



#### ANGGOTA KELOMPOK

Ayu Febriana Lingga
0000057105
ayu.febriana@student.umn.ac.id

Nayasha Clarisa Dwisutrisna
0000056883
nayasha.clarisa@student.umn.ac.id

Fadhil Rahman Dwiputro
0000062832
fadhil.rahman@student.umn.ac.id

Ville Jason Kannisto
00000063305
ville.jason@student.umn.ac.id







Pada era saat ini, mobilitas merupakan sebuah aspek penting yang dilakukan oleh manusia setiap harinya. Berbagai macam cara untuk melakukan mobilitas dapat dilakukan, salah satunya adalah menggunakan kendaraan seperti sepeda, motor hingga mobil. Setiap tahunnya, terjadi peningkatan jualan kendaraan bermotor khususnya pada mobil. Namun, seiring berjalannya waktu, banyak sekali jenis mobil yang hadir di pasaran dengan harga, model hingga jenis bahan bakar yang beragam. Akibatnya, banyak calon pembeli yang mengalami kesulitan dalam memilih mobil yang cocok digunakan sebagai kendaraan pribadi.

Dalam menghadapi kesulitan tersebut, diperlukan sebuah metode pendekatan yang dapat membantu calon pembeli dalam memilih mobil yang cocok dan tepat. Pendekatan yang diharapkan dapat menjawab kesulitan tersebut adalah algoritma Fuzzy Based Topsis.



Bagaimana implementasi Fuzzy Based Topsis dalam memberikan rekomendasi mobil yang tepat?

Bagaimana efektivitas penggunaan algoritma Fuzzy Based Topsis dalam memberikan rekomendasi mobil?





Mengetahui implementasi Fuzzy Based Topsis dalam memberikan rekomendasi mobil yang tepat Mengetahui efektivitas penggunaan algoritma Fuzzy Based Topsis dalam memberikan rekomendasi mobil

# MARRAT

Penelitian ini dapat memberikan wawasan bagi peneliti dan pembaca mengenai penggunaan algoritma Fuzzy Based Topsis dalam peningkatan keputusan Penelitian ini dapat menjadi sumber rujukan mengenai algoritma Fuzzy Based Topsis untuk penelitian dimasa yang akan datang Penelitian ini dapat memberikan kontribusi dalam cara peningkatan keputusan yang lebih efisien dengan algoritma Fuzzy Based Topsis







- MCDM telah berperan sebagai metode untuk menangani
- dalam menata pengambilan solusi serta langkah langkah dalam sebuah rencana pengambilan keputusan ketika masalah tersebut memiliki berbagai kriteria untuk mencapai hasil yang optimal berdasarkan preferensiny

MCDM Fuzzy berupa evaluasi alternatif bilangan fuzzy dan bilangan tersebut perlu pendekatan urutan ranking yang tepat dalam defuzzifikasi menjadi nilai nyata untuk memutuskan sebuah solusi dari sebuah masalah

# DATASET



https://www.kaggle.com/datasets/qusaybtoush1990/the-cars

- 1.buying: Menunjukkan kategori harga pembelian mobil. Contoh nilai: 'vhigh' (very high), 'high' (high), 'med' (medium), 'low' (low).
- 2.maint: Menunjukkan kategori biaya pemeliharaan mobil. Contoh nilai: 'vhigh' (very high), 'high' (high), 'med' (medium), 'low' (low).
- 3. doors: Menunjukkan jumlah pintu mobil.
- 4. persons: Menunjukkan kapasitas penumpang mobil.
- 5. lug\_boot: Menunjukkan ukuran bagasi mobil. Contoh nilai: 'small' (kecil), 'med' (sedang), 'big' (besar).
- 6. safety: Menunjukkan tingkat keamanan mobil. Contoh nilai: 'low' (rendah), 'med' (sedang), 'high' (tinggi).
- 7. rating: Menunjukkan rating atau evaluasi keselamatan mobil.

# SOLUTION

#### FlowChart



## Membership Function

$$\begin{cases}
\frac{1+2+3}{3} & \text{if } x = \text{'low'} \\
\frac{3+4+5}{3} & \text{if } x = \text{'med'} \\
\frac{5+6+7}{3} & \text{if } x = \text{'high'} \\
\frac{7+8+9}{3} & \text{if } x = \text{'very high/more'} \\
\text{None if } x \text{ is unknown}
\end{cases}$$

### Triangular Fuzzy



## Nilai Ideal Positif dan Nilai Ideal Negatif

$$A^* = \{v_1^*, v_2^*, \dots, v_n^*\} = \{\binom{max}{j} v_{ij} | i \in I'\}, \binom{min}{j} v_{ij} | i \in I''\}\}$$

$$A^- = \{v_1^-, v_2^-, \dots, v_n^-\} = \{\binom{min}{j} v_{ij} | i \in I'\}, \binom{max}{j} v_{ij} | i \in I''\}\}$$

### Nilai Distance Positif dan Distance Negatif

$$D_i^* = \sqrt{\sum_{j=1}^{n} (v_{ij} - v_j^*)^2}$$
 $D_i^- = \sqrt{\sum_{j=1}^{n} (v_{ij} - v_j^-)^2}$ 

#### Normalisasi Matrix

$$r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^2}}$$

## Mencari Nilai Reference

$$C_i^* = \frac{D_i^-}{D_i^+ + D_i^-}$$

# MRSOL Demoisimulation

#### Dataset Awal

|   | buying | maint | doors | persons | lug_boot | safety | rating |
|---|--------|-------|-------|---------|----------|--------|--------|
| 0 | vhigh  | vhigh | 2     | 2       | small    | low    | unacc  |
| 1 | vhigh  | vhigh | 2     | 2       | small    | med    | unacc  |
| 2 | vhigh  | vhigh | 2     | 2       | small    | high   | unacc  |
| 3 | vhigh  | vhigh | 2     | 2       | med      | low    | unacc  |
| 4 | vhigh  | vhigh | 2     | 2       | med      | med    | unacc  |

#### Mengubah dataframe menjadi matrix

```
Matriks hasil konversi:
[[8. 2. 2. ... 2. 2. 2.]
[8. 2. 2. ... 2. 4. 2.]
[8. 2. 2. ... 2. 6. 2.]
...
[2. 8. 5. ... 4. 2. 2.]
[2. 8. 5. ... 4. 6.]
[2. 8. 5. ... 4. 6. 8.]]
```

#### Dataframe Setelah Defuzzyfication

|   | buying | maint | doors | persons | lug_boot | safety | rating |
|---|--------|-------|-------|---------|----------|--------|--------|
| 0 | 8.0    | 2.0   | 2.0   | 2.0     | 2.0      | 2.0    | 2.0    |
| 1 | 8.0    | 2.0   | 2.0   | 2.0     | 2.0      | 4.0    | 2.0    |
| 2 | 8.0    | 2.0   | 2.0   | 2.0     | 2.0      | 6.0    | 2.0    |
| 3 | 8.0    | 2.0   | 2.0   | 2.0     | 4.0      | 2.0    | 2.0    |
| 4 | 8.0    | 2.0   | 2.0   | 2.0     | 4.0      | 4.0    | 2.0    |

#### Normalisasi matrix

```
Matriks keputusan yang telah dinormalisasi:
[[0.04303315 0.01075829 0.01603751 ... 0.0186339 0.01363862 0.01958527]
[0.04303315 0.01075829 0.01603751 ... 0.0186339 0.02727724 0.01958527]
[0.04303315 0.01075829 0.01603751 ... 0.0186339 0.04091585 0.01958527]
...
[0.01075829 0.04303315 0.04009377 ... 0.0372678 0.01363862 0.01958527]
[0.01075829 0.04303315 0.04009377 ... 0.0372678 0.02727724 0.0587558 ]
[0.01075829 0.04303315 0.04009377 ... 0.0372678 0.04091585 0.07834107]]
```

# Hasil Akhir

| Hasil                   | Ranking | dan Skor Preferens | i:                |                   |  |  |
|-------------------------|---------|--------------------|-------------------|-------------------|--|--|
|                         | Ranking | Preference Score   | Negative Distance | Positive Distance |  |  |
| 137                     | 1       | 0.461549           | 0.054894          | 0.064041          |  |  |
| 211                     | 2       | 0.461549           | 0.054894          | 0.064041          |  |  |
| 398                     | 3       | 0.355641           | 0.039749          | 0.072017          |  |  |
| 246                     | 4       | 0.436971           | 0.053774          | 0.069287          |  |  |
| 353                     | 5       | 0.410161           | 0.048155          | 0.069251          |  |  |
|                         |         |                    |                   |                   |  |  |
| 981                     | 1148    | 0.280686           | 0.030103          | 0.077144          |  |  |
| 1111                    | 1149    | 0.458813           | 0.049190          | 0.058021          |  |  |
| 751                     | 1150    | 0.450825           | 0.044234          | 0.053884          |  |  |
| 1113                    | 1151    | 0.387381           | 0.046875          | 0.074129          |  |  |
| 1141                    | 1152    | 0.459207           | 0.048744          | 0.057404          |  |  |
|                         |         |                    |                   |                   |  |  |
| [1152 rows x 4 columns] |         |                    |                   |                   |  |  |



