CS 4110

Programming Languages & Logics

Lecture 15 De Bruijn, Combinators, Encodings

Review: λ -calculus

Syntax

$$e ::= x \mid e_1 e_2 \mid \lambda x. e$$

 $v ::= \lambda x. e$

Semantics

$$\frac{e_1 \to e_1'}{e_1 e_2 \to e_1' e_2} \qquad \frac{e \to e'}{v e \to v e'}$$
$$\overline{(\lambda x. e) v \to e \{v/x\}}^{\beta}$$

Rewind: Currying

This is just a function that returns a function:

$$\mathsf{ADD} \triangleq \lambda x.\, \lambda y.\, x + y$$

ADD 38
$$\rightarrow \lambda y$$
. 38 + y

ADD 38 4 = (ADD 38) 4
$$\rightarrow$$
 42

Informally, you can think of it as a *curried* function that takes two arguments, one after the other.

But that's just a way to get intuition. The λ -calculus only has one-argument functions.

de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use a *nameless* representation of terms.

$$e ::= n \mid \lambda . e \mid e e$$

de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use a *nameless* representation of terms.

$$e ::= n \mid \lambda . e \mid e e$$

Abstractions have lost their variables!

Variables are replaced with numerical indices!

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
λx. x	λ . 0
λz. z	

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
λx. x	λ . 0
λz. z	λ . 0
$\lambda x. \ \lambda y. \ x$	

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
λx. x	λ. 0
λz . z	λ. 0
λx. λy. x	λ. λ. 1
$\lambda x. \ \lambda y. \ \lambda s. \ \lambda z. \ x s (y s z)$	

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
λ <i>x</i> . <i>x</i>	λ. 0
λz. z	λ. 0
$\lambda x. \ \lambda y. \ x$	λ. λ. 1
$\lambda x. \ \lambda y. \ \lambda s. \ \lambda z. \ x s (y s z)$	λ. λ. λ. λ. 31(210)
$(\lambda x. xx)(\lambda x. xx)$	

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
λx. x	λ. 0
λz . z	λ. 0
$\lambda x. \ \lambda y. \ x$	λ. λ. 1
$\lambda x. \ \lambda y. \ \lambda s. \ \lambda z. \ x s (y s z)$	λ. λ. λ. λ. 31(210)
$(\lambda x. xx)(\lambda x. xx)$	$(\lambda. \ 0 \ 0) (\lambda. \ 0 \ 0)$
$(\lambda x. \ \lambda x. \ x) (\lambda y. \ y)$	

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
λ <i>x</i> . <i>x</i>	λ. 0
λz. z	λ. 0
$\lambda x. \ \lambda y. \ x$	λ. λ. 1
$\lambda x. \ \lambda y. \ \lambda s. \ \lambda z. \ x s (y s z)$	λ. λ. λ. λ. 31(210)
$(\lambda x. xx)(\lambda x. xx)$	$(\lambda. \ 0 \ 0) (\lambda. \ 0 \ 0)$
$(\lambda x. \ \lambda x. \ x) (\lambda y. \ y)$	$(\lambda. \ \lambda. \ 0) (\lambda. \ 0)$

Free variables

To represent a λ -expression that contains free variables in de Bruijn notation, we need a way to map the free variables to integers.

We will work with respect to a map Γ from variables to integers called a *context*.

Examples:

Suppose that Γ maps x to 0 and y to 1.

- Representation of x y is 0 1
- Representation of λz . $x y z \lambda$. 120

Shifting

To define substitution, we will need an operation that shifts by *i* the variables above a cutoff *c*:

$$\uparrow_{c}^{i}(n) = \begin{cases} n & \text{if } n < c \\ n+i & \text{otherwise} \end{cases}$$

$$\uparrow_{c}^{i}(\lambda.e) = \lambda.(\uparrow_{c+1}^{i}e)$$

$$\uparrow_{c}^{i}(e_{1}e_{2}) = (\uparrow_{c}^{i}e_{1})(\uparrow_{c}^{i}e_{2})$$

The cutoff *c* keeps track of the variables that were bound in the original expression and so should not be shifted.

The cutoff is 0 initially.

Substitution

Now we can define substitution:

$$\begin{array}{rcl} n\{e/m\} & = & \left\{ \begin{array}{ll} e & \text{if } n = m \\ n & \text{otherwise} \end{array} \right. \\ (\lambda.e_1)\{e/m\} & = & \lambda.e_1\{(\uparrow_0^1 e)/m + 1\} \\ (e_1 \, e_2)\{e/m\} & = & \left(e_1\{e/m\}\right)(e_2\{e/m\}) \end{array}$$

Substitution

Now we can define substitution:

$$\begin{array}{rcl} n\{e/m\} & = & \left\{ \begin{array}{ll} e & \text{if } n = m \\ n & \text{otherwise} \end{array} \right. \\ (\lambda.e_1)\{e/m\} & = & \lambda.e_1\{(\uparrow_0^1 e)/m + 1\} \\ (e_1 \, e_2)\{e/m\} & = & \left(e_1\{e/m\}\right)(e_2\{e/m\}) \end{array}$$

The β rule for terms in de Bruijn notation is just:

$$\frac{}{\left(\lambda.e_{1}\right)e_{2}\;\rightarrow\;\uparrow_{0}^{-1}\left(e_{1}\{\uparrow_{0}^{1}e_{2}/0\}\right)}\;\beta$$

Consider the term $(\lambda u.\lambda v.u.x)$ y with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

Consider the term $(\lambda u.\lambda v.u x) y$ with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$(\lambda.\lambda.12)1$$

Consider the term $(\lambda u.\lambda v.u x) y$ with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{c} (\lambda.\lambda.1\,2)\,1 \\ \rightarrow \ \uparrow_0^{-1} \left((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\} \right) \end{array}$$

Consider the term $(\lambda u.\lambda v.u.x)$ y with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{l} (\lambda.\lambda.1\,2)\,1 \\ \to \ \uparrow_0^{-1} ((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\}) \\ = \ \uparrow_0^{-1} ((\lambda.1\,2)\{2/0\}) \end{array}$$

Consider the term $(\lambda u.\lambda v.u.x)$ y with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{l} (\lambda.\lambda.1\,2)\,1\\ \to & \uparrow_0^{-1}\left((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\}\right)\\ = & \uparrow_0^{-1}\left((\lambda.1\,2)\{2/0\}\right)\\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{(\uparrow_0^1\,2)/(0+1)\}) \end{array}$$

Consider the term $(\lambda u.\lambda v.u.x)$ y with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{ll} & (\lambda.\lambda.1\,2)\,1\\ \to & \uparrow_0^{-1}\left((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\}\right)\\ = & \uparrow_0^{-1}\left((\lambda.1\,2)\{2/0\}\right)\\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{(\uparrow_0^1\,2)/(0+1)\})\\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{3/1\}) \end{array}$$

C

Consider the term $(\lambda u.\lambda v.u.x)$ y with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{l} (\lambda.\lambda.1\,2)\,1\\ \to & \uparrow_0^{-1}\left((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\}\right)\\ = & \uparrow_0^{-1}\left((\lambda.1\,2)\{2/0\}\right)\\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{(\uparrow_0^1\,2)/(0+1)\})\\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{3/1\})\\ = & \uparrow_0^{-1}\,\lambda.(1\{3/1\})\,(2\{3/1\}) \end{array}$$

S

Consider the term $(\lambda u.\lambda v.u x) y$ with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{l} (\lambda.\lambda.1\,2)\,1 \\ \to & \uparrow_0^{-1}\left((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\}\right) \\ = & \uparrow_0^{-1}\left((\lambda.1\,2)\{2/0\}\right) \\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{(\uparrow_0^1\,2)/(0+1)\}) \\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{3/1\}) \\ = & \uparrow_0^{-1}\,\lambda.(1\{3/1\})\,(2\{3/1\}) \\ = & \uparrow_0^{-1}\,\lambda.3\,2 \end{array}$$

S

Consider the term $(\lambda u.\lambda v.u x) y$ with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{l} (\lambda.\lambda.1\,2)\,1 \\ \to & \uparrow_0^{-1}\left((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\}\right) \\ = & \uparrow_0^{-1}\left((\lambda.1\,2)\{2/0\}\right) \\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{(\uparrow_0^1\,2)/(0+1)\}) \\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{3/1\}) \\ = & \uparrow_0^{-1}\,\lambda.(1\{3/1\})\,(2\{3/1\}) \\ = & \uparrow_0^{-1}\,\lambda.3\,2 \\ = & \lambda.2\,1 \end{array}$$

S

Consider the term $(\lambda u.\lambda v.u x) y$ with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{l} (\lambda.\lambda.1\,2)\,1 \\ \to & \uparrow_0^{-1}\left((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\}\right) \\ = & \uparrow_0^{-1}\left((\lambda.1\,2)\{2/0\}\right) \\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{(\uparrow_0^1\,2)/(0+1)\}) \\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{3/1\}) \\ = & \uparrow_0^{-1}\,\lambda.(1\{3/1\})\,(2\{3/1\}) \\ = & \uparrow_0^{-1}\,\lambda.3\,2 \\ = & \lambda.2\,1 \end{array}$$

which, in standard notation (with respect to Γ), is the same as $\lambda v.yx$.

Combinators

Another way to avoid the issues having to do with free and bound variable names in the λ -calculus is to work with closed expressions or *combinators*.

With just three combinators, we can encode the entire λ -calculus.

Combinators

Another way to avoid the issues having to do with free and bound variable names in the λ -calculus is to work with closed expressions or *combinators*.

With just three combinators, we can encode the entire λ -calculus.

$$K = \lambda x. \lambda y. x$$

$$S = \lambda x. \lambda y. \lambda z. x z (y z)$$

$$I = \lambda x. x$$

Combinators

We can even define independent evaluation rules that don't depend on the λ -calculus at all.

Behold the "SKI-calculus":

K
$$e_1\,e_2 o e_1$$

S $e_1\,e_2\,e_3 o e_1\,e_3\,(e_2\,e_3)$
I $e o e$

You would never want to program in this language—it doesn't even have variables!—but it's exactly as powerful as the λ -calculus.

Bracket Abstraction

The function [x] that takes a combinator term M and builds another term that behaves like $\lambda x.M$:

The idea is that ([x] M) $N \to M\{N/x\}$ for every term N.

Bracket Abstraction

We then define a function (e)* that maps a λ -calculus expression to a combinator term:

$$(x)* = x$$

 $(e_1 e_2)* = (e_1)* (e_2)*$
 $(\lambda x.e)* = [x] (e)*$

As an example, the expression $\lambda x. \lambda y. x$ is translated as follows:

$$(\lambda x. \lambda y. x)*$$

= $[x] (\lambda y. x)*$
= $[x] ([y] x)$
= $[x] (K x)$
= $(S ([x] K) ([x] x))$
= $S (K K) I$

No variables in the final combinator term!

We can check that this behaves the same as our original λ -expression by seeing how it evaluates when applied to arbitrary expressions e_1 and e_2 .

$$(\lambda x.\lambda y. x) e_1 e_2$$

$$\rightarrow (\lambda y. e_1) e_2$$

$$\rightarrow e_1$$

We can check that this behaves the same as our original λ -expression by seeing how it evaluates when applied to arbitrary expressions e_1 and e_2 .

$$(\lambda x. \lambda y. x) e_1 e_2$$

$$\rightarrow (\lambda y. e_1) e_2$$

$$\rightarrow e_1$$

$$(S (K K) I) e_1 e_2$$

$$\rightarrow (K K e_1) (I e_1) e_2$$

$$\rightarrow K e_1 e_2$$

$$\rightarrow e_1$$

and

SKI Without I

Looking back at our definitions...

$$egin{aligned} \mathsf{K}\,e_1\,e_2 &
ightarrow e_1 \ \mathsf{S}\,e_1\,e_2\,e_3 &
ightarrow e_1\,e_3\,(e_2\,e_3) \ \mathsf{I}\,e &
ightarrow e \end{aligned}$$

... I isn't strictly necessary. It behaves the same as S K K.

SKI Without I

Looking back at our definitions...

$$egin{aligned} \mathsf{K}\,e_1\,e_2 &
ightarrow e_1 \ \mathsf{S}\,e_1\,e_2\,e_3 &
ightarrow e_1\,e_3\,(e_2\,e_3) \ \mathsf{I}\,e &
ightarrow e \end{aligned}$$

... I isn't strictly necessary. It behaves the same as S K K.

Our example becomes:

$$t \triangleq \lambda f. ((fS) K)$$

Encodings

The pure λ -calculus contains only functions as values. It is not exactly easy to write large or interesting programs in the pure λ -calculus. We can however encode objects, such as booleans, and integers.

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

AND TRUE FALSE = FALSE NOT FALSE = TRUE IF TRUE $e_1 e_2 = e_1$ IF FALSE $e_1 e_2 = e_2$

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE
IF TRUE
$$e_1 e_2 = e_1$$

IF FALSE $e_1 e_2 = e_2$

Let's start by defining TRUE and FALSE:

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

AND TRUE FALSE
$$=$$
 FALSE NOT FALSE $=$ TRUE IF TRUE $e_1 e_2 = e_1$ IF FALSE $e_1 e_2 = e_2$

Let's start by defining TRUE and FALSE:

TRUE
$$\triangleq \lambda x. \lambda y. x$$

FALSE $\triangleq \lambda x. \lambda y. y$

We want the function IF to behave like

 $\lambda b. \lambda t. \lambda f.$ if b is our term TRUE then t, otherwise f

We want the function IF to behave like

 $\lambda b. \lambda t. \lambda f.$ if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

$$\mathsf{IF} \triangleq \lambda b.\,\lambda t.\,\lambda f.\,b\,t\,f$$

We want the function IF to behave like

 $\lambda b. \lambda t. \lambda f.$ if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

$$\mathsf{IF} \triangleq \lambda b.\,\lambda t.\,\lambda f.\,b\,t\,f$$

We can also write the standard Boolean operators.

NOT
$$\triangleq$$
 AND \triangleq OR \triangleq λb_1 . λb_2

We want the function IF to behave like

 $\lambda b. \lambda t. \lambda f.$ if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

$$\mathsf{IF} \triangleq \lambda b.\,\lambda t.\,\lambda f.\,b\,t\,f$$

We can also write the standard Boolean operators.

NOT
$$\triangleq \lambda b. b$$
 FALSE TRUE
AND $\triangleq \lambda b_1. \lambda b_2. b_1 b_2$ FALSE
OR $\triangleq \lambda b_1. \lambda b_2. b_1$ TRUE b_2

Church Numerals

Let's encode the natural numbers!

We'll write \overline{n} for the encoding of the number n. The central function we'll need is a *successor* operation:

SUCC
$$\overline{n} = \overline{n+1}$$

Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

$$\overline{0} \triangleq \lambda f. \lambda x. x
\overline{1} \triangleq \lambda f. \lambda x. f x
\overline{2} \triangleq \lambda f. \lambda x. f (f x)$$

Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

$$\begin{array}{ccc}
\overline{0} & \triangleq & \lambda f. \ \lambda x. \ x \\
\overline{1} & \triangleq & \lambda f. \ \lambda x. \ f \ x \\
\overline{2} & \triangleq & \lambda f. \ \lambda x. \ f \ (f \ x)
\end{array}$$

We can write a successor function that "inserts" another application of *f*:

$$SUCC \triangleq \lambda n. \lambda f. \lambda x. f(n f x)$$

Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural number $n_1 + n_2$ is the result of applying the successor function n_1 times to n_2 .

PLUS
$$\triangleq \lambda n_1 \cdot \lambda n_2 \cdot n_1 \cdot \lambda n_2 \cdot n_2$$

Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural number $n_1 + n_2$ is the result of applying the successor function n_1 times to n_2 .

PLUS $\triangleq \lambda n_1 . \lambda n_2 . n_1 \text{ SUCC } n_2$