Matte R1

Mats Bjønnes

Skoleåret 2021/2022

Innhold

1	Pot	enser og Logaritmer				
	1.1	<i>n</i> -terøtter og potenser				
		1.1.1 <i>n</i> -terøtter				
	1.2	Logaritmer				
	1.3	Logaritmesetningene				
	1.4	Logaritme- og eksponentiallikninger				
	1.5	Generelle logaritmer				
2	Grenseverdier og Kontinuitet 4					
	2.1	Funksjoner med delt forskrift				
	2.2	Grenseverdier				
	2.3	Kontinuitet				
	2.4	Asymptoter				
3	Derivasjon					
	3.1	Funksjonsuttrykket til den deriverte				
	3.2	Noen derivasjonsregler				
	3.3	Den algebraiske definisjonen av den deriverte				
	3.4	Deriverbarhet				
	3.5	Numerisk derivasjon				
	3.6	Kjerneregelen				
	3.7	Produktregelen og brøkregelen				
4	Bru	ık av derivasjon				
	4.1	Størst og minst verdi				
	4.2	Størst og minst vekst				
	4.3	Tangenter				
	4.4	Newtons metode				
	4.5	L´Hôpitals regel				
5	Omvendte Funksjoner 7					
	5.1	Hva er omvendte funksjoner?				
	5.2	Å finne den omvendte funksjonen				
	5.3	Den deriverte av omvendte funksjoner				

INNHOLD

6	Vek	torer	8		
	6.1	Hva er en vektor?			
	6.2	Sum og differanse	8		
	6.3	Parallelle vektorer	8		
	6.4	Skalarprodukt	8		
		6.4.1 Vinkler	8		
	6.5	Geometriske resultater	8		
7	Anvendelser og Modeller 1				
	7.1	Parameterframstilling for linjer	10		
	7.2	Parameterframstilling for kurver	10		
	7.3	Vekst og modeller	10		
	7.4	Reelle datasett	10		
	7.5	Oppgaver	10		

Potenser og Logaritmer

- 1.1 *n*-terøtter og potenser
- 1.1.1 *n*-terøtter
- 1.2 Logaritmer
- ${\bf 1.3}\quad {\bf Logaritme setning ene}$
- 1.4 Logaritme- og eksponentiallikninger
- 1.5 Generelle logaritmer

Grenseverdier og Kontinuitet

- 2.1 Funksjoner med delt forskrift
- 2.2 Grenseverdier
- 2.3 Kontinuitet
- 2.4 Asymptoter

Derivasjon

- 3.1 Funksjonsuttrykket til den deriverte
- 3.2 Noen derivasjonsregler
- 3.3 Den algebraiske definisjonen av den deriverte
- 3.4 Deriverbarhet
- 3.5 Numerisk derivasjon
- 3.6 Kjerneregelen
- 3.7 Produktregelen og brøkregelen

Bruk av derivasjon

- 4.1 Størst og minst verdi
- 4.2 Størst og minst vekst
- 4.3 Tangenter
- 4.4 Newtons metode
- 4.5 L'Hôpitals regel

Omvendte Funksjoner

- 5.1 Hva er omvendte funksjoner?
- 5.2 Å finne den omvendte funksjonen
- 5.3 Den deriverte av omvendte funksjoner

Vektorer

- 6.1 Hva er en vektor?
- 6.2 Sum og differanse
- 6.3 Parallelle vektorer
- 6.4 Skalarprodukt
- 6.4.1 Vinkler

Skalarproduktet gir oss vinkler. Gitt to vektorer \overrightarrow{u} og \overrightarrow{v} er skalarproduktet:

$$\overrightarrow{u} \cdot \overrightarrow{v} = |\overrightarrow{u}| \cdot |\overrightarrow{v}| \cdot cos(\overrightarrow{u}, \overrightarrow{v}) \tag{Geometrisk Formel}$$

6.5 Geometriske resultater

Regel 6.1: Å finne senter på et linjestykke:

$$\overrightarrow{OS} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB}$$

Regel 6.2: Likningen til en sirkel:

$$(x - x_1)^2 + (y - y_2)^2 = r^2$$

Eksempel 6.1: Sirkel med kjent radius og kjent sentrum

$$S(1,2)$$

$$r = 5$$

$$(x-1)^2 + (y-2)^2 = 25$$

Se om punktet (3,4) ligger på sirkelperiferien:

$$2^2 + 2^2 = 25$$

Da 8 ikke er lik 25 kan vi fastslå at punktet ikke er en del av sirkelen.

Anvendelser og Modeller

- 7.1 Parameterframstilling for linjer
- 7.2 Parameterframstilling for kurver
- 7.3 Vekst og modeller
- 7.4 Reelle datasett
- 7.5 Oppgaver

Exercise 1

7.5 Oppgaver

En linje n er gitt ved parameterframstillingen

$$n: \begin{cases} x = 3 + 2t \\ y = 1 + 5t \end{cases}$$

- a) Les ut av parameterframstillingen
 - 1. Koordinatene til et punkt som linja går gjennom
 - 2. En retningsvektor for linja
- b) Skriv opp koordinatene til ytterlige to
 - 1. Punkter som linja går gjennom
 - 2. Retningsvektorer for linja

Solution 1

- a)
- 1. (3,1)
- $2. \begin{bmatrix} 2 \\ 5 \end{bmatrix}$

Exercise 2

Finn fartsvektoren og aksellerasjonsvektoren når posisjonsvektoren er

a)
$$\vec{r}(t) = \begin{bmatrix} 5\\4t+3 \end{bmatrix}$$

b)
$$\vec{r}(t) = \begin{bmatrix} -5t \\ 2t^2 + 3 \end{bmatrix}$$

c)
$$\vec{r}(t) = \begin{bmatrix} \ln t \\ e^{2t} \end{bmatrix}$$

Solution 2

a)
$$\vec{v}(t) = \vec{r}'(t) = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$
 $\vec{a}(t) = \vec{v}'(t) = \vec{r}''(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

b)
$$\vec{v}(t) = \vec{r}'(t) = \begin{bmatrix} -5\\4t \end{bmatrix}$$
 $\vec{a}(t) = \vec{v}'(t) = \vec{r}''(t) = \begin{bmatrix} 0\\4 \end{bmatrix}$

c)
$$\vec{v}(t) = \vec{r}'(t) = \begin{bmatrix} \frac{1}{t} \\ 2e^{2t} \end{bmatrix}$$
 $\vec{a}(t) = \vec{v}'(t) = \vec{r}''(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Exercise 3

En partikkel beveger seg langs en kurve gitt ved $\overrightarrow{r}(t) = \begin{bmatrix} \frac{1}{2}t^2 \\ t \end{bmatrix}$

Solution 3

b)
$$\vec{v}(t) = \vec{r}'(t) = \begin{bmatrix} t \\ 1 \end{bmatrix} \quad |\vec{v}(2)| = \sqrt{5}$$

d) Fartsvektoren er alltid parallell med y-akse

Exercise 4

En partikkel følger grafen til en funksjon $\overrightarrow{r} = \begin{bmatrix} 5te^t \\ t^2 - 2t \end{bmatrix}$.

- a) Finn fartsvektoren og aksellerasjonsvektoren.
- b) Er fartsvektoren eller aksellerasjonsvektoren parallell med x-aksen eller y-aksen for noen verdier av t?

Solution 4

a)
$$\vec{v}(t) = \vec{r}'(t) = \begin{bmatrix} 5e^t(1+t) \\ 2t-2 \end{bmatrix}$$
 $\vec{a}(t) = \vec{v}'(t) = \vec{r}''(t) = \begin{bmatrix} 5e^t(2+t) \\ 2 \end{bmatrix}$

b) Fartsvektoren:

 $\vec{v}(t) \mid\mid$ x-aksen når y'(t) = 0 t = 1.

Partikkelens posisjon er da gitt ved $\vec{r}(1)$.

Banefarten til partikkelen er gitt ved $|\vec{v}(1)|$.

 $\vec{v}(t) \parallel \text{y-aksen når } x'(t) = 0 \quad t = -1.$

 ${\bf Aksellerasjons vektoren:}$

 $\vec{a}(t)$ kan ikke bli parallell med x-aksen.

 $\vec{a}(t) \mid y$ -aksen når x''(t) = 0 t = -2.

Exercise 5

Posisjonene \vec{r}_1 og \vec{r}_2 (målt i meter) til to partikler ved et tidspunkt t (målt i sekund) er gitt ved

$$\overrightarrow{r}_1(t) = \begin{bmatrix} t^2 - 2 \\ -2t \end{bmatrix}, \quad -2 \le t \le 2$$

$$\overrightarrow{r}_1(t) = \begin{bmatrix} 2t - 1 \\ 4t - 4t^2 \end{bmatrix}, \quad -2 \le t \le 2$$

- a) Tegn grafene til \overrightarrow{r}_1 og \overrightarrow{r}_2 i samme koordinatsystem.
- b) Bestem banefarten til hver av partiklene når t = -1.
- c) Ved hvilke tidspunkt har de to partiklene samme fartsretning?
- d) Hva er den minste avstanden mellom partiklene i løpet av de fire sekundene?

Solution 5

- a) -
- b) $|\vec{r}'_1(-1)| = \sqrt{5}$ $|\vec{r}'_2(-1)| = 2\sqrt{37}$
- c)