PROGRAMME DE COLLES

SUP MPSI 2

Semaine 11

Du 9 au 13 décembre 2024.

ELECTRICITE (LE RETOUR):

Electricité 6 OSCILLATEURS SOUMIS A UNE EXCITATION SINUSOÏDALE

EN COURS ET TD.

Notions et contenus	Capacités exigibles
Impédances complexes.	Établir et connaître l'impédance d'une résistance, d'un condensateur, d'une bobine.
Association de deux impédances.	Remplacer une association série ou parallèle de deux impédances par une impédance équivalente.
Oscillateur électrique ou mécanique soumis à une excitation sinusoïdale. Résonance.	Utiliser la représentation complexe pour étudier le régime forcé. Relier l'acuité d'une résonance au facteur de qualité. Déterminer la pulsation propre et le facteur de qualité à partir de graphes expérimentaux d'amplitude et de phase. Mettre en œuvre un dispositif expérimental visant à caractériser un phénomène de résonance.

Electricité 7 FONCTIONS DE TRANSFERT- DIAGRAMMES DE BODE - FILTRES

EN COURS UNIQUEMENT.

Notions et contenus	Capacités exigibles
Fonction de transfert harmonique. Diagramme de Bode.	Tracer le diagramme de Bode (amplitude et phase) associé à une fonction de transfert d'ordre 1. Utiliser une fonction de transfert donnée d'ordre 1 ou 2 (ou ses représentations graphiques) pour étudier la réponse d'un système linéaire à une excitation sinusoïdale, à une somme finie d'excitations sinusoïdales, à un signal périodique. Utiliser les échelles logarithmiques et interpréter les zones rectilignes des diagrammes de Bode en amplitude d'après l'expression de la fonction de transfert.
	Mettre en œuvre un dispositif expérimental illustrant l'utilité des fonctions de transfert pour un système linéaire à un ou plusieurs étages.

Questions de cours à choisir parmi les suivantes :

- ✓ Q1 : Etude de la résonance d'intensité pour le circuit RLC série en régime sinusoïdal forcé (§ V.2 & 3) : Etablir et tracer l'allure de I(x) en introduisant le facteur de qualité et la pulsation réduite x.
- ✓ Q2: En partant de $\underline{I}(jx) = \frac{\underline{E}}{R[1+jQ(x-\frac{1}{x})]}$, établir les expressions des x_{lim} de la bande passante et en déduire la largeur de la bande passante Δx_{lim} en fonction du facteur de qualité.
- ✓ Q3 : Etude de la résonance en élongation pour l'oscillateur mécanique horizontal en régime sinusoïdal forcé (§ VI.1 & 2) : Etablir X(u), u étant la pulsation réduite, tracer l'allure de X(u) et préciser la condition de résonance.
- ✓ Q4 : A partir du circuit RC série avec C en sortie, établir l'expression de la fonction de transfert, faire l'étude asymptotique et tracer le diagramme de Bode de ce filtre passe bas du 1^{er} ordre (§ III.2.b et c).
- ✓ Q5: A partir du circuit RC série avec R en sortie, établir l'expression de la fonction de transfert, faire l'étude asymptotique et tracer le diagramme de Bode de ce filtre passe haut du 1^{er} ordre (§ III.3.b et c).
- ✓ Q6: Domaines intégrateur et dérivateur des filtres du 1^{er} ordre (§ III.4).
- ✓ Q7: A partir du circuit RLC série avec C en sortie, établir l'expression de la fonction de transfert, faire l'étude asymptotique et tracer le diagramme de Bode de ce filtre passe bas du 2nd ordre (§ IV.1.b et c).
- ✓ Q8: A partir du circuit RLC série avec R en sortie, établir l'expression de la fonction de transfert, faire l'étude asymptotique et tracer le diagramme de Bode de ce filtre passe bande du 2nd ordre (§ IV.2.b et c).

COMME INDIQUE SUR LE COLLOSCOPDE.

PAS DE COLLE DE PHYSIQUE EN SEMAINE 12.