LSF significance	Case No.	E Limit State function(s)	Stochastic variable(s)	β	Ref
Iceland shape	(1)	$g(X) = 7 - 8\exp(-(X_1 + 1)^2 + (X_2 + 1)^2) + 2\exp(-(X_1 - 5)^2 - (X_2 - 4)^2) + 1 + \frac{X_1 X_2}{10}$	$X_1:N(2,1)\ X_2:N(2,1)$	4.0	[1]
With high-frequency, artificial noise term	(2)	$g(X) = X_1 + 2X_2 + 2X_3 + X_4 - 5X_5 - 5X_6 + 0.001 \sum_{i=1}^{6} \sin(100X_i)$	$X_{14}:LN(120,12) \ X_5:LN(50,15) \ X_6:LN(40,12)$	2.247	[2, 3]
Cubic performance function	(3)	$g(X) = 2.2257 - \frac{0.025\sqrt{2}}{27}(X_1 + X_2 - 20)^3 + \frac{33}{140}(X_1 - X_2)$	$X_1: N(10,3)$ $X_2: N(10,3)$	2.07	[4, 5]
Highly Nonlinear	(4)	$g(X) = X_1^3 + X_2^3 - 18$	$X_1: N(10,5) X_2: N(9.9,5)$	2.52	[6, 5]
Highly Nonlinear	(5)	$g(X) = X_1^3 + X_2^3 - 67.5$	$X_1: N(10,5) X_2: N(9.9,5)$	2.23	[6]
Highly Nonlinear	(6)	$g(X) = \frac{120}{X_1} - \frac{X_2}{X_1} - 1$	$X_1:N(4.0,1.0)\ X_2:N(4.0,1.0)$	4.0	[7]
Quartic performance function	(7)	$g(X) = \frac{5}{2} + \frac{1}{216}(X_1 + X_2 - 20)^4 - \frac{33}{140}(X_1 - X_2)$	$X_1: N(10.0, 3.0)$ $X_2: N(10.0, 3.0)$	2.76	[8, 9]
Highly Nonlinear	(8)	$g(X) = X_1^4 + 2X_2^4 - 20$	$X_1: N(10.0, 5.0)$ $X_2: N(10.0, 5.0)$	2.90	[10, 9]
With multiple failure points	(9)	$g(X) = X_1 X_2 - 146.14$	$X_1: N(7.80644 \times 10^4, 1.17097 \times 10^4)$ $X_2: N(0.0104, 0.00156)$	5.11	[7]
Non-Normal- Nonlinear	(10)	$g(X) = X_1 X_2 - 1140$	$X_1: LN(38.0, 3.8)$ $X_2: LN(54.0, 2.7)$	5.21	[11]
Non-Normal- Nonlinear	(11)	$g(X) = X_1 X_2 - 2000 X_3$	$X_1: N(0.32, 0.032)$ $X_2: N(1.4 \times 10^6, 7.0 \times 10^4)$ $X_3: LN(100.0, 40.0)$	2.184	[12]
Circle Shape	(12)	$g(X) = 9 - X_1^2 - X_2^2$	$X_1: N(0.0, 1.0) X_2: N(0.0, 1.0)$	2.28	[7]
Highly Nonlinear	(13)	$g(X) = 3 - X_2 + (4X_1)^4$	$X_1: N(0.0, 1.0) \ X_2: N(0.0, 1.0)$	3.57	[13]
Nonlinear	(14)	$g(X) = 2 + 0.015 \sum_{i=1}^{10} X_i^2 - X_{10}$	$X_{110}:N(0.0,1.0)$	2.13	[14]
Highly nonlinear with non-convex domains	(15)	$g(X) = 10 - \sum_{i=1}^{2} \left[X_i^2 - 5\cos(2\pi X_i) \right]$	$X_1: N(0.0, 1.0)$ $X_2: N(0.0, 1.0)$	1.45	[15]
Nonlinear LS with saddle point	(16)	$g(X) = 2 - X_2 - 0.1X_1^2 + 0.06X_3^3$	$X_1: N(0.0, 1.0)$ $X_2: N(0.0, 1.0)$ $X_3: N(0.0, 1.0)$	1.819	[16]
Nonlinear Concave LS	(17)	$g(X) = -0.5(X_1 - X_2)^2 - \frac{X_1 + X_2}{\sqrt{2}} + 3$	$X_1: N(0.0, 1.0)$ $X_2: N(0.0, 1.0)$	1.255	[17]
Nonlinear	(18)	$g(X) = -\frac{4}{25}(X_1 - 1)^2 - X_2 + 4$	$X_1:N(0.0,1.0)\ X_2:N(0.0,1.0)$	3.156	[18]
Highly Nonlinear	(19)	$g(X) = -0.16(X_1 - 1)^3 - X_2 + 4 - 0.04\cos(X_1 X_2)$	$X_1: N(0.0, 1.0) \ X_2: N(0.0, 1.0)$	3.73	[19, 9]
Highly Nonlinear	(20)	$g(X) = \frac{1}{40}X_1^4 + 2X_3^3 + X_3 + 3$	$X_1: N(0.0, 1.0)$ $X_2: N(0.0, 1.0)$ $X_3: N(0.0, 1.0)$	3.43	[18]
Highly Nonlinear	(21)	$g(X) = \exp(0.4(X_1 + 2) + 6.2) - \exp(0.3X_2 + 5) - 200$	$X_1:N(0.0,1.0)\ X_2:N(0.0,1.0)$	2.709	[20, 9]
Highly Nonlinear	(22)	$g(X) = \exp(0.2X_1 + 1.4) - X_2$	$X_1: N(0.0, 1.0)$ $X_2: N(0.0, 1.0)$	3.385	[21, 20]

Continued on next page

Table Continuation 1

LSF significance	Case Limit State function(s) No.	Stochastic variable(s)	β	Ref
Highly Nonlinear	(23) $g(X) = X_3 + \left(\frac{X_1 - 1.1}{1.5}\right)^2 - \left(\frac{X_2 - 2}{3.0}\right)^2 + 3.6$	$X_1: N(0.0, 1.0)$ $X_2: N(0.0, 1.0)$ $X_3: N(0.0, 1.0)$	3.705	[9]
Nonlinear	(24) $g(X) = \exp(0.2X_1 + 6.2) - \exp(0.47X_2 + 5.0)$	$X_1:N(0.0,1.0)\ X_2:N(0.0,1.0)$	2.35	[8]

References

- [1] RASHKI, M. Hybrid control variates-based simulation method for structural reliability analysis of some problems with low failure probability. *Appl. Math. Model.*, v. 60, p. 220–234, 2018.
- [2] SHABAKHTY, N.; KAZEMI, N.; KIA, M. Structural reliability assessment using improved harmony search evolutionary algorithm. In: *Proceedings of the 2nd Iranian Conference on Reliability Engineering*. Tehran, Iran: Aerospace Research Institute, 2011. p. 1–9.
- [3] LIU, P.; KIUREGHIAN, A. D. Optimization algorithms for structural reliability. Struct. Saf., v. 9, n. 3, p. 161–177, 1991.
- [4] WEI, D.; RAHMAN, S. Structural reliability analysis by univariate decomposition and numerical integration. *Probab. Eng. Mech*, v. 22, n. 1, p. 27–38, 2007.
- [5] GONG, J.; YI, P.; ZHAO, N. Non-gradient-based algorithm for structural reliability analysis. J. Eng. Mech. ASCE, v. 140, n. 6, p. 04014029, 2014.
- [6] SANTOSH, T. et al. Optimum step length selection rule in modified hlrf method for structural reliability. Int. J. Press. Vessels Pip., v. 83, p. 742–748, 2006.
- [7] XUAN, S. Algorithmes Probabilistes Appliqués à la Durabilité et à la Mecanique des Ouvrages de Génie Civil. Tese (Doutorado) University of Toulouse, Toulouse, France, 2007.
- [8] WEI, D.; RAHMAN, S. Structural reliability analysis by univariate decomposition and numerical integration. *Probabilistic Engineering Mechanics*, v. 22, n. 1, p. 27–38, 2007.
- [9] GONG, J.; YI, P.; ZHAO, N. Non-gradient-based algorithm for structural reliability analysis. *Journal of Engineering Mechanics*, ASCE, v. 140, n. 6, p. 04014029, 2014.
- [10] WANG, L.; GRANDHI, R. Safety index calculation using intervening variables for structural reliability analysis. *Computers and Structures*, v. 59, n. 6, p. 1139–1148, 1996.
- [11] HALDAR, A.; MAHADEVAN, S. Probability, Reliability and Statistical Methods in Engineering Design. [S.1.]: John Wiley & Sons, 2000.
- [12] SANTOSH, T. et al. Optimum step length selection rule in modified hlrf method for structural reliability. *International Journal of Pressure Vessels and Piping*, v. 83, p. 742–748, 2006.
- [13] SHAN, S.; WANG, G. Failure surface frontier for reliability assessment on expensive performance function. *Journal of Mechanical Design*, ASME, v. 128, p. 1227–1235, 2006.
- [14] SHAYANFAR, M.; BARKHORDARI, M.; ROUDAK, M. An efficient reliability algorithm for locating design point using the combination of importance sampling concepts and response surface. *Communications in Nonlinear Science and Numerical Simulation*, v. 47, p. 223–237, 2017.
- [15] ECHARD, B.; GAYTON, N.; LEMAIRE, M. Ak-mcs: an active learning reliability method combining kriging and monte carlo simulation. Structural Safety, v. 33, p. 145–154, 2011.
- [16] MAHADEVAN, S.; PAN, S. Multiple linearization methods for linear reliability analysis. *Journal of Engineering Mechanics*, ASCE, v. 127, n. 11, p. 1165–1172, 2001.
- [17] BORRI, A.; SPERANZINI, E. Structural reliability analysis using a standard deterministic finite element code. *Structural Safety*, v. 19, n. 4, p. 361–382, 1997.
- [18] GUAN, X.; MELCHERS, R. Effect of response surface parameter variation on structural reliability estimates. Structural Safety, v. 23, p. 429–444, 2001.
- [19] GAVIN, H.; YAU, S. High-order limit state functions in the response surface method for structural reliability analysis. Structural Safety, v. 30, n. 2, p. 162–179, 2008.
- [20] ELEGBEDE, C. Structural reliability assessment based on particles swarm optimization. *Structural Safety*, v. 27, p. 171–186, 2005.
- [21] GAYTON, N.; BOURINET, J.; LEMAIRE, M. Cq2rs: a new statistical approach to the response surface method for reliability analysis. *Structural Safety*, v. 25, n. 1, p. 99–121, 2003.