## **Lecture 19 announcements**

- Midterm grading is in progress; please be patient
- My office hours tomorrow will be 11 AM 12 PM only
- HW 10 has been posted

## Lecture 19 outline

- Adaptive basis function models
- Classification and Regression Trees (CART)

NOTE: CORRECTION ON PAGE 5.

| ADAPTIVE BASIS FUNCTION MODER (ABM)                                                 |
|-------------------------------------------------------------------------------------|
| [MURPHY 16.1, LAST 2                                                                |
| M PARAGRAPHS]                                                                       |
| $f(x) = w + \sum_{m=1}^{\infty} w_m p_m(x)$                                         |
| IN WHICH OM (X) IS LEARNED FROM THE DATA.                                           |
| IF THE Om (2) ARE PARAMETRIC, THEN:                                                 |
| $\phi_{m}(x) = \phi(x; \nabla_{m})$                                                 |
|                                                                                     |
| PARAMETERS OF ON TO BE                                                              |
| PARAMETERS OF ØM, TO BE                                                             |
| PARAMETERS OF ØM, TO BE<br>LEARNED FROM THE DATA.                                   |
| LEARNED FROM THE DATA.                                                              |
| CART [MURPHY 16.2. 0-16.2.4, [NICLUSIVE]                                            |
| LEARNED FROM THE DATA.  CART [MURPHY 16.2.0-16.2.4,                                 |
| CART [MURPHY 16.2. 0-16.2.4,  [NCLUSIVE]  (ALSO CALLED "DECISION TREES")            |
| CART [MURPHY 16.2. 0-16.2.4,  [NICLUSINE]  (ALSO CALLED "DECISION TREES")  MODEL: M |
| CART [MURPHY 16.2. 0-16.24,  [NICLUSIVE]  (ALSO CALLED "DECISION TREES")            |

| IN WHAT REGION,                           |
|-------------------------------------------|
| The PARAMETERS OF PM (LEARNED FROM DATA). |
| =) f(x) is A PIECEWISE CONSTANT APPROX.   |
|                                           |
| CART: FORMS A TREE, AND A SET OF RESIDENT |
| Rm IN FEATURE SPACE.                      |
| TREE & REGIONS RM COME FROM               |

| 2, WITH SPUT PERPORMED BY THERSHOLD ONE COORDINATE VARIABLE CONF FEATUR | RECURSIVE SPLITTING OF A REGION INTO |
|-------------------------------------------------------------------------|--------------------------------------|
| ONE COORDINATE VARIABLE CONF FEATUR                                     | 2, WITH SPUT PERFORMED BY THERSHOLD  |
|                                                                         | ONE COORDINATE VARIABLE CONFFEATURE  |
|                                                                         |                                      |
|                                                                         |                                      |
|                                                                         |                                      |
|                                                                         |                                      |
|                                                                         |                                      |
|                                                                         |                                      |
|                                                                         |                                      |



```
R=1: CHOOSE X, DR X2 TO THRESHOLD

PICK THRESHOLD VALUE t,

CHOOSE PLAS REGION CABELS.

DEIN = 3/13

L=2! CHOOSE R; TO SPLIT

CHOOSE X, OR X2 TO THRESHOLD

THRESH, VALUE t2.

CHOOSE REGION LABELS (2 NEW REGIONS)

DEIN = 2/13

L=3: SEE ABOVE. =DEIN=1/13.
```



MIN. # OF PATA PTS. IN A FINAL RECTION

[ref: Murphy].

NOTE: OPTIMAL FINAL TREE BALANCES COMPLEX MY

OFTREE WITH N AND COMPLEXITY OF

TARGET FON.

MORE RIGOROUSLY:

AT EACH ITERATION (EA. NODE OF TREE), WE DIVIDE ONE REGION BY THRES HOLIDING ONE FEATURE X;; THUS:

AT  $k^{\frac{t_{1}}{t_{1}}}$  (TERATION:

min  $\{f^{(k)}(w_{m_{1}}, w_{m_{2}}, \mathcal{A}; j, t_{k}, m)\}$ m,  $j, t_{k}, w_{m_{1}}, w_{m_{2}}$ obj

cost  $\{(x_{i}, y_{i}) \in \mathcal{A}\}$  after split

FOR COST FONS. THAT ARE ADDITIVE BY REGION,

THAT IS:

COST { (x; y) \in \D} = \sigma \sum \cost \{ (x; y) \in \R\_m}

WE CAN INSTEAD USE THE W INCREMENTAL CHANGE

fobj = [cost \( \( \text{\cost} \) \( \text{\cost}

$$R_{m_1}: R_m \cap \{x_j \leq t_k\}$$
 $R_{m_2}: R_m \cap \{x_j \leq t_k\}$ 

FOR REGRESSION, COST FON. IS TYPICALLY:

$$w_{m'} = w_{m'}^* = \overline{y}_{R_{m'}} \stackrel{\triangle}{=} \frac{1}{N_{R_{m'}}} \sum_{x \in R_{m'}} y_i$$

MURPHY F.G. 16.1]

NOTE: TO SAVE ON COMPUTATION, CART TYPICALLY

CYCLES THROUGH ALL REGIONS Rm, M=1,2,...,

SPLITTING EACH INTO 2 IF THE HALTING CONDITION

ISN'T MET, INSTEAD OF FINDING THE BEST

REGION TO SPLIT AT EACH ITERATION.



Murphy Fig. 16.1(a)

