LEAST COST GENERATION EXPANSION PLANNING FOR NORTHERN REGION ELECTRICITY BOARD NETWORK CONSIDERING GREENHOUSE GAS MITIGATION

by ULLASH KUMAR ROUT

TH EE/2000/M R765/

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR
May, 2000

LEAST COST GENERATION EXPANSION PLANNING FOR NORTHERN REGIONAL ELECTRICITY BOARD NETWORK CONSIDERING GREENHOUSE GAS MITIGATION

A thesis submitted
in putral fulfillment of the requirements
for the degree of
MASTER OF TECHNOLOGY

by
ULLASH KUMAR ROUT

to the
DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF LECHNOLOGY, KANPUR

MAY 2000

2 3 MAY 2000 CENTRAL LIBRARY

KAMPUR

130932

Thoonship

CERTIFICATE

This is to certify that the thesis entitled Least cost generation expansion planning for Northern Regional Electricity Board network considering greenhouse gas mitigation submitted by Ullish Kumu Rout to Indian Institute of Technology Kunpui for the award of Mister of Technology degree in Electrical Engineering is a bonafide record of project work carried out under my supervision Contents of the thesis in full or in parts have not been submitted to any other institute or university for the award of degree or diploma

Dr S C Srivastava

Professor

Department of Electrical Engineering

Indian Institute of Technology

Kanpui India

ACKNOWLEDGEMENT

The author would like to express his deep appreciation and gratitude to his thesis supervisor Professor S C Srivastava for his invaluable guidance and constant encouragement through out the course of this project. His love help encouragement and guidance will remain forever in my memory

The author is thankful to the faculty members of the department of electrical engineering IIT Kanpur who taught and helped in understanding various courses in electrical engineering

This thesis is part of the project number AIT/EE/19990071 and 19990098 jointly carried out by LLT Kanpur and CEA New Delhi and sponsored by Swedish International Development Agency (Sida) and Asian Institute of Technology Thailand Financial support under this project for carrying out the present work is duly acknowledged

The author also duly acknowledge Mr Dharam Paul and Mr Praveen Gupta from CEA New Delhi and Dr Ram Shrestha from AIT Thailand for various inputs provided by them to carry out the present work. He also acknowledge Dr Mukesh Shuma from civil department and Dr Binayak Rath from HSS department.

The 11thoi is deeply grateful to his close friends Anurig Biranchi Sibapida Chand Ravindra Asesh and Tanmaya whose constitut support and encouragement have gone a long way towards the successful completion of this work

Finally the author wish to record his deep sense of gratitude to his parents sisters brother in-laws brother father and mother in laws and his wife whose constant encouragement and inspiration is behind his education

Table of Contents

Ch	apter	Title		Page
	List	of Table	S	Ш
	List	of figure	SS S	V
	Abst	ract		VI
1	Intro	oduction	1	1
	1 1	Gene	eral Introduction	1
	12	Litei	nture Review	3
	13	Gene	eration expansion planning packages	6
	1 4	Powe	er scenario in India	7
	15	Ratio	onale and Objective behind the study	9
	16	Orga	inization of Thesis	10
2	Con	ventiona	al least cost generation expansion planning	12
	2 1	Intro	duction	12
	22	m1th	ematical formulation	13
		221	Objective function	13
		222	Constraints	14
	23	NRE	B system description	20
		231	Electricity demand projection	20
		232	NREB system	23
		233	Calculation of emission constraints and heat rate	25
		234	Calculation of load factor and efficiency of plants	27
	2 4	Case	studies	27
		241	Least cost generation expansion planning results	27
		242	Sensitivity analyses	31
	2 5	Conc	elusion	33
3	Conv	ventiona	al least cost generation expansion with efficient technologies	35

	3 1	Intro	duction	35
	3 2	Clen	n Technologies	36
	3 3	Case	Study	37
		3 3 1	Least cost generation expansion planning	37
		3 3 2	Sensitivity analyses	41
	3 4	Conc	clusion	44
4	Con	ventiona	al least cost generation expansion planning considering	GHG
	mitig	gation co	onstraint	45
	4 1	Intro	duction	45
	4 2	Meth	odology	46
		• A	nnual emission limit	46
	43	Case	studies and Result	47
		431	Case 1 Mitigation target of 5% over BAU	47
		432	Case 2 Mitigation target of 10% over BAU	54
	4 4	Conc	elusion	59
5	Con	clusion		61
	Ann	ex A		64
	Ann	ex B		82
	Ann	ex C		85
	Ann	ex D		88
	Ann	ex E		90
	Refe	ences		95

List of Tables

Tabl	le No Description	Page
1 1	Peak power and Electric energy demand projection of India	8
2 1	Utilization of electrical energy in different sectors	20
22	Energy consumption in northern region from 1990 2002	21
23	Energy and power projection for Northern Regional Electricity Board	22
24	Power consumption in different sectors in percentage for NREB	22
2 5	Plant selection by least cost generation expansion planning	29
26	Summ uy of the total cost and emission levels	30
27	Results with change in discount rate values	31
28	Results on change with values of fuels cost	32
29	Results with change in values of power demand	32
2 10	Results with change in supply side capital costs	33
3 1	Plant selection by least cost generation expansion planning with	
	efficient technologies	39
3 2	Summary of the total cost and emission levels with efficient technologies	40
3 3	Results with change in discount rate	41
3 4	Results with change in values of fuels cost	42
3 5	Results with change in power demand	42
3 6	Results with change in supply side capital costs	43
3 7	Results with change in generation efficiency of efficient plants	43
4 1	plant selection with 5% mitigation target	49
42	summary of the total cost and emission levels with 5% mitigation target	50
43	Results with change in discount rate with 5% mitigation	51
44	Results with change in fuels cost with 5% mitigation	52
4 5	Results with change in power demand with 5% mitigation	52
4 6	Results with change in supply side capital costs with 5% mitigation	53

47	Results with change in generation efficiency with 5% mitigation	53
4 8	Plant selection with 10% mitigation target	55
49	Summary of the total cost and emission levels with 10% mitigation target	56
4 10	Results with change in discount rate with 10% mitigation	5 7
4 11	Results with change in fuels cost with 10% mitigation	58
4 12	Results with change in power demand with 10% mitigation	58
4 13	Results with change in supply side capital costs with 10% mitigation	59
4 14	Results with change in generation efficiency with 10% mitigation	59
A 1	Basic Data Form	65
A 2	Lond Data Form	66
A 3	Emission Data Form	67
A 4	Fuel Type Data	68
A. 5	Plant Type Data	69
A 6	Existing Thermal Power Plant Data	71
A 7	Existing Hydio Power Plant Data	77
A 8	Candidate Thermal Power Plant Data	69
A 9	Candidate Hydio Power Plant Data	70
B 1	Plant Type Data Form	83
B 2	Candidate Theimal Power Plant Data Form	83
C 1	Basic Data Form	86
C 2	Emission Data Form	87
D 1	Emission Data Form	89
E 1	Utility boiler source performance	94

List of Figures

Figure No Description	Page
1 Power generated by each type of plants in India	91
2 Countries potential for different sources	91
3 Annual system load factor for whole planning horizon	92
4 Annual system peak demand (forecasted) for whole planning horizon	92
5 Generation vs Demand in NREB system	93
6 Lo id Duration Curve for both seasons in India	93

Abstract

The electricity energy is the key to the economic growth and improving the living standard of a country. In most of the Asian countries particularly in India, there is shortage of enough generating plants to meet the required peak demand. Continuous addition of power plants require the generation expansion planning to be carried out at regular intervals. The traditional generation expansion planning has been based on the least cost strategy. Increased awareness to both the local and global environmental problems has forced the planners to include various mitigation criteria in the generation expansion planning also. In the present thesis at attempt has been made to include greenhouse gas mitigation especially carbon dioxide in the planning methodology. The study has been carried out on one of the five regional electricity boards of India 1 e the Northein Regional Electricity Board (NREB) network.

For the present generation expansion planning study three alternative scenarios have been considered. These are the least cost generation expansion planning with the efficient technologies and the least cost generation expansion planning with mitigation of Greenhouse Gas (GHG) as constraint. Emission mitigation target of 5% and 10% have been considered over the conventional least cost generation expansion planning results. Various sensitivity analyses have been carried out for the above three cases with the variation different parameters, such as discount rate fuel prices power demand supply side capital cost and the efficiency of the efficient technologies.

The result shows that the least cost generation is possible with the installation of efficient technologies i.e. the PFBC and IGCC. This also reduces the emission levels. The emission mitigation target can be fulfilled by the installation of more number of CCGT and nuclear plants. The power generation from these plants are some what costlier than the PFBC and IGCC plants.

CHAPTER-1

INTRODUCTION

11 General Introduction

Energy demand and electricity use is growing more rapidly in most of the developing countries than in Industrialized nations. Energy has been a major drive for all economies. The per capital energy consumption is considered as an index of standard of living of the persons in a country Electricity is vital for all sectors of the national economy. It is one of the principal production factors in the domestic sector to satisfy the enhancement of the basic need of human being. As electrical energy is the key to the national economy, the energy demand by the consumers should be fulfilled by the power sector with least cost. Economic growth and balanced socio economic developments are closely related to the development of the electric power sector and national economic development programs must be supported by studies on electric power sector planning.

As the modern world is undergoing the scientific and industrial revolution the necessity of commercial energy is increasing rather than the non-commercial energy. The non-commercial energy demand is decreasing and the total reserve and potential of the non-commercial energy resources is also decreasing day by day. In India, the population growth rate (which is much more than the world average) is the prime cause of reduction of non-commercial energy resources. The demand of electrical energy ahs been popular, as it can be easily converted in to different forms such as light sound thermal electromagnetic mechanical etc. The conversion efficiency of electrical energy to other forms of energy is high and the cost of conversion is low. The other advantage is that it is easily transportable and transferable. Due to the above

ndvantages the world seeks the help of electrical energy and trying to exploit the better facilities from it

Fossil fuels are the major source in producing electricity. Currently around 40 percent of the world electricity generation are coming from the fossil fuel power plants. It is estimated that the energy sector contributes approximately 50 percent of the total emission to the environment. In energy sector, thermal power plants are the main source of emission. It is approximated that thermal sector contributes 30 to 35 percent of total emission alone [54]. The trend of power generation is not likely to change in near future. This may increase level of Greenhouse Gas (GHG) concentration in the environment and other pollutants.

Global warming and acid rains are the burning issues world wide these days. Due to increase in population deforestation and pacing of world to wards modernization the increase in pollution level in atmosphere is drawing the attention of world community. Global warming is due to accumulation of Green House Gases (GHGs) in the atmosphere Carbon droxide methane sulphur hexafluoride chlorofluoro carbons hydrofluoro carbons perfluoro carbons nitrous oxide are some of the greenhouse gases. The GHG traps the heat radiation and increases the temperature of atmosphere. The polar ice caps will melt due to the rise in temperature of atmosphere and the rise in sea level will cause the submerge of low level lands through out the world. The GHG depletes the layer of ozone which is acting as the filter layer for harmful radiation to earth.

The acid rain is another endangering phenomena to our healthy environment. It is due to the sulfuric and nitric acid whose level increases due to emission of nitrogen oxide (NOx) and sulphur dioxide (SO₂) from the burning of more quantity of fossil fuels

Recently the efforts are going on in the industrialized world to reduce GHG from their power sector by the demand and supply-side management

12 Literature Review

A large variety of non commercial forms of energy such as fuel wood animal waste and agricultural residues fulfill the 97% of the total energy requirement of rural India and its contribution has declined from over 70% in the early 1950s to 28% in 1998 [49]. This shift in consumption from traditional to commercial energy results from the shift of the traditional fuels like bio mass and animal waste towards cleaner and the modern fuels like kerosene and liquefied petroleum gas fast pace of urbanization and higher living standards associated with rising per capita income. The total energy consumption of energy (commercial as well as non-commercial) is related to the demographic parameters such as population and structure of gross domestic product (GDP)

Electricity generation in Asia as a whole is expected to increase at a higher rate than the global average [26]. The electricity generation is predominantly based on thermal power plants (i.e. more than 70% of the total power generation is thermal) in most Asian countries [50]. The share of the thermal power is likely to increase further in the coming years. For example, the share of thermal electricity generation is expected to increase from 78% in 2000 to 81% in 2010 in the case of India and from 94% in 2000 to 96% in 2010 in the case of Thailand [8, 17]. The thermal power growth percentage will be more in the countries like India Indonesia Malaysia. Thailand, and Pakistan However in China the percentage of thermal power generation will decrease due to the construction of large hydro plants such as 18200MW hydro power plant on the river Changjiang. In Asian countries like India China Indonesia and Malaysia coal is the dominant fuel used for power generation [8, 4, 15].

Electrification rate is low in selected Asian countries. For example electrification rate is 27% in Sri Lanka and 24% in Indonesia (in 1990). About 69% and 83% of house holds were electrified in provincial and metropolitan areas in Thailand in 1990 (ADB 1993) while 27% of rural households in India has access to electricity [8]. India should give importance to produce more power and electrify the rural areas.

About two decades ago utilities made substantial efforts to reduce particulate emissions from power generation by investing in electrostatic preceptor filters and wet scrubbers. To reduce the emissions from the power plants, the engineers follow different methods. Flue Gas Desulphurisation (FGD) pre combustion and post combustion technologies are used to reduce the SO₂ from the power sector. Special burners are used to burn the coal at low temperature and sprinkling of water reduces the NO_x emission. Washing coals clean coal technologies and different methods are followed to reduce the CO₂ emissions [2]

Power plant emits different local and global pollutants as the combustion of coal oil gas etc used for the power generation. The combustion of such fuels increases the pollution level. Among the fossil fuels, the natural gas is the cleanest source and environmental friendly. New combined cycle power plants emit half of the carbon dioxide (CO₂) one fifth of the nitrogen oxide (NO_x) and almost negligible amount of sulphur dioxide (SO₂) compared to a comparable sized coal fired power plant [34.55]

The efficiency of thermal plants are around 30% in the developing countries where as the efficiency is more than 35% in developed countries. It occurs due to the adoption of new technologies and the availability of more capital investment. Though the efficiency of gas based plants are below some of the thermal power plants most electric utilities opt for the gas turbine power plants due to its known features of low capital cost high flexibility, high reliability, short delivery time less construction time and fast starting and load pick up. Installing a steam plant with the gas plant can further expand another advantage that the gas based plant is flue gas heat wastage can be used for the steam generation. The efficiency of the combined cycle plant is more than the steam plant and gas plant. The overall efficiency of this type of plant may be up to 55% [46].

Fossil fuels contain organic sulphur and pyretic sulphur During combustion the sulphur compounds goes to the atmosphere Sulphur dioxide and nitrogen oxides are the two major pollutants for the acid rain Due to this the p_H value of the earth surface changes Shrestha and Acharya (1992) have estimated the emission of different

pollutants from the thermal power generation sector for the various Asian countries Plinke et al. (1992) have discussed different options to reduce the emission of trace gases like fuel switching technology substitution measures clean coal technologies and emission control technologies. Shrestha and Bhattacharya (1991) have discussed different methods to reduce the emission of SO₂ at different stages during the combustion of coal like pre combustion (coal cleaning) during combustion (fluidized and circulating fluidized bed combustors) and post combustion (flue gas desulfurization)

There are broadly two categories of options to improve the environmental performance of power sector. These are

- a) Supply side options which include
- Emission controls in power generation Improvement in power generation efficiency
- Reduction of system losses
- Hydro power development
- Fuel switching in power generation
- b) Demand side options which include
- Efficient electricity pricing and
- End use efficiency improvement

The concentration of the CO₂ one of the greenhouse gases in the atmosphere is increasing from the starting of industrial revolution. Atmospheric CO₂ increased by 25% from 280 PPM (in 1750) to 350 PPM (in 1990) and this process has been accelerated during the last 50 years. The reduction of the GHG emissions has become a prime environmental goal to be persuaded on a global level. Different authors have discussed about the emission of CO₂ associated with the different sectors of the economy e.g. William (1993). Groscurth and Kummel (1990). Hippel et al. (1990) etc.

The power sector is the major contributor of CO₂ For example the share of power sector in total carbon dioxide emission was estimated to be 45% in India 33% in

China and 31% in Thailand in 1995 [19] As the thermal power plants are increasing in Asian countries it is obvious that the share in CO₂ emission is expected to grow in these countries. The CO₂ emission from the power sector in China. India and Thailand are projected to grow at the rates of about 6.0 8.9 and 8.7 percent per annum respectively from 2000 to 2010 [27.58.8]. Coal as a fuel used for power generation in Asian countries such as China. India. Indonesia and Malaysia. Thailand and is considered to be the largest source of CO₂ and other harmful emissions. Therefore the growth of the power sector in the Asian countries has implication for both green house gases emission and other harmful emissions (e.g. SO₂ and NO_x) that adversely effect the global and local environment.

Although there are no ibatement techniques iviilible for CO₂ emission however following options can be used for reducing CO₂ emissions [31]

- 1 Energy conversion and development of new technologies to increase the efficiency of the plants
- 2 Substituting low carbon content of fuels
- 3 Introducing nuclear power plant and more hydro power plants
- 4 Increase the number of renewable energy sources

13 Generation Expansion Planning Packages

The purpose of power system planning is to meet the power demand by consumers with minimum possible cost. There are various cost minimization techniques formulated in order to find the least cost generation expansion planning. Recently developed packages are formulated for the minimization of both cost and environmental pollutants as the environmental emission is the burning issue in the present time. Mathematical programming approaches like linear non linear mixed integer and dynamic programming are used mostly for the cost minimization of generation expansion planning. There are several software simulation packages which are available for the least cost generation expansion planning with and without emission constraints. Some of the important software packages are as follows [29]

- Wein Automatic System Planning Package (WASP)
- Optimization Generation Planning Package (OGP)
- Production Cost Simulation Program (PCS)
- National Investment Model (MNI)
- Integrated Resource Planning Analysis (IRPA)
- Production Cost and Reliability System for Electric Utility
- Electric Generation Expansion Analysis System (EGEAS)
- Production Cost Analysis Program (PROCOST)
- Capacity Expansion and Reliability Evaluation / Analysis System (CERAS)
- Power System Production Costing Model (POWERSYM)
- Westinghouse Interactive Generation Planning (WIGPLAN)
- RELCOMP Model
- SCOPE Model
- ICARUS Model

In this thesis the Integrated Resource Planning and Analysis (IRPA) package developed by Asian Institute of Technology Thailand has been used for the least cost analysis with the emission constraints

14 Power Scenario in India

India's power sector is presently managed by state electricity boards which are being assisted by central public sector generating companies their licensees and independent power producers. However, the distribution transmission and the supply of power to the consumers is handled by the state electricity boards. The total installed capacity for India up to today is around 94 000MW comprising of around 68 000MW (theimal) 2 240MW (nuclear) 1 000MW (wind) and 22 800MW (hydro). It is given in the Annex E figure 1 With this much generating capacity. India is not able to meet the peak power demand. So the load shedding is exercised through out the year, which is affecting the development and the economic progress of the country. Hence, there is an urgent need for the extension of power generation by implementing and constructing the new plants. The primary resources to power generation in the country are water.

fossil fuels (coal lignite oil and natural gas) and nuclear fuels. The over all plant load factor (PLF) in India is 63% Country has about 93 920MW potential of pumped storage hydro plants and about 10 000MW of small hydro plant [21] Also the country has large potential for other conventional resources. Such as wind power biomass tidal power ocean thermal power the potentials are 20 000MW 17 000MW 9 000MW 50 000MW and 20 000MW respectively. The values are given in the Annex E figure 2 Beyond this there are geothermal sources of power The limitation of geothermal power depends on the geographical location and the number of volcano at that site or place Beyond this the solar power plant has the unlimited potential The anticipated capacity addition from various non conventional sources [22] during 9th 10th and 11th plan are about 6 500MW 13 000MW and 19 500MW respectively. In addition, the cogeneration potential in various generic industries is about 6 500MW to 8 000MW. The present nuclear power generation based on PHWR and BWR technology is 1 840MW (detated capacity) This contributes about 2.2% of the total generation in the country The Nuclear Power Corporation of India has plans to enhance the nuclear power plant capacity to 11 600MW by the end of 11th plan [21]

At present the CEA New Delhi has presented its ninth national plan for the country. As per the projections made by the 15th electric power survey (EPS) [21] the electrical energy and peak power demand which stood at 3 89 721MU and 60 981MW during 1995 1996 are going to increase as following

Tible 1.1 Peak power and Electric energy demand projection of India

Fore cast [1]	By end of 9th plan	By end of 10th plan	By end of 11th plan
	(2001 2002)	(2006 2007)	(2011 2012)
Peak Demand	95757	130944	176647
Energy (MU)	569560	781863	1058440

State electricity boards (SEBs) Damodar valley corporation (DVC) and Bhakra Beas management board (BBMB) are presently primarily managing the power system network in India In addition to this certain licensees of the state electricity board are also generating power such as BSES/CSES/AECO Since 1991 the power generation

has been opened to all Taking this opportunities the Independent Power Producers (IPPs) are also generating the power and selling to the state electricity boards

The inter state transmission network is done by power grid corporation of India limited (PGCIL) a public sector company Power grid corporation of India Limited is solely responsible for the transmission network in the country. Generation of electricity is being done by state electricity boards as well as central or statutory generating companies like National Thermal Power Corporation (NTPC) and National Hydroelectric Power corporation (NHPC). The regional grid is managed by five regional electricity boards (REBs) namely

- 1 Northern Region il Electricity Board (NREB) having head quarter at New Delhi
- 2 Southern Regional Electricity Board (SREB) having head quarter at Bangalore
- 3 Eastern Regional Electricity Board (EREB) having head quarter at Calcutta
- 4 Western Regional Electricity Board (WREB) having head quarter at Mumbai
- 5 North Eastern Regional electricity Board (NEREB) having head quarter at Shillong

The boards are under the administrative control of Central Electricity Authority Day to day operation of the grid is carried out by Regional Load Dispatch Centers (RLDCs) which are under Power Grid Corporation of India Limited Regional load dispatch centers function under the supervision and guidance of regional electricity boards Each state has its own power department or ministry and at the central level ministry of power overseas functioning of electricity sector

15 Rationale and Objective Behind the Study

The convention generation expansion planning in most of the countries are carried out using least cost criteria. The increased concern about the environmental protection has necessitated to include the reduction of various types of emissions also into planning criteria. Many developed and some of the developing countries have already brought out environmental protection acts to limit specifically the local pollutants. However, all the nations together have joint responsibility to bring down the

levels of global pollutants the most important being the Greenhouse Gases (GHGs) Thermal power plants are one of the major producers of such gases especially carbon dioxides. The generation expansion planning must address to the reduction in the GHGs and incorporate emission limit in the planning package. Such constraint will force the more efficient generation options to be selected. No systematic work appears to have been done on quantifying the impact of including GHG mitigation constraints on the generation planning. Therefore an attempt has been made in this thesis to carry out detailed analysis on impact of the GHG mitigation in generation expansion planning on a practical regional electricity board network in India.

Few specific objectives of the studies carried out in this thesis have been projected

- 1 To analyze the least cost generation expansion planning which will fulfill the power demand by the consumers for the selected planning horizon
- 2 To analyze the least cost generation expansion planning with efficient supply side technologies
- 3 To analyze the least cost generation expansion planning with efficient supply side technologies and taking consideration of the abatement of GHG (only CO₂) by five as well as ten percent from the base value of least cost generation expansion planning
- 4 To carry out the sensitivity analyses for the above cases with the variation of the value of the parameters such as discount rate fuel price power demand supply side capital cost generation efficiency of a new or clean power plant

1 6 Organisation of Thesis

The present thesis has been organized into five chapters

The present **Chapter 1** introduces the generation expansion planning problem presents a brief literature survey & power scenario in India and sets the motivation behind the present work

Chapter 2 presents the methodology for traditional least cost generation expansion planning and the study results including for the sensitivity analyses on Northern Regional Electricity Board (NREB) network

Chapter 3 studies the impact of two efficient supply side technologies viz Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) and presents the least cost planning results with these technologies on the NREB system

In Chapter 4 the results on the NREB system have been obtained with GHG (only CO₂ in the present study) mitigation constraints and their impact on the planning results have been analyzed

Chapter 5 concludes the main findings of the work carried out in this thesis and lists some of the future scope of research work

CHAPTER-2

CONVENTIONAL LEAST COST GENERATION EXPANSION PLANNING

2.1 Introduction

The aim of the energy resource planning is to investigate comprehensively the effective use co ordination and substitution relationship of various primary resources such as coal crude oil natural gas hydro energy nuclear energy etc. The aim of the least cost generation expansion planning is to seek the most economical generation expansion scheme achieving a ceitain reliability level according to the forecast of demand increase in a given period of time. The cost factors include the capital investment cost and the power generating cost. Capital investment cost denotes the total capital outlay necessary to build a power plant. It depends on the depreciation taxes interest rate etc. Power generation cost represents the total cost of generating electricity Power generating cost includes the fixed fuel cost variable fuel cost fixed operating and maintenance cost variable operating and maintenance cost Fuel costs play a major role in the least cost generation expansion planning. Different types of fuels considered in the present study are coal oil gas and nuclear. The coal has been further categorized into six types according to their calorific value cost and different process required for the combustion of the fuel Operation and maintenance (O&M) cost includes all non fuel cost ie it includes direct and indirect cost of labour and supervisory personnel consumable supplies and equipments outside support services moderator and coolant make up nuclear liability insurance etc. Fixed operating and maintenance (O&M) cost depends on the size and type of plants but not the load factor Variable O&M cost depends on production ie plant capacity factor. In case of the hydro power plants the fuel cost is considered to be zero

In this chapter the least cost generation expansion planning studies have been carried out on Noithern Region Electricity Board network. Various sensitivity analyses have also been cairied out with respect to the change in values of discount rate fuel piices (oil coal and gas) power demand and supply side capital cost. The studies have been conducted for the planning horizon of 15 years (year 2003 2017). The Integrated Resource Planning Analysis (IRPA) software supplied by Asian Institute of Technology (AIT). Thailand has been used for the formulation of Mixed Integer Program (MIP) object code and the CPLEX linear optimizer is used for the analysis of the least cost generation expansion planning.

2.2 Mathematical Formulation

The formulation of the conventional generation expansion planning is based on the least cost optimization criteria [5] as described below

221 Objective function

The least cost generation expansion planning minimizes the total cost of candidate power plants and the cost of power generation from existing and candidate power plants over the complete planning horizon

Let the total planning horizon is for T years each year having s seasons each season divided into P blocks each block divided into t vintages J being the total number of candidate power plants and K being the total number of existing power plants

Mathematically the least cost generation expansion plan has objective to

Minimize
$$\sum_{j=1}^{J} \sum_{-1}^{T} (C_{j\nu} - W_{j\nu}) \times Y_{j\nu} +$$

$$\sum_{t=1}^{T} \sum_{j=1}^{S} \sum_{p=1}^{P} \sum_{1=1}^{t} \sum_{j=1}^{J} U_{jp tv} \times \Gamma_{jp} \times N_{t} \times \theta_{p} +$$

$$\sum_{t=1}^{T} \sum_{s=1}^{S} \sum_{p=1}^{P} \sum_{s=-V}^{t} \sum_{k=1}^{K} U_{kpstv} \times F_{kpstv} \times N \times \theta_{p,t}$$

$$(2.1)$$

Where

 C_{jv} Discounted capital cost of candidate power plant j to be commissioned in vintage

 W_{jv} Discounted salvage value of power plant j commissioned in year v after time horizon T

 Y_{jv} Number of power plants of type j installed in year v (An integer variable)

YP_{mv} Number of pump storage hydro plants type m installed in year v (An integer variable)

N_{st} Number of days in season s of year t

 θ_{pst} Width of block p of chronological load curve of season s of year t

 U_{jpstv} Power generation from candidate plant j of vintage v in block p of season s in year t

 F_{jpstv} Cost of per unit power generation from candidate power plant j of vintage v in block p of season s in year t

 U_{kpstv} Power generation from plant k of vintage v in block p of season s in year t

 F_{kpstv} Cost of per unit power generation from existing or committed power plant k of vintage v in block p of season s in year t

222 Constraints

The above least cost optimization is subject to the following system constraints

a) Demand constraints

This constraint states that the total power generation in each block of the planning horizon from candidate and existing plants will be more than or equal to the power demand during that period. It can be mathematically written as

$$\sum_{i=1}^{t} \sum_{j=1}^{J} U_{jj t} \times (1 - M_{jp t}) + \sum_{i=1}^{t} \sum_{k=1}^{K} U_{kp t} \times (1 - M_{kj t}) \ge Q_{pst}$$
(2.2)

for all p s t

Where

 U_{jpstv} Power generation from candidate plant j of vintage v in block p of season s in year t

 $M_{\rm Jpst}$ Transmission loss for transmitting power from candidate generating station j to load center in block p of season s in year t

 U_{kpstv} Power generation from existing plant k of vintage v in block p of season s in year t

 M_{kpst} Transmission loss for transmitting power from existing generating station k to load center in block p of season s in year t

b) Reliability constraints

This constraint imposes the condition that the power demand from all the plants (the candidate and the existing plants of all the types) must be greater than or equal to the sum of the power demand by the consumers and the reserve margin

$$\sum_{k=1}^{K} \sum_{i=-V}^{I} B_{k} \times (1 - M_{k_{l-1}}) + \sum_{j=1}^{J} \sum_{i=1}^{I} Y_{j} \times B_{j} \times (1 - M_{j_{l-1}}) \ge Q_{l-1} (1 + rm)$$
(2.3)

(P* represents the peak block)

Where

Bky Maximum capacity of existing or committed power plant k of vintage v

 $M_{kp}*_{st}$ Transmission loss for transmitting power from generating station k to load center in block p of season s in year t

 Y_{jv} Number of power plants of type j installed in year v (An integer variable)

 B_{jv} Maximum capacity of candidate power plant j of vintage v

M_{Jp*st} Transmission loss for transmitting power from candidate generating station j to load center in block p of season s in year t

 Q_{p^*st} Power demand in block p of season s in year t

c) Guarantee condition for energy supply for mixed hydro thermal system

This constraint states that the energy available from all the plants must be greater than or equal to the energy demand during all time interval and seasons

$$\sum_{k=1}^{K} \sum_{j=-V}^{t} \sum_{p=1}^{P} a_{kv} \times B_{kv} \times Y_{kv} \times \theta_{p,t} + \sum_{j=1}^{J} \sum_{j=1}^{t} \sum_{p=1}^{P} a_{jv} \times B_{j} \times Y_{j} \times \theta_{p,t} + k \neq hydro$$

$$j \neq hydro$$

$$\sum_{k=1}^{k} \sum_{j=-l}^{t} \sum_{l=1}^{p} \beta_{k} \times U_{kl \text{ str}} \times \theta_{pst} + \sum_{j=1}^{J} \sum_{\nu=1}^{t} \sum_{p=1}^{p} \beta_{j} \times U_{jp \text{ } t} \times \theta_{p \text{ } t} \ge \sum_{P=1}^{p} Q_{p \text{ } t} \times \theta_{j \text{ } t}$$

$$\text{k=hydro} \qquad \text{j=hydro}$$

$$(2.4)$$

for all t s

Where

aky Availability of existing or committed power plant k of vintage v

Bkv Maximum capacity of existing or committed power plant k of vintage v

 Y_{kv} Number of power plant of type k installed in year v (an integer variable)

 θ_{pst} Width of block p of chronological load curve of season s in year t

a,v Availability of candidate power plant j of vintage v

B_{Jv} Maximum capacity of candidate power plant j of vintage v

Y_{Jv} Number of power plant of type j installed in year v (An integer variable)

 β_{kv} Maximum capacity of existing or committed power plant k of vintage v

Ukpstv Power generation form plant k of vintage v in block p of season s in year

 β_{jv} Firm factor of hydro plant j of vintage v

 U_{jpstv} Power generation from candidate plant j of vintage v in block p of season s in year t

Qpst Power demand in block p of season s in year t

d) Plant availability constraints

This constiaint defines the maximum available generation from each power plant depending on their availability factor

$$U_{jj}$$
, $\leq Y_{j} \times a_{j} \times B_{j}$ for all 1 v p s t

and

$$U_{kpstv} \le a_j \times B_{kv}$$
 for all k v p s t (2.5)

Where

 U_{jpstv} Power generation from candidate plant j of vintage v in block p of season s in year t

Y₁v Number of power plants of type j installed in year v (An integer variable)

a_{1v} Availability of candidate power plant j of vintage v

B_{jv} Maximum capacity of candidate power plant j of vintage v

 U_{kpstv} Power generation from plant k of vintage v in block p of season s in year t

akv availability of existing or committed power plant k of vintage v

 B_{kv} Maximum capacity of existing or committed power plant k of vintage v

e) Annual energy constraints

This constraint defines the maximum energy which can be generated from each plant considering their maintenance period

$$\sum_{j=1}^{l} \sum_{i=1}^{s} U_{ji}, \theta_{i} \times N_{i} \leq (8760 - m_{j}) \times B_{j} \times Y_{j}$$

for all j v t

and

$$\sum_{p=1}^{P} \sum_{i=1}^{S} U_{kp,iv} \times \theta_{i,i} \times N_{i,i} \le (8760 - m_{kv}) \times B_{kv}$$
 for all k v t (2.6)

Where

 U_{jpstv} Power generation from candidate plant j of vintage v in block p of season s in year t

 θ_{pst} Width of block p of chronological load curve of season s of year t

N_{st} Number of days in season s of year t

m_{iv} Schedule maintenance hours per year of candidate power plant j of vintage v

B_{1v} Maximum capacity of candidate power plant j of vintage v

Y₁v Number of power plants of type j installed in year v (An integer variable)

Ukpsty Power generation from plant k of vintage v in block p of season s in year t

m_{kv} Schedule maintenance hours per year of existing or committed plant k of vintage

 B_{kv} Maximum capacity of existing or committed power plant k of vintage v

f) Hydro energy availability constraints

This constraint defines the limit on total hydro energy generation available from each hydro plant during each period

$$\sum_{n=1}^{p} (U_{jpstv} \times \theta_{pst}) \times N_{t} \leq \pi_{jtv}$$

for all j s t v (j=Hydro plants)

and

$$\sum_{p=1}^{P} \left(U_{kp tv} \times \theta_{j t} \right) \times N_{t} \le \pi_{k tv}$$
for all k s t v (k=Hydio plants) (2.7)

Where

 U_{jpstv} Power generation from candidate plant j of vintage v in block p of season s in year t

 θ_{nst} Width of block p of chronological load curve of season s of year t

N_{st} Number of days in season s of year t

 π_{jstv} Hydro energy available at hydro plant j of vintage v in season s in year t

 U_{kpstv} Power generation from plant k of vintage v in block p of season s in year t

 π_{kstv} Hydro energy available at hydro plant k of vintage v in season s in year t

g) Maximum potential capacity constraints

This constraint imposes the limit on the number of power plants of any type installed in any year

$$\sum_{j=1}^{T} Y_{j} \leq \alpha_{j}$$
for all j
(2.8)

where

 Y_{jv} Number of power plants of type j installed in year v (An integer variable)

α, Maximum number of units of power plant type i

h) Fuel or resource availability constraints

This constraint imposes the maximum limit on energy generation for each type computed from the availability of fuel resources

$$\sum_{t=1}^{T} \sum_{s=1}^{S} \sum_{p=1}^{P} \sum_{z=V}^{t} Y_{kv} \times U_{ky stv} \times \theta_{pst} \times N_{t} + \sum_{t=1}^{T} \sum_{s=1}^{S} \sum_{p=1}^{P} \sum_{s=1}^{t} Y_{j} \times U_{jj tv} \times \theta_{pst} \times N_{st} \leq X_{j \max}$$

for all
$$k j = k$$
 and j are some type of plants (2.9)

Where

 Y_{kv} Number of power plants of type k installed in year v (An integer variable)

 U_{kpstv} Power generation from plant k of vintage v in block p of season s in year t

 θ_{pst} . Width of block p of chionological load curve of senson s of year t

 N_{st} Number of days in season s of year t

Y_{jv} Number of power plants of type j installed in year v (An integer variable)

 U_{jpstv} Power generation from candidate plant j of vintage v in block p of season s in year t

 $X_{j \text{ max}}$ Maximum energy resource available for plant type j (computed based on the maximum fuel resource availability)

In India Northern Electricity Board is one of the regional electricity boards (REBs) The system description and data of Northern Regional Electricity Board for the present study are given below

2 3 NREB System Description

231 Electricity demand projection

The projected value of energy peak power demand energy consumption in different sectors of the Northern Regional Electricity Board (NREB) are given below

2 3 1 1 Review of historical data

The percentage of utilization of electrical energy in different sectors during 1996 1997 [22] were as given in Table 2.1. The similar pattern is also continuing at present

Table 2.1 Utilization of electrical energy in different sectors

Sector	Percentage (%)
Domestic Consumption	19 72
Commercial and Misc	7 89
Irrigation	29 99
Industry	37 18
Others	5 22
Total	100 00

The total energy consumption in NREB during the periods 1990 1991 to 2001 2002 (actual/estimated) are given in Table 2 2 [22]

Table 2 2 Energy consumption in northern region from 1990 2002

Year	MU (million kWH)
1990 1991	54986
1991 1992	60639
1992 1993	65313
1993 1994	75247
1994 1995	81480
1995 1996	87986
1996 1997	95099
1997 1998	102516
1998 1999	110293
1999 2000	118628
2000 2001	127434
2001 2002	136988

2 3 1 2 Energy and electricity demand projection

Central Electricity Authority (CEA) New Delhi is responsible for the electricity planning in the country Central Electricity Authority New Delhi is the main authority for generation expansion planning for the five regions in India CEA New Delhi uses Electricity Generation Expansion Analysis System (EGEAS) and Integrated System Planning Model (ISPLAN) two powerful softwares for the planning studies

As per the projections made by the 15th Electric Power Survey (EPS) [21] the electrical energy and peak power demand which stood at 3 89 721MU and 60 981MW during 1995 1996 are going to increase as given in Table 2.3. For our study the forecast was required up to year 2017 for which the data was not available. So peak demand up to 2017 has been extrapolated by taking average percentage growth of 6 42%. Demand in between the years 1e between 2001 02 & 2006 07, 2006 07 & 2011 12 have been calculated through interpolation of EPS data. The interpolation has been done from the previous years datas. The peak demand and power generated from

the year 1992 to 1997 is given in the figure 5 of Annex E. All these data are shown in Annex A in the IRPA format

Table 2.3 Energy and power projection for Northern Regional Electricity Board

Fore cast [1]	By end of 9 th plan (2001 2002)	By end of 10 th plan (2006 2007)	By end of 11 th plan (2011 2 0 12)
Peak Demand (MW)	31735	44009	60077
Energy (MU)	181649	254161	350165

The above projection includes all industrial and non industrial loads with a demand of 1MW and above and also includes the agricultural loads

The projected power consumption in percentage for different sectors or categories for the periods [2000 2001] and [2001 2002] are given in Table 2 4 [22]

Table 2.4 Power consumption in different sectors in percentage for NREB

SI No	Sectors/Categories	All figures are in percentage	
] 		Year 2000 2001	2001 2002
1	Domestic	22 67	23 52
2	Commercial and Miscellaneous	6 98	7 03
3	Public lighting	0 79	0 798
4	Public water work	2 25	2 28
5	Irrigation and Dewatering	24 70	24 10
6	Industrial	39 30	39 00
7	Railway	2 37	2 36
8	Bulk supply and Non Industrial consumers	0 90	0 90

2 3 2 NREB system

The NREB system has 160 thermal power plants and 230 hydro power plants All the data required for some of the case studies are given in Annex A to D Pump storage power plants are not considered as these have negligible contribution towards total generation In IRPA chronological load curve is required Chronological load curve is given in the fifure 6 of Annex E For this purpose normalized load is needed which is shown in Annex A For normalised load peak load is required for each year of the planning period. The projected peak load is shown in the figure 4 of Annex E. Two seasons are taken in one year and 20 blocks considered in each season. Season 1 consisting of July August and September and season 2 consisting of rest of the months Se ison 1 is of total 92 days and season 2 of total 273 days. Only thice types of candidate thermal power plants and one type of candidate hydro power plants are taken for least cost generation expansion planning without the efficient technology Load factor is calculated by projected energy and projected peak demand which is shown in Annex A and section 234 Projected load factor curve for whole planning period is shown in the figure 3 of Annex E Reserve margin is taken as 5% for all the years which is the norm followed by CEA Total ten types of fuels were considered namely coal 1 coal 2 coal 3 coal 4 coal 5 coal 6 gas nuclear lignite oil Costs for various types of coals are different. The costs for all the fuels are shown in Annex A. Cost multiplication factor for year 2003 is taken as 12 and for the rest of the years it is taken as 105 Only four types of plants are taken namely the conventional coal combined cycle gas turbine unit (TU) nuclear and lignite which are sufficient to include all the plant types for the least cost generation expansion planning. There are no external suppliers for the NREB Similarly there is no group data in the case study Discount factor is taken as 10% the base year as 1998 and starting year for the study is 2003 Study period is assumed to be for 15 years i.e. up to 2017

2 3 2 1 Existing power plant's data

Under the control of Northern Regional Electricity Board (NREB) there are total 160 thermal power plants and 230 hydro plants as given in Annex A

A) Thermal power plants

All existing thermal power plants are shown in Annex A Fuel consumption data is provided by CEA from the available plant monthly report. Calorific value of different types of fuels is taken from the available data SO₂ and CO₂ emission factors were calculated from the formula adopted by CEA and also given in section 2 3 3 2 NO_x emission factor was computed from the Table 1 15 of IPCC document [28] and with the help of the formula given in the section 2 3 3 2 Minimum operating capacity of all the plants is taken as 30% of the installed capacity. Heat rate is taken on the basis of the available plant monthly report. Operating cost is taken as 1% of total capital cost or 40% of fixed operating and maintenance (O&M) cost. The fixed operating and maintenance (O & M) cost is taken as 2.5% of total capital cost for all types of thermal plants except the diesel plants which is considered as 4%. Transmission loss rate is taken as 4% for all the plants. Annual maintenance hour for coal based plants and nuclear plants is taken as 10% while for the gas based plants and oil based plants. It is taken as 15% according to the CEA norms for generation planning in India. Fuel types and plant types are shown in Annex A.

B) Hydro power plants

All the existing hydro power plants are shown in Annex A. There are total 230 plants. Availability is taken according to the CEA norms. Operating cost for hydro plants is assumed to be zero. Transmission loss rate is taken as 4% for all the plants. Fixed operation and maintenance (O & M) cost is taken as 1.5% of the total capital cost. Available energy in season one (July August and September) and season two (rest of the months) is shown in Annex A.

2322 Candidate power plants

Total three types of candidate thermal plants were considered for the study of least cost generation expansion planning. Only one type of candidate hydro power plant was considered. Details of plants are given in Annex A.

The three types of candidate thermal plants considered are coal 500MW CCGT 250MW and nuclear 500MW Fuel consumption rate and calorific values of these plants are taken as the average of the fuel consumption and the calorific values of all the existing similar plants in the NREB system. Annual allowable maximum unit is taken as 150 for coal 500MW 75 for CCGT 250MW and 4 for nuclear 500MW Availability for nuclear is taken as 0.58 and for coal 500MW as 0.71. Transmission loss rate is taken as 4% Maximum possible number of incremental units is taken as 150 for the coal 500MW & 75 for CCGT 250MW and 4 for nuclear 500MW for the year 2006 2017. These are given in Annex A. The depreciable and non-depreciable cost for candidate thermal power plants have been taken as 90% and 10% of the total installation cost of the power plant respectively.

For candidate hydro power plants only one type of plant is considered which is of 250 MW having 35% efficiency. Since hydro plants take much time to be built, the earliest available year is taken as 2005. Maximum number of units is taken as 5. The hydro plants were taken in each two years interval up to 2015. Availability is taken as 90%. Operating cost is considered to be zero and transmission loss rate as 4%. Available energy in each season is taken according to the existing hydro power plant of 250 MW capacity. For the candidate hydro power plant only the total cost is taken rather than the depreciable and non-depreciable cost taken in case of the existing thermal power plants.

2 3 3 Calculation of emission constraints and heat rate

2 3 3 1 Evaluation of heat rate at full load

The average incremental heat rate (a) can be calculated as

$$a = \frac{\left(H_F - H_O\right)}{\left(L_F - L_O\right)} = \frac{\left(HR_F \times L_F - HR_O \times L_O\right)}{\left(L_F - L_O\right)}$$

Rearranging the above equation provides the following expression for the heat rate at full load (HR_{F})

$$HR_{F} = \frac{\left(HR_{O} \times L_{O} + a(L_{F} - L_{O})\right)}{L_{F}} \tag{2.10}$$

Where

 L_{Γ} H_{F} = Full load in kW and corresponding heat rate in kcal/h

Lo Ho = Minimum allowable load in kW and corresponding heat rate in kcal/h

2332 Estimation of pollution level

Various types of air pollution factors can be computed as given below

CO₂ emission factor [21]

$$ef_{r_2} \left[\frac{Kg}{Kwh} \right] = \left(\frac{44}{12} \right) \times 10 \times C \times P$$

SO₂ emission factor [21]

$$ef_{s_2}\left[\frac{Kg}{Kwh}\right] = 2 \times 10 \times C_n \times P_1$$

NO_x emission factor is referred from [IPCC 1996 Table 1 15 21]

$$ef_{no}\left[\frac{Kg}{Kwh}\right] = \frac{NO_{x} \times 0.4187 \times H R}{10^{5}}$$

Where

ef Emission factor (Kg/Kwh)

Ccon Specific coal consumption in Kg/Kwh

Pcar Percentage of carbon in coal

P_{sul} Percentage of sulphur in coal

Ef_{Nox} Emission factor (Kg/Mwh)

HR Heat rate in Kcal/Kwh

NO_x The NO_x emission expressed in Kg/TJ

The value of NO_x is calculated for various types of plants using the figure given in the table of Annex E

2 3 4 Calculation of load factor and efficiency of plants

The load factor is computed from the following formula

Load Factor = Energy / (Peak Demand \times Hours in one year)

Plant efficiency (η) has been calculated from the heat rates as following

$$\eta = \frac{860}{H R} \times 100\%$$

Where

HR Heat rate of the plant at full lo id in kcal/kWh

A 100% efficient plant gives 1kwh out put for 860kcal of input heat energy

The IRPA package considers cost figure in the US Dollars For this purpose a conversion factor of one US Dollar equal to 45 Indian Rupees has been considered

2.4 Case Studies

With the help of IRPA software of AIT Thailand which formulate the MIP object code from the datas given and the CPLEX optimizer which optimizes the object code various case studies were carried out on the NREB system. For the case studies all the datas required were taken as given in the Annex A. Emission constraint and DSM constraints were not considered in this case. The results of the least cost generation expansion planning are given below.

2 4 1 Least cost generation expansion planning Base case

For the least cost generation expansion planning of NREB system the datas were first prepared in the IRPA format. The IRPA was run for the base case henceforth called as Business As Usual (BAU) case which provided the object code. This was then fed to the CPLEX software to solve the optimization problem. The results with respect to the selection of units during the planning horizon 2003 to 2017 along with

various cost components are given in Table 2.5 A summary of fixed O&M cost fuel and variable cost and total as well as various types of emissions for each of the planning years as well as for the complete planning period is given in Tables 2.5 & 2.6

It is worth noting that in the BAU case all the candidate coal based thermal plants and hydro plants have been selected for the future expansion since the costs of these power plants were relatively less

TABLE 2 5 Plant selection by least cost generation expansion planning GENERATION EXPANSION PLAN

Year Plant Selection	tion	Discounted cap	Salvage value	Net capital	Nominal cost
		cost (k\$)	(k\$)	Cost (k\$)	(k\$)
2003 COAL 500	$(39 \times 500 \text{ MW})$	12107965 80	1594202 91	10513762 89	19500000 00
2003 CCGT-250	$(2 \times 250 \text{ MW})$	241538 39	26607 21	214931 19	389000 00
2004 HYDRO-250 35%	$(5 \times 250 \text{ MW})$	705592 41	133779 27	571813 15	1250000 00
2005 COAL 500	$(5 \times 500 \text{ MW})$	1282895 30	226681 53	1056213 76	2500000 00
2006 COAL 500	$(3 \times 500 \text{ MW})$	699761 07	142697 88	557063 19	1500000 00
2006 HYDRO-250 35%	$(5 \times 250 \text{ MW})$	583134 23	141211 45	441922 78	1250000 00
2007 COAL 500	$(7 \times 500 \text{ MW})$	1484341 66	348569 31	1135772 36	3500000 00
2008 COAL 500	$(4 \times 500 \text{ MW})$	771086 58	208101 08	562985 50	2000000 00
2008 NUCLEAR-500	$(2 \times 500 \text{ MW})$	513543 66	138535 86	375007 80	1332000 00
2008 HYDRO-250 35%	$(5 \times 250 \text{ MW})$	481929 11	148643 63	333285 48	0
2009 COAL 500	$(9 \times 500 \text{ MW})$	1577222 55	488294 32	1088928 23	4500000 00
2010 COAL 500	$(7 \times 500 \text{ MW})$	1115207 86	2	719815 81	3500000 00
2010 HYDRO-250 35%	$(5 \times 250 \text{ MW})$	398288 52	156075 81	7	1250000 00
2011 COAL 500	$(9 \times 500 \text{ MW})$	1303489 71	528428 10	775061 61	4500000 00
2012 COAL 500	$(9 \times 500 \text{ MW})$	1184990 64	548494 99	636495 66	4500000 00
2012 HYDRO-250 35%	$(5 \times 250 \text{ MW})$	329164 07	163507 99	165656 08	1250000 00
2013 COAL 500	$(11 \times 500 \text{ MW})$	1316656 27	694908 96	621747 31	500000
2014 COAL 500	$(10 \times 500 \text{ MW})$	1088145 68	654031 96	434113 72	2000000 00
2014 HYDRO-250 35%	$(5 \times 250 \text{ MW})$	272036 42	170940 17	101096 25	1250000 00
2015 COAL 500	$(12 \times 500 \text{ MW})$	1187068 01	811594 21	375473 80	00 0000009
2016 COAL 500	$(12 \times 500 \text{ MW})$	1079152 74	838350 06	240802 68	00 0000009
2016 CCGT-250	$(1 \times 250 \text{ MW})$	34982 53	26830 17	8152 36	194500 00
2017 COAL 500	$(13 \times 500 \text{ MW})$	1062801 94	937198 07	03	00 0000059
2017 NUCLEAR-500	$(1 \times 500 \text{ MW})$	108896 32	96023 78	2872	00 000999
Total capital cost				21310790 71	85081500 00

Table 2 6 Summary of the total cost and emissions levels

ANNUAL DISCRIPTION

C 4	0 9	Ω 4	4 0	4	ω	9	Ŋ	Н	ω	М	М	9
NOX(Mg 557482 581079	622857 650590	176769	789297	839942	200	966128	003	1111444	1196217	1284636	1375498	13352042
NOX 557 581	622 650	697	789	839	907200	996	1042003	111	196	284	375	352
							Н	H	H	H	H	
250	4 4	ω r	0 2 4	44	3	9 1	9	9	7	1 6	2	9
SO2 (Mg) 1213982 1290043	1392024 1460360	1577698	1646595 1796378	1914494	2071003	2217239	2401948	2569978	2771964	2974841	3193425	30491979
S02 121 129	139	157	179	191	207	221	240	256	277	297	319.	049
w 0	0 0	m i	- 6	Н	9	4	9	Η.	m	<u>_</u>	~	8 8
		12		24	10	0.2	37	85	23	85	. ⊉6	
CO2 (Gg) 206283 215798	232793 244024	263612	301059	321724	348810	373507	404737	433285	468023	503985	541294	5135194
	0 0	7 (M 62	m	m	m	4	4	4	വ	ιή	51
Annual Total 14671812 2 3910480 0	7	ω (∞ 4₁	ω	7	4	9	2	2	5	м	9
To 12 80	99	34	38 13	32	30	52	16	48	03	15	43	89
Annual T 14671812 3910480	4273164 4025699	4071634	4096938 3847613	3631032	3394430	3327055	3087916	2920548	2706603	2531215	2361043	62857189
Ann 146 39	42	40	38	36	33	33	30	29	27	25	23	628
↔ ÷ ÷	→ →	<u> </u>	~ ~	(2)	8)	~~	-50	8		- 5	<u>-</u>	(2
(75 22 % 58 %	0.0	ω i	57 7 27 28	60		51.3	54 9		0.0	73.9	77	53. %
7ar (3 3 (22 8 (68	09)0	9 (58	6 (55 3 (57	8 (59	6 (62	3 (61	3 (64	99)6	8 (70	2 (73	1(7	5(53
Fuel & Var (k\$) 3185012 3(22 %) 2649479 8(68 %)	137	280	541	335)33	573	94	542	187	578	919	583
Fuel & 3185012	2561060 2414437	2345280	2259212 2207641	2142535	2110933	2035573	1991194	1928642	1888787	1854578	1806919	33381289
전 2	2, 2	2 9	2 2	2	2	7(સં	13	78	18	<u>5</u>	333
(k\$) 5 %) 18 %)	% %		€ %	8)	90	8	8	% ₩	8	8)	8	8
)&M (K\$) 8 (5 %) 1 (18 %)	4 (15 7 (15	5(15	4 (1 4 9 (1 4	4 (14	6(15	4 (15	0 (15	6(16	6(16	3 (17	8 (18	5(13
\cup	0 4 6 7	7.5	3 4	8 4	5 6	0 4	5 0	5 6	1 6	2 3	7 8	9 5
F1X (758105 689187	655890 612276	058	551043	646	843	933	497	699	234	768	564	510
75 75 68	65	59	55	52	50	489330	47	45	44	42	415647	816
© 00 ~	€ % %	· %	€ 00	(%		_	€ (æ	% ₩	8	%	₩	%
(k\$ 73 15	25			5 (26	6 (23	7 (24	3 (20	0 (18	8 (14	0(10	4 (6	7 (34
	8 (25 0 (25											
Cap1 728694 571813	1056213 998986	1135772	1271278 1088928	962028	775061	802151	621747	535210	375473	248955	138476	21310791
C 728 571	056 998	135	777 088	962	775	802	621	535	375	248	138	310
10	H	, ,	⊣									
ar 03 04	2005 2006	07	80	10	11	12	13	14	15	2016	2017	Total
Year 2003 2004	20	20	20	20	20	20	20	20	20	20	20	Τ̈́O

2 4 2 Sensitivity analyses

In order to study the impact of change in the values of various assumed parameters on the least cost planning results sensitivity analyses were carried out. The results with respect to different parameter variables are provided below

2421 Discount rate

The discount rate was varied by +50% and -50% of the base case value and the summary of results obtained are given in Table 2.7. It can be observed that in both the cases all coal based thermal plants and hydro plants were selected. With reduction in the discount rate total cost has considerably increased where as there is a marginal change in the emission level.

Table 2.7 Results with change in discount rate values

Discount	No of	No of	No of	No of	Total	СО	SO ₂	NO
Rate in	Coal	CCGT	Nuclear	Hydro	cost in	emission	emission	emission
% of	500MW	250	500MW	250 35%	G\$	ın TKg	ın GKg	ın GKg
BAU	selected	selected	selected					
case								
+50%	150	4	2	30	41 74	5 13	30 45	13 36
50%	150	2	4	30	98 41	5 11	30 54	13 29

2422 Fuel prices

Fuel prices were changed by following percentage

- ±10% in the coal price
- $\pm 25\%$ and $\pm 50\%$ in the oil piice
- $\pm 25\%$ and only +50% in the gas price

The summary of the results is given in Table 2.8 It can be observed that the total CO₂ emission for each of the above cases is almost insensitive to the variation in

coal and oil prices. However it is most sensitive when gas price is changed. CO_2 (also NO_x and SO_2) emission increases with increase in gas price.

Table 28 Results on change with values of fuels cost

Type	Change	No of	No of	No of	No of	Total	CO ₂	SO ₂	NO
of fuels	in cost	Coal	CCGT	Nuclear	Hydro	cost in	emission	emission	emission
	as % of	500MW	250	500M	250	G\$	ın fKg	ın GKg	ın GKg
	BAU	selected	selected	w	35%				
	casc		-	selected			•		
Coal	+10	150	2	4	30	65 46	5 11	30 35	13 30
Coal	10	150	3	3	30	60 23	5 14	30 55	13 37
Oil	+25	150	3	3	30	62 90	5 13	30 51	13 35
Oil	25	150	3	3	30	62 81	5 13	30 47	13 34
Oıl	+50	150	3	3	30	62 94	5 13	30 48	13 35
Oil	50	150	4	2	30	62 76	5 13	30 53	13 36
Gas	+25	150	2	4	30	63 91	5 19	31 12	13 46
Gns	25	150	4	2	30	61 63	5 12	30 36	13 33
Gas	+50	150	2	4	30	64 54	5 22	31 49	13 51

2423 Power demand

The power demand was changed by +10% and -20% of the base case value. The results of plants selected total cost and various emissions are given in the Table 2.9. The change in total cost and emission levels follow the variation in power demand.

Table 2.9 Results with change in values of power demand

% change	No of	No of	No of	No of	Total	CO ₂	SO ₂	NO
ın power	Coal	CCGT	Nuclear	Hydro	Total	emission	emission	emission
demand	500MW	250	500MW	250	cost in	ın TKg	ın GK g	ın GKg
fromBA	selected	sclected	selected	35%	G\$			
U case								
+10%	150	44	4	30	71 58	5 74	33 83	14 86
20%	106	2	2	30	45 74	3 82	22 82	10 15

2 4 2 4 Supply side capital cost

Supply side capital cost was changed by $\pm 20\%$ and -40% only. The results are given in the Table 2.10. The change in the capital cost has affected mainly the total cost figures. It has resulted in only a marginal change in the emission levels.

Table 2 10 Results with change in supply side capital costs

Change	No of	No of	No of	No of	Total	CO ₂	SO ₂	NO
in the	Coal	CCGT	Nuclear	Hydro	Total	emission	emission	emission
capital as	500MW	250	500MW	250 35%	cost in	ın TKg	ın GKg	ın GKg
% of	selected	selected	selected		G\$			
BAU					:			
case								
+20%	150	4	2	30	67 11	5 13	30 44	13 35
20%	150	2	4	30	58 59	5 12	30 45	13 32
40%	150	2	4	30	54 26	5 12	30 60	13 29

25 Conclusion

In this chapter least cost generation expansion planning had been carried out on the NREB system. The datas for this case study was collected from the CEA. New Delhi For various studies. IRPA package along with CPLEX optimizer and MIP code formulator has been used. Various sensitivity analyses were carried out with the change in different parameters value. The results obtained for the different cases provide the following main conclusions.

- In the BAU case all the candidate hydro and coal plants were selected due to their relatively lower overall cost
- With the variation of the discount rate the selection of coal and hydro plants remained same. With increase in discount rate more CCGT plants are selected while with the decrease in the discount rate more nuclear plants get selected. The total cost increases considerable with the reduction in the discount rate. The emission levels of CO₂ SO₂ and NO_x remain almost same as in the BAU case.

- The change in fuel prices affect the total cost in case of price variation of coal and gas where as it is almost same in case of variation of the oil price. The CO₂ emission is lowest (5 11Tkg) when coal price is increased by +10% and highest (5 22Tkg) when gas price is increased by +50%. This pattern also applies to SO₂ and NO_x emissions. In this sensitivity analysis, it was also observed that relatively more number of CCGT plants were selected when gas and oil prices are reduced and more number of nuclear plants get selected when coal and gas prices are increased. Number of coal based plants and hydro plants remain same as in the BAU case.
- Increase in power demand causes large number of CCGT plants to be selected Reduction in power demand reduced the number of all types of thermal plants. The variation in the cost and emission follow the load variation.
- Supply side capital cost variation changes the total cost of the plants where as it has practically no impact on the three types of emissions

CHAPTER-3

LEAST COST GENERATION EXPANSION PLANNING WITH EFFICIENT TECHNOLOGIES

3.1 Introduction

In the least cost generation expansion planning as observed in the previous chapter mostly coal based candidate plants are selected. This results in increased emission levels including the CO₂ emission. Greenhouse Gas (GHG) emissions can be mitigated by considering efficient supply side options. These options are listed below

The supply side options include the follows

- Fuel switching (i e from high carbon to low /non-carbon fuels) [41]
- Cleaner thermal power generation technologies (e.g. Combined Cycle Pressurized Fluidized Bed Combustion (PFBC) Atmospheric Fluidized Bed Combustion (AFBC) Integrated Gasification Combined Cycle (IGCC) power plant)
- Power generation from renewable sources (e.g. hydro wind solar geothermal sea wave ocean thermal tidal etc.)
- Co firing of biomass with coal in power plants [6]
- Retrofitting of older power plants re renovation and modernization (R&M) of old plants
- Transmission and distribution loss reduction
- Pre combustion technologies
- Post combustion technologies (e g Flue Gas Desulphurization)

The demand side management includes

- Replacement electrical appliances or gadgets with high efficient technologies
- Replacement of old lamps by energy efficient lamps and energy efficient tubes. For example incandescent lamps can be replaced by compact fluorescent lamps.
- Use of more energy efficient air conditioners
- Use of energy efficient motors particularly in agricultural sectors

However in this chapter only two supply side technologies have been considered namely Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) technologies to reduce the emission levels. The base case study along with these new types of plants as candidate plants and also various sensitivity analyses have been carried out on the NREB system using IRPA package.

3 2 Clean Technologies

The two types of supply side clean technologies viz PFBC and IGCC combined in the present study are briefly described below

3 2 1 Pressurized fluidized bed combustion

By using Pressurized Fluidized Bed Combustion (PFBC) technology the plant efficiency can be improved upto about 45% PFBC is clean coal technology associated with coal gasification. Main furnace operates under pressure. In this technology, ash sulphur and impurities are removed at the combustion stage of fuel burnt to control different emissions. The lime is added in the coal at the time of combustion of coal, so that the energy required for burning the sulphur can be saved. The lime reacts with the sulphur forms the compound and comes out as waste matter. The SO₂ emission will be less in this case. NO_x is controlled by lowering temperature of combustion, water spray or using special burner. Fluidized bed combustion can burn coal efficiently at a temperature low enough to that of the powder coal burning temperature. As the NO_x

emission depends on the combustion temperature its level will decrease. Due to the gasification of the coal the CO₂ emission will also be less

3 2 2 Integrated gasification combined cycle

Variety of solid or liquid feedstock. It offers some unique options such as co-production of electric power bricks and chemicals simultaneously. It is the technology employed to control emission at the combustion stage of the fuel. By using this one can reduce pollutant s emission level and water consumption amount besides improving the overall efficiency of the power plants, which may be more than 45%. In such plants, the coal is gassified to lower degree before it goes to the combustion. Before going to combustion and at the time of gassification the lime is added to the coal to take out sulphur before burning of the gasified coal. Reduction in sulphur compound can be achieved by clean up at 350,400 °C by absorption on supported iron oxides. Coal gasification provides a potential option for reducing CO₂ emission of coal fired plants. As the buining temperature is low enough so the NO_x emission is low. The high ash (30% 40%) content of Indian coal requires IGCC technology for the power generation.

3 3 Case Studies and Results

The datas required for various case studies for generation expansion planning with efficient technologies are same as that for the least cost generation expansion planning in chapter 2 Additional data required for the IGCC and PFBC plants are given in the Annex A. The methodology for this case is same as for the least cost generation expansion planning given in chapter 2 section 2.2. The IRPA package along with the CPLEX has been used for this study.

3 3 1 Least cost generation expansion planning

For the least cost generation expansion planning of NREB system the data was first prepared in the IRPA format. The IRPA was run for the base case henceforth

called as Business As Usual (BAU 1) case. The results with respect to the selection of units during the planning horizon from 2003 to 2017 along with various cost components are given in Table 3.1. A summary of fixed O&M cost fuel and variable cost and total as well as various types of emissions for each of the planning years and also for the complete planning period are given in Tables 3.1 and 3.2.

It is worth noting that in the BAU case all the candidate hydro plants IGCC and PFBC plants were selected for the future expansion case study. The coal plant selection was reduced due to its higher cost than the efficient technologies. It was observed by comparing with the BAU case results without efficient technologies in chapter 2 that the total cost reduces by approximately 1% Emission levels of CO₂ SO₂ and NO_x reduces by approximately 4% 12% and 9% respectively. For both the BAU and BAU 1 case selection of CCGT and nuclear plants remain same

Plant selection by least cost generation expansion planning with efficient technologies GENERATION EXPANSION PLAN Table 3 1

Year Plant Selection	ıon	Discounted cap	Salvage value	capıt	Nominal cost
		cost (k\$)	(k\$)	Cost (k\$)	(k\$)
003 COAL 500	$(39 \times 500 \text{ MW})$	12107965 80	4202 9	10513762 89	19500000 00
.003 CCGT-250	x 25	241538 39	209	14931 1	389000 00
004 HYDRO-250 35%	$(5 \times 250 \text{ MW})$	2 4	3779 2		1250000 00
005 PFBC 500	$(3 \times 450 \text{ MW})$	812457 59	143552 58	668905 01	1583250 00
2005 IGCC 500	$(2 \times 400 \text{ MW})$	570169 99	100745 70	469424 29	1111100 00
006 PFBC 500	$(3 \times 450 \text{ MW})$	738597 81	150613 16	587984 65	1583250 00
2006 HYDRO-250 35%	$(5 \times 250 \text{ MW})$	583134 23	141211 45	441922 78	1250000 00
2007 PFBC 500	$(4 \times 450 \text{ MW})$	895270 07	210231 64	685038 43	2111000 00
:007 IGCC 500	$(2 \times 400 \text{ MW})$	471214 86	110655 27	360559 59	1111100 00
2008 NUCLEAR-500	$(2 \times 500 \text{ MW})$	513543 66	8535	375007 80	1332000 00
1008 IGCC 500	$(5 \times 400 \text{ MW})$	1070942 87	289025 15	781917 72	2777750 00
2008 HYDRO-250 35%	$(5 \times 250 \text{ MW})$	481929 11	148643 63	333285 48	1250000 00
1009 COAL 500	$(7 \times 500 \text{ MW})$	1226728 65	379784 47	6944	0 00000
1009 IGCC 500	$(1 \times 400 \text{ MW})$	194716 89	60282 42	134434 46	555550 00
COAL	×	4523 2	451876 63	822646 64	4000000 00
1010 HYDRO-250 35%	$(5 \times 250 \text{ MW})$	398288 52	156075 81	242212 71	1250000 00
011 COAL	$(9 \times 500 \text{ MW})$	1303489 71	528428 10	775061 61	4500000 00
012 COAL 500	$(9 \times 500 \text{ MW})$	1184990 64	548494 99	636495 66	4500000 00
2012 HYDRO-250 35%	$(5 \times 250 \text{ MW})$	329164 07	163507 99	165656 08	1250000 00
2013 COAL 500	$(10 \times 500 \text{ MW})$	1196960 25	631735 42	565224 83	5000000 00
2014 COAL 500	$(10 \times 500 \text{ MW})$	1088145 68	654031 96	434113 72	2000000 00
2014 HYDRO-250 35%	$(5 \times 250 \text{ MW})$	272036 42	170940 17	101096 25	1250000 00
2015 COAL 500	$(12 \times 500 \text{ MW})$	1187068 01	811594 21	375473 80	00 0000009
2016 COAL 500	$(13 \times 500 \text{ MW})$	82 1	908212 57	260869 57	6500000 00
7 COAL 50	$(14 \times 500 \text{ MW})$		90 2	135265 70	7000000 00
otal capital cost				21500048 19	85554000 00

Table 3 2 Summary of the total cost and emissions levels with efficient technologies

ANNUAL DISCRIPTION

2 4	ro o	8	ო	7	7	ω	Ŋ	n	Ŋ	0	9	Ŋ	Н
NOX (Mg 557482 581079	595792	619242	626778	680219	732394	797682	858581	933835	1001658	020	1178658	1104	453
NO3 557 581	595	615	626	989	732	797	828	933	1001	108807	1178	127410	12132453
ο rυ	9 4	· ~	4	Ŋ	0	3	0	0	7	9	ι—I	ω	4 1
(Mg) 982 043	342	080	102	897	745	547	189	740	782	908	188	281	173
SO2 (Mg 1213982 1290043	1311342	1336080	1339102	1459268	1591745	1743647	1894489	2066740	2231782	2436908	2654488	288728	26788173
			-	-			Η		2		2		
ig) 13 3 18 9	5 5 5		0	5	E S	4.1	4	آن 6	50	0	<u>~</u>	7	7 4
CO2 (Gg) 206283 215798	229365	254383	261600	284015	305851	332474	357634	387893	416105	451190	488407	528007	4958837
2 2 C	22	2.2	26	28	3	33	35	38	41	4	48	52	495
tal 2 0	4	0	о	Ŋ	0	7	S	7	4	4	0	-1	6
Annual Total 14671812 2 3910480 0	3.5	39	04	18	94	16	28	13	82	12	39	41	13
Annual To 14671812 3910480	4320602	3913439	4218204	3659118	3649494	3314116	3257328	2977113	2870182	2661912	2494839	2316041	62239319
Anr 146 39	4 4	, c	42	36	36	33	32	25	28	26	24	23	622
(k\$) 2 %) 8 %)	90 G	€ 6	90	& &	8)	(%	8)	₩	(8	8)	8)	%)	8
	3 (58	5 (58	1 (51	5 (58	9()2	2(61	09)6	8 (65	2 (66	8 (69	8 (73	5 (76	7 (52
>													•
Fuel & Var 3185012 3(2 2649479 8(6	7404	3994	1846	3994	1155	2033337	1968316	1941898	1882808	3216	1808833	1768097	3937
Fuel & 3185012 2649479	2527404	2283994	2164846	2133994	2061155	203	196	194	188	1848216	180	176	32620937
	~ ~		·		÷		<u>.</u>	-	<u>(</u> ;	-	<u>.</u>		8) 3
(k\$) (5%) (18%)	ஸ் _ஸ	; r∪ , ‰	38	رن %	4.48	5	رن %	9	90	8 91	7 8	8	
¥ ∞ ⊢	7 (15	4 (15	8 (13	4 (15		9 (15	8 (15	0 (16	8(16	8(16	7 (17	0 (18	0(13
O&M 105 8 187 1	868	846	147	745	479	717	859	990	163	221	135	678	335
F1X 758 689	654	583	563	543	523	505	486	469	452	438	425	412	8118
~~		. ~	- 2	90	ф ~	% %	8	%) %	%	8)	(%	(2	8) 8
(\$) 73 % 15 %												9	(35 %
Capıtal(k\$) 28694 1(73 71813 1(15	3 (26	0 (27	0 (35	6 (27	4 (29	6 (23	7 (25	8 (19	0 (19	8 (14	6(10	7 (7
Capita 10728694 571813	329	598	211	378	859	061	151	224	210	473	869	135265	21500048
Capit 728694 571813	1138329	1045598	1490211	981378	1064859	775061	802151	565224	535210	375473	260869	135	500
10		+ 1	~네		Н								. 21
Year 2003 2004	2005	107	800	600	110	111	2012	2013	2014	2015	2016	2017	Total
Υe 20 20	20	20	20	20	20	20	20	20	20	26	20	20	$\mathcal{I}_{\mathcal{C}}$

3 3 2 Sensitivity analyses

In order to study the impact of change in the values of various assumed parameters on the least cost planning results (i.e. BAU 1) the sensitivity analyses were carried out. The results with respect to different parameter variables are given

3 3 2 1 Discount rate

The discount rate was varied by +50% and -50% of the base case value and the summary of results obtained are given in Table 3.3. With +50% variation in discount rate the optimization results did not converge. It can be observed that in the case of -50% variation also all coal based thermal plants and hydro plants are selected. With reduction in the discount rate, total cost has considerably increased where as there is a marginal change in the emission level.

Table 3 3 Results with change in discount rate

Discou	No of	No of	No of	No of	No of	No of	Total	CO ₂	SO ₂	NO
nt Rate	Coal	CCGT	Nuclear	Hydro	PFBC	IGCC	cost in	emissi	emissi	emissio
ın 9	500MW	250	500MW	250	plants	plants	G\$	on m	מו מס	מו מ
of	selected	selected	selected	35%	selected	selected		TKg	GKg	GKg
BAU	i									,
case			!							
50%	130	2	4	30	10	10	97 08	4 93	26 60	11 97

3 3 2 2 Fuel prices

Fuel prices were changed by given percentage

- A) ±10% in the coal price
- B) $\pm 25\%$ and $\pm 50\%$ in the oil price
- C) $\pm 25\%$ and only +50% in the gas price

The summary of results are given in Table 3.4 Similar to the results reported in chapter 2 the CO₂ emission level changes only in case of change in the gas price and remains almost same with the variation in the oil and coal price

Table 3 4 Results with change in values of fuels cost

Турс	Change	No ol	No of	No of	No of	No of	No of	Total	CO	SO	NO
of	ın cost	Coal	CCGT	Nuclea	Hydro	PFBC	IGCC	cost in	emis	emissi	emissi
fuels	on % of	500M	250	r	250	plants	plants	G\$	sion	on in	on in
·	BAU	W	selecte	500M	35 <i>9</i>	selected	selected		ın	GKg	GKg
	case	selecte	d	w					TKg]	
		d		selecte							
				d							
Conl	+10	131	2	2	30	10	10	64 76	4 95	26 73	12 12
Coal	10	131	2	2	30	10	10	59 69	4 96	26 83	12 15
Oıl	+25	131	2	2	30	10	10	62 28	4 95	26 78	12 13
Oıl	25	131	2	2	30	10	10	62 19	4 95	26 78	12 13
Oıl	+50	131	2	2	30	10	10	62 32	4 95	26 78	12 13
Oıl	50	131	2	2	30	10	10	62 14	4 96	26 82	12 13
Gas	+25	131	2	2	30	10	10	63 29	50	27 18	12 17
Gas	25	131	2	2	30	10	10	61 03	4 95	26 72	12 11
Gas	+50	136	2	2	30	10	10	63 92	5 05	27 88	12 30

3323 Power demand

The power demand was changed by +10% and -20% of the base case value. The result of plants selected total cost and various emissions are given in the Table 3.5. With reduction in load, the number of conventional thermal plants drastically reduced. Variation of cost and emission follows the load change.

Table 3 5 Results with change in power demand

%	No of	No of	No ol	No of	No of	No of	Total	CO ₂	SO ₂	NO
change	Coul	CCGT	Nuclear	Hydro	PFBC	IGCC	cost	cmissio	cmissio	cmission
ın	500M	250	500M	250	plants	plants	ın G\$	n in	n in	ın GKg
power	W	sclected	W	35%	selected	selected		TKg	GKg	
demand	selected		selected							
from										
BAU										
case										
+10%	150	6	4	30	10	10	70 81	5 61	30 51	13 69
20%	85	2	2	30	10	10	45 22	3 66	19 43	9 03

3 3 2 4 Supply side capital cost

Supply side capital cost was changed by $\pm 20\%$ and only -40% for this case study. The results are given in the Table 3.6. With change in the supply side capital cost the total cost figure varies considerably. However it marginally changes the plant selection and emission levels.

Table 3 6 Results with change in supply side capital costs

Change	No of	No of	No of	No of	No of	No of	Total	CO ₂	SO ₂	NO
ın the	Coal	CCGT	Nuclear	Hydro	PFBC	IGCC	cost in	emissio	emiss10	emissio
capital	500M	250	500M	250	plants	plants	G\$	n in	n in	n in
cost as	w	selected	w	35%	selected	selected		TKg	GKg	GKg
% of	selected		selected							
BAU										
case										
+20%	131	2	2	30	10	10	66 53	4 95	26 78	12 13
20%	131	2	2	30	10	10	57 92	4 96	26 78	12 11
40%	130	2	4	30	10	10	53 53	4 93	26 67	11 99

3325 Generation efficiency of new power plant

In this case the change in efficiency of the PFBC and IGCC type plants were considered. The plants efficiency has been changed by +2% and +5% and then the results are given in the Table 3.7. There is practically no change in the planning result.

Table 3.7 Results with change in generation efficiency of efficient plants

Change	No of	No of	No of	No of	No of	No of	Total	CO ₂	SO ₂	NO
ın	Coal	CCGT	Nuclear	Hydro	PFBC	IGCC	cost	emission	emissio	emission
generati	500MW	250	500MW	250	plants	plants	ın G\$	ın TKg	n ın	ın GKg
on	selected	selected	selected	35%	selected	selected			GKg	
efficien						[
су			ļ							
+2%	131	2	2	30	10	10	62 18	4 95	26 78	12 13
+5%%	131	2	2	30	10	10	62 10	4 95	26 78	12 13

34 Conclusion

In this chapter the least cost generation expansion planning analyses with two types of efficient technologies i.e. IGCC and PFBC were carried out on NREB system. The results of the base case study (BAU 1) and different sensitivity analyses provide the following main conclusions on

- With the inclusion of IGCC and PFBC candidate plants in the least cost generation expansion planning the total cost compared to the BAU case in chapter 2 reduces by 15 total emission CO₂ SO₂ and NO_x reduces by 3% a2% and 9% respectively
- The number of candidate plants IGCC and PFBC selected remained constant irrespective of the variation of the parameters in the sensitivity analyses
- Reduction in the discount rate increases the total cost of generation drastically
- The CO₂ emission level is sensitive to only change in the gas price and remain almost same with change in oil and coal prices
- Number of coal based nuclear and CCGT plants selected reduces considerably with decrease in power demand
- Slightly more number of nuclear power plants were selected with the 40% decrease in supply side capital cost. Increase in supply side cost increases the total cost, but has practically no impact on emission levels.
- Variation of efficiency of PFBC and IGCC plants has very little impact on the planning results

CHAPTER-4

GENERATION EXPANSION PLANNING CONSIDERING GHG MITIGATION CONSTRAINT

41 Introduction

In India the electricity generation is predominantly from thermal power plants. In fact more than 70% of the total power generation is from thermal plants in most of the Asian countries [50]. Coal is the dominant fuel used for power generation in India due to sufficient availability of non-coking coal in the country itself. The use of coal for power generation causes increase in the environmental pollution. The power sector is the major contributor of CO₂ which is one of the greenhouse gases. For example the share of power sector in total carbon dioxide emission was estimated to be 45% in India [22]. Excessive emission of greenhouse gases such as CO₂ causes global environmental problem such as global worming. Since this affects almost all the countries most of the developed and developing countries are actively participating in bringing down the emission level of GHG gases [34].

In this chapter the least cost generation expansion planning expansion methodology has been modified to restrict the GHG emissions. Only limits on carbon dioxide (CO₂) has been considered in the present study. In the previous two chapters the analyses were carried out with the least cost generation expansion planning without any constraint on pollution level. Similar to chapter 3, the two efficient technologies for thermal power plants are also considered in this chapter viz PFBC (Pressurized Fluidized Bed Combustion) and IGCC (Integrated Gasification Combined Cycle) plants. The mitigation target of GHG by 5% and 10% from the base case (BAU in chapter 2) has been considered. The sensitivity analyses have been carried out with

respect to change in the values of various parameters such as the discount rate fuel prices (coal oil gas) power demand supply side capital cost and change in generation efficiency of IGCC and PFBC type power plants. The Integrated Resource Planning Analysis (IRPA) software supplied by Asian Institute of Technology (AIT). Thailand has been used for the present work also. All the studies have been carried out on the Northern Regional Electricity Board (NREB) system of India.

42 Methodology

The mathematical formulation of the problem in this chapter is exactly same as the least cost generation expansion planning given in the chapter 2 section 2.2 except for the additional constraints on the total emission levels as given below

• Annual emission limit

This constraint states that the sum of the emissions from all the plants must be less than the upper limit on the allowable annual maximum emission level

$$\sum_{k=1}^{K} \sum_{v=-V}^{I} \sum_{s=1}^{S} \sum_{p=1}^{P} Emf_{ik} \times U_{kpst} \times N_{t} \times \theta_{pst} + \sum_{j=1}^{J} \sum_{v=-V}^{S} \sum_{s=1}^{P} Emf_{ij} \times U_{jpstv} \times N_{st} \times \theta_{pt} \le Emq_{t}$$

$$k \ne h y dio \qquad j \ne h y dro \qquad for all t n$$

(41)

Where

Emf_{nk} Emission of pollutant n per unit energy generation in plant type k

Ukpstv Power generation from plant k of vintage v in block p of season s in year t

 N_{st} Number of days in season s of year t

 θ_{pst} Width of block p of chronological load curve of season s in year t

 Emf_{nj} Emission of pollutant n per unit energy generation in plant type j

 U_{jpstv} Power generation from candidate plant j of vintage v in block p of season s in year t

 Ema_{nt} Upper limit of annual emission of pollutant n in year t

All the data of NREB system used in chapters 2&3 are also required for the case studies in this chapter. The additional datas required are the emission constraint data as given in the Annex D. These emission data have been entered for each year basis of the planning period i.e. from 2003 to 2017. Zero has been entered in the total emission limit block of the data format as the emission datas were required to be entered for each year basis only.

43 Case Studies and Results

Two sets of case studies were carried out on the NRSB system in this chapter pertaining to the 5% and 10% reduction of total CO₂ emission from the plants. The results for these two cases and for the sensitivity analyses are given below

431 Case 1 Mitigation target of 5% over BAU

4 3 1 1 Base case

For this study the base case data utilized are same as for the business as usual (BAU 1) case in the chapter 3 i.e. after considering IGCC and PFBC plants. The emission targets (Emqnt in eq. (4.1)) is computed for each planning year as 95% of the CO₂ emission value for that year corresponding to the BAU case in chapter. The planning results listing the selected plants along with various cost components are given in Table 4.1 and summary of the cost and emission values in Table 4.2. Comparing the results of Table 4.1 & 4.2 with Tables 3.1 & 3.2 and also with the Table 2.5 & 2.6 provide the following observations

- 1) The selection of hydro PFBC and IGCC plants remain same for case studies with and without emission constraints. More number of CCGT and nuclear plants were selected in case of 5% mitigation where as the coal plants selected were less than the least cost generation expansion planning with efficient technologies. Comparing with the BAU case without efficient technologies the number of CCGT and nuclear plants selected has increased and the coal plants have decreased.
- 2) The total cost in the case of least cost generation expansion planning with 5%

mitigation was around 2% more than the least cost generation expansion planning with efficient technologies. Comparing with the BAU case, the cost is only 0.1% more

The reduction in the total emissions of CO_2 SO_2 and NO_x over the least cost generation expansion planning with efficient technologies are 3% 6% and 2% respectively Compared to the BAU case (chapter 2) the SO_2 and NO_x emissions reduces by 17% and 11% respectively

TABLE 4 1 Plant selection with 5% mitigation target

GENERATION EXPANSION PLAN

10245201 83 1348940 92 8896260 91 16500000 00 1811537 96 199554 07 1611983 89 2917500 00 282236 97 43106 65 239130 31 500000 00 705592 41 133779 27 571813 15 1250000 00 570169 99 100408 77 469424 29 11011100 00 583134 23 141211 45 441922 78 1111100 00 583134 23 141211 45 441922 78 1250000 00 513543 66 138535 86 375007 80 1332000 00 513543 66 138535 86 375007 80 135000 00 876234 75 148643 63 333285 48 1250000 00 876234 75 148643 63 33285 48 1250000 00 876234 75 148643 63 33285 48 1250000 00 876234 75 180847 27 403303 39 1666650 00 1303489 71 258428 10 775061 61 4500000 00	Selectio
1811537 96 199554 07 1611983 89 2917500 282236 97 43106 65 239130 31 500000 705592 41 133779 27 571813 15 1250000 541638 39 100745 70 469424 29 1055500 570169 99 100745 70 469424 29 1111100 492398 54 100408 77 391989 77 1055500 583134 23 141211 45 441922 78 125000 51342905 11 315347 46 1027557 65 316650 513543 66 138535 86 375007 80 133200 513543 66 138535 86 375007 80 133200 513543 66 138535 86 375007 80 135000 1070942 87 289025 15 781917 72 2777750 481929 11 148643 63 33285 48 125000 1274523 27 451876 63 822646 64 400000 13048489 71 528428 10 77561 61 450000 13048490 64 548444 99 636495 66 450000 1184990 64 548444 99 636403 64 56524 83 500000 1169	3 x 50
705592 41 133779 27 571813 15 1250000 541638 39 95701 72 445936 67 1055500 570169 99 100745 70 469424 29 1111100 583134 23 141211 45 441922 78 125000 1342905 11 315347 46 102757 65 316650 1070942 87 289025 15 781917 72 277775 1274523 71 148643 63 333285 48 1250000 1274523 27 451876 63 332286 48 1250000 1274523 27 451876 63 4003000 0 1303489 71 528428 1250000 0 118490 64 528428 10 775061 61 4500000 118490 64 548494 99 636495 66 4500000 118490 64 548494 99 636495 66 4500000 118490 05 548494 99 636495 66 4500000 118490 05 548494 99 636495 66 4500000 118490 0 548494 99 636495 66 4500000 118496 0 5865224 83 5000000 118969 0 170940 17 101096 25	x 25 x 50
541638 39 95701 72 445936 67 1055500 570169 99 100745 70 469424 29 1111100 53134 23 140211 45 77 1055500 1342905 11 315347 46 102757 65 3166500 1070942 87 289025 15 781917 72 2777750 1070942 87 289025 15 781917 72 2777750 876234 75 128643 63 33285 48 1250000 1274523 27 271274 62 60460 13 2500000 1274523 27 451876 63 822646 64 4500000 1274523 27 451876 63 822646 64 4500000 1303489 71 528428 10 775061 61 4500000 1184990 64 58494 99 6636495 66 4500000 1184960 25 654031 96 656224 </td <td>x 25</td>	x 25
570169 99 100745 70 469424 29 1111100 492398 54 100408 77 391989 77 105500 583134 23 141211 45 441922 78 125000 1342905 11 315347 46 1027557 65 316650 1070942 87 289025 15 781917 72 277775 1070942 87 289025 15 781917 72 277775 1070942 87 289025 15 781917 72 277775 876234 75 271274 62 604960 13 250000 876234 75 180847 27 403303 39 166650 1274523 27 451876 63 822646 64 400000 1303489 71 528428 10 775061 61 450000 1184990 64 548494 99 636495 66 450000 1186960 25 631735 42	$(2 \times 450 \text{ MW})$
492398 54 100408 77 391989 77 1055500 583134 23 141211 45 441922 78 1250000 513543 66 138535 86 375007 80 1332000 1070942 87 289025 15 781917 72 2777750 481929 11 148643 63 333285 48 1250000 876234 75 271274 62 604960 13 250000 1274523 27 461876 63 822646 64 400000 1274523 27 451876 63 822646 64 400000 1333489 71 528428 10 775061 61 450000 1333489 71 528428 10 775061 61 450000 1333489 71 528428 10 775061 61 450000 138490 64 548494 99 636495 66 450000 119690 25 631735 42 565224 83 500000 1198145 68 654031 96 565224 83 500000 1169082 13 908212 57 260869 57 650000 1169082 13 937198 07 125603 87 650000 108896 32 937198 07 12872 54 66000	× 40
583134 23 141211 45 441922 78 1250000 1342905 11 315347 46 1027557 65 3166500 513543 66 138535 86 375007 80 1332000 1070942 87 289025 15 781917 72 2777750 481929 11 148643 63 333285 48 1250000 876234 75 271274 62 604960 13 2500000 1274523 27 451876 63 822646 64 4000000 1274523 27 451876 63 822646 64 4000000 1303489 71 528428 10 775061 61 4500000 1303489 71 528428 10 775061 61 4500000 119690 64 548494 99 636495 66 4500000 119690 25 631735 42 565224 83 5000000 119690 25 631735 42 565224 83 5000000 118708 01 811594 21 26785 04 6600000 116008 13 937198 07 125603 07 6500000 11062801 94 937198 07 12872 54 650000 108896 32 96023 78 12812856 25 85414500	x 45
1342905 11 315347 46 1027557 65 3166500 0 513543 66 138535 86 375007 80 1332000 0 1070942 87 289025 15 781917 72 2777750 0 481929 11 148643 63 333285 48 1250000 0 876234 75 180847 27 403303 39 1666650 0 1274523 27 451876 63 822646 64 4000000 0 1274523 27 451876 63 822646 64 4000000 0 1303489 71 528428 10 775061 61 4500000 0 1184990 64 528428 10 775061 61 4500000 0 1184990 64 548494 99 636495 66 4500000 0 1184990 64 548494 99 636495 66 4500000 0 1186960 25	x 25
513543 66 138535 86 375007 80 1332000 1070942 87 289025 15 781917 72 2777750 481929 11 148643 63 333285 48 1250000 876234 75 180847 27 604960 13 2500000 1274523 27 451876 63 822646 64 4000000 1303489 71 528428 10 775061 61 4500000 1184990 64 548494 99 636495 66 4500000 1196960 25 631735 42 565224 83 500000 1196960 25 631735 42 565224 83 500000 119785 95 93050 91 1256089 57 650000 1187068 01 811594 21 375473 80 600000 1162081 34 960212 57 260869 57 650000 1163896 32 937198 07 125603 87 650000 108896 32 95414500 96000 91	x 45
1070942 87 289025 15 781917 72 2777750 481929 11 148643 63 333285 48 1250000 876234 75 271274 62 604960 13 250000 1274523 27 403303 39 166650 1274523 27 451876 63 822646 64 4000000 1303489 71 528428 10 775061 61 450000 1184990 64 548494 99 636495 66 450000 1184990 64 548494 99 636495 66 450000 1196960 25 631735 42 565224 83 500000 1196960 25 654031 96 434113 72 500000 1187068 01 811594 21 375473 80 600000 1169082 13 908212 57 260869 57 650000 1162801 94 93050 91 26735 04 66000 1062801 94 96023 78 12872 54 650000	x 50
481929 11 148643 63 333285 48 1250000 0 876234 75 271274 62 604960 13 2500000 0 1274523 27 403303 39 1666650 0 13774523 27 403303 39 1666650 0 12774523 27 403303 39 1666650 0 12774523 27 451876 63 822646 64 4000000 0 1303489 71 528428 10 775061 61 4500000 0 1184990 64 548494 99 636495 66 4500000 0 1196960 25 631735 42 565224 83 500000 0 1196960 25 654031 96 434113 72 500000 0 272036 42 170940 17 101096 25 1250000 0 1187068 01 811594 21 375473 80 6000000 0 1169082 13 908212 57 260869 57 650000 0 1169082 13 93050 91 26735 04 666000 0 1062801 94 996023 78 112872 54 666000 0 108896 32 96023 78 1138556 25 85414500 0	x 40
876234 75 271274 62 604960 13 2500000 0 584150 66 180847 27 403303 39 1666650 0 1274523 27 451876 63 822646 64 4000000 0 1303489 71 528428 10 775061 61 4500000 0 1184990 64 548494 99 636495 66 4500000 0 1184990 64 548494 99 636495 60 4500000 0 119696 25 631735 42 56524 83 500000 0 1088145 68 654031 96 434113 72 500000 0 1187068 01 811594 21 375473 80 600000 0 1169082 13 908212 57 650000 0 1062801 94 93050 91 26735 94 66600 0 108896 32 96023 78 12872 <td>x 25</td>	x 25
584150 66 180847 27 403303 39 1666650 0 1274523 27 451876 63 822646 64 4000000 0 398288 52 156075 81 242212 71 1250000 0 1184990 64 528428 10 775061 61 4500000 0 1184990 64 548494 99 636495 66 4500000 0 1196960 25 631735 42 56524 83 500000 0 1088145 68 654031 96 434113 72 500000 0 272036 42 170940 17 101096 25 1250000 0 1187068 01 811594 21 375473 80 6000000 0 1169082 13 908212 57 260869 57 6500000 0 1062801 94 937198 07 125603 87 6500000 0 108896 32 96023 78 12872 54 666000 0	×
1274523 27 451876 63 822646 64 4000000 0 398288 52 156075 81 242212 71 1250000 0 1184990 64 528428 10 775061 61 4500000 0 1184990 64 548494 99 636495 66 4500000 0 1196960 25 631735 42 565224 83 5000000 0 11088145 68 654031 96 434113 72 5000000 0 272036 42 170940 17 101096 25 1250000 0 1187068 01 811594 21 375473 80 6000000 0 1169082 13 908212 57 260869 57 6500000 0 1062801 94 937198 07 125603 87 6500000 0 108896 32 96023 78 12872 54 666000 0 1188556 25 <td< td=""><td>x 40</td></td<>	x 40
398288 52 156075 81 242212 71 1250000 0 1303489 71 528428 10 775061 61 4500000 0 1184990 64 548494 99 636495 66 4500000 0 1196960 25 631735 42 56524 83 500000 0 1088145 68 654031 96 434113 72 500000 0 272036 42 170940 17 101096 25 125000 0 1187068 01 811594 21 375473 80 600000 0 1169082 13 908212 57 260869 57 650000 0 1062801 94 937198 07 125603 87 650000 0 108896 32 96023 78 12872 54 66600 0 21138556 25 85414500 0	x 50
1303489 71 528428 10 775061 61 4500000 0 1184990 64 548494 99 636495 66 4500000 0 329164 07 163507 99 165656 08 1250000 0 1196960 25 631735 42 565224 83 500000 0 272036 42 170940 17 101096 25 125000 0 1187068 01 811594 21 375473 80 600000 0 1169082 13 908212 57 260869 57 650000 0 1062801 94 937198 07 125603 87 650000 0 108896 32 96023 78 12872 54 666000 0 21138556 25 85414500 0	x 25
1184990 64 548494 99 636495 66 4500000 0 329164 07 163507 99 165656 08 1250000 0 1196960 25 631735 42 565224 83 500000 0 1088145 68 654031 96 434113 72 500000 0 272036 42 170940 17 101096 25 1250000 0 1187068 01 811594 21 375473 80 600000 0 1169082 13 908212 57 260869 57 650000 0 119785 95 93050 91 26735 04 666000 0 1062801 94 937198 07 125603 87 650000 0 108896 32 96023 78 12872 54 666000 0 21138556 25 85414500 0	x 50
329164 07 163507 99 165656 08 1250000 0 0 1196960 25 631735 42 565224 83 5000000 0 0 272036 42 170940 17 101096 25 1250000 0 0 1187068 01 811594 21 375473 80 600000 0 0 1169082 13 908212 57 260869 57 650000 0 0 119785 95 93050 91 26735 04 666000 0 0 108896 32 96023 78 12872 54 666000 0 0 21138556 25 85414500 0	x 50
1196960 25 631735 42 565224 83 5000000 0 1088145 68 654031 96 434113 72 5000000 0 272036 42 170940 17 101096 25 1250000 0 1187068 01 811594 21 375473 80 600000 0 1169082 13 908212 57 260869 57 650000 0 119785 95 93050 91 26735 04 666000 0 1062801 94 937198 07 125603 87 650000 0 108896 32 96023 78 12872 54 666000 0 21138556 25 85414500 0	x 25
1088145 68 654031 96 434113 72 5000000 0 272036 42 170940 17 101096 25 1250000 0 1187068 01 811594 21 375473 80 6000000 0 1169082 13 908212 57 260869 57 650000 0 119785 95 93050 91 26735 04 666000 0 1062801 94 937198 07 125603 87 650000 0 108896 32 96023 78 12872 54 666000 0 21138556 25 85414500 0	x 50
272036 42 170940 17 101096 25 1250000 0 1187068 01 811594 21 375473 80 6000000 0 1169082 13 908212 57 260869 57 6500000 0 119785 95 93050 91 26735 04 666000 0 1062801 94 937198 07 125603 87 6500000 0 108896 32 96023 78 12872 54 666000 0 21138556 25 85414500 0	x 50
1187068 01 811594 21 375473 80 6000000 0 1169082 13 908212 57 260869 57 6500000 0 119785 95 93050 91 26735 04 666000 0 1062801 94 937198 07 125603 87 6500000 0 108896 32 96023 78 12872 54 666000 0 21138556 25 85414500 0	(5 x 250 MW
1169082 13 908212 57 260869 57 6500000 0 119785 95 93050 91 26735 04 666000 0 1 1062801 94 937198 07 125603 87 6500000 0 108896 32 96023 78 12872 54 666000 0 21138556 25 85414500 0	x 50
119785 95 93050 91 26735 04 666000 0 1062801 94 937198 07 125603 87 6500000 0 108896 32 96023 78 12872 54 666000 0 21138556 25 85414500 0	× 50
) 1062801 94 937198 07 125603 87 6500000 0) 108896 32 96023 78 12872 54 666000 0 21138556 25 85414500 0	× 50
) 108896 32 96023 78 12872 54 666000 0 21138556 25 85414500 0	$(13 \times 500 \text{ MW})$
1138556 25 85414500 0	× 50

Table 4 2 Summary of the total cost and emission levels with 5% mitigation target

ANNUAL DISCRIPTION

NOX (Mg) 533977 7	555069 4	601104 0	612777 7	620309 1	664219 0	715524 3	780808 3	841710 9	917128 5		1071363 3	1156478 1	1245713 6	11887792 1	
$\overline{}$	1166010 7	1253658 8		1261502 1	1351031 2	1481860 1	1633766 6	1784604 4	1958064 2	2123751 8	2328232 7	2541294 7	2752915 5	2521916F 7	, CO#CT9C9
	205010 0	230997 7	247702 3	254923 3	274857 7	296507 9	323134 3	348291 3	378636 6	406994 7	441932 9	477515 2	514230 0	0 0101	481/045 0
Annual Total 14654256 6	4305441 5	4240000 0 3959806 1	4030480 6	4341006 6	3790290 0	3743425 8	3399509 2	3334958 0	3049315 8	2934518 7	2721583 5	2565911 5	2357712 9		634787T6 /
Fuel & Var (k\$) 3391973 2(23 %)		2673072 9(63 %)	γ C		~		3 (62	3 (61		5 (66			0 (77		34231444 6(54 %)
Flx O&M (k\$) 754038 6(5%)	18 1	1 (15	602901 2(13 4) 676914 9(14 %)	4 (13		3 (14	3 (15	0 (14	582 9 (15	248 2(15	299	77.7	916 5(18	04/0	8058217 8(13 %)
Capıtal(k\$) 10508244 8(72 %)	5 (19	0 (22		1/06/33/ / (43 %)	で (これ		7 (7)	1000	1,44	103224 0(17 %) 535310 0(18 %)	ν () α	#	1 1 7	O - #	. 21138556 3(33 %)
Year 2003	2004	2005	2006	7007	2000	2000	2010	40 C	4017	2010	4 C C C	2075	2010	7107	Total

4 3 1 2 Sensitivity analyses

In order to study the impact of change in the values of various assumed parameters on the planning results with the mitigation target of 5% on CO₂ emission sensitivity analyses were carried out with respect to different parameters. These are described below

a) Discount rate

The discount rate was varied by +50% and -50% of the base case value and the summary of results obtained are given in Table 4.3. It can be observed that in both the cases all hydro nuclear PFBC and IGCC plants were selected. With reduction in the discount rate total cost has drastically increased where as there is a marginal change in the emissions level.

Table 4.3 Results with change in discount rate with 5% mitigation

Disco	No of	No	No of	No	No of	No of	Total	CO ₂	SO ₂	NO
unt	Coal	of	Nuclear	of	PFBC	IGCC	cost	emissi	emissi	emissi
Rate	500MW	CCG	500MW	Hydr	plants	plants	ın G\$	on in	on in	on in
ın %	selected	T 250	selected	o 250	selected	selected		TKg	GKg	GKg
of		select		35%	!					
BAU		ed								
C 15C										
+50%	122	16	4	30	10	10	42 07	4 81	25 07	1187
50%	124	14	4	30	10	10	99 20	48	25 24	11 73

b) Fuel price

Fuel prices were changed by following percentage

- A) $\pm 10\%$ in the coal price
- B) $\pm 25\%$ and $\pm 50\%$ in the oil price
- C) $\pm 25\%$ and only +50% in the gas price

The summary of results are given in Table 4.4 It can be observed that the total cost varies with change in gas and coal prices where as it is almost same with change in

the oil price More number of CCGT plants are selected with reduction in gas price. The variation in the emission levels are not substantial in all the cases

Table 4.4 Results with change in fuels cost with 5% mitigation

Type	Cost	No of	No	No of	No	No	No	Total	CO ₂	SO ₂	NO
of	ın %	Coal	of	Nuclear	of	of	of	cost	emis	emiss	emissi
fuels	of	500MW	CCG	500MW	Hydr	PFBC	IGCC	ın G\$	sion	ion in	On in
	BAU	selected	T 250	selected	o 250	plants	plants		ın	GKg	GKg
	case		select		359	select	select		TKg		
			ed			ed	ed				
Coal	+10	122	16	4	30	10	10	65 76	4 80	24 97	11 83
Coal	10	123	15	4	30	10	10	61 07	4 82	25 13	1189
Oıl	+25	122	16	4	30	10	10	63 47	4 81	25 21	11 89
Oıl	25	122	16	4	30	10	10	63 38	481	25 21	11 89
Oıl	+50	122	16	4	30	10	10	63 51	481	25 21	11 89
Oıl	50	122	16	4	30	10	10	63 34	4 80	25 09	11 87
Grs	+25	123	15	4	30	10	10	64 30	4 87	25 80	11 90
Gns	25	120	22	2	30	10	10	61 26	478	24 74	11 82
Gas	+50	123	14	4	30	10	10	66 64	4 87	26 02	11 87

c) Power demand

The power demand was changed by -20% of the base case value. The result of plants selected total cost and various emissions are given in the Table 4.5. The programme give convergence problem with +25% variation in the demand. It is observed that reduction in power demand reduces the conventional thermal power plants selection as candidate plants.

Table 4.5 Results with change in power demand with 5% mitigation

Percenta	No of	No	No of	No of	No of I	No	Total	CO ₂	SO_2	NO _x
ge in	Coal	of	Nuclear	Hydro	PFBC o	of	cost	emiss	emiss	emiss
power	500MW	CCG	500MW	250	plants 1	IGCC	ın G\$	ion in	ion in	ion in
demand	scleeted	T 250	selected	35%	selccted 1	plants		TKg	GKg	GKg
on BAU		select			s	select				
case		ed				ed				
20%	85	2	2	30	10	10	47 03	3 80	19 80	9 26

d) Supply side capital cost

Supply side capital cost was changed by $\pm 20\%$ and only -40% for the case study. The results are given in the Table 4.6. In all the cases, total cost for generation varies considerably. No significant change in the emission level is observed.

Table 4 6 Results with change in supply side capital costs with 5% mitigation

Supply	No	of	No	No	of	No	No	of	No	of	Total	CO ₂	SO ₂	NO
side	Coal		of	Nucle	ar	of	PFB	C	IGC	C	cost	emiss	emissi	emissi
capital	500M	w	CCG	500M	W	Hydr	plant	s	plant	s	ın G\$	ion in	on in	on in
cost in	selecte	ed	T 250	selecte	ed	0	selec	ted	selec	ted		TKg	GKg	GKg
% of			select			250								
BAU			ed			35%								
case														
+20%	122		16	4		30	10		10		67 65	4 80	25 08	11 87
20%	123		15	4		30	10		10		59 19	4 81	25 22	11 88
40%	123		15	4		30	10		10		54 79	4 81	25 32	11 75

e) Generation efficiency of new power plant

In this case the change in efficiency of the PFBC and IGCC type plants were considered. The plants efficiency has been changed +2% and +5% and then the package ran. The results are provided in the table 4.7 in this case, there is practically no change in the planning results.

Table 4.7 Results with change in generation efficiency with 5% mitigation

Chan	No of	No of	No of	No	No of	No of	Total	CO ₂	SO ₂	NO
ge in	Conl	CCGT	Nuclen	of	PFBC	IGCC	cost	emis	emissi	emissi
gener	500MW	250	500MW	Hydr	plants	plants	ın G\$	sion	on in	on in
ntion	selected	selected	selected	o 250	selected	selected		ın	GKg	GKg
efficie				35%				TKg		
ncy										
+2%	122	16	4	30	10	10	63 37	481	25 21	11 89
+5%	122	16	4	30	10	10	63 30	481	25 22	11 89

4 3 2 Case 2 Mitigation Target of 10% over BAU

This case is same as Case 1 except that the CO_2 emission reduction target is set at 10% over the BAU case. The emission targets (Emqnt of eq. (4.1)) is computed as the 90% of the total CO_2 emission for the BAU case (chapter 2) for each year of the planning years. The results of the base case are given below

4321 Base Case

Base case utilizes all the data of BAU 1 case in chapter 3 and the emission constraints. The planning results listing the selected plants along with various cost components are given in Table 4.8 and summary of the cost and emission values in Table 4.9. Comparing the results of Table 4.8 & 4.9 with Tables 3.1 & 3.2 and Table 2.5 & 2.6 following observations are made

- The selection of hydro PFBC and IGCC plants remain same in all the three cases. There is considerable increase in the selection of CCGT plants. The number of CCGT and nuclear plants selected in case of the 10% mitigation target are 53 & 4 respectively and in the case of BAU 1 with efficient technologies there are 2 % 2 only. The number of coal plants selected gets reduced.
- The total cost in the case of least cost generation expansion planning with 10% mitigation turget is around 4% more than the least cost generation expansion planning with efficient technologies. Total cost is also increased by 3% approximately than the BAU case of chapter 2
- The reduction in emissions of CO_2 SO_2 and NO_x as compared to the least cost generation expansion planning with efficient technologies are around 8% 18% and 6% respectively. The emission of SO_2 and NO_x are 25% and 14% less than the BAU case in chapter 2, respectively.

TABLE 4 8 Plant selection w.th 10% mitigation target

GENERATION EXPANSION PLA Year Plant Selection	PLAN 10n	Discounted cap	Salvage value	Net capital	Nominal cost
		(k¢)	ξŞ	Cost (k\$)	(k\$)
2003 COAL 500	N X	761516	1021924 94	39591 (500000 0
2003 CCGT-250	$(29 \times 250 \text{ MW})$	02306	385804 54	• •	40500 0
2004 COAL 500	×	82236	90	39130	0 00000
2004 CCGT-250	× 25	9790	14344 11	95446 07	4500 0
2004 HYDRO-250 35%	$(5 \times 250 \text{ MW})$	05592	3779 2	1813	50000 0
2005 PFBC 500	x 45	41638	95701 72	936	55500 0
2005 IGCC 500	40	570169 99	100745 70	469424 29	
2006 PFBC 500	x 45	2398	100408 77	1989	55500 0
2006 HYDRO-250 35%	$(5 \times 250 \text{ MW})$	583134 23	41211 4	1922	50000
2007 PFBC 500	X 4	42905	15347 4	27557 (66500
2008 NUCLEAR-500	X	13543	38535 8	75007	2000
2008 IGCC 500	X 4	0942	89025 1	81917 7	77750
2008 HYDRO-250 35%	X	81929	48643 6	33285 4	20000
COAL	× 500	76234	71274 6	04960 1	00000
IGCC	X 4	84150	80847 2	03303 3	666650
2010 COAL 500	x 500	523	451876 63	9	\circ
	X 7	98288	56075 8	42212 7	250000
2011 COAL 500	×	3489	28428 1	75061 6	200000
COAL	x 50	21659	6607 2	95052 1	200000
2012 NUCLEAR-500	X	50757	62318 8	88438 3	332000
HYDRC	x 25	29164	3507 9	2656 0	250000
2013 COAL 500	X	0969	31735 4	65224 8	00000
2013 CCGT-250	×	6561	3708 6	2853 0	4500
COAL 50	χ	331	628 7	702 3	00000
2014 CCGT-250	×	84657 73	49498 33	5159 4	89000
2014 HYDRO-250 35%	x 2	2036	0940 1	1096 2	250000
2015 COAL 500	$(10 \times 500 \text{ MW})$	89223	76328 5	12894 8	00000
2015 CCGT-250	×	53923	3158 6	0764 4	78000
2016 COAL 500	$(MM 002 \times 6)$	09364 5	28762 5	0602 0	200000 0
2016 CCGT-250	×	44877 7	7811 2	7066 5	61500 0
017 COAL 5	Ŋ	735785 96	8829	26	0 0000
2017 CCGT-250	×	86220 7	50836 1	5384 6	20

Total capital cost

Table 4 9 Summary of the total cost and emission levels with 10% mitigation target

ANNUAL DISCRIPTION

NOX (Mg) 520758 2 536047 4 563470 4 579887 3 593492 5 601023 9 644959 3 696239 1 761523 1 810124 1 884808 3 950619 5 1111238 9	11480449 7
SO2 (Mg) 983983 5 1030984 7 1091871 6 1119843 8 1132897 1 1135924 1 1225636 0 1356282 1 1508188 6 1625807 5 1796688 1 1947151 1 2114775 7 2274655 0	22776708 4
. CO2 (Gg) 186650 0 194220 0 209510 0 219620 0 237028 2 244249 1 264196 1 285833 8 312460 1 332440 0 362567 6 389547 8 421220 0 453580 0	
Annual Total 14228858 2 4603948 9 4416244 0 4118225 4 4173653 6 4471163 9 3908976 8 3850993 8 3463493 6 3144860 6 3144860 6 2796502 5 2636805 4	64800098 0
E 0 8 4 0 0 0 C 4 8 0 0 0 0 L 4	195961/ 4(/9 %) 36283682 5(56 %)
05h 28 8 26 8 64 7 627 7 727 7 88 4 112 112 112 113 8 113 8	403310 0(16 %) 7950855 0(12 %)
al(k\$) 8(69 % 5(20 % 0(21 % 0(21 % 7(25 % 0(33 % 5(26 % 6(22 % 6(22 % 6(25 % 6	122341 1(5%) 20565561 4(32%)
Year 2003 2004 2005 2005 2007 2010 2011 2012 2013 2013	2017 Total

4 3 2 2 Sensitivity analyses

The sensitivity analysis results with respect to different parameters for the 10% CO₂ level mitigation are given below

a) Discount rate

The discount rate was varied by +50% and -50% of the base case value and the summary of results obtained were given in Table 4.10. It can be observed that in both the cases all coal based thermal plants and hydro plants were selected. With reduction in the discount rate total cost has considerably increased where as there is a marginal change in the emission level.

Table 4 10 Results with change in discount rate with 10% mitigation

Discou	No of	No of	No of	No	No of	No of	Total	CO ₂	SO ₂	NO
nt Rate	Conl	CCGT	Nucle ir	of	РГВС	IGCC	cost in	emis	emiss	emissi
ın % of	500MW	250	500MW	Hydr	plants	plants	G\$	sion	10n 1n	on in
BAU	selected	selected	selected	o 250	selected	selecte		ın	GKg	GKg
case				35%		d		TKg		
+50%	102	53	4	30	10	10	42 78	4 60	22 79	11 50
50%	103	52	4	30	10	10	102 03	4 60	22 87	11 35

b) Fuel price

Fuel prices were changed by following percentage

- ±10% in the coil price
- ±25% and ±50% in the oil price
- ±25% and only +50% in the gas price

The summary of results are given in Table 4 11

Table 4 11 Results with change in fuels cost with 10% mitigation

Type	Cost	No of	No	No of	No	No	No of	Total	CO ₂	SO ₂	NO
lo	ın %	Conl	of	Nuclear	oſ	of	IGCC	cost	emis	emiss	emissi
fuels	lo	500M	CCG	500MW	Hydr	PFBC	plants	ın G\$	sion	ion in	on in
	BAU	w	T 250	seleeted	o	plants	selected		1n	GKg	GKg
	case	selecte	scleet		250	seleet	<u> </u> 		TKg		
		d	ed		359	ed					
Coal	+10	102	53	4	30	10	10	66 87	4 59	22 77	11 47
Coal	10	102	53	4	30	10	10	62 69	4 60	22 83	11 50
Oıl	+25	103	52	4	30	10	10	64 84	4 60	22 82	11 48
Oıl	25	102	53	4	30	10	10	64 74	4 60	22 81	11 48
Oıl	+50	103	52	4	30	10	10	64 89	4 60	22 82	11 49
Oıl	50	103	52	4	30	10	10	64 57	4 60	22 81	11 47
Gas	+25	102	53	4	30	10	10	67 83	4 62	23 05	11 44
Gas	25	100	60	2	30	10	10	61 51	4 58	22 31	11 44
Gas	+50	103	52	4	30	10	10	70 49	4 62	23 08	11 38

a) Power demand

The power demand was changed by -20% of the base case value. The result of plants selected total cost and various emissions are given in the Table 4-12.

Table 4 12 Results with change in power demand with 10% mitigation

Percentag	No of	No	No of	No of	No of	No	Total	CO ₂	SO ₂	NO
e in	Conl	of	Nuclen	Hydro	PFBC	of	eost	emiss	emiss	emiss
power	500MW	CCG	500MW	250	plants	IGCC	ın G\$	ion in	10n 1n	10n in
demand	selected	1 250	selected	35%	selected	plants		TKg	GKg	GKg
on BAU		select				seleet				
erse		ed				ed				
+20%	85	2	2	30	10	10	46 62	3 77	19 72	9 20

b) Supply side capital cost

Supply side capital cost was changed by $\pm 20\%$ and only -40% for the case study. The result is given in the Table 4.13

Tible 4 13 Results with change in supply side capital costs with 10% mitigation

Supply	No of	No of	No of	No	No of	No	Total	CO ₂	SO ₂	NO
side	Coal	CCGT	Nuelear	of	PFBC	of	cost	emiss	emiss	emissi
capital	500MW	250	500MW	Hydr	plants	IGCC	ın G\$	ion in	ion in	on in
cost in	sclected	sclected	selected	o 250	selected	plants	•	TKg	GKg	GKg
% of				35%		select				
BAU						ed				
case										
+20%	102	53	4	30	10	10	68 92	4 60	22 78	11 14
20%	103	52	4	30	10	10	60 68	4 60	22 83	11 49
40%	102	53	4	30	10	10	56 38	4 61	23 02	11 38

e) Generation efficiency of new power plant

In this case the change in efficiency of the PFBC and IGCC type plants were considered. The plants efficiency has been changed +2% and +5% and then the package run for the analysis result. The results were provided in the table 4.14.

Table 4 14 Results with change in generation efficiency with 10% mitigation

Change in	No of	No of	No of	No	No	No	Total	CO ₂	SO ₂	NO
generation	Conl	CCGT	Nuclear	of	of	of	cost	emiss	emiss	emissi
efficiency	500MW	250	500MW	Hydr	PFBC	IGCC	ın G\$	10n in	10n 1 n	on in
	selected	scleeted	selceted	o 250	plants	plants		TKg	GKg	GKg
				35%	select	select				
					ed	ed				
+2%	102	53	4	30	10	10	64 74	4 60	22 81	11 48
+5%	103	52	4	30	10	10	64 67	4 60	2281	11 48

44 Conclusion

The least cost generation expansion planning with the mitigation of 10% of GHG from the base case was studied on NREB system

The hydro CCGT and PFBC plants selected were same for all the cases

- On change in discount rate the cost varies more in quantity and the other parameters are varied marginally
- The Highest CCGT nuclear plant selected and lowest coal plant selected with the 25% decrease in coal place. Total cost is highest on increase in gas price. Emission levels are approximately constant.
- Change in power demand affect exactly in the same manner that of the case of 5%mitigation
- With rise in supply side cost the total cost is rising and reduction of capital cost reduces the total cost
- Change in efficiency has significantly no effect

CHAPTER 5

CONCLUSION

Greenhouse Gas (GHG) mitigation has been considered as one of the major concerns of the environment protection through out the world with respect to the global waiming. Since the power plants are one of the main contributors to such gases it is important to integrate this objective in the future expansion plans. This thesis has made extensive studies of generation expansion planning incorporating the carbon dioxide (CO₂) emission mitigation constraint in the least cost model and also exploring the impact of two types of efficient supply side technology options viz Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC)

Three different case studies considered were the traditional least cost planning least cost planning with efficient technologies and least planning with CO₂ emission mitigation constraint. Mitigation reduction targets of 5% and 10% were considered over the Business As Usual (BAU) case. Various sensitivity analyses were also carried out with respect to the change in discount rate fuel prices power demand supply side capital cost and efficiency of efficient plants. The results obtained on the Northern region il Electricity Bourd (NREB) network using the IRPA package for 15 years planning horizon provide following main conclusions.

- All the hydro plants have been fully selected an each of the case studies. This is due to consideration of zero operating cost and no emission from these plants.
- All candidate coal type plants were selected in the BAU and associated sensitivity
 analyses cases due to their lower cost. However, with the use of plants having
 efficient technologies and in GHG mitigation cases, selection of number of coal
 based plants reduced.

- More number of CCGT and nuclear plants were selected in the cases having constraint on GHG mitigation due to relatively less pollution from these plants
- With the use of efficient technologies such as PFBC and IGCC the reduction in cost
 as well as all types of pollutants i e CO₂ SO₂ and NO_x were observed Number of
 such plants selected remained same even with variation of different parameters
- With the GHG emission limit constraint (only CO_2 in this study) included in the planning methodology significant cost reduction in the total emissions of CO_2 NO_x and SO_2 were observed over the BAU as well as BAU 1 cases both for the 5% and 10% CO_2 mitigation targets. The cost of generation in these cases however slightly increases
- It was observed that the total cost increased significantly with the decrease in discount rate. However variation in the discount rate has negligible effect on emission levels.
- The CO₂ emission level is sensitive to only change in the gas price and remain almost same with change in oil and coal prices. The Highest CCGT nuclear plant selected and lowest coal plant selected with the -25% decrease in coal price. Total cost is highest on inciense in gas price. Emission levels are approximately constant.
- Number of coal bised nuclear and CCGT plants selected reduces considerably with decrease in power demand. Total cost and emission varies according to power demind.
- Supply side cost variation affects the total cost significantly and has no effect on emission levels. With increase in the cost it selects more number of CCGT plants and with the reduction in the cost more number of nuclear plants are selected specially in case of least cost planning with GHG (only CO₂) mitigation
- Change in efficiency of the PFBC and IGCC plants by +2% and +5% has practically no effect on plant selection cost and emission levels

Consequent to the generation expansion planning studies carried out in this thesis following areas of future research are identified

• In the present case only two supply side efficient technology options i.e. PFBC and IGCC have been considered for the emission reduction. Other supply side options

- as well as demand side options can be considered in the generation expansion planning studies
- The pumped storage hydro plants have not been considered in the present study
 India has large potential of such plants as well as for many non conventional type
 plants. Such plants can also be considered as candidates in the planning studies
- Many developing countries are encouraging use of distributed generation and adopting the deregulated electricity market. These aspects can also be integrated in the generation expansion planning.

ANNEX A

Table A 1 Basic Data Form

t Factor No of Fuel Type No of Plant Types [6] [6] [7] [6] [7]
Factor
Factor
Discount Factor 11 DSM Case
No of Blocks 20 JEX I
sh\out Ip No of Seasons 2 Solver Type
[S]
No of Years 15 NO 4
kg Lil
Optumal Output File Year Starting Year 98 2003 Ston Constraints
Optumal Output I Base Year Starting [1998] [200 Emission Constraints

Existing Plai	nts		Candidate P	Plants		DSM	External		GROUPS	
Thermal	Hydro	Pump Stor	Thermal	Hydro	Pump Stor	Option	Suppliers	Thermal	Hydro	DSM
160	230	0	3	9	0	0	0	0	0	0

No of hours of a block of the daily load curve

2	7	6 8 /	6 8 1 8 6
,	-	-	

No of Days of season in a year

Season	1	2
Value	92	273

Table A 2 Load Data Form

Normalized load of the block in the season

<u> </u>	T	1
20	8711	8846
19	8964	9113
18	9952	9642
11	9923	9864
91	1.0	9927
15	9674	10
14	8313	9394
13	83	9098
12	8152	855
11	8103	8447
10	\$005	8645
6	1808	9082
∞	8179	9439
7	8217	8986
9	835	9599
5	8489	9274
4	8 4]	8712
m	825	843
2	8468	8521
	8611	8663
Sea/ Bloc		2

Annual System Load Factor (%)

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2010 2010 2001 2001 2001 2010 2010	[1,000	1000	,000	0000	0000	0000	0,00		0100	000	7100	2015	2016	2017
654 657 660 658 659 660 6617 663 664 665 666 667 667 667	Year	2003	2004	2005	2006	7007	2008	5007	7010	7011	7017	2013	407 7014	2012	2010	7107
	Value	65.4	65.7	099	65.8	659	0 99	66 17	663	66 4	66.5	9 99	2 99	1 66 7	199	8 99

Annual System Peak Demand (MW)

							-								
Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Value	33880	36169	38613	41223	44009	46835	49843	53044	56451	22009	63935	68040	72405	77055	82002

Annual Expected System Reserve Margin (0 00 1 00)

ear	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016 2017	2017
alue	0 05	0.05	c0 0	0 05	0.05	0.05	0 05	0.05	0 05	0.05	0.05	0.05	0.05	0.05	c0 0

Table A-3 Emission Data Form

Expected CO Emission Limit (Unit = Mtons)

Value 0 0 0 0 0 0 0	2009 2010	2011 2	2012 2013	3 2014	2015	2016	2017
	0 0	0 0	0	0	0	0	0

Total CO Emission Limit During Planning Period

0 0

Expected SO₂ Emission Limit (Unit = Ktons)

Year	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Total SO₂ Emission Limit During Planning Period

Expected NO Emission Limit (Unit = Ktons)

20	0	
2016	0	
2015	0	
2014	0	
2013	0	
2012	0	
2011	0	
2010	0	
2009	0	
2008	0	
2007	0	
2006	0	
2005	0	
2004	0	
2003	0	
Year	Value	

Total SO₂ Emission Limit During Planning Period

Table A-4 Fuel Type Data

	Cost			O	ost Mul	Cost Multiplication Factor in the Years	on Facto	r in the	Years							
Name	\$/Gcal	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Coal 1	3.5	12	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05
Coal 2	4.5	12	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05
Coal 3	6.5	12	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05
Coal-4	7.5	12	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05
Coal 5	8.5	12	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05
Coal 6	10	12	1 05	105	1 05	1 05	105	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05
Gas	17	12	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05
Nuclear	2.5	12	1 05	1 05	1 05	1 05	105	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05
Lignite	3.8	12	1 05	1 05	1 05	105	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05
Ö	22	12	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05

Table A 5 Plant Type Data

TYPE	NAME
1	CONVENTIONAL COAL
2	COMBINED CYCLE GAS TURBINE
3	NUCLEAR
4	LIGNITE
5	PFBC
6	IGCC

Table A 8 Candidate Thermal Power Plant Data

Name	COAL 500	CCGT 250	NUCLE 500
Used Fuel Type	COAL	GAS	NUCLEAR
Fuel Consumption R it Unit	000 Kg/MWh	000 Kg/MWh	000 Kg/MWh
Fuel Consumption	07	02	0 00027
Calonine Value (KBtu/Kg)	13.5	34 52	40635
CO ₂ Emission (Kg/MWh)	1026	550	0
SO ₂ Emission (Kg/MWh)	6	04	0
NO Emission (Kg/MWh)	25	1 64	0
Capacity (MW)	500	250	500
Minimum Operating Capacity (MW)	150	75	125
Enthest Available Year	1	1	4
Annual Allowable Max Unit	150	75	4
Availability	0 71	08	0.58
Unit Depreciable Capital Cost (000 \$)	450000	175000	600000
Unit Non Depreciable Capital Cost (000 \$)	50000	19500	66000
Heat Rate (Mcal/MWh)	2500	2062	2777
Operating Cost (000 \$/MWh)	0 0012	0 0008	0 0015
Transmission Loss Rate	0 04	0 04	0 04
Annual Maintenance Hours	864	1296	896
Unit Life Time	30	25	30
Fixed Oper & Maint Cost (000 \$/MWmonth)	2	1 67	27
Number of the Fuel Type	4	7	8
Number of the Plant Type	1	2	3
Plant Site No	0	0	0
Minimum Selected Units in Year 2003	2	2	0
Max Possible Incremental Units in Year 2003	150	75	0
Minimum Scleeted Units in Ye u 2004	2	2	0
Max Possible Incicinental Units in Year 2004	150	75	0
Minimum Selected Units in Year 2005	2	2	0
Max Possible Inciemental Units in Year 2005	150	75	0
Minimum Scleeted Units in Year 2006	2	2	0
Max Possible Inciemental Units in Year 2006	150	75	0
Minimum Selected Units in Year 2007	2	2	0
Max Possible Incremental Units in Year 2007	150	75	0
Minimum Selected Units in Year 2008	2	2	2
Max Possible Incremental Units in Year 2008	150	75	4
Minimum Selected Units in Year 2009	2	2	2
Max Possible Incremental Units in Year 2009	150	75	4
Minimum Selected Units in Year 2010	2 '	2	2

Max Possible Inciemental Units in Year 2010	150	75	4
Minimum Selected Units in Year 2011	2	2	2
Max Possible Inciemental Units in Year 2011	150	75	4
Minimum Selected Units in Year 2012	2	2	2
Max Possible Incremental Units in Year 2012	150	75	4
Minimum Selected Units in Year 2013	2	2	2
Max Possible Incremental Units in Year 2013	150	75	4
Minimum Selected Units in Year 2014	5	2	2
Max Possible Incremental Units in Year 2014	150	75	4
Minimum Selected Units in Year 2015	5	2	2
Max Possible Incremental Units in Year 2015	150	75	4
Minimum Selected Units in Year 2016	2	2	2
Max Possible Incremental Units in Year 2016	150	75	4
Minimum selected Units in Year 2017	2	2	2
Max Possible Incremental Units in Year 2017	150	75	4

Table A 9 Candidate Hydro Power Plant Data

1
Hydro 250 35%
250
2
5
0 9
250000
0
0 04
50
0
0
0
262800
613200

Table A 6 Existing Thermal Power Plant Data

Fuel Type	ი ი	o (n	ო	က	က	က	က	က	က	လ	7	7	7		1 .	,	7	Ŋ	IJ	ς.	4	4		4	4	4	7	
Fixed O&M (000 \$/ Mwmonth)	0.0	Ν (03	CV	7	0	2	7	5	2	2	1 67	1 67	1 67	167	5 6	16/	1 67	2	2	63	CV.	ו מ	J	2	2	Q	1 67	
Annual Maint. Hours	864	864	864	864	864	864	864	864	864	864	864	1296	1206	1208	9001	0671	1296	1296	864	864	864		5 6	804	864	864	864	1296	
Oper Cost (000 \$/ MWh)	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0.0012	8000			80000	0 0008	0 0008	0 0008	0 0012	0 0012	0.0012	1 6	21000	21000	0 0012	0 0012	0.0012	8000	
Heat Rate (kcal/ kwh)	3213	3213	3213	2781	2781	3636	3636	3636	3636	4075	4075	2 0	200	1981	1982	1982	1982	1982	4530	4530	A530	1 6	3887	3887	3887	3887	3630	1080	306
Avail	90	90	90	0.71	071	90	90	90	90	9) (7 6	7 0	C ;	170	0 71	0.71	0.71	90	9 0) (o (90	90	90	90	, ,	7 7	5
EA	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2002	2003	2003	2003	2003	2003	2003	2003	2003	2000	3 6	2003	2003	2003	2003	2003		2002	2003
Capacity (MW)	85	85	82	190	190	7.	, y	, r		8 8	0 6	09	45.5	45 5	45 5	45 5	45.5	7 A A	5		D (46	86	86	86	0	06	061	139
NOX Emis. (kg/ MWh)	5 14	5 14	5 14	4.45	2.78	1 L	2 2	2 2	20 11	700	209	6 52	1 59	1 59	1 59	1 59	1.59	3 4	1 - 0	9 1	3	7 25	3 89	3 89	3 89	5 6	000	3 3 3	1 29
SO2 Emis (kg/ MWh)	∞	œ	000	۰ ۲	٠,	~ u	0 0) L	0 0	ο : Ο :	80	85	0 37	0 37	0 37	037	0.37	5 6	/s 0	י מל	ກ	တ	თ	თ	σ	, (מ	80	0 37
CO2 Emis (kg/	1144	1144	7777	1 20	5 5	3 5	28 / /21	12// 83	1277 83	1277 83	1473 27	1473 27	504 43	504 43	504 43	504 43	507 43	504 43	504 43	1617	1617	1617	1353	1353	1353	200	1353	1277 83	504 43
Cal Value (KBtu/ kq)	14 27	14 27	1 6 7	17 57	14 2/	14 2/	15 TB	15 19	15 19	15 19	17 65	17 65	41 74	41 74	41 74	41 74		4/14	41 74	17 88	17 88	17 88	15 34	15.34		<u> </u>	1534	15 34	41 74
Fuei Con	α C) o	0 0	ρ (Ο (/0	/ 0	0 82	0 82	0 85	0 85	0 82	0 82	0 221	0 221	0 221	0 004	7 6	0.221	0 221	60	60	60	60	0) (n >	60	0 85	0 221
Fuel	ζOΔi	5 6	Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SCAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	GAS	GAS	GAS	O V C	245	GAS	GAS	COAL	COAL	COAL	COAL	1400	7 .	COAL	COAL	COAL	
NAME	tariaayaya	וחטירהאטאם	BADARPURZ	BADARPUR3	BADARPURXT 1	BADARPURXT 2	IP 60	IP 1	IP 2	P3	RAJGHAT 2	RAJGHAT 3	GAS DESU 1WH	GAS DESU 2WH	GAS DESU 3WH		GAS DESU 4WH	GAS DESU 5WH	GAS DESU 6WH	FARIDABADXT1	FARIDABADXT2	FARIDABADXT3	PANIPAT 1	- 14 1144 C	PAINIPA: Z	PANIPAT 3	PANIPAT 4	PANIPAT 5	FARIDABADCCGT A

5 5	10	10	10	10	9	9	9	9	2	2	S)	ა	ည	2	သ	2	យ	S	2	2	ιΩ	2	S	7	7	7	7	7	7	8	ω
1 67 1 67	1 67	1 67	1 67	1 67	1 67	Ø	Ø	Ø	Ø	23	7	7	Ŋ	8	Ø	۵ı	7	2	7	7	2	Ø	Ø	1 67	1 67	1 67	1 67	1 67	1 67	27	27
1296 1296	1296	1296	1296	1296	1296	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	1296	1296	1296	1296	1296	1296	864	864
0 0008	0 0008	0 0008	0 0008	0 0008	0 0008	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0008	0 0008	0 0008	0 0008	0 0008	0 0008	0 0015	0 0015
3030	3030	3030	3030	3030	3030	3303	3303	3340	3265	3265	3265	2870	2870	2870	2870	2870	2870	3207	3207	2899	2899	2899	2084	1982	1982	1982	1982	1942	1942	3072	3072
0.8	08	0 8	0 8	0 8	0 8	0 71	0.71	0 68	0 68	0 68	0 68	0 71	0 71	0 71	0 71	0 71	0 71	0 68	0 68	0 71	0 71	0 71	0 71	071	0 71	0.71	0 71	0.71	071	0 58	0 58
2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003
25	25	25	25	25	25	190	190	98	98	86	86	190	190	190	190	190	190	98	86	190	190	190	226	82	85	82	145	က	32	90	180
2 42	2 42	2 42	242	2 42	2 42	33	33	334	327	327	327	2.87	2 87	2 87	287	2 87	2 87	321	321	29	5 9	59	2 08	1 59	1 59	1 59	1 59	1 55	155	0	0
9 9	9	φ	9	9	φ	7.5	7.5	7.5	7.5	7.5	7.5	49	29	67	67	29	67	7	7	64	6.4	64	46	0 37	0 37	0 37	0 37	0 37	0 37	0	0
935 935	935	935	935	935	935	1155	1155	1155	1155	1155	1155	10318	10318	10318	10318	10318	10318	1103 67	1103 67	1009 07	1009 07	1009 07	725 27	504 43	504 43	504 43	504 43	504 43	504 43	0	0
42.66	42 66	42 66	42 66	42 66	42 66	15 82	15 82	15 82	15 46	15 46	15 46	15 38	15 38	15 38	15 38	15 38	15 38	1627	16 27	16 27	16 27	16 27	16 27	41 74	41 74	41 74	41 74	41 74	41 74	406350	406350
03	03	03	03	03	03	c7 0	c70	0.75	0 75	c7 0	0 75	0 67	29 0	0 67	0 67	0 67	0 67	0.7	0.7	0 64	0 64	0 64	0 46	0 221	0 221	0 221	0 221	0 221	0 221	0 027	0 027
양	OIL	OIL	OIF	OIF	OIL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	GAS	GAS	GAS	GAS	GAS	GAS	NUCL	NOC
PAMPORE 1GT PAMPORE 2GT	PAMPORE 3GT	PAMPORE-4GT II	PAMPORE 5GT II	PAMPORE-6GT II	PAMPORE 7GT II	BHATINDAlehmoh1	BHATINDAlehmoh2	GNDTP 1	GNDTP 2	GNDTP 3	GNDTP-4	ROPAR I/1	ROPAR 1/2	ROPAR 11/1	ROPAR 11/2	ROPAR IIIXT 1	ROPAR IIIXT 2	KOTA 1	KOTA 2	KOTAXT 3	KOTAXT-4	KOTAXT 5	SURATGARHTPS 11	ANTAGAS 1	ANTAGAS 2	ANTAGAS 3	ANTAGAS 4	RAMGARHGAS	RAMGARHGAS	RAPP 1	RAPP 2

-		-	-	-	2	Ø	7	8	Ø	Ø	Ø	4	4	4	4	-	-	-	-	-	-	-	-	-	-	-	-		α	2	2	2
2	7	0	2	2	7	7	7	α	0	Ø	Ø	0	Ø	7	0	7	7	7	CJ	5	2	0	Ø	21	Ø	2	7	2	α	2	7	2
864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864
0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012
3357	3357	3357	2642	2642	5036	4532	5036	4532	4532	4532	4482	2687	2687	2687	2687	4469	4469	4469	4469	4469	3575	3575	3575	3094	3094	3094	3094	3094	3485	3485	4979	4979
071	0 71	0 71	0 71	0 71	0 45	045	0 45	045	0.45	0 45	0 45	071	071	0 71	0 71	0 45	0 45	0 45	0.45	0 45	0.45	0 45	0 45	071	071	071	071	0 71	0 45	0 45	0 45	0 45
2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003
190	190	190	460	460	36	\$	36	54	\$5	25	8	190	190	190	190	36	36	36	36	36	84	25	84	181	181	181	181	181	94	94	53	53
336	336	3 36	264	264	8 06	7 25	8 06	7 25	7 25	7 25	717	2 69	2 69	2 69	2.69	7 15	7 15	7 15	7 15	7 15	5 72	572	572	3 09	3 09	3 09	3 09	3 09	5 58	5 58	7.97	7 97
7.5	7.5	7.5	9	9	10	6	10	6	6	6	8 9	64	64	64	64	10	10	10	10	9	80	80	œ	7	7	7	7	7	7	7	10	10
1155	1155	1155	924	924	1796 67	1617	1796 67	1617	1617	1617	1599 03	938 67	938 67	938 67	938 67	1540	1540	1540	1540	1540	1232	1232	1232	1078	1078	1078	1078	1078	1232	1232	1760	1760
16 08	16 08	16 08	16 08	16 08	17 88	17 88	17 88	17 88	17 88	17 88	17 88	15 08	15 08	15 08	15 08	15 87	15 87	15 87	15 87	15 87	15 87	15 87	15 87	15 87	15 87	15 87	15 87	15 87	17 68	17 68	17 68	17 68
0.75	0.75	0.75	90	90	2003	60	2003	60	60	60	0 89	0 64	0 64	0 64	0 64	2003	2003	2003	2003	2003	0 8	0 8	0.8	20	0.7	0.7	0.7	0.7	0.7	0.7	2003	2003
COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL
ANPARAA 1	ANPARAA 2	ANPARA 3		ANPARAB 2	H GANJB-1	HGANJB-3	HGANJB-2	HGANJB-4	H GANJC-1	HGANJC-2	HGANJC-3	NCR 1DADRI	NCR 2	NCR 3	NCR-4	OBRA 1	OBRA 2	OBRA 3	OBRA-4	OBRA 5	OBRA 6	OBRA 7	OBRA 8	OBRA 9	OBRA 10	OBRA 11	OBRA 12	OBRA 13	PANKI 3	PANKI-4	PANKI 1	PANKI 2

თ თ	-	-	-	-	-	-	-	-	-	Ø	5	7	Ø	က	ო	က	7	7	7	7	7	7	7	7	7	7	7	7	80	ဆ	S
2 2	2	2	7	7	7	8	2	Ø	CV.	7	8	8	Ø	8	2	αı	1 67	1 67	1 67	1 67	1 67	1 67	1 67	1 67	1 67	1 67	1 67	1 67	2	2	2
864 864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	864	1296	1296	1296	1296	1296	1296	1296	1296	1296	1296	1296	1296	864	864	864
0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0008	0 0008	0 0008	0 0008	0 0008	0 0008	0 0008	0 0008	0 0008	0 0008	0 0008	0 0008	0 0015	0 0015	0 0012
3200	2401	2401	2971	2971	2971	2971	2971	2296	2296	3495	3495	3495	3495	2939	2939	2939	1982	1982	1982	1982	1982	1982	1982	1982	1982	1982	1982	1982	2844	2844	2762
0.45	0 71	071	0.71	0.71	071	071	071	0.71	0.71	0 45	0 45	0 45	0 45	0.71	0 71	0 71	071	0 71	0.71	071	071	0.71	0.71	0 71	0.71	071	0.71	0 71	0 58	0 58	0 71
2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003
98 86	460	460	181	181	181	181	181	460	460	86	98	98	86	190	190	190	109	109	109	109	66	66	127	127	127	127	142	142	198	198	190
3.2	24	24	2 97	2 97	2 97	2 97	2 97	23	23	35	35	35	35	2 94	2.94	2.94	1 59	1 59	1 59	1 59	1 59	1 59	1 59	1 59	1 59	1 59	1 59	1 59	0	0	276
6 8 8 8	9	9	7	7	7	7	7	55	55	104	104	104	104	7	7	7	0 37	0 37	0 37	0 37	0 37	0 37	0 37	0 37	0 37	0 37	0 37	0 37	0	0	8 12
1207 43 1207 43	858	828	1052 33	1052.33	1052 33	1052 33	1052 33	826 83	826 83	1334 67	1334 67	1334 67	1334 67	1026 67	1026 67	1026 67	504 43	504 43	504 43	504 43	504 43	504 43	504 43	504 43	504 43	504 43	504 43	504 43	0	0	1190 93
12 <i>77</i> 12 <i>77</i>	14 61	14 61	15 24	15.24	15 24	15 24	15 24	15 24	15.24	11 94	11 94	11 94	11 94	15 08	15 08	15 08	41 74	41 74	41 74	41 74	41 74	41 74	41 74	41 74	41 74	41 74	41 74	41 74	406350	406350	13 49
0 89	90	90	20	20	0.7	0.7	0.7	0.55	0 55	4	4	\$	2	0.7	0.7	0.7	0 221	0 221	0 221	0 221	0 221	0 221	0 221	0 221	0 221	0 221	0 221	0 221	0 027	0 027	0 812
COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	GAS	GAS	GAS	GAS	GAS	GAS	NUCL	NUCL	COAL						
PARICHHA 1 PARICHHA 2	RIHANDSTPS 1	RIHANDSTPS 2	SINGRAULI 1	SINGRAULI 2	SINGRAULI 3	SINGRAUL 4	SINGRAULI 5	SINGRAULI 6	SINGRAULI 7	TANDA 1	TANDA 2	TANDA 3	TANDA-4	UNCHAHAR 3	UNCHAHAR 1	UNCHAHAR 2	AURIYAGAS 1	AURIYAGAS 2	AURIYAGAS 3	AURIYAGAS-4	AURIYAGAS 5	AURIYAGAS 6	DADRICCGT A 1	DADRICCGT A 2	DADRICCGT A 3	DADRICCGT A 4	DADRICCGT B 1WH	DADRICCGT B 2WH	NAPP 1	NAPP 2	PANIPAT 6

7	7	2	თ	თ	7	7	7	7	7	∞	89	-		-		ო	က	ო	7	7	7	7	7	7	7	7	7	7	7	Ŋ	S	7
1 67	1 67	2	2	2	1 67	1 67	1 67	1 67	1 67	8	7	2	8	7	2	5	2	2	1 67	1 67	1 67	1 67	1 67	1 67	1 67	1 67	1 67	1 67	1 67	23	2	1 67
1296	1296	864	864	864	1296	1296	1296	1296	1296	864	864	864	864	864	864	864	864	864	1296	1296	1296	1296	1296	1296	1296	1296	1296	1296	1296	864	864	1296
0 0008	0 0008	0 0012	0 0012	0 0012	0 0008	0 0008	0 0008	0 0008	0 0008	0 0015	0 0015	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0012	0 0008	0 0008	0 0008	0 0008	0 0008	0 0008	0 0008	0 0008	0 0008	0 0008	0 0008	0 0012	0 0012	0 0008
2062	2062	2762	2762	2762	2062	2062	2062	2062	2062	2777	2777	2717	2717	2717	2717	2762	2762	2762	2062	2062	2062	2062	2062	2062	2062	2062	2062	2062	2062	2762	2762	2062
0 71	071	0.71	0 68	0 68	071	0 71	0.71	071	0 71	0 58	0 58	0.73	0.73	0 73	0.73	0.73	0 73	0 71	0 71	071	0.71	0.71	0.71	0.71	0.71	0.71	071	0.71	0.71	0.71	0.71	0.71
2003	2003	2003	2003	2004	2003	2004	2003	2003	2003	2003	2003	2003	2004	2004	2006	2003	2004	2003	2003	2004	2003	2003	2003	2003	2003	2003	2003	2003	2003	2004	2004	2003
139	140	226	226	226	107	107	\$	42	\$	198	198	460	460	460	460	257	257	190	107	107	1 04	5	\$	126	24	170	<u>4</u>	104	233	526	226	34
1 65	1 65	276	2.76	2.76	1 65	1 65	1 65	1 65	1 65	0	0	2.72	2.72	2.72	2.72	2 76	276	2.76	1 65	1 65	1 65	165	1 65	1 65	1 65	1 65	1 65	1 65	1 65	276	276	1 65
0 39	0 39	8 12	1972	1972	0 39	0 39	0 39	0 39	0 39	0	0	7 19	7 19	6 2 9	6 2 9	8 12	8 12	6 9 1	0 39	0 39	0 39	0 39	0 39	0 39	0 39	0 39	0 39	0 39	0 39	8 12	8 12	0 39
540 95	540 95	1131 39	1265 37	1265 37	540 95	540 95	540 95	540 95	540 95	0	0	1054 53	1054 53	1045 66	1045 66	1131 39	1131 39	1064 14	540 95	540 95	540 95	540 95	540 95	540 95	540 95	540 95	540 95	540 95	540 95	1131 39	1131 39	540 95
41 74	41 74	13 49	11 11	11 11	41 74	41 74	41 74	41 74	41 74	406350	406350	15	15	15 87	15 87	13 49	13 49	15 87	41 74	41 74	41 74	41 74	41 74	41 74	41 74	41 74	41 74	41 74	41 74	13 49	13 49	41 74
0 237	0 237	0 812	986 0	986 0	0.237	0 237	0 237	0 237	0 237	0 027	0 027	0 719	0 719	629 0	629 0	0 812	0 812	0 691	0.237	0 237	0 237	0 237	0 237	0 237	0 237	0 237	0 237	0 237	0 237	0 812	0 812	0 237
GAS	GAS	COAL	COAL	COAL	GAS	GAS	GAS	GAS	GAS	NUCL	NUCL	COAL	COAL	COAL	COAL	COAL	COAL	COAL	GAS	GAS	GAS	GAS	GAS	GAS	GAS	GAS	GAS	GAS	GAS	COAL	COAL	GAS
FARIDABADCCGT A	FARIDABADCCGT B	SURATGARHTPS-12	BARSINGSARLIG-1	BARSINGSARLIG-2	ANTA IICCGT 1	ANTA IICCGT 2	ANTA IICCGT 3	ANTA IICCGT-4	ANTA IICCGT 5	RAPP 3	RAPP-4	ANPARAC 1	ANPARAC 2	RIHAND II 1	RIHAND II 2	ROSAI/1	ROSAI/2	UNCHAHAR-4	AURIYA IICCGT 1	AURIYA IICCGT 2	AURIYA IICCGT 3	AURIYA IICCGT-4	AURIYA IICCGT 5	GLOBALBOARDCGT	MAGNUMCCGT	PHOENIXCCGT	AURIYA IICCGT 6	ANTA IICCGT 6	DHOLPURCCGT	SURATGARH II	SURATGARH II	MATHANIACCGT

7				
167				
1296				
0 0008				
2062				
071				
2003				
2 88				
1 65 1 65			_	
0 39	MWh	IWh	gm/MWP	ſWh
540 95 540 95	1000 Kg/MWh	for gas is 1000 m ³ /MWh	for nuclear 1s 1000 gm/MWh	for oil is 1000 LT/MWh
41 74	for coal is 1	gas 18 10	nuclear	o1 11 10
0 237	for	for	for	for
GAS	e unit			
MATHANIACCGT	Fuel consumption rate unit			

Minimum operating capacity for all the plants are taken as 30% of the Installed capacity

Table A 7 Existing Hydro Power Plant Data

NAME	Capacity (MW)	EA year	Availibility	Opearting Cost (000 \$/ MWh)	Fixed O&M cost (000 \$/ MWmonth)	Energy Season1 (MWh)	Energy Season2 (MWh)
W Y CANAL 1	8	2003	0 87	0	1 39	11000	31000
W Y CANAL 2	8	2003	0 87	0	1 39	11000	31000
W Y CANAL 3	8	2003	0 87	0	1 39	11000	31000
W Y CANAL 4	8	2003	0 87	0	1 39	11000	31000
W Y CANAL 5	8	2003	0 87	0	1 39	11000	31000
WY CANAL 6	8	2003	0 87	0	1 39	11000	31000
ANDHRAU 1 3	17	2003	0 87	0	1 39	24000	33000
HPSMALL	9	2003	0 87	0	1 39	36000	57000
BAIRASIUL 1	60	2003	0 87	0	1 39	57000	190000
BAIRASIUL 2	60	2003	0 87	0	1 39	57000	191000
BAIRASIUL 3	60	2003	0 87	0	1 39	57000	190000
BANER	12	2003	0 87	0	1 39	14000	23000
THIROT	45	2003	0 87	0	1 39	19000	29000
GAJ	10 5	2003	0 87	0	1 39	5000	9000
BASSI 1	1 ₀	2003	0 87	0	1 39	28000	490 0 0
BASSI 2	15	2003	0 87	0	1 39	28000	49000
BASSI 3	15	2003	0 87	0	1 39	28000	49000
BASSI 4	15	2003	0 87	0	1 39	28000	49000
BINWA	6	2003	0 87	0	1 39	14000	27000
CHAMERA I 1	180	2003	0 87	0	1 39	314000	400000
CHAMERA I 2	180	2003	0 87	0	1 39	314000	400000
CHAMERA 13	180	2003	0 87	0	1 39	315000	400000
GIRIBATA 1	30	2003	0 87	0	1 39	48000	77000
GIRIBATA 2	30	2003	0 87	0	1 39	48000	77000
SANJAYBHAB	40	2003	0 87	0	1 39	78000	113000
A 1 SANJAYBHAB	40	2003	0 87	0	1 39	78000	113000
A 2 SANJAYBHAB A 3	40	2003	0 87	0	1 39	79000	113000 60000
CHENANI	23	2003	0 87	0	1 39	30000	26000
GANDERBAL	1 υ	2003	0 87	0	1 39	130 0 0	9000
J&K SMALL	6	2003	0 87	0	1 39	5000	9000
KARGIL	4	2003	0 87	0	1 39	5000	
LOWERJHELU M	105	2003	0 87	0	1 39 1 39	171000 26000	362000 53000
MOHORA	9	2003	0 87	0	1 39	339000	508000
SALAL I 1	115	2003	0 87	0	1 39	339000	508000
SALAL 12	115	2003	0 87	0	1 39	339000	509000
SALAL I 3	115	2003	0 87	0	1 39	142000	212000
SALAL II 1	115	2003	0 87	0	1 39	142000	212000
SALAL II 2	115	2003	0 87	0	1 39	142000	213000
SALAL II 3	115	2003		0	1 39	33000	68000
UPPERSINDH I	22 6	2003		0	1 39	175000	407000
URI 1	120	2003		0	1 39	175000	407000
URI 2	120	2003		0	1 39	5000	407000
URI 3	120	2003		0	1 39	175000	407000
URI 4	120	2003	0 87	0	1 00	,	

ANANDPURSA HIB1	34	2003	0 87	0	1 39	61000	166000
ANANDPURSA HIB2	34	2003	0 87	0	1 39	61000	166000
ANANDPURSA HIB3	34	2003	0 87	0	1 39	61000	166000
ANANDPURSA HIB4	34	2003	0 87	0	1 39	62000	166000
BEASDEHAR 1	165	2003	0 87	0	1 39	197000	367000
BEASDEHAR 2	165	2003	0 87	0	1 39	197000	367000
BEASDEHAR 3	165	2003	0 87	0	1 39	197000	367000
BEASDEHAR 4	165	2003	0 87	0	1 39	197000	367000
BEASDEHAR 5	165	2003	0 87	0	1 39	197000	367000
BEASDEHAR 6	165	2003	0 87	0	1 39	198000	367000
BEASPONG 1	60	2003	0 87	0	1 39	84000	226000
BEASPONG 2	60	2003	0 87	0	1 39	84000	226000
BEASPONG 3	60	2003	087	0	1 39	84000	226000
BEASPONG 4	60	2003	0 87	0	1 39	84000	226000
BEASPONG 5	60	2003	0 87	0	1 39	84000	226000
	60	2003	0 87	0	1 39	84000	226000
BEASPONG 6		2003	0 87	0	1 39	156000	346000
BHAKRA(LB) 1	108	2003	0.87	0	1 39	156000	346000
BHAKRA(LB) 2	108				1 39	156000	346000
BHAKRA(LB) 3	108	2003	0 87	0	1 39	156000	347000
BHAKRA(LB) 4	108	2003	0 87	0		156000	347000
BHAKRA(LB) 5	108	2003	0 87	0	1 39	205000	455000
BHAKRA(RB) 1	142	2003	0 87	0	1 39	205000	455000
BHAKRA(RB) 2	142	2003	0 87	0	1 39	205000	455000
BHAKRA(RB) 3	142	2003	0 87	0	1 39		455000 45 5 000
BHAKRA(RB) 4	142	2003	0 87	0	1 39	205000	455000 455000
BHAKRA(RB) 5	142	2003	0 87	0	1 39	205000	150000
GANGUWAL 1	29	2003	0 87	0	1 39	43000	150000
GANGUWAL 2	25	2003	0 87	0	1 39	43000	150000
GANGUWAL 3	24	2003	0 87	0	1 39	43000	150000
KOTLA 1	29	2003	0 87	0	1 39	43000	
KOTLA 2	25	2003	0 87	0	1 39	43000	150000
KOTLA 3	24	2003	0 87	0	1 39	43000	150000
MUKERIAN 1	15	2003	0 87	0	1 39	27000	71000
MUKERIAN 2	15	2003	0 87	0	1 39	27000	71000
MUKERIAN 3	15	2003	0 87	0	1 39	27000	71000
MUKERIAN 4	15	2003	0 87	0	1 39	27000	71000
MUKERIAN 5	15	2003	0 87	0	1 39	27000	71000
MUKERIAN 6	15	2003	0 87	0	1 39	27000	71000
MUKERIAN 7	20	2003	0 87	0	1 39	36000	93000
MUKERIAN 8	19	2003	0 87	0	1 39	36000	93000
MUKERIAN 9	20	2003	0 87	0	1 39	36000	93000
MUKERIAN 10	19	2003	0 87	0	1 39	36000	93000
MUKERIAN 11	20	2003	0 87	0	1 39	36000	93000
MUKERIAN 12	19	2003	0 87	0	1 39	36000	93000
SHANAN 1	15	2003	0 87	0	1 39	35000	60000
SHANAN 2	15	2003	0 87	0	1 39	35000	60000
SHANAN 3	15	2003	0 87	0	1 39	36000	60000
SHANAN 4	15	2003	0 87	0	1 39	36000	60000
	50	2003	0.87	0	1 39	70000	120000
SHANAN 5		2003	0.87	0	1 39	22000	21000
UBDC 1	15 15	2003	087	0	1 39	22000	21000
UBDC 2	15		087	0	1 39	22000	21000
UBDC 3	15	2003	001	_			

UBDC 4	15	2003	0 87	0	1 39	22000	21000
UBDC 5	15	2003	0 87	0	1 39	22000	21000
UBDC 6	15	2003	0 87	0	1 39	22000	22000
ANOOPGARH	9	2003	0 87	0	1 39	0	4000
JAWAHARSAG AR	99	2003	0 87	0	1 39	82000	348000
MAHI 1	25	2003	0 87	0	1 39	13000	55000
MAHI 2	25	2003	0 87	0	1 39	13000	57000
MAHI 3	45	2003	0 87	0	1 39	22000	95000
MAHI 4	45	2003	0 87	0	1 39	22000	95000
R P SAGAR	172	2003	0 87	0	1 39	91000	513000
RAJ SMALL	14	2003	0 87	0	1 39	0	9000
CHIBRO 1	60	2003	0 87	0	1 39	87000	147000
CHIBRO 2	60	2003	0 87	0	1 39	87000	147000
CHIBRO 3	60	2003	0 87	0	1 39	87000	147000
CHIBRO 4	60	2003	0 87	0	1 39	87000	147000
DHAKRANI 1	11	2003	0 87	0	1 39	16000	37000
DHAKRANI 2	11	2003	0 87	0	1 39	16000	37000
DHAKRANI 3	12	2003	0 87	0	1 39	16000	37000
DHALIPUR 1	17	2003	0 87	0	1 39	27000	63000
DHALIPUR 2	17	2003	0 87	0	1 39	27000	63000
DHALIPUR 3	17	2003	0 87	0	1 39	27000	64000
KHARA 1	24	2003	0 87	0	1 39	41000	91000
KHARA 2	24	2003	0 87	0	1 39	41000	91000
KHARA 3	24	2003	0 87	0	1 39	41000	91000
KHATIMAGAN GA	41 4	2003	0 87	0	1 39	59000	139000
KHODRI 1	30	2003	0 87	0	1 39	38000	71000
KHODRI 2	30	2003	0 87	0	1 39	38000	71000
KHODRI 3	30	2003	0 87	0	1 39	39000	71000
KHODRI 4	30	2003	0 87	0	1 39	39000	71000
KULHALST IV 1	10	2003	0 87	0	1 39	16000	37000
KULHALST IV 2	10	2003	0 87	0	1 39	16000	37000
KULHALST IV 3	10	2003	0 87	0	1 39	16000	37000
CHILLA 1	36	2003	0 87	0	1 39	52000	120000
CHILLA 2	36	2003	0 87	0	1 39	52000	120000
CHILLA 3	36	2003	0 87	0	1 39	52000	121000
CHILLA 4	36	2003	0 87	0	1 39	520 0 0	121000
MANERIBHALI I1	30	2003	0 87	0	1 39	19000	99000
MANERIBHALI 12	30	2003	0 87	0	1 39	19000	99000
MANERIBHALI 13	30	2003	0 87	0	1 39	19000	99000
MATATILA 1	10	2003	0 87	0	1 39	16000	27000
MATATILA 2	10	2003	0 87	0	1 39	16000	27000
MATATILA 3	10	2003	0 87	0	1 39	17000	27000
OBRA 1 H	33	2003	0 87	0	1 39	26000	100000
OBRA 2 H	33	2003	0 87	0	1 39	26000	100000
OBRA 3 H	33	2003	0 87	0	1 39	26000	100000
RAMGANGA 1	66	2003	0 87	0	1 39	0	98 000
RAMGANGA 2	66	2003	0 87	0	1 39	0	98000
RAMGANGA 3	66	2003	0 87	0	1 39	0	99000
RIHAND 1	50	2003	0 87	0	1 39	34000	138000
RIHAND 2	50	2003	0 87	0	1 39	34000	138000

RIHAND 3	50	2003	0 87	0	1 39	34000	137000
RIHAND 4	50	2003	0 87	0	1 39	34000	137000
RIHAND 5	50	2003	0 87	0	1 39	34000	137000
RIHAND 6	50	2003	0 87	0	1 39	34000	137000
TANAKPUR 1	30	2003	0 87	0	1 39	41000	69000
TANAKPUR 2	30	2003	0 87	0	1 39	41000	69000
TANAKPUR 3	30	2003	0 87	0	1 39	41000	69000
GANGACANAL	45 2	2003	0 87	0	1 39	32000	118000
SOBLA	6	2003	0 87	0	1 39	0	53000
TANAKPUR 4	30	2003	0 87	0	1 39	41000	70000
DADUPUR	6	2003	0 87	0	1 39	5000	13000
WYCII	16	2003	0 87	0	1 39	16000	48000
BASPAII 1	100	2003	0 87	0	1 39	161000	241000
BASPAII 2	100	2003	0 87	0	1 39	161000	241000
BASPAII 3	100	2003	0 87	0	1 39	161000	241000
CHAMERA II 1	100	2004	0 87	0	1 39	170000	254000
CHAMERA II 2	100	2004	0 87	0	1 39	169000	254000
CHAMERA II 3	100	2004	0 87	0	1 39	169000	254000
KOLDAM 1	200	2006	0 87	0	1 39	307000	461000
KOLDAM 2	200	2006	0 87	0	1 39	307000	461000
KOLDAM 3	200	2007	0 87	0	1 39	307000	461000
KOLDAM 4	200	2007	0 87	0	1 39	307000	461000
LARJI1 3	126	2004	0 87	0	1 39	131000	196000
GHANVI	22 5	2003	0 87	0	1 39	18000	26000
NATHPAJHAK RI 1&2	500	2003	0 87	0	1 39	663000	996000
NATHPAJHAK RI 3	250	2003	0 87	0	1 39	332000	497000
NATHPAJHAK RI 4	250	2003	0 87	0	1 39	332000	497000
NATHPAJHAK RI 5	250	2003	0 87	0	1 39	332000	497000
NATHPAJHAK RI 6	250	2003	0 87	0	1 39	332000	497000
PARVATI II 1	200	2006	0 87	0	1 39	318000	476000
PARVATI II 2	200	2006	0 87	0	1 39	318000	476000
PARVATI II 3	200	2007	0 87	0	1 39	318000	476000
PARVATI II 4	200	2007	0 87	0	1 39	318000	476000
CHENANI II	75	2003	0 87	0	1 39	6000	12000
DULHASTI 1	130	2003	0 87	0	1 39	257000	386000
DULHASTI 2	130	2003	0 87	0	1 39	257000	386000
DULHASTI 3	130	2003	0 87	0	1 39	257000	386000
PAHALGAON	3	2003	0 87	0	1 39	2000	3000
PARNAIHEP1	12 5	2003	0 87	0	1 39	26000	54000
SEWA III	9	2003	0 87	0	1 39	16000	31000
UPPERSINDH II	70	2003	0 87	0	1 39	53000	109000
UPPERSINDH	35	2003	0 87	0	1 39	27000	54000
III SHAHPURKHA NDI	40	2004	0 87	0	1 39	51000	115000
SYLCANAL	50	2003	0 87	0	1 39	127000	190000
THEINDAM 1	150	2003	0 87	0	1 39	105000	235000
THEINDAM 2	150	2003	0 87	0	1 39	106000	235000
THEINDAM 3	150	2003	0 87	0	1 39	106000	235000
THEINDAM 4	150	2003	0 87	0	1 39	106000	235000
JAKHAM	5	2003	0 87	0	1 39	5000	22000
KATAPATHAR	19	2006	0 87	0	1 39	19000	35 000
		·					

HE							
DHAULIGANG A I 1	140	2004	0 87	0	1 39	198000	369000
DHAULIGANG A I 2	140	2004	0 87	0	1 39	198000	369000
KOTESHWAR	100	2005	0 87	0	1 39	108000	200000
KOTESHWAR 2	100	2005	0 87	0	1 39	108000	200000
KOTESHWAR 3	100	2006	0 87	0	1 39	108000	200000
KOTESHWAR 4	100	2006	0 87	0	1 39	108000	200000
LAKHWAR[VY ASI]1	100	2005	0 87	0	1 39	55000	103000
LAKHWAR[VY ASI]2	100	2005	0 87	0	1 39	55000	103000
MANERIBH II 1	76	2004	0 87	0	1 39	82000	152000
MANERIBH II 2	76	2004	0 87	0	1 39	82000	152000
MANERIBH II 3	76	2004	0 87	0	1 39	82000	152000
MANERIBH II 4	76	2004	0 87	0	1 39	82000	152000
RAJGHAT50/	22	2003	0 87	0	1 39	15000	29000
TEHRISTI 1	250	2003	0 87	0	1 39	251000	466000
TEHRISTI 2	250	2003	0 87	0	1 39	251000	466000
TEHRISTI 3	250	2003	0 87	0	1 39	251000	466000
TEHRISTI 4	250	2003	0 87	0	1 39	251000	466000
VISHNUPRAY AG 1	100	2003	0 87	0	1 39	118000	220000
VISHNUPRAY AG 2	100	2003	0 87	0	1 39	118000	220000
VISHNUPRAY AG 3	100	2003	0 87	0	1 39	118000	220000
VISHNUPRAY AG 4	100	2003	0 87	0	1 39	118000	220000
VYASI[LAKWA R]	120	2004	0 87	0	1 39	132000	244000 103000
LAKHWARVYA SI3	100	2005	0 87 0 87	0	1 39 1 39	55000 26000	54000
PARNAIHEP2	12 5	2004		0	1 39	26000	54000
PARNAIHEP3	12 5	2004	0 87	0	1 39	251000	465000
TEHRIII 1	250	2005	0.87		1 39	251000	465000
TEHRIII 2	250	2005	0 87	0	1 39	251000	465000
TEHRIII 3	250	2006	0 87	0	1 39	251000	465000
TEHRI II 4	250	2006	087	0	1 39	51000	114000
SHAHPURKHA NDI	40	2004	0.87	0	1 39	51000	114000
SHAHPURKHA NDI	40	2004	0 87	0	1 39	51000	114000
SHAHPURKHA NDI SHAHPURKHA	40 8	200J 2004	0 87 0 87	0	1 39	10000	23000
NDI MALANAHEP	86	2004	0 87	0	1 39	123000	185000
THE NEW OF NEW YORK LINES	30						

ANNEX B

Table B 1 Plant Type Data Form

TYPE	NAME
1	CONVENTIONAL COAL
2	COMBINED CYCLE GAS TURBINE
3	NUCLEAR
4	I IGNITE
5	РГВС
6	IGCC

Table B 2 Candidate Thermal Power Plant Data Form

Candidate Thermal Plant No	1	2	3	4	5
Name	COAL 500	CCGT	NUCLE	PFBC	IGCC
		250	500	500	500
Used Fuel Type	COAL	GAS	NUCLE AR	COAL	COAL
Fuel Consumption Rate Unit	000 Kg/K Wh	000 Kg/ MWh	000 Kg/ MWh	000 Kg/ MWh	000 Kg/ MWh
		02	0 00027	0.51	0.51
Fuel Consumption	07		40635	15 56	15 56
Caloritic Value (KBtu/Ks)	13.5	34 52		907	551
CO ₂ Emission (Kg/MWh)	1026	550	0	0 255	0 235
SO ₂ Emission (Kg/MWh)	6	04		0 6	06
NO _x Emission (K _L /MWh)	2.5	1 64	0		400
Capacity (MW)	500	250	500	450	150
Minimum Operating Capacity (MW)	150	75	125	150	3
Earliest Avnilable Ye ii	1	1	4	3	
Annual Allowable Max Unit	150	75	4	10	10
Availability	071	0.8	0 58	0 85	0.85
Unit Depreei ible Capital Cost (000 \$)	450000	175000	600000	475000	500000
Unit Non Depreciable Capital Cost (000 \$)	50000	19500	66000	52750	55550
Heat Rate (Mcal/MWh)	2500	2062	2777	2013	1850
Operating Cost (000 \$/MWh)	0 0012	0 0008	0 0015	0 0012	0 00127
Transmission Loss Rate	0 04	0 04	0 04	0 04	0 04
Annual Mainten ince Hours	864	1296	896	864	864
	30	25	30	30	30
Unit Life Time	2	1 67	27	2 2	2 32
Lixed Oper & Munt Cost (000 \$/MWmonth)	4	7	8	4	4
Number of the Fuel Type	+	2	3	5	6
Number of the Plant Type	10	0	0	0	0
Plant Site No	$+\frac{0}{2}$	2	0	0	0
Minimum Selected Units in Year 2003	150	75	0	0	0
Max Possible Incremental Units in Year 2003	2	2	0	0	0
Minimum Selected Units in Year 2004	150	75	0	0	0
Max Possible Incremental Units in Year 2004	2	12	0	2	2
Minimum Selected Units in Year 2005		75	0	10	10
Max Possible Incremental Units in Year 2005	150	$\frac{73}{2}$	10	2	2
Minimum Selected Units in Year 2006	2	$\frac{1}{75}$	0	10	10
Max Possible Incremental Units in Year 2006	150		0	$\frac{10}{2}$	2
Minimum Selected Units in Year 2007	2	2	0	$\frac{2}{10}$	10
Max Possible Incremental Units in Year 2007	150	75		$-\frac{10}{2}$	2
Minimum Selected Units in Year 2008	2	2	2	10	10
Max Possible Incremental Units in Year 2008	150	75	4	2	2
Minimum Selected Units in Year 2009	2	2	2	12	

150	75	14	10	10
2	2	2	2	2
150	75	4	10	10
2	2	2	2	2
150	75	4	10	10
2	2	2	2	2
150	75	4	10	10
5	2	2	2	2
150	75	4	10	10
5	2	2	2	2
150	75	4	10	10
2	2	2	2	2
150	75	4	10	10
2	2	2	2	2
150	75	4	10	10
2	2	2	2	2
150	75	4	10	10
	2 150 2 150 2 150 5 150 5 150 2 150 2 150 2	2 2 150 75 2 2 150 75 2 2 150 75 5 2 150 75 5 2 150 75 2 2 150 75 2 2 150 75 2 2 150 75 2 2 150 75 2 2 150 75 2 2	2 2 2 150 75 4 2 2 2 150 75 4 2 2 2 150 75 4 5 2 2 150 75 4 5 2 2 150 75 4 2 2 2 150 75 4 2 2 2 150 75 4 2 2 2 150 75 4 2 2 2 150 75 4 2 2 2 2 2 2	2 2 2 2 150 75 4 10 2 2 2 2 150 75 4 10 2 2 2 2 150 75 4 10 5 2 2 2 150 75 4 10 5 2 2 2 150 75 4 10 2 2 2 2 150 75 4 10 2 2 2 2 150 75 4 10 2 2 2 2 150 75 4 10 2 2 2 2 150 75 4 10 2 2 2 2 150 75 4 10 2 2 2 2

ANNEX C

Table C 1 Basic Data Form

			_	т	_
	No of Plant Types			DSM	0
		 	GROUPS	Hydro	0
	No of Fuel Type	No Restriction		Thermal	0
	Discount Factor	LJ	External	Suppliers	0
		DSM Case	DSM	Option)
	No of Blocks 20	•		_	-
	S N	CPLEX		Pump Stor	0
ıt lp	No of Seasons	Solver Type	Plants	Hydro	9
C \ullash\out lp		Sol	Candidate Plants	Thermai	2
I	car No of Years	YES 🔻		Pump Stor	0
Optimal Output File	Starting Year 2003	Constraints	ts	Hydro	230
Optim	Base Year	Emission Constraints	Existing Plants	Thermal	160

No of hours of a block of the daily load curve

Block	1	7	m	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	10	20
,	,															2		•	`	2
Value		_	7	-	-	_	_	_	_	,_	_	_	7	-	-	-	1	1	1	-
		1							•	•	-		-	-	_	-	-	-	_	_

No of Days of season in a year

Season	1	2
Value	92	273

Table C 2 Emission Data Form

Expected CO₂ Emission Limit (Unit = Mtons)

		7	
2017	517 23	J17 1	
2016	770 70	11010	
2015	7777	70 144	
ļ	411 65	411 02	
2013 2014	2 7 0	7845	
2012	00.00	354 83	
2011	1	331 37	
2010		305 64	
2009		286 01 305 64	
2008		262 44	
2007		250 45	
2006	2002	231 82	
2005	2007	221 15	
2000	5	205 01	
2002	2007	195 97 205 01 221 15	
V	Ical	Value	2

Total CO Emission Limit During Planning Period

Ferrod 0

Expected SO₂ Emission Limit (Unit = Ktons)

	1	\neg
1	2017	0
,	2016	0
	2015	0
	2014	0
	2013	0
	2012	0
	2011	0
	2010	0
	2009	0
	2008	0
	2007	0
	2006	0
	2005	0
	2004	0
	2003	0
	Year	Value

Total SO₂ Emission Limit During Planning Period

Expected NO Emission Limit (Unit = Ktons)

Total SO₂ Emission Limit During Planning Period

ANNEX D

Table D 1 Emission Data Form

Expected CO₂ Emission Limit (Unit = Mtons)

			0007	2009	2010	2011	2012	2013	2014	2015	2016	2017
237 25 248 62 270	237 25	237 2		270 95	289 o5	5 313 92 3	336 15	336 15 364 26 389 95	389 95	421 22 4	453 58	487 16

Total CO₂ Emission Limit During Planning Period

Expected SO₂ Emission Limit (Unit = Ktons)

Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
	Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Total SO₂ Emission Limit During Planning Period

Expected NO Emission Limit (Unit = Ktons)

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Total SO₂ Emission Limit During Planning Period

0

ANNEX E

Γigure-1 Power generated by each type of plants in India

Figure 2 Countries potential for different sources

Figure 3 Annual system load factor for whole planning horizon

Figure 4 Annual system peak demand (forecasted) for whole planning horizon

Γigure 5 Generation vs Demand in NREB system

Figure 6 Load Duration Curve for both seasons in India

Table E 1 Utility boiler source performance

		Emission Factor (kg/TJ energy input)
Basic Technology	Configuration	NO _x
Coal		
Pulvenzed Bituminous	Dry Bottom wall fired	380
Combustion	Dry Bottom	250
	tangentially fired	
	Wet Bottom	590
Bituminous Spieader	With and without re	240
Stokers	injection	
Bituminous Fluidized	Cuculating Bed	68
Bed Combustion	Bubbling Bed	270
Pulvenzed Lignite	Dry Bottom tangentially	130
Combustion	fued	
	Dry Bottom wall fired	200
Natural Gas		
Large Gas Fried Gas		190
Turbine > 3MW		

REFERENCES

- 1 Activities Implemented Jointly Partnership for Climate and Development International Energy Agency 1997
- 2 Andrews J C and S Govil Regulating reform and Risk Management in the US Electricity Sector Energy Policy Vol 23 No 10 1995 pp 885 892
- 3 Asia Least cost Green House Gas Abatement Strategy (ALGAS) Project Unpublished Country Papers ALGAS Final Regional Workshop 12 14 Nov 1997 Manila
- 4 ASEAN Energy Review Asian EC Energy Management Training and Research Center (AEEMTRC) Jukarta 1996
- 5 Asian Institute of Technology Thailand Methodology Training Program October 18 22 1999
- 6 Brown M A Scenarios of US Carbon Reduction Potential Impact of Energy Efficient and Low Carbon Technologies by 2010 and beyond 1996 http://www.oinl.gov/ORNL/Energy.Eff/CON444
- 7 Calthrop E and Madison D The Dose Response Function Approach to Modeling the Health Effects of Air Pollution Energy policy vol 24 No 7 1996 pp 599 607
- 8 Canadian Energy Research Institute and Tata Energy Research Institute (CERI/TERI) Planning for the Indian Power Sector Environmental and Development Considerations Tata Energy Research Institute India 1996
- 9 Central Electricity Authority (CEA) Fourth National Power Plan 1997 2012 CEA Government of India 1996
- 10 Chambers A IGCC Offers Diversity for Competitive Generation Power Engineering November 1997
- 11 Chattopadhya D and J K Parikh CO₂ Emission Reduction from the Power System in India Natural Resources Forum Vol 17 No 4 1993
- 12 Chowdhury B H Emission Control Alternatives for Electric Utility Power Plants Energy Sources Vol 18 pp 393 406 1996
- 13 Corman J and Paul, T C Power System for the 21st Century H Gas Turbine Combined Cycle GER 3935 GE Power Systems Schenectady NY 1995

- 14 Electricity Generating Authority of Thailand (EGAT) General Information EGAT Power Development Plan (PDP 95 01) EGAT Thailand 1995
- 15 Electricity Generating Authority of Thailand (EGAT) EGAT Power Development Plan EGAT Thailand 1997
- 16 Electricity Generating Authority of Thailand (EGAT) EGAT Power Development Plan (Revised PDP 99 01) General Information System Planning Department EGAT Thailand 1999
- 17 Electricity Meeting Needs with Least Environmental Impacts Thailand Environmental Institute 1995
- 18 Electricity Utilities Data Book for Asia and the Pacific Region Asian Development Bank Manil 1 1993
- 19 Energy Statistics and Balances of Non OECD Countries 1994 1995 International Energy Agency Paris 1997
- 20 Environmental Protection Act by Central Pollution Control Board New Delhi 1986
- 21 Fiftcenth Electric Power Survey of India Published by CEA 1995
- 22 First Progress Report as project on Mitigation of GHG from the power sector IIT Kanpui and CEA New Delhi July 1999
- 23 Fourth National Power Plan 1997 2012 EPIS New Delhi
- 24 Hill LJ Integrating Methods and Resource Selection in Electric Utility Planning Utilities Policy Vol 3 No 1 1993 pp 57 61
- 25 Hoog DT and AF Hobbs An Integrated Resource Planning Model considering Customer Value Emission and Regional Economic Impacts Energy Vol 18 No 11 1993 pp 1153 1160
- 26 India Power and Infiastructure Report April 1999
- 27 Intarapravich D Johnson CJ Li B Long S Pezeshki Prawiraatmadja W tang FC and Wu K 1996 Asia Pacific Energy supply and Demand to 2010 Energy, Vol 21 No 11 1996 pp 1017 1039
- 28 Intergovernmental Panel on Climate Change (IPCC) Impacts Adaptation and Mitigation of Climate Scientific Technical Analysis Second Assessment Report of the IPCC Cambridge University Press 1996
- 29 International Atomic Energy Agency Expansion Planning for Electrical generating System A Guidebook International Atomic Energy Efficiency Vienna 1984

- 30 International Atomic Energy Agency (Wien Automatic System Planning Package (WASP) Volume 1 IAEA Vienna Austria 1995
- 31 Kane R and D W South Potential Fossil Energy Related Technology Options to Reduce Greenhouse Gas Emissions Energy Technologies for Reducing Emissions of Greenhouse Gases Proceeding of an Expert's Seminar Paris 12 14th April 1989
- 32 Kant R Economic Aspects of the Use of Beneficiated Coal for Thermal Power Stations Water and Energy 2001 International R&D Conference New Delhi India 1995
- 33 Kesslei J B Seillo and Harpel Is Natural gas really the answer? Targeting Natural Gas in US Climate Change Mitigation Policy Energy Policy Vol 22 No 7 1994 pp 623 628
- 34 Kyoto Conference of the Puties third session 1 10 December 1997 Agenda item 5
- 35 Mark undya A Environmental Cost and Power System Planning Utility Policy Strategy Performance and Regulation Vol 1 No 1 1995 pp 13 27
- 36 M thui A Potential for Introducing Advanced Technology for Power Generation in India Proceedings of the Tiaining Workshop on Environmental Issues Related to Electric Power Generation Project in India 4 6 March 1993 Jaipur India Published by ADB 1993
- 37 Maya R S and Fenhann J Methodological Lessons and Results from UNEPGHG Abritement Costing Studies Energy Policy Vol 22 No 11 1993 pp 955 963
- 38 Meiei P and M Munasinghe Greenhouse Gas Emission Reduction A Case Study of Sii Lanka The Energy Journal Vol 6 No 4 1995 pp 79 107
- 39 MIT Energy Laboratory Electrical generation Analysis System (EGEAS) EPRIEL 2561 Final Report 1982
- 40 Mumtar A Over view of WASP IV Additional Features Reports presented in the Regional Seminar to Exchange Information and Experience on National Efforts in Developing Countries Specific Database to Support Comparative Assessment AIT Bangkok May 1999
- 41 OECD Globil Wirming Economic Dimension and Policy Responses Paris 1995
- 42 Pabla A S Electrical Power System planning Macmillan India Limited 1996

- 43 Pearson PJG and R Foquett Energy Efficiency Economic Efficiency and Future CO₂ Emissions from the Developing World The Energy Journal Vol 17 No 4 1996
- 44 Power Line Vol 3 No 7 April 1999 issue
- 45 Power Supply Industry in India Highlights by Electric Power Information Society (EPIS) New Delhi March 1998
- 46 Reinheimer H 650 MW Combined Cycle Plant for Ganhda India Modern Power Systems September 1992 pp 47 56
- 47 Report on Perspective of National Power Development upto 2006 2007 CEA Sept 1991
- 48 Rose A Torries T and Labys W Clean Coal Technologies and Future Prospects for Coal Annual Review of Energy Environment Vol 16 1991 pp 59 90
- 49 Sarm i EAS Maggo J N and Shchedeva AS India's Energy Scenario in 2020 Paper presented at the 17th congress of the World Energy Council held at Houston USA Sept 1998
- 50 Shrestha R M and G R Timilsina Factors Affecting CO₂ Intensities of Power Sector in Asia A Divisia decomposition Analysis Energy Economics Vol 18 No 4 1996 pp 283 293
- 51 Shrestha R M H Samarakoon and R Shrestha Assessment of Efficient Demand and Supply Side Greenhouse Gas Mitigation from an Integrated Resource Planning Perspective Energy Program AIT Bangkok Submitted to Sida Sweden (1997)
- 52 Shrestha RM and SC Bhattacharya Technological and Policy Option to Reduce Acid Rain Causing Emission in Asia First National Workshop on Acid Rain and Emissions Reduction in Asia Organized by UNEP/EAP AP Sponsored by Asian Development Bank 1998
- 53 Tavoulareas E S and Charpentier J P Clean Coal Technologies for Developing Countries World Bank Technical Paper Number 186 Energy Series The World Bank Washington D C USA 1995
- 54 Toufiq A S Implication of Global Climate Change Concerns for Electricity Supply in the Asia Pacific Region Asia Pacific Electricity Development Specialist Group Meeting Ho Chi Minh City Vietnam 21 23 August 1995
- 55 United Nations Environmental Program (UNEP) Greenhouse Gas Mitigation Costing Studies UNEP Nairobi 1992

- 56 US Country Study Program (USCSP) Interim Report on Climate Change Country Studies US Country Study Management Team Washington 1995
- 57 Van der Voort Donni E Thonet E Bois d'Enghien E Dechamps C and Guilmot JF Eneigy Supply Modelling Package EFOM 12C Mark I Mathematical Description Commission of the European Communities Louvain la Neuve Cabay EUR 8896 1984
- 58 Zhang Z X Cost Effectiveness Analysis of Carbon Abatement Options in China s Electricity Sector Energy Sources Vol 20 1998

130932

This book is to be returned on the date last stamped

date last stamped	
}	

