22/23 מבוא למערכות לומדות - חורף 236756

HW4 dry

לוי הורביץ 313511602

<u>שאלה 1</u>

:1 סעיף

כן, f קמורה.

:2 סעיף

נגדיר:

$$g(x) = \begin{cases} 2x & x < 0 \\ 2 & x > 0 \\ 0 & x = 0 \end{cases}$$

נשים לב שלכל X > 0 ו- X < 0 ו- X < 0 הפונ' f גזירה ומתקיים f'=g גזירה אלמנטריות).

נוכיח שהיא קמורה בתחום הנ"ל:

עבור x < 0 מתקיים f קמורה לפי משפט. f " = 0 מתקיים x < 0 וכן עבור f " = $2 \ge 0$ מתקיים

ומכיוון ש- f גזירה וקמורה אז התת - גרדיאנט של f הוא הגרדיאנט שלה עצמה (*), ולכן מתקיים ומכיוון ש- $g(x)\in\partial f(x)$ בתחום הנ"ל אכן

 $0 \in \partial f(0)$ שאכן X = 0 נשאר להוכיח במקרה ש

על מנת להוכיח שאכן $0 \in \partial f(0)$, צריך להוכיח על פי ההגדרה שמתקיים:

$$\forall v \in V: f(v) \ge f(0) + 0^T (v - 0)$$
$$\iff \forall v \in V: f(v) \ge 0 + 0 = 0$$

:נשים לב שעל פי הגדרת f, אכן מתקיים

$$\forall v \in V : f(v) \ge 0$$

והוכחנו ש- $\partial f(0) = 0$. מש"ל.

(*) לפי ההגדרה:

$$\forall v \in V: f(v) \ge f(u) + q^{T}(v - u)$$

$$\iff \forall v \in V: \frac{f(v) - f(u)}{v - u} \ge q^{T}$$

וזה מתקיים באופן מיידי מתכונת קמירות

$$\forall v \in V: \frac{f(v) - f(x)}{v - x} \ge \frac{\partial f(x)}{\partial x} = g(x) = q^T$$

:3 סעיף

i	x_i	$f(x_i)$	$\frac{\partial}{\partial x}f(x_i)$
0	-1	1	-2
1	-0.5	1/4	-1
2	-0.25	1/16	-0.5
3	-1/8	1/64	-0.25
4	-1/16	1/236	-1/8

אפשר לראות לאחר 5 איטרציות שערכי X הולכים ומתקרבים ל- 0 (משמאל לציר Y) ובהתאמה ערכי הפונקציה הולכים וקרבים ל- 0 עם מחזוריות שיטתית (ערכי הפונקציה נחתכים ברבע בכל איטרציה).

:4 סעיף

i	x_i	$f(x_i)$	$\frac{\partial}{\partial x}f(x_i)$
0	-1	1	-2
1	1	2	2
2	-1	1	-2
3	1	2	2
4	-1	1	-2

קל לראות לאחר 5 איטרציות שהפונקציה תקועה על הערכים 1 ו 2 ולכן הפונקציה לא תתכנס לערך המינימלי שלה שהוא ב 0.

<u>שאלה 2</u>

$$argmax_{w} \prod_{i=1}^{m} P(y_{i}, x_{i}; w) \underset{(i)}{=} argmax_{w} \prod_{i=1}^{m} P(y_{i}|x_{i}; w) \cdot P(x_{i}|w) \underset{(i)}{=}$$

$$= argmax_{w} \prod_{i=1}^{m} P(y_{i}|x_{i}; w) \cdot P(x_{i}) \underset{(i)}{=} argmax_{w} \prod_{i=1}^{m} P(y_{i}|x_{i}; w) \underset{(i)}{=}$$

$$= argmax_{w} \log \prod_{i=1}^{m} P(y_{i}|x_{i}; w) \underset{(i)}{=} argmax_{w} \sum_{i=1}^{m} \log P(y_{i}|x_{i}; w) \underset{(i)}{=}$$

$$= argmax_{w} \sum_{i=1}^{m} \log \frac{1}{2b} e^{-\frac{|y_{i}-\mu|}{b}} \underset{(i)}{=} argmax_{w} \sum_{i=1}^{m} \log \frac{1}{2b} + \log e^{-\frac{|y_{i}-\mu|}{b}} \underset{(i)}{=}$$

$$= argmax_{w} \sum_{i=1}^{m} \log \frac{1}{2b} - \frac{|y_{i}-\mu|}{b} \underset{(i)}{=} argmax_{w} \sum_{i=1}^{m} -\frac{|y_{i}-\mu|}{b} \underset{(i)}{=} \underset{(i)}{=}$$

$$= argmin_{w} \frac{1}{b} \sum_{i=1}^{m} |y_{i}-\mu| \underset{(i)}{=} argmin_{w} \sum_{i=1}^{m} |y_{i}-\mu| \underset{(i)}{=} argmin_{w} \sum_{i=1}^{m} |\mu-y_{i}| \underset{(i)}{=}$$

$$= argmin_{w} \sum_{i=1}^{m} |w^{T}x_{i}-y_{i}| \underset{(i)}{=} argmin_{w} \frac{1}{m} \sum_{i=1}^{m} |w^{T}x_{i}-y_{i}|$$

הסברים למעברים:

- 1. על פי כלל ההסתברות השלמה.
- w- ולכן ניתן להשמיט את ההתניה ב-w, ולכן ניתן להשמיט את בלתי תלוי ב-w
- היא סקלר שאינו תלוי בארגומנט אותו אנו מחפשים שמביא את הביטוי .3 $\prod_{i=1}^m P(x_i)$.3 למקסימום, ולכן ניתן להשמיט אותו.
- היא פונקציה מונוטונית עולה, ולכן הפעלתו על הביטוי אינו משנה את הארגומנט שמביא Log .4 את הביטוי למקסימום.
 - 5. על פי חוקי לוגריתמים.
- 6. על פי הנתון: $\varepsilon_i \sim Laplace(0,b)$, ומכיוון ש- ε_i הוא הרעש של y בהינתן שאנו מסתכלים על $\varepsilon_i \sim Laplace(0,b)$, כלשהו, אז בעצם אנחנו מסתכלים רק על איך y יכול להתפלג כאשר x שלנו הוא קבוע. לכן z כי ההתפלגות של z נקבעת רק על פי z שהוא מתפלג כפי שהסברנו לעיל.
 - 7. על פי חוקי לוגריתמים.
 - 8. על פי חוקי לוגריתמים.
 - הוא סקלר שאינו תלוי בארגומנט אותו אנו מחפשים שמביא את הביטוי $\sum_{i=1}^m \log rac{1}{2b}$.9 למקסימום, ולכן ניתן להשמיט אותו.
- 10. הוצאת b החוצה מתוך הסכימה b אינו תלוי במשתנה הסכימה. בנוסף, השמטת המינוס תוך חיפוש של הארגומנט שיביא את הביטוי למינימום ולא למקסימום מעבר זה נכון מכיוון שהביטוי b גדול ממש מ-0 וערך מוחלט תמיד גדול שווה b).
- הוא סקלר שאינו תלוי בארגומנט אותו אנו מחפשים שמביא את הביטוי למינימום, ולכן ניתן $\frac{1}{b}$.11 להשמיט אותו.
 - .12 על פי חוקי ערך מוחלט.

- $\mathbb{E}[y_i] = \mu = w^T x_i$ טל פי הגדרת התפלגות לפלס: 13.
- 14. $\frac{1}{m}$ הוא סקלר שאינו תלוי בארגומנט אותו אנו מחפשים שמביא את הביטוי למינימום, ולכן ניתן להוסיף אותו.

<u>שאלה 3</u>

.A התשובה היא

C ו B לא, מכיוון שכל איטרציה מחלקת את המרחב בגרף לשניים ואין אפשרות לחלק את המרחב לשניים ואין אפשרות לחלק את המרחב לשניים (בציר x ובציר y) בשאר הגרפים בלי שנקבל סתירה בנתונים כי לכל חלוקה שנעשה נקבל באותו צד פלוסים ומינוסים נכונים/שגויים וזה בלתי אפשרי.

ח אפשר לחלק למשל ע"י כך שלכל $x \leq 0$ צריך להיות (+) ולכל $x \leq 0$ צריך להיות (-). אבל אנחנו $x \leq 0$ אפשר לחלק למשל ע"י כך שלכל $x \leq 0$ צריך לאמן את ה-weak classifier. זאת אומרת שהוא חייב פשביל לאמן את השגיאה הכי נמוכה על ההתפלגות הנתונה. וב $x \leq 0$ יש $x \leq 0$ טעיות וב decision stump שמחזיר את השגיאה הכי נמוכה על ההתפלגות הנתונה. וב $x \leq 0$ יש $x \leq 0$ טעיות וב שנציע בהמשך) אז האלגוריתם מעדיף את האפשרות עם $x \leq 0$ טעיות הכי קטנה שזאת $x \leq 0$ שנציע בהמשך) אז האלגוריתם מעדיף את האפשרות עם הטעות הכי קטנה שזאת $x \leq 0$

:באופן הבא weak classifier נציע

לכל 3.5 $y \leq 3$ צריך להיות (+) ולכל 3.5 y > 3 צריך להיות (+), בהנחה שכל משבצת בגרף היא יחידה אחת.

ואכן אפשר לראות שהאלגוריתם בגרף A נותן משקל יתר ל- (+) מכיוון שהם בצד הלא נכון של הגרף בשונה מה- (-), שהם לא מקבלים משקל יתר מכיוון שהם בצד הנכון של החלוקה בגרף, ואכן אפשר לראות שיש רק 2 טעיות במקום 3 (בשונה מ 3).