R for Health Data Science

Week 08: Biostats II

Sam Stewart

2021-04-09

```
library(Hmisc)
library(kableExtra)
library(tidyverse)
library(ggplot2)
library(boomer)
library(survival)
library(survminer)
library(haven)
library(lme4)
library(mlmRev)
dat = read.csv("data/framinghamFirst.csv",header=TRUE,
               na.strings=".",stringsAsFactors=FALSE)
dat$BMIGroups = cut(dat$BMI,breaks=c(0,18.5,25,30,Inf),
                    labels=c("Underweight","Normal","Overweight","Obese"))
dat$SEX = factor(dat$SEX,levels=1:2,labels=c("Male","Female"))
dat$DIABETES = factor(dat$DIABETES,levels=0:1,labels=c("No Diabetes","Diabetes"))
dat$HYPERTEN = factor(dat$HYPERTEN,levels=0:1,labels=c("Normotensive","Hypertensive"))
#for the survival analysis
dat.lung = lung %>% tibble %>%
  mutate(
   sex = factor(sex,levels=1:2,labels=c("M","F")),
   ageGroup = cut(age, breaks = c(0, 50, 60, 70, 100)),
    ph.ecog = factor(ph.ecog)
  )
#for the multilevel models
imm = read_dta("https://stats.idre.ucla.edu/stat/examples/imm/imm10.dta")
dat.imm = imm %>%
 mutate(homework.fact = factor(homework))
```

This week we're going to get back to the Biostats/Epi world and cover some more complex modeling techniques, focusing on

- 1. Survival Analysis
- 2. Multilevel Models
- 3. Generalized Estimating Equations

Survival Analysis 1

Survival analysis is the analysis of time to event data

- Time from surgery to infection
- Time from breast cancer diagnosis to death
- Time from entry into addiction treatment to relapse

We need three time points to perform a survival analysis

- Starting time (often 0)
- Stopping time
- Censoring an indicator if the event occurred

We'll start with Kaplan Meier curves, then move onto Cox Proportional Hazards Regression. We'll use a built-in R dataset here called lung on the survival rate of patients with advanced lung cancer. See ?lung for more details.

Kaplan-Meier 1.1

81

88

203

2

##

The command to fit a Kaplan-Meier curve is survfit(), and it uses the formula approach as with lm() and glm(). The difference here is that our outcome is a combination of either 2 or 3 variables - in this case there is a time variable that records the amount of time followed, and a status variable that records whether whether the subject died or not. We'll pass those to a Surv() object on the left side of the equation, and then the stratifying variables are on the right.

```
km.lung00 = survfit(Surv(time, status)~1, data=dat.lung)
km.lung00
  Call: survfit(formula = Surv(time, status) ~ 1, data = dat.lung)
##
                     median 0.95LCL 0.95UCL
##
          n
             events
##
       228
                165
                         310
                                  285
                                           363
summary(km.lung00)
   Call: survfit(formula = Surv(time, status) ~ 1, data = dat.lung)
##
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
       5
             228
                                                    0.9871
                        1
                            0.9956 0.00438
                                                                   1.000
##
      11
             227
                        3
                            0.9825 0.00869
                                                    0.9656
                                                                   1.000
##
      12
             224
                        1
                            0.9781 0.00970
                                                    0.9592
                                                                   0.997
##
      13
             223
                            0.9693 0.01142
                                                    0.9472
                                                                   0.992
##
      15
             221
                        1
                            0.9649 0.01219
                                                    0.9413
                                                                   0.989
      26
             220
##
                        1
                            0.9605 0.01290
                                                    0.9356
                                                                   0.986
##
             219
                        1
                            0.9561 0.01356
                                                    0.9299
      30
                                                                   0.983
##
      31
             218
                        1
                            0.9518 0.01419
                                                    0.9243
                                                                   0.980
             217
                        2
##
      53
                            0.9430 0.01536
                                                    0.9134
                                                                   0.974
##
      54
             215
                        1
                            0.9386 0.01590
                                                    0.9079
                                                                   0.970
##
      59
             214
                        1
                            0.9342 0.01642
                                                    0.9026
                                                                   0.967
##
      60
             213
                        2
                            0.9254 0.01740
                                                    0.8920
                                                                   0.960
##
      61
             211
                        1
                            0.9211 0.01786
                                                    0.8867
                                                                   0.957
##
      62
             210
                        1
                            0.9167 0.01830
                                                   0.8815
                                                                   0.953
                        2
##
      65
             209
                            0.9079 0.01915
                                                    0.8711
                                                                   0.946
##
      71
             207
                        1
                            0.9035 0.01955
                                                    0.8660
                                                                   0.943
##
      79
             206
                        1
                            0.8991 0.01995
                                                    0.8609
                                                                   0.939
##
             205
                        2
```

0.8507

0.8406

0.932

0.925

0.8904 0.02069

0.8816 0.02140

шш	00	001	4	0 0770	0 00174	0.0050	0.001
##	92	201	1		0.02174	0.8356	0.921
##	93	199	1		0.02207	0.8306	0.917
##	95	198	2		0.02271	0.8206	0.910
##	105	196	1		0.02302	0.8156	0.906
##	107	194	2	0.8507	0.02362	0.8056	0.898
##	110	192	1	0.8463	0.02391	0.8007	0.894
##	116	191	1	0.8418	0.02419	0.7957	0.891
##	118	190	1	0.8374	0.02446	0.7908	0.887
##	122	189	1	0.8330	0.02473	0.7859	0.883
##	131	188	1	0.8285	0.02500	0.7810	0.879
##	132	187	2	0.8197	0.02550	0.7712	0.871
##	135	185	1		0.02575	0.7663	0.867
##	142	184	1		0.02598	0.7615	0.863
##	144	183	1		0.02622	0.7566	0.859
##	145	182	2		0.02667	0.7469	0.852
##	147	180	1		0.02688	0.7421	0.848
##		179			0.02000		
	153		1			0.7373	0.844
##	156	178	2		0.02751	0.7277	0.836
##	163	176	3		0.02809	0.7134	0.824
##	166	173	2		0.02845	0.7039	0.816
##	167	171	1		0.02863	0.6991	0.811
##	170	170	1		0.02880	0.6944	0.807
##	175	167	1		0.02898	0.6896	0.803
##	176	165	1	0.7398	0.02915	0.6848	0.799
##	177	164	1	0.7353	0.02932	0.6800	0.795
##	179	162	2	0.7262	0.02965	0.6704	0.787
##	180	160	1	0.7217	0.02981	0.6655	0.783
##	181	159	2	0.7126	0.03012	0.6559	0.774
##	182	157	1	0.7081	0.03027	0.6511	0.770
##	183	156	1	0.7035	0.03041	0.6464	0.766
##	186	154	1	0.6989	0.03056	0.6416	0.761
##	189	152	1	0.6943	0.03070	0.6367	0.757
##	194	149	1	0.6897	0.03085	0.6318	0.753
##	197	147	1	0.6850	0.03099	0.6269	0.749
##	199	145	1	0.6803	0.03113	0.6219	0.744
##	201	144	2	0.6708	0.03141	0.6120	0.735
##	202	142	1		0.03154	0.6071	0.731
##	207	139	1		0.03168	0.6020	0.726
##	208	138	1		0.03181	0.5970	0.722
##	210	137	1		0.03194	0.5920	0.717
##	212	135	1		0.03206	0.5870	0.713
##	218	134	1		0.03218	0.5820	0.708
##	222	132	1		0.03231	0.5769	0.704
##	223	130	1		0.03231	0.5718	0.699
##	226	126	1		0.03256	0.5666	0.694
##	229	125	1		0.03268	0.5614	0.690
							0.685
##	230	124	1 2		0.03280	0.5562	
##	239	121 117	1		0.03304	0.5456	0.675
##	245	117 116			0.03316	0.5402	0.670
##	246	116	1		0.03328	0.5349	0.666
##	267	112	1		0.03341	0.5294	0.661
##	268	111	1		0.03353	0.5239	0.656
##	269	110	1		0.03364	0.5184	0.651
##	270	108	1	0.5753	0.03376	0.5128	0.645

##	283	104	1	0.5698	0.03388	0.5071	0.640
##	284	103	1	0.5642	0.03400	0.5014	0.635
##	285	101	2	0.5531	0.03424	0.4899	0.624
##	286	99	1	0.5475	0.03434	0.4841	0.619
##	288	98	1	0.5419	0.03444	0.4784	0.614
##	291	97	1	0.5363	0.03454	0.4727	0.608
##	293	94	1	0.5306	0.03464	0.4669	0.603
##	301	91	1	0.5248	0.03475	0.4609	0.597
##	303	89	1	0.5189	0.03485	0.4549	0.592
##	305	87	1	0.5129	0.03496	0.4488	0.586
##	306	86	1	0.5070	0.03506	0.4427	0.581
##	310	85	2	0.4950	0.03523	0.4306	0.569
##	320	82	1	0.4890	0.03532	0.4244	0.563
##	329	81	1	0.4830	0.03539	0.4183	0.558
##	337	79	1	0.4768	0.03547	0.4121	0.552
##	340	78	1	0.4707	0.03554	0.4060	0.546
##	345	77	1	0.4646	0.03560	0.3998	0.540
##	348	76	1	0.4585	0.03565	0.3937	0.534
##	350	75	1	0.4524	0.03569	0.3876	0.528
##	351	74	1	0.4463	0.03573	0.3815	0.522
##	353	73	2	0.4340	0.03578	0.3693	0.510
##	361	70	1		0.03581	0.3631	0.504
##	363	69	2	0.4154	0.03583	0.3508	0.492
##	364	67	1		0.03582	0.3447	0.486
##	371	65	2		0.03581	0.3323	0.473
##	387	60	1		0.03582	0.3258	0.467
##	390	59	1		0.03582	0.3193	0.460
##	394	58	1		0.03580	0.3128	0.454
##	426	55	1		0.03580	0.3060	0.447
##	428	54	1		0.03579	0.2993	0.440
##	429	53	1		0.03576	0.2926	0.434
##	433	52	1		0.03573	0.2860	0.427
##	442	51	1		0.03568	0.2793	0.420
##	444	50	1		0.03561	0.2727	0.413
## ##	450 455	48 47	1 1		0.03555 0.03548	0.2659 0.2592	0.406 0.399
##	457	46	1		0.03539	0.2525	0.392
##	460	40	1		0.03539		
##	473	43	1		0.03530	0.2456 0.2388	0.385
##	477	42	1		0.03508	0.2320	0.371
##	519	39	1		0.03498	0.2248	0.363
##	520	38	1		0.03485	0.2177	0.356
##	524	37	2		0.03455	0.2035	0.340
##	533	34	1		0.03439	0.1962	0.333
##	550	32	1		0.03423	0.1887	0.325
##	558	30	1		0.03407	0.1810	0.316
##	567	28	1		0.03391	0.1729	0.308
##	574	27	1		0.03371	0.1650	0.299
##	583	26	1		0.03348	0.1571	0.290
##	613	24	1		0.03325	0.1489	0.281
##	624	23	1		0.03297	0.1407	0.272
##	641	22	1	0.1869	0.03265	0.1327	0.263
##	643	21	1		0.03229	0.1247	0.254
##	654	20	1	0.1691	0.03188	0.1169	0.245

```
0.1602 0.03142
                                                                  0.235
##
     655
              19
                                                  0.1091
##
     687
              18
                            0.1513 0.03090
                                                  0.1014
                                                                  0.226
                       1
                            0.1424 0.03034
##
     689
              17
                                                  0.0938
                                                                  0.216
##
     705
                            0.1335 0.02972
                                                                  0.207
              16
                                                  0.0863
                       1
##
     707
             15
                       1
                            0.1246 0.02904
                                                  0.0789
                                                                  0.197
##
     728
             14
                            0.1157 0.02830
                                                  0.0716
                       1
                                                                 0.187
##
             13
                            0.1068 0.02749
                                                  0.0645
     731
                       1
                                                                  0.177
##
                            0.0979 0.02660
     735
              12
                       1
                                                  0.0575
                                                                 0.167
                            0.0881 0.02568
##
     765
              10
                       1
                                                  0.0498
                                                                  0.156
##
                            0.0783 0.02462
     791
               9
                       1
                                                  0.0423
                                                                 0.145
##
     814
               7
                       1
                            0.0671 0.02351
                                                  0.0338
                                                                  0.133
                            0.0503 0.02285
##
     883
                       1
                                                  0.0207
                                                                  0.123
               4
km.lung01 = survfit(Surv(time, status)~sex, data=dat.lung)
km.lung01
## Call: survfit(formula = Surv(time, status) ~ sex, data = dat.lung)
##
##
           n events median 0.95LCL 0.95UCL
## sex=M 138
                 112
                        270
                                 212
                                          310
## sex=F 90
                        426
                                 348
                                          550
                  53
summary(km.lung01)
## Call: survfit(formula = Surv(time, status) ~ sex, data = dat.lung)
##
##
                    sex=M
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
      11
             138
                       3
                            0.9783 0.0124
                                                  0.9542
                                                                  1.000
##
      12
             135
                       1
                            0.9710 0.0143
                                                  0.9434
                                                                 0.999
##
      13
             134
                       2
                            0.9565
                                   0.0174
                                                  0.9231
                                                                  0.991
##
             132
                            0.9493 0.0187
                                                  0.9134
                                                                 0.987
      15
                       1
##
      26
             131
                       1
                            0.9420 0.0199
                                                  0.9038
                                                                  0.982
##
      30
             130
                            0.9348 0.0210
                                                  0.8945
                                                                 0.977
                       1
##
      31
             129
                       1
                            0.9275
                                   0.0221
                                                  0.8853
                                                                 0.972
##
      53
             128
                       2
                            0.9130
                                   0.0240
                                                  0.8672
                                                                 0.961
             126
##
      54
                       1
                            0.9058 0.0249
                                                  0.8583
                                                                 0.956
##
      59
             125
                            0.8986 0.0257
                                                                 0.950
                       1
                                                  0.8496
##
      60
             124
                       1
                            0.8913 0.0265
                                                  0.8409
                                                                  0.945
             123
                       2
##
      65
                            0.8768 0.0280
                                                  0.8237
                                                                  0.933
##
      71
             121
                       1
                            0.8696 0.0287
                                                  0.8152
                                                                  0.928
##
      81
             120
                       1
                            0.8623 0.0293
                                                  0.8067
                                                                  0.922
##
                       2
                            0.8478 0.0306
      88
             119
                                                  0.7900
                                                                 0.910
##
      92
             117
                       1
                            0.8406 0.0312
                                                  0.7817
                                                                 0.904
##
      93
             116
                       1
                            0.8333 0.0317
                                                  0.7734
                                                                 0.898
##
      95
             115
                       1
                            0.8261 0.0323
                                                  0.7652
                                                                  0.892
##
     105
             114
                            0.8188 0.0328
                                                  0.7570
                                                                  0.886
                       1
##
     107
             113
                       1
                            0.8116 0.0333
                                                  0.7489
                                                                  0.880
##
                            0.8043 0.0338
     110
             112
                       1
                                                  0.7408
                                                                 0.873
##
                            0.7971
     116
             111
                       1
                                   0.0342
                                                  0.7328
                                                                  0.867
##
     118
             110
                       1
                            0.7899
                                    0.0347
                                                  0.7247
                                                                 0.861
##
     131
             109
                       1
                            0.7826 0.0351
                                                  0.7167
                                                                 0.855
##
                       2
     132
             108
                            0.7681
                                   0.0359
                                                                 0.842
                                                  0.7008
```

0.6929

0.6851

0.835

0.829

##

##

135

142

106

105

1

1

0.7609

0.0363

0.7536 0.0367

##	144	104	1	0.7464	0.0370	0.6772	0.823
##	147	103	1	0.7391	0.0374	0.6694	0.816
##	156	102	2	0.7246	0.0380	0.6538	0.803
##	163	100	3	0.7029	0.0389	0.6306	0.783
##	166	97	1	0.6957	0.0392	0.6230	0.777
##	170	96	1	0.6884	0.0394	0.6153	0.770
##	175	94	1	0.6811	0.0397	0.6076	0.763
##	176	93	1	0.6738	0.0399	0.5999	0.757
##	177	92	1	0.6664	0.0402	0.5922	0.750
##	179	91	2	0.6518	0.0406	0.5769	0.736
##	180	89	1	0.6445	0.0408	0.5693	0.730
##	181	88	2	0.6298	0.0412	0.5541	0.716
##	183	86	1	0.6225	0.0413	0.5466	0.709
##	189	83	1	0.6150	0.0415	0.5388	0.702
##	197	80	1	0.6073	0.0417	0.5309	0.695
##	202	78	1	0.5995	0.0419	0.5228	0.687
##	207	77	1	0.5917	0.0420	0.5148	0.680
##	210	76	1	0.5839	0.0422	0.5068	0.673
##	212	75	1	0.5762	0.0424	0.4988	0.665
##	218	74	1	0.5684	0.0425	0.4909	0.658
##	222	72	1	0.5605	0.0426	0.4829	0.651
##	223	70	1	0.5525	0.0428	0.4747	0.643
##	229	67	1	0.5442	0.0429	0.4663	0.635
##	230	66	1	0.5360	0.0431	0.4579	0.627
##	239	64	1	0.5276	0.0432	0.4494	0.619
##	246	63	1	0.5192	0.0433	0.4409	0.611
##	267	61	1	0.5107	0.0434	0.4323	0.603
##	269	60	1	0.5022	0.0435	0.4238	0.595
##	270	59	1	0.4937	0.0436	0.4152	0.587
##	283	57	1	0.4850	0.0437	0.4065	0.579
##	284	56	1	0.4764	0.0438	0.3979	0.570
##	285	54	1	0.4676	0.0438	0.3891	0.562
##	286	53	1	0.4587	0.0439	0.3803	0.553
##	288	52	1	0.4499	0.0439	0.3716	0.545
##	291	51	1	0.4411	0.0439	0.3629	0.536
##	301	48	1	0.4319	0.0440	0.3538	0.527
##	303	46	1	0.4225	0.0440	0.3445	0.518
##	306	44	1	0.4129	0.0440	0.3350	0.509
## ##	310	43 42	1	0.4033	0.0441	0.3256	0.500
	320		1 1	0.3937	0.0440	0.3162	0.490
## ##	329 337	41 40	1	0.3841 0.3745	0.0440 0.0439	0.3069 0.2976	0.481 0.471
##	353	39	2	0.3553	0.0439	0.2791	0.471
##	363	39 37	1	0.3457	0.0437	0.2791	0.432
##	364	36	1	0.3361	0.0434	0.2609	0.433
##	371	35	1	0.3265	0.0434	0.2519	0.423
##	387	34	1	0.3169	0.0432	0.2429	0.413
##	390	33	1	0.3073	0.0438	0.2339	0.404
##	394	32	1	0.3073	0.0425	0.2350	0.394
##	428	29	1	0.2874	0.0423	0.2155	0.383
##	429	28	1	0.2771	0.0423	0.2133	0.373
##	442	27	1	0.2669	0.0420	0.1965	0.362
##	455	25	1	0.2562	0.0417	0.1868	0.351
##	457	24	1	0.2455	0.0410	0.1770	0.341
11	101	4 4	_	3.2400	0.0410	0.1110	0.011

##	460	22	1	0.2344	0.0406		0.1669		0.329
##	477	21	1	0.2232	0.0402		0.1569		0.318
##	519	20	1	0.2121	0.0397		0.1469		0.306
##	524	19	1	0.2009	0.0391		0.1371		0.294
##	533	18	1	0.1897	0.0385		0.1275		0.282
##	558	17	1	0.1786	0.0378		0.1179		0.270
##	567	16	1	0.1674	0.0371		0.1085		0.258
##	574	15	1	0.1562	0.0362		0.0992		0.246
##	583	14	1	0.1451	0.0353		0.0900		0.234
##	613	13	1	0.1339	0.0343		0.0810		0.221
##	624	12	1	0.1228	0.0332		0.0722		0.209
##	643	11	1	0.1116	0.0320		0.0636		0.196
##	655	10	1	0.1004	0.0307		0.0552		0.183
##	689	9	1	0.0893	0.0293		0.0470		0.170
##	707	8	1	0.0781	0.0276		0.0390		0.156
##	791	7	1	0.0670	0.0259		0.0314		0.143
##	814	5	1	0.0536	0.0239		0.0223		0.128
##	883	3	1	0.0357	0.0216		0.0109		0.117
## ##			a o1	7					
## ##	+imo	n riek	sex=1		std orr	lower	05% CT	unnor	95% CT
##	5	90	1.event	0.9889	0.0110	TOWEL	0.9675	upper	1.000
##	60	89	1	0.9778	0.0110		0.9478		1.000
##	61	88	1	0.9667	0.0189		0.9303		1.000
##	62	87	1	0.9556	0.0217		0.9139		0.999
##	79	86	1	0.9444	0.0241		0.8983		0.993
##	81	85	1	0.9333	0.0263		0.8832		0.986
##	95	83	1	0.9221	0.0283		0.8683		0.979
##	107	81	1	0.9107	0.0301		0.8535		0.972
##	122	80	1	0.8993	0.0318		0.8390		0.964
##	145	79	2	0.8766	0.0349		0.8108		0.948
##	153	77	1	0.8652	0.0362		0.7970		0.939
##	166	76	1	0.8538	0.0375		0.7834		0.931
##	167	75	1	0.8424	0.0387		0.7699		0.922
##	182	71	1	0.8305	0.0399		0.7559		0.913
##	186	70	1	0.8187	0.0411		0.7420		0.903
##	194	68	1	0.8066	0.0422		0.7280		0.894
##	199	67	1	0.7946	0.0432		0.7142		0.884
##	201	66	2	0.7705	0.0452		0.6869		0.864
##	208	62	1	0.7581	0.0461		0.6729		0.854
##	226	59	1	0.7452	0.0471		0.6584		0.843
##	239	57 54	1 1	0.7322	0.0480		0.6438		0.833 0.821
## ##	245 268	54 51	1	0.7186 0.7045	0.0490 0.0501		0.6287 0.6129		0.821
##	285	47	1	0.7045	0.0501		0.5962		0.810
##	293	45	1	0.6742	0.0512		0.5791		0.785
##	305	43	1	0.6585	0.0534		0.5618		0.772
##	310	42	1	0.6428	0.0544		0.5447		0.772
##	340	39	1	0.6264	0.0554		0.5267		0.745
##	345	38	1	0.6099	0.0563		0.5089		0.743
##	348	37	1	0.5934	0.0572		0.4913		0.731
##	350	36	1	0.5769	0.0579		0.4739		0.702
##	351	35	1	0.5604	0.0586		0.4566		0.688
##	361	33	1	0.5434	0.0592		0.4390		0.673

##	363	32	1	0.5265	0.0597	0.4215	0.658
##	371	30	1	0.5089	0.0603	0.4035	0.642
##	426	26	1	0.4893	0.0610	0.3832	0.625
##	433	25	1	0.4698	0.0617	0.3632	0.608
##	444	24	1	0.4502	0.0621	0.3435	0.590
##	450	23	1	0.4306	0.0624	0.3241	0.572
##	473	22	1	0.4110	0.0626	0.3050	0.554
##	520	19	1	0.3894	0.0629	0.2837	0.534
##	524	18	1	0.3678	0.0630	0.2628	0.515
##	550	15	1	0.3433	0.0634	0.2390	0.493
##	641	11	1	0.3121	0.0649	0.2076	0.469
##	654	10	1	0.2808	0.0655	0.1778	0.443
##	687	9	1	0.2496	0.0652	0.1496	0.417
##	705	8	1	0.2184	0.0641	0.1229	0.388
##	728	7	1	0.1872	0.0621	0.0978	0.359
##	731	6	1	0.1560	0.0590	0.0743	0.328
##	735	5	1	0.1248	0.0549	0.0527	0.295
##	765	3	1	0.0832	0.0499	0.0257	0.270

The printout of the model reports the basic summary stats, and the summary reports the lifetable. We can also plot the data, either with the basic plot() function, or with the ggplot-friendly survminer::ggsurvplot(). ggsurvplot() doesn't follow the tidyverse principles perfectly, but it's still a marked improvement from the base library, see this blog for a good exploration of the options.

plot(km.lung00)

plot(km.lung01,col=2:3,xlab='Days',ylab='Survival Probabilty',main='Lung cancer survival rate by Sex')
legend("topright",fill=2:3,legend=c("Male","Female"))

Lung cancer survival rate by Sex

ggsurvplot(km.lung00)

1.2 Cox PH Regression

We'll use the coxph() command to fit Cox PH regression models - they follow the same general format as survfit(), but produce a regression model. We'll evaluate them using the car::Anova() command, which will evaluate the variables using log-likelihood tests.

```
#simple model predicting survival with sex
mod.lung01 = coxph(Surv(time,status)~sex,data=dat.lung)
#Anova evaluates each variables
car::Anova(mod.lung01)

## Analysis of Deviance Table
## Cox model: response is Surv(time, status)
## Terms added sequentially (first to last)
##
```

```
loglik Chisq Df Pr(>|Chi|)
## NULL -749.91
## sex -744.59 10.634 1 0.001111 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#getting the coefficient table
summary(mod.lung01)
## Call:
## coxph(formula = Surv(time, status) ~ sex, data = dat.lung)
##
    n= 228, number of events= 165
##
##
          coef exp(coef) se(coef)
                                       z Pr(>|z|)
                  0.5880
## sexF -0.5310
                          0.1672 -3.176  0.00149 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
       exp(coef) exp(-coef) lower .95 upper .95
## sexF
           0.588
                      1.701
                               0.4237
##
## Concordance= 0.579 (se = 0.021)
## Likelihood ratio test= 10.63 on 1 df,
                                           p=0.001
## Wald test
                       = 10.09 on 1 df,
                                           p=0.001
## Score (logrank) test = 10.33 on 1 df,
                                           p=0.001
#full model predicting survival with sex, ageGroup and ECOG score
mod.lung02 = coxph(Surv(time, status)~sex+ageGroup+ph.ecog, data=dat.lung)
car::Anova(mod.lung02)
## Analysis of Deviance Table (Type II tests)
           LR Chisq Df Pr(>Chisq)
##
            11.6240 1 0.0006511 ***
## sex
## ageGroup 3.4347 3 0.3293293
## ph.ecog
            18.0770 3 0.0004240 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(mod.lung02)
## Call:
## coxph(formula = Surv(time, status) ~ sex + ageGroup + ph.ecog,
##
      data = dat.lung)
##
##
    n= 227, number of events= 164
      (1 observation deleted due to missingness)
##
##
                                                   z Pr(>|z|)
##
                      coef exp(coef) se(coef)
## sexF
                   -0.5606
                              0.5709
                                       0.1688 -3.321 0.000897 ***
## ageGroup(50,60]
                    0.2478
                              1.2812
                                       0.2929 0.846 0.397446
## ageGroup(60,70]
                    0.1207
                              1.1283
                                       0.2821 0.428 0.668697
## ageGroup(70,100] 0.4590
                              1.5825
                                       0.3009 1.525 0.127136
## ph.ecog1
                    0.4309
                              1.5386
                                       0.2015 2.138 0.032507 *
## ph.ecog2
                    0.9485
                              2.5819
                                       0.2341 4.053 5.07e-05 ***
## ph.ecog3
                    2.1541
                              8.6205
                                       1.0343 2.083 0.037284 *
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
                    exp(coef) exp(-coef) lower .95 upper .95
## sexF
                       0.5709
                                  1.7517
                                            0.4101
                                                      0.7947
## ageGroup(50,60]
                       1.2812
                                  0.7805
                                            0.7217
                                                      2.2747
## ageGroup(60,70]
                                  0.8863
                                            0.6491
                       1.1283
                                                    1.9614
## ageGroup(70,100]
                       1.5825
                                  0.6319
                                            0.8775
                                                      2.8541
## ph.ecog1
                       1.5386
                                  0.6499
                                            1.0366
                                                      2.2838
## ph.ecog2
                       2.5819
                                  0.3873
                                            1.6320
                                                      4.0847
## ph.ecog3
                       8.6205
                                  0.1160
                                            1.1353
                                                     65.4566
##
## Concordance= 0.642 (se = 0.025)
## Likelihood ratio test= 32.94 on 7 df,
                                            p=3e-05
## Wald test
                        = 33.07 on 7 df,
                                            p=3e-05
## Score (logrank) test = 35.36 on 7 df,
                                            p=1e-05
That's good, but we need to get this in production-quality, so we'll format using our tidyverse skills.
#in multiple steps like a sane person
#a) extract the coefficients
coef = summary(mod.lung02)$coefficients %>% as.data.frame() %>%
 rownames to column()
#b) extract the confidence intervals
ci = summary(mod.lung02)$conf.int %>% as.data.frame %>%
              rownames_to_column()
#c) join the two, and reduce to useful columns
out01 = left_join(coef,ci) %>%
  select(rowname, 'exp(coef)', 'lower .95', 'upper .95', 'Pr(>|z|)') %>%
  rename(RR=`exp(coef)`,
         variable = rowname)
#d) print the columns
```

variable	RR	lower .95	upper .95	$\Pr(> z)$
sexF	0.571	0.41	0.79	0.0009
ageGroup(50,60]	1.281	0.72	2.27	0.3974
ageGroup(60,70]	1.128	0.65	1.96	0.6687
ageGroup(70,100]	1.583	0.88	2.85	0.1271
ph.ecog1	1.539	1.04	2.28	0.0325
ph.ecog2	2.582	1.63	4.08	0.0001
ph.ecog3	8.620	1.14	65.46	0.0373

out01 %>% kable(digits=c(0,3,2,2,4)) %>% kable_styling()

```
pack_rows("Sex",1,1)%>%
pack_rows("Age Group",2,4)%>%
pack_rows("ECOG Score",5,7)
```

variable	RR	lower .95	upper .95	$\Pr(> z)$					
Sex				•					
sexF	0.571	0.41	0.79	0.0009					
Age Group									
$\overline{\text{ageGroup}(50,60]}$	1.281	0.72	2.27	0.3974					
ageGroup(60,70]	1.128	0.65	1.96	0.6687					
$\overline{\text{ageGroup}(70,100]}$	1.583	0.88	2.85	0.1271					
ECOG Score	ECOG Score								
ph.ecog1	1.539	1.04	2.28	0.0325					
ph.ecog2	2.582	1.63	4.08	0.0001					
ph.ecog3	8.620	1.14	65.46	0.0373					

2 Multilevel Models

There are several ways to fit multilevel models in R, but the most common are with the lmer() and glmer() functions from the lme4 library. I'll focus on their use for multilevel models with random intercepts and/or random slopes - for longitudinal data I prefer gee(), but if you like mixed-effects for longitudinal data you can use lmer().

For this section I'm going to follow along with the UCLA Stats page on multilevel modeling, available here.

3 Syntax

The traditional syntax is y~x for a simple model, or y~x1+x2+...+xk for a multiple model. With multilevel modeling we want to be able to adjust for random slopes and/or random intercepts, which we control with additional random components in brackets () at the end of the equation. For a **random intercept** the format will be

```
y \sim x1+x2+x3+(1|group)
```

The 1 in the random component refers to the intercept, in a similar fashion to a regression model y~1 that fits y predicted with only an intercept. This fits a model that predicts y with x1, x2, x3, but adds a random intercept for each level of group.

If we also want random slopes the format would be

```
y \sim x1+x2+x3+(x2|group)
```

In this equation we're adding a random slope for the variable x2, while also including a random intercept by default. Note that x2 doesn't need to be in both variable lists, that was our choice for this model.

3.1 lmer example from UCLA stats

I'm having a hard time finding the provenance of the imm10 dataset - it's from the UCLA Stats textbook Introduction to Multilevel Modeling, but I can't find a help file or description of it, so I'm going to infer most of it.

It has 260 subjects from 10 different schools - we're going to focus on their math scores as a function of their dedication to homework.

```
dat.imm %>%
  ggplot(aes(x=math))+
  geom_histogram()
```



```
#geom_jitter is like geom_point, but can scatter things a bit randomly, useful for overlapping datapoin
dat.imm %>%
    ggplot(aes(x=homework,y=math))+
    geom_violin(aes(group=homework,colour=homework.fact))+
# geom_point(aes(colour=homework.fact))+
geom_jitter(aes(colour=homework.fact),width=0.2,height=0)+
```

geom_smooth()

dat.imm %>%
 ggplot(aes(x=math))+
 geom_histogram()+
 facet_wrap(~schid)


```
dat.imm %>%
   ggplot(aes(x=homework,y=math))+
   geom_point(aes(colour=homework.fact))+
   geom_smooth()+
   facet_wrap(~schid)
```


The graphics demonstrate a relationship between math score and homework, but probably significant variation between schools. We'll start with individual linear regression models.

```
lin.mods = by(dat.imm,dat.imm$schid,function(x){lm(math~homework,data=x)})
```

The by function stratifies a dataset by a variable and performs a function on each stratified dataset - in this case I fit a simple linear regression predict math score with homework for each school individually. I want to see how the models differ.

t(sapply(lin.mods,coef))

```
##
         (Intercept)
                       homework
## 7472
            50.68354 -3.553797
##
  7829
            49.01229 -2.920123
## 7930
            38.75000
                       7.909091
## 24725
            34.39382
                      5.592664
## 25456
            53.93863 -4.718412
## 25642
            49.25896 -2.486056
## 62821
            59.21022
                       1.094640
## 68448
            36.05535
                       6.496310
## 68493
            38.52000
                       5.860000
  72292
##
            37.71392
                       6.335052
```

These numbers confirm what our last plot showed - that the relationship between math and homework does not seem to be consistent across schools.

Based on the differences in both intercept and slope values, we'll fit a mixed effects model with a random slope for homework per school (and a random intercept per school).

```
mod.lme01 = lmer(math~homework+(homework|schid),data=dat.imm)
mod.lme01
```

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: math ~ homework + (homework | schid)
      Data: dat.imm
## REML criterion at convergence: 1763.954
## Random effects:
##
   Groups
                         Std.Dev. Corr
    schid
             (Intercept) 8.325
##
             homework
                         4.738
                                   -0.81
## Residual
                         6.563
## Number of obs: 260, groups:
                                 schid, 10
## Fixed Effects:
## (Intercept)
                   homework
         44.77
                        2.04
car::Anova(mod.lme01)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## Response: math
             Chisq Df Pr(>Chisq)
## homework 1.7236
                   1
                           0.1892
summary(mod.lme01)
## Linear mixed model fit by REML ['lmerMod']
## Formula: math ~ homework + (homework | schid)
##
      Data: dat.imm
## REML criterion at convergence: 1764
##
## Scaled residuals:
       Min
                1Q Median
                                 3Q
                                        Max
## -2.5110 -0.5357 0.0175 0.6121
                                     2.5708
##
## Random effects:
   Groups
                         Variance Std.Dev. Corr
             Name
##
    schid
             (Intercept) 69.31
                                   8.325
##
             homework
                         22.45
                                   4.738
                                            -0.81
                         43.07
## Residual
                                   6.563
## Number of obs: 260, groups: schid, 10
## Fixed effects:
               Estimate Std. Error t value
                 44.771
                              2.744 16.318
## (Intercept)
## homework
                  2.040
                              1.554
                                      1.313
##
## Correlation of Fixed Effects:
##
            (Intr)
## homework -0.804
And we can expand the model to other fixed effects as well (including school-level effects)
mod.lme02 = lmer(math~homework+public+(homework|schid),data=dat.imm)
mod.lme02
## Linear mixed model fit by REML ['lmerMod']
## Formula: math ~ homework + public + (homework | schid)
```

```
Data: dat.imm
## REML criterion at convergence: 1743.966
## Random effects:
## Groups
            Name
                        Std.Dev. Corr
## schid
            (Intercept) 6.771
##
            homework
                        4.895
                                 -0.97
## Residual
                        6.554
## Number of obs: 260, groups: schid, 10
## Fixed Effects:
## (Intercept)
                  homework
                                public
##
       58.041
                     1.952
                                -14.661
car::Anova(mod.lme02)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: math
            Chisq Df Pr(>Chisq)
## homework 1.491 1
                       0.2221
## public 48.403 1 3.47e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(mod.lme02)
## Linear mixed model fit by REML ['lmerMod']
## Formula: math ~ homework + public + (homework | schid)
##
     Data: dat.imm
##
## REML criterion at convergence: 1744
##
## Scaled residuals:
       Min
                1Q
                    Median
                                   3Q
## -2.63743 -0.56210 -0.05468 0.64216 2.58576
##
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## schid
            (Intercept) 45.85 6.771
##
                        23.96
                                4.895
            homework
                                         -0.97
## Residual
                        42.96
                                 6.554
## Number of obs: 260, groups: schid, 10
##
## Fixed effects:
              Estimate Std. Error t value
##
## (Intercept) 58.041
                            2.943 19.721
## homework
                1.952
                            1.599 1.221
## public
              -14.661
                            2.107 -6.957
##
## Correlation of Fixed Effects:
           (Intr) homwrk
##
## homework -0.741
## public
          -0.636 0.008
mod.lme03 = lmer(math~homework*public+(homework|schid),data=dat.imm)
mod.lme03
```

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: math ~ homework * public + (homework | schid)
     Data: dat.imm
## REML criterion at convergence: 1738.737
## Random effects:
## Groups
                         Std.Dev. Corr
            Name
## schid
             (Intercept) 7.200
##
             homework
                         5.222
                                  -0.98
## Residual
                         6.554
## Number of obs: 260, groups: schid, 10
## Fixed Effects:
##
       (Intercept)
                           homework
                                              public homework:public
           59.2102
                             1.0946
                                            -15.9657
                                                               0.9512
##
car::Anova(mod.lme03)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## Response: math
                     Chisq Df Pr(>Chisq)
                                  0.2522
## homework
                    1.3112 1
## public
                   48.8206 1
                              2.805e-12 ***
## homework:public 0.0295 1
                                  0.8637
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(mod.lme03)
## Linear mixed model fit by REML ['lmerMod']
## Formula: math ~ homework * public + (homework | schid)
      Data: dat.imm
##
##
## REML criterion at convergence: 1738.7
## Scaled residuals:
       Min
                 1Q
                      Median
                                    30
## -2.64023 -0.56436 -0.05373 0.65209 2.58438
##
## Random effects:
## Groups
             Name
                         Variance Std.Dev. Corr
                                  7.200
## schid
             (Intercept) 51.84
##
                         27.27
                                  5.222
                                           -0.98
             homework
## Residual
                         42.96
                                  6.554
## Number of obs: 260, groups: schid, 10
## Fixed effects:
                   Estimate Std. Error t value
                                7.4074
                                        7.993
## (Intercept)
                   59.2102
## homework
                     1.0946
                                5.2432
                                        0.209
## public
                                7.8292 -2.039
                   -15.9657
## homework:public
                                       0.172
                    0.9512
                                5.5424
## Correlation of Fixed Effects:
##
              (Intr) homwrk public
              -0.964
## homework
```

public -0.946 0.912 ## homwrk:pblc 0.912 -0.946 -0.963

4 Breakout Activity

- 1. There's another built-in dataset called **veteran** that reports the results of a trial comparing two treatment regimens for people with lung cancer. Use the dataset to
 - Draw a Kaplan-Meier curve survival with treatment
 - Fit a Cox PH model predicting survival with treatment, cancer type and age
- 2. For mixed effects model there's a library called mlmRev that has a dataset called Exam it records the exam scores for 4059 students from 65 schools in Inner London. I want you to build a model to predict their normalized exam score (normexam) based on the available data, see ?Exam after you install and load the library.