Homework 3 Section 1.4

Mark Petersen

Exercises 1,3,4,5,8

06/24/2020

Exercise 1. (Q1): Recall that \mathbb{I} stands for the set of irrational numbers.

a) Show that if $a, b \in \mathbb{Q}$, then ab and a+b are elements of \mathbb{Q} . *Proof:* We suppose directly that $a, b \in \mathbb{Q}$, then $a = \frac{m}{n}$ and $b = \frac{k}{j}$ for some $m, n \in \mathbb{Z}$ and $n, j \in \mathbb{Z} - \{0\}$. The product of a and b is

$$ab = \frac{m}{n} \cdot \frac{k}{j}$$
$$= \frac{mk}{nj}.$$

Since the product of two integers is an integer $mk \in \mathbb{Z}$ and $nj \in \mathbb{Z} - \{0\}$. Thus $\frac{mk}{nj} \in \mathbb{Q}$, which means that $ab \in \mathbb{Q}$. The sum of a and b is

$$a+b = \frac{m}{n} + \frac{k}{j}$$
$$= \frac{mj + kn}{nj}.$$

Since the product and sums of integers is an integer, $mj + kn \in \mathbb{Z}$ and $nj \in \mathbb{Z} - \{0\}$. Thus $\frac{mj + kn}{nj} \in \mathbb{Q}$, which means that $a + b \in \mathbb{Q}$.

- b) Show that if $a \in \mathbb{Q}$ and $t \in \mathbb{I}$, then $a+t \in \mathbb{I}$ and $at \in \mathbb{I}$ as long as $a \neq 0$. Proof: We suppose, by contradiction, that $a \in \mathbb{Q}$, $t \in \mathbb{I}$, $a+t \in \mathbb{Q}$, and $at \in \mathbb{Q}$, then a+t=m and $at \in n$ for some $m, n \in \mathbb{Q}$. Solving for t in both terms yields t=m-a and $t=\frac{n}{a}$. Since the sum and product of two rational numbers is rational and since $a \neq 0$, $m-a \in \mathbb{Q}$ and $\frac{n}{a} \in \mathbb{Q}$. This implies that $t \in \mathbb{Q}$. This can't be the case since $t \in \mathbb{I}$, thus this is a contradiction. Therefore, if $a \in \mathbb{Q}$ and $t \in \mathbb{I}$, then $a+t \in \mathbb{I}$ and $at \in \mathbb{I}$ as long as $a \neq 0$.
- c) Part (a) can be summarized by saying that $\mathbb Q$ is closed under addition and multiplication. Is $\mathbb I$ closed under addition and multiplication? Given two irrational numbers s and t, what can we say about s+t and st? Proof: We want to show that $\mathbb I$ is not closed under addition and multiplication. Let $s,t\in\mathbb I$ such that $s=\sqrt{2}$ and $t=-\sqrt{2}$, then s+t=0 which is a rational number and st=-2 which is a rational number. This shows that $\mathbb I$ is not closed under addition and multiplication.

Exercise 2. (Q3): Prove that $\bigcap_{n=1}^{\infty} (0, 1/n) = \emptyset$.

Proof: Let $A_n=(0,1/n)$ be an open interval with $n\in\mathbb{N}$. The set $X=\bigcap_{n=1}^\infty A_n$ cannot contain any non-positive real numbers or any positive real number greater than 1 since there are no non-positive real numbers or any positive real number greater than 1 in any of the sets A_n . The only numbers left to consider are the numbers in the interval (0,1). Let $m\in\mathbb{R}$ and $k\in\mathbb{N}$ such that m>k, then $0<\frac{1}{m}<\frac{1}{k}$, thus $\frac{1}{m}\in A_k$. According to the Archimedean property, given any real number $x\in\mathbb{R}>0$, there exists a natural number j such that $0<\frac{1}{j}< x$. Hence, there exists a natural number ℓ such that $0<\frac{1}{\ell}<\frac{1}{m}$; therefore, $\frac{1}{m}\notin A_\ell$. This shows that for every positive real number m, there exists an integer ℓ such that $\frac{1}{m}\notin A_\ell$. Therefore, $\bigcap_{n=1}^\infty (0,1/n)=\emptyset$.

Exercise 3. (Q4): Let a < b be real numbers and consider the set $T = \mathbb{Q} \cap [a, b]$. Show that $\sup(T) = b$.

Proof: We suppose directly that a < b are real numbers and that the set $T = \mathbb{Q} \cap [a, b]$. We have two cases to consider.

Case 1. Let $b \in \mathbb{Q}$, then $b \in T$. Using the fact that a < b, we have that for all $c \in T$, $c \le b$. Since $b \in T$, any upper bound of T must be greater than or equal to b. Thus b is the supremum.

Case 2. Let $b \in \mathbb{I}$, then $b \notin T$ and is an irrational number. According to the density of \mathbb{Q} , there is a rational number between any two non equal real numbers. Let $\epsilon \in \mathbb{R} > 0$, then there exists an $r \in T$, such that $b - \epsilon < r < b$. Thus, by lemma 1.3.8, $b = \sup(T)$.

Since both cases hold, $\sup(T) = b$.

Exercise 4. (Q5): Using Exercise 1.4.1, supply a proof for Corollary 1.4.4 by considering the real numbers $a - \sqrt{2}$ and $b - \sqrt{(2)}$.

Proof: We suppose directly that a < b are real numbers, then $a - \sqrt{2} < b - \sqrt{2}$ which are real numbers. According to theorem 1.4.3, there exists a rational number r such that

$$a - \sqrt{2} < r < b - \sqrt{2}.$$

Adding $\sqrt{2}$ to all terms yields

$$a < r + \sqrt{2} < b$$
.

According to part (a), the sum of a rational number and an irrational number is irrational. Since $\sqrt{2} \in \mathbb{I}$, $r + \sqrt{2} \in \mathbb{I}$, thus there exists an irrational number between any two, non-equal real numbers.

Exercise 5. (Q8): Give an example of each or state that the request is impossible. When a request is impossible, provide a compelling argument for why this is the case.

- a) Two sets A and B with $A \cap B = \emptyset$, $\sup(A) = \sup(B)$, $\sup(A) \notin A$ and $\sup(B) \notin B$.
 - a) Let $A = \left\{-\frac{1}{n} : n \in \mathbb{N}\right\}$ and $B = \left\{-\frac{\sqrt{2}}{n} : n \in \mathbb{N}\right\}$. The set A contains only rational numbers, and the set B contains only irrational numbers, thus $A \cap B = \emptyset$. The $\sup{(A) = \sup{(B) = 0}}$, and $0 \notin A$ and $0 \notin B$. Thus, this example satisfies all of the conditions.
- b) A sequence of nested open intervals $J_1 \supseteq J_2 \supseteq J_3 \supseteq \cdots$ with $T = \bigcap_{n=1}^{\infty} J_n$ nonempty but containing only a finite number of elements.
 - a) Let $J_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$, then 0 is the only element in every interval. Thus $T = \{0\}$ which is a finite set.
- c) A sequence of nested unbounded closed intervals $L_1 \supseteq L_2 \supseteq L_3 \supseteq \cdots$ with $\bigcap_{n=1}^{\infty} L_n = \emptyset$.
 - a) Let $L_n = [n, \infty)$. According to the Archimedean Property, given any real number x, there exists a natural number y such that x < y. This means that for every x, there exists a set L_y such that $x \notin y$. Thus $\bigcap_{n=1}^{\infty} L_n = \emptyset$.
- d) A sequence of closed bounded intervals I_1 , I_2 , $I_{3,...}$ with the property that $\bigcap_{n=1}^N \neq \emptyset$ for all $N \in \mathbb{N}$, but $\bigcap_{n=1}^\infty I_n = \emptyset$.
 - a) Given $N \in \mathbb{N}$, let $I_n = [n, n+N]$, then $\bigcap_{n=1}^N = \{N\}$, but $\bigcap_{n=1}^\infty I_n = \emptyset$.