Claims 1-12 (Cancelled)

13. (Currently Amended) A method for the treatment of a <u>disorder or condition mediated by medical condition in which-prostaglandin,s in a are implicated as pathogens, in a mammalian subject including a human, comprising administering to a mammal in need of such treatment an effective amount of a compound of <u>the following formula: Claim 1 and a pharmaceutically acceptable carrier.</u></u>

(I)

or the pharmaceutically acceptable salts thereof, wherein Y¹, Y², Y³ and Y⁴ are independently selected from N, CH and C(L);

 $\frac{R^1 \text{ is H, C}_{1-8} \text{ alkyl, C}_{2-8} \text{ alkenyl, C}_{2-8} \text{ alkynyl, C}_{3-7} \text{ cycloalkyl, C}_{1-8} \text{ alkoxy, halosubstituted C}_{1-8} \text{ alkoxy, C}_{1-8} \text{ alkyl-S(O)m-, Q}^1\text{-, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, amino, mono- or di-(C}_{1-8} \text{ alkyl)amino, C}_{1-4} \text{ alkyl-C(=O)-N(R}^3\text{-)- or C}_{1-4} \text{ alkyl-S(O)m-N(R}^3\text{-)-, wherein said C}_{1-8} \text{ alkyl, C}_{2-8} \text{ alkenyl and C}_{2-8} \text{ alkynyl are optionally substituted with halo, C}_{1-3} \text{ alkyl, hydroxy, oxo, C}_{1-4} \text{ alkoxy-, C}_{1-4} \text{ alkyl-S(O)m-, C}_{3-7} \text{ cycloalkyl-, cyano, indanyl, 1,2,3,4-tetrahydronaphtyl, 1,2-dihydronaphtyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q}_{1-4} \text{ oxopyrrolidinyl, oxopiperidyl, Q}_{1-4} \text{ oxopyrrolidinyl, oxopiperidyl, Q}_{1-4} \text{ oxopyrrolidinyl, oxopiperidyl, C}_{1-4} \text{ alkyl-C(O)-N(R}^3\text{-)-, Q}_{1-C}_{1-4} \text{ alkyl-C(O)-N(R}^3\text{-)$

- Q¹ is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 4 heteroatoms selected from O, N and S, and is optionally substituted with halo, C¹-4 alkyl, halo-substituted C¹-4 alkyl, hydroxy, C¹-4 alkoxy, halo-substituted C¹-4 alkyl, hydroxy, C¹-4 alkoxy, halo-substituted C¹-4 alkyl, hydroxy, C¹-4 alkyl)amino, cyano, HO-C¹-4 alkyl, C¹-4 alkylthio, nitro, amino, mono- or di-(C¹-4 alkyl)amino, cyano, HO-C¹-4 alkyl, C¹-4 alkoxy-C¹-4 alkyl, C¹-4 alkylsulfonyl, aminosulfonyl, C¹-4 alkylC(=O)-, HO(O=)C-, C¹-4 alkyl-O(O=)C-, R³N(R⁴)C(=O)-, C¹-4 alkylsulfonylamino, C³-7 cycloalkyl, R³C(=O)N(R⁴)- or NH²(HN=)C-;
- A is a 5-6 membered monocyclic aromatic ring optionally containing up to 3

 heteroatoms selected from O, N and S, wherein said 5-6 membered monocyclic aromatic ring is optionally substituted with up to 3 substituents selected from halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, acetyl, R³N(R⁴)C(=O)-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)- and NH₂(HN=)C-;
- B is halo-substituted C₁₋₆ alkylene, C₃₋₇ cycloalkylene, C₂₋₆ alkenylene, C₂₋₆

 alkynylene, -O-C₁₋₅ alkylene, C₁₋₂ alkylene-O-C₁₋₂ alkylene or C₁₋₆ alkylene

 optionally substituted with an oxo group or C₁₋₃ alkyl;

W is NH, N-C₁₋₄ alkyl, O, S, N-OR⁵ or a covalent bond;

R² is H, C₁₋₄ alkyl, OH or C₁₋₄ alkoxy;

Z is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to

3 heteroatoms selected from O, N and S, wherein said 5-12 membered

monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄

alkyl, halo-substituted C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, hydroxy, C₁₋₄

alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-

10/771,696 -4- PC9985B

(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O)-, R³C(=O)N(R⁴)-, HO(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, NH₂(HN=)C-, Q²-S(O)m-, Q²-O-, Q²-N(R³)- or Q²-;

L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O)-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)-, NH₂(HN=)C-, R³N(R⁴)C(=O)-, R³N(R⁴)S(O)m-, Q²-, Q²-C(=O)-, Q²-O-, Q²-C₁₋₄ alkyl-O-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;

m is 0, 1 or 2;

 R^3 and R^4 are independently selected from H and C_{1-4} alkyl;

 R^{5} is H, C_{1-4} alkyl, C_{1-4} alkyl-(O=)C- or C_{1-4} alkyl-O-(O=)C-; and

Q² is a 5-12 membered monocyclic or bicyclic aromatic ring, or a 5-12 membered tricyclic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkyl-(O=)C-, R³(R⁴)C(=O)N-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, C₁₋₄ alkyl-C(=O)NH- or NH₂(HN=)C-;

10/771,696 -5- PC9985B

and a pharmaceutically acceptable carrier.

14. (Currently Amended) A <u>method according to Claim 13, whereinpharmaceutical</u> formulation comprising a compound of Claim 1, a pharmaceutically acceptable carrier and, optionally, one or more other pharmacologically active ingredients.

Y¹, Y², Y³, and Y⁴ are independently selected from N, CH and C(L);

R¹ is H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₇ cycloalkyl, C₁₋₈ alkoxy, halosubstituted C₁₋₈ alkoxy, C₁₋₈ alkyl-S(O)m-, Q¹-, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, amino, mono- or di-(C₁₋₈ alkyl)amino, C₁₋₄ alkyl-C(=O)-N(R³)- or C₁₋₄ alkyl-S(O)m-N(R³)-, wherein said C₁₋₈ alkyl, C₂₋₈ alkenyl and C₂₋₈ alkynyl are optionally substituted with halo, C₁₋₃ alkyl, hydroxy, oxo, C₁₋₄ alkoxy-, C₁₋₄ alkyl-S(O)m-, C₃₋₇ cycloalkyl-, cyano, indanyl, 1,2,3,4-tetrahydronaphtyl, 1,2-dihydronaphtyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q¹-, Q¹-C(=O)-, Q¹-O-, Q¹-S(O)m-, Q¹-C₁₋₄ alkyl-S(O)m-, Q¹-C₁₋₄ alkyl-S(O)m-, Q¹-C₁₋₄ alkyl-C(=O)-N(R³)-;

Q1 is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 4 heteroatoms selected from O, N and S, and is optionally substituted with halo, C1-4 alkyl, halo-substituted C1-4 alkyl, hydroxy, C1-4 alkoxy, halo-substituted C1-4 alkyl, hydroxy, C1-4 alkoxy, halo-substituted C1-4 alkyl, C1-4 alkyl, hydroxy, C1-4 alkyl) amino, cyano, HO-C1-4 alkyl, C1-4 alkoxy-C1-4 alkyl, C1-4 alkylsulfonyl, aminosulfonyl, C1-4 alkylC(=O)-, HO(O=)C-, C1-4 alkyl-O(O)C-, R3N(R4)C(=O)-, C1-4 alkylsulfonylamino, C3-7 cycloalkyl, R3C(=O)N(R4)- or NH2(HN=)C-;

- A is a 5-6 membered monocyclic aromatic ring optionally containing up to 2

 heteroatoms selected from O, N, and S, wherein said 5-6 membered monocyclic

 aromatic ring is optionally substituted with up to 2 substituents selected from

 halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy and halosubstituted C₁₋₄ alkoxy;
- B is C_{3-7} cycloalkylene or C_{1-6} alkylene optionally substituted with an oxo group or C_{1-3} alkyl;

W is NH, N-C₁₋₄ alkyl, O or N-OH;

R² is H or C₁₋₄ alkyl;

- Z is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halosubstituted C₁₋₄ alkyl, C₂₋₄ alkenyl, hydroxy, C₁₋₄ alkoxy, nitro, amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O)-, R³C(=O)N(R⁴)-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₁₋₄ alkyl-C(=O)NH-, Q²-S(O)m-, Q²-O-, Q²-N(R³)- or Q²-;
- L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, mono- or di
 (C₁₋₄ alkyl)amino, halo-substituted C₁₋₄ alkoxy, cyano, HO-C₁₋₄ alkyl, C₁₋₄

 alkoxy-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O)-,

 HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl,

 R³C(=O)N(R⁴)-, R³N(R⁴)C(=O)-, R³N(R⁴)S(O)m-, Q²-, Q²-C(=O)-, Q²-O-,

 Q²-C₁₋₄alkyl-O-, or two adjacent L groups are optionally joined together to

 form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;

m is 0 or 2;

R³ and R⁴ are independently selected from H and C₁₋₄ alkyl; and

10/771,696 -7- PC9985B

Q² is a 5-12 membered monocyclic or bicyclic aromatic ring, or a 8-12 membered tricyclic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkyl-(O=)C-, R³(R⁴)C(=O)N-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl or C₁₋₄ alkyl-C(=O)NH-.

15. (Currently Amended) A <u>method according to Claim 14, whereineompound of the following formula:</u>

or salts thereof

wherein Y¹, Y², Y³ and Y⁴ are independently selected from N, CH or C(L); $R^{\frac{1}{4}} \text{ is H, C}_{\frac{1}{4}} \text{ alkyl, C}_{\frac{1}{2}} \text{ alkenyl, C}_{\frac{1}{2}} \text{ alkynyl, C}_{\frac{3}{4}} \text{ cycloalkyl, C}_{\frac{1}{4}} \text{ alkoxy, halosubstituted C}_{\frac{1}{4}} \text{ alkoxy, C}_{\frac{1}{4}} \text{ alkyl-S(O)m-, Q}^{\frac{1}{4}} \text{, amino, mono- or di-(C}_{\frac{1}{4}} \text{ alkyl)amino, C}_{\frac{1}{4}} \text{ alkyl-C(=O)-N(R}^{\frac{3}{4}}) \text{ or C}_{\frac{1}{4}} \text{ alkyl-S(O)m-N(R}^{\frac{3}{4}}) \text{, wherein said C}_{\frac{1}{4}} \text{ alkyl, C}_{\frac{3}{4}} \text{ alkenyl and C}_{\frac{3}{4}} \text{ alkynyl are optionally substituted with halo, C}_{\frac{1}{4}} \text{ alkyl, C}_{\frac{1}{4}} \text{ alkoxy-, C}_{\frac{1}{4}} \text{ alkyl-S(O)m-, C}_{\frac{3}{4}} \text{ cycloalkyl-, cyano, indanyl, 1,2,3,4-tetrahydronaphtyl, 1,2-dihydronaphtyl, Q}^{\frac{1}{4}} \text{, Q}^{\frac{1}{4}} \text{-C(=O)-, Q}^{\frac{1}{4}} \text{-O}_{\frac{3}{4}} \text{ or C}_{\frac{3}{4}} \text{-O}_{\frac{3}{4}} \text{-O}_{\frac{3}{4$

- $\begin{array}{l} Q^{+} S(O)m^{-}, \ Q^{+} C_{1-4}alkyl O -, \ Q^{+} C_{1-4}alkyl S(O)m^{-}, \ Q^{+} C_{1-4}alkyl C(O) O -, \ Q^{+} C_{1-4}alkyl O -, \ Q^{+} C_{1-4}alkyl C(O) -, \ Q^{+$
- Q¹ is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 4 heteroatoms selected from O, N and S, and is optionally substituted with halo, C₁-4 alkyl, halo-substituted C₁-4 alkyl, hydroxy, C₁-4 alkoxy, halo-substituted C₁-4 alkoxy, C₁-4 alkylthio, nitro, amino, mono- or di-(C₁-4 alkyl)amino, cyano, HO-C₁-4 alkyl, C₁-4 alkoxy-C₁-4 alkyl, C₁-4 alkylsulfonyl, aminosulfonyl, C₁-4 alkylC(=O)-, HO(O=)C-, C₁-4 alkyl-O(O=)C-, R³N(R⁴)C(=O)-, C₁-4 alkylsulfonylamino, C₃-7 cycloalkyl, R³C(=O)N(R⁴)- or NH₂(HN=)C-;
- A is a benzene ring-optionally substituted with up to 3 substituents or pyridine ring optionally substituted with up to 3 substituents, wherein said substituents selected from halo, C_{1-4} alkyl, halo-substituted C_{1-4} alkyl, hydroxy, C_{1-4} alkoxy, halo-substituted C_{1-4} alkoxy, C_{1-4} alkylthio, nitro, amino, mono-or di- $(C_{1-4}$ alkyl)amino, eyano, HO- C_{1-4} alkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{1-4} alkylsulfonyl, aminosulfonyl, acetyl, $R^3N(R^4)C(=O)$, HO(O=)C, C_{1-4} alkylsulfonylamino, C_{3-7} eyeloalkyl, $R^3C(=O)N(R^4)$ and $NH_2(HN=)C$ -;
- B is C₂₋₆-alkylene, C₃₋₇-cycloalkylene, C₂₋₆-alkenylene, or C₂₋₆-alkynylene optionally substituted with C₁₋₃-alkyl;

W is NH or O:

P is H, a protecting group, or Q^3 -OC(=0):

Q³-is a 6-10 membered monocyclic or bicyclic aromatic ring optionally substituted with halo, C₁₋₄-alkyl, C₁₋₄-alkoxy, C₁₋₄-alkylthio, nitro, cyano, C₁₋₄-alkylsulfonyl, C₁₋₄-alkylC(=O), HO(O=)C, or C₁₋₄-alkyl-O(O=)C;

L is halo, C₁ 4-alkyl, halo-substituted C₁ 4-alkyl, hydroxy, C₁ 4-alkoxy, halo-substituted C₁ 4-alkoxy, C₁ 4-alkylthio, nitro, amino, mono- or di-(C₁ 4-alkyl) amino, cyano, HO-C₁ 4-alkyl, C₁ 4-alkoxy-C₁ 4-alkyl, C₁ 4-alkylsulfonyl, aminosulfonyl, C₁ 4-alkylC(=O), HO(O=)C-, C₁ 4-alkyl-O(O=)C-, C₁ 4-alkyl-O(O=)C-, C₁ 4-alkylsulfonylamino, C₃ 7-cycloalkyl, R³C(=O)N(R⁴) , NH₂(HN=)C-, R³N(R⁴)C(=O)- or R³N(R⁴)S(O)m-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;

m-is 0, 1 or 2; and

 R^3 -and R^4 -are independently selected from H and C_{1-4} alkyl.

Y1, Y2, Y3, and Y4 are independently selected from N, CH and C(L);

- R¹ is H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₇ cycloalkyl, Q¹-, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, amino, mono- or di-(C₁₋₈ alkyl)amino, wherein said C₁₋₈ alkyl is optionally substituted with halo, C₁₋₃ alkyl, hydroxy, oxo, C₁₋₄ alkoxy-, C₁₋₄ alkyl-S(O)m-, C₃₋₇ cycloalkyl-, cyano, indanyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q¹-, Q¹-C(O)-, Q¹-O-, Q¹-S-, Q¹-C₁₋₄ alkyl-O-, or C₁₋₄alkyl-C(O)-N(R³)-;
- Q1 is a 5-12 membered monocyclic aromatic ring optionally containing up to 4

 heteroatoms selected from N and S, and is optionally substituted with halo, C₁₋₄

 alkyl, C₁₋₄ alkylsulfonyl and C₁₋₄ alkylC(=O)-;
- A is 5-6 membered monocyclic aromatic ring optionally substituted with halo, C_{1-4} alkyl or C_{1-4} alkoxy;
- B is C_{3-7} cycloalkylene or C_{1-6} alkylene optionally substituted with an oxo group or C_{1-3} alkyl;

W is NH, N-C₁₋₄ alkyl, O or N-OH;

R² is H or C₁₋₄ alkyl;

Z is 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3

heteroatoms selected from, N and S, wherein said 5-12 membered monocyclic or

bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halosubstituted C₁₋₄ alkyl, C₂₋₄ alkenyl, C₁₋₄ alkoxy, nitro, amino, cyano,

R³C(=O)N(R⁴)-, C₁₋₄ alkyl-O(O=)C-, Q²-S(O)m-, Q²-O-, Q²-N(R³)- or Q²-;

L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O)-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)-, R³N(R⁴)C(=O)-, R³N(R⁴)S(O)m-, Q²-, Q²-C(=O)-, Q²-O-, Q²-C₁₋₄alkyl-O-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;

m is 0 or 2;

 R^3 and R^4 are independently selected from H and C_{1-4} alkyl; and

Q² is a 5 or 6 membered monocyclic aromatic ring, or a 8-12 membered tricyclic ring containing up to 3 heteroatoms selected from N and S, wherein said 5 or 6 membered monocyclic aromatic ring is optionally substituted with halo.

16. (Currently Amended) A <u>method according to Claim 15, wherein compound of the following-formula:</u>

or salts thereof

wherein Y¹, Y², Y³ and Y⁴ are independently selected from N, CH or C(L); R¹ is H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₇ cycloalkyl, C₁₋₈ alkoxy, halo-substituted C₁₋₈ alkoxy, C₁₋₈ alkyl-S(O)m , Q¹ , amino, mono- or di (C₁₋₈ alkyl)amino, C₁₋₄ alkyl-C(=O) N(R³) - or C₁₋₄ alkyl-S(O)m N(R³) , wherein said C₁₋₈ alkyl, C₂₋₈ alkenyl and C₂₋₈ alkynyl are optionally substituted with halo, C₁₋₃ alkyl, C₁₋₄ alkoxy , C₁₋₄ alkyl-S(O)m , C₃₋₇ cycloalkyl , cyano, indanyl, 1,2,3,4 tetrahydronaphtyl, 1,2 dihydronaphtyl, Q¹-, Q¹-C(=O) , Q¹-O , Q¹-S(O)m , Q¹-C₁₋₄ alkyl-O , Q¹-C₁₋₄ alkyl-S(O)m , Q¹-C₁₋₄ alkyl-C(O) N(R³) ;

Q¹ is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 4 heteroatoms selected from O, N and S, and is optionally substituted with halo, C₁-4-alkyl, halo-substituted C₁-4 alkyl, hydroxy, C₁-4 alkoxy, halo-substituted C₁-4-alkoxy, C₁-4-alkoxy, halo-substituted C₁-4-alkoxy, C₁-4-alkyl)amino, cyano, HO-C₁-4-alkyl, C₁-4-alkoxy-C₁-4alkyl, C₁-4-alkylsulfonyl, aminosulfonyl, C₁-4alkylC(=O)-, HO(O=)C-, C₁-4alkyl-O(O=)C-, R³N(R⁴)C(=O)-, C₁-4-alkylsulfonylamino, C₃-7-cycloalkyl, R³C(=O)N(R⁴)-or NH₂(HN=)C-;

A is a benzene ring optionally substituted with up to 3 substituents or pyridine ring optionally substituted with up to 3 substituents, wherein said substituents selected from halo, C₁₋₄-alkyl, halo-substituted C₁₋₄-alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄-alkoxy, C₁₋₄-alkylthio, nitro, amino, mono-or di-(C₁₋₄-alkyl)amino, cyano, HO C₁₋₄-alkyl, C₁₋₄-alkoxy-C₁₋₄alkyl, C₁₋₄ alkoxy-C₁₋₄alkyl, C₁₋₄-alkyl, C₁₋₄-alky

O(O=)C-, C_{1-4} -alkylsulfonylamino, C_{3-7} -cycloalkyl, $R^3C(=O)N(R^4)$ - and $NH_2(HN=)C$;

B is C₂₋₆-alkylene, C₃₋₇-cycloalkylene, C₂₋₆ alkenylene, or C₂₋₆ alkynylene optionally substituted with C₁₋₃ alkyl;

Wis NH or O:

P is H, a protecting group, or Z S(O)₂ N(R²) C(=O)-;

- Z is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo substituted C₁₋₄ alkyl, C₁₋₄ alkenyl, C₁₋₄ alkynyl, hydroxy, C₁₋₄ alkoxy, halo substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di- (C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₁₋₄ alkyl, NH₂(HN=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, NH₂(HN=)C-, O²-S(O)m., O²-O-O²-N(R³) or O²-:
- L is halo. C₁₋₄ alkyl, halo substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy C₁₋₄ alkyl, C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O) , HO(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴) , NH₂(HN=)C-, R³N(R⁴)C(=O)- or R³N(R⁴)S(O)m-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;

m is 0, 1 or 2; and

- R², R³, and R⁴ are independently selected from H and C₁₋₄ alkyl.
- Y1, Y2, Y3 and Y4 are independently selected from N, CH and C(L);
- R¹ is H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl or C₃₋₇ cycloalkyl, wherein said C₁₋₈ alkyl is optionally substituted with halo, C₁₋₃ alkyl, hydroxy, oxo, C₁₋₄ alkoxy-, C₁₋₄ alkyl-S(O)m-, C₃₋₇ cycloalkyl-, cyano, indanyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q¹-, Q¹-C(=O)-, Q¹-O-, Q¹-S-, Q¹-C₁₋₄ alkyl-O-, or C₁₋₄ alkyl-C(O)-N(R³)-;
- Q¹ is a 5 or 6 membered monocyclic aromatic ring optionally containing up to 4 heteroatoms selected from N and S;
- A is 5-6 membered monocyclic aromatic ring system optionally substituted with halo or <u>C₁₋₄ alkyl;</u>
- B is C_{3-7} cycloalkylene or C_{1-6} alkylene optionally substituted with an oxo group or C_{1-3} alkyl;
- W is NH, N-C₁₋₄ alkyl, O or N-OH;
- R^2 is H or C_{1-4} alkyl;
- Z is 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3

 heteroatoms selected from N and S, wherein said 5-12 membered monocyclic or

 bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halosubstituted C₁₋₄ alkyl, C₂₋₄ alkenyl, C₁₋₄ alkoxy, nitro, amino, cyano,

 R³C(=O)N(R⁴)-, C₁₋₄ alkyl-O(O=)C-, Q²-S(O)m-, Q²-O-, Q²-N(R³)- or Q²-;
- $\begin{array}{c} \underline{L \; is \; halo, C_{1_4} \; alkyl, \; halo\text{-substituted} \; C_{1_4} \; alkyl, \; hydroxy, \; C_{1_4} \; alkoxy, \; halo-substituted \; C_{1_4} \; alkoxy, \; cyano, \; HO\text{-}C_{1_4} \; alkyl, \; C_{1_4} \; alkylsulfonyl, \\ \underline{aminosulfonyl, C_{1_4} \; alkylC(=O), \; HO(O=)C\text{-}, \; C_{1_4} \; alkyl\text{-}O(O=)C\text{-}, \; C_{1_4} \\ \underline{alkylsulfonylamino, C_{3_7} \; cycloalkyl, \; R^3C(=O)NR^4\text{-}, \; R^3N(R^4)C(=O)\text{-}, \\ \underline{R^3N(R^4)S(O)m\text{-}, \; Q^2\text{-}, \; Q^2\text{-}C(=O)\text{-}, \; Q^2\text{-}O\text{-}, \; Q^2\text{-}C_{1_4} \; alkyl\text{-}O\text{-}, \; \text{or two adjacent} \; L} \end{array}$

groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;

m is 0 or 2;

 R^3 and R^4 are independently selected from H and C_{1-4} alkyl; and

- Q² is 5 or 6 membered monocyclic aromatic ring or a 8-12 membered tricyclic ring optionally containing 1 sulfur atom wherein said 5 or 6 membered monocyclic aromatic ring is optionally substituted with halo.
- 17. (New) A method according to Claim 16, wherein
 - Y¹, Y², Y³ and Y⁴ are independently selected from N, CH and C(L);
 - R¹ is C₁₋₅ alkyl or C₃₋₇ cycloalkyl, wherein said C₁₋₅ alkyl is optionally substituted with C₁₋₃ alkyl, hydroxy, oxo, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopyrrolidinyl, oxopyrrolidinyl, oxopyrrolidinyl, oxopyrrolidinyl,
 - Q1 is 5-12 membered monocyclic aromatic ring system optionally containing up to 2

 heteroatoms selected from N and S,

A is 5-6 membered monocyclic aromatic ring system;

B is C₁₋₃ alkylene optionally substituted with C₁₋₃ alkyl;

W is NH, N-C₁₋₂ alkyl or O;

 R^2 is H;

Z is 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3

heteroatoms selected from N and S, wherein said 5-12 membered monocyclic

aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, nitro,

R³C(=O)N(R⁴)- or O²-;

<u>L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, cyano, HO-C₁₋₄ alkyl, acetyl, $R^3N(R^4)C(=0)$ -,</u>

R³N(R⁴)S(O)m-, Q²-, Q²-C(=O)-, or two adjacent L groups are joined together to form a methylenedioxy group;

R³ and R⁴ are independently selected from H and C₁₋₄ alkyl; and O² is 5 or 6 membered monocyclic aromatic ring system.

18. (New) A compound according to Claim 17, wherein

Y¹, Y², Y³ and Y⁴ are independently selected from N, CH and C-L;

R¹ is C₁₋₅ alkyl optionally substituted with C₁₋₃ alkyl, hydroxy, oxo, 5 or 6 membered monocyclic aromatic ring, wherein said 5 or 6 membered monocyclic aromatic ring is containing 1 or 2 heteroatoms selected from N and S, or C₁₋₄alkyl-C(O)-N(R³)-;

A is phenyl;

B is C₁₋₂ alkylene optionally substituted with methyl;

W is NH, N-CH₃ or O;

 R^2 is H;

- Z is 5-10 membered monocyclic or bicyclic aromatic ring optionally containing up to 3

 heteroatoms selected from N and S, wherein said 5-10 membered monocyclic

 aromatic ring is optionally substituted with chloro, bromo, methyl, nitro,

 CH3C(=O)NH-, tBuC(=O)NH- or phenyl; and
- L is chloro, methyl, trifuluoromethyl, hydroxy, methoxy, cyano, acetyl, -C(=O)NH₂, trifuluoromethyloxy, methanesulfonyl, or 1-hydroxy-1-methyl-ethyl, or two adjacent L groups are joined together to form a methylenedioxy group.
- 19. (New) A method according to Claim 18, wherein

Y¹, Y², Y³ and Y⁴ are independently selected from N, CH and C-L;

R¹ is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, neopentyl, thiazolylethyl methylamino, dimethylamino, pyrrolidinyl, pyridyl, or 1-acetylamino-1-methylethyl;

A is phenyl;

B is ethylene or propylene;

W is NH, N-CH₃ or O;

 R^2 is H;

- Z is phenyl, pyrazolyl, thiazolyl, thiadiazolyl, thienyl, naphthyl or benzothienyl, said phenyl, pyrazolyl, thiazolyl, thiadiazolyl and thienyl being optionally substituted with one to three substituents independently selected from chloro, bromo, methyl, acetylamino, pivaloylamino, nitro and phenyl; and
- L is chloro, methyl, trifuluoromethyl, hydroxy, methoxy, cyano, acetyl, -C(=O)NH₂, trifuluoromethyloxy, methanesulfonyl, or 1-hydroxy-1-methyl-ethyl, or two adjacent L groups are joined together to form a methylenedioxy group.
- 20. (New) A method according to Claim 19, wherein

Y¹, Y², Y³ and Y⁴ are selected from the group consisting of

a) Y¹ and Y³ are C(L), Y² is CH and Y⁴ is N;

b) Y¹ is CH, Y² and Y³ are C(L) and Y⁴ is N;

c) Y^1 , Y^2 and Y^3 are C(L) and Y^4 is N;

d) Y¹ and Y³ are C(L), Y² is N and Y⁴ is CH;

e) Y¹ is C(L) and Y², Y³ and Y⁴ are CH;

f) Y¹, Y³and Y⁴ are CH, and Y² is C(L);

g) Y¹, Y² and Y³ are CH, and Y⁴ is C(L);

h) Y¹ and Y² are C(L), and Y³ and Y⁴ are CH;

i) Y^1 and Y^3 are C(L), and Y^2 and Y^4 are CH;

i) Y¹ and Y⁴ are CH, and Y² and Y³ are C(L);

k) Y¹ and Y² are CH, Y³ is C(L) and Y⁴ is N;

1) Y¹ and Y³ are CH, Y² is C(L) and Y⁴ is N;

m) Y^1 , Y^2 , Y^3 and Y^4 are CH;

n) Y^1 and Y^2 are C(L), Y^3 is CH and Y^4 is N;

o) Y¹, Y² and Y⁴ are CH, and Y³ is C(L);

p) Y¹ and Y² are C(L), Y³ is N and Y⁴ is CH;

q) Y¹ and Y³ are C(L), and Y² and Y⁴ are N;

r) Y¹ is C(L), Y² and Y³ are CH, and Y⁴ is N; and

s) Y² is C(L), Y¹ and Y³ are CH, and Y⁴ is N;

R¹ is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, neopentyl,

thiazolylethyl methylamino, dimethylamino, pyrrolidinyl, pyridyl, or 1acetylamino-1-methylethyl;

A is phenyl;

B is ethylene or propylene;

W is NH, N-CH₃ or O;

 \mathbb{R}^2 is H;

- Z is phenyl, pyrazolyl, thiazolyl, thiadiazolyl, thienyl, naphthyl or benzothienyl, said phenyl, pyrazolyl, thiazolyl, thiadiazolyl and thienyl being optionally substituted with one to three substituents independently selected from chloro, bromo, methyl, acetylamino, pivaloylamino, nitro and phenyl; and
- L is chloro, methyl, trifuluoromethyl, hydroxy, methoxy, cyano, acetyl, –

 C(=O)NH2, trifuluoromethyloxy, methanesulfonyl, or 1-hydroxy-1
 methyl-ethyl, or two adjacent L groups are joined together to form a methylenedioxy group.
- 21. (New) A method according to Claim 20, wherein

Y¹, Y², Y³ and Y⁴ are selected from the group consisting of

a) Y¹ and Y³ are C(L), Y² is CH and Y⁴ is N;

b) Y¹ is CH, Y² and Y³ are C(L) and Y⁴ is N;

c) Y^1 , Y^2 and Y^3 are C(L) and Y^4 is N;

d) Y¹ and Y³ are C(L), Y² is N and Y⁴ is CH;

e) Y¹ is C(L) and Y², Y³and Y⁴ are CH;

f) Y¹, Y³and Y⁴ are CH, and Y² is C(L);

g) Y¹, Y² and Y³ are CH, and Y⁴ is C(L);

h) Y¹ and Y² are C(L), and Y³ and Y⁴ are CH;

i) Y¹ and Y³ are C(L), and Y² and Y⁴ are CH; and

j) Y¹ and Y⁴ are CH, and Y² and Y³ are C(L);

R¹ is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, neopentyl,
thiazolylethyl methylamino, dimethylamino, pyrrolidinyl, pyridyl, or 1acetylamino-1-methylethyl;

A is phenyl;

B is ethylene or propylene;

W is NH, N-CH₃ or O;

 R^2 is H;

- Z is phenyl, pyrazolyl, thiazolyl, thiadiazolyl, thienyl, naphthyl or benzothienyl, said phenyl, pyrazolyl, thiazolyl, thiadiazolyl and thienyl being optionally substituted with one to three substituents independently selected from chloro, bromo, methyl, acetylamino, pivaloylamino, nitro and phenyl; and
- L is chloro, methyl, trifuluoromethyl, hydroxy, methoxy, cyano, acetyl, –

 C(=O)NH2, trifuluoromethyloxy, methanesulfonyl, or 1-hydroxy-1
 methyl-ethyl, or two adjacent L groups are joined together to form a methylenedioxy group.

- 22. (New) A method according to Claim 13, wherein the compound is selected from:
 - 3-(4-{2-[({[(5-chloro-1,3-dimethyl-1h-pyrazol-4-yl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
 - 3-(4-{2-[({[(2,4-dimethyl-1,3-thiazol-5-yl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
 - N-[5-({[({2-[4-(2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine

 -3-yl)phenyl]ethyl}amino)carbonyl]amino}sulfonyl)-1,3,4-thiadiazol

 -2-yl]acetamide;
 - 6-ethyl-5- (4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)5*H*-[1,3]dioxolo[4,5-*f*]benzimidazole;
 - 6-chloro-5-cyano-2-ethyl-1-(4-{2-[({[(4-methylphenylsulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole;
 - 2-ethyl-5.7-dimethyl-3-(4-{2-[methyl({[(4-methylphenyl)sulfonyl]amino}carbonyl) amino]ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;
 - 2-ethyl-5,7-dimethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] propyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;
 - 2-[4-(2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridin-3-yl)phenyl]-1-methylethyl (4-methylphenyl)sulfonylcarbamate;
 - 5,7-dimethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-2-propyl-3*H*-imidazo[4,5-*b*]pyridine;
 - 2-isopropyl-5,7-dimethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}} carbonyl)amino]ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;
 - 2-butyl-5,7-dimethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;
 - 2-isobutyl-5,7-dimethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;
 - 5,7-dimethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-2-neopentyl-3*H*-imidazo[4,5-*b*]pyridine;

- 5,7-dimethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-2-[2-(1,3-thiazol-2-yl)ethyl]-3*H*-imidazo[4,5-*b*]pyridine;
- 3-{4-[2-({[(4-biphenylsulfonyl)amino]carbonyl}amino)ethyl]phenyl}-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- 2-ethyl-5,7-dimethyl-3-{4-[2-({[(1-naphthylsulfonyl)amino]carbonyl}amino)} ethyl]phenyl}-3*H*-imidazo[4,5-*b*]pyridine;
- 2-ethyl-5,7-dimethyl-3-{4-[2-({[(2-naphthylsulfonyl)amino]carbonyl}amino)} ethyl]phenyl}-3*H*-imidazo[4,5-*b*]pyridine;
- 2-ethyl-5,7-dimethyl-3-(4-{2-[({[(2-thienyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;
- 3-(4-{2-[({[(5-chloro-2-thienyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- 3-(4-{2-[({[(4,5-dichloro-2-thienyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- 3-{4-[2-({[(1-benzothien-2-ylsulfonyl)amino]carbonyl}amino)ethyl]phenyl}-2-ethyl-5,7-dimethyl-3H-imidazo[4,5-b]pyridine;
- 3-(4-{2-[({[(2-chlorophenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- 2-ethyl-5,6-dimethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-3H-imidazo[4,5-b]pyridine;
- 5,6-dichloro-2-ethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-3h-imidazo[4,5-b]pyridine;
- 5-chloro-2-ethyl-7-methyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl) amino]ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;
- 6-cyano-2-ethyl-5,7-dimethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl) amino]ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;
- 2-ethyl-4,6-dimethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl) amino]ethyl}phenyl)-1*H*-imidazo[4,5-*c*]pyridine;
- 4-methyl-2-ethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)

- amino]ethyl}phenyl)benzimidazole;
- 7-chloro-2-ethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)benzimidazole;
- 5-methoxy-2-ethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)benzimidazole;
- 5-acetyl-2-ethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)benzimidazole;
- 5-cyano-2-ethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole;
- 2-ethyl-5-hydroxy-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole;
- 2-ethyl-4,5-dimethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole;
- 4.6-dimethyl-2-ethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)benzimidazole;
- 5,6-dimethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole;
- 5,6-dichloro-2-ethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole;
- 2-[4-(5,6-dichloro-2-ethyl-1*H*-benzimidazol-1-yl)phenyl]ethyl-(4-methylphenyl)sulfonylcarbamate;
- 6-chloro-5-trifluoromethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl) amino]ethyl}phenyl)-1*H*-benzimidazole;
- 4-(6-chloro-2-ethyl-5-trifluoromethyl-1*H*-benzimidazol-1-yl)phenethyl-(4-methylphenyl)sulfonylcarbamate;
- 5-chloro-6-methyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole;
- 6-chloro-2-ethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole-5-carboxamide;

10/771,696 -22- PC9985B

- 2-ethyl-3-{4-[2-({[({3-[hydroxy(oxido)amino]phenyl}sulfonyl)amino]carbonyl} amino)ethyl]phenyl}-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- 3-(4-{2-[({[(4-chlorophenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- n-[4-({[({2-[4-(2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridin-3-yl)phenyl] ethyl}amino)carbonyl]amino}sulfonyl)phenyl]-2,2-dimethylpropanamide;
- 3-(4-{2-[({[(2-chlorophenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- 3-(4-{2-[({[(3-chlorophenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- 3-(4-{2-[({[(5-chloro-2-thienyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- 3-(4-{2-[({[(5-bromo-2-thienyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- 3-(4-{2-[({[(2-bromophenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- 3-{4-[2-({[({4-chloro-3-nitrophenyl}sulfonyl)amino]carbonyl}amino)ethyl]phenyl}-2ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- 2-[4-(2-ethyl-4,6-dimethyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[5,7-dimethyl-2-(methylamino)-3*H*-imidazo[4,5-*b*]pyridin-3-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- N-{[(2-{4-[5,7-dimethyl-2-(methylamino)-3*H*-imidazo[4,5-*b*]pyridin-3-yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
- N-{[(2-{4-[2-ethyl-5-(1-hydroxy-1-methylethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
- 2-ethyl-4,6-dimethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole-5-carboxamide;

- 2-{4-[6-chloro-2-ethyl-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (2-chlorophenyl)sulfonylcarbamate;
- 2-{5-[6-chloro-2-ethyl-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]-2-pyridinyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[6-chloro-2-ethyl-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (5-methyl-2-pyridinyl)sulfonylcarbamate;
- 2-{4-[6-chloro-2-(1*H*-pyrazol-3-yl)-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[6-chloro-2-(4-pyridinyl)-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[5-(aminocarbonyl)-6-chloro-2-ethyl-1*H*-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- N-{[(2-{4-[6-chloro-2-ethyl-5-(methylsulfonyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
- 2-{4-[6-chloro-2-ethyl-5-(methylsulfonyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- N-[({2-[4-(2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridin-3-yl)phenyl]ethyl}amino)carbonyl]-2-thiophenesulfonamide;
- 2-[4-(4,6-dimethyl-2-phenyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-[4-(2-butyl-4,6-dimethyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[6-chloro-2-ethyl-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (5-chloro-1,3-dimethyl-1*H*-pyrazol-4-yl)sulfonylcarbamate;
- 2-{4-[4,6-dimethyl-2-(3-phenylpropyl)-1*H*-imidazo[4,5-*c*]pyridin-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[6-chloro-2-(2-pyridinyl)-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;

- (1S)-2-{4-[6-chloro-2-ethyl-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}-1methylethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{6-[6-chloro-2-ethyl-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]-3-pyridinyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- N-{[(2-{4-[6-chloro-2-(1-hydroxy-1-methylethyl)-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
- N-{[(2-{4-[5,7-dimethyl-2-(1*H*-pyrazol-3-yl)-3*H*-imidazo[4,5-*b*]pyridin-3-yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
- 2-{4-[2-(1,1-dimethylethyl)-4,6-dimethyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[2-[1-(acetylamino)-1-methylethyl]-6-chloro-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- 6-chloro-2-ethyl-1-(4-{2-[methyl({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole-5-carboxamide; and salts thereof.
- 23.(New) A method according to Claim 1, wherein the compound is selected from 6-ethyl-5- (4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)- 5H-[1,3]dioxolo[4,5-f]benzimidazole;
 - 6-chloro-5-cyano-2-ethyl-1-(4-{2-[({[(4-methylphenylsulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole;
 - 2-[4-(2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridin-3-yl)phenyl]-1-methylethyl (4-methylphenyl)sulfonylcarbamate;
 - 5,7-dimethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-2-[2-(1,3-thiazol-2-yl)ethyl]-3*H*-imidazo[4,5-*b*]pyridine;
 - 2-ethyl-5,7-dimethyl-3-(4-{2-[({[(2-thienyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;
 - 3-(4-{2-[({[(2-chlorophenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;

10/771,696 -25- PC9985B

- 2-ethyl-5,6-dimethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-3H-imidazo[4,5-b]pyridine;
- 5,6-dichloro-2-ethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-3h-imidazo[4,5-b]pyridine;
- 2-ethyl-4,6-dimethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-imidazo[4,5-*c*]pyridine;
- 5-methoxy-2-ethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)benzimidazole;
- 5-acetyl-2-ethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)benzimidazole;
- 5-cyano-2-ethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole;
- 2-ethyl-5-hydroxy-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole;
- 2-ethyl-4,5-dimethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole;
- 4-(6-chloro-2-ethyl-5-trifluoromethyl-1*H*-benzimidazol-1-yl)phenethyl-(4-methylphenyl)sulfonylcarbamate;
- 6-chloro-2-ethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole-5-carboxamide;
- 2-[4-(2-ethyl-4,6-dimethyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[5,7-dimethyl-2-(methylamino)-3*H*-imidazo[4,5-*b*]pyridin-3-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- *N*-{[(2-{4-[5,7-dimethyl-2-(methylamino)-3*H*-imidazo[4,5-*b*]pyridin-3-yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
- N-{[(2-{4-[2-ethyl-5-(1-hydroxy-1-methylethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
- 2-ethyl-4,6-dimethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]

10/771,696 -26- PC9985B

- ethyl}phenyl)-1H-benzimidazole-5-carboxamide;
- 2-{4-[6-chloro-2-ethyl-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (2-chlorophenyl)sulfonylcarbamate;
- 2-{5-[6-chloro-2-ethyl-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]-2-pyridinyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[6-chloro-2-ethyl-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (5-methyl-2-pyridinyl)sulfonylcarbamate;
- 2-{4-[6-chloro-2-(1*H*-pyrazol-3-yl)-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[6-chloro-2-(4-pyridinyl)-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[5-(aminocarbonyl)-6-chloro-2-ethyl-1*H*-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- N-{[(2-{4-[6-chloro-2-ethyl-5-(methylsulfonyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
- 2-{4-[6-chloro-2-ethyl-5-(methylsulfonyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- N-[({2-[4-(2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridin-3-yl)phenyl]ethyl} amino)carbonyl]-2-thiophenesulfonamide;
- 2-[4-(4,6-dimethyl-2-phenyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-[4-(2-butyl-4,6-dimethyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[6-chloro-2-ethyl-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (5-chloro-1,3-dimethyl-1*H*-pyrazol-4-yl)sulfonylcarbamate;
- 2-{4-[4,6-dimethyl-2-(3-phenylpropyl)-1*H*-imidazo[4,5-*c*]pyridin-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[6-chloro-2-(2-pyridinyl)-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;

10/771,696 -27- PC9985B

- (1S)-2-{4-[6-chloro-2-ethyl-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}-1methylethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{6-[6-chloro-2-ethyl-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]-3-pyridinyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- N-{[(2-{4-[6-chloro-2-(1-hydroxy-1-methylethyl)-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
- N-{[(2-{4-[5,7-dimethyl-2-(1*H*-pyrazol-3-yl)-3*H*-imidazo[4,5-*b*]pyridin-3-yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
- 2-{4-[2-(1,1-dimethylethyl)-4,6-dimethyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[2-[1-(acetylamino)-1-methylethyl]-6-chloro-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate; and
- 6-chloro-2-ethyl-1-(4-{2-[methyl({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole-5-carboxamide; and salts thereof.
- 24. (New) A method according to Claim 13, wherein the compound is 2-ethyl-4,6-dimethyl-1-(4-{2-[({[(4-methyphenyl)sulfonyl]amino}carboxyl)amino]ethyl}phenyl)-1H-imidazo[4,5-C}pyridine.
- 25. (New) A method for the treatment of a medical condition in which prostaglandins are implicated as pathogens, in a mammalian subject including a human, comprising administering to a mammal in need of such treatment an effective amount of a compound of the following formula:

or the pharmaceutically acceptable salts thereof, wherein

Y¹, Y², Y³ and Y⁴ are independently selected from N, CH and C(L);

R¹ is H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₇ cycloalkyl, C₁₋₈ alkoxy, halosubstituted C₁₋₈ alkoxy, C₁₋₈ alkyl-S(O)m-, Q¹-, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, amino, mono- or di-(C₁₋₈ alkyl)amino, C₁₋₄ alkyl-C(=O)-N(R³)- or C₁₋₄ alkyl-S(O)m-N(R³)-, wherein said C₁₋₈ alkyl, C₂₋₈ alkenyl and C₂₋₈ alkynyl are optionally substituted with halo, C₁₋₃ alkyl, hydroxy, oxo, C₁₋₄ alkoxy-, C₁₋₄ alkyl-S(O)m-, C₃₋₇ cycloalkyl-, cyano, indanyl, 1,2,3,4-tetrahydronaphtyl, 1,2-dihydronaphtyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q¹-, Q¹-C(=O)-, Q¹-O-, Q¹-S(O)m-, Q¹-C₁₋₄ alkyl-O-, Q¹-C₁₋₄ alkyl-S(O)m-, Q¹-C₁₋₄ alkyl-C(O)-N(R³)-, Q¹-C₁₋₄ alkyl-N(R³)- or C₁₋₄ alkyl-C(O)-N(R³)-;

Q¹ is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to

4 heteroatoms selected from O, N and S, and is optionally substituted with halo,

C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted

C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄alkyl)amino, cyano,

HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄

 $\underline{4alkylC(=O)-, HO(O=)C-, C_{\underline{1}-\underline{4}}\underline{alkyl-O(O=)C-, R^3N(R^4)C(=O)-, C_{\underline{1}-\underline{4}}}\\ \underline{alkylsulfonylamino, C_{\underline{3}-\underline{7}}\underline{cycloalkyl, R^3C(=O)N(R^4)-}\underline{or NH_2(HN=)C-;}}$

A is a 5-6 membered monocyclic aromatic ring optionally containing up to 3

heteroatoms selected from O, N and S, wherein said 5-6 membered monocyclic
aromatic ring is optionally substituted with up to 3 substituents selected from
halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halosubstituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄
alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl,
aminosulfonyl, acetyl, R³N(R⁴)C(=O)-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄
alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)- and NH₂(HN=)C-;

B is halo-substituted C₁₋₆ alkylene, C₃₋₇ cycloalkylene, C₂₋₆ alkenylene, C₂₋₆ alkynylene, -O-C₁₋₅ alkylene, C₁₋₂ alkylene-O-C₁₋₂ alkylene or C₁₋₆ alkylene optionally substituted with an oxo group or C₁₋₃ alkyl;

W is NH, N-C₁₋₄ alkyl, O, S, N-OR⁵ or a covalent bond;

R² is H, C₁₋₄ alkyl, OH or C₁₋₄ alkoxy;

Z is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₁₋₄ alkyl, C₁₋₄ alkyl, C₁₋₄ alkyl-C(=O)-, R³C(=O)N(R⁴)-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, NH₂(HN=)C-, Q²-S(O)m-, Q²-O-, Q²-N(R³)- or Q²-;

L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O)-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)-, NH₂(HN=)C-, R³N(R⁴)C(=O)-, R³N(R⁴)S(O)m-, Q²-, Q²-C(=O)-, Q²-O-, Q²-C₁₋₄ alkyl-O-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;

m is 0, 1 or 2;

R³ and R⁴ are independently selected from H and C₁₋₄ alkyl;

 R^5 is H, C_{1-4} alkyl, C_{1-4} alkyl-(O=)C- or C_{1-4} alkyl-O-(O=)C-; and

Q² is a 5-12 membered monocyclic or bicyclic aromatic ring, or a 5-12 membered tricyclic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkyl-(O=)C-, R³(R⁴)C(=O)N-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, C₁₋₄ alkyl-C(=O)NH- or NH₂(HN=)C-;

and a pharmaceutically acceptable carrier.

26. (New) A method according to Claim 13, wherein the disorder or condition is selected from:

10/771,696 -31- PC9985B

pain, fever or inflammation associated with rheumatic fever, influenza or other viral infections, common cold, low back and neck pain, skeletal pain, postpartum pain, dysmenorrhea, headache, migraine, toothache, sprains and strains, myositis, neuralgia, fibromyalgia, synovitis, arthritis, including rheumatoid arthritis, degenerative joint diseases, osteoarthritis, gout and ankylosing sspondylitis, bursitits, burns including radiation and corrosive chemical injuries, sunburns, pain following surgical and dental procedures or bone fracture, immune and autoimmune diseases such as systemic lupus erythematosus; AIDS(acquired immuno deficiency syndrome), gastrointestinal cancers such as colon cancer; cellular neoplastic transformations or metastic tumor growth; Diabetic retinopathy, tumor angiogenesis; prostanoid-induced smooth muscle contraction associated with dysmenorrhea, premature labor, allergic rhinitis, atopic dermatitis, asthma or eosinophil related disorders, Hyperimmunoglobulinaemia, Castleman's disease, myeloma; Alzheimer's disease, sleep disorders, endocrine disturbance; glaucoma; bone loss; osteoporosis; promotion of bone formation; Paget's disease: cytoprotection in peptic ulcers, gastritis, regional enteritis, ulcerative colitis, diverticulitis or other gastrointestinal lesions; GI bleeding and patients undergoing chemotherapy; coagulation disorders selected from hypoprothrombinemia, haemophilia and other bleeding problems; kidney disease; thrombosis; occlusive vascular disease; presurgery; and anti-coagulation.

27. (New) A method according to Claim 26, wherein the disorder or condition is selected from pain, inflammation, an inflammation associated disorder, osteoarthritis, and rheumatoid arthritis.