1. (15 points) Evaluate the following integrals. (5 points for each)

(a)
$$\int_0^{\pi/2} \cos x \sin(\sin x) \ dx$$

(b)
$$\int_9^{64} \frac{1}{\sqrt{x} \left(\sqrt{1 + \sqrt{x}} \right)} dx$$

(c)
$$\int_0^1 x^3 \left(1 + 9x^4\right)^{-3/2} dx$$

- 2. (10 points) Find the areas of the region bounded by $y = \sin x$ and $y = \sin^2 x$, between x = 0 and $x = \pi/2$.
- 3. (10 points) Air is pumped into a spherical balloon so that to volume increases at a rate of $100 \text{ (cm}^3/\text{s)}$. How fast is the radius of the balloon increasing when diameter is 50 (cm)?
- 4. (10 points) Find the length of the arc of the curve $x^2 = (y-4)^3$ from point P(1,5) to point Q(8,8).
- 5. (10 points) Let 0 < a < b. Use the mean value theorem to show that

$$\sqrt{b} - \sqrt{a} < \frac{b-a}{2\sqrt{a}}$$
.

(Hint): Use the function $f(x) = \sqrt{x}$.

6. A function is defined as

$$f(x) = \int_1^{x^2} \frac{1}{\sqrt{1+t^2}} dt.$$

- (a) (2 points) Find f(1).
- (b) (3 points) Find f'(x).
- (c) (5 points) Find the linearization of f(x) at x = 1.
- (d) (5 points) At which x the function f(x) has a minimum value.
- 7. (**10** points) Find the dimensions of the circular cylinder of **greatest** volume that can be inscribed in a cone of base radius *R* and height *H* if the base of the cylinder lies in the base of the cone. Please express the radius and height of the cylinder in terms of *R* and *H*.
- 8. (10 points) Find the volume of the solid generated by revolving the region between the *x*-axis and the curve $y = x^2 2x$ about the line y = 2.
- 9. (10 points) Find the exact area of the surface obtained by rotating the curve $x = \frac{1}{3}(y^2 + 2)^{3/2}$, $1 \le y \le 2$ about the *x*-axis.
- 10. Let $f(x) = x\sqrt{2 x^2}$.
 - (a) (4 points) Find the domain of the function f(x).
 - (b) (6 points) Find the intervals of increase and decrease.
 - (c) (4 points) Find the intervals of concavity.
 - (d) (4 points) Find the local maximum and minimum values.
 - (e) (2 points) Find the inflection points.