hereby certify that this correspondence is being deposited with the U.S. Postal Service with sufficient postage as First Class Mail, in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450, on the date shown below

Docket No.: 61683-00903USP

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of: George Nelson Bennett

Application No.: 10/699512

Confirmation No.:

Filed: October 31, 2003

Art Unit: N/A

For:

RECOMBINATION ASSEMBLY OF LARGE

Examiner: Not Yet Assigned

DNA FRAGMENTS

INFORMATION DISCLOSURE STATEMENT (IDS)

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Pursuant to 37 CFR 1.56, 1.97 and 1.98, the attention of the Patent and Trademark Office is hereby directed to the references listed on the attached PTO/SB/08. It is respectfully requested that the information be expressly considered during the prosecution of this application, and that the references be made of record therein and appear among the "References Cited" on any patent to issue therefrom.

This Information Disclosure Statement is filed before the mailing date of a first Office Action on the merits as far as is known to the undersigned (37 CFR 1.97(b)(3)).

A copy of each reference on PTO/SB/08 is attached.

In accordance with 37 CFR 1.97(g), the filing of this Information Disclosure Statement shall not be construed to mean that a search has been made or that no other material information as defined in 37 CFR 1.56(a) exists. In accordance with 37 CFR 1.97(h), the filing of this Information Disclosure statement shall not be construed to be an admission that any patent, publication or other information referred to therein is "prior art" for this invention unless specifically designated as such.

03/03/2004 ANABI1 00000106 10699512

Application No.: 10/699512 Docket No.: 61683-00003USPT

It is submitted that the Information Disclosure Statement is in compliance with 37 CFR 1.98 and the Examiner is respectfully requested to consider the listed references.

Enclosed is a check for \$180.00 for the requisite fee for submission of an Information Disclosure Statement. The Director is hereby authorized to charge any deficiency in the fees filed, asserted to be filed or which should have been filed herewith (or with any paper hereafter filed in this application by this firm) to our Deposit Account No. 10-0447, under Order No. 61683-00003USPT. A duplicate copy of this paper is enclosed.

Dated: February 26, 2004

Respectfully submitted,

Tamsen Valoir-

Registration No.: 41,417

JENKENS & GILCHRIST, A PROFESSIONAL

CORPORATION

5 Houston Center

1401 McKinney, Suite 2700

Houston, Texas 77010

(713) 951-3300

(713) 951-3314 (Fax)

MAR 0 1 2004

PARADENIARY

FEE TRANSMITTAL for FY 2004

Effective 10/01/2003, Patent fees are subject to annual revision.

X Applicant claims small entity status. See 37 CFR 1.27

Co	mplete if Known
Application Number	10/699512
Filing Date	October 31, 2003
First Named Inventor	George Nelson Bennett
Examiner Name	Not Yet Assigned
Art Unit	N/A
Attorney Docket No.	61683-00003USPT

TOTAL AMOUNT OF PAYME	INT (\$) 180.0	00	Attorr	ney Do	cket No	0.	61683-00003USPT	
METHOD OF PAYMEN	(check all that apply)				FEE	CALCU	LATION (continued)	
	toney order Other	None 3.	ADDITI	ONAL	FEES	i	· · · · · · · · · · · · · · · · · · ·	
Deposit Account:		1.						
Deposit Account Number	47	Fee Cod		Fee Code	Fee (\$)	-	Fee Description	Fee Paid
Deposit Jenkens & G	ilchrist a	105	1 130	2051	65	Surcharo	e – late filing fee or oath	
Account Name Professional C	·			1		-	e – late provisional filing fee or cover	
The Director is authorized to: (check	k all that apply)	105	2 50	2052	25	sheet.	e – late provisional ming ree or cover	
Charge fee(s) indicated below	X Credit any overpaym	ents 105	3 130	1053	130	Non-Engl	ish specification	
Charge any additional fee(s) durin	g the pendency of this	181	2 2,520	1812	2,520	For filing a	request for ex parte reexamination	
		180	4 920°	1804	920*		ng publication of SIR prior to	
to the above-identified deposit accou	-	180		1805	1,840°	Examiner Requestir Examiner	ng publication of SIR after	
FEE CALCU	LATION	125	1 110	2251	55		for reply within first month	
1. BASIC FILING FEE		125	2 420	2252	210	Extension	for reply within second month	
Large Entity Small Entity		125	3 950	2253	475	Extension	for reply within third month	
Fee Fee Fee Fee Fee Code (\$)	Description Fee Pa	aid 125	4 1,480	2254	740	Extension	for reply within fourth month	
117	iling fee	125	5 2,010	2255	1,005	Extension	for reply within fifth month	
1002 340 2002 170 Design	filing fee	140	1 330	2401	165	Notice of	Appeal	
1003 530 2003 265 Plant fi	ling fee	140	2 330	2402	165	Filing a br	ief in support of an appeal	
1004 770 2004 385 Reissu	e filing fee	140	3 290	2403	145	Request f	or oral hearing	
1005 160 2005 80 Provisi	onal filing fee	145	1,510	1451	1,510	Petition to	institute a public use proceeding	
SUBTOTAL	(1) (\$) 0.0	145	2 110	2452	55	Petition to	revive – unavoidable	
SOBIOTAL	(1) (3) 0.0	145	3 1,330	2453	665	Petition to	revive - unintentional	
2. EXTRA CLAIM FEES FOR		SUE 150	1,330	2501	665	Utility issu	ue fee (or reissue)	
Extra Claim:	Fee from s below Fee F	Paid 150	2 480	2502	240	Design is:	sue fee	
Total Claims 8 -20** =	x = 0.0		3 640	2503	320	Plant issu	e fee	
Independent 2 -3** =	x = 0.0	00 146	0 130	1460	130	Petitions	to the Commissioner	
Claims 2 3 - Multiple Dependent]=	₁₈₀	7 50	1807	50	Processin	ng fee under 37 CFR 1.17(q)	
Large Entity Small Entity		180	6 180	1806	180	Submission	on of Information Disclosure Stmt	180.00
Fee Fee Fee	Fee Description	802	1 40	8021	40		g each patent assignment per	
	excess of 20	180		2809	385		times number of properties) ubmission after final rejection	
	dent claims in excess of 3	1,,,	0 770	2040	385	•	additional invention to be	
l '	dependent claim, if not paid			2810		examined	I (37CFR 1.129(b))	
	e independent claims riginal patent	. 180	1 770	2801	385	•	for Continued Examination (RCE)	
i l	ue claims in excess of 20	180	2 900	1802	900		for expedited examination in application	1
	er original patent	Oth	er fee (spe	cify)				
SUBTOTAL	. (2) (\$) 0.0	00 ·Re	duced by	Basic F	iling Fee	e Paid	SUBTOTAL (3) (\$)	180.00
**or number previously paid, if greate								

SUBMITTED BY		(Complete	(if applicable))
Name (Print/Type) Tamsen Valoir	Registration No. (Attorney/Agent) 41,417	Telephone	(713) 951-3381
Signature // Collins		Date	February 26, 2004

I hereby certify that this con	respondence is being de	eposited with the U.S.	. Postal Service wi	ith sufficient postage as	First Class Mail, in
an envelope addressed to:					

Dated: February 26, 2004

Signature: 🚄

Susan B. Jens

(Susan B. Jensen)

Application No. (if known): 10/699512

Attorney Docket No.: 61683-00003USPT

Certificate of Mailing Under 37 CFR 1.8

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to:

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

on February 26, 2004

Date

Susan B. Jensen

Typed or printed name of person signing Certificate

Note: Each paper must have its own certificate of mailing, or this certificate must identify each submitted paper.

IDS (Citation) by Applicant SB/08
Information Disclosure Statement
Fee Transmittal
Postcard
49 references
Check for \$180.00 #155307

PTO/SB/08a/b (08-03)

Approved for use through 07/31/2006. OMB 0651-0031
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Complete if Known Substitute for form 1449A/B/PTO Application Number 10/699512 INFORMATION DISCLOSURE Filing Date October 31, 2003 STATEMENT BY APPLICANT First Named Inventor George Nelson Bennett Art Unit N/A (Use as many sheets as necessary) Examiner Name Not Yet Assigned 3 61683-00003USPT Sheet Attorney Docket Number

			U.S. PA	TENT DOCUMENTS	
Examiner Initials*	Cite No.¹	Document Number Number-Kind Code ² (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear

		FOREIG	GN PATENT I	DOCUMENTS		
Examiner Initials*	Cite No.1	Foreign Patent Document Country Code ³ -Number ⁴ -Kind Code ⁵ (# known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	Τ6
						Г

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ¹ Applicant's unique citation designation number (optional). ² See Kinds Codes of USPTO Patent Documents at www.usplo.gov or MPEP 901.04. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. ⁶ Applicant is to place a check mark here if English language Translation is attached.

		NON PATENT LITERATURE DOCUMENTS	
Examiner Initials	Cite No. ¹	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T²
	CA	Martinez-Morales, F., et al., Chromosomal integration of heterologous DNA in Escherichia coli with precise removal of markers and replicons used during construction. J Bacteriol, 1999. 181(22): p. 7143-8.	
	СВ	Koob, M.D., et al., Minimizing the genome of Escherichia coli. Motivation and strategy. Ann N Y Acad Sci, 1994. 745: p. 1-3.	
	CC	Peredelchuk, M.Y. and G.N. Bennett, A method for construction of E. coli strains with multiple DNA insertions in the chromosome. Gene, 1997. 187(2): p. 231-8.	
	CD	Lorbach, E., et al., Site-specific recombination in human cells catalyzed by phage lambda integrase mutants. J Mol Biol, 2000. 296(5): p. 1175-81.	
	CE	Cherepanov, P.P. and W. Wackernagel, Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant.Gene, 1995. 158(1): p. 9-14.	
	CF	Chiang, S.L. and J.J. Mekalanos, Construction of a Vibrio cholerae vaccine candidate using transposon delivery and FLP recombinase-mediated excision. Infect Immun, 2000. 68(11): p. 6391-7.	
	CG	Tsuda, M., Use of a transposon-encoded site-specific resolution system for construction of large and defined deletion mutations in bacterial chromosome. Gene, 1998. 207(1): p. 33-41.	
	СН	Dale, E.C. and D.W. Ow, Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci U S A, 1991. 88(23): p. 10558-62.	
-	CI	Delneri, D., et al., Exploring redundancy in the yeast genome: an improved strategy for use of the cre-loxP system. Gene, 2000. 252(1-2): p. 127-35.	
	CJ	Palmeros, B., et al., A family of removable cassettes designed to obtain antibiotic- resistance-free genomic modifications of Escherichia coli and other bacteria. Gene, 2000. 247(1-2): p. 255-64.	
	СК	Mao, X., Y. Fujiwara, and S.H. Orkin, Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc Natl Acad Sci U S A, 1999. 96(9): p. 5037 42.	
	CL	Caparon, M.G. and J.R. Scott, Excision and insertion of the conjugative transposon Tn916	

Examiner	Date
Signature	Considered

PTO/SB/08a/b (08-03)

Approved for use through 07/31/2006. OMB 0651-0031

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Sut	ostitute for form 1449A/B/PT	0		Complete If Known			
				Application Number	10/699512		
l IN	NFORMATION	I DIS	SCLOSURE	Filing Date	October 31, 2003		
S	TATEMENT E	3Y A	PPLICANT	First Named Inventor	George Nelson Bennett		
				Art Unit	N/A		
	(Use as many sheets as necessary) Sheet 2 of 3			Examiner Name	Not Yet Assigned		
Sheet				Attorney Docket Number	61683-00003USPT		

involves a novel recombination mechanism. Cell. 1989. 59(6); p. 1027-34. CM Storrs, M.J., et al., Conjugative transposition of Tn916 requires the excisive and integrative activities of the transposon-encoded integrase. J Bacteriol, 1991. 173(14); p. 4347-52. CN Manganetii, R., S. Ricci, and G. Pozzi, Conjugative transposon Tn916: evidence for excision with formation of 5'-protruding termini. J Bacteriol, 1995. 178(19); p. 5513-6. CO Rudy, C., et al., Excision of a conjugative transposon in vitro by the Int and Xis proteins of Tn916. Nucleic Acids Res. 1997. 25(20); p. 4061-6. CP Connolly, K.M., M. Iwahara, and R.T. Clubb, Xis protein binding to the left arm stimulates excision of conjugative transposon Tn916. J Bacteriol, 2002. 184(8); p. 2088-99. CQ Platt, R., et al., Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid, 2000. 43(1); p. 12-23. Kim, S.Y., et al., Modification of bacterial artificial chromosome clones using Cre recombinase introduction of selectable markers for expression in eukaryotic cells. Genome Res, 1998. 8(4) p. 404-12. CS Golic, M.M., et al., F.I.Pmediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res, 1997. 25(18); p. 3665-71. CT Christ, N., T. Corona, and P. Droge, Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity o episomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 91(2): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CV Jivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific DNA inversion. Genes Dev. 1998. 12(17)	olves a novi	989 59(6): n 1027-34	·
activities of the transposon-encoded integrase. J Bacteriol, 1991. 173(14): p. 4347-52. CN Manganelli, R., S. Ricci, and G. Pozzi, Conjugative transposon Tn916: evidence for excision with formation of 5'-protruding termini. J Bacteriol, 1998. 178(19): p. 5813-6. CO Rudy, C., et al., Excision of a conjugative transposon in vitro by the Int and Xis proteins of Tn916. Nucleic Acids Res, 1997. 25(20): p. 4061-6. CP Connolly, K.M., M. Iwahara, and R.T. Clubb, Xis protein brinding to the left arm stimulates excision of conjugative transposon Tn916. J Bacteriol, 2002. 184(8): p. 2088-99. CQ Platt, R., et al., Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid, 2000. 43(1): p. 12-23. CR Kim, S.Y., et al., Modification of bacterial artificial chromosome clones using Cre recombinase introduction of selectable markers for expression in eukaryotic cells. Genome Res, 1998. 8(4) p. 404-12. CS Golic, M.M., et al., FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res, 1997. 25(18): p. 3665-71. CT Christ, N. T. Corona, and P. Droge, Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity o episomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.C., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinate recombination in mammalian cells. Biol Chem, 1999. 274(10): p. 6634-40. CY Givares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific DNA mammalian cells: singly septicin by the page of the processi			egrative
 CN Manganelli, R., S. Ricci, and G. Pozzi, Conjugative transposon Tn916: evidence for excision with formation of 5-protruoding termini. J Bacteriol, 1996. 178(19): p. 5813-6. CO Rudy, C., et al., Excision of a conjugative transposon in vitro by the Int and Xis proteins of Tn916. Nucleic Acids Res, 1997. 25(20): p. 4061-6. CP Connolly, K.M., M. Wahara, and R.T. Clubb, Xis protein binding to the left arm stimulates excision of conjugative transposon Tn916. J Bacteriol, 2002. 184(8): p. 2088-99. CQ Platt, R., et al., Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid, 2000. 43(1): p. 12-23. CR Kim, S.Y., et al., Modification of bacterial artificial chromosome clones using Cre recombinase introduction of selectable markers for expression in eukaryotic cells. Genome Res, 1998. 8(4) p. 404-12. CS Golic, M.M., et al., FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res, 1997. 25(18): p. 3665-71. CT Christ, N., T. Corona, and P. Droge, Site-specific recombination in eukaryotic cells mediated by mutant lambad integrases: implications for synaptic complex formation and the reactivity opisomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CY Diaz, V., et al., The Prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C			
with formation of 5-protruding termini. J Bacteriol, 1996. 178(19): p. 5813-6. CO Rudy, C., et al., Excision of a conjugative transposon in vitro by the Int and Xis proteins of Tn916. Nucleic Acids Res, 1997. 25(20): p. 4061-6. CP Connolly, K.M., M. Iwahara, and R.T. Clubb, Xis protein binding to the left arm stimulates excision of conjugative transposon Tn916. J Bacteriol, 2002. 184(8): p. 2088-99. CQ Platt, R., et al., Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid, 2000. 43(1): p. 12-23. Kim, S.Y., et al., Modification of bacterial artificial chromosome clones using Cre recombinase introduction of selectable markers for expression in eukaryotic cells. Genome Res, 1998. 8(4) p. 404-12. CS Golic, M.M., et al., FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res, 1997. 25(18): p. 3665-71. CT Christ, N., T. Corona, and P. Droge, Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity o episomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A Cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem., 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific DNA inversion. Curr Biol., 1996. 6(2): p. 1637-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Alignment of			
 CO Rudy, C., et al., Excision of a conjugative transposon in vitro by the Int and Xis proteins of Tn916. Nucleic Acids Res, 1997. 25(20): p. 4061-6. CP Connolly, K.M., M. Iwahara, and R.T. Clubb, Xis protein binding to the left arm stimulates excision of conjugative transposon Tn916. J Bacteriol, 2002. 184(8): p. 2088-99. CQ Platt, R., et al., Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid, 2000. 43(1): p. 12-23. CR Kim, S.Y., et al., Modification of bacterial artificial chromosome clones using Cre recombinase introduction of selectable markers for expression in eukaryotic cells. Genome Res, 1998. 8(4) p. 404-12. CS Golic, M.M., et al., FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res, 1997. 25(18): p. 3665-71. CT Christ, N., T. Corona, and P. Droge, Site-specific recombination in eukaryotic cells mediated by mutant tambda integrases: implications for synaptic complex formation and the reactivity of episomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.G., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(10): p. 6634-40.<!--</td--><td></td><td></td><td>excision</td>			excision
 Tn916, Nucleic Acids Res, 1997. 25(20): p. 4061-6. CP Connolly, K.M., M. Iwahara, and R.T. Clubb, Xis protein binding to the left arm stimulates excision of conjugative transposon Tn916. J Bacteriol, 2002. 184(8): p. 2088-99. CQ Platt, R., et al., Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid, 2000. 43(1): p. 12-23. CR Kim, S.Y., et al., Modification of bacterial artificial chromosome clones using Cre recombinase introduction of selectable markers for expression in eukaryotic cells. Genome Res, 1998. 8(4) p. 404-12. CS Golic, M.M., et al., FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res, 1997. 25(18): p. 3665-71. CT Christ, N., T. Corona, and P. Droge, Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity o episomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in marmanian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem. 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Hichoman, and R.C. Johnson, Alignment of recombination sites i			oine of
 CP Connolly, K.M., M. Iwahara, and R.T. Clubb, Xis protein binding to the left arm stimulates excision of conjugative transposon Tn916. J Bacteriol, 2002. 184(8): p. 2088-99. CQ Platt, R., et al., Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid, 2000. 43(1): p. 12-23. CR Kim, S.Y., et al., Modification of bacterial artificial chromosome clones using Cre recombinase introduction of selectable markers for expression in eukaryotic cells. Genome Res, 1998. 8(4) p. 404-12. CS Golic, M.M., et al., FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res, 1997. 25(18): p. 3665-71. CT Christ, N., T. Corona, and P. Droge, Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity of episomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Communication between Hin recombinast and Fis regulatory subunits during coordinate activation of			eins oi
 excision of conjugative transposon Tn916. J Bacteriol. 2002. 184(8): p. 2088-99. CQ Platt, R., et al., Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid, 2000. 43(1): p. 12-23. CR Kim, S.Y., et al., Modification of bacterial artificial chromosome clones using Cre recombinase introduction of selectable markers for expression in eukaryotic cells. Genome Res, 1998. 8(4) p. 404-12. CS Golic, M.M., et al., FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res, 1997. 25(18): p. 3665-71. CT Christ, N., T. Corona, and P. Droge, Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity o episomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassetite exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA inversion. Genes Dev, 1991. 5(9): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between thin recombinase and Fis regulatory sub			.1-4
 CQ Platt, R., et al., Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid, 2000. 43(1): p. 12-23. CR Kim, S.Y., et al., Modification of bacterial artificial chromosome clones using Cre recombinase introduction of selectable markers for expression in eukaryotic cells. Genome Res, 1998. 8(4) p. 404-12. CS Golic, M.M., et al., FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res, 1997. 25(18): p. 3665-71. CT Christ, N., T. Corona, and P. Droge, Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity opisomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyze			uiates
fusions into the Escherichia coli chromosome. Plasmid, 2000. 43(1): p. 12-23. CR Kim, S.Y., et al., Modification of bacterial artificial chromosome clones using Cre recombinase introduction of selectable markers for expression in eukaryotic cells. Genome Res, 1998. 8(4) p. 404-12. CS Golic, M.M., et al., FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res, 1997. 25(18): p. 3665-71. CT Christ, N., T. Corona, and P. Droge, Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity o episomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 1635-45. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CC1 Canosa, I., et al., Site-specific recombination by th			
 CR Kim, S.Y., et al., Modification of bacterial artificial chromosome clones using Cre recombinase introduction of selectable markers for expression in eukaryotic cells. Genome Res, 1998. 8(4) p. 404-12. CS Golic, M.M., et al., FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res, 1997. 25(18): p. 3665-71. CT Christ, N., T. Corona, and P. Droge, Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity of episomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation			∠ gene
introduction of selectable markers for expression in eukaryotic cells. Genome Res, 1998. 8(4) p. 404-12. CS Golic, M.M., et al., FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res, 1997. 25(18): p. 3665-71. CT Christ, N., T. Corona, and P. Droge, Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity o episomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajn, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H.			
 D. 404-12. CS Golic, M.M., et al., FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res, 1997. 25(18): p. 3665-71. CT Christ, N., T. Corona, and P. Droge, Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity o episomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 1637-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1			
CS Golic, M.M., et al., FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res, 1997. 25(18): p. 3665-71. CT Christ, N., T. Corona, and P. Droge, Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity of episomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Giaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 1637-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activ		eukaryotic cells. Genome Res,	1998. 8(4):
 chromosomes. Nucleic Acids Res, 1997. 25(18): p. 3665-71. CT Christ, N., T. Corona, and P. Droge, Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity of episomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination ac			
 CT Christ, N., T. Corona, and P. Droge, Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity o episomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et			ohila
by mutant lambda integrases: implications for synaptic complex formation and the reactivity of episomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombinase catalyzes inversion and resolution between two inversel oriented six sites on			
 episomal DNA segments. J Mol Biol, 2002. 319(2): p. 305-14. CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arrold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J., 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., Point mutation of bacterial artificial chromo			
CU Call, L.M., et al., A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et a			eactivity of
artificial chromosomes into embryonic stem cells. Hum Mol Genet, 2000. 9(12): p. 1745-51. CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 163-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET-			
 CV Feng, Y.Q., et al., Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem.,			
CRE recombinase-mediated cassette exchange. J Mol Biol, 1999. 292(4): p. 779-85. CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J., 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43.			
 CW Thyagarajan, B., et al., Mammalian genomes contain active recombinase recognition sites. Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 1637-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. 			
 Gene, 2000. 244(1-2): p. 47-54. CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J., 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET- 			
 CX Diaz, V., et al., The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET- 	yagarajan, E	in active recombinase recognition	on sites.
mammalian cells. J Biol Chem, 1999. 274(10): p. 6634-40. CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET-			
 CY Olivares, E.C., R.P. Hollis, and M.P. Calos, Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET- 	az, V., et al.,	atalyzes site-specific recombina	ition in
integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET-	ammalian ce	334-40.	
 integration in human cells. Gene, 2001. 278(1-2): p. 167-76. CZ Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET- 	vares, E.C.,	R4 integrase mediates site-spec	ific
 Moskowitz, I.P., K.A. Heichman, and R.C. Johnson, Alignment of recombination sites in Hinmediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET- 			
 mediated site-specific DNA recombination. Genes Dev, 1991. 5(9): p. 1635-45. CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET- 	skowitz, I.P	Alignment of recombination site	es in Hin-
 CA1 Haykinson, M.J., et al., The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET- 			
 catalytic steps of site-specific DNA inversion. Curr Biol, 1996. 6(2): p. 163-77. CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET- 			of the
 CB1 Merickel, S.K., M.J. Haykinson, and R.C. Johnson, Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET- 			•
 and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET- 			combinase
 inversion. Genes Dev, 1998. 12(17): p. 2803-16. CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET- 			
 CC1 Stark, W.M., M.R. Boocock, and D.J. Sherratt, Site-specific recombination by Tn3 resolvase. Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET- 		,	
Trends Genet, 1989. 5(9): p. 304-9. CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET-		specific recombination by Tn3 r	esolvase.
 CD1 Arnold, P.H., et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET- 		, · · · · · · · · · · · · · · · ·	
recombination activity. Embo J, 1999. 18(5): p. 1407-14. CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET-		do not require accessory bindir	na sites for
 CE1 Canosa, I., et al., Site-specific recombination by the beta protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET- 			
plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET-			ccal
Res, 1996. 24(14): p. 2712-7. CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET-			
 CF1 Canosa, I., et al., beta Recombinase catalyzes inversion and resolution between two inversel oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET- 			
oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET-		rsion and resolution between tw	o inversely
substrates. J Biol Chem, 1998. 273(22): p. 13886-91. CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET-			* 1
CG1 Muyrers, J.P., et al., Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET-			
EMBO Rep, 2000. 1(3): p. 239-43. CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET-			bination
CH1 Muyrers, J.P., et al., Rapid modification of bacterial artificial chromosomes by ET-		Sinomosomos by E1 166611	
		artificial chromosomes by ET-	
)			
CI1 Yoon, Y.G., J.H. Cho, and S.C. Kim, Cre/loxP-mediated excision and amplification of large			of large
	On, 1.O., 0.1		or large
xaminer Date gnature Considered			

PTO/SB/08a/b (08-03)
Approved for use through 07/31/2006. OMB 0651-0031
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Sub	stitute for form 1449A/B/F	PTO OT		Complete If Known			
				Application Number	10/699512		
IN.	IFORMATIO!	N DI	SCLOSURE	Filing Date	October 31, 2003		
S	TATEMENT	BY /	APPLICANT	First Named Inventor	George Nelson Bennett		
	INFORMATION DISCLOSUR STATEMENT BY APPLICAN (Use as many sheets as necessary) eet 3 of 3	_	Art Unit	N/A			
		necessary)	Examiner Name	Not Yet Assigned			
Sheet	3	of	3	Attorney Docket Number	61683-00003USPT		

	segments of the Escherichia coli genome. Genet Anal, 1998. 14(3): p. 89-95.	
CJ1	Cheng, T.H., et al., Controlling gene expression in yeast by inducible site-specific recombination. Nucleic Acids Res, 2000. 28(24): p. E108.	
CK1	Choi, S., et al., A new approach for the identification and cloning of genes: the pBACwich system using Cre/lox site-specific recombination. Nucleic Acids Res, 2000. 28(7): p. E19.	
CL1	Sclimenti, C.R., B. Thyagarajan, and M.P. Calos, Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res, 2001. 29(24): p. 5044-51.	
CM1	Johnson, R.C., Bacterial Site-Specific DNA Inversion Systems, in Mobile DNA II, N.L. Craig, Craigie, R., Gellert, M., Lambowitz. A. M., Editor. 2002, ASM Press: Washington, D.C. p. 230-271.	
CN1	Grindley, N.D.F., The Movement of Tn3-Like Elements: Transposition and Cointegrate Resolution, in Mobile DNA II, N.L. Craig, Craigie, R., Gellert, M., Lambowitz. A. M., Editor. 2002. p 272-302.	
CO1	Posfai, G., et al., In vivo excision and amplification of large segments of the Escherichia coli genome. Nucleic Acids Res, 1994. 22(12): p. 2392-8.	
CP1	Buchholz, F., P.O. Angrand, and A.F. Stewart, Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol, 1998. 16(7): p. 657-62.	
CQ1	Scott, J.R., et al., Conjugative transposition of Tn916: preferred targets and evidence for conjugative transfer of a single strand and for a double-stranded circular intermediate. Mol Microbiol, 1994. 11(6): p. 1099-108.	
CR1	Poyart-Salmeron, C., et al., The integration-excision system of the conjugative transposon Tn 1545 is structurally and functionally related to those of lambdoid phages. Mol Microbiol, 1990. 4(9): p. 1513-21.	
CS1	Trieu-Cuot, P., et al., Sequence requirements for target activity in site-specific recombination mediated by the Int protein of transposon Tn 1545. Mol Microbiol, 1993. 8(1): p. 179-85.	
CT1	Sauer, B. and N. Henderson, Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol, 1990. 2(5): p. 441-9.	
CU1	Johnson, R.C., Mechanism of site-specific DNA inversion in bacteria. Curr Opin Genet Dev, 1991. 1(3): p. 404-11.	
CV1	Rojo, F. and J.C. Alonso, The beta recombinase of plasmid pSM19035 binds to two adjacent sites, making different contacts at each of them. Nucleic Acids Res, 1995. 23(16): p. 3181-8.	
CW1	Huang, L.C., E.A. Wood, and M.M. Cox, A bacterial model system for chromosomal targeting. Nucleic Acids Res, 1991. 19(3): p. 443-8.	

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Examiner	Date	
Signature	Considered	

¹Applicant's unique citation designation number (optional). ²Applicant is to place a check mark here if English language Translation is attached.