Functions, Limits and Continuity

Function of a complex variable: If to each value of a complex variable z there corresponds one or more values of a complex variable w, then w is called a complex function of z and it is written as,

$$w = f(z)$$

where z is independent variable and w is dependent variable.

Every complex function w = f(z) can be expressed as,

$$w = f(z) = u + iv$$

where u and v are two real functions of real variables x and y.

Example: (1). $w = f(z) = z^2$

(2).
$$w = f(z) = \sqrt{z}$$

Single-valued function: Let w = f(z) be a complex function. If only one value of w corresponds to each value of z, then it is called a single-valued function.

Example: $w = f(z) = z^2$ is a single-valued function.

Multiple-valued function: Let w = f(z) be a complex function. If more than one value of w correspond to each value of z, then it is called a multiple-valued function.

Example: $w = f(z) = \sqrt{z}$ is a multiple-valued function.

Inverse function: If w = f(z) be a complex function of z, then $z = f^{-1}(w)$ is also a complex function of w. The function f^{-1} is often called the inverse function corresponding to f.

Neighbourhoods: The neighbourhood of a point z_0 is the set of all points z such that $|z-z_0| < \delta$ where δ is any positive number. The deleted δ neighbourhood of z_0 is a neighbourhood of z_0 in which the point z_0 is omitted, i.e. $0 < |z-z_0| < \delta$.

Limit: Let f(z) be defined and single-valued in a neighbourhood of z_0 . The number l is called limit of f(z) as z tends to z_0 and write $\lim_{z\to z_0} f(z) = l$ if for any positive number ε (however small) we can find some positive number δ (usually depending on ε) such that $|f(z)-l|<\varepsilon$ whenever $0<|z-z_0|<\delta$. Alternatively, the number l is called limit of f(z) if f(z) approaches to l as z approaches to z_0 .

Theorem-01: If $\lim_{z\to z_0} f(z)$ exists, then prove that it must be unique.

Proof: We must show that if $\lim_{z \to z_0} f(z) = l_1$ and $\lim_{z \to z_0} f(z) = l_2$, then $l_1 = l_2$.

By hypothesis, for any given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$|f(z)-l_1| < \frac{\varepsilon}{2}$$
 when $0 < |z-z_0| < \delta$
and $|f(z)-l_2| < \frac{\varepsilon}{2}$ when $0 < |z-z_0| < \delta$.

Now
$$|l_1 - l_2| = |l_1 - f(z) + f(z) - l_2|$$

$$\leq |l_1 - f(z)| + |f(z) - l_2|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

$$\therefore |l_1 - l_2| < \varepsilon$$

This means $|l_1 - l_2|$ is less than any positive number ε (however small) and it must be equal to zero.

i.e.
$$|l_1 - l_2| = 0$$

 $\therefore l_1 = l_2$

Thus if $\lim_{z \to z_0} f(z)$ exists, then it must be unique. (**Proved**)

Continuity: Let f(z) be defined and single-valued in a neighbourhood of z_0 and $f(z_0)$ is the functional value of it at z_0 . The function f(z) is said to be continuous at z_0 , if for any $\varepsilon > 0$, we can find $\delta > 0$ such that $|f(z)-f(z_0)| < \varepsilon$ whenever $|z-z_0| < \delta$.

Alternatively, the function f(z) is said to be continuous at z_0 if the following conditions are satisfied:

- (1). $\lim_{z \to z_0} f(z) = l$ must exist
- (2). $f(z_0)$ must exist, i.e. f(z) is defined at z_0
- (3). $f(z_0) = l$.

A function f(z) is said to be continuous in a region if it is continuous at all points of the region.

Uniform continuity: The function f(z) is uniformly continuous in a region if for any $\varepsilon > 0$, we can find $\delta > 0$ such that $|f(z_1) - f(z_2)| < \varepsilon$ whenever $|z_1 - z_2| < \delta$ where z_1 and z_2 are any two points of the region.

Branch points and Branch lines: Suppose we have the function $w = \sqrt{z}$ and we allow z to make a complete circuit (counterclockwise) around the origin starting from point A. We have $z = re^{i\theta}$, $w = \sqrt{r}e^{i\theta/2}$ so that at A, $\theta = \theta_1$ and $w = \sqrt{r}e^{i\theta_1/2}$. After a complete circuit back to A, $\theta = \theta_1 + 2\pi$ and $w = \sqrt{r}e^{i(\theta_1+2\pi)/2} = -\sqrt{r}e^{i\theta_1/2}$. Thus we have not achieved the same value of w with which we started. However, by making a second complete circuit back to A, i.e. $\theta = \theta_1 + 4\pi$, $w = \sqrt{r}e^{i(\theta_1+4\pi)/2} = \sqrt{r}e^{i\theta_1/2}$ and we then do obtain the same value of w with which we started. We can describe the above by stating that if $0 \le \theta < 2\pi$ we are on one branch of the multiple-valued function $w = \sqrt{z}$, while if $2\pi \le \theta < 4\pi$ we are on another branch of the function.

It is clear that each branch of the function is single-valued. In order to keep the function single -valued, we set up an artificial barrier such as OB where B is at infinity which we agree not to cross. This barrier is called a branch line or branch cut and point O is called a branch point. It should be noted that a circuit around any point other than z = 0 does not lead to different values; thus z = 0 is the only finite branch point.

Problems

Problem-01: Prove that $f(z) = \ln z$ has a branch point at z = 0.

Solution: We have $f(z) = \ln z$

$$= \ln\left(re^{i\theta}\right)$$
$$= \ln r + i\theta$$

Suppose we start from A at which $r = r_1$, $\theta = \theta_1$

$$\therefore f(z) = \ln r_1 + i\theta_1$$

After making a complete circuit in the counter clockwise direction and back to A, we have

$$r = r_1, \ \theta = \theta_1 + 2\pi$$

$$\therefore f(z) = \ln r_1 + i(\theta_1 + 2\pi).$$

We have not achieved the same value with which we have started.

Thus, we have another branch of f(z) and so z = 0 is a branch point. (**Proved**)

Problem-02: Prove that $\lim_{z\to 0} \frac{\overline{z}}{z}$ does not exist.

Solution: Let z = x + iy. Then $z \to 0 \Rightarrow x \to 0$, $y \to 0$.

$$\therefore \lim_{z \to 0} \frac{\overline{z}}{z} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x - iy}{x + iy}$$

Taking limit along the real axis $(x \rightarrow 0, y = 0)$, we have

$$\lim_{z\to 0} \frac{\overline{z}}{z} = \lim_{x\to 0} \frac{x}{x} = 1.$$

Again, taking limit along the imaginary axis $(x = 0, y \rightarrow 0)$, we have

$$\lim_{z \to 0} \frac{\bar{z}}{z} = \lim_{y \to 0} \frac{-iy}{iy} = -1.$$

The above two limits are not equal, that is, the limit depends on manner in which $z \rightarrow 0$.

Hence $\lim_{z\to 0} \frac{\overline{z}}{z}$ does not exist.

(Proved)

Problem-03: If $f(z) = z^2$, then prove that $\lim_{z \to 0} f(z) = z_0^2$.

Solution: We must show that for any given $\varepsilon > 0$, we can find $\delta > 0$ (depending on ε) such that

$$\left|z^2 - z_0^2\right| < \varepsilon$$
 whenever $0 < \left|z - z_0\right| < \delta$.

If $\delta \le 1$, then $0 < |z - z_0| < \delta$ implies that

$$|z^{2} - z_{0}^{2}| = |z - z_{0}||z + z_{0}|$$

$$< \delta |z - z_{0} + 2z_{0}|$$

$$< \delta \{|z - z_{0}| + |2z_{0}|\}$$

$$< \delta (1 + 2|z_{0}|)$$

Take δ as 1 or $\frac{\varepsilon}{\left(1+2|z_0|\right)}$, whichever is smaller.

Then we have,

$$\left|z^2 - z_0^2\right| < \varepsilon$$
 whenever $0 < \left|z - z_0\right| < \delta$.

Hence the required result is proved.

Problem-04: Prove that $f(z) = \begin{cases} z^2, & z \neq z_0 \\ 0, & z = z_0 \end{cases}$, where, is discontinuous at $z = z_0$.

Solution: We have $f(z) = \begin{cases} z^2, & z \neq z_0 \\ 0, & z = z_0 \end{cases}$

Now, $\lim_{z \to z_0} f(z) = z_0^2$

and $f(z_0) = 0$.

Since $\lim_{z \to z_0} f(z) \neq f(z_0)$, so f(z) is discontinuous at $z = z_0$ if $z_0 \neq 0$. (**Proved**)

Problem-05: Prove that $f(z) = z^2$ is uniformly continuous in the region |z| < 1.

Solution: We must show that for any given $\varepsilon > 0$, we can find $\delta > 0$ (depending only on ε but not on the any particular point z_0 of the region) such that

$$\left|z^2 - z_0^2\right| < \varepsilon$$
 when $\left|z - z_0\right| < \delta$.

If z and z_0 are any points in |z| < 1, then

$$|z^{2} - z_{0}^{2}| = |z - z_{0}||z + z_{0}|$$

$$\leq |z - z_{0}|\{|z| + |z_{0}|\}$$

$$< 2|z-z_0|$$

Thus if $|z - z_0| < \delta$, it follows that

$$\left|z^2 - z_0^2\right| < 2\delta$$

Choosing $\delta = \frac{\varepsilon}{2}$, we see that

$$\left|z^2-z_0^2\right|<\varepsilon.$$

Hence $f(z) = z^2$ is uniformly continuous in the region.

(Proved)

Problem-06: Prove that $f(z) = \frac{1}{z}$ is not uniformly continuous in the region |z| < 1.

Solution: Let z_0 and $z_0 + \xi$ be any two points of the region such that

$$|z_0 + \xi - z_0| = |\xi| = \delta.$$

Then
$$|f(z)-f(z_0)| = \left|\frac{1}{z_0} - \frac{1}{z_0 + \xi}\right|$$

$$= \left|\frac{\xi}{z_0(z_0 + \xi)}\right|$$

$$= \frac{|\xi|}{|z_0||z_0 + \xi|}$$

$$= \frac{\delta}{|z_0||z_0 + \xi|}.$$

This can be made larger than any positive number by choosing z_0 sufficiently close to 0. Hence the function can not be uniformly continuous in the region. (**Proved**)