MAT347: Groups, Rings and Fields Midterm 2 Review

QiLin Xue

Fall 2021

Contents

1	Dasic Definitions	
2	Basic Theorems	2

1 Basic Definitions

Of sets:

- Ring: Set $(R, +, \times)$ where (R, +) is abelian group, \times is associative and distributive.
- Integral domain: No zero divisors
- Field: Finite integral domain
- \bullet **Subring:** Subgroup of R that is closed under multiplication.
- Ideal: subring that is closed under left/right multiplication, i.e. $rI \subseteq I$.
- Quotient Ring: R/I where I is ideal

Of elements:

- **Zero divisor:** an element that divides 0
- Unit: an element that has an inverse

Other:

• Ring homomorphism: $\phi(a+b) = \phi(a) + \phi(b), \phi(ab) = \phi(a)\phi(b)$

2 Basic Theorems

ullet First Isomorphism Theorem: $\varphi:R o S,$ then $\ker \varphi$ is an ideal and

$$R/\ker\varphi\cong\varphi(R)\tag{2.1}$$

Natural projection is $R \to R/I$ defined by $r \mapsto r + I$. Every ideal is the kernel of a ring homomorphism.