Sprawdzian nr 2

16 stycznia 2009

Zadanie 1

Niech będzie dana funkcja $f(x)=\sqrt{1-x^2}$ $(-1\leqslant x\leqslant 1)$ oraz wielomian stały $w_0(x)=\frac{1}{2}$. Wykazać, że nie istnieje żaden wielomian w_1 stopnia pierwszego o własności

$$||f - w_1||_{\infty}^{[-1,1]} < ||f - w_0||_{\infty}^{[-1,1]}$$

Wskazówka: naszkicować wykres różnicy $e(x) := f(x) - w_0(x)$ w przedziale [-1, 1]

Zadanie 2

Wyznaczyć takie stałe rzeczywiste a i b, żeby wyrażenie

$$E(a,b) = \sqrt{\int_{0}^{1} [x\sqrt{x} - (ax+b)]^{2} dx}$$

przyjmowało najmniejszą możliwą wartość.

Zadanie 3

Za pomocą metody Romberga zbudowano następujący segment trójkątnej tablicy przybliżeń $\{T_{mk}\}$ całki $\int_a^b f(x)dx$

W ilu punktach przedziału [a, b] trzeba obliczyć wartości funkcji podcałkowej f, żeby móc wyznaczyć wszystkie $\{T_{mk}\}$ występujące w powyższym segmencie tablicy? Uzasadnić odpowiedź.