## Восстановление полных реплик в диалоге

### с помощью генеративных языковых моделей семейства ruGPT

Козиев Илья, 2022

- Бытовой диалог
- Читчат

#### Пример №1:

- Эй, тебя как зовут?
- Джульетта Мао ⇒ Меня зовут Джульетта Мао

#### Пример №2:

- Где живешь?
- В Шанхае ⇒ Я живу в Шанхае
- Давно? ⇒ Ты давно живешь в Шанхае?
- Два года уже ⇒ Я уже два года живу в Шанхае
- Как там погода? ⇒ Какая погода в Шанхае?

#### Эллипсисы:

- Как же тебя зовут, а?
- Меня Стас, а тебя? ⇒ Меня зовут Стас. Как тебя зовут?

В редких случаях и главное слово в словосочетании может опускаться:

- Мама, купи мне собаку.
- А ты будешь за ней ухаживать?
- А ты мне здоровую купи. ⇒ купи мне здоровую собаку

#### Анафора:

- Ты собак любишь?
- Не люблю я их ⇒ я не люблю собак

Иногда требуется привлечение здравого смысла:

- Мне на голову упала коробка.
- А что в ней было? ⇒ что было в коробке голове?

#### Гэппинг:

```
- Ты кошек любишь?
- Их – нет ⇒ я не люблю кошек
```

#### Сложный гэппинг:

```
- В 25 лет вы получаете пенсию?
```

- Не я - отец. ⇒ Я не получаю пенсию. Отец получает пенсию

Типичные паттерны: например, восстановление подлежащего (см. pro drop)

```
- Согласна?
```

```
- Да ⇒ я согласна
```

#### Между строк:

```
- Ты разве ещё не ел?
```

```
- Тебя ждал ⇒ я еще не ел. я ждал тебя.
```

#### Отрицания в диалоге:

```
- Я не прав?
- Нет. (Да.) ⇒ ты не прав
```

Раскрытие не сводится к копированию слов из контекста:

- Как прошли выходные?
- В Простоквашино ездила... ⇒ я на выходных ездила в Простоквашино

Все вышесказанное может быть в разных сочетаниях одновременно:

- Где твой кот?
- Жена к ветеринару повезла. ⇒ жена повезла моего кота к ветеринару
- Заболел? ⇒ твой кот заболел?

#### Сложные предложения:

- Я сварила суп, иди ешь.
- Из чего? ⇒ из чего ты сварила суп?

Иногда от реплики остается только наречие:

- Девушка, а Вы животных любите?
- Очень! ⇒ я очень люблю животных

В типовой ситуации отказ от использования коротких реплик возможен:

- 1) в стилистических целях подчеркнуть свою мысль
- 2) если есть подозрения, что собеседник (чатбот, иностранец) не владеет полным набором навыков работы в таком коммуникационном регистре
- 3) чтобы устранить возможность неправильного толкования

- Ребенок не ест мясо. Его можно чем-то заменить?
- Конечно, собакой она всегда ест мясо

## Чем могут мешать неполные реплики?

Отсутствие части слов затрудняет или делает невозможной работу многих классических алгоритмов NLP:

- Регулярные выражения
- Классификаторы интентов
- Детекторы оскорблений, токсичности
- Частеречная разметка
- Синтаксический анализ
- Semantic Role Labeling
- Выделение фактов

### Постановка задачи, ограничения

- Работаем только с диалогом, читчатом
- Короткие реплики (до ~20 слов)
- Контекст последние 2 или 3 реплики, при необходимости применяем модель рекурсивно
- Не обрабатываем случаи катафоры, только левый контекст
- Не требуем от модели помечать антецедент анафоры, референт для кореференции, источник заполнения эллипсиса
- Удаляем вводные слова и фразы, междомения
- По возможности интерпретируем голофразы ("Ага, щас!")
- Восстанавливаем местоименные подлежащие, даже если форма сказуемого содержит информацию о лице/числе
- Нормализуем порядок слов, вопросительные слова в начало

# Близкие задачи в NLP

- Анафора
- Эллипсисы
- Кореференция

## Генеративная модель как решение

- RuGPT семейство больших генеративных языковых моделей с архитектурой GPT
- Ключевая особенность претрейн на большом массиве текстов
- Ряд моделей свободно доступен на https://huggingface.co/sberbank-ai
- Адаптация модели на задачу файнтюн на небольшом корпусе

### Генеративная модель как решение

### Плюсы подхода:

- Простота инференса: никаких парсеров, тэггеров, словарей
- Простота расширения датасета: разметки как таковой нет
- Инструментарий для GPT: анализ, дистилляция и т.д.
- Можно использовать эту же модель для генерации сырья

# Обучающий датасет

Ручная разметка, примерно 110,000 фрагментов такого формата:

```
Как вы догадались, что задержанный — вор?
По шапке.
На нем она горела? | шапка горела на задержанном?
```

### Для файнтюна конвертируются в сэмплы:

```
<s>- Как вы догадались, что задержанный — вор?
- По шапке.
```

- На нем она горела? # шапка горела на задержанном?</s>

### Синтетические данные

- Пока было мало ручных данных, использовались синтетические
- Генерация синтетики dependency parser (UDPipe + СинТагРус) и морфологический словарь (ruword2tags)
- С помощью правил генерируются вопросы, короткие и полные ответы к утвердительным предлождениям:

Т: Голодная кошка отчаянно преследует жирную мышку.

- 1) Кто ловит мышку? Голодная кошка ⇒ Голодная кошка ловит мышку
- 2) Кого преследует кошка? Жирную мышку ⇒ Кошка преследует жирную мышку
- 3) Какая кошка преследует мышку? Голодная ⇒ Голодная кошка преследует мышку
- Оценки качества синтетики: сильно хуже ручных данных
- Актуальная модель обучена только на ручных данных

# Оценка моделей

- Тренируются с помощью ru-gpts/pretrain\_transformers.py
- 1 эпоха
- grid search для подбора learning rate
- 3-fold кросс-валидация
- Метрики: а) перплексия, б) посимвольная похожесть на 3символьных шинглах
- Коэффициент Жаккара и chrF1 дают оценку, насколько точно модель выдает эталонный полный текст реплики

# Оценка моделей

| learning rate | mean jaccard      | mean chrF1        | mean perplexity   |
|---------------|-------------------|-------------------|-------------------|
| 1E-06         | 0.754406798932305 | 0.823752277742384 | 3.4024            |
| 1E-05         | 0.847686061650237 | 0.894500112736263 | 3.069833333333333 |
| 0.0001        | 0.878134403010693 | 0.917535855322468 | 2.9625            |
| 0.0003        | 0.879228736635383 | 0.918451207487031 | 3.0245            |
| 0.0004        | 0.87641661536491  | 0.916438059239728 | 3.06436666666667  |
| 0.0005        | 0.873375897092778 | 0.914028200378741 | 3.100933333333333 |
| 0.0006        | 0.872263165892749 | 0.913221866840784 | 3.1365            |
| 0.0007        | 0.869767052945417 | 0.911522751947781 | 3.17186666666667  |
| 0.001         | 0.860598993850575 | 0.904675132850088 | 3.2742            |
| 0.002         | 0.712703992796691 | 0.785728068771592 | 4.34716666666667  |
|               |                   |                   |                   |





#### Зависимость перплексии от скорости обучения при 3-fold cv rugpt3large\_based\_on\_gpt2



# Модель на huggingface

Модель доступна для свободного использования

Ha базе sberbank-ai/rugpt3large\_based\_on\_gpt2

Kapтoчкa: https://huggingface.co/inkoziev/rugpt\_interpreter

#### Пример использования с transformers:

```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
device = "cuda" if torch.cuda.is available() else "cpu"
model name = "inkoziev/rugpt interpreter"
tokenizer = AutoTokenizer.from pretrained(model name)
tokenizer.add special tokens({ bos token': '<s>', 'eos token': '</s>', 'pad token': '<pad>'})
model = AutoModelForCausalLM.from pretrained(model name)
model.to(device)
model.eval()
# На вход модели подаем последние 2-3 реплики диалога. Каждая реплика на отдельной строке, начинается с символа "-"
# В конце добавляем символ "#"
input text = """<s>- Как тебя зовут?
- Джульетта Mao #"""
encoded prompt = tokenizer.encode(input text, add special tokens=False, return tensors="pt").to(device)
output sequences = model.generate(input ids=encoded prompt, max length=100, num return sequences=1,
pad token id=tokenizer.pad token id)
text = tokenizer.decode(output sequences[0].tolist(), clean up tokenization spaces=True)[len(input text)+1:]
text = text[: text.find('</s>')]
print(text)
```

### Ссылки

- 1) Разрешение анафоры (Dialogue evaluation 2014) https://www.dialog-21.ru/evaluation/2014/anaphora/
- 2) Automatic Gapping Resolution for Russian (Dialogue shared task) https://github.com/dialogue-evaluation/AGRR-2019
- 3) Anaphora and Coreference Resolution for Russian (Dialogue shared task) http://www.dialog-21.ru/en/evaluation/2019/disambiguation/anaphora/
- 4) SARG: A Novel Semi Autoregressive Generator for Multi-turn Incomplete Utterance Restoration https://arxiv.org/pdf/2008.01474v3.pdf
- 5) CHRF: character n-gram F-score for automatic MT evaluation https://aclanthology.org/W15-3049.pdf