Devoir surveillé n°09: corrigé

SOLUTION 1.

- La linéarité est évidente. Soit P ∈ Ker φ. Alors x₁,...,x_p sont des racines de P de multiplicité au moins égale à 2. Ainsi P compte au moins 2p racines comptées avec multiplicité. Or deg P < 2p donc P est nul. Par conséquent, Ker φ = {0} et φ est injectif. Puisque dim R_{2p-1}[X] = dim R^{2p} = 2p, φ est un isomorphisme.
- **2.** Il suffit de constater que P est l'unique antécédent de $(a_1, \ldots, a_p, b_1, \ldots, b_p)$ par φ dans $\mathbb{R}_{2p-1}[X]$.
- 3. On a clairement $Q_i(x_i) = 1$ et $Q_i(x_i) = 0$ pour $j \neq i$.
- 4. Puisque pour tout $j \neq i$, $(X x_j)^2$ divise Q_i , x_j est une racine de Q_i de multiplicité au moins égale à 2. Ainsi $Q_i(x_j) = Q_i'(x_j) = 0$. C'est du cours : $\frac{Q_i'}{Q_i} = \sum_{j \neq i} \frac{2}{X x_j}$. En particulier, $\frac{Q_i'(x_i)}{Q_i(x_i)} = \sum_{j \neq i} \frac{2}{x_i x_j}$. Or $Q_i(x_i) = 1$ donc $Q_i'(x_i) = \sum_{j \neq i} \frac{2}{x_i x_j}$.
- 5. Posons $Q = \sum_{i=1}^p \left[(1-Q_i'(x_i)(X-x_i)) \ a_i + (X-x_i)b_i \right] Q_i$. D'après les résultats des questions 3 et 4,

$$Q(x_j) = \sum_{i=1}^{p} \left[(1 - Q_i'(x_i)(x_j - x_i)) a_i + (x_j - x_i)b_i \right] Q_i(x_j) = (1 - Q_i'(x_i)(x_i - x_i))a_i + (x_i - x_i)b_i = a_i$$

 $car Q_{i}(x_{j}) = \delta_{i,j}.$

Ensuite

$$Q' = \sum_{i=1}^{p} (b_i - Q_i'(x_i))Q_i + [(1 - Q_i'(x_i)(X - x_i)) \alpha_i + (X - x_i)b_i]Q_i'$$

puis

$$\begin{split} Q'(x_j) &= \sum_{i=1}^p (b_i - Q_i'(x_i))Q_i(x_j) + \left[(1 - Q_i'(x_i)(x_j - x_i)) \ \alpha_i + (x_j - x_i)b_i \right] Q_i'(x_j) \\ &= (b_i - Q_i'(x_i))Q_i(x_i) + \left[(1 - Q_i'(x_i)(x_i - x_i)) \ \alpha_i + (x_i - x_i)b_i \right] Q_i'(x_i) \\ &= b_i - Q_i'(x_i) + Q_i'(x_i) = b_i \end{split}$$

car $Q_i(x_j) = \delta_{i,j}$. Enfin, $\deg Q_i = 2p-2$ et $\deg(X-x_i)Q_i = 2p-1$ donc $\deg Q \leqslant 2p-1$. Par unicité du polynôme P de la question 2, P=Q.

6. Tout d'abord, les polynômes Q_i et $(X - x_i)Q_i$ sont bien dans $\mathbb{R}_{2p-1}[X]$. Soit $P \in \mathbb{R}_{n-1}[X]$. En posant $a_i = P(x_i)$ et $b_i = P'(x_i)$, on a d'après la question précédente

$$P = \sum_{i=1}^{p} \left[(1 - Q_i'(x_i)(X - x_i)) a_i + (X - x_i)b_i \right] Q_i \in \text{vect}(Q_1, \dots, Q_p, (X - x_1)Q_1, \dots, (X - x_p)Q_p)$$

La famille $(Q_1, \ldots, Q_p, (X-x_1)Q_1, \ldots, (X-x_p)Q_p)$ engendre donc $\mathbb{R}_{2p-1}[X]$. Puisqu'elle contient 2p éléments et que dim $\mathbb{R}_{2p-1}[X] = 2p$, c'est une base de $\mathbb{R}_{2p-1}[X]$.

SOLUTION 2.

1. a. On a évidemment $[(1-X)+X]^{2n-1}=1$. En développant le membre de gauche à l'aide de la formule du binôme de Newton, on obtient

$$\sum_{k=0}^{2n-1} \binom{2n-1}{k} X^k (1-X)^{2n-1-k} = 1$$

En séparant la somme en deux parties, on a également

$$\sum_{k=0}^{n-1} \binom{2n-1}{k} X^k (1-X)^{2n-1-k} + \sum_{k=n}^{2n-1} \binom{2n-1}{k} X^k (1-X)^{2n-1-k} = 1$$

ou encore

$$(1-X)^n \sum_{k=0}^{n-1} \binom{2n-1}{k} X^k (1-X)^{n-1-k} + X^n \sum_{k=n}^{2n-1} \binom{2n-1}{k} X^{k-n} (1-X)^{2n-1-k} = 1$$

Il suffit donc de poser

$$F_n = \sum_{k=0}^{n-1} \binom{2n-1}{k} X^k (1-X)^{n-1-k} \qquad \qquad G_n = \sum_{k=n}^{2n-1} \binom{2n-1}{k} X^{k-n} (1-X)^{2n-1-k}$$

 F_n et G_n ainsi définis sont des combinaisons linéaires de polynômes de $\mathbb{R}_{n-1}[X]$ donc des polynômes de $\mathbb{R}_{n-1}[X]$

b. Soit (F, G) un couple de polynômes de $\mathbb{R}_{n-1}[X]$ vérifiant

$$(1 - X)^n F + X^n G = 1$$

Alors

$$(1-X)^{n}(F-F_{n})+X^{n}(G-G_{n})=0$$

Ainsi X^n divise $F - F_n$. Or $deg(F - F_n) \le n - 1$ donc $F = F_n$. De même, $(1 - X)^n$ divise $G - G_n$ mais $deg(G - G_n) \le n - 1$ donc $G = G_n$.

2. a. En substituant 1 - X à X dans l'égalité $(1 - X)^n F_n(X) + X^n G_n(X) = 1$, on obtient

$$(1-X)^n G_n(1-X) + X^n F_n(1-X) = 1$$

Or $\deg G_n(1-X) = \deg G_n \leqslant n-1$ et $\deg F_n(1-X) = \deg F_n \leqslant n-1$ donc l'unicité des polynômes F_n et G_n prouvée à la question **1.b** montre que $F_n(1-X) = G_n(X)$ et que $G_n(1-X) = F_n(X)$.

b. En évaluant l'égalité $(1-X)^n F_n(X) + X^n G_n(X) = 1$ en 0, on obtient $F_n(0) = 1$. En évaluant cette même égalité en $\frac{1}{2}$, on obtient

$$\frac{1}{2^n}F_n\left(\frac{1}{2}\right) + \frac{1}{2^n}G_n\left(\frac{1}{2}\right) = 1$$

Or $G_n\left(\frac{1}{2}\right) = F_n\left(1 - \frac{1}{2}\right) = F_n\left(\frac{1}{2}\right)$ d'après la question **2.a**. Ainsi $F_n\left(\frac{1}{2}\right) = 2^{n-1}$. Enfin, on a prouvé à la question **1.a** que

$$F_n = \sum_{k=0}^{n-1} {2n-1 \choose k} X^k (1-X)^{n-1-k}$$

Ainsi $F_n(1) = \binom{2n-1}{n-1} = \binom{2n-1}{n}$.

3. a. Pour $x \neq 1$,

$$F_{n}(x) = \frac{1}{(1-x)^{n}} - \frac{x^{n}G_{n}(x)}{(1-x)^{n}} = \frac{1}{(1-x)^{n}} - x^{n-1}\frac{xG_{n}(x)}{(1-x)^{n}}$$

Or $\lim_{x\to 0}\frac{xG_\pi(x)}{(1-x)^n}=0$ car G_π est continue en 0. Il s'ensuit donc que

$$F_n(x) = (1-x)^{-n} + o(x^{n-1})$$

b. Le développement limité de $x \mapsto (1+x)^{\alpha}$ en 0 est usuel.

$$(1-x)^{-n} = \sum_{k=0}^{n-1} \frac{\prod_{j=0}^{k-1} (-n-j)}{k!} (-x)^k + o(x^{n-1})$$

$$= \sum_{k=0}^{n-1} \frac{(-1)^k \prod_{j=0}^{k-1} (n+j)}{k!} (-x)^k + o(x^{n-1})$$

$$= \sum_{k=0}^{n-1} \frac{\prod_{j=0}^{k-1} (n+j)}{k!} x^k + o(x^{n-1})$$

$$= \sum_{k=0}^{n-1} \frac{(n+k-1)!}{k!(n-1)!} x^k + o(x^{n-1})$$

$$= \sum_{k=0}^{n-1} \frac{(n+k-1)!}{k!(n-1)!} x^k + o(x^{n-1})$$

Puisque deg $F_n \leqslant n-1$, on a par unicité du développement limité, on a pour x au voisinage de 0

$$F_n(x) = \sum_{k=0}^{n-1} {n+k-1 \choose k} x^k$$

Comme tout voisinage de 0 est infini

$$F_n = \sum_{k=0}^{n-1} \binom{n+k-1}{k} X^k$$

4. a. Première méthode : En dérivant la relation $(1-X)^n + X^n G_n = 1$, on obtient

$$-n(1-X)^{n-1}F_n + (1-X)^nF_n' + nX^{n-1}G_n + X^nG_n' = 0$$

ou encore

$$(1-X)^{n-1} (nF_n - (1-X)F'_n) = X^{n-1} (nG_n + F'_n)$$

Comme X^{n-1} et $(1-X)^{n-1}$ sont premiers entre eux, X^{n-1} divise $nF_n - (1-X)F'_n$. De plus,

$$\deg(nF_n - (1 - X)F'_n \leqslant n - 1$$

donc il existe $k \in \mathbb{R}$ tel que $\mathfrak{nF}_\mathfrak{n} - (1-X)F'_\mathfrak{n} = kX^{\mathfrak{n}-1}$. En évaluant cette égalité en 1, on obtient $k = \mathfrak{nF}_\mathfrak{n}(1) = \mathfrak{n}\binom{2\mathfrak{n}-1}{\mathfrak{n}}$.

Seconde méthode : D'après 3.b, $F_n = \sum_{k=0}^{n-1} {n+k-1 \choose k} X^k$. Ainsi

$$\begin{split} nF_n - (1-X)F_n' &= n\sum_{k=0}^{n-1} \binom{n+k-1}{k} X^k - (1-X)\sum_{k=1}^{n-1} k \binom{n+k-1}{k} X^{k-1} \\ &= n + \sum_{k=1}^{n-1} \binom{n+k-1}{k} X^k - \sum_{k=1}^{n-1} k \binom{n+k-1}{k} X^{k-1} + \sum_{k=1}^{n-1} k \binom{n+k-1}{k} X^k \\ &= n + \sum_{k=1}^{n-1} (n+k) \binom{n+k-1}{k} X^k - \sum_{k=1}^{n-1} k \binom{n+k-1}{k} X^{k-1} \\ &= n + \sum_{k=1}^{n-1} (k+1) \binom{n+k}{k+1} X^k - \sum_{k=0}^{n-2} (k+1) \binom{n+k}{k+1} X^k \\ &= \sum_{k=0}^{n-1} (k+1) \binom{n+k}{k+1} X^k - \sum_{k=0}^{n-2} (k+1) \binom{n+k}{k+1} X^k \\ &= n \binom{2n-1}{n} X^{n-1} \end{split}$$

b. Le polynôme $X^{n-1}(1-X)^{n-1}$ admet évidemment une primitive $P_n \in \mathbb{R}[X]$. Alors, en posant $H_n = P_n - P_n(0)$, on a bien $H'_n = X^{n-1}(1-X)^{n-1}$ et $H_n(0)$. Si $K_n \in \mathbb{R}[X]$ vérifie $K'_n = X^{n-1}(1-X)^{n-1}$ et $K_n(0) = 0$ alors $K'_n = H'_n$ donc H_n et K_n sont égaux à une constante additive près. Puisque $H_n(0) = K_n(0)$, H_n et K_n sont égaux. On en déduit l'unicité de H_n .

c. En utilisant la question 4.a,

$$\begin{split} \left((1-X)^{n} F_{n} \right)' &= -n(1-X)^{n-1} F_{n} + (1-X)^{n} F_{n}' \\ &= -(1-X)^{n-1} \left(n F_{n} - (1-X) F_{n}' \right) \\ &= -n \binom{2n-1}{n} (1-X)^{n-1} X^{n-1} \\ &= -n \binom{2n-1}{n} H_{n}' = \left(1 - n \binom{2n-1}{n} H_{n} \right)' \end{split}$$

Les polynômes $(1-X)^n F_n$ et $1-n{2n-1 \choose n} H_n$ sont donc égaux à une constante additive près. Par ailleurs, puisque $F_n(0)=1$ et $H_n(0)=0$, ces deux polynômes coïncident en 0: ils sont donc égaux.

- 5. **a.** Puisque $(1-X)^n F_n = 1 n \binom{2n-1}{n} H_n$, on obtient $H_n(1) = \frac{1}{n \binom{2n-1}{n}}$.
 - **b.** Rappelons que pour tout $x \in \mathbb{R}$, $H'_n(x) = x^{n-1}(1-x)^{n-1}$.
 - ▶ Si n est impair, H_n' est positive sur $\mathbb R$ et ne s'annule qu'en 0 et 1. H_n est donc strictement croissante sur $\mathbb R$. De plus, deg $H_n = 2n-1 \geqslant 1$ donc les limites de H_n en $-\infty$ et $+\infty$ sont infinies. Les variations de H_n imposent $\lim_{-\infty} H_n = -\infty$ et $\lim_{+\infty} H_n = +\infty$.
 - ▶ Si n est pair, H'_n est négative sur $]-\infty,0]$, positive sur [0,1], négative sur $[1,+\infty[$ et ne s'annule qu'en 0 et 1. Ainsi H_n est strictement décroissante sur $]-\infty,0]$, strictement croissante sur [0,1] et strictement décroissante sur $[1,+\infty[$. Pour les mêmes raisons que précédemment, les limites de H_n en $-\infty$ et $+\infty$ sont infinies et les variations de H_n imposent $\lim_{-\infty} H_n = +\infty$ et $\lim_{+\infty} H_n = -\infty$.
 - c. Puisque $(1-X)^n F_n = 1 n \binom{2n-1}{n} H_n$ et que $F_n(1) \neq 0$, les racines réelles de F_n sont exactement les antécédents distincts de 1 de $\frac{1}{n \binom{2n-1}{n}}$ par H_n .
 - ▶ Si n est impair, les variations et la continuité de H_n montrent que $\frac{1}{n\binom{2n-1}{n}}$ admet un unique antécédent par H_n . Puisque $H_n(1) = \frac{1}{n\binom{2n-1}{n}}$, 1 est l'unique antécédent de $\frac{1}{n\binom{2n-1}{n}}$ par H_n . Mais celui-ci est à exclure puisque $F_n(1) \neq 0$. Ainsi F_n n'admet pas de racine réelle.
 - ▶ Si n est pair, les variations et la continuité de H_n montrent que $\frac{1}{n\binom{2n-1}{n}}$ admet un unique antécédent par H_n sur] $-\infty$, 0]. Puisque $H_n(1) = \frac{1}{n\binom{2n-1}{n}}$, les variations de H_n montrent que le seul autre antécédent de $\frac{1}{n\binom{2n-1}{n}}$ par H_n est 1. Mais celui-ci est à exclure puisque $F_n(1) \neq 0$. Ainsi F_n admet une unique racine réelle et on peut même préciser que celle-ci est strictement négative.

SOLUTION 3.

- **1.** En considérant sa dérivée, on montre que l'application $\varphi: x \in \mathbb{R} \mapsto e^x x$ est décroissante sur \mathbb{R}_- et croissante sur \mathbb{R}_+ . Elle admet donc un minimum en 0. Puisque $\varphi(0) = 1$, φ est strictement positive sur \mathbb{R} et en particulier, ne s'annule pas sur \mathbb{R} . L'exponentielle n'admet donc pas de point fixe sur \mathbb{R} .
- 2. On sait que $\tan x \sim x$ donc $\lim_{x\to 0} \frac{x}{\tan x} = 1$ puis $\lim_{x\to 0} \exp\left(\frac{x}{\tan x}\right) = e$. De même, $\sin x \sim x$ donc $\lim_{x\to 0} \frac{x}{\sin x} = 1$. Ainsi $\lim_{x\to 0} f(x) = e 1$. On sait que $\lim_{x\to \frac{\pi}{2}} \tan x = \pm \infty$ donc $\lim_{x\to \frac{\pi}{2}} \frac{x}{\tan x} = 0$ puis $\lim_{x\to \frac{\pi}{2}} e^{\frac{x}{\tan x}} = 1$. Puisque $x\mapsto \frac{x}{\sin x}$ est continue en $\frac{\pi}{2}$, $\lim_{x\to \frac{\pi}{2}} \frac{x}{\sin x} = \frac{\pi}{2}$. Ainsi $\lim_{x\to \frac{\pi}{2}} f(x) = 1 \frac{\pi}{2}$.
- 3. Tout d'abord, e-1>0 car $e\geqslant 2$ et $1-\frac{\pi}{2}<0$ car $\pi\geqslant 3$. Puisque tan ne s'annule pas sur $\left]0,\frac{\pi}{2}\right[$, $x\mapsto\frac{x}{\tan x}$ est continue sur $\left]0,\frac{\pi}{2}\right[$. Puisque $x\mapsto e^x$ est continue sur \mathbb{R} , $x\mapsto\exp\left(\frac{x}{\tan x}\right)$ est continue sur $\left]0,\frac{\pi}{2}\right[$. Comme sin ne s'annule pas sur $\left]0,\frac{\pi}{2}\right[$, $x\mapsto\frac{x}{\sin x}$ est continue sur $\left]0,\frac{\pi}{2}\right[$. Ainsi f est continue sur $\left]0,\frac{\pi}{2}\right[$ comme différence de deux fonctions continues sur $\left]0,\frac{\pi}{2}\right[$. Puisque $\lim_0 f>0$ et $\lim_{\frac{\pi}{2}}f<0$, f s'annule sur $\left]0,\frac{\pi}{2}\right[$ en vertu du théorème des valeurs intermédiaires. Il existe donc $b\in\left]0,\frac{\pi}{2}\right[$ tel que f(b)=0.
- 4. Tout d'abord,

$$e^z = e^\alpha e^{\mathfrak{i} b} = e^\alpha (\cos b + \mathfrak{i} \sin b) = e^\alpha (1 + \mathfrak{i} \tan b) \cos b = e^\alpha \left(1 + \mathfrak{i} \frac{b}{a}\right) \cos b = \frac{e^\alpha \cos b}{a} (a + \mathfrak{i} b) = \frac{e^\alpha \cos b}{a} z$$

Puisque
$$f(b)=0,$$
 $e^{\alpha}=\frac{b}{\sin b}.$ Ainsi

$$\frac{e^{\alpha}\cos b}{a} = \frac{b}{a\tan b} = 1$$

D'où
$$e^z = z$$
.