This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

In the claims:

A restraints control module (RCM) for a vehicle 1. (Original) comprising:

a memory device for storing a deployment time of a deployment event; and

a controller electrically coupled to said memory device, said controller determining when to deploy a restraint and storing said deployment time.

2. (Amended) comprising:

restraints control module (RCM) for a vehicle

a memory device for storing a deployment time of a deployment event; and

a controller electrically coupled to said memory device, said controller determining when to deploy a restraint and storing said deployment time;

A module as in claim 1 wherein said controller stores in said memory device a deployment-time comprising at least-one of: start time, duration, and end time.

A module as in claim 1 wherein said controller stores 3. (Original) in said memory device a fault time corresponding to said deployment time.

A restraints control module (RCM) for a vehicle 4. (Amended) comprising:

a memory device for storing a deployment time of a deployment event;

a controller electrically coupled to said memory device, said controller determining when to deploy a restraint, storing said deployment time, and storing in said memory device a fault time corresponding to said deployment time; and

3

A module as in claim-3 further comprising a comparator electrically coupled to said controller, said comparator comparing said deployment time with a fault time and determining whether said fault time corresponds with said deployment time.

- 5. (Original) A module as in claim 4 further comprising an indicator electrically coupled to said controller and indicating when a deployment time corresponds with a fault time.
- 6. (Original) A module as in claim—5 wherein said indicator comprises at least one of: a pulsating indicator, a light bulb, an LED, a fluorescent light, an audible signal, a visual signal, a 7-segment display, an analog gage, a digital meter, a video system, and a hazard light.
- 7. (Amended)

 A restraints control module (RCM) for a vehicle comprising:

a memory device for storing a deployment time of a deployment event;

a controller electrically coupled to said memory device, said controller determining when to deploy a restraint and storing said deployment time; and

A module as in claim 1 further comprising an indicator electrically coupled to said controller, said indicator continuously indicating that the RCM has been on a vehicle that has been involved in a collision, until such time when the RCM is serviced or replaced.

8. (Amended)

A restraints control module (RCM) for a vehicle comprising:

a memory device for storing a deployment time of a deployment event;

a controller electrically coupled to said memory device, said controller determining when to deploy a restraint and storing said deployment time; and

H

4

201-0378 (FGT 1543 PA)

A module as in claim 1 further comprising an indicator electrically coupled to said controller, said indicator permanently indicating that the RCM has been on a vehicle that has been involved in a collision.

9. (Amended)

A restraints control module (RCM) for a vehicle comprising:

a memory device for storing a deployment time of a deployment event;

a controller electrically coupled to said memory device, said controller determining when to deploy a restraint and storing said deployment time;

A-module as in claim 1-wherein said controller stores in said memory device a restraint power draw value during said deployment event.

10. (Amended) A restraints control module (RCM) for a vehicle comprising:

a memory device for storing a deployment time of a deployment event;

a controller electrically coupled to said memory device, said controller determining when to deploy a restraint and storing said deployment time;

A module as in claim 1 wherein information stored in said memory device is uneraseable, unresettable, and unoverwritable.

11. (Amended)

A restraints control module (RCM) for a vehicle comprising:

a memory device for storing a deployment time of a deployment event;

a controller electrically coupled to said memory device, said controller determining when to deploy a restraint and storing said deployment time;

A module as in claim 1 wherein the controller stores RCM operating time in said stored device.

dight Time!

At

201-03/8 (FG1-1543 FA)

A restraints control module (RCM) for a vehicle 12. (Original) comprising:

an indicator:

a memory device for storing a deployment start time of a deployment event; and

a controller electrically coupled to said indicator and said memory device, said controller determining when to deploy a restraint and storing said deployment start time and duration in said memory device;

said controller storing a fault time in said memory device and signaling said indicator when said fault time corresponds to said deployment start time and duration.

- A module as in claim 1112 wherein said indicator 13. (Amended) continuously indicating that the RCM has been on a vehicle that has been involved in a collision.
- A module as in claim 1112 further comprising a 14. (Amended) comparator electrically coupled to said controller, said comparator comparing said deployment time with a fault time and determining whether said fault time corresponds with said deployment time,
- A module as in claim 1112 wherein information stored 15. (Amended) in said memory device is uneraseable, unresettable, and unoverwritable.
- A method of time stamping and indicating a 16. (Original) deployment event within an automotive vehicle having a RCM, said method comprising:

sensing a collision;

generating a collision signal in response to said collision;

deploying a restraint in response to said collision signal; and storing a deployment time

17. (Amended) A method of time stamping and indicating a deployment event within an automotive vehicle having a RCM, said method comprising:

sensing a collision;

generating a collision signal in response to said collision;

deploying a restraint in response to said collision signal; and

storing a deployment time;

A method as in claim 15 wherein storing a deployment time comprises storing a deployment time comprising at least one of: start time, duration, and end time.

18. (Amended) A method of time stamping and indicating a deployment event within an automotive vehicle having a RCM, said method comprising:

sensing a collision;

generating a collision signal in response to said collision;

deploying a restraint in response to said collision signal;

storing a deployment time; and

A method as in claim 15 further comprising indicating whether the RCM has been on a vehicle that has been involved in a collision, wherein said indication is uneraseable, unresettable, and unoverwritable.

19. (Original) fault time.

A method as in claim 15 further comprising storing a

H

248 223 9522 P.08/12

method of time stamping and indicating a 20. (Amended) deployment event within an automotive vehicle having a RCM, said method comprising:

sensing a collision;

generating a collision signal in response to said collision;

deploying a restraint in response to said collision signal;

storing a deployment time;

storing a fault time; and

A method as in claim 19 further comprising indicating when said deployment time corresponds with said fault time.

A method of time stamping and indicating a 21. (Amended) deployment event within an automotive vehicle having a RCM, said method comprising:

sensing a collision;

generating a collision/signal in response to said collision;

deploying a restraint in response to said collision signal;

storing a deployment time;

storing a fault time; and

A method as in claim 19 further comprising indicating cause of said fault time.

A method of time stamping and indicating a 22. (Amended) deployment event within an automotive vehicle having a RCM, said method comprising:

sensing a collision

generating a collision signal in response to said collision;

deploying a restraint in response to said collision signal;

storing a deployment time; and

A method as in claim 15 further comprising storing restraint power draw during the deployment event.

23. (Amended) A method of time stamping and indicating a deployment event within an automotive vehicle having a RCM, said method comprising:

sensing a collision;

generating a collision signal in response to said collision;

deploying a restraint in response to said collision signal;

storing a deployment time; and

A method as in claim 15 further comprising continuously indicating a fault in response to the deployment event.

Street