OXIDES:

 VI group elements form two types of oxides, dioxides of the type MO₂ and trioxides of the type MO₃.

Dioxides:

- O₃ may be treated as Oxygen dioxide (OO₂).
- Dioxides can be prepared directly by burning the elements in air

$$Ex.S + O_2 \rightarrow SO_2$$

SO₂ can also be prepared by heating metal sulphides (sulphide ores) in air.

$$4FeS_2+ 11O_2 \rightarrow 2Fe_2O_3 + 8SO_2$$

2ZnS + 3O₂ → 2ZnO + 2SO₂

- SO₂ is highly soluble in water and forms hydrated SO₂
- SO₂ can be condensed to liquid which is used as a solvent.
- SO₂ acts as a **lewis base** due to presence of lone pairs of electrons.
- SO₂ acts as a **reducing agent** in both in acid and in alkaline medium.
- SO₂ reduces K₂Cr₂O₇ in to chromium sulphate

$$K_2Cr_2O_7 + H_2SO_4 + 3SO_2 \rightarrow K_2SO_4 + Cr_2(SO_4) + H_2O$$

- SO₂ acts as a **bleaching agent** in the presence of moisture.
- The bleaching action of SO₂ is due to **reduction**.

$$SO_2 + 2 H_2O \rightarrow H_2SO_4 + 2 (H)$$

- During bleaching SO₂ will be oxidised to H₂SO₄
- Coloured matter + 2(H) → Colourless product
- SO₂ bleaching is temporary bleaching
- Acidic nature decreases from SO₂ to PoO₂.
- Trioxides are more acidic than corresponding dioxides.

Trioxides:

 Sulphur trioxide can be prepared by reacting SO₂ and O₂ in the presence of catalyst like Pt or V₂O₅ or NOSO₃.

$$2SO_2 + O_2 \xrightarrow{Catalyst} 2SO_3$$
 $?H = -196 \text{ kJ}$

SO₃ is the anhydride of H₂SO₄

$$SO_3 + H_2O \rightarrow H_2SO_4$$
.

- It is called **Sulphuric anhydride**.
- SO₂ is angular in shape.
- Sulphur in SO₂ is in sp² hybridisation.
- Number of pairs = $\frac{6+0}{2}$ =3 (2BP + 1LP)
- Sulphur atom is in double bonds with oxygen atoms.
- One oxygen of SO₂ form a $p\pi$ $p\pi$ bond and another oxygen atom form $p\pi$ $d\pi$ bond

with sulphur atom.

The structure of SO₂ is a resonance hybride of two structures

Shape: Angular; Hybridisation: sp²; bond angle is less than 120° (119.5°) ⊕≠0. (dipole moment is not zero)

excited :3s² 3p⁴

$$3s^2 3p^3 3d^1$$

$$\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$$

160 pm

140 pm

SO₃ has planar triangular structure

In solid state : (polymeric structure) cyclic (27) or chain(277 or 2)

Cyclic form Chain form(

22- form)

In aqueous state SO_3 exists as $[SO_4^{2-}$ - tetrahedral]

Oxyacids

'Ous' acids 'ic' acids

 $MO_2 + H_2O \rightarrow ous acids$ $MO_3 + H_2O \rightarrow ic acids$

 H_2SO_3 H_2SO_4 H_2SeO_3 H₂SeO₄ H₂TeO₃ H₂TeO₄

Acidic nature – decreases for sulphur oxyacids to tellurium oxyacids

- - ic acids > ous acids
- – ous acids and their salts act as reducing agents
- - ic acids and their salts act as oxidising agents

Acidic nature:

 $H_2SO_3 > H_2SeO_3 > H_2TeO_3$ $H_2SO_4 > H_2SeO_4 > H_2TeO_4$