TADA: TALK ABOUT DATA ANALYTICS | WEEK 9

Word2Vec

A quick overview of Word2Vec's CBoW model

WORD2VEC AND FASTTEXT

Word Embedding

N-dimensional vectors that try to capture word-meaning and context in their values (Numerical representation of words)

Word2Vec

Training a neural network with a single hidden layer to predict a **target** word based on its **context** (**neighboring words**).

Assumption: The meaning of a word can be inferred by the company it keeps.

Source: Exploiting Similarities among Languages for Machine Translation paper.

CBoW: Introduction

Continuous Bag of Words

The distributed representations of context are combined to predict the word in the middle.

- ▶ Window size : 5
- Context half-size : 2

I am happy because I am learning

I am happy because I am learning

I am happy because I am learning

WORD2VEC AND FASTTEXT

CBoW: Architecture

Model Input → Context Words

Model Output → Center Word

I am happy because I am learning

- Context: I, am, because, I
- Center : happy

I am happy because I am learning

- Context: am, happy, I, am
- Center : because

I am happy because I am learning

- Context: happy, because, am, learning
- Center: I

Natural Language Processing with Probabilistic Models - DeepLearning.AI (Coursera)

WORD2VEC AND FASTTEXT

CBoW: Matrices

Model Input → Context Word (One Hot Encoded & Averaged)

Model Output → Center Words (One Hot Encoded)

	am	because	happy	1	learning
am	1	(0)	(0)	(0)	(0)
because	0	1	0	0	0
happy	0	0	1	0	0
T	0	0	0	1	0
learning	0	$\begin{bmatrix} 0 \end{bmatrix}$	$\begin{bmatrix} 0 \end{bmatrix}$	$\begin{bmatrix} 0 \end{bmatrix}$	1

CBoW: Model

Context words	Context words vector	Center word	Center word vector
I am because I	[0.25; 0.25; 0; 0.5; 0]	happy	[0; 0; 1; 0; 0]
am happy I am	[0.5; 0; 0.25; 0.25; 0]	because	[0; 1; 0; 0; 0]
happy because am learning	[0.25; 0.25; 0.25; 0; 0.25]	Ţ	[0; 0; 0; 1; 0]

N: Length of the corpus, **V**: Length of the Hidden Layer

Word2Vec Summary

- Not a singular algorithm, rather a family of model architectures and optimizations that can be used to learn word embeddings from data.
- Idea is very intuitive, learning the representation of words in a classification tasks - requires little memory
- Since words and vectors have a one-to-one relationship, the problem of polysemous words or words in different tense/form cannot be solved
 - Teach, teacher, teachers are all treated as different words without any relationship
- Embedding works best for common words, however not for rare tokens or OOV (out-of-vocabulary)

References

- 1. **FastText vs Word2Vec** Kavita Ganesan (https://kavita-ganesan.com/fasttext-vs-word2vec/#.Yf0B0e5BxYw)
- 2. **NLP 101: Word2Vec Skip-gram and CBOW** Ria Kulshrestha (Nov 25, 2019) Medium Article
- 3. Natural Language Processing with Probabilistic Models DeepLearning.Al (Coursera)
- 4. **Word2Vec** Tensorflow Tutorials (https://www.tensorflow.org/tutorials/text/word2vec)