PHYS4301 - REVISION GROUP-THEORY QUESTIONS

- (1) (a) The Lie group $SL(2,\mathbb{R})$ consists of 2×2 real matrices with det(A) = 1. What are the possible cases for the form of eigenvalues of a matrix in this group?
 - (b) What geometric transformations do these cases represent?
 - (c) The real-coefficient Lie algebra $\mathfrak{sl}(2,\mathbb{R})$ consists of 2×2 real matrices with $\operatorname{tr}(X) = 0$. What are the possible cases for eigenvalues of a matrix in the Lie algebra?
 - (d) Find a matrix $A \in SL(2,\mathbb{R})$ that is not in the image of the exponential map: $A \neq e^X$ for any $X \in \mathfrak{sl}(2,\mathbb{R})$.
- (2) Matrix group question

Consider G to be the set of 2×2 real matrices that preserve the following inner product:

$$\langle x_1, x_2 \rangle = x_1^T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x_2.$$

That is, $M \in G$, if and only if $\langle Mx_1, Mx_2 \rangle = \langle x_1, x_2 \rangle$ for any choice of $x_1, x_2 \in R^2$. Derive one or more condition(s) on the entries of M that guarantee $M \in G$. Show that G is a group.

(3) Lie algebra/Lie group question

Define the two matrix groups $SO(3) \subset GL(3,\mathbb{R})$ and $SU(2) \subset GL(2,\mathbb{C})$.

Characterise the matrices in their respective Lie algebras, $\mathfrak{so}(3)$ and $\mathfrak{su}(2)$.

Write down a basis and commutator relations for both algebras.

Explain how the two Lie algebras are related. (1-2 sentences)

Explain how the two Lie groups are related. (short paragraph)

(4) SU(3) Lie algebra (extension question)

SU(3) is a local symmetry of the Lagrangian for three fermion fields. It is a simply-connected and compact Lie group. $U \in SU(3)$ satisfies $U^{\dagger}U = I$ and $\det U = 1$. The Lie algebra defined by $U = e^{itH}$ is $H^{\dagger} = H$ and $\operatorname{tr} H = 0$.

- (a) Show that the Lie algebra has 8 elements in its basis.
- (b) The structure constants derived from the standard basis for $\mathfrak{su}(3)$ (the Gell-Mann) matrices are defined as follows, using $[T_a, T_b] = i f_{abc} T_c$,

$$f_{123} = 1$$
; $f_{147} = f_{165} = f_{246} = f_{257} = f_{345} = f_{376} = \frac{1}{2}$; and $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$.

All permutations of the indices take ± 1 of these values as appropriate and all other combinations of indices are 0. Show that T_3 and T_8 form a maximal commuting set for $\mathfrak{su}(3)$, and hence a Cartan subalgebra.

(c) Show that the following are eigenvectors for the adjoint representations of T_3 and T_8 , and find these eigenvalues. In other words show that $[T_3, v_k] = \lambda_k v_k$ and $[T_8, v_k] = \mu_k v_k$ for $k = 1, \ldots, 8$, and give the values of λ_k, μ_k .

$$v_1 = T_1 + iT_2, \quad v_2 = T_1 - iT_2, \quad v_3 = T_3,$$

$$v_4 = T_4 + iT_5$$
, $v_5 = T_4 - iT_5$,

$$v_6 = T_6 + iT_7$$
, $v_7 = T_6 - iT_7$, $v_8 = T_8$.

1

The vectors $v_1, v_2, v_4, v_5, v_6, v_7$ form a root system for $\mathfrak{su}(3)_{\mathbb{C}}$.