

MBA⁺

Artificial Intelligence & Machine Learning

Human-Centered Data & Al

Dinheiro traz felicidade?

Country	GDP per capita (\$US)	Life satisfaction
Hungary	12240,0	4,9
Korea	27195,0	5,8
France	37675,0	6,5
Australia	50962,0	7,3
United States	55805,0	7,2

O que acham? Podemos usar uma função?

Dinheiro traz felicidade?

Country	GDP per capita (\$US)	Life satisfaction
Hungary	12240,0	4,9
Korea	27195,0	5,8
France	37675,0	6,5
Australia	50962,0	7,3
United States	55805,0	7,2

Diversas possibilidades

Qual é a melhor e porque?

Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow.

Dinheiro traz felicidade?

Country	GDP per capita (\$US)	Life satisfaction
Hungary	12240,0	4,9
Korea	27195,0	5,8
France	37675,0	6,5
Australia	50962,0	7,3
United States	55805,0	7,2

Melhor ajuste

Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow.

Objetivo: "prever" o valor de y (qualidade de vida) usando dados observados de x (renda per capita).

Abordagem: podemos usar uma <u>reta</u> (ou <u>hiperplano</u>, para mais dimensões). Assim:

$$y = f(x)$$

Qual é a cara dessa função?

Abordagem supervisionada simples

Assume uma dependência linear entre a variável resposta Y e os valores $X_1, X_2, ..., X_p$

Assume-se o modelo:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p$$

Sendo β_0 , β_1 , ..., β_p coeficientes aprendidos pelo modelo

A fim de encontrar o hiperplano de que melhor se ajusta aos dados, devemos minimizar o erro quadrático médio obtido por ele

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (\hat{y} - y)^2}{n}}$$

onde \hat{y} é o valor predito, y é o valor real e n o número de exemplos

É muito importante utilizar $(\hat{y} - y)^2$, caso contrário um erro negativo (valor predito menor que o real) cancelaria um positivo (valor predito maior que o real)

Há alguma relação entre aumento de vendas e propaganda?

Qual mídia contribui mais para as vendas?

- Abordagem supervisionada simples
- Assume uma dependência linear entre a variável resposta Y e os valores X_1, X_2, \dots, X_p
- Assume-se o modelo:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p$$

Sendo $\beta_0, \beta_1, ..., \beta_p$ coeficientes aprendidos pelo modelo

 Para o exemplo do slide 5, foi obtida a seguinte equação do hiperplano:

$$Vendas = 2,939 + 0,046 \times TV + 0,189 \times radio + 0.01 \times Jornal$$

• Para o exemplo do slide 5, foi obtida a seguinte equação do hiperplano:

$$Vendas = 2,939 + 0,046 \times TV + 0,189 \times radio + 0.01 \times Jornal$$

- caso nenhuma ação de propaganda seja feita as vendas serão de 2,939
- Mantendo todos os outros valores constantes, a cada uma unidade aumentada nas ações por TV, as vendas aumentam 0,046
- A influência da utilização de jornal é quase nula

Reta

- β_0 : deslocamento
- β_1 : inclinação

Reta

$$y = \beta_0 + \beta_1 x$$

 β_0 fixo; β_1 variável

 β_0 variável; β_1 fixo

Χ

Χ

$$e = y - \hat{y}$$

$$e = y - (\beta_0 + \beta_1 x)$$

Positivo

Negativo

$$y - \hat{y} > 0 \qquad y - \hat{y} < 0$$

$$(y-\hat{y})^2$$

$$|y-\hat{y}|$$

Como avaliar o erro total?

Erro quadrático
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 médio
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$$

 Como a função RMSE é convexa, é possível encontrar o valor mínimo por meio de algoritmos de otimização

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Y		

		Peso	Altura
	Pessoa 1	80 kg	163
	Pessoa 2	85 kg	168
	Pessoa 3	90 kg	175
	r essua 5	90 kg	1/3
6	Pessoa 4	95 kg	188

$\hat{y} =$	β_0 +	$\beta_1 X_1$
-------------	-------------	---------------

0	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Y		

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$\hat{y} = 17 + 1.8 \times 163$$

		Peso	Altura
	Pessoa 1	80 kg	163
	Pessoa 2	85 kg	168
	Pessoa 3	90 kg	175
•	Pessoa 4	95 kg	188

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$\hat{y} = 17 + 1.8 x 163$$

$$\hat{y} = 310,4$$

MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Y		

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$\hat{y} = 17 + 1.8 x 163$$

 $\hat{y} = 310,4$

		Peso	Altura
	Pessoa 1	80 kg	163
	Pessoa 2	85 kg	168
	Pessoa 3	90 kg	175
6	Pessoa 4	95 kg	188

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
 $\hat{y} = 17 + 1.8 \times 163$ MSE = $(80 - 310.4)^2$

 $\hat{y} = 310,4$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Y		

$$\hat{y} = \beta_0 + \beta_1 X_1 \qquad \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163 \qquad \text{MSE} = (80 - 310.4)^2$$

$$\hat{y} = 310.4 \qquad \text{MSE} = 53.084.16$$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
0		
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
 $\hat{y} = 17 + 1.8 \times 163$ MSE = $(80 - 310.4)^2$
 $\hat{y} = 310.4$ MSE = $53.084.16$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188

$$\hat{y} = \beta_0 + \beta_1 X_1 \qquad \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 x 163 \qquad \text{MSE} = (80 - 310.4)^2$$

$$\hat{y} = 310.4 \qquad \text{MSE} = 53.084.16$$

$$\hat{y} = 20 + 2.1 x 163 \qquad \hat{y} = 14 + 1.5 x 163$$

 $\hat{y} = 20 + 2.1 \times 163$

0	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
0		
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Y		

$$\hat{y} = \beta_0 + \beta_1 X_1 \qquad \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 x 163 \qquad \text{MSE} = (80 - 310.4)^2$$

$$\hat{y} = 310.4 \qquad \text{MSE} = 53.084.16$$

$$\hat{y} = 20 + 2.1 x 163 \qquad \hat{y} = 14 + 1.5 x 163$$

 $\hat{y} = 362,3$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Y		

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 20 + 2,1 \times 163$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 362,3$$

$$MSE = (80 - 362,3)^2$$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Y		

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 20 + 2.1 \times 163$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 362,3$$

$$MSE = (80 - 362,3)^2$$

$$MSE = 79.693,29$$

0	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Y	0	

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 20 + 2,1 \times 163$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 362,3$$

$$\hat{y} = 258,5$$

$$MSE = (80 - 362,3)^2$$

$$MSE = 79.693,29$$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
-0		
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 x 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 20 + 2.1 \times 163$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 362,3$$

$$\hat{y} = 258,5$$

$$MSE = (80 - 362,3)^2$$

$$MSE = (80 - 258,5)^2$$

$$MSE = 79.693,29$$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Y	0	

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$\hat{y} = 17 + 1.8 x 163$$

$$\hat{y} = 310.4$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$MSE = (80 - 310,4)^2$$

$$MSE = 53.084,16$$

$$\hat{y} = 20 + 2.1 \times 163$$

$$\hat{y} = 362,3$$

$$MSE = (80 - 362,3)^2$$

$$MSE = 79.693,29$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 258,5$$

$$MSE = (80 - 258,5)^2$$

$$MSE = 31.862,25$$

$$\hat{y} = \beta_0 + \beta_1 X_1$$

=
$$\beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 20 + 2,1 \times 163$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 362,3$$

$$\hat{y} = 258,5$$

$$MSE = (80 - 362,3)^2$$

$$MSE = (80 - 258,5)^2$$

$$MSE = 79.693,29$$

$$MSE = 31.862,25$$

Peso Altura

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 x 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

MSE = 53.084,16

$$\hat{y} = 20 + 2.1 \times 163$$

$$\hat{y} = 362,3$$

$$MSE = (80 - 362,3)^2$$

$$MSE = 79.693,29$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 258,5$$

$$MSE = (80 - 258,5)^2$$

$$MSE = 31.862,25$$

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$\hat{y} = 17 + 1.8 x 163$$

$$\hat{y} = 310,4$$

$$\hat{y} = 20 + 2,1 \times 163$$

$$\hat{y} = 362,3$$

$$MSE = (80 - 362,3)^2$$

$$MSE = 79.693,29$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$MSE = (80 - 310,4)^2$$

$$MSE = 53.084,16$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 258,5$$

$$MSE = (80 - 258,5)^2$$

$$MSE = 31.862,25$$

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$= \beta_0 + \beta_1 X_1 \qquad \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 20 + 2,1 \times 163$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 362,3$$

$$\hat{y} = 258,5$$

$$MSE = (80 - 362,3)^2$$

$$MSE = (80 - 258,5)^2$$

$$MSE = 79.693,29$$

$$MSE = 31.862,25$$

	Peso	Altura	
Pessoa 1	80 kg	163	←
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1 \qquad \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163 \qquad \text{MSE} = (80 - 310.4)^2$$

$$\hat{y} = 310,4$$
 MSE = 53.084,16

$$\hat{y} = 14 + 1.5 x 163$$
 MSE = $(80 - 258.5)^2$
 $\hat{y} = 258.5$ MSE = $31.862.25$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	—
0			
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 14 + 1.5 x 163$$

$$MSE = (80 - 258,5)^2$$

$$\hat{y} = 258,5$$

$$MSE = 31.862,25$$

$$\hat{y} = 10 + 1.1 \times 168$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	—
-			
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 14 + 1.5 x 163$$

$$MSE = (80 - 258,5)^2$$

$$\hat{y} = 258,5$$

$$MSE = 31.862,25$$

$$\hat{y} = 10 + 1,1 \times 168$$

$$\hat{y} = 194,8$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	—
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 x 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 14 + 1.5 x 163$$

$$MSE = (80 - 258,5)^2$$

$$\hat{y} = 258,5$$

$$MSE = 31.862,25$$

$$\hat{y} = 10 + 1.1 \times 168$$

$$MSE = (85 - 194,8)^2$$

$$\hat{y} = 194.8$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	←
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 x 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 14 + 1.5 x 163$$

$$MSE = (80 - 258,5)^2$$

$$\hat{y} = 258,5$$

$$MSE = 31.862,25$$

$$\hat{y} = 10 + 1,1 \times 168$$

$$MSE = (85 - 194,8)^2$$

$$\hat{y} = 194.8$$

$$MSE = 12.056,04$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
-0			
Pessoa 3	90 kg	175	←
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

		Peso	Altura	
	Pessoa 1	80 kg	163	
(aa)	Pessoa 2	85 kg	168	
	1 C3300 Z	03 Kg	100	
	Pessoa 3	90 kg	175	←
	Pessoa 4	95 kg	188	
		338		

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
 $\hat{y} = 7 + 0.8 \times 175$
 $\hat{y} = 147$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
0			
Pessoa 3	90 kg	175	←
Pessoa 4	95 kg	188	
Y			

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
 $\hat{y} = 7 + 0.8 \times 175$ MSE = $(90 - 147)^2$
 $\hat{y} = 147$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	←
Pessoa 4	95 kg	188	
Y			

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
 $\hat{y} = 7 + 0.8 \times 175$ MSE = $(90 - 147)^2$
 $\hat{y} = 147$ MSE = 3.249

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	←
Y		·	

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

 $MSE = (90 - 147)^2$

MSE = 3.249

	Peso	Altura	
Pessoa 1	80 kg	163	
			_
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	
			_
Pessoa 4	95 kg	188	—

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 $\hat{y} = 7 + 0.8 x 175$
 $\hat{y} = 147$
 $\hat{y} = 3 + 0.5 x 188$

 $\hat{y} = 97$

	Peso	Altura	
Pessoa 1	80 kg	163	
			_
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	
			_
Pessoa 4	95 kg	188	—

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$\hat{y} = 7 + 0.8 x 175$$

$$\hat{y} = 147$$

$$\hat{y} = 3 + 0.5 x 188$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

MSE = $(90 - 147)^2$
MSE = 3.249

$$\hat{y} = 3 + 0.5 x 188$$
 MSE = $(95 - 97)^2$ $\hat{y} = 97$

0	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
0			
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	—

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
 $\hat{y} = 7 + 0.8 \times 175$ MSE = $(90 - 147)^2$
 $\hat{y} = 147$ MSE = 3.249

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	←

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
-0			
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	—

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$\hat{y} = 38,6$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	-
Y			-

$$\hat{y} = \hat{y} = 7$$

$$\hat{y} = 3$$

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
 $\hat{y} = 7 + 0.8 x 175$ MSE = $(90 - 147)^2$
 $\hat{y} = 147$ MSE = 3.249
 $\hat{y} = 3 + 0.5 x 188$ MSE = $(95 - 97)^2$
 $\hat{y} = 97$ MSE = 4

$$\hat{y} = 1 + 0.2 x 188$$
 MSE = $(95 - 38.6)^2$ $\hat{y} = 38.6$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
0			
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	—

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$MSE = (95 - 38,6)^2$$

$$\hat{y} = 38,6$$

$$MSE = 3.180,97$$

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$= \beta_0 + \beta_1 X_1 \qquad \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$\hat{y} = 147$$
 MS

$$MSE = 3.249$$

 $MSE = (90 - 147)^2$

$$\hat{y} = 3 + 0.5 x 188$$

$$\hat{y} = 97$$

$$MSE = (95 - 97)^2$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$\hat{y} = 38,6$$

$$MSE = (95 - 38,6)^2$$

$$MSE = 3.180,97$$

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$MSE = (95 - 38,6)^2$$

$$\hat{y} = 38,6$$

$$MSE = 3.180,97$$

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$MSE = (95 - 38,6)^2$$

$$\hat{y} = 38,6$$

$$MSE = 3.180,97$$

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$MSE = (95 - 38,6)^2$$

$$\hat{y} = 38,6$$

$$MSE = 3.180,97$$

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$MSE = (95 - 38,6)^2$$

$$\hat{y} = 38,6$$

$$MSE = 3.180,97$$

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$MSE = (95 - 38,6)^2$$

$$\hat{y} = 38,6$$

$$MSE = 3.180,97$$

$$\hat{\mathbf{y}} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$MSE = (95 - 38,6)^2$$

$$\hat{y} = 38,6$$

$$MSE = 3.180,97$$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188

$$\hat{y} = 7$$

$$\hat{y} = 7$$

$$\hat{y} = 3$$

$$\hat{y} = \beta_0 + \beta_1 X_1 \qquad \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175 \qquad \text{MSE} = (90 - 147)^2$$

$$\hat{y} = 147 \qquad \text{MSE} = 3.249$$

$$\hat{y} = 3 + 0.5 x 188 \qquad \text{MSE} = (95 - 97)^2$$

$$\hat{y} = 97 \qquad \text{MSE} = 4$$

$$\hat{y} = 1 + 0.2 x 188$$
 MSE = $(95 - 38.6)^2$
 $\hat{y} = 38.6$ MSE = $3.180.97$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

		Peso	Altura
	Pessoa 1	80 kg	163
	Pessoa 2	85 kg	168
	0		
	Pessoa 3	90 kg	175
65	Pessoa 4	95 kg	188
	Y		·

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
 $\hat{y} = 3 + 0.5 x 188$ MSE = $(95 - 97)^2$
 $\hat{y} = 97$ MSE = 4

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
0			
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	
	·	·	

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 84,5$$
 MSE = 20,25
 $\hat{y} = 87$ MSE = 4

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	
T.			
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0$$

$$\hat{y} = 3 + 3$$

$$\hat{y}$$

$$\hat{y} = \beta_0 + \beta_1 X_1 \qquad \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 3 + 0.5 \times 188 \qquad \text{MSE} = (95 - 97)^2$$

$$\hat{y} = 97 \qquad \text{MSE} = 4$$

$$\hat{y} = 87 \qquad \text{MSE} = 4$$

$$\hat{y} = 90.5 \qquad \text{MSE} = 0.25$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
 $\hat{y} = 3 + 0.5 \times 188$ MSE = $(95 - 97)^2$
 $\hat{y} = 97$ MSE = 4

$$\hat{y} = 84.5$$
 MSE = 20,25
 $\hat{y} = 87$ MSE = 4
 $\hat{y} = 90.5$ MSE = 0,25
 $\hat{y} = 97$ MSE = 4

0	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
0			
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
 $\hat{y} = 3 + 0.5 \times 188$ MSE = $(95 - 97)^2$
 $\hat{y} = 97$ MSE = 4
 $\hat{y} = 84.5$ MSE = 20,25
 $\hat{y} = 87$ MSE = 4
 $\hat{y} = 90.5$ MSE = 0,25
 $\hat{y} = 97$ MSE = 4

MSE = 7,125

		Peso	Altura		
	Pessoa 1	80 kg	163		ŷ =
	Pessoa 2	85 kg	168		ŷ
	Pessoa 3	90 kg	175	y †	
					• /
	Pessoa 4	95 kg	188		•
					• /

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

$$\hat{y} = 3 + 0.5 x 188$$
 MSE = $(95 - 97)^2$
 $\hat{y} = 97$ MSE = 4

MSE = 7,125

 χ

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ MSE = $7,125$ $\beta_1 = 0,5$

$$\hat{y} = 3 + 0.5 X_1$$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Ĭ	9	
Pessoa 5	?? kg	158

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ MSE = $7,125$ $\beta_1 = 0,5$

$$\hat{y} = 3 + 0.5 X_1$$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
	9	
Pessoa 5	?? kg	158

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ MSE = $7,125$ $\beta_1 = 0,5$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Pessoa 5	?? kg	158

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ MSE = $7,125$ $\beta_1 = 0,5$

		Peso	Altura		
		PE30	Aitura	$\hat{\mathbf{x}} = 0$	<i>0</i> V
	Pessoa 1	80 kg	163	y	$\beta_0 + \beta_1 X_1$
					β_0 = 3
	Pessoa 2	85 kg	168		β_0 = 3 β_1 =0,5
	Pessoa 3	90 kg	175	,	$\hat{y} = 3 + 0.5$
_					ı
	Pessoa 4	95 kg	188		
	Y	0			\
_					$\hat{y} = 3 + 0.5 z$
	Pessoa 5	82 kg	158		
		1		_	

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ MSE = 3 MSE = $7,125$ $\beta_1 = 0.5$

 Queremos algum modelo capaz de classificar se a pessoa sofre um acidente com base no tempo que durou a auto-escola dela

Classificação

Como prever dados qualitativos/discretos?

- Dados qualitativos pertencem a um conjunto de valores
 - Cor dos olhos {Castanho, Preto, Azul, Verde}
 - E-mail {spam, não spam}
- Muitas vezes estimamos a probabilidade de um exemplo pertencer à categoria ${\it C}$

Classificação

• Como classificar em arriscado ou não arriscado?

Classificação

• No caso da classificação de risco, podemos utilizar regressão linear?

$$Y = \begin{cases} 0, n\tilde{a}o \\ 1, sim \end{cases}$$

• Classificar como "Sim" se $\hat{Y} > 0.5$?

- Podemos entender regressão logística como o análogo de regressão linear para problemas de classificação.
- Considere o problema: no eixo y: 1 se a pessoa sofreu um acidente e 0 caso contrário. No eixo x, temos o tempo que ela passou na autoescola.

- Podemos ver então que a maioria das pessoas que sofreram um acidente de carro passou pouco tempo na auto-escola.
- Queremos algum modelo capaz de prever a probabilidade da pessoa sofrer um acidente com base no tempo que durou a auto-escola dela?

- Uma forma ingênua de resolver esse problema é utilizar regressão linear. Como regressão linear produz como previsão um valor contínuo, nós podemos estabelecer algum limiar para as previsões.
- Vamos supor que fixemos esse limiar em 0,5: pessoas cuja previsão de acidente for maior do que isso serão consideradas de alto risco.

- Nesse caso, utilizar regressão linear e estabelecer um limiar funcionaria muito bem!
- Se colocássemos o nosso limiar em 0.5, preveríamos que todos à direita da curva pontilhada não sofreriam um acidente e erraríamos em apenas dois casos!

- Mas, nesse caso não! Ao ter uma pessoa com 100h de aulas.
 - Erraríamos 5 exemplos.

- Para resolver esses problemas, em vez de utilizar regressão linear, vamos utilizar a regressão logística sempre que nos depararmos com problemas de classificação.
- Regressão logística nos fornecerá uma previsão sempre entre 0 e 1, de forma que possamos interpretar seus resultados como uma probabilidade válida.
- Além disso, regressão logística não será influenciada por *outliers* que não fornecem muita informação nova, pois a atenção do algoritmo será concentrada na região de fronteira.

• A intuição por trás de regressão logística é bastante simples: em vez de acharmos a reta que melhor se ajusta aos dados, vamos achar uma curva em formato de 'S' que melhor se ajusta aos dados:

 Regressão linear pode produzir valores menores que 0.0 e maiores que 1.0

Regressão Logística limita a saída entre 0.0 e 1.0

 Para evitar valores fora do intervalo [0.0; 1.0], utilizamos uma função sigmoide ou logística

A função sigmoide pode assumir diferentes inclinações

A regressão logística é semelhante a uma regressão linear, mas a curva é construída usando o logaritmo natural das "probabilidades" da variávelalvo, em vez da probabilidade.

$$f(x)=rac{1}{1+e^{-x}}$$
 para todo $x\,$ real.

A função **exponencial** natural, denotada e^x ou exp(x) é a função **exponencial** cuja base é o número de Euler (um número irracional que **vale** aproximadamente 2,718281828).

- Existem várias analogias entre regressão linear e regressão logística.
- Porém, os métodos divergem também na função custo utilizada para relacionar os valores preditos ao valor alvo.

• Em vez de tentarmos minimizar a distância quadrada entre o valor previsto e o observado, nós vamos minimizar a entropia cruzada:

$$L = \left\{ egin{array}{ll} -log(\hat{y}) & se & y=1 \ -log(1-\hat{y}) & se & y=0 \end{array}
ight.$$

Dicotomia: dividir em duas partes.

• Vamos entender a função custo:

$$L = \left\{ egin{array}{ll} -log(\hat{y}) & se & y=1 \ -log(1-\hat{y}) & se & y=0 \end{array}
ight.$$

- Se y=1 e \hat{y} =1, $-\log(\hat{y})$ =0. No entanto, quanto mais \hat{y} se aproxima de 0, $-\log(\hat{y})$ cresce exponencialmente para o infinito.
- se y=0 e \hat{y} =0, podemos ver que $-\log(1-\hat{y})$ =0. Mas $-\log(1-\hat{y})$ =0 vai para o infinito conforme \hat{y} se distancia de 0.

Dicotomia: dividir em duas partes.

Thanks!

Vinicius Fernandes Caridá vfcarida@gmail.com

@vinicius caridá @vfcarida

@vinicius caridá

@vfcarida

@vinicius caridá

@vfcarida