutants.

Alcohol Extracts

The alcohol extractables generally consist of materials more polar than the chloroform extractables. They often

contain synthetic detergents, carboxylic acids and humic materials which may originate naturally or from oxidized products of domestic and industrial wastes. These classes of substances are not quantitatively recovered by the alcohol extraction. For example, this extraction recovers only 20 to 30 percent of the synthetic detergents present. On waters of mixed industrial and domestic pollution, the chloroform and alcohol extractables may be about equal. On some streams where the industrial pollution is rather low and much natural pollution or sewage is present, the alcohol extractables may exceed the chloroform extractables by a factor of 4 to 6.

The alcohol extract is usually only partially soluble in water and most ordinary solvents. Very little further chemical separation of this material is currently practical. However, tests have revealed that synthetic detergents may make up 1 to 12 percent of the alcohol extract.

Other Tests

Infrared spectra are routinely run on the total chloroform and alcohol extracts as well as the neutral, aliphatic, aromatic and oxygenated groups which are usually the most significant. Spectra of other groups are obtained when there is an indication that they may be significant. These spectra reveal something of the chemical structure of the materials, indicate differences and in certain instances provide a definite identification. In the case of the alcohol extracts, the infrared spectra will indicate the presence of synthetic detergents if the materials constitute a significant portion.

Composite Analysis

Samples from certain locations have been selected for analysis on a quarterly composite basis. Stations that have collected at least twelve samples in a nearly consecutive manner and averaged 100 ppb. or less of chloroform extractables are selected for such analysis when certain other conditions are met. However, samples falling in this category are analyzed individ-

ually when the recovery of the chloroform extract is exceptionally high and/or it is unusual in its infrared spectrum or some other physical characteristic.

Specific Identifications

Among 72 stations equipped with the carbon adsorption apparatus the highest single, and station average, values were noted on the Kanawha River at Winfield, W. Va. The highest single and station average values for alcohol extractables were found on the Ohio River at East Liverpool. The samples taken on the Animas River at Cedar Hill, N. Mex., recorded the lowest single and station average values for alcohol as well as chloroform extractables.

In spite of the fact that alcoholic extraction recovers only 20 to 30 percent of the detergents adsorbed on the carbon, detergents were identified in samples from 29 (40%) active stations. At 14 stations (19%) every sample collected contained detergents.

In December, 1960, alpha-conidendrin was identified in a sample collected on the Snake River at Wawawai, Wash. This material is a relatively innocuous natural constituent of conferous trees and can, of course, be a by-product of the pulping process. This compound was not found in subsequent samples.

Infrared spectra of samples from stations on the Colorado River at Yuma, Ariz., Parker Dam and Hoover Dam indicated the presence of an unsaturated aliphatic compound which was not detected further upstream and which presumably persisted as far as Yuma, Ariz.

Chemical, Physical, and Bacteriological Examinations

The various biochemical, chemical, physical, and bacteriological examinations generally performed by the participating laboratories are discussed below.

Ammonia Nitrogen and Chlorine Demand

The cost of water treatment for domestic use is affected by the consumption of chlorine, with ammonia nitrogen being responsible for a large portion of the chlorine demand. The greater this demand, the more expensive is the treatment. The ammonia may originate from unstabilized domestic pollution, from industrial waste discharges, from run-off containing fertilizers used in farming operations or from all three. The presence of measurable quantities of nitrogen compounds, not necessarily ammonia, is also an indication of the fertility of the stream toward both macro- and micro-biological forms.

Color

Color in domestic water supplies is undesirable. Its removal in the water treatment process, whether it be from natural or industrial sources, may require large doses of chemicals and be expensive.

Dissolved Oxygen, Biochemical and Chemical Oxygen Demands

Biochemical processes, in which aquatic organisms attack and stabilize the organic matter present, require dissolved oxygen. If unstable oxidizable organic matter is present in excess, the organisms will multiply rapidly, consuming the oxygen present in the water, and bring about a foul, septic stream condition. The dissolved oxygen level thus serves to indicate the

biochemical activity of the stream. High activity, resulting in low dissolved oxygen levels, will drive out game fish in favor of scavengers. Very low or zero oxygen levels will kill all fish and aquatic organisms dependent on dissolved oxygen for life. Temperature and reaeration rates also affect dissolved oxygen levels.

The 5-day biochemical oxygen demand (BOD) indicates the degree of unstabilized organic pollution from either domestic or industrial sources, to which the stream is being subjected. A significant demand will affect the fish and macroorganism population, and waters carrying a high BOD seldom contain game fish. On the other hand, game fish will thrive in streams in which the oxygen demand has been stabilized, as this condition is usually favorable for the growth of organisms on which fish feed.

The chemical oxygen demand analysis serves to support the findings of the biochemical oxygen demand test. It too may indicate to what extent the waste load of the stream has been stabilized, or it may indicate the presence of organic and inorganic pollution which is not readily oxidized by biological processes. Because the chemical oxygen demand can be determined quickly in comparison to the biochemical oxygen demand, the establishment of a correlation between the two parameters serves to reduce the number of the latter determinations required. The chemical demand results are nearly always higher than the biochemical demand.

Temperature

Temperature is particularly important to conservation and industry. A few degrees elevation in temperature due to cooling water discharges may seriously limit the capacity of a stream to support fish life. Also, high water temperatures increase the cost of cooling water for industrial operations. Cooling towers and other equipment for handling cooling water must be engineered to the temperature levels normally encountered.

Mineral Constituents

These determinations include alkalinity, hydrogen-ion concentration (pH), hardness, chlorides, sulfates, and total dissolved solids. The pH indicates whether water is acidic or alkaline, corrosive or passive. Alkalinity is a measure of the neutralization reserve present, or the extent to which the water can resist a change from an alkaline to an acid condition upon addition of acidic chemicals. This information is important to the water treatment plant operator and to many other water users.

Hardness is not only a measure of the soap consuming property, but is also of importance in the treatment of boiler waters, where removal of hardness is one of the most important functions. Chloride, sulfate, and total dissolved solids add further information on the gross dissolved mineral content carried by the stream. These are of great importance when considering the taste or palatability of water. They are also important when the water is being demineralized for specific industrial processes, since the cost of demineralization is a direct function of the dissolved solids content of the water. In addition, waters of high saline content are less desirable and may at times even be unfit for municipal, irrigation, and other uses.

Turbidity

Turbidity of water is due to the suspension of clay, silt, finely divided organic matter, microscopic organisms, and other similar materials. Its presence is of particular importance in water treatment processes and in the propagation of fish and other aquatic life.

Coliform Organisms

Information regarding fecal pollution is essential to water quality measurements. Data on coliforms help to point up the trends in the effectiveness of control of domestic waste discharges.

The delayed incubation membrane filter technique is used for the coliform examinations, instead of the fermentation tube (MPN) method. The latter would necessitate transport of water samples to the laboratory for examination, resulting in a time lapse between collection and examination which significantly changes the microbial content of the samples. Also, some of the many other bacteria present in raw water might overgrow or otherwise inhibit the demonstration of the coliforms. In the delayed incubation membrane filter procedure, the bacterial organisms are removed from the fluid sample immediately after collection and sent to the laboratory on a preservative medium. Thus, the resulting coliform count approaches very closely the actual number of collection.

Trace Elements and Other Determinations

This year's data include the examination of two series of composite samples of raw water from each station for the dissolved constituents likely to be present in trace quantities or whose significance does not warrant more frequent analysis. Twice during the year, 4-month composites of the weekly samples were prepared and subjected to analysis. Examinations covered those elements which were considered to have possible physiological or toxicological significance to biological life and for which a reliable method was available. As new methods are developed, other determinations will be included. The ultimate goal of this phase of the program will be to provide background data on all elements which may be found in water and which may be of significance in water quality management.

In carrying out the spectrographic examination, the sample is first passed through a membrane filter to remove all suspended matter. An aliquot of the sample is then taken,

acidified with hydrochloric acid, and evaporated to a concentration containing 2 mg. of solids in 0.1 ml. of sample (20,000 ppm.). A 0.5-ml. portion of the concentrated sample is then placed on the electrode and arced to completion. Sample exposure is made through a stepped sector disc. The exposed plate is compared to a standard plate prepared under identical conditions.

Waters with low dissolved solids content can be concentrated to a greater degree than those having a high dissolved solids content, thus accounting for the apparently variable sensitivity shown in the tabulation. Values followed by an asterisk (*) show the limits of sensitivity at which the test was performed, and indicate that the ion being measured was not detected at that level. It is known that trace concentrations of many ions are subject to precipitation and adsorption on container surfaces during storage. This especially applies to iron and manganese which are particularly subject to oxi-

dation and precipitation during storage. Hence, all the values reported by spectrographic method represent the quantity of the particular metal in solution at the time of analysis. It should be emphasized that the spectrographic analyses are semi-quantitative and represent an approximation of the actual value.

The measurement of potassium, sodium, fluoride, selenium and boron are performed according to flame or colorimetric procedures and are quantitative. The results, however, are rounded off to the significant figures reported.

The Cheng method, as given in Analytical Chemistry, 28:1738(1956) was used for the selenium measurement. Fluoride examinations were made by the SPADNS procedure described by Bellack and Shouboe in Analytical Chemistry, 30:2032 (1958). Boron was measured by the curcumin procedure outlined in Standard Methods for the Examination of Water and Wastewater, Eleventh Edition, 1960.

Stream Flow

Stream flow data have a most important role in the utilization of water quality parameters such as are included in this report. For this reason, average daily flow records are reported for most of the sampling stations in the Network.

All flow data included in this compilation are provisional data furnished by the agencies credited, and are subject to revision by such agencies prior to any final publication. With the exceptions mentioned below, the flows are given as furnished to the Public Health Service.

The data were generally furnished in units of cubic feet per second. In general only the first three digits were considered significant. Because of machine limitations the data are reported here in thousand cubic feet per second. Even though three zeros may appear after the decimal, no artificial accuracy of measurement is implied. Only the first

three digits should be considered significant. There are two exceptions: (1) When the flow was over 1 million cubic feet per second, the first four digits are reported, and (2) at times when the Rio Grande flows were extremely low, the data were reported to tenths of a cubic foot per second. These figures are published showing 4 decimal places.

Flow data for sampling stations on the rivers of the Great Lakes system are reported as the monthly mean flow, as computed by the U.S. Lake Survey. In certain other rivers, flow data were computed by the Public Health Service from information supplied by the gauging agency. This was done for sampling stations on the Columbia River at Clatskanie and Bonneville Dam, Oreg., and Pasco, Wash.; for Northfield, Mass., on the Connecticut River; for Williamsport, Md., on the Potomac; and for Brownsville, Tex., on the Rio Grande.

		SAMPLIN	IG STATIONS, COOPE	RATING AGENCIES	S, AND STREAM FLO		AM FLOW RECORDS	
	MILES ABOVE MOUTH	DESCRIPTION	SAMPLED BY	FIELD ANALYSES BY	OTHER COOPERATING AGENCIES	NEAREST GAGING STATION	OPERATED BY	PERIOD OF RECORD
ALLEGHENY RIVER at Pitteburgh, Pa.	8	Pittsburgh Filtration Plant Intake	Pittsburgh Dept. of Water	Pittsburgh Dept. of Water	Pennsylvania Dept. of Health	Natrona, Pa.	U.S. Geological Survey	1938 to date
ANIMAS RIVER at Cedar Hill, N. Mex.	33	Heizer Ranch at natural gas	San Juan County Health Dept.	San Juan County Health Dept.	New Mexico Dept. of Public Health	Near Cedar Hill, W. Mex.	U.S. Geological Survey	1936 to date
APALACHICOLA RIVER at Chattahoochee, Fla.	105	Jim Woodruff Dam Powerhouse	U.S. Army Corps of Engineers Florida State Hospital Chattahoochee, Fla.	Florida State Hospital	Florida State Board of Health	Chattahorohee, Fla.	U.S. Geological Survey	1928 to date
ARKANSAS RIVER at Pendleton Ferry, Ark.	45	Ferry Landing, South Shore	Arkansas State Water Follution Control Commission	Arkansas State Water Pollution Control Commission	Arkansas State Board of Realth	Little Rock, Arkansas	U.S. Gnological Survey	1927 to date
near Ponca City, Okla.	646	Old U.S. Highway No.60 Bridge (formerly at Osage Station, Okla, Gas & Blectric Co.)	Ponca City Water Dept.	Ponca City Water Dept. U.S. Public Health Service	Oklahoma State Dept. of Health	Ralston, Oklahoma	U.S. Geological Survey	1938 to date
at Coolidge, Kansas	1,099	U.S. Geological Survey Stream Caging Station	U.S. Geological Survey	U.S. Public Health Service	Kansas State Board of Health Colorado State Dept. of Health	near Coolidge, Kansas	U.S. Geological Survey	1903, 1921 1950 to date
BIG SIOUX RIVER below Sioux Falls, S.D.	158	lst bridge east of U.S. Hgwy. #229 below Sioux Falls	Sioux Falls Sewage Treatment Plant	Sioux Falls Sewage Treatment Plant	South Dakota Dept. of Health	Brandon, S. D.	U.S. Geological Survey	1959 to date
CHATTAHOOCHER RIVER at Columbus, Georgia	160	Columbus Water Dept. Plant Intake	Columbus Water Dept.	Columbus Water Dept.	Georgia Dept. of Public Health	Columbus, Georgia	U.S. Geological Survey	1929 to date
at Atlanta, Georgia	303	Atlanta Water Dept. Plant Intake	Atlanta Water Dept.	Atlanta Water Dept.	Georgia Dept. of Public Health	Atlanta, Georgia	U.S. Geological Survey	1928, 1931 1936 to date
COLORADO RIVER at Yuma, Arizona	91	Arizona Water Co. Intake	Arizona Water Co.	Arizona Water Co.	Arizona State Dept. of Health	Below Yuma, Arizona	U.S. Geological Survey	1878 to date
above Parker Dam, Arizona-Ualifornia	258	Aqueduct Intake, Metropolitan Water District of Southern Galifornia	Metropolitan Water District of Southern California	Metropolitan Water Distr. of Southern California U.S. Public Health Service	California State Dept. of Health California State Water Pollution Control Board	Below Parker Dan	U.S. Geological Survey	1934 to date
near Boulder City, Nevada	413	Boulder City (Nevada) Water Flant Intake	Boulder City Water Dept.	Boulder City Water Dept.	Nevada State Dept. of Public Health U.S. Bureau of Reclamation	Below Hoover Dam	Through U.S. Geological Survey U.S. Eureau of Reclamation	1935 to date

	1	JAIVII LI	NG SIATIONS, COOF	LITATING AGENCIE	S, AND STREAM FLO	W RECORDS		
	MILES				OTHER	STR	EAM FLOW RECORDS	
STATION	ABOVE MOUTH	DESCRIPTION	SAMPLED BY	FIELD ANALYSES BY	COOPERATING AGENCIES	NEAREST GAGING STATION	OPERATED BY	PERIOD OF RECORD
COLORADO RIVER (Contid.) at Page, Arizona	775	Page Water Plant Intake	U.S. Eureau of Reclamation	U.S. Bureau of Reclamation	Arizona State Dept. of Health Utah State Dept. of Health	Lees Ferry, Arizona	U.S. Geological Survey	1911 to date
at Loma, Colorado	1,150	Pumping Station at E. R. Smith Farm	Mesa County (Colorado) Dept. of Public Health	Grand Junction (Colorado) Water Dept.	Colorado State Dept. of Public Health	Near Colorado-Utah State Line	U.S. Geological Survey	1951 to date
COLUMBIA RIVER at Clatskanie, Oregon	53	Beaver Army Terminal U.S. Army Transp., Supply & Maintenance Command	U.S. Army U.S. Public Health Service	Oregon State Sanitary Authority U.S. Public Health Service		Clatskanie, Oregon *	U.S. Geological Survey	1926 to date
at Bonneville, Oregon	145	Bonneville Dam Powerhouse	U.S. Army Corps of Engineers	Crown Zellerbach Corp.	Oregon State Sanitary Authority Washington State Dept. of Health Washington State Pollution Control Commission	Bonneville, Oregon *	U.S. Geological Survey	1928 to date
at McNary Dam, Oregon	292	U.S. Army Engineer Project McNary Dam	U.S. Corps of Engineers Washington State Pollution Control Commission	U.S. Geological Survey	Washington State Dept. of Health	Below McNary Dam, Oregon	U.S. Geological Survey	1951 to date
at Pasco, Washington	327	Municipal Water Plant Intake	Pasco Water Dept.	Pasco Water Dept.	Washington State Dept. of Realth Washington State Pollution Control Commission	Pasco, Washington *	U.S. Geological Survey	1933 to date
at Wenatchee, Wash.	465	Plant Intake, Aluminum Co. of America	Aluminum Co. of America	Aluminum Co. of America	Washington State Dept. of Health Washington State Pollution Control Commission	Trinidad, Washington	U.S. Geological Survey	1913 to date
COMMECTICUT RIVER below Northfield, Mass.	138	Gentral Vermont R.R. Bridge	Massachusetts State Dept. of Public Health	Massachusetts State Dept. of Public Health (Amherst Laboratory)		Vernon, Vermont ◆	U.S. Geological Survey	1936, 1938 1944 to date
CUMBERLAND RIVER at Clarksville, Tenn.	120	Olarkeville Water Treatment Plant Intake	Clarkeville Gae & Water Dept.	Clarksville Gas & Water Dept.	Tennessee Dept. of Public Health	Dover, Tennessee	U.S. Geological Survey	1939 to date
DELAWARE RIVER at Philadelphia, Pa.	110	Municipal Water Plant Intake (Torresdale Plant)	Philadelphia Water Dept.	Philadelphia Water Dept.	Pennsylvania State Dept. of Health	Trenton, New Jersey	U.S. Geological Survey	1913 to date
at Martins Creek, Pa.	191	at Martins Creek Steam Electric Station	Pennsylvania Fower & Light Company	Pennsylvania Power & Light Company	Pennsylvania State Dept. of Health	Belwidere, New Jersey	U.S. Geological Survey	1922 to date
ESCAMBIA RIVER at Century, Florida	51	Highway Bridge on State Route #4	Florida State Board of Health	Florida State Board of Health		Near Century, Florida	U.S. Geological Survey	1934 to date

*Computed Data

	MILES				071170	STRE	AM FLOW RECORDS	
STATION	ABOVE MOUTH	DESCRIPTION	SAMPLED BY	FIELD ANALYSES BY	OTHER COOPERATING AGENCIES	NEAREST GAGING STATION	OPERATED BY	PERIOD OF RECORD
REAT LAKES Lake Erie at Buffalo, New York	-	Municipal Water Plant Intake	Buffalo Water Dept. Brie County (N.Y.) Health Dept.	Zrie County (N.Y.) Health Dept.	New York State Dept. of Health	Cleveland, Ohio (Water Stages only)	U.S. Lake Survey	1900 to date
Detroit River at Detroit, Michigan	29	Municipal Water Plant Intake (Water Works Park)	Detroit Board of Water Commissioners	Detroit Board of Water Commissioners	Michigan State Dept. of Health Michigan State Water Resources Commission	Detroit, Michigan	U.S. Lake Survey	1936 to date
St. Clair River at Port Euron, Michigan	38	Municipal Water Plant Intake	City of Port Huron, Mich.	City of Port Buron, Mich.	Michigan State Dept. of Health International Joint Commission Michigan State Water Resources Board	Ft. Gratiot, Michigan	U.S. Lake Survey	1900 to date
Lake Michigan at Gary, Indiana	-	Gary-Hobart Water Corp. Intake	Gary-Hobert Water Corp.	Gary-Hobart Water Corp.	Indiana State Board of Health	Milwaukee, Wisconsin (Water Stages only)	U.S. Leke Survey	1905 to date
Lake Michigan at Milwaukee, Wisconsin	-	Municipal Water Flant Intake	City of Milwaukee, Wisconsin	City of Milwaukee, Wisc.	Wisconsin State Board of Health	Milwaukee, Wisconsin	U.S. Lake Survey	1860 to date
St. Marye River at Sault Ste. Marie, Michigan	48	Municipal Water Plant Intake	Sault Ste. Marie Water Dept.	Sault Ste. Marie Water Dept.	Michigan State Dept. of Health	Sault Ste. Marie, Mich.	U.S. Lake Survey	1900 to date
Lake Superior at Duluth, Minnesota	-	Municipal Water Plant Intake	Duluth Water, Gas & Sewage Treatment Dept.	Duluth Water, Gas & Sewage Treatment Dept.	Minnesota State Dept. of Health	Marquette, Michigan	U.S. Lake Survey	1900 to date
HUDSON RIVER below Poughkeepsie, New York	70 (est.)	International Business Machine Corp. Flant Intake	International Business Machine Corp.	International Eusiness Machine Corp. New York State Dept. of Health	New York State Dept. of Health	Green Island, New York	U.S. Geological Survey	1946 to date
ILLINOIS RIVER at Pecria, Illinois	166	Peoria Water Works Company Plant Intake	Peoria Water Works Company	Peoria Water Works Co.	Illinois Dept. of Public Health	Kingston Mines, Illinois	U.S. Geological Survey	1939 to date
KANAWHA RIVER at Winfield Dam, West Virginia	30	Winfield Dam Power Flant	West Virginia Water Resources Commission	West Virginia Water Resources Commission	Kanawha Valley Power Company West Virginia State Dept. of Health	Charleston, West Virginia	U.S. Geological Survey	1939 to date
KLAMATH RIVER at Keno, Oregon	220	below Big Bend Plant of California Oregon Power Co.	California Oregon Power Co. City of Klamath Falls, Orego Klamath County Health Dept.	n Treatment Plant	Oregon State Board of Health	Below Big Hend Power Plant near Keno, Oregon	U.S. Geological Survey	1904-1913 1930 to date
LITTLE MIAMI RIVER at Cincinnati, Chic	2	at Beechmont Levee and U.S. State Highway #125	U.S. Public Health Service	U.S. Putlic Health Servic	e City of Cincinnati, Ohio Ohio Department of Health	Milford, Ohio	U.S. Geological Survey	1915 to date

	MILES	•			OTHER	STR	EAM FLOW RECORDS	
STATION	MOUTH		SAMPLED BY	FIELD ANALYSES BY	COOPERATING AGENCIES	NEAREST GAGING STATION	OPERATED BY	PERIOD OF RECORD
MERRIMACK RIVER above Lowell, Mass.	42	Old Municipal Water Plant Intake	Lowell Water Dept.	Massachusetts State Dept. of Health (Lawrence Experiment Station)		Below Concord River at Lowell, Massachusetts	U.S. Geological Survey	1923 to date
MISSISSIPPI RIVER at New Orleans, La.	105	Municipal Water Plant Intake	New Orleans Sewage and Water Board	Louisiana State Dept. of Health	Louisiana State Dept. of Health	Red River Lending, La.	U.S. Geological Survey	1928 to date
at Vicksburg, Miss.	431	Municipal Water Plant Intake	Vicksburg Water Dept.	Mississippi State Board of Health		Vicksburg, Mississippi	U.S. Geological Survey	1931 to date
at Delta, Louisiana	433	River Landing, Delta Casting Yard, U.S. Corps of Engineers	Mississippi State Board of Health	Mississippi State Board of Health	Louisiana State Dept. of Health	Vicksburg, Mississippi	U.S. Geological Survey	1931 to date
at West Memphis, Ark.	726	Barge Terminal, Oklahoma- Mississippi River Products Lines, Inc.	Memphis (Tennessee) Light, Gas & Water Division	Memphis (Tennessee)Light, Gas & Water Division	Arkaneas State Board of Health Tennessee Dept. of Public Health	Memphis, Tennessee	U.S. Geological Survey	1934 to date
at Cape Girardeau, Mo.	1,020	Missouri Utilities Co. Water Intake	Missouri Utilities Co.	Missouri Utilities Co.	Missouri Division of Health Missouri Water Pollution Board	Thebes, Illinois	U.S. Geological Survey	1933-1938 1939 to date
at East St. Louis, Ill.	1,166	Bast St. Louis Water Co. Intake	East St. Louis Water Co.	East St. Louis Water Co.	Illinois State Dept. of Public Health	Alton, Illinois	U.S. Geological Survey	1933-1938 1939 to date
at Burlington, Iowa	1,369	Municipal Water Plant Intake	Burlington Water Dept.	Burlington Water Dept.	Iowa State Dept. of Health	Keokuk, Iowa	U.S. Geological Survey	1878 to date
at Dubuque, Iowa	1,549	U.S. Army Corps of Engineers Lock & Dam # 11	Dubuque Water Dept.	Dubuque Water Dept.	Iowa State Dept. of Health	McGregor, Iowa	U.S. Geological Survey	1936 to date
Lock & Dam # 3 below St. Paul, Minn.	1,757	U.S. Army Corps of Engineers Lock & Dam # 3	U.S. Army Corps of Engineers, Minneapolis- St. Paul Sanitary Distr.	Minneapolis~St. Paul Sanitary District	Minnesota State Dept. of Fealth	Prescott, Wimconsin	U.S. Geological Survey	1928 to date
MISSOURI RIVER at St. Louis, Missouri	.36	Water Plant Intake, St. Louis County Water Go. and Howard Bend Plant, City of St. Louis	St. Louis County Water Company St. Louis Water Dept.	St. Louis County Water Company St. Louis Water Dept.	Missouri Division of Health Missouri Water Pollution Board	Hermann, Miasouri	U.S. Geological Survey	1897 to date
at Kansas City, Kansas	385	Municipal Water Flant Intake	Kansas City (Kansas) Board of Public Utilities	Kansas City (Kansas) Board of Public Utilities	Kansas State Board of Health	Kansas City, Missouri	U.S. Geological Survey	1897 to date
at St. Joseph, Missouri	471	St. Joseph Water Co. Intake	St. Joseph Water Co.	St. Joseph Water Co.	Missouri Division of Health Missouri Water Pollution Board	St. Joseph, Missouri	U.S. Geological Survey	1927 to date
at Cmaha, Nebraska	642	Metropolitan Utilities Distr. Water Plant Intake	Metropolitan Utilities District	Metropolitan Utilities District	Nebraska State Dept. of Health	Omaiha, Nebraska	U.S. Geological Survey	1928 to date
at Tankton, South Dakota	841	Municipal Water Plant Intake	Yankton Water Dept.	Yankton Water Dept.	Scuth Dakota State Board of Health	Yankton, South Dakota	U.S. Geological Survey	1930 to date
at Bismarck, North Dakota	1,377	Municipal Water Plant Intake	Bismarck Water Dept.	Bismarck Water Dept. North Dakota State Dept. of Health		Bismarok, North Dakota	U.S. Geological Survey	1927 to date

	MILES				071170	STREA	M FLOW RECORDS	
STATION	ABOVE MOUTH	DESCRIPTION	SAMPLED BY	FIELD ANALYSES BY	OTHER COOPERATING AGENCIES	NEAREST GAGING STATION	OPERATED BY	PERIOD OF RECORD
MISSOURI RIVER (Cont'd.) at Williston, North Dakota	1,644	Municipal Water Plant Intake	Williston Water Dept.	Williston Water Dept.	North Dakota State Dept. of Health	Near Williston, North Dakota	U.S. Geological Survey	1928 to date
MONONGAHELA RIVER at Pittsburgb, Pa.	4	Hayes Mine Filter Plant	South Pittsburgh Water Co.	South Pittaburgh Water Co.	Commonwealth of Pennsylvania	Braddock, Pa.	U.S. Geological Survey	1938 to date
NORTH PLATTE RIVER above Henry, Nebraska	500	Above Henry, Nebraska at irrigation diversion dam	West Nebraska Branch Lab. Nebraska State Dept. of Health	West Nebraska Branch Lab.	Nebraska State Dept. of Health Mitchell Irrigation District	Wyoming-Nebrasku State Line	U.S. Geological Survey	1929 to date
OHIC RIVER at Cairo, Illinois	3	Cairo Water Co. Intake	Cairo Water Co.	Cairo Water Co.	Illinois State Dept. of Public Health	Metropolis, Illinois	U.S. Geological Survey	1934 to date
at Evansville, Indiana	190	Municipal Water Plant Intake	Evansville Water Dept.	Evansville Water Dept.	Indiana State Board of Health	Evansville, Indiana	U.S. Geological Survey	1936 to date
at Louisville, Kentucky	370	Louisville Water Co. Filter Plant	Louisville Water Co.	Louisville Water Co.		Louisville, Kentucky	U.S. Geological Survey	1928 to date
at Cincinnati, Chio	518	Municipal Water Plant Intake	Cincinnati Water Dept.	Cincinnati Water Dept.	Ohio State Dept. of Health	Cincinuati, Ohio	U.S. Geological Survey	1936 to date
at Buntington, West	677	Huntington Water Corp.	Huntington Water Corp.	Buntington Water Corp.	West Virginia State Dept. of Health	Runtington, West Virginia	U.S. Geological Survey	1934 to date
Virginia at East Liverpool, Ohio	941	Municipal Water Plant Intake	East Liverpool Water Dept.	East Liverpool Water Dept.	Chio State Dept. of Health	Sewickley, Pennsylvania	U.S. Geological Survey	1933 to date
OUACHITA RIVER at Bastrop, Louisiana	215	River Eank Seven Miles West of Bastrop, Ls.	Louisiana Wildlife & Fisheries Commission	Louisiana Wildlife & Fisheries Commission	Louisiana Stream Control Commission Louisiana State Board of Health	Near Arkansas-Louisiana State Line	U.S. Geological Survey	1958 to date
PLATTE RIVER above Plattsmouth, Nebraska	2	at U.S. Highway # 73 Bridge	Nebraska State Dept. of Health City of Plattemouth	Nebraska State Dept. of Eaalth	*	Louisville, Nebraska	U.S. Geological Survey	1953 to dat
POTOMAC RIVER at Great Falls, Md.	126	Washington, D.C. Water Plant Intake	U.S. Army Corps of Englacers	U.S. Army Corps of Engineers	Maryland State Dept. of Health	Near Washington, D.O.	U.S. Geological Survey	1930 to dat
at Williamsport, Md.	212		Hagerstown Water Dept.	Hagerstown Water Dept.	Maryland State Dept. of Health	Williamsport, Maryland *	U.S. Geological Survey	1928 to dai

*Commuted Data

		SAMPLI	NG STATIONS, COOF	ERATING AGENCIE	S, AND STREAM FLOW	V INECONDS		
	MILES				OTHER	STRI	EAM FLOW RECORDS	
STATION	ABOVE MOUTH	DESCRIPTION	SAMPLED BY	FIELD ANALYSES BY	OTHER COOPERATING AGENCIES	NEAREST GAGING STATION	OPERATED BY	PERIOD OF RECORD
RAINY BIVER at Baudstte, Minnesota	9	Intake at east end of wooden pier of Canadian National Eailroad Bridge	Bandette Light & Power Dept.	U.S. Public Health Service	Minnesota State Dept. of Health	Manitou Rapids, Minnesota	U.S. Geological Survey	July, 1928 to date
RED RIVER (North) at Grand Forka, North Dakota	296	Municipal Water Plant Intake	Grand Forks City Water Dept.	Grand Forks City Water Dept.	North Dakota State Dept. of Health	Grand Forks, North Dakota	U.S. Geological Survey	1901–1957
RED RIVER (South) at Alexandria, Louisiana	122	Pumping Station on Levee Near City Wells	Alexandria Water Dept.	Louisiana State Dept. of Health (New Orleans Laboratory) Louisiana State Dept. of Health (Alexandria Laboratory)	Louisiana State Dept. of Health	Alexandria, Louisiana	Mississippi River Comm. U.S. Army Corps of Engineers	1928-1938 1938 to date
at Index, Arkansas	485	U.S. Highway No. 71 Bridge	Texarkana Water & Sewar Systems Arkansas State Water Pollution Control Commission	Arkansas State Mater Pollution Control Commission	Arkansas State Board of Health	Index, Arkansas	U.S. Geological Survey	1936 to date
at Denison, Texas	726	Denison Dam Power House	U.S. Army Corps of Engineers	Denison Water Dept.	Texas State Dept. of Health	Colbert, Oklahoma	U.S. Army Corps of Engineers	1923 to date
RIO GRANDE at Brownsville, Texas	40	Erownsville Filtration Plant Plant # 1 Intake	Brownsville Water Dept.	Brownsville Water Dept.	Texas State Dept. of Health	Lower Brownsville, Texas *	International Boundary & Water Commission	1934 to date
at Laredo, Texas	356	Municipal Water Plant Intake	Laredo Water Dept.	Laredo Water Dept.	Texas State Dept. of Health	Laredo, Texas	International Boundary & Water Commission	1923 to date
at El Paso, Texas	1,234	Municipal Water Plant Intake	El Paso Public Service Board	El Paso Public Service Ecard	Texas State Dept. of Health	Below Caballo Dam, New Mexico	U.S. Bureau of Reclamation	1938 to date
below Alamosa, Colo.	1,755	Below Alamosa at State Highway # 142 Bridge	Colorado State Dept. of Public Health	Colorado State Dept. of Public Health		Near Lobatos, Colorado	U.S. Geological Survey	1953 to date
ROANOKE RIVER at John H. Kerr Reservoir & Dam, Virginia	151	at John H. Kerr Dam and Reservoir	U.S. Army Corps of Engineers	U.S. Army Corps of Engineers	Virginia State Water Control Board	Bugge Island, Virginia	U.S. Geological Survey	1953 to date
SABINE RIVER near Ruliff, Texas	40	Sabine River Authority Fumping Plant	Sabine River Authority	U.S. Public Health Service	U.S. Geological Survey Texas State Dept. of Health	Near Ruliff, Texas	U.S. Goological Survey	1924 to date
ST. LAWRENCE RIVER at Massena, New York	422	Aluminum Foundry Plant Intake	Chevrolet Motor Div. General Motors Corp. Aluminum Foundry	Chevrolet Motor Div. General Motors Corp. Aluminum Foundry	New York State Dept. of Health	International Rapids Section (St. Lawrence Power Pool)	U.S. Army Corps of Engineers	1860 to date

*Computed Data

			S STATIONS, COOPE			STREA	M FLOW RECORDS	
STATION	MILES ABOVE MOUTH	DESCRIPTION	SAMPLED BY	FIELD ANALYSES BY	OTHER COOPERATING AGENCIES	NEAREST GAGING STATION	OPERATED BY	PERIOD OF RECORD
AN JUAN RIVER at Shiprock, New Mexico	208	At U.S. Eureau of Mines Helium Flant Water Intake	San Juan County Health Dept.	San Juan County Health Dept.	New Mexico Dept. of Public Health	Shiprock, New Mexico	U.S. Geological Survey	1912 to date
AVANNAH RIVER at Port Wentworth, Georgia	22	State Highway No. 17 Bridge	Union Bag-Camp Paper Co. U.S. Army Corps of Engineers	Union Bag-Camp Paper Co. U.S. Public Health Service	Georgia State Dept. of Public Health	Clyo, Georgia	U.S. Geological Survey	1930, 1933 1937 to date
at North Augusta,	217	Municipal Water Flant Intake	Chatham County Health Dept North Augusta Water Dept.	North Augusta Water Dept			U.S. Geological Survey	1898-1906 1927-1931 1938 to date
CHUYLKILL RIVER at Philadelphia, Pa.	10	Municipal Water Plant Intake	Philadelphia Water Dept.	Philadelphia Water Dept.	Pennsylvania Dept. of Health	Philadelphia, Pennsylvania	U.S. Geological Survey	1931 to date
SHENANDOAH RIVER at Berryville, Virginla	22	Corps of Engineers Pumping Station near Berryville, Virginia	U.S. Army Corps of Engineers	U.S. Army Corps of Engineers		Millville, West Yirginia	U.S. Geological Survey	1928 to date
SNAKE RIVER at Wawawai, Washington at Weiser, Idaho	111 (est.) 354	Pumping Station at I. E. Wilson Farm Municipal Water Plant Intake	Washington State University Weiser Water Dept.	Washington State University Woiser Water Dept.	Washington State Dept. of Health Idaho State Board of Health	Near Clarkston, Washington Weiser, Idaho	U.S. Geological Survey	1915 to date
SOUTH PLATTE RIVER at Julesburg, Colorado	87	At Julesburg Sewage Treatment Plant	Northeast Colorado Health Dept.	Northeast Colorado Health Dept.	Colorado State Dept. of Health	Julesburg, Colorado	State of Colorado Dept of Water Resources	. 1902-1906 1903-1921 1925 to date
SUSQUEHANNA RIVER at Conowingo, Maryland	10	Conowingo Hydro Electric Plant, Conowingo Dam	Ealtimore Eureau of Water Supply Philadelphia Electric Co.	Philadelphia Electric	Maryland State Dept. of Health	Marietta, Pennsylvania	U.S. Geological Survey	1931 to dat
at Sayre, Pennsylvan	La 286	Sayre Water Co. Flant Intake		Co. Sayre Water Company	Pennsylvania Dept. of Health	Near Waverly, New York	U.S. Geological Survey	, 1937 to dat
TERNESSET RIVER at Bridgeport, Alaba	ma 408			TVA Stream Pollution Laboratory	Tennesses Dept. of Public Health	Hales Ear, near Chattanooga, Tenn.	U.S. Gaological Survey	y 1930 to day

					S, AND STREAM TEO				
	MILES				OTUED	STREAM FLOW RECORDS			
STATION	ABOVE MOUTH	DESCRIPTION	SAMPLED BY	FIELD ANALYSES BY	OTHER COOPERATING AGENCIES	NEAREST GAGING STATION	OPERATED BY	PERIOD OF RECORD	
TEMPESSEE RIVER (Cont'd.) at Chattanoga, Tennessee	46? (est.)	City Water Company Intuke	City Water Company of Chattanooga	City Water Company of Chattanooga Tennessee Valley Authority	Tennessee State Dept. of Health	Chattanooga, Tennessee	U.S. Geological Survey	1874-1913 1915-1930 1936 to date	
TOMBIGHER RIVER below Columbus, Mississippi	368	At YMOA Camp Pratt, 11 miles south of Columbus, Miss.	Lowndes County Health Dept.	Lowndes County Health Dept.	Mississippi State Eoard of Health	Columbus, Mississippi Steens, Mississippi	U.S. Geological Survey U.S. Geological Survey	1918 to date 1939 to date	
TRUCKEE RIVER at Farad, California below California- Nevada Border	82	Below Farad Power Station of Sierra Pacific Power Co.	Galifornia Dept. of Water Resources	Nevada County Health Dept.	Sierra Pacific Power Co. California Dept. of Public Health Nevada Dept. of Public Health	Farad, California	U.S. Geological Survey	1900-1909 1938 to date	
YAKIMA RIYER at Richland, Washington	5.2	Richland Municipal Water Intake	Gity of Richland, Machington	Richland Water Dept.	Washington State Board of Health Mashington Pollution Control Commission	Kiona, Washington	U.S. Geological Survey	1896-1915 1933-1950 1959 to date	
YELLOWSTONE RIVER near Sidney, Montana	30	Intake - Lewis & Clark Station, Montana-Dakota Utilities Co.	Montana-Dakota Utilities Co.	Montana-Dakota Utilities Co.	Montanu State Board of Health	Near Sidney, Montana	U.S. Geological Survey	1934 to date	
'									

Bibliography

- 1. Cheng, K. L. Determination of Traces of Selenium 3, 3-Diaminobenzidine as Selenium (IV) Organic Reagent. Analytical Chemistry, 28: 1738 (1956).
- 2. Clark, H. F.; Kabler, P. W., and Geldreich, E. E. The Advantages and Limitations of the Membrane Filter. Water and Sewage Works, 104: 9 (1957).
- 3. Geldreich, Edwin E.; Kabler, Paul W.; Jeter, Harold L., and Clark, H. F. A Delayed Incubation Membrane Filter Test. J.A.P.H.A., 46: 11 (1955).
- 4. Goldin, A. S.; Velten, R. J., and Frishkorn, G. W. Determination of Radioactive Strontium. Analytical Chemistry, 31: 1490 (1959).
- 5. Green, Richard S. Basic Data for Water Supply and Water Pollution Control. Sewage and Industrial Wastes Journal, 30: 219 (1958).
- 6. Green, Richard S. The Surveillance of Water Quality Operation of The National Water Quality Network. Proceedings of the Tenth Southern Municipal and Industrial Waste Conference, Department of Civil Engineering, Duke University, Durham, N.C., April 1961.
- 7. Kramer, Harry P. and Kroner, Robert C. Cooperative Studies in Laboratory Methodology. J.A.W.W.A., 51: 607 (1959).
- 8. Megregian, Stephen. Rapid Spectrophotometric Determination of Fluoride with Zirconium—Eriochrome Cyanine R Lake. Analytical Chemistry, 27: 1161 (1954).

- 9. Middleton, F. M. and Lichtenberg, J. J. Measurements of Organic Contaminants in the Nation's Rivers. Industrial and Engineering Chemistry, 52: 99A (1960).
- 10. Middleton, Francis M. and Rosen, Aaron. Organic Contaminants Affecting the Quality of Water. Public Health Reports, 71: 1125 (1956).
- 11. Middleton, Francis M.; Rosen, Aaron A., and Burttschell, Rice H. Taste and Odor Research Tools for Public Utilities. J.A.W.W.A., 50: 21 (1958).
- 12. Palmer, C. Mervin. Algae as Biological Indicators of Pollution. A separate from Biology of Water Pollution: Transactions of Seminar on Biological Problems in Water Pollution held at the Robert A. Taft Sanitary Engineering Center, April 23–27, 1956 (Mimeo.).
- 13. Palmer, C. Mervin. Algae in Water Supplies. PHS Publication No. 657. U.S. Government Printing Office, Washington, D.C. (1959).
- 14. Palmer, C. Mervin, and Ingram, William Marcus. Suggested Classification of Algae and Protozoa in Sanitary Science. Sewage and Industrial Wastes Journal, 27: 10 (1955).
- 15. Setter, L. R.; Hagee, G. R., and Straub, C. P. Analysis of Radioactivity in Surface Waters—Practical Laboratory Methods. A.S.T.M. Bulletin No. 227 (January 1958).
- 16. Stierli, H.; Orem, M. T. and Blair, R. D. Establishing a Water Quality Network Station—A Case History. Seventeenth Annual Purdue Industrial Waste Conference, Purdue University, Lafayette, Ind. (May, 1962).

17. Thomas, Harold A., Jr.; Woodward, Richard L., and Kabler, Paul W. Use of Molecular Filter Membranes for Water Potability Control. J.A.W.W.A., 48: 11 (1956).

18. Weaver, Leo. The National Water Quality Network—1962. Presented at the Fourth Industrial Wastes Forum, Interstate Commission on the Potomac River Basin, Hagerstown, Maryland (May 1962).

19. Williams, L. G. and Scott, Carol. Diatoms of Major Waterways of the United States. In Press.

20. A.P.H.A., A.W.W.A., and F.S.I.W.A. New York,

N.Y. (1960). Standard Methods for the Examination of Water and Wastewater.

21. U.S. Department of Health, Education, and Welfare, Public Health Service, Cincinnati, Ohio (1960). (Mimeo.) National Water Quality Network Operating Manual.

22. Federal Register March 6, 1962, p. 2152.

23. Drinking Water Standards 1961, Public Health Service. J.A.W.W.A., 53: 935 (1961).

24. State Water Pollution Control Board, Sacramento, Calif. (1952). Water Quality Criteria, Publication No. 3.

Explanation of Analytical Data

Radioactivity Determinations

Sample collection has continued on a weekly basis. Beginning July 1, 1960, samples from certain stations were placed on a reduced program of analyses; i.e., on semimonthly or monthly composites of the weekly samples. This was done where the history of gross radioactivity in the suspended or filtrate solids showed no significant levels during the previous data year. Alpha determinations were made once per month at each of the stations.

In evaluating these data it should be noted that these statistics are subject to errors commonly associated with gross radioactivity analysis. (See Reference 20.)

A dash in the column for the count signifies that no determination was made. An asterisk following data of sample indicates that determinations are for composites of two or more samples taken on and before the date shown.

Strontium 90 determinations are reported in micromicrocuries per liter as measured from total solids in the sample composited for the quarter. A dash (—) indicates that no determination was made in that period.

Plankton Population

Blanks in any column are to be read as meaning that none of the organisms for that column were found. The column heading "Dominant Genera" should be interpreted in connection with the table "Plankton—Dominant Organisms" on page 23: 5–946 should be interpreted that the fifth organism of the first column, Chlorella, was named. None of the organisms in the second column of the table were named. The 9 is the ninth item in the third column of the table—Stephanodiscus, 4 is the fourth item in the fourth column—Diatoma, and the 6 is the sixth item in the fifth column—Fragilaria. Five dashes in the column of "Dominant Genera" mean that none were named for that report.

Dominant species of diatoms, percent of total diatoms.

*	Less than 5%	50	45 to 54%
10	05 to 14%	60	55 to $64%$
20	15 to 24%	70	$65 ext{ to } 74\%$
30	25 to 34%	80	75 to $84%$
40	35 to 44%	90	85 to 100%

Plankton—Dominant Organisms

	rT	III	IV	V		
I	II			Additional Pigmented		
1. Additional Filamentous	Additional Green	Actinastrum	Golenkinia	Flagellate (Other than green)		
Green Alga 2. Anabaena	Flagellate Aphanizomenon	Additional Desmid	Additional Coccoid	Additional Coccoid		
			Green Alga Chlamydomonas	Blue-Green Alga Additional Diatoms		
3. Asterionella	Cryptomonas Cyclotella	Anacystis	Diatoma	Additional Filamentous Blue-Green Alga		
4. Cyclotella		Ciliates	Diaconia			
C1.7 71	Comphenens	Coelastrum	Cymbella	Ankistrodesmus		
5. Chlorella	Gomphonema	Dinobryon	Nitzschia	Fragilaria		
6. Cosmarium	Oscillatoria	Navicula	Synedra	Melosira		
7. Synedra	Peridinium		Tabellaria	Micraetinium		
8. Euglena	Scenedesmus	Oocystis	Tribonema	Sarcodina		
9. Phormidium	Unpigmented Flagellate	Stephanodiscus	Tiponema			

Identification Code for Diatom Species as reported by the National Water Quality Network

	Identification code for -		-		oppetee
210	SPECIES	NO.	SPECIES	NO.	
NO. 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	Achnanthes lanceolata Achnanthes minutissima Achnanthes sp. Amphiprora paludosa Amphiprora sp. Amphora ovalis Amphora sp. Anomoeoneis exilis Asterionella formosa Bacillaria paradoxa Biddulphia laevis Caloneis amphisbaena Caloneis sp. Ceratoneis arcus Cocconeis peduculus	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	Cocconeis placentula Cocconeis sp. Coscinodiscus rothii Coscinodiscus (brackish) Coscinodiscus sp. Cymatopleura solea Cymatopleura solea Cymatosira belgica Cyclotella atomus Cyclotella comta Cyclotella kutzingiana Cyclotella meneghiniana Cyclotella pseudostelligera Cyclotella stelligera Cyclotella striata Cyclotella sp.	31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Cymbella ventricosa Cymbella tumida Cymbella sp. Denticula sp. Diatoma elongatum Diatoma vulgare Diatoma sp. Diploneis smithii Diploneis sp. Epithemia turgida Epithemia sorex Epithemia sp. Eunotia sp. (first) Eunotia sp. (second) Fragilaria capucina

Identification Code for Diatom Species as reported by the National Water Quality Network-Continued

NO.	SPECIES	NO.	. SPECIES	NO.	SPECIES
$\overline{46}$	Fragilaria construens	65	Navicula sp. (first)	83	Stephanodiscus niagarae
47	Fragilaria crotonensis	66	Navicula sp. (second)	84	Stephanodiscus sp.
48	Fragilaria pinnata	67	Nitzschia acicularis	85	Surirella brightwelli
49	Fragilaria sp.	68	Nitzschia tryblionella	86	Surirella ovata
50	Frustulia sp.	69	Nitzschia denticula	87	Surirella striatula
51	Gomphonema olivaceum	70	Nitzschia (Lancelolatae group)	88	Surirella sp.
$\overline{52}$	Gomphonema sp.	71	Nitzschia sp. (first)	89	Synedra acus
53	Gyrosigma kutzingii	72	Nitzschia sp. (second)	90	
54	Gyrosigma sp.	73	Opephora martyi	91	Synedra nana
55	Hantzchia amphioxys	74	Pinnularia sp.	92	Synedra ulna
56	Melosira ambigua	75	Pleurosigma delicatulum	93	Synedra vaucheriae
57	Melosira distans var. alpigena	76	Rhoicosphenia curvata	94	Synedra sp.
58	Melosira granulata	77	Rhizosofenia eriensis	95	Tabellaria fenestrata
59	Melosira binderana	78	Rhopalodia gibba	96	Tabellaria flocculosa
60	Melosira islandica	79	Rhopalodia sp.	97	Any entity not found above (first)
61	Melosira italica	80	Stephanodiscus astraea var. minu-	98	Any entity not found above (second)
62	Melosira varians		tula	99	Reserved for future entity
63	Meridion circulare	81	Stephanodiscus dubius	XX	Insignificant or population inade-
64	Navicula cryptocephala	82	Stephanodiscus hantzschii		quate

Organic Chemicals

. The data relating to extractables are in micrograms per liter or parts per billion. Zeros when reported have been entered. A dash indicates that the respective results were not reported. An asterisk in the column showing end of sample date indicates that the determinations are for composited samples taken on and before the date shown. The extent of compositing can be determined by examining the gallons filtered, which is the sum of the applicable individual samples immediately above it.

Chemical, Physical and Bacteriological Analyses

The data entered in each column are as reported. A dash signifies that the particular test was not performed. Zeros when meaningful have been entered. An asterisk preceding a coliform count should be read as "less than" the number following it.

Trace Elements and Other Determinations

For a discussion of the sensitivity limits of the determinations performed with spectrographic methods, see page 10.

Analytical and Flow Data

RADIOACTIVITY DETERMINATIONS

STATE

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

ALLEGHENY RIVER

STATION LOCATION ALLEGHENY RIVER AT

PITTSBURGH, PENNSYLVANIA

	· · · · · · · · · · · · · · · · · · ·		BADI	DACTIVITY IN Y	/ATER				RADIOAC	TIVITY IN PLAN	KTON (dry)	RAD	IOACTIVITY IN W	ATER
DATE			ALPHA	JACIIVIII IN V	TAILK	BETA		f	DATE OF	GROSS A	CTIVITY		GROSS ACTIVIT	Y
SAMPLE TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL		NATION -	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
O. DAY YEAR		μμc/I	μμε/Ι	μμε/Ι	μμε/Ι	μμε/1	μμε/Ι		MO. DAY	μμε/g	μμc/g	μμε/Ι	μμε/1	μμc/ !
S. DA. 12/11	MORINI DAT	, , , ,							ľ					
8 61	2 28	0	0	0	0	0	0		ļ					
15 61	3 6	o l	0	0	0	0	0	1					Ì	
21 61	3 8	44	o l	44	46	0	46	İ			İ		1	
1 61	3 21	3	o 1	3	3	0	3	1			ŀ			
8 61	3 30	ō	0	0	9	0	9	İ					l	
3 15 61	3 31	ō	0 1	0	0	0	0	-			1			
22 61	4 5	o l	0	0	. 0	1	1	i						
29 61	4 17	l ŏ l	o l	0	0	0	0	- 1			1			
5 61	4 17	Ö	0	0	0	0	0	1						
12 61	4 27	Ö	ō	0	0	0	0						1	
+ 12 61	5 10	1 6	ŏ	Ō	0	0	0							
4 26 61	5 22	i	Ō	1	0	0	0	ŀ						
5 3 61	5 25	Ō	ŏ	ō	0	3	3	Į					1	
5 10 61	6 1	ŏ	ŏ	0	1	2	3	1					!	
5 17 61	5 31	Ö	ŏ	Ō	O	3	3						1 1	
	6 14	0	ő	ō	1	0 1	1					ļ	1	
5 24 61 5 31 61	6 20	0	l ŏ	Ō	l ō	0	0							
	6 28	Ö	ő	ō	1 0	0	٥				i			
	7 6	0	Ŏ	0	0	0 1	٥	l			i			
6 16 61 6 21 61	7 28	1 0	l	ì	0	ا ہ ا	0							
	7 31	0	ō	ō	0	0	0							
		0	Ö	ō	0	1 0 1	0		ı l			ļ	1	
7 5 61	8 7	1 0	0	ő	0	0	0				1			
7 11 61	8 10	0	1	ı	l o	l o l	0							
7 18 61	8 8		0	ō	0	B	8					ļ .	ļ	
7 26 61	8 24	0	0	١٥	3	19	22					1		
8 2 61	9 1	0	0	Ö	3	3	6							
8 9 61	9 12	0	0	Ö	l ő	1	1						1	
8 16 61	9 26	0	1	i	1 0	3	3						1	
8 23 61	9 27	0	٥	lõ	l i	6	7							
8 30 61	9 27	0	6	0	ا آ		ا ه						1	1
9 6 61	10 11	0	0	0	Ŏ	. 5	5							
9 13 61	10 23	1		2	1 0	2	2				İ			
9 20 61	10 7	1	0	0	0	28	28	1			1			
9 27 61	10 5	0	"	"	1									
		1						1						
		1		ļ]		ļ		1			
			1		1		1	1			1			
	1	1				1						li		
	1				1			Ì						ľ
		1	1	ľ	1	1		1				1	1	1

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

ALLEGHENY RIVER

STATION LOCATION ALLEGHENY RIVER AT

PITTSBURGH, PENNSYLVANIA

				ALGAE (Number	ner m/)				INI	FRT	T				IATO					Τ.		MICROIN	VERTEB	ATES		
DATE OF SAMPLE		BLUE-	GREEN	GREI		FLAGE	LLATES sented)	DIAT	омѕ	DIA SHE (No. 1	ERT TOM ELLS er ml.)				T SPEC	IES A			ITAGE	s	PLANKTON HEATHED ml.)	1	s iter)	iter)	ES iter)	it FORMS er)	SENERA duction ication)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER-	SECOND#	PER.	THIRD#	PER.	FOURTH	PER-	OTHER PER- CENTAGE	OTHER MICROPLANTOR, FUNGI AND SHEATHED BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ARIMAL FORMS (No. per liter)	DOMINANT GENERA (See Introduction for Identification)
2 8 61 3 15 61 4 26 61 5 61 5 61 6 21 61 7 19 61 8 23 61 8 26 61 9 20 61	500 200 1100 2700 1500 200 500 100 300		1·20 20 20 20	20 40 20 20 40 190 20 60 40	20	130 170 130 80 40 120 20 370 20 100	20 80	20 440 170 190 210 40 40 20 20	420 220 470 2280 540 70 250 250 20 60	90 50 60 20 20 20	1050 130 90 520 100 20 20	43 93 92 92 92 92 85 88	10 40 20 40 50 30 10 20 30 50	82 35 93 45 9 62 82 47 88 92	10 10 10 10	92 92 92 56 82 2	10 10 10 10 10 10 10 10	74 9 31 56 82 9 31	10 10 * 10 10 10 10	70740043006400	20 20 80		12 5 2 1 27 6 6	2 5 5	1 1 1		

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

ALLEGHENY RIVER

STATION LOCATION ALLEGHENY RIVER AT

PITTSBURGH, PENNSYLVANIA

	D	ATE	OF SA	MPLE		FX	TRACTABL	FG					CHI OBOE	ORM EXTRA	CTABLES	·			
В		INNI		END						1			NEUTRALS		[
HTNOM		DAY	YEAR	MONTH	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
3 4 5	3 4 5 6		61 61 61 61 61 61	3 15 4 19 5 18 6 21 7 26 8 28	2800 2846 1387 3748 2187 5257	325 168 710 305 729 307	138 72 293 154 366 140	187 96 417 151 363 167	6 3 21 9 11 7	30 14 73 34 84 32	42 29 63 95 32	14 11 13 9 7 2	5 4 7 4 7 2	23 13 45 26 74	012073	15 7 35; 17 48 16	15 6 38 23 66 21	1 1 3 3 7 1 1	29 12 56 29 55 31

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

ALLEGHENY RIVER

STATION LOCATIONALLEGHENY RIVER AT

PITTSBURGH, PENNSYLVANIA

DAT OF SAM		TEMP.	DISSOLVED				CHLORINE	DEMAND										
МОМТН	YEAR	(Degrees Centigrade)	OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
2 8 2 13	61	1.0	-	6.5	-			-	•4	35	16	152	0	5	159	•0	333	_
2 15	61	2.0	12.0	6.6	6.3	_	_	_	- 4	36	18	158	0	8	163	-1	345	5700
2 21	61	1.0	14.1	6.6	9.4	39	3.7	_	1	26	21	108	45	500	52	٥٠	170	6400
3 1	61	4.0	12.8	6.6	1.8	32	1.3	-	•0	9	9	46	60	120	38	.0	91	4000
3 8 3 15	61	8.0 5.0	11.4	6.4	1.8	- C	1.9	3.5 4.1	•0	12	9	62	5	.25	54	•0	121	1700
3 22	61	5.0	12.4	6.8	1.8	56 49	•7	3.3	•0	10	11 14	62 70	5	50 25	56 63	•0	137	640
3 29	61	8.0	12.2	6.6	2.1	51	.7	2.9	•0	13	13	70	5	15	68		129 128	- 600
4 5	61	6.0	11.0	6.5	1.5	62	•5	1 • 4	•1	15	12	78	0	12	72	.0	146	260
4 12	61	5.5	11.6	6.9	1.9	59	•3	1 • 4	•0	13	15	68	15	30	52	•0	132	2100
4 19 4 26	61	7.0 12.0	12.2	6.8	2.2 3.0	63 64	• 4	2.0	•0	10 11	14 15	46 58	20 20	20	43	•0	122	1700
5 3	61	10.0	10.9	6.8	2.8	70	7	3.0	•0	0	15	64	15	50 40	54 48	•0	140 148	4900
5 10	61	10.0	9.7	6.9	2.0	50	.6	2.3	.1	13	20	78	10	35	71	ő	153	1000 1700
5 16	61			-		-	-	-	-		-	-	-	-	_			3800
5 17 5 24	61	19.0	8.8	6.5	1.4	55	• 3	2 • 8	•0	12	14	84	15	12	73	•0	159	_
5 31	61	15.0	9.9	6.8	1.7	50 50	- 4	2.6	-0	11	14	82 i	10	10	- 79	. 0	182	500
6 7	61	21.0	9.1	6.8	1.9	40	. 4	2.4	.0	12	16	84	10	10	85	.0	172	530
6 16	61	20.0	9.0	6.8	1.3	52	• 3	-	•0	12	15	60	20	45	52	•0	147	500
6 21 6 28	61	21.0	9.2	6.2	2 • . 7	28	• 5	2.7	•0	10	8	80	0	5	74	•0	156	_
6 28 7 5	61	21.0	8.9	6.0	1.3	25 26	• 4	2.6	•0	14 19	8 16	96	0	5	90	•0	183	*100
7 11	61		-	-	1.0	20	• 2	2.0	•0	19	10	118	1	5	115	•0	242	2900
7 12	61	24.0	7.6	6.7	2.6	24	• 2	1.7	.0	21	10	132	0	3	128	.0	289	400 ~
7 18	61		_ =	1	- 1	-	-	-	-	-	-	~	- [-		-		100
7 19 7 25	61	26.0	7.7	6.1	-8	42	• 2	4•8	•0	22	9	148	0	5	145	•0	301	-
7 26	61	26.0	7 • 4	6.5	.7	39	• 2	4.5	.1	23	14	132	20	- 45	126	.0	260	100
8 1	61	-	-	-	- 1	-	-	-	-	-					120	• •	260	- 6
8 2	61	27.0	8.6	6.6	2.2	28	• 7	4 • 1	-	28	8	126	0	10	120	.0	279	_
8 8	61	25.0	8.2			25	-		-	-	-	-	-	- [-	-	*100
8 15	61	25.0	8.2	6.1	1.0	25	• 5	3 • 4	_	16	7	86	0	5	85	•0	182	- M.1.0.5
8 22	61	-1	-	-1	-	-	-	-	-	-	_	-	_	-1	_	_	_	*100 300
8 23	61	26.0	8 • 4	6.4	1.5	5	• 4	3.5	• 1	28	12	134	0	5	125	.0	272	-
8 29	61	-	-	-	-	-	-	-	-	-		-	-	-	-	-		*100
		- 1		1	1												1	
										20								

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

ALLEGHENY RIVER

STATION LOCATIONALLEGHENY RIVER AT

PITTSBURGH, PENNSYLVANIA

79

DATE OF SAMP		TEMP.	DISSOLVED		B.O.D.	C.O.D.	CHLORINE	DEMAND	AMMONIA-								TOTAL	
MONTH	YEAR	(Degrees Centigrade)	OXYGEN mg/l	рН	mg/l	mg/I	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	CHLORIDES mg/l	mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units,	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
хуа 356231967 113967	61	27.0	8 • 0 -7 • 4 -7 • 7 -8 • 3	5.7 -6.4 6.5 6.7	3.6 2.0 1.8 - 3.3	18 - 16 12		mg/l 6 • 0 - 5 • 3 - 5 • 9	•3 •4 •4 •4	25 - 30 - 38 - 45	8 - 13 - 18	152 - 164 - 156 - 168	O - O - O - O O - O O O O O O O O O O O	5 - 5 - 5	150 - 154 - 148 - 165	• 1 • 1	327 	96 100 ml. 1600 2300 2300

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Natrona, Pennsylvania Operated by U.S. Geological Survey STATE

Pennsylvania

MAJOR BASIN

Ohio River

MINOR BASIN

Allegheny River

STATION LOCATION

Allegheny River at

Pittsburgh, Pennsylvania

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	1.860	2.140	2.500	3.070	2.900	97.000	22.400	63.400	12.000	6.780	7.800	3.580
2	1.700	2.420	2.500	2.940	2.980	87.400	24.600	50.300	12.400	5.620	7.730	3.580
3	1.600	2.610	2.420	2.730	2.420	82.500	27.400	37.000	13.600	5.620	15.800	2.920
4	1.630	2.580	2.350	2.690	2.900	79.100	26.200	31.000	20.700	7.640	17.700	2.690
5	1.800	2.540	2.060	2.860	2.770	63.400	24.000	25.100	19.700	6.920	18.700	2.820
6 7 8 9	1.930 1.960 1.730 1.510 1.410	2.390 2.420 2.820 3.390 3.530	2.030 2.310 2.420 2.350 2.170	3.070 3.300 4.050 4.240 4.880	2.500 2.650 2.390 2.690 2.940	61.900 63.400 75.800 66.400 69.400	21.800 31.000 37.000 34.600 32.200	20.700 21.800 25.100 34.600 35.800	16.700 13.600 11.600 10.500 13.600	6.450 5.430 4.760 3.910 3.160	14.400 11.200 8.080 5.620 5.000	6.930 5.870 4.820 4.360 3.300
11	1.440	3.530	2.030	6.060	3.110	72.600	34.600	33.400	25.000	3.340	4.940	2.690
12	1.700	3.690	1.730	6.450	3.110	69.400	39.600	32.200	35.800	3.340	5.300	2.770
13	1.600	3.910	1.630	6.580	3.110	53.100	40.900	28.600	33.400	3.340	4.820	3.070
14	1.540	3.910	2.100	6.450	3.160	40.900	47.500	24.600	29.800	3.110	4.130	2.900
15	1.660	3.490	2.310	6.260	4.700	50.300	53.100	21.200	33.400	3.200	4.240	2.820
16	1.410	3.490	2.730	6.120	5.870	48.900	53.100	21.200	29.800	3.030	3.960	2.610
17	1.480	3.300	2.610	6.520	7.460	43.500	55.900	25.100	25.100	3.030	3.390	2.310
18	1.480	3.030	2.500	7.320	14.900	35.800	61.900	26.200	20.200	4.300	2.900	2.100
19	1.510	2.820	2.460	7.600	40.700	31.000	64.900	28.000	15.400	4.470	2.820	2.310
20	1.540	2.540	2.350	7.120	71.500	33.400	58.900	27.400	13.200	5.740	2.500	2.280
21	1.540	2.280	2.580	6.120	67.900	35.800	50.300	26.200	11.200	6.120	2.310	2.200
22	1.660	2.170	2.390	4.880	75.800	32.200	40.900	24.600	10.800	6.980	3.060	2.200
23	1.600	2.500	2.280	4.300	77.400	30.400	40.900	23.400	11.200	5.620	3.110	2.350
24	1.600	2.460	2.140	4.080	84.200	31.000	43.500	22.900	10.800	8.170	3.300	2.060
25	1.700	2.420	2.030	3.340	90.600	32.200	52.600	19.200	9.370	10.500	3.780	1.760
26 27 28 29 30 31	1.890 2.100 2.310 2.310 2.140 1.960	2.100 2.030 2.030 2.030 2.310	2.170 2.280 2.310 2.500 2.690 2.860	3.300 2.860 2.770 2.770 2.820 2.580	97.500 106.000 109.000	28.600 26.200 24.600 24.600 25.600 22.400	102.000 109.000 90.600 87.400 77.400	17.700 16.200 16.200 14.400 14.000	8.650 9.080 7.800 6.580 6.260	11.200 10.500 9.010 8.300 6.380 6.120	4.080 3.200 3.200 3.340 3.690 3.340	1.960 2.200 2.350 2.390 2.390

RADIOACTIVITY DETERMINATIONS

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

SAN JUAN RIVER

STATION LOCATION ANIMAS RIVER AT

CEDAR HILL, NEW MEXICO

DATE			RADIO	ACTIVITY IN V	VATER			RADIOA	CTIVITY IN PLAN	NKTON (dry)	RAT	IOACTIVITY IN W	ATER
SAMPLE	DATE OF		ALPHA			BETA		DATE OF DETERMI-	GROSS A	ACTIVITY		GROSS ACTIVITY	,
TAKEN	DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	MONTH DAY	μμε/Ι	μμc/l	μμς/	μμε/1	μμε/Ι	μμε/Ι	MO. DAY	μμc/g	μμc/g	μμε/1	μμc/1	##c/l
10 3 60	10 18	1	19	20	0	29	29						
10 10 60	1 3	ã	37	40	11	82	93	1 1		1	ļ	i l	
10 17 60	11 1	o l	2	2	87	22	109						
10 24 60	11 10	2	20	22		22	22						
10 31 60	11 18	6	21	27	8	35	43]]	
11 14 60	11 28	3	10	13	3	0	3					1	
11 21 60	12 19	4	21	24	. 6	43	49			1		1 1	
11 28 60	12 20	5	21	26	11	24	35			1		1	
12 5 60	12 30	37	32	69	153	57	210				1		
12 12 60	1 5	4	18	22	62	7	69			i i	i		
12 19 60	1 6	58	35	93	178	45	223						
12 27 60	1 11	18	19	37	51	31	82	l l		i !	1		
1 3 61	2 8	13	24	37	36	26	62			1			
1 9 61	2 7	3	11	14	7	9	16					1	
1 17 61	2 6	6	23	29	11	19	30						
1 24 61	2 8	6	13	19	18	13	31						
1 31 61	2 13	17	25	42	75	30	105						
2 7 61	2 21	9	19	28	22	12	34					1	
2 21 61	3 21	11	10	21	20	. 7	27						
2 28 61	3 22	11	24	35	29	27	56						
3 7 61	3 30	21	19	40	67	48	115						
3 14 61	4 3	119	12	131	968	1	969			1			
3 21 61	4 12	156	12	168	1882	12	1894					Ì	
3 28 61	4 12	24	11	35	74	14	88	}				1	
3 31 61	5 1	0	27	27	0	21	21	ļ					
4 11 61	5 5	23	14	37	43	10	53	ì					
4 17 61	5 11	11	7	18	23	1	24		İ]	
5 1 61	5 24	241	7	248	177	2	179				Θ	1	
5 8 61	5 26	5	6	11	10	0	10	-	ļ.				
5 15 61	6 2	0	2	2	0	0	0					1	
5 22 61	6 13	18	0	18	31	0	31 17		-				
5 30 61	6 22	8	2	10	16	1 2	2						
6 7 61	6 29	2	9	11	2	1	3					İ	
6 12 61	7 6	1	1	2		14	16						
6 19 61	9 5	0	1	1 3	2 3	7	10		İ	-			1
6 27 61	9 5	0	3	3	o	6	1 0			1			
7 5 61	8 10	0	3	_	9	4	13		1				
7 10 61	8 23	2	4	6	4	12	16		1			1	
7 17 61	9 8	0	4	4	8	4	12						
7 23 61	9 7	3	2	5	١	-							

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

SAN JUAN RIVER

STATION LOCATION ANIMAS RIVER AT

CEDAR HILL, NEW MEXICO

DATE			RAD	OACTIVITY IN	WATER			T	RADIOA	CTIVITY IN PL	ANKTON (dry)	<u> </u>	PA	DIOACTIVITY IN V	VATER
SAMPLE	DATE OF	[ALPHA			BETA		1			ACTIVITY	7		GROSS ACTIVIT	
TAKEN DETERMINATION MO. DAY YEAR NONTH DA 7 31 61 9 7	DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	1	DATE OF DETERMI- NATION	ALPHA	BETA	7	SUSPENDED		
MO. DAY YEAR	NONTH DAY	μμc/l	μμc/l	μμc/l	μμα/Ι	μμε/Ι	μμς/	<u></u>	MO. DAY	<i>µµс</i> ∕g	μμc/g	7	μμc/I		
MO. DAY YEAR	NONTH DAY						 						SUSPENDED ##c/l		TOTAL ##c/i

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

FLAGELLATES

(Pigmented)

OTHER

GREEN

DIATOMS

CENTRIC PENNATE

ALGAE (Number per ml.)

FILA

20 90

20 20

GREEN

COCCOID NENT-

BLUE-GREEN

COCCOID

FILA-MENT-

ous

DATE

OF SAMPLE

DAY

10 3 60 10 17 60

11 7 60

2 21 61 3 7 61

6 19

7 5 7 17

8 21 61

9 18 61

6 61

TOTAL

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

INERT DIATOM SHELLS

(No. per ml.)

CENTRIC PENNATE

SAN JUAN RIVER

OMINANT SPECI

PER. CENTAGE

1630 85 30 70 50

510 85 40 93 20

600 85 40 93 20

220 85 70 93 10

1390 85 70 93 10

1180 85 70 93 10

870 86 60 93 10

150 86 70 93 20

STATION LOCATION ANIMAS RIVER AT

CEDAR HILL, NEW MEXICO

		EUM	K F	A las las	, NEW	ME	AICO				90
ОТА					ź.	1	MICROINV	ERTEBRA	TES		. # 3
for C	ND PE	RCENT tificat	rages ion*)		PLANKTO HEATHED Tol.)	II.)	iter)	ter)	ES iter)	L FORM	GENERA ductio fication
THIRD#	PER. CENTAGE	FOURTH	PER- Centage	OTHER PER- CENTÁGE	other microplanktom, fungi and sheathed bacteria (No. pep ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORMS (NO. DET IIIET)	bominant genera (See Introduction) for Identification)
93 70 2	10 10 10	71 71 70	* 10 10	10 30 20	20 40 20	10	5	-	1		7-663 757 7-763 763
2 70 92 70 70	* 10 * *	70 71 71 92 71	* 10 * *	10 20 10 20 10	110. 70	10	2 1 1		7 3	2	773 763 7-3 73 763
8 2 4 5 9 2 2 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	* 10 10 10 10 10 10 10 10	70 71 92 31 52 70 71 70 93	* 10 10 10 10 10 10 10 *	30 40 50 50 40 50 40 40 40 40 40 40 40 40 40 40 40 40 40	40	20	2 5 197 2 13	1 1	1 9 1 3	7 9 1	3 73 763 74763 63 63 3 763 733
		!	į								

520 86 60 93 10 950 86 30 93 10 40 92 10 4600 86 2 20 86 20 2 30 93 10 2 40 36 10 700 70 50 2 10 1010 84 30 92 20 120 86 30 2 20 460 86 50 93 10 310 86 60 92 10

ORGANIC CHEMICALS RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

SAN JUAN RIVER

STATION LOCATION ANIMAS RIVER AT

CEDAR HILL, NEW MEXICO

				T				CHLOROF	ORM EXTR	ACTABLES				
DATE OF SAMPLE	E	XTRACTABL	_E3	 	l			NEUTRALS						
BEGINNING END GALLONS FILTERED AV AV AV AV AV AV AV AV AV AV AV AV AV A	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 3 60 10 24 4970 11 7 60 11 21 8410 12 5 60 12 19 3384 1 3 61 1 12 8152 2 6 61 2 21 6393 3 7 61 3 17 6771 4 3 61 4 17 5631 5 2 61 5 13 7400 6 6 61 6 19 7 5 61 7 14 273 8 7 61 8 21 980 9 6 61 9 18 2431	89 59 83 59 62 51 42 * 127	14 12 16 16 12 17 19 20 - - 53	75 47 67 43 50 35 32 22 74	0 0 0 0 1 1 1 - 1	2 1 1 2 2 4 4 5 7 7 TOO LOV	8 8 12 10 7 6 8 7 - - 25	124211121-6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	55765564115	100010000111	21122229	0221	01000001	1 1 2 2 2 2 2 3 6

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

SAN JUAN RIVER

STATION LOCATIONANIMAS RIVER AT

CEDAR HILL. NEW MEXICO

DATE	<u> </u>						CHLORINE	DEMAND								PHOSPHATES	TOTAL	COLIFORMS
OF SAMPLE	- (D	TEMP, I Degrees ntigrade)	OXYGEN mg/l	pH	B.O.D. mg/l	c.o.D.	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	(scale units)	mg/l	mg/l	DISSOLVED SOLIDS mg/i	per 100 ml.
		12.0	9.1	8.2	5.1		1.8	3.8	•0	42	186	290	10 10	3 18	170	3	-	1400
		11.0	6.5	8.1	4.0	-	1.2	3.9	• 0	47	210 162	294 25 6	16	1100	208	.4	_	2200
	50	9.0	8.2	8.1	1.9	-	2.5	4.2	• 4	36 28	164	282	12	20	300	•3	-	300
		10.0	9.8	8.2	•4	-	1.8	3.5 3.7	•3	30	172	272	15	8	300	• 4	-	100
10 31 6	50	6.0	9.8	8 • 2	2.5	-	1.9 1.4	4.0	.0	35	168	282	20	1780	260	• 5	-	800
	-	12.0	7.8	8 • 1	2.6	-	1.8	2.7	.0	26	134	284	5	4	196	•6	_	*1000
	60	6.0	5.5	8.1	5.2	_ [1.8	2.4	.2	33	120	272	8	6	250	•4	_	*100
	60	5.0	11.6	8.1	2.1	_	1.9	2.7	.0	23	128	292	29	8	250 23 6	.6	_	
	60 60	3.0	10.4	8.1		80	1.9	4.9	•1	34	116	272	18	70 32	180	.5	_	200
	60	2.0	10.4	8.2	1.7	107	1.8	4 • 6	•1	22	124	276 288	8	10	245	.6	-	-
- 1- 1	60	.0	11.0	8.1	*•9	82	2.5	5.0	•2	32 39	132	272	5	16	220	.6	-	-
	60	•0	11.2	8.1	8.5	79	2.9	5.3	•4	42	146	264	4	24	370	.6	-	
	61	3.0	11.9	8.1	2.4	86	2.7	5.8	•3	25	130	268	4	20	180	•5	-	91
1 9	61	4.0	11.8	8.1	2.3		2.6	5.8	1	39	138	258	6	8	296	• 4	-	100 *100
1 17	61	2.0	10.5	8.0	2.1	67	2.6	7.0	1	37	132	268		3	300		_	*100
	61	.0	10.4	8.1	2.0	_	_	-	.0	52	134	270		35	190	1	1 -	400
	61	1.0	10.6	8 • 1 8 • 2	1.6		-	-	-	52		284		10 353	380	1	_	*100
- 1	61	7.0	10.6	8.1	2.5	-	-	-		42		272	1	90	220	1	-	*100
	61	5.0	10.9	8.4	1.8	-	-	-	1	1	134	210	. <u> </u>	-		-	-	*100
	61			-	-	-	-	-		1	140	300	20	28	240	.3	-	
	61	5.0	11.8	8.5	2.2) <i>-</i>	-	-	ì	1	1	-	-	-	-	. -	ì	50
3 7	61		-	-	-	-	-	1	1 -		133	302	20	600	350		i i	1 -
3 8	61	7.0	10.9	8.1	.8 5.1	25	1 -	Į.	ا		1	280) 10	-	330	· -	1	10000
3 14	61	7.0	9.1	8.1	201		_	_	. -	-		1			1 -	1	1	5000
3 15 3 21	61	9.0	8.6	8.1	8.6	_	-	-	•1	1			45	1			1	630
	61	-		- "	_	-	-	-		1	1	1		ı	180)·\ •4	. \ -	_
3 29	61	6.0	9.5	8.1	7.8	95	-	1	1					1	1	- -	i i	22000
4 3	61	-	-	-	-	-	-		1		· 1	1	5 20	4000			1	-
4 4	61	13.0		8.0	2.4	_	_	ì	1			_	1			1 .	1	3200
4 12	61	11.0	1	8.0	2.1	_		1	1 ,						1 -		' l	6700
4 17	61	10.0	1	8.0	4.0	32	-	1	1 7	1	9 56	1	- 1		•	1	[] _	200
5 1	61	14.0	1	8.2	4.0	37	-	1			1 .	1		33	1 .	١٥	1	1 -
5 8	61	8.0		8.0	4	-	-	. -			-			-		- 1		1500
5 16 5 22	61	14.0		7.9	1	-	-	- -		- 1	9 46		T 1 .	- 1	1	~	- -	1400
5 29	61	14.0	ı	'-	• 2	-	-	- -	- • 1	9	8 20	' '	"] -00	`			
7 23	1 2 1						l			27								

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

SAN JUAN RIVER

STATION LOCATIONANIMAS RIVER AT

CEDAR HILL, NEW MEXICO

DATE					1	CHLORINE	DEMAND									TOTAL	
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	На	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/I	DISSOLVED SOLIDS mg/l	per 100 ml.
6 61 61 61 61 61 61 61 61 61 61 61 61 61	14.0 14.0 16.0 17.0 18.0 19.0 23.0 21.0 21.0 21.0 21.0 21.0 16.0 13.0	7.7 8.1 8.3 8.2 8.5 7.7 6.8 9.2 6.5 7.8 7.8 7.8 8.3 7.8 8.3 7.8 8.3	7.9 7.9 7.9 8.1 8.0 8.1 8.3 7.4 8.1 8.1 7.8	1.8 1.4 1.4 7.4 1.5 1.5 1.3		1 1 3 6 8 1 7 1 0 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.3 7.0 6.9	· O - O - O - O - O - O - O - O - O - O	10-8-1496-1-196-1-	38 -10 -16 -32 -32 -42 -58 140 -106 -118 -112 -96 -90 100 -76	92 94 120 154 172 220 214 244 182 188 187 198 1846 200 144	10 15 - 5 6 7 - 5 - 4 35 - 3 - 3 8 4 3 2 6	24 32 122 14 65 12 73 35 40 40 40 59 71 116	45 36 406 87 80 1900 90 625 90 70 90 105 90 90 105 90 90 105 90 90 105 90 90 90 90 90 90 90 90 90 90	1 · 4 · 1 · 3 · 3 · 3 · 1 · · · · · · · · · ·	140 164 220 - 360 341 - 300 - 250 - 250 - 223 230 - 260	270 900

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Cedar Hill, New Mexico Operated by U.S. Geological Survey

New Mexico

STATE MAJOR BASIN

Colorado River

MINOR BASIN

San Juan River

STATION LOCATION

Animas River at

Cedar Hill, New Mexico

ay	October -	November	December	January	February	March	April	May	June	July	August	September
				020	.183	.166	.415	2.200	4.080	.940	.320 .482	.441
1	.246	.2 86	.258	.230	.189	.166	.415	2.560	3.880	.905 .863	.482	.415
2	.240	.280	.249	.220	•109	.176	.475	2.890	3.260	.863	.837	.403
2	.240	.269	.249 .262	.210	.183		.752	2.860	2.470	.842	.846	.460
1 2 3 4	.237	.272	.294	.220	.183	.186	1.040	2.170	2.360	. 849	•747	.467
5	.231	.276	.262	.230	.183	.194	1.040	2.110	20,000			
2	سرے.	•=-,1 =			_	-06	001	1.660	2.460	.770	.684	.474
_	.228	.262	.200	.230	.178	.186	.884	1.380	2.500	.770	.582	.460
6	·228	.298	.225	.230	.183	.186	.912	1.180	2.770	.764	.536	.428
7 8		.306	.240	.240	.183	.183	•996	T-100		.746	.501	.530
8	.225	.290	.260	.240	.186	.178	.764	1.040	2.970	.710	.501 .441	.530 .882
9	.231	.250	.260	.240	.191	.199	.722	1.170	2.970	. 110	• · · · —	
10	.280	.272			•				0.000	.638	•397	.837
		265	.240	.240	.194	.234	.680	1.600	2.920	•000	.422	.684
11	.342	.265	.240	.230	.199	.266	• 644	2.350	2.830	• 584	-TCE	.598
12	• 374	.265	.230	.230	.194	.269	.698	2.470	2.620	• 550	.558 .428	515
13	. 346	.265	.245	.230	.212	.294	.722	1.870	2.320	.520 .480	.480	.515 .494
13 14	.326	.265	.260	.230	.212	.326	.650	1.500	2.300	. 480	• 460	• 474
15	.350	.265	.240	.230	مدید	تسر.					0	501
/					.212	•354	.614	1.430	2.090	• 446	.598 .614	.501 .454
16	.456	.262	.225	.235	.212	.342	.680	1.620	2.010	.438	.614	•424
17	.520	.252	.220	.235	.217	.350	.905	2.060	2.010	. 392	.729	.675
17 18	.628	.272	.220	.230	.199	• 350	1.070	3.010	1.880	• 374	.693	.801
19	.446	.276	.230	.230	.191	• 350	1.270	3.690	1.880	. 370	.590	.810
20	.379	.280	.240	.230	.178	.330	T.E.10	5.000				
20	• 317					71.6	1.400	3.210	1.870	. 384	•536	.801
	. 362	.266	.240	.230	.191	• 346		3.780	1.690	• 397	.522	•77 <u>1</u>
21	.346	.266	.240	.220	.199	. 322	1.350	3.830	1.550	. 358	.454	.846
22	. 340	.266	.240	.220	.207	• 346 • 322 • 362 • 406	1.470	3.630	1.370	. 326	.434	.910
23 24	• 334	.266	.240	.225	.181	.406	1.520	3.690	1.320	.318	. 454	.819
24	• 334		.240	.215	.178	•433	1.300	3.790	1.020	ناعر ،		
25	•330	.255	. 240		• •			1	1.240	.302	.460	•75
		2/2	.240	.210	.173	. 388	1.040	4.150		.290	.434	
26	. 330	.262	.240	.200		.346 .366 .428	.92 6	4.400	1.150	.286	301	.66
27 28	•318	.272	.250 .240	.200		. 366	.972	4.460	1.070	.280	.391 .385	.67
28	.318	.258	.240			428	1.300	4.230	•964	.200	205	.63
29	. 318	.252	.240	.195		.460	1.760	4.080	.948	. 314	.385 .441	.03
29 30 31	.306	.249	.230	.185		•433	,	3.860		. 340	• 441	•
ล้า	.286		.230	.189		•-55		_				

STATE

FLORIDA

MAJOR BASIN

SOUTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

APALACHICOLA RIVER

STATION LOCATION APALACHICOLA RIVER AT

CHATTAHOOCHEE, FLORIDA

			- BAD	OACTIVITY IN	WATER				RADIOA	CTIVITY IN PLA	NKTON (dry)	Т	RAI	DIOACTIVITY IN V	VATER
DATE SAMPLE	DATE OF	r	ALPHA	ioaciiviii ik	1	BETA		1 1			ACTIVITY	1		GROSS ACTIVIT	
TAKEN	DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	1 1	DATE OF DETERMI- NATION	ALPHA	BETA	1	SUSPENDED	DISSOLVED	TOTAL
								4 1	MO. DAY			1	μμε/Ι	μμς/Ι	μμε/Ι
MO. DAY YEAR 10 3 60 10 10 60 11 2 60 11 2 60 11 2 5 60 12 19 60 12 3 61 1 3 61 1 3 61 3 22 61 3 27 61 4 17 61* 5 29 61* 6 26 61* 7 31 61* 8 29 61 9 18 61 9 18 61 9 27 61	10 18 10 19 11 2 11 18 11 25 12 2 12 15 12 30 1 10 1 25 2 17 3 7 3 20 3 24 3 29 4 5 4 12 5 17 6 13 7 19 8 29	μμε/I O	рие/I	υ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	00000000000000000000000000000000000000	υμε/Ι Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο		MO. DAY	μμε/g	μμε/g		μμε/Ι	μμε/Ι	μμε/Ι

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

FLORIDA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

APALACHICOLA RIVER

STATION LOCATION APALACHICOLA RIVER AT

CHATTAHOOCHEE, FLORIDA

				ALGAE (N	umber	per ml.)				INE	RT				DI	ATOM	ıs			1	i	ų	ICROIN	ERTEBR	ATES		. 5 2
DATE OF SAMPLE		BLUE-C		GREE		FLAGEL (Pigme	LATES nted)	DIATO	омѕ	DIA SHE (No. p	LLS		DOMII (See	Introdu	PECI	ES AN	D PER	RCENT.	on•)		ROPLANKTON BHEATHED ml.)	Mt.)	RS liter)	EA.	DES liter)	MAL FORM	T GENERA roductio tification
MONTH DAY YEAR	TOTAL	coccoip	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER. CENTAGE	SECOND#	PER. CENTAGE	TRIRD#	PER- CENTAGE	FOURTH	PER. CENTAGE	OTHER PER- CENTAGE	OTHER HICK- FUNSI AND S SACTERIA (NO. PET	FROTOZOA (No. per	ROTIFIERS (No. per liter)	CRUSTACEA (No. jer liter)	(No. per lifer)	t Nu. per	DOMINANT GENERA (See Infreduction for Identification)
10	1000 3600 2900 1600 5600 400 1 200 1 1200 1 1500 1 1500 1 1 900 1 1 900 1 1 1500	200		80		200 440 50 270 180 90 330 80 130 60 160 70 120 210	20 110 440 150 210 20 20 20 20 20	1010 950 1100 90 180 1060 210	80 90 60 60 20 90 310 20	130 600 1100 180 270 210 110 50 210 90 290 520 130 370 20	70 250 40 20 90 180 70 160 180 60 60 150	57 23 23 57 56 57 57 57 57 57 57 57	30 20 20 20 20 40 20 30 40 40 40 40 40 40 40 40 40 4	56 56 57 87 57 57 56 82 56 58 58 57	10 20 20 10 10 20 20 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	82 57 56 27 57 57 82 61 58 57 57 57 57 82	10 10 10 10 10 10 10 10 10 20 20 20 20 10	57 82 27 56 92 82 82 58 92 56 56 27 27 27 27	10 10 10 10 10 * * * 10 10 10 10 10	10 50 30 40 310 60 30 20 20 20 20 20		10 10	25 63 111 43 155 59 22 177 64 48 83 15 165 165	1 2 2	1	1 2	7 -2 48964977 -4937 3497717737 49-737

ORGANIC CHEMICALS RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

FLORIDA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

APALACHICOLA RIVER

STATION LOCATION APALACHICOLA RIVER AT

CHATTAHOOCHEE, FLORIDA

										CHLOROF	ORM EXTR	CTABLES				
DATE OF SAMPLE	E		EX	TRACTABL	ES					NEUTRALS						
MONTH DAY YEAR MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
11 17 60 12 1 4 61 1 2 9 61 3	9 25 21 29 2 8	5270 5340 5120 5070 4650 5058 4950	115 194 157 162 228 173 182	23 70 51 77 107 74 50	92 124 106 85 121 99 132	0 4 1 2 3 4 1	5 11 18 20 17 12	8 20 17 29 26 19 18	1 2 2 4 3 2 2	0 2 1 3 2 1 1	6 16 14 21 19 14 14	1 0 0 1 2 2 1	4 10 7 8 12, 9 7	1 6 4 8 11 7 3	0 1 2 1 1 2 1 1	5 14 9 11 34 16 8

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

FLORIDA

MAJOR BASIN

SUUTHEAST

MINOR BASIN

APALACHICOLA RIVER

STATION LOCATIONAPALACHICULA RIVER AT

CHATTAHOUCHEE, FLUKIUM

DATE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	DEMAND	AMMONIA-				COLOR	TURBIDITY	SULFATES	PHOSPHATES	TOTAL	COLIFORMS
DAY YEAR	(Degrees Centigrade)	OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	(scale units)	(scale units)	mg/l	mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
10 3 60 10 10 10 10 10 10 10 10 10 10 10 10 10	32.0 30.0 30.0 28.0 30.0 28.0 28.0 28.0 14.0 28.0 11.1 20.0 11.1 20.0 11.1 24.0 11.1 24.0 11.1 24.0 24.0 11.1 25.0 28.0 28.0	10.0 10.0 11.2 9.0 - 9.6 9.7 - 9.6 9.7 - 9.0 6.5 9.1 9.0	7.1 7.2 7.3 7.1 7.1 7.2 7.5 7.0 7.2 7.4 - 7.4 - 7.4 - 7.4 7.6 - 7.4 7.1 7.6 7.1 7.4 7.1 7.1 7.1 7.1 7.1	-			-		10 16 21 16 16 16 16 16 16 16 16 16 16 16 16 16	49 48 44 40 42 40 42 40 42 40 42 40 42 40 40 40 40 40 40 40 40 40 40 40 40 40	35 45 45 46 52 54 50 44	25 - 30 - 30 - 35 - 35 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	- - 5 20 2 15			76 86 60 80 70 80 90	150 40 40 7 35 31 110 63 290 40 40 44 450 460 444 450 450 460 400 4100

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Chattahoochee, Florida Operated by U.S. Geological Survey STATE

Florida

MAJOR BASIN

Southeast

MINOR BASIN

Apalachicola River

STATION LOCATION

Apalachicola River at

Chattahoochee, Florida

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	19.300	9.660	10.300	13,500	13.000	125.000	46.400	40.100	24.700	27.000	12.500	24.200
2	19.100	9.430	10.800	13.500	13.400	134.000	64.100	41.600	23.500	24.200	12.300	22.100
3	18.700	9.270	10.800	11.800	12.800	134.000	75.600	43.100	19.900	20.200	12.400	19.800
3 4	18.900	10.100	10.800	11.400	15.300	113.000	84.900	43.000	18.000	20.000	12.700	18.100
5	19.100	11.200	10.800	11.000	14.400	68.400	78.800	42.400	16.900	19.100	12.900	14.500
6	19.200	9.100	11.400	11.500	13.700	58.400	59.800	37.100	14.700	18.000	12.300	17.000
7	19.000	8.970	10.100	12.300	14.300	53.600	53.200	33.400	14.700	18.000	12.800	17.900
ė	16.400	9.020	10.000	13.600	14.500	50.500	51.600	32.900	19.800	19.100	13.500	16.200
9	13.400	10.500	10,500	13.100	15.000	47.900	51.600	33.700	17.200	19.000	13.500	15.500
10	12.900	10.100	11.600	11.100	15.600	45.000	48.400	33.300	13.000	17.000	14.300	19.000
11.	12.600	10.600	12.400	10.900	15,000	43.600	42.900	29.100	11.800	16.200	16.600	16.400
12	12.700	8.970	12.500	10.900	13.100	37.500	48.100	28.200	11.700	16.200	19.100	12.900
13	12.700	9.590	12.500	10.900	13.400	32.300	57.300	27.400	11.800	19.500	19.500	11.800
13 14	12.800	8,970	11.500	11.500	13.000	33.200	61.000	29.700	12.800	24.000	19.100	12.300
15	12.500	8.900	11.800	12.400	13.000	33.600	65.200	27.900	14.600	34.800	17.000	13.800
16	12.600	10.500	12.100	11.400	12.200	33.200	79.000	27.700	14.600	28.800	16.700	13.900
17	12.400	11.200	12.200	11.900	12.000	31,800	82.000	27.900	14.600	25.100	16.600	11.800
18	11.600	9.360	12.800	12.100	11.400	33.800	81.800	27.600	14.500	22,800	15.200	13.600
19	10.900	11.100	12.500	12.500	11.500	33.200	74.500	24.000	15.600	21.100	14.000	14.100
20	10.900	9.880	12.000	12.500	22. <i>6</i> 00	33.900	67.000	20.500	18.900	20.800	13.100	12.100
21	10.900	10.500	12.000	12.400	44.500	32,000	59,000	20,700	24.400	21.200	12.300	11.500
22	10.800	13.100	12.000	12.300	59.100	30.400	53.800	18.800	21.100	26,100	12.200	11.300
23	10.800	9.860	12.400	12.800	67.400	30.700	49.400	14.100	26.700	22.900	12,400	11.100
24	10.700	9.070	12.600	12.900	75.200	28.800	45.400	15.000	30.100	19.900	13.000	10.800
25	10.800	9.920	13.000	13.200	79.500	27.100	40.800	19.200	30.400	17.800	17.500	10.700
26	11.000	9.900	13.200	14.400	93.400	25.700	37.700	28.100	27.800	17.300	18.200	10.700
27	9.410	10.300	12.100	14.600	101.000	20.800	36.000	34.600	27.000	16.400	20,200	10.800
28	9.220	12.400	9.630	15.400	119.000	20.400	40.600	34.500	28.300	15.000	32,200	10.700
29	9.220	12.100	9.650	17.700	-	24.200	39.400	31.500	30.800	14.800	21.700	9.430
30	9.120	11.300	10.900	14.700		25.500	39.400	24.000	31.100	14.600	22.400	8.850
31	9.150	-	12.600	13.ioo		29.100		21.800	-	13.600	25.500	,.

RADIOACTIVITY DETERMINATIONS

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER-VAN BUREN TO MOUTH

STATION LOCATION ARKANSAS RIVER AT

PENDLETON FERRY, ARKANSAS

			BARIO	ACTIVITY IN	VATER			RADI	DACTIVITY	IN PLANKTO	ON (dry)	L.		IOACTIVITY IN W	
DATE				ACHVIII IN	TAILA	BETA		DATE O	G	ROSS ACT	IVITY			GROSS ACTIVIT	Y
SAMPLE	DATE OF DETERMI- NATION		DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DATE O DETERM NATION	I- ALP	HA	BETA	[]	USPENDED	DISSOLVED	TOTAL
TAKEN		SUSPENDED	μμς/I	μμε/Ι	μμε/Ι	μμε/!	μμε/!	MO. DA		c/g	µµс/g		μμς/1	μμε/Ι	μμε/Ι
O. DAY YEAR	MONTH DAY	μμς/Ι	μμε/1	- PP 6/1	Fr.										
0 17 (04	11 21	7	2	9	1 1	20	21	Į.			1	- 1			
0 17 60* 1 7 60*		20	4	24	100	0	100		ļ			-			
		1	i	2	0	0	0	1	1		1	- 1			
1 23 61*	4 13	i	ō	ī	0	0	0	1				i			
3 27 61 4 24 61*		l i l	ŏ	1	0	0	0	i			i	1			
7 31 61*		14	4	18	23	1	24					1			
		0	ò	ō	52	17	69			i	1			1	
8 28 61* 9 18 61	11 8	_	_	_	69	0	69					- 1			
A 19 91	11 0					ŀ	i i	Ì	1		ì				
	l								1		1	- 1			
			İ								1				
									1		I				
		1						i			ļ				
	İ		i i												
								ı			ì				
							i							1	
		ļ		İ											
								ļ							
			1			!			Ì			- 1			
						i i	1		-						
										1					
		1					Į.								
		ļ					ì		ļ	- 1					
				[1		1	1		1	,	1		i	
	ľ									1					
		1						1	-						1
				İ		1				1					1
		1			1					1		1			
								l	1	1				1	
						1									1
		Ì		i								1 1			1
		1						1	- 1						
		1		1					Ì			1 1			
	1	1			1			1						1	1
		1		1	ļ]							i	
		1			1					ļ				1	
			1				1	j	- 1	1					
	l		1		1			l		1		1		1	
		1				1		1				1	ļ		

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER-VAN BUREN TO MOUTH

STATION LOCATION ARKANSAS RIVER AT

PENDLETON FERRY, ARKANSAS

**************************************	1			ALGAE (Number	per ml.)				INE	RT	Т				IATO	MS				į.		MICROIN	VERTEBR	ATES		6.3
DATE OF SAMPLE		BLUE-	GREEN	GREE			LLATES ented)	DIAT	омѕ	DIA SHE (No. p	ERT TOM LLLS er ml.)		DOM (Se	INANT e Intro	r SPEC	IES A	ND PI	ERCEN entifica	tion*)	s	OPLANKTO SHEATHED ml.)	A mil.)	tS liter)	EA liter)	ES liter)	AL FORMS ter)	GENERA Oduction (fication
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER-	SECOND*	PER.	THIRD#	PER. CENTAGE	FOURTH*	PER.	OTHER PER- CENTAGE	OTHER MICROPLANKTOR, FUNGI AND SHEATHED BACTERIA (No. per ml.)	PROTOZOA (No. per m	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORMS (No. per liter)	DOMINANT GENERA (See Introduction [or Identification]
10 3 60 11 1 9 61 1 23 61 2 6 61 2 7 61 3 27 61 4 10 61 4 24 61 7 10 61 8 26 61 9 5 61 9 18 61	2300 300 20400 33700 2600 1400 600 2400 600 2400 500 300	20	20 40	310 20 50 20 20 110 290 200 60 70	20	840 90 90 780 870 110 940 160 100 20 50	160 20 40 20 20 20 20	440 160 290 19150 32660 2280 250 200 690 1010 510 230 270 130	510 160 430 130 120 110 130 490 900 40 150 40	330 90 1590 1940 690 180 290 650 400 80 130	20 130 180 90 40 600 290 180 490 180 20 160	56 82 82 56 87 26 87 26 82 52 52 52 52	40 90 10 10 50 40 40	5663266 8956 8258 58	20 10 * 10 20 10 20 40 40	57 80 92 58 4 26 59	10 10 10 10 20 *10	82 58 56 86 58	10 * 10 * 10 * *	40 40 350 70 10 130 60	350 20 130 110 20 40 20	10	1 3 3 140 5		1 1 1		4277- 71933 -1937 7-933 44 44 44

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

ARKANSA5

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER VAN DUREN TO MOUTH

STATION LOCATIONARKANSAS RIVER AT

PENDLETON FERRY: ARKANSAS

DATE						CHLORINE	DEMAND					COLOR	TURBIDITY	SULFATES	PHOSPHATES	TOTAL DISSOLVED	COLIFORMS
OF SAMPLE	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	8.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	(scale units)	(scale units)	mg/l	mg/l	SOLIDS mg/l	per 100 ml.
10 3 600 11 600 11 1 1 1 23 6 61 123 6 61 12 2 27 61 3 1 27 66 1 13 6 61 2 2 27 61 3 1 27 66 1 8 21 66 1 8 28 6 6 9 9 18 6 1	13.0 14.0 30.0 30.0 28.0 29.0 29.0	12.1 13.0 14.8 13.3 12.6 9.4 10.1 9.5 9.3 10.3 9.0 5.1 5.0 7.4 5.3	7.7 8.1 7.9 7.8 7.6 7.7 8.4 7.7 8.0 7.7 6.8 7.2 6.8 7.2 6.7 7.7	1.7 3.1 4.3 4.1 7.9 6.1 3.5 2.2 2.1 2.0 1.9 7 3.8 2.9 4.4	15 23 91 119 -42 27 22 23 26 18 37 26 30 -32 26 31 42 25 26 34 25	2.0 1.5 2.2 1.7 3.2 2.0 2.4 1.9 1.8 2.8 2.6 2.9 2.1 1.5 1.8 2.6 3.1 1.3	6·1 4·8 6·9 6·6 8·2 5·7 6·8 6·9 6·9 6·9 6·9 6·9 6·1 10·6 8·0		71 85 60 62 46 123 70 64 233	68 102 124 136 76 112	184	40 50 40 30 45 80	840 840 106 88 62 86 103 216 192 180 98 344 392 400 120 329 420	48 54 88 64 62 42 33 44 42 42 43 43 44 43 44 45 46 46 47 47 48 48 48 48 48 48 48 48 48 48	.1 .0 .1 .0 .0 .0 .0 .0 .0 .0	272 751	8600 12000 4800 1800 8200 13000 1000 7600 2800 1800 13000 1000 16000

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Little Rock, Arkansas Operated by U.S. Geological Survey STATE

Arkansas

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Arkansas River, Van Buren to Mouth

STATION LOCATION

Arkansas River at

Pendleton Ferry, Arkansas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4	8.810 9.890 9.890	16.300 16.800 23.900	8.310 7.830 8.060	20.900 23.300 23.900	9.620 8.560 7.830	53.500 51.900 46.800	148.000 182.000 169.000	28.100 33.500 34.900	142.000 140.000 136.000	16.200 15.800 15.800	69.100 58.900 50.900	31.200 27.600 24.600
4	9.890	38.400	8.810	24.500	8.060	41.200	151.000	30.000	125.000	18.800	44.400	22.300
5	10.800	42.600	8.810	23.300	8.810	37.700	132.000	37.700	111.000	21.300	37.400	21.300
6	11.400	41.900	10.200	23.900	8.810	38.400	114.000	131.000	94.000	21.300	32.500	19.800
7	10.500	41.900	16.800	24.500	8.810	52.700	95.800	236.000	84.000	19.800	28.800	17.900
8	9.890	41.900	32.800	23.900	9.350	67.300	85.300	234.000	80.000	17.400	25.800	20.800
9	9.890	38.400	28.100	21.500	9.620	72.700	82.600	203.000	80.000	15.400	22.800	51.700
10	9.350	34.900	26.900	19.300	10.500	71.800	85.300	214.000	88.300	15.800	19.300	63.700
11	9.350	31.400	30.700	17.800	10.800	67.300	84.400	247.000	84.400	15.000	17.400	58.900
12	8.810	28.700	53.500	15.400	11.800	60.100	77.200	275.000	81.700	16.200	17.400	51.700
13	7.830	24.500	59.200	14.000	12.400	58.300	72.700	285.000	74.500	24.000	16.600	43.700
14	7.180	19.800	58.300	14.500	13.200	60.100	72.700	267.000	70.900	28.200	16.200	36.700
15	6.980	17.300	58.300	15.000	13.600	55.100	72.700	240.000	68.200	27.000	15.800	33.200
16	7 · 390	15.000	60.100	15.400	13.200	49.600	75.400	224.000	56.700	31.200	19.300	42.300
17	7 · 390	16.300	56.700	15.400	12.800	46.100	78.100	215.000	48.900	71.000	21.300	108.000
18	6 · 780	16.300	50.300	15.800	12.400	43.300	75.400	214.000	60.100	135.000	36.700	160.000
19	6 · 590	15.800	44.700	15.400	14.000	40.500	68.200	214.000	76.300	147.000	77.000	148.000
20	6 · 400	15.000	41.900	15.800	20.300	37.700	60.100	220.000	66.400	126.000	87.700	131.000
21.	6.050	12.800	41.200	15.800	27.500	37.000	53.500	224.000	49.600	120.000	83.300	131.000
22	6.590	12.800	39.100	15.000	36.300	39.100	48.200	206.000	41.900	115.000	64.600	130.000
23	8.310	12.400	35.600	14.000	41.900	39.100	44.700	184.000	40.500	101.000	47.900	122.000
24	15.000	10.500	30.700	12.800	44.700	39.800	41.200	169.000	36.300	83.300	37.400	110.000
25	19.800	9.350	26.900	11.800	44.700	39.800	37.700	154.000	30.700	75.000	29.400	101.000
26 27 28 29 30 31	19.300 22.100 24.500 23.300 19.800 17.800	9.890 10.200 9.890 8.810 8.810	23.300 19.800 17.800 16.300 16.300 17.800	10.500 9.890 10.200 10.500 10.500	44.700 46.100 51.100	41.200 51.900 71.800 84.400 85.300 99.400	37.700 40.500 37.700 32.100 27.500	153.000 159.000 160.000 149.000 144.000	26.300 22.700 18.800 15.800 15.000	89.900 108.000 101.000 91.000 86.600 79.000	24.600 22.800 30.000 36.700 34.600 33.200	91.000 83.300 75.000 63.700 61.300

RADIOACTIVITY DETERMINATIONS

STATE

OKLAHOMA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER NEAR

PONCA CITY, OKLAHOMA

								RADIOAC	TIVITY IN PLAN	IKTON (dry)		IOACTIVITY IN W	
DATE			RADIO	ACTIVITY IN Y	VATER				GROSS A			GROSS ACTIVIT	TOTAL
SAMPLE	DATE OF DETERMI-		ALPHA			BETA	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED		μμε/1
TAKEN	DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	μμε/1	MO. DAY	μμε/g	μμε/g	μμε/1	μμς/Ι	ррс/ 1
O. DAY YEAR		μμε/Ι	μμε/Ι	μμε/Ι	μμε/Ι	μμε/Ι	μμε/1						
0. DA. 1.					1 _ !		0				\		
0 24 60*	11 1	7	3	10	0	0	0					1	
1 28 60*		1	5	6	0	0	0	1		1		i i	
- 1	1 12	3	8	11	.0	0	8	1		1		1	
2 27 60* 1 30 61*	2 13	ō	0	0	8	0	ő	1 [1			
	3 7	8	4	12	0	0	-	1 1		1	1		
	4 6	1	5	6	38	0	38	1		1			
3 27 61*	5 4	10	2	12	0	0	0			! [ļ		
4 24 61*		15	1	16	0	0	0	1			\		
5 29 61*		5	4	9	0	12	12	ł		1		I	
6 26 61*		7	7	14	22	0	22	1 1		1	1	1	
7 31 61*	8 23	111	li	12	34	15	49	l i		1 1	ļ		
8 28 61*		1 -	_	_	0	0	0						
9 5 61	10 5	_	_	_	21	21	42						Ì
9 11 61	10 5	_	_	· -	12	25	37		ļ				
9 18 61	10 16	5	8	13	39	36	75	ì		1			\
9 25 61	10 2	, ,			1				1	1			
		1	1	l	ì		1	ı		1			
	1			İ			i i			1 1			
		ì				1							1
		Į.		1	1		\ \ \		ļ	1			1
				1			i		}	1			1
		1		1	1	1	1 1	l	ì			1	
		Ì							l			l l	
	1		1						Į.				
		ļ.	1					1	1	,			ì
		ļ		1			!		1				1
		}			1	1	1		1				
		1				ŀ					1 1		
	ŀ	1		1	Ì	}					1		
			l l								1		
	1		İ		1		į		Į.				
			1				1		1		1		\
		1							1		1	l	
	1			1			1				1 1	1	
					1				1				
					ì			1 1	l				
		1		1						1		1	
		1			- 1			1 1	\				
	1							1		1			
						1				1	1 1	1	
	- 1	1	1	1	1	i i		1 1	l l	1	1 1	1	1

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

OKLAHOMA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER NEAR

PONCA CITY, OKLAHOMA

				ALGAE (Vumber	per ml.)				INI	RT TOM					IATO					Τ	T	MICROIN	VERTEB	RATES	_	
DATE OF SAMPLE		BLUE-	GREEN	GREE		FLAGEI (Pigm		DIAT	омѕ	SHE	TOM LLLS er ml.)				SPEC	IES A	ND PE	RCEN' ntificat		5	ROPLANKTON SHEATHED	nl.)	iter.)	A iter)	ES iter)	L FORKS	duction ication)
MONTH DAY YEAR	TOTAL	соссоів	FILA- MENT- OUS	COCCOID	FILA- MENT OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST*	PER. CENTAGE	SECOND#	PER-	THIRD#	PER.	FOURTH	PER- CENTAGE	OTHER PER-	OTHER RICRO FUNGI AND SI BACTERIA (NO. PET	20 20	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	(No. per liter)	OTHER ANIMAL FORMS (No. per liter)	DOMINANT GENERA (See Introduction for Identification)
10	29200 500 4700 16500 10000 2000 2700 2500 11700 2700 600 5300 112300 9500 18600 46600 29100 19700 1200	50 20 110 70 20 20 40 20 60 180	20 20 100 60 20 150	4250	90 20 20	620 50 230 1760 650 260 540 1140 1360 5810 600 600 20 460 1850 310 200 310 2370 60	70 20 290 20 160 70 20 170	26180 240 1450 4030 5230 260 1050 560 110 14790 78410 630 380 180 2730 96630 5980 10310 25910 16150 10410 310	170 4350	5180 310 130 50 170 13090 700 9030 12580	950 1060 3200 1330 40	267 40 705 705 705 823 126 623 73	20 10 40 10 10 30 70 90 40 20	657 70 445 856 882 868 871 26	10 20 10 10 20 20 10 40 10 20 10 20 *	555826286158575655 98223672	10 10 10 10 10 10 10 10 10 10 10 10 10 1	71 482 26 70 470 486 482 71 72 848 588 70 92	10 10 10 10 10 10 * 10 10 10 10 10 10 10 10 10 10 10 10 10	70	270 220 70 50 70 20 50	10	2 1 3 704 52 81 9	1 1 2 2 2 2	8 3 1 14 15 4 1 1 1 2 1	1	489323 4-79-767 417673 44-963 44-9333 459333 459333 45933 45933 45933 45933 45933 45933 449927 48767 48767 48767 48767

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

OKLAHOMA

MAJOR BASIN

SOUTHWEST-LUWER MISSISSIPPI KIVER

MINOR BASIN

ARK. RIVER, KANS-COLU LINE TO TOLSA

STATION LOCATIONARKANSAS RIVER NEAR

PUNCA CITY, UKLAHUMA

DATE						CHLORINE	DEMAND							SULFATES	PHOSPHATES	TOTAL	COLIFORMS
OF SAMPLE	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C,O.D. mg/l	I-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/I	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	mg/l	mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
10 10 10 10 10 11 14 60 11 12 8 60 11 12 8 60 11 12 8 60 11 12 12 60 11 12 12 60 11 13 61 11 13 61 11 13 61 11 13 61 11 13 61 11 13 61 11 13 61 11 13 61 11 11 11 11 11 11 11 11 11 11 11 11	12.0 9.10.21.16.18.1 16.20.21.21.23.		8.2 8.2 7.2 8.1 8.1 8.3 8.4 8.4 8.9 7.99 7.99 7.99			-			521 456 571 572 624 851 573 463 453 453 333	220 236 252 218 220 202 200 170 4 166 174 18 190 103 134 190 103 104 105 105 105 105 105 105 105 105 105 105	376 410 393 321 401 384 276 250 277 201 277 201 278 311 222 80 315 316 316 317 317 317 317 317 317 317 317 317 317	15 15 15 15 15 15 15 15 15 15 15 15 15 1	60 60 60 40 27 27 28 42 950 675 85 85 950 950 950 950 950 950 950 950 950 95	175 165 186 186 186 186 186 186 186 186 186 186	1.00 .7 .9 1.00 1.00 1.01 1.03 1.03 1.03 1.03 1.03	1073 1046 930 983 1011 1070 1034 7 706 249 626 64 626 64 65 65 760 61 65 65 760	- - - - - -

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

OKLAHOMA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATIONARKANSAS RIVER NEAR

PONCA CITY, UKLAHOMA

DATE	Ī				CHLORINE	DEMAND									TOTAL	
DAY PEAR YEAR	(Degrees	рН	B,O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
6 19 6 6 7 3 6 6 7 10 6 6 7 17 6 7 24 6 8 14 5 8 28 6 9 5 6 9 18 6 9 18 6 9 25 6	24.6 1 24.6 1 26.5 1 25.6 1 25.6 1 25.6 1 24.5 1 24.6 1 24.6 1 24.6 1 25.6 1 25.6 1 26	8.1 8.4 8.4 8.4 7.9 7.9 7.9 8.4 7.9 8.4						257 440 525 3382 500 2740 218 893 2376 2916 234	1490 1944 1954 1954 1954 1954 1954 1954 1954	214 281 322 290 274 310 160 148 273 239 133 260	305 155 20 20 40 10 20 30 10 25 20 20	520 370 115 380 1700 1400 1700 175 460 700 410	80 	- - 3 - 1 - 3 - 6 - 1 - 5 - 8 - 7 - 0	559 - 706 892 188 568 849 397 213 504 731 568 291 522	

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Ralston, Oklahoma Operated by U.S. Geological Survey STATE

Oklahoma

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Ark. River, Kans-Colo Line to Tulsa

STATION LOCATION

Arkansas River near

Ponca City, Oklahoma

Day	October	November	December	January	February	March	April	May	June	July	August	September
			1.050	2.120	1.950	2.280	9,000	5.910	4.780	2.900	4.520	4.520
1	3.500	12.800	1.950	2.120	1.880	2.200	7.800	22.900	4.830	2.710	4.100	4.100
2	2.800	19.100	2.030	2.030	1.880	2.120	8.200	17.300	7.730	2.540	3.700	3.800
1 2 3 4	2.280	12.600	1.920		1.850	2.120	7.300	15.000	7.300	2.450	3.500	3.900
4	1.950	7.750	1.900	1.950	1.770	2.250	6.060	19.300	7.000	2.360	3.000	3.700
5	1.740	5.650	1.800	1.950	1.110	2,2,0	0.000		,			
			7 750	1.920	1.720	4.300	5.150	48.900	6.460	2.280	2.710	3.800
6	1.560	4.520	1.750	1.920	1.640	2.450	4.520	115.000	8.350	3.220	2.540	5.150
7	1.430	4.000	1.750	1.870	1.560	2.200	4.100	153.000	6.860	3.200	2.280	4.780
8	1.320	3.600	1.850		1.480	2.030	4.300	139.000	12.100	4.400	2.120	6. 320
7 8 9 LO	1.260	3.300	1.920	1.870	1.400	2.030	5.920	64.400	11.800	4.000	2.280	5.400
LÓ	1.220	3.000	2.030	1.850	1.400	2.000	7.720	0.11,00				
		_	- 1	2 000	1.460	2.030	9.200	25.500	8.350	2.800	2.360	4.100
11	1.150	2.800	2.450	1.830	1.540	1.950	12.200	21.600	7.000	2.540	2.200	3.800
12	1.090	2.620	2.620	1.800	1.620	1.870	11.400	16.900	6.060	3.400	3.450	35.400
13	1.110	2.540	3.060	1.780	1.690	1.820	9.550	13.400	8.720	6.320	13.700	105.000
13 14	1.120	2.450	5.360	1.750		1.750	8.050	11.400	6.730	7.000	17.100	73.100
15	1.180	2.360	5.900	1.720	1.700	1.150	0.00	11.400	0.150			
_,					1.780	1.720	6.860	9.900	9.560	7.750	16.400	42.500
16	4.480	2.280	4.280	1.700		1.830	5.650	9.200	11.400	5.920	9.200	29.800
17	6.850	2.200	3.400	1.670	1.880	1.950	5.020	7.900	9.200	4.650	7.000	17.900
18	5.400	2.200	3.000	1.660	1.950	1.950	4.520	7.300	7.150	4.000	5.780	11.800
19	4.780	2.200	2.710	1.660	2.200	1.950	4.200	7.000	6.190	3.500	5.280	10.200
20	5.280	2.120	2.620	1.640	2.360	1.950	7.200	1.000		•		
	-			41 -	(270	2.360	4.000	9.090	5.780	3.600	11.300	9.200
21	6.190	2.120	2.540	1.640	6.370	3.400	3.800	15.600	5.650	5.280	13.000	16.100
22	5.400	2.030	2.360	1.640	6.180	4.520	3.900	24.000	5.150	14.800	14.600	15.300
23	4.300	1.950	2.360	1.600	4.200	5.780	4.780	18.300	4.650	28.200	17.800	9.900
23 24	3.600	1.920	2.120	1.560	3.400		5.400	14.600	4.300	33.500	17.300	7.600
25	3.100	1.880	2.120	1.500	3.000	5.780	5.400	14.000		55 /		
-/	•				0.000	1, 000	5.280	13.000	3.900	29.900	11.800	8.35
26	2.710	1.870	1.950	1.400	2.800	4.900 4.400	4.520	9.740	3.700	23.000	8.500	14.00
27	2.690	1.870	1.950	1.500	2.620		4.000	7.450	3.500	11.800	7.300	12.30
28	11.000		1.950	1.600	2.450	3.900	3.600	6.730	3.300	7.600	6.460	10.20
29	10.500		2.120	1.700		14.500		6.060	3.100	6.190	5.780	8.85
30	8.200		2.120	1.700		17.800	3.500	5.280	5.250	5 .2 80	5.020	
31	7.750		2.120	1.800		13.100		الكورو				

STATE

KANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER AT

COOLIDGE, KANSAS

DATE			RADIO	DACTIVITY IN V	WATER			RADIO	ACTIVITY IN PLAN	NKTON (dry)	RAD	DIOACTIVITY IN W	ATER
SAMPLE	DATE OF		ALPHA			BETA			,	ACTIVITY		GROSS ACTIVITY	
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	MONTH DAY	μμc/ l	μμc/I	μμε/Ι	μμε/	μμε/Ι	μμε/Ι	MO. DAY	μμс/g	μμc/g	μμε/	μμc/1	μμε/
0 24 60*	11 3	3	63	66	0	0	o						
1 28 60*	11 3 12 5	3	60	63	Ö	o	l o						
1 31 61*	2 9	1	31	32	ŏ	ő	ŏ						
2 28 61*		3	74	77	0	ŏ	ŏ				·		
3 27 61*	3 9	0	49	49	0	ŏ	0						
4 24 61*			80	88	0 0	3	3		l				
5 29 61*	5 15	8											
	6 6	3	25	28	17	0	0	1				1	
6 26 61* 7 31 61*	7 13	0	46	46		3	70						
0 30 61 %	8 14	80	35	115	52	0	52	ı				10	
8 29 61* 9 5 61	9 14	22	16	38	141	4	145	- 1			1		
	9 28	0	6	6	0	16	16	İ					
9 11 61	10 23	-	-	-	9	57	66	1	1			1	
9 18 61	10 14	-	-	-	36	59	95						
9 25 61	11 8	-	-	-	67	48	115			f			
- 1		- 1	-			1						1	
1	İ	İ				i	1						
	I												
ļ	1		J		İ								
į			1	i		l			1		1	i i	
	1		l	1			ĺ	i i	1				
			1	,							1 1		
			ĺ				i				1		
į.				ł				1 1					
1		ŀ	1			ļ			į		1		
İ	i		1	1		i		1 1		1			
					1	1					i 1		
				1	i			, !					
1								i i	}				
1	İ	i		ĺ	- 1	i i							
į		1		ĺ						i	1 1		
	- 1			ļ		1						1	
1	i	[1		1		1	i		ĺ			
Į	[1		}								Ť	
ſ	[1			1		1						
	1	j	1		1	ŀ				j		1	
		ĺ				1		1		ļ			
ĺ		ļ	-				1						
1	ľ			1			1		Ì				
ļ		ĺ		1	ŀ		ł		1				
į	ļ	j	ļ						1				
1	1	1		İ	ļ	1	İ		ŀ	ļ			

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

KANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER AT

COOLIDGE, KANSAS

				ALGAE (A	Jumber	ner ml.)				INE	RT				DIA	ТОМ	s				. i .	1	ICROIN	ERTEBRA		N X	ERA tion tion)
DATE OF SAMPLE		BLUE-0		GREE		FLAGEL (Pigme		DIATO	мѕ	SHE (No. pe	LLS		DOMIN (See	IANT Introd	SPECII luction	or Cod	e Ident	ificatio	n*)		SHEATHE F THL.)	r ml.)	r liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER AHIMAL FORMS (No. per liter)	pominant genera (See Introduction for Identification)
F 4	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER. CENTAGE	SECOND®	PER- CENTAGE	THIRD#	PER- CENTAGE	FOURTH	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICROFLANKTON, FUNGI AND SHEATHEB SACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUST	NEMAT (No. p	(No. pe	(See I for Id
Variable Variable	5500 5300		20 20 20	20 60 600 234	20 50 20 00 00 00 00 00 00 00 00 00 00 00 00	20 20 20 480 40		110 70 150 170 1140 520 250 190	522 4 505	20 40 20 20 20 20 20 20 20 20 20 20 20 20 20	920 1740 1900 3020 870 330 810 2010 830	87 4 12 4 92 4 4 4 4 4 7 7 7 7 7 7 6	10 10 10 10 10 10 10 10 10 10 10 10 10 1	65 87 71 49 92 71 71 87 75 75 75 77 77 77	10 10 10 10 10 10 20 20 20 10 10 10 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	71 465 85 12 86 86 65 11 75 5 87 65 69 71	10 10 10 10 10 10 10 10 10 10 10 10 10 1	69 67 5 66 75 71 71 71 70 4 92 92	10 10 10 10 10 10 10 10 10 10 10 10 10 1	60 60 60 60 60 60 20 50 50			9	4		1 1	63 763 76- 76- 76- 76- 7-76 7-76

STATE

KANSAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATIONARKANSAS RIVER AT

COOLIDGE, KANSAS

٠,

DATE OF SAM							CHLORINE	DEMAND					1		1	1 .		
MONTH	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
	60	19.0	-	8.2	_	-	-	_	-	198	170	1660	- 5	5	2225	.1	4090	
10 10		17.5 12.0	-	8 • 2	_	-	-	-	-	199	168	1620	5	5	2050	•0	4110	-
10 24		12.0	-	8•2 7•7	_	_	-	-	-	190	170	1650	5	_ 5	1930	•0	4080	ł –
11 1	60	6.0	_	8.2	_		_	_	-	144	200	1480	5	900	2000	• •	3750	_
11 8	60	7.0	_	8.1	_		_		-	150	218	1660	5	270	2300	• 0	3820	_
11 21	60	4.0	_	8.1	_	_	_	_		162 161	216 216	1650	10	170	2380	•0	3720	
11 28	60	-	_	8.1	_	_	_	_		159	220	1760 1750	5	5	2380	•0	3990	_
1 4	61	-	-	7.7	_	_	_	_		164	232	1740	5	250	2380	,•0	4130	_
1 9	61	-	_	7.8	_	-	_	_ [-1	154	214	1700	0	50 85	2500	•0	4110	_
1 16	61	-	_	7.8	-	_	_	_	_	152	212	1630	0	160	2275	•1	3980	-
1 23	61	•0	-	7.7	_	_	_	_	-	153	218	1680	0	125	2280 2250	•0	3920	-
1 31	61	-	-	7.8	-	-	_	-	-	153	220	1670	ő	122	2200	•1	3970 3980	_
2 7	61	-	-1	7.8	-	-	-	_	_	139	226	1610	ŏl	156	2500	.0	3785	_
	61	-	-	-	-	-	_		_	144	232	1660	5	95	2650	.0	4039	
	61	-	-	7.6	-	-	-	-1	-	158	206	1670	ól	[]	2150	.0	4076	-
	61	-	-	7.7	-	-	_	-	-	158	228	1710	ŏ	170	2650	. 0	4040	
	61	-	-	7.6	-	-	-	-	-	156	206	1670	اة		2250	.0	4014	_
	61	-	-	7.4	-	-	-	-	-	149	194	1640	ŏl	_	2150	.0	4004	_
1 - 1	61	-1	-1	7.7	- 1	-	-	-	- [153	192	1660	اه	60	2250	.0	4055	_
	61	-	-	7.5	-	-	-	-	-1	143	202	1640	10	-	2100	.0	3900	_
	61	-	-1	7 • 4	-	-	-	-	-	122	202	1540	5	_	1875	.1	3453	
	61	-	-	7.7	-	-	-	-	-	117	196	1510	5	اه	1575	.0	3330	_
	61	-	-	7 • 4	-	-	-	-	-	106	192	1480	7	اه	1575	.0	3268	_
- 1 - 1	61	-	-	8.0	-	-		-	-]	139	204	1408	5	-	1950	.0	3565	_
	61		-	7.8	-	-	-	-	- 1	162	196	1612	5	- 1	2200	.0	3969	-
	61		-	7.9	-	-	-	-	- J	186	200	1736	5	-	2450	•0	4312	_
	61		-	7.2	-	-	-	-	- [141	164	1704	0	0	2475	. 2	4122	-
	61	_	-	7 • 4	-	-	-1	-	-	42	172	540	20	1500	600	.1	1114	_
	61	_	-	7.3	-	-	-	-	-	135	200	1496	0	570	2250	.0	3650	****
	61	_	_	7.3	-	-	-	-1	-	152	186	1648	5	115	2475	.0	3963	-
	61	-		8.1	_ []	_	-	-	-	66	212	1032	15	5000	1238	.1	2192	_
	61	_	_	8.1	_	- [-	- [-	166	182	1600	5	130	2400	.1	3890	_
	61	_	_	7.9	_	<u> </u>	-	-	-	175	162	1520	5	0	2400	• 0	3757	_
	61	-	_	8.0	-	_		-	-	181	176	1600	5	0	-	•1	3948	_
	61	-	-	8.0	_	_	_1	-1	-[49	180	650	15	1000	675	.1	1399	_
8 28		-	_	7.9	_	_	. []	- 1	-	93	186	1150	10	1000	1600	•2	2810	_
-	-	1				-]	-	-	-	154	186	1600	5	125	2150	•1	3652	-
_		- 1			1				1	- 1			İ		}	ł	ļ	
				<u> </u>							L							

STATE

KANSAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATIONARKANSAS RIVER AT

COULIDGE, KANSAS

DATI OF SAA	MPLE	\dashv	(Degrees	DISSOLVED OXYGEN	рН	B.O.D. mg/l	C.O.D. mg/l	CHLORINE	24-HOUR	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/i	COLIFORMS per 100 ml.
9 5 9 11 9 18 9 25	5 6 L 6	51 51	entigrade)	mg/l	7.9 7.4 7.3 8.0	- - -	-	mg/l	mg/l		62 152 158 108	168 190 182 192	1550 1470 1470 1230	5 5 5 10	5000	2350 2200 2150 1800	•0	3712 3549 3701 -	-

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Coolidge, Kansas Operated by U.S. Geological Survey STATE

Kansas

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Ark. River, Kans-Colo Line to Tulsa

STATION LOCATION

Arkansas River at

Coolidge, Kansas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	.0016 .0016 .0017 .0016	.079 .062 .062 .068 .068	.058 .065 .065 .062	.090 .090 .090 .100	.160 .124 .118 .107 .140	.114 .124 .124 .107	.100 .104 .104 .104 .097	.104 .088 .081 .078	.0041 .125 1.920 2.630 .879	.058 .065 .142 .104 .065	.0049 .0052 .0052 .0047 .0036	.043 .031 .018 .012
6 7 8 9 10	.0014 .0014 .0016 .0021	.062 .062 .062 .065 .072	.065 .065 .076 .100	.100 .100 .100 .110	.104 .114 .110 .118 .114	.100 .114 .114 .104 .104	.114 .124 .155 .190 .190	.061 .064 .072 .061 .040	.636 .396 .478 .282 .218	.049 .072 .372 .526 .353	.0034 .0034 .0041 .042 .020	.0070 .0056 .0090 .0056 .0056
11 12 13 14 15	.0021 .0021 .0021 .0026 .0034	.062 .054 .058 .058 .062	.086 .079 .065 .065	.107 .094 .100 .110	.104 .100 .104 .121 .124	.100 .100 .100 .110	.185 .175 .180 .190 .270	.031 .027 .025 .027 .025	.185 .160 .156 .156 .142	.322 .452 .270 .170 .124	.015 .016 .530 .414 .224	.010 .020 .015 .015
16 17 18 19 20	.0034 .0047 .026 .054 .054	.062 .058 .054 .058 .051	.065 .062 .062 .072 .095	.118 .107 .110 .107	.121 .121 .118 .104 .100	.121 .121 .114 .110 .107	.246 .234 .212 .258 .246	.025 .020 .020 .022 .019	.156 .137 .127 .127 .114	.132 .190 .150 .107 .090	.165 .224 .426 .459 .276	.013 .013 .015 .030
21 22 23 24 25	.068 .132 .109 .072	.054 .065 .068 .062 .054	.100 .095 .095 .095	.110 .104 .097 .094 .100	.100 .104 .107 .107 .104	.107 .100 .110 .100	.229 .218 .234 .264 .240	.053 .020 .010 .0074 .0063	.104 .100 .065 .086 .142	.081 .072 .061 .053 .047	.224 .240 .229 .196 .175	.079 .072 .072 .086 .156
26 27 28 29 30 31	.058 .058 .047 .047 .054 .062	.051 .049 .051 .058 .068	.082 .082 .079 .072 .065 .068	.100 .084 .060 .114 .124 .135	.104 .114 .114	.094 .094 .094 .094	.240 .264 .288 .294 .190	.0058 .0052 .0047 .0047 .0041	.161 .205 .205 .195 .079	.047 .038 .036 .031 .0068 .0036	.155 .123 .082 .051 .047	.205 .235 .265 .286 .265

RADIOACTIVITY DETERMINATIONS

STATE

SOUTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

BIG SIOUX RIVER

STATION LOCATION BIG SIOUX RIVER BELOW

SIOUX FALLS, SOUTH DAKOTA

									RADIOAC	TIVITY IN PLAN	KTON (dry)		ADIOACTIVITY IN W	
DATE			RADIO	ACTIVITY IN V	ATER	BETA		- 1		GROSS A			GROSS ACTIVIT	TOTAL
SAMPLE	DATE OF		ALPHA		T	DISSOLVED	TOTAL		DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDE		μμε/Ι
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	μμε/Ι	μμε/1	Ī	MO. DAY	µµс/g	μμc/g	μμε/1	μμς/	
O. DAY YEAR		μμε/l	μμc/l	μμε/1	μμε/Ι	μμε/ι							1 1	
				_	0	١٥	٥	į	İ			1	1	
5 19 61	6 6	1	0	1	0	10	10	- 1				į		
6 5 61	6 20	0	5	5	-	-0	0	. [1			1		
6 15 61	7 5	1	5	6	0	ŏ	0	- 1	ļ		1		i i	
6 22 61	7 31	1	1	2	0	9	او		1			1		
6 29 61	7 27	0	0	0	0	Ŏ	o l	ļ	1					
7 6 61	8 7	0	5	5	0	3	3	- 1	1		\ \	1		
7 12 61	8 8	0	0	0	0	12	15				1 1		Ì	
7 18 61	8 14	0	0	Ō	3	1	i				1	İ	1	
7 25 61	8 14	0	1 1	1	0	54	86				1	ļ		
8 1 61	9 1	O	1	1	32	9	9				1			1
8 8 61	9 8	0	1 1	1	0	36	36							1
8 15 61	9 13	1	2	3	0	26	26		1		1			1
8 22 61	9 26	1	1	2	0	19	36		i i				Ì	
8 30 61	9 27	1	1	2	17	29	33				1	l	- 1	
9 6 61	10 6	0	0	0	4	33	58		}		1			l .
9 20 61	10 3	0	6	6	25	33	-		·			1		1
9 20 01						}			l	ļ	1			
							1		ļ	1	1	Į.	į	1
	Ì		Ì			1	1		}	ļ				ļ
		1	1	ļ	ļ				l			İ	l l	1
		1	İ							Į.				I
		1			į .		1			ì		l l		1
					l	ļ.			1	1				
				Į.				ł	1		1			1
	ļ		Į	ļ	1	1		1	1	ì			1	1
								Į.	1	ļ		1	1	
	\	ļ	Į.	ļ				1		ł	1	1 1		1
				\		}	1		1	1	}			1
			1		ļ			1						l c
	1	1		1	ľ	ì		İ	Ì	1			1	
					i	1		1		ļ				
	j	1			1			1	1	}	1			1
			1	1	1	l		1		į.	1	1		
	1			1	1					1		1		
	1	1				1	1	1					1	
	1	1	1		1			1			l			1
		Ţ	1				1		1			1 1		
		1		1		1		1		ļ		1		
		1			1				1				1	
	1				1		1	1						
						1	ı							

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

SOUTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

BIG SIOUX RIVER

STATION LOCATION BIG SIOUX RIVER BELOW

SIOUX FALLS, SOUTH DAKOTA

				ALGAE (Numbe	r per ml.)				INI	ERT										Γ.	т	MICROIT	VERTEB	PATES		i
DATE OF SAMPLE		BLUE-	GREEN	GRE		FLAGE	LLATES ented)	DIAT	омѕ	DIA SHE (No. p	ERT TOM ELLS er ml.)				SPEC		MS ND PE ode Ide			5	PLAMKTON, IEATHED 71.)	(3	T	T	1	r)	iENERA duction ication)
MONTH DAY YEAR	TOTAL	COCCOID	FILA. MENT- OUS	COCCOID	FILA- MENT OUS		OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER.	SECOND*	PER.	THIRD#	PER. CENTAGE	FOURTH	PER.	OTHER PER- CENTAGE	OTHER MICROPLANKTOR, FUNGI AND SHEATHED PACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORMS (No. per liter)	DOMINANT GENERA (See Introduction for Identification)
5 19 61 6 5 61 7 6 61 7 18 61 8 22 61 9 6 61 9 20 61	22000 29700 13900 20500 21100 10500 8200 10300 3700	40 340 650 110 20	460 180 70 180 90 310 20	2590 4310 4470 3240 3660 2190 2300 890		2920 3040 2190 740 650 1600 470 270	290 90 310	12070 18810 4670 13870 13990 4140 5740 470	3890 3040 1590 2230 2390 1650 1740 2010	3490 4670 3550 950 3440	790 470 690 540 170 850 690	82 26 26 82 26 26 26	30 40 60 40 30	26 56 82 82	10 30 20 10	56 26 56 56 23 82 58	* 20 10 10 10 10 10 10 10	92 92 158 70 70 70 858	10 * 10 * 10	10 10 10 10 10 20 20	50 20 70	10 20 20 10	3 2 10 80 35 18 34 104 45	2 3 2 1	61 3 2 6 3 4 2 4	4	71967 48963 4893- 74963 48967 48967 48967 48763

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

SOUTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

BIG SIOUX RIVER

STATION LOCATIONBIG SIOUX RIVER BELOW

SIOUX FALLS, SOUTH DAKUTA

(De	grees OXY	OLVED (GEN	pH	B.O.D. mg/l	C.O.D. mg/l	CHLORINE 1-HOUR	DEMAND 24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
6 22 61 2 6 29 61 2 7 6 61 2 7 11 61 2 7 125 61 2 8 1 61 2 8 8 61 2 8 8 61 2 8 22 61 3 8 30 61 3 9 6 61 9 9 20 61	0.0 6.0 6.5	3.1 1.8 2.9 4.0 1.8 .3 .0 .6 .3 .0 .0 .0	8.0 8.5 7.7 7.8 7.7 7.4 7.5 7.4 7.4 7.4 7.4 7.4 7.4 7.4	6.0 8.0 6.5 19.6 28.0 24.0 20.0 66.0 70.0 58.0 46.0 130.0 85.0 60.0				1.0 .6 .6 .4 .7 .8 1.8 2.8 2.0 1.8 .4 .5 6.0 1.2	33 32 53 53 36 56 73 136 55 153 112 78 138 214 240 205	273 240 270 249 224 189 227 239 222 192 220 235 260 223	450 452 478 395 338 4402 3560 3446 3446 3446	70	31 38 36 29 31 37 38 48 29	214 209 227 301 162 205 232 254 225 197 207 178 213 225	7.6 8.8 7.2 11.2 10.0 19.6	606 722 638 667 702 1056 706 885 642 806 783 1138 919	220000 860000 900000 6400000 3500000 6000000 5500000

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Brandon, South Dakota Operated by U.S. Geological Survey

STATE

South Dakota

MAJOR BASIN

Missouri River

MINOR BASIN

Big Sioux River

STATION LOCATION

Big Sioux River below

Sioux Falls, South Dakota

Day	October	November	December	January	February	March	April	May	June	July	August	September
	.078	.059	.040	.025	.020	. 904	.264	.126	.282	.300	.056	.070
1	.084	.056	.040	.025	.020	1.160	.252	.111	.261	. 306	.055	.063
2 3 4	.073	.056	.045	.020	.020	1.410	.249	.116	. 225	.231	.056	.050
7	.067	.056	.050	.042	.020	1.710	.243	.111	.216	.219	.059	.047
5	.072	.056	.050	.045	.020	1.510	.188	.126	.205	.196	.059	.050
6	.066	.056	.050	.041	.020	1.210	.188	.164	.264	.177	.059	.055
7	.066	.054	.045	.035	.020	1.080	.196	.143	.296	.152	.062	.045
7 8	.065	.052	.040	.033	.020	.904	.188	.150	.222	137	.076	. 050
9	.069	.052	.035	.030	.020	.712	.185	.145	.172	.116	.073	.041
10	.063	.050	.030	.035	.025	.632	.182	.152	.159	.107	.063	.040
11	.059	.047	.025	.034	.025	. 562	.185	.167	.180	.114	.062	.034
12	.062	.049	.030	.034	.025	. 527	.182	.167	.185	.120	.050	.041
	.066	.054	.030	.034	.025	.516	.177	.185	.205	.162	.044	.042
13 14	.073	.051	.030	.034	.025	.660	.177	.157	.213	.2 19	.042	.034
15	.062	.054	.030	.032	.025	1.100	.169	.188	.234	.174	. 044	.038
16	.054	.052	.035	.032	.025	1.230	.159	.167	.297	.130	. 040	.028
17	.054	.041	.030	.032	.025	.896	.157	.225	. 324	.111	.038	.032
18	.054	.033	.030	.034	.025	. <i>6</i> 84	.157	. 306	.288	.098	.055	.032
19	.054	.030	.030	.032	.025	. 565	.150	.422	.261	.088	.049	.034
20	.051	.026	.030	.025	.035	. 502	.145	.432	.267	.085	.047	.057
21	.051	.026	.030	.020	.050	.477	.141	.516	.261	.079	.059	.112
55	.052	.030	.030	.020	.075	.450	.145	. 483	.255	.078	.049	.044
23	.050	.030	.030	.020	.155	.405	.157	. 489	.228	.079	.052	.040
23 24	.049	.030	.025	.020	.800	. 375	.155	•431	.202	.069	.056	.039
25	.050	.030	.020	.020	. 450	. 354	.150	.621	.177	.066	.067	.039
26	.050	.030	.020	.020	.456	· 3 ¹ 45	.145	.715	.157	.063	.079	.039
27	.049	.030	.020	.020	. 694	• 339	.141	537	.145	.062	.109	.039
27 28	.050	.030	.025	.020	. 744	. 321	.137	.429	.132	.060	.107	.039
29	.058	.030	.025	.025	•	. 306	.130	. 378	.124	.052	.109	.038
30	.065	.030	.025	.025		. 303	.130	.351	.126	.050	.084	.038
31	.059	-	.025	.025		. 288		. 327		.050	.074	

RADIOACTIVITY DETERMINATIONS

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTACHOOCHEE RIVER

STATION LOCATION CHATTACHOOCHEE RIVER AT

COLUMBUS, GEORGIA

								1 2/2/2/2	******************************	UKTON (day)	RAL	DOACTIVITY IN W	ATER
			RADIO	ACTIVITY IN V	ATER				TIVITY IN PLAN	ACTIVITY		GROSS ACTIVITY	TOTAL
DATE			ALPHA			BETA		DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	μμε/Ι
SAMPLE TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	MO. DAY	μμε/g	μμε/g	μμε/1	μμε/Ι	- FF-UIT
		μμς/Ι	μμε/Ι	μμε/Ι	μμc/1	μμς/Ι	μμε/Ι	MO. DAY	ррс/ у	1		1	
O. DAY YEAR	MONIH DAT					_	١٥	1 1		1		1	
0 10 (0)	10 20	0	1	1	0	0	0	1 1				1	
0 10 60* 0 24 60*	10 20	_	_	_	0	0	0	1 1			1		
	12 7	lol	1	1	0	0	1	1		1	1	1	
			-	-	0	1	i			1			
.1 28 60* 2 12 60*		0	2	2	0	1 0	أة			1		1	
2 27 60	2 2	-	-	-	0	0	ő	1		1	l l		
		0	0	0	0	0	ŏ	1 1		1	}		
1 9 61*	1 _	-	-		0		o l						
2 13 61	1 -	0	0	0	0	0	6	l l				1	İ
2 27 61	1			-	6	0	ŏ l			1			Ì
3 13 61	1	1	0	1	0	0 1	0			1 1			
3 20 61	4 3	-	-	_	0	3	3			1		1	1
3 27 61	4 12	-	-	-	0	1 6	0						
4 10 61	1	1	1	2	0	l ŏ	0	l					1
4 24 61		1	0	1	0	1 0	0		}				
5 29 61	1	0	0	0	0	Ì	0						
6 26 61		0	0	2	1 0	0	0	}	ļ	Ì		1	İ
7 31 61		1	1	0	ž	3	5	į				1	1
8 28 61	* 9 13	0	0	0	0	3	3	1	ļ	1			1
9 5 61		0	0	_	ì	1	1			1			
9 11 61	10 3	-	-		2	3	5						l
9 18 61		-	_	_	1 0	2	2		1		1 1		
9 25 61		-	-										
				1	1								ļ.
	1	-	1		ì		Ì		1	1			
	1									1		1	1
				1	-	l .	1					1	
		1		ì		1	1						Į.
	1	}		1			1						
	i e	ì			1			1	1	į.			
		Į.			l l			1 1	ļ			1	
	1							1 1				ļ	
	1	1											
		1			1		1						
									1	1			ļ
					1	1			1			1	
		l					1	1 1	1		1 1		
											1 1		
		1			ĺ								
	1	1											
							63						

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTACHOOCHEE RIVER

STATION LOCATION CHATTACHOOCHEE RIVER AT

COLUMBUS, GEORGIA

DATE				ALGAE (A	Vumber	per ml.)				INE	ERT										Γ.		MICROIN	IVERTEBE	ATER		
OF SAMPLE		BLUE-	GREEN	GREE	N.	FLAGEL (Pigm	LATES ented)	DIAT	омѕ	INE DIA SHE (No. p	TOM LLS er ml.)	İ	DOM!	NANT	SPEC	IATO	ND PE	RCEN ntificat	TAGES	3	EDPLANKTON, SHEATHED ml.)	A m1.)			1	ronns	ENERA luction cation)
MONTH DAY YEAR	TOTAL	.0000010	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND#	PER. CENTAGE	THIRD\$	PER.	FOURTH#	PER- CENTAGE	OTHER PER- CENTAGE	OTHER MICROI PUNCI AND SH BACTERIA (No. per m	PROTOZOA (No. per n	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANDIAL (No. per liter	DOMINANT GENERA (See Introduction for Identification)
10 3 60 17 60 11 7 60 11 2 5 60 12 5 60 12 6 61 2 1 61 3 20 61 4 17 61 5 15 61 6 5 61 7 3 61 7 17 61 8 21 61 9 18 61	400 1500 1600 2000 1900 7000 2000 1000 1600 2700 2400 1100 400 4800 6200 900	20 90 130	20 20 20 20 20 20 440 1820 250 1660 2370 100	90 180 130 90 20 70 20 40 40 210 190 160 1220 1080 390 190		20 310 460 20 160 20 160 40 560 170 540 310 80	200 200 200 200 200 200 400 600 800 600	180 290 620 70 180 1560 1450 430 20 90 180 510 870 1200 330 160 1120 370	80 180 70 110 290 430 130 160 270 630 170 480 1120 190	90 70 110 20	110 110 130 110 130 160 270 40 170 80 310 80	3 9 2 3 5 7 7 5 7 5 7 7 5 7 5 7 5 5 6 6 5 7 7 2 7 2 7 2 7	20 40 30 60 80 20 30 40 60 30 40 60 30 20 40 30 20 40 30 20 40 40 40 40 40 40 40 40 40 40 40 40 40	98828 222222 9867867737 555555525	20 10 10 20 20 30 30 20 20 10 10 10 20	70 83 27 28 9 92 57 62	10 10 * 10 10 20 10 10 10 20 10 10 20	71 56 57 91 97 58 74 58 97 82 57 99 59 92 56 70	10 10 * 10 * * * * * * 10 10 10 10 10	20 40 40 30 10 10 40 50	20 20 20	10 20 10 10 10	1 1 1 1 7 2 2 2 2 0 5 7 5 5 5 2 2 1 3 1 1 4 0 8 6 0 1 7 7 4 0 8 6 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1	3 4 8 147 39 5 8 9 5 8 13	2		

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

GEORGIA

MAJOR BASIN

MINOR BASIN

CHATTACHOOCHEE RIVER

STATION LOCATION CHATTACHOOCHEE RIVER AT

SOUTHEAST

COLUMBUS, GEORGIA

									•		CHI OBOE	ORM EXTRA	CTABLES				
DATE OF S				EX	TRACTABL	ED					NEUTRALS		1	1	<u> </u>		
MONTH BB BAY IS ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 10 60 11 7 60 12 5 60 1 6 61 2 6 61 3 6 61 4 3 61 5 2 61 6 5 61 7 3 61 8 7 61 9 14 61	11 12 1 2 3 4 5 6	16 15 14 16 14 12 12 14 14	3770 4200 34462 3523 3692 4028 4237 3553 4139 4890 4985	228 236 192 194 258 209 206 224 216 223 184	60 69 61 51 * 103 116 107 89 103 98 59 *NOT	168 167 131 143 174 155 93 99 135 113 125 125	2 3 4 2 -6 7 8 4 8 7 1 D-OVERH	16 17 16 11 30 35 28 22 27 25 12	17 19 15 15 19 23 20 25 22 21 19	2222 - 2645332	1 1 1 2 2 2 2 2 2 2 2 1	15 12 11 - 14 15 13 17 16	1 1 1 1 1 2 2	9	14 13 9 13 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 14 14 13 - 27 27 16 15 24 13

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTACHOOCHEE RIVER

STATION LOCATIONCHATTACHOUCHEE RIVER AT

COLUMBUS, GEORGIA

	DATE						<u> </u>	CHLORINE	DEMAND										
MONTH	F SAM	EAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
	à	ΥE										10	13		30				
10	3	60	23.0	6.8	6.9	2.1	18	2.8 2.2	5 • 2 4 • 8	_	4	18 17	12 14	_	30 30	1 1	_	_	170
10 10	10	60		7.7	7.0 7.1	1.2 1.6	17 20	.9	2.8	_	4	18	14	_	20	_		_	120 35
10	17 24	60	23.5 21.5	7.7 5.9	6.8	.8	18	1.1	1.9	-	4	18	16	_	20	-	-		190
10	29	60		-	-	_		-	-	-	-	-	-	-	-		-	-	150
10	31	60	19.5	6.1	6.8	• 7	46	• 9	2 • 4	-	4	18	15	-	20		-	-	-
11	7	60	17.5	7.9	7.0	2.0	44	• 7	2 • 1	-	4	19	15	-	20	-	-	-	58
11	14	60	15.5	8.5	7 • 1	1.0	42	• 9	2 • 3	-	4	19	15 15	-	20	_		-	49
11	21	60	15.0	8.2	6.9	. 8	48	1.2 1.1	2.1	_	4 4	19 19	15	_	8	_	_	-	73
11 12	28	60	15.5	8.4	6.9	• 9	54	1.1	2.0	_	-	19	-	_	-	_		_	55 67
12	5	60	12.5	9.1	6.9	1.8	45	1.1	2.9	_	4	19	15	0	10	_	_	_	01
12	12	60	11.5	9.8	6.9	1.0	48	1.0	2.8	_	4	18	15	_	10	_	_	_	55
12	19	60	10.0	10.2	6.9	.9	51	1.1	2.8	-	4	18	15	-	10	_	-	-	35
12	27	60	9.0	11.0	7.0	1.0	45	• 9	2.9	-	4	18	14	-	8	-	-	-	40
1	3	61	8.5	10.6	7.0	• 7	13	1.2	3.1	-	4	18	14	-	10	-	-	-	40
1	9	61	8.0	10.3	6.9	.8	15	1.4	3.8	-	4	18	14	-	15		-		29
1	16	61	9.0	10.6	7.0	• 9	16	1.4	2 • 8	-	4	18	14	-	15	_	-		65
1	23	61	7.5	10.5	7.0	• 6	12	1.2	2 • 9	-	4	18	15	-	15	-	-	-	13
1 2	30	61	7.0	11.0	7.1	•7 •7	14 19	1.8 1.8	2 • 8 3 • 9	-	4	19 17	15 16	_	15	-		-	55
2	13	61 61	8.0 8.5	10.7	7•1 7•3	1.3	14	1.1	2.9	_ [5	19	13	_	10	_	_	_	33
2	20	61	12.0	10.8	6.9	1.9	22	3.6	6.0	_	4	15	15	_	220	_	_	_	400
Z	27	61	14.0	11.4	6.6	1.4	30	2.6	6.4	_	4	7	10	_	440	_	_		4400
3	6	61	14.5	9.0	6.6	2.6	19	2.8	5.9		4	10	12	_	110	-	_	_	
3	13	61	15.0	9.0	6.7	1.3	18	1.9	4.2	-	4	12	12	-	75	_	_	- [
3	20	61	14.5	9.2	6.9	1.3	13	1.8	3.9	-	4	12	12	-	75	_	-	-	560
3	27	61	16.0	9.2	6.9	• 7	13	.8	3 • 2	-	4	15	14	-	40	-	-		300
4	3	61	17.0	9.8	6.9	1.0	22			-	4	14	12	-	160	-	-	-	1500
4 4	10 17	61	17.0	8.9	6.9	1.0	15 17	1.4	3 • 6	-	4	13	12	-	104	-	-	-	340
4	24	61	17.0 17.0	9.0 8.5	6.9	1.3 .5		. 9	3.8	-	4	13	12	-	180	-	-	-	2400
5	1	61	19.0	8.7	6.9	•7	16 18	1.0	2.9	_	4	15 15	14 12	_	65	_		_	300
5	8	61	20.5	8.4	7.0	.6	16	1.4	2.7	-	4	15	12	_ [4 () 4 ()	_	_	_	1100
5	15	61	20.5	6.8	7.0	.7	17	.9	2.8	_	4	16	13	_	20	_	_	_	420 47
5	22	61	24.0	9.0	7.3	1.9	24	1.4	3.8	_	3	18	14	_	20	_	_	_	60
5	29	61	21.5	8.3	7.1	1.1	16	• 9	2.9	-	4	19	14	_	20	_	_	_	47
6	5	61	23.5	7.5	7.1	1.3	15	1.4	3.2	-	4	19	14	-	20	-	_	-	-
6	6	61	-	- [-	-	-	-	-	-	-	-	-	-	-	-	-	-	80
_6	12	61	26.0	9.01	7.4	6.5	16				4	20	14		20	-	-	-	40

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTACHGOCHEE KIVEK

STATION LOCATIONCHATTACHOOCHEE RIVER AT

COLUMBUS, GEORGIA

	DATE F SAM		темр.	DISSOLVED		B.O.D.	C.O.D.	CHLORINE	DEMAND	AMMONIA-	CHIODIDES	ALKALINITY	HARDNESS	COLOR	TURBIDITY	SULFATES	PHOSPHATES	TOTAL	COLIFORMS
MONTH	DAY	YEAR	(Degrees Centigrade)	OXYGEN mg/l	рН	mg/l	mg/l	1-HOUR mg/I	24-HOUR mg/l	NITROGEN mg/l	mg/I	mg/l	mg/l	(scale units)		mg/l	mg/l	SOLIDS mg/l	per 100 ml.
6 7 7 7 7 7 8 8 8 8 9 9	26 3 10 17 24 31 7 14 21 28 5	61 61 61 61 61 61 61	27.0 26.0 27.5 26.5 24.5	6.4 7.7 8.7 6.15 5.9 6.8 7.6 6.8 7.6 6.8 7.6 8.7 6.8 7.6 8.7 6.8 7.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	6.9 6.9 6.9 6.9 7.1 6.9 7.0 6.9 6.9	1.3 1.1 1.9 1.0 .8 .4 .5 1.5 1.5 1.7 .7	18 20 19 15 17 18 17 18 26 26 21 25	1.4 1.9 1.6 1.9 - 1.6 1.4 1.6 1.6 1.6 1.7	3.6 3.8 2.8 3.9 -		444444444444444444444444444444444444444	20 19 18 18 18 19 19 20 18 18 18 19	14 14 14 14 15 15 16 15 15 15		18 40 40 30 18 10 10 9 40 35 30 18		-		45,000 PT 600 PT 14 PT 600 PT 14 PT 600 PT 14 PT 600 PT 14 PT 600 PT 14 PT 600

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Columbus, Georgia Operated by U.S. Geological Survey STATE

Georgia

MAJOR BASIN

Southeast

MINOR BASIN

Chattahoochee River

STATION LOCATION

Chattahoochee River at

Columbus, Georgia

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4	4.900 6.430 7.060	3.880 5.670 5.630	5.440 4.250 2.050	1.320 1.320 4.420	5.620 7.430 3.240	25.000 15.100 12.600	58.000 35.000 19.200	12.400 12.600 12.200	5.480 5.060 1.550	6.800 6.050 7.160	2.340 3.600 3.940	4.730 3.080 3.290
5 5	6.830 4.200	3.540 1.530	1.390 4.160	4.670 6.620	1.730 1.250	10.900 7.430	14.000 12.800	12.100 9.960	1.350 7.700	3.780 6.930	3.540 5.090	2.780 5.320
6 7 8 9	4.230 3.830 3.190 1.420 4.250	1.250 4.680 4.850 4.540 3.760	5.640 5.590 6.040 4.750 3.670	5.160 1.420 1.280 4.750 4.590	3.170 5.850 5.000 4.450 3.290	7.190 11.200 24.100 16.700 15.200	11.000 12.100 12.100 9.800 12.100	8.850 8.680 10.400 8.240 8.360	9.800 3.180 2.300 3.400 2.520	8.540 4.960 1.500 1.300 7.000	2.250 6.400 6.170 7.910 8.000	4.130 6.350 7.900 1.890 1.500
11 12 13 14 15	6.330 6.450 5.260 5.630 1.530	2.570 1.320 1.320 3.990 4.510	1.320 3.930 6.300 5.360 6.030	3.990 4.720 2.560 1.460 1.280	1.390 1.250 1.320 1.910 1.360	12.000 9.480 10.300 9.320 9.320	12.100 17.000 19.800 20.800 20.000	8.040 9.640 9.160 8.830 9.480	1.650 5.780 5.690 4.300 5.620	7.000 11.000 12.000 9.000 8.750	7.300 5.380 3.320 6.040 4.890	2.260 3.890 4.450 4.260 5.400
16 17 18 19 20	1.250 2.630 3.410 5.220 5.200	4.160 5.260 4.510 1.610 1.250	5.160 1.360 1.320 3.760 5.730	3.460 4.810 4.920 6.010 4.680	1.320 1.320 2.950 18.600 53.900	9.960 9.000 10.600 11.500 9.800	20.200 17.500 12.800 11.600 11.000	9.640 7.400 5.620 8.520 2.300	6.280 5.920 6.110 5.180 7.400	6.900 7.740 6.800 7.580 7.280	5.670 4.300 5.550 1.960 1.600	1.630 1.410 3.710 7.260 6.140
21 22 23 24 25	1.500 1.250 1.250 2.530 2.200	3.940 5.380 6.130 3.490 5.360	6.170 5.680 3.940 1.390	2.760 1.390 4.760 5.330 5.180	50.500 40.500 39.500 46.300 120.000	10.400 10.600 9.320 9.800 8.840	12.200 12.100 11.400 10.900 8.360	1.300 1.280 4.950 7.720 8.040	12.100 13.000 12.800 10.400 8.410	6.770 6.910 3.550 6.710 6.420	5.770 4.000 5.320 6.440 9.160	6.040 6.460 1.720 1.410 5.980
26 27 28 29 30 31	2.940 3.320 2.000 1.250 1.220 1.220	3.370 1.320 4.510 6.500 6.240	1.280 4.950 5.440 5.700 4.220 1.560	5.620 5.940 1.460 1.320 4.060 4.110	115.000 66.000 46.500	4.820 7.300 9.160 9.160 7.620 23.400	11.000 11.400 15.200 16.200 13.200	8.040 5.910 2.850 4.740 6.460 5.880	7.970 9.480 10.400 6.800 7.620	4.220 4.550 5.340 1.740 1.490 3.920	15.600 10.200 8.590 8.470 6.300 4.460	1.850 3.700 2.500 3.020 1.370

RADIOACTIVITY DETERMINATIONS

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTAHOOCHEE RIVER

STATION LOCATION CHATTAHOOCHEE RIVER AT

ATLANTA, GEORGIA

								DA	DIOAC	TIVITY IN PLAN	KTON (dry)			ACTIVITY IN W	
DATE			RADIC	ACTIVITY IN W	ATER	BETA				GROSS A				ROSS ACTIVIT	
SAMPLE	DATE OF		ALPHA			DISSOLVED	TOTAL	DATE DETER NATIO	ON -	ALPHA	BETA	SUSPEN		DISSOLVED	TOTAL
TAKEN	DATE OF DETERMI- NATION	BUSPENDED	DISSOLVED	TOTAL	SUSPENDED		μμε/Ι	мо. 1		μμc/g	μμc/g	μμε/	1	μμε/1	<i>μμ</i> c/l
MO. DAY YEAR	MONTH DAY	μμc/l	μμε/Ι	μμε/Ι	μμε/Ι	μμε/\									
			_	-	0	2	2		- 1			1		1	
0 4 60	10 18	0	1	1	1	3	3	1					- 1		
0 12 60	10 21		-	-	0	3	3		İ			Į.			
0 18 60	11 1	-	-	-	0		ő	İ				ļ	1		
1 9 60	11 28	-	-	~	0	0	2	1	ı		i .			ļ	
1 16 60	11 29	-	-	**	0	2	i	- 1	ļ		1	1			
1 23 60	12 2	-	- 1	-	0	1	o l	Į	ļ						
1 30 60	12 12	-	_	-	0	0		1	-]				
2 7 60	12 29	0	0	0	0	0	0	1	l		j l		-		
2 14 60	1 10	_	-	-	1 0	0	0		1		1				
2 28 60	1 20		_	•	0	1 1	1		i			ļ			
1 4 61	1 24	1 0	0	0	1	0	1		1			l l	j	,	
1 18 61	2 2	_	-	-	0	0	0		- 1			ŀ			
1 25 61	2 7	_			0	6	6		1		1		İ		
_	2 20	0	0	0	. 0	0	0	!	1			4	į		ļ
2 1 61		0	0	0	7	11	18		1		1		1		
2 8 61		_		_	lo	0	0		1				- 1		1
2 15 61	3 6	_			11	2	13		- 1			1	- }		ļ
2 22 61	3 8	_		_	0	0	0	Ì	l			l	1		1
3 1 61	3 20	l .	0	2	0	0	0	ł				İ	1		
3 8 61	3 27	2		_	0	0	0	ľ	1			ì			ł
3 22 61	4 7			_	1 0	0	0	- 1				i	i		1
3 29 61	4 12	_	1 7	0	1 0	0	0					.[- 1		i
4 5 61	5 3	0	0	_	lō	5	5	1			ì	ļ	!		
4 12 61	4 27	-	1	_	١٥	٥	0	1			1				1
4 19 61	5 10	-	-		o	o	1 0 1								
4 27 61	5 17	-		0	1 0	0	0					[
5 3 61	5 25	0	0	1 -	1 0	l ŏ	0	ļ		Ì			1	I	
5 10 61	5 25	_	-	1	1 0	0	0	l l		Ì		1			1
5 24 61	6 8	-	_		1 0	0	0			1		1			j
5 31 61	6 20	-	_	0	0	١٥	0			Ì					
6 7 61	6 27	0	0	1	0	0	0	l l				1		ļ	1
6 14 61	7 6	-	-	_		2	2	İ]		1 1			ŀ
6 21 61	7 11	-	-	_	2	ō	2	1		Ì	1	1		!	
6 28 61	7 26	-	_	-	3	l ö	3	l'				i i		ł.	
8 2 61	* 8 25	1	0	1		l	3	. 1		ĺ		1 1			
8 30 61		0	0	0	2	ò	l ő l			l					
9 6 61	1	0	0	0	0	2	2			1		1 1		1	
9 13 61	1	_	-	-	0		6			ļ					
9 27 61		-	-	-	.0	6									
, 21 01	1				1					1	1			1	
	1				1	1				1	1			1	

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTAHOOCHEE RIVER

STATION LOCATION CHATTAHOOCHEE RIVER AT

ATLANTA, GEORGIA

				ALGAE (Jumber	per ml.)				INE	RT TOM	<u> </u>			DI	ATO	ws.				<u>;</u>		MICROIN	VERTEBR	ATES		
DATE OF SAMPLE		BLUE-	GREEN	GREE		FLAGEL (Pigme	LATES	DIAT	омѕ	SHE (No. p	LLS		DOM! (See	NANT Introd	SPEC duction	IES A	ID PE	RCENT ntificat	rAGES	:	PLANKTO HEATHED 771.)	A ml.)	S iter)	EA iter)	ES iter)	AL FORMS	GENERA Soluction fication,
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER. CENTAGE	SECOND#	PER. CENTAGE	THIRD	PER. CENTAGE	FOURTH	PER- CENTAGE	OTHER PER- CENTAGE	OTHER RICROPLANKTON, FUNGI AND SHEATHED RACTERIA (No. per ml.)	PROTOZO/ (No. per	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ARIMAL FORMS (No. Der Ilter)	DOMINANT GENERA (See Introduction for Identification)
10	300 100 100 100 100 100 300 200 800 500 300 200 400	20	20	20 20 20 20 20 20 20	20	20 20 20 20 20 20 40	20 20 50 20	20 50 110 20 180 110 540 350 220 60 60 40 20	110 20 20 70 50 90 200 200 310 440 250 120 330 120 100	90 50 90 90 20 190 40 40 60	90 20 20 70 20 110 50	62 28 28 93 97 57 57 57 57 57 57 57	20 30 20 20 20 10 40 30 30 20	28 62 57 57 57 28 88 2 9 9 57 9	10 10 20 10 10 20 30 30	93 22 28 28 57 92 31 56 95 92 92	10 10 10 10 10 10 10 10 10 10	93 62 29 62 14 95 56 56 95 2	* 10 10 10 10 10 10 10 10 10 10 10 10 10	20 20 40 50	20 20 20 70	10	3 3 2 2 4 18 7 1 9 1 1 3 1 3 5	5 3 1	1 1 2 1 1		4

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTAHOOCHEE RIVER

STATION LOCATION CHATTAHOOCHEE RIVER AT

ATLANTA, GEORGIA

					TO A CTADI	FC					CHI OROF	ORM EXTRA	CTABLES				
DATE OF SA			-	EX	TRACTABL						NEUTRALS						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DAY DAY YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
10 21 60 11 22 60 12 27 60 1 31 61 3 9 61 4 28 61 6 16 61 7 24 61	12 2 3 6 7	7 11 15 29	6240 5050 5130 5300 5120 5030 5570 6120	174 171 243 231 162 219 * 133	67 60 69 108 82 80 76 59	107 111 174 123 80 139 * 74	1 4 2 9 7 4 5 2 EPORTED	21 19 18 31 21 26 12	13 10 15 16 18 15 17 EATED	1111323	2	8 12 13 13	0011100011	7 9 8	7 8	2 1 1	17 15 22 32 21 20 13 16

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTAHOOCHEE RIVER

STATION LOCATIONCHATTAHOOCHEE RIVER AT

ATLANTA, GEORGIA

	ATE			1				CHLORINE	DEMAND									TOTAL	
OF S	AMP	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pH	B.O.D. mg/l	C.O.D. mg/i	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN ' mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/i	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/i	COLIFORMS per 100 ml.
		60	-	-	-	-	-		1 1	1		_	_	_	_	_	_	_	1800 280
		60	_	-	_	_	_	_	_	_	_	-	-	_	_	_	-		1900
10 2	6	60	_	-	-		_	-	-	-	-	-	-	-	-	-	-	-	1200
11		60	-	-	***	-	-	-	-	-	_	-	10			-	-	1.0	90
11	- 1	60	7.8	10.1	6.9	-	24 22		_	•0	*1 *1	12 11	10 12	*5 *5	7 8	*1 *1		16 16	190 40
		60	8.3	9.3	6.7	• 8 • 8	28	_		•0	*1	10	12	×5		*1		16	150
		60	8.9	9.8	6.9	-	26	.9	2.1	0	*1	13	12	*5	_	*1	_	17	550
12		60	8.9	9.9	6.9	• 9	15	1.1	2•2	• 0	*1	14	12	*5	7	*1	-	16	420
		60	4.4	12.2	6.8	-	-	1.1	2 • 1	•0	*1	12	14	*5	-	*1	-	17	1000
		60	6.6	10.7	6.9	•6	18	•9	2•1	•0	*1	14	12	*5	6	*1	-	19	310
1		61	4.4	10.7	6.9	•6	9 12	1.0	2.0 1.9	•0	*1 *1	12 12	12 12	*5 *5	6	*1 *1	_	15 16	450 2000
		61	5.0 4.4	12.2	6.9	•6 •8	8	• 9	1.9	•0	*1	12	14	*5	7	*1	_	16	190
		61	2.8	12.1	6.9	.6	13	1.2	2.2	•0	*1	12	14	*5	8	*1	_	17	220
2		61	3.3	12.4	6.9	• 7	-8	1.9	2.6	• 0	*1	13	12	*5	9	*1	-	17	370
2		61	2.8	12.4	6.9	1.0	8	2.5	3 • 6	• 3	*1	12	12	*5	14	*1	-	17	5200
2 1		61	7.2	11.0	6.9	. 8	39	1.2	2 • 4	• 2	1	12	12	5	5	1	-	16	1500
	- 1	61	7.8	10.7	6.5	2.4	_	3.9 2.9	4•9 4•9	• 2	1	7 11	8 10	5 5	220 47	1	_	- 18	-
3	- 1	61	8.8 13.9	10.1	6.7	.8 1.8	49	2.9	4.9	• 0	1	12	10	5	63	1		17	600
		61	8.8	11.3	6.9	• 3	43	1.8	2 • 4	• 0	*1	9	8	5	27	*1	-	14	100
		61	8.3	10.7	6.9	.6	51	2.4	5.0	• 0	*1	11	10	5	14	*1	-	14	3000
		61	8.3	10.6	6.9	• 3	50	1.4	3•9	• 0	*1	11	9	5	18	*1	-	14	1100
4	- 1	61	8.3	10.4	6.9	1.5	49	3.8		• 0	*1	9	10	5	8	*1	-	18	5400
	- 1	61	9 • 4	10.3	6.9	• 4	49 45	1.6	3.0	• 0	*1 *1	10 10	6 8	5 5	19 15	*1		14 13	700
		61 61	11.7 15.0	10.7	6.9 7.0	.8 1.0	53	•9 1•9	1 • 8 3 • 9	• 0 • 0	*1	11	8	5	16	*1 *1	_	13	950 3700
5 5		61	9.4	10.3	7.1	1.3		1.6	3.7	•0	*1	10	8	5	18	*1	_	14	1300
		61	12.8	9.5	7.0	1.2	18	1.8	3.6	• 0	*1	12	8	5	13	*1	_	16	370
		61	12.2	9.8	7.0	• 6	18	1.9	3.7	• 0	*1	10	8	5	9	*1	-	16	2800
		61	12.7	8.9	7.1	• 6	15	1.5	3 • 8	• 0	1	13	8	5	11	1	-	17	2100
	,	61	13.3	9.1	7.1	• 8	49	2.0	4 • 0	• 0	1	13	. 8	5	6	1	-	17	2400
6 1		61	16.6 16.1	8.7	7.0	•5	12 11	2.0	4.0	•0	1	12 13	10 8	5 5	7 11	1 1	_	16 16	670 1400
		61	14.4	8.3	6.9	•6 •6	10	3.8	4.9	•0	1	12	10	5	30	1	_	18	13000
		61	17.7	8.5	6.7	.7	15	4.0	5 • 2	•0	1	11	10	5	45	î		18	8000
7		61	15.5	8.6	6.9	•6	58	3.9	4 • 8	• 0	ī	11	10	5	12	1	-	15	1900
		\perp		L										L.,					

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTAHOUCHEE RIVER

STATION LOCATIONCHATTAHOOCHEE RIVER AT

ATLANTA, GEORGIA

DATE OF SAMPLE	TEN		DISSOLVED				CHLORINE	DEMAND	AMMONIA-	CULODIDES		HARDNESS	COLOR	TURBIDITY	SULFATES	PHOSPHATES	TOTAL DISSOLVED	COLIFORMS
DAY SEAR	(Deg	105	OXYGEN mg/l	На	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/I	mg/l	ALKALINITY mg/l		(scale units)	(scale units)	mg/l	mg/l	SOLIDS mg/l	per 100 ml.
7 12 6.7 19 6.7 26 6.8 2 6.8 9 6 8 30 6 9 13 6 9 27 6	1 15 1 16 1 15 1 15 1 15	• 4 • 0 • 1 • 1 • 5 	8 • 8 • 3 5 1	6.9 6.9 6.9	.7 .8 .6 .8 .4 	49 51 50 44 46 	2.8 3.9 3.9 2.9	3.9 4.9 5.0 4.0	•0	1 1 1 1	10 11 12 12 12 	8 8 8 10 8 	555511111	28 17 12 8 9	1 1 1 1		16 15 17 15 15 - - - -	310 3400 8800 2500 5600 790 4000 3500 810 550

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Atlanta, Georgia Operated by U.S. Geological Survey STATE

Georgia

MAJOR BASIN

Southeast

MINOR BASIN

Chattahoochee River

STATION LOCATION

Chattahoochee River at

Atlanta, Georgia

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4	2.140 1.260 .898	1.960 2.260 2.290	4.100 4.110 3.070	1.360 1.590 2.250	1.600 1.600 1.610	1.920 1.870 1.840	4.450 1.720 2.880	2.630 4.510 5.390	1.950 2.020 1.520	3.680 2.410 2.930	2.770 3.410 3.480	2.240 1.620 1.330
¥	.865	2.250	1.270	2.500	1.230	1.510	3.660	5.100	1.300	3.520	3.360	1.240
5	.922	1.770	2.130	2.530	1.080	1.330	3.940	5.240	1.550	3.740	2.280	1.740
6	1.620	1.290	4.020	2.460	1.480	1.530	5.110	3.940	2.680	3.610	1.400	1.680
7	1.060	1.580	4.050	1.610	1.670	1.890	5.330	1.270	2.730	3.690	1.820	1.640
8	1.320	1.890	4.080	1.300	1.740	2.780	4.120	1.510	2.850	2.760	3.020	1.720
9	1.900	2.280	4.120	1.600	1.730	2.540	1.450	1.660	2.800	1.420	3.340	1.450
10	1.660	2.400	3.120	2.540	1.720	1.880	2.950	2.200	1.700	2.100	5.460	1.130
11	1.780	2.320	1.440	2.550	1.380	1.520	4.180	2.780	1.340	4.450	6.100	1.560
12	1.710	1.940	1.870	2.460	1.200	1.340	6.820	2.570	1.560	4.940	4.920	3.210
13	1.700	1.320	2.660	2.540	1.340	2.840	6.570	1.510	2.510	5.170	1.440	3.270
14	1.690	1.810	2.480	1.730	1.540	5.010	5.820	1.220	2.740	5.200	2.220	3.340
15	1.410	3.960	2.500	1.320	1.540	4.840	4.200	2.260	3.180	3.830	4.080	3.360
16	1.250	4.050	2.420	2.010	1.500	4.880	1.630	3.340	3.030	1.520	3.590	2.140
17	1.310	4.080	1.900	2.480	1.660	4.490	3.120	3.520	1.740	2.540	3.400	1.340
18	1.680	3.920	1.280	2.540	1.700	3.270	5.920	3.800	1.350	4.660	3.400	1.550
19	1.680	2.970	1.570	2.570	2.440	1.310	6.320	3.730	1.600	4.740	2.130	3.700
20	2.130	1.290	2.700	2.610	4.420	3.100	6.100	2.660	2.410	4.600	1.380	3.400
21	1.810	1.840	2.570	1.920	16.500	4.540	6.060	1.200	3.400	4.460	2.020	3.490
22	1.440	4.110	2.700	1.330	10.800	4.280	4.650	1.660	3.510	3.090	4.650	3.550
23	1.280	4.240	2.650	1.600	7.180	4.600	1.300	2.380	3.740	1.440	4.720	2.180
24	1.580	4.260	1.940	2.240	5.590	4.520	2.520	2.580	3.460	1.820	5.080	1.350
25	1.700	4.200	1.310	2.250	20.200	3.100	4.410	2.340	2.860	3.080	5.050	1.650
26 27 28 29 30 31	2.130 2.160 1.900 1.710 1.290 1.670	3.060 1.280 2.250 4.120 4.100	1.560 1.740 1.710 1.720 1.740 1.480	2.360 2.220 1.710 1.290 1.630 1.750	9.520 3.180 2.200	1.280 2.900 3.460 3.470 3.730 6.820	5.280 7.180 5.960 4.600 1.320	2.580 1.680 1.240 1.580 1.840 2.010	3.460 4.230 4.820 3.820 3.620	3.010 2.910 2.920 1.990 1.610 1.450	4.250 1.580 1.700 1.820 2.040 2.120	1.740 1.790 1.790 2.170 1.470

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

YUMA, ARIZONA

			21.010	ACTIVITY IN V	/ATED			PADIOAC	TIVITY IN PLAN	KTON (dry)		IOACTIVITY IN W	
DATE			ALPHA	ACTIVITI IN V	AILA	BETA			GROSS A			GROSS ACTIVIT	
SAMPLE	DATE OF DETERMI- NATION		DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
TAKEN		SUSPENDED	μμc/1	μμε/1	μμς/1	μμς/1	μμς/Ι	MO. DAY	µµс/g	µµс/g	μμc/1	μμε/Ι	μμc/l
MO. DAY YEAR	MONTH DAY	μμε/Ι	- APE/1									i i	
		_	_	-	0	0	0		1			1	
0 3 60	10 19		5	5	0	9	9					1	
0 10 60	11 15	0	ا ہ	í	Ŏ	ō l	o l						
0 24 60*		0	7	7	0	o	0						
1 7 60	12 15	2	6	8	0	٥	0	1 1				1	
1 28 60*		ő	8	8	0	0	0	1 1				1	
2 12 60*	1 6	0	9	9	0	0	0						
2 19 60	1 24	١٥	15	15	0	0	0					ì	
1 9 61*	2 7	o	5	5	0.	0	0						
1 30 61*	3 3	ì	4	5	0	0	0			1			
2 13 61* 2 27 61*	1	Ô	4	4	0	0	0						
3 13 61*	1	l i	13	14	0	22	22					1	
3 27 61*		ō	0	0	0	0	0	Į.		1			
4 10 61*	1	Ō	6	6	0	1	1	Į.	•	1			ļ
	1	o	4	4	0	0	0	l l		1			ļ
4 24 61* 5 8 61*	1	0	3	3	0	0	0	- 1	}				
5 29 61*		l ŏ	1 1	1	0	0	0			i i	ł	1	1
6 12 61*	l	1	11	12	0	0	0		ļ	1			1
6 26 61		l ö	7	7	0	0	0		ļ	1	1		
7 10 61	I	0	5	5	0	0	0				1		
7 31 61	1 1 1	ì	13	14	0	0	0	ļ	1		Ì		
8 14 61	1	3	5	8	0	4	4	- 1	ļ				
8 28 61	9 18	0	4	4	0	141	141	l	1				ì
9 5 61	9 29	-	_	_	19	0	19		i			1.	1
9 11 61	10 19	_		-	0	9	9	1	1			Ì	
9 18 61	10 14	-	_	_	21	108	129		1				1
9 25 61	10 6	2	2	4	14	0	14						\
, 2, 41					Į.	ì				1			1
	ì	1			ļ	ì		1	l	İ	1		1
						1		ļ		İ	1	1	1
			1		İ		!!	Į.	ļ	Į.	1 1	1	Į.
		[i		1				! !	l	
	Ì	Ì			ì			1					}
		ĺ		Į.	1			ļ		1		- }	1
		1			1	1		ļ					
	Į.	1			1		1	l			i	ì	
								-	1				
	1				- [1		1	Ì			
							1	ĺ					}
	1	ı	1	1	1	ľ	1	1	1	1	1		l

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

YUMA, ARIZONA

				ALGAE (I	Vumber	per ml.)				INE DIA	RT	Г			ום	ATO	MS			-	÷		MICROIN	VERTEBR			
OF SAMPLE		BLUE-	GREEN	GREE	EN	FLAGEL (Pigmo	LATES ented)	DIAT	омѕ	SHE (No. p	LL5		DOMI (See	NANT	SPEC luction	for Co	ID PE	RCENT ntificat	ion*)		корілактон Викативі ті.)	A m1.)	is liter)	EA liter)	ES liter)	IAL FORMS	tinant genera se Introduction Identification)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER- CENTAGE	SECOND#	PER.	THIRD#	PER. CENTAGE	FOURTH	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLANK PUNGI AND SHEATH BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per li	(See Intr
10	200 700 2000 1800 300 600 500 500 1200 2300 800 600 1400 2600 1800 5200 3500 2600 2700	20 20	50 20 40 20 20	170 230 210 390 270	20 20 20	70 110 20 20 20 200 200 200 20 60	70 90 20 20 40 20 20	200 2700 6 500 700 2500 7100 21310 7100 2180 2180 2180 2180 2180 2180 2180 2	90 540 1410 920 180 290 270 800 1330 470 400 980 1780 1390 3750 1080 1370 1040	70 20 40 20 20 70 490 20 20 100 40 40 20 20 60	20 740 360 110 550 380 360 710 160 400 20 450 510 1120 870	91 46 82 91 70 4 87 26 87	20 20 20 20 20 20 20 20 20 20 20 20 20 2	70 71 70 87 70 55 82 77 26	10 10 10 10 10 10 10 10 10 10 10 10 10 1	6 8 33 92 36 26 70 92 87 94 82 65 87 7 67 87 94 69	10 10 10 10 10 10 10 10 10 10 10 10 10 1	92 8 16 92 16 93 94 95 95 89 77 75 46 76	10 10 10 10 10	5640 5640 5640 6660 57660 6400	70 160 180 130 90 50 70 20		1 3 1 1 2 2 5 5 5 1 4 3 1	14 2 3 3 4 6 10 1 7 6	1 10 9 6		

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

YUMA, ARIZONA

							1				CHLOROF	ORM EXTRA	CTABLES				
DATE OF SAM		\dashv	-	EX	TRACTABL	-5					NEUTRALS						
MONTH DAY DAY SEAR DAY	MONTH		GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	ross	WEAK ACIDS	STRONG ACIDS	BASES .	LOSS
10 4 60	10 12 4 5	13	3000 5530 2210 3000 5210 2460 4120 6580	240 161 486 361 414 448 212 300	39 26 100 71 83 91 31 53	201 135 386 290 331 357 181 247	1 0 - 3 - 2	11 5 - 25 - 11	13 11 22 23	2 1 - 3 - 10	-	17	1 1 - 0 0 - 0 0	10	1 - 8 - -	1 1 2 1	_

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO KIVER

STATION LOCATIONCOLORADO RIVER AT

YUMA, ARIZONA

	DATE							CHLORINE	DEMAND								PHOSPHATES	TOTAL	COLIFORMS
OF	SAM		TEMP.	DISSOLVED OXYGEN	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR	24-HOUR	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	mg/I	DISSOLVED SOLIDS mg/I	per 100 ml.
MONTH	DAY	YEAR	Centigrade)	mg/l		-		mg/l	mg/i										
Q X	à	7					1				215	178	420	=	24		_	-	240
10	3	60	24.0	-	8 • 2	-	-	_	_	_	155	150	364	-	27		-	-	960
		60	20.0	-	8.0	_	_	_	_	-	145	150	406	-	35		_	_	240 30
	17	60	17.0	-	8 • 2	_	_	~	_		190	134	374	-	24	_	_	_	400
	24	60	20.0	-	8.2	_	-	_	-	-	267	142	434	-	30	_	_	_	260
11	7	60	18.0 15.0	_	8.2	-	_	_	-	-	288	154	430	-	32 26	_	_	_	310
11	14	60 60	12.5	-	8.2	_	-	_	-	-	262	154	470	_	35	_	-		440
11 11	21 28	60	12.0	_	8.2	-	- 1	-	-	-	222	150	406 392	_	35	_	_		270
12	5	60	12.0	_	7.8	_	-	_	-	-	202	124 160	456	_	62	_	-	_	160
12	12	60	9.5	-	8.2	_	-	-	-	-	307 560	184	622	_	35	_	-	-	260
12	19	60	9.5	-	8.2	-	-	-	-	-	540	170	620	_	35	-	-	-	310
12	27	60	10.5	-	8.2	_	- 1	-	_	_	515	180	596	0	32	_	-	-	_
1	3	61	9.0	-	8.2	-	-	-		_	630	200	680	_	38		-	- '	900
1	9	61	12.0		8 • 2	_	_	_	! -	_	670	192	704	-	45	-	-	-	1600
1	16	61	11.0	-	8.2	-	_	_		_	654	192	716	0	35	-	-	-	∠30
1	23	61	13.0	4	8.2	_	_] _	_	-	420	152	560	-	32	-	-	_	350
1	30	61	13.0		8.2	_	_	_	_	_	652	180	716	-	45	-	1	-	30
2	6	61	12.0		8 • 2 8 • 2	_	_	_	_	-	724	180	640	-	-	-	-	-	60
2	13	61	13.0	1 :	0.2	_	l _	_	_	-	718	184	764	-	35	-	1	-	-
2	20		11.0		8.2	_	_	_	_	_	820	192	832	-	38	-		_	260 100
2 3	27	61	14.5		8.2	_	-	_	-	-	802	188	832	-	32	-		_	120
3	13	61	18.0		8.2	_	_	-	-	-	664	176	716	-	42	_	i	-	120
3	20		16.0		8 • 2	_	-	-	-	-	610	180	692	-	45 40	-	1	i -	18
3	27		16.5	1	8.2	_	-	-	-	-	588	172	672 860	_	48	_		-	
4	3		18.0		8.2	-	-	-	-	-	790	180	000	_	_		. _	-	240
4	1		-	-	-	-	-	-	1	_	1		720	1	1	-	. -	1 -	50
4		61	20.0	- 1	-	-	_	_	-		1 3 - 2	,	884	1	48	_	. -	-	260
4	17	61	20.0	-	8 • 2	-	-	-	-	1			888		30	-	. -	-	200
4			16.0		8.2	-	-	_] =	_	1		952		38	-	. -	-	20
5			26.5		8 • 2	-	-	-		1	1	1	872		43	-	. -	-	-
5			25 • 5		8.2	_	-	_	-	1	1	-	908		30	_	. -	-	220
5			21.0		8.2	-	_	_	1	1	1		780	1	35	-	. -	-	-
5	23		25.0		8 • 2	_	_	1 -	_				712		32	-	1	1	500
5			22.0		8.2	_	_] _	_				716	1			1		200
6			23.0		8.2	-	_	_		1	1	-	680	-			1	-	
6			27.0	1	8.2	_	_	_	_	-			716	-			ı	-	780
6						_	_	_	_	_			760	-	35	-	- -	-	100
0	120	′ °¹			""														

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATIONCOLORADO RIVER AT

YUMA, ARIZONA

DATE OF SAMPLE	TEMP.	DISSOLVED OXYGEN	рН	B,O.D. mg/l	C.O.D. mg/l	CHLORINE 1-HOUR	24-HOUR	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
7 3 6 6 7 10 6 6 7 17 17 6 6 7 17 17 6 8 14 6 6 8 21 6 6 8 21 6 6 8 2 5 6 6 8 2 5 6 6	(Degrees Centigrade	mg/l	8 · 2 8 · 3 8 · 3	mg/l	- 1	1-HOUR mg/I	mg/I	mg/l	1055 774 - 760 790 525 790 785 935 920 950 1000 985	220 210 - 192 192 196 188 200 200 204 184 216 204	948 800 720 728 600 720 845 872 876 872 876 932 940		49 45 - 34 39 50 62 52 30 35 45 48 32				*100 *33 -33 33 *100 3000 200

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station below Yuma, Arizona Operated by U.S. Geological Survey

STATE

Arizona

MAJOR BASIN

Colorado River

MINOR BASIN

Lower Colorado River

STATION LOCATION

Colorado River at

Yuma, Arizona

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	1.300	1.030	3.450	1.290	3.490	2.060	2.620	1.530	2.480	5.160	1.080	1.580
2	1.070 1.240	1.240 1.060	3.530 3.650	1.510	3.390	2.180	2.930	1.450 1.490	2.740 2.850	2.470 2.560	1.150 1.380	1.400 1.670
3 4	1.300	1.020	3.830	1.770 1.860	1.780 .987	2.090 2.330	2.950 2.690	1.440	3.000	2.250	1.550	1.710
5	1.200	.967	3.750	1.680	1.020	2.780	2.530	1.540	2.920	2.090	1.410	2.040
6	.846	1.130	3.020	1.560	.970	2.370	2.270	1.470	2.890	2.020	1.340	1.910
7	1.320	1.620	3.030	1.430	.884	2.030	2.370	1.290	2.820	2.140	1.300	1.420
8	1.320 .846	2.010	1.120	1.480	•935	2.380	2.400	1.290	2.460	2.230	1.300	
9 .0	1.530	2.190 1.500	1.040 1.060	1.360 1.510	1.000 .952	2.530 2.600	2.520 2.380	1.220 1.220	2.520 2.720	2.530 2.400	1.340 1.450	1.010 .998
.0	1.750	1.,000	1.000	1.510	•974	2.600	2.300	1.220	2.120	2.400	1.470	. 990
ıı	1.020	1.090	1.350	1.390	1.190	2.720	2.370	1.250	2.890	2.330	1.400	1.050
2	.761	1.160	1.700	1.400	•999	2.910	2.360	1.350	2.750	2.270	1.460	.986
3 4	.759	1.070	1.170	1.810	1.100	2.320	2.370	1.350	2.730	2.240	1.500	.999
	1.100 1.240	.925 .822	1.320	1.650	.950	2.340	2.440	1.460	2.900	2.350	1.450	1.030
.5	1.240	.022	1.200	1.620	1.100	2.480	2.580	1.530	2.830	2.320	1.380	1.100
.6	1.650	1.410	.908	.854	1.060	2.620	2.630	1.770	2.580	2.260	1.400	1.820
7	1.880	1.420	.945	.758	1.210	2.590	2.400	1.800	2.260	2.150	1.450	1.830
.8	1.350	•973	1.030	.658	1.160	2.570	2.970	1.690	2.380	2.070	1.380	1.760
.9	1.530	. 994	1.270	.721	1.320	2.780	2.920	1.720	2.760	2.170	1.430	1.330
20	1.310	.918	1.510	.763	2.070	2.710	2.560	1.990	2.840	2.140	1.440	1.380
21	1.420	. 699	1.200	.790	2.650	2.580	2.320	1.790	2.300	2.120	1.290	1.340
22	1.860	.633	.749	.745	2.380	2.460	2.070	1.970	1.920	2.160	1.200	1,250
23 24	1.580	.666	.770	.830	2.100	2.280	1.980	2.000	1.960	2.360	1.200	1.240
54	1.420	. 750	.773	.963	1.920	2.390	1.850	1.880	2:230	1.760	1.110	1.230
25	1.190	.857	.835	1.770	1.710	2.490	1.670	1.940	2.120	1.380	1.280	1.220
26	.976	3.020	1.620	2.960	1.730	2.590	1.690	1.910	2.240	1.280	1.190	1.220
27	1.050	3.860	1.360	2.700	1.680	2.350	1.550	2.160	2.260	1.250	1.040	1.380
27 28	1.160	3.740	.815	3.560	1.820	2.360	1.370	2.360	1.980	1.260	1.210	1.200
29	1.310	3.450	. 778	3.660		2.370	1.410	2.270	2.010	1.260	1.200	1.220
30	1.170	3.490	. 780	3.600		2.420 2.490	1.660	2.380 2.350	2.020	1.310 1.180	1.340 1.680	1.330
31	1.350		.773	3.460		2.490		2.350		1.100	1.000	

RADIOACTIVITY DETERMINATIONS

CALIFORNIA

MAJOR BASIN

STATE

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER ABOVE

				1 0711/177 111 14	/ATER			RAD	IOACTI	IVITY IN PLAN	KTON (dry)			DACTIVITY IN W	
DATE				ACTIVITY IN Y	TAIER	BETA		DATE	F	GROSS A				ROSS ACTIVITY	
SAMPLE	DATE OF		ALPHA		SUSPENDED	DISSOLVED	TOTAL	DETERS	41.	ALPHA	BETA	SUSP	ENDED	DISSOLVED	TOTAL
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL		μμε/ί	μμε/Ι	MQ. D		μμε/g	ppc/g	<i>p</i> .	μc/l	μ μ ε/1	μμε/
O. DAY YEAR	MONTH DAY	μμε/Ι	μμε/Ι	μμe/I	μμ _C /I	FFC/			_						
			ì		0	2	2		- 1	1		ļ		i	
0 12 60*	11 2	0	21	21	_	٥١	ō			1	1		1	ļ	
0 26 60*		0	13	13	0	1 1	6		-	ļ		ı	1	l	
1 9 60*		0	12	12	0	6 5	5	1			İ	ł			
1 30 60*		0	8	8	0	19	19	. [ì	1	1	
2 14 60*		0	8	8	0	0	ó					1	1		
2 28 60*	1 7 4 4	0	11	11	0		ő	-					-		
1 11 61	1 31	0	12	12	0	0	ŏ	1							
2 1 61*		0	6	6	0	0	13	0	ı		'				
2 14 61*		١٥	6	6	0	13	1	İ							
	3 22	١٥	2	2	0	0	0	1				i i	}		
	_	Ö	6	6	0	12	12	İ							
	1	0	5	5	0	28	28	Ì	- 1			li		i	
		ŏ	9	9	0	26	26		- 1			1 1			1
4 14 61	1	l ŏ	10	10	0	5	5	- 1	i		1				l
4 26 61		ĭ	7	8	0	0	0				1	1 1			1
5 3 61	6 1	0	7	7	0	3	3		- 1		İ	1 1		1	
5 31 61	6 14	0	10	10	0	0	0	1	- 1		l	1 1			1
6 14 61		0	8	8	9	0	9	i	1			1 1		1	ì
6 21 61	.8 28	0	10	10	0	10	10	ľ	1		ļ	1 1		1	
8 2 61		1	8	8	15	0	15	- 1	- 1			1 1		ļ	
8 8 61	9 27	0	4	6	0	38	38				1	1 1			
9 13 61	10 20	2	6	6	3	0	3		1			1			
9 20 61	10 2	0						1	1			1 1		1	1
	ì	ļ	į		1		1		ļ			1 1			
	1				İ	1	\		J			1 1			1
	1	i i		1	Ì			l	1		1				
				1		1	1	- 1	1		İ	1 1			1
		1			1		1		Ì			1 1			
				ì	į	Į.						1 1			1
	l l		1	1					1	1		1 1			
			4		l	ì		- 1			į.	1 1			1
	1		1		ļ		}	- 1			1	1 1		1	1
		ļ		1	1		1	İ		1	1				
					1		1			1	1				
	1	- {		1	1					1		1 1			
	1	1		1			1				}				
		1			1	1				1					
		1		1		1								1	
		1		1	-						1			1	1
		1			1			li			1				
	l	1		1	1		1	1 1		1	1	1 1		1	1

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station below Yuma, Arizona Operated by U.S. Geological Survey

STATE

Arizona

MAJOR BASIN

Colorado River

MINOR BASIN

Lower Colorado River

STATION LOCATION

Colorado River at

Yuma, Arizona

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	1.300	1.030	3.450	1.290	3.490	2.060	2,620	1.530	2.480	2.160	1.080	1.580
2	1.070	1.240	3.530	1.510	3.390	2.180	2.930	1.450	2.740	2.470	1.150	1.400
2 3 4	1.240	1.060	3.650	1.770	1.780	2.090	2.950	1.490	2.850	2.560	1.380	1.670
	1.300	1.020	3.830	1.860	.987	2.330	2.690	1.440	3.000	2.250	1.550	1.710
5	1.200	.967	3.750	1.680	1.020	2.780	2.530	1.540	2.920	2.090	1.410	2.040
6	.846	1.130	3.020	1.560	.970	2.370	2.270	1.470	2.890	2.020	1.340	1.910
7	1.320	1.620	3.030	1.430	.884	2.030	2.370	1.290	2.820	2.140	1.300	1.420
8	1.320	2.010	1.120	1.480	•935	2.380	2.400	1.290	2.460	2.230	1.300	.993
7 8 9 10	.846	2.190	1.040	1.360	1.000	2.530	2.520	1.220	2.520	2.530	1.340	1.010
10	1.530	1.500	1.060	1.510	.952	2.600	2.380	1.220	2.720	2.400	1.450	.998
11	1.020	1.090	1.350	1.390	1.190	2.720	2.370	1.250	2.890	0.330	1.400	
12	.761	1.160	1.700	1.400	.999	2.910	2.360	1.350	2.750	2.330 2.270	1.460	1.050
13 14	.759	1.070	1.170	1.810	1.100	2.320	2.370	1.350	2.730	2.240	1.500	.986 .999
	1.100	.925	1.320	1.650	.950	2.340	2.440	1.460	2.900	2.350	1.450	1.030
15	1.240	.822	1.200	1.620	1.100	2.480	2.580	1.530	2.830	2.320	1.380	1.100
16	1.650	1.410	.908	.854	1.060	2,620	2.630	1.770	2.580	0.060	2 1.00	. 0
17	1.880	1.420	.945	.758	1.210	2.590	2.400	1.800	2.260	2.260	1.400	1.820
18	1.350	-973	1.030	. 658	1.160	2.570	2.970	1.690	2.380	2.150 2.070	1.450 1.380	1.830
19	1.530	.994	1.270	.721	1.320	2.780	2.920	1.720	2.760	2.170	1.430	1.760
20	1.310	.918	1.510	. 763	2.070	2.710	2.560	1.990	2.840	2.140	1.440	1.330 1.380
21	1.420	.699	1.200	.790	2.650	2.580	2.320	1.790	• •••			_
22	1.860	.633	.749	.745	2.380	2.460	2.070	1.970	2.300	2.120	1.290	1.340
23 24	1.580	.666	.770	.830	2.100	2.280	1.980	2.000	1.920 1.960	2.160	1.200	1.250
24	1.420	-750	•773	.963	1.920	2.390	1.850	1.880	2:230	2.360	1.200	1.240
25	1.190	.857	.835	1.770	1.710	2.490	1.670	1.940	2.120	1.760 1.380	1.110	1.230
26	.976	3.020	1 (00			-	•	2.740	2.120	1.300	1.280	1.220
27	1.050	3.860	1.620 1.360	2.960	1.730	2.590	1.690	1.910	2.240	1.280	1.190	1.220
27 28	1.160	3.740	.812	2.700 3.560	1.680	2.350	1.550	2.160	2.260	1.250	1.040	1.380
29	1.310	3.450	.778	3.560	1.820	2.360	1.370	2.360	1.980	1.260	1.210	1.200
30	1.170	3.490	.780	3.600		2.370	1.410	2.270	2.010	1.260	1.200	1.220
31	1.350	3,,	.773	3.460		2.420	1.660	2.380	2.020	1.310	1.340	1.330
			-113	3.400		2.490		2.350		1.180	1.680	

STATE

CALIFORNIA

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER ABOVE

			PADI	DACTIVITY IN W	/ATER		т.	$\neg \tau$	RADIOAC	TIVITY IN PLAN	KTON (dry)		RAD	OACTIVITY IN W	ATER
DATE	D475.05	Ī	ALPHA		T	BETA		t	DATE OF	GROSS A				GROSS ACTIVIT	
SAMPLE TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL		NATION	ALPHA	BETA	8	USPENDED	DISSOLVED	TOTAL
MO. DAY YEAR		μμε/1	μμε/1	μμс/1	μμε/Ι	μμε/Ι	µµс/I		MO. DAY	μμc/g	<i>⊭⊭с</i> /g		##c/I	μμc/l	ppe/l
MO. DAT ITAM	HONTING THE													ŀ	
0 12 60*	11 2	0	21	21	0	2	2							ł	
0 26 60*		0	13	13	0	0	0				į	l	i	1	
1 9 60*	11 29	0	12	12	0	6	6	1	-]	- 1		1	
30 60*	12 20	0	8	8	0	5	5	l			. 1	l		1	
2 14 60*	1 9	0	8	8	0	19	19					Ì		1	
2 28 60*	1 16	0	11	11	0	0	0					i			
1 11 61	1 31	0	12	12	0	0	0								
2 1 61*	2 17	0	6	6	0	13	13					1			
2 14 61*	3 3	0	6	6	0	10	10								
2 22 61	3 22	0	2	2	0	12	12								
3 15 61*	3 31	0	6 5	5	l ŏ	28	28								
3 29 61*	4 14	0	و	9	0	26	26		1						
4 14 61*		0	10	10	1 0	5	5								
4 26 61*		1	7	8	0	1 0	0				ļ			!	
5 3 61	6 1	0	7	7	1 0	3	3					İ			
5 31 61	6 14	0	10	10	0	٥ ا	0		1			1			
6 14 61*	7 31	0	8	8	9	0	9		1			ı			
6 21 61		ŏ	10	10	0	10	10								
8 2 61*	9 27	0	8	В	15	0	15		1						
8 8 61	10 20	2	4	6	0	38	38		1		1				ļ
9 13 61 9 20 61	10 2	ō	6	6	3	0	3	ł	1						
9 20 61	10 2					ì			1	1	1				
			ì		1					l	1	l			
			ì		į		1		1	1					
		ļ		1	1	1				Į.		1		Į	
						İ	1								ì
	ļ	-		ì	1	Ì		1				1 1			1
				1	1				!						İ
	1	ļ				1				1	1	1 1			1
					Ì	1	1		1			1 1			ļ
				i	1	1				1		1 1			1
					-		1	1		1		1 1			
					}			1							
					1		1		ļ						
				1	Ì			1						1	İ
					į			1				1 1		1	
		l													
		1			1			1	i						
			1		-			1		<u> </u>		لــــا			

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

CALIFORNIA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER ABOVE

DATE				N E	1	T	EX	TRACTABL	ES							CTABLES				
BEGINN			I	EN	$\overline{}$	Ì								NEUTRALS					l	
MONTH	T	YEAR	1	E NOW	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
10 13 11 17 12 21 1 31 3 4 4 13 5 20 5 20 6 30	7114300081	60 61 61 61 61 61 61	1	0 1 1 2 3 4 5 7 8	21 23 1 7 13 228 * 8 16 29 *	5140 4080 5130 5280 5360 5310 10470 5270 5150 15920	190 193 194 132 179 159 185 172 187 190 162 180	30 30 42 37 45 84 65 70 35 3	160 163 152 95 136 114 101 108 135 120 125 127	0 1 1 1 0 5 2	8 8 10 9 9 18 12	10 10 12 10 15 - - 14 - - 18	1 1 1 1 4 4 6	1	8 7 9 12 	1 1 2 1 1 1	33446519	8 -	=	6 5 12 10 10 13 8

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

CALIFORNIA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER ABOVE

				ALGAE (2	Number	per ml.)				IN	RT TOM	Т			D	IATO	MS						MICROIN	VERTEBR	ATES		
DATE OF SAMPLI	E	BLUE-	GREEN	GREE		FLAGEL (Pigma		DIAT	омѕ	SHE	TOM LLS er ml.)				BPEC	IES A	ND PE				NOPLANKTON SHEATHED ml.)	A ml.)	8 liter)	E.A.	ES liter)	AL FORES	GENERA oduction (fication
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST®	PER.	SECOND	PER-	THIRD	PER. CENTAGE	FOURTH	PER. CENTAGE	OTHER PER-	OTHER BICROPLANK FUNGI AND SHEATH BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIM	DOMINANT SENERA (See Introduction for Identification)
11 9 60 11 28 61 2 5 61 3 23 61 4 14 61 4 28 61 4 12 61 6 14 61 7 8 8 19 61 8 19 61 8 19 61	100 100 100 1400 1400 1200 1300 1000 1000 1700 1700 1700 1700 17	20 20	20	220 20 200 130 50 120 90 460 270 190 20 20	40	330 20 70 20 80 40 190 100	110 20 70 20 40 190 120 40 20 60	20 20 50 80 170 40 100 80 20	490 70 130 70 220 70 40 20 80 210 080 390 350 120 620	20 20 20 40	220 120 130 130 50 120 20 80 20	91 69 8 8 8	40 60 90 80 90	92 69 91 69	10 10 10 10 *		10	52 27 89	10	10 20 430 *10	70 220 20 60	10 10 10 10 20	49 11 3 60 44 49 93 24 74 104 44 7 20 6	4 4 2 2 2 11 3 17 6 4 4 1 2 5 7		1	

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

CALIFORNIA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATIONCOLORADO RIVER ABOVE

DATE	1	1	<u> </u>	1	1	CHLORINE	DEMAND							***************************************			1
OF SAMPLE	TEMP. (Dagrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR	24-HOUR	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10 12 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Centigrade) 24.6 21.1 21.8 20.0 21.8 20.0 21.8 20.0 21.8 20.0 21.8 20.0 21.8 20.0 21.8 20.0 21.8 20.0 21.8 20.0 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8	mg/l	7.8 7.9 7.9 7.9 8.0 7.9 8.1 7.9 8.0 7.7 7.6 8.7 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7	mg/t				mg/l	85 84 83 83 84 85 91 83	110 112 120 111 135 122 128 104 118 125 122 120 124 126 122 123 120 127 126 110 136 110 127 128 129 129 129 129 129 129 129 129 129 129	408862888804046424-2-628644442 323323344443434 3 33234444 3 33234444 3 33234444 3 33234444 3 33234444	55555000000000000000000000000000000000	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	280 280 280 280 245 290 305 305 300 270 290 280 310 330 275 275 275 290 315 275 275 290 315 275 275 275 275 275 275 275 275 275 27			per 100 ml.
5 17 6 5 22 6 5 31 6 6 7 6 6 14 6 6 21 6 7 19 6	22.8 23.9 23.9 23.9 23.9 27.2 28.2	-	7.3 7.6 - 7.6 8.0	1 1 1 1 1	111111		- - - -	11111	86 87 89 88 82 86 75	131 125 124 128 128 130 125	340 342 336 340 340	0 0 0 5 -	0000	288 300 300 313 300	.2 .0 .0 .0	- 687 676 723 736 702	- - - - - -

STATE

CALIFORNIA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATIONCOLORADO RIVER ABOVE

PARKER DAM, ARIZONA-CALIFORNIA

TEMP. DISSOLVED DAYOEN mg/l
8 2 61 28.3 82 106 420 5 0 255 .0 700 8 7 61 29.4 - 7.9 82 106 420 5 0 282 .0 687 8 8 61 7.8 84 124 340 5 0 282 .0 680

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station below Parker Dam Operated by U.S. Geological Survey STATE

California

MAJOR BASIN

Colorado River

MINOR BASIN

Lower Colorado River

STATION LOCATION

Colorado River above

Parker Dam, Arizona-California

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	9.460	6.800	10.600	5.140	5.400	10.300	11.900	10.900	12.000	14.300	15.400	9.550
2	9.000	6.540	10.300	5.090	5.510	10.300	12.500	10.700	13.000	14.100	15.200	9.580
3	9.270	5.230	10.100	5.040	6.090	9.280	13.800	10.700	13.000	14.100	13.600	9.140
4	9.360	5.560	10.300	4.900	5.680	9.120	13.800	10.200	13.200	14.200	13.800	9.340
5	9.120	6.190	7.510	4.300	6.300	9.770	13.600	11.000	13.000	14.700	13.000	10.500
6 7 8 9	9.080 9.080 9.120 8.460 8.930	5.600 5.040 4.400 4.350 4.300	5.370 4.650 4.190 5.650 5.370	4.700 5.110 4.950 5.740 5.810	7.280 7.280 6.980 6.410 8.080	11.000 11.000 10.600 10.600 11.200	13.800 14.000 13.400 13.600 13.700	11.000 11.400 11.200 11.300 10.800	13.100 12.900 12.600 13.000 13.100	14.500 14.600 14.300 14.600 14.800	13.500 15.200 14.800 14.200 13.300	10.800 10.400 11.400 11.400 11.700
11	9.100	4.140	5.180	5.690	8.220	11.700	13.900	10.100	13.300	14.800	13.000	12.300
12	9.510	4.300	4.550	5.860	8.260	12.400	13.800	-11.400	12.900	14.500	12.400	11.600
13	8.510	4.280	4.350	4.450	8.590	12.300	12.900	11.100	13.200	14.300	12.100	10.900
14	7.940	3.980	4.190	4.450	8.840	12.800	12.500	11.200	12.500	14.400	12.300	10.800
15	7.570	4.700	4.090	5.110	8.430	12.700	12.300	11.400	12.000	14.300	11.500	10.300
16	7.720	4.750	4.600	5.170	8.860	12.600	12.500	11.900	13.700	14.800	10.900	10.200
17	7.900	4.250	4.300	5.000	9.290	12.400	12.400	11.300	13.800	14.800	10.500	10.000
18	7.600	6.180	4.350	4.940	9.360	13.000	12.500	11.000	14.800	14.600	10.100	10.400
19	7.220	4.350	4.250	4.390	8.730	13.000	11.900	11.400	14.600	14.300	9.860	10.200
20	6.720	4.300	3.820	4.390	9.410	13.400	10.800	11.800	14.600	14.300	9.000	9.890
21	7.670	4.650	3.270	4.200	9.440	13.600	11.000	11.900	14.600	14.500	9.930	9.760
22	7.510	6.230	2.230	4.270	8.430	13.300	10.900	11.900	14.600	14.500	8.250	9.400
23	7.310	8.880	3.770	6.340	8.080	13.000	11.800	12.200	15.000	14.600	8.330	9.570
24	7.510	10.600	4.450	8.140	9.360	13.200	11.400	12.300	15.100	15.000	8.640	9.500
25	7.220	12.300	4.450	9.730	10.500	13.300	11.600	12.300	15.000	15.800	9.550	9.980
26 27 28 29 30 31	6.800 5.960 7.390 7.470 7.060 7.140	11.800 11.300 11.300 11.200 10.900	4.450 3.980 4.990 4.190 5.090 5.230	11.800 10.700 10.700 10.800 8.430 5.680	9.750 9.630 10.200	13.200 14.000 13.700 13.300 12.200 11.600	11.600 11.000 10.900 11.600 11.500	12.700 12.600 12.500 12.900 13.000 13.200	15.300 15.600 15.600 15.300 14.500	14.600 14.300 15.300 15.400 15.300 15.100	8.430 8.210 8.140 8.130 8.670 8.650	9.910 9.910 8.890 8.510 8.170

RADIOACTIVITY DETERMINATIONS

STATE

NEVADA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER NEAR

BOULDER CITY, NEVADA

								PADIOAC	TIVITY IN PLAN	KTON (dry)		IOACTIVITY IN W	
DATE			RADIO	ACTIVITY IN W	ATER				GROSS A			GROSS ACTIVIT	
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
TAKEN		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	μμc/I	MO. DAY	μμc/g	μμc/g	μμc/l	μμε/Ι	μμ _C /I
O. DAY YEAR	MONTH DAY	μμ _C /I	μμε/Ι	μμς/Ι	μμε/Ι	μμε/Ι							
				8	0	ا ه	٥						
0 11 60*		0	. 8	12	Ö	ŏ	o l	1 1		į			
0 25 60*		0	12	9	Ö	23	23			i			
1 8 60*		0	9	14	0	ō	o i	i i					
1 29 60#		0		14	0	21	21					!	
2 13 60*		0	14	12	١٥	0	٥			l l			
2 27 60*		0	12	13	1 0	ا ہ ا	٥l	1				1	
1 10 61*		0	13	5	l ŏ	9	9			1	1		
1 31 61*	1 -	0	5	4	Ŏ	8	8			1			
2 14 61*		0	4	6	ŏ	اةا	o l			1			
2 28 61*		0	6 5	5	lŏ	l ŏ l	ō	1			ì		
3 14 61*		0	6	6	0	23	23			\			i
3 27 61*	1	0	8	8	3	-0	3	į į					
4 11 61*		0	11	11	ا آ	0	0	l i					
4 25 61*		0	8	8	1 0	6	6				Į.		
5 9 61*		0	Ö	0	0	0	0			1			
5 29 61*		0	9	9	Ĭ	2	2				Ì	1	
6 13 61*	1	0	11	11	0		0						ļ
6 27 61*		1	8	8	1 0	21	21						ļ
7 11 61*		0	11	11	0	9	9			ļ			ļ
8 1 61*		0	10	10	3	29	32						
8 15 61*		0	1	6	1 0	11	11						
8 29 61		1	5 8	8	1 6	40	40	1					ļ
9 13 61	1	0	4	4	3	21	24						
9 19 61	10 9	0	9	9	8	24	32				1		l
9 26 61	10 7	0	9	1							1 1		
	1	1		ļ				1			1		
	Į.		1					•	ļ				
		ļ			1		İ		1			1	
			1	}									1
	i								Ì	1			!
							1	į.					1
	Į.												
				1		1			1	i	1 1		
							1			1	1	1	1
										1			
				1						1	1		
				1		1	1				}	Į.	
	ĺ		1					1	1		!	1	1
	1		1				(l		1				
			1	1	1				1				

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEVADA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER NEAR

BOULDER CITY, NEVADA

E

DAT	TE					ALGAE (Vumber	per ml.)				INE DIA SHE	RT					OTAI					i.		MICROIN	VERTEBR	ATES	
OF SAM		LE		BLUE-	GREEN	GREE	:N	FLAGEL (Pigm	LATES ented)	DIATO	омѕ	SHE (No. p	LLS er ml.)		DOM! (See	NANT Intro	SPEC duction	for Co	ND PE	RCEN ntificat	TAGES		орскикто :неатиер ml.)	m.)	S liter)	EA liter)	ES liter)	GENERA
MONTH		YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND*	PER. CENTAGE	THIRD#	PER- CENTAGE	FOURTH*	PER-	OTHER PER- CENTAGE	OTHER MICROPLANKTON, PUNGI AND SHEATHED BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	DOMINANT GENERA (See Introduction
10 4 10 18 11 9 11 22 12 6 12 20 1 3 1 17 2 7 2 21 3 7	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	50 50 50 50 51 51 51	100 100 200	20		20		20		20 20 20 20 20 40 60 20	20 70 20	20 20 90 20	40 130 20 50 20	8 82		91 8	*	26 48	*]]]	10 10	20 20 20			1	1	
6 6 20 7 5 7 18 8 7 8 21 9 18	6 6 6 6 6 6 6 6 6 6	1 51 51	100 100 200 100 100 200			40 40 20		20		150 20 40	20 80 6 0 150	.90	60 20 20 100 20	8 8	60	95 46	10	91 69	10	61 47	* *	20	310		17	ī		
			:																									

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

NEVADA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER NEAR

BOULDER CITY, NEVADA

							TRACTABL	FC	1				CHLOROF	ORM EXTR	ACTABLES				
	GINN	OF S		ND		E/	IRACIABL			í . I	*		NEUTRALS						
MONTH	DAY	YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
5 6 7 8 9	9	60 61 61 61 61 61 61	12 1 3 4 5 6 7 8	19 3 11 22 26 *	5000 4884 4888 5147 5665 10765 5263 5050 15543	190 193 197 220 197 161 179 169 175 175 194 181	33 30 35 37 49 58 52 55 37 52 37 42	157 163 162 183 148 103 127 1138 123 157 139	2 1 2 - 2 - 2 2	10 9 9 12 - 17 - 12	8 9 7 10 10 12 9	1 0 0 0 0 1 1 1 1 1 1 1	1 1 0 0 1 1	10	000101-0-0	3 3 4 4 4 3	2 3 3 5 - 6	-	6 5 10 9 14 13 12

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEVADA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATIONCOLORADO RIVER NEAR

BOULDER CITY, NEVADA

	DATE							CHLORINE	DEMAND						MILITARI DI TA	SULFATES	PHOSPHATES	TOTAL	COLIFORMS
MONTH	SAMI	YEAR	TEMP. (Degrees Centigrade)	OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	mg/l	mg/l	DISSOLVED SOLIDS mg/I	per 100 ml.
10	4	60	17.0	6.9	8.0	-	_	2.9	4.6	•0	78	126	326	-	-	229	-	_	*1 4
10	10	60	16.0	8.5	8.0	-	-	2.9	4.4	-	74	108	324	_	_	219 224	-	_ [1
10	18	60	14.5	6.4	8.0	-	-	2.8	4 • 4	•0	74	130	342 330	_	_	221	_	_	ī
10	25	60	15.5	6.7	8.0	-	-	2.9	4.5	•0	74 74	126 122	328		_	220	_	_	1
11	1	60	15.5	6.5	8.0	-	-	2.9	4.7 4.5	•0	74	126	330	_	_	225	_	-	1
11	8	60	15.0	6.7	8.0	-	-	2•9 2•9	4.5	_	72	130	334	_	_	221	-		1
11	15 22	60	14.5 14.5	9.4	7•9 8•0	_	_	2.8	4.6	_	72	122	330	_	-	221	-	-	20
11	29	6Ū	14.0	6.1	7.9	_		2.9	4.6		72	124	340	-	-	226	-	-	*1
12	6	60	14.0	8.0	7.9	_	-	2.9	4.6	-	72	126	330	_	-	226	-	_	1 3
12	13	60	14.0	5.9	8.1	-	-	3.0	4•7	-	72	124	342	-	- 1	225	-	_	1
12	20	60	13.0	5.7	8.2	-	-	3.0	4.7	-	74	126	340	_	_	225 216	_		1
12	27	60	13.0	7.4	8.3		_	2.9	4.6	_	74	124	348 338	_	_	214	_	_	ī
1	3	61	13.5	5.6	8.2	-	-	2.9	4.7	•0	78 76	126	336	-	_	213	_	_	ī
1	10	61	12.5	7.2	8.3	-	-	3.0	4.7	_	76	126	336	_	_	215	_	610	*1
1	17	61	13.0	7.1	8.3	-	_	3.0 3.0	4.7		76	126	338	_	_	220	-	_	*1
1	24	61 61	12.5 12.5	8.5	7.9 7.9	•	_	3.0	4.7	_	76	114	336	-	-	220	-	-	2
2	7	61	12.5	6.4	7.9	_	٠_	4.4	6.2	-	78	128	340	-	-	221	-	-	1
2	14	61	13.0	6.2	7.9	-	-	2.9	4.7	-	74	126	342	_	-	230	-	_	2 1
2	21	61	13.5	5.8	7.8	_ '	-	2.9	-	-	76	126	336	_	_	226	_	_	1 1
2	28	61	14.0	6.3	7.8	-	-	3.0	4.7	-	76	132	328	-	1 -	232 226	_	_	2
3	7	61	14.0	5.4	7.8	-	_	4.6	6 • 3	-	78	130	332 342	_	_	239	-	_	ī
3	14	61	14.0	5.7	7.9	_	_	4.6	6.1	_	78 82	128	336	_	_	243	_	-	1 2
3	21	61	14.5	5.7	7.8		_	4.5 4.5	6.4	-	84	130	342	_	_	225	-	-	2 2
3	28	61	15.0	9.7	7.9	_	_	4.5	6.4		84	132	340		-	223	_	_	2
4	4	61 61	16.5 16.0	9.4	7•9 7•9	_	-	4.5	6.3		88	132	344	-	_	225	-	_	1
4	11 18	61	15.5	7.5	7.9	_	_	4.6	6.5	_	88	130	336	-	-	214	-	-	1
4	25	61	14.5	7.6	7.9	_	_	4.6	6.4	-	82	128	342	-	-	226	-	-	1 *1
5	2	61	15.0	8.1	7.9	_	-	4.6	6.5	-	84	124	334	-	-	232	-	_	
5	9	61	15.5	7.3	8.1	-	-	4.7	6.5	-	80	124	324	-	-	210	_	_	1 -
5	16	61	16.0	7.2	8.1	-	-	4.5	6.5	-	80	122	330	_	_	219	1 -	_	*1
5	23	61	16.0	7.3	8•1	-	-	4.6	6.5	-	82	126 128	334	-	_	218		_	_
5	29	61	14.5	7.0	8.0	-	-	4.6 4.8	6.4	_	84 82	128	334	1	_	219	İ -	_	-
6	6	61	15.0	6.7	8.2	_	_	4.8	6.8	_	82	128	336	· ·	_	212	-	_	-
6	13	61	15.0	6.5	8 • 2 8 • 1	_	-	4.8	7.0	_	80	128	338		_	215	-	-	13
6	20	61	15.5 15.0	6.7	8.0		_	4.7	6.8	-		128	128	-	-	216	-	-	*3
6	27	61	12.0	0 1	0.0			'-'											

STATE

NEVADA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATIONCOLORADO RIVER NEAR

BOULDER CITY. NEVADA

,

DATE						CHLORINE	DEMAND									TOTAL	
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
7	15.0 15.0 15.5 15.0 15.5 15.0 15.0 15.0	6.5.5.4.6.3.4.4.1.3.1.1.0.6.	7.9 8.3 7.9 9.0 8.0 8.0 8.0 8.0			8899999099878 44444544666	6.7 6.7 6.8 6.8 6.8 6.8 8.7 8.7		80 80 82 80 82 76 76 76	128 126 128 128 128 126 124 126 128 126 128	3344 3324 3328 3322662 3322 3322 3322 3322			216 219 230 211 212 215 212 213 210 219 213			** ** ** ** ** ** ** ** ** ** ** ** **

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station below Hoover Dam

Data furnished by U.S. Bureau of Reclamation
through U.S. Geological Survey

STATE

Nevada

MAJOR BASIN

Colorado River

MINOR BASIN

Lower Colorado River

STATION LOCATION

Colorado River near

Boulder City, Nevada

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	10.500	6.860	7.050	4.500	10.500	13.700 13.200	14.200 12.100	16.600 15. 2 00	14.600 13.000	10.800 6.160	13.300 13.700	10.500 7.340
2	7.720	6.600	6.420	5.180	10.100	12.400	19.800	14.800	8.720	10.400	14.600	4.840
3	12.300	7.380	4.940	10.800	5.600	11.400	19.200	13.900	8.010	5.120	15.300	5.500
3 4	11.800	6.190	4.800	11.100	5.490	7.150	18.700	15.000	15.100	13.900	8.910	12.600
5	13.800	6.080	10.700	11.300	7.490	1.170	10.100				-	
		1 =00	i2.900	10.900	11.800	14.400	18. 10 0	13.300	13.900	15.300	6.240	13.100
6	15.500	4.780	13.600	8.360	12.300	16.300	16.900	8.490	14.000	16.900	14.600	12.900
7 8	13.700	7.380	14.200	6.110	12.000	15.900	12.000	16.000	14.800	12.200	14.000	13.000
8	9.140	7.860	12.900	11.800	10.900	15.400	12.300	16.800	14.700	7.720	14.100	10.500
9	6.120	8.220	9.810	11.400	10.400	16.100	16.300	17.700	10.900	18.200	13.900	6.200
10	12.600	8.250	9.010	11.100								
	11.000	7.530	6.960	11.400	6.800	11.800	16.600	16.500	7.400	17.300	13.700	13.200
11	10.400	7.860	12.200	11.300	4.580	10.800	18.000	16.700	13.900	15.300	9.390	12.900
12	10.400	5.5 2 0	9.820	11.700	8.730	15.700	16.700	16.500	15.700	16.200	6.850	12.600
13	8.900	11.000	10.700	9.050	7.320	16.000	16.600	10.900	17.200	15.900	14.300	14.000
14	5.800	11.200	11.700	5.080	7.300	16.700	11.600	17.600	18.700	10.600	14.500	13.700
15	7.000	11.200		,								0.050
16	3.740	11.000	10.800	10.600	7.760	16.000	10.700	17.700	17.900	7.320	13.600	9.850
17	8.520	10.900	9.140	10.400	9.460	17.300	16.200	17.300	11.800	16.300	13.500	5.640
17 18	8.000	9.820	7.120	10.300	9.750	15.200	14.500	16.700	8.370	16.200	14.000	12.600
19	8.100	7.930	11.300	10.600	9.060	12.300	15.200	15.700	17.400	16.200	9.610	13.600
20	8.590	5.080	11.000	10.800	13.400	18.600	16.400	13.200	16.700	15.000	6.010	13.300
		•							16.900	14.300	16.800	14.800
21	7.900	10.900	10.700	6.980	13.900	18.900	15.200	10.800	17.200	9.060	14.700	13.700
22	6.100	10.200	9.790	5.650	10.100	19.100	12.500	17.600	17.500	5.930	12.600	10.100
23 24	4.420	10.100	8.400	11.300	14.100	18.200	9.630	17.400		14.400	13.000	5.890
24	9.550	4.970	6.110	10.400	14.000	17.900	15.700	18.100	13.300	16.700	11.600	15.100
2 5	8.740	8.710	3.950	10.800	12.100	13.200	16.300	18.400	8.390	10.100	11.000	17.100
		7 2/2	h also	12.000	10.000	10.500	15.000	17.100	16.500	17.300	8.770	14.800
26	9.590	7.360	4.340 8.820	9.380	16.200	15.800	17.500	13.900	15.200	19.600	6.080	14.900
27	10.400	6.590	9.420	7.370	16.000	18.500	16.400	9.820	15.700	17.200	11.600	15.000
28	10.100	10.100	10.400	7.000	10.000	17.600	13.900	16.900	15.500	12.100	11.400	14.200
29 30	5.340	10.200	9.790	12.300		17.400	11.700	9.550	15.300	8.640	11.100	11.600
30	4.150	9.980	8.400	11.900		18.500	14.100	19.400		15.900	10.800	
31	7.910		0.400	11.500		10.700		±). 100		-/-/		

RADIOACTIVITY DETERMINATIONS

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

PAGE, ARIZONA

			PADI	OACTIVITY IN V	/ATER			RADIO	ACTIVITY IN PLAN	IKTON (dry)	RAD	DIOACTIVITY IN W	ATER
DATE SAMPLE	DATE OF		ALPHA		T	BETA		DATE OF	GROSS A	CTIVITY		GROSS ACTIVIT	
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR		μμc/I	μμε/1	μμε/Ι	μμε/Ι	μμс/I	μμε/Ι	MO. DAY	µµс/д	μμε/g	μμε/Ι	μμε/Ι	<i>μμ</i> ε/
						_	2.5						
10 3 60	10 18	22	22	44	25	0	25					1	
10 10 60	10 21	123	24	147	495	9	504				ł		
10 17 60	11 1	112	16	128	238	0	238	1		1			
10 24 60	11 7	214	30	244	414	42	456		111		İ		
10 31 60	11 18	32	30	62	81	5	86						
11 21 60	12 2	20	24	44	11	12	23						
11 28 60	12 15	6	17	23	68	51	119					1	
12 5 60	12 29	3	7	10	0	15	15			1		1	
12 12 60	12 27	0	17	17	4	0	4				1	1	
12 19 60	1 13	1	12	13	0	0	0						
12 27 60	2 14	0	22	22	0	39	39						
1 3 61	2 14	0	23	23	0	13	13	1					
1 9 61	1 27	1	17	18	7	44	51						
2 6 61	2 21	1	11	12	0	28	28				i		
2 13 61	3 6	1	12	13	0	0	0	i					
2 20 61	37	0	9	9	0	0	0			1	į		
2 27 61	3 14	108	8	116	542	21	563						
3 6 61	3 23	53	8	61	11	0	11					i I	
3 13 61	3 31	10	7	17	13	0	13						
3 20 61	4 5	25	13	38	50	0	50			i i		1	
3 27 61	4 14	12	27	39	40	11	51			1 1			
4 3 61	5 9	74	17	91	215	14	229						
4 10 61	4 28	110	7	117	790	30	820	1		1			
4 17 61	5 2	58	4	62	81	0	81						
4 24 61	5 17	28	8	36	31	13	44			1			
5 1 61	5 16	55	24	79	76	11	87						
5 8 61	6 1	39	11	50	23	0	23						
5 15 61	6 1	53	6	59	60	1	61						
5 22 61	6 22	25	7	32	60	16	76						
5 29 61	6 15	25	5	30	18	0	18						
6 5 61	6 29	19	2	21	45	Ó	45						
6 12 61	7 25	35	4	39	39	0	39						
6 19 61	7 17	18	2	20	16	0	16						
6 26 61	8 16	11	8	19	0	2	2						
7 5 61	8 2	45	4	49	190	9	199	l					
7 11 61	8 10	78	6	84	198	61	259			1			
7 17 61	9 7	15	16	31	64	32	96	1]
7 24 61	9 7	68	12	70	187	32	219			1		1	
7 31 61	8 31	48	6	54	128	ő	128				1	1	1
8 28 61	9 25	124	6	130	336	44	380						
0 20 01	رے ہا	147	"	1.50	1				1			1	i

RADIOACTIVITY DETERMINATIONS

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

PAGE, ARIZONA

							T		RADIOA	CTIVITY IN PLAN	KTON (dry)	RAI	DOACTIVITY IN Y	ATER
			RADI	DACTIVITY IN V	VATER			ŀ		GROSS A			GROSS ACTIVIT	
DATE SAMPLE	DATE OF		ALPHA			BETA	TOTAL		DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED		TOTAL
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	μμε/I	ŀ	MO. DAY	μμc/g	μμc/g	μμc/i	μμc/l	μμc/l
MO. DAY YEAR		μμc/l	μμc/l	μμε/ί	μμc/1	μμε/1	μμι/1							
9 5 61 9 12 61 9 18 61 9 25 61	10 5 11 3 10 23 10 9	121 469 234 124	13 4 26 3	134 473 260 127	617 1527 1824 881	77 56 67 17	694 1583 1891 898					*		
					-							-		-

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

ARIZONA

MAJOR BASIN

STATE

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

PAGE, ARIZONA

	ALGAE (Number per ml.)										RT	DIATOMS									ن ا	MICROINVERTEBRATES					
DATE OF SAMPLE		BLUE-GR			CREEN FLAG		LATES ented)	DIAT	DIATOMS		INERT DIATOM SHELLS (No. per ml.)		DOMINANT SPECIES AND PERCENTAGES (See Introduction for Code Identification*)						COPLANKTON ENEATHED ml.)	oA r mL.)	R\$ - liter.)	CEA · liter J	DES r liter)	OTHER ANNAL FORMS (No. Der liter) DOMINANT GENERA (See Introduction for Identification)	roduction tification		
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER-	SECOND#	PER- CENTAGE	THIRD	PER. CENTAGE	FOURTH	PER.	OTHER PER- CENTAGE	OTHER MICROPLANKTOR, PUNGI AND SHEATHED RACTERIA (No. per ml.)	PROTOZO (No. per	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per liter) DOMINANT GENE	(See Int
10 17 60 11 21 60 12 15 60 12 16 61 2 20 61 3 61 3 61 3 61 3 61 4 3 61 5 61 5 61 5 61 6 7 7 61 8 28 61 9 18 61	400 2000 700 300 400 2800 1200 1600 4600 1500 2400 2400 2400 1800 600	20	20	50 20 40 20 70 20 60 40 100 330 20	20	50 20 90 70 50 110 130 270 20 80 150 100 520	20	140 1170 420 180 200 2640 130 450 450 980 210 660 150 210 460 100	140 180 750 160 70 140 290 1020 920 3260 2050 2050 2050 460 440	20 20 20 40 20 100	20 680 70 40 50 50 1000 1210 1820 790 1080 810 910 250 250	92 92 92 92 92 98 86 92 92	50 40 30 20 40 30	65 82 37 85 88 85 51 86 66 64	20 10 10 20	70 26 26 51 36 65 93 36 86 12	10 10 10 10 10 10 10	85 703 82 551 55 41 78	* * * 100 10	5433 1455 445 6	200 500 400 200 50	10	1 2			7- 45 7- 7- 7- 7- 7- 7- 7-	97- 97- 97- 97- 37-3 973 3 66 66 66 66

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

PAGE, ARIZONA

												0011 -1170	40710170				
DATE OF SA	AME	LE		E	XTRACTABL	ES		<u> </u>			NEUTRALS		ACTABLES				
BEGINNING	L	END	_						<u> </u>		NEUTRALS	<u> </u>					
DAY YEAR	HENON	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
10 10 60 11 7 60 1 3 61 2 13 61 3 17 61 4 16 61 6 5 61 7 7 61	1	0 17 11 23 12 28 3 28 4 28 6 15	5410 5800 5000 5050 5000 4600	152 117 186 134 119 109 94	28 25 62 27 14 17 31 21	124 92 124 107 105 92 63 *	O O O O O O O O	6 14 6 3 4 6 4 8 BLE RESU	15 9 20 10 5 10 14 11	3 1 2 1 1 2 3 2 REPORTE	1 1 1 1 0 1 2 1	10 7 17 8 4 7 9 8	1000000	23532242	1 2 3 1 0 0 2 1	217721111	2 4 10 4 3 0 4 2

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

ARIZONA

MAJOR BASIN

N COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO RIVER

STATION LOCATIONCOLORADO RIVER AT

PAGE, ARIZONA

	DATE		•					CHLORINE	DEMAND			-						TOTAL	
MONTH 0	F SAM	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/I	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10		60	19.3	-	8.1	-	_			-	131	200	590	10	600	_			2000
10		60	18.4	-	7.9	-	_	-	-	-	92	278	564 540	10	8000 2100	_] [_	*1000 9000
10	17	60	12.4	-	8.1	-	-	-	_	_	110 131	180 550	680	10	6000	_	_	_	10000
10	24 31	60	13.3	-	8.1 8.1	_	_	_	_	-	117	204	-632		1200	_		_	280
10 11	7	60	10.1	_ [8.0	_	_	_	_	_	121	240	660	8	1000	-	-	-	300
11	14	60	8.7	-	8.1	_	_	_	-	_	118	220	620	9	850	_	-	-	460
11	21	60	6.7	_	-	_	_	_	_	-	116	196	560	20	500		-	-	100
11	28	60	4.4		8.0	_	-	-	_	_	112	204	482	5	380	-	-	~	_
12	5	60	4.0	-	7.8	-	-	-	-	-	130	184	540	5	110	-	-	-	-
12	12	60	2 • 4	-	7.8	-	-	-	-	-	100	180	468	_		-	_	-	91
12	19	60	3.8	-	8.0	_	-	-	-	-	100 145	184 192	528 526	0	20	_	_	_	71
12	27	60	2 • 2	-	8.1	-	-	_	_	_	145	192	564	0	20	_	_	_	_
1	3	61	1.1	-	8.2	_	_	_	_	_	132	188	500	l ő	20	_	_	-	*100
1	9	61	1.1	-	8•1 8•1	_	_	_	_	_	153	197	500	2	20	_	-	-	1000
1	16 23	61	2•2	-	8.1	_	_	_	_	_	159	198	532	3	22	_	-	-	*100
1	30		• 9	-	8.2		_]	_	_	_	138	188	460	3	25	-	-	-	*1
2	6	61	3.3	_	8.3	~	_	-	_	-	126	156	432	-	15	-	1	-	-
2	13	61	3.9	-1	8 • 1	-	-	-	_	-	132	152	452	5	20	-		-	*100
2	20		7.2	-	7.9	_	-	-	-	-	134	154	446	3	15	-	_	-	*100
2	27	61	6.6	-	8.1	-	-	· -	-	-	140	450	584	5	4500	_	1	_	1300 200
3	6	61	5.6	-	8 • 6	_	-	-	-	-		216	432	5	700 700	_			200
3	13		9.9	-	8.7	-	_	-	_	-	135 140	184	456 452	8	500	-	l l	_	910
3	20	61	12.5	-	8.1	_	_	_	_	_	123	176	480	5	330	_		-	*1000
3	27	61	9.9	-	7.8 8.1	_	_	_	_	_	84	228	384	1 -	2000	-	-	-	3300
4 4	10	61	14.0 13.0	_	7.8	_	_	_	_	_	56	326	420	5	4400	-	-	-	-
4	17	61	13.5	_	8.3	_	_	_	_	_	58	196	332	-	1300	-	-	-	-
4	24		13.0	1 1	8 • 2	_	_	-	_	-	56	160	316	8	1000	-	1	-	1900
5	ī	1 1	17.0	-	8 • 2	-	-	-	-	_	58	148	284		900	-		-	1200
5	8		16.1	-	8.2	_	-	_	_	-	39	208	300		880	_	1	-	3200
5	15	61	17.0	_	8.1	_		-	-	-	34	200	308	5	760	_		_	*100 *100
5	22		20.0	-	8.1	i -	-	-	-	-	28	136	224	3	700	_		_	2800
5	29		20.9		8.0	_	-	-	_	_	24	108	192 204	1	900	_		_	2000
6	5		20.0		8.1	-			_	_	20	148	204	7		_		_	640
6	12		24.0		8.1	-	_	_	_	_	20	98	196			_	1	-	*100
6	19		24.8	1	8 • 0 7 • 8	_	_	-	_	_	28	96	192			-	-	-	1000
6	26	61	28.0		, • 0]		<u>L</u>	

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Lees Ferry, Arizona Operated by U.S. Geological Survey STATE

Arizona

MAJOR BASIN

Colorado River

MINOR BASIN

Middle Colorado River

STATION LOCATION

Colorado River at

Page, Arizona

Day	October	November	December	January	February	March	April	May	June	July	August	September
	2.760	5.530	1.520	4.850	5.200	5.470	8.000	10.100	35.800	11.500	3.030	8.250
1	3.760 3.650	5.390	1.420	4.830	5.200	5.390	8.210	9.530	34.400	10.700	3.420	6.000
2	3.550	5.410	1.840	4.700	5.170	5.200	8.540	9.450	35.200	9.760	3.080	5.470
3 4	3.460	5.500	2.990	4.520	5.090	5.250	8.500	10.300	38.400	9.910	4.450	4.930
5	3.380	5.580	3.970	4.250	5.110	5.300	8.360	12.000	39.200	9.800	4.500	4.550
6	3.340	5.550	4.550	3.970	5 .2 80	5.470	8.180	14.200	37.400	8.750	7.940	5.170
7	3.360	5.580	4.930	3.740	5.360	5.330	7.830	16.100	33.500	8.390	8.830	4.880
6 7 8	3.300	6.030	5,220	3.630	5.360	5.300	9.230	17.800	31.500	7.900	9.080	5.880 16.100
9	3.650	6.570	5.410	3.570	5 .30 0	5.300	11.100	17.200	29.600	7.520	7.940	21.900
10	3.920	6.030	5.610	3.420	5 .17 0	5.360	10.300	15.500	27.600	7.350	6.800	21.900
	4.830	6,000	5.790	3.380	5.140	5.440	10.700	13.900	27.600	7.350	6.030	24.700
12 12	4.750	5.940	5.700	3.420	5.140	5.390	11.600	13.200	28.000	6.380	5.220	24.300
12	5.250	5.910	5.440	3.460	5.140	5.200	10.700	12.700	29.200	6.030	4.830	18.700
1)ı	5.220	6.030	5.200	3.630	5.170	4.930	10.300	12.500	30.300	5.910	3.900	13.200
13 14 15	6.970	6.000	5.010	3.790	5.170	4.800	9.950	13.200	29.900	5.8 2 0	3.550	11.300
	7. 600	5.850	4.880	3.970	5.170	4.720	9.610	16.100	28.800	5.500	3.440	10.500
16	7.690 6.900	5.8 2 0	4.780	4.180	5.110	4.800	9.490	19.300	28.000	5.030	3.440	9.870
17 18	7.380	5.820	4.780	4.320	5.060	5.280	9.160	18.700	26.500	4.700	4.320	9.910
19	8.360	5.910	4.720	4.480	5.010	5.610	8.320	16.900	25.100	4.380	5.610	11.300
20	8.110	5.940	4.680	4.550	5.060	5.820	7.830	16.600	24.300	4.080	6.190	12.500
	0 000	5.850	4.600	4.650	5.360	6.100	7.690	17.800	22.900	3.830	6.480	14.200
21	8.220	5.850	4.500	4.720	7.070	6.100	8.220	18.700	21.600	3.760	7.550	16.300
22	7.900 6.8 7 0	5.880	4.350	4.780	9.190	6.540	8.540	20.600	20.300	3.650	6.030	12.700
23 24	6.480	5.820	4.230	4.750	10.700	6.740	8.830	23.600	19.000	3.480	5.200	10.100
24 25	6.350	5.880	4.280	4.720	10.300	6.670	9.720	25.400	18.100	3 . 340	4.550	9.910
	(, , , ,	6.100	4.380	4.650	7.830	6.670	10,900	27.300	16.900	3.240	4.250	10.900
26	6.130	6.100	4.500	4.700	7.280	6.640	12.000	29.200	15.500	3.220	4.230	13.400
27 28	6.030 5.880	5.970	4.600	4.780	6.000	7.010	12.000	30.700	14.200	3.160	4.550	15.000
20	5.8 2 0	5.880	4.680	4.960		7.940	11.300	31.100	12.900	3.140	5.970	13.900
29 30	5.700	4.620	4.800	5.140		8.430	10.700	32.700	12.200	3.180	7.240	12.500
30 31	5.550	7.020	4.850	5.220		8.360	•	34.800		3.200	8.040	

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO RIVER

STATION LOCATIONCOLORADO RIVER AT

PAGE, ARIZONA

DATE				1			CHLORINE	DEMAND						TURBIDITY	SULFATES	PHOSPHATES	TOTAL DISSOLVED	COLIFORMS
OF SAW		TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	mg/l	HARDNESS mg/l	COLOR (scale units)	(scale units)	mg/l	mg/l	SOLIDS mg/l	per 100 ml.
7 5 7 10 7 17 7 24 7 31 8 28	61 61 61 61 61 61 61	25.6 27.0 28.0 27.0 26.5 26.0 20.0 18.7 22.4 18.0	1	7.9 8.1 8.2 7.8 8.0 8.2 8.1 7.8				3.9		32 58 54 61 781 88 25 - 53 49	310 148 176 330 328 130 - 172 140	280 308 440 520 648 700 40 450	11110110	1700 800 1200 800 2000 5000 32000 16000			1926	820 30 100 *100 720 - 400 -

RADIOACTIVITY DETERMINATIONS

RADIOACTIVITY IN WATER

TOTAL

 $\mu\mu c/1$

ALPHA

DISSOLVED

SUSPENDED

µµc/I

BETA

DISSOLVED

μμc/1

Ô

SUSPENDED

μμc/I

TOTAL

DATE

SAMPLE

TAKEN

10 10 60*

11 28 60*

1 30 61*

2 13 61*

9 61*

27 61*

27 61*

10 61*

24 61*

29 61*

12 61*

17 61*

31 61

8 28 61

9 11 61

9 25 61

14 61*

26 61

61*

12 27 60

10 24 60

61*

MO. DAY YEAR HONTH DAY

7 60* 11 23

DATE OF DETERMI-NATION

10 20

11 17

12 8

1 23

1 20

2 10

3 1

3 13

4 14

4 24

5 15

5 26

6 13

7 10

8 17

8 25

9 19

STATE

COLORADO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

DATE OF DETERMI-NATION

MO. DAY

UPPER COLORADO RIVER

RADIOACTIVITY IN PLANKTON (dry)

ALPHA

μμc/g

STATION LOCATION COLORADO RIVER AT

GROSS ACTIVITY

μμε/g

LOMA. COLORADO

RADIOACTIVITY IN WATER GROSS ACTIVITY TOTAL SUSPENDED DISSOLVED μμc/l μμc/1 $\mu\mu c/1$

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

COLORADO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

UPPER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

LOMA, COLORADO

.

						11 CAE (1		ner m/ 1				INE	RT				DI	ATON	45						MICROIN	VERTEBR			
OF S	ATE AMF			BLUE-	GREEN	ALGAE (N		FLAGEL (Pigme		DIAT	омѕ	INE DIA SHE (No. p	LLS		DOMII (See	NANT Introd	SPEC	ES AN	D PER	RCENT tificati	AGES		SHEATHED ml.)	,A ml.)	es liter)	EA liter)	DES liter)	OTHER ARIMAL FORMS (No. per liter)	r Genera roduction tification
HTNOM	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER- CENTAGE	SECOND*	PER- CENTAGE	THIRD#	PER. CENTAGE	FOURTH#	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLANKTON, FUNGI AND SHEATHED RACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	(No. per liter)	(No. per	DOMINANT GENERA (See Introduction for Identification)
10 11 11 12 22 3 3 4 4 5 6 6 7 7 8 8 9	4	60 60 60 60 61 61 61 61 61 61 61 61 61	2100 2200 800 1600 2200 6000 5000 9900 46000 2300 3000 1800 3000		50 90 20 20	70 90 20 20 60 40 40 80 370 290 20		200 40 110 40 290 270 40 60 40	70	780 240 20 50 50 70 110 270 120 370 180 640 660 80 40	700 3830 5250 1760 1280 1990 1680	90 20 70 20 20 100 50 80 80 20	1060 1450 3460 2880 3550 1980 1350 4080 150 770 850 600 250 460	92 92 92 92 92 92 92 92 92 92 92 92	20 20 20 20 10 30 10 70 95 30 40	31 36 51 51 51 51 51 51 65 36 65 36 75 36	10 10 20 20 20 10 10 10 10	36 33 36 53 51 51 56 51 56 55		65 85 31 86 86 65 93 86 65 93 65 65 65 12	* 10 10 10 10 10 10 10 10 10 * *	40		10	2 2 3 3 2 2 2		2 2 3	1	74753 7-953 7- 7574- -5753 75743 45-73 75753 75743 7- 4-777 78-7- 74743 7-7-3

ORGANIC CHEMICALS RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

COLORADO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

UPPER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

LOMA, COLORADO

EXTRACTABLES EXCHANGE REAL STORM ALCOHOL STHER FILTER SOLUBLES TOTAL ALTHATICS ARONATICS COMPORING Less WEAK ACIDS STRONG ACIDS AC
STRONG BASE LOSS FALLONS STRONG ACCORD FILTERED TOTAL CHLORD FORM ALCOHOL RETHER SOLUBLES TOTAL ALIPHATICS AROMATICS OXYGEN ACIDS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

COLORADO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

UPPER COLORADO RIVER

STATION LOCATIONCOLORADO RIVER AT

LOMA, COLORADO

DATE						CHLORINE	DEMAND							SULFATES	PHOSPHATES	TOTAL DISSOLVED	COLIFORMS
OF SAMPLE	TEMP. (Degrees entigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/i	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	mg/I	mg/l	SOLIDS mg/l	per 100 ml.
10 3 60 10 24 60 11 7 60 11 21 60 11 28 60 12 12 60 12 19 60 12 27 60 1 3 61 1 16 61 1 30 61 2 27 61 2 20 61 2 13 61 2 27 61 3 61 1 61 5 61 5 61 5 61 6 12 61 6 6 61 6 61 6 7 61 6 7 61 6 7 61 6 7 61 6 7 61 6 7 61 6 7 6	16.0 13.0 4.0 1.0 1.0 1.0 1.0 2.0 8.0 2.0 8.0 11.0 13.0 13.0 13.0 14.0 22.0 24.0 22.0 13.	7 · 2 6 · 8 5 · 0 5 · 6 4 · 8 4 · 6 5 · 1 7 · 8	8 · 2 · 2 · 2 · 3 · 4	1.2 3.0 4.1 5.6 6.5 1.8 6.1 9.4 1.3 1.3 4.8 1.3 4.8 1.3 4.8 1.3 4.8 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3				.8 .1 .2 .6 .4 .2	60 50 50 88 98 124 146 140	140 145 132 112 92 104 100 - 93 176 184 172 164 200 140	220 	-	120 170 110 330 1000	5972200445444 452004470042 497044960042 49640042 49640042 11444 6665498750		1376 1215 1407 1136 1198 1000 1190 1198 1062 1013 1053 1051 1026 884 920 734 618 454 513 378 380 1244 1632 1017	140 170 110 180 95 8 3 16 25 748 160 26 1250 340 330 60 120 120 120 120 226 260

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Colorado-Utah State Line Operated by U.S. Geological Survey STATE

Colorado

MAJOR BASIN

Colorado River

MINOR BASIN

Upper Colorado River

STATION LOCATION

Colorado River at

Loma, Colorado

Day 	October	November	December	January	February	March	April	May	June	July	August	September
ı	1.980	2.800	2,300	2.150	2.440	2.190	2.320	2.990	18.300	3.040	1.960	2.410
2	1.960	2.990	2.460	2.130	2.560	2.230	2.260	4.200	18.100	3.110	2.200	2.340
3	1.900	2.920	2.660	2.190	2.540	2.360	2.240	5.620	17.000	2.920	2.460	2.730
4	1.880	3.010	2.900	1.950	2.540	2.400	2.340	6.910	14.300	2.740	2.810	3.590
5	1.850	2.850	3.100	1.910	2.480	2.380	2.430	7.570	11.900	2.660	2.850	4.140
6	1.870	2.930	3.040	1.850	2.480	2.380	2.860	6.670	10.800	2.430	2.350	4.200
7 8	1.920	2.990	2.490	2.000	2.460	2.380	3.130	5.330	10.800	2.290	2.120	4.160
8	1.880	3.100	2.290	2.200	2.410	2.280	3.240	4.540	11.100	2.240	1.730	4.160
9	1.980	3.100	2.260	2.400	2.480	2.190	3.150	3.790	12.200	2.340	1.500	6.320
10	2.080	3.040	2.610	2.500	2.380	2.150	2.880	3.320	14.100	2.380	1.340	4.740
11	2.260	2.900	2,900	2.600	2.320	2.100	2.610	3.710	15.100	2.160	1.500	5.120
12	2.340	2.810	2.950	2.600	2.220	2.200	2.460	6.200	14.100	1.950	1.500	
-3 -4	2.380	2.780	2.730	2.400	2.240	2.400	2.290	9.400	13.600	1.780	1.520	4.830
.4	2.520	2.920	2.640	2.300	2.260	2.220	2.230	9.940	12.200	1.590	1.580	4.410
L5	2.760	2.900	2.510	2.300	2.160	2.260	2.340	7.930	11.000	1.490	1.590	3.850 3.630
L6	2.850	2.850	2.340	2,400	2,160	2.410	2.320	6.340	10.400	1.420	1.640	
L7	2.920	2.900	2.060	2.400	2.400	2.760	2.090	5.740	9.850	1.450		3.350
L8	2.880	2.740	1.980	2.520	2.430	2.990	1.880	6.000	9.340		1.760	3.340
.9	2.780	2.710	2.340	2.510	2.510	3.130	1.700	6.880	8.830	1.590	1.960	3.850
20	2.860	2.850	2.610	2.490	2.380	2.860	1.950	9.110	8.170	1.570 1.550	2.090 1.960	4.260 4.110
1	2.950	3.040	2.690	2,400	2.430	2.800	2.850	11.300	7.870	1.610		1
22	2.930	2.830	2.690	2.280	2.430	2.620	3.750	11.100			1.900	4.300
23	2.850	2.730	2.760	2.230	2.430	2.640	3.350	11.300	7.630	1.630	1.760	5.090
24	2.810	2.800	2.830	2.260	2.380	2.740	3.430	15.100	6.790	1.690	1.650	6.880
5	2.740	2.780	2.690	2.480	2.350	2.780	3.490	15.200	5.900	1.860	1.590	7.630
	•		-			2. 100	3.490	15.200	5.330	.1.880	2.020	7.360
26	2.760	2.740	2.560	2.490	2.240	2.800	3.040	14.900	4.920	1.640	2.220	6.220
?7	2.690	2.760	2.540	2.570	2.340	2.920	2.410	16.000	4.450	1.530	2.230	5.820
. <u>8</u>	2.640	2.760	2.520	2.460	2.280	2.880	1.980	17.000	3.890	1.420	2.300	5.820
9	2.850	2.850	2.410	2.490		2.540	1.760	18.100	3.610	1.460	2.290	5.940
SO	2.830	2.590	2.340	2.340		2.380	1.990	17.400	3.340	1.590	2.260	6.220
1	2.990		2.130	2.360		2.320		18.700	3.3.3	1.820	2.380	0.220

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

CLATSKANIE, OREGON

			RADIO	DACTIVITY IN V	VATER		Т		RADIOAG	TIVITY IN PLAN	IKTON (dry)	RAD	DIOACTIVITY IN W	ATER
DATE SAMPLE	DATE OF		ALPHA		T	BETA			DATE OF	GROSS A	CTIVITY		GROSS ACTIVIT	r
TAKEN	DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL		DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
D. DAY YEAR		μμς/Ι	μμς/Ι	μμε/Ι	μμε/Ι	μμε/Ι	μμε/1		MO. DAY	µµс/g	μμc/g	μμε/Ι	μμc/l	μμc/l
				_	3	191	194							
3 60	10 17	-		_	9	207	216					Ì		
10 60	10 31	-	-	_	13	165	178				İ	!	1	
17 60	10 31	_	-	ī	5	0	5							
24 60	11 14	0	1	~	3	138	141		ĺ					
31 60	11 21	- 1	-	-4	6	161	167							
7 60	11 25	~	_	_	6	155	161				1		1	
14 6C	12 16	_	-		23	96	119					ļ		
21 60	12 16	0	1	1	0	10	10							
L 28 60	12 12	0	1	1 -	5	72	77				! !		1	
2 5 60	12 29	-	_	_	30	178	208						j l	
2 12 60	12 30	_	-		0	80	80						! !	
2 19 60	1 25	_	-	_	30	143	173				1	ĺ	1	
2 27 60	1 18	-	~ '	_	30	148	148				1			
1 3 61	1 25	_		_	1 7	68	75			l	1		1	
961	1 31	-			36	191	227				1			
1 16 61	2 2	l -	_		66	211	277				1			
1 23 61	2 6	0	0	0	43	183	226		İ		1			i
1 30 61	2 15	_	_	_	23	93	116						Į	
2 6 61	3 1	-	-	_	31	17	48				1	ł		
2 13 61	3 2	-	_	_	15	41	56		1					
2 20 61	3 8	_	_	0	17	33	50		1		1		1	
2 27 61	3 20	0	0		22	41	63			ļ				
3 6 61	3 29	-	_		16	57	73			1				
3 13 61	3 31	_	-	-	20	29	49			i		Ì		
3 20 61	4 14	_		0	33	33	66			!		1		
27 61	4 13	0	0	_	34	104	138		1	l		Ì		
4 3 61	4 19	_	_		16	81	97		1	Ì	1	1		
+ 10 61	4 28	_	_	_	35	93	128		1				į.	
+ 17 61	5 4	_	1 -	1	18	101	119			ļ			1	
24 61	5 16	0	1	0	20	74	94					ļ	Ì	1
1 61	5 24	0	0	2	18	55	73			Ì			1	
8 61	5 31	_	_	_	39	85	124				1			
5 15 61	6 2	_		_	29	55	84							
5 22 61	6 15	_		_	26	28	54			Ì		Ì		
5 29 61	6 27	_		_	14	9	23							
6 5 61	7 17	_		_	15	10	25	ļ						
6 12 61	7 6			_	1 0	13	13							
6 19 61	7 28	_		0	5	17	22							
6 26 61	8 17	0	0	"	1	1 -								
	1			1	1				1					

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

CLATSKANIE, OREGON

DATE			RADI	DACTIVITY IN V	WATER			 RADIOAC	TIVITY IN PLAN	IKTON (dry)	<u> </u>	RAD	IOACTIVITY IN W	ATER
SAMPLE	DATE OF	<u> </u>	ALPHA		T	BETA				CTIVITY			GROSS ACTIVITY	
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA		SÚSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	MONTH DAY	μμς/Ι	μμc/l	μμε/Ι	μμε/Ι	μμε/Ι	μμε/Ι	MO. DAY	μμc/g	μμε/g		μμc/l	μμς/Ι	μμς/ί
7 3 61 7 10 61 7 19 61 7 24 61 8 7 61 8 14 61 8 28 61 9 14 61 9 18 61 9 25 61	8 1 8 4 8 4 8 30 9 1 9 22 9 26 9 21 10 3 10 27 10 12 10 9	1 0 O	1 	2 	6 13 45 18 22 1 0 2 2 6 5 2 8	31 62 54 58 67 126 63 78 117 94 43 113 80	37 75 99 76 90 147 63 80 119 100 48 133 88	MO. DAY	μμε/g	μμc/ g		μμc/I	μμε/Ι	μμε/ι
										-				

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

CLATSKANIE, OREGON

	т			ALGAE (A	lumber	per ml.)				INE	RT				DI	ATOR	/S				T :		MICROIN	/ERTEBR	ATES		4 8 5
DATE OF SAMPLE		BLUE-		GREE		FLAGEL (Pigm		DIATO	омѕ	INE DIA' SHE (No. p	TOM (LLS er ml.)		DOMI (Bee	NANT Introd	SPECI uction	es An for Co	ID PE	RCENT nti/icat	ion*)		EDPLANKTO SHEATHER	ozoa per ml.)	RS liter)	EA liter)	DES liter)	Per liter)	r cener roductic tificatio
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER- CENTAGE	SECOND®	PER. CENTAGE	THIRD#	PER- CENTAGE	FOURTH#	PER- CENTAGE	OTHER PER- CENTAGE	OTHER RICE PURSTAND RACTURES (No. per	PROTOZC (No. per	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per	bouinant cenera (See Introduction for Identification)
10 18 60 11 1 60 11 14 60 12 6 60 12 19 60 12 27 60 1 9 61 1 31 61 2 28 61 3 13 61 5 31 61 5 31 61 5 31 61 6 27 61 7 10 61 7 17 61 8 21 61 8 29 61 9 11 61	500 500 200 200 100 100 100 100 100 100 100 1	20	40 130	20 20 20 20 20 110 250 80 70 270 270	20 90 20	20 20 20 20 20 20 20 80 40 20 80 40	70 50 20 20 20 20	420 250 220 130 70 70 50 50 110 2280 3620 380 6570 780 1660 2730	180 140 200 70 90 20 200 250 2170 3790 410 510 8950 1160 520	650 70 20 110 20 50 90 110 90 290 70 220 410 830 180 2320 13300 420 230	670 240 200 150 130 450 600 250 250 630 1700 540 750 640 7540 290	47 82 47 47 92 61 92 47 61 47 47 47 58	20 10 10 10 10 10 10 10 10 10 10 10 10 10	8472222957270924 944948 98	10 10 10 10 10 10 20 10 10 10 20 10 20 20 20 20 20 30 30	45 45 46 46 46 46 46 46 46 46 46 46 46 46 46	10 10 10 10 10 10 10 10 10 10 10 10 10 1	56 56 82 45 92 92 58 91 61 92 61 92 93 61 93 93 93 93 93 93 93 93 93 93	10 10 10 10 10 10 10 10 10 10 10 10 10 1	70 60 70 60 70 60 70 40 30 20 20 10 20	150 20 90 70 50 130 20 90	10	11 1 1 1 1 2 2 27 18 123 392 1686 147	1 1 1 2 2 1 8 7 13 13 10	3		9-79-77 3-9-7 34977 3-9-7 34977 3-9-7 4-9-7

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

ORÉGON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

CLATSKANÍE, OREGON

						-											
DATE OF S				EX	KTRACTABL	.ES						ORM EXTR	ACTABLES				
BEGINNING	-	ND									NEUTRALS	<u> </u>					
DAY	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 18 60 11 1 60 12 6 60 12 27 60 1 31 61 2 28 61 4 25 61 5 31 61 8 2 61 8 29 61	101 11 12 33 45 7 8 9	10 15 6 9 6 4 14 17	2090 39820 4370 4780 4980 4970 4880 4970 4420	287 83 81 100 111 102 99 132 120 96	49 15 23 37 31 * 39 47 42 51 22 *LAB	238 68 58 63 80 76 63 52 90 69 74	1 0 0 2 1 2 0 1 0 ACCIDE	10 2 4 6 6 10 11 11 11 4	21 9 10 11 11 14 13 20 11	42111 22242	2 1 1 1 1 2 1 2 1 2 1	15 6 8 8 8 9 9 13 7	00011-01111	8 2 3 7 5 7 5 7 5 7 5 7 3	91122195941	100000000000000000000000000000000000000	51596-88982

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

OREGON

MAJOR BASIN

PACIFIC NURTHWEST

MINOR BASIN

COLUMBIA RIVER DELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

CLATSKANIE, UREGUN

DATE						CHLORINE	DEMAND									TOTAL	
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 mL
\$ 0 3 60 10 10 60 10 18 60 10 24 60 10 31 60 11 1 60 11 2 60 11 2 60 12 19 60 12 19 60 12 27 60 1 3 61 1 61 2 6 61 2 27 61 2 28 61 3 61 1 61 2 6 61 2 13 61 2 2 6 61 3 6 61 5 61 6 61 6 61 6 61 6 61 6 61 6 61	17.5 	11.5	7.9 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.8 7.7 7.7 7.8 8.0 7.6 7.8 7.7 7.7 7.6 7.6 7.6 7.6 7.7 7.7 7.6 7.6	1.8 		.7	1.66	1.1	8 8 7 7 7 6 7 5 7 5 7 7 8 6 6 6 6 6 6 6 6 4 6 7 - 3 8 3 8 3 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	- 43 48 - 56 - 34 - 50 - 40 54	96 88 67 112 80 66 72 43 70 70 82 52 54 752 40 34 55 48 55 48 55 48 65 66 68 72 100	10 10 5 10 5 7 7	555554550005000500050005000500050005000	23 19 19 18 20 20 14 10 20 19 24 16 19 22 18 30 15 13 14 - 15 18 43 16 10 20 28 10 20 28 10 20 28 10 28 28 28 28 28 28 28 28 28 28 28 28 28	-1 -1 -0 -1 -0 -1 -0 -0 -0	115 95 104 106 109 115 111 - 88 - 105 107 89 72 96 138 90 75 - 71 93 - 88 - 70 - 90	2100

STATE

OREGON

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATIONCOLUMBIA RIVER AT

CLATSKANIE, UREGON

DATE OF SAMI		TEMP.	DISSOLVED				CHLORINE	DEMAND				Î					TOTAL	
МОИТН	YEAR	(Degrees Centigrade)	OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES _{mg} /I	ALKALINITY mg/l	HARDNESS mg/l	(scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	per 100 ml.
8 8 8 8 8 8 8 9 9 148 9 9 18	61 61 61 61 61 61	21.6	8. 1. W	7.8 8.3 7.6 7.5 7.5 7.6 7.0 7.0 7.0	1.2				1.0	66385-1-4-4-	56 - 1 - 56 - 56 - 56 - 56 - 56 - 56 - 5	76 - 820 7 - 76 88 - 76 84 88 - 76	_	01011001100	11 18 16 11 - 18 18 21 17	0 0 0 1 1 1 1 2 0 1	105 - 91 84 - 88 - 93	1400

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Computed Data for Clatskanie, Oregon Data Supplied by U.S. Geological Survey STATE

Oregon

MAJOR BASIN

Pacific Northwest

MINOR BASIN

Columbia River below Yakima River

STATION LOCATION

Columbia River at

Clatskanie, Oregon

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	131.000	166.000	231.000	158.000	267.000	351.000	258.000	311.000	656.000	417.000	181.000	132.000
2	120.000	172.000	218.000	149.000	282.000	383.000	267.000	340.000	674.000	395.000	186.000	146.000
3	127.000	168.000	213.000	151.000	323.000	369.000	317.000	321.000	706.000	375.000	176.000	125.000
4	119.000	162.000	207.000	148.000	305.000	341.000	335.000	327.000	741.000	356.000	169.000	122.000
5	120.000	156.000	202.000	153.000	294.000	309.000	313.000	302.000	763.000	347.000	163.000	131.000
6 7 8 9	117.000 123.000 121.000 127.000 126.000	146.000 138.000 136.000 131.000 134.000	188.000 187.000 168.000 158.000 147.000	211.000 255.000 268.000 276.000 250.000	314.000 341.000 329.000 308.000 471.000	322.000 341.000 311.000 287.000 273.000	319.000 298.000 275.000 278.000 278.000	279.000 307.000 309.000 311.000 320.000	766.000 785.000 799.000 777.000 773.000	338.000 313.000 306.000 294.000 283.000	162.000 158.000 152.000 147.000 139.000	134.000 131.000 121.000 122.000 121.000
11.	117.000	155.000	148.000	223.000	563.000	285.000	272.000	362.000	771.000	276.000	143.000	124.000
12	119.000	166.000	158.000	197.000	623.000	293.000	241.000	372.000	762.000	265.000	148.000	109.000
13	116.000	167.000	162.000	189.000	599.000	312.000	265.000	389.000	745.000	268.000	158.000	120.000
14	120.000	164.000	157.000	197.000	488.000	384.000	265.000	394.000	714.000	264.000	150.000	118.000
15	116.000	169.000	155.000	225.000	478.000	410.000	258.000	386.000	723.000	252.000	156.000	117.000
16	117.000	231.000	149.000	315.000	447.000	396.000	259.000	391.000	718.000	244.000	162.000	112.000
17	130.000	276.000	155.000	300.000	412.000	379.000	246.000	409.000	690.000	239.000	146.000	103.000
18	125.000	315.000	172.000	255.000	382.000	352.000	252.000	421.000	677.000	227.000	138.000	110.000
19	119.000	322.000	242.000	223.000	384.000	326.000	253.000	446.000	685.000	233.000	143.000	102.000
20	114.000	356.000	249.000	206.000	393.000	317.000	259.000	454.000	684.000	233.000	133.000	99.800
21	110.000	418.000	228.000	200.000	440.000	309.000	236.000	458.000	661.000	233.000	131.000	108.000
22	116.000	325.000	217.000	192.000	548.000	308.000	240.000	472.000	637.000	238.000	122.000	106.000
23	116.000	286.000	192.000	176.000	498.000	309.000	265.000	497.000	608.000	230.000	120.000	107.000
24	124.000	358.000	180.000	176.000	460.000	316.000	246.000	515.000	579.000	224.000	126.000	100.000
25	129.000	537.000	172.000	176.000	449.000	312.000	245.000	519.000	550.000	222.000	117.000	101.000
26 27 28 29 30 31	129.000 150.000 174.000 172.000 166.000	468.000 385.000 312.000 274.000 253.000	169.000 177.000 167.000 163.000 163.000 153.000	173.000 171.000 170.000 170.000 179.000 236.000	415.000 386.000 369.000	308.000 322.000 321.000 295.000 275.000 260.000	256.000 263.000 255.000 244.000 264.000	551.000 594.000 612.000 612.000 610.000 614.000	532.000 509.000 485.000 454.000 434.000	219.000 226.000 223.000 205.000 193.000 175.000	135.000 129.000 133.000 138.000 142.000 133.000	101.000 102.000 100.000 105.000 103.000

Computed as sum of Columbia River near The Dalles, Oregon plus 4 times the sum of Klickitat River near Pitt, Washington and Hood River and Conduit near Hood River, Oregon, plus Willamette River at Salem, Oregon plus 4.5 times the Cowlitz River at Castle Rock, Washington.

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVE

STATION LOCATION COLUMBIA RIVER AT

BONNEVILLE, OREGON

DATE			RADIO	ACTIVITY IN V	WATER	·		RADIOAC	TIVITY IN PLAN	IKTON (dry)	RAD	IOACTIVITY IN W	ATER
SAMPLE	DATE OF		ALPHA			BETA		DATE OF DETERMI- NATION	GROSS /	CTIVITY		GROSS ACTIVIT	Υ
TAKEN	DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TO1
MO. DAY YEAR	HONTH DAY	μμε/Ι	μμc/l	μμε/Ι	μμε/Ι	μμς/Ι	μμε/Ι	MO. DAY	µµс/g	μμc/g	μμε/	<i>μμ</i> c/l	μμ
10 10 60 10 24 60 11 14 60 11 21 60 12 12 60 12 12 60 1 23 61 2 20 61 4 10 61 4 24 61 5 8 61 5 22 61 6 12 61 6 12 61 6 26 61 7 10 61 7 24 61 8 7 61 8 7 61 8 7 61 9 25 61	10 31 11 7 11 30 12 2 1 6 1 17 2 6 3 6 3 7 3 24 4 7 5 16 5 25 6 15 7 21 8 17 8 9 7 9 9 4 10 27 10 9	0 0 1 0 1 1 0 1 0 1 1 0	2 - 1	1	8 13 11 226 27 50 83 69 104 83 48 40 52 316 24 811 019 514	287 238 263 316 266 401 228 288 135 1486 174 192 152 76 22 19 63 72 127	295 251 274 337 292 428 278 371 204 2466 219 222 204 938 43 97 74 75 155 128 291						

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

BONNEVILLE, OREGON

D. 47F				ALGAE (1	Vumber	per ml.) ·				INE	RT	_			DI	ATO	vs.				· ·	Ī	MICROIN	VERTEBR.	ATES	T	
DATE OF SAMPLE		BLUE-0	SREEN	GREE	:N	FLAGEL (Pigmo		DIAT	OMS	INE DIA SHE (No. p	FOM LLS er ml.)				SPEC	IES AN	ID PER			,	кортанктон, викатико ml.)	ıl.)	(er)	A ter)	ss ter)	L rows	duction ication,
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND#	PER- CENTAGE	THIRD#	PER. CENTAGE	FOURTH	PER. CENTAGE	OTHER PER- CENTAGE	OTHER HICROPILAN PURSI AND SHEAT BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per life	DOMINANT GENERA (See Introduction for Identification)
10	500 1100 500 200 100 100 200 700 1100 2500 7000 5900 1000 6200 1300 600 2100 1000	20	40 80	20 20 20 20 60 60 80 150 80 20 190		20 20 20 40 20 60 130	20 20 20 20 20 20 20	160 860 110 40 40 70 70 200 200 330 4020 1330 220 5550 7310 520 360 1590 700	500 1100 3100 1300 700 1800 6700 11600 2920 44700 5400 11800 2250 1500	630 130 40 40 50 90 40 50 200 400 350 640 350 640 350 1410 270 970 1820 1410 270 730	490 360 40 110 380 2250 470 450 360 490 1490 1570 780 1160 370 130 290 150	828562745576925 99906157447747	10 20 30 10 20 10 20 30 30 30 40 40 40	45625 45227 450 450 450 450 470 470 470 470 470 470 470 470 470 47	100 100 100 100 100 100 100 100 100 100	92 47 56 92 61 22 61 92 82 82 82 92 58 92 58 92 58 92 58	10 20 10 10 10 10 10 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	8492165745768999996 645662	10 10 10 10 10 10 10 10 10 10 10 10 10 1	40 560 60 60 60 60 60 60 60 60 60 60 60 60 6	20 90 40 20 20 20 20 20	10	3 2 2 2 18 91 228 141 107 173	1 6 4 1 3 1 2 2	1	1	

ORGANIC CHEMICALS RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

BONNEVILLE, OREGON

			TRACTABL	F.C.	1				CHI OBOE	ORM EXTR	ACTABLES				
DATE OF SAMPLE			IRACIABL						NEUTRALS		101710110				
MONTH FEAR MONTH TEAR ON THE TEAR ON THE TEAR ON THE TEAR ON THE TEAR OF THE TEAR ON THE T	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
10 24 60 11 14 11 21 12 12 60 12 22 13 61 2 20 3 6 61 3 18 4 10 61 6 25 6 12 61 7 10 61 7 24 8 7 61 8 7 61 9 11 61 9 25	7312 3047 5333 4502 3228 5265 4529 5343 14955 4079 5397 9476 7323	82 113 75 65 132 91 128 78 84 95 105 69 78	16124 1624 1624 1624 1624 1624 1624 1624	66 97 63 51 101 65 85 55 65 48 49 42	0 0 0 0 0 - 2 - 1 -	343397~~~7~9~ ENT	76558699-	1 1 1 1 0 2 2 2 2	1 1 0 0 0 0 1 1 1 1 1 1 1 1 1	54446566-	00001011101101	221243	101122 1 2 12	01000011101101	33238874-

STATE

OREGON

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATIONCOLUMBIA RIVER AT

BONNEVILLE, OREGON

A

DATE	l					CHLORINE	DEMAND									TOTAL	
MONTH DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/I	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/I	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10 10 60 10 24 60 11 14 60 11 21 60 12 27 60 1 25 61 2 20 61 3 20 61 4 10 61 4 24 61 5 8 61 7 10 61 7 24 61 8 21 63 9 25 61	14.5 10.1 9.4 5.0 5.2 7.5 6.0 7.5 10.3 9.6 11.8 14.0 14.5 16.5 120.0 22.0 21.7	9.3 9.9 9.9 10.7 11.6 11.4 11.6 12.2 12.7 11.6 10.9 10.9 11.6 10.9 8.8 7.0 5	8.13 7.9 7.6 4.5 5.5 5.8 7.8 9.0 4.2 2.2 8.0 2	5 6 9 9 •7 2 2 0 1 •7 2 1 •7 2 1 •2 1 •2 1 •2 1 •2 1 •2	4 5 10 6 7 18 13 21 21 21 20 21 20 6 5 11 8	-7 -4 -9 -5 -3 -9 -5 -3 -9 -5 -3 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	-2 · 2 · 8 · 8 · 1 · 8 · 8 · 3 · 8 · 2 · 3 · 8 · 5 · 2 · 3 · 4 · 7 · 2 · 9 · 4 · 6 · 5 · 5 · 2 · 9 · 1 · 9	1 1 3 2 2 2 2 3 3 4 6 6 2 1 1 1 2 2 2 2 2 2 3 2 2 2 2 3 2 2 2 2	4445555543463322222234	70670765 70765275760765 707659612458 55565	778786666655556667	50 55 55 100 100 100 100 100 55 57 5	55555500500000000000000000000000000000	16 17 15 16 14 18 17 20 16 15 14 11 10 9 9 13 13	0 1 3 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	112 105 119 136 133 101 148 106 113 105 85 79 84 93 83 97 117	280 680 160 460 11 180 - 25 60 - 1 15 2 *1 *2 *1

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Computed Data for Bonneville, Oregon Supplied by U.S. Geological Survey

STATE

Oregon

MAJOR BASIN

Pacific Northwest

MINOR BASIN

Columbia River below Yakima River

STATION LOCATION

Columbia River at

Bonneville, Oregon

				× .	7. h.m.o.m?	March	April	May	June	July	August	September
)ay	October	November	December	January	February		-66 000	210.000	585.000	379.000	159.000 165.000	108.000
V-				70 500	126.000	184.000	166.000	230.000	592.000	357.000	154.000	97.900
		114,000	119.000	99.500	155.000	190.000	156.000	206.000	611.000	338.000	147.000	97.900
1.	113.000	109,000	111.000	92.200	163.000	189.000	191.000	218.000	642.000	319.000	141.000	110.000
2	102.000	107.000	103.000	98.300	154.000	182.000	201.000	194.000	667.000	309.000	141.000	110,000
3	109.000	109.000	99.400	96.900	153.000	174.000	191.000	194.000				113.000
3 4	102.000	108.000	100.000	96.300	173.000		_	182.000	674.000	295.000	139.000	111.000
5	102.000	100.000			000	176.000	212.000		694.000	273.000	136.000	
_	_	- 01: 000	95.400	112.000	153.000	179.000	201.000	215,000	714.000	271.000	131.000	101.000
6	98.800	104.000	101.000	107.000	151.000	161.000	189.000	218.000	703.000	261.000	127.000	103.000
7	102.000	99.200	94.300	116.000	153.000	149.000	194.000	222.000	703.000	250.000	119.000	103.000
8	94.500	99.900	91.400	127.000	155.000	142.000	200.000	226.000	103.000	2,000		
0	101.000	96.500	84.300	119.000	223.000	142.000				242.000	123.000	106.000
9 10	99.200	101.000	04.300			000	201.000	262,000	707.000	230.000	129.000	92.300
10	,,,		22 1700	110.000	235.000	152.000	169.000	274.000	699.000	233.000	139.000	102.000
	94.000	100.000	92.700	90.800	230.000	153.000	189.000	294.000	685.000	229.000	130.000	102.000
11	96.000	98.500	94.700	88.200	229.000	162.000	188.000	306.000	655.000		136.000	100.000
12	92.700	101.000	96.400	92.000	212.000	171.000	100.000	301.000	662.000	217.000	130.000	
13	96.200	99.800	93.400	92.000	200.000	166.000	186.000	502,000			142.000	94.800
14			95.000	93.400	200.00			308.000	648.000	211.000	126.000	85.200
15	93.100	100.001		000	186.000	168.000	189.000	325.000	614.000	207.000		91.900
	-1 000	111.000	94.400	101.000	173.000	177.000	178.000	333.000	599.000	197.000	119.000	84,900
16	94.900		101.000	104.000	173.000	181.000	180.000	333.000	608.000	205.000	125.000	
17 18	108.000			101.000		182.000	180.000	352.000	613.000	206.000	114.000	82.500
ī.8	104.000		000	97.000	187.000	170.000	188.000	355.000	013.000			1.00
19	98.200	112.000		101.000	188.000	110.000			599.000	206.000	112.000	91.400
20	94.000	108.000	90.000			166.000	166,000	352.000	599.000	210.000	103.000	89.200
20	•		99.600	110.000	185.000		161.000	367.000	581.000	203.000	102.000	90.300
21	89.800	117.000	-0 000	113,000	186.000	177.000	167.000	400.000	556.000	197.000	107.000	84.400
	94.00	0 113.000	·		198.000	179.000	160.000	419.000	528.000	195.000	98.800	85.500
22	92.70	0 120.000	96.700	Ξ	224.000	182.000	167.000	434.000	499.000	195.000	,	
23	91.30	0 131.00	95.200			187.000	101.000			1: 000	117.000	85.800
24	92.90		93.600	113.00			-01-000	470.000	481.000	194.000	112.000	a _ 1
25	9E.70			114.00	199.000	187.000		000	459.000	202.000	116.000	-
_	95.20	00 120.00	0 94.000		000	201.000			11 - 000	199.000		
26			n 97.400	116.00	000	203.000	188.000	, , , , , ,	1 000	182.000	120.000	~
27	96.40	^	94.40	118.00	-	184.000	175.000	535.000	200		125.000	
28	108.00		97.30	0 118.00		174.000		534.000		153.000)
29	108.00	O TTO:00			00				J			
30	109.0	00 T53.00	00 103.00 96.40	0 124.00	00	107.000			DI++	Washingto	n and Hood	River and
31	110.0	00	,5, 10				Tum of K15	ckitat Riv	er near Pitt	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Computed as sum of Columbia River near The Dalles, Oregon plus twice the sum of Klickitat Kiver near Fice, washington and hood large conduit near Hood River, Oregon.

RADIOACTIVITY DETERMINATIONS

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

MCNARY DAM, OREGON

DATE OF DETERMINATION ONTH DAY 4 20 6 2 6 15 6 15 7 5	SUSPENDED μμc/I 0 0 0	ALPHA DISSOLVED ##c/I	TOTAL μμc/I	SUSPENDED	BETA DISSOLVED		DAT DET		TIVITY IN PLAN	CTIVITY		GROSS ACTIVIT	
0NTH DAY 4 20 6 2 6 15 6 15	μμε/Ι Ο Ο	DISSOLVED μμε/Ι					DET		-,,,				
0NTH DAY 4 20 6 2 6 15 6 15	μμε/Ι Ο Ο	μμε/Ι				TOTAL	1 224	ERMI-	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
4 20 6 2 6 15 6 15	0		μμς/Ι			μμc/I		DAY	μμε/g	µµс/g	μμς/Ι	μμε/Ι	μ#c/l
6 2 6 15 6 15	Ö	1		μμε/Ι	μμε/Ι	1/344		150.					
6 2 6 15 6 15	Ö	{	1	56	205	261	İ						
6 15 6 15		1	1	102	182	284			j				
6 15			_	_	135	151		į	Ì			l	
-	i i	0	0	16	50	59	Ì			- 1			
7 5 1	1	0	1	9				i		i			
	0	0	0	12	44	56				l			
7 7	0	0	0	, 6	24	30			ļ	ŀ			
7 28	0	0	0	4	41	45				-	·		
7 27	0	0	0	25	60	85	l	- 1					
8 2	0	0	0] 3						İ	1	1	
8 2	0	0 .	0	6				ľ				ŀ	
8 7	0	1	1	6									
8 14	0	0	0	5	95	100				1		1	
9 7	0	1	1	14	19	33	.						
	0	1	1	17	204	221							
-	-		0	12	15	27							
			1	3	86	89		- 1		1		1	
	i .				141	156		- 1					
	· · · · · · · · · · · · · · · · · · ·												
	_		_			- (1			
										1	Į.		
11 3	0	1 1	1	29	ا بود ا	300							
		!				1	i						
						İ	į	1					
										i			
												1	
							ļ						
							-						
								[1			
								İ					
							1	- 1					
							- 1	- 1					
					[]			1					
								- 1				1	
						1						ļ .	
					j i								
							İ						
. 1	8 2 8 2 8 7 8 14 9 7 9 12 9 25 9 26 0 18 0 19	8 2 0 8 2 0 8 7 0 9 7 0 9 1 0 9 12 0 9 25 0 9 25 0 9 26 0 0 6 0 0 18 0	8 2 0 0 8 2 0 0 8 7 0 1 8 14 0 0 9 7 0 1 9 1 0 1 9 12 0 0 9 25 0 1 9 26 0 1 0 6 0 0 0 18 0 1 0 19 0 0	8 2 0 0 0 8 2 0 0 0 8 7 0 1 1 8 14 0 0 0 9 7 0 1 1 9 1 0 1 1 9 12 0 0 0 9 25 0 1 1 9 26 0 1 1 0 6 0 0 0 0 18 0 1 1 0 19 0 0 0	8 2 0 0 0 3 8 2 0 0 0 6 8 7 0 1 1 6 8 14 0 0 0 5 9 7 0 1 1 14 9 1 0 1 1 17 9 12 0 0 0 0 12 9 25 0 1 1 3 9 26 0 1 1 15 0 6 0 0 0 16 0 18 0 1 1 17 0 19 0 0 0 21	8 2 0 0 0 3 62 8 2 0 0 0 6 65 8 7 0 1 1 6 77 8 14 0 0 0 5 95 9 7 0 1 1 14 19 9 1 0 1 1 17 204 9 12 0 0 0 12 15 9 25 0 1 1 3 86 9 26 0 1 1 15 141 0 6 0 0 0 16 46 0 18 0 1 1 17 11 0 19 0 0 21 154	8 2 0 0 0 3 62 65 8 2 0 0 0 6 65 71 8 7 0 1 1 6 77 83 8 14 0 0 0 5 95 100 9 7 0 1 1 14 19 33 9 1 0 1 1 17 204 221 9 12 0 0 0 12 15 27 9 25 0 1 1 3 86 89 9 26 0 1 1 15 141 156 0 6 0 0 0 16 46 62 0 18 0 1 1 17 11 28 0 19 0 0 21 154 175	8 2 0 0 0 3 62 65 8 2 0 0 0 6 65 71 8 7 0 1 1 6 77 83 8 14 0 0 0 5 95 100 9 7 0 1 1 14 19 33 9 1 0 1 1 17 204 221 9 12 0 0 0 12 15 27 9 25 0 1 1 3 86 89 9 26 0 1 1 15 141 156 0 6 0 0 0 16 46 62 0 18 0 1 1 17 11 28 0 19 0 0 21 154 175	8 2 0 0 0 3 62 65 8 2 0 0 0 6 65 71 8 7 0 1 1 6 77 83 8 14 0 0 0 5 95 100 9 7 0 1 1 14 19 33 9 1 0 1 1 17 204 221 9 12 0 0 0 12 15 27 9 25 0 1 1 3 86 89 9 26 0 1 1 15 141 156 0 6 0 0 0 16 46 62 0 18 0 1 1 17 11 28 0 19 0 0 0 21 154 175	8 2 0 0 0 3 62 65 8 2 0 0 0 6 65 71 8 7 0 1 1 6 77 83 8 14 0 0 0 5 95 100 9 7 0 1 1 14 19 33 9 1 0 1 1 17 204 221 9 12 0 0 0 12 15 27 9 25 0 1 1 3 86 89 9 26 0 1 1 15 141 156 0 6 0 0 0 16 46 62 0 18 0 1 1 17 11 28 0 19 0 0 21 154 175	8 2 0 0 0 3 62 65 8 2 0 0 0 6 65 71 8 7 0 1 1 6 77 83 8 14 0 0 0 5 95 100 9 7 0 1 1 14 19 33 9 1 0 1 1 17 204 221 9 12 0 0 0 12 15 27 9 12 0 0 1 1 3 86 89 9 26 0 1 1 15 141 156 0 6 0 0 0 16 46 62 0 18 0 1 1 17 11 28 0 19 0 0 0 21 154 175	8 2 0 0 0 3 62 65 8 2 0 0 0 6 65 71 8 7 0 1 1 6 77 83 8 14 0 0 0 5 95 100 9 7 0 1 1 14 19 33 9 1 0 1 1 17 204 221 11 9 12 0 0 0 0 15 27 27 9 12 0 0 0 1 1 3 86 89 9 26 0 1 1 15 141 156 0 6 0 0 0 16 46 62 0 18 0 1 1 17 11 28 0 19 0 0 0 21 154 175 15 124 175 175 175 175 175	8 2 0 0 0 3 62 65 8 2 0 0 0 6 65 71 8 7 0 1 1 6 77 83 8 14 0 0 0 5 95 100 9 7 0 1 1 14 19 33 9 1 0 1 1 17 204 221 9 12 0 0 0 12 15 27 9 12 0 0 0 12 15 27 9 25 0 1 1 3 86 89 9 26 0 1 1 15 141 156 0 6 0 0 0 16 46 62 0 18 0 1 1 17 11 28 0 19 0 0 0 21 154 175 0 19 0 0 0 21 154 175

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

MCNARY DAM, OREGON

		Ι			ALGAE (Number	per ml.)				IN	ERT	Γ-			D	IATO	MS				T :	T_	MICROIN	VERTEBR	ATES		
DATE OF SAM			BLUE-	GREEN	GREE	EN		LLATES ented)	DIAT	омѕ	DIA SHE (No. 1	RT TOM LLS er ml.)				SPEC	IES A	ND PE				OPLANKTON HEATHER	m.)	B liter)	E.A. liter.)	ES liter)	EX ANJKAL FORMS. Der liter)	GENERA oduction (fication,
МОИТН	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER. CENTAGE	SECOND	PER- CENTAGE	THIRD	PER.	FOURTH	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLANKTON, PUNGI AND SHEATHED BACTERIA (No. per 711.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIM	bominant genera (See Introduction for Identification)
5 15 6 5 6 19 7 3 7 17 8 7 8 21	61 61 61 61 61 61	1200 2600 1000 500 5500 2100 500	20 20		80 130 20 80		20 20 80 170	20 20	600 510 200 160 270 4490 350 250	510 2080 760 380 790 460 80 210	200 160 110 20 1080 390 100 20	600 740 810 160 540 310 20	61 84 84 84 84 58 92	20 20 70 50 40 50	47 95 47 47 47 47 58	10 20 20 10 40 40 30 20	9 95 61 61 61 58 92	10 20 10 * 10 20 10	80 92 62 26 95 92 56	10 * * * * 10	300 300 500 100 * 100	50		27 4 2 3 5 148 179 16 14	39911142			3-9 37 7- 3-9 976 97- 9-7

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

MCNARY DAM, OREGON

DATE OF SAMPLE		Ε>	KTRACTABL	.ES						ORM EXTR.	ACTABLES				
BEGINNING END	-							,	NEUTRALS	; 				ŀ	
MONTH DAY YEAR MONTH	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
4 1 61 4 30 6 5 61 6 19 7 3 61 7 17 8 7 61 8 21 9 4 61 9 18	5000 5000 4930	109 115 88 106 92	49 57 31 34 26	60 58 57 72 66	1 1 0 1	12 12 7 8 7	13 15 13 13 9	1 2 3 2 1	1 1 1 1 1	11 12 9 10 7	00000	77 73 55 33	56121	0 1 1 1 1 1 1 1	11 15 5 4

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station below McNary Dam, Oregon Operated by U.S. Geological Survey STATE

Oregon

MAJOR BASIN

Pacific Northwest

MINOR BASIN

Columbia River below Yakima River

STATION LOCATION

Columbia River at

McNary Dam, Oregon

Day	October	November	December	January	February	March	April	May	June	July	August	September
			700,000	87,200	118.000	. 163.000	151.000	209.000	576.000	353.000	158.000 151.000	103.000 97.900
1	96.200	102.000	108.000 93.500	87.600	134.000	167.000	167.000	198.000	584.000	337.000 318.000	141.000	89.000
2	97.100	98.800	89.400	86.600	134.000	164.000	177.000	196.000	610.000 642.000	302.000	138.000	94.000
3 4	98.600	97.800 102.000	86.900	87.300	132.000	156.000	170.000	196.000	654.000	291.000	130.000	106.000
	94.400 91.100	98.600	85.800	89.300	133.000	155.000	184.000	159.000	094.000	2)1.000		
5	91.100	90.000	0,.000	4,5		-6	701, 000	187.000	664.000	270.000	129.000	105.000
,	92.000	92.700	88.200	101.000	127.000	156.000	184.000	204.000	696.000	259.000	124.000	97.900
6	93.800	88.700	88.000	99.400	132.000	152.000	178.000 172.000	204.000	692.000	255.000	127.000	92.200
7 8	94.400	87.500	84.400	108.000	129.000	140.000	185.000	200.000	686.000	246.000	111.000	99.500
9	89.900	95.800	81.900	109.000	129.000	128.000	181.000	235.000	690.000	235.000	115.000	93.200
10	85.200	90.300	80.600	99.500	142.000	127.000	101.000	255,000				
10	0,12	, -			7 Ch. 000	132.000	168.000	251.000	689.000	224.000	115.000	91.300
11	89.300	89.000	86.200	87.600	164.000	138.000	163.000	274.000	676.000	225.000	128.000	91.100
12	85.900	91.700	81.900	80.900	179.000 172.000	141.000	177.000	285.000	659.000	222.000	126.000	95.400
13	86.100	91.500	82.300	84.700	165.000	133.000	171.000	287.000	659.000	213.000	128.000	93.400
14	91.500	91.000	86.200	85.700	156.000	133.000	174.000	281.000	639.000	205.000	135.000	100.000
15	87.200	94.700	86.800	88.700	1,0.000	200,444	·				121.000	80.900
		(00	90,000	91.300	147.000	148.000	169.000	303.000	617.000	200.000	114.000	77.000
16	93.400	97.600	89.900 102.000	85.400	146,000	147.000	164.000	314.000	577.000	190.000	114.000	78.400
17	98.600	103.000	93.200	85.500	160.000	161.000	160.000	325.000	590.000	193.000 196.000	112.000	79.900
18	93.600	101.000 94.000	86.600	90.100	160.000	151.000	175.000	335.000	603.000	193.000	103.000	80.500
19	86.800 85.800	101.000	85.900	93.100	159.000	139.000	155.000	336.000	589.000	191.000	100.000	001,700
20	85.000	101.000	07.700	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				al-1 000	578.000	202,000	95.000	80,800
0.7	87.300	102.000	101,000	100.000	153.000	146.000	150.000	341.000 365.000	550.000	200.000	89.900	84.400
21	87.100	106.000	92.400	95.800	156.000	160.000	148.000	396.000	529.000	185.000	95.300	80.800
22	82.200	103.000	85.500	92.700	192.000	150.000	152.000 149.000	408.000	496.000	189.000	104.000	84.100
23 24	83.400	100.000	85.200	101.000	186,000	155.000	159.000	441.000	472.000	182.000	112.000	76.000
25	82.600	105.000	84.700	103.000	181.000	155.000	159.000	441.000	.,			
ر ـ	32.000				- (= 000	167,000	179.000	474.000	457,000	187.000	107.000	78.900
26	89.400	105.000	84.700	106.000	167.000	183.000	174.000	503.000	437.000	186.000	105.000	79.600
27	95.900	105.000	82.300	107.000	170.000 165.000	173.000	171.000	524.000	408.000	178.000	112.000	79.800
28	100.000	104.000	85.000	107.000	165.000	158.000	156.000	514.000	394.000	168.000	119.000	83.100
29	100.000	115.000	90.800	105.000		148.000	168.000	522.000	375.000	158.000	114.000	80.500
30	101.000	105.000	88.600	104.000		149.000	20050	535.000		152.000	97.900	
31	104.000		89.000	103.000		217.000						

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATION COLUMBIA RIVER AT

PASCO, WASHINGTON

٥.

DATE			RADI	DACTIVITY IN V	VATER				RADIOAC	TIVITY IN PLAI	NKTON (dry)	RAD	IOACTIVITY IN W	ATER
SAMPLE	DATE OF DETERMI-		ALPHA			BETA			DATE OF DETERMI- NATION	GROSS A	ACTIVITY		GROSS ACTIVIT	Υ
TAKEN	NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL			ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
O. DAY YEAR	MONTH DAY	μμc/l	μμc/l	μμc/l	μμε/1	μμε/1	μμc/l		MO. DAY	ppc/g	hhc/g	##c/I	μμc/l	μ μ c/1
3 60	10 19	_		_	59	741	220							
17 60	10 19	0	2	2	114	7 6 1 676	820 790		1					
24 60	11 9	0.		2	58	601	659							
31 60	11 18	<u> </u>	2	_	48	671	719	•						
7 60	11 25	_	-	_	76	1027	1103				!			
28 60	12 12	0	1	1	68	1123	1191		1					
5 60	12 30	-		_	63	694	757				1			
2 12 60	1 3	_	_	-	864	989	1073							
19 60	1 25	_	_	-	35	489	524							
2 27 60	1 20	0	2	2	113	731	844							
3 61	1 24	_	-	_	188	962	1150							
9 61	1 27	_	_	_	169	851	1020							
1 16 61	2 2		_		168	651	819		1					
23 61	2 15	0	1	1	74	621	695							
30 61	2 16	_		_	69	706	775							
6 61	2 21		_	_	105	794	899				1			
2 14 61	3 6				151	760	911							
2 20 61	3 9				52	467	.519							
2 27 61	3 17	0	0	0	87	398	485					ļ		
6 61	3 28				108	512	620		1		1	ĺ		
3 13 61	3 31	_		-	89	505	594							
3 20 61	4 5	_		_	128	612	740		1				1	
3 27 61	4 17	0	ol	0	. 89	474	563					İ	i l	
3 61	4 20	_	_	-	183	630	813							
10 61	5 2		_	-	58	351	409				1			
+ 17 61	5 22	_	-		48	280	328				1			
5 1 61	5 17	_	-	-	96	398	494				i i			
8 61	5 26	_ 1		-	107	368	475					İ		
5 15 61	6 2		-	-	67	365	432				1		1	
5 22 61	6 15	_			32	117	149							
5 29 61	7 10	_	_	-	25	40	65							
5 5 61	7 6	-	-	-	9	46	55							
5 12 61	7 7	-	-		7	39	46							
5 19 61	7 14	-	-	~	6	46	52				1			
5 26 61	8 1	0	0	0	4	35	39		1					
7 5 61	9 6	-		-	16	50	66							
7 10 61	8 3	-	-	_	14	149	163							
7 17 61	8 14	-	-	~	6	109	115							
7 24 61	8 23	0	0	0	11	148	159							
7 31 61	9 1	1	1	2	10	115	125							

RADIOACTIVITY DETERMINATIONS

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATION COLUMBIA RIVER AT

PASCO, WASHINGTON

							— Т	1	RAI	DIOAC	TIVITY IN PLANE	TON (dry)			OACTIVITY IN W	
	1		RADIO	ACTIVITY IN W	ATER			ı			GROSS AC	TIVITY	L		GROSS ACTIVIT	
	TITE OF		ALPHA					-	DETER	IMI-	ALPHA	BETA	1	SUSPENDED		
	DETERMI-	SUSPENDED	DISSOLVED	TOTAL				1				μμc/g		μμε/ί	μμε/1	μμε/Ι
				μμς/Ι	μμε/1	μμε/1	<i>ррс/1</i>			-				1		
DATE SAMPLE TAKEN MO. DAY YEAR 8 7 61 8 15 61 8 21 61 8 28 61 9 11 61 9 18 61 9 25 61	DATE OF DETERMINATION	SUSPENDED ##c/I O O O			21 14 5 13 13 61 64	DISSOLVED μμc/I 2 2 2 2 0 8 1 77 1 87 1 73 4 4 5 5 5 5 3	ΤΟΤΑL μμε/1 243 222 182 200 186 506 617		DATE NATION MO. [ALPHA μμε/g	BETA		pμc/l	DISSOLVED μμε/(TOTAL μμε/Ι

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATION COLUMBIA RIVER AT

PASCO, WASHINGTON

-				ALGAE (Number	ner ml)															1		MICROIN	VEDTERS	ATEC	_	
DATE OF SAMPLE		BLUE-	GREEN	GREE		FLAGE	LLATES ented)	DIAT	омѕ		ERT TOM ELLS er ml.)		DOM (Se	INANT e Intro	D SPEC duction	IATO IES A for Co	ND PE	RCEN ntifical	TAGE:	s	ортанктом, биеатико ml.)		l	T		L FORKS	ERERA duction ication)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER.	SECOND#	PER-	THIRD#	PER. CENTAGE	FOURTH*	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICHOPLANKTON, FUNGI AND SHEATHED MCTERIA (No. pet ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORMS (No. per liter)	DOKINANT GENERA (See Introduction) for Identification)
10 18 60 11 4 60 12 5 60 12 6 61 2 6 61 3 61 5 61 5 61 6 19 61 7 19 61 8 7 61 8 21 61 9 18 61	200 200 400 100 300 900 1100 2300 2400 6300 500 500 500 500	80	60 20	20 40 20 80 150 60	20	20 40 60 20 20 20	40	90 70 70 50 20 310 510 820 810 1260 230 190 120 80	90 110 360 20 50 580 1400 1550 4840 560 340 270 330 330	70 70 90 20 50 210 210 210 110 40 40 20	350 130 110 4360 2200 3340 9360 2230 3170 250 170	6222779555715444477 999469888477	22020200000000000000000000000000000000	47 8 2 2 2 6 6 1 5 6 6 1 9 6 1 7 4 7 7 4 7 9 2 2	10 10 20 10 20 30 20 30 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	2 70 47 61 95 662 961 97 47 95 9 9 31 58 2	10 10 10 10 10 10 20 20 20 10 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	62 71 70 62 77 92 95 95 96 61 92 62 92	10 10 10 10 10 10 10 10 10	657660000000000000000000000000000000000	40 20 40 40 40 20 150 40	10	11 1 23 7 1864214650	2 3 1 3	1 2 1	1	3 3-9-3 3-977 3-97-3-97-3-97-3-97-3-

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATION COLUMBIA RIVER AT

PASCO, WASHINGTON

													CHLOROF	ORM EXTR	CTABLES				
	DATE	OF SA	MPLE			EX	TRACTABL	E5		1			NEUTRALS						
HTNOM	DAY	YEAR D	MONTH	DAY 6	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
12 12 1 2 3 4 5 6 7 8	10	60 60 61 61 61 61 61 61 61	2 3 4 5 6 7 7 8	17 12 4 31 21 13 12 11 8	3940 3940 4910 4510 5302 3770 3890 3190 5050 5060 5260	97 76 83 88 64 95 103 119 123 99 83 79 66	14 13 15 18 12 13 17 34 19 21 15 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	83 63 68 70 38 79 74 72 87 65 65 51	0 1 1 1 0 2 2 1 2 0 0 1	43547560409554	5557647811.18785	1111002322121	0 0 1 1 0 0 0 0 1 1 1 1 1 0	6 5 6 6 5 5 5	0000010120000	1112212344351222	1 1 1 2 0 1 2 4 3 3 1 1 1	000000000000000000000000000000000000000	32338446276532

STATE

WASHINGTON

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATIONCOLUMBIA RIVER AT

PASCO, WASHINGTON

Q

DATE OF SAMPLE TEMP. DISSOLVED CHLORINE DEMAND		
(Degrees OXYGEN pH mg/l mg/l l-HOUR 24-HOUR mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	ALKALINITY HARDNESS COLOR TURBIDITY SULFATES PHOSPHATES DISSOLVED SOLIDS mg/l mg/l per 100	
10	72 68 7 2	

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SHAKE RIVER

STATION LOCATION COLUMBIA RIVER AT

PASCO, WASHINGTON

Q

DATE						CHLORINE	DEMAND	AMMONIA-	CHLORIDES	ALKALINITY	HARDNESS	COLOR	TURBIDITY	SULFATES	PHOSPHATES	TOTAL DISSOLVED	COLIFORMS
OF SAMPLE	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B,O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/I	mg/I	mg/l		(scale units)	(scale units)	mg/l	mg/l	SOLIDS mg/l	per 100 ml,
7 3 61 7 10 61 7 17 61 7 24 61 7 31 61 8 7 61 8 8 61 8 15 61 8 22 61 8 22 61 8 29 61 9 12 61 9 12 61 9 12 61 9 12 61	18.0 18.0 19.5 20.0 - 20.5 22.0 - 21.0 - 20.0 - 20.5 - 21.0	8.7	8.0 8.2 8.2 8.3 8.1 5.1 8.2 8.2 8.2 8.2 8.2 8.1	2.8 1.1 1.0 .3 .5 1.01 .28 1.18 1.1		1.1 1.0 1.0 1.0 1.1 1.0 1.2 - 1.1 1.7 .7 .7 .7	1.6 1.8 1.8 2.0 1.7 - 1.7 - 1.5 1.5 1.3 1.5 1.6			73 72 - 70	640 644668 68 - 70 - 69 - 73 - 68 74 - 70 - 70	10 15 11 10 -9 -7 -7 -8 8 -9 -6 -10	86665141514131331313		-		190 - *1 - 23 - 7 7 - 53

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Computed Data for Pasco, Washington Supplied by U.S. Geological Survey

STATE

Washington

MAJOR BASIN

Pacific Northwest

MINOR BASIN

Middle and Lower Snake River

STATION LOCATION

Columbia River at

Pasco, Washington

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	80.200 75.100 73.900 76.800 73.700	72.300 72.300 70.300 67.400 67.400	71.800 63.700 59.700 54.700 57.700	62.800 64.800 65.800 70.800 70.800	85.200 89.400 95.800 95.300 94.600	113.000 102.000 102.000 106.000 114.000	106.000 117.000 117.000 107.000 109.000	117.000 122.000 122.000 122.000 129.000	425.000 445.000 460.000 480.000 492.000	311.000 298.000 279.000 273.000 255.000	133.000 124.000 116.000 117.000 115.000	82.800 80.700 85.800 82.800 79.800
6 7 8 9	70.700 70.700 67.800 66.900 65.900	66.300 65.300 65.200 66.200 68.200	59.600 58.500 58.400 62.300 63.300	67.800 60.500 58.000 54.800 54.900	95.400 88.700 82.600 84.700 84.300	112.000 99.900 93.700 91.500 95.400	111.000 105.000 115.000 125.000 119.000	130.000 138.000 145.000 164.000 189.000	514.000 526.000 529.000 540.000 546.000	244.000 232.000 225.000 216.000 208.000	116.000 103.000 101.000 101.000 97.300	80.700 74.700 78.600 79.500 74.500
11 12 13 14 15	62.900 64.000 68.900 71.800 73.200	69.100 71.100 68.400 68.600 70.500	61.200 62.100 62.100 63.200 65.300	55.900 61.800 64.700 60.600 57.600	86.100 87.000 87.900 91.900 96.800	95.200 107.000 101.000 88.500 86.500	114.000 122.000 118.000 120.000 114.000	201.000 214.000 222.000 217.000 226.000	543.000 531.000 530.000 518.000 509.000	203.000 202.000 199.000 187.000 186.000	96.300 122.000 127.000 126.000 104.000	80.400 73.400 75.400 75.300 71.400
16 17 18 19 20	73.400 68.200 60.200 60.000 60.700	69.400 68.400 69.500 71.900 72.300	68.400 63.200 59.200 56.300 59.300	55.000 60.600 62.800 68.600 74.200	98.400 104.000 106.000 106.000 102.000	89.100 92.700 94.400 93.800 96.700	24.000 122.000 116.000 101.000 92.800	244.000 249.000 259.000 262.000 253.000	482.000 491.000 499.000 498.000 490.000	184.000 185.000 182.000 181.000	101.000 100.000 90.700 86.700 81.800	70.500 68.500 59.600 64.600 67.600
21 22 23 24 25	62.000 60.900 56.900 58.700 68.500	71.100 74.300 74.300 75.000 74.200	61.300 59.300 56.200 56.200 56.200	74.900 75.700 74.500 78.300 78.100	99.500 102.000 107.000 110.000 113.000	100.000 100.000 99.500 100.000 104.000	95.400 100.000 94.800 96.400 129.000	261.000 283.000 298.000 316.000 342.000	477.000 475.000 438.000 424.000 410.000	177.000 174.000 174.000 172.000 174.000	76.700 83.500 89.400 93.300 94.300	66.600 59.600 62.700 62.700 57.700
26 27 28 29 30 31	74.500 76.400 84.400 83.300 83.300 76.400	75.700 76.600 78.200 79.000 76.900	54.200 57.300 63.000 64.000 64.900 64.900	78.100 75.000 76.700 76.500 76.500 78.700	114.000 118.000 118.000	119.000 116.000 97.900 95.100 95.900 97.000	126.000 123.000 106.000 109.000 111.000	369.000 370.000 381.000 396.000 404.000 417.000	402.000 375.000 359.000 345.000 326.000	176.000 167.000 157.000 145.000 139.000 135.000	97.400 95.400 95.900 93.000 89.700 86.700	56.800 54.800 56.800 64.700 58.800

Computed as sum of Columbia River at Trinidad, Washington plus Yakima River at Kiona, Washington.

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

COLUMBIA RIVER ABOVE YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

WENATCHEE, WASHINGTON

	1		RAD	OACTIVITY IN V	VATER			Т	PADIO	ACTIVITY IN PLA	NICTON (d)	т	T	NO LOTIVITY IN I	WAYER .
DATE SAMPLE	DATE OF	T	ALPHA			BETA		1			ACTIVITY	1	KAL	GROSS ACTIVITY	
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	1	DATE OF DETERMI- NATION	ALPHA	BETA	1	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR		μμε/Ι	μμε/Ι	μμε/Ι	μμς/Ι	μμc/i	μμε/Ι]	MO. DAY	μμc/g	<i>µµс/g</i>	1	μμε/Ι	μμς/Ι	μμς/Ι
10 24 60*		0	2	2	0	0	0	ŀ							
11 28 60*		0	1	1 2	0	0	0		ļ						
12 27 60*		0	2	2	0 0	0	0	1							
2 1 61* 3 1 61*		1	Ö	1		Ö	1		İ		İ				
3 29 61*		Ō	Ö	ō	Ō	ŏ	ō			1					
4 26 61*		ő	i	1	l o	5	5					1			
5 31 61*		o i	1	1	Ö	5	5							i e	
6 28 61*	7 21.	0	0	0	0	0	0		1]					
8 2 61*		0	1	1	0	4	4	1							
8 30 61*	9 18	0	0	0	0	3	3	l							
9 6 61	10 3	-	_	_	4	0	4								
9 13 61	10 30	-	-	-	0	6	6								
9 20 61	10 3	, -	- 0	0	0	3	3								
9 27 61	10 11	0	U	U	0	0	0	1	1					·	
					[ĺ							
												Ī	Ì		
								ĺ							
						:						ĺ			
								1				1	1		
												1	Į i		
		i													
		1													
		i													
												l			
		ľ						1							
						l		İ							
	İ	i	1												
											1	1			
ĺ															
1	[į									1				
1		ļ	ļ												
İ	J	j													
	İ			İ											
						1		1				l	1		

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER ABOVE YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

WENATCHEE, WASHINGTON

DATE		,		ALGAE (Vumber	per ml.)				INE	RT TOM	Τ			D.	IATO					· · ·	т-	MICROIN	VERTEBR	ATES		
OF SAMPLE		BLUE-	GREEN	GREE	EN	FLAGEL (Pigm	LLATES ented)	DIAT	oms*	SHE	TOM LLS er ml.)		DOM:	INANT	SPEC	IES AN	ID PE	RCENT ntificat	TAGES ion*)	3	SPLANKTON SHEATHED ml.)		T T	· · · ·		TO FRE	uction sation)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST*	PER.	SECOND*	PER. CENTAGE	THIRD*	PER- CENTAGE	ғопятн≇	PER. CENTAGE	OTHER PER-	OTHER MICROPLANKTON, FUNGI AND SHEATHER BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per liter	DOMINANT GENERA (See Introduction for Identification)
10	200		20	20 40 40 40	20 20	60000 200 200 40	20	70 50 70 50 50 20 50 820 560 600 2190 250 3170 730 170 40	180 130 50 110 670 3130 4550 810 290 810 250 150 60	90 70 20 50 180 270 230 410 50 210 40 80	110 110 580 810 750 460 290 160 330	45 62 61 92 95 95 92	10 60 30 60 40 40 20 30 40 40 40 40 40 40 40 40 40	622795695599559574522	20 10 10 10 10 20	62 72 99 89 47 44 47 84 47 84 47	10 10 10 10 10 10 10 10 10 10 10 10 10 1	92 97 97 97 97 97 97 97 97 97 97	10 10 10 10 10 10 10 10 10 10 10 10 10 1	400 670 600 400 400 400 400 400 400 400 400 40	70 20 90 20 100	10	1 3 4 5 6 6 1 6 32 7 5 2 6	1 1 1	1 31 2	1	3-8- 3-8- 3-9- 3-87 3-97 3-97 3-97 3-97

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER ABOVE YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

WENATCHEE, WASHINGTON

DATE OF S	C 4 1/-	D1 F			EV	TRACTABL	ES	 -				CHLOROF	ORM EXTR	ACTABLES				
BEGINNING		EN	_					 	<u> </u>			NEUTRALS				I	·	
MONTH DAY YEAR	1	-	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	Loss
10 10 60 11 7 60 12 12 60 1 16 61 2 15 61 3 22 61 5 3 61 6 7 61 7 12 61 8 16 61	1 1	1 2 1 2 3 5 6 7 8	14 19 25 22 29 10 14	4245 4100 2200 6631 5287 5158 3926 * 4063 4355 8418	82 60 124 50 68 77 95 88 91 T GIVEN	25 17 25 15 21 16 35 37 36 36	57 499 35 47 60 582 55	1 0 0 0 0 2 1	64436408	12 8 16 8 9 7 9 7 17	63833231119	1 1 2 1 1 1 1 2	54645451116	00000001110	212224 3	1100113.111	1 0 0 0 0 0 0 1 0 0	2322326 6

STATE

WASHINGTON

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER ABOVE YAKIMA RIVER

STATION LOCATIONCOLUMBIA RIVER AT

WENATCHEE, WASHINGTON

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NURTHWEST

MINOR BASIN

COLUMBIA RIVER ABOVE YAKIMA KIVER

STATION LOCATION COLUMBIA RIVER AT

WENATCHEE, WASHINGTON

DATE OF SAMPLE					f	CHLORINE	DEMAND	AMMONIA-								TOTAL DISSOLVED	
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	CHLORIDES mg/l	Mg/I	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	SOLIDS mg/l	coliforms per 100 ml.
7 5 61 7 12 61 7 17 61 7 19 61 7 26 61 8 2 61 8 9 61 8 30 61 9 13 61 9 27 61	17.7 18.6 18.0 18.5 18.9 19.5 19.0 18.0		8.0 8.0 8.0 8.0 7.9 7.8 7.9 8.0 8.0 8.0						54-46-54-442	511-22222825654 5555555555555555555555555555555555	612-6413822258824	15515515555	11101100101000	9 10 10 10 7 - 10 - 17 18 11	.0 .1 .0 .1 .0 .1 .3	74 81 - 87 78 83 69 79 66 75 - - 78	100 48 53 - 24 17 120 7300 110 470 120 200 150 110

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Trinidad, Washington Operated by U.S. Geological Survey STATE

Washington

MAJOR BASIN

Pacific Northwest

MINOR BASIN

Columbia River above Yakima River

STATION LOCATION

Columbia River at

Wenatchee, Washington

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	78.000 73.000 72.000 75.000 72.000	70.000 70.000 68.000 65.000 65.000	69.000 61.000 57.000 52.000 55.000	61.000 63.000 64.000 69.000 69.000	82.000 86.000 88.000 90.000 90.000	106.000 96.000 95.000 99.000 108.000	99.000 110.000 109.000 98.000 99.000	108.000 112.000 112.000 112.000 119.000	415.000 436.000 450.000 469.000 481.000	309.000 296.000 278.000 272.000 254.000	132.000 122.000 115.000 116.000 114.000	81.000 79.000 84.000 81.000 78.000
6 7 8 9	69.000 69.000 66.000 65.000 64.000	64.000 63.000 63.000 64.000 66.000	57.000 56.000 56.000 60.000 61.000	66.000 58.000 55.000 52.000 52.000	91.000 84.000 77.000 79.000 78.000	106.000 94.000 88.000 86.000 85.000	101.000 97.000 108.000 119.000 113.000	121.000 130.000 137.000 157.000 182.000	502.000 515.000 518.000 530.000 537.000	242.000 230.000 223.000 215.000 207.000	115.000 102.000 100.000 100.000 96.000	79.000 73.000 77.000 78.000 73.000
11 12 13 14 15	61.000 62.000 67.000 70.000 71.000	67.000 69.000 66.000 66.000 68.000	59.000 60.000 60.000 61.000 63.000	53.000 59.000 62.000 58.000 55.000	76.000 77.000 79.000 84.000 89.000	90.000 102.000 96.000 83.000 80.000	108.000 117.000 113.000 115.000 109.000	194.000 206.000 215.000 209.000 219.000	535.000 523.000 523.000 513.000 505.000	202.000 201.000 198.000 186.000 185.000	95.000 121.000 126.000 125.000 103.000	79.000 72.000 74.000 74.000 70.000
16 17 18 19 20	71.000 66.000 58.000 58.000 58.000	67.000 66.000 67.000 69.000 69.000	66.000 61.000 57.000 54.000 57.000	52.000 57.000 58.000 64.000 70.000	91.000 96.000 99.000 99.000 96.000	81.000 84.000 86.000 86.000 89.000	120.000 118.000 112.000 96.000 88.000	237.000 242.000 252.000 254.000 245.000	478.000 486.000 493.000 491.000 482.000	183.000 184.000 181.000 180.000	99.400 98.200 89.000 85.000 80.000	69.000 67.000 58.000 63.000 66.000
21 22 23 24 25	59.000 58.000 54.000 56.000 66.000	68.000 71.000 71.000 72.000 71.000	59.000 57.000 54.000 54.000 54.000	71.000 72.000 71.000 75.000 75.000	93.000 95.000 97.000 100.000 104.000	92.000 92.000 92.000 93.000 97.000	91.000 96.000 90.000 91.000 124.000	251.000 272.000 286.000 304.000 331.000	469.000 469.000 433.000 420.000 406.000	176.000 173.000 171.000 163.000 173.000	75.000 82.000 88.000 92.000 93.000	65.000 58.000 61.000 61.000 56.000
26 27 28 29 30 31	72.000 74.000 82.000 81.000 81.000 74.000	71.000 73.000 75.000 76.000 74.000	52.000 55.000 61.000 62.000 63.000 63.000	75.000 72.000 74.000 74.000 74.000 76.000	106.000 110.000 111.000	111.000 107.000 90.000 88.000 89.000 90.000	121.000 118.000 101.000 103.000 104.000	359.000 360.000 371.000 385.000 394.000 407.000	398.000 372.000 356.000 342.000 325.000	175.000 166.000 156.000 144.000 138.000 134.000	96.000 94.000 94.000 91.000 88.000 85.000	55.000 53.000 55.000 63.000 57.000

STATE

MASSACHUSETTS

MAJOR BASIN

NORTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

CONNECTICUT RIVER

STATION LOCATION CONNECTICUT RIVER BELOW

NORTHFIELD, MASSACHUSETTS

			RADIOACTIVITY IN WATER						RADIOAG	TIVITY IN PLAN	IKTON (dry)		RAI	IOACTIVITY IN W	
DATE			RADIO	DACTIVITY IN V	VATER			- 1		GROSS A		[GROSS ACTIVIT	
SAMPLE	DATE OF DETERMI- NATION		ALPHA			DISSOLVED	TOTAL	- 1	DATE OF DETERMI- NATION	ALPHA	BETA	[SUSPENDED		TOTAL
TAKEN		SUSPENDED		TOTAL	SUSPENDED	μμc/l	μμε/Ι		MO. DAY	μμc/g	μμc/g		μμε/Ι	μμε/ί	μμc/l
MO. DAY YEAR	MONTH DAY	μμς/Ι	μμε/Ι	μμc/l	μμε/Ι							- 1			
				,	0	٥	o l				j	- 1		ļ	
.0 24 60*	11 15	0	1	1	0	ĭ	il								
ll 14 60*		0	0	0	1	ō	ōl					- 1			
5 29 61*	6 13	0	0	0	0	0	ŏ							1	
6 26 61*	7 14	0	0	0	0	6	6		1		1				
7 31 61*	8 24	0	0	0	0	4	4							ļ	
8 14 61*	9 22	1	0	1	0		15								
9 5 61	10 3		-	-	2	13	9								
9 11 61	10 30	-	-	-	1	8	ő								
9 18 61	10 7	_	-	-	0	0									
9 25 61	10 30	1 0	0	0	3	6	9								
) Z) UL	10 30	1			1	ļ			}		[l			
											İ	İ	ŀ		
	ì		ļ			!			1				1		
]											1	1		
	1		1									l			
			1			1			1			1	1		
		i				1					İ	İ	1		
		1									1	l	l		İ
							1		ĺ			1	i		[
												1	1		
		1							\ .			1	į		
		1							1	}					
			ĺ									ì		1	
			1				!				1	1			
								1		1		1	Į.		ļ
									i						ļ
	}									!		ļ			
				1	ļ			i							
	ľ				1			ŀ				1	Ì		
	1											1	1	1	
	1							ļ				1	1		
								l	Ì	ì		1	1		
					İ								ļ		1
								Ì							
			1	ŀ				1	1			1	ì		
									1						
		1	1	!						1		1	1		1
			1	1						1			1		
		1	1						1				1		
	1	l											ļ		
		1					ĺ					1			
		1		1			1	1							

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MASSACHUSETTS

MAJOR BASIN

NORTHEAST

MINOR BASIN

CONNECTICUT RIVER

STATION LOCATION CONNECTICUT RIVER BELOW

NORTHFIELD, MASSACHUSETTS

		- 1				ALGAE (lumber	per ml.)				INE	RT				DI	ATON	4S				i	ŀ	ICROIN	ERTEBR.	ATES	\Box	# D
	SAM			BLUE-	GREEN	GREE		FLAGEL (Pigme	LATES nted)	DIATO	омѕ	DIA SHE (No. p	LLS		DOMII (See	Introd	SPEC	for Co	ID PER	RCENT stificati	(AGES		OPLANKTO EHRATHED ml.)	A ml.)	ts liter)	EA liter)	DES liter)	IAL FORMS	GENERA oduction ification
нтиом	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER .	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER- CENTAGE	**************************************	PER- CENTAGE	THIRD*	PER. CENTAGE	FOURTH#	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICROFLANKTOK, PUNCI AND SHEATHED RACYERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per liter)	DOMINANT GENERA (See Introduction for Identification)
10 10 11 5 6 6 7 7 7 8 9 9	17 24 8 1 5 1 5 1 7 5 1 8 1 8	60 61 61 61 61 61 61	1200 2000 300 100 600 1500 2400 1700 4200	40 20 40 60	120	20 310 390 420 560 440 950		70 1100 80 160 2350 230 440 370	40 100 20 40 40	730 530 270 20 120 130 270 500 790 620 2130	270 180 70 350 440 680 730 500	260 130 50 20 50 80 100 100	150 430 160 390 220 330 190 270	91 59 2 95 47 56 56	10 20 30 20 30 50 60 80	62 92 92 14 92 59 47 47 58	10 10 10 10 10 40 20	14 31 2 56 9	10 10 10 10 10 10 10 *	59 62 9 47 27 2 92	10 10 10 10 10 10 *	60 50 50 60 50 50 10 20 10	70 40 20 50 20 100 270	10	1 5 1 11 58 743 37 52 347 179	2 1 25 8 23 10 6	1 2 1 1 3 3 1 1	2	7 47 3 3 477 4947

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

MASSACHUSETTS

MAJOR BASIN

NORTHEAST

MINOR BASIN

CONNECTICUT RIVER

STATION LOCATION CONNECTICUT RIVER BELOW

NORTHFIELD, MASSACHUSETTS

	DATE	OF S	AMPL	E		EX	TRACTABL	.ES	l I				CHLOROF	ORM EXTR	ACTABLES				
BE	GINN	ING	E	ND			1						NEUTRALS						
MONTH	DAY	YEAR	MONTH	PAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
11	8	60	11	18	4497	230	104	126	4	24	44	15	5	23	1	10	7	1	14

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MASSACHUSETTS

MAJOR BASIN

NORTHEAST

MINOR BASIN

CONNECTICUT KIVER

STATION LOCATIONCONNECTICUT RIVER BELOW

NORTHFIELD, MASSACHUSETTS

DATE						CHLORINE	DEMAND										
DAY YEAR OLY	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/I	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10 24 860 15 661 15 23 661 15 22 661 15 5 66 661 77 77 24 661 77 77 24 661 77 77 24 661 8 8 22 661 8 8 35 661 8 9 9 9 9 9 9	25.4	6.1	8.0 7.2 7.1 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.3 7.1 7.1 7.1 7.3 7.1 7.1 7.1 7.2 7.3 7.1 7.1 7.1 7.1 7.2 7.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	1.6 1.7 1.8 1.5 1.0 1.2 1.5 1.3 2.7 1.4 2.4 4.5 1.5 1.5 2.7 2.4 4.7 3.7 2.7 2.7 2.7 3.7 2.7 3.7 2.7 2.7 3.7 2.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3	12 14 14 19 - 15 21 17 17 17 17 21 18 20 - 19 23 17 24 21 26 25	-3000-2000-76644994582-60041-8553 1	-12.5 11.6 3.9 -2.6 9.0 7.2 -6.3 7.1 4.2 7.7 8.8 7.9 7.7 7.1 9.2 10.9 9.4 11.1 9.4 9.0 11.6 10.1	.0 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	8 4 5 3 3 4 4 4 4 4 6 9 7 10 9 7 7 17 9 19 19 19 19 19 19 19 19 19 19 19 19 1	42 26 26 18 20 18 20 26 26 22 24 22 30 36 37 38 36 38 36	48624	35 45 35 22 21 22 20 20 20 20 20 20 22 23 23 22 22 23 23 22 21 21	10519-763-5253300015-88611-68667	5667-5666479889-9827-8881011	.0 .0 .0 .0 .1	86 66 76 46 51 56 46 61 55 68 75 68 75 88 75 88 100 105 105 105 105 105 105 105 105 105	440 1400 4800 3400 3400 3000 1400 5700 1400 1200 1300 9700 1400 3300 1400 4800 1600 1600 1000 11000

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Computed Data for Vernon, Vermont Supplied by U.S. Geological Survey

STATE

Massachusetts

MAJOR BASIN

Northeast

MINOR BASIN

Connecticut River

STATION LOCATION

Connecticut River below

Northfield, Massachusetts

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	3.050	11.100	14.900	2.050	4.700	18.400	22.800	29.000	12.000	4.130	4.880	5.700
2	3.300	17.400	14.100	2.010	4.480	17.800	21.000	28.200	12.400	.721	4.140	.517
3	7.090	15.700	10.700	6.160	3.170	15.800	19.800	35.000	13.400	7.480	4.290	.395
4	6.800	15.500	2.480	6.760	2.470	16.600	16.300	33.600	15.700	6.880	4.590	.348
5	4.860	13.000	8.910	5.440	1.880	17.000	17.700	29.300	13.600	6.430	1.810	3.640
6 7 8 9	5.670 3.110 .452 .403 4.120	5.030 8.040 10.300 9.650 10.000	10.000 10.000 10.000 8.390 4.320	6.350 3.730 2.680 5.200 4.640	4.280 4.090 3.600 4.200 4.400	15.500 18.300 20.500 17.800 14.600	17.300 18.400 18.800 17.700 16.200	26.500 22.600 20.000 21.200 30.000	11.700 10.400 8.630 11.200 12.200	7.550 6.300 3.740 .357 6.170	.321 3.050 1.960 3.340 4.630	3.340 3.470 3.630 .712 .302
11	4.290	8.220	1.450	4.530	2.200	13.800	18.400	36.000	8.920	6.930	2.130	4.220
12	2.090	7.280	4.780	6.230	.802	12.700	19.500	33.000	10.300	6.900	.300	5.140
13	4.210	3.620	5.080	4.720	4.700	9.460	20.800	27.200	12.500	6.170	.285	4.220
14	4.090	7.740	4.450	3.010	4.400	11.300	20.100	20.400	12.700	6.350	.751	4.450
15	1.290	7.710	4.600	1.070	3.700	12.000	18.200	20.700	12.100	1.510	2.930	5.540
16	1.000	8.580	5.950	5.610	3.610	12.000	20.800	21.400	11.600	.349	2.940	1.080
17	4.060	9.570	4.430	5.930	3.910	11.100	23.100	16.400	8.640	6.770	2.900	.313
18	4.700	9.870	2.250	5.570	2.410	10.400	30.700	14.200	1.460	7.380	2.500	3.880
19	5.960	4.750	6.230	4.780	2.450	6.050	31.500	14.500	7.420	6.940	.275	4.900
20	9.390	.986	5.840	4.560	4.550	8.990	26.500	14.300	8.230	6.190	.273	7.280
21	8.700	8.170	6.600	1.560	6.220	8.190	26.200	11.400	7.150	6.510	3.520	5.220
22	5.020	8.680	5.550	1.510	5.830	8.970	31.000	9.460	8.430	5.210	3.680	3.460
23	2.300	8.140	5.880	4.630	7.480	9.260	43.300	11.700	11.300	1.650	3.070	.359
24	8.650	3.840	3.900	4.230	11.100	10.400	59.000	11.500	12.100	4.200	3.510	.369
25	12.400	7.000	3.280	4.030	9.930	12.400	51.900	12.100	3.110	5.490	3.690	2.510
26 27 28 29 30 31	20.400 16.300 15.800 15.000 9.190 7.960	5.100 2.180 7.800 7.080 14.800	2.540 5.920 4.990 6.130 5.420 3.440	4.320 4.710 2.310 1.410 4.400 4.700	19.300 25.700 23.000	9.610 12.900 15.200 26.600 32.700 26.400	49.400 52.800 45.600 41.300 36.400	10.200 10.800 14.300 13.900 14.000 11.400	7.410 8.130 8.300 8.000 6.600	6.500 7.480 6.460 2.430 .333 3.800	1.510 3.330 3.790 6.090 7.370 8.170	2.600 2.400 2.950 2.820 .281

Computed as sum of Ashuelot River at Hinsdale, New Hampshire plus Connecticut River at Vernon, Vermont.

STATE

TENNESSEE

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

CUMBERLAND RIVER

STATION LOCATION CUMBERLAND RIVER AT

CLARKSVILLE, TENNESSEE

					// 750				RADIOAG	CTIVITY IN PLAN	KTON (dry)	R/	DIOACTIVITY IN W	ATER
DATE				OACTIVITY IN W	TAIEK,	BETA		1		GROSS A			GROSS ACTIVIT	
SAMPLE	DATE OF DETERMI- NATION		ALPHA	TOTAL	SUSPENDED	DISSOLVED	TOTAL	1	DATE OF DETERMI- NATION	ALPHA	BETA '	SUSPENDED		TOTAL
TAKEN		SUSPENDED	DISSOLVED ##e/I	μμε/I	μμc/I	μμς/[μμς/1	1	MO. DAY	µµс/g	μμε/g	μμε/Ι	μμε/Ι	μμc/l
MO. DAY YEAR	MONTH DAY	μμc/l	μμε/1	##6/1		173		1						
8 8 61	9 1	0	0	. 0	1	0	1				1			
8 15 61	9 12	Ö	ŏ	0	4	1	5	1	1 1					
8 22 61	9 25	ŏ	ō	0	0	0	0		1 1				i i	
8 29 61	9 25	Ö	0	0) 0	6	6	1						
9 5 61	10 5	ŏ	0	0	1	4	5	-00				.	1	
	10 11	0	1	1	6	9	15					1	1.	
, 20 02		-							1				'	
]			i ·		1	1 1					
								-	1					
		Į						ì						
		İ	ļ	ļ				1						
		}	1	1										
		1				}		1						
			ļ.											
					ĺ		Ì		1 1				1	
									1					
		1									1			
		1		}			1	1				i		
				!			İ	-						
							-	ĺ					ı	
								1		ŀ		1 1		
		l.							Į.	<u> </u>	1	!		
								1		1				
							1	1		ļ				
							1	1		i				
							1	-		1	1	1		!
		1					1	İ		1				
	1	1							1		1			
														1
								1						
		1								1				1
				1						1				1
					1					1				
				1		4 1								
									1				1	
					1		1	1				1		

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

TENNESSEE

MAJOR BASIN

OHIO RIVER

MINOR BASIN

CUMBERLAND RIVER

STATION LOCATION CUMBERLAND RIVER AT

CLARKSVILLE, TENNESSEE

												INF	RT				DI	ATON	MS				ri .	:	ICROIN'	VERTEBR	ATES		
DA		- 1		BI IIE	GREEN	ALGAE (A		FLAGEL (Pigmo	LATES	DIAT	oms	INE DIA SHE (No. p	FOM LLS er ml.)	_	DOM!	Intro		for Co	ID DE	RCEN' ntificat	rages ion*)		SHEKTHED SHEKTHED ml.)	A ml.)	ts liter)	EA liter)	DES liter)	(AL PORMS	azneka oduction dication
OF SA	T	ᅱ	TOTAL	COCCOID	FILA- MENT-	COCCOID	FILA-	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER. CENTAGE	SECOND	PER- CENTAGE	THIRD*	PER. CENTAGE	FOURTH	PER- CENTAGE	OTHER PER- CENTAGE	OTHER MICROFLANKTOR, FURE, AND SHEATHED BACKERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIM	DOMINANT GENERA (See Introduction for Identification)
8 8 2.	2 5	9169161 6116161	200 200 300 300			40 20 80	MENT- OUS	20 20 40	OTHER	170 80 190 120	20 100 60	100 20 120	20	82 82 82	20 50	92 92 70	20	56 57 57	20 10 *	57 70 56	10 10 *	40 30 50	20 1350	RA N	2 6	2 3	1	077	5)

STATE

TENNESSEE

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN OHIO RIVER

MINOR BASIN

CUMBERLAND RIVER

STATION LOCATIONCUMBERLAND RIVER AT

CLARKSVILLE, TENNESSEE

DATE OF SAM		E	TEMP.	DISSOLVED				CHLORINE	DEMAND	AMMONIA-	AUI ORIPE	41641466	HADDNIESS	COLOR	Allebibian	C111 F4 F7	Buochua ***	TOTAL DISSOLVED	COULTAIN
MONTH		YEAR	(Degrees Centigrade)	OXYGEN mg/l	pĦ	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	CHLORIDES mg/l	mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
8 7 8 12 8 28 8 29 9 26	6 6 6	51 51 51 51			7.5						4	56	84	1115115		27			50 60 10 - 40 200 20

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Dover, Tennessee Operated by U.S. Geological Survey

STATE

Tennessee

MAJOR BASIN

Ohio River

MINOR BASIN

Cumberland River

STATION LOCATION

Cumberland River at

Clarksville, Tennessee

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	7.100	9.540	17.600	38.800	14.400	72.200	48.500	27.100	20.200	20,200	9,090	18.500
2 3 4	5.600	9.220	16.600	48.400	12.900	65.800	52.200	40.000	15.800	18.600	11.200	22.200
3	5.570	10.600	18.200	37.500	12.500	51.900	46.500	45.200	15.200	15.900	12.600	15.600
	7.140	11.200	19.500	26.800	14.900	43.600	43.100	39.800	14.700	16.400	12.100	14.600
5	9.840	9.030	12.900	24.900	19.900	45.300	44.300	34.000	15.100	14.100	11.000	10.700
6	8.120	8.200	12.300	19.400	20.000	53.000	45.900	38.400	18.200	13.100	10.900	10.100
7	7.700	8.310	15.000	20.300	16.300	65.700	44.800	42.200	20.100	12.900	9.050	11.100
8	7.140	11.800	15.200	24.700	23.300	79.100	43.800	37.100	20.600	7.850	8.630	17.600
9	6.460	15.500	15.700	20.800	28,900	101.000	42.600	38.200	35.900	4.620	9.420	15.900
10	7.210	12.600	15.700	18.300	27.400	109.000	39.900	36.900	40.900	10.500	9.540	11.700
11	8.100	16.600	16.100	14,200	20.800	103.000	37.700	33.700	32.600	10, 200	10.000	33 200
12	8.000	17.400	17.300	18.800	15.400	92.800	45.100	21.400	23.100	10.300 9.320	10.200 13.700	11.300
13	10.200	16.100	17.900	21.900	13.700	86.400	66.100	14.200	19.600	9.320 8.140	8.330	13.200
14	8.180	17.200	17.100	22.200	14.100	82.800	78.500	14.800	21.500	9.940	9.240	13.200
15	7.850	14.000	16.800	23.500	15.600	72.600	74.100	15.500	41.400	14.300	13.400	12.500 11.400
16	7.880	8.050	17.300	20,600	14.900	66.000	78.700	02.000	53.000	_	_	
17	7.900	8.080	18.000	19.400	13.100	62.700	83.300	23.200	51.200	15.100	14.200	10.100
18	7.820	11.300	17.700	17.800	13.700	59.100	79.600	30.300 32.400	40.700	11.300	9.160	7.430
19	11.400	12.500	15.100	19.100	13.000	59.500	69.700	46.000	20.800	12.900	8.500	7.680
20	16.100	9.500	15.400	23.300	14.500	60.100	55.100	50.600	17.800	16.500	7.220	10.700
			-		244,000	00.100	79.100	20.600	19.300	21.400	8.100	11.000
21	17.000	11.800	16.400	25.300	22.600	62.800	49.700	37.800	25.500	21.600	6.730	10.100
22	11.000	9.570	20.000	26.600	36.800	72.900	49.900	31.600	25.600	18.800	6.210	10.700
23 24	12.900	12.400	24.200	25.100	51.800	68.700	47.500	29.900	24.800	17.200	8.030	11.000
	10.400	10.900	21.500	21.200	50.400	63.200	43.500	27.600	22.400	11.900	9.740	12.800
25	8.510	12.000	14.800	19.700	48.100	57.000	43.600	22.000	21.600	14.600	11.800	12.700
26	5.310	9.540	11.900	21.300	50.800	53.500	39.600	05 200	ol. Loo			
27	5.380	8.750	12.300	20.700	54.400	49.400	35.300	25.300	24.400	12.400	9.990	9.740
28	4.830	8.680	13.600	17.600	55.700	45.100	38.700	26.700 22.100	25.700	14.800	8.290	11.100
⊇9 30	6.260	9.890	14.900	17.900	JJ. 100	47,600	29.700	19.100	24.700	15.000	8.430	7.810
30	5.990	17.400	24.300	18.800		47.300	25.200	15.000	23.100	17.600	10.700	6.780
31	8.720		33.200	15.600		43.800	27.200	17.600	20.800	17.500	10.800	7.900
				-,		+3.000		T(*000		12.000	13.900	

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

DELAWARE-SCHUYLKILL RIVERS

STATION LOCATION DELAWARE RIVER AT

PHILADELPHIA: PENNSYLVANIA

DATE.	T	RADIOACTIVITY IN WATER						RADIOAC	TIVITY IN PLAN	IKTON (dry)	RAD	DIOACTIVITY IN V	VATER
DATE SAMPLE	DATE OF		ALPHA			BETA		DATE OF DETERMI- NATION	GROSS A			GROSS ACTIVIT	
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	NATION	ALPHA	BETA	SUSPENDED		TOTAL
MO. DAY YEAR	R MONTH DAY	μμε/Ι	μμε/Ι	μμε/Ι	μμς/ί	μμς/Ι	μμε/Ι	MO. DAY	μμс/g	μμc/g	μμε/Ι	μμς/Ι	µµс∕1
MO. DAY YEAR 10 24 604 11 14 609 1 30 614 2 27 614 4 24 614 5 29 617 8 28 614 9 5 61 9 19 61 9 25 61	* 11 8 12 27 13 3 10 4 10 5 12 6 9 7 13 8 28	μμε/1 2 2 1 1 0 0 0 0	μμε/I 0 0 1 0 0 1 0 0	дре/I 2 2 1 1 1 0 0 0	рре/I	μμε/I 0 0 3 0 0 0 0 0 4 1 2 7	μμε/Ι 0 0 6 0 0 1 1 4 1 2 12	MO. DAY	µµс/д	μ#c/g	нµе/I	μμς/Ι	<i>дис</i> /1

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE-SCHUYLKILL RIVERS

STATION LOCATION DELAWARE RIVER AT

PHILADELPHIA, PENNSYLVANIA

				ALGAE (1	Yumber	per ml.)				· INI	ERT TOM ELLS	T			D	ATO	MS				T ;	Т	MICROIN	VERTEBI	RATES		
OF SAMPLE	В	LUE-G	REEN	GREE	EN .	FLAGEI (Pigm		DIAT	омѕ		ELLS er ml.)						ND PE			s 	SHEATHED	nl.)	ter)	A ter)	is ter)	L FORMS	ienera duction ication)
ATOT KEAR	L co	ссоів	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST*	PER.	SECOND*	PER. CENTAGE	THIRD#	PER. CENTAGE	FOURTH	PER.	OTHER PER- CENTAGE	OTHER MICRO FUNGI AND SI BACTERIA (No. per 1	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ARIMAL FORMS (No. per liter)	DONINANT GENERA (See Introduction for Identification)
10 17 60 11 11 7 60 3 11 21 60 2 12 5 60 444 12 19 60 3 1 10 61 46 2 2 61 56 3 6 61 3 3 20 61 36 4 4 61 100	000	20 20 20 40	150 120 40 20	20 20 40 40 100 270 430 70 500 230 390	20 20	20 20 40 20 90 90 20 170 210 120 20 100 100 120	20 20 20 20 70 20	130 20 20 20 90 90 50 230 270 480 190 170 180 1010 850	220 250 140 290 200 310 380 270 530 470 1900 1510 290 270 50 440 270	20 90 50 70 20 130 20 250 170 170 150	240 310 250 180 4250 290 760 7870 9170 3820 250 250 390 190 190	62 62 92 92 92 92 92 92 92 92 92 9	20 10 30 60 40 20 20 20 30 60 10 20 20 50 40 40 40 40 40 40 40 40 40 40 40 40 40	29 36 62 93 93 62 31 62 29 719 56	10 10 10 10 10 10 10 10 10 10 10 10 20 30 20	19 26 62 93 66 29 86 29 62 31 92 62 97 97 97 97 97 97 97 97 97 97 97 97 97	10 10 10 10 10 10 20	29 19 29 36 70 70 93 93 93 93 95 92 62	10 10 10 * 10 10 10 10 10 10 10 10 10 10 10	60 60 60 60 40 30 40 70 60 60 60 60 60 60 60 60 60 60 60 60 60	20 70 70 20 50 20	20	1 1 1 158 9 46 55	1 3 1	16 214 3	1	

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE-SCHUYLKILL RIVERS

STATION LOCATION DELAWARE RIVER AT

PHILADELPHIA PENNSYLVANIA

DATE OF S	A 14 12'			EV	TRACTABL	FS	1				CHLOROF	ORM EXTR	ACTABLES				
BEGINNING		ND									NEUTRALS					l	
DAY YEAR	MONTH	1	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	Loss
4 17 61 5 31 61	5	3 13	5800 6834	165 92	58 35	107 57	2	14 7	20 14	5 4	3 2	12 7	0 1	7 4	5 3	1	9 5
															,	. •	
											:		y .		! !		
			<u> </u>	<u> </u>													

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE SCHUYLKILL RIVERS

STATION LOCATIONDELAWARE RIVER AT

PHILADELPHIA, PENNSYLVANIA

DATE	- 1				1		CHLORINE	DEMAND										
DAY YAG	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/i	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 mi.
10 3	60	19.0	5.6	7.1	_	10	=	´ -	• 6 • 8	5 4	19 28	46 52	30 30	120 115	29	•3	162	49000
10 10 10 17	60 60	18.0 17.0	4.4 6.0	7.2	_	10		_	• 3	6	28	60	20	125	31 32	•3 •2	175 147	6700 9200
10 24	60	18.0	6.6	7.4	-	8	8.0	10.7	•6	7	35	211	20	150	24	.1	190	21000
10 31	60	13.0	7.6	7.2	5.0	-	6.3	8•1	• 7	8	41	66	20	140	22	• 2	286	6200
11 7	60	13.0	7.0	7.2	4 • 4 4 • 0	11	5•1 7•3	7•3 8•9	•4	8	38 42	64 66	15 15	135	30	•5	222	24000
11 14 11 21	60 60	11.0	9.0 9.0	7•2 7•2	3.6	11	6.7	8.8	•6	9	41	66	5	100 120	30 29	•2	260 275	17000
11 28	60	10.0	10.0	7.2	3.9	16	7.0	8 • 9	.8	11	40	60	5	155	30	.2	266	4000
12 5	6û	9.0	8.2	7.3	4.8	7	5.3	7•7	• 6	10	42	70	5	175	29	•1	261	-
12 6	60			_ =		-			-	-	-	-	-	-	-	-		14000
1 1	60	7.0	11.5	7.2	4 • 4	8	4•4	6.3	• 4	5	42	58	10	165	30	•1	233	7000
	6Ú	3.0	8.4	7.3	_	8	8.3	9.6	•5	9	41	46	10	150	32	.2	253	7000
12 27	60	_	-	-	_	-	-	-	-	-	-	_	_	-	_	_	-	2800
	61	1.0	12.8	7 • 2	4.2	12	7.0	9•3		12	36	64		105	35	•5	234	_
1 9	61	1.0	10.4	7•2 7•2	4.7 5.0	13 13	6.8 8.8	8 • 4 9 • 7	•7	13 9	36 32	66 76	15	120	35	• 4	195	11000
	61	4.0	12.4	7.2	4.1	8	8.5	9.9	5	15	39	76	10 5	80 50	33 33	•3 •7	162 178	25000 17000
	61	1.0	12.0	7.2	3.9	10	10.6	11.9	.6	12	39	70	7	45	36	.4	169	9000
	61	• 6	13.2	7.2	2.0	9	10.0	12.0	1.0	14	41	78	10	65	34	.4	158	-
	61	-				-						-		-	-	_	-	1600
1 1	61	• 6	11.0	7.1	3.9	12	8.3	9•7	1 • 4	17	39	100	15	40	40	• 3	152	*200
	61	3.0	12.0	7.2	2.9	13	7.1	9.3	.7	14	37	70	20	75	40	- 3	152	2600
2 27	61	5.0	12.2	7.1	4.4	12	6.9	8.9	1.0	4	33	80	35	85	20	.2	128	400
	61	5.0	12.6	7.1	2.7	9	5.2	8•8	1.7	5	23	40	15	50	22	. 4	99	7800
	61 61	6.1	15.0	7.2	3.7	7	5•7	7.9	• 5	7	22	48	10	30	23	• 4	96	
	61	11.0	12.0	7.1	3.3	9	6.6	8.9	•5	12	26	- 78	- 5	-		-	-	6000
	61	7.8	10.3	7.2	1.9	3	5.5	7.8	.5	6	28	54	20	60 60	27 26	•1	115 164	8000
	61	8.3	11.4	7.2	2.8	14	5.8	8 • 1	2.3	6	29	42	15	45	26	.3	151	
	61	-			-	-	-	-	-]	-	-	-	-	_	-	-		12000
	61 61	8.9	11.2	7.2	3.0	7	4•9 5•3	7 • 7	3.8	5	26	66	10	30	31	• 3	128	330
	61	12.2	9.2	7.2	3.8	6	5.5	8 • 4 7 • 0	3.8	3 5	24 27	40 48	30	45 28	26	•2	121	17000
5 1	61	7.8	9.6	7.1	3.1	10	6.9	8.3	2.0	4	19	34	10 20	28	27 21	• 4 • 2	107 109	37000
	61	15.0	8.6	7 • 2	1.7	ರ	5.2	7 • 1	.3	6	22	44	10	32	26	.2	143	_
5 15	61	15.0	8.3	7 • 2	*•1	9	5 • ∂	8 - 8	•0	7	28	42	33	33	26	.5	79	4400
										146								

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE SCHUYLKILL RIVERS

STATION LOCATIONDELAWARE RIVER AT

PHILADELPHIA, PENNSYLVANIA

DATE						CHLORINE	DEMAND					70100	TURBIDITY	SULFATES	PHOSPHATES	TOTAL	COLIFORMS
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	mg/l	HARDNESS mg/l	COLOR (scale units)	(scale units)	mg/l	mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
5 22 61 5 29 61 6 12 61 6 19 61 6 26 61 7 10 67 7 24 67 7 31 67 8 14 68 8 28 67 9 11 67 9 25 67	1	4.8 5.4 4.4 4.8 4.2 4.8 5.8	7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	1.2 2.8 1.4 2.6 4.2 2.1 4.2 3.6 5.2 8.3 2.8 7.8 8.8 2.5	10 8 10 10 13 14 11 14 13 11 14 12 12 12	6.0 7.4 8.8 8.8 9.8 9.7 8.9 7.8 8.9 7.5 9.8 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	8.3 9.2 8.7 9.0 10.4 9.5 8.8 8.9 9.2 8.5 9.3 9.4 8.8 9.9 8.9 9.2 8.9	.1 .0 .3 .1 .1 .1 .0 .4 .1 .3 .1	10 13 8 7 9 8 24 18 8 5 14 7 7 9 7 6 5 6 8	30 29 30 41 39 43 43 44 41 44 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 44	522480684888400044428766	5 5 10 5 5 20 35 15 25 10 15	35504055500000557 43423 332	207 257 257 26 26 30 31 277 29 31 30 31 34	.3	102 158 - 87 151 183 177 - 128 - 119 136	1200 - 27000 1700 *200 6000 7600 14000 12000 - 7600 5600 15000

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Trenton, New Jersey Operated by U.S. Geological Survey STATE

Pennsylvania

MAJOR BASIN

North Atlantic

MINOR BASIN

Delaware-Schuylkill Rivers

STATION LOCATION

Delaware River at

Philadelphia, Pennsylvania

Day	October	November	December	January	February	March	April	May	June	July	August	September
				1 600	3.900	46.100	28.300	23,600	7.650	5.300	6.140	6.600
ı	12,200	6.100	7.400	4.600	3.600	37.000	25.500	20.700	7.800	5.100	6.700	5.900
	13.300	7.450	8.550	6.200	3.350	30.200	22.900	19.800	7.800	4.740	5.980	5.580
2 3 4	11.300	7.700	8.250	6.000	3.600	26.100	20.000	18,800	7.450	4.280	5.900	4.980
Į,	10.000	7.400	7.080	5.500		25.700	17.600	17.000	6.750	4.140	5.500	4.240
5	10.000	7.300	6.140	5.000	3.700	27.100	21.000	27,000			•	
					3.800	25.700	16,200	15.000	5.860	4.210	5.460	3.930
6	9.500	7.000	5.780	5.000	3.800 3.800	34.500	15.100	13.700	5.740	4.070	5.020	4.420
7	9.050	6.260	5.660	4.800	4.000	41.900	14.200	13.800	5.660	3.930	5.060	5.020
8	8.750	5.860	5.780	4.800	4.100	38.800	13.300	15.600	5.420	3,900	4.380	4.520
9	8.050	6.140	5.860	4.600		32.600	15.200	19,600	6.020	3.960	4.070	4.210
10	7.040	7.300	5.420	4.400	4.500	32.000	17.200	19.000	0.020	5.700		
	1,4				1, 200	25.800	17.000	24,200	8.050	3.820	4.420	4.140
11	6.220	8.550	4.980	4.660	4.300	21.800	17.200	24.200	9.740	4.240	4.820	4.100
12	6.960	7.800	3.700	5.100	4.150	20.200	24.900	23.500	10.500	4.100	4.700	3.900
13	6.650	7.500	3.000	5.020	4.000	23.500	30.900	22.800	9,620	3.590	4.490	4.100
14	6.260	6.700	3.500	4.520	4.200		28.600	20.300	8.400	4.000	4.000	4.070
15	6.180	6.020	4.000	4.740	4.500	23.700	20.000	20.300	0.400	4.000	1.000	,,,,,
-/					4.800	21.400	29.300	19.800	7-350	6.400	3.290	4.520
16	6.020	6.180	4.500	4.700		20.000	37,400	20.100	6.450	5.260	2.930	4.180
17	5.220	6.350	5.000	4.600	4.800	17.800	41.600	18.600	6.060	4.320	2.990	3.380
18	4.660	6.220	5.000	4.940	5.140		37.300	16.600	5.500	3.930	3.350	2.900
	5.260	6.060	4.500	4.800	8.660	17.200	33.900	15.000	4.820	5.300	3.410	3.110
19 20	6.840	5.980	4.000	3.500	15.000	17.100	33.900	19.000	4.020	7.500	3. 120	J. 120
				1	3.5. 500	15.600	28,600	13.400	4.700	7.350	3.900	4.140
21	8.800	5.380	4.800	4.000	15.500	14.600	25,000	12.300	5.340	6.060	4.240	4.940
22	8.300	4.940	4.900	4.500	17.400	16.600	24.000	11.700	7.200	5.420	4.630	4.560
23	7.700	5.100	5.000	4.500	24.600	20.000	24.500	11.100	9.050	5.020	5.820	3.960
24	6.350	5.580	4.200	4.250	25.800		28,000	10.500	10.200	6.920	6.140	3.790
25	5.860	5.540	4.100	4.500	36.300	17.800	20.000	10.,000	10.200	0.920	0.140	3.170
			1 000	1. 000	71.600	17.000	55.700	9,900	8,450	7.500	5.660	3.650
26	6.550	4.940	4.200	4.800	89.700	16.200	53.800	10.900	7.700	7.300	9.500	3.350
27	6.800	4.560	4.100	4.800	60.600	16.200	39,600	10.500	6.920	6.260	11.700	3.530
28	6.800	4.630	3.800	4.500	00.000	21.000	32,700	9,560	6.100	7.650	12.000	3.230
29 30	6.840	4.380	3.900	4.500		35.500	27.400	8.850	5.500	6.260	9.620	3.200
30	6.920	5.700	4.200	4.200			21.400	8.400	7. 500	5.460	7.950	J. E. 00
31	5.940		4.000	4.000		34.100		0.400		J. 400	1.500	

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

DELAWARE-LEHIGH RIVERS

STATION LOCATION DELAWARE RIVER AT

MARTINS CREEK, PENNSYLVANIA

									RADIOAC	TIVITY IN PLAN	KTON (dry)			OACTIVITY IN Y	
DATE				DACTIVITY IN W	/ATER	BETA					CTIVITY .			GROSS ACTIVIT	
SAMPLE	DATE OF DETERMI- NATION		ALPHA		SUSPENDED	DISSOLVED	TOTAL	P	ATE OF ETERMI- NATION	ALPHA	BETA		SUSPENDED	DISSOLVED	TOTAL μμε/Ι
TAKEN		SUSPENDED	DISSOLVED	TOTAL	μμc/I	μμc/I	μμc/1		O. DAY	µµс/g	μμc/g		μμε/Ι	μμc/1	μμε/1
MO. DAY YEAR	MONTH DAY	μμε/1	μμς/Ι	μμс/	μμε/1	FFW						- 1	ļ		
0 10 404	1000	0	1	1	1 0	1	1		}					,]	
0 12 60* 0 26 60*		~	_	_	0	0	0		ļ						
	12 22	0	1	1	0	0	0	1	ļ		-	1			
1 30 60*			_	-	0	0	0	- 1	Ì			1			
2 7 60	1 12	0	1	1	0	0	0	ŀ	Ì			1			
2 28 60*	1 19	-	-	-	0	0	0		İ			1 1			
1 11 61*		0	0	0	0	0	0		1						
2 1 61*			_	_	0	0	ŏ		1] {			
2 15 61*		0	0	0	0	6	6		ļ			1		!	
3 1 61*		_	0	0	0	i	i	ì	ļ)			
3 15 61*		0	0	Ö	ŏ	ō	0						•	ŀ	
3 29 61*		1	١	ì	1 0	0	0				İ	1			
4 26 61* 5 31 61*	1	ō	0	ō	0	0	0	1] .			
6 28 61*	1	l ŏ	Ò	0	0	0	0		1			i			
8 2 61*	1	0	0	0	3	4	7					1 1		1	
8 30 61*		Ö	0	0	0	5	5 1					1 1			
9 6 61	10 5	_	_	_	1	0	14				İ				
9 12 61	10 10	-	-	_	9 20	5 4	24	- 1	'					1	
9 20 61	10 19	0	0	0	4	0	4			1					
9 27 61	10 11	_	_	_	1						1				
				ļ		1	1			1			ł		
		ļ			1	1							1		
					}			1				1			
			1		ļ			l i				1	1	1	
		1				1	ļ			Į		ì	1		
		1	1		1							1			
										ì	1	-	:		
				İ						Ì			ŀ		
							1	1 1				1			
	1	1 .	-									1		1	
		1				1] [1			
						1				1			1		
						1		1			1	1			
					1							1		1	
					Ì	1									
					1										

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE-LEHIGH RIVERS

STATION LOCATION DELAWARE RIVER AT

MARTINS CREEK, PENNSYLVANIA

DATE				ALGAE (I	Number	per ml.)				INI	ERT TOM	Γ			D	IATO	MS				ž .		MICROIN	VERTEBR	ATES		
OF SAMPLE		BLUE-	GREEN	GREE	EN	FLAGEL (Pigma		DIAT	oms	DIA SHE (No. p	LLS		DOM!	INANT e Intro	SPEC	for Co	ND PE	RCEN' ntijicat	TAGES		ROPLANKTON SHEATHED THL.)	A ml.)	is liter)	EA liter)	ES liter)	AL FORKS ter)	GENERA oduction ification
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND#	PER. CENTAGE	THIRD#	PER. CENTAGE	FOURTH	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICE FURGI AND BACTERIA (No. per	PROTOZO/	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	(No. per liter)	OTHER ANIMAL FORMS (No. per liter)	DOMINANT GENERA (See Introduction for Identification)
10	100 100 300 300 300 400 1000 5400 500 4500 4500 1400 1400	20 20 80 20	20 40 40 20 60 230 40 150	230	20	70 20 20 90 90 150 170 50 270 170 100	20 20 20 20 20 20 20	20 40 270 20 40 290 110 230 2650 370 150 120 80 120	70 50 270 260 130 270 450 920 5140 400 270 380 680 4000 1280 700 560 290 40	20 20 70 20 40 40 40 20 90 40		70 36 36 36 36 14 2 2 9 1 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	420 300 330 200 300 200 400 330 200 400 330 200 400 330 200 400 330 200 400 330 200 400 330 200 400 400 400 400 400 400 400 400 40	92 92 2 14 14 36 36 62	10 10 20 10 30 10 10 20	93 7 31 62 14 16 62 52 2	10 10 10 10 10 10 10 10 10 10 10 10 10 1	90 62 62 62 31 65 93 70 92 16 31 93 47 92 62 92 64 62 26	10 * 10 10 10 10 10 10	45 5344400000000000000000000000000000000		10 10 60 20	1 1 1 13 8 2 6 1 1 13 3 3 15 2 6 7 16 4 10	3 2 1 1 2 2 2	56 76 22	2	

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE LEHIGH RIVERS

STATION LOCATIONDELAWARE RIVER AT

MARTINS CREEK, PENNSYLVANIA

DATE					1	CHLORINE	DEMAND									TOTAL	
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рH	B.O.D. mg/l	C.O.D. mg/l	I-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	chlorides mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
Value Value 10 5 50 60 10 19 60 60 10 12 10 12 11 13 12 14 60 60 11 123 12 24 12 21 11 12 12 13 12 14 60 61 12 22 12 23 33 33 34 44 44 45 55 55 56 66	14.4 14.8 14.8 14.8 14.8 14.8 16.9 10.5 5.3 6.8 6.7 4.4 1.1 1.1 1.6 1.6 1.6 1.7 1.6 1.6 1.7 1.6 1.7 1.6 1.7 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	9.4 9.3 9.2 10.7 10.2 11.9 11.4 11.0 12.4 14.1 13.7 14.1 13.1 12.9 12.5 12.5 12.5 12.5 12.5 11.	7.66 7.67 7.67 7.68 7.68 7.68 7.68 7.68	3 9 8 2 1 · 1 1 · 7 1 · 2 1 · 0 9 · 6 1 · 1 9 · 6 1 · 1 9 · 7 1 · 8 2 · 1 7 · 8 4 · 4 1 · 4 1 · 4 1 · 4 1 · 4 1 · 4 1 · 6 2 · 8 2 · 8 3 · 8 3 · 8 4 · 9 1 ·	45746625	.9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .	1.9 .9 2.9 2.7 2.0 2.8 1.4 	22		29 28 31 31 30 26 30 17 9 9 17 21 13 13 19 9 14 15 20 23 28 28 20 20 20 20 20 20 20 20 20 20 20 20 20	30	26 15 19 13 15 16 22 43 55 215 21 19 27 22 29 34 26 23 25 21 21 21 22 29 34 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21	35 27 25 26 46	16 17 15 16 17 20		39 50 54 42 40 43 34 29 41 45 40 56 61 53	420 -320 470 1000 1000 700 - - - - - - - - - - - - -

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE LEHIGH RIVERS

STATION LOCATIONDELAWARE RIVER AT

MARTINS CREEK, PENNSYLVANIA

5.1

DATE				I	1	CHLORINE	DEMAND									TOTAL	
DAY PARE	TEMP. (Dagraes Centigrade)	DISSOLVED OXYGEN mg/I	pH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	mg/I	mg/l	COLOR (scale units)		SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
7 5 61 7 12 61 7 19 61 8 26 61 8 16 61 8 23 61 8 30 61 9 13 61 9 27 61	23.4 26.0 26.6 24.8 25.6 23.8 23.0 23.8		7.7 7.8 7.9 7.8 8.1 7.7 7.6 7.6 7.9 7.7	1.6 1.3 1.0 1.2 .9 .3 .9 1.5 .7 .2 .5	13 11 12 13 14 14 9 15 16 9 10 7	1.6 1.2 1.3 1.7 1.7 1.3 1.2 2.5 1.2 1.0	3.8 3.0 3.1 4.6 4.6 2.8 4.6 4.6 2.9 2.0 2.4	.1 .2 .1 .1 .3 .2 .1 .1 .1	3 2 3 3 2 3 4 4 2 2 2 1 2	26 32 37 39 32 33 29 24 30 27 32	3724824469340612	36 26 29 340 29 59 325 19 18	87 0 9 2 0 3 0 1 4 6 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	15 11 12 15 12 15 11 11 12 12	1 - 1 - 2 - 1 - 0 - 0 - 2 - 1 - 0	57 52 66 66 61 62 54 48 53 56 42	66000 -21000 7700 8000 52000 22000 -140000

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Belvidere, New Jersey Operated by U.S. Geological Survey STATE

Pennsylvania

MAJOR BASIN

North Atlantic

MINOR BASIN

Delaware-Lehigh Rivers

STATION LOCATION

Delaware River at

Martins Creek, Pennsylvania

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	9.620	4.120	5.730	2.540	2.200	27.800	20.100	16.000	5.340	3.300	4.100	3.760
2	8.520	5.040	6.000	2.890	2.100	21.800	18.400	15.000	5.340	3.100	3.350	3.590
3	7.220	5.130	5.020	2.890	2.000	18.400	16.200	14.600	5.220	2.760	3.020	2.930
4	7.300	5.220	4.100	2.680	2.100	17.500	14.100	14.000	4.540	2.620	3.020	2.440
5	6.780	4.710	3.780	2.480	2.200	17.400	12.600	12.000	3.730	2.740	3.260	2.200
6 7 8 9	6.330 6.090 5.640 4.850 4.050	4.230 3.730 3.920 4.070 4.330	3.660 3.850 3.920 3.730 3.300	2.660 2.620 2.660 2.580 2.360	2.300 2.400 2.500 2.600 2.680	20.000 29.200 29.100 24.500 20.200	11.400 10.800 10.200 8.980 9.380	10.300 9.460 10.300 12.000 14.600	3.610 3.730 3.470 3.560 4.620	2.660 2.640 2.580 2.660 2.520	2.850 2.870 2.500 2.440 2.740	2.700 3.350 2.890 2.620 2.600
11	4.690	4.650	2.910	2.930	2.500	16.100	11.300	18.600	6.630	3.080	2.950	2.720
12	4.740	4.760	1.900	2.910	2.420	14.000	12.100	17.100	8.000	2.680	3.100	2.360
13	4.410	4.280	1.700	2.420	2.380	13.000	13.800	17.300	7.920	2.130	3.060	2.760
14	4.330	3.680	2.000	2.380	2.460	13.200	18.000	16.400	6.600	1.990	2.600	2.640
15	4.230	3.710	2.790	2.350	2.720	13.000	18.700	14.100	5.640	2.020	1.850	2.980
16	3.440	4.120	3.170	2.330	2.870	13.100	19.200	14.100	4.680	2.480	1.520	2.870
17	2.870	4.070	3.250	2.380	2.810	12.100	27.500	14.100	4.310	2.440	1.820	2.110
18	3.350	4.020	3.300	2.910	2.850	10.400	28.100	12.900	3.760	2.230	2.180	1.620
19	3.830	3.970	2.680	2.640	3.590	9.780	26.000	11.200	3.150	2.330	2.230	1.850
20	5.040	3.490	2.520	2.200	5.640	9.900	23.400	10.100	3.020	3.320	2.090	2.070
21	5.700	3.040	3.300	2.600	8.400	9.500	19.700	8.550	3.170	3.590	2.220	3.080
22	5.340	3.170	3.170	2.500	12.500	9.100	17.500	8.040	4.020	3.300	2.560	3.150
23	4.200	3.780	3.300	2.400	14.000	9.340	17.200	7.840	5.040	3.120	3.420	2.640
24	3.610	3.730	2.850	2.300	14.600	10.500	19.300	7.570	7.510	2.330	4.020	2.620
25	4.070	3.280	2.660	2.600	30.200	10.400	28.700	6.780	6.030	3.000	3.230	2.500
26 27 28 29 30 31	4.510 4.510 4.410 4.760 3.970 3.660	2.830 3.040 2.700 2.760 4.020	2.460 2.460 2.290 2.500 2.480 2.600	2.800 2.800 2.700 2.600 2.500 2.400	57.800 60.300 37.300	10.200 10.100 12.000 21.300 29.800 24.300	53.400 38.500 27.800 22.600 20.000	6.720 7.390 6.780 5.940 5.850 5.250	5.100 4.600 4.050 3.540 3.350	4.330 3.950 2.830 2.480 2.620 2.230	4.760 5.370 9.300 7.420 5.670 4.310	2.230 2.460 2.160 2.130 2.110

STATE

FLORIDA

MAJOR BASIN

SOUTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

PERDIDO-ESCAMBIA RIVERS

STATION LOCATION ESCAMBIA RIVER AT

CENTURY, FLORIDA

								RADIOAG	TIVITY IN PLAN	KTON (dry)	RA	DIOACTIVITY IN W	ATER
DATE				OACTIVITY IN Y	VAIER	BETA		DATE OF	GROSS A	CTIVITY		GROSS ACTIVITY	<u> </u>
SAMPLE	DATE OF DETERMI- NATION		ALPHA		SUSPENDED	DISSOLVED	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
TAKEN		SUSPENDED	DISSOLVED	TOTAL	μμε/I	μμc/I	μμc/1	MO. DAY	μμс/g	μμc/g	μμc/I	μμε/1	μμ ε/Ι
MO. DAY YEAR	MONTH DAY	μμε/1	μμε/Ι	µµс/I	ppe/1								
	10.04	_	٥	0	0	٥	0			1			
0 3 60	10 24	0	2 2	2	Ö	0	0	!		.			
0 17 60	11 8	2	1	3) 0	. 0	0						
1 7 60	11 28 11 30	ő	ī	ī	0	0	0						
1 15 60 2 28 60	1 18	ŏ	ō	0	0	0	0						
1 23 61	2 6	1	1	2	0	0	0			1			
2 13 61	2 27	0	0	0	0	0	0	i					
3 6 61	3 23	0	0	0	0	0	0					1	
3 21 61	4 10	2	0	2	0	0	ŏ		•				
6 16 61	7 28	1	. 0	1	0	0 5	13						
8 5 61*	8 30	0	0	0	8	,	• •	1		1	1		
								1					
					1								
						ĺ]					1	
												1	
		ļ			1							1	
				i				1					
	,			l	1								
			1			1						1	
						ļ							
					1								
				-									
		1											
			ļ			1						1.	
		· ·									1		
	İ	ļ		i			ŀ						
	1	ì		1			1						
	İ	1											
					1								
		1								[
										1		1	
		1											
		1	1		1								
	1												
		1	1	1		1	l l	1		1	1 1	1	

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

FLORIDA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

PERDIDO ESCAMBIA RIVERS

....

STATION LOCATION ESCAMBIA RIVER AT

CENTURY, FLORIDA

-						ALGAE (1	Vumber	per ml.)		· · · · · · · · · · · · · · · · · · ·		INE	RT				DI	ATO	MS						MICROIN	VERTEBR.	NTES	
	SAM	- 1		BLUE-	GREEN	GREE	:N	FLAGEL (Pigme	LATES inted)	DIAT	омѕ	INE DIA SHE (No. p	LLS er ml.)		DOMI (See	NANT Introd	SPEC	IES A		RCEN' ntificat	TAGES ion*)		DPLANKTO HEATHED THL.)	ml.)	s liter)	EA liter)	ES liter)	GENERA oduction fication
МОМТН	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER- CENTAGE	SECOND*	FER. CENTAGE	THIRD#	PER-	FOURTH	PER- CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLANKTON, FUNG) AND SHEATHED BACTERIA (NO. pet ml.)	PROTOZOA (No. per ml.)	(No. per liter)	CRUSTACEA (No. per liter)	(No. per liter)	CNO. per liter) DOMINANT GENERA (See Introduction for Identification)
11 12 1 2 3 3 6 7 7 7 8	7 28	60 60 61 61 61 61 61 61	100 100 100 400 300 100 200 1100			20 20 90 170	20	20 160 100 60		50 100 40 20 750	90 110 50 90 170 40 120	20 20 40	20 90 100 20 40	43 33 43 33 80 92 43	10 10 20 10 20 20	33 43 2 1 92 3	10 10 10 * 10 10	44 2 33 65 56 73 2	10 10 10 * 10 10	1 62 31 2 83 52 31	* 10 * * * 10	70 60 60 70 60 70 60 80 10	180 20 50 560 500		2 2 5 5 5	1	1 5 1	4-9

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

FLORIDA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

PERDIDO-ESCAMBIA RIVERS

STATION LOCATION ESCAMBIA RIVER AT

CENTURY, FLORIDA

						, 						·				
DATE OF SAMPLE			E	XTRACTABL	.ES		·	,				ACTABLES				
BEGINNING EN	4D									NEUTRALS	; 		1	1	1	
DAY YEAR MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
10 10 60 11 2 6 61	14 *	2699 2200	382 409	166 115	216 294	3	33 28	65 38	12 4	6 3	42 27	5 4	25 13	13 7	2 2	25 24
	 *NC 	DT GIVE	 V			v			y.							
				ē												

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

FLORIDA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

PERDIDO ESCAMBIA RIVERS

STATION LOCATIONES CAMBIA RIVER AT

CENTURY, FLORIDA

DATE						CHLORINE	DEMAND		1							TOTAL DISSOLVED	
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)		SULFATES mg/l	PHOSPHATES mg/l	SOLIDS mg/l	COLIFORMS per 100 ml.
10 4 60 10 10 60 10 17 60 11 7 60 11 15 60 12 28 60 1 23 61 3 21 61 3 21 61 7 24 61 7 25 61 7 31 61	20.0	7.0 7.1 6.8 7.3 7.9 	6.9 6.8 6.8 6.6 6.9	1.0	36 26 40 44 40 	2 • 4 • 4 • 1 • 0 • 3 • 2 •	1 • 8 2 • 3 2 • 8 1 • 1 7	•2 •4 •5 •4 	33 4 3 3 11 - 17	21 18 20 15 - - 25 - 27	16 24 19 23 17 - - 28 - 34	14 6 8 4 6 6	150 450 400 610 85 0	3333277	•13	83 51 73 69 43 - - 7 81	3400 5900 4000 7400 17000 2200 260 1100 900 -

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Century, Florida Operated by U.S. Geological Survey STATE

Florida

MAJOR BASIN

Southeast

MINOR BASIN

Perdido-Escambia Rivers

STATION LOCATION

Escambia River at

Century, Florida

Day	October	November	December	January	February	March	April	May	June	July	August	September
	2 7700	1.540	3.020	4.180	4,660	41.900	28.500	8,210	3.080	9.760	3.560	3.980
1	3.780	1.540	2.1/10	4.930	4.360	47.300	31.900	8.420	2.930	7.910	3.170	6.510
2	3.200 2.920	2.040	2.000	4.410	4.240	49.700	30.400	8.910	2.700	6.430	2.940	8 . 440
2 3 4	2.650	2.210	1.790	3.690	4.770	45.900	28.500	8.640	2.470	5.350	3.160	9.980
5	2.280	2.030	1.690	3.350	4.680	38.300	27.300	7.590	2.410	4.780	4.270	11.600
6	2.470	1.660	1.640	3.170	4.410	28.800	26.800	6.730	2.300	4.610	5.190	13.000
7	3.660	1.500	1.630	2.910	5.780	20.300	27.300	6.260	2.150	4.550	6.080	13.600
7 8	4.490	1.420	1.640	3.070	7.400	14.800	25.500	5.9 2 0	2.110	4.380	7.120	12.400
9	3.510	1.460	1.640	3.550	7∙670	11.900	22.500	5.970	2.030	4.680	7.160	9.050
10	2.980	1.570	1.890	3.310	7.100	11.300	21.200	6.470	1.990	4.520	5.890	6.180
11	2.880	1.570	2.110	2.980	6.370	11.000	20.600	6.570	2.110	4.460	4.660	5.380
12	2.700	1.520	2.170	2.770	5.630	10.100	28.000	5.940	2.350	4.800	4.110	5.220
13	2.390	1.540	2.060	2.650	5.010	9.550	36.200	5.660	2.490	5.880	3.790	5.710
13 14	2.180	1.520	2.220	2.850	4.420	9.410	36.600	5.460	2.410	6.200	3.310	5.910
15	2.030	1.540	2.390	3.250	4.130	9.380	35.800	4.860	3.480	5 . 550	3 .92 0	6.180
16	2,000	1.450	2.950	3.280	3.950	8.870	35.400	4.440	5.750	5.160	4.070	6.410
17	2.020	1.500	3.310	3.020	3.780	8.800	33.100	4.230	5.940	4.990	3.520	5 .23 0
18	1.930	1.580	2.910	3.070	4.110	18.000	30.800	4.060	4.680	5.550	3.400	4.620
19	1.760	1.630	2.500	3.140	12.500	24.800	27.800	3.850	4.580	5.730	3.040	4.180
20	1.730	1.700	2.390	3.110	20.900	25.700	23.700	3.530	6.980	5.260	2.800	3.830
21	1.700	1.640	3.020	3.220	26.400	23.200	19.000	3.290	15.500	5.300	2.660	3.570
22	1.670	1.550	3.970	2.930	27.700	20.500	14.400	2.820	19.200	5.720	2.380	3.260
23	1.680	1.720	3.960	2.600	32.000	18.200	11.300	2.560	16.800	5.880	2.340	2.970
24	1.600	2.460	3.040	2.650	35.600	15.500	9.500	2.530	14.700	5.720	2.640	2.800
25	1.620	2.700	2.580	3.700	39.400	12.700	8.520	2.980	14.600	4.430	3.040	2.440
26	2.190	2.250	2.640	6.670	46.800	10.300	7.790	3.760	13.900	3.780	3.590	2.430
27	2.540	1.980	2.450	8.300	53.100	8.720	7.610	4.750	14.600	3.450	3.830	2.690
27 28	2.100	2.080	2.620	7.560	45.900	9.020	8.770	5.190	15.400	3.690	3.590	2.720
20	1.680	3.450	2.650	6.420	.,,,,,,	11.000	9.950	4.060	14.900	4.650	3.410	2.420
29 30	1.580	3.560	2.620	5.660		13.000	9.100	3.450	12.200	4.610	3.120	2.220
31	1.590	3.700	2.980	5.010		20.700		3.430		4.060	2.980	

RADIOACTIVITY DETERMINATIONS

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

LAKE ERIE-NIAGARA RIVER

STATION LOCATION LAKE ERIE AT

BUFFALO, NEW YORK

				ACTIVITY IN V	/ATED				RADIOAC	TIVITY IN PLAN	KTON (dry)	<u> </u>	ADIOACTIVITY IN \	VATER
DATE				ACHVIT IN V	VALER	BETA		DA	TE OF	GROSS A	CTIVITY		GROSS ACTIVIT	
SAMPLE	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DET NA	TE OF TERMI-	ALPHA	BETA	SUSPENDE		TOTAL
TAKEN		μμc/l	μμc/I	μμς/1	μμε/Ι	μμς/Ι	μμε/Ι	мо	. DAY	μμc/g	μμc/g	μμε/Ι	μμc/I	μμε/
MO. DAY YEAR	MONTH DAT	- PPC/1	FF-5/									Į		
0 26 60*	11 3	1	2	3	0	٥	0]		1			
2 1 60*	12 15	î	2	3	0	0	0	ì				1		
2 22 60	1 19	i i	ō	1	2	0	2	1	1					
		ō	ž	2	0	0	0		l			į.		
		ŏ	ō	ō	0	0	0		1			İ		
-	ľ	ŏ	ŏ	Ö	0	0	0	1	ì					
3 29 61*	1	0	ı i	1	0	0	0		ļ		•			
4 26 61*		0	i	ī	l ŏ	0	0				İ			1
5 31 61*		0 1	ō	ō	0	0	0	1	1					
6 28 61*			0	Õ	7	11	18							
8 2 61*		0	0	ő	lö	9	9	İ	İ			İ		
8 28 61*			Ö	Õ	١ ٥	4	4					ł		
9 6 61	9 28	0	_	_	0	0	o l		İ		ľ	Į.	İ	
9 13 61	10 5	=		_	4	16	20	i	-					
9 20 61	10 18	_	-	_	3	0	3	- 1	ļ			İ		
9 27 61	10 5	-	-	_	1		_							
					1									
		1	•						ì					
	l							1						
					Į			ļ						
												.		
	ŀ							1				l		
		ļ					!	i				Ì		
												İ		
	ĺ						1							
		1						ļ			ľ			
		1	ľ		1									
		1				1		ł						
					į									
					1			- 1				l l		
						1				\		1		
												1		
		1										1		
		ļ				1				1				
					Į.		1			!				
											1			
	1	1			1		1				1			1
		1					1				1			
		1			1	1								
		1				1		l i			1			1
	1		1		1		1	i 1		1		1 1		

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

LAKE ERIE NIAGARA RIVER

STATION LOCATION LAKE ERIE AT

BUFFALO, NEW YORK

				ALGAE (A	lumber	per ml.)				INE DIA SHE	RT				DI	ATO	мѕ				N G		MICROIN	VERTEBR	ATES	2	≾ 6 E
DATE OF SAMPLE	· · · · · · · · · · · · · · · · · · ·	BLUE-	GREEN	GREE	:N	FLAGEL (Pigme		DIAT	омѕ	SHE (No. p			DOMII (See	Intro	SPEC	for Co	de Idei	ntificat			ROFLANKTON SREATHED T ml.)	oA r ml.)	RS - liter)	CEA r liter)	DES r liter)	INAL FORB	r GENER troducti tificatic
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST*	PER-	SECOND*	PER.	THIRD*	PER-	FOURTH*	PER.	OTHER PER- CENTAGE	OTHER MICRO FUNGI AND SI BACTERIA (No. per 1	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FOR (No. per liter)	DOMINANT GENERA (See Introduction) for Identification)
5 60 10 19 60 11 16 60 12 14 60 12 14 60 12 12 60 1 18 61 1 18 61 1 19 61 3 16 61 4 19 61 5 17 61 6 17 61 6 17 61 8 16 61 9 20 61	100 300 200 500 400 200 1300 400 200 1700 100 200 300 300 300 300 200	20 70 80	120 20 20 60	20 50 20 40 20 20 20 20 710 40 120 40 70 40 20 20	90	20 20 70 160 40 40 60	50 20 40 20 20 50 40 20	20 220 270 260 440 160 220 340 20 110 210 20 80 20 40 20	20 50 110 70 40 70 20 1010 50 20 420 540 20	40 40 70 70 180 360 110 490 370 20	70 70 70 200 20 40 50 630 390 40 20	49 49 49 45 45 77 77 75 77 77 77	50 40 50 40 50 40 40 40 40 40 40 40 40 40 4	83348373355 89750 89750 45545	30 20 20	95 97 97 97 80 80 80 82 98 46 95 95 95	10 10 10 20 20 10 10 20 20	47 84 47 80 80 45 82 45 83 83 95 96 726	* * 10 10 20 * 10 10 10 * *	10 10 10 10 10 10 10 20 20 *	20 40 50 20 20 20 20	10 10 30 30 30 10 30 20	14 21 22 13 5 11 3 3 5 28 21 29 23 48 17 22 48 17 23 41 11 3	6 1 1 9 5 6 6 6 6 1 4 4 2 4 4 2 4 4	1 1	1	

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

LAKE ERIE-NIAGARA RIVER

STATION LOCATION LAKE ERIE AT

BUFFALO, NEW YORK

												CHLOROF	ORM EXTR	ACTABLES				
DATE			END	-	E)	TRACTABL	.E.5			· · · · · · · · · · · · · · · · · · ·		NEUTRALS						
MONTH DAY	YEAR	MONTH	T	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 26 11 21 12 16	60 60 61 61 61 61 61 61	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 132 1 20 2 2 2 3 10 2 14 6 1 4 2 3 7 12 8 8 2 9	4380 4853 2970 4650 5130 5033 4733 4755 9488 4252 5062	221 179 152 200 179 164 156 197 175 216 207 160 192	33 42 42 41 40 33 48 66 63 68 63 63	188 137 110 158 124 123 107 111 109 153 139 1029	123313144	9 12 11 10 8 10 8 	12 12 13 15 18 9 11 	2 1 2 3 1 1 1 1 3 2 2	2	9 9 10 15 8 8 - - 14	1	3544474387	3322321-64	1	5 7 7 7 4 10 7 - 10 - 13

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

LAKE ERIE-NIAGARA RIVER

STATION LOCATIONLAKE ERIE AT

BUFFALO, NEW YORK

-	DATE	Ι						CHLORINE	DEMAND	AMMONIA-			HARDNESS	COLOR	TURBIDITY	SULFATES	PHOSPHATES	TOTAL DISSOLVED	COLIFORMS
01	SAMP	LE	TEMP.	DISSOLVED	pH	B.O.D.	C.O.D.	1-HOUR	24-HOUR	NITROGEN	CHLORIDES mg/l	ALKALINITY mg/l	mg/l	(scale units)	(scale units)	mg/i	mg/l	SOLIDS mg/l	per 100 ml.
HONTH	DAY	YEAR	(Degrees Centigrade)	mg/l	P "	mg/l	mg/l	mg/l	mg/l	mg/l									
	à	>					5	• 4	1.8	•0	23	86	128	0	4	23	•2	205	5 3
10	5	60 60	18.0 17.5	9.0 8.7	8.3	1.0 .4	8	•3	2.0	•0	23	82	126	0 0	5 5	23 23	_	197 213	6
10	13 19	60	16.5	9.5	8.1	• 4	7	.3		•0	23 23	80 82	128 128	0	20	22	.1	216	*4
10	26	60	14.0	9.6	8.2	• 6	7	• 3 • 4	2.1	•0	20	82	130	ŏ	20	22	•2	195	*4
11	2	60	13.0	10.0	8.2	• 9	3 5	.3	2.0	•0	23	94	128	0	15	23	• 2	203	310
11	9	60	11.5	9.7	8•1 8•2	- 8	5	.3	1.3	_	23	97	130	0	20	23 22	•2	207 197	64
11 11	16 23	60	11.5 11.0	11.0	8.2	1.0	7	•3	-	. •0	20	94	136 140	0	10 50	22	.2	199	240
12	1	60	7.0	11.4	8.3	2.0	12	.6	2.8	•0	23 23	96 98	123	0	10	22	.1		24
12	7	60	9.0	12.2	8.0	1.4	11 6	•6	2.6	.0	23	88	134	_	50	23	• 2	204	12
12	14	60	4.5	12.9	7.8 8.0	1.3 1.0	6	.8	2.6	•0	20	94	128	0	30	22	• 5	199	3 *4
12	22	60 61	2•9 4•5	13.9	8.2	1.9	12	• 6	2.0	•0	,23	92	128	٥	15 25	23 23	•1	206 188	
ī	11	61	3.0	12.5	8.1	2.2	9	• 5	1.7	•0	20 23	92 96	128 128	- 0	30	22	.1	181	2 3
1	18	61	3.0	14.5	8.3	2.5	17 17	•5 •5	1.6	•0	23	98	128	o	15	22	•5	190	*4
1	25	61	3.0	14.2	8 • 2	1.7 1.0	13	.3	2.2	ő	25	96	138	0	5	26	•1	180	*1
2	9	61	3.0 4.0	14.3	8.1	1.4	6	.5	1.6	•0	25	98	136	0	7	24 24	.1	209 229	*1 *1
2	15	61	4.0	14.5	8.1	_	16	• 2	1.9	•0	20	100	134 138	0	7 5	23	.1	198	9
2	23	61	6.0	14.7	8.2	-	7	• 2	1.2	•1	23 23	88 96	140		6	22	.1	191	*1
3	1	61	4.5	14.3	8.2	1.1 1.3	8 9	•2	1.8	.0	23	94	136	Ŏ	10	24	.5	189	58
3		61	4 • 0 4 • 0	14.0 13.6	8.0	1.4	9	• 7	2.1	•0	20	96	132	0	10	23	• 1	202	100
3 3	15 22	61	3.0	12.7	8.0	1.1	9	• 2	1.5	•0	20	88	130	0	20	24	.5	196 179	*1
3		61	4.5	13.7	7.7	2.0	8	• 2	1.2	•0	23	82 90	132 126	0	10 25	21	.5	191	3
4	6	61	4.0		8 • 2	1.6	10	•6	2.6	•0	20 23	88	136	0	20	22	.0	217	1
4		61	6.0		8.1	2.0 1.2	9 8	3	1.3	.0	23	86	124	0	20	21	• 1	176	7
4		61	7.0 6.0		7.9	1.5	9	• 7	2.2	.0	20	88	126	0	20	21	•1	175	*1 80
5		61	7.5		8.0	2.5	9	. 8	2 • 2	•0	20	80	120	0	100	21 21	.1	180 171	2
5	10	61	10.0	12.0	8.3	1.7	7	-8	2 • 2	•0	20	84	120	0	10	21	1	"-	1
5		61	-		_	2 -	6	.8	2.9	.0	20	80	120	0	15	20	.1	171	_
5		61	4.0 12.0		8 • 2 8 • 2	2.7	8	1.0	2.0	.0	20	80	120	0	10	20		154	*1
5		61	13.0	1 -	8.2	1.8	8	• 3	2 • 2	.0	23	82	132	0	10	20		176 259	8 *4
6		61	15.0	10.1	8.2	2.4	10	- 8	2.9	•0	23	80	120	0	10	20	1	210	*1
ϵ			18.0		8.1	1.9	9	• 1	2 • 3	•0	23	80 82	130	0	14	1		206	180
6		61	16.5	1	8 • 2	2.1	5 5	1.4	2.0	.0	20	92	132	0				178	-
6	28	61	17.0	7.3	0.3	1.2													
_							.1					·							

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

LAKE ERIE-NIAGARA RIVER

STATION LOCATIONLAKE ERIE AT

BUFFALO, NEW YORK

DA		Τ						CHLORINE	DEMAND							SULFATES	PHOSPHATES	TOTAL	COLIFORMS
OF SA	$\overline{}$	\dashv	TEMP. (Degrees Centigrade)	OXYGEN mg/i	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	Mg/I	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	mg/l	mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
7 17 7 19 7 19 8 19 8 19 8 19 8 19 8 19	52 9 62 63 1 6 3 0	51 61 61 61 61 61	17.5 20.5 21.5 24.1 23.3 22.6 24.0 24.0 24.5 23.0 22.0		235354344330	•9 4•7 2•9 1•9 •8 •7 •8	10 11 10 11 13 12 16 17 20 17 11 13	1.6 1.6 1.4 .7 .9 1.8 .6 .2 1.2 .9	2.3 3.0 2.8 2.7 2.0 2.0 1.5 2.4 2.0 1.4 2.9	• • • • • • • • • • • • • • • • • • • •	23 23 23 23 20 223		122 126 130 126 128 138 132 126 122 124	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 8 10 6 10 10 13 12 50	21 23 24 17 18 21 22 22 22 20	.1 .1 .1 .1 .1 .1 .1	220 214 220 209 208 241 217 196 208 199 200 233	*40 *10 40 10 *10 *55 *4 30

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Supplied by U.S. Army Corps of Engineers U.S. Lake Survey

STATE

New York

MAJOR BASIN

Northeast

MINOR BASIN

Lake Erie-Niagara River

STATION LOCATION

Lake Erie at

Buffalo, New York

October	November	December	January	February	March	April	Maj	7 June	e	July	August	September
		FLOW	DATA	NOT	APPLICABLE		LAKE	LEVELS	ONLY			

RADIOACTIVITY DETERMINATIONS

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATION DETROIT RIVER AT

DETROIT, MICHIGAN

									DADICA	TIVITY IN PLAN	KTON (drv)	1	RAD	OLOACTIVITY IN W	ATER
DATE			RADIO	ACTIVITY IN W	ATER					GROSS A	CTIVITY	1 1		GROSS ACTIVIT	
SAMPLE	DATE OF		ALPHA			BETA			DATE OF DETERMI- NATION	ALPHA	BETA	1 [SUSPENDED	DISSOLVED	TOTAL
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL μμε/l		MO. DAY	μμc/g	μμc/g	1 [μμε/\	μμc/l	μμε/Ι
MO. DAY YEAR	MONTH DAY	μμε/Ι	μμc/l	μμε/Ι	μμε/Ι	μμc/I	μμε/ι		1	1, 3					
					,	1	3					1 1			
10 26 60*	11 15	0	1	1	2	ô	ó	İ				· ·		1	
11 29 60*	12 9	0	0	0			ŏ		1						
12 27 60*	1 12	0	1	1	0	1	i		1						
1 24 61*	2 24	0	0	0	0	ō	ō		1 1						
2 7 61	3 23	0	0	0	ő	0	Ŏ		1			i			
4 11 61	5 22	0	1	1	0	1 0 1	Ö	ì	1 1						
5 23 61*		0	0	0	0	0	ŏ	1	1 1						
6 20 61*		0	0	0	0		ŏ	İ				1			
7 25 61	8 28	2	0	2	3	5	8	1	i !						
8 29 61*		0	0	0	2	4	6	ł			<u> </u>	1			
9 6 61	9 28	-	-	_	0	7	Õ	1	1			1			
9 11 61	10 6	0	0	0		53	60	1	1			1			
9 19 61	10 18	-		_	7 2	3	5	1	1			1			ļ
9 26 61	10 3	-	-	_	_			1	\			1	1		
		1			İ			1	1		1	1	ļ		
					ì			1	1			1			İ
				ļ					1			1	ŀ		
		Į.			· ·							1			l l
		l							İ	ļ		1			
					Į.			Ì			ì	1			
			1	1				ì	ì			i i			
		1	1				1	1	ì	\		1		ļ	
				1	Į.	Į.		1	ì	ļ				1	1
					ļ				1			1		1	
				1			1			ļ		-	!		
		İ	1		1		Į.					-	ŀ		
					1					ì	1		1		
		ì					1		1	1	1				1
		ì			1		ļ	ļ	-	1		1	1		
		ì	1					1	Į.	1	\	-	1		1
			1	1	İ			-	1	1		- 1			1
					l				1						
					1			1					1		
							1	1	1		1	1	}		
							1	-		1	1			1	
	1			1	1								1		
					1					1					
		1		1						1		- 1			1
				1							1	1	1		
									1				1		
	1	i	1												

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATION DETROIT RIVER AT

DETROIT, MICHIGAN

				ALGAE (I	Vumber	per ml.)				INI	ERT TOM ELLS	Π			D	IATO	MS				i	L	MICROIN	VERTEBR	ATES		
DATE OF SAMPLE		BLUE-	GREEN	GREE	N	FLAGEL (Pigmo		DIAT	омѕ	SHE (No. 1	ELLS per ml.)				SPEC						SHEATHED ml.)	A ml.)	s iter)	EA iter)	ES iter)	AL FORMS er)	GENERA eduction fication,
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND*	PER.	THIRD*	PER-	FOURTH*	PER.	OTHER PER- CENTAGE	OTHER MICE FUNGIAND I RACTERIA (NO. PET	PROTOZOA (No. per m	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORMS (No. per liter)	DOMINANT GENERA (See Introduction for Identification)
10	100 100 200 300 100 100 300 400 200 300 100 100 1400 2300 900 500 800 100 200 200	20	20	70 20 50 40 20 70 40 20 80 40 40 40 60 60		50 50 20 20 20 20 20 20 20	20 80 40 70 40 40 20 20 20	50 110 50 70 20 200 90 210 310 70 210 440 150 310 60 100 80 60	50 90 90 70 70 360 270 1240 670 890 210 510 790 910 140 60 150 60	50 40 90 90 70 50 20 90 40 150 60 80 20	220 290 580 230 270 370 250 170	25557555555555555555555555555555555555	000000000000000000000000000000000000000	86766555755775777227548657 44949494944984224524	10 10 10 10 10 10 20 20 20 20 20 20 10 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	47 42 42 43 45 45 45 45 45 45 45 45 45 45 45 45 45	10 10 10 10 10 10 10 10 10 10 10 10 10 1	47547974584622009556 4754758622009556	10 10 10 10 10 10 10 10 10 10 10 10 10 1	00000000000000000000000000000000000000	20 70 20 20	10	1 1 2 1 2 2 9 9 3 3 3 4 4 2 7 7 1 3 5 1 3 3 6 6 3 1 4 1 3 6 6 1 0	1 3 2 2 2 1 4 2 1 1 4 9 2 5 48 2	1		

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATION DETROIT RIVER AT

DETROIT, MICHIGAN

									CHI OROE	ORM EXTRA	CTABLES				
DATE OF SAMPLE		EX	TRACTABLE	ES					NEUTRALS				Ī		
	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
12 6 60 12 21 1 10 61 1 20 1 2 7 61 2 21 3 7 61 3 21 4 5 61 4 18 5 2 61 5 16 6 5 61 8 20 6 5 61 7 25 1 8 8 61 8 22 9 14 61 9 26	8872 1920 10980 4680 4159 7380 3360 4005 14745	62 63 228 63 136 117 63 155 151 108 141 132 98 129	11 14 33 9 25 21 21 34 37 28 22 31 30 26	51 49 195 54 111 96 42 121 1180 119 101 68 103	0 0 2 0 1 1 3 2	34938567	5 5 12 4 7 10 - - 9 - - 8	1 1 2 2 2 2	-	3 6 3 6 7 6	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2	- -	1341524

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATIONDETROIT RIVER AT

DETROIT, MICHIGAN

DATE	1	I			Ī	CHLORINE	DEMAND									TOTAL	
OF SAMPLE	(Degrees	DISSOLVED OXYGEN mg/l	pH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR	24-HOUR	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/i	COLIFORMS per 100 ml.
MONTH DAY	Centigrade	mg/i		-		mg/l	mg/l										
10 4 6	U 16•1	8.8	8.1	• 3	4	• 3	1.5	•0	6 6	80 80	100 97	0	20 20	12 14	•0	124 122	30 56
10 11 6			8.1	•2 •8	6 5	• 4	1.2	•0	6	78	99	ő	20	14	.0	112	-
10 18 6 10 18 6			5.0	-	_	-	_	-	-	-	-	-		-	-	-	54
10 26 6	0 10.0		8.0	• 8	5	• 4 • 3	1.5	•0	6	84 79	103 98	0	100 35	13 13	•0	136 138	220 85
11 1 6 11 8 6	1	10.0	8.0 8.1	•6 •8	5 5	• 4	1.6	•0	8	83	100	Ö	70	12	.0	146	73
11 8 6 11 15 6		11.4	7.8	• 8	4	• 5	1 • 4	•0	7	80	97	0	25	13	•0	126	20
11 23 6		11.0	8.0	-	3	• 8 • 5	1.2	•0	7	79 78	97 96	0	20 35	7 13	.0	140 124	86
11 29 6 12 6 6	1		8•2 8•0	• 7	4	•3	1.1	•0	6	79	96	Ö	20	12	•0	134	230
12 12 6	0 -	-	-	-	-	_	-	-	- 6	- 0	- 97	- 0	60	12	- 0	122	14
12 13 6			8.1 8.1	•5 •9	5 4	•8 •1	1.0	•0	6	80 80	98	0	15	14	.0	134	_
12 21 6 12 27 6			8.1	.8	3	• 2	1.0	•0	6	79	98	0	4	12	.0	136	*1
1 3 6	1 .6	13.5	8.1	-	4	• 2	1 0	•0	8 8	79 78	100 95	0	7	13 12	.0	138 113	*3 14
1 11 6 1 18 6			8•1 8•2	- • 5	37 8	• 4 • 4	•9 1•2	•0 •1	10	78	95	0	4	14	.0	111	*1
1 23 6		14.4	8.1	. 6	-	•3	. •7	•0	8	77	95	0	3	12	•0	116	*1
1 31 6			8.2	• 6 • 9	10 13	•1 •3	•5 •7	•0	7 7	80 80	97 96	0	2	12 15	•0	123 124	_
2 7 6 2 15 6			8.2	• 9	- 13	-	-	-		-	-	_	-	-			*1
2 20 6	1 .6	14.1	8.1	• 7	10	• 4	-	•0	7	80	97	0	2	14	.0	112	2
2 28 6		13.8 13.8	8.1	•2 •7	9 19	•6	1.2	•0	12 8	78 77	95 94	0	20 15	14 14	.0	119 128	3 *1
3 15 6		13.5	8.2	.1	17	.5	1.3	•0	7	84	100	ΰ	50	16	.0	126	*25
3 21 6		14.0	8.3	1.2	10	1.0	1 • 4	•0	8	86	102	0	55	16	•0	122	-
3 28 6		13.8 13.5	8.1	.8 .5	3 13	• 3 • 4	1.0 .9	•0	7 8	79 80	96 96	0	15 25	15 14	.0	117 117	_
4 11 6		13.0	8.1	1.1	6	[-1	-	•0	7	80	97	Ō	15	14	.0	112	-
4 18 6		12.0	8.1	•1	11	• 5	1.0	•0	7	79	95	0	45	14	• 0	119	-
4 25 6 5 2 6		12.4	8.1	•2	10 10	1.0	1.0	•0	6 7	80 81	96 99	0	40 25	14 16	.0	120 122	_
5 9 6	1 8.9	11.5	8.2	•6	101	-	-	•0	7	80	96	Ô	15	16	.0	126	-
5 16 6			8.2	.3	9	8 •	1.5	• 0	8	80	99 99	0	17 10	16 15	.0	122 126	*1
5 23 6 5 30 6		11.4	8.2	•5	5	• 5	1.1	•0	8 8	80 81	99	0	10	15	.0	120	110
6 13 6	1 17.8	10.5	-	1.3	10	.6	1.5	•0	8	80	96	0	8	15	• 1	122	_
6 20 6	1 17.3	9.1	8.3	•5	14	• 7	1 • 7	• 0	8	80	98	0	15	14	•0	130	4
														L			l

STATE

MICHIGAN

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

WESTERN GREAT LAKES

MINOR BASIN

MAJOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATION DETRUIT RIVER AT

DETROIT, MICHIGAN

DATE OF SAMP		TEMP.	DISSOLVED		B.O.D.	C.O.D.	CHLORINE	DEMAND	AMMONIA-	CHLORIDES	ALKALINITY	HARDNESS	COLOR	TURBIDITY	SULFATES	PHOSPHATES	TOTAL DISSOLVED	COLIFORMS
моитн	YEAR	(Degrees Centigrade)	OXYGEN mg/l	pН	mg/I	mg/l	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	mg/l	mg/l	mg/l	(scale units)	(scale units)	mg/l	mg/l	mg/l	per 100 ml.
6 27 7 11 7 18 7 25 8 1 8 8 8 15 5 22 8 29	61 61 61 61 61 61 61 61	16.7 19.8 20.9 23.0 24.0 23.9 21.1 22.3.9 23.8 20.7 19.2	9.5 11.2 8.6 8.6 8.3 8.5 6.4 8.3 8.6 8.8 8.6	8.3 8.3 8.3 8.4 8.4 8.4 8.2 8.2 8.2	.6 .6 .4 .7 -1 .3 .2 .3 -4 .4 .5	12 8 8 10 - 9 9 8 9 9 9 9 8	9574-65768576	2·1 1·6 1·5 1·4 - 1·4 1·0 1·1 1·6 1·8 2·0 1·7	•0 •0 •0 •0 •0 •0 •0 •0 •0 •0	9 7 7 8 7 7 7 7 7	83 80 81 80 81 81 80 80 82 84 81	100 97 96 76 76 95 96 95 96 96	0	35 20 30 20 35 20 20 20 20 27 0	15 15 14 15 15 15 15 15 14		128 122 123 133 129 126 134 130 135 118 138 123	3 83 100 - 033 333 330 40

MEAN MONTHLY FLOW - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Supplied by U.S. Army Corps of Engineers U.S. Lake Survey STATE

Michigan

MAJOR BASIN

Western Great Lakes

MINOR BASIN

St. Clair-Detroit Rivers

STATION LOCATION

Detroit River at

Detroit, Michigan

Octo	er Nov	vember	December	January	February	March	April	May	June	July	August	September
									-			
201.	000 19	5.000	200.000	175.000	181.000	187.000	188.000	188.000	187.000	189.000	190.000	187.000

RADIOACTIVITY DETERMINATIONS

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATION ST. CLAIR RIVER AT

PORT HURON, MICHIGAN

								DAD!	DACTI	VITY IN PLAN	KTON (dry)	· ·	RAD	IOACTIVITY IN W	ATER
			RADIO	ACTIVITY IN W	ATER			DATE O		GROSS A		1		GROSS ACTIVIT	
DATE SAMPLE	DATE OF		ALPHA			BETA		DETERM	1-	ALPHA	BETA		SUSPENDED	DISSOLVED	TOTAL
TAKEN	DETERMI- NATION	SUSPENDED	DISSOLVED	OTAL	SUSPENDED	DISSOLVED	TOTAL	MO. DA	_	µµс/g	µµс/g	1	μμς/1	μμς/Ι	μμc/Ι
	MONTH DAY	μμς/Ι	μμε/Ι	μμc/ I	μμc/l	μμε/Ι	μμς/Ι		-	<u> </u>					
0.127.1				_		0	2		1						
0 3 60	10 17	0	1	1	2	- 1	هٔ ا	1	ì			1			
0 10 60	10 20	0	1	1	0	0	ŏ		i			1		!	
0 17 60	11 7	0	1	1	0	0	ŏ		1			1	ļ		
0 24 60	11 14	0	3	3	0	0	0		ì			1	1	i	
0 31 60	11 9	0	1	1	0	0	0		i			1	1		
1 7 60	11 25	0	0	0	0	0	0	İ	Į						
1 14 60	11 28	0	1	1.	0	0	0	l				1	1		
1 21 60	12 1	0 1	2	2	0	0		1	-			1		·	
1 28 60	12 12	l o 1	1	1	0	0	0		- {			1			
2 5 60	12 29	0	0	0	0	0	0	1	1		1	1	}		
2 12 60	1 6	l o l	0	0	0	0	0	1	l				1		
2 19 60	1 6	l o	0	0	0	0	0				1	1		1	
2 27 60	1 16	Ö	1	1	0	0	0	l l	- }			1		1	
	1 18	lŏ	ō	0	0	0	0					1		1	
1 3 61	1 24	ŏ	1	1	2	0	2	l	- 1			1			
1 9 61	2 6	0	اةا	0	0	0	0		- 1			- 1	- (
1 16 61	1	0	ì	1	0	0	0]			1	1		1
1 23 61		0	ō	0	0	1 0	0					- 1			1
1 30 61	2 14	0	ŏ	0	0	0	0	ł	- 1		1	-	1		
2 6 61	2 20	0	Ö	Õ	0	0	0	ļ	1			-		1	
2 13 61	3 6	0	Ö	ō	0	0	0		Ì			1			
2 20 61	3 8	0	0	i õ	1 0	0	0	l	1		1	- 1			
2 27 61	3 13	1	0	0	Ō	0			- 1					İ	
3 6 61	3 24	0	0	ŏ	0	0	0		- \			- 1		ļ	
3 13 61	3 31	0	0	ŏ	0	0	0		- 1		1	- 1		1	
3 20 61	4 4	0	0	ŏ	1 0	0	0	1	- 1			- 1			
3 27 61	4 17	0	0	0	1 . 0	0	0	1	1			- 1	1		
4 3 61	4 19	0	0	0	1 0	0	0	l	į		ì	- 1			
4 10 61	5 5	0		0	Ö	1 0	0	1				- 1		ı	
4 17 61	5 10	0	0	0	0	4	4	l	l			- 1	1		
4 24 61		0	0	0	l ŏ	0						- 1		1	
5 1 61	5 16	0	0	0	l ŏ	l o	0		- 1			l			
5 8 61		0	0	0	Ìŏ	0	0	ì	- 1			- 1	1		1
5 15 61		0	0	0	0	1 0		ļ			l			ì	
5 22 61		0	0	0	1 ŏ	0		1			1	1		l l	
5 29 61		0	0	0	1 0	Ö			1		Ì				
6 5 61		0	0	1	1 0	lő	0				1				
6 9 61	6 29	0	0	0		0	0					- 1	1	l	
6 19 61		0	0	0		0	1 0			1					
6 26 61		0	0	0	lő	0	0						1	1	
7 31 61	L* 8 11	0	0	1						1	1				

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATION ST. CLAIR RIVER AT

PORT HURON, MICHIGAN

Defection Se		1		PADI	OACTIVITY IN V	WATER			Т	RADIOA	CTIVITY IN PLA	NKTON (dry)	Τ	RAD	DIOACTIVITY IN	WATER
MO DAY YEAR MONTH DAY μμε/1 μμ		DATE OF	Г			T	BETA		1				1			гү
MO DAY PAPE MONTH DAY PAPE PA		DETERMI- NATION	SUSPENDED		TOTAL	SUSPENDED	DISSOLVED	TOTAL		NATION	ALPHA	BETA		SUSPENDED	DISSOLVED	
8 28 61* 9 19 0 0 0 7 9 16 9 7 61 10 2 2 0 2 9 11 61 10 5 5 1 6 9 18 61 10 18 1 1 6 7 9 25 61 10 5 0 0 0 7 7 14	MO. DAY YEAR				μμε/Ι	μμε/Ι	μμc/Ι	μμc/l		MO. DAY	μμc/g	μμc/g		μμς/	μμc/l	μμς/ί
9 11 61 10 5			0	. 0												
9 18 61 10 18 7 7 7 14			-	-	~				1			1				
9 25 61 10 5 0 0 0 7 7 14				i					1							
			i				5		1							
	9 20 01	10 5	0	U	U	'	- '	14		1						
												l	Ì			
													İ			
										1 1						
										1 1						
														i		
									1							
						Ì				1 1			ĺ			
													ļ			
				1												
	1		İ									İ				
				ĺ												
		l		ĺ												
			i	ĺ			I			i i				1		
	1				i				1						1	
							1								1	
						ŀ	i									
							ŀ								1	
				ĺ											- 1	
														Ì	1	
						j	ļ					į l				
			j													
		İ													1	
							ļ									
			1		İ	1										
						1										
						İ										
			1													
			1	-												

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATION ST. CLAIR RIVER AT

PORT HURON, MICHIGAN

				ALGAE (A		per ml.)				INE	PT	·							-				HICROIN	VERTEBR	1750		
DATE OF SAMPLE		BLUE-	GREEN	GREE		FLAGEL (Pigme		DIATO	омѕ	INE DIAT SHE (No. po	LLS				SPEC		ID PE	RCENT nti/icati			LAKKTOK, EATKES (.)				1 1	A E RA	uc from atton)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE		PENNATE	FIRST#	PER.	SECOND*	PER. CENTAGE	THIRD*	PER. CENTAGE	FOURTH*	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLANKTON, FURGI AND SHEATHED BACTERIA (NO. DET III.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	(No. per liter)	No. per liter	(See Introduction for Identification)
10	100 300 700 200 400 200 200 500 1400 200 300 700 200 600 200 900 900			20 90 20 40 20 110 130 20 40 20 80 100 20 60		20 50 40 20	70 20 70 150 20 80	160 110 90 90 20 70 50 290 130 60 80 170 60 290 80 460 250	50 70 470 200 200 270 160 400 930 670 150 270 330 500	150 40 150 80	70 70 110 90 220 310 70 180 290 580 740 310 100 120 80 120	25 46 47 46 45 47 46 46 95 95 95 95 95 95 95 95 95 95 95 95 95	20 20 20 20 20 40 30 20 20 30 40 40 40 40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	47 48 47 30 95 47 48 45 95 48 95 47 47 47 47 47 47 47 47 47 47 47 47 47	10 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	465 325 466 465 475 466 466 455 475 466 466 475 475 475 475 475 475 475 475 475 475	10 10 10 10 10 10 10 10 10 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	95 46 35 36 60 35 95 35 48 89 62 23 58 24 25 62 25 46	10 10 10 10 10 10 10 10	100330004000000000000000000000000000000	70 20 20 20 270 70 70 70	10 10 30 20	2 7 2 6 4 2 2 2 8 19 9 6 13 4 2 6 8 6 2 19 0 8 6 5 1	29 14			

ORGANIC CHEMICALS RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATION ST. CLAIR RIVER AT

PORT HURON, MICHIGAN

					1		KTRACTABL	FG	1				CIU ODG	OD4 EV==					
	GINN	OF S		E ND	1	E.	INACIABL	1	 	1	Ī		NEUTRALS		ACTABLES		T		
HENOM	DAY	YEAR	MONTH	7	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 10 11 1 1 2 6 8 9 1	28 11 6 3 5 7 11	60 61 61 61 61	10 11 12 1 2	28 11 6 20 17 25 25	5093 4973 5550 5040 4680 4855 34420	162 152 156 115 167 151 170 141	28 16 36 26 43 47 42 20	134 136 120 89 124 104 128 121	31325010	8 5 10 7 11 14 12 5	6 5 9 7 8 18 19 10	0 1 1 1 1 2 4 3	1 0 1 1 0 1 1 2 1	5 4 7 5 7 13 13 6	000000000000000000000000000000000000000	21 13 35 66 32 2	1 2 2 4 2 2	0 0 0 1 0 0 0 1 1 1 1 1	7 3 8 5 10 6 4 1

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATIONST . CLAIR RIVER AT

PORT HURON, MICHIGAN

DATE			1			CHLORINE	DEMAND								PHOSPHATES	TOTAL	COLIFORMS
DAY YEAR	TEMP. (Degrees Centigrade)	OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D.	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
10 3 60	15.0	10.1	8.5	• 3			-	•1	7	89	102 102	3	_	-	_	-	16 19
10 10 60		10.4	8.5	•6	-	_	_	•1	8 7	90 92	102	3	-	_		-	4
10 17 60		10.4	8.5	•5 •5	_ [_	_	.1	6	98	106	0	-	-	-		44
10 24 60		11.1	8.6	•6	_	_	_	•1	7	96	104	2	-	_	-	-	150
11 7 60		11.9	8.0	• 8	_	-	-	•1	6	92	102	6	-	-	-	_	29 4
11 14 6	10.0	11.6	8.6	. 8	-	-	- 1	•1	6	94	106	0 3	-	-	_		*30
11 21 6			8 • 4	• 4	-	-	-	•1	6 7	98 96	102	5	_	_	_		9
11 28 6			8.3	• 9	_	_	_	•1	7	110	102	3	_	_	-	-	*4
12 5 6		12.8	8.1	•6 1•0		_	_	.1	6	110	102	15	_	_	-	-	. *1
12 12 6			8.0	1.7	_		_	.1	7	88	108	5	-	-	-	-	*8
12 27 6			8.0	1.5	-	-	-	•1	10	88	104	8	-	_	_	_	42 -
1 3 6			8.1	1.6	-	-	-	•1	7	86	112	0 5	_	_		_	41
1 9 6			7.7	1.8	-		-	•1	. 7	84 82	106 106	5	_	_	_	_	*100
1 16 6			8.0	2.0	-	-	_	•1	8	82	104] 3	_	_	_	_	170
1 23 6			7•6 8•0	2.1 2.0		_	_	1	8	80	110	0	-	-	-		870
1 30 6 2 6 6			8.2	2.4	_	_	_	-	8	80	108	0	-	-	-	-	-
2 13 6			8.2	2.0	-	_	-	•1	8	84	106	0	-	_		_	*8
2 20 6			8.0	2.2	-	-	_	•1	9	1	108	0 5] _	_	1	-	58
2 27 6			8.0	2.1	-	-	_	•1	8 7		108	5	_	-	1	-	*10
3 6 6			7.7	1.9 1.9		_	_	1	1 7		112		-	-		-	260
3 13 6 3 20 6			8•1 8•0	1.4	_	_	_	1	6		104	20	-	Į.	i i		8
3 27 6			7.9	.7	_	_	-	• 7	6		108		-	-	1	120 125	2400
4 3 6			8.1	1.0	_	-	-	•1	6	1	106		_		l .	125	580
4 10 6		13.6	8.0	. 8	-	-	-	•1	6		102		1		1		770
4 17 6			8.2	• 4	-		_	•1	6		108	1	-	-	. -	1	710
4 24 6			7•9 8•1	•7	_	_	-	.1	6		110		_	-	· -		390
5 1 6 5 8 6			8.2	.6		_	_	.1	7		110	0	-	-	1		570
5 8 6 5 15 6			8.3	.8	_	_	_		7	80				1	ı		380
5 22 6			8.2	-	-	-	-	-	8					1	1		920
5 29 6	1 11.0	11.5	8.4	• 5	-	-	-	1 -	8	1						1	8100
6 5 6			8.5	• 5	_	-	_	•1	10			' 1	1 -	1			50
6 19 6			8.1	•5	_] =	1		7			-			- -	1 200	2
6 26 6			8.0	3	_	_		1 _					0	-	- -	100	13
1 3 6	' <u> </u>	1	""	-						1							

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATIONST . CLAIR RIVER AT

PORT HURON, MICHIGAN

DATE			<u> </u>	1			CHLORINE	DEMAND							1			1
OF SAM	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B,O.D, mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
8 8 8 22 8 29 9 11	61 61 61 61 61 61 61	19.5	9.9 9.5 8.9 8.0 -7.8 8.1 9.2 8.8	8.1 8.0 - 8.0 8.0 8.0 8.0 8.0	.4 1.0 - .2 - - .3 .1	*			•1 •1 •1 - •1 •1 •1	6766777666	844 82 84 - 82 86 82 80	104 104 102 - 102 100 88 96	0	00010110000	- - - 21 17 11 11	• 1	116 116 116 - 116 - 115 132 106 116	10 8 20 30 - 18 2 - 23 13

MEAN MONTHLY FLOW - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Supplied by U.S. Army Corps of Engineers U.S. Lake Survey

STATE

Michigan

MAJOR BASIN

Western Great Lakes

MINOR BASIN

St. Clair-Detroit Rivers

STATION LOCATION

St. Clair River at

Port Huron, Michigan

October	November	December	January	February	March	April	May	June	July	August	September
200.000	191.000	193.000	171.000	180.000	181.000	181.000	182.000	184.000	185.000	186.000	185.000

STATE

INDIANA

MAJOR BASIN

WESTERN GREAT LAKES

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

ST. JOSEPH RIVER

STATION LOCATION LAKE MICHIGAN AT

GARY, INDIANA

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

INDIANA

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. JOSEPH RIVER

STATION LOCATION LAKE MICHIGAN AT

GARY, INDIANA

				ALGAE (A	lumber	per ml.)				INE	RT				DI	ATON	45				;		NICROIN	VERTEBR	TES	<u> </u>
DATE OF SAMPLE	٠	BLUE-0	REEN	GREE	N	FLAGEL (Pigme		DIAT	омѕ	INE DIA SHE (No. p	COM LLS or ml.)				SPEC	ES AN	D PER de Iden				HICROFLANKTON, AND SHEATHED RIA Per ml.)	ml.)	S liter)	EA liter)	ES liter)	aenera oduction (fication,
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST*	PER. CENTAGE	SECOND*	PER- CENTAGE	THIRD#	PER. CENTAGE	FOURTH	PER- CENTAGE	OTHER PER- CENTABE	OTHER MICH FUNEL AND B BACTERIA (No. per	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	ONINANT GENERA (See Introduction for Identification)
10	700 1600 1000 1000 1500 1500 1700 4400 2000 1700 4000 2000 1700 1100 1800 1800 1800 400	20 50 20 20 20	20 20 20	70 20 20 20 20 20 40 230 40		20 20 80 40 20 20	20 120 20	340 90 200 70 110 290 1140 1720 860 4090 9650 2990 3540 910 580 250 60	850 1180 1410 190	160 340 510 890 3820 2500 1280 290 290 160 170	90 200 450 380 70 220 980 450 1250 120 230 120 220 80 60 20	95 95 95 95 95 95 95 95 95 95 95 95 95 9	50 70 40 30 20 50 30 40 90 80 50 50	47 47 47 97 82 60 97 60 60 95 47 47 47 47	10 10 20 20 20 30 30 20 20 30 20 20 20 20 20 20 20 20 20 20 20 20 20	49 9 9 47 97 47 60 97 47 60 97 82 47 82 96 89 96 24 24	* 10 10 10 10 20 10 10 10 10 10 10 10 10 10 10	2565955275592027565 395527592027565	* 10 10 10 10 10 20 *	10 40 30 20 30 20 20 20 40 20 10 *	20 50 90 230 40	10 10 10 10	2 5 3 1 9 3 8 100 20 31 453 322 777 252 325	7 49 4	2	

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

INDIANA

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. JOSEPH RIVER

STATION LOCATION LAKE MICHIGAN AT

GARY. INDIANA

DATE OF SAMPLE].	E	KTRACTABL	ES		,				ORM EXTR	ACTABLES				
BEGINNING END			1	i				,	NEUTRALS	; 					
MONTH DAY YEAR MONTH DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
4 4 61 4 13 5 2 61 5 11 6 6 61 6 13 6 6 61 7 13 8 1 61 8 9 9 5 61 9 12	5300 5490 3360 4620 5010 5000 5330 4870 55000 54500 5490	143 124 159 133 144 309 110 118 116 123 119 105 115	28 23 52 35 22 37 33 41 33 33 30 31	115 124 111 106 257 77 82 79 85 85 84	1 2 1 1 1 1 3	7995814108	10 9 14 10 17 26 12 9	11223732	1 1 2 1 3 4 4 1 1	777971015886	101010110	34425653	2 1 1	111111111111111111111111111111111111111	5552576

STATE

ANAIGNI

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. JOSEPH RIVER

STATION LOCATIONLAKE MICHIGAN AT

GARY, INDIANA

DATE OF SAMPLE						CHLORINE	DEMAND										
MONTH DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	На	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/i	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/I	COLIFORMS per 100 ml.
10 5 60 10 18 60 11 15 60 11 15 60 11 15 60 11 12 60 11 22 60 12 27 60 12 27 60 13 60 14 61 17 61 17 61 17 61 17 61 17 61 17 61 18 61 3 28 61 3 28 61 4 11 61 4 12 61 5 20 61 5 22 61 6 60 7 7 7 7 8 7 8 7 9	9.195 1.88-55-699 1.88-99.77 11.88-99.77	10.6	8 · 4 · 1 · 3 · 6 · 3 · 6 · 3 · 6 · 3 · 6 · 3 · 6 · 3 · 6 · 3 · 6 · 6	2.2 2.1 1.2 1.5 1.1 3.0 - 3.2 2.4 - 1.2 6.6 1.0 9 1.9 9 1.9 1.3 1.3 1.7 1.3 1.7	10 18 12 13 17 12 15 16 14 14 14 14 14 14 13 18 13 13		2.5 1.9 1.7 4.1 1.8 2.0 - 1.8 1.7 1.4 4.6 2.4 3.0 2.3 2.2 2.6 2.4 3.1 2.7 3.5 2.7 2.7 2.7 2.7 2.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			124 125 126 153 1523 142 148 144 1451 150 149 148 140 140 140 140 140 140 148 148 148 148 148	0 5	153-3-1398-1077857425903147221575-127155		.0	180 164 194 152 162 141 127 153 154 157 156 156 156	11 42 560 11 1500 30 42 20 *2 14 14 24 *30 *2 32 20 44 *2 45 48 140 26 82 48 48 66 62 44 14 12 40 60 60 60 60 60 60 60 60 60 60 60 60 60
						<u> </u>			181								

STATE

INDIANA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. JOSEPH RIVER

STATION LOCATIONLAKE MICHIGAN AT

GARY, INDIANA

DATE						CHLORINE	DEMAND								<u> </u>		
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	(scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
7 11 61 7 18 61 7 25 61 8 16 61 8 22 61 8 29 61 9 12 61 9 12 61 9 26 61	15.6 13.5 12.9 22.1 21.3 21.2 22.6 17.1 11.8	8.4 8.4 8.6 7.7 7.2 7.0 7.6 8.0	8.4 8.1 7.9 8.3 8.1 8.2 8.2 7.7 8.0 7.9	1.2 1.6 1.6 1.8 .5 .8 .4 .1 1.3 1.0	10 10 11 16 19 13 13 16 - 12 13 -	1.0 1.2 .6 .9 .7 1.0 1.0 .9 1.2 .9	2.7 2.8 2.2 2.7 2.0 2.4 2.4 2.3 -		75 109 4 100 100 9 8 10 8	122 123 115 116 112 114 116 110 110 112	144 148 144 144 148 132 132 140 128	00 10 00 00 00 00 00 00 00 00 00 00 00 0	655410131542	18 22 29 26 32 28 19 16 23 20 25		180 180 169 175 166 153 150 149 170 189 167 144	15 18 93 60 44 46 180 52 130 26

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Supplied by U.S. Army Corps of Engineers U.S. Lake Survey

STATE

Indiana

MAJOR BASIN

Western Great Lakes

MINOR BASIN

St. Joseph River

STATION LOCATION

Lake Michigan at

Gary, Indiana

October	November	December	January	February	March	April	May	June	e (July	August	September
		FLOW	DATA	NOT	APPLICABLE		LAKE	LEVELS	ONLY			

STATE

WISCONSIN

MAJOR BASIN

WESTERN GREAT LAKES

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LAKE MICHIGAN, WESTERN SHORE

STATION LOCATION LAKE MICHIGAN AT

MILWAUKEE, WISCONSIN

DATE SAMPLE			WUD.	OACTIVITY IN V	VALEK] RAD	OACTIV	VITY IN PLAN	(KTON (dry)		PAD	IOACTIVITY IN W	ATED
	DATE OF		ALPHA			BETA				GROSS A		1		GROSS ACTIVIT	~
TAKEN	DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DATE O	ļ:-	ALPHA	BETA	1	SUSPENDED	DISSOLVED	TOTAL
D. DAY YEAR	NONTH DAY	μμς/Ι	μμε/	μμε/Ι	μμc/1	μμε/1	μμc/l	MO. D	Y	μμc/g	μμc/g	1	μμε/Ι	μμc/I	μμc/l
3 60	10 19	1	1	2	0	1	1								·
3 60 10 60	10 19	ō	õ	ō	ŏ	õ	ō								
17 60	10 19	Ö	ŏ ·	ŏ	0	ŏ	o l	ŀ	1					1	
24 60		o	ĭ	i	ŏ	٥	0	Į					1 1		
31 60		0	ō	ō	0	ŏ	0					1		1	
1	11 18		2	2	0 1	29	-					1			
7 60	2 6	0	2	2	0	29	29		i			1	1		
	11 28	- 1	1	1	_	6	0					1			
	11 30	0	-	1	0	- 1	0		1			1			
	12 6	0	1		0	1	1	1						ĺ	
5 60	1 5	0	1	1	0	0	0								
12 60	1 3	0	0	0	0	1	1					1			
17 60	1 12	0	1	1	0	0	0	1	- 1						
3 61	1 18	0	0	0	0	0	0	ŀ		j					
9 61	1 20	0	2	2	0	0	0					i			
16 61	2 1	0	1	1	0	٥	0	1							
23 61	2 6	0	1	1	0	0	0	ļ	- 1	ĺ		i	1		
30 61	2 16	0	0	0	0	0	0	i					1		
6 61	2 16	0	0	0	0	0	0 1	ļ		i		1			
14 61	3 2	0	0	0	0	ا ہ	o		ĺ	ļ					
20 61	3 6	0	1	. 1	o l	o l	ŏ	1	ı				1		
27 61	3 16	0	ī	ī l	οl	ŏ	ŏ					Ì	[[
6 61	3 17	o l	ō	ō	ŏ	o l	ŏ					l	1		
13 61	3 29	ĭ	ŏ	ĭ	ŏl	ŏ	ŏ					l	1	- 1	
20 61	4 3	ō	1	ī	ŏ	0	ő			j					
27 61	4 24	0	ō	ō	0	-	-	ĺ		i		1		j	
3 61		0	- 1	ŏ	- 1	0	0		1						
10 61	4 19	- 1	0		10	13	23	1							
	5 3	0	0	0	0	0	0		İ			1			
17 61	5 2	0	0	0	0	0	٥			1					
24 61	5 10	0	0	0	0	0	0	1		1		ľ	1		
1 61	5 16	0	1	1	0	0	0	1							
8 61	5 25	0	0	0	0	0	0	ļ	1			ł			
15 61	5 31	0	0	0	0	1	1		İ						
22 61	6 8	0	0	0	0	0	ا ہ	1		[ļ			
29 61	6 15	0	0	o 1	0	0	ا ه			İ					
	f		- 1	- 1	- 1	•]	·	ļ					1		
ı	Í		1	1		1		l							
	ł	1	Ī				ļ		1		ĺ				
ŀ			1	1					1	İ					
I		1	1			I	j								
1	1		i											ļ	
	ł]	1			j.							

STATE

WISCONSIN

MAJOR BASIN

WESTERN GREAT LAKES

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LAKE MICHIGAN- WESTERN SHORE

STATION LOCATION LAKE MICHIGAN AT

MILWAUKEE, WISCONSIN

			DARI	DACTIVITY IN Y	VATED		1		RADIOA	CTIVITY IN PLAN	(KTON (dry)	KAL	HOACTIVITY IN W	MILK
DATE			ALPHA	JACHVIII IN V	10124	BETA					CTIVITY		GROSS ACTIVIT	Y
SAMPLE TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL		DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
		μμc/I	μμc/I	μμε/Ι	μμς/!	μμε/1	μμε/ί		MO. DAY	μμε/g	μμc/g	μμc/l	μμε/1	μμc/l
D, DAY YEAR	MONTH DAY	μμε/1	PACIT		1	,,,,,,								
5 61	6 20	0	0	0	1 0	0	0							
12 61	7 25	ŏ	ĭ	1	0	0	0					İ	*	
19 61	6 30	ì	ī	2	0	٥	0							
26 61	7 26	Ō	0	O	0	0	0		i i					
31 61*	8 10	0	0	0	0	0	0							
28 61*	9 18	0	0	0	2	4	6]			
5 61	9 29	-	-	_	1	5	6							
11 61	10 3	-	-	-	0	0	0							
18 61	10 16	0	0	0	2	1	3							
25 61	10 2	-	-	-	0	0	0				1			
							Ì							
		Ì											į .	
													1	
													İ	
l		1			1									
						}				Ì	i i			
											1			
			1			ļ				Ì				
										}		ļ		
		1												
		1								Ì				
									ĺ					
		Į.			İ			ļ		İ	1		1	1
								1				i	Ì	ł
		1		ļ			1					1		
		İ												
				1							1			
								1						
							1					1		
	1		*											
	1			1			1				1			
								1		1				
			1	1		1		l .	1	1	1	1 1		1

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

WISCONSIN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE MICHIGAN, WESTERN SHORE

STATION LOCATION LAKE MICHIGAN AT

MILWAUKEE, WISCONSIN

				ALGAE (2	Vumber	per ml.)				INI	ERT TOM	Т				ATO					Τ.	Т	MICROIN	VERTER	RATES		
DATE OF SAMPLE	ļ	BLUE-	GREEN	GREE		FLAGEI (Pigm		DIAT	OMS	SHE	TOM ELLS er ml.)				SPEC	IES A	ID PE			\$	ROPLANKTON SHEATHED ml.)	ML.)	T		T	L PORMS	duction ication)
MONTH	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER- CENTAGE	SECOND*	PER-	THIRD#	PER. CENTAGE	FOURTH	PER.	OTHER PER- CENTAGE	OTHER MICRO FUNGI AND SI MACTERIA (No. per 1	PROTOZOA (No. per 1	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ARIMAL FORMS (No. per liter)	DOMINANT GENERA (See Introduction for Identification)
10	4400 300 300 300 400 200 1900 2400 1400 2200 1600 900 800 400 400 1300	20 20	20 20 40	20 70 40 20 40 80		20 20 20 20 20	20 60 20 20 20 20 40 20	4050 50 150 110 200 70 1320 1870 1170 660 270 790 1350 630 440 190 120 210 770	240 160 250 200 180 700 180 530 220 480 520 790 850 270 350 40 440	2000 90 40 70 160 200 360 310 250 170 100 250 60 120	50 110 160 90 180 360 360 110 500 150 120 180 100 80	83486666666644989994499	92223326344243355445554	950722789590050005577 950722789590050005577	20 10 10 20 10 10 20 30 30 10 20 20 20 20	475 982 947 947 947 947 947 925	10 10 10 10 10 10 10 10 10 10 10 20 10 10 20 10	4557708384972226627224 4898984722494	10 10 10 10 10 10 10 10 10 10 10 10 10 1	150 50 40 50 40 40 40 40 40 40 40 120 30 10 10 10 10 10 10 10 10 10 10 10 10 10	90 20	10 20 10 10	17 7 1 1 1 5 4 4 6 10 3 16 6 10 22 5 9 5 9	3 1 1 2 1 1 3 3 5 7 7 5 1 7 7 5 1 6 1 2 2 1 3 1 1 8 8 7	3	з	9 9-6 4-97- 9-7 7-9-7 7-9-7 7-97- 4 7

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

WISCONSIN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE MICHIGAN-WESTERN SHORE

STATION LOCATION LAKE MICHIGAN AT

MILWAUKEE, WISCONSIN

			·····												
DATE OF SAMPLE		E	TRACTABL	ES.		 				ORM EXTRA	CTABLES				
BEGINNING END									NEUTRALS	<u> </u>					
MONTH DAY YEAR MONTH DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 10 60 10 29 11 15 60 11 28 12 9 60 12 24 1 17 61 1 27 2 15 61 3 3 3 20 61 4 5 4 17 61 5 8 5 23 61 6 13 6 26 61 7 17 7 31 61 8 10 8 25 61 9 7 9 26 61 10 20	5414 5921 5242 5100 5157 5412 5102 4997 5119 5223 5332	178 114 145 124 181 157 178 167 198 116 122 157	33 19 16 32 39 44 51 44 29 31 26	145 91 126 108 149 118 134 116 154 92 131	1 1 1 2 2 2 3 4 4 1 2 2	10 6 5 4 7 10 12 16 13 9 9	8 8 6 6 7 9 12 11 13 8 7 6	11101325111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	664476886654	000000000000000000000000000000000000000	3 2 2 1 2 4 4 6 4 3 2 2	211123941222	100001111111111111111111111111111111111	8 5 4 2 11 10 9 8 5 8 4

STATE

WISCONSIN

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

WESTERN GREAT LAKES

MAJOR BASIN

LAKE MICHIGAN-WESTERN SHORE

STATION LOCATION AKE MICHIGAN AT

MILWAUKEE, WISCONSIN

	DATE					<u> </u>		CHLORINE	DEMAND									70741	
	F SAM		TEMP.	DISSOLVED	pН	B.O.D.	C.O.D.	1-HOUR	24-HOUR	AMMONIA- NITROGEN	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS	COLIFORMS per 100 ml,
MUNCH	DAY	YEAR	Contigrado)	mg/l		mg/l	mg/i	mg/l	mg/l	mg/l								mg/l	
10	3	60	16.0	9.5	8.6	1.8	8	1.1	3.9	•1	7 5	111	135 130	0	4 0	22 18	•0	160 165	370 13
10			6.6	10.3	7.7	1.4	6 4	• 8 • 4	1.6	•0	5	109	131	0	1	17	.0	148	30
10		60	6.5 9.1	10.9	7.8 8.3	1.1	4	7	2.0	•0	5	109	129	Ŏ	2	18	•0	149	74
10 10	24	60	6.6	10.4	8.0	1.2	4	•7	1.6	• 0	. 5	109	132	0	2	18	•0	139	12
11	7	60	8.8	10.9	8.2	.9	4	• 4	1.2	• 0	0	106	129	0	. 1	18	•0	151	22
11	14	60	7.1	11.5	8.2	1.5	4	• 6	2•3	•0	6	108	132	0	2	19	•0	131 160	30 1300
11	21	60	6.8	11.5	8 • 4	1.1	4	1.4	2.9	•0	7 6	109	135 132	0	1 2	21 18	.0	151	150
11	28	60	7.0	11.6	8 • 1 7 • 9	•8 •6	4 3	•6	1.3	•0	5	107	130	0	ī	18	.0	147	8
12 12	12	60	4.8 3.4	12.1	8.1	4	4	.6	1.3	•0	5	106	132	Ŏ	3	19	•0	141	. 6
12		60	2.3	12.7	8.1	-	4	• 5	1.2	•0	5	108	132	٥	1	18	•0	146	3
1	3	61	1.2	13.4	8.0	1.0	3	• 4	1.1	•0	5	108	130	0	1	18	•0	173	3
1		61	1.2	13.4	8.2	1.7	3	• 7	1.4	•0	6	108	133	0	2	19	•0	154	2 2
1		61	1.5	13.4	8.1	1.3	3	• 4	1 • 2 1 • 2	•0	6 5	109 107	132 133	0	1 1	17 18	•0	147 153	*1
1	23	61	• 3	13.6	8.1	•9 •7	4	•5	1.0	•0	6	109	129	6	1	18		154	*1
1 2	30	61	•3 •6	13.6	8.0 7.8	.6	4	• 4	1.3	•0	6	109	133	0	ī	20		158	2
2	14	61	•5	13.7	8.0	.9	5	•6	1.8	•1	5	112	131	1	0	19	.0	154	*6
2	20	61	1.0	13.6	8.3	•6	4	• 5	1.3	•1	5	108	132	1	1	18	•0	156	2
2	27	61	1.0	13.4	8.1	.8	4	• 5	1.4	•0	6	109	132	0	1	19	• 0	142	3 28
3	6	61	1.2	13.5	8.1	1.0	6	• 5	1.7	•0	6 5	110	131 131	0	1 13	20 19	•0	155 152	67
3 3	13	61 61	1.3 1.3	13.3	8.0 7.9	1.2 1.1	2 3	•7	1.6 1.6	•0	5	107	132	0	7	20	:0	160	6
3	27	61	2.6	13.0	8.1	.9	2	1.2	4.1	•0	8	110	135	o	4	22	.0	151	380
4	3	61	2.2	13.6	7.9	1.1	4	.8	1.7	•0	5	108	132	0	3	20	.0	155	5
4	10	61	2.6	13.1	8 • 2	• 8	6	•5	1.2	•0	6	107	132	0	5	19	•0	147	4
4	17	61	2.8	12.3	8.1	1.0	5	• 6	2.7	•0	5	111	131	0	9	21	•0	143 151	9 240
4	24	61	5.0	12.8	8.1	1.1	6 4	•9	2•2 1•9	• 0	7 5	113	131 133	0	3	22 20	•0	153	15
5 5	8	61 61	5•1 5•2	12.8	8•1 8•2	1.1 1.1	5	• 6	1.8	•1	6	110	134	0	2	18	. 0	153	140
5	15	61	5.6	12.6	8.3	1.3	5	• 9	2.0	.1	5	110	132	١٥	ī	19	.0	146	93
5	22	61	7.2	12.2	7.4	1.4	2	• 5	1.1	•1	5	111	129	0	1	18	.0	150	4
5	29	61	8.0	11.8	8.3	1.7	6	• 6	2 • 2	•0	7	106	131	0	2	20	• 0	152	130
6	5	61	8.0	11.9	8.3	1.3	2	• 8	2 • 4	•0	5	106	131	1	1	20	•0	151	21
6		61	9.2	11.7	8 • 4	•6	_	• 7	1.9	•0	5	106	131	0	1	19 19	•0	155 152	1 8
6 6	19 26	61	10.0	11.2	8 • 2 8 • 2	1.0 1.2	4 4	•6	2 • 2 1 • 7	•0	6 6	105	131 130	0	1 0	19	.0	156	*2
7	3		7.8	11.4	7.9	1.2	5	• 7	2.0	•0	6	105	130	1 6		19		148	4

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

WISCONSIN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE MICHIGAN-WESTERN SHORE

STATION LOCATIONLAKE MICHIGAN AT

MILWAUKEE, WISCONSIN

DATE OF SAMPLE						CHLORINE	DEMAND									TOTAL	
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	mg/l	HARDNESS mg/l	(scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	per 100 ml.
7 10 61 7 17 61 7 24 61 7 31 61 8 7 61 8 21 61 8 28 61 9 4 61 9 5 61 9 18 61 9 25 61	17.8 20.4 9.8 7.1	10.8 11.4 13.1 9.6 8.8 11.4 11.0 9.6 9.7	3331645201354 888 888 8 888	2.0 .8 1.1 .1 1.0 1.2 .9 1.6 .9	3 4 6 - 7 5 6 9 12 - 12 11 9	7 87 89 477 456	2.0 2.1 2.2 - 1.8 2.3 1.9 1.7 - 1.8 2.2 2.4	.0 .0 .1 .0 .1 .1 .1	776-57667-777	107 106 107 - 105 107 106 106 107 - 105 103 104	129 130 - 129 131 128 131 132 - 128 130	0001000	000000000000000000000000000000000000000	19 19 18 19 18 17 18 19 18 18 17	• • • • • • • • • • • • • • • • • • • •	162 152 148 - 149 148 141 148 151 147 147	1 11 1 17 *33 *33 -100 33 480 33

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Supplied by U.S. Army Corps of Engineers U.S. Lake Survey

STATE

Wisconsin

MAJOR BASIN

Western Great Lakes

MINOR BASIN

Lake Michigan-Western Shore

STATION LOCATION

Lake Michigan at

Milwaukee, Wisconsin

October	November	December	January	February	March	Apri	1 1	lay	June	July	August	September
Oc cone:	MOVENIDET	December	i	repruary	March	YPII	I		0016	- July	August	peptember
		FLOW	DATA	TOM	APPLICABLE		LAKE	LEV	ELS	ONLY		

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LAKE SUPERIOR

STATION LOCATION ST. MARYS RIVER AT

SAULT STE. MARIE, MICHIGAN

D. 4 2 2			RADI	DACTIVITY IN V	VATER			RADIOA	CTIVITY IN PLAN	(KTON (dry)	RA	DIOACTIVITY IN V	VATER
DATE SAMPLE	DATE OF	1	ALPHA		T	BETA				CTIVITY		GROSS ACTIVIT	
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR		μμε/Ι	μμε/Ι	μμε/1	μμε/1	μμε/1	μμς/ί	 MO. DAY	μμε/g	μμc/g	μ <i>μ</i> ε/l	μμε/Ι	μμε/Ι
MO. DAY YEAR 10 24 60* 11 28 60* 12 26 60* 1 30 61* 2 27 61* 4 24 61* 5 28 61 9 4 61 9 11 61 9 11 61 9 25 61	11 8 12 8 1 9 2 10 3 10 4 7 5 5 6 9 7 14	μμε/1 0 0 0 0 0 0 0 0 0 0	рис/Л 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	µµс/1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	μμε/I 0 0 0 0 0 0 0 0 0 1	μμε/I 0 0 2 1 0 0 0 3 4 0 0 1	иде/I О О О О О О О О О О О О О	MO. DAY	µµс/g	µµс/д	μμε/Ι	μμε/Ι	и <i>дс/</i> 1,

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE SUPERIOR

STATION LOCATION ST. MARYS RIVER AT

SAULT STE. MARIE, MICHIGAN

DATE				ALGAE (Number	per ml.)				IN	RT TOM					IATO							MICROIN	VERTEBR	ATES		
OF SAMPLE		BLUE-	GREEN	GREE	EN	FLAGEI (Pigm	LLATES ented)	DIAT	омѕ	SHE	LLS er ml.)		DOM (See	INANT Introd	SPEC	ies At for Co	ND PE de Ide	RCEN ntificat	TAGE:	s	SHEATHED ml.)	A ml.)	ter)	fer)	S ter)	rorms	ENERA fuction ication
MONTH DAY YEAR	TOTAL	соссоів	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER.	SECOND#	PER.	THIRD#	PER- CENTAGE	FOURTH	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICHO FUNGI AND SI RACTERIA (No. per 1	PROTOZOA (No. per n	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMA (No. per lite	DOWINANT GENERA (See Introduction for Identification)
10	200 100 100 100 100 200 100 200 400 300 200 200 100	20	20	20 20 40 80 40 20		20 20 20 20 20	20 70 60 20 60 80 40 20 20	50 20 20 50 70 20 170 20 40 80 60 40	70 70 20 40 20 70 110 90 250 330 170 80 210 120 40	50 20 70 20 70	70 370 20 50 130 50 50 20 160 150 150 150 190 120	25372557055 550 55554 996 999554	10 20 10 20 20 20 20 20 20 20 20 20 20 20 20 30 50 60 30 60 30 60 60 60 60 60 60 60 60 60 60 60 60 60	95 95 95 95 95 96 94 97 95 97 97 97 97 97 97 97 97 97 97 97 97 97	10 20 10 10 10 20	647 647 646 647 647 647 647 647 647 647	10 10 10 10 10 10 10 10 10 10 10 10 10	46 647 26 94 29 91 47 77 92 89 29 25 47	* 10 10 10 * 10 10 10 10 10 10 * * * * * * * * * * * * * * * * * * *	60 70 60 70 60 60 30 40 50 60 50 60 50 60 50 60 60 60 60 60 60 60 60 60 60 60 60 60	20 70 20 20 20 20 50 200	10	2 3 3 2 2 4 4 3 2 2 3 3 3 3 15 30 7 8 8 8 13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE SUPERIOR

STATION LOCATION ST. MARYS RIVER AT

SAULT STE. MARIE, MICHIGAN

DATE OF SAMPLE DATE	A. A.											· ·				CTAPLES				
REGINATION READ GALLONS FILTERED TOTAL CHLORO-FORM ALCOHOL RETHER INSOLUBLES TOTAL ALIPHATICS AROMATICS AROMATICS LOSS WEAK ACIDS ACIDS BASES LOSS							EX	TRACTABL	ES		 -					CIABLES				
10 3 60 10 18 7635		1	\dashv	Ť		GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES		TOTAL			OXYGEN- ATED	LOSS		STRONG ACIDS	BASES	Loss
	11 12 1 2 3 4 5 6 6 7 8 9	7 60 5 6 6 6 6 6 6 6 6 7 6 6 6 7 6	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 12 12 3 4 5 6 7 8	20 19 16 20 20 17 15 19 * 17 21	4717 5205 4702 4268 4500 4710 4635 42490 3840 4785 3603	124 115 125 124 143 110 118 113 114 116 102	19 24 17 23 25 26 34 20 27 21 22 13	105 91 108 101 118 84 76 98 86 93 94 89	1 3 1 1 1 1 3	7 8 5 7 11 10	44434	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 3 3 3 2	000000000000000000000000000000000000000	2 2 1 1 2 2	1 1 1 1 2	01000111011	4 5 10 5 - - 5

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE SUPERIOR

STATION LOCATIONST . MARYS RIVER AT

SAULT STE. MARIE, MICHIGAN

	DATE	-						CHLORINE	DEMAND										
	F SAM		TEMP.	DISSOLVED OXYGEN	pН	B.O.D.	C.O.D.	1-HOUR	24-HOUR	AMMONIA- NITROGEN	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS	COLIFORMS per 100 ml.
MONTH	DAY	YEAR	Centigrade)	mg/l		mg/l	mg/I	mg/l	mg/l	mg/l	mg/ i	mg/1	mg/1	(scale units)	(scale dillis)	mg/1	mg/i	mg/l	per 100 mi,
10		60	12.0	10.2	8.0	-	4 3	•3 •3	1.0	• •	1	47 45	46 45	0 5	4 11	_	1 1	-	6 7
10 10			12.5 12.0	10.0	8.0 8.0		3	.3	1.2	.1	ī	46	46	5	19	_	- 1	_	25
10			8.5	11.8	8.0	_	4	• 3	1 • 1	•0	1	47	45	5	10	-	-	-	25 10
10	31	60	10.0	11.6	8.0	-	3	• 3	1.0	•0	1	46	45 45	0	13 17	_	_	-	7
11		60	7•5 7•2	12.7 12.8	8 • 0 7 • 8	_	3	•3	1.0	•0	1	46 46	46	0	8	_	_	_	10 10
11 11			7.0	13.1	7.6	_	3	.3	1.0	•1	ī	46	45	ő	9	_		_	36
îī		60	6.0	13.3	. 7.8	-	3	• 3	1.1	•1	1	46	46	0	5	-	-	-	17
12	5	60	5.0	13.5	6.8	-	5	• 3	1.2	•0	1	46	46	0	7	-	-	-	11
12 12	12 19	60	1.3	15.0 16.4	7.8 7.6	-	3	•3	•7 •9	•0	1 1	46 46	45 45	. 0	3	-	_	_	4 11
12		60 60	•0	13.2	7.6	_	8	. 2	•6	•0	î	46	45	ŏ	2	_	-	-	1
1		61	•0	13.4	7.6	-	-	• 2	1.0	•0	1	45	45	0	2	-	-	_	*1
1		61	•0	13.8	7.6	-	-	• 3	•8	•0	1	46	46	0	3	-	-	-	2 *1
1		61	•0	13.7 13.7	7 • 8 7 • 6	_	_	• 3	•8 •8	•0	1	46 46	45 47	0	2	-	_	_	*1
1		61	•0	13.7	7.7	_	_	.2	• 9	•0	1	47	47	l ŏ	2	_	_	_	1 *1
2	6	61	•0	13.8	7.7	-	-	• 3	• 9	•0	1	47	47	0	2	-	-	-	2
2		61	• 0	13.8	7.6	-	-	• 3	• 9	• 0	1	47	45	0	2	-	-	-	1
2	20	61	•0	13.7	7•7 7•7	_		•3	•8 •7	•0	1	47 46	46 46	0	1	-	_	_	1
2	27 6	61	•2	13.7 13.5	7.6	_	_	.3	.8	.0	1	47	46	0	_	_	_	_	1 *1
3		61	• 2	13.4	7.6	-	-	.3	1.0	•0	î	47	47	ŏ	_	_	-	_	ī
3	20	61	• 2	13.7	7.6	-	-	• 3	• 9	•0	1	46	47	0	-	_	-	-	1
3 4	27	61	• 5	13.5	7.7	-	- 6	• 3	•9 •9	•0	1	46	46	0	-	-	-	_	*1
4	3 10	61	•5 •5	13.6 13.2	7•7 7•6	_	6	•4	1.0	•0	1	46 46	45 45	0	-	1	_	_	5 6
4	17	61	.8	13.3	7.6	_	6	.5	1.9	•0	1	46	45	٥	_	_	_	_	5
4	24	61	2.3	13.5	7.6	-	6	• 5	1.2	•0	1	46	45	0	-	-	-	-	*10
5		61	3.2	13.3	7.8	-	7	• 5	1 • 4	• 0	1	47	43	0	-	-		-	1
5 5	8 15	61	4.0 5.7	13.4 12.9	7.8 7.8	-	7 7	• 5 • 5	1.1	• 0	1 1	46 46	43 44	0	0	_	~	_	2
5		61	5.6	12.7	7.8	_	10	.5	1.0	.0	1	46	45	0	0 0	_		_	5
5	29	61	7.5	12.4	8.0	-	8	• 5	• 9	•0	ī	46	45	o	o	-	-	-	3
6	5	61	8.2	12.4	7.7	-	8	• 5	1.3	• 0	1	46	46	0	-	-	~	-	2 1 5 3 2 6
6 6	12 19	61	8.8	12.2	7.9	_	8 7	• 6	1.3	• 0	1	47	45	0	_	-	-	-	6
6		61	10.8	11.1	7.9	_	8	•5 •6	1.2	•0	1	46 46	46 44	0	- 0	-	_ [_	3 49
_									1.5										

STATE

MICHIGAN

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE SUPERIOR

STATION LOCATIONST . MARYS RIVER AT

SAULT STE. MARIE. MICHIGAN

DATE OF SAMPLE	темр.	DISSOLVED		B,O,D.	C.O.D.	CHLORINE	DEMAND	AMMONIA-	CHLORIDES	AŁKALINITY	HARDNESS	COLOR	TURBIDITY	SULFATES	PHOSPHATES	TOTAL DISSOLVED	COLIFORMS
DAY YEAR	(Degrees Centigrade)	OXYGEN mg/l	pН	mg/l	mg/l	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	mg/l	mg/l		1	(scale units)	mg/l	mg/l	SOLIDS mg/l	per 100 ml.
7 3 61 7 10 61 7 17 61 7 24 61 8 7 61 8 14 61 8 28 61 9 11 61 9 18 61 9 25 61	16.5 18.6 18.4 18.0 18.5 19.1 20.1 20.4 17.0	10.9 10.1 10.5 10.2 9.9 9.5 10.3 10.7 10.8 10.6 10.0	7.9 8.0 7.9 8.0 7.9 7.9 8.0 7.9 7.9		7 7 7 7 7 8 7 11 8 7 6	.6 .7 .8 1.0 1.0 1.0 1.0 1.1 1.1 .6 .6	1.5 1.7 2.0 1.9 1.8 1.7 1.8 2.1 1.3		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	42 40 41 39 42 41 42 40 40 40	44444535445 444444545354445	0000000000	000000000100		•0		- 8 11 14 6 47 12 9 5 15 16 36 140

MEAN MONTHLY FLOW - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Supplied by U.S. Army Corps of Engineers U.S. Lake Survey

STATE

Michigan

MAJOR BASIN

Western Great Lakes

MINOR BASIN

Lake Superior

STATION LOCATION

St. Marys River at

Sault Ste. Marie, Michigan

 October	November	December	January	February	March	April	May	June	July	August	September
92.000	73,000	68.000	67.000	67.000	66.000	66.000	68.000	69.000	65.000	57.000	57 .0 00

RADIOACTIVITY DETERMINATIONS

STATE

MINNESOTA

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE SUPERIOR

STATION LOCATION LAKE SUPERIOR AT

DULUTH, MINNESOTA

	,				/A 75D			RADIO	ACTIVITY IN PLAN	IKTON (dry)		RAD	OACTIVITY IN W	ATER
DATE				ACTIVITY IN W	AIEK	BETA				CTIVITY			GROSS ACTIVIT	Y
SAMPLE	DATE OF DETERMI- NATION		ALPHA		SUSPENDED	DISSOLVED	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	st	JSPENDED	DISSOLVED	TOTAL
TAKEN		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	μμς/I	μμε/Ι	MO. DAY	μμc/g	μμc/g		μμε/Ι	μμε/Ι	μμc/ 1
O. DAY YEAR	MONTH DAY	μμε/Ι	μμε/Ι	μμε/Ι	μμc/l	μμε/Ι	- PPG/1							
						٥	٥	1	†				1	
0 24 60*		0	1	1	0		ŏI	ļ.						
1 21 60*	12 22	0	0	0	0	0		1	1					
2 27 60*	1 11	0	2	2	0	0	0		ļ					
1 30 61*		٥	0	0	0	1	1	ı			. 1			
2 28 61*		0 1	0	0	0	0	0		1	İ				
3 27 61*		ō	0	0	. 0	0	0		ļ					
		ŏ	o l	Ó) 0	0 1	0				1			
		0	ő	Ō	0	0	0	l l	Ì					
5 29 61*			0 1	ō	0	0	0			ì	l i			
6 26 61*		0		Õ	l ŏ	3	3				1 1		!	
7 31 61+		0	0	0	3	اةا	3		1				İ	
8 30 61	9 18	O	0	_	٥	8	8	1	1		i I			
9 5 61	10 3	-	-	-	1		4		İ		1 1			
9 11 61	10 6	0	0	0	1	3			1					
9 18 61	10 18	0	0	0	1	0	1	i			1 1			
9 25 61	10 10	_	-		0	3	3	1	1	1	1 1			
, 25 01	100						i	ĺ		1				
					1		ì	,						
						1	- 1		1					
							ì							
	1	1												
							i .		1		1 1			
											1 1			
									ì		1 1			
	1	Ì			1									
								Ì		i				
					1	,					1 1			ļ
			'		i		l	1			1 1		1	
								1			1 1			1
								1			1 1		1	ì
	1				ļ					ì	1 1			1
					İ						1 1			
		i			1	1				1	1 1			1
	ì		i		ì					1			1	
						1		İ						
			ŀ		1		1				1 1			
			ļ		1		1			İ				
					1						1			
	1					1	1							
			1								1 1		1	
							1		1				1	
			i	[İ	1				
	1	{	1	i					1					

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MINNESOTA

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE SUPERIOR

STATION LOCATION LAKE SUPERIOR AT

DULUTH, MINNESOTA

DATE	1	<u> </u>			ALGAE (1	Vumber	per ml.)				INE	RT TOM	_				IATO	MS					Ī	MICROIN	VERTEB	RATES	T	
OF SAMP			BLUE-	GREEN	GREE	N	FLAGEL (Pigme		DIAT	омѕ	SHE (No. p	LLS				SPEC	IES A	ND PE	RCEN		s 	PELAKKTO HEATHED ml.)	t ml.)	S iter)	iter)	ES iter)	L FORMS er)	senera Aduction fication,
MONTH	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCÓID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER.	SECOND*	PER-	TH1RD#	PER-	FOURTH#	PER.	OTHER PER- CENTAGE	OTHER MICROPLANKYON, FUNG) AND SHEATHED BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORMS (No. per liter)	DOMINANT SENERA (See Introduction for Identification)
10 19 6 11 12 15 6 6 19 6 19	000000011111111111111111111111111111111	100 100 100 100 100 200 200 200 100 200 400 200 100		20	90 150 120 40 60		20 40 20	20 20 20	20 50 20 20 130 60 80 60 20 40 90 100 120	20 20 20 20 20 20 20 120 60 40 120 50 20	20 20 70 20 20 20 40 40 50 80	70 20 20 70 40 40 40 40 100 270 40 20	825 818 841 6608 692 602 6047 47	40 10 20 20 10 30 10 20 40 40 40 50 30 30 30 30 30 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40	86 47384 99946155954	10 10 10 10 10 10 20	28 69 56 91 24 30 91 60 94 99 91	10 10 10 10 10 10	56 60 8 4 8 4 9 9 5 6 5 5 9 8 5 8 9 8	10 10 10 10 10 10	400600 6005 5005 30020 4003 2004 300	90 20 70 40 60 40 3540 200	20 10	1 1 3 18 3 7 4	1 3 5 5 100 199			

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

MINNESOTA

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE SUPERIOR

STATION LOCATION LAKE SUPERIOR AT

DULUTH, MINNESOTA

		1	TRACTABL	EG					CHI OROF	ORM EXTRA	CTABLES				
DATE OF SAMPLE BEGINNING END			I						NEUTRALS					-	
T T	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
5 5 61 5 2 6 5 61 6 1 6 5 61 7 1 8 7 61 8 1 9 7 61 9 2	21 6195 19 6397 17 5595 20 5920 20 6247 18 5580 22 7733 19 7080 * 20393 19 5228 19 5580	110 96 96 97 130 * 106 81 82 88 155 111 93 116	23 16 12 18 23 18 28 16 22 21 34 20 18 22	87 80 84 79 107 * 78 65 60 67 121 91 75 94 **LAB	2 1 0 0 3 2 - 2 - 2 ORATORY	8 6 4 7 8 6 - - 7 ACCIDE	443333344 NT	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	22333322	0000001110110	2 1 1 2 2 3	2 1 1 1 1 1 1 1	0000011101110	53366455

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MINNESOTA

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE SUPERIOR

STATION LOCATIONLAKE SUPERIOR AT

DULUTH, MINNESOTA

	ATE							CHLORINE	DEMAND			1		1				· · · · · · · · · · · · · · · · · · ·	
I	AMP	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pН	B,O,D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	ȚURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/I	COLIFORMS per 100 ml.
10 10 1		60	4 • 4	12.6	7.6	•3	7	• 9	2.0	•0	2	43	41 -	0	0	2	•0	46	23
10 1	ĭ	60	5.6	12.5	7.5	•2	7	•7	1.8	•0	2	43	41	0	٥	2	•0	60	6
10 1	7	60	4.4	12.6	7.3	•5	6	•6	1.5	•0	2	42	44	Ŏ	ŏ	2	, ò	53	10
10 2		60	4 • 4	12.5	7.3	•5	6	•6	1.5	•0	2	42	43	O	1	2	• 0	57	3
10 3		60 60	4•4	12.7	7•7	.3	5 7	•7 •9	1.5	•0	2 2	43 43	41 41	0	0	1	• 0	48	3
11 1		60	4 • 4 4 • 4	12.5 12.6	7•5 7•3	•4	5	•8	1.7	•0	2	43	41	0	Ö	2	.0	64 49	4 *3
11 2	$i \mid i$	60	4.4	12.6	7.4	1.0	5	•7	1.5	.0	ō	43	42	Ŏ	ŏ	ī		48	8
12	5	60	3.3	12.9	7.4	•7	4	• 8	1.6	•0	2	43	42	5	5	1	• 0	73	9
12 1	2	60	3.3	13.0	7.4	•6	6	•8	1 • 8	•0	2	43	42	5	3	2	•0	61	96
12 1 12 2	7 1	50	3.9 3.3	13.0 13.3	7•5 7•5	•5 •8	4 4	•8 •9	1•7 1•7	•0	2 2	43 42	41 41	0	1 1	2 2	.0	48 55	6
		51	3.9	13.2	7.4	.9	3	•7	1.5	.0	2	42	41	1	1	2		56	2 2
1 '	9	51	3.3	13.3	7.4	1.0	4	• 7	1 • 4	•0	2	44	42	ī	1	1		60	2
1 1		61	3.3	13.0	7.5	• 4	4	• 8	1.6	•0	2	42	41	1	1	1 1	•0	52	*1
1 2:		51	2.8	13.2	7.4	•3	4	• 9	1.5	•0	2	43	41	1	1	1	•0	58	2
1 3		61	2.8	13.2 14.0	7.6 7.4	•3 •3	4	•9	1•9 1•7	•0	2 2	44 46	43 44	5 0	0 1	1 2	•0	58 70	4 1
2 1		51	1.1	14.1	7.7	•3	3	.8	2.0	•0	1	45	44	0	1	ī		53	2
2 2	0	51	1.1	13.9	7.6	• 3	3	•8	2.0	• 0	1	43	42	0	0	ī	.0	53	ī
2 2		51	1.1	14.0	7.5	•4	3	•7	1.7	•0	1	43	42	0	0	1	•0	53	-
2 2	8 6 6	51	1.1	13.9	7.5	•2	2	- -7	1.7	•0	1	44	44	0	-	-	-	- / 0	*1
3 1		51	1.1	13.8	7.4	• 2	2	.7	1.7	•0	1	43	42	0	0	1 - 1	•0	49 52	1 1
3 20	0 0	51	•6	13.9	7.5	• 3	6	• 6	1.5	•0	2	44	43	ŏ	Ŏ	2	.0	56	9
3 2		51	1.1	13.6	7.5	• 3	6	•8	2 • 0	•0	2	44	43	5	2	3	•0	53	5
4 1		51 51	1.7	13.9	7•5 7•6	•1 •2	6 3	• 9 • 9	1.9	•0	1	45	44	5	1	4	•0	58	*1
4 1	7 7	51	1.1	13.8	7.6	. 2	9	1.0	2.0	•0	2 1	45 44	44 44	5 5	1	4 5	•0	64 44	*1 6
4 2		51	1.7	13.7	7.6	.1	9	.9	2.1	•0	1	46	44	5	2	4	.0	60	6
		51	2.8	13.3	7.6	• 2	9	1.1	2 • 2	• 0	2	44	44	o	3	2	.0	52	54
		51	3.9	13.4	7.6	• 3	9	- 8	1.7	• 0	2	42	43	0	0	3	•0	55	-
5 1		51	2.2	13.7	7•6 7•5	• 3 • 4	7 8	1.0	2.0	•0	2	45	44	5	2	2	•0	50	84
5 2	ء ا د	51	2.8	13.5	7.6	• 4	8	• 8	1.9	•0	2 2	44 43	43 43	5 0	4 1	3 2	•0	63 60	100
5 29	9 6	51	3.3	13.5	7.7	.3	8	. 9	1.9	•0	2	42	42	0	1	3		58	-
6 2	2 6	51	-	-	-	-	-	-	-	-	_	-	=	_	_	_	-	-	3
6 5	5 6	1	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	1
		1										l							

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MINNESOTA

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE SUPERIOR

STATION LOCATIONLAKE SUPERIOR AT

DULUTH: MINNESOTA

DATE				. [·	CHLORINE	DEMAND						TURBIDITY '	SULFATES	PHOSPHATES	TOTAL DISSOLVED	COLIFORMS
DAY A A A A A A A A A A A A A A A A A A	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	(scale units)	mg/I	mg/l	SOLIDS mg/l	per 100 ml.
6 11 61 6 12 61 6 12 61 6 13 61 6 26 61 7 11 61 8 7 61 8 7 61 8 7 61 8 7 61 8 7 61 8 7 61 8 7 61 8 7 61	11.1 4.4 15.6 11.7 13.3 13.3	10.6 11.8 10.9 10.6	7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	63 - 35 - 675636323	96-11110-99108810788899	.8 .9 .8 1.0 .7 .6 .6 .7 .5 .8	2.0 1.6 1.9 2.1 1.5 1.6 1.8 1.4 1.6 1.5 1.6	00 1 00 1 00 00 00 00 00 00 00 00 00 00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	42 42	44 43 44 44 44 44 44 44 44 44 44 44	I	0 1 0 0 0 2 0 0 0 0 0 1 1	33 33 33334333	•0	61 4-9 6-5 55 55 55 55 55 56 65	1 1 1 50 4 21 40 4 - 2 8 7 9

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Supplied by U.S. Army Corps of Engineers U.S. Lake Survey

STATE

Minnesota

MAJOR BASIN

Western Great Lakes

MINOR BASIN

Lake Superior

STATION LOCATION

Lake Superior at

Duluth, Minnesota

06	ctober	November	December	January	February	March	April	May	June	July.	August	September	
			FLOW	DATA	NOT	APPLICABLE		LĄKE	LEVELS	ONLY			

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER HUDSON RIVER

STATION LOCATION HUDSON RIVER BELOW

POUGHKEEPSIE, NEW YORK

				1 CTIVITY IN 1	/ATED			RADIO	CTIVITY IN PLA	NKTON (dry)	RA	DIOACTIVITY IN W	
DATE				ACTIVITY IN Y	AIER	BETA		DATE OF	GROSS	ACTIVITY		GROSS ACTIVIT	
SAMPLE	DATE OF DETERMI- NATION		ALPHA		SUSPENDED	DISSOLVED	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
TAKEN		SUSPENDED	DISSOLVED	TOTAL		μμc/l	μμε/Ι	MO. DAY	μμε/g	µµс/g	μμς/Ι	μμς/Ι	μμc/l
O. DAY YEAR	MONTH DAY	μμε/Ι	μμε/Ι	μμε/Ι	μμς/Ι	рре/1						1	
	_	_	_	2	1 0 1	1	1				ļ		
0 12 60*		0	2	2		3	ā	İ					
0 19 60	11 21	-	-	3	0	ő	ōl	l l			İ		
1960₩		1	2	<i>-</i>	0 1	١	ŏ	1					
1 30 60*		_	-	2	0	3	a l		1				
2 14 60	1 12	0	2	_	0	ō	0			1	İ		
2 28 60	1 18	-	- 1	0	ŏ	ĭ	i	Ì			İ	1 1	
1 11 61*	1 27	0	0	_	l ő	ō	ō			1			
2 1 61*	2 16	_	-		0	0	ŏ		1		ļ		
2 15 61*	3 2	1	0	1	0	ŏ	ŏ	İ		1		1	
3 1 61	3 22	_	-	-	3	ŏ	3	1					
3 15 61*	3 27	2	0	2	٥	ŏ	اة	ļ	ł	1			
3 29 61	4 12	-	-	-	0	ŏ	ŏ İ	i			ļ		
4 12 61*		1	0	1	0	0	ŏ						
4 26 61*	5 15	-	-	_	0	0	ŏ	ļ	İ		ı İ		
5 10 61*	5 25	0	0	0		0	o l	1	1				0
5 24 61	7 5	0	0	0	0	3	4	1	1				
6 14 61*	7 17	0	0	0	1	0	2		1	}			
6 28 61	7 31	_	-	-	2		ا ہ	1			l l		
7 12 61	8 7	_	-	_	0	0	2		Į				
8 2 61	8 31	-	-		0	2	6		1			ļ	
8 16 61*	9 19	_	-	_	0	6	- 1		ì				
8 30 61	9 25	-	-	-	6	6	12	į	1		1 1		
9 13 61	10 27	_	-	-	8	5	13	1		İ	1 1	İ	1
9 20 61	10 11	-	- '		5	3	8	ì			1 1		
, 20 01	10	1			l	!		1			1		
	1	Į.			ļ				1	ĺ	1 1		
					1					1	1 1		
					ļ								
							1 1	l]	1
								į				1	
	i				1				ļ		1 1		
										ì	1		
		Į			1				i	1			
	1	1						İ	1				
	1								1	[
	1												
									1		1	.	
									1		!		
	1				1							ł	Į.
						1							1
	1		İ						l				

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

LOWER HUDSON RIVER

STATION LOCATION HUDSON RIVER BELOW

POUGHKEEPSIE , NEW YORK

DATE					ALGAE (1	Number	per ml.)				INE	RT TOM		<u> </u>			IATO						T	MICROIN	VERTEBR	ATFS		
OF SAMPL	LE		BLUE-	GREEN	GREE	EN	FLAGEL (Pigmo		DIAT	омѕ	DIA' SHE (No. p	LLS		DOM (Se	INANT	SPEC	IES A	ND PE	RCEN nti/icat	TAGES	3	ROPLANKTON, SHEATHED ml.)			I	1	TORIES	uction sation)
МОМТН	YEAR YEAR	OTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER.	SECOND#	PER- CENTAGE	THIRD#	PER. CENTAGE	FOURTH	PER-	OTHER PER- CENTAGE.	OTHER MICROPLANK FUNCI AND SHEATH BACTERIA (No. per ml.)	PROTOZOA. (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES '(No. per liter)	(No. ner liter	DOMINANT GENERA (See Introduction for Identification)
10 19 6 11 2 6 11 16 6 12 7 6 12 28 6	51 51 51 51 51 51 51 51 51 51 51 51	300 400 800 700 1200 100 300 600 400 1100 1200 800 700 700 800 1000 800 700	20	20 60 20	20 50 220 20 20 40 20 60 40 40 40 40		70 50 20 90 20 20 20 150 190 130 20 60 40 100 60	70 20 70 20	200 270 530 630 1160 9 700 540 370 480 390 540 460	50 70 90 130 220 20 250 220 160 390 520 190 190 270 60 290 100	70 350 570 340 90 20 20 20 20 170 40 650 170	130 290 130 270 110 20 400 200 310 350 230 400 120 120 120 120 120 120	88866689882696868969996 1126	20 10 40 30 10 20 10 20 10 20 10 20 20 20 20 30 40 30 40 30 10 20 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	19 29 58 58 29 29 58	10 10 10 10 10 10 10 10 10 10 10 10 20 20 20	19699968952962586898889 6258555629555629	10 10 10 10 10 10 10 10 10 10 10 10 10 1	29 57 82 58 58 58 58 59 59 59 59 59 59 59 59 59 59 59 59 59	10 10 10 10 10 10 10 10 10 10 10 10 10 1	00000000000000000000000000000000000000	20 20 90 20 20 20 170	10 10 10 30 10	13118119494362 1 4445516 4 427	10 4 3 2 5 2 2 2 6 5 4 2 1 3 5 2 2	1 8 3 1 1 1 1	44	

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

LOWER HUDSON RIVER

STATION LOCATION HUDSON RIVER BELOW

POUGHKEEPSIE, NEW YORK

														CHLOROF	ORM EXTRA	CTABLES				
_			OF SA]	EX	TRACTABL	ES					NEUTRALS						
	<u> </u>	DAY	YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
	3 5 6 8	2 7 9 16 15 3	60 61 61 61 61 61	11 12 2 2 3 5 6 8	24 11 19	5372 5465 5266 5400 5893 5381 6270 5214	172 203 243 273 245 148 150 152 211 184	50 58 66 62 73 38 62 53 97 84	122 145 177 211 172 110 88 99 114 100	1 2 3 3 1 0 3 1 5 2	10 12 15 11 15 8 15 12 18 17	16 18 21 27 26 17 21 19 29 26	2223524343	2 2 2 3 3 2 3 3 2 2	20 17 12 13 13 21	1 1 1 1 1 0 2 2	7 8 9 8 9 5 8 7 14 13	2 5 5 8	1 1 1 1 0 1 1 1 2 2	10 12 12 8 15 6 9 8 22 14

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

LOWER HUDSON RIVER

STATION LOCATIONHUDSON RIVER BELOW

POUGHKEEPSIE, NEW YORK

DATE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	E DEMAND			1				1	Γ]
MONTH DAY YEAR	(Degrees Centigrade)	OXYGEN mg/l	pН	B,O,D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10 5 60 12 60 12 60 11 12 60 60 11 12 12 12 12 12 13 14 12 15 61 12 61 61	17.17.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	5.8 6.1 6.2 8.0 8.2 8.5 9.1 9.4 11.0 10.8 	7.3 7.4 7.5 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	1.0 1.5 1.4 .6 1.8 1.3 2.0 2.0 2.0 1.3 1.4	12 14 14 16 16 16 15 14 18 18 23 - 21 24 24 24 24 27 19 18 18 18 18 18 18 18 18 18 18 18 18 18	522 - 26 - 5 4 4 - 1 1 1 1 - 1 1 2 2 1 1 1 2 2 1 1 1 2 2 3 3 2 3 4 3 3 3 2 3 4 3	2 · 3 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6666666686666666666666666666664643434	3822018-9292996-40428874324252161488 454555555544444445548	777 721 88 98 88 88 88 89 88 77 88 88 88 77 88 88 88 77 88 88 88	25 18 18 23 25 18 18 23 25 23 18 18 18 25 23 25 18 18 25 23 25 18 18 25 25 18 18 25 18 25 18 25 18 25 18 25 18 26 18 27 18 27 18 28 28 28 28 28 28 28 28 28 28 28 28 28	34 33 25 11 9 23 115 15 13 10 10 228 28 18 50 43 35 12 18 32 24 14 65 40 40 40 40 40 40 40 40 40 40 40 40 40	18 19 13 18 18 18 20 16 14 30 18 13 12 15 20 18 10 18 13 22 23 23 22 23 24 26 18 20 20 20 20 20 20 20 20 20 20 20 20 20			1700 640 2000 3900 800 5100 1400 8100 730 2700 2600 5800 2800 2100 3100 2800 400 1100 400 1800 500 200 1400 1400 1400 1300 3100

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

LOWER HUDSON RIVER

STATION LOCATIONHUDSON KIVER BELOW

POUGHKEEPSIE, NEW YORK

DATE							CHLORINE	DEMAND	AMMONIA-								TOTAL	
OF SAMP	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	CHLORIDES mg/l	mg/I		(scale units)	TURBIDITY (scale units)	sulfates mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
8 2 8 16 8 30 9 13 9 20	61 61 61 61	25.8.24.8	4.6 4.6	7.27.37.2	1.0	8 12 11 -	-5 3 \	3.0 2.3 2.3	-1 •1 •1 	456	44 44 40 -	82 84 88	23 18 -	22 22 22	20 20 23	i		1600 2200 900 1000 1400 6900

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Green Island, New York Operated by U.S. Geological Survey STATE

New York

MAJOR BASIN

Northeast

MINOR BASIN

Lower Hudson River

STATION LOCATION

Hudson River below

Poughkeepsie, New York

Day	October	November	December	January	February	March	April	May	June	July	August	September
ı	8.950	7.500	11.200	4.840	5.090	36,600	19.600	06 700	0.0			··
2	7.850	8.800	9.830	2.990	3.820	27.000	18.900	26.700	8.830	7.910	6. 370	9.140
3 4	5.340	9.980	8.680	2.990	3.740	23.200	17.500	24.200	9.670	6.970	7.180	7.120
4	7.140	9.440	6.970	5.420	3.820	23.400		24.800	11.900	7.110	6.970	4.700
5	6.410	9.850	4.880	5.700	3.450	22.300	15.800	21.900	11.900	7.110	8.210	5.710
				J. 100	3.470	22.300	13.300	20.100	10.000	6.640	6.640	5.910
6	6.190	8.240	7.550	5.820	2.190	24.400	10.600	36 700				, ,
7	6.290	6.900	7.550	4.790	4.200			16.700	10.600	7.550	5.410	7.630
8	6.450	8.340	7.620	4.700	4.290	31.200	11.500	17.200	10.200	7.180	2.990	6.770
9	4.410	8.290	7.910	3.290	4.290	28.500	11.500	20.300	9.750	6.970	5.290	6.640
LÓ	3.630	7.760	6.430	5.000		23.700	11.900	20.000	11.600	5.920	6.300	5.680
	3, 0,00	1.100	0.430	5.090	4.420	19.800	9.910	27.700	14.700	4.740	6.240	4.380
1 2	5.940	10.100	5.570	5.250	4.290	7.7.000				-		500
2	6.060	11.100	3.780	5.420		17.200	11.600	32.200	18.900	5.860	6.640	3.780
.3	5.870	7.880	5.680		3.410	16.000	19.400	28.300	14.100	6.430	5.860	5.860
.3 .4	5.830	6.350	5.570	4.950	1.950	14.800	23.800	25.100	15.200	5.990	3.860	6.570
.5	5.010	7.890		4.740	4.080	14.200	28.700	22.000	16.600	8.760	2.920	6.180
.,	7.010	1.090	9.240	3.950	4.200	14.100	22.800	17.100	17.100	11.900	4.640	6.430
.6	3.120	7.220	8.600	2 000	1. 202	-1 1			·		10010	0.430
7	3.250	7.960	10.200	3.220	4.380	14.400	22.100	17.200	14.300	9.080	5.290	5.510
.7 .8	5.680	8.070		4.900	4.470	13.500	28.400	19.900	11.900	9.240	5.570	4.380
.9	5.650		9.830	4.990	4.160	12.100	28.300	16.000	10.200	11.000	5.680	4.160
0	7.280	7.940	7.770	4.650	4.700	11.200	25.100	14.900	9.830	10.800	4.460	
.0	1.200	5.710	8.210	4.470	5.880	10.900	24.200	13.200	8.600	8.920	4.200	5.410 6.970
1	10.300	4.110	9 500	2 000	1					0.,20	4.200	0.970
2	7.170	6.950	8.500 6.600	3.820	10.400	10.400	20.200	12,000	8,680	8.210	3.530	7.040
-	5.930	6.970		2.990	11.100	11.200	21.500	10.100	17.000	6.060	5.800	
3 4	5.510		6.530	1.920	12.100	11.200	30.800	10.600	24.700	5.570	6.300	5.920
- 5	8.440	6.870	5.700	4.250	16.200	12.700	40.200	10.100	23.400	4.510	6.060	3.950
,	0.440	6.480	4.560	4.160	34.200	16.100	38.500	10.200	16.400	7.480	5.680	4.380
6	11.900	6.870	2 020	h ala	0	_				1.500	7.000	3.740
7	11.900	4.650	3.030	4.340	71.800	18.100	39.900	10.100	13.700	10.600	7.690	5 250
5	10.100	4.190	3.580	3.870	75.900	16.900	37.500	9.670	12.600	10.200	12.400	5•350 6•640
9	8,910		6.200	3.490	52.500	23.500	29.700	11.000	11.500	9.240	7.180	
)		6.570	6.260	2.390		32.000	29.400	9.910	10.600	7.180		5.920
,	7.520	9.040	6.140	1.980		31.200	33.400	10.700	9.490		8.600	5.800
L.	4.180		5.310	4.420		23.700	55	10.200	J• +JU	4.990	8.760	3.950
						3.1-5		~~. ~~·		4.240	9.140	

STATE

ILLINOIS

MAJOR BASIN

UPPER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

ILLINOIS RIVER

STATION LOCATION ILLINOIS RIVER AT

PEORIA: ILLINOIS

DATE			` RADIO	DACTIVITY IN V	VATER			R.A	DIOAC	TIVITY IN PLAN	IKTON (dry)	RAC	HOACTIVITY IN W	ATER
SAMPLE	DATE OF		ALPHA			BETA		DATE DETE NAT	OF	GROSS A	CTIVITY		GROSS ACTIVIT	Y
TAKEN	DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	NAT	ION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
D. DAY YEAR	MONTH DAY	μμc/l	μμc/l	μμε/Ι	μμε/Ι	μμc/l	μμς/Ι	мо.	DAY	µµс/g	μμc/g	μμс/1	μμc/l	##c/l
			_		_	_	.	- 1				Ì		
3 60	10 13	1	3	4	0	1	1						1	
10 60	10 20	1	1	2	0	9	9							
17 60	11 14	1	2	3	0	0	0		1				1 1	
31 60	11 10	0	3	3	6	0	6 3	1						
7 60	11 23	9	3	12	3 0	0	ő		-		1	ł		
1 14 60	11 29	1 1	6	7	0	0	0				1	ł		
1 21 60	12 1	0	4	4		6	6				\			
1 28 60	12 7	2	2	4	0	o	ŏ		l		}			
2 5 60	12 15	2	4	6 5	0	0	ŏ		- 1		}	ĺ		
2 12 60	12 28	1	4 2	2	1 6	0	ŏ		1		<u> </u>			
2 19 60	1 16	0 2	4	6) ŏ	43	43	1			1		1	
2 27 60	1 10	1	6	7	o	25	25	- [- 1		1			
1 3 61	1 11	0	4	4	l ŏ	<u> </u>	1		ļ			İ		
1 9 61	1 23	2	2	4	ŏ	10	10	İ			1	ì	ĺ	
1 16 61 1 23 61	2 7	0	2	2	0	0	0)				1			
1 23 61 1 30 61	2 17	2	2	4	0	8	8		ļ					
2 6 61	2 17	o	ī	1	0	0	0]		1			
2 13 61	3 3	0	l ī	1	0	0	0	- 1	1					
2 27 61	3 20	o	1	1	0	0	0	ļ	Ì		1			
3 6 61	3 22	l	2	3	1	0	1	-	İ		1	i		
3 13 61	3 29	2	0	2	0	21	21	-	j					
3 20 61	4 3	0	0	0	0	1	1 1	ļ	ı					
3 27 61	4 14	4	1	5	4	0	4							
4 10 61	1	0	2	2	0	0	0					i		
4 24 61		1	0	1	0	0	0	1						
5 8 61	1	1	4	5	4	0	4			ì				
5 29 61		2	3	5	2	0	2	- 1				İ		
6 12 61		1	0	1	0	17	17	ļ		1			1	1
6 26 61		0	1	1	0	8	8 0	ļ					1	
7 10 61	1 .	1	3	4	0	0	10	1		ļ				
7 17 61	8 29	1	1	2	10	0	11	1		ŀ	ì			
8 14 61	.1	1	1	2	11	0	1 0	1			1			
8 28 61		0	1	1	0	0	8	İ		ļ				
9 5 61	1	-	-	-	0	8	20	- 1					- [
9 11 61			-	-	0	20	0					1		
9 11 61	10 23		-	-	0	O	6						1	
9 25 61	10 2	0	0	0	0	6	"							
, 25 GI						1								1
		1	1		1		t i	1			1			

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

ILLINOIS

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

ILLINOIS RIVER

STATION LOCATION ILLINOIS RIVER AT

PEORIA: ILLINOIS

DATE				ALGAE (Number	per ml.)				IN	ERT	т —										,					
OF SAMPLE		BLUE	GREEN	GREE	N		LLATES ented)	DIAT	омѕ	DIA	TOM ELLS per ml.)		DOMI (See	NANT	SPEC	IATO IES A for Co	ND PE	RCEN	TAGES	s	ROPLANKTON, SHEATHED ml.)	-	T	NVERTEB	T	OFFICE	ction (tion)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE		T	FIRST#	PER.	SECOND*	PER. CENTAGE	THIRD#	PER.	FOURTH*	PER.	OTHER PER- CENTAGE	OTHER RICROPLAN FUNCI AND SHEATS SACTERSA (No. per ml.))Z0	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL P	4 E 5
10	22900 7900 11600 32500 10400 18300 4300 12700 13900 31800 48600 2300 19700 43300 40000 58700 8800 18500 8100 5800	140 150 20 220 20 160 120 250 40 540 70 7440 20 20	90 130 440 70 90 1260 5710 4000 200 40	1300 680 840 1060 150 70 70 110 1550 1430 200 2150 17780 4510 6340 12590 1740 1550		4740 3750 1860	630 800 530 400 110 20 270 110 60 620 1210 290 40		11170 2070 380 570 310 250 760 510 940 7950 470 2460 4000 9460 12690 12690 1820 1430	2310 1870 3040 1410 680 470 1770 180	340 510 690 1300 560 1010 470 850 1140 1350 1160 980 250	8333322222 8888888888888888888888888888	30 40 60 80 60 20 70 40 20 50 30 30 70 20 50 50 50	6228295689970895566688955666888	10 20 20 20 30 20 10 20 30	5685663655889958888886866666666666666666	20 20 10 10 10	26658 558267 562558 5682 5682 5682 5682 5883 5883 5885 5885 5885 5885 5885 58	* 10 10 * * 10 10 * 10 * 10 * 10	20 10 20 10 10 20 40 40 30 30 30 40 10 20 ***	20		272266244707417731228885524064615499996225443611555	2		3	-8967 48937 48937 4997 3294- -93- 34933 84933 71933 71933 71933 71923 34933- 8927 7496- 788967 4233- 48867 48867

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE ILLINOIS

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

ILLINOIS RIVER

STATION LOCATION ILLINOIS RIVER AT

PEORIA: ILLINOIS

DATE OF SA				EX	TRACTABL	.ES		,				ORM EXTRA	CTABLES		,		
BEGINNING	EN	1D	CALLONS								NEUTRALS	<u> </u>					
MONTH DAY YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
2 20 61 4 24 61 6 12 61 8 15 61	3 5 6	4 4 4 23 16	4899 4998 3446 195	378 314 515 * *	111 102 239	267 212 276	2 2 5 -	19 18 36 -	57 44 102	2 4 13 —	4 4 11 -	46 35	5 1 2 -	15 16 36 -	7 8	3251	8 12 31 -

STATE

ILLINOIS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

ILLINOIS RIVER

STATION LOCATIONILLINOIS RIVER AT

PEORIA, ILLINOIS

DATE					<u> </u>	CHLORINE	DEMAND										
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/I	pH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10 3 60 10 60 10 10 60 10 60 10 60 10 60 10 60 10 60 10 60 10 60 10 60 10 60 10 60 10 60 10 60 10 60 10 60 10 60 10 60 10 60 6	18.5 19.0	9.4 10.9 8.6 9.9 13.7 12.4 13.7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	8.5.3.3.4.7.7.0.0.0.0.9.1						0365431872556-711387311478845 222222333333332	164 168 168 170 194 188 180 174 172 186 176 176 158 158 158 154 156 162 130	282 270 2794 2870 2870 2870 2870 2870 2870 2870 2870	255 255 255 255 200 205 205 205 205 205	70 70 55 70 35 70 65 1800 1800 110 98 98 65 65 65 85 150				300 100 140 200 190 86 190 140 100 500 950 950 350 360 100 250 200 400 1900 1900 1200 14000

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Kingston Mines, Illinois Operated by U.S. Geological Survey STATE

Illinois

MAJOR BASIN

Upper Mississippi River

MINOR BASIN

Illinois River

STATION LOCATION

Illinois River at

Peoria, Illinois

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	6.440	6.650	7.460	8.200	3.500	8.760	15.500	25.200	8.190	7.460	7.120	5.210
2	6.300	7.170	6.900	7.500	2.300	8.130	15.400	24.800	8.790	6.820	7.760	5.370
3	6.300	7.170	7.300	7.000	4.000	7.790	15.500	24.000	8.770	7.120	9.060	5.660
4	6.350	7.350	7.420	6.700	4.800	6.300	15.200	23.700	9.070	7.520	10.100	7.220
5	6.150	7.070	7.250	7.000	4.820	6.300	12.500	22.800	8.630	8.100	10.800	8.850
6	5.800	7.580	8.130	7.200	4.100	7.190	10.300	21.800	9.070	7.400	11.000	8.950
7	5.870	7.420	8.520	7.200	4.440	7.270	9.540	21.600	9.020	7.090	10.200	9.080
8	5.630	6.910	8.800	6.600	5.040	10.100	9.610	21.100	9.350	7.440	10.300	8.950
9	5.070	7.840	8.260	6.400	4.100	12.400	10.000	20.800	10.500	7.160	10.000	7.950
10	4.670	7.530	8.150	6.800	4.890	11.300	9.970	20.200	9.950	7.350	9.610	7.870
11	4.870	7.070	7.850	6.400	4.820	11.600	9.600	19.600	10.200	7.220	8.910	7.740
12	5.160	7.090	8.270	6.800	5.570	12.200	10.600	18.400	10.700	6.900	10.400	7.360
13	5.540	7.420	7.730	7.000	6.240	14.200	10.500	17.400	12.600	7.220	10.800	8.820
14	5.130	7.250	7.610	6.950	5.630	17.500	9.750	16.900	13.500	6.880	9.610	21.200
15	6.390	7.090	7.950	6.950	6.280	21.000	10.400	16.500	14.100	6.840	7.960	23.000
16	7.200	7.660	8.080	6.770	6.280	20.600	11.100	17.400	15.000	6.540	7.570	23.000
17	6.770	8.360	7.650	5.850	6.980	20.200	10.700	16.400	15.800	6.730	7.330	22.100
18	6.380	8.520	7.520	4.960	7.700	20.200	10.600	16.700	14.400	6.650	7.160	21.000
19	5.850	8.090	7.240	4.960	7.520	20.000	10.500	16.300	10.300	5.460	7.060	19.900
20	5.600	7.950	6.960	4.910	7.660	19.800	11.300	15.900	9.550	5.780	6.740	18.800
21	5.520	8.110	7.000	4.800	8.520	19.000	15.700	16.100	8.720	6.180	6.630	16.300
22	5.440	7.340	7.000	4.700	8.650	18.800	18.900	16.100	7.420	5.250	6.550	9.720
23	5.870	7.650	6.600	4.500	9.510	19.100	20.700	15.100	7.230	5.860	6.090	12.300
24	5.510	7.240	6.600	4.500	10.600	19.500	21.200	11.200	7.120	6.850	5.960	23.100
25	5.080	7.870	7.000	4.300	10.900	19.000	21.600	4.890	6.610	8.240	6.140	28.200
26 27 28 29 30 31	5.540 5.370 5.470 5.270 5.270 6.470	7.070 *7.240 8.420 8.130 7.950	8.000 8.850 8.720 8.710 8.870 9.050	4.500 4.500 4.500 4.300 4.500 4.300	9.910 10.200 9.910	19.000 17.500 19.500 19.900 19.500 16.500	22.100 23.400 25.200 24.900 25.300	4.340 5.360 5.530 6.880 7.200 7.340	7.100 7.900 7.290 7.070 7.870	8.340 8.750 8.750 8.800 9.000 7.950	5.900 5.900 6.140 5.270 5.160 5.130	30.200 33.600 36.900 38.300 35.200

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

KANAWHA RIVER

STATION LOCATION KANAWHA RIVER AT

WINFIELD DAM, WEST VIRGINIA

DATE			RADIO	DACTIVITY IN V	WATER			T	RADIOA	CTIVITY IN PLA	NKTON (dry)	T	RAD	DOACTIVITY IN V	VATER
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA		1			ACTIVITY	1		GROSS ACTIVIT	
TAKEN		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	1	DATE OF DETERMI- NATION	ALPHA	BETA	1	SUSPENDED	DISSOLVED	TOTAL
O. DAY YEAR	MONTH DAY	μμc/l	μμε/Ι	μμε/1	μμc/I	μμc/l	μμς/ί	l	MO. DAY	μμc/g	μμc/g	1	μμc/l	μμc/l	##c/l
0 5 60	10 17				_	_									
0 5 60 0 19 60	10 17 11 14	_		_	5	3	8						1		
1 2 60	11 21	_	_	-	0	0	0	1			1	Ì			
1 10 60	11 28	0	1	1	0	0	1								
1 16 60	11 30		_			0	0						1	1	
1 23 60	12 1	-	_	_		2	2				1	l			
2 1 60	12 20	_	_	-	0	5	5						121		
2 8 60	12 29	_	_	_	0	0	0					l		-	
2 22 60	1 12	_	_	_	0	Ö	0				1	ł			
2 29 60	1 23	_	-	_	0	o	.0					l		1	
5 61	1 20		_	_	ŏ	1	1						!		
1 11 61	1 27	0	1	1	0 1	ō	Ô								
1 18 61	2 1	_	_	_		ŏ	ŏ	1							
1 26 61	2 8	_ '	_	-	Ŏ	ŏ	ŏ				İ	i			
2 1 61	29	_	_	-	0	ŏ	ŏ								
7 61	2 23	-			0	ŏ	ō				}	ĺ			
2 16 61	3 3	3	0	3	4	ō	4						1	İ	
2 23 61	3 8	-	-		1 1	اه	1		l			İ		i	
3 61	3 20	-	-	_	0	o l	Ö		İ						,
3 11 61	3 28	-	-	-	0	0	0				ĺ	1			
15 61	4 3	0	0	0	0	ó	Ó				1				
23 61	4 13		-	-	2	0	2					l			
25 61*	5 22	0	0	0	0	0	0					ŀ	1		
2 61*	6 15	0	0	0	0	0	0		İ			l	i		
28 61*	7 21	0	0	0	0	0	0								
3 61*	8 29	2	1	3	4	0]	4		i					i	
31 61*	9 19	0	0	0	0	٥	0		1				ĺ		
	10 3	-	-	-	2	7	9								
	10 30	-	-	-	5	5	10								
	10 3	-	-	~	6	1	7								
28 61	10 12	0	0	0	3	9	12								
	-								-				1		
	ĺ	i	i			ŀ									
											:				
	ł					i									
	ļ	1]	İ		- 1							
1	ĺ			i											
	ļ					İ		- 1							
		1			1		İ							1	
-			1		ŀ				- 1						

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

KANAWHA RIVER

STATION LOCATION KANAWHA RIVER AT

WINFIELD DAM, WEST VIRGINIA

	Γ			ALGAE (Vumber	per ml.)				INE	PT										т —		MICROIN	VERVERY			
DATE OF SAMPLE		BLUE-	GREEN	GREE		FLAGEL (Pigma	LATES	DIAT	омѕ	INE DIA SHE (No. p	TOM LLS er ml.)		DOMI (See	NANT Introd	SPEC	ATO IES Al for Co	ND PE	RCENT ntificati	(AGES		LARKTOR, EATHER	. J.	l			T C	EKERA Luction eation)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER. CENTAGE	SECOND®	PER. CENTAGE	THIRD#	PER. CENTAGE	FOURTH	PER. CENTAGE	OTHER PER- CENTAGE	OTHER BICROPLAKKTOR, PUNGI AND SHEATHED RACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL (No. per liter	DONINANT GENERA (See Introduction for Identification)
10	200 300 500 100 200 200 200 200 500 1200 3900 700 100 2800 3600 4600	20 20 20 20	20 - - - - - - - - - - - - - - - - - - -	90 200 170 60 250 2120 60 20 310 700 600		110 70 20 60 20 40 170 20 20 80 950 360	20 20 40 70	50 180 250 200 200 200 200 200 200 600 70 750 410 1990	20 50 580 130 160 270 440 470 250 600 1680 1390 1590	40 20 130 20 130 120 250 20	50 110 70 210 850 40 80 70 20 70 290 60	26 22 27 64 92 2 92 58 82 27 70	20 20 20 30 10 30 50 60 80	28 65 28 2 36 62	20 10 10 20 10 20 20 20 20 10	27 28 2 65 66 36 36 27 58 89 50 70 89	10 10 10 10 10 10 10 10 10 **	82 27 26 9 47 47 47 62 92 26 26 97 92 26	10 10 10 10 * 10 * 10 *	60 50 60	40 70 90 110 70 400 1100 5960 20	10	31 1 2 93 2 39 73 1	16	4 3 1	1	45 7-

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

KANAWHA RIVER

STATION LOCATION KANAWHA RIVER AT

WINFIELD DAM, WEST VIRGINIA

			,							CIII ODO	0011 =120					
DATE OF S		4	E.	XTRACTABL	_E3	 	1			NEUTRALS	ORM EXTR	ACTABLES		1		
DAY NONTH DAY	MONTH DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
10 19 60 11 23 60 12 22 60 1 12 61 2 1 61 3 15 61 4 5 61 5 16 61 6 14 61 8 10 61 9 7 61 9 28 61	11 30 12 29 1 18 2 8 3 23 4 14 5 23 6 22 7 20 8 17 9 14	5140 4120 3100 4730 3070 4800 4220 5710 5930 5050 3010 5347	2382 1018 1336 829 1029 284 326 310 216 488 257 857 1134 962	2239 893 1194 710 934 118 219 204 148 376 213 666 1024 780	143 125 142 119 95 166 107 106 68 112 44 191 110 182	0 18 12 21 19 1 7 12 5 8 4 20 10 8	112 71 96 57 43 43 27 49 26 87 113 78	672 348 609 376 551 78 68 180 117 226 440 406	13 10 24 15 17 14 9 7 7 13 12	108 31 91 60 94 17 7 36 14 25 62	363 212 353 270 39 54 50 106 82 1251 236	188 95 141 68 170 6 23 14 6 29 14 9 7	45 27 36 36 37 8 11 10 30 19 40 31 39	18 24 14 19 4 9	45744691463840114 232	1343 384 393 170 252 137 45 82 30 2468 201

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

KANAWHA RIVER

STATION LOCATIONKANAWHA RIVER AT

WINFIELD DAM, WEST VIRGINIA

DATE OF SAMPLE					1.	CHLORINE	DEMAND									TOTAL	
DAY	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/I	Hq	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/I	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10 17 60	21.0	•0	7•1	16.2	52	-	-	3.1	183	64	116	20	20	48	-	178	-
10 20 60 11 2 60		•0	7.8 7.5	7.1 10.0	62 76	_	-	3.1 1.4	112 32	68 47	121 62	20 20	20 2	62 28	_	162 168	1 1
11 10 60	12.0	.0	7.4	24.6	52	_	_	3.0	38	48	68	20	2	26	_	172	-
11 18 60	13.0	6.3	6.7	4.1	52	-	-	• 8	43	42	120	20	2	24	-	132	-
11 23 60		• 8	6.7	4.2	38	_	-	2.2	46	43	116	20	2	26	-	148	-
12 2 60		•4	6.9	8.8	32	-		3.8	62	49	114	10	4	57	_	192 221	-
12 7 60 12 14 60	8 • 1 6 • 0	1.0	7.0 7.0	6.2 6.8	40 22	_	-	3 • 2 4 • 6	58 68	50 58	130 132	20 10	2	28 96	-	221	_
12 14 60 12 22 60	3.0	.0 8.3	6.8	5.5	19		1 1	2.0	35	49	96	20	20	19	_	185	_
12 30 60		9.2	7.1	9.0	16	_	-	5.4	56	50	108	10	2	. 48	-	188	_
1 5 61		12.1	6.9	9.1	51	-	_	1.6	26	42	56	10	2	19	_	152	-
1 10 61		11.7	7.4	7.2	24	-	-	2 • 4	23	32	72	20	4	24	-	158	-
1 18 61	3.9	8.0	7.0	7.5	48	-		3.2	22	39 32	60	20 20	2 2	24 24		143 162	_
1 27 61 2 1 61		8.6	7.0	11.7	16	_	-	• 6	28	34	64	20	-	- 4	_	102	10
2 2 61	1	9.0	6.9	9.1	16	_	_	1.0	28	34	68	20	2	24	_	132	-
2 8 61		11.6	7.0	3.5	44	_	_	3.0	38	39	100	20	2	28	-	168	-
2 9 61	-	-	-	-	_	-	~	-	_	-	_	_		-	-		330
2 28 61	3.5	11.4	7.1	6.6	120	_	-	2.2	14	25	50	20	75	48	-	184	4700
3 3 61		12.2	7.2	7.2	11	_	-	2.2	32 22	42 16	62 56	20 20	22 120	24 24	_	184 191	6700 23000
3 9 61 3 15 61	4.8 4.8	10.3	6.9 6.7	2.6 5.0	36	_	_	1.2	26	16	52	20	120	19	_	167	25000
3 24 61	8.0	11.0	7.0	3.5	3		_	1.0	32	30	60	20	20	19	-	161	-
3 29 61	_	9.7	6.7	4.1	_	_	-	1.2	18	17	66	20	25	19	-	185	-
3 30 61	-	-	-	_	-	-	-	-	-	-	_	-	- 1	-		-	500
4 14 61	9.2	10.1	7.3	3.0	9	-	-	2.2	32	42	74	20	10	28	_	138 132	6800
4 19 61 4 26 61	10.0	10.9	7.0 4.2	4•4 4•5	_	_		1.0	14 14	25 2	50 54	10	10 10	28 48	_	126	8000
4 26 61 5 26 61	20.0	1.4	6.6	6.1	29	_	_	1.2	29	34	80	10	10	48	_	188	_
5 31 61	21.0	.6	6.8	6.2	32	_	_	1.8	42	51	84	10	20	48	-	162	_
6 7 61	22.0	• 4	6.6	4.7	29	_	-	2.8	42	49	96	10	20	10	-	194	-
6 14 61	24.0	3.8	6.5	-	34		-	•6	20	36	54	10	10	28	-	163	×170
6 28 61	25.0	3.0	7.0	6.2	17	-	-	1.8	23 22	42 30	82 72	10	2 2	28 48	_	172 172	*170
7 6 61 7 27 61	25.0	•0	6.9	6.4	19	_	_	3.0	22	50	12	10		40	_	1/2	44
8 10 61	28.0	.0	6.8	6.3	24	_	_	2.0	28	34	78	10	2	24	_	181	-
8 17 61		.5	6.2	_	57	_	_	2.0	28	40	90	10	2	98	-	180	570
8 25 61		•0	6.7	5.3	-	-	_	_	34	47	82	10	2	-	-	176	14
					<u> </u>										J		

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

KANAWHA RIVER

STATION LOCATION KANAWHA RIVER AT

WINFIELD DAM, WEST VIRGINIA

	DATE							CHLORINE	DEMAND	411163111								TOTAL	
MONTH	F SAM	T-	TEMP. (Degrees Contigrade)	DISSOLVED OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	mg/I	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS
8 9 9	31	61 61 61 61	28.0	•0	6.7 	5.3 - 4.2 11.1 4.0	86 - 46 28 78 5	111111	111111	2.0	22 - 7 22 160 80 57	47 - 47 52 62 -	98 - 98 128 94	10 - 10 10 10	2 - 1 2 2 4 -	24 - 24 24 24	1	. 181 - - 187 - 168	500 2400 - - - - -

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Charleston, West Virginia Operated by U.S. Geological Survey STATE

West Virginia

MAJOR BASIN

Ohio River

MINOR BASIN

Kanawha River

STATION LOCATION

Kanawha River at

Winfield Dam, West Virginia

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	2.600 2.600 2.600 2.600 2.600	4.530 4.530 4.530 4.530 4.530	4.360 4.360 4.360 4.360 4.360	19.800 18.800 17.900 12.200 10.500	5.420 5.420 5.420 5.420 5.420 5.420	72.800 56.600 40.600 29.800 29.500	21.100 27.500 24.900 19.400 19.100	24.800 48.200 38.100 27.500 24.200	6.090 6.090 6.090 6.090 6.090	5.490 5.490 5.490 5.490 5.490	10.000 10.000 10.000 10.000 10.000	4.480 4.480 4.480 4.480 4.480
6 7 8 9 10	2.700 2.700 2.700 2.700 2.700	5.950 5.950 5.950 5.950 5.950	3.500 3.500 3.500 3.500 3.500	9.260 7.820 8.400 8.290 6.730	8.860 8.860 8.860 8.860 8.860	29.800 28.900 29.300 42.400 46.800	16.300 15.900 13.700 12.000 10.600	36.000 58.200 66.400 47.000 32.500	12.200 12.200 12.200 12.200 12.200	5.820 5.820 5.820 5.820 5.820	6.300 6.300 6.300 6.300 6.300	4.160 4.160 4.160 4.160 4.160
11 12 13 14 15	3.380 3.380 3.380 3.380 3.380	10.000 10.000 10.000 10.000	5.510 5.510 5.510 5.510 5.510	7.020 7.020 7.020 7.020 7.020	9.490 9.610 15.600 26.800 40.300	33.500 27.200 21.700 23.100 21.300	18.000 26.300 26.800 45.600 41.500	25.700 22.200 37.900 43.900 37.500	22.000 16.800 12.100 14.700 24.500	5.520 5.520 5.520 5.520 5.520	9.100 9.100 9.100 9.100 9.100	4.720 4.720 4.720 4.720 4.720
16 17 18 19 20	2.700 2.700 2.700 2.700 2.700	5.180 5.180 5.180 5.180 5.180	4.770 4.770 4.770 4.770 4.770	27.400 32.800 26.300 19.500 16.400	34.200 33.000 30.000 47.500 61.900	32.400 40.400 31.200 22.800 19.000	37.900 33.800 27.500 25.100 20.500	25.700 22.200 16.000 14.700 13.700	37.000 34.100 22.500 12.700 10.100	9.610 8.820 7.920 10.200 41.300	5.790 5.790 5.790 5.790 5.790	3.140 3.140 3.140 3.140 3.140
21 22 23 24 25	3.680 3.680 3.680 3.680 3.680	3.490 3.490 3.490 3.490 3.490	3.730 3.730 3.730 3.730 3.730	9.210 9.210 9.210 9.210 9.210	45.800 33.900 41.700 59.700 68.300	20.400 26.300 38.400 37.100 33.000	20.700 22.500 23.600 21.900 21.600	9.110 9.110 9.110 9.110 9.110	11.400 11.300 18.300 15.400 10.800	24.000 13.500 9.490 9.490 15.600	5.260 5.260 5.260 5.260 5.260	4.620 4.620 4.620 4.620 4.620
26 27 28 29 30 31	3.810 3.810 3.810 3.810 3.810	3.350 3.350 3.350 3.350 3.350	5.060 5.060 5.060 5.060 20.700 23.500	5.190 5.190 5.190 5.190 5.190 5.190	102.000 97.500 75.100	28.400 21.000 16.300 20.600 22.700 20.800	23.600 18.800 15.200 12.100 16.100	7.250 7.250 7.250 7.250 7.250 7.250	8.090 8.090 8.090 8.090 8.090	10.500 10.500 10.500 10.500 10.500	9.070 9.070 9.070 9.070 9.070 9.070	3.140 3.140 3.140 3.140 3.140

RADIOACTIVITY DETERMINATIONS

STATE

OREGON

MAJOR BASIN

CALIFORNIA

MINOR BASIN

KLAMATH RIVER

STATION LOCATION KLAMATH RIVER AT

KENO, OREGON

DATE	1		RADI	OACTIVITY IN Y	/ATER			ПП	RADIOA	CTIVITY IN PLAN	NKTON (dry)	RAI	DIOACTIVITY IN V	/ATER
SAMPLE	DATE OF		ALPHA			BETA		1	DATE OF		CTIVITY		GROSS ACTIVIT	
TAKEN	DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL .	SUSPENDED	DISSOLVED	TOTAL	1 [NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	HONTH DAY	μμε/Ι	μμc/l	μμε/Ι	μμε/1	μμε/Ι	μμc/l		MO. DAY	μμε/g	μμc/g	μμε/Ι	μμε/Ι	μμε/ί
		•	_	0			_							
11 7 60	11 29	0	3	3	0	2	2							
11 14 60	12 1	0	1	1	4	0	4		l					
11 21 60	12 5	0	0	0	- 0	ō	0							
11 28 60	12 20	0	2	2	0	5	5				Ī			
12 5 60	12 28	1	1	2 1	0	9	9							
12 12 60	12 30	0	1		0	1	1							
12 19 60	1 16	0	3	3 0	0	4	4							
12 26 60	1 16 1 24	0	0		0	0	0							
1 3 61		0	. 0	0 1	. 0	0 5	Ó							
1 10 61 1 17 61	2 1 2 2	0	1	i	0	1	5						1	
1 24 61	2 2 2 2 7	0	0	Ô	0	0	0		ŀ					
1 31 61	2 20	0	0	Ö	0	2	2 0							
2 7 61	3 3	0	ō	Ö	0	0	0							
2 14 61	3 7	3	Ö	3	0	1	1							
2 21 61	3 20	ó	ŏ	ó	ŏ	ō	Ó							
2 28 61	3 24	ĭ	ŏ	ì	ŏ	ŏ	0							
3 7 61	3 28	õ	ŏ	ō	ŏ	ŏ	Ö		j					
3 14 61	3 31	ŏ	ĭ	ì	l ŏ l	ŏ	ő						ŀ	
3 21 61	4 14	o l	o l	ō	l ŏ l	š	5		İ					
3 28 61	4 17	οl	ŏ	ŏ	l ŏ l	6	6		ľ					
4 5 61	5 3	o l	ō	ŏ	l ŏ l	ő	ŏ							
4 11 61	4 27	o l	o	Ō	Ö	ŏ	ŏ							
4 18 61	5 17	o	0	ō	اةا	ő	ŏ		1					
4 25 61	5 23	0	ō	ŏ	ŏ	ž	2		Ī				İ	
5 2 61	5 25	0	0	o	l ŏ l	ō	ō		Î				i	
5 9 61	5 31	0	0	0	Ö	ŏ	ŏ							
5 16 61	62	0	0	0	o	ō l	ō		-					
5 23 61	6 20	0	0	0	Ö	ŏ	ŏ	1 1	- 1					
5 31 61	6 20	0	0	0	o l	i !	i							
6 6 61	6 29	0	0	0	o	ō	ō		ļ					
6 13 61	7 5	0	0	0	o l	Ō	ŏ	l i	1					
6 20 61	8 1	0	0	0	1	2	3							
7 4 61	8 3	0	0	0	0	Ó	0							
7 26 61	9 1	0	0	0	4	0	4	1 1						
8 1 61	9 8	0	0	0	11	0	11							
8 8 61	9 13	0	0	0	5	1	6			:				
8 15 61	9 26	0	0	0	0	0	0							
8 29 61	10 3	0	0	0	2	2	4		1				-	
					i]			1					
											 			

STATE

OREGON

MAJOR BASIN

CALIFORNIA

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

KLAMATH RIVER

STATION LOCATION KLAMATH RIVER AT

KENO, OREGON

DATE	<u> </u>		RAD	OACTIVITY IN V	VATER			T	RADIOA	CTIVITY IN PLA	NKTON (dry)		PAT	DIOACTIVITY IN V	VATED
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA		1	DATE OF DETERMI- NATION		ACTIVITY	1		GROSS ACTIVIT	
TAKEN		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL]	NATION	ALPHA	BETA		SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	MONTH DAY	μμc/l	μμς/Ι	μμε/Ι	μμε/Ι	μμε/Ι	μμς/Ι	<u> </u>	MO. DAY	μμc/g	μμc/g		μμς/1	μμc/l	μμε/
MO. DAY YEAR 9 5 61 9 12 61 9 19 61 9 27 61															

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

OREGON

MAJOR BASIN

CALIFORNIA

MINOR BASIN

KLAMATH RIVER

STATION LOCATION KLAMATH RIVER AT

KENO, OREGON

	1			ALGAE (I	Vumber	per ml.)			-	I IN	FRT	т—								·		1					
DATE OF SAMPLE		BLUE-	GREEN	GREE	N	FLAGE!	LLATES ented)	DIAT	OMS	DIA SHE (No. 1	ERT TOM ELLS er ml.)				SPEC	IATO IES AI for Co	ND PE			s	AMKTOM, ATHED	3	T	VERTEB	T	TO REE	NERA ection attion)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE		PENNATE	FIRST#	PER. CENTAGE	SECOND#	PER.	THIRD#	PER. CENTAGE	FOURTH	PER-	OTHER PER- CENTAGE	OTHER RICROPLANKTOR, FURGI AND SHEATHED RACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	E P	DOMINANT GENERA (See Introduction for Identification.)
11	66000 91500 40200 33700 21900 14500 27900 173500 4900 5800 6500 1400 5000 9400 700 3600 13000 10800	40 50 90 20 100 20 190 810 470 1470 830 4220 5340	20 100 20 80 40 1590 80	290 180 110 50 20 290 110 270 350 70 210 1040 850 1700		40 50	180 450 250 20 20 50 70	710 64590 75500 39590 33510 20330 13270 24780 171010 3130 3890 4100 940 2770 7080 8180 2280 290		5100 16170 13900 7280 14490 9940 11690 11930 29170 4390 3270	1540 4200 3420 560 2350 8490 7600 13920 4950 2110 2030 1500 850 1860 980 370 700 1260	82 82 82 82 82 49 49	50 80 70 40 50 70 50 60 40 20 20 20	46 46 46 46 46 46 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47	10 10 20 30 40 20 20 20 10 20 10 10	56684481 88145562 64926	10 10 * * 10 10 20 10 * * 10 10 10 10 10	97 84 56 97 81 81 83 83 49 87 49 49	* * * 10 10 10 10 10 10	420 310 10 10 10 20 33 30 44 40 55 45 55		10 20 30 10 10 10	4 29 23 62 43 113 48 87 74 182 10 20 00 10 199 999 92 22 229 22	22 22 26 11	1 1 1 1 2 2	İ	99-6 7-9539-19-6 -19-6 -19-6 -19-6 -19-69-6 7-9639 7-967 489-63 3-1 41932 243-3 -8335

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

OREGON

MAJOR BASIN

CALIFORNIA

MINOR BASIN

KLAMATH RIVER

STATION LOCATION KLAMATH RIVER AT

KENO, OREGON

							,										
DATE OF S				EX	TRACTABL	.ES						ORM EXTRA	ACTABLES		,		
MONTH BB DAY B DAY SZI YEAR DZ	MTNOM	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	NEUTRALS AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
1 3 61 4 5 61 5 2 61 6 8 61 9 12 61	1 4 5 6	15 14 11	5037 5525 6009 5357 6091	229 180 145 174 182	125 80 44 87 78	104 100 101 87 104	65143	29 22 12 22 21	29 19 14 30 20	1 1 2 3	1 1 0 2 1	27 16 11 23 15	0 2 2 3 1	16 9 5 10 9	8 3 8	3 1 1 2 2 2	31 16 8 11 14

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

OREGON

MAJOR BASIN

CALIFORNIA

MINOR BASIN

KLAMATH RIVER

STATION LOCATION LAMATH RIVER AT

KENO, OREGON

TOTAL DISSOLVED COLIN	DATE OF SAMPLE	TEMP.	DISSOLVED		<u> </u>	<u> </u>	CHLORINE	DEMAND				1		1	1	1		<u> </u>
9 12 61 17.0 8.0 8.6 7.4 7 70 82 - 26	MONTH DAY YEAR	(Degrees Centigrade)	OXYGEN	ſ	ļ	i	1		NITROGEN		l .	1	1	1	l .	1	DISSOLVED	COLIFORMS per 100 ml.
	4 5 6 3 5 2 6 3	1 13.0	9.3	7.8	4.3	-	_	-	-	7	70	82	-	26	-	-	=	

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station below Big Bend powerplant near Keno, Oregon Operated by U.S. Geological Survey STATE

Oregon

MAJOR BASIN

California

MINOR BASIN

Klamath River

STATION LOCATION

Klamath River at

Keno, Oregon

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4	1.090 .762 1.510	1.420 1.550 1.460	2.140 2.390 2.230	1.520 1.660 2.030	1.710 1.410 1.470	1.720 1.600 1.910	1.590 1.190 1.730	1.340 1.470 1.520	1.610 1.430 1.240	.891 .798 .818	•954 •952 •950	1.220 .972 .812
4	1.460	1.710	1.990	1.930	1.390	1.510	1.790	1.580	.940	.798	•935	.790
5	1.490	1.250	2.480	1.700	1.100	.557	1.910	1.450	1.400	.957	•798	1.280
6	1.400	1.140	2.390	1.370	1.470	1.310	1.730	1.180	1.370	.940	•798	1.480
7	1.360	1.570	2.280	1.470	1.580	1.900	1.780	.984	1.380	.836	•965	1.260
8	1.180	1.560	2.310	1.010	1.540	1.950	1.710	1.460	1.360	.798	•950	1.270
9	.880	1.620	2.370	1.570	1.500	1.780	1.200	1.440	1.410	.790	•938	.944
10	1.470	1.510	2.260	1.580	1.450	1.650	1.810	1.470	1.000	.908	•938	.850
11	1.540	1.510	2.090	1.760	.882	1.660	1.800	1.490	.934	.936	.928	1.370
12	1.400	1.270	2.360	1.610	1.090	1.110	1.980	1.600	1.420	.924	.798	1.360
13	1.470	1.220	2.480	1.710	1.500	1.990	1.650	1.210	1.320	.932	.790	1.330
14	1.530	1.500	2.440	1.590	1.540	1.920	1.570	.900	1.170	1.020	1.020	1.320
15	1.200	1.510	2.500	1.570	1.440	1.860	1.540	1.500	1.270	.783	.966	1.280
16	.961	1.560	2.460	1.840	1.480	1.720	1.210	1.440	1.450	•783	.945	.970
17	1.470	1.570	2.290	1.820	1.710	1.740	1.700	1.460	.998	•918	1.110	.790
18	1.500	1.510	2.090	1.980	1.500	1.460	1.700	1.450	.904	•946	1.010	1.420
19	1.180	1.430	2.540	1.860	1.260	1.610	1.470	1.730	1.180	•948	.798	1.450
20	1.840	1.180	2.550	2.000	1.420	1.670	1.470	1.470	1.210	•986	.805	1.550
21	1.610	1.620	2.530	1.730	1.670	1.680	1.540	.742	1.200	.980	.976	1.470
22	1.200	1.610	2.340	1.860	1.770	1.820	1.270	1.390	1.200	.805	.970	1.450
23	.954	1.610	2.160	2.010	1.560	1.740	1.080	1.410	1.470	.798	.974	1.360
24	1.540	1.320	2.210	2.050	1.520	1.700	1.720	1.360	.842	.934	.966	1.040
25	1.540	1.600	2.060	2.020	1.560	1.630	1.770	1.340	.885	.945	1.050	1.510
26 27 28 29 30 31	1.520 1.440 1.430 1.130 1.190 1.620	1.330 1.210 1.720 2.440 2.270	1.930 2.230 2.130 1.810 1.850 1.750	1.680 1.980 1.820 1.630 2.140 1.790	1.220 1.680 1.630	1.210 1.890 1.810 1.690 1.690 1.480	1.490 1.330 1.360 1.210 1.120	1.460 1.170 1.000 1.380 1.170 1.340	1.260 1.240 1.220 1.410 1.410	.976 .951 .984 .798 .798	.908 .864 1.150 1.170 1.230 1.290	1.560 1.650 1.620 1.500 1.220

STATE

OHIO

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LITTLE MIAMI RIVER

STATION LOCATION LITTLE MIAMI RIVER AT

CINCINNATI, OHIO

			PAD	OACTIVITY IN V	YATER		T	 RAD	AOIC	CTIVITY IN PLAN	IKTON (dry)	RAD	DIOACTIVITY IN V	/ATER
DATE	DATE OF		ALPHA			BETA	,	DATE	OF	GROSS A	CTIVITY		GROSS ACTIVIT	Y
SAMPLE TAKEN	DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DETER	MI-	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR		μμε/Ι	μμc/I	μμε/Ι	μμε/ί	μμς/Ι	μμε/ί	 MO. D	AY	μμc/g	μμc/g	μμc/l	μμc/I	μμε/Ι
				_						i				
10 4 60	10 17	0	2	2	0	0	0				1			
10 11 60	10 17	0	4	4	5	1	6]						
10 18 60	11 2	1	6	7	0	0	<u> </u>	ĺ		-80	eye.			
11 8 60	11 18	0	2	2	0	0	0							
11 22 60	11 29	0	3	3	0	1	1							
11 29 60	12 5	0	1	1	0	0	0					ì		
12 6 60	12 15	0	3	3	0	10	10							
12 13 60	12 27	0	3	3	0	7	7	l				1		
12 20 60	1 10	0	2	2	0	0	٥	l				1		
12 27 60	1 6	0	1	1	0	0	0	1				-		
1 3 61	1 18	1	1	2	0	0	٥١	l						
1 10 61	1 24	0,	0	0	0	5	5	İ						
1 17 61	2 2	4	3	7	0	0	0	1						
1 24 61	2 1	1	3	4	0	0	0				1			
1 31 61	2 15	0	0	0	0	0	0				1			
2 7 61	2 20	0	1	1	0	0	0							
2 14 61	2 27	3	0	3	4	0,	4		1					
2 23 61	3 7	1	0	1	0	1	1							
2 28 61	3 13	1	0	1	0	0 0	0							
3 7 61	3 23	4	0	4	0	0	0	ŀ						
3 14 61	3 29	1	0	1	4	0	4	}						
3 21 61	4 3	2	0	2	0	0	0							
3 28 61	4 13	0	0	0	0	0	0							
4 4 61	4 14	0	0	0	0	0	. 0							
4 11 61	4 24	2	0	2	0	0	0	l			į			
4 18 61	5 4	2	1	3	0	0	0	İ						
4 25 61	5 11	1	1	2	0	ō	0	l						
5 9 61	6 8	9	0	9	0	5	5	l						
5 16 61	5 31	0	1	1	0	0	0	l						
5 23 61	6 8	0	0	0	0	0	0	1	İ					
5 31 61	6 13	0	1	1	0	0	0	1						
6 6 61 6 61 6 13 61	6 16 6 29	0	0 0	0	0	0 2	0							
6 20 61	7 25	1	_	2			2							
6 27 61	7 26	_	1	1		0	0				Ì			
7 3 61	7 31	1 0	0	0	0	0	o l	1						
7 11 61	8 4	1	0	1		0	0							
7 25 61	8 18				0	0	0	l						
8 1 61	8 23	1	1	2	0	1	, 1							
8 8 61	9 8	1	0	1	5 2	10	15				ĺ			
2 0 01	, ,	1	٠	T	4	9	11	1						
								L					i	

RADIOACTIVITY DETERMINATIONS

STATE

OHIO

MAJOR BASIN

OHIO RIVER

MINOR BASIN

LITTLE MIAMI RIVER

STATION LOCATION LITTLE MIAMI RIVER AT

CINCINNATI, OHIO

DATE	· · · · · · · · · · · · · · · · · · ·		RADI	OACTIVITY IN V	WATER			PAN	OACTIVITY IN PL	NINTON (I	T-T		
SAMPLE	DATE OF		ALPHA		T	BETA		DATE	E GROSS		RAI	DIOACTIVITY IN V	
TAKEN	DETERMI- NATION	SUSPENDED		TOTAL	SUSPENDED		TOTAL	DETERM	I- AI PHA		<u> </u>		
MO. DAY YEAR		μμε/Ι									1		
								111111	7700	<i>ррс/</i> g	μμc/I	μμς/	μμε/1
TAKEN	DATE OF DETERMINATION MONTH DAY 9 21 9 25 9 27 9 28 10 6 10 18 10 4	######################################		ΤΟΤΑL μμε/1 2 0 1 0 2 1 0 0	SUSPENDED μμc/1 0 0 0 2 0 0	DISSOLVED #με/I 0 2 19 5 8 7 6	ΤΟΤΑL ##e/I 0 2 19 5 10 7 6	DATE O DETERM NATION MO. DA		ACTIVITY BETA μμc/g	SUSPENDED ##c/l	GROSS ACTIVIT DISSOLVED μμc/l	Υ ΤΟΤΑL

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

OHIO

MAJOR BASIN

OHIO RIVER

MINOR BASIN

LITTLE MIAMI RIVER

STATION LOCATION LITTLE MIAMI RIVER AT

CINCINNATI, OHIO

DATE				ALGAE (1	Vumber	per ml.)				INE	RT TOM				D	IATO	MS				T.	L	MICROIN	VERTEBR	ATES		
OF SAMPLE		BLUE-	GREEN	GREE	in.	FLAGEI (Pigm		DIAT	OMS	SHE (No. p	LLS	e .	DOM! (See	Intro	SPEC luction	IES A	ND PE	RCEN ntifical	TAGE:	s	ROPLANKTON, SKEATHED ml.)	A ml.)	ter)	A ter)	S.	r FORMS	ENERA fuction ication)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND#	PER.	THIRD#	PER. CENTAGE	FOURTH	PER-	OTHER PER- CENTAGE	OTHER MICRO FUNDS AND SI RACTERIA (No. per 11	PROTOZOA (No. per 1	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORMS (No. per liter)	bowinant genera (See Introduction for Identification)
10	3900 5000 2600 1800 3700 5000 3000 5000 4900 4900 4900 1400 3400 700 8700 600 1800 9500	20 20 40 150	20 70 20 20	110 160 50 130 20 360 20 170 40 1970 90 20 130 1260		930 860 600 200 1600 20 40 70 80 100 270 270 2590 2490 2490 250 810	200 50 50 20 40 60 20	2530 3680 1740 7500 1410 55200 200 200 1410 3900 2260 1600 1000 8240 1040 6710	160 160 220 660 1230 470 220 450 270 870 680 290 1010 290 3170 660	500 8650 400 180 9 20 50 60 20 60 20 60 20 60 20 60 60 60 60 60 60 60 60 60 6	90 110 350 1450 90 310 960 250 250 540 210 80 250 120 490 170 290	92 27 92 27 23	60 70 60 70 60 50 10 20 20 10 20 10 40 20 60 10 30 30 30 30 30 30 30 30 30 30 30 30 30	26482682751268686271 71	10 30 10 20 30	23 64 82 76 64 51 70 86 92 70 65 92 86 82 26	10 10 10 10 10 10 10 10 10 10 10 10 10 1	23 26 64 64 26 77 51 51 86 51 86 52 54 62 82	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 20 20 20 370 50 30 66 60 20 60 20 40 31 10	180 40 180 40 70 20 20 70	20	113 5 3 24 3 7 3 2 281 11 222 7 8 7 16 11	1 4 10 12 7	116 3 2 35 11 33	1	42933 4193- 4-99-7 4-94- 4-94- 4-9

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

OHIO

MAJOR BASIN

OHIO RIVER

MINOR BASIN

LITTLE MIAMI RIVER

STATION LOCATION LITTLE MIAMI RIVER AT

CINCINNATI, OHIO

DATE OF SAMPLE		Ε>	TRACTABL	.ES					CHLOROF	ORM EXTR	ACTABLES				
BEGINNING END			1					·	NEUTRALS	3					
MONTH DAY YEAR MONTH	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10	5249 5557 5051 2628 5152 5004 4999 5030 4975	316 247 186 224 255 243 330 168 270	108 72 45 81 100 94 154 64 94	208 175 141 143 155 149 176 104 176	210222512	18 12 7 17 20 18 26 12 12	46 35 20 41 49 52 45	6826666148	342343935	34 22 15 18 29 39 16 28	311220114	21 8 5 10 15 26 9	8 9 17 6	3 1 1 2 2 3 1 2	9 11 10 16 12 9 12 11 10

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

OHIO

MAJOR BASIN

OHIO RIVER

MINOR BASIN

LITTLE MIAMI RIVER

STATION LOCATIONLITTLE MIAMI RIVER AT

CINCINNATI, OHIO

D/ OF S	ATE	LE	TEMP.	DISSOLVED				CHLORINE	DEMAND	AMMONIA-								TOTAL	
X	DAY	YEAR	(Degrees Centigrade)	OXYGEN mg/l	рH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	CHLORIDES . mg/i	ALKALINITY mg/i	HARDNESS mg/l	COLOR	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
		60	20.0	• 2	7.8	1.0	14	2.5	6.4	• 6	. 27	193	334	17	5	52	• 6	390	
		60	19.0 19.8	•1	7.8	3.0 4.8	16 15	2.4 3.3	6•3	.4	24 28	261 268	297 319	20	12	49 61	1.0	3 6 5 386	_
		60	14.8	6.6	8.1 8.2	1.0	9	1.3	7•1 3•5	1.0	29	267	314	15	7	53	.8	402	[
- 1 -		60	15.0	4.5	8.0	1.6	9	1.8	4.1	•0	35	268	322	15	11	55	1.8	-	
		60	-	1.1	8.1	1.1	9	1.2	3.1	• 7	28	272	334	17	-	54	1.5	391	_
		60	15.0	8.9	8.3	1.7	12	2.8	7•1	• 5	21	188	238	22	10	45	1.0	275	_
11 2		60	10.6	9.9	8.5	1.1	8	1.8	4.9	• 4	25	236	298	17	20	52	. 8	378	_
	- 1	60	12.0	5.5	8.2	4.4	17	2.1	8 • 8	• 4	25	208	266	20	35	53	1.0	350	_
	- 1	60 60	8.5	11.0	8 • 2 8 • 3	1.3 1.9	9 16	2.1	8•8 6•7	• 4 • 4	25 30	208 244	266 324	20 12	16	53 57	1.0	392 403	_
		60	_	11.3	8.4	1.6	15	2.9	5.9	•4	27	264	334	10	_	74	.9	424	_
		60	_	13.2	8.4	1.4	13	3.4	8.7	.7	40	250	323	12	_	65	1.0	463	
		61	-	13.3	8.3	1.4	14	3.6	6.4	.4	32	222	298	18	_	61	1.0	385	-
		61	-	13.6	8.0	2.8	20	1.6	3.9	• 9	25	143	198	35	-	62	.8	293	-
1 1		61	-	12.2	8.1	5.1	37	1.5	4•0	•7	16	86	146	40	-	62	•7	208	· ·
		61	-	13.2	8.1	1.8	12	• 5	1.6	•7	38	192	264	20		76	•7	364	-
		61	_	13.4 13.2	8 • 2	1.7 2.1	10	• 8 • 8	2•7	1.4	34 39	259 278	345 352	15 12	_	78 79	1.0	429 457	_
		61	_	13.4	8.0 8.0	3.6	27	• 3	2•1 2•5	1.0	21	118	173	20	_	59	.5	224	
2 2		61	_	9.8	8.2	2.3	22	2.6	6.4	•5	19	128	201	32		72	5	291	_
2 2		61	7.0	10.2	8.1	1.9	23	3.4	7.0	• 5	17	103	167	30	90	49	.3	233	_
3	7	61	11.0	8.0	7.9	2.6	31	4 • 2	8 • 2	• 9	10	86	132	48	210	37	•3	184	_
		61	10.5	8.0	8.0	1.6	21	3.0	7•0	•4	12	125	197	25	200	49	• 3	254	
3 2		61	10.0	8.6	8.1	3.2	29	3.3	7•7	• 5	14	145	217	12	225	50	• 4	272	_
		61	10.0	2.3	7.9	• 3	10	1.6	3•4	• 3	18	196	278	10	10	60	• 3	346	_
4 1		61	10.0	6.6 10.9	8.1	•4 2•9	13 24	1.3 2.6	4 • 2 8 • 2	•4 •5	17 12	179 124	248 183	8 33	10	49 59	.3	311 237	_
		61	_	13.2	8.2	2.0	28	1.7	8.7	•4	10	116	183	21		42	• 3	229	_
		61	_	10.1	8.2	1.6	14	1.8	4.7	•6	14	200	276	8	_	57	.2	348	_
-		61	-1	8.4	8.0	2.3	54	1.8	3.5	•6	7	74	83	35	_	10	.3	117	_
5 1		61	-	8.3	8.2	1.7	16	2.5	5.6	• 6	14	219	292	7	-	54	• 6	355	_
		61	15.5	7.8	8 • 4	1.5	16	1.8	4•6	• 4	16	238	311	5	20	57	• 5	384	-
5 3	- 1	61	17.5	6.8	8.3	2.0	14	1.6	4 • 3	• 5	16	240	314	5	7	55	•6	387	. –
		61	20.5	3.8	8.0	,•1	5	1.5	3 • 4 · 7	•6 •5	18 13	250	308	0	3	52	• 4	380	-
6 1		61		4 • 4 7 • 2	8.3	1.0 1.9	10 13	1.8 .5	5.8	• 8	16	184 244	246 313	0 5	_	37 46	• 7	322 397	_
6 2		61	20.1	11.3	8.4	3.9	12	2.5	7.7	• 4	23	239	296	8	36	38	• 3	354	_
				1.07					, - '	•									

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

01HQ

MAJOR BASIN

SIN OHIO RIVER

MINOR BASIN

LITTLE MIAMI RIVER

STATION LOCATIONLITTLE MIAMI RIVER AT

CINCINNATI, UHIO

90

DATE OF SAMPLE	TEMP.	DISSOLVED OXYGEN		B.O.D.	C.O.D.	CHLORINE	DEMAND	AMMONIA- NITROGEN	CHLORIDES	ALKALINITY	HARDNESS	COLOR	TURBIDITY	SULFATES	PHOSPHATES	TOTAL DISSOLVED SOLIDS	COLIFORMS
MONTH DAY YEAR	(Degrees Centigrade)		pH	mg/l	mg/i	I-HOUR mg/l	24-HOUR mg/l	mg/l	mg/l	mg/l	mg/l	(scale units)	(scale units)	mg/l	mg/l	mg/l	
7 5 61 7 11 61 7 18 61 8 1 61 8 22 61 8 22 61 9 19 61	22.8 22.7 22.6 1 24.5 24.9	2.2 12.0	8.0 8.3 8.2 7.9 8.1 8.5 8.4 7.2	2.2 .6 1.1 1.8 .9 - - 2.8 2.4	11 12 19 19 13	3.8 6.2 2.5 5.2 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	5.6 4.4 7.4 5.1 2.6 	1.0	18 15 12 17 31 13 12 16 19 -	188 202 146 170 47 138 192 256 212	296 312 256 285 192 1846 326 2	12 8 10 12 0 20 5 5 -	42 19 117 98 510 0 0 	3605865555	1	312 352 269 302 270 208 275 355 318	

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Milford, Ohio Operated by U.S. Geological Survey

STATE

Ohio

MAJOR BASIN

Ohio River

MINOR BASIN

Little Miami River

STATION LOCATION

Little Miami River at

Cincinnati, Ohio

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	.066	.092	.116	.130	.138	4.260	1.070	1.600	. 434	. 320	4.690	.267
2 3 4	.066	•090	.109	.127	.130	2.910	1.250	1.360	• 473	. 305	4.120	. 310
3	.066	.090	.102	.123	.138	2.000	1.120	1.160	•687	.290	4.050	.310
	.063	.087	.098	.116	.130	2.320	1.010	1.020	.670	.295	1.490	.254
5	.078	.087	.098	.116	.130	7.520	• 944	•965	.506	. 325	.958	.232
6	.092	.102	.102	.120	.130	9.310	.881	1.410	.572	1.020	2.910	.240
7	.073	•195	.109	.234	.130	5.370	.821	11,900	1.620	1.250	1.130	2.380
8	.073	.225	.109	• 548	.134	5.640	.776	26.900	1.130	. 724	.718	.902
9	.087	.292	.120	• 399	.138	5•3 ⁴ 0	.847	30.800	2.380	•534 •424	• 544	•534
10	.078	- 335	.109	.311	.142	3.230	2.280	8.220	4.730	. 424	.517	•375
11	.078	•297	.123	.288	.146	2.310	2.010	4.240	2.780	. 370	2.180	.310
12	.070	.178	.150	.269	.166	1.840	2.430	2.920	1.570	. 350	5.410	.262
13 14	.068	.134	.123	.256	.427	3.840	6.590	2.280	1.130	. 330	2.460	.240
14	•068	.116	.109	•195	1.440	5.820	3.790	1.840	5.990	1.100	1.400	.216
15	.063	.105	.109	1.150	.972	3.300	2.470	1.560	5.380	1.860	.986	.196
16	.063	.112	.109	1.670	.667	2.360	5.180	1.400	2.250	1.320	.756	.184
17 18	.063	.105	.105	• 754	. 581	1.780	4.420	1.150	1.460	•718	.622	.184
18	•063	.102	•095	• 570	1.770	1.500	3.890	1.080	1.090	•937	. 522	.172
19	.073	.105	.095	• 526	1.690	2.340	2.870	1.040	.888	• 730	•456	.160
20	.105	.098	.098	. 467	•964	2.040	2.190	.916	.756	. 598	. ⁴ 07	.160
21	.090	.098	.112	• 359	.654	5.050	1.800	.834	.682	.822	. 365	.160
22	.081	•098	.102	.229	.660	5.210	1.890	.814	•634	2.750	. 340	.150
23 24	.081	.109	.102	.234	1.200	5.600	1.830	.769	• 574	1.230	. 365	.150
24	.076	.109	.098	.216	.878	3.860	1.800	. 694	.522	.888	. 385	.150
25	.076	.112	.098	.174	6.900	2.700	5.510	.640	•473	.676	. 396	.146
26	.070	.112	.116	.162	6.960	2.110	14.700	.610	.434	. 580	. 385	.142
27	.070	.105	.247	.154	4.370	1.770	5.680	. 580	.402	.451	. 350	.164
27 28	.078	.102	•195	.138	3.080	1.530	3.130	. 544	.380	• 375	. 310	.132
29 30	.078	·134	.166	.142		1.300	2.390	.522	• 355	• 335	.276	.128
30	.076	.123	.150	.142		1.140	1.900	•495	. 340	• 458	.258	.125
31.	.076		.130	.138		1.050		.462	-	4.270	. 244	·

STATE

MASSACHUSETTS

MAJOR BASIN

NORTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MERRIMACK RIVER

STATION LOCATION MERRIMACK RIVER ABOVE

LOWELL, MASSACHUSETTS

RADIOACIIVIII IN WAIER		TOTAL μμε/l
SAMPLE TAKEN DATE OF TAKEN DATE OF TAKEN DATE OF TAKEN SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL MO. DAY μμc/l μμ	DISSOLVED TOTA	
MO. DAY YEAR MONTH DAY μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι 6 27 61 8 2 0 0 0 0 0 8 2 61* 8 29 0 0 0 1 8 2 61* 9 25 1 0 1 31 27 58	µµс/I µµс	μμc/ !
6 27 61 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
8 2 61* 8 29 0 0 0 1 0 1 8 22 61* 9 25 1 0 1 31 27 58		
8 2 61* 8 29 0 0 0 1 0 1 8 22 61* 9 25 1 0 1 31 27 58		
8 22 61* 9 25 1 0 1 31 27 58		
	.	
	i	
	i	

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MASSACHUSETTS

MAJOR BASIN

NORTHEAST

MINOR BASIN

MERRIMACK RIVER

STATION LOCATION MERRIMACK RIVER ABOVE

LOWELL, MASSACHUSETTS

6 27 61 6600 370 290 2070 7 17 61 5200 120 330 2650 660 60 580 750 250 410 56 10 47 10 40 80 5840 8 22 61 11300 100 60 9360 60 60 430 390 250 20 150 56 60 92 10 2 * 43 * 30 30 196 8	1.00 per men, per men
6 27 61 6600 370 290 2070 7 17 61 5200 120 330 2650 660 60 580 750 250 410 56 10 47 10 40 80 5840 8 22 61 11300 100 60 9360 620 150 350 640 40 520 150 56 60 92 10 2 * 43 * 30 196 8 9 7 61 1200 23 10 9 * 50 10 48 2	3 4 383 8 2 -8- 8 6 2 9 48-
6 27 61 6600 370 290 2070 7 17 61 5200 120 330 2650 660 60 580 750 250 410 56 10 47 10 40 80 5840 82 61 11300 100 60 9360 620 150 350 640 40 520 150 56 60 92 10 2 * 43 * 30 196 8 9 7 61 1200 23	3 4 383 8 2 -8- 8 6 2 9 48-

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

MASSACHUSETTS

MAJOR BASIN

NORTHEAST

MINOR BASIN

MERRIMACK RIVER

STATION LOCATION MERRIMACK RIVER ABOVE

LOWELL, MASSACHUSETTS

												5111 OBOT	ORM EXTR	ACTABLES				
DATE	OF S	MPLE			EX	TRACTABL	ES							CIABLLO				
BEGINN	IING	EN	4D			ļ		1				NEUTRALS	·					
МОМТН	YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
6 26	61	8	17	5590	315	152	163	5	27	62	9	5	45	3	18	14	3	23
										**************************************	5.							
						1												

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MASSACHUSETTS

MAJOR BASIN

NORTHEAST

MINOR BASIN

MERRIMACK RIVER

STATION LOCATION MERRIMACK RIVER ABOVE

LOWELL, MASSACHUSETTS

DATI OF SAN			Dieconnen				CHLORINE	DEMAND									
MONTH	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/I	рН	B.O.D. mg/l	C.O.D.	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
6 27 7 10 7 17 7 24 8 2 8 10 6 17	61 61 61 61	-				-											17000 1600 9600 3700 6000 2000 1800 920

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station below Concord River at Lowell, Massachusetts
Operated by U.S. Geological Survey

STATE

Massachusetts

MAJOR BASIN

Northeast

MINOR BASIN

Merrimack River

STATION LOCATION

Merrimack River above

Lowell, Massachusetts

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	4.850 4.590	6.930 10.600	10.400	4.100 4.300	3.270 3.200	16.400 15.100	20.000	20.000	7.900 7.230	2.290 1.820	3.030 2.940	2.900 2.300
2 3 4	4.890	13.400	9,000	4.500	3.200	13.800	22.000	20.000	6.930	2.260	2.710	2.100
	4.850	13.700	7.120	4.400	3.100	13.200	20.000	20.500	7.000	2.880	2.740	2.000
5	4.210	11.400	6.260	4.300	2.900	13.000	17.000	17.400	6.590	3, 330	2.060	1.900
6	4.080	9.330	6.370	4.100	3.000	13.400	16.500	15.100	5.910	3.030	.523	1.700
7	3.580	8.300	6.120	3.700	2.900	14.100	17.000	13.400	5.230	2.600	1.940	1.500
8	3.330	7.420	5.940	3.300	2.940	14.200	17.000	12.800	4.270	2.210	2.060	2.000
9	2.610	7.120	5.600	3.800	3.000	13.800	16.500	13.000	4.170	2.140	2.110	1.600
10	3.000	6.850	4.950	3.900	3.700	12.700	16.000	13.900	4.790	2.970	2.080	1.300
11	3.030	6.930	4.370	3,800	3.480	12.100	17.000	15.100	6,660	2.880	1.980	1.700
12	3.120	7.040	4.600	4.000	2.830	11.700	18.000	15.000	8.060	2.770	1.730	1.800
	3.390	6.160	3.700	3.900	3.420	10.900	18.500	13.100	7.000	2.970	1.320	1.700
13 14	3.060	6.080	3.700	3.700	3.270	10.300	20.000	12.400	6.300	2.690	1.780	1.800
15	2.370	6.300	4.500	3.100	3.480	9.630	20.500	13.000	5.980	2.210	1.780	5.000
16	2.160	6.080	5.000	3.500	3.760	9.880	21.000	12.700	5.700	1.750	1.520	1.900
17	2.700	5.940	6.200	3.600	3.860	9.710	25.000	11.900	5.060	3.100	1.560	1.500
18	3.090	5.530	6.800	3.550	3.120	8.960	26.000	11.100	4.240	3.700	1.580	2.300
19	3.520	5.190	5.000	3.700	3.120	8.830	29.000	10.000	4.920	3.860	1.320	2.300
20	4.210	5.190	4.700	3.760	4.240	8.380	27.000	8.870	4.240	3.520	•977	2.100
21	5,770	5.090	4.800	3.640	4.820	8.140	24.000	7.540	3.950	3.180	1.500	4.000
22	6.810	5.260	5.200	2.970	5.840	8.100	21.500	7.460	3.830	2.660	1.520	5.200
23	5.840	5.060	5.400	3.600	6.160	8.020	21.000	7.380	3.890	2.180	1.600	4.000
24	6.230	4.270	4.900	3.600	6.960	8.300	22.500	7.740	4.920	3.310	1.800	3.600
25	8.100	4.920	4.700	3.500	7.780	8.870	28.500	7.980	4.850	3.240	1.600	4.200
26	12.300	4.530	4.300	3.240	9.290	9.460	29.000	7.460	4.850	3.210	1.300	4.500
27	13.600	3.980	4.500	2.910	12.200	11.000	26.500	7.700	4.560	3.060	1.500	4.300
28	10.600	4.330	4.700	2.770	16.000	12.200	26.000	10.400	4.080	3.000	1.600	3.900
29	9.380	4.300	4.700	2.600		14.900	23.000	11.100	3.520	2.600	2.000	3.640
30	8.620	6.440	4.400	3.330		20.600	21.500	10.100	3.120	1.910	3.400	2.800
31	6.930		3.900	3.300		22.000		9.420		3.240	3.300	

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER MISSISSIPPI-NATCHEZ TO GULF

STATION LOCATION MISSISSIPPI RIVER AT

NEW ORLEANS, LOUISIANA

			PAD	OACTIVITY IN V	VATER			т	RADIO	ACTIVITY IN PLA	NKTON (dry)	Γ	PAC	DOACTIVITY IN V	VATER
DATE SAMPLE	DATE OF		ALPHA			BETA		1			ACTIVITY	1		GROSS ACTIVIT	
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	1	DATE OF DETERMI- NATION	ALPHA	BETA	1	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR		μμε/1	μμc/l	μμς/1	μμε/Ι	μμε/Ι	μμε/Ι		MO. DAY	μμc/g	μμc/g	1	μμς/Ι	μμς/	μμc/1
MO. DAY YEAR 10 27 60* 12 1 60* 12 29 60* 1 5 61 2 2 61* 3 2 61* 3 30 61* 6 1 61* 6 22 61* 8 3 61* 8 31 61*	11 7 12 9 1 11 2 23 2 15 3 16 4 11 5 17 7 27 8 28	μμε/I 0 1 3 0 3 2 1 13 5 3 1 0	2 2 2 2 0 1 0 0 0 0 0 0 0	2 3 25 0 4 2 1 13 6 3 1 0	0 0 1 4 2 1 9 2 2 5 6 0 4	0 1 2 5 6 3 0 0 1 4 12 12	оп 1 3 9 8 3 9 22 6 10 12 16		MO. DAY	μμε/g	##c/g		μμε/1	<i>рµс/</i> і	μμε/Ι

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI NATCHEZ TO GULF

STATION LOCATION MISSISSIPPI RIVER AT

NEW ORLEANS, LOUISIANA

	T				ALGAE (A	lumber	per ml.)				INE	RT				ום	ATON	45					,	ICROIN	/ERTEBR		\neg	
DATE OF SAM	- 1		BLUE-	GREEN	GREE	:N	FLAGEL (Pigme		DIATO	омѕ	DIA SHE (No. p	LLS		DOMII (See	NANT Introd	SPEC	ES AN for Cod	D PER	RCENT ti/icati	AGES		SHEATHED THE .)	ml.)	B iter)	iter)	ES iter)	IL FORMS	aturka duction fication,
MONTH	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER. CENTAGE	SECOND#	PER. CENTAGE	THIRD#	PER- CENTAGE	FOURTH#	PER- CENTAGE	OTHER PER- CENTAGE	OTHER MICRO FUNGI AND S SACTERIA (No. per	FROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per III	DOMINANT SENERA (See Introduction for Identification)
10	60 60 60 61 61 61 61 61 61 61 61 61 61 61 61 61	400 1000 600 300 800 1900 2300 2900 2600 800 600 100 800 800 400 600 900	70 20	20 50	50 90 70 40 20 20 20 20 20 20 20 20 80 210 40 80 80		70 290 110 50 110 20 90 20 110 40 80 60 20 80	70 50 20 70 20 20 20	180 470 200 90 620 900 1680 1900 2640 2320 670 540 440 1100 270 310 230 100 640	70 70 110 130 70 270 130 110 20 210 210 210 210 120 210 120 120	330 360 240 1270 900 3020 3040 1010 630 290 70 310 120 600 100	90 90 70 50 200 160 290 130 100 80 120 60 80 20 20	82 56 56 56 62 92 58 56	30 30 30 30 30 50 20 40 80 20 10 20 60	80 56 80 82 80 82 80 82 85 86 86 86 86 86 86 86 86 86 86	20 30 10 20 20 10 20 20 20 20 20 20	82 59 61 89 56 92 58 56 26 45 26	10 10 10 20 10 20 * 10 10 10 10 10 10 10 10 10 10 10 10 10	82 58 58 56 65 80 26 83 82 58 82 82 59 26	10 10 10 10 * 10 * 10 10 10 10 10 10	30 30 20 30 20 30 20 10 20 50 60	70 40 70 200 130 90 20 20	20 10 20 40	2 1 5 6	3	1 1 1 4 3 2 2		7 7 9-7 9-7 4-9-7 9-7 9-7 9-7 9-7 9-3

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-NATCHEZ TO GULF

STATION LOCATION MISSISSIPPI RIVER AT

NEW ORLEANS, LOUISIANA

	,		(TD 10T 1 D)		7				0	ODIA EVED	107171				
DATE OF SAMPLE	4	E/	EXTRACTABLES CHLOROFORM EXTRACTABLES NEUTRALS												
MONTH DAY YEAR DAY DAY DAY DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 17 60 10 24 11 10 60 11 30 60 12 7 12 27 60 1 23 61 2 24 3 15 61 3 22 5 3 61 5 10 5 30 61 6 20 61 7 17 61 8 14 9 5 61 9 26 61 10 3 **N	6229 6952 6227 6227 6227 6227 6229 6430 6229 6264 6227 7588	152 135 125 156 167 147 123 122 111 105	6454819036662230 55662230	88 100 101 118 126 86 67 87 69 58 85	31012102200200	16 85 97 11 14 15 86 96 4	19 12 11 14 19 18 13 13 12 13 12 8 9	10111122212111	211222211111111111111111111111111111111	14 9 8 10 13 14 10 9 8 9 10 9 6 7	22113111201000	74355746754633	72122415743411	111111111111111111111111111111111111111	11 73 65 76 12 11 65 85 2

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-NATCHEZ TO GULF

STATION LOCATIONMISSISSIPPI RIVER AT

NEW ORLEANS, LOUISIANA

DATE	1			1			CHLORINE	DEMAND									TOTAL	
OF SAMP	LE	TEMP. (Degrees	DISSOLVED OXYGEN	рН	B.O.D.	C.O.D.		24-HOUR	AMMONIA- 1	CHLORIDES	ALKALINITY mg/l	HARDNESS mg/l	COLOR	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS	COLIFORMS per 100 ml.
МОМТН	YEAR	Centigrade)	mg/l		mg/l	mg/l	1-HOUR mg/l	mg/l	mg/l	mg/l	ilig/1	g/ •			_		mg/I	
10 6	60	28.0	6.0	8.2	• 2	7	1.0	3.3	• 1	32	127	164 164	15 15	54 23	54 60	.2	267 277	2300
10 13	60	28.0	6.2	8.0	• 2 • 3	9 11	1.0 1.0	2.7	•1	37 33	120 120	164	15	13	€3	.2	278	_
	60	24.0 23.0	6.7	8.1	• 3	11	1.3	4.0	• 2	35	128	156	15	25	55	•3	277	
10 31	60	23.0	,		-	-	_	-	_	-	-	-	-	-	 	.2	258	600 490
11 3	60	21.0	7.1	7.9	• 4	10	1.1	3.1	• 2	29 45	128 133	156 164	15 15	20 12	58 49	.2	310	+7U
11 10	60	20.0	7.7	7.8	• 2	10 13	1.1	3•3 3•9	• 2 • 2	45	130	164	15	215	61	.2	343	1700
11 17	60 60	16.0 14.0	7.9 8.4	8.0 7.9	• 6 • 6	11	1.3	3.7	. 2	33	114	154	15	60	58	• 2	271	400
12 1 12 8	60	14.0	8.9	7.9	• 6	11	1.7	3.7	• 2	32	118	158	15	40	65	•1	284	330
12 15	60	9.0	9.2	7.8	• 9	14	1.1	4.0	• 2	31	130	160	1.5	40 56	60 50	•1	272 248	550 510
12 22	60	8.0	9.9	7.7	• 6	14	1.1	4.0	• 2	31 37	116 108	140 136	15 15	160	45	.2	247	530
12 29	60	9.0	10.4	7.9	3	13 13	1.1	4 • 0 3 • 6	•2	35	114	144	15	54	46	•1	245	5400
1 5 1 12	61	6.0 6.0	11.7	7.8	2.6 2.1	16	1.1	4.0	.3	32	114	136	15	228	43	• 2	234	630
1 19	61	6.0	10.6	7.8	1.6	13	1.0	3.2	•2	32	100	130	15	68	46	• 1	237	800 600
1 26	61	_	10.8	8.0	• 6	12	1.1	4 • 4	•2	40	109	150	15 15	38 54	55 49	• 2	278 261	450
2 2	61	7.0	11.1	7.9	2.0	14	1.0	3.3	• 2	33 31	105	140 136	15	40	52		240	300
2 9	61	5.0	11.3	8.0	2.6	13	.8 1.0	3 · 2 3 · 2	.2	33	117	150	15	46	49		257	400
2 16 2 23	61	7.0 9.0	10.4	7.9 7.8	2.1	14	1.1	3.3	.2	26	113	134	15	66	32	• 0	213	700
3 2	61	11.0	8.6	8.0	1.6	22	1.1	5.7	.3	28	90	116	15	320	40	•2	216	990 930
3 9	61	12.0	8.1	7.7	1.4	28	1.1	5.4	• 1	26	85	108	15 15	495 375	37 31	.1	169	520
3 16	61	12.0	8.1	7.8	1.1	24	2.0	5.7	.2	15 15	75 77	100	15	515	30		176	450
3 23	61	14.0	7.7	7 • 4 7 • 5	1.4	32 28	1.0	4 • 1	1	12	77	100	15	455	32	.1	175	-
3 30 4 6	61	13.0 14.0	7.2	7.7	• 9	21	8.	5.1	.2	16	77	100	15	355	33		166	450
4 13	61	16.0	7.0	7.4	• 9	26	1.0	5.1	• 2	16	88	114	15	305	34		182	>80 890
4 20	61	14.0	7.7	7.4	• 9	21	1.0	5 • 1	• 1	14	87	112	15 15	170 190	32 35		178	2200
4 27	61	15.0		7.7	• 5	21	1.2	5 • 1	•1	16 16	85	108		155	40		185	870
5 4	61	17.0		7.4	.5 1.0	17 21	1.0	5 • 1	•1	16	90	118	15	230	41		205	900
5 11 5 18	61	18.0 19.0		7.8	.7	22	.7	4.2	.1	19	92	118	15	370	45	l l	213	800
5 25	61	20.0	1	7.8	.7	27	.7	4.2	.1	13	86	104		290	31		165	2000
6 1	61	21.0		7.9	• 3	23	1.0	5 • 1	• 1	11	86	102		225 155	34	1	179	1300
6 8	61	22.0		7.9	•6	23	1.7	5 • 1	• 1	15	91	110	1	200	37		200	4900
6 15	61	24.0	1	7.9	• 5	22 19	1.6	4 • 1	•1	21	96	128		225	48	_	240	-
6 22	61	24.0 24.0		7.5	•5 •9	16	1.0	-	.1	28		128	1	1	57	.1	245	-
6 29	61	24.0	7.7	'*'										1				

STATE

LOUISIANA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-NATCHEZ TO GULF

STATION LOCATIONMISSISSIPPI RIVER AT

NEW ORLEANS, LOUISIANA

DATE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	DEMAND							1			
MONTH DAY YEAR	(Degrees Centigrade)	OXYGEN	рН	B.O.D, mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
7 6 61 13 61 7 20 61 8 3 61 8 17 61 8 31 61 9 21 61 9 28 61	25.6 26.7 27.2 28.3 28.9 28.9 28.3 27.2 27.2	5.4 6.0 6.0 5.0 6.8 7.0 6.8 7.0 5.0 7.0 8.8 7.0 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	7.8 7.9 8.0 7.7 7.9 7.8 7.9 7.9 7.8	• 2 2 5 4 2 3 4 2 2 1 1 4 4 3	26 33 15 19 16 17 19 10 8 5 12 30	.7 1.3 .9 1.3 1.4 .8 1.0 1.1 1.1 1.0 .8	21 4 2 3 5 2 6 6 3 2 2 2 2 4 3 5 4 4 • • • • • • • • • • • • • • • • •	3333888542448 •••••••	19 20 24 20 25 18 20 32 43 30 48	95 104 117 119 101 103 96 105 109 112 116 123 110	122 126 152 1530 138 122 136 138 1454 158 146	25 20 20 20 15 15 20 20 20 20 20	225 210 90 210 128 120 198 133 108 73 34 305	421 493639255124 5566	1 1 1 1 1 1 1 2 2 2 1	215 206 226 255 203 224 202 232 245 233 277 342 287	900 500 470 830 1500 1300 *200 4000 19000 1600 830 3800

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Red River Landing, Louisiana Operated by U.S. Geological Survey

STATE

Louisiana

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Lower Mississippi-Natchez to Gulf

STATION LOCATION

Mississippi River at

New Orleans, Louisiana

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	178.000 175.000 172.000 170.000	174.000 174.000 174.000 174.000 170.000	191.000 188.000 186.000 180.000 175.000	223.000 222.000 221.000 228.000 239.000	309.000 296.000 277.000 254.000 232.000	544.000 579.000 608.000 634.000 658.000	1099.000 1095.000 1093.000 1087.000 1080.000	837.000 830.000 812.000 812.000 812.000	1035.000 1034.000 1028.000 1017.000 996.000	532.000 510.000 482.000 450.000 412.000	403.000 414.000 420.000 419.000 411.000	205.000 203.000 203.000 203.000 202.000 202.000
6	169.000	160.000	177.000	252.000	217.000	687.000	1073.000	812.000	977.000	372.000	393.000	201.000
7	171.000	155.000	182.000	274.000	210.000	707.000	1060.000	805.000	945.000	343.000	374.000	201.000
8	171.000	156.000	184.000	318.000	200.000	724.000	1055.000	788.000	908.000	321.000	362.000	200.000
9	171.000	173.000	190.000	335.000	193.000	740.000	1048.000	786.000	864.000	304.000	352.000	199.000
10	168.000	182.000	193.000	346.000	189.000	754.000	1042.000	789.000	810.000	298.000	340.000	202.000
11	167.000	190.000	204.000	354.000	186.000	768.000	1034.000	820.000	762.000	297.000	328.000	206.000
12	167.000	199.000	217.000	353.000	186.000	784.000	1007.000	848.000	715.000	301.000	320.000	198.000
13	167.000	208.000	228.000	352.000	188.000	800.000	983.000	852.000	662.000	295.000	316.000	190.000
14	174.000	213.000	236.000	349.000	191.000	815.000	968.000	853.000	620.000	289.000	314.000	208.000
15	174.000	215.000	241.000	340.000	196.000	831.000	952.000	854.000	589.000	285.000	314.000	220.000
16	174.000	215.000	248.000	325.000	201.000	846.000	938.000	874.000	562.000	279.000	314.000	228.000
17	174.000	215.000	260.000	306.000	213.000	879.000	930.000	894.000	549.000	280.000	314.000	228.000
18	172.000	215.000	272.000	289.000	239.000	911.000	925.000	902.000	540.000	289.000	310.000	223.000
19	167.000	217.000	282.000	273.000	259.000	926.000	921.000	908.000	538.000	293.000	307.000	212.000
20	161.000	221.000	286.000	261.000	274.000	939.000	916.000	926.000	541.000	297.000	306.000	208.000
21	155.000	221.000	286.000	250.000	298.000	950.000	910.000	945.000	545.000	308.000	307.000	244.000
22	150.000	220.000	280.000	242.000	331.000	960.000	902.000	960.000	540.000	325.000	308.000	277.000
23	149.000	219.000	274.000	240.000	354.000	970.000	890.000	962.000	542.000	340.000	320.000	313.000
24	149.000	216.000	265.000	245.000	372.000	985.000	880.000	963.000	560.000	347.000	320.000	348.000
25	152.000	214.000	256.000	260.000	399.000	994.000	875.000	964.000	568.000	354.000	317.000	382.000
26 27 28 29 30 31	155.000 157.000 159.000 161.000 170.000 174.000	211.000 208.000 204.000 196.000 191.000	246.000 238.000 231.000 224.000 221.000 221.000	278.000 288.000 296.000 305.000 312.000 313.000	425.000 457.000 501.000	1007.000 1021.000 1039.000 1062.000 1076.000 1092.000	870.000 863.000 843.000 840.000 838.000	966.000 984.000 1002.000 1018.000 1027.000 1035.000	572.000 580.000 579.000 575.000 569.000	356.000 357.000 357.000 357.000 368.000 383.000	302.000 280.000 254.000 232.000 218.000 209.000	400.000 410.000 408.000 398.000 382.000

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

MISSISSIPPI

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVER

STATION LOCATION MISSISSIPPI RIVER AT

VICKSBURG, MISSISSIPPI

DATE OF SAMPLE		FX	TRACTABL	FS	1				CHLOROF	ORM EXTR	ACTABLES	····			
BEGINNING ENI	D								NEUTRALS			· · · · · · · · · · · · · · · · · · ·			
DAY YEAR MONTH	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
4 10 61 4 5 5 4 61 5 6 6 8 61 6	21 4950 25 4500 22 3580 21 5000 24 5000	188 160 292 104 131 94	79 78 151 32 52 32	109 82 141 72 79 62	3 3 3 1 1 1 1	20 41 8 13 7	20 21 35 10 18 15	2 1 4 2 3 4	2 2 2 1 2 2 2	16 17 28 7 13 9	0 1 1 0 0 0 0	8 9 17 4 6 4	9 7 20 4 5 1	1 2 3 1 1 1 1	18 16 32 4 8 3

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Vicksburg, Mississippi Operated by U.S. Geological Survey STATE

Mississippi

MAJOR BASIN

Southwest-Lower Mississippi

MINOR BASIN

Lower Mississippi-Yazoo Rivers

STATION LOCATION

Mississippi River at

Vicksburg, Mississippi

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	241.000 235.000 229.000 223.000 223.000	212.000 210.000 199.000 188.000 187.000	245.000 240.000 232.000 228.000 226.000	248.000 248.000 254.000 264.000 279.000	3 ¹ 40.000 311.000 279.000 251.000 237.000	692.000 733.000 776.000 813.000 843.000	1.347.000 1.347.000 1.351.000 1.355.000 1.347.000	1.016.000 1.012.000 1.008.000 1.008.000 1.004.000	1.532.000 1.488.000 1.413.000 1.340.000 1.265.000	641.000 589.000 534.000 483.000 436.000	554.000 560.000 560.000 550.000 532.000	271.000 268.000 266.000 270.000 268.000
6 7 8 9	229.000 229.000 228.000 226.000 226.000	187.000 204.000 216.000 226.000 238.000	230.000 240.000 248.000 253.000 250.000	299.000 328.000 353.000 371.000 383.000	228.000 220.000 212.000 207.000 206.000	880.000 903.000 930.000 949.000 969.000	1.315.000 1.311.000 1.294.000 1.286.000 1.232.000	1.004.000 1.000.000 1.008.000 1.032.000 1.060.000	1.195.000 1.133.000 1.052.000 960.000 876.000	400.000 378.000 370.000 368.000 368.000	510.000 488.000 469.000 456.000 447.000	263.000 254.000 252.000 250.000 247.000
11 12 13 14 15	226,000 224,000 228,000 224,000 220,000	253.000 269.000 278.000 277.000 277.000	254.000 259.000 262.000 267.000 275.000	387.000 381.000 369.000 350.000 333.000	212.000 220.000 237.000 245.000 251.000	997.000 1.017.000 1.049.000 1.074.000 1.094.000	1.203.000 1.182.000 1.158.000 1.133.000 1.117.000	1.092.000 1.121.000 1.150.000 1.186.000 1.211.000	811.000 763.000 735.000 704.000 704.000	365.000 359.000 351.000 344.000 336.000	442.000 440.000 440.000 440.000 436.000	247.000 254.000 280.000 295.000 304.000
16 17 18 19 20	214.000 210.000 202.000 199.000 193.000	277.000 280.000 283.000 286.000 286.000	289.000 308.000 326.000 333.000 335.000	315.000 298.000 286.000 275.000 264.000	264.000 277.000 296.000 313.000 329.000	1.123.000 1.156.000 1.180.000 1.188.000 1.205.000	1.096.000 1.076.000 1.068.000 1.060.000	1.240.000 1.273.000 1.294.000 1.332.000 1.370.000	701.000 688.000 678.000 678.000 701.000	344.000 363.000 368.000 366.000 392.000	432.000 425.000 415.000 409.000 409.000	299.000 287.000 276.000 276.000 316.000
21 22 23 24 25	190.000 190.000 192.000 196.000 199.000	278.000 275.000 273.000 270.000 269.000	331.000 320.000 311.000 299.000 286.000	261.000 269.000 282.000 296.000 311.000	350.000 367.000 387.000 416.000 460.000	1.230.000 1.250.000 1.263.000 1.284.000 1.300.000	1.060.000 1.060.000 1.060.000 1.064.000 1.064.000	1.405.000 1.435.000 1.466.000 1.497.000 1.528.000	721.000 742.000 752.000 760.000 760.000	428.000 451.000 456.000 460.000	417.000 432.000 436.000 428.000 396.000	380.000 449.000 514.000 570.000 603.000
26 27 28 29 30 31	204.000 206.000 210.000 214.000 214.000 214.000	262.000 256.000 249.000 248.000 248.000	272.000 266.000 264.000 261.000 258.000 251.000	326.000 338.000 352.000 357.000 359.000 355.000	515.000 579.000 643.000	1.313.000 1.321.000 1.326.000 1.338.000 1.342.000 1.347.000	1.064.000 1.060.000 1.056.000 1.044.000 1.028.000	1.555.000 1.564.000 1.568.000 1.564.000 1.564.000	756.000 752.000 742.000 721.000 685.000	460.000 462.000 467.000 483.000 512.000 537.000	357.000 325.000 295.000 275.000 270.000 275.000	611.000 594.000 562.000 517.000 483.000

RADIOACTIVITY DETERMINATIONS

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

DELTA, LOUISIANA

DATE			RAD				RADIOA	CTIVITY IN PLA	NKTON (dry)	T	RAI	DIOACTIVITY IN Y	/ATER		
SAMPLE	DATE OF	[ALPHA		T	BETA		1	DATE OF DETERMI- NATION	GROSS	ACTIVITY	1		GROSS ACTIVIT	
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL]	NATION	ALPHA	BETA]	SUSPENDED		TOTAL
MO. DAY YEAR	MONTH DAY	μμc/l	μμc/l	μμc/!	##c/l	μμc/l	<i>μμ</i> ε/Ι		MO. DAY	μμc/g	μμc/g	<u></u>	μμc/I	##c/I	μμc/I
MO. DAY YEAR 10 13 60 11 30 60* 12 13 60 1 25 61* 2 23 61* 3 23 61* 4 25 61* 6 22 61* 7 18 61* 8 24 61* 9 6 61 9 20 61															
·	-														

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

DELTA, LOUISIANA

DATE				ALGAE (1	Vumber	per ml.)				INE	RT TOM LLS	<u> </u>			DI	ATO	MS	····			T ;		MICROIN	VERTEBR	ATES		
OF SAMPLE		BLUE-	GREEN	GREE	N	FLAGEL (Pigm		DIAT	омѕ		LLS er ml.)			NANT Introd	SPEC	ES AN	ND PE			3	PLAKETO HEATHED 77.)	A ml.)	iter)	iter)	ES iter)	AL FORMS	GENERA eduction fication
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST*	PER. CENTAGE	SECOND	PER. CENTAGE	THIRD#	PER- CENTAGE	FOURTH	PER. CENTAGE	OTHER PER- CENTAGE	OTHER RICHOPLARKTOR, FUNCI AND SHEATHED RACTERIA (NO. per ml.)	PROTOZOA (No. per	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ARREAL FOI (No. per liter)	pominant genera (See Introduction for Identification)
10	1600	20	20 20 20 80	70 500 20 110 70 50 20 50 70 40 80 20 100 60 40 40		70 70 90 160 70 90 100 70 80 20 170 60 60 100	70 20 40 20	270 1300 340 1190 3820 4580 5670 3100 3900 2300 5440 6600 2300 9200 580	900 180 250 200 130 2270 4100 1500 2700 2700 250 250	650 340 1160 3600 3240 2390 1560 470 290 540 120 80 40 210 170	50 160 290 250 270 290 580 180 70 170 290 120 250 250 40	56	203040040000000000000000000000000000000	83 80 83 82 56 56 82 57 26 58 26 58 26 58 58 58 58 58 58 58 58 58 58 58 58 58	10 30 30 30 20 10 10 10 20 10 20 10 10	26 56	10 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	80 61 61 57 58 29 26 20 83 83 80	10 10 10 10 10 10 10 10 10 10 10 10	60 30 20 20 20 20 10 30 50 70 50 20	260 200 50 30 20 20	10	1 1 6	2 2 6	. 1		

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

DELTA, LOUISIANA

					,							0111.05.5	05W EV==	107151 ==				
DATE OF					E	KTRACTABI	LES		<u> </u>	ī		NEUTRALS		ACTABLES	r		1 1	
		MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
12 13 6 8 30 6	50	12 10	20 2	4217 4738	135 92	36 26	99 66	0	5 3	23 16	8 2	4 2	11 12	0	3 4	1	100	3 2

STATE

LOUISIANA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION ISSISSIPPI RIVER AT

DELTA, LOUISIANA

54.

D OF 5	ATE		темр,	DISSOLVED				CHLORINE	DEMAND	AMMONIA-								TOTAL	
x l			(Degrees Centigrade)	OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	CHLORIDES mg/l	mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
12 1 2 2 2 2	31 30 13 4 7	60	21.1 20.1 11.1 9.4 3.3 8.8 11.1	7.8 7.4 14.0 12.0 15.0 6.1 6.2	8.1 7.5 7.6 7.6 7.8 7.4 7.7 7.3	.8 1.1 1.1 2.1 1.0 1.4 1.0	14 18 11 9 14 18 9	.6 .8 .6 .8 !.1 !.1 .8 .4	2.4 2.7 3.2 2.8 2.5 1.9	•1 •1 •1 •1 •1 •1	23 248 304 335 53	129 114 118 122 124 106 104 70	132 122 150 144 164 142 109		125 100 140 180 75 125 75 410	38 42 45 45 55 43		212 208 199 202 220 210 224 194	

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Vicksburg, Mississippi Operated by U.S. Geological Survey STATE

Louisiana

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Lower Mississippi-Yazoo Rivers

STATION LOCATION

Mississippi River at

Delta, Louisiana

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	241.000	212.000	245.000	248.000	3110.000	692.000	1347.000	1016.000	1532.000	641.000	554,000	271.000
2	235.000	210.000	240.000	248.000	311.000	733.000	1347.000	1012.000	1488.000	589.000	560.000	268.000
3 4	229.000	199.000	232.000	254.000	279.000	776.000	1351.000	1008.000	1413.000	534.000	560.000	266.000
	223.000	188.000	228.000	264.000	251.000	813.000	1355.000	1008.000	1340.000	483.000	550.000	270.000
5	223,000	187.000	226.000	279.000	237.000	843.000	1347.000	1004.000	1265.000	436.000	532.000	268.000
6	229.000	187.000	230.000	299.000	228.000	880.000	1315.000	1004.000	1195.000	400.000	510.000	263.000
7	229.000	204.000	240.000	328.000	220.000	903.000	1311.000	1000.000	1133.000	378,000	488.000	254.000
8	228.000	216.000	248.000	353.000	212.000	930.000	1294.000	1008.000	1052,000	370.000	469.000	252.000
9	226.000	226.000	253.000	371.000	207.000	949.000	1286.000	1032.000	960.000	368.000	456.000	250.000
10	226.000	238.000	250.000	383.000	206.000	969.000	1232.000	1060.000	876.000	368.000	447.000	247.000
11	226.000	253.000	254.000	387.000	212.000	997.000	1203.000	1092.000	811.000	365,000	442.000	247.000
12	224.000	269.000	259.000	381.000	220.000	1017.000	1182.000	1121.000	763.000	359.000	440.000	254.000
13 14	228.000	278.000	262.000	369.000	237.000	1049.000	1158.000	1150.000	735.000	351.000	440.000	280,000
	224.000	277.000	267.000	350.000	245.000	1074.000	1133.000	1186.000	704.000	344.000	440.000	295.000
15	220.000	277.000	275.000	333.000	251.000	1094.000	1117.000	1211.000	704.000	336.000	436.000	304.000
16	214.000	277.000	289.000	315,000	264.000	1123.000	1096.000	1240.000	701,000	344.000	432.000	000 000
17	210.000	280.000	308.000	298.000	277.000	1156.000	1076.000	1273.000	688.000	363.000	425.000	299.000 287.000
18	202.000	283.000	326.000	286.000	296.000	1180.000	1068.000	1294.000	678.000	368.000	415.000	276.000
19	199.000	286.000	333.000	275.000	313.000	1188.000	1060.000	1332.000	678.000	366,000	409.000	276.000
20	193.000	286.000	335.000	264.000	329.000	1205.000	1060.000	1370.000	701.000	392.000	409.000	316.000
21	190.000	278,000	331.000	261.000	350.000	1230.000	1060.000	1405.000	721.000	428,000	1.25.000	-0
22	190.000	275.000	320.000	269.000	367,000	1250.000	1060.000	1435.000	742.000	451.000	417.000	380.000
23	192.000	273.000	311.000	282.000	387.000	1263.000	1060.000	1466.000	752.000	456.000	432.000 436.000	449.000
24	196.000	270.000	299.000	296.000	416.000	1284.000	1064.000	1497.000	760.000	460.000		514.000
25	199.000	269.000	286.000	311.000	460.000	1300.000	1064.000	1528.000	760.000	460.000	428.000 396.000	570.000
06	001, 000	0/0 000							•	-00,000	390.000	603.000
26 27	204.000	262.000	272.000	326.000	515.000	1313.000	1064.000	1555.000	756.000	460.000	357.000	611.000
27 28	206.000 210.000	256.000	266.000	338.000	579.000	1321.000	1060.000	1564.000	752.000	462.000	325.000	594.000
	214.000	249.000 248.000	264.000	352.000	643.000	1326.000	1056.000	1568.000	742.000	467.000	295.000	562.000
29 30	214.000	248.000	261.000	357.000		1338.000	1044.000	1564.000	721.000	483.000	275.000	517.000
30 31	214.000	240.000	258,000	359.000		1342.000	1028.000	1564.000	685.000	512.000	270.000	483.000
ــــر	5T4.000		251.000	355.000		1347.000		1550.000		537.000	275.000	-3

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER MISSISSIPPI-CAIRO TO HELENA

STATION LOCATION MISSISSIPPI RIVER AT

WEST MEMPHIS, ARKANSAS

DATE			RADI	OACTIVITY IN W	/ATER			 RADIOA	CTIVITY IN PLAI	NCON (drv)	PAD	IOACTIVITY IN W	ATER
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA		DATE OF DETERMI- NATION		CTIVITY		GROSS ACTIVIT	
TAKEN	NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	MONTH DAY	μμε/Ι	μμε/1	μμε/Ι	μμε/Ι	μμc/l	μμε/	 MO. DAY	μμc/g	μμc/g	 μμε/Ι	μμς/1	μμς/
10 10 60* 10 24 60* 11 7 60* 11 28 60* 12 12 60* 12 12 60* 1 9 61* 1 30 61* 2 27 61* 3 13 61* 3 20 61 4 24 61* 5 8 61* 6 12 61* 6 12 61* 8 14 61* 9 11 61 9 18 61 9 25 61	10 24 11 14 11 25 12 6	2 - 1 - 1 - 2 - 7 1 - 3 - 4 - 6 - 2	5 .2 .2	7 3 3 2 3 7 2 - 4 5 7 - 3 - 3 - 7 2 - 4 - 5 - 7 - 3 - 3 - 7 2 - 4 - 5 - 7 - 3 - 3 - 7 2 - 4 - 5 - 7 - 3 - 3 - 7 2 - 4 - 5 - 7 - 3 - 7 2 - 4 - 5 - 7 - 3 - 7 2 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	00 3 3 0 0 0 0 1 0 1 1 9 0 0 1 2 4 8 2 0 0 3 2 0	22 11 17 13 4 4 19 5 7 0 0 0 2 0 0 4 16 10 5 2 0 0	22 11 20 16 4 19 5 18 9 0 0 3 12 4 22 42 10 5 25 20 0						

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-CAIRO TO HELENA

STATION LOCATION MISSISSIPPI RIVER AT

WEST MEMPHIS, ARKANSAS

DATE				ALGAE (lumber	per ml.)				INE	ERT TOM	T			D	IATO	MS				<u>;</u>		MICROIN	VERTEBR	ATES	
OF SAMPLE		BLUE-	GREEN	GREE	:N	FLAGEI (Pigm		DIAT	om s	SHE	LLS er ml.)				duction					s	SPEATHED THE THE THE THE THE THE THE THE THE THE	ml.)	ter)	A ter)	S ter)	re) re) renera duction ication,
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER. CENTAGE	SECOND#	PER.	THIRD#	PER.	FOUNTH	PER-	OTHER PER- CENTAGE	OTHER MICRO FUNGI AND SP BACTERIA (No. per n	PROTOZOA (No. per n	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORUS (No. per liter) DOMINANT GENERA (See Introduction) for Identification)
10	1100 900 2000 803 1500 4100 5100 11900 2700 2100 2100 2300 1700 800 1100 2200 600	70 20 20 80 20	20 20 20 20	180 50 180 20 20 110 20 20 40 40 20 230 3310 40 40 40 40		110	50 50 110 180 70 20 40 20	470 460 1430 540 1270 3870 4690 11170 7670 2010 310 1140 480 1200 1410 580 1010 830 1780 370	470	530 1800 1250 1030 2250 11390 4360 1360 210 790 210 790 170 690 100 230 40	160 310 110 160 70 740 270 290 130 150 270 350 80 450 40 20	885555888555 586559 5555 586559 5555	10000000000000000000000000000000000000	260888888888888888888888888888888888888	10 20 20 20 30 10 20 20 10 20 10 10 10 10 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	70 82 82 54 45 46 45 26	10 10 10 * 10 10 10 10	82 61 99 59 47 563	100000000000000000000000000000000000000	00000000000000000000000000000000000000	130 40 270 50 50	20 10 10 10 10 20 10	1 1355 2556 3	2	1 22232	9-6 -49-79-79-79-79-79-79-79-79-79-79-79-79-7

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-CAIRO TO HELENA

STATION LOCATION MISSISSIPPI RIVER AT

WEST MEMPHIS, ARKANSAS

DATE OF SAMPLE	-	EX	TRACTABL	ES							ACTABLES				
BEGINNING END			i						NEUTRALS						
DAY YEAR MONTH DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 3 60 10 10 10 31 60 11 7 6 5 61 6 12 7 5 61 7 17 8 4 61 8 14 9 11 61 9 20	4120 3760 1123 6190 5830 3900	181 128 283 102 98 113	23 31 70 33 30 31	158 97 213 69 68 82	0 0 1 1 1 0 0	4 7 17 7 7 7	12 14 28 15 10 13	2 2 6 5 2 2	1 2 3 1 1 1 1	8	112100	3 4 9 4 4 4	2 5 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 9 3 5 4

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-CAIRO TO HELENA

STATION LOCATIONMISSISSIPPI RIVER AT

WEST MEMPHIS, ARKANSAS

DATE						CHLORINE	DEMAND					1					
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	Нզ	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
Ya Ya Ya Ya Ya Ya Ya Ya		7.2 7.4 7.3 7.6 8.8 8.8 9.9 9.9 9.9 - 11.1 11.4 12.3 13.3 12.3 12.3 12.3 12.3 11.7 11.7 10.6 10.1 9.0 10.2 8.7 10.6	7.9 7.7 7.9 8.0 7.9 8.0 7.9 8.0 8.0 8.0 8.0 8.0 7.9 8.0 7.9 7.9 8.0 7.9 7.9 8.0 7.9 7.9	1.2 .5 .4 .3 .9 .8 .7 1.6 1.8 2.2 1.1 2.3 4.0 2.8 3.4 1.6 2.0 1.5 1.3 2.0 1.0 .7 .8 1.3	11 18 20 18 11 13 20 14 - 17 15 15 18 23 15 25 28 18 36 18 36 22 22 22 22 22 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	ļ	1	.1 .0 .2 .1 .1 .1 .3 .3 .3 .4 .3 .5 .4 .3 .5 .4 .3 .5 .4 .3 .5 .4 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6	14 15 15 15 16 15 18 19 22 23 24 20 18 16 21 14 13 8 5 9 9 8 10 11 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	102 105 112 114 110 110 92 102 104 106 94 102 94 84 102 94 84 102 94 86 68 62 46 64 74 90 82 106 90 90 90 80 80 80 80 80 80 80 80 80 80 80 80 80	134 1442 157 1586 1188 15 - 60 150 150 150 160 154 1648 1448 1448 1440 110 110 110 1446 1446 1446 1432	8 13 15 12 11 11 9 13 12 13 11 11 11 11 11 11 11 11 11 11 11 11	15 245 215 110 20 400 20 90 85 120 75 125 190 80 230 110 350 340 260 280 330 290 380 600	500118808-59764488911300707079052236 54444889113007079052236	1 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	232 270 250 270 264 188 268 254 266 260 252 232 244 238 244 232 180 176 150 106 188 196 222 228 234 208	100000 29000 38000 38000 13000 11000 10000 18000 55000 64000 28000 47000 28000 47000 25000 17000 83000 25000 17000 25000 11000 25000 25000 25000 21000 21000
7 17 61 7 24 61 7 31 61 8 7 61 8 14 61	26.6 27.4 28.8 29.6 27.9	6.5 6.5 6.4 5.1 6.3	7.8 7.8 7.9 7.7 7.7	.4 .6 2.4 1.7	9 20 13 18 16 20	3.1 3.5 2.1 3.2 3.5 3.5	12.3 6.0 8.5 8.0 9.0	•0 •0 •0 •2 •0 •1	10 10 14 12 14 11	102 109 96 92 86 84	144 154 146 133 130 133	12 12 11 12 18 14	240 400 180 320 490 320	45 36 34 40 46 41	- -1 •1 •2 •2	216 244 234 218 208 210	22000 93000 28000 62000 40000 12000

STATE

ARKANSAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-CAIRO TO HELENA

STATION LOCATIONMISSISSIPPI RIVER AT

WEST MEMPHIS, ARKANSAS

DAY OF SA			TEMP.	DISSOLVED				CHLORINE	DEMAND							, , , , ,		****	
MONTH			(Degrees Centigrade)	OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
8 21 8 28	3 6 5 6 1 6	61 61 61	26.9 27.1 28.4 26.8 24.7 23.5	5.8 6.5 5.7 6.0 7.3 5.8	7.6 7.8 8.0 8.0 8.0 7.8	1 • 5 • 4 • 3 • 5 • 1 • 4 1 • 3	50 12 13 23 19 43	3 • 5 2 • 8 1 • 1 1 • 2 2 • 3 3 • 3	9.5 8.2 3.8 3.7 9.1 8.1	•2 •2 •1 •1 •1	13 16 15 13 8	85 105 107 106 94 88	136 151 156 148 129 113	12 11 11 8 12 17	800 120 70 125 260 600	46 45 52 51 40 34	•2 •3 •1 •0	220 242 260 236 202 170	16000 48000 19000 49000 27000 19000

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Memphis, Tennessee Operated by U.S. Geological Survey STATE

Arkansas

MAJOR Basin

Southwest-Lower Mississippi River

MINOR BASIN

Lower Mississippi-Cairo to Helena

STATION LOCATION

Mississippi River at

West Memphis, Arkansas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	192.000	152.000	188.000	188.000	178.000	755.000	1042.000	869.000	688.000	363.000	447.000	215.000
2	193.000	151.000	190.000	200.000	181.000	785.000	1021.000	869.000	609.000	324.000	429.000	219.000
3	192.000	158.000	199.000	226.000	185.000	819.000	1016.000	861.000	549.000	299.000	404.000	213.000
4	190.000	164.000	208.000	267.000	176.000	850.000	1016.000	858.000	503.000	288.000	382,000	206.000
5	186.000	170.000	202.000	302.000	164.000	877.000	1000.000	854.000	472.000	291.000	373.000	206.000
6	181.000	175.000	202.000	322.000	164.000	899.000	983.000	854.000	456.000	299.000	365.000	211.000
7	183.000	190.000	200.000	331.000	170.000	915.000	947.000	861.000	450.000	304.000	361.000	209,000
8	181.000	217.000	197.000	331.000	181.000	939.000	903.000	877.000	445.000	304.000	363.000	204.000
9	185.000	238.000	193.000	319.000	188.000	959.000	873.000	915.000	447.000	293.000	375.000	208.000
10	186.000	240.000	185.000	306.000	199.000	983.000	843.000	955.000	447.000	275.000	387.000	215.000
11	186.000	230.000	183.000	288.000	208.000	1012.000	823.000	1004.000	453.000	262.000	387.000	226,000
12	180.000	228.000	181.000	258.000	213.000	1047.000	819.000	1051.000	481.000	254.000	385.000	236,000
13	176.000	228.000	192.000	230.000	224.000	1091.000	809.000	1101.000	503.000	267.000	380.000	232.000
14	173.000	232.000	209.000	215.000	248.000	1137.000	802.000	1165.000	512.000	282.000	373.000	224.000
15	171.000	238.000	213.000	208,000	269.000	1175.000	826.000	1227.000	523.000	280.000	363.000	217.000
16	164.000	244.000	213,000	199.000	282.000	1203.000	850.000	1291,000	540.000	265,000	354.000	211.000
17	161.000	238.000	215.000	190.000	284.000	1227.000	869.000	1351.000	573.000	252.000	352.000	209.000
18	158.000	232.000	211.000	200.000	286.000	1247.000	884.000	1396.000	609.000	258,000	352.000	252,000
19	163.000	226.000	206.000	230.000	293.000	1261.000	892.000	1431.000	636.000	269.000	349.000	349.000
20	164.000	224.000	204.000	254.000	299.000	1271.000	899.000	1451.000	651.000	275.000	335.000	434.000
21	161.000	224,000	192,000	267.000	324.000	1276.000	899,000	1451.000	660,000	288,000	315,000	495.000
22	166.000	224.000	183.000	280.000	361.000	1276.000	896.000	1441.000	669.000	306.000	282,000	523.000
23	171.000	217.000	176.000	297.000	297.000	1261.000	884.000	1426.000	672.000	319,000	246.000	520.000
24	170.000	213.000	173.000	319.000	470.000	1242.000	865.000	1391.000	663.000	340.000	222.000	486,000
25	164.000	213.000	178.000	331.000	.564.000	1213.000	854.000	1351.000	645.000	358.000	213.000	442.000
26	161.000	217.000	183.000	338,000	636,000	1184.000	843,000	1301.000	615,000	370.000	213.000	401.000
27	158.000	219.000	180.000	335.000	685.000	1160.000	836.000	1237.000	567.000	385.000	219.000	397.000
28	158.000	215.000	171.000	322.000	723.000	1133.000	843.000	1156.000	517.000	419.000	217.000	365.000
29	158.000	208.000	164.000	295.000		1101.000	847.000	1042.000	461.000	450.000	209.000	380.000
30	156.000	193.000	164.000	242.000		1078.000	858.000	915.000	411.000	461.000	206.000	399.000
31	154.000		175.000	197.000		1064,000		792.000		456.000	208.000	

STATE

MISSOURI

MAJOR BASIN

UPPER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MISSISSIPPI-CAPE GIRARDEAU AREA

STATION LOCATION MISSISSIPPI RIVER AT

CAPE GIRARDEAU, MISSOURI

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MISSOURI

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-CAPE GIRARDEAU AREA

STATION LOCATION MISSISSIPPI RIVER AT

CAPE GIRARDEAU, MISSOURI

DATE				ALGAE (A	Vumber	per ml.)				INE	ERT				D	ATO	MS		,		T ;		MICROIN	VERTEBR	ATES		
OF SAMPLE		BLUE-	GREEN	GREE	:N	FLAGEI (Pigm		DIAT	омѕ	INE DIA' SHE (No. p	CLLS er ml.)				SPEC	IES A	ND PE				OPLANKTON, SHEATHED 77.	A ml.)	S liter)	EA iter)	ES iter)	AL FORMS	GENERA oduction fication,
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND	PER- CENTAGE	TRIRD#	PER. CENTAGE	FOURTH	PER.	OTHER PER- CENTAGE	OTHER MICH FUNGI AND I RACTERIA (No. per	DZO Per	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORMS (No. per liter)	pominant genera (See Introduction for Identification)
10	700 1900 2800 2500 3700 9400 3200 400 2200 800 900 3700 1400 500 600 1400	20	20 50 20 90 90	20 240 70 150 130 20 50 620 130 230 250 50 40	50	20 130 20 110 220 310 70 70 110 290 150 150 90 20	50 240 50 70 50 20 110 20 20 20	490 1060 2200 1960 2950 25950 8490 2370 160 1700 2050 660 2050 400 1020	90 160 420 270 270 580 740 220 380 160 250 600 580 290 290	730 970 640 770 4600 1990 250 110 360 200	130 180 70 160 340 310 220 340 290 290 270 110	5830226 8888 82260 52586	20 20	56 56 80 80 71 26 82 71 58 47 47	30 20 10 10 10 10	83 612 46 86 80 86 71 83 56 80 85 92	10 10 10	46 80 61 61 92 82 70 83 97 58 26 71 26 58	10 10 * 10 10	60 30 20 10 40 50 40 30 50 40		10 20 10 10	16 8 9 4 14 2	1 3	1 2		47 4-9-7 4-9-7 4-9-7 4-9-7 19-6 3-9639-79-7 4-9-7 47

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

MISSOURI

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-CAPE GIRARDEAU AREA

STATION LOCATION MISSISSIPPI RIVER AT

CAPE GIRARDEAU, MISSOURI

DATE OF SAMPL	END		EX	TRACTABL	ES					NEUTRALS	ORM EXTR	CIABLES				
MONTH YEAR MONTH	$\neg \neg$	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
11 7 60 11 12 6 60 12 1 4 61 1 2 6 61 2 3 7 61 3 4 4 61 4 5 2 61 6 7 5 61 6 7 5 61 7 8 7 61 8	7 17	3532 3870 3675 3930 3226 1530 1935 2400 3382 3675 3712 1013	280 281 286 318 499 464 307 3245 204 250 379	63 56 80 105 179 117 123 113 92 96 88 107	217 225 206 213 320 347 184 225 153 108 162 272	111121813634	15 11 12 30 27 26 24 25 20 30	20 21 38 56 82 41 36 32 23 26 32	123832343235	2 2 4 8 17 3 3 4 4 3 2 2 3	15 15 28 39 59 32 28 19 17 19 24	223134720220	9 8 13 22 21 16 17 19 14 13 13	12 9	212243122111	10 10 8 8 27 19 23 20 19 16 15

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MISSOURI

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-CAPE GIRARDEAU AREA

STATION LOCATION ISSISSIPPI RIVER AT

CAPE GIRARDEAU, MISSOURI

	DATE		TEMP.	DISSOLVED				CHLORINE	DEMAND									TOTAL	
MONTH	DAY	YEAR	(Degrees Centigrade)	OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
10	3	60	22.0		7.8	-	-	-	-		16	134	186	10	300	93	•2	317	-
	10 17	60	19.5 19.5		7•9 7•7	_	_	-	_	_	16 17	136 160	126 186	15 15	380 180	81 98	•1	316 353	_
		60	16.0	_	7.9	_	_	_	_	_	19	110	184	10	140	104	1	383	_
		60	17.0	_	7.8	_	_	_	_	_	20	160	200	20	140	95	.2	319	
11	7	60	11.0	_	7.9	-	_	-	-	_	16	144	176	30	380	83	•0	287	_
		60	10.0	-	7.7	-	, _	- ;	-	_	15	150	216	20	220	95	•0	264	-
	21	60	11.0	-	7.7	-	-	-	-	_	17	118	180	10	220	125	.0	357	-
		60	12.0	-	7.7	-	-	_	-	-	19	160	208	20	140	95	•1	296	i -
12 12	. 5	60	7.0	-	7.9	-	-	-	-	-	20	176	214	15	140	100	•0	310	_
	12 19	60	5 • 5 3 • 5	-	7.8	-	-	-	_	-	20 21	172	208 196	15 20	340 220	90 83	•0	292 266	_
		60	3.0	-	7•9 7•9	_	_	-	_	1	24	168 176	198	15	140	90	.1	327	
ī		61	3.5	_	7.9	_	_	_	_	_	19	190	200	10	140	83	.1	308	_
ī	- 1	61	3.0	_	7.9	_		_	_	_	25	186	236	5	140	90	.1	352	_
- 1		61	4.5	_	7.9	_	-	_	-	-	25	144	240	10	120	100	.1	353	_
1	23	61	2.5	-	7.9	_	-	-	-	-	25	180	214	10	140	95	•2	360	_
1	30	61	2.0	-	7.9	-	-		-	-	25	188	226	- 1	120	-	-	-	-
2		61		-		-	-	-	-	-	-	-	-	10	-	90	•1	352	-
2		61	2.0	-	7.9	-	-	-	-	-	21	190	240	15	86	85	•1	379	-
		61	4.5	-	7.9	-	-	-	-	-	25	188	220	15	180	98	•1	414	_
		61	6.0	-	7.7	-	-	-	-	-	29	162	188	10	220	108	•2	351	_
2 3	27	61	5.0 6.0	_	7.7	_		_	-	_	20 17	132 112	186 162	15 -	720 1120	75	•3	290	_
	13	61	8.0	_	7.7	_	_	-	_	_	12	98	136	_	1260	_	_	_	_
		61	11.0	-	7.7	_	_	_	_	_	12	96	140	15	1260	45	.1	226	_
	27	61	8.0	-	7.7	-	-	-	_]	-	12	80	158		640	-	'-	_	-
4		61	9.0	-	7.7	-	-	-	- 1	-	12	118	150	20	1000	60	•2	207	
4	10	61	9.0	~	7.7	-	-	-	-	-	10	110	142	15	500	50	.0	205	-
	17	61	10.0	-	7.7	-	-	-	-	-	11	118	138	15	460	65	•1	201	-
		61	14.0	-1	7 • 7	-	-	-	-	-	11	110	174	15	340	75	• 1	203	-
5	1	61	15.5	-	7.7	-	-	-	-	-	10	112	160	15	720	50	• 0	205	_
5		61	16.0	-	7.7	-	-	-	-		9	110	140	10	420	50	•1	205	_
5	15	61	18.0	-	7•7	-	_	-	-	-	6	88	114	15	720 420	30	•1	141	-
5	22 29	61	19.0	_	7.7	_	_	-	-	-	8 15	132	132 174	10	300	71	.0	256	I -
6		61	22.5	_	7.7	_	_	_ [_	12	124	164	10	420	47	.0	261	_
		61	25.0	-	7.7		_	_	_	_	14	112	182	10	420	74	.0	302	-
		61	24.0	-	7.8	-		-	-	-	14	132	180	10	760	75	.ĭ	292	_
		61	24.0	-	7.7	-	-	-	-	-	16	126	184	_	680	_	-		-

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MISSOURI

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-CAPE GIRARDEAU AREA

STATION LOCATION MISSISSIPPI RIVER AT

CAPE GIRARDEAU, MISSOURI

DATE OF SAMP							CHLORINE	DEMAND									TOTAL	COLIFORMS
		TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
7 3 7 10 7 17 7 24 7 31 8 7 8 14 8 21 8 28 9 5 9 11 9 15 9 18	61 61 61 61 61 61 61	26.0 26.0 27.0 28.0 28.0 26.5 26.5 26.0 27.0 24.0 22.0		7.7 7.8 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7						18 23 16 15 17 14 18 20 17 11 9	138 116 124 102 94 124 130 152 132 - 110 106	178 200 196 178 132 174 198 2200 1976 130	10	460 760 5800 9620 3480 3680 11280	93 83 - 80 55 92 12 60	-	285 	

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Thebes, Illinois Operated by U.S. Geological Survey STATE

Missouri

MAJOR BASIN

Upper Mississippi River

MINOR BASIN

Mississippi-Cape Girardeau Area

STATION LOCATION

Mississippi River at

Cape Girardeau, Missouri

Day	October	November	December	January	February	March	April.	May	June	July	August	September
1 2 3 4 5	129.000 127.000 117.000 114.000 110.000	84.800 88.000 95.200 112.000 143.000	87.600 82.700 81.900 80.900 80.800	68.600 70.300 70.900 70.900 69.900	50.800 50.500 50.700 49.900 50.600	166.000 163.000 149.000 136.000	383.000 375.000 357.000 346.000 334.000	298.000 276.000 263.000 259.000 265.000	263.000 250.000 235.000 226.000 214.000	115.000 126.000 146.000 173.000 170.000	202.000 181.000 167.000 171.000 168.000	84.800 86.400 87.100 83.700 89.600
6 7 8 9	106.000 104.000 100.000 95.000 88.100	158.000 146.000 133.000 126.000 123.000	83.100 82.700 81.400 79.500 85.200	68.100 66.000 64.600 65.500 65.400	50.900 51.900 52.700 53.300 54.300	148.000 174.000 198.000 232.000 284.000	325.000 323.000 322.000 333.000 343.000	303.000 370.000 461.000 560.000 638.000	203.000 189.000 188.000 189.000	149.000 133.000 124.000 122.000 133.000	177.000 187.000 180.000 161.000 151.000	105.000 114.000 116.000 130.000 134.000
11 12 13 14 15	85.600 80.200 78.600 78.600 80.700	127.000 128.000 123.000 115.000 113.000	97.900 102.000 93.700 88.400 89.000	64.400 63.300 62.500 61.700 61.700	55.400 57.000 58.800 61.300 63.100	329.000 336.000 335.000 319.000 315.000	342.000 363.000 396.000 400.000 375.000	690.000 726.000 735.000 705.000 647.000	186.000 189.000 199.000 193.000	149.000 143.000 126.000 117.000 110.000	152.000 188.000 206.000 192.000 174.000	129.000 121.000 110.000 109.000 150.000
16 17 18 19 20	83.700 86.400 92.200 98.300 96.700	110.000 108.000 111.000 112.000 115.000	89.100 86.100 80.100 77.000 75.900	61.800 62.700 64.000 64.100 64.100	66.100 73.400 84.700 100.000 105.000	332.000 359.000 372.000 354.000 341.000	352.000 342.000 319.000 289.000 267.000	585.000 527.000 478.000 458.000 433.000	181.000 177.000 185.000 211.000 223.000	104.000 98.600 101.000 98.500 99.700	157.000 143.000 130.000 116.000 106.000	321.000 429.000 465.000 485.000 478.000
21 22 23 24 25	91.200 87.600 83.600 80.100 77.400	117.000 118.000 114.000 112.000 105.000	74.000 73.300 70.500 69.600 70.200	66.500 67.300 64.400 62.300 61.000	101.000 108.000 133.000 152.000 155.000	336.000 325.000 318.000 317.000 316.000	253.000 241.000 229.000 229.000 260.000	411.000 386.000 368.000 339.000 314.000	210.000 192.000 176.000 158.000 144.000	120.000 143.000 139.000 148.000 196.000	97.500 93.200 91.000 87.000 83.600	423.000 359.000 309.000 277.000 267.000
26 27 28 29 30 31	75.000 76.300 80.400 81.900 81.700 82.100	100.000 97.000 93.000 92.200 92.200	71.800 75.500 78.400 73.800 70.000 68.500	60.100 58.400 57.700 56.000 54.000 53.000	154.000 152.000 156.000	311.000 301.000 285.000 277.000 298.000 355.000	294.000 323.000 347.000 341.000 318.000	297.000 290.000 298.000 308.000 297.000 279.000	134.000 126.000 122.000 119.000 115.000	244.000 241.000 234.000 244.000 240.000 220.000	84.000 86.700 90.100 95.800 93.900 88.100	310.000 356.000 376.000 343.000 288.000

RADIOACTIVITY DETERMINATIONS

STATE

ILLINOIS

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI RIVER-ST. LOUIS AREA

STATION LOCATION MISSISSIPPI RIVER AT

EAST ST. LOUIS, ILLINOIS

24

			PADI	DACTIVITY IN W	ATER			 RADIOAC	TIVITY IN PLAN	IKTON (dry)		IOACTIVITY IN W	
DATE SAMPLE	DATE OF		ALPHA	JACINIT III		BETA		DATE OF DETERMI- NATION	GROSS A			GROSS ACTIVIT	
TAKEN	DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL μμε/Ι
			. μμε/ί	μμε/Ι	μμε/Ι	μμς/Ι	μμε/Ι	 MO. DAY	μμc/g	μμc/g	μμς/Ι	μμς/Ι	<i>ррс/1</i>
MO. DAY YEAR 10 10 60* 10 17 60 11 7 60* 11 28 60* 12 12 60* 12 13 61* 2 13 61* 2 17 61* 4 10 61* 5 22 61* 6 12 61* 7 10 61 8 12 61 9 11 61 9 18 61 9 18 61 9 15 61	11 8 11 21 11 23 12 7 12 28 1 18 2 1 2 2 3 8 4 4 4 10 4 28 5 23 6 23 6 29	рис/I 1	3 - 3 - 2 - 4 - 2 - 0 - 0 - 0 1 1 3	дде/\ 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	MO. DAY	<i>µрс</i> /д	pper g			

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

ILLINOIS

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI RIVER-ST. LOUIS AREA

STATION LOCATION MISSISSIPPI RIVER AT

EAST ST. LOUIS, ILLINOIS

DATE				ALGAE (1	Vumber	per ml.)				INE	RT TOM	Ι				IATO	MS				<u> </u>	Т-	MICROIN	VERTEB	ATES		Γ
OF SAMPLE		BLUE-	GREEN	GREE	N	FLAGEL (Pigma		DIAT	омѕ	SHE (No. p	LLS				SPEC	IES A	ND PE	RCEN nti/ical		s	TLAKKTON REATHED II.)	1,1	er)	(at	s fe	FORMS	ENERA luction cation)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER- CENTAGE	SECOND	PER. CENTAGE	THIRD#	PER.	FOURTH	PER-	OTHER PER- CENTAGE	OTHER BICROPLARKTOR, FUNGI AND SHEATHED BACTERIA (NO. per ml.)	PROTOZOA (No. per m	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL PORMS (No. per liter)	DOMINANT GENERA (See Introduction for Identification)
10 3 60 10 17 60 12 5 60 12 19 60 1 3 61 1 6 61 2 0 61 3 61 4 17 61 5 61 6 19 61 8 7 61 8 21 61 9 18 61	1700 3200 7300 19300 23000 27200 27200 15800 4200 6900 5400 2400 2400 1700 1500 600 800	70 70 20 20	90 90 90 130 20 40 290 20	110 270 350 230 70 500 130 70 150 100 270 210 170 80 40 110	20	70 110 550 250 160 270 270 250 420 270 230 210 60 190 100 20	180 130 20 50 70 50 20 20 40	1200 1870 6100 18570 22320 26160 26160 26160 3340 70470 5490 1010 13060 3560	160 710 130 110 270 310 540 670 490 470 890 1510 910 290 120 100 90	880 3590 7370 9230 65990 3820 2570 21510 21510 21620 21620 21620 3160 80 1160	130 70 110 160 90 250 290 510 340 290 190 150 60 20	82 82 82 82 82 82 82 83 85 86 86 86 86 86 86 86 86 86 86 86 86 86	30 60 50 50 60 80 90 60 70 90 40 30 80 80	80 80 80 83 56 26 59 82 80 83 56 26 56 98 20 56 20 20 20 20 20 20 20 20 20 20 20 20 20	20 30 50 40 10 10 10 20 20 10	58 9638666636 8852285 8256	* 10 10 10 10 10		20 * * * 10 * 10	20 * 10 * 10 40 30 10 20 10 20 30	130 20 50 50 20 20 20	10 20 10 20	5 4 23 19 11 9 3 16 8 8 159 27 520 13 3 158	2 2 7 1 6 16 14	1 1 2 2 2 1		4-9-7 4-9-7 4-9-7 3-9 319 41963 963 349-7 3-96- 74913 7-96- 74937 4-9-7 7

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

ILLINOIS

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI RIVER-ST. LOUIS AREA

STATION LOCATION MISSISSIPPI RIVER AT

EAST ST. LOUIS, ILLINOIS

											CTABLES				
DATE OF SAMPLE		EX	TRACTABL	ES					NEUTRALS	ORM EXTRA	CIABLES		Ī		
MONTH PAY YEAR MONTH DAY DAY DAY DAY DAY DAY DAY DAY DAY DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 3 60 10 14 12 5 60 12 14 1 10 61 1 22 2 14 61 2 28 4 3 61 4 13 5 1 61 5 12 6 5 61 6 16 7 10 61 7 20 8 12 61 8 22	4380 3330 4287 5791 3897 3053 4060 3711 2997	191 273 222 220 237 286 234 188 242	48 67 40 67 78 118 55 51 88	143 206 182 153 159 168 179 137 154	021125132	10 15 7 12 22 30 11 13 20	19 28 18 33 20 32 22 16 25	323313322	233422222	22 11 24 16 25 17	111212011	8 9 4 9 8 13 8 6 9	341494459	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	7 7 8 7 15 23 7 7 21

STATE

ILLINOIS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI RIVER-ST. LOUIS AREA

STATION LOCATION MISSISSIPPI RIVER AT

EAST ST. LOUIS, ILLINOIS

0	DATE F SAM		темр.	DISSOLVED				CHLORINE	DEMAND	AMMONIA-	CHLORIDES	ALKALINITY	HARDNESS	COLOR	TURBIDITY	SULFATES	PHOSPHATES	TOTAL	COLIFORMS
MONTH	DAY	YEAR	(Degrees Centigrade)	OXYGEN mg/l	рH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	mg/l	mg/l	mg/l	(scale units)	(scale units)	mg/l	mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
10	3	60	24.5	5.6	7.6	2.0	-	-	-	• 2	13	164	192	25	100	70	_	290	16000
10	6 10	60	22.0	5.9	7 • 8 7 • 8	2.2 3.6	_	_	7	•2	12 13	148 148	164 172	11 30	100 100	57 52		274 282	51000
10	17	60	20.1	6.5 7.5	7.8	2.2	_	_	_	•2	13	154	180	28	90	63	_	247	15000
10	24	6 C	16.5	8.3	7.8	1.9	_	_	_	• 2	13	156	192	25	70	77	-	280	11000
10	31	60	14.9	8.9	8.0	2.0	-	-	-	•2	13	160	184	27	70	45	-	270	14000
11	7	60	12.0	10.0	7.9	2.3	-	~	-	•3	14	160	192	27	70	65	-	272	2700
11 11	14 21	60	8.1	11.0	7 • 8	4.3	-	-	-	•4	12 14	152 158	172 188	27 32	90	56	-	258	2400
11	28	60	7.7	11.6 10.7	7•7 8•0	4.4 4.6	_	_	-	•4	13	166	196	30	70 60	65 50	-	258 248	1200 10000
12	5	60	6.5	11.9	8.0	5.0	-	_	_	• 4	14	168	196	31	50	50	_	250	8000
12	12	60	5.0	12.7	7.8	4.2	_	· -	_	• 3	13	158	192	27	60	50	-	275	1700
12	19	60	2.5	13.3	8.1	4.6	-	_	-	• 4	14	170	198	31	60	59	-	290	5500
1	3	61	1.0	14.1	8.2	4.2	-	-	-	• 5	15	176	208	31	40	68	-	298	-
1	9 16	61	2.0	13.6	8 • 2	4.8		-	~	• 5	16	156	220	30	40	69	-	300	2300
1	23	61	2.0	13.4	8.3	5.0	-	-	_	• 6	15 15	176 182	208 214	28	35	53 55	-	222	10000
i	30	61	•6	14.0	8.2	6.0 5.2		5.3	10.0	•6 •5	13	190	222	32 33	40 50	50	-	311 311	5500 4500
2	6	61	•5	14.5	7.8	6.8	_	_		7	16	190	212	27	50	55	_	308	4300
2	13	61	1.1	14.0	7.8	5.3	-	-	-	•7	19	188	218	27	35	66	-	318	2300
2	20	61	2.2	13.8	7.8	7.0		-	-	• 9	19	168	202	29	50	51	-	310	6000
2	27	61	3.3	12.2	8.0	7.7	-	-	-	1.0	17	148	168	29	450	50	-	295	9000
3	13	61	6.6	11.1	7.7	6.0	_	-	-	• 9	18	136	174	30	300	45	~	230	5100
3	20	61	6.1	10.5	7.7	9•2 6•8		-	_	•9 •8	11 12	116 120	140 166	30 26	1100 800	38 53	-	219 273	30000 6300
3	27	61	8.9	10.4	8.0	6.0	_	_		• 6	14	146	202	27	300	70		281	7800
4	3	61	8.3	9.5	7.8	6.1	-	_	-	.6	11	148	190	27	400	60	.3	268	4600
4	10	61	7.8	9.6	7.6	6.3	-	-	-	• 6	10	120	148	31	450	41	.3	240	2200
4	17	61	7.8	9.8	7.8	4.0	-	-	-	•3	11	138	172	30	200	55	.2	240	60000
4	24	61	12.8	9.2	8.2	4.1	-	-	-	• 2	14	162	208	20	150	62	•4	260	8000
5 5	1 8	61	13.9	6.8	7.9	3.7	~	-	-	• 1	15	160	202	23	250	65	•3	264	5600
5	15	61	15.0	7.1	7.8 7.8	4.5 3.1		_	_	• 2	11	130	176	26	750	51	•2	255	12000
5	22	61	18.3	5.0	7.8	3.0	_		=1	•1	10 12	128 154	164 200	30 27	400 180	50 59	•1	248 284	*1000 2200
6	5	61	21.7	4.8	7.8	2.5	_	_	-	.1	10	128	164	27	100	57	.1	226	700
6	12	61	25.6	4.6	7.7	2.4	-	- 1	-	•1	11	138	184	24	100	63	1	215	6300
6		61	23.9	4.8	7.6	2.3	-	-	-	• 1	14	136	176	22	200	62	.2	276	4900
6	26	61	23.9	5.5	7.7	3.1	-	-	-	•1	15	144	190	20	200	66	•3	300	7200
													4.6						

STATE

ILLINOIS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI RIVER-ST. LOUIS AREA

STATION LOCATIONMISSISSIPPI RIVER AT

EAST ST. LOUIS, ILLINOIS

	DATE		TEMP.	DISSOLVED				CHLORINE	DEMAND	4440								TOTAL	
MONTH	DAY	YEAR	(Degrees Centigrade)	OXYGEN mg/l	рĦ	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
7 7 8 8 8 8 8 9	17	61 61 61 61 61	25 • 6 26 • 7 28 • 3 29 • 4 27 • 2 26 • 1 27 • 2 22 • 2	5 • 8 0 8 0 5 5 8 5 5 7 • • • • • • • • • • • • • • • • • • •	7.7 7.8 7.6 7.5 7.6 7.6 7.9 7.8 7.9	3.4 2.6 8.6 3.0 9.2 2.9 2.9 2.1 3				•1 •1 •1 •1 •1 •1 •1 •1 •1	15 14 16 13 14 11 15 16 10 15	130 144 116 110 122 138 144 124 88 116	176 192 162 152 166 128 176 184 164 108 156	20 33 30 30 21 21 22 21	1000 125 315 250 450 125 100 800 900 300	57 68 48 50 40 257 56 46 26 60	.2 .2 .2 .3 .1 .3 .3 .3	268 264 224 222 200 198 199 210 188 180 200	8300 3300 2700 2000 4300 1400 3800 4100 5800 9100

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Alton, Illinois Operated by U.S. Geological Survey

STATE

Illinois

MAJOR BASIN

Upper Mississippi River

MINOR BASIN

Mississippi River-St. Louis Area

STATION LOCATION

Mississippi River at

East St. Louis, Illinois

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	54.700	50.000	49.100	40.900	34.600	89.000	188.000	161.000	119.000	75.600	62.700	31.300
2	58.700	64.300	47.600	37.800	34.400	82.300	189.000	159.000	115.000	97.100	91.500	28.200
3 4	57.800	69.800	48.300	37.200	31.200	79.500	196.000	156.000	108.000	95.300	82.100	32.400
	57.500	78.100	49.300	38.000	31.600	69.900	199.000	150.000	100.000	73.700	90.700	56.300
5	56.300	72.800	45.100	38.700	32.500	74.500	207.000	149.000	91.200	63.300	96.200	64.600
6	56.200	67.500	49.300	38.500	33.700	89.900	219.000	148.000	79.800	59,600	95.100	44.600
7	53.300	64.400	47.200	38.900	33.500	114.000	233.000	179,000	78.200	55.100	76.800	29.100
8	45.900	66.400	54,900	38.400	33.300	139.000	241.000	207.000	77.200	47.500	78.400	30.900
9	47.600	75.100	58.900	38.200	32.800	160.000	245.000	225.000	90.500	41.500	77.200	38.400
10	40.100	74.900	58.400	35.500	32.600	172.000	239.000	228.000	90.900	43.500	91.100	37.500
11	36.700	71.900	53.200	35.800	31.800	176.000	231.000	226.000	98.300	40.100	142,000	30.300
12	41.200	62,400	49.200	35.600	32.600	170.000	216.000	203.000	103.000	40.200	121.000	39.500
	39.900	63.600	48.500	35.700	30.000	157.000	190.000	162.000	83.100	36.200	104.000	67.000
13 14	43.800	59.700	45.300	35.900	29.000	165.000	147.000	151.000	70.700	35.200	86.100	175.000
15	42.300	52.500	36.400	35.200	26.800	177.000	121.000	126.000	77.000	36.900	73.300	213.000
16	51.500	63.800	31.100	35.500	34.700	181.000	121.000	113.000	73,200	36.200	55.500	204.000
17	51.900	59.400	33.300	36.500	48.900	177.000	102.000	135.000	75.300	36.000	47.600	215.000
18	50.700	60.200	34.900	37.700	51.600	163.000	100.000	153.000	80.800	31.100	45.000	230.000
19	42.000	64.000	36.000	37.700	50.200	158,000	108.000	146.000	78.100	46.700	44.100	204.000
20	41.200	66.400	37.700	35.600	45.400	151.000	110.000	139.000	67.600	72.200	44.300	107.000
21	37.900	61.100	37.100	34.200	77.500	147.000	108,000	130.000	72.700	45.700	41,200	84.700
22	34.100	59.800	33.900	33.500	73.400	144.000	112.000	130.000	64.200	69.800	35.500	74.100
23	34.700	55.300	32.500	32.400	74.900	149.000	132.000	127.000	59.700	110.000	33.600	75.200
24	30.800	52.300	34.000	32.500	78.000	152.000	150.000	120.000	52.900	126.000	33.600	119.000
25	33.800	51.000	39.100	33.600	88.600	150.000	166.000	122.000	48.000	115.000	35.200	165.000
26	38.400	48.800	46.700	34.200	92.900	147.000	179.000	118.000	48,200	86,600	28,700	177.000
27	36.700	51.700	44.400	31.800	106.000	145.000	181.000	118.000	45.900	73.400	35.400	152.000
28	36.300	53.800	44.300	32.300	106.000	154.000	173.000	118.000	47.900	79.200	32.100	119.000
29	35.200	49.600	45.700	34.800		166.000	163.000	118.000	49.200	87.400	29.800	90.800
30	42.000	44.400	44.300	34.100		184.000	163.000	119,000	53.900	86.100	29.300	89.100
31	43.800		41.300	34.400		190.000		121.000	75.700	79.600	32.700	07.100

RADIOACTIVITY DETERMINATIONS

STATE

IOWA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-DES MOINES-SKUNK RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

BURLINGTON, IOWA

					(1750			RADIOA	CTIVITY IN PLAN	IKTON (dry)	RAD	IOACTIVITY IN W	ATER
DATE				DACTIVITY IN W	AIEK	BETA				CTIVITY		GROSS ACTIVIT	
SAMPLE	DATE OF DETERMI- NATION		ALPHA		SUSPENDED	DISSOLVED	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
TAKEN		SUSPENDED	DISSOLVED	TOTAL μμε/1	μμc/I	μμε/1	μμε/Ι	MO. DAY	μμc/g	μμc/g	μμc/l	μμε/Ι	μμc/l
O. DAY YEAR	MONTH DAY	μμς/Ι	μμc/l	<i>дде</i> /1									
			2	2	0	o	0			ĺ			
0 17 60*		0		2	ŏ	2	2					,	
1 7 60	12 19	1	1		0	ا ة	ō					!	
2 12 60*		0	2	2 2	l ŏ	ŏ	ŏ			l l			
1 23 61*		1	1		1	0	ı						
2 27 61*	1	1	0	1	Ō	6	6					1	
3 20 61*		5	1	6		ő	ŏl	İ		1			
4 24 61*		1	0	1	0	0	ŏ	Į.					
5 22 61*		1	2	3	0	0	ŏ			[
6 26 61*	7 14	1	1	2	0		14		ļ		l l		
7 10 61	8 30	1	0	1	3	11		- 1		1	ŀ		
8 21 61*	9 22	2	1	3	10	8	18 12	1			ļ	1	
9 5 61	10 4	0	0	0	3	9		l l	Į.		1		
9 11 61	10 3	-	-	_	4	0	23		1				
9 18 61	10 23	-	-	_	10	13	17		1	1	1		
9 25 61	10 5	-	-	_	8	9	1 1		Į.	1			
		i			1			i					}
									1	i i			
					1							1	
		ļ			1				1				
					1			ļ	1				
								Ì					
								Ì					
		1					1	1	1	ì			
			1										
		Ì	ĺ		ĺ		<u> </u>	1		1			
										1		Ì	
		1			i					Ì	1		1
			Į.				1		1				
		İ				ļ			İ				
				1			ļ ļ		ļ.		1 i	Ì	
					1			ļ	ļ				
					ļ		1	ļ		ľ	1		İ
			i		}	1		•	1				1
	1	1				1					1		
	1	ļ			1			1	1		1 1		1
						1	 	Į	1				
													1
				1					1				1
					1				ļ			1	
			1		1								
			1		1	1			1	Į.			

PHS-2845-5 REV, 4-61

WATER QUALITY BASIC DATA

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

AWOI

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-DES MOINES SKUNK RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

BURLINGTON, IOWA

DATE				ALGAE (Number	per ml.)				IN	RT TOM				D	IATO	MS						MICROIN	VERTEBR			
OF SAMPLE		BLUE-	GREEN	GREE	EN	FLAGEI (Pigm	LATES ented)	DIAT	oms	SHE	ELLS er ml.)			INANT Intro	SPEC	IES A	ND PE			s	NOPLANKTON SHEATHED ml.)	4.)	ter)	A ter)	Ster	per liter)	ENERA fuction cation
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- NENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER. CENTAGE	SECOND#	PER.	THIRD*	PER- CENTAGE	FOURTH*	PER.	OTHER PER- CENTAGE	OTHER RICROPLANK FURGI AND SHEATH BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAI (No. per like	DOMINANT GENERA (See Introduction for Identification)
10 3 60 17 60 11 7 60 11 1 60 12 60 1 3 61 1 20 61 3 20 61 4 17 61 5 22 61 6 19 61 7 10 61 7 61 8 21 61 9 18 61	1500 6900 3500 6400 6400 10600 14500 11000 11000 11000 1400 2500 4500 4000 1700 1600	240 20 20 20 80 50 40 20	20 70 20 20 20 20 310 20 20	240 470 180 110 70 90 20 230 2010 160 360 560 850 220	70	90 2 40 130 140 2750 440 310 2730 580 120 170 3130 200	130 20 20 90 40 70 70 20 100 110 110	1110 4420 2970 2290 4600 6410 10120 26160 12590 124410 8580 8470 7220 1090 1270 29420 3170 29420 1070	900 13400 2500 16500 1100 15800 11200 10100 3300 3100 1300	1780 2030 1100 2410 920 3750 1770 1040 3520 5670 3130 2390 1610 1100 910 1490 800	110 470 4910 500 690 470 410 380 70 100 270 120	56 56 56 80 80 82 82	20 40 40 60 89 99 99 60 40 40 60 60 60	82 83 80 82 80 56 70 58 82 56	20 20 30 40 10 10 * 20 30 30 20 20 30 40	58 8 3 6 6 1 5 9 6 8 8 7 5 6 6 0 6 3 8 9 6 8 7 5 6 8 7 5 6 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	10 * 10 * 20 20 10 * *	26 61 26 82 62 45 58 58 58 56 26 92 83	10 20 10 * 10 * 10 10 10 10 *	30 20 30 20 * 40 10 10 10 30 20 *		40 20 20 10 30 40 10 30	1 6 34 24 18 11 35 17 32 12 286 6 20 51 5 91 4	1 2 1 1 2 3 6 2 2 3 1 6 1 3 3 3 0 2 2		1	-49-7 74-9-7 74-9-7 74-9-7 -1919 31-96-7 31-96-7 48-92-7 48-9-7 48-9-7 48-9-7 -9-7

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

IÓWA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-DES MOINES-SKUNK RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

BURLINGTON, IOWA

									ı				CHLOROF	ORM EXTRA	CTABLES				
DA BEGI			MPL	ND		EX	TRACTABL	E.5					NEUTRALS					İ	
Ŧ	DAY	YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
10 11 12 1 2 3 4 5 6 7 8 9	1 5 1 6 6	60 61 61 61 61 61 61	11 12 1 2 3 4 5 6 7	14 15 11 11 12 13	5000 5000 5000 5000 5000 4700 5010 5000	200 151 144 212 175 236 205 181 172 174 148 158	31 37 25 30 44 69 76 86 44 47 42 54	169 114 119 182 131 167 129 95 128 127 106 104	1 1 1 2 2 2 0 2 1 2	8 9 6 7 10 14 20 26 11 13 9 12	10 14 10 11 13 23 20 24 15 12 12 14	110011122223222	1	7 11 8 8 11 18 17 20 9 8 9 10	1111033002001	6	2 1 2 3 5 7 7 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5	2 2 1 1 1	5 6 3 5 10 16 17 15 8 8 11 12

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Keokuk, Iowa Operated by U.S. Geological Survey

STATE

Iowa

MAJOR BASIN

Upper Mississippi River

MINOR BASIN

Mississippi-Des Moines-Skunk Rivers

STATION LOCATION

Mississippi River at

Burlington, Iowa

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	44.300	49.400	40.000	30.000	26.800	67.000	153.000	108.000	92.500	37.900	1.0 500	
2	43.300	61.900	40.800	29.700	26.900	57.700	164.000	101.000	87.700	43.700	40.700	21.100
2 3 4	44.900	62.600	37.800	29.200	26.900	57.100	181.000	99.900	82.100	43.700	46.900	19.500
Ĭ,	44.700	60.700	34.000	29.300	26.300	60.200	200.000	91.500	73.600	47.700 40.800	59.300	27.000
5	43.800	55.100	34.000	27.500	25.700	60.900	208.000	84.000	66.100		59.700	46.600
	-							04.000	00.100	39.100	56.700	32,600
6	43.000	55.400	37.500	27,900	25.200	81.700	202,000	82.500	63.200	34,200	lo mob	
7	41.200	58.300	40.700	25.800	23,900	105.000	189.000	74.800	56.700		42.700	20.000
8	35.600	61.600	49.500	24.800	24.300	122.000	174.000	71,000		31.200	47.000	16.200
9	32.300	66.800	46.200	25.000	24.200	124.000	164.000	70.400	57.500 59.600	30.200	46.400	18.000
10	32,200	62.800	39.700	25.000	25.700	123.000	142.000	68.100		29.900	45.500	18.800
	_			•	-2-1		142.000	00.100	72.900	29.100	44.000	19.500
11	31.000	60.200	40.900	25.100	23.700	106.000	127.000	67.000	65.600	07.000	1.	
12	31.000	57.800	37.900	25.200	23,200	101.000	110.000	64.900		27.200	42.300	22.000
13	30.900	44.600	30.000	26.200	24.600	106.000	91.500		53.600	24.200	44.700	27.000
14	34.400	44.100	26.000	27.000	27.000	107.000	84.500	59.700	48.000	22.100	43.500	52.800
15	39.400	47.300	24.700	27.500	24.200	100.000	80.300	58.700	46.800	21.000	34.900	123.000
			•	_1,,,,,,	21.200	100.000	00.300	58.100	54.200	19.800	32.900	130.000
16	40.200	47.300	25.300	29.000	26.000	97.100	71.500	60 500	50 300			•
17	36.100	47.100	24.000	28.900	25.900	105.000	83.500	62.500	50.100	19.200	29,900	124.000
18	34.100	54.600	26.500	30.000	26.200	96.700	83.500	68.100	49.000	19.600	27.400	91.300
19	33.100	50.400	31.600	28.900	26.700	81.200	81.000	70.800	47.200	20.700	25.700	64.400
20	31.000	49.900	32.300	26.900	30.100	80.200	79.200	73.800	46.100	34.000	23.700	55.000
					30.700	00.200	19.200	73.700	44.400	26.300	22.700	49.000
21	27.800	48.500	29.400	27.200	41.200	76.300	82.800	78,000	1.0.000			
22	24.500	46.000	31.100	26.700	50.500	83.500	81.000	76.600	43.200	34.400	20.500	43.800
23 24	21.500	46.700	32.200	27.800	55,000	89.200	78.700		40.900	41.800	20.600	46.300
24	26.400	41.700	32.900	26.800	59,600	92.400	85.500	75.400	35.500	40.800	22.500	46.500
25	26.500	42.200	32.800	26.800	69.600	93.700		77.500	30.300	37.800	22.000	58.100
_			•		0,1000	23.100	93.100	81.600	30.500	34.800	21.300	55.600
26	30.000	41.200	32.500	24.700	79,200	98.000	104.000	00 200				
27	31.500	40.600	34.000	22.800	75.400	104.000	104.000	88, 300	30.800	37.300	20.400	56.000
:8 :8	32.800	40.800	33.900	21.900	69.700	122.000	108.000	88.200	30.400	38.800	19.600	48.500
29	32.500	39.200	32.500	21.800	57.100	130.000		92.300	30.400	37 600	20.500	43.200
30	28,800	38.800	31.500	22.300		140.000	108.000	96.900	31.500	44.200	22.000	35.300
31	37.500		30.400	24.200		148.000	109.000	92.900	34.000	46.100	22.300	34.100
			5-1.00	L200		140.000		92.700		45.700	23.300	J

RADIOACTIVITY DETERMINATIONS

STATE

IOWA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-WAPSIPINICON & TRIB.

STATION LOCATION MISSISSIPPI RIVER AT

DUBUQUE, IOWA

					1 CTIVITY 11 11	/ATED			RADIOAG	CTIVITY IN PLAN	KTON (dry)		IOACTIVITY IN W	
DATE					DACTIVITY IN W	AIEK	BETA			GROSS A			GROSS ACTIVIT	
SAMPLI		DATE OF DETERMI- NATION		ALPHA		SUSPENDED	DISSOLVED	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
TAKEN			SUSPENDED	DISSOLVED	TOTAL	μμε/1	μμε/Ι	μμς/Ι	MO. DAY	µµс/g	μμε/g	μμε/Ι	μμε/Ι	μμς/Ι
O. DAY	YEAR	MONTH DAY	μμε/Ι	μμε/Ι	μμε/1	μμε/1								
				,	2	l o 1	3	3						
12			0	2	2		14	14	1 1					
	60*		1	1	2	0	ō	ö					l	
4 25			2	0	0	0	ŏ	ŏ			Į.			
5 22	61*		0	0		0	ŏ	ŏl	1			Ì	1	
5 19	61*		0	0	0	0	0	ŏÌ			1	1	1	
7 24	61	8 8	0	4	4	1	7	7	i i					
3 30	61*		0	1	1	0	1	ģ l	<u> </u>			*		
95	61	9 29	-	-	_	7	8	9	1 1		-8-			
9 11	61	10 13	0	1	1	1		23						i
9 26	61	10 9	-	-	-	3	20	23						
			1					i	1					
												į		
		1	ļ											
			1						l i		ļ	1		
			ļ								i i	.		
											1 . 1			1
							ł							
		•				1		1	1	1				
				Ì					1	ł .				
								l i	Į.	}			1	
							i '		Ì					
			i				l			1	1	1		
		1	ŀ						1					
		Ì	1				1	[[- 1					1
		1			İ	1						l (
								1	1	Ì	1]		
										İ		1		
									ļ			1		
			1						i	ļ		\		
									į.	İ				
				1	1	ļ	1			1		1 1		ì
			1			i						1 1		
				1	1			1	1	1		1	1	
					I	1		1						1
				1				1	ļ		1	1		
						1		1		Į			1	
		1					1		İ		1			
												1		
			Ì			Ţ		1 1	ļ					
						1				1		1 1		1

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

IOWA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-WAPSIPINICON & TRIB.

STATION LOCATION MISSISSIPPI RIVER AT

DUBUQUE, IOWA

				ALGAE (lumber	per ml.)				INE	RT				DI	ATO	us				ž		ICROIN	/ERTEBR	TES	T	
DATE OF SAMPLE		BLUE-0		GREE		FLAGEL (Pigme		DIATO	омѕ	SHE (No. p	RT TOM LLS er ml.)		DOM! (See	NANT Introd	SPECI luction	es AN	ID PEI	RCENT stificat	on*)		SHEATHED SHEATHED THL.)	A ml.)	is liter)	EA liter)	ES liter)	AL PORKS	GENERA Squetion fication)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND#	PER. CENTAGE	THIRD#	PER. CENTAGE	FOURTH*	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLAHKTON, FUNGI AND SHEATHED BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter.	NEMATODES (No. per liter)	(No. per II	boulkart cenera (See Introduction for Identification)
10	1000 1200 1600 2000 1400	60 40 20 20 60	650 110 330 40 150 130 80	70 230 70 90 210 540 660 730 180 20 190 40		110 50 20 110 290 410 200 100 270 100	50 70 90 110 110 90	1060 6030 2240 3350 4310 1010 24260 33410 35980 1970 740 1280 1240 930 1390	50 670 110 90 110 420 2730 2730 100 100 100	660 1630 770 690 1470 3370 8490 510 100 100	160 370 200 210 480 520 270 70 160	558885858555555	20 30 70 40 40 40 70 50	82 80 80 56 85 56 85 56 58 58 58 58	300 300 200 300 300 300 200 200 200 200	82 80 80 47	10 20 20 10 10 10 20 10 *	823 831 858 858 858 858 858 858 858 858 858 85	10 * 10	101020304010010040*	130 20 70 20	10 10 10 20	7 40 12 31 2 1 138 80 20 8 8 41 209 5 83	1 6 1 1 2 14 31 2 9 6 128 10 13	1 2 62 2	5 1 1 1 2	47 -2977 9-7 4-9-7 9-3 3-973 3-967 -2927 9-7 9-7

ORGANIC CHEMICALS RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

IOWA

MAJOR BASIN

MINOR BASIN

MISSISSIPPI-WAPSIPINICON & TRIB.

UPPER MISSISSIPPI RIVER

STATION LOCATION MISSISSIPPI RIVER AT

DUBUQUE, IOWA

													CHI OBOE	ORM EXTR	CTABLES				
		OF SA				EX	TRACTABL	ES					NEUTRALS						
HTNOM	DAY	YEAR	HTNOM	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 11 12 3 4 5 6 7 8 9	1 7 7 3 2	60 61 61 61 61 61	11 12 3 4 5 6 7 8	8 13 14 13 9 14 11	2010 3405 4500 4440 4613 4267 4957 4215 7500 5722	440 186 165 264 197 153 179 166 108 130	70 41 34 75 72 42 70 66 36 31	370 145 131 189 125 111 109 100 72 99	1 2 1 2 1 1 2 3 2 1	20 9 19 21 10 18 17 8 8	21 13 12 22 19 14 21 18 9 10	2 2 1 1 2 2 2 3 3 1 1 1	2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 10 17 16 11 16 14 7	0	8648959954	3 6 7 4		14 8 5 17 15 8 13 11 7 4

STATE

IOWA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-WAPSIPINICON & TRIB.

STATION LOCATIONMISSISSIPPI RIVER AT

DUBUQUE, IOWA

DATE OF SAMPLE	TEMP.	DISSOLVED			1	CHLORINE	DEMAND										
MONTH DAY YEAR	(Degrees Centigrade)	OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D.	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10	15.0 7.4 7.0 6.0 2.0 8.3 18.2 17.0 20.8 24.0 25.6 24.2 23.1 16.2	8 · 6 · 8 · 11 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·	8.0 8.2 8.3 8.0 6.3 7.8 8.3 7.8 8.1 7.9 8.1 7.9 8.2	3.5 2.1 1.8 1.7 1.8 3.4 3.5 3.2 8.2 1.8 3.0 2.2 2.2	7-45448 884-4886654				8-88879-8889-9098999	111 132 130 119 120 90 - 110 122 126 117 119 127 120	120 144 142 139 121 140 136 144 1446 147 123 140 143	75 75 75 100 200 150 75 125 100 75 75 75 75 100	25 - 20 20 50 75 190 - 75 100 100 100 150				36 2300 300 220 40 40 - 680 900 1200 1000 - 3600 500

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at McGregor, Iowa Operated by U.S. Geological Survey

STATE

Iowa

MAJOR BASIN

Upper Mississippi River

MINOR BASIN

Mississippi-Wapsipinicon & Trib.

STATION LOCATION

Mississippi River at

Dubuque, Iowa

Day	October	November	December	January	February	March	April	May	June	July	August	September
		16 500	16.700	11.600	10.700	20.900	103.000	54.400	55.500	17.000	20.600	11.600
1	23.000 22.800	16.500 20.800	15.800	11.600	10.700	19.700	94.300	50.700	50.500	16.700	21.000	12.200
2	22.000	23.400	16.500	11.600	10.700	23.000	86.000	47.200	45.700	16.900	19.100	11.700
3 4	22.100	29.700	16.600	11.700	10.600	31.200	77.900	43.600	40.000	16.800	16.000	11.600 10.800
5	20.200	37.500	20.200	11.800	10.600	41.400	70.000	39.800	35.000	16.900	16.900	10.000
-	7.7.700	25 900	22.800	11.800	10.600	43.100	67.000	37.800	31.100	16.500	17.900	10.600
6	17.100	35.800	21.300	11.800	10.600	33.800	62.500	36.100	33.500	15. <i>6</i> 00	17.900	10.600
7	15.900 14.600	36.900 35.500	20.300	11.700	10.800	25.700	55.000	37.000	32.800	14.500	17.500	10.500
8		31.700	18.600	12.000	11.700	18.300	50.600	39.200	25.000	14.500	17.100	12.900
9 10	14.500 14.600	22.600	16.100	12.900	11.700	20.800	45.500	37.100	20.900	13.100	16.500	13.300
		1		14.800	11.700	24,000	40.700	34.000	22.400	12.600	16.100	13.800
11	15.000	21.400	12.100	15.500	11.800	24.000	38.600	35.300	26.300	11.300	15.500	15.200
12 13 14	15.500	20.600	12.100	14.600	13.100	21.700	36.600	36.400	28.200	10.600	14.100	22.900
13	15.600	18.900	10.700 13.600	13.900	12.900	18.800	35.200	38.200	28.500	9.720	14.700	21.200
14 15	15.500 14.800	17.200 18.500	16.200	13.800	12.700	16.100	34.200	42.400	30.000	9.660	15.200	10.200
				000	70 700	15.900	33.500	42.900	26.800	10,100	14.000	9.560
16	15.400	19.700	18.500	13.800	12.700	16.500	32.900	42.600	22.300	9.780	11.400	9.850
17	13.800	20.200	18.700	13.800	12.900 13.600	17.600	36.000	48.200	20.300	10.400	10.200	10.300
18	13.000	19.200	19.100	13.800	13.500	19.700	40.000	54.500	21.400	11.200	9.500	10.300
19 20	12.000 12.900	19.600 18.700	20.300 20.600	13.700 13.200	13.300	23.500	39,600	55.500	22.400	12.400	10.100	11.300
20	12.900	·				20 500	41.300	58.700	19.200	13.100	11.500	11.800
21	13.000	20.500	20.300	13.200	13.700	30.500	47.900	66.200	17.900	13.500	10.700	13.100
22	12.900	21.200	17.500	13.300	16.800	31.100	51.100	70.200	18.900	15.200	10.900	16.400
23 24	12.100	20.500	14.300	13.300	23.000	32.100 36.400	52.800	73.900	18.800	18.700	10.900	16.600
24	12.600	20.500	14.400	12.500	22.900	48.000	53.600	75.700	18.200	18.400	11.700	15.100
25	12.900	19.800	14.400	12.400	19.400	40.000	73.000	17.100	20120		•	
26	12.700	18.200	14,400	12.400	16.000	66.000	54.700	75.900	18.100	18.200	10.400	11.800
27	13.300	17.000	14.200	12.100	17.500	81.900	56.100	74.600	18.600	18.200	10.800	10.300 9.910
28	13.500	19.600	12.700	12.000	20.500	102.000	59.600	73.000	18.300	17.600	11.300	9.920
20	13.200	18.200	12.800	11.900		114.000	58.500	70.300	18.400	17.200	12.400	15.200
30	12.500	18.300	12.600	11.900		114.000	57.000	65.700	17.200	16.500		17.400
29 30 31	14.100	20.00	12.400	10.700		109.000		61.000		20.100	12.400	
ىر												

STATE

MINNESOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

UPPER PORTION-UPPER MISSISSIPPI

STATION LOCATION MISSISSIPPI RIVER LOCK DAM #3 BELOW

ST. PAUL, MINNESOTA

			RADI	OACTIVITY IN V	VATER				RADIOA	CTIVITY IN PLAN	KTON (dry)		RAD	DIOACTIVITY IN W	ATER
DATE			ALPHA		1	BETA		DAT	TE OF TERMI- TION	GROSS A	CTIVITY	[GROSS ACTIVIT	
SAMPLE TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	NA	TION	ALPHA	BETA	ļ	SUSPENDED	DISSOLVED	TOTAL
NO. DAY YEAR		μμc/l	μμε/Ι	μμc/l	μμε/Ι	μμc/I	μμς/1	MO.	. DAY	μμc/g	μμc/g		μμς/Ι	μμε/Ι	μμε/Ι
MO. DAT TEAM	2011111						-					l			
0 25 60*	11 8	0	1	1	0	5	5	1							
1 29 60*		0	2	2	0	1	1		1			1			
2 20 60*		0	1	1	0	1	1		1		l				
1 31 61*		0	2	2	0	4	4								
2 28 61*		0	2	2	0	0	0		1						
3 28 61	4 7	0	1	1	0	0	0								
4 25 61*	5 12	0	2	2	0	1	1 1	1						l	
5 31 61*	6 13	1	2	3	, 0	0	0 0								
6 27 61 *	7 17	1	2	3	0	0 8	8]							
8 1 61*		0	1	1 5	0	0									
8 29 61*		1	4	_	3	11	14					1			
9 5 61	9 29	_	_	<u> </u>	0	4	4		- [
9 12 61	10 5	-		1	0	7	7		1						
9 19 61	10 30	0	1 _	-	8	17	25		į						
9 26 61	10 5	_	_			_ *′									
									1						
												•	•		
			}							ĺ					
	,							-						{	
														1	
									1						
	1						l i								
	ŀ			:											
									- 1						
									1						
	1														
	1	1						1							
									İ						
								l							
								- 1							
					1			1							

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MINNESOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

ST. PAUL, MINNESOTA

MINOR BASIN

UPPER PORTION-UPPER MISSISSIPPI

STATION LOCATION MISSISSIPPI RIVER LOCK DAM #3 BELOW

				ALGAE (N	umber	per ml.)				!NE	RT,				ום	ATON	/S				F a	, h	ICROIN	ERTEBRA			* 6 g
DATE OF SAMPLE		BLUE-0		GREE	1	FLAGEL (Pigme		DIATO	омѕ	DIAT SHE (No. pa	LLS		DOMII (See	NANT Introd	SPECI uction	es an	le Iden	tificati	on*)	_	NICROPLANKYON, AND SHEATHED RIA per ml.)	o.A	ns liter)	CEA r liter)	DES r liter)	IRAL FORM	troducti ttificatio
MONTH DAY YEAR	TOTAL	coccoip	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST*	PER. CENTAGE	seconp*	PER- CENTAGE	TH1RD#	PER- CENTAGE	FOURTH*	PER- CENTAGE	OTHER PER- CENTAGE	OTHER MICES FUNGI AND 1 BACTERIA (No. per	PROTOZO! (No. per	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	(No. per liter)	(No. per	DOMINANT GENERA (See Introduction for Identification)
10 4 60 11 8 60 12 29 60 12 29 60 1 10 61 1 25 61 2 28 61 3 14 61 3 28 61 4 11 61 5 9 61 6 13 61 6 27 61 7 12 61 7 25 61 8 61 8 22 61 9 26 61	7400 17200 17700 21400 15500 15800 7300 10900 38400 40900 25700 30400 23100 28600 5400 26700 31700 31700 9700	120 20 20 470 310 120 160 80 190	270 180 320 220 20 50 270 250 130 1120 20 20 20 20 20 20 20 20 20 20 20 20 2	2110 740 180 270 110 110 90 2270 2270 470 1930 3000 220 1720 3240 4600 1270 2010 150	70	400 360 530 200 1250 130 420 690 840 270 1370 670 980 1080 1080 120	350 90 270 240 20 40 70 70 290 490 600 310 190 40 80 20	21340 5670 15260 16390 20960 15440 6260 9360 29100 26590 15710 3460 22270 44990 22090 4920 5710 4820 1410	2550 580 870 370	1830 1050 310 1520 7800 1210 1450 1800 3770 1880 8510 5180 1920 6930 7574 9230 7410 910	20 40 730 270 960 1100 850 450 270 740 250 380 80	82 82 82 82 82 82 82 82 82 82 82 82 82 8	70 90 90 90 90 90 40 70 60 20 40 50 90 90 90 90 90 90 90 90 90 90 90 90 90	56692926795662288856668258266886682688668866886688	20 10 * * * * 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	26 89 92 92 91 56 58 26 80 80 80 26 82 47 47 58	10 10 * * * * * 10 10 10 10 10 20	20	*** * * * * * * 10010 10 * * * *	100 310 20 4020 20310 3010 * 1020	1 .	10 20 20 40 10 10 10 10 10 20 10	70 633	57 68 178 563 9	2 2 3	11	48935 489— 42973 -197— -9— 319— -1931 41963 31973 31973 31973 41977 78963 -19-7 -1927 48967 78963 -19-7

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

MINNESOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

UPPER PORTION-UPPER MISSISSIPPI

STATION LOCATION MISSISSIPPI RIVER LOCK DAM #3 BELOW

ST. PAUL, MINNESOTA

 					,														
 BEGI			MPL	ND ND		Ε.	XTRACTABL	ES					CHLOROF	ORM EXTR	ACTABLES				
 . T	DAY	YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
1 2 1 2 3 4 5 6 7	1637742651	60 60 60 61 61 61 61 61 61	11 12 1	11 8 13 10 14 14 10 8 8 3 11 7 7	4261 4266 36900 3058 4964 3327 3857 2940 3515 1175	205 224 255 356 351 242 219 255 249 447	44 48 67 97 95 114 67 93 60 103 75 80	161 176 188 259 256 137 175 126 159 152 174 367	122523221633	12 12 12 12 19 18 26 12 12 18 25	19 17 25 34 42 34 20 28 22 31 27	22221233434	2 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14 13 20 28 33 28 15 23 15 22 16 20	111243102221	5 4 7 12 10 14 7 9 8 17 7	234651576964	1 1 2 2 2 1 2 2 1 2 2 1	4 9 11 14 15 21 14 19 9 11 14 13

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MINNESOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

UPPER PORTION UPPER MISSISSIPPI

STATION LOCATIONMISSISSIPPI RIVER LUCK DAM #3 BELOW

ST.PAUL, MINNESOTA

DA	ATE	1						CHLORINE	DEMAND									TOTAL	
OF SA	AMPLE	(Degre		N	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
	4 6	0 14	7 7.	2	7.9	3.9	28	•8	12.8	• 1		151	190	20	45	40 45	. 3 . 3	265 264	11000 1200
10 1		0 14			8.2	5.1	30	1.0	11.5	•0	9	156	200 188	30 25	50 40	40	.3	252	15000
10 2		0 9			8.1	4.2	26	• 5	11.4	•0	9	152 153	184	25	40	36	. 5	249	30000
		0 9			8.0	3.5	25	• 4	10 0	•5	10 11	155	184	25	30	33	.7	238	50000
		0 6			8.1	3.1	24	• 4	12.9 12.5	.5	9	148	172	20	10	27	•5	230	61000
11 1		0 6			8.0	3.2	20 22	• 4 • 5	13.8	.5	10	161	184	20	15	28	.5	240	35000
11 2		0 4			8.1	4.3 4.9	27	• 4	12.2	.1	10	158	184	15	15	30	•5	242	45000
11 2 12		0 2	1 11		8.1	4.2	24	•5	11.6	.3	10	156	178	15	9	28	5	233	15000
12 1			4 11.		8.0	4.5	24	.3		.9	12	160	188	15	10	30	•7	246	41000
12 2			2 11		7.9	4.0	24	.3	12.2	.5	10	158	182	15	10	27	•6	240	1500
			2 10		7.9	3.3	23	• 4	11.8	.9	13	186	220	15	7	39	• 7	295	36000
1 1			3 11		7.9	3.3	21	• 3	13.7	• 8	12	185	216	15	7	29	• 7	281	0000
1 3			3 8		7.8	3.4	23	. 5	13.3	1.1	14	193	218	15	10	32 33	.7	292 295	8800 790
			3 6	.7	7.7	3.3	21	• 3	15.3	1.1	14	188	212	15	7	27	.8	268	8700
	.5 6	1	8 7	9	7.8	3.3	20	• 3	16•3	1.1	11	178	200 202	15 15	10	28	8	266	12000
2 2			0 6		7.7	3.6	20	• 4	17.5	1.2	12	182 179	190	15	10	27	9	265	14000
2 2			8 8		7 • 8	3.3	20	• 6	16.0	• 9	12 13	171	202	15	10	40	_	294	19000
			8 10		7.9	4.6	22 23	• 4	15.0	•6	9	148	170	20	20	28	.6	236	13000
3 2			0 10		7.9	4.5 5.6	29	• 4	15.4	.6	l á	150	192	25	55	47	•5	279	84000
	1		6 10		7.9	3.4	29	.0	13.6	.5	6	1:27	174	25	120	3.4		584	39000
			5 10		7 • 8 8 • 0	3.8	25	.5	12.3		7	136	182	20	40	38	• 2	262	37000
			.8 11. .9 12.		8.0	3.1	23	.8	11.9	•1	8	137	188	20	45	42	• 3	267	71000
				8	8.0	4.2	29	• 4	11.4	•1	8	126	210		90	48	1	283	63000
5 6		1	0 10		8.2	3.7	30	• 7	11.4	• 0	7	146	192	30	75	46		272	68000
		51 10		9	8.0	3.6	31	.3	12.2	.1	7	137	176	1	60	44	1 -	251 262	72000 50000
		51 15		.7	7.9	3.4	35	• 7	13.0	•0	6	139	185		70	46		330	35000
		51 18	9 7	.3	8.0	4.1	44	-	12.0	•1	5	146	220		125 75	75	1	320	21000
6	6	51 22	• O 8	. 4	8.1	4.3	37	1.1	12.4	•0	7	140	204		45	65	1	310	5300
6 1	13	51 23		.5	7.8	3.7	33	• 2	11.8	•2	9		216		70	59	1 .	308	3700
		61 21		• 2	8.0	4.1	34	• 5	11.6	•2	9		204 186		45	46	1	258	100
		61 21		•7	8.1	4.2	32	1.0	8.9	•0	9	138 140	180		_	42		248	1500
7		61 22			8.3	4.6	32	1.0	9.9	•1	8	127	160	1	50	38	1	247	290
		61 24		• 9	8.5	6.0	21	1.7	9.5	.0	12	144	164		55	46		259	1700
	- 1	61 24			8 • 4	5.8	34	2 • 4	8.4	.2	14	_	180	1		48	1	283	670
		61 24	•4 8	• 6	8 • 4	6.7	31	2.5	0.4	-	1 -	172	-		1	-	- -	-	*100
8	1	61	-	-	-	_													
		1										1							<u></u>

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MINNESOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

UPPER PORTION UPPER MISSISSIPPI

STATION LOCATIONMISSISSIPPI RIVER LOCK DAM #3 BELOW

ST. PAUL, MINNESOTA

ッフ

DATE						CHLORINE	DEMAND										
OF SAMPIE	TEMP. (Degrees Contigrade)	DISSOLVED OXYGEN mg/I	pН	B,O.D. mg/l	C,O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
8 8 61 8 15 61 8 22 61 8 29 61 9 12 61 9 26 61	25.5	7.3 7.4 6.3 5.5 8.1 5.4	8.1 8.2 8.0 7.9 7.7	5.3 3.5 - 3.6 4.1 4.9 3.3	32 29 - 26 24 23 20	.8 .1 3 .3 .2	9.7 11.4 - 11.6 12.8 - 5.3	- 3 - 7 - 9 9 9 1.0	12 10 - 12 13 13 11	156 162 161 - 158	202 210 - 200 270 170 168	30 30 - 25 25 25 25 25	35 35 35 45 30 30	56 53 48 39 33 30	.243	301 306 - 299 270 253 240	620 400 100 380 710 3000 3000

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Prescott, Wisconsin Operated by U.S. Geological Survey

STATE

Minnesota

MAJOR BASIN

Upper Mississippi River

MINOR BASIN

Upper Portion-Upper Mississippi

STATION LOCATION

Mississippi River Lock and Dam #3 below

St. Paul, Minnesota

Day	October	November	December	January	February	March	April	May	June	·July	August	September
1	11.100	6.460	5.820	5.020	4.120	5.710	25.000	20.700	20.400	7.490	7.060	5.070
2	10.300	5.340	4.850	5.270	4.130	6.980	24.500	19.700	18.700	6.970	6.570	5.580
3	9.900	6.140	5.080	4.970	4.140	7.230	24.700	18.700	18.900	6.670	7.590	4.330
4	9.780	7.950	5.940	5.020	4.080	7.500	24.300	17.500	17.700	6.980	9.670	3.890
5	8.550	8.100	6.660	4.910	4.080	7.610	23.300	17.000	16.200	7.020	9.380	3.930
6 7 8 9	7.930 8.410 8.700 8.270 7.890	8.000 9.120 6.410 5.340 7.860	7.200 6.910 6.260 6.330 6.660	4.820 5.290 5.030 4.860 4.820	4.220 4.170 4.200 4.230 4.230	7.210 7.750 7.580 7.240 8.200	22.200 19.200 17.100 17.000 15.800	17.100 16.900 16.200 16.500 17.200	14.700 13.100 13.300 12.900 12.300	6.250 6.830 5.340 4.220 4.800	9.040 7.270 7.410 7.530 7.760	5.140 5.230 5.630 6.420 6.100
11	8.070	7.860	7.000	4.930	4.290	7.660	14.500	17.800	12.400	5.080	6.790	4.090
12	7.960	10.300	6.920	4.910	4.260	8.190	15.100	18.000	12.800	4.910	6.120	5.300
13	7.230	8.830	7.120	5.070	4.430	7.650	15.000	17.800	13.400	5.430	6.130	6.790
14	6.410	7.230	7.370	5.250	4.230	7.560	14.800	17.900	12.000	5.200	5.180	5.200
15	6.600	6.400	7.080	5.340	4.650	7.690	16.400	20.300	10.500	5.150	3.940	4.120
16	6.600	5.160	7.280	5.450	4.780	7.880	14.100	23.600	11.100	5.130	4.510	5.050
17	6.280	8.470	7.290	5.430	5.410	9.580	14.800	29.900	10.900	5.140	4.560	7.630
18	5.910	8.410	7.180	5.540	5.440	9.100	17.500	37.000	10.700	5.600	5.420	7.560
19	4.400	8.340	6.490	5.300	5.240	9.450	17.400	43.900	10.800	4.760	6.930	7.370
20	6.400	7.810	5.970	5.340	5.210	9.850	17.400	45.900	10.400	5.880	5.540	7.670
21	6.340	6.820	5.720	5.000	5.620	10.900	18.800	45.800	10.300	6.950	5.440	7.450
22	3.910	6.900	5.180	4.930	5.950	12.200	22.400	44.700	10.600	7.050	4.990	6.720
23	3.550	6.630	4.810	4.620	6.090	11.400	22.000	43.700	10.000	8.890	4.820	7.060
24	6.960	5.930	4.420	4.200	5.820	10.800	24.800	41.100	9.540	9.440	5.070	5.470
25	7.270	7.240	4.520	3.800	5.280	13.500	26.500	38.700	9.190	10.200	5.140	5.290
26 27 28 29 30 31	5.870 7.860 7.580 9.090 8.610 4.870	7.130 7.020 8.070 7.510 7.330	4.560 4.530 4.340 4.800 4.620 5.210	4.520 4.330 3.960 4.290 4.120 4.150	5.020 4.940 5.370	16.200 16.700 19.800 22.600 24.000 24.700	26.500 26.000 24.900 22.300 22.000	35.300 31.400 27.500 24.700 23.200 22.100	9.230 8.450 7.790 7.520 7.570	9.720 9.210 8.010 6.550 6.110 7.880	4.750 5.050 5.480 5.350 5.300 4.820	6.230 3.470 4.940 6.480 4.310

STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

ST. LOUIS, MISSOURI

			PADI	OACTIVITY IN V	VATER			T	RADIO	ACTIVIT	Y IN PLAN	IKTON (dry)	RA	DIOACTIVITY IN V	VATER
DATE			ALPHA		T	BETA			DATE OF		GROSS A	CTIVITY		GROSS ACTIVIT	Υ
SAMPLE TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	Ľ	DETERMI-	AI	LPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR		μμc/l	μμε/Ι	μμε/Ι	μμε/Ι	μμc/	μμε/Ι		MO. DAY	' μ	ιμε/g	μμc/g	μμε/Ι	μμε/1	μμε/Ι
MO. DAT TEAM	HUNTA) DA.														
10 10 60*	10 20	-	-	-	2	22	24								
0 24 60*		0	0	. 0	0	1	1								
1 7 60*		-	-	-	10	3	13			1					
1 28 60*	12 9	7	4	11	12	7	19					1			
2 12 60*	12 27	-	-	-	0	0 13	13								
2 27 60*	1 13	1	4	5 	8	10	8								
1 9 61*	1 20	-	- ,	7	ő	3	3					1			
1 30 61*	2 10	1 -	6		Ö	5	5					1			
2 14 61*	3 2	21	2	23	l ŏ	ő	ō								
2 27 61*	3 20 4 4	21			9	ŏ	9								
3 6 61 3 27 61*	4 13	18	2	20	0	20	20								
4 10 61*	4 24	-		_	30	4	34								
4 24 61*	5 15	33	2	35	23	0	23								
5 8 61*	5 24	_		-	8	0	8						İ		
5 29 61*	6 12	15	2	17	24	4	28			-					
6 12 61*	6 27	_	-	-	16	0	16								
6 26 61*	7 28	29	4	33	31	6	37			ŀ					
7 10 61*	8 2	-	-	-	31	0	31								
7 31 61*	8 29	12	1	13	52	32	84	- 1							
8 14 61	9 18	-	-	-	27	30	57								
8 28 61*	9 21	16	1	17	35	10 29	45 30								
9 5 61	9 29	-	_		1 47	25	72								
9 11 61	10 10	22	0	22	32	18	50								
9 18 61	10 18	21	1 -	22	61	18	79								
9 25 61	10 5	-	- 1	_	01	10	' '					1			
					ļ į					1		ŀ			
													{		
-															
		j							2	1					
							ł								
					·	-						İ			
			I												
			İ												
}															
1			ĺ			1									
								- 1		1					

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

ST. LOUIS, MISSOURI

				ALGAE (1	Vumber	per ml.)				INE	RT	<u> </u>			DI	ATO	us						MICROIN	VERTEB	ATES		
DATE OF SAMPLE		BLUE-	GREEN	GREE	:N	FLAGEI (Pigm		DIAT	омѕ	INE DIA' SHE (No. p	TOM ILLS er ml.)		DOM! (See		SPEC		ID PE				I NICROPLANKTON AND SHEATHED RIA DET ml.)	A ml.)	is liter)	EA liter)	ES liter)	R ANIMAL FORMS per liker)	GENERA oduction ification
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER-	SECOND#	PER. CENTAGE	THIRD*	PER. CENTAGE	FOURTH	PER.	OTHER PER-	OTHER MICE FUNGI AND BACTERIA (No. per	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIM	
10 3 60 17 60 11 7 60 12 1 60 12 5 60 12 19 60 1 3 61 1 16 61 2 20 61 3 63 4 17 61 5 15 61 6 19 61 7 17 61 8 21 61 9 18 61	900 1100 1700 600 1300 2400 4800 1300 500 200 1200 600 1700 1300 1500 1500 200	60	20	20 130 20 20 20 20 130 60 170 160 150 170 370	50	90 130 140 130 130 290 20 20 20 40 80 150 20 20 20 31 70	20 50 40 50 50 20 20	530 600 250 1300 950 780 2010 760 910 4510 930 460 150 9350 410 270 520 700	130 400 260 290 3100 200 400 3500 600 410 5500 410 5390 140	770 160 330 580 920 510 290 40 20 120 270 40 60 1050	290 360 350 270 4060 560 290 130 210 210 2500 210 210 150 2150 160	46 80 82 82 82 82 86 71 71 46 71 26 47 47	20 50 40 50 30 80 10 20 20 10 40	92468470880 71 466671 98558	10 10 10 10 10 10 10	92 70 58 80 70 82 85 92 86 46 46 71 92	10 10 10 * 10	65 11 46 46 70 56 92 92 80 26 80 56 58 46	10 10 * 10 10 10 * 10	60 30 40 40 40 10 70 60 60 70 50 30 60 50	440 180 130 200 20 20 20 50	10	1 3	2	1		4-9-3 489 9-6 9 9 9 9 9 4-9 7-96- 9 4-9 7-96- 9 4-9

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

ST. LOUIS, MISSOURI

DATE OF S	-A MEN				CTRACTABL	FC	T				CHI OBOE	ODM EVED	ACTABLES				
BEGINNING		ND	1	E/	I		 				NEUTRALS		ACTABLES		I		
MONTH DAY	1	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
1 2 61 1 30 61 2 27 61 5 8 61 6 19 61 7 31 61 9 15 61	2 3 5 7 8		5483 6620 3905 4720 4316 5390 3175	170 148 243 143 138 111 182	34 27 55 66 45 36 38	136 121 188 77 93 75 144	1 0 0 4 5 1 1	6 6 11 18 13 9 8	14 12 20 14 8 8 13	1011011	2 1 1 1 1 1 0 0 1	10 10 17 11 7 7 9	1 1 1 0 0 0 2	43886555	2146533	1 1 1 0 0 1 1 1	6 4 11 15 8 9 7

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATIONMISSOURI RIVER AT

ST. LOUIS, MISSOURI

DATE							CHLORINE	DEMAND									TOTAL	
OF SAWE	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
10 3	60	18.9	8.0	7.8	1.5	46	_	-	-	30	122	184	17	800	113	•4	_	10000 4800
10 10	60	17.8	8.3	8.3	1.2	9	-	-	-	22	157	225 235	11	250 220	132 150	•4	_	4300
10 17		18.9	7.9	8.1	1.1	7	2 -	7•6	•0	23 26	165 163	233	11	160	151	.4	453	5300
10 24	60	15.0	8.2	8.1	.8 1.4	6	2 • 4 2 • 6	5.9	•0	20	168	243	10	180	154	.3	443	11000
10 31 11 7	60	17.8 11.7	8.1	8.1	3.6	20	3.4	8.0	.0	18	137	195	20	600	115	.3	346	13000
11 14	60	10.0	10.9	8.2	2.1	11	1.9	4.8	.0	23	170	236	12	230	151	• 3	426	21000
11 21	60	8.9	11.0	8.3	2.1	10	2.0	6.0	•0	18	168	237	15	210	143	• 2	440	26000
11 28	60	13.3	10.6	8.1	2.4	9	2.8	6.7	.0	23	185	250	12	300	149	• 4	466	18000
12 5	60	7.2	13.2	8.1	1.8	6	1.5	4.5	• 0	32	210	272	10	150	119 105	.2	465 423	8000 1600
12 12	60	3.8	1.9	8.0	3.3	6	1.4	4 • 4	•1	28	205	26 7 235	11	160 190	85	.2	347	3500
12 19	60	3.8	12.2	7.7	3.5	8	2.7	3.6	• 0	24	165	290	-	170	-	-	378	""
12 26	60	-				7	2.4	3.0	• 3	30	216	292	11	170	105	.0	-	_
12 28	60	2.8	12.3	8.0	4•4	l <u>'</u>	2.7	4.8	•3				-		-	-	390	-
1 3	61	3.3	12.1	8.2	4.2	_		_	_	33	230	305	12	150	114	.1	-	-
1 9	61	5.6	12.8	8.0	4.3	· _ ·	3.0	4.4	• 4	35	278	294	11	100	132	•1	494	1300
1 16	61	6.1	11.9	8.0	3.7	_	3.0	4.7	• 3	35	205	277	11	90	111	•1	470	1600
1 23	61	2.2	13.1	8 • 2	5.1	-	2 • 6	4 • 6	• 3	34	205	270	10	95	123 110	.3	511 461	600
1 30	61	2.2	13.1	8.2	5.1	-	1.8	3.6	.3	26	205	270 298	10	95 50	116	1 .0	489	760
2 6	61	2,2	13.1	-	3.8	_	2.6	3.9	•3	33	238	290	_	1 7	110	"-	. 558	1900
2 13	61	_		-		-	3.9	5.5	•5	40	216	285	12	140	157	.1	_	
2 14	61	2.2	11.5	8.1 8.2	5.3 3.9	13 22	4.0	7.8	•3	25	164	213	15	600	97	.1	371	10000
2 20 27	61	4 • 4 6 • 7	10.1	8.1	5.4	36	4.7	9.7	.3	18	121	167	26	1300	60	.0	274	12000
3 6	61	8.9	9.2	7.9	4.6	43	3.8	8.9	•2	18	140	190	20	1100	79		351	5600
3 13	61	7.2	9.3	8.2	4.4	46	4.7	9.0	•3	10	100	136	26	1500	33		196	18000
3 20	61	5.6	9.0	8.1	4.1	85	3.9	11.3	.3	7	95	127	26	2000	59	1	231 224	17000
3 27	61	10.0	9.4	8.0	3.0	5,9	3.0	9•9	• 2	10	110	151	25	1000	48		226	40000
4 3	61	8.9	8.9	8.0	2.9	55	2.9	11.8	• 1	9	106 142	139 186	25	1400	60	1.	305	11000
4 10	61	9.4	9.8	8.1	3.0	50	2 • 7	6.7	•1	12	113	155	22	1100	66	1	231	11000
4 17	61	9.4	9.7	8.0	3.1	66	2.7	10.7	.0	13	139	190	16	450	80		302	8500
4 24	61	11.7	8.1	8.1 7.8	1.2	18 28	2.7	9.0	•0		133	180	19	500	86	. 3	343	2500
5 1 5 8	61	16.1	7.5	8.0	4.0	89	5.0	10.8	.1	5	79	94	40	1650	38		241	33000
5 15	61	16.1	7.2	8.1	1.3	35	3.8	10.0	• 1	5	85	108		650	24		144	1800
5 22	61	16.7	7.7	8.2	2.3	97	3 • 4	9.0	•1	10	106	145		400	62		246	2900
5 29	61	16.1	7.5	7.9	1.6	40	3 • 4	13.0	• 0	10	111	140		1400	480		231	70
6 5	61	22.8	7.0	8.2	1.0	7	2.8	11.0	•1	14	136	180	22	600	76	• 3	274	-
			1	l	l	1			l	L		L			1			

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATIONMISSOURI RIVER AT

ST. LOUIS, MISSOURI

DATE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	DEMAND										
DAY	(Degrees Centigrade)	OXYGEN	На	B.Q.D. mg/l	C.O.D. mg/l	I-HOUR mg/I	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/I	COLIFORMS per 100 ml.
6 12 61 19 61 7 10 61 7 17 61 7 17 61 7 24 61 8 14 61 8 21 61 8 28 61 9 11 61 9 25 61 9 25 61	22.2 23.9 24.4 23.3 25.1 25.7 28.9 28.3 27.2 26.7 28.3 27.2 26.6 18.6 20.6	6.2 6.1 7.2 6.3 6.3 7.6 6.0 7.0 6.8 7.0 6.8 7.0	8.3 8.2 8.1 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	.8 1.7 1.0 1.7 .9 1.0 6.4 1.2 1.1 1.0 1.2 1.7	38 80 31 24 548 27 107 11 19 16 22 54 25	3.090503462669	12.4 12.1 14.0 13.0 17.0 11.0 13.0 14.0 13.0 14.0 15.0	.1 .0 .0 .0 .0 .0 .0 .0 .1 .2 .1	18 14 20 19 18 23 18 227 25 23 18 8	136 124 140 142 154 128 98 120 158 148 154 120 85 106	185 173 188 203 222 175 138 175 2122 225 230 168 105 14 –	25 22 18 20 16 15 16 15 16 24 24	1400 2000 9000 1600 3500 1150 6400 3500 9000 13500 800	75 74 99 92 73 88 80 40 81 10 94 36 64	5 10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	312 282 324 335 306 369 487 227 308 352 442 407 308 170 232	7700 35000 11000 9500 12000 2500 8000 10000 25000 10000 47000 10000

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Hermann, Missouri Operated by U.S. Geological Survey STATE

Missouri

MAJOR BASIN

Missouri River

MINOR BASIN

Lower Missouri River

STATION LOCATION

Missouri River at

St. Louis, Missouri

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	55.500 50.600 47.700 45.500 43.700	45.500 68.400 75.400 66.700 57.000	27.000 27.300 27.300 27.300 26.100	32.500 29.100 24.900 23.000 22.800	13.400 13.200 12.800 14.000 15.000	41.300 38.000 39.300 42.800 42.500	148.000 132.000 111.000 98.100 87.900	83.500 91.200 107.000 117.000 125.000	97.500 94.000 91.800 87.900 81.500	70.500 72.600 60.000 53.000 50.000	66.200 66.700 70.500 81.000 87.900	52.400 51.000 48.600 48.300 62.200
6 7 8 9	41.900 41.000 40.400 40.200 39.900	52.000 46.700 44.600 46.100 43.700	25.300 24.900 26.100 27.300 29.100	24.400 24.400 24.200 23.700 22.800	13.600 14.400 15.700 17.000 17.400	39.600 51.300 88.400 114.000 113.000	79.000 71.400 64.200 67.500 120.000	192.000 252.000 323.000 385.000 401.000	84.000 89.000 79.500 78.000 80.500	55.800 74.900 105.000 98.100 74.900	77.600 64.600 56.600 55.800 58.400	104.000 98.100 81.500 77.200 67.100
11 12 13 14 15	39.300 38.800 38.800 38.800 39.000	43.100 43.100 42.200 41.300 41.600	29.900 30.900 34.400 41.900 40.700	22.500 23.000 23.000 23.900 24.400	17.800 18.700 26.100 33.000 34.400	99.300 84.000 93.400 111.000 152.000	162.000 185.000 185.000 183.000	382.000 369.000 323.000 276.000 230.000	83.000 77.200 70.500 69.600 71.400	62.200 59.600 57.000 53.000 52.700	55.500 53.800 51.300 52.400 57.700	55.200 47.700 53.000 161.000 263.000
16 17 18 19 20	39.900 41.300 40.400 41.300 41.300	47.700 49.300 49.000 48.000 44.900	36.600 33.800 31.700 27.300 27.000	23.500 23.500 27.800 28.600 24.900	36.300 30.900 28.800 31.700 35.500	170.000 150.000 144.000 142.000 125.000	166.000 149.000 130.000 111.000 98.100	206.000 200.000 206.000 190.000 178.000	94.000 118.000 123.000 107.000 87.900	54.800 55.500 60.000 77.600 73.100	55.500 48.300 42.500 39.600 39.900	268.000 274.000 271.000 246.000 214.000
21 22 23 24 25	40.700 40.200 39.900 39.900 40.200	42.800 41.300 39.900 38.500 36.000	32.000 33.300 33.000 32.200 27.800	24.400 23.900 22.100 21.600 21.000	55.200 60.000 52.700 44.900 41.300	123.000 126.000 124.000 125.000 120.000	85.700 86.800 108.000 128.000 140.000	167.000 144.000 120.000 114.000 118.000	73.100 64.600 62.200 63.400 61.400	59.600 64.200 86.800 125.000	39.600 39.600 40.200 45.500 54.400	187.000 168.000 151.000 136.000 165.000
26 27 28 29 30 31	40.400 40.700 39.300 38.800 38.800 39.300	32.700 29.900 27.600 26.300 26.100	22.500 19.200 18.100 23.900 26.600 27.600	19.000 16.000 14.000 11.000 11.500 11.000	43.100 48.000 47.000	106.000 92.800 106.000 164.000 181.000 168.000	166.000 154.000 131.000 111.000 93.400	149.000 150.000 139.000 131.000 120.000 107.000	58.800 56.600 54.400 53.000 55.800	148.000 162.000 137.000 111.000 91.800 74.400	56.600 54.100 51.600 48.300 49.600 52.400	197.000 186.000 157.000 133.000 109.000

STATE

KANSAS

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

KANSAS CITY, KANSAS

DATE			RADI	OACTIVITY IN Y	VATER			T	PADIOA	CTIVITY IN PLA	NKTON (day)	· · · · · · · · · · · · · · · · · · ·	DIO LETITURY	
SAMPLE TAKEN	DATE OF DETERMI- NATION		ALPHA		T	BETA		1	DATE OF		ACTIVITY	- ×A	GROSS ACTIVITY	
	NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED		TOTAL	1	DETERMI-			SUSPENDED		
MO. DAY YEAR	MONTH DAY	μμε/[μμς/Ι	μμc/l	μμc/I			1						
MO. DAY YEAR 10 24 60* 11 28 60* 12 19 60* 1 30 61* 3 27 61* 4 24 61* 5 29 61* 6 26 61* 7 31 61* 9 18 61 9 18 61 9 25 61	NONTH DAY 11 14 12 5 1 13 2 8 3 9 4 10 5 4					DISSOLVED μμε/Ι 0 0 5 4 3 0 0 0 19 4 11 23	10 5 4 21 477 0 23 22 5 36 165 33 175		DETERMINATION MO. DAY	ALPHA μμc/g	ВЕТА	SUSPENDED μμε/Ι		TOTAL μμε/Ι

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

KANSAS

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

KANSAS CITY, KANSAS

					ALGAE (A	Jumber	nev m7)	·			INIE	PT	1				ATO					و ا		MICROIN	VERTEBR	ATES		
DATE OF SAMPLE	E		BLUE-		GREE		FLAGEL (Pigme	LATES	DIAT	омѕ	SHE	ERT TOM LLLS er ml.)		DOMI (See	NANT	SPEC	ES At	ID PE	RCENT ntificat	ion*)		SHEATHED THE	A	RS · liter)	CEA Hiter)	DES liter)	IRAL FORMS IIter)	porinant central (See Introduction) for Identification)
MONTH DAY YEAR	т	DTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER. CENTAGE	SECOND*	PER- CENTAGE	THIRD*	PER. CENTAGE	FOURTH#	PER-	OTHER PER- CENTAGE	OTHER MICROPLANKTON, FUNGI AND SHEATHED BACTERIA (No. pet ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER AN	See In for Idea
10 3 66 17 76 11 14 66 12 12 66 1 16 66 2 2 6 66 3 2 6 66 4 17 6 6 12 6 6 12 6 6 12 6 6 12 6 6 12 6 6 12 6 6 12 6 6 12 6 7 17 6 8 28 6 9 18 6		1900 1900 1900 1100 1300 700 600 700 600 700 800 700 1000 1000 200 600		20	330 160 130 20 70 20 20 20 540 70 640 40		200 150 200 200 200 200 200 400 400 400 400 40	20 20 70 20 20	1020 1150 1100 740 1360 1040 550 580 70 130 2030 490 600 1430 310 620 70 190	3100 25800 25800 2700 1800 6390 203400 203400 2035400 2035400 2035400 2035400 2035400 2035400 2035400 2035400	90 310 200 360 220 50 310 1260 310 1620 420 560	270 400 700 490	82 86 82 82 46	20 50 50 40 60 20 50 40 20 40 20 40 20 10	71 26 86 47 92 26 58 80	10 10 30 10	78 82 46 70 46 70 71 71 80 56 26 58	10 10 10 10 10 10 10 10 10	46 71 78 67 46 71 45 70 71 46 92 9	10 * 10 * 10 * 10 10	60 30 30 30 30 30 30 20 60 30 40 60	330 340 110 160 90 70						4893- -49- -9-6 9- 9- 9- 9- 71963 9- 9-7 48963 4 8926

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

KANSAS

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

KANSAS CITY, KANSAS

DATE OF S	SAME	LF	T	F	XTRACTABL	ES	1				CIN OF S						
BEGINNING		END	1						1		NEUTRALS	ORM EXTR	ACTABLES		Т		
MONTH DAY YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
11 15 60	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1441 2881 1 2881 1 2881 1 300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4975 5085 5383 5896 5279 4565 4442 4174 2823	88 90 119 178 149 162 139 168 105 82 84 57 76 88	7 16 11 15 17 55 21 25 31 21 23 37 21 21 21 21 21 21 21 21 21 21 21 21 21	81 74 108 100 61 99 137 118 137 154 119 68 54 69 55 70 38 60 58	000000000000000000000000000000000000000	12111042252706182531	59 711 12 15 13 14 12 18 10 10 10 10 12 97 87	12132324232453222	111221222112211111	36578097836976455454	0000001110010000000	1111112132242443232221	0111003111111232021110	0000001110011100000010	03122532761283030321

STATE

KANSAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATIONMISSOURI RIVER AT

KANSAS CITY, KANSAS

DA							CHLORINE	DEMAND									TOTAL	
OF SA HLNOW	Τ	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/i	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	(scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
Σ Ω	"						.											
	3 60		7.7	7.9	2.2	21	3.3	9•0	•0	15	161	227	10	300	157	-	439	21000
10 1:			7.7	8.0	2.3	17	2.1	8 • 8	•0	17	163	236	8	220 350	170		464 456	17000 21000
10 1			7.8	8.0	2.2	21	2•2	6 • 8	•0	17	166	233 239	10	230	165 175		466	35000
10 24			9.3	7.9	2.1	13 27	2 ~	5.9	•0	16 16	169 171	238	7	260	171	_	467	6000
11		1	10.2	8.1	1.8 2.0	21	2.0 1.8	6.4	•1	17	175	239	5	250	177	_	477	32000
11 14			11.0	8.1	2.5	17	1.7	6.3	•0	17	173	241	5	210	174		495	38000
11 28			10.7	8.0	3.4	4	2.4	-	•1	22	210	265	5	170	153	_ '	490	19000
12			11.8	8.1	4.4	48	2.7	6.7	.2	22	219	277	5	200	150	_	505	18000
12 1			12.0	8.0	4.6	37	2.7	6.5	• 2	21	199	260	5	250	137	-	460	6000
12 19			12.6	8.0	5.3	32	3.1	6.9	•3	23	212	277	5	130	155	-	499	15000
	3 61		12.9	8.0	3.7	37	•6	6 • 8	• 4	26	216	301	5	95	172	-	534	6700
1 9	61	5	12.5	8.0	3.7	35	•7	6.8	• 3	23	213	267	4	105	229	-	503	13000
1 10			12.4	8.0	3.4	30	•7	6.5	•3	25	207	257	3	95	148	_	485 502	5300 13000
1 23			13.3	8.1	2.5	18	• 7	5 • 5	•3	25	206	280	5	75 10	159 165	_	542	4700
1 3			-	7.9	1.2	8	•6	5 • 5	•4	23	219	301 284	4 4	15	180	_	556	3400
2 (7.9	1.2	27	• 4	7.0	•6	33 25	214 181	284	4	220	143	.3	454	1300
2 1			10.7	8.0	5.5	41 139	• 4	10•2 7•7	•4	16	137	181	8	2700	93	.3	338	9000
2 20			10.7	7.8 7.9	7.8 8.2	93	• 9	13.7	• 5	17	144	192	25	1700	94	4	359	4900
2 2	7 6] 5 6]		9.4	7.8	7.3	98	1.5	11.0	-5	15	161	183	20	1600	93	.3	338	16000
3 1		1	9.0	7.8	5.5	184	1.3	10.6	•6	15	136	164	25	4000	69	. 2	290	38000
3 2			9.2	7.7	7.7	106	8	10.8	.6	11	130	164	25	1900	63	• 3	277	60000
3 2			9.0	7.9	5.4	130	.6	6.9	• 4	_	141	173	18	2000	71	• 3	287	24000
	3 61		9.5	7.9	3.8	59	2.0	9.0	• 2	10	144	183	17	900	76	• 3	306	22000
4 1	0 61	6.8	10.1	8.0	3.7	41	2.9	8.0	•1	14	167	221	8	510	114	• 3	392	18000
4 1			10.2	8.0	3.0	43	2.8	8 • 2	•1	13	156	215	8	700	113	• 3	378	22000
4 2			7.8	8.0	2.8	41	2.5	9•5	•1	16	170	241	7	620	139	• 3	412	63000 34000
5			8.9	7.8	2.3	24	1.9	7 • 2	•0	16	177	255	3	270 2500	159 108	.3	470 342	110000
	8 61		6.9	7.7	5.4	125	. 9	6.9	• 2	12	183	183 248	8 2	390	143	1	436	5300
5 2			7.6	8.1	2.6	28	2.5	0 0	•1	16	180	222	8	1700	135	5	417	20000
6 1			5.6	8.1	2.5 3.0	71 138	1.9	9.0	•1	15	142	190	12	2700	98	4	327	32000
6 1		1	5.5	7•7 8•0	2.6	31	2.6	10.0	.5	17	174	241	8	420	147	.6	438	5000
6 2	3 6:		5.2	7.8	2.2	62	2.0	8.0	4	18	160	229	8	950	149	• 4	428	22000
7 1			5.8	8.0	1.8	36	3.2	10.0	1.6	16	148	222	8	600	146	• 3	422	7000
7 1				8.0				_	-	20	161	233	7	270	162	-	455	14000
7 2			5.2	7.8	2.9	83	1.2	5.0	•1	15	143	207	7	1500	138	• 3	387	35000
7 3	- 1		4.8	7.9	1.9	35	3.0	11.7	•1	17	159	233	5	650	164	• 4	447	6000
-			1							1		İ				1	İ	

STATE

KANSAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

MISSOURI RIVER .

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATIONMISSOURI RIVER AT

KANSAS CITY, KANSAS

DAT OF SAJ		E TEMI				B.O.D.	C.O.D.	CHLORINE	DEMAND	AMMONIA-	CHLORIDES	ALKALINITY	HARDNESS	COLOR	TURBIDITY			TOTAL	
момтн рау		(Degra		1	pН	mg/l	mg/l	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	mg/l	mg/l	mg/l	(scale units)		SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/I	per 100 ml.
	7 6	51 28 51 24 51 21 51 17	3 6. 4 4. 0 7.	9	7.8 7.9 7.9 7.8 7.9	1.3 1.6 3.0 2.2 3.2	31 25 47 38 52	2.5 2.2 3.5 1.1	9.0 9.0 6.8 10.5 7.0	•0 •0 •8 •1 •1	17 15 12 11 15	158 152 128 120 148	217 224 161 164 198	7 6 8 8 5 5	500 440 2100 700 1300	152 168 121 108 117	• 4 • 3 3 • 2 2 • 2	439 441 329 322 393	50000 18000 160000

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Kansas City, Missouri Operated by U.S. Geological Survey STATE

Kansas

MAJOR BASIN

Missouri River

MINOR BASIN

Lower Missouri River

STATION LOCATION

Missouri River at

Kansas City, Kansas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	43.600	46.000	19.600	17.700	87.200	38.600	66.400	40.700	71.900	48.000	39.500	36.700
2	41.000	43.300	19.100	18.100	11.200	31.700	58.000	40.400	72.400	46.300	46.600	37.000
3	39.200	40.400	18.500	18.300	12.100	31.000	48.000	40.400	68.200	52.600	53.400	53.000
4	37.800	39.200	17.500	19.100	12.200	33.000	40.700	41.000	71.000	48.400	50.200	72.400
5	37.800	38.300	18.100	19.800	12.400	35.300	40.700	50.200	67.300	44.600	43.300	56.800
6 7 8 9	38.000 37.000 36.400 36.100 36.100	38.000 38.000 37.500 37.200 37.000	19.100 19.400 19.800 20.600 22.300	19.800 18.900 17.900 17.900 18.100	13.000 15.600 16.500 17.700 18.100	42.600 41.600 41.000 39.200 37.000	41.600 42.300 44.200 52.600 71.900	91.800 99.000 105.000 101.000 84.000	60.000 58.000 69.600 70.500 66.800	78.600 68.600 56.000 48.000 44.200	38.900 34.500 35.800 37.200 36.700	56.800 51.600 44.900 40.100 39.500
11	35.800	37.000	22.700	18.500	18.300	35.600	74.300	65.500	61.200	43.000	37.500	38.000
12	35.300	37.000	20.200	18.500	24.700	38.600	74.800	53.800	60.400	41.600	45.600	38.900
13	35.800	37.000	18.900	18.700	34.800	67.300	91.200	49.400	61.200	41.600	48.400	126.000
14	37.200	36.400	18.900	18.900	24.500	101.000	80.500	46.600	70.000	43.900	43.300	162.000
15	37.000	36.600	19.400	18.900	20.800	76.200	72.800	46.000	85.000	43.300	38.000	118.000
16	38.300	37.000	20.600	20.000	22.100	66.400	67.800	44.200	98.400	42.000	36.400	103.000
17	38.900	35.800	20.800	19.600	24.300	68.200	60.400	46.600	95.400	40.100	36.400	84.500
18	38.600	36.400	20.800	19.100	28.600	66.400	52.600	54.200	76.200	38.300	36.700	73.800
19	38.000	35.800	22.100	18.500	36.100	62.000	47.400	57.200	63.300	39.500	36.700	66.800
20	37.200	34.200	22.100	18.300	33.700	56.000	44.200	51.200	57.600	42.000	37.000	66.400
21	37.200	32.000	20.200	18.100	29.300	53.800	45.200	50.800	60.000	49.100	40.100	68.200
22	37.200	29.100	18.500	17.500	28.200	53.800	49.100	53.400	58.800	52.300	48.000	65.000
23	37.200	25.600	21.900	16.300	28.200	54.900	50.500	72.400	56.800	53.800	49.100	58.000
24	37.200	24.500	19.800	13.300	33.400	53.400	49.100	113.000	53.800	68.200	47.700	69.600
25	37.200	23.600	17.700	9.860	35.000	50.500	46.600	105.000	51.200	62.500	48.000	66.800
26 27 28 29 30 31	37.000 36.100 36.100 37.000 40.700 46.600	22.500 21.900 21.700 21.400 20.600	13.100 12.600 12.800 23.200 17.900 17.100	7.800 7.650 7.090 6.050 5.440 6.180	31.000 29.100 33.700	53.000 80.500 97.800 88.400 73.300 70.500	47.700 44.600 42.600 41.300 41.000	96.000 88.400 79.500 77.600 72.400 69.600	48.800 49.400 51.900 58.000 53.400	59.200 56.400 51.600 46.600 48.400 44.200	44.600 39.800 36.700 37.500 38.000 37.000	61.600 54.500 48.800 46.000 47.000

RADIOACTIVITY DETERMINATIONS

STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI BELOW NIOBRARA RIVER

STATION LOCATION MISSOURI RIVER AT

ST. JOSEPH, MISSOURI

								RADIOA	CTIVITY IN PLAN	IKTON (dry)	RA	GROSS ACTIVITY	
			RADIC	ACTIVITY IN W	ATER				GROSS A	CTIVITY			TOTAL
DATE			ALPHA			BETA	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	μμc/l	μμε/Ι
SAMPLE	DATE OF DETERMI- NATION	- HORENDEN	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED		MO. DAY	μμc/g	μμс/g	μμε/Ι	1/344	1/244
TAKEN				μμc/ 1	μμc/l	μμς/1				1	l l	1	
TAKEN 0 2 60* 0 24 60* 1 28 60* 1 23 61* 2 27 61* 3 27 61* 5 29 61* 6 26 61* 7 31 61: 8 28 61* 9 11 61 9 24 61	NONTH DAY 10 13 11 3 12 7 7 1 9 2 21 3 14 4 11 5 10 6 6 6 6 6 6 6 6 6 6 6 6 6 8 18 8 18 9 13 10 5 5	SUSPENDED μμc/\ 21 4 7 1 0 6 96 8 3 2 25 11 - 16	μμε/1 6 7 6 6 4 4 2 3 5 0 3 4 - 5		56 0 0 0 0 0 149 19 19 20 62 8 22 84	0 1 4 5 0 2 0 8 0 0 0 2 12 14	56 1 4 5 0 2 149 27 19 20 62 37 34 98	mo. pr.					

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI BELOW NIOBRARA RIVER

STATION LOCATION MISSOURI RIVER AT

ST. JOSEPH, MISSOURI

				ALGAE (A	Vumber	per ml.)				INE	RT	Ι	7		DI	ATON	//S				ř.		MICROIN	VERTEBR	ATES		4 5 3
DATE OF SAMPLE		BLUE-	GREEN	GREE	N	FLAGEL (Pigme		DIAT	омѕ	INE DIA SHE (No. p			DOMI (See	NANT Introd	SPEC! luction	ES AN	ID PEI de Ider	RCENT tificat	AGES		NICROPLANKTON AND SHEATHED RIA PET TIL.	λ ml.)	ts liter)	EA liter)	DES liter)	AHIMAL FORM	r cener roductio tificatio
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST*	PER. CENTAGE	SECOND#	PER. CENTAGE	THIRD*	PER. CENTAGE	FOURTH	PER- CENTAGE	OTHER PER- CENTAGE	OTHER MICH FUNGI AND BACTERIA (No. per	PROTOZO (No. per	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per	bokinant cenera (See Introduction for Identification)
10 3 60 10 18 60 11 7 60 11 23 60 12 2 60 12 1 3 61 1 3 61 1 3 61 2 4 61 3 20 61 2 4 61 3 20 61 5 15 61 6 1 1 61 7 7 61 8 21 61 8 21 61 8 21 61 9 5 61	2800 3400 2000 5600 3700 2700 600 400 1600 3700 6500 20300 400 2200 3800 1500 1500 2100	20	20 20	570 780 70 40 110 20 50 20 270 2430 50 580 850 330 430 310	20	240 270 70 110 50 200 130 70 250 670 1720 1100 40 160 5210 580 230	110 70 20 20 50 50 20 20	1610 1860 1370 1430 2440 3020 19800 160 150 720 1140 12690 340 920 1140 290 600 870	310 380 460 4900 5500 180 270 670 240 650 2970 4129 640 310 670 4129 650 650 650 650 650 650 650 650	1360 110 300 180 240 270 70 160 20 180 1500 1100 20 1100 20 1100 20 1100 20 1100 20 1100 20 1100 20 1100 20 110	220 760 400 590 420 270 270 310 1070 310 740 580 1450 410 170 230	82 46 82 46 82 82 82 71 71 82 82 9	30 30 30 40 30 40 30 30 20 30 20	46 80 46 46 46 46 46 46 46 46 46 46	20 10 20 10 10 10 10 10 10 10 10 10 10 10 20	26 71 71 80 70 46 70 26 86 92 46 46 71 80	20 10 10 20 10 10 * * 10 10 10 10 10 10 10 10 10 10 10 10 10	92 70 92 71 84 71 70 95 86 95 82	10 10 * * * * * * * * *	40 50 50 50 40 60	180 110 20 90 150 110 20 40		2	10	1 2 2 2 3		4893- 4893- -9-6 -9 -9-6 -19 -9 6- 9 3-966 3196- 71963 48963 9 48-5 -8967 963 489-3

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI BELOW NIOBRARA RIVER

STATION LOCATION MISSOURI RIVER AT

ST. JOSEPH, MISSOURI

	EAMD! "															
DATE OF S			E	KTRACTABL	ES						ORM EXTR	ACTABLES				
MONTH DAY YEAR	MONTH Z	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER	WATER SOLUBLES			NEUTRALS	OXYGEN-		WEAK	STRONG	BASES	LOSS
MO A	M Q			FORM		INSOLUBLES	POUNBLES	TOTAL	ALIPHATICS	AROMATICS	ATED COMPOUNDS	LOSS	ACIDS	ACIDS	DAGES	L033
10 3 60 10 17 60 11 14 60 12 27 60 1 23 61 2 21 61 3 20 61 4 17 61 5 30 61 7 3 61 7 3 61 9 7 61		5535 5595 4305 4507 5535 4700 5812 4687 2100 3825 5295 5715	135 88 226 176 154 252 108 147 242 246 99 123	23 16 28 40 33 72 18 35 52 75 33 26	112 72 198 136 121 180 90 112 190 171 66 97	100121021510	6 2 4 8 7 17 4 9 14 19 8 6	7 7 14 13 13 22 6 8 18 19 9 10	1 1 2 2 2 1 1 1 5 2 1 1 1	1 1 1 1 2 1 0 1 2 1 1 1 1 1 1	5 5 10 9 8 18 5 6 10 14 7 7	00011120001	224939346843	1 1 2 2 2 7	1010111111122000	4 4 4 7 5 5 3 8 8 8 4 7 5 5

STATE

MISSOURI

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI BELOW NIOBRARA RIVER

STATION LOCATIONMISSOURI RIVER AT

ST. JOSEPH, MISSOURI

DATE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	DEMAND										
DAY	(Degrees Centigrade)	OXYGEN mg/I	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 mi.
10 2 60	17.0	7.8	8.5	1.1	-	4.6		•1	25	182	226		240	164		448	
10 10 60				_	_	_	-	_	_	_	-	_	_	-	-	-	2100
10 12 60	15.5	8.1	8.0	1.7	-	3.2	_	•1	20	182	226	_	250	164	_	448	1400
10 16 60		8.5	8•0	1 •.3	-	3.2	-	•1	18	168	226	15	200	156	-	440	_
10 17 60		8.9	8.0	1.8	_	2.2	_	-	1	7.65	-	-	-	-	-		3800
10 30 60		8.6	8.0		_	2.5	_	•1	17 18	165 140	208 200	8 10	200 115	153 147	-	378 360	-
10 31 60		-			-	-	· _	-	_	1				147	_	300	23000
11 3 60		8.6	7.9	1.5	-	2.0		• 1	18	166	232	0	220	-	-	360	-
11 8 60		10.4	7.8	2.0 1.7	_	2 • 4 2 • 5	5.5 5.5	•2	17 17	176 172	220	0	220	166	-	399	-
11 21 60			_		_	-	J.J	• 1		1/2	232	_	200	168	-	360	1100
11 22 60		10.4	8.0	1.5	-	2.5	-	•1	18	176	220	_	180	172	_	360	1100
11 28 60 11 30 60		12.0	8.0	1.8	-	-		-	-	-	-	-	_	-	-		8600
12 5 60		12.0	-	1.0	-	3.0	6.0	•1	23	200	260	٥	180	143	•1	468	_
12 7 60	• 7	12.3	8.0	2.9	_	3.5	5.0	•1	_ 25	220	260		185	_	-1	_	1800
12 17 60		12.3	8.0	2.7	·	3.6	5.0	• 3	30	214	280	_	150	136	1 .1	507	_
12 21 60		13.0 12.0	7•9 8•0	2.3	-	3.6	5.5	•3	36	188	276	-	100	210	•7	576	-
1 3 61		12.0	-	1.0	-	. [_	• 6	32	200	310		25	-	• 8	-	
1 5 61	1.1	12.6	8.0	2.0	_	4.0	6.5	• 3	35	224	296		60		-1	_	700
1 9 61					-		_	-	-	- 1	_	-	_	-	-	-	200
1 12 61		12.7	8.0	2.0 3.8	-	3.0	5.5	• 2	33	212	256	0	60	131	خ	496	_
1 23 61		13.0	8.0	J.0		3.5 3.6	5.0	•6 •5	30 35	196 210	248 256		50 25	141	•2	476	
1 29 61		-	-	-	-	-	_	-		210	250	[]	25 -	152	•3	510 -	200 *100
1 31 61			8.0	-	-	3.0	-	•5	37	222	262	-	25	-	.3	510	
2 6 61		12.6	7.8	- 3 • 4	_		-	• 4	30	280	324	0	20	159	•2	616	1000
2 13 61		12.0		3 6 4	_	4.6	_	• 6	33	256	366	_	25	_	•2	-	×100
2 16 61		12.1	-	2.1	-	_	_	• 3	34	184	232	_	25	_	.2	_	*100
2 20 61		-		. .	-	-	-	-	-	-		-		-		_	550
2 25 61		10.6	7.9	3.0	-	-	-	• 2	28	154	244	-	1200	95	• 2	405	-
2 27 61 3 1 61		12.2	8.0	2.4	_	6.0	8.0	.4	32	148	218	5	590	100	-	-	*100
3 6 61		-	- 0.0		_	0.0	-	-	-	140	210	2	240	100	• 2	_	27000
3 9 61		-	7.6	-	-	6.5	8.0	• 8	27	140	210	15	750	~	.6	_	27500

STATE

MISSOURI

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI BELOW NIOBRAKA RIVER

STATION LOCATIONMISSOURI RIVER AT

ST. JOSEPH, MISSOURI

DATE OF SAM		TEMP.					CHLORINE	DEMAND										
MONTH	YEAR	(Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pН	B.O.D. mg/l	C,O,D, mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES · mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS
3 13 3 20	61 61	4•4 4•4	9•2 9•2	7.2	1.8 9.2			_	.8	27	7.0	108	200	5000	-	• 4	-	14000
3 27	61	4.4	8.8	8.0	9.2	_	6.0	8.0	1.0	26 23	140 138	144 170	15 15	3350 2500	60	•5 •8	346 -	36000
3 28	61	-	-	-	-	-	_	-		_				2,00	_	• • •	_	1700
4 4	61	-				_	-	-		-	-	-	-	-	-	-	-	45000
4 5 4 10	61	4•4 6•7	10.0	7•6 7•8	2.7 4.0	-	2 2		•3	23	170	220	10	1200	-	•2	-	_
4 17	61	0.7	10.0	′ • • •	4.0	_	3.3	5•0	•2	19	120	210	-	500	-	•7	356	7000
	61	8.3	10.6	8.0	3.6	_	_	_	•3	22	180	228	_	500	130	•2	325	14000
4 24	61	-	-	-	~	-		- 1	-				_	-	150	• 4	525	18000
	61	13.3	9.8	7.9	2.4	-	-]		• 3	23	168	240	10	350	_	•5	386	10000
	61		-	_ =		-	-	-	-	-	-	-	-	-	-	-	-	5400
	61	12.2	9 • 2	7.9	1.6		-		• 2	22	186	230	10	162	-	•5	400	-
	61	13.3	8.4	7.9	1.2	_ [3.5	5.5	• 3	20	170	220	-		154			60000
5 16	61	17.2	7.8	7.9	1.8	_]-[.3	23	166	230	10	300 280	156 153	•5 •2	457 387	4000
5 22	61	-	-	-	_	-	-		-					200	100		201	2100
	61	16.0	7.8	7.9	1.8	-	-	-	• 2	25	180	236	10	6800	_	• 2	426	
	61 61	21 0			1 2	-	-		-		-	-	-	-	-	-	-	800
	61	21.0	8.8	7.8	1.2	_	-1	-1	• 3	24	166	204	15	3250	111	.1	445	10000
	61	24.4	5.0	7.8	3.4	_	_	_	• 2	26	152	220	_	600	_	-3		*100
6 19	61	-	-	-	_	-	-	_	-	-	172		_	000	_	• • •	_	*100
	61	21.1	6.6	7.8	-	- 1	-	-1	•1	24	174	232	-	300	138	• 2	525	100
	61	25 -		_ =	-	-	-	-	-	-	-	-	-	-	_	-	_	2100
	61	25.6	7.9	7.9	_	- 1	-	-	•3	24	152	220	-	800	-	• 2	-	_
_1 1	61	25.0	-1	8.1	_	_		-	_	23	140	100	-			- 1	-	7300
	61	-	-	-]	-	_	_	_	- 23	140	190	_	7500	116	•5	375	1,4000
	61	23.2	7.2	7.9	2.0	-	-	-	• 2	24	160	226	_	310	155	• 2	473	18000
	61				1	-	-	-	-	-	-	_	-			-	''-	12000
	61	24.4	5.9	7.9	1.6	-	-	-	• 2	24	140	196	10	400		•1	-	1800
	61	25.6	6.0	7.9	2.0	-	3.0	-	• 2	24	172	210	-	575	-	• 3	-	_
	61		-	1.3	1.5				•1	23	182	220		300	-	• 1	-	25000
8 15	61	26.7	6.5	7.8	1.5	-	3.0	5.0	•2	25	136	216	10	370		.1	_	11000
	61	-	-	-	-	~	-	-	_	-	-	-		-	_	•=	_	16000
	61	25.0	6.5	7.9	2.0	-	-	-	•2	26	144	200	-	400	-	• 2	_	
8 28	61	-	-	-	-	-	-1	-	-[-	-	-	-		- 1	- [-	5000

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI BELOW NIOBRARA RIVER

STATION LOCATIONMISSOURI RIVER AT

ST. JOSEPH, MISSOURI

D/ OF S	ATE							CHLORINE	DEMAND									TOTAL	
		j	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	mg/l		COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	71	OTI	21.1 15.5 14.4		7.9	1.8		3.0	5.0 -	•1	25 - 23 25	127 - 166 170	220 - - 216 234		800 - 300 370	132 120	.2 .2	456 400	100000 100000 20000 29000 - 31000

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at St. Joseph, Missouri Operated by U.S. Geological Survey STATE

Missouri

MAJOR BASIN

Missouri River

MINOR BASIN

Lower Missouri below Niobrara River

STATION LOCATION

Missouri River at

St. Joseph, Missouri

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	35.200 34.200 33.300 33.300 33.300	37.900 37.000 36.000 35.100 34.500	17.500 16.800 14.800 14.600 15.800	14.800 14.500 15.300 16.800 16.600	10.000 11.200 12.500 13.500 14.300	29.900 29.100 31.300 33.600 34.200	40.900 36.600 33.600 33.000 33.600	35.700 35.700 36.000 36.000 40.900	41.200 43.400 46.000 43.400 37.600	34.200 38.600 39.600 33.300 33.300	35.400 40.900 42.300 37.300 35.100	32.700 32.400 51.600 44.800 37.000
6 7 8 9	32.700 32.400 32.700 33.000 32.700	3 ¹ 4.200 33.900 3 ¹ 4.200 3 ¹ 4.500 3 ¹ 4.800	17.100 17.100 17.300 18.300 17.700	15.800 15.000 15.200 16.000 17.000	14.500 14.000 13.700 13.700 14.300	36.300 32.400 30.700 28.800 27.600	33.900 36.000 37.300 38.900 42.300	48.400 44.000 42.600 41.600 38.900	35.400 39.600 42.600 42.300 36.600	52.800 45.600 38.600 36.000 35.700	31.600 32.400 33.300 32.400 32.100	35.400 34.200 33.900 34.200 33.300
11 12 13 14 15	33.000 32.700 32.700 33.300 34.800	34.800 33.900 33.300 33.600 33.900	16.200 16.400 16.200 15.800 16.000	17.100 17.000 16.600 17.000 17.300	15.000 16.000 18.000 17.300 18.100	25.900 28.800 50.800 61.300 43.000	43.700 67.000 61.300 51.200 47.200	37.300 36.000 35.700 35.700 35.700	34.200 33.900 33.300 42.300 55.400	34.500 33.600 35.100 37.300 36.600	38.600 41.600 39.200 33.000 30.700	33.000 38.200 99.200 73.000 53.600
16 17 18 19 20	34.200 33.900 33.600 33.600 33.600	34.200 33.900 33.600 31.800 29.600	16.600 16.400 16.400 16.000 15.700	17.300 17.500 17.500 17.500 17.300	19.100 19.800 26.300 25.400 20.200	43.700 42.000 43.000 42.600 42.000	45.200 43.000 40.900 38.600 37.000	34.800 36.300 38.600 38.900 38.600	63.100 53.200 42.600 37.600 38.600	35.400 33.600 33.600 34.500 35.700	31.800 32.700 32.700 33.000 35.400	42.600 36.300 33.000 32.700 33.300
21 22 23 24 25	34.200 34.500 34.200 34.200 34.800	27.600 25.400 23.200 21.100 19.600	17.700 17.300 12.400 11.400 10.400	16.800 16.000 14.000 12.000	17.500 19.000 27.100 34.800 28.800	40.200 38.900 37.900 37.600 39.200	36.600 37.900 38.200 38.200 37.900	37.600 37.300 37.300 37.000 37.300	40.600 37.600 37.600 37.000 36.000	40.200 38.600 37.300 42.300 37.300	37.900 41.200 40.200 36.300 36.000	34.200 35.400 39.200 43.400 39.600
26 27 28 29 30 31	34.800 34.800 34.500 35.100 43.400 39.900	18.800 18.100 18.100 17.700 17.700	9.900 10.700 21.700 18.700 15.500 15.300	9.000 8.500 8.000 7.500 6.000 8.000	27.600 30.200 36.600	42.600 52.800 59.000 53.600 48.400 44.400	37.300 36.600 36.300 35.400 35.700	40.600 38.900 37.900 37.300 36.600 37.600	35.100 36.600 43.000 43.700 36.600	39.200 36.000 35.700 40.900 42.000 35.100	33.600 31.600 31.600 31.800 31.800 32.700	37.000 35.100 34.200 33.900 48.400

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

OMAHA, NEBRASKA

DATE			RADE	DACTIVITY IN Y	VATER			RADIOA	CTIVITY IN PLA	NKTON (dev)	r	BAR	DIOACTIVITY IN W	ATER
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA				CTIVITY			GROSS ACTIVIT	
TAKEN	NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED		TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	1	SUSPENDED		TOTAL
MO. DAY YEAR	MONTH DAY	##c/l	##c/1	μμc/l	μμc/!	μμc/l	μμc/l	MO. DAY	<i>µµс/</i> g	<i>µµс/g</i>		μμc/l	μμε/!	μμc/l
10 24 60* 11 28 60* 12 26 60* 1 30 61* 2 27 61* 4 24 61* 5 29 61* 8 28 61* 9 11 61 9 18 61 9 25 61	11 2 12 15 1 12 2 9 3 10 4 11 5 8 6 9 7 12 8 28	2 3 1 0 2 6 1 3 6 3 4	7 4 12 6 2 2 5 5 4 4 5 - - - 6	9 7 13 6 4 63 11 6 7 10 8 - 10	0 8 0 0 28 122 17 0 5 10 22 0 52 29 33	37 16 11 0 21 3 0 12 13 26 0 13 21 78	37 24 11 0 49 125 20 0 17 23 48 0 65 50 111		PACIS	PAL/9		PART	μμε/1	APOI

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

OMAHA, NEBRASKA

DATE				ALGAE (Vumber	per ml.)				INE	RT	Γ-				IATO	NC.				l		MICROIN	VERTERE	ATES		
OF SAMPLE		BLUE-	GREEN	GREE	EN	FLAGEI (Pigm	LLATES ented)	DIAT	омѕ	SHE	TOM ELLS er ml.)				SPEC duction	IES A	ND PE			s	ROPLANKTON SHEATHED ml.)	A ml.,				FORMS	uction cation)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER- CENTAGE	SECOND*	PER.	THIRD*	PER-	FOURTH#	PER-	OTHER PER-	OTHER MICROP FUNGI AND SH BACTERIA (No. per m	pe 20	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER AHIMAL (No. per liter	pominant genera (See Introduction for Identification)
10 3 60 10 17 60 11 8 60 12 1 60 12 2 61 1 16 61 2 6 61 3 8 61 3 20 61 4 17 61 5 61 6 19 61 7 7 61 8 21 61 9 4 61 9 18 61	1000 900 2300 800 1900 1200 300 700 1700 2900 4600 2900 4600 10300 5700 2800 6400 2800 1500	20 20 20	20 40 170 20	180 90 70 50 110 20 90 290 360 1020 1430 370 790 270		220 70 130 500 2900 500 6400 380 500 1700 850 930 270 710 250	90 20 20 40 20 40 20	350 290 1920 770 1540 1050 960 220 630 1300 21800 22550 6210 3750 1300 3420 1700 1010 930 600	240 240 250 90 70 500 220 380 620 1180 1330 2610 1430 510 9500 370 410	150 850 70	70 90 200 50 20 420 290 180 420 270 520 120 360 250 100	80 80 82 82 82 82 82 82 84 47 84 47 47 80	30 40 90 80 40 40 90 70 20 30 60 40 60 70 20	82 84 84 80 84 26	10 30 30 10 20 20 10	36 84 71 26 80 70 56 26 9 80 80 9 80 83	* 10 10 * 10 10 * * 10 10 10 10 10 20	32 71 70 58 98 92 45 56 58 31	* 10 10 * 10 10 10 20	30 40	420 70 110 20 70	10 10 10	2 2 1	1 1 8 3 2	2 3 1 3		93- 9- 9- 9- 9- 9- 4-967 933 3192- 33-963 33-973 41963 71927 -893- -8937 4-9-

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

OMAHA, NEBRASKA

DATE OF S	SAMPL	E		FX	TRACTABL	FC									·		
BEGINNING		END			AOTABL			 			NEUTRALS	ORM EXTRA	ACTABLES				
MONTH DAY YEAR	HLINOM	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 24 60 11 21 60 12 20 60 1 19 61 2 13 61 3 13 61 4 10 61 5 8 61 7 3 61 7 31 61 8 2 61 8 28 61 9 25 61	12 1 1 2 3 4 5 6 7 8 8	4 1 30 27 23 24 22 19 17 14 14	1751 3606 4537 6864 4367 924 1438 1327 1996 2422 3716 4205	405 185 119 28 *5 7607 4864 255 1337 *SAMF	61 32 24 20 107 268 118 94 146 41 29	345 173 161 99 178 497 390 218 170 86 97 108	2 0 0 0 2 - 11 1 6 2 1 2 0	13 5 5 30 78 31 25 45 23 12 11 8	23 14 10 6 29 62 37 47 20 16 12 10	31100-34354322	2 1 1 0 1 -4 3 2 7 2 1 1	17 11 8 6 26 - 50 29 28 23 13 12 9 7	11002-51021000	8 6 3 2 3 - 24 11 1 5 8 5 4 3	4 1 1 1 2 1 7 6 12 7 3 3 2	2 1 0 1 2 - 5 3 3 3 2 1 1 1 1	9 5 5 5 20 67 25 15 18 23 8 8 5

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATIONMISSOURI RIVER AT

OMAHA, NEBRASKA

OI	DATE SAME	LE	TEMP.	DISSOLVED				CHLORINE	DEMAND	*****								TOTAL	
MONTH	DAY	YEAR	(Degrees Centigrade)	OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
10 10		60	16.1	8.2	8.2	1.1	24	2.2	4.5	•0	11	152	230	24	160	182	-	526	18000
10		60	15.9 14.5	8.0	8.3 8.3	• 8 • 7	49 21	1.4	6•3 5•0	•0	10 10	149 155	228 226	24 24	140 140	176 178		453 46 5	1700
10		60	11.6	8.5	8.3	.9	21	1.5	4.9	•0	10	157	236	24	150	177		471	7700
10	31	60	9.4	9.1	8.3	1.2	26	1.5	5.2	.0	10	161	234	40	190	182	-	454	4500
11	7	60	6.7	9.0	8.3	• 6	26	1.6	6.0	•0	10	164	236	24	200	181	-	443	13000
11		60	6.5	11.0	8 • 4	2.0	24	1.6	5•4	•0	10	168	240	32	170	184	•1	492	3800
11	21	60	4.7	11.0	8.1	• 7	24	1.8	4 • 2	•0	11	180	254	8	150	192	•0	454	2700
11		60	5.6	10.2	8.2	1.1	23	2.7	6.9	•0	13	192	270	8	95	190	•0	494	10000
12		60	2.7	11.7	8.3	1.8	28	2 • 8	8.5	• 1	11	212	282	10	190 90	188 195	•1	525	3800
12		60	• 3	12.8	8 • 2 8 • 4	1.9 1.3	20 18	2 • 8 2 • 8	5 • 8 6 • 4	•1 •1	12 13	208 205	284 290	6 8	90	195	•1	501 529	8000 670
12		60	.1	12.9	8.2	1.1	21	3.1	6.5	•1	13	216	304	7	10	205	.0	562	"-
1		61	.1	12.1	8.2	1.1	21	3.0	6.3	.2	12	186	270	8	15	190	.1	514	970
1		61	. 2	11.1	9.6	1.1	15	3.0	6.2	.1	13	186	266	7	15	187	.3	545	140
1	16	61	.2	11.2	8.1	1.2	16	3.0	6.5	.1	12	187	270	9	10	196	.1	519	1500
1		61	•1	.11.4	8.1	1.3	20	3.1	6•3	•2	13	207	292	7	11	202	.1	543	440
1		61	• 1	12.2	8.1	• 9	23	3.9	7•3	•2	13	197	284	7	6	213	•1	535	140
2		61	•1	10.9	8.1	• 9	12	3.6	6.4	•1	11	173	256	8	8	178	•1	474	77
2		61	• 4 • 2	9.9	8•1 7•9	•8 2•8	26 29	2.1 2.8	6 • 2 11 • 1	• 2	12 13	179	250 258	9 20	8	168 174	•2	464	100 4500
2		61	.3	8.6	8.0	7.4	64	4.0	17.1	• 4 • 5	12	178 160	214	34	10 450	145	.3	458 418	4800
3		61	. 4	8.4	7.8	10.6	77	5.0	28.5	.6	12	125	164	36	850	71	.2	290	5600
3		61	1.5	9.3	8.1	6.4	69	3.8	19.3	.4	80	140	186	26	1200	95	.2	324	5100
3	20	61	3.6	9.0	7.9	5.6	78	14.0	22.7	•7	7	122	168	30	1200	78	.4	296	14000
3		61	7.8	8.5	8.1	2.2	50	5.9	15.1	• 3	7	132	185	16	760	104	•1	328	2500
4		61	4.7	10.0	8.2	3.0	34	5.7	11.1	•1	7	161	228	12	310	105	•1	364	23000
		61	5.6	9.5	8.3	2.3	37	3.1	13.0	•1	6	187	252	9	230	117	•1	441	11000
4		61	4•2 12•2	10.8	8.4	2 • 2 2 • 2	27 22	2.7 2.8	10.5	•0	11 12	104 182	266	6	210 200	175	•0	459 490	2300 12000
5		61	11.8	8.7	8.3	1.0	30	2.9	10.0	•0	12	176	260 258	7 7	230	186 187	.0	492	19000
5		61	11.6	8.1	8.4	.5	24	2.7	9.5	.0	11	177	252	8	200	190		484	9500
		61	15.9	7.5	8.4	1.7	24	2.2	7.0	•0	13	177	256	7	180	188	.0	497	18000
5	22	61	15.6	8.4	8.4	1.4	33	2.2	7.0	•0	11	180	260	8	150	181	.1	499	12500
5	29	61	18.7	7.5	8.5	1.6	26	2.5	8•4	• 0	13	177	259	9	150	185	•1	500	9500
6		61	21.1	7.0	8.5	1.5	36	2.6	6.8	•0	11	171	238	9	260	177	.0	473	26000
		61	24.0	6.7	8.4	1.4	24	2 • 4	6.7	•0	12	166	236	9	150	175	•1	469	4300
		61	21.7	6.8	8.1	1.3	31	2 • 4	6 • 1	•0	11	165	240	10	280	166	•0	461	5000
6	26	61	21.8	7.5	8.5	1.5	21	2.7	6•9	•0	11	168	238	10	160	169	•0	457	3700

STATE

NEBRASKA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATIONMISSOURI RIVER AT

OMAHA, NEBRASKA

31.

DAYE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	DEMAND					Ī					
DAY YEAR	(Dagrees Centigrade)	OXYGEN mg/l	pH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS
7 3 61 7 10 61 7 17 61 7 24 61 8 14 61 8 21 61 8 28 61 9 4 61 9 11 61 9 18 61 9 25 61	25.1 24.6 24.3 23.6.1 24.5 24.5 24.5 24.5 16.1	6.1 6.5 6.7 6.4 6.6 6.7 7.3 7.0 7.4 6.9 8.1 9.1	3 3 3 1 3 2 3 2 3 2 2 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.0 .9 .6 .7 .9 .8 1.7 .2 1.1	33 28 20 21 180 20 18 16 12 25 19	85 6 6 5 4 0 5 8 0 1 9 9 2 2 2 2 1 2 2 3 3 2 2	7·1 6·8 6·8 6·8 7·0 6·7 5·1 6·8 7·0 6·7	.00	10 12 11 11 12 10 8 9 12 11 11	1652 1575 1555 1554 1555 1560 160	233 226 224 218 220 221 225 227 230 240 236	12 10 12 12 12 10 8 7 6 8 8 11 6	150 170 150 140 200 150 150 150 180 150	169 182 178 176 173 179 178 186 186 191 193 205 192	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	449 459 445 445 469 464 440 471 436 471 468	3300 6000 2500 2000 3700 2800 7100 2900 10000 4800 9800

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Omaha, Nebraska Operated by U.S. Geological Survey STATE

Nebraska

MAJOR BASIN

Missouri River

MINOR BASIN

Lower Missouri River

STATION LOCATION

Missouri River at

Omaha, Nebraska

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	27.700 27.700 27.200 27.500 28.200	29.000 28.000 28.000 28.400 28.700	10.300 10.200 10.200 10.700 10.900	11.600 11.000 10.500 10.000 9.400	10.600 10.300 10.000 9.780	19.700 21.700 21.900 25.400 23.000	23.900 22.800 23.000 23.000 24.300	26.600 26.800 27.200 27.500 28.200	29.200 27.700 24.300 23.000 23.400	27.000 27.500 27.700 27.700 27.700	33.200 31.500 31.200 29.200 30.200	31.500 32.100 31.800 31.000 30.000
6 7 8 9	28.700 28.400 28.200 28.000 27.700	29.200 29.200 29.200 29.000 28.400	10.700 10.700 10.300 9.260 9.780	9.600 10.500 11.000 11.200 11.000	9.520 9.130 8.880 8.760 9.000	21.300 19.500 18.700 17.600 16.900	25.700 25.900 25.700 26.400 26.600	28.000 28.200 27.500 26.600 26.100	25.200 26.600 25.900 25.000 25.000	28.200 28.400 28.700 28.700 28.400	30.000 27.000 28.000 28.700 32.100	29.700 29.200 29.000 29.200 29.400
11 12 13 14 15	27.500 27.500 27.700 28.400 29.000	27.700 27.200 27.700 28.000 28.400	10.200 11.000 11.400 11.300 11.300	10.700 10.600 11.000 11.000 10.900	9.130 9.260 9.390 9.650 9.650	16.700 17.600 18.900 17.800 25.900	26.800 27.200 27.500 27.000 26.800	25.400 25.700 26.400 26.600 27.200	25.200 25.900 27.700 31.800 40.400	28.400 29.400 30.000 29.400 28.200	34.600 30.000 26.800 27.200 28.100	31.200 31.000 31.500 31.200 29.000
16 17 18 19 20	28.400 28.000 27.500 27.500 27.500	28.700 27.000 24.100 20.700 18.100	11.600 11.400 10.700 10.400 10.200	10.900 10.600 10.300 10.700 10.500	10.600 11.600 10.400 9.130	28.700 28.700 28.400 26.800 24.100	26.400 25.400 24.600 24.600 25.000	27.700 27.500 27.000 27.000 26.100	33.700 25.000 23.000 23.900 25.000	28.200 29.200 29.700 29.700 29.700	28.400 28.700 29.000 30.700 29.000	27.500 27.700 28.200 29.000 29.000
21. 22 23 24 25	27.000 27.200 27.200 27.500 28.000	16.200 14.000 12.400 11.800 11.600	8.000 8.500 8.000 8.000	10.200 10.000 9.500 9.000 8.500	9.650 10.700 14.100 15.800 16.200	21.300 18.900 20.700 24.300 27.500	26.400 26.800 26.600 26.400 26.100	25.000 25.400 25.900 25.700 24.600	26.100 26.800 26.400 26.100 26.100	30.400 30.200 29.400 29.700 29.700	29.000 29.700 30.400 30.000 28.700	29,200 29,700 29,200 28,700 28,700
26 27 28 29 30 31	28.000 27.700 28.200 29.000 29.700 30.000	11.300 11.000 11.100 11.300 11.300	8.500 13.500 10.300 10.600 10.700 11.400	9.000 9.500 8.500 8.000 7.500 9.000	17.200 18.000 16.200	29.400 30.000 30.400 30.000 29.200 27.200	25.900 25.400 25.700 26.100 26.100	23.900 24.100 24.300 25.400 26.800 29.700	26.400 29.000 28.200 27.700 27.000	30.000 30.000 34.600 30.400 29.700 30.200	29.000 29.700 30.000 30.400 31.000	28.200 28.400 28.200 28.700 30.400

RADIOACTIVITY DETERMINATIONS

STATE

SOUTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

YANKTON, SOUTH DAKOTA

SAMPLE TAKEN DATE OF DETERMIN SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL NATION ALPHA BETA SUSPENDED DISSOLVED DISSOLVED TOTAL NATION ALPHA BETA SUSPENDED DISSOLVED DISSOLVED TOTAL NATION ALPHA BETA SUSPENDED DISSOLVED TOTAL						TIMEN IN	T PARIC 15			ATER	DACTIVITY IN V	RADI			DATE
MO DAY VEAR MONTH DAY μμε/1 μμε		HOACTIVITY IN		4					BETA					DATE OF	
Mo. DAY YEAR MONTH DAY μμε/1 μμ		GROSS ACTIVIT		-			DETERMI-	TOTAL		SUSPENDED	TOTAL	DISSOLVED	SUSPENDED		
10 24 60* 11 2 0 0 0 0 0 0 0 12 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		DISSOLVED		-	 					μμς/Ι	μμε/Ι	μμc/ Ι	μμς/Ι	MONTH DAY	MO. DAY YEAR
11 28 60* 12 8 0 7 7 7 0 0 0 0 12 12 12 8 0 1 1 0 0 13 13 0 0 1 1 1 1 1 1 1 1 1 1	μμε/Ι	μμc/ 	μμε/Ι	+	PPC/9	- r-c/ g							_		
12 27 60* 1 10 0 13 13 0 1 1 1 1 1 1 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ļ						1	0	0						
1 30 61* 2 8 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1				0	0						
2 27 61* 3 10 0 3 3 3 0 1 1 1 1 1 1 1 1 1 1 1 1			1		i	i		1							
3 27 61* 4 12 0 4 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1	ļ		1	0	٥						
4 24 61* 5 8 1 3 4 0 0 0 5 29 61* 6 12 1 4 5 0 0 0 6 26 61* 7 21 0 4 4 0 8 8 7 31 61* 8 24 1 4 5 1 0 1 8 21 61* 9 14 1 3 4 0 12 12 9 11 61 10 24 - - - 14 18 32 9 18 61 10 13 - - - 0 16 16			1	1		i		1	1						
5 29 61* 6 12 1 4 5 0				ĺ				1		1					
6 26 61* 7 21 0 4 4 0 8 8 8 7 31 61* 8 24 1 4 5 1 0 12 12 12 9 11 61 10 24 14 18 32 9 18 61 10 13 0 16 16			i	1	i				_						
7 31 61* 8 24 1 4 5 1 0 12 12 12 9 11 61 10 13 0 16 16 16				1			1		-						
8 21 61* 9 14 1 3 4 0 12 12 12 9 11 61 10 24 14 18 32 9 18 61 10 13 0 16 16							1								
9 11 61 10 24 14 18 32 9 18 61 10 13 0 16 16 16			1							_					
9 18 61 10 13 0 16 16 16						1							1		
				1			1.								
						i	l i					II			
						J		33	30	ا د	<i>د</i>	-	Ĭ		
										İ					
						-								İ	
							1	1							
				Ì		ļ	!								
									i						
				ŀ				İ		i	i				
		ĺ						*							
				1			1 1						ľ	i	
	ŀ	1						ł					i	1	i
													1	ì	
	1	- 1					1						-		
	i					- 1	1 1								
						-									
						İ			i			1			
							ĺ			ĺ				į	
	1	ĺ						1							
			1						1			1			
	1													ŀ	
		ľ				1							!		
	1		ĺ												
							i i			j		1		ļ	
												[1		
			1			1		1			ļ				

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

SOUTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

YANKTON, SOUTH DAKOTA

						ALGAE (Jumher	ner ml.)				INE	RT TOM	T			DI	ATO	MS						MICROIN	VERTEBR	ATES		
of s	ATE AMF	- 1		BLUE-	GREEN	GREE		FLAGEL (Pigmo		DIAT	омѕ	DIA SHE (No. p	LLS		DOM! (See	Intro	SPEC luction	for Co	de Idei	rti/icat	ion*)		кортанктон киелтиво т.п.)	M.)	RS liter)	EA liter)	DES liter)	MAL FORK!	r senera roductio tification
HENOM	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER- CENTAGE	SECOND*	PER-	THIRD#	PER.	FOURTH	PER-	OTHER PER- CENTAGE	OTHER RICE PURGIAND : BACTERIA (No. per	PROTOZO (No. per	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per)	poninant senera (See Introduction for Identification)
10 10 11 11 12 12	3 17 7 22 5 19	60 60 60 60 60 61 61	2800 300 900 6500 500		20	50 50		490 20 20	90 50 90	1050 70 780 6100 350 140 20	1270 50 130 310 70 20	200 540 510 20		84	80	2 36	10 10 10	36 65 36 83 82 9	10 * 10	68 26 83 82	* *	40 40 30 10	290 70 400	10	1 6 32 3	1 12 1	1	1	933 9 94- 9
223344556677889	6 20 6	61 61 61 61 61 61 61 61 61 61 61	100 500 800 2000 16100 4800 3900 28100 4200 7500 8600 5300 12100 7700 1200	20	60 180 40 20	230		20 200 470 690 220 1300 1720 650 2970 1800 1620 9990 4200 800	20 20 20 40 20 40 60 20 20	50 70 130 1100 2550 2690 1220 21050 1210 3130 4390 1700 670 1620	200 200 250 440 630 1780 1900 4760 2170 1140 2130 1040 470 1390 160	20 50 820 850 950 540 3540 1070 1990 620 560 1030	20 20 50 30 360 390 1410 890 1040 310 890 160	36 36 82 82 84 80 84 80 47	60 50 70 60 30 60 30 60 30 60 30 60 30 60 30 60 30 60 30 60 80 80 80 80 80 80 80 80 80 80 80 80 80	83 58 58	10 20 10 20 30 20 20 30 10 20	36 71 80 35 9 56 36 80 83	* 10 * 10 10 10 10 10 20 20 20	9 36 45 71 82 45 9 45 83	* 10 * 10 10 10 10 10 10 10		50 40 20 20 20 50		3 58 100 9 8 6 10 474 14	48 40 8 6 3 32 31 1111 3	2 4		 -1-4- 913 92- 3-96- 3196- 31963 31967 -1943 -1927 -19-7

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

SOUTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

YANKTON, SOUTH DAKOTA

DATE OF SAMPLE	1	E	TRACTABL	FS					CHI ODOF	ODU EVED	10710100				
BEGINNING END	1					<u> </u>			NEUTRALS		ACTABLES				
MONTH DAY YEAR MONTH DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 24 60 11 7 11 22 60 12 5 12 20 60 1 3 1 30 61 2 13 2 28 61 3 13 3 28 61 4, 10 4 26 61 5 8 5 22 61 6 5 6 19 61 7 3 6 19 61 7 3 6 19 61 8 14 8 28 61 9 11 9 25 61 10 9 9 25 61 *	4860 3520 5000 13380 4690 4920	156 238 156 159 156 167 129 151 123 138 122 130 130	3 2 3 4 4 2 5 8 2 4 4 7 5 3 2 3 4 4 2 3 5 2 2 3	126 212 122 119 117 139 81 109 98 95 86 98 103 95	112210112	8 7 9 12 11 8 - - 11 - 10	10 10 9 8 11 10 	1 1 1 1 1 1 1 1 1 2 1 2 1 2 2 1 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 7 6 8 7 8 7 7	000011110110	3 2 3 4 4 4 3 4 3	21233132	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 4 8 11 8 5 - - 6 - 7

STATE

SOUTH DAKOTA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATIONMISSOURI RIVER AT

YANKTON, SOUTH DAKOTA

DATE OF SAMP	LE	TEMP.	DISSOLVED		<u> </u>	1,0	CHLORINE	DEMAND									TOTAL	1
MONTH	YEAR	(Degrees Centigrade)	OXYGEN mg/l	Нq	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	mg/i	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/i	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/i	per 100 ml.
	60	16.8	10.6	8.4	.9	_	2.8	4.8	•1	11	148	200	30	20	-	-	-	37
	60	17•4 16•5	10.5	8.3	1.8 2.9	-	2.8 2.3	6•6 5•8	•1	12 12	156 158	220 200	20 15	10 10	_		_	
	60	12.0	11.9	8.3	1.9	_	2.3	4.8	•1	12	158	220	30	10	_		_	32
10 31	60	10.9	10.3	8.4	1.8	-	1.8	4.2	•1	12	168	220	20	25	_		_	_
	60	8.3	11.6	8.2	• 8	-	2.2	3.9	•1	12	170	216	20	10	_	- 1	-	14
	60	6.2	13.2	8 • 4	• 7	-	2.2	4 • 2	•1	12	164	236	30	15		-	-	*10
	60	6.0 9.0	12.8	8.3	•5 •2	-	2.8	3 • 8 3 • 1	•1	12 15	172 168	232 258	20 40	10 50	-	_	-	19
	60	2.5	15.5	8.2	.8	-	3.9	4.2	•1	13	172	264	30	30	_	_	_	9 20
	60	.1	13.1	8.3	• 7	-	1.9	3.0	•1	14	170	244	30	30	_	_	_	4
	60	1.0	13.5	8 • 4	. 4	-	• 9	2 • 4	•1	12	172	224	30	30	-	-	-	1800
	60	. 8	13.3	8.1	• 4	-	• 9	2.6	•1	16	174	244	10	10	-	-	-	***
	61	4.0 .8	13.3	8.1	•7 •9	_	1.2 3.9	3 • 8 5 • 7	•1	13 12	178	232	20	35	-	-	-	_
	61	9	13.6	8.2	. 8	_	1.4	5.3	•2 •1	13	180 176	236 232	10 20	10 10	-	_	_	20 *17
	61	2.0	14.5	8.2	.8	_	•6	1.6	.1	13	176	224	5	0	_	_	_	13
1 30	61	3.0	13.8	8.1	•7	-	2 • 2	3 • 4	• 2	18	166	228	20	20	_	-	-	2
	61	3.0	12.7	7.9	• 9	-	1.1	3.0	• 2	13	168	224	20	10	-	-	-	12
	61	. 5	15.5	8.2	1.0	-	• 8	2 • 1	•1	12	178	266	15	10	-	-		6
1- 1	61	1.0	14.5	8.2	•9 •3	-	•5	3•2 2•9	•2 •2	25 25	176	232 210	10 20	10	_	-	-	3
	61	3.0	12.7	8.1	1.1	_	1.1	4.4	•2	19	168 154	200	40	10 10	-		_	*1 38
	61	4.8	13.2	8.1	1.8	-	8	4.0	.2	20	154	200	30	30	_	_	_	-
	61	3.1	15.4	8.1	2.3	- 1	1.2	3.8	•2	16	154	212	20	10	_	_	-	14
	61	4.0	15.4	8.2	1.6	-	• 4	2.2	•2	20	160	182	30	10	-	•1		6
1 - 1	61	7.0	15.7	8.3	•2	~	• 4	4 • 8	•2	18	148	204	20	10	-	•1	-	-
	61	6 • 2 4 • 5	16.2	8.3	•7	-	1.8	2 • 9	•2	20 18	170	216	30	25	-	•1	-	. 2
	61	8.9	12.9	8.2	1.1		1.0	3.3	.2	19	174 168	256 232	40· 40	60 30	_	•1	-	7
	61	9.3	12.5	8.4	1.8	-	• 4	2.8	.2	23	170	232	40	35	_	.1	_	13
	61	10.4	13.5	8.2	4.9	-	• 5	3.3	•2	20	158	264	40	20	-	•1	_	-
	61	13.8	12.6	8.3	4.5	~	• 9	3 • 4	•1	20	176	236	30	50	-	• 1	-	_
1 - 1	61	13.8	14.1	8 • 2	1.8	-	• 9	3 • 6	•2	20	166	234	40	20	-	• 1	-	-
	61	16.0	15.3	8.3	3.7 2.8	_	1.3	3.5	•1	22 25	164	240 230	40 20	30	-	•1	-	-
	61	21.8	9.0	8.2	.8	_	•7	3.9	• 2	17	160 152	228	30	20 20	-	•0	_	51 150
	61	20.4	9.5	8.2	8.4	_	1.5	6.0	• 2	15	150	220	30	20	_	.1	_	70
7 ,3	61	24.0	9.0	8.2	1.2	-	2.0	5.8	.2	18	156	226	20	20		1	_	49
	ᆚ																	

STATE

SOUTH DAKUTA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATIONMISSOURI RIVER AT

YANKTON, SOUTH DAKOTA

DATI OF SAM		TEMP.	DISSOLVED				CHLORINE	DEMAND										
MONTH	YEAR	(Degrees Centigrade)	OXYGEN	рH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale unifs)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
8 21 8 28 9 4 9 5	61 61 61 61 61 61 61	22.8 22.8 23.9 25.0 24.8 23.5 24.2 21.4 21.8 16.0	8.5298.050889.89.89.89.10.17	8.12.13.2.13.2.2	9 1.2 1.0 2.1 3.6 8 2.3 1.0 1.2 1.0 9 1.0		1.8 1.0 .8 1.5 1.4 1.4 1.6 .9	5.8 5.2 5.4 4.8 4.1 4.1 3.8 2.6	.2 .2 .2 .1 .1 .2 .2 .2 .2	18 19 19 20 22 20 18 19 16	144 162 160 158 156 152 152 152 154 158	224 232 214 222 2248 224 234 234 238	40 20 20 40 20 30 30 40 30 - 20 20	30 20 20 20 20 20 20 30 20 20 30 20		.1 .1 .1 .1 .1 .1 .1		120 30 960 -18 280 4 24

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Yankton, South Dakota Operated by U.S. Geological Survey

STATE

South Dakota

MAJOR BASIN

Missouri River

MINOR BASIN

Lower Missouri River

STATION LOCATION

Missouri River at

Yankton, South Dakota

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2	28.100 27.700	27.800 28.000	8.420 8.100	8.800 8.730	10.000	6.740 6.520	15.000 17.700	25.400 24.900	19.500 20.300 21.000	29.800 28.900 28.600	26.400 28.900	29.000 28.900
3 4 5	27.800 27.600 27.400	27.600 27.100 27.400	8.380 8.660 8.760	8.730 8.730 8.660	8.000 8.960 8.660	6.600 6.460 7.220	19.900 22.000 21.200	23.000 23.000 22.000	21.800 21.800 19.600	28.000 28.000 28.500	27.700 25.100 26.000	29.500 29.500 28.900
6 7 8 9	27.400 27.300 27.800 28.100	27.600 28.100 27.600 26.300	8.420 8.730 9.160 9.920	8.560 8.620 8.700 8.800	8.620 8.520 8.310 7.360	8.730 9.360 8.760 7.580	22.500 23.000 21.700 20.500	21.800 22.300 22.700 22.200	21.000 21.500 21.000 22.200	29.200 28.300 28.400 28.400	27.200 27.600 28.700 26.100	28.700 29.800 30.000 29.700
10 11 12 13 14	28.800 28.300 27.400 27.600 27.900	27.100 27.100 27.000 27.000 26.600	9.640 9.400 9.760 8.920 8.450	8.730 8.920 9.040 8.960 9.000	6.180 6.320 7.020 7.470 7.260	6.880 6.980 7.080 7.080 7.160	20.600 22.700 23.000 23.400 22.800	23.000 21.800 21.300 23.200 25.000	23.100 23.800 24.900 21.800 16.200	29.200 29.100 27.500 28.400 30.200	23.000 25.800 27.700 28.700 29.600	29.400 28.600 28.100 28.600 28.900
15 16 17 18 19	27.400 27.100 26.900 26.500 26.700	23.900 21.400 18.500 15.800 13.000	8.660 9.640 9.640 9.680 10.700	8.880 9.120 9.280 9.520 9.500	7.440 7.440 7.050 7.750 8.100	7.190 6.880 6.740 7.330 7.800 11.400	21.700 22.200 22.900 23.800 24.000 24.900	22.300 20.900 19.500 19.500 21.400	15.800 19.100 21.500 24.500 27.300	30.200 30.200 30.700 30.200 28.600	29.200 28.600 27.900 27.700 27.100	27.700 28.300 28.200 27.600 28.200
20 21 22 23 24 25	26.900 27.400 27.300 26.900 27.100 27.600	9.640 9.680 9.080 8.800 8.700 8.620	10.600 10.700 10.200 9.480 9.120 8.700	9.500 9.500 9.500 9.500 9.500 9.500	8.140 9.160 10.600 9.600 8.960 9.080	13.800 15.200 17.100 15.600 14.200	25.800 25.000 23.900 22.700 24.400	23.100 25.800 25.200 20.200 17.800 20.600	23.800 20.300 23.000 28.200 28.100 28.000	28.900 29.200 29.600 29.300 28.800 28.500	27.500 27.000 25.100 26.200 27.000 27.400	27.400 27.300 27.700 24.900 23.800 22.000
26 27 28 29 30 31	28.600 28.100 27.600 27.600 27.400 27.700	8.960 9.080 9.760 8.960 8.730	9.040 9.560 9.800 9.520 9.120 8.960	10.000 10.000 10.000 10.000 10.000	8.960 9.120 8.280	14.300 12.500 9.160 7.470 10.200 13.000	27.800 27.700 28.900 27.200 26.200	23.800 23.100 22.300 21.800 21.500 20.600	27.800 25.000 23.200 29.700 29.100	27.500 26.900 28.200 28.600 29.300 29.200	28.500 28.600 29.400 29.800 30.100 29.500	24.000 25.000 27.900 31.200 30.700

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MISSOURI-SOURIS RIVERS

STATION LOCATION MISSOURI RIVER AT

BISMARCK, NORTH DAKOTA

DATE			RADI	DACTIVITY IN V	WATER			Γ	RADIOA	CTIVITY IN PLA	NKTON (dry)		PAI	DIOACTIVITY IN W	ATER
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA		1			CTIVITY	i		GROSS ACTIVIT	
TAKEN		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	1	DATE OF DETERMI- NATION	ALPHA	BETA	1	SUSPENDED		TOTAL
O. DAY YEAR	MONTH DAY	μμc/I	μμε/1	μμc/l	μμc/1	μμε/1	μμc/l	<u> </u>	MO. DAY	µµс/g	##c/g	<u> </u>	##c/l	μμε/I	##c/l
	3 17 4 24 5 3 6 12 7 12 8 30														

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

MISSOURI-SOURIS RIVERS

STATION LOCATION MISSOURI RIVER AT

BISMARCK, NORTH DAKOTA

	. T				ALGAE (N	lumber	per ml.)				INE	RT				D	ATO	 мs						MICROIN	VERTEBR	ATES		
DATE OF SAME	- 1		BLUE-	GREEN	GREE	N	FLAGEL (Pigme		DIAT	oms	SHE (No. p	LLS		DOMI (See	NANT Introd	SPEC luction	jor Co	de Ide	RCEN ntificat	TAGES ion*)	,	I MICROPLANKTON, AND SHEATHED RIA Per 771.)	A ml.)	s liter)	EA liter)	ES liter)	AL FORMS ter)	GENERA oduction ification
MONTH	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST*	PER- CENTAGE	SECOND*	PER. CENTAGE	THIRD#	PER. CENTAGE	FOURTH*	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICH FUNGI AND S RACTERIA (No. per	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per liter)	DOMINANT GENERA (See Introduction for Identification)
11 9 11 23 12 5 2 8 8 23	600 600 601 661 661 661 661 661 661 661	100 300 400 300 100 500 400 200 200 300 200 200 200	20		70 20 20 20 70 60 20 20	20	20 40 40 80 200 200 40	40	70 70 110 90 270 20 600 80 20 20 20	2000 1600 2000 2000 1500 1500 1500 1500	20 20 250	90 310 70 90 70 40 310 60 390 20	888 999999666	30 40 50 10 60 20 70 50 20 40	80 84 35 82 82 45 84 15 80	10 10 20 * 20 10 10 10 20 * 10 20	83 956 65 35 36 51 36 92 92 9	10 10 * * 10 10 * 10 * 10 10	36 83 86 35 186 36 36 45 47 47 55	10 10 10 *	60000 60000 60000 60000 60000 60000 60000 60000 60000	20 70 40 160 50		1 14 56 10 7 1 3	1 2 1 2 35 53 20 42 9 13			

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

MISSOURI-SOURIS RIVERS

STATION LOCATION MISSOURI RIVER AT

BISMARCK, NORTH DAKOTA

DATE OF SAMPLE		E>	TRACTABL	.ES						ORM EXTRA	ACTABLES				
BEGINNING END									NEUTRALS	·					
DAY YEAR MONTH	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	Loss
11 8 60 12 1 12 17 60 1 9 1 28 61 2 20 3 6 61 3 29 4 20 61 5 14 6 8 61 6 30 7 20 61 8 12 8 30 61 9 22	2242 2242 2317 2242 2167 2242 2242 2243	187 238 219 339 176 237 248 169	22 24 34 79 41 57 73 34	165 214 185 260 135 180 175 135	1 1 4 0 2 3 1	5 4 9 24 13 20 9	8 11 10 17 13 18 18 12	1 2 1 2 3 6 4 3	1 1 1 2 2 1 1	6 8 12 8 10 12 8	00020010	2 2 4 7 5 6 7 4	4	1 1 1 2 1 1 1 1 1 1 1 1	4 4 7 17 6 8 18 5

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

MISSOURI SOURIS RIVERS

STATION LOCATIONMISSOURI RIVER AT

BISMARCK, NORTH DAKOTA

DATE						CHLORINE	DEMAND										
M DAY MANTH	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/I	Не	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/i	COLIFORMS per 100 mL
10 4 60 10 5 60	14.4	9.3	8 • 4	•7	7	_	_	• 1	10	150	208	15 -	23	158	•2	395	67
10 5 60	14•+	7.3	8.4	-	-	_	_	•3		148	210	6	30	120	- 1	292	71
10 13 60	13.0	9.5	-	-	-	•1	-	-	11	-	_	_	_	155	•2	395	-
10 19 60	7.3	10.7	-	1.3	7	• 1	_	-	9	-			-	153	•2	384	110
10 26 60	10.3	10.5	o -	1.2 2.3	6 7	.0 1.0	•2		7	150	202	-	-	168	•1	. 392	260
11 2 60 11 9 60	9.9 2.7	12.5	8•4 8•5	2.5	5	1.4	_	•2	6	156 156	202 212	5 -	30 27	168 225	•0 •1	389 396	. *4 84
11 16 60	2.1	_	8.5	_	_		-	•2	_	154	208	0	62	225	• _	270	-
11 23 60	-	-	8 • 4	-	-	-	-	•2	_	152	208	3	64	·_	-	-	-
11 30 60	-	-	8.4	-	-	-	-	•4	_	154	206	5	53	-	-		110
12 7 60		-	8 • 2	-	-	-	-	•2	-	154	208	3	46			-	10
12 14 60 12 18 60	3.1	_	8 • 4 8 • 4	_	-	_	_	•3 •2	-	152 152	202 200	15 0	65	-	-	-	4
12 21 60	-	_ [8.4	_	_	_	_	•4	_	152	210	8	27 37		_	_	- 56
12 22 60	• 9	13.4	-	5.5	- 9	• 9	_	_	8	*/-	-	_		167	.1	400	-
1 4 61	. 8	13.1	8 • 4	• 8	11	1.1	2 • 9	•2	8	154	208	3	20	150	.1	400	330
1 9 61	-	-	8.3	-	-	-	-	•1	-	154	208	4	30	-	_	-	_
1 10 61	-		-	-	-		-	-	_	-	-	-	-	-	-	-	88
1 11 61 1 18 61	.8	12.8	_	• 8 -	9	1.2	_	-	8	-	-	-	-	150	•1	417	
1 18 61 1 19 61	.8	12.9	-1	•7	13	1.3	2.5	-	- 8	-	_	_	_	148	-	4.04	31
1 24 61	-	-	8.3	-	-	-		•2	-	152	206	3	8	146	•1	406	2
1 26 61	.8	13.3	-	1.1	15	1.3	3.0	12	7			_	_	205	.0	417	
2 1 61	•7	12.8	-	•7	-	1.0	2 • 4	-	7		-	-		210	•0	395	22
2 7 61 2 8 61 2 15 61	-	-	8.5	-	-	-	- [• 2	-	156	206	15	20	-	-	-	-
2 8 61 2 15 61	.8	12.5	8.3	- •5	8	, -		•2	_	156	208	3	18	-	-	-	130
2 21 61	• •	14.5	0.5	• 5		1.2	2 • 4	• 4	7	154	206	7	10	204	•0	406	-
2 28 61	_	_	8.4		_	_	_	•2	-	156	210	25	20	_		-	180 84
3 1 61	. 9	12.3	- 1	•7	10	1.1	_		9	170	-		20	165	.0	411	-
3 6 61	-	-	-1	-	-	-	-	_	_	-	-	-		-	-	TA.	76
3 9 61	.8	12.3		• 9	12	1 • 4	2 • 8	-	5	-	-	-	-	_	•0	411	_
3 14 61 3 16 61	- •9	12.2	8.4	-	-	, -	~	•3	-	158	208	5	40	_	-	-	42
3 21 61	• 9	14.4	8.3	_	9	1.1	_	•2	7	160	210	110	- 25	200	•0	406	_
3 29 61	2.2	12.7	8.5	• 6	16	1.2	3.0	.1	9	160 164	218 224	110 15	35 55	178	_ [420	72
4 5 61	-	-	8.4	-	_		-	.2	_	160	220	15	37	1/8	•0	429 _	37 180
4 6 61	2.3	12.7	-	1.2	20	1.2	2.5		9	-	-			173	.0	429	100
						l			010		****						

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

MISSOURI SOURIS RIVERS

STATION LOCATIONMISSOURI RIVER AT

BISMARCK, NORTH DAKOTA

DATE OF SAM		TEMP.	DISSOLVED				CHLORINE	DEMAND										
MONTH	YEAR	(Degrees Centigrade)	OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
4 12 4 18	61 61	4.0	12.3	8.3 8.2	• 9	19	1.2	2•4	2	7	162 160	222 216	5	35	170	•0	433	25
4 19	61	6.6	11.6	-	• 9	19	_	_	• 2	7	160	210	22	50 -	175	- •0	429	43
4 25	61			3•2	_	-	_	-	• 2	_	156	216	3	40		-	727	8
5 3 9	61 61	6•2 -	11.7	8.3	_	15	1.1	2•5	_	7		-	-		178	•0	423	71
5 16	61	_	_	8.3	_		_	_	•3	_	156 134	214 218	12 15	40 30	-	-	-	220
5 17	61	8.9	11.4	-	• 9	20	1.2	2.9	· · · · · · · · · · · · · · · · · · ·	7	134	210	15	3U	173	•0	429	80
5 23	61	-	-	8.1	_	-	-	-	• 5	· -	156	216	15	30	- 1/5	•	727	230
5 24	61	11.5	10.4		-	12		-	-	7		-	-		175	•0	423	_
5 31 6 1	61	13.5	10.1	8.3	- • 5	13	_	-	• 3		158	218	18	30	_	-	-	*1
6 7	61	14.9	9.7	8.2	• ×	12	1.2	3.8	•1	6 7	160	208	- 15	- 28	178 179	•0	449	100
6 13	61	_	1 1	8.0	-			-	• 4	-	160	210	3	40	179	• 0	417 -	190 *1
6 19	61	-	-	-	-	-	_	-	-	_	-		_			_	_	140
6 20	61	-	_ =1	8.1	-	-	-	-	• 1	-	160	212	2	35	-	-	-	
6 21 6 28	61	14.8	9.7		• -	14	- [-		7			-		178	•0	442	-
7 5	61	_	_	8.1	_		_	_	•3 •3	_	162 162	214 206	5 0	30 30	-	-		820
7 11	61	-	_	8.1	_	_	_	_	•1	_	162	212	3	30	_	-	_	*1 20
7 13	61	17.1	9.0	-	• 9	15	1.5	-	-	7			_		170	.0	452	-
7 18	61	-	-	8.1	-	-	-	-	•1	-	164	218	2	35	-	-	_	50
7 25 7 26	61 61	18.6	8.6	8.1	-	7.6			• 3	-	164	212	2	40	-	-	-	20
8 1	61	10.0	- 0	8.1	- 8	14	1.2	3•2	•3	8 -	160	214	3-	27	166	•1	424	-
8 2	61	18.3	8.6	-	-	13	1.3	3.1	• -	10	160	214	-	21	173	•0	507	100
8 7	61	-	-1	8 • 4	_	-	-		•0	_	48	106	o	o	- 10		-	_
8 8	61	-	-	8.1	-	-	-	-	. 4		162	214	2	25	-	-	-	130
8 15 8 18	61 61	17.8	8.6	8.1		-	-	-	• 2	_	164	216	7	35	-	-	-	120
8 22	61	1/.0	0.0	8.1	_	16	-	-	-	8 .	1.66	216	1 7		167	•0	452	-
	61	_	-	8.0	_	_	_	-1	• 1 • 2	_	166 160	220	12 5	30 30	_	_	_	100 *1
9 5	61	_		8.0	-	_	-	-	.3	-	160	220	5	25	_	-	_	4
9 8	61	16.6	8.7	-	-	14	-	-	-	5	-	-	-	-	180	•0	487	_
9 11 9 19	61	-	-	8.1	-	-	-	~	•1	-	162	220	8	40		-	-	120
	61		_	_	_	-	_	-	-	-	_	-	_		_		-	*4
	61	12.3	9.8	_	1.0	13	1.2	2.5	_	8	-	_		-	195	- 0	- 541	30
-										· ·			_	_	190	• •	247	_
						l							- 4					

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Bismarck, North Dakota Operated by U.S. Geological Survey STATE

North Dakota

MAJOR BASIN

Missouri River

MINOR BASIN

Missouri-Souris Rivers

STATION LOCATION

Missouri River at

Bismarck, North Dakota

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	12.200	11.100	11.700	16.400	20.600	20.300	23.500	20.200	14.900	11.300	16.300	13.600
2	12.300	11.000	15.400	17.200	20.800	20.800	23.800	20.000	16.800	12.100	18.700	12.900
3	11.400	11.000	16.500	19.000	20.600	21.100	21.800	21.000	16.900	12.100	19.200	11.500
4	10.800	10.500	18.300	21.000	20.800	21.400	20.600	21.300	16.400	12.100	19.200	10.900
5	11.400	10.600	18.100	21.600	21.000	21.900	20.600	21.400	15.500	12.100	20.200	11.000
6	11.100	10.400	15.000	21.600	21.600	22.100	20.500	21.800	14.900	11.700	19.300	10.500
7	10.900	10.500	11.700	21.600	21.700	21.900	20.600	21.500	16.000	11.000	17.600	10.300
8	10.300	10.900	15.300	21.400	21.200	21.800	20.600	20.300	15.500	11.400	17.400	10.200
9	10.300	10.200	16.500	21.200	20.800	22.300	20.500	20.300	14.800	11.500	16.200	9.820
10	10.200	10.400	15.600	21.300	21.100	22.600	20.200	21.200	14.400	10.900	14.800	10.200
11	10.100	10.500	15.800	21.600	20.800	23.000	20.000	21.200	13.900	11.000	15.800	9.550
12	9.880	10.300	15.000	21.600	20.300	22.700	20.800	21.000	13.300	11.600	16.500	9.550
13	9.700	10.300	14.700	21.600	20.500	23.100	21.200	20.600	11.900	13.300	15.300	9.910
14	8.850	10.300	16.600	21.600	19.600	23.200	21.400	20.700	11.200	13.500	13.800	10.200
15	9.370	10.300	16.400	21.800	20.100	23.300	20.700	20.100	12.700	13.300	14.900	9.520
16	9.080	10.200	13.700	21.900	20.100	23.000	20.500	19.900	19.300	13.600	16.300	9.460
17	9.200	10.400	13.100	21.300	20.200	22.300	19.500	20.900	21.100	13.000	16.700	9.020
18	8.940	11.200	14.300	21.400	19.300	21.000	19.600	21.100	21.100	13.300	18.200	8.830
19	8.830	13.400	14.700	21.200	20.100	20.800	20.800	21.000	20.300	13.200	17.400	8.880
20	9.400	14.700	13.600	20.800	19.200	19.600	21.000	20.200	17.700	13.000	14.700	8.830
21	8.970	15.200	12.700	19.800	18.500	19.300	20.700	19.800	12.800	13.600	12.800	8.370
22	9.340	14.900	12.300	19.100	18.500	18.000	20.600	17.200	11.300	14.600	13.200	7.900
23	9.050	15.300	12.700	20.000	18.500	16.900	20.900	16.700	11.000	15.200	15.400	7.960
2 ¹ ₄	8.830	15.800	14.200	19.800	. 18.500	16.700	20.600	19.100	10.900	13.900	16.200	7.930
25	8.940	15.700	16.200	19.600	18.500	16.600	19.200	18.800	10.800	14.700	17.000	7.780
26 27 28 29 30 31	8.720 9.050 10.200 10.800 11.000	15.400 15.600 15.900 15.800 12.000	16.900 16.200 16.000 16.300 16.600 16.500	19.900 20.400 20.700 20.800 21.200 20.800	20.300 19.900 19.300	16.400 16.300 18.800 22.100 24.300 23.800	20.500 20.800 20.800 20.700 20.800	18.300 16.500 15.400 14.800 13.400 13.700	10.700 11.200 10.800 11.100 11.200	15.700 18.100 18.800 19.000 20.200 17.700	17.400 18.800 18.800 17.000 14.700 14.400	7.660 7.380 7.240 7.020 7.160

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MISSOURI-SOURIS RIVERS

STATION LOCATION MISSOURI RIVER AT

WILLISTON, NORTH DAKOTA

34

DATE	T		RADI	OACTIVITY IN V	WATER			T	RADIO	CTIVITY IN PLAT	IKTON (dry)		RAI	DIOACTIVITY IN V	/ATER
SAMPLE	DATE OF DETERMI-		ALPHA		1	BETA		1			CTIVITY			GROSS ACTIVIT	
TAKEN	DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	1	DATE OF DETERMI- NATION	ALPHA	BETA]	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	MONTH DAY	μμε/Ι	μμε/Ι	μμε/	μμε/Ι	μμς/Ι	μμc/l	<u> </u>	MO. DAY	μμc/g	μμc/g		μμc/l	μμε/Ι	μμς/Ι
10 24 60* 11 28 60* 12 26 60* 1 31 21 61* 2 28 61* 3 27 61* 4 24 61* 5 29 61* 7 31 61* 9 4 61 9 11 61 9 18 61 9 24 61	11 2 12 9 1 11 2 13 3 17 4 7 5 5 6 8 7 14 8 24	3 1 0 0 1/2 2 5 1 3 5 1 3 7	95865356343113	12 6 8 6 6 5 7 11 16 9 4 - - 40	0 0 0 0 1 1 1 1 1 1 1 1 1 2 1 2 1 2 7	7 2 0 5 1 2 2 2 2 4 2 5 2 2 2 4 2 5	7 2 0 5 2 1 0 66 23 9 26 10 49 46 152								

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON .

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

MISSOURI-SOURIS RIVERS

STATION LOCATION MISSOURI RIVER AT

WILLISTON, NORTH DAKOTA

						ALGAE (A	Tumber	per ml.)				INE	RT				Di	ATOI	vis				i.		MICROIN	VERTEBR	ATES	I	
DA OF SA	ATE AMF	1		BLUE-	GREEN	GREE		FLAGEL (Pigme		DIAT	OMS	DIA SHE (No. p	LLS		DOMI (See	Intro	SPEC	for Co	ID PE	RCEN' ntificat	rages ion*)		ROPLANKTON SHEATHED · ml.)	ml.)	ts liter)	EA liter)	DES liter)	(AL FORM)	r genera roductio iffication
HTNOM	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER-	SECOND*	PER-	THIRD#	PER- CENTAGE	FOURTH	PER-	OTHER PER- CENTAGE	OTHER MICH FUNGI AND BACTERIA (No. per	PROTOZO/ (No. per	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORMS (No. per liter)	DOMINANT GENERA (See Introduction for Identification)
11 11 12 11 12 11 12 11 12 12 12 12 12 1	7 2 0 6	60 60 60 60 60 60 61 61 61 61 61 61 61 61 61	700 1300 700 200 400 200 100 300 800 1900 3500 1900 2700 3400 3700 2400	20	20 20 20	20 80 170 340 170 380 250 440 160		20 50 50 90 200 210 600 400 250 170 160 20	20 20 20	180 70 160 400 50 90 240 130 500 1450 870 70 290 810 1340 1740 640 220 50	380 1120 540 290 180 270 270 620 1400 810 830 1850 740 1120 2420 1830 420	50 20 90 110 40 170 670 60 250 250 120 100	200 760 270 110 200 200 470 270 480 1070 480 1360 270 920 80 270 920 890	92 92 9	40 40 70 50 40 60 40 60 30 30 10 30 30 10 30 30 10 30 30 30 30 30 30 30 30 30 3	9 399 99 3978 391968347	10 30 10 10 20 20 10 20 10 20 10 10 10 10 10 10 10	36 9 80 36 82 36 85 92	1000 * * 1000 100 100 100 100 100 100 10	363366 265322955233336720 8683324498	* 10 10 10 10 10 10 10 10 10	40 20 10 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40	20 20 20 20 20	10	2	5	1 2		9 37- 3 3 3 3 3 317697- 4197- 7-953 4-743 -89-6 4194-7-9639736-

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

MISSOURI-SOURIS RIVERS

STATION LOCATION MISSOURI RIVER AT

WILLISTON, NORTH DAKOTA

				-	TRACTABL						CHLOROE	ORM EXTR	CTABLES				
DATE OF S		END		E/	IRACIABL	.E5		1			NEUTRALS		TOTABLES				
DAY YEAR	1_	1	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	Loss
10 6 60 11 1 60 11 29 60 12 28 60 1 27 61 3 7 61 4 11 61 5 28 61 8 28 61 8 31 61 9 29 61	111 121 122 131 146 167 189	16 24 24 5	5025 5025 5025 5025 5025 5025 5025 5025	109 70 97 128 112 95 113 106 89 79 98 100	27 127 324 10 39 27 224 15	82 88 89 88 77 65 88 88 88 88 88 88 88 88 88 88 88 88 88	110100212100	8 2 5 1 7 2 1 8 7 8 4 4 4	8560941198766	1111212111	0111100111000	734763865555	000110010000	3123331333222	401211322211	1011101100	232832833332

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NORTH DAKUTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

MISSOURI SOURIS RIVERS

STATION LOCATIONMISSOURI RIVER AT

WILLISTON, NORTH DAKOTA

DAT							CHLORINE	DEMAND									70711	
OF SA YAG	Τ	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/I	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES .	ALKALINITY mg/I	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/I	COLIFORMS per 100 ml.
10 1			-	8.3		_	1	1		-	174 148	248 250	0	150 115	_	-	_	_
10 10			_	8.4	-	_	_	_	-	_	150	256	-	125	_	_	_	_
10 24	60		_	_	_	_	-	-	_	_	172	242	-	400	-	-	-	-
10 3	. 60		_	-	-	-	-	-	-	-	162	252	-	95	-	-	-	-
11			-	-	-	-	-	-	-	-	156	246	0	10	-	_	_	-
11 14 11 21	60		_	_	_	_	1	_	-	_	172 160	270 250	- 0	5	_	_	_	_
11 28] [_	_	_	-	_	_	_	170	262	ő	ő	_	_	_	_
12 5	6 60		_	8.2	_	-	_	_	-	-	170	274	_	_	_	-	-	-
12 12	: 60		' -	8 • 2	-	-	-	-	-	-	170	266	-	-	-	-	-	-
12 19			-	8 • 2	-	-	-	-	-	-	170	256	_	_	_		_	_
12 26				8•3 8•2	_	_	-	-	_	-	178 166	276 262	_	· _	_	-	_	_
1 1 10			-	8.1	_	_	_	_	_	_	162	240	_	_	_	_	_	
1 17	61		_	8.1	_	-	_	_	-	_	160	240	_	-		-	_	-
1 24	- 61	1.0	-	8.2		-	-	-	-	-	162	268	_	20	-	-	-	-
1 3			- 1	8.2	_	-	-	-	-	-	172	260	0	25	-	_	-	-
2 7			-	8 • 2		_	-	-	-	-	172 160	250 250	0 5	25 40	_	_	_	_
2 14			-	8.1 8.1	_	_	_		_	_	160	240	3	31	_	_	_	_
2 28			_	8.2	_	_	_	_	_	_	165	230	5	92	_	-	_	_
3 6			-	8.2	_	-	_	-	-	-	168	230	-	84	_	_	-	_
3 14	161		-	8.2	-	-	_	-	-	_	160	234	-	80	_	-	-	-
3 21	61		-	8 • 1	-	-	-	-	-	-	134	204	12	300	_	-	_	210
3 27			_	8.1	_	-	-	_	_	_	144	236	10	210	_	-	_	210 29
4 4			_	8.3	_	_	_	_	_	_	170	252	_	150	_	_	-	
4 10			_	_	_	_	-	_	_	_			_	-	_	_	-	25
4 11	61	5.0	-	8.3	_	-	-	-	_	_	166	234	-	90	-	_	-	_
4 18	61		-	8.3		-	-	-	-	-	182	242	5	125	-	-	-	13
4 25	61		-	₫•3	_	-	-	_	-	-	176	230	0	125	_	_	_	130
5 1 5 2			_	8.3	_	_	_	_	_	_	174	238	_	300	_		_	130
5 8			_	-	_		_	-1	_	_	1,4	- 236	_	500	_	_		60
5 9	61		-	8.3	_	-	-	-	_	_	162	250	5	90	-	-	-	-
5 15	6 61	. -	-	-	-	-	-	-	-	_	-	_	_	-	-	-	-	180
5 16			-	8.2	-	-	-	-	-	-	162	220	-	92	-	-	-	
5 23			-	8.3	-	-	-	-	-	-	162	240	5	200	-	_	-	7500
5 29	61	18.0		8.2							158	230		1000	_	_	<u> </u>	

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

MISSOURI SOURIS RIVERS

STATION LOCATION ISSOURI RIVER AT

WILLISTON, NORTH DAKOTA

21.

DATE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	DEMAND										
DAY YEAR	(Degrees Centigrade)	OXYGEN mg/l	Ηq	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	22.0 25.0 26.0 21.0 24.0 23.0 23.0 26.0 24.0 25.0 22.0 16.0 14.0	111111	003 133 3 3 4 4 3 1 1 4 4 3 4 5 6 6 6 6 6 6 6 6 6							118 70 120 120 128 140 150 166 160 166 160	134 120 144 156 174 196 212 224 216 222 234 226 228 234 248 234 248 234 248 234 248 232		900 500 850 100 750 180 250 400 350 100 190 150 195 650 2000		-		630 130 - 130 *100 - *100 - 130 - 120 - 260

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station near Williston, North Dakota Operated by U.S. Geological Survey STATE

North Dakota

MAJOR BASIN

Missouri River

MINOR BASIN

Missouri-Souris Rivers

STATION LOCATION

Missouri River at

Williston, North Dakota

Day	October	November	December	January	February	March	April	May	June	July	August	September	_
1	12.800	12.500	10.000	12.400	9.770	12.400	12.500	11.000	33.400	22.400	14.200	8.600	-
2	12.500	12.600	9.000	12.700	10.000	12.300	12.400	11.000	35.100	20.200	13.400	8.710	
3	12.300	12.700	10.000	12.700	10.000	12.400	12.300	10.800	36.000	22.800	11.000	9.210	
4	12.300	12.700	10.000	12.600	10.000	12.500	12.300	10.700	33.900	22.500	10.400	9.520	
5	12.300	12.800	10.000	12.100	10.100	12.600	12.300	10.700	31.400	21.500	9.960	9.990	
6 7 8 9	12.100 12.000 11.800 11.600 11.400	12.800 12.900 13.100 13.300 13.600	11.000 10.000 10.000 10.000	11.500 11.400 12.100 12.500 12.600	10.200 10.600 11.600 12.100 12.300	12.600 12.800 13.000 12.800 12.800	12.200 12.100 11.900 11.800 11.700	10.600 10.400 10.100 9.880 9.990	31.400 31.700 32.800 34.600 34.400	20.800 20.200 19.700 19.400 18.800	9.600 9.330 9.090 8.780 8.440	11.400 11.700 11.700 12.900 14.000	
11	10.800	13.600	10.000	12.300	12.200	13.000	11.600	10.000	33.600	19.200	8.400	13.200	
12	11.000	13.600	10.000	11.700	12.000	13.200	11.700	10.000	34.400	20.000	8.520	13.500	
13	11.500	13.400	10.000	12.100	11.800	13.400	11.700	10.000	36.200	21.300	8.460	16.300	
14	11.700	13.200	9.000	13.100	11.700	13.800	11.400	10.000	37.900	19.800	8.500	19.300	
15	12.400	13.100	9.000	13.500	11.600	14.200	11.200	9.910	37.500	18.000	8.690	19.200	
16	13,900	13.200	9.000	13.500	11.500	15.000	11.000	9.570	35.500	16.700	9.180	20.400	
17	14,300	13.400	9.000	13.400	11.500	15.100	10.900	9.350	32.900	16.100	9.570	20.200	
18	13,700	13.500	9.000	13.200	11.400	15.500	10.700	9.180	30.900	16.000	9.570	19.000	
19	13,200	13.300	9.000	13.200	11.300	17.000	10.300	9.490	29.200	15.900	9.300	18.200	
20	13,000	13.100	9.000	12.900	10.900	17.800	10.400	10.300	28.000	15.600	8.180	19.000	
21	13.000	12.900	9.000	12.100	10.500	18.000	10.600	11.600	27.700	15.300	8.420	20.600	
22	13.300	13.000	9.000	11.700	10.800	18.600	10.700	13.400	27.300	14.800	8.780	21.000	
23	13.100	12.400	9.000	10.700	11.300	21.600	10.800	13.800	26.900	14.300	8.800	26.200	
24	12.900	13.800	8.000	9.500	11.800	16.200	10.500	13.400	26.400	14.200	8.710	28.600	
25	12.900	12.500	7.000	8.730	12.400	13.800	10.300	13.800	25.600	14.100	8.670	27.000	
26 27 28 29 30 31	12.900 12.700 12.700 12.500 12.300 12.300	12.700 12.700 12.500 11.000 12.000	7.000 6.500 8.000 9.000 10.000 11.000	8.850 8.820 8.220 8.110 8.570 9.140	12.700 12.100 12.300	13.100 13.100 12.900 12.700 12.700	10.500 10.200 9.800 10.300 11.100	14.400 15.500 18.900 23.500 27.100 30.200	24.500 23.200 21.800 20.700 19.200	14.000 14.200 14.400 14.200 12.200 11.400	8.620 8.600 8.380 8.340 8.820 8.690	24.900 24.200 25.000 25.000 25.000	

STATE

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MONONGAHELA RIVER

STATION LOCATION MONONGAHELA RIVER AT

PITTSBURGH, PENNSYLVANIA

	1		2421	OA CENOTY IN M	/A750			 PARIOA	CTIVITY IN PLAN	KTON (day)	RAD	DACTIVITY IN W	ATER
	DATE OF	Ι		OACHVIII IN V	AIEK	RETA		DATE OF				GROSS ACTIVIT	
TAKEN	DETERMI-	SUSPENDED		TOTAL	SUSPENDED		TOTAL	DETERMI-	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR							μμε/Ι	MO. DAY	µµс/g	μμс/g	μμς/Ι	μμc/I	μμε/Ι
DATE SAMPLE TAKEN MO. DAY YEAR 6 20 61 6 27 61 7 15 61 7 17 61 8 8 61 8 15 61 8 22 61 8 29 61 9 12 61 9 19 61 9 12 61 9 12 61	DATE OF DETERMINATION MONTH DAY 7 28 7 27 8 4 8 10 8 7 8 8 8 9 1 9 12 9 25 9 27 10 5 10 10 10 10 10 10 10 10 10 10 10 10 10	SUSPENDED μμc/I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ALPHA	OACTIVITY IN Ψ TOTAL μμε/Ι 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SUSPENDED μμε/I 0 0 0 0 0 3 0 3 0 6 0	BETA DISSOLVED μμε/I 0 0 0 0 0 13 7 7 15 2	ΤΟΤΑL μμε/I 0 0 0 0 0 0 5 9 0 16 7 7 21 2	DATE OF DETERMI- NATION		CTIVITY BETA	SUSPENDED	DISSOLVED	TOTAL

PHS-2645-5 REV, 4-61

WATER QUALITY BASIC DATA

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

MONONGAHELA RIVER

STATION LOCATION MONONGAHELA RIVER AT

PITTSBURGH, PENNSYLVANIA

	DAT	F				ALGAE (Number	per ml.)				INF	ERT																
		IPLE		BLUE-	GREEN	GREE		FLAGEL (Pigme	LATES ented)	DIAT	OMS	INE DIA SHE (No. p	TOM		DOM (Se	INANT	D SPEC duction	IATO	ND PE	RCEN'	TAGES	3	NHKTOM, THED		MICROIN	VERIEBR	TATES	ORMS	rERA ction trion)
MONTH	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS			CENTRIC	PENNATE		PENNATE	FIRST	PER. CENTAGE		PER. CENTAGE		T	FOURTH#	PER- CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLANKTOR, FUNGI AND SHEATHED RACTERIA (NO. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATOBES (No. per liter)	OTHER ARINAL P (No. per liter)	DOMINANT GENERA (See Introduction for Identification)
8899		61 61 61	1500 300 700 200	COCCOID		20 170 100	ous	1490 270 500 100	ОТНЕЯ	20	20 20		20	a.covia	PIRA	K0335	PER.	tanh T	PR. CRITA	HANOS	PER. CENTA	A STUD	ONER BY ALL OF THE BY ALL OF T	PROTO (NO. P.	NOTE IN THE PROPERTY OF THE PR	CRUST CRUST	(No. p	OTHER A STATE OF STAT	ромим () () () () () () () () () (
																		1											

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

MONONGAHELA RIVER

STATION LOCATION MONONGAHELA RIVER AT

PITTSBURGH, PENNSYLVANIA

											CHI OBOE	ORM EXTR	CTABLES				
DATE OF S				EX	TRACTABL	.E5	ļ 	1			NEUTRALS						
MONTH BB DAY Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	_	DAY U	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
6 20 61 8 9 61 9 19 61	. 6	3 29 3 17 2 28	3687 5697 5167	289 251 254	152 100 76	137 151 178	15 11 4	46. 26 18	40 26 24	696	5 4 3	27 12	2 1 0	15 9 10		2 1 1 1	16 20 11

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

MONONGAHELA RIVER

STATION LOCATION ONONGAHELA RIVER AT

PITTSBURGH, PENNSYLVANIA

DATE OF SAMPLE						CHLORINE	DEMAND							•		W	0
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/i	Н	B.O.D. mg/ĺ	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 mi.
6 13 61 6 20 61 7 6 61 7 16 61 7 18 61 7 25 61 8 15 61 8 22 61 8 22 61 9 5 61 9 26 61 9 26 61	23.9 24.4 23.5 23.5 25.9 28.2 31.1 25.8 25.4 25.8		9265514434930466 565555444466654						43755579665880011	443332142 254522	98 72 120 88 106 100 118 116 78 68 94 106 100 111 126		115 25 25 25 25 25 25 25 25 25 25 25 25 25	115 93 159 158 212 218 125 1144 164 173 208		174 148 183 261 143 356 200 204 218 331 399	

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Braddock, Pennsylvania Operated by U.S. Geological Survey STATE

Pennsylvania

MAJOR BASIN

Ohio River

MINOR BASIN

Monongahela River

STATION LOCATION

Monongahela River at

Pittsburgh, Pennsylvania

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	3.480	4.000	3.200	18.000	4.000	42.900	22.400	25.000	6.800	8.400	4.900	2.780 2.870
	2.970	5.600	3.680	17.000	5.000	42.900	30.400	26.800	11.600	5.250 4.550	5.800 14.500	2.970
2 3 4	2.900	6.300	3.850	16.000	4.500	40.700	25.000	26.800	26.300 31.300	8.100	22.400	2.840
4	3.400	5.600	3.000	14.200	4.000	40.700	22.400 20.800	25.000 20.000	24.100	5.800	15.600	3.360
5	3 .16 0	4.850	2.500	12.800	3.000	55.700	20.600	20.000	24.100	7.000	27.000	3.321
,	2 000	Jr 200	2.710	11.100	3,000	64.500	17,400	15.600	19.600	8.120	10.500	4.050
6	3.080 3.080	4.300 5.000	3.360	11.800	5.000	52.100	14.900	17.000	16.000	18.400	7.800	3.200
7	3.080 3.080	8.100	3.200	11.400	4.800	44.000	13.500	23.800	15.200	13.800	7.800	2.940
8	2.810	9.000	3.120	11.400	4.500	52.100	10.200	34.200	16.600	9.300	6.100	3.000
9 10	2.710	8.700	3.440	11.100	4.500	50.900	8.400	25.900	29.200	6.100	4.750	2.680
10	2.110	0.100	3		•	• •			-0	= 1.00	4.850	2.470
11	3.120	11.400	2.740	9.300	5.000	46.200	19.400	24.100	38.500	5.400 4.600	12.700	2.680
12	2.870	14.200	2.300	9.000	6.000	45.100	25.000	25.000	30.400	4.450	23.200	2.680
13	2.650	14.200	2.470	8.100	7.000	42.900	32.200	22.400	29.500		15.600	2.590
14	2.560	11.800	3.120	8.100	15.000	36.300	36.300	15.600	29.500 30.400	6.380 9.300	15.600	2.470
15	2.500	10.200	3.280	8.400	50.000	32.200	35,200	8.700	30.400	9.300	17.000	2.410
				0.000	45.000	34.200	37.400	10.200	26.800	7.550	13.800	2.440
16	2.210	9.000	3.320	9.000	35.000	30.400	37.400	11.800	20.800	5.700	9.300	2.270
17	2.020	7.550	3.850	16.600 16.600	45.300	25.900	32.200	9.900	10.800	7.800	5.550	2.040
18	2.320	6.300	3.280	15.600	63.200	22.400	30.400	9.000	7.550	9.900	4.450	2.300
19	2.710	5.700	3.1 <i>6</i> 0 3.800	13.800	72.800	25.900	28.600	9.300	7.050	10.800	4.450	3.170
20	3.320	5.100	3.000	13.000	12.000	27.300	20.000	7.500	12-			
01	3.950	4.000	4.200	12,400	45.100	28.600	25.000	8.700	7.300	9.900	7.050	5.800
21 22	5.150	4.700	3.720	8.100	32.200	42.600	27.700	6.550	9.300	10.500	6.550	5.550
	4.050	5.300	3.900	6.550	38.500	48.500	39.600	7.800	9.300	8.100	4.500	4.100
23 24	3.080	4.950	4.400	5.450	52.100	36.300	36.300	7.550	7.300	5.750	3.480	3.200
25	3.000	3.720	3.320	5.950	45.100	32.200	33.200	7.300	5.300	7.050	3.760	2.840
رے	3.000	٥٠,١٥٥	5.5_0	7-77-			-	_		- 0		2.000
26	3.080	3.900	3.240	5.450	68.600	26.800	58.100	6.550	4.550	7.800	3.720	3.000
27	3.160	3.000	3.400	5.400	54.800	21.600	45.100	7.550	4.900	6.100	3.520	7.740 2.620
28	3.900	2.470	7.800	4.950	39.600	19.200	32.200	8.100	4.700	5.650	3.200	2.500
29	3.800	2.810	9.300	3.850		20.000	28.600	5.550	4.500	6.050	3.600	2.440
29 30	3.120	3.200	12.600	3.480		21.600	29.500	7.300	5.010	5.600	3.000	2.440
31	3.200	_	20.000	3.440		19.600		5.150		5.250	2.840	
J _	-											

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

NORTH PLATTE RIVER

STATION LOCATION NORTH PLATTE RIVER ABOVE

HENRY, NEBRASKA

			BADI	OACTIVITY IN V	MAYED			RADIOAC	TIVITY IN PLAN	(KTON (dry)	RA	DIOACTIVITY IN W	ATER
DATE			ALPHA	OACHVIII IN V	TALL	BETA			GROSS A			GROSS ACTIVIT	,
SAMPLE TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR		μμc/I	μμε/Ι	μμε/1	μμε/Ι	μμς/1	μμε/1	 MO. DAY	μμc/g	μμc/g	μμc/1	μμς/1	μμε/Ι
8 21 61 8 28 61 9 5 61 9 11 61 9 18 61 9 25 61	9 27 9 26 9 29 10 24 10 27 10 4	0 0 1 4 1 0	16 109 26 19 22 28	16 109 27 23 23 28	0 1 3 4 2 31	5 29 40 34 20 34	5 30 43 38 22 65		200				
						,					,		

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

NORTH PLATTE RIVER

STATION LOCATION NORTH PLATTE RIVER ABOVE

HENRY, NEBRASKA

						ALGAE (A	Yumber	per ml.)				INE	RT				DI	ATON	15				ž		HICROIN	VERTEBR	ATES	
OF	SAM			BLUE-	GREEN	GREE	N	FLAGEL (Pigme	LATES ented)	DIAT	омѕ	INE DIA SHE (No. p	LLS er ml.)		DOMI (See	NANT Introd	SPECI duction	ES AN	D PER	tificati	on*)		IOPLANKTO EHEATHEB 7712.)	ml.)	ts liter)	EA liter)	liter)	r arnena roduction ification
MONTH	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER- CENTAGE	SECOND*	PER. CENTAGE	THIRD#	PER. CENTAGE	FOURTH	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICHOPLANETOR, FUNDI AND SHEATHER BACTERIA (No. per mil.)	PROTOZO (No. per	ROTIFIERS (No. per liter)	CRUSTAC (No. per	(No per liter) OTHER ANIMAL FORMS	DOMINANT GENERA (See Introduction) for Identification)
8	21	61	2700		210	40	20	250		1040	1120	60	460	15	20	36	20	6	10	2	10	40			8	1		4-9-7
															1		1											
															 				 				i ! !					
																					i 1 1 1 1 1							
															1				1									
																							1					
															i 1 1 1		i 1 1		 									
															 		i ! ! !											
																	-		1		1							

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

NORTH PLATTE RIVER

STATION LOCATION NORTH PLATTE RIVER ABOVE

HENRY, NEBRASKA

							KTRACTABL	EG					CIU ODOF	ODL EVE	ACTABLES				
BEG			AMPLE	4D			I	<u> </u>		1	T		NEUTRALS		ACIABLES		, 	1	
-I	DAY	YEAR		DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
		61		18	2678	207	37	170	2	8	16	4	2	COMPOUNDS				0	6

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

NORTH PLATTE RIVER

STATION LOCATIONNORTH PLATTE RIVER ABOVE

HENRY. NEBRASKA

	DATE							CHLORINE	DEMAND							4111-4-51-5		TOTAL	COUPORHS
	SAMI	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)		SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	per 100 mi.
8 8 9 9	21 28	61 61 61 61	24.5 21.9 14.0 15.0 11.5	 6.1 5.6 5.4 9.4	8.7 8.3 8.1 8.1 8.1	2.0 1.2 1.3 2.6		5.3 5.3 12.5 11.6 12.0	 27.5 93.5 24.4 73.6		22 23 22 23	175 190 190 189 190 190	290	20 6	38 25				800 2000 1400 170 1000

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Wyoming-Nebraska State Line Operated by U.S. Geological Survey STATE

Nebraska

MAJOR BASIN

Missouri River

MINOR BASIN

North Platte River

STATION LOCATION

North Platte River above

Henry, Nebraska

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	.374 .310 .280 .189	.275 .275 .275 .275 .260	.280 .290 .295 .325 .310	.260 .260 .275 .265	.234 .234 .234 .234 .226	.206 .203 .210 .210	.210 .210 .210 .210 .206	.210 .206 .203 .210 .206	.214 .206 .210 .210 .226	1.050 1.250 1.280 1.340 1.390	• 796 • 593 • 452 • 392 • 335	. 422 . 386 . 386 . 428 . 537
6 7 8 9	.168 .164 .180 .200	.280 .290 .290 .295 .295	.295 .285 .265 .275 .275	.255 .265 .260 .265 .280	.222 .214 .206 .206	.226 .226 .226 .230 .234	.203 .203 .218 .214 .218	.200 .189 .186 .050 .015	. 255 . 315 . 325 . 356 . 374	1.420 1.460 1.560 1.510 1.460	.684 1.020 1.120 1.260 1.150	.628 .600 .600 .656 .677
11 12 13 14 15	.302 .335 .320 .310 .315	.295 .300 .300 .300	.275 .270 .265 .270 .275	.265 .265 .280 .270 .265	.218 .218 .214 .210	.214 .210 .200 .200 .200	.222 .230 .242 .255 .242	.01 ¹ 4 .013 .091 .1464 .285	.380 .206 .210 .218 .203	1.360 1.230 1.170 1.060 1.000	1.060 1.030 1.030 1.000	.684 .733 .719 .719 .747
16 17 18 19 20	.310 .310 .305 .300 .290	.305 .295 .290 .285 .285	.265 .255 .260 .280 .280	.260 .260 .260 .2 ¹ 42 .238	.206 .214 .214 .203 .203	.203 .203 .203 .206 .206	.238 .260 .265 .265 .255	.172 .164 .178 .250 .242	.178 .168 .161 .138 .125	1.090 1.130 1.100 1.100 1.190	.968 1.020 1.000 .976 .831	•733 •726 •740 •761 •761
21 22 23 24 25	.285 .275 .275 .270 .270	.285 .285 .285 .280 .275	.275 .275 .275 .280 .280	.246 .226 .230 .246 .246	.214 .218 .218 .218 .214	.210 .214 .210 .214 .214	.250 .246 .246 .238 .238	.260 .255 .246 .234 .222	.122 .102 .070 .055 .055	1.280 1.190 1.190 1.190 1.170	.712 .712 .691 .677 .656	. 761 . 782 . 642 . 565 . 434
26 27 28 29 30 31	.275 .275 .275 .275 .275 .275	.275 .275 .270 .270 .265	.275 .280 .265 .285 .255 .265	.240 .235 .230 .226 .222 .230	.210 .206 .206	.210 .214 .214 .214 .214	.226 .230 .222 .218 .210	.218 .222 .222 .226 .218 .214	.055 .055 .055 .158 .816	1.180 1.170 1.140 1.270 1.030 1.280	.635 .593 .530 .494 .464 .452	.368 .340 .330 .320 .315

STATE

ILLINOIS

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

CAIRO, ILLINOIS

					/4.7ED				RADIOAG	CTIVITY IN PLAN	IKTON (dry)	RAI	DIOACTIVITY IN W	ATER
DATE				ACTIVITY IN W	ALEK	BETA					CTIVITY		GROSS ACTIVIT	Y
SAMPLE TAKEN	DATE OF DETERMI- NATION	T	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL		DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
		SUSPENDED	μμc/l	μμε/Ι	μμε/Ι	μμς/Ι	μμε/1		MO. DAY	μμс/g	μμε/g	μμε/ί	μμc/l	μμε/1
O. DAY YEAR	MONTH DAY	μμς/Ι	дре/1	PPG/I	7,73									
11 60%	10 21	0	1	1	0	15	15							
) 11 60*) 24 60*		_	_	_	2	23	25		1					
1 7 60*		0 1	1	1	13	6	19							
1 21 60*		1	1	2	2	9	11							
12 60	1 3	2	0	2	5	2	7							
19 60	1 19	-	-	_	2	9	11							
9 61	1 27	1	2	3	0	0	0		1					
1 30 61*	2 14	-	-	_	7	0	7				ì			
2 13 61*		1	0	1	0 7	0	7				1			
2 27 61*		-	- 1	-	15	3	18							
3 14 61*	1	2	0	. 2	9	1	10							
3 27 61*			-	1	7	ō	7							
4 10 61*	1	1	0	1_	6	2	8							
4 24 61*			-	2	5	2	7							
5 8 61*		1	1 -	_	4	5	9							
5 31 61*		10	3	13	Ö	ĺ	Ô							
6 12 61	7 6	10	_		l o	0	0							
6 26 61*	1	0	1	1	0	9	9						l	
7 11 61* 7 31 61	8 3 8 29	-		_	10	7	17					Ì		l
8 7 61	9 19	3	1	4	6	9	15			į				
0 1 01	, .,				1							1		
					1									
										ļ				
								i						Ì
		1						l						
	1							ļ			1			İ
		1										i I		İ
								Ì	1			i i	1	
							Ì					1		
													1	
	1						1	1					1	
	1													
							1	1	1		1			
						1								
										1				1
		1			1		1	L.,						

PHS-2845.5 REV, 4-61

WATER QUALITY BASIC DATA

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

ILLINOIS

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

CAIRO, ILLINOIS

DATE				ALGAE (lumber	per ml.)				INI	RT	Γ.			DI	ATO	MS				T.	1	MICROIN	VERTEB	ATES		
OF SAMPLE		BLUE.	GREEN	GREE	:N	FLAGEL (Pigm		DIAT	омѕ	SHE (No. p	ERT TOM ELLS er ml.)		DOMI (See	NANT Introd	SPEC	IES A	ND PE	RCEN ntificat	TAGES	5	LANKTON ILANDO	(72	(er)	let.)	s ter)	r)	ENERA luction cation)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER.	SECOND#	PER. CENTAGE	THIRD#	PER. CENTAGE	FOURTH*	PER-	OTHER PER- CENTAGE	OTHER MICROPLARKTON, FUNGS AND SHEATHED BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATOBES (No. per liter)	OTHER ANDKA! (No. per lite	DOMINANT GENERA (See Introduction for Identification)
10 3 60 10 11 60 10 24 60 11 7 60 12 1 60 12 5 60 12 9 61 1 23 61 2 0 61 3 7 61 3 20 61 4 17 61 5 16 61 7 5 61 17 61 8 22 61 9 27 61	200 200 100 100 200 1700 9100 4900 3200 1200 300 1400 200 1100 300 1700 200 300 1700	20 50 20 20 110	20 50 20 20	110 20 20 40 50 380 490 90 20 130 110 40 180 440 90 580	20	40 70 420 510 50 50 50 130 40 90 150 60 20 70 20	50 20 20 20 20 20 20 20 20 50	90 70 40 10 65 440 23 69 70 11 280 23 69 70 11 280 23 69 10 10 10 10 10 10 10 10 10 10 10 10 10	70 20 50 20 1100 1700 1390 670 240 130 580 790 130 60 190 50	20 20 70 220 750 2010 1920 980 290 380 270 180 310 810 700 470 90 510	180 1210 650 160 510 540 240 380 440 110 380 760 120 210 180	26066226126662266662256662	20 30 60 60 60 40 30 50 20 20 30 40 40 40 40 70 50	7 26 10 26 56 89 56 58 92 82 26 56 56 56 56 56 58	20 10 10 10 30 20 20 20 20 10 20 20 10 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	82 56 57 26 89 27 47 26 86 58 58 58 58 58 58 58 58 58 58 58 58 58	10 10 20 10 20 20 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	10 10 26 57 58 58 57 33 36 56 92 26 89 21 58 80	10 10 * 10 * 10 * 10 10 10 10 10 10 10 * 10 * 10 * 10 10 10 10 10 10 10 10 10 10 10 10 10	340400 4001200000000000000000000000000000	40 110 50 20 50 160 130 800 20 20	10 10 20 10	3 1 50 10 5 1 2 69	1 1 1 1 1 1 2	1 2	1	4-9-7 4-9-7 4-77 -9-7 4-77 -9-7 4-9 4-9 4-9-7 4-9-7 4-9-7 4-9-7 4-9-7 4-9-7

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

ILLINOIS

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

CAIRO, ILLINOIS

					,				0111 0505	ORM EXTRA	CTABLES				
DATE OF SAMPLE		EX	TRACTABL	ES					NEUTRALS		CIABLES				
MONTH DAY WONTH DAY DAY DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL.	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 11 60 10 22 11 15 60 11 23 12 12 60 12 19 1 6 61 3 3 3 24 61 4 2 4 20 61 4 30 5 26 61 6 2 6 20 61 7 3 7 18 61 7 31 8 28 61 9 5 9 28 61 10 9	4519 4281 3202 1765 1964 3305 3593 3487 3125 4262 4422	185 190 2333 438 266 225 1685 1927 143	403793356279335648	145 127 143 224 315 213 169 101 84 95	1 11 8 0 1 1 1 5 2 1 1	11 12 13 20 17 10 3 15 22 14 10 12	12 23 55 22 21 22 23 18	1237114456432	122793333212	18 35 40 14 13 12 15 14	110251130311	5 9 6 13 14 8 7 6 10 8 5 5	3 5 10 6	1 1 1 1 1 1 1 1 2 2	6 12 0 11 17 8 20 11 15 15 8 7

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

ILLINOIS

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATIONOHIO RIVER AT

CAIRO, ILLINOIS

	ATE SAMP	LF	TEMP.	DISSOLVED			1	CHLORINE	DEMAND	AMMONIA-	CHLORIDES	ALKALINITY	HARDNESS	COLOR	TURBIDITY	SULFATES	PHOSPHATES	TOTAL DISSOLVED	COLIFORMS
MONTH	DAY	\dashv	(Degrees Centigrade)	OXYGEN mg/l	Ησ	B.O.D. mg/I	C.O.D. mg/l	t-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	mg/l	mg/l	mg/l	(scale units)	(scale units)	mg/l	mg/l	SOLIDS mg/l	per 100 ml.
.	3	60	24.5	7.2	7.6	1.2	-	• 6	3.0	• 0	13	54	100	-	100 35	_	-	-	-
	- 1	60	23.0	7.7	8.0	. 8	-	• 7	3.3	•0	12	70	104 116	_	28	-		_	_
		60	22.8	7.8	7-4	• 8	_	• 7	3 • 2	•0	15 17	62 60	80	_	20	_	-	-	20
		60	19.0	8.7	7.5	• 7	-	• 7	2 • 8 2 • 8	•0	19	40	100	_	67	_	-	-	-
	31	60	17.2	9.0	7.2	• 8	-	• 6 • 8	2.9	•0	19	60	100	-	20	_	-	-	-
1	7	60	14.0	10.1	8.0	•7 1•2		• 7	2.8	•2	26	80	150	0	15	_	-	-	
	14	60	12.0	11.8	8.0 7.5	•7		• 6	2.9	•0	19	64	128	-	12	-	-	-	59
	21 28	60	12.0 13.0	10.5	7.5	• 9	_	• 5	2.6	• 1	20	63	106	-	15	-	-	-	-
2	5	60	10.0	13.1	7.8	2.1	_	• 4	2.2	•1	24	66	120	-	15	-	_	_	5000
	12	60	7.0	12.9	7.7	2.4	-	• 4	2 • 4	•0	22	60	120	-	150	_	_		160
	19	60	5.1	15.5	8.0	3.8	_	• 4	2.0	•1	26	73	136	-	33	_	_		100
	27	60	5.0	16.2	7.5	3.2	-	• 5	2.2	•0	25	70	130	-	15 240	_	_		١.
1	9	61	3.1	15.0	7.8	2.8	-	• 5	2 • 0	• 4	9	92	190 134	_	160	_	_	_	
1	16	61	4.8	13.6	8.1	3.8	- 1	• 5	2.6	•1	32 26	75 72	140	_	380	_	_	-	-
	23	61	2.9	12.4	7.8	5.3	-	• 7	2 • 8	.2	18	66	116	_	130	_	-	_	1400
	30	61	1.6	15.7	7 • 3	3.8	-	• 5	2 • 6	1.0	20	75	104	_	63	-	-	-	
2	6	61	2.0	17.8	7.5	5.2	_	• 5	2.4	2.0	25	88	130	-	180	-	-	-	
	13	61	4.0	15.2	7.5	3.6 2.5	_	• 4	2.6	3.0	32	83	140	-	200	_	-	-	2000
	20	61	6.2	12.8	8.0	3.3	_	• 4	4.0	3.0	20	58	118	-	250	-	-	-	
2	27	61	7.0 9.5	12.3	7•3 7•3	2.9	_	• 4	3.0	4.0	12	60	100	0	385	-	_	-	630
	7 14	61	9.8	11.2	7.5	1.6	_	. 4	2.9	.0	12	58	106	-	260	_	-	-	ļ .
	20	61	9.5	11.4	7.5	2.0	_	• 6	3.0	-	13	62	116	-	130	-	_	_	
	27	61	9.5	10.6	7.5	1.8	i -	• 5	3.4	•0	13	66	122	_	150	_	-	_	i i
4	<u>.</u> 3	61	10.0	11.6	7.8	1.3	_	• 5	3.6	•0	13	76	140	-	140	_] _	_	
	10	61	10.0	11.9	7.5	2.2	-	• 4	3 • 0	•0	14	80	130	_	170 210	_	_	_	1
	17	61	9.9	11.3	7.8	1.8	-	• 5	3 • 4	•0	15	74	136 120	_	175	_	_	_	
4	24	61	13.0	10.9	7.5	1.9	_	• 6	3 • 2	•0	14	75 68	128	-	175	_ ا	1 -	-	
5	1	61	14.6	9.9	7.5	1.8	_	• 4	3.2	•0	13	72	118	_	230		1	_	
5	8	61	15.9	8.9	7.4	1.5	_	• 5	3 • 4	.0	14	60	90	_	280	-	-	-	
5	15	61	17.8		7 • 4	2.0	_	• 6	3 • 5 3 • 0	.0	10	70	100	_	120	<u> </u>	-	-	
	22	61	19.0	8.0	7.5	2.3	_	• 6	3.0	.0	14	95	140	-	85	-	-	-	
	31	61	20.0	7 • 2	7.8	1.8		5	3.0	.0	20	95	160	-	195	-		1	\$60000
	12	61	25.0	7.7	7.7 7.9	1.4	_	.6	3.2	l .ŏ	18	90	150	-		1 -	ì	-	ļ
	19	61	23 • 2 23 • 0	6.9	7.5	.9	_	.6	3.4	.0	13	70	130	-		-		-	1
6 7	26 5	61	27.0	8.8	7.8	1.4	_	.5	3 • 2	•0	11	80	116	-	65	-	-	-	
_ ′	د	0 +	2,.0	1	'•	'					1			ļ	1	1	1		1

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

ILLINOIS

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATIONOHIO RIVER AT

CAIRO, ILLINGIS

DAT								CHLORINE	DEMAND							-		TOTAL	
OF SAY			TEMP. (Degrees Centigrade)	OXYGEN mg/l	pH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	mg/I	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
7 11 7 17 7 24 7 31 8 15 8 29 9 11	7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	61 61 61 61 61 61	26.9 26.5 26.9 28.2 27.8 26.8 27.2 27.8 28.8	10.3 8.1 6.3 6.6 6.5 7.4 7.7 7.9 9.3	8.0 8.0 7.7 7.4 7.7 7.6 7.5 7.5 7.6	2.1 1.9 .7 1.2 .9 1.4 .9 .5 .9		.6565-6566667	3 • 2 3 • 3 3 • 2 3 • 3 3 • 4 3 • 6 3 • 4 3 • 7	0 0 0 0 0 1 0 0 0 0 0 0	15 13 19 22 19 19 16 16	80 82 67 73 66 76 76 76	134 122 75 142 120 120 124 112 126		48 85 1650 2500 850 650 33		-		9100

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Metropolis, Illinois Operated by U.S. Geological Survey STATE

Illinois

MAJOR BASIN

Ohio River

MINOR BASIN

Ohio River-Main Stem & Minor Trib.

STATION LOCATION

Ohio River at

Cairo, Illinois

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	64.900 60.500 53.300 66.300 67.800	83.400 90.400 75.100 88.500 92.200	124.000 117.000 115.000 114.000 105.000	196.000 219.000 239.000 243.000 246.000	105.000 98.900 106.000 110.000 113.000	651.000 683.000 705.000 711.000 722.000	557.000 537.000 516.000 488.000 451.000	531.000 551.000 561.000 571.000	190.000 175.000 176.000 182.000	136.000 143.000 144.000 127.000 126.000	163.000 179.000 195.000 184.000 190.000	111.000 115.000 122.000 123.000 110.000
6 7 8 9	77.100 83.200 87.000 79.800 83.800	94.100 92.800 82.200 93.300 109.000	110.000 97.200 94.400 94.400 102.000	232.000 217.000 211.000 176.000 134.000	117.000 122.000 137.000 138.000 150.000	747.000 753.000 792.000 869.000 935.000	435.000 442.000 423.000 413.000 406.000	583.000 609.000 629.000 659.000 678.000	194.000 196.000 198.000 221.000 282.000	128.000 130.000 119.000 115.000 109.000	197.000 205.000 212.000 218.000 225.000	106.000 103.000 113.000 121.000 111.000
11 12 13 14 15	79.200 84.400 73.400 74.400 73.100	106.000 118.000 122.000 124.000 114.000	118.000 109.000 109.000 124.000 120.000	141.000 134.000 131.000 119.000 122.000	176.000 201.000 204.000 208.000 199.000	963.000 911.000 896.000 901.000 923.000	384.000 380.000 391.000 419.000 459.000	715,000 760,000 844,000 839,000 865,000	295.000 285.000 292.000 311.000 369.000	132.000 125.000 119.000 109.000 122.000	218.000 186.000 133.000 154.000 169.000	94.100 102.000 99.900 105.000 94.400
16 17 18 19 20	84.400 85.500 68.800 84.000 88.700	116.000 109.000 111.000 110.000 97.700	114.000 119.000 105.000 107.000 103.000	142.000 187.000 178.000 193.000 215.000	203.000 204.000 197.000 218.000 246.000	934.000 909.000 887.000 880.000 868.000	496.000 522.000 540.000 559.000 560.000	888.000 912.000 938.000 931.000 909.000	415.000 440.000 445.000 428.000 426.000	148.000 154.000 161.000 194.000 202.000	194.000 186.000 172.000 158.000 108.000	78.800 25.400 41.000 73.300 58.900
21 22 23 24 25	85.900 86.600 83.100 82.400 84.700	88.900 92.700 94.100 108.000	104.000 111.000 119.000 117.000 106.000	239.000 250.000 262.000 267.000 250.000	283.000 385.000 469.000 509.000 527.000	851.000 845.000 826.000 807.000 757.000	550.000 547.000 548.000 553.000 545.000	871.000 806.000 732.000 658.000 538.000	432.000 434.000 429.000 398.000 355.000	207.000 216.000 218.000 218.000 219.000	103.000 97.200 105.000 124.000 123.000	63.500 81.200 89.600 86.300 92.500
26 27 28 29 30 31	90.100 90.900 78.300 77.700 63.100 87.000	103.000 86.900 90.200 102.000 109.000	99.100 96.000 99.700 116.000 123.000 138.000	229.000 175.000 108.000 113.000 116.000 117.000	549.000 584.000 619.000	716.000 691.000 650.000 613.000 571.000 549.000	551.000 535.000 519.000 513.000 513.000	498.000 410.000 348.000 295.000 248.000 214.000	310.000 273.000 223.000 163.000 153.000	232.000 234.000 230.000 213.000 194.000 184.000	118.000 111.000 105.000 117.000 122.000 118.000	96.600 62.800 57.700 55.400 64.000

STATE

INDIANA

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

EVANSVILLE, INDIANA

DATE	Τ		RADIO	DACTIVITY IN V	VATER		T	RADIO	ACTIVITY	IN PLAN	IKTON (dry)	RAD	IOACTIVITY IN W	ATER
SAMPLE	DATE OF		ALPHA			BETA		DATE OF DETERMI- NATION	G	ROSS A	CTIVITY		GROBS ACTIVIT	Y
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	NATION	ALP	HA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	MONTH DAY	μμς/	μμε/Ι	μμε/Ι	μμε/Ι	μμc/l	μμc/l	MO. DAY	μμο	c/g	μμc/g	 μμc/I	μμc/l	##c/l
MO. DAY YEAR 10 24 60* 11 28 60* 12 5 60* 13 0 61* 2 27 61* 3 27 61* 5 22 61* 6 26 61* 7 24 61* 9 5 61 9 11 61 9 18 61 9 25 61	11 2 12 6 1 1 19 1 10 2 8 3 9 4 10 5 8 6 23 7 13 8 30	μμα/I 0 0 0 0 2 4 0 2 0 1 1 1 - 0 0	μμε/I 2 1 0 0 0 0 2 1 0	2 1 0 1 2 4 0 2 0 3 2 1 -	μμε/I 0 0 0 11 2 0 6 0 0 0 5 0 0 0	μμε/I 0 0 1 0 0 0 1 1 0 3 4 1 4 5 8	μμε/Ι Ο 11 Ο 11 2 0 0 17 Ο 3 9 14 4 5 8	MO. DAY	μμ		μμε/ σ	µµс/1	μμς/1	##c/l

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

INDIANA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

EVANSVILLE, INDIANA

				ALGAE	lumber	per ml.)				INE	RT				DI	ATO	MS						MICROIN	VERTEBR			
OF SAMPLE	E	BLUE-G	REEN	GREE	:N	FLAGEL (Pigme		DIAT	омѕ	INE DIA SHE (No. p	LLS er ml.)				SPEC luction	IES AI	ND PE				SHEATHED ml.)	mL.)	S iter)	EA iter)	ES iter)	ER ANIMAL FORMS . per liter)	GENERA oduction fication,
MONTH TOTAL	L co	occoid	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER- CENTAGE	SECOND#	PER- CENTAGE	THIRD*	PER- CENTAGE	FOURTH*	PER-	OTHER PER- CENTAGE	OTHER MICROPLANK FUNGI AND SHEATM BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per 11	DOMINANT GENERA (See Introduction for Identification)
10 17 60 49 11 14 60 23 12 5 60 53 12 19 60 38 1 3 61 155 1 16 61 7 2 6 61 8 3 20 61 4 17 61 12 5 1 61 10 5 15 61 74 6 19 61 11 7 3 61 33 7 17 61 4 8 7 61 12 8 28 61 25 9 5 61 36	000000000000000000000000000000000000000	250 20 70 180 20 80 410	360 200 20 50 20 20	70 780 670 740 440 2500 90 20 2730 40 410 160 2450	90	130 50 220 1060 1700 20 250 60 150 80 170 830 370	20 900 90 310 20 20 20	870 2170 1300 3510 510 8250 360 110 470 470 230 370 2670 270 270 480	1300 540 17400 18400 28400 2750 1600 9700 8900 2500 3900	220 180 430 180 2520 200 180 360 70 190 60 90 500 190 210 40 310 760	510 250 190 410 50 250 350	56 56 82	70 80 70 30 70 50 40 60 40	58 59 86 59 55 55 58 58 55 57	20	52 21 52 89 71 80 80 26 82	10 20 10 10 10 10 10 20 10 20 10 **	89 89 36 26 36 86	* 10 20 * 10 10 10 10 10 * *	10 10 10 * 10 30 40 20 75 50 20 30 10 * 10	20 20	10 10	30 12 16 54 844 2 7 7 1 284 89 18 4 8 9999	2 2 4 4 2 5 1 1 1 1 4	2 3 1 1 3 1		7327 -28-7 78927 38-37 71927777 789277777 12325

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

INDIANA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

EVANSVILLE, INDIANA

											CUI ODOE	ORM EXTR	A CTABLES				***************************************
DATE OF S				EX	TRACTABL	ES					NEUTRALS		ACTABLES				
MONTH B B B B B B B B B B B B B B B B B B B		DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 4 60 2 6 61 3 2 61	1 2	14 27 30	314 5000 464	* 197 *	75 7	122	1 -	11 -	- 38 -	- 5	- 6 -	26 -	1 -	 8 	5 -	- 1 -	11
				*SAMP	LE NOT	PROCESS	ED-FLOW	TOO LO	W								

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

INDIANA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRID.

STATION LOCATIONOHIO RIVER AT

EVANSVILLE, INDIANA

DATE	T					CHLORINE	DEMAND									TOTAL	
DAY YEAR	1	DISSOLVED OXYGEN mg/I	На	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
10 3 60		_	7.6 7.8	-	1 1	1 1	1 1	_	40 40	76 75	142 150	-	12 11	_	•2	-	1900 2400
10 10 60		-	7.9	_	14	_	_	_	45	84	160	_	12	-	• 2	-	_
10 18 60		-	_	-		-	-	_	_	_	-	-	9 -	-	-	-	3000
10 24 6		8.5	7.8	-	-	-	-		57	81	164	-	10	-	•1	-	5700
10 31 6			7.6	-	12	_		-	60 50	83 75	186 182	_	11 7	-	•1	_	5700
11 7 60 11 14 60		_	7•6 7•7	_	8 -	-	-	-	40	76	184	_	15	_	.2	_	6800
11 21 6		_	7.6	_	_		-	-	38	78	187	_	15	-	•2	-	1900
11 28 6		_	7.6	_	_	_	-	-	45	80	197	-	12	-	•1	-	5400
12 5 6		-	7.6		10	-	-	_	52	85	200	-	19	-	•1	-	4200
12 12 6		-	7.6	-	-	-	-	_	46	87	184	-	17	-	• 2	-	7600
12 19 6		-	7.6	-		-	-	-	46 39	96 102	204 20 6	_	15 14	65	•2	-	3800 2800
12 27 6			7•5 7•5	_		_	_	_	43	87	194	_	86	105	.3	_	8800
1 9 6		_	7.2	_	_	_	_	_	39	73	162	_	86	105	.3	_	9600
1 16 6		_	7.6	_	_	_	_	_	29	57	125	_	82	83	•1	_	10000
1 23 6		11.5	7.4	-	31	_	-	• 9	21	68	124	_	326	-	.1	-	9600
1 30 6		13.1	7.5	-	10	-	-	• 8	20	58	116	_	96	-	• 2	-	2300
2 6 6		13.6	7.3	, =	9	_	-	-	23 23	64 72	110 134	_	62 89	_	•1	_	720 15000
2 14 6 2 20 6		12.5	7•5 7•3	2.7	15	_	_	•6	19	65	112	=	185	_	.3	_	10000
2 27 6		7.9	7.3	6.5	61	4.8	11.2	•6	25	64	121	_	440	_	.6	_	11000
3 6 6		9.7	7.3	1.6	12	2.0	4.8	• 4	9	45	78	-	168	56	.4	-	8800
3 13 6		_	7.2	-	-	2.0	4.5	• 4	9	57	87	-	131	59	• 2	-	4200
3 20 6		9.9	7.4	2.2	15	1.6	4.4	•2	10	53	96	~	160	71	• 3	_	3000
3 27 6		9.8	7.3	2.4	26	2.0	6.5	• 3	12 10	56 60	105 115		165 97	55 75	•1	_	9000
4 3 6 4 10 6		_	7•3 7•7	_	16 13	_	_	•2	10	48	105	-	240	68	.3	_	_
4 17 6		9.9	7.6	2.2	13	2.1	6.8	-4	11	64	114	-	150	75	.3	_	9400
4 24 6		9.3	7.3	2.2	11	1.9	4.2	• 3	10	61	112	-	135	78	• 2	-	6400
5 1 6		8.0	7.4	-	16	3.1	7.7	• 2	10	62	116	-	230	45	• 2	_	9600
5 8 6		-	7.3	-	-	2.4	6.2	•3	8	50	92	_	150	40	-	-	5400
5 15 6		_	7 • 2	-		2.4	6.0	•3	8	60	88 128	-	115	78	.2	_	7300
5 22 6 5 29 6		7.4	7•2 7•5	1.4	9 19	1.4	4•3	• 2	15	82	140	-	84	82	.2	-	••••
6 5 6		6.3	7.3	2.0	8	2.0	4 • 8	•3	15	84	159	_	45	-	.1	_	· _
6 6 6		-			_			-		-		-	_	-	-	-	8800
6 12 6	1	5.0	7•4	2.0	8	2•4	4•8	• 5	20	68	151	-	93	-	•2	-	11000

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Evansville, Indiana Operated by U.S. Geological Survey

STATE

Indiana

MAJOR BASIN

Ohio River

MINOR BASIN

Ohio River-Main Stem and Minor Trib.

STATION LOCATION

Ohio River at

Evansville, Indiana

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	18.000	26.000	30.000	75.000	55.000	1421.000	240.000	378.000	72.000	50.000	88.200	26.000
2	18.000	26.000	30.000	85.500	55.000	448.000	228.000	376.000	72.000	50.000	85.500	26.000
3 4	18.000	26.000	30.000	98.300	55.000	465.000	228.000	377.000	72.000	50.000	90.200	26.000
	18.000	26. ₀₀₀	30.000	105.000	55.000	492.000	244.000	368.000	72.000	50.000	101.000	26.000
5	18.000	26.000	30.000	116,000	55.000	513.000	270.000	362.000	79.700	50.000	119,000	26.000
6	16.000	30.000	25.000	121.000	50.000	536.000	295.000	364.000	83.300	60.000	120.000	27.000
7	16.000	30.000	25.000	115.000	50.000	562.000	300.000	380.000	93.800	60.000	128.000	27.000
8	16.000	30.000	25.000	70.000	50.000	585.000	285.000	429.000	115.000	60.000	134.000	27.000
9	16.000	30.000	25.000	70.000	50.000	594.000	258.000	494.000	130.000	60.000	135.000	27.000
10	16.000	30.000	25.000	70.000	50.000	601.000	234.000	566.000	138.000	60.000	118.000	27.000
11	15.000	55.000	35.000	65.000	82.400	593.000	221.000	609.000	150.000	35.000	70.000	22.000
12	15.000	55.000	35.000	65.000	98.800	580.000	222.000	626.000	173.000	35.000	70.000	22.000
13	15.000	55.000	35.000	65.000	112.000	563.000	238.000	626.000	198.000	35.000	70.000	22.000
13 14	15.000	55.000	35.000	65.000	116.000	545.000	254.000	598.000	215.000	35.000	70.000	22.000
15	15.000	55.000	35.000	65.000	124.000	526,000	274.000	. 555.000	230.000	35.000	70.000	22.000
16	14.000	40.000	35.000	70.000	123.000	504.000	298.000	499.000	248,000	70.000	96.300	16.000
17	14.000	40.000	35.000	105.000	128.000	482.000	317.000	443.000	269.000	87.500	103.000	16.000
18	14.000	40.000	35.000	129.000	143.000	446.000	338.000	383.000	286.000	107.000	50.000	16.000
19	14.000	40.000	35.000	151.000	168.000	409.000	363.000	334.000	297.000	120.000	50.000	16.000
20	14.000	40.000	35.000	177.000	188.000	385.000	382.000	296.000	293.000	127.000	50.000	16.000
21	22.000	26.000	35.000	188.000	194.000	368.000	390.000	247.000	280.000	130,000	40.000	18,000
22	22.000	26.000	35.000	183.000	195.000	360.000	392.000	209.000	255.000	131.000	40.000	18.000
23	22.000	26.000	35.000	167.000	208.000	360.000	384,000	181.000	214.000	132.000	40.000	18.000
24	22.000	26.000	35.000	146.000	238.000	354.000	375.000	159.000	165,000	143.000	40.000	18.000
25	22.000	26.000	35.000	120.000	266.000	342.000	368.000	143.000	118.000	149.000	40.000	18.000
26	19.000	24.000	55.000	60.000	303.000	333.000	360.000	127.000	87.400	139.000	40.000	15.000
27	19.000	24.000	55.000	60.000	345.000	326.000	360.000	117.000	60.000	119.000	40.000	15.000
27 28	19.000	24.000	55.000	60.000	388.000	315.000	369.000	101.000	60.000	96.200	40.000	15.000
29	19.000	24.000	55.000	60.000	•	302.000	377.000	88.600	60.000	82.900	40.000	15.000
30	19.000	24.000	55.000	60.000		281.000	380.000	80.000	60,000	72.900	40.000	15.000
31	19.000		55.000	60.000		254.000	•	75.000		76.900	40.000	•

STATE

KENTUCKY

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

LOUISVILLE, KENTUCKY

	T		PADIO	DACTIVITY IN V	VATER			 RADIOA	TIVITY IN PLAN	IKTON (dry)	RAD	DOACTIVITY IN W	ATER
DATE SAMPLE	DATE OF		ALPHA			BETA		DATE OF DETERMI- NATION	GROSS /	CTIVITY		GROSS ACTIVIT	Υ
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL		ALPHA	BETA	SUSPENDED		TOTAL
MO. DAY YEAR	MONTH DAY	μμε/Ι	μμc/I	<i>μμ</i> ε/Ι	μμε/1	μμc/l	μμ _C /I	 MO. DAY	μμc/g	μμс/g	μμc/I	μμε/Ι	μμc/ l
MO. DAY YEAR 6 14 61 6 19 61 6 26 61 7 12 61 7 18 61 7 25 61 8 1 61 8 21 61 8 29 61 9 11 61 9 19 61 9 26 61	7 17 7 11 7 26 8 2 8 4 8 14 8 24 8 31 9 25 9 27 9 26 10 28 10 6 10 18 10 4	μμε/I 1 3 2 0 0 0 8 1 0 0 0 0	μμε/1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0	рис/I 1 3 2 0 0 1 0 8 2 0 1 0 0 2 0 0	μμε/1 0 0 2 0 0 15 14 8 0 0 1 18 2 4	μμε/I 0 0 1 0 1 4 6 0 5 5 4 12 1 10 10	μμε/I 0 0 3 0 1 4 21 14 13 5 4 4 13 19 12 14	MO. DAY	μμε/σ	μμε/g	μμε/l	μις/Ι	μμε/Ι

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

KENTUCKY

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

LOUISVILLE, KENTUCKY

	ATE	-			-	ALGAE (I	Number	per ml.)				INE	ERT	_				IATO							MICROIN	VERTERE	ATES		
OF S				BLUE-	GREEN	GREE	EN	FLAGEL (Pigma	LATES ented)	DIAT	OMS	INE DIA' SHE (No. p	TOM LLS er ml.)		DOMI (See	NANT Introd	SPEC	IES AI	ND PE	RCENT ntificat	rages ion*)	3	PLAKKTON HEATHED nl.)	A m2.)	T			L FORKS	ienera duction ication)
MONTH	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER. CENTAGE	SECOND#	PER. CENTAGE	THIRD#	PER- CENTAGE	FOURTH	PER- CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLANKTON FUNGI AND SHEATHED BACTERIA (No. per ml.)	PROTOZOA (No. per 1	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMA (No. per lite	boninany genera (See Introduction for Identification)
6 2 7 3 8 8 9	26 11 10 5	61 61 61 61 61	1100 2700 8600 2300 2500 2400	20 20 20 60	20 80 390	120 350 470 130 250 770 710		170 190 360 170 60 370 370	200	410 1570 7330 1570 500 390 230	390 540 250 100 350 80	410 1300 480	100	92 56 56 56 56 89	50 40 60 40	62 45 45 26 56	10 10 20 20 10 30	62 92 89 92 82 26	10 10 10 10 10	26 45 58 62	* 10 * 10 10	30	20		44 16 53 26	48 1 32 27	2	5	4-77 4-977 -1977 4-977 11177 161

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

KENTUCKY

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

LOUISVILLE, KENTUCKY

DATE OF SAMPLE	_	EX	TRACTABL	ES					NEUTRALS	ORM EXTRA	ACTABLES				
MONTH DAY MONTH MONTH DAY DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
6 14 61 6 16 7 1 61 7 18 8 1 61 8 19 9 5 61 9 19	5 1510 3 1314 5 5040	315 306 191 581	123 122 77 156	192 184 114 425	16 2 2 3	26 25 18 33	49 53 23 69	13 11 3 7	6 6 2 4	29 33	1316	12 18 10 22	8 9 8 8	1223	11 13 14 18

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

KENTUCKY

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATIONOHIO RIVER AT

LOUISVILLE, KENTUCKY

DATE OF SAMPLE		<u> </u>				CHLORINE	DEMAND										
DAY YEAR	(Degrees	DISSOLVED OXYGEN mg/l	pH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
6 14 6 6 6 7 7 10 6 6 7 7 11 8 6 6 6 8 15 6 6 8 29 6 1 9 11 2 6 9 9 11 2 6 1 9 9 2 6 1 9 9 2 6 1 1 1 2 6 1 1 2	1 19.5 21.5 25.0 1 26.0 27.0 1 26.0 1 26.0 1 26.0 1 26.5 1 26.0 1 26.5 1 26.5 1 26.5 1 25.5		7.64 7.65 7.65 7.65 7.65 7.65 7.65 7.65 7.65			2.20 	6.4 5.4 5.6 6.7 1.6 1.6 6.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	92	2197 176 - 1 3479 223344 - 52 34	90 70 742 87 91 67 70 88 95 88 93	124 112 118 128 130 128 110 142 144 144 154	00001000000000100	155300 - 553000055 - 66 15530005 - 66	825 706 - 8 705 88999 - 555 1055	.77.51 .11.632.11.1 .11.11.11	220 178 139 200 - 133 262 201 154 125 244 225 217 - 238 275	1900 14000 9500 730 1600 24000 45000 4700 590 *1000 1300

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Louisville, Kentucky Operated by U.S. Geological Survey

STATE

Kentucky

MAJOR BASIN

Ohio River

MINOR BASIN

Ohio River-Main Stem and Minor Trib.

STATION LOCATION

Ohio River at

Louisville, Kentucky

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	13.000 13.000 13.000 13.000	20.000 15.400 19.800 15.600 21.900	25.300 22.100 17.900 22.600 18.300	61.700 76.800 90.600 105.000 99.400	32.600 30.600 24.000 25.900 23.200	445.000 454.000 460.000 463.000 / 478.000	172.000 186.000 224.000 265.000 272.000	333.000 316.000 301.000 290.000 298.000	47.200 44.400 58.300 58.900 66.700	35.400 31.700 33.300 32.700 34.800	78.800 91.700 117.000 118.000 126.000	27.900 17.100 21.400 24.700 22.800
6 7 8 9 10	12.000 12.000 12.000 12.000	19.900 20.000 12.700 24.900 34.300	24.400 23.000 14.100 13.700 13.300	77.200 53.900 48.100 51.100 52.200	20.600 31.900 35.100 32.800 49.700	524.000 530.000 524.000 515.000 492.000	247.000 215.000 190.000 168.000 172.000	291.000 359.000 505.000 583.000 587.000	83.500 110.000 118.000 121.000 135.000	38.800 36.400 42.100 44.700 40.800	137.000 140.000 124.000 81.400 46.100	14.000 24.000 28.500 23.000 16.000
11 12 13 14 15	14.000 14.000 14.000 14.000	34.000 36.200 35.300 37.600 40.600	12.200 22.600 23.800 16.700 19.700	47.600 40.700 32.900 32.400 52.900	72.000 88.800 85.800 103.000 111.000	475.000 457.000 439.000 422.000 391.000	176.000 178.000 213.000 246.000 253.000	560.000 520.000 465.000 401.000 341.000	162.000 182.000 198.000 202.000 228.000	32.200 20.600 27.000 26.100 50.500	39.100 58.000 73.800 87.100 110.000	23.300 24.000 22.800 17.100 13.000
16 17 18 19 20	14.000 14.000 14.000 14.000	35.600 27.700 23.800 28.900 25.600	28.700 23.700 22.000 25.000 15.400	94.700 126.000 160.000 177.000 171.000	126.000 147.000 168.000 179.000 169.000	352.000 309.000 280.000 261.000 248.000	280.000 322.000 337.000 346.000 337.000	279.000 230.000 199.000 170.000 146.000	240.000 246.000 246.000 228.000 201.000	73.200 82.700 98.000 109.000 106.000	98.200 70.700 40.200 24.700 23.800	10.600 11.800 16.500 12.100 12.200
21 22 23 24 25	17.000 17.000 17.000 17.000 17.000	24.200 17.900 17.000 14.500 17.200	17.500 28.700 29.800 22.000 13.900	148.000 125.000 104.000 70.600 51.000	162.000 182.000 225.000 249.000 292.000	265.000 265.000 260.000 259.000 259.000	313.000 295.000 298.000 300.000 301.000	127.000 116.000 110.000 95.600 99.800	165.000 120.000 82.500 71.000 71.800	108.000 130.000 148.000 135.000 114.000	20.900 28.400 34.800 32.100 23.300	15.300 12.600 14.300 20.200 15.200
26 27 28. 29 30 31	16.000 16.000 16.000 16.000 16.000	18.500 19.100 21.200 21.500 25.100	12.000 20.1400 26.600 27.100 33.700 44.100	35.500 34.700 38.300 34.400 31.800 28.400	345.000 371.000 408.000	263.000 257.000 238.000 216.000 195.000 176.000	322.000 343.000 339.000 336.000 336.000	82.000 73.200 68.900 56.200 51.100 49.300	58.000 51.400 37.500 39.000 39.400	83.300 75.900 74.500 72.000 80.100 78.000	30.400 31.800 32.800 33.800 29.100 15.900	12.200 9.070 12.400 8.640 9.070

STATE

OHIO

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

CINCINNATI, OHIO

DATE	T		PADI	OACTIVITY IN Y	VATER				PADIOA	CTIVITY IN PLA	NKTON (dm/)		T BAT	DIOACTIVITY IN V	VATER
SAMPLE	DATE OF	T	ALPHA	0	I	BETA		1 1			ACTIVITY	1	- RAL	GROSS ACTIVIT	
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	1	DATE OF DETERMI- NATION	ALPHA	BETA	1	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	MONTH DAY	μμε/Ι	μμε/	μμε/1	μμε/Ι	μμc/l	μμε/Ι	1 [MO. DAY	μμc/g	μμc/g	1	μμc/l	μμc/l	##c/l
10 26 60* 11 30 60* 12 21 60* 2 1 61* 3 1 61* 4 26 61* 5 31 61* 6 28 61 8 2 61* 8 30 61* 9 13 61 9 20 61 9 27 61	11 7 12 6 1 16 2 9 3 10 4 6 5 5 6 12 7 17 8 25	0 0 0 0 2 2 2 2 0 2 3 1 0 0 7 7	1 0 1 0 0 1 0 0 0 1 1 0	1 0 1 2 2 3 2 0 2 4 2 0 1	0 0 0 2 8 1 2 0 0 4 7 5 0 0	0 0 0 0 1 1 0 0 0 13 9 10 16 0 11	0 0 0 0 2 9 2 2 0 0 17 16 15 16 0 11		MO. DAY	μμε/g	##c/g		μμε/Ι	##c/l	Apecil

PLANKTON POPULATION NUMBER PER MILLILITER, EXCEPT MACROPLANKTON STATE

OHIO

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

CINCINNATI, OHIO

				ALGAE (A	I. m ban	ner m/ 1				INE	RT		···-		D.I	ATO	45				<u>.</u> 1		ICROIN'	/ERTEBR	ATES		
DATE OF SAMPLE		BLUE-	GREEN	GREE		FLAGEL (Pigma		DIATO	oms	INE DIA SHE (No. p	LLS		DOMII (See	NANT Introd	SPEC		ID PE	RCENT rtificati			когланктов, внеатнев таг.)	M.)	ts liter)	EA liter)	DES liter)	(AL PORMS)	cenera oduction ification
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER- CENTAGE	SECOND#	PER. CENTAGE	THIRD#	PER. CENTAGE	FOURTH	PER- CENTAGE	OTHER PER- CENTAGE	OTHER RICE PURGIAND: PACTERIA (NO. PET	PROTOZO! (No. per	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per 1	DOMINANT GENERA (See Introduction for Identification)
10	2200 2600 5600 10300 8700 1600 2000 1900 1400 8100 400 6100 3200 2000 3400 11300		220 160 200 200 400 20 20 270 40 370 4740	840 970 1460 2500 160 90 2260 420 310 730 5600 1100 4250	20	20 160 110 2270 1270 70 20 40 80 480 20 180 170 80 0150 660	130 200 350 120 140 20 20 90	290 350 1540 2750 1250 940 800 270 160 180 90 440 3420 4600 2090 7720 1180 640	600 570 2620 1280 3150 430 290 180 270 580 1340 780 600 3730 460 170	290 1020 750 1230 380 20 870 360 70 90 70 150 210 1060 110 740 850 330 1430 230	1	58 56 56 91 56 56 56 56	20 20 30 30 90 70 80	89 82 85 85 86 82 82 82 82 83 84 84 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86	20 20 10 20 10 10 10 10 20 20 10	26 889 57 62 56 62 56 62 56 62 56 62 56 62 56 62 56 62 56 62 63 64 64 64 64 64 64 64 64 64 64 64 64 64	10 30 10 10 10 10 10 10 10 10 10 20 20 10 *	262 262 262 263 264 265 265 265 265 265 265 265 265	10 * 10 10 10 10 10 10 10 10 10 10 10 10 * * * * * * * * *	20 20 40 30 40 60	40 200 70 150 50	20	59 58 659 148 75 3 114 2 4 60 115 176	10 12 14		1	76-27 74321 749-7 48931 7192577777 4-53 377 48977 749-7 4-177 4-177 1-124

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

OHIO

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

CINCINNATI, OHIO

DATE	OFS	AMDIE																
BEGINN			D		E	XTRACTABL	LES	ļ	1	,			ORM EXTR	ACTABLES				
МОМТН	YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO. FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	NEUTRALS AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
11 2 12 7 1 11 2 8 3 15 4 5 5 3 6 7 7 5	60 61 61 61 61 61 61	1 2 3 4 5 6 7 8	16 21 21 15 29 19 17 20	2581 2880 3710 4003 4377 4858 5580 6419 5012 54430	537 338 426 316 291 240 227 156 147 187 179 287	143 171 197 109 157 72 97 42 72 98 54 144	394 167 229 207 134 168 130 114 75 89 125 143	130332902513	30 34 35 19 22 15 22 8 16 19 32	54 79 75 49 77 25 27 16 23 25 3	464382324322	3 1 4 8 5 8 3 3 2 2 3 2 4	42 51 58 37 47 19 12 18 20 44	585443201513	21 19 20 12 14 9 10 6 9 14 9	11 14 12 7 10 6 11 3 8 10 4 9	656231211216	20 17 39 17 28 14 16 8 11 12 5 22

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE OIHO

OHIO RIVER MAJOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB. MINOR BASIN

STATION LOCATIONOHIO RIVER AT

CINCINNATI, UHIU

DATE						CHLORINE	DEMAND									TOTAL	
OF SAMPLE	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C,O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
10 5 60 10 12 60 10 19 60 10 31 60 11 26 60 11 26 60 11 23 60 11 30 60 11 23 60 11 24 60 12 14 60 12 15 60 12 21 60 12 21 60 12 21 61 2 15 61 2 15 61 2 15 61 2 15 61 2 15 61 2 15 61 2 15 61 3 1 61 3 2 2 61 3 1 61 3 2 2 61	21.8 20.2 20.2 15.8 14.6 12.0 12.1 11.0 9.2 7.2 2.1 3.9 2.1 13.3 2.5 3.8 4.0 4.9 4.9 4.9	8.8 8.6 8.7 9.4 10.0 10.1 9.8 11.1 11.4 12.3 8.5 13.4 12.5 10.1 13.7 13.6 10.8 10.5 9.9 9.9	7.9 8.0 7.6 7.5 7.2 7.4 7.4 7.7 7.5 7.5 7.4 7.7 7.5 7.4 7.1 7.2 7.3 7.1 7.2 7.3 7.2 7.2	1.0 1.6 1.9 1.5 2.6 2.3 2.0 2.2 1.1 1.7 	l i				34 38 38 41 - 43 63 63 63 63 52 49 - 57 4 - 59 49 312 31 34 39 28 21 15 17 17 17	mg/1 85440 - 6338762 - 00 - 3557263694 - 557909 22233	152 175 178 175 181 203 190 182 185 187 - 180 202 - 183 1143 1124 110 137 142 100 113 109 110 110 110 110 110 110 110 110 110	5 5 5 0 - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(scale units) 3 9 3 3 - 6 20 20 10 10 6 - 10 8 - 20 360 1300 110 40 25 130 220 1450 180 140 150 80	140 135 156 148 - 152 146 151 159 153 167 - 144 156 - 85 98 88 75 81 92 66 79 47 60 61 72	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0		200 340 3300 950 250 2800 850 830 670 500 720 830 800 1100 2200 120 770 6700 11000 18000 18000
3 29 61 4 5 61 4 12 61 4 19 61 5 10 61 5 17 63 5 24 63 5 31 63	8 · 8 · 8 · 8 · 5 · 1 · 8 · 3 · 3 · 1 · 1 · 5 · 5 · 1 · 1 · 2 · 5 · 1 · 1 · 4 · 4 · 1 · 7 · 3 · 1 · 1 · 8 · 1	9.5 10.2 10.1 9.5 8.6 8.0 7.5 7.6	7.2 7.1 7.3 7.3 7.2 7.2 7.3 7.1 7.1 7.7	1.5 2.2 1.5 1.3 1.6 1.7 1.3 1.6	31 18 13 14 29 34 26 29 20	2.9 .9 2.7 2.0 1.9 2.8 2.5 1.9	7 · 8 5 · 9 7 · 6 5 · 0 6 · 0 8 · 8 6 · 9 5 · 5 6 · 1	22 22 11 11 11 11 11 11	15 13 15 13 13 13 16	26 33 34 36 28 29 38 43	83 110 93 98 88 76 102 126	3 10 10 10 10 5 5	80 100 140 260 210 55	69 77 59 65 71 46 64 98		131 191 156 157 124 135 204 216 213	6100 4200 20000 6000 4600 7200 3000 490 83

STATE

OHIO

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATIONOHIO RIVER AT

CINCINNATI, OHIO

DATE					CHLORINE	DEMAND										
OF SAMPLE TEM (Degr	es OXYGEN	pН	B.O.D. mp/l	C,O,D. mg/l	1-HOUR mg/i	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/i	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
6	.8 4.9 6.4 8.6 7.6 8.8 7.6 6.6 8.3 .0 5.1 5.1 5.6 5.6 5.6 5.3 7.6 6.5 7.6 7.7 7.7 8.1 4.6 9.0	7.1 7.0 7.0 7.3 7.5 7.6 7.1 7.5 7.6 8.4 8.2 9.1 8.3	2.0 2.3 1.6 1.6 1.1 1.3 1.0 1.3 1.5	336 625 833 592 261 15 20 13 13 10	2.4.4.5.5.5.4.9.6.4.8.4.9.6.6.8.5.1.0.5.5.1.0.5.5.5.4.9.6.6.8.5.5.5.5.4.9.6.6.8.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	857599975889596887 69847489556463854	1 00 1 00 0 1 0 1 0 1 1 3 0 0 4 4 1 1	25 17 11 17 23 15 31 223 225 329 45	36 36 31 39 41 44 38 34 41 36 47 57 57 57	141 99 82 103 111 129 117 92 137 121 133 143 139 153 178	3 7 5 5 8 5 7 0 7 8 7 8 8 6 6 8 5	120 190 270 68 320 450 100 170 15 10 7 6 4 3	109 90 60 65 70 85 74 68 78 72 95 76 80 96 64 100 140	000000000000000000000000000000000000000	238 191 154 199 203 226 212 165 257 239 241 229 277 3251	890 6200 26000 3400 1100 2000 3700 650 200 200 440 11

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Cincinnati, Ohio Operated by U.S. Geological Survey

STATE

Ohio

MAJOR BASIN

Ohio River

MINOR BASIN

Ohio River-Main Stem & Minor Trib.

STATION LOCATION

Ohio River at

Cincinnati, Ohio

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4	11.000 11.000 11.000 11.000	11.800 14.100 10.800 20.000 18.600	17.400 13.100 17.600 12.100 13.200	70.600 81.500 88.000 84.000 75.900	25.000 25.000 25.000 25.000 25.000	420.000 430.000 429.000 415.000 404.000	145.000 185.000 235.000 254.000 235.000	300.000 277.000 265.000 266.000 293.000	44.000 48.600 68.700 72.700 89.000	35.600 38.200 38.500 32.800 42.100	71.300 84.400 99.800 106.000 113.000	18.800 18.500 20.100 16.500 14.200
5 6 7 8 9	10.000 10.000 10.000 10.000 10.000	23.500 17.100 15.000 33.800 35.900	25.000 14.100 14.100 12.900 13.800	53.300 42.900 48.900 57.100 54.200	30.000 30.000 30.000 30.000 60.300	424.000 421.000 426.000 418.000 403.000	201.000 174.000 152.000 138.000 143.000	235.000 250.000 383.000 437.000 438.000	106.000 112.000 112.000 96.400 92.600	39.100 43.900 48.100 43.800 37.900	129.000 115.000 84.800 38.700 40.000	16.100 27.600 23.400 97.100 20.200
11 12 13 14	12.000 12.000 12.000 12.000 12.000	34.200 36.300 40.900 41.800 38.300	18.100 27.200 18.100 14.800 20.900	45.100 36.800 37.100 34.700 65.900	74.900 74.600 79.500 91.400 110.000	395.000 384.000 357.000 333.000 294.000	138.000 141.000 182.000 203.000 222.000	416.000 370.000 316.000 256.000 229.000	137.000 178.000 194.000 181.000 195.000	18.500 23.600 20.000 24.400 55.000	42.600 68.700 83.200 104.000 101.000	16.300 26.100 17.200 14.600 13.000
16 17 18 19 20	13.000 13.000 13.000 13.000	32.600 22.300 24.700 16.400 23.400	23.500 20.500 20.100 15.500 15.800	97.700 129.000 157.000 156.000 136.000	135.000 157.000 163.000 161.000 150.000	269.000 251.000 236.000 227.000 207.000	271.000 299.000 308.000 298.000 286.000	203.000 176.000 146.000 123.000 108.000	215.000 222.000 226.000 200.000 154.000	77.000 87.100 88.200 93.100 85.100	66.500 42.100 31.100 30.700 20.700	9.700 8.620 8.570 10.700 10.700
21 22 23 24 25	15.000 9.520 15.100 22.300 13.900	21.200 14.100 16.300 12.000 13.100	25.000 27.300 26.300 15.900 18.000	114.000 92.000 63.600 48.900 34.700	162.000 200.000 230.000 248.000 273.000	201.000 189.000 193.000 212.000 236.000	269.000 249.000 236.000 238.000 238.000	106.000 99.700 92.900 86.600 77.700	112.000 78.700 65.600 63.800 65.700	108.000 140.000 122.000 105.000 79.800	25.100 35.100 25.200 22.900 24.800	9.550 11.800 29.700 10.800 14.000
26 27 28 29 30 31	11.600 18.800 14.200 9.540 8.530 16.600	12.000 12.200 18.700 19.800 22.400	15.100 17.800 26.600 32.700 30.300 55.900	30.000 30.000 30.000 30.000 30.000	309.000 340.000 384.000	237.000 222.000 200.000 179.000 160.000 146.000	258.000 265.000 283.000 304.000 316.000	72.700 64.800 59.900 53.600 53.800 51.500	47.400 40.300 41.700 39.500 37.800	72.300 77.400 73.000 49.100 57.800 61.800	32.800 34.100 36.600 28.300 20.000 25.200	13.900 8.510 12.600 9.400 9.420

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

HUNTINGTON, WEST VIRGINIA

	T		RADI	OACTIVITY IN V	VATER			T	RADIOA	CTIVITY IN PLA	NKTON (drv)	Γ	DAT	OOACTIVITY IN V	VATER
DATE SAMPLE	DATE OF		ALPHA			BETA		1			ACTIVITY	1		GROSS ACTIVIT	
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	1	DATE OF DETERMI- NATION	ALPHA	BETA	1	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR		μμς/Ι	μμς/Ι	μμε/Ι	μμε/Ι	μμε/Ι	μμς/Ι		MO. DAY	μμc/g	μμc/g		μμε/Ι	μμc/I	μμe/I
MO. DAY YEAR 10 24 60* 11 28 60* 12 26 60* 1 30 61* 4 24 61* 5 29 61* 6 26 61* 8 28 61* 9 11 61 9 18 61 9 25 61	NONTH DAY														

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

HUNTINGTON, WEST VIRGINIA

				ALGAE (A	lumber	per ml.)				INE	RT TOM	ī			ום	ATON	45				T .		MICROIN	VERTEBR/	TES		. 6.3
DATE OF SAMPLE		BLUE-	1	GREE		FLAGEL (Pigme		DIAT	омѕ	DIA SHE (No. p	LLS		DOMI (See	NANT Intro	SPEC:	IES AN	D PE	RCENT	ion*)		OPLANKTO SHEATHED ml.}	A ml.)	ts liter)	EA liter J	DES liter)	HAL FORMS	r GENERA roductio tification
MONTH DAY.	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND#	PER. CENTAGE	THIRD*	PER- CENTAGE	FOURTH*	PER. CENTAGE	OTHER PER-	OTHER MICROPLANKTON, FUNGI AND SHEATHED BACTERIA {No.*per ml.}	PROTOZO! (No. per	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter	NEMATOBES (No. per liter)	(No. per liter)	f See Introduction for Identification
10 3 60 10 17 66 12 5 60 12 19 60 12 61 1 16 61 2 0 61 3 61 5 15 61 6 5 61 7 15 61 7 61 8 21 61 9 5 61 9 18 61	3900 2500 4300 1500 1900 4000 1800 2500 2700 4000 4000 1900 2400 5900 1700	50 160 50	20 70 350 20 90 20 20 20 120 40	660 490 1130 310 50 20 70 70 80 1510 770 990 850 190 350 210		310 180 1720 360 140 130 40 100 770 150 460 120 270	50 220 200 50 40 20 20 20	1890 930 600 580 920 130 20 1050 270 370 3890 700 2360 2360 240 1680 3310 910	960 440 380 160 690 200 180 640 2190 870 410 730 2150 540	200 1010 160 50 1720 250 90 150 60 540 120 910 440 210 250 330	130 400 90 380 220 1130 490 580 790 290 310 290 290 2210 60 60 20	5682566526 56666666 5789	50 30 40 30 10 40 20 10 40 50 40 70 30	58 56 26 83 58 56 74 62 92 56 92 27 89 65 65	10 20 10 20 10 30 10 20 10	2679893622 6669579229858	10 20 10 10 10 10	89 27 99 58 92 92 62 7 56 2 96 2	10 10 10 10 10 10 10 10 10 10 10 10 10 1	20 30 40 40 60 70 30 20 30 20 30 40	40 70 20 50 20 20 20		75 11 15 1 1 7 2 16 105 78 547 27 91	2 2 1 6 16 2 8 42 15	3 2 2		74-37 787 787 7-1-74 419-5 7-967 74763 7-74- 3 48977 749-7 74927 48-7 74937 4-977 4-77

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

HUNTINGTON, WEST VIRGINIA

						,										
DATE OF S	AMPLE END	-	E	XTRACTABL	_ES					NEUTRALS	ORM EXTRA	ACTABLES			Т	
DAY YEAR	Ī	GALLONS		CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	Loss
	1 1 2 2 3 2 4 2 5 2 6 2 7 2 8 2	8 4155 2 3360 7 3510 0 4290 1 3705 5 3922 6 3375 7 3352 8 2647	490 448 666 362 740 326 227 261 268 475 358 379	203 184 300 134 546 107 93 88 76 202 155 129	287 264 366 228 194 219 134 173 192 273 203 250	855465832864	45 500 28 21 22 21 45 34 27	57 70 117 58 213 39 26 31 30 71 50 57	221463255732	25115933335425	50 58 945 130 21 22 256 39 46	355483010464	26 15 21 13 16 11 8 10 11 26 19 14	15 24 11 16 11 8	456311112433	37 22 57 18 246 19 15 8 24 23 12

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER MAIN STEM & MINOR TRIB.

STATION LOCATIONOHIO RIVER AT

HUNTINGTON, WEST VIRGINIA

	DATE	T						CHLORINE	DEMAND	.						SULFATES	PHOSPHATES	TOTAL	COLIFORMS
MONTH 0	SAMPI	-	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/I	Mg/I	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	mg/l	mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
10	3 5	60	22.3	-	7.1	-		-	_	•5	- 36	_ 27	178	5	8	178	-	380	570
10	10	60	-	-	-	-	-	-	-	- • 5	- 40	22	167	10	8	161	-	390	~
10		60	20•2	-	7.1	-	-	_	-	_	45	23	183	10	- 9	153		360	360
10	19	60	18.3		7•4	-	-	-	-	•8	_	-	-	_	14	- 197	_	- 360	170
10	26	60	15.0	-	7.1	-	-	-	-	1.0	55 -	28	196	10	-	-	-	_	170
10		60 60	14.9	-	7.2	-	-	-	-	1.2	72	31	196	10	8	166] =	470 —	180
11	7	60	12.3	_	7.1	-	-	_	_	-8	67	35	184	10	41	223		440 -	670
11	14	60	_	-	7.1	-	-	_	-	1.0	58	34	158	10	20	206	-	400	2000
11	21	60 60	12.8	_	-	-	-	-	_	-	_ 50	30	172	5	10	216	-	380	-
11 11	23	60	8.1	_	7.3	-	_	-	_	•6	-	-	i -	- 5	28	230	_	400	650
11	30	60	8.9	-	7•2	_	_	_	_	•6	53 -	27	177	-	-	-	-	480	230
12 12	5 7	60 60	8.5	l.	7.3	-	-	-	_	•7	75 -	35	202	1	11	197	-	-	130
12 12	12 14	60 60	3.3	1	6.9	_	_	-	_	.8	92	42	218	10	14	220	1 =	520	860
12	19	60	_	_	7.1	-	_	_	_	1.3	55	38	155	1	10	151	1	340	650
12 12	21 26	60 60	3.9	-	-	_	-	-	-	1.0	62	36	170	1	12	173	1	360	-
12	28	60 61	3.9	_	7.5	_	_	_	_	-	-	-	120	-	100	130	1	260	1300
1	4	61	2.9		7.1	_	_	_	_	1.0	36		134	15	33	178	-	,	3500
1	11 16	61	-		-	-	-	-	_	-6	30	33	116			120	-	280	-
1	18 23	61	5 • 4	· ·		_	_] =	-	_	_	-	-	• -	1	108	1	1	100
1	25	61	2.1	: -		_	_	-				-	-	- -	-		- -	-	*10
1 2		61	2.4		7.1	-	_	=	3	• 7	41		1	10	1		- -	-	150
2 2		61	2.4	; =	1	-	-	-	-	•7	4.8	39	1	10	1		3 -		440
2		61	3 • 2	. -		-	_			• 6		1	1			82	2 -	200	-
2	"	31	٠.٠				<u> </u>												

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

2

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER MAIN STEM & MINOR TRIB.

STATION LOCATIONOHIO RIVER AT

HUNTINGTON, WEST VIRGINIA

DATE OF SAM		TEMP.	DISSOLVED				CHLORINE	DEMAND	AMMONIA-						A111 = 1 WF-		TOTAL	COLIFORM
DAY	YEAR	(Degrees Centigrade)	OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	I-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/I	(scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/I	DISSOLVED SOLIDS mg/l	per 100 m
20	61	6.1	-	6.9		<u>-</u>	1 1		. 8	20	- 32	112	- 15	400	- 91	_	240	3500
27	61	-	-	-	_	_	_	_	-	-	-	_	_	-	-	-		3700
1 6	61	5.8	-	6.9	-	-	-	-	• 2	12	21	62	30	280	53	_	140	590
8	61	10.3	-	6.7	_	_	_	-	•2	9	22	80	15	240	72	_	140	3,0
13	61	-	_	-	_	-	_	-	-	_	-	-	-	-	-	-	_	440
15	61	7.6	-	6.9	_	-	-	-	•6	16	21	78	10	120	82	_	170	370
20	61	8.1	_	6.9	_	_	_	_	•3	17	29	92	10	130	82	_	200	3,0
27	61	- 0	_	0.7	_	_	_	_	-	-		-	-	-	_	-	-	510
29	61	9.6	.v	7.0	-	-	-	-	•3	16	27	105	5	120	77	-	220	
. 3	61	-	-		-	-	-	-		- 14	30	100	5	150	- 63	_	180	1700
10	61	9.3	_	7.1	_	_		_	• 4	16	J 0	100	-	150	62	_	_ 100	420
12	61	9.2	_	7.1	_	_	_	_	•4	18	28	95	5	70	72	-	220	,
17	61	-	-	_	-	-	-	_	-	-	-	-	-		-	-	-	25
19	61	8.9	-	7.0	-	-	-	-	• 5	13	25	81	5	150	79	_	160	46
24	61	13.0	_	7.2	_	-	_	_	• 4	13	25	84	10	120	102	_	200	70
120	61		_	-	_	_	-	_		-	_			_	_	_	-	47
3		13.1	-	6.9	_	-	-	-	•5	13	24	69	25	145	67	-	120	
8	61		-		_	-	-	-	_	-		79	35	185	67	_	160	80
10	61	14•4	_	7.2	_	_	_	_	•3	11	26	19	25	105	- 57	_	-	14
117	61	16.8	_	7.2	_	_	_	_	• 5	7	33	86	15	97	77	-	180	
22	61	-	-	-	-	-	-	-	-	_	_	-	-	_	-	-	-	26
24	61	18.3	-	7 • 2	-	-	-	_	1.2	22	30	122	5 -	39	101	_	260	
29 31	61	17.8	_	7.1	_	_	-	_	• 5	23	31	100	5	27	124	_	280	1
6	61	-	-		_	_	-	_	_			-	_	_		-	-	14
7	61	20.3	-	7.1		-	-	-	• 2	23	39	150	10	130	138	-	280	
12	61		-		-	_	-	_	•2	- 12	28	99	30	185	111		240	30
14	61	22.5		7.1	_	_	_	_	• 4	12	28	99	30	102	111	-	240	33
21	61	21.5	-	7.6	_	-	_	_	• 3	19	25	88	10	45	240	-	200	
26	61	_	-	-	-	-	-	-	-	-				-	_	-	- 000	110
28	61	21.3	-	7 • 1	-	_	-	_	• 2	23	36	108	15	31	82	-	220	2
' 3	61	-	-	-	-	-	-	_	_	_	_	-	-	-	_			'

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER MAIN STEM & MINOR TRIB.

STATION LOCATIONOHIO RIVER AT

HUNTINGTON, WEST VIRGINIA

DATE						CHLORINE	DEMAND									TOTAL	COLIFORMS
DAY PEAR 40	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/i	рΗ	B.O.D. mg/l	C.O.D. mg/l	T-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	mg/I	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/I	DISSOLVED SOLIDS mg/l	per 100 ml.
7 5 61 7 10 61 7 12 61 7 17 61 7 12 4 61 7 24 61 7 31 61 8 2 7 61 8 2 7 61 8 2 7 61 8 2 7 61 8 2 7 61 8 2 7 61 8 2 7 61 8 2 7 61 8 2 7 61 8 2 7 61 8 2 7 61 8 2 7 61 8 2 7 61 8 2 7 61 8 2 7 7 61 8 2 7 7 61 8 2 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	23.9 24.4 25.5 1 27.2 1 25.7 1 25.7 1 25.7 1 27.2 1 27.2 1 27.2	6.00	7.1 7.2 7.1 7.1 7.1 7.1 6.9 7.3 7.2 7.5				-	•3 •2 •6 •4 •3 •4 •2 •6 •5 •4 •6 1•0	27 -27 -48 -30 -22 -7 -28 -39 -325 459 65		118 - 132 - 116 - 148 - 136 - 110 - 114 160 150 148	5 - 10 10 10	28 20 80 140 75 65 50 17 16 12 10 4 6	115 - 110 - 106 - 173 - 125 - 148 - 106 - 158 154 125 125	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	260 - 220 - 300 - 260 - 240 - 260 - 260 320 320 320 420	760 450 190

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Huntington, West Virginia Operated by U.S. Geological Survey

STATE

West Virginia

MAJOR BASIN

Ohio River

MINOR BASIN

Ohio River-Main Stem & Minor Trib.

STATION LOCATION

Ohio River at

Huntington, West Virginia

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	8.230	15.700	10.400	80.900	18.300	333.000	127.000	214.000	43.000	25.300	FO. 200	15 (00
2	11.000	14.200	12.100	77.600	14.500	322.000	136.000	220,000	50.000	39.900	52.300 70.100	15.600
3 4	8.940	18.000	13.700	65.500	14.900	301.000	175.000	221.000	79.000	29.200	82.000	19.100 14.400
	9.020	17.600	12.100	55.300	21.000	276.000	162.000	188.000	105.000	27.800	111.000	9.790
5	.8.940	19.700	13.000	39.600	21.200	263.000	138.000	163.000	101.000	32.400	107.000	12.400
6	7.010	17.300	14.800	35.600	18.000	276.000	129.000	157.000	95.800	36.000	76.800	14.800
7 8	7.150	20,000	11.800	30.700	20.600	295.000	119.000	165.000	85.300	44.700	45.100	24.800
8	8.390	25.000	9.900	39.800	32.100	292.000	107.000	205.000	56.000	37.700	28.500	17.000
9	7.310	38.500	10.100	46.600	27.300	295.000	102.000	225.000	85.600	35.500	35.500	15.900
1.0	10.200	34.400	9.320	36.300	22.100	296.000	98.100	226.000	124.000	27.000	29.200	14.500
Ll	10.600	33.000	14.600	29.400	42.900	292,000	109.000	204.000	157.000	18.700	33,100	21.200
12	9.220	32.400	22.400	28.600	53.300	269.000	137.000	185,000	153.000	22.100	65.900	15.800
L3 L4	9.400	44.700	15.300	28.600	70.000	244.000	147.000	166.000	131.000	18.400	79.500	12.200
	9.510	33.800	12.300	28.800	96.200	221.000	181.000	164.000	126.000	28.400	73.900	13.200
L5	10.200	33.500	14.000	51.200	134.000	211.000	205.000 .	152.000	135.000	46.600	38.600	14.700
L6	10.300	27.600	17.400	94.900	147.000	196.000	217,000	120,000	150,000	70.600	22.700	70 loo
-7	9.220	21.400	15.500	106.000	139.000	190.000	227.000	98.000	150.000	52.700	33.100 45.500	12.400
.8	7.310	14.500	13.700	96.300	129.000	183.000	226,000	88,000	130.000	63.600	25.400	10.100
-9	10.800	22.300	12.500	84.100	127.000	164.000	210.000	83.000	85,700	52.400	17.000	11.100
20	18.200	21.200	13.400	72.400	172.000	140.000	197.000	88.000	45.000	122.000	17.600	11.100
21	11.200	10.200	23.800	49.800	206.000	126.000	187.000	81.000	45.000	114.000	20,100	
22	9.320	15.700	25.700	41.700	214.000	141.000	191.000	75.000	48.500	76.000	23.800	15.900
:3 :4	11.500	13.100	15.300	36.100	214.000	175.000	1.94.000	68,000	51.800	62.700	18.700	23.100
:4	20.100	11.200	12.300	21.600	213,000	190.000	196.000	66.000	51.000	40.400	16,000	13.000 12.900
5	12.200	15.100	11.700	22.100	227.000	183.000	195.000	65.000	48.000	62.900	20.100	14.500
6	11.200	12.200	15.200	26.200	259.000	166.000	196.000	50.000	34.100	60.100	30 500	•
7	22.900	12.300	17.000	26.300	301.000	147.000	238.000	53.000	41.200	61.000	19.500	16.000
8	8.140	11.200	18.600	25.800	323.000	130.000	258.000	47.000	30.000	36.600	31.700 26.600	17.000
9. 0	10.900	16.500	28.500	25.400	-	119.000	256.000	50.000	34.400	40.000		12.000
	10.000	13.000	40.800	23.300		111.000	239.000	51.000	35.900	40.700	19.300 23.100	15,400
1	13. <i>6</i> 00		69, <i>6</i> 00	19.700		110.000	57 3	38.000	37.500	37.700	16.800	10.800

STATE

OHIO

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

EAST LIVERPOOL, OHIO

39

			BARIO	ACTIVITY IN V	WATER			RADIOA	CTIVITY IN PLAN	IKTON (dry)	RAD	IOACTIVITY IN W	ATER
DATE			ALPHA	ACIIVIII IN V	TAILS.	BETA				CTIVITY		GROSS ACTIVIT	Y
SAMPLE TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR		μμε/I	μμε/Ι	μμς/1	μμς/Ι	μμс/1	μμε/1	MO. DAY	μμс/g	µµс/g	μμε/1	μμc/l	##c/1
MO. DAT TEAR	MONTH DAT											}	
0 13 60*	10 21	o	0	0	0	0	0						
	12 20	0	ĭ	ī	0	0	0	i i		1			
1 7 60 1 28 60*		_	-		1 0	0	0			\ <u> </u>			
	1	_	_		0	3	3	1 1		Į I			
2 19 60	1 19	0	1	1	1 0	o l	0						
1 10 61	1 -	-	_	_	1. o l	0	0			1 1	İ		
1 23 61*		0	0	0	0	ō	0].					
2 15 61	3 22		-	_	l ŏ l	. 0	0			1 1			
2 28 61	3 22	-	0	1	ŏ	3	9					ì	
3 14 61*		1	0		1 0 1	ő	o` l		.	1	i	1	
3 28 61*		-	0	1	0	ŏ	ŏ	i i		.			
4 12 61*	1] 1		_	0	ŏ	ŏ	ļ !					
4 25 61*		1 -	_			8	8			1 1			
5 9 61*		0	0	0		ő	ŏ	i i				ļ	
5 22 61*		_	_	-		0	ŏ					Ì	
6 12 61*		1	0	1	1 1	0	ŏ			i i			
6 27 61*	7 31	-	-	-	0	0	ŏ			1			0
7 10 61*	7 26	0	0	0	0	1	i			1 1	ļ		
8 1 61*	8 31	_	-	-	0	_				1 1	j	1	1
8 17 61*	9 12	0	0	0	3	1	4 0		ļ	1	1		
9 1 61	9 28	-	- 1	_	0	0							
9 18 61	10 16	-	-	-	1	7	8		1				
		1					!						
					\ \ \	Ì	ì	1	\				
						*					Ì		
]] !				Į.		Ì		
					İ				i			1	
	1						1						İ
		Į.			1		1	i					
		00							Ì		1		ŀ
					1		1		ļ	4			
			i				1	1				1	1
	1						}		ì				
					l l				ļ	1			
							Ì	1				1	
	1								1				
	1	1							1	1			
			1							1		1	
		İ									i	1	1
		ì											
	1		1		1	i		ı	1	1	1 1	1	1

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

OHIO

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

EAST LIVERPOOL, OHIO

DATE					ALGAE (1	Vumber	per ml.)				INF	RT																
OF SAM			BLUE-	GREEN	GREE	N	FLAGEL (Pigme		DIAT	OMS		ERT TOM ELLS er ml.)		DOMI (See	NANT	SPEC	IATO IES AI for Co	ND PE	RCEN [*]	TAGES	3	ROPLANKTON, SHEATHED.	2	1	VERTEB	T	FORMS	netion ation)
MONTH	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER-	SECOND*	PER. CENTAGE	THIRD#	PER. CENTAGE	FOURTH*	PER- CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLANK FUNGI AND SHEATH: BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORMS (No. Der liter) DOMINANT GENERA	(See Introduction for Identification)
10 4 11 2 11 7 11 18 12 1 12 19 1 9 2 15 2 28 3 14 3 30 4 12 4 25	60 60 60 60 61 61 61 61 61 61 61	1900 300 6200 2200 400 100 800 200 200 4400 1600 600 2000 2000	20	20	850 110 20 20 20 40 60 40 120 670		460 90 6140 2120 290 140 20 240 100 20 1490 310	350 70 50	50 20 20 110 90 50 400 330 130 20 160	50 20 20 20 630 90 160 3690 1100 400 3700	180 50 20 20 100 70 20	250 250 50 440 290 200 60	26 26 26 26 26 26 26 26 82 92 92 92 92 92	30 20 20 10 30 10 20 40 20 40 20 60	56 62 27 62 92 26 92 99 82 99	20 10 10 10 10 10 10 10 10 10 10	70 82 36 36 82 36 36 2 35 56 65	10 10 10 10 10 10 10 10 10 10	62 36 56 76 65 50 16 62 82 45 66	10 10 10 10 10 10 *	30 60 60 50 70 70 60 40 60 50		10	7 13 1 1	5 2	1 1 2	35	31 3- 1 5973 -963
6 27 7 17 8 9 8 18 9 1	61 61 61 61	6200 5600 2900 300 3900 2300	20	970 2690 60 210 40	2900 1800 460 250 1320 1100	20	1590 460 2240 460 350	40	440 210 100 620 290	110 270 370 40 20 1240 410	20 20 40	80 80 20	26 56 56 27 56	30 40 30 70	26 26 70	10 20 10 10	56 92 92 92 26	10 10 10 10	27 62 57 92	10 * 10 10	70 40 50 40 50 10 10	170 20 40 60		53 6 2 117 168	2 9 5 5 5 26 18		48 48 42	3 3-32 3923 2164 3-35

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

OHIO

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

EAST LIVERPOOL, OHIO

													CHLOROF	ORM EXTR	ACTABLES				
		OF SA	MPLE			EX	TRACTABL	ES		1			NEUTRALS						
MONTH	рау	YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	Loss
10 12 2	13	60 60 61	11 1 3	30 17 6	2500 4000 1416	939 344 1156	379 118 766	560 226 390	8 3 8	72 15 31	223 64 559	78 26 274	12	23	20 3 5	42 15 84	23 5 8	8 1 8	3 15 68
																-		~	
																170-020			

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Sewickley, Pennsylvania Operated by U.S. Geological Survey STATE

Ohio

MAJOR BASIN

Ohio River

MINOR BASIN

Ohio River-Main Stem & Minor Trib.

STATION LOCATION

Ohio River at

East Liverpool, Ohio

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	5.460	6.160	5.680	22.000	7.010	142.000	47.000	95.000	19.600	15.800	12.300	6.490
2	5.080	7.360	6.080	20.400	8.210	135.000	61.500	83.500	26.000	10.800	14.900	6.830
3	4.650	8.400	6.240	18.900	8.210	127.000	55.200	68.000	41.100	10.700	29.600	7.010
4	4.720	8.120	5.530	17.200	7.100	127.000	52.000	59.400	53.100	15.300	42.000	5.830
5	5.080	7.830	4.800	15.800	6.650	125.000	47.000	49.000	47.000	12.600	36.400	6.740
6	5.680	6.920	4.580	14.100	6.080	130.000	42.000	39.200	38.200	14.200	26.000	10.000
7	5.160	6.830	5.600	15.500	6.920	120.000	45.000	40.200	31.000	25.200	20.400	9.500
8	5.160	10.200	5.680	15.300	7.540	125.000	52.000	52.000	28.500	19.600	15.800	8.310
9	4.720	12.800	5.680	16.000	7.360	122.000	46.000	72.400	28.500	13.200	12.200	7.360
10	4.370	12.100	5.680	16.200	6.920	125.000	43.000	65.800	46.200	9.500	9.610	7.100
11	4.650	14.400	5.300	14.800	8.310	122.000	57.300	59.400	65.800	8.310	9.830	5.530
12	4.870	17.600	4.300	15.300	8.400	117.000	68.000	59.400	70.200	8.210	17.200	5.530
13	4.800	18.300	3.960	14.800	9.000	104.000	79.000	55.200	65.800	8.310	29.400	5.910
14	4.510	15.500	4.560	14.500	18.900	81.200	88.100	43.000	61.500	9.720	20.400	5.830
15	4.440	13.900	5.230	14.900	49.200	83.500	92.700	31.900	65.800	12.800	20.400	5.680
16	4.300	12.400	5.350	15.100	48.000	88.100	95.000	33.700	59.400	11.100	18.600	5.530
17	3.560	10.500	5.990	24.400	37.300	79.000	97.300	37.300	48.000	8.400	13.200	5.160
18	3.490	8.900	5.760	25.200	65.000	68.000	97.300	37.300	31.900	12.700	8.500	4.720
19	5.040	8.210	5.230	24.400	102.000	55.200	99.700	38.200	23.600	15.500	7.540	4.300
20	5.230	7.360	5.760	22.000	142.000	59.400	92.700	38.200	21.200	18.400	7.270	5.980
21 22 23 24 25	5.230 6.080 5.910 4.800 4.720	6.570 6.320 7.830 7.180 5.990	6.490 6.320 5.760 6.240 5.460	18.900 13.700 10.800 9.400 9.100	123.000 112.000 114.000 137.000	68.000 76.800 83.500 70.200 68.000	81.200 74.600 85.800 83.500 88.100	36.400 32.800 32.800 31.900 27.600	18.900 20.400 20.400 18.900 14.600	16.800 17.700 15.100 13.900 19.600	9.400 9.940 7.830 7.180 8.400	8.020 7.540 6.160 5.760 4.870
26 27 28 29 30 31	4.870 5.530 5.760 6.160 5.760 5.230	5.990 5.460 4.510 4.650 5.680	5.010 5.830 9.360 11.600 15.200 23.600	8.210 8.310 7.450 6.240 6.160 5.910	156.000 164.000 146.000	57.300 50.000 45.000 46.000 50.000 45.000	155.000 159.000 130.000 122.000 114.000	26.000 24.400 25.200 22.000 22.000 17.800	13.500 13.700 12.800 10.800 11.100	19.600 17.700 14.800 17.100 12.600 11.800	7.920 7.640 6.650 6.740 7.010 6.650	4.940 5.080 5.010 5.160 5.010

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

OUACHITA RIVER

STATION LOCATION OUACHITA RIVER AT

BASTROP, LOUISIANA

			P + 151	OACTIVITY IN V	VATED		 1		RADIOA	TIVITY IN PLAN	IKTON (dry)	RAD	DIOACTIVITY IN W	ATER
DATE				DACITY IT IN V	YATEK	BETA				GROSS A			GROSS ACTIVIT	Υ
SAMPLE TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL		DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
			μμε/I	μμc/l	μμς/Ι	μμε/1	μμε/Ι		MO. DAY	μμε/g	μμc/g	μμc/1	μμε/Ι	μμς/Ι
O. DAY YEAR	MONTH DAY	μμς/ί	FFGI	FFUT	11.41									
3 14 61	9 12	. 0	2	2	0	12	12		i					
3 22 61	9 22	ŏ	ō	ō	15	16	31							
3 22 61	9 27	ŏ	ŏ	0	0	6	6		1					
29 01	7 2 1	~											!	
											l			
		ļ				1						ļ		
							ļ							
									i			ĺ		
		Ì							i					
					1	1						i		
					1	İ								
		*			1						ì			
						ļ					1			
									1					
			İ	Ì										
		1												
				ĺ										
			1	1	1									
	ı	Į		İ								· .		i
		1				1					ļ.			
		ļ			Ì								1	
		1			}			ļ				1		
								İ			1			
				ļ	1				1	Ì	1			1
	1							Ì				i		
									1					
	1	Į			Į.							1		1
			1					ì		1				
					1		ļ		1	1] [
				1	i			1						
		1		1				1						
											ì			
	1													
	1	1		1	1		1			1				1
			1				1							
		1						1						
		1					1	1		1	1		1	
	1	1	1	1	1	1		1	1		1			

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

OUACHITA RIVER

STATION LOCATION OUACHITA RIVER AT

BASTROP, LOUISIANA

-	DAT	TE	T			ALGAE (Numbe	r per ml.)				INE	ERT	I			D	IATO	MS						MICROIN	VERTEBR	ATES		
	SAI		E	BLUE-	GREEN	GREE	EN	FLAGE! (Pigm	LATES ented)	DIAT	омѕ	SHE (No. p	ERT TOM ELLS er ml.)		DOM! (See	NANT Intro	SPEC	IES AI	ND PE	RCENT ntificat	rages ion*)	3	PLAKKTON EATHED 12.)	M.)	T			FORMS	ENERA luction cation)
MONTH	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND*	PER. CENTAGE	TRIRD#	PER. CENTAGE	FOURTH*	PER. CENTAGE	OTHER PER-	OTHER MICROPLANKTON, FUNGI AND SHEATHED BACTERIA (NO. pet mil.)	PROTOZOA (No. per m	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORMS (No. per liter)	DOWINANT GENERA (See Introduction for Identification)
E 5						130		40 80	40	540 270	170		80				30 20								77 24	4			47
																													· · · · · · · · · · · · · · · · · · ·

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

OUACHITA RIVER

STATION LOCATION OUACHITA RIVER AT

BASTROP, LOUISIANA

DAT								CHLORINE	DEMAND									TOTAL	COLIFORMS
OF SAI		-	TEMP. (Degrees Centigrade)	OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l		COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
AYG 888999	5 6	61 61 61 61	30.0 29.0 29.0 29.0 -	6.0 6.1 6.8 6.4 -	6.7 6.7 6.7 6.7 7.0		-						68	15		15	- 1 - 1	249	10000

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station near Arkansas-Louisiana State Line Operated by U.S. Geological Survey STATE

Louisiana

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Ouachita River

STATION LOCATION

Ouachita River at

Bastrop, Louisiana

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	5.000 4.000 3.500 3.000 3.000	2.790 2.360 2.070 2.150 2.350	2.640 3.000 3.500 4.000 5.000	14.300 16.000	5.610 5.110 5.340 5.060 5.010			& ;		2.620 2.660 2.690 2.570 2.500	5.270 5.300 5.680 4.040 4.390	4.430 4.550 4.790 4.910 4.960
6 7 8 9 10	2.910 2.980 3.420 4.350 5.330	2.560 2.740 2.760 2.620 2.380	5.700 6.130 10.300 14.200 15.600		5.180 4.700 5.370 5.700 6.730				5.000 4.650 4.330 3.750 4.490	1.940 2.000 1.600 1.590 1.710	4.870 5.290 5.400 5.920 6.000	3.930 3.240 3.090 3.120 3.270
11 12 13 14 15	5.400 4.720 3.650 3.240 3.150	2.580 3.740 5.260 4.640 4.840	16.800 17.700 18.000	11.700	7.910 8.150 8.130 7.800 6.490		E.		4.140 4.340 4.630 4.800 5.420	1.870 2.150 2.280 2.780 4.320	4.520 4.170 4.480 5.780 5.960	3.470 3.680 4.010 4.940
16 17 18 19 20	3.240 3.280 3.330 3.270 2.990	5.360 4.210 4.830 5.070 6.730		10.800 10.000 9.850 10.000 10.200	5.740 5.760 7.080 11.600			•	4.380 4.390 4.570 3.420 4.600	9.030 15.900	4.250 3.610 3.730 4.030 4.210	5.800 6.600 7.570 7.200 6.020 4.620
21 22 23 24 25	3.050 3.090 3.120 3.130 3.160	6.750 6.600 5.290 4.660 4.500		10.300 10.200 8.940 8.560 7.870	RI TO				6.660 4.190 1.660 2.190 2.550		5.000 6.130 5.320 4.050 3.870	3.330 3.140 3.150 3.280 3.430
26 27 28 29 30 31	2.950 2.640 2.520 2.630 2.830 2.910	4.350 4.250 4.040 3.470 2.930	12.200 10.800 10.300 11.500 12.700	7.170 7.140 7.060 6.650 6.620 6.570					2.760 3.270 2.850 2.650 2.640	12.300 9.740 7.300 6.540 5.860	3.970 4.980 6.020 5.790 4.930 4.560	3.550 3.170 3.060 3.000 3.000

No discharge measurements were made for part of the year because of high flows that could not be measured accurately. No records are available for these periods.

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER MISSOURI BELOW NIOBRARA RIVER

STATION LOCATION PLATTE RIVER ABOVE

PLATTSMOUTH, NEBRASKA

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI BELOW NIOBRARA RIVER

STATION LOCATION PLATTE RIVER ABOVE

PLATTSMOUTH, NEBRASKA

1	DAT	E		,		ALGAE (Number	per ml.)				INI	ERT	T															
	SAM	IPLE		BLUE-	GREEN	GRE	EN	FLAGE!	LLATES ented)	DIAT	омѕ	DIA SHE	ERT TOM LLS er ml.)		DOM (Se	INANT e Intro	D SPEC duction	IATO IES A for Co	ND PE	RCEN	ITAGE	s	VAKTOR, VTHED	-	T	NVERTEB		ž.	EnA tion tion)
MONTH	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	соссоів	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE		PENNATE	FIRST#	PER. CENTAGE		PER.		Ι				OTHER HICKOPLANKTOR, FUNGI AND SHEATHED BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	THER ANSHAL FO	DOMINANT GENERA (See Introduction for Identification)
9	21	61	26700 15300 40700 36300	90 270 40		4000 2230 10330 13580		460 960 730 990	20	10430 8510 17990 14970	11180	2680	2690	46	160	82	10	55	* * 10	92 78 48	*	40 40 30	40		9	1	1		487- 4876 4896 4896
				×																									
						-																				·			
																				,									

NEBRAŠKA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

STATE

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI BELOW NIOBRARA RIVER

STATION LOCATIONPLATTE RIVER ABOVE

PLATTSMOUTH, NEBRASKA

DATE OF SAM							CHLORINE	DEMAND										
МОМТН	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/I	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATEȘ mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/I	COLIFORMS per 100 ml.
8 2	61 61 61 61	24.6	8.9 12.1	8.5 8.2 8.7	5.4 6.6 6.8 6.2	54 46 32 45 22		1 1	1.2 .3 .4 .2 .2	172 124 120 135 89	168 174 160 176 144	156 146 160 160 148	-	700 420 280 160 180	48 40 66 46 24	1.1 .8 1.1 1.1	468 274 406 420 432	-
															e			
													×.					
									:								:	

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Louisville, Nebraska Operated by U.S. Geological Survey STATE

Nebraska

MAJOR BASIN

Missouri River

MINOR BASIN

Lower Missouri-Niobrara River

STATION LOCATION

Platte River above

Plattsmouth, Nebraska

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	3.160	3.850	2.720	3.850	3.260	8.640	5.830	4.870	10.700	3.900	2.480	1.770
2	3.070	3.920	3.620	3.770	2.840	9.930	5.460	4.390	15.800	3.550	2.960	1.580
3	3.200	4.330	2.690	3.510	2.540	8.690	5.600	4.310	12.900	3.250	3.290	1.600
4	2.880	4.370	2.780	3.330	2.490	7.500	5.180	4.560	9.140	3.140	3.320	1.770
5	2.880	4.040	2.840	3.370	2.540	7.030	5.000	5.600	7.980	2.420	3.030	1.480
6	2.720	3.810	4.770	3.810	2.690	7.440	5.140	6.120	6.920	2.860	2.260	1.150
7	2.600	3.730	6.350	4.160	2.840	7.820	4.870	6.520	7.980	2.720	1.790	1.360
8	2.400	3.810	6.150	4.290	3.030	8.140	5.790	6.670	7.340	2.550	1.630	1.460
9	2.690	3.690	4.860	4.290	3.230	6.770	5.880	6.720	6.920	2.930	1.560	1.580
10	2.750	4.120	4.120	4.250	3.470	6.420	5.370	6.470	6.820	2.260	1.600	1.740
11	2.840	3.650	3.580	4.250	3.770	7.440	6.320	6.520	6.220	2.050	1.430	2.360
12	2.630	3.920	3.260	4.120	4.080	7.870	8.910	6.270	5.690	2.230	2.020	3.710
13	2.940	4.040	3.230	4.040	4.500	8.360	8.520	5.790	4.870	2.300	1.990	4.650
14	3.130	3.810	3.510	3.810	5.040	8.250	8.470	5.510	5.050	2.790	1.560	3.860
15	3.400	3.650	3.810	3.690	5.400	8.580	8.470	5.510	10.200	2.480	1.850	3.290
16	3.200	3.440	4.040	4.000	5.750	12.600	7.870	6.670	11.800	2.330	1.560	2.450
17	3.160	3.620	4.120	4.370	5.650	10.600	7.180	7.390	13.300	2.300	1.290	2.690
18	3.330	3.620	4.160	4.500	5.180	10.300	6.170	7.500	9.360	2.170	1.260	2.550
19	3.400	3.850	3.510	4.430	5.040	9.820	5.980	7.080	9.080	1.790	1.630	2.330
20	3.440	4.000	2.130	4.160	5.180	8.970	5.510	6.420	7.980	1.690	1.820	2.230
21	3.300	4.000	1.450	3.880	5.400	8.360	5.600	6.670	7.440	1.430	2.590	2.450
22	3.550	3.880	1.040	3.160	5.900	8.300	5.280	6.320	7.660	1.480	3.740	2.650
23	3.770	3.810	1.050	2.400	6.500	9.020	5.000	6.670	7.600	1.430	3.740	3.480
24	4.250	4.000	1.650	1.650	7.320	8.580	5.280	11.400	7.340	1.240	3.360	3.250
25	3.810	4.040	3.330	1.410	8.120	7.980	5.100	12.600	6.980	1.030	2.650	3.550
26 27 28 29 30 31	3.770 3.770 3.650 3.880 3.920 3.770	4.120 4.950 5.260 5.220 2.750	3.160 2.130 2.210 2.400 3.300 3.770	1.450 1.610 1.880 2.320 2.840 3.200	10.000 11.000 8.690	7.500 7.710 8.580 7.340 6.820 6.420	5.100 4.920 4.920 4.610 4.690	11.000 9.870 8.250 7.180 6.670 6.420	6.720 5.830 5.140 5.230 4.310	1.030 1.200 1.600 2.590 3.000 2.720	2.390 2.720 2.720 2.360 1.710 1.660	3.550 2.750 2.860 3.290 3.710

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

POTOMAC RIVER

STATION LOCATION POTOMAC RIVER AT

GREAT FALLS, MARYLAND

DATE			RADI	OACTIVITY IN V	VATER				RADIOA	CTIVITY IN PLAN	NKTON (dry)		RAD	IOACTIVITY IN W	ATER
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA					CTIVITY			GROSS ACTIVIT	
TAKEN		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL		DATE OF SETERMI- NATION	ALPHA	BETA	s	USPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	MONTH DAY	μμc/I	μμε/	μμς/Ι	μμε/Ι	μμς/(μμε/Ι		O. DAY	μμc/g	μμc/g		μμε/Ι	μμε/ὶ	μμc/I
	MONTH DAY * 11 3 * 12 5 * 1 12 * 2 10 * 3 10 * 4 10 * 5 12 * 7 17 * 8 11														

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATION POTOMAC RIVER AT

GREAT FALLS, MARYLAND

DATE				ALGAE (Number	per ml.)				IN	ERT TOM	-				IATO	MS		-		Ι.	Т	MICROI	VERTEB	RATES		ı
OF SAMPLE		BLUE-	GREEN	GRE	EN	FLAGEI (Pigm	LATES ented)	DIAT	омѕ	SHE	TOM ELLS er ml.)		DOM:	NANT Intro	SPEC	IES A	ND PE	RCEN [®]	TAGEs	3	SHEATHED ml.)	A ml.)			T	TORMS	ENERA fuction cation)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND®	PER. CENTAGE	THIRD#	PER-	FOURTH#	PER.	OTHER PER- CENTAGE	OTHER RICROS FUNGI AND SH BACTERIA (No. per m	PROTOZOA (No. per m	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER AREMAL (No. per liter	DOMINANT GENERA (See Introduction for Identification)
10	15900 600 700 400 100	20 20 100 40 150 310	40 250 640 410 20	290 270 1300 2050 2050 2260 2130 3710 1240 420	1	20 90 130 90 20 20 40 70 60 60 50 2130 620 170 230 40	20 50 20	1170 15360 270 330 130 20 70 20 70 1910 190 190 14260 8240 2240 4410 5440 1060 250	130 110 200 200 1270 3160 3160 5100 1220 1570 9560 170 270 270 270 270	990 70 20 70	580 490 600 500 1340 330 60 40 170 120	36 64 62 16 92 92 92 27 27 27 27 23 23	50 30 20 30 20 30 20 10 10 10 50 40 30 80 90 60	82326263662459233162260677222	30 10 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	27 26 82 71 64 51 36 64 86 36 93 26 27 26	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2 23 70 70 2 70 93 21 62 51 92 62 70 86 65 36 36	10 * 10 10 10 10 10 * * * 10 * * * 10 * * * 10 * * * *	30 240 440 550 460 660 73 40 10 10 10	70 110 50 20 40	10	1 1 1 2 6 6 1 3 1 7 5 3 1 0 5 5 5 5	2	1 2 1	1	4-9 4-9

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATION POTOMAC RIVER AT

GREAT FALLS, MARYLAND

DATE OF SAMPLE			EX	TRACTABL	ES					CHLOROF	ORM EXTRA	CTABLES				
BEGINNING E	END									NEUTRALS						
DAY YEAR MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS ·	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
12 19 60 1 1 24 61 2 2 27 61 3 4 3 61 4	28 3 7 13 19 29 14 15	3713 3457 3729 3480 3216 3074 4323 2934 3160 3505	248 303 322 365 265 262 106 282 351 251	67 99 60 104 57 97 49 89 117 102	181 204 262 261 208 195 57 193 234 149	3317141554	18 23 11 25 14 27 11 25 30 25	23 37 26 26 16 24 17 27 25 25	111254423	ณ	18 33 21 22 12 16 10 19 19 20	222110011100	77 111 77 100 55 100 133 100	4828493837	1 2 1 2 1 1 0 0 1 2 2 2	11 15 13 25 14 22 13 29 29

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATIONPOTOMAC RIVER AT

GREAT FALLS, MARYLAND

DATE	1					CHLORINE	DEMAND				!						
DAY PEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10 5 60	17.7	8.2	8.5	• 6	5	2.6	6•4	•0	10	85	116	7	20	39		172	
10 10 60		9.2	8.1	2.2	6	2.7	4 • 6	• 1	6	90	122	5	12	37	-	156	80
10 17 60		9.0 10.0	8.5	3.6	8	2 • 1	6.0	•1	9	88	118	7	15	35	_	160	550
10 31 60	12.5	9.4	8.7	2.8 1.2	11	1.4 1.7	4 • 6 3 • 5	•1	12 14	102	126 130	7 7	10 10	34 40	_	176 208	180
11 7 60		4	8.4	1.8	8	1.8	4.7	•1	15	95	130	'7	12	41	_	177	_
11 7 60	_		_	-	_			-	-	'-	-		-	71	_	111	200
11 14 60	7.3	11.6	8.6	3.6	11	2.7	6.4	•1	14	97	126	6	10	35	_	178	96
11 21 60	8.3	11.8	8.8	1.9	9	1.2	4.5	• 0	18	97	144	7	8	47	_	203	_
11 28 60	7.3	12.2	8 • 4	1.4	9	1.1	4 • 2	•0	11	100	138	7	8	44	-	191	200
12 5 60	2.8	12.0	8.2	2.6	10	2.2	4•7	•1	11	95	134	10	10	37	-	190	720
1 9 61	1.7	12.2	7.9	1.4	13	3.1	6.5	• 1	15	67	118	5	15	40	-	185	1800
1 16 61 1 23 61	2.6	11.8	7•6 7•8	3.6	10	1.5	-	• 1	10	42	90	-	. 30	24	~	122	11000
1 30 61	• 5	12.0	7.8	1.6 1.4	7 7	1 4	4.6	•1	9	57 64	88 96	10	16	27 27	_	141	93
2 6 61	.5	12.8	7.7	2.6	5	1.6 2.5	4.2	•1	8	76	112	5	10 10	27		140 156	230
2 13 61	1.1	12.2	7.8	1.8	_	.8	4.7	•1	10	75	106	4	7	30	_	162	250
2 20 61	2.8	10.0	7.7	8.6	67	1.8	6.9	• 2	7	47	68	25	500	22	_	108	7600
2 27 61	1.2	10.6	7.6	2.4	32	1.2	3.3	•1	3	31	56	40	240	20	_	95	-
3 6 61	10.0	10.8	7.7	1.7	12	1.2	5 • 6	• 1	4	43	64	10	26	23	-	102	4800
3 13 61	5.5	10.2	7.7	1.0	8	1.7	6 • 4	•1	3	40	66	15	15	22	-	106	7200
3 20 61	3.3	11.2	7.7	1.7	6	2.0	5 • 7	• 1	7	49	76	10	18	23	-	112	3400
3 27 61	12.2	11.0	7.8	2.0	24	1.2	4 • 6	• 1	6	. 38	60	60	60	23	-	90	2800
4 3 61	10.0	10.2	7.8	2.0	21	1.8	6.0	• 0	7	45	66	15	40	23	-	100	7000
4 10 61 4 17 61	9.4	11.2	7•9 7•8	1.6 1.8	20 26	2•2 1•4	4•9 5•8	•1	5	47	72	20	43	23	-	125	3800
4 24 61	17.7	9.0	7.9	1.6	21	2.0	5.5	•1	5 4	36 49	58 70	30 10	100 24	21	-	90	6400
5 1 61	14.4	9.0	7.8	•2	20	2.0	6.4	•1	4	44	70	7	24 27	22 21	_	114 98	
5 8 61	15.5	9.2	7.7	1.8	20	1.6	5.9	•0	7	48	66	7	35	22	_	110	_
5 15 61	19.4	7.8	7.9	1.2	27	2.5	7.1	•1	5	53	74	8	38	24	_	117	8600
5 22 61	20.0	8,2	8.0	• 7	14	1.1	5.2	•0	9	55	80	5	15	25	_	130	1000
5 29 61	19.0	8.4	8.2	1.2	19	1.3	4 • 0	•0	6	62	90	4	10	26	l – l	147	71
6 5 61	23.9	8.8	8.9	2.8	17	2 • 4	3•9	.0	8	66	94	5	9	25	-	138	160
6 12 61	18.0	7.0	7.8	1.0	20	4.0	9•6	•0	7	60	86	13	41	25	-	133	160
6 19 61	20.0	7.2	8 • 2	4.2	18	2 • 7	4.9	• 0	7	62	96	25	23	24	-	127	-
6 26 61	26.6	6.6	8.5	2.6	21	1.5	6 • 4	• 0	7	70	106	8	17	24	•1	146	-
7 3 61 7 10 61	30.0	5.8	8.6	1.6	19	2 • 6	5 • 4	• 1	7	74	104	5	14	25	•1	153	
	26.6 30.5	7.0	8.8	1.6	18	2.2	3.8	•1	7	79	110	7	14	26	•1	148	*20
7 17 61 7 24 61	33.3	6.0	8 4	1.7	18 16	• 4	3 • 4	•1	8	87	118	4	9	27	•1	166	*20
1164 01	23.5	6.0	8.4	1.7	10	2.1	3.6	•1	10	79	114	6	12	30	•1	167	

STATE

MARYLAND

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATIONPOTOMAC RIVER AT

GREAT FALLS, MARYLAND

DATE OF SAM		TEMP.	DISSOLVED				CHLORINE	DEMAND										
МОИТН	YEAR	(Degrees Centigrade)	OXYGEN	рН	B.O.D. mg/i	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/I	COLIFORMS per 100 ml.
8 21 8 28 9 5 9 9	61 61 61 61	29.5 27.8 25.0 30.0	6.628-448 5.6628-448 7.4	8.5 8.4 8.1 8.0 8.3 7.8 8.3 8.3	1.0 2.0 2.3 2.0 2.4 1.6 .2 1.4	19 19 18 14 20 - 26 16 14 14	3.3 1.0 1.9 5.5 2.2 2.1 1.2 .9 1.7	5.3 2.6 -7.9 5.2 4.9 5.0 3.2 4.5	•1 •1 •1 •2 •1 •1	9 13 12 14 12 2 9 11 11	80 68 83 84 82 - 81 68 96 90	106 124 132 126 - 118 98 140 140	46 47 12 -5 16 5 10	9 11 9 11 16 10 35 8 8	28 32 35 37 38 - 29 34 30	•1 •1 •1 •1 •1 •2 •2	138 167 181 196 182 - 151 131 188 160	160 *50 40 480 50

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Washington, D.C. Operated by U.S. Geological Survey

STATE

Maryland

MAJOR BASIN

North Atlantic

MINOR BASIN

Potomac River

STATION LOCATION

Potomac River at

Great Falls, Maryland

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	2.890 2.680 2.470 2.430 2.390	1.960 1.920 2.310 2.430 2.350	2.110 2.000 1.960 1.960 1.880	3.500 4.700 4.700 4.850 4.700	4.500 4.500 4.000 4.000 4.500	51.700 39.200 31.200 26.200 23.400	25.200 26.900 30.100 27.600 23.800	19.900 18.800 17.500 16.700	7.020 6.900 6.540 6.540 6.720	4.450 4.300 3.920 3.870 3.690	2.800 2.720 2.680 2.680 2.680	2.350 2.070 2.150 2.270 2.150
6 7 8 9 10	2.350 2.310 2.230 2.110 2.040	2.270 2.310 2.350 2.350 2.430	1.880 1.880 1.850 1.730 1.730	4.500 4.350 4.300 3.780 4.210	4.500 4.500 4.500 4.500	28.200 32.100 35.500 35.900 39.100	21.000 18.400 16.300 14.700 19.200	14.600 13.800 14.200 15.900 19.300	7.860 7.680 7.140 7.080 9.520	3.640 3.820 3.780 3.730 3.780	2.470 2.890 3.230 3.550 3.190	2.230 2.390 3.540 5.290 4.250
11 12 13 14 15	2.000 2.000 2.000 2.000 1.960	2.470 2.430 2.470 2.390 2.350	1.770 1.610 1.160 1.440 1.770	5.120 5.240 4.700 4.350 4.800	5.000 5.000 5.000 5.000 6.000	38.700 31.800 26.600 22.700 21.200	27.300 34.500 53.100 77.800 81.000	19.400 19.600 24.100 30.800 33.600	11.500 10.900 11.100 10.800 9.450	3.640 3.640 3.500 4.910 4.000	2.840 2.720 2.680 2.550 2.230	3.410 3.190 3.010 2.760 2.550
16 17 18 19 20	1.960 1.960 1.850 1.770 2.040	2.630 2.590 2.470 2.230 2.310	2.000 1.850 1.850 1.810 1.770	6.420 6.720 7.440 8.380 8.260	6.960 9.310 16.900 45.700 91.300	19.400 17.400 15.400 15.700 16.600	61.400 60.400 70.700 56.600 41.400	28.900 23.200 19.800 17.400 15.400	9.240 8.640 7.860 6.900 6.000	3.550 3.500 4.350 4.110 3.690	3.010 3.190 2.760 2.470 2.350	2.150 2.040 1.920 1.770 1.730
21 22 23 24 25	2.150 2.230 2.430 2.230 2.070	2.190 2.110 2.110 2.040 1.960	2.040 1.770 1.690 1.580 1.650	7.320 6.300 6.360 5.640 5.240	10.000 71.600 58.600 60.800 74.400	19.000 23.400 30.600 35.600 37.700	31.600 25.800 22.700 21.600 20.600	14.100 13.400 12.000 11.200 10.400	5.520 5.520 6.240 7.440 7.020	3.370 3.010 2.890 2.840 2.800	2.550 2.270 2.510 2.190 2.040	1.690 1.650 1.730 1.770 1.880
26 27 28 29 30 31	2.350 2.230 2.070 2.040 1.920 1.880	1.960 1.920 1.880 1.850 2.040	1.650 1.610 1.580 1.810 2.270 2.350	4.750 4.500 4.000 4.500 5.000 4.800	87.200 98.400 78.400	47.300 47.500 39.600 33.500 29.300 25.600	19.500 24.200 27.800 25.000 21.900	9.660 9.310 8.580 8.120 7.800 7.380	6.840 6.300 5.580 5.120 4.650	3.060 3.100 2.840 2.800 2.760 2.720	2.720 2.630 2.510 2.270 2.630 2.630	2.040 1.960 1.960 1.880 1.810

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

POTOMAC RIVER

STATION LOCATION POTOMAC RIVER AT

WILLIAMSPORT, MARYLAND

DATE			RADI	OACTIVITY IN V	WATER		· · · · · · · · · · · · · · · · · · ·	Т	RADIOAC	TIVITY IN PLA	NKTON (drv)	RA	DIOACTIVITY IN W	/ATER
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA					ACTIVITY		GROSS ACTIVIT	
TAKEN	NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL		DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	MONTH DAY	μμc/l	μμc/I	μμε/Ι	μμς/Ι	μμc/l	μμc/l	•	MO. DAY	μμc/g	μμε/g	μμε/Ι	µµс/	##c/l
MO. DAY YEAR 11 28 60* 12 19 60* 1 30 61* 2 27 61* 3 27 61* 5 29 61* 5 29 61* 9 5 61 9 11 8 61. 9 25 61	12 7 1 19 2 10 3 10 4 10 5 12 6 9 7 17 8 25	μμε/I 0 0 0 0 1 1 0 0 0	μμε/I	μμε/1 0 0 0 1 1 0 0 0	инс/I	μμε/I 0 0 0 0 0 0 5 5 0 5 19	μμε/I 0 0 3 6 4 7 0 0 7 8 1 1 0 2 2		MO. DAY	μμε/g	μμc/g	μμς/Ι	µµс/	##e/I

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATION POTOMAC RIVER AT

WILLIAMSPORT, MARYLAND

				ALGAE (A	lumber	per ml.)				INE	RT	l .			DI	ATON	45		_		÷.		MICROIN	ERTEBR	ATES	\exists	4 E E
DATE OF SAMPLE		BLUE-	GREEN	GREE	:N	FLAGEL (Pigme	LATES ented)	DIATO	омѕ	SHE (No. p	LLS		(See	NANT Introd	luction	es AN	ie Iden	tificati	ion*)		ROPLANKT SHEATHE F ml.)	oA r ml.)	RS r liter)	CEA r liter)	DES r liter)	liter)	tr GENER troducti stificatio
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER-	SECOND#	PER-	THIRD#	PER. CENTAGE	FOURTH	PER- CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLANKTOR, FUNGI AND SHEATHED BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per	bowinant Genera (See Introduction for Identification)
10 31 60 11 14 60 12 19 60 1 16 61 2 20 61 3 20 61 3 20 61 3 20 61 3 20 61 4 17 61 5 15 61 6 19 61 7 17 61 8 21 61 8 21 63 9 18	300 100 100 100 11 200 11 200 11 200 11 200 11 200 11 2300 11 2300 11 400 11 400 11 400 11 100	20 40		440 70 40		20 20 210 40		20 180 70 20 200 1300 2500 170 40 680 40 20	360 70 120 270 210	130 50 70 50 40 20 20 20	160 90 220 1360 60 370 410 470 220 80 80 190	33 92 33 33 27 27 16 16 16	10 20 10 50 10 20 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	92 92 62 62 28 16 27 27	10 10 30 20 10 10 20 10	16 70 71 45 31 36 31 31 2 92 16 82 2 27 2 52	10 10 10 10 10 10 10 10 10 10 10 10 10 1	33 36 31 92 16 33 33 52 27		60 50 20 40 60 60 50	90 20 90 20 40	10	3 5 4 2 1 3 8 5				7-5-

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATION POTOMAC RIVER AT

WILLIAMSPORT, MARYLAND

				,													
DATE OF S		END		E	TRACTABL	ES					CHLOROF	ORM EXTR	ACTABLES				
BEGINNING	-	FND	GALLONS	İ							NEUTRALS	3					
MONTH DAY YEAR	MONTH	DAY	FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROM ATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10	112	7 5 11 6 7 10 5 7	4878 4683 5096 49203 4175 4308 4626 45737 4707	159 313 144 197 207 222 183 192 153 209 213	42 166 32 80 53 88 49 65 53 83 100	117 147 112 117 154 134 127 100 126 113	02021832337	10 48 6 14 11 26 13 15 13 17 21	17 80 16 30 17 15 12 19 18 27 33	1 2 1 2 1 1 3 2 2 2	1 2 1 2 1 1 1 2	68 13 22 13 11 9	18142011104	4 17 4 10 6 8 6 10 12	22165835490	1 5 1 2 1 1 0 1 1 2 2	8 2 4 16 12 22 15 8 15 15

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATIONPOTOMAC RIVER AT

WILLIAMSPORT . MARYLAND

	ATE	Τ						CHLORINE	DEMAND								PHOSPHATES	TOTAL	COLIFORMS
OF SA		- 1	TEMP.	DISSOLVED OXYGEN	Hq	B.O.D.	C.O.D.		24-HOUR	AMMONIA- NITROGEN	CHLORIDES mg/I	ALKALINITY mg/l	HARDNESS mg/l	(scale units)	(scale units)	SULFATES mg/l	mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
MONTH			Centigrade)	mg/l		mg/l	mg/l	1-HOUR mg/l	mg/l	mg/l	my/·								
											_				-	-	-	-	4
11 1	4 6	0	7.0	-	7.3	_	_	_	_	-	-	68	118	5	10	_	_	_	10
11 1 11 2	1 6	0		_	-	-	-	-	-	-	_	70	124	5	12	-		-	_
11 2	2 6	50	7.0	-	7.3	-	_	_	-	_	_	'-	-	_	_		- 1		4
11 2 11 2	8 6	50 50	7.0	-	7.5	_	_	_	_	_	_	76	138	5	18	-	_	-	7
		50	7.0	_	'*-	-	_	-	_	–	-	-	150	5	- 14	_	-	_	_
12	6 6	50	4.4	-	7.5	-	_	-	-	-	_	80	152		-	_	-	-	12
12 1 12 2	9 6	50		_	7 -	_	_	_	_	_	-	80	156	5	12	-	-	-	-
	9 6	50 51	1.0	_	7.6	_	_	_	_	_	-		-	_		-	-	1 -	120
1 1		51		_	7.3	-	_	-	-	-	-	58	108	5	45 	_	'	_	270
1 1	6 6	51	_	-	1	-	_	_	_	_	_	50	108	5	15	-	_	-	
1 1 1 2	7 6	51	1.7	-	7 -	_		_	_		-		-	_	-	-	-	-	120
1 2 1 2	4 6	51	.6	_	7.3	_	-	_	-	-	-	34	102	5	16	_	_	_	24
2	6 6	51	_	-	-	-	-	-	-	-	-	52	- 86	5	8	1 -	_	_	
		51	•6	-	7.1	-	_	_	_	_	_	-	-	-	-	-	_		42
2 1 2 1	3 6	51	.6	_	7.2	_	_	-	_	_	_	68	122	5	14	-	-	-	1100
2 2	0 0	51	_	_	-	-	-	-	-	-	-		-	_	200	_	_	_	1100
2 2	1 6	51	1.7	-	6.9	-	-	-	-	_	_	22	46	_	300	_	_	_	1700
2 2	7 6	51 51	6.1	_	7 . 0	_	_	-	_]	10	36	_	150	-	-	-	-
2 2 3 1	3 6	51	0.1	_	/ • <u>-</u>	_	_	-	_	-	-	-	-	-	-	-	-	-	230
3 1	4 6	51	6.7	-	7.2	-	-	-	_	-	-	32	68	5	10] -	_	_	170
3 2 3 2	0 6	51		-	7.3	-	_	_	_	_	-	28	60	5	35] -	1	_	
3 2	8 6	51 51	5.6 7.2	_	7.3		_	_	_	_	-	24	50	5	25	-	-	-	
		51	1 • 5	_	''-	_	-	-	_	-	-	-	-	-		-	1	-	88
4	4 6	51	6.7	-	7.3	-	-	-	-	-	_	26	60	5 -	18] =	=	_	530
4 1		51	_	-	_	-	_	_	_	_	_	_		1	_] -	_	_	9000
4 1 4 1		51	8.9	_	7.1	_	_	-	_	_	-	22	44		150	-	I.	-	-
4 2	4 6	51	-	-	-	-	-	-	-	-	-	-	-		12	_		_	81
4 2	:5 6	61	13.9	-	7.3	_	-	-	_	_	_	32	70	1	12		1	_	240
		61 61	_	_	_	_	_] [-	-	_	1	_	i	-	-	1		10
		61	13.9	_	7.3	_	-	-	_	-	-	1	76	5	12	-	-	_	
											<u></u>	<u></u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATIONPOTOMAC RIVER AT

WILLIAMSPORT, MARYLAND

Color Colo	DATE OF SAM		темр.	DISSOLVED			CHLORINE	DEMAND						, , , , , , , , , , , , , , , , , , ,		
6	МОМТН		(Degrees	OXYGEN	рH	B.O.D. mg/l					l i				SOLIDS	COLIFORMS per 100 ml.
8 16 61 24.5 - 8.1 -	5 15 15 15 15 15 15 15 15 15 15 15 15 15	61 61 61 61 61 61 61 61 61 61 61 61 61 6	18.0 22.0 23.9 24.0 21.7 22.8 25.5 26.5 26.5 20.6 24.5 20.6 24.5 20.6		7.4 7.5 7.7 7.7 7.6 					36 46 48 58 68 76 82 84 70 88 76 80 74 80	64 84 	5 - 5 - 5 - 5 - 5 - 5 - 10 - 10 - 10	10 6 8 5 1 5 1 2 3 1 1 2 1 4 1 4 1 2 8 1 8 1 1			2300 200 300 10 200 1200 76 160 270 90 68 - 470 670 560

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Computed Data for Williamsport, Maryland Operated by U.S. Geological Survey STATE

Maryland

MAJOR BASIN

North Atlantic

MINOR BASIN

Potomac River

STATION LOCATION

Potomac River at

Williamsport, Maryland

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	2.840	2.210	2.050	3.350	3.100	46.400	23.500 27.400	19.000 17.900	7.640 7.380	5.010 4.470	3.100 2.940	2.860 2.800
2	2.840	2.470	2.100	4.600	3.090	35.800 28.800	30.500	17.500	7.210	4.210	2.900	2.660
3 4	2.770	2.480	2.100	5.140 5.100	3.090 3.200	24.400	26.800	17.100	7.270	4.080	3.140	2.430
4 5	2.730 2.640	2.530 2.500	2.080 2.100	5.000	3.320	23.300	23.500	16.000	8.380	3.890	2.880	2.400
-	2.620	2.520	2.070	4.720	3.480	28.100	20.800	14.800	8.510	4.090	3.510	2.750 3.350
6 7	2.460	2.610	2.000	4.400	3.740	31.000	18.400	14.100	7.930	4.110	3.920 4.740	3.770
8	2.360	2,560	2.000	4.270	4.320	31.500	16.400	15.100	7.500	4.320 4.360	3.890	3.770 4.440
9 10	2.250 2.370	2.510 2.440	1.980 1.960	3.760 4.260	4.900 4.900	30.500 37.100	14.800 19.000	19.600 21.100	8.110 9.040	4.260	3.560	3.700
		2.460	1.960	4.750	4.900	35.300	29.700	20.400	12.700	4.460	3.270	3.930
11	2.370 2.360	2.480	1.900	4.900	4.900	28.400	38.400	21.900	12.900	4.020	3.380	3.750
12 13	2.310	2.440	1.880	4.500	5.150	23.800	49.600	31.200	12.000	3.630	3.260 2.710	3.460 3.120
14	2.380	2.510	1.860	4.120	5.500	21.400	93.000	37.900	10.000 9.460	3.830 4.230	3.770	2.630
15	2.290	2.830	2.000	3.960	6.200	19.700	80.500	37.600	•	1		
16	2.340	2.750	2.200	4.530	7.600	18.500	62.700	29.900	9.740	3.750	3.770	2.380 2.250
17	2.100	2.640	2.100	5.360	11.900	16.800	65.800	24.600	9.300	4.200 4.200	3.210 2.910	2.020
18	2.110	2.440	2.090	6.170	21.800	15.200	73.600	21.700	8.330 7.240	4.200 3.950	2.720	1.920
19	2.180	2.470	2.080	7.640	53.000	14.900	53.500 39.000	19.000 17.000	6.410	3.810	2.700	1.870
20	2.470	2.360	2.180	7.700	108.900	16.300	39.000	17.000	0.410	-		
21	2.500	2.320	2.080	6.180	105.700	19.300	30.100	15.800	5.820	3.440	2.510	2.020
22	2.620	2.240	1.970	5.390	60.100	21.100	25.400	14.500	6.320	3.440	2.720	2.240 2.450
23	2.450	2.180	1.860	4.780	49.900	25.400	23.100	13.100	7.910	3.300	2.390	2.880
23 24	2.560	2.120	1.960	4.330	58.800	33.400	22.200	12.100	7.960 7.780	3.230 4.000	2.240	2.770
25	2.770	2.100	1.910	4.000	72.500	41.300	20.600	11.200	1.100	4.000		, -
26	2.530	2.060	1.950	3.770	86.000	50.300	20.200	10.500	7.010	3.750	2.760	2.610 2.550
27	2.380	2.040	2.030	3.550	103.100	46.500	24.900	9.790	6.330 6.010	3.560 3.210	2.590 2.690	2.440
28	2.300	2.050	2.100	3.430	67.300	37.500	26.000 22.700	9.130 8.740	5.380	3.240	3.990	2.200
29	2.200	2.130	2.320	3.320		32.500 28.100	20.400	8.410	5.130	3.170	3.480	2.080
30 33	2.180 2.130	2.200	2.540 2.350	3.210 3.200		24.600	20.400	7.820	7.250	3.370	2.840	
31	2.130			_					West Virgi			

Computed as sum of Potomac River at Point of Rocks, Maryland plus Shenandoah River at Millville, West Virginia.

STATE

·MINNESOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

RAINY RIVER

STATION LOCATION RAINY RIVER AT

BAUDETTE, MINNESOTA

DATE			PADI	OACTIVITY IN V	VATER				RADIOA	CTIVITY IN PLAN	KTON (drv)		DAT	IOACTIVITY IN W	ATER
SAMPLE	DATE OF		ALPHA			BETA				GROSS A				GROSS ACTIVIT	
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL		DATE OF DETERMI- NATION	ALPHA	BETA		SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR		μμε/Ι	μμε/Ι	μμε/Ι	μμς/1	μμε/Ι	μμς/Ι		MO. DAY	μμc/g	μμc/g		μμε/Ι	μμε/	μμε/[
9 27 61	10 13	0	0	0	14	32	46								
)	10 15			Ť											
											_	!			
					,										
		:													
													i		
					!										

STATE

MINNESOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

RAINY RIVER

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATION LOCATION RAINY RIVER AT

BAUDETTE, MINNESOTA

						ALGAE (2	lumber	per ml.)				INE	RT				DI	ATOM	45				-	<u> </u>	MICROIN	VERTEBR.	ATES	\Box	
	SAM			BLUE-	GREEN	GREE		FLAGEL (Pigme	LATES ented)	DIATO	OMS	DIA SHE (No. p	RT TOM ILLS er ml.)		DOM1 (See	Introd	SPECI	ES AN	D PER	RCENT tificati	AGES		ОРІДИКТОІ БИЕЛТИЕР <i>ml.)</i>	A ml.)	is liter)	E.A. liter)	ES liter)	(AL PORMS	GENERA Oduction ification
MONTH	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER-	SECOND*	PER- CENTAGE	THIRD#	PER. CENTAGE	FOURTH*	PER. CENTAGE	OTHER PER- CENTAGE	OTHER RICROFLANKTON, FUNGI AND SHEATHED BACTREIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per 1	DOMINANT GENERA (See Introduction for Identification)
9	27	61	700			20				270	410	40	120	16	10	83	10	60	10	56	10	50	990		39	1	1	1	7
											Season of the se																		÷
					To the state of th																								

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Manitou Rapids, Minnesota Operated by U.S. Geological Survey

STATE

Minnesota

MAJOR BASIN

Upper Mississippi River

MINOR BASIN

Rainy River

STATION LOCATION

Rainy River at

Baudette, Minnesota

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	8.530	6.530	6.250	5.600	6.400	7.150	9.780	16.700	13.100	8.350	7.940	7.440
2	8.160	6.140	5.990	5.180	7.220	6.540	9.430	15.000	15.600	5.760	8.080	8.120
3	5.160	5.250	5.980	6.500	7.790	6.500	9.330	14.200	19.300	5.060	8.660	5.810
4	6.050	5.030	4.000	6.120	7.200	6.770	8.930	14.600	20.500	4.100	8.750	4.180
5	7.940	5.480	3.450	6.250	6.300	7.990	8.510	14.400	20.600	3.900	8.840	3.710
6 7 8 9	8.530 8.290 8.040 6.030 4.100	4.500 4.310 6.490 7.160 7.000	6.500 7.700 7.400 6.800 6.700	6.450 6.650 4.180 4.400 5.500	7.150 7.660 7.790 7.470 7.460	6.310 6.940 6.290 6.320 7.320	8.160 8.200 8.440 8.100 8.350	14.000 14.100 14.700 15.500 15.800	20.400 20.000 19.600 19.400 19.500	6.380 8.160 8.180 7.160 4.740	7.860 5.840 5.350 7.500 8.490	6.770 7.120 7.680 7.780 7.680
11	5.700	6.590	4.800	6.190	7.750	7.130	8.510	15.500	19.500	4.500	8.750	5.330
12	6.720	6.570	3.960	6.180	7.160	5.630	8.750	15.300	19.400	6.720	8.570	5.570
13	7.200	4.840	6.300	6.110	6.740	7.280	8.710	15.400	19.100	7.920	8.000	8.730
14	7.280	4.210	7.180	6.220	7.650	7.230	8.530	16.200	19.200	8.000	7.020	10.900
15	6.590	4.290	6.780	4.000	7.470	6.810	8.490	18.500	19.000	7.300	7.960	11.600
16	4.780	5.720	7.120	2.830	7.810	6.850	9.360	21.200	18.900	7.200	8.660	12.000
17	4.460	6.100	6.790	6.700	7.940	6.670	9.940	24.300	18.100	5.570	8.330	11.500
18	6.280	5.670	4.000	6.850	7.530	6.810	10.600	25.300	13.200	5.300	8.880	8.100
19	7.740	5.760	3.000	6.300	7.390	7.560	11.400	24.300	10.600	7.800	8.950	6.960
20	7.700	5.690	5.300	5.900	6.500	7.810	12.000	22.500	10.100	8.790	8.550	9.500
21	8.350	4.580	6.120	6.690	7.100	7.580	14.700	20.700	10.400	8.930	7.080	10.600
22	8.330	5.840	5.070	5.320	6.330	7.210	18.800	19.300	9.660	9.080	5.060	11.100
23	5.790	6.700	6.040	7.820	7.580	6.970	20.600	18.100	8.950	9.180	6.960	11.000
24	4.160	6.300	6.400	7.000	7.670	8.250	19.100	16.900	8.790	9.430	7.860	10.500
25	5.860	4.720	5.210	6.070	6.930	8.770	20.700	16.100	8.060	8.060	8.310	8.270
26 27 28 29 30 31	7.460 7.920 7.940 7.760 5.960 4.420	4.720 4.260 4.450 5.960 6.800	4.700 5.100 6.400 7.030 6.190 6.810	6.200 6.500 7.600 5.440 5.100 7.000	6.680 6.390 7.090	9.640 10.700 10.400 10.600 10.400 10.300	20.900 20.600 19.800 18.700 17.700	16.800 16.700 16.200 15.700 14.200 12.800	6.140 7.000 7.940 8.770 8.950	8.310 9.080 8.930 8.900 8.970 9.500	8.270 7.900 5.880 4.360 6.640 7.100	8.620 9.980 10.600 10.700 11.000

RADIOACTIVITY DETERMINATIONS

STATE

NORTH DAKOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

RED RIVER OF THE NORTH .

STATION LOCATION RED RIVER AT

GRAND FORKS, NORTH DAKOTA

			RAD	OACTIVITY IN	WATER										
SAMPLE TAKEN	DATE OF DETERMI- NATION		ALPHA		T	BETA		4		ACTIVITY IN PL			RAI	DIOACTIVITY IN W	ATER
		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	1	DATE OF DETERMI-		ACTIVITY	_		GROSS ACTIVITY	Υ
MO. DAY YEAR	MONTH DAY	μμc/l	μμς/	μμς/Ι	μμς/Ι	μμς/Ι	μμε/Ι	-	NATION	ALPHA	BETA	4]	SUSPENDED	DISSOLVED	TOTAL
0.30					11.77		μμε/Ι		MO. DAY	μμc/g	μμε/g		μμc/I	μμc/l	<i>μμ</i> ε/l
0 12 60	10 21	0	0	0		5	5	l	Ì						
	11 3	1	4	5		5	_		ł			1 1		' I	
1 2 60	11 23	0	3	3	1 - 1		5	i	ł			1 1		ĺ	
1 10 60	11 29	i l	1	2	0	0	0	ì				1 1			
1 30 60	12 9	ō	î		0	0	0	1				1 1			
	12 27	ŏ	7	1	0	0	0		i i		İ	1 1		1	
2 15 60	1 10	ŏ	' 1	7	0	0	0	l			1	1			
2 21 60	1 10	- (0	0	0	19	19	İ						ļ	
2 29 60		0	4	4	0	12	12	l	i i						
_	1 11	1	7	8	0	7	7	İ	1 !						
	1 20	0	7	7		11	11		!			1 1	Ì		
	2 3	0	4	4	ŏ	ō	0		ĺ			1 1		1	
1 18 61	2 7	0	4	4	ŏ	18	-				1	ļ į	}	ľ	
1 25 61	2 6	0	1	i	0	1	18				1	1 1			
2 2 61	2 16	o l	ōΙ	ō		0	. 0		l f		1		ĺ	l	
2 8 61	2 23	ō	2		1	0	1) [ŀ	1	
2 15 61	3 6	0	I .	2	0	0	0								
2 22 61	3 7	- 1	0	0	0	0	0					1 1	ļ		
1 61		0	0	0	0	0	0					!!!	İ		
	3 17	0	1	1	0	o l	ō		1] [
	3 28	0	2	2	o l	3	3					1 1	+		
15 61	4 3	0	2	2	o l	2	2	ĺ				1 1		- 1	
22 61	4 7	0	2	2	ŏ	14		- 1	İ				i		
5 61	4 19	0 1	2	2	4		14		ļ			i i	i		
12 61	5 2	οl	ō	ا ه		0	4	1	1						
19 61	5 22	o l	2	- 1	0	1	1		1						
27 61	5 15	1		2	1	1	2					1 1			
1 61*	6 13		0	1	0	6	6	- 1	1					-	
22 61*	7 25	0	2	2	0	0 i	0	- 1	ļ			1	ļ		
31 61*		0	1	1	0	0	o I	- 1							
	9 15	0	0	0	0	30	30	i				l		ĺ	
	9 29	-	-	~	0 1	ō	0		- 1			1		}	
	LO 9	-		-	o l	63	63	i							
27 61 1	10 10		~	~	9	21		ł	1					1	
1	i i				,	21	30	1				1]	
i	1	i	ļ	ļ				i					1	i	
	1		1					- 1					1		
1	!						ļ	ſ				i			
	ļ		1			1	ĺ		- 1		ĺ		i	ĺ	
İ]		1	Į		ŀ	ļ	- 1				l			
l		1		1		1	I	i				l	ļ		
	1	1	ĺ	1		1	1	l	,		i	!	ł		
		i			1	1	1	- 1			ł	1			
				ł			-	- 1				- 1			
		1		1	1		1	J			1	- 1			

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NORTH DAKOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

RED RIVER OF THE NORTH

STATION LOCATION RED RIVER AT

GRAND FORKS, NORTH DAKOTA

	T			ALGAE (1	Vumber	per ml.)				INE	RT					ATO					ž.		MICROIN	VERTEBR	ATES		- 2 2
DATE OF SAMPLE		BLUE-	GREEN	GREE	:N	FLAGEL (Pigmo	LATES ented)	DIAT	OMS	No. P	LLS er ml.)		DOMI (See	Intro	SPEC	ES At	ID PE	RCENT sti/icat	rages ion*)		ROPLANKTON SHEATHED ml.)	A ml.)	is liter)	EA liter)	DES liter)	ANIMAL FORMS per liter)	r GENERI roductio ifficatio
MONTH DAY YEAR	TOTAL	coccoib	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST*	PER- CENTAGE	SECOND*	PER. CENTAGE	THIRD*	PER. CENTAGE	FOURTH	PER. CENTAGE	OTHER PER- CENTAGE	OTHER WICE FUNGIAND BACTERIA (No. per	PROTOZO (No. per	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	(No. per liter)	(No. per I	DONINANT GENERA (See Introduction for Identification)
10 12 60 11 10 60 12 7 60 12 21 60 1 4 61 1 18 61 2 2 61 3 1 61 3 2 61 4 5 61 4 19 61 5 2 61 6 14 61 8 7 61 8 24 61 9 20 61	56100 10300 6600 3700 -1000 1300 200 32400 102400 102400 18300 2300 2300 15700	110 70 20 20 70 20	40 4270 20 6350 40 940	290 470 20 260 20 40 110 490 1300 380 400 1730 560	20	130 90 40 2950 5460 680 450 380 810 1160	50 200 200 120 110 20 20	460 54740 10120 6160 3640 1010 200 2010 28800 100770 26230 12650 890 510 26740 6810	350 690 70 20 70 160 990 2240 470 920 4100 2070 250	650 350 1240 4060 2010 340 660 970	160 20 20 50 110	82 82 82 82 82 82 82 85 68 84	90 90 90 70 50 70 90 80 40 70 60	89 67 56 70 27 49 71 58 56 68 25 58 82	*	70 71 71 71 70 72 58 86 58 82 92	1	26 56 46 92 89 70 92 71 82 23	* * * *	10 10 10 10 20 10 10 20 10 *	20	10 10 20 10	80 4 3 15 8 6 61 11 329 999 999 15 582 506 188	1 1 2 1 13 11 17 8 796 876 120		2	779-3 -897- -99- -99- -99- -1935 71973 -8923 74963 -1917 7-967 2197- 4197- 829-7

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

NORTH DAKOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

RED RIVER OF THE NORTH

STATION LOCATION RED RIVER AT

GRAND FORKS, NORTH DAKOTA

DATE OF SA	AMBLE		ı														
BEGINNING	EN			E	XTRACTABL	ES					CHLOROP	ORM EXTE	ACTABLES	3			
T	1		GALLONS	i							NEUTRALS	3		1	T	ī	
DAY YEAR	MONTH	DAY	FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	Loss
12 14 60 1 18 61 2 15 61 3 24 61 5 17 61 8 1 61 9 6 61	1 3 4 6 8	21 25 1 5 1 16 20	5820 7980 6220 4670 3172 1340 3300	179 113 262 183 283 689 505	36 36 70 64 118 162 213	143 77 192 119 165 527 292	1 2 3 6 5 21	9 10 20 17 32 39 36	12 11 20 17 33 60 47	1121645	1 1 2 1 3 7 4	9 8 15 14 23 39 38	1 1 1 1 0 0	8 7 12 23	7 7 11 11	1 1 1 2	7 6 12 12 22 21 24

STATE

NORTH DAKOTA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

UPPER MISSISSIPPI RIVER

MINOR BASIN

MAJOR BASIN

RED RIVER OF THE NORTH

STATION LOCATIONRED RIVER AT

GRAND FORKS, NORTH DAKOTA

	ATE							CHLORINE	DEMAND										
= 1	AMP!	-1	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS
10		60	12.5	5.5	8.6	2.1	28	5.0	12.4	•3	11	232	260	30	19	10	.0	371 -	80 310
		60	9.1	5.5	8.5	2.4	22 29	4.3 4.5	10.4 10.7	•1	12 15	240 250	264 268	25 30	17 10	16 25	.0	378	73
11 1		60	4.9 1.5	10.6	9•0 8•9	• 0	29	4.6	10.7	•1	16	266	272	25	16	26	-	384	'-
11	7	60		_	-	-			_		1 -				-		-	_	80
11		60	.1	10.4	8.0	3.6	42	1.8	-	-	18	280	316	30	6	21	-	448	-
12		60	• 2	12.0	8.0	2.9	39	• 6	13.3		21	300	340	30	8	22	i -	502	-
		60	• 4	•1	7.6	5.5	39	• 6	13.8	-	38	320	352	30	8	28	_	509	2200
12 2		60		•7			35		_	_	21	302	340	25	6	- 37]	490	110
12		60	• 4 • 5	.4	7.6 7.5	2.5	40	• 6 • 8	17.7	_	27	318	356	25	6	32	_	519	180
11		61	.4	.4	7.5	1.3	38	. 8	17.8	_	24	324	344	25	5	38	-	506	350
	- 1	61	. 5	.2	7.5	1.2	35	• 7	_		21	316	344	20	5	28	-	486	250
1 :	18	61	.4	.5	7.5	• 6	31	• 8	17.7	-	21	302	324	20	5	24	-	454	840
1 2		61	• 4	• 5	7.5	-	34	• 6	17.8	-	20	306	320	15	5	24	-	474	620
2		61	.4	•4	7•5	• 9	32	• 6	18•4	_	21	314	332 336	15 15	4	28 26	_	480 495	540 190
2 2		61	1.0	•0 •1	7.5 7.5	8.3 1.2	52 36	.6 2.1	18.5	_	24 18	320 306	316	15	4	25 25	_	447	530
2 2		61	.6	•6	7.5	1.0	33	.9	18.2	_	19	304	312	15	4	24	_	437	530
3		61	.6	9	7.5	-	33	.7	17.7	_	16	288	300	15	4	22	-	422	850
3		61	• 4	3.6	7.5	4.1	38	• 9	16.2	_	17	248	264	30	8	30	-	397	_
		61	.6	6.6	7.6	4.5	48	• 9	18•4	-	11	176	216	50	17	28	-	338	1
		61	. 8	4.5	7.7	7.8	41	3.1	-	-	15	180	216	50	17	. ~	1 -	35-	820
4 .		61	1.8	12.9	8.3	4.1	40	• 9	12.7	_	11	200	248	25 25	27 21	_	_	358 360	270 170
		61	4.8	14.6	8.5	5.2 5.3	46 47	. •9	11.3	-	12 11	212	260 276	25	30] _	_	393	100
		61	8.6	11.8	8.8	4.1	42	4.6	11.5	_	10	222	280	20	32	67		385	140
5 1		61	9.6	12.4	8.6	3.4	40	4.5	11.4	-	12	224	288	20	23	86	"-	414	200
	- 1	61	10.6	13.2	8.8	4.2	44	4.6	13.3	-	12	228	300	25	14	104	-	435	80
5 :	7	61	13.4	11.3	8.7	4.0	40	4.5	11.4	-	12	242	316	30	16	102	-	444	
		61	18.3	7.9	8 • 4		50	6.5	17.5	-	10	248	340	50	44	152	-	496	740
6		61	19.8	6.6	8.2	5.2	46	6.5	15 • 4	_	10	248	332	35 30	24	116 98	_	463 437	1400 3700
6		61	23.2	5.9 5.3	8.3 8.2	2.1 1.9	48 47	6.9 4.7	15.3	_	12	250 238	312 272	25	17	117	-	421	660
		61	20.5	5.4	7.8	1.9	56	4.7	10.6	_	9	244	260	25	22	120	_	358	580
8 '		61	25.1	8.2	8.8	7.2	50	4.8	14.9		9	206	232	25	-	58	_	312	*20
	- 1	61	23.6	6.9	9.0	4.6	55	4.4	12.8	-	13	186	208	25	-	60	-	310	20
		61	23.8	7.9	-	8.1	52	2.8	_	_	18	202	236	20	_	62	-	358	80

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NORTH DAKOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

RED RIVER OF THE NORTH

STATION LOCATION RED RIVER AT

GRAND FORKS, NORTH DAKOTA

	DAT OF SAM		TEMP.	DISSOLVED				CHLORINE	DEMAND										1
MONTH	DAY	1.		OXYGEN	рH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/i	COLIFORMS per 100 ml.
8 9 9	31 6 20 27	6 6 6	1 22.8 1 18.5 1 15.4 1 13.9	4.6 3.6 8.6 6.8	8.6 8.4 6.5 9.0	3.7 - 2.9 5.6	48 50 50 60	4.2 .9 4.0 2.9	12.9 10.8 10.6 10.8	-	18 22 25 27	194 178 202 182	224 216 232 216	20 20 20 20 20	-	76 76 84 76	-	362 346 375 337	110 - 320
			·												-				
						,													
				·															
					0.0														•

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Grand Forks, North Dakota Operated by U.S. Geological Survey STATE-

North Dakota

MAJOR BASIN

Upper Mississippi River

MINOR BASIN

Red River of the North

STATION LOCATION

Red River at

Grand Forks, North Dakota

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	.322 .315 .312 .302 .275	. 560 . 560 . 596 . 589 . 592	.250 .260 .270 .300 .360	.240 .240 .240 .240 .240	.280 .280 .280 .280 .290	. 420 . 450 . 500 . 530 . 560	2.660 2.200 2.020 1.950 1.870	2.520 2.400 2.300 2.160 2.020	1.470 1.380 1.280 1.190 1.120	.518 .518 .518 .503 .464	.348 .350 .352 .335 .318	.156 .146 .135 .135
6 7 8 9 10	.270 .278 .272 .278 .280	.603 .603 .572 .560 .430	. 350 . 260 . 240 . 250 . 280	.240 .250 .250 .250 .260	.290 .290 .290 .300	.630 .770 .970 1.180 1.360	1.680 1.560 1.440 1.380	1.950 1.880 1.840 1.840 1.870	1.070 1.030 .999 .975 .967	.392 .338 .305 .275 .298	.290 .261 .253 .241 .229	.122 .119 .123 .119 .145
11 12 13 14 15	.298 .308 .310 .308 .310	. 380 . 390 . 440 . 470 . 500	. 320 . 350 . 350 . 350 . 340	.260 .260 .280 .280 .290	.300 .310 .320 .330 .340	1.500 1.600 1.650 1.650 1.620	1.300 1.260 1.210 1.160 1.120	1.880 1.880 1.860 1.790 1.780	.991 1.170 1.180 1.060 .967	. 345 . 362 . 365 . 407 . 440	.215 .209 .201 .197 .194	.199 .233 .350 .458 .446
16 17 18 19	. 308 . 315 . 312 . 358 . 383	.470 .410 .350 .410 .490	. 330 . 300 . 300	.270 .280 .290 .280 .310	. 340 . 340 . 340 . 340 . 340	1.600 1.580 1.660 1.740 1.760	1.060 1.070 1.060 1.050 1.020	1.920 2.200 2.600 2.840 2.880	.891 .830 .785 .760 .729	.437 .428 .401 .377 .380	.190 .190 .201 .194 .181	.407 .392 .401 .434 .458
21 22 23 24 25	. 392 . 392 . 392 . 401 . 377	.510 .490 .420 .360 .380	.290 .280 .280 .270 .260	.310 .310 .300 .300 .290	. 350 . 350 . 360 . 370 . 350	1.800 1.900 2.000 2.100 2.300	1.100 1.310 1.840 2.240 2.390	2.840 2.750 2.620 2.460 2.300	.712 .701 .666 .638 .631	.419 .437 .437 .434 .416	.182 .182 .173 .165 .156	.467 .449 .461 .503 .542
26 27 28 29 30 31	• 389 • 380 • 374 • 395 • 494 • 539	.440 .420 .420 .410 .280	.250 .250 .230 .230 .230 .230	.270 .280 .270 .270 .280	. 370 . 390 . 400	2.800 3.240 3.320 3.050 2.940 2.810	2.420 2.480 2.580 2.610 2.600	2.140 2.010 1.870 1.760 1.660 1.560	.614 .563 .497 .467 .488	. 383 . 362 . 360 . 383 . 368 . 358	.158 .153 .155 .165 .161	.536 .533 .503 .479 .467

RADIOACTIVITY DETERMINATIONS

STATE

LOUISIANA

MAJOR BAŞIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

ALEXANDRIA, LOUISIANA

DATE			RADI	OACTIVITY IN V	VATER			г - т	PADIO	ACTIVITY IN PLA	NICTON (1-1		· · · · · · · · · · · · · · · · · · ·		
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA		-			ACTIVITY	┨	RA.	GROSS ACTIV	
TAKEN	NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	l P	DATE OF DETERMI- NATION	ALPHA	BETA	-	SUSPENDED		TOTAL
MO. DAY YEAR	MONTH DAY	μμc/I	μμc/l	μμc/l	μμc/1	μμc/I	μμc/l		IO. DAY		<i>µµс/</i> g	1	##c/I	P#c/I	##c/i
10 24 40		2	,										1		
10 24 60		2	6	8	0	0	0					1			
11 28 604		5 4	4	9	11	3	14			}		1	1.	1.	
12 12 60		10	1 1	5 11	38	0	38			1]		
2 27 61		5	i	6	51	2	53					İ		8	
3 27 61		5	ō	5	11	2	0 13				j			}	
4 17 61		28	ō	28	56	ő	56				1	1]	
5 22 61	6 27	4	Ó	4	0	9	9				ł	1	1	}	•
6 19 61	¥ 8 2	1	5	6	0	ó	ó				1	İ	1		
8 1 61		0	0	0	16	9	25	i i				1	1	i	
8 28 61		1	0	1	5	13	18								
9 11 61	10 3	-	_	-	1	38	39	'				Ī			
9 18 61	10 20	-	-	-	0	13	13	- 1							
9 25 61	10 7	-	_	-	18	0	18								
							- 1	1	ı			1	i		
							1						1		4
						.]						İ			
							j	Ī					1		
					1	}]			1	1		
	1		i										1 [
									-			ł			
						ļ			ŀ			l			
					ŀ	į		- 1				i			
	!		1						ŀ						
	[1				ĺ	1		
									İ						
		ł			1	İ								i	
							1								
		ŀ			ĺ		1] 1		
			1				1		1				1		
		İ	- 1				ŀ	ı							
		ļ							- 1				1		
		İ						l						ĺ	
				. [1									
					1	1									
							ļ		[]	
•	İ												[
								- 1						J	

PLANKTON POPULATION NUMBER PER MILLILITER, EXCEPT MACROPLANKTON STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

ALEXANDRIA, LOUISIANA

DATE					ALGAE (1	lumber	per ml.)				INE DIA	RT	_				ATON	. <u>.</u>				· ·	,	KICROIN	VERTEBR	ATES	1	
OF SAME	- 1		BLUE-	GREEN	GREE	:N	FLAGEL (Pigme	LATES ented)	DIAT	омѕ	DIA SHE (No. p	LLS				SPEC	ies an	ID PER			:	LANKTON RATHED 1.)					70 RKS	uction cation)
MONTH	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND#	PER. CENTAGE	THIRD*	PER. CENTAGE	FOURTH#	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLANKTON, PUNCI AND SHEATHED BACTERIA (No. per mil.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATOBES (No. per liter)	OTHER AHIMAL FORMS (NO. DET HEET)	sommant senera (See Introduction (or Identification)
11 7 11 28 1 9 2 5 2 20 3 6 3 20 4 17 5 1 5 22 6 5	60 60 60 60 60 60 60 60 60 60 60 60 60 6	2700 600 4000 200 200 100 200 700 3300 2500 2500 4100 1300	40 20 40 90	930 40	200 40 1120 310 90 3100 450 250 1160 830 60		270 400 560 700 200 1200 3400 3400 3400 2500 600	20 50 90 20 20 60 20	360 180 270 20 70 20 100 1720 440 440 860 830 2610 1500 270	1860 370 2060 900 500 1100 400 1230 13970 990 3040 1590	150 20 70 70 160 60 350 510 340 100 290 1560	800 1300 900 1300 500 400 500 12500 1600 1500 4700 400	38 89 92 92 80 80 80 80 80 80	50 30 30 30 90 680 40 30 30	56 92 89 56 26 26 26 18 58 26	10 20 10 10 20 10 20 20	26 56 80 43 84 26 57 38 26 82 26	10 10 10 * 10 * 10 20	7 38 26 73 58 58 58 56 68 58	10 * 10 * * * 10	30 40 40 50 *20 *40 50 20	20 110 40 20	10	1 47	2 10			74763 833 -19 -19 4-963 -1963 8496- 4196- 24923 63

STATE

LOUISIANA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATIONRED RIVER AT

ALEXANDRIA, LOUISIANA

DATE OF SAMPLE TE	MP. DISSOLVED			T	CHLORINE	DEMAND			1						·	
MONTH TEAR Y	grees OXYGEN mg/I	Нq	B.O.D. mg/l	C.O.D.	1-HOUR mg/I	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10	7.0 7.0 8.5 7.0 8.5 7.0 8.5 7.0 8.5 8.5 8.5 8.5 8.5 8.6 8.3 9.8 9.0 110.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8	7.968 7.68 7.67 7.77 7.866656 7.77 7.77 7.77 7.77 7.77 7.77 7.77	3.5 1.3 1.2 	22 - 166 291 48 29 24 8 22 23 24 32 24 32 32 32 44 47 47 47	2.1 1.7 1.9 2.6 2.0 1.9 3.6 2.3 3.0 3.6 3.6 3.6 3.6 3.6 3.6 4.1 3.6 4.1 3.6 4.1 3.6 4.1 4.0 4.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	8.6 5.9 6.4 6.3 9.2 8.2 7.7 8.9 9.0 8.6 9.0 8.9 8.7 10.0 8.9 8.7 10.0 9.5 8.4 11.0 9.8 8.7 8.7 8.7 10.0 9.5 8.6 9.5 8.7 10.0 9.5 8.6 9.5 8.7 10.0 9.5 8.6 9.5 8.7 10.0 9.5 8.7 10.0 9.5 8.7 10.0 9.5 8.7 10.0 9.5 8.7 10.0 9.5 8.7 10.0 9.5 8.7 10.0 9.5 8.7 10.0 9.5 8.7 10.0 9.6 9.7 8.7 8.7 8.7 9.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	397 111 76 911 3105 2162 945 97 76 991 42 74 47 43 47 43 47 43 47 43 47 43 47 43 47 47 47 47 47 47 47 47 47 47 47 47 47	163 80 88 -103 91 72 74 94 65 44 42 51 61 61 65 55 50 45 50 41 48 55 49 52 73 50 104 73 158 53 60	333 133 129 163 350 340 206 205 235 130 109 125 283 82 74 98 73 72 83 100 121 86 204 226 138 215 98 109	20 20 20 20 20 20 20 20 20 20 20 20 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60	103 128 710 1680 7880 3500 1200 6410 245 1805 1975 10540 4910 3162 410 410 410	116 66 37 496 2217 1200 2213 43 615 225 39 20 186 225 44 186 109 45 109 45 109 45 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46	111111111111111111111111111111111111111	1086 362 304 353 1018 678 752 3497 2275 281 3678 194 2667 188 285 1528 3678 285 1528 3678 285 1528 3678 285 1528 3678 287 287 287 287 287 287 287 287 287 2	3500 3200 5700 10000 16000 42000 21000 19000 22000 22000 11000 22000 6400 6400 5600 3200 6400 15000 5600 3000 8100 9200 7500 5600 2300 2300 2300 2400 6400 6400

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Alexandria, Louisiana Operated by U.S. Corps of Engineers

STATE

Louisiana

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Lower Red River below Denison

STATION LOCATION

Red River at

Alexandria, Louisiana

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	6.000	32.400	9.800	41.800	40.000	68.700	106.000	24.500	12.700	28.000	36.800	9.600
2	6.800	31.600	9.100	44.400	38.000	65.200	117.000	23.600	12.300	27.400	33.400	9.000
3 4	7.800	30.100	8.800	47.600	37.000	60.800	126.000	22.200	11.400	26.400	29.400	8.600
	8,900	26:800	8.600	55.400	35.700	55.900	132.000	20.900	10.300	24.800	25.700	8.000
5	9,900	24.400	8.200	62.700	34.500	51.800	133.000	19.900	9.120	22.900	22.800	7.400
6	10.600	22.300	8.200	65.700	32.800	48.700	133.000	18.700	8.810	21.500	20.900	7.000
7	10.700	20.200	8.200	69.000	31.700	46.700	127.000	18.000	8.480	20.200	19.000	6.800
8	10.500	17.500	10.800	78.500	32.500	45.800	116.000	17.900	7.950	20.000	17.800	6.500
9	9.900	15.600	16.400	81.900	31.700	45.300	111.000	18.100	6.900	20.100	16.300	6.400
10	9.300	15.300	34.900	80.500	29.900	47.000	101.000	21.300	5.880	19.900	14.600	6.400
11	8.800	15.600	56.000	77.100	27.300	48.500	90.800	40.600	5.870	19.600	13.200	6.700
12	9.000	15.200	76.000	72.500	24.900	49.400	83.800	56.000	6.450	19.600	12.400	8.300
13 14	11.100	14.300	92.200	70.000	24.000	49.000	82.400	61.400	7.650	19.000	11.900	14.000
	13.600	13.400	103.000	69.900	25.800	48.800	81.000	61.400	9.070	18.200	11.100	24.700
15	14.200	12.500	114.000	67.800	29.000	47.500	79.500	60.100	10.200	18.000	10.600	31.600
16	13.100	11.800	121.000	64.500	30.800	46.300	75.400	56.400	11.000	18.000	10.500	32.200
17	12.500	11.600	122.000	61.000	31.800	51.400	71.600	52.400	13.500	18.900	10.500	30.500
18	10.600	12.200	118.000	57.300	40.500	59.600	66.600	47.100	17.100	21.400	10.600	29.100
19	9. <i>6</i> 00	12.600	108.000	54.400	43.000	61.800	62.300	41.300	21.500	27.400	10.600	29.400
20	8.500	12.600	98.100	50.800	44.300	61.900	57.500	34.800	26.400	40.700	10.800	32.900
21	7.700	12.500	86.400	48.200	48.800	59.700	52.400	28.400	30.600	45,000	12.000	33.800
22	7.300	13.000	75,200	45.200	55.700	57.000	45.500	23.600	30.200	45.000	13.700	32.700
	7.100	13.500	65.300	43.400	63.000	54.200	40.800	19.400	28.900	42.200	15.400	29.600
23 24	7.100	14.200	56.700	42.400	67.900	52.000	36.800	16.900	26.000	37.800	17.100	26.100
25	7.100	14.200	49.700	45.600	71.400	50.200	33.500	14.300	24.000	33.000	17.200	22.900
26	7.100	14.000	44.200	49.800	72.400	47.900	31.600	12.300	25.100	31.800	16.000	19.100
27	11.600	13.500	40.300	50.500	72.400	45.500	30.100	12.600	28.200	29.800	14.600	15.700
28	21.000	12.800	37.500	50.000	71.300	45.000	28.400	13.100	28.900	29.300	14.000	13.100
29	28.100	11.800	35.800	47.800		52.600	27.100	12.600	28.800	31.800	13.200	11.500
30	31.300	10.800	36.400	45.500		67.200	25.700	12.400	28.300	37.100	12.100	10.300
31	32.300		37.000	42.400		87.400		12.500		38.700	10.700	

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS MINOR

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

INDEX, ARKANSAS

DATE			RADIO	DACTIVITY IN V	WATER	***************************************		PADIOAC	TIVITY IN PLAN	IKTON (day)	845	DIOACTIVITY IN W	ATER
SAMPLE	DATE OF		ALPHA			BETA			GROSS A			GROSS ACTIVIT	
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED		TOTAL	DATE OF DETERMI- NATION					
MO. DAY YEAR		μμc/l	μμc/I	μμc/ I	μμς/!	μμς/Ι	μμε/1						
	NONTH DAY 11 7 12 7 12 7 1 20 2 15 3 8 4 4 11 5 4 6 9 7 25 11 11				 	DISSOLVED μμε/I 0 0 0 0 3 5 0 0 0 0 13 8 10 0	0 0 0 14 5 0 3 0 5 0 1 13 23 26 33	MO. DAY	ALPHA μμε/g	BETA μμε/g	SUSPENDED ##c/I	DISSOLVED μμε/Ι΄	TOTAL μμε/Ι

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

INDEX, ARKANSAS

•			. T				ALGAE (1	Vumber	per ml.)				INE DIA	RT	_				IATO	чс						MICROIN	VERTEBR.	TES	
	OF S	AM		*	BLUE-	GREEN	GREE	EN	FLAGEL (Pigma		DIAT	oms	DIAT SHE (No. po	LLS				SPEC duction	IES A	ND PE			5	R MICROPLAKKTOM, I AND SHEATHED RIA . Def ml.)		1			ENERA luction cation)
	MONTH	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND*	PER. CENTAGE	THIRD#	PER-	FOURTH	PER-	OTHER PER- CENTAGE	OTHER RICROP FUNGI AND SH EACTERIA (No. per m	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per liter) bouinant genera (See Introduction for Identification)
1 1 1	0 1 1 2 2 2 1 1 2 2 2 3 3 3 4 4 4 5 5 1 1 1 2 2 2 3 3 3 4 4 4 9 5 5 6 6 6 7 7 7 8 8 8 9	771593606037155937714	60006666666666666666666666666666666666	8200 3300 4600 8400 1200 1500 1100 3100 200 4700 10600 1400 6700 6700 6700 5700 900	1020 220 110 20 180 90 20 20 100 20 20	160 20 20 20 1140 130 640	2040 660 630 2280 2100 110 220 180 1030 430 2070 2630 90 220 3350 250 1370 850 770 100		240 70 140 180 710 650 540 1650 290 290 510 290 170 370 330 60	20 20 50 50 20 50 440 20 40	1600 530 250 270 340 220 310 1440 510 270 2610 1680 740 910 770 100	3300 1650 3500 5630 1090 220 160 820 70 660 2770 130 2570 670 3910 4390 3150 580	420 70 380 20 20 50 1400 60 2480 360 110 60 60 60 60	440 340 310 850 160 200 200 210 540 380 620 830 680 460	53888888888888888888888888888888888888	40 60 60 60 20 20 20 20 80 80 50 20 10	267726 3825172 2668833 268	10 10 10 10 10 10 10 10 10 10 10 10 10 1	30 26 11 80 56 51 88 98 82 58 92 92 92	1 * 10 * 100	65577 520666 5463268	* 10 10 * 10	200 100 460 603 200 *103 560 660 5	20 20 20 20 20	10 10 10	36 11 15 5 14 25 6 44	1	3	48723 488-3 4-8-3 863 84823 833 1833 -1933 1923 99- -192- 488-7 4-963 763 763 763

STATE

ARKANSAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST LOWER MISSISSIPPI RIVER.

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATIONRED RIVER AT

INDEX, ARKANSAS

The content The content	DATE	<u> </u>					CHLORINE	DEMAND					[<u> </u>	<u> </u>		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1 1	pН					NITROGEN								DISSOLVED	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 - 1														1	1		
10 24 60 20.0 6.4 7.6 1.0 - 4.2 8.2 - 2.4 11 390 2 300 - 1142 1400 10 30 60														-	l .	1		
10 31 60 19.0 8.0 7.9 1.8 45 2.7 8.7 - 240 96 408 20 260 - 1176 800 11 76 0 15.0 9.4 7.8 1.6 - 22.2 4.7 - 244 94 380 10 145 110 - 7728 1800 11 21 60 15.0 9.6 8.0 4.4 30 1.8 6.2 - 223 100 364 30 70 - 7728 1800 11 21 60 17.0 9.2 8.1 3.8 25 2.5 6.7 - 166 123 392 20 65 - 950 20 12 5 60 13.0 10.0 8.0 2.8 30 1.8 4.7 - 260 141 354 10 25 - 687 60 1 9 61 7.0 11.2 7.8 4.2 14 2.2 6.4 - 110 75 200 45 145 - 610 1800 1 23 61 9.0 11.0 7.9 2.6 - 1 1.6 4.7 - 170 100 300 10 82 - 566 1300 1 23 61 5.0 12.0 8.1 3.0 2.6 1 - 12.2 6.4 - 110 75 200 45 145 610 1800 1 23 61 5.0 12.8 8.3 4.2 26 1.9 3.3 - 280 111 40.8 10 55 - 901 80 2 6 61 6.0 11.6 8.0 3.4 2.2 1.4 4.7 - 170 100 300 10 82 - 566 1300 2 7 13 61 10.0 10.4 8.0 3.4 2.2 1.4 4.7 - 170 100 300 10 82 1027 1027 102 2 13 61 10.0 10.4 8.0 3.4 2.2 1.9 3.3 - 280 111 40.8 10 55 901 80 2 2 6 61 20.0 10.4 8.0 3.4 2.2 1.9 3.3 - 280 111 40.8 10 55 901 80 2 2 6 61 20.0 10.4 8.0 3.4 2.2 1.7 2.7 8.3 - 60 70 140 75 150 - 297 14000 2 13 61 10.0 10.4 8.0 3.2 2.2 1.7 2.7 8.3 - 60 70 140 75 150 - 297 14000 2 13 61 10.0 10.4 8.0 3.2 2.2 1.7 2.7 8.3 - 60 70 140 75 150 - 297 14000 2 1 30 61 18.0 9.0 7.9 1.2 17 3.8 1.8 - 90 85 196 50 180 - 55 - 511 3800 3 2 7 61 18.0 9.0 7.9 1.2 17 3.8 1.8 - 90 85 196 50 180 - 55 - 511 380 3 2 7 61 18.0 9.0 7.9 1.2 17 3.8 1.8 - 90 85 196 50 180 - 55 - 511 380 3 2 7 61 19.0 8.6 7.8 2.6 14 4.7 1.1 - 35 57 94 180 650 - 197 4000 4 10 61 16.0 9.2 7.9 1.4 30 2.2 4.7 11.1 - 35 57 94 180 650 - 197 4000 4 10 61 16.0 9.2 7.9 1.4 30 2.2 4.7 11.1 - 35 57 94 180 650 - 197 4000 4 10 61 16.0 9.2 7.9 1.4 30 2.2 4.7 11.1 - 35 57 94 180 650 - 197 4000 5 22 61 25.0 7.4 8.0 1.4 2.2 4.7 11.1 - 35 57 94 180 600 707 140 75 150 - 707 140 75	10 24 60			- 1											1	1		
10 1 10 10 10 10 10 10	10 30 60						-	_				5,0		300	1	1 1		
11 14 60 15.0 9.8 7.9 1.8 28 2.7 5.8 - 190 100 340 45 110 7728 1800 112 216 15.0 9.2 8.1 3.8 25 2.5 6.7 - 166 123 332 20 65 950 20 20 21 25 60 33.0 10.0 8.0 2.8 30 1.8 4.7 - 200 141 354 10 25 687 60 12 26 60 600 67 600 1.8 6.2 - 200 141 354 10 25 687 60 1.8 6.2 - 200 141 354 10 25 687 60 1.8 6.2 - 200 141 354 10 25 687 60 1.8 6.2 - 200 141 354 10 25 687 60 1.8 6.2 - 200 141 354 10 25 687 60 1.8 6.2 - 200 141 354 10 25 687 60 1.8 6.2 - 200 141 354 10 25 687 60 1.8 6.2 - 200 141 354 10 25 687 60 1.8 6.2 - 200 141 354 10 25 687 60 1.8 6.2 - 67 64 74 74 74 74 74 74									-		96	408	20	260	-	-		-
11 21 60 15.0 9.6 8.0 4.4 3.0 3.8 2.5 2.5 6.7 - 166 123 332 20 65 - - 728 1800 12 12 12 12 12 12 12	1 1 -										1 - 1			145	-	-	1106	*200
11 28 60 17.0 9.2 8.1 3.8 25 2.5 6.7 - 166 123 332 20 65 950 200 12 12 60 8.0 9.6 8.1 4.0 - 4.5 10.7 - 64 56 92 80 600 687 60 166 19.0 11.0 7.9 2.6 - 1.6 4.7 - 170 100 300 10 82 - 56 11 10.0 7.0 11.2 7.8 4.2 14 2.2 6.4 - 110 75 200 45 145 610 1800 1800 1 23 61 5.0 12.0 8.1 3.0 21 1.4 4.7 - 215 115 356 10 55 901 80 1300 10 82 - 56 61 300 11.6 8.0 3.4 2.9 1.8 4.2 - 205 124 382 0 37 1027 100 20 20 20 11.6 8.0 3.4 2.9 1.8 4.2 2 2.2 6 1.9 3.3 6.7 - 70 85 170 130 160 433 4000 2 20 11 1.4 4.7 - 10.0 10.0 10.4 7.9 2.8 8.3 6.7 - 70 85 170 140 75 150 297 14000 2 20 140 150 1.0 10.4 7.9 2.8 13 2.7 8.7 - 100 140 75 150 297 14000 3 20 16 16.0 9.4 7.9 1.2 17 3.8 1.8 - 90 85 170 140 75 150 297 14000 3 20 16 16.0 9.4 7.9 1.2 17 3.8 1.8 - 90 85 170 140 75 150 297 14000 3 20 16 16.0 9.4 7.9 1.6 18 3.8 57 112 172 50 55 5 511 380 41 17.0 61 17.0 9.4 7.9 1.6 18 3.8 57 112 172 50 55 5 511 380 41 17.0 61 17.0 9.4 7.9 1.6 18 3.8 57 112 172 50 55 5 250 4000 41 17.0 61 16.0 9.4 7.9 1.4 30 2.2 2.7 4.7 - 110 110 110 110 110 110 110 110 110 1		8				1						-				1 1		
12 12 60 8.0 9.6 8.1 4.0 - 4.5 10.7 - 64 56 92 80 600 - - 16000 1600 1600 17.0 11.2 7.8 4.2 14 2.2 6.4 - 110 75 200 45 145 - - 610 1800 123 61 5.0 12.0 8.1 3.0 21 1.4 4.7 - 215 115 356 10 55 - - 566 1300 130 61 3.0 12.0 8.1 3.0 21 1.4 4.7 - 215 115 356 10 55 - - 1200 220 20															1			
12 12 600 8.0 9.6 8.1 4.0 -			10.0	8.0	2.8	4 1							7		1	1		_
1 9661 9.0 11.0 7.8 4.2 14 2.2 6.4 - 110 75 200 45 145 566 1300 1 23 61 5.0 12.0 8.1 3.0 21 1.4 4.7 - 170 100 300 10 82 566 1300 1 30 61 3.0 12.8 8.3 4.2 26 1.9 3.3 - 280 111 408 10 55 1200 220 2 6 61 6.0 11.6 8.0 3.4 29 1.8 4.2 - 205 124 382 0 37 1207 100 2 13 61 10.0 10.4 7.9 2.8 13 2.7 8.7 - 70 85 170 130 160 425 3800 2 27 61 13.0 10.0 7.8 2.2 17 2.7 8.3 - 100 140 246 35 155 425 3800 3 61 20.0 9.2 7.9 1.8 22 2.7 6.7 - 135 110 250 25 37 636 2000 3 13 61 18.0 9.0 7.9 1.2 17 3.8 1.8 - 90 85 196 50 180 - 527 4400 3 20 61 16.0 9.4 7.9 8.2 6 14 4.2 10.7 - 44 112 172 50 55 511 380 4 3 61 17.0 8.2 7.8 3.0 17 4.7 11.1 - 35 57 94 180 650 - 197 42000 4 10 61 16.0 9.4 8.0 1.6 22 2.7 4.7 - 160 97 288 60 215 250 4000 4 17 61 16.0 9.4 8.0 1.6 22 2.7 4.7 - 180 110 330 15 30 - 777 140 5 1 61 26.0 7.6 7.8 - 24 2.7 3.7 - 140 143 300 15 30 - 777 140 5 1 61 26.0 7.6 7.8 - 24 2.7 3.7 - 140 143 300 15 30 - 777 140 5 1 61 26.0 7.6 7.8 - 24 2.7 3.7 - 140 143 300 15 30 - 777 140 5 2 2 61 26.0 7.2 7.7 8.8 22 4.7 9.1 - 50 72 180 110 330 15 55 297 1100 5 1 61 26.0 7.6 7.8 - 24 2.7 3.7 - 140 143 300 15 30 - 777 140 5 2 2 61 26.0 7.2 7.7 8.8 22 4.7 9.1 - 50 72 180 110 330 15 30 - 777 140 5 1 61 26.0 7.6 7.8 8.2 2.2 33 1.8 4.2 - 107 120 118 20 120 397 150 6 1 2 61 2 6.0 7.0 7.9 1.8 21 2.7 8.2 - 107 120 118 20 120 297 150 6 1 2 61 2 6.0 7.7 7.8 8 2.2 33 1.8 4.2 - 107 120 118 20 120 305 120 708 40 6 1 2 61 2 7.8 8.2 33 30 1.4 4.2 1.7 1.0 7 - 64 74 160 90 450 707 140 6 1 2 61 2 2.0 7.0 7.9 1.8 21 2.7 8.2 - 107 120 118 20 120 305 120 708 120 120 708 120 120 120 120 120 120 120 120 120 120						1 1		10.7	-					_	i .	1		
1 23 61 5.0 12.0 8.1 3.0 21 1.4 4.7 - 215 115 356 10 55 - 501 12.0 8.1 3.0 21 1.4 4.7 - 215 115 356 10 55 - 901 80 2 6 661 6.0 11.6 8.0 3.4 4.2 26 1.9 3.3 - 280 111 408 10 55 - 1200 220 2 13 61 10.0 10.4 7.9 2.8 13 2.7 8.7 - 70 85 170 130 160 - 433 400 2 20 61 12.0 9.8 7.9 2.0 17 3.3 6.7 - 100 140 246 35 155 - 425 3800 2 27 61 13.0 10.0 7.8 2.2 17 2.7 8.3 - 60 70 140 75 150 - 297 14000 3 6 661 20.0 9.2 7.9 1.8 22 2.7 6.7 - 135 110 250 25 37 - 636 2000 3 20 61 16.0 9.4 7.9 1.6 18 3.8 - 57 112 172 50 55 - 51 380 2 3 2 61 17.0 8.2 7.8 3.0 17 4.7 11.1 - 35 57 94 180 650 - 511 380 4 3 61 17.0 8.2 7.8 3.0 17 4.7 11.1 - 35 57 94 180 650 - 197 42000 4 10 61 16.0 9.2 7.9 1.4 30 2.2 4.7 - 160 97 288 69 125 - 250 4000 4 10 61 16.0 9.2 7.9 1.4 30 2.2 4.7 - 160 97 288 69 125 - 250 4000 4 10 61 16.0 9.4 7.9 - 1.4 30 2.2 4.7 - 160 97 288 69 125 - 250 4000 5 1 61 26.0 7.6 7.8 - 24 2.7 3.7 - 140 143 300 15 55 - 103 5 8 61 25.0 6.6 7.7 1.6 45 4.7 10.7 - 64 74 160 90 450 - 759 4000 5 2 61 26.0 7.6 7.8 8 - 24 2.7 3.7 - 140 143 300 15 30 - 707 140 5 2 61 25.0 6.6 7.7 1.6 45 4.7 10.7 - 64 74 160 90 450 - 707 150 5 2 61 25.0 7.4 8.0 1.4 33 2.7 8.2 - 107 120 118 20 200 - 297 150 5 2 61 25.0 7.4 8.0 1.4 33 2.7 8.2 - 107 120 118 20 200 - 297 150 5 2 61 25.0 7.4 8.0 1.4 33 2.7 8.2 - 107 120 118 20 200 - 297 150 5 2 61 25.0 7.4 8.0 1.4 33 2.7 8.2 - 107 120 118 20 200 - 297 150 6 12 61 23.0 7.8 8.0 1.4 33 2.7 8.2 - 107 120 118 20 200 - 297 150 6 12 61 23.0 7.8 8.0 1.4 33 2.7 8.2 - 107 120 118 20 180 - 707 150 100 100 100 100 100 100 100 100 100												200	45		_	_	610	
1 30 661 3.0 12.8 8.3 4.2 26 1.9 3.3 - 280 111 408 10 55 - 1200 220 220 213 661 10.0 10.4 7.9 2.8 13 2.7 8.7 - 70 85 170 130 160 - 433 4000 22 20 661 12.0 9.8 7.9 2.0 17 3.3 6.7 - 100 140 246 35 155 - 425 3800 3 661 20.0 9.2 7.9 1.8 22 2.7 6.7 - 135 110 250 25 37 - 636 2000 3 70 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.															~	-	566	1300
2 6 61 6.0 11.6 8.0 3.4 29 1.8 4.2 - 205 124 382 0 37 1027 1002 120 220 61 12.0 9.8 7.9 2.0 17 3.3 6.7 - 100 140 246 35 155 425 3800 227 61 13.0 10.0 7.8 2.2 17 2.7 8.3 - 60 70 140 246 35 155 425 3800 3 6 61 20.0 9.2 7.9 1.8 2.2 2.7 6.7 - 135 110 250 25 37 636 2000 3 20 61 16.0 9.4 7.9 1.6 18 3.8 57 112 172 50 55 511 380 3 27 61 19.0 8.6 7.8 2.6 14 4.2 10.7 - 44 112 158 69 125 250 4000 4 246 61 20.0 7.8 7.9 7.9 1.4 30 2.2 4.7 1.6 16.0 9.4 7.9 1.4 30 2.2 4.7 - 160 97 288 60 215 250 4000 4 246 61 20.0 7.8 7.9 - 34 2.2 4.7 - 180 10 330 15 55 1030 *2000 4 246 61 20.0 7.8 7.9 - 34 2.2 4.7 - 180 10 330 15 55 1030 *2000 4 246 61 20.0 7.8 7.9 - 34 2.2 4.7 - 180 10 330 15 55 1030 *2000 4 246 61 20.0 7.8 7.9 - 34 2.2 4.7 - 180 10 330 15 55 1030 *2000 5 5 5 5 5 5 5 5 5	1 30 61								- 1									
2 13 61 10.0 10.4 7.9 2.8 13 2.7 8.7 - 70 85 170 130 160 - 433 4000 2 20 61 12.0 9.8 7.9 2.0 17 3.3 6.7 - 100 140 246 35 155 - 425 3800 3 6 61 20.0 9.2 7.9 1.8 22 2.7 6.7 - 135 110 250 25 37 - 636 2000 3 20 61 60.0 9.4 7.9 1.6 18 3.8 - 57 112 172 50 55 - 511 380 327 61 19.0 8.6 7.8 2.6 14 4.2 10.7 - 44 112 158 69 125 - 250 4000 4.															1 1	1		
2 20 61 12.0 9.8 7.9 2.0 17 3.3 6.7 - 100 140 246 35 155 - - 297 14000 3 6 61 20.0 9.2 7.9 1.8 22 2.7 6.7 - 135 110 250 25 37 - - 636 2000 3 20 61 16.0 9.4 7.9 1.6 18 3.8 - 57 112 172 50 55 - 511 380 380 3 27 61 19.0 8.6 7.8 2.6 14 4.2 10.7 - 44 112 158 69 125 - 250 4000 4 10 61 16.0 9.2 7.9 1.4 30 2.2 4.7 - 160 97 288 60 215 - 759 4000 4 17 61 16.0 9.4 8.0 1.6 22 2.7 4.7 - 210 98 290 20 120 - 8.97 120	2 13 61	10.0											- 1			i .		
2 27 61 20 0 9 2 7 9 1 8 22 2 7 6 7								6.7	1									
3 13 61 18.0 9.0 7.9 1.2 17 3.8 1.8 - 90 85 196 50 180 - 527 4400 3 20 61 16.0 9.4 7.9 1.6 18 3.8 - 57 112 172 50 55 - 511 380 3 27 61 19.0 8.6 7.8 2.6 14 4.2 10.7 - 44 112 158 69 125 - 250 4000 4 10 61 16.0 9.2 7.9 1.4 30 2.2 4.7 - 160 97 288 60 215 - 759 4000 4 17 61 16.0 9.4 8.0 1.6 22 2.7 4.7 - 160 97 288 60 215 - 759 4000 4 24 61 21.0 7.8 7.9 - 34 2.2 4.7 - 180 110 330 15 55 - 1030 *2000 5 1 61 26.0 7.6 7.8 - 24 2.7 3.7 - 140 143 300 15 30 - 707 140 5 15 61 26.0 7.2 7.7 88 22 4.7 9.1 - 50 72 140 50 200 - 297 150 5 29 61 23.0 7.8 8.0 1.4 33 2.7 8.2 - 107 120 118 20 200 - 297 150 6 16 26.0 7.6 7.8 2.2 33 1.8 4.2 - 107 166 40 150 - 305 - 708 420 6 16 23.0 7.6 8.0 2.8 37 4.2 6.7 - 153 130 294 30 70 - 683 420 7 3 61 23.0 6.6 7.8 3.2 36 4.7 10.7 - 70 95 220 40 210 - 594 1300 *2				3					-	60	70	140	75		-	-		
3 20 61 16.0 9.4 7.9 1.6 18 3.8 - - 57 112 172 50 55 - - 511 380 380 37 4.7 11.1 - 35 57 94 180 650 - - 197 42000 42000 417 61 16.0 9.4 8.0 1.6 22 2.7 4.7 - 160 97 288 60 215 - - 759 4000 424 61 21.0 7.8 7.9 - 34 2.2 4.7 - 180 110 330 15 55 - - 1030 42000 58 61 25.0 6.6 7.7 7.8 6.2 4.7 10.7 - 64 74 160 90 450 - 496 1300 515 52 61 25.0 7.8 8.0 1.4 33 2.7 8.2 2.7 4.7 - 113 132 260 30 58 - 708 400 1.6 2.7 3.7 - 113 132 260 30 58 - 708 400 - 297 1.5 61 26.0 7.0 7.8 8.0 1.4 33 2.7 8.2 - 107 120 118 20 180 - 708 400 - 708 400 - 61 23.0 7.6 8.0 2.8 37 4.2 6.7 - 153 130 294 30 70 - - 683 420 626 61 23.0 7.6 8.0 2.8 37 4.2 6.7 - 128 135 282 15 35 - 788 *20 *2			-						i i				25	37	-	-	636	2000
3 27 61 19.0 8.6 7.8 2.6 14 4.2 10.7 - 44 112 158 69 125 250 4000 4 10 61 16.0 9.2 7.9 1.4 30 2.2 4.7 - 160 97 288 60 215 759 42000 4 17 61 16.0 9.4 8.0 1.6 22 2.7 4.7 - 210 98 290 20 120 - 897 1100 5 1 61 26.0 7.6 7.8 - 24 2.7 3.7 - 180 110 330 15 55 1030 *2000 5 8 61 25.0 6.6 7.7 1.6 45 4.7 10.7 - 64 74 160 90 450 496 1300 5 15 61 26.0 7.2 7.7 8 22 4.7 9.1 - 50 72 140 50 200 - 297 150 5 22 61 25.0 7.4 8.0 - 29 2.7 4.7 - 113 132 260 30 58 - 708 40 6 5 61 26.0 7.0 7.9 1.8 21 2.7 8.2 - 107 120 118 20 180 - 717 *20 6 12 61 29.0 6.2 7.8 2.2 33 1.8 4.2 - 45 107 166 40 150 - 305 - 683 420 6 19 61 23.0 7.6 8.0 2.8 37 4.2 6.7 - 153 130 294 30 70 - 720 160 7 3 61 29.0 6.6 8.1 2.6 105 2.2 4.7 10.7 - 70 95 220 40 210 - 720 160 7 3 61 29.0 6.6 8.1 2.6 105 2.2 4.7 10.7 - 70 95 220 40 210 - 720 160 7 10 61 28.0 9.2 8.1 8.0 41 4.2 6.7								1.8	l l	-	_				-	-		
4 3 61 17.0 8.2 7.8 3.0 17 4.7 11.1 - 35 57 94 180 650 - - 197 42000 42040 4					-			10-7	1			1						
4 10 61 16.0 9.2 7.9 1.4 30 2.2 4.7 - 160 97 288 60 215 - - 759 42000 4 17 61 16.0 9.4 8.0 1.6 22 2.7 4.7 - 210 98 290 20 120 - - 897 1100 4 24 61 21.0 7.8 7.9 - 34 2.2 4.7 - 180 110 330 15 55 - 1030 *2000 5 8 61 25.0 6.6 7.7 1.6 45 4.7 10.7 - 64 74 160 90 450 - - 297 150 5 22 61 25.0 7.4 8.0 - 29 2.7 4.7 - 113 132 260 30 58 - - 297 150 5 29 61 23.0 7.8 8.0 1.4 33 2.7 8.2 - 107 120 118 20 180 - 717 *20 6 12 61 29.0 6.2 7.8 2.2 33 1.8 4.2 - 105 100 246 20 200 - - 720 160 7 3 61 29.0 6.6 8.1 2.6 105 2.2 4.7 10.7 - 70 95 220 40 210 - 788 *20 7 10 61 28.0 9.2 8.1 8.0 41 4.2 6.7 - 128 135 282 15 35 - 788 *20		17.0	8.2												1			
4 17 61 16.0 9.4 8.0 7.8 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.0 7.								4.7										
5 1 61 26.0 7.6 7.8 - 34 2.2 4.7 - 180 110 330 15 55 - - 1030 *2000 5 8 61 25.0 6.6 7.7 1.6 45 4.7 10.7 - 64 74 160 90 450 - - 496 1300 5 15 61 26.0 7.2 7.7 .8 22 4.7 9.1 - 50 72 140 50 200 - - 496 1300 5 29 61 25.0 7.4 8.0 - 29 2.7 4.7 - 113 132 260 30 58 - - 297 150 5 29 61 23.0 7.8 8.0 1.4 33 2.7 8.2 - 107 120 118 20 180 - - 717 *20 6 5 61 26.0 7.0								-	-	210					i i	1		
5 8 61 25.0 6.6 7.7 1.6 4.7 10.7 - 64 74 160 90 450 - - 496 1300 5 15 61 26.0 7.2 7.7 .8 22 4.7 9.1 - 50 72 140 50 200 - - 496 1300 5 29 61 23.0 7.8 8.0 1.4 33 2.7 8.2 - 107 120 118 20 180 - - 717 *20 6 56 61 26.0 7.0 7.9 1.8 21 2.7 8.2 - 107 166 40 150 - - 717 *20 6 12 61 29.0 6.2 7.8 2.2 33 1.8 4.2 - 105 100 246 20 200 - - 683 420 6 12 61 23.0 7.6 8.0 2.8 37 4.2 6.7 - 153 130 294 30 70 - - 720 160 7<			1					-	-	1	110	330	15		-	_		
5 15 61 26.0 7.2 7.7 .8 22 4.7 9.1 - 50 72 140 50 200 - - 297 2.7 4.7 - 113 132 260 30 58 - - 708 40 5 29 61 23.0 7.8 8.0 1.4 33 2.7 8.2 - 107 120 118 20 180 - - 717 *20 6 56 61 26.0 7.0 7.9 1.8 21 2.7 8.2 - 45 107 166 40 150 - - 717 *20 6 12 61 29.0 6.2 7.8 2.2 33 1.8 4.2 - 105 100 246 20 200 - - 683 420 6 19 61 23.0 7.6 8.0 2.8 37 4.2 6.7 - 153 130 294 30 70 - - 720 160 7 10 61 28.0 9.2 8.1 8.0 4.7 10.									- 1			1		30	-	-	707	140
5 22 61 25.0 7.4 8.0 - 29 2.7 4.7 - 113 132 260 30 58 - - 708 40 5 29 61 23.0 7.8 8.0 1.4 33 2.7 8.2 - 107 120 118 20 180 - - 717 *20 6 56 61 26.0 7.0 7.9 1.8 21 2.7 8.2 - 45 107 166 40 150 - - 717 *20 6 12 61 29.0 6.2 7.8 2.2 33 1.8 4.2 - 105 100 246 20 200 - - 683 420 6 19 61 23.0 7.6 8.0 2.8 37 4.2 6.7 - 153 130 294 30 70 - - 720 160 6 26 61 23.0 6.6 7.8 3.2 36 4.7 10.7 - 70 95 220 40 210 - - 594 1300	5 15 61								1				- 1		-	-		
5 29 61 23.0 7.8 8.0 1.4 33 2.7 8.2 - 107 120 118 20 180 - 717 720 6 12 61 23.0 7.6 8.0 2.8 37 4.2 6.7 - 105 100 246 20 200 - 683 420 6 12 61 23.0 7.6 8.0 2.8 37 4.2 6.7 - 105 100 246 20 200 - 720 160 73 61 29.0 6.6 7.8 3.2 36 4.7 10.7 - 70 95 220 40 210 - 594 1300 710 61 28.0 9.2 8.1 8.0 41 4.2 6.7 - 128 135 282 15 35 - 788 *20	5 22 61							- 1							ľ			
6 5 61 26.0 7.0 7.9 1.8 21 2.7 8.2 - 45 107 166 40 150 - 305 - 6 12 61 29.0 6.2 7.8 2.2 33 1.8 4.2 - 105 100 246 20 200 - - 683 420 6 19 61 23.0 7.6 8.0 2.8 37 4.2 6.7 - 153 130 294 30 70 - - 720 160 7 3 61 29.0 6.6 7.8 3.2 36 4.7 10.7 - 70 95 220 40 210 - 594 1300 7 3 61 29.0 6.6 8.1 2.6 105 2.2 4.2 - 128 135 282 15 35 - 788 *20 7 10 61 28.0 9.2 8.1 8.0 41 4.2 6.7 150 150 282 15 35 - 788 *20	1 - 1 - 1				1.4							- 1			ł			
6 12 61 29.0 6.2 7.8 2.2 33 1.8 4.2 - 105 100 246 20 200 683 420 61 23.0 6.6 7.8 3.2 36 4.7 10.7 - 70 95 220 40 210 - 594 1300 7 10 61 28.0 9.2 8.1 8.0 41 4.2 6.7 - 128 135 282 15 35 - 788 *20											1		- 1	- 1	1			*20
6 26 61 23.0 6.6 7.8 3.2 36 4.7 10.7 - 153 130 294 30 70 - 720 160 7 3 61 29.0 6.6 8.1 2.6 105 4.2 4.2 - 70 95 220 40 210 - 594 1300 7 10 61 28.0 9.2 8.1 8.0 41 4.2 4.2 4.2 4.2 - 128 135 282 15 35 - 788 *20												246				- 1		420
7 3 61 29.0 6.6 8.1 2.6 105 2.2 4.2 - 128 135 282 15 35 - 788 *20						- 1	,		1	- 1			30	70		l l		-
7 10 61 28.0 9.2 8.1 8.0 41 4.2 4.7 - 128 135 282 15 35 - 788 *20			-												-	-		1300
_		- 1			1				1		1		- 1		1	i		
						"-	7	0.7	-	128	160	340	20	25	-	-	806	200

STATE

ARKANSAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATIONRED RIVER AT

INDEX, ARKANSAS

DATE						CHLORINE	DEMAND									TOTAL	
DAY DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/I	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
7 17 61 7 24 61 7 31 61 8 7 61 8 14 61 8 28 61 9 4 61 9 11 61 9 18 61 9 25 61	28.0 31.0 30.0 29.0 27.0 28.0 27.5 22.0	5.6 6.6 6.4 6.4 6.8 7.0 7.0 7.0 6.6 7.4	7.6 7.9 7.8 8.1 8.0 8.0 8.0 7.6 8.0	1.4 1.6 2.8 1.4 3.8 1.6 3.0 2.2 2.4 1.4	30 18 18 23 44 18 20 27 22 15 16	4.7 4.7 2.7 2.2 4.2 2.7 4.2 3.8 4.7 1.8	10.7 9.1 8.7 4.7 4.7 8.3 6.7 6.7 8.7		115 70 118 160 215 110 118 180 194 70 150	70 90 92 136 140 100 135 150 162 41 96	230 164 220 326 232 270 390 430 170 276	25 70 40 20 20 35 15 20 70 20	270 210 160 51 50 35 44 300 100			624 394 700 888 1100 643 654 1101 1195 409 825	2400 2000 73 100 - 150 560 140

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Index, Arkansas Operated by U.S. Geological Survey

STATE

Arkansas

MAJOR BASIN

Southwest Lower Mississippi River

MINOR BASIN

Lower Red River below Denison

STATION LOCATION

Red River at

Index, Arkansas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	6.010	22.800	3.1.90	13.800	7.400	9.300	61.000	4.350	F (00			
2	5.600	21.800	2.680	25.000	6.660	7.920	60.000		5.600	3.190	5.600	2.800
3	4.050	18,600	2.460	29.400	6.010	6,660	51.200	4.050	4.660	3.900	5.200	2.470
3 4	3.320	14.200	2.680	25.200	6.010	6.900	40.400	4.050	3.900	4.500	4.500	2.680
5	3.390	10.900	2.860	19.100	5.600	7.400	32.600	48.300	3.600	4.500	3.750	3.530
		•			2.000	1.400	32.000	5.800	3.260	4.500	3.190	3. <i>6</i> 00
6	3.390	8.440	4.350	15.400	5.010	7.920	28.800	C 1.1.0				
7	4.040	6.660	13.200	13.400	4.050	7.920		6.440	3.900	3.750	3.900	3.750
8	11.600	5.800	25,100	12.300	4.500	8.720	25.800 20.600	12.700	4.500	2.800	4.500	3.750
9	13.400	5.200	39.000	12.300	5.200	7.660		35.200	¹ 4.830	2.620	4.350	3.320
10	11.300	4.200	45.000	12.700	8.180		18.600	44.400	5.200	3.390	4.050	2.570
			17.000	12.100	0.100	7.660	20.600	37.400	4.830	3.260	3.900	2.170
u	8.440	3.750	50.900	13.400	11.300	9.600	07 000					•
12	5.800	4.350	63.000	13.000	11.900		21.200	27.600	5.800	4.660	3.390	2.170
L3	4.200	4.500	68.000	11.300	11.300	9.920	18.100	18.600	11.300	5.400	3.000	2.800
L3 L4	3.190	4.830	58.000	9.300	9.600	11.300	16.700	12.700	11.600	5.010	3.530	3.600
-5	2.680	5.600	38.000	8.720		10.600	15.900	9.300	8.720	4.350	3.900	3.750
	2.000	7.000	20.000	0.120	7.660	8.180	16.700	7.400	6.660	4.050	4.050	4.500
.6	3.060	5.600	.25.200	8.440	6,010	F (00						
-7	3.750	5.010	19.600	8.180	5,200	5.600	16.700	6.220	4.830	10.400	4.050	11.600
.ė	4.200	5.200	17.200	8.180		4.500	15.900	5.600	4.350	22.800	4.350	16,300
.9	4.050	6.010	14.600	8.440	5.600	4.660	13.000	4.830	5.200	25.800	4.500	15.000
ó	3.320	6.440	13.000		6.440	5.400	9.600	4.350	5.010	19,600	4.350	13.000
	∪سر •ر	0.440	13.000	8.180	7.920	5.800	7.140	3.750	4.500	13.400	6.010	10.600
1	2.680	6.900	11.900	8.180	3 6 000		_		·		0.020	10.000
2	2.300	6.440	10.600		16.200	7.660	6.220	4.200	4.350	9,600	6.010	7.920
3	13.100	5.800	8.440	7.920	23.400	9.000	6.440	4.660	3.750	7.660	5.400	5.400
ĭ,	27.600	4.830		7.660	28.200	7.660	5.800	5.400	3.390	6.660	5.400	4.050
5	28.200		6.900	7.660	26.400	5.600	5.400	6.440	3.190	7.140	4.500	
,	20.200	3.750	6.220	7.400	20.100	4.830	5.800	6.440	4.660	8.720	3.260	3.900
б	28.200	3.320	E 900	(((:	-1 -					0.120	3.200	3.900
7	29.400	4.200	5.800	6,660	14.600	4.660	5.800	6.660	7.140	13.800	2.740	3.900
8	30.000		5.400	6.220	11.600	7.660	5.010	7.660	7.660	15.400	3.190	4.200
9	30.000	4.500	5.400	6.440	10.200	18.600	4.050	7.660	7.400	13.000	3.190	
5		3.750	5.010	7.400		22.300	3.900	5.600	5.800	10.600		4.050
l	30.000	3.120	5.010	7.920		30.000	4.500	4.830	3.750		2.570	3.190
L	27.600		7.140	7.920		43.600		5.200	3.170	8.180 6.660	2.470	2.860
						•		2.200		0.000	2.740	

STATE

TEXAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

DENISON. TEXAS

STATE

TEXAS

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

DENISON, TEXAS

DATE				ALGAE	Number	per ml.)				IN	ERT	T				ATOM	16					_	MICRO	VERTEBR	ATER	
F SAMPLE		BLUE-	GREEN	GREE	EN	FLAGEL (Pigm		DIAT	омѕ	SHE	TOM ELLS per ml.)		DOM! (See	NANT	SPEC	ES AN	D PE	RCENT	'AGES		ANKTON, LTHEB	1				¥:
MONTH DAY YEAR	TOTAL	СОССОІВ	FILA. MENT. OUS	000000	FILA- MENT- OUS	GREEN	OTHER	GENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER.	SECOND#	PER. CENTAGE	THIRD	PER. CENTAGE	FOURTH	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLANKTON, FUNGS AND SHEATHED MACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORMS (No. per liter) DOMINANT GENERA
0 17 60 17 60 21 60 2 19 60 1 4 61 1 11 61 2 6 61 3 20 61 1 11 61 5 5 61 5 61 7 7 61 7 7 61 7 7 61 8 21 61 7 18 61	1600 2800 1300 1400 2700 700 1100 1500 1800 3000 700 900 1300 400	70 20 40 90 100 580	20	180 270 70 670 40 1120 220 600 2150 2150 220 680 440 270 60		90 240 130 340 290 360 690 110 90 40 540 190 190 120 50	70 20 50 20 20	110 710 240 50 130 70 90 130 40 390 220 50 100 60 20	1270 1670 770 690 1410 2280 270 70 110 270 310 510 400 230 100 190 290 90	130 360 50 40 20 70 50 90 40 70 110 80 20 20	250 110 290 90 130 380 220 70 90 200 1910 600 200 350 20 60	38 88 38 38 38 38 38 38 38 38 38 38 38 3	70 90 80 90 60 20 50 30 40 50 30 40 50	56 84 80 82 58 80 80 26 38 38 80	* * * * * 20 10 220 110 330 110 110 320 220 110 110	58 26 26 82 80 92 93 92 38 26 36	* * * * * * * * * * * * * * * * * * *	56 18 92 92 93 92 71 56 80 92 31 56 46	* * * * * * * * * * * * * * * * * * *	10 10 10 10 10 10 10 10 10 10 10 10 10 1	130 310 20 160 20	30 10 90 20	2 1 1 8 18 23 3 21 2 6 3 3 9 9	6 2 12 23 7 12 24 16 7 7 3 5 1 1		-1

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

TEXAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

DENISON, TEXAS

1. 1.

DATE OF SAMPL	LE			XTRACTABL	FS	ī ———										
	END			I TACIABL				1		CHLOROF	ORM EXTR	ACTABLES				
DAY YEAR MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
4 3 61 4 5 1 61 5 6 5 61 6 5 61 7 3 61 7 8 7 61 8	1 21 2 19 1 20 2 13 3 16 4 10 5 9 6 12 * 7 11 3 14	4740 7300 4850 5210 5040 5350 5020 15770 5460 4960 55610	280 195 291 209 250 210 254 248 291 264 251 231	64 46 52 60 54 49 73 92 108 91 71 81 44 65	216 149 239 149 196 161 156 180 156 166	211221 5 4	18 13 12 16 15 12 - 26 - 16	17 10 15 13 12 13 - 19 - 16	200101-12-12	1 1 0 1 0 1 1 1 1 1	14 9 13 11 10 - 16 - 12	002011110111	75667566-75677567757	5 3 5	2 1 2 2 2 2 2 2 2 1 1	11 11 13 15 14 11

STATE

TEXAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

DENISON, TEXAS

DATE						CHLORINE	DEMAND					T T	1				<u> </u>
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/I	На	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10	23.3		7.6. 7.6. 7.6. 7.6. 7.6. 7.6. 7.6. 7.6.						- 399 405 396 427 429 416 417 417 419 424 441 405 387 385 412 410	116 -104 -102 -98 98 98 -100 -102 -108 -112 -108 -116 116 116 116	420 470 470 460 460 440 430 420 430 420 430 440	55-5-50-50-50-00-1-100-01-1-010-	5 - 15 - 10 - 15 - 15 - 15 - 15 - 15 - 1	300 300 300 375 325 305 305 305 300 315 280 290 290 290 290 300 310 		1230 1230 1230 1190 1240 1240 1230 1210 1230 1210 1220 1210 1220 1210 1220 1210 1220 1210 1220 1210 1244	* 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

STATE

TEXAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATIONRED RIVER AT

DENISON, TEXAS

DATE						CHLORINE	DEMAND		<u> </u>						1		
OF SAMPLE	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
4 3 6 4 6		-	-	_	=	-	-	_	435	-		5	_	305	•0	1244	-
4 5 6		_	8.0	_	_	_	-	-	_	116	450	_	 5	_	-	_	33
4 12 6		-	8.0	_	_	-	_	-	-	118	440	_	5	_	_	_	_
4 18 6 4 19 6		-	8.0	-	_	-	-	-	-	-		5	-	305	• 2	1269	*30
4 24 6		_	8.0	_	_	_	_	_	470	126	450	5	0	200	- 0	1 200 4	-
4 26 6	1 15.0	-	-8.0	_	_	_	-	_	470	122	470	-	0	300	•0	1286	10
5 1 6	1	-	-	-	-	-	-	-	450		_	7	_	285	.0	1422	-
5 3 6 5 8 6		_ [8.0	_	-	-	-			124	460	_	0		-	-	*3
5 10 6		_	- [_	_		_	-	454 445	122	488 -	7	-	315 305	•0	1336 1268	-
5 15 6		-	-	_	_	* _	-		438		_	8	_	300	.0	1276	_
5 16 6		-	8.0	-	-	-	-	-	-	122	460	_	0	_			33
5 22 6		-	8 • 2	_	_	_	-	-		128	470		0		_		31
6 6 6		_	7.8	_	-	_	_	-	441 -	114	460	10	10	325	•0	1348	_
6 12 6	1 -	-	-	-	-	_	-	-	430		-	5	1	313	.0	1348	_
6 14 6			7,6	-		-	-	-		122	450	-	0	-	_	_	100
6 19 6		_	7.8	_	-		_		430	130	440	0		300	•0	1311	_
6 26 6		_		-	_	_ [-1	-	434	120	440	- 5	0	350	•0	1311	_
6 29 6		-	7.6		-	-	-	-	-	122	490		. 0	-	-		_
7 10 6		-		-	-		-	-	449	-	-	5	-	325	.0	1308	_
7 12 6 7 17 6		_	7.6	_	_	_	- 1	-	452	118	460	-	0	-	-		36
7 24 6			_	_	_	-	-1		447		-	5 5	-	300 300	.0	1316 1317	_
7 25 6		-	7.6	-	-	-	-1	-	· · · ·	120	490		٥	-			_
7 31 6		-	_ =		- 1	-	[-	450		_	5	-	310	•0	1297	_
8 1 6 8 7 6		-	7 • 8	_	_	_	-	***	 / E O	122	450 -	- 5	0	- 0.7 5	-		3
8 8 6		_	7.6	_	_	-1	-1	-	450 -	118	500	2	- 0	315	•1	1337	*3
8 14 6	ւ -	_			-	-	-1	_	450	113	-	5	-	285	.1	1345	- "
8 15 6		-	7.4	-	-	-1	-	-		130	570	-	0		-	-	-
8 21 6		_	7.4	_		_	_	-	455 -	120 126	468 470	5	0 0	275	.1	1347	-
			1 0 -T					_	_	120	410	-	0		_		10

STATE

TEXAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATIONRED RIVER AT

DENISON, TEXAS

DATE OF SAMPLE	TEMP,	DISSOLVED				CHLORINE	DEMAND										
MONTH DAY YEAR	(Degrees Centigrade)	OXYGEN	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/I		COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
8 28 61 8 29 61 9 5 61 9 10 61 9 12 61 9 18 61 9 25 61 9 26 61	22.2		7.4						455 	128 134 - 126 - 110	540 530 540 - 540 - 490	51511511	155101151	315	•1	1355	7 - *3 *3 7 - 33

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Colbert, Oklahoma Operated by U.S. Corps of Engineers

STATE

Texas

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Lower Red River below Denison

STATION LOCATION

Red River at

Denison, Texas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	.340 .020 3.440 3.310 3.280	9.360 3.980 3.960 3.370 .080	3.370 3.290 .040 .040 3.680	3.470 4.280 4.870 4.610 6.210	2.880 2.420 2.070 .770 .480	4.170 3.370 3.540 .900 1.010	9.250 9.340 9.960 9.860 10.100	1.440 2.800 2.860 3.790 3.620	3.690 3.410 .600 .459 2.920	.510 .190 4.590 .300 4.700	3.890 3.830 3.190 3.130 2.470	3.270 2.600 .020 .020 2.270
6 7 8 9 10	3.070 1.220 .020 .020 2.910	1.390 4.200 2.280 3.650 5.170	3.250 3.170 3.440 3.920 3.870	5.690 4.500 3.820 4.840 4.830	2.000 2.130 2.560 1.500 .770	3.460 3.900 3.650 3.320 2.000	10.800 10.600 9.910 9.890 10.100	.900 .180 2.600 2.690 2.530	2.760 2.990 3.080 3.230 1.590	4.730 4.750 2.020 .020 2.220	.920 3.110 3.370 3.090 3.200	2.560 3.110 3.120 2.760 2.160
11 12 13 14 15	2.750 3.810 3.760 1.300	3.970 3.210 3.010 4.990 4.970	9.090 8.090 4.920 8.310 10.500	4.980 5.390 4.570 5.130 4.460	.690 .450 2.680 2.580 4.290	.180 .030 1.530 1.550 2.080	10.100 10.100 10.200 8.770 2.390	2.820 3.370 .960 .1 ₁ 90 2.780	.520 4.260 3.970 2.120 3.790	4.540 4.080 4.030 3.720 1.990	3.120 1.680 1.430 1.870 2.180	4.600 3.720 4.850 8.710 9.200
16 17 18 19 20	.020 2.650 6.150 9.200 21.100	5.700 4.300 4.360 2.230 .030	10.100 9.920 9.140 5.140 3.980	5.590 5.190 5.070 5.430 5.200	2.000 3.040 .600 .670 4.790	3.080 2.320 .040 .040	1.980 4.830 2.640 2.970 3.900	3.130 3.450 3.510 2.990 2.270	1.550 1.870 .150 2.520 3.280	.020 3.210 3.440 4.210 3.260	2.590 2.740 2.860 .520 .250	6.940 .360 2.930 2.260 2.830
21 22 23 24 25	30.630 30.330 30.200 30.350 30.490	3.150 4.150 2.940 .450 3.030	4.380 2.750 4.210 3.200 3.490	4.010 3.830 4.690 6.310 6.900	3.750 3.510 3.660 4.500 1.710	.870 1.400 2.160 1.190 2.140	4.180 1.950 .160 2.210 2.800	1.090 3.430 1.260 1.710 2.140	3.430 4.700 4.350 .020	3.940 1.300 4.500 5.230 3.940	2.940 2.490 .370 1.710 2.200	3.380 3.780 1.370 .550 3.410
26 27 28 29 30 31	30.570 27.510 23.810 19.910 19.920 14.680	.610 .030 2.920 1.560 2.690	3.540 5.580 4.730 4.350 5.940 4.210	5.470 6.270 4.010 4.020 4.940 3.790	.260 3.600 3.710	4.250 6.090 5.580 6.700 7.650 7.210	1.170 1.380 1.430 .020	1.030 .300 .320 2.610 .330 2.820	3.440 3.790 3.800 3.630 2.870	3.690 3.550 3.600 1.800 .020 3.450	1.590 .020 3.020 3.280 2.950 3.560	3.880 3.740 3.000 2.630 .230

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

BROWNSVILLE, TEXAS

DATE			RADI	DACTIVITY IN V	VATER			Γ	RADIOA	CTIVITY IN PLA	NKTON (dry)	T	RA	DIOACTIVITY IN W	ATER
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA		1	DATE OF DETERMI-	GROSS	ACTIVITY	1		GROSS ACTIVIT	
TAKEN		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL]	NATION	ALPHA	BETA	1	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	MONTH DAY	μμ _C /I	μμε/Ι	μμε/Ι	μμε/t	μμc/I	μμς/Ι		MO. DAY	μμc/g	<i>μ</i> μс/g		μμε/Ι	μμε/Ι	ppc/l
MO. DAY VEAR 10 2 60* 11 11 60* 12 15 60* 12 13 61* 2 17 61* 2 17 61* 3 17 61* 4 7 61 4 5 24 61* 6 13 61* 7 12 61* 8 16 61* 7 12 61* 8 2 61* 8 16 61* 9 28 61	10 14 10 24 11 17 11 25 11 25 1 16 2 3 1 3 2 3 2 4 4 5 5 5 19 6 27 7 10 7 31 8 30 9 18	17 12 0 0 0 1 0 3 1 2	дис/ 4 — 4 — 92 — 4 — 1 — 2 4 4 4 3 — 4 — 5 — — 5	4με/l 6 - 21 - 21 - 2 - 4 - 1 - 2 - 9 5 4 6 - 5 - 7 - 5	0000490000180000000000000000000000000000	μμε/I 0 0 0 0 0 0 7 0 0 0 0 0 0 22 27 15 30 11 11	μμε/I 0 0 0 4 13 0 0 0 25 0 1 0 0 22 37 28 46 13 11		MO. DAY	µµс/д	µµс∕g		μμε/Ι	μμε/Ι	инс/!

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

BROWNSVILLE, TEXAS

	1			ALGAE (1	Number	per ml.)				INE	RT TOM	Г			-	ATO					Ι.		MICROIN	VERTEBR	ATES	_	
DATE OF SAMPLE		BLUE-	GREEN	GREE	EN	FLAGEI (Pigm		DIAT	омѕ	SHE	TOM LLS er ml.)				SPEC	ies Al for Co	ID PE			5	OPLAKKTOR SKEATHED ml.)	<u> </u>	Ι			L FORMS	ienkra fuction ication)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND#	PER. CENTAGE	THIRD#	PER-	FOURTH	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLANKTOM, FUNGI AND SHEATHER MACTERIA (No. pet ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORMS (No. per liter)	bowinany genera (See Introduction for Identification)
10	2700	1300 160 200 20 190 750 220 580 540 870	150 130 20 110 70 20 40	870 130 270 200 90 360 1200 200 1990 270 4040 3710 850 890 1370 1370	90 40	90 290 160 200 130 330 160 450 290 410 130 1250 290 290	40	90 620 180 50 20 70 870 490 480 190 470 210 80	590 1450 3710 2600 400 1780 600 5400 1390 4330 7870 2300 2730 2300	90 90 70 20 20 240 90 100 210 80 60 70 310	130 270 360 130 110 530 120 680 100 520 250 250 170	38 4 38 92 38 70 38	530 100 330 20 20 410 520 410 410 410 410 410 410 410 410 410 41	26 38 5 91 92 38 80 38 87	20 10 10 10 10 10 10 10 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	70 38 80 5 82 49 53 84 38 21 26 9	10 10 10 10 10	82 26 26 71 5 80 86 82 6 26 26 87 38	10 10 10 10 10 10 10 10 *	1036020400550 504610 30504720	130 180 90 40 20 310	20	3 16 9999 12 10 7 3 194 53 53 146 148	2 1 8 1 1 1 1 2	1 3 1		722 773 78763 63 78-63 763 973 -8926 963 78863 -8363 74-63 -763 78-63 73-62

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

BROWNSVILLE, TEXAS

DATE OF SAM	101 8				KTRACTABL												
BEGINNING	END	\neg		E/	TRACIABL	1	 	·					ACTABLES				
	- I	-	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
3 3 61 5 10 61 7 5 61		1 2 27 20	4980 20880 4760 4914 4860	168 * 141 152 126 **SAMF	39 -47 29 35	129 94 123 91 PROCESS	1 - 2 1 1 1 SED-EXCE	8 13 6 9	18 13' 15 12	3 2 3 2	3 - 2 2 1 1	12 - 9 9 9	0 - 0 1 0	4-635	- 3 1	1 1 1 1	5-925

STATE

TEXAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATIONRIO GRANDE AT

BROWNSVILLE, TEXAS

DATE OF SAMPLE	1					CHLORINE	DEMAND										
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/i	C.O.D. mg/l	I-HOUR mg/i	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10	28.1 29.9 29.9 24.0 20.7 25.9 24.5 24.5 20.5 - 0 20.5 - 0 25.9 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	98.091156		1.3				mg/l	160 360 240 280 280 240 280 380 240 360 360 360 220 220 220 220	120 180 140 170 600 120 140 160 190 170 - 170 200 180 150 - 180 168 118	180 480 380 460 480 500 580 400 520 4860 4562 5080 190	(scole units)	120 80 50 2800 500 140 35 40 35 40 30 100 30 100 30	mg/1	mg/1		9er 100 ml.
3 10 61 3 17 61 3 24 61 4 1 61 4 21 61 4 28 61 5 5 61 5 17 61 5 24 61 5 31 61 6 13 61 6 14 61 6 28 61	25.0 23.0 27.0 28.5 25.5 31.0 29.4 30.5 30.0	8.5 	8.3 7.9 7.9 7.9 7.8 7.9 7.8 7.9 7.9 7.9 7.9	1.1 	111111111111111111111111111111111111111				180 180 180 210 290 255 150 155 190 180 250	126 - 154 150 - 144 130 120 150 140 120 130 90	150 288 284 300 340 304 248 268 280 276 260 300		95 150 170 65 40 65 140 185 160 20	145 140 90 180	1.0		260 280 40 - 64 - 200 450 250 1000 690 2000 400 400

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATIONRIO GRANDE AT

BROWNSVILLE, TEXAS

DATE						CHLORINE	DEMAND									TOTAL	
DAY YEAR YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
7 5 61 12 61 7 19 61 8 2 61 8 9 61 8 16 61 8 30 61 9 20 61 9 28 61	31.0 32.5 29.5 26.5 30.0 26.5 29.0 30.0 29.0 27.0	7.9 8.2 7.1	7.9 7.9 7.8 7.8 7.9 7.6 7.6 7.7	1.4 1.9 1.3 1.1 1.6 1.7 1.8 1.1 1.7			, , , , , , , , , , , , , , , , , , , ,		295 230 2250 255 190 150 170 145 170	100 110 120 120 130 140 120 100	328 2292 296 3108 280 272 2440 2248 2248		202 105 35 405 145 145 40 145 40	200 120 180 150 130	11 54435 1 1 1		*100 80 100 700 430 170 270 1700 380 850 1800 200

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Computed Data for Brownsville, Texas Supplied by International Boundary and Water Commission

STATE

Texas

MAJOR BASIN

Western Gulf

MINOR BASIN

Rio Grande/Lower/below Pecos River

STATION LOCATION

Rio Grande at

Brownsville, Texas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	.556 .372 .253 .175	. 380 . 358 . 975 . 803 . 439	. 264 . 219 . 335 . 439 . 533	1.105 1.075 1.135 1.115 .894	.247 .208 .158 .149 .228	.161 .110 .144 .396 .377	.173 .476 .815 .641 .532	1.344 1.967 2.410 2.198 1.059	•397 •184 •344 •575 •776	.13 ⁴ .130 .3 ⁴ ⁴ .4 ⁴ 3 .239	.351 .360 .212 .159	1.276 .673 .411 .296
6	.180	. 291	• 531	.462	.308	.342	.490	. 644	.713	.148	.188	.336
7	.167	. 340	• 380	.195	.377	.225	1.167	• 993	.234	.146	.236	.234
8	.172	. 380	• 335	.236	.233	.153	1.576	• 755	.164	.180	.217	.166
9	.149	. 346	• 353	.359	.223	.198	1.697	• 505	.114	.199	.370	.180
10	.231	. 529	• 200	.280	.254	.473	1.441	• 487	.092	.350	.399	.320
11	.339	. 587	. 227	.173	.268	.217	1.174	.330	.805	.462	.470	.801
12	.354	. 624	. 233	.174	.287	.114	.928	.207	1.614	.399	.455	.962
13	.192	. 639	. 308	.183	.346	.284	.609	.141	2.015	.281	.336	1.118
14	.125	. 750	. 488	.203	.201	.441	.440	.169	1.249	.444	.519	1.396
15	.084	. 606	. 471	.215	.141	.327	.489	.206	.321	.492	.459	1.136
16	.150	.381	. 494	.21 ⁴	.131	.220	.568	.281	.286	.466	.317	1.846
17	.439	.240	. 348	.283	.224	.228	.615	.358	.726	.434	.242	3.206
18	.559	.194	. 302	.29 ⁴	.368	.210	.494	.325	.856	.413	.254	5.197
19	.444	.172	. 216	.256	.283	.203	.299	.154	1.224	.379	.391	6.517
20	.466	.218	. 251	.219	.530	.240	.183	.094	1.538	.211	.502	6.707
21	. 433	. 484	.248	.195	• 554	.404	.147	.123	1.315	.146	.812	6.157
22	. 366	. 517	.245	.204	• 510	.400	.180	.208	1.336	.221	1.553	5.568
23	. 494	. 460	.211	.252	• 342	.224	.251	.248	1.177	.347	1.340	5.234
24	. 389	. 473	.178	.260	• 205	.148	.817	.426	.585	.420	.761	4.487
25	. 345	. 488	.199	.210	• 182	.161	.615	.343	.306	.380	1.234	3.447
26 27 28 29 30 31	. 352 1.978 2.599 2.147 . 984 . 496	. ¹ +57 . 32 ¹ + . 28 ¹ 4 . 329 . 320	.260 .289 .218 .159 .130	.213 .233 .202 .152 .243 .338	.402 .388 .310	.506 .779 .834 .648 .261 .131	.388 .278 .159 .163 .338	.169 .101 .175 .319 1.014 .909	.798 .661 .287 .150 .178	.220 .179 .335 .669 .665 .494	2.040 2.820 3.271 3.370 3.191 2.471	2.847 2.107 1.557 1.648 2.088

Computed as being sum of (1) Flow at Lower Brownsville Station, (2) City of Matamoros Diversion and (3) average daily Diversion at El Jardin Pump.

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

RADIOACTIVITY DETERMINATIONS

'F'I

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

LAREDO, TEXAS

DATE			RADIO	DACTIVITY IN V	VATER			RADIOAC	TIVITY IN PLAN	NKTON (dry)	RAD	IOACTIVITY IN W	ATER
SAMPLE	DATE OF		ALPHA		T .	BETA		DATE OF	GROSS /	CTIVITY		GROSS ACTIVIT	Y
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DETERMI-	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR		μμς/	μμc/l	μμε/	μμε/Ι	μμε/Ι	μμς/Ι	MO. DAY	μμc/g	μμc/g	μμε/ί	μμc/l	μμc/ 1
MO. DAY YEAR 10 25 60* 11 29 60* 12 6 60 1 31 61* 2 28 61* 4 25 61* 5 30 61* 6 27 61* 8 1 61* 9 9 61 9 12 61 9 19 61 9 26 61	NONTH DAY	39 7 9 0 1 1 23 42 27 4 6	5 3 5 2 1 2 6 3 3 4 4 3 - 2 3	44 10 14 2 2 7 4 26 46 30 	41 23 0 0 0 0 14 124 20 2 14 6 22	0 10 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	41 33 5 0 0 0 14 138 20 6 14 17 27	MO. DAY	<i>дµе/</i> д	##c/g	μμε/Ι	μμε/I	μμc/l

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

LAREDO, TEXAS

				ALGAE (I	Vumber	per ml.)				INE	RT										T .	1	MICROIN	VEDTER	ATER	- 1	
DATĘ OF SAMPLE		BLUE-	GREEN	GREE	N	FLAGEI (Pigm		DIAT	омѕ	INE DIA SHE (No. p	TOM LLS er ml.)				SPEC		MS ND PE de Ide			3	OPLANKTOR EMEATHED ml.)	M.)			T	r)	ENERA fuction cation)
MONTH DAY YEAR	TOTAL.	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND#	PER. CENTAGE	TRIRD#	PER. CENTAGE	FOURTH	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICHOFLANKTOR, FUNGI AND SHEATHED BACTERIA (NO. per ml.)	PROTOZOA (No. per n	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORT (No. per Iller)	DOMINANT GENERA (See Introduction for Identification)
10	1000 400 1000 4600 3500 4600 7200 22600 43300 4100 7500 100 1300	20		90 650 400 50 90 130 70 2180 4040 3170 40		180 20 90 600 150 20 20 20 160 290 290 20 60	50 330 20 20	500 200 750 1970 61840 580 940 760 5390 600 1820 50 60	160 180 90 1340 200 3950 6090 21960 39740 24910 3480 70 580 340 20 150	20	130 400 270 340 580 910 1110 520 750 200 150 200 80	55 2660 807 477 477 477 69	10 20 70 60 90 90 90 90 90 30 70 60	82 71 80 80 26 26	10 10 30 * 20 10 20 10	71 82 71 26 26 26 26 80 26 80 92 92	10 10 10 10 10 10 10 10 10 10 10 10 10 1	80 70 71 80 75	10 * 10 *	50 10 10 10 10 10 10	70 50 20 20	60	1				999 719639666 78726 486666666666-

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

LAREDO, TEXAS

T		E	XTRACTABL	.ES	-				CI !!						
1									NEUTRALS	ORM EXTR	ACTABLES				
	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS ,	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
7 21 61 7 28 8 16 61 8 23	3311 1661 6557 3922 1470 3067 1752 4857 1966 3775 4698	134 174 62 168 250 108 122 105 106 200 106 94 70	21 17x 12 14 34 15x 16 14x 33 41 25 21	113 157 50 154 216 93 108 89 88 73 159 49 49	0 0 0 1 0 1 3 1 0 1 SAMPLE	3 - 1 1 6 3 - 3 2 8 10 7 6 3	13 - 9 11 16 8 - 6 9 13 16 10 12 14	5-4552-1336458	1 1221 1 1 1 1 1 2	7-4495-4587554	0 0000 0010010	2-1142-2133231	1 - 0 0 1 1 1 0 2 2 1 1 2 1 1	1-000100000	1 1 5 1 - 3 2 5 6 4 2 1

STATE

TEXAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATIONRIO GRANDE AT

LAREDO, TEXAS

	DATE F SAM							CHLORINE	DEMAND										
MONTH	DAY DAY	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10	4		26.0	-	8.3	-		-	-	-	78	129	240	-	308	160	_		230
10 10	11	60	26.2 24.0	_	8.2	-	_	-	-	-	78	120	226	-	110	164	-	-	150
10	25	60	23.0	_	8.0	_	_	_	-	-	15	66	100	-	4100	61	-	-	3000
11	1	60	21.0	_	8.2	_	_	_	_	_	44 36	115 102	175 157	_	2500	90	[-	-	7800
11	8	60	20.0	_	8.3		_	_	_	Ξ	62	142	234	-	5200 2760	85 150	_	_	6000
11	15	60	21.0		8.3	_	_		_	_	76	159	270	_	950	156	· -	_	1300
11	22	60	18.5	_	8.2	_	_	_		_	102	133	266	_	525	176	_	-	2300
11	29	60	19.0	_	8.3		_	_		_	110	141	280	_	31	161	_		120
12	6	60	18.0	-	8.3	-	-		_	_	110	157	304	_	1390	219	- 1	_	4300
12	13	60	12.0	-	8.1		_	_	_	_	95	162	290	_	690	196	_	_	1800
12	20	60	14.0	-	8.2	-	-	-	-	-	95	140	268	_	244	171	_	_	790
12	27	60	13.0	-	8 • 2	-	-	-	-	-	100	148	280	_	420	173	-	_	7300
1	3	61	12.0	-	8.1		-	-	-	-	105	142	272	-	258	171	-	_	2900
1	10	61	12.0	-	8 • 2	_	-	_	-	-	105	144	274	-	143	165	-	_	770
1	17	61	13.0	-	8.2	-	-	-	-	-	105	150	280	-	69	168	-	-	20
1	24	61	14.0	-	8.2	-	_	_	-	-	110	148	284	-	116	179	_	_	700
1	31	61	11.0	_	8 • 2	-	_	_	-	-	110	150	280	-	120	165	-	_	_
2	7	61	10.0	-	8.2	-	-		-	-	110	140	280	-	200	140	-	_	400
2	14	61	16.0		8.3	-	-	-	-	-	110	140	270	-	170	135	-	-	110
2	21	61 61	16.2 15.0	-	8.3	-	-	-	-	-	120	118	256	_	172	148	-	-	550
3	7	61	23.0	-	8.3	-	-	-	-	_	120	131	270	-	232	148	_	_	630
3	14	61	22.2	_	8.3	_		-	_	_	120 125	117	254 254	_	141	148	_	_	330
3	21	61	19.0	_	8.3	_	_	_	_	_	120	114	248	_	158 210	169 168	_	_	100
3	28	61	24.0	_	8.3	_	_	_	_	_	125	100	242	-	186	171	_	_	66 400
4	4	61	21.0	_	8.3				_	_	125	121	264	_	110	148	_	_	66
4	10	61	21.5	_	8.3	_	_	_	_	_	135	121	276	_	268	158	_	_	"
4	11	61		_	_	***	_	_	_	_				-			-	_	*100
4	18	61	21.0	_	8.3		_	_	_	-	175	121	298	_	90	160	_	_	90
4	25	61	26.0		8.3		-	-	_	_	190	120	306	_	71	171	_	_	_
4	26	61		_	_	_		_	_	-			_	-	-		_	_	480
5	2	61	25.5	-	8.0	-	_	-	_	_	105	96	210	-	1900	122	-	_	72000
5	9	61	26.0	_	8.3	_	_	-	-	_	145	130	280	-	190	132	-	_	110
5	16	61	28.0	-	8.3	-	-	-	-	_	150	112	280	-	76	173	-	-	300
5	23	61	28.1	-	8.3	-	-	-	-	-	130	123	258	-	63	135	-	-	400
5	30	61	27.0	-	8.3	-		~	-	_	100	137	26 6	-	760	187	-	-	
6	2	61	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2300
6	6	61	27.5	-	8.3	-	-		-	-	62	128	240	_	1300	135	-	-	1800
_6	13	61	28.5		8.3	-	_			-	86	140	260	_	1360	164		-	*300

STATE

TEXAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

LAREDO, TEXAS

DATE OF SAMPLE	TEMP.	DISSOLVED OXYGEN	Hq	B.O.D.	C.O.D.	CHLORINE	1	AMMONIA- NITROGEN	CHLORIDES	ALKALINITY	HARDNESS	COLOR	TURBIDITY	SULFATES	PHOSPHATES	TOTAL DISSOLVED	COUFORMS
MONTH DAY YEAR		mg/l		mg/l	mg/l	1-HOUR mg/l	24-HOUR mg/l	mg/l	mg/l	mg/l	mg/l	(scale units)	(scale units)	mg/l	mg/l	SOUD\$	per 100 ml,
6 20 61 6 27 61 7 18 61 7 18 61 7 25 61 8 1 61 8 22 61 8 29 61 9 5 61 9 12 61 9 26 61	28.5 29.0 29.0 27.5 27.1 29.0 28.5 28.0 26.0 25.0		8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3						18 60 85 90 852 48 - 74 66 572 70 76 78	91 149 154 143 121 110 - 141 140 134 138 143 136	117 236 258 250 212 280 234 218 254 254 240		3200 2860 970 535 460 5500 1560 1760 4200 1220 1560 820 1090	55 105 127 135 123 94 183 135 136 151 195 226 199 182	- - - -		11000 1800 350 350 16000 *1000 900 670 1300 8700 260 50 2000

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Laredo, Texas Supplied by International Boundary and Water Commission

STATE

Texas

MAJOR BASIN

Western Gulf

MINOR BASIN

Rio Grande/Lower/below Pecos River

STATION LOCATION

Rio Grande at

Laredo, Texas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 1 5	1.960 1.910 1.820 1.820 1.790	6.640 4.870 4.030 4.030 3.880	3.390 3.110 2.730 2.730 3.020	2.750 2.810 2.880 2.810 2.590	2.960 2.750 2.800 2.750 2.800	1.960 1.960 1.840 1.900	1.480 1.450 1.410 1.370 1.330	5.300 2.510 2.600 1.880 1.460	2.260 1.880 1.570 1.880 2.080	4.240 4.380 4.380 4.060 4.240	4.240 3.920 3.640 3.600 3.740	2.820 2.620 2.370 2.370 2.460
6 7 8 9 10	1.760 1.730 1.730 1.700	3.640 3.240 3.080 3.140 3.240	3.280 4.170 3.440 3.230 3.280	2.530 2.590 2.810 3.140 3.200	3.160 3.250 3.410 2.910 2.850	1.960 2.030 1.960 1.840 1.730	1.480 1.630 1.410 1.330 1.260	1.690 1.460 1.230 1.190 1.140	1.750 1.460 1.360 2.080 2.320	3.880 3.780 3.410 3.100 3.140	4.910 4.170 3.880 3.500 3.400	2.370 2.550 3.810 3.070 3.110
11. 12 13 14 15	1.670 1.670 5.010 2.340 2.460	3.180 2.810 2.760 2.710 2.660	3.180 3.230 3.490 3.490 3.110	3.070 2.690 2.590 2.750 3.070	2.800 2.750 2.690 2.800 2.750	1.680 1.680 1.730 1.730	1.180 1.180 1.110 1.030 1.110	1.100 •978 •939 •978 •904	2.380 2.080 1.690 2.010 1.690	3.370 4.060 3.500 3.230 3.100	3.310 3.110 2.980 3.020 2.930	3.110 2.820 2.680 3.160 2.980
16 17 18 19 20	2.840 51.560 15.790 8.790 9.890	2.660 2.710 2.610 2.570 2.520	2.940 3.180 3.230 3.110 3.280	2.940 2.810 2.810 2.590 2.640	2.580 2.580 2.580 2.510 2.460	1.840 1.730 1.780 1.780 1.730	1.030 .961 .961 .961 .918	.869 .869 .812 .745 .745	1.510 4.770 36.020 75.220 92.520	3.010 3.050 3.530 4.480 3.990	2.770 2.830 3.140 3.740 3.920	2.680 2.460 2.370 2.680 2.940
21 22 23 24 25	7.240 6.140 5.050 4.480 4.030	3.140 4.030 3.240 2.810 2.710	3.110 2.730 2.730 2.730 2.730	2.640 2.590 2.640 2.750 4.410	2.460 2.460 2.340 2.280 2.230	1.590 1.520 1.560 1.520 1.520	.961 .961 .883 .918 .961	.763 .788 .939 1.320 1.880	27.970 12.680 9.010 7.420 6.430	3.410 2.830 5.120 14.830 8.760	3.670 6.750 5.860 4.380 3.740	2.550 2.620 2.280 2.200 2.100
26 27 29 29 30 31	3.600 3.440 4.380 4.660 9.920 17.270	2.710 2.810 3.640 3.440 3.430	2.860 2.940 2.790 2.600 2.600 2.860	3.400 2.880 2.810 2.810 2.880 3.140	2.230 2.170 2.120	1.480 1.520 1.520 1.480 1.520 1.450	.961 .918 .883 .883 5.690	2.480 2.010 1.940 4.100 4.630 2.950	5.930 5.330 4.940 4.520 4.310	13.880 13.980 8.830 7.560 5.860 4.840	3.780 4.060 3.810 3.450 3.110 2.880	2.450 2.810 2.010 2.680 2.680

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE AT

EL PASO, TEXAS

MADICAL MADI		T		nar nar	NO ACTIVITY IN	W/47F8				,						
No. DAY YEAR MONTH DAY PHe/I PHe/I PHE/I PH		DATE OF	T		DIOACITYIIT IN	WAIEK	PETA		4				4	RAL		
No. DAY YEAR MONTH DAY PHe/I PHe/I PHE/I PH		DETERMI- NATION	SUSPENDED		TOTAL	SUSPENDED		TOTAL	ł	DATE OF	GROSS		4			
10 24 60 11 10 0 15 15 0 0 0 0 10 11 10 0 12 12 12 12 0 0 5 5 5 12 27 60 1 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MO. DAY YEAR		μμε/I						1				-			
10 31 60							7,7.5.		┼	I MO. DAT	ppe/g	##c/g	-	μμε/1	μμε/Ι	μμε/Ι
10 31 60	10 24 60	11 10	0	15	15	0	٥	0			l					
12 27 60	10 31 60		0	12	12	0		1 -			1	ŀ	1			
1 16 61 3 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			-	٠	-	0	0		1	1.	1			1		
2 6 61 2 23 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					I .			0		ĺ	l					
2 20 61 3 23 0 0 0 0 0 0 0 0 0 0 0 0 0										1			İ	1		
3 6 61						1	_				1			1		
3 27 61* 4 10 8 5 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			i - I		1			1		i			1	ľ		
4 3 61 5 11					1			1		1		İ		_		
4 28 61* 5 15 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					I	1 1	-	-	1				1			
5 8 61* 5 24 0 2 2 0					1	-			ļ				1			
5 29 61* 6 9 0 4 4 4 0 1 1 1 6 12 61* 6 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1						ì							
6 12 61* 6 28						- 1							1			
6 26 61* 7 25	6 12 61*	6 28	-	-	_	1										
7 10 61* 8 3	6 26 61*	7 25	1	12	13	1		1	İ	1		1				*
8 14 61* 9 12 6 5 11 4 10 14 8 28 61* 9 21 11 5 16 20 7 27					-	0		I								
8 28 61* 9 21 11 5 16 20 7 27						13	28	41								
			- 1				10	14								
			1										1	İ		
	9 18 61	10 13	-	-	-	5	5	10		}						
														1 1		
			ĺ										1	1	ĺ	
			ļ											1		
	ĺ													1	İ	
		- 1												1		
		,				i								1		
		İ												1		
		ł		ĺ									İ			
			1									ļ	}			
													1			
												1			1	
		ĺ											Ì			
					İ	[1		
										ĺ						
	1	1													ı	
	İ]		l	ĺ					ĺ						
	ł				1	İ				ļ						
		İ														
					1											

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE AT

EL PASO, TEXAS

DATE	L				ALGAE	Number	r per ml.)				INI	ERT	1			ת	ATO	MS				ي ا	1	MICROIN	VERTEBR	RATES		i .
OF SAMPLI	LE		BLUE-	GREEN	GREI	EN	FLAGE (Pigm	LLATES ented)	DIAT	омѕ	DIA SHE (No. p	ERT TOM ELLS er ml.)		DOM!	NANT	SPEC	IES A		RCEN ntifical	TAGES	3	PLANKTON HEATHED 72.)	A ml.)	ter)	A ter)	ter)	L FORKS	senera duction ication)
MONTH DAY YEAR	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	- GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER. CENTAGE	SECOND#	PER- CENTAGE	THIRD#	PER-	FOURTH	PER-	OTHER PER- CENTAGE	OTHER RICROPLANKTOR, FUNGS AND SHEATHED RACTERIA (No. per ml.)	PROTOZOA (No. per 1	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per lit.	DOMINANT GENERA (See Introduction for Identification)
1 3 66 6 66 3 66 1 66 7 7 7 7 7 7 7 8 8 9 18 61	1 1 1 1 1 1 1	1500 2200 3500 8600 2400 4200 3400 300	20	40	1610 6730 210 390 280 170 20		360 1010 360 70 120 1510 1040 70 80	500	20 20 360 380 580 770 540 1390 20	1070 1140 1160 1470 1570 2690 270 210	50 40 120 120	930	26	40 20 10 20 20 50	65 12 65 51 12 12	10 10 10 10	4 65 70 92 65 41	10 10 10 * 10 *	51 66 36 51 10	* 10 * 10	600 570 70 60 40 40	20 50 40	10	16	4	64	1	6 8-76 4-76 4-76 4576 4-193

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE AT

EL PASO, TEXAS

	DATE	OF 5	AMD			1													
	GINN			ND	ł	E	XTRACTABL	ES	ļ				CHLOROF	ORM EXT	RACTABLES	;			
	1	1	_	1	GALLONS			1	İ				NEUTRALS			T	1	7	1
MONTH	DAY	YEAR	MONTH	DAY	FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
4 5 6 6 7 8 9 9	43553755		7	8 10 *	5190 5227 4875 15292 5010 5865 4867 15742	168 161 119 150 119 113 109 114	48 41 30 40 40 32 21 31	120 120 89 110 79 81 88 83	1	10 8	14 9	1	1	111	1	- 4 - -	3	1 -	

STATE

TEXAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN WESTERN GULF

MINOR BASIN

RIO GRANDE /UPPER/ Above PECOS RIVER

STATION LOCATION RIO GRANDE AT

EL PASO, TEXAS

DATE						CHLORINE	DEMAND			1		1			1		1
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/I	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
33 4 4 5 5 5 5 6 6 6 6 1 7 7 7 2 2 5 1 8 6 6 1 1 2 5 1 8 6 6 1 1 2 5 1 8 6 6 1 1 2 5 1 8 6 6 1 1 2 5 1 8 6 6 1 1 2 5 1 8 6 1 8 8 8 8 8 8 8 8 8	20.00.00.00.00.00.00.00.00.00.00.00.00.0	9.47.63.59.64.87.2 - 4.8.1.8.42.8 1.8.0.9.9.9.9.9.9	122232222224333423122 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.1892552929-75098-50 1.2333334.9 -5555 56		1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	1.66 1.66 1.68 1.67 1.88 1.99 2.30 2.06 1.64 2.04 1.77 1.66 1.77		125 135 135 135 2100 211 145 140 1190 1405 165	154 169 186 192 196 202 185 194 186 174 172 156 195 187 170 202	268 2700 332 3318 3006 2982 2814 2972 28 - 84 254		220 195 90 105 110 120 110 160 180 210 3000 450 800	217 2268 290 3138 2741 288 268 251 308 265 126 230		751 720 936 820 900 1000 992 881 832 619 826 962 731 924 792 756 748 725 996	250 - - - - - - - - - - - - - - - - - - -

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station below Caballo Dam, New Mexico Operated by U.S. Bureau of Reclamation STATE

Texas

MAJOR BASIN

Western Gulf

MINOR BASIN

Rio Grande/Upper/above Fecos River

STATION LOCATION

Rio Grande at

El Paso, Texas

.0020 .0020 .0020 .0019 .0018 .0018 .0018 .0018 .0018 .0018 .0018 .0018 .0017 .0017	.0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015	.0016 .0016 .0016 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015	.0011 .0010 .0010 .0009 .0008 .0013 .0013 .0013 .0013	.0012 .0012 .0012 .0012 .0012 .0012 .0012 .0011 .0011	.0014 .0014 .0014 .0014 .0014 .0014 .0014 .0014 .811	1.680 1.600 1.580 1.480 1.300 1.220 1.200 1.180 1.100 1.040	.740 .748 .745 .759 .866 .957 .982 .968 1.070 1.160	1.130 1.260 1.390 1.380 1.370 1.450 1.550 1.550 1.660 1.770	1.980 1.940 1.750 1:700 1.720 1.750 1.800 1.800 1.790 1.720	1.900 1.850 1.850 1.880 1.910 1.780 1.680 1.740 1.810 1.800	1.620 1.510 1.520 1.500 1.430 .703 .385 .864 .424 .211
.0019 .0018 .0018 .0018 .0018 .0018 .0018 .0018 .0018 .0018	.0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015	.0016 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015	.0010 .0009 .0008 .0013 .0013 .0013 .0013 .0013	.0012 .0012 .0012 .0012 .0012 .0011 .0011 .0011	.0014 .0014 .0014 .0014 .0014 .0014 .0014 .811	1.600 1.580 1.480 1.300 1.220 1.200 1.180 1.100 1.040	.748 .745 .759 .866 .957 .982 .968 1.070 1.160	1.260 1.390 1.380 1.370 1.450 1.550 1.550 1.660 1.770	1.940 1.750 1:700 1.720 1.750 1.800 1.800 1.790 1.720	1.850 1.850 1.880 1.910 1.780 1.680 1.740 1.810	1.510 1.520 1.500 1.430 .703 .385 .864 .424 .211
.0018 .0018 .0018 .0018 .0018 .0018 .0018 .0018 .0018	.0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015	.0016 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015	.0009 .0008 .0013 .0013 .0013 .0013 .0013	.0012 .0012 .0012 .0012 .0011 .0011 .0011	.0014 .0014 .0014 .0014 .0014 .0014 .811	1.580 1.480 1.300 1.220 1.200 1.180 1.100 1.040	.745 .759 .866 .957 .982 .968 1.070 1.160	1.390 1.380 1.370 1.450 1.550 1.550 1.660 1.770	1.750 1.700 1.720 1.750 1.800 1.800 1.790 1.720	1.850 1.880 1.910 1.780 1.680 1.740 1.810	1.520 1.500 1.430 .703 .385 .864 .424 .211
.0018 .0018 .0018 .0018 .0018 .0018 .0018 .0018 .0017 .0017	.0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015	.0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015	.0008 .0013 .0013 .0013 .0013 .0013 .0012	.0012 .0012 .0012 .0012 .0011 .0011	.0014 .0014 .0014 .0014 .0014 .811	1.480 1.300 1.220 1.200 1.180 1.100 1.040	.759 .866 .957 .982 .968 1.070 1.160	1.380 1.370 1.450 1.550 1.550 1.660 1.770	1.700 1.720 1.750 1.800 1.800 1.790 1.720	1.880 1.910 1.780 1.680 1.740 1.810	1.500 1.430 .703 .385 .864 .424 .211
.0018 .0018 .0018 .0018 .0018 .0018 .0018 .0017 .0017	.0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015	.0015 .0015 .0015 .0015 .0015 .0015 .0015	.0013 .0013 .0013 .0013 .0013	.0012 .0012 .0012 .0011 .0011 .0011 .0012	.0014 .0014 .0014 .0014 .0014 .811	1.300 1.220 1.200 1.180 1.100 1.040	.866 .957 .982 .968 1.070 1.160	1.450 1.550 1.550 1.660 1.770	1.720 1.750 1.800 1.800 1.790 1.720	1.910 1.780 1.680 1.740 1.810	1.430 .703 .385 .864 .424 .211
.0018 .0018 .0018 .0018 .0018 .0018 .0017 .0017	.0015 .0015 .0015 .0015 .0015 .0015 .0015	.0015 .0015 .0015 .0015 .0015 .0015 .0015	.0013 .0013 .0013 .0013 .0012 .0012	.0012 .0012 .0011 .0011 .0012 .0012	.0014 .0014 .0014 .811 1.490	1.200 1.180 1.100 1.040	.982 .968 1.070 1.160	1.550 1.550 1.660 1.770	1.800 1.800 1.790 1.720	1.780 1.680 1.740 1.810 1.800	.703 .385 .864 .424 .211
.0018 .0018 .0018 .0018 .0018 .0017 .0017	.0015 .0015 .0015 .0015 .0015 .0015	.0015 .0015 .0015 .0015 .0015 .0015	.0013 .0013 .0013 .0012 .0012	.0012 .0012 .0011 .0011 .0012 .0012	.0014 .0014 .0014 .811 1.490	1.200 1.180 1.100 1.040	.982 .968 1.070 1.160	1.550 1.550 1.660 1.770	1.800 1.800 1.790 1.720	1.680 1.740 1.810 1.800	.385 .864 .424 .211
.0018 .0018 .0018 .0018 .0017 .0017	.0015 .0015 .0015 .0015 .0015 .0015	.0015 .0015 .0015 .0015 .0015 .0015	.0013 .0013 .0012 .0012	.0012 .0011 .0011 .0012 .0012	.0014 .0014 .811 1.490 1.510	1.180 1.100 1.040	.968 1.070 1.160	1.550 1.660 1.770	1.800 1.790 1.720	1.740 1.810 1.800	.864 .424 .211
.0018 .0018 .0018 .0017	.0015 .0015 .0015 .0015	.0015 .0015 .0015 .0015 .0015	.0013 .0012 .0012 .0012	.0011 .0012 .0012	.0014 .811 1.490 1.510	1.100 1.040 .892	1.070 1.160 1.100	1.660 1.770 1.790	1.790 1.720	1.810 1.800	.424 .211
0018 0018 0017 0017	.0015 .0015 .0015 .0015	.0015 .0015 .0015	.0012 .0012 .0012	.0011 .0012 .0012	.811 1.490 1.510	1.040 .892	1.160	1.770 1.790	1.720	1.800	.211
0018 0017 0017	.0015 .0015 .0015	.0015 .0015 .0015	.0012	.0012 .0012	1.490 1.510	.892	1.100	1.790	·		
0018 0017 0017	.0015 .0015 .0015	.0015 .0015 .0015	.0012	.0012 .0012	1.510				1.660	1.950	.0013
0017 0017	.0015 .0015	.0015 .0015	.0012	.0012					T*000	1.950	• 0013
0017	.0015	.0015			חולדי ד			1.710	1.630		
			.0012		±• (+O	.813	1.120	1.750	1.480	1.950	.0013
	•00T2			.0012	2.270	•796	1.110	1.840	1.540	1.740	.0013
0010		·0072	.0012	.0012	2.680	• 794	1.090	1.640	1.670	1.320 •453	.0013
0018	.0015	.0014	.0012	0010					2.010	• 7/3	.0013
0019	.0015	.0014	.0012	.0012	2.660	.809	1.070	1.610	1.690	.286	.0013
0019	.0015	.0014	.0012	.0012	2.750	.810	1.070	1.610	1.720	.508	.0013
0018	.0016	.0014	.0012	.0012	2.790	.956	1.080	1.600	1.990	.516	.0013
0017	.0016	.0014	.0012	.0012	2.800	•999	1.180	1.510	2.200	.638	.0013
·		1001	.0012	.0013	2.800	1.120	1.250	1.500	2.250	. 785	.0013
0017	.0016	.0014	.0012	.0013	2.740	1.210	1.250	3 544	_		•
0017	.0016	.0014	.0013	.0013	2.720	1.190	1.240	1.530	2.320	• 798	.0013
0017	.0016	.0013	.0013	.0013	2.740	1.180	1.250	1.470	2.330	1.300	.0013
0017	.0016	.0013	.0013	.0013	2.770			1.460	2.350	1.550	.0013
0017	.0016	.0013	.0012	.0013							.0013
2017	00:16			_		2.010	T. 510	1.400	2.220	1.870	.0013
0016					2.720	1.010	1.230	1.580	2 070	0.060	2015
0016					2.600	.865					.0013
0016				.0011		.783					.0013
					2.310	.796					.0013
	•0010				2.320	.763	1.100				.0014
0016 0016		.0015	.0013		1.990		1.140				.0014
001 001 001	.7 .6 .6 .6	.7 .0016 .7 .0016 .6 .0016 .6 .0016 .6 .0016 .6 .0016	.7 .0016 .0012 .7 .0016 .0012 .6 .0016 .0012 .6 .0016 .0012 .6 .0016 .0012 .6 .0016 .0012 .6 .0016 .0012	.7 .0016 .0012 .0012 .7 .0016 .0012 .0012 .6 .0016 .0012 .0012 .6 .0016 .0012 .0012 .6 .0016 .0012 .0013 .6 .0016 .0012 .0013	.7 .0016 .0013 .0012 .0013 .7 .0016 .0012 .0012 .0014 .6 .0016 .0012 .0012 .0014 .6 .0016 .0012 .0012 .0014 .6 .0016 .0012 .0012 .0014 .6 .0016 .0012 .0013 .6 .0016 .0012 .0013	.7 .0016 .0013 .0012 .0013 2.820 .7 .0016 .0012 .0012 .0014 2.720 .6 .0016 .0012 .0012 .0014 2.600 .6 .0016 .0012 .0012 .0014 2.600 .6 .0016 .0012 .0012 .0014 2.420 .6 .0016 .0012 .0013 2.310 .6 .0016 .0012 .0013 2.320	.7 .0016 .0013 .0012 .0013 2.820 1.070 .7 .0016 .0012 .0012 .0014 2.720 1.010 .6 .0016 .0012 .0012 .0014 2.600 .865 .6 .0016 .0012 .0012 .0014 2.420 .783 .6 .0016 .0012 .0013 2.310 .796 .0016 .0016 .0012 .0013 2.320 .763	-7 .0016 .0013 .0012 .0013 2.820 1.070 1.280 -7 .0016 .0012 .0012 .0014 2.720 1.010 1.270 -7 .0016 .0012 .0012 .0014 2.600 .865 1.180 -6 .0016 .0012 .0012 .0014 2.600 .865 1.180 -6 .0016 .0012 .0012 .0014 2.420 .783 1.160 -6 .0016 .0012 .0013 2.310 .796 1.100 -6 .0016 .0012 .0013 2.320 .763 1.100	-7 .0016 .0013 .0012 .0013 2.820 1.070 1.280 1.470 -7 .0016 .0012 .0012 .0014 2.720 1.010 1.230 1.580 -6 .0016 .0012 .0012 .0014 2.600 .865 1.180 1.650 -6 .0016 .0012 .0012 .0014 2.420 .783 1.160 1.670 -6 .0016 .0012 .0013 2.310 .796 1.100 1.660 -6 .0016 .0012 .0013 2.320 .763 1.100 1.840	.7 .0016 .0013 .0012 .0013 2.820 1.070 1.280 1.470 2.340 2.220 .0016 .0012 .0012 .0014 2.720 1.010 1.230 1.580 2.070 .016 .0016 .0012 .0014 2.600 .865 1.180 1.650 2.060 .016 .0016 .0012 .0012 .0014 2.420 .783 1.160 1.670 2.140 .016 .0016 .0012 .0013 2.310 .796 1.100 1.660 2.190 .012 .0013 2.320 .763 1.100 1.640 2.130 .013 2.320 .763 1.100 1.840 2.130	-7 .0016 .0013 .0012 .0013 2.820 1.070 1.280 1.470 2.340 1.610 -7 .0016 .0012 .0012 .0014 2.720 1.010 1.230 1.580 2.220 1.870 -6 .0016 .0012 .0012 .0014 2.600 .865 1.180 1.650 2.060 2.190 -6 .0016 .0012 .0012 .0014 2.420 .783 1.160 1.670 2.140 2.190 -6 .0016 .0012 .0013 2.310 .796 1.100 1.660 2.190 2.180 -6 .0016 .0012 .0013 2.320 .763 1.100 1.640 2.130 2.004

STATE

COLORADO

MAJOR BASIN

WESTERN GULF

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE BELOW

ALAMOSA, COLORADO

			DADI	DACTIVITY IN W	ATED			 RADIOAG	TIVITY IN PLAN	KTON (dry)	RA	DIOACTIVITY IN W	/ATER
DATE SAMPLE	DATE OF		ALPHA	enental by W	m	BETA		DATE OF	GROSS A			GROSS ACTIVIT	
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DETERMI-	ALPHA	BETA	SUSPENDED		TOTAL
MO. DAY YEAR		μμε/Ι	μμε/1	μμc/l	μμε/Ι	μμς/Ι	μμε/Ι	 MO. DAY	μμε/g	μμc/g	μμε/Ι	μμς/Ι	μμε/
11 3 60 12 13 60 12 19 60 12 17 60 1 3 61 1 16 61 1 16 61 1 24 61 1 20 61 2 27 61 3 13 61 2 27 61 4 11 61 5 9 61 6 6 61 7 5 61 8 7 61 9 12 61	11 18 1 16 1 13 1 16 1 13 1 24 1 31 2 2 8 2 13 3 3 6 3 20 4 4 4 4 24 5 6 28 8 22 10	001000000000000000000000000000000000000	2 1 1 3 1 3 2 1 1 0 0 2 1 3 1 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 1 2 1 3 2 1 1 0 0 2 1 3 1 2 1 2 1 3 2 1 3 2 1 3 2 1 3 2 4 3 1 3 2 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	400000000000000000000000000000000000000	0000207355010000063102	4 0 0 0 2 0 7 3 53 5 0 0 0 0 0 6 26 14 14						

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

COLORADO

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE BELOW

ALAMOSA, COLORADO

DA	ATE	εŀ				ALGAE (Number	per ml.)				IN	ERT					IATO	Me				Ι.	T	MICRO	VERTER	DATES		т
OF SA	АМ	PLE		BLUE-	GREEN	GREE	EN	FLAGEI (Pigm	LLATES ented)	DIAT	омѕ	SHI (No. 1	ERT TOM ELLS per ml.)		DOM (Se	INANT e Intro	SPEC	IES A	ND PE	RCEN ntifical	TAGE:	s	LANKTON, EATHED	7		T	1	2	NERA iction ation)
MONTH	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER- CENTAGE	SECOND#	PER.	THIRD#	PER-	FOURTH#	PER. CENTAGE	OTHER PER- CENTAGE	OTHER RICROPLANKTOR, FURGI AND SHEATHED ACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NENATODES (No. per liter)	OTHER ANIMAL.	DOMINANT GENERA (See Introduction for Identification)
12 2 2 3 5 6 7 8	1637796572	60	1100 600 3100 3700 2500 1700 1400 15000 11300	60 480	460	230 500 200 1300 600 2550 970	40 20	50 20 220 270 340 310 420 1570 1610	200	200 50 20 130 890 290 4370 4950	380 450 2790 3130 1140 5960 3230	90 110 200 120 220 1330	490 290 1880 2170 1900 830 1160 1530	46 92 36 92 46 46 46 46	20 20 40 30 30 70	36 36 42 46 92 92 48 41	20 20 20 20 20 20 20 10	92 46 92 36 36 48 15 92	100 100 200 100 100 100 100 100 100 100	85 70 85 51 48 16 92 48	* 10 10 10 10 * 10 *	40 30 40 40 50 30 10 50	70 70 20	10	2 5 2 90 4 5 10	1	5 8	1	4 71-4 -177

COLURADO

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN WESTERN GULF

MINOR BASIN

STATE

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATIONRIO GRANDE BELOW

ALAMOSA, COLURADO

DATE OF SAMPLE	темр.	DISSOLVED				CHLORINE	DEMAND					<u> </u>			T		
DAY	(Degrees Centigrade)	OXYGEN	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/I	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/I	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
11 7 60 11 14 60 11 21 60 12 18 60 12 19 60 12 19 60 12 27 60 1 3 61 1 16 61 1 24 61 1 30 61 2 27 61 3 20 61 3 27 61 3 20 61 3 27 61 5 9 61 6 61 7 5 61 7 5 61 6 61 7 5 61 6 61 7 5 61 6 61 7 5 61 6 61 7 6 61 7 6 61 7 6 61 7 6 61 7 6 61 8 61 9 61 6 61 7 6 61 7 6 61 8 61 9 61 6 61 7 6 61 8 61 9 61 6 61 7 61 6 61 7 61 6 61 7 61 6 61 7 61 6 61 7 61 6 61 7 61 6 61 7 61 6 61 7 61 6 61 7 61 6 61 7 61 6 61 7 61 6 61 7 61 6 61 7 61 6 61 7 61 6 61 7 7 61 6 61 7 7 61 6 61 7 7 61 6 61 7 7 61 6 61 7 7 61 6 61 7 7 61 6 7 61 6 7 7 61 6 8 7 7 61 6 8 7 7 61 6 8 7 7 61 6 8 7 7 61 6 8 7 7 61 6 8 7 7 61 6 8 7 7 61 6 8 7 7 7 61 6 8 7 7 7 61 6 8 7 7 7 61 6 8 7 7 7 61 6 8 7 7 7 61 6 8 7 7 7 61 7 7 61 8 7 7 7 61 8 7 7 7 61 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			7.9 7.8 7.9 7.5 7.6 7.6 7.6 7.6 8.1 7.9							7 96 108 92 92 90 82 78 90 106 106 86 134	116 120 106 110 94 84 256 224 128 136 156 168 276		1 1 1 200000 1 1 000000 1 1 25	599 599 420 355 322 4560 6448 8370 1100 888	000000000000000000000000000000000000000	220 209 195 176 152 162 248 598 336	80 240 110 160 130 130 - - 8500 6200 20 - *100

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Lobatos, Colorado Operated by U.S. Geological Survey

STATE

Colorado

MAJOR BASIN

Western Gulf

MINOR BASIN

Rio Grande/Upper/above Pecos River

STATION LOCATION

Rio Grande below

Alamosa, Colorado

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	.030 .030 .032 .030	.076 .073 .078 .076 .073	.144 .145 .125 .140 .140	.170 .165 .155 .130 .140	.180 .175 .168 .165	.160 .170 .185 .210	.160 .177 .166 .160	.688 1.090 1.080 1.160 1.230	.854 .811 .753 .567 .418	.076 .069 .067 .069	.033 .037 .053 .065	.030 .034 .058 .090
6 7 8 9 10	.029 .032 .029 .036 .037	.073 .065 .067 .071 .289	.085 .100 .117 .116	.135 .140 .135 .140	.160 .160 .165 .175	.230 .225 .220 .225 .230	.280 .276 .276 .272 .247	.940 .612 .485 .418 .395	.358 .313 .251 .211 .243	.060 .073 .067 .062	.054 .054 .049 .049	.088 .082 .090 .144
11 12 13 14 15	.036 .034 .033 .036 .036	.542 .586 .599 .605 .586	.134 .156 .173 .177 .170	.134 .135 .135 .145 .160	.200 .210 .230 .240 .245	.231 .231 .235 .211 .196	.219 .211 .203 .192 .192	.429 .429 .502 .485 .353	.239 .211 .177 .163 .140	.056 .056 .058 .054 .053	.040 .039 .044 .067 .069	.080 .071 .082 .095
16 17 18 19 20	.037 .060 .065 .111 .150	.280 .166 .120 .105 .102	.181 .177 .160 .160 .160	.155 .150 .146 .150 .150	.248 .240 .235 .230 .220	.192 .199 .203 .166 .170	.192 .173 .156 .284 .513	.318 .284 .268 .251 .259	.114 .105 .111 .134 .134	.051 .049 .045 .042 .053	.067 .067 .069 .065 .056	.080 .073 .065 .078 .076
21 22 23 24 25	.160 .134 .122 .108 .098	.098 .098 .098 .098 .098	.163 .163 .166 .166	.150 .150 .151 .155 .160	.215 .210 .200 .170 .175	.166 .160 .160 .160 .163	.854 .710 .667 .731 .717	. 313 . 318 . 384 . 777 . 639	.144 .160 .153 .156 .134	.076 .080 .060 .053	.045 .045 .073 .051	.073 .080 .122 .114 .105
26 27 28 29 30 31	.088 .085 .085 .082 .080	.100 .111 .147 .147 .137	.170 .170 .170 .173 .173	.170 .170 .180 .190 .165	.175 .165 .150	.181 .170 .160 .153 .160	. 525 . 446 . 379 . 384 . 525	.554 .667 .874 1.070 .864 .820	.122 .114 .105 .095 .090	.039 .095 .069 .054 .042 .040	.045 .039 .033 .037 .036	.092 .090 .085 .080

STATE

VIRGINIA

MAJOR BASIN

SOUTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

ROANOKE RIVER

STATION LOCATION ROANOKE RIVER AT

JOHN H KERR RESR & DAM, VIRGINIA 91

DATE					RAD	OACTIVITY IN Y	VATER				RADIOA	CTIVITY IN PLAI	IKTON (dry)		RAD	OACTIVITY IN W	ATER
SAMPLE		ATE	OF RMI- ON		ALPHA			BETA			DATE OF DETERMI- NATION	GROSS	CTIVITY			GROSS ACTIVIT	Y
TAKEN				SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL		NATION	ALPHA	BETA	SUSPEN	DED	DISSOLVED	TOTAL
D. DAY YEAR	MOI	тн	DAY	μμε/Ι	μμε/Ι	μμε/1	μμε/Ι	μμc/l	μμε/Ι		MO. DAY	μμc/g	μμс/g	μμε/	1	<i>р</i> µс/I	##c/l
17 41	Ι,	,	8	٥	0	0	٥	٥	٥								
17 61 31 61			7	0	0	0	3	1	4								
7 61			8	0	0	0	3	5	8	1							
14 61		,		Ö	0	0	3	5	8	1							
21 61		2		ì	0	li	l ī	4	5	1	i				1		
28 61	4			ō	ŏ	Ô	اً أ	2	ž						İ		
5 61	10		6	Ö	ŏ	ŏ	ŏ	ō	õ	1	1			ļ	ł		
11 61	10		6	i	ŏ	i	l ŏ	o	ŏ					ļ			
18 61	10		7	Ī	Ŏ	l ī	4	7	11					1			
25 61	10		3	ō	o	l ō	0	2	2	1					-		
				_	_			_	-								
•														ļ			
1										l				İ			
										1	1			İ	1		
1															i		
1											1			l			
1										1							
1										1				İ			
1																	
ŀ							ĺ			1	1		i	1			
1	1									1				1			
1	1									1							
ŀ										1	l i			1			
ŀ										1				1			
ŀ														l			
ŀ										1				1			
ŀ																	
ŀ											l						
ŀ											1						
ŀ											1						
ŀ																	
ŀ																	
ŀ																	
ŀ																	
ŀ]					1				
ŀ																	
	1				1					1	1		1	 			

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

VIRGINIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

ROANOKE RIVER

STATION LOCATION ROANOKE RIVER AT

JOHN H KERR RESR & DAM, VIRGINIA 91

DATE		,		ALGAE (2	Vumber	per ml.)				INI	ERT	T				IATO					T .	т-	HICROI	NVERTEB:			
OF SAMPLE	•	BLUE-	GREEN	GREE	EN.	FLAGEL (Pigma	LATES ented)	DIAT	омѕ	DIA SHE (No. p	ERT TOM ELLS er ml.)		DOM (Se	INANT	SPEC	IES A	ND PE	RCEN entifica	TAGE:	s	LAMETON, LATHER	3	T	T	T	N N N	KKRA Iction ation)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER.	SECOND#	PER.	THIRD#	PER-	FOURTH	PER-	OTHER PER- CENTAGE	OTHER HICHOPLANKTOR, FUNGI AND SHEATHED RACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ARMAL (No. per liter)	DOBINANT GENKRA (See Introduction for Identification)
6 19 61 7 17 61 8 7 61 8 21 61 9 5 61 9 18 61	1500 1200 600 100 100	70	60 960 50	40 70 130 20 20		20	20 50	1160 70 220 80 20	40 110 110 20	170 130 80 70	70 20	58 58 57 58	90703003600	47 57 58 57	20 30 30 10	47 28	20 10 10	2	20 10 10	10 10 20 10 30	70 20		7 110 130 14	6 9 19			7

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

VIRGINIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

ROANOKE RIVER

STATION LOCATION ROANOKE RIVER AT

JOHN H KERR RESR & DAM, VIRGINIA 91

D.T	_																	
DATE OF					E	TRACTABL	ES					CHLOROF	ORM EXTR	ACTABLES				
	+	EN	D	0417.000								NEUTRALS	3		<u> </u>		· · · · · · · · · · · · · · · · · · ·	
MONTH		MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	Loss
8 7 61 9 5 61		8 9	28 21	4370 4550	361 301	188 155	173 146	9	47 40	34 37	3	2 3	28 30		15 12		2 2	51 30
										·								
								-										

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Buggs Island, Virginia Operated by U.S. Geological Survey

STATE

Virginia

MAJOR BASIN

Southeast

MINOR BASIN

Roanoke River

STATION LOCATION

Roanoke River at

John H. Kerr Reservoir & Dam, Va.

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	1.120	5.050	3.980	.310	4.040	17.700	8.910	8.120	10.500	4.410	5.300	18.400
2	.410	4.890	4.060	1.040	6.600	16.000	12.000	8.640	12.100	1.570	2.950	2.600
3	8.320	4.860	.425	6.380	4.220	14.900	18.300	6.360	3.580	8.140	4.160	.215
4	7.370	4.900	.262	4.420	.318	5.360	20.500	7.410	2.800	.256	2.970	.210
5	8.450	1.090	6.460	4.000	.310	1.780	17.600	9.610	7.440	7.760	.256	8.880
6	9.450	.575	5.710	3.720	3.550	16.400	17.400	3.130	7.610	10.300	.250	8.420
7	8.030	8.000	5.160	.920	2.380	18.100	14.200	3.080	8.680	10.400	4.250	7.930
8	4.320	5.730	6.180	.415	2.160	12.700	3.470	11.200	7.410	2.240	7.090	4.040
9	2.200	5.640	7.050	7.220	2.120	16.400	2.620	8.050	5.760	.268	5.780	1.820
10	8.780	5.650	1.060	5.200	2.210	16.800	18.400	6.730	3.620	6.760	4.580	.215
11	7.480	3.460	1.860	5.120	.405	9.530	20.500	9.380	2.580	7.110	5.360	10.300
12	7.520	.950	8.660	4.820	.298	2.220	14.700	13.700	10.500	6.800	.630	8.310
13	7.460	.515	7.420	4.160	4.120	19.000	15.600	2.920	8.800	7.120	.250	7.260
14	8.000	5.810	4.860	1.980	2.690	16.300	18.600	2.650	5.690	7.600	2.060	15.400
15	3.240	4.890	4.780	.560	2.120	15.300	18.100	15.100	3.460	2.380	2.890	2.460
16	1.310	5.180	5.280	7.440	2.220	16.300	14.700	18.000	3.600	.262	6.060	.220
17	9.140	4.760	2.200	5.950	2.470	12.500	20.500	17.300	.250	7.580	5.510	.220
18	7.930	5.000	1.020	5.780	.550	4.450	18.900	16.500	.250	5.780	4.780	4.060
19	8.000	.745	6.630	7.640	.256	.995	17.300	16.000	3.940	6.560	.445	6.480
20	6.840	.485	5.900	5.700	4.480	6.710	16.900	2.920	4.560	5.520	.240	6.580
21	6.930	5.450	4.960	3.960	4.540	5.200	17.200	2.960	5.820	7.200	5.350	7.360
22	1.180	4.780	5.080	1.230	3.080	6.440	17.700	8.070	17.800	1.660	6.940	5.810
23	.765	4.400	4.080	8.250	6.100	10.700	13.800	9.640	16.300	.256	5.600	.915
24	10.200	1.750	2.140	8.040	11.500	12.600	9.890	8.130	2.420	7.760	8.510	.210
25	7.050	2.080	.390	7.580	3.110	14.200	9.580	8.120	3.000	5.430	8.210	11.200
26 27 28 29 30 31	6.920 6.480 6.160 1.340 .200 6.620	.515 .205 4.600 4.340 4.830	.485 3.550 5.450 4.990 3.940 2.020	6.900 5.290 2.260 1.000 7.380 6.220	13.800 19.400 19.700	9.110 17.600 17.700 15.100 11.700 9.800	9.350 10.100 8.080 3.140 3.050	10.300 3.340 3.100 8.550 6.760 8.080	14.800 17.000 19.500 18.400 17.000	3.380 3.580 4.910 .905 .250 9.040	5.020 .240 19.300 18.100 14.500 16.400	5.240 2.860 2.600 2.960 .210

RADIOACTIVITY DETERMINATIONS

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

SABINE RIVER

STATION LOCATION SABINE RIVER NEAR

RULIFF, TEXAS

DATE			RADI	OACTIVITY IN V	VATER			 PADIOA	CTIVITY IN PLAI	IKTON (4-4)	 210	101000000000000000000000000000000000000	
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA			GROSS		RAD	GROSS ACTIVIT	
TAKEN		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	MONTH DAY	μμε/	μμc/1	μμε/1	μμς/Ι	μμε/ί	μμε/Ι	MO. DAY	µµс/g	μμc/g	μμc/l	μμε/I	μμε/l
10 3 60	10 20	1		_		_	_						
0 10 60	10 21	2	2	3	0	1	1	1					
0 17 60	11 1	ő	1 0	3	0	1	1	l i					
0 24 60	11 15	0	3	0	9	8	17						
0 31 60	11 21	2	_	3	0	1	1						
7 60	11 29	1	1	3	1	0	1						
1 14 60	11 30	ō	0	1	2	0	2	1					
1 29 60	12 20	1		0	0	0	0			i			
2 5 60	1 3	ō	1	2	0	2	2						
2 12 60	1 6		0	0	0	3	3	1					
2 19 60	1 13	1	1	2	0	0	0	1		i			
2 27 60	1 19	1	0	1	0	9	9	1		1			
1 2 61	1 31	0	0	0	0	0	0	1		i			
1 9 61	1 27	0	0	0	0	0	0	1					
1 16 61	2 6	ŏ	1	1	0	0	0						
1 23 61	2 17	0	1 1	1	0	3	3						
1 29 61	2 13	3	0	1	0	1	1	1 1					
2 6 61	2 21	4	0	3 4	24	5	29						
2 13 61	3 3	o l	0	•	0	0	0						
2 19 61	3 9			0	11	o l	11			1			
2 27 61	3 21	1	0	1	0	5	5	1					
	3 27		0	1	0	0	0	1					
		1	0	1	0	0	0						
3 13 61	3 31	1	0	1	2	o	2						
3 20 61 3 27 61	4 5	0	0	0	0	5	5						
	4 17	0	0	0	0	4	4						
4 3 61	5 5	2	1	3	0	5	5			l			
4 10 61	5 2	1	0	1	0	1	1						
4 17 61	5 17 5 23	0	0	0	2	8	10						
4 24 61 5 1 61		0	0	0	0	0	0].					
	6 8	0	0	0	0	0	0						
5 8 61 5 15 61	6 8	2 1	o l	2 2	6	1	7						
5 22 61	6 14	2	1	3	0	0	0 7						
5 29 61	6 20	1	1 1	2	0 0	ó	6						
6 5 61	6 28	1 1		1		- 1	- 1						
6 11 61	7 6	1	0		0	0	0						
6 19 61	7 28	5	ő	1 5	0 5	0	0						
	8 30					0	5						
7 31 61*	ا نو ه	1	1	2	3	7	10			l i			
								1			 		

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

SABINE RIVER

STATION LOCATION SABINE RIVER NEAR

RULIFF, TEXAS

DATE OF				VATER			I KADIO	ACTIVITY IN PLA	INCIDIN (GIY)			DIOACTIVITY IN V	
		ALPHA		1	BETA				ACTIVITY	1		GROSS ACTIVIT	Y
DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	1	SUSPENDED	DISSOLVED	TOTAL
MONTH DAY	μμς/1	μμς/	μμε/Ι	μμς/Ι	μμc/l	μμc/1	MO. DAY	μμc/g	μμc/g		μμε/Ι	μμc/I	μμc/I
9 18 10 3 10 23 10 11 10 9	0	0 - - 0	011	1 0 1 1 2	5 0 3 4 10	6 0 4 5			V	10			
				·					*				
	10 3 10 23 10 11	10 3 - 10 23 - 10 11 -	10 3 10 23 10 11	9 18 0 0 0 10 3 10 23 10 11	9 18 0 0 1 10 3 0 0 10 23 1 10 11 1 10 9 0 0 0 2	9 18 0 0 0 1 5 10 3 0 0 0 10 23 1 3 10 11 1 4 10 9 0 0 0 2 10	9 18 0 0 0 1 5 6 10 3 0 0 0 0 10 23 1 3 4 10 11 1 4 5 10 9 0 0 0 2 10 12	9 18 0 0 0 1 5 6 10 3 0 0 0 0 10 23 - 1 3 4 10 11 1 4 5 10 9 0 0 0 2 10 12	9 18 0 0 0 1 5 6 10 3 0 0 0 0 0 10 23 - 1 3 4 10 11 1 4 5 10 9 0 0 0 2 10 12	9 18 0 0 0 1 5 6 10 3 0 0 0 0 10 23 - 1 3 4 10 11 1 4 5 10 9 0 0 0 2 10 12	9 18 0 0 0 1 5 6 10 3 0 0 0 0 10 23 - 1 3 4 10 11 1 4 5 10 9 0 0 0 2 10 12	9 18 0 0 0 1 5 6 10 3 0 0 0 0 10 23 - 1 3 4 10 11 1 4 5 10 9 0 0 0 2 10 12	9 18 0 0 0 1 5 6 10 3 0 0 0 0 10 23 - 1 3 4 10 11 1 4 5 10 9 0 0 0 2 10 12

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

SABINE RIVER

STATION LOCATION SABINE RIVER NEAR

RULIFF, TEXAS

	ATE	-				ALGAE (Number	per ml.)				INE	ERT	Т									1	1					
OF S				BLUE-	GREEN	GREE	EN	FLAGE (Pigm	LLATES ented)	DIAT	омѕ	DIA SHE (No. p	ERT TOM LLS er ml.)		DOM (Se	NANT	SPEC	IATO IES AI for Co	ND PE	RCEN' nti/icat	TAGES	8	LANKTON, LATKED	A.	MICROIN	T	T	TOKES	HERA section artion)
MONTH	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND#	PER. CENTAGE	THIRD#	PER. CENTAGE	FOURTH#	PER- CENTAGE	OTHER PER- CENTAGE	OTHER HICROPLANKYOR, FUNGI AND SHEATHED MACTERIA (No. pet ml.)	PROTOZOA (No. per m	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL. (No. per liter	pominant senera (See Introduction for Identification)
1 2 3 3 4 4 5 5 6 6 7 7 7 8 8 9	759356037155939716	60 60 60 61 61 61 61 61 61 61 61 61 61	200 200 100 300 300 4200 2400 100 100 100 200	20 290 50 50		20 480 90 110	20	50 160 160 1370 690 20 20	20 60 50	110 220 20 20 20 100 1660 1230 40 20 50 20 80 80	20 70 70 20 390 50 170 100	150 20 20 20 250 1230 150 20 20 40	50 20 20 60 180 40 250 20	26 43 57 57 57 57 43 26 92	30 30 50 73 40 30 20	65 263 263 262 262 275 263 263 263 263 263 263 263 263 263 263	* 20 10 20 10 10 10	82 43 10 82	10 10 10 10 10 10	44 26 84 28 88 56	10 10 10 10 10 10 10	400 500 100 500 60 50	70 70 50 270 90 20 20 20	10	20 8 2 171 10 8 29 12 2 6	9999 4 4 8 21 2 2	8 2 1	1 2 5	41937

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

SABINE RIVER

STATION LOCATION SABINE RIVER NEAR

RULIFF, TEXAS

DATE OF S	AMPI	F		FX	TRACTABL	FS					CHLOROE	ORM EXTR	ACTABLES				
BEGINNING		END			I			<u> </u>			NEUTRALS			I	1		
MONTH DAY	MONTH	1	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 5 60 11 8 60 12 14 60 1 17 61 3 14 61 4 8 61 5 12 61 6 22 61 9 1 61		L 24 2 27	5000 5000 5000 5050 5070 5000 3200 5000	369 349 378 304 330 407 341 181 372 260	121 100 142 104 165 101 142 82 206 77	248 249 236 200 165 306 199 99 166 183	1 2 9 5 6 1 6 3 6 2	27 21 38 24 36 21 34 19 47 14	34 24 21 20 45 30 27 20 54 25	2 2 1 10 3 2 2 15 4	1 2 2 1 6 3 2 2 8 2	17 18 17 29 21 22 15	2 3 0 1 0 3 1 1 1 1 1 1	17 12 13 9 20 14 14 10 21 12	15 18 11 18 11 20 10	2231211121	22 24 40 34 33 40 93 41 41

STATE

TEXAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

WESTERN GULF

MINOR BASIN

SABINE RIVER

STATION LOCATIONSABINE RIVER NEAR

RULIFF, TEXAS

DATE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	DEMAND										
MONTH DAY YEAR	(Degrees Centigrade)	OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 mi.
10 3 60 10 24 60 10 24 60 11 29 60 12 5 60 12 19 60 12 27 60 1 23 61 1 23 61 1 29 61 2 3 61 2 4 61 3 27 61 4 10 61 2 14 61 5 16 61 5 29 61 6 17 24 61 8 14 61 8 21 61 8 21 61 8 21 61 9 61 9 18 61 9 25 61			7.2 7.2 7.3 7.2 7.4 7.5 7.6 8 7.7 7.6 6.8 7.7 7.3 7.4 7.3 7.4 7.5 7.4 7.5 7.4 7.5 7.6 7.7 7.5 7.6 7.7 7.6 7.7 7.6 7.7 7.7 7.6 7.7 7.7						389 370 362 1832 100 190 146 273 	42 26 32 24 36 20 14 16 10 14 12 32 - 26 32 - 36 44 26 22 24 26 22 24 26 32 10 20	7242600688840422488866-64000888223432488865-706604828428	15 100 100 100 160 160 100 100 100 100 100	57 50 30 110 20 20 0 6 110 500 75 	12 15 12 12 27 15 16 19 13 11 24 40 16 30 10 16 22 21 21 21 22 21 21 21 21 21 21 21 21	.12.2	121 157 120 105 169 98 -72 55 -77 114 48 104 90 -89 -102 109 112 147 112	

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Ruliff, Texas Operated by U.S. Geological Survey STATE

Texas

MAJOR BASIN

Western Gulf

MINOR BASIN

Sabine River

STATION LOCATION

Sabine River near

Ruliff, Texas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	1.720	4.700	7.680	36.500	22.800	24.200	21.400	4.330	2.010	11.400	6.740	2.160
2	1.860	4.800	6.400	37.200	21.400	22.100	22.100	4.240	1.910	11.400	6.740	2.010
3	2.310	4.240	5.300	35.800	20.100	21.400	22.800	4.420	1.860	11.400	6.400	1.910
4	3.030	3.520	4.600	33.500	19.500	20.700	23.500	5.000	1.810	11.000	5.540	1.860
5	3.450	2.960	4.150	31.200	19.000	20.100	24.200	5.200	1.810	10.300	4.700	1.810
6 7 8 9	3.450 3.100 2.720 2.420 2.260	2.600 2.360 2.160 2.010 1.910	3.910 3.990 4.700 5.940 7.680	29.100 31.200 34.200 39.600 49.200	19.000 19.500 19.500 18.500 18.000	19.500 19.000 18.500 18.000 17.600	24.900 24.200 23.500 24.200 24.200	5.000 4.700 4.420 4.240 4.070	1.860 1.910 1.960 1.910 1.860	9.600 8.780 8.080 8.300 8.780	4.070 3.830 3.750 3.910 3.990	1.760 1.720 1.600 1.520 1.480
11	2.110	2.010	9.950	52.400	17.200	17.200	23.500	3.910	1.810	9.300	3.750	1.560
12	2.010	3.170	12.300	49.200	16.300	16.700	23.500	3.670	1.860	11.400	3.310	2.060
13	1.910	4.240	14.800	46.000	15.200	15.900	23.500	3.520	1.910	12.300	2.840	4.440
1 ¹ 4	1.860	4.150	17.600	44.400	14.800	15.200	22.800	3.380	1.960	12.300	2.480	7.880
15	1.720	3.670	20.700	44.400	14.200	13.900	22.100	3.240	2.060	12.300	2.480	11.000
16	1.640	3.380	22.100	42.800	13.600	12.300	20.700	3.170	2.260	11.800	2.540	15.900
17	1.560	3.170	22.100	41.200	15.900	11.800	20.700	3.100	2.420	10.600	2.420	32.000
18	1.480	3.380	22.800	39.600	19.500	12.300	18.500	3.170	2.480	9.040	2.310	36.500
19	1.560	4.510	22.800	37.200	21.400	14.200	17.200	3.240	2.900	8.080	2.480	35.000
20	1.760	5.420	23.500	35.800	24.200	17.600	15.500	3.100	5.160	7.480	2.960	32.000
21	1.910	6.080	23.500	33.500	28.400	24.900	14.200	2.840	6.080	6.920	2.840	27.700
22	1.960	6.400	23.500	32.800	32.000	29.100	12.800	2.600	6.560	6.240	2.480	22.100
23	1.810	6.560	23.500	31.200	32.800	31.200	11.000	2.480	7.100	6.080	2.310	18.000
24	1.600	7.100	23.500	29.100	33.500	30.500	9.300	2.310	7.480	6.400	2.160	13.600
25	1.440	7.680	23.500	27.700	32.800	28.400	7.880	2.260	8.080	6.400	2.160	9.600
26 27 28 29 30 31	1.400 1.400 1.480 1.760 2.600 3.750	8.300 9.040 9.040 9.040 8.520	23.500 24.200 25.600 26.300 28.400 32.800	26.300 25.600 27.000 27.700 26.300 24.900	30.500 29.100 27.000	27.000 24.900 24.200 22.800 22.800 22.100	6.740 5.940 5.300 4.900 4.510	2.210 2.260 2.360 2.260 2.160 2.060	8.780 9.300 9.600 10.300 10.600	6.080 5.660 5.300 5.540 6.560 7.100	2.260 2.160 2.260 2.310 2.480 2.360	6.740 5.000 4.070 3.520 3.170

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

ST. LAWRENCE RIVER

STATION LOCATION ST. LAWRENCE RIVER AT

MASSENA, NEW YORK

SAMPLE TAKEN 10. DAY YEAR	DATE OF DETERMI- NATION									NKTON (dry)		DIOACTIVITY IN W	
	DESERTED .		ALPHA			BETA				CTIVITY		GROSS ACTIVITY	
O. DAY YEAR	NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
	MONTH DAY	μμς/Ι	μμc/l	<i>μμ</i> ε/Ι	μμε/	μμc/l	μμc/l	MO. DAY	μμε/g	μμc/g	μμ _C /I	μμε/Ι	μμc/l
0 10 60	10 24	o	1	1	0	,	,						
0 18 60	11 14	_	1	-	%	2 4	2 4					1	
0 25 60	11 9	o	3	3		ŏ	ا ة	1	ļ			ł	
1 1 60	11 18	ŏ	ĭ	ĩ	1 6 1	اة	ŏ	1			l l		
2 5 60	12 22	ŏ	δl	ô	l ĭ l	9	10				i		
2 12 60	1 10	o	οl	Ö	ا ة ا	ól	0						
2 19 60	1 18	0	ō	Ō	0	il	i	l					
2 29 60	1 20	Ō	2	2	0	3	3				1		
1 3 61	1 23	0	1	1		ō	ō l	ı					
1 10 61	2 3	0	2	2	0	2	2						
1 16 61	2 1	0	1	1	0	0	0			1			
1 23 61	2 7	0	1	1	0	0	0	ļ		1			
1 30 61	2 15	0	0	0	0	0	0						
2761	2 24	0	0	0	10	9	19						
2 14 61	3 2	0	1	1	0	0	0						
2 20 61	3 13	0	0	0	1	4	5				Ì		
2 28 61	3 22	0	1	1	0	0	0			1		1	
3 6 61	3 27	0	0	0	0	0	0			l i			
3 13 61	3 30	0	0	0	1	1	2						
3 20 61	45	0	0	0	0	0	0			1			
3 27 61	4 19	0	0	0	0	0	0		1				
4 3 61	4 19	0	0	0	0	0	0						
4 10 61	4 27	0	0	0	0	0	0	1	1	1			
4 17 61	5 16	0	0	0	0	0	0					1	
5 1 61	6 6	0	1	1	0	0	0			1			
5 8 61	6 1	0	1	1	0	0	0	ł					
5 15 61	6 2	0	1	1	0	0	0	- 1					
5 22 61	6 14	0	0	0	0	0	0	1					
6 1 61	6 20	0	0	0	0	0	0			1			
6 5 61	77	1	2	3	0	0	0	- 1					
6 12 61	7 6	0	0	0	0	0	0	- 1	1				
6 19 61	7 17	0	0	0	0	0	0		1				
6 26 61	7 27	0	0	0	0	0	0	1		1			
7 31 61*	8 25	0	2	2	0	0	0						
8 28 61*	9 15	1	0	1	0	. 0	0						
9 5 61	9 29	-	-	-	4	0	4				[
9 11 61	10 6	-	_		0	7	7	1					
9 18 61	10 19	0	0	0	0	2	2	i	1				
9 25 61	10 9	_	-	-	1	2	3						
						1							

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

ST. LAWRENCE RIVER

STATION LOCATION ST. LAWRENCE RIVER AT

MASSENA, NEW YORK

DAT	 T				ALGAE (I	Vumber	per ml.)				INE	ERT TOM	Γ				IATO	MS				T :	Г	MICROIN	VERTEBR	ATES	_	
OF SAN			BLUE-	GREEN	GREE	EN .	FLAGEL (Pigme	LATES ented)	DIAT	омѕ	SHE	TOM ELLS per ml.)		DOMI (See	NANT Intro	SPEC	IES A	ND PE	RCEN [*] ntificat	TAGE! ion*)	S	PLANKTOR RATHED 11. J	12.7		er)	, j	FORMS	ENERA fuction cation)
МОМТН	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FJRST#	PER- CENTAGE	SECOND*	PER-	THIRD*	PER- CENTAGE	FOURTH	PER. CENTAGE	OTHER PER- CENTAGE	OTHER RICROPLANKTOR, FUNGI AND SHEATHED BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL (No. per lite	DOMINANT GENERA (See Introduction for Identification)
11 14 5 10 9 1 1 2 2 5 1 5 5 6 6 1 9 5 7 7 7 7 7 8 2 1 5 9 2 7	6001 6661 66666666666666666666666666666	100 100 200 300 300 1700 1300 700 1900 500 400 700 1400 200 900 100	20	40 20	20 40 90 210 220 250 60 190 20 70		130 20 60 40 20 290	20 50 20 20 20 20 20 20 20	20 70 50 70 250 890 660 100 270 540 90 210	50 160 220 250 250 560 460 310 290 290 700 70	20 70 50 50 270 210 160 310 80 170 20 100	160 150 160 750 190 450 190	47552577555555 99999999998	40 40 20	9 97 36 97 37 95 47 47 47 47 47 95 85	10 20 20 30 20 20 20 10 10 20	82 97 47 62 47 60 95 2 82 35 16 80 16	10 20 10 10 30 10 10 10 10 10	95 47 82 58 80 82 97 697 45 82	* 10 10 10 10 10 10 10	00000000000000000000000000000000000000	40 20 20	10	2 1 3 12 8 8 2 4 1 1 1 0 3 9 6 1 9 4 3 1 5 0 4 6 2 4 4 2 4 2 4 4 2 4 4 2 4 4 4 4 4 4	2 2 1 5 5 5 2 4	8	4	

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

ST. LAWRENCE RIVER

STATION LOCATION ST. LAWRENCE RIVER AT

MASSENA, NEW YORK

							Ŋ							
DATE OF SAMPLE		EXTRACTAB	LES					CHLOROF	ORM EXTR	ACTABLES				
BEGINNING END								NEUTRALS	,		<u> </u>	1		
DAY YEAR MONTH DAY DAY GUIL	LTERED TOTA	L CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
4 19 61 5 15 54 6 1 61 6 20 58 7 10 61 7 25 48 8 16 61 8 30 53	250 30 490 17 851 15 880 15 176 14 226 13	1 71 5 76 6 51 8 47	161 100 79 105 101 109	4 1 2 1 1 0	17 16 20 14 12 7	86 33 27 18 19 12	922221	9443222	67		13 9 7 6 3	9677421	1 12 1 1 1 1	11 5 9 6 6 2

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

ST. LAWRENCE RIVER

STATION LOCATIONST. LAWRENCE RIVER AT

MASSENA, NEW YORK

DATE							CHLORINE	DEMAND									-0	
OF SAMP	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/I	Нq	B,O.D. mg/l	C.O.D. ing/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/I	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
	60	_	-	7.8	-	-	-	-	-	29	126	140	5	5	31 30	.0	173	-
	60	-	-	7.8 7.7	_	_	_	_	-	29 -	84	144 120	5 5	5	28	.1	-	
11 1	60	_	_	7.9	_	_	_	_	_	29	"-	152	5	5	45		-	_
	61		_	_	-	-	_	_	_		-	_	-	_	-	-	-	*4
2 20	61	•0	-	8.0	-	-	•8	2•2	•0	35	100	139	-	-	27	-	200	40
	61	2.2	-	8.0	-	-	1.6	3.6	•0	30	95	136	-	-	26		165	15
	61	5.6	-	8.0	_	_	1.1	3 • 1 3 • 5	•1	31 33	83 88	125 130	_	-	20 21	-	179 187	30 26
	61 61	8.3	_	8.1	_	_	1.3	1.9	•2	33	91	125	-	_	26	_	201	23
	61	1.1	13.7	8.1	2.7	12	1.5	4.0	•6	23	86	121	10		23	.3	170	45
	61	2.0	13.9	8.2	2.5	19	1.6	4.2	•0	21	88	117	10	-	25	.0	175	10
	61	2.8	13.3	8.1	2.7	80	1.7	4•1	•0	26	88	119	10	-	30	•1	167	60
4 17	61	4.7	12.7	7.9	2.2	90	2.2	5 • 3	• 4	23	84	114	10	-	23	•0	164	40
4 24	61	5.6	12.1	8.1	2 • 4	11	2.1	4.5	•0	23	88	115	15	-	18	•0	168	55
	61 61	8.9 9.2	11.8	8.0 8.1	2.2	128	2•7 2•0	5 • 1 4 • 3	•0	30 17	88 88	119 122	7 5	_	24	- 0	177 175	110 75
	61	13.9	11.00	8.2	2.2	120	2.0	4.5	-	26	90	122	5	15	-	••	190	100
	61	10.0	10.9	8.3	1.6	7	2.0	_	•0	26	90	125	5	5	23	.0	184	
5 31	61	13.9	_	8.2	_	_	_	_	_	30	86	121	7	10	_	-	192	-
	61	12.2	10.7	8.3	1.2	9	1.8	3.7	•0	21	90	125	7	5	27	.1	192	-
	61	16.1	-	8.2	-	_	-	-	_	26	90	122	5	15	-	-	189	1
	61 61	14.5	10.1	8.3	1 -	8	2.3	4.5	-	28	92	125	- 5.	37	27	•0	- 198	60 15
	61	16.1	10.1	8.2	1.4		2.3	4.5	•0	26	92	125	5	15	21		200	60
	61	21.4	_	8.1	_	_	_	_	_	17	88	120	5	15	_	_	191	130
7 10	61	20.6	-	8.0	-	-	-	–	_	_	_	_	7	20	_	-	204	25
7 17	61	18.3	-	8.1	-	-	-	-	~	26	90	131	5	25	_	-	214	55
7 24	61	22.2	-	8.2	-	-	-	_	-	26	88	129	5	27	-	-	196	30
	61	23.3	-	7.7	-	-	-	_	-	21	90	132	5	25	-	-	193	5
8 7 8 14	61	23.3 21.7	8.3	8.0		8	1.2	3.5	•0	-	86	123	5 0	20 25	- 22	-	197	60 200
8 21	61	21.1	- 0.3	8 • 1 8 • 2	•6	l º	1.2	3.5	•0	30 26	87 90	121 124	5	62	32	•1	199 213	200
8 30	61	21.1	_	8.1	-	_	_	_	_	24	86	124	5	30	_	_	217	10
9 5	61	22.2	_	8.0	-	-	-	_	_	26	86	122	5	10	_	-	200	*5
9 11	61	22.2	-	8.2	-	-	•9	3 • 8	-	30	86	121	5	10	-	-	191	-
	61		-		-	-	-	-	-			-	-		-	-		120
	61	17.8		8.1		-			_	26	83	120	1	20	_	_	199	100
9 25 9 26	61	21.1	8.4	8.2	•6	10	• 3	•8	•5	25	85	129	0	20	26	• •	186	10
7/20	01				L		<u>-</u> _				<u>-</u> _						L	1 10

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

STATE

New York

MAJOR BASIN

Northeast

MINOR BASIN

St. Lawrence River

Gaging Station at St. Lawrence River - International Rapids Section

(St. Lawrence Power Pool)
Supplied by U.S. Army Corps of Engineers

STATION LOCATION

St. Lawrence River at

DIALLON LOCALION

Massena, New York

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3	225.000 221.000 226.000	194.000 195.000 206.000	210.000 210.000 210.000	210.000 209.000 210.000	21½.000 216.000 216.000	216.000 211.000 211.000	201.000	249.000 249.000	278.000 278.000	271.000 271.000	258.000 258.000	250.000 250.000
5 5	226.000 225.000	205.000	210.000	209.000	203.000	197.000 197.000	215.000 215.000 216.000	249.000 249.000 249.000	279.000 280.000 280.000	271.000 271.000 271.000	258.000 258.000 254.000	250.000 250.000 250.000
6 7 8 9	215.000 216.000 214.000 204.000	205.000 206.000 205.000 206.000	210.000 210.000 210.000 210.000	210.000 210.000 210.000 210.000	215.000 215.000 216.000 216.000	211.000 211.000 212.000 211.000	214.000 214.000 200.000 200.000	230.000 230.000 230.000 230.000	280.000 280.000 280.000 279.000	271.000 271.000 271.000 270.000	254.000 254.000 254.000 254.000	250.000 250.000 250.000 249.000
10 11 12 13 14 15	206.000 205.000 206.000 195.000 195.000	205.000 205.000 205.000 205.000 205.000 205.000	210.000 210.000 210.000 210.000 210.000 210.000	210.000 210.000 210.000 210.000 210.000 210.000	216.000 202.000 202.000 216.000 216.000 216.000	211.000 197.000 197.000 211.000 211.000 211.000	214.000 214.000 214.000 213.000 213.000 213.000	230.000 230.000 230.000 238.000 238.000	282.000 281.000 282.000 282.000 282.000 282.000	271.000 271.000 271.000 271.000 271.000 263.000	254.000 254.000 252.000 252.000 251.000 252.000	249.000 249.000 249.000 249.000 249.000 249.000
16 17 18 19 20	194.000 195.000 195.000 195.000	205.000 210.000 211.000 210.000 210.000	210.000 210.000 210.000 210.000 210.000	210.000 210.000 210.000 210.000 210.000	216.000 216.000 202.000 202.000 216.000	211.000 211.000 197.000 197.000 211.000	213.000 213.000 213.000 213.000 213.000	238.000 239.000 238.000 238.000 258.000	282.000 .279.000 279.000 279.000 279.000	263.000 263.000 263.000 263.000 263.000	252.000 252.000 252.000 249.000 249.000	246.000 246.000 246.000 246.000 246.000
21 22 23 24 25	195.000 195.000 194.000 196.000	210.000 210.000 210.000 207.000 207.000	210.000 210.000 210.000 210.000 210.000	203.000 204.000 214.000 214.000 214.000	216.000 216.000 216.000 216.000 202.000	211.000 211.000 211.000 211.000 197.000	213.000 230.000 230.000 230.000 230.000	258.000 258.000 258.000 258.000 258.000	279.000 279.000 279.000 272.000 272.000	263.000 263.000 262.000 263.000 263.000	249.000 249.000 248.000 249.000 245.000	246.000 246.000 239.000 239.000 239.000
26 27 28 29 30 31	195.000 195.000 195.000 195.000 194.000	206.000 210.000 211.000 209.000 211.000	210.000 210.000 210.000 209.000 210.000	214.000 214.000 201.000 200.000 214.000 214.000	202.000 216.000 216.000	197.000 211.000 211.000 217.000 214.000	230.000 230.000 230.000 249.000 249.000	258.000 278.000 278.000 277.000 278.000 278.000	272.000 272.000 272.000 272.000 272.000	263.000 263.000 262.000 259.000 259.000 258.000	250.000 250.000 250.000 250.000 250.000	239.000 239.000 239.000 240.000 236.000

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS MINOR BASIN

SAN JUAN RIVER

STATION LOCATION SAN JUAN RIVER AT

SHIPROCK, NEW MEXICO

DATE			RAD	OACTIVITY IN V	VATER				PADIO	CTIVITY IN ST	INITONI (II :				
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA			DATE OF	CTIVITY IN PL		-		DIOACTIVITY IN	
TAKEN		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL		DATE OF DETERMI- NATION	ALPHA	ACTIVITY	-		GROSS ACTIVI	
O. DAY YEAR	MONTH DAY	μμε/Ι	μμc/ l	μμε/1	μμς/Ι	μμς/1	μμε/1		MO. DAY	μμε/g	BETA		SUSPENDED	DISSOLVED	TOTAL
									MO. DA!	6/344	##c/g	+	μμε/Ι	μμc/I	μμc/ Ι
7 61	9 12	56	3	59	181	23	204		1 1						
3 14 61	9 22	35	25	60	111	53	164		1 1			1			
21 61	9 22	132	4	136	519	51	570		1 1		ŀ				<u> </u>
28 61	9 27	66	7	73	74	ō	74						1		
6 61	10 3		-	-	27	17	44		1 1						
18 61	10 4	94	6	100	185	î,	202		1 1			[1 1		
25 61	10 9	18	2	20	94	18	112]			i	}		
					17	-0	112		1 1			1			
									1 1						
							Ī		1 1			1	1 .1		
			İ			-			1		1				
							İ		! !				1		
						I	l		i i			1			
					i				ļ			i	1 1		
i					l·	·	i i		l i			1			
1					i	1	ł		1			1	1		
1]] [1	1		
							ľ		1 1						
											}		1		
						ļ			1			1			
						ĺ			1 1		ĺ	ł			
[1 1			1	1		
1			ĺ				1		!				1 1	İ	
	ĺ								i			1			
			ĺ			1			1				1		
	ĺ			i		J	1		1		İ				
]			ļ			1	1					1			
- 1		ľ				1	ł		1		ļ	ì	1		
i			ľ						1			1			
ŀ					ŀ		ľ					ĺ	1 1		
									1			l	1 1		
		1			1	l									
		1	- 1	ĺ								ı	i i		
i		}	1				1					ļ			
ļ		i	1	İ											
]		1]		1									
	[1				1							1	
	i		1	l]	j	1					1	1 1	ļ	
	1				}]								
}	1		1		1	1	ĺ	ı		ļ		1			
1				1		1	i	- 1						ŀ	
				İ					i			l .		i	

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

SAN JUAN RIVER

STATION LOCATION SAN JUAN RIVER AT

SHIPROCK, NEW MEXICO

	ATI	E				ALGAE (Number	per ml.)				INE	ERT	Ι-											MICROIN	WCD-r			
OF S	SAM	PLE		BLUE-	GREEN	GREE	EN	FLAGE! (Pigm	LLATES ented)	DIAT	омѕ	DIA SHE (No. p	ERT TOM (LLS er ml.)		DOM:	INANT e Introd	SPEC duction	IATO IES AI for Co	MS ND PE ide Ide	RCEN [*]	TAGES		ANKTON, ATHED	-	MICKOIN 2	I	<u> </u>	ORKS	retion ation)
МОМТН	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER.	SECOND*	PER.	THIRD#	PER.	FOURTH#	PER-	OTHER PER- CENTAGE	OTHER HICROFLANKTON, FUNGI AND SKRATHED BACTERIA (No. per ml.)	PROTOZOA (No. per ml	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORMS (No. per lifer)	bominant genera (See Introduction (or Identification)
8 7	21 6	61 61 61	300 1400							40	270 1350	!	20 640	92	10														7-76-
]] ! !							

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

SAN JUAN RIVER

STATION LOCATION SAN JUAN RIVER AT

SHIPROCK, NEW MEXICO

					- 20														
	INNI		MPLE			E	CTRACTABL	.ES					CHLOROF	ORM EXTR	ACTABLES	3		i	
	INNI	NG	E	40									NEUTRALS	3		T	7	T	
MONTH	DAY	YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
9 :	13	61	9	18	3177	167	56	111	3	10	24	4	2	18	0	7	5	1	6
						,													
					8		*												

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

SAN JUAN RIVER

STATION LOCATIONSAN JUAN RIVER AT

SHIPROCK, NEW MEXICO

DAT OF SAM		TEMP.	DISSOLVED				CHLORINE	DEMAND							· · · · · · · · · · · · · · · · · · ·			
MONTH	T	(Degrees Centigrade)	OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	coliforms per 100 ml.
8 8 14 8 15 8 22 8 2 8 2 9 12 9 2 5	61 61 61 61 61	25.0 27.0 21.0 18.0 21.0 20.0	5.6 4.7 5.9 7.7 7.2 3.7 7.2 8.1	8.0 8.1 8.0 7.8 7.9 7.7	1 • 4 5 • 1 2 • 1 2 • 2 2 • 4 2 • 4 • 7		1 1 1 1 1		•1 •1 •1 •1 •1 •1	19 - 40 30 28 32 36 25 23	120 - 138 112 124 128 116 116 116	210 - 298 180 272 196 206 170	14 19 22 12 20 3 7	508 32 4800 4875 750 8000 7000 2375	125 - 200 140 180 190 165 110	•3 - - - -	330 - 750 - 360 600 510 - 380	8000 2100 22000 25000 11000 30000 2700

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Shiprock, New Mexico Operated by U.S. Geological Survey

STATE

New Mexico

MAJOR BASIN

Colorado River

MINOR BASIN

San Juan River

STATION LOCATION

San Juan River at

Shiprock, New Mexico

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	.270 .260 .245 .225	.645 .613 .629 .589 .573	.560 .540 .588 .691 .733	. 475 . 378 . 342 . 370 . 400	•582 •599 •550 •510 •495	.525 .500 .495 .510 .610	2.120 1.720 1.610 1.740 2.460	4.620 4.920 5.770 6.250 5.800	7.490 7.610 6.810 5.770 4.820	1.120 1.120 1.170 1.320 1.420	.559 .621 1.500 2.050 1.870	.546 .540 .534 .570
6 7 8 9 10	.217 .205 .221 .250 .307	•581 •597 •663 •735 •857	.677 .588 .540 .658 .719	.450 .500 .520 .520 .520	.490 .460 .446 .490 .566	.610 .588 .550 .540 .515	2.870 2.780 3.030 3.280 3.000	4.520 3.630 3.250 2.720 2.230	4.590 4.520 4.460 4.490 4.620	1.270 1.220 1.040 1.080 1.210	1.860 1.420 .964 .719 .570	.892 .780 .828 .788 1.160
11 12 13 14 15	.361 .525 .565 .549 1.150	• 745 • 690 • 654 • 645 • 637	.712 .684 .664 .726 .719	.530 .510 .480 .500 .510	.566 .628 .646 .658	.545 .691 .946 1.080 1.240	2.620 2.270 2.000 2.300 2.440	2.400 3.580 4.420 4.660 3.990	4.690 4.820 4.520 4.420 4.110	1.160 .972 .733 .621 .564	.470 .409 .510 .663 .804	2.260 2.840 1.720 1.390 1.170
16 17 18 19 20	1.650 1.880 2.140 2.120 1.660	.621 .645 .637 .604 .604	.684 .622 .582 .555 .505	.490 .495 .495 .495	.733 .804 .800 .700 .652	1.500 1.600 1.360 1.360 1.280	1.930 1.740 2.180 3.320 3.990	3.550 3.230 3.580 4.170 4.890	3.990 3.990 3.680 3.500 3.050	.475 .398 .290 .204 .172	1.010 2.200 2.600 4.620 2.840	1.350 1.220 1.440 5.950 4.800
21 22 23 24 25	1.180 1.020 .904 .820 .778	.599 .622 .604 .616 .604	.515 .520 .490 .465 .540	.485 .520 .520 .588 .652	• 572 • 572 • 577 • 588 • 588	1.160 1.300 1.250 1.440 1.700	3.960 3.790 3.930 3.700 3.740	6.030 5.690 6.510 6.690 6.690	3.050 2.800 2.450 2.240 2.120	.223 .223 .294 .342 .204	1.710 1.250 .980 .916 1.280	2.920 2.680 2.300 2.180 2.030
26 27 28 29 30 31	· · 735 · 717 · 699 · 690 · 672 · 663	. 594 . 588 . 582 . 604 . 582	. 560 . 560 . 588 . 604 . 599 . 540	.640 .652 .764 .670 .577 .545	.530 .515 .515	1.840 1.590 1.290 1.290 1.840 2.440	3.140 2.560 2.120 2.340 3.550	6.940 7.280 7.470 7.710 7.530 7.320	1.960 1.730 1.560 1.320 1.180	.137 .112 .092 .077 .338 .478	1.260 1.160 1.030 .748 .600	1.830 1.720 1.600 1.470 1.410

RADIOACTIVITY DETERMINATIONS

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

SAVANNAH RIVER

STATION LOCATION SAVANNAH RIVER AT

PORT WENTWORTH, GEORGIA

			RADI	OACTIVITY IN W	/ATER				RADIOAC	TIVITY IN PLAN	KTON (dry)	RAD	DIOACTIVITY IN V	
DATE SAMPLE	DATE OF		ALPHA			BETA			DATE OF DETERMI-	GROSS A	CTIVITY		GROSS ACTIVIT	
TAKEN	DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL		NATION	ALPHA	BETA	SUSPENDED		TOTAL
MO. DAY YEAR		μμc/l	μμc/I	μμε/Ι	μμε/Ι	μμε/Ι	μμε/1		MO. DAY	μμc/g	μμε/g	μμε/Ι	μμε/Ι	μμε/Ι
									1					
10 3 60	10 20	0	0	0	0	28	28		1				i i	
10 10 60	10 20	-	· -	_	0	80	80							
10 17 60	11 1	-	-	-	0	24	24							
10 24 60	11 15	~	_	-	0	8	8						i i	
10 31 60	11 21	-	-	-	0	1 1	1							
11 7 60	11 21	-	_	_	0	0 33	0 33				1			
11 14 60	11 28	_	-	_	.0	144	144							
11 21 60	12 1	_	_	_	0	28	28		ļ.					
11 28 60	12 19	_	0	0	0	52	52					ļ		
12 5 60 12 19 60	12 22	0	≟	_	0	158	158				!			
12 19 60	1 17	_	_	_	l ŏ	16	16				1	İ		
1 3 61	1 25	0	0	٥	Ö	57	57							
1 9 61	1 25		_	_	l õ.	26	26							
1 16 61	2 1	_		_	l ŏ	14	14							
1 23 61	2 15		_	_	0	10	10				1			
1 29 61	2 15	_	_	_	0	12	12							
2 6 61	2 21	1	0	1	8	36	44				1			
2 13 61	2 24	_		_	0	5	5				1			
2 20 61	3 6	-	_	-	0	0	0							
2 27 61	3 14	-	-	-	0	2	2					1	i	
3 6 61	3 21	1	0	1	0	49	49				1			
3 13 61	3 31	-	-	_	1	20	21							i
3 20 61	4 4	-	-	_	0	36	36	1			1			
3 27 61	4 12	-	_	-	0	0	0 5		1					
4 3 61	4 19	1	0	1	0	5	0							
4 10 61	4 28	-	-	_	0	0 3	5						İ	
4 17 61	5 2	_	-	_	0	3	3						1	
4 24 61	5 17		_	0	0	2	2	ļ					1	
5 1 61 5 8 61	5 15	0	0	_	0	6	٥							
5 8 61 5 15 61	5 26 6 1		_	_	l ŏ	1	ĭ	}			1		1	
5 22 61	6 20	_		_	l ŏ	50	50							
5 29 61	7 10	_	_	_	i	9	10	1			1			
6 5 61	6 28	0	1 0	0	1 ō	4	4							
6 12 61	7 6	_	_	_	0	41	41	1	1	}		i		
6 19 61	7 7	_	_	-	5	107	112		1					
6 26 61	9 5	_	-		2	174	176	1						
7 3 61	8 2	1	0	1	1	9	10							1
7 10 61	9 6	_	_	-	0	11	11							
7 17 61	8 10	-	-		0	4	4			<u> </u>		LL		

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

SAVANNAH RIVER

STATION LOCATION SAVANNAH RIVER AT

PORT WENTWORTH, GEORGIA

DATE	Τ		RADI	OACTIVITY IN V	VATER				RADIOA	CTIVITY IN PLA	NKTON (drv)	RAI	DIOACTIVITY IN Y	/ATER
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA			TE OF ERMI- TION		ACTIVITY	1	GROSS ACTIVIT	
TAKEN		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DET NA	TION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	MONTH DAY	μμς/Ι	μμς/Ι	μμc/!	μμε/Ι	μμε/Ι	μμc/l	MO.	DAY	μμc/g	μμc/g	μμε/Ι	μμς/Ι	μμε/Ι
7 24 61 7 31 61 8 7 61 8 24 61 9 5 61 9 11 61 9 26 61											-			

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

SAVANNAH RIVER

STATION LOCATION SAVANNAH RIVER AT

PORT WENTWORTH, GEORGIA

				ALGAE (2	lumber	per ml.)				INE DIA	RT				DI	ATO	vis.				· ·		MICROIN	VERTEBR	ATES	_[
DATE OF SAMPLE		BLUE-	GREEN	GREE	:N	FLAGEL (Pigme		DIAT	омѕ	DIA SHE (No. p	LLS			NANT Introd	SPEC	IES AN	ND PE				SHEATHED SHEATHED THL.)	nl.)	s liter)	E.A.	ES liter)	AL FORMS ler)	GENERA oduction fication
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	соссоів	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER. CENTAGE	SECOND#	PER- CENTAGE	THIRD*	PER- CENTAGE	FOURTH*	PER- CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLANK FURGI AND SHEATH BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	(No. per It	DOMINANT GENERA (See Introduction for Identification)
10	200 500 100 300 100 200 200 200 200 200 200 200 200 2	20	20	130 20 20 40 210 80 60 60 90 120 60	20 20 20	90 20 20 20 20 230 420 230 100 40 210 40	20 20 20 40 20	50 180 50 90 220 20 130 50 20 20 20 810 2480 310 440 90 100 60 20	40	20 70 160 90 70 70 20 20 20 110 40 120 390 100 60	20 70 160 90 110 20 270 70 70 270 100 20 390 120 70 20 20	57 57 22 22 22 22 22 22 23 71 57 43 71 56 56 57 57 57 57	12000000000000000000000000000000000000	265990577275297187686646	10000000000000000000000000000000000000	22 20 57 57 19 43 22 19 72 72 57 57 43 85 65 75 57	10 10 10 10 10 10 10 10 10 10 10 10 10 1	56279 6277 55279 55279 55297 55297 5529 5529 55	* 10 10 * 10 10 10 10 *	776666000000000000000000000000000000000	20 40 110 70 20 20 20	10	1 2 4 1 2 2 2 2 3 3 3	2	3 2	1	

STATE

GEORGIA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHEAST

MINOR BASIN

SAVANNAH RIVER

STATION LOCATIONSAVANNAH RIVER AT

PORT WENTWORTH, GEORGIA

DATE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	DEMAND								1		1
74 AVA AVA AVA AVA AVA AVA AVA AVA AVA AV	(Degrees Contigrade)	OXYGEN	PН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 mL
5 22 61 5 25 61 6 12 61 6 12 61 6 12 61 7 10 61 7 10 61 7 20 61 7 3 61 7 3 61 8 24 61 8 24 61 8 24 61 9 11 61 9 21 61 9 25 61	27.2	6.4	7.0 6.8 6.5 6.5 6.8	1.0		11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			46	20 - 18 - 15 15 19 19 1	25 - 23 - 15 - 19 - 20 -	40 	99 - 106 - 45 - 48 - - 36	3 - 3 3 1 - 1 - 1 - 1 -		52 	2100 2400 2400 33000 3500 3000 1400 1900 2100 1500 2400 3200 4000 4000

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Clyo, Georgia Operated by U.S. Geological Survey

STATE

Georgia

MAJOR BASIN

Southeast

MINOR BASIN

Savannah River

STATION LOCATION

Savannah River at

Port Wentworth, Georgia

Day	October	November	December	January	February	March	April	May	June	July .	August	September
1	7.650	7.110	7.110	7.890	8.010	18.100	9.870	29.200	8.370	10.900	14.900	13.100
2	8.490	7.010	7.010	8.010	7.770	19.200	11.100	27.200	8.250	12.000	12.900	13.700
3	8.610	7.010	7.110	7.890	7.770	20.800	12.800	25.700	7.890	12.900	10.000	14.500
4	8.010	7.010	7.310	7.890	8.010	22.400	14.000	24.200	7.890	13.300	9.100	14.900
5	7.530	7.010	7.410	7.890	8.490	25.200	15.000	23.700	8.250	12.900	8.980	15.300
6 7 8 9	7.410 7.110 7.110 7.110 7.110	7.110 7.010 6.810 6.610 6.610	7.410 7.310 7.210 7.210 7.310	8.010 8.370 8.890 8.610 8.130	8.610 8.250 8.010 8.130 8.750	28.700 29.700 29.700 29.200 27.200	16.300 17.800 20.400 24.700 29.700	22.800 22.000 20.800 18.400 16.600	8.010 7.650 7.410 7.310 7.530	10.900 9.480 9.100 8.860 8.500	9.100 9.480 9.100 8.500 8.260	16.100 15.900 15.300 14.900
11	7.110	6.710	7.650	7.770	9.870	25.200	32.500	14.800	8.130	8.040	8.860	14.900
12	7.110	6.810	7.650	7.530	10.800	23.200	32.500	13.600	8.130	7.820	8.980	15.100
13	7.010	7.210	7.410	7.650	10.000	22.400	34.900	13.200	7.410	7.930	8.500	14.500
14	7.010	7.210	7.410	8.250	8.890	22.000	31.900	13.400	7.310	8.260	8.620	12.200
15	7.110	7.010	7.530	8.750	8.250	22.000	29.200	13.400	7.310	8.620	8.620	10.500
16	7.310	6.810	7.770	9.030	8.010	23.200	27.200	13.400	7.410	8.620	8.500	9.900
17	7.310	6.710	8.130	8.890	8.010	25.700	25.200	12.600	7.650	8.380	8.380	9.220
18	6.910	6.910	8.610	8.750	8.750	28.200	24.700	11.700	8.130	8.040	8.980	8.500
19	6.810	7.010	8.610	8.610	9.170	28.700	26.200	11.200	8.010	7.930	9.620	7.820
20	7.650	7.210	8.130	9.170	8.890	27.200	28.200	10.800	7.530	8.860	10.200	7.490
21	9.030	7.310	7.650	9.730	8.890	25.200	30.700	10.200	7.210	10.900	9.900	7.380
22	9.870	7.010	7.530	10.000	9.870	21.600	33.100	9.310	7.210	12.300	8.860	7.270
23	10.300	6.910	7.530	9.730	11.900	17.500	34.900	9.030	7.410	13.300	8.740	7.380
24	9.870	6.910	7.650	8.610	13.600	14.800	36.100	8.890	8.250	14.100	9.220	7.380
25	8.370	7.010	8.010	8.130	14.600	13.400	36.100	8.890	8.620	14.700	10.300	7.380
26 27 28 29 30	7.500 7.000 6.500 6.500 7.000 7.500	7.210 7.650 7.650 7.410 7.210	8.010 7.650 7.530 7.410 7.410 7.530	7.890 8.010 8.490 9.170 9.170 8.370	15.600 16.300 17.200	12.800 11.900 10.600 9.730 9.450 9.450	35.500 35.500 33.700 33.100 31.900	8.890 9.310 9.870 9.870 9.450 8.890	8.040 7.600 7.600 8.040 9.480	15.100 15.300 15.300 15.300 15.300 15.300	11.400 12.200 12.500 12.500 12.200 12.500	7.160 7.060 6.960 6.960 7.060

STATE

SOUTH CAROLINA

MAJOR BASIN

SOUTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

SAVANNAH RIVER

STATION LOCATION SAVANNAH RIVER AT

ONTRIBUTE RIVER AT

NORTH AUGUSTA, SOUTH CAROLINA

/. Q

DATE			RADIO	DACTIVITY IN V	WATER		———	PADIOA	CTIVITY IN PLA	NISTON (II.			
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA		DATE OF		ACTIVITY	- RA	DIOACTIVITY IN W	
TAKEN		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DETERMI-	ALPHA	BETA	SUSPENDED	GROSS ACTIVIT	
MO. DAY YEAR	MONTH DAY	μμε/Ι	μμc/l	μμε/1	μμc/I	μμε/Ι	μμc/I	MO. DAY	μμc/g	µµс/g	μμε/i		TOTAL
0 01 40			j							1773	+ FFC/I	μμc/i	μμc/ l
0 24 60*		0	1	1	0	0	0	1 1			1 1		
1 29 60*		0	0	0	0	0	0			i		1	
2 26 60*	1 12	0	0	0	0	0	0				1 1		
1 17 61*	2 24	0	0	0	0	2	2				1 1		
2 28 61*	3 16	0	0	0	0	0	0			İ	1 1		
3 27 61*	4 6	0	0	0	0	0	0					i i	
4 25 61*		0	0	0	0	0	اه			1	1 1		
5 16 61*	5 23	0	0	0	1 0 1	o i	o l			1	[]		
6 5 61	7 21	0	0	0	1 0 1	o l	ŏ l				{ }		
7 31 61*	8 25	0	0	0	0	o l	ŏ						
8 28 61*	9 21	0	0	0	0	o l	ŏ	-					
9 5 61	9 29	_	-	-	4	1	5	1 1					
9 11 61	10 5		-	-	0	5	5						
9 19 61	10 27	0	0	0	5	7	12	1 1		i			
9 26 61	10 13	-	-	-	0	ا ہ	0						
			1			- 1		i i					
					}						1 1		
			i]		İ	1 1				ì	
						i	- 1				1 1		
		}	ĺ			1		1 1					
			!					i					
	i	1			i i			1 1				1	
		- 1											
- 1												i	
		1				i						1	
i						1	1		ĺ				
			1				1	1 1					
					J	į							
İ				İ	1		i	1 1					
			1		1	i	ł	ł					
					1	ŀ							
	1	İ					1						
		I	1		ł		ļ	i i	}				
	1				İ		1						
	1]	İ			1		1				
	1		ľ	ļ								i	
		1		[
	İ	1		İ	1	-	1		1				
1	1			}	ļ	1						1	
1									İ]	i	
				ĺ		1		1 1					
						l l	I .	1			1	i	

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

SOUTH CAROLINA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

SAVANNAH RIVER

STATION LOCATION SAVANNAH RIVER AT

NORTH AUGUSTA, SOUTH CAROLINA

				ALGAE (A	lumber	per ml.)				INE	RT	Γ			D	IATO	/S				i		MICROIN	VERTEBR	ATES		
DATE OF SAMPLE		BLUE-		GREE		FLAGEL (Pigme		DIATO	омѕ	INE DIA SHE (No. p	TOM LLS er ml.)		DOM!	NANT Intro	SPEC	IES AN	ID PE	RCEN tificat	rages ion*)		SHEATHED ml.)	A ml.)	ts liter)	EA liter)	DES liter)	HAL FORMS	r cenera roductio tification
MONTH	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER-	SECOND	PER- CENTAGE	THIRD*	PER. CENTAGE	FOURTH	PER- CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLANKTOR, FUNGI AND SHEATHED BACTERIA (No. pet ml.)	PROTOZOA (No. per m	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORMS (No. per liter)	DOMINANT GENERA (See Introduction for Identification)
10 3 60 11 7 60 12 6 61 17 61 21 61 3 6 61 20 61 4 8 61 5 1 61 5 61 7 3 61 7 19 61 8 21 61 9 19 61	100 100 200 400 1200 500 400 200 100 200 200 200 200	20	40	20 60 60	20 20 20	50 20 70 250 70 20 20 40 40	20	20 20 20 70 50 180 220 80 90 70 120 350 120 40 20	20 20 90 180 200 1120 40 110 80 20 60 20 60 20	20 50 20 50 20 40 20 20 20 40 20		57 57 65 65 92 92 57 57 57 57	40 30 40 20 70 20 30 30 30	58 57	10 10 20 10 20 10 10 10 20 30 20	5623 923 945 9466 565 562 2	10 10 10 10 * 10 10 10 10 10	66 20 8 20 6 5 9 9 2 2 6 5 7 8 2 6 5 6 5 6 5 6 5 6 5 6 6 7 8 2 6 5 6 6 7 8 2 6 5 6 6 7 8 2 6 7 8 2 6 7 8 2 6 7 8 2 6 7 8 2 6 7 8 2 6 7 8 2	10 10 10 * 10 * 10 10 10 10	500000000000000000000000000000000000000	150 20 20 20 40	10	3 1 2 3 15 4 9 3	5	2 3 1122		

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

SOUTH CAROLINA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

SAVANNAH RIVER

STATION LOCATION SAVANNAH RIVER AT

NORTH AUGUSTA, SOUTH CAROLINA

ΔR

DATE OF SAMI	PLE END		E	KTRACTABL	.ES						ORM EXTR	ACTABLES				
BEGINNING	END	GALLONS								NEUTRALS	3					
DAY	MONTH	FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
2 6 61 3 8 61 5 1 61		5144 4586 3802 3384 4804 7098	185 184 227 248 259 214 105	71 46 59 107 99 75 38	114 138 168 141 160 139 67	6 1 2 6 7 4 1	21 12 14 31 30 25 10	13 13 15 19 16 15 11	1 1 1 1 1 1 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 12 16 14 13 8	11110000	7 5 6 100 9 7 7 3	6 2 4 10 9 8 2 2	1011110	17 13 17 30 27 15 11

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

SOUTH CAROLINA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

SAVANNAH RIVER

STATION LOCATIONSAVANNAH RIVER AT

NORTH AUGUSTA, SOUTH CAROLINA

Table Dispute Street Part Dispute Dispute Dispute Dispute Part Dispute Part Dispute Part Dispute Part Dispute Dispute Part Dispute Part Dispute	DATE					CHLORINE	DEMAND						TOTAL	
10 10 60 0 22.1				·				 mg/l	mg/i	mg/l			DISSOLVED SOLIDS mg/l	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 10 10 10 10 10 10 10 10 10 10 10 10 1	600 600 600 600 601 601 601 601 601 601	22.1 22.1 21.9 20.1 17.0 17.0 11.9 10.9 9.0 9.0 9.0 9.0 12.1 13.0 12.1 13.3 13.1 13.9 13.2 13.9 14.9 18.5 22.2 24.0 23.5 25.0	6.8 6.9 7.1 9.9 9.9 9.9 9.1 0.7 6.9 9.9 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9				43 3333333443334443343533443433333	24 22 22 20 26 24 24 24 24 24 24 24 24 24 24 24 24 24	166 184 1460044886662088821600284444422146682184	7878588885880555502000000000000000000000			- - - - - - 66 - 170

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

SOUTH CAROLINA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

SAVANNAH RIVER

STATION LOCATIONSAVANNAH RIVER AT

NORTH AUGUSTA, SOUTH CAROLINA

4.0

DATE OF SAMPLE TEMP. DISSOLVED			1	
T Degrees OXYGEN pH B.O.D. C.O.D. AMMONIA- CHLORIDES ALKALINITY HARDNESS	COLOR TURBIDITY (scale units)	1	DISSOLVED	COLIFORMS per 100 ml.
9 11 61 23.7 - 7.1 3 26 24 18 9 19 61 19.8 - 7.0 3 26 18 29 26 61 23.0 - 7.2 3 26 18	- 20 0 15 - 15 - 12	0	•0 0	

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Augusta, Georgia Operated by U.S. Geological Survey

STATE

South Carolina

MAJOR BASIN

Southeast

MIMOR BASIN

Savannah River

STATICM LOCATION

Savannah River at

Morth Augusta, South Carolina

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	5.900	5.680	6.010	5.570	5.680	19.700	25.300	10.100	5.900	12.400	6.010	16.700
2	5.790	6.010	6.560	5.570	6.670	19.200	30.000	12.800	6.780	5.570	6.560	14.100
3	6.120	6.230	5.790	5.570	7.330	18.000	21.800	14.200	5.900	5.240	6.340	6.340
4	5.900	6.230	5.680	6.120	5.680	14.000	26.400	11.700	5.460	5.460	7.110	5.790
5	5.790	5.790	5.570	7.110	5.460	7.700	28.200	7.000	5.570	5.570	6.340	7.690
6	5.790	5.680	5.570	7.220	5.460	9.870	27.000	6.340	5.460	6.120	5.240	15.100
7	5.790	5.680	5.570	5.680	5.570	13.900	18.300	6.890	5.680	5.900	5.240	15.100
8	5.900	5.570	6.120	5.460	7.620	26.100	13.200	6.120	6.890	5.130	6.120	15.100
9	6.010	5.680	6.780	5.460	9.510	29.500	6.330	6.670	7.000	4.930	7.660	11.700
10	5.790	6.340	5.790	5.460	7.110	28.200	6.730	9.270	5.680	5.030	5.790	6.010
11	5.790	6.780	5.570	6.010	5.570	25.800	8.800	8.430	5.350	5.570	6.010	5.900
12	6.010	5.680	5.790	7.000	5.460	18.600	10.600	8.210	5.460	6.120	5.900	6.450
13	6.670	5.680	5.790	6.890	5.460	16.200	20.800	7.000	5.160	6.230	5.030	7.440
14	6.890	5.570	6.120	5.900	5.460	11.200	22.200	7.220	6.010	6.340	5.030	7.770
15	5.790	5.570	7.000	6.010	6.120	10.100	24.700	6.120	6.780	5.350	6.340	6.450
16	5.570	5.680	7.110	5.900	7.550	9.390	30.300	8.100	6.780	5.130	8.100	5.680
17	5.900	6.120	6.010	6.230	6.450	8.580	28.500	7.660	5.570	5.460	8.550	5.570
18	9.870	6.670	5.680	7.880	5.350	5.640	29.100	7.000	5.350	9.670	8.210	5.570
19	10.500	5.790	5.680	8.100	5.460	5.460	28.300	6.670	5.350	19.800	5.570	5.570
20	10.400	5.570	5.570	8.100	8.060	5.740	29.400	5.460	5.570	19.000	5.350	5.570
21	9.870	5.680	5.570	5.680	13.400	6.330	30.000	5.460	6.230	20.000	5.900	6.010
22	6.340	5.570	6.120	5.460	14.500	6.530	29.700	5.570	8.210	15.000	7.660	6.450
23	5.790	5.680	6.340	5.460	12.200	6.830	29.100	5.680	6.450	6.230	8.550	5.570
24	5.680	6.340	5.680	5.460	15.200	7.260	21.000	6.230	5.240	8.160	7.770	5.790
25	5.570	6.560	5.570	5.900	28.300	5.260	17.000	7.550	5.350	14.700	8.430	5.680
26 27 28 29 30 31	5.680 6.120 7.220 5.900 5.790 5.790	5.680 5.680 5.680 5.570 5.570	5.570 5.460 5.570 6.230 6.670 5.680	7.220 7.770 5.460 5.460 5.570 5.460	28.300 23.200 16.500	5.260 5.360 5.170 5.550 6.330 8.690	15.500 17.700 23.400 20.400 13.200	7.330 5.900 6.010 5.680 6.230 5.570	5.570 6.350 11.200 12.800 18.100	14.100 14.000 12.600 8.310 5.790 5.130	7.660 6.120 9.110 17.300 17.000 16.700	5.790 5.790 6.450 6.010 5.900

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

DELAWARE-SCHUYLKILL RIVERS

PHILADELPHIA, PENNSYLVANIA

STATION LOCATION SCHUYLKILL RIVER AT

DATE			RADI	DACTIVITY IN Y	VATER		1	RADIOA	CTIVITY IN PLAI	NKTON (dev)		DIOACTIVITY IN W	
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA		DATE OF		CTIVITY	RAL	GROSS ACTIVIT	
TAKEN		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DETERMI-	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL.
MO. DAY YEAR	MONTH DAY	##c/l	μμc/l	##c/l	##c/l	μμc/l	μμc/l	MO. DAY	##c/g	##c/g	##c/I		
0 3 60 0 17 60 1 7 60 1 21 60 2 5 60 2 20 60 1 3 61 1 16 61 2 6 61 2 6 61 3 6 61 3 20 61 4 17 61* 5 15 61* 7 17 61* 7 17 61*	10 20 11 1 11 25 12 1 12 22 1 13 1 25 2 1 2 23 3 7 3 27 4 3 5 23 6 23 7 21 8 28 11 3 10 3 10 26	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 0 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 0 3 1 1 2 1 0 3 0 0 1 1 0 0 1	000000000000000000000000000000000000000	0 1 0 8 0 0 0 0 0 0 0 0 0 0 7 7 0 6	0 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MO. DAY		#P4/g	##e/I	ppc/l	ppe//
		-		·									

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE-SCHUYLKILL RIVERS

STATION LOCATION SCHUYLKILL RIVER AT

PHILADELPHIA, PENNSYLVANIA

						ALGAE (1	Vumber	per ml.)				IN	RT	1								-	ı	1	MICROIN	VEDTEDD	1750		
OF S	ATE AMI			BLUE-	GREEN	GREE	N	FLAGEL (Pigm		DIAT	омѕ	DIA SHE (No. p	ERT TOM LLS er ml.)		DOM!	NANT	SPEC	IATO IES AI for Co	MS ND PE ode Ide	RCEN [*]	TAGES	3	LANKTON, EATHED				Ī	FORMS	uction ration)
MONTH	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER. CENTAGE	SECOND*	PER-	THIRD#	PER- CENTAGE	FOURTH*	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICROFLANKTOH, FUNGI AND SHEATHED BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORMS (No. per liter)	DOMINANT GENERA (See Introduction for Identification)
11 12 1 2 3 4 5 6 7 7	75366315385	600601661661661	400 1100 4600 400 600 1400 2100 8200 8300 2200 7300	90 60	20 20 230 20	70 20 40 330 6280 540 230 5470	50	110 200 130 180 230 870 80 170 580	20 70 20 540	110 290 50 180 20 470 390 1410 70 350 270	110 550 870 4340 380 690 1410 470 1180 600 1040	90 70 70 270 50 120 200 170 20	250 640 2840 220 680 540 11120 1140	70 92 92 94 93 70 62 62 70	20 20 20 10 10 10 10 10	26 56 65 92 82 82	10 10 10 10 10	2 70 70 70 88 65 47 92 26	10 10 10 10 10	64 82 65 69 65 69 65 69 65 65 65 65 65 65 65 65 65 65 65 65 65	10 * 10 10 10 10 10	50 20 50 50	110 420 20 50 50	10 10 20	2 4 1 3 1 6 1 7 4 1 2 2 5 6 6	2 3	1 8 3 2 3 1	1	

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE-SCHUYLKILL RIVERS

STATION LOCATION SCHUYLKILL RIVER AT

PHILADELPHIA, PENNSYLVANIA

			MPL	E		_ E	CTRACTABL	.ES	1				CHLOROE	ORM EXTR	ACTABLES				
BEGIN	NNI	NG	E	ND						l	l		NEUTRALS		VOLVETER	l	ı ——— i		
МОМТН	TAT	YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS		OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
11 1: 12 2: 1 3: 9 :	0	60 61	11 1 2	26 19 17 18	5363 4997 6000 4780	187 344 239 287	53 211 109 147	134 133 130 140	1 4 2 2 2	10 40 21 19	23 103 49 82	3 20 10 18	12	17 64 30	17725	7 28 17 21	4 13 8 12	1 4 2 3	7 19 10 8

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE SCHUYLKILL RIVERS

STATION LOCATIONS CHUYLKILL RIVER AT

PHILADELPHIA, PENNSYLVANIA

DATE OF SAM		TEMP.	DISSOLVED				CHLORINE	DEMAND			[
MONTH	YEAR	(Degrees Centigrade)	OXYGEN mg/l	pH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/i	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10 3		27.2	8.8	7.5	1.C	-	2.9	3.8	• 2	12	52	128	30	12	64	•3	203	1100
10 10	60 60	17.8 19.4	9.8	7.6	1.5	.5	2.0	2.9	•1	15	60	144	17	10	73	.2	223	1400
10 24	60	14.4	10.2	7.6	1.4	4	1.6	3.6	•1	15	67	148	13	8	87	•3	241	1600
10 31	60	13.9	10.8	7.6 7.6	1.4 1.2	8	1.9	3 • 6	• 2	11	70	160	18	13	73	•3	243	1200
11 7	60	12.2	11.6	7.6	1.0	8	2.9	3 • 9 4 • 9	•2	17	70	160	23 25	12 8	88 71	•5 •4	126 203	2600
11 14	60	10.0	12.8	7.6	1.0	13	3.1	5.6	• 2	14 11	70 61	142 132	23	15	96	•4	209	200 2300
11 21	60	12.8	11.8	7.4	1.2	9	2.6	4.9	•1	16	66	150	23	12	78	.4	231	430
11 28	60	11.7	13.0	17.5	• 8	12	2.6	6.2	• 2	16	69	140	18	10	71	4	230	7900
12 5	60	8.9	14.2	7.6	3.0	12	3.4	5.9	•3	26	69	160	33	8	67	.5	238	670
12 12	60	3.3	12.0	7.8	1.6	11	5.9	9•1	.4	20	70	156	18	7	78	.8	235	1 -10
12 13	60	_	-	-	-	-	-	-	-	_	'-	-	_	_	_	-	_	4200
12 19	60	3.3	12.6	7.3	1.0	10	1.9	7.9	•6	22	75	144	15	8	84	•7	235	_
12 27	60	2.8	12.8	7.3	1 • 4	10	2•6	12.6	•5	23	76	152	15	8	60	•6	220	4400
1 3	61	2.8	12.8	7.1	4.2	18	1.9	8 • 6	•6	14	41	116	35	45	43	• 3	134	-
1 9	61	3.9	1.1.6	7.3	2.6	9	•8	1.9	•6	15	60	108	18	12	52	•5	170	-
1 16 1 23	61	4 • 4	11.4	7 • 4	1.0	8	• 3	1.6	• 6	18	62	140	8	8	61	•5	190	2400
1 30	61	1.1	13.2	7.3	1.7	10.	• 9	1.8	• 4	14	58	114	18	8	61	• 5	193	660
2 6	61	1.1	12.8 13.2	7.4	1 4	9	1.6	1.6	• 6	16	62	130	12	7	57	•6	195	-
2 14	61	4.4	12.2	7.4	1.4 .8	10 7	• 6 2 • 2	9	.8	15	67	138	7	8	61	• 4	228	2200
2 20	61	6.1	13.8	7.3	4.4	49	.9	2•8	• 8	17	70 39	128	8	7	63	• 4	208	960
2 27	61	5.0	12.4	7.1	2.1	84	1.6	3.6	• 4	8 5	39	70 60	220 230	380 330	27 31	•3	128 98	7000
3 6	61	13.9	11.2	7.3	1.2	9	1.9	2.6	4	8	43	88	15	12	52	.2		7900
3 13	61	6.1	12.6	7.4		5	1.9	3.0	.2	7	39	102	12	8	59	.2	160 176	4400 730
3 20	61	-	-		-	_		-	'-			102		-	29		110	21000
3 27	61	8.3	11.4	7.4	.3	8	1.9	3.4	•2	10	44	102	22	12	61	.2	203	2800
4 3	61	7.2	11.9	7.6	• 9	5	2.4	3.9	• 2	9	49	122	10	8	68	.3	172	1500
	61	10.0	10.2	7.6	•5	6	2.2	2.6	•1	11	52	118	10	8	57	.3	183	770
	61	10.0	11.2	7.3	•8	12	2.1	3.6	•1	5	40	78	28	30	42	.2	135	5700
	61	15.6	10.8	7.5	1.2	7	1.8	3 • 4	•1	9	46	103	15	14	47	• 2	153	3800
1)	61	10.0	9.5	7 • 4	3.9	14	2.6	5.2	• 1	12	47	92	28	22	54	.4	170	3900
	61	12.2	9.3	7.5	• 2	8	2.2	4.0	•1	11	49	122	12	10	78	.3	221	2800
	61	18.3	8.0	7 • 4	.6	9	1.9	3.9	•1	7	58	124	15	12	53	.3	212	1300
	61	17.8	7.9	7.5	4.9	10	1.4	2 • 8	•1	6	53	138	18	18	76	.3	224	1900
	61	17.8	8.1 7.3	7.5	1.2 2.8	8 12	2 • 4	3.9	• 2	11	58	130	12	8	82	.5	225	1500
	61	25.0	4.8	7.6 7.6	1.4	11	1.8 3.6	4.9 6.6	•0	12	69	142	18	12	82	• 1	256	-
	61	23.9	8.0	7.7	1.8	14	2.6	6.9	•2	16 15	63	126	22	18	89	• 5	238	9800
1 1	61	25.0	5.7	7.4	1.2	10	2.6	3.6	.1	19	80 77	144	37	28	74	• 5	282	3900
9 20	<u> </u>		701	10-7	104	10	400	انەر	• L	13	11	148	18	17	87	.5	278	7500

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE SCHUYLKILL RIVERS

STATION LOCATIONS CHUYLKILL RIVER AT

PHILADELPHIA, PENNSYLVANIA

DATE OF SAMPLE						CHLORINE	DEMAND					<u> </u>		<u> </u>			1
DAY YEAR	TEMP. {Degrees Centigrade}	mg/l OXYGEN	pН	B,O,D, mg/l	C.O.D.	1-HOUR mg/I	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
7 3 6 7 10 6 7 17 6 7 7 24 6 7 7 24 6 8 21 6 18 25 6 19 18 6 19 25 6 1	24.4 25.0 29.4 26.1 28.3 26.7 24.4 27.2 28.9 28.3 23.3	6.9 6.7 4.8 6.7 6.5 6.1 6.5 6.5 6.5 6.5	7.67 7.55 7.55 7.55 7.66 7.66 7.66	1.5 3.1 2.4 1.4 1.1 1.5 6.4 1.3 1.4	12 12 21 15 11 10 12 10 8 7 12 7	1.9 1.9 3.9 2.4 1.8 2.6 	4.8 6.6 3.2 7.4 6.0 4.6 9.5 8.1 4.8	.0 .1 .1 .1 .1 .1 .1 .1 .0 .1	17 14 13 13 10 18 19 14 16 18 21 18	72 81 58 66 48 47 62 73 58 50 65 73 65	128 152 104 102 744 140 158 180 142 148 178 148	18 12 40 50 35 22 27 22 25 32 32 32	15 12 95 60 430 20 20 30 30 30	71 74 59 51 25 101 109 130 117 - 95 79	1 • 4 3 4 3 3 5 4 5 5 6 5	232 260 214 205 143 247 269 300 327 290 312 268	830 2800 11000 4300 2300 2400 3300 2000 3700 3800 7100

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Philadelphia, Pennsylvania Operated by U.S. Geological Survey STATE

Pennsylvania

MAJOR BASIN

North Atlantic

MINOR BASIN

Delaware-Schuylkill Rivers

STATION LOCATION

Schuylkill River at

Philadelphia, Pennsylvania

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	2.340 2.100 1.820 1.630 1.500	1.160 1.730 1.540 1.160 1.080	1.630 1.330 .892 .929	3.680 6.400 4.390 3.190 2.490	1.160 1.080 1.000 1.040 1.000	8.650 7.400 6.180 5.340 5.340	4.040 4.440 3.710 3.290 3.080	3.340 3.440 3.710 3.080 2.780	1.500 1.370 1.500 1.370 1.410	.892 .929 .929 .855 .744	2.590 2.150 1.910 2.200 3.260	1.590 1.370 1.330 1.450 1.240
6 7 8 9 10	1.410 1.370 1.290 1.200 1.120	1.040 1.000 .966 .929 1.770	.929 .929 .892 .818 .800	2.050 2.010 2.440 2.290 1.860	1.120 1.530 1.770 1.730 1.370	5.220 5.580 6.270 11.000 8.690	3.990 2.780 2.590 2.440 4.570	2.640 2.930 3.080 4.540 4.800	1.240 1.160 1.160 1.730 1.410	.670 .638 .638 .606	2.540 2.200 1.820 1.500 1.290	1.040 1.000 1.000 .892 .818
11 12 13 14 15	1.040 1.120 1.000 .966 .929	3.080 2.100 1.730 1.450 1.330	.760 .710 .740 .800 .880	1.680 1.590 1.500 1.500	1.410 1.330 1.200 1.240 1.540	6.430 5.640 5.100 7.330 7.140	5.920 4.440 12.900 14.600 9.140	4.390 4.100 4.330 3.820 3.390	1.630 1.450 1.160 1.590 1.120	.542 .510 1.290 1.450 2.050	1.200 1.500 1.450 1.160 .966	.744 .707 .606 .829 1.030
16 17 18 19 20	.929 .892 .855 .855 2.160	1.240 1.160 1.080 1.000 .966	.880 .900 .890 .810 .740	2.730 2.200 1.600 1.300 1.300	2.050 2.440 3.030 10.300 13.100	5.700 4.860 4.220 6.1490 6.300	8.160 9.350 7.600 6.500 5.580	3.880 3.440 2.930 2.640 2.590	1.0 ¹ 40 .966 .818 .74 ¹ 4 .670	3.210 2.640 1.500 1.160 2.800	.892 .855 .744 .707 .804	.707 .606 .510 .510
21 22 23 24 25	2.050 1.540 1.160 1.040 1.000	.966 .929 .929 .892 .892	1.300 1.600 1.330 1.000	1.400 1.300 1.800 3.000 4.500	10.200 7.400 10.100 10.400 13.600	4.7 ¹ 40 4.100 5.160 7.3 ¹ 40 5.400	4.920 4.330 4.440 4.440 3.820	2.140 2.250 2.100 1.960 1.860	.855 1.290 1.760 1.680 1.680	3.190 1.910 1.290 1.210 2.680	1.730 1.240 1.910 1.910 1.860	1.160 .781 .606 .510 .414
26 27 28 29 30 31	.966 .892 .929 1.450 1.120	.892 .855 .818 1.010 1.580	.800 .850 .760 .800 .760 .940	2.500 1.700 1.550 1.450 1.350 1.250	20.800 16.000 10.800	4.740 4.390 4.160 4.160 4.040 3.550	5.490 4.620 3.710 5.260 3.930	1.960 2.390 2.200 1.770 1.680 1.680	1.450 1.730 1.370 1.160 1.000	4.640 2.680 1.910 7.770 7.400 3.680	1.490 3.540 3.440 2.540 2.100 1.910	.350 .325 .325 .300 .300

STATE

VIRGINIA

MAJOR BASIN

NORTH ATLANTIC

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

POTOMAC RIVER

STATION LOCATION SHENANDOAH RIVER AT

BERRYVILLE, VIRGINIA

SAMPLE					VATER										
	DATE OF DETERMI- NATION		ALPHA			BETA					NKTON (dry) ACTIVITY	\dashv	RAL	DIOACTIVITY IN W	
TAKEN		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DATE O	Ü-	ALPHA	BETA	-	SUSPENDED	GROSS ACTIVIT	
MO. DAY YEAR	MONTH DAY	μμς/	μμc/1	μμε/Ι	μμε/Ι	μμς/Ι	μμς/1	MO. D		μμc/g	μμc/g	┪	μμc/I	DISSOLVED	TOTAL
											FFCI	+	μμε/1	μμε/Ι	μμε/Ι
	10 6	1	0	1	8	5	13				1	ļ			
9 18 61	10 19	0	0	0	1	10	11	l	- 1			1	1		
9 25 61	10 12	0	1	1	3	14	17								
						-									
							l					1	1		
			ĺ		ĺ			İ				1			
								1	i			1	l i		
						1	ŀ	- 1				1			
						- 1		ĺ				1	1 1		
		ļ			1	ļ	ĺ	1	ı			1		1	
							ł								
						- 1		i				İ			
								ļ				İ			
- 1							ŀ					1			
								ĺ	1			1		1	
		İ			l i	1	1								
1					1		ľ		İ				l í		
İ					ŀ		1		i			1	1		
								1]		ł			
ļ		İ			İ	1] [
						1	1					1			
		1	1			1	1]			
		1	i	1	1		i		1			İ	<u> </u>		
]				j			j	ı		İ		1			
1		i	1	ŀ		ļ		ł	ĺ			ļ			
	i			ĺ	- 1			ļ	1		,	l	i 1	1	
	İ			ļ	1	į	1		1	1		1		1	
	l	1					1								
	1	1	1	- 1		1		İ		1		i	1		
	1			- 1					1				i i		
	1	1				1	j					İ	1	1	
		i				į	ĺ	i	1	1				ŀ	
				1				1	1						
1	ĺ			ļ											
				1			ł	1							
							ŀ								
	1									ĺ					
		1		ł				1							
				ļ	į.			ı		- 1					

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

VIRGINIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATION SHENANDOAH RIVER AT

BERRYVILLE, VIRGINIA

_	DAT	E				ALGAE (Number	per ml.)				IN	ERT	T											MICROIN	VEDTERR	ATEC		
OF	SAM			BLUE-	GREEN	GREE	EN	FLAGE!	LLATES ented)	DIAT	омѕ	DIA SHE (No. p	ERT TOM ELLS er ml.)		DOM (Se	NANT	D SPEC duction	IATO	ND PE	RCEN ntificat	TAGES	s	LANKTON, LATHED	2	T	T		FORKS	uction action
MONTH	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	СОССОІВ	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE		PENNATE	FIRST#	PER-	SECOND*	PER.	THIRD*	PER-	FOURTH*	PER. CENTAGE	OTHER PER-	OTHER MICROFLANKTON, FUNCI AND SHEATHED MACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ARIHAL (No. per liter	bominant genera (See Introduction for Identification)
	12		30600	350		10080		3290	20	10640	6230	7930	2650		1		7							a a	25	1	UV.		<u>8</u> <u>१</u> <u>१</u> <u>१</u> <u>१</u> <u>१</u> <u>१</u> <u>१</u> <u>१</u> <u>१</u> <u>१</u>

STATE

VIRGINIA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATIONSHENANDOAH RIVER AT

BERRYVILLE, VIRGINIA

	DATI F SAM		TEMP.	DISSOLVED				CHLORINI	E DEMAND										1
HTNOM	DAY	1 '	(Degrees Centigrade)	OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/i	COLIFORMS per 100 ml,
999	18 25		22.2	8.6 5.5	8.3	-					9 10	138 134	164	5	20 20	-	1	237 243	*40 270
																-			

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Millville, West Virginia Operated by U.S. Geological Survey STATE

Virginia

MAJOR BASIN

North Atlantic

MINOR BASIN

Potomac River

STATION LOCATION

Shenandoah River at

Berryville, Virginia

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	.760 .775 .739 .739 .704	.664 .644 .613 .607 .601	• 541 • 565 • 547 • 571 • 571	.851 .899 1.040 1.000	.600 .590 .590 .600	7.740 6.220 5.210 4.470 4.010	4.410 5.280 5.710 5.130 4.610	2.780 2.830 3.010 2.980 2.830	1.810 1.700 1.600 1.510 1.520	1.250 1.090 1.040 1.080 1.050	.706 .674 .658 .846 .873	.990 .837 .786 .714 .682
6 7 8 9 10	.632 .670 .677 .632 .690	•577 •619 •553 •607 •595	• 541 • 505 • 535 • 529 • 511	.920 .798 .770 .760	.680 .740 .820 .900	3.800 3.650 3.580 3.990 4.710	4.080 3.610 3.230 2.940 4.350	2.690 2.700 3.090 3.870 4.010	1.420 1.410 1.380 1.590 2.220	1.060 1.050 1.150 1.060 1.060	1.120 1.050 1.360 1.050 .918	.762 1.160 1.130 .945 .722
11 12 13 14 15	.670 .684 .670 .677 .632	.565 .583 .571 .613 .559	.510 .500 .480 .460 .500	.746 .697 .697 .625	.900 .900 .950 1.000	4.770 4.230 3.740 3.420 3.210	7.040 8.440 12.100 23.800 17.600	4.200 5.540 10.100 12.200 10.200	3.280 2.600 2.290 1.940 1.940	1.170 1.020 .918 1.120 1.250	.828 .945 .918 .722 .738	.927 .909 .855 .762 .674
16 17 18 19 20	• 638 • 553 • 577 • 595 • 644	• 583 • 559 • 565 • 547 • 553	.600 .600 .590 .580	.828 .958 .974 1.140 1.200	1.600 2.400 3.800 13.000 23.000	3.060 2.910 2.660 2.600 2.540	12.800 11.600 13.000 9.800 7.380	7.670 6.150 5.260 4.510 3.970	2.020 1.860 1.740 1.590 1.390	1.040 .999 1.060 .918 .936	.706 .629 .643 .601 .601	• 594 • 574 • 574 • 567 • 560
21 22 23 24 25	. 632 . 664 . 638 . 638 . 601	• 577 • 541 • 535 • 529 • 535	.580 .570 .560 .560	.983 .891 .780 .730	16.900 10.500 9.510 10.800 11.200	2.520 2.960 3.950 6.310 7.770	6.000 5.170 4.690 4.270 3.910	3.540 3.180 2.910 2.660 2.450	1.300 1.480 1.720 1.660 1.560	.855 .927 .819 .918 1.310	.636 .643 .650 .636 .714	.594 .666 .864 1.030 .846
26 27 28 29 30 31	. 607 . 589 . 577 . 577 . 589 . 583	• 535 • 535 • 541 • 583 • 583	.651 .684 .700 .720 .739 .753	.670 .650 .630 .620 .610	12.600 15.600 10.900	8.140 7.530 6.420 5.560 4.820 4.250	3.690 3.420 3.210 3.070 2.910	2.290 2.150 2.040 1.960 1.930 1.780	1.470 1.350 1.410 1.260 1.310	1.040 1.120 .900 .828 .810 .828	.864 .674 .836 1.410 1.070 .762	.762 .650 .594 .541 .51:8

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATION SNAKE RIVER AT

WAWAWAI, WASHINGTON

RADIOACTIVITY IN PLANKTON (dry) DATE OF GROSS ACTIVITY DATE OF GROSS ACTIVITY MO. DAY μμc/g μμc/g μμc/g μμc/l μμc/l μμc/l μμc/l
NO DAY WAY
NO DAY WAY
μμε/g μμε/l μμε/l μμ
9881004

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATION SNAKE RIVER AT

WAWAWAI, WASHINGTON

DATE				ALGAE (Number	per ml.)				INI	· ·	т-										1					
OF SAMPLE		BLUE-	GREEN	GREE	EN	FLAGEI (Pigm		DIAT	OMS	SHE	ERT TOM ELLS er ml.)				SPEC		OMS IND PE Iode Ide			s	SHEATHED ml.)	A ml.)	T	VERTEBI	T	FORMS	HERA uction ation)
MONTH DAY YEAR	TOTAL	COCCOID	FILA. MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST*	PER.	SECOND*	PER.	THIRD#	PER. CENTAGE	FOURTH#	PER.	OTHER PER- CENTAGE	OTHER MICROP FUNCI AND SH BACTERIA (NO. PET TO	12 8	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ARIMAL (No. per liter	pominant genera (See Introduction) for Identification)
10 10 60 10 17 60 11 14 60 12 5 60 12 19 60 1 3 61 1 16 61 2 0 61 3 20 61 3 20 61 4 17 61 5 15 61 6 5 61 6 19 61 7 17 61 8 21 61 9 18 61	600 600 1300 600 400 300 800 900 1500 2300 400 200 1600 1400 1500 800	20 40 20	20 20 40	20 80 100 120 60	20 20 20 20	20 20 20 40 40 40 40	20 20	50 130 70 130 50 20 160 600 330 640 150 970 250 540 330 270 110 40	510 420 1230 220 470 310 310 310 370 1260 760 270 740 660 890 830 250 640	20 470 30 200 160 590 1030 640 530 40 40 120 80 20 60 60	310 540 270	70 70 36 70 9 70 36 70 82 2 2 80 2 80 2 92 47 92 92 92	10 10 10 10 10 10 20 10 20 20 50 30	2 2 4 1 2 7 7 1 4 1 2 9 2 2 8 2 9 9 2 8 9 1 6 2 2 4 7 7 0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	58 36 36 36 36 37 32 32 32 32 32 32 32 32 32 34 47 47 82 82 82 83 84 84 84 84 84 84 84 84 84 84	10 10 10 10 10 10 10 10 10 10 10 10 10 1	64 64 71 71 36 70 76 70 80 2 89 2 15 62 36 58 2 2	10 10 10 10 10 10 10 10 10 10 10 10 10 1	60 50 50 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 70 70 70 70 70 70 70 70 70 70 70 70	40 110 30 20 20 70 160	10 20 10	1 4 6 1 1 1 8 3 0 4 7 7 3 4 4 1 0 3 2 9 9 1 4	3 3 3	12 2 4 221 41	1 :	3

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATION SNAKE RIVER AT

WAWAWAI, WASHINGTON

DATE OF S	AMBLE																
BEGINNING	EN			E	XTRACTABL	ES	ļ						ACTABLES				
DAY	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 3 60 11 7 60 12 13 60 1 16 61 6 5 61	10 11 12 2	21 26 13	2909 6930 5370 4570 3440	237 86 125 141 145	52 25 24 35 75	185 61 101 106 70	1 1 2 1 1	11 5 4 7 21	23 10 9 12 15	1 1 1 1 2 2	2 1 1 1 1 1 1 1	18 7 6 9 12	2 11 11 10 0	7 3 5 4 8	1 1 2	1 1 0 0 0 1 1	6 4 3 9 21

STATE

WASHINGTON

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATIONS NAKE RIVER AT

WAWAWAI, WASHINGTON

DATE OF SAM		TEMP.	DISSOLVED				CHLORINE	DEMAND								[
МОМТН	YEAR	(Degrees Centigrade)	OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D.	I-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/i	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
	60	15.0	-		-		1.5	2.9	-	-	-			20				130
10 17	60	13.0	10.1	7.9 8.0	1.7	7 8	1.9	5 • 2	•0	17	124	125	18	20	55	-	223	200
10 24	60	12.3	9.9	7.8	1.6	7	• 6 • 5	2•2	•0	16	128	126	17	20	49	-	238	1100
10 31	60	11.7	10.6	8.1	3.4	7	1.3	3.0	•0	16	137	134	17	2	51	-	212	800%
11 7	60	10.8	10.1	8.0	1.7	8	1.5	5.0	•1	16 18	114 126	121 130	16	20	44	-	203	430
11 14	60	9.0	10.6	7.9	3.0	7	. 8	2.6	•0	16	120	126	18 19	20	59	-	238	1400
11 21	60	8.1	11.1	8.1	2.2	6	1.0	3.7	•0	10	103	107	20	13	56 42	Ξ	228	550
	60	6.0	11.2	7.5	3.6	7	1.6	6.7	•0	11	96	93	20	12	43		165 186	1200
	60	3.5	10.9	7.8	4.3	8	• 6	1.3	• 0	17	117	114	18	1	41		226·	1300 700
	60	4.0	11.2	8.1	3.7	8	•8	2 • 3	•0	18	128	123	17	ī	54	_	237	380
	60	3.5	12.2	8.1	5.6	6	1.2	3.7	•0	19	141	132	19	2	50	-	227	14000
	61	2.0	13.3	7.5	5.5	30	1.2	4 • 7	•0	11	126	125	20	4	47	-	211	300
1 9	61	4.5	13.8	7.8	4.3 5.4	9	•7	1.9	•0	17	136	135	20	0	55	- 1	248	2700
	61	8.0	12.8	7.6	2.7	7 8	• 9	2 • 8	•0	16	129	125	18	1	51	-	242	310
	61	4.5	13.1	7.8	4.5	9	1.3	3.3	•0	17	118	115	18	5	51	-	216	300
1	61			- ' -	-		• 9	3.0	• 0	16	116	112	18	2	53	-	220	300
	61	6.0	13.2	7.5	3.0	8	1.0	2.7	.1	19	140	120	1.0	-		-	-	250
2 6	61	8.3	11.5	7.8	4.0	13	. 9	3.3	•0	12	. 86	139 86	18 35	1	53	-	280	-
	61	6.0	11.9	7.4	3.2	14	1.0	4.2	•0	7	59	56	40	31 45	26	-	173	330
	61	5.0	12.3	7 • 4	3.3	11	1.0	3.4	•0	10	80	74	40	6	26	-	158	960
	61	4.5	12.5	7.0	3.1	9	1.0	3.2	• 2	10	87	81	30	6	26 40	-	175 188	150
	61	4.0	13.0	7.0	3.0	9	• 9	2.5	• 0	10	89	85	22	5	38		172	790 790
	61	4.0	13.1	7.1	3.0	21	1.1	3.5	• 0	10	95	90		35	7.	_	136	120
	61	5.0	10.8	6.6	3.3	10	1.2	4 • 2	•0	7	61	59	18	10	32	_	122	270
	61	5.5	12.5	6.9	2.7	8	1.2	4.7	•0	7	69	61	18	8	33	-	114	260
1 1	61	8.0	14.0	7.0	2.8	8	.8	2 • 8	•0	8	70	58	18	3	-	-	113	160
	61	10.6	11.2	7.2 8.1	2.3	9	1.2	3.7	•0	7	51	51	18	1	-	-	_	140
	61	8.2	11.3	7.7	2.1	13	1.3	3 • 4		4	51	48	-	2	13	-	90	230
	61	11.4	11.0	8.0	3.0	10	1.0	5 • 1 3 • 2	•1	2	38	35	47	34	9	•1	75	1400
	61	9.7	11.2	7.8	1.2	10	1.1	3.7	•0	2	37	33	21	2	8	•0	68	540
	61	11.0	11.4	7.7	2.5	10	1.4	4.9	•1	1	30	29	26	2	5	•0	67	320
1 1	61		10.4	7.5	1.9	13	1.7	5.0	•0	1	28 24	26 24	21	2	7	• 0	62	*33
	61	11.0	10.9	7.4	2.0	13	1.4	6.4	.1	1	20	20	19 15	5 8	4	•0	46	33
	61	12.8	10.6	7.5	. 8	10	.6	3.4	.0	il	22	22	14	8	4	•0	50	770
	61	14.4	10.2	7.7	1.8	. 9	.7	2.8	•0	2	30	29	14	2	5 7	•0	48 57	150
	61	18.0	8.7	7.8	.6	10	1.4	3.9	•0	2	36	32	14	1	9	•0	67	170 300
6 26	61	21.0	8.6	8.1	1.3	9	1.0	3 • 1	•0	3	46	42	14	îl	12	•0	82	1800

STATE

WASHINGTON

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATIONSNAKE RIVER AT

WAWAWAI, WASHINGTON

DATE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	DEMAND										
MONTH DAY YEAR	(Degrees Centigrade)	OXYGEN	Hq	B.O.D. mg/l	C.O.D.	1-HOUR mg/l	24-HOUR mg/i	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 mil
7 3 61 7 10 61 7 17 61 7 24 61 8 24 61 8 25 61 9 25 61	21.0 22.6 24.4 	7.9 7.6 7.6 8.3	8.1.1 8.1.9 5.0.2 8.3.3 8.4.2 8.3.3 8.4.2	1.0 .4 .6 .4 1.5 .4 1.0 1.1 .6 1.7 1.4 1.9 1.2	9 10 11 11 11 11 11 9 9 9	.9 .9 .9 .8 .9 .7 .9 .7 .8 .7 1.00	2.7 2.9 2.4 2.5 3.5 2.8 3.9 2.0 2.8 2.7 2.8	00 00 00 00 1 2 9 2 8 8 8	4 4 6 8 10 11 12 13 14 11 14 15 14	52 52 58 72 88 90 96 104 100 98 108 113	50 48 56 66 76 86 92 100 104 92 104 111 109	13 14 15 15 15 16 15 15 15 14 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 12 16 22 28 30 33 42 35 40 44 43	.00.00.00.00.00.00.00.00.00.00.00.00.00	92 92 108 130 154 180 198 212 180 202 215 212	1200 770 1400 190 330 130 75 *33 210 500 280 540

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Clarkston, Washington Operated by U.S. Geological Survey

STATE

Washington

MAJOR BASIN

Pacific Northwest

MINOR BASIN

Middle and Lower Snake River

STATION LOCATION

Snake River at

Wawawai, Washington

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	21.200	23.500	25.900	27.700	42.300	44.900	51.500	59.900	141.000	37.100	19.700	17.600
2	18.700	26.100	25.300	27.500	40.800	49.000	52.200	72.200	148.000	33.000	18.500	20.000
3	17.600	26.300	25.300	26.600	37.600	45.300	58.000	79.000	160.000	30.200	18.100	23.000
4	18.100	25.400	26.700	25.300	33.500	39.500	77.400	75.800	156.000	29.000	16.000	21.600
5 6	19.500 20.200	24.200 24.000	26.800 26.200	24.600 27.000	31.500	37.400	74.000	73.500	150.000	28.500	16.600	20.600
7 8 9 10	20.900 21.500 23.000 20.800	25.200 25.600 24.800 24.500	23.600 22.200 21.500 22.300	28.400 28.200 28.100 28.900	32.100 38.000 39.900 40.000 51.500	36.100 35.100 34.900 35.800 36.300	66.700 60.600 58.200 56.000 51.400	68.700 62.400 58.400 55.900 58.000	145.000 148.000 140.000 127.000 122.000	28.200 29.300 28.000 25.400 23.100	17.300 14.600 13.900 16.000 17.600	21.200 19.700 18.800 17.300 17.400
11	21.100	22.900	22.800	29.700	75.600	35.200	49.300	67.200	115.000	24.000	14.000	17.300
12	23.100	25.500	21.700	29.000	72.200	32.900	47.400	70.300	112.000	23.000	16.400	17.100
13	25.500	26.400	24.000	27.800	60.000	30.100	51.600	70.100	112.000	21.900	17.600	17.800
14	24.600	27.000	25.400	27.800	55.300	36.300	50.400	68.500	103.000	21.000	14.800	17.700
15	23.300	27.500	25.700	27.500	49.700	44.500	46.600	69.400	91.800	20.500	14.000	18.500
16	22.000	27.600	25.400	28.000	50.400	46.000	43.700	71.900	88.600	20.000	16.200	17.900
17	23.400	28.000	24.700	30.900	48.300	53.600	44.400	74.600	86.300	19.000	17.200	17.400
18	23.400	29.200	26.000	31.100	45.400	50.600	58.200	79.700	83.800	18.400	14.800	17.200
19	23.800	33.200	29.600	28.500	41.800	46.200	61.000	83.300	76.500	18.200	16.700	18.300
20	24.400	29.800	31.800	26.100	41.700	46.600	57.000	91.500	73.100	17.500	17.200	20.500
21	24.700	26.900	29.700	23.900	47.700	47.600	53.300	102.000	66.600	17.000	14.200	21.500
22	24.000	27.600	27.400	23.000	66.600	46.600	48.100	111.000	64.700	17.500	13.800	22.100
23	23.600	26.100	26.500	23.800	64.300	48.000	51.600	116.000	59.700	19.100	16.300	21.800
24	22.900	25.200	26.200	25.500	54.600	53.400	51.500	129.000	55.900	17.300	17.000	22.000
25	24.800	31.000	25.300	27.600	50.200	59.000	50.100	141.000	54.800	15.800	14.000	22.700
26 27 28 29 30 31	22.600 23.000 22.800 22.600 22.800 24.000	32.100 31.600 31.800 29.100 26.600	25.000 24.300 26.300 27.600 27.600 27.900	29.000 27.200 27.300 27.100 29.000 32.100	47.800 43.000 44.000	56.900 55.300 53.500 50.700 49.600 49.500	47.600 45.500 45.800 48.400 52.800	156.000 168.000 154.000 138.000 140.000 151.000	46.800 46.900 46.100 40.400 37.100	17.300 18.900 16.000 16.100 20.000 22.000	15.800 17.600 15.700 15.800 17.000 16.900	22.200 22.800 21.500 20.900 19.600

STATE

IDAHO

MAJOR BASIN

PACIFIC NORTHWEST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

CENTRAL SNAKE RIVER

STATION LOCATION SNAKE RIVER AT

WEISER, IDAHO

1 1000	21076111		KTON (dry)	KAL	IOACTIVITY IN W	ATER
DATE DETER	OF	GROSS A	CTIVITY		GROSS ACTIVIT	
NATIO	N N	ALPHA	DETA	SUSPENDED	DISSOLVED	TOTAL
MO. D	PAY	μμc/g	μμc/g	μμc/1	##c/l	##e/1
	1					
				1		
	İ	1		1		
			İ			
	İ					
		1	j			
					1	
					1	
	ı		İ			
					3	
			1			
	1		1			
1 1				l l		
			İ	i l		
		İ				
					1	
				- 1	1	
			[į.	
			I		- 1	
			l			
					17	
1			1			
1						
					- 1	
					1	

STATE

IDAHO

PLANKTON POPULATION NUMBER PER MILLILITER, EXCEPT MACROPLANKTON MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

CENTRAL SNAKE RIVER

STATION LOCATION SNAKE RIVER AT

WEISER, IDAHO

D	ATI	.				ALGAE (Number	per ml.)				IN	FRT	Т										, 					
OF S	AM	PLE		BLUE-	GREEN	GREE	ΞN	FLAGE1		DIAT	OMS	SHI	ERT TOM ELLS er ml.)		DOM!	INANT	C SPEC	IATO	ND PF	RCEN'	TAGES	5	HED.	-	MICROIN	T	1	2	RA ion on)
HTNOM	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	1	PENNATE	FIRST*	PER. CENTAGE	*GKOND*	PER- CENTAGE		PER. CENTAGE		PER-	OTHER PER- CENTAGE	OTHER NICKOFLANKTON, FUNGI AND SHEATHED BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	No. per liter)	DOMINANT GENERA (See Introduction for Identification)
11 1 12 1 1 1 4 1 6 1	74596738	60 60 60 61 61 61 61 61	2600 700 1800 4200 1400 3900 12900 11100	70 150 60 120	70	20 50 90 250 190 1350 5280	50	70 90 20 510 70 310 100 620 1220	50 70 90 180	1960 460 570 1650 310 860 14010 730 6250 1590	530 80 1100 1630 2100 2840 4640 2840	460 240 1690 1160 1070 4220 230	950 700 1210 1050 1010 2840 1860	36 36 36 65 82 47 92	20 20	82 92 92 82 80 92 26	10 20 10 20 10 10	65 82 47 35	10 10 10 20 10 *	65 82 66 71 9 65 80	10 10 10 10 10 *	60	70 150 40 150 50	10	2 20 13 3 1 1 55 106 11 26	1 6 2	2 5 9 3 1	1	7-9-7 9-7 7-943 71943 3-743 7-973 7-743 41-77 74338

STATE

IDAHO

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

CENTRAL SNAKE RIVER

STATION LOCATIONSNAKE RIVER AT

WEISER, IDAHO

DATE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	DEMAND				,						
MONTH DAY YEAR	(Degraes Contigrade)	OXYGEN	pH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	(scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/i	COLIFORMS per 100 ml.
10 3 60 10 10 60 10 17 60 10 24 60 11 7 60 11 14 60 1 9 61 6 13 61	12.5 13.5 13.0 10.4 9.1 8.9 4.2	9.5 9.3 8.9 10.2 10.6 9.4	7.4 7.6 8.0 7.6 7.4 7.6 7.6 7.6	3.7 3.3 2.5 3.5 3.2 3.2	11 27 21 25 17 25 21 	2.4	4.1	3333333	65667866-	216 104 194 204 220 198 216 192 150	248 236 264 240 244 220 216 204 240	5555555	40 21 15 12 20 18 18 16 24				

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Weiser, Idaho Operated by U.S. Geological Survey STATE

Idaho

MAJOR BASIN

Pacific Northwest

MINOR BASIN

Central Snake River

STATION LOCATION

Snake River at

Weiser, Idaho

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	13.500	13.200	14.700	12.700	19.400	12.600	13.600	11.100	14.600	8.000	8.310	9.460
2	13.500	12.900	14.500	12.900	15.400	12.200	13.100	11.200	14.800	8.000	8.230	9.630
3	13.000	13.500	12.400	12.400	16.900	12.400	13.300	11.800	15.200	8.230	8.230	9.980
4	12.400	13.500	12.300	11.900	14.800	11.300	14.700	11.300	14.700	8.300	8.310	9.930
5	12.800	13.400	12.100	10.800	13.100	11.500	15.100	11.200	14.200	8.380	8.310	10.100
6	13.000	13.200	12.800	10.500	14.300	11.400	14.800	11.500	13.800	8.880	8.470	9.800
7	13.600	11.500	13.300	10.900	13.800	11.200	14.000	11.300	13.600	8.800	8.470	9.720
8	14.600	11.600	13.500	11.300	14.000	11.600	13.400	11.000	13.500	8.550	8.470	9.630
9	14.300	13.500	12.800	11.400	14.200	11.400	13.100	10.600	13.200	8.230	8.310	9.630
10	13.100	13.800	12.900	11.600	16.600	12.000	13.000	9.900	13.000	8.470	8.310	9.890
11	13.500	13.900	12.200	12.700	17.100	11.500	11.400	10.900	12.600	8.310	8.310	10.200
12	14.900	14.400	13.300	12.000	16.200	11.800	12.200	11.300	12.700	8.470	8.310	10.200
13	14.600	14.900	12.600	11.800	15.200	13.300	12.600	11.100	12.100	8.200	8.880	10.200
14	15.600	14.900	11.800	11.600	14.300	13.700	11.600	11.100	11.200	8.010	9.120	10.700
15	15.900	14.700	13.100	12.200	15.400	14.100	11.400	11.500	11.000	7.770	9.210	10.300
16	16.400	14.200	12.900	12.100	15.200	13.900	11.100	11.700	10.200	7.770	8.960	10.500
17	14.900	14.200	13.000	10.800	14.000	13.700	11.200	11.300	9.600	7.880	8.710	10.300
18	13.500	16.800	13.500	11.600	14.000	13.300	11.200	11.400	9.450	7.700	8.630	11.000
19	14.000	16.400	13.800	11.800	13.200	13.600	12.300	11.600	7.950	7.830	8.630	12.100
20	14.200	15.100	13.300	11.000	13.100	14.400	12.000	11.900	7.470	7.970	8.630	12.000
21	13.700	12.100	13.000	11.700	12.600	13.200	11.100	12.300	8.000	7.900	8.550	12.200
22	14.000	11.900	13.000	11.300	13.300	12.800	10.700	13.100	7.780	8.000	8.630	12.600
23	14.000	14.200	12.700	11.400	13.300	12.900	10.600	12.900	8.080	8.360	8.630	11.700
24	13.800	15.200	13.400	11.200	13.100	16.600	10.200	13.300	8.220	8.140	8.630	11.300
25	12.600	16.200	14.000	12.400	12.700	16.000	9.900	13.600	7.920	8.180	8.710	11.200
26 27 26 29 30 31	13.200 13.000 13.200 13.100 14.000 11.400	14.600 15.200 13.600 12.700 13.900	13.100 12.000 12.200 12.300 12.600 12.600	11.600 11.700 11.400 10.700 10.800 11.900	12.000 11.400 11.300	15.700 15.500 14.900 13.500 12.900 13.800	9.800 9.500 9.500 9.500 10.900	14.200 14.700 14.500 13.900 14.500 14.900	8.220 7.850 7.850 7.850 7.780	8.000 8.140 8.320 8.910 8.330 8.320	9.900 9.460 9.540 9.380 9.290 9.460	11.000 11.000 11.100 10.700

STATE

COLORADO

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

SOUTH PLATTE RIVER

STATION LOCATION SOUTH PLATTE RIVER AT

JULESBURG, COLORADO

DATE			RAD	IOACTIVITY IN V	VATER				1046	TIVITY IN PLA	histori (1)		T		
SAMPLE	DATE OF DETERMI- NATION		ALPHA		T	BETA					ACTIVITY	-		GROSS ACTIVITY	
TAKEN		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DATE O DETERM NATIO	AI-	ALPHA	BETA	1	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	MONTH DAY	μμc/I	μμc/t	μμε/Ι	μμc/I	μμε/ί	μμε/Ι	MO. D.		μμε/g	μμc/g	7	μμς/Ι	μμc/I	
6 12 61 6 19 61 6 26 61 7 3 61 7 10 61 7 17 61 7 31 61 8 7 61 8 24 61 8 28 61 9 11 61 9 18 61 9 26 61	7 18 7 20 7 27 8 2 8 10 8 8 14 8 31 10 3 9 13 9 25 9 25 10 20 10 24 10 23 10 7	0 2 2 0 0 0 0 23 19 1 0 0 5 2	18 20 30 23 21 27 43 11 44 28 15 42 39 44	18 22 32 21 27 43 34 63 26 33 28 16 42 44	0 0 0 0 0 0 0 58 91 16 20 0 4 0 21 1	25 21 39 29 22 23 57 21 77 28 57 116 54 87 66 74	25 21 39 29 22 23 57 79 168 44 77 116 58 87 75	MO. B.		##c/ 8	μμε/g		μμε/Ι	##c/l	<i>врес</i> Л

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

COLORADO

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

SOUTH PLATTE RIVER

STATION LOCATION SOUTH PLATTE RIVER AT

JULESBURG, COLORADO

Е	ATE	= ├		1		ALGAE (Number	per ml.)			~~~~	INI	ERT																
OF S	SAM	PLE		BLUE-	GREEN	GREE	EN	FLAGE!	LLATES ented)	DIAT	OMS	DIA SHE	ERT TOM ELLS er ml.)		DOM (Se	INANT	SPEC	IATO IES AI for Co	ND PF	RCEN'	TAGES	5	KKTOK, TRED	-	MICROII	VERTER	RATES	N N	ion fon)
MONTH	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE		PENNATE	FIRST#	PER-		PER.	THIRD#	PER. CENTAGE	,	PER- CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLANKTON, FUNGI AND SHEATHED BACTERIA (NO. per ml.)	ROTOZOA No. per ml.,	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	No. per liter)	HER ANIMAL FO.	DOMINANT GENERA (See Introduction for Identification)
6	12 24	61 61 61	3600 14700 3800		40 120	890 310 310		210 120 70		1120 1260 110		20	500 810	92 85	10 30	71 92	10 10	46 65	10 10		10 10			PROT	ROTH (Wo.1)			OTHER (NO. P	4876: 7476: 7876:

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

COLORADO

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

SOUTH PLATTE RIVER

STATION LOCATION SOUTH PLATTE RIVER AT

JULESBURG, COLORADO

DATE					E.	XTRACTABL	_ES	T				CHLOPO	FORM EVE	RACTABLES				
BEGINN	ING	E	ND						<u> </u>	<u> </u>		NEUTRAL	S S	RACTABLES	1		,	
MONTH	YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS		OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	Loss
9 27	61	10	16	4000	208	37	171	0	8	15	2	1	11	1	5	2	1	6
																	1	

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Julesburg, Colorado Supplied by State of Colorado Department of Water Resources STATE

Colorado

MAJOR BASIN

Missouri River

MINOR BASIN

South Platte River

STATION LOCATION

South Platte River at

Julesburg, Colorado

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	.022 .023 .024 .024 .029	.106 .104 .099 .098 .101	.072 .096 .124 .150	.206 .208 .165 .172	.287 .218 .188 .211 .245	.141 .133 .155 .139 .137	.231 .257 .259 .260 .271	.107 .101 .099 .102	2.310 1.980 2.070 2.460 2.680	.243 .292 .218 .168 .134	.241 .212 .181 .174 .169	.034 .036 .035 .034
6 7 8 9 10	.032 .033 .034 .041 .043	.098 .099 .098 .095 .102	.172 .186 .192 .212 .213	.182 .224 .246 .265 .283	.225 .234 .250 .280 .273	.160 .215 .220 .237 .253	.284 .199 .199 .157 .193	.092 .087 .075 .070 .069	2.570 3.020 3.990 5.470 6.750	.117 .109 .124 .235 .218	.182 .192 .146 .101	.035 .044 .089 .120
11 12 13 14 15	.042 .041 .050 .063 .081	.102 .100 .097 .096 .096	.220 .233 .236 .243 .256	.286 .278 .270 .270 .274	.268 .270 .262 .246 .246	.258 .272 .278 .283 .286	.297 .322 .360 .358 .324	.062 .058 .060 .106 .181	5.930 5.120 5.050 5.080 5.440	.179 .169 .149 .129 .115	.061 .055 .064 .046	.137 .145 .139 .120
16 17 18 19 20	.083 .084 .086 .086 .096	.094 .095 .094 .099 .096	.249 .252 .257 .253 .239	.269 .264 .246 .235	.250 .250 .243 .234 .232	.278 .283 .289 .279 .285	.318 .316 .306 .264 .251	.150 .150 .162 .204 .204	5.330 4.880 4.190 3.540 3.110	.097 .085 .073 .067 .064	.045 .050 .046 .044 .043	.135 .129 .116 .131 .159
21 22 23 24 25	.127 .122 .110 .104 .099	.100 .101 .097 .099 .097	.239 .167 .167 .228 .288	.230 .245 .248 .234 .240	.231 .231 .231 .231 .230	.276 .277 .277 .272 .269	.304 .397 .397 .334 .290	.268 .740 1.010 1.250 1.610	2.410 1.810 1.440 1.120 .800	.066 .064 .057 .052 .052	.043 .040 .037 .038 .037	.156 .165 .195 .236 .285
26 27 28 29 30 31	.103 .100 .102 .102 .099 .105	.095 .095 .066 .052 .060	.269 .252 .238 .178 .167 .188	.223 .188 .201 .194 .270	.196 .165 .157	.242 .186 .166 .153 .144 .158	.278 .225 .146 .120 .106	2.040 2.420 2.620 2.400 2.500 2.540	.630 .458 .299 .203 .165	.062 .104 .121 .131 .151 .253	.036 .034 .033 .033 .036	•352 •407 •585 •797 •866

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

SUSQUEHANNA-JUNIATA

STATION LOCATION SUSQUEHANNA RIVER AT

CONOWINGO, MARYLAND

DATE			RADI	OACTIVITY IN V	VATER			Γ	RADIOA	CTIVITY IN PLAI	NKTON (drv)	T	PAT	DIOACTIVITY IN Y	VATER
SAMPLE	DATE OF DETERMI-		ALPHA			BETA		1			CTIVITY	1	, AAS	GROSS ACTIVIT	
TAKEN	NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL]	DATE OF DETERMI- NATION	ALPHA	BETA	1	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	MONTH DAY	μμc/ Ι	##c/ l	μμε/	μμε/Ι	μμc/l	μμε/Ι		MO. DAY	μμc/g	μμc/g		μμc/l	μμc/1	μμc/I
10 5 60	10 19	0	,	,											
0 13 60	10 31		. 1	1	0	0	0			•		1			
0 19 60	10 31	l ŏ l	2	2	0	1	1 1	1				1			
0 26 60	11 18	í	1	2	0 0	ō	0								
1 2 60	11 29	Ō	2	2	Ĭŏ	ŏ	٥								
1 9 60	11 28	0	1	ī	l ŏ l	o l	Õ		1 1			i	l i		
1 16 60	11 29	0	0	0	0	ŏ	٥	1	1			1			
1 23 60	12 2	0	1	1	0	0	Ó	ł	1						
1 30 60	12 15	0	1	1	0	0	0	l	1						
.2 7 60	12 30	0	0	0	0	0	0	1	1 [
2 28 60	1 11	0	2	2	0	5	5		1						
1 4 61	1 27 1 31	0	1	1	0	0	0	-							
1 18 61	2 6	0	1	1	0	0	0	,				ł			
1 25 61	2 15	0	1	1	0	0	0 `	1				1		i	
2 1 61	2 17	0	0	0	0	0	0					1			
2 10 61	3 3	ő	0	0	0	0	1	i	1					i	
2 15 61	3 2	ő	ŏ	ŏ	0	0	0		1 1				1		
2 23 61	3 22	1	i	ž	Ö	ŏ	Ö						1	[
3 1 61	3 20	5	ō	5	ŏl	ŏ	ŏ		1 1						
3 8 61	3 27	1	0	1	0	ō	Ŏ						İ		
3 15 61	3 31	1	0	1	0	0	Ō						1		
3 29 61	4 17	0	0	0	0	0	0						1		
4 5 61	4 20	0	0	0	0	0	0		1	ſ			1		
4 12 61	4 24	0	0	0	0	0	0						1		
4 19 61	5 10	0	0	0	1	3	4			1		1			
4 26 61 5 31 61*	5 17	0	0	0	0	3	3								
6 28 61*	6 12 7 17	0	0	0	0	1	1								
8 6 61*	8 29	ŏ	0	1 0	0	3	3						1	i	
9 20 61	10 7	-	_	~	0	16	16		1	-			}	1	
9 27 61	10 11	-	_	_	1 0	9	10			İ			1	i	
					0 1	١	۱ ۰			ŀ					
			- 1	ĺ	ł								1 1	[
-		1	-		[ļ]	1	
	[İ								j		
	į	1				İ									
1	ĺ	1	1											1	
	f		ĺ		İ]		
	ľ	i			ŀ		ļ								
				1							İ				

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MARYLAND

PLANKTON POPULATION

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA-JUNIATA

STATION LOCATION SUSQUEHANNA RIVER AT

CONOWINGO, MARYLAND

DATE				ALGAE (Number	per ml.)				INF	ERT																
OF SAMPL	.E	BLUE-	GREEN	GREE	EN	FLAGEI (Pigm		DIAT	омѕ	INE DIA SHE (No. p	TOM LLS er ml.)		DOM I	NANT Intro	SPEC	IATC	ND PE	ERCEN enti/ica	TAGE	s	AMETOR,	-	T	NVERTEB	1	S M M	ERA tion tion)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND	PER- CENTAGE	THIRD#	PER. CENTAGE	FOURTH	PER.	OTHER PER- CENTAGE	OTHER MICROFLANKTOR, FUNGI AND SHKATHED BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL F (No. per Heef)	DOMINANT GENERA (See Introduction for Identification)
10 18 61 11 2 61 12 7 61 18 6. 1 25 6. 3 8 6. 3 15 6. 4 26 6. 5 10 6. 5 24 6. 6 21 6. 7 6. 8 6 6. 8 2 6. 8 8 6. 9 13 6. 9 27 6. 9 27 6.	0 300 0 200 1 100 1 200 1 200 1 200 1 200 1 300 1 3300 1 300 1 1000 600 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900	20	60	90 20 170 220 70 850 190 350 810 500 210 60 20		20 20 40 20 40 40 250 20 190 40 230 100 40 20 60	70 160 70 20 20 20 20 20	50 130 20 70 20 160 20 1240 1090 560 410 20 1450 1120 460	90 70 220 130 160 440 360 410 2750 1130 440 390 170 910 290 310 40 20	40 110 20 40 50 20 90 1700 410 100 410 100 580 730 80 60 40 210	50 470 270 2240 2340 230 540 490 540 40 290 520 60 80 40	352 999 992 927 925 5527 566 47	40 20 30 20 10 10 10 20 30 30 40 20 20 10 70 30 10	92 51 82 82 82 82 82 82 84 75 47 26	20 10 10 20 10 10 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	61 27 64 2 35 64 64 31 93 47 27 47 27 27 27 27 27	10 10 10 10 10 10 10 10 10 10 10 10 10 1	58 70 45 65 70 93 62 62 31 93 92 95 83 82 26 62 93 82 82 82	10 10 10 10 * 10 10 10 10 10 10 10 10 10 10 10 10 10		20 50 20 40 80		100 422 1 1 2 2 2 1 133 738 88 209 111 2200 70 968 191 108 112	1 3 7 4 39 7 8 8 8 5 11 6	1 2 2	1	

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA-JUNIATA

STATION LOCATION SUSQUEHANNA RIVER AT

CONOWINGO, MARYLAND

DATE OF S	AMP	LE	1	F	XTRACTABL	FS											
BEGINNING	T	END				T	+		ī ———		CHLORO	ORM EXTR	ACTABLES				
DAY	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	Loss
10 11 60 11 2 60 12 7 60 1 31 61 3 7 61 4 12 61 5 22 61 6 26 61 8 9 61 9 20 61	11 12 2 2 4 6 7	1 10 2 14 2 7 3 14 4 20 5 7 7 12 3 23 0 10	5000 5000 5210 5050 5050 2630 2210 4030 5974	213 189 137 149 171 133 330 437 302 161	74 68 50 58 51 36 145 129 98 63	139 121 87 91 120 97 185 308 204 98	4 3 2 5 4 1 3 1 4 5 2	19 15 10 12 12 8 38 34 26 13	19 21 19 20 12 13 26 27 23 23	2 1 2 1 2 2 4 4 3 3	1	15 18 15 16 8 9 19 20 17 15	0111000113	775654316119	4 5 2 5 3 2 17 14 11 6	1 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 15 11 10 14 7 23 21 9

STATE

MARYLAND

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA-JUNIATA

STATION LOCATIONSUSQUEHANNA RIVER AT

CONOWINGO, MARYLAND

DATI OF SAM		TEMP.	DISSOLVED				CHLORINE	DEMAND					<u> </u>	<u> </u>		<u> </u>		<u> </u>
MONTH	YEAR	(Degrees Centigrade)	OXYGEN mg/I	рΗ	B.O.D. mg/l	C.O.D. mg/l	I-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10 4 10 5		18.9	6.6	7 • 3	1.1	5	1.9	3 • 8	•0	6	29	79	10	5	54		124	
10 19		17.8	7.2	7.3	• 6	9	•9	2.0	•1	7	33	105	_	-		-	_	*170
10 26	60	_	-	-	_	-	_	-	-			105	7	4	73 -	_	172	-
10 27 11 9	60	18.3 16.7	7.6 9.1	7.3	, -	9	1.3	2 • 7	•0	7	35	108	7,	5	76	.1	175	330
11 16	60	15.0	9.7	7•3 7•3	1.1	7 3	1.9 1.9	3 • 2 2 • 4	-	10	42	144	8	11	89	.1	231	500
11 23	60	13.3	9.9	7.5	1.9	10	109	2•4	-	11 9	44 43	128 118	8	5	80	•0	210	170
11 30		12.2	9.9	7.5	• 8	8	1.8	2.7	_	10	41	116	12 10	2 4	77 77	_	202	500
12 7		10.6	10.3	7.3	• 8	10	1.7	2.9	_	10	41	119	8	3	81	•0	182 189	250 340
12 28	60	2.2	12.6 12.5	7•3 7•3	• 7	3	2.2	4.6	•1	10	46	117	8	6	74	•0	184	*110
1 11	61	3.9	12.6	7.1	• 7	4	1.9	3.9 5.0	_	11 11	51	132	7	4	84	-	211	*110
1 18	61	1.7	11.9	7.1	• 8	13	.5	4.4	-	12	47 51	137 131	4	4	94	•1	231	920
1 25	61	1.1	12.1	7.3	• 5	7	• 3	4 • 8	-	10	48	124	7	2	80 82	•1	202 197	170 170
2 1 2 10	61	1.1	12.1	7 • 1 7 • 1	•7 •5	7	• 4	4.9	-	12	46	120	12	9	71	.1	185	370
2 15	61	1.1	11.2	7.0	1.6	12 7	• 6	6.4	_	11	48	121	7	3	73	.1	200	230
2 23	61	1.1	13.3	7.2	2.3	17	.7	7.6	_	12 7	49 36	124 78	15	108	38	•0	1.00	500
3 1	61	4.4	12.6	6.9	1.6	27	• 5	5 . 8	-	2	14	36	11	240	23	•0	130 94	5500
3 8 3 15	61	6.7 4.4	11.8	7.2 7.1	1.3	8 9	1.6	3.6	-	4	23	54	7	16	30	.1	87	7300
3 29	61	7.2	11.2	7.3	.7	12	1.3	2 • 6	_	4	23	54	7	15	30	.0	85	1200
4 5	61	5.6	11.6	7.3	. 6	5	1.7	2.9		7	39 23	68 52	10	13 12	37	• 2	109	900
4 11	61			-	-	-	-		-	_	-	-		12	27	• 1	92	500 1100
4 12	61	7.2 7.8	11.3	7.3	• 6	-	1.2	3.0	-	5	30	69	7	10	39	.1	110	1100
	61	13.3	9.4	7.1	1.0	_ [_	-	•0	5	19	42	13	85	24	-	81	7800
5 3	61	11.1	10.1	7.1	• 6	_	_	_	_	_	24 24	57 54	8 10	15	-	-	-	2800
5 10	61	15.0	10.5	7.5	-	-		-	-	5	30	66	7	30 10	_	-	_	1300 500
5 17	61	17.2	9.0	7 • 2	• 7	_		-	-	5	29	59	10	13	_	_	_	670
5 24 5 29	61	16.7	9.9	7.5	_	-	1.3	2•9	-	6	30	66	7	4	-1	-	113	-
5 31	61	16.1	9.5	7.4	_	_	_	-	_	6	31	75	-	71	-	-	-	2
6 2	61	-	-		-	-	-	-	_	_	71	12	6	6	_	_	_ [*120
6 7	61	18.9	7.9	7.3	1.1	-	-	~	-	6	37	83	6	3	_	-	-	*170
6 14 6 21	61	20.6	7.1 6.8	7•3 7•3	3.4 1.5	-	-	-	-	8	44	98	6	6	-		-	120
6 28	61	23.5	6.5	7.2	3.8	18	_	_	_	9	41	83	8	10	-	-	-	*170
	-			, • -	J. 0	10	-	-	-	-	40	83	-	32	-	-	-	*2

STATE

MARYLAND

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA-JUNIATA

STATION LOCATIONSUSQUEHANNA RIVER AT

CONOWINGO, MARYLAND

_ 0	DA OF SA		E	TEMP.	DISSOLVED		B.O.D.	C.O.D,	CHLORINI	DEMAND	AMMONIA-									1
MONTH			YE	(Degrees Centigrade)	OXYGEN mg/l	рH	mg/l	mg/l	1-HOUR mg/l	24-HOUR mg/I	NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORI per 100 n
7 7 7 7 8 8 8 8 8 9	12 12 26 26 23 30 6	5 6 6	51 51 51 51 51	24.0 23.9 24.5 27.2 27.8 26.1 25.6 23.3	5.0 4.8 4.3 3.3 3.1 5.0 5.0 7 5.5 -	7.2 7.3 7.3 7.1 7.3 7.1 7.2 7.1 7.2 - 7.1	1.9 2.0 1.8 2.8 2.7 4.4 1.9 3.0 2.1 - 3.4	18 11 9 6 18 	.9 1.1 1.0 .7 .5 2.6	6.2 6.0 4.8 5.3 6.5 4.7	•1 •1 •2 •2 •1 -	66688711100111	47 42 46 52 49 43 48 47 47 47	87 86 102 117 122 104 108 108 119 -	10 7 7 9 8 9 12 10 -	1 4 52 4 48 10 12 6 6 6 35	56 50 60 66 65 70 - - 49	•1 •0 •0 •0 •0 •1 -1 -1 -1	130 148 163 173 184 157 171 165 - - 187	*10 3 *1 *10 * * * * * * *

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Marietta, Pennsylvania Operated by U.S. Geological Survey STATE

Maryland

MAJOR BASIN

North Atlantic

MINOR BASIN

Susquehanna-Juniata

STATION LOCATION

Susquehanna River at

Conowingo, Maryland

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	13.400 13.700 14.400 13.400 12.300	11.400 14.000 13.700 13.700	10.100 12.600 12.300 11.400	9.000 10.500 12.500 11.500	9.000 8.000 8.000 7.000	250.000 182.000 139.000 111.000	93.800 86.500 76.200 69.600	92.000 81.300 72.900 64.900	23.900 23.100 21.600 20.100	18.000 16.600 15.000 13.700	13.700 12.300 13.100 15.600	17.300 15.000 13.700 13.100
-	7	13.700	10.900	11.000	7.200	97.600	63.300	58.800	19.400	12.800	19.400	12.300
6 7 8 9 10	11.400 10.900 10.400 10.600 10.400	13.100 12.800 13.100 12.600 12.300	10.600 10.600 10.400 10.100 8.860	10.500 9.500 9.100 8.800 12.000	7.800 7.500 7.800 7.800 8.100	101.000 132.000 153.000 162.000 144.000	57.300 51.500 48.700 46.100 51.500	51.500 48.700 46.100 48.700 60.300	20.100 20.100 18.700 18.000 18.000	12.300 12.600 12.600 12.300 11.700	17.300 21.600 18.700 15.000 12.800	10.100 9.610 9.360 9.610 8.860
11 12 13 14 15	9.610 9.360 8.860 8.620 8.380	12.000 12.000 12.000 11.700 11.400	9.110 5.500 3.300 4.000 5.400	10.500 11.000 11.000 11.000	8.800 8.600 8.900 9.100 9.500	122.000 101.000 84.800 76.200 76.200	60.300 68.000 90.200 137.000 148.000	76.200 90.200 83.000 72.900 63.300	18.000 29.700 39.800 38.600 34.000	10.400 10.100 11.200 12.800 12.300	11.700 11.200 10.400 9.360 8.860	8.620 8.620 8.380 8.140 7.670
16 17 18 19 20	8.140 7.900 7.210 7.210 7.670	11.700 11.700 11.200 10.900 10.600	6.600 7.800 8.600 8.200 7.800	12.000 13.500 12.500 13.500 10.000	11.000 12.500 15.000 23.000 42.000	72.900 72.900 74.500 68.000 63.300	160.000 197.000 230.000 206.000 157.000	55.800 54.300 54.300 55.800 51.500	29.900 29.900 31.900 29.900 25.400	12.800 13.100 12.300 11.200 14.000	8.140 8.380 8.620 7.900 6.980	6.980 6.540 6.540 6.540 6.330
21 22 23 24 25	7.440 7.440 7.440 8.620 7.900	9.860 10.100 9.860 9.360 9.610	8.000 7.600 7.200 6.600 7.500	9.600 12.000 11.500 10.500 10.000	66.000 110.000 113.000 113.000	58.800 55.800 57.300 58.800 58.800	126.000 101.000 90.200 84.800 81.300	48.700 46.100 43.500 41.000 39.800	22.300 24.600 29.900 25.400 26.300	14.400 14.700 13.400 13.400 14.700	7.440 6.760 6.540 6.330 7.900	6.330 5.920 6.760 6.760 6.540
26 27 28 29 30 31	8.620 9.610 9.610 9.360 9.110 9.110	9.610 8.860 9.110 9.110 10.100	6.800 7.000 6.600 7.200 7.000 6.900	10.000 9.500 9.000 8.700 8.800 9.000	252.000 376.000 340.000	63.300 68.000 68.000 69.600 79.500 93.800	109.000 192.000 190.000 132.000 105.000	37.400 34.000 30.900 29.000 27.100 25.400	29.900 28.000 25.400 22.300 19.400	14.000 16.000 17.300 20.800 20.100 16.000	14.400 16.000 18.000 18.700 20.800 19.400	5.920 5.000 4.830 4.670 4.360

RADIOACTIVITY DETERMINATIONS

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA RIVER-NORTH BRANCH

STATION LOCATION SUSQUEHANNA RIVER AT

SAYRE, PENNSYLVANIA

DATE			RADIO	DACTIVITY IN	WATER								
SAMPLE TAKEN	DATE OF DETERMI- NATION		ALPHA		T	BETA		RADIOAC	TIVITY IN PLAN	NKTON (dry)	PAI	DIOACTIVITY IN V	VATER
	NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED		DATE OF DETERMI-	GROSS	CTIVITY		GROSS ACTIVIT	
O. DAY YEAR	MONTH DAY	μμc/I	μμε/Ι	μμς/Ι	μμε/Ι	μμc/I	TOTAL	NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	
2 2 4 2					1	P#6/1	μμε/Ι	MO. DAY	μμc/g	μμc/g	μμς/1	μμε/I	TOTA
3 60	10 19	0	1	1			_					P# 6/1	Д Дс/
0 10 60	10 24	0	0	ō	1 0 1	0	0	1 1	í				
17 60	11 2	0	o l	ŏ		0	0			1			
24 60	11 14	0	2	2	0	0	0			1			
31 60	11 23	ō	ō		0	0	0			- 1		ŀ	
7 60	11 25	ő	ő	0	0	0	0			Į			
15 60	11 30	ő	- 1	0	0	14	14		ĺ				
21 60	12 2		1	1	0 (0	o l		1	ì		1	
28 60	12 19	0	1	1	1 0 1	ŏ	ŏ		ļ		1		
5 60		0	0	0	0	ĭ	ĭ					l l	
	12 29	0	0	0	Ö	ô		1 1		1			
12 60	12 29	0	1	i	0	- 1	0		1	- 1		ŀ	
20 60	1 13	1	ī	2	- 1	0	0	1 1	1	i		1	
27 60	1 18	ō	οl		0	0	0	ł		j	į į		
3 61	1 24	ŏ	I .	0	0	0	0	1 1					
9 61			0	0	0	0	οl	1 1	1	1		1	
	1 31	0	0	0	0	οl	- 1					1	
16 61	2 2	0	1	1	ŏ		0		1		1	1	
23 61	2 7	o i	ī	ī		4	4						
30 61	2 16	0	ō		6	1	7	1	1	ł			
6 61	2 28	-	i i	0	0	0	o l		1	ł	1 1	İ	
14 61		0	0	0	0	0	o l	1	1			ł	
	3 2	0	0	0 1	οl	ŏ		1 1	1	j			
20 61	3 8	4	0	4	8		0	1 1		j		1	
6 61	3 27	0	1	1		0	8	1 1	1	1	1 1		
13 61	4 3	i		1	0	0	0		1			ŀ	
27 61	4 17		0	1	0	5	5			ļ		i	
		0	0	0	ا ہ	اه	ő		1	ł		ı	
24 61*	5 8	1	0	1	o l	_]				ŀ	
29 61*	6 13	1	0	ī		0	0						
26 61*	7 11	ō	ŏ		0	0	0					1	
25 61*	8 29	ŏ	,	0	0	0	0			1	1 1		
28 61			0	0	0	4	4	1 1	1	i	1		
		0	0	0	6	2	8	1 1				1	
.8 61 1	.0 9	-		- 1	10		7	1 1		ĺ			
	j	1	1	1	10	2	12	1 1		1			
- 1	1		- 1	1	1		1			ĺ	1		
	j	1	1	1	- 1		ĺ	1 1		i		1	
1	1		1	1	J	ı	j	1 1	- 1	ı		1	
1	1		i i	1		1	J	1 1	- 1			ı	
- 1	- 1	- 1	1	1		1	- 1			- 1		1	
	ľ	1]	ĺ	ĺ	1	1	1 1	ĺ	1			
	1	1	1	ĺ	1	1	1	1 1	ļ			1	
- 1	ļ	1	1	ĺ	ŀ		1		j		1	1	
		1		1	1		ļ			1		1	
	1	1					1		1	1			
	1	ĺ		-	[1	j		1	ı		1	
			540	1	i		Ì		1	- 1		1	
					1		J	1 1	- 1	1	1 1	1	

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA RIVER-NORTH BRANCH

STATION LOCATION SUSQUEHANNA RIVER AT

SAYRE, PENNSYLVANIA

DATE	_ [ALGAE (Vumber	per ml.)				1 1811											,						
OF SAM	- 1		BLUE-	GREEN	GREE	EN .	FLAGEI (Pigm		DIAT	омѕ	SHE	ERT TOM ELLS er ml.)		DOM (Se	INANT e Intro	SPEC	IATO	ND PE	ERCEN entifica	ITAGE	s	LANKTON, EATHED			NVERTEB		PORMS	action action)
MONTH	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER- CENTAGE	SECOND*	PER.	THIRD#	PER- CENTAGE	FOURTH#	PER.	OTHER PER-	OTHER HICROPLANKTON, FUNGI AND SHEATHED PACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ARIMAL FORUS (No. per liter) DOMINANT GENERA	(See Introduction for Identification)
11 7 12 5 1 3 6 3 6 3 24 4 17 5 15 6 19 7 5 7 17 8 22	60 60 60 60 61 61 61 61 61 61 61 61	2200 8700 300 300 400 100 200 700 1400 9800 2700 2900 2500	20 360 50 40	90 20 130 80	80 220 4600 3050 1600 850	20 20	90 200 70 50 660 110 180 190 460	20 70 20	1610 7810 20 20 20 130 980 6020 850 21700 540 870	130 440 290 250 270 110 540 2980 780 400 540 310	220 460 50 90 20 20 180 960 1940 250 330	290 70 250 50 290 90 630 670 620 1140 450 290	82 36 36 36 16 36 51 82 92	60 60 30 10 20 40 40 40 40 40 40	7666423123113766 63122222	20 10 20 10 20 10 20 10 20 10 40	51 93 92 82 92 26 82 16	10 10 10 10 10 10 10 10 10 10 10	92 65 82 64 31 2 31 2 36 31 64 16 32	* 10 10 10 10 10 10 10 * 00 *	10 *20 50 40 70 60 20 50 30 30 30	20 150 40 70	10	1 2 3 4 1 10 7 13 4 30		2 1 1 2 2 2 2	4-4	-9-3 -7- -9-3 -7- -9-3 -99-3 -94-3 1135 1925 1937

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA RIVER-NORTH BRANCH

STATION LOCATION SUSQUEHANNA RIVER AT

SAYRE, PENNSYLVANIA

DATE OF S	SAMP	LE	Т	T =	CTRACTABL	FC											
BEGINNING		END			IRACIABL	1	 					ORM EXTR	ACTABLES				
DAY	HLNOM	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 3 60 11 3 60 12 5 60 1 9 61 2 20 61 4 28 61 6 16 61 7 22 61 8 28 61 9 25 61	112	17 16 16 10 2	3337 2977 3127 3299 2244 2281 1608 2900 2565 4268 4455	340 251 317 283 413 230 432 215 313 196 174	124 63 79 85 133 78 114 69 99 50 47	216 188 238 198 280 152 318 146 214 146 127	92443265612	27 16 17 18 32 20 23 15 23 10 10	43 20 25 27 37 23 43 24 29 24 18	32324585442	32324343231	35 15 16 21 25 14 28 16 21 16 15	21324130210	15 8 11 13 17 11 15 7 11 6 6	4 6 7 11 5 10 5 9	21121101	23 12 15 14 32 15 16 12 20 7 6

STATE

PENNSYLVANIA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA RIVER-NORTH BRANCH

STATION LOCATIONSUSQUEHANNA RIVER AT

SAYRE, PENNSYLVANIA

76

Chicago Chic	DATE OF SAMPLE	TEMP.	DISSOLVED			CHŁORINE	DEMAND			1			1			Ī	
10 24 60 - - 7.66 - - - 10 74 104 5 5 18 .0 104 10 31 60 - - 7.88 - - - - 10 62 80 5 5 17 .2 102 11 760 - - 7.79 - - - 7 52 92 5 5 15 .2 67 11 28 60 - - 7.99 - - - 11 64 96 10 5 24 .0 108 12 20 60 - - 7.55 - - - 11 66 100 10 5 24 .0 108 12 27 60 - - 7.55 - - - - 12 72 <td< th=""><th></th><th>(Dagrees Centigrade)</th><th>OXYGEN</th><th>pH</th><th>ì</th><th></th><th></th><th>NITROGEN</th><th></th><th></th><th></th><th>1</th><th></th><th></th><th></th><th>DISSOLVED</th><th>COLIFORMS</th></td<>		(Dagrees Centigrade)	OXYGEN	pH	ì			NITROGEN				1				DISSOLVED	COLIFORMS
2 6 61 -	10 24 60 10 31 60 11 15 60 11 28 60 12 20 60 12 27 60 12 27 60 13 61 1 23 61 1 23 61 1 23 61 1 24 61 2 6 61 1 5 61 2 7 61 4 10 61 4 24 61 5 8 61 5 6 61 5 6 61 7 11 61 6 61 7 11 61 7 17 61	1 0 1 0 5 1 7 5 2 0 0 0 0 0 5 5 0 0 0 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1		7.8.70.9.9.5.5.824.84.4.5.2.3.5.5.3.5.1.3.5.7.8.8.6					10 67 11 1 8 12 13 12 7 13 16 22 9 4 7 5 16 6 6 6 8 9 10 7 18	62825846682270-88-33423443658965746652985	80 92 96 100 9 	55550005-0-51-0050005000555555555555555	5555550000 - 030 - 0300 - 005005500550020005005005500200050050055002000000	17 17 17 15 24 20 22 24 21 21 21 21 21 21 21 21 21 21 21 21 21	2220102345554-68261-0-10012200001-00	10947 10967	*50 *50 *50 *50 360 *50 900 1000 7700 590

665709 O - 62 - 33

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA RIVER-NORTH BRANCH

STATION LOCATIONSUSQUEHANNA RIVER AT

SAYRE, PENNSYLVANIA

D OF S	ATE SAME		TEMP.	DISSOLVED				CHLORINE	DEMAND					1					
MONTH	DAY	YEAR	(Degrees Centigrade)	OXYGEN	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l		COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml,
8 1 2 8 2 2 9 1	29	61 61 61	23.0		8.6 7.6 7.5 7.7		-	-			14 - 9 -	91 90 65 90	92 98 70 112	5 5 5 0	15 10 70 10	17 - 16		162	450 1100

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Waverly, New York Operated by U.S. Geological Survey STATE

Pennsylvania

MAJOR PASIN

North Atlantic

MINOR BASIN

Susquehanna River-North Branch

STATION LOCATION

Susquehanna River at

Sayre, Pennsylvania

Day	October	November	December	January	February	March	April	May	June	July	August	September
5	2.270 2.270 2.230	4.150 3.940	2.890 3.330	1.600 1.550	1.020	42.200 29.300	19.900 17.800	19.900 16.900	4.350	3.560	4.210	2.530
3 4 5	2.290	4.380 4.520 4.130	3.080 2.820 2.550	1.550 1.500 1.450	1.020 1.060 1.040	23.500 22.300 22.300	16.100 13.900 12.500	15.900 14.100 12.100	4.100 4.400 4.740 4.380	3.160 3.640 3.430 3.360	3.720 5.570 4.710	2.310 2.010 1.820
6 7 8	1.820 1.840 1.800	3.860 3.800 3.670	2.640 2.680 2.710	1.400	1.040	29.600 35.500	11.400	10.600	3.780 3.260	3.060 2.730	3.640 2.910	1.730
9	1.800 1.700	3.640 3.610	2.680 2.360	1.450 1.350 1.300	1.060 1.080 1.080	30.500 24.600 19.800	11.400 10.600 10.100	12.800 13.400 21.300	3.200 8.390 11.400	3.410 3.160 3.590	2.400 2.090 1.860	1.490 1.430 1.880
11 12 13 14 15	1.560 1.520 1.410 1.330 1.270	3.880 4.400 4.400 3.830 3.590	1.800 1.240 1.200 1.500	1.350 1.350 1.350 1.400 1.450	1.100 1.080 1.100 1.160 1.200	16.300 14.100 12.500 11.300 11.400	12.500 15.000 18.700 24.100 24.400	20.200 16.700 14.200 12.600 10.900	13.100 13.000 11.400 11.900 14.600	3.330 2.680 2.340 2.150	1.700 1.640 1.700 1.950 1.790	1.470 1.360 1.300 1.240
.6 .7 .8 .9	1.210 1.200 1.140 1.150 1.350	3.360 3.430 3.540 3.180 3.110	2.100 2.250 2.400 2.300 2.200	1.450 1.400 1.350 1.300 1.250	1.240 1.260 1.400 4.800 12.200	13.300 11.100 8.670 8.090 8.300	28.600 40.500 38.700 32.100 26.300	10.700 11.000 10.000 8.590 7.840	14.000 10.700 8.340 6.790 5.940	1.990 1.950 2.070 2.230 2.550 2.620	1.490 1.320 1.270 1.200 1.140	1.200 1.120 1.630 2.480 2.070
1 2 3 4 5	2.420 2.940 3.180 2.620 2.400	2.890 2.730 2.660 2.730 2.730	2.000 1.750 1.650 1.600 1.550	1.240 1.220 1.200 1.160 1.140	16.000 14.500 15.000 24.000 45.200	8.230 7.810 7.780 8.890 10.400	21.300 18.500 19.400 24.500 64.200	7.210 8.410 8.160 7.500 6.790	5.250 8.980 11.800 11.100 8.890	2.400 2.250 2.110 1.820 2.150	1.070 1.320 1.510 2.030 2.070 1.660	1.560 1.200 1.070 1.030 .988 1.000
6 7 8 9 0	2.590 3.410 4.990 5.110 4.630 4.430	2.710 2.590 2.480 2.440 2.480	1.600 1.650 1.600 1.500 1.500	1.160 1.180 1.140 1.100 1.080 1.060	82.000 76.100 58.400	10.100 11.600 20.100 32.200 34.600 26.700	54.700 35.800 27.400 25.200 24.600	6.020 5.960 5.690 5.370 5.080 4.660	7.040 6.110 5.370 4.520 3.940	2.480 2.960 3.030 2.710 2.570 5.370	4.390 6.850 7.010 5.900 4.430 3.330	1.010 .923 .871 .806 .768

STATE

ALABAMA

MAJOR BASIN

TENNESSEE RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

TENN. RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION TENNESSEE RIVER AT

BRIDGEPORT, ALABAMA

DATE	T		RADIO	DACTIVITY IN V	VATER			RADIOA	CTIVITY IN PLAN	IKTON (dry)	RAD	IOACTIVITY IN W	ATER
SAMPLE	DATE OF	·	ALPHA			BETA		DATE OF DETERMI- NATION	GROSS A	CTIVITY		GROSS ACTIVIT	Y
TAKEN	DATE OF DETERMI- NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	NATION	ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
MO. DAY YEAR	MONTH DAY	μμ _C /I	μμς/Ι	μμε/Ι	μμε/Ι	μμc/l	μμc/l	MO. DAY	μμc/g	μμc/g	μμε/Ι	μμε/Ι	##c/l
MO. DAY YEAR 10 26 60	11 10 12 1 12 29 1 12 1 24 2 17 2 13 3 3 3 20 3 30 4 14 4 28 5 31 6 14 6 20 7 14 8 10 9 7 9 22 9 27 10 2 10 11	000000000000000000000000000000000000000	2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 1 0 0 1 0 0 2 1 0 0 0 0 0 0 0 0 0	00000035010002004080003	17 21 69 69 65 70 133 90 187 47 26 31 80 55 55 58 46 0 46 31 38 58 25	17 21 69 65 70 136 95 187 48 26 31 130 55 58 50 54 31 38 58 28	MU. DAT	PPCI	Fred			

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

ALABAMA

MAJOR BASIN

TENNESSEE RIVER

MINOR BASIN

TENN. RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION TENNESSEE RIVER AT

BRIDGEPORT, ALABAMA

DATE				ALGAE (Number	per ml.)				IN	ERT														
F SAMPLE		BLUE-	GREEN	GREE	EN	FLAGE!	LLATES	DIAT	OMS	SHE	ERT TOM ELLS		DOMI	NANT S	RECU	ATOM	0 000	CENT	AGES	10 K	-	MICROII	NVERTER	RATES	- 5
DAY	TOTAL	соссоів	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE		PENNATE	FIRST*	PER.	Imroau	CENTAGE	for Cod	e Iden	tificatio	CENTAGE (4.2	CENTAGE OTHER MICROFLANTON, FUNGI AND SHEATHED BACTERIA	PROTOZOA (No. per ml.)	ROTIFIERS (No. per lifer)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter) OTHER AHHAL FORMS (No. per liter)	See Introduction
26 60 9 60 21 60 21 60 21 61 15 61 15 61 17 61 27 61 17 61 17 61 17 61 17 61 18 61 17 61 17 61 18 61 17 61 18 61 19 61 19 61 19 61 10 61 11 61 1	100 100 300 400 600 600 1700 200 100 200 100 200 100 500 100			20 40 20 60 250 20 20		20 20 40 40 50 20 40 40 40 40 40 40 40 40 40 40 40 40 40	20 20 20	20 90 160 310 470 560 1610 90 90 160 20 80 150 100 40 40 40	50 50 90 90 20 70 90 20 70 40 40 40 100 40 20	20 20 50 50 160 90 200 110 50 20 40 20	20 50 70 130 20 50 20 110 160 70 20 80 20 20 20 20 20 20 20 20 20 20 20 20 20	82775582 55762822 5555555555555555555555555555555555	100000000000000000000000000000000000000	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000000000000000000000000000000000000	10 11 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	000000000000000000000000000000000000000	66240672622777222277725	00000000000000000000000000000000000000	150 90 20 20 20 60 390	10 10 10 10 40 30 30	1 15 6222 2 3 1333 7 47 134	2 2 2 1 1 1		-9

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

ALABAMA

MAJOR BASIN

TENNESSEE RIVER

MINOR BASIN

TENN. RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION TENNESSEE RIVER AT

BRIDGEPORT, ALABAMA

DATE OF SA	AMP	LE		F)	TRACTABL	.ES					CHLOROF	ORM EXTR	ACTABLES				
BEGINNING		END	-		i i	<u> </u>					NEUTRALS						
MONTH DAY YEAR	MENOM	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
12 8 60 2 13 61 3 16 61 5 17 61 6 8 61 7 10 61 7 20 61 8 22 61 9 11 61 9 28 61		2 2 2 3 5 6 6 7 7 7 8 8 8 9 9 0	5010 5070 5350 5255 5200 5300 5180 5220 5170 5210	154 164 145 147 168 149 169 142 140 121 115 121	31 55 65 72 61 65 44 37 34	123 109 84 97 103 77 108 81 77 78 87	133127233121	6 14 19 11 17 19 15 13 10 9 7	16 17 15 17 20 18 20 18 17 16 10	1 1 4 2 3 2 2 4 1 3 2 2 2 2	1 2 2 2 2 2 1 1 1 1	13 13 12 15 13 14 10 12 7 9	1101061100	355577777544	155479666433	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 10 13 11 12 10 11 12 7 9 6

STATE

ALABAMA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN TENNESSEE RIVER

MINOR BASIN

TENN. RIVER-MAIN STEM MINOR TRIB.

STATION LOCATIONTENNESSEE RIVER AT

BRIDGEPORT, ALABAMA

DATE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	DEMAND						1	I			1
MONTH DAY YEAR	(Degrees Centigrade)	OXYGEN mg/l	рН	8.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 mL
11	14.2 13.0 17.0 4.7 5.5 4.0 7.6 11.3 12.7 16.9 121.3 224.7 24.3 25.5 25.5 26.5	8.1 8.7 6.85 10.4 11.0 11.8 11.5 10.9 10.8 8.8 9.3 4 7.7 6.5 5.6 5.7 5.6 2 5.4 2 5.0 6.0	7.4.4.4.5.4.5.4.4.4.3.5.2.6.4.4.4.3.5.2.6.4.4.4.3.5.2.6.4.4.4.3.5.2.6.4.4.4.3.5.2.6.4.4.4.3.5.2.6.4.4.4.3.5.2.6.4.4.3.5.2.6.4.4.4.3.5.4.3.5.2.6.4.4.4.4.3.5.2.6.4.4.4.4.3.5.2.6.4.4.4.4.3.5.2.6.4.4.4.4.3.5.2.6.4.4.4.4.4.3.5.2.6.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	2.1.95.6297.52.857.608987.357.857.857.857.857.857.857.857.88	13 16 22 13 16 16 12 14 18 12 15 15 13 9 10 18 14 15 22 24 23	1.8 1.3 1.7 1.4 1.9 1.5 1.6 1.9 1.9 1.7 1.5 2.0 1.9 1.7 1.6 1.9 1.7 1.6 1.9 1.9 1.7 1.6 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	3.4 3.4 3.6 3.8 4.1 2.4 4.1 2.4 4.5 3.9 4.8 3.9 4.8 3.1 3.1 7	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	16 18 17 18 12 15 19 17 12 5 5 7 7 4 4 7 7 8 8 8 15 16 18 17	4686458526262166606900566674 555554465555555555555555555555555	64 67 62 54 55 55 66 66 66 66 67 76 86 77 66 77 77	25 20 20 20 30 30 30 20 20 15 15 15 20 15 15 20 15 15 5 20 15 15 5 5 5 6 15 15 5 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	8 15 6 13 28 23 10 8 11 34 32 24 25 17 15 11 14 6 9 8 8 7	14 25 11 27 27 16 17 26 24 14 10 12 13 19 20 16 17 14 10 12 15 18 16		104 121 107 128 122 80 104 98 109 99 98 98 79 78 95 91 106 138 113 134 140	330 1000 1500 680 330 18000 23000 670 3000 500 500 1700 3200 4600 2800

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Hales Bar near Chattanooga, Tennessee Operated by U.S. Geological Survey

STATE

Alabama

MAJOR BASIN

Tennessee River

MINOR BASIN

Tennessee River-Main Stem & Minor Trib.

STATION LOCATION

Tennessee River at

Bridgeport, Alabama

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	29.400	39.200	46.600	45.600	25.100	89.200	29.900	31.400	28.200	33.700	36.400	32.700
2	21.500	37.900	41.500	44.800	20.900	79.000	25.400	33.300	29.600	23.100	37.200	41.400
3	25.700	36.800	36.600	40.700	28.400	74.500	28.800	34.100	18.700	23.900	39.000	41.600
4	31.500	37.400	21.300	39.400	24.900	63.900	18.500	30.400	10.200	26.200	39.000	39.100
5	31.700	34.300	25.500	33.500	18.600	56.900	14.700	28.400	23.900	30.100	41.700	39.500
6 7 8 9	31.700 26.100 27.000 22.200 26.300	30.800 36.300 41.100 37.000 36.800	34.900 29.000 27.300 26.400 23.800	29.600 28.000 23.100 27.300 30.400	25.600 26.600 35.500 30.200 31.300	55.000 72.600 135.000 180.000 172.000	19.700 16.200 25.000 20.300 28.500	25.500 21.300 24.200 31.600 35.200	26.100 33.900 37.900 31.400 17.900	35.000 32.000 37.000 26.800 30.300	36.200 36.000 37.500 39.500 36.000	37.500 39.300 40.600 42.600 35.300
11	34.900	34.000	21.700	32.300	28.000	147.000	27.700	30.800	12.500	33.200	34.500	41.700
12	34.900	30.500	37.200	29.800	18.600	112.000	27.300	34.300	22.300	36.600	42.000	39.000
13	35.500	24.900	37.600	30.300	20.900	96.800	32.300	26.400	33.800	38.300	40.400	38.500
14	33.600	31.300	35.600	24.100	17.600	95.300	33.100	20.000	34.400	39.500	37.400	37.200
15	29.700	33.500	36.600	16.500	14.000	85.200	29.600	24.200	32.600	40.400	34.000	34.900
16	30.500	29.500	34.800	20.700	11.600	63.500	22.400	21.200	37.200	36.500	37.500	34.900
17	38.100	35.500	29.600	33.100	14.500	53.300	39.000	16.500	39.600	37.600	38.000	33.600
18	39.200	41.400	29.400	30.400	12.400	53.800	39.100	20.100	37.400	35.800	38.000	30.400
19	38.900	34.700	25.200	29.300	20.900	55.600	38.300	21.500	26.400	33.400	42.300	33.600
20	39.100	37.000	31.000	31.200	32.300	48.800	34.900	24.600	21.600	30.900	37.200	33.800
21	41.400	35.700	41.400	36.300	48.000	44.000	28.100	28.100	35.200	33.900	38.200	31.000
22	38.800	32.300	37.400	30.600	69.800	39.000	20.000	20.700	41.600	37.800	35.200	35.200
23	26.600	35.000	29.100	27.200	146.000	36.700	20.000	21.100	39.900	32.800	34.900	34.400
24	30.600	32.200	31.100	37.400	169.000	37.800	22.400	28.800	35.000	35.500	38.000	25.800
25	33.900	32.800	31.100	40.300	169.000	36.800	16.800	25.900	39.100	30.700	41.000	28.700
26 27 28 29 30 31	38.600 42.700 40.800 35.600 34.900 36.900	30.500 28.300 32.600 36.000 42.800	29.900 30.400 36.800 33.700 36.700 45.400	33.400 27.000 30.400 27.000 23.500 24.000	145.000 107.000 96.600	29.800 31.200 36.700 25.100 21.400 32.700	26.200 34.700 31.800 27.000 26.200	24.300 29.300 28.800 28.200 27.200 27.700	31.400 31.800 32.600 37.700 36.500	35.100 36.700 35.700 40.700 38.700 36.300	37.000 34.000 38.000 38.500 40.500	37.400 39.000 36.500 40.400 29.600

STATE

TENNESSEE

RADIOACTIVITY DETERMINATIONS

MAJOR BASIN

TENNESSEE RIVER

MINOR BASIN

TENN. RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION TENNESSEE RIVER AT

CHATTANOOGA, TENNESSEE

DATE	Ļ			RADIO	ACTIVITY IN	WATER			BARTE	Contract to the contract of th				
SAMPLE	i	DATE OF DETERMI-		ALPHA		T	DETA		DATE OF	CTIVITY IN PLA		RAI	HOACTIVITY IN W	
TAKEN		NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DATE OF DETERMI- NATION		ACTIVITY		GROSS ACTIVITY	Y
O. DAY	YEAR	MONTH DAY	μμc/I	μμς/1	μμc/l	μμc/I	μμς/Ι	##c/1		ALPHA	BETA	SUSPENDED	DISSOLVED	TOTAL
									MO. DAY	µµс/g	μμε/g	μμε/1	μμc/l	<i>μμ</i> c/l
5 6		10 17	-	-		0	15	15						
12 6		10 21	0	0	0	l ŏ l	26	26				l i		
19 6	0	11 1		-	~	0	18		ļ					
26 6	0	11 14	انسا		-		35	. 18						
2 6	0	11 23			-	0		35				1		
. 96	0	11 25	0	* 1	1	0	91	91	1 1			į į		
16 6		12 16			_	1 - 1	68	68				ł		
23 6		12 2	<u>.</u>	_		0	35	35	1 1					
		12 20	_	i	-	0	16	16						
	- 1			7	4	0	9	9				}		
14 6		12 30	0	1	1	0	56	56			İ	1		
28 6		1 17	~	-	-	0	47	47						
. 11 6	- 1	1 31	0	2	2	1 1	89	90	1 1		İ		l	
. 25 6	_	28			~	4	160	164			ļ		i	
8 6	1	2 27	-	-	2_	l s l	77	85			ŀ			
20 6	1	3 14	<u> </u>	-	4	10	33	43			l			
8 6	1	3 27	4-	-	à.	0	78					1		
22 6	1	4 10	A.	4	4			78			1			
5 6		4 17	4	<u> </u>	4		26	26				1		
19 6		5 5	اند	_	4	2	35	37			1	1 1	i	
	- 1	5 22	<u>.</u>	I	7	0	33	33			i	i		
	1		Ž.		<u> </u>	1	104	105	1 1				1	
17 6		6 5		*	1	2	79	81	1 1		- 1	i		
29 6		6 30	<u>+</u>	-	-	0	53	53			1			
14 6	1	7 7	1	0	1	0	63	63		i	Í	1 1		
27 6	2	8 1	-	•••	_	ا ہ ا	36	36			ı			
12 6	1	8 4	ó l	6	Ó	١٥١	80				· ·		į.	
26 6		8 18	fea		_	ŏ		80				į į		
9 6		9 8	أشد	i	1	7 1	37	37			ŀ		1	
	- 1	9 25		<u>i.</u>	1	4	53	57		l	1	1 1		
	. 1		j.	v I	3	0	20	20	l i	ŀ			İ	
5 6		10 5	6	1	i	0	4	4			1			
20 6	1	10 12	in.	**	"	3	27	30						
	İ	l				l f	1					1 1		
		1										1 1		
		i				ļ					1		ł	
		ſ		ŀ	l	1			j j	1				
				j				1			1] }		
		ļ								1	1		1	
	- 1	1	-								1	1		
					0		j	1		1	İ	1		
					ŀ		1			1	l		[
	- 1					ļ	}			!	ļ			
			i		1					İ	1	1	[
	- 1				ı	I	- 1			I		4	1	

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

TENNESSEE

MAJOR BASIN

TENNESSEE RIVER

MINOR BASIN

TENN. RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION TENNESSEE RIVER AT

CHATTANOOGA, TENNESSEE

DATE	I			ALGAE (2	Vumber	per ml.)				INI	ERT	Т				IATO	ME				Ι.	T	MICROIN	VERTERR	ATES	-	
OF SAMPLE		BLUE-0	GREEN	GREE	:N	FLAGEL (Pigm	LATES enied)	DIATO	омѕ		ERT TOM ELLS er ml.)		DOM! (See	NANT Intro	SPEC duction	IES A	ND PE	RCEN' ntificat	TAGES	5	LAKKTON KATHED 2[.)	(3	T T		$\overline{}$	TORMS	ENERA inction cation)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER.	SECOND#	PER- CENTAGE	THIRD#	PER-	FOURTH#	PER-	OTHER PER- CENTAGE	OTHER MICROPLANKTON, FUNGI AND SHEATHED BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL FORM (No. per liter)	DOMINANT GENERA (See Introduction for Identification)
10 5 60 10 19 60 11 16 60 12 7 60 1 1 6 61 2 0 61 3 61 4 17 61 5 161 5 161 6 19 61 7 7 7 61 8 2 1 61 8 2 5 61 8 2 5 61 8 2 6 61	300 300 200 700 1200 3900 2100 600 200	20	20	20 20 20 20 20 110 20 100 40		70 20 20 20 340 20 20 150 20 60 60 40 40	20 70 50 50 50 50 50 40 40	260 180 140 160 490 1010 200 90 900 500 110 250 250 230 370 230 350	130 20 50 1100 70 160 380 20 50 120 120 110 80 80	90 20 160 50 110 430 50 20 20 250 90 170 80 80 60	20 50 20 290 50 70 250 180 70 50 80 120 40 100 20 40	8565622222227 555555555555555555555555555	34040000000000000000000000000000000000	58555557785 28866887288 8555554988	20 20 10 20 10 10 10 10 20 20 20 20 20 20 10	16 57 82 62 56 57 82 92 62 57 57 92 62 57 57	10 10 10 10 10 10 10 10 10 10 10 10 10 1	57 58 58 58 59 59 59 59 79 79 88 80 21 80 47 75	10 10 10 10 10 10 10 * * * * * * * * * 10	50 30 40 30 60 20 560 40 30 10 20 10 10 20 40 20 40 20 40 20 40 40 40 40 40 40 40 40 40 40 40 40 40	70 40 20 20	10 10 10	2 3 1 8 2 2 5 2 1 8 1 0 4 7 3 2 1 2 0 4 3 3 1 3 3	3 2	62 .	0	

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

TENNESSEE

MAJOR BASIN

TENNESSEE RIVER

MINOR BASIN

TENN. RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION TENNESSEE RIVER AT

CHATTANOOGA, TENNESSEE

									1							21
DATE OF SAM	IPLE		E	XTRACTABL	ES	T						•				
BEGINNING	END			1	I			γ		CHLOROF	ORM EXTR	ACTABLES				
MONTH DAY YEAR	МОМТН	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	NEUTRALS AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
12 14 60 1 1 11 61 3 15 61 4 12 61 5 10 61 6 7 61 6 7 61 7 12 61 8 9 61	19 19 16 21 18 32 19 19 19 19 19 19 19 19 19 19 19 19 19	4970 4670 4590 3030 4600 4110 3860 3450 11420 3450 3450 11630	135 143 125 192 140 132 145 166 179 101 143	25 33 21 50 46 55 49 77 60 74 61 28 51	110 110 104 142 94 77 75 107 85 92 118 73 92	1 1 0 2 2	5 8 5 13 9 - 19 - 14	10 10 9 16 17 - 18 - - 13	1 1 1 1 2 3 2	11112	7 8 7 12 12 12 1 10	10000211	332665	2213311161115	110101	384999

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

TENNESSEE

MAJOR BASIN

TENNESSEE RIVER

MINOR BASIN

TENN. RIVER-MAIN STEM

MINOR TRIB.

STATION LOCATIONTENNESSEE RIVER AT

CHATTANOOGA, TENNESSEE

	DA						1	CHLORINE	DEMAND					1			1		
*.	OF SA	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/i	Не	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/i	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
:	10 1		22.4	6.7	7.4	1.5	3	1.9	3 • 7 -	•0	15 -	- 48 -	72	- 7 -	- 10 -	11	-	116	9 - 12
	10 1. 10 1	B 60	-	6.6	7•4 -	•9	9 -	1.5	3.6	•1	9 -	50 -	76 -	5	15	13	-	108	45
	10 1 10 2	6 60	19.0	6.6	7 • 4 7 • 4	1.6	9 -	1.6	3.4	•0	9 14	49 52	78 76	6 5	8 10	15 -	-	105	-
1	11 2	2 60	16.8	7.6	7.4	2.8	10	1•6 -	3•1	•1	10	52 -	78 -	6	10	14	-	138	11
1	1 1 1 2	60	-	-	7•4	~	-	<u>-</u>	-	-	13	51 -	80	6	7	-	- -	-	29 - 26
1	1 22 1 22	60		8.7	7.4	1.6	9 -	1.7	3 • 1	•0	9	51 -	80	5 -	5 -	12	-	111	48
1	1 29	60	_	8.8	7•4 - 7•4	1.3	- 17	1.6	- 3•5	-	16 - 18	52 - 46	84 - 76	7 - 8	10	-	-	- 1	72
1	2 13	60	-	- 	-	-	-	-	-	-	-	-	, o	- -	10	27 - -	-	142	310 140
1	2 14 2 27 2 28	60	7•8 - 6•7	10.2	7•4	1.3	19	1.1	3 • 8	•0	19 -	51 -	80 -	13	10	23 -	-	135 -	24
	1 5	61	~	-	7.4	1.6	13	1.3	4 • 1 - -	•0	14	50	76 -	7	5	19 -	-	126	500
	1 11	61	5•6	11.5	7.4	3.0	17	1.5	3 • 4	•0	12	54 -	80	9	12	21	-	136	200
	1 25 2 7 2 8	61	4.5	12.2	7.4	1.2	14	1.8	3 • 6	•0	12	48 -	80	10	10	19	-	94	40 - 12
	2 8 2 21 3 7	61	4.5 10.1	11.4	7.3	2.2 3.3	18 27	2.8	6.1	•0	12 7	64 51	88 68	15 20	118 155	34 30	-	152 130	- 36
	3 8 3 21	61	12.9	8.9	7.1	3.0	19	2.2	5 • 2	•1	6	42	60	9	120	25	-	105	120
	3 22 4 4 4 5	61	12.3	9.8	7.3	1.5	13	1.4	4•0	•0	4	52	76 -	8 -	55 	37	-	106	180 - 56
	4 18 4 19	61	13.4	9.4	7.4	2.4	15 - 16	2.0	3.4	•0	5 - 6	60 - 47	82 - 64	6	18	20	-	124	12
_												41	04	6	23	17	-	109	-

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

TENNESSEE

MAJOR BASIN

TENNESSEE RIVER

MINOR BASIN

TENN. RIVER-MAIN STEM MINOR TRIB.

STATION LOCATIONTENNESSEE RIVER AT

CHATTANOOGA, TENNESSEE

DATE OF SAMPLE	TEMP.					CHLORINE	DEMAND			1	1	1			ļ.		<u> </u>
DAY	(Degrees Centigrade)	DISSOLVED OXYGEN mg/I	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS
5 2 61 3 61 5 16 61 5 17 61 5 31 61 6 13 61 6 14 61 7 125 61 7 226 61 8 9 61 8 23 61 8 23 61 8 27 61 8 9 62 9 60 61 61	16.2 19.0 20.2 23.0 22.4 23.5 25.2 25.2	8.8.7.3 8.1.06.65.6.4.2	7.5 7.5 7.5 7.4 7.3 7.3 7.4 7.4	1.6 -1.8 2.0 -1.4 2.0 1.1 -1.2 -8 -1.9 -9	19 - 21 13 - 12 20 14 - 22 - 12 - 23 - 22 21 -	1 • 2 · 4 · 1 • 6 · 4 · 1 • 6 · 4 · 1 • 5 · 1 • 1 · 1	3.1 3.9 3.6 3.3 3.2 3.2 2.6 3.4 3.0	10100100010101101001	2 2 3 4 4 5 7 12 17 16	10 - 88 - 7 - 5 - 1 - 6 - 1 - 8 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	64 70 68 66 58 68 76 84 78	6-83-407-5-4-13-33-	- 16 - 35 27 - 45 32 20 - 30 - 28 - 26 - 18 12	14 - 15 - 17 11 21 - 12 - 16 19 -		109 -108 102 -127 93 86 -95 -106 -136 134 -136	150 - 36 - 25 - 900 - 5800 - 400 - 4400

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Chattanooga, Tennessee Operated by U.S. Geological Survey STATE

Tennessee

MAJOR BASIN

Tennessee River

MINOR BASIN

Tennessee River-Main Stem & Minor Trib.

STATION LOCATION

Tennessee River at

Chattanooga, Tennessee

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	27.800	40.000	44.400	36.300	23.800	79.700	21.300	33.000	28.200	32.100	35.800	31.200
2	20.600	34.200	38.900	38.300	20.300	72.200	21.300	33.200	31.800	21.000	37.500	39.000
3	37.100	37.000	33.500	33.400	28.100	64.600	26.000	35.500	20.400	24.900	39.500	40.100
4	31.900	34.700	15.900	37.200	23.800	57.000	16.900	30.600	10.300	26.900	37.500	38.900
5	30.500	32.800	23.700	27.900	17.800	52.200	13.100	28.400	23.600	30.700	39.100	39.600
6 7 8 9	32.100 24.100 27.000 19.500 24.800	29.500 35.600 40.600 34.400 35.000	33.900 25.400 24.000 25.500 21.900	25.400 24.700 20.100 25.800 28.400	25.400 24.400 34.700 24.900 29.400	54.300 68.800 136.000 174.000 166.000	17.600 12.500 23.100 17.600 25.300	25.100 20.900 25.100 32.700 36.000	26.800 32.700 37.700 31.700 19.000	35.900 30.800 36.000 25.400 29.900	33.300 36.100 36.600 40.000 34.800	36.300 38.400 39.600 39.300 32.700
11	34.200	33.600	19.800	29.200	25.900	130.000	24.600	30.400	12.600	32.700	33.400	38.500
12	33.700	30.000	34.700	28.100	18.200	103.000	22.100	35.600	21.500	37.400	39.700	38.400
13	35.300	22.800	33.400	27.900	20.000	91.500	25.800	28.000	33.500	38.600	35.800	38.300
14	33.100	30.400	32.300	20.500	17.000	91.700	27.500	21.500	34.200	40.300	37.200	36.300
15	28.200	33.300	32.800	16.000	14.800	80.100	24.300	24.300	32.000	39.500	33.600	35.900
16	29.300	29.200	31.400	18.200	11.700	58.800	16.200	21.700	35.600	33.300	38.000	30.900
17	38.400	35.300	26.700	34.000	15.000	49.400	35.600	19.200	37.800	38.400	38.100	30.600
18	38.500	40.500	26.400	28.100	12.000	51.400	37.200	17.500	34.900	35.600	37.700	28.300
19	38.100	30.200	24.700	28.000	18.200	51.800	36.800	22.500	24.200	33.400	40.400	33.700
20	35.500	37.000	31.500	29.700	29.100	40.900	34.700	24.300	18.700	30.600	33.000	34.400
21	39.500	33.100	38.100	34.900	41.200	39.300	27.100	28.500	28.900	32.900	38.100	31.300
22	37.700	32.000	31.400	28.100	53.900	32.200	18.700	20.300	37.400	37.300	33.300	34.800
23	24.700	32.000	24.900	25.200	141.000	31.500	18.100	19.700	36.700	31.200	36.100	31.700
24	30.000	27.400	28.000	35.400	160.000	33.800	21.000	28.700	32.800	35.200	38.000	21.300
25	34.000	31.200	28.600	38.600	153.000	33.500	20.700	25.700	38.600	30.100	41.000	29.000
26 27 28 29 30 31	37.200 43.400 39.800 34.100 34.400 37.400	27.100 25.900 31.400 33.700 40.600	26.900 27.300 33.600 30.700 31.800 40.800	30.400 24.800 29.000 23.000 23.200 23.600	126.000 95.500 89.100	26.000 31.000 32.500 21.500 20.300 29.900	24.900 34.200 32.100 27.500 26.700	23.600 28.500 28.000 28.100 27.000 28.600	29.600 30.500 32.200 36.800 34.800	34.200 37.300 35.100 40.600 35.100 37.100	36.800 34.000 38.100 38.400 40.300	38.500 39.600 37.400 41.500 28.000

ORGANIC CHEMICALS RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

MISSISSIPPI

MAJOR BASIN

SOUTHEAST

MINOR BASIN

UPPER TOMBIGBEE RIVER

STATION LOCATION TOMBIGBEE RIVER BELOW

COLUMBUS, MISSISSIPPI

	DATE	OF S	AMPL	E	T	F	XTRACTABL	T.C.											
	GINN			ND	1		ACTABL	-63	 		,		CHLORO	FORM EXT	RACTABLES	5			
			7	I	GALLONS								NEUTRAL	3		T		T	T
MONTH	DAY	YEAR	MONTH	DAY	FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
9	1	61	9	18	5414	161	45	116	1	7	22	3	2	15	2	-	7 2	1	5
					ı										,				
						ļ													
			,																

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Computed Data for Columbus, Mississippi Operated by U.S. Geological Survey STATE

Mississippi

MAJOR BASIN

Southeast

MINOR BASIN

Upper Tombigbee River

STATION LOCATION

Tombigbee River below

Columbus, Mississippi

Day	October	November	December	January	February	March	Ammi 7		Tours	77	A	Contombon
		1.076///061	December	oanuary	reordary	March	April	May	June	July	August	September
1 2 3 4 5	1.660 1.440 1.270 1.110 1.010	4.180 3.980 3.440 3.170 2.760	2.950 2.710 2.510 2.330 2.210	10.600 13.200 13.300 13.600 13.200	2.870 2.850 3.210 4.380 4.260	34.400 28.500 23.400 19.000 14.800	56.600 62.100 56.700 51.900 44.300	5.260 5.620 5.790 4.920 4.090	1.860 1.750 1.620 1.500 1.440	1.430 1.360 1.340 1.370 1.300	1.070 1.040 •975 •881 •875	1.300 1.350 1.460 1.710 2.010
6 7 8 9	1.190 1.760 2.490 3.540 4.190	2.470 2.240 1.920 1.700 1.960	2.130 2.080 2.040 2.040 2.020	11.000 9.650 7.960 5.890 4.670	3.880 3.580 5.920 9.000 8.200	11.700 11.700 22.100 28.200 24.400	35.400 28.800 22.600 20.800 19.000	3.680 4.100 5.860 6.420 8.080	1.440 2.330 2.650 2.950 2.690	1.210 2.240 3.180 3.410 2.560	.844 .839 .859 1.970 1.860	1.790 1.670 1.840 1.690 1.530
11 12 13 14 15	3.220 2.630 2.300 1.990 1.670	4.650 4.280 3.770 3.290 2.840	2.060 3.000 3.740 3.180 2.870	4.000 3.480 3.140 2.990 3.140	6.430 5.400 4.870 4.630 4.450	21.900 20.800 21.500 26.100 25.300	16.000 17.000 20.600 19.400 19.700	6.300 5.530 4.880 4.080 3.730	3.030 2.760 2.630 2.450 2.250	1.830 4.750 7.850 8.140 7.210	1.370 1.050 .879 .779	1.360 1.210 1.120 1.060 1.070
16 17 18 19 20	1.390 1.370 1.450 1.360 1.220	2.530 2.470 2.940 2.670 2.540	2.640 2.610 2.440 6.420 2.220	3.690 3.800 3.490 9.300 5.510	4.120 3.840 5.130 12.900 24.300	24.100 21.400 22.300 24.900 22.000	18.700 15.400 12.400 10.400 8.390	6.970 8.430 6.500 4.630 3.500	2.010 1.920 1.880 1.760 2.280	8.140 6.400 4.940 3.780 2.660	2.340 6.910 9.330 9.080 5.520	1.220 1.090 .995 .929 .877
21 22 23 24 25	1.710 2.050 2.160 1.770 1.570	2.350 2.210 2.780 5.470 5.120	2.880 4.850 4.150 3.630 3.140	6.870 5.580 4.420 3.860 3.520	44.500 62.800 94.100 101.000 82.800	22.900 23.100 21.900 20.800 18.300	7.120 6.320 5.640 5.040 4.550	2.940 2.640 2.420 2.630 2.640	7.490 7.880 5.250 3.630 2.840	2.160 1.980 1.890 1.750 2.370	2.990 2.140 1.730 1.490 2.480	.840 .799 .787 .767 .742
26 27 28 29 30 31	1.440 1.300 1.170 1.090 1.060 1.660	4.330 3.760 3.150 2.820 2.850	2.900 2.780 2.620 2.510 3.720 8.030	3.670 4.350 4.230 3.660 3.260 3.000	65.100 52.600 43.500	16.300 14.300 18.100 27.600 29.100 39.300	4.380 6.560 9.780 8.560 6.710	2.510 2.450 2.640 2.630 2.290 2.040	2.630 2.230 1.960 1.770 1.650	2.770 2.500 1.990 1.800 1.490 1.330	2.730 2.940 2.290 1.800 1.570 1.400	.724 .696 .681 .662 .659

Computed as sum of Tombigbee River at Columbus, Mississippi plus 3 times the sum of Luxapalila Creek at Steens, Mississippi.

STATE

CALIFORNIA

MAJOR BASIN

GREAT BASIN

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

NORTHWESTERN LAHONTAN

STATION LOCATION TRUCKEE RIVER, CAL-NEV BORDER AT

FARAD, CALIFORNIA

	ATE					RAD	OACTIVITY IN V	WATER				DAD'S	CTIVITY IN THE					
SAA			D	TERMI- ATION		ALPHA		T	BETA			RADIOA	CTIVITY IN PL		4	RAD	DOACTIVITY IN W	/ATER
_	KEN				SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED			DATE OF DETERMI- NATION		ACTIVITY	_		GROSS ACTIVIT	Υ
10. DA	AY	YEAR	MONT	H DAY	μμc/l	##c/I	μμε/!	μμς/Ι		TOTAL			ALPHA	BETA	4	SUSPENDED	DISSOLVED	TOTAL
							,,,,,,		μμc/I	μμc/l		MO. DAY	μμc/g	µμс/g		μμc/ 1	μμc/l	μμε/
9 29	9 (61	10	13	0	0	0	0	0	0					1		=	
									1	1								
															-			
												1						
								1		ĺ		!			1			
						,					ł				İ			
		ĺ		i								}						
		ĺ					i								İ			
									×	ľ								
									j	1								
		- 1				İ					l							
										İ	i							
								ĺ										
										ŀ					}			
		- 1					j			ļ		-						
														. 1				
		- 1					ĺ							•				
									İ	1	1			!				
				1							ł							
				İ														
				ŀ														
							1					İ						
				İ			J					l						
				Į.							- 1	ſ	i		I			

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

CALIFORNIA

MAJOR BASIN

GREAT BASIN

MINOR BASIN

NORTHWESTERN LAHONTAN

STATION LOCATION TRUCKEE RIVER, CAL-NEV BORDER AT

FARAD, CALIFORNIA

D	ATE	Ξ				ALGAE (Number					INI	ERT TOM ELLS	Ī				IATO					<u>.</u>	L	MICROI	NVERTEB	RATES		
	AM	PLE		BLUE-	GREEN	GRE	EN	FLAGE! (Pigm	LLATES ented)	TAIG	oms	SHE (No. p	LLS er ml.)		DOM (Se	INANT e Intro	C SPEC	IES A	ND PE	RCEN ntifica	TAGES tion*)	s	KATHED		(et)	(a)	, fe	FORMS	uction
	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST#	PER. CENTAGE	SECOND*	PER.	THIRD*	PER.	FOURTH*	PER. CENTAGE	OTHER PER- CENTAGE	OTHER MICROPLANKTON, FUNGI AND SHEATHED PACTERIA	PROTOZOA	(No. per ml.) ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ANIMAL (No. per liter	DOMINANT GENERA (See Introduction)
2	29	61	400	20						40	310	40	190	64	10	58	10	16	10	71	10	70			2				
										:											 								
				·																									
												i																	
																				[]		-							
]]]]		i ! ! !							
																 		į ! !		1		į							
					-									İ		j			ĺ	į									

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Farad, California Operated by U.S. Geological Survey

STATE

California

MAJOR BASIN

Great Basin

MINOR BASIN

Northwestern Lahontan

STATION LOCATION

Truckee Riv., Calif.-Nev. Border at

Farad, California

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	.404 .404 .415 .423 .419	.224 .224 .224 .257 .237	.280 .331 .286 .268	.223 .204 .211 .216 .209	.218 .196 .216 .194 .183	.245 .207 .209 .200 .196	. 348 . 396 . 559 . 648 . 536	. 574 . 495 . 490 . 504 . 465	.465 .773 .736 .613 .569	. 469 . 465 . 482 . 469 . 452	.452 .469 .469 .452 .427	.146 .212 .237 .232 .249
6 7 8 9 10	.427 .423 .404 .419 .407	.232 .218 .214 .208 .206	. 302 . 355 . 352 . 345 . 363	.228 .214 .172 .170	.183 .179 .177 .192 .469	.194 .209 .232 .235 .238	.440 .460 .407 .423 .411	.444 .419 .427 .517 .710	. 555 . 513 . 478 . 504 . 469	.473 .473 .465 .460 .456	.423 .448 .436 .427 .419	.246 .243 .240 .234 .243
11 12 13 14 15	. 396 . 392 . 396 . 407 . 423	.208 .243 .237 .243 .237	• 33 ⁴ • 338 • 321 • 321 • 315	.168 .167 .163 .163	.404 .321 .287 .269 .238	.235 .232 .235 .248 .264	.444 .588 .522 .513 .490	. 623 . 518 . 527 . 545 . 588	.522 .482 .531 .574 .513	.482 .490 .490 .478 .473	.415 .411 .419 .407 .404	.229 .234 .229 .214 .200
16 17 18 19 20	.404 .396 .407 .415 .415	.280 .280 .296 .289 .274	. 324 . 341 . 338 . 315 . 308	.161 .158 .155 .153	.232 .242 .223 .237 .270	.245 .250 .248 .256 .272	• 559 • 588 • 555 • 473 • 490	.574 .623 .658 .715 .741	.499 .499 .504 .499 .536	.469 .460 .460 .469 .460	.400 • 396 • 396 • 396 • 392	.234 .226 .189 .125 .112
21 22 23 24 25	.415 .411 .355 .251	.268 .260 .251 .251 .245	.305 .305 .311 .302 .296	.153 .150 .152 .152 .150	.275 .284 .272 .281 .290	.281 .296 .338 .308 .293	.486 .513 .527 .527 .508	.730 .689 .663 .613	.508 .490 .486 .473 .473	. 460 . 456 . 452 . 448 . 444	.290 .165 .160 .157 .152	.112 .125 .120 .115 .112
26 27 28 29 30 31	.243 .240 .234 .234 .226	.254 .260 .243 .245 .240	.289 .286 .279 .221 .221	.157 .161 .158 .153 .155 .210	.278 .275 .272	.290 .287 .293 .284 .293 .315	.531 .522 .527 .564 .583	. 598 . 469 . 460 . 423 . 388 . 404	.486 .469 .444 .452 .473	. 448 . 456 . 448 . 448 . 452 . 448	.147 .144 .142 .141 .145 .139	.107 .104 .107 .104 .096

RADIOACTIVITY DETERMINATIONS

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

YAKIMA RIVER

STATION LOCATION YAKIMA RIVER AT

RICHLAND, WASHINGTON

DATE			RADIO	DACTIVITY IN	WATER		7	RADIOA	CTIVITY IN PLA	NKTON (dpv)		ADIOACTIVITY IN	WATER
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA				ACTIVITY	 	GROSS ACTIVI	
TAKEN		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	DATE OF DETERMI- NATION	ALPHA	BETA	SUSPENDI		TOTAL
O. DAY YEAR	HONTH DAY	##c/l	μμc/!	μμε/l	M#c/l	μμc/l	μμc/l	MO. DAY	##c/g	ppc/g	##c/l	##c/l	##e/I
21 61	5 10	0	_ [^		_							
2 61	5 25	1	0	0	0	<u> </u>	0				1 1		ĺ
8 61	5 26	ô	0	1 0	0	0	0			1]	
15 61	6 2	ŏ	0	0	0	. 0	0	1 1					
22 61	6 14	ŏ	ŏİ	Ö		0	0					Į.	
5 29 61	6 20	i	ŏ	ĭ	ŏ	0	0				1 1		
5 15 61	7 7	ō	ŏ	ō	Ĭ	١	ĭ	1		·		}	
5 19 61	7 27	1	ŏ	ĭ	l ô l	0	ô				1		
26 61	7 31	0	0	ō	l i l	ŏl	ĭ			1			
7 3 61	8 1	0	2	2	ا ة ا	i	ī	1 1					•
7 10 61	8 4	0 [1	1	0	ž	2	1 1					
7 17 61	8 14	0	3	3	0	3	<u>ā</u>	1 1					
7 24 61	8 18	0	5	5	2	10	12						
31 61	8 31	0	2	2	0	5	5	1 1					
7 61	9 8	0	1	1	0	16	16						
14 61	9 29	0	3	3	1 1	6	7						
21 61	9 13	0	0	0	1 1	10	11	i i					
28 61	9 28	0	3	3	1 1	7	8						
5 61	10 5	0	1	1	1	9	10						
11 61	10 6	0	3	3	1 1	22	23						
18 61 25 61	10 16	0	2	2	1 1	5	6						
, 52 01	10 9	0	1	1	5	9	14				l		
		1				1							
		1	1				1						
i	İ	1										1	
			Í								1		
		ĺ	1										
1	1				i	1	ĺ						
ł	ł		ĺ				1						
1			ŀ									1	
					İ	İ	ĺ	1 1		f			
			ļ] [
	1	i										1	
	1			ļ		ĺ							
1	İ	1	ļ		j	1							
1	f			ł			ļ					1 1	
	ĺ	1			i	İ	İ						
		1		ĺ	1	İ				l			
			1	ł]	ľ]	1			
							i	1 1	l	I	1	1	

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

YAKIMA RIVER

STATION LOCATION YAKIMA RIVER AT

RICHLAND, WASHINGTON

DATE				ALGAE (Vumber	per ml.)				INE	DT	_															
OF SAMPLE		BLUE-	GREEN	GREE	EN	FLAGEI (Pigm	LATES ented)	DIAT	омѕ	DIA SHE (No. p	ERT TOM ELLS er ml.)		DOM!	NANT Intro	SPEC	IATO	ND PE	RCEN ntifical	TAGE:	•	AMETOR,	5		VERTEBR	T	TON BE	KERA iction ation)
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	FIRST	PER.	SECONDS	PER. CENTAGE	THINDS	PER. CENTAGE	FOURTH	PER.	OTHER PER-	OTHER HICROPLANTOR PURSI AND SHEATHED BACTERIA (NO. pet ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	OTHER ARIMAL PORI	DORINANT SENERA (See Introduction for Identification)
4 21 61 15 61 6 15 61 7 3 61 8 7 61 8 21 61 9 18 61	1400 600 1400 900 15700 12600 25100 10100 5000 4000	90 150 120 20	70 230 250 270 40	20 100 560 2920 2050 1060 350 310		80 80 20 890 1260 9990 460 80	20 20 20	290 270 250 310 3080 5360 4780 1760 1450	970 270 910 540 11040 2680 3310 2380 2130	70 40 70 490 990 730	1410 2460 1720 1450 2380 1930	92 61 61 92 92 92 92	20 30 60 70 90 80	36 92 92 70	20 10 30 10 10 *	36 46 26 26 76	20 10 10 10 10 *	16 16 62 36 59 15	* 10 *	70 40 50 30 20 10 10 20 10	20		3 3 5 4 46 27 22 47 14	531	13	1	7- 7- 74763 48977 71937 48973

ORGANIC CHEMICALS RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

YAKIMA RIVER

STATION LOCATION YAKIMA RIVER AT

RICHLAND, WASHINGTON

DATE OF CL															
DATE OF SAMPLE BEGINNING END	_	E	XTRACTABL	_ES				·····	CHLORO	ORM EXTR	ACTABLES				
BEGINNING END				1		l	I		NEUTRALS			1	1		
MONTH YEAR MONTH	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
3 29 61 5 5 17 61 6 1 6 16 61 7 7 7 61 8 1 8 15 61 9 1 9 12 61 10	6 2050 7 4250 5 3540	182 194 102 104 116 146	83 61 30 26 38 31	99 133 72 78 78 115	2 1 1 0 1 1	17 14 7 4 8 6	38 24 13 16 16	14 4 4 4 5 2	632222	16 7 7	1 1 0 0 0 0 1 1	9 8 4 6 7 5	9 1 1 2	1 1 1 0 0 0 1 1	11 4 3 2 4 1

STATE

WASHINGTON

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

YAKIMA RIVER

STATION LOCATIONYAKIMA RIVER AT

RICHLAND, WASHINGTON

DATE OF SAMPLE	TEMP.	DISSOLVED		B.O.D.	C.O.D.	CHLORINE	DEMAND	AMMONIA-									
MONTH DAY YEAR	(Degrees Centigrade)	OXYGEN mg/l	рН	mg/l	mg/I	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
5 8 61 5 15 61 5 12 61 6 12 61 6 19 61 7 17 61 7 24 61 8 7 61 8 14 61 8 28 61 9 11 61 9 12 61 9 25 61		10.4 8.2 9.6 8.7 8.0 8.8 - 11.0 11.5 12.5 12.7 10.0 9.6 10.0 9.3 10.0 9.2	7.8 7.6 7.6 8.9 8.6 8.4 8.3 8.3 8.5 8.5	1.7 1.47 1.40 - 0.5 5.05 3.44 - 2 3.9				-2 -2 -2 -1 -1 -1 -1 -1 -1 -1 -1	-3 3 10 4 4 5 5 15 10 12 15 10 15	- 40 40 70 80 - 150 140 160 160 170 180 170	56 53 46 520 6 - 8 60 125 120 140 130		10 45 18 41 20 11 6	28 35 58 30 30 25	• 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	87 129 102 123 141 - 164 163 208 204 218 177 157 141 133 163	130 - 130 - 33 - 100 *33 *100 - *33 230 120 - 67

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Kiona, Washington Operated by U.S. Geological Survey

STATE

Washington

MAJOR BASIN

Pacific Northwest

MINOR BASIN

Yakima River

STATION LOCATION

Yakima River at

Richland, Washington

Day	*	October	November	December	January	February	March	April	May	June	July	August	September
1		2.200	2.280	2.810	1.800	3.240	6.700	7.250	8.660	9.720	1.770	1.370	1.800
2		2.120	2.270	2.730	1.780	3.400	6.320	7.140	9.700	9.420	1.690	1.570	1.670
3		1.860	2.310	2.710	1.790	7.820	6.810	7.630	10.100	9.940	1.380	1.460	1.790
4		1.780	2.410	2.700	1.780	5.280	6.590	8.740	10.200	10.900	1.330	1.280	1.800
5		1.740	2.350	2.670	1.780	4.550	6.430	9.640	9.900	11.200	1.400	1.140	1.830
6		1.710	2.310	2.560	1.800	4.380	6.070	9.540	9.180	11.500	1.500	1.120	1.680
7		1.690	2.280	2.460	2.520	4.690	5.890	8.410	8.490	11.300	1.660	1.170	1.670
8		1.770	2.220	2.350	3.010	5.560	5.690	7.420	7.650	10.500	1.780	1.340	1.590
9		1.850	2.180	2.320	2.840	5.730	5.510	6.470	6.890	9.620	1.480	1.370	1.480
10		1.880	2.150	2.270	2.850	6.270	5.370	6.190	6.980	8.860	1.350	1.310	1.450
11		1.880	2.140	2.220	2.890	10.100	5.190	5.830	7.360	8.220	1.210	1.300	1.430
12		1.960	2.090	2.070	2.810	10.000	5.010	5.470	7.540	7.800	1.140	1.310	1.400
13		1.900	2.370	2.100	2.670	8.880	5.260	5.060	7.400	7.270	1.100	1.310	1.350
14		1.830	2.570	2.200	2.610	7.860	5.470	4.910	7.670	5.420	1.070	1.300	1.340
15		2.220	2.490	2.320	2.590	7.840	6.490	4.890	7.460	4.330	1.160	1.480	1.400
16		2.360	2.430	2.390	2.950	7.400	8.110	4.450	7.400	4.190	1.100	1.570	1.470
17		2.230	2.350	2.190	3.620	7.520	8.720	4.240	7.380	4.580	1.130	1.750	1.530
18		2.180	2.520	2.200	4.820	7.100	8.370	4.110	7.420	5.820	1.140	1.690	1.620
19		2.030	2.870	2.300	4.620	6.700	7.840	4.500	7.880	7.140	1.080	1.710	1.570
20		2.730	3.310	2.300	4.210	6.340	7.710	4.750	8.390	8.470	1.040	1.770	1.560
21		3.030	3.060	2.260	3.900	6.470	8.350	4.380	9.760	8.280	.905	1.690	1.560.
22		2.880	3.320	2.270	3.700	7.380	7.990	4.260	11.000	6.320	.852	1.490	1.590
23		2.850	3.340	2.200	3.500	9.820	7.480	4.820	12.000	4.570	.896	1.400	1.710
24		2.720	3.040	2.180	3.250	10.000	7.380	5.420	11.800	3.590	1.100	1.340	1.670
25		2.490	3.180	2.180	3.140	8.720	7.380	5.310	11.300	3.580	1.100	1.340	1.670
26 27 28 29 30 31		2.460 2.410 2.380 2.340 2.340 2.360	4.670 3.590 3.190 3.000 2.870	2.200 2.310 2.040 2.020 1.940 1.900	3.130 2.950 2.710 2.540 2.530 2.660	8.110 7.520 6.970	7.500 8.640 7.900 7.140 6.890 6.950	4.890 4.790 5.400 5.830 6.740	10.200 9.600 10.900 10.800 10.300 9.940	3.720 3.460 3.260 2.630 1.460	1.400 1.160 1.110 1.060 1.040 1.130	1.410 1.410 1.940 2.030 1.710 1.660	1.770 1.770 1.790 1.720 1.840

STATE

MONTANA

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

YELLOWSTONE RIVER

STATION LOCATION YELLOWSTONE RIVER NEAR

SIDNEY, MONTANA

DATE			RADI	DACTIVITY IN V	VATER				RADIOA	CTIVITY IN PLAN	IKTON (drv)		BAN	IOACTIVITY IN W	ATED
SAMPLE	DATE OF DETERMI- NATION		ALPHA			BETA		l t		GROSS /		l 1		GROSS ACTIVIT	
TAKEN		SUSPENDED	DISSOLVED	TOTAL	SUSPENDED	DISSOLVED	TOTAL	1	DATE OF DETERMI- NATION	ALPHA	BETA	1	SUSPENDED		
MO. DAY YEAR	MONTH DAY	μμc/l	ppc/l	<i>μμ</i> ε/Ι	μμc/l	μμc/l	μμε/Ι		MO. DAY	μμc/g	μμc/g		μμε/Ι	μμς/1	μμc/l
MO. DAY YEAR 0 24 60 # 28 60 # 26 60 # 27 61 # 32 61 # 39 61 # 31 61 # 9 18 61 # 9 25 61	NONTH DAY 11 14 12 8 1 23 2 13 3 14 4 12 5 12 6 12 7 21 8 23													DISSOLVED #Fe/1	TOTAL μμε/1

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MONTANA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

YELLOWSTONE RIVER

STATION LOCATION YELLOWSTONE RIVER NEAR

SIDNEY, MONTANA

DATE				ALGAE (Vumber	per ml.)	· · · · · · · · · · · · · · · · · · ·			I IN	ERT									<u>. </u>							
OF SAMPLE		BLUE.	GREEN	GREE	EN	FLAGEL (Pigm		DIAT	омѕ	DIA SHE (No. p	ERT TOM ELLS er ml.)		DOM (Se	INANT	SPEC	IATO IES A for Co	ND PE	RCEN	TAGE	s	ROPLANKTOR, SHEATHED	-	1	(VERTER	7	S III	ent ction fron
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE		PENNATE	FIRST®	PER-	SECOND	PER.	THIRDS	PER. CENTAGE	FOURTH®	PER.	OTHER PER- CENTAGE	OTHER BICROPLANK PUNGI AND SHEATH BACTERIA (No. per ml.)	PROTOZOA (No. per ml.)	ROTIFIERS (No. per liter)	CRUSTACEA (No. per liter)	NEMATODES (No. per liter)	No. per liter)	DOMINANT GENERA (See Introduction for Identification)
10 17 60 11 7 60 11 21 60 12 19 60 12 19 61 1 16 61 2 0 61 3 6 61 3 6 61 5 15 61 6 19 61 7 7 61 8 21 61 8 21 61 9 18 61	1100 900 200	70 100 40 20	40 150 20	160 50 50 20 20 230 770 40 710 2920 4660 2010		110 20 20 20 20 130 70 1400 2110 1740 40 250 310 360 70	40	800 70 40 20 90 110 50 10540 110 2210 50 1720 1080 340 40	3130 950 200 200 250 360 860 3130 2300 1800 560 720 8110 310	20 20 20 20 270 1300 90 4160 750 660 250	420 360 20 200 200 250 400 2470 1440 910 640 500 2080 2660 540 580	92 92 92 92 92 92 92 92 92 92 92 97 97 97 97 97 97 97 97 97 97 97 97 97	50 40 70 60 60 40 30 30 30 40 30 50 50 50 50 50 50 50 50 50 50 50 50 50	65 36 64 64 36 36 86 85 83 82 99 99 99 99	20 10 10 10	65 64 70 26 71 21 51 71 51 82 47 41 36 55 26	10 10 * * 10 10 * 10 10 10 10 10 10 10 10 10	71 47 64 36 75 66 53 12 78 36 23 41	**************************************	30 30 20 40 30 40 40 50 60 40 32 50 30 30 70	70 180 100 20		2 2 3	3	2 2	1	74766 7- 74- 7- 73 7473- 71925 7-74- -4153 78323 7-763

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

MONTANA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

YELLOWSTONE RIVER

STATION LOCATION YELLOWSTONE RIVER NEAR

SIDNEY, MONTANA

							·····		~								
DATE OF S.		ND		E>	TRACTABL	.ES						ORM EXTR.	ACTABLES				
MONTH DAY YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	NEUTRALS AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 3 60 11 7 60 12 5 60 1 9 61 2 6 61 3 6 61 5 1 61 6 5 61 7 3 61 8 7 61 9 5 61	11 12 1 2 3 4 5 6		5000 5000 5000 5000 5000 5000 4500 4500 14000	117 135 103 149 85 109 861 73 84 118 98	15 17 21 19 46 32 23 227 26 34 31 30	102 118 72 84 103 53 85 46 58 84 68	000010	3 3 4 3 4 9 6 1 1 6 1 1 1 8	7 8 9 10 34 11 14 - 13 - 9	12221712 4 2	111177122	55678801-81-6	00000101101110	1 3 2 2 2 4 3 2 2 2	1 1 1 1 1 2 1 2	110011111111111111111111111111111111111	215244436

STATE

MONTANA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

YELLOWSTONE RIVER

STATION LOCATIONYELLOWSTONE RIVER NEAR

SIDNEY, MONTANA

DATE OF SAMPLE						CHLORINE	DEMAND								1:		l
MONTH DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	На	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/I	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/i	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/I	COLIFORMS per 100 ml.
10 3 60	12.2	-	8.4	-	-	-	-		5	200	322	_	1360	333	 	744	
10 11 60	12.2 9.0	10.1	8.5 8.4	_	_	1.7	-	-	5	200	322	-	100	340	-	758	-
10 24 60	8.9	10.1	8.3	_	_	1.7	5 • 4	-	6	206	358	_	140	394	-	820	-
10 31 60	4.6	11.2	8.4	_	_	1.2	5 • 4	_	2 2	206 188	334 316	_	460 40	340 315	_	712 710	-
11 7 60	3.4	11.3	8 • 4	-	_	• 7	-	-	6	198	326	_	40	323	_	686	-
11 14 60	5.5	11.5	8 • 4	-	-	•9	3 • 6	-	6	210	330		30	307	_	698	-
11 21 60 11 28 60	5.7 •0	10.5	8.4	_	-	1.2	3.9	-	9	212	334	-	45	299	-	706	_
12 5 60	•0	12.2 11.4	8•3 8•4	-	_	•9	6.3	-	6	208	338	-	120	315	-	734	_
12 12 60	.0	12.3	8.4	_	_	• 7	3•2	_	15 13	240 234	386	-	20	360	, -	844	-
12 19 60	•0	11.9	8.3	-		1.3	3.4	_	17	234	386 392	_	20 25	360	-	748	-)(-
12 26 60		-	8 • 2	-	-	-		_	6	254	400	_	20	315 315	_	812 820	_
1 2 61	•0	-	8.2	-	-	-	-	-	1	232	376	-	30	307	_	750	_
1 9 61 1 16 61	• 0		8 • 2	-	-		-	-	7	228	366	-	25	315	-	750	_
1 16 61 1 23 61	•0	11.8 12.0	8.2	-	-	1.4	3 • 4	-	14	216	348		40	295	-	712	_
1 30 61	.0	12.5	8.3	_		1.4	2•9	-	12	208	336	-	25	245	-	664	50
2 6 61	•0	10.6	8.1	_	_	1.5	3.1	-	1 7	222	364 398	-	20	340	-	726	
2 13 61	• 0	11.8	8.1		_	1.2	2.9		12	196	310	_	20 70	333 239	-	804	-
2 20 61 2 27 61	•0	12.2	8.2	-	_ [• 8	2.4	_	11	174	290		35	239	_ [640 590	_
	•0	12.2	8.3	-	-	1.3	2 • 8	-	īō	160	288	_	150	264	_ [632	-
3 6 61 3 13 61	•0	11.5	8.3	-	-	1.5	-	-	12	176	300	-	150	299		656	_
3 13 61 3 20 61	•0	11.1	8 • 2	-	-	• 8	2.7	-	16	170	302	-	340	285	_	620	*60
3 27 61	.0	11.1	8 • 4	_	-	-	-1	-	19	160	286	-	1350	285	-	632	_
4 3 61	9.1	10.3	8.4	_ [_	1.1	4 • 8	-	.5	176	328	-	500	323	-	712	-
4 10 61	7.1	_	8.5	_	_	1.1	4.0	_	16 22	178 186	334 338	-	240	333	-	744	-
4 17 61	8.1	11.2	8.3	- 1	-	1.2	3.8	_	20	198	362	_	240 380	333 308	-	788	
4 24 61	7.6	11.2	8 • 4	-	-	1.3	4.3	_	20	180	344	_	180	421	_	910 926	-
5 1 61	12.1		8.5	-	-	-	-	-	45	180	354	_	300	407		926	_
5 8 61 5 15 61	10.2	10.5	8.4	-	-	1.6	4 • 8	-	16	186	328	-	100	360	_	790	_
5 22 61	18.7	=	8.5	_	-	-	-	-	16	164	288	-	60	315	-	760	_
5 29 61	21.5	_	8.2	_	=	_	_ [-	14	166	288	-	500	299	-	710	
6 5 61	21.5	-1	8.2	- 1	- [_		_	6	124	178	-	8800	147	-	368	-
6 12 61	22.8	-1	8.1	-	-	_	_ [-1	4	74 72	102 84	-	2200	75	-	244	-
6 19 61	22.1	-	8.2		-	-	_	_	10	72	98	_	800 430	54 69	-	177	-
7 3 61	24 • 4	-1	8.5	-	-	-	-		9	97	132	_ [180	106	=1	234 298	-
										7.		İ	100	100	-	270	-

NATIONAL WATER QUALITY NETWORK

STATE

MONTANA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

YELLOWSTONE RIVER

STATION LOCATIONYELLOWSTONE RIVER NEAR

SIDNEY, MONTANA

55

	D/ OF S/	TE	темр.	DISSOLVED		720		CHLORINE	DEMAND							ī	T	1	
•	7	444			рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS
	7 24 7 3 8 8 14	7 6 4 6 6 6 7 6 6 6 6 6 6 6	1 24.8 1 24.8 1 22.8 1 25.4 1 24.6 1 23.9 1 24.4 1 17.1 1 13.5	8.8 7.2 7.5 6.5 8.0 9.5 9.5 9.5 9.5	5.3.6.4.6.5.5.6.5.3.1.9 8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8			1.0 - 2 - 2 - 1.9 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	4.2 6.9 6.1 6.4		20 2 2 - 20 26 20 30 44	120 130 144 154 168 178 170 160 130	150 213 217 206 246 292 254 286 296 278 228		110 1800 700 2600 120 130 110 800 1040 22000	138 169 213 219 342 275 330 344 326 315 316		283 -480 555 600 718 729 707 818 712 678 600	

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Sidney, Montana Operated by U.S. Geological Survey STATE

Montana

MAJOR BASIN

Missouri River

MINOR BASIN

Yellowstone River

STATION LOCATION

Yellowstone River near

Sidney, Montana

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	4.150	4.610	4.000	4.200	2.900	5.500	3.910	2.770	29.800	9.010	4.810	1.130
2	4.130	4.640	2.800	4.400	2.900	5.600	3.840	2.670	30.400	8.340	2.960	1.220
3	4.090	4.660	2.400	4.600	3.000	5.600	3.760	2.480	28.600	7.680	2.610	1.400
3 4 5	4.000	4.730 4.730	2.200	4.800 4.700	3.400 3.800	5.500 5.400	3.690 3.710	2.360 2.250	24.900 23.800	7.150 6.570	2.320 2.090	1.590 2.160
6	3.890	4.730	2.400	4.600	4.400	5.300	3.520	2.160	23.700	5.990	1.880	2.120
7	3.870	4.950	3.200	4.500	4.700	5.300	3.460	1.840	24.100	5.410	1.600	2.690
8	3.820	5.050	4.000	4.300	5.000	5.200	3.420	1.700	26.000	5.070	1.330	2.990
9	3.690	5.000	3.400	4.200	5.200	5.200	3.350	1.590	26.000	4.970	1.200	3.130
10	3.630	4.850	3.000	4.200	5.400	5.200	3.350	1.560	25.900	5.710	.948	3.170
11	3.630	4.930	2.800	4.400	5.600	5.300	3.540	1.570	26.800	6.100	.822	4.830
12	3.630	5.050	2.700	5.000	5.700	5.400	3.540	1.510	28.100	6.950	.717	7.230
13	3.840	4.850	2.600	4.900	5.600	5.400	3.150	1.330	29.100	6.100	.810	10.400
14	4.880	4.970	2.700	4.800	5.500	5.500	2.940	1.110	29.100	5.460	1.270	10.200
15	6.150	4.970	2.800	4.600	5.400	5.600	2.780	1.010	27.900	5.140	2.070	11.000
16	5.860	5.050	3.000	4.500	5.300	5.800	2.630	.810	25.400	5.410	2.410	10.800
17	5.310	5.120	3.200	4.700	5.200	6.800	2.360	.570	23.100	5.290	2.250	9.800
18	4.850	5.020	3.500	5.000	5.100	7.000	2.030	1.440	21.100	4.850	2.070	8.720
19	4.730	4.950	3.700	5.000	5.000	6.400	2.460	2.580	19.600	4.540	1.720	8.080
20	4.880	4.880	3.400	4.800	4.900	5.500	2.580	3.930	19.500	4.110	1.430	8.340
21	5.260	4.850	3.200	4.700	4.800	4.640	2.410	5.780	19.200	3.540	1.270	8.720
22	5.120	4.850	3.000	4.500	5.100	4.540	2.100	5.480	18.200	3.070	1.250	13.000
23	5.120	4.780	2.800	4.300	5.200	4.360	1.880	5.410	17.700	2.940	1.200	16.800
24	5.170	4.660	2.600	4.000	5.100	4.150	1.860	6.280	16.500	2.980	1.170	14.900
25	5.240	4.690	2.600	3.900	4.800	4.060	1.860	6.680	15.200	2.900	1.140	12.600
26 27 28 29 30 31	5.050 4.970 4.810 4.730 4.730 4.690	4.410 4.400 4.400 4.400 4.400	2.700 2.800 2.900 3.000 3.400 3.800	3.700 3.600 3.400 3.200 3.000 3.000	4.800 5.000 5.200	3.930 3.840 3.820 3.820 3.840 3.820	1.700 1.510 2.180 2.580 2.540	8.860 12.200 16.300 19.600 23.500 28.100	13.800 12.300 11.100 10.300 13.800	2.880 2.750 2.500 2.230 2.180 6.190	1.110 1.080 1.010 .987 1.040 1.100	11.500 10.400 9.800 9.190 8.770

Strontium 90

Strontium 90

Strontium 90 Activity, µµc/liter—1960-1961

Sampling Point	October- December	January– March	April- June	July- September	Sampling Point	October- December	January– March	April- June	July- September
ALLEGHENY RIVER at Pittsburgh, Pa.			. 2	. 3	CONNECTICUT RIVER below Northfield, Mass.				. 4
ANIMAS RIVER at Cedar Hill, N. Mex.				. 3	CUMBERLAND RIVER at Clarksville, Tenn.				. 4
APALACHICOLA RIVER at Chattahoochee, Fla.				.4	DELAWARE RIVER at Philadelphia, Pa. at Martins Creek, Pa.	_	. 6		
ARKANSAS RIVER at Pendleton Ferry, Ark. near Ponca City, Okla. at Coolidge, Kans.			.7	2.3	ESCAMBIA RIVER at Century, Fla. GREAT LAKES				. 9
BIG SIOUX RIVER below Sioux Falls, S. Dak.				.4	Lake Erie at Buffalo, N.Y. Lake Huron, Detroit River at	<u></u>	. 6		_
CHATTAHOOCHEE RIVER at Columbus, Ga. at Atlanta, Ga.		. 3	.3		Detroit, Mich. Lake Huron, St. Clair River at Port Huron, Mich. Lake Michigan at Gary, Ind.				. 6 . 4 . 2
COLORADO RIVER at Yuma, Ariz.	_	1. 2	_		Lake Michigan at Milwaukee, Wis. Lake Superior, St. Mary's River	. 2		. 3	
above Parker Dam, Ariz-Calif. near Boulder City, Nev. at Page, Ariz.	1.2	_	2. 3	1.0	at Sault Ste. Marie, Mich. Lake Superior at Duluth, Minn.		.4		printing and the
at Loma, Colo. COLUMBIA RIVER		. 4	_		HUDSON RIVER below Poughkeepsie, N.Y.	. 4	. 4	. 5	. 2
at Clatskanie, Oreg. at Bonneville, Oreg. at McNary Dam, Oreg.	. 5		1.1	. 6	ILLINOIS RIVER at Peoria, Ill.	. 5	_	_	. 4
at McNary Dam, Oreg. at Pasco, Wash. at Wenatchee, Wash.		1.0		1.1	KANAWHA RIVER at Winfield Dam, W. Va.		. 2	_	

Dash (—) indicates no determination made.

Strontium 90-Continued

Strontium 90 Activity, µµc/liter—1960-1961

Sampling Point	October- December	January- March	April- June	July- September	Sampling Point	October- December	January- March	April- June	July- September
KLAMATH RIVER at Keno, Oreg.			. 3		OHIO RIVER at Cairo, Ill.				1. 1
LITTLE MIAMI RIVER at Cincinnati, Ohio MERRIMACK RIVER above Lowell, Mass.		1.1		1. 1	at Evansville, Ind. at Louisville, Ky. at Cincinnati, Ohio at Huntington, W. Va. at East Liverpool, Ohio	.8	.3		. 4
MISSISSIPPI RIVER at New Orleans, La. at Vicksburg, Miss	_	_		_	OUACHITA RIVER at Bastrop, La.				_
at Delta, La. at West Memphis, Ark.	1.0		. 6	4	PLATTE RIVER above Plattsmouth, Nebr.		Antonio		
at Cape Girardeau, Mo. at East St. Louis, Ill. at Burlington, Iowa at Dubuque, Iowa	_	. 7 	.5	. 6	POTOMAC RIVER at Great Falls, Md. at Williamsport, Md.	_	1.3		
at Lock & Dam No. 3 below St. Paul, Minn.	_	_	_	. 9	RAINY RIVER at Baudette, Minn.	_			
MISSOURI RIVER at St. Louis, Mo. at Kansas City, Kans.	1.4	1.1	_	1.4	RED RIVER (North) at Grand Forks, N. Dak.			1. 5	
at St. Joseph, Mo. at Omaha, Nebr. at Yankton, S. Dak. at Bismarck, N. Dak.	.5		- - - . 6	6	RED RIVER (South) at Alexandria, La. at Index, Ark. at Denison, Tex.	.7	.4		1.0
at Williston, N. Dak. MONONGAHELA RIVER at Pittsburgh, Pa. NORTH PLATTE RIVER above Henry, Nebr.		.8		. 4	RIO GRANDE at Brownsville, Tex. at Laredo, Tex. at El Paso, Tex. below Alamosa, Colo.		.4	.3	

Strontium 90-Continued

Strontium 90 Activity, µµc/liter—1960-1961

Sampling Point	October- December	January– March	April- June	July- September	Sampling Point	October- December	January– March	April- June	July- September
ROANOKE RIVER at John H. Kerr Dam and Reser- voir, Va.					SOUTH PLATTE RIVER at Julesburg, Colo.				. 7
SABINE RIVER near Ruliff, Tex.		_	.8		SUSQUEHANNA RIVER at Conowingo, Md. at Sayre, Pa.	. 4			. 3 . 3
ST. LAWRENCE RIVER at Massena, N.Y.	. 6				TENNESSEE RIVER at Bridgeport, Ala.	_	1. 5	. 9	. 7
SAN JUAN RIVER at Shiprock, N. Mex.					at Chattanooga, Tenn. TOMBIGBEE RIVER	. 9	.8		. 6
SAVANNAH RIVER at Port Wentworth, Ga. at North Augusta, S.C.	. 5	.4	. 5 . 5	. 4	below Columbus, Miss. TRUCKEE RIVER at Farad Calif. below Calif-Nev.			_	 -
SCHUYLKILL RIVER at Philadelphia, Pa.					border				
SHENANDOAH RIVER					YAKIMA RIVER at Richland, Wash.			_	. 4
at Berryville, Va.				_	YELLOWSTONE RIVER				
SNAKE RIVER at Wawawai, Wash. at Weiser, Idaho	.2	=	=	. 3	near Sidney, Mont.	_		. 8	_

TRACE ELEMENTS

NATIONAL WATER QUALITY NETWORK 1960 - 1961

	DΑ	TE	444	4. V.C.I.C.	7W W==			CONC	ENT	RATIO	N -		MILL	GRAI	MS	PER	L	ITER					
STATION	FROM	то			METHOS	OR FL	AME					ANALY	SIS	BY SP	ECTRO	PHOTO	GRAP	HIC ME	ETHOD				
	T NOW	10	В	F	K	Na	Se	Cd	Ва	Be	Рb	Cr	Sn	Sb	Mn	Fe	Νi	Bi	Мо	V	Cu	Zn	Co
LIECHENY RIVER at Pittsburgh, Pennsylvania	3-1-61 7-10-61	6-20-61 10-15-61	0.03	0.13	1.6 3.9	6.0 25.5	.01* .01*	.003* .009*	.04 .06	.00006*	.006*	.001* .003*	.002* .006*	.01* .03*	.1 .01	.20 .01	.003	.006*	.003	.005 .006*	.003	.6*	.002
NIMAS RIVER at Cedar Hill, N. Mexico	3-1-61 7-10-61	6-20-61 10-15-61	0.10	0.42 0.45	3.7 3.7	28.0 19.0	.01 .01*	.01* .008*	.08	.0002*	.02* .01*	.004* .003*	.008* .005*	.04* .03*	.02*	.20	.008*	.02* .01*	.008* 800.	.02 .05	.004	2.0*	.008
PALACHICOLA RIVER at Chattahoochee, Florida	3-1-61 7-10-61	6-20-61 10-15-61	0.04	0.18	1.3	2.8		.002* .001*	.02	.00003*	.003*	.0006*	.005	.006* .005*	.002* .002	.02	.005	.003* .002*	.001*	.001*	.003	.3*	.001
REARSAS RIVER at Fendleton Ferry, Ark.	3-1-61 7-10-61	6-20-61 10-15-61	0.04	0.39	2.3 4.2	41.0 34.0	.01* .01*	*800.	.08 .08	.0001* .0001*	.01* .01*	.003*	.006* .005*	.03*	.01* .01*	.08	.005	.01*	.005*	.005*	.008	1.04	.005
near Ponca City, Oklahoma	3-1-61 7-10-61	6-20-61 10-15-61	0.13	0.43 0.35	4.6 6.3	100.0	.01*	.02*	.2	.0004	.04* .03*	.008*	.02*	.08*	.03*	.03*	.02*	.04*	.02*	.02*	.002*	4.0*	.02*
at Coolidge, Kansas	3-1-61 7-10-61	6-20-61 10-15-61	0.40	0.51 0.54	8.3 11.3	440.0 350.0	.01* .01*	.100*	.2 .07*	.002*	.2*	.04*	.08*	.4* .3*	.2*	.08*	.08*	.2*	.08*	.08*	.01*	20.0*	.08*
BIG SICUX RIVER below Sicux Falls, S. Dak.	7-10-61	10-15-61	0.17	0.50	13.8	106.0	,01*	,02*	.02	.0004*	.04*	.008*	.02*	.08•	.03*	.04	.02*	.04*	.02*	.02*	.002*	4.0*	.02*
HATTAHOOGHEE RIVER at Columbus, Georgia	3-1-61 7-10-61	6-20-61 10-15-61	0.03 0.06	0.10 0.16	1.6	2.8 5.0	.01* .01*	.001* .001*	.01 .01	.00002* .00002*	.002* .002*	.0005* .002	.001* .001*	.005*	.002*	.01	.02	.002*	.001* .001	.001*	.01	.2*	.001
at Atlanta, Georgia	3-1-61 7-10-61	6-20-61 10-15-61	0.03	0.24	1.3 2.5	2.2 3.2	.01* .01*	.002* .03*	.003 .02*	.00003*	.003* .05*	.0006	.001 .02*	.006*	.002*	.001	.001* .02	.003*	.001* .08	.001*	.0002		.001*
OLORADO RIVER at Yuma, Arizona	3-1-61	6-20-61	0.04	0.33	6.9	345.0														•••			1
at Inma, Arizona	7-10-61	10-15-61	0.59	0.54	10.0	469.0	.01* .01*	.006* -08*	.004 * .05 *	.0001* .001*	.01*	.002*	.004* .05*	.02*	.008*	.004	.004*	.01*	.008 .05*	.004*	.0008 •800	1.0*	.004*
above Parker Dam, Arizona-California	3-1-61 7-10-61	6-20-61 10-15-61	0.10 0.15	0.45 0.45	4.8 6.3	72.0 96.0	.01* .01*	.02* *20.	.3 .1	.0003* .0003*	.03* .03*	.006* .007*	.01* .01*	.06*	.03* .03*	.01	.01* .01*	.03* .03*	.03 .03	.01* .01*	.03	3.0° 3.0°	.01* .01*
near Boulder City, Nevada	3-1-61 7-10-61	6-20-61 10-15-61	0.17 0.14	0.34 0.35	4.4 5.5	85.0 75.0	.01* .01*	.02* .02*	.1	.0003*	.03* .03*	.007*	.01* .01*	.07*	.03*	.02	.01* .01*	.03*	.03	.01*	.002*	3.0* 3.0*	.01*
at Page, Arisona	3-1-61 7-10-61	6-20-61 10-15-61	0.10	0.45	5.5 10.3	120.0 112.0	.01°	.03* .03*	.09	.0004*	.04* .06*	.009*	.02* .02*	.09*	.04* .05*	.04	.02* .02*	.04*	.04 .05*	.02*	.003 .006*	4.0*	.02*
at Loma, Colorado	3-1-61 7-10-61	6-20-61 10-15-61	0.10 0.14	0.43 0.50	5.0 6.5	115.0 89.0	.01* .01*	.03* .03*	.09 .02*	.0005* .0005*	.05* .05*	.009*	.02* .02*	.09* 1*	.0/1# .0/1#	.02	.02*	.05*	.07	.02	.003*	4.0* 5.0*	.02*
COLUMBIA RIVER																- 1	ļ	i					
at Bonneville, Oregon	3-1-61 7-10-61	6-20-61 10-15-61	0.06 0.05	0.18	1.6 3.3	5.0 8.5	.01*	.003*	1.02	.00004*	.007	.003	.002*	.009*	.003* .004*	.007	.002	.004*	.002*	.002*	.002	.4°.	.002*
at Clatekanie, Oregon	3-1-61 7-10-61	6-20-61 10-15-61	0.03	0.24	1.3	5.0	.01* .01*	.001*	.01	.00002*	.002*	.003 .004	.002	.005*	.002*	.02	.001* .002	.00½*	.001	.001*	.002	.2* .4*	.001*
at McNary Dam, Oregon	3-1-61 7-10-61	6-20-61 10-15-61	0.04	0.24 0.20	1.3	4.0 7.0	.01* :01*	.002* .002*	03	.00003*	.003*	.003	.002*	.007*	.003*	.003	.006	.003*	.002	.001* .002*	.003	3*	.002
at Pasco, Washington	3-1-61 7-10-61	6-20-61 10-15-61	0.10 0.03	0.16	1.3 2.3	2.8 2.8	.01* .01*	.002*	.04	.00004* .00004*	.004* .004*	.006	.001* .002*	.007	.003	.003	.001* .002*	.004* .004	.001 .002*	.001* .002	.003	.#*	.001*
at Wenatchee, Washington	3-1-61 7-10-61	6-20-61 10-15-61	0.09	0.52	1.3	2.3 2.3	.01* .01*	.002* .002*	.05 .03	.00004*	.004* .003*	.0008 .001	.002* .001*	.008*	.003* -003*	.005	.002	.004*	.002 .002	.002* .001*	.002	.4* .3*	.002*
											j							ĺ					

^{*} actual value is less than the amount shown reported result indicates limit of sensitivity at which test was performed see text for explanation.

TRACE ELEMENTS NATIONAL WATER QUALITY NETWORK 1960-1961

	DA	TE I						CONC		RATIC	7 14		MILLI	GIVAI	VI 3	PER		ITER					
STATION			ANA	4LYS/S	BY WET METHOL	OR FL	AME					ANALY	515	BY SP	ECTRO	PHOTO	GRAPI	HIC .ME	THOD				
	FROM	ТО	В	F	K	Na	Se	Cd	Ва	Ве	Pb	Cr	Sn	Sb	Mn	Fe	Ni	Bi	Мо	V	Cu	Zn	Co
NNECTIGUT RIVER																							
below Northfield, Mass.	3-1-61 7-10-61	6-20-61 10-15-61	0.01	0.13 0.10	1.2 3.3	2.8 11.0	.01*	.004*	.01	.00006	.006* .004*	.001* .005	.003*	.01* .008*	.005*	.03	.004	.006*	.003*	.003*	.004	.6* .4*	.003
HAVARE HIVER																							
at Philadelphia, Pa.	3-1-61 7-10-61	6-20-61 10-15-61	0.05	0.18 0.20	1.6	4.0 8.5	.01* .01*	.002* .004*	.04	.00003*	.003*	.001 .001*	.002 .003*	.005* .01*	.003	.04	.001* .003*	.003* .007*	.003 .004	.002 .003*	.05 .1	.3* .7*	.001
at Martins Oreck, Pa.	3-1-61 7-10-61	6-20-61 10-15-61	0.06	0.05 0.05	1.2 2.5	1.9 2.8	.01*	.001 .003	.01	.00001* .00002*	.005 .01	.0002	.0005* .0007*	.002*	.01 .03	.007	.02 .04	.001* .002*	.0007	.0005	.02 .08	.1*	.000
CAMBIA RIVER						İ																	
at Century, Florida	3-1-61	6-20-61	0.04	0.13	1.2	2.3		.002*	.02	.00003*	.003*	.001	.001*	.007*	.003*	.4	.005	.003*	.001*	.001+	.006	.3*	.001
REAT LAKES																						ļ	
Lake Superior at Duluth, Minnesota	3-1-61 7-10-61	6-20-61 10-15-61	0.02	0.00	1.0 2.3	0.9 1.6	.01* .01*	.002* .003*	.004 .02	.00003* .00004*	.003* .004*	.0006*	.001* .002*	.006* .008*	.003* .003*	.006	.002 .003	.003* .004*	.002*	.001* .002*	.002	.3* .4*	.001
St. Mary's Biver at Sault Ste. Marie, Mich.	3-1-61 7-10-61	6-20-61 10-15-61	0.05 50.0	0.24	1.0 2.2	0.9	.01* .01*	.002* .002*	.01	.00003	.003* .003*	.0006* .002	.001* .001*	.006* .006*	.003* .002*	.03 .01	.003 .001*	.003* .003*	.001* .001*	.001* .001*	.01	.3* .3*	.001
Lake Michigan at Gary, Indiana	3-1-61 7-10-61	6-20-61 10-15-61	0.06 0.05	0.13 0.20	1.3 3.0	3.2 9.5	.01* .01*	.005* .004*	.01 .008	.00008*	.008* .007*	.002*	.003* .003*	.02* .01*	.007* .006*	.05 .03	.003* .003	.008* .007*	.005 .004	.003* .003*	.005 .004	.8* .7*	.003
St. Clair River at Fort Euron, Michigan	3-1-61 7-10-61	6-20-61 10-15-61	0.03 0.05	0.13	1.2 2.5	2.7 3.6	.01* .01*	.004+	.03	.00006* .00005*	.006* .005*	.001* .004*	.003* .002*	.01* .01*	.005* .004*	.005 .004	.003* •€00.	.006* .005*	.003* .002	*500°	.001	.6* .5*	.003
Lake Michigan at Milwankee, Visconsin	3-1-61 7-10-61	6-20-61 10-15-61	0.06	0.24	1.6 2.7	3.2 4.0	.01*	.005* .004*	.02	.00008* .00006*	.008* .006*	.002*	.003* .003*	.02* .01*	.006* .005*	.003 .006	.005	.008* .006*	.005	.003* .003*	.006	.8* .6*	.003
Detroit River at Detroit, Michigan	3-1-61 7-10-61	6-20-61 10-15-61	0.06	0.10 0.17	1.2 2.5	3.3 4.0	.01*	.003*	.03	.00005* .00005*	.005* .005*	.002 .0009*	.002 .002*	.009*	.004*	.009	.002* .002	.005* .005*	.002* .003	.002* .002*	.005 .008	.5* .5*	.002
Lake Brie at Buffalo, New York	3-1-61 7-10-61	6-20-61 10-15-61	0.04	0.05 0.17	1.6 3.0	6.0 9.0	.01*	.006* .006*	.004 .02	.0001*	.01* .01*	.002* .002*	.004*	.02* .02*	*800. *800.	.004 .01	.004* .008	.01* .01*	.004 .006	.004* .004*	.001 .04	1.0*	.004
St. Lawrence River at at Massena, New York	3-1-61 7-10-61	6-20-61 10-15-61	0.01	0.43 0.30	2.5 1.8	13.0 11.0	.01* .01*	.008*	.03 .03	.0001* .00007*	.01* .007*	.003* .004	.005* .003*	.03* .01*	.01*	.03 .006	.008 .003*	.01* .003*	.008 .004	.005* .003*	.008 .006	1.0*	.005
JOSON RIVER												I											
below Prughkeepsie, New York	3-1-61 7-10-61	6-20-61 10-15-61	0.03	0.00	1.9	4.0 7.5	.01* .01*	.002*	.03	.00003*	.003*	.004	.001*	.006* .02*	.003*	.04	.004 .004*	.003*	.002	.001* .004*	.004	.3* .9*	.001
LLINOIS RIVER																							
at Peoria, Illinois	3-1-61 7-10-61	6-20-61 10-15-61	0.04	0.41	3.2 4.8	16.0 19.0	.01* .01*	.01* .01*	.03	.0002* .0002*	.02*	.003* .004*	.006* .01	.03* .04*	.01* .02*	.03	.02 .01	.02* .02*	.01 .02	.006* .800.	.02	2.0*	.006 .008
ANAVHA RIVER																							
at Winfield Dam, W. Va.	3-1-61 7-10-61	6-20-61 10-15-61	0.12 0.04	0.10 0.18	1.9 2.8	5.0 21.0	.01* .01*	.002* .009*	.3 .6	.00004* .0001*	.004* .01*	.0008* .003*	.002* .006*	.008* .03*	.003*	.008 •009	.004 .006*	.004* .01*	.002* .006*	.002* .006*	.002	.4* 1.0*	.002
LAMATE BIVER																							
at Keno, Oregon	3-1-61 7-10-61	6-20-61 10-15-61	0.09	0.24 0.18	3.4 3.3	16.0 12.0	.01* .01*	.006* .004*	.01 .008	.0001* .00007*	.01* .007*	.008 .001*	.006 .003*	.02* .01*	.008* .005*	.006	.004*	.01*	.004	.017* .03	.0006* .005	1.0*	.004

^{*} ACTUAL VALUE IS LESS THAN THE AMOUNT SHOWN REPORTED RESULT INDICATES LIMIT OF SENSITIVITY AT WHICH TEST WAS PERFORMED. SEE TEXT FOR EXPLANATION.

TRACE ELEMENTS

NATIONAL WATER QUALITY NETWORK 1960-1961

	DA	TE						CONC	ENTI	RATIO	N -		MILLI	IGRAN	d S	PER	L	ITER					
STATION			ANA	LYSIS	BY WET METHOL	OR FL.	4 ME					ANALY	515	BY SP	ECTRO	PHOTO	GRAP	HIC ME	THOD				
	FROM	то	В	F	К	Na	Se	Cd	Ва	Ве	Pb	Cr	Sn	Sb	Mn	Fe	Ni	Bi	Мо	V	Cu	Zn	Со
LITTLE HIAMI BIVER																				- '			- 00
at Cincinnati, Chic	3-1-61 7-10-61	6-20-61 10-15-61	0.17 0.12	0.39	2.2 3.8	7.5 10.5	.01* .01*	.008* .006*	.02 .04	.0001*	.01* .01*	.003*	.005*	.03*	.01* .009*	.1 ,009	.005*	.01*	.005* .01	.005*	.0008*	1.0*	.005* .004*
MERRIMACK RIVER		:																					.004
above Lowell, Mass.	7-10-61	10-15-61	0.08	0.18	2.2	8.5	.01*			İ													
MISSISSIPPI RIVER																							
at New Orleans, Louisiana	3-1-61 7-10-61	6-20-61 10-15-61	0.11 0.12	0.18 0.18	2.7 3.9	10.0	.01* .01*	.004*	.07 .06	.00007* .0002*	.007* .02*	.001* .003*	.003* .006*	.01° .03°	.006* .01*	.01 .03	.003* .01	.007*	.004 .009	.003* .006*	.001	.7* 2.0*	.003*
at Delta, Louisiana	3-1-61 7-10-61	6-20-61 10-15-61	0.03 .06	0.33	3.0 4.2	9.5 19.5	.01*	.004* .01*	.07	.00007* .0002*	.007* .02*	.001* .003*	.003* .007*	.01* .03*	.005* .01*	.03 .03	.003* .007*	.007*	.004	.005*	.003	.7* 2.0*	.003*
at West Memphis, Arkansas	3-1-61 7-10-61	6-20-61 10-15-61	0.02	0.33 0.26	2.7 4.2	7.5 11.5	.01* .01*	.004* .008*	.05 .08	.00007* .0001*	.007* .01*	.001* .003*	.003*	.01* .03*	.005	.04	.003	.007	.003	.003*	.003	1.0	.003*
at Cape Girardeau, Missouri	3-1-61 7-10-61	6-20-61 10-15-61	0.03	0.18 0.38	4.2 4.8	11.0 21.0	.01* .01*	.006*	.1	.0001* .0001*	.01* .01*	.002*	.004* .008	.02* .03*	.008*	.008 ,05	.006	.01*	.006	.004*	.02	1.0*	.004*
at East St. Louis, Illinois	3-1-61 7-10-61	6-20-61 10-15-61	0.06	0.29 0.36	3.7 4.5	9.0 15.0	.01* .01*	.006*	.06	.0001*	.01*	.002*	.004* -005*	.02*	.008* .01*	.04	.004*	.01*	.006	.004*	.0006	1.0*	.004*
at Burlington, Iowa	3-1-61 7-10-61	6-20-61 10-15-61	0.04	0.18	3.7 3.8	4.5 6.5	.01*	.005*	.05	.0008*	.008* .01*	.002* .002*	.003	.02*	.006*	.03 1.1	.003	.008*	.003	.003*	.1 .42	.8* 1.0*	.003*
at Dubuque, Iowa	3-1-61 7-10-61	6-20-61 10-15-61	0.06	0.13 0.18	3.0 3.0	2.8 6.5	.01*	.004*	.04	.00007*	.007* .01*	.003 .002*	.003*	.01* .02*	.005*	.009	.004	.007*	.003*	.003*	.007	.7* 1.0*	.003*
below St. Paul, Minnesota	3-1-61 7-10-61	6-20-61 10-15-61	0.01	0.24 0.18	3.0 3.3	10.0 11.5	.01*	.008*	.05 .1	.0001*	.01	.003 .005*	.005*	.03* .02*	.05	.08	.005	.01*	.005*	.005*	.008	1.0*	.005*
MISSOURI RIVER																		' '					100,
at St. Louis, Missouri	3-1-61 7-10-61	6-20-61 10-15-61	0.06	0.43 0.38	4.4 5.5	23.0 25.0	.014 .01*	.008* *10.	.1 .2	.0001* .0002*	.01* .02*	.003*	.005*	.03*	.01°	.2 .1	.005* .006*	.01* .02*	.008	.005* .006*	.003	1.0*	.005* .006*
at Kansas City, Kansas	3-1-61 7-10-61	6-20-61 10-15-61	0.06 0.15	0.58 0.51	6.0 6.0	23.0 35.0	.01* .01*	.007*	.07	.0001* .0002*	.01* .02*	.002* .004*	.004*	.02*	.009* .01*	.04	.004*	.01* .02*	.009	.004*	.007	1.0*	004*
at St. Joseph, Missouri	3-1-61 7-10-61	6-20-61 10-15-61	0.10 0.18	0.50	6.7 5.8	28.0 51.5	.01* .01*	.01* .01*	.01 .1	.0002*	.02 .02*	.003*	.007*	.03*	.01* .02*	.2 .05	.007* .01*	.02*	.01 .01	.007* .01*	.03	2.0*	.007*
at Cmaha, Nebraska	3-1-61 7-10-61	6-20-61 10-15-61	0.14 0.18	0.53	6.5 5.5	28.0 59.5	.01*	.01*	.03 ,2	.0002*	.02* .03*	.007* .005*	.007*	.03* .05*	.01* .02*	.1	.007*	.02*	.007 .01*	.007* .01*	.01 .005	2.0° 3.0°	.007*
at Yankton, South Dakota	3-1-61 7-10-61	6-20-61 10-15-61	0.10 0.18	0.70	5.2 5.5	48.0 60.5	.01* .01*	.01* .02*	.03 .03	.0002* .0003*	.02* .02*	.004*	*800.	.04* .04*	.02°	.008	.008* -800.	.02*	.008* .008*	.008* .008*	.2	2.0*	.008* -800.
at Bismarck, North Dakota	3-1-61 7-10-61	6-20-61 10-15-61	0.06 0.17	0.72	4.2 4.6	50.0 52.5	.01* .01*	.01*	.04 .03	.0002*	.02* .03*	.004* .005*	.008*	.0/1* .05*	.02* .02*	.008	.008*	.02*	.008	.008 .01*	.2 .05	2.0*	.008*
at Williston, North Dakota	3-1-61 7-10-61	6-20-61 10-15-61	0.08	0.62 0.80	4.2 4.5	54.0 59.5	.01* .01*	.01* .02*	.04	.0002*	.02* .03*	.004*	.009* .01*	.04* .05*	.02* .02*	.02*	.009* .01*	.02*	.009	.009* .01*	.001* .002	2.0* 3.0*	.009*
MONONGAHELA RIVER					1																		
at Pitteburgh, Pennsylvania	71061	6-20-61	0.10	0.53	3.7	25.0	.01*	.01*	.07	.0002*	.02*	.004*	.007*	.04*	.36	.01	.04	.02*	.007*	.007*	.004	2.0*	.007*
NORTH PLATTE RIVER												ŀ								ĺ			
above Henry, Nebraska	710-61	10-15-61	0.17	0.46	6.3	60.5	.01*	.02*	.1	.0003*	.03*	•006*	.01*	.06*	.02*	.02	.01*	.03*	.02	.01*	.05	3.0*	.01•

^{*} ACTUAL VALUE IS LESS THAN THE AMOUNT SHOWN REPORTED RESULT INDICATES LIMIT OF SENSITIVITY AT WHICH TEST WAS PERFORMED. SEE TEXT FOR EXPLANATION.

TRACE ELEMENTS NATIONAL WATER QUALITY NETWORK 1960 - 1961

STATION										RATIC			MILLI	0,1,7,1		PER		ITER					
			AN	417515	BY WE THO	OR FL	4ME					ANALY	SIS	BY SP	ECTRO	PHOTO	GRAPI	HIC ME	THOD				
	FROM	то	В	F	K	No	Se	Cd	Ва	Be	Pb	Cr	Sn	Sb	Mn	Fe	Ni	Bi	Мо	٧	Cu	Zn	C
IO RIVER																							
at Cairo, Illinois	3-1-61	6-20-61	0.07	0.43	2.4	7.5	.01*	.005*	-07	.00009*	.009*	.002*	.004*	.02*	.007*	.04	.004	.009*	.004*	.004*	.004	.9*	.0
at Evansville, Indiana	3-1-61 7-10-61	6-20-61 10-15-61	0.04	0.39	2.2 3.7	7.0 13.5	.01*	.004*	.05 .1	.00007* .0001*	.007* .01*	.001* .002*	.003* .005*	.01* .02*	.03 .01*	.1	.003 .005*	.007*	.003	.003* .005*	.004	1.04	
at Louisville, Kentucky	7-10-61	10-15-61	0.06	0.28	3.7	15.0	.01*	.009*	.09	.0001*	.01*	.003*	,006*	.03*	.01*	.09	.009	.01*	.01	.006*	.009	1.0*	۰.
at Cincinnati, Chic	3-1-61 7-10-61	6-20-61 10-15-61	0.06	0.24 0.36	2.2 3.7	7.0 17.5	.01* .01*	.005* .009*	.05 .1	.00008* .0001*	.008* .01*	.002*	.003* .006*	.02*	.007*	.005	.003* .006*	.008* .01*	.003*	.003* .006*	.007	1.0*	
at Huntington, W. Va.	3-1-61 7-10-61	6-20-61 10-15-61	0.06 0.08	0.26 0.44	2.2 3.7	7.5 22.5	.01* .01*	.005* .01*	.05	.00008* .0002*	.008*	.002* .003*	.003* .007*	.02*	.1 .01*	.08 .007	.005	.008* .02*	.003* .007*	.003* .007*	.006	2.0*	.0
at East Liverpool, Ohio	3-1-61 7-10-61	6-20-61 10-15-61	0.04	0.18 0.53	2.2 4.6	7.0 21.5	.01* .01*	.005* .01*	.05	.00008*	.008* .02*	.002* .01	.003*	.02*	.009 .01*	.06	.005	.008*	.00 <u>3</u> *	.00 <u>3</u> *	.002	2.0*	.0
JACHITA RIVER																			, , ,		,		"
at Bastrop, Louisiana	7-10-61	10-15-61	0.09	0.06	2.7	59.5	.01*	.009*	.2	.0001*	.01*	.003*	.006*	.03*	,01*	.1	.009	.01*	.006*	.006*	.03	1.0*	ه. ا
LATTE RIVER																							
above Plattsmouth, Nebraska	7-10-61	10-15-61	0.15	0.36	8.5	81.5	.01*	.01*	.3	.0002*	.02*	.004*	.009*	.04*	.02*	.2	*900	.02*	.01	.03	.009	2.0*	٠.
TOMAC RIVER																							
at Great Falls, Karyland	3-1-61 7-10-61	6-20-61 10-15-61	0.04	0.24 0.26	1.6 3.4	2.8 8.5	.01*	*800.	.02	.00005*	.005* .01*	.001*	.002*	.01*	.004*	.03	.002*	.005* .01*	.002*	.002* .006*	.004 .002	1.0*	.0
at Williamsport, Maryland	3-1-61 7-10-61	6-20-61 10-15-61	0.09 0.08	0.24 0.28	1.3 2.5	2.3	.01°	.003* .006*	.02 .06	.00005* .0001*	.005* .01*	.001* .002*	*\$00.	.01*	.004 .008*	.03 .006	.002 .004*	.005* .01*	.002* .004*	.002* .004*	.001	1.0*	.0
ED RIVER (North)																							ĺ
at Grand Forks, Horth Dakota	3-1-61 7-10-61	6-20-61 10-15-61	0.08 0.13	0.39 0.38	5.7 5.7	33.0 47.5	.01* .01*	.01* .01*	.01	.0002 .0002*	.02* .02*	.004* .004*	.007 .008*	.04*	.01* .02*	.07	.007* .008*	.02* .02*	.007* .01	.007*	.001*	2.0*	:
ED RIVER (South)															İ								
at Alexandria, Louisiana	3-1-61 7-10-61	6-20-61 10-15-61	0.21 0.10	0.24 0.30	2.2 3.3	26.0 60.0	.01* .01*	.007	.02	.0001* .0002*	.01* .056	.002* .004*	.005*	.02* .04*	.009*	.009	.005*	.01* .02*	.007	.005* .008*	.002*	1.0*	.0
at Index, Arkansus	3-1-61 7-10-61	6-20-61 10-15-61	20.02 21.0	0.39	3.0 4.5	75.0 149.0	.01* .01*	.02* .02*	.05 .2	.0003* .0004*	.03* .04*	.005* .008*	.01*	.05* .08*	.02*	.04	.01*	.03* .04*	.01*	.01*	.002*	3.0* 4.0*	.0
at Denison, Texas	3-1-61 7-10-61	6-20-61 10-15-61	0.09	0.62 0.46	5.5 5.7	130.0 330.0	,01°	.04*	.05 .4	.0007*	.007*	.01* .01*	.03*	.10*	.05* .05*	.03* .3	.03* .03*	.07* -07*	.03*	.03*	.004*	7.0* 7.0*	.0
O GRANDE							ĺ																ĺ
at Brownsville, Texas	3-1-61 7-10-61	6-20-61 10-15-61	0.34 0.29	0.97 0.73	5.0 5.0	125.0 116.0	.01* .01*	.02* .02*	.07	.000¼* .0003*	.04* .03*	.007* .006*	.01*	.07* .06*	.03*	.02	.01* .01*	.04*	.02	.01*	.002*	4.0* 3.0*	.0
at Laredo, Texas	3-1-61 7-10-61	6-20-61 10-15-61	0.22	0.90	4.2 4.5	91.0 84.0	.01* .01*	.02* .02*	.04	.0003*	.03* .03*	.006*	.01* .01*	.06* .05*	.03* .02*	.06 .1	.06 .01	.03* .03*	.01*	.01*	.1	3.0* 3.0*	
at El Paso, Texas	3-1-61 7-10-61	6-20-61 10-15-61	0.24 0.44	0.93 0.70	7.5 10.8	150.0 318.0	.01* .01*	.03* .01*	.04	.0004* .0002*	.04* .02*	.009* .004*	.02*	.09*	.04*	.02 .008*	.02*	.05*	.02*	.02*	.003*	4.0*	
below Alamosa, Colorado	3-1-61 7-10-61	6-20-61 10-15-61	0.06 0.08	0.48	4.4 5.7	25.0 41.0	.01* .01*	.008*	.01 .07	.0001* .0002*	.01*	.003*	.005*	.03*	.01*	.008	.005*	.01* .02*	.005*	.005*	.0008	1.0*	٥.

^{*} ACTUAL VALUE IS LESS THAN THE AMOUNT SHOWN REPORTED RESULT INDICATES LIMIT OF SENSITIVITY AT WHICH TEST WAS PERFORMED. SEE TEXT FOR EXPLANATION.

TRACE ELEMENTS

NATIONAL WATER QUALITY NETWORK 1960 - 1961

								CONC	ENT	RATIO) AL		MILL	1004		5.5.0							
STATION	D A	TE	AN.	ALYSIS		OR FL		I	ENIL	TATIC				IGRA		PER		ITER					
SIRTION	FROM	TO	В	F	METHO.	T	Se			T =	T	ANAL			Т.	T	OGRAP.		THOD				,
ROANOKE RIVER			- 5		K	Na	Se	Cd	Ва	Ве	Pb	Cr	Sn	Sb	Mn	Fe	Ni	Bi	Mo	V	Cu	Zn	Co
at John H. Kerr Reservoir	7-10-61	10-15-61	0.08	0.05	2.3	7.0	.01*	.02*	.1	.0003*	.03*	.006*	.01*	.06*	-1-								
and Dam, Virginia								""		.000	.05.	.000-	,014	.00*	.04*	.02	.01	.03*	.01*	.01*	.006	3.0*	.01*
	3-1-61	6-20-61																					
near Euliff, Texas	7-10-61	10-15-61	0.04	0.13	2.3	9.0	.01*	.003*	.02	.00005*	.007	.0009*	.002*	.009*	.07	.9	.04	.005*	.002*	.002*	.03	5.0*	,002*
SAN JUAN RIVER	Ì					-					1,		1002	.01	,		.005	.005	.002*	.002*	.005	.5*	,002*
at Shiprock, New Mexico	7-10-61	10-15-61	0.10	0.51	3.5	63.5	.01*	.006*	.1	.0001*	.01*	.002*	.004*	.02*	.009*	.04	****	.01*	.009	.004*	.009	1.0*	.004*
SAVANNAH RIVER																			,	,,,,,,	.009	1.0	.004*
at Port Wentworth, Georgia	3-1-61 7-10-61	6-20-61 10-15-61	0.01 0.02	0.18	1.3	5.0 5.5	.01*	.002*	.01	.00003*	.003*	.001	.001*	.006*	.002	.4 .15	.006	.003*	.001*	.001*	.005	0.3*	.001*
at North Augusta, South Carolina	3-1-61 7-10-61	6-20-61 10-15-61	0.02	0.13 0.14	1.2	4.0 4.0	.01*	.002*	.01	.00003*	.003*	.0006*	.001*	.006*	.005	.5	.003	.003*	.001* .001	.002*	.05	0.5*	.002* .01* .001*
SCHUYLKILL RIVER																•		,	,	.001		0.5	.001
at Philadelphia, Pa.	3-1-61 7-10-61	6-20-61 10-15-61	0.01	0.13	1.9	6.0	.01* .01*	.005*	.06 .03	.00008*	.008*	.002*	.003*	.02*	.006*	.005	.006	.008*	.003*	.003*	.005	0.8*	.003*
SHENANDOAN RIVER							***	,	,	.0000	.005	.0009-	.002*	.009*	.004*	.005	.008	.005*	.002	.002*	.007	0.5*	.002*
at Berryville, Virginia	7-10-61	10-15-61	0.12	0.26	3.3	19.0	.01*	.007*	.02	.0001*	.01*	.002*	.004*	.02*									
SNAKE RIVER											.01	.002	,004*	.024	.009*	.02	.004*	.01*	.004*	*400.	.004	1.0*	.004*
at Weiser, Idaho	7-10-61	10-15-61				ŀ		.01*	.01	.0002*	.02*	.003*	.006*	.03*	.61*	.01	.007*	.02*	.01	.007	.001+		
at Wawawai, Washington	3-1-61 7-10-61	6-20-61 10-15-61	0.03 0.15	0.52	2.3	10.0 29.0	.01* .01*	.003*	.08 .04	.00006*	.006*	.001*	.002*	.01*	.005*	.02	*200, *200,	.006*	.005	.005	.001	2.0* 0.6* 1.0*	.007* .002* .004*
SOUTH PLATTE RIVER				İ		į		l							,,,,				,00,	.007	.002	1.0	.004-
at Julesburg, Colorado	7-10-61	10-15-61	0.23	0.60	14.0	169.0	.01*	.04*	.03	.0006*	.06*	.04	.03*	.10*	.05*	.1	.03*	.06*	.03	.03*	.004*	6.0*	.03*
SUSQUEHANNA RIVER at Concwingo, Maryland	3-1-61 7-10-61	6-20-61 10-15-61	0.03	0.13 0.18	1.3	2.8	.01*	.002*	.02	.00004*	.004*	.0008*	.002*	*800.	.003*	.02	.002*	.004*	.002*	.002*	.002	0.40	.002*
at Sayre, Pennsylvania	3-1-61 7-10-61	6-20-61 10-15-61	0.01	0.24	2.7 1.0 2.3	10.0 2.8 9.5	.01* .01* .01*	.005 .002*	.07 .02	.00008* .00003* .00007*	.008* .003* .007*	.002* .0007*	.1 .001* .003*	.02* .007*	.007* .006 .006*	.02 .05 .007	.003* .002	.008* .003*	.001 .001*	.003* .001* .003*	.005	0.8* 0.3* 0.7*	.003*
TENNESSEE RIVER	l .			5	1								,			,			.000	.000	.006	0.7-	.003*
at Bridgeport, Alabama	3-1-61 7-10-61	6-20-61 10-15-61	0.13	0.19	1.3	4.0	.01*	.002*	.02	.00004*	.004*	.0008* .0009*	.002*	.008*	.003*	.03	.004*	.004*	.002*	.002*	.005	0.4*	.002*
at Chattanooga, Tennessee	3-1-61 7-10-61	6-20-61 10-15-61	0.02	0.24	1.2	4.0 10.0	.01* .01*	.002*	.02	.00004*	.00%*	.0008*	.002*	.008*	.003*	.03	.002*	.004*	.002	.002*	.002	0.5* 0.4* 0.7*	.002* .002*
TRUCKER RIVER								}										,		,	,	• "	,
at Farad, California	7-10-61	10-15-61	0.1	0.20	2.3	8.0	.01*					ļ											
YAKIMA RIVER	3-1-61	6-20-61	0.22		١.,																		
at Richland, Washington	7-10-61	10-15-61	0.22	0.33	1.6 5.0	5.0 25.0	.01*	.003*	.006	.00005*	.005*	.001*	.002*	.01* .02*	.004* -008*	.01	.002* •400.	.005*	.003 .008	.002	.002	0.5*	.002*
YELLOWSTONE RIVER								1		1	ļ				ļ	l	ŀ	1					
neur Sidney, Montana	3-1-61 7-10-61	6-20-61 10-15-61	0.09	0.77 0.65	4.6 5.5	78.0 105.0	.01°	.02*	.01* .06	.0003* .0003*	.03* .03*	.007*	.01* .01*	.07* .06*	.03*	.01	.01* .01*	.03*	.01*	.01*	.002* .006	3.0° 3.0°	.01*

^{*} ACTUAL VALUE IS LESS THAN THE AMOUNT SHOWN REPORTED RESULT INDICATES LIMIT OF SENSITIVITY AT WHICH TEST WAS PERFORMED. SEE TEXT FOR EXPLANATION.

