

KIT-Fakultät für Informatik

Prof. Dr.-Ing. Tamim Asfour, Prof. Dr.-Ing. Rüdiger Dillmann, Prof. Dr.-Ing. Heinz Wörn

Aufgabenblätter zur Klausur

Robotik I: Einführung in die Robotik am 19. Juli 2016, 18:00 – 19:00 Uhr

- Beschriften Sie bitte gleich zu Beginn jedes Lösungsblatt deutlich lesbar mit Ihrem Namen und Ihrer Matrikelnummer.
- Diese Aufgabenblätter werden nicht abgegeben. Tragen Sie Ihre Lösung deshalb ausschließlich in die für jede Aufgabe vorgesehenen Bereiche der Lösungsblätter ein. Lösungen auf separat abgegebenen Blättern werden nicht gewertet.
- Außer Schreibmaterial sind während der Klausur keine Hilfsmittel zugelassen. Täuschungsversuche durch Verwendung unzulässiger Hilfsmittel führen unmittelbar zum Ausschluss von der Klausur und zur Note "nicht bestanden".
- Soweit in der Aufgabenstellung nichts anderes angegeben ist, tragen Sie in die Lösungsblätter bitte nur die Endergebnisse ein. Die Rückseiten der Aufgabenblätter können Sie als Konzeptpapier verwenden. Weiteres Konzeptpapier können Sie auf Anfrage während der Klausur erhalten.
- Halten Sie Begründungen oder Erklärungen bitte so kurz wie möglich. (Der auf den Lösungsblättern für eine Aufgabe vorgesehene Platz steht übrigens in keinem Zusammenhang mit dem Umfang einer korrekten Lösung!)
- Die Gesamtpunktzahl beträgt 45 Punkte.

Viel Erfolg und viel Glück!

Aufgabe 1 Rotationen

(5 Punkte)

Gegeben seien die Vektoren \boldsymbol{u} und \boldsymbol{v} , sowie der Winkel θ :

$$m{u} = \left(egin{array}{c} 0 \ 1 \ 0 \end{array}
ight), \quad m{v} = \left(egin{array}{c} 1 \ 2 \ 4 \end{array}
ight), \quad m{ heta} = rac{\pi}{2}$$

Hinweis für die gesamte Aufgabe:

$$\begin{array}{lll} \sin(0) = 0 & \sin(\frac{\pi}{4}) = 0.7 & \sin(\frac{\pi}{2}) = 1 & \sin(\pi) = 0 \\ \cos(0) = 1 & \cos(\frac{\pi}{4}) = 0.7 & \cos(\frac{\pi}{2}) = 0 & \cos(\pi) = -1 \end{array}$$

- 1. Geben Sie ein Quaternion \boldsymbol{q} an, das eine Rotation um θ mit der Rotationsachse \boldsymbol{u} beschreibt.
- 2. Geben Sie das zu \boldsymbol{q} konjugierte Quaternion \boldsymbol{q}^* an.
- 3. Führen Sie die durch das Quaternion \boldsymbol{q} beschriebene Rotation mit dem Vektor \boldsymbol{v} durch. Geben Sie Ihren Rechenweg an und runden Sie sämtliche Werte, auch in Zwischenergebnissen, auf eine Dezimalstelle (z.B.: $2.45 \approx 2.5$).

Aufgabe 2 Voronoi-Diagramme

(4 Punkte)

1. Was vesteht man unter einem Voronoi Diagramm? Erklären Sie.

2 P.

2 P.

1 P.

1 P.

3 P.

2. Zeichnen Sie das Voronoi Diagramm für die auf dem Lösungsblatt gegebenen Punkte.

Aufgabe 3 Regelung

(9 Punkte)

1. Nennen Sie 2 gängige Testfunktionen die zum Testen von Reglern verwendet werden.

1 P.

2. In Abbildung 1 sind die Sprungantworten verschiedener Regler abgebildet. Tragen sie im Lösungsblatt ein, ob es sich bei Regler A, B und C um einen P, I, D oder PID Regler handelt.

2 P.

Abbildung 1: Sprungantworten dreier verschiedener Regler.

3. Gegeben seien folgende Symbole und Funktionalbeziehungen von Übertragunsgliedern. Ordnen Sie den Übertragungsgliedern im Lösungsblatt das jeweils korrekte Symbol und die korrekte Funktionalbeziehung zu.

3 P.

Funktionalbeziehungen

$$F_1 y(t) = K \cdot F(u(t))$$

$$F_2 y(t) = K \cdot u(t)$$

$$F_3 y(t) = K \cdot u_1(t) \cdot u_2(t)$$

$$F_4 y(t) = \pm u_1(t) \pm u_2(t)$$

3 P.

- 4. Vervollständigen Sie den auf dem Lösungsblatt angegebenen Wirkungsplan einer Kaskadenregelung für einen Manipulator.
 - a) Gegeben seien die Begriffe Manipulator, Positionsregelung, Stromregelung, Geschwindigkeitsregelung. Ordnen Sie diese den den Elementen E1, E2, E3, E4 des Wirkungsplans zu und tragen Sie Ihre Lösung in die Tabelle auf dem Lösungsblatt ein.
 - b) Ergänzen Sie den Wirkungsplan um die Pfeile der Rückführgrößen, beschriften Sie die Pfeile mit R1, R2, R3. Ordnen Sie außerdem die Größen $I_A(t)$ (Strom), q(t) (Position) und $\dot{q}(t)$ (Geschwindigkeit) den Pfeilen zu und tragen das Ergebnis in der Tabelle auf dem Lösungsblatt ein.

Aufgabe 4 RANSAC

(7 Punkte)

Für eine Datenmenge von Punkten $P = \{p_0, p_1, \dots p_n \subseteq \mathbb{R}^2\}$ sind die Modellparameter einer Linie mit dem Random Sample Consensus (RANSAC) Verfahren zu schätzen. Die Datenmenge ist in Abbildung 2 visualisiert.

Abbildung 2: Punktwolke $P = \{x_1, x_2, \dots x_n \subseteq \mathbb{R}^2\}$

- 1. Beschreiben Sie kurz die vier Schritte des RANSAC Algorithmus wie in der Vorlesung vorgestellt.
- 2 P.
- 2. Führen Sie den RANSAC Algorithmus für die ersten drei Iterationen durch.
- 4 P.

1 P.

- a) Zeichnen Sie das geschätzte Modell auf dem Lösungsblatt ein. Verwenden Sie zur Schätzung jeweils die eingezeichneten Punkte p_1 und p_2 .
- b) Tragen Sie die Anzahl der Inlier nach jeder Iteration in die Tabelle auf dem Lösungsblatt ein. Ein Punkt gilt dabei als Inlier wenn sein Abstand weniger als 1 Gittereinheit zu der Modellhypothese beträgt.
- 3. Geben Sie für oben gestelltes Problem ein mathematisches Modell für die Modellparameter des Algorithmus nach drei Iterationen an.

Aufgabe 5 Filter

(3 Punkte)

1. Nennen Sie jeweils einen Anwendungsfall für den Tief- und Hochpassfilter in der Bildverarbeitung.

sfilter in der 2 P.

- Geben Sie jeweils zwei Beispiele für Tiefpassfilter und Hochpassfilter an.
- 2. Geben Sie die (3×3) -Filtermasken für das Prewitt-X und Prewitt-Y Filter an.

1 P.

Aufgabe 6 Roboterprogrammierung

(4 Punkte)

1. Nennen Sie die aus der Vorlesung bekannten vier Interaktionsformen die in der Roboterprogrammierung verwendet werden.

2 P.

2. Nennen Sie vier aus der Vorlesung bekannte Sensortypen, die bei der Roboterprogrammierung eingesetzt werden.

2 P.

Aufgabe 7 Vorwärtskinematik

(5 Punkte)

1. Geben Sie ein Beispiel einer alltäglichen Aufgabe, die mithilfe der *inversen Kinematik* gelöst wird und erklären Sie wieso.

1 P.

2. Welche Beziehung drückt die *Jacobi-Matrix* aus und welche Rolle spielt sie bei der Berechnung der inversen Kinematik?

2 P.

3. Gegeben sei ein Roboter mit der folgenden, über DH-Parameter angegebenen, kinematischen Struktur:

2 P.

Gelenk	a_i	α_i	d_i	$ heta_i$
1	0	-90	0	θ_1
2	0	90	d_2	$ heta_2$
3	0	0	d_3	0

Geben Sie die Transformationsmatrix $A_{0,1}$ an, die vom OKS₀ ins OKS₁ abbildet.

Aufgabe 8 Multiple Choice

(8 Punkte)

Beantworten Sie die Fragen auf dem Lösungsblatt, indem sie entweder richtig oder falsch ankreuzen. Für jede korrekte Antwort erhalten Sie 0,5 Punkte. Jede nicht oder falsch beantwortete Frage wird mit 0 Punkten bewertet.