Устойчивостта е важно условие за работоспособността на САУ, но не е достатъчно. Затихването на преходния процес (ПП) може да е толкова бавно и/или грешката в установен режим да е толкова голяма, че системата реално да не може да се използва. Освен да е устойчива, САУ трябва да удовлетворява и определени изисквания за качество на управлението.

Качеството на управление се задава чрез:

- необходимата точност в установен режим;
- показателите на качеството на преходните процеси.

Методи за изследване на качеството:

- **преки** показателите се определят чрез построяване на самия ПП;
- **косвени** качеството на САУ се оценява, без да се изчислява ПП (използват се за целите на *синтеза*).

1. Точност в установен режим – изчисляване на грешката ${\cal E}$

$$\varepsilon(t) = v(t) - y(t)$$

 $\begin{array}{c} V \otimes \mathcal{E} \\ \hline \end{array} W(p) \end{array}$

При $t \to \infty$, $\varepsilon(t)$ може да се

определи чрез теоремата за крайната стойност на оригинала:

$$\varepsilon(\infty) = \lim_{t \to \infty} \varepsilon(t) = \lim_{p \to 0} p \varepsilon(p)$$

 $\varepsilon(p)$ изразено чрез v(p) и W(p) е:

$$\varepsilon(p) = W_{\varepsilon,v}(p)v(p) = \frac{1}{1 + W(p)}v(p)$$

Следователно:

$$\varepsilon(\infty) = \lim_{p \to 0} \left[p \frac{1}{1 + W(p)} v(p) \right]$$

2. Грешки при типови въздействия

Грешката на системата в установен режим зависи от вида и големината на входното въздействие. Разглеждат се следните входни въздействия:

$$v(t)=c.1(t); \quad v(t)=c.t; \quad v(t)=c.t^2; \quad \Rightarrow \quad \mathcal{E}(\infty)$$
 ще зависи

и от вида на сигнала и от неговата "амплитуда" $\ c$.

При сравняване на различни САУ е удобно да се работи с нормализирани грешки:

$$\mathcal{E}_{\text{HOPM}} = \frac{\mathcal{E}(\infty)}{c},$$

при което действителната грешка в установен режим е:

$$\varepsilon(\infty) = \varepsilon_{\text{Hopm}} c.$$

За същата цел се използват и грешки при типови входни сигнали с единична амплитуда:

$$1(t), t, t^2$$

(1) Равновесно състояние – режим, характерен при системи за стабилизация, на входа на които се подава непроменящо се във времето задание:

$$v(t) = 1(t).$$

След преминаване на ПП, изходът се установява в равновесно състояние, което може и да не съвпада със зададената му стойност. Грешката при такъв входен сигнал се нарича коефициент на статизма или коефициент на статизма \mathcal{E}_{S}

Като се има предвид че $v(p) = \frac{1}{p}$ то грешката е:

$$\varepsilon_{S} = \lim_{p \to 0} \left[p \frac{1}{1 + W(p)} v(p) \right] = \lim_{p \to 0} \left[p \frac{1}{1 + W(p)} \frac{1}{p} \right] = \lim_{p \to 0} \left[\frac{1}{1 + W(p)} \frac{1}{p} \right]$$

(2) Движение с постоянна скорост

Този режим е типов при анализ на следящи системи. Входното въздействие се променя с постоянна скорост:

$$v(t) = t$$
.

Коефициентът на грешка по скорост \mathcal{E}_{V} се получава след заместване на

$$v(p) = \frac{1}{p^2},$$

$$\varepsilon_{V} = \lim_{p \to 0} \left[p \frac{1}{1 + W(p)} \frac{1}{p^{2}} \right] = \lim_{p \to 0} \left[\frac{1}{p + pW(p)} \right] = \lim_{p \to 0} \left[\frac{1}{pW(p)} \right]$$

(3) Движение с постоянно ускорение

Този типов режим се използва по-рядко, главно при анализ на следящи системи с военно предназначение. Входното въздействие е:

$$v(t)=t^2.$$

Коефициентът на грешка по ускорение \mathcal{E}_{a} се получава след заместване на образа на v(t)

$$v(p) = \frac{1}{p^3},$$

$$\varepsilon_{a} = \lim_{p \to 0} \left[p \frac{1}{1 + W(p)} \frac{1}{p^{3}} \right] = \lim_{p \to 0} \left[\frac{1}{p^{2} + p^{2}W(p)} \right] = \lim_{p \to 0} \left[\frac{1}{p^{2}W(p)} \right]$$

3. Пример

Да се определят коефициентите на грешките за следните три САУ:

<u> 19. Качество на САР. Точност в установен режим.</u>

(a)

1)
$$v = 1(t);$$
 $V(p) = \frac{1}{p}$

$$\varepsilon_{S} = \lim_{p \to 0} \frac{1}{1 + W(p)} = \lim_{p \to 0} \frac{1}{1 + \frac{k}{Tp + 1}} = \lim_{p \to 0} \frac{Tp + 1}{Tp + 1 + k} = \frac{1}{1 + k}$$

2)
$$v = t$$
; $V(p) = \frac{1}{p^2}$

$$\varepsilon_{V} = \lim_{p \to 0} \frac{1}{pW(p)} = \lim_{p \to 0} \frac{1}{p + 1} = \lim_{p \to 0} \frac{Tp + 1}{pk} = \infty$$

3)
$$v = t^2$$
; $V(p) = \frac{1}{p^3}$

$$\varepsilon_a = \lim_{p \to 0} \frac{1}{p^2 W(p)} = \lim_{p \to 0} \frac{1}{p^2 \frac{k}{Tp+1}} = \lim_{p \to 0} \frac{Tp+1}{p^2 k} = \infty$$

(6)
1)
$$v = 1(t);$$
 $V(p) = \frac{1}{p}$
1 $p(Tp+1)$

$$\varepsilon_{S} = \lim_{p \to 0} \frac{1}{1 + W(p)} = \lim_{p \to 0} \frac{1}{1 + \frac{k}{p(Tp+1)}} = \lim_{p \to 0} \frac{p(Tp+1)}{p(Tp+1) + k} = 0$$

2)
$$v = t$$
; $V(p) = \frac{1}{p^2}$

$$\varepsilon_{V} = \lim_{p \to 0} \frac{1}{pW(p)} = \lim_{p \to 0} \frac{1}{p} \frac{1}{p(Tp+1)} = \lim_{p \to 0} \frac{Tp+1}{k} = \frac{1}{k}$$

3)
$$v = t^2$$
; $V(p) = \frac{1}{p^3}$

$$\varepsilon_{a} = \lim_{p \to 0} \frac{1}{p^2 W(p)} = \lim_{p \to 0} \frac{1}{p^2 \frac{k}{p(Tp+1)}} = \lim_{p \to 0} \frac{Tp+1}{pk} = \infty$$

1)
$$v = 1(t);$$
 $V(p) = \frac{1}{p}$
$$W(p) = \frac{k(T_1p+1)}{p^2(T_2p+1)}$$

1)
$$v = l(t);$$
 $V(p) = \frac{1}{p}$
$$\varepsilon_{S} = \lim_{p \to 0} \frac{1}{1 + W(p)} = \lim_{p \to 0} \frac{1}{1 + \frac{k(T_{1}p + 1)}{p^{2}(T_{2}p + 1)}} = \lim_{p \to 0} \frac{p^{2}(T_{2}p + 1)}{p^{2}(T_{2}p + 1) + k(T_{1}p + 1)} = 0$$

2)
$$v = t$$
; $V(p) = \frac{1}{p^2}$

$$\varepsilon_{V} = \lim_{p \to 0} \frac{1}{pW(p)} = \lim_{p \to 0} \frac{1}{p\frac{k(T_1p+1)}{p^2(T_1p+1)}} = \lim_{p \to 0} \frac{p(T_2p+1)}{k(T_1p+1)} = 0$$

$$\varepsilon_{V} = \lim_{p \to 0} \frac{1}{pW(p)} = \lim_{p \to 0} \frac{1}{p \frac{k(T_{1}p+1)}{p^{2}(T_{2}p+1)}} = \lim_{p \to 0} \frac{p(T_{2}p+1)}{k(T_{1}p+1)} = 0$$

$$3) \quad v = t^{2}; \qquad V(p) = \frac{1}{p^{3}}$$

$$\varepsilon_{a} = \lim_{p \to 0} \frac{1}{p^{2}W(p)} = \lim_{p \to 0} \frac{p^{2}}{p^{2} \frac{k(T_{1}p+1)}{p^{2}(T_{2}p+1)}} = \lim_{p \to 0} \frac{T_{2}p+1}{k(T_{1}p+1)} = \frac{1}{k}$$

Таблица 1

	a) $W(p) = \frac{k}{Tp+1}$	$\delta)$ $W(p) = \frac{k}{p(Tp+1)}$	B) $W(p) = \frac{k(T_1p+1)}{p^2(T_2p+1)}$
$\varepsilon_s - (v = 1(t))$	$\frac{1}{k+1}$	0	0
ε_v $(v=t)$	8	$\frac{1}{k}$	0
ε_a $(v = t^2)$	∞	∞	$\frac{1}{k}$

Коефициентите на грешката \mathcal{E}_{S} , \mathcal{E}_{V} , \mathcal{E}_{a} , зависят само от k и броя на интегриращите звена v, а не зависят от звената от друг тип, т.е., за произволни САУ от съответния вид се получават същите резултати.

Най-благоприятен за установената стойност на САУ е режимът "равновесно състояние" (v(t)=1(t)). Въпреки това, статическата САУ винаги има грешка $\varepsilon_{\rm S}=1/(1+k)$, която може да се намали чрез увеличаване на k . За астатическите системи $\varepsilon_{\rm S}=0$.

При " $\mbox{\it deuxehue c постоянна скорост}$ " статическата САУ има $\mbox{\it $\varepsilon_{
m V}$}
ightarrow \infty$, т.е., изходът изостава все повече и повече от входа. САУ с $\mbox{\it $v=1$}$ следи входния сигнал ($\mbox{\it $v(t)=t$}$) с грешка $\mbox{\it $\varepsilon_{
m V}$} = 1/k$. Грешката може да се намали чрез увеличаване на $\mbox{\it k}$. САУ с $\mbox{\it $v=2$}$ следи входния сигнал без грешка $\mbox{\it $\varepsilon_{
m V}$} = 0$.

Най-тежък е режимът " $\partial вижение \ c \ nocmoянно \ ycкорение"$. При статическа и астатическа САУ с $v=1, \quad \mathcal{E}_a \to \infty$. САУ с v=2 следи входния сигнал ($v(t)=t^2$) с грешка $\mathcal{E}_a=1/k$. Грешката може да се намали чрез увеличаване на k.

4. Връзка между точност и устойчивост

Грешките в установен режим намаляват при увеличаване на k и ν на отворената система, което води до намаляване на запасите на устойчивост на затворената система.

(б) Въвеждане на астатизъм

Повишаването на реда на астатизма обикновено води до влошаване на устойчивостта на САУ. Обаче, не всички системи с астатизъм от втори и по-висок ред са неустойчиви. Например системата, представена в таблицата, като вариант (в) е устойчива при $T_1 > T_2$, което лесно се проверява чрез алгебричен критерий. За да се осигури устойчивост в тракта на тази система е добавено форсиращо звено. Това вече е въпрос от синтеза на коригиращи звена, който ще бъде разгледан по-подробно в някоя от следващите лекции.

(1) структурно-неустойчива:

$$W(p) = \frac{k}{p^2(Tp+1)}$$

(2) устойчива при $T_1 > T_2$:

$$W(p) = \frac{k(T_1p+1)}{p^2(T_2p+1)}$$