Отчёт по лабораторной работе №8

Дисциплина: архитектура компьютера

Барбакова Алиса Саяновна

Содержание

1	Цель работы	4	
2	Задание	5	
3	Теоретическое введение 3.1 Организация стека	6 6	
4	Выполнение лабораторной работы 4.1 Реализация циклов в NASM	8 13 17	
5	Выводы	20	
Сг	Список литературы		

Список иллюстраций

4.1	Создание каталога	8
4.2	Копирование программы из листинга	9
4.3	Запуск программы	10
4.4	Изменение программы	10
4.5	Запуск измененной программы	11
4.6	Добавление push и рор в цикл программы	12
4.7	Запуск измененной программы	12
4.8	Копирование программы из листинга	13
4.9	Запуск второй программы	14
4.10	Копирование программы из третьего листинга	15
4.11	Запуск третьей программы	15
4.12	Изменение третьей программы	16
4.13	Запуск измененной третьей программы	16
4.14	Написание программы для самостоятельной работы	17
4.15	Запуск программы для самостоятельной работы	19

1 Цель работы

Приобретение навыков написания программ с использованием циклов и обработкой аргументов командной строки.

2 Задание

- 1. Реализация циклом в NASM
- 2. Обработка аргументов командной строки
- 3. Самостоятельное написание программы по материалам лабораторной работы

3 Теоретическое введение

3.1 Организация стека

Стек — это структура данных, организованная по принципу LIFO («Last In — First Out» или «последним пришёл — первым ушёл»). Стек является частью архитектуры процессора и реализован на аппаратном уровне. Для работы со стеком в процессоре есть специальные регистры (ss, bp, sp) и команды. Основной функцией стека является функция сохранения адресов возврата и передачи аргументов при вызове процедур. Кроме того, в нём выделяется память для локальных переменных и могут временно храниться значения регистров. Для стека существует две основные операции:

- добавление элемента в вершину стека (push);
- извлечение элемента из вершины стека (рор).

3.2 Инструкции организации циклов

Для организации циклов существуют специальные инструкции. Для всех инструкций максимальное количество проходов задаётся в регистре есх. Наиболее простой является инструкция loop. Она позволяет

организовать безусловный цикл, типичная структура которого имеет следующий вид:

```
mov ecx, 100 ; Количество проходов

NextStep:
...
...; тело цикла
...
loop NextStep ; Повторить `ecx` раз от метки NextStep
```

4 Выполнение лабораторной работы

4.1 Реализация циклов в NASM

Создаю каталог для программ лабораторной работы $N^{o}8$, перехожу в него и создаю файл lab8-1.asm (рис. -fig. 4.1).

Рис. 4.1: Создание каталога

Копирую в созданный файл программу из листинга 8.1 (рис. -fig. 4.2). Копирую в текущий каталог файл in_out.asm.

Рис. 4.2: Копирование программы из листинга

Компилирую и создаю исполняемый файл. Запускаю программу, она показывает работу циклов в NASM (рис. -fig. 4.3).

```
alisa@ASBarbakova:-/work/arch-pc/lab08

alisa@ASBarbakova:-/work/arch-pc/lab08$ mc

bash-5.2$ nasm -f elf lab8-1.asm

bash-5.2$ ld -m elf_i386 -o lab8-1 lab8-1.o

bash-5.2$ ./lab8-1

BBEQHITE N: 10

10

9

8

7

6

5

4

3

2

1

alisa@ASBarbakova:-/work/arch-pc/lab08$
```

Рис. 4.3: Запуск программы

Заменяю изначальный текст программы так, что в теле цикла я изменяю значение регистра есх (рис. -fig. 4.4).

Рис. 4.4: Изменение программы

Создаю исполняемый файл, проверяю его работу. Из-за того, что теперь регистр есх на каждой итерации уменьшается на 2 значения, количество итераций уменьшается вдвое (рис. -fig. 4.5).

```
alisa@ASBarbakova:~/work/arch-pc/lab08

Q = x

alisa@ASBarbakova:~/work/arch-pc/lab08$ mc

bash-5.2$ nasm -f elf lab8-1.asm

bash-5.2$ ld -m elf_i386 -o lab8-1 lab8-1.o

bash-5.2$ ./lab8-1

BBedдите N: 10

9

7

5

3

1

alisa@ASBarbakova:~/work/arch-pc/lab08$
```

Рис. 4.5: Запуск измененной программы

Добавляю команды push и pop в программу (добавления в стек и извлечения из стека) для сохранения значения счетчика цикла loop (рис. -fig. 4.6).

Рис. 4.6: Добавление push и pop в цикл программы

Запускаю программу (рис. -fig. 4.7). Теперь количество итераций совпадает введенному N, но произошло смещение выводимых чисел на -1.

Рис. 4.7: Запуск измененной программы

4.2 Обработка аргументов командной строки

Создаю новый файл lab8-2.asm и копирую в него код из листинга 2 (рис. -fig. 4.8).

Рис. 4.8: Копирование программы из листинга

Компилирую файл и запускаю, указав аргументы. Программой было обработано то же количество аргументов, что и было введено (рис. -fig. 4.9).

```
alisa@ASBarbakova:~/work/arch-pc/lab08 Q = x

alisa@ASBarbakova:~/work/arch-pc/lab08$ touch lab8-2.asm
alisa@ASBarbakova:~/work/arch-pc/lab08$ mc

bash-5.2$ nasm -f elf lab8-2.asm
lab8-2.asm:4: error: parser: instruction expected

alisa@ASBarbakova:~/work/arch-pc/lab08$ mc

bash-5.2$ nasm -f elf lab8-2.asm
lab8-2.asm:4: error: parser: instruction expected

alisa@ASBarbakova:~/work/arch-pc/lab08$ mc

bash-5.2$ nasm -f elf lab8-2.asm
bash-5.2$ nasm -f elf lab8-2.asm

bash-5.2$ ld -m elf_i386 -o lab8-2 lab8-2.o

bash-5.2$ ./lab8-2 apryment1 apryment 2 'apryment3'
apryment2
apryment3

alisa@ASBarbakova:~/work/arch-pc/lab08$
```

Рис. 4.9: Запуск второй программы

Создаю новый файл lab8-3.asm для программы и копирую в него код из листинга 3 (рис. -fig. 4.10).

Рис. 4.10: Копирование программы из третьего листинга

Создаю исполняемый файл и запускаю его. Программа выводит сумму чисел, которые передаются в программу как аргументы (рис. -fig. 4.11).

```
alisa@ASBarbakova:~/work/arch-pc/lab08
Q = x

alisa@ASBarbakova:~/work/arch-pc/lab08$ touch lab8-3.asm
alisa@ASBarbakova:~/work/arch-pc/lab08$ mc

bash-5.2$ nasm -f elf lab8-3.asm

bash-5.2$ ld -m elf_i386 -o lab8-3 lab8-3.o

bash-5.2$ ./lab8-3 12 13 7 10 5

Peayльтат: 47

alisa@ASBarbakova:-/work/arch-pc/lab08$
```

Рис. 4.11: Запуск третьей программы

Изменяю текс программы так, чтобы она вычисляла произведение вводимых аргументов (рис. -fig. 4.12).

```
The more and the state of the
```

Рис. 4.12: Изменение третьей программы

Теперь программа умножает данные на вход числа (рис. -fig. 4.13).

```
alisa@ASBarbakova:-/work/arch-pc/lab08

Q = ×

alisa@ASBarbakova:-/work/arch-pc/lab08$ mc

bash-5.2$ nasm -f elf lab8-3.asm

bash-5.2$ ld -m elf_i386 -o lab8-3 lab8-3.o

bash-5.2$ ./lab8-3 12 13 7 10 5

Peayльтат: 54600

alisa@ASBarbakova:-/work/arch-pc/lab08$
```

Рис. 4.13: Запуск измененной третьей программы

4.3 Задание для самостоятельной работы

Пишу программму, которая будет находить сумму значений для функции f(x) = 7 + 2x из 8-го варианта, полученного в 6-ой лабораторной работе (рис. -fig. 4.14).

Рис. 4.14: Написание программы для самостоятельной работы

Код программы:

%include 'in_out.asm'

•

```
SECTION .data.
msg_func db "Функция: f(x) = 7 + 2x", 0.
msg_result db "Результат: ", 0.
SECTION .text.
GLOBAL _start.
_start:.
mov eax, msg_func.
call sprintLF
pop ecx
pop edx.
sub ecx, 1
mov esi, ⊙
next:.
cmp ecx, 0h
jz _end
pop eax
call atoi
mov ebx, 2
mul ebx
add eax, 7
add esi, eax
```

loop next _end: mov eax, msg_result. call sprint mov eax, esi. call iprintLF. call quit.

Проверяю работу программы, указав в качестве аргумента несколько чисел (рис. -fig. 4.15). Программа работает верно.

Рис. 4.15: Запуск программы для самостоятельной работы

5 Выводы

В результате выполнения данной лабораторной работы я приобрела навыки написания программ с использованием циклов а также научилась обрабатывать аргументы командной строки.

Список литературы

- 1. Курс на ТУИС
- 2. Лабораторная работа №8