Лабораторная работа №2

Методы первого и высших порядков

Задачи:

- 1. Описание следующих методов:
 - метод Ньютона (с постоянным шагом, с одномерным поиском)
 - метод Newton-CG (использование готовой реализации в scipy.optimize)
 - квазиньютоновский метод (использование готовой реализации в scipy.optimize)
- 2. Реализация вышеперечисленных методов
- 3. Исследование методов на эффективность на нескольких функциях:
 - сравнение эффективности методов нулевого порядка и градиентного спуска, метода Ньютона, квазиньютоновских методов
 - сравнение эффективности моей реализации метода Ньютона с методом Newton-CG из библиотеки scipy.optimize
 - сравнение эффективности методов нулевого порядка с квазиньютоновскими методами, если в последних производная вычисляется разностным методом

Часть 1. Описания используемых методов

Методы одномерного поиска

Метод золотого сечения, алгоритм:

- 1. Поиск значения функции f в точках $x_1 = b \frac{b-a}{\varphi}$, $x_2 = a + \frac{b-a}{\varphi}$, где a,b (a < b) концы отрезка, на котором производится поиск минимума, $\varphi = \frac{1+\sqrt{5}}{2}$
- 2. Если $f(x_1) < f(x_2)$, то поиск на отрезке (a, x_2)
- 3. Если $f(x_1) \ge f(x_2)$, то поиск на отрезке (x_1, b)

Алгоритм продолжается до тех пор, пока не будет достигнута заданная точность. На каждом шаге можно использовать значение функции, вычисленное ранее, из-за чего происходит только одно вычисление функции за шаг.

Метод одномерного поиска по правилу Вольфе, алгоритм:

- 1. Выбор стартового значения коэффициента α , стартовой точки x, направления поиска p и коэффициентов ε_1 , ε_2 , θ_1 , θ_2 .
- 2. Проверка условий Армихо $(f(x + \alpha p) \le f(x) + \varepsilon_1 a \cdot p^T \nabla f(x))$ и кривизны $(p^T \nabla f(x + \alpha p) \ge \varepsilon_2 p^T \nabla f(x))$:
 - 1) Если условие Армихо не выполняется, то переход: $\alpha \to \alpha * \theta_1$, $(0 < \theta_1 < 1)$
 - 2) Если условие Армихо выполняется, но не выполняется условие кривизны, то переход:

$$\alpha \rightarrow \alpha * \theta_2$$
, $(\theta_2 > 1)$

3) Если условия Армихо и кривизны выполняются, то конец поиска, возвращение α .

Метод Ньютона и квазиньютоновские методы

Метод Ньютона, алгоритм:

- 1. Выбор стартовой точки $x_{(0)}$
- 2. Вычисление $x_{(i+1)} = x_{(i)} \lambda_i [\nabla^2 f(x_{(i)})]^{-1} \nabla f(x_{(i)})$, где λ_i вычисленный шаг (методом одномерного поиска по направлению, либо просто постоянный шаг)
- 3. Проверка условия остановки достижения заданной точности.

Квазиньютоновские методы основаны на накоплении информации о кривизне целевой функции по наблюдениям за изменением градиента. На

каждом шаге алгоритма вместо использования реального гессиана вычисляется его приближенное значение B_i .

Например, для метода BFGS:

$$B_{i+1} = B_i - \frac{B_i s_i s_i^T B_i^T}{s_i^T B_i s_i} + \frac{y_i y_i^T}{y_i^T s_i},$$

Где $s_i = x_{i+1} - x_i, y_i = \nabla f(x_{(i+1)}) - \nabla f(x_{(i)})$. В качестве начального значения B_0 обычно берется единичная матрица

Часть 2. Реализация методов

Ссылка на реализацию методов

При исследовании используется алгоритмы Newton-CG и BFGS, реализованные в библиотеке scipy.optimize.

Помимо используемого метода библиотека scipy.optimize предоставляет и другие функции для минимизации (или максимизации) целевых функций, возможно, с учетом ограничений. Она включает в себя решатели нелинейных задач (с поддержкой алгоритмов локальной и глобальной оптимизации), линейное программирование, ограниченный и нелинейный метод наименьших квадратов, поиск корней и подгонку кривой.

Методы минимизации вызывается с помощью функции scipy.optimize.minimize, где аргумент method равен названию вызываемого метода (в данном случае «Newton-CG» или «BFGS»).

Функция scipy.optimize.minimize так же принимает минимизируемую функцию, стартовую точку и другие гиперпараметры. Можно установить стратегию вычисления градиента и гессиана функции: передать явную формулу и конечно-разностную схему для численной оценки (2-point, 3-point, сs). Для вычисления гессиана можно указать стратегию вычисления (для квазиньютоновских методов, например).

Для метода Newton-CG и BFGS есть также гиперпараметры c_1 и c_2 – коэффициенты для проверки правил Армихо и кривизны (ε_1 и ε_2 в моем описании условия Вольфе). По умолчанию c_1 = 1e-4, c_2 = 0.9 (эти же значения будут использованы в дальнейшем для сравнения)

При вызове метода Newton-CG в качестве параметра необходимо также передавать градиент минимизируемой функции.

Часть 3. Исследование методов на эффективность

В качестве функций, на которых будет проводиться исследование эффективности методов поиска, были взяты функции:

- $e^{10x^2+y^2}$ (рис. 1)
- $\ln (1 + 100x^2 + y^2)$ (рис. 2)
- $\cos(e^x) \cdot \cos(e^y)$ (puc. 3)
- $(1-x)^2 + 100(y-x^2)^2$ функция Розенброка (рис. 4)

Рис. 1. График функции $e^{10x^2+y^2}$

Рис. 3. График функции $cos(e^x) \cdot cos(e^y)$

Рис. 2. График функции $\ln (1 + 100x^2 + y^2)$

Рис. 4. График функции $(1-x)^2 + 100(y-x^2)^2$

Количество итераций в зависимости от выбора метода, функции и стартовой точки (точность = 1e-9*)

Стартовая точка	Мой метод Ньютона			Newton-	BFGS	BFGS		Град. спуск (с					
	Постоянн	Золотое	Условия	CG	(разн.	(аналит.	Нелдер- Мид	золотым сечением)					
	ый шаг	сечение	Вольфе		схемы)	выражения)	Мид	до eps = 1e-6*					
$e^{10x^2+y^2}$													
(0.02, 0.3)	4	3	4	4	7	8	70	50					
(0.1, 0.1)	4	3	4	6	5	5	71	11					
(1, 1)	18	2	18	19	30	30	78	-					
$\ln{(1+100x^2+y^2)}$													
(0.001, 0.1)	4	3	4	6	6	8	67	372					
(0.01, 0.01)	4	3	4	4	6	7	66	92					
(0.05, 0)	5	3	5	4	6	5	76	4					
$\cos(e^x) \cdot \cos(e^y)$													
$(\ln (\pi + 0.5),$	5	5	5	6	11	11	66	20					
$\ln{(2\pi+0.5)}$													
$(\ln{(\pi-0.5)},$	6	4	6	6	7	8	66	17					
$\ln{(2\pi+0.5)}$													
$(\ln(\pi+1),$	4	5	4	4	8	6	67	3					
$ln(2\pi)$													
$(1-x)^2 + 100(y-x^2)^2$													
(0,0)	3	10	6	32	21	21	118	6025					
(1, 0)	2	2	2	30	34	34	117	5931					
(0, 1)	6	11	9	29	23	23	137	6026					

Количество вычислений значений функции | градиента | гессиана в зависимости от метода, функции и стартовой точки

Стантарая	Мой метод Ньютона			Newton-	BFGS	DECC	Поддор	Град. спуск (с					
Стартовая точка	Постоянн	Золотое	Условия		(разн.	BFGS	Нелдер- Мид	зол. сеч.) до ерѕ					
	ый шаг	сечение	Вольфе	CG	схемы)	(ан. выр.)		= 1e-6*					
$e^{10x^2+y^2}$													
(0.02, 0.3)	0 4 4	45 3 3	8 14 4	5 15 0	252 80 0	11 11 0	139 0 0	625 50 0					
(0.1, 0.1)	0 4 4	45 3 3	8 14 4	7 19 0	27 9 0	9 9 0	143 0 0	146 11 0					
(1, 1)	0 18 18	34 2 2	36 70 18	20 49 0	99 33 0	32 32 0	156 0 0	-					
$\ln{(1+100x^2+y^2)}$													
(0.001, 0.1)	0 4 4	45 3 3	8 12 4	9 37 0	27 9 0	50 38 0	135 0 0	4092 372 0					
(0.01, 0.01)	0 4 4	45 3 3	8 14 4	5 13 0	27 9 0	48 36 0	131 0 0	1057 92 0					
(0.05, 0)	0 5 5	44 3 3	10 18 5	31 24 0	150 46 0	8 8 0	155 0 0	44 4 0					
$\cos(e^x)\cdot\cos(e^y)$													
$(\ln{(\pi + 0.5)},$	0 5 5	79 5 5	10 18 5	6 17 0	69 23 0	14 14 0	130 0 0	230 20 0					
$\ln{(2\pi+0.5)}$													
$(\ln (\pi - 0.5),$	0 6 6	60 4 4	12 20 6	7 22 0	198 62 0	10 10 0	131 0 0	195 17 0					
$\ln{(2\pi+0.5)}$													
$(\ln (\pi + 1),$	0 4 4	79 5 5	8 14 4	4 7 0	114 34 0	9 9 0	132 0 0	38 3 0					
$\ln{(2\pi)}$													
$(1-x)^2 + 100(y-x^2)^2$													
(0,0)	0 3 3	171 10 10	12 22 6	50 201 0	78 26 0	26 26 0	222 0 0	66276 6025 0					
(1, 0)	0 2 2	30 2 2	4 6 2	41 117 0	117 39 0	39 39 0	222 0 0	65250 5931 0					
(0, 1)	0 6 6	189 11 11	18 32 9	39 98 0	87 29 0	29 29 0	260 0 0	66290 6026 0					

Выводы

- 1. Реализованный мной метод Ньютона и Newton-CG, а также квазиньютоновские методы работают примерно одинаково эффективно.
- 2. Квазиньютоновский метод с аналитическим вычислением градиента и разностным работают примерно за одинаковое количество итераций, однако методу с разностным вычислением градиента требуется больше вычислений значений функции (как раз для поиска градиента).
- 3. Метод Ньютона с постоянным шагом и поиском с помощью условий Вольфе на выбранных функциях работают одинаково эффективно (вероятно, из-за удачного выбора значения постоянного шага). Метод Ньютона с золотым сечением требует меньше итераций, так как более точно находит оптимум по направлению. Однако из-за этого он требует и большего количества вычислений значений функции.
- 4. Методы Ньютона и квазиньютоновские методы работают более эффективно на функциях с легко вычисляемым гессианом, чем методы нулевого и первого порядков (градиентный спуск и метод Нелдера-Мида). Это связано с более «стратегическим» выбором направления и более тщательным анализом поведения и кривизны функции. Но за эту эффективность мы платим поиском и вычислением гессиана функции (и из-за этого метод Ньютона может быть менее эффективным на некоторых функциях)

Пример различия эффективности метода Ньютона и градиентного спуска:

 $e^{10x^2+y^2}$, старт = (0.02, 0.3) Метод Ньютона Градиентный спуск

Дополнительное задание 2 (п. 1, 2)

При рассмотрении функции $\cos(e^x) \cdot \cos(e^y)$ можно заметить, что метод Ньютона не всегда работает так, как ожидается. Рассмотрим результат выполнения поиска из точки (ln $(\pi + 1)$, ln $(2\pi + 1)$):

Градиентный спуск

Сошелся в точке $(\ln (\pi), \ln (2\pi))$

Метод сошелся не в ожидаемой точке оптимума. Это связано с тем, что выбранная начальная точка не была достаточно близка к ожидаемой. Поэтому необходимо следить за тем, чтобы выполнялись необходимые условия схождения метода Ньютона.