Introdução à análise exploratória de dados

Wagner H. Bonat Elias T. Krainski Fernando P. Mayer

Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação

23/02/2018

Sumário

- Informações gerais
 - O que é estatística?
- 2 Análise exploratória de dados
 - Organização de Dados
 - Tabelas de frequência
 - Representação gráfica
- 3 Exercícios recomendados

Referência bibliográfica

Livro-texto:

Marcos Nascimento Magalhães e Antonio Carlos Pedroso de Lima.
 Noções de Probabilidade e Estatística. Editora: EDUSP.

Tópicos do curso

- Análise exploratória de dados.
- Probabilidades.
- Variáveis aleatórias discretas.
- Medidas resumo.
- Variáveis bidimensionais.
- Variáveis aleatórias contínuas.
- Inferência estatística Estimação.
- Inferência estatística Testes de hipóteses.
- Tópicos especiais.

O que é estatística?

- Estatística é um conjunto de técnicas para, sistematicamente:
 - planejar a coleta de dados oriundos de estudos ou experimentos, realizados em qualquer área do conhecimento.
 - descrever, analisar e interpretar dados
 - extrair informações para subsidiar decisões ou conclusões

Tópicos de estatística básica

- Conceitos essenciais em Estatística:
 - Estatística descritiva.
 - Probabilidade.
 - Inferência estatística.
- Conceitos fundamentais:
 - População: Conjunto de todos os elementos sob investigação.
 - Amostra: Subconjunto da população.
 - Variável de interesse: característica a ser observada em cada indivíduo da amostra

População e amostra

- Definição do método de coleta de dados
 - estabelecer os objetivos (questões) de pesquisa
 - definir critérios objetivos de como e quais dados coletar
 - postular a análise estatística a ser utilizada

- Definição do método de coleta de dados
 - estabelecer os objetivos (questões) de pesquisa
 - definir critérios objetivos de como e quais dados coletar
 - postular a análise estatística a ser utilizada
- Estatística Descritiva
 - depende do tipo de dado coletado
 - deve ser racionalizada
 - relacionada com os objetivos da pesquisa

- Definição do método de coleta de dados
 - estabelecer os objetivos (questões) de pesquisa
 - definir critérios objetivos de como e quais dados coletar
 - postular a análise estatística a ser utilizada
- Estatística Descritiva
 - depende do tipo de dado coletado
 - deve ser racionalizada
 - relacionada com os objetivos da pesquisa
- Inferência estatística
 - depende do objetivo da pesquisa

Planejamento da coleta de dados

- definição do experimento
 - variáveis respostas
 - variáveis de controle
 - desenho do experimento e randomização

Planejamento da coleta de dados

- definição do experimento
 - variáveis respostas
 - variáveis de controle
 - desenho do experimento e randomização
- coleta de dados por amostragem
 - definição da população e característica de interesse
 - definição do plano amostral
 - Aleatória simples (com ou sem reposição) ou sistemática
 - Estratificada, por estratos da população (segundo uma característica)
 - Conglomerados, por grupos de indivíduos da população (subpopulações)
 - Amostragem complexa (combina anteriores)

Planejamento da coleta de dados

- definição do experimento
 - variáveis respostas
 - variáveis de controle
 - desenho do experimento e randomização
- coleta de dados por amostragem
 - definição da população e característica de interesse
 - definição do plano amostral
 - Aleatória simples (com ou sem reposição) ou sistemática
 - Estratificada, por estratos da população (segundo uma característica)
 - Conglomerados, por grupos de indivíduos da população (subpopulações)
 - Amostragem complexa (combina anteriores)
- coleta de dados observacionais. Exemplos:
 - população de plantas
 - presença de seres vivos num ambiente
 - fenômenos climáticos

Análise estatística

- Estatística Descritiva
 - consistência e interpretações iniciais
 - visualização dos dados e relações entre variáveis
- Inferência estatística
 - estimação de quantidades desconhecidas
 - formulação e teste de hipóteses
 - extrapolar para a população, se os dados são de uma amostra.

Sumário

- Informações gerais
 - O que é estatística?
- Análise exploratória de dados
 - Organização de Dados
 - Tabelas de frequência
 - Representação gráfica
- 3 Exercícios recomendados

Exemplo

Pesquisa foi realizada com alunos. Variáveis:

- Id: identificação do aluno; Turma: A ou B
- Sexo: feminino (F) ou masculino (M)
- Idade: em anos; Alt: altura em metros
- Peso: em quilogramas; Filhos: nº de filhos na família
- Fuma: hábito de fumar: sim (S) ou não (N)
- Toler: tolerância ao cigarro: (I) indiferente; (P) incomoda pouco; (M) incomoda muito
- Exerc.: horas de atividade física, por semana
- Cine: nº. de vezes que vai ao cinema por semana
- Op Cine: opini\(\tilde{a}\) o respeito das salas de cinema na cidade: (B) regular a boa; (M) muito boa
- TV: horas gastas assistindo TV, por semana
- Op TV: opinião a respeito da qualidade da programação na TV: (R) ruim; (M) média; (B) boa; (N) não sabe.

Organização de Dados

- A partir de um conjunto de dados coletado, a questão é:
 - Como extrair informações a respeito de uma ou mais características de interesse?
- Basicamente temos duas opções:
 - Tabelas de frequência
 - Gráficos
- O importante é levar em consideração a natureza dos dados.

Organização de Dados

- Uma típica tabela de dados brutos contém:
 - Variáveis (características, medições, etc) nas colunas
 - Sujeito (indivíduo, objetos, etc) nas linhas

```
Turma Sexo Idade Alt Peso Filhos Fuma Toler Exerc Cine OpCine TV OpTV
             17 1 60 60 5
                               NAO
                                                     B 16
             18 1.69 55.0
                               NAO
    A M 18 1.85 72.8
                            2 NAO
                                             2 B 20
    A M 25 1.85 80.9
                            2 NAO
    A F 19 1.58 55.0
5
                            1 NAO
         M 19 1.76 60.0
                            3 NAO
```

- Tipos de variáveis:
 - Qualitativa nominal: Turma, Sexo, Fuma,
 - Qualitativa ordinal: Toler, OpCine, OpTV.
 - Quantitativa discreta: Idade, Filh, Exer, Cine, TV.
 - Quantitativa contínua: Alt, Peso.

Tipos de variáveis

Tabelas de frequência

- A tabela de dados brutos pode ser muito longa, portanto será difícil extrair alguma informação
- As tabelas de frequência ajudam a resumir a informação da variável de interesse
- Vamos usar 3 tipos de frequência:
 - Frequência absoluta: contagem de cada valor observado. Representado por n_i o número de valores i, e n o número total
 - Frequência **relativa**: número de valores *i* dividido pelo total *n*, ou seja $f_i = \frac{n_i}{n}$
 - Frequência acumulada: frequência (absoluta ou relativa) acumulada até um certo valor, obtida pela soma das frequências de todos os valores da variável, menores ou iguais ao valor considerado

Tabela de frequência - qualitativa nominal

Considerando a variável Sexo

	ni	f _i
F	37	0.74
М	13	0.26
Sum	50	1.00

• Não faz sentido usar frequência acumulada

Tabela de frequência - quantitativa discreta

Considerando a variável Idade

	ni	f _i	f _{ac}
17	9	0.18	0.18
18	22	0.44	0.62
19	7	0.14	0.76
20	4	0.08	0.84
21	3	0.06	0.90
22	0	0.00	0.90
23	2	0.04	0.94
24	1	0.02	0.96
25	2	0.04	1.00
Sum	50	1.00	

Tabela de frequência - qualitativa ordinal

Considerando a variável OpTV

	ni	f_i	f_{ac}
R	39	0.78	0.78
M	1	0.02	0.80
В	3	0.06	0.86
N	7	0.14	1.00
Sum	50	1.00	

Tabela de frequência - quantitativa contínua

- No caso de quantitativas contínuas não faz sentido contar cada valor pois podem existir muitos
- A solução é criar classes ou faixas de valores, e contar o número de ocorrências dentro destas classes.
- Para definir as classes:
 - Defina a amplitude da classe, de maneira que se obtenham de 5 a 8 classes (de mesma amplitude)
 - Identifique os valores máximo e mínimo da variável e construa as classes de maneira que inclua todos os valores

As classes de valores podem seguir um dos formatos:

Classe	Notação	Denominação	Resultado
$ \begin{array}{c} (a,b) \\ (a,b] \end{array} $	a ⊢ b a ⊣ b	Fechado em a, aberto em b Aberto em a, fechado em b	,

Tabela de frequência - quantitativa contínua

- Considerando a variável Peso
 - Foram construídas 6 classes de amplitude 10
 - As classes são do tipo [a, b) ou a ⊢ b

	nį	f;	f_{ac}
[40, 50)	8	0.16	0.16
[50, 60)	22	0.44	0.60
[60, 70)	8	0.16	0.76
[70, 80)	6	0.12	0.88
[80, 90)	5	0.10	0.98
[90, 100)	1	0.02	1.00
Sum	50	1.00	

Tabela de frequência - quantitativa discreta (muitos valores)

- Considerando a variável TV
- Apesar de ser discreta, a amplitude de valores é muito grande e não seria viável contar as frequências de cada valor
- Nesse caso, utiliza-se o mesmo procedimento para quantitativas contínuas
 - Foram construídas 6 classes de amplitude 6¹
 - As classes são do tipo [a, b) ou a ⊢ b

	ni	f _i	f _{ac}
[0, 6)	14	0.28	0.28
[6, 12)	17	0.34	0.62
[12, 18)	11	0.22	0.84
[18, 24)	4	0.08	0.92
[24, 30)	3	0.06	0.98
[30, 36)	1	0.02	1.00
Sum	50	1.00	

¹Obs.: no livro a tabela tem 5 classes, pois a última tem comprimento 12.

Representação gráfica

- As informações contidas nas tabelas podem ser visualizadas através de gráficos
- Assim como nas tabelas, existe um tipo de gráfico adequado para cada tipo de variável
- Cuidado deve ser tomado com representações visuais pois um gráfico desproporcional pode gerar interretações distorcidas
- Os principais são:
 - Diagrama circular (setores ou "pizza")
 - Gráfico de barras
 - Histograma
 - Boxplot

Diagrama circular

• Adequado para variáveis qualitativas nominal e ordinal.

 O uso deste tipo de gráfico deve ser evitado, pois pode ser de difícil interpretação

Gráfico de barras

- Adequado para variáveis qualitativas nominal/ordinal e quantitativa discreta.
- Podem ser usadas as frequências absolutas ou relativas

Histograma

Adequado para quantitativa contínua.

• Altura de cada retângulo é a densidade definida pelo quociente da área pela amplitude da faixa, $h = \frac{f_i}{AMP}$.

Mediana e quartis

- Mediana: valor da variável que divide o conjunto de dados ordenados em dois subgrupos de mesmo tamanho.
- Quartis: valores da variável que divide o conjunto de dados ordenados em quatro subgrupos de mesmo tamanho.
- Posição dos quartis:
 - $Q_1 = 0.25 \cdot (N+1)$ e arredonde.
 - $Q_2 =$ média dos valores nas posições (N/2) e (N/2) + 1 se N par e $Q_2 = (N+1)/2$ se N ímpar.
 - $Q_3 = 0.75 \cdot (N+1)$ e arredonde.
- Exemplo: Conside o conjunto de dados: 8.43(1), 8.65(2), 9.96(3), 10.91(4), 10.46(5) e 10.83(6).
 - $Q_1 = 0.25 \cdot 7 = 1.75 \approx 2$, ou seja 8.65.
 - Q_2 = média dos valores nas posições 3 e 4, ou seja, (9.96 + 10.91)/2 = 10.43.
 - $Q_3 = 0.75 \cdot 7 = 5.25 \approx 5$, ou seja, 10.46.

Boxplots

• Adequado para quantitativa contínua.

 Excelente para explorar relações entre variáveis quantitativas e qualitativas.

Tipos de simetria

Diagrama de dispersão

• Adequado para verificar relação entre variáveis quantitativas.

Gráfico de mosaico

 Adequado para verificar relação entre variáveis qualitativas (nominais ou ordinais).

Sexo

Sumário

- Informações gerais
 - O que é estatística?
- Análise exploratória de dados
 - Organização de Dados
 - Tabelas de frequência
 - Representação gráfica
- Exercícios recomendados

Exercícios recomendados

- Seção 1.1: Ex. 1, 2 e 3.
- Seção 1.2: Ex. 1 e 4.
- Seção 1.4: Ex. 1, 3, 5 (troque diagrama circular pro gráfico de barras), 8, 9, 12, 18 e 20.