- **22.** Juan needs to assess the performance of a critical web application that his company recently upgraded. Some of the new features are very profitable, but not frequently used. He wants to ensure that the user experience is positive, but doesn't want to wait for the users to report problems. Which of the following techniques should Juan use?
 - A. Real user monitoring
 - **B.** Synthetic transactions
 - C. Log reviews
 - D. Management review
- **23.** Which of the following best describes a technical control for dealing with the risks presented by data remanence?
 - A. Encryption
 - B. Data retention policies
 - C. File deletion
 - **D.** Using solid-state drives (SSDs)
- 24. George is the security manager of a large bank, which provides online banking and other online services to its customers. George has recently found out that some of the bank's customers have complained about changes to their bank accounts that they did not make. George worked with the security team and found out that all changes took place after proper authentication steps were completed. Which of the following describes what most likely took place in this situation?
 - A. Web servers were compromised through cross-scripting attacks.
 - B. TLS connections were decrypted through a man-in-the-middle attack.
 - **C.** Personal computers were compromised with malware that installed keyloggers.
 - D. Web servers were compromised and masquerading attacks were carried out.
- **25.** Internet Protocol Security (IPSec) is actually a suite of protocols. Each protocol within the suite provides different functionality. Which of the following is not a function or characteristic of IPSec?
 - **A.** Encryption
 - B. Link layer protection
 - C. Authentication
 - D. Protection of packet payloads and the headers

- **26.** In what order would a typical PKI perform the following transactions?
 - i. Receiver decrypts and obtains session key.
 - ii. Public key is verified.
 - iii. Public key is sent from a public directory.
 - iv. Sender sends a session key encrypted with receiver's public key.
 - A. iv, iii, ii, i
 - B. ii, i, iii, iv
 - C. iii, ii, iv, i
 - D. ii, iv, iii, i

Use the following scenario to answer Questions 27–28. Tim is the CISO for a large distributed financial investment organization. The company's network is made up of different network devices and software applications, which generate their own proprietary logs and audit data. Tim and his security team have become overwhelmed with trying to review all of the log files when attempting to identify if anything suspicious is taking place within the network. Another issue Tim's team needs to deal with is that many of the network devices have automated IPv6-to-IPv4 tunneling enabled by default, which is not what the organization needs.

- **27.** Which of the following is the best solution to Tim's difficulties handling the quantity and diversity of logs and audit data?
 - A. Event correlation tools
 - **B.** Intrusion detection systems
 - C. Security information and event management
 - **D.** Hire more analysts
- 28. How could Tim best address the IP version issue described in the scenario?
 - A. Change management
 - **B.** Zero trust
 - **C.** Converged protocols
 - D. Configuration management
- **29.** Which of the following is not a concern of a security professional considering adoption of Internet of Things (IoT) devices?
 - **A.** Weak or nonexistent authentication mechanisms
 - B. Vulnerability of data at rest and data in motion
 - C. Difficulty of deploying patches and updates
 - D. High costs associated with connectivity

- **30.** What is an advantage of microservices compared to traditional server-based architectures?
 - **A.** Web services support
 - **B.** Security
 - C. Scalability
 - D. Database connectivity
- 31. _______, a declarative access control policy language implemented in XML and a processing model, describes how to interpret security policies. ______ is an XML-based language that allows for the exchange of provisioning data between applications, which could reside in one organization or many.
 - **A.** Service Provisioning Markup Language (SPML), Extensible Access Control Markup Language (XACML)
 - **B.** Extensible Access Control Markup Language (XACML), Service Provisioning Markup Language (SPML)
 - C. Extensible Access Control Markup Language (XACML), Security Assertion Markup Language (SAML)
 - **D.** Security Assertion Markup Language (SAML), Service Provisioning Markup Language (SPML)
- **32.** Doors configured in fail-safe mode assume what position in the event of a power failure?
 - A. Open and locked
 - **B.** Closed and locked
 - C. Closed and unlocked
 - **D.** Open
- **33.** Next-generation firewalls combine the best attributes of other types of firewalls. Which of the following is not a common characteristic of these firewall types?
 - **A.** Integrated intrusion prevention system
 - B. Sharing signatures with cloud-based aggregators
 - C. Automated incident response
 - **D.** High cost
- **34.** The purpose of security awareness training is to expose personnel to security issues so that they may be able to recognize them and better respond to them. Which of the following is not normally a topic covered in security awareness training?
 - A. Social engineering
 - **B.** Phishing
 - C. Whaling
 - D. Trolling

Use the following scenario to answer Questions 35–36. Zack is a security consultant who has been hired to help an accounting company improve some of its current e-mail security practices. The company wants to ensure that when its clients send the company accounting files and data, the clients cannot later deny sending these messages. The company also wants to integrate a more granular and secure authentication method for its current mail server and clients.

- **35.** Which of the following best describes how client messages can be dealt with and addresses the first issue outlined in the scenario?
 - **A.** The company needs to integrate a public key infrastructure and the Diameter protocol.
 - **B.** The company needs to require that clients encrypt messages with their public key before sending them to the company.
 - **C.** The company needs to have all clients sign a formal document outlining nonrepudiation requirements.
 - **D.** The company needs to require that clients digitally sign messages that contain financial information.
- **36.** Which of the following would be the best solution to integrate to meet the authentication requirements outlined in the scenario?
 - A. TLS
 - B. IPSec
 - **C.** 802.1X
 - **D.** SASL
- **37.** Which of the following is not considered a secure coding practice?
 - A. Validate user inputs
 - B. Default deny
 - C. Defense in depth
 - D. High (tight) coupling
- **38.** A ______ is the amount of time it should take to recover from a disaster, and a _____ is the amount of data, measured in time, that can be lost and be tolerable from that same event.
 - A. recovery time objective, recovery point objective
 - B. recovery point objective, recovery time objective
 - C. maximum tolerable downtime, work recovery time
 - **D.** work recovery time, maximum tolerable downtime

- **39.** Mary is doing online research about prospective employers and discovers a way to compromise a small company's personnel files. She decides to take a look around, but does not steal any information. Is she still committing a crime even if she does not steal any of the information?
 - **A.** No, since she does not steal any information, she is not committing a crime.
 - **B.** Probably, because she has gained unauthorized access.
 - **C.** Not if she discloses the vulnerability she exploited to the company.
 - **D.** Yes, she could jeopardize the system without knowing it.
- **40.** In the structure of Extensible Access Control Markup Language (XACML), a Subject element is the ______, a Resource element is the ______, and an Action element is the _____.
 - A. requesting entity, requested entity, types of access
 - B. requested entity, requesting entity, types of access
 - C. requesting entity, requested entity, access control
 - D. requested entity, requesting entity, access control
- **41.** The Mobile IP protocol allows location-independent routing of IP datagrams on the Internet. Each mobile node is identified by its _______, disregarding its current location in the Internet. While away from its home network, a mobile node is associated with a
 - A. prime address, care-of address
 - **B.** home address, care-of address
 - **C.** home address, secondary address
 - D. prime address, secondary address
- **42.** Because she has many different types of security products and solutions, Joan wants to purchase a product that integrates her many technologies into one user interface. She would like her staff to analyze all security alerts from the same application environment. Which of the following would best fit Joan's needs?
 - A. Dedicated appliance
 - B. Data analytics platform
 - C. Hybrid IDS\IPS integration
 - D. Security information and event management (SIEM)
- **43.** When classifying an information asset, which of the following is true concerning its sensitivity?
 - **A.** It is commensurate with how its loss would impact the fundamental business processes of the organization.
 - **B.** It is determined by its replacement cost.

- **C.** It is determined by the product of its replacement cost and the probability of its compromise.
- **D.** It is commensurate with the losses to an organization if it were revealed to unauthorized individuals.
- **44.** Which of the following is an international organization that helps different governments come together and tackle the economic, social, and governance challenges of a globalized economy and provides guidelines on the protection of privacy and transborder flows of personal data rules?
 - **A.** Council of Global Convention on Cybercrime
 - B. Council of Europe Convention on Cybercrime
 - C. Organisation for Economic Co-operation and Development
 - D. Organisation for Cybercrime Co-operation and Development
- **45.** System ports allow different computers to communicate with each other's services and protocols. The Internet Assigned Numbers Authority (IANA) has assigned registered ports to be _____ and dynamic ports to be _____.
 - **A.** 0–1024, 49152–65535
 - **B.** 1024–49151, 49152–65535
 - C. 1024-49152, 49153-65535
 - **D.** 0–1024, 1025–49151
- **46.** When conducting a quantitative risk analysis, items are gathered and assigned numeric values so that cost/benefit analysis can be carried out. Which of the following formulas could be used to understand the value of a safeguard?
 - **A.** (ALE before implementing safeguard) (ALE after implementing safeguard) (annual cost of safeguard) = value of safeguard to the organization
 - **B.** (ALE before implementing safeguard) (ALE during implementing safeguard) (annual cost of safeguard) = value of safeguard to the organization
 - **C.** (ALE before implementing safeguard) (ALE while implementing safeguard) (annual cost of safeguard) = value of safeguard to the organization
 - **D.** (ALE before implementing safeguard) (ALE after implementing safeguard) (annual cost of asset) = value of safeguard to the organization
- **47.** Patty is giving a presentation next week to the executive staff of her company. She wants to illustrate the benefits of the company using specific cloud computing solutions. Which of the following does not properly describe one of these benefits or advantages?
 - A. Organizations have more flexibility and agility in IT growth and functionality.
 - **B.** Cost of computing can be increased since it is a shared delivery model.

- **C.** Location independence can be achieved because the computing is not centralized and tied to a physical data center.
- **D.** Scalability and elasticity of resources can be accomplished in near real-time through automation.

Use the following scenario to answer Questions 48–49. Francisca is the new manager of the in-house software designers and programmers. She has been telling her team that before design and programming on a new product begins, a formal architecture needs to be developed. She also needs this team to understand security issues as they pertain to software design. Francisca has shown the team how to follow a systematic approach that allows them to understand different ways in which the software products they develop could be compromised by specific threat actors.

- **48.** Which of the following best describes what an architecture is in the context of this scenario?
 - **A.** Tool used to conceptually understand the structure and behavior of a complex entity through different views
 - **B.** Formal description and representation of a system and the components that make it up
 - **C.** Framework used to create individual architectures with specific views
 - **D.** Framework that is necessary to identify needs and meet all of the stakeholder requirements
- **49.** Which of the following best describes the approach Francisca has shown her team as outlined in the scenario?
 - A. Attack surface analysis
 - B. Threat modeling
 - C. Penetration testing
 - D. Double-blind penetration testing
- **50.** Barry was told that the IDS product that is being used on the network has heuristic capabilities. Which of the following best describes this functionality?
 - A. Gathers packets and reassembles the fragments before assigning anomaly values
 - B. Gathers data and assesses the likelihood of it being malicious in nature
 - C. Gathers packets and compares their payload values to a signature engine
 - **D.** Gathers packet headers to determine if something suspicious is taking place within the network traffic

- **51.** Bringing in third-party auditors has advantages over using an internal team. Which of the following is not true about using external auditors?
 - **A.** They are required by certain governmental regulations.
 - **B.** They bring experience gained by working in many other organizations.
 - C. They know the organization's processes and technology better than anyone else.
 - **D.** They are less influenced by internal culture and politics.
- 52. Don is a senior manager of an architectural firm. He has just found out that a key contract was renewed, allowing the company to continue developing an operating system that was idle for several months. Excited to get started, Don begins work on the operating system privately, but cannot tell his staff until the news is announced publicly in a few days. However, as Don begins making changes in the software, various staff members notice changes in their connected systems, even though they have a lower security level than Don. What kind of model could be used to ensure this does not happen?
 - A. Biba
 - B. Bell-LaPadula
 - C. Noninterference
 - D. Clark-Wilson
- **53.** Betty has received several e-mail messages from unknown sources that try and entice her to click a specific link using a "Click Here" approach. Which of the following best describes what is most likely taking place in this situation?
 - A. DNS pharming attack
 - **B.** Embedded hyperlink is obfuscated
 - C. Malware back-door installation
 - D. Bidirectional injection attack
- 54. Rebecca is an internal auditor for a large retail company. The company has a number of web applications that run critical business processes with customers and partners around the world. Her company would like to ensure the security of technical controls on these processes. Which of the following would not be a good approach to auditing these technical controls?
 - **A.** Log reviews
 - **B.** Code reviews
 - C. Personnel background checks
 - D. Misuse case testing

- 55. Which of the following multiplexing technologies analyzes statistics related to the typical workload of each input device and makes real-time decisions on how much time each device should be allocated for data transmission?
 - A. Time-division multiplexing
 - B. Wave-division multiplexing
 - C. Frequency-division multiplexing
 - D. Statistical time-division multiplexing
- **56.** In a VoIP environment, the Real-time Transport Protocol (RTP) and RTP Control Protocol (RTCP) are commonly used. Which of the following best describes the difference between these two protocols?
 - **A.** RTCP provides a standardized packet format for delivering audio and video over IP networks. RTP provides out-of-band statistics and control information to provide feedback on QoS levels.
 - **B.** RTP provides a standardized packet format for delivering data over IP networks. RTCP provides control information to provide feedback on QoS levels.
 - C. RTP provides a standardized packet format for delivering audio and video over MPLS networks. RTCP provides control information to provide feedback on QoS levels.
 - **D.** RTP provides a standardized packet format for delivering audio and video over IP networks. RTCP provides out-of-band statistics and control information to provide feedback on QoS levels.
- 57. Which of the following is not descriptive of an edge computing architecture?
 - **A.** It eliminates the need for cloud infrastructure.
 - **B.** Processing and storage assets are close to where they're needed.
 - **C.** It reduces latency and network traffic.
 - D. It typically has three layers.
- 58. Which cryptanalytic attack method is characterized by the identification of statistically significant patterns in the ciphertext generated by a cryptosystem?
 - A. Differential attack
 - B. Implementation attack
 - C. Frequency analysis
 - **D.** Side-channel attack
- **59.** IPSec's main protocols are AH and ESP. Which of the following services does AH provide?
 - A. Confidentiality and authentication
 - B. Confidentiality and availability
 - C. Integrity and accessibility
 - D. Integrity and authentication

- **60.** When multiple databases exchange transactions, each database is updated. This can happen many times and in many different ways. To protect the integrity of the data, databases should incorporate a concept known as an ACID test. What does this acronym stand for?
 - A. Availability, confidentiality, integrity, durability
 - B. Availability, consistency, integrity, durability
 - C. Atomicity, confidentiality, isolation, durability
 - D. Atomicity, consistency, isolation, durability

Use the following scenario to answer Questions 61–63. Jim works for a large energy company. His senior management just conducted a meeting with Jim's team with the purpose of reducing IT costs without degrading their security posture. The senior management decided to move all administrative systems to a cloud provider. These systems are proprietary applications currently running on Linux servers.

- **61.** Which of the following services would allow Jim to transition all administrative custom applications to the cloud while leveraging the service provider for security and patching of the cloud platforms?
 - A. IaaS
 - B. PaaS
 - C. SaaS
 - D. IDaaS
- **62.** Which of the following would *not* be an issue that Jim would have to consider in transitioning administrative services to the cloud?
 - **A.** Privacy and data breach laws in the country where the cloud servers are located
 - B. Loss of efficiencies, performance, reliability, scalability, and security
 - C. Security provisions in the terms of service
 - D. Total cost of ownership compared to the current systems
- **63.** Which of the following secure design principles would be most important to consider as Jim plans the transition to the cloud?
 - A. Defense in depth
 - **B.** Secure defaults
 - **C.** Shared responsibility
 - **D.** Zero trust

- **64.** A group of software designers are at a stage in their software development project where they need to reduce the amount of code running, reduce entry points available to untrusted users, reduce privilege levels as much as possible, and eliminate unnecessary services. Which of the following best describes the first step the team needs to carry out to accomplish these tasks?
 - A. Attack surface analysis
 - B. Software development life cycle
 - C. Risk assessment
 - **D.** Unit testing
- **65.** Jenny needs to engage a new software development company to create her company's internal banking software. The software needs to be created specifically for her company's environment, so it must be proprietary in nature. Which of the following would be useful for Jenny to use as a gauge to determine how advanced the various software development companies are in their processes?
 - A. Waterfall methodology
 - B. Capability Maturity Model Integration level
 - C. Auditing results
 - D. Key performance metrics
- **66.** Which type of organization would be likeliest to implement Virtual eXtensible Local Area Network (VxLAN) technology?
 - A. Organizations that need to support more than 2,048 VLANs
 - B. Small and medium businesses
 - C. Organizations with hosts in close proximity to each other
 - **D.** Cloud service providers with hundreds of customers
- **67.** Kerberos is a commonly used access control and authentication technology. It is important to understand what the technology can and cannot do and its potential downfalls. Which of the following is not a potential security issue that must be addressed when using Kerberos?
 - i. The KDC can be a single point of failure.
 - ii. The KDC must be scalable.
 - iii. Secret keys are temporarily stored on the users' workstations.
 - iv. Kerberos is vulnerable to password guessing.
 - **A.** i, iv
 - B. iii
 - C. All of them
 - D. None of them

- **68.** If the annualized loss expectancy (ALE) for a specific asset is \$100,000, and after implementation of a control to safeguard the asset the new ALE is \$45,000 and the annual cost of the control is \$30,000, should the company implement this control?
 - A. Yes
 - B. No
 - C. Not enough information
 - **D.** Depends on the annualized rate of occurrence (ARO)
- **69.** ISO/IEC 27000 is a growing family of ISO/IEC information security management system (ISMS) standards. Which of the following provides an incorrect mapping of the individual standard number to its description?
 - A. ISO/IEC 27002: Code of practice for information security controls
 - **B.** ISO/IEC 27003: ISMS implementation guidance
 - C. ISO/IEC 27004: ISMS monitoring, measurement, analysis, and evaluation
 - **D.** ISO/IEC 27005: ISMS auditing guidelines
- **70.** Yazan leads the IT help desk at a large manufacturing company. He is concerned about the amount of time his team spends resetting passwords for the various accounts that each of his organizational users has. All of the following would be good approaches to alleviating this help desk load *except* which one?
 - A. Single sign-on (SSO)
 - B. Just-in-time (JIT) access
 - C. Password managers
 - D. Self-service password reset
- 71. Encryption and decryption can take place at different layers of an operating system, application, and network stack. End-to-end encryption happens within the _______. IPSec encryption takes place at the _______ layer. PPTP encryption takes place at the _______ layer. Link encryption takes place at the ______ layers.
 - A. applications, transport, data link, data link, physical
 - B. applications, transport, network, data link, physical
 - C. applications, network, data link, data link, physical
 - D. network, transport, data link, data link, physical
- **72.** Which of the following best describes the difference between hierarchical storage management (HSM) and storage area network (SAN) technologies?
 - **A.** HSM uses optical or tape jukeboxes, and SAN is a network of connected storage systems.
 - **B.** SAN uses optical or tape jukeboxes, and HSM is a network of connected storage systems.

- **C.** HSM and SAN are one and the same. The difference is in the implementation.
- **D.** HSM uses optical or tape jukeboxes, and SAN is a standard of how to develop and implement this technology.
- **73.** Which legal system is characterized by its reliance on previous interpretations of the law?
 - A. Tort
 - **B.** Customary
 - C. Common
 - D. Civil (code)
- **74.** In order to be admissible in court, evidence should normally be which of the following?
 - A. Subpoenaed
 - B. Relevant
 - C. Motioned
 - D. Adjudicated
- 75. Which type of authorization mechanism can incorporate historical data into its access control decision-making in real time?
 - A. Rule-based access control
 - B. Risk-based access control
 - C. Attribute-based access control
 - D. Discretionary access control
- **76.** Which of the following is an XML-based protocol that defines the schema of how web service communication takes place over HTTP transmissions?
 - A. Service-Oriented Protocol
 - **B.** Active X Protocol
 - C. SOAP
 - D. Web Ontology Language
- 77. Which of the following has an incorrect definition mapping?
 - i. Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) Team-oriented approach that assesses organizational and IT risks through facilitated workshops
 - ii. Facilitated Risk Analysis Process (FRAP) Stresses prescreening activities so that the risk assessment steps are only carried out on the item(s) that need(s) it the most
 - iii. ISO/IEC 27005 International standard for the implementation of a risk management program that integrates into an information security management system (ISMS)

- iv. Failure Modes and Effect Analysis (FMEA) Approach that dissects a component into its basic functions to identify flaws and those flaws' effects
- Fault tree analysis Approach to map specific flaws to root causes in complex systems
- **A.** None of them
- B. ii
- C. iii, iv
- D. v
- **78.** For an enterprise security architecture to be successful in its development and implementation, which of the following items must be understood and followed?
 - i. Strategic alignment
 - ii. Process enhancement
 - iii. Business enablement
 - iv. Security effectiveness
 - **A.** i, ii
 - B. ii, iii
 - C. i, ii, iii, iv
 - D. iii, iv
- **79.** Which of the following best describes the purpose of the Organisation for Economic Co-operation and Development (OECD)?
 - **A.** An international organization where member countries come together and tackle the economic, social, and governance challenges of a globalized economy
 - **B.** A national organization that helps different governments come together and tackle the economic, social, and governance challenges of a globalized economy
 - **C.** A United Nations body that regulates economic, social, and governance issues of a globalized economy
 - **D.** A national organization that helps different organizations come together and tackle the economic, social, and governance challenges of a globalized economy
- **80.** Many enterprise architecture models have been developed over the years for specific purposes. Some of them can be used to provide structure for information security processes and technology to be integrated throughout an organization. Which of the following provides an incorrect mapping between the architecture type and the associated definition?
 - **A. Zachman Framework** Model and methodology for the development of information security enterprise architectures
 - **B. TOGAF** Model and methodology for the development of enterprise architectures developed by The Open Group

- **C. DoDAF** U.S. Department of Defense architecture framework that ensures interoperability of systems to meet military mission goals
- **D. SABSA** Framework and methodology for enterprise security architecture and service management
- **81.** Which of the following best describes the difference between the role of the ISO/IEC 27000 series and COBIT?
 - **A.** COBIT provides a high-level overview of security program requirements, while the ISO/IEC 27000 series provides the objectives of the individual security controls.
 - **B.** The ISO/IEC 27000 series provides a high-level overview of security program requirements, while COBIT maps IT goals to enterprise goals to stakeholder needs.
 - C. COBIT is process oriented, and the ISO/IEC 27000 series is solution oriented.
 - **D.** The ISO/IEC 27000 series is process oriented, and COBIT is solution oriented.
- **82.** The Capability Maturity Model Integration (CMMI) approach is being used more frequently in security program and enterprise development. Which of the following provides an incorrect characteristic of this model?
 - **A.** It provides a pathway for how incremental improvement can take place.
 - **B.** It provides structured steps that can be followed so an organization can evolve from one level to the next and constantly improve its processes.
 - C. It was created for process improvement and developed by Carnegie Mellon.
 - **D.** It was built upon the SABSA model.
- **83.** If Jose wanted to use a risk assessment methodology across the entire organization and allow the various business owners to identify risks and know how to deal with them, what methodology would he use?
 - A. Qualitative
 - B. COBIT
 - C. FRAP
 - **D.** OCTAVE
- **84.** Information security is a field that is maturing and becoming more organized and standardized. Organizational security models should be based on an enterprise architecture framework. Which of the following best describes what an enterprise architecture framework is and why it would be used?
 - **A.** Mathematical model that defines the secure states that various software components can enter and still provide the necessary protection
 - **B.** Conceptual model that is organized into multiple views addressing each of the stakeholder's concerns

- C. Business enterprise framework that is broken down into six conceptual levels to ensure security is deployed and managed in a controllable manner
- **D.** Enterprise framework that allows for proper security governance
- 85. Which of the following provides a true characteristic of a fault tree analysis?
 - **A.** Fault trees are assigned qualitative values to faults that can take place over a series of business processes.
 - **B.** Fault trees are assigned failure mode values.
 - **C.** Fault trees are labeled with actual numbers pertaining to failure probabilities.
 - **D.** Fault trees are used in a stepwise approach to software debugging.
- **86.** It is important that organizations ensure that their security efforts are effective and measurable. Which of the following is not a common method used to track the effectiveness of security efforts?
 - A. Service level agreement
 - **B.** Return on investment
 - C. Balanced scorecard system
 - **D.** Provisioning system
- **87.** Capability Maturity Model Integration (CMMI) is a process improvement approach that is used to help organizations improve their performance. The CMMI model may also be used as a framework for appraising the process maturity of the organization. Which of the following is an incorrect mapping of the levels that may be assigned to an organization based upon this model?
 - i. Maturity Level 2 Managed or Repeatable
 - ii. Maturity Level 3 Defined
 - iii. Maturity Level 4 Quantitatively Managed
 - iv. Maturity Level 5 Optimizing
 - **A.** i
 - **B.** i, ii
 - C. All of them
 - **D.** None of them
- **88.** An organization's information systems risk management (ISRM) policy should address many items to provide clear direction and structure. Which of the following is not a core item that should be covered in this type of policy?
 - i. The objectives of the ISRM team
 - ii. The level of risk the organization will accept and what is considered an acceptable level of risk
 - iii. Formal processes of risk identification

- iv. The connection between the ISRM policy and the organization's strategic planning processes
- v. Responsibilities that fall under ISRM and the roles to fulfill them
- vi. The mapping of risk to specific physical controls
- vii. The approach toward changing staff behaviors and resource allocation in response to risk analysis
- viii. The mapping of risks to performance targets and budgets
 - ix. Key metrics and performance indicators to monitor the effectiveness of controls
 - A. ii, v, ix
 - B. vi
 - **C.** v
 - D. vii, ix
- **89.** More organizations are outsourcing supporting functions to allow them to focus on their core business functions. Organizations use hosting companies to maintain websites and e-mail servers, service providers for various telecommunication connections, disaster recovery companies for co-location capabilities, cloud computing providers for infrastructure or application services, developers for software creation, and security companies to carry out vulnerability management. Which of the following items should be included during the analysis of an outsourced partner or vendor?
 - i. Conduct onsite inspection and interviews
 - ii. Review contracts to ensure security and protection levels are agreed upon
 - iii. Ensure service level agreements are in place
 - iv. Review internal and external audit reports and third-party reviews
 - v. Review references and communicate with former and existing customers
 - **A.** ii, iii, iv
 - B. iv, v
 - C. All of them
 - **D.** i, ii, iii
- 90. Which of the following is normally not an element of e-discovery?
 - **A.** Identification
 - **B.** Preservation
 - C. Production
 - D. Remanence

- 91. A financial institution has developed its internal security program based upon the ISO/IEC 27000 series. The security officer has been told that metrics need to be developed and integrated into this program so that effectiveness can be gauged. Which of the following standards should be followed to provide this type of guidance and functionality?
 - A. ISO/IEC 27002
 - B. ISO/IEC 27003
 - C. ISO/IEC 27004
 - **D.** ISO/IEC 27005
- **92.** Which of the following is not an advantage of using content distribution networks?
 - A. Improved responsiveness to regional users
 - **B.** Resistance to ARP spoofing attacks
 - C. Customization of content for regional users
 - **D.** Resistance to DDoS attacks
- **93.** Sana has been asked to install a cloud access security broker (CASB) product for her company's environment. What is the best description for what CASBs are commonly used for?
 - A. Monitor end-user behavior and enforce policies across cloud services
 - **B.** Provision secure cloud services
 - C. Enforce access controls to cloud services through X.500 databases
 - D. Protect cloud services from certain types of attacks
- **94.** Which of the following allows a user to be authenticated across multiple IT systems and enterprises?
 - A. Single sign-on (SSO)
 - B. Session management
 - C. Federated identity
 - D. Role-based access control (RBAC)
- 95. Which of the following is a true statement pertaining to markup languages?
 - **A.** Hypertext Markup Language (HTML) came from Generalized Markup Language (GML), which came from Standard Generalized Markup Language (SGML).
 - **B.** Hypertext Markup Language (HTML) came from Standard Generalized Markup Language (SGML), which came from Generalized Markup Language (GML).

- C. Standard Generalized Markup Language (SGML) came from Hypertext Markup Language (HTML), which came from Generalized Markup Language (GML).
- D. Standard Generalized Markup Language (SGML) came from Generalized Markup Language (GML), which came from Hypertext Markup Language (HTML).
- **96.** What is Extensible Markup Language (XML) and why was it created?
 - **A.** A specification that provides a structure for creating other markup languages and still allow for interoperability
 - B. A specification that is used to create static and dynamic websites
 - **C.** A specification that outlines a detailed markup language dictating all formats of all companies that use it
 - D. A specification that does not allow for interoperability for the sake of security
- **97.** Which access control policy is based on the necessary operations and tasks users need to fulfill their responsibilities within an organization and allows for implicit permission inheritance using a nondiscretionary model?
 - A. Rule-based
 - B. Role-based
 - C. Identity-based
 - **D.** Mandatory
- **98.** Which of the following centralized access control protocols would a security professional choose if her network consisted of multiple protocols, including Mobile IP, and had users connecting via wireless and wired transmissions?
 - A. RADIUS
 - B. TACACS+
 - C. Diameter
 - D. Kerberos
- **99.** Javad is the security administrator at a credit card processing company. The company has many identity stores, which are not properly synchronized. Javad is going to oversee the process of centralizing and synchronizing the identity data within the company. He has determined that the data in the HR database will be considered the most up-to-date data, which cannot be overwritten by the software in other identity stores during their synchronization processes. Which of the following best describes the role of this database in the identity management structure of the company?
 - A. Authoritative system of record
 - **B.** Infrastructure source server
 - C. Primary identity store
 - D. Hierarchical database primary

- **100.** Proper access control requires a structured user provisioning process. Which of the following best describes user provisioning?
 - **A.** The creation, maintenance, and deactivation of user objects and attributes as they exist in one or more systems, directories, or applications, in response to business processes
 - **B.** The creation, maintenance, activation, and delegation of user objects and attributes as they exist in one or more systems, directories, or applications, in response to compliance processes
 - **C.** The maintenance of user objects and attributes as they exist in one or more systems, directories, or applications, in response to business processes
 - **D.** The creation and deactivation of user objects and attributes as they exist in one or more systems, directories, or applications, in response to business processes
- **101.** Which of the following protocols would an Identity as a Service (IDaaS) provider use to authenticate you to a third party?
 - A. Diameter
 - B. OAuth
 - C. Kerberos
 - D. OpenID Connect
- **102.** Johana needs to ensure that her company's application can accept provisioning data from the company's partner's application in a standardized method. Which of the following best describes the technology that Johana should implement?
 - A. Service Provisioning Markup Language
 - B. Extensible Provisioning Markup Language
 - C. Security Assertion Markup Language
 - D. Security Provisioning Markup Language
- 103. Lynn logs into a website and purchases an airline ticket for her upcoming trip. The website also offers her pricing and package deals for hotel rooms and rental cars while she is completing her purchase. The airline, hotel, and rental companies are all separate and individual companies. Lynn decides to purchase her hotel room through the same website at the same time. The website is using Security Assertion Markup Language to allow for this type of federated identity management functionality. In this example which entity is the principal, which entity is the identity provider, and which entity is the service provider, respectively?
 - A. Portal, Lynn, hotel company
 - B. Lynn, airline company, hotel company
 - C. Lynn, hotel company, airline company
 - D. Portal, Lynn, airline company

- 104. John is the new director of software development within his company. Several proprietary applications offer individual services to the employees, but the employees have to log into each and every application independently to gain access to these discrete services. John would like to provide a way that allows each of the services provided by the various applications to be centrally accessed and controlled. Which of the following best describes the architecture that John should deploy?
 - **A.** Service-oriented architecture
 - B. Web services architecture
 - C. Single sign-on architecture
 - **D.** Hierarchical service architecture
- **105.** Which security model is defined by three main rules: simple security, star property, and strong star property?
 - A. Biba
 - B. Bell-LaPadula
 - C. Brewer-Nash
 - **D.** Noninterference
- **106.** Khadijah is leading a software development team for her company. She knows the importance of conducting an attack surface analysis and developing a threat model. During which phase of the software development life cycle should she perform these actions?
 - A. Requirements gathering
 - B. Testing and validation
 - C. Release and maintenance
 - D. Design
- **107.** Bartosz is developing a new web application for his marketing department. One of the requirements for the software is that it allows users to post specific content to LinkedIn and Twitter directly from the web app. Which technology would allow him to do this?
 - A. OpenID Connect
 - **B.** OAuth
 - C. SSO
 - D. Federated Identity Management
- **108.** Applications may not work on systems with specific processors. Which of the following best describes why an application may work on an Intel processor but not on an AMD processor?
 - **A.** The application was not compiled to machine language that is compatible with the AMD architecture.
 - **B.** It is not possible for the same application to run on both Intel and AMD processors.

- **C.** The application was not compiled to machine language that is compatible with the Windows architecture.
- **D.** Only applications written in high-level languages will work on different processor architectures.
- **109.** Which of the following is *not* true about software libraries?
 - **A.** They make software development more efficient through code reuse.
 - **B.** They are typically accessed through an application programming interface (API).
 - **C.** They almost never introduce vulnerabilities into programs that use them.
 - **D.** They are used in most major software development projects.
- **110.** Kim is tasked with testing the security of an application but has no access to its source code. Which of the following tests could she use in this scenario?
 - A. Dynamic application security testing
 - **B.** Static application security testing
 - C. Regression testing
 - D. Code review
- 111. Hanna is a security manager of a company that relies heavily on one specific operating system. The operating system is used in the employee workstations and is embedded within devices that support the automated production line software. She has uncovered a vulnerability in the operating system that could allow an attacker to force applications to not release memory segments after execution. Which of the following best describes the type of threat this vulnerability introduces?
 - A. Injection attacks
 - B. Memory corruption
 - C. Denial of service
 - D. Software locking
- **112.** Which of the following access control mechanisms gives you the most granularity in defining access control policies?
 - A. Attribute-based access control (ABAC)
 - B. Role-based access control (RBAC)
 - C. Mandatory access control (MAC)
 - **D.** Discretionary access control (DAC)
- **113.** All of the following are weaknesses of Kerberos *except* which one?
 - A. Principals don't trust each other.
 - **B.** Only the KDC can vouch for individuals' identities and entitlements.
 - C. Secret keys are stored on the users' workstations temporarily.
 - **D.** Susceptibility to password guessing and brute-force attacks.

- **114.** A company needs to implement a CCTV system that will monitor a large area of the facility. Which of the following is the correct lens combination for this?
 - A. A wide-angle lens and a small lens opening
 - **B.** A wide-angle lens and a large lens opening
 - C. A wide-angle lens and a large lens opening with a small focal length
 - D. A wide-angle lens and a large lens opening with a large focal length
- 115. What is the name of a water sprinkler system that keeps pipes empty and doesn't release water until a certain temperature is met and a "delay mechanism" is instituted?
 - A. Wet
 - B. Preaction
 - C. Delayed
 - D. Dry
- **116.** There are different types of fire suppression systems. Which of the following answers best describes the difference between a deluge system and a preaction system?
 - **A.** A deluge system provides a delaying mechanism that allows someone to deactivate the system in case of a false alarm or if the fire can be extinguished by other means. A preaction system provides similar functionality but has wide open sprinkler heads that allow a lot of water to be dispersed quickly.
 - **B.** A preaction system provides a delaying mechanism that allows someone to deactivate the system in case of a false alarm or if the fire can be extinguished by other means. A deluge system has wide open sprinkler heads that allow a lot of water to be dispersed quickly.
 - **C.** A dry pipe system provides a delaying mechanism that allows someone to deactivate the system in case of a false alarm or if the fire can be extinguished by other means. A deluge system has wide open sprinkler heads that allow a lot of water to be dispersed quickly.
 - **D.** A preaction system provides a delaying mechanism that allows someone to deactivate the system in case of a false alarm or if the fire can be extinguished by other means. A deluge system provides similar functionality but has wide open sprinkler heads that allow a lot of water to be dispersed quickly.
- 117. Which of the following best describes why Crime Prevention Through Environmental Design (CPTED) would integrate benches, walkways, and bike paths into a site?
 - **A.** These features are designed to provide natural access control.
 - **B.** These features are designed to emphasize or extend the organization's physical sphere of influence so legitimate users feel a sense of ownership of that space.
 - **C.** These features are designed to make criminals think that those in the site are more attentive, well resourced, and possibly alert.
 - **D.** These features are designed to make criminals feel uncomfortable by providing many ways observers could potentially see them.

- **118.** Which of the following frameworks is a two-dimensional model that uses six basic communication interrogatives intersecting with different viewpoints to give a holistic understanding of the enterprise?
 - A. SABSA
 - B. TOGAF
 - C. CMMI
 - D. Zachman
- **119.** Not every data transmission incorporates the session layer. Which of the following best describes the functionality of the session layer?
 - A. End-to-end data transmission
 - **B.** Application client/server communication mechanism in a distributed environment
 - C. Application-to-computer physical communication
 - **D.** Provides application with the proper syntax for transmission
- **120.** What is the purpose of the Logical Link Control (LLC) layer in the OSI model?
 - **A.** Provides a standard interface for the network layer protocol
 - **B.** Provides the framing functionality of the data link layer
 - C. Provides addressing of the packet during encapsulation
 - D. Provides the functionality of converting bits into electrical signals
- **121.** Which of the following best describes why classless interdomain routing (CIDR) was created?
 - A. To allow IPv6 traffic to tunnel through IPv4 networks
 - **B.** To allow IPSec to be integrated into IPv4 traffic
 - C. To allow an address class size to meet an organization's need
 - **D.** To allow IPv6 to tunnel IPSec traffic
- 122. Johnetta is a security engineer at a company that develops highly confidential products for various government agencies. Her company has VPNs set up to protect traffic that travels over the Internet and other nontrusted networks, but she knows that internal traffic should also be protected. Which of the following is the best type of approach Johnetta's company should take?
 - **A.** Implement a data link technology that provides 802.1AE security functionality.
 - **B.** Implement a network-level technology that provides 802.1AE security functionality.
 - **C.** Implement TLS over L2TP.
 - **D.** Implement IPSec over L2TP.

- 125. Larry is a seasoned security professional and knows the potential dangers associated with using an ISP's DNS server for Internet connectivity. When Larry stays at a hotel or uses his laptop in any type of environment he does not fully trust, he updates values in his HOSTS file. Which of the following best describes why Larry carries out this type of task?
 - **A.** Reduces the risk of an attacker sending his system a corrupt ARP address that points his system to a malicious website
 - **B.** Ensures his host-based IDS is properly updated
 - **C.** Reduces the risk of an attacker sending his system an incorrect IP address-to-host mapping that points his system to a malicious website
 - D. Ensures his network-based IDS is properly synchronized with his host-based IDS
- **126.** John has uncovered a rogue system on the company network that emulates a switch. The software on this system is being used by an attacker to modify frame tag values. Which of the following best describes the type of attack that has most likely been taking place?
 - A. DHCP snooping
 - B. VLAN hopping
 - C. Network traffic shaping
 - D. Network traffic hopping

- 127. Frank is a new security manager for a large financial institution. He has been told that the organization needs to reduce the total cost of ownership for many components of the network and infrastructure. The organization currently maintains many distributed networks, software packages, and applications. Which of the following best describes the cloud service models that Frank could leverage to obtain cloud services to replace on-premises network and infrastructure components
 - **A.** Infrastructure as a Service provides an environment similar to an operating system, Platform as a Service provides operating systems and other major processing platforms, and Software as a Service provides specific application-based functionality.
 - **B.** Infrastructure as a Service provides an environment similar to a data center, Platform as a Service provides operating systems and other major processing platforms, and Software as a Service provides specific application-based functionality.
 - **C.** Infrastructure as a Service provides an environment similar to a data center, Platform as a Service provides application-based functionality, and Software as a Service provides specific operating system functionality.
 - D. Infrastructure as a Service provides an environment similar to a database, Platform as a Service provides operating systems and other major processing platforms, and Software as a Service provides specific application-based functionality.
- **128.** Terry works in a training services provider where the network topology and access controls change very frequently. His boss tells him that he needs to implement a network infrastructure that enables changes to be made quickly and securely with minimal effort. What does Terry need to roll out?
 - A. Wi-Fi
 - **B.** Infrastructure as a Service
 - **C.** Software-defined networking
 - D. Software-defined wide area networking
- 129. On a Tuesday morning, Jami is summoned to the office of the security director, where she finds six of her peers from other departments. The security director gives them instructions about an event that will be taking place in two weeks. Each of the individuals will be responsible for removing specific systems from the facility, bringing them to the offsite facility, and implementing them. Each individual will need to test the installed systems and ensure the configurations are correct for production activities. What event is Jami about to take part in?
 - A. Parallel test
 - **B.** Full-interruption test
 - C. Simulation test
 - **D.** Structured walk-through test

- **130.** While disaster recovery planning (DRP) and business continuity planning (BCP) are directed at the development of "plans," _____ is the holistic management process that should cover both of them. It provides a framework for integrating resilience with the capability for effective responses that protects the interests of the organization's key stakeholders.
 - A. continuity of operations
 - B. business continuity management
 - C. risk management
 - D. enterprise management architecture
- **131.** Your company enters into a contract with another company as part of which your company requires the other company to abide by specific security practices. Six months into the effort, you decide to verify that the other company is satisfying these security requirements. Which of the following would you conduct?
 - A. Third-party audit
 - B. External (second-party) audit
 - C. Structured walk-through test
 - **D.** Full-interruption test
- 132. Which of the following statements is true about employee duress?
 - **A.** Its risks can be mitigated by installing panic buttons.
 - **B.** Its risks can be mitigated by installing panic rooms.
 - C. Its risks can be mitigated by enforcing forced vacations.
 - **D.** It can more easily be detected using the right clipping levels.
- **133.** The main goal of the Wassenaar Arrangement is to prevent the buildup of military capabilities that could threaten regional and international security and stability. How does this relate to technology?
 - A. Cryptography is a dual-use tool.
 - B. Technology is used in weaponry systems.
 - **C.** Military actions directly relate to critical infrastructure systems.
 - D. Critical infrastructure systems can be at risk under this agreement.
- **134.** Which world legal system is used in continental European countries, such as France and Spain, and is rule-based law, not precedent-based?
 - A. Civil (code) law system
 - B. Common law system
 - C. Customary law system
 - D. Mixed law system

- **135.** Which of the following is not a correct characteristic of the Failure Modes and Effect Analysis (FMEA) method?
 - A. Determining functions and identifying functional failures
 - **B.** Assessing the causes of failure and their failure effects through a structured process
 - C. Structured process carried out by an identified team to address high-level security compromises
 - **D.** Identifying where something is most likely going to break and either fixing the flaws that could cause this issue or implementing controls to reduce the impact of the break
- **136.** A risk analysis can be carried out through qualitative or quantitative means. It is important to choose the right approach to meet the organization's goals. In a quantitative analysis, which of the following items would not be assigned a numeric value?
 - i. Asset value
 - ii. Threat frequency
 - iii. Severity of vulnerability
 - iv. Impact damage
 - v. Safeguard costs
 - vi. Safeguard effectiveness
 - vii. Probability
 - A. All of them
 - **B.** None of them
 - C. ii
 - D. vii

137.	Uncovering	restricted	information	by using	permissible	data is	referred
	to as	·					
	A . C						

- **A.** inference
- B. data mining
- C. perturbation
- **D.** cell suppression

- 138. Meeta recently started working at an organization with no defined security processes. One of the areas she'd like to improve is software patching. Consistent with the organizational culture, she is considering a decentralized or unmanaged model for patching. Which of the following is not one of the risks her organization would face with such a model?
 - **A.** This model typically requires users to have admin credentials, which violates the principle of least privilege.
 - **B.** It will be easier to ensure that all software products are updated, since they will be configured to do so automatically.
 - **C.** It may be difficult (or impossible) to attest to the status of every application in the organization.
 - **D.** Having each application or service independently download the patches will lead to network congestion.
- 139. Clustering is an unsupervised machine learning approach that determines where data samples naturally clump together. It does this by calculating the distance between a new data point and the existing clusters and assigning the point to the closest cluster if, indeed, it is close to any of them. What is this approach typically used for in cybersecurity?
 - A. Spam filtering
 - B. Anomaly detection
 - C. Network flow analysis
 - D. Signature matching
- **140.** Sam wants to test the ability of her technical security controls to stop realistic attacks. Her organization is going through significant growth, which is also increasing the complexity of the networks and systems. To ensure she stays ahead of the adversaries, Sam wants to run these tests frequently. Which approach should she use?
 - A. Breach and attack simulations
 - B. Tabletop exercises
 - C. Red teaming
 - D. Synthetic transactions

Use the following scenario to answer Questions 141–142. Ron is in charge of updating his company's business continuity and disaster recovery plans and processes. After conducting a business impact analysis, his team has told him that if the company's e-commerce payment gateway was unable to process payments for 24 hours or more, this could drastically affect the survivability of the company. The analysis indicates that

after an outage, the payment gateway and payment processing should be restored within 13 hours. Ron's team needs to integrate solutions that provide redundancy, fault tolerance, and failover capability.

- **141.** In the scenario, what does the 24-hour time period represent and what does the 13-hour time period represent, respectively?
 - A. Maximum tolerable downtime, recovery time objective
 - **B.** Recovery time objective, maximum tolerable downtime
 - C. Maximum tolerable downtime, recovery data period
 - **D.** Recovery time objective, data recovery period
- **142.** Which of the following best describes the type of solution Ron's team needs to implement?
 - A. RAID and clustering
 - **B.** Storage area networks
 - C. High availability
 - D. Grid computing and clustering

Answers

- **1. D.** While they are all issues to be concerned with, risk is a combination of probability and business impact. The largest business impact out of this list and in this situation is the fact that intellectual property for product development has been lost. If a competitor can produce the product and bring it to market quickly, this can have a long-lasting financial impact on the company.
- **2. D.** The attackers are the entities that have exploited a vulnerability; thus, they are the threat agent.
- 3. C. In this situation the e-mail server most likely is misconfigured or has a programming flaw that can be exploited. Either of these would be considered a vulnerability. The threat is that someone would find out about this vulnerability and exploit it. The exposure is allowing sensitive data to be accessed in an unauthorized manner.
- **4. C.** Diameter is a protocol that has been developed to build upon the functionality of RADIUS and TACACS+ while overcoming some of their limitations, particularly with regard to mobile clients. RADIUS uses UDP and cannot effectively deal well with remote access, IP mobility, and policy control. Mobile IP is not an authentication and authorization protocol, but rather a technology that allows users to move from one network to another and still use the same IP address.

- 5. C. DNS Security Extensions (DNSSEC, which is part of the many current implementations of DNS server software) works within a PKI and uses digital signatures, which allows DNS servers to validate the origin of a message to ensure that it is not spoofed and potentially malicious. Suppose DNSSEC were enabled on server A, and a client sends it a DNS request for a resource that is not cached locally. Server A would relay the request to one or more external DNS servers and, upon receiving a response, validate the digital signature on the message before accepting the information to make sure that it is from an authorized DNS server. So even if an attacker sent a message to a DNS server, the DNS server would discard it because the message would not contain a valid digital signature. DNSSEC allows DNS servers to send and receive only authenticated and authorized messages between themselves and thwarts the attacker's goal of poisoning a DNS cache table.
- **6. C.** The General Data Protection Regulation (GDPR) impacts every organization that holds or uses European personal data both inside and outside of Europe. In other words, if your company is a U.S.-based company that has never done business with the EU but it has an EU citizen working even as temporary staff (e.g., a summer intern), it probably has to comply with the GDPR or risk facing stiff penalties. There is no exclusion based on the nature of the relations between the data subjects and the data controllers and processors.
- 7. B. A vulnerability is a lack or weakness of a control. The vulnerability is that the user, who must be given access to the sensitive data, is not properly monitored to deter and detect a willful breach of security. The threat is that any internal entity might misuse given access. The risk is the business impact of losing sensitive data. One control that could be put into place is monitoring so that access activities can be closely watched.
- **8. C.** A role-based access control (RBAC) model uses a centrally administrated set of controls to determine how subjects and objects interact. An administrator does not need to revoke and reassign permissions to individual users as they change jobs. Instead, the administrator assigns permissions and rights to a role, and users are plugged into those roles.
- **9. A.** Many (but not all) countries have data breach notification requirements, and these vary greatly in their specifics. While some countries have very strict requirements, others have laxer requirement, or lack them altogether. This requires the security professional to ensure compliance in the appropriate territory. Applying the most stringent rules universally (e.g., 24-hour notification) is usually not a good idea from a business perspective. The term "best effort" is not acceptable in countries with strict rules, nor is the notion that personally identifiable information (PII) is the only type of data that would trigger a mandatory notification.
- **10. D.** Regression testing should take place after a change to a system takes place, retesting to ensure functionality, performance, and protection.

- 11. B. ISO/IEC 27001 is a standard covering information security management systems (ISMSs), which is a much broader topic than supply chain risk management. The other three options are better answers because they are directly tied to this process: NIST Special Publication 800-161, Supply Chain Risk Management Practices for Federal Information Systems and Organizations, directly addresses supply chain risk, and the insertion of hardware Trojans could happen at any point in the chain, upstream or downstream.
- **12. B.** Various countries have data sovereignty laws that stipulate that anyone who stores or processes certain types of data (typically personal data on their citizens), whether or not they do so locally, must comply with those countries' laws. Data localization laws, on the other hand, require certain types of data to be stored and processed in that country (examples include laws in China and Russia).
- **13. B.** Security through obscurity depends upon complexity or secrecy as a protection method. Some organizations feel that since their proprietary code is not standards based, outsiders will not know how to compromise its components. This is an insecure approach. Defense-in-depth is a better approach, with the assumption that anyone can figure out how something works.
- 14. C. ISO/IEC 27005 is the international standard for risk assessments and analysis.
- **15. C.** ISO/IEC 27799 is a guideline for information security management in health organizations. It deals with how organizations that store and process sensitive medical information should protect it.
- 16. D. End-of-life (EOL) for an asset is that point in time when its manufacturer is neither manufacturing nor sustaining it. In other words, you can't send it in for repairs, buy spare parts, or get technical assistance from the manufacturer. The related term, end-of-support (EOS), which is sometimes also called end-of-service-life (EOSL), means that the manufacturer is no longer patching bugs or vulnerabilities on the product.
- 17. **B.** A virtual private network (VPN) provides confidentiality for data being exchanged between two endpoints. While the use of VPNs may not be sufficient in every case, it is the only answer among those provided that addresses the question. The use of Secure Sockets Layer (SSL) is not considered secure. IEEE 802.1X is an authentication protocol that does not protect data in transit. Finally, whole-disk encryption may be a good approach to protecting sensitive data, but only while it is at rest.
- **18. B.** Threat modeling is the process of describing probable adverse effects on an organization's assets caused by specific threat sources. This modeling can use a variety of approaches, including attack trees and the MITRE ATT&CK framework. However, since the question refers to a report and neither of those approaches specifically points to a report, the more general answer of threat modeling is the best one.
- **19. B.** A CAPTCHA is a skewed representation of characteristics a person must enter to prove that the subject is a human and not an automated tool, as in a software robot. It is the graphical representation of data.

- 20. B. The CPO position was created mainly because of the increasing demands on organizations to protect a long laundry list of different types of data. This role is responsible for ensuring that customer, organizational, and employee data is secure and kept secret, which keeps the organization out of criminal and civil courts and hopefully out of the headlines.
- **21. D.** The correct sequence for the steps listed in the question is as follows:
 - i. Develop a risk management team.
 - ii. Identify company assets to be assessed.
 - iii. Calculate the value of each asset.
 - iv. Identify the vulnerabilities and threats that can affect the identified assets.
- **22. B.** Synthetic transactions are scripted events that mimic the behaviors of real users and allow security professionals to systematically test the performance of critical services. They are the best approach, because they can detect problems before users notice them. Real user monitoring (RUM) would rely on users encountering the problem, whereupon the system would automatically report it.
- 23. A. Data remanence refers to the persistence of data on storage media after it has been deleted. Encrypting this data is the best of the listed choices because the recoverable data will be meaningless to an adversary without the decryption key. Retention policies are important, but are considered administrative controls that don't deal with remanence directly. Simply deleting the file will not normally render the data unrecoverable, nor will the use of SSDs even though these devices will sometimes (though not always) make it difficult to recover the deleted data.
- 24. C. While all of these situations could have taken place, the most likely attack type in this scenario is the use of a keylogger. Attackers commonly compromise personal computers by tricking the users into installing Trojan horses that have the capability to install keystroke loggers. The keystroke logger can capture authentication data that the attacker can use to authenticate as a legitimate user and carry out malicious activities.
- **25. B.** IPSec is a suite of protocols used to provide VPNs that use strong encryption and authentication functionality. It can work in two different modes: tunnel mode (payload and headers are protected) or transport mode (payload protection only). IPSec works at the network layer, not the data link layer.
- **26. C.** In a typical public key infrastructure, the sender first needs to obtain the receiver's public key, which could be from the receiver or a public directory, and then verify it. The sender needs to protect the symmetric session key as it is being sent, so the sender encrypts it with the receiver's public key. The receiver decrypts the session key with the receiver's private key.

- 27. C. Today, more organizations are implementing security information and event management (SIEM) systems. These products gather logs from various devices (servers, firewalls, routers, etc.) and attempt to correlate the log data and provide analysis capabilities. Organizations also have different types of systems on a network (routers, firewalls, IDS, IPS, servers, gateways, proxies) collecting logs in various proprietary formats, which requires centralization, standardization, and normalization. Log formats are different per product type and vendor.
- **28. D.** Configuration management is a process aimed at ensuring that systems and controls are configured correctly and are responsive to the current threat and operational environments. Since the IPv6-to-IPv4 tunneling is not desirable, ensuring all devices are properly configured is the best approach of those listed. Change management is a broader term that includes configuration management but is not the best answer listed because it is more general.
- **29. D.** IoT devices run the gamut of cost, from the very cheap to the very expensive. Cost, among the listed options, is the least likely to be a direct concern for a security professional. Lack of authentication, encryption, and update mechanisms are much more likely to be significant issues in any IoT adoption plan.
- **30. C.** Each microservice lives in its own container and gets called as needed. If, for example, you see a spike in orders, you can automatically deploy a new container (in seconds), perhaps in a different host, and destroy it when you no longer need it. This contrasts with traditional servers that have fixed resources available and don't scale as well. Both approaches deal equally well with both web and database services and (properly deployed) have comparable security.
- 31. B. Extensible Access Control Markup Language (XACML), a declarative access control policy language implemented in XML and a processing model, describes how to interpret security policies. Service Provisioning Markup Language (SPML) is an XML-based language that allows for the exchange of provisioning data between applications, which could reside in one organization or many; allows for the automation of user management (account creation, amendments, revocation) and access entitlement configuration related to electronically published services across multiple provisioning systems; and allows for the integration and interoperation of service provisioning requests across various platforms. Security Assertion Markup Language (SAML) is an XML-based language that allows for the exchange of provisioning data between applications, which could reside in one organization or many.
- **32. C.** A company must decide how to handle physical access control in the event of a power failure. In fail-safe mode, doorways are automatically unlocked. This is usually dictated by fire codes to ensure that people do not get stuck inside of a burning building. Fail-secure means that the door will default to lock.

- **33. C.** Incident response typically requires humans in the loop. Next-generation firewalls (NGFWs) do not completely automate the process of responding to security incidents. NGFWs typically involve integrated IPS and signature sharing capabilities with cloud-based aggregators, but are also significantly more expensive than other firewall types.
- **34. D.** Trolling is the term used to describe people who sow discord on various social platforms on the Internet by starting arguments or making inflammatory statements aimed at upsetting others. This is not a topic normally covered in security awareness training. Social engineering, phishing, and whaling are important topics to include in any security awareness program.
- **35. D.** When clients digitally sign messages, this ensures nonrepudiation. Since the client should be the only person who has the client's private key, and only the client's public key can decrypt it, the e-mail must have been sent from the client. Digital signatures provide nonrepudiation protection, which is what this company needs.
- **36. D.** Simple Authentication and Security Layer (SASL) is a protocol-independent authentication framework for authentication and data security in Internet protocols. It decouples authentication mechanisms from application protocols, with the goal of allowing any authentication mechanism supported by SASL to be used in any application protocol that uses SASL. SASL's design is intended to allow new protocols to reuse existing mechanisms without requiring redesign of the mechanisms, and allows existing protocols to make use of new mechanisms without redesign of protocols.
- **37. D.** Coupling is not considered a secure coding practice, though it does affect the quality (and hence the security) of software. It is a measurement that indicates how much interaction one module requires to carry out its tasks. High (tight) coupling means a module depends upon many other modules to carry out its tasks. Low (loose) coupling means a module does not need to communicate with many other modules to carry out its job, which is better because the module is easier to understand and easier to reuse, and changes can take place to one module and not affect many modules around it.
- **38. A.** A recovery time objective (RTO) is the amount of time it takes to recover from a disaster, and a recovery point objective (RPO) is the amount of data, measured in time, that can be lost and be tolerable from that same event. The RPO is the acceptable amount of data loss measured in time. This value represents the earliest point in time by which data must be recovered. The higher the value of data, the more funds or other resources that can be put into place to ensure a smaller amount of data is lost in the event of a disaster. RTO is the maximum time period within which a business process must be restored to a designated service level after a disaster to avoid unacceptable consequences associated with a break in business continuity.
- **39. B.** Though laws vary around the world, many countries criminalize unauthorized access, even if it lacked malicious intent.

- **40. A.** XACML uses a Subject element (requesting entity), a Resource element (requested entity), and an Action element (types of access). XACML defines a declarative access control policy language implemented in XML.
- **41. B.** The Mobile IP protocol allows location-independent routing of IP packets on web-based environments. Each mobile device is identified by its home address. While away from its home network, a mobile node is associated with a care-of address, which identifies its current location, and its home address is associated with the local endpoint of a tunnel to its home agent. Mobile IP specifies how a mobile device registers with its home agent and how the home agent routes packets to the mobile device.
- **42. D.** A SIEM solution is a software platform that aggregates security information and security events and presents them in a single, consistent, and cohesive manner.
- **43. D.** The sensitivity of information is commensurate with the losses to an organization if that information were revealed to unauthorized individuals. Its criticality, on the other hand, is an indicator of how the loss of the information would impact the fundamental business processes of the organization. While replacement costs could factor into a determination of criticality, they almost never do when it comes to sensitivity.
- 44. C. Global organizations that move data across other country boundaries must be aware of and follow the Organisation for Economic Co-operation and Development (OECD) *Guidelines on the Protection of Privacy and Transborder Flows of Personal Data*. Since most countries have a different set of laws pertaining to the definition of private data and how it should be protected, international trade and business get more convoluted and can negatively affect the economy of nations. The OECD is an international organization that helps different governments come together and tackle the economic, social, and governance challenges of a globalized economy. Because of this, the OECD came up with guidelines for the various countries to follow so that data is properly protected and everyone follows the same type of rules.
- **45. B.** Registered ports are 1024–49151, which can be registered with the Internet Assigned Numbers Authority (IANA) for a particular use. Vendors register specific ports to map to their proprietary software. Dynamic ports are 49152–65535 and are available to be used by any application on an "as needed" basis. Port numbers from 0 to 1023 are well-known ports.
- **46. A.** The correct answer for cost/benefit analysis is the formula: (ALE before implementing safeguard) (ALE after implementing safeguard) (annual cost of safeguard) = value of safeguard to the organization.
- **47. B.** Each of the listed items are correct benefits or characteristics of cloud computing except "Cost of computing can be increased since it is a shared delivery model." The correct answer would be "Cost of computing can be *decreased* since it is a shared delivery model."

- **48. A.** An architecture is a tool used to conceptually understand the structure and behavior of a complex entity through different views. An architecture provides different views of the system, based upon the needs of the stakeholders of that system.
- **49. B.** Threat modeling is a systematic approach used to understand how different threats could be realized and how a successful compromise could take place. A threat model is a description of a set of security aspects that can help define a threat and a set of possible attacks to consider. It may be useful to define different threat models for one software product. Each model defines a narrow set of possible attacks to focus on. A threat model can help to assess the probability, the potential harm, and the priority of attacks, and thus help to minimize or eradicate the threats.
- **50. B.** Many IDSs have "heuristic" capabilities, which means that the system gathers different "clues" from the network or system and calculates the probability an attack is taking place. If the probability hits a set threshold, then the alarm sounds.
- **51. C.** External auditors have certain advantages over in-house teams, but they will almost certainly not be as knowledgeable of internal processes and technology as the folks who deal with them on a daily basis.
- **52. C.** In this example, staffers with lower security clearance than Don has could have deduced that the contract had been renewed by paying attention to the changes in their systems. The noninterference model addresses this specifically by dictating that no action or state in higher levels can impact or be visible to lower levels. In this example, the staff could learn something indirectly or infer something that they do not have a right to know yet.
- 53. B. HTML documents and e-mails allow users to attach or embed hyperlinks in any given text, such as the "Click Here" links you commonly see in e-mail messages or web pages. Attackers misuse hyperlinks to deceive unsuspecting users into clicking rogue links. The most common approach is known as URL hiding.
- **54. C.** Personnel background checks are a common administrative (not technical) control. This type of audit would have nothing to do with the web applications themselves. The other three options (log reviews, code reviews, misuse case testing) are typical ways to verify the effectiveness of technical controls.
- **55. D.** Statistical time-division multiplexing (STDM) transmits several types of data simultaneously across a single transmission line. STDM technologies analyze statistics related to the typical workload of each input device and make real-time decisions on how much time each device should be allocated for data transmission.
- **56. D.** The actual voice stream is carried on media protocols such as RTP. RTP provides a standardized packet format for delivering audio and video over IP networks. RTP is a session layer protocol that carries data in media stream format, as in audio

- and video, and is used extensively in VoIP, telephony, video conferencing, and other multimedia streaming technologies. It provides end-to-end delivery services and is commonly run over the transport layer protocol UDP. RTCP is used in conjunction with RTP and is also considered a session layer protocol. It provides out-of-band statistics and control information to provide feedback on QoS levels of individual streaming multimedia sessions.
- **57. A.** Edge computing is a distributed system in which some computational and data storage assets are deployed close to where they are needed in order to reduce latency and network traffic. An edge computing architecture typically has three layers: end devices, edge devices, and cloud infrastructure.
- 58. C. A frequency analysis, also known as a statistical attack, identifies statistically significant patterns in the ciphertext generated by a cryptosystem. For example, the number of zeroes may be significantly higher than the number of ones. This could show that the pseudorandom number generator (PRNG) in use may be biased.
- **59. D.** IPSec is made up of two main protocols, Authentication Header (AH) and Encapsulating Security Payload (ESP). AH provides system authentication and integrity, but not confidentiality or availability. ESP provides system authentication, integrity, and confidentiality, but not availability. Nothing within IPSec can ensure the availability of the system it is residing on.
- **60. D.** The ACID test concept should be incorporated into the software of a database. ACID stands for:
 - **Atomicity** Either the entire transaction succeeds or the database rolls it back to its previous state.
 - Consistency A transaction strictly follows all applicable rules on all data affected.
 - **Isolation** If transactions are allowed to happen in parallel (which most of them are), then they will be isolated from each other so that the effects of one don't corrupt another. In other words, isolated transactions have the same effect whether they happen in parallel or one after the other.
 - **Durability** Ensures that a completed transaction is permanently stored (for instance, in nonvolatile memory) so that it cannot be wiped by a power outage or other such failure.
- **61. B.** In a Platform as a Service (PaaS) contract, the service provider normally takes care of all configuration, patches, and updates for the virtual platform. Jim would only have to worry about porting the applications and running them.
- **62. B.** The biggest advantages of cloud computing are enhanced efficiency, performance, reliability, scalability, and security. Still, cloud computing is not a panacea. An organization must still carefully consider legal, contractual, and cost issues since they could potentially place the organization in a difficult position.

- **63. C.** Shared responsibility addresses situations in which a cloud service provider is responsible for certain security controls, while the customer is responsible for others. It will be critical for Jim to delineate where these responsibilities lie. The other principles listed would presumably be equally important before and after the transition.
- **64. A.** The aim of an attack surface analysis is to identify and reduce the amount of code accessible to untrusted users. The basic strategies of attack surface reduction are to reduce the amount of code running, reduce entry points available to untrusted users, reduce privilege levels as much as possible, and eliminate unnecessary services. Attack surface analysis is generally carried out through specialized tools to enumerate different parts of a product and aggregate their findings into a numerical value. Attack surface analyzers scrutinize files, registry keys, memory data, session information, processes, and services details.
- **65. B.** The Capability Maturity Model Integration (CMMI) model outlines the necessary characteristics of an organization's security engineering process. It addresses the different phases of a secure software development life cycle, including concept definition, requirements analysis, design, development, integration, installation, operations, and maintenance, and what should happen in each phase. It can be used to evaluate security engineering practices and identify ways to improve them. It can also be used by customers in the evaluation process of a software vendor. Ideally, software vendors would use the model to help improve their processes, and customers would use the model to assess the vendor's practices.
- **66. D.** VxLANs are designed to overcome two limitations of traditional VLANs: the limit of no more than 4,096 VLANs imposed by the 12-bit VLAN ID (VID) field, and the need for VLANs to be connected to the same router port. Accordingly, VxLANs are mostly used by cloud service providers with hundreds of customers and by large organizations with a global presence.
- **67. D.** These are all issues that are directly related to Kerberos. These items are as follows:
 - The Key Distribution Center (KDC) can be a single point of failure. If the KDC goes down, no one can access needed resources. Redundancy is necessary for the KDC.
 - The KDC must be scalable to handle the number of requests it receives in a timely manner.
 - Secret keys are temporarily stored on the users' workstations, which means it is
 possible for an intruder to obtain these cryptographic keys.
 - Session keys are decrypted and reside on the users' workstations, either in a cache or in a key table. Again, an intruder can capture these keys.
 - Kerberos is vulnerable to password guessing. The KDC does not know if a dictionary attack is taking place.

- **68. A.** Yes, the company should implement the control, as the value would be \$25,000. The cost/benefit calculation is (ALE before implementing safeguard) (ALE after implementing safeguard) (annual cost of safeguard) = value of safeguard to the organization, which in this case is \$100,000 \$45,000 \$30,000 = \$25,000.
- **69. D.** The correct mappings for the individual standards are as follows:
 - ISO/IEC 27002: Code of practice for information security controls
 - ISO/IEC 27003: ISMS implementation guidance
 - ISO/IEC 27004: ISMS monitoring, measurement, analysis, and evaluation
 - ISO/IEC 27005: Information security risk management
 - ISO/IEC 27007: ISMS auditing guidelines
- **70. B.** Just-in-time (JIT) access temporarily elevates users to the necessary privileged access to perform a specific task, on a specific asset, for a short time. This approach mitigates the risk of privileged account abuse by reducing the time a threat actor has to gain access to a privileged account. While this could reduce some of the workload on the IT staff, it would have no impact on the time needed to reset a multitude of passwords.
- **71. C.** End-to-end encryption happens within the applications. IPSec encryption takes place at the network layer. PPTP encryption takes place at the data link layer. Link encryption takes place at the data link and physical layers.
- **72. A.** Hierarchical storage management (HSM) provides continuous online backup functionality. It combines hard disk technology with the cheaper and slower optical or tape jukeboxes. Storage area network (SAN) is made up of several storage systems that are connected together to form a single backup network.
- **73. C.** The common law system is the only one that is based on previous interpretations of the law. This means that the system consists of both laws and court decisions in specific cases. Torts can be (and usually are) part of a common law system, but that would be an incomplete answer to this question.
- **74. B.** It is important that evidence be relevant, complete, sufficient, and reliable to the case at hand. These four characteristics of evidence provide a foundation for a case and help ensure that the evidence is legally permissible.
- **75. B.** Risk-based access control estimates the risk associated with a particular request in real time and, if it doesn't exceed a given threshold, grants the subject access to the requested resource. This estimate can be based on multiple factors, including the risk history of similar requests. It is possible to improve a rule-based access control mechanism over time (based on historical data), but that would have to be a manual process and wouldn't happen in real time.
- 76. C. SOAP enables programs running on different operating systems and written in different programming languages to communicate over web-based communication methods. SOAP is an XML-based protocol that encodes messages in a web service environment. SOAP actually defines an XML schema or a structure of how

- communication is going to take place. The SOAP XML schema defines how objects communicate directly.
- 77. A. Each answer lists the correct definition mapping.
- **78. C.** For an enterprise security architecture to be successful in its development and implementation, the following items must be understood and followed: strategic alignment, process enhancement, business enablement, and security effectiveness.
- **79. A.** The OECD is an international organization where member countries come together to address economic, social, and governance challenges of a globalized economy. Thus, the OECD came up with guidelines for the various countries to follow so data is properly protected and everyone follows the same type of rules.
- **80. A.** The Zachman Framework is for business enterprise architectures, not security enterprises. The proper definition mappings are as follows:
 - Zachman Framework Model for the development of enterprise architectures developed by John Zachman
 - TOGAF Model and methodology for the development of enterprise architectures developed by The Open Group
 - **DoDAF** U.S. Department of Defense architecture framework that ensures interoperability of systems to meet military mission goals
 - SABSA Model and methodology for the development of information security enterprise architectures
- **81. B.** The ISO/IEC 27000 series provides a high-level overview of security program requirements, while COBIT maps IT goals to enterprise goals to stakeholder needs through a series of transforms called cascading goals. COBIT specifies 13 enterprise and 13 alignment goals that take the guesswork out of ensuring we consider all dimensions in our decision-making processes.
- **82. D.** This model was not built upon the SABSA model. All other characteristics are true.
- **83. D.** The Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) relies on the idea that the people working in a given environment best understand what is needed and what kind of risks they are facing. This places the people who work inside the organization in the power positions of being able to make the decisions regarding what is the best approach for evaluating the security of their organization.
- **84. B.** An enterprise architecture framework is a conceptual model in which an architecture description is organized into multiple architecture views, where each view addresses specific concerns originating with the specific stakeholders. Individual stakeholders have a variety of system concerns, which the architecture must address. To express these concerns, each view applies the conventions of its architecture viewpoint.

- **85. C.** Fault tree analysis follows this general process. First, an undesired effect is taken as the root, or top, event of a tree of logic. Then, each situation that has the potential to cause that effect is added to the tree as a series of logic expressions. Fault trees are then labeled with actual numbers pertaining to failure probabilities.
- **86. D.** Security effectiveness deals with metrics, meeting service level agreement (SLA) requirements, achieving return on investment (ROI), meeting set baselines, and providing management with a dashboard or balanced scorecard system. These are ways to determine how useful the current security solutions and architecture as a whole are performing.
- **87. D.** Each answer provides the correct definition of the four levels that can be assigned to an organization during its evaluation against the CMMI model. This model can be used to determine how well the organization's processes compare to CMMI best practices and to identify areas where improvement can be made. Maturity Level 1 is Initial.
- **88. B.** The ISRM policy should address all of the items listed except specific physical controls. Policies should not specify any type of controls, whether they are administrative, physical, or technical.
- **89. C.** Each of these items should be considered before committing to an outsource partner or vendor.
- **90. D.** The steps normally involved in the discovery of electronically stored information, or e-discovery, are identifying, preserving, collecting, processing, reviewing, analyzing, and producing the data in compliance with the court order. Data remanence is not part of e-discovery, though it could influence the process.
- **91. C.** ISO/IEC 27004:2016, which is used to assess the effectiveness of an ISMS and the controls that make up the security program as outlined in ISO/IEC 27001. ISO/IEC 27004 provides guidance for ISMS monitoring, measurement, analysis, and evaluation.
- **92. B.** Content distribution networks (CDNs) work by replicating content across geographically dispersed nodes. This means that regional users (those closest to a given node) will see improved responsiveness and could have tailored content delivered to them. It also means that mounting a successful DDoS attack is much more difficult. An ARP spoofing attack, however, takes place on the local area network and is therefore unrelated to the advantages of CDNs.
- **93. A.** A CASB is a system that provides visibility and security controls for cloud services. A CASB monitors what users do in the cloud and applies whatever policies and controls are applicable to that activity.
- **94. C.** A federated identity is a portable identity, and its associated entitlements, that can be used across business boundaries. It allows a user to be authenticated across multiple IT systems and enterprises. Single sign-on (SSO) allows users to enter credentials one time and be able to access all resources in primary and secondary network domains, but is not the best answer because it doesn't specifically address the capability to provide authentication across enterprises. A federated identity is a kind of SSO, but not every SSO implementation is federated.

- **95. B.** HTML came from SGML, which came from GML. A markup language is a way to structure text and data sets, and it dictates how these will be viewed and used. When developing a web page, a markup language enables you to control how the text looks and some of the actual functionality the page provides.
- **96. A.** XML is a universal and foundational standard that provides a structure for other independent markup languages to be built from and still allow for interoperability. Markup languages with various functionalities were built from XML, and while each language provides its own individual functionality, if they all follow the core rules of XML, then they are interoperable and can be used across different web-based applications and platforms.
- **97. B.** A role-based access control (RBAC) model is based on the necessary operations and tasks a user needs to carry out to fulfill her responsibilities within an organization. This type of model lets access to resources be based on the user's roles. In hierarchical RBAC, role hierarchies define an inheritance relation among roles.
- **98. C.** Diameter is a more diverse centralized access control administration technique than RADIUS and TACACS+ because it supports a wide range of protocols that often accompany wireless technologies. RADIUS supports PPP, SLIP, and traditional network connections. TACACS+ is a RADIUS-like protocol that is Cisco-proprietary. Kerberos is a single sign-on technology, not a centralized access control administration protocol that supports all stated technologies.
- **99. A.** An authoritative system of record (ASOR) is a hierarchical tree-like structure system that tracks subjects and their authorization chains. The authoritative source is the "system of record," or the location where identity information originates and is maintained. It should have the most up-to-date and reliable identity information.
- **100. A.** User provisioning refers to the creation, maintenance, and deactivation of user objects and attributes as they exist in one or more systems, directories, or applications, in response to business processes.
- 101. D. OpenID Connect (OIDC) is a simple authentication layer built on top of the OAuth 2.0 protocol. It allows transparent authentication and authorization of client resource requests. Though it is possible to use OAuth, which is an authorization standard, for authentication, you would do so by leveraging its OpenID Connect layer. Diameter and Kerberos are not well-suited for IDaaS.
- 102. A. The Service Provisioning Markup Language (SPML) allows for the exchange of provisioning data between applications, which could reside in one organization or many. SPML allows for the automation of user management (account creation, amendments, revocation) and access entitlement configuration related to electronically published services across multiple provisioning systems. SPML also allows for the integration and interoperation of service provisioning requests across various platforms.

- 103. B. In this scenario, Lynn is considered the principal, the airline company is considered the identity provider, and the hotel company that receives the user's authentication information from the airline company web server is considered the service provider. Security Assertion Markup Language (SAML) provides the authentication pieces to federated identity management systems to allow business-to-business (B2B) and business-to-consumer (B2C) transactions.
- **104. A.** A service-oriented architecture (SOA) is way to provide independent services residing on different systems in different business domains in one consistent manner. This architecture is a set of principles and methodologies for designing and developing software in the form of interoperable services.
- **105. B.** The Bell-LaPadula model enforces the confidentiality aspects of access control and consists of three main rules. The simple security rule states that a subject at a given security level cannot read data that resides at a higher security level. The *-property rule (star property rule) states that a subject in a given security level cannot write information to a lower security level. Finally, the strong star property rule states that a subject who has read and write capabilities can only perform both of those functions at the same security level; nothing higher and nothing lower.
- 106. D. In the system design phase, the software development team gathers system requirement specifications and determines how the system will accomplish design goals, such as required functionality, compatibility, fault tolerance, extensibility, security, usability, and maintainability. The attack surface analysis, together with the threat model, inform the developers' decisions because they can look at proposed architectures and competing designs from the perspective of an attacker. This allows them to develop a more defensible system. Though it is possible to start the threat model during the earlier phase of requirements gathering, this modeling effort is normally not done that early. Furthermore, the attack surface cannot be properly studied until there is a proposed architecture to analyze. Performing this activity later in the SDLC is less effective and usually results in security being "bolted on" instead of "baked in."
- **107. B.** OAuth is an open standard for authorization to third parties. It lets you authorize a web application to use something that you control at a different website. For instance, if users wanted to share an article in the web app directly to their LinkedIn account, the system would ask them for access to their accounts in LinkedIn. If they agree, they'd see a pop-up from LinkedIn asking whether they want to authorize the web app to share a post. If they agree to this, the web app gains access to all their contacts until they rescind this authorization.
- 108. A. Each CPU type has a specific architecture and set of instructions that it can carry out. The application must be developed to work within this CPU architecture and compiled into machine code that can run on it. This is why one application may work on an Intel processor but not on an AMD processor. There are portable applications that can work on multiple architectures and operating systems, but these rely on a runtime environment.

- 109. C. According to Veracode, seven in ten applications use at least one open-source software library with a security flaw, which makes those applications vulnerable. This estimate doesn't include proprietary libraries, which are probably even more insecure because they haven't been subjected to the same amount of scrutiny as open-source ones. This is the main risk in using software libraries.
- **110. A.** Dynamic application security testing (DAST), which is also known as dynamic analysis, refers to the evaluation of a program in real time, while it is running. It is the only one of the answers that is effective for analyzing software without having access to the actual source code.
- 111. C. Attackers have identified programming errors in operating systems that allow them to "starve" the system of its own memory. This means the attackers exploit a software vulnerability that ensures that processes do not properly release their memory resources. Memory is continually committed and not released, and the system is depleted of this resource until it can no longer function. This is an example of a denial-of-service attack.
- **112. A.** Attribute-based access control (ABAC) is based on attributes of any component of the system. It is the most granular of the access control models.
- 113. A. The primary reason to use Kerberos is that the principals do not trust each other enough to communicate directly; they only trust the Key Distribution Center (KDC). This is a strength, not a weakness, of the system, but it does point to the fact that if only the KDC can vouch for identities, this creates a single point of failure. The fact that secret keys are stored on users' workstations, albeit temporarily, presents an attack opportunity for threat actors, who can also perform password attacks on the system.
- 114. A. The depth of field refers to the portion of the environment that is in focus when shown on the monitor. The depth of field varies, depending upon the size of the lens opening, the distance of the object being focused on, and the focal length of the lens. The depth of field increases as the size of the lens opening decreases, the subject distance increases, or the focal length of the lens decreases. So if you want to cover a large area and not focus on specific items, it is best to use a wide-angle lens and a small lens opening.
- 115. **B.** In a preaction system, a link must melt before the water will pass through the sprinkler heads, which creates the delay in water release. This type of suppression system is best in data-processing environments because it allows time to deactivate the system if there is a false alarm.
- **116. B.** A preaction system has a link that must melt before water is released. This is the mechanism that provides the delay in water release. A deluge system has wide open sprinkler heads that allow a lot of water to be released quickly. It does not have a delaying component.

- 117. D. CPTED encourages natural surveillance, the goal of which is to make criminals feel uncomfortable by providing many ways observers could potentially see them and to make all other people feel safe and comfortable by providing an open and well-designed environment. The other answers refer to the other three CPTED strategies, which are natural access control, territorial reinforcement, and maintenance, respectively.
- 118. D. The Zachman Framework is a two-dimensional model that uses six basic communication interrogatives (What, How, Where, Who, When, and Why) intersecting with different viewpoints (Executives, Business Managers, System Architects, Engineers, Technicians, and Enterprise-wide) to give a holistic understanding of the enterprise. This framework was developed in the 1980s and is based on the principles of classical business architecture that contain rules that govern an ordered set of relationships.
- **119. B.** The communication between two pieces of the same software product that reside on different computers needs to be controlled, which is why session layer protocols even exist. Session layer protocols take on the functionality of middleware, enabling software on two different computers to communicate.
- 120. A. The data link layer has two sublayers: the Logical Link Control (LLC) and Media Access Control (MAC) layers. The LLC sublayer provides a standard interface for whatever network protocol is being used. This provides an abstraction layer so that the network protocol does not need to be programmed to communicate with all of the possible MAC-level protocols (Ethernet, WLAN, frame relay, etc.).
- **121. C.** A Class B address range is usually too large for most companies, and a Class C address range is too small, so CIDR provides the flexibility to increase or decrease the class sizes as necessary. CIDR is the method to specify more flexible IP address classes.
- **122. A.** 802.1AE is the IEEE MAC Security (MACSec) standard, which defines a security infrastructure to provide data confidentiality, data integrity, and data origin authentication. Where a VPN connection provides protection at the higher networking layers, MACSec provides hop-by-hop protection at layer 2.
- **123. D.** 802.1AR provides a unique ID for a device. 802.1AE provides data encryption, integrity, and origin authentication functionality. 802.1AF carries out key agreement functions for the session keys used for data encryption. Each of these standards provides specific parameters to work within an 802.1X EAP-TLS framework.
- **124. A.** As information systems security professionals, if we discover a vulnerability, we have an ethical obligation to properly disclose it to the appropriate parties. If the vulnerability is in our own product, we need to notify our customers and partners as soon as possible. If it is in someone else's product, we need to notify the vendor or manufacturer immediately so they can fix it. The goal of ethical disclosure is to inform anyone who might be affected as soon as feasible, so a patch can be developed before any threat actors become aware of the vulnerability.

- 125. C. The HOSTS file resides on the local computer and can contain static hostname-to-IP mapping information. If you do not want your system to query a DNS server, you can add the necessary data in the HOSTS file, and your system will first check its contents before reaching out to a DNS server. Some people use these files to reduce the risk of an attacker sending their system a bogus IP address that points them to a malicious website.
- 126. B. VLAN hopping attacks allow attackers to gain access to traffic in various VLAN segments. An attacker can have a system act as though it is a switch. The system understands the tagging values being used in the network and the trunking protocols, and can insert itself between other VLAN devices and gain access to the traffic going back and forth. Attackers can also insert tagging values to manipulate the control of traffic at the data link layer.
- 127. B. The most common cloud service models are
 - **Infrastructure as a Service (IaaS)** Cloud service providers offer the infrastructure environment of a traditional data center in an on-demand delivery method.
 - **Platform as a Service (PaaS)** Cloud service providers deliver a computing platform, which can include an operating system, database, and web server as a holistic execution environment.
 - **Software as a Service (SaaS)** Cloud service providers give users access to specific application software (e.g., CRM, e-mail, and games).
- **128. C.** Software-defined networking (SDN) is an approach to networking that relies on distributed software to provide unprecedented agility and efficiency. Using SDN, it becomes much easier to dynamically route traffic to and from newly provisioned services and platforms. It also means that a service or platform can be quickly moved from one location to another and the SDN will just as quickly update traffic-flow rules in response to this change.
- **129. A.** Parallel tests are similar to simulation tests, except that parallel tests include moving some of the systems to the offsite facility. Simulation tests stop just short of the move. Parallel tests are effective because they ensure that specific systems work at the new location, but the test itself does not interfere with business operations at the main facility.
- **130. B.** While DRP and BCP are directed at the development of plans, business continuity management (BCM) is the holistic management process that should cover both of them. BCM provides a framework for integrating resilience with the capability for effective responses in a manner that protects the interests of the organization's key stakeholders. The main objective of BCM is to allow the organization to continue to perform business operations under various conditions. BCM is the overarching approach to managing all aspects of BCP and DRP.

- 131. **B.** An external audit (sometimes called a second-party audit) is one conducted by (or on behalf of) a business partner to verify contractual obligations. Though this audit could be conducted by a third party (e.g., an auditing firm hired by either party), it is still considered an external audit because it is being done to satisfy an external entity.
- **132. A.** Duress is the use of threats or violence against someone in order to force them to do something they don't want to do. A popular example of a countermeasure for duress is the use of panic buttons by bank tellers. A panic room could conceivably be another solution, but it would only work if employees are able to get in and lock the door before an assailant can stop them, which makes it a generally poor approach.
- 133. A. The Wassenaar Arrangement implements export controls for "Conventional Arms and Dual-Use Goods and Technologies." The main goal of this arrangement is to prevent the buildup of military capabilities that could threaten regional and international security and stability. So, everyone is keeping an eye on each other to make sure no one country's weapons can take everyone else out. One item the agreement deals with is cryptography, which is considered a dual-use good because it can be used for both military and civilian purposes. The agreement recognizes the danger of exporting products with cryptographic functionality to countries that are in the "offensive" column, meaning that they are thought to have friendly ties with terrorist organizations and/or want to take over the world through the use of weapons of mass destruction.
- 134. A. The civil (code) law system is used in continental European countries such as France and Spain. It is a different legal system from the common law system used in the United Kingdom and United States. A civil law system is rule-based law, not precedent-based. For the most part, a civil law system is focused on codified law—or written laws.
- 135. C. FMEA is a method for determining functions, identifying functional failures, and assessing the causes of failure and their failure effects through a structured process. It is commonly used in product development and operational environments. The goal is to identify where something is most likely going to break and either fix the flaws that could cause this issue or implement controls to reduce the impact of the break.
- 136. B. Each of these items would be assigned a numeric value in a quantitative risk analysis. Each element is quantified and entered into equations to determine total and residual risks. Quantitative risk analysis is more of a scientific or mathematical approach to risk analysis compared to qualitative.
- 137. A. Aggregation and inference go hand in hand. For example, a user who uses data from a public database to figure out classified information is exercising aggregation (the collection of data) and can then infer the relationship between that data and the data the user does not have access to. This is called an inference attack.

- **138. B.** This option is not a risk, but a (probably unrealistic) benefit, so it cannot be the right answer. The other three options are all risks associated with an unmanaged patching model.
- **139. B.** Clustering algorithms are frequently used for anomaly detection. Classifiers are helpful when trying to determine whether a binary file is malware or detect whether an e-mail is spam. Predictive machine learning models can be applied wherever historical numerical data is available and work by estimating what the value of the next data point should be, which makes them very useful for network flow analysis (e.g., when someone is exfiltrating large amounts of data from the network).
- **140. A.** Breach and attack simulations (BAS) are automated systems that launch simulated attacks against a target environment and then generate reports on their findings. They are meant to be run regularly (even frequently) and be realistic, but not to cause any adverse effect to the target systems. They are usually a much more affordable approach than red teaming, even if you use an internal team.
- 141. A. Maximum tolerable downtime (MTD) is the outage time that can be endured by an organization, and the recovery time objective (RTO) is an allowable amount of downtime. The RTO value (13 hours) is smaller than the MTD value (24 hours) because the MTD value represents the time after which an inability to recover significant operations will mean severe and perhaps irreparable damage to the organization's reputation or bottom line. The RTO assumes that there is a period of acceptable downtime. This means that a company can be out of production for a certain period of time (RTO) and still get back on its feet. But if the company cannot get production up and running within the MTD window, the company is sinking too fast to properly recover.
- **142. C.** High availability (HA) is a combination of technologies and processes that work together to ensure that critical functions are always up and running at the necessary level. To provide this level of high availability, a company has to have a long list of technologies and processes that provide redundancy, fault tolerance, and failover capabilities.

B

Objective Map

		All-in-O	ne Coverage
Domain	Objective	Ch#	Heading
Domain 1	: Security and Risk Management		
1.1	Understand, adhere to, and promote professional ethics	1	Professional Ethics
1.1.1	(ISC) ² Code of Professional Ethics	1	(ISC) ² Code of Professional Ethics
1.1.2	Organizational code of ethics	1	Organizational Code of Ethics
1.2	Understand and apply security concepts (confidentiality, integrity, and availability, authenticity and nonrepudiation)	1	Fundamental Cybersecurity Concepts and Terms
1.3	Evaluate and apply security governance principles	1	Security Governance Principles
1.3.1	Alignment of the security function to business strategy, goals, mission, and objectives	1	Aligning Security to Business Strategy
1.3.2	Organizational processes (e.g., acquisitions, divestitures, governance committees)	1	Organizational Processes
1.3.3	Organizational roles and responsibilities	1	Organizational Roles and Responsibilities
1.3.4	Security control frameworks	4	Security Control Frameworks
1.3.5	Due care/due diligence	3	Due Care vs. Due Diligence
1.4	Determine compliance and other requirements	3	Compliance Requirements
1.4.1	Contractual, legal, industry standards, and regulatory requirements	3	Contractual, Legal, Industry Standards, and Regulatory Requirements
1.4.2	Privacy requirements	3	Privacy Requirements
1.5	Understand legal and regulatory issues that pertain to information security in a holistic context	3	Laws and Regulations

			All-in-One Coverage		
Domain	Objective	Ch#	Heading		
Domain 1	: Security and Risk Management				
1.5.1	Cybercrimes and data breaches	3	Cybercrimes and Data Breaches		
1.5.2	Licensing and Intellectual Property (IP) requirements	3	Licensing and Intellectual Property Requirements		
1.5.3	Import/export controls	3	Import/Export Controls		
1.5.4	Transborder data flow	3	Transborder Data Flow		
1.5.5	Privacy	3	Privacy		
1.6	Understand requirements for investigation types (i.e., administrative, criminal, civil, regulatory, industry standards)	3	Requirements for Investigations		
1.7	Develop, document, and implement security policy, standards, procedures, and guidelines	1	Security Policies, Standards, Procedures, and Guidelines		
1.8	Identify, analyze, and prioritize Business Continuity (BC) requirements	2	Business Continuity		
1.8.1	Business Impact Analysis (BIA)	2	Business Impact Analysis		
1.8.2	Develop and document the scope and the plan	2	Business Continuity		
1.9	Contribute to and enforce personnel security policies and procedures	1	Personnel Security		
1.9.1	Candidate screening and hiring	1	Candidate Screening and Hiring		
1.9.2	Employment agreements and policies	1	Employment Agreements and Policies		
1.9.3	Onboarding, transfers, and termination processes	1	Onboarding, Transfers and Termination Processes		
1.9.4	Vendor, consultant, and contractor agreements and controls	1	Vendors, Consultants, and Contractors		
1.9.5	Compliance policy requirements	1	Compliance Policies		
1.9.6	Privacy policy requirements	1	Privacy Policies		
1.10	Understand and apply risk management concepts	2	Risk Management Concepts		
1.10.1	Identify threats and vulnerabilities	2	Identifying Threats and Vulnerabilities		
1.10.2	Risk assessment/analysis	2	Assessing Risks		
1.10.3	Risk response	2	Responding to Risks		
1.10.4	Countermeasure selection and implementation	2	Countermeasure Selection and Implementation		

		All-in-C	One Coverage
Domain	Objective	Ch#	Heading
Domain 1	: Security and Risk Management		
1.10.5	Applicable types of controls (e.g., preventive, detective, corrective)	2	Types of Controls
1.10.6	Control assessments (security and privacy)	2	Control Assessments
1.10.7	Monitoring and measurement	2	Monitoring Risks
1.10.8	Reporting	2	Risk Reporting
1.10.9	Continuous improvement (e.g., Risk maturity modeling)	2	Continuous Improvement
1.10.10	Risk frameworks	4	Risk Frameworks
1.11	Understand and apply threat modeling concepts and methodologies	9	Threat Modeling
1.12	Apply Supply Chain Risk Management (SCRM) concepts	2	Supply Chain Risk Management
1.12.1	Risks associated with hardware, software, and services	2	Risks Associated with Hardware, Software, and Services
1.12.2	Third-party assessment and monitoring	2	Other Third-Party Risks
1.12.3	Minimum security requirements	2	Minimum Security Requirements
1.12.4	Service level requirements	2	Service Level Agreements
1.13	Establish and maintain a security awareness, education, and training program	1	Security Awareness, Education, and Training Programs
1.13.1	Methods and techniques to present awareness and training (e.g., social engineering, phishing, security champions, gamification)	1	Methods and Techniques to Present Awareness and Training
1.13.2	Periodic content reviews	1	Periodic Content Reviews
1.13.3	Program effectiveness evaluation	1	Program Effectiveness Evaluation
Domain 2	: Asset Security		
2.1	Identify and classify information and assets	5	Information and Assets
2.1.1	Data classification	5	Data Classification
2.1.2	Asset classification	5	Asset Classification
2.2	Establish information and asset handling requirements	5	Classification
2.3	Provision resources securely	5	Secure Provisioning
2.3.1	Information and asset ownership	5	Ownership

		All-in-O	ne Coverage
Domain	Objective	Ch#	Heading
Domain 2	: Asset Security		
2.3.2	Asset inventory (e.g., tangible, intangible)	5	Inventories
2.3.3	Asset management	5	Managing the Life Cycle of Assets
2.4	Manage data lifecycle	5	Data Life Cycle
2.4.1	Data roles (i.e., owners, controllers, custodians, processors, users/subjects)	5	Data Roles
2.4.2	Data collection	5	Data Collection
2.4.3	Data location	5	Where in the World Is My Data?
2.4.4	Data maintenance	5	Data Maintenance
2.4.5	Data retention	5	Data Retention
2.4.6	Data remanence	5	Data Remanence
2.4.7	Data destruction	5	Data Destruction
2.5	Ensure appropriate asset retention (e.g., End-of-Life (EOL), End-of-Support (EOS))	5	Asset Retention
2.6	Determine data security controls and compliance requirements	6	Data Security Controls
2.6.1	Data states (e.g., in use, in transit, at rest)	6	Data States
2.6.2	Scoping and tailoring	6	Scoping and Tailoring
2.6.3	Standards selection	6	Standards
2.6.4	Data protection methods (e.g., Digital Rights Management (DRM), Data Loss Prevention (DLP), Cloud Access Security Broker (CASB))	6	Data Protection Methods
Domain 3	: Security Architecture and Engineering		
3.1	Research, implement and manage engineering processes using secure design principles	9	Secure Design Principles
3.1.1	Threat modeling	9	Threat Modeling
3.1.2	Least privilege	9	Least Privilege
3.1.3	Defense in depth	9	Defense in Depth
3.1.4	Secure defaults	9	Secure Defaults
3.1.5	Fail securely	9	Fail Securely
3.1.6	Separation of Duties (SoD)	9	Separation of Duties
3.1.7	Keep it simple	9	Keep It Simple
3.1.8	Zero Trust	9	Zero Trust
3.1.9	Privacy by design	9	Privacy by Design

		All-in-C)ne Coverage
Domain	Objective	Ch#	Heading
Domain 3	: Security Architecture and Engineering		
3.1.10	Trust but verify	9	Trust But Verify
3.1.11	Shared responsibility	9	Shared Responsibility
3.2	Understand the fundamental concepts of security models (e.g., Biba, Star Model, Bell-LaPadula)	9	Security Models
3.3	Select controls based upon systems security requirements	9	Security Requirements
3.4	Understand security capabilities of Information Systems (IS) (e.g., memory protection, Trusted Platform Module (TPM), encryption/decryption)	9	Security Capabilities of Information Systems
3.5	Assess and mitigate the vulnerabilities of security architectures, designs, and solution elements	7	General System Architectures
3.5.1	Client-based systems	7	Client-Based Systems
3.5.2	Server-based systems	7	Server-Based Systems
3.5.3	Database systems	7	Database Systems
3.5.4	Cryptographic systems	8	Cryptosystems
3.5.5	Industrial Control Systems (ICS)	7	Industrial Control Systems
3.5.6	Cloud-based systems (e.g., Software as a Service (SaaS), Infrastructure as a Service (IaaS), Platform as a Service (PaaS))	7	Cloud-Based Systems
3.5.7	Distributed systems	7	Distributed Systems
3.5.8	Internet of Things (IoT)	7	Internet of Things
3.5.9	Microservices	7	Microservices
3.5.10	Containerization	7	Containerization
3.5.11	Serverless	7	Serverless
3.5.12	Embedded systems	7	Embedded Systems
3.5.13	High-Performance Computing (HPC) systems	7	High-Performance Computing Systems
3.5.14	Edge computing systems	7	Edge Computing Systems
3.5.15	Virtualized systems	7	Virtualized Systems
3.6	Select and determine cryptographic solutions	8	Cryptography Definitions and Concepts
3.6.1	Cryptographic life cycle (e.g., keys, algorithm selection)	8	Cryptographic Life Cycle

			All-in-One Coverage		
Domain	Objective	Ch#	Heading		
Domain 3	S: Security Architecture and Engineering				
3.6.2	Cryptographic methods (e.g., symmetric, asymmetric, elliptic curves, quantum)	8	Cryptographic Methods		
3.6.3	Public Key Infrastructure (PKI)	8	Public Key Infrastructure		
3.6.4	Key management practices	8	Key Management		
3.6.5	Digital signatures and digital certificates	8	Digital Signatures Digital Certificates		
3.6.6	Non-repudiation	8	Cryptosystems		
3.6.7	Integrity (e.g., hashing)	8	Cryptosystems		
3.7	Understand methods of cryptanalytic attacks	8	Integrity		
3.7.1	Brute force	8	Brute Force		
3.7.2	Ciphertext only	8	Ciphertext-Only Attacks		
3.7.3	Known plaintext	8	Known-Plaintext Attacks		
3.7.4	Frequency analysis	8	Frequency Analysis		
3.7.5	Chosen ciphertext	8	Chosen-Ciphertext Attacks		
3.7.6	Implementation attacks	8	Implementation Attacks		
3.7.7	Side-channel	8	Side-Channel Attacks		
3.7.8	Fault injection	8	Fault Injection		
3.7.9	Timing	8	Side-Channel Attacks		
3.7.10	Man-in-the-Middle (MITM)	8	Man-in-the-Middle		
3.7.11	Pass the hash	8	Replay Attacks		
3.7.12	Kerberos exploitation	17	Weaknesses of Kerberos		
3.7.13	Ransomware	8	Ransomware		
3.8	Apply security principles to site and facility design	10	Security Principles		
3.9	Design site and facility security controls	10	Site and Facility Controls		
3.9.1	Wiring closets/intermediate distribution facilities	10	Distribution Facilities		
3.9.2	Server rooms/data centers	10	Data Processing Facilities		
3.9.3	Media storage facilities	10	Media Storage		
3.9.4	Evidence storage	10	Evidence Storage		
3.9.5	Restricted and work area security	10	Restricted Areas		

		All-in-One Coverage		
Domain	Objective	Ch#	Heading	
Domain 3	3: Security Architecture and Engineering			
3.9.6	Utilities and Heating, Ventilation, and Air Conditioning (HVAC)	10	Utilities	
3.9.7	Environmental issues	10	Environmental Issues	
3.9.8	Fire prevention, detection, and suppression	10	Fire Safety	
3.9.9	Power (e.g., redundant, backup)	10	Electric Power	
Domain 4	l: Communication and Network Security			
4.1	Assess and implement secure design principles in network architectures	13	Applying Secure Design Principles to Network Architectures	
4.1.1	Open System Interconnection (OSI) and Transmission Control Protocol/Internet Protocol (TCP/IP) models	11	Network Reference Models	
4.1.2	Internet Protocol (IP) networking (e.g., Internet Protocol Security (IPSec), Internet Protocol (IP) v4/6)	11	Internet Protocol Networking	
4.1.3	Secure protocols	13	Secure Protocols	
4.1.4	Implications of multilayer protocols	13	Multilayer Protocols	
4.1.5	Converged protocols (e.g., Fiber Channel Over Ethernet (FCoE), Internet Small Computer Systems Interface (iSCSI), Voice over Internet Protocol (VoIP))	13	Converged Protocols	
4.1.6	Micro-segmentation (e.g., Software Defined Networks (SDN), Virtual eXtensible Local Area Network (VXLAN), Encapsulation, Software- Defined Wide Area Network (SD-WAN))	13	Network Segmentation	
4.1.7	Wireless networks (e.g., Li-Fi, Wi-Fi, Zigbee, satellite)	12	Wireless Networking Fundamentals	
4.1.8	Cellular networks (e.g., 4G, 5G)	12	Mobile Wireless Communication	
4.1.9	Content Distribution Networks (CDN)	14	Content Distribution Networks	
4.2	Secure network components	14	Network Devices	
4.2.1	Operation of hardware (e.g., redundant power, warranty, support)	14	Operation of Hardware	
4.2.2	Transmission media	14	Transmission Media	
4.2.3	Network Access Control (NAC) devices	14	Network Access Control Devices	
4.2.4	Endpoint security	14	Endpoint Security	

			All-in-One Coverage		
Domain	Objective	Ch#	Heading		
Domain 4	: Communication and Network Security				
4.3	Implement secure communication channels according to design	15	All of Chapter 15		
4.3.1	Voice	15	Voice Communications		
4.3.2	Multimedia collaboration	15	Multimedia Collaboration		
4.3.3	Remote access	15	Remote Access		
4.3.4	Data communications	11	Data Communications Foundations		
4.3.5	Virtualized networks	15	Virtualized Networks		
4.3.6	Third-party connectivity	15	Third-Party Connectivity		
Domain 5	: Identity and Access Management (IAM)				
5.1	Control physical and logical access to assets	17	Controlling Physical and Logical Access		
5.1.1	Information	17	Information Access Control		
5.1.2	Systems	17	System and Application Access Control		
5.1.3	Devices	17	Access Control to Devices		
5.1.4	Facilities	17	Facilities Access Control		
5.1.5	Applications	17	System and Application Access Control		
5.2	Manage identification and authentication of people, devices, and services	16	Identification, Authen- tication, Authorization, and Accountability		
5.2.1	Identity Management (IdM) implementation	16	Identity Management		
5.2.2	Single/Multi-Factor Authentication (MFA)	16	Identification and Authentication		
5.2.3	Accountability	16	Accountability		
5.2.4	Session management	16	Session Management		
5.2.5	Registration, proofing, and establishment of identity	16	Registration and Proofing of Identity		
5.2.6	Federated Identity Management (FIM)	16	Federated Identity Management		
5.2.7	Credential management systems	16	Credential Management		
5.2.8	Single Sign On (SSO)	16	Single Sign-On		
5.2.9	Just-In-Time (JIT)	16	Just-in-Time Access		
5.3	Federated identity with a third-party service	16	Federated Identity with a Third-Party Service		
5.3.1	On-premise	16	On-Premise		

		All-in-One Coverage		
Domain	Objective	Ch#	Heading	
Domain 5	: Identity and Access Management (IAM)			
5.3.2	Cloud	16	Cloud	
5.3.3	Hybrid	16	Hybrid	
5.4	Implement and manage authorization mechanisms	17	Authorization Mechanisms	
5.4.1	Role Based Access Control (RBAC)	17	Role-Based Access Control	
5.4.2	Rule based access control	17	Rule-Based Access Control	
5.4.3	Mandatory Access Control (MAC)	17	Mandatory Access Control	
5.4.4	Discretionary Access Control (DAC)	17	Discretionary Access Control	
5.4.5	Attribute Based Access Control (ABAC)	17	Attribute-Based Access Control	
5.4.6	Risk based access control	17	Risk-Based Access Control	
5.5	Manage the identity and access provisioning lifecycle	17	Managing the Identity and Access Provisioning Life Cycle	
5.5.1	Account access review (e.g., user, system, service)	17	System Account Access Review	
5.5.2	Provisioning and deprovisioning (e.g., on /off boarding and transfers)	17	Provisioning Deprovisioning	
5.5.3	Role definition (e.g., people assigned to new roles)	17	Role Definitions	
5.5.4	Privilege escalation (e.g., managed service accounts, use of sudo, minimizing its use)	17	Privilege Escalation Managed Service Accounts	
5.6	Implement authentication systems	17	Implementing Authentication and Authorization Systems	
5.6.1	OpenID Connect (OIDC)/Open Authorization (Oauth)	17	OpenID Connect Oauth	
5.6.2	Security Assertion Markup Language (SAML)	17	Access Control and Markup Languages	
5.6.3	Kerberos	17	Kerberos	
5.6.4	Remote Authentication Dial-In User Service (RADIUS)/Terminal Access Controller Access Control System Plus (TACACS+)	17	Remote Access Control Technologies	

			All-in-One Coverage	
Domain	Objective	Ch#	Heading	
Domain 6	s: Security Assessment and Testing			
6.1	Design and validate assessment, test, and audit strategies	18	Test, Assessment, and Audit Strategies	
6.1.1	Internal	18	Internal Audits	
6.1.2	External	18	External Audits	
6.1.3	Third-party	18	Third-Party Audits	
6.2	Conduct security control testing	18	Testing Technical Controls	
6.2.1	Vulnerability assessment	18	Vulnerability Testing	
6.2.2	Penetration testing	18	Penetration Testing	
6.2.3	Log reviews	18	Log Reviews	
6.2.4	Synthetic transactions	18	Synthetic Transactions	
6.2.5	Code review and testing	18	Code Reviews	
6.2.6	Misuse case testing	18	Misuse Case Testing	
6.2.7	Test coverage analysis	18	Test Coverage	
6.2.8	Interface testing	18	Interface Testing	
6.2.9	Breach attack simulations	18	Breach Attack Simulations	
6.2.10	Compliance checks	18	Compliance Checks	
6.3	Collect security process data (e.g., technical and administrative)	19	Security Process Data	
6.3.1	Account management	19	Account Management	
6.3.2	Management review and approval	19	Management Review and Approval	
6.3.3	Key performance and risk indicators	19	Key Performance and Risk Indicators	
6.3.4	Backup verification data	19	Backup Verification	
6.3.5	Training and awareness	19	Security Training and Security Awareness Training	
6.3.6	Disaster Recovery (DR) and Business Continuity (BC)	19	Disaster Recovery and Business Continuity	
6.4	Analyze test output and generate report	19	Reporting	
6.4.1	Remediation	19	Remediation	
6.4.2	Exception handling	19	Exception Handling	
6.4.3	Ethical disclosure	19	Ethical Disclosure	

		All-in-One Coverage		
Domain	Objective	Ch#	Heading	
Domain 6	: Security Assessment and Testing			
6.5	Conduct or facilitate security audits	18	Conducting Security Audits	
6.5.1	Internal	18	Conducting Internal Audits	
6.5.2	External	18	Conducting and Facilitating External Audits	
6.5.3	Third-party	18	Facilitating Third-Party Audits	
Domain 7	: Security Operations			
7.1	Understand and comply with investigations	22	Investigations	
7.1.1	Evidence collection and handling	22	Evidence Collection and Handling	
7.1.2	Reporting and documentation	22	Reporting and Documenting	
7.1.3	Investigative techniques	22	Other Investigative Techniques	
7.1.4	Digital forensics tools, tactics, and procedures	22	Digital Forensics Tools, Tactics, and Procedures	
7.1.5	Artifacts (e.g., computer, network, mobile device)	22	Forensic Artifacts	
7.2	Conduct logging and monitoring activities	21	Logging and Monitoring	
7.2.1	Intrusion detection and prevention	21	Intrusion Detection and Prevention Systems	
7.2.2	Security Information and Event Management (SIEM)	21	Security Information and Event Management	
7.2.3	Continuous monitoring	21	Continuous Monitoring	
7.2.4	Egress monitoring	21	Egress Monitoring	
7.2.5	Log management	21	Log Management	
7.2.6	Threat intelligence (e.g., threat feeds, threat hunting)	21	Threat Intelligence	
7.2.7	User and Entity Behavior Analytics (UEBA)	21	User and Entity Behavior Analytics	
7.3	Perform Configuration Management (CM) (e.g., provisioning, baselining, automation)	20	Configuration Management	

		All-in-C	ne Coverage
Domain	Objective	Ch#	Heading
Domain 7	: Security Operations		
7.4	Apply foundational security operations concepts	20	Foundational Security Operations Concepts
7.4.1	Need-to-know/least privilege	20	Need-to-Know/Least Privilege
7.4.2	Separation of Duties (SoD) and responsibilities	20	Separation of Duties and Responsibilities
7.4.3	Privileged account management	20	Privileged Account Management
7.4.4	Job rotation	20	Job Rotation
7.4.5	Service Level Agreements (SLAs)	20	Service Level Agreements
7.5	Apply resource protection	20	Resource Protection
7.5.1	Media management	20	Hierarchical Storage Management
7.5.2	Media protection techniques	20	Resource Protection
7.6	Conduct incident management	22	Overview of Incident Management
7.6.1	Detection	22	Detection
7.6.2	Response	22	Response
7.6.3	Mitigation	22	Mitigation
7.6.4	Reporting	22	Reporting
7.6.5	Recovery	22	Recovery
7.6.6	Remediation	22	Remediation
7.6.7	Lessons learned	22	Lessons Learned
7.7	Operate and maintain detective and preventative measures	21	Preventive and Detective Measures
7.7.1	Firewalls (e.g., next generation, web application, network)	21	Firewalls
7.7.2	Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS)	21	Intrusion Detection and Prevention Systems
7.7.3	Whitelisting/blacklisting	21	Whitelisting and Blacklisting
7.7.4	Third-party provided security services	21	Outsourced Security Services
7.7.5	Sandboxing	21	Sandboxing
7.7.6	Honeypots/honeynets	21	Honeypots and Honeynets

		All-in-One Coverage	
Domain	Objective	Ch#	Heading
Domain 7	7: Security Operations		
7.7.7	Anti-malware	21	Antimalware Software
7.7.8	Machine learning and Artificial Intelligence (AI) based tools	21	Artificial Intelligence Tools
7.8	Implement and support patch and vulnerability management	20	Vulnerability and Patch Management
7.9	Understand and participate in change management processes	20	Change Management
7.10	Implement recovery strategies	23	Recovery Strategies
7.10.1	Backup storage strategies	23	Data Backup
7.10.2	Recovery site strategies	23	Recovery Site Strategies
7.10.3	Multiple processing sites	23	Multiple Processing Sites
7.10.4	System resilience, High Availability (HA), Quality of Service (QoS), and fault tolerance	23	Availability
7.11	Implement Disaster Recovery (DR) processes	23	Disaster Recovery Processes
7.11.1	Response	23	Response
7.11.2	Personnel	23	Personnel
7.11.3	Communications	23	Communications
7.11.4	Assessment	23	Assessment
7.11.5	Restoration	23	Restoration
7.11.6	Training and awareness	23	Training and Awareness
7.11.7	Lessons learned	23	Lessons Learned
7.12	Test Disaster Recovery Plans (DRP)	23	Testing Disaster Recovery Plans
7.12.1	Read-through/tabletop	23	Checklist Test Tabletop Exercises
7.12.2	Walkthrough	23	Structured Walkthrough Test
7.12.3	Simulation	23	Simulation Test
7.12.4	Parallel	23	Parallel Test
7.12.5	Full interruption	23	Full-Interruption Test
7.13	Participate in Business Continuity (BC) planning and exercises	23	Business Continuity
7.14	Implement and manage physical security	20	Physical Security
7.14.1	Perimeter security controls	20	External Perimeter Security Controls
7.14.2	Internal security controls	20	Internal Security Controls

		All-in-One Coverage				
Domain	Objective	Ch#	Heading			
Domain 7: Security Operations						
7.15	Address personnel safety and security concerns	20	Personnel Safety and Security			
7.15.1	Travel	20	Travel			
7.15.2	Security training and awareness	20	Security Training and Awareness			
7.15.3	Emergency management	20	Emergency Management			
7.15.4	Duress	20	Duress			
Domain 8	: Software Development Security					
8.1	Understand and integrate security in the Software Development Life Cycle (SDLC)	24	Software Development Life Cycle			
8.1.1	Development methodologies (e.g., Agile, Waterfall, DevOps, DevSecOps)	24	Development Method- ologies			
8.1.2	Maturity models (e.g., Capability Maturity Model (CMM), Software Assurance Maturity Model (SAMM))	24	Maturity Models			
8.1.3	Operation and maintenance	24	Operations and Mainte- nance Phase			
8.1.4	Change management	24	Change Management			
8.1.5	Integrated Product Team (IPT)	24	Integrated Product Team			
8.2	Identify and apply security controls in software development ecosystems	25	Security Controls for Software Development			
8.2.1	Programming languages	25	Programming Languages and Concepts			
8.2.2	Libraries	25	Software Libraries			
8.2.3	Tool sets	25	Tool Sets			
8.2.4	Integrated Development Environment (IDE)	25	Development Platforms			
8.2.5	Runtime	25	Runtime Environments			
8.2.6	Continuous Integration and Continuous Delivery (CI/CD)	25	Continuous Integration and Delivery			
8.2.7	Security Orchestration, Automation, and Response (SOAR)	25	Security Orchestration, Automation, and Response			
8.2.8	Software Configuration Management (SCM)	25	Software Configuration Management			
8.2.9	Code repositories	25	Code Repositories			
8.2.10	Application security testing (e.g., Static Application Security Testing (SAST), Dynamic Application Security Testing (DAST))	25	Application Security Testing			

		All-in-One Coverage			
Domain	Objective	Ch#	Heading		
Domain 8: Software Development Security					
8.3	Assess the effectiveness of software security	25	Software Security Assessments		
8.3.1	Auditing and logging of changes	25	Change Management		
8.3.2	Risk analysis and mitigation	25	Risk Analysis and Mitigation		
8.4	Assess security impact of acquired software	25	Assessing the Security of Acquired Software		
8.4.1	Commercial-off-the-shelf (COTS)	25	Commercial Software		
8.4.2	Open source	25	Open-Source Software		
8.4.3	Third-party	25	Third-Party Software		
8.4.4	Managed services (e.g., Software as a Service (SaaS), Infrastructure as a Service (IaaS), Platform as a Service (PaaS))	25	Managed Services		
8.5	Define and apply secure coding guidelines and standards	25	Secure Software Devel- opment		
8.5.1	Security weaknesses and vulnerabilities at the source-code level	25	Source Code Vulner- abilities		
8.5.2	Security of Application Programming Interfaces (APIs)	25	Application Program- ming Interfaces		
8.5.3	Secure coding practices	25	Secure Coding Practices		
8.5.4	Software-defined security	25	Software-Defined Security		

About the Online Content

This book comes complete with TotalTester Online customizable practice exam software with more than 1,400 practice exam questions, separate graphical questions, and access to online CISSP flash cards.

System Requirements

The current and previous major versions of the following desktop browsers are recommended and supported: Chrome, Microsoft Edge, Firefox, and Safari. These browsers update frequently, and sometimes an update may cause compatibility issues with the TotalTester Online or other content hosted on the Training Hub. If you run into a problem using one of these browsers, please try using another until the problem is resolved.

Your Total Seminars Training Hub Account

To get access to the online content you will need to create an account on the Total Seminars Training Hub. Registration is free, and you will be able to track all your online content using your account. You may also opt in if you wish to receive marketing information from McGraw Hill or Total Seminars, but this is not required for you to gain access to the online content.

Privacy Notice

McGraw Hill values your privacy. Please be sure to read the Privacy Notice available during registration to see how the information you have provided will be used. You may view our Corporate Customer Privacy Policy by visiting the McGraw Hill Privacy Center. Visit the **mheducation.com** site and click **Privacy** at the bottom of the page.

Single User License Terms and Conditions

Online access to the digital content included with this book is governed by the McGraw Hill License Agreement outlined next. By using this digital content you agree to the terms of that license.

Access To register and activate your Total Seminars Training Hub account, simply follow these easy steps.

- 1. Go to this URL: hub.totalsem.com/mheclaim
- 2. To register and create a new Training Hub account, enter your e-mail address, name, and password on the **Register** tab. No further personal information (such as credit card number) is required to create an account.
 - If you already have a Total Seminars Training Hub account, enter your e-mail address and password on the **Log in** tab.
- 3. Enter your Product Key: khth-vc35-9bqs
- **4.** Click to accept the user license terms.
- **5.** For new users, click the **Register and Claim** button to create your account. For existing users, click the **Log in and Claim** button.

You will be taken to the Training Hub and have access to the content for this book.

Duration of License Access to your online content through the Total Seminars Training Hub will expire one year from the date the publisher declares the book out of print.

Your purchase of this McGraw Hill product, including its access code, through a retail store is subject to the refund policy of that store.

The Content is a copyrighted work of McGraw Hill, and McGraw Hill reserves all rights in and to the Content. The Work is © 2022 by McGraw Hill.

Restrictions on Transfer The user is receiving only a limited right to use the Content for the user's own internal and personal use, dependent on purchase and continued ownership of this book. The user may not reproduce, forward, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish, or sublicense the Content or in any way commingle the Content with other third-party content without McGraw Hill's consent.

Limited Warranty The McGraw Hill Content is provided on an "as is" basis. Neither McGraw Hill nor its licensors make any guarantees or warranties of any kind, either express or implied, including, but not limited to, implied warranties of merchantability or fitness for a particular purpose or use as to any McGraw Hill Content or the information therein or any warranties as to the accuracy, completeness, correctness, or results to be obtained from, accessing or using the McGraw Hill Content, or any material referenced in such Content or any information entered into licensee's product by users or other persons and/or any material available on or that can be accessed through the licensee's product (including via any hyperlink or otherwise) or as to non-infringement of third-party rights. Any warranties of any kind, whether express or implied, are disclaimed. Any material or data obtained through use of the McGraw Hill Content is at your own discretion and risk and user understands that it will be solely responsible for any resulting damage to its computer system or loss of data.

Neither McGraw Hill nor its licensors shall be liable to any subscriber or to any user or anyone else for any inaccuracy, delay, interruption in service, error or omission, regardless of cause, or for any damage resulting therefrom.

In no event will McGraw Hill or its licensors be liable for any indirect, special or consequential damages, including but not limited to, lost time, lost money, lost profits or good will, whether in contract, tort, strict liability or otherwise, and whether or not such damages are foreseen or unforeseen with respect to any use of the McGraw Hill Content.

TotalTester Online

TotalTester Online provides you with a simulation of the CISSP exam. Exams can be taken in Practice Mode or Exam Mode. Practice Mode provides an assistance window with hints, references to the book, explanations of the correct and incorrect answers, and the option to check your answer as you take the test. Exam Mode provides a simulation of the actual exam. The number of questions, the types of questions, and the time allowed are intended to be an accurate representation of the exam environment. The option to customize your quiz allows you to create custom exams from selected domains or chapters, and you can further customize the number of questions and time allowed.

To take a test, follow the instructions provided in the previous section to register and activate your Total Seminars Training Hub account. When you register you will be taken to the Total Seminars Training Hub. From the Training Hub Home page, select your certification from the Study drop-down menu at the top of the page to drill down to the Total Tester for your book. You can also scroll to it from the list of Your Topics on the Home page and then click the Total Tester link to launch the Total Tester. Once you've launched your Total Tester, you can select the option to customize your quiz and begin testing yourself in Practice Mode or Exam Mode. All exams provide an overall grade and a grade broken down by domain.

Graphical Questions

In addition to multiple-choice questions, the CISSP exam includes graphical questions. You can access the practice questions included with this book by navigating to the Resources tab and selecting Graphical Questions Quizzes. After you have selected the quizzes, they will appear in your browser, organized by domain.

Hotspot questions are graphical in nature and require the test taker to understand the concepts of the question from a practical and graphical aspect. You will have to point to the correct component within the graphic to properly answer the exam question. For example, you might be required to point to a specific area in a network diagram, point to a location in a network stack graphic, or choose the right location of a component within a graphic illustrating e-commerce—based authentication. It is not as easy to memorize answers for these types of questions, and they in turn make passing the exam more difficult.

The drag-and-drop questions are not as drastically different in format as compared to the hotspot questions. These questions just require the test taker to choose the correct answer or answers and drag them to the right location.

Online Flash Cards

Access to *Shon Harris' Online CISSP Flash Cards* from CISSP learning products company Human Element, LLC is also provided. These flash cards are another great way to study for the CISSP exam.

Privacy Notice Human Element, LLC values your privacy. Please be sure to read the Privacy Notice available during registration to see how the information you have provided will be used. You may view Human Element's Privacy Policy by visiting https://www.humanelementsecurity.com/content/Privacy-Policy.aspx.

To access the flash cards:

- 1. Go to www.humanelementsecurity.com and navigate to the CISSP Flash Cards page.
- **2.** Choose the desired product and click the Add to Cart button.
- 3. Enter all required information (name and e-mail address) to set up your free online account.
- **4.** On the payment method page enter the following code: 7YKL3

After following these instructions, you will have access to the CISSP Flash Cards. The Flash Card application is compatible with all Microsoft, Apple, and Android operating systems and browsers.

Single User License Terms and Conditions

Online access to the flash cards included with this book is governed by the McGraw Hill License Agreement outlined next. By using this digital content you agree to the terms of that license.

Duration of License Access to your online content through the Human Element website will expire one year from the date the publisher declares the book out of print.

Your purchase of this McGraw Hill product, including its access code, through a retail store is subject to the refund policy of that store.

Restrictions on Transfer The user is receiving only a limited right to use the Content for user's own internal and personal use, dependent on purchase and continued ownership of this book. The user may not reproduce, forward, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish, or sublicense the Content or in any way commingle the Content with other third-party content, without Human Element's consent. The Content is a copyrighted work of Human Element, LLC and Human Element reserves all rights in and to the Content.

Limited Warranty The Content is provided on an "as is" basis. Neither McGraw Hill, Human Element nor their licensors make any guarantees or warranties of any kind, either express or implied, including, but not limited to, implied warranties of merchantability or fitness for a particular purpose or use as to any Content or the information therein or any warranties as to the accuracy, completeness, correctness, or results to

be obtained from, accessing or using the Content, or any material referenced in such Content or any information entered into licensee's product by users or other persons and/or any material available on or that can be accessed through the licensee's product (including via any hyperlink or otherwise) or as to non-infringement of thirdparty rights. Any warranties of any kind, whether express or implied, are disclaimed. Any material or data obtained through use of the Content is at your own discretion and risk and user understands that it will be solely responsible for any resulting damage to its computer system or loss of data.

Neither McGraw Hill nor its licensors shall be liable to any subscriber or to any user or anyone else for any inaccuracy, delay, interruption in service, error or omission, regardless of cause, or for any damage resulting therefrom.

In no event will McGraw Hill, Human Element or their licensors be liable for any indirect, special or consequential damages, including but not limited to, lost time, lost money, lost profits or good will, whether in contract, tort, strict liability or otherwise, and whether or not such damages are foreseen or unforeseen with respect to any use of the Content.

Technical Support

- For questions regarding the TotalTester or operation of the Training Hub, visit **www.totalsem.com** or e-mail **support@totalsem.com**.
- For questions regarding the flash cards, e-mail **info@humanelementsecurity.com**.
- For questions regarding book content, visit www.mheducation.com/ customerservice.

access A subject's ability to view, modify, or communicate with an object. Access enables the flow of information between the subject and the object.

access control Mechanisms, controls, and methods of limiting access to resources to authorized subjects only.

access control list (ACL) A list of subjects that are authorized to access a particular object. Typically, the types of access are read, write, execute, append, modify, delete, and create.

access control mechanism Administrative, physical, or technical control that is designed to detect and prevent unauthorized access to a resource or environment.

accountability A security principle indicating that individuals must be identifiable and must be held responsible for their actions.

accredited A computer system or network that has received official authorization and approval to process sensitive data in a specific operational environment. There must be a security evaluation of the system's hardware, software, configurations, and controls by technical personnel.

acquisition The act of acquiring an asset. In organizational processes, this can mean either acquiring infrastructure (e.g., hardware, software, services) or another organization.

administrative controls Security mechanisms that are management's responsibility and referred to as "soft" controls. These controls include the development and publication of policies, standards, procedures, and guidelines; the screening of personnel; security-awareness training; the monitoring of system activity; and change control procedures.

aggregation The act of combining information from separate sources of a lower classification level that results in the creation of information of a higher classification level that the subject does not have the necessary rights to access.

Agile development An umbrella term for several development methodologies that focus on incremental and iterative development methods and promote cross-functional teamwork and continuous feedback mechanisms.

annualized loss expectancy (ALE) A dollar amount that estimates the loss potential from a risk in a span of a year.

single loss expectancy (SLE) × annualized rate of occurrence (ARO) = ALE

annualized rate of occurrence (ARO) The value that represents the estimated possibility of a specific threat taking place within a one-year timeframe.

antimalware Software whose principal functions include the identification and mitigation of malware; also known as antivirus, although this term could be specific to only one type of malware.

artificial intelligence (AI) A multidisciplinary field concerned with how knowledge is organized, how inference proceeds to support decision-making, and how systems learn.

asset Anything that is useful or valuable to an organization.

assurance A measurement of confidence in the level of protection that a specific security control delivers and the degree to which it enforces the security policy.

asymmetric key cryptography A cryptographic method that uses two different, or asymmetric, keys (also called public and private keys).

attribute-based access control (ABAC) An access control model in which access decisions are based on attributes of any component of or action on the system.

audit A systematic assessment of significant importance to the organization that determines whether the system or process being audited satisfies some external standards.

audit trail A chronological set of logs and records used to provide evidence of a system's performance or activity that took place on the system. These logs and records can be used to attempt to reconstruct past events and track the activities that took place, and possibly detect and identify intruders.

authentication Verification of the identity of a subject requesting the use of a system and/or access to network resources. The steps to giving a subject access to an object should be identification, authentication, and authorization.

authorization Granting a subject access to an object after the subject has been properly identified and authenticated.

availability The reliability and accessibility of data and resources to authorized individuals in a timely manner.

back door An undocumented way of gaining access to a computer system. After a system is compromised, an attacker may load a program that listens on a port (back door) so that the attacker can enter the system at any time. A back door is also referred to as a maintenance hook.

back up Copy and move data to a medium so that it may be restored if the original data is corrupted or destroyed. A full backup copies all the data from the system to the backup medium. An incremental backup copies only the files that have been modified since the previous backup. A differential backup backs up all files since the last full backup.

baseline The minimum level of security necessary to support and enforce a security policy.

Bell-LaPadula model A formal security model for access control that enforces the confidentiality of data (but not its integrity) using three rules: simple security, star property (*-property), and strong star property.

Biba model A formal security model for access control that enforces data integrity (but not confidentiality) using three rules: the *-integrity axiom (referred to as "no write up"), the simple integrity axiom (referred to as "no read down"), and the invocation property.

biometrics When used within computer security, identifies individuals by physiological characteristics, such as a fingerprint, hand geometry, or pattern in the iris.

blacklist (or deny list) A set of known-bad resources such as IP addresses, domain names, or applications.

breach attack simulation An automated system that launches simulated attacks against a target environment and then generates reports on its findings.

brute-force attack An attack that continually tries different inputs to achieve a predefined goal, which can be used to obtain credentials for unauthorized access.

business continuity (BC) Practices intended to keep the organization in business after a major disruption takes place.

business impact analysis (BIA) A functional analysis in which a team collects data through interviews and documentary sources; documents business functions, activities, and transactions; develops a hierarchy of business functions; and applies a classification scheme to indicate each individual function's criticality level.

Capability Maturity Model Integration (CMMI) A process model that captures the organization's maturity and fosters continuous improvement.

certificate authority (CA) A trusted third party that vouches for the identity of a subject, issues a certificate to that subject, and then digitally signs the certificate to assure its integrity.

certification The technical evaluation of the security components and their compliance for the purpose of accreditation. A certification process can use safeguard evaluation, risk analysis, verification, testing, and auditing techniques to assess the appropriateness of a specific system processing a certain level of information within a particular environment. The certification is the testing of the security component or system, and the accreditation is the approval from management of the security component or system.

challenge/response method A method used to verify the identity of a subject by sending the subject an unpredictable or random value. If the subject responds with the expected value in return, the subject is authenticated.

change management A business process aimed at deliberately regulating the changing nature of business activities such as projects.

chosen-ciphertext attack A cryptanalysis technique in which the attacker can choose the ciphertext to be decrypted and has access to the resulting decrypted plaintext, with the goal of determining the key that was used for decryption.

chosen-plaintext attack A cryptanalysis technique in which the attacker has the plaintext and ciphertext, but can choose the plaintext that gets encrypted to see the corresponding ciphertext in an effort to determine the key being used.

CIA triad The three primary security principles: confidentiality, integrity, and availability. Sometimes also presented as AIC: availability, integrity, and confidentiality.

ciphertext Data that has been encrypted and is unreadable until it has been converted into plaintext.

ciphertext-only attack A cryptanalysis technique in which the attacker has the ciphertext of one or more messages, each of which has been encrypted using the same encryption algorithm and key, and attempts to discover the key used in the encryption process.

Clark-Wilson model An integrity model that addresses all three integrity goals: prevent unauthorized users from making modifications, prevent authorized users from making improper modifications, and maintain internal and external consistency through auditing. A distinctive feature of this model is that it focuses on well-formed transactions and separation of duties.

classification A systematic arrangement of objects into groups or categories according to a set of established criteria. Data and resources can be assigned a level of sensitivity as they are being created, amended, enhanced, stored, or transmitted. The classification level then determines the extent to which the resource needs to be controlled and secured and is indicative of its value in terms of information assets.

cleartext In data communications, describes the form of a message or data that is transferred or stored without cryptographic protection.

cloud access security broker (CASB) A system that provides visibility and security controls for cloud services, monitors user activity in the cloud, and enforces policies and controls that are applicable to that activity.

cloud computing The use of shared, remote computing devices for the purpose of providing improved efficiencies, performance, reliability, scalability, and security.

code review A systematic examination of the instructions that comprise a piece of software, performed by someone other than the author of that code.

collusion Two or more people working together to carry out a fraudulent activity. More than one person would need to work together to cause some type of destruction or fraud; this drastically reduces its probability.

compensating controls Alternative controls that provide similar protection as the original controls but have to be used because they are more affordable or allow specifically required business functionality.

compliance Verifiable adherence to applicable laws, regulations, policies, and standards. The term is typically used to refer to compliance with governmental regulations.

compromise A violation of the security policy of a system or an organization such that unauthorized disclosure or modification of sensitive information occurs.

confidentiality A security principle that works to ensure that information is not disclosed to unauthorized subjects.

configuration management An operational process aimed at ensuring that systems and controls are configured correctly and are responsive to the current threat and operational environments.

containerization A type of virtualization in which individual applications run in their own isolated user space (called a container), which allows for more efficient use of computing resources.

content distribution network Multiple servers distributed across a large region, each of which provides content that is optimized for users closest to it. These networks are used not only to improve the user experience but also to mitigate the risk of denial-of-service attacks.

continuous improvement The practice of constantly measuring, analyzing, and improving processes.

continuous integration and continuous delivery (CI/CD) Processes and technologies that allow source code to be integrated, tested, and prepared for delivery to production environments as soon as a change to the code is submitted.

continuous monitoring Maintaining ongoing awareness of information security, vulnerabilities, and threats to support organizational risk management decisions.

control A policy, method, technique, or procedure that is put into place to reduce the risk that a threat agent exploits a vulnerability. Also called a countermeasure or safeguard.

control zone The space within a facility that is used to protect sensitive processing equipment. Controls are in place to protect equipment from physical or technical unauthorized entry or compromise. The zone can also be used to prevent electrical waves carrying sensitive data from leaving the area.

converged protocols Protocols that started off independent and distinct from one another but over time converged to become one.

copyright A legal right that protects the expression of ideas.

corrective controls Controls that fix components or systems after an incident has occurred.

cost/benefit analysis An assessment that is performed to ensure that the cost of a safeguard does not outweigh the benefit of the safeguard. Spending more to protect an asset than the asset is actually worth does not make good business sense. All possible safeguards must be evaluated to ensure that the most security-effective and cost-effective choice is made.

countermeasure A policy, method, technique, or procedure that is put into place to reduce the risk that a threat agent exploits a vulnerability. Also called a safeguard or control.

covert channel A communications path that enables a process to transmit information in a way that violates the system's security policy.

covert storage channel A covert channel that involves writing to a storage location by one process and the direct or indirect reading of the storage location by another process. Covert storage channels typically involve a resource (for example, sectors on a disk) that is shared by two subjects at different security levels.

covert timing channel A covert channel in which one process modulates its system resource (for example, CPU cycles), which is interpreted by a second process as some type of communication.

cryptanalysis The practice of breaking cryptosystems and algorithms used in encryption and decryption processes.

cryptography The science of secret writing that enables storage and transmission of data in a form that is available only to the intended individuals.

cryptology The study of cryptography and cryptanalysis.

cryptosystem The hardware or software implementation of cryptography.

data at rest Data that resides in external or auxiliary storage devices such as hard disk drives, solid-state drives, or optical discs.

data classification Assignments to data that indicate the level of availability, integrity, and confidentiality that is required for each type of information.

data controller A senior leader that sets policies with regard to the management of the data life cycle, particularly with regard to sensitive data such as personal data.

data custodian An individual who is responsible for the maintenance and protection of the data. This role is usually filled by the IT department (usually the network administrator). The duties include performing regular backups of the data; implementing and maintaining security controls; periodically validating the integrity of the data; restoring data from backup media; retaining records of activity; and fulfilling the requirements specified in the organization's security policy, standards, and guidelines that pertain to information security and data protection.

data in transit (or data in motion) Data that is moving between computing nodes over a data network such as the Internet.

data in use Data that temporarily resides in primary storage such as registers, caches, or RAM while the CPU is using it.

data loss (or leak) prevention (DLP) The actions that organizations take to prevent unauthorized external parties from gaining access to sensitive data.

data mining The analysis of the data held in data warehouses in order to produce new and useful information.

data owner The person who has final responsibility of data protection and would be the one held liable for any negligence when it comes to protecting the organization's information assets. The person who holds this role—usually a senior executive within the management group—is responsible for assigning a classification to the information and dictating how the information should be protected.

data processor Any person who carries out operations (e.g., querying, modifying, analyzing) on data under the authority of the data controller.

data remanence A measure of the magnetic flux density remaining after removal of the applied magnetic force, which is used to erase data. Refers to any data remaining on magnetic storage media.

data subject The person about whom the data is concerned.

data warehousing The process of combining data from multiple databases or data sources into a large data store for the purpose of providing more extensive information retrieval and data analysis.

declassification An administrative decision or procedure to remove or reduce the security classification of information.

defense in depth A secure design principle that entails the coordinated use of multiple security controls in a layered approach.

degauss Process that demagnetizes magnetic media so that a very low residue of magnetic induction is left on the media. Used to effectively erase data from media.

Delphi technique A group decision method used to ensure that each member of a group gives an honest and anonymous opinion pertaining to what the result of a particular threat will be.

denial of service (DoS) Any action, or series of actions, that prevents a system, or its resources, from functioning in accordance with its intended purpose.

detective controls Controls that help identify an incident's activities and potentially an intruder.

DevOps The practice of incorporating development, IT, and quality assurance (QA) staff into software development projects to align their incentives and enable frequent, efficient, and reliable releases of software products.

DevSecOps The integration of development, security, and operations professionals into a software development team. It's DevOps with the security team added in.

dial-up The service whereby a computer terminal can use telephone lines, usually via a modem, to initiate and continue communication with another computer system.

dictionary attack A form of attack in which an attacker uses a large set of likely combinations to guess a secret, usually a password.

digital certificate A mechanism used to associate a public key with a collection of components in a manner that is sufficient to uniquely identify the claimed owner. The most commonly used standard for digital certificates is the International Telecommunications Union's X.509.

Digital Rights Management (DRM) A set of technologies that is applied to controlling access to copyrighted data.

digital signature A hash value that has been encrypted with the sender's private key.

disaster recovery (DR) The set of practices that enables an organization to minimize loss of, and restore, mission-critical technology infrastructure after a catastrophic incident.

disaster recovery plan (DRP) A plan developed to help an organization recover from a disaster. It provides procedures for emergency response, extended backup operations, and post-disaster recovery when an organization suffers a loss of computer processing capability or resources and physical facilities.

discretionary access control (DAC) An access control model and policy that restricts access to objects based on the identity of the subjects and the groups to which those subjects belong. The data owner has the discretion of allowing or denying others access to the resources it owns.

Distributed Network Protocol 3 (DNP3) A communications protocol designed for use in SCADA systems, particularly those within the power sector, that does not include routing functionality.

domain The set of objects that a subject is allowed to access. Within this domain, all subjects and objects share a common security policy, procedures, and rules, and they are managed by the same management system.

due care The precautions that a reasonable and competent person would take in a given situation.

due diligence The process of systematically evaluating information to identify vulnerabilities, threats, and issues relating to an organization's overall risk.

duress The use of threats or violence against someone in order to force them to do something they don't want to do.

dynamic application security testing (DAST) Also known as dynamic analysis, the evaluation of a program in real time, while it is running.

edge computing A distributed system in which some computational and data storage assets are deployed close to where they are needed in order to reduce latency and network traffic.

egress monitoring Maintaining awareness of the information that is flowing out of a network, whether it appears to be malicious or not.

electronic discovery (e-discovery) The process of producing for a court or external attorney all electronically stored information pertinent to a legal proceeding.

electronic vaulting The transfer of backup data to an offsite location. This process is primarily a batch process of transmitting data through communications lines to a server at an alternative location.

elliptic curve cryptography A cryptographic method that uses complex mathematical equations (plotted as elliptic curves) that are more efficient than traditional asymmetric key cryptography but also much more difficult to cryptanalyze.

emanations Electrical and electromagnetic signals emitted from electrical equipment that can transmit through the airwaves. These signals carry information that can be captured and deciphered, which can cause a security breach. These are also called *emissions*.

embedded system A self-contained, typically ruggedized, computer system with its own processor, memory, and input/output devices that is designed for a very specific purpose.

encryption The transformation of plaintext into unreadable ciphertext.

end-of-life (EOL) The point in time when a manufacturer ceases to manufacture or sustain a product.

end-of-support (EOS) The point in time when a manufacturer is no longer patching bugs or vulnerabilities on a product, which is typically a few years after EOL.

endpoint A networked computing device that initiates or responds to network communications.

endpoint detection and response (EDR) An integrated security system that continuously monitors endpoints for security violations and uses rules-based automated response and analysis capabilities.

end-to-end encryption A technology that encrypts the data payload of a packet.

ethical disclosure The practice of informing anyone who might be affected by a discovered vulnerability as soon as feasible, so a patch can be developed before any threat actors become aware of the vulnerability.

exposure An instance of being exposed to losses from a threat. A weakness or vulnerability can cause an organization to be exposed to possible damages.

exposure factor The percentage of loss a realized threat could have on a certain asset.

failover A backup operation that automatically switches to a standby system if the primary system fails or is taken offline. It is an important fault-tolerant function that provides system availability.

fail-safe A functionality that ensures that when software or a system fails for any reason, it does not compromise anyone's safety. After a failure, a fail-safe electronic lock might default to an unlocked state, which would prevent it from interfering with anyone trying to escape in an emergency.

fail-secure A functionality that ensures that when software or a system fails for any reason, it does not end up in a vulnerable state. After a failure, a fail-secure lock might default to a locked state, which would ensure the security of whatever it is protecting.

federated identity management (FIM) The management of portable identities, and their associated entitlements, that can be used across business boundaries.

Fibre Channel over Ethernet (FCoE) A converged protocol that allows Fibre Channel frames to ride over Ethernet networks.

firmware Software instructions that have been written into read-only memory (ROM) or a programmable ROM (PROM) chip.

forensic artifact Anything that has evidentiary value.

formal verification Validating and testing of highly trusted systems. The tests are designed to show design verification, consistency between the formal specifications and the formal security policy model, implementation verification, consistency between the formal specifications, and the actual implementation of the product.

full-interruption test A type of security test in which a live system or facility is shut down, forcing the recovery team to switch processing to an alternate system or facility.

gamification The application of elements of game play to other activities such as security awareness training.

gateway A system or device that connects two unlike environments or systems. The gateway is usually required to translate between different types of applications or protocols.

guidelines Recommended actions and operational guides for users, IT staff, operations staff, and others when a specific standard does not apply.

handshaking procedure A dialog between two entities for the purpose of identifying and authenticating the entities to one another. The dialog can take place between two computers or two applications residing on different computers. It is an activity that usually takes place within a protocol.

high-performance computing (HPC) The aggregation of computing power in ways that exceed the capabilities of general-purpose computers for the specific purpose of solving large problems.

honeynet A network of honeypots designed to keep adversaries engaged (and thus under observation) for longer than would be possible with a single honeypot.

honeypot A network device that is intended to be exploited by attackers, with the administrator's goal being to gain information on the attackers' tactics, techniques, and procedures (TTPs).

identification A subject provides some type of data to an authentication service. Identification is the first step in the authentication process.

Identity as a Service (IDaaS) A type of Software as a Service (SaaS) offering that normally provides single sign-on (SSO), federated identity management (IdM), and password management services.

identity management (IdM) A broad term that encompasses the use of different products to identify, authenticate, and authorize users through automated means. It usually includes user account management, access control, credential management, single sign-on (SSO) functionality, managing rights and permissions for user accounts, and auditing and monitoring all of these items.

industrial control system (ICS) Information technology that is specifically designed to control physical devices in industrial processes. The two main types of ICS are distributed control systems (DCSs) and supervisory control and data acquisition (SCADA) systems. The main difference between them is that a DCS controls local processes while SCADA is used to control things remotely.

inference The ability to derive information not explicitly available.

Infrastructure as a Service (laaS) A cloud computing model that provides users unfettered access to a cloud device, such as an instance of a server, which includes both the operating system and the virtual machine on which it runs.

Integrated Product Team (IPT) A multidisciplinary software development team with representatives from many or all the stakeholder populations.

integrity A security principle that makes sure that information and systems are not modified maliciously or accidentally.

Internet of Things (IoT) The global network of connected, uniquely addressable, embedded systems.

Internet Small Computer System Interface (iSCSI) A converged protocol that encapsulates SCSI data in TCP segments in order to allow peripherals to be connected to computers across networks.

intrusion detection system (IDS) Software employed to monitor and detect possible attacks and behaviors that vary from the normal and expected activity. The IDS can be network based, which monitors network traffic, or host based, which monitors activities of a specific system and protects system files and control mechanisms.

intrusion prevention system (IPS) An intrusion detection system (IDS) that is also able to take actions to stop a detected intrusion.

IP Security (IPSec) A suite of protocols that was developed to specifically protect IP traffic. It includes the Authentication Header (AH), Encapsulating Security Payload (ESP), Internet Security Association and Key Management Protocol (ISAKMP), and Internet Key Exchange (IKE) protocols.

isolation The containment of processes in a system in such a way that they are separated from one another to ensure integrity and confidentiality.

job rotation The practice of ensuring that, over time, more than one person fulfills the tasks of one position within the organization. This enables the organization to have staff backup and redundancy, and helps detect fraudulent activities.

just in time (JIT) access A provisioning methodology that elevates users to the necessary privileged access to perform a specific task.

Kerberos A client/server authentication protocol based on symmetric key cryptography that is the default authentication mechanism in Microsoft Active Directory environments.

kernel The core of an operating system, manages the machine's hardware resources (including the processor and the memory) and provides and controls the way any other software component accesses these resources.

key A discrete data set that controls the operation of a cryptography algorithm. In encryption, a key specifies the particular transformation of plaintext into ciphertext, or vice versa, during decryption. Keys are also used in other cryptographic algorithms, such as digital signature schemes and keyed-hash functions (also known as HMACs), which are often used for authentication and integrity.

keystroke monitoring A type of auditing that can review or record keystrokes entered by a user during an active session.

known-plaintext attack A cryptanalysis technique in which the attacker has the plaintext and corresponding ciphertext of one or more messages and wants to discover the key used to encrypt the message(s).

least privilege The secure design principle that requires each subject to be granted the most restrictive set of privileges needed for the performance of authorized tasks. The application of this principle limits the damage that can result from accident, error, or unauthorized use.

Li-Fi A wireless networking technology that uses light rather than radio waves to transmit and receive data.

Lightweight Directory Access Protocol (LDAP) A directory service based on a subset of the X.500 standard that allows users and applications to interact with a directory.

link encryption A type of encryption technology that encrypts packets' headers, trailers, and the data payload. Each network communications node, or hop, must decrypt the packets to read their addresses and routing information and then re-encrypt the packets. This is different from end-to-end encryption.

machine learning (ML) Systems that acquire their knowledge, in the form of numeric parameters (i.e., weights), through training with data sets consisting of millions of examples. In supervised learning, ML systems are told whether or not they made the right decision. In unsupervised training they learn by observing an environment. Finally, in reinforcement learning they get feedback on their decisions from the environment.

maintenance hook Instructions within a program's code that enable the developer or maintainer to enter the program without having to go through the usual access control and authentication processes. Maintenance hooks should be removed from the code before it is released to production; otherwise, they can cause serious security risks. Also called a back door.

malware Malicious software. Code written to perform activities that circumvent the security policy of a system. Examples are viruses, malicious applets, Trojan horses, logic bombs, and worms.

mandatory access control (MAC) An access policy that restricts subjects' access to objects based on the security clearance of the subject and the classification of the object. The system enforces the security policy, and users cannot share their files with other users.

message authentication code (MAC) In cryptography, a generated value used to authenticate a message. A MAC can be generated by HMAC or CBC-MAC methods. The MAC protects both a message's integrity (by ensuring that a different MAC will be produced if the message has changed) and its authenticity, because only someone who knows the secret key could have modified the message.

microsegmentation The practice of isolating individual assets (e.g., data servers) in their own protected network environment.

microservice An architectural style that consists of small, decentralized, loosely coupled, individually deployable services built around business capabilities.

multifactor authentication (MFA) Authentication mechanisms that employ more than one factor. Factors are something a person knows (e.g., password), something a person has (e.g., a hardware token), and something a person is (e.g., biometrics).

multilayer protocol A protocol that works across multiple layers of the OSI model.

multilevel security A class of systems containing information with different classifications. Access decisions are based on the subject's security clearances, need to know, and formal approval.

Multiprotocol Label Switching (MPLS) A converged data communications protocol designed to improve the routing speed of high-performance networks.

need to know A security principle stating that users should have access only to the information and resources necessary to complete their tasks that fulfill their roles within an organization. Need to know is commonly used in access control criteria by operating systems and applications.

network detection and response (NDR) Systems that monitor network traffic for malicious actors and suspicious behavior, and react and respond to the detection of cyberthreats to the network.

nonrepudiation A service that ensures the sender cannot later falsely deny sending a message or taking an action.

OAuth An open standard for authorization (not authentication) to third parties that lets users authorize a web system to use something that they control at a different website.

object A passive entity that contains or receives information. Access to an object potentially implies access to the information that it contains. Examples of objects include records, pages, memory segments, files, directories, directory trees, and programs.

onboarding The process of turning a candidate into a trusted employee who is able to perform all assigned duties.

one-time pad A method of encryption in which the plaintext is combined with a random "pad," which should be the same length as the plaintext. This encryption process uses a nonrepeating set of random bits that are combined bitwise (XOR) with the message to produce ciphertext. A one-time pad is a perfect encryption scheme because it is unbreakable and each pad is used exactly once, but it is impractical because of all of the required overhead.

Open System Interconnection (OSI) model A conceptual framework used to describe the functions of a networking system along seven layers in which each layer relies on services provided by the layer below it and provides services to the layer above it.

OpenID Connect A simple authentication layer built on top of the OAuth 2.0 protocol that allows transparent authentication and authorization of client resource requests.

password A sequence of characters used to prove one's identity. It is used during a logon process and should be highly protected.

patent A grant of legal ownership given to an individual or organization to exclude others from using or copying the invention covered by the patent.

Payment Card Industry Data Security Standard (PCI DSS) An information security standard for organizations that are involved in payment card transactions.

penetration testing A method of evaluating the security of a computer system or network by simulating an attack that a malicious hacker would carry out. Pen testing is performed to uncover vulnerabilities and weaknesses.

personnel security The procedures that are established to ensure that all personnel who have access to sensitive information have the required authority as well as appropriate clearances. Procedures confirm a person's background and provide assurance of necessary trustworthiness.

physical controls Controls that pertain to controlling individual access into the facility and different departments, locking systems and removing unnecessary USB and optical drives, protecting the perimeter of the facility, monitoring for intrusion, and checking environmental controls.

physical security Controls and procedures put into place to prevent intruders from physically accessing a system or facility. The controls enforce access control and authorized access.

piggyback Unauthorized access to a facility or area by using another user's legitimate credentials or access rights.

plaintext In cryptography, the original readable text before it is encrypted.

Platform as a Service (PaaS) A cloud computing model that provides users access to a computing platform but not to the operating system or to the virtual machine on which it runs.

preventive controls Controls that are intended to keep an incident from occurring.

privacy A security principle that protects an individual's information and employs controls to ensure that this information is not disseminated or accessed in an unauthorized manner.

privacy by design A secure design principle that ensures privacy of user data is an integral part of the design of an information system, not an afterthought or later-stage feature.

procedure Detailed step-by-step instructions to achieve a certain task, which are used by users, IT staff, operations staff, security members, and others.

protocol A set of rules and formats that enables the standardized exchange of information between different systems.

public key encryption A type of encryption that uses two mathematically related keys to encrypt and decrypt messages. The private key is known only to the owner, and the public key is available to anyone.

public key infrastructure (PKI) A framework of programs, procedures, communication protocols, and public key cryptography that enables a diverse group of individuals to communicate securely.

qualitative risk analysis A risk analysis method that uses opinion and experience to judge an organization's exposure to risks. It uses scenarios and ratings systems. Compare to quantitative risk analysis.

quantitative risk analysis A risk analysis method that attempts to use percentages in damage estimations and assigns real numbers to the costs of countermeasures for particular risks and the amount of damage that could result from the risk. Compare to qualitative risk analysis.

quantum key distribution (QKD) A system that generates and securely distributes encryption keys of any length between two parties.

RADIUS (Remote Authentication Dial-In User Service) A security service that authenticates and authorizes dial-up users and is a centralized access control mechanism.

recovery point objective (RPO) The acceptable amount of data loss measured in time.

recovery time objective (RTO) The maximum time period within which a mission-critical system must be restored to a designated service level after a disaster to avoid unacceptable consequences associated with a break in business continuity.

reference monitor concept An abstract machine that mediates all access subjects have to objects, both to ensure that the subjects have the necessary access rights and to protect the objects from unauthorized access and destructive modification.

registration authority (RA) A trusted entity that establishes and confirms the identity of an individual, initiates the certification process with a CA on behalf of an end user, and performs certificate life-cycle management functions.

reliability The assurance of a given system, or individual component, performing its mission adequately for a specified period of time under the expected operating conditions.

remote journaling A method of transmitting changes to data to an offsite facility. This takes place as parallel processing of transactions, meaning that changes to the data are saved locally and to an offsite facility. These activities take place in real time and provide redundancy and fault tolerance.

repudiation When the sender of a message denies sending the message. The countermeasure to this is to implement digital signatures.

residual risk The remaining risk after the security controls have been applied. The conceptual formulas that explain the difference between total risk and residual risk are

threats × vulnerability × asset value = total risk (threats × vulnerability × asset value) × controls gap = residual risk **risk** The likelihood of a threat agent taking advantage of a vulnerability and the resulting business impact. A risk is the loss potential, or probability, that a threat will exploit a vulnerability.

risk analysis A detailed examination of the components of risk that is used to ensure that security is cost-effective, relevant, timely, and responsive to threats.

risk assessment A method of identifying vulnerabilities and threats and assessing the possible impacts to determine where to implement security controls.

risk management The process of identifying and assessing risk, reducing it to an acceptable level, and implementing the right mechanisms to maintain that level of risk.

risk-based access control An authorization mechanism that estimates the risk associated with a particular request in real time and, if it doesn't exceed a given threshold, grants the subject access to the requested resource.

role-based access control (RBAC) Type of access control model that provides access to resources based on the role the user holds within the organization or the tasks that the user has been assigned.

rule-based access control (RB-RBAC) Type of access control model that uses specific rules that indicate what can and cannot happen between a subject and an object; built on top of traditional RBAC and is thus commonly called RB-RBAC to disambiguate the otherwise overloaded RBAC acronym.

safeguard A policy, method, technique, or procedure that is put into place to reduce the risk that a threat agent exploits a vulnerability. Also called a countermeasure or control.

sandboxing A type of control that isolates processes from the operating system to prevent security violations.

scoping The process of taking a broader standard and trimming out the irrelevant or otherwise unwanted parts.

secure defaults A secure design principle that entails having every system start off in a state where security trumps user friendliness and functionality, and then has controls deliberately relaxed to enable additional features and generally make the system more user friendly.

Security Assertion Markup Language (SAML) An XML standard that allows the exchange of authentication and authorization data to be shared between security domains.

security awareness The knowledge and attitude of an individual concerning likely threats.

security control Any measure taken by an organization to mitigate information security risks.

security evaluation Assesses the degree of trust and assurance that can be placed in systems for the secure handling of sensitive information.

security information and event management (SIEM) A software platform that aggregates security information and security events and presents them in a single, consistent, and cohesive manner.

security label An identifier that represents the security level of an object.

security orchestration, automation, and response (SOAR) Integrated systems that enable more efficient security operations through automation of various workflows.

security testing Testing all security mechanisms and features within a system to determine the level of protection they provide. Security testing can include penetration testing, formal design and implementation verification, and functional testing.

sensitive information Information that would cause a negative effect on the organization if it were lost or compromised.

sensitivity label A piece of information that represents the security level of an object. Sensitivity labels are used as the basis for mandatory access control (MAC) decisions.

separation of duties A secure design principle that splits up a critical task among two or more individuals to ensure that one person cannot complete a risky task by himself.

serverless architecture A computing architecture in which the services offered to end users, such as compute, storage, or messaging, along with their required configuration and management, can be performed without a requirement from the user to set up any server infrastructure.

service level agreement (SLA) A contract between a service provider and a service user that specifies the minimum acceptable parameters of the services being provided.

shared responsibility A secure design principle that addresses situations in which a service provider is responsible for certain security controls, while the customer is responsible for others.

shoulder surfing When a person looks over another person's shoulder and watches keystrokes or watches data as it appears on the screen in order to uncover information in an unauthorized manner.

simple security property A Bell-LaPadula security model rule that stipulates that a subject cannot read data at a higher security level.

single loss expectancy (SLE) A monetary value that is assigned to a single event that represents the organization's potential loss amount if a specific threat were to take place.

asset value \times exposure factor = SLE

single sign-on (SSO) A technology that allows a user to authenticate one time and then access resources in the environment without needing to reauthenticate.

social engineering The act of tricking another person into providing confidential information by posing as an individual who is authorized to receive that information.

Software as a Service (SaaS) A cloud computing model that provides users access to a specific application that executes in the service provider's environment.

Software Assurance Maturity Model (SAMM) A maturity model that is specifically focused on secure software development and allows organizations of any size to decide their target maturity levels within each of five critical business functions.

software-defined networking (SDN) An approach to networking that relies on distributed software to provide improved agility and efficiency by centralizing the configuration and control of networking devices.

software-defined security (SDS or SDsec) A security model in which security functions such as firewalling, IDS/IPS, and network segmentation are implemented in software within an SDN environment.

spoofing Presenting false information, usually within packets, to trick other systems and hide the origin of the message. This is usually done by hackers so that their identity cannot be successfully uncovered.

standards Rules indicating how hardware and software should be implemented, used, and maintained. Standards provide a means to ensure that specific technologies, applications, parameters, and procedures are carried out in a uniform way across the organization. They are compulsory.

star property (*-property) A Bell-LaPadula security model rule that stipulates that a subject cannot write data to an object at a lower security level.

static application security testing (SAST) A technique, also called static analysis, that identifies certain software defects or security policy violations by examining the source code without executing the program.

subject An active entity, generally in the form of a person, process, or device, that causes information to flow among objects or that changes the system state.

supervisory control and data acquisition (SCADA) A system for remotely monitoring and controlling physical systems such as power and manufacturing plants.

supply chain An interconnected network of interdependent suppliers and consumers involved in delivering some product or service.

symmetric key cryptography A cryptographic method that uses instances of the same key (called the secret key) for encryption and decryption.

synthetic transaction A transaction that is executed in real time by a software agent to test or monitor the performance of a distributed system.

tabletop exercise (TTX) A type of exercise in which participants respond to notional events to test out procedures and ensure they actually do what they're intended to and that everyone knows their role in responding to the events.

TACACS (Terminal Access Controller Access Control System) A client/server authentication protocol that provides the same type of functionality as RADIUS and is used as a central access control mechanism mainly for remote users.

tailoring The practice of making changes to specific provisions of a standard so they better address organizational requirements.

technical controls Controls that work in software to provide availability, integrity, or confidentiality protection; also called logical access control mechanisms. Some examples are passwords, identification and authentication methods, security devices, auditing, and the configuration of the network.

test coverage A measure of how much of a system is examined by a specific test (or group of tests), which is typically expressed as a percentage.

threat A potential cause of an unwanted incident, which can result in harm to a system or organization.

threat intelligence Evidence-based knowledge about an existing or emerging menace or hazard to assets that can be used to inform decisions regarding responses to that menace or hazard.

threat modeling The process of describing probable adverse effects on an organization's assets caused by specific threat sources.

top-down approach An approach in which the initiation, support, and direction for a project come from top management and work their way down through middle management and then to staff members.

topology The physical construction of how nodes are connected to form a network.

total risk The risk an organization faces if it chooses not to implement any type of safeguard.

trade secret Something that is proprietary to a company and important for its survival and profitability.

trademark A legal right that protects a word, name, product shape, symbol, color, or a combination of these used to identify a product or an organization.

transborder data flow (TDF) The movement of machine-readable data across a political boundary such as a country's border.

Trojan horse A computer program that has an apparently or actually useful function, but that also contains hidden malicious capabilities to exploit a vulnerability and/or provide unauthorized access into a system.

trust but verify A secure design principle that requires that even when an entity and its behaviors are trusted, they should be monitored and verified.

user A person or process that is accessing a computer system.

user and entity behavior analytics (UEBA) Processes that determine normal patterns of behavior so that abnormalities can be detected and investigated.

user ID A unique set of characters or code that is used to identify a specific user to a system.

validation The act of performing tests and evaluations to test a system's security level to see if it complies with security specifications and requirements.

Virtual eXtensible Local Area Network (VxLAN) A network virtualization technology that encapsulates layer 2 frames onto UDP (layer 4) datagrams for distribution anywhere in the world.

virtualization The practice of running a virtual computing system in an environment that is abstracted from the actual hardware.

virus A small application, or string of code, that infects applications. The main function of a virus is to reproduce, and it requires a host application to do this. It can damage data directly or degrade system performance.

vulnerability A weakness in a system that allows a threat source to compromise its security. It can be a software, hardware, procedural, or human weakness that can be exploited.

Waterfall methodology A software development methodology that uses a strictly linear, sequential life-cycle approach in which each phase must be completed in its entirety before the next phase can begin.

whitelist (or allow list) A set of known-good resources such as IP addresses, domain names, or applications.

work factor The estimated time and effort required for an attacker to overcome a security control.

worm An independent program that can reproduce by copying itself from one system to another. It may damage data directly or degrade system performance by tying up resources.

zero trust A secure design principle that assumes that every entity is hostile until proven otherwise.

INDEX

A	access control lists (ACLs)
AARs (after-action reviews) in disaster	DAC, 767
recovery, 869, 1061	data historians, 293
ABAC (attribute-based access control)	identity management, 747
characteristics, 776	incident response, 996
description, 774	network sockets, 703
ABR (available bit rate) in ATM, 551	packet-filtering firewalls, 946–948
abstract machines, 766	RBAC, 771
abstraction	routers, 660
containers, 298	server-based systems, 284
network architectures, 597, 634	switches, 657
object-oriented programming, 1129	VPNs, 697
programming languages, 1119–1120	WPANs, 571
system architectures, 283, 297	access doors for data processing facilities, 443
academic software, 153	access points (APs)
acceptable use policies (AUPs)	collision domains, 493
software, 226	DSL modems, 683
user accounts, 858	WLANs, 564–565
web proxies, 664	access triples in Clark-Wilson model, 400
acceptance risk strategy	accountability
ISO/IEC 27005, 178	audits, 741–745
overview, 79–80	credential management, 736
acceptance testing in software	description, 161, 716
development, 1091	logical access controls, 717
access control	overview, 887–888
authorization mechanisms.	Accountability Principle in OECD, 142
See authentication; authorization	accounting in Diameter, 795
	accounts
information, 801	
just-in-time, 738	
4 .	
	•
models, 766	
physical and logical access,	
801–803	
physical security. See physical	
security and controls	
remote, 789–795	
CPTED, 430–431 facilities, 443–446, 916–924 identity and access, 796 information, 801 just-in-time, 738 locks, 917–923 logical, 717 markup languages, 776–781 models, 766 physical and logical access, 801–803 physical security. See physical security and controls	accounts adding, 858 modifying, 859 registration and proofing of identity, 738–740 suspending, 860 accuracy biometric systems, 724–725, 727 data loss prevention, 270 threat intelligence, 941 ACID properties of database systems, 286 ACK (acknowledgment packets) in TCP handshakes, 508, 949–951 ACLs. See access control lists (ACLs) acoustical detection IDSs, 927

acquired software security concerns,	AE (authenticated encryption), 604
1145–1148	AEAD (authenticated encryption with
acquiring	additional data), 604
data, 230	AES. See Advanced Encryption Standard (AES)
evidence, 1012–1013	after-action reviews (AARs) in disaster
acrylic windows, 441	recovery, 869, 1061
Act phase in Plan-Do-Check-Act loop, 875	agent based patch management, 904
actionability in security metrics, 854	agentless patch management, 904
actions in ABAC, 774	agents
actions on objectives stage in Cyber Kill Chain	data loss prevention, 273
framework, 994	SNMP, 522–523
active attacks on cryptography, 367	aggregation in database systems, 286–287
Active Directory (AD) environment, 747	Agile methodologies
active monitors	Extreme Programming, 1102
computer surveillance, 1020	Kanban, 1102–1103
Token Ring, 496	overview, 1100–1101
actors	Scrum, 1101–1102
defined, 8	agreements
internal, 61–62	disasters recovery, 1047–1048
ad hoc WLANs, 565	employment, 36–37
adapters in forensics field kits, 1015	service level. See service level
Address Resolution Protocol (ARP), 515–517	agreements (SLAs)
Adleman, Leonard, 340	AH (Authentication Header) in IPSec, 608
ADM (Architecture Development Method),	AIKs (attestation identity keys) in Trusted
194–195	Platform Modules, 406
administrative controls	alarms
digital asset management, 261	CPTED, 428
risk responses, 83, 86–87	doors, 444
administrative investigations, 161–162	duress codes, 931
administrative law system, 128	human-machine interface, 292
administrative/regulatory law, 130	perimeter security, 803
administrative responsibilities for locks, 922	ALE (annualized loss expectancy)
admissibility of evidence, 1013–1014	control selection, 82
ADSL (asymmetric DSL), 684	power backup, 448
Advanced Encryption Standard (AES)	quantitative risk analysis, 73–75
DES replacement, 321	algorithms
meeting applications, 694	cryptography attacks on, 367–370
SEDs, 407	cryptology, 320–321
TLS, 603–604	hashing functions, 351–352
WPA2, 578	patents for, 151
WPANs, 571	public vs. secret, 369
Advanced Micro Devices (AMD)	Align, Plan and Organize (APO) domain in
trade secrets, 149	COBIT 2019, 189
Advanced Mobile Phone System (AMPS), 584	alignment
advanced persistent threats (APTs), 135–136	COBIT goals, 188
Advanced Research Project Agency Network	security to business strategy,
(ARPANET) program, 471	13–16, 182, 202
advisory policies, 30	strategic, 15–16

allow lists in IDS/IPS, 968–969	application programming interfaces (APIs)
alternate category in PACE plans, 1057	application layer, 475
always invoked property in reference	ĈASBs, 275–276
monitors, 766	containers, 298
always-on VPN, 697	description, 837
AMD (Advanced Micro Devices)	object-oriented programming, 1126–1128
trade secrets, 149	SDNs, 635
amplification DNS attacks, 620	software libraries, 1132-1133
amplitude	software security, 1132
analog signals, 644–645	TEE, 409
multiplexing systems, 544	web services, 613
radio signals, 559–560	applications
AMPS (Advanced Mobile Phone System), 584	access control, 802
analog transmission, 644–645	connections, 479
analysis	security testing, 1139–1140
antimalware software, 970	whitelisting, 225
application security, 1139	approval by management, 877
forensics investigations, 1016–1018	APs (access points)
qualitative risk, 72, 76–78	collision domains, 493
quantitative risk, 72–76, 78–79	DSL modems, 683
software security, 1144–1145	WLANs, 564–565
Analysis practice in Good Practice	APT32, 389
Guidelines, 106	APTs (advanced persistent threats), 135–136
Android Data company, 150	architects for software development, 1080
annualized loss expectancy (ALE)	Architecture Development Method (ADM),
control selection, 82	194–195
power backup, 448	architectures. See system architectures
quantitative risk analysis, 73–75	archive bits for backups, 1035
annualized rate of occurrence (ARO), 74–75	archives for data, 239–240
annunciator systems in CCTV systems, 916	Arnold, Benedict, 319
anomalies, session termination from, 741	ARO (annualized rate of occurrence), 74–75
anomaly-based IDS/IPS, 967–968	ARP (Address Resolution Protocol), 515–517
antimalware software, 969–972	ARPANET (Advanced Research Project
anycast addresses in IPv6, 513	Agency Network) program, 471
APIs. See application programming	artifacts in digital forensics, 1020–1021
interfaces (APIs)	ASOR (authoritative system of record), 739
APO (Align, Plan and Organize) domain	ASs (autonomous systems), 533
in COBIT 2019, 189	assemblers, 1118, 1120–1122
apparent power, 671	assembly language, 1118, 1120
appendices in reports, 873	assessments
Apple lawsuit, 151	audits, 838–844
appliances, 958	chapter questions, 846–849
application errors in risk management, 54	chapter review, 844–846
application layer	designing, 814–815
functions and protocols, 483	
OSI model, 474–475	disaster recovery plans, 1058 overview, 813
application-level events in audits, 743	physical security, 908
application-level proxies, 953–955, 957	preventive and detective measures, 945
application-ievel proxies, 770-777, 77/	preventive and detective ineasures, 94)

assessments (cont.)	attack surface analysis in software
risk. See risk assessment	development design, 1085
Risk Management Framework, 176	attack trees in threat modeling, 386-387
social engineering, 903	attacks, evolution of, 134-138
software security, 1144-1148	attenuation in cabling, 652
strategies, 813–816	attestation identity keys (AIKs) in Trusted
technical controls. See testing	Platform Modules, 406
validating, 815–816	attocells in Li-Fi standard, 568
assets	attribute-based access control (ABAC)
business impact analysis, 112-115	characteristics, 776
chapter questions, 247–251	description, 774
chapter review, 245–246	attribute-value pairs (AVPs) in RADIUS, 792
classification, 219	attributes
data life cycle. See data life cycle	LDAP, 749
digital, 258–259, 261–263	object-oriented programming, 1125
information, 214–219	audience for reports, 872
inventories, 224–227	audit-reduction tools, 744
life cycle, 222–230	auditors, 25
overview, 213–214	audits
ownership, 223	accountability, 741–742
physical security, 220–222	application-level events, 743
provisioning, 227–228	external, 842–843
retention, 228–230	internal, 840–842
valuation, 65–66	overview, 838–840
assisted password resets, 738	physical security, 929
associations in misuse case testing, 835	protecting, 744–745
ASTM International fire resistance	reviewing, 743–744
ratings, 456	software security, 1147
asymmetric DSL (ADSL), 684	strategies, 813–816
asymmetric key cryptography, 328	system-level events, 742
Diffie-Hellman algorithm,	third-party, 843–844
337–340	user-level events:, 743
overview, 335–337	AUPs (acceptable use policies)
RSA, 340–342	software, 226
summary, 337	user accounts, 858
with symmetric, 346–349	web proxies, 664
asynchronous replication, 1039	authenticated encryption (AE), 604
asynchronous token devices for one-time	authenticated encryption with additional
passwords, 731	data (AEAD), 604
Asynchronous Transfer Mode (ATM) in	authentication. See also authorization
WANs, 550–552	access control and markup languages,
asynchronous transmissions, 645–647	776–781
atbash cryptology, 317-318	asymmetric key cryptography, 336
ATM (Asynchronous Transfer Mode)	biometric. See biometric authentication
in WANs, 550–552	cryptosystems, 323
atomic execution in trusted execution	description, 716
environments, 410	Diameter, 794–795
atomicity in ACID properties, 286	802.11, 580

factors, 718–719	automated tests in software
Internet of Things, 306	development, 1091
Kerberos, 785–788	automatic tunneling in IPv6, 514
knowledge-based, 720-723	automation
network sockets, 703	backups, 863
ownership-based, 729–734	configuration management, 895
quorum, 34	HMIs, 292
race conditions, 717	SOAR, 980
VPNs, 697–699	virtualization, 861
Authentication Header (AH) in IPSec, 608	ZigBee, 571
authenticators in Kerberos, 786–787	autonomous systems (ASs), 533
authenticity, 6	availability
authoritative name servers in DNS, 525	business continuity, 103
authoritative system of record (ASOR), 739	business continuity planning, 1067–1070
authority	CIA triad, 7–8
disaster recovery goals, 1054	disaster recovery, 1049–1053
URLs, 613	fault tolerance and system resilience, 1051
authorization. See also authentication	high, 1050–1053
ABAC, 774	overview, 6
access control and markup languages,	quality of service, 1050–1051
776–781	available bit rate (ABR) in ATM, 551
cryptosystems, 324	avalanche effect in symmetric key
DAC, 766–768	cryptography, 332
data loss prevention, 267, 271	avoidance risk strategy
description, 716	ISO/IEC 27005, 178
Diameter, 795	overview, 79
e-mail, 624	AVPs (attribute-value pairs) in RADIUS, 792
IP telephony, 692	awareness programs
Kerberos, 784–789	content reviews, 43
MAC, 768–771	culture factors, 867
OAuth, 782–783	data protection, 867
OpenID Connect, 783–784	disaster recovery plans, 1060–1061
overview, 765–766	effectiveness evaluation, 43–44
race conditions, 717	employees, 266
RB-RBAC, 774	goals, 40
risk-based access control, 775–776	methods and techniques, 40–44
Risk Management Framework, 176	online safety, 866–867
role-based access control, 771–773	overview, 863–864
authorization code flow in OIDC, 784	personnel, 930–931
authorization creep	social engineering, 864–866
description, 395	AXELOS, 196
privileged accounts, 889	В
role changes, 799	D
user accounts, 859	B channels in ISDN, 686
authorization servers in OAuth, 782	B2B (business-to-business) transactions in
auto iris lenses in CCTV systems, 915	SAML, 780
automated risk analysis methods, 73	B2C (business-to-consumer) transactions in
automated scanning of devices, 226	SAML, 780

back doors in software development, 1091	baselines, 31–32
back-off algorithm in CSMA, 491	anomaly-based IDS/IPS, 968
background checks in candidate screening and hiring, 35–36	configuration management, 894 ISO/IEC 27004, 852
background elements in reports, 873	Basic CIS controls, 187
backup administrators, 1035	Basic Rate Interface (BRI) ISDN, 685-686
backup lighting, 912	bastion hosts, 965
backups	BC. See business continuity (BC)
vs. archives, 239–240	BCM (business continuity management),
business continuity planning, 1069–1070	102–105
data loss prevention, 269	enterprise security program, 106–108
digital asset management, 261–262	Professional Practices for Business
electric power, 448–450, 671	Continuity Management, 106
facilities, 1040–1041	BCP. See business continuity planning (BCP)
hierarchical storage management, 898–899	beaconing in Token Ring, 496
overview, 1034–1037	beamforming, 567
protecting, 896–899	behavior blocking in antimalware software,
restoring, 1037, 1041–1042	970–971
strategies, 1037–1040	behavioral biometric authentication, 724
verification, 860–862	behavioral model for software development
BAI (Build, Acquire and Implement) domain	design, 1084
in COBIT 2019, 189	Bell, Alexander Graham, 681
balanced security, 7-8	Bell-LaPadula model, 398–399, 403
bandwidth	benches, 431
ATM, 550	Berners-Lee, Tim, 253
cable modems, 686–687	best-effort protocols, 503
cabling, 654–655	best-effort service in QoS, 551
coaxial cable, 649	best practices in business continuity, 104–106
dedicated links, 541-542	BGP (Border Gateway Protocol), 536–537
distribution facilities, 446	BIA. See business impact analysis (BIA)
DSL, 683–684	Biba model, 399–400, 403
frame relay, 547–548	big data, retaining, 235
ISDN, 685–686	biometric authentication, 727
optical carriers, 543	facial scans, 728
proxy servers, 664	fingerprints, 726
PVCs, 549	hand geometry, 727
QoS, 551–552, 1050	hand topography, 728–729
satellite communications, 588	iris scans, 727
server-based systems, 300	issues and concerns, 729
switches, 658	keystroke dynamics, 728
unmanaged patching threat, 904	overview, 723–726
VoIP, 688	retina scans, 727
WANs, 543	signature dynamics, 727–728
barriers in physical security, 908	voice prints, 728
BAS (breach and attack simulations), 828	birthday attacks, 353–354
baseband transmission, 647-648	BISDN (Broadband ISDN), 685
Baseline Privacy Interface/Security (BPI/SEC)	bitcoin, 307
specifications, 687	BitTorrent protocol, 149, 307

black box testing, 826	brownouts, 451
black holes, 535, 975	brute-force attacks
blacklisting in IDS/IPS, 968-969	cryptography, 325, 368
blackouts, 451	passwords, 721
blind penetration testing, 825-826	BSA (Business Software Alliance),
block ciphers, 330–333	154, 226
Bluejacking, 573	Budapest Convention, 139
blueprints in frameworks, 201–203	buffer overflows
Bluesnarfing, 573	description, 819
Bluetooth wireless technology, 572–573	software development, 1089–1090
board members, risk reporting for, 94–95	buffers, emulation, 970
bollards, 429, 910–911	Build, Acquire and Implement (BAI) domain
BOOTP (Bootstrap Protocol), 519	in COBÎT 2019, 189
Border Gateway Protocol (BGP), 536-537	building codes, 436–437
botnets, 134	bulletproof doors, 440
bots, 134	bump keys, 924
boundary conditions in interface	bus encryption, 407–408
testing, 837	bus topology, 487–488
BPC (business process compromise)	business continuity (BC)
attacks, 59–60	BCP life cycle, 1065–1067
BPI/SEC (Baseline Privacy Interface/Security)	business impact analysis, 108-115
specifications, 687	description, 1030
branches in tabletop exercises, 1063	enterprise security program, 106–108
brand issues in disaster recovery, 1054	overview, 101–104, 867–869, 1065
BrandScope attacks, 257	standards and best practices, 104-106
Brazil, General Personal Data Protection	Business Continuity Institute, Good Practice
Law in, 144	Guidelines, 105–106
breach and attack simulations (BAS), 828	business continuity management (BCM),
breaches. See data breaches	102–105
Brewer and Nash model, 402-403	enterprise security program, 106–108
BRI (Basic Rate Interface) ISDN,	Professional Practices for Business
685–686	Continuity Management, 106
bridges	business continuity planning (BCP),
characteristics, 665	101–105
forwarding tables, 656–657	end-user environment, 1071
overview, 656	enterprise security program, 108
vs. routers, 657	hardware backups, 1069–1070
bring your own devices (BYOD), 220	information systems availability,
Broadband ISDN (BISDN), 685	1067–1070
broadband transmission vs. baseband,	life cycle, 1065–1067
647–648	overview, 107, 1065
broadband wireless access, 569	storing, 1042
broadcast domains in medium access control,	teams, 1030
492–494	business critical data in disaster
broadcast storms in bridges, 656	recovery, 1032
broadcast transmission in local area networks,	business enablement, 16
499–500	business entry rule in evidence
Broken Windows, 433	admissibility, 1014

business impact analysis (BIA), 104–105	Canada, Personal Information Protection and
asset value, 112-115	Electronic Documents Act in, 147
disaster recovery, 1032	Capability Maturity Model (CMM),
overview, 108–109	197–199
risk assessment, 109-112	Capability Maturity Model Integration
steps, 112	(ČMMĬ), 1107–1109
business process compromise (BPC) attacks,	capacitance detectors, 927
59–60	CAPTCHA data, 723
business process recovery, 1033-1034	card badge readers, 925
Business Software Alliance (BSA), 154, 226	care-of addresses in mobile IP, 793
business strategy, aligning security to, 13–16 business-to-business (B2B) transactions	carrier sense multiple access (CSMA), 490–491
in SAML, 780	carrier sense multiple access with collision
business-to-consumer (B2C) transactions	avoidance (CSMA/CA), 491
in SAML, 780	carrier sense multiple access with collision
business unit leads on incident response	detection (CSMA/CD), 491
teams, 1001	carriers in steganography, 265
business units in incident notifications, 1004	CART acronym in threat intelligence, 941
BYE messages in SIP, 689–690	CAs (certificate authorities), 360–362
BYOD (bring your own devices), 220	CASBs (cloud access security brokers),
bytecode in Java programming language,	275–276
1122–1123	cascading errors, 62
	CASE (computer-aided software engineering)
C	tools, 1087
C programming language, 1121–1122	catastrophes, 1043
cable modems, 686–687	categorize step in Risk Management
cable traps, 921	Framework, 174–175
cabling	CBC-MAC (CCM), 578
bandwidth and throughput, 654-655	CBEST standard, 156
coaxial cable, 649	CBKE (Certificate-Based Key Establishment)
fiber-optic cable, 650–651	protocol, 572
forensics field kits, 1015	CBR (constant bit rate) in ATM, 551
overview, 648	CCDs (charged-coupled devices), 914
problems, 651–653	CCM (CBC-MAC), 578
twisted-pair cabling, 649–650	CCPA (California Consumer Privacy Act),
CABs (change advisory boards)	141–142
policies for, 891	CCTV (closed-circuit TV) systems,
purpose, 93	913–916
software development tools, 1138	CD (continuous delivery) in software
cache poisoning, ARP table, 516–517	security, 1140–1141
Caesar, Julius, 318	CDDI (Copper Distributed Data
Caesar cipher, 318–319	Interface), 497
California Consumer Privacy Act (CCPA),	CDIs (constrained data items) in Clark-Wilson
141–142	model, 400
call-processing managers, 688	CDMA (code division multiple access),
call trees in disaster recovery plans, 1056	584–585
cameras in CCTV systems, 916	CDNs (content distribution networks),
CAN (Controller Area Network) bus, 627	308, 674

ceilings	channels
considerations, 437	access points, 565
dropped, 442	for attacks, 474
RFI issues, 450	CHAP (Challenge Handshake Authentication
cell suppression in database systems, 288	Protocol), 698
Center for Internet Security (CIS) framework	charged-coupled devices (CCDs), 914
CIS Controls Measures and Metrics	Check phase in Plan-Do-Check-Act
document, 92	loop, 875
security controls, 172, 185–187	checkers, password, 722
centralized patch management, 904-905	checklist tests in disaster recovery plans,
Centripetal Networks, 151	1062–1063
CEOs (chief executive officers), 19–21	chemical fire extinguishers, 459
CER (crossover error rate) in biometric	chests for data protection, 222
authentication, 724–725	Cheyenne Mountain complex, 436
CERT (Computer Emergency Response	chief executive officers (CEOs), 19–21
Team), 993	chief financial officers (CFOs), 19-20
CERT Advisory for privacy issues, 1014	chief human resources officers (CHROs), 990
CERT/CC (Computer Emergency Response	chief information officers (CIOs),
Team Coordination Center), 901	19–21, 990
certificate authorities (CAs), 360-362	chief information security officers (CISOs)
Certificate-Based Key Establishment (CBKE)	IMPs, 990
protocol, 572	incident notifications, 1004
certificate revocation lists (CRLs), 361–362	incident response teams, 1001
certificates in PKI, 359–360	role, 22
certifications, 40–41	chief operations officers (COOs), 990
CFOs (chief financial officers), 19-20	chief privacy officers (CPOs), 21
chain of custody for evidence, 1010-1011	chief security officers (CSOs), 22
Challenge Handshake Authentication	Chinese Remainder
Protocol (CHAP), 698	Theorem (RSA-CRT), 372
change	Chinese Wall model, 402–403
data loss prevention for, 270	chipping code in DSSS, 562
digital asset management, 262	chips in DSSS, 562
monitoring, 92–93	chosen-ciphertext attacks, 369
change advisory boards (CABs)	chosen-plaintext attacks, 368–369
policies for, 891	CHROs (chief human resources officers), 990
purpose, 93	CI (continuous integration) in software
software development tools, 1138	security, 1140–1141
change control analysts, 24	CIA triad, 7–8
change management, 891	CIDR (classless interdomain routing), 512
vs. configuration management, 895	CIOs (chief information officers), 19-21, 990
documentation, 893	cipher locks, 920–921
practices, 891–892	ciphers in cryptology, 318–321
runbooks, 1006	ciphertext-only attacks, 368
software development, 1092–1094	CIR (committed information rate) in frame
software security, 1145	relay, 547–548
change management boards, 223	circuit-level proxies, 953–957
channel service unit/data service	circuit switching in WANs, 545–547
unit (CSU/DSU), 543-545	circumventing locks, 922–924

CIS (Center for Internet Security) framework	CMF (collection management framework)
CIS Controls Measures and Metrics	forensics investigations, 1016–1017
document, 92	logs, 978
security controls, 172, 185–187	threat intelligence, 942
Cisco Systems, 151	CMM (Capability Maturity Model), 197–199
CISOs. See chief information security	CMMI (Capability Maturity Model
officers (CISOs)	Integration), 1107–1109
civil investigations, 162	CO ₂ fire suppression, 458
civil law, 126–129	coaxial cable, 649
Clark-Wilson model, 400, 403	COBIT 2019 framework, 172, 187-189
classes	code and coding
IP addresses, 510	bloat, 833
object-oriented programming, 1125–1127	obfuscation, 905
classification	repositories, 1143–1144
artificial intelligence tools, 977	reviews, 833–834
data retention, 236	secure practices, 1134–1136
incidents, 1002–1003	testing, 834–835
information, 215–219	code division multiple access (CDMA),
classless interdomain routing (CIDR), 512	584–585
classless IP addresses, 512	code law, 126
clean desk policy, 442-443	Code of Ethics, 44–45
cleanroom methodology in software	Codecov platform, 1141
development, 1105	CoE (Council of Europe), 139
clearing media, 259	cognitive passwords, 723
client-based systems, 284	cohesion in software, 1130–1132
client/server systems, 284	COI (community of interest) as threat data
clipping levels for failed logon attempts, 721	source, 943
close stage in change management, 892	cold sites in disaster recovery, 1045–1047
CLOSE-WAIT state in TCP connections, 951	collection
closed-circuit TV (CCTV) systems, 913–916	data, 231–232
CLOSING state in TCP connections, 951	evidence, 1010–1012
cloud access security brokers (CASBs), 275-276	Collection Limitation Principle in OECD, 142
cloud-based systems	collection management framework (CMF)
asset provisioning, 228	forensics investigations, 1016–1017
backups, 1038	logs, 978
deployment models, 305	threat intelligence, 942
FIM systems, 756	collision free hashing algorithms, 351–352
frame relay, 548	collisions
IaaS, 304	CSMA, 490
overview, 301–302	hashing functions, 353
PaaS, 302–304	medium access control, 492–494
SaaS, 302–303	collusion, 34
XaaS, 304–305	COM domain in DNS, 527
clustered servers in quality of service, 1051	combi smart cards, 734
clustering for artificial intelligence tools, 978	combination locks, 920
CM. See configuration management (CM)	Command and Control
CMDB (configuration management	Cyber Kill Chain model, 388, 994
database), 895	MITRE ATT&CK framework, 389

commercial off-the-shelf (COTS) software	laws and regulations, 125–130
description, 153	liability and ramifications, 158–161
security concerns, 1146	licensing and intellectual property
committed information rate (CIR) in frame	requirements, 147–154
relay, 547–548	monitoring, 93–94
common controls in Risk Management	overview, 125
Framework, 175	policies, 39–40
common law, 126-130	requirements, 155–161
Common Weakness Enumeration (CWE)	compromise assessments, 17
initiative, 1088	computer-aided software engineering (CASE
communication	tools, 1087
audit results, 839-840	computer-assisted crimes, 130-131
in disaster recovery plans, 1056-1057	Computer Emergency Response Team
employees, 266	(CERT), 993
object-oriented programming, 1126	Computer Emergency Response Team
communications channels	Coordination Center (CERT/CC), 901
chapter questions, 709–712	Computer Ethics Institute, 45–46
chapter review, 707-709	"computer is incidental" crimes, 130–131
data, 702–704	computer surveillance, 1020
multimedia collaboration, 693–696	computer system connections, 479
overview, 681	computer-targeted crimes, 130–131
remote access, 696–702	concentrators, 655
third-party connectivity, 705–706	concurrency management in software, 1142
virtualized networks, 704–705	conference call bridges in H.323, 689
voice. See voice communications	confidential classification level, 216–217
community clouds, 305	confidentiality
community of interest (COI) as threat data	asymmetric key cryptography, 336
source, 943	audit logs, 745
community strings in SNMP, 522–524	Bell-LaPadula model, 398
comparability of security metrics, 854–855	business continuity, 102–103
compartmentalizing information in forensics	CIA triad, 8, 64
investigation interviews, 1019	cryptosystems, 323–324, 330
compensating controls in risk responses,	customer relations, 174–175
85, 87–88	DNS over HTTPS, 621
compiled code, software escrow for, 1143	forensics investigation interviews, 1019
compilers, 1119–1122	overview, 4–5
complete characteristic of threat	TLS, 602
intelligence, 941	VPNs, 605
complexities in cybercrimes, 132–134	configuration management (CM)
compliance	automation, 895
audits, 844	baselining, 894
chapter questions, 165–169	vs. change management, 895
chapter review, 162–165	identity and access, 799
checks, 838	overview, 893–894
cybercrimes, 130–139	preventive and detective measures, 944
data breaches, 139–147	provisioning, 894–895
identity and access, 796–797	secure software, 1142
investigation requirements, 161–162	unmanaged patching threat, 904

configuration management database	control planes in SDNs, 633-634
(CMDB), 895	control zones, 803
confusion in symmetric key cryptography, 331	controlled unclassified data, 216-217
congestion	Controller Area Network (CAN) bus, 627
TCP vs. UDP, 503, 506	controllers, data, 244
throughput, 654	controls
connection-oriented protocols	assessments. See testing
description, 479	CPTED, 430–431
TCP, 503–504	data states, 254–258
connectionless protocols	defined, 9
description, 479	digital asset management, 261-262
UDP, 503–504	frameworks, 172, 183–189
connections in TCP vs. UDP, 506	overview, 253–254
connectivity for federated identity, 754–755	preventive and detective measures, 944
consent provision in GDPR, 144–145	scoping and tailoring, 258
consistency in ACID properties, 286	standards, 258
constant bit rate (CBR) in ATM, 551	threat modeling, 387
constrained data items (CDIs) in Clark-	controls for risk response
Wilson model, 400	assessments, 88–91
construction issues, 436–439	selection, 82–83
consultants, 39	types, 83–88
consumer-grade products for meeting	controls for secure software
applications, 694	application testing, 1139-1140
contact smart cards, 733	code repositories, 1143–1144
contactless smart cards, 733–734	continuous integration and delivery,
containerization, 298–299	1140–1141
content-dependent access control in database	development platforms, 1137–1138
systems, 287	overview, 1136–1137
content distribution networks (CDNs),	SOAR, 1141–1142
308, 674	software configuration management, 1142
content reviews, periodic, 43	tool sets, 1138
context-dependent access control for database	controls for site and facilities
systems, 287–288	data processing facilities, 443–446
context in ABAC, 774	distribution facilities, 446–447
contingency category in PACE plans, 1057	environmental issues, 461
contingency strategies in business continuity,	fire safety, 454–460
104–105	storage facilities, 447–448
contingency suppliers in disaster recovery, 1046	utilities, 448–454
continuous delivery (CD) in software security,	work area security, 441–443
1140–1141	Convention on Cybercrime, 139
continuous improvement in risk management,	converged protocols, 627–628
95–96	cookies for web services, 613
continuous integration (CI) in software	coordinators in WPANs, 570
security, 1140–1141	COOs (chief operations officers), 990
continuous lighting, 912	copper cable, 649–650
continuous monitoring, 981–982	Copper Distributed Data
contractors, 39	Interface (CDDI), 497
contractual requirements compliance, 156–158	Copyright Directive, 155

copyrights, 149–150	crimes. See also incidents
core RBAC, 772	crime scene control, 1010
corrective controls in risk response, 85, 87	detection goals, 424
cost approach in executive summaries, 874	evidence collection and handling, 1008
cost/benefit comparisons in risk assessment,	incident investigations, 1006–1008
64, 82	incident response, 992
costs	investigation requirements, 162
outsourced security services, 974	criminal law system, 127, 129
smart cards, 734	critical data backups, 1037
COTS (commercial off-the-shelf) software	criticality of data, 215
description, 153	criticality values in disaster recovery, 1032
security concerns, 1146	CRLs (certificate revocation lists),
Council of Europe (CoE), 139	361–362
Counter Mode Cipher Block Chaining	cross-certification, 361
Message Authentication Code Protocol, 578	cross-sectional photoelectric cells, 927
countermeasures	crossover error rate (CER) in biometric
defined, 9	authentication, 724–725
risk responses, 81–83	crosstalk in cabling, 653
coupling in software, 1130–1132	CRUD (create, read, update, and delete)
coverage for backups, 863	actions for database systems, 285–287
covert channels, 401	cryptanalysis, 317
covert timing channels, 401	cryptographic hash chaining, 831
CPOs (chief privacy officers), 21	cryptology. See also encryption
CPTED. See Crime Prevention Through	asymmetric key, 335–342
Environmental Design (CPTED)	attacks against, 367–375
crackers for passwords, 722	chapter questions, 379–383
create, read, update, and delete (CRUD)	chapter review, 375–378
actions for database systems, 285–287	cryptosystems, 323–325
credential management	definitions and concepts, 321–323
accountability, 741–745	ECC, 342–343
just-in-time access, 738	hardware vs. software systems, 602
overview, 736	history, 317–321
password managers, 736–737	hybrid encryption methods, 346–350
password resets, 737–738	integrity, 351–358
password synchronization, 737	IP telephony, 692
profile updates, 740	Kerckhoffs' Principle, 324–325
registration and proofing of identity,	life cycle, 328
738–740	methods overview, 328
session management, 740–741	one-time pads, 325–328
unmanaged patching threat, 904	overview, 317
Crime Prevention Through Environmental	PKI, 359–367
Design (CPTED)	quantum, 344–346
landscaping, 908	symmetric key, 329–335
maintenance, 433	cryptoprocessors for bus encryption, 408
natural access control, 428–431	cryptosystems
natural surveillance, 431	components, 323–324
overview, 427–428	description, 321
territorial reinforcement, 431–432	strength, 325

cryptovariables, 322	confidentiality, 5
CSMA (carrier sense multiple access),	education and training, 40–44
490–491	guidelines, 32
CSMA/CA (carrier sense multiple access with	implementation, 32–33
collision avoidance), 491	integrity, 5–6
CSMA/CD (carrier sense multiple access with	miscellaneous terms, 8–10
collision detection), 491	nonrepudiation, 6–7
CSOs (chief security officers), 22	organizational processes, 17–18
CSU/DSU (channel service unit/data	organizational roles and responsibilities
service unit), 543–545	18–25
culture	overview, 3–4
data prevention strategies, 269	personnel security, 33-40
DevOps, 1104	principles, 10–12
employee matches, 35	procedures, 32
internal audits, 841	professional ethics, 44–46
risk analysis teams, 76, 78	security overview, 25–27
security awareness, 867	security policies, 27–29
current in electrical power, 670	standards, 29–31
custodians, data, 244	cyberthreat hunting, 943
customary law system, 128	, 8,
customers	D
confidentiality for, 174–175	D-AMPS (Digital AMPS), 584
incident notifications to, 1004	D channels in ISDN, 686
CWE (Common Weakness Enumeration)	
initiative, 1088	DAC (discretionary access control) challenges, 768
Cyber Kill Chain framework, 387–389,	characteristics, 776
994–995	overview, 766–767
cyber-physical systems, 306	DACs (dual-attached concentrators)
cybercrimes and data breaches	in FDDI, 498
common schemes, 137	damage assessment in disaster recovery
complexities, 132–134	plans, 1058
evolution of attacks, 134–138	-
international issues, 138-139	DASs (data acquisition servers)
overview, 130–132	in SCADA systems, 294
cybercriminals, 60	DASs (dual-attachment stations)
cybersecurity analysts	in FDDI, 498
incident response teams, 1001	DAST (dynamic application security
tasks and responsibilities, 886	testing), 1139 data
Cybersecurity Framework, 172, 182	
cybersecurity governance	acquisition, 230 archival, 239–240
aligning security to business strategy, 13–16	backups, 861–862, 1034–1041
authenticity, 6	*
availability, 6	classification, 215–216
balanced security, 7–8	collection, 231–232
baselines, 31–32	destruction, 240–244
chapter questions, 48–52	roles, 244–245
chapter review, 46–48	sharing, 238–239
concepts and terms, 4–10	storage, 232–233
concepts and terms, 1 10	use, 237–238

data acquisition servers (DASs) in SCADA	data leaks, 267
systems, 294	data life cycle
data analysts, 24	data acquisition, 230
data at rest	data archival, 239–240
description, 59	data collection, 231-232
overview, 254–255	data destruction, 240–244
data breaches	data loss prevention, 269
Codecov, 1141	data retention, 233-236
European Union Laws, 142-144	data roles, 244-245
GDPR, 144	data sharing, 238–239
import/export controls, 145–146	data storage, 232–233
overview, 139–141	data use, 237–238
PII, 140–141	e-discovery, 236–237
privacy, 147	overview, 230
transborder data flow, 146–147	data link layer
U.S. laws, 141–142	functions and protocols, 484–485
data communications, 702	OSI model, 480–483
application layer, 474–475	protocols, 646
data link layer, 480–483	data localization laws, 146–147, 232
functions and protocols, 483-485	data loss prevention (DLP)
layers together, 485–487	approaches, 267
network layer, 480	awareness programs, 867
network reference models,	data flows, 268–269
470–471	endpoint, 273–274
network sockets, 703	hybrid, 274
overview, 469–470	inventories, 267–268
physical layer, 483	network, 272–273
presentation layer, 475–476	overview, 265–267
protocols, 471–474	protection strategies, 269–271
remote procedure calls, 703–704	SOAR, 1142
session layer, 477–478	Data-Over-Cable Service Interface
transport layer, 479–480	Specifications (DOCSIS), 687
data controllers in GDPR, 143	data owners, 22–23
data custodians, 23	data processing facilities, 443–446
data diodes, 293, 831	data processors in GDPR, 143
Data Encryption Standard	Data Protection Directive (DPD), 143
(DES), 321	data protection methods
data flows in data loss prevention,	cloud access security brokers, 275–276
268–269	data loss prevention, 265–274
data hiding in object-oriented	digital asset management, 261–263
programming, 1128	Digital Rights Management, 263–265
data historians, 293	overview, 258–261
data in motion/transit	Data Protection Officers (DPOs)
description, 59	in GDPR, 144
overview, 254–256	Data Quality Principle in OECD, 142
data in use	data retention
description, 59	overview, 233
overview, 254, 256–258	policies, 234–236

data security	deferred commitment in object-oriented
chapter questions, 277–279	programming, 1127
chapter review, 276–277	defined level in CMMI, 1108
controls, 253–258	degaussing media, 243, 261
overview, 253	degrees, 40–41
protection methods. See data protection	delay time for locks, 918, 920
methods	delayed loss risk, 63
supply chain risk management, 100	delaying mechanisms in site
data sovereignty laws, 232	planning, 424
data states in controls, 254–258	Deliver, Service and Support (DSS) domain
data structures in TCP, 509	in COBIT 2019, 189
data subjects in GDPR, 143	delivery stage in Cyber Kill Chain model,
database management systems (DBMSs),	388, 994
285–286	
	Delphi technique, 77
database systems, 285	deluge water sprinkler systems, 460
ACID properties, 286	DeMarco, Tom, 283
backups, 861	demilitarized zones (DMZs) for firewalls
directory services, 747	dual-homed, 959
securing, 286–288	functions, 945–946
dating evidence, 1010	screened subnet, 960
DBMSs (database management systems),	denial-of-service (DoS) attacks
285–286	STRIDE model, 388
DCs (domain controllers) in directory	wireless communications, 578
services, 747–748	Denis Trojan, 389
DCSs (distributed control systems), 290, 293	deny lists in IDS/IPS, 968–969
DDoS (distributed denial-of-service) attacks	Department of Defense Architecture
CDNs for, 674	Framework (DoDAF), 173, 195
DNS, 619–620	depositories, protecting, 222
PaaS for, 303	deprovisioning accounts, 800
DDR (dial-on-demand routing), 686	depth of field in CCTV systems, 915
decision stage in forensics investigations,	DES (Data Encryption Standard), 321
1016–1017	design
decommissioning assets, 229-230	assessments, 814–815
dedicated lines for WANs, 541-543, 552	network security, 597–599
defaults	SDLC, 1080, 1083–1087
network, 598	secure. See secure design principles
secure, 396–397, 422	site and facility security, 417-418
third-party connectivity, 706	software. See secure software; software
web services, 611	development
defects per KLOC, 395	Design function in SAMM, 1109
defense in depth	Design practice in Good Practice
controls for, 84	Guidelines, 106
design principle, 390–392	desktop virtualization, 699–701
HTTPS, 614	destroying data, 240–244
network security, 598	detection
physical security, 906	fire safety, 454–457
site and facility security, 419	Framework Core, 182
third-party connectivity, 706	incidents, 995–996

detective controls in risk responses, 85, 87	digital forensics
deterrent controls in risk responses, 85, 87	artifacts, 1020–1021
deterrents in physical security, 908	field kits, 1015
development platforms for software,	interviews, 1018–1019
1137–1138	investigation techniques, 1016-1018
development stage in SDLC,	overview, 1015–1016
1080, 1087–1089	reporting and documenting, 1021–1022
device locks, 922-923	surveillance, 1019–1020
devices	undercover investigations, 1020
access control, 802	Digital Millennium Copyright
industrial control systems, 291–293	Act (DMCA), 154
IP telephony, 688	Digital Rights Management (DRM), 263-265
management software, 226	Digital Signature Algorithm (DSA), 357–358
DevOps, 1103–1104	Digital Signature Standard (DSS), 352, 357
DevSecOps	digital signatures for message verification,
software development, 1104	356–358
software security, 1144–1145	digital subscriber lines (DSLs), 648, 683-685
DFS (Dynamic Frequency Selection), 574	digital transmission, 644–645
DGAs (domain generation algorithms) in	digital video recording (DVR) systems, 913
DNS, 617–618	digital zoom in CCTV systems, 915
DHCP (Dynamic Host Configuration	dignitary wrongs category in civil law, 128
Protocol)	diode lasers in fiber-optic cable, 651
IP addresses, 501	dips in electric power, 451
overview, 517–519	direct-attached storage for backups, 1038
DHCPACK packets, 518-519	direct sequence spread spectrum (DSSS),
DHCPDISCOVER packets, 518–519	562–563
DHCPOFFER packets, 518–519	directors of security operations in incident
DHCPREQUEST packets, 518–519	response teams, 1001
diagonal filters in QKD, 344	directory permissions, testing, 821
diagrams, network, 668-670	directory roles in identity management,
dial-on-demand routing (DDR), 686	748–750
dial-up connections, 684	directory services, 747–748
dialog management, 477	disassembly tools in forensics field kits, 1015
Diameter protocol, 793–795	disaster recovery (DR)
dictionary attacks on passwords, 721	availability issues, 1049-1053
differential backups, 1035-1036	description, 101, 1029-1030
differential cryptanalysis attacks,	incident response, 992
369–370	overview, 867–869
differential power analysis for smart	process overview, 1053–1055
cards, 735	disaster recovery plans (DRPs)
differentiated service in QoS, 551	assessment, 1058
Diffie, Whitfield, 337–340	communications, 1056–1057
Diffie-Hellman algorithm, 337–340	contents, 1055
diffusion in symmetric key cryptography,	description, 101
331–332	lessons learned, 1061
digital acquisition of evidence, 1012	personnel, 1055–1056
Digital AMPS (D-AMPS), 584	responses, 1055
digital certificates in PKI, 359–360	restoration, 1058–1060

disaster recovery plans (DRPs) (cont.)	DMZs (demilitarized zones) for firewalls
storing, 1042	dual-homed, 959
testing, 1061–1065	functions, 945–946
training and awareness, 1060-1061	screened subnet, 960
disasters	DNP3 (Distributed Network Protocol 3),
business continuity, 1065–1071	626–627
business process recovery, 1033-1034	DNS. See Domain Name Service (DNS)
chapter questions, 1073–1076	DNs (distinguished names)
chapter review, 1071-1073	directory services, 747–748
data backups, 1034–1041	LDAP, 749
description, 1043	DNS over HTTPS (DoH), 621
documentation, 1041–1042	DNSSEC (DNS security)
human resources, 1042-1043	overview, 620–621
overview, 1029	threats, 529–531
reciprocal agreements, 1047-1048	Do phase in Plan-Do-Check-Act loop, 875
recovery site strategies, 1043–1047	DOCSIS (Data-Over-Cable Service Interface
recovery strategies overview, 1029–1033	Specifications), 687
redundant sites, 1048–1049	documentation
disc tumbler locks, 919	audits, 839–840
discovery step in penetration testing, 824	backups, 863
discrepancies in identity, 798–799	change management, 262, 893
discretionary access control (DAC)	digital forensics, 1021–1022
challenges, 768	disaster recovery, 1041–1042
characteristics, 776	forensics field kits, 1015
overview, 766–767	incident response, 992
disposal of digital asset management, 262	software vulnerability scans, 901
disruption prevention in site planning, 424	DoDAF (Department of Defense Architecture
distance-vector routing protocols, 535	Framework), 173, 195
distinguished names (DNs)	dogs, 929
directory services, 747–748	DoH (DNS over HTTPS), 621
LDAP, 749	Domain-based Message Authentication,
distributed control systems (DCSs), 290, 293	Reporting and Conformance (DMARC)
distributed denial-of-service (DDoS) attacks	system, 625
CDNs for, 674	domain controllers (DCs) in directory
DNS, 619–620	services, 747–748
PaaS for, 303	domain generation algorithms (DGAs)
Distributed Network Protocol 3 (DNP3),	in DNS, 617–618
626–627	Domain Name Service (DNS)
distributed systems, 307-309	attack prevention, 617–620
distribution facilities, 446-447	DNS over HTTPS, 621
divestitures, 17-18	DNSSEC, 620–621
DKIM (DomainKeys Identified Mail), 625	domains, 526-527
DLP. See data loss prevention (DLP)	filters, 621
DMARC (Domain-based Message	MITRE ATT&CK framework, 389
Authentication, Reporting and	overview, 524–526, 616
Conformance) system, 625	resolution components, 527–528
DMCA (Digital Millennium	splitting, 530
Copyright Act), 154	threats, 529–531

DomainKeys Identified Mail (DKIM), 625	due care issues
domains	disaster recovery plans, 1060
collision and broadcast, 492-494	liability, 158–159
DNS, 526–527	due diligence, 158–159
doors	dumpster diving, 260–261
considerations, 437	Dunn, Andy, 885
data processing facilities, 443	durability in ACID properties, 286
lock delay feature, 920	duress codes, 931–932
types, 440–441	Dutch Data Protection Authority, 397
DoS (denial-of-service) attacks	DVR (digital video recording)
STRIDE model, 388	systems, 913
wireless communications, 578	Dyn attack, 307
double-blind penetration tests, 826	dynamic analysis
double tagging attacks on VLANs, 632	antimalware software, 970
downstream liability, 39, 161	application security, 1139
downstream suppliers in risk management, 98	dynamic application security
downtime in high availability, 1050	testing (DAST), 1139
DPD (Data Protection Directive), 143	Dynamic Frequency Selection (DFS), 574
DPOs (Data Protection Officers)	Dynamic Host Configuration
in GDPR, 144	Protocol (DHCP)
DR. See disaster recovery (DR)	IP addresses, 501
draft IEEE 802.11i, 576	overview, 517–519
DRI International Institute, Professional	dynamic mapping in NAT, 532
Practices for Business Continuity	dynamic passwords, 729–732
Management, 106	dynamic ports, 507
drive-by downloads, 865	dynamic routing protocols, 534–535
drives, self-encrypting, 407	dynamic separation of duty (DSD)
DRM (Digital Rights Management), 263–265	relations, 773
dropped ceilings, 442	Dyre Trojan, 604
	Dyle Hojan, 004
DRPs. See disaster recovery plans (DRPs)	E
dry pipe water sprinkler systems, 460	Ľ
DSA (Digital Signature Algorithm), 357–358	E-carriers for WANs, 542
DSD (dynamic separation of duty)	e-discovery, 236–237
relations, 773	e-mail
DSLAMs (DSL access multiplexers), 683	authorization, 624
DSLs (digital subscriber lines), 648, 683–685	DKIM, 625
DSS (Deliver, Service and Support) domain in	DMARC, 625
COBIT 2019, 189	gateways, 663
DSS (Digital Signature Standard), 352, 357	IMAP, 623–624
DSSS (direct sequence spread spectrum),	
562–563	MIME, 625–626
dual-attached concentrators (DACs)	overview, 621–622
in FDDI, 498	phishing, 864
	POP, 623
dual-attachment stations (DASs)	SPF, 624
in FDDI, 498	threats, 623
dual control, 34	E2EE (end-to-end encryption) vs. link
dual-homed firewalls, 959, 963	encryption, 600–602
dual-use goods, 145	EAC (electronic access control) tokens, 925

EAP (Extensible Authentication Protocol)	802.15.4 standard, 570-571
VPNs, 699	802.16 standard, 569
WPA Enterprise, 577	EIGRP (Enhanced Interior Gateway
EAP and Transport Layer Security (EAP-	Routing Protocol), 536
TLS), 580–581	EKs (endorsement keys) in Trusted
EAP-TLS (Extensible Authentication	Platform Modules, 405
Protocol-Transport Layer Security)	Elastic Stack product, 979
authentication framework, 501	electric power
EAP-Tunneled Transport Layer Security	backup, 448–450
(EAP-TTLS), 580	considerations, 438
ECC (elliptic curve cryptography),	fallback plans, 448
328, 342–343	issues, 450–452
Economic Espionage Act, 141	overview, 670–672
economic wrongs category in civil law, 128	protecting, 452–453
edge computing systems, 308–309	electrical wires in transmission media, 643
EDI (electronic data interchange), 538	electromagnetic analysis for smart cards, 735
EDLP (endpoint DLP), 273–274	electromagnetic interference (EMI)
EDM (Evaluate, Direct and Monitor) domain	coaxial cable, 649
in COBIT 2019, 189	electric power, 450
EDNS(0) technique in DNS, 620	electromechanical IDSs, 926
EDR. See endpoint detection	electronic access control (EAC) tokens, 925
and response (EDR)	electronic data interchange (EDI), 538
EDRM (Electronic Discovery	Electronic Discovery Reference Model
Reference Model), 237	(EDRM), 237
EDU domain in DNS, 527	electronic monitoring of passwords, 721
education. See training	electronic vaulting for backups, 1038–1039
EF (exposure factor), 74	electronically stored information (ESI),
effectiveness monitoring for risk, 91–92	236–237
egress	elevation of privilege category in STRIDE
filtering, 948	model, 388
monitoring, 981	elliptic curve cryptography (ECC), 328,
80/20 Pareto principle, 179	342–343
802.1AE standard, 500-501	embedded systems, 306
802.1AR standard, 501	Embedding Business Continuity practice in
802.1x standard, 579-581	Good Practice Guidelines, 105
802.11 standard, 565-566, 575-576	emergency category in PACE plans, 1057
802.11a standard, 566-567	emergency changes, 892
802.11ac standard, 567	emergency management, 931
802.11ax standard, 567-568	emergency response groups, 1057
802.11b standard, 566	emergency response procedures, 868–869
802.11e standard, 573	EMI (electromagnetic interference)
802.11f standard, 574	coaxial cable, 649
802.11g standard, 567	electric power, 450
802.11h standard, 574	Emotet Trojan, 604
802.11i standard, 576–578	employees. See personnel safety and security
802.11j standard, 574	emtocells in Li-Fi standard, 568
802.11n standard, 567	emulating services in honeypots, 974
802.11w standard, 578	emulation buffers in antimalware, 970

Encapsulating Security Payload (ESP), 608	enrollment in biometric authentication, 725
encapsulation	enterprise architecture frameworks
multilayer protocols, 628	military-oriented, 195–196
object-oriented programming,	models, 172–173
1127–1128, 1130	need for, 191-192
OSI, 472–473	overview, 189–191
TCP, 509	The Open Group Architecture Framework,
encryption. See also cryptology	194–195
bus, 407–408	Zachman Framework, 192-194
code repositories, 1144	enterprise security architecture
data at rest, 255	description, 13
data in motion, 255–256	vs. ISMS, 26
homomorphic, 258	enterprise security program in business
hybrid methods, 346–350	continuity management, 106-108
Internet of Things, 307	entry points in physical security, 439-441
Kerberos, 785–789	enumeration step in penetration testing, 824
link vs. end-to-end encryption,	environmental issues
600–602	business continuity planning, 1071
meeting applications, 694	CPTED, 427–433
mobile devices, 243	digital asset management, 262
network sockets, 703	disaster recovery, 1059
overview, 256–258	site and facilities, 461
passwords, 722	Environmental Protection Agency (EPA), 434
end-of-life (EOL) of assets, 229	EOL (end-of-life) of assets, 229
end-of-support (EOS) of assets, 229	EOS (end-of-support) of assets, 229
end-to-end encryption (E2EE) vs. link	EPA (Enhanced Performance
encryption, 600–602	Architecture), 627
end-user environment in business continuity	EPA (Environmental Protection Agency), 434
planning, 1071	ephemeral keys in TLS, 604
End User License Agreement	ephemeral ports, 507
(EULA), 153	equipment malfunction in risk
endorsement keys (EKs) in Trusted Platform	management, 54
Modules, 405	equipment warranty, 672
endpoint detection and response (EDR)	erasing media, 259
breach attack simulations, 828	escrow, software, 1070, 1143
defense in depth, 391	ESI (electronically stored information),
effectiveness monitoring, 91–92	236–237
HIDSs, 968	ESMTP (Extended SMTP), 622
security operations centers, 940	ESP (Encapsulating Security
endpoint DLP (EDLP), 273–274	Payload), 608
endpoint security, 673–674	ESTABLISHED state in TCP
Enhanced Interior Gateway Routing	connections, 951
Protocol (EIGRP), 536	Ethernet
Enhanced Performance	data link layer, 481–482
Architecture (EPA), 627	layer 2 protocol, 494–495
Enigma machine, 320	local area networks, 499
ENISA (European Union Agency for	Metro Ethernet, 539-540
Cybersecurity), 106	Token Ring, 495–496

ethics	Extended SMTP (ESMTP), 622
professional, 44–46	Extended TACACS (XTACACS), 790–791
vulnerability disclosures, 872	extended teams in incident response plans,
EULA (End User License Agreement), 153	1000-1001
European Union Agency for Cybersecurity (ENISA), 106	Extensible Access Control Markup Language (XACML), 781
European Union Laws, 142–144	Extensible Authentication Protocol (EAP)
Evaluate, Direct and Monitor (EDM) domain	VPNs, 699
in COBIT 2019, 189	WPA Enterprise, 577
evaluation	Extensible Authentication Protocol-Transport
business impact analysis, 110-112	Layer Security (EAP-TLS) authentication
change management procedure, 891	framework, 501
framework steps, 201	Extensible Markup Language (XML),
program effectiveness, 43–44	615, 777
Everything as a Service (XaaS), 304–305	exterior lighting, 911–912
evidence	exterior routing protocols, 536–537
acquiring, 1012	external audits, 842–843
admissibility, 1013–1014	external labeling in digital asset
collecting, 1008–1012	management, 263
identification guidelines, 1009–1010	external parties issues in data loss
incident investigations, 1006–1007	prevention, 267
order of volatility, 1016	external perimeter security
preserving, 1013	bollards, 910–911
storage, 447–448	fencing, 908–910
evolution of attacks, 134–138	lighting, 911–912
evolutionary prototypes in software	overview, 906–908
development, 1096	surveillance devices, 913
examination stage in forensics investigations,	visual recording devices, 913-916
1016–1017	extranets, 537–538
exception handling, 871	Extreme Programming (XP), 1102
executive succession planning, 1043	
executive summaries in reports, 872–875	F
executives	Facebook breach, 20
incident notifications for, 1004	facial scans, 728
risk reporting for, 94–95	Facilitated Risk Analysis Process (FRAP), 68
roles, 19–22	facilities. See site and facility security
exercises for disaster recovery plans,	facility safety officers, 434
1061–1062	Factor Analysis of Information Risk (FAIR)
exigent circumstances, 1011	framework, 172, 179
exploitation	factors in ISO/IEC 27004, defined, 852
Cyber Kill Chain model, 388, 994	fail-safe devices, 931
penetration testing, 824	fail safe systems for locks, 921
exploratory methodology in software	failed logon attempts, 721–723
development, 1104	failing securely
exposure, defined, 9	network security, 598
exposure factor (EF), 74	secure design, 396–397
extended detection and response (XDR)	site and facility security, 422
platforms, 968	third-party connectivity, 706
	web services, 612

failover capability in quality of service, 1051	fencing, 908–910
Failure Modes and Effect Analysis (FMEA), 69–71	FHSS (frequency hopping spread spectrum), 561–563
FAIR (Factor Analysis of Information Risk)	Fiber Distributed Data Interface (FDDI)
framework, 172, 179	technology, 496–499
fairness issue in forensics investigation	fiber-optic cable, 650–651
interviews, 1019	Fibre Channel over Ethernet (FCoE) protocol
false acceptance rate (FAR) in biometric	628–629
authentication, 724–725	field kits for digital forensics, 1015
false negatives in anomaly-based IDS/IPS, 967	field of view in CCTV systems,
false positives in anomaly-based IDS/IPS, 967	913, 915
false rejection rate (FRR) in biometric authentication, 724–725	fifth-generation (5G) mobile wireless, 586–587
FAR (false acceptance rate) in biometric	fifth-generation programming languages,
authentication, 724–725	1119–1120
FAST (Federation Against Software Theft), 154	file descriptor attacks, 821
fault generation attacks on smart cards, 734	file permissions, 821
fault injection attacks in cryptography, 372	File Transfer Protocol (FTP)
fault tolerance in availability, 1051	application-level proxies, 954
fault tree analysis in risk assessment, 71–72	sessions, 951
FCoE (Fibre Channel over Ethernet) protocol,	filters
628–629	DNS, 621
FCS (frame check sequence) numbers in	firewalls. See firewalls
WANs, 546	QKD, 344–345
FDDI (Fiber Distributed Data Interface)	FIM (federated identity management)
technology, 496–499	systems
FDDI rings in MANs, 538	overview, 752–754
FDE (full-disk encryption), 407	with third-party service,
FDM (frequency-division multiplexing), 544	754–756
FDMA (frequency division multiple	FIN-WAIT-1 state in TCP connections, 951
access), 584	FIN-WAIT-2 state in TCP connections, 951
Federal Copyright Act, 149–150	findings in reports, 873
Federal Emergency Management Agency	fines for executive management, 20
(FEMA), 1054	fingerprint detection in antimalware
Federal Information Processing Standard	software, 969
(FIPS) 140-2, 406–407	fingerprints, 726
Federal Risk and Authorization Management	FIPS (Federal Information Processing
Program (FedRAMP), 156, 1146	Standard) 140-2, 406-407
Federal Rules of Evidence (FRE), 1014	fire codes for door placement, 440
federated identity management (FIM) systems	fire detection considerations, 438
overview, 752–754	fire extinguishers, 455
with third-party service, 754-756	fire prevention, 454
Federation Against Software Theft (FAST), 154	fire rating for cabling, 653
FedRAMP (Federal Risk and Authorization	fire resistance ratings, 456
Management Program), 156, 1146	fire-resistant material, 439
Feistel, Horst, 332	fire safety
FEMA (Federal Emergency Management	detection, 454–457
Agency), 1054	overview, 454

fire sensors, 445	Foundational controls, 187
fire suppression	Fourth Amendment issues, 1011
considerations, 438	fourth-generation (4G) mobile wireless,
fire types, 458–459	586–587
heat-activated, 456–457	fourth-generation programming languages,
overview, 454, 457–459	1119–1120
smoke activated, 456	fractional T lines, 542
water sprinklers, 459-460	fragmentation in firewalls, 948, 965-966
firewalls	frame check sequence (FCS) numbers in
appliances, 958	WANs, 546
architecture, 959–965	frame relay for WANs, 547-548, 552
bastion hosts, 965	frames
comparisons, 958	description, 483
configuring, 965–966	packets, 509
demilitarized zones, 945–946	TCP, 509
dual-homed, 959	Framework Core, 182–183
next-generation, 957–958	Framework Profile in Cybersecurity
overview, 945–946	Framework, 182
packet-filtering, 946–949	frameworks
proxy, 952–957	chapter questions, 205-209
screened host, 959–960	chapter review, 203–205
screened subnet, 960–962	CIS controls, 185–187
stateful, 949–952	CMM, 197–199
virtual, 964	COBIT 2019, 187–189
first-generation (1G) mobile wireless,	description, 15
585–586	enterprise architecture, 189–196
first-generation programming languages, 1118	information security, 179–189
five nines availability, 1050	ITIL, 196–197
fixed focal length in CCTV systems, 914–915	overview, 171–173
fixed mounting cameras in CCTV	process steps, 199–203
systems, 916	risk, 172–179
floods, SYN, 508	security controls, 183–189
flooring considerations, 438	security programs, 180–183
fluorescent lighting interference, 450	Six Sigma, 197
FMEA (Failure Modes and Effect Analysis),	framing risk, 57
69–71	Franklin, Benjamin, 317
foams for fire suppression, 459	FRAP (Facilitated Risk Analysis Process), 68
focal length in CCTV systems, 914–915	fraud
foot-candles	IP telephony, 692
CCTV systems, 916	PBX systems, 666
lighting, 911	FRE (Federal Rules of Evidence), 1014
footprints of satellites, 589	free space transmission media, 644
forensics. See digital forensics	freeware, 153
Forrester report, 1134	frequency analysis attacks in
forward secrecy in TLS, 604	cryptography, 370
forwarding planes in SDNs, 633-634	frequency division multiple
forwarding proxies, 663–664	access (FDMA), 584
forwarding tables for bridges, 656–657	frequency-division multiplexing (FDM), 544

frequency hopping spread spectrum (FHSS),	generators, 449–450
561–563	Generic Routing Encapsulation (GRE), 606
frequency in wireless signals, 559	Geneva, Switzerland, QKD in, 346
FRR (false rejection rate) in biometric	geosynchronous satellites, 588-590
authentication, 724–725	GET methods in HTTP, 614
FTP (File Transfer Protocol)	Get Out of Jail Free Cards, 824
application-level proxies, 954	glare protection, 912
sessions, 951	glass in data processing facilities, 446
full backups, 1035-1036	Glenny, Misha, 939
full-disk encryption (FDE), 407	Global System for Mobile Communication
full-duplex	(GSM), 584
session layer, 478	GML (Generalized Markup Language), 776
TCP, 508	goals
full-interruption tests in disaster recovery	audits, 839
plans, 1064	disaster recovery, 1053-1054
full knowledge in penetration testing, 825	GOC domain in DNS, 527
full RBAC, 773	Gold Masters, 225
full tunnels in VPNs, 697	Good Practice Guidelines (GPG),
functional analysis in BIA, 109	105–106
functional model in software development	Goodman, Marc, 597
design, 1084	Google trademark case, 150
functional policies, 28	governance committees, 18
functional requirements in software	Governance function in SAMM, 1109
development, 1083	governance objectives in COBIT 2019, 189
fuzzing in application security testing,	governance, risk, and compliance (GRC)
1139–1140	programs, 155
	GPG (Good Practice Guidelines), 105–106
G	grades of locks, 923
G.fast standard, 684	Graham-Denning model, 402–403
gamification, 42–43	Gramm-Leach-Bliley Act, 141, 147
garbage collectors in programming	gray box testing, 826
languages, 1122	GRC (governance, risk, and compliance)
gas lines, 438	programs, 155
gatekeepers in H.323, 689	GRE (Generic Routing Encapsulation), 606
gates, 910	Gretzky, Wayne, 997
-	groups for separation of duties, 394
gateways characteristics, 665	GSM (Global System for Mobile
H.323, 689	Communication), 584
gauge for fencing, 909	guaranteed service in QoS, 551
General Data Protection Regulation (GDPR)	Guaranteed Time Slot (GTS) reservations in
	WPANs, 570
compliance monitoring, 93 entities, 143–144	guards, 928–929
FIM systems, 754	guests in virtualized systems, 296
legal systems, 126	guidelines
privacy issues, 147, 158, 397	coding, 1136
general hierarchies in RBAC, 772	overview, 32
General Personal Data Protection Law, 144	Guidelines on the Protection of Privacy and
Generalized Markun Language (GML) 776	Transborder Flows of Personal Data, 142–144

Health Information Technology for Economic
and Clinical Health (HI-TECH) Act, 141
Health Insurance Portability and
Accountability Act (HIPAA), 147
hearsay evidence, 1014
Heartbleed security bug, 257, 370
heat-activated fire suppression, 456–457
heating, ventilation, and air
conditioning (HVAC)
considerations, 438
data processing facilities, 446
fire suppression, 459
overview, 453–454
heavy timber construction material, 439
heavyweight methods in software
development, 1101
Hellman, Martin, 337–340
Hello messages in TLS, 603
help desk tasks and responsibilities, 886
heuristic detection in antimalware software,
969, 971
hexadecimal values, 1121
HI-TECH (Health Information Technology
for Economic and Clinical Health) Act, 141
hiding data in steganography, 264–265
HIDSs (host-based intrusion detection
systems), 967
hierarchical RBAC, 772–773
hierarchical storage management (HSM) for
backups, 898–899
High Assurance Internet Protocol Encryptor
(HAIPE), 609
high availability (HA), 1050–1053
high coupling in software, 1131–1132
High-level Data Link Control (HDLC)
frames, 550
high-level languages, 1118–1121
high-performance computing (HPC) systems,
288–289
high privacy risk in software
development, 1082
High-Speed Serial Interface (HSSI), 552
Hinckley, Gordon B., 171
hints for passwords, 720
HIPAA (Health Insurance Portability and
Accountability Act), 147
hiring candidates, 35–36
history of changes, documenting, 262

HMAC (hash MAC), 355, 358	human resource managers on incident
HMI (human-machine interface), 291-294	response teams, 1001
holistic risk management, 54-55	human resources (HR)
hollow-core doors, 440	disasters, 1042-1043
home IP address in mobile IP, 793	proofing of identity, 739
homomorphic encryption, 258	human sensors for incident detection, 995
honeyclients, 975	human vulnerabilities, 902-903
honeynets, 975	humidity
honeypots, 974–976	data processing facilities, 446
hop devices, 601	HVAC systems, 453
hop sequences in FHSS, 561–563	hygrometers, 461
Hopper, Grace, 851	HVAC. See heating, ventilation, and air
hopping attacks in VLANs, 632	conditioning (HVAC)
horizontal enactment for privacy, 147	hybrid clouds, 305
host addresses in IP addresses, 510	hybrid controls in Risk Management
host-based intrusion detection systems	Framework, 175
(HIDSs), 967	hybrid data loss prevention, 274
hostage alarm feature for combination	hybrid encryption methods, 346
locks, 920	asymmetric and symmetric together,
HOSTS file in DNS, 528, 530	346–349
hosts in virtualized systems, 296	session keys, 349–350
hot sites	hybrid FIM systems, 756
disaster recovery, 1044-1046	hybrid flow in OIDC, 784
vs. redundant sites, 1049	hybrid RBAC, 773
hot washes	hybrid smart cards, 734
event debriefing, 869	hybrid teams for incident response, 991
lessons learned, 1061	hygrometers, 461
hotel key cards, 921	Hypertext Markup Language (HTML),
HPC (high-performance computing)	776–777
systems, 288–289	hypertext transfer protocol (HTTP), 613-614
HR (human resources)	Hypertext Transfer Protocol
disasters, 1042–1043	Secure (HTTPS), 614
proofing of identity, 739	hypervisors in virtual machines, 296–298
HRU (Harrison-Ruzzo-Ullman) model,	т
402–404	I
HSM (hierarchical storage management)	IaaS (Infrastructure as a Service),
for backups, 898–899	228, 302, 304
HSMs (hardware security modules), 406–407	IAM (identity and access management), 745
HSSI (High-Speed Serial Interface), 552	ICMP. See Internet Control Message Protocol
HTML (Hypertext Markup Language),	(ICMP)
776–777	ICSs. See industrial control systems (ICSs)
HTTP (hypertext transfer protocol),	ICVs (Integrity Check Values), 501, 575–576
613–614	IDaaS (Identity as a Service), 754
HTTPS (Hypertext Transfer Protocol	IDC (International Data Corporation), 154
Secure), 614	identification, 214
hubs, 655–656	authentication. See authentication
human interaction in risk management, 54	credential management, 736–745
human-machine interface (HMI), 291–294	crime scenes, 1009–1010

identification (cont.)	IDEs (integrated development environments)
description, 716	in software development, 1137
directory services, 747–750	iDevIDs (initial device identities), 501
FIM systems, 752–754	IDFs (intermediate distribution facilities),
forensics investigations, 1016–1017	446–447
identity management, 745–754	IdPs (identity providers)
life cycle of assets, 222–223	OpenID Connect, 783
proofing, 738–740	SAML, 780
single sign-on, 750–752	IDSs. See intrusion detection systems (IDSs)
identify function in Framework Core, 182	IEC (International Electrotechnical
identities and access fundamentals	Commission) 27000 Series, 180–182
access control and markup languages, 776–781	IETF (Internet Engineering Task Force) RFC 4987, SYN flood attacks, 508
authorization. See authorization	if this, then that (IFTTT) programming
chapter questions, 759–763	rules, 774
chapter review, 756–758	IGMP (Internet Group Management
overview, 715–717	Protocol), 500
remote access control, 789–795	IGP (Interior Gateway Protocol), 533
identity and access management (IAM), 745	IGRP (Interior Gateway Routing
attribute-based access control, 774	Protocol), 536
authorization. See authorization	IGs (implementation groups) in CIS
chapter questions, 805–809	controls, 187
chapter review, 804-805	IIoT (Industrial Internet of Things) devices, 570
discretionary access control, 766-768	IKE (Internet Key Exchange), 608
life cycle management, 795–800	illogical processing, 62
mandatory access control, 768-771	illumination in CCTV systems, 913, 916
overview, 765	images
physical and logical access, 801-803	evidence, 1012-1013
provisioning life cycle, 795–800	system, 896
risk-based access control, 775–776	IMAP (Internet Message Access Protocol),
role-based access control, 771–773	623–624
rule-based access control, 774	impact in incidents classification, 1002
Identity as a Service (IDaaS), 754	implementation
identity-based access control, 767	change management, 892
identity management (IdM)	cybersecurity governance, 32-33
directory roles, 748–750	data loss prevention, 270-271
directory services, 747–748	disaster recovery goals, 1054
federated identity management systems,	frameworks, 200
752–754	Good Practice Guidelines, 106
federated identity with third-party services,	Risk Management Framework, 175–176
754–756	SAMM, 1109
overview, 745–747	software, 1133
single sign-on, 750–752	implementation attacks in cryptography,
identity providers (IdPs)	370–372
OpenID Connect, 783	implementation groups (IGs) in CIS
SÂML, 780	controls, 187
identity repositories, 739	Implementation Tiers in Cybersecurity
identity stores, 748	Framework, 182

implicit denies in firewalls, 965	reporting, 997–998
implicit flow in OIDC, 784	response plans, 1000-1006
import/export controls for data breaches,	response teams, 991
145–146	responses, 996
IMPs (incident management policies),	runbooks, 1006
990, 1000	supply chain risk management, 100
IMSI (International Mobile Subscriber	incombustible material, 439
Identity) catchers, 588	income approach for executive summaries, 874
in-rush current for electric power, 451	incomplete level in CMMI, 1107
inactivity, session termination from, 741	incremental backups, 1036–1037
incident assessment in site planning, 424	Incremental software development,
incident investigations	1096–1097
chapter questions, 1024–1027	incremental testing for federated identity, 755
chapter review, 1022-1024	indexing for data retention, 236
digital forensics, 1015–1022	indicators in ISO/IEC 27004, 852
evidence collection and handling,	indicators of attack (IOAs), 999
1008–1015	indicators of compromise (IOCs)
law enforcement involvement, 1007	incident remediation, 999
motive, opportunity, and means,	threat data sources, 942
1007-1008	Individual Participation Principle
overview, 1006–1007	in OECD, 142
privacy issues, 1014	industrial control systems (ICSs)
incident management in business	devices, 291–293
continuity, 1066	distributed control systems, 293
incident management policies (IMPs),	overview, 289–290
990, 1000	SCADA systems, 294
incident responders, tasks and	security, 294–295
responsibilities, 886	Industrial Internet of Things (IIoT)
incident response plans (IRPs)	devices, 570
classifications, 1002–1003	industrial, scientific, and medical (ISM)
notifications, 1003–1004	bands, 565–566
operational tasks, 1004–1005	industry standards, compliance with, 156–158
overview, 1000	inference in database systems, 287
roles and responsibilities, 1000–1002	information disclosure category in STRIDE
runbooks, 1006	model, 388
incidents	information security
classification, 1002–1003	access control, 801
Cyber Kill Chain framework, 994–995	bus encryption, 407–408
detection, 995–996	classification, 215–219
investigations. See incident investigations	frameworks, 179–189
lessons learned, 999–1000	hardware security modules, 406–407
management overview, 989–994	identification, 215–219
mitigating, 996–997	overview, 214, 404
notifications, 1003–1004	secure processing, 408
operational tasks, 1004–1005	self-encrypting drives, 407
overview, 989	trusted execution environments, 408–410
recovery, 998	Trusted Platform Modules, 404–406
remediating, 999	vulnerabilities, 59

Information Security Continuous Monitoring	integrity
(ISCM), 981–982	Biba model, 399
information security management	CIA triad, 8
systems (ISMSs)	in cryptography, hashing functions,
commercial software certifications, 1146	351–354
description, 12	in cryptography, message verification,
vs. enterprise security architecture, 26	354–358
ISO/IEC 27000 series, 180	in cryptography, overview, 351
security operations centers, 939	cryptosystems, 323
Information Systems Audit and Control	overview, 5–6
Association (ISACA), 187	Integrity Check Values (ICVs), 501, 575–576
information systems availability in business	integrity verification procedures (IVPs) in
continuity planning, 1067–1070	Clark-Wilson model, 400
information systems risk management (ISRM)	Intel trade secrets theft, 149
policies, 56	intellectual property (IP)
information systems view (Tier 3) in risk	data breaches, 139
management, 55	internal protection, 152-153
Information Technology Infrastructure	requirements. See licensing and intellectual
Library (ITIL), 196–197	property requirements
informational model in software development	intelligence cycle in threat intelligence,
design, 1084	941–942
informative policies, 30	intentional category in civil law, 127
Infrastructure as a Service (IaaS),	interface testing, 837
228, 302, 304	interference
infrastructure WLANs, 565	coaxial cable, 649
ingress filtering, 948	electric power, 450–451
initial level in CMMI, 1107	twisted-pair cabling, 649–650
initial device identities (iDevIDs), 501	Interior Gateway Protocol (IGP), 533
initialization vectors (IVs)	Interior Gateway Routing
802.11 standard, 575–576	Protocol (IGRP), 536
symmetric key cryptography,	interior routing protocols, 535–536
334–335	intermediate distribution facilities (IDFs),
inputs, reviewing, 876–877	446–447
inside attacks in risk management, 54	Intermediate System to Intermediate System
installation stage in Cyber Kill Chain model,	(IS-IS), 536
388, 994	internal actors, 61–62
instantiation in object-oriented	internal audits, 840–842
programming, 1125	internal labeling in digital asset
INT domain in DNS, 527	management, 263
integrated development environments (IDEs)	internal partitions, 442
in software development, 1137	internal protection of intellectual property,
integrated product teams (IPTs), 1105	152–153
Integrated Services Digital Network (ISDN),	internal security controls, 924
685–686	internal sources of threat data, 942–943
integration issues in federated identity,	International Data Corporation (IDC), 154
754–755	International Electrotechnical Commission
integration testing in software	(IEC) 27000 Series, 180–182
development, 1091	international issues in cybercrimes, 138–139

International Mobile Subscriber Identity	Internet Protocol telephony, 687–688
(IMSI) catchers, 588	H.323, 689
International Organization for	issues, 692
Standardization (ISO)	SIP, 689–691
ISO 7498-1, 472	Internet Security Association and Key
ISO 22301:2019, 105–106	Management Protocol (ISAKMP), 608
ISO 28000:2007, 224	Internet Small Computer Systems
ISO/IEC 14443, 735	Interface (iSCSI), 629
ISO/IEC 27000 series, 172, 180–182	internetworks, 657
ISO/IEC 27001, 1146	interoperability
ISO/IEC 27004, 852	data loss prevention, 270
ISO/IEC 27005, 177–179	ISO/IEC 14443, 735
ISO/IEC 27031:2011, 105–106	interpreters, 1119–1122
ISO/IEC 27034, 1146	interviews in forensics investigations,
ISO/IEC 27037, 1009	1018–1019
network reference model, 470	Intra-Site Automatic Tunnel Addressing
Internet Control Message Protocol (ICMP)	Protocol (ISATAP), 514
attacks using, 520–522, 537	intranets, 537–538
message types, 520–521	intraorganizational configuration
overview, 520	in SIP, 691
stateful firewalls, 952	intrasite tunneling mechanisms, 514
Internet Engineering Task Force (IETF) RFC	intrusion detection systems (IDSs)
4987, SYN flood attacks, 508	anomaly-based, 967–968
Internet Group Management Protocol	audits, 743
(IGMP), 500	characteristics, 928
Internet growth, increase of attacks from, 134	_
	dogs, 929
Internet Key Exchange (IKE), 608	overview, 925–928, 967
Internet Message Access Protocol (IMAP),	patrol forces and guards, 928–929
623–624	physical security, 908
Internet of Things (IoT)	rule-based, 967
devices, 570	whitelisting and blacklisting,
issues, 306–307	968–969
Internet Protocol (IP)	intrusion prevention systems (IPSs)
addresses. See IP addresses	anomaly-based, 967–968
L2TP, 606–607	overview, 967
Internet protocol networking	rule-based, 967
ARP, 515–517	whitelisting and blacklisting,
DHCP, 517–519	968–969
DNS, 524–531	inventories
ICMP, 520–522	data loss prevention, 267–268
IP addresses, 510-515	digital asset management, 262
NAT, 531–533	hardware, 224
overview, 502–503	software, 224–227
routing protocols, 533-537	investigations
SNMP, 522–524	incidents. See incident investigations
TCP, 503–509	requirements, 161–162
Internet Protocol Security (IPSec)	INVITE messages in SIP, 689–690
transport adjacency, 609	invocation property in Biba model, 399
VPNs, 607–609	IOAs (indicators of attack), 999

IOCs (indicators of compromise)	ISDN (Integrated Services Digital Network),
incident remediation, 999	685–686
threat data sources, 942	island-hopping attacks, 133
IoT (Internet of Things)	ISM (industrial, scientific, and medical)
devices, 570	bands, 565-566
issues, 306–307	ISMSs. See information security management
IP addresses	systems (ISMSs)
DHCP, 501	ISO. See International Organization for
DNS, 524–531	Standardization (ISO)
multicasting, 500	isochronous networks, 687
NAT, 531–533	isolation in ACID properties, 286
overview, 510–512	ISRM (information systems risk management)
packet-filtering firewalls, 948	policies, 56
three-way-handshake process, 951	issue-specific policies, 28
IP convergence, 628	IT engineers, tasks and responsibilities, 886
IP (intellectual property)	IT Governance Institute (ITGI), 187
data breaches, 139	IT support specialists on incident response
internal protection, 152–153	teams, 1001
requirements. See licensing and intellectual	iterated tunneling in IPSec, 609
property requirements	ITGI (IT Governance Institute), 187
IP (Internet Protocol)	ITIL (Information Technology Infrastructure
addresses. See IP addresses	Library), 196–197
L2TP, 606–607	IVPs (integrity verification procedures) in
networking, 502–503	Clark-Wilson model, 400
IP version 4 (IPv4), 510	IVs (initialization vectors)
IP version 6 (IPv6), 510, 512–514	802.11 standard, 575–576
IPSec (Internet Protocol Security)	symmetric key cryptography,
transport adjacency, 609	334–335
VPNs, 607–609	т
IPTs (integrated product teams), 1105	J
IPv4 (IP version 4), 510	JAD (Joint Application Development),
IPv6 (IP version 6), 510, 512–514	1104–1105
iris lenses in CCTV systems, 915–916	Java programming language, 1121–1122
iris scans, 727	bytecode, 1122–1123
IRPs. See incident response plans (IRPs)	protection mechanisms, 1123-1124
IS-IS (Intermediate System to Intermediate	Java Virtual Machine (JVM), 1122–1123
System), 536	JavaScript Object Notation (JSON), 615
ISACA (Information Systems Audit and	JavaScript programming language, 1121
Control Association), 187	Jigsaw ransomware, 604
ISAKMP (Internet Security Association and	JIT (just-in-time) access, 738
Key Management Protocol), 608	jitter in IP telephony, 687–688
ISATAP (Intra-Site Automatic Tunnel	job rotation, 34, 889–890
Addressing Protocol), 514	Joint Application Development (JAD),
(ISC) ² Code of Ethics, 44–45	1104–1105
ISCM (Information Security Continuous	journaling, remote, 1039
Monitoring), 981–982	JSON (JavaScript Object Notation), 615
iSCSI (Internet Small Computer Systems	jumbograms in IPv6, 514
Interface), 629	jump boxes, 700

jurisdiction in incident response, 993	TLS, 604
just-in-time (JIT) access, 738	ZigBee, 572
JVM (Java Virtual Machine), 1122–1123	keyspaces for cryptology, 322
17	keystream generators in symmetric key
K	cryptography, 333
k-means clustering, 978	keystroke dynamics, 728
k-nearest neighbors (KNN), 977	kill chains in threat modeling, 386
Kanban development methodology,	kill switches in VPNs, 697
1102–1103	knowledge-based authentication (KBA)
KBA (knowledge-based authentication)	description, 718
description, 718	passwords, 720–723
passwords, 720–723	known-plaintext attacks in cryptography, 368
KDCs (Key Distribution Centers)	Koolhaas, Rem, 417
Kerberos, 785–788	KPIs (key performance indicators), 155,
PKI, 365	856–857
Kelling, George L., 433	KRIs (key risk indicators), 855-857
Kerberos protocol	
authentication process, 785–788	L
components, 785	L2F (Layer 2 Forwarding) protocol, 606
key management, 365	L2TP (Layer 2 Tunneling Protocol),
overview, 784–785	606–607
passwords, 789	labels
weaknesses, 788–789	digital asset management, 263
Kerckhoffs, Auguste, 324–325	evidence, 1010
Kerckhoffs' principle, 324–325	IPv6, 514
kernel flaws in cryptography, 819	MAC, 768–769
key distillation in quantum	laminated windows, 441
cryptography, 344	
	landscaping, 908
Key Distribution Centers (KDCs)	language in reports, 871
Kerberos, 785–788 PKI, 365	LANs. <i>See</i> local area networks (LANs) LAST-ACK state in TCP connections, 951
key escrow in PKI, 366	last full backups, 1035–1036
key exchange protocol in RSA, 340	latency in cabling, 654
key management in PKI, 364–367	law enforcement involvement in incident
key override feature for combination	investigations, 1007
locks, 920	laws and regulations
key performance indicators (KPIs),	data breaches, European Union, 142–144
155, 856–857	data breaches, U.S., 141–142
key risk indicators (KRIs), 855–857	legal systems, 126–130
keycard entry systems, 442	overview, 125–126
keys	security programs, 434
asymmetric key cryptography, 335	layer 2
cryptography, 322–323, 367–370	local area networks, 494–499
Diffie-Hellman algorithm, 337–338	security standards, 500–502
hybrid methods, 347–348	Layer 2 Forwarding (L2F) protocol, 606
RSA, 340–341	Layer 2 Tunneling Protocol (L2TP),
session, 349–350	606–607
symmetric key cryptography, 329	layer 3 and 4 switches, 659

layers	levels
encryption, 600–601	classification, 216–219
OSI reference model. See Open Systems	CMMI, 1107–1108
Interconnection (OSI) reference model	programming languages, 1120
LDAP (Lightweight Directory Access	LGPD (Lei Geral de Proteção de Dados), 144
Protocol), 747, 749	Li-Fi standard, 568
LEAP (Lightweight Extensible Authentication	liability
Protocol), 580	civil law, 129
leased lines for WANs, 541-543	compliance, 158–161
least privilege principle	outsourced security services, 974
configuration management, 799	libraries
description, 888	object-oriented programming, 1129–1130
endpoint security, 673	software, 1132–1133
network security, 598	licensing and intellectual property
overview, 394–395	requirements
privileged accounts, 889	copyrights, 149–150
site and facility security, 421	internal protection of intellectual property,
software tracking, 225	152–153
third parties, 705–706	overview, 147–148
web services, 611	patents, 151–152
least significant bits (LSBs) in	software, 225–226
steganography, 265	software piracy, 153–154
LEDs (light-emitting diodes) in fiber-optic	trade secrets, 148–149
cable, 651	trademarks, 150
legacy systems for federated identity, 755	life cycle
legal counsels in incident response	business continuity planning, 1065–1067
teams, 1001	cryptology, 328
legal departments, advice from, 157	data. See data life cycle
legal requirements	life cycle of assets
compliance, 156–158	decommissioning, 229–230
physical security programs, 434	inventories, 224–227
site planning, 427	overview, 222–223
legal systems	ownership, 223
civil law, 126, 129	provisioning, 227–228
common law, 126–130	retention, 228–230
customary law system, 128	life safety goals in site planning, 423
mixed law system, 128–129	light detectors in fiber-optic cable, 651
religious law system, 128	light-emitting diodes (LEDs) in fiber-optic
legality issues in evidence admissibility,	cable, 651
1013–1014	light frame construction material, 438
legally recognized obligations, 161	light sources for fiber-optic cable, 651
Lei Geral de Proteção de Dados (LGPD), 144	lighting
length of passwords, 720	CCTV systems, 916
lenses in CCTV systems, 915–916	EMI, 450
LEO (low Earth orbit) satellites, 588–590	photoelectric IDSs, 926–927
lessons learned	physical security, 911–912
disaster recovery plans, 1061	Lightweight Directory Access Protocol
incidents, 999–1000	(LDAP), 747, 749

Lightweight Extensible Authentication	evidence, 1014
Protocol (LEAP), 580	managing, 978–979
lightweight methods in software	protecting, 744–745
development, 1101	requirements factor, 978–979
limited RBAC, 772–773	reviews, 828–831
Linder, Doug, 1117	SIEM, 744, 979–980
	a a
line conditioners for electric power, 451	standards, 979
line noise	tampering, 831
cabling, 652	Long-Term Evolution (LTE), 587
electric power, 450	loose coupling in software, 1131
line-of-succession plans, 1043	loosely coupled microservices, 299
linear bus topology, 488	loss issues in risk management, 54, 63
link encryption vs. end-to-end encryption,	low coupling in software, 1131
600–602	low Earth orbit (LEO) satellites, 588-590
link keys in ZigBee, 572	low privacy risk in software development, 1083
link-state routing protocols, 535	LSASS (Local Security Authority Subsystem
LISTEN state in TCP connections, 951	Service), 372–374
LLC (Logical Link Control), 481–482	LSBs (least significant bits)
1 1	
loads, construction, 436	in steganography, 265
local area networks (LANs)	LTE (Long-Term Evolution), 587
Ethernet, 494–495	Lucifer project, 321
FDDI, 496–498	lux values in CCTV systems, 916
medium access control, 489–494	M
protocols summary, 498–499	M
security standards, 500-502	m of n control
	1 - /
security standards, 500-502	description, 34
security standards, 500–502 Token Ring, 495–496 topologies, 487–490	description, 34 PKI, 366–367
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500	description, 34 PKI, 366–367 MAC (mandatory access control) model
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862 main distribution facilities (MDFs), 446 maintenance
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922 overview, 917–918	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862 main distribution facilities (MDFs), 446 maintenance CPTED, 433
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922 overview, 917–918 Locky ransomware, 604 logical access, 717, 801–803	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862 main distribution facilities (MDFs), 446 maintenance CPTED, 433 data, 238
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922 overview, 917–918 Locky ransomware, 604 logical access, 717, 801–803 logical acquisition of evidence, 1012	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862 main distribution facilities (MDFs), 446 maintenance CPTED, 433 data, 238 frameworks, 201
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922 overview, 917–918 Locky ransomware, 604 logical access, 717, 801–803 logical acquisition of evidence, 1012 Logical Link Control (LLC), 481–482	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862 main distribution facilities (MDFs), 446 maintenance CPTED, 433 data, 238 frameworks, 201 maintenance hooks in software
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922 overview, 917–918 Locky ransomware, 604 logical access, 717, 801–803 logical acquisition of evidence, 1012 Logical Link Control (LLC), 481–482 logon attempts, failed, 721–723	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862 main distribution facilities (MDFs), 446 maintenance CPTED, 433 data, 238 frameworks, 201 maintenance hooks in software development, 1091
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922 overview, 917–918 Locky ransomware, 604 logical access, 717, 801–803 logical acquisition of evidence, 1012 Logical Link Control (LLC), 481–482 logon attempts, failed, 721–723 logs	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862 main distribution facilities (MDFs), 446 maintenance CPTED, 433 data, 238 frameworks, 201 maintenance hooks in software development, 1091 malicious code in advanced persistent
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922 overview, 917–918 Locky ransomware, 604 logical access, 717, 801–803 logical acquisition of evidence, 1012 Logical Link Control (LLC), 481–482 logon attempts, failed, 721–723	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862 main distribution facilities (MDFs), 446 maintenance CPTED, 433 data, 238 frameworks, 201 maintenance hooks in software development, 1091

man-in-the-middle (MitM) attacks	MAUs (Multistation Access Units), 495
cryptography, 374–375	maximum tolerable downtime (MTD)
data in motion, 59, 256	BIA, 113–114
Diffie-Hellman algorithm, 338-339	disaster recovery, 1030-1033
managed level in CMMI, 1107	spare servers for, 672
managed security services providers (MSSPs),	maximum tolerable period of disruption
973–974	(MTPD), 113
managed service accounts (MSAs), 800	maximum transmission units (MTUs)
managed services in software security, 1148	MAC mechanisms, 489–494
Management Frame Protection (MFP), 578	routers, 661
Management Information Base (MIB) in SNMP, 522–524	"McAfee 2019 Cloud Adoption and Risk Report," 303
management objectives in COBIT 2019, 189	McNulty, Paul, 125
management review and approval, 875–877	MCUs (multipoint control units) in H.323, 689
managers, risk reporting for, 95	MD5 (Message Digest 5)
mandatory access control (MAC) model	description, 352
characteristics, 776	passwords, 722
overview, 768–771	MDFs (main distribution facilities), 446
mandatory vacations, 35, 890	MEA (Monitor, Evaluate and Assess) domain
manmade threats in site planning, 423	in COBIT 2019, 189
MANs (metropolitan area networks),	means in criminal investigations, 1008
538–540	measurements in ISO/IEC 27004, 852
mantraps, 441	measuring security, 851
manual iris lenses in CCTV systems, 915	account management, 858–860
manual penetration tests (MPTs), 1140	backup verification, 860–862
manual tests in software development, 1091	chapter questions, 879–881
market approach in executive	chapter review, 877–879
summaries, 874	disaster recovery and business continuity,
markup languages, 776–778	867–869
Mary, Queen of Scots, 319	key performance and risk indicators,
masks in IP addresses, 511–512	855–857
masquerading firewalls, 965	management review and approval,
master keying feature for combination	875–877
locks, 920	metrics, 852–855
master keys in ZigBee, 572	process data overview, 857-858
matrices	quantifying, 851–853
access control, 766-767	reporting, 869–875
classification, 1002-1003	training, 863–867
notification, 1003-1004	mechanical locks, 918-922
qualitative risk, 76–77	Media Access Control (MAC) addresses
role, 799	ARP, 515–517
Mattermost service, 1057	bridges, 656
maturity models for risk, 96	DHCP, 519
maturity software development models	switches, 658-659
CMMI, 1107–1109	Media Access Control (MAC) in data link
overview, 1106	layer, 481–482
SAMM, 1109–1110	media for storage, 447

medium access control (MAC)	microprobing attacks on smart cards, 735
collision and broadcast domains, 492-494	microservices, 299–301
CSMA, 490–491	middle management, awareness
overview, 489–490	programs for, 42
polling, 494	MIL domain in DNS, 527
token passing, 491–492	military-oriented architecture frameworks,
meeting applications, 694–695	195–196
Meltdown attacks, 257, 372	Miller, Charlie, 627
members in object-oriented	MIME (Multipurpose Internet Mail
programming, 1125	Extensions), 625–626
memory cards in ownership-based	MIMO (multiple input, multiple output)
authentication, 732–733	standard, 567, 585
memory for Trusted Platform Modules,	Mirai botnet, 307
405–406	mission/business process view (Tier 2) in risk
mergers and acquisitions (M&A), 17	management, 55
mesh size for fencing, 909	mission critical data in disaster recovery, 1032
mesh topology for local area networks,	misuse cases
488–489	data loss prevention, 271
message authentication code (MAC),	testing, 835–836
355–356, 603–604 Massaga Digget 5 (MD5)	misuse of data in risk management, 54
Message Digest 5 (MD5)	Mitchell, Joni, 213
description, 352	mitigation
passwords, 722	incidents, 996–997
message digests, 354–355	software security, 1144–1145
messages ICMP, 520–521	mitigation risk strategy ISO/IEC 27005, 178
integrity verification, 354–358	overview, 79 MitM (man-in-the-middle) attacks
object-oriented programming,	
1127–1128 TCP, 509	cryptography, 374–375 data in motion, 59, 256
meta-directories, 748	
methodologies	Diffie-Hellman algorithm, 338–339 MITRE corporation
description, 15	ATT&CK framework, 389–390
reports, 873	Common Weakness Enumeration
methods in object-oriented	initiative, 1088
programming, 1127	mixed law systems, 128–129
Metro Ethernet, 539–540	ML (machine learning), 977
metropolitan area networks (MANs),	MLS (multilevel security) systems
538–540	Bell-LaPadula, 398
Metropolitan Transit Authority (MTA), 433	description, 769
MFA (multifactor authentication)	MO (modus operandi) in criminal
strong authentication, 719	investigations, 1008
VPNs, 697	mobile devices and communications
MFP (Management Frame Protection), 578	disaster recovery plans, 1062
MIB (Management Information Base) in	endpoint security, 673–674
SNMP, 522–524	forensics investigations, 1021
micro-segmentation, 629	generations, 585–587
microcontrollers in embedded systems, 306	hacking, 588
•	~

mobile devices and communications (<i>cont.</i>) multiple access technologies, 584–585 overview, 582–583	MTA (Metropolitan Transit Authority), 433 MTAs (mail transfer agents), 622 MTD (maximum tolerable downtime) BIA, 113–114
protecting, 220–221 mobile hot sites in disaster recovery, 1049	disaster recovery, 1030–1033
mobile IP, 793	spare servers for, 672
Modbus system, 627	MTPD (maximum tolerable period of
modems, cable, 686–687	disruption), 113
moderate privacy risk in software	MTUs (maximum transmission units)
development, 1082	MAC mechanisms, 489–494
modularity in object-oriented programming,	routers, 661
1127–1128	multi-user MIMO (MU-MIMO) technology,
modus operandi (MO) in criminal	567–568
investigations, 1008	multicast transmission method, 499
MOM (motive, opportunity, and means) in	multifactor authentication (MFA)
incident investigations, 1007–1008	strong authentication, 719
Monitor, Evaluate and Assess (MEA) domain	VPNs, 697
in COBIT 2019, 189	multihomed devices, 959
monitoring	multilayer protocols, 626–627
continuous, 981–982	multilayered switches, 658
egress, 981	multilevel security (MLS) systems
frameworks, 201	Bell-LaPadula, 398
ingress, 948	description, 769
passwords, 721	multimedia collaboration, 693–694
Risk Management Framework, 176–177	meeting applications, 694–695
UEBA, 981	unified communications, 695–696
monitoring risk	multimode fiber-optic cable, 651
change, 92–93	multiparty key recovery in PKI, 366
compliance, 93–94	multiple access technologies in mobile
continuous improvement, 95–96	communications, 584–585
description, 58	multiple input, multiple output (MIMO)
effectiveness, 91–92	standard, 567, 585
maturity models, 96	multiple processing sites in disasters
reporting, 94–95	recovery, 1049
monitors in Token Ring, 496	multiplexing functionalities, 544
monoalphabetic substitution ciphers, 318	multipoint control units (MCUs) in H.323, 689
monoammonium phosphate for fire	Multiprotocol Label Switching (MPLS)
suppression, 458	Metro Ethernet, 540
motion detectors, 927	routing tags and labels, 659
motive, opportunity, and means (MOM) in	Multipurpose Internet Mail Extensions
incident investigations, 1007–1008	(MIME), 625–626
MPLS (Multiprotocol Label Switching)	Multistation Access Units (MAUs), 495
Metro Ethernet, 540	muscle memory in disaster recovery, 1060
routing tags and labels, 659	mutual aid agreements in disasters
MPTs (manual penetration tests), 1140	recovery, 1047
MSAs (managed service accounts), 800	mutual authentication
MSSPs (managed security services providers),	description, 719
973-974	802.11, 580

N	NDAs (nondisclosure agreements)
	incident response teams, 1001
NAC (network access control) devices, 667–668	trade secrets, 148
	NDLP (network DLP), 272–273
importance, 697	NDR (network detection and response)
namespaces	products
directory services, 747	forensics investigations, 1021
DNS, 525	HIDSs, 968
LDAP, 749	security operations centers, 940
Nappo, Stephane, 989	Near Field Communication (NFC) with
NAS (network-attached storage) for	smart cards, 735
backups, 1038	near-line devices for backups, 898-899
NAT (network address translation),	need-to-know principle
512–513, 531–533	description, 394
nation-state actors, 60–61	overview, 888
National Institute of Standards and	negligence
Technology (NIST)	breaches from, 266
Cybersecurity Framework, 182	civil law category, 127
Digital Signature Standard, 357	negligent insiders, 61
enterprise architecture frameworks,	NET domain in DNS, 527
190–191	network access control (NAC)
passwords, 720–721	devices, 667–668
Risk Management Framework, 172–177	importance, 697
SHA, 352	network address translation (NAT),
SP 800-30, 67–68, 173	512–513, 531–533
SP 800-34, 104–105, 1059	network administrators, tasks and
SP 800-37, 173	responsibilities, 886
SP 800-39, 55, 173	network-attached storage (NAS) for
SP 800-53, 172, 175, 183–185	backups, 1038
SP 800-57, 367	network-based intrusion detection systems
SP 800-60, 174	(NIDSs), 967
SP 800-63B, 720–721	network components, 643
SP 800-82, 290, 294	CDNs, 674
SP 800-88, 240	chapter questions, 677–679
SP 800-111, 255	chapter review, 674–676
SP 800-137, 981–982	devices. <i>See</i> network devices
SP 800-161, 97	endpoint security, 673–674
SP 800-190, 298–299	
National Security Agency (NSA)	transmission media, 643–655 network detection and response (NDR)
DES standard, 321	products
HAIPE, 609	forensics investigations, 1021
natural access control in CPTED, 428-431	HIDSs, 968
natural environmental threats in site	security operations centers, 940
planning, 423	network devices
natural languages, 1119–1120	
natural surveillance in CPTED, 431-432	bridges, 656–657
natural threats, 62	gateways, 662–663
naturalness in object-oriented	hardware operation, 670–672 NACs, 667–668
programming, 1127	network diagramming, 668–670

network devices (cont.)	MANs, 538-540
overview, 655 PBXs, 665–667	overview, 469 WANs, 540–552
proxy servers, 663–664	networks
repeaters, 655–656	diagramming, 668–670
routers, 660–662	testing, 818
switches, 657–660	virtualized, 704–705
network DLP (NDLP), 272–273	New Zealand, Privacy Act in, 147
network forensics, 1021	newly observed domains (NODs) as threat
network keys in ZigBee, 572	data source, 943
network layer	next-generation firewalls (NGFWs), 957–958
functions and protocols, 484	NFC (Near Field Communication) with
OSI model, 480	smart cards, 735
network reference models, 470–471	NGFWs (next-generation firewalls), 957–958
network security	NIDSs (network-based intrusion detection
chapter questions, 638–641	systems), 967
chapter review, 635–638	NIST. See National Institute of Standards and
design principles, 597–599	Technology (NIST)
DNS, 616–621	NMT (Nordic Mobile Telephone), 584
e-mail, 621–626	NODs (newly observed domains) as threat
link encryption vs. end-to-end encryption,	data source, 943
600–602	noise
multilayer protocols, 626–627	cabling, 652
overview, 597	database systems, 288
protocol overview, 611	digital transmission, 645
segmentation. See network segmentation	electric power, 450
TLS, 602–605	non-symbolic AI approach, 976–978
VPNs, 605–611	nonces for one-time passwords, 731
web services, 611–616	nondisasters
network segmentation	availability, 1049–1053
overview, 629	description, 1043
risk mitigation, 295	nondisclosure agreements (NDAs)
SD-WANs, 635	incident response teams, 1001
SDNs, 632–635	trade secrets, 148
VLANs, 630–632	nonfunctional requirements in software
VxLANs, 632	development, 1083
network sockets, 703	noninterference model, 400–401, 403
Network Time Protocol (NTP), 829-830	nonpersistent VDI, 701
networking fundamentals	nonplenum cables, 653
chapter questions, 555-558	nonpracticing entities (NPEs), 152
chapter review, 552-555	nonrecursive queries in DNS, 527
data communications. See data	nonrepudiation
communications	cryptosystems, 324
Internet protocol networking. See Internet	overview, 6–7
protocol networking	nonvolatile RAM (NVRAM) in Trusted
intranets and extranets, 537–538	Platform Modules, 405
local area networks. See local area	NORAD (North American Aerospace
networks (LANs)	Defense Command), 436

Nordic Mobile Telephone (NMT), 584	OCTAVE (Operationally Critical Threat,
normal changes, 892	Asset, and Vulnerability Evaluation)
normal management in business	framework, 68, 172, 178–179
continuity, 1066	OECD (Organisation for Economic
normalization in data retention, 236	Co-operation and Development), 142-144
North American Aerospace Defense	OEMs (original equipment manufacturers), 229
Command (NORAD), 436	OEPs (occupant emergency plans), 931
notifications for incidents, 1003-1004	OFDM (orthogonal frequency division
Novell Red color, 150	multiplexing), 561, 563–564
NPEs (nonpracticing entities), 152	OFDMA (orthogonal frequency division
NSA (National Security Agency)	multiple access), 585
DES standard, 321	Office of Management and Budget,
HAIPE, 609	"Safeguarding Against and Responding
NTP (Network Time Protocol), 829–830	to the Breach of Personally Identifiable
nuisance category in civil law, 127	Information," 140
NVRAM (nonvolatile RAM) in Trusted	offline media for backups, 1038
Platform Modules, 405	offsite backups, 1037
	offsite locations in disasters recovery, 1047
0	OIDC (OpenID Connect), 783–784
O87M (aparation and maintenance) in life	on-premise FIM systems, 755–756
O&M (operation and maintenance) in life	onboarding personnel security, 37–38
cycle of assets, 223	ONC (Open Network Computing), 703
OASIS (Organization for the Advancement of Structured Information Standards), 781	one-time pads in cryptology, 325–328
	one-time passwords (OTPs), 729–732
OAuth standard, 782–783 Obama, Barack, 182	one-to-many identification, 718
	one-to-one identification, 718
object-oriented programming (OOP) abstraction, 1129	one-way hashing functions, attacks against,
benefits, 1127	353–354
classes and objects, 1125–1127	one-way RSA functions, 341–342
encapsulation, 1130	ONF (Open Networking Foundation),
libraries, 1129–1130	634–635
messages, 1127–1128	online backups, 1035
overview, 1124–1125	Online Certificate Status Protocol (OCSP), 362
vs. procedural programming,	online encryption vs. end-to-end encryption,
1125–1126	600–602
relationships, 1128	online safety, 866–867
objectives in Spiral methodology, 1098	online UPS systems, 452–453
objectivity in forensics investigation	onsite backups, 1037
interviews, 1019	Ontario Information Commissioner, 397
objects in ABAC, 774	OOP. See object-oriented
obligations, legally recognized, 161	programming (OOP)
occupant emergency plans (OEPs), 931	open message format in asymmetric key
Occupational Safety and Health	cryptography, 336
Administration (OSHA), 434	open network architectures, 472
OceanLotus attack, 389–390	Open Network Computing (ONC), 703
OCs (optical carriers) for WANs, 543	Open Networking Foundation (ONF),
OCSP (Online Certificate Status	634–635
Protocol), 362	open proxies, 663

Open Shortest Path First (OSPF) protocol,	Operations function in SAMM, 1109
535–536	operations management. See security operations
open-source intelligence (OSINT)	security operations management
social engineering, 903	opportunity in criminal investigations, 1008
threat data sources, 942	optical carriers (OCs) for WANs, 543
open-source software, securing,	optical discs for logs, 745
1146–1147	optical fiber
open system authentication (OSA), 575	fiber-optic cable, 651
open systems, 474	transmission media, 643
Open Systems Interconnection (OSI)	optical zoom in CCTV systems, 915
reference model, 470–471, 648	optimizing level in CMMI, 1108
application layer, 474–475	orchestration in SOAR, 980
attacks, 474	order of volatility for evidence, 1016
data link layer, 480–483	ORG domain in DNS, 527
functions and protocols,	Organisation for Economic Co-operation and
483–485	Development (OECD), 142–144
layers together, 485-487	Organization for the Advancement of
network layer, 480	Structured Information
physical layer, 483	Standards (OASIS), 781
presentation layer, 475–476	organization view (Tier 1) in risk
protocols, 471–474	management, 55
session layer, 477–478	organizational change, data loss
transport layer, 479–480	prevention in, 270
open trust model in ZigBee, 572	organizational CIS controls, 187
Open Web Application Security Project	organizational code of ethics, 45
(OWASP)	organizational processes, 17–18
SAMM, 1109–1110	organizational roles and responsibilities, 18-19
Threat Dragon, 1087	auditors, 25
web applications, 1134–1135	change control analysts, 24
OpenFlow interface, 634–635	data analysts, 24
OpenID Connect (OIDC), 783–784	data custodians, 23
Openness Principle in OECD, 142	data owners, 22–23
operate steps in frameworks, 201	executive management, 19-22
operation and maintenance (O&M) in life	security administrators, 24
cycle of assets, 223	system owners, 23–24
operational prototypes in software	users, 25
development, 1096	organizational security policies, 27-29
operational tasks in incident handling,	organizational units (OUs) in LDAP, 749
1004–1005	organized cybercrime gangs, 134
operational technology (OT), 290,	organizing steps for frameworks, 200
292–293, 295	original equipment manufacturers (OEMs), 229
Operationally Critical Threat, Asset, and	orthogonal frequency division multiple access
Vulnerability Evaluation (OCTAVE)	(OFDMA), 585
framework, 68, 172, 178-179	orthogonal frequency division multiplexing
operations and maintenance phase	(OFDM), 561, 563–564
change control, 1092–1094	OSA (open system authentication), 575
change management, 1092	OSHA (Occupational Safety and Health
SDLC, 1080, 1091–1094	Administration), 434

OSI model. See Open Systems	packet jitter, 681
Interconnection (OSI) reference model	packet switching in WANs, 546–547
OSINT (open-source intelligence)	packets
social engineering, 903	firewalls, 945
threat data sources, 942	TCP, 509
OSPF (Open Shortest Path First) protocol,	TCP vs. UDP, 506
535–536	Padding Oracle On Downgraded Legacy
OT (operational technology), 290,	Encryption (POODLE) attacks, 602
292–293, 295	padlocks, 917
OTPs (one-time passwords), 729–732	pair programming in Extreme
OUs (organizational units) in LDAP, 749	Programming, 1102
out-of-band method in symmetric key	palm scans, 727
cryptography, 330	PAM (privileged account management), 889
outside attacks in risk management, 54	pan, tilt, or zoom (PTZ) capabilities in CCTV
outsourced security services, 973–974	systems, 916
outsourced software, 1147	panic bars, 440
outsourcing business continuity	panic buttons, 931
planning, 1068	PanOptis lawsuit, 151
overflows	PAP (Password Authentication Protocol),
description, 819	697–698
software development, 1089–1090	paper records, protecting, 221
overlays in SDNs, 635	parallel tests in disaster recovery plans, 1064
overwriting	parameter validations in APIs, 1132
data, 243	Pareto principle, 179
media, 259–260	Paris Convention, 150
OWASP (Open Web Application	partial knowledge in penetration
Security Project)	testing, 825
SAMM, 1109–1110	partitions
Threat Dragon, 1087	database systems, 288
web applications, 1134–1135	physical security, 442
owners	pass the hash attacks, 372
assets, 223	passive infrared (PIR) IDSs, 927
data, 244	passive nariated (11t) 1153s, 727 passive patch management, 904
OAuth, 782	passive paten management, 704 passive relocking function for safes, 222
	Password Authentication Protocol (PAP),
risk reporting for, 95	697–698
ownership-based authentication	password-guessing attacks, 789
cryptographic keys, 732	
memory cards, 732–733 one-time passwords, 729–732	password managers, 736–737 passwords
overview, 729	checkers, 722
smart cards, 733–735	
smart cards, /33–/3)	cognitive, 723
P	failed logon attempts, 721–723
	hashing and encrypting, 722 Kerbergs protocol, 789
PaaS (Platform as a Service), 228, 302–304	Kerberos protocol, 789
PACE (Primary, Alternate, Contingency, and	knowledge-based authentication, 720 one-time, 729–732
Emergency) communications plans, 1057	
package supplies in forensics field kits, 1015	passphrases, 723
packet-filtering firewalls, 946–949	PBX systems, 666

passwords (cont.)	peripheral switch controls for device locks, 921
policies, 720–722	Perl programming language, 1121
resets, 737–738	permanent teams for incident response, 991
synchronization, 737	permanent virtual circuits (PVCs), 549
TACACS, 791	permissions
vulnerabilities, 60	DAC, 767
PAT (port address translation), 532	setting, 739
patch management, 903	testing, 821
centralized, 904–905	persistent memory in Trusted Platform
reverse engineering patches, 905	Modules, 405
unmanaged patching, 904	persistent VDI, 701
patent trolls, 152	Personal Data Protection Act (PDPA), 144
patents, 151–152	Personal Digital Cellular (PDC), 584
paths in URLs, 614	personal health information (PHI)
patrol forces, 928–929	breaches, 255
payloads	Personal Information Protection and
IPv6, 514	Electronic Documents Act, 147
steganography, 265	personal liability of executive
PBXs (Private Branch Exchanges), 665–667	management, 20
PCI DSS (Payment Card Industry Data	personally identifiable information (PII)
Security Standard), 156	components, 140–141
PCRs (platform configuration registers) in	U.S. laws, 141
Trusted Platform Modules, 406	personnel
PDC (Personal Digital Cellular), 584	disaster recovery plans, 1055–1056
PDPA (Personal Data Protection Act), 144	testing, 818
PDUs (protocol data units)	personnel safety and security
description, 473	access controls, 924–925
TCP, 509	breaches from, 266
PEAP (Protected EAP), 580	candidate screening and hiring, 35-36
peer-to-peer systems, 307	compliance policies, 39–40
Peltier, Thomas, 68	duress, 931–932
penetration tests	emergency management, 931
application security, 1140	employment agreements and policies,
knowledge of targets, 825–826	36–37
overview, 822–824	incident response, 993
process, 824–825	onboarding, transfers, and termination
red team exercises, 902	processes, 37–38
software development, 1090	overview, 33–35, 929–930
vs. vulnerability tests, 826–827	privacy policies, 40
people as vulnerabilities, 60	threats, 138
perfect forward secrecy in TLS, 604	training and awareness, 930-931
performance-based approach in site	travel, 930
planning, 424	vendors, consultants, and contractors, 39
performance metrics, 854	perturbation in database systems, 288
Perimeter Intrusion Detection and Assessment	pervasive systems
System (PIDAS), 910	embedded, 306
perimeter security, 803	Internet of Things, 306–307
periodic content reviews, 43	overview, 305

Petya ransomware, 604	PIR (passive infrared) IDSs, 927
PGP (Pretty Good Privacy), 367	piracy, software, 153–154
PHI (personal health information)	pirated software, dangers in, 225
breaches, 255	PKCS (Public Key Cryptography
phishing awareness programs, 42, 864-865	Standards), 626
phone calls in PBXs, 665–667	PKI. See public key infrastructure (PKI)
photoelectric IDS systems, 926–927	plaintext, 321
phreakers, 666	Plan-Do-Check-Act loop, 875
physical damage in risk management, 54	plans
physical destruction of data, 244	audits, 839
physical layer	backups, 863
functions and protocols, 485	business continuity, 104–105
OSI model, 483	change management, 891
physical security and controls	
	forensics investigation interviews, 1019 frameworks, 200
auditing, 929	
data loss prevention, 269	incident response, 1000–1006
devices, 802	OEPs, 931
digital asset management, 261	Plan-Do-Check-Act loop, 875
external perimeter, 906–916	Spiral methodology, 1098
facilities, 802–803, 916–924	Platform as a Service (PaaS), 228,
information access, 801	302–304
internal controls, 924	platform configuration registers (PCRs) in
intrusion detection systems, 925–929	Trusted Platform Modules, 406
mobile devices, 220–221	platforms for secure software,
overview, 220, 801, 906	1137–1138
paper records, 221	PLCs (programmable logic controllers),
personnel access controls, 924–925	290–291
risk responses, 83–84, 86–87	plenum areas
safes, 221–222	cabling, 653
physical security programs	fire suppression, 459
construction, 436–439	PMs (project managers) in software
design overview, 433–435	development, 1080
entry points, 439–441	point-to-point links in WANs, 541–543
facilities, 435–436	Point-to-Point Tunneling
physical surveillance in digital forensics,	Protocol (PPTP), 606
1019–1020	poisoning of ARP cache tables, 516–517
physical testing, 818	polarized filters in QKD, 344–345
physiological biometric authentication, 724	policies
PIDAS (Perimeter Intrusion Detection and	acceptable use, 226, 664, 858
Assessment System), 910	compliance, 39–40
piggybacking, 925	data retention, 234–236
PII (personally identifiable information)	employment, 36–37
components, 140–141	IMPs, 990, 1000
U.S. laws, 141	passwords, 720–722
pin tumbler locks, 918	privacy, 40
PINs	security, 27–29
memory cards, 732	security operations centers, 940
smart cards, 733	types, 30 types

Policy and Program Management	preservation
practice, 105	evidence, 1013
policy engines for data loss prevention, 270	forensics investigations, 1016–1017
polling, MAC, 494	preset locks, 917
polyalphabetic substitution ciphers, 318–320	preshared keys (PSKs) in 802.11 standard, 575
polyvinyl chloride (PVC) jacket covering, 653	pressurized conduits for cabling, 653
POODLE (Padding Oracle On Downgraded	pretexting, 865
Legacy Encryption) attacks, 602	Pretty Good Privacy (PGP), 367
POP (Post Office Protocol), 623	preventive and detective measures
port address translation (PAT), 532	anomaly-based intrusion detection and
portable code, 1122	prevention, 967–968
portable fire extinguishers, 455	antimalware software, 969-972
portals, TLS, 610	artificial intelligence tools, 976–978
portlets for web portal functions, 753–754	firewalls. See firewalls
ports	intrusion detection and prevention systems
device locks, 921	overview, 967
packet-filtering firewalls, 948	outsourced security services, 973–974
TCP, 504	process, 944–945
three-way-handshake process, 951	vs. recovery strategies, 1033
types, 507	rule-based intrusion detection and
positive drains, 448	prevention, 967
POST methods in HTTP, 614	sandboxes, 972–973
Post Office Protocol (POP), 623	whitelisting and blacklisting, 968–969
powders for fire suppression, 458	preventive controls
power, electrical. See electric power	business continuity, 104–105
power supplies	risk responses, 85–87
considerations, 438	PRI (Primary Rate Interface) ISDN, 685–686
data processing facilities, 446	Primary, Alternate, Contingency, and
PP (Professional Practices) in Good Practice	Emergency (PACE) communications
Guidelines, 105–106	plans, 1057
PPTP (Point-to-Point Tunneling	primary category in PACE plans, 1057
Protocol), 606	primary images for evidence, 1012
preaction water sprinkler systems, 460	Primary Rate Interface (PRI) ISDN, 685–686
prediction with artificial intelligence	principals in KDC, 785
tools, 977	principle of least privilege. See least privilege
prefabricated buildings in disasters	principle
recovery, 1049	principles in SAML, 780
preparation step	priorities in disaster recovery goals, 1054
Risk Management Framework, 174	privacy
software vulnerability scans, 901	classification level, 216–217
preparedness metrics, 855	compliance issues, 147
presence information in unified	control assessments, 90–91
communications, 695	data loss prevention, 270
presentation layer functions and protocols, 483–484	incident investigations, 1014
OSI model, 475–476	policies, 40 requirements, 158
presentation stage in forensics investigations,	-
1016–1018	retina scan issues, 727 SDLC assessments, 1082
1010-1010	vs. security. 21

privacy by design, 397	programming languages and concepts.
network security, 599	See also software development
site and facility security, 423	assemblers, compilers, and interpreters,
third-party connectivity, 706	1120–1122
web services, 612	levels, 1120
Privacy by Design: Delivering the Promises	object-oriented programming,
report, 397	1124–1130
Private Branch Exchanges (PBXs),	overview, 1117–1120
665–667	runtime environments, 1122–1124
private clouds, 301, 305	Project Athena, 784
private keys	project management in SDLC, 1081
asymmetric key cryptography, 335	project managers (PMs) in software
hybrid methods, 347	development, 1080
RSA, 340–341	project sizing factor in risk assessment, 64
private portions in objects, 1128	proofing of identity, 738–740
privilege escalation	protect function in Framework Core, 182
identity and access, 799-800	Protected EAP (PEAP), 580
software development, 1089	protocol data units (PDUs)
privileged account management (PAM), 889	description, 473
PRNGs (pseudorandom number generators),	TCP, 509
327, 370	prototypes in software development, 1096
proactive searching in threat hunting, 943	provisioning
probationary periods in employment, 37	assets, 227–228
procedural programming vs. object-oriented	configuration management, 894-895
programming, 1125–1126	identity and access, 796
procedures, 32	users, 739
process enhancement, 16	Provisioning Service Provider (PSP)
process reengineering, 16	in SPML, 778
processes	Provisioning Service Target (PST)
organizational, 17–18	in SPML, 778
race conditions, 717	proximate causes, 161
vulnerabilities, 59–60, 902	proximity detectors, 927
processing speed in biometric	proxy firewalls
authentication, 726	application-level, 954-955, 957
processors	circuit-level, 954–956
data, 244–245	overview, 952–953
security extensions, 410	proxy servers
professional ethics, 44–46	characteristics, 665
Professional Practices for Business Continuity	overview, 663–664
Management, 106	SIP, 690
Professional Practices (PP) in Good Practice	pseudorandom number generators (PRNGs)
Guidelines, 105–106	327, 370
profile updates, 740	PSKs (preshared keys) in 802.11
program effectiveness evaluation,	standard, 575
43–44	PSP (Provisioning Service Provider)
programmable locks, 920	in SPML, 778
programmable logic controllers (PLCs), 290–291	PST (Provisioning Service Target) in SPML, 778

PSTNs (public switched telephone networks),	quantifiability of security metrics, 854
582–583, 682–683	quantifying security, 851-853
PTZ (pan, tilt, or zoom) capabilities in CCTV	quantitative risk analysis
systems, 916	description, 72
public algorithms vs. secret, 369	vs. qualitative, 78–79
public classification level, 216–217	results, 75–76
public clouds, 301, 305	steps, 73–75
public disclosure in incident response, 993	quantitatively managed level in CMMI, 1108
public key cryptography, 328	quantum cryptography, 344–346
Public Key Cryptography	quantum key distribution (QKD), 344
Standards (PKCS), 626	queries
public key infrastructure (PKI)	DNS, 527–528, 616
certificate authorities, 360–362	URLs, 615
code repositories, 1144	quorum authentication
digital certificates, 359–360	description, 34
key management, 364–367	PKI, 366–367
overview, 359	
registration authorities, 362	R
steps, 362–364	RA (Requesting Authority) in SPML, 778
public keys	race conditions
asymmetric key cryptography, 335	
hybrid methods, 347–348	description, 821
RSA, 340–341	processes, 717 PAD (Panid Application Dayslanment)
public relations factor in incident response	RAD (Rapid Application Development)
teams, 1001	methodology, 1099–1100
public switched telephone networks (PSTNs),	radio frequency interference (RFI)
582–583, 682–683	electric power, 450
Purpose Specification Principle in OECD, 142	twisted-pair cabling, 649–650 RADIUS (Remote Authentication Dial-In
PVC (polyvinyl chloride) jacket covering, 653	User Service)
PVCs (permanent virtual circuits), 549	
Python programming language, 1121–1122	network devices, 501 overview, 789–790
7 1 0 0 0 0 0	vs. TACACS, 791–793
Q	
	rainbow tables for passwords, 721–722
QA (quality assurance) in software	raking locks, 922–923
development, 1080 QKD (quantum key distribution), 344	ramifications with compliance, 158–161 random access memory (RAM) for Trusted
QoS (Quality of Service)	Platform Modules, 405
ATM, 551–552	
	random numbers in cryptology, 327
availability, 1050–1051 qualitative risk analysis	random password generation, 736 random values in quantum cryptography, 345
description, 72	ransomware
overview, 76–78	
quality, defined, 1117	cryptography, 375 protecting backups from, 897–898
quality assurance (QA) in software	TLS, 604
development, 1080	
Quality of Service (QoS)	Rapid Application Development (RAD) methodology, 1099–1100
ATM, 551–552	rapid prototyping in software
availability, 1050–1051	development, 1096
avanaUnity, 1070-1071	development, 1070

RARP (Reverse Address Resolution	rectilinear filters in QKD, 344
Protocol), 519	recursive queries in DNS, 527, 616
RAs (registration authorities), 360, 362	red teaming
RB-RBAC (rule-based access control), 774	exercises, 902
RBAC (role-based access control) model, 771	penetration tests, 827–828
characteristics, 776	redirect servers in SIP, 691
core, 772	reduced-function devices (RFDs), 570
hierarchical, 772–773	reduction analysis in threat modeling,
RDP (Remote Desktop Protocol)	386–387
overview, 700	redundancy for quality of service, 1050-1051
threat intelligence, 943	redundant lighting, 912
RDS (Remote Desktop Services), 943	redundant sites, 1048–1049
reactive searching in threat hunting, 943	REEs (rich execution environments), 408-409
real power, 671	reference monitors, 766
Real-time Transport Protocol (RTP), 689, 691	references for candidates, 37
real user monitoring (RUM) vs. synthetic	reflection attacks in DNS, 620
transactions, 832	registered ports, 507
realms in Kerberos, 785	registered trademarks, 150
rebar, 439	registrar servers in SIP, 689–690
reciprocal agreements in disasters recovery,	registration authorities (RAs), 360, 362
1047–1048	registration of accounts, 738-740
recommendations in reports, 873	regression analysis in artificial intelligence
reconnaissance stage in Cyber Kill Chain	tools, 977
model, 387, 994	regression testing in software
recording forensics investigation	development, 1091
interviews, 1019	regulations. See laws and regulations
recover function in Framework Core, 182	regulatory investigation requirements, 162
recovery	regulatory policies, 30
data loss prevention, 269	reinforcing bar, 439
incidents, 998	relevance
risk responses, 85, 87	evidence admissibility, 1013
recovery point objective (RPO)	security metrics, 854
disaster recovery, 1031-1032	relevant characteristic in threat
high availability, 1052	intelligence, 941
recovery strategies	reliability
availability, 1049–1053	disaster recovery, 1051-1052
business process recovery, 1033-1034	evidence admissibility, 1013–1014
data backups, 1034–1041	TCP vs. UDP, 506
documentation, 1041–1042	religious law system, 128
overview, 1029-1033	relocation teams in disaster recovery
vs. preventive measures, 1033	plans, 1056
reciprocal agreements, 1047–1048	relocking function for safes, 222
recovery site strategies, 1043–1047	remanence, data, 240–244
redundant sites, 1048-1049	remediate phase in software vulnerability
recovery teams in disaster recovery plans, 1056	scans, 901
recovery time objective (RTO)	remediation
disaster recovery, 1031-1033	incidents, 999
high availability, 1052	vulnerabilities, 871

remote access	Representational State Transfer (REST),
desktop virtualization, 699–701	615–616
Diameter, 793–795	repudiation category in STRIDE model, 388
overview, 696, 789	reputation-based protection for antimalware
RADIUS, 789–790	software, 971
TACACS, 790–793	reputation factor
VPNs, 697–699	disaster recovery, 1054
Remote Authentication Dial-In User	outsourced security services, 974
Service (RADIUS)	request methods in HTTP, 614
network devices, 501	Requesting Authority (RA) in SPML, 778
overview, 789–790	requests in change management, 891
vs. TACACS, 791–793	requirements gathering in SDLC, 1080,
Remote Desktop Protocol (RDP)	1082–1083
overview, 700	resets for passwords, 737-738
threat intelligence, 943	residual risk vs. total risk, 81
Remote Desktop Services (RDS), 943	resilience
remote desktops, 700	data loss prevention, 272
remote journaling for backups, 1039	system, 1051
remote logging, 831	resolvers in DNS, 527–528
remote procedure calls (RPCs), 703–704	resource owners in OAuth, 782
remote terminal units (RTUs)	resource protection
DNP3, 626	backups, 896–899
industrial controls, 290	overview, 895–896
SCADA systems, 294	source files, 896
removal tools in forensics field kits, 1015	system images, 896
repeaters	resource records in DNS, 525
characteristics, 665	resource servers in OAuth, 782
description, 655–656	respond function in Framework Core, 182
replay attacks	responses
cryptography, 372–374	disaster recovery plans, 1055
description, 787	incidents, 996
replication	physical security, 908
backups, 1039-1040	risk. See risk responses
logs, 831	site planning, 424
reports	SOAR, 980
digital forensics, 1021–1022	responsibility
executive summaries, 872–875	description, 161
incident response, 993	disaster recovery goals, 1053
incidents, 997–998	organizational. See organizational roles and
overview, 869–870	responsibilities
penetration testing, 825	responsive area illumination, 912
risk, 94–95	REST (Representational State Transfer),
security results, 870–872	615–616
technical, 872–873	restoration
repositories	backups, 1037, 1041-1042
backups, 1039	disaster recovery plans, 1058–1060
code, 1143–1144	restoration teams in disaster recovery
identity, 739	plans, 1056

restricted areas, 443	overview, 63–64
results, analyzing, 870-872	preventive and detective measures, 944
retention	responses. See risk responses
assets, 228–230	SDLC, 1082–1083
data, 233–236	teams, 66–67
retina scans, 727	risk-based access control, 775–776
reusability in object-oriented	risk-level acceptance in SDLC, 1082
programming, 1127	risk management
reuse methodology in software	assessment. See risk assessment
development, 1105	business continuity. See business
Reverse Address Resolution	continuity (BC)
Protocol (RARP), 519	chapter questions, 118–123
reverse engineering attacks	chapter review, 116–118
in cryptography, 371	concepts, 53–54
reverse engineering patches, 905	holistic, 54–55
reverse proxies, 664	information systems risk management
reviews	policy, 56
audits, 743–744	overview, 53
change management, 892	process, 57–58
RFDs (reduced-function devices), 570	risk analysis, 72–79
RFI (radio frequency interference)	supply chain, 96–101
electric power, 450	teams, 56–57
twisted-pair cabling, 649–650	threats, 60–63
rich execution environments (REEs), 408–409	vulnerabilities, 58–60, 62–63
right to be forgotten provision in GDPR, 144	Risk Management Framework, 172–177
right to be informed provision in GDPR, 144	risk responses
right to restrict processing provision in	control assessments, 88–91
GDPR, 144	control types, 83–88
ring topology, 489	countermeasure selection and
RIP (Routing Information Protocol), 535	implementation, 81–83
risk	overview, 79–80
defined, 9	risk management response, 57
FAIR, 179	total risk vs. residual risk, 81
frameworks, 172–179	Rivest, Ron, 340, 352
ISO/IEC 27005, 177–179	roaming 802.11f standard, 574
metrics, 854	robustness of security metrics, 854
OCTAVE, 178–179	role-based access control (RBAC) model, 771
Spiral methodology, 1098–1099	characteristics, 776
risk analysis	core, 772
qualitative, 72, 76–78	hierarchical, 772–773
quantitative, 72–76, 78–79	roles and responsibilities
software security, 1144–1145	data, 244–245
risk assessment	definitions, 799
approaches, 72–76	incident response plans, 1000–1002
asset valuation, 65–66	organizational. <i>See</i> organizational roles and
business impact analysis, 109–112	responsibilities
methodologies, 67–72	separation of duties, 394
monitoring risk, 91–96	software development, 1080
	tasks and responsibilities, 886

rollback plans, 905	S
rolling hot sites, 1049	
root account, 859	S/MIME (Secure MIME), 626
round-trip time (RTT) in latency, 654	SaaS (Software as a Service), 228, 302–303
route flapping, 535	SABSA (Sherwood Applied Business Security
routers	Architecture), 14–15, 173
vs. bridges, 657	SACs (single-attached concentrators) in
characteristics, 665	FDDI, 498
overview, 660–662	Safe Harbor Privacy Principles, 143
Routing Information Protocol (RIP), 535	"Safeguarding Against and Responding
routing policies in BGP, 537	to the Breach of Personally Identifiable
routing protocols	Information," 140
attacks, 537	safes, 221–222
autonomous systems, 533–534	safety issues
distance-vector vs. link-state, 535	disaster recovery, 1059
dynamic vs. static, 534–535	fires, 454.–457
exterior, 536–537	personnel. See personnel safety and security
interior, 535–536	sags in electric power, 451
RPC security (RPCSEC), 704	salvage teams in disaster recovery plans, 1056
RPCs (remote procedure calls), 703–704	SAML (Security Assertion Markup Language)
RPO (recovery point objective)	779–780
disaster recovery, 1031–1032	SAMM (Software Assurance Maturity Model)
high availability, 1052	1109–1110
RSA algorithm, 340–342	sandboxes
RSA-CRT (Chinese Remainder	antimalware, 969–970, 972–973
Theorem), 372	Java Virtual Machine, 1123
RSA SecurID, 730–732	sanitized media, 259
RTCP (RTP Control Protocol), 691	Sarbanes-Oxley Act (SOX), 20
RTEs (runtime environments), 1122–1124	SAs (security associations) in IPSec, 608
RTO (recovery time objective)	SASL (Simple Authentication and Security
disaster recovery, 1031–1033	Layer), 624
high availability, 1052	SASs (single-attachment stations)
RTP Control Protocol (RTCP), 691	in FDDI, 498
RTP (Real-time Transport Protocol),	SAST (static application security
689, 691	testing), 1139
RTT (round-trip time) in latency, 654	satellite communications, 589–590
RTUs (remote terminal units)	SCADA (supervisory control and data
DNP3, 626	acquisition) systems, 290, 294
industrial controls, 290	scalability
SCADA systems, 294	Kerberos, 785
Ruff, Howard, 1029	packet-filtering firewalls, 948
rule-based access control (RB-RBAC), 774	stateful firewalls, 952
rule-based IDS/IPS, 967	scans
rules in PKI key management, 366–367	devices, 226
RUM (real user monitoring) vs. synthetic	facial, 728
transactions, 832	iris, 727
runbooks for incidents, 1006	palm, 727
runtime environments (RTEs), 1122–1124	retina, 727
101111111111111111111111111111111111111	software vulnerabilities, 901

scenarios for backups, 863	secure design principles, 390
schemes in URLs, 613	defaults, 396
Schneier, Bruce, 385	defense in depth, 390–391
Scientific Working Group on Digital	failing securely, 396–397
Evidence (SWGDE), 1009	least privilege, 394-395
SCIFs (sensitive compartmented	privacy by design, 397
information facilities), 443	separation of duties, 393-394
SCM (software configuration	shared responsibility, 392-393
management), 1142	simplicity, 395–396
scope creep in project management, 1081	trust but verify, 392
scope of audits, 839	zero trust, 392
scope values in OIDC, 784	secure enclaves in trusted execution
scoping controls, 258	environments, 408
SCPs (service control points), 683	Secure Hash Algorithm (SHA)
screen sharing in meeting applications, 694	description, 352
screened host firewalls,	passwords, 722
959–960, 963	Secure MIME (S/MIME), 626
screened subnet firewalls, 960–962	Secure Shell (SSH)
screening candidates, 35–36	code repositories, 1144
screens in information access control, 801	communications channels, 701–702
script kiddies, 60, 135	secure software
scrubbing logs, 744	acquired software, 1145–1148
Scrum methodology, 1101–1102	APIs, 1132
scytale ciphers, 318	application security testing, 1139–1140
SD-WAN (software-defined wide area	assemblers, compilers, and interpreters,
networking), 635	1120–1122
SDLC. See software development	assessments, 1144–1145
life cycle (SDLC)	change management, 1145
SDN. See software-defined	chapter questions, 1150–1153
networking (SDN)	chapter review, 1148–1150
sealing systems, 405	code repositories, 1143–1144
second-generation (2G) mobile wireless,	cohesion and coupling, 1130–1132
585–586	configuration management, 1142
second-generation programming	continuous integration and delivery,
languages, 1118	1140–1141
secondary storage in information	controls, 1136–1144
access control, 801	development platforms, 1137–1138
SecOps, 887	libraries, 1132–1133
secret algorithms vs. public, 369	object-oriented programming, 1124–1130
secret classification level, 216–218	overview, 1117
secret keys	programming languages and concepts,
hybrid methods, 348	1117–1120
RSA, 340–341	risk analysis and mitigation, 1144–1145
symmetric key cryptography, 329	runtime environments, 1122–1124
secure defaults	secure coding practices, 1134–1136
network security, 598	SOAR, 1141–1142 source code vulnerabilities, 1133–1134
third-party connectivity, 706 web services, 611	
WCD SELVICES, UT I	tool sets, 1138

security	security operations, 939
aligning to business strategy, 13–16	antimalware software, 969–972
assessments. See assessments	artificial intelligence tools, 976–978
endpoint, 673–674	chapter questions, 984–988
network. See network security	chapter review, 982-984
policies, 27–29	firewalls. See firewalls
vs. privacy, 21	honeypots and honeynets, 974-976
security administrators, 24	intrusion detection and prevention systems
security architects, tasks and	overview, 967–969
responsibilities, 886	logging and monitoring, 978-982
security architectures, 385	outsourced security services, 973-974
chapter questions, 413-416	preventive and detective measures overview,
chapter review, 411–413	944–945
encryption locations, 411	sandboxes, 972–973
information systems, 404–410	security operations centers, 939-943
secure design principles, 390-397	security operations centers (SOCs)
security models, 397–404	cyberthreat hunting, 943
security requirements, 404	elements, 940–941
threat modeling, 385-390	overview, 939
Security Assertion Markup Language (SAML),	threat data sources, 942-943
779–780	threat intelligence, 941-942
security associations (SAs) in IPSec, 608	security operations management, 885
security champions, 43	accountability, 887–888
security controls. See controls	change management, 891–893
security directors, tasks and	chapter questions, 934–938
responsibilities, 886	chapter review, 932–934
security effectiveness in control	configuration management, 893-895
assessments, 90–91	foundational concepts overview, 885–887
security film windows, 441	job rotation, 889–890
security information and event	need-to-know and least privilege, 888
management (SIEM) systems	patch management, 903–906
event data, 831	personnel safety and security, 929-932
forensics investigations, 1021	physical security. See physical security and
incidents, 990–991	controls
logs, 744, 979–980	privileged account management, 889
security operations centers, 940	resource protection, 895–899
security managers, tasks and	separation of duties and responsibilities,
responsibilities, 886	888–889
security models	service level agreements, 890
Bell-LaPadula, 398–399	vulnerability management, 900–903
Biba, 399–400	security orchestration, automation, and
Brewer and Nash, 402	response (SOAR) platform
Clark-Wilson, 400	components, 980
Graham-Denning, 402	secure software, 1141–1142
Harrison-Ruzzo-Ullman, 402-404	security programs in frameworks,
noninterference, 400–401	172, 180–183
overview, 397–398	Security Safeguards Principle in OECD, 142
summary, 403	security zones in CPTED, 429–430

SecY (MACSec Security Entity), 501	service-oriented architecture (SOA)
SEDs (self-encrypting drives), 407	description, 780–781
segmentation, network, 295, 703	web services, 612–613
segments in TCP, 509	Service Provisioning Markup Language
SEI (Software Engineering Institute), 993	(SPML), 777–779
select step in Risk Management	Service Set IDs (SSIDs), 565
Framework, 175	services in supply chain risk management, 99
self-encrypting drives (SEDs), 407	Session Initiation Protocol (SIP), 689–691
self-healing SONETs, 539	session keys, 349–350
self-service	session layer
password resets, 737	functions and protocols, 484
profile updates, 740	OSI model, 477–478
Sender Policy Framework (SPF), 624	session management, 740–741
senior management, awareness	severity levels for incidents, 1003
programs for, 41–42	SGML (Standard Generalized Markup
sensitive classification level, 216–217	Language), 776
sensitive compartmented information	SHA (Secure Hash Algorithm)
facilities (SCIFs), 443	description, 352
sensitive data	passwords, 722
classification, 215	shallow depth of focus in CCTV systems, 915
data loss prevention, 266, 270	Shamir, Adi, 340
sensors in incident detection, 995–996	Shannon, Claude, 332
separation of duties (SoD) principle	shared key authentication (SKA), 575
network security, 599	shared portions in objects, 1128
overview, 888–889	shared responsibility principle
purpose, 34	network security, 599
role-based access control, 773	security design, 392–393
security architectures, 393-394	site and facility security, 420–421
site and facility security, 421	third-party connectivity, 706
software development, 1090	web services, 612
third-party connectivity, 706	shareware, 153
web services, 612	sharing data, 238–239
sequels for tabletop exercises, 1063	Shedd, William G.T., 53
sequence numbers in TCP, 508	Sherwood Applied Business Security
server-based systems, 284–285	Architecture (SABSA), 14–15, 173
serverless systems, 299–301	shielded twisted pair (STP) cable, 649
servers	Shkreli, Martin, 20
clustered, 1051	Shortest Path Bridging (SPB) protocol, 657
OAuth, 782	shoulder surfing, 5
proxy, 663–664	side-channel attacks
service availability risk from unmanaged	cryptography, 371–372
patching threats, 904	description, 257
service bureaus in disaster recovery, 1045	smart cards, 734–735
service control points (SCPs), 683	SIEM systems. See security information and
service level agreements (SLAs)	event management (SIEM) systems
high availability, 1050	signal switching points (SSPs), 682
overview, 890	signal transfer points (STPs), 683
supply chain risk management, 101	Signaling System 7 (SS7) protocol, 682

signature-based detection in antimalware	locks, 917–923
software, 969, 971	overview, 417, 916–917
signature dynamics, 727–728	physical security programs, 433-441
signatures in antimalware software, 969	planning steps, 423–427
Simple Authentication and Security	principles, 418–423
Layer (SASL), 624	privacy by design, 423
simple integrity axiom in Biba model, 399	separation of duties, 421
Simple Mail Transfer Protocol (SMTP), 622	shared responsibility, 420–421
Simple Network Management Protocol	simplicity, 422
(SNMP), 522–524	threat modeling, 418–419
Simple Object Access Protocol (SOAP),	trust but verify, 420
614–615, 780	zero trust, 419–420
simple security rule in Bell-LaPadula, 398	Site Security Design Guide, 906
simplex communication, 831	situational awareness, 744
simplex mode in session layer, 478	6to4 tunneling method, 514
simplicity	Six Sigma methodology, 197
network security, 599	SKA (shared key authentication), 575
secure design principles, 395-396	Slack service, 1057
security metrics, 854	SLAs (service level agreements)
site and facility security, 422	high availability, 1050
third-party connectivity, 706	overview, 890
Simpson, O.J., 129–130	supply chain risk management, 101
simulation tests in disaster recovery	SLE (single loss expectancy)
plans, 1064	key risk indicators, 857
simulations for breach attacks, 828	quantitative risk analysis, 73–75
single-attached concentrators (SACs)	slot locks, 921
in FDDI, 498	smart cards
single-attachment stations (SASs)	access codes, 921
in FDDI, 498	attacks on, 734–735
single loss expectancy (SLE)	ownership-based authentication, 733–735
key risk indicators, 857	smart phones, 688
quantitative risk analysis, 73–75	smoke-activated fire suppression, 456
single mode in fiber-optic cable, 651	smoke detectors, 445
single sign-on (SSO)	SMTP (Simple Mail Transfer Protocol), 622
identity management, 750–752	Smyth, Robin, 20
replay attacks, 372–373	SNMP (Simple Network Management
SIP (Session Initiation Protocol), 689–691	Protocol), 522–524
site and facility security	snooping in DHCP, 519
access control, 802–803	Snowden, Edward, 62
backups, 1040–1041	SOA (service-oriented architecture)
chapter questions, 463–465	description, 780–781
chapter review, 461–462	web services, 612–613
controls. See controls for site and facilities	SOAP (Simple Object Access Protocol),
CPTED, 427–433	614–615, 780
defaults, 422	SOAR (security orchestration, automation,
defense in depth, 419	and response) platform
design overview, 417–418	components, 980
least privilege, 421	secure software, 1141–1142

social engineering	software development
awareness programs, 42	Agile methodologies, 1100–1103
cryptography attacks, 375	chapter questions, 1112–1116
description, 5, 60	chapter review, 1110-1111
human vulnerabilities, 902–903	cleanroom methodology, 1105
passwords, 721	DevOps, 1103–1104
training, 864–865	DevSecOps, 1104
social network vulnerabilities, 60	exploratory methodology, 1104
sockets	Incremental methodology, 1096–1097
description, 504	Joint Application Development
network, 703	methodology, 1104
SOCKS proxy firewalls, 956	maturity models, 1106–1110
SOCs. See security operations	methodologies overview, 1095
centers (SOCs)	methodologies summary, 1106
SoD principle. See separation	overview, 1079
of duties (SoD) principle	prototypes, 1096
soft controls for risk responses, 83	Rapid Application Development
soft tokens in one-time passwords, 732	methodology, 1099–1100
software	reuse methodology, 1105
antimalware, 969–972	roles, 1080
backups in business continuity	SDLC. See software development
planning, 1070	life cycle (SDLC)
cryptography systems, 602	Spiral methodology, 1098–1099
escrow, 1070, 1143	Waterfall methodology, 1095–1096
licensing, 226	software development life cycle (SDLC)
meeting applications, 695	design phase, 1083–1087
piracy, 153–154	development phase, 1087–1089
secure. See secure software	operations and maintenance phase,
smart card attacks, 735	1091–1094
supply chain risk management, 99	overview, 1079–1080
tracking, 224–227	phases summary, 1094
vulnerabilities, 901	project management, 1081
Software as a Service (SaaS),	requirements gathering phase, 1082-1083
228, 302–303	testing phase, 1089–1091
Software Assurance Maturity Model (SAMM),	Software Engineering Institute (SEI), 993
1109–1110	software engineers, 1080
software configuration	software guard in MAC, 770
management (SCM), 1142	Software Requirements
software-defined networking (SDN)	Specification (SRS), 1083
approaches, 634-635	solar window film windows, 441
control and forwarding planes, 633–634	solid-core doors, 440
overview, 632–633	something a person does authentication
secure software, 1136	factor, 718
software-defined security (SDS), 1136	something a person has authentication
software-defined wide area	factor, 718–719
networking (SD-WAN), 635	something a person is authentication factor, 718
software developers, tasks and	something a person knows authentication
responsibilities, 886	factor, 718

somewhere a person is authentication	SSD (static separation of duty) relations
factor, 718	in RBAC, 773
SONETs (Synchronous Optical Networks),	SSH (Secure Shell)
538–539	code repositories, 1144
source code analysis attacks	communications channels, 701-702
in cryptography, 370	SSIDs (Service Set IDs), 565
source code vulnerabilities, 1133–1134	SSO (single sign-on)
source files, protecting, 896	identity management, 750-752
source routing in firewalls, 966	replay attacks, 372–373
Soviet Union collapse, increase	SSPs (signal switching points), 682
of attacks from, 134	staff, awareness programs for, 42
SOW (statements of work) in project	stakeholders
management, 1081	enterprise architecture frameworks, 190
SOX (Sarbanes-Oxley Act), 20	incident notifications, 1004
Spafford, Eugene H., 3	standalone mode in WLANs, 565
spaghetti code, 1126	standard changes, 892
Spanning Tree Protocol (STP), 657	Standard Generalized Markup
SPB (Shortest Path Bridging) protocol, 657	Language (SGML), 776
spearphishing, 865	standard windows, 441
Specht, Paul, 150	standards
special characters in passwords, 720	business continuity, 104–106
Spectre attacks, 257, 372	coding, 1135–1136
speed	controls, 258
biometric authentication, 726	industry, 156–158
TCP vs. UDP, 506	logs, 979
SPF (Sender Policy Framework), 624	organizational, 29–31
spikes in electric power, 451	WLANs, 565–574
Spiral methodology for software development,	standby lighting, 912
1098–1099	standby UPS systems, 453
split knowledge, 34	star integrity axiom in Biba model, 399
split tunnels in VPNs, 697	star property rule in Bell-LaPadula, 398
splitting DNS, 530	star topology, 488
Splunk product, 979	start bits, 646
SPML (Service Provisioning Markup Language),	state actors, 60–61
777–779	state tables
spoofing	stateful firewalls, 949, 952
e-mail, 623	three-way-handshake process, 951
firewalls, 965	stateful firewalls, 949–952
STRIDE model, 388	stateful NAT, 533
spread spectrum wireless communications,	stateless inspection in packet-filtering
561–563	firewalls, 948
sprinklers, 459–460	statements of work (SOW) in project
sprints in Scrum methodology, 1102	management, 1081
SRKs (storage root keys) in Trusted Platform	states
Modules, 405	controls, 254–258
SRS (Software Requirements	TCP connections, 951
Specification), 1083	static analysis
SS7 (Signaling System 7) protocol, 682	antimalware software, 970
	application security, 1139

static application security	supervisor role, 24
testing (SAST), 1139	supervisory control and data acquisition
static electricity, 454	(SCADÁ) systems, 290, 294
static mapping in NAT, 532	supply chain risk management
static routing protocols, 534–535	attacks, 133
static separation of duty (SSD) relations	hardware, 98
in RBAC, 773	minimum security requirements, 100
statistical attacks in cryptography, 370	overview, 96–98
statistical time-division multiplexing	risk sources, 99–100
(STDM), 544	service level agreements, 101
steganography, 264–265	services, 99
stegomedium, 265	software, 99
Stevens, Ted, 469	upstream and downstream, 98
sticky notes in Kanban methodology,	supply system threats in site planning, 423
1102–1103	support agreements, 672
Stoll, Clifford, 643	support staff, tasks and responsibilities, 886
stop bits, 646	surges in electric power, 451
storage, data, 232–233, 259–260	surveillance
storage facilities, 447–448	CPTED, 431–432
storage keys in Trusted Platform Modules, 406	description, 913
storage root keys (SRKs) in Trusted Platform	digital forensics, 1019–1020
Modules, 405	suspending accounts, 860
STP (shielded twisted pair) cable, 649	sustain stage in change management, 892
STP (Spanning Tree Protocol), 657	Sutter Health of California breach, 255
STPs (signal transfer points), 683	SVCs (switched virtual circuits), 549
strata in NTP, 831	SWGDE (Scientific Working Group on
strategic alignment, 15–16	Digital Evidence), 1009
stream ciphers in symmetric key cryptography,	swipe cards for ownership-based
333–334	authentication, 732–733
stream-symmetric ciphers, 575	switch controls in device locks, 921
streaming protocols, 691	switch spoofing attacks, 632
strict liability category in civil law, 128	switched virtual circuits (SVCs), 549
STRIDE model, 387–388	switches
strong authentication, 718–719	characteristics, 665
strong star property rule in Bell-LaPadula, 398	layer 3 and 4, 659
structured walkthrough tests in disaster	overview, 657–658
recovery plans, 1063	VLANs, 630
subjects	switching WANs, 545–547
ABAC, 774	symbolic AI approach, 976–978
data, 245	symbolic links, 819, 821
subnet masks in IP addresses, 511–512	symmetric key cryptography
subnets in IP addresses, 510-512	with asymmetric, 346-349
substitution ciphers, 318	block ciphers, 330–333
sub-techniques in MITRE ATT&CK	description, 328
framework, 389	initialization vectors, 334–335
succession planning, 1043	overview, 329–330
Sullivan, Joseph, 20	stream ciphers, 333-334
supernetting IP addresses, 512	summary, 330

symmetric services in DSL, 684	stateful firewalls, 949, 952
SYN/ACK packets, 508	three-way-handshake process, 951
SYN floods, 508	tabletop exercises (TTXs) in disaster recovery
SYN packets, 508, 949-951	plans, 1063–1064
SYN-RECEIVED state in TCP connections, 951	TACACS (Terminal Access Controller Access
SYN-SENT state in TCP connections, 951	Control System), 790–793
synchronization	TACS (Total Access Communication
NTP, 830	System), 584
passwords, 737	tactics in MITRE ATT&CK framework, 389
Synchronous Optical Networks (SONETs),	tailoring controls, 258
538–539	tamper-resistant property in reference
synchronous replication, 1039	monitors, 766
synchronous token devices for one-time	tampering category in STRIDE model, 388
passwords, 730–731	tape vaulting for backups, 1039
synchronous transmission, 645–647	tapes for backups, 860
synthetic transactions, 832	Target company breach, 96–97
system access control, 802	target hardening vs. CPTED, 428
system account access review, 798	targeted penetration tests, 826–827
system administrators, tasks and	targets of attacks, 474
responsibilities, 886	tarpits, 976
system architectures	taxonomies in data retention, 236
chapter questions, 311–315	TCG (Trusted Computing Group), 404
chapter review, 310–311	TCP. See Transmission Control
client-based, 284	Protocol (TCP)
cloud-based, 301-305	TCP/IP (Transmission Control Protocol/
database, 285–286	Internet Protocol) suite, 471, 502-503
distributed, 307–309	TDF (transborder data flow), 146-147
high-performance computing, 288-289	TDM (time-division multiplexing), 541–542
industrial control systems, 289–296	TDMA (time division multiple access)
overview, 283	GTS, 570
pervasive, 305–307	mobile communications, 584
server-based, 284–285	teams
virtualized systems, 296–301	backup administrators, 1035
system authentication, 579	business continuity planning, 1030
system images, 896	disaster recovery plans, 1056
system-level event audits, 742	incident response, 991, 1000–1001
system owners, 23–24	risk analysis, 76, 78
system resilience in availability, 1051	risk assessment, 66–67
system sensing access control readers, 925	risk management, 56–57
system-specific controls in Risk Management	software development, 1080
Framework, 175	technical controls
system-specific policies, 29	assessments. See testing
system testing, 818	risk responses, 83, 86–87
_	technical reports, 872-873
T	technical sensors in incident detection, 995
T-carriers for WANs, 541–542	technological communication protocols, 646
tables	TEEs (trusted execution environments),
forwarding, 656–657	408–411
rainbow, 721–722	telephone calls in PBXs, 665-667

Telephone Records and Privacy Protection	TGSs (ticket granting services) in KDC,
Act, 865	785–786
telephones in disaster recovery plans, 1062	Thailand, Personal Data Protection Act in, 144
telepresence in meeting applications, 695	The Onion Router (TOR), 307
temperature	The Open Group Architecture Framework
data processing facilities, 446	(TOGAF), 172, 194–195
HVAC systems, 453–454	The Silk Road, 665
tempered windows, 441	thermal relocking function in safes, 222
templates for disaster recovery plans, 1059	third-generation (3G) mobile wireless,
Temporal Key Integrity Protocol (TKIP),	585–586
577–578	Third Generation Partnership
Teredo tunneling, 514	Project (3GPP), 586
Terminal Access Controller Access Control	third-generation programming languages,
System (TACACS), 790–793	1118–1119
terminals in H.323, 689	third parties
termination processes in personnel security,	audits, 843–844
37–38	business continuity planning, 1068
territorial reinforcement in CPTED,	connectivity, 705–706
431–432	dealing with, 39
tertiary sites in disaster recovery, 1046	security provided by, 973–974
Tesla, Nikola, 559	software escrow, 1143
test coverage, 837	software security, 1147
test-driven development	third-party sensors in incident detection, 995
Extreme Programming, 1102	third-party services, federated identity with,
software development, 1089	754–756
testing	threat data sources for security operations
application security, 1139-1140	centers, 942–943
backups, 863	Threat Dragon, 1087
code reviews, 833-834	threat hunters, tasks and responsibilities, 886
code testing, 834–835	threat hunting in security operations
compliance checks, 838	centers, 943
data loss prevention, 270–271	threat intelligence analysts on incident
disaster recovery goals, 1054	response teams, 1001
disaster recovery plans, 1061–1065	threat intelligence in security operations
federated identity, 755	centers, 941–942
interface, 837	threat modeling
log reviews, 828-831	attack trees, 386–387
misuse cases, 835–836	Cyber Kill Chain, 387–389
overview, 817	importance, 389–390
penetration, 822–827	MÎTRE ATT&CK framework, 389
red teaming, 827–828	network security, 598
SDLC, 1080, 1089–1091	overview, 385
Spiral methodology, 1098	site and facility security, 418-419
strategies, 813–816	software development design, 1086
synthetic transactions, 832	STRIDE, 387–388
test coverage, 837	third-party connectivity, 705
vulnerabilities, 817–822	threat trees in software development
testing mode in anomaly-based IDS/IPS, 967	design, 1086
text messages in disaster recovery plans, 1056	threat working group (TWG), 92

threats	TOGAF (The Open Group Architecture
cybercriminals, 60	Framework), 172, 194–195
defined, 8	token passing, 491–492
duress, 931–932	Token Ring, 495–496, 499
hacktivists, 61	tokens
identifying, 62–63	electronic access control, 925
internal actors, 61–62	one-time passwords, 730
nation-state actors, 60-61	toll fraud
nature, 62	IP telephony, 692
overview, 58	PBX systems, 666
site planning, 423	tool sets for secure software, 1138
three-factor authentication, 719	top-down approach in security programs, 199
three-way-handshake process	top-level domains in DNS, 527
SIP, 689	top secret classification level, 216–218
TCP, 949–951	topologies for local area networks, 487-490
throughput in cabling, 654–655	Tor network, 665
thunking, 296	TOR (The Onion Router), 307
ticket granting services (TGSs) in KDC,	tort law system, 127–129
785–786	Total Access Communication
tickets in KDC, 785–788	System (TACS), 584
Tier 1 (organization view) in risk	total risk vs. residual risk, 81
management, 55	TPC (Transmit Power Control), 574
Tier 2 (mission/business process view) in risk	TPMs (Trusted Platform Modules), 404–406
management, 55	TPs (transformation procedures)
tiers	in Clark-Wilson model, 400
Cybersecurity Framework, 182	Traceroute tool, 520–522
risk management, 55	tracking
tight coupling software, 1131–1132	digital asset management, 261–262
time division multiple access (TDMA)	hardware, 224
GTS, 570	software, 224–227
mobile communications, 584	trade secrets, 148–149
time-division multiplexing (TDM), 541–542	trademarks, 150
time-limited trials for third-party	traffic direction in packet-filtering firewalls, 948
software, 1147	traffic-flow security, 601
time-of-check to time-of-use (TOC/TOU)	traffic shaping in QoS, 551
in atomic execution, 410	trailer hot sites, 1049
time to first byte (TTFB) in latency, 654	training, 40
Time to Live (TTL) values in packets, 512	artificial intelligence tools, 977–978
TIME-WAIT state in TCP connections, 951	content reviews, 43
timely characteristic in threat intelligence, 941	degrees and certifications, 40–41
timeouts in session termination, 741	disaster recovery communications, 1057
timing attacks in cryptography, 371–372	disaster recovery plans, 1060–1061, 1064–1065
timing smart cards, 735	
TKIP (Temporal Key Integrity Protocol),	evaluating, 43–44
577–578 TIS See Transport Lover Security (TIS)	incident response, 993
TLS. See Transport Layer Security (TLS)	measuring security, 863–867
TOC/TOU (time-of-check to time-of-use) in atomic execution, 410	methods and techniques, 41–43
iii atolliic execution, 410	personnel, 930–931

training mode in anomaly-based IDS/IPS, 967	third-party connectivity, 706
transactions, synthetic, 832	web services, 612
transborder data flow (TDF), 146-147	Trust Centers for mobile
transfer risk strategy	communications, 572
ISO/IEC 27005, 178	trust in federated identity, 755
overview, 79	Trusted Computing Group (TCG), 404
transfers in personnel security, 37-38	trusted execution environments (TEEs),
transformation procedures (TPs)	408-411
in Clark-Wilson model, 400	Trusted Platform Modules (TPMs), 404-406
Transmission Control Protocol (TCP)	TTFB (time to first byte) in latency, 654
connection-oriented protocol, 479	TTL (Time to Live) values in packets, 512
data structures, 509	TTXs (tabletop exercises) in disaster recovery
handshakes, 508, 949-951	plans, 1063-1064
transport layer, 479, 503	tumbler locks, 918
vs, UDP, 503–506	tuning data loss prevention, 270-271
Transmission Control Protocol/Internet	tunnels
Protocol (TCP/IP) suite, 471, 502–503	DNS, 619
transmission media	ICMP, 520
cabling, 648–655	IPv6, 514–515
overview, 643–644	TLS, 610
types, 644–648	turnstiles, 441
transmission methods for local area networks,	Tuzman, Kaleil Isaza, 20
499–500	TWG (threat working group), 92
Transmit Power Control (TPC), 574	twisted-pair cabling, 649–650
transparent bridging, 656–657	two-factor authentication (2FA), 719
transponders, 925	type 1 hypervisors in virtual machines, 297
transport adjacency in IPSec, 609	type 2 hypervisors in virtual machines, 297
transport layer	Type I errors in biometric authentication,
functions and protocols, 484	724–725
OSI model, 479–480	Type II errors in biometric authentication,
Transport Layer Security (TLS)	724–725
data in motion, 255–256	types in incidents classification, 1002
malware using, 604–605	TI
network security, 602–605	U
suites, 603–604	U.S. Patent and Trademark
types, 610–611	Office (USPTO), 150
transport supplies in forensics field kits, 1015	UAC (User Agent Client) in SIP, 689
transposition ciphers, 318	UAS (User Agent Server) in SIP, 689
travel safety, 930	ubiquitous computing, 305
tree topology, 488	UBR (unspecified bit rate) in ATM, 551
trials for third-party software, 1147	UC (unified communications), 695–696
trialware, 153	UCDs (use case diagrams) in software
TrickBot Trojan, 604, 969	development, 1083
Trojans in TLS, 604	UDIs (unconstrained data items) in Clark-
trust but verify principle	Wilson model, 400
network security, 599	UDP. See User Datagram Protocol (UDP)
secure architectures, 392	UEBA (user and entity behavior
site and facility security, 420	analytics), 981

UEM (unified endpoint management)	usage in TCP vs. UDP, 506
systems, 226	use case diagrams (UCDs) in software
UML (Unified Modeling Language)	development, 1083
software development, 1083	use cases
use case diagrams, 835–836	data loss prevention, 271
uncertainty in risk assessment, 74	misuse case testing, 835–836
unclassified classification level, 216-218	Use Limitation Principle in OECD, 142
unconstrained data items (UDIs)	user access review for identity and access, 797
in Clark-Wilson model, 400	user-activated readers, 925
undercover investigations in digital	User Agent Client (UAC) in SIP, 689
forensics, 1020	User Agent Server (UAS) in SIP, 689
understanding factor in outsourced	user and entity behavior analytics (UEBA), 981
security services, 974	user data file backups, 861
unicast transmission method, 499	User Datagram Protocol (UDP)
unified communications (UC), 695-696	connectionless protocol, 479
unified endpoint management (UEM)	connections, 951–952
systems, 226	vs. TCP, 503–506
Unified Modeling Language (UML)	transport layer, 479
software development, 1083	user-level event audits, 743
use case diagrams, 835–836	user managers, 24
uniform resource identifiers (URIs) for web	user stories in Agile methodologies, 1101
services, 613–614	users
uniform resource locators (URLs) in DNS,	Clark-Wilson model, 400
524, 531	description, 25
uninterruptible power supplies (UPSs)	provisioning, 739
data processing facilities, 446	USPTO (U.S. Patent and Trademark
online, 452–453	Office), 150
standby, 453	utilities
unit testing in software development,	electric power, 448–453
1089, 1091	HVAC, 453–454
United States laws for data breaches, 141-142	water and wastewater, 448-450
unmanaged patching, 904–905	utility tunnels in physical security, 439
unshielded twisted pair (UTP) cable, 649-650	UTP (unshielded twisted pair) cable, 649-650
unspecified bit rate (UBR) in ATM, 551	_
updates	V
Internet of Things, 307	vacations, mandatory, 35, 890
profiles, 740	Valasek, Chris, 627
UPS Brown color, 150	validation
UPSs (uninterruptible power supplies)	assessments, 815–816
data processing facilities, 446	parameters, 1132
online, 452–453	risk controls, 90
standby, 453	software development, 1090
upstream suppliers in risk management, 98	Validation practice in Good Practice
uptime in high availability, 1050	Guidelines, 106
urgency in incidents classification, 1002	valuation of assets, 65–66
URIs (uniform resource identifiers) for web	variable bit rate (VBR) in ATM, 551
services, 613–614	vaulting for backups, 1038–1039
URLs (uniform resource locators) in DNS,	vaults, protecting, 222
524, 531	, protecting, 222

VBR (variable bit rate) in ATM, 551	Virtual Network Computing (VNC), 700
VDI (virtual desktop infrastructure), 700–701	virtual NICs (vNICs), 704-705
VDSL (very high-data-rate DSL), 684	virtual passwords, 723
vendors, 39	virtual private clouds (VPCs), 301
ventilation ducts in physical security, 439	virtual private networks (VPNs)
Veracode report, 1133	authentication protocols, 697–699
verifiable property for reference monitors, 766	data in motion, 256
verification	IPSec, 607–609
backups, 860–862	L2TP, 606–607
message integrity, 354–358	overview, 605, 697
risk controls, 90	PPTP, 606
software development, 1090	TLS, 610
supply chain risk management, 100	Virtual Router Redundancy
verification 1:1, 718	Protocol (VRRP), 536
Verification function in SAMM, 1109	
the state of the s	virtual teams in incident response, 991
Vernam, Gilbert, 325	virtual tunnel end points (VTEPs), 632
Vernam cipher, 325–328	virtualization
versatile memory in Trusted Platform	backups, 861
Modules, 406	desktop, 699–701
versioning software, 1142–1144	virtualized systems
vertical enactment for privacy, 147	containerization, 298–299
very high-data-rate DSL (VDSL), 684	networks, 704–705
very high-level programming languages,	overview, 296
1119–1120	serverless, 299–301
very small aperture terminals (VSATs),	virtual machines, 296–298
589–590	visual recording devices, 913–916
vibration detectors, 927	VLAN identifiers (VIDs), 631
VIDs (VLAN identifiers), 631	VLANs (virtual local area networks)
views in enterprise architecture frameworks,	latency, 654
190, 192	overview, 630–632
Vigenère, Blaise de, 319	VMs. See virtual machines (VMs)
Vigenère cipher, 319	VNC (Virtual Network Computing), 700
violence, threats of, 931–932	vNICs (virtual NICs), 704–705
virtual circuits in WANs, 548–549	voice communications, 682
virtual desktop infrastructure (VDI),	cable modems, 686–687
700–701	DSL, 683–685
virtual directories, 750	IP telephony, 687–692
Virtual eXtensible Local Area Networks	ISDN, 685–686
(VxLANs), 632	PSTN, 682–683
virtual firewalls, 964	voice gateways, 688
virtual local area networks (VLANs)	voice over IP (VoIP) networks
latency, 654	business continuity planning, 1069
overview, 630–632	vs. IP telephony, 688
virtual machines (VMs), 296, 704-705	overview, 687–688
antimalware, 969–970	security, 693
benefits, 297–298	voice prints, 728
hypervisors, 297	voicemail systems, 688
third-party connectivity, 705	voices in information access control, 801

voltage in electrical power, 670	Waterfall software development, 1095–1096
voltage regulators for electric power, 451	watts
volumetric IDSs, 926	electrical power, 670–672
VPCs (virtual private clouds), 301	radio signals, 560
VPNs. See virtual private networks (VPNs)	wave-division multiplexing (WDM), 544
VRRP (Virtual Router Redundancy	wave-pattern motion detectors, 927
Protocol), 536	WBSs (work breakdown structures) in project
VSATs (very small aperture terminals),	management, 1081
589–590	WDM (wave-division multiplexing), 544
VTEPs (virtual tunnel end points), 632	weaponization in Cyber Kill Chain model,
vulnerabilities	387, 994
defined, 8	web application security risks, 1134
emergency situations, 869	web of trust, 367
exception handling, 871	web portal functions in FIM systems,
human, 902–903	753–754
identifying, 62–63	web proxies, 665
information, 59	web services
managing, 900–903	HTTP, 613–614
overview, 58	overview, 611–612
people, 60	REST, 615–616
processes, 59–60, 902	SOAP, 614–615
remediation, 871	Web Services Security (WS-Security or WSS)
software, 901, 1133–1134	specification, 615
testing, 817–822	well-formed transactions in Clark-Wilson
vulnerability mapping step in penetration	model, 400
testing, 824	well-known ports, 507
vulnerability testing vs. penetration tests, 827	WEP (Wired Equivalent Privacy), 575–576
VxLANs (Virtual eXtensible Local Area	wet chemical fire extinguishers, 459
Networks), 632	wet pipe water sprinkler systems, 460
117	whaling, 865
W	White, Joe, 20
wafer tumbler locks, 919	white box testing, 826
waiting room feature for meeting	whitelisting
applications, 694	applications, 225
walkthrough tests in disaster recovery	intrusion detection and prevention
plans, 1063	systems, 968–969
walls	whole-disk encryption, 255
considerations, 437	Wi-Fi Protected Access 2 (WPA2), 576–578
data processing facilities, 446	wide-angle lenses in CCTV systems, 915
WANs. See wide area networks (WANs)	wide area networks (WANs)
WAPs (wireless access points), 564–565	ATM, 550–552
warded locks, 918	CSU/DSU, 543–545
warez sites, 149–150	dedicated links, 541-543
warm sites, 1045–1047	frame relay, 547–548
Wassenaar Arrangement, 145–146	HSSI, 552
water and wastewater, 448–450	overview, 540
	switching, 545–547
water detectors, 445	virtual circuits, 548–549
water lines, 438	X.25, 549–550
water sprinklers, 459–460	23, a, j, j, j, j, j, j

WIDSs (wireless intrusion detection	WPA Enterprise, 5//
systems), 967	WPA2 (Wi-Fi Protected Access 2), 576–578
WiMAX standard, 569, 587	WPA3, 578–579
windows	WPANs (wireless personal area networks), 570
considerations, 437	write-once media for logs, 745, 831
types, 441	wrongs against a person category
WIPO (World Intellectual Property	in civil law, 127
	·
Organization), 150	wrongs against property category
Wired Equivalent Privacy (WEP), 575–576	in civil law, 127
wired windows, 441	WRT (work recovery time) in disaster
wireless access points (WAPs), 564–565	recovery, 1031–1032
wireless intrusion detection	WS-Security specification, 615
systems (WIDSs), 967	WSS (Web Services Security)
wireless LANs (WLANs)	specification, 615
best practices, 582	WWW (World Wide Web), 777
components, 564–565	
security, 575–582	X
standards, 565–574	V 25 protocol 5/0 550 552
wireless networking	X.25 protocol, 549–550, 552
chapter questions, 592–595	X.509 certificates, 359
chapter review, 590–592	XaaS (Everything as a Service), 304–305
communication techniques overview,	XACML (Extensible Access Control Markup
-	Language), 781
559–561	XDR (extended detection and response)
mobile communications, 582–588	platforms, 968
OFDM, 563–564	XML (Extensible Markup Language), 615, 777
overview, 559	XOR operation
satellites, 589–590	one-time pads, 326–327
spread spectrum, 561–563	stream ciphers, 333
WLAN components, 564–565	XTACACS (Extended TACACS), 790–791
WLAN security, 575–582	YAML Ain't Markup Language (YAML), 615
WLAN standards, 565-574	Third Thirt triankap Bangaage (TrianE), 01)
wireless personal area networks (WPANs), 570	Y
wiring closets, 446	
WLANs. See wireless LANs (WLANs)	Ying, Jun, 20
Woods, John F., 1079	
work area security, 441–443	Z
	Zachman, John, 172, 192
work area separation, 803	Zachman Framework, 172, 192–194
work breakdown structures (WBSs)	zero-day attacks, 971
in project management, 1081	
work factor	zero knowledge in penetration testing, 825
cryptosystems, 325	zero trust principle
electrical power, 671	network security, 599
work factor in RSA, 342	secure design, 392
work recovery time (WRT) in disaster	site and facility security, 419–420
recovery, 1031–1032	third-party connectivity, 706
working images for evidence, 1012	web services, 612
World Intellectual Property Organization	ZigBee standard, 571–572
(WIPO), 150	Zimmermann, Phil, 367
World Wide Web (WWW), 777	zombies, 965

1320

zone transfers in DNS, 525 zones access control, 803 CPTED, 429–430 DNS, 525 lighting, 911 Zoom-bombing, 694 zoom in CCTV systems, 914–915