Fundamental Mathematics (Engineering Mathematics)

Shinichi Nishizawa

Differential equation

- Differential equation for engineering
 - Express natural behaviors (physics, electrics) as equation
 - Handle simple models
 - Easy to understand
 - □ Show very primitive "solution"

Linear differential equation

- □ Differential equation defined by <u>linear polynomial</u> in the unknown function and its derivatives
 - - \square If y(x) satisfy above, y(x) is called as solution
 - □ Solve above equation to obtain y(x)
 - Before that, y is called as unknown function
 - How to solve the equation?
 - Algebraically
 - Formula
 - Use assumption (Method of undetermined multiplier)
 - Program solver (Mathematica, Maxima)

Linear differential equation (cont.)

- Mission: solve function y' + ay = 0 (a is constant) (eq.1.1)
 - Use nature of exponential function

$$\Box (e^{ax})' = ae^{ax}$$

■ Multiple e^{ax} to (eq.1.1)

$$axy' + ae^{ax}y = 0$$

Recall the differential for products

$$\Box (g(x)h(x))' = g(x)h(x)' + g(x)'h(x)$$

□ (e.q.1.1) should be

- \Box $(e^{ax}y)' = 0$. $\Rightarrow y = ce^{-ax}(c \text{ is arbitrary constant})$
- Solution w/o constant: a general solution
- \blacksquare If c has some specific value -> a particular solution

Initial value problem

- Shape of function depends arbitrary constant
 - We may don't know the arbitrary constant itself
 - \blacksquare We may know the value (y_0) on specific point (x_0)
 - $\square y_0$: Initial value or initial condition
 - \blacksquare e.x. y' + ay = 0, $y_0 = y(x_0) = ce^{-ax_0}$
 - $\Box c = y_0 e^{ax_0}$
 - □ General form of (eq.1.1) should be

$$y = y_0 e^{-a(x-x_0)}$$

- Think about following const. coeff. diff. equation
 - $\Box y' + ay = r(x)$ (eq.1.7)
- A differential equation is <u>homogeneous</u> when

$$\Box f(x,y)dy = -g(x,y)dx -> f(x,y) + g(x,y)\frac{dx}{dy} = 0$$

- □ If r(x) = 0, eq.1.7 is homogeneous
- □ If not, a differential equation is <u>inhomogeneous</u>
 - \square If $r(x) \neq 0$, eq.1.7 is inhomogeneous
- A general solution of inhomogeneous function eq.1.7 is

 - Somewhat difficult (we'll introduce more easy way)

■ Multiple e^{ax} to (eq.1.7)

$$\Box (y' + ay)e^{ax} = r(x)e^{ax} -> (ye^{ax})' = r(x)e^{ax}$$

■ Take integral

$$\square ye^{ax} = \int r(x)e^{ax}dx + c$$
 (c is constant)

$$\square y = \left(\int r(x)e^{ax}dx + c\right)e^{-ax}$$

□ Similarly, variable coeff. diff. equation

$$y' + f(x)y = r(x)$$
 (eq.1.14)

Homogeneous case

$$y' + f(x)y = 0$$
(eq.1.15)

 \square Assume F(x) as primitive function of f(x)

$$(e^{F(x)})' = e^{F(x)}F'(x) = f(x)e^{F(x)}$$

■ Multiply $e^{F(x)}$ to eq.1.15

Leibniz product rule

$$e^{F(x)}y' + e^{F(x)}f(x)y = e^{F(x)}y' + (e^{F(x)})'y = (e^{F(x)}y)' = 0$$

- □ Thus: $e^{F(x)}y = c$ (c is constant)
- □ General solution for homogeneous eq. y' + f(x)y = 0

$$\square y = ce^{-F(x)}$$

■ Inhomogeneous case

$$\Box y' + f(x)y = r(x)$$
 (eq.1.14)

■ Multiply $e^{F(x)}$ to eq.1.14

$$e^{F(x)}y' + e^{F(x)}f(x)y = (e^{F(x)}y)' = e^{F(x)}r(x)$$

■ Take integral

$$e^{F(x)}y = \left(\int r(x)e^{F(x)}dx + c\right)$$

□ General solution for inhomogeneous eq. y' + f(x)y = r(x)

Example: RL circuit

- \square Derive current I(t) of RL circuit
 - \square Initial condition: I(0) = 0
- Voltage of R (V_R) and L (V_L) are:

$$\square V_R = RI(t), V_L = L\frac{dI(t)}{dt}, E = V_R + V_L$$
, thus $\frac{dI(t)}{dt} + \frac{R}{L}I(t) = \frac{E}{L}$

- □ Equation is same as eq.1.7 ->
- □ From general solution: $I(t) = \left(\int \frac{E(t)}{L} e^{\left(\frac{R}{L}\right)t} dt + c\right) e^{-a\left(\frac{R}{L}\right)t}$,
- $\blacksquare E$ is constant: $I(t) = \frac{E}{R} + ce^{-a(\frac{R}{L})t}$
- Apply initial condition, and final result should be

Fundamental Mathematics - Differential equations 2 -

Solution of differential equation

- Constant coefficient 1st order differential equation
 - \Box rromogeneous: $y' + ay = 0 < -> y = ce^{-ax}$ (c is constant)
 - Inhomogeneous:

$$y' + ay = r(x) <-> y = (\int r(x)e^{ax}dx + c)e^{-ax}$$

- Variable coefficient 1st order differential equation
 - Homogeneous: $y' + f(x)y = 0 <-> y = ce^{-Fx}$
 - Inhomogeneous:

$$y' + f(x)y = r(x) <-> y = (\int r(x)e^{F(x)}dx + c)e^{-F(x)}$$

- We can calculate, but time consuming…
 - Too tough to solve 2nd order differential equation

Solution of differential equation

- There are many way to solve inhomogeneous differential equation for engineering mathematics
 - Note: These solutions cannot solve all of the differential equations
 - Use some assumptions, but useful enough for engineering
- □ Variation of constants (定数変化法)
- Method of indeterminate coefficient (未定係数法)

Variation of constants method

- Can solve linear (inhomogeneous) differential equation
 - Difficulty to solve high order equation
 - Equation becomes complex for high order equation

Strategy

- 1. Change given inhomogeneous equation to homogeneous
- 2. Solve general solution for the homogeneous equation
- 3. Replace constant c to function u(x)
- 4. Substitute u(x) to given inhomogeneous equation \Box Calculate general solution of u(x)
- 5. Substitute u(x) to solution of homogeneous equation

Variation of constants method (cont.)

- Example: get general solution of : y' + f(x)y = r(x) (eq.1.7)
 - 1. Change given inhomogeneous equation to homogeneous

$$y' + f(x)y = 0$$

- 2. Solve general solution for the homogeneous equation
 - Use this relationship: $(e^{F(x)})' = e^{F(x)}F'^{(x)} = e^{F(x)}f(x)$
 - $e^{F(x)}y' + e^{F(x)}f(x)y = e^{F(x)}y' + e^{F(x)}(e^{F(x)})'y = 0$
 - thus, $(e^{F(x)}y)' = 0, \Rightarrow e^{F(x)}y = c$ (c is constant)
- 3. Replace constant c to function u(x)
 - $y = ce^{-F(x)} \Rightarrow y = u(x)e^{-F(x)} \Rightarrow u(x) = ye^{+F(x)}$

Variation of constants method (cont.)

- Example: get general solution of : y' + f(x)y = r(x) (eq.1.7)
- 4. Substitute u(x) to given inhomogeneous equation
 - $(u(x)e^{-F(x)})' + f(x)u(x)e^{-F(x)} = r(x)$
 - $u'(x)e^{-F(x)} + u(x)e^{-F(x)}(-f(x))' + f(x)u(x)e^{-F(x)} = r(x)$
 - $u'(x) = r(x)e^{+F(x)} \Rightarrow u(x) = \int r(x)e^{+F(x)} dx + C$ (c is const.)
- 5. Substitute u(x) to solution of homogeneous equation
 - $y = u(x)e^{-F(x)} = (\int r(x)e^{+F(x)}dx + c)e^{-F(x)}$

Method of indeterminate coefficient

- With some assumptions, we can easily solve differential equation
 - Guess the candidate of particular solution
 - □ If the right side of an equation is…
 - n-order polynormal: candidate should be n-polynormal
 - sine function: candidate should be in sine
 - exponential: candidate should be in exponential

Method of indeterminate coefficient (polynormal)

- Example: get general solution of : $y' + 3y = x^2 1$ (eq.1.23)
 - Assume particular solution is $y_p = \alpha x^2 + \beta x + \gamma$
 - $\square \alpha, \beta, \gamma$ are constant. Substitute y_p to eq.1.23

$$y_p' + 3y_p = (2\alpha x + \beta) + 3(\alpha x^2 + \beta x + \gamma) = x^2 - 1$$

This equation should satisfy following conditions

$$x^2$$
: $3\alpha = 1$, x^1 : $2\alpha + 3\beta = 0$, x^0 : $\beta + 3\gamma = -1$, thus

Structure of solution

- If one particular solution is clear, general solution can be easily solved.
- Example: get general solution of : y' + f(x)y = r(x) (eq.1.7)
 - Assume particular solution y_p , general solution y, and its difference $y_h = y y_p$. eq.1.7 is

$$y'_h + f(x)y_h = (y - y_p)' + f(x)(y - y_p)$$

$$= y' + f(x)y - (y_p' + f(x)y_p) = r(x) - r(x) = 0$$

- This is homogeneous: $y_h = ce^{-F(x)}$
- $\square y = y_p + y_h = y_p + ce^{-F(x)} \quad (c \text{ is constant})$
 - We can use this as theorem
- general solution of eq.1.23: $y = \frac{1}{3}x^2 \frac{2}{9}x \frac{7}{27} + ce^{-3x}$

Method of indeterminate coefficient(sine)

- Example: get general solution of : $y' + 2y = \cos x$ (eq.1.25)
 - □ Assume particular solution is $y_p = \alpha \cos x + \beta \sin x$
 - \square α , β are constant. Substitute y_p to eq.1.25

 - This equation should satisfy following conditions
 - $\cos x$: $2\alpha + \beta = 1$, $\sin x$: $-\alpha + 2\beta = 0$, thus
 - $\square y_p = \frac{2}{5}\cos x + \frac{1}{5}\sin x$
 - $y = \frac{2}{5}\cos x + \frac{1}{5}\sin x + ce^{-2x}$

Method of indeterminate coefficient(exponent)

- Example: get general solution of : $y' y = 2e^{2x}$ (eq.1.28)
 - Assume particular solution is $y_p = \alpha e^{2x}$
 - \square α is constant. Substitute y_p to eq.1.28

$$y_p' - y_p = 2\alpha e^{2x} - \alpha e^{2x} = \alpha e^{2x} = 2e^{2x}$$
, thus

- $\square y_p = 2e^{2x}$
- However, this is not true for all of solution

Method of indeterminate coefficient (exponent) (cont.)

- Example: get general solution of : $y' 2y = 2e^{2x}$ (eq.1.29)
 - Assume particular solution is $y_p = \alpha e^{2x}$
 - \square α is constant. Substitute y_p to eq.1.29
 - $y_p' y_p = 2\alpha e^{2x} 2\alpha e^{2x} = 0$, ?? \Rightarrow wrong assumption
 - Assume particular solution is $y_p = \alpha x e^{2x}$
 - \square α is constant. Substitute y_p to eq.1.29
 - $y_p' y_p = (\alpha e^{2x} + 2\alpha x e^{2x}) 2\alpha x e^{2x} = 2e^{2x}$
 - $y_p = 2xe^{2x}$
 - $y = (2x + c)e^{2x}$
 - □ If general solution is $y' + ay = ke^{-ax}$, particular solution should be $y_p = kxe^{-ax}$

Exercise (1)

- Solve general solutions for following equations
 - by Variation of constants method

$$y' - xy = x$$

$$y' + \frac{y}{x} = x^2 + 2x$$

by Method of indeterminate coefficient

$$2y' + 3y = 3x^2 + x$$

$$y' + 4y = 3e^{-x}$$

Euler's formula

- The trigonometric functions (sin cos) and complex exponential function satisfy following relationship
 - $\square \, \underline{e^{ix} = \cos x + i \sin x}$
 - \blacksquare e: base of natural logarithm, i(or j): imaginary unit
- Euler's formula is useful for circuit analysis, cause…
 - Easy to take integral, differential

- □ Phasor: expression of sine func. in complex exponent

 - Calculate circuit in complex exponent, then convert to original sine functions

2nd order differential equation

- □ Introduce 2nd order differential equation
 - y'' + ay' + by = r(x) (a, b are constants) (eq.3.1)
 - □ If r(x) = 0, eq.3.1 is homogeneous
 - \square If $r(x) \neq 0$, eq.3.1 is inhomogeneous
- Inhomogeneous form is very tough for hand calculation
 - \square If r(x) is constant, sine, or exponential we can use method of indeterminate coefficient
 - In physics, circuits, we can use this assumption

Characteristic equation

- \square If r(x) = 0 and $y(x) = ce^{\lambda x}$ (c, λ : constant), eq 3.1 is
 - - \square $\lambda^2 + a\lambda + b = 0$: characteristic equation
 - □ Solutoin and $\lambda = \frac{-a \pm \sqrt{a^2 4b}}{2}$ changes depend on discriminant function $(a^2 4b)$
 - \square $a^2-4b>0$: λ_1 , λ_2 in real. Solutions: $c_1e^{\lambda_1x}$, $c_2e^{\lambda_2x}$
 - $\Box a^2 4b = 0$: $\lambda = -\frac{a}{2}$. Solutions: $c_1 e^{\lambda x}$, $c_2 x e^{\lambda x}$
 - \Box $a^2 4b < 0$: λ_1 , λ_2 in imaginary value.

 - Solutions: $c_1 e^{\lambda_1 x}$, $c_2 e^{\lambda_2 x}$

Linearity of solution

- Use linearity of solution
- □ Theorem: If y(x) and w(x) are the solution of linear equation (eq.3.1), sum $c_1y(x) + c_2w(x)$ is also the solution
- □ Proof: since y(x) and w(x) are solution, it should satisfy
 - $\Box y'' + ay' + by = 0, w'' + aw' + bw = 0,$
 - \blacksquare Multiply const c_1 and c_2 and get its sum
 - $c_1y'' + c_1ay' + c_1by + c_2w'' + c_2aw' + c_2bw = 0$
 - $\Box (c_1 y + c_2 w)'' + a(c_1 y + c_2 w)' + b(c_1 y + c_2 w) = 0$
 - \square So, $c_1y(x) + c_2w(x)$ is also the solution
- Solution is the sum of exponents, comes from characteristic equation

General solution

- Theorem: General solution of 2nd order homogeneous differential equation is
 - $\square a^2 4b = 0$: $y(x) = c_1 e^{\lambda_1 x} + c_2 x e^{\lambda_1 x}$ λ_1 : multiple root of char. eq.
 - $\square a^2 4b \neq 0$: $y(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$ $\lambda_1 \lambda_2$: roots of char. eq.
- □ Proof: if y(x) is the solution of eq.3.1, multiply $e^{-\lambda x}$

 - $\Box (e^{-\lambda x}y)'' + (a+2\lambda)(e^{-\lambda x}y)' + (\lambda^2 + a\lambda + b)e^{-\lambda x}y = 0$
 - If we assume λ_1 is root of char. eq., $(\lambda_1^2 + a\lambda_1 + b) = 0$, thus
 - $(e^{-\lambda x}y)'' + (a+2\lambda_1)(e^{-\lambda x}y)' = 0$
 - $u'' + (a + 2\lambda_1)u' = 0$, when $e^{-\lambda_1 x}y(x) = u(x)$

General solution (cont.)

- $u'' + (a + 2\lambda_1)u' = 0$, when $e^{-\lambda_1 x}y(x) = u(x)$
 - □ Case $(a^2 4b = 0)$: $\lambda = -\frac{a}{2}$, thus u'' = 0
 - $u(x) = c_1 + c_2 x$, thus $y(x) = c_1 e^{\lambda_1 x} + c_2 x e^{\lambda_1 x}$
 - □ Case $(a^2 4b \neq 0)$:
 - $v' + (a + 2\lambda_1)v = 0$, when v = u', solve this then
 - $\mathbf{v} = Ce^{-(a+2\lambda_1)x}$, C is constant. Then integrate this
 - $u(x) = c_1 \frac{c}{a+2\lambda_1}e^{-(a+2\lambda_1)x}$, thus
 - $y(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x} \ (c_2 = -\frac{c}{a+2\lambda_1}, \ \lambda_2 = a+2\lambda_1)$

Constants and sine/exp. transformation

- Now we get a general solution
 - For particular solution, we need to fix constants
 - Use initial value or boundary value
- Transform from/to sine to/from exponent
 - □ Case $(a^2 4b < 0)$:

 - $= (c_1 + c_2)e^{Ax}\cos Bx + i(c_1 c_2)e^{Ax}\sin Bx$
 - $= d_1 e^{Ax} \cos Bx + d_2 e^{Ax} \sin Bx$
- We can use both sine or exponential
 - Exponential is useful to take differential

Exercise (2)

- Solve characteristic equation and general solutions for following equations
 - by Method of indeterminate coefficient

$$y'' + 2y' + y = 0$$

$$y'' + 2y' + 3y = 0$$

$$y'' - 4y' - 5y = 0$$

Sample solutions

Ext

11 by variation of const

1) Think homogeneous eg.

2 Solve general solution of a

$$f(x) = -x$$
, $F(x) = -\frac{x^2}{2}$
 $f(x) = -x$, $f(x) = -\frac{x^2}{2}$ (c) is const.)

3 Replace (+ ua)

1) substitute u(x) to given inhomogeneous eg.

$$y'-xy=x$$

 $(u(x)e^{x/2})'-x(u(x)e^{x/2})=x$

 $u(x)e^{\frac{\pi}{2}} + xu(x)e^{\frac{\pi}{2}} - xu(x)e^{\frac{\pi}{2}} = x$

$$u(x) = x e^{-\frac{3}{2}}$$

 $u(x) = \int x e^{-\frac{x^2}{2}} dx$ change param $-\frac{x^2}{2} = t$. -x dx = dt

=
$$\int e^{t} (-dt) = -e^{t} + C_{2} (C_{2}: const)$$

(5) Substitute u(x) to the solution of homogeneous eq. $J = (-e^{\frac{1}{2}} + C_2)e^{\frac{1}{2}} = -|+C_2e^{\frac{1}{2}}|$

Dhomogeneous eg.: 7+ = 0

2) general solution: for = 1/x, Fa = log x

$$\Im C_{i} \rightarrow u(x)$$

$$J = u(x)e^{-\log x} = \frac{u(x)}{x} \qquad (e^{-\log x} = x)$$

@ substitute uch to given inhomogeneous eq.

$$\left(\frac{u(x)}{x}\right)^{4} + \frac{u(x)}{x^{2}} = \chi^{2} + 2x$$

 $\frac{u'(x)}{x} - \frac{u(x)}{x^2} + \frac{u(x)}{x^2} = \chi^2 + 2\chi$

$$u'(x) = \chi^3 + 2\chi^2$$

 $u(x) = \int (x^3 + 2x^2) dx = \frac{x^4}{4} + \frac{2}{3}x^2 + C_2 \quad (C_2: const)$

5 substitute to 3

$$y = \frac{\chi^3}{4} + \frac{2}{3}\chi^2 + \frac{C_2}{\chi}$$

1) Particular solution
$$Jp = dx^2 \beta x + b$$

$$2(20/x+\beta)+3(0/x^2+\beta x+\beta)=3x^2+x$$

$$30 = 3$$
, $40 + 3\beta = 1$, $2\beta + 3\lambda = 0$

$$0 = 1, \beta = -1, \beta = \frac{2}{3}$$

$$y' + \frac{3}{2}y = \frac{3}{2}x^2 + \frac{x}{2}$$
, $f(x) = \frac{3}{2}$, $f(x) = \frac{3}{2}x$

particular solution
$$J_p = \chi^2 - \chi + \frac{2}{3}$$

general " $J = \chi^2 - \chi + \frac{2}{3} + Ce^{-\frac{3}{2}\chi}$

$$f(x) = 4$$
, $f(x) = 4x$

$$\lambda^2 ce^{\Lambda x} + 2\Lambda ce^{\Lambda x} + ce^{\Lambda x} = 0$$

$$(\lambda^2 + 2\lambda + 1) ce^{\lambda x} = 0$$
. $ce^{\lambda x} \neq 0$ thus

Characteristic. eq
$$\frac{\Lambda^2 + 2\Lambda + 1}{2} = (\Lambda + 1)^2 = 0 \rightarrow \Lambda = -1$$
.

assume
$$y = ce^{\Lambda x}$$

$$(\lambda^2 + 2\lambda + 3) Ce^{\lambda x} = 0$$
 characteristic et $(\lambda^2 + 2\lambda + 3) Ce^{\lambda x} = 0$

$$\lambda = \frac{-2 \pm \sqrt{4 - 4 \times 3}}{2} = \frac{-2 \pm 2 \sqrt{2} i}{2} = -1 \pm \sqrt{2} i$$

general solution
$$J = C_1 e + C_2 e + C_3 e + C_4 = C_1 + C_2 e + C_3 = C_1 + C_2 e + C_3 = C_1 + C_2 + C_2 + C_3 = C_1 + C_2 + C_2 + C_3 = C_1 + C_2 + C_2 + C_3 = C_1 + C_2 + C_2 + C_3 + C_3 = C_1 + C_2 + C_3 + C_3$$

characteristic eq:
$$\frac{\lambda^2 - 4\lambda - 5}{5} = 0 = (\lambda - 5)(\lambda + 1)$$

general solution $\frac{1}{4} = C_1 e^{\frac{5\lambda}{4}} + C_2$ $\frac{1}{4} = \frac{5}{1} - 1$

Conclusion

- Introduction of solve inhomogeneous differential equation for engineering mathematics
 - These solutions cannot solve all of the differential equations
 - Use some assumptions, but useful enough for engineering
- Variation of constants
- Method of indeterminate coefficient