Eric Rouse

Individual Assignments #58

Assignment: Assignment: Section 2.2: 2, 4, 12, 16, 18, 20

Q2

- a) A∩B
- b) $A \cap \overline{B}$
- c) AUB
- d) $\bar{A} \cup \bar{B}$

Q4

- a) $A \cup B = \{a, b, d, e, f, g, h\}$
- b) $A \cap B = \{a, b, c, d, e\}$
- c) $A B = \emptyset$
- d) $B A = \{f, g, h\}$

Q12

If $x \in (A \cup (A \cup B))$ then $x \in A \lor x \in A \cap B$ by definition of union.

Since $x \in A \cap B \implies x \in A$ (by definition of intersection) that implies that $A \cup (A \cup B) \subseteq A$

And $x \in A$ by definition for A so $A \subseteq A \cup (A \cup B)$

Each is a subset of the other

Q16

- a) Implies: $x \in A \land x \in B \subseteq x \in A$; since x is an element of A one each side and it is joined conjunctively on the left it is a subset of the right.
- b) Implies: $x \in A \subseteq x \in A \ \lor x \in B$ since x is an element of A on both sides and it is the only case on the left side, it is a subset of the right.
- c) Implies: $x \in A \land x \notin B \subseteq x \in A$; since x is an element of A one each side and it is joined conjunctively on the left it is a subset of the right.
- d) Implies: $(x \in A \land ((x \in B) \land (x \notin A)))$ which expands to $(x \in A \land x \in B) \land (x \in A \land x \notin A)$. $x \in A \land x \notin A = \emptyset$ by complement law; $(x \in A \land x \in B) \land \emptyset = \emptyset$ by the complement law.
- e) Implies: $x \in A \cup (B-A)iffx \in A \cup B$ Focusing on the right side: $x \in A \cup (B-A)iffx \in A \lor (x \in B \land x \notin A)iff(x \in A \lor x \in B) \land (x \in A \lor x \notin A)$ $(A \cup B) \cap (A \cup \overline{A})$ by complememnt law and $(A \cup B) \cap U$ by identity law thus $(A \cup B) \cap \overline{A}$

Q18

- a) Implies: $x \in A \ \lor x \in B \subseteq x \in A \ \lor x \in B \ \lor x \in C$ it is clear that the left side is a subset of the right as $x \in A \ \lor x \in B$ appears on both sides and is disjunctively joined on the right.
- b) Implies: $x \in A \land x \in B \land x \in C \subseteq : x \in A \land x \in B$. Since the left shows that x must be an element of A and of B and also C it is clear that it is a subset of the right which is all A and B.
- c) Implies: $if \ x \in (A B) C \ then \ x \in A C$. The left becomes $(x \in A \land x \notin C) \land (x \notin B \lor x \notin C)$ and the right becomes $(x \in A \land x \notin C)$ by definition. Thus the left is a subset of the right again because of conjunction.
- d) Implies: $(x \in A \land x \notin C) \land (x \in C \land x \notin B)$, which expands to: $(x \in A \land x \in C) \land (x \in A \land x \notin B)$ $\land (x \notin C \land x \in C) \land (x \in C \land x \notin B)$, focusing on $(x \notin C \land x \in C)$ gives $C \cup \overline{C} = \emptyset$ by complement law, and ther rest is $\cap \emptyset$ so it is \emptyset by domination law.
- e) If x is an element of B and not A OR C and not A then x is an element of B or C by not A, Implies:
- f) $(x \in B \land x \notin A) \lor (x \in C \land x \notin A) iff (x \in B \lor x \in C) \land x \notin A$, expand the left: $(x \in B \lor x \in C) \land (x \in B \lor x \notin A) \land (x \notin A \lor x \in C) \land (x \notin A \lor x \notin A)$. The whole middle section is redundant, it is literally the same terms as the first so, removing $(x \in B \lor x \notin A) \land (x \notin A \lor x \in C)$ and simplifying $(x \notin A \lor x \notin A)$ to $(x \notin A)$ leaves us with $(x \in B \lor x \in C) \land (x \notin A)$ which is equivalent to the right side.

Q20

Implies: $x \in (A \cap B) \cup (A \cap \overline{B})$ *if* $f \in A$

By the distributive law: $A \cap (B \cup \overline{B})$

By the complement law: $A \cap U$

By identity law: A

Thus A = A