Cálculo I. Prueba de Control

Doble Grado en Informática y Matemáticas, curso 2013-2014.

18 Diciembre 2013.

Ejercicio 1. (2 puntos)

Sea $A \subseteq \mathbb{R}^+$ no vacio y mayorado y sea $B \subseteq \mathbb{R}$ no vacio, minorado y verificando ínf B > 0. Probar que el conjunto C dado por $C = \{\frac{\sqrt{a}}{b} : a \in A, b \in B\}$ está acotado y calcular su supremo.

Solución:

Veamos en primer lugar que C está acotado.

Dado que $A, B \subseteq \mathbb{R}^+$ se tiene que $0 < \frac{\sqrt{a}}{b} \forall a \in A \text{ y } \forall b \in B$, luego C está minorado.

Como A es no vacío y mayorado, tiene supremo y $0 < a \le \sup A$ para todo a en A, de lo que se deduce que

$$\sqrt{a} \leqslant \sqrt{\sup A}, \quad \forall a \in A$$

Por otro lado, por hipótesis $0 < \inf \le b$ para todo b en B, de donde se tiene

$$\frac{1}{b} \leqslant \frac{1}{\inf B}, \quad \forall b \in B$$

Estas desigualdades implican que

$$0 < \frac{\sqrt{a}}{b} \leqslant \frac{\sqrt{\sup A}}{\inf B}, \quad \forall a \in A, \forall b \in B,$$

luego C está mayorado y $\sup C \leqslant \frac{\sqrt{\sup A}}{\inf B}$

Calculamos ahora el supremo de C.

Veamos que $\sup C = \frac{\sqrt{\sup A}}{\inf B}$ y para ello basta probar que $\sup C \geqslant \frac{\sqrt{\sup A}}{\inf B}$.

En efecto, dado que $\frac{\sqrt{a}}{b} \le \sup C \ \forall a \in A \ y \ \forall b \in B$ se tiene que, dado a en

 $A, \frac{\sqrt{a}}{\sup C} \leqslant b \ \forall b \in B \ \text{de donde se deduce que } \frac{\sqrt{a}}{\sup C} \leqslant \inf B \ \text{(para cualquier)}$

a en A). Por tanto, $\sqrt{a} \leq \sup C \inf B$ para todo a en A, o equivalentemente $a \leq (\sup C \inf B)^2$ para todo a en A luego $\sup A \leq (\sup C \inf B)^2$. Así pues es ya claro que $\sqrt{\sup A} \leq \sup C \inf B$.

Ejercicio 2. (2 puntos)

Estudiar la convergencia de la sucesión $\{x_n\}$ definida por:

$$x_1 = 2, \quad x_{n+1} = \frac{x_n + 1}{\sqrt{x_n} + 1} \quad \forall n \in \mathbb{N}$$

Solución:

Veamos en primer lugar que $x_n \geqslant 1 \ \forall n \in \mathbb{N}$ (por inducción, claro).

Sea $A = \{n \in \mathbb{N} : x_n \ge 1\}$ y veamos que A es un conjunto inductivo $1 \in A$ ya que por hipótesis $x_1 = 2 \ge 1$.

Supongamos ahora que para cierto n natural se tiene $x_n \ge 1$ (es decir $n \in A$), entonces $x_n^2 \ge x_n$, o equivalentemente, $x_n \ge \sqrt{x_n}$. Por tanto $x_n + 1 \ge \sqrt{x_n} + 1$ y en consecuencia $x_{n+1} = \frac{x_n + 1}{\sqrt{x_n} + 1} \ge 1$, es decir $n + 1 \in A$.

Probaremos a continuación que $\{x_n\}$ es decreciente.

Para ello basta probar que para cada natural n se tiene $x_n \ge x_{n+1}$. Sea pues $n \in \mathbb{N}$. Como $x_n \ge 1$ tenemos que $\sqrt{x_n} \ge 1$ y por tanto $x_n \sqrt{x_n} \ge 1$. Deducimos ahora que $x_n \sqrt{x_n} + x_n \ge 1 + x_n$ lo que implica que $x_n \ge \frac{x_n + 1}{\sqrt{x_n} + 1} = x_{n+1}$.

En conclusión $\{x_n\}$ es una sucesión decreciente y minorada luego convergente. Terminamos calculando explícitamente el límite de $\{x_n\}$.

Sea $L = \lim\{x_n\}$. Dado que la sucesión $\{x_{n+1} \text{ es una sucesión parcial de } \{x_n\}$ se tiene que $\lim\{x_{n+1}\} = L$, pero por otro lado $\{x_{n+1} = \{\frac{x_n+1}{\sqrt{x_n}+1}\} \text{ es cociente de sumas de sucesiones convergentes se tiene que <math>\lim\{x_{n+1}\} = \frac{L+1}{\sqrt{L+1}}$. La unicidad del límite implica que $L = \frac{L+1}{\sqrt{L+1}}$, o equivalentemente, $L + \sqrt{L} = L + 1$, igualdad de la que se deduce que L = 1.

Ejercicio 3. (2 puntos)

Decidir si las siguientes afirmaciones son verdaderas o falsas, razonando la respuesta:

1. Sean $a, b \in \mathbb{R}$ verificando que |ab| < |a|. Entonces se tiene que b < 1.

- 2. Todo conjunto numerable e infinito es equipotente a $\mathbb{Q} \times \mathbb{Z}$.
- 3. Toda sucesión de números reales admite una parcial convergente o una parcial divergente.
- 4. Toda sucesión acotada, $\{x_n\}$, para la cual se pueden encontrar dos sucesiones parciales distintas, $\{x_{\sigma(n)}\}$ y $\{x_{\tau(n)}\}$, verificando $\{x_{\sigma(n)}\}$ $\to \limsup\{x_n\}$ y $\{x_{\tau(n)}\}$ $\to \liminf\{x_n\}$ es no convergente.

Solución:

1. CIERTO.

Sean a,b unos tales números. Por reducción al absurdo, supongamos que b no es menor que 1, es decir, $b \ge 1$. Entonces la estabilidad del producto en positivos nos dice que $|a| \le |a||b| = |ab|$ lo que contradice las hipótesis del enunciado.

2. CIERTO

Como ya sabemos, todo conjunto numerable e infinito es equipotente a \mathbb{N} . Además tambien sabemos que \mathbb{Z} y \mathbb{Q} son numerables e infinitos. Dado que el producto cartesiano de conjuntos numerables es numerable, se tiene que $\mathbb{Q} \times \mathbb{Z}$ es numerable. Además $\mathbb{Q} \times \mathbb{Z}$ es infinito ya que si fuese finito, todo subconjunto suyo también lo sería y sin embargo $\mathbb{Q} \times \{0\}$ es un subconjunto de $\mathbb{Q} \times \mathbb{Z}$ que es claramente equipotente a \mathbb{Q} luego infinito. En resumen, $\mathbb{Q} \times \mathbb{Z}$ es equipotente a \mathbb{N} .

Sea A un conjunto numerable e infinito (luego equipotente a \mathbb{N}). La transitividad de la relación de equivalencia, \sim , nos dice que A es equipotente a $\mathbb{Q} \times \mathbb{Z}$.

3. CIERTO

Por el Lema previa al Teorema de Bolzano-Weierstrass, toda sucesión de números reales admite una parcial monótona y ya sabemos que las sucesiones monótonas sólo pueden ser convergentes o divergentes (dependiendo de que sean o no acotadas)

4. FALSO

Para probar que es falso basta dar un contraejemplo. Por ejemplo, la sucesión convergente $\{x_n\} = \{\frac{(-1)^n}{n}\}$ verifica $0 = \lim\{x_n\} = \lim\sup\{x_n\} = \lim\inf\{x_n\}$ pero las sucesiones parciales (ambas convergentes a cero) $\{x_{2n}\}$ y $\{x_{2n-1}\}$ son distintas (como sucesiones) aunque convergen al limite superior e inferior, respectivamente.

Ejercicio 4. (2 puntos)

Enuncia y demuestra el Teorema de Complitud de \mathbb{R} .

■ Ejercicio 5. (2 puntos)

Probar que todo subconjunto no vacío de números reales cerrado y acotado tiene máximo y mínimo.

Solución:

Sea $A \subseteq \mathbb{R}$ un tal conjunto. Por ser acotado y no vacío tiene supremo e ínfimo. Veamos que el supremo de A, supA, es de hecho el máximo de A, es decir que sup $A \in A$.

Supongamos que $\sup A \notin A$, es decir que $\sup A \in \mathbb{R} \setminus A$. Como A es cerrado tenemos que $\mathbb{R} \setminus A$ es abierto (todos sus elementos son interiores) y por tanto existe un $\varepsilon > 0$ tal que $]\sup A - \varepsilon, \sup A + \varepsilon [\subseteq \mathbb{R} \setminus A$ (ya que $\sup A$ es punto interior). En consecuencia para este positivo ε no existe ningún elemento a de A verificando $\sup A - \varepsilon < a \leqslant \sup A$ lo que contradice la caracterización de supremo de un conjunto.

Para ver que A tiene mínimo se razona de manera análoga.