Nom i Cognoms:

1) Si cada instrucció 'one-word' necessita del cicle de fetch i del cicle d'execució, justifica perquè s'afirma que la CPU executa (amb excepcions) una instrucció nova a cada cicle.

2) Omple la següent taula amb els valors corresponents després d'executar la instrucció: addwf 0x20, 1

	abans	després
0x20	22	
WREG	20	

3) Et sembla una bona idea implementar una rutina recursiva en un PIC18? Justifica la resposta.

4) Defineix els conceptes, i explica les diferències entre una memòria estàtica i una memòria volàtil.

5) En una arquitectura PIC18, quina diferència hi ha entre la memòria RAM i els registres.

6) Anomena un cas en que una instrucció s'executi en un cicle d'instrucció:

i en dos cicles?

i en tres cicles?

7) Si executem la instrucció *clrf 0x20*, *a*. Quin registre s'esborrarà si a=1 ?

i si a=0?

- 8) Justifica si és certa l'afirmació següent:
- "Quan executem la instrucció addwf 0x20, W (essent W=0), el resultat de la suma es guarda al registre WREG, que es troba a l'adreça 0 de memòria".
- 9) Amb quin valor es carrega el registre PC quan es produeix un reset del micro?
- 10) Anomena un avantatge i un inconvenient d'una arquitectura Harvard enfront d'una Von Neumann.

0.55	_RF Clearf		ADDWF	ADD W to f	
CLRF			Syntax:	ADDWF f {,d {,a}}	
Syntax:	CLRF f {,a}		Operands:	0 < f < 255	
Operands:	$0 \le f \le 255$ $a \in [0,1]$			$d \in [0,1]$ $a \in [0,1]$	
Operation:	$000h \rightarrow f$		Operation:	$(W) + (f) \rightarrow dest$	
	1 → Z		Status Affected:	N, OV, C, DC, Z	
Status Affected:	Z	Encoding:	_ Encoding:	0010 01da ffff ffff	
Encoding:	0110 101a f:	eff ffff	Description:	Add W to register 'f'. If 'd' is '0', the	
Description:	Clears the contents of the register. If 'a' is '0', the Access Bares	·	- '	result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).	