PSALTer results panel

 $S = \iiint (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} - \frac{1}{2} r_{,\alpha} (\partial_{\beta}\mathcal{A}^{\theta}_{,\alpha} \partial^{\beta}\mathcal{A}^{\alpha\beta}_{,\alpha} + \partial_{\beta}\mathcal{A}^{\theta}_{,\alpha} \partial^{\beta}\mathcal{A}^{\alpha\beta}_{,\alpha} + \partial_{\alpha}\mathcal{A}^{\alpha\beta}\partial_{\theta}\mathcal{A}^{\beta}_{,\alpha} - 2 \partial^{\beta}\mathcal{A}^{\alpha\beta}_{,\alpha} \partial_{\theta}\mathcal{A}^{\theta}_{,\alpha} - 2 \partial^{\beta}\mathcal{A}^{\alpha\beta}_{,\alpha} \partial_{\theta}\mathcal{A}^{\beta}_{,\alpha} - 2 \partial^{\beta}\mathcal{A}^{\alpha\beta}_{,\alpha} \partial_{\theta}\mathcal{A}^{\beta}_{,\alpha} - 2 \partial^{\beta}\mathcal{A}^{\alpha\beta}_{,\alpha} \partial_{\theta}\mathcal{A}^{\beta}_{,\alpha} - 2 \partial^{\beta}\mathcal{A}^{\alpha\beta}_{,\alpha} \partial_{\theta}\mathcal{A}^{\beta}_{,\alpha} - 2 \partial^{\beta}\mathcal{A}^{\alpha\beta}_{,\alpha} - 2 \partial^{$

Wave operator

	$^{0^+}_{\cdot}\mathcal{J}$	(0.+	0.+f	[⊥] 0 ⁻ <i>A</i> ∥										
${}^{0,^{+}}\mathcal{H}^{\parallel}$ †	0	0	0	0										
^{0,+} f [∥] †		0	0	0										
$0.^+f^{\perp}$ †	0	0	0	0										
⁰ -Æ [∥] †	0	0	0	0			$^{1^+}f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{A}^{\parallel}{}_{lpha}$	$^1{\mathscr H}^{\scriptscriptstyle\perp}{}_{\alpha}$	$^{1}f^{\parallel}_{\alpha}$	$\frac{1}{f}f_{\alpha}$	_		
				$^{1.^{+}}\mathcal{A}^{\parallel}\dagger^{^{lphaeta}}$	$k^2 (2r. + r.)$	0	0	0	0	0	0			
				$^{1.^{+}}\mathcal{H}^{\scriptscriptstyle \perp}\dagger^{lphaeta}$	0	0	0	0	0	0	0			
				$1.^+f^{\parallel} \uparrow^{\alpha\beta}$	0	0	0	0	0	0	0			
				${}^{1}\mathcal{A}^{\parallel}$ † $^{\alpha}$	0	0	0	$\frac{1}{2}k^2(r_1+2r_2)$	0	0	0			
				$^{1}\mathcal{F}^{\perp}$ $^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\parallel}\uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	0	0	0	0	$^{2^{+}}\mathcal{H}^{\parallel}{}_{\alpha\beta}$	$2.^+f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\mathcal{H}^{\parallel}\dagger^{^{lphaeta}}$	$-\frac{3k^2r}{2}$	0	0
											$2.^+f^{\parallel} \uparrow^{\alpha\beta}$	0	0	0
											$2^{-}\mathcal{A}^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	0

Saturated propagator

	0.+ σ	0,+ _T	0.+ τ.	$0^{-}\sigma^{\parallel}$										
$^{0.^{+}}\sigma^{\parallel}$ †	0	0	0	0										
$^{0.^{+}}\tau^{\parallel}$ †		0	0	0										
$0.^+\tau^{\perp}$ †	0	0	0	0										
⁰⁻ σ †	0	0	0	0	$^{1.^{+}}\sigma^{\parallel}{}_{lphaeta}$	$1.^+\sigma^{\perp}_{\alpha\beta}$	$1.^{+}\tau^{\parallel}_{\alpha\beta}$	$\frac{1}{2}\sigma^{\parallel}_{\alpha}$	$\frac{1}{2}\sigma^{\perp}_{\alpha}$	$1^{-}\tau^{\parallel}_{\alpha}$	$1^{-}\tau^{\perp}{}_{\alpha}$	_		
				$^{1.^{+}}\sigma^{\parallel}$ † lphaeta	$\frac{1}{k^2(2r_1+r_1)}$	0	0	0	0	0	0			
				$^{1^+}\sigma^{\scriptscriptstyle \perp}\dagger^{^{lphaeta}}$	0	0	0	0	0	0	0			
				$1.^+\tau^{\parallel} \uparrow^{\alpha\beta}$	0	0	0	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel}\uparrow^{\alpha}$	0	0	0	$\frac{2}{k^2 (r_1 + 2r_1)}$	0	0	0			
				$\frac{1}{2}\sigma^{\perp} + \alpha$	0	0	0	0	0	0	0			
				$1^{-}\tau^{\parallel} +^{\alpha}$	0	0	0	0	0	0	0			
				$1^{-}\tau^{\perp}\uparrow^{\alpha}$	0	0	0	0	0	0	0	$^{2.^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$2.^{+} \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
											$^{2.^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$-\frac{2}{3 k^2 r}$	0	0
											$2^+_{\cdot} \tau^{\parallel} + ^{\alpha\beta}$	0	0	0
										:	$2 \sigma^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	0

Source constraints

Spin-parity form	Covariant form	Multiplicities			
$0.\sigma^{\parallel} == 0$	$\epsilon \eta_{\alpha\beta\chi\delta} \ \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1			
$0^+_{\cdot}\tau^{\perp}==0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1			
$0^+_{\cdot}\tau^{\parallel}==0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\ \alpha}$	1			
$0^+\sigma^{\parallel}==0$	$\partial_{\beta}\sigma^{\alpha}_{\ \alpha}^{\ \beta} == 0$	1			
1. r. a == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3			
1. τ" == O	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3			
$\frac{1}{1}\sigma^{\perp}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{etalpha\chi}==0$	3			
$1^+_{\cdot \tau} \parallel^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3			
$1^+ \sigma^{\alpha\beta} == 0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3			
$2 \sigma^{\parallel \alpha \beta \chi} == 0$	$3\partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} + 3\partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta}_{\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\alpha\chi\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\delta} + 4\partial_{\epsilon}\partial^{\mu}\partial_{\lambda}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu$	5			
	$2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\alpha}\sigma^{\delta}_{\delta}^{\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\beta\epsilon} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta\alpha}_{\delta} = 3\partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 3\partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha}_{\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta\chi\delta} + 2\partial_{\epsilon}\partial^{\alpha}\partial^{\alpha}\partial^{\beta}\partial^{\alpha}\partial^{\alpha}\partial^{\beta}\partial^{\alpha}\partial^{\alpha}\partial^{\beta}\partial^{\alpha}\partial^{\alpha}\partial^{\beta}\partial^{\alpha}\partial^{\alpha}\partial^{\beta}\partial^{\alpha}\partial^{\alpha}\partial^{\beta}\partial^{\alpha}\partial^{\alpha}\partial^{\beta}\partial^{\alpha}\partial^{\alpha}\partial^{\beta}\partial^{\alpha}\partial^{\alpha}\partial^{\beta}\partial^{\alpha}\partial^{\alpha}\partial^{\beta}\partial^{\alpha}\partial^{\alpha}\partial^{\beta}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\beta}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\beta}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha$				
	$4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\alpha\beta\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\beta\alpha\chi} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\chi\alpha\beta} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial^{\phi}\partial^{\phi}\partial^{\phi}\partial^{\phi}\partial^{\phi}\partial^{\phi}\partial^$				
$2^+_{\cdot} \tau^{\parallel^{\alpha\beta}} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\ \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} = 0$	5			
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau(\Delta+\mathcal{K})^{\chi}_{\chi}$				
Total expected gauge generators:					

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue:	$-\frac{2}{r_{.3}}$ +	$\frac{3}{2r.+r.}$	$\frac{16}{r_1 + 2r_5} > 0$
Polarisations:	2		_

Unitarity conditions

 $(r_{.} < 0 \&\& (r_{.} < -\frac{r_{.}}{3} || r_{.} > -2 r_{.})) || (r_{.} > 0 \&\& -2 r_{.} < r_{.} < r_{.} < -\frac{r_{.}}{3})$