VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB REPORT on

OPERATING SYSTEMS

(23CS4PCOPS)

Submitted by

Preeti T Korishettar (1BM22CS208)

in partial fulfillment for the award of the degree of BACHELOR OF ENGINEERING

*in*COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING (Autonomous Institution under VTU) BENGALURU-560019 Apr-2024 to Aug-2024

B. M. S. College of Engineering, Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "OPERATING SYSTEMS – 23CS4PCOPS" carried out by **Preeti T Korishettar(1BM22CS208)**, who is bonafide student of **B. M. S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum during the year 2024. The Lab report has been approved as it satisfies the academic requirements in respect of a **OPERATING SYSTEMS - (23CS4PCOPS)** work prescribed for the said degree.

Shravya A R Assistant Professor Department of CSE BMSCE, Bengaluru **Dr. Jyothi S Nayak**Professor and Head
Department of CSE
BMSCE, Bengaluru

Index Sheet

Sl. No.	Experiment Title	Page No.
1.	Write a C program to simulate the following non-pre-emptive CPU scheduling algorithm to find turnaround time and waiting time. →FCFS → SJF (pre-emptive & Non-preemptive)	1-6
2.	Write a C program to simulate the following CPU scheduling algorithm to find turnaround time and waiting time. → Priority (pre-emptive & Non-pre-emptive) →Round Robin (Experiment with different quantum sizes for RR algorithm)	
3.	Write a C program to simulate multi-level queue scheduling algorithm considering the following scenario. All the processes in the system are divided into two categories – system processes and user processes. System processes are to be given higher priority than user processes. Use FCFS scheduling for the processes in each queue.	17-19
4.	Write a C program to simulate Real-Time CPU Scheduling algorithms: a) Rate- Monotonic b) Earliest-deadline First c) Proportional scheduling	20-25
5.	Write a C program to simulate producer-consumer problem using semaphores.	25-29
6.	Write a C program to simulate the concept of Dining-Philosophers problem.	30-32
7.	Write a C program to simulate Bankers algorithm for the purpose of deadlock avoidance.	33-36
8.	Write a C program to simulate deadlock detection	37-39
9.	Write a C program to simulate the following contiguous memory allocation techniques a) Worst-fit b) Best-fit c) First-fit	40-43
10.	Write a C program to simulate page replacement algorithms a) FIFO b) LRU c) Optimal	44-48

Course Outcome

CO1	Apply the different concepts and functionalities of Operating System
CO2	Analyze various Operating system strategies and techniques
CO3	Demonstrate the different functionalities of Operating System
CO4	Conduct practical experiments to implement the functionalities of Operating system

Program: 1

Question:

Write a C program to simulate the following non-pre-emptive CPU scheduling algorithm to find turnaround time and waiting time.

FCFS

```
#include<stdio.h>
void sort(int proc_id[],int at[],int bt[],int n)
  int min=at[0],temp=0;
  for(int i=0;i<n;i++)
     min=at[i];
     for(int j=i;j< n;j++)
       if(at[j]<min)</pre>
          temp=at[i];
          at[i]=at[i];
          at[j]=temp;
          temp=bt[j];
          bt[j]=bt[i];
          bt[i]=temp;
          temp=proc_id[i];
          proc_id[i]=proc_id[i];
          proc_id[j]=temp;
     }
void main()
  int n,c=0;
  printf("Enter number of processes: ");
```

```
scanf("\%d",\&n);\\ int proc_id[n],at[n],bt[n],ct[n],tat[n],wt[n];\\ double avg_tat=0.0,ttat=0.0,avg_wt=0.0,twt=0.0;\\ for(int i=0;i<n;i++)\\ proc_id[i]=i+1;\\ printf("Enter arrival times:\n");\\ for(int i=0;i<n;i++)\\ scanf("\%d",\&at[i]);\\ printf("Enter burst times:\n");\\ for(int i=0;i<n;i++)\\ scanf("\%d",\&bt[i]);\\ \end{aligned}
```

```
sort(proc_id,at,bt,n);
//completion time
for(int i=0;i<n;i++)
  if(c \ge at[i])
    c+=bt[i];
  else
    c+=at[i]-ct[i-1]+bt[i];
  ct[i]=c;
//turnaround time
for(int i=0;i< n;i++)
  tat[i]=ct[i]-at[i];
//waiting time
for(int i=0;i< n;i++)
  wt[i]=tat[i]-bt[i];
printf("FCFS scheduling:\n");
printf("PID\tAT\tBT\tCT\tTAT\tWT\n");
for(int i=0;i<n;i++)
  for(int i=0;i<n;i++)
  ttat+=tat[i];twt+=wt[i];
avg_tat=ttat/(double)n;
avg_wt=twt/(double)n;
printf("\nAverage turnaround time:%lfms\n",avg_tat);
printf("\nAverage waiting time:%lfms\n",avg_wt);
```

```
Enter number of processes: 4
Enter arrival times:
Enter burst times:
FCFS scheduling:
        AT
                 BT
                          CT
                                   TAT
        0
                 2
                          2
                                   2
                                            0
        1
                 2
                          4
                                   3
                                            1
                 3
                          8
                                   3
                                            0
        5
        6
                          12
                                   6
Average turnaround time:3.500000ms
Average waiting time:0.750000ms
```

SJF-Non Preemptive

```
#include<stdio.h>
void main()
  int n,c=0;
  printf("Enter number of processes: ");
  scanf("%d",&n);
  int proc_id[n],at[n],bt[n],ct[n],tat[n],wt[n],m[n];
  double avg_tat=0.0,ttat=0.0,avg_wt=0.0,twt=0.0;
  for(int i=0;i<n;i++)
     proc_id[i]=i+1;m[i]=0;}
  printf("Enter arrival times:\n");
  for(int i=0;i<n;i++)
     scanf("%d",&at[i]);
  printf("Enter burst times:\n");
  for(int i=0;i<n;i++)
     scanf("%d",&bt[i]);
  //completion time
  int count=0,mb,p=0,min=0;
  while(count<n)</pre>
     min=bt[0];mb=0;
     for(int i=0;i<n;i++)
       if(at[i] \le c \&\& m[i]! = 1)
         min=bt[i];mb=i;
          for(int k=0;k<n;k++)
            if(bt[k] < min && at[k] <= c && m[k]!=1)
              min=bt[k];mb=k;
          m[mb]=1;count++;
          if(c)=at[mb]
            c+=bt[mb];
          else
            c+=at[mb]-ct[p]+bt[mb];
         ct[mb]=c;
       p=mb;
       if(count==n)
       break;
```

```
/*for(int i=0;i<n;i++)
  if(c \ge at[i])
    c+=bt[i];
  else
    c+=at[i]-ct[i-1]+bt[i];
  ct[i]=c;
}*/
//turnaround time
for(int i=0;i< n;i++)
  tat[i]=ct[i]-at[i];
//waiting time
for(int i=0;i< n;i++)
  wt[i]=tat[i]-bt[i];
printf("FCFS scheduling:\n");
printf("PID\tAT\tBT\tCT\tTAT\tWT\n");
for(int i=0;i< n;i++)
  for(int i=0;i<n;i++)
  ttat+=tat[i];twt+=wt[i];
avg_tat=ttat/(double)n;
avg_wt=twt/(double)n;
printf("\nAverage turnaround time:%lfms\n",avg_tat);
printf("\nAverage waiting time:%lfms\n",avg_wt);
```

```
Enter number of processes:
Enter arrival times:
0
0
Enter burst times:
6
8
FCFS scheduling:
PID
         ΑТ
                            CT
                                      TAT
                   \mathbf{BT}
P1
         0
                   6
                                      9
                                                3
                            9
P2
         0
                   8
                            24
                                      24
                                                16
Р3
         0
                   7
                            16
                                      16
                                                9
P4
                   3
Average turnaround time:13.00000ms
Average waiting time:7.000000ms
```

SJF Preemptive:

```
#include<stdio.h>
void main()
  int n,c=0;
  printf("Enter number of processes: ");
  scanf("%d",&n);
  int proc id[n], at[n], bt[n], ct[n], tat[n], wt[n], m[n], b[n];
  double avg_tat=0.0,ttat=0.0,avg_wt=0.0,twt=0.0;
  for(int i=0;i<n;i++)
  { proc_id[i]=i+1;m[i]=0;}
  printf("Enter arrival times:\n");
  for(int i=0;i< n;i++)
     scanf("%d",&at[i]);
  printf("Enter burst times:\n");
  for(int i=0;i<n;i++)
      scanf("%d",&bt[i]);b[i]=bt[i];}
  //completion time
  int count=0,mb,p=0,min=0;
  while(count<n)</pre>
     min=b[0];mb=0;
     for(int i=0;i<n;i++)
       if(at[i] \le c \&\& m[i]! = 1)
          min=b[i];mb=i;
          for(int k=0;k< n;k++)
            if(b[k] \le min \&\& at[k] \le c \&\& m[k]!=1) min=b[k];mb=k;
          if(b[mb]==1)
          {m[mb]=1;count++;}
          if(c)=at[mb]
          \{c++;b[mb]--;\}
          else
            c+=at[mb]-ct[p];
          if(b[mb]==0)
          ct[mb]=c;
       p=mb;
       if(count==n)
       break;
```

```
//turnaround time
for(int i=0;i<n;i++)
  tat[i]=ct[i]-at[i];
//waiting time
for(int i=0;i< n;i++)
  wt[i]=tat[i]-bt[i];
printf("SJF(Pre-Emptive) scheduling:\n");
printf("PID\tAT\tBT\tCT\tTAT\tWT\n");
for(int i=0;i< n;i++)
  printf("P\%d\t\%d\t\%d\t\%d\t\%d\t\%d\n",proc_id[i],at[i],bt[i],ct[i],tat[i],wt[i]);
for(int i=0;i<n;i++)
  ttat+=tat[i];twt+=wt[i];
avg_tat=ttat/(double)n;
avg_wt=twt/(double)n;
printf("\nAverage turnaround time:%lfms\n",avg_tat);
printf("\nAverage waiting time:%lfms\n",avg_wt);
```

```
Enter number of processes: 4
Enter arrival times:
0
0
0
Enter burst times:
6
8
7
```

```
SJF(Pre-Emptive) scheduling:
PID
         AT
                                               WT
                   \mathbf{BT}
                            CT
                                      TAT
P1
         0
                            9
                                               3
                   6
                                      9
P2
         0
                   8
                                               16
                            24
                                      24
Р3
         0
                            16
                                      16
P4
                                      3
                            3
Average turnaround time:13.000000ms
Average waiting time:7.000000ms
```

Question: Write a C program to simulate the following CPU scheduling algorithm to find

turnaround time and waiting time.

- a) Priority (pre-emptive & Non-preemptive)
- b) Round Robin

a) Priority Non-Preemptive:

CODE:

#include<stdio.h>

```
void
sort (int proc_id[], int p[], int at[], int bt[], int n)
 int min = p[0], temp = 0;
 for (int i = 0; i < n; i++)
         min = p[i];
         for (int j = i; j < n; j++)
                 if (p[j] < min)
                          temp = at[i];
                          at[i] = at[j];
                         at[i] = temp;
                         temp = bt[i];
                         bt[j] = bt[i];
                         bt[i] = temp;
                         temp = p[i];
                         p[j] = p[i];
                         p[i] = temp;
                         temp = proc_id[i];
                         proc_id[i] = proc_id[j];
                         proc_id[j] = temp;
                }
        }
}
void
main()
 int n, c = 0;
 printf ("Enter number of processes: ");
 scanf ("%d", &n);
```

```
int proc_id[n], at[n], bt[n], ct[n], tat[n], wt[n], m[n], rt[n], p[n];
double avg_tat = 0.0, ttat = 0.0, avg_wt = 0.0, twt = 0.0;
for (int i = 0; i < n; i++)
        proc_id[i] = i + 1;
        m[i] = 0;
printf ("Enter priorities:\n");
for (int i = 0; i < n; i++)
      scanf ("%d", &p[i]);
printf ("Enter arrival times:\n");
for (int i = 0; i < n; i++)
      scanf ("%d", &at[i]);
printf ("Enter burst times:\n");
for (int i = 0; i < n; i++)
        scanf ("%d", &bt[i]);
        m[i] = -1;
        rt[i] = -1;
sort (proc_id, p, at, bt, n);
//completion time
int count = 0, pro = 0, priority = p[0];
int x = 0;
c = 0;
while (count < n)
        for (int i = 0; i < n; i++)
                if (at[i] \le c \&\& p[i] \ge priority \&\& m[i] != 1)
                        x = i;
                        priority = p[i];
        if (rt[x] == -1)
               rt[x] = c - at[x];
        if (at[x] \le c)
              c += bt[x];
        else
              c += at[x] - c + bt[x];
        count++;
        ct[x] = c;
        m[x] = 1;
        while (x >= 1 \&\& m[--x] != 1)
```

```
priority = p[x];
              break;
             }
       x++;
       if (count == n)
             break;
      }
//turnaround time and RT
for (int i = 0; i < n; i++)
      tat[i] = ct[i] - at[i];
//waiting time
for (int i = 0; i < n; i++)
     wt[i] = tat[i] - bt[i];
printf ("\nPriority scheduling:\n");
printf ("PID\tPrior\tAT\tBT\tCT\tTAT\tWT\tRT\n");
for (int i = 0; i < n; i++)
     bt[i], ct[i], tat[i], wt[i], rt[i]);
for (int i = 0; i < n; i++)
       ttat += tat[i];
       twt += wt[i];
      }
avg_tat = ttat / (double) n;
avg_wt = twt / (double) n;
printf ("\nAverage turnaround time:%lfms\n", avg_tat);
printf ("\nAverage waiting time:%lfms\n", avg_wt);
```

Output.									
Enter number of processe	s: 4Prior	ity sched	uling:						
Enter priorities: 10	PID	Prior	AT	BT	CT	TAT	WT	RT	
20 30	P1	10		0	5	5	5	0	0
40	P2	20		1	4	12	11	7	7
<pre>Enter arrival times: 0</pre>	P3	30		2	2	8	6	4	4
1 2 4	P4	40		4	1	6	2	1	1
Enter burst times: 5	Avera	ge turnar	ound ti	me:6.000	000ms				
1	Average waiting time:3.000000ms								

a) Priority (Preemptive):

```
#include<stdio.h>
void
sort (int proc_id[], int p[], int at[], int bt[], int b[], int n)
 int min = p[0], temp = 0;
 for (int i = 0; i < n; i++)
         min = p[i];
         for (int j = i; j < n; j++)
                 if (p[j] < min)
                        {
                         temp = at[i];
                         at[i] = at[j];
                         at[i] = temp;
                         temp = bt[i];
                         bt[i] = bt[i];
                         bt[i] = temp;
                         temp = b[i];
                         b[i] = b[i];
                         b[i] = temp;
                         temp = p[i];
                         p[j] = p[i];
                         p[i] = temp;
                         temp = proc_id[i];
                         proc_id[i] = proc_id[j];
                         proc_id[i] = temp;
                }
        }
Void main (){
 int n, c = 0;
 printf ("Enter number of processes: ");
 scanf ("%d", &n);
 int proc_id[n], at[n], bt[n], ct[n], tat[n], wt[n], m[n], b[n], rt[n], p[n];
 double avg_tat = 0.0, ttat = 0.0, avg_wt = 0.0, twt = 0.0;
 for (int i = 0; i < n; i++)
         proc_id[i] = i + 1;
         m[i] = 0;
 printf ("Enter priorities:\n");
 for (int i = 0; i < n; i++)
        scanf ("%d", &p[i]);
 printf ("Enter arrival times:\n");
```

```
for (int i = 0; i < n; i++)
       scanf ("%d", &at[i]);
printf ("Enter burst times:\n");
for (int i = 0; i < n; i++)
        scanf ("%d", &bt[i]);
        b[i] = bt[i];
        m[i] = -1;
        rt[i] = -1;
sort (proc_id, p, at, bt, b, n);
int count = 0, pro = 0, priority = p[0];
int x = 0;
c = 0;
while (count < n)
        for (int i = 0; i < n; i++)
                if (at[i] \le c \&\& p[i] \ge priority \&\& b[i] > 0 \&\& m[i] != 1)
                        x = i:
                        priority = p[i];
        if (b[x] > 0)
                if(rt[x] == -1)
                       rt[x] = c - at[x];
                b[x]--;
                c++;
        if (b[x] == 0)
                count++;
                ct[x] = c;
                m[x] = 1;
                while (x \ge 1 \&\& b[x] == 0)
                       priority = p[-x];
        if (count == n)
               break;
       }
//turnaround time and RT
for (int i = 0; i < n; i++)
       tat[i] = ct[i] - at[i];
//waiting time
```

```
for (int i = 0; i < n; i++)
      wt[i] = tat[i] - bt[i];
 printf ("Priority scheduling(Pre-Emptive):\n");
 printf ("PID\tPrior\tAT\tBT\tCT\tTAT\tWT\tRT\n");
 for (int i = 0; i < n; i++)
      bt[i], ct[i], tat[i], wt[i], rt[i]);
 for (int i = 0; i < n; i++)
       ttat += tat[i];
       twt += wt[i];
 avg_tat = ttat / (double) n;
 avg_wt = twt / (double) n;
 printf ("\nAverage turnaround time:%lfms\n", avg_tat);
 printf ("\nAverage waiting time:%lfms\n", avg_wt);
Output:
Enter number of processes: 4
Enter priorities:
10
20
30
40
Enter arrival times:
Enter burst times:
Priority scheduling(Pre-Emptive):
PID
P1
P2
P3
          Prior
                    ΑT
                               BT
                                         CT
                                                    TAT
                                                                        RT
                                                              WΤ
           10
                                         5
                               0
                                                    12
                                                              12
           20
                                         4
                                                    8
                                                              7
           30
                               2
                                         2
                                                              2
Ρ4
           40
                               4
                                         1
                                                    5
                                                              1
                                                                         0
Average turnaround time:5.500000ms
Average waiting time:2.500000ms
```

b) RoundRobin:

```
//RRS
#include<stdio.h>
void
sort (int proc_id[], int at[], int bt[], int b[], int n)
 int min = at [0], temp = 0;
 for (int i = 0; i < n; i++)
         min = at[i];
         for (int j = i; j < n; j++)
                 if (at[j] < min)
                         temp = at[i];
                         at[i] = at[j];
                         at[j] = temp;
                         temp = bt[j];
                         bt[i] = bt[i];
                         bt[i] = temp;
                         temp = b[i];
                         b[i] = b[i];
                         b[i] = temp;
                         temp = proc_id[i];
                         proc_id[i] = proc_id[j];
                         proc_id[j] = temp;
                }
        }
void main (){
 int n, c = 0, t = 0;
 printf ("Enter number of processes: ");
 scanf ("%d", &n);
 printf ("Enter Time Quantum: ");
 scanf ("%d", &t);
 int proc_id[n], at[n], bt[n], ct[n], tat[n], wt[n], b[n], rt[n], m[n];
 int f = -1, r = -1;
 int q[100];
 int count = 0;
 double avg_tat = 0.0, ttat = 0.0, avg_wt = 0.0, twt = 0.0;
 for (int i = 0; i < n; i++)
        proc_id[i] = i + 1;
 printf ("Enter arrival times:\n");
 for (int i = 0; i < n; i++)
```

```
scanf ("%d", &at[i]);
printf ("Enter burst times:\n");
for (int i = 0; i < n; i++)
        scanf ("%d", &bt[i]);
        b[i] = bt[i];
        m[i] = 0;
        rt[i] = -1;
sort (proc_id, at, bt, b, n);
f = r = 0;
q[0] = proc_id[0];
int p = 0, i = 0;
while (f \ge 0)
        p = q[f++];
        i = 0;
        while (p != proc_id[i])
              i++;
        if (b[i] \ge t)
               {
                if(rt[i] == -1)
                      rt[i] = c;
                b[i] = t;
                c += t;
                m[i] = 1;
        else
                if(rt[i] == -1)
                      rt[i] = c;
                c += b[i];
                b[i] = 0;
                m[i] = 1;
        m[0] = 1;
        for (int j = 0; j < n; j++)
                if (at[j] <= c && proc_id[j] != p && m[j] != 1)
                        q[++r] = proc_id[j];
                        m[j] = 1;
                       }
        if (b[i] == 0)
                count++;
```

```
ct[i] = c;
        else
              q[++r] = proc_id[i];
        if (f > r)
              f = -1;
for (int i = 0; i < n; i++)
        tat[i] = ct[i] - at[i];
        rt[i] = rt[i] - at[i];
//waiting time
for (int i = 0; i < n; i++) wt[i] = tat[i] - bt[i];
printf ("\nRRS scheduling:\n");
printf ("PID\tAT\tBT\tCT\tTAT\tWT\tRT\n");
for (int i = 0; i < n; i++)
      printf ("%d\t%d\t%d\t%d\t%d\t%d\t%d\n", proc_id[i], at[i], bt[i], ct[i],
                      tat[i], wt[i], rt[i]);
for (int i = 0; i < n; i++)
        ttat += tat[i];
        twt += wt[i];
avg_tat = ttat / (double) n;
avg_wt = twt / (double) n;
printf ("\nAverage turnaround time:%lfms\n", avg_tat);
printf ("\nAverage waiting time:%lfms\n", avg_wt);
```

```
Enter number of processes: 5
Enter Time Quantum: 2
Enter arrival times:
0
1
2
3
4
Enter burst times:
5
3
1
2
3
```

RRS s	chedulin	g:				
PID	AТ	BT	CT	TAT	\mathbf{WT}	RT
1	0	5	13	13	8	0
2	1	3	12	11	8	1
3	2	1	5	3	2	2
4	3	2	9	6	4	4
5	4	3	14	10	7	5

Average turnaround time:8.600000ms

Average waiting time:5.800000ms

Question:

Write a C program to simulate multi-level queue scheduling algorithm considering the following scenario. All the processes in the system are divided into two categories – system processes and user processes. System processes are to be given higher priority than user processes. Use FCFS scheduling for the processes in each queue.

```
#include<stdio.h>
void sort(int proc_id[],int at[],int bt[],int n)
  int temp=0;
  for(int i=0;i< n;i++)
     for(int j=i;j< n;j++)
        if(at[i] < at[i])
          temp=at[i];at[i]=at[j];at[j]=temp;
          temp=bt[j];bt[j]=bt[i];bt[i]=temp;
          temp=proc_id[i];proc_id[i]=proc_id[j];proc_id[j]=temp;
     }
void fcfs(int at[],int bt[],int ct[],int tat[],int wt[],int n,int *c)
  double ttat=0.0,twt=0.0;
  //completion time
  for(int i=0;i<n;i++)
     if(*c>=at[i])
        *c+=bt[i]:
        *c+=at[i]-ct[i-1]+bt[i];
     ct[i]=*c;
  //turnaround time
  for(int i=0;i< n;i++)
     tat[i]=ct[i]-at[i];
  //waiting time
  for(int i=0;i< n;i++)
     wt[i]=tat[i]-bt[i];
```

```
}
void main()
  int sn,un,c=0;int n=0;
  printf("Enter number of system processes: ");
  scanf("%d",&sn);n=sn;
  int sproc_id[n],sat[n],sbt[n],sct[n],stat[n],swt[n];
  for(int i=0;i < sn;i++)
    sproc id[i]=i+1;
  printf("Enter arrival times of the system processes:\n");
  for(int i=0;i < sn;i++)
    scanf("%d",&sat[i]);
  printf("Enter burst times of the system processes:\n");
  for(int i=0;i < sn;i++)
    scanf("%d",&sbt[i]);
  printf("Enter number of user processes: ");
  scanf("%d",&un);n=un;
  int uproc_id[n],uat[n],ubt[n],uct[n],utat[n],uwt[n];
  for(int i=0;i<un;i++)
    uproc_id[i]=i+1;
  printf("Enter arrival times of the user processes:\n");
  for(int i=0;i<un;i++)
    scanf("%d",&uat[i]);
  printf("Enter burst times of the user processes:\n");
  for(int i=0;i<un;i++)
    scanf("%d",&ubt[i]);
  sort(sproc_id,sat,sbt,sn);
  sort(uproc_id,uat,ubt,un);
  fcfs(sat,sbt,sct,stat,swt,sn,&c);
  fcfs(uat,ubt,uct,utat,uwt,un,&c);
  printf("\nScheduling:\n");
  printf("System processes:\n");
  printf("PID\tAT\tBT\tCT\tTAT\tWT\n");
  for(int i=0;i < sn;i++)
    printf("%d\t%d\t%d\t%d\t%d\t%d\\n",sproc_id[i],sat[i],stf[i],sct[i],stat[i],swt[i]);
  printf("User processes:\n");
  for(int i=0;i<un;i++)
```

```
Enter number of system processes: 2
Enter arrival times of the system processe
Enter burst times of the system processes:
Enter number of user processes: 2
Enter arrival times of the user processes:
Enter burst times of the user processes:
Scheduling:
System processes:
       AT
                        CT
                                TAT
PID
                BT
                                         WT
       0
                2
                        2
                                 2
        0
                5
                        7
                                         2
User processes:
                        8
        0
                1
                                 8
        0
                3
                        11
                                 11
                                         8
```

Question:

Write a C program to simulate Real-Time CPU Scheduling algorithms:

- a) Rate- Monotonic
- b) Earliest-deadline First
- c) Proportional scheduling

a) Rate-Monotonic:

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
sort (int proc[], int b[], int pt[], int n)
 int temp = 0;
 for (int i = 0; i < n; i++)
         for (int j = i; j < n; j++)
                 if (pt[j] < pt[i])
                         temp = pt[i];
                         pt[i] = pt[j];
                         pt[j] = temp;
                         temp = b[j];
                         b[i] = b[i];
                         b[i] = temp;
                         temp = proc[i];
                         proc[i] = proc[i];
                         proc[j] = temp;
                }
        }
}
gcd (int a, int b)
 int r:
 while (b > 0)
         r = a \% b;
         a = b;
```

```
b = r;
 return a;
int
lcmul (int p[], int n)
 int lcm = p[0];
 for (int i = 1; i < n; i++)
         lcm = (lcm * p[i]) / gcd (lcm, p[i]);
 return lcm;
}
void
main()
 int n;
 printf ("Enter the number of processes:");
 scanf ("%d", &n);
 int proc[n], b[n], pt[n], rem[n];
 printf ("Enter the CPU burst times:\n");
 for (int i = 0; i < n; i++)
         scanf ("%d", &b[i]);
         rem[i] = b[i];
 printf ("Enter the time periods:\n");
 for (int i = 0; i < n; i++)
        scanf ("%d", &pt[i]);
 for (int i = 0; i < n; i++)
       proc[i] = i + 1;
 sort (proc, b, pt, n);
 //LCM
 int l = lcmul(pt, n);
 printf ("LCM=%d\n", l);
 printf ("\nRate Monotone Scheduling:\n");
 printf ("PID\t Burst\tPeriod\n");
 for (int i = 0; i < n; i++)
       printf ("%d\t\d\d\, proc[i], b[i], pt[i]);
 //feasibility
 double sum = 0.0;
 for (int i = 0; i < n; i++)
```

```
sum += (double) b[i] / pt[i];
double rhs = n * (pow (2.0, (1.0 / n)) - 1.0);
printf ("\n%lf <= %lf =>%s\n", sum, rhs, (sum <= rhs)? "true": "false");
if (sum > rhs)
       exit (0);
printf ("Scheduling occurs for %d ms\n\n", l);
//RMS
int time = 0, prev = 0, x = 0;
while (time < 1)
        int f = 0;
        for (int i = 0; i < n; i++)
                if (time % pt[i] == 0)
                       rem[i] = b[i];
                if (rem[i] > 0)
                        if (prev != proc[i])
                                printf ("%dms onwards: Process %d running\n", time,
                                               proc[i]);
                                prev = proc[i];
                        rem[i]--;
                        f = 1;
                        break;
                        x = 0;
               }
        if (!f)
                if (x != 1)
                        printf ("%dms onwards: CPU is idle\n", time);
                        x = 1;
        time++;
}
```

```
Enter the number of processes:2
Enter the CPU burst times:
35
Enter the time periods:
100
LCM=100
Rate Monotone Scheduling:
PID
         Burst Period
                20
                35
                                 100
0.750000 <= 0.828427 =>true
Scheduling occurs for 100 ms
Oms onwards: Process 1 running
20ms onwards: Process 2 running
50ms onwards: Process 1 running
70ms onwards: Process 2 running
75ms onwards: CPU is idle
```

b) Earliest-Deadline First:

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
void
sort (int proc[], int d[], int b[], int pt[], int n)
 int temp = 0;
 for (int i = 0; i < n; i++)
     for (int j = i; j < n; j++)
             if (d[j] < d[i])
                     temp = d[j];
                     d[i] = d[i];
                     d[i] = temp;
                     temp = pt[i];
                     pt[i] = pt[j];
                     pt[j] = temp;
                     temp = b[j];
                     b[i] = b[i];
                     b[i] = temp;
                     temp = proc[i];
                     proc[i] = proc[j];
                     proc[j] = temp;
```

```
}
            }
    }
}
int
gcd (int a, int b)
 int r;
 while (b > 0)
     r = a \% b;
     a = b;
     b = r;
 return a;
int
lcmul (int p[], int n)
 int lcm = p[0];
 for (int i = 1; i < n; i++)
     lcm = (lcm * p[i]) / gcd (lcm, p[i]);
 return lcm;
}
void
main()
{
 printf ("Enter the number of processes:");
 scanf ("%d", &n);
 int proc[n], b[n], pt[n], d[n], rem[n];
 printf ("Enter the CPU burst times:\n");
 for (int i = 0; i < n; i++)
     scanf ("%d", &b[i]);
     rem[i] = b[i];
 printf ("Enter the deadlines:\n");
 for (int i = 0; i < n; i++)
    scanf ("%d", &d[i]);
 printf ("Enter the time periods:\n");
 for (int i = 0; i < n; i++)
```

```
scanf ("%d", &pt[i]);
for (int i = 0; i < n; i++)
  proc[i] = i + 1;
sort (proc, d, b, pt, n);
//LCM
int l = lcmul(pt, n);
printf ("\nEarliest Deadline Scheduling:\n");
printf ("PID\t Burst\tDeadline\tPeriod\n");
for (int i = 0; i < n; i++)
  printf ("Scheduling occurs for %d ms\n\n", 1);
//EDF
int time = 0, prev = 0, x = 0;
int nextDeadlines[n];
for (int i = 0; i < n; i++)
   nextDeadlines[i] = d[i];
   rem[i] = b[i];
while (time < 1)
   for (int i = 0; i < n; i++)
           if (time % pt[i] == 0 \&\& time != 0)
                  nextDeadlines[i] = time + d[i];
                  rem[i] = b[i];
   int minDeadline = 1 + 1;
   int taskToExecute = -1;
   for (int i = 0; i < n; i++)
           if (rem[i] > 0 && nextDeadlines[i] < minDeadline)
                  minDeadline = nextDeadlines[i];
                  taskToExecute = i;
   if (taskToExecute != -1)
           printf ("%dms : Task %d is running.\n", time, proc[taskToExecute]);
          rem[taskToExecute]--;
```

```
else
{
    printf ("%dms: CPU is idle.\n", time);
}

time++;
}
```

```
Enter the number of processes:3
Enter the CPU burst times:
Enter the deadlines:
Enter the time periods:
20
10
0ms : Task 2 is running.
1ms : Task 2 is running.
2ms : Task 1 is running.
3ms : Task 1 is running.
4ms : Task 1 is running.
5ms : Task 3 is running.
6ms : Task 3 is running.
7ms : Task 2 is running.
8ms : Task 2 is running.
9ms: CPU is idle.
10ms : Task 2 is running.
11ms : Task 2 is running.
12ms : Task 3 is running.
13ms : Task 3 is running.
14ms: CPU is idle.
15ms : Task 2 is running.
16ms : Task 2 is running.
17ms: CPU is idle.
18ms: CPU is idle.
19ms: CPU is idle.
```

Earliest	Deadlir	ne Schedulin	ng:	
PID	Burst	Deadline	Period	
2		2	4	5
1		3	7	20
3		2	8	10
Schedulin	ng occur	s for 20 ms	5	

c) Proportional Scheduling

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main() {
    srand(time(NULL));
    int n;
    printf("Enter number of processes:");
```

```
scanf("%d",&n);
int p[n],t[n],cum[n],m[n];int c=0;int total = 0,count=0;
printf("Enter tickets of the processes:\n");
for(int i=0;i< n;i++)
  scanf("%d",&t[i]);
  c+=t[i];
  cum[i]=c;
  p[i]=i+1;
  m[i]=0;
  total += t[i];
while(count<n)
  int wt=rand()%total;
  for (int i=0;i<n;i++)
     if (wt<cum[i] && m[i]==0)
       printf("The winning number is %d and winning participant is: %d\n",wt,p[i]);
       m[i]=1;count++;
     }
   }
printf("\nProbabilities:\n");
for (int i = 0; i < n; i++)
  printf("The probability of P%d winning: %.2f %\n",p[i],((double)t[i]/total*100));
```

```
Enter number of processes:3
Enter tickets of the processes:
20
30
50
The winning number is 71 and winning participant is: 3
The winning number is 15 and winning participant is: 1
The winning number is 15 and winning participant is: 2
Probabilities:
The probability of P1 winning: 20.00 %
The probability of P2 winning: 30.00 %
The probability of P3 winning: 50.00 %
```

Question:

Write a C program to simulate producer-consumer problem using semaphores.

```
#include<stdio.h>
#include<stdlib.h>
int mutex=1,full=0,empty=5,x=0;
void wait()
  --mutex;
void signal()
  ++mutex;
void producer()
  wait();++full;--empty;x++;
  printf("Producer has produced: Item %d\n",x);
  signal();
void consumer()
  wait();--full;++empty;
  printf("Consumer has consumed: Item %d\n",x);
  x--; signal();
void main()
  int ch;
  printf("Enter 1.Producer 2.Consumer 3.Exit\n");
  while(1)
    printf("Enter your choice:\n");
    scanf("%d",&ch);
     switch(ch)
       case 1:
         if(mutex==1 && empty!=0)
         producer();
         else
            printf("Buffer is full!\n");
         break;
       case 2:
         if(mutex==1 && full!=0)
          consumer();
```

```
Enter 1. Producer 2. Consumer 3. Exit
Enter your choice:
Producer has produced: Item 1
Enter your choice:
Producer has produced: Item 2
Enter your choice:
Producer has produced: Item 3
Enter your choice:
Producer has produced: Item 4
Enter your choice:
Producer has produced: Item 5
Enter your choice:
Buffer is full!
Enter your choice:
Consumer has consumed: Item 5
Enter your choice:
Consumer has consumed: Item 4
Enter your choice:
Consumer has consumed: Item 3
Enter your choice:
Consumer has consumed: Item 2
Enter your choice:
Consumer has consumed: Item 1
Enter your choice:
Buffer is empty!
```

Question:

Write a C program to simulate the concept of Dining-Philosophers problem.

```
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>
#define MAX_PHILOSOPHERS 100
int mutex = 1;
int mutex2 = 2;
int philosophers[MAX_PHILOSOPHERS];
void wait(int *sem) {
  while (*sem \leq 0);
  (*sem)--;
}
void signal(int *sem) {
  (*sem)++;
void* one_eat_at_a_time(void* arg) {
  int philosopher = *((int*) arg);
  wait(&mutex);
  printf("Philosopher %d is granted to eat\n", philosopher + 1);
  printf("Philosopher %d has finished eating\n", philosopher + 1);
  signal(&mutex);
  return NULL;
void* two_eat_at_a_time(void* arg) {
  int philosopher = *((int*) arg);
  wait(&mutex2);
  printf("Philosopher %d is granted to eat\n", philosopher + 1);
  sleep(1);
  printf("Philosopher %d has finished eating\n", philosopher + 1);
```

```
signal(&mutex2);
  return NULL;
int main() {
  int N;
  printf("Enter the total number of philosophers: ");
  scanf("%d", &N);
  int hungry_count;
  printf("How many are hungry: ");
  scanf("%d", &hungry_count);
  int hungry_philosophers[hungry_count];
  for (int i = 0; i < hungry\_count; i++) {
     printf("Enter philosopher %d position (1 to %d): ", i + 1, N);
     scanf("%d", &hungry_philosophers[i]);
     hungry_philosophers[i]--;
  pthread t thread[hungry count];
  int choice;
  do {
     printf("\n1. One can eat at a time\n2. Two can eat at a time\n3. Exit\nEnter your choice: ");
     scanf("%d", &choice);
     switch (choice) {
       case 1:
          printf("Allow one philosopher to eat at any time\n");
          for (int i = 0; i < hungry\_count; i++) {
            philosophers[i] = hungry_philosophers[i];
            pthread create(&thread[i], NULL, one eat at a time, &philosophers[i]);
          for (int i = 0; i < hungry\_count; i++) {
            pthread_join(thread[i], NULL);
          break;
       case 2:
          printf("Allow two philosophers to eat at the same time\n");
          for (int i = 0; i < \text{hungry count}; i++) {
            philosophers[i] = hungry_philosophers[i];
            pthread create(&thread[i], NULL, two eat at a time, &philosophers[i]);
          for (int i = 0; i < hungry\_count; i++) {
            pthread_join(thread[i], NULL);
```

```
break;
      case 3:
         printf("Exit\n");
         break;
      default:
         printf("Invalid choice. Please try again.\n");
  \} while (choice != 3);
  return 0;
Output:
Enter the total number of philosophers: 5
How many are hungry: 3
Enter philosopher 1 position (1 to 5): 1
Enter philosopher 2 position (1 to 5): 3
Enter philosopher 3 position (1 to 5): 5
1. One can eat at a time
2. Two can eat at a time
3. Exit
Enter your choice: 1
Allow one philosopher to eat at any time
Philosopher 1 is granted to eat
Philosopher 1 has finished eating
Philosopher 5 is granted to eat
Philosopher 5 has finished eating
Philosopher 3 is granted to eat
Philosopher 3 has finished eating
1. One can eat at a time
2. Two can eat at a time
3. Exit
Enter your choice: 2
Allow two philosophers to eat at the same
Philosopher 1 is granted to eat
Philosopher 3 is granted to eat
Philosopher 1 has finished eating
Philosopher 5 is granted to eat
Philosopher 3 has finished eating
Philosopher 5 has finished eating
1. One can eat at a time
2. Two can eat at a time
3. Exit
Enter your choice: 3
Exit
```

Question:

Write a C program to simulate Bankers algorithm for the purpose of deadlock avoidance.

```
#include <stdio.h>
#include <stdbool.h>
void calculateNeed(int P, int R, int need[P][R], int max[P][R], int allot[P][R]) {
  for (int i = 0; i < P; i++)
     for (int j = 0; j < R; j++)
        need[i][j] = max[i][j] - allot[i][j];
}
bool isSafe(int P, int R, int processes[], int avail[], int max[][R], int allot[][R]) {
  int need[P][R];
  calculateNeed(P, R, need, max, allot);
  bool finish[P];
  for (int i = 0; i < P; i++) {
     finish[i] = 0;
  int safeSeq[P];
  int work[R];
  for (int i = 0; i < R; i++) {
     work[i] = avail[i];
  int count = 0;
  while (count < P) {
     bool found = false;
     for (int p = 0; p < P; p++) {
        if (finish[p] == 0) {
          int j;
          for (j = 0; j < R; j++)
             if (need[p][j] > work[j])
                break;
          if (j == R) {
             printf("P%d is visited(", p);
             for (int k = 0; k < R; k++) {
                work[k] += allot[p][k];
                printf("%d ", work[k]);
             printf(")\n");
             safeSeq[count++] = p;
```

```
finish[p] = 1;
             found = true;
     }
     if (found == false) {
        printf("System is not in safe state\n");
        return false;
     }
  printf("SYSTEM IS IN SAFE STATE\nThe Safe Sequence is -- (");
  for (int i = 0; i < P; i++) {
     printf("P%d", safeSeq[i]);
  printf(")\n");
  return true;
int main() {
  int P, R;
  printf("Enter number of processes: ");
  scanf("%d", &P);
  printf("Enter number of resources: ");
  scanf("%d", &R);
  int processes[P];
  int avail[R];
  int max[P][R];
  int allot[P][R];
  for (int i = 0; i < P; i++) {
     processes[i] = i;
  for (int i = 0; i < P; i++) {
     printf("Enter details for P%d\n", i);
     printf("Enter allocation -- ");
     for (int j = 0; j < R; j++) {
        scanf("%d", &allot[i][j]);
     printf("Enter Max -- ");
     for (int j = 0; j < R; j++) {
        scanf("%d", &max[i][j]);
     }
```

```
printf("Enter Available Resources -- ");
for (int i = 0; i < R; i++) {
  scanf("%d", &avail[i]);
isSafe(P, R, processes, avail, max, allot);
printf("\nProcess\tAllocation\tMax\tNeed\n");
for (int i = 0; i < P; i++) {
  printf("P%d\t", i);
  for (int j = 0; j < R; j++) {
     printf("%d ", allot[i][j]);
  printf("\t");
  for (int j = 0; j < R; j++) {
     printf("%d", max[i][j]);
   }
  printf("\t");
  for (int j = 0; j < R; j++) {
     printf("%d", max[i][j] - allot[i][j]);
  printf("\n");
return 0;
```

```
Enter number of processes: 5
Enter number of resources: 3
Enter details for P0
Enter allocation -- 0

1
0
Enter Max -- 7
5
3
Enter details for P1
Enter allocation -- 2
0
0
Enter Max -- 3
2
2
Enter details for P2
Enter allocation -- 3
0
2
Enter Max -- 9
0
```

```
Enter details for P3
Enter allocation -- 2

1

1
Enter Max -- 2

2
Enter details for P4
Enter allocation -- 0

0

2
Enter Max -- 4

3
3
Enter Available Resources -- 3

3
2
P1 is visited (5 3 2 )
P3 is visited (7 4 3 )
P4 is visited (7 4 5 )
P0 is visited (7 5 5 )
P2 is visited (10 5 7 )
SYSTEM IS IN SAFE STATE
The Safe Sequence is -- (P1 P3 P4 P0 P2 )
```

THE DULE DEGLES IS	,			/						
Process	Allocation						M	ax	Need	
P0	0	1	0	7	5	3	7	4	3	
P1	2	0	0	3	2	2	1	2	2	
P2	3	0	2	9	0	2	6	0	0	
P3	2	1	1	2	2	2	0	1	1	
P4	0	0	2	4	3	3	4	3	1	

Question:

Write a C program to simulate deadlock detection.

```
#include <stdio.h>
#include <stdbool.h>
void calculateNeed(int P, int R, int need[P][R], int max[P][R], int allot[P][R]) {
  for (int i = 0; i < P; i++)
     for (int j = 0; j < R; j++)
        need[i][j] = max[i][j] - allot[i][j];
}
bool isSafe(int P, int R, int processes[], int avail[], int max[][R], int allot[][R]) {
  int need[P][R];
  calculateNeed(P, R, need, max, allot);
  bool finish[P];
  for (int i = 0; i < P; i++) {
     finish[i] = 0;
  int safeSeq[P];
  int work[R];
  for (int i = 0; i < R; i++) {
     work[i] = avail[i];
  int count = 0;
  while (count < P) {
     bool found = false;
     for (int p = 0; p < P; p++) {
        if (finish[p] == 0) {
          int j;
          for (j = 0; j < R; j++)
             if (need[p][j] > work[j])
                break;
          if (i == R) {
             printf("P%d is visited(", p);
             for (int k = 0; k < R; k++) {
                work[k] += allot[p][k];
                printf("%d ", work[k]);
             printf(")\n");
             safeSeq[count++] = p;
             finish[p] = 1;
```

```
found = true;
          }
       }
     }
     if (found == false) {
        printf("System is not in safe state\n");
        return false;
     }
  }
  printf("SYSTEM IS IN SAFE STATE\nThe Safe Sequence is -- (");
  for (int i = 0; i < P; i++) {
     printf("P%d", safeSeq[i]);
  printf(")\n");
  return true;
}
int main() {
  int P, R;
  printf("Enter number of processes: ");
  scanf("%d", &P);
  printf("Enter number of resources: ");
  scanf("%d", &R);
  int processes[P];
  int avail[R];
  int max[P][R];
  int allot[P][R];
  for (int i = 0; i < P; i++) {
     processes[i] = i;
  for (int i = 0; i < P; i++) {
     printf("Enter details for P%d\n", i);
     printf("Enter allocation -- ");
     for (int j = 0; j < R; j++) {
        scanf("%d", &allot[i][j]);
     printf("Enter Max -- ");
     for (int j = 0; j < R; j++) {
        scanf("%d", &max[i][j]);
     }
```

```
printf("Enter Available Resources -- ");
for (int i = 0; i < R; i++) {
  scanf("%d", &avail[i]);
isSafe(P, R, processes, avail, max, allot);
printf("\nProcess\tAllocation\tMax\tNeed\n");
for (int i = 0; i < P; i++) {
  printf("P%d\t", i);
  for (int j = 0; j < R; j++) {
     printf("%d", allot[i][j]);
  printf("\t");
  for (int j = 0; j < R; j++) {
     printf("%d ", max[i][j]);
  printf("\t");
  for (int j = 0; j < R; j++) {
     printf("%d", max[i][j] - allot[i][j]);
  printf("\n");
return 0;
```

```
Enter details for P3
Enter the number of processes: 5
Enter the number of resources: 3
                           Enter allocation -- 2
Enter details for PO
Enter allocation -- 0
                           Enter Request -- 1
Enter Request -- 0
                           Enter details for P4
Enter details for P1
                           Enter allocation -- 0
Enter allocation -- 2
                           Enter Request -- 0
Enter Request -- 2
                            0
Enter details for P2
                           Enter Available Resources -- 0
Enter allocation -- 3
                           0
                           0
Enter Request -- 0
                           System is in a deadlock state.
                           The deadlocked processes are: P1 P4
```

Question:

Write a C program to simulate the following contiguous memory allocation techniques

- a) Worst-fit
- b) Best-fit
- c) First-fit

```
#include <stdio.h>
#define MAX 25
void firstFit(int nb, int nf, int b[], int f[]) {
  int frag[MAX], bf[MAX] = \{0\}, ff[MAX] = \{0\};
  int i, j, temp;
  for (i = 1; i \le nf; i++) {
     for (j = 1; j \le nb; j++) {
        if (bf[j] != 1) {
          temp = b[i] - f[i];
          if (temp >= 0) {
             ff[i] = j;
             frag[i] = temp;
             bf[i] = 1;
             break;
     }
  printf("\nMemory Management Scheme - First Fit\n");
  printf("File_no:\tFile_size:\tBlock_no:\tBlock_size:\tFragment\n");
  for (i = 1; i \le nf; i++) {
     printf("%d\t\t", i, f[i]);
     if (ff[i] != 0) {
        printf("%d\t\t\%d\t\t\%d\n", ff[i], b[ff[i]], frag[i]);
       printf("Not Allocated\n");
  }
void bestFit(int nb, int nf, int b[], int f[]) {
  int frag[MAX], bf[MAX] = \{0\}, ff[MAX] = \{0\};
```

```
int i, j, temp, lowest = 10000;
  for (i = 1; i \le nf; i++)
     for (j = 1; j \le nb; j++) {
       if (bf[j] != 1) {
          temp = b[i] - f[i];
          if (temp \ge 0 \&\& lowest > temp) {
             ff[i] = i;
             lowest = temp;
     frag[i] = lowest;
     bf[ff[i]] = 1;
     lowest = 10000;
  printf("\nMemory Management Scheme - Best Fit\n");
  printf("File No\tFile Size \tBlock No\tBlock Size\tFragment\n");
  for (i = 1; i \le nf; i++)
     printf("%d\t\t", i, f[i]);
     if (ff[i] != 0) {
       printf("%d\t\t\%d\n", ff[i], b[ff[i]], frag[i]);
     } else {
       printf("Not Allocated\n");
void worstFit(int nb, int nf, int b[], int f[]) {
  int frag[MAX], bf[MAX] = \{0\}, ff[MAX] = \{0\};
  int i, j, temp, highest = 0;
  for (i = 1; i \le nf; i++)
     for (j = 1; j \le nb; j++) {
       if (bf[j] != 1) {
          temp = b[i] - f[i];
          if (temp >= 0 \&\& highest < temp) {
             ff[i] = j;
             highest = temp;
          }
        }
     frag[i] = highest;
     bf[ff[i]] = 1;
     highest = 0;
```

```
printf("\nMemory Management Scheme - Worst Fit\n");
  printf("File no:\tFile size:\tBlock no:\tBlock size:\tFragment\n");
  for (i = 1; i \le nf; i++)
     printf("%d\t\t", i, f[i]);
     if (ff[i] != 0) {
        printf("%d\t\t\%d\t\t\%d\n", ff[i], b[ff[i]], frag[i]);
     } else {
        printf("Not Allocated\n");
}
int main() {
  int b[MAX], f[MAX], nb, nf;
  printf("\nEnter the number of blocks:");
  scanf("%d", &nb);
  printf("Enter the number of files:");
  scanf("%d", &nf);
  printf("\nEnter the size of the blocks:-\n");
  for (int i = 1; i \le nb; i++) {
     printf("Block %d:", i);
     scanf("%d", &b[i]);
  printf("Enter the size of the files :-\n");
  for (int i = 1; i \le nf; i++) {
     printf("File %d:", i);
     scanf("%d", &f[i]);
  int b1[MAX], b2[MAX], b3[MAX];
  for (int i = 1; i \le nb; i++) {
     b1[i] = b[i];
     b2[i] = b[i];
     b3[i] = b[i];
  firstFit(nb, nf, b1, f);
  bestFit(nb, nf, b2, f);
  worstFit(nb, nf, b3, f);
  return 0;
```

```
Enter the number of blocks:5
Enter the number of files:4
Enter the size of the blocks
Block 1:400
Block 2:700
Block 3:200
Block 4:300
Block 5:600
Enter the size of the files
File 1:212
File 2:517
File 3:312
File 4:526
Memory Management Scheme - First Fit
File_no:
               File size :
                                Block no:
                                                Block size:
                                                                Fragment
               212
                                                400
                                                                188
                                1
               517
                                2
                                                700
                                                                183
                312
                                5
                                                600
                                                                288
               526
                               Not Allocated
Memory Management Scheme - Best Fit
File No File Size
                                        Block Size
                       Block No
                                                       Fragment
                                5
                                                600
                                                                83
               517
               312
                                                400
                                                                88
                                2
               526
                                                700
                                                                174
Memory Management Scheme - Worst Fit
File_no:
               File_size :
                                Block_no:
                                                Block_size:
                                                               Fragment
               212
                                2
                                                                488
                                                700
                                5
               517
                                                600
                                                                83
3
                                1
               312
                                                400
                                                                88
                                Not Allocated
               526
```

Question:

Write a C program to simulate page replacement algorithms

- a) FIFO
- b) LRU
- c) Optimal

```
#include <stdio.h>
// Function to check if the page is present in the frames
int isPagePresent(int frames[], int n, int page) {
  for (int i = 0; i < n; i++) {
     if (frames[i] == page) {
       return 1;
     }
  return 0;
// Function to print the frames
void printFrames(int frames[], int n) {
  for (int i = 0; i < n; i++) {
     if (frames[i] != -1) {
       printf("%d ", frames[i]);
     } else {
       printf("- ");
     }
  printf("\n");
// Function to implement FIFO page replacement
void fifoPageReplacement(int pages[], int numPages, int numFrames) {
  int frames[numFrames];
  int front = 0, pageFaults = 0;
  // Initialize frames
  for (int i = 0; i < numFrames; i++) {
     frames[i] = -1;
  }
  printf("FIFO Replacement\n");
  printf("Reference String\tFrames\n");
  for (int i = 0; i < numPages; i++) {
     printf("%d\t\t", pages[i]);
```

```
if (!isPagePresent(frames, numFrames, pages[i])) {
       frames[front] = pages[i];
       front = (front + 1) % numFrames;
       pageFaults++;
     printFrames(frames, numFrames);
  printf("\nTotal Page Faults: %d\n\n", pageFaults);
// Function to find the page to replace using the Optimal page replacement algorithm
int findOptimalReplacementIndex(int pages[], int numPages, int frames[], int numFrames, int
currentIndex) {
  int farthest = currentIndex;
  int index = -1;
  for (int i = 0; i < numFrames; i++) {
     for (j = currentIndex; j < numPages; j++) {
       if (frames[i] == pages[j]) {
          if (j > farthest) {
            farthest = i;
            index = i;
          break;
       }
     // If the page is not found in future, return this index
     if (i == numPages) {
       return i;
     }
   }
  // If all pages are found in future, return the one with farthest future use
  return (index == -1) ? 0 : index;
}
// Function to implement Optimal page replacement
void optPageReplacement(int pages[], int numPages, int numFrames) {
  int frames[numFrames];
  int pageFaults = 0;
  // Initialize frames
  for (int i = 0; i < numFrames; i++) {
     frames[i] = -1;
```

```
printf("Optimal Replacement\n");
  printf("Reference String\tFrames\n");
  for (int i = 0; i < numPages; i++) {
     printf("%d\t\t", pages[i]);
     if (!isPagePresent(frames, numFrames, pages[i])) {
       if (isPagePresent(frames, numFrames, -1)) {
          for (int j = 0; j < numFrames; j++) {
            if (frames[j] == -1) {
               frames[i] = pages[i];
               break:
            }
       } else {
          int index = findOptimalReplacementIndex(pages, numPages, frames, numFrames, i + 1);
          frames[index] = pages[i];
       pageFaults++;
     printFrames(frames, numFrames);
  printf("\nTotal Page Faults: %d\n\n", pageFaults);
// Function to implement LRU page replacement
void lruPageReplacement(int pages[], int numPages, int numFrames) {
  int frames[numFrames];
  int pageFaults = 0:
  int timestamps[numFrames];
  // Initialize frames and timestamps
  for (int i = 0; i < numFrames; i++) {
     frames[i] = -1;
     timestamps[i] = -1;
  }
  printf("LRU Replacement\n");
  printf("Reference String\tFrames\n");
  for (int i = 0; i < numPages; i++) {
     printf("%d\t\t", pages[i]);
     if (!isPagePresent(frames, numFrames, pages[i])) {
       int lruIndex = 0;
       for (int j = 1; j < numFrames; j++) {
          if (timestamps[j] < timestamps[lruIndex]) {</pre>
            lruIndex = j;
```

```
}
       frames[lruIndex] = pages[i];
       timestamps[lruIndex] = i;
       pageFaults++;
     } else {
       for (int j = 0; j < numFrames; j++) {
         if (frames[j] == pages[i]) {
            timestamps[j] = i;
            break;
       }
     printFrames(frames, numFrames);
  printf("\nTotal Page Faults: %d\n\n", pageFaults);
}
int main() {
  int numFrames, numPages;
  printf("Enter the number of frames: ");
  scanf("%d", &numFrames);
  printf("Enter the number of pages: ");
  scanf("%d", &numPages);
  int pages[numPages];
  printf("Enter the reference string: ");
  for (int i = 0; i < numPages; i++) {
     scanf("%d", &pages[i]);
  }
  fifoPageReplacement(pages, numPages, numFrames);
  optPageReplacement(pages, numPages, numFrames);
  lruPageReplacement(pages, numPages, numFrames);
  return 0;
}
```

```
Optimal Replacement
                                                                   FIFO Replacement
Reference String
Enter the number of frames: 3
Enter the number of pages: 20
                                                                                                                               Reference String
                                                                                                                                                                           Frames
                                                                                                               Frames
                                                                                                                              70120304230321201701
                                                                                                                                                            7 - -
7 0 -
7 0 1
2 0 1
2 0 3
2 0 3
2 0 3
2 4 3
2 0 3
2 0 3
2 0 3
2 0 3
2 0 3
2 0 1
2 0 1
2 0 1
2 0 1
Enter the reference string: 7
                                                                                                7 0 -
                                                                                                7 0 1
                                                                                                2 0 1
                                                                                                2 0 1
                                                                                                2 3 1
2 3 0
                                                                                                4 3 0
                                                                                                4 2 0
4 2 3
0 2 3
0 2 3
0 2 3
0 1 3
0 1 2
0 1 2
0 1 2
7 1 2
                                                                                                                                                            7 0 1
                                                                                                7 0 2
                                                                                                                                                            7 0 1
                                                                                                 7 0 1
                                                                                                                                                            7 0 1
                                                                   Total Page Faults: 15
                                                                                                                              Total Page Faults: 9
```