Example: Microsatellite data set

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.2.9 []

Program started at Wed Jun 15 16:42:04 2011 Program finished at Wed Jun 15 17:19:10 2011

Options

Datatype: Microsatellite data [Brownian motion]
Missing data: not included

Inheritance scalers in use for Thetas: 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00

[Each Theta uses the (true) ineritance scalar of the first locus as a reference]

Random number seed: (from parmfile) 1407071073

Start parameters:

Theta values were generated from the FST-calculation

M values were generated from guessed values

M-matrix:

- 1.0,

1.0,

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population 1 2 1 population_numb * * 2 population_numb * *

Order of parameters:

			Exan	nple: Micros	atellite data set 2
1 Θ_1		<displayed></displayed>			
Θ_2		<displayed></displayed>			
$M_{2->1}$		<displayed></displayed>			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		<displayed></displayed>			
Mutation rate among loci:			Muta	tion rate is o	constant for all loci
Analysis strategy is				М	aximum likelihood
Markov chain settings:		Shor	t chain		Long chain
Number of chains			10		2
Recorded steps [a]			100		1000
Increment (record every x	step [b]		100		100
Visited (sampled) geneald	gies [a*b]	10	0000		100000
Number of discard trees p	er chain (burn-in)		10000		10000
Multiple Markov chains:					
Averaging over replicates				Over indep	edent 2 replicates
Adaptive_standard heating	g scheme		4 chains	with start va	lues temperatures
		10000	00.00	3.00	1.50 1.00
				Swa	pping interval is 1
Print options:					
Data file:					infile.msat
Output file:					outfile-ml
Summary of genealogies	for further run:				sumfile
Print data:					No

Print genealogies [only some for some data type]: None Plot log(likelihood) surface: Yes, tables and summary

> Percentile method with df=1 and for Theta and M=m/mu

Profile likelihood:

Data summary

Datatype: Microsatellite data
Number of loci: 10

Population	Locus	Gene cop	oies
		data	(missing)
1 population_number0	1	50	(0)
	2	50	(0)
	3	50	(0)
	4	50	(0)
	5	50	(0)
	6	50	(0)
	7	50	(0)
	8	50	(0)
	9	50	(0)
	10	50	(0)
2 population_number1	1	42	(0)
	2	42	(0)
	3	42	(0)
	4	42	(0)
	5	42	(0)
	6	42	(0)
	7	42	(0)
	8	42	(0)
	9	42	(0)
	10	42	(0)
Total of all populations	1	92	(0)
	2	92	(0)
	3	92	(0)
	4	92	(0)
	5	92	(0)
	6	92	(0)
	7	92	(0)
	8	92	(0)
	9	92	(0)
	10	92	(0)

				Allele frequency spectra
Lacus	4			
Locus	Pop1	Pop2	All	
16	0.220	0.167	0.193	
19	0.040	0.071	0.056	
18	0.060	0.119	0.090	
15	0.220	0.024	0.122	
21	0.020	0.167	0.093	
23	0.020	0.119	0.070	
17	0.280	0.095	0.188	
22	0.060	0.119	0.090	
25	0.060	0.024	0.042	
24	0.020	0.000	0.010	
26	0.000	0.024	0.012	
27	0.000	0.048	0.024	
29	0.000	0.024	0.012	
	0			
Locus		D 0	A 11	
Allele	Pop1	Pop2	All	
16	0.520	0.571	0.546	
19	0.040	0.000	0.020	
18	0.220	0.119	0.170	
17	0.160	0.167	0.163	
15	0.020	0.000	0.010	
21	0.020	0.071	0.046	
20	0.020	0.024	0.022	
22	0.000	0.048	0.024	
	•			
Locus Allele	Pop1	Pop2	All	
19	0.240	0.262	0.251	
20	0.240	0.476	0.231	
18	0.280	0.476	0.088	
21	0.080	0.095	0.200	
21	0.280	0.119	0.200	
Locus				
Allele	Pop1	Pop2	All	

Allele	Pop1	Pop2	All	
16	0.080	0.071	0.076	
24	0.180	0.024	0.102	
15	0.020	0.048	0.034	
25	0.160	0.167	0.163	
14	0.020	0.048	0.034	
19	0.100	0.143	0.121	
12	0.060	0.000	0.030	
20	0.080	0.190	0.135	
23	0.060	0.119	0.090	
28	0.020	0.000	0.010	
22	0.060	0.024	0.042	
21	0.160	0.119	0.140	
13	0.000	0.024	0.012	
26	0.000	0.024	0.012	
Locus	5			
Allele		Pop2	All	
20	0.400	0.524	0.462	
21	0.420	0.357	0.389	
19	0.180	0.119	0.150	
Locus	6			
Allele		Pop2	All	
19	0.060	0.000	0.030	
20	0.100	0.024	0.062	
18	0.300	0.214	0.257	
22	0.200	0.119	0.160	
21	0.120	0.476	0.298	
16	0.060	0.000	0.030	
24	0.160	0.048	0.104	
17	0.000	0.119	0.060	
Locus	7			
Allele		Pop2	All	
23	0.040	0.238	0.139	
20	0.660	0.143	0.401	
22	0.180	0.190	0.185	
21	0.100	0.333	0.217	
19	0.020	0.095	0.058	

Locus	Ω		
ı	Pop1	Pop2	All
——	1 001	ι υμΖ	ΔII
19	0.520	0.524	0.522
17	0.040	0.048	0.044
18	0.100	0.071	0.086
20	0.140	0.190	0.165
16	0.080	0.000	0.040
22	0.100	0.048	0.074
15	0.020	0.048	0.034
23	0.000	0.071	0.036
Locus			
Allele	Pop1	Pop2	All
24	0.080	0.024	0.052
19	0.300	0.429	0.364
20	0.300	0.167	0.233
23	0.180	0.143	0.161
22	0.080	0.024	0.052
18	0.020	0.071	0.046
21	0.040	0.095	0.068
25	0.000	0.048	0.024
Locus	10		
	Pop1	Pop2	All
	'	•	
22	0.100	0.214	0.157
		0.214	
23	0.080	0.167	0.123
24	0.020	0.000	0.010
19	0.160	0.167	0.163
21	0.060	0.048	0.054
18	0.080	0.000	0.034
15	0.020	0.000	0.046
17	0.040	0.048	0.044
25	0.000	0.071	0.036

Maximum Likelihood estimates

Population [x]	Loc.	Ln(L/L0)	Θ	M (m/m	u) [+=receiving population	
			[x Ne mu]	1,+	2,+	
1:population	1 1	2.432	2.8078	-	1.737	
	12	8.388	1.3549	-	3.142	
	1 A	15.018	1.2292	-	2.552	
	2 1	2.179	2.0557	-	6.758	
	22	2.543	1.8014	-	6.883	
	2 A	4.371	2.0889	-	5.016	
	3 1	5.309	1.1489	-	7.682	
	3 2	1.331	1.0144	-	9.889	
	3 A	10.618	1.1489	-	7.682	
	4 1	6.137	5.3389	-	5.585	
	42	5.337	3.4673	-	3.675	
	4 A	15.532	1.3523	-	3.822	
	5 1	3.140	0.7467	-	5.422	
	52	1.144	1.1525	-	12.205	
	5 A	5.155	0.9964	-	5.264	
	6 1	1.783	1.3860	-	4.548	
	62	4.701	2.0583	-	2.686	
	6 A	9.306	1.8468	-	3.132	
	7 1	4.240	1.0686	-	5.715	
	72	5.225	1.0534	-	3.981	
	7 A	9.036	1.2470	-	3.111	
	8 1	13.145	1.1269	-	4.904	
	82	0.681	1.8920	-	7.090	
	8 A	12.258	1.1248	-	4.871	
	9 1	20.607	0.9851	-	0.243	
	92	1.233	2.2836	-	4.765	
	9 A	37.741	1.0895	-	0.131	
	10 1	5.602	2.5572	-	4.674	
	10 2	1.276	2.3523	-	3.479	
	10 A	15.362	0.7951	-	4.511	
	All	80.575	1.2167	-	3.731	
2:population	1 1	2.432	5.6497	1.037	-	
	12	8.388	2.6646	2.091	-	
	1 A	15.018	2.0374	0.917	-	
	2 1	2.179	1.2375	4.991	-	
	22	2.543	1.3831	4.059	-	
	2 A	4.371	1.1232	3.830	_	

3 1	5.309	0.8853	8.883	-
3 2	1.331	2.0040	4.690	-
3 A	10.618	0.8852	8.883	-
4 1	6.137	3.2402	4.172	-
4 2	5.337	3.2459	2.685	-
4 A	15.532	1.1081	3.077	-
5 1	3.140	0.9794	3.873	-
5 2	1.144	1.4847	6.369	-
5 A	5.155	0.5693	8.182	-
6 1	1.783	2.1616	3.190	-
62	4.701	1.0930	5.721	-
6 A	9.306	1.4970	5.704	-
7 1	4.240	1.2868	4.035	-
72	5.225	0.7950	3.165	-
7 A	9.036	0.9954	1.649	-
8 1	13.145	1.0934	3.167	-
8 2	0.681	2.6670	5.380	-
8 A	12.258	1.0922	3.130	-
9 1	20.607	1.1809	6.314	-
92	1.233	1.8669	4.105	-
9 A	37.741	1.0841	6.591	-
10 1	5.602	2.8264	1.984	-
10 2	1.276	1.8759	6.705	-
10 A	15.362	1.1212	1.619	-
All	80.575	1.0633	3.328	-

Comments:

The x is 1, 2, or 4 for mtDNA, haploid, or diploid data, respectively There were 10 short chains (100 used trees out of sampled 10000) and 2 long chains (1000 used trees out of sampled 100000) Adaptive heating with 4 chains was active

Alvectade la site: (i.a. ipresserpt.) for average, ten 196 e 200 r.e. 3. 134936, 4.729382 COMBINATION OF 2 MULTIPLE RUNS

Profile likelihood tables and plots

Profile likelihood table and plot for parameter $\,\Theta_1^{}\,$

 Θ_1

Per. Ln(L)

Parameters are evaluated at percentiles using bisection method (slow, but exact).

 Θ_2 M $_{2\rightarrow 1}$ M $_{1\rightarrow 2}$

0.005	77.256	1.03056	1.0306	1.0861	3.726	3.221
0.025	78.654	1.07554	1.0755	1.0746	3.741	3.271
0.050	79.222	1.09793	1.0979	1.0710	3.743	3.286
0.250	80.347	1.16703	1.1670	1.0650	3.737	3.315
MLE	80.575*	1.21665	1.2167	1.0633	3.731	3.328
0.750	80.347	1.26879	1.2688	1.0634	3.727	3.341
0.950	79.223	1.35011	1.3501	1.0673	3.724	3.363
0.975	78.653	1.37877	1.3788	1.0701	3.724	3.372
0 005	77 257	1 /3858	1 /386	1 0780	3 724	3 301

 Θ_1

Profile likelihood table and plot for parameter Θ_2

Parameters are evaluated at percentiles using bisection method (slow, but exact).

	Per.	Ln(L)	Θ_2	Θ_1	Θ_2	M _{2->1}	$M_{1\rightarrow 2}$
	0.005	77 257	0.916958	1 2178	0 9170	3 762	3.319
			0.948479				3.322
l	0.050	79.222	0.965361	1.2179	0.9654	3.748	3.324
l	0.250	80.347	1.02086	1.2174	1.0209	3.737	3.327
l	MLE	80.575*	1.06334	1.2167	1.0633	3.731	3.328
l	0.750	80.347	1.10972	1.2155	1.1097	3.726	3.327
l	0.950	79.222	1.18511	1.2132	1.1851	3.722	3.322
١	0.975	78.654	1.21214	1.2123	1.2121	3.720	3.320
١	0.995	77.257	1.26883	1.2105	1.2688	3.718	3.316
١							

Profile likelihood table and plot for parameter $\,$ M $_{2->1}$

Parameters are evaluated at percentiles using bisection method (slow, but exact).

Per.	Ln(L)	M _{2->1}	Θ_1	Θ_2	M _{2->1}	M _{1->2}
0.005	77.257	3.08102	1.2223	1.0690	3.081	3.310
0.025	78.654	3.22817	1.2216	1.0673	3.228	3.321
0.050	79.221	3.30505	1.2209	1.0666	3.305	3.325
0.250	80.347	3.55059	1.2183	1.0646	3.551	3.330
MLE	80.575*	3.7312	1.2167	1.0633	3.731	3.328
0.750	80.347	3.92435	1.2162	1.0621	3.924	3.320
0.950	79.221	4.28061	1.2315	1.0605	4.281	3.245
0.975	78.654	4.49977	1.2458	1.0632	4.500	3.180
0.995	77.257	4.95232	1.2375	1.0800	4.952	3.127

Profile likelihood table and plot for parameter $\,{\rm M}_{\,\,\,\,1->2}$

Parameters are evaluated at percentiles using bisection method (slow, but exact).

Per.	Ln(L)	M _{1->2}	Θ_1	Θ_2	M _{2->1}	$M_{1\rightarrow2}$
0.005	77.258	2.6427	1.1922	1.0673	3.743	2.643
0.025	78.654	2.79496	1.2020	1.0644	3.742	2.795
0.050	79.222	2.87514	1.2056	1.0637	3.740	2.875
0.250	80.346	3.13433	1.2132	1.0632	3.734	3.134
MLE	80.575*	3.32805	1.2167	1.0633	3.731	3.328
0.750	80.347	3.53195	1.2199	1.0629	3.726	3.532
0.950	79.222	3.8373	1.2268	1.0607	3.710	3.837
0.975	78.654	3.93868	1.2299	1.0598	3.703	3.939
0.995	77.258	4.13905	1.2370	1.0583	3.688	4.139

Summary of profile likelihood percentiles of all parameters

Parameter		Percen	itiles						
_	0.005	0.025	0.05	0.25	MLE	0.75	0.95	0.975	0.995
Θ_1	1.0306	1.0755	1.0979	1.1670	1.2167	1.2688	1.3501	1.3788	1.4386
Θ_2	0.9170	0.9485	0.9654	1.0209	1.0633	1.1097	1.1851	1.2121	1.2688
M_21	3.0810	3.2282	3.3050	3.5506	3.7312	3.9244	4.2806	4.4998	4.9523
M_12	2.6427	2.7950	2.8751	3.1343	3.3281	3.5320	3.8373	3.9387	4.1390

Average temperatures during the run

Chain	Θ_0				
1	1.00000				
2	1.93190				
3	3.13494				
4	4.72938				

Adaptive heating often fails, if the average temperatures are very close together try to rerun using static heating! If you want to compare models using marginal likelihoods then you MUST use static heating