AHB Lite to Can Bus Module

Miguel Kulisic Vaibhav Ramachandran Sang Hun Kim

Purpose and Functionality

Purpose:

To convert data from the AHB Lite protocol to the Can Bus protocol and vice-versa.

Functionality:

- Optimized for Area.
- Two FIFOs to store the inputs of the CAN and AHB Bus.
- Central module to control the timing of all devices.

System Design

Design Architecture

CAN Module

AHB - Lite Module

Fixed Success Criteria

- 1) Test benches exist for all top level components and the entire design: Successful
- 2) Entire design synthesizes completely, without any inferred latches, timing arcs, and, sensitivity list warnings: Successful
- 3) Source and mapped version of the complete design behave the same for all test cases: Successful
- 4) A complete IC layout is produced that passes all geometry and connectivity checks: Successful
- 5) Correct area, pin count and clock rate:
 - a) Area: 4mm x 4mm
 - b) Pin Count: 112
 - c) Clock Period: 10ns

Design Specific Success Criteria

- Design is capable of transmitting data from CAN protocol to AHB protocol (2 points): Successful
- Design is capable of transmitting data from AHB protocol to CAN protocol (2 points): Successful
- Design is capable of queuing up responses from the CAN bus to to the sensor FIFO (2 points): Successful
- 4) Design is capable of queuing up inputs sent by the AHB Lite master to command FIFO (2 points): Successful

Results (Command FIFO Data queue & Dequeue)

CAN Bus Write Cycle

CAN Bus Write Cycle

```
Write cycle started at Time:
                                                0ps
    SOF started at Time:
   SOF ended at Time:
                                       5000ps
   Arbitration started at Time:
                                                 5000ps
   Arbitration is won
   Arbitration Ended cycle Time:
                                                115000ps
   Control field started at Time:
                                                 115000ps
   Control field finished reading at Time:
                                                          195000ps
    Data cycle started at Time:
                                              195000ps
    Data read correctly
    Data cycle finihsed writing at Time:
                                                       515000ps
   Value read: 0000000000000011010101010101010
   CRC cycle started at Time:
   Code calculated 110100111011101 , at Time:
                                                            515000ps
   CRC cycle finished reading (110100111011101) at Time:
                                                                             0ps
   Ack = 0
   ACK cycle started at Time:
                                                  0ps
   EOF cycle started at Time:
                                             675000ps
    EOF cycle finished at Time:
                                              685000ps
Write cycle ended at Time:
                                        685000ps
```

CAN Bus Read Cycle

Sensor FIFO Enqueueing data

CAN bus Read Cycle

```
Read cycle started at Time:
                                       685000ps
    SOF started at Time:
                                       685000ps
   SOF ended at Time:
                                     695000ps
   Arbitration started at Time:
                                               695000ps
   Arbitration is lost
   Arbitration Ended cycle Time:
                                               805000ps
   Control field started at Time:
                                                 805000ps
   Control field finished writing at Time:
                                                          885000ps
   Data cycle started at Time:
                                              885000ps
   Data cycle finihsed reading at Time:
                                                     1205000ps
   Data read 80199e00
   CRC cycle started at Time:
                                           1205000ps
   Code calculated 101110101110111 , at Time:
                                                          1205000ps
   CRC cycle writing at Time:
                                           1355000ps
   ACK cycle started at Time:
                                              1000ps
   ACK cycle finished reading at Time:
                                                    1365000ps
   EOF cycle started at Time:
                                           1365000ps
   EOF cycle finished at Time:
                                            1375000ps
Read cycle ended at Time:
                                    1375000ps
```


6720000 is 80199e00

Layout

Synthesis Critical Path Delay: **4ns**

Layout Critical Path Delay: **12.957ns**

Budgeted Critical Path Delay: **10ns**

Dimensions: 3mm x 3mm

Width: 3038.4um Height: 3030.0um

Conclusions

Challenges

- Getting the layout timing delay to match our 10ns timing constraint.
- Matching timing of simulated CAN Node and CAN Node.

Different Approach

- Using more registers instead of combinational logic
- Faster Performance

• Improvements:

- Implementing Burst Write and Read for AHB Bus.
- Use AHB addressing when reading from and writing to the two FIFOs.
- Variable size transmission for CAN bus.

Thank you for your time

System Level Usage

Timing Diagram

Top Level Architecture (AHB to CAN)

Top Level Architecture (CAN to AHB)

Overall Architecture

Timing Diagram

AHB Bus Basic Read Mode

AHB Bus Basic Write Mode

AHB Bus Burst Read Mode (Skip)

CAN Bus Priority Assignment

CAN Bus Data Transfer

S O F	11-bit Identifier	R T R	I D E	r0	DLC	08 Bytes Data	CRC	ACK	E O F
-------------	----------------------	-------------	-------------	----	-----	---------------	-----	-----	-------------

CAN Bus Implementation

CAN Bus Module

CAN Protocol Machine Functional Block Diagram

Series to Parallel Shift Register (Skip)

Parallel to Serial Shift Register

CAN Bus Read Mode Timing Diagram

CAN Bus Write Mode Timing Diagram

AHB Lite Bus Implementation

AHB-Lite Slave Module

Slave Module State Machine

HADDR[14:0] > MAX_ADDRESS || HTRANS != NONSEQ_TRANS

Timing Diagrams AHB Bus

FIFO Implementation

Timing Diagram for FIFO

Sensor to Processor and Processor to Sensor Control Unit

State Machine

Requires 13 States

• 15 inputs

9 outputs

RTL Diagram

Overall Design Budgeting (Estimate)

- 2x Fifo (slide 26): 524 regs + 126 logic gates = ~1,371,600(um^2)
- AHB Lite Master (slide 20): 35 regs + 60 gates = ~129,000(um^2)
- CAN bus (slide 14): 24 regs + 92 logic gates = ~127,450(um^2)
- Main control unit (slide 29) = $4 \text{ regs} + 65 \text{ gates} = ~58,350(um^2)$

Timing Analysis

- From Receive Shift Register from CAN BUS to Sensor FIFO Storage
 - Approximately 1.5 ns
- From Command FIFO Storage to CAN BUS Transfer Shift Register
 - Approximately 2.0 ns
- From AHB-Lite Master to Command FIFO Storage
 - Approximately 2.4 ns
- From Sensor FIFO Storage to AHB-Lite Master
 - Approximately 2.4 ns
- From Main Control Unit To AHB-Lite Master (HRESP)
 - Approximately 2.2ns