Internet Security II

50.520 Systems Security Paweł Szałachowski

Security Issues

- TLS PKI
 - Transparency
 - Downgrading attacks
 - Key pinning
- Mail security
 - Spam
 - Encryption and Authentication

Transparency in TLS PKI

Transparency in PKI

- Targeted attacks
 - Comodo, DigiNotar, ...
- How to protect from them?
 - DANE, CAA, ...
- Protection vs detection
- How to detect attacks?
 - Malicious certificate can be used only once...
 - Can we detect such an attack?

Certificate Transparency (CT)

- Google's proposal to increase transparency in TLS PKI
- New party: Log
 - (semi)trusted
 - Monitors CAs
 - Logs all certificates

Merkle Hash Trees

- Cryptographic hash function H(.)
- Hash tree: every non-leaf node is labelled with the hash of the labels of its child nodes.
- Efficient Proofs
 - Presence
 - Absence (if sorted)
 - Extension (if append-only)

Certificate Log

- For every certificate, Log issues a Signed Certificate Timestamp (SCT)
 - Promise to append the certificate to the log
 - Certificates are sent to clients along with the corresponding SCTs
- Every update it appends new certificates to an append-only tree and generates a Signed Tree Head (STH)
 - STH is a root of the tree
 - Anyone can download it
- Anyone can audit that a certificate is logged
- Possible to prove that log is append-only

Is promise met?

- A client gets an SCT (promise)
 - How to make sure that the associated certificate is in the log?
 - The client has to talk to the log
 - Can be done after establishing connection (nonblocking)
 - Any problems?

Audit log via DNS

- Contact log servers
 - To check whether certificates are indeed logged
 - Use DNS for anonymity
- Under development
- New proposals are welcome

Deployment

- Client accepts certificates with their SCTs
- What if certificates is sent without its SCT?
 - Legacy certificates (issued before CT introduction)
 - ...
- CT logs to work effectively have to store all certificates
 - Effectively, CAs are forced to submit any new certificate to a CT log

Certificate Transparency

- Issues
 - What if logs are malicious?
 - How to monitor logs effectively?
 - Availability of logs is critical
- Ongoing deployment and standardization
 - Mandatory for EV certificates

Downgrade Attacks

Downgrading Attacks

- How to deploy a new security protocol's extension?
 - Design, implement, deploy
 - Usually, designs are backward-compatible
 - add new headers, implement user-agents, deploy, ...
 - What if a MITM adversary acts like there is no new security extension deployed
 - Dropping headers, block connections to secure ports, ...
 - Backward-compatibility helps with such attacks

HTTP -> HTTPS

- How servers can enforce HTTPS?
 - Clients type <u>domain.com</u> and browsers prepend http://
 - Server-side enforcement
 - Redirect all traffic to https://
 - Is that secure?

HTTP -> HTTPS

- MITM adversary can drop redirections and impersonate server
 - http connection between client-adversary
 - https connection between adversary-server
- How to prevent that?

Strict Transport Security (HSTS)

- Server's side protection against downgrade attacks
- HTTPS header

```
Strict-Transport-Security: max-age=<# of seconds>
```

- Can include subdomains (includeSubDomains)
- TOFU model (i.e., initial request)
- Browser expects that for <# of seconds> the domain will be using HTTPS
- Deployed and getting popular
- Adversary with a malicious certificate can block http-only website

HTTP Public Key Pinning (HPKP)

- Websites can pin their (or their CAs) keys
- HTTPS header
 - Public-Key-Pins or Public-Key-Pins-Report-Only
- TOFU model
- Clients saves policies and will expect certificates identified by the pins
- Risky misconfigurations
 - Often back-up keys are pinned
- Abandoned due to operational issues

```
Public-Key-Pins:
pin-sha256="cUPcTAZWKaASuYWhhneDttWpY3oBAkE3h2+soZS7sWs=";
pin-sha256="M8HztCzM3elUxkcjR2S5P4hhyBNf6lHkmjAHKhpGPWE=";
max-age=5184000; includeSubDomains;
report-uri="https://www.example.org/hpkp-report"
```

Spam&Email Security

Email

- SMTP protocol
 - No security properties provided
 - No spam prevention
- Mail servers/exchangers
 - Server lookup via DNS (MX records)
- No end-to-end protection

Sender Policy Framework (SPF) and Sender ID

- Anti-spoofing
 - Domains can authorize hosts to originate emails for them
- SPF (RFC7208)
 - Parses the From address field
- Sender ID (RFC4405)
 - Parses other fields (presented to users)
- TXT and SPF records are used

DomainKeys Identified Mail (DKIM)

- RFC6376
- Mail authentication
 - Signing emails in transit (i.e., serverto-server protection)
 - DNS for public key lookup
- DKIM headers can be simply dropped by an adversary
- TXT records are used

Domain-based Message Authentication, Reporting and Conformance (DMARC)

- RFC7489
- Domain-level policies for email management
 - What to do when SPF or DKIM fail (or are not present)?
 - Reporting
- TXT records are used

Other solutions

- Filters
- Proof-of-Work (HashCash)
- Detecting botnets (Honeypots)

• ...

Pretty Good Privacy (PGP)

- End-to-end email protection
- Web-of-Trust
 - No-authority trust model
 - Special algorithm to estimate trust
 - Key distribution
 - Face2Face
 - Key servers
 - Friends/Emails

PGP Web of Trust

CERTIFICATE AUTHORITY

PGP / WEB OF TRUST

Encrypt Generate Random Key TlakvAQkCu2u Data Random Key Encrypt key Encrypt data using receiver's using random public key key **RSA** Data q4fzNeBCRSYqv **Encrypted Key** Data Encrypted Message

PGP

- Not widely deployed
- Many mail servers modify emails
 - Modify headers, add banners, change content, ...
- Usability issues
 - Complex
 - Web-of-trust is hard to use

Questions?