The last the first last that the last that

The state of the same of the state of the st

20

25

Deactivants for Dust Mite Allergens BACKGROUNI OF the Invention

It has been known for a long time that house dust can trigger allergenic reactions in humans, such as asthma and rhinitis. It was reported, as early as 1928, that it was the dust mites in the dust that were the primary source of the allergenic response but it was only in the 1960's that researchers appreciated its significance.

It is believed that the faeces of two particular 10 house dust mite species, Dermatophagoides farinae (known as Der-f) and Dermatophagoides pteronyssinus (known as Der-p) trigger the immune responses of the body, thereby giving rise to well known allergenic symptoms.

A review of this is given in Experimental and Applied Acarology, 10 (1991) p. 167-186 in an article 15 entitled "House dust-mite allergen" : A review by L. G. Arlian.

Both the Der-f and Der-p species are found throughout the world. In some areas, Der-f will be the sole Dermatophagoides species. In other areas Der-p will be the sole species. In still other areas, the two species are both present through, generally, one or the other will predominate.

One way to overcome these allergenic response has been to vacuum surfaces, such as carpets, that contain the dust mites and their faeces thoroughly and often, but that is both time consuming (i.e. has to be regularly done if one wants to make an allergenic free environment) and is very dependant on the efficiency of vacuum cleaner and filter bag used e.g. micron filter bag or 2-layer 30 vacuum bags.

20

An alternative method of creating an allergen-free environment has been to denature the allergen, for example as described in US Patent No. 4,806,526. The only effective method however of which we are aware is to apply tannic acid to the allergen. However, tannic acid can cause staining, and this is a particularly acute problem for light coloured carpets (e.g. white and light beige carpets) and other textile surfaces as tannic acid leaves a deep brown stain.

Therefore, we have been looking for allergenic denaturants which will not stain susceptible surfaces such as carpets and still deactivate the allergen.

We have discovered a number of allergen deactivants which are effective against both the Der-f and the Der-p species. Quite surprisingly, we have discovered that some of these deactivants are specific to the type of dust mite allergen being treated. For example an effective Der-f allergen deactivants will not automatically work effectively as a Der-p allergen deactivant.

According to the invention there is provided a method for deactivating allergens derived from the Der-f and/or Der-p dust mite species, which comprises contacting the allergen with a deactivating effective amount of one or more of deactivants (herein after defined as the deactivant).

The deactivants effective against one or both of Der-f allergens and Der-p allergens are:

	i)	cedarwcod oil,
30	ii)	hexadecyltrimethylammonium chloride,
	iii)	aluminium chlorohydrate,
	iv)	1-propcxy-propanol-2,
	v)	polyquaternium-10

	vi)	silica gel,
	vii)	propylene glycol alginate,
	viii)	ammonium sulphate,
	ix)	hinokitiol,
5	x)	L-ascorbic acid,
	xi)	"immobilised tannic acid", (hereinafter
		defined)
	xii)	chlorohexidine,
	xiii)	maleic anhydride,
10	xiv)	hinoki oil,
	xv)	a composite of AgCl and TiO2,
	xvi)	diazolidinyl urea,
	xvii)	6-isopropyl-m-cresol,
	xviii)	a compound of formula I
		U octyl

xix) the compound of formula II

more of a recurring unit of the formula III

5 where n = 2 to 200,

xxi) urea,

xxii) cyclodextrin,

xxiii) hydrogenated hop oil,

xxiv) polyvinylpyrrolidone,

10 xxv) N-methylpyrrolidone,

xxvi) the sodium salt of anthraguinone,

xxvii) potassium thioglycolate, and

xxviii) glutaraldehyde

Deactivants (i) through (xx) are effective against both

Der-f and Der-p allergens. Deactivants (xxi) through
(xxvi) are effective against Der-f allergens only.

Deactivants (xxvii) and (xxviii) are effective against
Der-p allergens only.

A compound of formula I is commercially available as 20 Aerosol OT.

The compound of formula II is commercially available as parsley camphor.

Hinoki oil is a mixture of thujan-3-one, 2-pinene, 3,5,7,3',4'-pentahydroflavanone and 1,3,3-trimethyl-2-norcamphanone.

Hydrogenated Hop Oil is the potassium salt of tetrahydroiso humulinic acid (also known as reduced isomerised hop extract).

Propylene glycol alginate is

5

Chlorohexadine is 1,1'-hexamethylenebis[5-(4-chlorophenyl)]-biguanide.

Hinokitol is β -thujaplicin, a compound of the formula

10

Germall II is diazolidinylurea.

Thymol is 6-isopropyl-m-cresol.

Cedarwood oil contains $\alpha-$ and $\beta-$ cedrene (ca 80%), cedrol (3-14%) and cedrenol. Other sesquiterpenes and some monoterpenes are also present.

Polyquaternium-10 is a polymeric quaternary ammonium salt of hydroxyethyl cellulose reacted with a trimethyl ammonium substituted epoxide commercially available as Polymer JR-125.

Silica gel is also known as colloidal silica or silicic acid and is commercially available as Kent.

"Immobilised tannic acid" is tannic acid on polyvinyl pyrrolidone beads. Immobilised Tannic Acid was prepared as follows: 100 mg of tannic acid was dissolved in water; 50 mg of Polyclar 10 (ISP, Guildford Surrey) polyvinyl pyrrolidone beads were added and stirred for one hour; the beads were filtered off the solution and washed with a few mls of iced water until no colour was seen in the washings; they were then dried in the oven at 50°C.

The composite of silver chloride and TiO_2 is made up of 20% wt/wt AgCl on 80% TiO_2 3-5 μm porous beads.

In compositions containing the deactivant, the deactivant is present in an amount of from 0.01% to 7%, preferably from 0.01% to 3%.

In methods for treating rugs and carpets to deactivate allergents, the amount of deactivant present is from about 16gm to about 170gm per 10 square meters, preferably about 32gm per 10 square meters.

25 Preferably the deactivant is selected from

	xiv)	hinoki oil,
•	xv)	a composite of AgCl and TiO2,
	xvi)	diazolidinyl urea
	xvii)	6-isopropyl-m-cresol,
30	xii)	chlorohexidine,
	xiii)	maleic anhydride,

xviii)

```
the sodium salt of anthraquinone and
         xxvi)
         xviii)
                   a compound of formula I or II, defined
                   above, and
         xix)
                   a compound of formula II, defined above.
5
              Further according to the invention there is
   provided an aerosol composition containing
         i)
                   cedarwood oil,
         ii)
                   hexadecyltrimethylammonium chloride,
         iii)
                   aluminium chlorohydrate,
10
         iv)
                   1-propoxy-propanol-2,
         v)
                   polýquaternium-10
         vi)
                   silica gel,
         vii)
                   propylene glycol alginate,
         viii)
                   ammonium sulphate,
15
         ix)
                   hinokitiol,
         \mathbf{x})
                   L-ascorbic acid,
         xi)
                   "immobilised tannic acid", (hereinafter
                   defined)
         xii)
                   chlorohexidine,
20
         xiii)
                   maleic anhydride,
         xiv)
                   hinoki oil,
         xv)
                   a composite of AgCl and TiO,
         xvi)
                   diazolidinyl urea,
         xvii)
                   6-isopropyl-m-crescl,
```

$$N_{a_3}^{\bigoplus} \bigcirc S \longrightarrow O \longrightarrow O$$

a compound of formula I

xix) the compound of formula II

xx) a polymeric dialdehyde containing two or more of a recurring unit of the formula III

where n = 2 to 200, xxi) urea, xxii) cyclodextrin, 10 xxiii) hydrogenated hop oil, xxiv) polyvinylpyrrolidone, (vxx N-methylpyrrolidone, the sodium salt of anthraquinone, xxvi) xxvii) potassium thioglycolate, and 15 xxviii) glutaraldehyde

- b) a propellant, and
- c) optionally, a solvent.

Preferably the amount of deactivant present in such a composition is from 0.01% to 7%, more preferably 0.01% to 3%,

Preferably the amount of propellant present in such a composition is from 4% to 50%, more preferably from 4% to 30%,

Preferably the amount of solvent present in such a composition is 0% to 99.95%, more preferably 0% to 90%, and most preferably from 20% to 90%.

10 Preferably the deactivant in such aerosol composition is selected from

hinoki oil,
a composite of AgCl with TiO,
diazolidinyl urea,
6-isopropyl-m-cresol,
chlorohexidine,
maleic anhydride,
the sodium salt of anthraguinane, and
a compound of formula I or II defined above.

20 Preferably the propellant is selected from those commercially available, for example C_{1.4} alkanes, chlorofluorocarbons and compressed gases such as nitrogen, air and carbon dioxide.

Preferably the solvent is selected from C_{1-6} alcohols (e.g. ethanol) or water.

In addition, the compositions of this invention may also contain one or more of the following:

a fragrance, preferably in an amount of 0% to 5%, more preferably 0% to 2%;

an antimicrobial compound e.g. alkyldimethylbenzyl ammonium saccharinate, preferably in an amount of 0.01% to 1%;

a surfactant, e.g. Dow Corning 193 Surfactant, preferably in an amount of 0.01% to 1%;

a corrosion inhibitor, e.g. sodium nitrite, sodium benzoate, triethanolamine and ammonium hydroxide, preferably in an amount of 0.01% to 10%; and

a miticide, such as benzyl benzoate, pyrethroid pemethrin, d-allethrin and optionally a synergist such as piperonyl butoxide, preferably in an amount of 0.1% to 10%.

It has been found that deactivants of the invention 15 have as effective allergen deactivating properties as tannic acid but without the drawback of staining.

The invention will now be illustrated by the following Examples.

Examples

The test procedure in Examples 1 to 55 is as follows and is known as the ELISA protocol.

The ELISA protocol for Der-f and Der-p has been developed as follows as a measure of denaturing property for denaturants.

25 ELISA Protocol 1

 Dust is collected from Hoover™ vacuum cleaner bags and passed through a series of sieves down to 63 microns.

- 2. Clean petri dishes are labelled with the chemical to be tested (on the base). Three replicates are used for each treatment.
- 3. Filter paper is used to line each dish and 0.2g of dust is added to each dish onto the filter paper. The lid (or base, as dishes are inverted) is replaced and the dish is shaken to disperse the dust evenly over the filter paper.
- 4. 2% aqueous solutions of deactivant were used except
 10 for the silver chloride composite where 0.05% was used
 instead. Immobilised tannic acid was used as a 1%
 dispersion. The hydrogenerated hop end was used at the
 2% level (in the form of a 10% solution). Waterinsoluble deactivants were emulsified with a sorbitone
 15 oleate surfactant (i.e. Tween). Hinokitol was used at
 0.5% not 2%.
 - 5. The dust is sprayed with the corresponding treatment, 2 sprays are required for sufficient coverage(1 spray = 1.5 ml).
- 20 6. Leave uncovered at room temperature, in well aerated room, until filter paper is dry. This can take up to 4 hours.
 - 7. Empty dust in epindorfs labelled according to treatment.
- 8. Add 1 ml of 5% Bovine Serum Albumen Phosphate Butter Saline - Tween BSA-PBS-T to each epindorf (5 times the weight of dust) (20ml of BSA-PBS-T =1 g of BSA in 20ml of PBS-T).
 - 9. Leave overnight in a refrigerator.
- 30 10. Centrifuge for 5 minutes at 13,000 rpm.

- 11. Decant the supernatant into a new epindorf labelled according to treatment.
- 12. Centrifuge again for 5 minutes at 13,000 rpm.
- 13. Make up dilutions of 1:10 and 1:100 by adding 100 μ l of neat solution to 900 μ l of 1% BSA-PBS-T (1:10). This is repeated using 100 μ l of 1:10 dilution and add to 900 μ l of 1% BSA-PBS-T for 1:100 dilution.

ELISA Protocol 2 for Der-f and Der-p: Indoor Biotechnologies

- 10 1. Prepare samples and dilutions as in protocol
 - 2. Prepare 500 ml of 50 mM carbonate/bicarbonate buffer by dissolving $0.795g~Na_2CO_3$ and $1.465g~NaHCO_3$ in 500 ml of distilled water. Check the pH is at 9.6. (This solution is kept in the refrigerator in a conical flask).
- 15 3. Monoclonal antibody (kept in the freezer) has to be added to the buffer using the following method, (1 μ g per well; 11 ml is needed) applied to the ELISA plate
 - 11ml of carbonate/bicarbonate buffer is added to the dispensing tray.
- 11 μ l of Der-fl or Der-pl monoclonal antibody

(Stored in freezer, epindorf in use is in the refrigerator) is added to the buffer. To ensure that all the antibody is removed from the tip, wash out the pipette tip by sucking up and down I the buffer solution, gently stirring to mix thoroughly.

4. Pipette 100 μ l of the antibody solution into each well of the microtiter plate, cover with a plate sealer and leave overnight at 4°C.

- 5. Empty the plate by quickly inverting it over the sink, then dry by banging on a stack of paper towels.
- 6. Add 200 μ l of wash buffer to each well: PBS/0/05% tween (PBS-T).
- 7. Repeat stages 5 and 6 once more (making a total of 2 washes).
 - 8. Make sure all the wells are dry, then add 100 μl of 1% BSA-PBS-T. Replace the plate sealer and incubate for 1 hour at room temperature*.
- 10 9. Repeat steps 5 to 7 (2 washes).
 - 10. *During the hour incubation period, prepare the allergen standards at dilutions between 125 and 1 $\mu g/ml$ Der f 1 or Der pl:
- Add 25 μ l of allergen standard (kept in the refrigerator in polystyrene box) to 475 μ l of 1% PBS-BSA-T and mix thoroughly labelled '125'.
 - 250 μ l of 1% PBS-BSA-T is added to 7 further epindorfs which are labelled 62.5, 31.25, 15.63, 7.61, 3.9, 1.95 and 0.98.
- 20 $^{-}$ 250 μl is taken from the 1st epindorf (labelled 125) and transferred to the next (labelled 62.5). This is mixed thoroughly.
- Using a new pipette tip, 250 μl is removed from epindorf labelled 62.5 and transferred to 31.25,
 this procedure is continued down to the 0.98 concentration (125, 62.5, 31.25, 15.63, 7.61, 3.9, 1.95, 0.98)
 - In total 475 + $(250 \times 7) = 2.3 \text{ml} : 0.023 \text{g}$ of BSA added to 2.3 ml of PBS-T.

30

- 11. Add 100µl aliquots of the allergen sample to the plate along with the standard allergen samples for the reference curve in duplicate. The standards usually go in the first two columns on the left hand side, with the least concentrated on top. Incubate for 1 hour.
- 12. Follow stages 5 to 6, completing a total of 5 washes.
- 13. Pour 11 ml of 1% BSA-PBS-T(0.11g of BSA to 11ml of PBS-T) to the dispensing tray. Add 11 μl of the
- biotinylated monoclonal antibody (refrigerator) and mix thoroughly.
 - 14. Pipette 100 μl into each well and incubate for 1 hour at room temperature.
- 15. Empty plate and wash as described in stage 12. (5 washes).
 - 16. Add 11 μ l of Streptavidin (freezer) to 11 ml of 1%BSA-PBS-T. Pipette 100 μ l into each well and incubate for 30 minutes. Reserve any remaining solution in a vial.
- 20 17. Empty plate and wash as described in stage 12 (5 washes).
 - 18. Make a solution of OPD, by putting the two tablets (in silver and gold foil) into 20 ml of distilled water (in a glass vial). Shake quite vigorously in the dark
- until the tablets have dissolved (Wrap the vial up either in tin foil or paper towel).
 - 19. Add a small amount to the remaining solution from stage 16. Wait for a colour change (positive reaction). Add 200 μl to each well and incubate for a minimum of 30 minutes in the dark.

20. Read the plate at 450nm/405nm if filter not available.

Examples 1 to 26

The deactivants, as set out in the following table,

were used against Der-f allergens according to the above procedure and the results are as given below. Tannic acid was used as a comparator. What was measured after treatment with deactivant and tannic acid was the amount of allergen remaining active after treatment. The ratio of amount of remaining active allergen after treatment with deactivant and tannic acid is also given.

Table

Example	Deactivant	Amount of Alicigen	Allergen	active allergen	
		deactivant treatment	tive	after Deactivant/Tannic	
			treatment	Acid Treatment	
1	Trea	3750	1500	2.500	xxi
-	Delimorio dinIdelivido	1325	550	2.409	ХХ
- [Codominad oil	1800	750	2.400	
	Ceual wood on	3850	1700	2.265	xxii
	Cyclodextim	4075	1800	2.264	Ξ
	Mexadecy III III cui y Ianni Ciliani Ciliani Alimini del Albarohydrafe	1675	750	2.233	iii
	Taronovy-propanol-7	3950	1800	2.194	iv
- 1	Cilica Gel (Kent)	2037.5	933.5	2.183	vi
- 1	polyonatemium-10 (Polymer IR-125)	4335	2000	2.168	Λ
	Hydrogenated Hon Oil	1100	550	2.000	xxiii
-	Pronylene olycol aloinate	3175	1700	1.868	vii
-	Poly vinyl pyrrolidone	2450	1425	1.719	xxiv
ł	Ammonium sulphate	2750	1700	1.618	viii

Example	Deactivant	Amount of Allergen	Amount of	Ratio of remaining Number	Number
•		remaining active after	Allergen	active allergen	
		deactivant treatment	remaining active	after	
			after tannic acid	Deactivant/Tannic	
ä			treatment	Acid Treatment	
14	Hinokitol (0.5%)	3065	2000	1.533	ix
15	N-methyl pyrrolidone	0091	1175	1.362	XXV
16	L-Ascorbic Acid	2000	1500	1.333	×
17	Immobilised Tannic Acid	1550	1175	1.319	xi
8	Aerosol OT	1525	1175	1.298	xviii
61	Chlorohexidine	1412.5	1425	0.991	XII
20	Parsley Camphor	1225	1387.5	0 883	xix
21	Maleic anhydride	1312.5	1500		xiii
22	Anthraquinone sodium salt	1530	2000	0.765	xxvi
23	Hinoki oil	1025	1387.5	0.739	xiv
24	Composite of AgCl and TiO,	1025	1425	0.719	XV
25	Germall II	950	1387.5	0.685	xvi
26	Thymol	725	1387.5	0.523	xvii

Examples 27 to 47

The deactivants, as set out in the following table, were used against Der-p allergens according to the above procedure and the results are as given below. What was measured were the amount of allergens remaining after treatment with deactivant and the amount of allergens remaining after vacuuming with no deactivant treatment.

Table

Example	Deactivant	Amount of active Allergen	Amount of active	Deactivant
		remaining after deactivant treatment	Allergen remaining after no deactivant treatment	
			but only vaccuming	
-	Glutaraldehyde	918	3375	xxviii
2	Polymeric dialdehyde	2792	3375	xx
3	Cedarwood oil	3375	0009	
4	hexadecyltrimethylammonium chloride	2863	4992	
5	Aluminium chlorohydrate	826	4992	iii
9	1-propoxy-propanol-2	1233	4992	٨ļ
7	Silica Gel (Kent)	1540	4992	vi
8	polyquaternium-10 (Polymer JR-125)	5463	6250	۸
6	Propylene glycol alginate	3781	6250	ivii
10	Ammonium sulphate	2325	6250	Viii
=	Potassium thioglycolate	3092	3375 xxvii	xxvii

Framule	Deactivant	Amount of active Allergen remaining	Amount of	Deactivant
		after deactivant treatment	Allergen remaining	
			after no deactivant	
			treatment	
12	Hinokitol (0.5%)	2058	3375 ix	ix
2 2	I - Ascorbic Acid	1438		×
2	Immobilised Tannic Acid	1125	5642	xi
2	Aerosol OT	4494	5642	xviii
2 91	Chlorohexidine	2281	4450 xii	xii
17	Parsley Camphor	2581	4450	xix
×	Maleic anhydride	783	4450	xiii
61	Hinoki oil	1644	3400	xiv
20	Composite of AgCl and TiO,	1632	3400	xv
21	Thymol	1500	3400	xvii

Examples 48-55

Further samples were tested as above and compared against tannic acid. The ratio of actives remaining after deactivant treatment and actives remaining after tannic acid treatment are given below:

Example	Deactivant	atio of actives remaining after deactivant treatment over those remaining after tannic acid treatment	Number
48	Germall II	1.5	vi
49	N-methyl pyrrolidone	4.0	xv
50	Hinoki Oil	4.0	iv
51	Silver chloride/TiO ₂	3.5	v
52	Thymol	4.0	vii
53	Chlorohexidine	3.0	li
54	Maleic anhydride	1.0	iii
55	Glutaraldehyde	1.5	xviii

Examples 56-59

The following formulations can be made up as carrier compositions for use in an aerosol for deactivating Der-f and Der-p allergens.

Raw Ingredient Description	Item Classification	8
By Weight		_
Anhydrous Ethanol (SD	Solvent	
Alcohol 40)		79.646
Alkyl dimethyl benzyl	Cationic Surfactant	
ammonium saccharinate	·	0.106
Corrosion Inhibitor (I)		
corrosion innibitor (1)		0.192
Corrosion Inhibitor (II)		0 100
	·	0.192
Corrosion Inhibitor (III)		0.096
		0.050
Deionized Water	Water/Solvent	
·		15.768
Carbon Dioxide	Propellant	1
		4.000
TOTAL		
		100.000

Raw Ingredient Description by Weight	Item Classification	<u>&</u>
_		
Anhydrous Ethanol (SD Alcohol 40)	Solvent	* 57.000
Fragrance#17	Fragrance	0.0500
Dow Corning 193 Surfactant	Surfactant	0.025
Corrosion Inhibitor (I)		0.100
Corrosion Inhibitor (II)		0.100
Deionized Water	Water/solvent	* 14.725
NP-40/Butane 40	Hydrocarbon propellant	28.000
TOTAL		100.000

^{* =} May replace with 95% Ethanol (SD Alcohol 40) at 61.755% by weight and 9.970% by weight Deionized water

Raw Ingredient	Item Classification	<u>%</u>
Description by Weight		
Anhydrous Ethanol (SD	Solvent	
Alcohol 40)		79.646
Benzyl Benzoate - an	Active/ester	
acaricide		4.600
Alkyl dimethyl benzyl	Cationic Surfactant	
ammonium saccharinate		0.106
Corrosion Inhibitor(I)		0.192
Corrosion Inhibitor (II)		0.192
Corrosion Inhibitor (III)		0.096
Deionized Water	Water/solvent	
		11.168
Carbon Dioxide	Propellant	
TOTAL		4.000
IOIAU		
		100.000

Raw Ingredient	Item Classification	8
Description by weight		
Anhydrous Ethanol (SD	Solvent	*57.000
Alcohol 40)		
Benzyl Benzoate	Active/ester	4.600
Joney 1 Jones George	Active/ester	4.600
Fragrance#17	Fragrance	0.0500
Dow Corning 193	Surfactant	0.025
Surfactant	-	
Corrosion Inhibitor (I)		0.100
		0.100
Corrosion Inhibitor (II)		0.100
Deionized Water	Water/solvent	*10.125
NP-40/Butane 40		
NP-40/Butane 40	Hydrocarbon propellant	28.000
	broberranc	
TOTAL	 	100.000

^{* =} May replace 95% Ethanol (SD Alcohol 40) at 61.755% by weight and 5.370% by weight Deionized water.