Diseration

Перелік умовних позначень

G - коєфіцієєнт Ламе

E - молуль Юнга

 μ - коєфіцієнт Пуасона

 $\mu_0 = \frac{1}{1-2\mu}$

 $U_x(x,y) = u(x,y)$ - переміщення по осі x

 $U_{y}(x,y)=v(x,y)$ - переміщення по осі у

1 Напруженний стан прямокутної області

1.1 Постановка задачі

Розглядається пружна прямокутна область, яка займає облась, що описується у декартовій системі координат співвідношенням $0 \le x \le a, \ 0 \le y \le b.$

До прямокутної області на грані y = b додане навантаження

$$V(x,y)|_{y=b} = -p(x), \quad \tau_{xy}(x,y)|_{y=b} = 0$$
 (1.1)

де p(x) відома функція. На бічних гранях виконується умова ідеального контакту

$$u(x,y)|_{x=0}, \quad \tau_{xy}(x,y)|_{x=0} = 0$$
 (1.2)

$$u(x,y)|_{x=a}, \quad \tau_{xy}(x,y)|_{x=a} = 0$$
 (1.3)

На нижній грані виконуються наступні умови

$$v(x,y)|_{y=0}, \quad \tau_{xy}(x,y)|_{y=0} = 0$$
 (1.4)

Розглядаються наступні рівняння рівноваги Ламе:

$$\begin{cases}
\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} + \mu_0 \left(\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 v(x,y)}{\partial x \partial y} \right) = 0 \\
\frac{\partial^2 v(x,y)}{\partial x^2} + \frac{\partial^2 v(x,y)}{\partial y^2} + \mu_0 \left(\frac{\partial^2 u(x,y)}{\partial x \partial y} + \frac{\partial^2 v(x,y)}{\partial y^2} \right) = 0
\end{cases} (1.5)$$

1.2 Зведеня задачі до одновимірної задачі у просторі трансформант

Для того, щоб звести задачу до одновимірної задачі, використаєм інтегральне перетворення Φ ур'є по змінній x у до рівнянь (1.5) наступному вигляді:

$$\begin{pmatrix} u_n(y) \\ v_n(y) \end{pmatrix} = \int_0^a \begin{pmatrix} u(x,y)\sin(\alpha_n x) \\ v(x,y)\cos(\alpha_n x) \end{pmatrix} dx, \quad \alpha_n = \frac{\pi n}{a}, n = \overline{0,\infty}$$
 (1.6)

Для цього помножим перше та друге рівняння (1.5) на $sin(\alpha_n x)$ та $cos(\alpha_n x)$ відповідно та проінтегруєм по змінній x.

2 Додаток А.