Meritve magnetnega polja z indukcijo

Bor Kokovnik

October 2023

1 Uvod

Magnetno polje merimo z majhno tuljavico z veliko ovoji, postavljeno z osjo vzporedno zunanjemu magnetnemu polju. Napetost v tuljavici se inducira samo pri spremembi magnetnega polja. Inducirano napetost U izračunamo iz enačbe (1);

$$U = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -NS\frac{\mathrm{d}B}{\mathrm{d}t}\cos\alpha,\tag{1}$$

kjer je Φ magnetni pretok, N število ovojev, S ploščina tuljavice, B gostota magnetnega polja in α kot ed osjo tuljavice in smerjo magnetnega polja B.

Upoštevati moramo, da je navitje merilne tuljavice porazdeljeno med notranjim radijem r_1 in zunanjim radijem r_2 , kar opiše enačba (2);

$$dU = -\frac{dB}{dt}\pi r^2 \cos\alpha \,dN \tag{2}$$

Če upoštevamo konstantno gostoto navitja, dobimo po integraciji med r_1 in r_2 enačbo (3);

$$U = -N\hat{S}\frac{\mathrm{d}B}{\mathrm{d}t}\cos\alpha,\tag{3}$$

kjer \hat{S} označuje $\pi \frac{r_1^2 + r_1^2}{2}$. Ker nas zanima vrednost gostote magnetnega polja B, priključimo izhod na integrator, ki na izhodu vrne napetost sorazmerno s časovnim integralom vhodne napetosti po enačbi (4);

$$U_{iz} = -\frac{1}{RC} \int_{t_i}^{t_2} U \, \mathrm{d}t. \tag{4}$$

Vstavimo za U izraz za inducirano napetost v tuljavici, enačba (3), in dobimo enačbo (5);

$$U_{iz} = \frac{N\hat{S}}{RC}(B_2 - B_1)\cos\alpha. \tag{5}$$

Privzamemo, da je $\cos\alpha=1,\,B_2$ merjeno magnetno polje in $B_1=0T$ za področje zunaj magnetnega polja.

2 Potrebščine

- dve merilni tuljavici z notranjim premerom $2r_1=(18.0\pm0.1)$ mm in zunanjim premerom $2r_2=(23.0\pm0.5)$ mm, prva z N1=2000, druga pa z N2=200 navoji
- integrator z $R=(10.0\pm0.5)~\mathrm{k}\Omega$ in $C=(1.0\pm0.1)~\mu\mathrm{F}$
- voltmeter, ampermeter, šolski usmernik omejen na 6 A toka, zaščita pred sunki
- \bullet velika tuljava s premerom $2r_0=(250\pm2)$ mm z $N_3=200$ ovoji z navpičnim nosilcem za merilno tuljavico
- elektromagnet na lesenem nosilcu

3 Naloga

- 1. Izmeri odvisnost gostote magnetnega polja B na osi tokovne zanke z oddaljenostjo od njenega središča.
- 2. Izmeri relacijo med jakostjo električnega toka I in gostoto magnetnega polja B v elektromagnetu.

4 Meritve

Datum izvedbe eksperimenta: 9. 10. 2023 Vsi neobdelani podatki so v prilogi.

4.1 Gostota magnetnega polja na osi zanke

Tok na tuljavi: $I_N = 4.0 \text{ A}$

Gostota magnetnega polja pri določeni višini je bila izračunana iz izmerjenega U_{iz} preko enačbe (5), kjer smo predpostavili, da je kot $\alpha = 0$ in gostota magnetnega polja daleč od tuljave $B_1 = 0$.

Na grafu 1 je poleg eksperimentalnih podatkov z intervali napak še teoretična krivulja izračunana z enačbo (6);

$$B_{zanka}(h) = \frac{N_3 \mu I_0 r_0^2}{2(r_0^2 + h^2)^{3/2}}$$
(6)

Gostota magnetnega polja v odvisnosti od višine na osi

Figure 1: Graf izmerjenih podatkov gostote magnetnega polja v odvisnosti od višine na osi skupaj s teoretično krivuljo.

4.2 Gostota magnetnega polja v elektromagnetu

Meritev toka, pridobljena iz integratorja je bila ponovno pretvorjena v meritve gostote magnetnega polja s pomočjo enačbe (5). Iz linearnega fita podatkov na grafu 2 odčitamo vrednost $\frac{B}{I}$, iz katere lahko preko enačbe (7) izračunamo število navojev na enoto dolžine za dolgo ravno tuljavo, ki bi bila ekvivalentna našemu elektromagnetu.

$$B = \frac{\mu_0 I N}{I} \tag{7}$$

Naklon fitane premice: $\frac{B}{I}=(0.137\pm0.003)~\frac{kg}{sA^2}$ Gostota navojev ekvivalentne dolge ravne tuljave: $\frac{N}{l}=(109000\pm2000)~\frac{1}{m}$ Gostota magnetnega polja v reži v odvisnoti od napajalnega toka

Figure 2: Graf izmerjenih gostot magnetnega polja pri različnih vrednostih toka skupaj z linearnim fitom.

5 Rezultati

Vse meritve so znotraj ali pa skoraj znotraj intervalov napak. Odstopanje od pričakovanih vrednosti na grafu 1 pri višjih višinah nad tuljavo nakazuje na vplive, ki jih v svoji analizi nisem upošteval, saj je odstopanje navidezno precej konstantno.

Meritev gostote magnetnega polja na osi tuljave $I_0=4,0\ \mathrm{A}$

$h[cm] \pm 1mm$	$U[mV] \pm 3mV$
45	4,78
43	6,1
41	6,5
40	6,8
38	8,0
36	8,7
34	9,7
32	11,3
30	13,2
28	15,3
26	18,4
24	22,0
22	27,0
20	31,9
18	38,9
16	48,4
14	60,2
12	77,5
10	97,0
8	122,8
6	153,6
4	188,5

Table 1: Meritve napetosti v odvisnosti od višine nad tuljavo

Meritev gostote magnetnega polja v elektromagnetu

I[A]	$U[mV] \pm 5mV$
0,49	561
0,76	805
1,00	1030
1,26	1269
1,50	1488
1,75	1712
1,99	1938
2,24	2182
2,49	2406
3,01	2900
3,24	3094
3,51	3358
3,76	3565
4,01	3796
4,24	4000
4,51	4256
4,75	4455
4,99	4668