1.器件总结

■频率(开关速度)比较

■容量比较

■应用比较

- ▶小功率(10kW以下)场合以电力MOSFET为主;
- ▶中、大功率场合以IGBT为主的压倒性局面。(兆瓦以下首选)
- ➤GTO: 兆瓦以上全控器件首选,制造水平6kV/6kA。
- ≻在10MVA以上或者数千伏以上的应用场合,如果不需要自关

断能力,那么晶闸管仍然是目前的首选器件。

(MOS控制晶闸管, MOSFET与晶闸管复合) (静电感应晶体管, 结型场效应晶体管, 单极型) (静电感应晶闸管, SIT与GTO复合)

(集成门极换流晶闸管, MOSFET与GTO复合)

G A o

TRIAC (__晶闸管) RCT (__晶闸管) LTT (___晶闸管)

名称	英文	控制 程度	信号性质	信号波形	载流 子	特征	特殊问题	符号	半导 体层 /PN结
电力二极 管							□ PN结二层、 单向导电 □ 额定电流为 平均值 □ I =1.57I _{TAv}		
晶闸管 (可控硅)						双极型器件共同特征: 两种载流子导电具有电导调制效应通态压降和导通损耗小	□ 三端四层结构 □ 额定电流、 额定电压 □ 双向晶闸管 TRIAC		
门级可关 断晶闸管						电流驱动型共同特征:□ 驱动电路复杂□ 工作频率低□ 驱动功率大	□ 三端四层结 构 □ 关断增益小: β≈5		
电力晶体 管							□ 三层结构、 二次击穿 □ 工作区:		
电力场效 应晶体管						□ 开关频率最高 □ 驱动电路简单、驱动功率小 □ 小功率应用最广	□ 工作区:		
绝缘栅双 极晶体管						□ MOS管+GTR组合 □ 驱动电路简单、驱 动功率小 □ 中大功率广泛应用	□ 工作区:		

2.整流总结

电路名称		单相半波	单相全波		单相桥式	全控	单相桥式半控	三相半	波可控	三相桥	式全控
电路图											
电	移相范围										
	晶闸管导通角							$120^{\circ} (\alpha \le 30^{\circ})$	$150^{\circ} - \alpha \ (\alpha > 30^{\circ})$	$120^{\circ} (\alpha \le 60^{\circ})$	$2(120^{\circ} - \alpha)(\alpha > 60^{\circ})$
阻性负载	晶闸管最大正/ 反向电压										
教	直流输出电压平 均值U _d										
	是否需要续流管	要	要	不要	要	不要	要	不要		-/	不要
	移相范围										
大电1	晶闸管导通角										
感负载	晶闸管电流有效 值/输出直流平 均值(I _{vt} /I _d)										
	均值(I _{YI} /I _d) 晶闸管最大正/ 反向电压										
	直流输出电压平 均值U _d										

知识点

关键点

变压器漏感对整流电路的影响

谐波和功率因数

①换相过程持续的时间,用电角度 Y 表示,称为______

②Y 随其它参数变化的规律:

- (1) **/**d越大则**/** 越 ___;
- (2) X_B越大 Y 越____
- (3) 当**α≤90°**时, α越小**Y** 越___。

③变压器漏感对整流电路影响的一些结论:

- + 出现换相重叠角Y,整流输出电压平均值 U_{d} ____。
- ◆ 整流电路的工作状态____。
- ◆ 晶闸管的d*i/*d*t*_____, ____利于晶闸管的安全开通。 有时人为串入进线电抗器以抑制晶闸管的d*i/*d*t*。
- ullet 换相时晶闸管电压出现缺口,产生正的du/dt,可能使晶闸管______,为此必须加吸收电路。
- ◆ 换相使电网电压出现 ,成为干扰源。

● 无功的危害:

- ◆ 导致设备容量 。
- ◆ 使设备和线路的损耗_____。
- * 线路压降_____, 冲击性负载使电压剧烈波动。
- 功率因数:

$$\lambda = \frac{P}{S} = \frac{UI_1 \cos \varphi_1}{UI} = \frac{I_1}{I} \cos \varphi_1 = v \cos \varphi_1$$

- Φ 基波因数—— $n = I_1/I$;
- 位移因数 (基波功率因数) ——cosφ₁

功率因数由基波电流相移和电流波形畸变共同决定。

- □ 单相桥式全控: λ= ____cosα
- □ 三相桥式全控: *λ*= cosα

● 谐波的危害:

- 降低设备的效率。
- **影响用电设备的正常工作。**
- 引起电网局部的谐振,使谐波放大,加剧危害。
- 导致继电保护和自动装置的误动作。
- ◆ 对通信系统造成干扰。
- m脉波整流电路谐波组成规律:
- 交流侧(输入侧)谐波次数为____次;
- 直流侧(输出侧)谐波次数为次;
- $lacksymbol{ ilde{\square}}$ 当 $_m$ 一定时,随谐波次数增大,谐波幅值迅速 $_{\underline{\hspace*{0.5cm}}}$;
- 加增加时,最低次谐波次数增大,且幅值迅速减小,电压纹波因数迅速。

索洛尔西格丁二叶克勒洛大西欧

关键点

电容滤波的不可控整流电路

知识点

单相不可控整流电路

空载时, U_d=____。
 重载时, U_d=___。
 一般设计: U_d=___。

三相不可控整流电路

带平衡电抗器的双反星形可控整流电路

🥟 结构特点:

◆ 二次侧为两组______的绕组, 分别接成两组三相半波电路。

◆ 二 次 侧 两 绕 组 的 极 性 相 反 可 消 ▶

双反星形电路与三相桥式电路进行比较:

Ф	三相桥为两	组三相半波,	而双反星形为两组三
相当	ビ油	日后老季田亚海由井	九哭

- \oplus 当 U_2 相等时,双反星形的 U_d 是三相桥的_____,而 I_d 是三相桥的 倍。
- → 两种电路中, 晶闸管的导通及触发脉冲的分配关系一样,*u_d*和 *i_d*的______。
- **中 ______次数相同。**

多重化整流电路

②n组串联多重总结:

- ✓ 整流变压器的二次绕组移相_____;
- ✓ 整流输出脉波数m=
- ✓ 交流侧输入谐波次数为______, 直流侧输出谐波次数为______, k=1, 2, 3...
- ✓ _____大幅减小,在一定程度上提高_____

知识点

关键点

整流电路的有源逆变工作状态

①有源逆变条件

- ♥ 有_______, 其极性和晶闸管导通方向一致,其值_____变流器直流侧平均电压。
- \bullet 晶闸管的控制角 $\alpha > ____, 使 U_d 为_____。$

②能实现有源逆变电路

- <u>或有</u><u>或有</u><u>的电路</u>,因其整流电压 u_d不能出现负值,也不允许直流侧出现负极性的电动势,故不能实现有源逆变。
- ◆ 欲实现有源逆变,只能采用______电路。

③逆变失败

- 触发电路工作不可靠,不能适时、准确地给各晶闸管分配脉冲,如脉冲丢失、脉冲延时等,致使晶闸管 不能正常换相。
- 晶闸管发生故障,该断时不断,或该通时不通。
- 交流电源缺相或突然消失。
- lacktriangle 最小逆变角 eta_{min} 一般取______。

④逆变电路分析

- 把 α >π /2时的控制角用 π α = β 表示, β 称为_____。
 - $+0<\alpha<\pi/2$ 时,电路工作在 状态。
 - $\Phi \pi/2 < \alpha < \pi$ 时,电路工作在______状态。
- 三相桥式电路工作于有源逆变状态 $U_d = -2.34U_2 \cos \beta$

3.逆变总结

类型	整体特征	单相	三相		
电压型变电路	□直流侧为电压源或 者并联大为流侧输出为流侧输出为流 矩形波,输载出为流和同人。 和同一常采用IGBT,逆 桥各臂并联反 馈。	1)单相半桥 两桥臂; 直流侧两电容器串联,需均压 输出交流电压幅值为; 基波电压有效值 \(\begin{align*} U_0 = \\ \begin{align*} U_d \\ \begin{align*} \emptyred{\text{but}} \\ \text{b	1)控制方式 □ 任一瞬间有个开关同时导通; □。导电方式 □向换流 □ 先断后通 2)数量关系 □ 相电压基波有效值 U ₀₁ =0.45 U _d □ 线电压基波有效值 U _{UV1} =0.78 U _d □ 谐波次数 n =		
电流 型 逆变 电路	□ 直流侧串大; □ 交流侧输出为 矩形波,输出电压 因负载不同而不同; □ 常采用晶闸管, 需要反并联二极管。	 □ 负载换流; □ 并联谐振略呈性 □ <i>U</i>₀接近正弦波 □ 基波电流有效值<i>I</i>₀₁=0.9<i>I</i>_d □ 谐波次数<i>n</i> = 	1) 控制方式 □ 任一瞬间有个开关同时导通; □。 导电方式 □向换流 2) 数量关系 □交流电流基波有效值 I _{U1} =0.78 I _d □ 谐波次数 n =		
換流 方式	□换流—采用IGBT 、电力MOSFET 、GTO 、GTR等全控型器件的电路中的换流方式; □ 换流、 换流、 换流—针对晶闸管;				

类型	降压斩波(buck)	升压斩波(boost)	升降压斩波(buck-boost)	cuk斩波	
电路图	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} L & i_{L} \longrightarrow & VD \\ \hline U_{i} & \downarrow & \downarrow & \downarrow \\ \hline U_{i} & u_{\underline{S}} / S & C & R \end{array} $	$ \begin{array}{c c} S & VD \\ \hline + u_s^{-} & \downarrow \\ \hline + U_i & L \\ \end{array} $	$ \begin{array}{c c} L & C_1 & L_1 \\ \hline U_i & + & C_1 & I_1 \\ \hline U_i & + & C_1 & I_1 \\ \hline U_i & + & C_1 & I_1 \\ \hline VD & C & R \end{array} $	
输出 电压					
说明 降压		电感泵升 电容维持	0 < D <0.5, 0.5 < D <1,		
极性极性		极性	极性		
连续	电源电流 负载电流	电源电流 负载电流	电源电流 负载电流	电源电流 负载电流	

电路 ᡮVD, 变压器的磁心复位 $\frac{U_{\rm o}}{U_{\rm i}} =$ 电路 $\frac{U_{\rm o}}{U_{\rm i}} \! = \!$

斩波电路三种控制方式

- ◆ T不变, 变ton —_____调制 (PWM)。
- ◆ ton不变,变T —_____调制。
- ◆ ton和T都可调 —____型。

- ◆ 间接直流变流电路分为<mark>单端和双端</mark>电路两大类;
- 单 单端电路中,变压器中流过的是直流脉动电流;双端电路中,变压器中的电流 为正负对称的交流电流;
- ▶ ____电路和___电路属于单端电路,___、__和__电路属于双端电路。

5.交-交总结

类	型	工作原理	特点	典型应用	说明
交流电 力控制	交流调 压电路	目标: 策略: 手段:	结构相同,控制方式不同		+电阻负载:≤α≤;α增大, u。降低, 功率因数降低+阻感负载:≤α≤。谐波少, φ增大, 谐波减少。
电路	交流调 功电路	目标: 策略 手段			
	交流电 力电子 开关	目标:			电容器预充电电压为电源电压 峰值
变频 电路	交交 变频	目标: 策略: 手段:			
	交直交 变频	交-直-交	输出频率灵活		恒压频比控制保持 U/f=恒值

6.共性问题总结

知识点	特	征
驱动电路	 ①驱动电路: 主电路与控制电路之间的接口 ②驱动电路的基本任务: ✓ ③晶闸管触发电路应满足下列要求: ✓ が脉冲的。 ✓ 独发脉冲应有足够的。 ✓ 不超过门极。 有良好的。性及与主电路的。 	 ④电压驱动型器件的驱动电路 ✓ 电力MOSFET开通的栅源极间驱动电压一般取10~15V; ✓ IGBT开通的栅射极间驱动电压一般取15 ~ 20V。 ✓ 关断时施加一定幅值的
保护	①过电压保护 /过电压: 主要来自雷击和系统操作过程等外因,包括 /过电压: 主要来自电力电子装置内部器件的开关过程,包括 /为抑制内因过电压的措施 ②过电流保护 / 过电流分	过电压和过电压。 区段的保护,整定在电子电路动作之后实现保护,整定在过载时动作。 以换相过电压,抑制du/dt,减小关断损耗。 以冲和di/dt,减小器件的开通损耗。
串并联问题	①	②晶闸管的并联(均流)

7.PWM 控制技术总结

知识点	关键点	
理论基础	<mark>原理</mark> :相等而不同的窄脉冲加在 SPWM波: 用一系列 的脉冲来代替一个	在具有惯性的环节上时,其 <mark>基本相同。</mark> >正弦半波。
计算法		个频率的特定谐波。
调制法	①极性PWM调制 # u ₀ 正半周, V ₁ 通, V ₂ 断, V ₃ 和V ₄ 交替通断。	②极性PWM调制 + u _r >u _c 时,V ₁ 和V ₄ 导通,V ₂ 和V ₃ 关断。
V_1 V_2 V_3 V_4 V_5 V_5 V_5 V_5	$oldsymbol{u}_0$ 负半周, $oldsymbol{V}_2$ 通, $oldsymbol{V}_1$ 断, $oldsymbol{V}_3$ 和 $oldsymbol{V}_4$ 交替通断。	$igoplus egin{aligned} & oldsymbol{u_r}\!\!<\!\!oldsymbol{u_c}\!$
信号波 Ur 调制	调制: 载波信号和调制信号不同步的调制方式;调制: 异步调制和同步调制的综合应用。	一週制:载波信号和调制信号保持同步的调制方式,当变频时 使载波与信号波保持同步,即N等于常数。
载波 ^u c ▶ 电路	④SPWM实现方法	# 采样法
	在正弦波和三角波的交点时刻生成的PWM波的方法,其求解复杂,工程应用不多。 ⑤PWM逆变电路的谐波分析	工程实用方法,效果接近自然采样法,计算量小。
	 単相桥式PWM逆变电路:不含低次谐波,只含w。、 2w。、3w。及其附近的谐波,幅值最高影响最大的是角频率w。的谐波分量。 	 三相桥式PWM逆变电路:载波角频率w。整数倍的谐波没有了, 谐波中幅值较高的是w。±2w,和2w。±w。。 结论:主要是角频率为w。、2w。及其附近的谐波,一般情况下
	⑥PWM逆变电路性能改进	w _c >>w _r , <mark>频率高,很容易滤除的。</mark>
	+采用作为调制信号 ——可有效提高直流电压利用率,以提高逆变器的输出 能力;	+ 采用控制方式 ——尽可能提高直流电压利用率,并尽量减少器件开关次数,以降 低开关损耗。
跟踪控制法	采用电流闭环控制,使实际电流快速跟随给定值,在稳态时	,尽可能使 <mark>实际电流接近</mark> 。有比较方式和比较方式。