Rotation de 90° et Perpendicularité des Vecteurs

La notion de rotation d'un vecteur permet d'établir une condition importante en géométrie : la **perpendicularité** entre deux droites. Nous allons commencer par étudier la rotation de 90° d'un vecteur, puis nous établirons la condition de perpendicularité entre deux vecteurs et entre deux droites.

Rotation d'un vecteur de 90°

Soit un vecteur $\vec{v}=(v_1,v_2)$. Sa rotation de 90° dans le sens positif (sens anti-horaire) donne un nouveau vecteur \vec{v}' donné par :

$$ec{v}'=(-v_2,v_1)$$

Cela signifie que :

- La composante v_1 passe en deuxième position.
- La composante v_2 change de signe.

If a vector $\vec{v}=(v_1,v_2)$ is rotated 90° counterclockwise, the new vector \vec{v}' is:

$$ec{v}'=(-v_2,v_1)$$

Condition de perpendicularité

Deux vecteurs $\vec{u}=(u_1,u_2)$ et $\vec{v}=(v_1,v_2)$ sont perpendiculaires si et seulement si :

$$ec{v'} = (-v_2, v_1) \; et \; ec{u} \; ont \; la \; m \hat{e} me \; direction$$

Exercices de vérification de la perpendicularité

Exercice 1:

Vérifier si les vecteurs $ec{u}=(3,-2)$ et $ec{v}=(4,6)$ sont perpendiculaires.

Exercice 2:

Trouver un vecteur directeur perpendiculaire à $\vec{v}=(5,-3)$.

Exercices: Trouver l'équation d'une droite perpendiculaire

Exercice 1:

Trouver l'équation de la droite perpendiculaire à y=2x+3 et passant par le point P(4,1).

Exercice 2:

Déterminer l'équation de la droite perpendiculaire à $y=-\frac{3}{4}x+2$ passant par P(-2,5).

Exercice 3:

Une droite passe par les points A(1,2) et B(3,6). Trouver l'équation de la droite perpendiculaire à cette droite et passant par le point P(0,1).

Exercice 4:

Trouver l'équation de la droite perpendiculaire à la droite d'équation 5x-2y+7=0 qui passe par le point P(2,-3).

Exercice 5:

Soit la droite 4x+3y-12=0. Trouver l'équation de sa perpendiculaire passant par P(-1,4).