

# Inferences: previous examples

### Are these valid inferences?

John is a student

If John is a student, then he is a human

John is a human

If she is guilty, she will go to jail
She will not go to jail
She is not guilty

What's the algorithm to decide this?

### Definition of valid inference

- The inference from a finite set of premises  $\phi_1, \ldots, \phi_k$  to a conclusion  $\psi$  is a valid inference if each valuation V with  $V(\phi_1) = \ldots = V(\phi_k) = 1$  also has  $V(\psi) = 1$ .
- We write:

$$\phi_1,\ldots,\phi_k\models\psi$$

- Algorithm:
  - write out a truth table for  $\phi_1, \ldots, \phi_k, \psi$
  - 2 identify all the rows that make all of  $\phi_1, \ldots, \phi_k$  true
  - lacktriangledown make sure  $\psi$  is also true on all these rows

The textbook (Definition 2.13) calls this "valid consequence"

## Inferences: previous examples

#### Are these valid inferences?

- John is a student
   If John is a student, then he is a human
   John is a human
- If she is guilty, she will go to jail
  She will not go to jail
  She is not guilty

### Four well-known valid inference forms

Many forms of valid inference have been known since antiquity, and have quaint Latin names:

modus ponens "the way that affirms" (something)

modus ponendo ponens

"the way that affirms by affirming"

$$(p \rightarrow q), p \models q$$

modus tollendo ponens

"the way that affirms by denying"

$$(p \lor q), \neg p \models q$$

modus tollens "the way that denies" (something)

modus *ponendo* tollens

"the way that denies by affirming"

$$\neg(p \land q), p \models \neg q$$

modus tollendo tollens "the way that denies by denying"

$$(q \rightarrow p), \neg p \models \neg q$$

## Where do logical laws come from?



# Example: some commonly-used logical "laws"

| Commutative     | $p \wedge q \equiv q \wedge p$                              | $p \vee q \equiv q \vee p$                              |
|-----------------|-------------------------------------------------------------|---------------------------------------------------------|
| Associative     | $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$        | $(p \lor q) \lor r \equiv p \lor (q \lor r)$            |
| Distributive    | $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ | $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ |
| Identity        | $p \wedge T \equiv p$                                       | $p \lor F \equiv p$                                     |
| Negation        | $p \lor \lnot p \equiv T$                                   | $p \wedge \neg p \equiv F$                              |
| Double Negative | $\neg(\neg p) \equiv p$                                     |                                                         |
| Idempotent      | $p \wedge p \equiv p$                                       | $p \lor p \equiv p$                                     |
| Universal Bound | $p \lor T \equiv T$                                         | $p \wedge F \equiv F$                                   |
| De Morgan's     | $\lnot(p \land q) \equiv (\lnot p) \lor (\lnot q)$          | $\lnot(p\lor q)\equiv(\lnot p)\land(\lnot q)$           |
| Absorption      | $p\vee (p\wedge q)\equiv p$                                 | $p \wedge (p \vee q) \equiv p$                          |
| Conditional     | $(p \to q) \equiv (\neg p \lor q)$                          | $\lnot(p  ightarrow q) \equiv (p \land \lnot q)$        |

From http://integral-table.com/downloads/logic.pdf

## Logical equivalence

- Two formulas  $\phi$  and  $\psi$  are logically equivalent if  $\phi \models \psi$  and  $\psi \models \phi$ .
- Two logically equivalent formula should agree on every row of their truth table.
  - i.e. for any valuation V, we would have  $V(\phi) = V(\psi)$

# Classifying formulas

### A formula is:

- unsatisfiable (or "a contradiction")

  if it is false on every row of its truth table.
- a tautology (or "logically valid") if it is *true* on every row of its truth table.
- satisfiable (or "logically contingent") if it is true on at least one row of its truth table.

Note: any inference  $\phi_1,\ldots,\phi_k\models\psi$  is valid precisely when

- the formula  $(\phi_1 \wedge \ldots \wedge \phi_k) \to \psi$  is a tautology
- the formula  $(\phi_1 \wedge \ldots \wedge \phi_k) \wedge \neg \psi$  is unsatisfiable.

- The information content of a formula  $\phi$  is the set of its models, that is, the valuations that assign the formula  $\phi$  the truth-value 1.
- An update with new information  $\psi$  reduces the current set of models to the overlap or intersection of the existing models and the models of  $\psi$ .

Any existing valuations that assign the value 0 to  $\psi$  are eliminated.

More information  $\Longrightarrow$  fewer models

Note: we're skipping this sections for the moment:

LiA §2.7

## Information update: example

- Example: The party problem (Example 2.25)
  - John comes if Mary or Ann comes.
  - Ann comes if Mary does not come.
  - If Ann comes, John does not.
- When you have eliminated all which is impossible, then whatever remains, however improbable, must be the truth.
  - Sherlock Holmes in The Adventure of the Blanched Soldier

#### Information Update

### Example



- ► At least one of them is guilty.
- ▶ Not all of them are guilty.
- ► If Mrs White is guilty, then Colonel Mustard helped her.
- ► If Miss Scarlet is innocent then so is Colonel Mustard.