Further neural network architectures

NLP in one day

Other architectures

We can design network topologies different neural processing units to increase the efficiency and representational power of our layers:

- Connect regions of input or hidden layers to single nodes in the next layer (*locally connected*)
- Learn features from one region that can be applied to others (convoluting)
- Carry over information from one step to the next (*memory*)

Updating our weights becomes more complicated!

Convolution - sharpening

From the GIMP manual, V2.8, https://docs.gimp.org/en/index.html

Convolution - blurring

From the GIMP manual, V2.8, https://docs.gimp.org/en/index.html

Convolution - edge detection

From the GIMP manual, V2.8, https://docs.gimp.org/en/index.html

Applying convolution to text with CNNs

Recurrent neural network (RNN)

To take account of sequential information, we could feed in the output from the previous step to each new step

(Jurafsky and Martin, Fig. 9.3)

RNN: the signals degrade over time

Image: Alex Graves, Supervised sequence labelling. Springer. 2012.

Long Short Term Memory (LSTM)

We can overcome the decay of RNNs by learning what we should forget and what we should remember at each step

Context **c** and hidden state **h** vectors are passed through from previous step

Forget gate f deletes information from the context no longer needed

Add gate **g** selects information to add to the current context

Output gate **o** selects what information is required for the current hidden state (not future ones, which were dealt with above)

LSTM selectively forgets and remembers information at each step

Image: Alex Graves, Supervised sequence labelling. Springer. 2012.

We can see these as different processing units

(Jurafsky and Martin, Fig. 9.14)

Thank you

angus.roberts@kcl.ac.uk

https://www.kcl.ac.uk/people/angus-roberts