VSMD1X6_SERIES 微型一体化步进电机控制驱动器 (CAN 总线型)

【序言】

感谢您购买本公司微型步进电机驱动器,本使用说明书将详细介绍该产品的各项功能和操作方法,让您充分感受本产品带给您的方便、快捷和安全。

【安全使用说明】

- 使用前请务必仔细阅读本使用说明书,按照说明书要求进行接线,以 免损坏产品;
- 请不要将本产品暴露在潮湿过高的地方;
- 请不要将接线端子短路,否则会毁坏产品;
- 如果步进电机额定电流大于驱动器峰值电流,请将驱动器电流调整 到峰值电流以下,以免损坏电机;

【命名规则】 **VSMD 1XX** <u>0XX</u> 伟恩斯步进电机驱动器 系 列 峰值电流 接插件类型 116: CAN 025: 2.5A T: 插拔式 126: CAN 闭环 045: 4.5A P: 螺纹式 136: CAN 高性 能版本 146: CAN 闭环 高性能版本

目录

1.	简介	1
2.	接线方式	3
2.1.	接 线 端 口 描 述	3
2.2.	LED 指示	5
2.3.	强 制 100K 波 特 率 通 讯 方 式	5
2.4.	传 感 器 选 择	5
3.	CAN 通 讯	7
3.1.	控制字	7
3.2.	状态寄存器	7
3.3.	数据寄存器	9
3.4.	指令	13
4.	运行模式	15
5.	归零(ZERO)	16
6.	用周立功 CAN 工具测试	17
6.1.	CANPro	17
6.2.	启 动	17
6.3.	通讯 (发	18
6.3.1	l. 使能	18
6.3.2	2. 速度模式运行	19
6.3.3	3. 获取寄存器值(单个)	20
6.3.4	4. 写数据寄存器值(1 个或者 2 个)	21
6.3.5	5. 获取寄存器值(多个)	22
7.	性能指标	23
7.1.	电气性能	23
7.2.	使用环境	23
7.3.	尺寸及重量	23
8.	附件	24
8.1.	CAN 总线概述	24
9.	联系	25

1. 简介

VSMD1X6 系列驱动器,是基于 CAN 总线的运动控制和电机驱动一体化的步进电机控制驱动模块。由于按照电机尺寸设计,可以跟电机安装在一起,也可以分体安装。

【基本参数】

- ・ 輸 入 电 压: 12-24VDC(025 系 列)12-36V(045 系 列)
- 峰值电流: 最大 2.5A (025 系列) 4.5A (045 系列) (24V, 25°C) 微步细分: 支持最高 32 细分 (025 系列), 256 细分 (045 系列)

【通讯】

- · 通讯方式: CAN2.0
- ·通讯协议: CAN 自定义
- ·通讯速率: 20K 1M

【结构】

- · 铸钼外壳: 坚固、散热好
- ・外形尺寸: 42.5*42.5*16.8mm(025 系列) 57*57*21mm(045 系列)
- · 安装孔位: 适合标准 42 电机 (025 系列)、57 电机 (045 系列)

【特点】

- ·采用32位微处理器控制,运动控制更精确
- 根据指令, 完成各种复杂运动的控制(平滑加减速、平滑转向等)
- 可运行在速度模式、位置模式, 并能自由切换
- 独特的电流控制模式,能在保持平稳的前提下,减小噪声,降低发热量
- 内置归零功能,简单设置归零参数后,归零过程由驱动器完成,减轻用户工作量
- 内置离线模式,可以脱离上位机运行(适用于展示、演示的场合)
- ·传感器接口 S1、S2 支持 3.3V-24V 兼容,并支持共阳/共阴两种连接方法(无需限流电阻)
- 传感器接口 S3、S4、S5、S6 是 TTL 电平 (3.3V-5V), 可配置为输入/输出
- · 支持 CAN 自定义通讯协议,最多可级联 110 个驱动器。
- · 支持正交编码器的闭环功能(126系列)

【应用领域】

- · 自动化设备
- · 家电设备
- ・监控摄像
- 打印机
- ・扫描仪
- · 办公自动化设备
- ・游戏机
- ・工厂自动化
- 机器人
- 浮球矩阵
- 矩阵墙
- 医疗仪器

2. 接线方式

2.1. 接线端口描述

[VSMD1X6_025T]

接口	说明
A+ A- B- B+	电机接口
VCC	电源(12V-24V)
GND	电源地
CANH CANL	CAN 接口(两组)
S1+ S1-	传 感 器 1 (3.3-24V 兼容)
S2+ S2-	传 感 器 2 (3.3-24V 兼容)
S3	传感器(3.3-5V兼容),复用正交编码器A
S4	传感器(3.3-5V兼容),复用正交编码器B
S5 S6	传 感 器 (3.3-5V 兼 容)
3V3	3.3V 输出(<100mA)
SGND	信号地

※ 两组 CAN 接口用于驱动器级联。

[VSMD1X6_045T]

接口	说明
A+ A- B- B+	电机接口
VCC	电源(12V-36V)
GND	电 源 地
CANH CANL	CAN 接口(两组)
S1+ S1-	传 感 器 1 (3.3-24V 兼 容)
S2+ S2-	传 感 器 2 (3.3-24V 兼 容)
S3	传感器(3.3-5V兼容),复用正交编码器A
S4	传感器(3.3-5V兼容),复用正交编码器B
S5 S6	传 感 器 (3.3-5V 兼 容)
3V3	3.3V 输出(<100mA)
SGND	信号地

※ 两组 CAN 接口用于驱动器级联。

2.2. LED 指示

蓝色 LED 指示当前驱动器的工作状态。

序号	LED 指示	状态
1	长 亮/长 灭	位置故障
2	慢闪	停止
3	快闪	运行
4	双闪	驱动器硬件故障

2.3. 强制 100K 波特率通讯方式

※ 如果忘记当前 VSMD 的波特率的话,可以使用强制方式让波特率固定在 100K,以方便重新给 VSMD 设置波特率。配置完波特率后,重启生效。

※ 将 S3 和 S4 端子用信号线短接,再给驱动器上电。这时不管内部保存的波特率是多少,都会强制采用 100K 波特率跟上位机通讯。

2.4. 传感器选择

传感器从性质上来看,主要分为有源和无源的。常用的光电开关,是有源的,微动开关是无源的。如何选择开关,以及如何连接,需要根据实际情况来决定。

传感器从导通特性上看,又分为常通型,常断型。使用常通型的传感器开放状态是高电平,触发状态是低电平。使用常闭型的传感器,开放状态是低电平,触发状态是高电平。

【光电开关】

【微动开关】

微动开关连接 VSMD 的方式比较简单,不需要给传感器供电,是最简单的一种连接方式。把传感器的 COM 端连接 GND, S3/S4/S5/S6 根据需要(常开,常闭)连接到传感器的 NO/NC 管脚即可。

3. CAN 通讯

VSMD1X6 采用 CAN 2.0 通讯,使用扩展数据帧进行通讯。扩展数据帧由 29 位扩展标识符+8字节数据组成。29 位扩展标识符的结构如下:

位名称	说 明
27BIT 28BIT	固定 0
TARGET ID (BIT27:BIT19)	目标设备号
18BIT	固定 0
SOURCE ID (BIT17:BIT9)	源设备号
C1 C0	控制字
CMD / REG ADDR (BIT6:BIT0)	指令 / 寄存器地址

※ 设备号支持范围为 0x001 – 0x1FE, 目标设备号为 0x000, 并且 18BIT 为 1 时, 为广播。

3.1. 控制字

控制字描述总线上数据传送的类型和方式。

C1	CO	说 明
0	0	状态寄存器(读) - VSMD 返回给主机
0	1	数据寄存器(读) - VSMD 返回给主机
1	0	数据寄存器(写) - 主机发送给 VSMD
1	1	指令 - 主机发送给 VSMD

3.2. 状态寄存器

当控制字 C1=0 C0=0 时,代表 VSMD 向主机发送状态寄存器值,此时,扩展标识符的最后7位代表状态寄存器地址,状态寄存器由最多 128 个 32 位的寄存器组成。

由于数据帧最多能传送8字节数据,所以每一帧最多能传送2个寄存器数据。状态寄存器的内容如下:

地址	名 称	说 明
0x00	SPD	当前速度(浮点数: 32BIT)
0x01	POS	当前位置(有符号整数: 32BIT)
0x02	STATUS	状态位(无符号整数: 32BIT)
0x03-0x09	-	保 留
0x0A-0x0F	型号+版本号	VSMD116-025T-1.0.000.171010

【状态位说明】

状态位	名称	说明	值
0	S1	传感器 1 状态	0 - 低电平/1 - 高电平
1	S2	传感器2状态	0 - 低电平/1 - 高电平
2	S3	传感器 3 状态	0 - 低电平/1 - 高电平
3	S4	传感器 4 状态	0 - 低电平/1 - 高电平
4	POS	当前 位 置 与 目 标 位 置 相 等	0 - 不相等/1 - 相等
5	SPD	当前 速 度 与 目 标 速 度 相 等	0 - 不相等/1 - 相等
6	FLT	硬件错误 (需复位)	0 - 正常
			1 - 发生硬件错误
7	ORG	原点标志位	0 - 不在原点/1 - 在原点
8	STP	停止 标 志 位	0 - 没有停止(运转)
			1 - 停止
9	CMD_WRG	指令错误,指令不对或者参数值超	0 - 指令正确/
		出限定范围。	1 - 指令错误
10	FLASH_ERR	FLASH 错误,一般在读写 FLASH 保	0 - 正常
		存的参数时发生。	1 - 发生 FLASH 读写异常
11	ACTION	离 线 运 行 标 志	0 - 无离线运行
			1 - 离线运行中
12	_	保 留	
13	PWR	电 机 使 能 标 志	0 - 失能/1 - 使能
14	ZER0	归零结束标志	0 - 无归零/归零中
			1 - 归零结束
15	_	保 留	
16	S5	传 感 器 5 状 态	0 - 低电平/1 - 高电平
17	S6	传 感 器 6 状 态	0 - 低电平/1 - 高电平
_	_	保 留	
20	OTS	过 热	0 - 正常/1 - 过热保护
21	OCP	过 流	0 - 正常/1 - 过流保护
22	UV	低压	0 - 正常/1 - 低压保护
23	-	保 留	
24	ENC_ERR	编码器错误(堵转、编码器故障)	0 -正常/1 -编码器错误

3.3. 数据寄存器

当控制字 C1=0 C0=1 时,代表 VSMD 向主机发送数据寄存器值,当控制字 C1=1 C0=0 时,代表主机向 VMSD 写数据寄存器值,此时,扩展标识符的最后 7 位代表数据寄存器地址,数据寄存器由最多 128 个 32 位的寄存器组成。

由于数据帧最多能传送8字节数据,所以每一帧最多能传送2个寄存器数据。状态寄存器的内容如下:

地址	名 称	说明
0x00	CID	设备号
0x01	BDR	波 特 率
0x02	MCS	细分
		0: 整步
		1 : 1/2 细分
		2: 1/4 细分
		3 : 1/8 细分
		4: 1/16 细分
		5 : 1/32 细分
		6 : 1/64 细分(045 系列及 13X、14X 系列)
		7: 1/128 细分(045 系列及 13X、14X 系列)
		8 : 1/256 细分(045 系列及 13X、14X 系列)
0x03	SPD	目标速度(-192000,192000)pps
0x04	ACC	加速度(0,192000000)pps/s
0x05	DEC	减速度(0,192000000)pps/s
0x06	CRA	加速电流(A)
		0-2.5:(025 系列)
		0-4.5:(045 系列)
0x07	CRN	工作电流(A)
		0-2.5:(025 系列)
		0 – 4.5 : (045 系列)
0x08	CRH	保 持 电 流 (A)
		0 – 2.5 : (025 系列)
		0-4.5:(045 系列)
0x09	S1F – S1R – S2F – S2R	S1 S2 的 功 能 设 置
0x0A	S3F – S3R – S4F – S4R	S3 S4 的 功 能 设 置
0x0B	S5F – S5R – S6F – S6R	S5 S6 的 功 能 设 置
0x0C	-	保留
0x0D	S_CONFIG	S1-S6 的配置 (输入/输出)
		0: 输入
		1: 输出
		位定义:
		BITO : S1 固定输入

		BIT1 : S2 固定输入
		BIT2 : S3
		BIT3 : S4
		BIT4 : S5
		BIT5 : S6
0x0E	ZMD	归零模式
		0 : 关闭归零
		1 : 一次归零
		2 : 一次归零+安全位置
		3 : 二次归零
		4 : 二次归零+安全位置
		5 : 无感归零(136/146 系列)
0x0F	OSV	归零传感器开放状态电平
		0: 低电平
		1: 高电平
0x10	SNR	归 零 传 感 器 号
		0 : S1
		1 : S2
		2 : S3
		3 : S4
		4 : S5
		5 : S6
0x11	ZSD	归零速度
0x12	ZSP	归零后安全位置
0x13	DMD	离线模式
		0: 普通模式
		1: 离线开始前先归零
0x14	DAR	上电无通讯自动离线运行时间
		0: 不自动运行
		1-60: 时间(秒)
0x15	_	保留
0x16	_	保留
0x17	MSR-MSV-PSR-PSV	MSR (负极限传感器)
		0: 无负极限
		1 : S1
		2 : \$2
		3 : S3
		4 : S4
		5 : S5
		6 : S6
		MSV (负极限触发电平)
		0: 低电平
		1 : 高电平
<u> </u>		同"[1]

		(IT HH II HH)
		PSR (正极限传感器)
		0 : 无正极限
		1 : S1
		2 : S2
		3 : S3
		4 : S4
		5 : S5
		6 : S6
		PSV (正极限触发电平)
		0 : 低电平
		1 : 高电平
0x18	PAE	上电自动使能
		0 : 不自动使能
		1 : 自动使能
0x19	CAF	指令一问一答支持
		0 : 指令不支持一问一答
		1 : 指令支持一问一答
0x1A	ZAR	上电自动归零
		0 : 上电不归零
		1 : 上电归零
0x1B	SDS	
0x1C	ZCR	无 感 归 零 时 的 运 行 电 流
0x20	EMOD	
		0 : 编码器功能关
		1 : 编码器功能开
	ELNS	编 码 器 线 数 (10-10000)
	ESTP	每 圏 整 步 数 (10-10000)
	ERTY	重试次数
		0 : 无限重试
		1-100 : 重试次数
	EDIR	编码器方向(用于纠正与实际运动方向关系)
		0: 负方向
		1 : 正方向
	EZ	编码器灵敏度
	EWR	到达重试上限后的处理
		0: 不处理
		1 : 停止
		2 : 失能 (OFF)
		2 · 八批(OII)

【传感器功能】

功能号	说 明
0	无动作(只有状态位变化通知)
1	重新设置原点位置
2	减速停止
3	减速停止,并在停止后重新设置原点位置
4	立刻停止
5	立刻停止,并在停止后重新设置原点位置
6	正向连续运转(正速度)
7	反向连续运转(负速度)
8	启动离线功能
9	停止离线功能

3.4. 指令

当控制字 C1=1 C0=1 时,代表主机向 VSMD 发送指令,此时,扩展标识符的最后7位代表指令码,参数是最多8个字节数据(D1-D8)。内容如下:

# 1			
0x02 OFF 电机失能 0x03 ORG 设置当前位置为原点 0x04 STP 停止 D1=0:減速停止 D1=1:立刻停止 0x05 MOV 连续转动 D1-D4:速度 D1-D4:绝对位置 0x06 POS D1-D4:绝对位置 0x07 SAV 保存 0x08 OUTPUT S1-S6 输出功能 D1=0:S1(无效) D1=1:S2(无效) D1=2:S3 D1=2:S3 D1=3:S4 D1=4:S5 D1=4:S5 D1=5:S6 D2=0:低电平输出 D2=1:高电平输出 0x09 ZERO START 执行归零 0x0A ZERO STOP 归零终止 0x0B RMV 相对移动 D1-D4:距离(可正负) OxOC - 保留 0x0D - 保留	指令码	名 称	说 明
0x03 ORG 设置当前位置为原点 0x04 STP 停止 D1=0:減速停止 D1=1:立刻停止 0x05 MOV 连续转动 D1-D4:速度 D1-D4:速度 0x06 POS D1-D4:绝对位置 0x07 SAV 保存 0x08 OUTPUT S1-S6 输出功能 D1=0:S1(无效) D1=1:S2(无效) D1=2:S3 D1=2:S3 D1=2:S6 D1=3:S4 D1=5:S6 D2=0:低电平输出 D2=1:高电平输出 D2=1:高电平输出 0x09 ZERO START 执行归零 0x0A ZERO STOP 归零终止 0x0B RMV 相对移动 D1-D4:距离(可正负) OxOC - 保留 0x0C - 保留	0x01	ENA	电机使能
0x04 STP 停止 D1=0: 減速停止 D1=1: 立刻停止 0x05 MOV 连续转动 D1-D4: 速度 D1-D4: 速度 0x06 POS D1-D4: 绝对位置 0x07 SAV 保存 0x08 OUTPUT S1-S6 输出功能 D1=0: S1 (无效) D1=1: S2 (无效) D1=2: S3 D1=3: S4 D1=4: S5 D1=5: S6 D2=0: 低电平输出 D2=1: 高电平输出 D2=1: 高电平输出 D2=1: 高电平输出 0x09 ZERO START 执行归零 0x0A ZERO STOP 归零终止 0x0B RMV 相对移动 D1-D4: 距离(可正负) OxOC - 保留 0x0D - 保留	0x02	OFF .	电机失能
D1=0 : 減速停止 D1=1 : 立刻停止	0x03	ORG	设置当前位置为原点
D1=1 : 立刻停止	0x04	STP	停止
0x05 MOV 连续转动			D1=0 : 减速停止
D1-D4:速度 0x06 POS D1-D4:绝对位置 0x07 SAV 保存 0x08 OUTPUT S1-S6 输出功能			D1=1 : 立刻停止
0x06 POS D1-D4: 绝对位置 0x07 SAV 保存 0x08 OUTPUT S1-S6 输出功能 D1=0: S1 (无效) D1=1: S2 (无效) D1=1: S2 (无效) D1=2: S3 D1=3: S4 D1=4: S5 D1=5: S6 D2=0: 低电平输出 D2=1: 高电平输出 D2=1: 高电平输出 0x09 ZERO START 执行归零 0x0A ZERO STOP 归零终止 0x0B RMV 相对移动 D1-D4: 距离(可正负) 0x0C - 保留 0x0D - 保留 0x0E - 保留	0x05	MOV	连续转动
0x07 SAV 保存 0x08 OUTPUT S1-S6 输出功能 D1=0:S1 (无效) D1=1:S2 (无效) D1=1:S2 (无效) D1=2:S3 D1=3:S4 D1=4:S5 D1=5:S6 D2=0:低电平输出 D2=1:高电平输出 D2=1:高电平输出 0x09 ZERO START 执行归零 0x0A ZERO STOP 归零终止 0x0B RMV 相对移动			D1-D4 : 速度
0x08 OUTPUT S1-S6 输出功能 D1=0:S1 (无效) D1=1:S2 (无效) D1=1:S2 (无效) D1=2:S3 D1=3:S4 D1=3:S4 D1=5:S6 D2=0:低电平输出 D2=1:高电平输出 D2=1:高电平输出 0x09 ZERO START 执行归零 0x0A ZERO STOP 归零终止 0x0B RMV 相对移动 D1-D4:距离(可正负) 0x0C 0x0C - 保留 0x0E - 保留	0x06	POS	D1-D4 : 绝对位置
D1=0 : S1 (无效) D1=1 : S2 (无效) D1=2 : S3 D1=3 : S4 D1=4 : S5 D1=5 : S6 D2=0 : 低电平输出 D2=1 : 高电平输出 D2=1 : 高电平输出 D2=1 : 高电平输出 Ox09 ZERO START 执行归零 Ox0A ZERO STOP 归零终止 Ox0B RMV 相对移动 D1-D4 : 距离(可正负) Ox0C - 保留 Ox0C - 保留 Ox0C - 保留	0x07	SAV	保存
D1=1 : S2 (无效) D1=2 : S3 D1=3 : S4 D1=4 : S5 D1=5 : S6 D2=0 : 低电平输出 D2=1 : 高电平输出 Ox09 ZERO START 执行归零 Ox0A ZERO STOP 归零终止 Ox0B RMV 相对移动 D1-D4 : 距离(可正负) Ox0C - 保留 Ox0C - 保留	0x08	OUTPUT	S1-S6 输出功能
D1=2 : S3 D1=3 : S4 D1=4 : S5 D1=5 : S6 D2=0 : 低电平输出 D2=1 : 高电平输出 0x09 ZERO START 执行归零 0x0A ZERO STOP 归零终止 0x0B RMV 相对移动 D1-D4 : 距离(可正负) 0x0C - 0x0D - 0x0E - 0x0E -			D1=0 : S1 (无效)
D1=3 : S4 D1=4 : S5 D1=5 : S6 D2=0 : 低电平输出 D2=1 : 高电平输出 0x09 ZERO START 执行归零 0x0A ZERO STOP 归零终止 0x0B RMV 相对移动 D1-D4 : 距离(可正负) 0x0C - 0x0D - 0x0E - 0x0E -			D1=1 : S2 (无效)
D1=4 : S5 D1=5 : S6 D2=0 : 低电平输出 D2=1 : 高电平输出 0x09 ZERO START 执行归零 0x0A ZERO STOP 归零终止 0x0B RMV 相对移动 D1-D4 : 距离(可正负) 0x0C - 0x0D - 0x0E - 0x0E -			D1=2 : S3
D1=5 : S6 D2=0 : 低电平输出 D2=1 : 高电平输出 Ox09 ZERO START 执行归零 0x0A ZERO STOP 归零终止 0x0B RMV 相对移动			D1=3 : S4
D2=0 : 低电平输出 D2=1 : 高电平输出 0x09 ZERO START 执行归零 0x0A ZERO STOP 归零终止 0x0B RMV 相对移动 D1-D4 : 距离(可正负) 0x0C - 保留 0x0D - 保留 0x0E - 保留			D1=4 : S5
D2=1:高电平输出 0x09 ZERO START 执行归零 0x0A ZERO STOP 归零终止 0x0B RMV 相对移动			D1=5 : S6
0x09 ZERO START 执行归零 0x0A ZERO STOP 归零终止 0x0B RMV 相对移动			D2=0 : 低电平输出
OxOA ZERO STOP 归零终止 0x0B RMV 相对移动			D2=1 : 高电平输出
0x0B RMV 相对移动 D1-D4: 距离(可正负) 0x0C - 保留 0x0D - 保留 0x0E - 保留	0x09	ZERO START	执行归零
D1-D4: 距离(可正负) 0x0C - 保留 0x0D - 保留 0x0E - 保留	0x0A	ZERO STOP	归零终止
0x0C - 保留 0x0D - 保留 0x0E - 保留	0x0B	RMV	相对移动
0x0D - 保留 0x0E - 保留			D1-D4 : 距离(可正负)
Ox0E – 保留	0x0C	_	保留
	0x0D	-	保留
OxOF – 保留	0x0E	-	保留
	0x0F	-	保留

指令码	名 称	说 明
0x10	ACTION START	启动离线
0x11	ACTION STOP	停止离线
0x12	ACTION CLEAR	清除离线节点
0x13	ACTION ZERO	增加归零节点
0x14	ACTION SPEED	增 加速 度 模 式 节 点
0x15	ACTION POSITION	增 加 位 置 模 式 节 点
0x16	ACTION DELAY	增加延时节点
_	_	保 留
0x1D	ENC	编码器功能
		D1=0 : 清 除 编 码 器 错 误 标 志 位
0x1E	READ STATUS REGS	读取状态寄存器 ※
		D1 : 寄存器地址 (0-7Fh)
		D2 : 数量(1-80h)
0x1F	READ DATA REGS	读取数据寄存器 ※
		D1 : 寄存器地址 (0-7Fh)
		D2 : 数量 (1-80h)

※关于获取寄存器的值,有两种,一种是一次获取单个寄存器的值,一种是一次获取多个连续寄存器的值。例如:

如果要获取状态寄存器当前速度的值:

D1 = 00 D2 = 01 返回 1 帧数据(4字节)

如果要同时获取当前速度和当前位置信息:

D1 = 00 D2 = 02

返回 1 帧数据(D1-D4:速度)(D5-D8:位置)

如果要获取速度、位置、状态标志的值:

D1 = 00 D2 = 03

返回2帧数据

第一帧数据 (D1-D4:速度) (D5-D8:位置)

第二帧数据 (D1-D4: 状态标志)

4. 运行模式

VSMD 驱动有四个运行模式:脱机、停止、速度模式、位置模式。并且,速度模式和位置模式可以随意切换,并立刻执行,不需要等待前一个指令运行结束。

※ 模式内的目标速度或者目标位置变化,停止、速度模式以及位置模式模式之间的切换,只要是当前速度跟目标速度不一致,或者位置方向与速度反向,都会自动启动加减速,平滑运转到目标速度或者目标位置。整个过程都会进行平滑的加减速运动,避免急停或者突然转向。并且在整个运动过程中,电流会根据当前的运行状况自动匹配,让扭矩,噪声以及电机发热得以很好的控制。

5. 归零(ZERO)

归零功能是 VSMD 驱动器很具特色的一个功能。当设定好归零用的参数后,可以由 VSMD 完成整个归零过程,可以很大程度上减轻主控机的负担,也可以让对归零不是很熟悉的新手快速实现系统归零功能。

VSMD 的归零,采用的是二次逼近归零方式。归零的运行由设置的参数来控制。归零结束后,会计状态位 ZERO 置位,通过查询状态位可以判断归零动作是否完成。

二次逼近归零 (zmd=1 zsd=-1200 zsp=2400 snr=0 OSV=0):

- ※ 如果归零开始时,传感器已经处于触发状态,则从(二)开始运行。
- ※ 归零的速度,以及合适的安全位置,要根据实际情况来设置。
- ※ 请注意归零速度以及安全位置的方向(正负)

6. 用周立功 CAN 工具测试

6.1. CANPro

6.2. 启动

※ 驱动器默认波特率为 100kbps

6.3. 通讯(发送指令/接收数据)

我们通过3种指令测试驱动器。

6.3.1. 使能

帧 ID: 00080781

目标 ID 为 1 (默认),源 ID (周立功 CAN 模块)为 3,指令模式,发送指令码 01 (使能)此指令无参数,所以 DLC 为 0 即可。

发送此指令,让设备号为01的驱动器使能。

6.3.2. 速度模式运行

帧 ID: 00080785 参数: 46 48 00 00 (浮点数: 12800.00)

目标 ID 为 1 (默认), 源 ID (周立功 CAN 模块) 为 3, 指令模式, 发送指令码 05 (MOV) 此指令带 4 个数据的参数,表示速度, 0x46480000 转换为浮点数值为 12800.00。

发送此指令, 计设备号为 01 的驱动器开始转动

6.3.3. 获取寄存器值(单个)

帧 ID: 0008079E 参数: 00 01

目标 ID 为 1 (默认), 源 ID (周立功 CAN 模块) 为 3, 指令模式, 发送指令码 1E (获取状态寄存器)

此指令带 2 个数据的参数, D1 为寄存器起始地址, D2 为寄存器个数

发送此指令,让设备号为01的驱动器返回地址为00的状态寄存器值(速度)

返回帧的目标 ID 为 3 (CAN 模块),源 ID 为 1 (驱动器 ID),控制字为 00 (状态寄存器)起始寄存器地址为 00

返回的数据 46 48 00 00 浮点数表示为: 12800.00

6.3.4. 写数据寄存器值(1个或者2个)

帧 ID: 00080703 参数: 46 9C 40 00

目标 ID 为 1 (默认),源 ID (周立功 CAN 模块)为 3,写数据寄存器模式,地址为 03 (目标速度)

此指令带 4 个 数据的参数, 46 9C 40 00 (速度: 20000.00)

发送此指令,设置设备号为01的驱动器的目标速度为20000.00

6.3.5. 获取寄存器值(多个)

帧 ID: 0008079E 参数: 00 03

目标 ID 为 1 (默认), 源 ID (周立功 CAN 模块) 为 3, 指令模式, 发送指令码 1E (获取状态寄存器)

此指令带 2 个数据的参数, D1 为寄存器起始地址, D2 为寄存器个数

发送此指令, 让设备号为 01 的驱动器返回地址为 00 开始的 3 个状态寄存器值(速度、位置、标志位)

返回帧的目标 ID 为 3 (CAN 模块),源 ID 为 1 (驱动器 ID),控制字为 00 (状态寄存器)

第一帧的起始寄存器地址为00

第二帧的起始寄存器地址为02

7. 性能指标

7.1. 电气性能

正常工作电压(DC)	12V~24V(025 系列)12-36V(045 系列)
电机输出电流	峰值 2.5A 实际电流可调(025 系列)
	峰值 4.5A 实际电流可调(045 系列)
驱动方式	CAN 2.0
励磁方式	最大 32 细分 (025 系列)、256 细分 (045 系列)
波特率	20KHz – 1MHz
绝缘电阻	常温常压下>100MΩ
绝缘强度	常温常压下 0.5KV, 1 分钟

7.2. 使用环境

冷却方式	自然冷却
工作温度	-40 °C ~ 85 °C
工作湿度	≤80%

7.3. 尺寸及重量

外形尺寸	42.5mm × 42.5mm × 16.8mm
重量	0.1Kg

8. 附件

8.1. CAN 总线概述

CAN 是 Controller Area Network 的缩写(以下称为 CAN),是 ISO 国际标准化的串行通信协议。在汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应"减少线束的数量"、"通过多个 LAN,进行大量数据的高速通信"的需要,1986 年德国电气商博世公司开发出面向汽车的 CAN 通信协议。此后,CAN 通过 ISO11898 及 ISO11519 进行了标准化,在欧洲已是汽车网络的标准协议。

CAN 的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。现场总线是当今自动化领域技术发展的热点之一,被誉为自动化领域的计算机局域网。它的出现为分布式控制系统实现各节点之间实时、可靠的数据通信提供了强有力的技术支持。

9. 联系

北京伟恩斯技术有限公司

公司主页: http://www.vincetech.com
公司销售: sales@vincetech.com
公司服务: service@vincetech.com
技术支持: support@vincetech.com

公司电话: 18612497280 18681529366

技术 QQ

徐工: 67674475 朱工: 1413633887

QQ 交流群二维码:

群名称: VINCE 步进电机驱动器技术交流

群号码: 602789040