Problem 1:

Part a:

Consider the set $A = \{z \in \mathbb{C} : e^z = 0\}.$

If $z = a + bi \in A$ (with $a, b \in \mathbb{R}$), then $e^z = 0$. So $e^a e^{bi} = 0$.

For $a \in \mathbb{R}$, $e^a \neq 0$. So this means that $e^{bi} = 0$. But this never happens either, because $|e^{bi}| = 1$ for all $b \in \mathbb{R}$ (because $|e^{bi}| = |\cos(b) + i\sin(b)| =$ $\sqrt{\cos^2(b) + \sin^2(b)} = 1$.

So we have a contradiction. So $A = \emptyset$.

Part b:

Consider the set $B = \{z \in \mathbb{C} : e^z = 1\}.$

If $z = a + bi \in B$ (with $a, b \in \mathbb{R}$), then $e^z = 1$. So $e^z = e^a e^{bi} = 1$.

This means that $|e^a e^{bi}| = |e^a| |e^{bi}| = 1$. But $|e^{bi}| = 1$ for all $b \in \mathbb{R}$. So, $|e^a| = 1$, so $e^a = 1$, so a = 0.

So z = bi for some $b \in \mathbb{R}$.

By applying the equivalence of polar and trigonometric forms, this means that $e^{ib} = \cos(b) + i\sin(b) = 1$. So, $\cos(b) = 1$ and $\sin(b) = 0$. This means that $b = 2k\pi$ for some $k \in \mathbb{Z}$.

So $B \subset \{2k\pi i \in \mathbb{C} : k \in \mathbb{Z}\}.$

Now, if $z = 2k\pi i$ for some $k \in \mathbb{Z}$, then $e^z = \cos(2k\pi) + i\sin(2k\pi) = 1$. So $z \in B$.

So $B = \{2k\pi i \in \mathbb{C} : k \in \mathbb{Z}\}.$

Part c:

Consider the set $C = \{z \in \mathbb{C} : \sin(z) = 0\}.$

Let $z = a + bi \in C$. Then sin(z) = 0. So $\frac{e^{iz} - e^{-iz}}{2i} = 0$, so that $e^{iz} = e^{-iz}$. In other words, $e^{-b}e^{ai} = e^be^{-ai}$. So, $e^{2b} = e^{2ai}$. Because $|e^{2ai}| = 1$, this means that $e^{2b}=1$. So, b=0, and $e^{2ai}=1$. So $2ai=2k\pi i$ for some $k\in\mathbb{Z}$.

So, $z = k\pi$ for some $k \in \mathbb{Z}$. So $C \subset \{k\pi \in \mathbb{C} : k \in \mathbb{Z}\}$.

Now, if $z = k\pi$ for some $k \in \mathbb{Z}$, then $\sin(z) = 0$, and this is very well known. So $z \in C$.

So $C = \{k\pi \in \mathbb{C} : k \in \mathbb{Z}\}.$

Assignment 5, Page 2

Problem 2:

Let $\Omega \subset \mathbb{C}$ be an open connected set, and $f \in C(\Omega)$ be such that for all closed, piecewise continuous curves, Γ , with $\Gamma \subset \Omega$, $\int_{\Gamma} f(z)dz = 0$.

Pick $z \in \Omega$. Let $p \in \Omega$, and γ be a curve from p to z. We showed in class that $\int f(\xi)d\xi$ is independent of γ ; that is, $\int f(\xi)d\xi$ only depends on p and

So, we can define $g(z) = \int f$, where γ is a curve from a chosen fixed point,p, to z.

Now, fix $z_0 \in \Omega$. It is clear that $\lim_{z \to z_0} \frac{\int\limits_{z_0}^{z} f(w)dw}{z-z_0} = f(z_0)$, because $\frac{\int\limits_{z_0}^{z} f(w)dw}{z-z_0}$ is the average value of f(w) on the line segment. Now, because $\frac{g(z)-g(z_0)}{z-z_0}=$ $\frac{\int_{z_0}^{\tilde{z}} f(w)dw}{z-z_0}, \text{ this means that } g'(z_0) = \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z-z_0} = \lim_{z \to z_0} \frac{\int_{z_0}^{\tilde{z}} f(w)dw}{z-z_0} = f(z_0)$ That is, $g'(z_0) = f(z_0)$ for all $z_0 \in \Omega$; g is a primitive of f.

Problem 3:

(I must admit to having read this in Complex Made Simple by David C. Ullrich prior to the assignment of this problem, and that I used it as a reference.)

Let
$$f \in \mathcal{O}(D_1(0))$$
, with $f = \sum_{n=0}^{\infty} a_n z^n$.
Then consider $f_N = \sum_{n=0}^{N} a_n z^n$.

$$\int_{0}^{2\pi} |f_{N}(re^{it})|^{2} dt = \int_{0}^{2\pi} f_{N}(re^{it}) \overline{f_{N}(re^{it})} dt$$

$$= \int_{0}^{2\pi} \sum_{n}^{N} a_{n} r^{n} e^{int} \overline{\sum_{n}^{N} a_{n} (r^{n} e^{int})} dt$$

$$= \int_{0}^{2\pi} \sum_{n,m=0,0}^{N,N} a_{n} \overline{a_{m}} r^{2n} e^{i(n-m)t} dt$$

It is readily checked that all of the terms in the above, except for those where n=m, vanish; this is because $\int\limits_0^{2\pi}e^{int}dt=0$ when $n\neq 0$. Thus, we have

$$\int_{0}^{2\pi} |f_N(re^{it})|^2 dt = \int_{0}^{2\pi} \sum_{n=0}^{N} a_n \overline{a_n} r^{2n} dt$$
$$= \sum_{n=0}^{N} 2\pi |a_n|^2 r^{2n}$$

So, for all
$$N \in \mathbb{N}$$
, $\int_{0}^{2\pi} f_{N}(re^{it})dt = \sum_{0}^{N} 2\pi |a_{n}|^{2} r^{2n}$.

Taking limits as $N \to \infty$, we have $\int_{0}^{2\pi} f(re^{it})dt = \sum_{0}^{\infty} 2\pi |a_n|^2 r^{2n}$, which is what we wanted.

Problem 4:

Let $\phi, \psi : [a, b] \to \mathbb{R}$ be log-convex.

Then $\ln(\phi)$ and $\ln(\psi)$ are convex.

So for all $x, y \in [a, b]$ with $x \leq y$ and for all $t \in [0, 1]$, $\ln(\psi(tx + (1-t)y)) \leq t \ln \psi(x) + (1-t) \ln \psi(y)$ and $\ln(\phi(tx + (1-t)y)) \leq t \ln \phi(x) + (1-t) \ln \phi(y)$. Note that because e^x is an increasing function, a < b if and only if $e^a < e^b$, so that these are equivalent to $\phi(tx + (1-t)y) \leq \phi(x)^t \phi(y)^{(1-t)}$ and $\psi(tx + (1-t)y) \leq \psi(x)^t \psi(y)^{(1-t)}$.

Consider $\ln(\phi + \psi)$. Note that because e^x is an increasing function, a < b if and only if $e^a < e^b$.

Now, fix $x, y \in [a, b]$ with x < y and fix $t \in [0, 1]$.

$$e^{\ln(\phi+\psi)(tx+(1-t)y)} = (\phi+\psi)(tx+(1-t)y)$$

$$= \phi(tx+(1-t)y) + \psi(tx+(1-t)y)$$

$$\leq \phi(x)^t \phi(y)^{(1-t)} + \psi(x)^t \psi(y)^{(1-t)}$$

$$\leq e^{t\ln((\phi+\psi)(x))+(1-t)\ln((\phi+\psi)(y))}$$

(I know that I would need to make this jump, but I'm not sure how to make it.

So $\ln(\phi + \psi)(tx + (1-t)y) \le \ln(t\ln\phi(x) + (1-t)\ln\phi(y) + t\ln\psi(x) + (1-t)\ln\psi(y)).$

That is, $\phi + \psi$ is log-convex if ϕ and ψ are.

Problem 5:

Let $\Omega \subset \mathbb{C}$ be a simply connected domain, $f \in \mathcal{O}(\Omega)$, $f(z) \neq 0$ for any $z \in \Omega$.

We showed in class that $g(z) = \int_{p}^{z} \frac{f'(w)}{f(w)} dw + \lambda$ with p chosen arbitrarily in

 Ω and $e^{\lambda} = f(p)$ satisfies $f = e^g$, and that $g \in \mathcal{O}(\Omega)$.

Now, let $h \in \mathcal{O}(\Omega)$ be such that $f = e^h$.

Then $\frac{f}{f} = \frac{e^g}{e^h}$, so that $1 = e^{g-h}$. Thus, by problem 1, we have that $g - h = 2k\pi i$ for some $k \in \mathbb{Z}$.

That is, any two functions, g and h, satisfying $e^g = e^h = f$ differ only by $2k\pi i$ for some $k \in \mathbb{Z}$.

Problem 6:

Let $\phi \in \mathcal{O}(D_1(0))$. Suppose that ϕ takes its maximum at 0.

Because ϕ is holomorphic on $D_1(0)$, we know that ϕ has a power series representation, $\phi(z) = \sum_{n=0}^{\infty} a_n z^n$, on any disk $\overline{D_r(0)}$ with $r \in (0,1)$.

So, problem 3 applies:

Problem 7:

Suppose that $\phi \in \mathcal{O}(\Omega)$ with Ω a domain, and that there is a $c \in \Omega$ such that $|(|\phi(c))| = max(|(|\phi)|)$.

Then ϕ is constant on any disk centered at c, by problem 6 (by expanding and translating appropriately).

Now, Ω is path connected (it is a domain).

Let $z \in \Omega$, and let $\gamma : [0,1] \to \Omega$ be a path from z to c with $\gamma \subset \Omega$. We can cover the image of the path with a finite number of open disks, because paths are compact. Also ϕ is constant on each of these open balls: if not,

then $\sup\{t \in [0,1]: \phi\gamma(t) \neq c\} = s$ for some $s \in [0,1]$. But then there's an ϵ -ball around s where $\phi \circ \gamma$ takes the value c somewhere...which means that $\phi(\gamma(s)) = c$, which is a contradiction.

So ϕ is constant along the path: $\phi(z) = \phi(c)$.

So for all $z \in \Omega$, $\phi(z) = \phi(c)$. So ϕ is constant.