\sim	•	4
()	1117	4
W.	uiz	

Math 54-Lec 3, Linear Algebra, Fall 2017

SECTION:

Name:

You have 30 minutes to complete this quiz. To receive full credit, you must justify your answers.

Problem 1.(5 Points) Let $W \subseteq \mathbb{R}^n$ be the subset of \mathbb{R}^n containing all vectors whose entries sum to zero. Verify that W is a *subspace* of \mathbb{R}^n .

Problem 2.(5 points) Determine whether the following set of vectors is a basis for \mathbb{P}_2 , the vector space of polynomials of degree ≤ 2 .

$${1+2x-x^2,1+x^2,2+x+x^2}$$

Problem 3.(1 point each.) Label the following statements true or false. You do not need to justify your answers.

- (a.) ______ If $H = Span\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}\}$, then $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}\}$ is a basis for H.
- (b.) _____ If A is an invertible $n \times n$ matrix, then the columns of A form a basis of \mathbb{R}^n
- (c.) \mathbb{R}^2 is a subspace of \mathbb{R}^3 .
- (d.) _____ If B is a row-echelon form of a matrix A, then the columns of B form a basis for ColA, the column space of A.
- (e.) _____ If $A = A^T$, then the rows of A form a basis for ColA, the column space of A.