Name:

MATH E-156 MATHEMATICAL STATISTICS

Assignment 2

1. Consider a discrete random variable X with the following probability mass function (pmf):

k	5	6	7	13
P(X=k)	.1	.3	.4	.2

(a) Find P(X > 6), $P(X \ge 6)$, and $P(\{X < 6\}^c)$.

(b) Sketch a graph of the cumulative distribution function, $F_X(x)$. Please draw a large graph and show lots of details.

2. Let X be an integer-valued random variable. Show that the probability mass function (pmf) is related to the cumulative distribution function (cdf) as follows:

$$P(X = k) = F_X(k) - F_X(k-1)$$
 for any integer k .

3. Prove that the cumulative distribution function (cdf) of a random variable X is non-decreasing, that is, $F_X(x_1) \leq F_X(x_2)$ whenever $x_1 < x_2$.

Hint: Recall that $P(A) \leq P(B)$ whenever $A \subseteq B$.

4. Fix some $p \in (0,1]$. Let X be a discrete random variable that takes values $1,2,3,\ldots$ with

$$P(X = k) = (1 - p)^{k-1}p$$
 for all $k \in \{1, 2, 3, ...\}$.

Show that P(X = k) is indeed a probability distribution, that is,

(a)
$$P(X = k) \ge 0$$
 for all k

(b)
$$\sum_{k=1}^{\infty} P(X=k) = 1$$

5. Fix some $\lambda > 0$. Let X be a continuous random variable with the following probability density function (pdf):

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

Show that

(a)
$$f_X(x) \ge 0$$
 for all $x \in \mathbb{R}$

(b)
$$\int_{-\infty}^{+\infty} f_X(x) dx = 1$$

- 6. Let $X \sim \text{Unif}[0, 1]$. For the random variable \sqrt{X} ,
 - (a) find the cumulative distribution function (cdf), $F_{\sqrt{X}}(s)$;

(b) find the probability density function (pdf), $f_{\sqrt{X}}(s)$;

(c) verify that $\int_{-\infty}^{+\infty} f_{\sqrt{X}}(s) ds = 1$.

- 7. How many ways can
 - (a) 6 different objects be lined up?

(b) 6 books be chosen out of 13 books if the order of chosen books matters?

(c) 6 books be chosen out of 13 books if the order does not matter?

8. For integers $n \geq k \geq 0$, we define $\binom{n}{k} \doteq \frac{n!}{k!(n-k)!}$, which represents the number of ways k objects can be chosen out of n objects without replacement, assuming the order of chosen objects does not matter. Prove the following identity algebraically:

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \text{ for integers } n \ge k \ge 1.$$