Superquadro

- A estrutura dos superframes é controlada por dois parâmetros: *ordem de farol (BO)* e *ordem do superquadro (SO)*
 - BO decide o comprimento de um superframe
 - SO decide o comprimento da porção ativa em um superframe
- Para os canais 11 a 26, o comprimento de um superframe pode variar de 15,36*mseg*para 215,7*segundo*.
 - o que significa ciclo de trabalho muito baixo
- Lembre-se: Ciclo de Trabalho
 - O Ciclo de Trabalho indica a fração de tempo que um recurso está ocupado.
 - Quando um único dispositivo transmite em um canal por 2 unidades de tempo a cada 10 unidades de tempo, este dispositivo tem um ciclo de trabalho de 20%.

CM 23/24

Superquadro

- Cada dispositivo ficará ativo por 2-(BO-SO)parte do tempo e durma por 1-2-(BO-SO)parte do tempo
- No IEEE 802.15.4, o ciclo de trabalho dos dispositivos segue a especificação

BO-ASSIM	0	1	2	3	4	5	6	7	8	9	≧10
Ciclo de trabalho (%)	100	50	25	12	6,25	3.125	1,56	0,78	0,39	0,195	<0,1

BO – Pedido de Beacon SO – Pedido de Superframe

Conceitos GTS

- Um slot de tempo garantido (GTS) permite que um dispositivo opere no canal dentro de uma parte do superframe
- O GTS só será atribuído pelo coordenador do PAN
- O coordenador do PAN pode alocar até sete GTS ao mesmo tempo
- O coordenador do PAN decide se atribui o GTS com base:
 - Requisitos do pedido GTS
 - A capacidade disponível atual no superframe

Conceitos GTS

- Um GTS pode serdesalocado
 - A qualquer momento, a critério do coordenador do PAN ou
 - Pelo dispositivo que solicitou originalmente o GTS
- Um quadro de dados transmitido num GTS atribuído utilizará apenas endereçamento curto
- O coordenador PAN deverá ser capaz de armazenar as informações dos dispositivos necessários para o GTS, incluindo slot inicial, comprimento, direção e endereço do dispositivo associado

Conceitos GTS

- Antes do início do GTS, a direção do GTS deve ser especificada como transmissão ou recepção
- Cada dispositivo pode solicitar um**transmite**GTS e/ou um**receber**GTS
- Um dispositivo só deverá tentar alocar e usar um GTS se estiver atualmente rastreando o beacon
- Se um dispositivo perder a sincronização com o coordenador PAN, todas as suas alocações GTS serão perdidas
- O uso de GTSs como RFD é opcional

CM 23/24

Mecanismo de acesso ao canal

- Mecanismo de acesso ao canal de dois tipos:
 - Em redes não habilitadas para beacon→sem slotMecanismo de acesso ao canal CSMA/CA
 - Em redes habilitadas para beacon→ranburadoMecanismo de acesso ao canal CSMA/CA

CM 23/24

Sem slot CSMA/CA

Observação é o número de vezes que o algoritmo CSMA-CA foi obrigado a recuar ao tentar a transmissão atual

<u>SER</u> é o expoente de espera, que define o número de períodos de espera que um nó deve esperar antes de tentar**Avaliação de canal claro (CCA)**

MacMinBE constante definida na norma.

Algoritmo CSMA/CA

- Em CSMA/CA com fenda
 - Olimites do período de esperade cada dispositivo no PAN deve seralinhado com olimites de slot de superframedo coordenador do PAN
 - ou seja, o início do primeiro período de espera de cada dispositivo está alinhado com o início da transmissão do beacon
 - A subcamada MAC deve garantir que a camada PHY comecetodas as suas transmissões no limite de um período de espera

Algoritmo CSMA/CA

- Cada dispositivo deverá manter três variáveis para cada tentativa de transmissão
 - NB: número de vezes que o algoritmo CSMA/CA foi necessário para recuar ao tentar a transmissão atual
 - CW: duração da janela de contenção, o número de períodos de espera que precisam ser liberados da atividade do canal antes que a transmissão possa começar (inicialmente para 2 e redefinido para 2 se o canal detectado estiver ocupado)
 - BE: o expoente de espera que está relacionado a quantos períodos de espera um dispositivo deve esperar antes de tentar avaliar um canal

CSMA/CA com fenda

<u>**Observação**</u> é o número de vezes que o algoritmo CSMA-CA foi obrigado a recuar ao tentar a transmissão atual

<u>SER</u>é o expoente de espera, que define o número de períodos de espera que um nó deve esperar antes de tentar**Avaliação de canal claro (CCA)**

Isso garante a execução de duas operações CCA para evitar possíveis colisões de quadros de confirmação. Se o canal for novamente detectado como inativo (CW = 0), o nãoCd Me 2/2 você4tenta transmitir.

Procedimentos de associação

- Um dispositivo torna-se membro de um PAN associando-se ao seu coordenador
- Procedimentos

Procedimentos de associação

- No IEEE 802.15.4, resultados da associação são anunciados de forma indireta
- Um coordenador responde às solicitações de associação anexando endereços longos dos dispositivos (64 bits) em quadros de beacon
- Os dispositivos precisam enviar uma solicitação de dados ao coordenador para adquirir o resultado da associação

Após associar-se a um coordenador, será atribuído a um dispositivo um protocolo de 16 bits.
 endereço curto.

Modelo de transferência de dados (dispositivo para coordenador)

- Dados transferidos do dispositivo para o coordenador
 - Em uma rede habilitada para beacon, o dispositivo encontra o beacon para sincronizar com a estrutura do superframe. Em seguida, usa CSMA/CA com slot para transmitir seus dados.
 - Em uma rede sem beacon, o dispositivo simplesmente transmite seus dados usando CSMA/CA sem slot.

Comunicação a um coordenador Em umnão habilitado para beaconrede

Modelo de transferência de dados (coordenador para dispositivo)

- Dados transferidos do coordenador para o dispositivo
 - Em umrede habilitada para beacon, o coordenador indica no beacon que os dados estão pendentes.
 O dispositivo escuta periodicamente o beacon e transmite uma solicitação de comando MAC usando CSMA/CA com slot, se necessário.
 - Em umrede não habilitada para beacon, um dispositivo transmite uma solicitação de comando MAC usando CSMA/CA sem slot. Se o coordenador tiver dados pendentes, o coordenador transmite o quadro de dados usando CSMA/CA sem slot. Caso contrário, o coordenador transmite um quadro de dados com carga útil de comprimento zero.

Comunicação de um coordenador Em umhabilitado para beaconrede

CM 23/24

96

Camada MAC

Como 6 e 7 se conectam ao coordenador 0?

Roteamento (camada NWK)

Arquitetura 802.15.4

Topologias combinadas: topologias de malha

Em uma rede mesh, beacons regulares não são permitidos.

Dispositivos em uma rede mesh só podem se comunicar entre si por meio de transmissões ponto a ponto

Topologias Combinadas: Árvore

Em uma rede em árvore, o coordenador e os roteadores podem anunciar beacons.

Endereçamento de dispositivo

- Dois ou mais dispositivos comunicando-se no mesmo canal físico constituem uma WPAN que incluipelo menos um FFD (coordenador do PAN)
- Cada PAN independente selecionará um identificador PAN exclusivo
- Todos os dispositivos operando em uma rede deverão ter endereço estendido exclusivo de 64 bits (IEEE 802.15.4). Este endereço pode ser usado para comunicação direta no PAN
- O endereço de rede pode usar um endereço curto de 16 bits, que é alocado aos roteadores filhos pelo coordenador PAN quando o dispositivo se associa
- 256 subendereços podem ser alocados para subunidades

Atribuição de endereço em uma rede ZigBee

- No ZigBee, os endereços de rede são atribuídos aos dispositivos por umesquema de atribuição de endereço distribuído
- O coordenador ZigBee determina três parâmetros de rede para definir as alocações
 - o número máximo de filhos (*Ceu*) de um roteador ZigBee
 - o número máximo de roteadores filhos (Reu) de um nó pai
 - a profundidade da rede (*eueu*)
- Um dispositivo pai utiliza Ceu, Reu, e eueupara calcular um parâmetro chamado Cpular
 - que é usado para calcular o tamanho dos conjuntos de endereços de seus filhos

- Se um nó pai em profundidade de tem um endereço Apai,
 - o no roteador filho é atribuído ao endereço
 Apai+(n-1)×Cpular(d)+1
 - no dispositivo final filho é atribuído ao endereço
 Apai+ Reu× Cpular(d)+n

Protocolos de roteamento ZigBee

- Em uma rede de árvores.
 - Utilize a atribuição de endereço para obter os caminhos de roteamento
- Em uma rede mesh
 - Duas opções
 - Roteamento reativo: se tiver capacidade de roteamento
 - Use roteamento em árvore: se não tiver capacidade de roteamento

- Observação:
 - Diz-se que os coordenadores e roteadores ZigBee têm*capacidade de roteamento*se eles tiverem capacidades da tabela de roteamentoecapacidades da tabela de rotas

Resumo da camada de rede ZigBee

• Prós e contras de diferentes tipos de topologias de rede ZigBee

	Prós	Contras
Estrela	 Fácil de sincronizar Suporta operação de baixa potência Baixa latência 	1. Pequena escala
Árvore	1. Baixo custo de roteamento 2. Pode formar superframes para suportar o modo de suspensão 3. Permitir comunicação multihop	A reconstrução da rota é cara A latência pode ser bastante longa
Malha	1. Comunicação multihop robusta 2. A rede é mais flexível 3. Menor latência	1. Não é possível formar superframes (e, portanto, não pode suportar o modo de suspensão) 2. A descoberta de rotas é cara 3. Precisa de armazenamento para tabela de roteamento

Objetos definidos pelo ZigBee (ZDO):

- fornece função comum para aplicativos
- Inicializa APS, camada NWK e especificação de serviço de segurança
- oferece serviços como descoberta de dispositivos/serviços, vinculação e gerenciamento de segurança
- reúne informações sobre a rede
- para ZBC/ZBR -> por exemplo, tabela de ligação

Command	Addressing				
Command	Request	Response			
End device bind	Unicast to ZC	Unicast			
Bind	Unicast to ZC or Src	Unicast			
Unbind	Unicast to ZC or Src	Unicast			

Perfis ZigBee

Perfis:

Definição de perfis ZigBee

- descreve uma linguagem comum para troca de dados
- define os serviços oferecidos
- interoperabilidade de dispositivos entre diferentes fabricantes
- Perfis padrão disponíveis na ZigBee Alliance
- perfis contêm descrições de dispositivos
- identificador exclusivo (licenciado pela ZigBee Alliance)

ZigBee e BLE

Comparação de negócios:

- ZigBee é mais antigo. Passou por algumas iterações
- ZigBee tem participação no mercado, mas ainda não tem muitas remessas.
- Barreiras de mercado: conectividade O ZigBee ainda não está nos PCs ou nos telemóveis.

• Comparação técnica:

- Zigbee tem baixo consumo de energia; O Bluetooth LE é ainda mais baixo. A análise detalhada depende de aplicações específicas e detalhes do projeto, sem mencionar a geometria do chip.
- A pilha ZigBee é leve; a pilha Bluetooth LE/GATT é ainda mais simples
 - Lembre-se: GATT Perfil genérico ATTribute

• Daqui para frente:

- ZigBee é líder no desenvolvimento de aplicativos e presença
- O Bluetooth de baixo consumo de energia melhorou a tecnologia e tem presença marcante em vários mercados existentes: telefones celulares, automóveis, eletrônicos de consumo, indústria de PCs
- Substituir o "Bluetooth clássico" por dispositivos de "modo duplo" irá impulsionar este mercado rapidamente

Sensor sem fio de área ampla Redes

WWSN

O que é isso?

- WWSN redes de sensores sem fio de área ampla
- LPWSN redes de sensores sem fio de baixa potência
- Tecnologias para redes de sensores em áreas amplas
 - seja para baixa potência ou para geografia
 - Normalmente: Sigfox, LoRa, celular (LTE-M, NB-IoT)

LPWSN

Revisão de tecnologia

Licenciado vs isento de licença

Visão geral do LPWAN Overview of LPWAN technologies: Sigfox, LoRa, and NB-IoT.

	Sigfox		LoRaWAN	NB-IoT				
Modulation	BPSK		CSS	QPSK				
Frequency	Unlicensed ISM bands (868 MHz in	n Europe, 915 Unlicensed ISM bands (868 MHz in Europ		Licensed LTE frequency				
	MHz in North America, and 433 MH	Iz in Asia)	MHz in North America, and 433 MHz in Asia)	bands				
Bandwidth	100 Hz		250 kHz and 125 kHz	200 kHz				
Maximum data rate	100 bps		50 kbps	200 kbps				
Bidirectional	Limited / Half-duplex		Yes / Half-duplex	Yes / Half-duplex				
Maximum messages/day	140 (UL), 4 (DL)		Unlimited	Unlimited				
Maximum payload length	12 bytes (UL), 8 bytes (DL)		243 bytes	1600 bytes				
Range	10 km (urban), 40 km (rural)		5 km (urban), 20 km (rural)	1 km (urban), 10 km (rural)				
Interference immunity	Very high		Very high	Low				
Authentication & encryption	Not supported		Yes (AES 128b)	Yes (LTE encryption)				
Adaptive data rate	No		Yes	No				
Handover	End-devices do not join a single base	station	End-devices do not join a single base station	End-devices join a single base station				
Localization	Yes (RSSI)		Yes (TDOA)	No (under specification)				
Allow private network	No		Yes	No				
Standardization	Sigfox company is collaborating with	h ETSI on	LoRa-Alliance	3GPP				
	the standardization of Sigfox-based network							
	Spectrum cost 1	Deployme	ent cost	End-device cost				
Sigfox	Free	>4000€/b	pase station	<2€				
LoRa	Free	>100€/ga	ateway >1000€/base station	3–5€				
NB-IoT			/base station	>20€				

CM 23/24 115

Radar de comparação

LTE-M - Visão geral

- Evolução do LTE otimizado para IoT
- > Baixo consumo de energia e autônomo
- > Fácil implantação
- ➤ Interoperabilidade com redes LTE existentes
- Cobertura até 11 Km
- ➤ Taxa de transferência máxima ≤ 1 Mbps

Evolução de LTE para LTE-M

Lançamentos 3GPP	8 (Cat.4)	8 (Gato. 1)	12 (Cat.0) LTE-	13 (Cat. 1,4 MHz) LTE-
Taxa de pico de downlink (Mbps)	150	10	^{IVI} 1	1 1
Taxa de pico de uplink (Mbps)	50	5	1	1
Número de antenas (MIMO)	2	2	1	1
Modo Duplex	Completo	Completo	Metade	Metade
UE recebe largura de banda (MHz)	20	20	20	1.4
Potência de transmissão UE (dBm)	23	23	23	20

Versão 12

- Nova categoria de UE ("Cat-0"): dispositivos de menor complexidade e baixo custo
- Operação FDD half duplex permitida
- Receptor único
- Requisito de taxa de dados mais baixa (Máx.: 1 Mbps

Versão 13

- Largura de banda de recepção reduzida para 1,4 MHz
- Classe de potência mais baixa do dispositivo de 20 dBm
- Orçamento de link adicional de 15dB: melhor cobertura

 Mais eficiente em termos energéticos devido ao seu ciclo de repetição descontínua estendido (eDRX)