Tutorial 10

- 1. You are given a function $\operatorname{median}(A,p,r)$ that finds the index corresponding to the median of an array A with starting index p and ending index r, in worst-case complexity $\Theta(n)$ where n is the length of A. Making use of the given median function, write an algorithm with complexity $\Theta(n)$ to partition the array A using its median as the pivot. You may call the functions discussed in class.
- 2. Using your algorithm in Qn 1, write an algorithm that selects the ith smallest element of A in worst-case complexity O(n). Prove that your algorithm indeed has complexity O(n), justifying every step clearly. Note that the select algorithm given in class has worst-case complexity $O(n^2)$.
- 3. Consider performing counting sort on the following array:

	_	1		2	-	-	•			,	1	_
5	7	5	1	- 2	7	6	- 2	1	6	6	5	- 2
J	/	J	1)	/	U)	1	U	U	J)
-	-	_		_	-	_	_		_	_	_	_

- (i) What does the final count array look like?
- (ii) Use the count array to determine the sorted array.
- 4. Trace the steps of radix sort on the following sequence of numbers, each with 4 digits.

- 5. An *n*-element array A contains only the numbers 0, 1, 2. Write an O(n) algorithm to sort the numbers. Legal operations on the data are swapping two elements in the array.
- 6. Explain how bucket sort can be used to sort the following sequence of numbers between 0 and 1: