Arduino

Application of CS concepts

{coding&&community}

Review of Basic Commands

pinMode(pin, mode)

Sets pin to either INPUT or OUTPUT

digitalRead(pin)

- Reads HIGH or LOW from a pin
- input

digitalWrite(pin, value)

- Writes HIGH or LOW to a pin
- output

delay(value)

 Pauses the program for the amount of time in milliseconds (1/1000th of a second)

Constants:

HIGH: 5V or on

LOW: 0V or off

What does this do?

```
int pinLed = 13;
int timeDelay = 1000;
void setup()
    pinMode(pinLed, OUTPUT);
void loop()
    digitalWrite(pinLed, HIGH);
    delay(timeDelay);
    digitalWrite(pinLed, LOW);
    delay(timeDelay);
```

1

Statements and Loops

IF and ELSE Statement

 The if() statement allows you to make something happen or not, depending on whether a given condition is true or not.

There is a common variation called if-else.

 There's also the **else if()**, where you can check a second condition if the first is false:

```
if (some condition) {
   //do some stuff if the condition is true
}
```

```
if (some condition) {
    //do some stuff if the condition is true
} else {
    //do some stuff if the condition is false
}
```

```
if (some condition) {
    //do some stuff if the condition is true
} else if (some condition ){
    //do some stuff if the first condition is false
    //and the second condition is true
}
```

Exercise

 Write a program using if and else statements that makes your LED blink faster and faster

Example Answer

```
int pinLed = 13;
int timeDelay = 1000;
void setup()
    pinMode(pinLed, OUTPUT);
void loop()
   if (delayTime >= 0){
       delayTime = 1000;
    } else {
       delayTime = delayTime - 100;
    digitalWrite(pinLed, HIGH);
    delay(timeDelay);
    digitalWrite(pinLed, LOW);
    delay(timeDelay);
```

Logical Operator Review

Operator	Example	Meaning
&&	(A < 10) && (B > 5)	logical AND (return TRUE if con- dition A AND condition B are true, otherwise return FALSE.)
11	(A < 10) (B > 5)	logical OR (return TRUE if condi- tion A OR condition B is true, oth- erwise return FALSE.)
1	!(A < 10)	logical NOT (return TRUE if con- dition A is false, otherwise return FALSE.)

Operator	Meaning	
==	is equal to	
!=	is not equal to	
<	is less than	
>	is greater than	
<=	is less than or equal to	
>=	is greater than or equal to	

WHILE Loops

- A while loop will loop continuously, and infinitely, as long as the expression inside the parentheses is true.
- Something must change the tested variable, or the while loop will never exit.
 - This could be in an incremented variable, or an external condition, such as a button press.

```
while (some condition) {
   //repeatedly do some stuff as long as the
   //the condition is true
}
```

```
var = 0;
while(var < 200){
   // do something repetitive 200 times
   var++;
}</pre>
```

Exercise

 Write a program using a while loop that makes the LED blink faster and then slows down.

Example Answer

```
int pinLed = 13;
int delayTime = 1000;
void setup()
    pinMode(pinLed, OUTPUT);
void loop()
   while (delayTime > 0) {
       digiatalWrite(pinLed, HIGH);
       delay(delayTime);
       digitalWrite(pinLed, LOW);
       delay(delayTime);
       delayTime -= 100;
   while (delayTime < 1000) {
       delayTime += 100; //do this first so we don't have
                          //a loop with delayTime = 0
       digitalWrite(pinLed, HIGH);
       delay(delayTime);
       digitalWrite(pinLed, LOW);
       delay(delayTime);
```

FOR Loops

- The for loop is used to repeat a code block a set number of times.
- The initialization happens first and exactly once. Each time through the loop, the condition is tested; if it's true, the statement block, and the increment is executed, then the condition is tested again. When the condition becomes false, the loop ends.

```
for (initialization; condition; increment) {
    //statement(s);
}
```

```
for(int i = 0; i < 4; i++){
    digitalWrite(kPinLed, HIGH);
    delay(200);
    digitalWrite(kPinLed, LOW);
    delay(200);
}</pre>
```

2

Statements and Loops

New Circuit!

Made with Fritzing.org

Exercises

- Make a program (sketch) that lights up a single LED five times in a row for one second on and off, and then five times in a row for ½ of a second on and off.
- Make a program using arrays that lights up the LEDs from top to bottom and then goes backwards so only one LED is on at any time.
- Make a program that lights up the LEDs in any pattern that you like.