Análisis de ENOB y resolución

Como la señal es continua, ya no sirve la fórmula típica del ENOB, hay que recalcularla. Para eso primero se encuentra la expresión de la relación señal-ruido:

Se considera la señal de ruido como una triangular de valor pico de medio LSB

$$V_{ruido} = \frac{V_{pico}}{\sqrt{3}} \rightarrow V_{ruido} = \frac{LSB}{2 \cdot \sqrt{3}} = \frac{LSB}{\sqrt{12}}$$

En continua, el valor de señal: Vseñal = 2^N.LSB

Con lo que, la expresión de la relación señal ruido es:

$$S/N = 20 \cdot \log \left(\frac{2^{N} \cdot LSB \cdot \sqrt{12}}{LSB} \right) = 20 \cdot \log \left(2^{N} \sqrt{12} \right) = (6,02 \cdot N + 10,79) dB$$

Se obtiene entonces, según lo detallado a continuación, el valor de S/N para poder despejar la anterior expresión a fin de obtener el número efectivos de bits (ENOB). La señal que entra al ADC pasa primero por un amplificador de ganancia 128:

Por lo que, la tensión máxima a la entrada del ADC es, recordando que para 4Kg la salida de la celda de carga, con V_{REF} = 5V, es de 4mV:

$$V_{iMAX} = 4mV \cdot 128 = 0,512V$$

De la hoja de datos se obtiene que la señal de ruido a la entrada es de 50nV, por lo tanto:

$$S/N=20.\log(0.512V/50nV)=140.2dB$$

y ENOB=
$$(140,205999-10,79)/6,02=21,497$$
bits \rightarrow **ENOB=21bits**

Por lo tanto, considerando un LSB:
$$LSB = \frac{5 V}{2^{21}} = 2,38418 \mu V$$

La resolución de la balanza determinada por el ADC es:

$$Resolución = \frac{Peso_{MAX} \cdot LSB}{V_{imAX}} = \frac{4 Kg \cdot 2,384 \,\mu \,V}{0,512 \,V} = 18,62 \,mg \quad \rightarrow \quad \textbf{Resolución} = \textbf{19mg}$$

Incertidumbre tipo A

Primera estimación del desvío estándar de la media.

Estimado	Mediciones	repeticiones	n	Media	uA
gramos	gramos	veces	veces	gramos	mg
500	520,7	7	13	F20.6F	14,390
500	520,6	5	13	520,65	14,390
1000	1015,8	10	14	1015 77	12,529
1000	1015,7	4	14	1015,77	12,529
	2011,0	8			
2000	2010,9	5	15	2010,99	24,816
	2011,1	2			
	3029,2	6			
3000	3029,0	2	15	3029,14	21,380
	3029,1	6	15		
	3029,3	1			

En el peor de los casos, la incertidumbre tipo A es:

 $\mu A_{\text{expandida}} = 0.025 \text{ gramos} = 25 \text{mg}$ del orden de la resolución.

Observación: las indicaciones fueron tomadas sobre la misma pesada, es decir, se tomaron consecutivamente. En el proceso de calibración se repitieron las pesadas retirando los pesos y volviendo a pesar, incluso realizando pesadas en otros puntos y volviendo a repetir luego, por lo que la μA fue mayor, reflejando más fielmente el comportamiento de la balanza.

La incertidumbre combinada, a priori, de la balanza es:

$$\mu \, Balanza = \sqrt{\mu \, A^2 + \left(\frac{resolución}{\sqrt{3}}\right)^2} = \sqrt{25^2 + \left(\frac{19}{\sqrt{3}}\right)^2} \, mg = 27,3 \, mg$$

El patrón para calibración debería tener una calidad 10 veces mejor que la balanza en cuestión, del orden de los 3mg.

Calibración

Descripción del proceso

Dada la dificultad para conseguir un patrón adecuado, se utilizó una balanza comercial de cocina como patrón, con las siguientes especificaciones:

Balanza Patrón		
Marca	WEMIR BLACK	
Modelo	SF-400	
Resolución	1g	
Rango	1g-10Kg	

Las especificaciones de la balanza bajo ensayo son:

Balanza		
Resolución	0,02g	
Rango	0,02g-4Kg	

Se utilizó el método indirecto de comparación, utilizando pesos aproximadamente conocidos de elementos típicos de cocina, como ser: cafés envasados al vacío de 250g, puré de tomate de 520g, 1Kg de harina, Cajas de 1litro de leche larga vida (aproximadamente 1Kg).

Se realizaron tres pesadas por punto de calibración, tomando tres indicaciones por cada pesada, colocando el peso en la balanza y luego el mismo peso sobre la balanza patrón. Los puntos fueron: 0g, 250g, 500g, 1Kg, 2Kg, 3Kg, 4Kg. Se realizaron en forma ascendente repitiendo tres veces, para totalizar 9 indicaciones por punto (n=9).

Ecuaciones utilizadas

Con los datos obtenidos se calcularon la media y la incertidumbre tipo A para cada punto, tanto de las lecturas de la balanza como la del patrón, siguiendo las siguientes ecuaciones:

Incertidumbre tipo A:

$$\mu A = \frac{s_i}{\sqrt{n}} \qquad \text{donde} \quad s_i = \sqrt{\frac{1}{n-1} \cdot \sum_{j=1}^n (P_i - \bar{P}_j)^2}$$

Media:

$$P_i = \frac{\sum_{i=1}^{n} P_i}{n}$$

Resultados parciales

A continuación se tabulan los resultados obtenidos en donde todas las unidades son gramos.

Punto de Calibración	Balanza		Pat	rón
	media	uA	media	uA
0	0,19	0,0371	0,00	0,0000
250	264,10	0,0834	264,00	0,0000
500	539,07	0,1086	539,11	0,1111
1000	1002,28	0,1270	1001,78	0,1470
2000	2050,11	0,3710	2049,22	0,4006
3000	3101,92	0,4580	3101,11	0,2003
4000	3926,33	0,3166	3925,33	0,1667

Incertidumbre combinada

Para cada punto de calibración se determinó la incertidumbre combinada, compuesta por las resoluciones de cada balanza (tipoB) y los respectivos desvíos estándar de la media (tipo A), según la siguiente ecuación

$$\mu \, Combinada = \sqrt{\mu \, A_{patr\'on}^2 + \mu \, A_{balanza}^2 + \left(\frac{res_{patr\'on}}{\sqrt{3}}\right)^2 + \left(\frac{res_{balanza}}{\sqrt{3}}\right)^2}$$

Incertidumbre expandida

Luego para obtener una confianza del 95%, se aplica un factor de cobertura k=2 y así obtener la incertidumbre expandida según:

$$uExpandida = k \cdot \mu Combinada$$

Estos resultados se tabulan a continuación para cada punto. Unidades en gramos.

Punto de Calibración	uCombinada	uExpandida
0	0,58	1,16
250	0,58	1,17
500	0,60	1,20
1000	0,61	1,22
2000	0,79	1,59
3000	0,76	1,53
4000	0,68	1,36

Determinación de la especificación

Utilizando esta información se procede a buscar una expresión general para todo el rango, a fin de poder especificar la balanza bajo ensayo.

Se debe verificar, además, que los intervalos del patrón, dados por las especificaciones del fabricante (resolución-uB) y los datos obtenidos (media patrón), estén contenidos en los intervalos dados por los datos obtenidos (media) y los calculados (uExpandida), para considerar la balanza calibrada. Los valores máximos y mínimos viene dados por:

$$P_{MAX}$$
 = media + μ
 P_{MIN} = media - μ

Considerando una especificación del tipo porcentaje más cuentas, se procede a calcular una relación del tipo:

```
uExpandida = lectura \cdot \% + g
```

Entonces, utilizando una hoja de cálculo, se fijó "g", que es una cantidad fija en gramos, y se determinó el peor porcentaje de entre los puntos de calibración. Se especificó la balanza con estas características y se verificó que esté calibrada según se describió anteriormente.

Se obtiene así que: **uExpandida= 0,055% +1g**

Los resultados se presentan a continuación, donde el valor por debajo del cero se descarta por no presentar la balanza en cuestión lecturas negativas.

Punto de Calibración	Balanza		Patrón		Calibrado	
	máximo	mínimo	máximo	mínimo	máximo	mínimo
0	1,191	-0,809	1,000	-1,000	si	-
250	265,250	262,959	265,000	263,000	si	si
500	540,364	537,771	540,111	538,111	si	si
1000	1003,833	1000,731	1002,778	1000,778	si	si
2000	2052,240	2047,985	2050,222	2048,222	si	si
3000	3104,627	3099,215	3102,111	3100,111	si	si
4000	3929,489	3923,171	3926,333	3924,333	si	si

Lo que verifica que la balanza está calibrada.

Especificación de la balanza

BALANZA		
Rango	1g-4000g	
Resolución	<i>1g</i>	
Precisión	±(Lectura.0,055%+1g)	

Con una confiabilidad del 95% (k=2).

Imagen del producto terminado

Comentarios

La mayor dificultad fue conseguir un patrón de calidad. Dada las especificaciones previas de la balanza, ADC 24 bits, celda sin error lineal, se consiguió a priori una incertidumbre relativamente baja. Con lo cual, lo ideal era conseguir un patrón un orden de magnitud mejor, en cuanto a calidad, pero esto no fue posible dadas las restricciones a causa de la pandemia.

El patrón conseguido, una balanza comercial de 1gramo de resolución, limitó la calidad del dispositivo final, ya que transfirió su calidad a la balanza bajo ensayo en el proceso de calibración.