微积分 A (1)

姚家燕

第 21 讲

在听课过程中,

严禁使用任何电子产品!

第 20 讲回顾: 积分中值定理

- (积分第一中值定理) 若 $f \in \mathscr{C}[a,b]$, 则 $\exists \xi \in [a,b]$ 使得我们有 $\int_a^b f(x) dx = f(\xi)(b-a)$.
- (广义积分第一中值定理) 如果 $f \in \mathcal{C}[a,b]$, $g \in \mathcal{R}[a,b]$ 且 g 不变号, 则 $\exists \xi \in [a,b]$ 使得 $\int_a^b f(x)g(x)\mathrm{d}x = f(\xi) \int_a^b g(x)\mathrm{d}x.$
- (加强的积分第一中值定理) 若 $f \in \mathcal{R}[a,b]$ 在 (a,b) 内连续, 则 $\exists \xi \in (a,b)$ 使得 $\int_a^b f(x) \, \mathrm{d}x = f(\xi)(b-a).$

回顾: 原函数与变上、下限积分求导

- 设 J 为区间, 而 $F, f : J \to \mathbb{R}$ 为函数. 若 F 在 J 上连续, 在 J 的内部可导并且 F' = f, 则称 F 为 f 的一个原函数.
- 设 $f \in \mathcal{R}[a,b]$. $\forall x \in [a,b]$, 令 $F(x) = \int_a^x f(t) dt$, 则 $F \in \mathcal{C}[a,b]$. 如果 f 在点 $x_0 \in [a,b]$ 连续, 则 F 在点 x_0 处可导且 $F'(x_0) = f(x_0)$.
- 若 f 在点 x_0 仅有单侧连续,则 F 在该点有相应的单侧导数. 在跳跃间断点处亦如此.

- 如果 $f \in \mathcal{C}[a,b]$, 则 $F \in \mathcal{C}^{(1)}[a,b]$ 且 F' = f, 也即 F 为 f 在 [a,b] 上的一个原函数.
- 有跳跃间断点的函数没有原函数.
- 设 $f \in \mathcal{C}[a,b]$, 而 $\varphi, \psi : [\alpha, \beta] \to [a,b]$ 可导. $\forall u \in [\alpha, \beta], \; 定义 \; G(u) = \int_{\psi(u)}^{\varphi(u)} f(t) \mathrm{d}t. \; 那么 \; G$ 为可导函数且 $\forall u \in [\alpha, \beta]$, 均有

$$G'(u) = f(\varphi(u))\varphi'(u) - f(\psi(u))\psi'(u).$$

• 典型例子: $\lim_{x\to 0} \frac{1}{x} \int_0^x \frac{\sin(3t)}{t} dt = 3.$

回顾: 微积分基本定理 (Newton-Leibniz 公式)

- 假设 $f \in \mathcal{C}[a,b]$, 而 $G \in \mathcal{C}[a,b]$ 为 f 的一个 原函数, 则 $\int_a^b f(x) dx = G\Big|_a^b := G(b) G(a)$.
- 设 $G:(a,b)\to\mathbb{R}$ 可导并且 $\forall x\in(a,b)$, 均有 G'(x)=f(x). 若 G(a+0), G(b-0) 均存在 且有限, 则我们有

$$\int_{a}^{b} f(x) dx = G\Big|_{a}^{b} := G(b-0) - G(a+0).$$

回顾: 不定积分

- 将定义在区间上的函数 f 的原函数的一般表达式称为 f 的不定积分,记作 $\int f(x) dx$. 这是一个以 x 为自变量的函数.
- 若 $f \in \mathscr{C}[a,b]$, 则 $\int f(x) dx = \int_a^x f(t) dt + C$.

不定积分与导数、微分的关系

• 若 $\int f(x) dx = F(x) + C$, 则 F'(x) = f(x), $\left(\int f(x) dx\right)' = F'(x) = f(x),$ $dF(x) = f(x) dx, d\left(\int f(x) dx\right) = f(x) dx,$ $\int f(x) dx = \int F'(x) dx = \int dF(x) = F(x) + C.$

• (线性性)
$$\forall \alpha, \beta \in \mathbb{R}$$
, 我们有
$$\int_{\{\alpha, f(n) + \beta, g(n)\}} dn = a \int_{\{\alpha, f(n) + \beta, g(n)\}} dn + b \int_{\{\alpha, g(n) + \beta, g(n)\}} dn$$

 $\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx.$

基本的不定积分公式

- $\int \mathrm{d}x = x + C$.
- $\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C \ (\alpha \neq -1),$ $\int \frac{1}{x} dx = \log|x| + C.$
- $\int a^x dx = \frac{a^x}{\log a} + C \ (a > 0, \ a \neq 1),$ $\int e^x dx = e^x + C.$
- $\int \sin x \, dx = -\cos x + C,$ $\int \cos x \, dx = \sin x + C.$

•
$$\int \operatorname{sh} x \, \mathrm{d}x = \operatorname{ch} x + C$$
, $\int \operatorname{ch} x \, \mathrm{d}x = \operatorname{sh} x + C$.

- $\int \sec^2 x \, dx = \tan x + C$.
- $\bullet \int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arcsin x + C.$
- $\bullet \int \frac{\mathrm{d}x}{1+x^2} = \arctan x + C.$
- $\int \frac{dx}{\sqrt{x^2+a^2}} = \log|x+\sqrt{x^2+a^2}| + C.$
- $\int \frac{\mathrm{d}x}{\sqrt{x^2 a^2}} = \log|x + \sqrt{x^2 a^2}| + C.$

回顾: 求不定积分的基本方法

- 分段计算, 线性性, 降低三角函数的幂次.
- 第一换元积分法 (凑微分): 若 F'(y) = f(y), 则 $\int f(u(x))u'(x)dx = \int f(u(x))du(x) = F(u(x)) + C.$
- 第二换元积分法: 如果 f(x(t))x'(t) = F'(t), 则 $\int f(x) dx \stackrel{x=x(t)}{=} \int f(x(t))x'(t) dt$ $= F(t) + C \stackrel{t=t(x)}{=} F(t(x)) + C.$

- $\int \sec x \, dx = \log |\sec x + \tan x| + C$.
- $\int \csc x \, dx = \log|\csc x \cot x| + C$. 下面假设 a > 0.
- 若含 $\sqrt{a^2-x^2}$, 作变换 $x=a\sin t\ (|t|\leqslant \frac{\pi}{2})$.
- 若含 $\sqrt{x^2 + a^2}$, 作变换 $x = a \tan t \ (|t| < \frac{\pi}{2})$.
- 若含 $\sqrt{x^2 a^2}$, 要分情况讨论: 当 x > a 时, 定义 $x = a \sec t$ $(0 \le t < \frac{\pi}{2})$; 而当 x < -a 时, 定义 x = -u 或 $x = -a \sec t$ $(0 \le t < \frac{\pi}{2})$.

第 21 讲

3. 分部积分法:

设函数 u, v 均为一阶连续可导. 由于

$$d(uv) = u \, dv + v \, du,$$

则
$$u \, dv = d(uv) - v \, du$$
, 于是
$$\int u \, dv = uv - \int v \, du.$$

例 26. 计算 $\int x \cos x \, dx$.

解:
$$\int x \cos x \, dx = \int x \, d(\sin x)$$
$$= x \sin x - \int \sin x \, dx = x \sin x + \cos x + C.$$

例 27. 计算 $\int \log x \, \mathrm{d}x$.

解:
$$\int \log x \, dx = x \log x - \int x d(\log x)$$
$$= x \log x - \int x \cdot \frac{1}{x} \, dx = x \log x - x + C.$$

例 28. 计算 $\int \arcsin x \, dx$.

解:
$$\int \arcsin x \, dx = x \arcsin x - \int x \, d(\arcsin x)$$

= $x \arcsin x - \int \frac{x}{\sqrt{1-x^2}} \, dx = x \arcsin x - \int \frac{d(x^2)}{2\sqrt{1-x^2}}$
= $x \arcsin x + \int \frac{d(1-x^2)}{2\sqrt{1-x^2}} = x \arcsin x + \int d\sqrt{1-x^2}$
= $x \arcsin x + \sqrt{1-x^2} + C$.

例 29. 计算 $\int xe^x dx$.

解:
$$\int xe^x dx = \int x d(e^x) = xe^x - \int e^x dx = xe^x - e^x + C$$
.

例 30. 计算 $\int 3x^2 \arctan x \, dx$.

解:
$$\int 3x^2 \arctan x \, dx = \int \arctan x \, d(x^3)$$

= $x^3 \arctan x - \int x^3 \, d(\arctan x)$

$$- m^3 \arctan x = \int x^3 dx$$

$$= x^{3} \arctan x - \int \frac{x^{3}}{1+x^{2}} dx$$
$$= x^{3} \arctan x - \int \left(x - \frac{x}{1+x^{2}}\right) dx$$

$$= x^3 \arctan x - \frac{1}{2}x^2 + \frac{1}{2} \int \frac{d(1+x^2)}{1+x^2}$$

$$= x^3 \arctan x - \frac{1}{2}x^2 + \frac{1}{2}\log(1+x^2) + C.$$

例 31. 计算 $\int x \log^2 x \, dx$.

$$\mathbf{\widetilde{H}}: \int x \log^2 x \, dx = \int \log^2 x \, d(\frac{x^2}{2})
= \frac{x^2}{2} \log^2 x - \int \frac{x^2}{2} \, d(\log^2 x)
= \frac{1}{2} x^2 \log^2 x - \int \frac{x^2}{2} \cdot \frac{2 \log x}{x} \, dx
= \frac{1}{2} x^2 \log^2 x - \int x \log x \, dx
= \frac{1}{2} x^2 \log^2 x - \int \log x \, d(\frac{x^2}{2})
= \frac{1}{2} x^2 \log^2 x - \frac{1}{2} x^2 \log x + \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx
= \frac{1}{2} x^2 \log^2 x - \frac{1}{2} x^2 \log x + \frac{x^2}{4} + C.$$

例 32. 计算 $\int x\sqrt{x^2+1}\log\sqrt{x^2-1}\,\mathrm{d}x$.

解:
$$\int x\sqrt{x^2+1}\log\sqrt{x^2-1}\,\mathrm{d}x$$

$$= \int \sqrt{x^2 + 1} \log \sqrt{x^2 - 1} \, d(\frac{x^2}{2})^{y = \sqrt{x^2 + 1}} \int y \log \sqrt{y^2 - 2} \cdot y \, dy$$
$$= \int \frac{1}{2} \log(y^2 - 2) \, d(\frac{y^3}{3}) = \frac{1}{6} y^3 \log(y^2 - 2) - \int \frac{1}{3} \cdot \frac{y^4}{y^2 - 2} \, dy$$

$$= \frac{1}{6}y^3 \log(y^2 - 2) - \frac{1}{3} \int \left(y^2 + 2 + \frac{4}{y^2 - 2}\right) dy$$

$$= \frac{1}{6}y^3 \log(y^2 - 2) - \frac{1}{9}y^3 - \frac{2}{3}y - \frac{\sqrt{2}}{3} \int \left(\frac{1}{y - \sqrt{2}} - \frac{1}{y + \sqrt{2}}\right) dy$$

$$= \frac{1}{6}y^3 \log(y^2 - 2) - \frac{1}{9}y^3 - \frac{2}{3}y - \frac{\sqrt{2}}{3} \log\left|\frac{y - \sqrt{2}}{y + \sqrt{2}}\right| + C$$

$$= \frac{1}{6}(1+x^2)^{\frac{3}{2}}\log(x^2-1) - \frac{x^2+7}{9}\sqrt{1+x^2} - \frac{\sqrt{2}}{3}\log\frac{\sqrt{1+x^2}-\sqrt{2}}{\sqrt{1+x^2}+\sqrt{2}} + C.$$

例 33. 计算 $\int \sqrt{a^2 - x^2} dx \ (a > 0)$.

#:
$$\int \sqrt{a^2 - x^2} \, dx = x\sqrt{a^2 - x^2} - \int x \, d(\sqrt{a^2 - x^2})$$

$$= x\sqrt{a^2 - x^2} + \int \frac{x^2}{\sqrt{a^2 - x^2}} \, \mathrm{d}x$$

$$= x\sqrt{a^2 - x^2} + \int \left(\frac{a^2}{\sqrt{a^2 - x^2}} - \sqrt{a^2 - x^2}\right) dx$$

$$= x\sqrt{a^2 - x^2} + a^2 \int \frac{d(\frac{x}{a})}{\sqrt{1 - (\frac{x}{a})^2}} - \int \sqrt{a^2 - x^2} \, dx$$

$$= x\sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a} - \int \sqrt{a^2 - x^2} \, \mathrm{d}x.$$

由此我们立刻可得

$$\int \sqrt{a^2 - x^2} \, dx = \frac{1}{2} (x\sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a}) + C.$$

例 34. 计算 $\int \sqrt{x^2 + a^2} dx \ (a > 0)$.

$$\mathbf{\tilde{H}}: \int \sqrt{x^2 + a^2} \, dx = x\sqrt{x^2 + a^2} - \int \frac{x^2 \, dx}{\sqrt{x^2 + a^2}} \\
= x\sqrt{x^2 + a^2} - \int \left(\sqrt{x^2 + a^2} - \frac{a^2}{\sqrt{x^2 + a^2}}\right) \, dx \\
= x\sqrt{x^2 + a^2} + a^2 \log|x + \sqrt{x^2 + a^2}| - \int \sqrt{x^2 + a^2} \, dx$$

$$= x\sqrt{x^2 + a^2} + a^2 \log|x + \sqrt{x^2 + a^2}| - \int \sqrt{x^2 + a^2} \, dx,$$

由此立刻可得

$$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log|x + \sqrt{x^2 + a^2}| + C.$$

作业题: 计算 $\int \sqrt{x^2 - a^2} \, dx \ (a > 0)$.

例 35. 设 $m \in \mathbb{N}^*$. 求 $I_m = \int \frac{\mathrm{d}x}{(x^2 + a^2)^m} \ (a > 0)$.

于是
$$I_{m+1} = \frac{x}{2a^2m(x^2+a^2)^m} + \frac{2m-1}{2a^2m}I_m$$
. 注意到

$$I_1 = \int \frac{\mathrm{d}x}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$
,

由此可得 I_m 的一般表达式.

例 36. 计算 $\int e^{ax} \cos bx \, dx$, $\int e^{ax} \sin bx \, dx$ $(ab \neq 0)$.

解: 方法 1. 利用分部积分可得

$$\int e^{ax} \cos bx \, dx = \int e^{ax} \, d\left(\frac{1}{b}\sin bx\right)$$

$$= \frac{1}{b}e^{ax} \sin bx - \frac{a}{b} \int e^{ax} \sin bx \, dx,$$

$$\int e^{ax} \sin bx \, dx = \int e^{ax} \, d\left(-\frac{1}{b}\cos bx\right)$$

$$= \int e^{ax} \, d\left(-\frac{1}{b}\cos bx\right)$$

 $= -\frac{1}{b}e^{ax}\cos bx + \frac{a}{b}\int e^{ax}\cos bx \,dx,$

由此立刻可得

$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C,$$

$$\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C.$$

方法 2. $\int e^{ax}(\cos bx + i\sin bx)dx = \int e^{(a+ib)x}dx$ $= \frac{e^{(a+ib)x}}{a+ib} + \widetilde{C} = \frac{e^{ax}}{a^2+b^2}(a-ib)e^{ibx} + \widetilde{C}.$

由此可得

$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C,$$

$$\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C.$$

作业题: 第 5.4 节第 157 页第 7 题第 (3), (6),

(10), (12) 小题.

§5. 有理函数与三角有理函数的不定积分

有理函数的不定积分

设 $Q(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \ (a_n \neq 0)$. 由代数基本定理可知 Q 有 n 个根 (包括重数), 其中复根成对出现. 于是

$$Q(x) = a_n \prod_{j=1}^{s} (x - \alpha_j)^{l_j} \cdot \prod_{k=1}^{t} (x^2 + p_k x + q_k)^{m_k},$$

这里 $\alpha_j \in \mathbb{R}$ 均不相同, $p_k^2 - 4q_k < 0$, 而且

$$\sum_{j=1}^{s} l_j + 2\sum_{k=1}^{t} m_k = n.$$

任意的有理真分式 $R(x) = \frac{P(x)}{Q(x)}$ (P, Q 为多项式且 $\deg P < \deg Q$) 可分解为

$$R(x) = \sum_{j=1}^{s} \sum_{u=1}^{l_j} \frac{a_{j,u}}{(x - \alpha_j)^u} + \sum_{k=1}^{t} \sum_{v=1}^{m_k} \frac{b_{k,v}x + c_{k,v}}{(x^2 + p_k x + q_k)^v},$$

其中 $a_{j,u}, b_{k,v}, c_{k,v} \in \mathbb{R}$ 为常数. 为证明分解式,我们可将 $a_{j,u}, b_{k,v}, c_{k,v}$ 看成未知元 (共有 n 个),两边乘以 Q(x),比较多项式的系数,得到 n 个线性方程,由此可以唯一确定未定元的值.

于是有理真分式 $R(x) = \frac{P(x)}{Q(x)}$ 最终可以分解成如下 4 种最简单的分式之和 $(m \ge 2)$:

$$\frac{A}{x-\alpha}$$
, $\frac{A}{(x-\alpha)^m}$, $\frac{Ax+B}{x^2+px+q}$, $\frac{Ax+B}{(x^2+px+q)^m}$ $(p^2-4q<0)$.

由于 $x^2 + px + q = (x + \frac{p}{2})^2 + \frac{4q - p^2}{4}$, 经过变量替换, 有理分式的不定积分可归结成下述 6 种

最简单的分式的不定积分 (a > 0):

$$\frac{1}{x-\alpha}$$
, $\frac{1}{(x-\alpha)^m}$, $\frac{x}{x^2+a^2}$, $\frac{1}{x^2+a^2}$, $\frac{x}{(x^2+a^2)^m}$, $\frac{1}{(x^2+a^2)^m}$.

这些不定积分有显式表达式:

•
$$\int \frac{\mathrm{d}x}{x-\alpha} = \log|x-\alpha| + C$$
,

•
$$\int \frac{\mathrm{d}x}{(x-\alpha)^m} = -\frac{1}{(m-1)(x-\alpha)^{m-1}} + C$$
,

•
$$\int \frac{x \, dx}{x^2 + a^2} = \frac{1}{2} \log(x^2 + a^2) + C$$
,

•
$$I_1 = \int \frac{\mathrm{d}x}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$
,

•
$$\int \frac{x \, dx}{(x^2 + a^2)^m} = -\frac{1}{2(m-1)} \frac{1}{(x^2 + a^2)^{m-1}} + C,$$

•
$$I_{m+1} = \int \frac{\mathrm{d}x}{(x^2 + a^2)^{m+1}} = \frac{x}{2a^2 m (x^2 + a^2)^m} + \frac{2m-1}{2a^2 m} I_m.$$

例 37. 计算 $\int \frac{2x^2+2x+13}{(x-2)(x^2+1)^2} dx$.

解: 由题设可知 $\frac{2x^2+2x+13}{(x-2)(x^2+1)^2}$ 的标准分解形如

$$\frac{2x^2 + 2x + 13}{(x-2)(x^2+1)^2} = \frac{A}{x-2} + \frac{Bx+C}{x^2+1} + \frac{Dx+E}{(x^2+1)^2}.$$

将上式两边同乘以 $(x-2)(x^2+1)^2$ 后可得

$$2x^{2} + 2x + 13 = (A + B)x^{4} + (C - 2B)x^{3}$$
$$+(2A + B - 2C + D)x^{2} + (C - 2B + E - 2D)x$$
$$+(A - 2C - 2E).$$

比较系数并解方程组可得

$$A = 1, B = -1, C = -2, D = -3, E = -4.$$

故 $\frac{2x^2+2x+13}{(x-2)(x^2+1)^2} = \frac{1}{x-2} + \frac{-x-2}{x^2+1} + \frac{-3x-4}{(x^2+1)^2}$, 由此可得

$$\int \frac{2x^2 + 2x + 13}{(x - 2)(x^2 + 1)^2} dx = \int \frac{dx}{x - 2} - \int \frac{x dx}{x^2 + 1}$$
$$-2\int \frac{dx}{x^2 + 1} - 3\int \frac{x dx}{(x^2 + 1)^2} - 4\int \frac{dx}{(x^2 + 1)^2}$$
$$= \log|x - 2| - \frac{1}{2}\log(x^2 + 1) - 2\arctan x + \frac{3}{2}\frac{1}{x^2 + 1}$$
$$-4\left(\frac{x}{2(x^2 + 1)} + \frac{1}{2}\arctan x\right) + C$$
$$= \frac{1}{2}\log\frac{(x - 2)^2}{x^2 + 1} - 4\arctan x + \frac{1}{2}\frac{3 - 4x}{x^2 + 1} + C.$$

例 38. 计算 $\int \frac{x^4-2x^3+3x^2-x+1}{x^4-3x^3+3x^2-x} dx$.

解: 由带余除法可得

$$\frac{x^4 - 2x^3 + 3x^2 - x + 1}{x^4 - 3x^3 + 3x^2 - x} = 1 + \frac{x^3 + 1}{x^4 - 3x^3 + 3x^2 - x}.$$

又
$$x^4 - 3x^3 + 3x^2 - x = x(x-1)^3$$
, 由此我们知

 $\frac{x^3+1}{x^4-3x^3+3x^2-x}$ 的标准分解形如:

$$\frac{x^3+1}{x^4-3x^3+3x^2-x} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2} + \frac{D}{(x-1)^3}.$$

两边同乘以 $x^4 - 3x^3 + 3x^2 - x$ 可得

$$x^{3} + 1 = (A+B)x^{3} + (-3A - 2B + C)x^{2} + (3A+B-C+D)x - A.$$

由此可得 A = -1, B = 2, C = 1, D = 2. 则

$$\int \frac{x^4 - 2x^3 + 3x^2 - x + 1}{x^4 - 3x^3 + 3x^2 - x} dx = \int dx - \int \frac{dx}{x} + 2 \int \frac{dx}{x - 1} + \int \frac{dx}{(x - 1)^2} + 2 \int \frac{dx}{(x - 1)^3} = x - \log|x| + 2\log|x - 1| - \frac{1}{x - 1} - \frac{1}{(x - 1)^2} + C.$$

例 39. 计算 $\int \frac{2x}{(x+1)(x^2+1)^2} dx$.

解: 由题设可知 $\frac{2x}{(x+1)(x^2+1)^2}$ 的标准分解形如:

$$\frac{2x}{(x+1)(x^2+1)^2} = \frac{A}{x+1} + \frac{Bx+C}{x^2+1} + \frac{Dx+E}{(x^2+1)^2}.$$

两边乘以 $(x+1)(x^2+1)^2$ 可得

$$2x = A(x^{2} + 1)^{2} + (Bx + C)(x + 1)(x^{2} + 1) + (Dx + E)(x + 1).$$

在上式中选取 x=-1, 由此立刻可得 $A=-\frac{1}{2}$.

比较系数可得 $B = \frac{1}{2}$, $C = -\frac{1}{2}$, D = E = 1, 则

$$\frac{2x}{(x+1)(x^2+1)^2} = \frac{-1}{2(x+1)} + \frac{x-1}{2(x^2+1)} + \frac{x+1}{(x^2+1)^2},$$

$$\int \frac{2x}{(x+1)(x^2+1)^2} dx = \int \frac{-1}{2(x+1)} dx + \int \frac{x}{2(x^2+1)} dx + \int \frac{1}{(x^2+1)^2} dx + \int \frac{1}{(x^2+1)^2} dx$$

$$+ \int \frac{1}{2(x^2+1)} dx + \int \frac{x}{(x^2+1)^2} dx + \int \frac{1}{(x^2+1)^2} dx$$

$$= -\frac{1}{2} \log|x+1| + \frac{1}{4} \log(x^2+1) - \frac{1}{2} \arctan x$$

$$-\frac{1}{2(x^2+1)} + \left(\frac{x}{2(x^2+1)} + \frac{1}{2} \arctan x\right) + C$$

 $= \frac{1}{4} \log \frac{x^2 + 1}{(x+1)^2} + \frac{x-1}{2(x^2+1)} + C.$

例 40. 计算 $\int \frac{x^2+1}{(x+1)(x-2)^2} dx$.

解: 由题设可知 $\frac{x^2+1}{(x+1)(x-2)^2}$ 的标准分解形如

$$\frac{x^2+1}{(x+1)(x-2)^2} = \frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$$
$$= \frac{A(x-2)^2 + B(x+1)(x-2) + C(x+1)}{(x+1)(x-2)^2}.$$

故 $x^2 + 1 = A(x-2)^2 + B(x+1)(x-2) + C(x+1)$. 令 x = -1 可得 $A = \frac{2}{9}$. 令 x = 2 则可得 $C = \frac{5}{3}$.

再取 x = 0 可得 $B = \frac{7}{9}$. 于是我们有

$$\frac{x^2+1}{(x+1)(x-2)^2} = \frac{2}{9(x+1)} + \frac{7}{9(x-2)} + \frac{5}{3(x-2)^2}.$$

由此立刻可得

$$\int \frac{x^2 + 1}{(x+1)(x-2)^2} dx = \int \frac{2}{9(x+1)} dx$$
$$+ \int \frac{7}{9(x-2)} dx + \int \frac{5}{3(x-2)^2} dx$$
$$= \frac{2}{9} \log|x+1| + \frac{7}{9} \log|x-2| - \frac{5}{3(x-2)} + C.$$

作业题: 第 5.5 节第 163 页第 1 题第 (1), (2),

(5), (7) 题. 提示: 第 (7) 题可按今天讲的方法

解答, 但作变量替换 $t = 1 - x^2$ 会更加简单!

三角有理函数的不定积分

假设 $R(u,v) = \frac{P(u,v)}{Q(u,v)}$, 其中 P(u,v), Q(u,v) 均为 关于变量 u,v 的多项式. 所谓的三角有理函数 就是指 $R(\sin x,\cos x)$. 下面我们将由万能公式

来将之转化成有理分式的不定积分.

令
$$t = \tan \frac{x}{2}$$
, 则 $x = 2 \arctan t$. 于是

$$dx = d(2 \arctan t) = \frac{2}{1+t^2} dt,$$

$$\sin x = \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}} = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \frac{2t}{1+t^2},$$

$$\cos x = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}} = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \frac{1 - t^2}{1 + t^2}.$$

从而我们有

$$\int R(\sin x, \cos x) \, dx \stackrel{t=\tan \frac{x}{2}}{=} \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2}{1+t^2} \, dt.$$

例 41. 计算 $\int \frac{1+\sin x}{1+\cos x} dx$.

 $= \int \left(1 + \frac{2t}{1 + t^2}\right) dt = t + \log(1 + t^2) + C$

 $= \tan\frac{x}{2} + \log(1 + \tan^2\frac{x}{2}) + C = \tan\frac{x}{2} - 2\log|\cos\frac{x}{2}| + C.$

方法 2. $\int \frac{1+\sin x}{1+\cos x} \, dx = \int \frac{1}{2\cos^2 \frac{x}{2}} \, dx + \int \frac{\sin x}{1+\cos x} \, dx$

 $= \tan \frac{x}{2} - \log(1 + \cos x) + C = \tan \frac{x}{2} - 2\log|\cos \frac{x}{2}| + C.$

$$f1 + \sin x$$

 $\int \frac{1+\sin x}{1+\cos x} \, \mathrm{d}x \stackrel{t=\tan\frac{x}{2}}{=} \int \frac{1+\frac{2t}{1+t^2}}{1+\frac{1-t^2}{1+t^2}} \frac{2}{1+t^2} \, \mathrm{d}t = \int \frac{1+t^2+2t}{1+t^2} \, \mathrm{d}t$

在一些特殊情形, 上述讨论可以简化:

• 被积函数为 $\sin x$ 的奇函数 (将 $\sin x$ 变换成 $-\sin x$ 后会出现一个负号):

$$\int R(\sin^2 x, \cos x) \sin x \, dx \stackrel{t=\cos x}{=} - \int R(1-t^2, t) \, dt.$$

• 被积函数为关于 $\cos x$ 的奇函数: $\int R(\sin x, \cos^2 x) \cos x \, dx \stackrel{t=\sin x}{=} \int R(t, 1-t^2) \, dt.$

• 将 $\sin x$, $\cos x$ 变换成 $-\sin x$, $-\cos x$ 后不变: $\int R(\sin^2 x, \cos^2 x) dx \stackrel{t=\tan x}{=} \int R(\frac{t^2}{1+t^2}, \frac{1}{1+t^2}) \frac{dt}{1+t^2}.$ 例 42. 计算 $\int \frac{\mathrm{d}x}{a^2 \sin^2 x + b^2 \cos^2 x}$ $(ab \neq 0)$.

解:
$$\int \frac{\mathrm{d}x}{a^2 \sin^2 x + b^2 \cos^2 x}$$
$$= \int \frac{1}{a^2 \tan^2 x + b^2} \cdot \frac{\mathrm{d}x}{\cos^2 x}$$
$$= \int \frac{\mathrm{d}(\tan x)}{a^2 \tan^2 x + b^2} = \int \frac{\mathrm{d}(\frac{a}{b} \tan x)}{ab(1 + (\frac{a \tan x}{b})^2)}$$
$$= \frac{1}{ab} \arctan\left(\frac{a}{b} \tan x\right) + C.$$

例 43. 计算 $\int \frac{\cos^3 x}{\sin^7 x} dx$.

$$\mathbf{\tilde{H}}: \int \frac{\cos^3 x}{\sin^7 x} dx = \int \frac{\cos^2 x}{\sin^7 x} d(\sin x) \stackrel{t=\sin x}{=} \int \frac{1-t^2}{t^7} dt$$

$$= \int (t^{-7} - t^{-5}) dt = -\frac{1}{6t^6} + \frac{1}{4t^4} + C$$

$$= -\frac{1}{6\sin^6 x} + \frac{1}{4\sin^4 x} + C.$$

作业题: 第 5.5 节第 164 页第 2 题第 (2), (5), (6), (7) 小题. 注: 求三角有理函数的不定积分通常很困难, 首先应考虑利用三角函数的关系.

谢谢大家!