Tugas Materi 7

Zul Fauzi Oktaviansyah

2110181056

3 - D4 IT - B

```
In [2]: dataset = pd.read_csv('titanic.csv')
     dataset
```

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

Membaca data csv titanic

```
In [3]: test_data = pd.read_csv('titanic_test.csv')
test_data
```

Out[3]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S
413	1305	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN	S
414	1306	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	С
415	1307	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	S
416	1308	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500	NaN	S
417	1309	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.3583	NaN	С

418 rows × 11 columns

Membaca data csv titanic_test

```
In [4]: test_label = pd.read_csv('titanic_testlabel.csv')
        test_label
Out[4]:
              Passengerld Survived
                     892
                               0
           0
                     893
           2
                     894
           3
                     895
                     896
           4
         413
                    1305
         414
                    1306
         415
                    1307
         416
                    1308
         417
                    1309
                               0
```

Membaca data csv titanic_testlabel

```
In [5]: train_data = dataset[['Sex', 'Age', 'Pclass', 'Fare']]
        train_data
Out[5]:
                Sex Age Pclass
                                   Fare
              male 22.0
                              3 7.2500
           1 female 38.0
                              1 71.2833
           2 female 26.0
                              3 7.9250
           3 female 35.0
                              1 53.1000
               male 35.0
                              3 8.0500
               male 27.0
                              2 13.0000
         887 female 19.0
                              1 30.0000
         888 female NaN
                              3 23.4500
               male 26.0
                              1 30.0000
          889
               male 32.0
                              3 7.7500
```

891 rows × 4 columns

Mengambil data csv titanic kolom sex age pclass fare

```
In [6]: train_data= train_data.replace('male', 1)
        train_data = train_data.replace('female', 0)
In [7]: train_data
Out[7]:
             Sex Age Pclass
                                Fare
              1 22.0
                          3 7.2500
               0 38.0
                          1 71.2833
               0 26.0
                          3 7.9250
               0 35.0
                          1 53.1000
               1 35.0
                          3 8.0500
               1 27.0
                          2 13.0000
         887
               0 19.0
                          1 30.0000
               0 NaN
                          3 23.4500
         889
               1 26.0
                          1 30.0000
              1 32 0
                          3 7 7500
```

Mengubah male dan female menjadi 1 dan 0

```
In [8]: mean = train_data['Age'].mean()
        train_data = train_data.replace(np.nan, mean)
        train_data
Out[8]:
                       Age Pclass
              Sex
                                     Fare
               1 22.000000
                                3 7.2500
                0 38.000000
                                1 71.2833
                0 26.000000
                                3 7.9250
                0 35.000000
                                1 53.1000
                1 35.000000
                                3 8.0500
               1 27.000000
                                2 13.0000
         887
                                1 30.0000
                0 19.000000
                                3 23.4500
                0 29.699118
         889
                1 26.000000
                                1 30.0000
               1 32.000000
                                3 7.7500
```

891 rows x 4 columns

Mengisi missing value pada kolom age dengan rata2 kolom age

```
In [32]: test_data = test_dataset[['Sex', 'Age', 'Pclass', 'Fare']]
         test_data
Out[32]:
                Sex Age Pclass
                                    Fare
            0 male 34.5
                                  7.8292
            1 female 47.0
                                  7.0000
            2 male 62.0
                                  9.6875
                    27.0
                male
                                  8.6625
            4 female 22.0
                              3 12.2875
                                  8.0500
                male NaN
          414 female 39.0
                              1 108.9000
                male 38.5
                              3 7.2500
          415
          416
                male NaN
                                  8.0500
          417
                male NaN
                              3 22.3583
```

Mengambil test_dataset kolom sex age pclass fare

Mengambil train_label, kolom survived

```
In [10]: test_data = test_data[['Sex', 'Age', 'Pclass', 'Fare']]
          test_data
Out[10]:
                 Sex Age Pclass
                                     Fare
                male 34.5
                                   7.8292
            1 female 47.0
                                   7.0000
            2 male 62.0
                                   9.6875
                male 27.0
                                   8.6625
            4 female 22.0
                               3 12.2875
          413
                male NaN
                                   8.0500
          414 female
                     39.0
                               1 108.9000
          415
                male 38.5
                                   7.2500
          416
                male NaN
                                   8.0500
          417
                male NaN
                               3 22.3583
```

Mengambil test data fitur sex age pclass fare

```
In [11]: test_data= test_data.replace('male', 1)
         test_data = test_data.replace('female', 0)
         test_data
Out[11]:
              Sex Age Pclass
                                 Fare
               1 34.5
                               7.8292
                0 47.0
                              7.0000
               1 62.0
                           2 9.6875
                1 27.0
                               8.6625
            3
                0 22.0
                           3 12.2875
                1 NaN
                               8.0500
          413
          414
                0 39.0
                           1 108.9000
          415
               1 38.5
                           3 7.2500
                1 NaN
                               8.0500
          416
          417
               1 NaN
                           3 22.3583
```

418 rows × 4 columns

Mengubah fitur male female menjadi 1 dan 0

Mengambil posisi index missing value pada test data

```
In [13]: test_data = test_data.drop(pos_missing_test)
    test_data
```

Out[13]:

	Sex	Age	Pclass	Fare
0	1	34.5	3	7.8292
1	0	47.0	3	7.0000
2	1	62.0	2	9.6875
3	1	27.0	3	8.6625
4	0	22.0	3	12.2875
409	0	3.0	3	13.7750
411	0	37.0	1	90.0000
412	0	28.0	3	7.7750
414	0	39.0	1	108.9000
415	1	38.5	3	7.2500

331 rows × 4 columns

Menghapus data test yang memiliki missing value

Menghapus data pada testlabel yang memiliki missing value

```
In [15]: from sklearn import tree
         from sklearn.tree import DecisionTreeClassifier
         import graphviz
In [16]: dtc=DecisionTreeClassifier()
         dtc.fit(train_data, train_label)
         class_result=dtc.predict(test_data)
         class_result
Out[16]: array([0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0,
                1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0,
                1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1,
                0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0,
                0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0,
                1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0,
                1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1,
                1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1,
                0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1,
                1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
                0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1,
                0], dtype=int64)
```

Membuat model decision tree menggunakan library sklearn

```
In [17]: acc=dtc.score(test_data, test_label)
    acc
Out[17]: 0.8096676737160121

In [18]: err=round((1-acc)*100, 2)
    print('\n\nError ratio = ', err, '%')

Error ratio = 19.03 %

In [19]: acc=dtc.score(train_data, train_label)
    acc
Out[19]: 0.97979797979798

In [20]: err=round((1-acc)*100, 2)
    print('\n\nError ratio = ', err, '%')

Error ratio = 2.02 %
```

Menghitung nilai akurasi dan error rasio pada test data dan train data

Out[8]:

	Sex	Age	Pclass	Fare	SibSp	Parch
0	1	22.000000	3	7.2500	1	0
1	0	38.000000	1	71.2833	1	0
2	0	26.000000	3	7.9250	0	0
3	0	35.000000	1	53.1000	1	0
4	1	35.000000	3	8.0500	0	0
886	1	27.000000	2	13.0000	0	0
887	0	19.000000	1	30.0000	0	0
888	0	29.699118	3	23.4500	1	2
889	1	26.000000	1	30.0000	0	0
890	1	32.000000	3	7.7500	0	0

891 rows × 6 columns

In [13]: test_data = test_data.drop(pos_missing_test)
 test_data

Out[13]:

	Sex	Age	Pclass	Fare	SibSp	Parch
0	1	34.5	3	7.8292	0	0
1	0	47.0	3	7.0000	1	0
2	1	62.0	2	9.6875	0	0
3	1	27.0	3	8.6625	0	0
4	0	22.0	3	12.2875	1	1
409	0	3.0	3	13.7750	1	1
411	0	37.0	1	90.0000	1	0
412	0	28.0	3	7.7750	0	0
414	0	39.0	1	108.9000	0	0
415	1	38.5	3	7.2500	0	0
415	'	00.0	0	7.2000	0	U

331 rows × 6 columns

Menambahkan fitur sibsp dan parch

```
In [16]: dtc=DecisionTreeClassifier()
         dtc.fit(train_data, train_label)
         class_result=dtc.predict(test_data)
         class result
Out[16]: array([0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0,
                1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0,
                1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0,
                0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0,
                0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
                0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1,
                0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0,
                1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0,
                1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1,
                1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
                1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1,
                0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0,
                0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1,
                1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0,
                0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1,
                01, dtype=int64)
```

Membuat ulang model dan prediksi dengan tambahan fitur baru

```
In [17]: acc=dtc.score(train_data, train_label)
acc
Out[17]: 0.9820426487093153
In [18]: err=round((1-acc)*100, 2)
    print('\n\nError ratio = ', err, '%')

Error ratio = 1.8 %
In [17]: acc=dtc.score(test_data, test_label)
acc
Out[17]: 0.8308157099697885

In [18]: err=round((1-acc)*100, 2)
    print('\n\nError ratio = ', err, '%')

Error ratio = 16.92 %
```

Dapat kita ketahui dengan menambahkan fitur kita memperoleh penurunan error ratio