Regression Models: Assignment 1

Daniel Alonso

November 24th, 2020

Importing libraries

```
library(dplyr)
library(MuMIn)
library(MASS)
library(leaps)
```

Exercise 1

Simulation

```
# terms
sim = list()
epsilon = list()
cosine_term = list()
# betas estimation
beta1_est = list()
beta2_est = list()
# variables
phi = 50
beta1 = 3
beta2 = 3
# simulation
for (j in 1:1000) {
    vals = c()
    eps = c()
    cos_t = c()
    for (i in 1:100) {
        eps = c(eps, rnorm(1, mean=0, sd=1))
        cos_t = c(cos_t, cos(i/10 + phi))
        run = beta1 + beta2*cos_t[i] + eps[i]
        vals = c(vals, run)
    }
    sim[[j]] = vals
    epsilon[[j]] = eps
    cosine_term[[j]] = cos_t
    beta1_est[[j]] = mean(sim[[j]]) - beta2*mean(cosine_term[[j]]) - mean(epsilon[[j]])
    beta2_est[[j]] = (mean(sim[[j]]) - beta1 - mean(epsilon[[j]]))/mean(cosine_term[[j]])
```

Importing the data

```
d <- data.frame(read.table('../data/index.txt', header=TRUE))

X = d$PovPct
Y = d$Brth15to17
beta1 = cov(X, Y)/var(X)
beta0 = mean(Y) - beta1*mean(X)

beta1
#> [1] 1.373345
beta0
#> [1] 4.267293
```

First we have the log-likelihood function for β and σ^2

$$l(\sigma^{2}|X) = \sum_{i=1}^{n} log(\frac{1}{\sqrt{2\pi\sigma^{2}}} - \frac{(Y_{i} - (\beta_{0} + \beta_{1}x_{ik} + \dots + \beta_{k}x_{ik}))^{2}}{2\sigma^{2}})$$

$$\propto -\frac{n}{2}log(\sigma^2) - \frac{(Y-X\beta)\prime(Y-X\beta)}{2\sigma^2}$$

Differentiating the second expression:

$$\frac{\partial l}{\partial \sigma} \left(-\frac{n}{2} log(\sigma^2) - \frac{(Y - X\beta)\prime(Y - X\beta)}{2\sigma^2} \right) = 0$$

We get:

$$-\frac{n}{2}(\frac{1}{\sigma^2})(2\sigma) - (Y - X\beta)\prime(Y - X\beta) * (-2)(2\sigma^{-3}) = 0$$

We reduce the expression further:

$$-\frac{n}{\sigma} + \frac{(Y - X\beta)\prime(Y - X\beta)}{\sigma^3} = 0$$

We multiply both sides by σ^3 and we get:

$$-n\sigma^2 + (Y - X\beta)\prime(Y - X\beta) = 0$$

And solving for σ^2 we get:

$$\hat{\sigma^2} = \frac{(Y - X\beta)\prime(Y - X\beta)}{n}$$

Which is our maximum likelihood estimator for σ^2

Exercise 4

```
bodyfat <- data.frame(read.table('../data/bodyfat.txt', header=TRUE))</pre>
modall <- lm(hwfat ~., data = bodyfat)</pre>
summary(modall)
#>
#> Call:
#> lm(formula = hwfat ~ ., data = bodyfat)
#>
#> Residuals:
#> Min 1Q Median
                       3Q
                             Max
#> -6.162 -1.858 -0.464 2.502 8.177
#> Coefficients:
#>
            Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 13.29370 9.63027 1.380 0.1718
#> age
           -0.06731 0.16051 -0.419 0.6762
#> ht
#> wt
            -0.01365
                     0.02591 -0.527 0.5999
            0.37142 0.08837 4.203 7.55e-05 ***
#> abs
            #> triceps
         0.11405
                       0.14193 0.804 0.4243
#> subscap
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> Residual standard error: 3.028 on 71 degrees of freedom
#> Multiple R-squared: 0.8918, Adjusted R-squared: 0.8827
#> F-statistic: 97.54 on 6 and 71 DF, p-value: < 2.2e-16
```

The sum of residuals is zero:

```
residuals <- sum(resid(modall))</pre>
```

The sum of the observed data is equal to the sum of the fitted values

```
Y_hat <- predict(modall, bodyfat[1:length(names(bodyfat))-1])
sum(bodyfat$hwfat) - sum(Y_hat)
#> [1] 4.547474e-13
```

The residuals are orthogonal to the predictors

```
sum(residuals*bodyfat[1:length(names(bodyfat))-1])
#> [1] -3.077268e-10
```

The residuals are orthogonal to the fitted values

```
sum(residuals*Y_hat)
#> [1] -1.568657e-11
```

We use regsubsets to find the best model combinations by adjusted R^2

```
options(na.action = "na.fail")
modall <- lm(hwfat ~., data = bodyfat)</pre>
combs <- leaps::regsubsets(bodyfat[,1:6],bodyfat[,7])</pre>
summary(combs)
#> Subset selection object
#> 6 Variables (and intercept)
#>
        Forced in Forced out
#> age
            FALSE
                      FALSE
             FALSE
                       FALSE
#> ht
#> wt
            FALSE
                      FALSE
            FALSE
#> abs
                      FALSE
           FALSE
                        FALSE
#> triceps
            FALSE
                       FALSE
#> subscap
#> 1 subsets of each size up to 6
#> Selection Algorithm: exhaustive
          age ht wt abs triceps subscap
#> 1 (1) " " " " " " " " " " " "
#> 3 (1) "*" " " " "<sub>*</sub>" "<sub>*</sub>"
#> 4 (1) "*" "*" " "" "*" "*"
#> 5 (1) "*" " "*" "*" "*"
                                 11 * 11
#> 6 (1) "*" "*" "*" "*" "*"
```

And their corresponding R^{2} values:

```
summary(combs)$adjr2
#> [1] 0.8409068 0.8801014 0.8849817 0.8846381 0.8840129 0.8826699
```

We can see the best model is the one with the following R^2

```
max(summary(combs$adjr2))
#> [1] "NULL"
```

Which corresponds to the model which uses the variables age, ht, abs and triceps.

We can also do this same calculation using the function dredge (albeit less efficiently):

```
combs <- dredge(modall, extra = "R^2")</pre>
print("best model")
#> [1] "best model"
combs [combs$"R^2" == max(combs<math>$"R^2")]
#> Global model call: lm(formula = hwfat ~ ., data = bodyfat)
#> ---
#> Model selection table
   (Intrc)
              abs
                      age
                             ht sbscp trcps
                                                     wt
                                                              R^2 df logLik
      13.29 0.3714 -0.3289 -0.06731 0.1141 0.3874 -0.01365 0.8918 8 -193.43
#> AICc delta weight
#> 64 404.9 5.58
#> Models ranked by AICc(x)
```

We know that:

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{y}_i + \hat{y}_i - \bar{y})^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + 2\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y}) + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

$$= SSE + SSR + 2\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y})$$

No we must prove that:

$$2\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y}) = 0$$

So then we have:

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)\hat{y}_i - \sum_{i=1}^{n} (y_i - \hat{y}_i)\bar{y} = 0$$

Because we know that:

$$\sum_{i=1}^{n} (y_i - \hat{y_i})\hat{y_i} = 0$$

Given that the residuals must be orthogonal to the fitted values.

And:

$$\sum_{i=1}^{n} (y_i - \hat{y_i})\bar{y} = 0$$

Because the sum of the observed data is equal to the sum of the fitted values:

$$\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} \hat{y_i}$$

We define a list with all the models excluding, in each one, a single variable.

```
models <- list()
vars <- c("age","ht","wt","abs","triceps","subscap")
models[[1]] <- update(modall,.~.-age)
models[[2]] <- update(modall,.~.-ht)
models[[3]] <- update(modall,.~.-wt)
models[[4]] <- update(modall,.~.-abs)
models[[5]] <- update(modall,.~.-triceps)
models[[6]] <- update(modall,.~.-subscap)</pre>
```

We run ANOVA with both the models without each variable and the main model including all the other variables.

We can see the pvalues for the ANOVA where each specific variable was excluded:

```
anovas <- list()</pre>
pvalues <- c()
amount of vars <- length(names(bodyfat))-1
for (i in 1:amount_of_vars) {
    anovas[[i]] <- anova(models[[i]],modall)</pre>
    pvalues <- c(pvalues, sum(anovas[[i]][2,"Pr(>F)"]))
}
for (i in 1:length(vars)) {
    print(paste("excluding: ", vars[i], ": ", pvalues[i] , sep=""))
}
#> [1] "excluding: age: 0.30983932449522"
#> [1] "excluding: ht: 0.67622546378066"
#> [1] "excluding: wt: 0.599878887504826"
#> [1] "excluding: abs: 7.54898491342447e-05"
#> [1] "excluding: triceps: 0.00630111253287972"
#> [1] "excluding: subscap: 0.424314507846979"
```

Then we compare with summary:

```
summary(modall)[4]
#> $coefficients
                 Estimate Std. Error
#>
                                        t value
                                                    Pr(>|t|)
#> (Intercept) 13.29369860 9.63026704 1.3804081 1.717917e-01
#> age -0.32893403 0.32157778 -1.0228755 3.098393e-01
              -0.06730905 0.16050751 -0.4193514 6.762255e-01
#> ht
#> wt
              -0.01365183 0.02590783 -0.5269385 5.998789e-01
               0.37141976 0.08836595 4.2032001 7.548985e-05
#> abs
               0.38742647 0.13761017 2.8153912 6.301113e-03
#> triceps
               0.11405213 0.14192779 0.8035927 4.243145e-01
#> subscap
```

And we can see we get the same pvalues in the summary. Therefore viewing the summary can be a much faster version of performing such testing.

as a result we get that the least meaningful variable (the variable that explains the lowest variance of the model) is the variable ht (height) followed by the variable wt (weight).

```
Given that E[\hat{Y}|X_h] = \hat{Y_h} \sim N(X_h\beta, \sigma^2 X_h(X'X)X_h')

\Rightarrow \hat{y_h} \pm t_{n-(k+1), \frac{\alpha}{2}} * \hat{\sigma}\sqrt{h_{ii}}
```

where h_{ii} is the diagonal of our H matrix.

is our expression for the $(1-\alpha)\%$ confidence interval for \hat{Y}_h when σ^2 is unknown.

Exercise 10

```
minmax_scaler <- function(x) {
    return((x-min(x))/(max(x)-min(x)))
}

transform <- data.frame(read.table('../data/Transform_V2.txt', header=TRUE))
trm1 <- lm(y ~ sqrt(x2+1), data=transform)
trm2 <- lm(y ~ I(x3^(2)), data=transform)
par(mfrow=c(2,2))
plot(trm1)</pre>
```

3

We can see that the square root transformation is appropriate for the X_2 variable

Leverage

We can see that the X^2 transformation is appropriate for the X_3 variable

Fitted values

```
bxcx_transf <- function(x, lambda) {</pre>
                   if (lambda == 0) {
                                    return(log(x))
                  } else {
                                     return((x^(lambda)-1)/lambda)
}
transform2 <- data.frame(read.table('../data/Transform2_V2.txt', header=TRUE))</pre>
trm1 <- lm(y2 ~ x1, data=transform2)</pre>
trm2 <- lm(y2 ~ x2, data=transform2)</pre>
par(mfrow=c(2,4))
plot(trm1)
plot(trm2)
            Residuals vs Fitted
                                                                                                                                                                                                                                                                                                                   Standardized residuals As Tendardized residual As T
                                                                                                                                   Normal Q-Q
                                                                                                                                                                                                                                   Scale-Location
                                                                                                                                                                                                             Standardized residuals
Residuals
                                                                                                                        \alpha
                                                                                                                        0
                                                                                                                                                                                                                              0.0
                                                                                                                                                                                                                                                 0.3 0.5 0.7
                                    0.3 0.5 0.7
                                                                                                                                                                                         3
                                                                                                                                                                                                                                                                                                                                              0.000 0.010 0.020
                                                                                                                                     -3
                                                                                                                                                    -1
                                      Fitted values
                                                                                                                               Theoretical Quantiles
                                                                                                                                                                                                                                                   Fitted values
                                                                                                                                                                                                                                                                                                                                                                Leverage
                                                                                                                                                                                                                                                                                                                   Standardized residuals vs Teveraí
              Residuals vs Fitted
                                                                                                                                   Normal Q-Q
                                                                                                                                                                                                                                   Scale-Location
                                                                                                                                                                                                             (Standardized residuals)
                                                                                                        Standardized residuals
Residuals
                 0.2
                                                                                                                                                                                                                              0.1
                                                                                                                        0
                             0.2
                                           0.4
                                                             0.6
                                                                                                                                                                                         3
                                                                                                                                                                                                                                                           0.4
                                                                                                                                                                                                                                                                            0.6
                                                                                                                                                                                                                                                                                                                                              0.000
                                                                                                                                                                                                                                                                                                                                                                          0.015
                                                                                                                                     -3
                                                                                                                                                     -1
                                      Fitted values
                                                                                                                               Theoretical Quantiles
                                                                                                                                                                                                                                                   Fitted values
                                                                                                                                                                                                                                                                                                                                                                Leverage
```

Neither variable has constant variance, therefore we apply a boxcox transformation to both X_2 and X_3 .

As -1 is in the confidence interval for both models, we will apply a boxcox transformation using $\lambda = -1$.

Here we see the situation has improved significantly and we now have constant variance.