Policy Delegation: Inflation Bias and Central Bank Independence

Macroeconomics 2: Monetary Policy Andrew Pickering

Introduction

- Observation: (Changes in) monetary policy are inherently redistributive.
 - Borrowers and lenders affected differently.
 - Hence a 'political' decision?
- What is monetary policy for?
 - Price Stability?
 - Stable Inflation?
 - Minimize output variability?
- Who should do it?
 - Politicians?
 - Delegated 'independent' officials?

Introduction

Introduction

- Politicians are *democratically accountable*, but:
 - democracy in general doesn't guarantee optimal outcomes;
 - maybe incompetent;
 - maybe susceptible to inflation bias;
 - maybe susceptible to electorally induced volatility.

Introduction

The Barro-Gordon model

The Barro-Gordon (1983) model of inflation bias

Consider the following very simple set-up where the government's preferences are represented by

$$L^G = \lambda \pi^2 + (x - x^*)^2$$

 L^G = the welfare loss to the government, π =inflation, x=output deviation from the natural rate, x^* =targeted output and λ is the government's relative dislike for the deviation of inflation from zero.

Barro-Gordon: the 'loss function'

The Barro-Gordon model

The 'constraint' is the Phillips Curve:

which implies

$$x = \alpha(\Pi - \Pi^e)$$

where π^e is expected inflation. (Note when expectations are correct, output equals its natural rate.)

Note this is a rewritten form of the Phillips Curve you encountered in Macro 1 (where inflation was on the LHS).

The Barro-Gordon model

The Barro-Gordon Model

Timing – implicit in the Phillips Curve:

(Important!)

Wages are set *before* policy is set. So have to <u>form an expectation</u> of what the policymaker – who here effectively chooses π – will do.

Equilibrium inflation and output

Optimization under 'monetary policy discrection' (D) implies;

$$L^{D} = \lambda \Pi^{2} + (x - x^{*})^{2} = \lambda \Pi^{2} + (\alpha(\Pi - \Pi^{e}) - x^{*})^{2}$$
$$\partial L^{D} / \partial \pi = 2\lambda \pi + 2\alpha(\alpha(\pi - \pi^{e}) - x^{*}) = 0$$

Setting $\pi = \pi^e$ as in the medium run and re-arranging yields;

$$\Pi^D = \alpha x^*/\lambda$$
, $x^D = 0$

Note that x = the output gap = 0 in the medium run

Equilibrium inflation and output

The argument that $\pi = \pi^e$ in the medium run is means that the Phillips Curve will adversely shift as the private sector anticipates expansionary policy if inflation is too low.

Barro-Gordon: inflation bias

Inflation Bias

• The source of such a positive inflation bias is the rational expectations – wages are set on wage setters' expectations of the policy-maker's actions not on announcements.

• Such an inflation bias arises from the **time-inconsistency** of 'initially optimal' policies (Kydland and Prescott 1977).