Записки лекций С.А. Гайфуллина.

"Инвариант Макар-Лиманова и автоморфизмы аффинных алгебраических многообразий".

Лекция 1

1 Основные понятия

Если не оговорено противное, все кольца (алгебры) в данных лекциях будут предполагаться ассоциативными, коммутативными и с единицей. Пусть \mathbb{K} – алгебраически замкнутое поле нулевой характеристики. И пусть B – некоторая конечно порождённая \mathbb{K} -область целостности (конечно порождённая \mathbb{K} -алгебра без делителей нуля). Это эквивалентно тому, что B – алгебра $\mathbb{K}[X]$ регулярных функций на некотором неприводимом аффинном алгебраическом многообразии X.

Определение 1.1. Дифференцирование (или более точно \mathbb{K} -дифференцирование) алгебры B – это линейный оператор $\delta \colon B \to B$, удовлетворяющий тождеству Лейбница. $\delta(ab) = \delta(a)b + a\delta(b)$.

Примеры дифференцирований:

- B любая, $\delta \equiv 0$;
- $B = \mathbb{K}[x_1, \dots, x_n], \ \delta = \frac{\partial}{\partial x_1};$
- $B = \mathbb{K}[x_1, \dots, x_n], \ \delta = f_1 \frac{\partial}{\partial x_1} + f_2 \frac{\partial}{\partial x_2} + \dots + f_n \frac{\partial}{\partial x_n}, \ f_i \in B;$
- $B = \mathbb{K}[x, y, z]/(xz y^2), \ \delta = 2y\frac{\partial}{\partial x} + z\frac{\partial}{\partial y}.$

В последнем примере стоит отметить, что $\delta(xz-y^2)=\delta(x)z+x\delta(z)-2y\delta(y)=2yz+0-2yz=0$. Следовательно, если $g=f+(xz-y^2)h$, то $\delta(g)=\delta(f)+\delta(xz-y^2)h+(xz-y^2)\delta(h)=\delta(f)+(xz-y^2)\delta(h)$, что доказывает корректную определённость δ на смежных классах по идеалу $(xz-y^2)$.

Лемма 1.2. Дифференцирование достаточно задать на образующих алгебры.

Доказательство. Пусть $\{b_{\alpha} \mid \alpha \in S\}$ — образующие алгебры B. Тогда любой элемент есть $b = f(b_{\alpha_1}, \dots, b_{\alpha_k})$, где $f \in \mathbb{K}[y_1, \dots, y_k]$. Из линейности δ и правила Лейбница легко следует, что

$$\delta(b) = \sum_{j=1}^{k} \left(\frac{\partial f}{\partial y_j} (b_{\alpha_1}, \dots, b_{\alpha_k}) \cdot \delta(b_{\alpha_j}) \right).$$

Следствие 1.3. Любое дифференцирование алгебры $B = \mathbb{K}[x_1, \dots, x_n]$ имеет вид $\delta = f_1 \frac{\partial}{\partial x_1} + f_2 \frac{\partial}{\partial x_2} + \dots + f_n \frac{\partial}{\partial x_n}, f_i \in B.$

Упражнение 1.4. Пусть $B=\mathbb{K}[x_{\alpha}\mid \alpha\in S]/I$, где $I=(f_{\beta}\mid \beta\in\Omega)$. Пусть задано дифференцирование δ алгебры $\mathbb{K}[x_{\alpha}\mid \alpha\in S]$ такое, что $\delta(f_{\beta})\in I$ для любого $\beta\in\Omega$. Тогда δ индуцирует дифференцирование $\bar{\delta}$ алгебры B по правилу $\bar{\delta}(h+I)=\delta(h)+I$.

Упражнение 1.5. Любое дифференцирование алгебры $B = \mathbb{K}[x_{\alpha} \mid \alpha \in S]/I$ является дифференцированием $\overline{\delta}$ для некоторого дифференцирования δ алгебры $\mathbb{K}[x_{\alpha} \mid \alpha \in S]$ с условием $\delta(f_{\beta}) \in I$.

Упражнение 1.6. Докажите, что векторное пространство Der(B) с операцией $[\delta, \zeta] = \delta \circ \zeta - \zeta \circ \delta$ является алгеброй Ли.

Замечание 1.7. В предыдущих двух упражнениях можно заменить $\mathbb{K}[x_{\alpha} \mid \alpha \in S]$ на любую коммутативную алгебру.

Определение 1.8. Дифференцирование δ алгебры B называется локально нильпотентным (ЛНД), если для любого $b \in B$ найдётся натуральное число m такое, что $\delta^m(b) = 0$.

Примеры

- B любая, $\delta \equiv 0$;
- $B = \mathbb{K}[x_1, \dots, x_n], \ \delta = \frac{\partial}{\partial x_1};$
- $B=\mathbb{K}[x_1,\ldots,x_n],\,\delta=f_1\frac{\partial}{\partial x_1}+f_2\frac{\partial}{\partial x_2}+\ldots+f_n\frac{\partial}{\partial x_n},\,f_i\in\mathbb{K}[x_1,\ldots,x_{i-1}],$ в частности, $f_1\in\mathbb{K}$.

Дифференцирования из последнего примера называются треугольными.

Упражнение 1.9. Локальную нильпотентность можно проверять только для некоторой системы образующих нашей алгебры.

Легко видеть, что если дифференцирование δ в упражнении 1.4 локально нильпотентно, то и $\overline{\delta}$ также локально нильпотентно.

На множестве LND(B) локально нильпотентных дифференцирований данной алгебры B нет операций сложения или коммутирования: сумма двух ЛНД может быть не локально нильпотентной и коммутатор двух ЛНД может быть не локально нильпотентным. Также умножение ЛНД на фукицию может быть не ЛНД.

Пример 1.10. Пусть $B = \mathbb{K}[x,y]$. Дифференцирования $\delta_1 = y \frac{\partial}{\partial x}$ и $\delta_2 = x \frac{\partial}{\partial y}$ являются ЛНД. Но их сумма $D = y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$ не локально нильпотентна. Действительно, $D^{2k+1}(x) = y$, $D^{2k}(x) = x$.

Коммутатор $P = [\delta_1, \delta_2]$ также не ЛНД: P(x) = -x, P(y) = y, то есть $P = -x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$.

Пусть $\delta = \frac{\partial}{\partial x}$. Тогда $x\delta$ – не ЛНД.

Есть лишь довольно бедные следующие операции.

Лемма 1.11. Пусть $\delta, \zeta \in LND(B)$, тогда

- а) если $f \in \text{Ker } \delta$, то $f\delta \in LND(B)$ (ЛНД $f\delta$ называется репликой дифференцирования δ);
- б) если $[\delta, \zeta] = 0$, то $\delta + \zeta \in LND(B)$.
- в) пусть φ автоморфизм алгебры B (постоянный на \mathbb{K}). Тогда $\varphi \circ \delta \circ \varphi^{-1}$ также ЛНД.

Доказательство. Упражнение.

Группу автоморфизмов (постоянных на \mathbb{K}) алгебры B будем обозначать $\mathrm{Aut}(B)$. Иногда будем отождествлять её с группой регулярных автоморфизмов соответствующего многообразия $\mathrm{Aut}(X)$.

П

Спецификой ЛНД является возможность брать экспоненты.

Определение 1.12. Пусть $\delta \in LND(B)$, тогда *экспонентой* дифференцирования δ называется следующее отображение:

$$\exp(\delta) \colon B \to B, \qquad \exp(\delta) = \mathrm{id} + \delta + \frac{\delta^2}{2!} + \frac{\delta^3}{3!} + \dots$$

Заметим, что хотя сумма в определении бесконечная, при применении к любому элементу $b \in B$ получим конечное число ненулевых слагаемых.

Лемма 1.13. а) Экспонента любого ЛНД является автоморфизмом алгебры.

б) Если δ и ζ – коммутирующие ЛНД, то $\exp(\delta + \zeta) = \exp(\delta) \circ \exp(\zeta)$.

Рассмотрим подгруппу

$$\mathcal{H}_{\delta} = \{ \exp(t\delta \mid t \in \mathbb{K}) \} \subseteq \operatorname{Aut}(B).$$

Легко видеть, что эта подгруппа изоморфна $(\mathbb{K},+)$ и соответствует алгебраическому действию алгебраической группы $(\mathbb{K},+)$ на многооброазии X. Такие подгруппы в $\mathrm{Aut}(X)$ будем называть \mathbb{G}_a – подгруппами.

Лемма 1.14. Любая \mathbb{G}_a – подгруппа в $\operatorname{Aut}(B)$ имеет вид \mathcal{H}_δ для некоторого $\delta \in LND(B)$.

Определение 1.15. Подгруппа в Aut(B), порождённая всеми \mathbb{G}_a -подгруппами называется noderpynnoŭ специальных автоморфизмов и обозначается SAut(B) (или SAut(X)).

Лемма 1.16. SAut(B) – нормальная подгруппа в Aut(B)

Доказательство. Пусть $\varphi \in \operatorname{Aut}(B)$. Из леммы 1.11(в) следует, что если δ – ЛНД, то и $\varphi \circ \delta \circ \varphi^{-1}$ – ЛНД. Непосредственной проверкой можно убедиться, что $\varphi \circ \exp(\delta) \circ \varphi^{-1} = \exp(\varphi \circ \delta \circ \varphi^{-1})$. Отсюда следует, что сопряжённая к \mathbb{G}_a -подгруппе также является \mathbb{G}_a -подгруппой.

Определение 1.17. Пусть δ – ЛНД алгебры B. Определим следующую степенную функцию ν_{δ} : $B \setminus \{0\} \to \mathbb{N} \cup \{0\}$. Если $\delta^k(b) \neq 0$ и $\delta^{k+1}(b) = 0$, то $\nu_{\delta}(b) = k$. Здесь $\delta^0(b) = b$.

Упражнение 1.18. Выполнены следующие свойства:

- 1) $\nu_{\delta}(a+b) \leq \max\{\nu_{\delta}(a), \nu_{\delta}(b)\};$
- 2) $\nu_{\delta}(ab) = \nu_{\delta}(a) + \nu_{\delta}(b)$.

Отсюда следует, что подмножества $U_k = \{b \mid \nu_\delta(b)\} \cap \{0\}, k \in \mathbb{N} \cup \{0\}$ – это пространства, задающие строгую (возрастающую) фильтрацию на B, то есть

- $U_i \subseteq U_{i+1}$;
- $\bullet \bigcap_{i>0} U_i = B;$
- если $a \in U_i$, $b \in U_j$, то $ab \in U_{i+j}$;
- если $a \in U_i \setminus U_{i-1}$, $b \in U_j \setminus U_{j-1}$, то $ab \in U_{i+j} \setminus U_{i+j-1}$.

Упражнение 1.19. Докажите это.

3амечание 1.20. Часто спепенную функцию ν_{δ} обозначают через \deg_{δ} . Но мы выберем первое обозначение, чтобы не перегружать символ \deg . Также зачастую пологают $\nu_{\delta}(0) = -\infty$.

Лемма 1.21. Пусть δ – ЛНД алгебры B. И пусть $A = \text{Ker } \delta$. Тогда

- A подалгебра (область целостности) с единицей в B;
- обратимые элементы B^{\times} содержатся в A;
- A факториально замкнутая подалгебра в B (то есть если для некоторых $x, y \in B$ выполнено $xy \in A$, то $x, y \in A$);
- A алгебраически замкнутая подалгебра (то есть если для некоторого $b \in B$ выполнено f(b) = 0 для некоторого $f \in A[x]$, то $b \in A$);
- $\operatorname{tr.deg}_{\mathbb{K}} A = \operatorname{tr.deg}_{\mathbb{K}} B 1$.

Упражнение 1.22. Докажите всё, кроме последнего пункта.

3амечание 1.23. Подалгебра A может быть не конечно порождённой. Даже в случае, когда $B = \mathbb{K}[x_1, \dots, x_n]$.

Лемма 1.24. Пусть δ – ЛНД алгебры B. Тогда $\ker \delta = B^{\mathcal{H}_{\delta}}$ (алгебра инвариантов при действии \mathcal{H}_{δ} на B).

Доказательство. Если $a \in \text{Ker } \delta$, то

$$\exp(t\delta)(a) = \mathrm{id}(a) + t\delta(a) + \frac{t^2\delta^2(a)}{2!} + \dots = a.$$

Напротив, пусть $\nu_{\delta}(a) = m$ и $a \in B^{\mathcal{H}_{\delta}}$. Тогда $\exp(t\delta)(a)$ – многочлен степени m от t с коэффициентами из B. Но этот многочлен для всех t принимает значение a. Так как поле $\mathbb K$ бесконечно, получаем, что все коэффициенты, кроме свободного члена равны нулю, а это значит, что $a \in \operatorname{Ker} \delta$.

Определение 1.25. Инвариант Макар-Лиманова алгебры B – это пересечение всех ядер всех ЛНД алгебры B.

$$ML(B) = \bigcap_{\delta \in LND(B)} \operatorname{Ker} \delta.$$

Из леммы 1.24 следует, что $ML(X) = B^{\mathrm{SAut}(B)}$.

Предложение 1.26. ML(B) является Aut(B)-инвариантной подалгеброй.

Доказательство. То, что ML(B) – подалгебра следует из того, что по определению это пересечение подалгебр. В свою очередь HD(B) – по определению подалгебра.

Пусть δ – ЛНД алгебры B, а φ – автоморфизм B. Докажем, что $\varphi(\operatorname{Ker} \delta) = \operatorname{Ker} (\varphi \circ \delta \circ \varphi^{-1})$. В самом деле, если $b \in \operatorname{Ker} \delta$, то $\varphi \circ \delta \circ \varphi^{-1}(\varphi(b)) = \varphi \circ \delta(b) = 0$, значит, $\varphi(b) \in \operatorname{Ker} (\varphi \circ \delta \circ \varphi^{-1})$, что означает, что

$$\varphi(\operatorname{Ker} \delta) \subseteq \operatorname{Ker} (\varphi \circ \delta \circ \varphi^{-1}).$$

Применив это же утверждение к $\psi = \varphi^{-1}$ и $\zeta = \varphi \circ \delta \circ \varphi^{-1}$, получим

$$\varphi^{-1}(\varphi \circ \delta \circ \varphi^{-1}) = \psi(\operatorname{Ker} \zeta) \subseteq \operatorname{Ker} (\psi \circ \zeta \circ \psi^{-1}) = \operatorname{Ker} \delta.$$

Применяя к обоим частям φ , получаем включение, противоположное ранее доказанному. Следовательно, доказано, что $\varphi(\operatorname{Ker} \delta) = \operatorname{Ker} (\varphi \circ \delta \circ \varphi^{-1})$

Теперь $ML(B) = \bigcap_{\delta \in LND(B)} \operatorname{Ker} \delta$. Значит,

$$\varphi(ML(B)) = \bigcap_{\delta \in LND(B)} \varphi(\operatorname{Ker} \delta) = \bigcap_{\delta \in LND(B)} \operatorname{Ker}(\varphi \circ \delta \circ \varphi^{-1}) = \bigcap_{\varphi \circ \delta \circ \varphi^{-1} \in LND(B)} \operatorname{Ker}(\varphi \circ \delta \circ \varphi^{-1}) = ML(B).$$

Упражнение 1.27. Пусть B и C – две алгебры. И пусть $\psi \colon B \to C$ – изоморфизм этих алгебр. Тогда $\psi(ML(B)) = ML(C)$. **Лемма 1.28.** Подалгебра ML(X)

- ullet содержит подалгебру $\mathbb{K}[B^{\times}]$, порождённую всеми обратимыми элементами;
- является факториально замкнутой;
- является алгебраически замкнутой.

Доказательство. Следует из леммы 1.21

Пример 1.29. • $ML(\mathbb{K}[x_1,\ldots,x_n])=\mathbb{K}$. Дествительно, $\bigcap_{i=1}^n \operatorname{Ker} \frac{\partial}{\partial x_i}=\mathbb{K}$.

- $ML(\mathbb{K}[x_1,x_1^{-1},x_2,x_2^{-1},\ldots,x_n,x_n^{-1}])=\mathbb{K}[x_1,x_1^{-1},x_2,x_2^{-1},\ldots,x_n,x_n^{-1}].$ В самом деле, эта алгебра порождена обратимыми функциями.
- $ML(\mathbb{K}[x_1, x_1^{-1}, x_2, x_2^{-1}, \dots, x_k, x_k^{-1}, x_{k+1}, \dots, x_n]) = \mathbb{K}[x_1, x_1^{-1}, x_2, x_2^{-1}, \dots, x_k, x_k^{-1}].$ (Упражнение.)

2 Вычисление ML(X)

В этом разделе будут собраны некоторые методы (не полный список) и примеры вычисления ML(B). Начнём с совсем простых методов.

1. Явное выписывание некоторых дифференцирований.

Для того, чтобы вычислить ML(B) необходимо доказать, что он не меньше и не больше, чем предполагаемый ответ. Для того, чтобы получить предполагаемый ответ и для того, чтобы доказать, что ML(B) не больше, чаще всего стоит выписать некоторое количество ЛНД, пересечь их ядра и (если больше не получается уменьшить путём пересечения с ядрами других ЛНД) попытаться доказать, что ML(X) не меньше.

Пример 2.1. Пусть $B = \mathbb{K}[x, y, z]/(xz - y^2)$. Докажем, что $ML(B) = \mathbb{K}$. Для этого рассмотрим два ЛНД:

$$\delta_1: \begin{cases} x \mapsto 2y; \\ y \mapsto z; \\ z \mapsto 0; \end{cases} \qquad \delta_2: \begin{cases} x \mapsto 0; \\ y \mapsto x; \\ z \mapsto 2y. \end{cases}$$

Легко видеть, что $\operatorname{Ker} \delta_1 = \mathbb{K}[z]$, $\operatorname{Ker} \delta_2 = \mathbb{K}[x]$, и следовательно, $ML(B) = \mathbb{K}$.

Замечание 2.2. Аналогичным образом (рассматривая ЛНД, соответствующие корням Демазюра) можно показать, что инвариант Макар-Лиманова любого нормального невырожденного торического многообразия равен К.

2. Использование обратимых функций и свойств ML(B).

Как уже было упомянуто, ML(B) содержит $\mathbb{K}[B^{\times}]$. Можно использовать это вкупе со свойствами ML(B).

Пример 2.3. Пусть

$$B = \mathbb{K}[x, y, z, u, v] / ((x^4 + y^5 + z^6)(x^4 + y^5 - z^6)(x^4 - y^5 + z^6) - 1, x^{17} + y^{19} + u^{23}).$$

Тогда $x^4+y^5+z^6, x^4+y^5-z^6, x^4-y^5+z^6\in B^\times\subseteq ML(B)$. Так как ML(B) – подпространство, имеем $x^4,y^5,z^6\in ML(X)$. В силу факториальной замкнутости $x,y,z\in ML(B)$. В силу алгебраической замкнутости $u\in ML(B)$. С другой стороны, $\frac{\partial}{\partial v}$ – ЛНД, и его ядро – это алгебра порождённая x,y,z,u. Итак,

$$ML(B) = \mathbb{K}[x, y, z, u]/((x^4 + y^4 + z^4)(x^4 + y^4 - z^4)(x^4 - y^4 + z^4) - 1, x^{17} + y^{19} + u^{23}).$$

На следующей лекции будут рассмотрены другие методы вычисления ML(B). Далее мы перейдём к применениям ML(B) и к модификациям этого инварианта.