Introduction

Why use R?

Why not use a spreadsheet?

Why not use a spreadsheet?

- Data manipulation in Excel is VERY risk and time consuming
- A rage of software packages are available for Excel
- Large data sets can exceed the size limits of standard programs
- Spreadsheets don't have the inherent understanding of statistics that R has
- For example handling of NA's
- R is hot!

Why use R?

Why use R?

- Its free
- Its available on most operating systems Windows, OS X, Linux
- There are huge numbers of packages available
- Its becoming the international standard for statistics

Getting Started

 $Some\ References$

References

- [1] James P. Howard. R Cookbook. O'Reilly Media, Inc, 2011.
- [2] Phil Spector. Data Manipulation with R. Use R series Springer, 2008

Getting Started

Installing R!

Download it

- Open http://www.r-project.org
- Click CRAN (Under download on Top Left)
- Click http://cran.ms.unimelb.edu.au/ University of Melbourne

Windows

- Select Windows
- Select Base
- Download R (suggest latest version)

OS X

- Select Select OS X
- Select R-3.2.2.pkg (or the version that matches your OS version)

Getting Started

How about RStudio

https://www.rstudio.com/products/rstudio/download/

Getting Started

 $Basic\ steps$

```
## [1] 7

# Create a sequence of numbers
X = 2:10

# Display basic statistical measures
summary(X)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2 4 6 6 8 10

# use q() to quit
```

Getting Started

 $Help\ Functions$

To access the documentation type

help.start() help(summary) args(summary) example(sd)

Help Functions

Search the Web

To search R documentation

RSiteSearch("key phrase")

Custom Google search focused on R-specific websites

http://rseek.org

Coding Q&A site

http://stackoverflow.com http://stats.stakexchange.com

Some manners

Iterative development

Working Creatively

Some discussion recently on how to work creatively. Research out of successful R&D projects developed into Agile

- Keep the manages away
- work sustainably
- people over process
- iterative development

R Data types

R Data types

Lists, frames and tables

Lists

- l = c(1, 3, 4)
- bbb

Reading our file

Lets read the table

Check the current directory

Where are we

```
getwd()
setwd("/Users/pcru")
dir() #This lists the files
ls() #This lists the variables
```

http://www.statmethods.net/input/contents.html

Lets read the table

Reading a table

To read a csv table as a table try

```
tab1 ← as.matrix(read.csv(file="filetable.csv", sep=",", header=FALSE))
```

But our table is an excel file

- What about a package?
- http://www.thertrader.com/2014/02/11/a-million-ways-to-connect-r-and-excel/
- Lets use the R package xlsx

Getting help on packages

R Packages

CRAN

Where from

- install command
- \bullet install.packages(pkgs)

Citing Packages

 $\verb|https://cran.r-project.org/web/packages/RefManageR/vignettes/TestRmd.html|$

```
x<-citation()
toBibtex(x)

## @Manual{,
## title = {R: A Language and Environment for Statistical Computing},
## author = {{R Core Team}},
## organization = {R Foundation for Statistical Computing},
## address = {Vienna, Austria},
## year = {2014},
## url = {http://www.R-project.org/},
## ## }</pre>
```

Lets read the table

 $An\ example$

```
table 1←read.xlsx2("1_R Wkshp_dummy data_OTU table.xlsx", sheetName = "Sheet1", header=FALSE,rowNames=FALSE, transpose=TRUE, endRow=18)
```

```
## Loading required package: xlsx
## Warning: package 'xlsx' was built under R version 3.1.3
## Loading required package: rJava
## Warning: package 'rJava' was built under R version 3.1.3
## Loading required package: methods## Loading required package:
xlsxjars## Loading required package: xtable
```

	X1	X2	Х3	X4	X5	X6	X7
1	Group	Contaminated					
2	Site	1			2		
3	Sample ID	10000	10001	10002	10003	10004	10005
4	Rep	1	2	3	1	2	3
5	phormidiaceae	24872	24872	5822	7538	7201	7538
6	streptococcaceae	11	7	14	8	10	8

Lets read the table

Transpose the table

Transposing

We need to transpose the table and set the column names correctly

```
table1t=setNames(data.frame(t(table1[,-1])),table1[,1])
ctridx<-which(table1t$Group=="Control")
table1t$Group[1:48]<-"Contaminated"
table1t$Group[(ctridx+1):48]<-"Control"

ttt←table1t$Site
for(i in c(2:length(table1t$Site)))
{
    temp←as.character(table1t$Site[i])
    if(table1t$Site[i]=="")
    {
        ttt[i]←tempb
    }
    if(!table1t$Site[(i)]=="")
    {
        ttt[i]←temp
    }
}
table1t$Site←ttt</pre>
```

```
## X3
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X4
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X5
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X6
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X7
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X8
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X9
## Levels: 1 2 3 4 FALSE TRUE
## X10
## 1
```

```
## Levels: 1 2 3 4 FALSE TRUE
## X11
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X12
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X13
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X14
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X15
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X16
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X17
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X18
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X19
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X20
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X21
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X22
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X23
## Levels: 1 2 3 4 FALSE TRUE
## X24
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X25
## 2
```

```
## Levels: 1 2 3 4 FALSE TRUE
## X26
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X27
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X28
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X29
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X30
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X31
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X32
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X33
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X34
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X35
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X36
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X37
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X38
## Levels: 1 2 3 4 FALSE TRUE
## X39
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X40
## 3
```

```
## Levels: 1 2 3 4 FALSE TRUE
## X41
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X42
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X43
##
## Levels: 1 2 3 4 FALSE TRUE
## X44
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X45
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X46
##
## Levels: 1 2 3 4 FALSE TRUE
## X47
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X48
##
   4
## Levels: 1 2 3 4 FALSE TRUE
## X49
## 4
## Levels: 1 2 3 4 FALSE TRUE
## rowNames
##
     FALSE
## Levels: 1 2 3 4 FALSE TRUE
## transpose
      TRUE
## Levels: 1 2 3 4 FALSE TRUE
```

Loading required package: stringr

http://stackoverflow.com/questions/17288197/reading-a-csv-file-organized-horizontally

	Group	Site	Sample ID	Rep	phormidiaceae
X2	Contaminated	1	10000	1	24872
X3	Contaminated	1	10001	2	24872
X4	Contaminated	1	10002	3	5822
X5	Contaminated	2	10003	1	7538
X6	Contaminated	2	10004	2	7201
X7	Contaminated	2	10005	3	7538

	Group	Site	Sample ID	Rep	phormidiaceae
1	: 0	: 0	10003:3	1:16	115:2
2	Contaminated:25	1:12	10004:3	2:16	24872:2
3	Control:23	2:12	10005:3	3:16	33:2
4	FALSE:1	3:12	10006:3	F1LSE: 1	36:2
5	TRUE:1	4:12	10007:3	TRUE:1	7538:2
6		FALSE: 1	10008:3		800:2
7		TRUE:1	(Other):32		(Other):38

Lets read the table

 $Reading\ a\ table$

- http://www.statmethods.net/input/importingdata.html
- Input files from Stata

```
library(foreign)
mydata ← read.dta("c:/mydata.dta")
```

Working with Data Types

Lets read the next table

Reading a table using xlxs

```
setwd("/Users/pcru/SizeDoesMatter1")
#dir()
table2<-read.xlsx2("2_R Wkshp_dummy data_Env Data.xlsx", sheetName ="Sheet2",header=TRUE,row</pre>
```

	Group	Site	Sample.ID	Rep	Spill.date
1	Contaminated	1	10000	1	14-May-14
2	Contaminated	1	10001	2	14-May-14
3	Contaminated	1	10002	3	14-May-14
4	Contaminated	2	10003	1	14-May-14
5	Contaminated	2	10004	2	14-May-14
6	Contaminated	2	10005	3	14-May-14

 $Reading\ a\ table$

Oh NO All columns have been set to factors

lets break it down

First lets reed a few rows only

```
table2<-read.xlsx2("2_R Wkshp_dummy data_Env Data.xlsx", sheetName = "Sheet2",header=TRUE,re
sapply(table2,mode)
##
           Group
                           Site
                                    Sample.ID
                                                                Spill.date
                                                        Rep
     "character"
                     "numeric"
                                    "numeric"
                                                               "character"
##
                                                "character"
##
        rowNames as.Data.frame
##
       "logical"
                     "logical"
sapply(table2,class)
##
           Group
                           Site
                                    Sample.ID
                                                        Rep
                                                                Spill.date
                                    "numeric"
                                                               "character"
##
     "character"
                     "numeric"
                                                "character"
##
       rowNames as.Data.frame
##
       "logical"
                     "logical"
```

Setting the data types

colClasses

- The variable colClasses can be used to specify the row types.
- We need to set stringsAsFactor=FALSE or all columns with be loaded as factors
- The dates are in a non standard format so we need to read them as chars first

```
table2b<-read.xlsx2("2_R Wkshp_dummy data_Env Data.xlsx", sheetName = "Sheet2",header=TRUE,
sapply(table2,class)
##
                                   Sample.ID
                                                              Spill.date
          Group
                          Site
                                                      Rep
                                   "numeric"
                                               "character"
                                                              "character"
##
     "character"
                     "numeric"
##
       rowNames as.Data.frame
##
       "logical"
                     "logical"
```

Setting the Date Type

```
table2f<-table2
table2f$Spill.date<-as.Date(table2f$Spill.date,"%d-%b-%y")</pre>
table2f$Sample.collection.date<-as.Date(table2f$Sample.collection.date,"%d.%m.%y")
## Error in as.Date.default(table2f$Sample.collection.date, "%d.%m.%y"):
do not know how to convert 'table2f$Sample.collection.date' to
class "Date"
#sapply(table2f,mode)
sapply(table2f,class)
##
           Group
                          Site
                                    Sample.ID
                                                        Rep
                                                               Spill.date
##
     "character"
                     "numeric"
                                    "numeric"
                                                "character"
                                                                    "Date"
       rowNames as.Data.frame
##
##
       "logical"
                     "logical"
```

Setting the Date Type

colClasses

- The as.Data method can take a format string as the second variable
- The format strings are described in help on strptime
- But Spill.data has **two formats**
- We can use the if else function to combine them

```
table2bf<-table2b
table2bf$Spill.date<-as.Date(table2bf$Spill.date,"%d-%b-%y")
cdate1<-as.Date(table2bf$Sample.collection.date,"%d.%m.%y")</pre>
cdate2<-as.Date(table2bf$Sample.collection.date,"%d/%m/%y")</pre>
table2bf$Sample.collection.date<-as.Date(ifelse(!is.na(cdate1),as.Date(cdate1),as.Date(cdate1)
table2bf$Group<-as.factor(table2bf$Group)</pre>
table2bf$Rep<-as.factor(table2bf$Rep)</pre>
na_count <-sapply(table2bf, function(y) sum(length(which(is.na(y)))))</pre>
na_count
##
                     Group
                                               Site
                                                                   Sample.ID
                                                  0
##
                         0
##
                       Rep
                                         Spill.date Sample.collection.date
##
##
                    labnum
                                  phosphate..ppb.
                                                            ammonia..ppb.
##
                                                                   rowNames
       chlorophyll..ug.L.
                                             DO....
##
##
                                                  0
                                                                           0
##
             as.Data.frame
##
dated <- table 2 bf $Sample.collection.date - table 2 bf $Spill.date
```

Working with string

How to work with strings

merge command

- require(stringer)
- $stri_c(str1, str2)$ concatenates two string
- $str_len(str)$

```
require(stringr)
table2bf$Rep<-str_replace(table2bf$Rep, "[rep]{3}?", "\\1")
table2bf$Rep<-str_replace(table2bf$Rep, "A", "1")
table2bf$Rep<-str_replace(table2bf$Rep,"B","2")</pre>
table2bf$Rep<-str_replace(table2bf$Rep, "C", "3")
table2bf$Rep<-as.factor(table2bf$Rep)
str(table2bf)
## 'data.frame': 48 obs. of 13 variables:
## $ Group : Factor w/ 2 levels "Contaminated",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Site
                                  : num 1 1 1 2 2 2 1 1 1 2 ...
## $ Since
## $ Sample.ID
                                  : num 10000 10001 10002 10003 10004 ...
## $ Rep : Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3 ## $ Spill.date : Date, format: "2014-05-14" "2014-05-14" ...
                                  : Factor w/ 3 levels "1", "2", "3": 1 2 3 1 2 3 1 2 3 1 ...
## $ Sample.collection.date: Date, format: "2014-05-15" "2014-05-15" ...
## $ labnum : num 2000 2001 2002 2003 2004 ...

## $ phosphate..ppb. : num 3020 3253 3169 2999 2879 ...

## $ ammonia..ppb. : num 13880 14598 14676 10984 11657 ...

## $ chlorophyll.ug.L. : num 302 323 315 352 289 296 254 248 250 220 ...

## $ DO... : num 34 33 31 38 36 34 40 38 41 45 ...
## $ rowNames
                                 : logi FALSE FALSE FALSE FALSE FALSE ...
## $ as.Data.frame
                             : logi FALSE FALSE FALSE FALSE FALSE ...
```

How to I merge two data sets

How to I merge two data sets

Using the merge command

The inbuilt command merge

- R has a command merge
- Lets start looking at the first 9 lines of the tables and merge them using the Sample ID

• Because otherwise its not uniques

```
\begin{array}{lll} \mathbf{merge}(x,\ y,\ \mathbf{by} = \mathbf{intersect}\,(\mathbf{names}(x)\,,\ \mathbf{names}(y))\,, \\ \mathbf{by}.x = \mathbf{by},\ \mathbf{by}.y = \mathbf{by},\ \mathbf{all} = \mathrm{FALSE},\ \mathbf{all}.x = \mathbf{all}\,,\ \mathbf{all}.y = \mathbf{all}\,, \\ \mathbf{sort} = \mathrm{TRUE},\ \mathrm{suffixes} = \mathbf{c}\left(".x",".y"\right), \\ \mathrm{incomparables} = \mathrm{NULL},\ \ldots) \end{array}
```

```
tab1c<-table1t[1:9,]
tab2c<-table2b[1:9,]
m1<-merge(tab1c,tab2c,by.x="Sample ID",by.y="Sample.ID")
m2<-merge(table1t,table2b,by.x=c("Group","Site","Sample ID"),by.y=c("Group","Site","Sample.ID")</pre>
```

R package

RQLlite

RSQLite

- Suppose merge is not enough? I know about SQL and want to do joins
- Lets Install RSQLite
- We also need to install DBI

```
## Loading required package: RSQLite## Loading required package:
gsubfn## Loading required package: proto
## Warning in doTryCatch(return(expr), name, parentenv, handler):
unable to load shared object '/Library/Frameworks/R.framework/Resources/modules//R.X11.so,'
dlopen(/Library/Frameworks/R.framework/Resources/modules//R.X11.so,
6): Library not loaded: /opt/X11/lib/libSM.6.dylib## Referenced
from: /Library/Frameworks/R.framework/Resources/modules//R.X11.so##
Reason: image not found
## Could not load tcltk. Will use slower R code instead.## Loading
required package: chron
## Warning: package 'chron' was built under R version 3.1.3
## Loading required package: tcltk
```

```
db <- dbConnect(SQLite(), dbname="Test.sqlite")
# sqldf(attach "Test1.sqlite" as new)
dbWriteTable(db, "table1", table1t)

## Error: Table table1 exists in database, and both overwrite
and append are FALSE

dbReadTable(db, "table1")</pre>
```

##		Group	Site	Sample.ID	Rep	phormidiaceae
	X2	Contaminated	1	10000	1	24872
##	ХЗ	Contaminated	1	10001	2	24872
##	X4	Contaminated	1	10002	3	5822
##	X5	Contaminated	2	10003	1	7538
##	X6	Contaminated	2	10004	2	7201
##	X7	Contaminated	2	10005	3	7538
##	X8	Contaminated	1	10006	rep1	8467
##	X9	Contaminated	1	10007	rep2	7340
	X10	Contaminated	1	10007	rep3	8467
##	X11	Contaminated	2	10000	rep1	2000
##	X12	Contaminated	2	10001	rep2	2083
##	X13	Contaminated	2	10001	rep3	1899
##	X14	Contaminated	1	10002	1	1947
##	X15	Contaminated	1	10003	2	2733
##	X16	Contaminated	1	10005	3	2385
##	X17	Contaminated	2	10006	1	800
	X18	Contaminated	2	10007	2	738
##	X19	Contaminated	2	10007	3	800
##	X20	Contaminated	1	10003	1	200
##	X21	Contaminated	1	10004	2	189
##	X22	Contaminated	1	10005	3	271
##	X23	Contaminated	2	10006	1	46
##	X24	Contaminated	2	10007	2	62
##	X25	Contaminated	2	10008	3	94
##	X26	Contaminated	3	10009	A	24
##	X27	Control	3	10010	В	64
##	X28	Control	3	10011	С	21
##	X29	Control	4	10012	Α	56
##	X30	Control	4	10013	В	27
##	X31	Control	4	10014	С	53
##	X32	Control	3	10015	A	115
##	X33	Control	3	10016	В	97
##	X34	Control	3	10017	C	45
##	X35	Control	4	10009	A	33
##	X36	Control	4	10010	В	51
##	X37	Control	4	10011	C	47
##	X38	Control	3	10012	Α	105
##	X39	Control	3	10013	В	72
##	X40	Control	3	10014	C	115
##	X41	Control	4	10015	Α	18
##	X42	Control	4	10016	В	54
##	X43	Control	4	10017	C	33
##	X44	Control	3	10012	Α	36
##	X45	Control	3	10013	В	58

##	X46	Control	3 10014	C 36
	X47	Control	4 10015	A 60
	X48	Control	4 10016	B 164
	X49	Control	4 10017	C 79
	rowNames	FALSE FAL		
	transpose	TRUE TR		TRUE TRUE
##	cranspose			enterobacteriaceae
	X2	11	33	
	X3	7	40	
	X4	14	40	
	X5	8	95	
	Х6	10	83	
	X7	8	95	
	X8	5	29	
	Х9	5	51	
##	X10	5	29	132
##	X11	10	34	97
##	X12	17	38	91
##	X13	27	31	51
##	X14	0	0	2
##	X15	1	0	1
##	X16	0	0	2
##	X17	26	33	34
##	X18	22	58	
##	X19	26	33	
##	X20	6	5	
	X21	2	3	
	X22	5	1	
	X23	3	9	
	X24	1	5	
	X25	3	0	
	X26	2	6	
	X27	3	3	
	X28	0	4	
	X29	1	30	
	X30 X31	5 1	9	
	X32	0	10	
	X33	4	6	
	X34	0	2	
	X35	4	4	
	X36	0	10	
	Х37	0	3	
	X38	10	39	
	X39	10	29	

##	X40	12	34	481
	X41	5	2	43
	X42	3	5	50
	X43	4	5	86
	X44	10	4	28
	X45	12	1	28
	X46	1	0	44
	X47	4	7	48
	X48	2	11	111
	X49	3	5	88
	rowNames	FALSE	FALSE	FALSE
##	transpose	TRUE	TRUE	TRUE
##	oramppose	verrucomicrobiaceae		
	X2	977	351	20
	X3	1500	246	76
	X4	844	246	76
##	X5	1006	41	1
	Х6	1112	83	6
	X7	1195	41	0
##	X8	1805	23	0
##	Х9	1906	28	0
##	X10	1902	23	0
##	X11	1244	40	1
##	X12	1933	40	1
##	X13	1244	80	0
##	X14	251	1	0
##	X15	271	0	1
##	X16	299	0	0
##	X17	1348	209	1
##	X18	3612	205	0
##	X19	1348	209	3
##	X20	176	1	0
##	X21	211	0	3
##	X22	183	1	0
	X23	544	0	9
	X24	611	1	0
	X25	544	0	1
	X26	471	0	0
	X27	500	0	1
	X28	541	0	0
	X29	1405	3	1
	X30	1678	1	1
	X31	1360	0	0
	X32	1590	0	0
##	X33	398	0	0

##	X34	19	15	1 0
	X35	121		7 2
	X36	346		12 1
	X37	168		3 0
	X38	59		1 1
	X39	59		0 0
	X40	63		1 0
	X41	94		0 0
	X42	97		0 0
	X43	66		0 0
	X44	26		0 0
	X45	24		2 0
	X46	33		0 0
	X47	62		0 0
	X48	88		0 0
	X49	79		0 0
##	rowNames	FALS		
##	transpose	TRU		RUE TRUE
##	V.O			oceanospirillaceae
	X2	115	274	1438 1789
	X3	342	288	
	X4 X5	342	258 365	1789
	X6	9	365	5 2
	X7	4	365	9
	X8	1	643	14
	X9	1	941	14
	X10	1	711	14
	X11	0	204	93
	X12	0	229	72
	X13	0	285	93
	X14	0	8	1080
	X15	0	12	1633
	X16	1	12	1080
	X17	4	400	747
	X18	7	733	636
	X19	2	299	747
	X20	1	76	256
	X21	0	63	263
	X22	2	85	256
	X23	1	136	284
	X24	20	643	293
	X25	1	136	293
##	X26	0	31	189
##	X27	1	59	510

##	X28	() 42	21	15
	X29	(209	
	X30	(83	
##	X31	(100	42	
	X32	(26	
##	X33	(33	109	
	X34	(18	52	
	X35	(27	73
	X36	(143	
	X37	(33	
	X38			458	
##	X39			381	11
##	X40	(316	35
##	X41	(38	30
##	X42	(54	
##	X43	(40	
##	X44	(39	
	X45	(31	
	X46	(37	
	X47	(77	
	X48	(177	
##	X49	(128	
##	rowNames	FALSI		FALS	
##	transpose	TRUI		TRU	
##		-	${\tt rhodospirillaceae}$	corynebacteria	
##	X2	471	1267		0
##	ХЗ	498	1597		0
	X4	692	1844		0
##	Х5	20	70		0
##	Х6	20	82		0
##	Х7	48	70		0
	Х8	27	97		0
	Х9	83	97		0
	X10	27	97		0
	X11	61	579		0
##					_
	X12	61	603		0
##	X12 X13	61	579		0
## ##	X12 X13 X14	61 245	579 2245		0
## ## ##	X12 X13 X14 X15	61 245 245	579 2245 2001		0 0 0
## ## ## ##	X12 X13 X14 X15 X16	61 245 245 142	579 2245 2001 2834		0 0 0
## ## ## ##	X12 X13 X14 X15 X16 X17	61 245 245 142 95	579 2245 2001 2834 1432		0 0 0 0
## ## ## ## ##	X12 X13 X14 X15 X16 X17 X18	61 245 245 142 95 70	579 2245 2001 2834 1432 1834		0 0 0 0 0
## ## ## ## ##	X12 X13 X14 X15 X16 X17 X18 X19	61 245 245 142 95 70 95	579 2245 2001 2834 1432 1834 1432		0 0 0 0 0
## ## ## ## ## ##	X12 X13 X14 X15 X16 X17 X18 X19 X20	61 245 245 142 95 70 95 101	579 2245 2001 2834 1432 1834 1432 786		0 0 0 0 0 0
## ## ## ## ## ##	X12 X13 X14 X15 X16 X17 X18 X19	61 245 245 142 95 70 95	579 2245 2001 2834 1432 1834 1432		0 0 0 0 0

##	X22	101	826		0
##	X23	65	1833		0
##	X24	53	2528		0
##	X25	65	2999		0
##	X26	67	568		0
##	X27	128	1877		0
##	X28	152	582		0
##	X29	769	1699		0
##	X30	954	3145		0
##	X31	555	1171		0
##	X32	45	323		0
##	X33	164	911		0
##	X34	513	485		0
##	X35	75	732		0
##	X36	414	3101		0
##	X37	298	1262		0
##	X38	807	3586		0
##	X39	1916	5757		0
##	X40	1120	4168		0
##	X41	276	821		0
##	X42	394	489		0
##	X43	498	611		0
##	X44	212	1001		0
##	X45	301	889		0
##	X46	330	943		0
##	X47	521	1300		0
	X48	1220	3013		0
##	X49	383	1255		0
##	rowNames	FALSE	FALSE		LSE
##	transpose	TRUE	TRUE	Т	RUE
##		porphyromondaceae			
	Х2	0			
	ХЗ	0			
	X4	0			
	X5	0			
	X6	0			
	Х7	0			
	Х8	0			
	X9	0			
	X10	0			
	X11	0			
	X12	0			
	X13 X14	0			
	X14 X15	0			
##	VIO	U			

```
## X16
                               0
## X17
## X18
                               0
## X19
                               0
## X20
                               0
## X21
                               0
## X22
                               0
## X23
                               0
## X24
                               0
## X25
                               0
## X26
                               0
## X27
                               0
## X28
                               0
## X29
                               0
## X30
                               0
## X31
                               0
## X32
                               0
## X33
                               0
## X34
                               0
## X35
                               0
## X36
                               0
## X37
                               0
## X38
                               0
## X39
                               0
## X40
                               0
## X41
                               0
## X42
                               0
## X43
                               0
## X44
                               0
## X45
                               0
## X46
                               0
## X47
                               0
## X48
                               0
## X49
                               0
## rowNames
                          FALSE
                           TRUE
## transpose
dbListFields(db,"table1")
##
    [1] "row_names"
                                "Group"
                                                        "Site"
                                "Rep"
    [4] "Sample ID"
                                                        "phormidiaceae"
                                "vibrionaceae"
                                                        "enterobacteriaceae"
   [7] "streptococcaceae"
                                                        "aeromonadaceae"
## [10] "verrucomicrobiaceae" "chloroflexaceae"
                                "clostridiaceae"
## [13] "staphylococcaceae"
                                                        "oceanospirillaceae"
## [16] "synechococcaceae"
                                "rhodospirillaceae"
                                                        "corynebacteriaceae"
## [19] "porphyromondaceae"
```

```
dbListTables(db)
## [1] "table1"
dbGetQuery(db, "SELECT * from table1")
##
                         Group Site Sample ID
                                                   Rep phormidiaceae
      row_names
## 1
             X2 Contaminated
                                   1
                                          10000
                                                     1
                                                                24872
## 2
             X3 Contaminated
                                          10001
                                                     2
                                                                24872
## 3
             X4 Contaminated
                                          10002
                                                     3
                                                                 5822
                                   1
## 4
              X5 Contaminated
                                   2
                                          10003
                                                     1
                                                                 7538
## 5
             X6 Contaminated
                                   2
                                          10004
                                                     2
                                                                 7201
## 6
             X7 Contaminated
                                          10005
                                                     3
                                                                 7538
                                   2
## 7
             X8 Contaminated
                                   1
                                          10006
                                                 rep1
                                                                 8467
## 8
             X9 Contaminated
                                   1
                                          10007
                                                  rep2
                                                                 7340
## 9
                                          10008
                                                  rep3
                                                                 8467
            X10 Contaminated
                                   1
                                   2
## 10
            X11 Contaminated
                                          10000
                                                  rep1
                                                                 2000
                                   2
## 11
            X12 Contaminated
                                          10001
                                                                 2083
                                                  rep2
## 12
            X13 Contaminated
                                   2
                                          10002
                                                  rep3
                                                                 1899
## 13
            X14 Contaminated
                                          10003
                                                                 1947
## 14
            X15 Contaminated
                                          10004
                                                     2
                                                                 2733
                                   1
## 15
             X16 Contaminated
                                   1
                                          10005
                                                     3
                                                                 2385
## 16
                                   2
                                          10006
                                                                  800
            X17 Contaminated
                                                     1
## 17
            X18 Contaminated
                                          10007
                                                     2
                                                                  738
## 18
            X19 Contaminated
                                   2
                                          10008
                                                     3
                                                                  800
## 19
             X20 Contaminated
                                   1
                                          10003
                                                     1
                                                                  200
## 20
                                                                  189
            X21 Contaminated
                                          10004
                                                     2
                                   1
## 21
            X22 Contaminated
                                          10005
                                                     3
                                                                  271
## 22
            X23 Contaminated
                                   2
                                          10006
                                                                   46
                                                     1
## 23
            X24 Contaminated
                                   2
                                          10007
                                                     2
                                                                   62
## 24
                                   2
            X25 Contaminated
                                          10008
                                                     3
                                                                   94
## 25
            X26 Contaminated
                                   3
                                          10009
                                                     Α
                                                                   24
## 26
            X27
                                   3
                                          10010
                      Control
                                                     В
                                                                   64
## 27
            X28
                                          10011
                      Control
                                   3
                                                     C
                                                                   21
## 28
            X29
                      Control
                                   4
                                          10012
                                                                   56
## 29
            X30
                      Control
                                   4
                                          10013
                                                     В
                                                                   27
## 30
             X31
                      Control
                                   4
                                          10014
                                                     C
                                                                   53
## 31
             X32
                                   3
                                          10015
                                                                  115
                      Control
                                                     Α
## 32
             X33
                      Control
                                   3
                                          10016
                                                                   97
## 33
                                   3
                                                     С
             X34
                      Control
                                          10017
                                                                   45
## 34
             X35
                      Control
                                   4
                                          10009
                                                     Α
                                                                   33
## 35
                      Control
            X36
                                   4
                                          10010
                                                     В
                                                                   51
## 36
             X37
                      Control
                                          10011
                                                     C
                                                                   47
## 37
                                          10012
             X38
                      Control
                                   3
                                                                  105
                                                     Α
## 38
             X39
                      Control
                                   3
                                          10013
                                                     В
                                                                   72
## 39
            X40
                      Control
                                   3
                                          10014
                                                     \mathbb{C}
                                                                  115
```

##	40	X41 Co	ontrol	4	10015	A	1	18
##	41	X42 Co	ontrol	4	10016	В	Ę	54
##	42	X43 Co	ontrol	4	10017	C	3	33
##	43	X44 Co	ontrol	3	10012	A	3	36
##	44	X45 Co	ontrol	3	10013	В	Ę	58
##	45		ontrol	3	10014	С		36
##	46		ontrol	4	10015	A		30
##	47		ontrol	4	10016	В	16	
##	48		ontrol	4	10017	C		79
##	49	rowNames	FALSE FAI		FALSE		FALS	
##	50	transpose		RUE	TRUE	TRUE	TRU	
##		streptococcaceae	vibriona	ceae	enterobac	cteriaceae	verrucon	nicrobiaceae
##	1	11		33		131		977
##	2	7		40		200		1500
##	3	14		40		200		844
##	4	8		95		151		1006
##	5	10		83		140		1112
##	6	8		95		151		1195
##	7	5		29		132		1805
##	8	5		51		168		1906
##	9	5		29		132		1902
##	10	10		34		97		1244
##	11	17		38		91		1933
##	12	27		31		51		1244
##	13	0		0		2		251
##	14	1		0		1		271
##	15	0		0		2		299
##	16	26		33		34		1348
##	17	22		58		42		3612
##	18	26		33		34		1348
	19	6		5		39		176
	20	2		3		23		211
	21	5		1		39		183
	22	3		9		55		544
	23	1		5		95		611
##	24	3		0		55		544
	25	2		6		36		471
	26	3		3		36		500
	27	0		4		30		541
	28	1		30		79		1405
	29	5		9		129		1678
	30	1		1		124		1360
	31 32	0		10 6		52 13		1590 398
	33	4 0		2		9		398 195
##	33	0		2		9		195

##	34	4	4	11			1213
##		C	10	41			3461
##	36	0	3	29			1688
##	37	10	39	288			590
##	38	10	29	413			598
##	39	12	34	481			639
##	40	5	2	43			949
##	41	3	5	50			974
##	42	4	5	86			662
##	43	10	4	28			267
##	44	12	1	28			249
##	45	1	0	44			337
##	46	4	. 7	48			625
##	47	2	11	111			886
##	48	3	5	88			791
##	49	FALSE	FALSE	FALSE		F	FALSE
##	50	TRUE	TRUE	TRUE			TRUE
##		chloroflexaceae	aeromonadaceae	staphylococcaceae	clostric	diaceae	
##	1	351	20	115		274	
##	2	246	76	342		288	
##	3	246	76	342		258	
##	4	41	1	4		365	
##	5	83	6	9		365	
##	6	41	0	4		365	
##	7	23	0	1		643	
##	8	28	0	1		941	
##	9	23	0	1		711	
##	10	40	1	0		204	
##	11	40	1	0		229	
##	12	80	0	0		285	
##	13	1	0	0		8	
##	14	0	1	0		12	
##	15	0	0	1		12	
##	16	209	1	4		400	
##	17	205	0	7		733	
##	18	209	3	2		299	
##	19	1	0	1		76	
##	20	0	3	0		63	
##	21	1	0	2		85	
##	22	0	9	1		136	
##	23	1	0	20		643	
##		0	1	1		136	
##		0	0	0		31	
	26	0	1	1		59	
	27	0	0	0		42	
						_	

##		3	1	0	143
##	29	1	1	0	124
##	30	0	0	0	100
##	31	0	0	0	34
##	32	0	0	0	33
##	33	1	0	0	18
##	34	7	2	0	96
##	35	12	1	0	100
##	36	3	0	0	74
##	37	1	1	1	119
##	38	0	0	1	181
##	39	1	0	0	202
##	40	0	0	0	38
##	41	0	0	0	29
##	42	0	0	0	56
##	43	0	0	0	62
##	44	2	0	0	58
##	45	0	0	0	66
##	46	0	0	0	66
##	47	0	0	0	167
##	48	0	0	0	40
##	49	FALSE	FALSE	FALSE	FALSE
шш	$\Gamma \cap$	EDIII			
##	50	TRUE	TRUE	TRUE	TRUE
##	50	oceanospirillaceae			TRUE
	1				TRUE
##		oceanospirillaceae	synechococcaceae	rhodospirillaceae	TRUE
## ##	1	oceanospirillaceae 1438	synechococcaceae 471	rhodospirillaceae 1267	TRUE
## ## ## ##	1 2	oceanospirillaceae 1438 1789	synechococcaceae 471 498	rhodospirillaceae 1267 1597	TRUE
## ## ## ##	1 2 3	oceanospirillaceae 1438 1789 1789	synechococcaceae 471 498 692	rhodospirillaceae 1267 1597 1844	TRUE
## ## ## ##	1 2 3 4	oceanospirillaceae 1438 1789 1789 5	synechococcaceae 471 498 692 20	rhodospirillaceae 1267 1597 1844 70	TRUE
## ## ## ## ##	1 2 3 4 5	oceanospirillaceae 1438 1789 1789 5 2	synechococcaceae 471 498 692 20 20	rhodospirillaceae 1267 1597 1844 70 82	TRUE
## ## ## ## ## ##	1 2 3 4 5	oceanospirillaceae 1438 1789 1789 5 2	synechococcaceae 471 498 692 20 20 48	rhodospirillaceae 1267 1597 1844 70 82 70	TRUE
## ## ## ## ## ##	1 2 3 4 5 6 7	oceanospirillaceae 1438 1789 1789 5 2 9	synechococcaceae 471 498 692 20 20 48 27	rhodospirillaceae 1267 1597 1844 70 82 70 97	TRUE
## ## ## ## ## ##	1 2 3 4 5 6 7 8	oceanospirillaceae 1438 1789 1789 5 2 9 14	synechococcaceae 471 498 692 20 20 48 27 83	rhodospirillaceae 1267 1597 1844 70 82 70 97	TRUE
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	oceanospirillaceae 1438 1789 1789 5 2 9 14 14	synechococcaceae 471 498 692 20 20 48 27 83	rhodospirillaceae 1267 1597 1844 70 82 70 97 97	TRUE
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	oceanospirillaceae 1438 1789 1789 5 2 9 14 14	synechococcaceae 471 498 692 20 20 48 27 83 27 61	rhodospirillaceae 1267 1597 1844 70 82 70 97 97 579	TRUE
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10	oceanospirillaceae 1438 1789 1789 5 2 9 14 14 14 93	synechococcaceae 471 498 692 20 20 48 27 83 27 61 61	rhodospirillaceae 1267 1597 1844 70 82 70 97 97 97 603	TRUE
## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 11 12	oceanospirillaceae 1438 1789 1789 5 2 9 14 14 14 93 72 93	synechococcaceae 471 498 692 20 20 48 27 83 27 61 61 61	rhodospirillaceae 1267 1597 1844 70 82 70 97 97 97 579 603 579	TRUE
## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 11 12 13	oceanospirillaceae 1438 1789 1789 5 2 9 14 14 14 93 72 93 1080	synechococcaceae 471 498 692 20 20 48 27 83 27 61 61 61 245	rhodospirillaceae 1267 1597 1844 70 82 70 97 97 97 579 603 579 2245	TRUE
## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 11 12 13 14	oceanospirillaceae 1438 1789 1789 5 2 9 14 14 14 93 72 93 1080 1633	synechococcaceae 471 498 692 20 20 48 27 83 27 61 61 61 245	rhodospirillaceae 1267 1597 1844 70 82 70 97 97 97 579 603 579 2245 2001	TRUE
## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	oceanospirillaceae 1438 1789 1789 5 2 9 14 14 14 93 72 93 1080 1633 1080	synechococcaceae 471 498 692 20 20 48 27 83 27 61 61 61 245 245	rhodospirillaceae 1267 1597 1844 70 82 70 97 97 97 27 579 603 579 2245 2001 2834	TRUE
## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	oceanospirillaceae 1438 1789 1789 5 2 9 14 14 14 14 93 72 93 1080 1633 1080 747	synechococcaceae 471 498 692 20 20 48 27 83 27 61 61 61 245 245 142 95	rhodospirillaceae 1267 1597 1844 70 82 70 97 97 97 2245 2001 2834 1432	TRUE
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	oceanospirillaceae 1438 1789 1789 5 2 9 14 14 14 93 72 93 1080 1633 1080 747 636	synechococcaceae 471 498 692 20 20 48 27 83 27 61 61 61 245 245 142 95 70	rhodospirillaceae 1267 1597 1844 70 82 70 97 97 97 579 603 579 2245 2001 2834 1432 1834	TRUE
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	oceanospirillaceae 1438 1789 1789 5 2 9 14 14 14 93 72 93 1080 1633 1080 747 636 747	synechococcaceae 471 498 692 20 20 48 27 83 27 61 61 61 245 245 142 95 70 95	rhodospirillaceae 1267 1597 1844 70 82 70 97 97 97 579 603 579 2245 2001 2834 1432 1834 1432	TRUE
######################################	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	oceanospirillaceae 1438 1789 1789 5 2 9 14 14 14 93 72 93 1080 1633 1080 747 636 747 256	synechococcaceae 471 498 692 20 20 48 27 83 27 61 61 61 245 245 142 95 70 95	rhodospirillaceae 1267 1597 1844 70 82 70 97 97 97 579 603 579 2245 2001 2834 1432 1834 1432 786	TRUE

шш	22	204	6F	1022
	22	284	65	1833
	23	293	53	2528
	24	293	65	2999
	25	189	67	568
	26	510	128	1877
	27	215	152	582
	28	2096	769	1699
	29	834	954	3145
	30	426	555	1171
	31	263	45	323
	32	1095	164	911
	33	523	513	485
	34	273	75	732
	35	1432	414	3101
	36	330	298	1262
	37	4584	807	3586
	38	3811	1916	5757
	39	3165	1120	4168
	40	380	276	821
	41	548	394	489
	42	403	498	611
	43	394	212	1001
	44	311	301	889
	45	376	330	943
	46	773	521	1300
	47	1778	1220	3013
	48	1289	383	1255
	49	FALSE	FALSE	FALSE
	50	TRUE	TRUE	TRUE
##		corynebacteriaceae		
##	1	0	0	
##		0	0	
##		0	0	
##		0	0	
##	5	0	0	
		0	0	
##		0	0	
##		0	0	
	10	0	0	
	11	0	0	
	12	0	0	
	13	0	0	
	14	0	0	
	15	0	0	
	10	V	V	

		•	•	
##	16	0	0	
##	17	0	0	
##	18	0	0	
##	19	0	0	
##	20	0	0	
##	21	0	0	
##	22	0	0	
##	23	0	0	
##	24	0	0	
##	25	0	0	
##	26	0	0	
##	27	0	0	
##	28	0	0	
##	29	0	0	
##	30	0	0	
##	31	0	0	
##	32	0	0	
##	33	0	0	
##	34	0	0	
##	35	0	0	
##	36	0	0	
##	37	0	0	
##	38	0	0	
##	39	0	0	
##	40	0	0	
	41	0	0	
	42	0	0	
	43	0	0	
	44	0	0	
##		0	0	
	46	0	0	
##	47	0	0	
##	48	0	0	
##	49	FALSE	FALSE	
##	50	TRUE	TRUE	
#di	bDisconnect(db)			

Fat or wide

Reshaping Tables reshape 2

reshape 2

vignette(reshape)

R package

svUnit

Another important component of TDD is refactoring and unit tests

- Refactoring http://refactoring.com/
- $\bullet \ \, \text{http://www.r-bloggers.com/my-experience-of-learning-r-from-basic-graphs-to-performance} \\$
- ullet TDD in R http://www.slideserve.com/andrew/test-driven-development-in-r
- Version Control tortiseSVN ttp://tortoisesvn.net/}\itemGitHub\url{ttps://github.com/

Morning Tea Time

Back in 20min Need coffee

Lunch Time

Back in 30 min
Provided

Cleaning things up

Dropping row and columns

Dropping selected variables

dropping variables

Adding a new column

Calculating the number of days
Using the is.Date command

Centering data

centering data

Normalizing data

sapply

How to I append two data sets

Another Break

Now lets have some fun

Making a heat map

What next

Proposed future talks

Your feedback on some ideas

- Using Sweave or Knitr
- Advanced Data Cleaning
- Network Centric data analysis

Resources

If you want to improve this style

References

- [1] LaTeX Beamer http://latex-beamer.sourceforge.net/
- [2] Sharelatex Site https://www.sharelatex.com
- [3] A Data Cleaning Mooc https://www.sharelatex.com

The chunk below will not be printed