UNCLASSIFIED

AD NUMBER AD097141 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; JUL 1956. Other requests shall be referred to US Air Force Wright Air Development Center, Wright-Patterson AFB, OH 45433. **AUTHORITY** AFWAL ltr, 17 Apr 1980

THIS REPORT HAS BEEN DELIMITED

AND CLEARED FOR PUBLIC RELEASE

UNDER DOD DIRECTIVE 5200.20 AND

NO RESTRICTIONS ARE IMPOSED UPON

ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

A D 7 A D Armed Services Technical Information Agency

Reproduced by DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, OHIO

This document is the property of the United States Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address: Armed Services Technical Information Agency, Document Service Center, Knott Building, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCUSE NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANU: ACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

UNCLASSIFIED

WADC TECHNICAL REPORT 55-345 ASTIA DOCUMENT No. AD 97141

DEVELOPMENT OF AN IMPROVED CORROSION INHIBITOR FOR WATER-ALCOHOL SOLUTIONS

DWIGHT B. CONKLIN BROCK G. PEACOCK JAMES E. COLE

RESEARCH AND DEVELOPMENT DIVISION WYANDOTTE CHEMICALS CORPORATION

JULY 1956

This report is not to be announced or distributed automatically in accordance with AFR 205-43A, paragraph 6d.

WRIGHT AIR DEVELOPMENT CENTER

DEVELOPMENT OF AN IMPROVED CORROSION INHIBITOR FOR WATER-ALCOHOL SOLUTIONS

DWIGHT B. CONKLIN BROCK G. PEACOCK JAMES E. COLE

RESEARCH AND DEVELOPMENT DIVISION WYANDOTTE CHEMICALS CORPORATION

JULY 1956

MATERIALS LABORATORY
CONTRACT No. AF 33(616)-2442
PROJECT No. 7312

WRIGHT AIR DEVELOPMENT CENTER
AIR RESEARCH AND DEVELOPMENT COMMAND
UNITED STATES AIR FORCE
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

Carpenter Litho & Prtg. Co., Springfield, O. LOO - February 1957

POREMORD

This report was prepared by the Wyandotte Chemicals Corporation under USAF Contract No. AF 33(616)-2442. This contract was initiated under Project No. 7312. "Finishes and Materials Preservation", Task No. 73122. "Corrosion and Corrosion Prevention", and was administered under the direction of the Materials Laboratory, Directorate of Research, Wright Air Development Center, with Lt. H. L. Stevens acting as project engineer.

This report covers period of work from April 1954 to July 1955.

Proprietary surfactants have been studied in this work in systems other than those for which they were designed. In fairness to the manufacturers of these compounds it should be emphasized that the results do not necessarily reflect their comparative value as surfactants in their more conventional applications.

The proprietary inhibitors that were evaluated for this specific use have been coded to prevent misapprehension on the part of competitive commercial suppliers.

WADC-TR-55-345

ABSTRACT

A corrosion inhibitor was developed for use with alcohol-water injection fluid for aircraft engines. It inhibits corrosion of steel, stainless steel and aluminum alloys, is soluble in methanol, ethanol, water or mixtures of the liquids, and lowers surface tension of the mixtures. Although the inhibitor is chemically compatible with hard water solutions, inhibition efficiency is inversely proportional to water hardness. Solutions made with water of more than 100 parts per million hardness, require an excessive amount of inhibitor for inhibition of corrosion. The inhibitor is a mixture of dicyclohexyl-amonium nitrite, urea and 1-nitropropane in an anhydrous methanol solution. Data gathered from initial screening of 150 corrosion inhibiting compounds is presented in detail.

PUBLICATION. REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

M. R. WHITMORE
Technical Director
Materials Laboratory
Directorate of Research

TABLE OF CONTENTS

ı.	INTRODUCTION	•	•	1
II.				3
	General Screening Technique	•		3
	Preparation of Test Specimens	•	•	5
	Water-Alcohol Solutions			3 5 5
	Letter Method of Rating Inhibitors			6
	Photographic Records			6
	Accelerated Screening Tests			8
	Surface and Interfacial Tension Determinations			12
III.	EXPERIMENTAL DATA AND DISCUSSION			12
	General Screening Tests			14
	Solubility of Candidate Inhibitors at Low Temperatures			32
	Surface Tension Studies on Surfactants in Methanol			
	Solutions	•	•	3 3
	Accelerated Survey Corrosion Studies with Inhibitor-			
	Surfactant Formulations	•	•	37
	Studies on Promising Inhibitor Systems	•	•	39
	Surface Tension Evaluations	•	•	39
	Accelerated Corrosion Tests		•	42
	Non-Combustible Solids			42
	Reduction of Non-Combustible Solids in Promising			
	Inhibitor Systems			44
	Substitute for Sodium Benzoate			45
	Reduction of Potassium Nitrite			46
	Replacement of Potassium Nitrite			46
	Nonionic Surfactant Replacements for Aerosol OT .			49
	Corrosion Tests with Selected Inhibitor Systems			51
	Surface and Interfacial Tension Values of Selected			•
	Inhibitors			58
	Compatibility of Inhibitors with Hard Waters			60
	Foaming Characteristics of Inhibitors			61
	Inhibitor Concentrate Samples CR-2990-Al, -A2,			
	and -A3 for WADC			61
	Stability of Inhibitor Systems in Methanol and Ethanol	•	•	62
IV.	SUMMARY AND CONCLUSIONS	•	•	6 6
٧.	BIBLIOGRAPHY	•		72

	LIST OF ILLUSTRATIONS	Page
Figure		
1	Component Parts and Assembled Corrosion Test Vessel	14
_	Used in General Screening in Sold by Volume Methanol	7
2	Control Specimens Subjected to 200 of Solutions	7
		9
3	Assembled Corrosion Testing Unit 5554 Aluminum Alloy	
14	The Type 304 Stainless Steel 2027-17	1.3
5	Photographs of SAE 1010 Steel and Candidate Inhibitors mens After Use in Evaluation of Candidate Inhibitors	24 55
6	Steel Specimens Used in less to Described in Tables	= (
7	Aluminum Specimens used in loss and in los	56
8	Coupled Aluminum Specimens used in I	5'
9	Compliance of Inhibitor Concentrates was a Exhibit A	6
10	O-M-232 Methanol Solubility Requirements MIL-A-6091 De- Compliance of Inhibitor Concentrate with MIL-A-6091 De- natured Ethanol Solubility Requirements of Exhibit A	6

LIST OF TABLES

X

Table		Page
1 2	Studies of an Accelerated Screening Test Method Periodic Observations of the Corrosion of SAE 1010 Steel	10
	and 2024-T3 Aluminum by 20 Percent Methanol-In-Water	
3	Solution. Initial Screening Program	15
)	ing Program in Descending Order of Effectiveness	23
4	Solubility of Candidate Inhibitors in 20 Volume Percent	_
5	Surface Tension of 1% Solutions of Candidate Inhibitors	32
,	in 20 Volume Percent Methanol	33
6	Surface Tension of Surfactant-Methanol Solutions	34
7	Identification of Surfactants Studied	36
8	Corrosion Studies on Candidate Inhibitors in 20 Volume	
•	Percent Methanol Solutions	38
9	Surface Tension of Methanol Solutions Containing In-	1.0
10	hibitors and Aerosol OT	40
11	Studies on Corrosion Inhibitors for Water-Alcohol Systems .	43
	Non-Combustible Solids Calculations on Promising Inhibitor Systems	44
12	Protective Effect of Benzoic Acid-Amine Formulations	45
13	Effect of Potassium Nitrite Reduction in Binary Systems with Urea or Acetamide	47
14	Performance of Organic Nitro Compounds Vs. Potassium	71
•	Nitrite in Corrosion Inhibitor Formulas	48
15	Protective Effect of 1-Nitropropene Formulations	49
16	Surfactant Activity and Compatibility with Candidate	
17	Inhibitors in 25 Volume Percent Alcohols	50
18	Composition of Selected Inhibitor Concentrates	52
	Water-Alcohol Solutions	53
19	Visual Observations on Specimens from Tests Shown in Table 18	54
20	Surface and Interfacial Tension of Inhibited 25% by Volume Alcohols	59
51	Stability of 25% Methanol Solutions Diluted from In-	- •
	hibited Methanol by Hard Waters	60
22	Freezing and Boiling Point Data for Alcohol Solutions	65

TECHNICAL SUMMARY

K

The work covered by this report resulted in three inhibitor formulations, CR-2990-Al, CR-2990-A2, and CR-2990-A3. Subsequently they were evaluated by the Materials Laboratory of Wright Air Development Center. The conclusions of the Materials Laboratory are:

- a. The three inhibitors are effective in methanol-distilled water solutions.
- b. At an optimum concentration, effective inhibition can be obtained in both liquid and vapor phases of inhibited methanol-hard water solutions. The concentration of the three inhibitors needed for effective inhibition increases as the total dissolved solids of the water used for dilution of the alcohol increases. The amount needed to prevent corrosion of SAE 1010 steel and of 2024 aluminum alloy in a 26% methanol-hard water (450 parts per million calcium carbonate) solution is 2% of the mixture volume, or 8% of the methanol volume.
- c. The three inhibitors adversely affect reciprocating engine performance (knock) numbers of aviation fuel almost in proportion to their concentrations.

In view of these facts, the inhibitors are considered to be effective for methanol-distilled or deionised water solutions. They may find use with waters of low hardness, but due to the large concentration of inhibitor needed, they are not appropriate for use with extremely hard water solutions that are found on many Air Force bases.

I INTRODUCTION

Alcohol-water mixtures are used as thrust acceleration fluids in aircraft jet and rotary engines. Corrosion has been experienced with these mixtures in the blending and refueling tanks, the supply tank and the injection systems. The corrosion preventative most commonly employed to the present time has been a soluble oil of the type covered by specification MIL-C-4339. This type of inhibitor is not entirely satisfactory for the following reasons.

- a. The compound must be thoroughly dispersed in the water prior to addition of the alcohol.
- b. Even with thorough dispersion, an oil layer tends to separate with time particularly when hard water is used.
- c. Solids precipitated when hard water is used clog filter systems.
- d. The inhibitor does not provide adequate protection to metals in the vapor phase.

The aim of this research program was the development of better corrosion inhibitors for use in aircraft alcohol-water injection systems. The protection of tanks used for storage and transportation was an immediate objective. The inhibitors were expected to have the following properties (as quoted from the amended Exhibit A of the contract):

- 1. The inhibitor may be a single compound, a mixture of compounds, or solution, provided the desired properties are obtained. The amount to be added shall not be excessive.
- 2. The inhibitor shall be suitable for mixing with undiluted methanol and ethanol, conforming to Specifications 0-M-232 and MIL-A-6091 respectively, at the time of packaging, or at an Air Force Base in either concentrated or diluted form.
- 3. At the concentration level needed for inhibition, the inhibitor shall be soluble from -65°F. or 10°F above the freezing point of the solution, to 160°F or 10°F below the boiling point, in the following solutions: anhydrous methanol (Spec. 0-M-232), a 95% ethanol-methanol mix (Spec. MIL-A-6091), and either of the above diluted with water over the 20 to 70% alcohol by volume concentration range. Separation with time shall not occur.

Manuscript released by authors June 1956 for publication as a WADC Technical Report.

WADC-TR-55-345

- 4. The presence of the inhibitor shall not cause excessive precipitation over what would normally occur when the temperature of the solutions in 3 (above) is varied over the limits specified.
- 5. The inhibitor shall effectively inhibit corrosion in aircraft alcohol-water systems. For the purpose of a laboratory type evaluation, the effect of the inhibitor on 1020 steel, aluminum alloy 245-T6, and aluminum alloy 245-T6 coupled to Type 304 stainless steel is considered indicative of its performance in an actual aircraft system. The inhibitor shall inhibit in both liquid and vapor phases.
- 6. The inhibitor shall not form over 100 ppm non-combustible solids based upon the concentration used in a 50-50 alcohol-water mix.
- 7. The inhibitor shall provide a surface tension and interfacial tension equal to or less than that obtained with 0.05% Tri-ton X-100 in a 30% alcohol-water mixture.
- 8. The cost and availability of the inhibitor shall not preclude its use in time of National Emergency.
- 9. The inhibitor shall have a reasonable shelf life, either by itself or when mixed in alcohol-water solutions.
- 10. The inhibitor shall be soluble in undiluted alcohol conforming to Specifications 0-M-232 and MIL-A-6091 at a concentration equal to four times that needed to effectively inhibit cornosion in a solution of 25% alcohol, 75% tap water. Effective inhibition is considered to be as is described in article five above. If absolutely necessary, small amounts of water (up to four percent) may be added to anhydrous alcohol to increase the solubility of the inhibitor.

In general four major approaches to the problem were pursued:

- 1. A moderately comprehensive literature survey to provide a list of corrosion inhibitors for screening and to indicate corrosion test methods suitable for the present program.
- 2. A general corrosion screening program which included the examination of a relatively large number of candidate inhibitors to select those effective in the prescribed wateralcohol solutions.

- 5. Further examination of the materials that successfully passed the requirements of the general screening program, and of candidate agents for lowering surface and interfacial tension.
- 4. Comprehensive testing and evaluation of candidate inhibitors-surfactant combinations in order to establish at least three inhibitor formulas having the characteristics specified in Exhibit A.

Due to the multiplicity of characteristics required in a successful formula some exploratory portions of the work had to be conducted without regard to some of the requisites for an acceptable compound. For instance, many preliminary corrosion prevention, surface activity and solubility evaluations were carried out on formulations known to have excessive residual non-combustible solids as set forth under (6) of Exhibit A. Subsequently, modified systems were employed which met this requisite and were acceptable in other respects.

II EXPERIMENTAL PROCEDURES AND EVALUATION TECHNIQUES

In the initial phases of this work, a literature survey was conducted in order to compile a list of candidate inhibitors for screening purposes. During this literature survey various corrosion test methods which might be applied in the present problem were reviewed. No specific method suitable for evaluation of candidate corrosion inhibitors in these water-alcohol systems was found. The following procedures are based on methods found in the literature, modified by Wyandotte experience in corrosion testing.

GENERAL SCREENING TECHNIQUE

A screening method was developed that could rapidly cover a large number of compounds. It was recognized that the volume of the testing solution should be large enough to avoid any appreciable change due to chemical exhaustion of any ingredients of the solutions. Relying on past experience, a volume to area relationship was selected such that the approximately 5 square inch surface of the specimen was exposed to one liter of testing solution. A two quart Mason canning jar was selected as a suitable vessel. In control tests, duplicate specimens were tested, i.e., two in the liquid phase and two in the vapor phase as shown in Figure 1. In the screening studies only two specimens were used per jar, one in each phase which furnished the volume to area relationship in the liquid phase mentioned above. The specimens were suspended with

Fig. 1. Component parts and assembled corrosion test vessel used in general screening program.

- A. Two-quart Mason jar.
- B. Lengths of 1/16" diameter glass cord with slip-knot.
- C. Metal test specimens.
- D. Assembled unit. Note: This was a control test jar. Test specimens were suspended from the center of the coupon and only one to each phase.

WADC-TR-55-345

4

1/16 inch diameter glass cord by fastening with a slipknot around the center of the specimen. The upper end of the cord was clamped to the metal fixture at the neck of the jar or held in place beneath the rubber jar ring. To prevent excessive fraying of the glass cord, the ends were fire-polished.

Preparation of Test Specimens.

In the initial screening phases of this work, two test metals were used, SAE 1010 cold rolled mild steel and aluminum alloy 2024-T3 (formerly designated 248-T3). Coupons 3 inch x 3/4 inch x 1/16 inch were sheared from stock sheets. These specimens were sandblasted until a uniform surface was obtained. After sandblasting the coupons were degreased by an acetone dip, dried by air blast and stored in a desiccator until used. Subsequently, the coupons were handled with rubber tipped forceps or rubber gloves.

Water-Alcohol Solutions.

Inhibition of corrosion was studied in two alcohols, methanol (methyl alcohol) covered by Federal Specification O-M-232, and specially denatured ethanol (ethyl alcohol) covered by specification MIL-A-6091. The nominal composition of the latter is 90% ethanol, 5% methanol, and 5% water. It was required that corrosion be inhibited in solutions containing from 20 to 100% alcohol by volume of either of these alcohols. It was assumed (and confirmed later) that the 20% methanol in water would be the most corrosive toward the test metals so this solution was used in the initial screening work. Dilution of the alcohols was made with Wyandotte city tap water which has the following composition in ppm: silica (SiO2) 2.4, calcium (Ca) 27.0, magnesium (Mg) 6.8, sodium (Na) 4.9, potassium (K) 1.1, bicarbonate (HCO_3) 88.0, sulfate (SO_4), 17.0, chloride (Cl) 10.0, (Ref.: Industrial Utility of Public Water Supplies, 1952 Part 1, Geological Survey Water Supply Paper 1299). To prepare a solution of candidate inhibitor, 15 by weight of the material was dissolved or suspended in 20% by volume methanol solution and allowed to stand over night. Frequently an incompatibility was encountered. Any gross floculation or sediment which appeared was removed by filtration or separated by decantation the following morning. Only the supernatant liquid in the latter case was employed for corrosion tests. It is recognized that this step eliminated knowledge of the exact concentration of the inhibitor in the solution but it appeared to be the most feasible approach in a rapid screening procedure. In some cases the inhibitor was completely soluble to the extent of 15 in the water-alcohol solution yielding a clear liquid. In other cases, a clear liquid resulted only after filtering or decenting. In a few instances a colored or opaque solution of the candidate inhibitor was used in the tests.

After the jar was prepared with the test specimen in place, it was exposed in a room thermostatted at $104^{\circ} + 3^{\circ}F$. Periodic observations were made of these specimens to observe the protective action of the candidate inhibitor. In order to determine the minimum time required for significant corrosion in these specific conditions, several untreated controls were run before inhibitor tests were started. Controls were also maintained during the testing period. A set of controls is shown in Figure 2. The steel and aluminum specimens were placed in separate vessels in order to avoid the possibility of complication due to mixtures of corrosion products. Periodic observations were recorded on specially printed record sheets.

Letter Method of Rating Inhibitors.

In order to record the relative degree of protection afforded by candidate inhibitors under the given test conditions, an arbitrary system of letter ratings was employed. Those metal specimens which appeared to have less than 20% of the surfaces attacked by the solutions after a stated exposure were rated "A"; specimens showing corrosion of 20-39% of the surface area were rated "B"; those corroded 40-59% were rated "C" and those corroded 60% or more were rated "D". In the tabilar data each periodic observation made of the test panels is indicated by a numerical subscript which designates the time in days since the beginning of the tests. Compounds having a rating of "B" or higher for at least a 30 day period were selected for further study. Other materials showing a "B" grade protection for at least 20 days were grouped t be considered in the event that too many materials in the first group failed to meet other specified requirements. If either metal showed a degree of corrosion greater than a "B rating" in either the liquid or vapor phases the particular compound involved was tentatively dropped from further consideration.

Photographic Records.

As a given test was terminated, the specimens were removed from the solution and scrubbed briskly with a nylon bristle toothbrush under the running tap. The specimens were then rinsed in acetone, air dried and mounted with paper cement on white Bristol board. The specimens were aligned opposite the proper code number and beneath the heading which indicated the kind of metal and whether the exposure had been made in the liquid or the vapor phase. For purposes of comparison, each photograph includes a set of untreated control specimens in the initial sandblasted condition and a set of panels which had been exposed 20 days in a 20% by volume solution of methanol in water without inhibitor.

Fig. 2. Control specimens subjected to 20% by volume methanol solutions.

A. Aluminum Specimens

Left - untreated Right - exposed 5 days in the liquid phase

B. Aluminum Specimens

Duplicate samplés exposed 20 days in the vapor phase

C. Steel Specimens

Sample at left is untreated. (Stains the photographic in origin). The other 3 samples were exposed 20 days in the liquid phase.

D. Aluminum Specimens

Sample on left is untreated. Other 5 cmaples were exposed 20 days in the liquid phase.

ACCELERATED SCREENING TESTS

A limited effort was directed towards the development of an accelerated corrosion technique for screening further the effective candidate inhibitors disclosed by the general screening method. It was intended that this procedure be more severe in order to reduce the number of inhibitors to be carried into other specifications tests.

Two major changes in conditions over the general screening techniques were employed in this accelerated method. Constant aeration by filtered, compressed air was used and the exposure temperature increased to 136° ± 1°F. The physical equipment employed was very similar to that used in the earlier program. Two-quart Mason canning jars were prepared as before with the metal specimens suspended in methanol solutions or in the vapor phase above the solutions. Since the higher temperature was to be employed a reflux condenser was necessary to minimize loss in liquid volume through the test period. The glass top of the Mason jar was replaced with a rubber stopper bored appropriately to receive the condenser and the air supply tube. The jars were placed in a mineral oil bath thermostated at 136° ± 1°F. A diagram of an individual unit assembly is shown in Figure 3. Sixteen of these units were operated at one time.

In the general screening program, the specimens were sandblasted in order to obtain a reproducible, quickly obtainable uniform surface. The use of sandblasted surfaces in corrosion work however has certain disadvantages as compared to hand-rubbed specimens. In the accelerated screening tests, hand-rubbed specimens were used. Coupons of 1010 mild steel, 2024-T3 aluminum alloy and, for use in coupled specimens, type 304 stainless steel were hand-polished to a uniform finish with No. 240 grit aluminum oxide. A damp cloth was dipped into the powdered aluminum oxide and rubbed on the surface of the specimens. An alteration of the direction of rubbing was made such that as scratches appeared oriented on one axis of the specimen subsequent strokes were directed perpendicularly until the previous scratch marks were removed. No imbedding of the aluminum oxide on the surface of the metal specimens could be detected.

As the general screening program proceeded, it became apparent that the mild steel was more suitable than the aluminum for screening studies. Comparatively little weight loss was encountered with the aluminum specimens. Only the steel specimens therefore were used in certain intermediate phases of the general program. In order to establish a reliability of the accelerated method and a practicable exposure time necessary to produce significant weight loss data with steel, replicate untreated control specimens were run. The results of these studies conducted in 20% by volume methanol are shown in Table 1.

FIG. 3. ASSEMBLED CORROSION TESTING UNIT USED IN ACCELERATED PROCEDURE

TABLE 1

STUDIES OF AN ACCELERATED SCREENING TEST METHOD

Exposure in 20% methanol at 136° ± 1°F.

			Tripoment of the			,	•					
•			1010 Steel	teel					2024-T3 Aluminum	luminu	8	
Metal Exposure, Hours	42	1000	16 Linita Vapor		8 Liguid Vapor	Vapor	Edund Vapor		Liguid	Vapor	Liguid	Vapor
Exposure, Phase	Today printer	Va Port						4		4 7	α,	+3.5
Ter No. 1	-49.0 -5	-21.8	31.8 -48.9 -34.7 -22.8	-34.7	-22.8	-33.2	-3.5	-: ‡	-7.8			
	4 05	-75.9	-75.9 -42.0	-67.3 -24.3	-24.3	-18.7	-3.0	+3.8	-2.7	43.6	-2.1	+2.7
N		, a	אַען	-55.6 -24.7	-24.7	-26.4	1.5-	+2.5	-2.7	₹	-2.0	+3.9
ĸ	75.7 - 60.7 - 60.7	60.7			7.50-0.41	-17.7	4.6-	9.4	-3.0	+3.0	-1.8	₹
4	-51.9	1.17	#:0C= T·JJ=	2 6	11.0 L/1.		, F	+3.1	-3.2	5.0	-1.9	r: ‡
'n	-57.2	-57.2 -27.2 -45.5	47.0	D. V.	7.60	ر بارد بر بارد	, 4-	8.	.s.3	45.9	-1.9	4.5.4
9	-60.3	かまっ	2・6 かまー	-40.0	1.(3-							1
discussion to the	1.45.	2. 44-	-46.6	-46.5	-46.5 -23.6	-21.8	4.5-	+3.8	-2.8	1. ₹	-1.9	+5.7
AVE. W. Change, me. 711.3	11.3	55.3	4.8	36.5	4.6	22.9	1.5	2.3	6.0	2.9	0.3	1.8
Names, me. Standard Deviation,		32.8	3 3.4	13.5	1.9	7.9	0.77	0.88	0.11	1.25	0.038	0.60
mg. Avg. Wt. Change,	-2.3	-1.8	3 -2.9	-2.9	-2.9	-2.7	4L.0-	+0.16	0.17		+0.28 -0.24	94.0+

¥

The weight change data presented in Table 1 show several characteristic features of the method. It is apparent that in the vapor phase variation in weight changes significantly increases with longer exposures of steel specimens. Although it is recognized that vapor phase protection is an important requirement of an inhibitor, it was felt that the liquid phase tests would be more discriminatory and reliable for screening work. Observations on the length of exposure required to furnish reliable data in the liquid phase tests indicated that the 16 or 24 hoursperiod would be adequate. Since an overnight test of 20 hours fitted well into the working schedule, this period was used in the accelerated screening program. As the number of experimental candidate inhibitors was narrowed to a few, a longer exposure period of 72 hours was used. In view of the time limitations of the contract, this was the longest period that could be given. While the results are believed to be indicative, it is recognized that much longer periods of testing, perhaps under other conditions, are necessary before sound conclusions may be drawn.

Since this evaluatory procedure was based primarily on weight changes, the specimens were cleaned of corrosion products before final weighing. An inhibited, acid cleaning solution (1) previously developed at Wyandotte for a similar purpose, was used on the mild steel specimens. For the aluminum specimens concentrated nitric acid was used. The cleaning procedure was as follows:

- 1. The specimen was removed from the alcohol-water solution and scrubbed briskly with a nylon toothbrush under the running tap.
- 2. The specimen was placed for one minute in the proper cleaning solution as indicated above.
- 3. The specimen was scrubbed once again under the running tap with the nylon toothbrush.
- 4. The specimen was dipped in acetone, dried in a filtered airblast and placed in a desiccator over night before weighing.

The use of the cleaning solution caused an average weight loss of 2 milligrams on non-corroded mild steel specimens. All the values presented in this report have been corrected for this weight loss. The aluminum control specimens cleaned in nitric acid remained at a constant weight.

In the later phases of the accelerated screening program, coupled specimens consisting of type 304 stainless steel and 2024-T3 aluminum alloy were included. In the preparation of the coupled specimens, a 5/16 inch diameter

^{(1) 10%} Naxonate G, 5% sodium bisulfate, 0.5% Pluronic F-68, 1.0% citric acid, 0.2% mercaptobenzothiazole, 83.3% water.

hole was drilled through each member of the couple centered at one end of the specimen. A one-half inch bolt of one-quarter inch diameter was placed through the two holes and a nut tightened with the fingers. The bolt and nut were made of type 304 stainless steel. The head of the bolt was in contact with the aluminum member to minimize scratching of the softer metal as the nut was tightened. Figure 4 is a photograph of the component parts and an assembled coupled specimen. In survey tests it was determined that the weight loss to the stainless steel member of the couple was negligible. Therefore in tables listing the results of weight losses to coupled specimens, the data are given for the aluminum member only. A supply of stainless steel specimens one inch wide already on hand was used and aluminum specimens cut in size to match. When the data were tabulated a size correction factor was applied in order to allow immediate comparison between weight change data for coupled and uncoupled aluminum.

SURFACE AND INTERFACIAL TENSION DETERMINATIONS

Since it is required that the surface and interfacial tension of the alcohol-water inhibitor meet certain requirements, it became necessary to include in an inhibitor composition a surfactant of suitable effectiveness. As these formulations were prepared the surface and interfacial tension values were checked in use alcohol solutions by the ring method using a Cenco-duNouy Interfacial Tensiometer. The standard procedures recommended by the instrument manufacturer were followed in these determinations. Values presented in this report have been corrected according to the usual methods.

III EXPERIMENTAL DATA AND DISCUSSION

The experimental program was first directed toward the evaluation of a large number of candidate inhibitors in a general screening procedure. Materials successfully passing this test were then examined to determine their ability to meet the other target requirements set up in Exhibit A of this contract. In general this involved evaluation of their solubility at lower temperatures and determination of the compatibility with selected surfactants. At a point in the work, promising inhibitors thus disclosed were next modified in order to meet the maximum non-combustible solids content requisite. Eventually the few selected compositions were further evaluated for corrosion protection against the test metals in comparison with the soluble oil covered by MIL-C-4339.

Fig. 4. The type 304 stainless steel-2024-T3 aluminum alloy coupled specimen used in corrosion studies.

CHURAL SCREENING TESTS

A total of 137 compounds was collected and tested as candidate inhibitors according to the general screening procedures described above. The tests initially included both SAR 1010 steel and 2024-T3 aluminum alloy. As the tests progressed it was recognised that the steel specimens were the most subject to corrosive attack. This was particularly true in the vapor phase. Accordingly in order to expedite the test program, aluminum specimens were eliminated from the screening tests with the provision that selected promising inhibitors would later be tested toward aluminum and the aluminum coupled with type 304 stainless steel.

The results of this screening work in terms of the letter designation method of rating are shown in Table 2. Following Table 2 photographs of the test specimens prepared as described above are presented (Figure 5). The data of Table 2 and the photographic evidence indicated that eleven compounds or combinations of compounds afforded protection under the test conditions for a minimum period of 30 days. Fifteen additional materials gave protection for a period of 20 days. These compounds are listed in Table 3 in an approximate order of decreasing effectiveness.

¥

PERIODIC OBSERVATIONS OF THE CORROSION OF SAE 1010 STEEL AND 2024-T3 ALUNCHUM BY 20 PERCENT METRABOL-IN-WATER SOLUTION.

Exposure Temperature: 104° + 3°F.

Maximum Inhibitor Concentration: 15

Visual Corrosion Evaluation (a)

Subscripts refer to the number of days exposure Aluminum Steel Vapor phase Liquid phase Code Candidate Liquid phase Vapor phase No. Inhibitor (b) Be 9 C14 20 Be 9 14 C20 De 9 14 20 28 As 9 14 Des Control --Dea Bgo Cas Be 9 14 20 As PFAs 14 As 9 B16 As 9 14 20 28 C31 2507 Ethylenediamine 20 28 31 C20 D28 31 28 31 Ag 12 21 Bs 12 21 As 12 21 Ds 12 21 2508 Dimethylaniline As PFAs 14 28 As 9 14 20 Be Co 14 20 As 9 14 2509 Proprietary C28 31 C28 D31 Des 31 B20 28 31 Ag Bg 14 As PFAs B14 Be # C14 20 C20 28 D31 De 9 14 20 2510 Proprietary C20 28 D31 28 Ds1 28 31 A2 7 13 21 A 7 13 21 Ag 7 13 21 Ae 7 13 21 2511 Sodium benzoate 28 57 28 37 28 37 28 37 As 14 21 28 As 14 21 28 As 14 Bel 28 2512 Acetamide-Potassium As 14 21 28 30 30 30 30 nitrite As 12 21 Ap 12 21 As 12 21 2513 p-Phenylenediamine Ds 12 21 Az 7 13 Bal Ae 7 13 Be1 Ag 7 B13 Me 7 18 21 C28 D37 2514 Proprietary C28 D37 C21 28 D37 28 37 Bs 11 19 26 PFAs 11 19 Ap 11 19 2515 Cyclohexylamine As 11 19 26 35 26 35 28 35 35 Ag 7 PFA13 Ae 7 PFA13 Ag 7 PFA13 Ag 7 PFA19 21 28 37 2516 Catechol 21 28 37 21 28 37 21 28 37 Ag 7 13 21 Ag 7 13 21 Ag 7 13 21 Ag 7 13 21 2517 Urea-Potassium 28 37 28 37 28 37 28 37 nitrite

⁽a) and (b): See footnotes at end of table.

TABLE 2 - (continued)

Visual Corrosion Evaluation (a)

No. Inhibitor (b) Liquid phase Vapor phase Liquid phase Vapor phase 2518 Propylene diamine Ag 7 13 21 28 37 Ag 7 13 B21 PFC21 28 37 Ag 7 13 28 37 Ag 7 13 21 28 37 Ag 7	Code	Candidate	Subscripts re		ber of days ex Alumin	
28 37 2837 PFC21 28 37 28 37 2519 Pyrogallol PFA2 7 13 21 B2 7 13 A2 7 13 21 A2 7 13 28 37 2520 Proprietary C5 D11 19 A5 11 B19 C5 D11 19 A5 11 B1 26 35 26 35 26 35 2521 Benzotriazole B5 D11 19 A5 11 19 B5 11 C19 A5 11 19 26 35 26 35 26 35 2522 Naphthylamine D3 11 18 27 A3 11 18 27 D3 11 18 27 A3 11 18 27 2524 Proprietary A3 D11 18 27 A3 C11 18 27 A3 D11 18 27 A3 11 18 2525 \$\beta\$-Naphthylamine.HCl PFA3 11 18 27 A3 11 18 D27 PFA3 D11 18 A3 11 18						Vapor phase
28 37	2518	Propylene diamine				A2 7 13 21 28 37
26 35 26 35	2519	Pyrogallol				A2 7 13 21 28 37
26 35 28 35 26 D35 26 35 2522 Naphthylamine D3 11 18 27 A3 11 18 27 D3 11 18 27 A3 11 18 2523 Proprietary A3 11 18 27 A3 B11 D18 A3 11 18 27 A3 B11 1 2524 Proprietary A3 D11 18 27 A3 C11 18 27 A3 D11 18 27 A3 11 18 2525 \$\beta\$-Naphthylamine.HCl PFA3 11 18 27 A3 11 18 D27 PFA3 D11 18 A3 11 18	2 52 0	Proprietary	-		·	A _{5 11} B ₁₉ 26 35
2525 Proprietary As 11 18 27 As B ₁₁ D ₁₈ As 11 18 27 As B ₁₁ 1 27 2524 Proprietary As D ₁₁ 18 27 As C ₁₁ 18 27 As D ₁₁ 18 27 As 11 18 2525 B-Naphthylamine.HCl PFAs 11 18 27 As 11 18 D ₂₇ PFAs D ₁₁ 18 As 11 18	2521	Benzotriazole			-	A _{5 11 19} 26 35
27 2524 Proprietary As D ₁₁ 18 27 As C ₁₁ 18 27 As D ₁₁ 18 27 As 11 18 2525 \$\beta\$-Naphthylamine.HCl PFAs 11 18 27 As 11 18 D ₂₇ PFAs D ₁₁ 18 As 11 18	2722	Naphthylamine	D _S 11 18 27	As 11 18 27	D ₃ 11 18 27	As 11 18 27
2525 \(\beta \) -Naphthylamine.HCl \(\beta \) FAs 11 18 27 As 11 18 D27 \(\beta \) FAs D11 18 \(\beta \) 11 18	2523	Proprietary	As 11 18 27		As 11 18 27	A ₃ B ₁₁ 18 27
<i>,</i>	2524	Proprietary	Ag D _{11 18 27}	Ag C ₁₁ 18 27	A ₃ D _{11 18 27}	Ag 11 18 27
	2525	β-Naphthylamine.HCl	PFA _{9 11 18 27}	A ₉ 11 18 D ₂₇		As 11 18 27
2526 Dicyclohexylamine B _{3 11} C _{18 27} A _{3 11} C _{18 27} PFA ₃ 11 18 27 A ₃ 11 18	2 5 26	Dicyclohexylamine	B _{3 11} C _{18 27}	A _{3 11} C _{18 27}	PFA ₃ 11 18 27	Ag 11 18 27
2527 p-Toluenesulfon- D _{S 11 18 27} A _{S D₁₁ 18 27} D _{S 11 18 27} A _{S 1}	2527		D _S 11 16 27	A _S D ₁₁ 18 27	D _S 11 18 27	Ag 11 18 27
2528 Resorcinol C ₃ D _{11 18 27} A _{3 11 18 27} C ₃ D _{11 18 27} A ₉ B _{11 1}	2528	Resorcinol	C ₃ D _{11 18 27}	A ₃ 11 18 27	C ₃ D _{11 18 27}	Ag B ₁₁ 18 27
2529 Proprietary D _{3 11 18} A _{3 11 18} D _{3 11 18} A _{3 11 18}	2529	Proprietary	D _{3 11 18}	A ₃ 11 18	D _{3 11 18}	A ₃ 11 18
2530 Sodium chromate- As 24 Cs 24 PFAs 24 As 24 Sodium hydroxide	2530		A _{8 24}	C8 24	PFA _{8 24}	As 24
2531 Sodium metasilicate A _{8 24} C _{8 24} A _{8 24} A _{8 24}	2531	Sodium metasilicate	Ae 24	C8 24	A _{8 24}	A _{8 24}
2532 Sodium chromate- As 24 29 As B24 D29 As 24 32 As 24 32 Calcium phosphate	2532		A ₈ 24 29	A ₈ B ₂₄ D ₂₉	As 24 32	Ae 24 32
2533 Potassium nitrite- A _{5 21 26} B _{5 21 D26} A _{5 21 26} A _{5 21 26} Sodium molybdate	2533		A5 21 26	B _{5 21} D ₂₆	A ₅ 21 26	A5 21 26

TABLE 2 - (continued)

Visual Corrosion Evaluation (a)

		Subscripts rei	fer to the numb	er of days exp	
0000	Candidate Inhibitor (b)	Stee Liquid phase	Vapor phase	Liquid phase	
No. 2534	Sodium chromate	As 21 26	B _{5 21} D ₂₆	Ag 21 26	A ₅ 21 28
2537	p-Cyclohexyl phenol	D ₅ 21	A ₅ 21	C ₅ D ₂₁	A ₅ 21
2538	Sodium perborate - Sodium phosphate	A ₁₃ 18 22 24	A ₁₃ 18 B ₂₂ C ₂₄	PFA ₁₃ 18 22 24	A ₁₃ 18 22 24
2539	Potassium nitrite	A ₁₃ 18 22 24	B ₁₃ 18 22 C ₂₄	A13 18 22 24	A ₁₃ 18 22 24
2540	Sodium nitrate	Dis	B ₁₃	PFA ₁₃	A ₁₃
2541	Sodium nitrate - Sodium chromate	A13 18	B ₁₃ D ₁₈	A ₁₃ 18	A ₁₃ 18
2542	Sodium chromate - Potassium nitrite	A ₁₃ 16	B ₁₃ D ₁₈	A ₁₃ 18	A ₁₃ 18
2543		A ₁₃ 22	B ₁₃ C ₂₂	A ₁₃ 22	A ₁₃ 22
2544	•	A ₁₃ 22 3 2	B ₁₃ 22 32	A ₁₃ 22 32	A ₁₃ 22 32
2545	_	A ₁₃ 22 24	B ₁₃ C ₂₂ 24	A ₁₃ 22 24	A ₁₃ 22 24
2540		A ₁₃ 22 24	B ₁₃ C ₂₂ C ₂₄	A ₁₃ 22 24	A ₁₃ 22 24
254	7 Proprietary	A ₇ 18	B7 C18	A _{7 18}	A _{7 18}
254		8 A ₇ 18	B7 C18	A ₇ 18	A ₇ 18
254	9 Proprietary	A7 18	B7 C18	A ₁₈	A ₁₈
255	• • • • • • • • • • • • • • • • • • •	A ₃₁	B ₇ 18 24 31	. A ₃₁	A ₃₁
•	51 Undecylenic acid	A ₃₁	A ₂₁ B ₃₁	A ₃₁	A ₃₁
	52 Tannic acid	PFB ₇ 10	C ₇ 10	D ₇ 10	A ₇ 10

PARE 2 - (continued)

Visual Corrosion Evaluation (a)

		Subscripts re	fer to the num	ber of days ex Alumin	posure
Code	Candidate Inhibitor (b)	Ste	Vapor phase	Liquid phase	Vapor phase
2553	Linoleic acid	B ₂₁	B ₁₅ C ₂₁	A ₂₁	B ₂₁
2554	Lactic acid	PFA ₁	D ₁	PFA ₁	A ₁
2555	Proprietary	A _{0.1}	A _B B _{S1}	A ₃ ,	As1
2556	Proprietary	Ans	As B15 C21	Ag ₁	Agı
2557	q -Naphthol	A ₀	A ₀	Da	PFA ₆
2558	Butylene oxide, mixed isomers	D ₇	C ₇	D7	A-7
2559	Glycerol mono-oleate	A 13	Be C13	As 15	Ag 15
2 5 60	Guanidine carbonate	As	Cs	PFA ₅	Ag
2561	Proprietary	D ₆	Ce	As	As
2562	Aluminum stearate	Ds	Ag	Ag	B ₅
2 5 63		As 15	As Cas	As 13	As 13
2564		PFB _{SO}	Ago	A ₁₉ PFA ₃₀	Aso
2565		z ₂	Az	Aı	Aı
2566	Proprietary	D ₁	A ₃	A ₂	Az
2 5 67		D_1	A ₂	Az	A ₁
2568	Bone oil	Ao 14	Be C14	Å8 14	B _B 14
2569	9 Oieic acid	Ag 14	B8 C14	A _B 14	A _B 14
257		Aso	Aso	Aso	Aso
257	l Ethyl stearate	D-7	A7	A ₇	A7
_	2 n-Butyl benzoate	D ₇	B ₇	D ₇	A ₇
-	73 Benzoic acid	PFA ₇	D ₇	D ₇	A-7

WADC-TR-55-345

TABLE 2 - (continued)

Visual Corrosion Evaluation (a)

		87.8	81	aber of days ex	Vapor phase
ode	Candidate Inhibitor (b)	Liquid phase	Vapor phase	Liquid phase	100
2574	Ricinoleic acid, sodium salt	Ago	B ₁₃ C ₂₀	A20	Aeo
0575	p-Toluhydroquinone	D ₇	C ₇	D7	A7
	Tri-p-tolylphosphit	e A ₁₃ C ₂₀	B ₁₃ C ₂₀	C ₁₃ D ₂₀	A7 PFA13 C20
2578		De	B 6	As	A ₆
2579		De	Be	De	
-		A ₁₈	B ₁₂ C ₁₆	A ₁₆	A ₁₂ B ₁₆
2580		De	B ₆	De	A ₆
2581		_	Be 30	A ₃₀	A ₁₉ PFB ₂₆ 3
258	3 o-Tolidine	D_{ullet}	A4	A ₄	A4
	4 m-Phenylene diamin	e D10 31	A10 B31	A ₃₁	A ₃₁
25 ⁸ 25 ⁸		D ₄	B4	A ₄	A4.
258		D_4	B4	A4	A ₄ A ₄
25		D_4	B4	A ₄	-
	88 Proprietary	D4	B ₄	A4	A4 D4
	89 Dimetnylethanolan	ine A4	D.	A ₄	ν 4
	90 Diethylethanolam	ine A ₄	D4		
	591 2-Mercaptoethano	L A ₄	D4		
2	592 3-Dimethylamino- propylamine	A ₄	D4		
2	593 3-Methoxypropyis	mine A4	D ₄		
	594 3-Isopropoxyprol amine		D ₄		

<u>Visual Corrosion Evaluation (a)</u> Subscripts refer to the number of days exposure

Code		Ste	el
No.	Candidate Inhibitor (b)	Liquid phase	Vapor phase
2595	3-Isopropylaminopropylamine	A4	D ₄
2596	3,3'Iminobispropylamine	A ₄	D_4
2597	2-Amino-benzenethiol	A _{4 11 18}	A4 B11 D18
2598	3-Diethylaminopropylamine	A ₄	C4
2599	Formamide	D_{Φ}	C4
2900	Dimethylpyrazine	D4	B4
2901	Dimethylisopropanolamine	A ₄	$D_{f 4}$
2902	Diethylaminoethanol	A ₄	D_{ullet}
2903	Proprietary	$D_{f 4}$	B ₄
2904	Triethanolamine titanate	B ₄ C ₁₁	B ₁₁
2905	Tri n-butylamine	C4	C4
2906	Triethyl phosphate	D_4	B4
2907	Tetramethyl ammonium hydroxide (10%)	A _{4 11}	B4 C11
2908	Ammonium chromate	A ₄	C4
2909	Pyridine-N-oxide	D_4	B4
2910	4-Picoline-N-oxide	D_4	B4
2911	Proprietary	D_4	B4
2912	Proprietary	D_4	B ₄
2913	Proprietary	D ₄	B4
2914	Piperidine	A34	B ₃₄
2915	Proprietary	D ₄	B ₄

TABLE 2 - (continued)

X

Visual Corrosion Evaluation (a) Subscripts refer to the number of days exposure

	Ste	el
No. Candidate Inhibitor (b)	Liquid phase	Vapor phase
2916 3,3'-Dimethoxybenzidine	D_4	A4
2917 Proprietary	D_{ullet}	A4
2918 Triacetin	D ₄	C4
2919 Proprietary	A ₅	Cs
2920 Proprietary	B ₅	C ₅
2921 Proprietary	A ₁₂ 19	B ₁₂ C ₁₀
2922 Proprietary	Da	B ₅
2923 Ammonium salt of perfluoro- octanoic acid	As	D ₅
2924 Ammonium salt of perfluoro-	D ₅	Ds
butyric acid 2925 Sodium molybdate-Sodium	A ₁₂ 19	B ₁₂ C ₁₉
tungstate 2926 Sodium perborate - Sodium carbonate	A ₅	Cs
2926 Sodium perborate - Source 2927 Proprietary	Ag 12	B ₅ D ₁₂
2928 Acrylamide - Sodium nitrite	A5 12	Bs Dle
2929 Proprietary	Ds	Cs
2930 Proprietary	Ds	C ₅
2931 Stearamide - Sodium nitrite	A _S	C ₅
2932 Stearamide - Ammonium chromate	A ₅	C ₁₂
2933 Proprietary	D12	C12
2934 Proprietary	D15	A ₅
2938 Proprietary	Ds	

WADC-TR-55-345

TABLE 2 - (continued)

X

Visual Corrosion Evaluation (a) Subscripts refer to the number of days exposure

Code	Candidate Inhibitor (b)	Ste Liquid phase	el Vapor phase
2939	4-Cyclohexylcyclohexanol	D ₅	Ag
2940	Proprietary	D ₅	A ₅
2941	Phenylundecanoic acid	D ₅	A ₅
2942	Dibenzylacetic acid	D ₅	A ₅
2943	Proprietary	D ₅	A ₅
5944	1,4-Butanediol	D ₅	A ₅
2945	Proprietary	D ₅	A ₅
2948	p-Methoxyphenol	De	Ae
2949	Proprietary	Da	A ₈
2950	Proprietary	Da	B ₈
2951	Proprietary	D ₈	B ₈
2952	Proprietary	Ae	C ₈
2953	Proprietary	A ₈ 13	A ₈ B ₁₃
2954	Proprietary	A _{8 13}	B ₈ 13
2955	Proprietary	Ba	Ba
2956	Proprietary	Da	Ae

⁽a) Letters refer to percent of surface area corroded:

A = less than 20

B = 20 to 39 C = 40 to 59

D = 60 or more
PF = "Protective film" (uniform discoloration)
(b) In two-component tests, equal parts of each material were placed in the alcohol-water solution.

TABLE 3

LIST OF 26 PROMISING INHIBITORS FROM THE GENERAL SCREENING PROGRAM IN DESCENDING ORDER OF EFFECTIVENESS

Exposure: 20% Aqueous methanol at 104° + 3°F; liquid and vapor phase.

Metals: SAE 1010 steel and 2024-T3 aluminum

Code No.		Component
	A.	Effective for 30 days (min.)
2517		Urea-potassium nitrite
2511		Sodium benzoate
2570		Sodium nitrite-oleic acid
2516		Catechol
2564		Naphthenic acids
2914		Piperidine
2551		Undecylenic acid
2555		Proprietary
2512		Acetamide-potassium nitrite
2544		Ammonium carbonate-ammonium hydroxide
2550		Proprietary
	B.	Effective for 20 days (min.)
2532		Sodium chromate - calcium phosphate
2538		Sodium perborate - trisodium phosphate
2539		Potassium nitrite
2533		Potassium nitrite - sodium molybdate
2534		Sodium chromate
2518		Propylene diamine
2515		Cyclohexylamine
255 6		Proprietary
2553		Linoleic acid
250 7		Ethylene diamine
2519		Pyrogallol
2545		Soluble Oil, MIL-C-4339
2514		Proprietary
2546		Proprietary
2584		m-Phenylenediamine

Fig. 5. Photographs of SAE 1010 steel and 2024-T3 aluminum specimens after use in evaluation of candidate inhibitors by the general screening method.

Fig. 5. (Continued)

X

Fig. 5. (Continued)

Fig. 5. (Continued)

Fig. 5. (Continued)

Pig. 5. (Continued)

Fig. 5. (Continued)

Fig. 5. (Continued)

One of the objectives which was anticipated to be very restrictive is the requirement on solubility of the inhibitor at low temperatures. Accordingly the first eleven candidate inhibitors of Table 3 were taken through a low temperature solubility screening test. It was assumed that these solutions would freeze at about 18°F. (average freezing point of 20% methanol and denatured ethanol) and so the solubility test was conducted about ten degrees F. above this point. To 100 ml. volumes of the alcohol, cooled by plunging into a freezing mixture bath, increments of the candidate inhibitors were added to determine whether at least one gram would dissolve at this temperature. The results are shown in Table 4.

SOLUBILITY OF CANDIDATE INHIBITORS IN 20 VOLUME PERCENT AQUEOUS

METHANOL AT 26 -30 F.

Code No.	Compound	Solubility in 100 ml. grams.
2517	Urea-Potassium nitrite	1.0
2511	Sodium benzoate	1.0
2570	Sodium nitrite - Oleic acid	Floating separation
2516	Catechol	1.0
2564	Naphthenic acids	Floating separation
2914	Piperidiné	1.0
2551	Undecylenic acid	Very slightly soluble
2555	Proprietary	1.0
2512	Acetamide-Potassium nitrite	1.0
2544	Ammonium carbonate-Ammonium hydroxide	1.0
2550	Proprietary	0.75

Three of the candidate inhibitors did not dissolve sufficiently at this temperature and were set aside. The remaining eight were carried into further tests.

SURFACE TENSION STUDIES ON SURFACTANTS IN METHANOL SOLUTIONS

Corrosion inhibitors to be used in this application are also asked to provide a surface tension equal to or less than that obtained with 0.05% Triton X-100 in a 30% alcohol-water solution. Since the inhibitors of Table 4 would not meet this specification, compounding with a surfactant became necessary. A number of wetting agents were selected on the basis of the manufacturers' information that the materials were soluble in alcohol. These were examined for their surface activity in 20-30% by volume methyl alcohol. The data obtained are presented in Table 6 and the surfactants are identified in Table 7 (page 36).

From Table 6 it is seen that Aerosol OT at concentrations above 0.05% was the most effective surfactant in this methanol solution concentration range. This material was therefore selected at an early stage for corresion studies in mixtures with the candidate inhibitors which passed the low temperature solubility test. The amount of Aerosol OT was varied in order to observe the surface tension effects of the mixture when dissolved in 20% by volume methanol. The results of these studies are presented in Table 5.

SURFACE TENSION OF 1% SOLUTIONS OF CANDIDATE INHIBITORS IN 20 VOLUME PERCENT METHANOL

Determinations by duNouy Tensiometer at 77°F.

		S	urface Ter	sion, Dyn	nes per Cr	n.
			Weight Pe	ercent Aer	cosol OT	
Code No.	Inhibitor	0	0.01	0.05	0.10	0.20
	None	53.0	35.1	30.4	23.8	24.9
2511	Sodium benzoate	49. 6	32.9	25.0	23.8	24.8
2512	Acetamide-Potassium nitrite	50.1	31.6	24.3	24.4	24.5
25 16	Catechol	45.5	34.0	27.4	23.5	25.4
2517	Urea-Potassium nitrite	50.9	31.2	24.0	25.1	24.3
2544	Ammonium Carbonate- Ammonium hydroxide	50.0	33.0	25.6	24.6	24.6
2550	Proprietary	40.2	31.9	32.4	32.5	32.4
2555	Proprietary	36.2	36.2	36.1	35.7	34.5
2914	Piperidine	41.2	35.5	29.6	27.1	27.1

TABLE 6
SURFACE TENSION OF SURFACTANT-METHANOL SOLUTIONS

Determination by duNouy Tensiometer at 77°F.

Surfactant	Weight Percent	Methanol Vol- ume Percent	Dynes per Cm.
		20	53.0
None		25	47.0
	••	30	47.5
		60	33.0
	₩ ₩	00	
	0.01	25	38.7
Advavet 10		25	30.8
	0.05	25	31.4
	0.10	-/	
	0.01	20,30	35.0,31.6
Aerosol OT	0.05	20,30	27.4,27.7
		20,30	24.0,25.6
	0.10	20,25	25.0,24.8
	0.20		
	0.25	60	32.0
	•		28.7
Alrosol B	0.01	25	28.5
MII OBOL D	0.05	25	28.3
	0.10(a)(b)	25	20.5
		05	28.0
Dergon OM	0.01	25	27.5
Dor Borr or	0.05	25	28.0
•	0.10	25	20.0
•			30.7
Igepal CA	0.01	25	28.8
TRehar on	0.05	25	
	0.10	25	29.5
	412 5	•	07.7
Winel 737	0.01	25	27.7 27.5
Ninol 737	0.05(a)	25	27.5
	0.10(b)	25	27.3
	0.10(-)	-	A.T. E
001	0.01	25	27.5
Ninol 1281	0.05(a)(b)		27.0
	0.0)(2)(3)	25	29.0
	0.10(b)	-/	•
A1 A	0.01	25	41.3
Nonic 218	0.05	25	33.3
		25	29.0
	0.10	25	29.3
	0.20	-/	

TABLE 6 - (continued)

Surfactant	Weight Percent	Methanol Vol- ume Percent	Dynes per Cn.
Oronite M1-8586	0.01	25	31.4
	0.05	25	31.0
	0.10	25	30.9
Pluronic L62	0.01	30	40.0
	0.10	30	36.8
	0.25	30	35.6
	0.01	60	32. 7
	0.25	60	33.1
Quasol 95	0.01	25	30.9
	0.05	25	27.6
	0.10	25	28.0
Synthetics B-79	0.01	25	32. 2
	0.05	25	30. 6
	0.10	25	31.2
Triton X-100	0.01	20,30	29.0,26.5
	0.05	20,30	28.2,28.0
	0.10	20,30	30.0,30.0
	0.25	60	33.0
Tween 85	0.01	30	37.3
	0.05	30	34·5
	0.10	30	33.6
	0.25	30	33.6
Victawet 12	0.01	25	29.0
	0.05	25	27.4
	0.10(a)	25	26.8

⁽a) Became cloudy above this concentration.

⁽b) Foamed excessively at this concentration.

TABLE 7

IDENTIFICATION OF SURFACTANTS STUDIED

- Advance Solvents and Chemical Corporation Alkylaryl polyether alcohol
- Aerosol OT American Cyanamid Company
 Dioctyl ester of sodium sulfosuccinic acid
- Alrosol B Alrose Chemical Company Fatty alkylol amide condensate
- Dergon OM Arkansas Company Amino fatty acid ester
- Igepal CA Antara Division, General Antline and Film Corporation Alkyl phenoxy polyoxyethylene ethanol
- Minol T37 Ninol Laboratories
 A fatty acid alkanolamide
- Ninol 1281 Ninol Laboratories
 A fatty acid alkanolamide
- Nonic 218 Sharples Chemicals, Incorporated Polyethylene glycol tertdodecylethioether
- Oronite N1-8586 Oronite Chemical Company Alkylaryl sulfonate
- Pluronic L62 Wyandotte Chemicals Corporation Polyoxyethylene-polyoxypropylene block polymer.
- Quasol 95 Quaker Chemical Products Company
- Synthetics B-79 Hercules Powder Company
 An ethylene oxide condensate of an alkylated phenol
- Triton-X-100 Rohm and Haas Company.
 Alkylaryl polyether alcohol
- Tween 85 Atlas Powder Company Polyoxyethylene sorbitan trioleate
- Victawet 12 Victor Chemical Works
 Alkyl triester phosphate

Proprietaries No. 2550 and No. 2555 produced relatively low surface tensions in their own right when dissolved in 20% by volume methanol. However, they were found to be less susceptible to a decrease in surface tension by increasing concentrations of Aerosol OT than the other selected inhibitors. The surface tension of the alcohol systems containing the other six candidate inhibitors appearing in Table 5 was readily decreased by increments of Aerosol OT. These latter materials except piperidine were taken into accelerated corrosion tests. Piperidine was omitted because on standing a flocculent separation was observed.

ACCELERATED SURVEY CORROSION STUDIES WITH INHIBITOR-SURFACTANT FORMULATIONS

Since the two proprietaries in Table 5 appeared to be less subject to lowering of the surface tension by the addition of Aerosol OT, and since the piperidine system proved to be unstable, these candidate inhibitors were dropped from consideration and the remaining five taken into a corrosion study by the accelerated method described in the section on experimental procedures. The reliability tests also presented there indicated that mild steel specimens would yield more indicative results than those from aluminum and that the 20-hour exposure period would give useful indications.

The five candidate inhibitors were dissolved in 20% by volume methanol containing 0.07% Aerosol OT. Because of the limitations on the amount of non-combustible solids only this minimum which would yield a surface tension value comparable with that established for 0.05% Triton X-100 was used. The results of these corrosion studies are shown in Table 8.

CORROSION STUDIES ON CANDIDATE INHIBITORS IN 20 VOLUME PERCENT METHANOL SOLUTIONS

Test Conditions

136° + 1°F. under continuous aeration. Data below are weight losses per coupon in milligrams. Uninhibited control specimens showed a weight loss of 44.4 mg. and 41.4 mg. in the liquid and vapor phases Each inhibited solution contained 0.07 weight percent Aerosol OT. SAE 1010 mild steel coupons sandblasted and exposed 20 hours at respectively (average of 3 replicates).

Pol	Phase	1.2	;	3.1	:	1	֡֞֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֓֡֓֓	 	:
Catec	Phise Phase	87.4(b)	;	38.3	:	!	(-	7(.0	T#0•T(n)
1 1te(a)	Vapor	5.0	1	7.7	≠.	19.1	ر الم	4 Y	13.2
	Liquid Vapor								
tum	Vapor	1.0	5. 0	ю. 8	L.4	13.0	6.87	0.0	18.1
Sodi	Liquid Vapor	0	7.0	•	1.6	33.0	55.3(b)	23.9	38.0 0
onate- oxide(a)	Vapor	6.3	:	8.4	i	;	6	8.7	18.8
Amm. Carb	Liquid Vapor Phase Phase	0	. :	21.1	1	;	:	9.14	39.1
le-Pot.	Vapor	0.7		5.1	7	, φ	14.5	3.6	5.1
Acetami(Liquid Vapor	c	, ;	c	7-1	2	, 84 10.	33.3	31.6
	Inhibitor, Weight Percent	5		35			0.05	60	0.001

K

(a) Equal part mixtures.

(b) Isolated data suggest that inhibitor may cause accelerated corrosion under some conditions.

The same of the sa

The data in Table 8 suggested that the best three of the five inhibitors studied were sodium benzoate, equal part mixtures of acetamide and potassium nitrite and equal part mixtures of urea and potassium nitrite. Catechol was quite ineffective in the liquid phase. The result suggested that this material was actually corrosive toward mild steel. It is believed that this effect was due to the accelerated conditions of the test, namely the temperature of $136^{\circ} \pm 1^{\circ}$ F. and the constant aeration of the alcohol solution. The ammonium carbonate-ammonium hydroxide combination was also relatively ineffective in the liquid phase at the 0.1 weight percent concentration.

STUDIES ON PROMISING INHIBITOR SYSTEMS

The eleven most promising candidate inhibitors appearing in Table 3 had been narrowed to three. At this point these three materials were explored in detail in respect to the remaining target specifications.

Surface Tension Evaluations.

Hitherto, only 20, 25 and 30% methanol solutions had been studied. The next step was the evaluation of the effect of varying amounts of inhibitors on the surface tension, particularly in higher methanol concentration solutions. This phase of the program was developed around the three most promising candidate inhibitors as presented above. Table 9 shows the results of these studies.

It is apparent from these data that the surface tension of methanol through the middle range of concentrations is not effectively reduced by Aerosol OT. Increasing the amount of inhibitor had little or no influence on the surface tension of the middle and high methanol concentration range. In the lower to middle range, increasing the inhibitor concentrations of sodium benzoate tended to reduce surface tension slightly, but little or none for the other two systems. It was also seen in Table 6 that Triton X-100 was no more effective at the higher methanol concentrations than Aerosol OT. It became apparent about this time that the need for the low surface tension in the medium range alcohol solutions might not be required. It was learned through conferences at WADC that the surface activity target specification was intended for the thrust augmentation system to be used in J-47 turbojet engines for which about 26-27\$ alcohol solutions are specified. In reciprocating engines employing 50% alcohol the low surface tension requirement is not essential. This thinking made it unnecessary to continue the attempt to lower the surface tension in middle-range concentration alcohols. Aerosol OT, Triton X-100 and still other surfactants (See Table 6) showed promise of meeting the surface tension requirements for the lower concentration alcohol solutions.

SURFACE TENSION OF METHANOL SOLUTIONS CONTAINING INHIBITORS
AND APPROSOL OF

Determinations by dullouy Tensiometer at 77°F.

9 4	1007 10000 12-1-1	•					-	
	4 49 44 444		Surf	ace Tens	lon, Dyn	e per u	<u>n. </u>	
Aerosol OT,	Inhibitor,		M	ethanol,	Volume	Let Cetto		100
Weight	Weight	-00		40	50	60	70	100
Percent	Percent	20	30		بسيسيامي			
		•		Sodium B	enzoate			
		72	DIDITOR.	00020				
). 	30.0	35.5	33.0	30.5	21.1
0	1.00	49.6	43.0	39.0	35.5	33.0	30.5	21.2
U	0.50	48.5	42.5	38.0		33.0	30.0	~ •
	0.10	50.0	44.0	39.5	35.5	<i>)</i> ,,,,,	_	
	0.00	53.0	47.5					
	V. ••				^	22 A	30.5	21.3
_	1.00	25.0	29.0	33.0	35.0	33.0	30.5	21.5
0.05		27.0	25.5	34.5	35.0	33.0	30.0	
	0.50	27.0	31.0	35.0	35.0	33.0	50.0	
	0.10	27.4	27.7					
	0.00	2(.7	2,0,			_		21.0
		o). O	25.5	31.5	34.0	33.0	30.5	
0.09	1.00	24.0	26.5	32.0	34.0	33.0	30.5	21.1
	0.50	25.0	20.5	33.0	35.0	33.0	30.0	
	0.10	25.5	28.5)	"			
	0.00	24.5	26.0					_
		_		70.0	32.0	32.5	30.5	21.2
0.13	1.00	24.0	25.0	30.0	33.0	32.5	30.0	21.1
0.13	0.50	25.0	25.5	30.0		33.0	30.0	
	0.10	25.5	26.5	31.0	35 1	,,,,,	•	
	0.00	24.0	24.0					
	0.00				-0.0	32.5	30.5	
	1.00			27.0	30.0		30.5	21.3
0.25				28.0	31.7	32.5	30.0	~~
	0.50		26.0	29.5	33.5	32.5	٠.٠٠	
	0.10	25.0						
	0.00	<i>5).</i> 0						

TARLE 9 - (continued)

Aerosol OT,	Inhibitor,	Methar	Cension, Dynes	rcent
Weight Percent	Weight Percent	20	45	70
		Inhibitor-Equa	1 Parts Urea	and Potassium
			<u>Nitrite</u>	
0	1.00	50. 9	38.2	30. 8
	0.50	51.1	38.1	31.5
	0.10	50.9	38.2	31.5
0.05	1.00	24.0	32.9	30.7
	0.50	25.3	34.8	30.4
	0.10	26.4	35. 8	_
	0.10	20.4	55.0	30.3
0.09	1.00	24.8	30. 3	30. 6
•	0.50	25.0	32.7	30.7
	0.10	25.1	33.7	31.4
0.15	1.00	24.8	28.9	30.6
312)	0.50	24.8	30. 8	30.5
	0.10	25.0		
	0.10	25.0	32.5	30.3
0.25	1.00	24.8	27.2	30.5
	0.50	25.1	29.0	30.4
	0.10	24.3	30.6	30.6
		Inhibitor-Equa	al Parts Acets	mide and Po-
			assium Nitrit	
0	1.00	50.9	38.1	30.9
	0.50	50.8	37.0	30.5
	0.10	51.0	38.0	30.8
0.05	1.00	25.1	34.4	30.8
0.07	0.50	26.1	33.3	30.4
	0.10	25.6		30.8
	0.10	25.0	35.1	50. 0
0.15	1.00	25.1	29.1	30. 6
	0.50	25.0	30.3	30. 6
	0.10	24.5	34.1	30.9
0.25	1.00	25.0	27.8	30. 6
-	0.50	25.4	28.6	30.5
	0.10	24.4	29.9	30. 8

Accelerated Corrosion Tests.

Corrosion studies conducted to this point had been designed to screen out the less effective candidate inhibitors. The three most promising inhibitors were next taken into a more elaborate accelerated corrosion study as described in the section above on evaluation techniques. The results of these tests appear in Table 10. Ethanol was included in the test program for the first time.

K

Table 10 shows that in the absence of inhibitor, steel is far more subject to weight loss attack than the 2024-T3 aluminum alloy. At 100% by volume alcohol, however, very little corrosion with either metal was experienced. Generally, both vapor and liquid phase corrosion was largely inhibited by any of the three candidate inhibitors, with the exception of steel in the middle range concentrations of denatured ethanol containing sodium benzoate. The vapor phase corrosion of steel in 20% alcohol solutions might be further improved. The inhibitors have usually reduced the corrosion of the aluminum alloy in the liquid phase, but the effects in the vapor phase are not clearly defined. Increase in weight following exposure in the vapor phase is frequently seen.

Mon-Combustible Solids.

The Air Force desired inhibitor systems which could be furnished and shipped in a concentrated form for addition to diluted or undiluted alcohol stocks. These will be referred to as inhibitor concentrates. They may comprise single or multiple inhibitors, usually in combination with surface active agents, and the combinations may be furnished in solid or liquid form, as for example dissolved in methanol.

The inhibited undiluted alcohol stocks subsequently would be diluted with water to meet the differing concentration requirements for jet and reciprocating engines and for different operating conditions. All the diluted alcohols must contain sufficient inhibitor concentrate to meet their corrosion protection requirements. The corrosivity problem normally becomes more difficult as dilution increases, hence the amount of inhibitor concentrate in the undiluted alcohol would be four times that fixed by the most dilute alcohol used, normally about 25%. In consequence higher concentrations of the alcohols would carry an excess of inhibitor concentrate, although the sodium benzoate-Aerosol OT system of Table 10 seems to be an exception.

Surfactants as well as the inhibitors might contribute solid residues. Exhibit A (page 1) required that the inhibited 50-50 water-alcohol mix should not carry over 100 ppm of non-combustible solid residues. Effective inhibition of corrosion of steel and aluminum has been accomplished by the three combinations of inhibitors and surfactants under specific conditions as shown in Table 10. Although it was recognized that these systems would not comply with the 100 ppm non-combustible solids limit other data were sought. Determinations of ignited solids residues appear in Table 11.

TABLE 10

STUDIES ON CORROSION INHIBITORS FOR WATER-ALCOHOL SYSTEMS

Test Conditions

Each solution contained 0.10 weight percent inhibitor and 0.07 weight percent Aerosol OT.

The SAE 1010 mild steel and 2024-T3 aluminum alloy coupons were hand polished with 240 grit aluminum oxide and exposed 72 hours at 136 $^{\circ}$ \pm 1 $^{\circ}$ F. under continuous aeration.

				Weight 1	Loss, Mg.				
Volume		-X-232 1	ethano		MI	L-A-6091	Ethano	1	
Percent	1010 8			-T3 Al	1010 8	teel	2024-	T3 Al	
Alcohol		Vapor	Liqui		Liquid	Vapor	Liquid		
مديا الإساسية الأقساء		**************************************						-	
		Co	ntrol	- No Inhib:	itor or Ac	rosol O	2		
20	86.6	158.0	4.6	1.1	91.9	138.0	8.4	0.5	
45	72.7	78.8	1.3	0.8	93.8	41.4	1.4	0.9	
70	0	0	0.6	0.5	34.8	7.5	0	1.1	
100	Ŏ	Ö	0.8	0.3	0	Ö	0.2	0.9	
				Sodium Ber	nzoate				
20	0	14.0	3.9	+0.4	0	5.7	3.2	0.1	
45	Ö	0	0.7	1.2	58.3	39.8	0.3	+0.4	
70	Ö	2.7	0.1	1.2	48.3	6.1	0.9	0.2	
100	Ŏ	0	0.7	0.9	0	0	0.8	1.0	
		Equa!	Parts	Acetamide	-Potassium	Nitrite	2	•	
20	0	22.1	3. 7	0.1	0	17.8	0.2	+0.3	
45	Ö	0	0.4	0.8	0	0	1.0	0	
70	Ō	Ō	0.6	0.7	0	0	0.2	0	
100	Ö	Ō	0.5	0.6	0	0	0.2	0.2	
_									
		1	Equal P	arts Urea-	Potassium	<u>Nitrite</u>			
20	0	15.8	4.2	+0.4	0	8.3	1.9	+1.4	
45	0	0	0.5	1.6	0	0	0	+0.5	
70	Ō	Ō	0.9	1.0	0	0	0.2	+0.4	
100	Ō	0	0	0.4	0	0	0	+0.4	

NON-COMBUSTIBLE SOLIDS CALCULATIONS ON PROMISING INHIBITOR SYSTEMS

Ignited at 1000°C. to Constant Weight

Inhibitor Composition	on.		Ash Determination,	Non-Combustible Solids Based On
Weight Percent		Ratio(a)	Weight Percent	50% Alcohol, ppm
Sodium benzoate	58.8	.10		
Aerosol OT	41.2	.07	19.9	677
Acetamide	29.4	.05		
Potassium nitrite	29.4	.05		
Aerosol OT	41.2	.07	~ 25.4	86 6
Urea	29.4	.05		
Potassium nitrite	29.4	.05		
Aerosol OT	41.2	.07	19.7	670

(a) See Table 10

It is seen that the non-combustible solids residues calculated for a 50-50 alcohol-water mix are very high(1).

REDUCTION OF NON-COMBUSTIBLE SOLIDS IN PROMISING INHIBITOR SYSTEMS

The emphasis in this phase of the work was placed on (1) substituting a benzoic acid - amine combination for sodium benzoate, (2) the reduction of the relative amount of potassium nitrite in the systems with urea or acetamide, (3) complete replacement of potassium nitrite with an organic nitro compound and (4) search for a surfactant that in addition to fulfilling other requisites would contribute a minimum of non-combustible solids.

⁽¹⁾ Were the actual requirements for corrosion protection in the 50-50 mix to be determined, the levels might very well be much lower and the problem of meeting the solids requirement less formidable. In any case the proper amount would have to be determined for each system. It might become possible in this way to utilize the effective potassium nitrite-urea or -acetamide inhibitor systems in a separate grade of booster fuel for reciprocating engines, should other advantages warrant this. Notwithstanding this possibility, all subsequent work was directed toward the reduction of non-combustible solids residues.

Substitute for Sodium Benzoate.

Although sodium benzoate had shown some promise as a water-alcohol inhibitor, the high non-combustible residue was undesirable. Combinations of benzoic acid with cyclohexylamine or dicyclohexylamine were tried at various molecular ratios, with and without 1-nitropropane, as possible substitutes for the sodium salt. These tests are shown in Table 12. Since these formulas carried 0.07% Aerosol OT which had been found to show 13.9% uncombustible solids this would contribute 700 x 0.139 = 92 ppm non-combustible residues. Since the other ingredients should contribute little or nothing to this total, all these formulas appear to meet requirements. Formulas 4, 5, 7 and 8 show the greater promise.

TABLE 12 PROTECTIVE EFFECT OF BENZOIC ACID-AMINE FORMULATIONS

Conditions: Solutions contained 0.1% inhibitor and 0.07% Aerosol OT in 25% methanol. Sandblasted SAE 1010 steel specimens exposed 20 hours at 136 ± 1°F. under continuous aeration.

		Inhi	bitor	Compos	ition,	Weigh	t Perc	ent	
Component	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Benzoic Acid	57	40	40	10	25	40	10	25	40
Cyclohexylamine	43	60		50	50	50			
Dicyclohexylamine			60				50	50	50
1-Nitropropane				40	25	10	40	25	10
Mol Ratio Amine/Acid	0.93	1.84	1.01	6.15	2.46	1.54	3.37	1.34	0.84
Wt. Loss, Mg.:									
Liquid phase	0.3	0.5	0.7	1.1	0	0	0	0	2.1
Vapor phase	21.2	6.9	24.4	1.7	2.4	3.4	1.2	2.2	6.5

In Formulas 1-9 (Table 12) the inhibitor is essentially a benzoate salt of an amine, with some excess or deficiency of amine in respect to the theoretical 1:1 ratio. The calculated ratios are shown for each formula. Good

liquid phase protection has followed regardless of the ratio but vapor phase corrosion seems to depend on other factors. In the absence of nitropropane, corrosion was severe when the ratio of amine to acid was approximately 1:1 or less, representing presumably a neutral to acidic condition (Formulas 1 and 3). When the ratio was materially increased, vapor phase corrosion was reduced (Formula 2). Partial replacement of the amine by nitropropane, even at the expense of a reduced alkalinity and amine/acid ratio, materially reduced vapor phase corrosion in these systems, showing the value of this material (compare the formulas 2, 6, 5, 4 and 3, 9, 8, 7).

Reduction of Potassium Nitrite.

The inhibitor systems containing potassium nitrite with either urea or acetamide were modified by lowering the potassium nitrite and raising the organic inhibitor content. These were evaluated for corrosion protection in methanol systems through the range 25-100% by volume. The solutions were prepared by dilution of the specification methanol. For purposes of expediting the work, the shorter exposure period of 20 hours and use of sandblasted specimens were employed. The effect of this reduction of potassium nitrite in relation to corrosion inhibition is shown in Table 15.

The reduction of potassium nitrite through the range studied did not greatly influence either liquid or vapor phase protection against corresion. Some improvement would be desirable in the 25% alcohol solutions. While modifications might be suggested which should improve both liquid and vapor phase protection and reduce non-combustible solids (which are still too high throughout Table 13) it was not practicable to carry this work further in the time available.

Replacement of Potassium Nitrite.

The use of the potassium nitrite salts stemmed from the earlier general screening program. As it became clear that the non-combustible solids residue specification probably could not be met by using this material, substitute organic nitro compounds were sought. In Table 14 data are shown on the comparative protection of steel in liquid and vapor phases by equal part mixtures of acetamide, urea or cyclohexylamine with selected organic nitrite salts and organic compounds containing the NO₂ group.

On the basis of the data presented in Table 14, it is evident that the dicyclohexylammonium nitrite when used with acetamide or urea was quite effective in the liquid phase but potassium nitrite was still the best in these combinations. For vapor phase protection of steel, 1-nitropropane used in conjunction with acetamide, urea or cyclohexylamine was especially effective. This work yielded a basis for the formulations evaluated in Table 15.

TABLE 13

The second of th

SFECT OF POLASSIUM MURITE REDUCTION IN BINARY SYSTEMS WITH UREA OR ACETANDE

Solutions contain 0.4% combined inhibitor and 0.1% Aerosol OT on 100% MeOH basis. Sandblasted SAE 1010 steel specimens exposed at 136 ± 1°F. for 20 hours under continuous aeration. Conditions:

				.*	Weight Loss per Specimen,	s per Sp	ecimen,	ķ		
	Tahtht	4 0			7	tethanol,	-		8	
	-	3 4	20		2	0	9	0	31.	
	Organic KNO	aori,		Vapor	Liguid	Vapor	Liquid Phase	Vapor	Phase	Phase
Inhibitor System	4	시	Linase						,	•
	50	R	9.0	13.0	0	1.0	•	* .0	0	0
	•	•		•	•	K	C	1.0	0	0
	66.1	33.3	5.3	14.1	>	3	•	•		•
	Ŕ	25	8	10.0	1.0	9.0	•	0.5	0	0
	2	ì					•	•	c	c
	8	80	4.3	14.6	0	0	0		•	•
	•	S	c	0,98	0	0	•	0	•	0
Acetamide - KNOz	R	3	•				•		c	6
	66.7	33.3	3.9	16.9	0	o. v.	0	>	>	}
	· F	,	۴,9	19.4	0	8.8	•	•	0.3	0.7
	2	;		•	,			•	0	0
	8	50	0.21	15.3	9.0	2.1	0			}

TABLE 14

PERFORMANCE OF ORGANIC NITRO COMPOUNDS VS. POTASSIUM NITRITE IN CORROSION INHIBITOR FORMULAS

Conditions: Solutions contained 0.15 concentration of equal part mixtures of nitro compound with acetamide, urea or cyclohexylamine, plus 0.07 Aerosol OT in 25% methanol. Sandblasted SAE 1010 steel specimens exposed at 136 + 1°F. for 20 hours under continuous aeration.

		Weight	Loss, Me	. per S	pecimen	
	Aceta	mide	Ure	8	Cyclohex	ylamine
	Liquid Phase	Vapor Phase	Liquid Phase	Vapor Phase	Liquid Phase	Vapor Phase
Potassium nitrite	1.1	28.0	2.6	15.0		
Diisopropylammonium nitrite	9.1	11.6	9.7	17.2		
Dicyclohexylammonium nitrite	2.8	16.0	4.6	19.4		
5-Nitrosalicylic acid	35-3	20.9	36.8	16.9		
1-Nitropropane	35.5	5.3	32.3	5.3	4.4	5.0
p-Nitrophenol	102.8	12.2	99.6	29.8		
m-Nitroaniline	18.1	16.5	17.4	20.7		

PROTECTIVE EFFECT OF 1-NITROPROPANE FORMULATIONS

Conditions: Solutions contained 0.1% inhibitor and 0.07% Aerosol OT in 25% Methanol. Sandblasted SAE 1010 steel specimens exposed 20 hours at 136 ± 1°F. under continuous aeration.

Inhibitor Compositions, Weight Percent											
Component	<u>(1)</u>	(2)	(3)	<u>(4)</u>	(5)	<u>(6)</u>	(7)	(8)	(9)	(10)	(11)
1-Nitropropane	75	75	10	50	10	20	10	50	10	50	45
Urea	25		40	40	40	40	••				~ ~
Acetamide	••	25					40	40	40	40	
Dicyclohexylammonium nitrite		••	5 0	40			50	40		••	55
Di-isopropylammonium nitrite					50	40			50	40	
Wt. Loss, Mg.:											
Liquid phase	41.0	49.0	0.2	0	4.4	2.7	٥	0	2.8	4.5	1.0
Vapor phase	2.1	1.9	3.0	1.0	5.9	3.7	2.2	3.0	2.7	5.2	3.5

The four formulas which showed the most promise are, in order, numbers 4, 7, 8, and 11. The vapor phase corrosion values are low and liquid phase values very low, and equal or better than obtained from previous potassium nitrite formulas. All contain nitropropane, from 10 to 45%. This appears to be essential for obtaining the low vapor phase corrosion losses since Table 14 indicates that neither of the ammonium nitrites when combined 50-50 with either urea or acetamide approached these low values. On the other hand urea or acetamide may not be essential to good results (Formula 11), and large amounts of nitropropane in combination with these failed completely to prevent liquid phase corrosion of steel.

Nonionic Surfactant Replacements for Aerosol OT.

Most of the formulas tested were made up with Aerosol OT since Table 6 had disclosed this to be the most effective surfactant. It had been indicated that the extremely low surface tension values obtainable with this agent in 25-30% alcohols would not be required. In order to reduce non-combustible residues further, five of the more effective surfactants were examined along with a reduced amount of Aerosol OT (0.03%) for their activity and compatibility in three promising inhibitor systems selected from Tables 12 and 15. Observations were made on stability at 23° and 140°F. Table 16

TABLE 16

SURFACTANT ACTIVITY AND COMPATIBILITY WITH CANDIDATE INHIBITORS IN 25 VOLUME PERCENT ALCOHOLS

Each solution contained 0.05 weight percent surfactant and 0.10 weight percent inhibitor. Storage period 65 hours.

		Methanol									
		Tension, I				at End of T		<u>(b)</u>			
	Initial	After Storage at			anol		Ethanol				
Surfactant	at 23°F	23°F.	140 F	23°F.	140°F.	23 F.	140°F.				
Inhibitor:	10% Ben	zoic Acid,	50% Die	yclohexyl	amine,	40% Nitropr	opane				
Ninol 1281	27.2	27.0	27.0	S	s	Cd	C				
Quasol 95	30.6	30.4	29.2	C	C	5	C				
Dergon OM	27.7	28.1	28.2	8	8	S	C				
Triton X-100	28.5	30. 6	29.9	C	C	C	C				
Victavet-12	28.1	27.3	28.4	C	C	C	C				
Aerosol OT	28.4	28.7	28.6	Cđ	Cđ	Cđ	Cđ				
Inhibitor:			> Dicycle	ohexylamm	onium n	itrate, 10	:				
	Nitropr	opane.	•								
Ninol 1281	27.3	27.1	26.8	Cđ	8	\$	8				
Quasol 95	31.6	28.8	32.1	8	C	C	C				
Dergon OM	27.8	27.0	26.7	S	s	8	S				
Triton X-100	28.9	29.2	29.4	С	C	C	C				
Victawet-12	27.6	27.7	27.6	С	C	C	C				
Aerosol OT	27.3	27.6	27.4	Çđ	C	Cđ	Cđ				
Inhibitor:	40% Ure	a, 40% Dic	yclohexy	lammonium	nitrit	e, 20% Nitr	opropane	•			
Ninol 1281	27.5	26.5	27.0	s	S	Cđ	8				
Quasol 95	31.8	28.2	31.7	· C	C	8	C				
Dergon OM	27.8	27.1	27.0	8	8	S	Š				
Triton X-100	28.0	29.4	29.2	Č	Č	č	Č				
Victawet-12	28.7	27.8	27.9	č	Č	Č	Ċ				
Aerosol OT	27.3	27.1	27.2	Cď	Ċ	Ca	Cq				

⁽a) C = clear, Cd = Cloudy, s = sediment, S = much sediment - after coming to room temperature.

⁽b) Undiluted alcohol solutions containing four times the above concentrations of inhibitor and surfactant all remained clear under similar conditions.

gives the results of these studies. The Aerosol OT formula is calculated to show about 42 ppm non-combustible solids, and the other formulas would be expected to show considerably less. From data on ash determinations of experimental formulas 7 and 8 of Table 12 and 4, 7 and 11 of Table 15 (to be presented in Table 17) the calculated non-combustible residues of inhibited 50-50 alcohol-water mixes should not exceed 10 ppm.

X

The selected candidate inhibitors showed very little effect on surface activity of 25% by volume methanol containing the surfactants. Although Quasol 95 was least efficient as a surfactant, poor compatibility was more generally the reason for rejection. The lower temperature caused more serious incompatibilities than the higher temperature. All the surfactants with the exception of two showed some degree of incompatibility at one temperature or the other in either methanol or ethanol. The two surfactants which seemed entirely compatible were Triton X-100 and Victawet 12. Inhibitor solutions with these surfactants remained clear in both alcohols at either temperature for the 65 hour test period. Victawet 12 was favored for its non-foaming characteristics. Although Aerosol OT was the most effective vetting agent in two of the three systems, it showed poorer compatibility with the candidate inhibitors.

CORROSION TESTS WITH SELECTED INHIBITOR SYSTEMS

As indicated in the section on experimental techniques, steel was the metal most indicative of the corrosion inhibition effects of experimental formulations. However, in order to comply with item five of Exhibit A, a more complete picture was required on the protection of aluminum and aluminum coupled with type 304 stainless steel. Further, the range of alcohols to be inhibited was to include use concentrations and undiluted methanol or denatured ethanol. Since the experimental inhibitors had been narrowed down to a few, it became appropriate to evaluate their effectiveness more completely. The weight loss data for the three types of metal specimens with the five most promising experimental inhibitors (Table 17) used in appropriate concentrations of either alcohol are presented in Table 18. Table 19 is a record of the visual observations made on the test specimen at the end of the 72-hour exposure period. Figures 6, 7 and 8 are photographs of the specimens after test.

TABLE 17
COMPOSITION OF SELECTED INHIBITOR CONCENTRATES

		Composi	tion, Weight	Percent CR-2990-A2 CR-2990-A						
	CR-2983-D		CR-2990-Al	CR-2990-A?	CR-2990-A2					
corresponding Carlier Formulation	No. 8 Table 12	No. 7 Table 12	No. 11 Table 15	No. 7 Table 15	No. 4 Table 15					
l-Nitropropene	5.75	9.2	10.4	2.3	4.6					
Dicyclclohexyl- ammonium nitrite		••	12.6	11.5	9.2					
Acetamide	•	~-	w **	9.2	~~					
Urea	~~	••		~~	9.2					
Dicyclohexylamine	11.5	11.5		**						
Benzoic acid	5.75	2.3	••	##						
Victavet 12	7.0	7.0	7.0	7.0	7.0					
Methanol	70.0	70.0	70.0	70.0	70.0					
Ash determina- tion, weight percent	0.18	0.23	0.31	0.25	0.19					

TABLE 18

THE REPORT OF THE PROPERTY OF

WEIGHT LOSS DEFERMINATIONS ON TEST SPECIMENS IN INHIBITED WATER-ALCOHOL SOLUTIONS

Hand polished specimens exposed 72 hours at 136 + 1°F. with continuous aeration.

10/69	Ethanol	Ligard	Phase	3.1	1.0	9.0	+1.1	6.9	2:5	- o	Q (2.0	J. 9	* 0	0.6	N G	0 0	40.5	, v	2 °		
	Coupled 2024-I2	Light	Phase	4°2	0.8	0.8	0.5	O.5	0.5	1.4	1.0	0	0.5	o '	0.5	3.1	1.0	2.0+	9.0	٥,	100	
Ж.	E .	1000	Phase	43.2	0	0	1.24	40.5	0.7	+2.1	φ . 0	0.5	+3.4	₽.3	0.7	+1.3	4.9	1.0+	+3.0	φ	3;0	
ecimen,	Aluminum	200	Phase	r r		0,5	2.3	0.0	0.0	2.3	0	0.5	2.0	4	 	6:4	φ. 0	0.1	7.2	9.0	7	
s Per St	2024-T3	- -	Vapor	9	2,4			0	5	64	9.0	4	9	•	0	1	0	7.0	42.3	+1.1	1.0	
ustabt Loss Per Specimen, Mg.		Methanol	Liquid Phase		7.0			• 0	, c) c	• •	310	? V	, c	100	כ	6		0.0	0.5	
Wed	TO B	JoJ Joj	Vapor		73.2	15.5	>	0 N	> <	\ \	>	> <		>	> <	2 6	, k	<u>.</u>	2 4	ે૰	0	
	Steel	Ethanol	Liquid		1.98	0	0	0 (> (اد	0 (o (0 (> (ء زاد	2,7,0	102.4	ع اد	- r	6	,
	3AE 101C	Btp	Vapor	Pagal	10, 401	0	0	0	0		0	0	0	0	0		, ,	> (o c	O	>
		Methan	ile	Fnase	51.8	0.5	0	0	0	0	0	0	0	0	0	0	<i>8</i> .±	0	0	28.5	> C	>
i i			Alconol, Volume	Percent	የ	25	\ <u>}</u>	25	ß	Upd11.	25	ß	Undil.	25	ደ	Undil.	25	ደ	Undil.	25	ጸ	The state of
			Inhibitor	Concentrate		Control		CR-2990-A1(c)			m-2000-A2(c)	1-1-1-15		CR-2000-A3(c)			CR-2983-D			CR-2983-E		

(a) No significant weight loss occurred to the 304 stainless steel member of the coupled specimens. Weight loss or gain (+) shown by the aluminum alloy.

(b) Solutions made up by diluting 0.5 ml. to 100 ml. by water.

of specification alcohol to produce an undiluted inhibited alcohol. 25 and 50 volume percent alcohols prepared by diluting 25 or 50 volumes of inhibited undiluted alcohol to 100 volumes with (c) 1.77 g. Inhibitor Concentrate (CR-2990-Al, -A2, or -A3 -- approximately 2.04 ml) added to 100 ml

TABLE 19

VISUAL OBSERVATIONS ON SPECIMENS FROM TESTS SHOWN IN TABLE 18

A1(2)																							
	Etheno	Liquid	Phase		20	nc	g -1	44	ne	g- •	حد	nc	g- •	g →	DC	24	E +	DC	5	44	a	ange	ı
Coupled 2024-T3	Methanol	Liguid	Phase	E	nc	DC	E 4	4	nc	E 4	t)	DC	2-1	타	DC	E	ťЪ	DC	đị.	H	20	nc = No change	
	nol	Vapor	Phase	t7	t	t)	t)	دډ	ည	t)	دد	ä	t2	t)	20	£	E +	g	t)	t t	2		ing
Aluminum	Ethanol	Liquid	Phase	H	ខ្ព	pc	£	دد	nc	E 4	E +	200	E	t	nc	E-	E	pc	E	د	22	Pitting	Slight pitting
2024-T3	nol	Vapor	Phase	T	t)	20	4	t)	ឧ	42	4	ည	t2	t,	ឧ	2-	H	22	4	E4	a	P = Pit	ris = q
CO	Methanol	Liquid	Phase	TP(1)	ည္ရ	nc	E	2	2	a	a	2	Ŧ	E	2	E	42	pc	E	t)	2		lon
!	nol	Vapor	Phase	GP	ď	ບ	22	20	2	22	2	2	20	20	2	g	ď	20	g S	20	ដ	ton	Slight corrosion
AE 1010 Steel	Ethanol	Liguid	Phase	ບ	2	рc	O	ပ	2	2	2	20	2	a	絽	ပ	ပ	ပ	ပ	ပ	ឧ	= Corrosion	= Slight
SAE 101	nol	Vapor	Phase	G	o	ပ	a	2	2	၁	a	ģ	pc	ដ	2	o	on	nc	U	2	ដ	ပ်	v
	Methanol	Liquid	Phase	C(1)	ပ	pc	ខ្ព	nc	g	ខ្ព	ည	ည	pc	2	2	ပ	ង	oa	ಲ	nc	ដ		Slight tarnish
	Alcohol,	Volume	Percent	25	25	2	25	ደ	Undil.	25	ጸ	Undil.	25	ጸ	Undil.	25	ደ	Und11.	25	ደ	Und11.	T = Tarnish	t = Slight
			Inhibitor	Control	MIL-C-4339		CR-2990-A1			CR-2990-A2			CR-2990-A3			CR-2983-D			CR-2983-E			(1) Key:	

The observations are recorded for the outside surfaces of the coupled aluminum specimens (see Fig. 8). The inside surfaces showed a similar but less uniform effect. No change to the surfaces of the stainless steel member of the couple was discernable. (S

Fig. 6. Steel specimens used in tests described in tables 18 and 19.

Fig. 7. Aluminum specimens used in tests described in tables 18 and 19.

Fig. 8. Coupled aluminum specimens used in tests described in tables 18 and 19.

The results of the corrosion studies presented in Tables 18 and 19 and in the photographs, indicate that the three most effective formulations are CR-2990-Al, -A2, -A3. The soluble oil covered by specification MIL-C-4539 was included in this work for comparison. Several observations on the outcome of these tests are enumerated below:

- 1. Although SAE 1010 steel lost the most weight under the non-inhibited experimental conditions, it was almost completely protected in both liquid and vapor phases by three inhibitors (CR-2990-Al, -A2 and -A3, Table 17).
- 2. The 2024-T3 aluminum alloy is not as completely inhibited as the SAE 1010 steel under these experimental conditions. However, the type of corrosion occurring to the aluminum is probably not as troublesome as that which occurs to steel. The corrosion products appear to be tightly adherent and perhaps form a protective film rather than loose flaking materials. The weight loss data of Table 18 generally correspond to discoloration effects as shown in the photographs. In some cases a slight discoloration is reflected by a weight gain.
- 3. When 2024-T3 aluminum alloy was coupled to 304 stainless steel the severity of corrosion attack was not increased over that occurring to specimens in the uncoupled situation. There were no detectable effects to the stainless steel member of the couple.
- 4. Under these test conditions the soluble oil covered by specification MIL-C-4339 appears to coat the surface of the test specimen and to offer a high degree of protection through this mechanism. The soluble oil appears to be very effective except for vapor phase steel corrosion when used in denatured ethanol. The soluble oil was not used in undiluted alcohols because of incomplete solubility.

SURFACE AND INTERFACIAL TENSION VALUES OF SELECTED INHIBITORS

Surface tension and interfacial tension values were determined for the best three compositions and soluble oil in the approximate concentration of alcohols at which these values become important. Table 20 shows the results of these tests.

SURFACE AND INTERFACIAL TENSION OF INHIBITED 295 BY VOLUME ALCOHOLS

Solutions contain 0.5 parts inhibitor per 100 parts 25% alcohol by volume.

Determinations by dullouy Tensiometer

	Dynes per Cm at 77°F.(b)									
Tubibites Concentuate	Surface 1	Tension Ethanol		Tension (a)						
Inhibitor Concentrate	Machanol.	PCHARIOT	Methanol	Ethanol						
MIL-C-4339	30.5	30.7	1.4	1.4						
CR-2990-A1	27.6	27.8	9.0	8.7						
CR-2990-A2	27.7	27.3	9.1	8.6						
CR-2990-A3	27.7	27.5	9.4	8.8						

- (a) Interfacial tension against Mujol.
- (b) Triton X-100 at 0.0% in 30% methanol-water solutions shows surface and interfacial tension values of 28.0 and 4.9 respectively. These are the target values.

Recent conferences with military personnel of WADC have cast some doubt on the need for very low surface tension in a water-alcohol thrust augmentation system. Nonetheless it was recommended that a low surface tension value be maintained if possible. The three experimental formulations meet the specification. The interfacial tension values of these solutions however do not meet the 0.00% Triton X-100 in 30 volume percent alcohol requirement. The consequence of failure to meet this specification is unknown to the writer. On the other hand the soluble oil meets the interfacial tension and fails the surface tension requirements.

COMPATIBILITY OF INHIBITORS WITH HARD WATERS

Since it was known that the Air Force has encountered difficulty with hard waters when using the MIL-C-4339 soluble oil as a corrosion inhibitor in alcohol-water systems, the compatibility of experimental inhibitor concentrates in methanol diluted with hard water was checked. The experimental work conducted previously used dilutions made by 6-7 gr. Wyandotte city tap water. The three inhibitors were prepared in solutions containing 25 volume percent 0-M-232 methanol and MIL-A-6091 denatured ethanol and 75 volume percent of 10, 30 and 50 grain artificial hard water according to specification USN (BuShips) 51-1-19. This formula calls for calcium and magnesium chlorides but no carbonates. The solutions were allowed to stand at room temperature for 15 days. The results of these tests are shown in Table 21:

TABLE 21

STABILITY OF 25 METHANOL SOLUTIONS DILUTED FROM INHIBITED METHANOL BY HARD WATERS

Conditions: 15 Days at Room Temperature.

Inhibitor Concentrate	All Permanent	Hardness, Grai	ns/Gal.
MIL-C-4339	40% (a)	90% (a)	100% (a)
CR-2990-A1	None (b)	None	None
CR-2990-A2	None	None	None
CR-2990-A3	None	None	None

⁽a) MIL-C-4339 soluble oil contains 85% oil. All of it (100%) appeared to have separated following dilution with 50 gr. water, and lesser proportions with the other waters.

⁽b) All CR-2990 inhibited solutions clear. Very small amounts of fine crystalline sediment noticed in each case, independent of water hardness.

A very small amount of sediment developed but was judged to be of little consequence in the use of these solutions as fuel boosters. The soluble oil was studied in parallel. Definity separation of the oil from the water-alcohol mixtures was observed to be proportional to the hardness of the water used in the solution. At the end of 15 days it was estimated that complete separation had occurred with the 50 grain water, about 90% separation in 30 grain water and about 40% separation in a 10 grain water.

FOANING CHARACTERISTICS OF INHIBITORS

The CR-2990 inhibitor concentrates contain an amount of surfactant to produce a minimum surface and interfacial tension when used in alcohols diluted to the 20-30% by volume level. Previous work disclosed that the choice of surfactants of those investigated was restricted to Triton X-100 and Victawet 12 on the basis of effectiveness and compatibility. The latter was selected for formulation because of the far lower level of foaming it induced, particularly in diluted alcohols. Although no specific foaming tests were conducted, observations of relative foaming were readily swellable from the reflux type corrosion test runs during which compressed air was continuously distributed through the solution by fritted tubes. Foaming was practically non-existent in diluted alcohol solutions containing the CR-2990 inhibitors. Minor foam on the surfaces of aerated solutions dissipated instantly.

INHIBITOR CONCENTRATE SAMPLES CR-2990-A1, -A2, AND -A3 FOR WADC

It was hoped initially that stable concentrates of the ingredients of the CR-2990 formulas could be prepared so that the addition of one volume to 99 volumes of the undiluted alcohols would be sufficient. Although the ingredients could be gotten into solution at room temperature, difficulty reversible solids separation occurred on slight cooling. The maximum concentration which appears at all practical is 30% ingredients dissolved in 70% by weight undiluted methanol. Such solutions have remained stable and clear at room temperature for many weeks and are believed to remain stable at temperatures down to 32°F, and perhaps lower. No investigation of the addition of a few percent water has been made as an aid to increasing solubility. Further studies are obviously desirable.

WADC-TR-55-345

The approximate densities of the Inhibitor Concentrates as obtained by weighing 500 ml. volumes in graduated cylinders in air, without corrections, are:

	Apparent Density	Apparent Lbs./Gel.
CR-2990-A1	0.860	7.18
CR-2990-A2	0.862	7.20
CR-2990-A3	0.878	7.33

The amounts of any of these concentrates at present suggested to be used are as follows:

17.7 g. or 20.4 ml./liter of undiluted alcohol

147.5 lb. or 20.4 gal./1000 gal. of undiluted alcohol

Addition to undiluted alcohol followed by water dilution may prove more satisfactory than addition of the concentrates to diluted alcohols. Safety precautions in handling the concentrates similar to those for undiluted methanol are suggested. Exposure to temperatures below 32°F, are not advised under present knowledge. Should this occur the stocks should be examined for any non-homogeneity and reconstituted by warming by steam coils or warm storage and thorough mixing.

STABILITY OF INFIBITOR SYSTEMS IN METHANOL AND ETHANOL

Figures 9 and 10 outline the stability requirements according to item 5 of Exhibit A, and Table 22 presents the fundamental data upon which these requirements are based. The points designated by "+" represents the compositions of systems made up and tested at the temperatures indicated. The upper limits were in general 160°F. (which is more than 10° below the boiling point range for most of the water-alcohol compositions) and the lower limits were 10° above the freezing point of the corresponding systems, or -65°F., whichever is the higher. The tests were made by preparing the water-alcohol systems at ambient temperature, lowering the temperatures as indicated and adding the recommended amounts of Inhibitor Concentrates (see Table 17). In all cases the materials went into clear solution without evidence of phase separation, turbidity or instability. However, when several times the recommended amounts of the materials were added to the more dilute alcohol systems at near freezing temperatures cloudiness resulted. When inhibited undiluted alcohols were diluted to use concentrations, no turbidity or cloudiness was

FIG.9. COMPLIANCE OF INHIBITOR CONCENTRATES WITH O-M-232 METHANOL SOLUBILITY REQUIREMENTS OF EXHIBIT A

WADC-TR-55-345

LIQUID VOLUME PERCENT MIL-A-6091 DENATURED ETHANOL

FIG. 10. COMPLIANCE OF INHIBITOR CONCENTRATE WITH MIL-A-6091 DENATURED ETHANOL SOLUBILITY REQUIREMENTS OF EXHIBIT A

WADC-TR-55-345

44

TABLE 22

PREEZING AND BOILING POINT DATA FOR ALCOHOL SOLUTIONS

MIL-A-6091 Denatured Ethanol	F.P., F.	84 'S	47-		-13	· > •	•	
cohol	B.P. •F.(c)	212	191		1 (3	132	C) 1	
Ethyl Alcohol	Volume,	•	02 .	O (8	02	100	
	B.P. F.(a)	212	:	180	1	167	1	24S
ohol	다 6 다	32 (a)	3 (a)	-20 (p)	-38 (a)	-85 (b)	-105 (a)	;
Methyl Alcohol	Volume ✓ (b)		24.3	36.9	47.1	68.0	67.7	100.0
	Mol ≰ (MP) Weight ≰ (WP)	0	20 WP	20 WP	AN OT	an on	60 WP	100 WP

X

The Technology of Solvents and Plasticizers, Arthur K. Doolittle, John Wiley & Sons, Inc. (1954). **(E**

⁽b) Calculated.

⁽c) Handbook of Chemistry and Physics, Chemical Rubber Publishing Co.

observed. The amounts of inhibitor ingredients used corresponded to 0.4 weight percent not including surfactants, on the undiluted alcohol basis, or to 20.4 volumes approximately of any one of the CR-2990 formulas to 1000 volumes undiluted methanol or ethanol.

Solutions of 25% inhibited methanol and denatured ethanol have stood with perfect clarity for many weeks at room temperatures.

The soluble oil is not entirely soluble in the undiluted alcohols at any temperature. When soluble oil at a concentration of 0.5% by volume was added to use-dilution alcohols an oily phase separated in all cases with the exception of samples held near room temperature. The soluble oil would not appear to comply with item 3 of Exhibit A.

The long term stability of the CR-2990 systems in diluted or undiluted alcohol at very low or very high temperatures could not be checked within the time available.

IV SUMMARY AND CONCLUSIONS

- 1. Following a literature search, 137 candidate corrosion inhibitors were examined for their effectiveness in prescribed water-alcohol solutions.
- 2. This screening program disclosed 26 materials or combinations that afforded considerable protection to mild steel and aluminum in both liquid and vapor phases.
- 5. Eleven of the twenty-six materials were selected for their good protective qualities. These were examined more closely for fulfillment of other target specifications. The three inhibitors found to be the most effective of this group were sodium benzoate, a mixture of equal parts of urea and potassium nitrite and a mixture of equal parts of acetamide and potassium nitrite. These three systems were found to exceed the specified non-combustible solids limits when used at levels necessary to attain the desired corrosion protection.
- 4. The Inhibitor Concentrates described in (5) complied fully with requirements as to non-combustible solids and vertually all of the other requirements--see (6) below. In spite of this, further investigation of the inhibitor compositions under (3) may be justified for non-reciprocating engine service since most and possibly all the other requirements of Exhibit A can be met with formulations of this basic type.

5. In attempts to reduce the amount of non-combustible solids, substitutions were made which resulted in the following three Inhibitor Concentrate systems:

X ____

	We	ight Percen	at
	CR-2990 -Al	CR-2990 -A2	CR-2990 -A3
Mitropropane	10.4	2.3	4.6
Dicyclohexylamine nitrite	12.6	11.5	9.2
Acetamide	••	9.2	
Urea	••		9.2
Victavet 12	7.0	7.0	7.0
Methanol	70.0	70.0	70.0
	100.0	100.0	100.0

^{6.} The proposed Inhibitor Concentrates and Soluble Oil MIL-C-4339 conform to the requirements of Exhibit "A" as follows:

Soluble Oil, MIL-C-4579 Compiles	Fails Not entirely soluble in undiluted alcohols	Mot entirely soluble in undiluted alcohols, or in diluted alcohols at extreme temperatures.	Fails Produces opaque, milky emulsion in all alcohol dilutions.
Inhibitor Concentrates CR-2990-Al, -A2, -A2 Complies Methanol solution of mixture of inhibitors with surfactant. Probable use level 2 gal./100 gal. undiluted methanol or ethanol.	Complies May be mixed with diluted or undiluted methanol or ethanol at any time. Individual ingredients of the concentrates may be mixed with undiluted alcohols at the point of alcohol manufacture if		Complies The inhibited solutions reamin stable and clear Within the limits of I.A. 3.
Echibit "A" (Amended) I.A.1	I.A.2	I.A. 3	I.A. 4
wadc-tr-55-345		68	

K

WADC-	R-	55-	34	5

Exhibit "A" [Amended] I.A. 5 I.A. 6 I.A. 7	Complies The inhib preventic and vapor ise of gc aluminum than town ucts form yield second in 50-50 lo ppm. Complies In 50-50 lo ppm. Complies (Second in 50-50 lo ppm.		inhibitor Co	contrates CR-2990-Al, -A2, -A3 for systems show promise of effective of corrosion of steel in both liquid phase exposures. They also show prom- il liquid and vapor phase protection to lloys, perhaps a little less effective is steel. However, the corrosion prod- il appear to be rather adherent and may appear to be rather adherent and may ndary protection. mbustible solids computed for the inhibitor concentrates to be used lcohol-water mixes should not exceed	Soluble Oil, MIL-C. Complies fective for protesteel and a little fective toward a little centrates. Appetion through depan oily or greas coeting. Complies (Surface Ten Complies (Interfac	Soluble Oil, MIL-C-4339 Complies May be a little less effective for protection of steel and a little more effective toward aluminum than the proposed inhibitor concentrates. Appears to function through deposition of an oily or greasy surface coating. Compliance Unknown Soluble Oil in Soluble Oil in
		Methanol (Standard)	276 Methanol	25% Ethanol	25% Methanol	276 Ethanol
	Surface Ten.	. 28	27.6-27.7	27.3-27.8	30.5	30.7
	Interfacial			8 8 8	4	

While the surface tensions of either 70% alcohol solution will exceed the Triton X-100 standard, it is believed this is no longer an important con-

sideration.

8.6-8.8

4.6-0.6

Jep.

X

	I.A	
WADC		55-3h

ended) 80

The cost of the materials used will be such Inhibitor Concentrates CR-2990-Al, -A2, -A3 Delieved to Comply

One prestion of dicyclobexylamine nitrite is believed higher than for soluble oil. Present producto be about sufficient for tentative A.P. reincrease production if commercially warranted the several licensed manufacturers would not ent producer of cyclohenylamine would gladly not been investigated. Normally a large new and others might be encouraged to enter the field. Production, production capacity and costs for Victavet 12 and nitropropane have any needed facilities and materially reduce stable market would encourage expansion of No reason can be foreseen why increase production, if marketable. quirements.

70

Shelf life apparently unlimited as a concentrate or following addition to alcohols, diluted or undiluted.

Complies

be added to undiluted alcohols 0-M-272 or MILleast four times the levels needed for corro-The inhibitor concentrates in proportions at sion inhibition of 27% alcohol solutions may A-6091 without the necessity for addition of water. See I.A. 3 also.

Boluble Oil, MIL-C-4539

Complies

Low cost and probably unlimited supply.

Compilance Unknown

k

Pa116

Aust be dispersed in water followed by addition of alcohol.

WADC-	TR-:	55-3	45

A THE STATE OF THE PARTY OF THE

Soluble Oil, MIL-C-4339	Palls	Separation of oil noticed, proportionate to hardness of water used. Estimated separation of oil 40-100%.	Acceptable	Compliance Unknown		Acceptable.
Exhibit "A" (Amended) Inhibitor Concentrates CR-2990-A1, -A2, -A3 Additional Qualifications	1. Hard Water Compatibility Acceptable	Compatible with 10, 30 and 50 gr. artificial bard waters (U.S.Mavy Spec. 51-1-19) used to dilute inhibited methanol and ethanol concentrates to 25 volume percent alcohol. Trace of fine crystalline sediment noticed after 15 days, independent of water hardness.	2. Founing Characteristics Acceptable	3. Engine Mock Characteristics Believed Acceptable	No tests run.	4. Safety Easards Believed Acceptable
WADC-TR-	55- 3	45				71

K

Mone.

Essentially the same as for undiluted alcohols

V BIRLIOGRAPHY

- 1. Antonucci, G., Pitture e vernici, 5, 379-80, 473-6, 515-517 (1949).
- 2. Baker, H. R. and Zisman, W. A., Ind. Eng. Chem., 40, 2338-2347 (1948).
- 3. Baker, H. R. and Zisman, W. A., Lubrication Eng., 7, 117-22 (1951).
- 4. Barnum, E. R., (to Shell Development Co.), U.S. Patent 2,564,422 (Aug. 14, 1951).
- 5. N. V. de Batsafsche Petroleum Maatschappij, Dutch Patent 68,392 (Aug. 15, 1951). C.A. 46, 5518.
- 6. Bishop, J. W., (to Tide Water Associated Oil Co.), W.S. Patent 2,527,296, (Oct. 24, 1950).
- 7. Bishop, J. W., (to Tide Water Associated Oil Co.), U.S. Patent 2,574,955, (Nov. 13, 1951).
- 8. Blair, Jr., C. M. and Gross, W. F., (to Petrolite Corp. Ltd), a reissue of U.S. Patent 2,468,163 (May 9, 1950).
- 9. Bolland, J. L. and Ten Have, P., Faraday Soc. Discussions, 2, 252 (1947).
- 10. Breston, J. N., Producers Monthly, 13, No. 7, 16-26 (1949) and Ind. and Eng. Chem., 44 No. 8, 1755-60 (1952).
- 11. Bried, E. A., (to Hercules Powder Co.), U.S. Patent 2,484,010 (Oct. 11, 1949).
- 12. Brooke, M., Chemical Engineering, 59, 9, 286-287 (1952).
- 13. Carlson, H. A., (to Phillips Petroleum Co.), U.S. Patent 2,523,898 (Sept. 26, 1950).
- 14. Cox, R. F. B., (to Hercules Powder Co.), U.S. Patent 2,564,753 (Aug. 21, 1951).
- 15. Denison Jr., G. H., Furby, N. W. and Bolt, R. O., (to Calif. Research Corp.), U.S.Patent 2,528,347 (Oct. 31, 1950).
- 16. Edmonds, Lee 0., (to Phillips Petroleum Co.), U.S. Patent 2,554,097 (May 22, 1951.)
- 17. Eiberts, C. K., World 011, 129, No. 7, 174, 176, 178, 180, (1949).
- 18. Evans, T.A., J. Inst. Production Engrs., 30, No. 2, 62-78 (1951).

- 20. Glavis, F. J. and Neher, H. T., (to Rohm and Haas Co.), U.S. Patent 2,485,376 (Oct. 18, 1949.)
- 21. Glavis, F. J. and Miller, H. T., (to Rohm and Haas Co.), U.S. Patent 2,485,150 (Oct. 18, 1949).
- 22. Hoeberg, E. I., (to American Cyanamide Co.), U.S. Patent 2,494,126 (Jan. 10, 1950).
- 25. Hook, E. O. and Moss, P. H., (to American Cyanamide Co.), U.S. Patent 2,565,920 (Aug. 28, 1951).
- 24. Jacoby, A. L., (to National Aluminate Comp.), U.S. Patent 2,541,584 (Feb. 13, 1951).
- 25. Johansson, S. C., U.S. Patent 2,504,200, (April 18, 1950).
- 26. Keller, E. H., (to E. I. duPont de Nemours and Co.), U.S. Patent 2,534,030 (Dec. 12, 1950).
- 27. Kleinholz, M. P. and Hack, T. A., (to Sinclair Refining Co.), U.S. Patents 2,522,518-519 (Sept. 19, 1950).
- 28. LaQue, F. L., Corrosion, 6, No. 2, 72-8 (1950).
- 29. Magmie, J. L., Power Eng., 54, No. 6, 61-3, 69 (1950).
- 30. Menaul, P. L., (to Stanolind Oil and Gas Go.), U.S. Patent 2,493,462 (Jan. 3, 1950).
- 31. Meyer, C. O., (to Phillips Petroleum Co.), U.S. Patent 2,487,578 (Nov. 8, 1949).
- 32. Michel, J. M. and Hager, K. F., (to U.S.A. as represented by Sec. of Army) U.S. Patent 2,578,725 (Dec. 18, 1951).
- 33. Michel, J. M. and Hager, K. F., Ind. Eng. Chem., 41, 2616-22 (1949).
- 54. Miller, D. E., (to Kelite Products, Inc.), U.S. Patent 2,557,509 (June 19, 1951).
- 35. Moody, L. E. and Hand Jr., J. W., (to Standard Oil Co.), U.S. Patent 2,591,583 (April 1, 1953).
- 36. Moyer, M. I. and Hersh, J. M., (to Cities Service Oil Co.), U.S. Patent 2,496,354 (Feb. 7, 1950).

57. Cherright, E. A., (to Socony Vacuum Oil Co., Inc.), U.S. Patent 2,589,326 (March 18, 1952).

X

- Price, D. and Spries, P. J., (to Nopco Chemical Co.), U.S. Patent 2,481,036 (Sept. 6, 1949).
- 39. Rius, A., Anales real soc. espan. fis. y quim., (Madrid) Ser. B, 47, 463-70 (1951).
- 40. Ruedrich, P. M., (to Griffin Chem. Co.), U.S. Patent 2,556,108 (June 5, 1951).
- 41. Rsynar, J. W. and Plich, M. A., (to Mational Aluminate Corp.), U.S. Patent 2,515,529 (July 18, 1950).
- 42. Schertz, G. L., (to Hercules Powder Co.), U.S. Patent 2,492,939 (Dec. 27, 1949).
- 45. Schiermeier, K. F., (to Shell Development Co.), U.S. Patent 2,516,838 (Aug. 1, 1950).
- 44. Schiermeier, K. F. and Heinz, W.E., (to Shell Development Co.), U.S. Patent 2,482,517 (Sept. 20, 1949).
- 45. Schwoegler, E. J. and Hutter, C. A., (to Nox Rust Chemical Corp.), U.S. Patent 2,521,311 (Sept. 5, 1950).
- 46. Seymour, J. L., U.S.Patent 2,531,829 (Nov. 28, 1950).
- 47. Scheldahl, D. B., (to Sinclair Refining Co.), U.S. Patent 2,598,725 (June 3, 1952).
- 48. Smith, H. G., Cartrell, T. L. and McClintock Jr., W. L., (to Gulf Oil Corp.), U.S. Patent 2,491,222 (Dec. 13, 1949).
- 49. Smith, W. R., (to Texas Co.), U.S. Patent 2,524,484 (Oct. 3, 1950).
- 50. Sorg, L. V., Dickey, R. E. and Weaverling, W. A., (to Standard Oil Co. of Indiana), U.S. Patent 2,548,630 (April 10, 1951).
- 51. Standard Oil Development Company, Fr. Patent 942,798 (Feb. 17, 1949).
- 52. Stepanek, J., Prakt Chem., 3, 31-3 (1952).
- 53. Tieter, H. M., Scholfield, C. L., and Cown, J. R., (to U. S. A. Dept. of Agriculture), U.S. Patent 2,483,791 (Oct. 4, 1949).
- 54. Uhlig, H. H., "Corrosion Handbook" 1st edition, John Wiley and Sons, Inc., New York (1949).

- 55. Wachter, A. and Stillman, N., (to Shell Development Co.), U.S. Patent 2,544,245 (March 6, 1951).
- 56. Wachter, A. and Stillman, N., (to Shell Development Co.), U.S. Patent 2,584,086 (Jan. 29, 1952).
- 57. Wachter, A. and Stillman, N., (to Shell Development Co.), U.S. Patent 2,484,395 (Oct. 11, 1949).
- 58. Wasson, J. I. and Duncan, G. W., (to Standard Oil Development Co.), U.S. Patent 2,491,066 (Dec. 13, 1949).
- 59. Watkins, F. M., (to Sinclair Refining Co.), U.S. Patent 2,594,266 (April 22, 1952).
- 60. White, R. V., (to Socony Vacuum), U.S. Patent 2,568,876 (Sept. 25, 1951).
- 61. Wormwell, F. and Mercer, A. D., J. Applied Chem. (London), 2, 150-60 (1952).
- 62. Zimmer, J. C. and Duncan, G. W., (to Standard Oil Development Co.), U.S. Patent 2,582,755 (Jan. 15, 1952).