

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Steven Neville Chatfield et al. Attorney Docket: KCO1003US

Serial No.: 09/591,447

Group Art Unit: 1645

Filed: June 9, 2000

For: VACCINES CONTAINING ATTENUATED BACTERIA

Priority
Linda
5/23/01

CLAIM FOR FOREIGN PRIORITY UNDER 35 U.S.C. § 119

Assistant Commissioner for Patents
Washington, D.C. 20231

Dear Sir:

Pursuant to 35 U.S.C. § 119 and 37 C.F.R. § 1.55, Applicants in the above-identified United States patent application claim the benefit of the filing date of a prior foreign patent application, a certified copy of which is enclosed. The prior foreign patent application is United Kingdom Patent Application No. 9726233.1, filed December 11, 1997.

Respectfully submitted,

Date: May 3, 2001

By

Thomas E. Popovich, Esq. (30,099)
Patrick J. O'Connell, Esq. (33,984)
POPOVICH & WILES, P.A.
IDS Center, Suite 1902
80 South 8th Street
Minneapolis, MN 55402
Telephone: (612) 334-8989
Attorneys for Applicants

Certificate of Mailing/Transmission (37 C.F.R. § 1.8(a))

I hereby certify that the document is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Assistant Commissioner for Patents, Washington, D.C. 20231 on

Date: May 3, 2001

Signature:

Name: Jodi Jung

THIS PAGE BLANK (USPTO)

INVESTOR IN PEOPLE

TECH CENTER 1600/2900

MAY 14 2001

RECEIVED

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

13 MAR 2001

THIS PAGE BLANK (USPS),

RECEIVED

MAY 10 2001

TECH CENTER 1000/2900

Patents Form 1/77

Patents Act 1977
Rule 16)

The
Patent
Office

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

120EC97 E324055-5 D00192
01/7700 25 00 - 9726233.1

The Patent Office

Cardiff Road
Newport
Gwent NP9 1RH

1. Your reference

2. Patent application number
(The Patent Office will fill in this part)

11 DEC 1997

9726233.1

3. Full name, address and postcode of the or of each applicant (underline all surnames)

Medeva Europe Limited
10 St James's Street
London, SW1A 1EF
UNITED KINGDOM

Patents ADP number (if you know it)

6633382001

If the applicant is a corporate body, give the country/state of its incorporation

UNITED KINGDOM

4. Title of the invention

VACCINES CONTAINING ATTENUATED BACTERIA

5. Name of your agent (if you have one)

J A KEMP & CO

"Address for service" in the United Kingdom to which all correspondence should be sent
(including the postcode)

14 SOUTH SQUARE
GRAY'S INN
LONDON WC1R 5LX

26001

Patents ADP number (if you know it)

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number
(if you know it)

Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer "Yes" if:
a) any applicant named in part 3 is not an inventor, or
b) there is an inventor who is not named as an applicant, or
c) any named applicant is a corporate body.
See note (d))

Yes (but will be filed later)

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document

1. EES&STP - 00 00000000
Continuation sheets of this form

Description 33

Claim(s) 3

Abstract 1

Drawing(s) 3

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (*Patents Form 7/77*)

Request for preliminary examination and search (*Patents Form 9/77*)

Request for substantive examination (*Patents Form 10/77*)

Any other documents
(please specify)

11.

I/We request the grant of a patent on the basis of this application

P. J. H. Campbell
Signature CAMPBELL, Patrick John Henry Date 10 Dec 1997
J. A. KEMP & Co

12. Name and daytime telephone number of person to contact in the United Kingdom

Patrick CAMPBELL
0171 405 3292

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered "Yes" Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

VACCINES CONTAINING ATTENUATED BACTERIA

The invention relates to vaccines containing attenuated bacteria.

5

Background to the invention

The principle behind vaccination is to induce an immune response in the host thus providing protection against subsequent challenge with a pathogen. This may be 10 achieved by inoculation with a live attenuated strain of the pathogen (i.e. a strain having reduced virulence such that it does not cause the disease caused by the virulent pathogen).

Classically, live attenuated vaccine strains of bacteria and viruses have been 15 selected using one of two different methodologies. Mutants have been created either by treatment of the organism using mutagenic chemical compounds or by repeated passage of the organism *in vitro*. However, use of either method gives rise to attenuated strains in which the mode of attenuation is unclear. These strains are particularly difficult to characterise in terms of possible reversion to the wild type strain as attenuation may 20 reflect single (easily reversible) or multiple mutation events.

Using modern genetic techniques, it is now possible to construct genetically defined attenuated bacterial strains in which stable attenuating deletions can be created. A number of site directed mutants of *Salmonella* have been created using this type of 25 technology (2, 5, 6, 12, 22, 35, 36, 37). Amongst the most comprehensively studied attenuating lesions are those in which mutations in the biosynthetic pathways have been created, rendering the bacteria auxotrophic (e.g. *aro* genes). Mutations in these genes were described as early as 1950 (1) as responsible for rendering *Salmonella* less virulent for mice. Several different auxotrophic mutations such as *galE*, *aroA* or *purA* have also 30 been described previously (6, 12). *Salmonella aroA* mutants have now been well characterised and have been shown to be excellent live vaccines against salmonellosis in several animal species. In addition, in order to reduce the chances of a reversion to

virulence by a recombination event mutations have now been introduced into two independent genes such as *aroA/purA* and *aroA/aroC*. Identical mutations in host adapted strains of Salmonella such as *S. typhi* (man) and *S. dublin* (cattle) has also resulted in the creation of a number of single dose vaccines which have proved
5 successful in clinical (11, 17) and field trials (15).

In animal studies, attenuated *S. typhimurium* has been used as a vehicle for the delivery of heterologous antigens to the immune system (3, 8, 32). This raises the potential of the development of multivalent vaccines for use in man (9).

10

Summary of the invention

The original aim of the work that led to the invention was the identification of novel genes that are involved in the virulence pathways of pathogenic bacteria, the
15 identification and deletion of which may render the bacteria avirulent and suitable for use as vaccines. To identify attenuating lesions, random mutations were introduced into the chromosome of *S. typhimurium* using the transposon TnphoA (18). This transposon is unique in that it is engineered to identify proteins that are expressed in or at the bacterial outer membrane; such proteins may be those involved in interaction with and
20 uptake by host tissues. By using the natural oral route of infection to screen these mutants, those with important, *in vivo* induced, attenuating lesions in genes were identified.

One such gene identified through this work is *surA*. The *surA* gene product is
25 known to promote the folding of extracytoplasmic proteins. Accordingly, the invention provides a vaccine comprising a pharmaceutically acceptable carrier or diluent and a bacterium attenuated by a non-reverting mutation in a gene encoding a protein which promotes the folding of extracytoplasmic proteins. The vaccine has the ability to confer protection against a homologous wild type oral challenge with the virulent bacterium. In
30 addition, the bacterium used in the vaccine can act as a carrier for heterologous antigens such as fragment C of tetanus toxin.

Detailed description of the invention

Proteins that promote the folding of extracytoplasmic proteins

5

Periplasmic and outer membrane proteins are secreted across the cytoplasmic (inner) membrane in a mostly unfolded state, and they then fold after secretion. The folding often has enzymatic assistance to catalyse the formation of bonds necessary for the protein to reach its folded state. For example, the folding often requires the

10 participation of enzymes that catalyse the formation of disulphide bonds or enzymes that catalyse the isomerisation of prolyl bonds (peptidyl-prolyl cis-trans isomerasases or PPases).

One known PPase is SurA. The inventors have now shown that mutation of the 15 *surA* gene causes attenuation of virulent bacteria and that the attenuated bacteria are useful as vaccines.

SurA was first described as being essential for the survival of *E.coli* in the stationary phase (33). It is a periplasmic protein. More recently, SurA has been 20 described as belonging to a third, new family of PPases (30), the parvulin family.

Further studies have shown SurA to be involved in the correct folding of outer membrane proteins such as OmpA, OmpF, and LamB (16, 24, 29).

PPases are divided into three families, the cyclophilins, FK506-binding proteins 25 (FKBPs) and parvulins. Members of all three families have been found in *E.coli*. Apart from SurA, the parvulin family includes several proteins such as NifM, PrsA and PrtM.

Bacteria useful in the invention

30 The bacteria that are used to make the vaccines of the invention are generally those that infect via the oral route. The bacteria may be those that invade and grow

within eukaryotic cells and/or colonise mucosal surfaces. The bacteria are generally Gram-negative.

The bacteria may be from the genera *Salmonella*, *Escherichia*, *Vibrio*,
5 *Haemophilus*, *Neisseria*, *Yersinia*, *Bordetella* or *Brucella*. Examples of such bacteria are
Salmonella typhimurium – the cause of salmonellosis in several animal species;
Salmonella typhi – the cause of human typhoid; *Salmonella enteritidis* – a cause of food poisoning in humans; *Salmonella choleraesuis* – a cause of salmonellosis in pigs;
Salmonella dublin – a cause of both a systemic and diarrhoeal disease in cattle, especially
10 of new-born calves; *Escherichia coli* – a cause of food poisoning in humans;
Haemophilus influenzae – a cause of meningitis; *Neisseria gonorrhoeae* – a cause of gonnorrhoeae; *Yersinia enterocolitica* – the cause of a spectrum of diseases in humans ranging from gastroenteritis to fatal septicemic disease; *Bordetella pertussis* – the cause of whooping cough; or *Brucella abortus* – a cause of abortion and infertility in cattle and
15 a condition known as undulant fever in humans.

Salmonella bacteria are particularly useful in the invention. As well as being vaccines in their own right against infection by *Salmonella*, attenuated *Salmonella* can be used as carriers of heterologous antigens from other organisms to the immune system
20 via the oral route. *Salmonella* are potent immunogens and are able to stimulate systemic and local cellular and antibody responses. Systems for driving expression of heterologous antigens in *Salmonella in vivo* are known; for example the *nirB* and *htrA* promoters are known to be effective drivers of antigen expression *in vivo*.

25 Seq. Id. No. 1 shows the sequence of the *surA* open reading frame in *Salmonella typhimurium*, and Seq. Id. No. 2 shows the sequence of the *surA* open reading frame in *E. coli*.

Second mutations

The bacteria used in vaccines of the invention preferably contain a mutation in one or more genes in addition to the mutation in the gene encoding a protein which 5 promotes folding of extracytoplasmic proteins. This is so that the risk of the bacterium reverting to the virulent state is minimised, which is clearly important for the use of the bacterium as a human or animal vaccine. Although bacteria containing only a mutation in a protein which promotes folding of extracytoplasmic proteins are attenuated and the risk of reversion is small, it will generally be desirable to introduce at least one further 10 mutation so as to reduce the risk of attenuation yet further.

A number of genes that are candidates for second and further mutations are known (see e.g. ref 39). These include the *aro* genes (35), the *pur* genes, the *htrA* gene (37), the *ompR* gene (36), the *gale* gene, the *cya* gene, the *crp* gene or the *phoP* gene.

15 The *aro* gene may be *aroA*, *aroC*, *aroD* or *aroE*. The *pur* gene may be *purA*, *purB*, *pure* or *purH*. The use of *aro* mutants, especially double *aro* mutants, is preferred because such mutants have been shown to be particularly effective as vaccines. Suitable combinations of *aro* mutations are *aroAaroC*, *aroAaroD* and *aroAaroE*.

20 The nature of the mutation

The mutations introduced into the bacterial vaccine generally knock-out the function of the gene completely. This may be achieved either by abolishing synthesis of any polypeptide at all from the gene or by making a mutation that results in synthesis on 25 non-functional polypeptide. In order to abolish synthesis of any polypeptide, either the entire gene or its 5'-end may be deleted. A deletion or insertion within the coding sequence of a gene may be used to create a gene that synthesises only non-functional polypeptide (e.g. polypeptide that contains only the N-terminal sequence of the wild-type protein). In the case of mutations in genes encoding proteins which promote the 30 folding of extracytoplasmic proteins, the mutation generally abolishes the ability of the protein to promote such protein folding.

The mutations are non-reverting mutations. These are mutations that show essentially no reversion back to the wild-type when the bacterium is used as a vaccine. Such mutations include insertions and deletions. Insertions and deletions are preferably 5 large, typically at least 10 nucleotides in length, for example from 10 to 600 nucleotides.

The bacterium used in the vaccine preferably contains only defined mutations, i.e. mutations which are characterised. It is clearly undesirable to use a bacterium which has uncharacterised mutations in its genome as a vaccine because there would be a risk 10 that the uncharacterised mutations may confer properties on the bacterium that cause undesirable side-effects.

The attenuating mutations may be constructed by methods well known to those skilled in the art (see ref 31). One means for introducing non-reverting mutations into 15 extracytoplasmic proteins is to use transposon *TnphoA*. This can be introduced into bacteria to generate enzymatically active protein fusions of alkaline phosphatase to extracytoplasmic proteins. The *TnphoA* transposon carries a gene encoding kanamycin resistance. Transductants are selected that are kanamycin resistant by growing colonies on an appropriate selection medium.

20

Alternative methods include cloning the DNA sequence of the wild-type gene into a vector, e.g. a plasmid or cosmid, and inserting a selectable marker into the cloned DNA sequence or deleting a part of the DNA sequence, resulting in its inactivation. A deletion may be introduced by, for example, cutting the DNA sequence using restriction 25 enzymes that cut at two points in the coding sequence and ligating together the two ends in the remaining sequence. A plasmid carrying the inactivated DNA sequence can be transformed into the bacterium by known techniques. It is then possible by suitable selection to identify a mutant wherein the inactivated DNA sequence has recombined into the chromosome of the bacterium and the wild-type DNA sequence has been 30 rendered non-functional in a process known as homologous recombination.

Expression of heterologous antigens

The attenuated bacterium used in the vaccine of the invention may be genetically engineered to express an antigen from another organism (a "heterologous antigen"), so 5 that the attenuated bacterium acts as a carrier of the antigen from the other organism. In this way it is possible to create a vaccine which provides protection against the other organism. A multivalent vaccine may be produced which not only provides immunity against the virulent parent of the attenuated bacterium but also provides immunity against the other organism. Furthermore, the attenuated bacterium may be engineered to 10 express more than one heterologous antigen, in which case the heterologous antigens may be from the same or different organisms.

The heterologous antigen may be a complete protein or a part of a protein containing an epitope. The antigen may be from another bacterium, a virus, a yeast or a 15 fungus. More especially, the antigenic sequence may be from tetanus, hepatitis A, B or C virus, human rhinovirus such as type 2 or type 14, herpes simplex virus, poliovirus type 2 or 3, foot-and-mouth disease virus, influenza virus, coxsackie virus or *Chlamydia trachomatis*. Useful antigens include *E.coli* heat labile toxin B subunit (LT-B), *E.coli* K88 antigens, P.69 protein from *B. pertussis* and tetanus toxin fragment C.

20

The DNA encoding the heterologous antigen is expressed from a promoter that is active *in vivo*. Two good promoters are the *nirB* promoter (38, 40) and the *htrA* promoter (40).

25 A DNA construct comprising the promoter operably linked to DNA encoding the heterologous antigen may be made and transformed into the attenuated bacterium using conventional techniques. Transformants containing the DNA construct may be selected, for example by screening for a selectable marker on the construct. Bacteria containing the construct may be grown *in vitro* before being formulated for administration to the 30 host for vaccination purposes.

Formulation of the vaccine

The vaccine may be formulated using known techniques for formulating attenuated bacterial vaccines. The vaccine is advantageously presented for oral 5 administration, for example in a lyophilised encapsulated form. Such capsules may be provided with an enteric coating comprising, for example, Eudragate "S" (Trade Mark), Eudragate "L" (Trade Mark), cellulose acetate, cellulose phthalate or hydroxypropylmethyl cellulose. These capsules may be used as such, or alternatively, the lyophilised material may be reconstituted prior to administration, e.g. as a 10 suspension. Reconstitution is advantageously effected in a buffer at a suitable pH to ensure the viability of the bacteria. In order to protect the attenuated bacteria and the vaccine from gastric acidity, a sodium bicarbonate preparation is advantageously administered before each administration of the vaccine. Alternatively, the vaccine may be prepared for parenteral administration, intranasal administration or intramuscular 15 administration.

The vaccine may be used in the vaccination of a host, particularly a human host but also an animal host. An infection caused by a microorganism, especially a pathogen, may therefore be prevented by administering an effective dose of a vaccine prepared 20 according to the invention. The dosage employed will be dependent on various factors including the size and weight of the host and the type of vaccine formulated. However, a dosage comprising the oral administration of from 10^7 to 10^{11} bacteria per dose may be convenient for a 70kg adult human host.

25

Experimental section

The experiments described in this section serve to illustrate the invention.

30

Brief description of the drawings

Figure 1: Southern blot confirming the defined deletion created within *surA* in the strain BRD 1115. Lanes 1 and 2 have been restricted using the enzyme *PstI*, lanes 3-10 have been restricted with *SaII*. The filters have been probed using a 500 bp PCR product that contains a 500 bp fragment from the middle of the *surA* gene. Lanes 2 and 4 show hybridisation of this probe to a band 500 bp smaller than the corresponding wild type lanes 1 and 3. The transposon mutant BRD441 shows hybridisation to 2 bands since the enzyme *SaII* cuts the transposon into two. HB101 shows no hybridisation whilst the other wild type Salmonella strains show the same hybridisation as C5 when restricted with *SaII*.

Figure 2: This figure shows the colonisation and persistence of BRD1115, BRD441 and the wild type C5 in the mesenteric lymph nodes (top left graph), Peyer's patches (bottom right), spleens (bottom left) and livers (top right) in BALB/c mice following oral inoculation. The x-axis is time in days and the y-axis is \log_{10} CFU/ml (CFU stands for colony forming units).

Figure 3: Three strains were constructed to evaluate the ability of mutant Salmonella strains to deliver the heterologous antigen Fragment C in the mouse. BRD1115 is the parental strain. Two plasmids encoding the Fragment C gene of tetanus toxin under the control of either the *htrA* or *nirB* promoter were introduced into the strain BRD1115 to give the strains BRD1127 and 1126 respectively. Expression of fragment C was determined *in vitro* by Western blotting. These strains were then used in an *in vivo* experiment using BALB/c mice. Groups of 10 mice were immunised orally with $\log_{10}8$ organisms each of the 3 strains. Serum samples were taken weekly and analysed for total antibodies against tetanus toxin fragment C. The titres of anti-fragment C were determined as the highest sample dilution giving an absorbance value of 0.3 above normal mouse serum. The highest sample dilution tested was 1/6250. All mice immunised with BRD 1126 showed antibody titres higher than 6250.

Materials and methods

1.1 Bacteria, bacteriophage, plasmids and growth conditions

The bacteria used in this study are listed in Table 1. Bacteria were routinely
5 cultured on L-agar or in L-broth containing 100µg/ml ampicillin or 50µg/ml kanamycin
where appropriate. The bacteriophage P22HT105/1int⁻ is a high frequency transducing
bacteriophage obtained from Dr Tim Foster (Trinity College, Dublin). The plasmid
pGEM-T (Promega Corporation, USA) is designed for direct cloning of PCR fragments
and pBluescript[®]II SK+ (Stratagene Ltd, Cambridge, U.K.) is a general cloning vector.
10 The other plasmids are described in the text.

1.2 Purification of DNA and DNA manipulation techniques

All DNA manipulation including Southern blotting were carried out as described
by Sambrook *et al* (31). Restriction enzymes and T4 DNA ligase were purchased from
15 Boehringer Mannheim (Lewes, UK) and used according to the manufacturers
instructions. Chromosomal DNA preparation was prepared according to the method of
Hull (13).

1.3 DNA sequencing

20 Double stranded plasmid sequencing was carried out using the Sequenase kit
(Trade Mark, United States Biochemical Corporation) according to the manufacturers'
instructions. Labelling of the DNA was achieved using ³⁵S-dATP (Amersham, UK) and
fragments separated on an 8% acrylamide/bis-acrylamide gel containing 7M urea, for
2hours at 35 mA.

25

1.4 DNA amplification by polymerase chain reaction

Polymerase chain reactions (PCR) were carried out with *Taq* DNA polymerase
using the GeneAmp kit (Trade Mark, Perkin Elmer Cetus, USA) according to the
manufacturers' instructions. Oligonucleotides were purchased from the Molecular
30 Medicine Unit, Kings College, London and the sequences are shown in Table 1.
Mixtures of DNA and specific primers were subjected to multiple rounds of

denaturation, annealing and extension in the presence of the enzyme *Taq* polymerase. 100 ng plasmid DNA and 1mg chromosomal DNA were added to a mixture containing 5µl 10 x buffer (100mM Tris-HCl, pH 8.3: 500mM KCl; 15mM Mg Cl₂; 0.01% gelatine(v/v)); 8µl of deoxy-nucleotide mixture (1.25mM each of deoxy-nucleotide triphosphate; dATP, dCTP, dGTP and dTTP); 1µl of a 10µM sense primer; 1µl of a 10µM anti-sense primer and 2.5 units *Taq* polymerase. This mixture is overlaid with 50µl light mineral oil (Sigma) to prevent evaporation and the tubes incubated in an Omnigene Thermal Cycler (Trade Mark, Hybaid). Amplification of the DNA was performed using the following programme: 1 cycle of 95°C for 5 minutes, 50°C for 1.5 minutes, 74°C for 2 minutes; 19 cycles of 95°C for 1.5 minutes, 50°C for 2 minutes, 74°C for 3 minutes; 10 cycles of 95°C 2 minutes, 50°C for 2 minutes, 74°C for 7 minutes.

1.5 Transformation of bacteria

15 1.5.1. Heat shock

Bacteria are rendered competent to DNA uptake by the calcium chloride method. An overnight bacterial culture was used to seed a fresh 25 ml LB broth culture (a 1:100 dilution) which was grown aerobically with shaking until the cells reached mid-log growth phase (OD 650nm = 0.4 to 0.6). The cells were harvested by centrifugation at 3000 x g for 10 minutes at 4°C. The supernatant was discarded and the pellet resuspended in 25 ml ice-cold 75mM CaCl₂. The process was repeated and the cells incubated on ice for 30 minutes. The cells were pelleted by centrifugation at 3000 x g for 10 minutes at 4°C. The cell pellet was resuspended in 1.2 ml ice-cold 75mM CaCl₂ and stored on ice until needed. The cells were then competent to DNA uptake. A maximum of 20µl of the ligation mix was added to 200µl of the competent cells and the mixture stored on ice for 30 minutes. The cells were then subjected to heat shock by incubation in a 42°C waterbath for 2 minutes. The cells were then transferred back to ice for a further 2 minutes. 1 ml of LB broth was added to the mixture and the cells incubated at 37°C for at least 60 minutes to allow expression of the antibiotic marker on

the plasmid. 100 μ l aliquots of cells were plated onto LB agar plates containing the appropriate antibiotics and incubated overnight at 37°C.

1.5.2. Electroporation

5 Plasmid DNA was introduced into bacterial strains using electroporation. Mid-log phase growth cultures were generated as for the heat-shock method and the cells pelleted by centrifugation at 3000 x g for 10 minutes at 4°C. The cell pellet was washed twice with an equal volume of ice-cold 10% glycerol and pelleted as before. The cell pellet was resuspended in 300-500 μ l ice-cold 10% glycerol. Approximately 100 ng
10 plasmid (or 1 μ g suicide vector) in a volume not greater than 6 μ l sterile water was added to 60 μ l competent cells in a pre-chilled electroporation cuvette on ice. The plasmid was electroporated into the bacteria using a Bio-Rad Gene Pulser (Trade Mark) with the following conditions 1.75kV, 600 Ω , 25 μ F. 1ml LB broth was then added to the contents of the electroporation cuvette and the mixture incubated at 37°C for 90 minutes
15 to allow the cells to recover. 100 μ l aliquots of the electroporation mix were plated out onto selection media and incubated at 37°C overnight.

1.6 P22 Transduction

Transduction experiments were carried out using the bacteriophage P22 HT105/1
20 int^r. Phage lysates were prepared using LB5010 as the donor strain. A 5ml overnight culture of LB5010 was grown in L broth containing 0.2% glucose and galactose to increase the expression of phage receptors on the cell surface. Ten fold serial dilutions of the P22 stock were made in TMGS up to 10⁻⁸ (stock is approximately 10¹⁰pfu/ml). 10 μ l of each dilution was added to 100 μ l of the overnight stock of cells and incubated at
25 37°C for 30-45 minutes to allow adsorption of the phage to the cells. 3mls of top agar was added to each incubation and spread onto L agar plates containing 100 μ g/ml ampicillin. The plates were incubated at 37°C for approximately 4-5 hours until plaques were visible. The dilution that gave almost confluent plaques after this length of time was the one chosen for harvesting. The plaques were harvested by scraping the top agar
30 into 2ml of phage buffer with a glass microscope slide. A few drops of chloroform were

added and the phage stock stored at 4°C until needed. The recipient strain C5 was grown during the day in L broth at 37°C until late log/stationary phase. 1µl, 5µl, 10µl, 20µl, and 50µl aliquots of the new phage stock were added to 100µl aliquots of the recipient strain and incubated at 37°C for 1 hour. The cells were then spread onto L agar 5 ampicillin plates containing 5mM EGTA (to prevent phage replication) and incubated at 37°C overnight. Colonies were replated onto L agar ampicillin plates containing 5mM EGTA three times to ensure that they were free from phage. The colonies no longer had a jagged appearance thus indicating an absence of phage.

10 1.7 *In vitro* analysis of bacterial strain

1.7.1. Agglutination with antisera

Agglutination using anti-sera raised against the O antigen of *Salmonella* can be used as a rapid test not only for the integrity of the bacterial LPS but also as a diagnostic of the strain, e.g. anti-sera against the 04 and 05 antigens for *S.typhimurium*. These 15 were obtained from Murex Diagnostics Ltd (Dartford U.K.). A sweep of colonies was harvested from the growth on a plate incubated overnight, and resuspended in 100µl PBS. This sample was mixed with a drop of antisera on a glass slide and the agglutination compared with a positive and negative sample.

20 1.7.2 HEp-2 invasion assay

The HEp-2 cell line is an adherent epidermoid carcinoma derived from human larynx (ATCC CCL23). It can be cultured as a monolayer in Dulbecco's modified Eagle's medium with 10% FCS, glutamine and penicillin/streptomycin at 37°C in the presence of 5% CO₂. Confluent cells were detached from the tissue culture flasks by the 25 use of trypsin/EDTA. The cells were first washed in PBS to remove any serum that might affect the action of the trypsin. Trypsin/EDTA was then added to the monolayer and the cells incubated at 37°C for 5 minutes. The cells were removed from the plastic by gentle tapping on the edge of the flask. The trypsin was neutralised with 1.5 volumes of DMEM. Cells are collected by centrifugation at 1000 x g for 5 minutes. The 30 supernatant was removed and the cell pellet resuspended in DMEM. The cell pellet was counted and the concentration adjusted to give 2x10⁵ cells per ml.

1 ml of the cell suspension was added to one well of a 24 well tissue culture plate (Costar 3524), three wells for each bacterial strain being investigated. The cells were incubated overnight to form a confluent monolayer in the well. The cells were then 5 washed 5 times with PBS to ensure removal of the antibiotics and 1 ml DMEM added (without any antibiotics). 1×10^7 bacteria were added to each well and incubated at 37°C for 3 hours. The cells were washed 3 times with PBS to remove any extracellular bacteria. 1ml of DMEM containing 100 μ g/m gentamycin was added and the cells incubated for a further 1 hour. The cells were washed 5 times with PBS. The cells were 10 lysed by the addition of 1ml of 0.1% Triton-X-100 at 37°C for 15 minutes. The cells were further lysed by agitation with a blue pipette tip and the lysate transferred to a 1.5ml centrifuge tube. The viable bacteria that had invaded the cells were counted using the Miles-Misra drop test method (19).

15 1.8. *In vivo* analysis of bacterial strains

1.8.1. Preparation of live bacteria for immunisation of mice.

A vial of the appropriate strain was thawed from liquid nitrogen and used to inoculate a 250 ml culture of LB broth containing antibiotic where appropriate. The culture was grown overnight at 37°C without shaking. The bacteria were harvested by 20 centrifugation at 3000 x g for 10 minutes and washed once in sterile PBS. The bacteria were harvested again by centrifugation and resuspended in 5 ml sterile PBS. The concentration of bacteria was estimated by optical density at 650 nm using a standard growth curve for that strain. Based on this estimate the cell concentration was adjusted with PBS to that required for immunisation. A viable count was prepared of each 25 inoculum to give an accurate number of colony forming units per ml (cfu/ml) administered to each animal.

1.8.2. Oral immunisation of mice with live bacteria.

The mice were lightly anaesthetised with a mixture of halothane and oxygen and 30 the bacteria administered by gavage in 0.2 ml volumes using a gavage needle attached to a 1ml syringe.

1.8.3. Intravenous (i.v.) immunisation of mice with live bacteria.

Mice were placed in a warm chamber and 0.2 ml volumes injected into a tail vein of each mouse using a 27 gauge needle.

5

1.8.4. Enumeration of viable bacteria in mouse organs.

Groups of four or five mice were sacrificed up to 7 weeks post oral immunisation with three bacterial strains. Spleens, livers, mesenteric lymph nodes and Peyer's patches were removed and homogenised in 10ml sterile PBS using a stormacher (Colworth, 10 U.K.). Dilutions of these homogenates were plated out in LB agar with kanamycin if required and incubated overnight at 37°C. The number of viable bacteria present in each homogenate was then calculated from the dilution.

1.9. Determination of antibody titres against fragment C.

15 Serum antibody responses against fragment C were measured by enzyme-linked immunosorbant assay (ELISA) as previously described (28) using 96 well EIA/RIA plates (Costar 3590). Absorbance values were read at A₄₉₀ and plotted against dilutions (data not shown). A normal mouse serum control was added to each ELISA plate and used to define the background level response.

20

1.10 Tetanus toxin challenge

Mice were challenged with 0.05 µg (50 x 50% lethal doses) of purified tetanus toxin as previously described (7), and fatalities recorded for 4 days.

25 **Results**

2.1 Cloning and mapping of *TnphoA* insertion sites

A number of *S.typhimurium* *TnphoA* insertion mutants were previously identified as being attenuated when administered orally to BALB/c mice. In addition some of 30 these mutants also exhibited a reduced ability to invade the cultured epithelial cell line HEp-2. To identify the genes that had been disrupted by the *TnphoA* insertion, genomic

DNA was digested using *Sau3A* and cosmid banks prepared from each strain. These banks were screened using *TnphoA* probes and cosmids exhibiting homology with the 3' and 5' probes were examined. Fragments from these cosmids were cloned into the vector pBluescript[®]II SK+. The nucleotide sequence surrounding these insertion sites 5 was determined and the genes identified. Two insertions were found to be within the *htrA* gene (14), one in the *osmZ* gene (10) and one in the *surA* gene.

The *surA* gene open reading frame of *Salmonella typhimurium* shown in Seq Id No. 1 is 1281 bases long, encoding a protein of some 427 amino acids with a molecular 10 weight of 47.2Kd. This protein is virtually identical to that found in *E.coli* (34), and is described as being essential for survival in long term culture (33). The *surA* gene contains a leader peptidase cleavage site indicating that this is a transported protein. It has now been described as belonging to a peptidyl prolyl isomerase family, with a function to aid the correct folding of outer membrane proteins (16, 24, 29).

15

2.2 Introduction of a defined deletion into the *surA* gene.

Restriction analysis and DNA sequencing of the *surA* gene revealed the presence of single *HpaI* and *SmaI* restriction enzyme sites within the coding region of the gene which could be used to generate a deletion of 400 bases. The plasmid pGEM-T/212/213 20 was constructed containing a 3Kb region encompassing the entire *surA* gene and flanking region. Digestion of the plasmid with the enzymes *HpaI* and *SmaI*, gel purification of the large 5.5Kb fragment and re-ligation resulted in a plasmid containing a 419bp deletion within the *surA* gene. This plasmid was designated pGEM-T/Δ*surA*.

25 2.3 Introduction of the *surA* deletion into the chromosome of *S.typhimurium* C5.

The plasmid pGEM-T was digested with the two restriction enzymes *SphI* and *SalI*. The 2.6kb fragment containing the deleted *surA* gene was gel purified and ligated into the suicide replicon pGP704 that had previously been digested with the same enzymes. The suicide replicon pGP704 has been used previously to introduce deletions 30 into the chromosome of *S.typhi* (4) and *S.typhimurium* (26) which lack the *pir* gene, the product of which is essential for the replication of pGP704. The ligation mix was used

to transform the strain SY327, an *E.coli* strain that contains the *pir* gene, and a plasmid of the expected size identified by restriction analysis. This plasmid was designated pGP704/ΔsurA. Since suicide replicons cannot replicate in *S.typhimurium* the drug resistance marker is only expressed if there has been a single homologous recombination event, incorporating the plasmid into the bacterial chromosome.

The plasmid pGP704/ΔsurA was used to transform the semi-rough *S.typhimurium* strain LB5010 by the calcium chloride method. Three transformants were selected on agar containing ampicillin. These single crossovers were moved from this intermediate strain into the wild type C5 using P22 transduction (20). P22 lysates were prepared from the three transductants and introduced into C5. One ampicillin resistant colony was obtained from this process. This transformant was sub-cultured twice into L-broth containing no selection and grown for 48 hours. Serial dilutions of this culture were made and the 10⁻⁶ dilution was spread onto L-agar plates containing no selection. 500 colonies were streaked by hand on to duplicate plates, one containing agar, the other agar with ampicillin. One colony was found to be ampicillin sensitive indicating the loss of the drug resistance marker of the plasmid following a second homologous recombination event.

This potential *surA* mutant was confirmed as a *S.typhimurium* strain by agglutination with O4 and O5 antiserum. The deletion was confirmed by PCR using the primers MGR92 and MGR93, giving a 1 kb product. The deletion was also confirmed cloning the PCR product into the vector pGEM-T to give the plasmid pGEM-T/92/93, and sequencing across the deletion using the primers MGR130 and 135. Figure 1 shows the results of probing *Pst*I and *Sal*I digested genomic DNA from C5 and the *surA* mutant strain with a PCR product obtained from the wild type C5. The band seen in the *surA* mutant track is approximately 400 bases smaller than that seen in the wild type. This deleted strain was designated BRD1115.

2.4 Characterisation of the strain BRD1115

2.4.1 *In vitro* analysis of the invasion of cultured epithelial cells

The strain BRD1115 was tested for its ability to invade the cultured epithelial cell line HEp-2. The levels of invasion were found to be reduced by 80% in comparison to the wild type strain C5. The transposon mutant BRD441 showed a 90% reduction in invasion compared to C5.

5

2.4.2. Evaluation of the *in vivo* properties of BRD1115 in BALB/c mice.

2.4.2.1. Determination of oral and i.v. LD₅₀'s

The oral and i.v. LD₅₀'s of BRD 1115, C5 and BRD441 were calculated using the mouse susceptible strain BALB/c. 5 mice per group were inoculated either orally or 10 i.v. with doses ranging from log₁₀ 4 to log₁₀ 10 orally and log₁₀ 1 to log₁₀ 5 i.v. Deaths were recorded over 28 days and the LD₅₀'s calculated by the method of Reed and Meunch (27). BRD1115 was determined to show nearly 5 logs of attenuation orally and 3.5 logs i.v compared to C5. BRD441 showed 4.5 logs attenuation orally and 1 log i.v.. The results are presented in Table 2.

15

2.4.2.2. Persistence of strains in the organs of BALB/c mice following oral inoculation

Groups of 4 BALB/c mice were orally inoculated with log₁₀8 organisms of the three strains. Mice were killed at days 0,1,4,7,10,16,21 and 28 and the organs examined for bacterial load. The wild type strain C5 colonised the spleen, liver, mesenteric lymph 20 nodes and Peyer's patches in high numbers (>log₁₀4 cfu/ml), eventually resulting in the death of the animals. BRD 1115 and BRD 441 on the other hand persisted in the liver and spleens for more than 40 days in low numbers (<log₁₀2 cfu/ml). These results are presented in Figure 2.

25 2.5. Evaluation of BRD1115 as a potential vaccine strain

2.5.1. BRD1115 protects against homologous challenge

Groups of BALB/c mice were orally immunised with log₁₀8 organisms of BRD1115 and challenged with the wild type strain C5 at 4 weeks and 10 weeks post inoculation. The mice were challenged with log₁₀4 to log₁₀10 organisms C5 and a new 30 oral LD₅₀ calculated. The levels of protection are presented in Table 3, showing log₁₀4 protection after 4 weeks and log₁₀5 after 10 weeks.

2.5.2. BRD1115 as a potential carrier strain for heterologous antigens

Two plasmids encoding the C fragment of tetanus toxin were introduced into two isolates of BRD1115 by electroporation. The plasmids are pTET*nir*15 (38) in which 5 fragment C is under the control of the *nirB* promoter, and pTET*htr*A in which fragment C is under the control of the *htrA* promoter. The plasmids were found to be maintained at levels greater than 90% in BRD1115 even when the selection pressure of ampicillin was removed from the growth medium. *In vitro* expression of fragment C was determined by Western blotting. The strains were cultured under both inducing (42°C 10 for BRD 1126 and anaerobiosis for BRD 1127) and non-inducing conditions (37°C for BRD 1126 and aerobiosis for BRD 1127). A higher level of expression was seen for both strains under inducing conditions with BRD 1127 showing higher levels of fragment C expression than BRD 1126.

15 Groups of 10 BALB/c mice were orally immunised with log₁₀8 organisms and bled weekly. The titres of anti-fragment C antibodies present in the serum of each animal was determined by ELISA. The titres were determined as the reciprocal of the highest sample dilution giving an absorbance of 0.3 above normal mouse serum. The results are presented in Figure 3.

20

Four weeks post immunisation the mice were challenged with 50LD₅₀'s of tetanus toxin subcutaneously and the deaths noted over 4 days. The results are presented in Table 4, showing that 100% protection was given after immunisation with BRD1127 (fragment C under the control of the *htrA* promoter) and 60% protection after 25 immunisation with BRD1126 (under *nirB* promoter). No naive mice survived the challenge.

Tables

Table 1: Bacterial strains, plasmids and oligonucleotide primers used in this study

<u>Bacterial strains</u>	<u>Properties</u>	<u>Source or ref</u>
<i>E.coli</i>		
SY327	λ pir lysogen	Miller V.L.(23)
<i>S.typhimurium</i>		
LB5010	semi-rough	the inventor laboratory
C5	wild type	C.Hormaeche, Cambridge, U.K.
BRD441	TnphoA mutant, kan ^R	Miller I (21)
BRD 1115		this study
BRD 1126	amp ^R	Oxer M.D. (25)
BRD 1127	amp ^R	in press
<u>Plasmids</u>		
pBluescript®II SK+	amp ^R	Stratagene Ltd
pGEM-T	amp ^R	Promega Corp.
pGP704	amp ^R	Miller V.L. (23)
pGEM-T/212/213	amp ^R	this study
pGEM-T/ Δ surA	amp ^R	this study
pGP704/ Δ surA	amp ^R	this study
pGEM-T/92/93	amp ^R	this study
pTETnir15	amp ^R	Oxer M.D. (25)
pTETHtrA	amp ^R	in press
<u>Oligo Primers</u>		
MGR 92	TCGGCACGCAAGAAATGT	Kings College, London
MGR 93	AGACGACCAGTTCAATCG	" " "
MGR 130	CGATGGCTGAACTATTG	" " "
MGR 135	TATGCAGCTTCGTTAGCG	" " "

Table 2: The oral and i.v. LD₅₀'s of the three strains C5, BRD 441 and BRD 1115 were determined in BALB/c mice. Groups of 5 mice were immunised with doses ranging from log₁₀4 to log₁₀10 cfu of the strains BRD 441 and BRD 1115, and doses log₁₀1 to log₁₀5 of the strain C5. The results are presented in the following table.

Strain	oral LD₅₀ (log₁₀ cfu)	i.v.LD₅₀ (log₁₀ cfu)
C5	4.16	<1.87
BRD 441	8.62	2.46
BRD1115	8.98	5.22

Table 3: The ability of the defined *surA* mutant strain to confer protection against homologous challenge with the wild type strain C5 was determined. Groups of 5 BALB/c mice were orally immunised with $\log_{10}8$ organisms of the strain BRD1115 then challenged with $\log_{10}4$ to $\log_{10}10$ of the mouse virulent strain C5 either 4 or 10 weeks post inoculation. The new LD₅₀ was then calculated and the results presented in the table below.

Immunising strain	oral LD ₅₀ of C5		protection (no of LD ₅₀ 's)
	4 weeks post immunisation	10 weeks post immunisation	
BRD1115 none	8.58 4.74		~3800
BRD 1115 none		9.51 4.68	~4800

Table 4: Three groups of 10 mice were immunised with the strains BRD1115, BRD1126 and BRD1127 and then challenged 4 weeks post immunisation with 50 LD₅₀ doses of tetanus toxin subcutaneously. Deaths were noted over 4 days. The numbers of mice surviving the challenge are presented in the table below.

Strain	Survivors after challenge
BRD 1115	0/10
BRD 1126 (<i>nirB</i>)	6/10
BRD 1127 (<i>htrA</i>)	10/10

References

1. Bacon, G.A., Burrows, T. W. and Yates, M. (1950) Br. J. Exp. Pathol., 31, 714-24.
2. Chatfield, S.N., Charles, I.G., Makoff, A.J. et. al. (1992a) Biotech, 10, 888-892.
3. Chatfield, S.N. Strahan,K., Pickard, D., Charles, I.G., Hormaeche, C.E. and Dougan, G. (1992b) Microbiol. Pathog. , 12, 145-151.
4. Chatfield, S.N. Fairweather, N., Charles, I., Pickard, D., Levine, M. Hone, D., Posanda, M., Strugnell, R.A. and Dougan G. (1992) Vaccine, 10, 53-60.
5. Curtiss III, R. and Kelly, S.M. (1987) Infect. Immun. 55, 3035-3043.
6. Dougan, G. Chatfield, S., Pickard, D., Bester, J., O'Callaghan, D. and Maskell, D. (1988) J. Inf. Dis, 158,1329-1335.
7. Fairweather N.F., Lyness V.A., and Maskell D.J., (1987) Infect. Immun. 55, 2541-2545
8. Fairweather, N.F., Chatfield, S.N. Makoff, A.J. et. al. (1990) Infect. Immun., 58, 1323-1329.
9. Gomaz-Duarte, O.G., Galen, J. Chatfield, et. al. (1995) Vaccine, 13:1596-1602.
10. Harrison J.A., Pickard D., Higgins C.F., Khan A., Chatfield S., Ali T., Dorman C.J. Hormaeche C., and Dougan G., (1994) Mol. Micro., 13, 133-140
11. Hohmann, E.L., Oletta, C.A., Killeen, K.P. and Miller, S.I. (1996) Vaccine 14, 19-24.
12. Hone, D., Morona, R., Attridge, S. and Hackett, J. (1987) J. Infect. Dis., 156, 167-1
13. Hull R.A. Gill R.E. Hsu P., Minshew B.H., and Falkow S., (1981) Infect. Immun. 33, 933-938
14. Johnson K., Charles I., Dougan G., Pickard D., O'Gaora P., Costa G., Ali T., Miller I., and Hormaeche C. (1991) Mol. Micro., 5, 401-407
15. Jones, P.W., Dougan, G. Haywood, C., MacKensie, N., Collins, P. and Chatfield, S.N. (1991) Vaccine 9, 29-36.
16. Lazar S.W., and Kolter R., (1996) J.Bact. 178, 1770-1773
17. Levine, M. M., Galen, J., Barry, E., et al (1995) J. Biotech., 44, 193-196.

18. Manoil, C. and Beckwith, J. (1985) Proc. Natl. Acad. Sci., USA 82, 8129-8133.
19. Miles, A.A., Misra, S.S. and Irwin, J. (1938) J. Hygiene, 38, 732-749.
20. Miller I., Chatfield S., Dougan G., Desilva L., Joysey H.S., and Hormaeche C., (1989a) Mol. Gen. Genet., 215, 312-316
21. Miller, I., Maskell, D., Hormaeche, C., Pickard, D. and Dougan, G. (1989b) Infect. Immun. 57, 2758-2763.
22. Miller, S.I., Kukral, A.M. and Mekalanos, J.J. (1989). Proc. Natl. Acad. Sci., USA 86, 5054-5058.
23. Miller V.L., and Mekalanos J.J. (1988) J.Bact. 170, 2575
24. Missiakis D., Betton J.M., and Raina S., (1996) Mol. Micro., 21, 871-884
25. Oxer, M.D., Bentley, C.M., Doyle, J.G. Peakman, T.C., Charles, I.G. and Makoff, A.J. (1991) Nucl. Acids Res. 19, 2889-2892.
26. Pickard, D., Li., J.L., Roberts, M., Maskell, D., Hone, D., Levine, M., Dougan, G. and Chatfield, S. (1994), 62, 3984-3993.
27. Reed L.J., and Meunch H., (1938) Am. J. Hygiene 27, 493-497
28. Roberts M., Bacon A., Rappuoli R., Pizza M., Cropley I., Douce G., Dougan G.,
27 Marinaro M., McGhee J., and Chatfield S., (1995) Infect. Immun. 63,
2100-2108
29. Rouvire P.E., and Gross C.A., (1996) Genes Dev., 10, 3170-3182
30. Rudd K.E., Sofia H.J., Koonin E.V., Plunkett III G., Lazar S., and Rouvire P.E. (1995) TIBS 20, 12-14.
31. Sambrook J., Fritsch E.F., and Maniatis T., (1989) Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
32. Strugnell, R.A. Dougan, G., Chatfield, S.N. et. al. (1992) Infect. Immun., 60, 3994-4002.
33. Tormo A., Almiron M., and Kolter R., (1990) J.Bact. 172, 4339-4347
34. Yura T., Mori H., Nagai H., Nagata T., Ishihama A., Fujita N., Isono K., Mizobuchi K., and Nakata A.(1992) Nucl. Acids Res., 20, 3305-3308
35. EP-B-0322237 (Dougan et al)
36. EP-B-0400958 (Dougan et al)

37. EP-B-0524205 (Dougan et al)
38. WO 92/15689 (Charles et al)
39. Chatfield, S.N., Strugnell. R.A. and Dougan, G (1989) Vaccine, 7, 495-498
40. Everest, P., Allen, J., Papakonstantinopoulou, A., Mastroeni, P., Roberts, M. and Dougan, G. (1995) FEMS Microbiol. Letts., 126, 97-101

Sequence listing

(1) GENERAL INFORMATION:

(i) APPLICANT:

- (A) NAME: Medeva Europe Limited
- (B) STREET: 10 St James's Street
- (C) CITY: London
- (D) STATE: not applicable
- (E) COUNTRY: United Kingdom
- (F) POSTAL CODE (ZIP): SW1A 1EF

(ii) TITLE OF INVENTION: VACCINES CONTAINING ATTENUATED BACTERIA

(iii) NUMBER OF SEQUENCES: 4

(iv) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0. Version #1.30 (EPO)

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1287 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Salmonella typhimurium*

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..1281

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ATG AAG AAC TGG AAA ACG CTG CTT CTC GGT ATC GCC ATG ATC GCG AAT Met Lys Asn Trp Lys Thr Leu Leu Leu Gly Ile Ala Met Ile Ala Asn	48
1 5 10 15	
ACC AGT TTC GCT GCC CCC CAG GTA GTC GAT AAA GTC GCA GCC GTC GTC Thr Ser Phe Ala Ala Pro Gln Val Val Asp Lys Val Ala Ala Val Val	96
20 25 30	
AAT AAT GGC GTC GTG CTG GAA AGC GAC GTT GAT GGC TTA ATG CAA TCA	144

Asn Asn Gly Val Val Leu Glu Ser Asp Val Asp Gly Leu Met Gln Ser		
35	40	45
GTC AAA CTC AAC GCG GGT CAG GCA GGT CAG CAG CTT CCG GAC GAC GCC		192
Val Lys Leu Asn Ala Gly Gln Ala Gly Gln Gln Leu Pro Asp Asp Ala		
50	55	60
ACG CTG CGT CAC CAG ATC CTG GAA CGT TTG ATT ATG GAT CAA ATT ATC		240
Thr Leu Arg His Gln Ile Leu Glu Arg Leu Ile Met Asp Gln Ile Ile		
65	70	75
CTG CAG ATG GGT CAG AAG ATG GGG GTG AAG ATC ACG GAT GAG CAG TTG		288
Leu Gln Met Gly Gln Lys Met Gly Val Lys Ile Thr Asp Glu Gln Leu		
85	90	95
GAT CAG CCA TCA GCC AAC ATC GCC AAA CAA AAC AAT ATG ACG ATG GAT		336
Asp Gln Pro Ser Ala Asn Ile Ala Lys Gln Asn Asn Met Thr Met Asp		
100	105	110
CAG ATG CGC AGC CGT CTG GCT TAC GAT GGG CTG AAC TAT TCA ACC TAC		384
Gln Met Arg Ser Arg Leu Ala Tyr Asp Gly Leu Asn Tyr Ser Thr Tyr		
115	120	125
CGT AAC CAG ATT CGT AAA GAG ATG ATT ATC TCT GAA GTG CGC AAC AAT		432
Arg Asn Gln Ile Arg Lys Glu Met Ile Ile Ser Glu Val Arg Asn Asn		
130	135	140
GAG GTT CGT CGC CGT ATC ACC GTT TTG CCG CAA GAA GTT GAC GCG CTG		480
Glu Val Arg Arg Arg Ile Thr Val Leu Pro Gln Glu Val Asp Ala Leu		
145	150	155
160		
GCA AAA CAG ATT GGC ACC CAA AAC GAT GCC AGC ACC GAG CTG AAC CTG		528
Ala Lys Gln Ile Gly Thr Gln Asn Asp Ala Ser Thr Glu Leu Asn Leu		
165	170	175
AGC CAT ATC CTG ATT GCT CTG CCG GAA AAC CCA ACC TCC GAG CAG GTT		576
Ser His Ile Leu Ile Ala Leu Pro Glu Asn Pro Thr Ser Glu Gln Val		
180	185	190
AAC GAC GCG CAG CGC CAG GCG GAA AGC ATT GTT GAA GAA GCG CGT AAC		624
Asn Asp Ala Gln Arg Gln Ala Glu Ser Ile Val Glu Glu Ala Arg Asn		
195	200	205
GCG GCA GAT TTC GGC AAA CTG GCG ATT ACC TAC TCT TCT GCC GAC CAG CAG		672
Gly Ala Asp Phe Gly Lys Leu Ala Ile Thr Tyr Ser Ala Asp Gln Gln		
210	215	220
GCG CTA AAA GGC GGT CAG ATG GGC TGG GGC CGT ATC CAG GAG CTG CCG		720
Ala Leu Lys Gly Gly Gln Met Gly Trp Gly Arg Ile Gln Glu Leu Pro		
225	230	235
240		
GGG ATT TTC GCC CAG GCG CTG AGC ACC GCG AAG AAA GGC GAC ATT GTC		768
Gly Ile Phe Ala Gln Ala Leu Ser Thr Ala Lys Lys Gly Asp Ile Val		
245	250	255

GGC CCG ATT CGC TCC GGC GTC GGC TTC CAC ATT CTG AAA GTA AAT GAC Gly Pro Ile Arg Ser Gly Val Gly Phe His Ile Leu Lys Val Asn Asp 260 265 270	816
CTG CGC GGT CAG AGC CAG AGT ATC TCC GTG ACC GAA GTT CAC GCT CGT Leu Arg Gly Gln Ser Gln Ser Ile Ser Val Thr Glu Val Val His Ala Arg 275 280 285	864
CAC ATT CTG CTT AAG CCG TCG CCG ATC ATG AAC GAT CAG CAG GCG CGC His Ile Leu Leu Lys Pro Ser Pro Ile Met Asn Asp Gln Gln Ala Arg 290 295 300	912
CTG AAG CTG GAA GAA ATC GCG GCT GAC ATT AAG AGT GGT AAA ACC ACC Leu Lys Leu Glu Glu Ile Ala Ala Asp Ile Lys Ser Gly Lys Thr Thr 305 310 315 320	960
TTT GCC GCT GCG GCG AAA GAG TAC TCT CAG GAC CCG GGC TCC GCT AAC Phe Ala Ala Ala Lys Glu Tyr Ser Gln Asp Pro Gly Ser Ala Asn 325 330 335	1008
CAG GGC GGT GAT TTG GGT TGG GCT ACG CCA GAT ATT TTC GAC CCG GCG Gln Gly Gly Asp Leu Gly Trp Ala Thr Pro Asp Ile Phe Asp Pro Ala 340 345 350	1056
TTC CGC GAC GCG CTA ACG AAG CTG CAT AAA GGC CAA ATA AGC GCG CCG Phe Arg Asp Ala Leu Thr Lys Leu His Lys Gly Gln Ile Ser Ala Pro 355 360 365	1104
GTA CAC TCC TCT TTC GGC TGG CAT CTG ATC GAA TTG CTG GAT ACG CGT Val His Ser Ser Phe Gly Trp His Leu Ile Glu Leu Leu Asp Thr Arg 370 375 380	1152
AAG GTA GAC AAA ACC GAT GCG GCG CAG AAA GAT CGC GCT TAT CGT ATG Lys Val Asp Lys Thr Asp Ala Ala Gln Lys Asp Arg Ala Tyr Arg Met 385 390 395 400	1200
CTG ATG AAC CGT AAA TTC TCA GAA GAA GCG GCG ACC TGG ATG CAA GAA Leu Met Asn Arg Lys Phe Ser Glu Glu Ala Ala Thr Trp Met Gln Glu 405 410 415	1248
CAG CGC GCC ACT TAC GTT AAG ATT TTG AGT AAC TAATGA Gln Arg Ala Thr Tyr Val Lys Ile Leu Ser Asn 420 425	1287

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 427 amino acids

- (B) TYPE: amino acid

- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Lys Asn Trp Lys Thr Leu Leu Leu Gly Ile Ala Met Ile Ala Asn
1 5 10 15

Thr Ser Phe Ala Ala Pro Gln Val Val Asp Lys Val Ala Ala Val Val
20 25 30

Asn Asn Gly Val Val Leu Glu Ser Asp Val Asp Gly Leu Met Gln Ser
35 40 45

Val Lys Leu Asn Ala Gly Gln Ala Gly Gln Gln Leu Pro Asp Asp Ala
50 55 60

Thr Leu Arg His Gln Ile Leu Glu Arg Leu Ile Met Asp Gln Ile Ile
65 70 75 80

Leu Gln Met Gly Gln Lys Met Gly Val Lys Ile Thr Asp Glu Gln Leu
85 90 95

Asp Gln Pro Ser Ala Asn Ile Ala Lys Gln Asn Asn Met Thr Met Asp
100 105 110

Gln Met Arg Ser Arg Leu Ala Tyr Asp Gly Leu Asn Tyr Ser Thr Tyr
115 120 125

Arg Asn Gln Ile Arg Lys Glu Met Ile Ile Ser Glu Val Arg Asn Asn
130 135 140

Glu Val Arg Arg Arg Ile Thr Val Leu Pro Gln Glu Val Asp Ala Leu
145 150 155 160

Ala Lys Gln Ile Gly Thr Gln Asn Asp Ala Ser Thr Glu Leu Asn Leu
165 170 175

Ser His Ile Leu Ile Ala Leu Pro Glu Asn Pro Thr Ser Glu Gln Val
180 185 190

Asn Asp Ala Gln Arg Gln Ala Glu Ser Ile Val Glu Glu Ala Arg Asn
195 200 205

Gly Ala Asp Phe Gly Lys Leu Ala Ile Thr Tyr Ser Ala Asp Gln Gln
210 215 220

Ala Leu Lys Gly Gly Gln Met Gly Trp Gly Arg Ile Gln Glu Leu Pro
225 230 235 240

Gly Ile Phe Ala Gln Ala Leu Ser Thr Ala Lys Lys Gly Asp Ile Val
245 250 255

Gly Pro Ile Arg Ser Gly Val Gly Phe His Ile Leu Lys Val Asn Asp
260 265 270

Leu Arg Gly Gln Ser Gln Ser Ile Ser Val Thr Glu Val His Ala Arg

275	280	285
His Ile Leu Leu Lys Pro Ser Pro Ile Met Asn Asp Gln Gln Ala Arg 290	295	300
Leu Lys Leu Glu Glu Ile Ala Ala Asp Ile Lys Ser Gly Lys Thr Thr 305	310	315
Phe Ala Ala Ala Ala Lys Glu Tyr Ser Gln Asp Pro Gly Ser Ala Asn 325	330	335
Gln Gly Asp Leu Gly Trp Ala Thr Pro Asp Ile Phe Asp Pro Ala 340	345	350
Phe Arg Asp Ala Leu Thr Lys Leu His Lys Gly Gln Ile Ser Ala Pro 355	360	365
Val His Ser Ser Phe Gly Trp His Leu Ile Glu Leu Leu Asp Thr Arg 370	375	380
Lys Val Asp Lys Thr Asp Ala Ala Gln Lys Asp Arg Ala Tyr Arg Met 385	390	395
Leu Met Asn Arg Lys Phe Ser Glu Glu Ala Ala Thr Trp Met Gln Glu 405	410	415
Gln Arg Ala Thr Tyr Val Lys Ile Leu Ser Asn 420	425	

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1287 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: E.coli

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION:1..1284

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

ATG AAG AAC TGG AAA ACG CTG CTT CTC GGT ATC GCC ATG ATC GCG AAT Met Lys Asn Trp Lys Thr Leu Leu Leu Gly Ile Ala Met Ile Ala Asn 430	435	440	48
ACC AGT TTC GCT GCC CCC CAG GTA GTC GAT AAA GTC GCA GCC GTC GTC			96

Thr Ser Phe Ala Ala Pro Gln Val Val Asp Lys Val Ala Ala Val Val		
445	450	455
AAT AAC GGC GTC GTG CTG GAA AGC GAC GTT GAT GGA TTA ATG CAG TCG		144
Asn Asn Gly Val Val Leu Glu Ser Asp Val Asp Gly Leu Met Gln Ser		
460	465	470
Gly 475		
GTA AAA CTG AAC GCT GCT CAG GCA AGG CAG CAA CTT CCT GAT GAC GCG		192
Val Lys Leu Asn Ala Ala Gln Ala Arg Gln Gln Leu Pro Asp Asp Ala		
480	485	490
490		
ACG CTG CGC CAC CAA ATC ATG GAA CGT TTG ATC ATG GAT CAA ATC ATT		240
Thr Leu Arg His Gln Ile Met Glu Arg Leu Ile Met Asp Gln Ile Ile		
495	500	505
505		
CTG CAG ATG GGG CAG AAA ATG GGA GTG AAA ATC TCC GAT GAG CAG CTG		288
Leu Gln Met Gly Gln Lys Met Gly Val Lys Ile Ser Asp Glu Gln Leu		
510	515	520
520		
GAT CAG GCG ATT GCT AAC ATC GCG AAA CAG AAC AAC ATG ACG CTG GAT		336
Asp Gln Ala Ile Ala Asn Ile Ala Lys Gln Asn Asn Met Thr Leu Asp		
525	530	535
535		
CAG ATG CGC AGC CGT CTG GCT TAC GAT GGA CTG AAC TAC AAC ACC TAT		384
Gln Met Arg Ser Arg Leu Ala Tyr Asp Gly Leu Asn Tyr Asn Thr Tyr		
540	545	550
555		
CGT AAC CAG ATC CGC AAA GAG ATG ATT ATC TCT GAA GTG CGT AAC AAC		432
Arg Asn Gln Ile Arg Lys Glu Met Ile Ile Ser Glu Val Arg Asn Asn		
560	565	570
570		
GAG GTG CGT CGT CGC ATC ACC ATC CTG CCG CAG GAA GTC GAA TCC CTG		480
Glu Val Arg Arg Arg Ile Thr Ile Leu Pro Gln Glu Val Glu Ser Leu		
575	580	585
585		
GCG CAG CAG GTG GGT AAC CAA AAC GAC GCC AGC ACT GAG CTG AAC CTG		528
Ala Gln Gln Val Gly Asn Gln Asn Asp Ala Ser Thr Glu Leu Asn Leu		
590	595	600
600		
AGC CAC ATC CTG ATC CCG CTG CCG GAA AAC CCG ACC TCT GAT CAG GTG		576
Ser His Ile Leu Ile Pro Leu Pro Glu Asn Pro Thr Ser Asp Gln Val		
605	610	615
615		
AAC GAA GCG GAA AGC CAG GCG CGC GCC ATT GTC GAT CAG GCG CGT AAC		624
Asn Glu Ala Glu Ser Gln Ala Arg Ala Ile Val Asp Gln Ala Arg Asn		
620	625	630
635		
GGC GCT GAT TTC GGT AAG CTG GCG ATT GCT CAT TCT GCC GAC CAG CAG		672
Gly Ala Asp Phe Gly Lys Leu Ala Ile Ala His Ser Ala Asp Gln Gln		
640	645	650
650		
GCG CTG AAC GGC GGC CAG ATG GGC TGG GGC CGT ATT CAG GAG TTG CCC		720
Ala Leu Asn Gly Gly Gln Met Gly Trp Gly Arg Ile Gln Glu Leu Pro		
655	660	665
665		

GGG ATC TTC GCC CAG GCA TTA AGC ACC GCG AAG AAA GGC GAC ATT GTT Gly Ile Phe Ala Gln Ala Leu Ser Thr Ala Lys Lys Gly Asp Ile Val 670 675 680	768
GGC CCG ATT CGT TCC GGC GTT GGC TTC CAT ATT CTG AAA GTT AAC GAC Gly Pro Ile Arg Ser Gly Val Gly Phe His Ile Leu Lys Val Asn Asp 685 690 695	816
CTG CGC GGC GAA AGC AAA AAT ATC TCG GTG ACC GAA GTT CAT GCT CGC Leu Arg Gly Glu Ser Lys Asn Ile Ser Val Thr Glu Val His Ala Arg 700 705 710 715	864
CAT ATT CTG CTG AAA CCG TCG CCG ATC ATG ACT GAC GAA CAG GCC CGT His Ile Leu Leu Lys Pro Ser Pro Ile Met Thr Asp Glu Gln Ala Arg 720 725 730	912
G TG AAA CTG GAA CAG ATT GCT GCT GAT ATC GAG AGT GGT AAA ACG ACT Val Lys Leu Glu Gln Ile Ala Ala Asp Ile Glu Ser Gly Lys Thr Thr 735 740 745	960
TTT GCT GCC GCA ACG AAA GAG TTC TCT CAG GAT CCA GTC TCT GCT AAC Phe Ala Ala Ala Thr Lys Glu Phe Ser Gln Asp Pro Val Ser Ala Asn 750 755 760	1008
CAG GGC GGC GAT CTC GGC TGG GCT ACA CCA GAT ATT TTC GAT CCG GCC Gln Gly Gly Asp Leu Gly Trp Ala Thr Pro Asp Ile Phe Asp Pro Ala 765 770 775	1056
TTC CGT GAC GCC CTG ACT CGC CTG AAC AAA GGT CAA ATG AGT GCA CGC Phe Arg Asp Ala Leu Thr Arg Leu Asn Lys Gly Gln Met Ser Ala Pro 780 785 790 795	1104
GTT CAC TCT TCA TTC GGC TGG CAT TTA ATC GAA CTG CTG GAT ACC CGT Val His Ser Ser Phe Gly Trp His Leu Ile Glu Leu Leu Asp Thr Arg 800 805 810	1152
AAT GTC GAT AAA ACC GAC GCT GCG CAG AAA GAT CGT GCA TAC CGC ATG Asn Val Asp Lys Thr Asp Ala Ala Gln Lys Asp Arg Ala Tyr Arg Met 815 820 825	1200
CTG ATG AAC CGT AAG TTC TCG GAA GAA GCA GCA AGC TGG ATG CAG GAA Leu Met Asn Arg Lys Phe Ser Glu Glu Ala Ala Ser Trp Met Gln Glu 830 835 840	1248
CAA CGT GCC AGC GCC TAC GTT AAA ATC CTG AGC AAC TAA Gln Arg Ala Ser Ala Tyr Val Lys Ile Leu Ser Asn 845 850 855	1287

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 428 amino acids

(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Lys Asn Trp Lys Thr Leu Leu Leu Gly Ile Ala Met Ile Ala Asn
1 5 10 15

Thr Ser Phe Ala Ala Pro Gln Val Val Asp Lys Val Ala Ala Val Val
20 25 30

Asn Asn Gly Val Val Leu Glu Ser Asp Val Asp Gly Leu Met Gln Ser
35 40 45

Val Lys Leu Asn Ala Ala Gln Ala Arg Gln Gln Leu Pro Asp Asp Ala
50 55 60

Thr Leu Arg His Gln Ile Met Glu Arg Leu Ile Met Asp Gln Ile Ile
65 70 75 80

Leu Gln Met Gly Gln Lys Met Gly Val Lys Ile Ser Asp Glu Gln Leu
85 90 95

Asp Gln Ala Ile Ala Asn Ile Ala Lys Gln Asn Asn Met Thr Leu Asp
100 105 110

Gln Met Arg Ser Arg Leu Ala Tyr Asp Gly Leu Asn Tyr Asn Thr Tyr
115 120 125

Arg Asn Gln Ile Arg Lys Glu Met Ile Ile Ser Glu Val Arg Asn Asn
130 135 140

Glu Val Arg Arg Arg Ile Thr Ile Leu Pro Gln Glu Val Glu Ser Leu
145 150 155 160

Ala Gln Gln Val Gly Asn Gln Asn Asp Ala Ser Thr Glu Leu Asn Leu
165 170 175

Ser His Ile Leu Ile Pro Leu Pro Glu Asn Pro Thr Ser Asp Gln Val
180 185 190

Asn Glu Ala Glu Ser Gln Ala Arg Ala Ile Val Asp Gln Ala Arg Asn
195 200 205

Gly Ala Asp Phe Gly Lys Leu Ala Ile Ala His Ser Ala Asp Gln Gln
210 215 220

Ala Leu Asn Gly Gly Gln Met Gly Trp Gly Arg Ile Gln Glu Leu Pro
225 230 235 240

Gly Ile Phe Ala Gln Ala Leu Ser Thr Ala Lys Lys Gly Asp Ile Val
245 250 255

Gly Pro Ile Arg Ser Gly Val Gly Phe His Ile Leu Lys Val Asn Asp
260 265 270

Leu Arg Gly Glu Ser Lys Asn Ile Ser Val Thr Glu Val His Ala Arg .
275 280 285

His Ile Leu Leu Lys Pro Ser Pro Ile Met Thr Asp Glu Gln Ala Arg
290 295 300

Val Lys Leu Glu Gln Ile Ala Ala Asp Ile Glu Ser Gly Lys Thr Thr
305 310 315 320

Phe Ala Ala Ala Thr Lys Glu Phe Ser Gln Asp Pro Val Ser Ala Asn
325 330 335

Gln Gly Gly Asp Leu Gly Trp Ala Thr Pro Asp Ile Phe Asp Pro Ala
340 345 350

Phe Arg Asp Ala Leu Thr Arg Leu Asn Lys Gly Gln Met Ser Ala Pro
355 360 365

Val His Ser Ser Phe Gly Trp His Leu Ile Glu Leu Leu Asp Thr Arg
370 375 380

Asn Val Asp Lys Thr Asp Ala Ala Gln Lys Asp Arg Ala Tyr Arg Met
385 390 395 400

Leu Met Asn Arg Lys Phe Ser Glu Glu Ala Ala Ser Trp Met Gln Glu
405 410 415

Gln Arg Ala Ser Ala Tyr Val Lys Ile Leu Ser Asn
420 425

Claims

1. A vaccine comprising a pharmaceutically acceptable carrier or diluent and a bacterium attenuated by a non-reverting mutation in a gene encoding a protein which promotes folding of extracytoplasmic proteins.
2. A vaccine according to claim 1 wherein the protein encoded by the mutant gene is a periplasmic protein.
3. A vaccine according to claim 1 or 2 wherein the protein encoded by the mutant gene promotes the folding of secreted proteins.
4. A vaccine according to claim 1, 2 or 3 wherein the protein encoded by the mutant gene is a peptidyl-prolyl cis-trans isomerase (PPiase).
5. A vaccine according to claim 4 wherein the PPiase is a member of the parvulin family of PPiases.
6. A vaccine according to any one of the preceding claims wherein the protein encoded by the mutant gene is SurA.
7. A vaccine according to any one of the preceding claims wherein the bacterium is further attenuated by a non-reverting mutation in a second gene.
8. A vaccine according to claim 7 wherein the second gene is an *aro* gene, a *pur* gene, the *htrA* gene, the *ompR* gene, the *galE* gene, the *cya* gene, the *crp* gene or the *phoP* gene.
9. A vaccine according to claim 8 wherein the *aro* gene is *aroA*, *aroC*, *aroD* or *aroE*.

10. A vaccine according to any one of the preceding claims wherein the mutation in the gene encoding a protein which promotes folding of extracytoplasmic proteins and/or the mutation in the second gene is a defined mutation.
11. A vaccine according to any one of the preceding claims wherein the bacterium has no uncharacterised mutations in the genome thereof.
12. A vaccine according to any one of the preceding claims wherein the bacterium is a bacterium that infects via the oral route.
13. A vaccine according to any one of the preceding claims wherein the bacterium is from the genera *Salmonella*, *Escherichia*, *Vibrio*, *Haemophilus*, *Neisseria*, *Yersinia*, *Bordetella* or *Brucella*.
14. A vaccine according to claim 13 wherein the bacterium is *Salmonella typhimurium*, *Salmonella typhi*, *Salmonella enteritidis*, *Salmonella choleraesuis*, *Salmonella dublin*, *Escherichia coli*, *Haemophilus influenzae*, *Neisseria gonorrhoeae*, *Yersinia enterocolitica*, *Bordetella pertussis* or *Brucella abortus*.
15. A vaccine according to any one of the preceding claims wherein the bacterium is genetically engineered to express an antigen from another organism.
16. A vaccine according to claim 15 wherein the antigen is fragment C of tetanus toxin.
17. A vaccine according to claim 15 or 16 wherein expression of the antigen is driven by the *nirB* promoter or the *htrA* promoter.
18. A bacterium as defined in any one of the preceding claims for use in a method of vaccinating a human or animal.

19. Use of a bacterium as defined in any one of the preceding claims for the manufacture of a medicament for vaccinating a human or animal.
20. A method of raising an immune response in a host, which method comprises administering to the host a bacterium attenuated by a non-reverting mutation in a gene encoding a protein which promotes folding of extracytoplasmic proteins.

ABSTRACT

VACCINES CONTAINING ATTENUATED BACTERIA

The invention relates to a vaccine comprising a bacterium attenuated by a non-reverting mutation in a gene encoding a protein which promotes folding of extracytoplasmic proteins. Such mutations were initially identified as being useful in vaccines from a bank of randomly inserted, transposon mutants in which attenuation was determined as a reduction in virulence of the organism in the mouse model of infection. Site directed mutation of the gene results in a strain which shows at least 4 logs of attenuation when delivered both orally and intravenously. Animals vaccinated with such a strain are protected against subsequent challenge with the parent wild type strain. Finally, heterologous antigens such as the non-toxic and protective, binding domain from tetanus toxin, fragment C, can be delivered via the mucosal immune system using such strains of bacteria. This results in the induction of a fully protective immune response to subsequent challenge with native tetanus toxin.

THIS PAGE BLANK (USPTO)

1/3

Fig. 1

THIS PAGE BLANK (USPTO)

2/3

Fig. 2

THIS PAGE BLANK (USPTO)

3/3

Fig. 3

THIS PAGE BLANK (USPTO)