REPUBLIQUE DE COTE D'IVOIRE UNION – DISCIPLINE – TRAVAIL

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE FELIX HOUPHOUËT BOIGNY

UFR DES SCIENCES PHARMACEUTIQUES

Année: 2012 – 2013

THESE N°1525/13

Présentée en vue de l'obtention du

DIPLOME D'ETAT DE DOCTEUR EN PHARMACIE

Par **TIADE MARIE-LAURE**

(Interne des hôpitaux)

RECHERCHE DU MARQUEUR CD4 DES LYMPHOCYTES T DANS LA POPULATION DE CSH CD34+ DU SANG DE CORDON OMBILICAL

Soutenue publiquement le 18 Avril 2013

Composition du jury

Président : Monsieur KOUADIO KOUAKOU LUC, Professeur Titulaire

Directeur de thèse : Madame **SAWADOGO DUNI**, Professeur agrégé

Assesseurs : Madame ATTOUNGBRE HAUHOUOT M.L, Professeur agrégé

Madame KOUASSI AGBESSI THERESE, Maître-assistante

Administration et personnel enseignant de l'UFR des sciences pharmaceutiques

I. HONORARIAT

Directeurs/Doyens Honoraires : Professeur RAMBAUD André

Professeur FOURASTE Isabelle Professeur BAMBA Moriféré Professeur YAPO Abbé †

Professeur MALAN Kla Anglade Professeur KONE Moussa †

II. ADMINISTRATION

Directeur Professeur ATINDEHOU Eugène

Sous-Directeur Chargé de la Pédagogie Professeur Ag INWOLEY Kokou André Sous-Directeur Chargé de la Recherche Professeur Ag OGA Agbaya Serge

Secrétaire Principal Monsieur BLAY Koffi

Secrétaire Principal Adjoint Madame AKE Kouadio Api Eugénie
Documentaliste Monsieur N'GNIMMIEN Koffi Lambert

Intendant Monsieur GAHE Alphonse Responsable de la Scolarité Madame DJEDJE Yolande

III. PERSONNEL ENSEIGNANT PERMANENT

1.PROFESSEURS TITULAIRES

Mme AKE Michèle Chimie Analytique

M ATINDEHOU Eugène Chimie Analytique, Bromatologie

Mme KONE BAMBA Diéneba Pharmacognosie

MM KOUADIO Kouakou Luc Hydrologie, Santé Publique

MALAN Kla Anglade Chimie Ana., contrôle de qualité

MENAN Eby Ignace Parasitologie - Mycologie

MONNET Dagui Biochimie et Biologie Moléculaire

2.MAITRES DE CONFERENCES AGREGES

Mme ATTOUNGBRE HAUHOUOT M.L. Biochimie et Biologie Moléculaire

MM ABROGOUA Danho Pascal Pharmacologie

AHIBOH Hugues Biochimie et Biologie moléculaire

DANO Djédjé Sébastien Toxicologie.

Mme AKE EDJEME N'guessan Angèle Biochimie et Biologie moléculaire

MM INWOLEY Kokou André Immunologie KABLAN Brou Jérôme Pharmacologie

KOFFI Angely Armand Pharmacie Galénique

Mme KOUAKOU SIRANSY N.PharmacologieMM KOUASSI DinardHématologie

LOUKOU Yao Guillaume Bactériologie-Virologie

OGA Agbaya Stéphane Santé publique et Economie de la santé

OUATTARA Mahama Chimie thérapeutique

Mme SAWADOGO Duni Hématologie

MM YAPI Ange Désiré Chimie organique, chimie thérapeutique

YAVO William Parasitologie - Mycologie ZINZENDORF Nanga Yessé Bactériologie-Virologie

3.MAITRES DE CONFERENCES (CAMES)

M YOLOU Séri Fernand Chimie Générale

4.MAITRES DE CONFERENCES ASSOCIES

M DIAFOUKA François Biochimie et Biologie de la Reproduction

5.MAITRES ASSISTANTS

MMAMARI Antoine Serge G. Législation AMIN N'Cho Christophe Chimie analytique Parasitologie - Mycologie Mme BARRO KIKI Pulchérie Chimie Analytique **BONY François Nicaise** MMCLAON Jean Stéphane Santé Publique Immunologie **DEMBELE Bamory** Parasitologie - Mycologie **DJOHAN Vincent** EZOULIN Miezan Jean Marc Toxicologie GBASSI K. Gildas Chimie Minérale Mme KOUASSI AGBESSI Thérèse Bactériologie-Virologie MM OUASSA Timothée Bactériologie-Virologie Mme SACKOU KOUAKOU Julie Santé Publique MM YAYO Sagou Eric Biochimie et Biologie moléculaire

6.ASSISTANTS

ADJOUNGOUA Attoli Léopold

MM

IVIIVI	ADJOONOOOA Attoli Leopoid	i marmacognosic
	ADJAMBRI Adia Eusebé	Hématologie
Mme	AFFI-ABOLI Mihessé Roseline	Immunologie
Mme	AKA-ANY-GRA Armelle Adjoua S.	Pharmacie Galénique
MM	AMICHIA Attoumou Magloire	Pharmacologie
	ANGORA Kpongbo Etienne	Parasitologie
Mme	AYE YAYO Mireille	Hématologie
MM	BROU Amani Germain	Chimie Analytique
	CABLAN Mian N'Ddey Asher	Bactériologie-Virologie
	DALLY Laba	Galénique
Mlle	DIAKITE Aïssata	Toxicologie
M	DJADJI Ayoman Thierry Lenoir	Pharmacologie
Mlle	DOTIA Tiepordan Agathe	Bactériologie-Virologie
M	EFFO Kouakou Etienne	Pharmacologie
Mlle	FOFIE N'Guessan Bra Yvette	Pharmacognosie
Mmes	HOUNSA Annita Emeline Epse Alla	Sante Publique
	IRIE N'GUESSAN Amenan	Pharmacologie
MM	KABRAN Tano Kouadio Mathieu	Immunologie
	KAMENAN Boua Alexis Thierry	Pharmacologie
	KACOU Alain	Chimie Thérapeutique
	KASSI Kondo Fulgence	Parasitologie-Mycologie
Mlle	KONATE Abibatou	Parasitologie-Mycologie
		The state of the s

THESE EN VUE DE L'OBTENTION DU DIPLOME D'ETAT DE DOCTEUR EN PHARMACIE Pharmacognosie

M KONAN Konan Jean Louis Biochimie et Biologie moléculaire Mme KONE Fatoumata Biochimie et Biologie moléculaire

MM KOUAKOU Sylvain Landry Pharmacologie
KOUAME Dénis Rodrigue Immunologie
KPAIBE Sawa Andre Philippe Chimie Analytique
LATHRO Joseph Serge Bactériologie-Virologie

MmeLEKADOU KORE SylvieSanté PubliqueMMMANDA PierreToxicologieN'GUESSAN AlainGaléniqueMmesN'GUESSAN-BLAO Amoin Rebecca J.Hématologie

OUAYOGODE-AKOUBET Aminata Pharmacognosie

POLNEAU VALLEE Sandrine Mathématiques biophysique

SANGARE Mahawa Biologie Générale SANGARE TIGORI Béatrice Toxicologie

MM TRE Eric Serge Chimie Analytique

Mmes VANGA ABO Henriette Parasitologie-Mycologie

YAO ATTIA Akissi Régine Santé publique M. YAPO Assi Vincent De Paul Biologie Générale

7.IN MEMORIUM

Feu KONE Moussa Professeur Titulaire Feu YAPO Abbé Etienne Professeur Titulaire

Feu COMOE Léopold Maître de Conférences Agrégé

Feu GUEU Kaman Maître Assistant

Feu ALLADOUM Nambelbaye Assistant
Feu COULIBALY Sabali Assistant
Feu TRAORE Moussa Assistant
Feu YAPO Achou Pascal Assistant

IV. ENSEIGNANTS VACATAIRES

1. PROFESSEURS

M ASSAMOI Assamoi Paul BiophysiqueM DIAINE Charles Biophysique

2. MAITRES DE CONFERENCES

Mme TURQUIN née DIAN Louise Biologie VégétaleMM OYETOLA Samuel Chimie Minérale

YAO N'Dri Pathologie Médicale

ZOUZOU Michel Cryptogamie

3. NON UNIVERSITAIRES

MM. AHOUSSI Daniel Ferdinand Secourisme

DEMPAH Anoh Joseph Zoologie.

KOUAKOU Tanoh Hilaire Botanique et Cryptogamie

N'GOZAN Marc Secourisme KONAN Kouacou Diététique

KONKON N'Dri Gilles Botanique, Cryptogamie

OKPEKON Aboua Timothée Chimie Analytique, Chimie Générale.

Mme PAYNE Marie Santé Publique

COMPOSITION DES DEPARTEMENTS DE l'UFR DES SCIENCES PHARMACEUTIQUES ET BIOLOGIQUES

I. <u>BACTERIOLOGIE-VIROLOGIE</u>

Professeur LOUKOU Yao Guillaume Maître de Conférences Agrégé

Chef de département

Professeur ZINZENDORF Nanga Yessé Maître de Conférences Agrégé

Docteurs KOUASSI AGBESSI Thérèse Maître Assistante

OUASSA Timothée Maître Assistant

CABLAN Mian N'Dédey Asher Assistant
DOTIA Tiepordan Agathe Assistant
LATHRO Joseph Serge Assistant

II. <u>BIOCHIMIE</u>, <u>BIOLOGIE MOLECULAIRE</u>, <u>BIOLOGIE DE LA REPRODUCTION ET PATHOLOGIE MEDICALE</u>

Professeur MONNET Dagui Professeur Titulaire

Chef de Département

Professeurs AHIBOH Hugues Maître de Conférences Agrégée

AKE EDJEME N'Guessan Angèle Maître de Conférences Agrégée

DIAFOUKA François Maître de Conférences

HAUHOUOT ép. ATTOUNGBRE M.L. Maître de Conférences Agrégée

Docteurs YAYO Sagou Eric Maître Assistant

KONAN Konan Jean Louis Assistant
KONE Fatoumata Assistante

III. BIOLOGIE GENERALE, HEMATOLOGIE ET IMMUNOLOGIE

Professeur SAWADOGO Duni Maître de Conférences Agrégé

Chef du Département

Professeurs INWOLEY Kokou André Maître de Conférences Agrégé

KOUASSI Dinard Maître de Conférences Agrégé

Docteurs DEMBELE Bamory Maitre-assistant

AFFI-ABOLI Mihessé Roseline Assistante
ADJAMBRI Adia Eusebé Assistant
AYE YAYO Mireille Assistante
KABRAN Tano K. Mathieu Assistant
KOUAME Dénis Rodrigue Assistant
N'GUESSAN-BLAO A. Rebecca S. Assistante
SANGARE Mahawa Assistant
YAPO Assi Vincent De Paul Assistant

IV. CHIMIE ANALYTIQUE, CHIMIE MINERALE ET GENERALE, TECHNOLOGIE ALIMENTAIRE

Professeur ATINDEHOU Eugène Professeur Titulaire

Chef de Département

Professeurs MALAN Kla Anglade Professeur Titulaire

Docteurs

AKE Michèle Professeur Titulaire YOLOU Séri Fernand Professeur Titulaire

AMIN N'cho Christophe Maître Assistant

BONY Nicaise François Maître Assistant GBASSI K. Gildas Maître Assistant

BROU Amani Germain Assistant KPAIBE Sawa Andre Philippe Assistant TRE Eric Serge Assistant

V. CHIMIE ORGANIQUE ET CHIMIE THERAPEUTIQUE

Professeur YAPI Ange Désiré Maître de Conférences Agrégé

Chef de Département

Professeur OUATTARA Mahama Maître de Conférences Agrégé

Docteur KACOU Alain Assistant

VI. PARASITOLOGIE, MYCOLOGIE, BIOLOGIE ANIMALE ET ZOOLOGIE

Professeur MENAN Eby Ignace H. Professeur Titulaire

Chef de Département

Professeur YAVO William Maître de Conférences Agrégé

Docteurs BARRO KIKI Pulchérie Maître Assistante

DJOHAN Vincent Maître Assistant

ANGORA Kpongbo Etienne Assistant
KASSI Kondo Fulgence Assistant
KONATE Abibatou Assistante
VANGA ABO Henriette Assistante

VII. PHARMACIE GALENIQUE, BIOPHARMACIE, COSMETOLOGIE, GESTION ET LEGISLATION PHARMACEUTIQUE

Professeur KOFFI Armand A. Maître de Conférences Agrégé

Chef de Département

Docteurs AMARI Antoine Serge G. Maître Assistant

AKA-ANY Grah Armelle A.S. Assistante
DALLY Laba Ismaël Assistant
N'GUESSAN Alain Assistant

VIII. <u>PHARMACOGNOSIE, BOTANIQUE, BIOLOGIE VEGETALE,</u> CRYPTOGAMIE,

Professeur KONE BAMBA Diénéba Professeur Titulaire

Chef de Département

Docteurs ADJOUGOUA Attoli Léopold Assistant

FOFIE N'Guessan Bra Yvette Assistante
OUAYOGODE-AKOUBET Aminata Assistante

IX. PHARMACOLOGIE, PHARMACIE CLINIQUE ET THERAPEUTIQUE, ET PHYSIOLOGIE HUMAINE

Professeurs KABLAN Brou Jérôme Maître de Conférences Agrégé

Chef de Département

ABROGOUA Danho Pascal Maître de Conférences Agrégé KOUAKOU SIRANSY N'doua G. Maître de Conférences Agrégé

Docteurs AMICHIA Attoumou M Assistant

DJADJI Ayoman Thierry Lenoir Assistant
EFFO Kouakou Etienne Assistant
IRIE N'GUESSAN Amenan G. Assistant
KAMENAN Boua Alexis Assistant
KOUAKOU Sylvain Landry Assistant

X. PHYSIQUE, BIOPHYSIQUE, MATHEMATIQUES, STATISTIQUES ET INFORMATIQUE

Professeur ATINDEHOU Eugène Professeur Titulaire

Chef de Département par intérim

Docteur POLNEAU VALLEE Sandrine Assistante

XI. SANTE PUBLIQUE, HYDROLOGIE ET TOXICOLOGIE

Professeur KOUADIO Kouakou Luc Professeur Titulaire

Chef de département

Professeurs DANO Djédjé Sébastien Maître de Conférences Agrégé

OGA Agbaya Stéphane Maître de Conférences Agrégé

Docteurs CLAON Jean Stéphane Maître Assistant

EZOULIN Miézan Jean Marc Maître Assistant SACKOU KOUAKOU J. Maître Assistante

DIAKITE Aissata Assistante
HOUNSA-ALLA Annita Emeline Assistante
LEKADOU KORE Sylvie Assistante
MANDA Pierre Assistant
SANGARE TIGORI B. Assistante
YAO ATTIA Akissi Régine Assistante

« Vous qui appartenez au Seigneur, respectez- le ! Rien ne manque à ceux qui le respectent. »

Psaumes 34v10.

Seigneur Jésus, je te rends toute la gloire pour tous tes bienfaits dans ma vie.

Merci pour ton amour infini.

Amen!

A mon Père, Feu Lama Tiadé...

Ce jour aurait été tellement plus beau avec toi à mes côtés. Je sais combien de fois tu aurais été fier de moi. Merci d'avoir été un père si aimant, attentionné et tellement présent. J'aurai tout donné pour ne pas te voir partir si tôt. Loué soit Le Seigneur pour ce que tu as été, es et seras toujours pour moi.

Je t'aime et t'aimerai toujours Papa chéri

A ma grand-mère Makoura

Les années passent et le poids de l'âge laisse des traces sur toi à tous les niveaux, mais ton amour pour moi est toujours aussi authentique. Je t'aime tellement Mamie et je rends toujours gloire à Dieu de t'avoir encore à mes côtés. Puisse notre Seigneur Jésus veiller sur toi.

A ma Mère, Tia Henriette

Tu as toujours été là, à mes côtés, dans les moments de joie et de peine ;

Tu es ma maman chérie.

Le travail ici présenté est l'accomplissement de tous les efforts que tu as fournis.

Loué soit Le Seigneur pour la mère qu'il m'a donnée.

Je t'aime maman et te dédie ce travail.

A ma mémé Rokyatou et mon pépé yaya Touré

Votre amour pour moi, vos oreilles attentives et vos conseils avisés ne cessent de me guider au quotidien. Loué soit le Seigneur qui m'a donné deux parents aussi aimants.

Je vous aime.

A mon ami Olivier

Je suis très heureuse de t'avoir rencontré et tes épaules apaisantes dans ces moments difficiles m'ont été d'un grand réconfort. Merci de m'aimer autant.

Je t'aime énormément.

A ma grande sœur de cœur Ellah

Grande sœur chérie, ce jour tant attendu est enfin arrivé. Merci encore pour tes nombreux conseils et tes prières qui n'ont jamais cessées de m'accompagner.

Je t'aime.

A mes sœurs et frères

Je vous aime énormément et je prie toujours pour être une fierté pour mes ainés et un modèle pour mes cadets.

Puisse notre Seigneur nous garder unis.

A mon petit tonton Nestor et ma petite tata Aminata

Vous me manifestez tellement d'affection au quotidien que je vous considère plus comme mes frères aînés que comme mon oncle et ma tante.

Je vous aime tous les deux.

A mes oncles et tantes

Merci pour votre présence au quotidien, votre amour et vos conseils. Que Dieu vous bénisse.

A tous mes cousins et cousines

Loué soit le Seigneur pour vous tous qui êtes toujours présents à mes côtés.

A mes amies Régina, Lydie et Matoma

Plus que des amies, je vous considère comme mes sœurs de sang. Depuis les bancs du lycée Sainte Marie jusqu'à ce jour, les liens qui nous unissent ne cessent de grandir et vous me démontrez toujours votre amour.

Que Dieu vous bénisse et vous comble de ses grâces.

Aux Docteurs SANGARE Mahawa et KASSI Hermance

Loué soit Le Seigneur, pour tout ce que vous avez été pour moi, en tant que maître, guide et soutien. Recevoir autant d'affection de votre part dans les moments difficiles a été un véritable réconfort pour moi. Merci encore pour ce travail que vous avez suivi depuis le début.

Que Dieu vous bénisse abondamment.

Aux docteurs HE L, ZOUGROU G, ODOH E, KACOU A, ADEHOUNI Y, ABO J, EDJEME M, KIPRE M, KOUASSI M, KONE B, AMOAKON H, et tous les ainés dans l'internat et à l'UFR des Sciences Pharmaceutiques

Loué soit Le Seigneur, pour ces devanciers qui m'ont montrée la voie à suivre et m'ont toujours aidée et soutenue.

Aux Docteurs KOUAKOU L, N'GOU, NATCHIA, GNANMIEN, YAO, HE, N'DRI et tout le personnel de la pharmacie du CHU de Yopougon

Merci de m'avoir témoignée autant d'affection et de soutien lorsque j'étais avec vous.

Que Dieu vous bénisse.

A mes amis des UFR des Sciences Pharmaceutiques, Médicales et d'Odonto-stomatologie

Django N, Moro L, Adou J, Thodhekes Y, Zaba F, Tuo A, Yéhé D, Lazilé F, Yaa E, Kausta K, Djere A, Djouka J, Brika P, Soumahoro B, Koudou E, Gnamien A, Kouassi K, Adjeye M, Tanoh M, Tano F, Donatien K, Mobio L, Larissa Y, et tous ceux que je n'ai pu citer de la 28ème promotion

On a toujours été ensemble et on le restera toujours ! Loué soit Le Seigneur pour vous tous qui avez été mes frères et sœurs dans les joies et les épreuves de la fac.

A mes amies du Lycée Sainte Marie de Cocody

Régina, Lydie, Matoma, Lima, Laetitia, Larissa, Clémence, Christiane, Alexandra et toutes les autres,

Si nos chemins académiques et professionnels se sont séparés, notre amitié nous a permis de rester unies dans le cœur

Loué soit Le Seigneur pour vous toutes qui êtes restées pour moi de vraies amies.

A tous les enseignants de l'UFR des Sciences Pharmaceutiques

Merci de toujours être aux côtés de vos jeunes successeurs, aussi bien académiquement que moralement.

Remerciements

A tout le personnel du laboratoire d'hématologie du CHU de Yopougon et de l'UBS en particulier, le Professeur SAWADOGO Duni, les docteurs SANGARE Mahawa, KASSI Hermance, LATT

Merci pour votre disponibilité, votre encadrement et votre soutien.

A tout le personnel de la maternité de l'hôpital général de Yopougon Attié

Merci pour votre accueil chaleureux et votre collaboration franche et fructueuse qui ont permis la réalisation de ce travail.

A nos maîtres et juges

A Notre Maître et Président du jury Monsieur le Professeur KOUADIO LUC

- ➤ Professeur titulaire d'hydrologie et de santé publique à l'UFR des Sciences Pharmaceutiques et Biologiques d'Abidjan ;
- ➤ Chef du laboratoire d'analyse médicale et du service du contrôle des eaux de l'INHP;
- ➤ Responsable du DEU d'homéopathie à 1'UFR des Sciences Pharmaceutiques et Biologiques d'Abidjan ;
- ➤ Responsable du DESS d'hygiène alimentaire à 1'UFR des Sciences Pharmaceutiques et Biologiques d'Abidjan;
- Responsable de la filière santé publique : DEA/DESS, MP SP.

Cher maître,

Vos multiples occupations au service de la santé publique et de la formation des plus jeunes ne vous ont pas empêché d'accepter de présider notre jury de thèse. C'est pour nous un immense honneur. Votre professionnalisme et votre dynamisme, qui s'expriment dans chacune des fonctions que vous assumez avec dévouement sont des exemples à suivre pour tous les jeunes que nous sommes.

Ces quelques mots exprimeront difficilement toute notre reconnaissance, et la fierté de vous avoir pour toujours comme maître.

A Notre Maître et Directeur de thèse Madame le Professeur SAWADOGO DUNI

- Docteur en biologie cellulaire option Hématologie de l'Université de Navarre, Pampelune, Espagne,
- Maître de conférences agrégé en Hématologie à l'UFR des Sciences
 Pharmaceutiques et Biologiques à Abidjan,
- Chef du département d'Hématologie-immunologie et biologie générale à
 l'UFR des Sciences Pharmaceutiques et Biologiques à Abidjan,
- > Chef de l'unité d'hématologie du laboratoire central du CHU de Yopougon,
- > Membre de plusieurs sociétés savantes :
 - Société Pharmaceutique de Côte d'Ivoire (SOPHACI),
 - Société Africaine d'Hématologie (SAFHEMA),
 - Société Ivoirienne d'Hématologie Immunologie Oncologie Transfusion Sanguine (SIHIO-TS),
 - Société Française d'Hématologie (SFH),
 - European Hematology Association (EHA),
 - American society for Blood and marrow transplantation (ASBMT)

Cher maître,

Votre enseignement, mais également votre rigueur et votre ardeur au travail creusent un chemin qu'il est agréable à tout étudiant de l'UFR des Sciences Pharmaceutiques de suivre. Merci pour l'ambiance familiale dans laquelle vous nous avez fait travailler et pour toute l'affection et le soutien que vous nous avez témoignée dans les moments difficiles.

Veuillez trouvez ici l'expression de notre profonde gratitude, vous qui avez été, êtes et serez toujours notre maître.

A notre Maître et Juge Madame le Professeur HAUHOUOT ép. ATTOUNGBRE ML

- > Pharmacienne biologiste des hôpitaux,
- > Diplômée de l'université de Lyon 1,
- Maître de conférences agrégé au département de biochimie, biologie moléculaire et biologie de la reproduction à l'UFR des sciences pharmaceutiques et biologiques de l'université Félix Houphouet Boigny,
- > Chef du laboratoire de biologie de l'Institut de Cardiologie d'Abidjan,
- Membre de la société française de biologie clinique.

Cher Maître,

Malgré vos nombreuses occupations, vous avez accepté spontanément de présider ce jury de thèse. Nous en sommes très honorés.

Nous conservons un bon souvenir de vos enseignements et aussi de vos conseils. Merci cher Maître et que Dieu vous bénisse.

A Notre Maître et juge Madame le Docteur KOUASSI Agbessi Thérèse

- > Docteur en pharmacie,
- Maitre assistante au département de bactériologie virologie, à l'UFR des sciences pharmaceutiques et biologiques,
- ➤ Pharmacien biologiste (CES biochimie clinique, CES hématologie, CES parasitologie, CES bactériologie virologie),
- ➤ Titulaire du DEA de biologie humaine tropicale, option bactériologie virologie,
- Responsable de l'unité de biologie à l'INHP (Institut national d'hygiène publique),
- ➤ 1^{er} prix d'infectiologie en 1992,
- Lauréat du concours d'internat (1989-1990)

Cher maître,

Vous nous faites honneur en acceptant de juger ce travail. Nous vous remercions sincèrement pour votre disponibilité et la spontanéité avec laquelle vous avez accepté de participer à ce jury.

Que Dieu vous bénisse richement.

TABLE DES MATIERES

LISTE DES ABREVIATIONS	XXXI
LISTE DES FIGURES	XXXIV
LISTE DES TABLEAUX	XXXV
INTRODUCTION	1
PREMIERE PARTIE: REVUE DE LA LITTERATURE	5
SECTION I : LYMPHOPOIESE	6
I-GENERALITES ET ORGANISATION DU SYSTEME LYMPHOIDE	7
I-1 DEFINITION ET ORIGINE	7
I-2 ORGANES LYMPHOIDES	7
II- STADE DE DIFFERENCIATION MEDULLAIRE ET THYMIQUE	14
II-1 CSH PRIMITIVES	14
II-2 PROGENITEURS	17
II-3 PRECURSEURS	20
II-4 CELLULES MATURES	22
III - PRINCIPALES FONCTIONS DES LYMPHOCYTES T	23
IV - PRINCIPALES MOLECULES DE SURFACE DES LYMPHOCYTES T	25
IV-1 COMPLEXE TCR-CD3	25
IV-2 AUTRES MOLECULES	26
V - APPLICATION : GREFFE DE CSH	28
V-1 DEFINITION DE GREFFE DE CSH	28
V-2 DIFFERENTS TYPES DE GREFFES	28
V-3 COMPLICATIONS	30
V-4 DIFFERENTES SOURCES DE CSH	31
SECTION II: IMMUOPHENOTYPAGE PAR CYTOMETRIE DE	37
FLUX	
I- CYTOMETRIE DE FLUX	38
I-1 DEFINITION	38
I-2 DIFFERENTES PARTIES DU CYTOMETRE	40

II- MARQUEURS CELLULAIRES	
II-1- ANTICORPS MONOCLONAUX	
II-2- FLUOROCHROMES	
III- RESULTATS	
III-1 HISTOGRAMME	
III-2 CYTOGRAMME	
DEUXIEME PARTIE : ETUDE EXPERIMENTALE	
SECTION I : MATERIEL ET METHODES	
I-MATERIEL	
I-1 TYPE, CADRE ET DUREE	
I-2 POPULATION CIBLE.	
I-3 APPAREILLAGE	
I-4 REACTIFS ET PETIT MATERIEL	
II- METHODES	•
II-1 FICHE D'ENQUETE (voir annexe I)	
II-2 PRELEVEMENT	
II-3 HEMOGRAMME	
II-4 IMMUNOPHENOTYPAGE	
II-5 ANALYSE STATISTIQUE DES DONNEES	
III- DIFFICULTES RENCONTREES.	
SECTION II: RESULTATS ET COMMENTAIRES	
I – CARACTERISTIQUES SOCIO-DEMOGRAPHIQUES	
I-1 MERES	,
I-2 NOUVEAU-NES	
II – CARACTERISTIQUES CLINIQUES	
II-1 MERES	
II-2 NOUVEAU-NES	
III – CARACTERISTIQUES BIOLOGIQUES DU SANG DU CORDON	
OMBILICALE	
IV – FACTEURS SUSCEPTIBLES D'INFLUENCER LES POPULATIONS	
LYMPHOCYTAIRES TOTALES	
IV-1 FACTEURS SOCIO DEMOGRAPHIQUES	

IV-2 FACTEURS CLINIQUES	
IV-3 FACTEURS BIOLOGIQUES	
V - FACTEURS SUSCEPTIBLES D'INFLUENCER LES POPULATIONS	
LYMPHOCYTAIRES T	
V-1 FACTEURS SOCIO DEMOGRAPHIQUES	
V-2 FACTEURS CLINIQUES	
V-3 FACTEURS BIOLOGIQUES	
VI – FACTEURS SUSCEPTIBLES D'INFLUENCER LES POPULATIONS	
LYMPHOCYTAIRES TCD4+	
VI-1 FACTEURS SOCIO DEMOGRAPHIQUES	
VI-2 FACTEURS CLINIQUES	
VI-3 FACTEURS BIOLOGIQUES	
SECTION III : DISCUSSION	
I – CARACTERISTIQUES SOCIO-DEMOGRAPHIQUES	
I-1 MERES.	
I-2 NOUVEAU-NES.	
II – CARACTERISTIQUES CLINIQUES	
II-1 MERES	
II-2 NOUVEAU-NES.	
III – PARAMETRES BIOLOGIQUES	
III-1 LIGNEE ERYTHROCYTAIRE	
III-2 LIGNEE LEUCOCYTAIRE	
III-3 RICHESSE EN CMN	
III-4 RICHESSE EN CSH CD34+	
IV – FACTEURS SUSCEPTIBLES D'INFLUENCER LES POPULATIONS	
LYMPHOCYTAIRES	
CONCLUSION	
SUGGESTIONS	
REFERENCES ET BIBLIOGRAPHIE	
ANNEXES	

LISTE DES ABREVIATIONS

ADCC : Antibody dependant cell cytotoxicity

Ag : Antigène

ACD : Acide citrate dextrose

AcMo : Anticorps monoclonaux

BFU: Burst forming unit

BALT : Bronchus associated lymphoid tissue

CD : Classe de différenciation

CLP : Progéniteurs lymphoïdes communs

CSH : Cellules souches hématopoïétiques

CFU : Colony forming unit

CMH : Complexe majeur d'histocompatibilité

CMP : Progéniteurs myéloides communs

CPA : Cellule présentatrice de l'antigène

CPD : Citrate phosphate dextrose solution

CHU : Centre hospitalier universitaire

CCMH : Concentration corpusculaire moyenne en hémoglobine

CMN : Cellules mononuclées

Cy : Cyanine

DN : Double négatif

DP : Double positif

f/l : Fento/litre

FITC : Isothiocyanate de fluorescéine

FSC : Forward scatter

GR : Globule rouge

GB : Globule blanc

GVHD : Graft versus host disease

GALT : Gut associated lymphoid tissue

G-CSF: Granulocyte colony stimulating factor

G/l : Gigas/litre

HLA : Human leucocyte antigen

HPP-CFC: High proliferative potential colony forming cell

HTA : Hypertension artérielle

Ig : Immunoglobuline

INS : Institut national de la statistique

ICAM : Inter-cellular adhesion molecule

IL : Interleukine

IFN : Interferon

LT : Lymphocyte T

Ly : Lymphocyte

MALT : Mucosal associated lymphoid tissue

MGG : May grünwald giemsa

MO : moelle osseuse

NK : Natural killer

N/C : Rapport nucléo-cytoplasmique

PQ : Plaquette

PNN : Polynucléaire neutrophile

PNE : Polynucléaire éosinophile

PNB : Polynucléaire basophile

PE : Phyco-érythrine

PE-Cy5 : Phyco-érythrine et cyanine 5

Per-CP : Chlorophylle de piridine et cyanine 5

RGPH : Recensement général de la population et de l'habitat

SIDA : syndrome de l'immunodéficience acquise

SCO : Sang de cordon ombilical

SSC : Side scatter

SP : Sang périphérique

T/l : Trillions/litre

TCMH : Teneur corpusculaire moyenne en hémoglobine

Tdt : Terminal désoxy-nucléotidyl transférase

Treg : Cellules T régulatrices

TH1 : Lymphocyte T helper 1

TH2 : Lymphocyte T helper 2

TCR : T cell receptor

UFR : Unité de formation et de recherche

UBS : Unité de biologie Sida

UNICEF: United Nations International Children's Emergency Fund

VGM : Volume globulaire moyen

VIH : Virus de l'immunodéficience humaine

LISTE DES FIGURES

Figure 1 : Structure du thymus selon Parham	9
Figure 2 : Structure du ganglion lymphatique selon Parham	11
Figure 3 : Schéma de l'organisation du tissu lymphoïde de la rate selon Genetet.	13
Figure 4: Schéma de l'hématopoièse selon Till et Mc culloch	15
Figure 5 : Modèle classique de l'hématopoièse selon Bhandoola	18
Figure 6 : Stade différenciation médullaire et thymique dans le développement	
T humain selon Nicolas	19
Figure 7 : La double sélection thymique selon Wilson	21
Figure 8 : Le petit lymphocyte selon Berthou	24
Figure 9: Le grand lymphocyte selon Berthou	24
Figure 10: Le complexe TCR selon Zandecki	27
Figure 11: Représentation schématique d'un cytomètre de flux selon kuby	39
Figure 12 : FACSCalibur flow cytometer de Becton Dickinson	47
Figure 13 : Sysmex XT – 2000i (laboratoire d'hématologie du CHU de Yopougon)	47
Figure 14 : Principe de l'immunophénotypage	55
Figure 15 : Répartition des mères selon l'âge	60
Figure 16 : Distribution des mères selon leur nationalité	61
Figure 17 : Répartition des mères selon leur profession	62
Figure 18 : Distribution des mères selon leur niveau socio-économique	63
Figure 19 : Distribution des nouveau-nés selon le sexe	64
Figure 20 : Distribution des mères selon la gestité	65
Figure 21 : Répartition des mères selon la parité	66
Figure 22 : Distribution des mères selon la couverture vaccinale antitétanique	67

Figure 23 : Distribution des mères selon le nombre de consultations	
prénatales	68
Figure 24 : Distribution des nouveau- nés selon le poids	69
Figure 25 : Répartition des nouveau- nés selon l'indice d'APGAR	7 0

LISTE DES TABLEAUX

Tableau I : Caractère de diffusion et de fluorescence des CMN	56
Tableau II : Valeurs absolues et relatives des leucocytes totaux et des	
populations lymphocytaires	7 1
Tableau III : Paramètres érythrocytaires et plaquettaires	72
Tableau IV: Influence des paramètres socio démographiques étudiés sur la	
population lymphocytaire totale	73
Tableau V : Influence des paramètres cliniques étudiés sur la population	
lymphocytaire totale	74
Tableau VI : Influence des paramètres biologiques étudiés sur la	
population lymphocytaire totale	75
Tableau VII : Influence des paramètres socio démographiques étudiés sur	
la population lymphocytaire T	76
Tableau VIII : Influence des paramètres cliniques étudiés sur la	
population lymphocytaire T	77
Tableau IX : Influence des paramètres biologiques étudiés sur la	
population lymphocytaire T	78
Tableau X : Influence des paramètres socio démographiques étudiés sur la	
population lymphocytaire T ₄	79
Tableau XI: Influence des paramètres cliniques étudiés sur la population	
lymphocytaire T ₄	80
Tableau XII : Influence des paramètres biologiques étudiés sur la	
population lymphocytaire T ₄	81

INTRODUCTION

L'hématopoïèse, définie comme l'ensemble des mécanismes qui assure le remplacement continu et régulé des différentes cellules sanguines, peut connaître de graves dysfonctionnements. Ceux-ci sont à l'origine de nombreuses pathologies dont les hémopathies malignes. En Côte d'Ivoire, le traitement des causes de ces affections repose sur la polychimiothérapie. Cependant les graves cytopénies chimio induites contraignent les cliniciens à s'orienter vers la greffe de cellules souches hématopoïétiques pour reconstituer l'hématopoïèse. Ces cellules proviennent de la moelle osseuse, du sang périphérique ou du sang de cordon ombilical. Cependant, l'absence d'un donneur familial de moelle osseuse strictement identique dans le système majeur d'histocompatibilité ou système HLA est un obstacle majeur à la greffe de moelle osseuse allogénique. L'existence de différences dans ce système entraine une augmentation des complications de la greffe, principalement des réactions du greffon contre l'hôte liées à l'activation des lymphocytes T du donneur contre les antigènes du receveur [35].

Pour remédier à tous ces inconvénients, les praticiens ont de plus en plus recours aux autogreffes de sang périphérique [28]. Le sang périphérique est plus facile à prélever car recueilli par cytaphérèse [65]. Cependant, il semble que le contenu en lymphocytes T des greffons de cellules souches périphériques soit considérablement plus important que celui des greffons médullaires habituels et il ya donc un risque potentiel d'augmentation de la fréquence et de la gravité de la maladie du greffon contre l'hôte [24].

Une nouvelle approche est l'utilisation des cellules du sang de cordon ombilical prélevé à la naissance et issu de la veine du cordon ombilical. Le sang de cordon ombilical peut se substituer totalement à la moelle osseuse et les indications sont les mêmes [37]. La technique de transplantation ne change pas, seule l'origine des cellules est différente. Les avantages par rapport aux greffes de moelle osseuse sont entre autre la richesse du sang de cordon ombilical en

cellules vierges de tout contact antigénique et qui ont une capacité immunitaire réduite, ce qui, d'une part, donne une bonne sécurité transfusionnelle et, d'autre part, diminue les complications immunologiques de la greffe [36].

Depuis les premiers cas publiés en 1989, une quinzaine transplantations ont été faites dans le monde avec des résultats aussi bons qu'à partir de la moelle osseuse [36]. En Côte d'Ivoire, des travaux ont déjà été réalisés par Oulai [62], Amoikon [4], Bedji [10] portant sur le dénombrement des cellules souches hématopoïétiques CD34+, CD38+, CD71+, CD44+ dans le sang de cordon ombilical, le sang périphérique et le suc médullaire. Ce dénombrement est nécessaire dans la mesure où la qualité du tissu à greffer dépend de sa richesse en cellules souches hématopoïétiques et en cellules mononuclées. En 2004 déjà, Djidji [26] avait démontré par son étude que le taux de lymphocyte T présent dans le sang de cordon ombilical était élevé, comparable à celui du sang périphérique. Ainsi dans l'optique de la mise en place d'une banque de recueil de sang de cordon ombilical venant de donneurs non apparentés, le département d'hématologie a initié une nouvelle étude sur les lymphocytes T persistants dans le greffon de cellules souches hématopoiétiques issues du sang de cordon ombilical. Ce travail était réalisé avec un plateau technique plus moderne et une recherche incluant simultanément sur le même échantillon de sang d'autres paramètres biologiques que sont les cellules souches, les cellules Natural Killer, l'électrophorèse et l'hémogramme du sang de cordon ombilical en vu de déterminer les caractéristiques d'un sang de cordon idéal pour une greffe de cellules souches hématopoïétiques. Nous nous sommes fixés les objectifs suivants :

• *Objectif général* :

Déterminer la population de lymphocytes T persistante dans le greffon de cellules souches hématopoïétiques CD34+ issues du sang de cordon ombilical.

• Objectifs spécifiques :

- Apprécier la richesse en cellules mononuclées et en cellules souches hématopoïétiques CD34+ du sang de cordon ombilical ;
- Quantifier les lymphocytes T persistants dans le greffon de cellules souches hématopoïétiques par la présence des marqueurs CD3, CD4, CD45.
- Identifier les facteurs socio-démographiques et biologiques susceptibles d'influencer le taux de lymphocytes T.

PREMIERE PARTIE: REVUE DE LA LITTERATURE

Section I: Lymphopoièse

I- GENERALITES ET ORGANISATION DU SYSTEME LYMPHOIDE

I-1 DEFINITION ET ORIGINE

La lymphopoïèse est l'ensemble des phénomènes physiologiques qui concoure à la formation de lymphocytes matures. Elle fait partie de l'hématopoïèse, phénomène aboutissant à la formation des cellules sanguines matures. Le siège de la lymphopoïèse varie au cours de la vie [17]. Chez le fœtus, elle a lieu au niveau du tissu conjonctif embryonnaire jusqu'au 2ème mois, devient hépatique et splénique du 2ème au 6ème mois. Le passage de ce siège à la moelle osseuse (MO) se fait au cours du 2ème trimestre, à partir du 4ème mois. Les lymphocytes sont issus des cellules souches hématopoïétiques (CSH) totipotentes, capables de s'auto-renouveler et de donner naissance à toutes les lignées cellulaires du sang. Ces cellules sont présentes successivement dans le sac vitellin, le foie et la rate chez l'embryon puis la MO chez l'enfant et l'adulte. Les CSH se différencient en progéniteur lymphoïde commun nommé CLP qui donne naissance aux lymphocytes T, B et NK [17].

Notre étude portant sur les lymphocytes T, nous nous limiterons à la description de la lymphopoïèse T.

I-2 ORGANES LYMPHOIDES

Les cellules lymphoïdes naissent, se différencient et se localisent dans les organes lymphoïdes spécialisés. Ces organes peuvent être classés en deux groupes [54]:

- les organes centraux ou primaires qui sont la MO et le thymus.
- les organes périphériques ou secondaires tels que les ganglions lymphatiques, la rate et le tissu lymphoïde associé aux muqueuses (MALT).

I-2-1 ORGANES LYMPHOIDES CENTRAUX

I-2-1-1 Moelle osseuse

La MO est localisée dans les os plats et dans les épiphyses [6]. Elle est constituée d'un réseau de fibrilles vascularisé par des sinus sanguins. Elle contient des cellules adipeuses ou moelle jaune et du tissu hématopoïétique ou moelle rouge dans lequel se trouvent les CSH totipotentes. Les CSH totipotentes se différencient en progéniteurs "déterminés"[55], à l'origine de toutes les cellules sanguines : hématies, plaquettes, monocytes, macrophages, lymphocytes pro-T, lymphocytes pro-B. Outre sa fonction d'organe producteur, la MO se comporte également comme un organe lymphoïde primaire pour la différenciation et la maturation des lymphocytes B.

I-2-1-2 Thymus

Le thymus est situé derrière le sternum, dans le médiastin antérieur, audessus du cœur : on parle de manteau du cœur [29]. Le thymus est un organe lympho-épithélial constitué de deux lobes séparés par une cloison et entourés d'une capsule (figure 1). Chaque lobe thymique est divisé en lobules par des travées conjonctives. L'irrigation est assurée par des vaisseaux provenant des artères thoraciques. Chaque lobule comprend deux zones :

- une zone périphérique, le cortex, peuplé de "thymocytes corticaux" qui sont produits par la multiplication des prothymocytes provenant de la MO;
- une zone médullaire qui contient, en densité plus faible, des lymphocytes
 T matures et différenciés.

Dans la corticale aussi bien que dans la médullaire, il existe des cellules épithéliales, des cellules dendritiques et des macrophages.

Figure 1: structure du thymus selon Parham [63]

I-2-2 ORGANES LYMPHOIDES PERIPHERIQUES

A la sortie des organes lymphoïdes centraux, les lymphocytes sont devenus des cellules immunocompétentes capables de reconnaître un antigène. Ces cellules colonisent les organes lymphoïdes secondaires ; cette colonisation commence chez l'homme un peu avant la naissance. Les lymphocytes T ne se répartissent pas au hasard. Par le "homing", chaque population va élire domicile dans des zones particulières [29]. C'est au sein de ces formations lymphoïdes périphériques qu'a lieu la rencontre entre les cellules immuno-compétentes et l'antigène pour initier la réponse immunitaire.

I-2-2-1 Ganglions lymphatiques

On dénombre environ 1000 ganglions répartis dans tous les points de l'organisme [29]. Ce sont de petits organes arrondis ou réniformes de 1 à 15 mm de diamètre entourés d'une capsule. Ils sont disposés sur le trajet des voies lymphatiques. Le parenchyme ganglionnaire comprend trois zones successives : les zones corticale, paracorticale et médullaire (figure 2).

- dans la zone corticale, la plus externe, on trouve des amas ovalaires de lymphocytes B;
- la zone paracorticale (la région moyenne) est une aire thymo-dépendante, riche en lymphocytes T et en cellules présentatrices d'antigènes ;
- la zone médullaire est une zone mixte dans laquelle on trouve lymphocytes B et T, plasmocytes et macrophages ;

Grâce au drainage par la lymphe, les ganglions permettent la surveillance de nombreux territoires : la peau, les organes profonds, via le tissu interstitiel.

Figure 2: structure du ganglion lymphatique selon Parham [63]

I-2-2-2 Rate

La rate, de forme ovale, est l'organe lymphoïde le plus volumineux : elle mesure environ 12 cm de longueur [6]. Elle est située dans l'hypocondre gauche, entre la grosse tubérosité de l'estomac et le diaphragme. La rate est branchée sur la circulation sanguine et son rôle est important dans l'épuration du sang. Ce filtre laisse passer 100 à 200 ml de sang par minute [6]. Elle n'est pas drainée par une circulation lymphatique. La rate est enveloppée d'une capsule de tissu conjonctif dense et de fibres musculaires lisses et éparses [29]. Le parenchyme de la rate est formé de deux types de tissus, la pulpe rouge et la pulpe blanche (figure 3) :

- ➤ la pulpe blanche se compose essentiellement de tissus lymphoïdes prenant la forme de manchons entourant les rameaux artériels contenant essentiellement des lymphocytes T. Autour de la pulpe blanche on trouve une zone marginale au sein de laquelle des lymphocytes B s'assemblent avec des cellules dendritiques pour former des follicules.
- > la pulpe rouge qui occupe le plus grand espace est constituée d'un réseau de sinus veineux et de cordons cellulaires, les cordons de Billroth, formant un tissu réticulé lâche qui contient des hématies, des leucocytes, des macrophages et des plasmocytes.

I-2-2-3 <u>Tissu lymphoïde annexé aux muqueuses</u>

Le tissu lymphoïde annexé aux muqueuses constitue à lui seul un système: le système immunitaire commun aux muqueuses encore dénommé mucosal associated lymphoïd tissue (MALT) [6].

Ce système assure la protection de plus de 400 m² de muqueuses exposées aux risques de l'environnement **[29]**: muqueuse oculaire, respiratoire, digestive, urogénitale, etc.

Figure 3: Coupe longitudinale du tissu lymphoïde de la rate au niveau d'une artériole et montrant un follicule lymphoïde à la périphérie de la zone périartériolaire selon Genetet [33]

On y remarque une prépondérance de la réponse humorale sur la réponse cellulaire avec une production considérable d'anticorps appartenant à l'isotype IgA. Ces anticorps sont capables de traverser les muqueuses donc d'en assurer la protection [29].

A l'orée des voies aériennes supérieures se trouvent les amygdales et les végétations adénoïdiennes dans lesquelles de nombreux follicules lymphoïdes participent à la surveillance immunitaire contre les infections bactériennes et virales ; on les désigne par le sigle BALT (<u>b</u>ronchus <u>a</u>ssociated <u>l</u>ymphoïd tissue).

Dans le tube digestif, des îlots lymphoïdes disséminés dans la muqueuse intestinale, appelés plaques de Peyer lorsqu'ils sont volumineux, constituent le GALT (gut associated lymphoïd tissue). Le GALT contient à lui seul plus de cellules immunitaires que tout le reste de l'organisme.

II- STADES DE DIFFERENCIATION MEDULLAIRE ET THYMIQUE

La lymphopoïèse se déroule à la fois dans la MO et le thymus. Les cellules lymphoïdes peuvent être regroupées en quatre compartiments répondant à des niveaux de différenciation croissante [16] (figure 4) : les CSH primitives, les progéniteurs, les précurseurs et les cellules matures.

II-1 <u>CSH PRIMITIVES</u>

Elles sont communes à toutes les lignées hématopoiétiques (figure 4), sont localisées dans la MO et sont de deux types : les CSH totipotentes ou pluripotentes et les CSH multipotentes.

Figure 4 : schéma de l'hématopoïèse selon Till et Mc culloch [7]

CFU-S: Colony forming unit in spleen CFU-L: Colony forming unit-lymphocyte

CFU-GEMM: Colony forming unit-Granulo-erythro-Macro-megacaryocyte

BFU-E: Burst forming unit-Erythroïd CFU-E: Colony forming unit-Erythroïd

CFU-GM: Colony forming unit-granulo-macrophage

CFU-M: Colony forming unit-Macrophage CFU-G: Colony forming unit-Granulocyte CFU-MK: Colony forming unit-Megacaryocyte CFU-Eo: Colony forming unit-Eosinophile CFU-B: Colony forming unit-Basophile

II-1-1 PREUVE D'EXISTENCE DES CSH PRIMITIVES

L'existence d'une CSH capable de donner naissance à toutes les lignées sanguines a pu être prouvée chez la souris par l'expérience de Till et Mc Culloch [57]. L'irradiation d'une souris à dose létale détruit son tissu hématopoïétique et induit une aplasie médullaire mortelle en l'absence de greffe de MO. Au contraire, si une greffe de MO d'une souris syngénique est réalisée après irradiation, une restauration hématologique a lieu et l'animal ne décède pas d'insuffisance médullaire. Cette restauration comporte une étape constante de développement d'amas cellulaires macroscopiques appelés colonies dans la rate. Chaque colonie dérive d'une seule CSH et les cellules d'une colonie sont capables de reconstituer une hématopoïèse normale. Ces colonies sont appelées CFU-S (Colony Forming Unit in Spleen) [57].

Chez les êtres humains l'existence d'une cellule souche peut être suggérée par la clonalité des tumeurs. La présence du chromosome Philadelphie au cours de la leucémie myéloïde chronique, non seulement dans la lignée granuleuse mais aussi dans les lignées érythrocytaire, mégacaryocytaire, et dans les lymphocytes B est en faveur de la survenue de cette translocation au niveau d'une cellule commune à ces lignées [31].

II-1-2 CARACTERISTIQUES DES CSH

Parmi les CSH on distingue les CSH totipotentes ou pluripotentes et les CSH multipotentes.

Les cellules totipotentes, cellules plus primitives, répondent à trois critères. Elles sont capables de s'auto renouveler, de se différencier pour donner naissance à l'ensemble des cellules des lignées myéloïde et lymphoïde et de produire une restauration hématologique chez une souris irradiée à dose létale [57].

L'auto renouvellement est la multiplication sans différenciation permettant de maintenir intact un pool de cellules souches primitives. La différenciation est la possibilité sous l'influence de facteurs de croissance, de se diviser en s'engageant de façon irréversible vers plusieurs ou une lignée. La cellule perd alors sa totipotence pour devenir une cellule souche engagée.

Lors d'une hématopoïèse normale il existe un équilibre entre la production des cellules souches par division cellulaire (autorenouvellement) et la perte de cellules souches par engagement vers les lignées cellulaires (différenciation).

Les CSH multipotentes conservent à un degré moindre une certaine capacité d'auto renouvellement avec une capacité de différenciation plus étroite. Ces cellules peuvent être reparties en cellules souches multipotentes lymphoïdes et cellules souches multipotentes myéloïdes. Les CSH ne sont pas identifiables morphologiquement. Elles vont être identifiées par les techniques de culture cellulaire et par l'utilisation d'anticorps monoclonaux.

II-2 PROGENITEURS

Les progéniteurs sont constitués par les CSH multipotentes lymphoïdes et myéloïdes et sont localisés dans la MO. Ils sont peu nombreux et non identifiables morphologiquement [42]. Les CSH myéloïdes sont communes aux lignées myélo-érythroïdes et mégacaryocytaires et sont appélés progéniteurs myéloïdes communs (CMPs) [49] et les CSH lymphoïdes sont appelées progéniteurs lymphoïdes communs (CLPs) [49, 59].

Les CLPs expriment des marqueurs de surface caractéristiques que sont les CD34 et CD10 et possèdent le phénotype Lin- Sca-1^{lo} c-kit^{lo} IL-7 R α + [49] (figure 5).

Restriction myélo -érythrocytaire

<u>Figure 5</u> : modèle classique de l'hématopoïèse selon Bhandoola [15]

Cellules souches hématopoiétiques (**HSCs**) Progéniteurs multipotents (**MPPs**) Progéniteurs lymphoïdes (**CLPs**), Progéniteurs myéloïdes communs (**CMPs**), **Fc\gammaR**, Récepteur pour IgG; **FLT3**, fms- tyrosine kinase 3 liée; **IL-7R** α , Récepteur de la chaine α de l'interleukin-7 **Lin**, Lignée; **SCA1**, Antigène 1 des cellules souches.

<u>Figure 6</u>: stade de différenciation médullaire et thymique dans le développement T humain selon Nicolas [61]

CFU-L: Colony forming unit-Lymphoïd

Pro-T : Pro-Thymocyte

Pré-T : Pré-Thymocyte

DN: Double Négatif

DP : Double Positif

II-3 PRECURSEURS

Les précurseurs dérivent des progéniteurs. Ce sont les premières cellules morphologiquement reconnaissables de chaque lignée. Les précurseurs les plus immatures sont les lymphoblastes. Par ordre d'apparition tout au long de la différenciation lymphoïde (figure 6), on a :

Les prothymocytes ou pro-T

Ces cellules sont localisées au niveau de la MO et expriment à leur surface des marqueurs et leur phénotype est le suivant [67]: CD34+, CD5+/-, CD7+, CD10+. Elles migrent ensuite au niveau du thymus et deviennent les thymocytes immatures ou pré-T.

Les pré-T

Ces cellules sont localisées au niveau du thymus dans la zone souscapsulaire de la corticale. Elles subissent une prolifération et une différenciation au contact des cellules réticulo-épithéliales. Il s'ensuit la disparition du CD34 et l'apparition du CD2 et du terminal désoxy-nucléotidyl transférase (Tdt), enzyme capable d'inclure des nucléotides entre les gènes du T cell receptor (TCR). Elles expriment également le CD10, CD1, CD25. Elles sont à la fois CD4- et CD8- et sont donc qualifiées de doubles négatifs.

En plus, il se produit un réarrangement de la chaîne β du TCR à la surface cellulaire associée à un substitut α formant le pré-TCR ou TCR immature [21]. La majorité des thymocytes (95%) est détruit par apoptose sélectionnant les cellules avec un bon réarrangement de la chaîne β .

Les thymocytes communs

Ces cellules résultent de la différenciation des thymocytes doubles négatifs au contact des macrophages et cellules dendritiques au niveau de la jonction cortico-médullaire du thymus. Sur ces thymocytes, le TCR devient mature, ils

Figure 7: la double sélection thymique selon Wilson [75]

DN: Double Négatif

DP : Double positif

SP : Sélection positive

deviennent doubles positifs (CD4+ et CD8+) et il y a l'apparition du CD3. Il se produit trois sélections [75] (figure 7):

- une sélection des thymocytes avec un bon réarrangement des chaînes α de TCR,
- une sélection positive permettant la survie des thymocytes qui reconnaissent le complexe majeur d'histocompatibilité (CMH),
- une sélection négative permettant la destruction des thymocytes reconnaissant trop fortement le soi.

Au cours de cette éducation thymique, seul 2% des cellules survivent, les autres meurent par apoptose.

Thymocytes matures

Ces cellules résultent de la différenciation des thymocytes communs au contact des cellules présentatrices d'antigènes (CPA) au niveau de la médullaire du thymus. Elles sont soit CD4+, soit CD8+ [76].

II-4 CELLULES MATURES

Les cellules matures représentent les éléments fonctionnels de l'hématopoïèse. Dans le cas précis de la lymphopoïèse T, ces cellules sont constituées des lymphocytes T. A leur sortie du thymus, ces lymphocytes sont matures et naïfs. Ils sont constitués de 2/3 de LTCD4+ et 1/3 de LTCD8+ [21]. Ils ont acquis lors des différentes phases de maturation cellulaire les caractéristiques et les compétences correspondant à leurs attributions. Ils vont coloniser les organes lymphoïdes périphériques au niveau des zones T dépendantes et les MALT placés sur les voies de pénétration de l'antigène. Ainsi les lymphocytes T sont les acteurs de la réponse immunitaire à médiation cellulaire.

Au plan morphologique, on ne peut pas différencier les lymphocytes B des lymphocytes T. En microscopie optique, après coloration au May Grünwald Giemsa (MGG) d'un frottis, selon la taille et le contenu cytoplasmique on décrit deux types de lymphocytes (figures 8 et 9) [13]:

Le petit lymphocyte: c'est une cellule arrondie de 8 à 12 μ de diamètre.
 Le rapport nucléo-cytoplasmique (N/C) est élevé, le noyau est très dense, rouge-violet foncé, arrondi avec parfois une petite encoche ou dépression.
 C'est au niveau de cette dépression que l'on observe un petit cytoplasme bleuté.

La taille est à peine supérieure à celle d'une hématie. Le cytoplasme est parfois

modérément basophile.

• le grand lymphocyte: son diamètre varie de 12 à 15 μ avec un rapport N/C moins élevé. Son Noyau est ovalaire ou quadrangulaire, sa chromatine est dense, d'aspect plus ou moins laqué avec des craquelures ou marbrures. Le Cytoplasme est translucide, parfois discrètement bleuté et peut contenir quelques granulations rouges (de 5 à 30), définissant les grands lymphocytes.

III- PRINCIPALES FONCTIONS DES LYMPHOCYTES T

Les lymphocytes T sont chargés de l'immunité spécifique adaptée strictement à la structure de l'antigène et s'accompagnant du phénomène de mémoire immunologique spécifique de l'antigène initiateur [54]. Dans cette immunité spécifique, les lymphocytes T sont responsables de l'immunité dite à médiation cellulaire. Cette immunité à médiation cellulaire s'exerce tout au long de la réponse immune spécifique [40] :

- au cours de la phase d'induction où le lymphocyte T reconnaît l'antigène ou le peptide antigénique présenté par le macrophage et les autres CPA en association avec le CMH de classe II ou I,

Figure 8 : le petit lymphocyte selon Berthou [13]

Figure 9 : le grand lymphocyte selon Berthou [13]

- au cours de la phase de régulation où le lymphocyte T intervient dans les mécanismes d'interaction, de coopération cellulaire pour la production d'anticorps, la génération de lymphocytes T cytotoxiques, l'induction de cellules effectrices de l'hypersensibilité retardée, la production de cytokines,
- enfin au cours de la phase effectrice où le lymphocyte T intervient pour la destruction de l'antigène par les cellules cytotoxiques, les macrophages activés.

IV- PRINCIPALES MOLECULES DE SURFACE DES

LYMPHOCYTES T

IV-1 COMPLEXE TCR – CD3

Il est présent sur tous les lymphocytes T de l'organisme.

■ <u>T cell receptor</u> (TCR)

Il est constitué de 2 chaînes (figure 10):

- 95 % des lymphocytes T ont un TCR formé de 2 chaînes α et β ;
- 5% des lymphocytes T ont un TCR formé de 2 chaînes γ et δ .

Chaque chaîne a une structure proche de celle d'une immunoglobuline (Ig), avec des régions V, C, D, J [76].

• <u>CD3</u>

C'est un ensemble de 6 molécules : γ , δ , ϵ , ϵ , ζ , ζ (différentes des molécules du TCR). Le TCR reconnaît l'Ag, et ce sont les molécules du CD3 qui réalisent la transduction du signal **[76]**.

IV-2 AUTRES MOLECULES

Ces molécules sont [76]:

- ❖ Les molécules précoces de la lymphopoïèse T :
 - **CD2** : elle représente une molécule d'adhésion
- **CD5** : elle correspond à la molécule d'activation des cellules T induisant la sécrétion d'IL-2.
 - **CD7** : c'est une molécule non spécifique d'immaturité.
- Les molécules présentes sur certains des lymphocytes T :
- **CD4** : elle permet la liaison avec les molécules CMH classe II présent sur 2/3 des lymphocytes, c'est aussi la cible du VIH.
- **CD8** : elle permet la liaison avec les molécules CMH classe 1 présentes sur 1/3 des lymphocytes.
- CD28 : elle intervient dans la coopération cellulaire T B, se couple au
 CD80 des lymphocytes B mais aussi des autres CPA, et induit la synthèse d'IL-2
 et d'IFN-γ par les lymphocytes CD4+.
- Les molécules apparaissant après activation des cellules T :
- **CD45 RO**: cette molécule est présente sur les lymphocytes T activés et mémoires, mais pas sur les lymphocytes T naïfs portant la molécule CD45 RA.
- **CD25 ou IL-2R** α : c'est le récepteur pour l'IL-2, il apparaît après stimulation par les mitogènes ou les virus.
 - CD38 : c'est le marqueur d'immaturité
- **HLA-DR**: c'est un récepteur de la surface cellulaire du complexe majeur d'histocompatibilité de classe II codant pour des protéines situées à la surface des CPA (voir figure XVII). C'est aussi un marqueur d'activation des lymphocytes.

Figure 10: le complexe TCR selon Zandecki [96]

V - <u>APPLICATION : GREFFE DE CELLULES SOUCHES</u> <u>HEMATOPOIETIQUES</u>

V-1 <u>DEFINITION DE LA GREFFE DE CELLULES SOUCHES</u> <u>HEMATOPOÏETIQUES</u>

La greffe de CSH s'intègre dans la stratégie thérapeutique d'un nombre croissant d'affections. En effet pour surmonter les effets néfastes de la chimiothérapie, les cliniciens font appel à la greffe cellulaire. Elle consiste à administrer par voie veineuse à un sujet préalablement conditionné par un traitement cytotoxique lourd, un pool de progéniteurs hématopoïétiques provenant d'un donneur sain. L'objectif est d'assurer progressivement la restauration hématologique et immunologique du sujet greffé. La greffe de CSH est une application de l'étude des marqueurs de surface des CSH particulièrement des CD34.

Pendant longtemps la MO a constitué la seule source de CSH disponibles. La transplantation autologue ou allogénique de MO a été et reste utilisée avec succès dans des situations cliniques variées, mais les problèmes liés à ce type de matériel en limite les applications. De nos jours la greffe de CSH connait un important développement avec de nouvelles sources de CSH.

V-2 DIFFERENTS TYPES DE GREFFES DE CSH

On distingue en fonction du donneur l'allogreffe et l'autogreffe.

V-2-1 ALLOGREFFE DE CSH

L'allogreffe consiste à transplanter à un sujet malade ayant subit une chimiothérapie intensive les CSH d'un sujet sain HLA compatible de la même espèce. Le donneur susceptible d'être le plus compatible avec le receveur potentiel est le frère ou la sœur du patient, étant donné qu'ils ont tous deux hérité de leur composition génétique des mêmes parents. Les frères et sœurs ne possèdent pas toujours des groupes tissulaires étroitement compatibles, mais la probabilité d'une compatibilité élevée entre frères et sœurs est beaucoup plus grande que celle entre individus non apparentés.

L'allogreffe peut être [24]:

- une greffe syngénique ou greffe entre deux jumeaux monozygotes,
- une greffe génoidentique ou greffe entre frère et sœur de la même fratrie,
- une greffe phénoidentique ou greffe entre deux personnes non apparentées,

Cette allogreffe de CSH présente comme avantage une absence totale de cellules leucémiques parmi les cellules réinfusées. Cependant il peut y avoir persistance chez le receveur de cellules leucémiques systémiques. Il faut craindre les complications infectieuses à la phase post-chimio thérapeutique mais surtout les complications immunologiques.

V-2-2 <u>AUTOGREFFE DE CSH</u>

La plupart des indications des greffes autologues concernent des adultes souffrant d'une aplasie liée à une chimiothérapie ou à une radiothérapie. Le but de la greffe est de repeupler la MO du patient avec ses propres CSH. Les greffes de ce type n'exigent pas que les CSH du SCO du patient aient été stockées lors de sa naissance. Elles peuvent en effet être pratiquées en prélevant les CSH du SP du patient préalablement à la thérapie, après stimulation par un facteur de croissance.

L'autogreffe comporte l'avantage d'éviter les incompatibilités et les rejets. Malheureusement elle présente des inconvénients tels que les rechutes dues à la persistance de cellules leucémiques dans la moelle autologue.

V -3- <u>COMPLICATIONS</u>

V -3-1 <u>REACTION DU GREFFON CONTRE L'HOTE</u>

C'est une complication majeure fréquemment observée au cours des greffes de MO. Elle est souvent désignée par l'abréviation GVHD pour graft versus host disease [47]. Cette maladie résulte de l'attaque du receveur par les lymphocytes du donneur. Elle ne survient que lorsque le donneur et le receveur sont incompatibles, et que le receveur est profondément immunodéprimé (ou tolérant vis-à-vis du donneur). Si le greffon contient encore des lymphocytes T, le receveur (patient) est alors incapable de rejeter une greffe allogénique en raison du déficit immunitaire consécutif soit à la maladie soit à l'immunosuppression induite par les traitements ou des deux à la fois, d'où l'intérêt d'étudier les lymphocytes T présents dans le SCO.

Les conditions nécessaires au développement de la maladie du greffon contre l'hôte sont les suivantes :

- une différence d'histocomptabilité entre donneur et receveur
- la présence de cellules immunocompétentes dans le greffon capables de réagir contre les antigènes d'histocompatibilité de l'hôte.
 - l'impossibilité du receveur de rejeter la greffe.

Cependant les greffes allogéniques présentent un avantage majeur car elles peuvent provoquer la réaction du greffon contre la tumeur ou graft versus leukemia (GVL). En effet les globules blancs contenus au sein du greffon, principalement les lymphocytes T, ont la capacité de reconnaître les cellules tumorales restantes chez le receveur et de les détruire. Le patient peut alors lutter lui-même contre sa maladie. Il conservera également ce nouveau système immunitaire toute sa vie, ce qui réduira considérablement les risques de rechutes [8].

V -3-2 <u>INFECTIONS BACTERIENNES, FONGIQUES, VIRALES</u>

Elles sont liées à l'immunodépression nécessaire à la greffe [47] et peuvent constituer un cercle vicieux lors du traitement de la GVHD. Elles sont à l'origine de nombreux décès.

V -3-3 RECHUTES

Elles peuvent intervenir même lorsque les indications de greffe ont été bien posées en raison de facteurs de gravité de la pathologie en cause [47]. C'est l'exemple de certaines anomalies chromosomiques associées aux leucémies. Elles surviennent plus fréquemment chez des patients n'ayant pas eu de GVHD et lors de greffes T déplétées, c'est-à-dire lorsque les lymphocytes T avaient été enlevés du greffon.

Le traitement du patient par des lymphocytes du donneur peut dans certains cas en particulier dans la leucémie myéloïde chronique, entraîner une disparition des cellules tumorales et une seconde rémission.

V-4- <u>DIFFERENTES SOURCES DE CELLULES SOUCHES</u> <u>HEMATOPOÏETIQUES</u>

Les CSH utilisées pour les greffes peuvent provenir de trois sources : la MO, le SP ou le SCO prélevé après la naissance d'un bébé.

V-4-1 MOELLE OSSEUSE

Initialement la MO était la principale source de CSH utilisée pour les greffes. En effet les CSH issues de la MO sont utilisées en thérapeutique depuis plus de vingt ans. De nombreux malades, atteints d'hémopathies malignes, d'aplasies médullaires ou de maladies héréditaires ont pu ainsi être guéris. Cependant cette greffe nécessite chez le donneur une intervention chirurgicale

après une anesthésie générale de deux heures et un délai de quarante huit heures d'hospitalisation. De plus il est difficile de collecter en une seule fois la quantité de MO suffisante pour la greffe [73].

V-4-2 <u>SANG PERIPHERIQUE</u>

Le SP est devenu, avec l'arrivée des régimes de mobilisation, la source préférentielle de CSH. Il fournit le nombre adéquat de CSH tant pour l'autogreffe que pour les allogreffes [73] et représente actuellement en Europe plus de la moitié des greffes. Le recueil par aphérèse des CSH issues du SP succède à une phase de mobilisation de ces cellules. Cette mobilisation est assurée par l'administration au donneur d'un facteur de croissance hématopoiétique, le granulocyte colony stimulating factor (G-CSF).

V-4-3 SANG DE CORDON OMBILICAL

V-4-3-1 <u>Définition et généralités</u>

Le SCO est le sang irriguant le placenta fœtal, le cordon et le fœtus durant la grossesse (voir annexe VII). Longtemps il a été considéré comme un déchet biomédical et jeté au même titre que le placenta après la naissance du bébé. Il est reconnu aujourd'hui pour sa richesse en CSH. Le SCO constitue une source facile à obtenir. Les CSH du SCO sont de plus en plus utilisées à titre de solution de rechange à la MO ou aux cellules souches périphériques pour la greffe visant la prise en charge de pathologies malignes ou bénignes des enfants et des adultes [7]. La présence de CSH dans le SCO est connue depuis longtemps, en revanche leur utilisation pour la transplantation est une idée relativement récente [34].

Les CSH présentes dans le SCO sont spécifiquement enrichies en progéniteurs immatures. Elles expriment à leur surface le CD34 qui est détecté par cytométrie de flux. Ces CSH sont caractérisées par la capacité de

renouvellement qui maintient un réservoir de cellules primitives malgré la production des précurseurs de toutes les lignées du sang, cellules érythroïdes, myéloïdes, lymphoïdes et plaquettes. Cependant, la proportion des CSH capables de reconstituer l'hématopoïèse à court et à long terme après aplasie médullaire est estimée à seulement environ 0,1% - 1% de toutes les cellules CD34+ [34]. En d'autres termes, la majorité de ces cellules CD34+ coexprime déjà d'autres antigènes de surface (comme le CD33, CD42b, Glycophorin, CD19, CD2) démontrant qu'il s' agit bien de progéniteurs déjà engagés vers une lignée spécifique (myéloïde, plaquettaire, érythroïde, lymphocytes B ou T respectivement). Elles forment in vitro plus de colonies et ont une meilleure survie que les CSH du SP [39].

Les lymphocytes du SCO sont pour une large part immatures [19]. Même lors de transplantations non identiques dans le système HLA, il n'a été observé que très peu de réactions du transplant contre l'hôte. L'abondance des cellules T régulatrices (Treg) suggèrent que le système immunitaire néonatal est caractérisé par une tolérance aspécifique. Par définition, le système immunitaire du nouveau-né est naïf, c'est-à-dire qu'il n'a jamais été en contact avec un antigène étranger. Les lymphocytes T naïfs sont caractérisés par l'expression de l'isoforme CD45RA et une faible expression de CD28. La proportion de cellules présentant ces caractéristiques est, comme prévu, plus importante dans le SCO, comparativement à celui de l'adulte. Il a été confirmé qu'un fort pourcentage de cellules NK existe dans le SCO [19].

Ces cellules ont d'importantes fonctions au niveau de la capacité à répondre à un stimulus immunologique. Elles protègent de certains types d'infections et probablement de la récidive tumorale. Le pourcentage des lymphocytes B est comparable à celui du SP [19]. Le SCO est une ressource universelle, facile d'accès. La collecte se réalise sans risque pour la mère ou le nouveau-né.

Les principales limitations à l'utilisation du SCO tiennent à une dose cellulaire moindre et à l'incapacité d'avoir accès au donneur à une date ultérieure pour des fins d'infusion cellulaire [18]. La quantité de cellules requises pour offrir au patient greffé la meilleure chance de réussite et de survie dépend du poids et de l'âge du patient ainsi que de l'état de sa maladie. La dose cellulaire minimale devrait être de 2x10⁷ cellules nucléées /kg de poids du receveur [18] et de 1,7x10⁵ cellules CD34+ /kg de poids du receveur selon plusieurs études [72]. Les travaux de Bensinger, quant à eux, révèlent que la quantité optimale de cellules pour une greffe de CSH serait de 5 à 8.10⁶ cellules CD 34+ /kg de poids corporel du receveur.

V-4-3-2 Greffe de CSH du SCO

La première transplantation hématopoïétique réussie utilisant un SCO a été effectuée en 1987 chez un patient avec anémie de Fanconi. Depuis ce premier cas, le nombre de transplantation n'a cessé d'augmenter [43, 71]. Le succès de cette technique repose sur de nombreux avantages dont une grande disponibilité sous forme de greffon congelé, une baisse du risque de transmission d'infections et de la GVHD et ce tant dans les greffes HLA identiques que HLA non identiques, un prélèvement facile sans exposer le donneur à de l'inconfort ou à des risques [5].

Dans les utilisations actuelles du SCO, les greffes sont de nature allogénique [64]. En ce qui concerne l'autogreffe, il n'existe à ce jour pratiquement aucune indication de conservation de SCO à la naissance en vue d'une greffe autologue ultérieure. On peut toutefois citer des exceptions : dans le cas de types HLA rares, ou dans une famille exposée à un risque de leucémie spécifique, il peut être indiqué de conserver le SCO des nouveau-nés afin que les cellules soient disponibles pour l'un des membres de la famille en cas de

besoin. L'objectif est de permettre une greffe allogénique intrafamiliale plutôt qu'un usage strictement autologue [64].

V-4-3-3 Aspects techniques

Le prélèvement du SCO constitue une procédure simple sur le plan technique qui ne présente à condition d'être effectué avec soin, aucun risque prévisible pour la santé de la mère ou de l'enfant. La technique la plus utilisée consiste à prélever le SCO alors que le placenta se trouve toujours dans l'utérus ; on peut également attendre l'expulsion du placenta pour placer celui-ci dans une structure stérile et prélever le SCO par ponction veineuse [18]. Les collectes sont généralement effectuées dans des sacs contenant un anticoagulant, soit les solutions de citrate-phosphate-dextrose (CPD) ou d'acide citrique-citratedextrose (ACD) ou de l'héparine. La congélation est effectuée dans les 24 heures suivantes. Après manipulation visant la réduction du volume par extraction d'érythrocytes et de plasma, les leucocytes sont mis en présence de diméthyl sulfoxide à une concentration finale de 10 % et congelés progressivement. L'entreposage s'effectue généralement directement dans l'azote liquide (-196°C) ou dans sa phase vapeur. Certaines études semblent démontrer que l'entreposage permet le maintien du potentiel de reconstitution hématopoïétique des cellules durant plusieurs années [5].

V-4-3-4 Aspects éthiques

Recrutement de donneurs

Les banques publiques ont besoin d'une grande diversité d'échantillons représentant le plus grand nombre possible de types HLA afin de pouvoir trouver un donneur compatible pour tout bénéficiaire. Toutefois, si les banques privées voient leur nombre et leur succès augmenter, les banques publiques pourraient ne plus trouver de donneurs potentiels. Ces derniers préféreront

surement que le SCO de leurs nouveau-nés soit conservé à des fins autologues plutôt que d'en faire don. On peut donc craindre que les banques publiques puissent éprouver davantage de difficultés à collecter suffisamment d'échantillons pour atteindre la masse critique nécessaire [64].

Protection de la mère et du nouveau-né

Les pressions exercées pour que la collecte du SCO soit réalisée de façon à répondre à une demande pressante des parents peuvent être plus forte que lorsque la collecte de SCO constitue une procédure systématique s'inscrivant dans un contexte de dons. Elles risquent de détourner l'attention des médecins des soins à dispenser à la mère et à l'enfant [64].

> Fiabilité des banques

Les banques commerciales de SCO proposent une conservation à long terme, mais elles peuvent faire faillite ou cesser leur activité à tout moment. Ceci risque de causer un préjudice aux personnes ayant eu recours à leur service pour la conservation et/ou l'acquisition de SCO [64].

Szetion II: Immunophźnotypagz par cytomźtrię dę flux

I – CYTOMETRIE DE FLUX

I-1 DEFINITION

Le développement des anticorps monoclonaux (AcMo) et l'évolution rapide des lasers et des programmes d'analyse informatique ont permis à la cytométrie de flux de devenir un outil performant d'analyse multiparamétrique cellulaire. Depuis son introduction, son champ d'application a été élargi et touche non seulement les domaines de l'hémato-oncologie mais également de l'immunologie et de la recherche en biologie cellulaire.

Depuis quelques années l'immunophénotypage est devenue indispensable au diagnostic des lymphomes et des leucémies. Elle permet de préciser le type exact de cellules qui prolifèrent et de mettre en évidence certains antigènes de surface dont l'expression peut influencer le pronostic [11]. Elle peut jouer un rôle dans les choix thérapeutiques en guidant l'utilisation de certains AcMo comme le Rituximab (anticorps anti-CD20), l'Alemtuzumab (anticorps anti-CD52), le Gemtuzumab (anticorps anti-CD33 couplé à la calicheamicine) et en détectant les phénomènes de résistance médicamenteuse. La cytométrie de flux est devenue aussi un outil indispensable à la quantification des cellules CD34+ lors de récolte de cellules souches hématopoïétiques périphériques ou médullaires [45].

La cytométrie est une technique qui permet d'analyser rapidement des particules en mouvement qui défilent une à une à l'intérieur d'un flux liquide devant une source lumineuse (rayon laser).

Figure 11 : Représentation schématique d'un cytomètre de flux selon Kuby [40]

I-2 DIFFERENTES PARTIES DU CYTOMETRE

Le cytomètre de flux est composé de trois systèmes (figure 11):

- Un système fluidique composé d'une veine liquide ou gaine s'écoulant à vitesse constante qui entraine et focalise la suspension de cellules. Il permet d'aligner les cellules et de les faire passer une à une devant la source lumineuse.
- Un système optique qui comprend une ou plusieurs sources lumineuses, des miroirs et des filtres. La source lumineuse est un laser qui produit une lumière monochromatique excitant les fluorochromes à une longueur d'onde donnée. Le plus utilisé est à ion argon qui émet une lumière à une longueur d'onde de 488 nm.
- Un système informatique qui convertit les signaux lumineux en signaux numériques, cordonne les données, prépare les représentations graphiques et les analyses statistiques. Les analyses se font à l'aide d'un logiciel.

II- MARQUEURS CELLULAIRES

Les marqueurs cellulaires utilisés pour l'immunophénotypage en cytométrie de flux sont des AcMo couplés à des fluorochromes.

II-1- ANTICORPS MONOCLONAUX

Les AcMo, le plus souvent d'origine murine, sont regroupés en fonction d'une classification qui assigne une appartenance de la molécule qu'ils reconnaissent à un antigène de surface (CD). Ils vont permettre de mettre en évidence des déterminants antigéniques présents à la surface ou à l'intérieur des cellules normales ou pathologiques.

Ces anticorps doivent être couplés à des fluorochromes pour être détectés par cytométrie de flux. Deux modes de marquage peuvent être réalisés :

- Marquage direct ou immunofluorescence directe.

L'AcMo reconnaissant le déterminant antigénique à la surface de la cellule est directement couplé à un fluorochrome. Cette réaction se fera en une seule étape.

- Marquage indirect ou immunofluorescence indirecte.

L'AcMo fixé à l'antigène de surface est reconnu par un anticorps dirigé contre lui et couplé à un fluorochrome. Cette réaction se fera en deux étapes: la première traduit l'interaction Ag-AcMo, la deuxième permet de coupler l'Ac Mo à un conjugué fluorescent et de le révéler.

II-2- FLUOROCHROMES

Les fluorochromes sont des molécules capables d'absorber de l'énergie lumineuse et d'en émettre avec une longueur d'onde plus grande. Le nombre de fluorochromes disponibles pour effectuer le phénotypage a augmenté avec l'utilisation des cytomètres permettant des analyses multiparamétriques. Les substances les plus usuelles sont :

- L'isothiocyanate de fluorescéine (FITC), petite molécule stimulable par un laser usuel à argon à 488 nm, de poids moléculaire 389 Da. Elle émet dans le vert à 525 nm [77]. Son intensité d'émission est très dépendante du pH.
- La phycoérythrine (PE), grosse molécule de 240000 Da. Elle est stimulable par un laser à argon et émet dans l'orange entre 565 et 590 nm [77].
- Le tandem Protéine de Chlorophylle de Piridinine et Cyanine 5 (PerCP-Cy5.5), système associant la PerCP et la cyanine 5. Lorsque la PerCP est excitée par un laser à ion argon à 488 nm, elle est capable de transférer son énergie de fluorescence à la molécule de cyanine qui devient alors fluorescente.
- La PE-cyanine (PE-Cy5), tandem de deux molécules ayant le même spectre d'émission. La première étant la PE et la seconde la cyanine 5. Cette dernière est excitée et émet à 667nm.

III- RESULTATS

Les signaux transmis au système électronique sont affichés à l'écran sous forme d'histogramme ou cytogramme.

III-1- HISTOGRAMME

L'histogramme est une représentation graphique du nombre de cellules en fonction de l'intensité du paramètre étudié. Elle permet de distinguer les différents niveaux d'expression du paramètre étudié au niveau des cellules.

III-2- CYTOGRAMME

Le cytogramme est la représentation des cellules analysées sur un diagramme à deux dimensions. Il montre un nuage de point où chaque point représente une cellule en fonction de deux paramètres. Il est possible de distinguer différentes populations cellulaires et de tracer le contour de la population à étudier en excluant les autres.

DEUXIEME PARTIE: ETUDE EXPERIMENTALE

Section I: Matériel et méthodes

I - MATERIEL

I-1- TYPE, CADRE ET DUREE DE L'ETUDE

Il s'agit d'une étude de type transversale qui fait partie d'une série de travaux initiée par le département d'hématologie et d'immunologie de l'UFR des Sciences Pharmaceutiques et Biologiques de Côte d'Ivoire. Notre étude s'est déroulée à la maternité de l'hôpital général de Yopougon Attié pour le recrutement des parturientes et le recueil des prélèvements. L'analyse des échantillons s'est faite dans les unités d'hématologie et de biologie SIDA (UBS) du laboratoire central du CHU de Yopougon. L'étude s'est déroulée sur une période de 9 mois allant de janvier 2010 à septembre 2010. Il s'agit d'un travail de groupe en vue de l'étude du sang de cordon ombilical réalisé par plusieurs étudiantes. Les paramètres étudiés étaient les suivants : CD56, CD34+, CD38, CD3, CD4, l'hémogramme et l'électrophorèse de l'hémoglobine. En ce qui nous concerne, nous nous sommes intéressés à la caractérisation des lymphocytes T.

I-2- POPULATION CIBLE

> Sélection des parturientes

Nous avons constitué notre population d'étude à partir de 63 femmes venues pour un accouchement à la maternité de l'hôpital général de Yopougon attié. En effet les parturientes, leurs parents ou accompagnateurs ont été informés de l'objet de l'étude. Après obtention de leur consentement verbal, ils ont répondu à un questionnaire en entretien avec l'enquêteur. Des informations complémentaires sur les données cliniques et biologiques ont été obtenues en consultant le carnet de santé des parturientes.

Critères d'inclusion

Nous avons retenu pour cette étude les mères admises à la maternité de Yopougon Attié, de sérologie VIH négative, ne présentant pas d'autres antécédents pathologiques majeurs. Ces accouchements doivent être réalisés à terme, par voie basse avec des nouveau-nés vivants.

> Critères de non inclusion

Nous n'avons pas retenu les mères ayant soit mis au monde un mort né, soit un enfant mort dans les premières heures après sa naissance, ainsi que les mères décédées en couche. Les échantillons dont l'analyse n'était pas réalisée avant 24 heures ou contenant un caillot ont été retirés de notre étude.

I-3- APPAREILLAGE

Immunophénotypage

- FACSCalibur de Becton Dickinson et son système informatique composé d'un ordinateur Macintosh et d'une imprimante hp bussiness inkjet 2300 (figure 12)
- Centrifugeuse

***** Hémogramme

- Analyseur automatique Sysmex XT-2000i (figure 13)
- Microscope optique

I-4- REACTIFS ET PETIT MATERIEL

Prélèvement

- Tubes Vacutainer avec l'anticoagulant Ethylène Diamine Tétra-acétate (EDTA)
- Aiguilles Vacutainer
- Gants
- Alcool éthylique à 60°c

Figure 12 : FACSCalibur Flow Cytometer de Becton Dickinson

<u>Figure 13</u>: Analyseur automatique de marque « Sysmex XT-2000i » (laboratoire d'hématologie CHU de Yopougon)

* Hémogramme

- Cell clean de SYSMEX Ref : D9113
- Stromatolyser-FB FBA-200A: D9847
- Stromatolyser-4DL FFD-200A: D0008
- Cell pack de SYSMEX Réf : D91100
- Sulfolyser SLS-200A Réf : D9005

Immunophénotypage

- Solution de BD Facs lyse érythrocytaire Ref : 349202 de BD,
- Solution de BD cellWash pour le lavage Ref : 349524 de BD,
- Liquide de gaine BD Facs Flow de BD Ref: 342003 de BD,
- Tubes BD Falcon Ref: 352052 de BD,
- Embouts (jaune et bleu),
- Pipettes,
- Vortex,
- Chambre Obscure
- Eau distillée
- Réactif de BD AcMo anti CD34(PE) Réf: 345802
- Des AcMo de marquage TriTEST CD45 Per-CP/CD3 FITC/CD4 PE de BD. Réf : 345803.

II - METHODES

Après obtention de leur accord, les parturientes ont été soumises à un dépistage volontaire du VIH. Celles qui présentaient un statut sérologique VIH négatif étaient retenues pour le prélèvement du SCO sur lequel nous avons réalisé un hémogramme et un immunophénotypage.

II-1- FICHE D'ENQUETE

La fiche d'enquête (voir annexe I) a guidé l'interrogatoire et a permis d'obtenir des informations sur :

- l'identité du patient,
- les paramètres socio-démographiques permettant de connaitre l'âge, le sexe, la nationalité, le groupe ethnique et le lieu d'habitation des parturientes.
- les paramètres socio-économiques : le niveau socio économique a été défini en fonction du type d'habitation, de l'existence d'électrification et d'eau courante, de la profession des membres du ménage, du nombre d'enfants à la charge des parents [48].

De ces critères, nous avons pu ressortir trois niveaux socio-économiques :

✓ Niveau bas

Parturientes habitant un quartier précaire, une cour commune ou une baraque, ne bénéficiant pas d'eau courante ou d'électricité à domicile. Parturientes sans revenu fixe, mariées ou non avec à leur charge au moins un enfant.

✓ Niveau moyen

Parturientes habitant une villa ou un appartement dans un quartier modeste (convenable), bénéficiant d'eau et d'électricité à domicile. Parturientes mariées ou non, avec un revenu fixe et des charges aisées.

✓ Niveau élevé

Parturientes habitant une villa ou un appartement dans un quartier résidentiel, bénéficiant d'eau et d'électricité à domicile. Parturientes mariées ou non, avec un revenu fixe et des charges aisées.

• les paramètres gynéco-obstétriques et néonataux parmi lesquels nous avons la gestitité, la parité et l'indice d'Apgar.

✓ Gestité et parité

La gestité correspond au nombre de grossesses qu'a eu la femme avant cet accouchement et la parité est le nombre d'accouchements viables antérieurs [25]. Ainsi nous aurons soit une primigeste, une paucigeste (2 à 4 grossesses), une multigeste (5 à 6), une grande multigeste (7 et plus), idem pour la parité.

✓ Indice d'Apgar

Le score d'Apgar est l'indice de viabilité du nouveau-né. Il est apprécié dans les minutes qui suivent la naissance et est basé sur cinq paramètres quottés de 0 à 2 que sont le rythme cardiaque, la respiration, la couleur des téguments, le tonus musculaire et la réactivité. L'état du nouveau né est dit normal lorsque l'indice d'Apgar est supérieur à 7 à une minute. Lorsqu'il est inferieur à 7, on parle de détresse périnatale du nouveau-né. Le terme d'hypoxie néonatal est utilisé lorsque le score d'Apgar est inférieur à 4 à une minute [27].

- les renseignements cliniques de la mère
- **le profil biologique** qui a porté sur les résultats de l'immunophénotypage et de l'hémogramme.

II-2- PRELEVEMENT

A la naissance du bébé, le cordon ombilical est doublement clampé à 5 et 7 cm de l'ombilic du bébé puis sectionné entre ces deux points. Après le retrait de l'enfant et avant que le placenta ne soit expulsé, le cordon ombilical (encore relié au placenta) est désinfecté et le sang est recueilli à l'aide d'une aiguille par ponction veineuse dans un tube de prélèvement contenant un anticoagulant (voir annexe II). Le placenta restant in situ pour bénéficier des contractions utérines qui permettent d'obtenir un bon flux sanguin.

Les prélèvements étaient ensuite acheminés vers le laboratoire dans des glacières pour la réalisation des analyses biologiques.

II-3- <u>HEMOGRAMME</u>

II-3-1 NUMERATION GLOBULAIRE

II-3-1-1 Principe

Les cellules en suspension dans un liquide conducteur passent l'une après l'autre à travers un micro orifice séparant deux chambres munies d'électrodes. Ce passage entraîne une brève variation d'impédance, proportionnelle au volume cellulaire. Le dénombrement et la mesure des volumes cellulaires sont effectués par le système électronique.

L'automate d'hématologie (Sysmex) permet d'effectuer la mesure automatique du taux d'hémoglobine, la numération des éléments figurés du sang : GR, GB, PQ, la détermination des constantes hématimétriques (VGM, TCMH, CCMH) et l'établissement de la formule leucocytaire approchée (Voir annexe IV).

II-3-1-2 Lecture automatisée

Les échantillons de sang recueillis, sont identifiés au préalable par un numéro d'ordre. Après agitation, ils sont passés à la lecture automatique au Sysmex.

II-3-2 ETABLISSEMENT DE LA FORMULE LEUCOCYTAIRE

II-3-2-1 Mode opératoire

II-3-2-1-1 Réalisation du frottis

- Déposer une goutte de sang sur une lame propre et dégraissée;

- Etaler la goutte à l'aide d'une autre lame à bord rodé jusqu'à l'autre extrémité de sorte à avoir un frottis mince régulier et complet;
 - Faire sécher le frottis à l'air libre;
 - Identifier la lame au crayon à papier sur la face du frottis.

II-3-2-1-2 Coloration au May Grunwald Giemsa (MGG)

Principe

Le principe repose sur l'action complémentaire de deux colorants neutres et sur l'affinité des éléments cellulaires pour les colorants acides ou basiques. Ces colorants sont :

- le colorant May-Grunwald, neutre contenant un colorant acide (éosine) et un colorant basique (bleu de méthylène);
 - le colorant Giemsa neutre contient de l'éosine et un colorant basique (azur de méthylène).

Ces deux colorants sont solubilisés dans le méthanol et sont inactifs dans cette solution. L'adjonction d'eau leur donne le pouvoir colorant.

Coloration proprement dite

- ✓ Plonger les frottis disposés sur le portoir de lames dans une solution de May Grunwald pendant 3-5 min;
 - ✓ Rincer à l'eau pour éliminer l'excès de colorant;
 - ✓ Plonger les frottis dans une solution de Giemsa pendant 10-15 min;
 - ✓ Rincer les frottis à l'eau ;
- ✓ Sécher les frottis, puis lire au microscope optique à immersion dans une goutte d'huile.

II-3-2-2 Lecture du frottis

Elle a pour objectif d'établir la formule leucocytaire et le pourcentage d'éventuels érythroblastes.

Les lames sont lues au microscope optique à l'objectif 100. Un total de 100 leucocytes sont comptés et le pourcentage des différents types leucocytaires établi, en particulier la proportion de cellules mononuclées (monocytes, lymphocytes et polynucléaires). Les érythroblastes sont également comptés, leur pourcentage établi et leur nombre est soustrait du nombre de leucocytes.

II-4- <u>IMMUNOPHENOTYPAGE</u>

II-4-1 PRINCIPE

Des cellules marquées par des fluorochromes et en suspension passent une à une grâce à une gaine liquide, devant un faisceau laser monochromatique de longueur d'onde connue. D'une part, le faisceau est diffracté en fonction de la taille et de la granulation de la cellule. L'intensité de la lumière diffractée dans l'axe du faisceau est proportionnelle à la taille de la cellule ou Forward Scatter (FSC), celle diffractée perpendiculairement à l'axe est proportionnelle à la granularité cellulaire ou Side Scatter (SSC). D'autre part, le faisceau excite les fluorochromes qui émettent alors une fluorescence de longueur d'onde précise d'intensité proportionnelle à leur quantité. Les lumières diffractées et les fluorescences émises sont captées grâce à un système optique, par des photomultiplicateurs et converties en signaux électroniques. Ces signaux sont analysés par une unité informatique grâce à un logiciel adapté. Les résultats sont donnés sous forme de diagrammes, d'histogrammes et de données statistiques (Figure 14).

II-4-2 MODE OPERATOIRE

- Disposer de deux tubes Falcon (tube 1 et 2);
- Distribuer dans le tube 1, 10 μl d'AcMo CD34 et dans le tube 2, 10μl
 d'AcMo CD45/CD3/CD4;
 - Distribuer dans chaque tube 50 µl de SCO;
- Agiter délicatement au vortex et incuber pendant 15 min à l'obscurité à température ambiante (20 et 25°C);
- Ajouter 500 μl de solution de lyse érythrocytaire BD FACS pour faire la lyse des globules rouges;
- Agiter délicatement au vortex et incuber pendant 10 minutes à l'obscurité;
- Centrifuger à faible vitesse (1600 tours par minute pendant cinq minutes) puis recueillir le culot cellulaire en rejetant le surnageant ;
- Ajouter 2 ml de solution BD CellWASH pour laver les cellules et éliminer l'excès de réactif non fixé;
- Centrifuger à 1600 tours par minute pendant cinq minutes puis recueillir le culot cellulaire en rejetant le surnageant ;
- Ajouter 500 μl de solution BD FACS FLOW (liquide de gaine) et agiter au vortex.
 - Agiter légèrement et lire au cytomètre de flux;

II-4-3 ANALYSE AU CYTOMETRE DE FLUX

La lecture au cytomètre nous a permis d'obtenir les cytogrammes qui pour notre étude étaient réalisés par le logiciel CELLQUEST. Le cytomètre fait une analyse en tenant compte des caractères de diffusion intrinsèque des cellules sanguines tels que la taille ou forward scatter (FSC) et la granulométrie ou side scatter (SSC).

Figure 14 : Principe de l'immunophénotypage selon Kuby [40]

Le cytogramme montre un nuage de points correspondant aux cellules. Trois régions de forte densité sont observées. Chacune d'elles correspond à des populations cellulaires ayant les mêmes caractéristiques de taille et de granularité (annexe III).

Le contour de la population d'étude constituée par les cellules mononuclées (CMN) est tracé créant ainsi la zone d'intérêt ou fenêtre ou région (R1) et excluant les débris et les autres cellules. Cette zone contient une population homogène.

Tableau I : Caractères de diffusion et de fluorescence des CMN

	FSC SSC		
	Taille	Granulométrie	
Lymphocytes	+	+	
Granulocytes	+++	+++	
Monocytes	++	++	

+: Faible

++: Moyen

+++ : Élevé

Pour notre analyse, nous avons suivi les étapes suivantes :

• Un premier fenêtrage a été réalisé selon la taille et la granularité des cellules. Ce fenêtrage nous a permis de mettre en évidence les cellules mononuclées (CMN) qui se caractérisent par leur faible poids et leur taille plus ou moins grande ;

- A partir de la fenêtre des CMN, les cellules ont été analysées par le marqueur CD34 ;
- Les cellules CD34+ ont été retenues (la positivité d'un marqueur était affirmée lorsque 20% des cellules portaient ce marqueur) ;
- A partir du fenêtrage des cellules CD34+, les cellules ont été analysées par les marqueurs CD3 et CD4 ;
- L'analyse nous permet d'obtenir les proportions de lymphocytes TCD3+ et TCD4+ présents dans cette population cellulaire.

II-4-4 Expression des résultats

Dans notre étude le phénotypage lymphocytaire a été réalisé suivant la technique « lymphogating », c'est le concept de Double Plate-forme. L'idée de double plate-forme vient du fait que l'on a recourt à deux instruments automatisés séparés qui opèrent en parallèle au cours de l'analyse. Il s'agit d'un cytomètre de flux et d'un analyseur d'hématologie (compteur de globules) [19].

Le phénotypage lymphocytaire était réalisé concomitamment avec l'hémogramme à partir du même échantillon de sang total pour chaque patient. La formule ci-après permet de calculer le taux absolu (Cellules/mm³) de lymphocytes T [69].

```
LTCD4 (Cellules/mm<sup>3</sup>) = (%LT4) x (%LY) x CMN/10000
LTCD3 (Cellules/mm<sup>3</sup>) = (%LT) × (%LY) × CMN/10000
```

%LTCD4 = pourcentage des LTCD4 obtenu par cytométrie de flux.

%LT = pourcentage des lymphocytes T obtenu par cytométrie de flux.

%LY = pourcentage de lymphocytes obtenu par l'automate d'hématologie.

CMN = taux absolu de CMN par μl obtenu par l'hémogramme.

II-5 ANALYSE STATISTIQUE DES DONNEES

Les études statistiques ont été réalisées à l'aide des logiciels EXCEL et WORD 2007, Epi Info 2003. Pour les comparaisons de moyennes, nous avons utilisé le test de t student au risque $\alpha = 5\%$.

Les différences sont considérées comme statistiquement significatives pour des valeurs de $\,p < 0.05$.

III – <u>DIFFICULTES RENCONTREES</u>

Tout au long de notre étude, nous avons été confrontés à de nombreuses difficultés dont :

- Les heures retenues pour les prélèvements. En effet, les accouchements ayant lieu pour une grande part dans la nuit, nous avons dû privilégier les gardes de nuit pour le recueil de nos échantillons de SCO.
- La méthode de prélèvement qui était très délicate car il fallait nécessairement retrouver la veine ombilicale pour le recueil du SCO.

Section II: Résultats et commentaires

I – <u>CARACTERISTIQUES SOCIO-DEMOGRAPHIQUES.</u>

I-1-MERES

Figure 15 : répartition des mères selon l'âge

L'âge des mères variait de 16 à 42 ans avec une moyenne de 26 \pm 6 ans.

Figure 16: distribution des mères selon leur nationalité

Les mères ivoiriennes prédominaient dans cette population avec un taux de 90,5%.

 $\underline{\textbf{Figure 17}}: \textbf{répartition des mères selon leur profession}$

La majorité des parturientes exerçait dans le domaine informel (45,9%).

Figure 18 : distribution des mères selon leur niveau socio-économique

Les parturientes avaient un niveau socio-économique moyen (79,40%).

I- 2 – <u>NOUVEAU-NES</u>

Figure 19 : distribution des nouveau-nés selon le sexe

Le sex-ratio était de 1,25 avec une prédominance masculine.

II – <u>CARACTERISTIQUES CLINIQUES</u>

$II - 1 - \underline{MERES}$

Figure 20 : distribution des mères selon la gestité

Les mères paucigestes étaient les plus nombreuses (55,6%).

Figure 21 : répartition des mères selon la parité

Nous avons remarqué une proportion plus élevée de mères paucipares (38,10%), suivies de près par les nullipares (31,70%).

Figure 22 : distribution des mères selon la couverture vaccinale antitétanique

65,10% des mères étaient vaccinées contre le tétanos.

Figure 23 : distribution des mères selon le nombre de consultations prénatales

Dans 53,90% des cas, les parturientes ont eu à réaliser au moins quatre consultations prénatales au cours de leur grossesse. La moyenne des consultations était de 4 ± 2 avec des extrêmes allant de 1 à 6.

$II-2-\underline{NOUVEAU\text{-}NES}$

Figure 24 : distribution des nouveau-nés selon le poids

Nous avons observé une prédominance de nouveau-nés à poids normal (89%). le poids moyen était de $3085 \pm 443g$ avec un minimum à 2250g et un maximum à 4200g.

Figure 25: répartition des nouveau-nés selon l'indice d'Apgar

Selon l'indice d'APGAR, les nouveau-nés étaient normaux dans 88,89% des cas.

III – <u>CARACTERISTIQUES BIOLOGIQUES DU SANG DE</u> <u>CORDON OMBILICAL</u>

Tableau II: Paramètres érythrocytaires et plaquettaires du SCO

	Moyenne	écart type	minimum	maximum
GR (T/l)	4,32	0,652	1,93	5,85
Hb (g/dl)	14,37	1,86	7,8	18,3
Hte (%)	44.61	5.66	25.3	56.2
VGM (fl)	104	8,46	86,5	131,1
TCMH (pg)	33,46	2,80	26.3	40,4
CCMH (g/dl)	32,21	1,33	27,4	34,9
PQ (G/l)	254	70	45	429

L'hémogramme du sang de cordon ombilical nous révélait une macrocytose modérée isolée.

<u>Tableau III</u>: Valeurs absolues et relatives des éléments nucléés et des cellules CD34+ du SCO.

Paramètres	Moyenne	écart type	minimum	maximum
GB ■ (cel/µl)	13 840	4 485	1 571	31 630
Ly totaux				
 (cel/µl) (%)	5 276 41.56	2 158 10.07	267 3	13 601 60
LTCD3+				
■ (cel/μl) ■ (%)	3 499 67.13	1 399 10,72	166 44	8 297 88
LTCD4+				
 (cel/µl) (%)	2 455 47,27	1 092 10,78	139 20	5 577 70
CMN				
 (cel/µl) (%)	5 611 44,05	2 330 10,13	354 4,11	15 183 62
CD34+				
■ (cel/µl) ■ (%)	139,5 2,32	158 1,91	1,91 0,17	1040 7,49

L'étude de ces populations a montré la présence dans le sang de cordon d'éléments nucléés et de cellules souches hématopoïétiques CD34+.

IV – FACTEURS SUSCEPTIBLES D'INFLUENCER LES POPULATIONS LYMPHOCYTAIRES TOTALES

IV – 1 – FACTEURS SOCIO DEMOGRAPHIQUES

<u>Tableau IV</u>: Influence des paramètres socio démographiques étudiés sur la population lymphocytaire totale

Paramètres socio-	L	ymphocytes Totaux		
démographiques	Effectif	Moyenne	E.T	Valeur p
• Age de la mère				
15-35 ans	59	5252,87	2213,10	0,746
>35 ans	04	5621,62	1728,95	0,740
• Sexe de l'enfant				
Masculin	35	4710,78	1784,06	0,089
Féminin	28	5983,16	2435,46	0,009
 Niveau socio - économique mère 				
Bas	13	5279,98	3019,56	0,677
Moyen	50	5275,32	1938,53	0,077

Le sexe de l'enfant d'une part, l'âge et le niveau socio-économique de la mère d'autre part n'ont eu aucune incidence statistique sur les populations lymphocytaires totales.

IV – 2 – <u>FACTEURS CLINIQUES</u>

<u>Tableau V:</u> Influence des paramètres cliniques étudiés sur la population lymphocytaire totale

Paramètres cliniques	Lympho	Lymphocytes Totaux				
i arametres chinques	Effectif	Moyenne	E.T	Valeur		
				p		
 Poids de naissance 						
Moins de 2500 g (FPN)	05	4724,13	1352,61	0,577		
2500-4000 g (normal)	56 5303,95		2266,77			
• Poids de naissance						
2500-4000 g (normal)	56	5303,95	2266,77	0,722		
>4000 g (macrosome)	02	5881,97	1152,57	0,722		
• Gestité						
1-4 (Primigeste et	49	5222,48	2181,13	0,717		
Paucigeste)				0,717		
>4 (Multigeste)	14	5464,58	2228,49			
• Parité						
Nullipare (0)	20	6128,04	2112,35	<u>0,033</u>		
Autre (≥1)	43	4880,11	2112,96	<u>0,033</u>		
• Apgar						
Anormal	07	6596,43	3955,95	0,137		
Normal	56	5111,26	1838,62			
Statut vaccinal						
Vacciné	41	5410,69	2345,03	0,508		
Non vacciné	22	5025,80	1844,73			

Seule la parité de la mère avait une influence sur le taux des lymphocytes totaux.

IV - 3 - FACTEURS BIOLOGIQUES

<u>Tableau VI</u>: Influence des paramètres biologiques étudiés sur la population lymphocytaire Totale

Paramètres biologiques	Lympho	Lymphocytes Totaux					
Tarametres biologiques	Effectif	Moyenne	E.T	Valeur p			
• Taux d'Hb (g/dl)							
<14	26	5164,28	2130,33	0,735			
≥14	37	5354,99	233,19	0,733			
• GR (T/l)							
<5	56	5241,46	2278,54	0,723			
5-6	07	5554,82	1110,04	0,723			
• PQ (cel/μl)							
$<150.10^3$	05	4685,44	649,86	0,401			
$\geq 150.10^3$	58	5327,22	2255,46	0,401			
• GB (cel/µl)							
$<10.10^3$	14	3175,72	1340,01	0,001			
$10-25.10^3$	49	5876,44	1993,66	<u>0,001</u>			
• CMN (cel/µl)							
$<5,61.10^3$	37	3967,81	1282,07	0,001			
\geq 5,61.10 ³	26	7138,34	1798,67	<u>0,001</u>			
• CD34+ (%)							
<2,32	39	4819,77	1923,40	0,033			
≥2,32	24	6018,11	2392,35	<u>0,033</u>			

Les globules blancs, les cellules mononuclées et cellules CD34+ avaient une incidence statistiquement significative sur la population lymphocytaire totale. En effet plus leur taux était élevé, plus celui des lymphocytes totaux augmentait.

V- <u>FACTEURS SUSCEPTIBLES D'INFLUENCER LES</u> POPULATIONS LYMPHOCYTAIRES TCD3+

V - 1 - FACTEURS SOCIO DEMOGRAPHIQUES

<u>Tableau VII</u>: Influence des paramètres socio démographiques étudiés sur la population lymphocytaire TCD3+

Paramètres socio-		Lymphocytes T		
démographiques	Effectif	Moyenne	E.T	Valeur
				<u>p</u>
 Age de la mère 				
15-35 ans	59	3452,59	1395,74	0,308
>35 ans	04	419,33	1467,33	0,500
• Sexe de l'enfant				
Masculin	35	3220,75	1164,51	0.077
Féminin	28	3848,48	1601,84	0,077
Niveau socio- économique mère				
•	12	2614.14	1050 40	
Bas	13	3614,14	1859,49	0,081
Moyen	50	3470,00	1276,22	

L'âge, le niveau socio-économique de la mère d'une part et le sexe de l'enfant d'autre part n'avaient aucune incidence sur le taux de lymphocytes TCD3+.

V - 2 - FACTEURS CLINIQUES

<u>Tableau VIII</u>: Influence des paramètres cliniques étudiés sur la population lymphocytaire TCD3+

Paramètres cliniques		Lymphocytes T		
r ar ametres eninques	Effectif	Moyenne	E.T	Valeur
				p
 Poids de naissance 				
Moins de 2500 g (FPN)	05	3118,97	975,23	0,555
2500-4000 g (normal)	56	3510,26	1438,69	
• Poids de naissance				
2500-4000 g (normal)	56	3510,26	1438,69	0,535
>4000 g (macrosome)	02	4157,24	1508,10	0,333
• Gestité				
1-4 (Primigeste et Paucigeste)	49	3511,19	1480,14	0,904
>4 (Multigeste)	14	3459,67	1120,68	
• Parité				
Nullipare (0)	20	4003,14	1455,28	0,051
Autres (≥1)	43	3265,61	1326,03	0,031
• Apgar				
Anormal	07	4330,73	2617,64	0,237
Normal	56	3395,87	1167,48	0,237
Statut vaccinal				
Vacciné	41	3619,94	1414,75	0,356
Non vacciné	22	3275,73	1375,95	

Le poids à la naissance, l'indice d'Apgar, la gestité, la parité et le statut vaccinal de la mère n'ont eu aucune incidence statistiquement significative sur les populations lymphocytaires TCD3+.

V - 3 - FACTEURS BIOLOGIQUES

<u>Tableau IX</u>: Influence des paramètres biologiques étudiés sur la population lymphocytaire TCD3+

Paramètres biologiques	Lymphocytes TCD3+				
Tarametres biologiques	Effectif	Moyenne		E.T	Valeur p
Taux d'Hb (g/dl)					P
<14	26	3436,09		1507,07	0,764
≥14	37	3544,48		1339,10	0,704
• GR (T/I)					
<5	56	3491,18		1438,05	0,478
5-6	07	3568,24	1135,78	0,470	
• PQ (cel/μl)					
$<150.10^3$	05	3078,63		605,91	0,488
$\geq 150.10^3$	58	3536,05		1445,40	0,700
• GB (cel/µl)					
$<10.10^3$	14	2404,66	1117000	1056,77	0,001
10-25.10 ³	49	3812,62	1779000	1333,95	<u>0,001</u>
• CMN (cel/µl)					
$<5,61.10^3$	37	2687,08		921,85	0,001
\geq 5,61.10 ³	26	4656,23		1126,27	0,001
• CD34+ (%)					
<2,32%	39	3188,82		1262,13	0,023
≥2,32%	24	4005,00		1490,33	0,023

Plus les taux de globules blancs, cellules mononucléées et cellules CD34+ étaient élevés, plus celui des lymphocytes TCD3+ augmentait.

VI – <u>FACTEURS SUSCEPTIBLES D'INFLUENCER LES</u> POPULATIONS LYMPHOCYTAIRES TCD4+

VI-1-FACTEURS SOCIO-DEMOGRAPHIQUES

<u>Tableau X</u>: Influence des paramètres socio démographiques étudiés sur la population lymphocytaire T CD4+

Paramètres socio-	I	ymphocytes T CD4+		
démographiques	Effectif	Moyenne	E.T	Valeur
				p
• Age de la mère				
15-35 ans	59	2397,72	1061,85	0,107
>35 ans	04	3307,54	1353,62	0,107
• Sexe de l'enfant				
Masculin	35	2193,91	868,52	0,067
Féminin	28	2782,46	1261,36	0,007
Niveau socio- économique mère				
Bas	13	2657,43	1407,12	0,458
Moyen	50	2402,99	1005,76	0,730

L'âge, le niveau socio-économique de la mère d'une part et le sexe de l'enfant d'autre part n'ont eu aucune incidence statistiquement significative sur le taux des lymphocytes TCD4+.

VI – 2 – <u>FACTEURS CLINIQUES</u>

<u>Tableau XI</u>: Influence des paramètres cliniques étudiés sur la population lymphocytaire TCD4+

Paramètres cliniques	Lympho			
1 at affect es chinques	Effectif	Moyenne	E.T	Valeur p
• Poids de naissance				
Moins de 2500 g (FPN)	05	2121,19	771,94	0,504
2500-4000 g (normal)	56	2467,74	1125,45	
• Poids de naissance				
2500-4000 g (normal)	56	2467,74	1125,45	0.554
>4000 g (macrosome)	02	2948,25	944,85	0,334
 Gestité 				
1-4 (Primigeste et Paucigeste)	49	2476,26	1139,56	0,780
>4 (Multigeste)	14	2382,80	943,24	
• Parité				
Nullipare (0)	20	2772,39	1065,37	0,117
Autre (≥1)	43	2308,09	1085,46	0,117
• Apgar				
Anormal	07	2773,34	1916,11	0,895
Normal	56 2415,76 9		964,55	0,073
• Statut vaccinal				
Vacciné	41	2500,80	1107,54	0,656
Non vacciné	22	2371,05	1084,24	

Le poids à la naissance, l'indice d'Apgar, la gestité, la parité et le statut vaccinal de la mère n'ont eu aucune incidence statistiquement significative sur les populations lymphocytaires TCD4+.

VI - 3 - FACTEURS BIOLOGIQUES

<u>Tableau XII</u>: Influence des paramètres biologiques étudiés sur la population lymphocytaire TCD4+

Paramètres biologiques		Lymphocytes TCD4			
r ar ametres biologiques	Effectif	Moyenne	E.T	Valeur p	
• Taux d'Hb (g/dl)					
<14	26	2386,53	1181,80	0,678	
≥14	37	7 2503,95			
• GR (T/l)					
<5	56	2432,27	1085,95	0,637	
5-6	07	2641,27	1215,25		
• PQ (cel/μl)					
$<150.10^3$	05	2111,98	600,98	0,468	
$\geq 150.10^3$	58	2485,10	1123,19	0,400	
• GB (cel/μl)					
$<10.10^3$	14	1600,99	708,21	<u>0,001</u>	
$10-25.10^3$	49	2699,63	1063,90	0,001	
• CMN (cel/µl)					
$<5,61.10^3$	37	1896,31	750,51	<u>0,001</u>	
\geq 5,61.10 ³	26	3251,25	1013,56	<u>0,001</u>	
• CD34+ (%)					
<2,32	39	2318,87	1081,34	0,208	
≥2,32	24	2677,63	1096,22	0,200	

Les globules blancs et les cellules mononuclées avaient une incidence statistiquement significative sur les lymphocytes TCD4+. En effet plus leurs taux étaient élevés, plus celui des lymphocytes TCD4+ augmentait.

Szction III: Piscussion

I – CARACTERISTIQUES SOCIO-DEMOGRAPHIQUES

$I-1-\underline{MERES}$

■ Age

L'âge des mères de notre série variait de 16 à 42 ans avec une moyenne d'âge de $26,5 \pm 6$ ans; la tranche d'âge de 25-30 ans étant la plus importante (30,10%). Nos résultats étaient superposables à ceux d'études antérieures réalisées dans les CHU et formations sanitaires urbaines du district d'Abidjan [20, 26, 39]. Djidji [26] avait trouvé une moyenne d'âge de 26 ± 2 ans chez des parturientes de 15 à 40 ans avec une prédominance de la tranche d'âge de 20 à 25 ans (32%). A côté, Coulibaly [20] avait trouvé une moyenne d'âge de 26,5 ans chez les parturientes de 16 à 48 ans et Gnahoua [39] indiquait un âge moyen de 25,7 ans avec une prédominance entre 21 et 30 ans (60,66%).

Nationalité

Les mères ivoiriennes représentaient 90,50% de notre série contre 9,50% pour les non ivoiriennes. On observait donc une majoration de la population autochtone. A ce niveau, nos résultats n'étaient pas en accord avec ceux de Djidji [26] qui avait observé dans son étude une tendance élevée des mères non ivoiriennes (38%). Il en était de même pour Gnahoua [39] qui avait obtenu un taux de 33,67% pour les mères non ivoiriennes. Le recensement général de la population ivoirienne et de l'habitat (RGPH) réalisé en 1998 par l'institut national de la statistique (INS) avait révélé un taux d'étranger de 26% [44]. Cependant le quatrième recensement depuis l'indépendance de la Côte d'Ivoire prévu normalement pour 2008 n'a pu se faire en raison de la crise sociopolitique et militaire qui a prévalu dans ce pays ces dernières années.

Niveau socio-économique

Les mères de notre série avaient un niveau socio-économique moyen dans 79,40% des cas et bas dans 20,60% des cas. Comme spécifié antérieurement, cette variable était opérationnalisée à partir d'un certain nombre de biens durables que sont l'eau de boisson, l'électricité, le type de toilettes, la profession, le lieu d'habitation, la situation matrimoniale et le nombre d'enfants à leur charge. Nous avons donc utilisé la même procédure de construction que Kishor [48]. Dans notre série, environ 31,8% des mères étaient ménagères ou sans emploi fixe, suivies de près par les commerçantes (22,1%). Nos résultats pourraient s'expliquer par la localisation de notre enquête qui s'est déroulée dans un quartier modeste de la ville d'Abidjan. En effet Kra [50] décrit Yopougon comme un quartier caractérisé par un tissu urbain très contrasté comportant à la fois des quartiers de bas, moyen et haut standing ainsi que des habitats précaires généralement faits de matériaux de récupération. Ainsi le quartier Sicogi où se situe la formation sanitaire urbaine de yopougon-Attié, est considéré selon cette étude comme un quartier de moyen standing ou populaire.

I - 2 - NOUVEAU-NES

• Sexe

Nous avons constaté une prédominance masculine 56% contre 44% de filles. Nos résultats ne s'accordaient pas avec ceux de Djidji [26] qui avait observé le contraire dans son étude : 56% de filles contre 44% de garçons. Cependant ils obéissent à la tendance générale de la population ivoirienne dans laquelle on notait une prédominance de la gente masculine (51%) contre 49% pour la population féminine selon le RGPH de 1998 réalisé par l'INS [44].

II - CARACTERISTIQUES CLINIQUES

$II - 1 - \underline{MERES}$

• Gestité

Dans notre étude, les mères paucigestes (2 à 4 grossesses) étaient les plus nombreuses (55,60%) suivies par les primigestes (22,20%), les multigestes et les grandes multigestes. Nos résultats étaient en accord parfait avec ceux d'Oulai [62] qui avait observé 54,7% de paucigestes et 25,8% de primigestes dans sa population d'étude. De même Djidji [26] avait obtenu 34% de paucigestes contre 30% de primigestes.

Parité

Dans notre étude, les paucipares représentaient 38,10% de notre population, suivies de près par les nullipares (31,70%). On notait respectivement 25,40% pour les primipares, 3,2% pour les multipares et 1,6% pour les grandes multipares. Nos résultats ne s'accordaient pas avec ceux de Djidji [26] qui avait observé que les nullipares représentaient la majorité des parturientes de sa population (42%). Cette différence pourrait s'expliquer par les tranches d'âge prédominantes qui variaient d'une étude à l'autre. En effet, la tranche d'âge de 25 à 30 ans prédominait dans la nôtre tandis que chez Djidji [26], la tranche prédominante se situait entre 20 et 25 ans. Djidji [26] avait une population majoritairement plus jeune que la notre et constituée de femmes qui avaient plus de probabilité d'être à leur première grossesse, donc nullipare.

• Couverture vaccinale

Les femmes de notre étude bénéficiaient de la couverture vaccinale antitétanique dans 63,50% des cas. Cette importante couverture vaccinale pouvait s'expliquer par la campagne de vaccination des femmes en âge de reproduction contre le tétanos dans 54 districts sanitaires en Côte d'Ivoire initiée

par l'UNICEF [41]. Cette campagne s'adressait aux femmes entre 15 et 49 ans et constitue depuis 2006 l'une des principales stratégies pour éliminer le tétanos.

II –2 – <u>NOUVEAU-NES</u>

Poids

Le poids moyen des nouveau-nés était de 3 084 ± 442,92g avec un minimum de 2 250g et un maximum de 4 200g. Les nouveau-nés eutrophiques c'est-à-dire avec un état normal de développement représentaient 89% de notre série. On notait par contre 8% pour les hypotrophiques (poids de naissance inférieur à 2 500g à terme selon Agenor [3]) et 3% pour les hypertrophiques (poids de naissance supérieur à 4 000g à terme selon le même auteur). Cette majoration des nouveau-nés à poids normal pourrait s'expliquer par le fait que nous n'avons inclus dans notre étude que des femmes en bonne santé apparente, à sérologie rétrovirale négative. Nous avons exclu tous les cas de grossesses difficiles comme par exemple une hypertension artérielle sur grossesse ou un pré-terme.

■ L'indice d'Apgar

Un bébé en bonne santé a un indice d'Apgar supérieur à 7; lorsqu'il est inférieur à 7, on parle de détresse périnatale du nouveau-né [27]. Selon notre étude 88,89% des nouveau-nés avait un indice d'Apgar normal tandis que 11,11% avait un indice d'Apgar anormal. Nos résultats concordaient avec ceux de Djidji [26] qui avait également observé dans sa population d'étude une prédominance de nouveau-nés avec un indice d'Apgar normal (96%).

III – PARAMETRES BIOLOGIQUES

III – 1 – <u>LIGNEE ERYTHROCYTAIRE</u>

Le nombre moyen de GR retrouvés dans le SCO était de 4,32 T/l. Ce nombre était légèrement bas car chez les nouveau-nés, il devait être compris entre 5 et 6 T/l [2, 1]. Nos résultats étaient voisins de ceux de Djidji [26] qui avait trouvé une moyenne de 4 140 000 et d'Amoikon [4] (4,01 T/l).

Le taux d'Hb dans le SCO était de $14,37 \pm 1,86$ g/dl selon notre étude. Ce taux respectait les normes car chez les nouveau-nés il était compris entre 14 et 20 g/dl [2]. Nos résultats étaient en accord avec ceux de Djidji [26] qui avait obtenu un taux de 14,5g/dl.

III – 2 – <u>LIGNEE LEUCOCYTAIRE</u>

Selon notre étude, le taux moyen de GB du SCO était de 12 840,04 cel/μl. Cette moyenne était comprise dans les normes qui sont de 10 000 à 25 000 cel/μl [2]. Nos résultats étaient proches de ceux d'Amoikon [4] qui avait obtenu après son étude une moyenne de 13 647 cel/μl. De son côté, Djidji [26] avait obtenu une moyenne de 14 200 cel/μl.

Le taux moyen de ly totaux retrouvés dans le SCO était de 5 276 cel/µl. Ce taux était en conformité avec les valeurs trouvées par Amoikon [4] qui avait observé 5 321 cel/µl et par D'arena [23] qui avait noté 5 233 cel/µl.

Le taux moyen de LT retrouvés dans le SCO de notre population d'étude était de 3 499 cel/µl, ce qui représentait 67,13%. Ce résultat était comparable à celui de Djidji [26] qui avait obtenu un taux de LT de 61,58%. Il se rapprochait également de celui de Juretic [46] avec 64,8% de LT retrouvé dans le SCO.

Par contre, notre résultat était supérieur à celui de Falkenburg [30] qui avait obtenu un taux de LT de 54% et supérieur à celui de Beck [9] qui avait

obtenu 58%. Il était largement supérieur aux valeurs trouvées par Rabian-herzog [66] qui avait obtenu une moyenne de 44,8%.

En ce qui concerne les LTCD4⁺, le taux moyen observé dans notre population d'étude était de 2 455 cel/µl soit 47,27%. Ce résultat était comparable à celui trouvé par Djidji [26] qui était de 43,75%. Il était cependant supérieur à celui de Falkenburg [30] qui était de 36% et à celui de Rabianherzog [66] qui avait noté 31%. Ces différences pourraient s'expliquer par la situation géographique de notre étude. En effet une étude menée par Danho [22] comparant les lymphocytes du sang de nouveau-nés ivoiriens à ceux d'autres séries américaine, française et anglo-saxonne révélait que le taux de lymphocytes le plus élevé s'observe chez le nouveau-né d'Abidjan. L'auteur suppose que ce taux élevé serait sans doute une réponse à une agression par le milieu environnant.

Selon notre étude, le SCO contient un nombre important de lymphocytes qu'elle que soit la sous population lymphocytaire. De ce fait, dans le cadre de la greffe de CSH, il serait intéressant de démontrer la présence des marqueurs de naïveté CD45RA sur la majorité des LT présents dans le SCO. En effet certains auteurs [35, 23] sont d'avis que le système immunitaire du nouveau-né est naïf, c'est-à-dire qu'il n'a jamais été en contact avec un antigène étranger (excepté lors d'infections transmises par la mère, qui s'avèrent très rares). Les LT naïfs sont caractérisés par l'expression de l'isoforme CD45RA et une faible expression de CD28 [17]. La proportion de cellules présentant ces caractéristiques est plus importante dans le SCO, comparativement à celui de l'adulte. La susceptibilité néonatale aux infections est souvent expliquée par la naïveté du système immunitaire du nouveau-né. De même, le système immunitaire du nouveau-né est caractérisé par de puissants mécanismes de tolérance reposant sur l'existence conjointe d'un grand nombre de cellules T régulatrices et d'une forte production d'IL-10, partiellement d'origine

placentaire [35]. Le SCO représente ainsi une excellente source de Treg caractérisées par l'expression concomitante des marqueurs CD4 et CD25. Ces dernières régulent négativement les réponses immunitaires, notamment en inhibant la prolifération des cellules TCD4⁺. De plus l'IL-10 est capable d'induire l'apoptose des cellules dendritiques plasmacytoïdes, d'inhiber l'activation des monocytes, des macrophages, des cellules T et NK et la production de cytokines de type Th1. Ces propriétés particulières pourraient expliquer le faible taux de GVHD [52] qui est une réaction allogénique engendrée par le système immunitaire du donneur qui reconnaît comme étrangères les cellules du receveur.

III – 3 - RICHESSE EN CMN

Les CMN sont une population hétérogène constituée de lymphocytes, de monocytes et de cellules immatures ayant des caractéristiques morphologiques proches. Notre taux de CMN de l'ordre de 5 611 cel/µl était superposable à celui indiqué par Laugier [53] qui observait des valeurs variant de 2 400 à 14 100 cel/µl. Il était également en accord avec celui d'Amoikon [4] qui avait trouvé 5 541 cel/µl.

La valeur prédictive de la numération des CMN a été démontrée par de nombreuses études [10, 18, 58, 68]. Selon les données d'EUROCORD, Theilgard [68] avait estimé qu'une dose de 2×10⁸ CMN/kg de poids corporel était suffisante pour une bonne prise de greffe. Champagne [18] avait indiqué qu'il fallait une dose minimale de 2×10⁷ CMN/kg pour réaliser une greffe. En considérant que la dose optimale peut être estimée à 2×10⁸ CMN/kg, il faudra réinfuser pour un adulte de 60 kg environ 2 138 ml de SCO. Ce volume est en harmonie avec celui de Bedji [10] et Mian [58] qui avaient obtenu 2 166ml.

III – 4 - RICHESSE EN CSH CD34+

L'antigène CD34 représente le marqueur fondamental dans la caractérisation des CSH. Il est fortement exprimé dans les cellules pluripotentes et son expression diminue au fur et à mesure que le niveau de maturation des lignées de cellules hématopoïétiques augmente, au point de devenir absente dans les cellules matures.

Notre étude indiquait de 2,32±1,91% de cellules CD34⁺ de l'ensemble des CMN. Cette proportion était comparable à celle obtenue par Fritsch [32]. Les travaux menés par ce dernier avaient révélé une proportion de 1,1±1,69% de cellules CD34⁺ dans le SCO. Amoikon [4] et Bédji [10] avaient observé un taux plus élevé qui était égale à 14,71%. La différence entre ces valeurs s'expliquerait par le fait que les méthodes de quantification des CSH ne connaissent pas de standardisation entre les laboratoires. Les axes de standardisations, selon Fritsch [32] pourraient être l'uniformisation des clones d'Ac utilisés et leur combinaison dans le marquage des cellules, les procédures de préparation des spécimens, les logiciels utilisés pour évaluer les données en cytométrie. La différence peut être aussi attribuée aux enrichissements cellulaires, aux techniques particulières de purification et de mobilisation cellulaires. Dans notre cas nous pouvions incriminer le lavage des cellules qui induirait des pertes de cellules.

Selon Ward [73] la proportion de cellules CD34⁺présentes dans la population de CMN oscillait entre 1 et 4% dans la MO et était inférieure à 1% dans le SP. De même Watanabe [74] avaient trouvé que la MO et le SP contenaient respectivement 3,86% et 0,95%. Ces valeurs montraient une prédominance des cellules CD34⁺dans la MO.

La quantité optimale de cellules pour une greffe de CSH serait de 5 à 8.10⁶ cellules CD 34+ /kg de poids corporel du receveur selon les travaux de Bensinger [14]. Ainsi chez un sujet de 60kg, il faudrait lui administrer 3.10⁸

cellules CD34⁺. En considérant notre proportion de cellules CD34⁺ qui était de 2,32%, 1ul contiendrait 130 cellules CD34⁺. Une greffe d'un sujet de 60 kg nécessiterait 2307 ml de SCO.

IV – <u>FACTEURS SUSCEPTIBLES D'INFLUENCER LES</u> <u>POPULATIONS LYMPHOCYTAIRES</u>

Contrairement à Djidji [26] qui au cours de son étude a constaté que certains paramètres tels que l'indice d'Apgar, l'hypertrophie à la naissance et le taux d'Hb avait une influence sur les populations lymphocytaires, nous avons remarqué dans la nôtre que la majorité des paramètres étudiés n'avait aucune incidence sur ces populations. En effet, aucun paramètre sociodémographique n'a eu d'influence sur les différentes populations lymphocytaires.

Sur le plan clinique, seule la parité des mères avait une influence sur les lymphocytes totaux, mais pas sur les LTCD3⁺ et les LTCD4⁺. On note une différence significative entre le nombre de lymphocytes totaux chez les nullipares et celui chez les mères ayant au moins un enfant. En effet, ce nombre est beaucoup plus élevé chez les nullipares. Ainsi donc, plus la mère a des enfants, moins il y a de lymphocytes dans le SCO. Nos résultats étaient en accord avec ceux de Vleugels [70] qui a souligné que la grossesse était susceptible d'induire une dépression immunitaire encore plus importante chez les primipares. Ainsi donc les nullipares seraient les populations à développer une réponse lymphoproliférative plus importante. Cette hypothèse pourrait donc expliquer le taux élevé de lymphocytes totaux retrouvés dans le SCO des nouveau-nés issus de mères nullipares. Nos résultats rejoignaient également ceux de Kressou qui dans son étude avait montré que plus la parité augmentait, plus le taux de lymphocytes était abaissé dans le SCO [74].

Sur le plan biologique, les CMN et les GB étaient les seuls paramètres à avoir une incidence statistique sur toutes les populations lymphocytaires, à savoir les lymphocytes totaux, les LTCD3+ et les LTCD4+. Ainsi plus l'échantillon de sang était riche en leucocytes et en CMN, plus le nombre de lymphocytes dans celui-ci était important et ce quelque soit la nature de la population lymphocytaire. Leucocytes et CMN renferment en leur sein des lymphocytes d'où leur évolution dans le même sens que ceux-ci. Les cellules souches CD34+ quant à elles avaient leurs taux qui augmentaient proportionnellement à ceux des lymphocytes totaux et LTCD3+. Cependant leurs taux n'avaient aucune influence sur ceux des LTCD4+. Ces observations pourraient s'expliquer par le fait que les lymphocytes dérivent des CSH. Mais leur différenciation en LTCD4+ et LTCD8+ se produit spécifiquement au contact des CPA, d'où l'absence de relation entre le taux de cellules CD34+ et celui des LTCD4+.

Dans le cadre de la greffe de CSH, l'échantillon de MO ou de sang utilisé pour la greffe peut être traité au moyen d'agents permettant de réduire le nombre de lymphocytes T qui seront perfusés avec les CSH: on parle de déplétion des lymphocytes T [52]. Cette procédure permet de réduire la fréquence et la gravité de la GVHD. En effet La GVHD est due à la reconnaissance d'alloantigènes (majeurs ou mineurs d'histocompatibilité) du receveur par les LT du donneur. En tenant compte de ce procédé, notre étude nous révèle donc que la greffe de CSH issues du SCO de mères ayant au moins un enfant serait appropriée car plus pauvre en lymphocytes.

La greffe de CSH apparaît de nos jours comme le traitement de choix dans les hémopathies malignes et les atteintes de la moelle osseuse. Au cours de ces cinquante dernières années, la recherche a permis de comprendre et de rendre réalisable les allogreffes et autogreffes de CSH issues de nombreuses sources dont le SCO. Nous nous sommes donc attelés à rechercher les avantages du SCO par rapport aux autres sources en déterminant les caractéristiques de certaines populations cellulaires. Il s'agissait donc de déterminer la richesse en lymphocytes T du greffon de CSH CD34+ issu du SCO et de rechercher les facteurs susceptibles de l'influencer. En effet les lymphocytes T sont responsables de la plupart des rejets post-greffes liés à la GVHD. Ce travail est une étape dans l'étude des propriétés immunologiques du sang placentaire.

Au terme de cette étude, nous avons pu établir que le SCO contenait un nombre important de CMN, de CSH et de lymphocytes T comme le montrent d'autres études occidentales.

En outre, au plan clinique, la parité des mères avait un impact sur le taux de lymphocytes totaux car les mères nullipares avaient un SCO plus riche en lymphocytes. De plus, au plan biologique, le taux des lymphocytes T augmentait proportionnellement avec celui des leucocytes, CMN et cellules CD34+. Le SCO idéal pour une greffe en milieu tropical serait donc celui riche en CMN et issu de nouveau-nés ayant des mères multipares car peu riche en lymphocytes.

Cependant, Gluckman [35] étant en faveur d'une population lymphocytaire T naïve dans le SCO, la proportion importante de lymphocytes dans le SCO de nouveau-nés issus de mères nullipares n'impliquerait pas un rejet éventuel de greffe. D'où l'intérêt de mener une nouvelle étude sur l'expression de l'isoforme naïf CD45RA par l'ensemble des lymphocytes T présents dans le sang de cordon ombilical en milieu tropical.

Aux parturientes

Exhorter les mères sur l'importance d'un bon suivi de leur grossesse :

- Honorer de leur présence les différentes consultations prénatales
- Faire les échographies recommandées
- Faire les vaccins recommandés
- Faire les examens biologiques demandés.

❖ Au niveau hospitalier

Sensibiliser les sages femmes sur l'importance de réaliser un examen général complet chez les parturientes (poids, tension artérielle...).

Aux autorités sanitaires

- Mettre en place le plateau technique nécessaire pour collecter et réaliser une greffe de CSH;
 - Mettre en place une banque de sang de cordon ombilical.

❖ Au département d'hématologie

Poursuivre leurs investigations en s'orientant sur l'expression massive de l'isoforme naïf CD45RA par les lymphocytes T du sang de cordon ombilical.

Références bibliographiques

1. Abissey A, Mignosin D, Vilasco B, Bondurand A

Apport de l'hémogramme dans la classification des anémies.

Méd. Afr. Noire. 1991, 38(11): 769-772

2. Adam M, Favier R, Donay L

L'hémogramme en pédiatrie.

Rev. Fr. Lab. 1993, 248: 25-31

3. Agenor J

Hypotrophie et macrosomie chez le nouveau-né : définition et étiologie. Praticien Hospitalier. (Consulté le 07-08-2011) < www.doctissimo.fr >

4. Amoikon A

Etude des trois tissus hématopoïétiques : le sang périphérique, la moelle osseuse et le sang de cordon. Intérêt dans la greffe de CSH. 115 p.

Th. Pharm: Abidjan, 2001. no FT 70

5. Anthony A, Halifax

Mise en banque du sang de cordon ombilical: implications pour les fournisseurs de soins périnatals.

Directives Cliniques de la SOGC. 2005,156:275-288

6. Anonyme

Maturation des cellules lymphoïdes dans les organes lymphoïdes.

(Consulté le 07-08-2011) < <u>www.scribb.com/14-05-2011</u>>

7. Anonyme

Expérience de till et Mc Culloch : schéma général de l'hématopoïèse.

(Consulté le 26-11-2011) < www.fsr.ac.ma/cours/biologie com>

8. Bay J, Choufi B, Tournilhac O, Faucher C

Greffe de cellules souches hématopoiétiques allogéniques dans les tumeurs solides.

Bulletin du Cancer. 2001, 88(9): 900-907

9. Beck R, Lam-po-tang P

Comparison of cord blood and adult blood lymphocyte normal ranges: a possible explanation for decreased severity of graft versus host disease after cord blood transplantation.

Immunol cell Biol. 1994, 72(5): 440-444

10. Bedji B

Contribution à l'étude des cellules souches hématopoïétiques par les anticorps monoclonaux CD34, CD38. 127p.

Th. Pharm: Abidjan, 2002. no FT 726

11. Bernard H

Immunophénotypage des hémopathies malignes.

Centre hospitalier Jolimont-Lobes. 2002: 1-37.

12. Bernard J, Levy J, Varet B

Abrégés d'hématologie. Paris Ed: Masson, 1998: 352-353.

13. Berthou C

Conduite à tenir devant une hyperlymphocytose.

Fédération Leucémie Espoir (FLE). 2006, 2(1): 1-11

14. Bensinger W, Longin K, Appel B

Peripheral blood stem cells (PBSC) collected after recombinant granulocyt colony stimulating factor (rhG-CSF):an analysis of factor correlating with the tempo of engraftment after transplantation.

British Journal of Haematology 1994, 87: 825-831.

15. Bhandoola A, Sambandam A

From stem cell to T cell.

Nature Reviews Immunology. 2006, 6: 117-126

16. Blanchet O, Dautel M

Hématopoïèse.

Editions Médicales Internationales Cachan. 1995:10-33.

17. Cavazzana-calvo M, Six E, Andre-schmutz I, Coulombel L

Hématopoïèse humaine : des cellules CD34 aux lymphocytes T.

Médecine/Sciences. 2007, 23(2):151-159

18. Champagne M, Duval M, Wagner E

La transplantation du sang de cordon au Québec.

Ann Biol Clin Qué. 2006, 43: 3-10

19. Charrier E, Dardari R, Michaud A, Cordeiro P, Duval M

Immunologie néonatale et greffe de sang de cordon.

MS. Médecine Sciences. 2007; 23(11), 975-979

20. Coulibaly M

Particularités hématologiques et pathologies néonatales courantes en milieu hospitalier. A propos de 110 cas de nouveau-nés symptomatiques suivis au service de néonatologie du CHU de Yopougon.

Th Pharm: Abidjan, 1999

21. Corbeau P

Phénotype, différenciation, circulation et homéostasie des cellules du système immunitaire.

Immunologie Faculté de Médecine Montpellier-Nîmes. 2008, 102:1-5.

22. Danho B, Toutoukpo Y, Abissey S, Sangare A

Valeurs leucocytaires et plaquettaires du nouveau-né en milieu tropical urbain à Abidjan.

Médecine d'Afrique Noire. 1993, 40: 494-498

23. D'arena G, Musto P, Cascavilla N, Di-giorgio G, Fusillis S,

Zendoli F, Carotenoto M

Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features.

Haematologica. 1998, 83(3):197-203

24. Dhedin N, Vernant J-P

Les allogreffes de cellules souches hématopoïétiques dans les hémopathies malignes et les aplasies médullaires : réalisations et complications.

Editions Scientifiques et Médicales Elsevier SAS. 2002, 34: 47-83

25. Dia N

Prévalence de l'anémie au cours de l'état gravidopuerperal (à propos de 553 cas). 161p

Th. Med: Sénégal, 2011. N°106/11

26. Djidji A

Etude des sous populations lymphocytaires T retrouvées dans le sang de cordon ombilical en milieu tropical urbain. Etude réalisée sur 50 cas à Abidjan, Côte d'Ivoire. 111 p

Th. Pharm: Abidjan, 2004. no FT 958/d

27. Drage j, Kennedy C, Berendes H

The Apgar Score as an index of infant Morbidity.

Developmental Medicine and Neurology.1966, 8(2): 141-148

28. Durand B, Guibaud S

La greffe de cellules souches hématopoïétiques de la moelle osseuse au sang de cordon ombilical.

Lyon Pharmaceutique. 1993, 46(7): 397-406

29. Ezine S, Bach J

Physiologie et différenciation des cellules lymphoïdes.

Hématologie Editions Scientifiques et Médicales Elsevier SAS. (Consulté le 15/08/2011) < www.em-consulte.com>

30. Falkenburg J, Lim F, Kanhai H, Willemze R

Influence of delivery on numbers of leukocytes, leukocyte subpopulations and hematopoietic progenitor cells in human umbilical cord blood.

Blood Cells.1994, 20: 547-559

31. Fialkow P, Jacbson R, Papayanopoulou T

Chronic myelomatic leukaemia: clonal origin in stem cell common to the granulocyte, erythrocyt, platelet and monocyt macrophage.

Am J Med. 1977: 63-125.

32. Fritsch G, Stimpfl M, Kurz M

The composition of CD 34 subpopulation differe between bone marrow, blood and cord blood.

Bone Marrow Transplant. 1996, 17: 169-178

33. Genetet N

Immunolologie (biologie médicale). 3ème Edition Paris: E.M.I, 1997; 18:493-497

34. Gluckman E, Carosella E

Utilisation thérapeutique des cellules souches hématopoïétiques du sang de cordon ombilical.

Médecine/Sciences. 1995, 11: 28-34

35. Gluckman E, Laroche C, Binet J, tubiana M, Civatte J, Dreux C

Utilisation des cellules souches hématopoïétiques du SCO pour la greffe allogénique chez l'homme : Discussion.

Bulletin de l'Académie Nationale de Médecine. 1998, 182(2): 337-350

36. Gluckman E

Le sang de cordon ombilical substitut de la moelle osseuse pour les greffes.

Ed Concours Médical. Paris. France. 1992, 37: 3418-3420

37. Gluckman E, Broxmeyer H, Auerbach A

Hematopoietic reconstitution in a patient with Fanconi's anemia by means of ombilical cord blood from an HLA-identical sibling.

N Engl J Med. 1989, 321: 1174-1178

38. Gluckman E, Rocha V

Cord blood transplantation for children with acute leukaemia: a EUROCORD registry analysis.

Blood Cells Mol Dis. 2004, 33:271-273

39. Gnahoua G

L'hémogramme de la femme enceinte africaine en milieu tropical urbain : à propos de 300 cas à Abidjan.

Th. Med: Abidjan, 1992

40. Goldsby R, Kindt T, Osborne B, Kuby

Immunology: le cours de Janis Kuby. Ed Dunod. 2001, 19(1): 467-490

41. Gouvernement de Côte d'Ivoire

Vaccination contre le tétanos. (Consulté le 21-07-2011) < <u>www.gouv.ci</u>>

42. Henry J, Testan N, Lajtha L

Effect of repeated doses of X rays or 14 MeV neutrons on mouse bone marrow. Radiation Res. 1974, 59: 645-652

43. Issaragrassil S, Visuthisakchai S, Suvate V

Transplantation of cord blood stem cells into a patient with sever thalassemia.

N Engl J med. 1995, 332: 367-369

44. Institut national de la statistique

Recensement général de la population et de l'habitation 1998.

CIV-INS-RGPH 98. (Consulté le 20-07-2011) < www.ins.ci>

45. Jouault H

Place de la cytométrie en flux dans le diagnostic et le suivi des leucémies aigues.

Revue Française des Laboratoires. 2002, 344 : 25-30

46. Juretic E, Urazevic

Analysis of lymphocyte immunophenotypes in neonates.

Lijec Vjesn. 1999,121: 338-341

47. Khayat A

Les allogreffes de cellules souches hématopoiétiques.

CHU de caen. (Consulté le 04-02-2010) < www.ouest-transplant.org >

48. Kishor S, Neitzel K

The status of women: indicators for twenty-five countries demographique and health surveys, comparative studies.

Marco International Inc.Calverton, USA. 1996, 21: 111p

49. Kondo M, Weissman I, Akashi K

Identification of clonogenic common lymphoid progenitors in mouse bone marrow.

Cell. 1997, 91(5): 661-672.

50. Kra G, Tra G, Koffi S

Travaux domestiques et rendement scolaire des jeunes filles à Abidjan: une analyse par type de quartier dans la commune de Yopougon.

Programme des Subventions ROCARE pour la Recherche en Education. 2010,

52:13-16

51. Kressou T

Hémogramme du sang de cordon ombilical en milieu tropical urbain. 83p

Th. Pharm: Abidjan, 2005. N°949

52. Labussiere H, Peffault de latour R, Bay J

Allogreffe de sang placentaire chez l'adulte : actualités et perspectives.

Bulletin du cancer. 2010, 97(1):137-148

53. Laugier J, Gold F

Néonatologie: Abregés 3^{ème} édition. Paris: Masson, 1991: 346 p

54. Lemahieu J

Le système immunitaire, cellules, molécules et organes de l'immunité.

Biologie Humaine par LewebPédagogique 2008. (consulté le 10-12-2011) <www.LewebPédagogique.com>

55. Li W

T lineage progenitors: the earliest steps to T lymphocytes.

Current Opinion in Immunology. 2006, 18:121-126

56. Mayap G

Etude de la sous population lymphocytaire natural killer dans le sang de cordon ombilical en milieu tropical urbain.79p

Th Pharm: Abidjan, 2004. FT941/d

57. Mc Culloch E, Till J

The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice.

Radiat Res. 1960, 13: 115-125

58. Mian B

Contribution à l'étude des cellules souches hématopoïétiques par les anticorps

monoclonaux CD 34, CD 44: intérêts thérapeutiques. 137 p

Th. Pharm: Abidjan, 2002. 786

59. Miller J

The earliest step in B lineage differentiation from common lymphoid progenitors is critically dependent upon interleukin 7.

J. Exp. Med. 2002, 196: 705-711

60. Najman A, Guigon M, Lemoine M

Hématopoïèse, bases physiologiques.

In A.NAJMAN. Hématologie. 1994, 1: 23-49

61. Nicolas G

Hématopoièse et son exploration.

Université de Picardie Jules Verne. 2008, 39: 24-26

62. Oulaï S

Etude des cellules souches hématopoiétiques à l'aide des marqueurs antigènes membranaires CD34 et CD7. Intérêt thérapeutique. 132p.

Th. Pharm: Abidjan, 2001. no FT 636

63. Parham P

Le système immunitaire. Université Paris: De Boeck, 2003: 201-238

64. Puigdomenech R, Virt G

Les aspects éthiques des banques de sang de cordon ombilical. Avis du groupe européen d'éthique des sciences et des nouvelles technologies auprès de la commission européenne. 2004, 19:27-49

65. Philip I, Biron P

Greffes hématopoïétiques d'origine sanguine.

Lyon Pharmaceutique. 1995, 3: 139-148

66. Rabian H, Lesage

Characterization of lymphocyte subpopulations in cord blood.

J Hemato. 1993, 2: 255-257

67. Shortman K, Wu L

Early T lymphocyte progenitors.

Annu. Rev. Immunol. 1996, 14: 29-47

68. Theilgaard M, Raaschou J, Heilmann C, Andersen H, Bock J,

Russel C, Jacobsen N, Dickmeiss

A comparative study of CD34+ cells, CD34+ subsets, colony forming cells and cobblestone area forming cells in cord blood and bone marrow allografs. European Journal of Haematology. 1999, 62: 174-183

69. Vercauteren G

Techniques de numération des lymphocytes TCD4:information technique. Technologie essentielle de la santé-OMS-20 avenue Appia-Suisse, 2004. (Consulté le 05-01-2012) www.who.int(eht)

70. Vleugels M, Eling W, Roland R, De graaf R

Cortisol and loss of malaria immunity in human pregnancy.

Br J Obstet Gynaecol. 1978, 94: 758-764

71. Wagner J, Broxmeyer H, Byrd R

Transplantation of umbilical cord blood after myelo ablative therapy: analysis of engrafment.

Blood. 1992, 79: 1874-1878

72. Wagner J, Barker J

Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant ant non malignant diseases: influence of CD34 cell dose and HLA disparity on treatment- related mortality and survival.

Blood. 2002, 100(5): 1611-1618

73. Ward T, Grenier K, Knape C

Progenitor cell enumeration in transplant studies. Procount, setting the standard for progenitor cell enumeration.

US Patent. 1998, 965(4): 204

74. Watanabe T, Dave B, Heimann D

GM-CSF mobilized peripheral blood CD 34+ cells differ from steady-state bone marrow CD 34+ cells adhesion molecules expression.

Bone marrow transplant. 1997, 19:1175-1181.

75. Wilson S

The Thymus is a Common Target Organ in Infectious Diseases.

PLoS Pathogens. 2006, 2:472-483

76. Zandecki M

Lymphopoïèse B, T et NK.

Faculté de médecine-CHU 49000 Angers, France ; 2007. (Consulté le 10-12-2011) <www.univ-lemans.fr>

77. Zahra F, Iobagui C, Lambert C

Cytométrie et ses applications en immunologie clinique.

Revue Francophone des laboratoires. 2009, 410 : 23-32

Annexe I: FICHE D'ENQUETE

DateN°Dossier		
N° d'enregistrementN°du ¡	orélèvement de SCO	
I-IDENTITE		
Nom et Prénom :		
Age(date de naissance) :		
Poids(kg):		
Nationalité		
Religion		
Région d'origine		
Niveau d'instruction		
Profession		
	ou 🗀 andé nord	
Situation matrimoniale :		·····
Adresse:		
Téléphone :		
II- NIVEAU SOCIO –ECONOMIQUE		
Domicile		
Depuis combien de temps		
Type d'habitation :		
Villa		
Appartement		
Cour commune		
Baraque \Box		
Approvisionnement en :		
Oui	Non	
Electricité (CIE)]
Eau potable (SODECI)]
Eau de puits	Г]
Autre		•
Nombre de personne à la maison :		
Revenu mensuel		

III-SERVICE GYNECO OBTETRIQUE

Mode d'accouchement					
Voie basse					
Extraction : spontanée	□nstrume	ntale		SRV : positif	
Délivrance : naturelle	☐ artificie	lle		négatif	
Episiotomie : oui	non				
Césarienne \square					
Tension artérielle de la mère :					
Groupe sanguin			Affec	tion pendant la	grossesse
A B AB O		toxo 🗌	Ru	béol 🗆	
Rhésus		Autres (p	récise	r)	
Positif 🗌 Négatif 🗌					
Age gestationnel (semaines)					
Gestité					
Parité					
Poids du nouveau né(gr)					
Sexe du nouveau-né					
PC					
Taille				Apgar	
IV-RENSEIGNEMENTS CLINIQUES					
	Oui	Non			
A a t la é mi a					
Asthénie					
Amaigrissement					
Fièvre persistante Diarrhée					
Signes pulmonaires					
Candidose oropharyngée Dermatose prurigineuse					
Zona					
Vaginite					
Adénopathies					
Cystite					
Hépatomégalie					
Splénomégalie					
Autres signes à préciser					
Prise de médicament Oui	□ Nor		 ¬		
Si oui lesquels		_	_		
Posologie					
Durée du traitement					
IndigénatOui		_			
Antécédent pathologique Oui					

V-PROFIL BIOLOGIQUE

1-Hémogramme Numération globulaire
GR/mm3
GB/mm3
Plaquettes/mm3
Hbg/100ml
Hte%
VGMu3
TCMHpg
CCMH%
Formule leucocytaire
PNN/mm3
PNE/mm3
PNB/mm3
L/mm3
M/mm3
Commentaires
Conclusion de l'hémogramme
2-immunophenotypage
CD34
Commentaires
Conclusion

Annexe II:

Prélèvement du SCO

Annexe III:

Représentation des données de l'immunophénotypage

Annexe IV:

Résultat de l'hémogramme d'un échantillon de SCO

RESUME

Introduction

Le sang de cordon ombilical (SCO) est de plus en plus considéré comme une alternative de choix à la moelle osseuse pour les greffes de cellules souches hématopoïétiques (CSH) dans le traitement des hémopathies malignes. Les lymphocytes T responsables de l'immunité à médiation cellulaire ont été identifiés comme les principaux acteurs des rejets de greffes de cellules souches hématopoiétiques. Nous nous sommes donc fixés comme objectif de quantifier les lymphocytes T persistants dans le greffon de CSH issues du SCO pour apprécier la qualité de ce greffon, et de ce fait, contribuer à l'amélioration de la prise en charge des hémopathies malignes en Côte d'Ivoire.

Matériel et méthodes

Il s'agit d'une étude transversale qui s'est déroulée de Mai à Septembre 2010 à la maternité de l'hôpital général de Yopougon Attié et au laboratoire central du CHU de Yopougon. Notre travail a porté sur 63 échantillons de SCO issus de mères à sérologie VIH négative sans antécédents pathologiques majeurs.

Nous avons réalisé un hémogramme à l'aide du sysmex XT 2000i pour la numération des globules blancs (GB) et des cellules mononuclées (CMN). Pour la recherche des cellules CD 34+ et des sous populations lymphocytaires TCD3+ et TCD4+, nous avons eu recours à l'immunophénotypage par cytométrie de flux. Nous avons utilisé le cytomètre FACS Calibur de Becton Dikinson. L'immunophénotypage a consisté en un marquage direct de nos cellules par des anticorps monoclonaux couplés à des fluorochromes tels que l'isothiocyanate de fluorescéine (FITC) et la phycoérythrine (PE).

Résultats

Les résultats obtenus étaient :

- Au plan épidémiologique : la moyenne d'âge des mères était de 26,5 ans.
- Au plan clinique : les mères paucigestes étaient les plus nombreuses (55,6%).

Le poids moyen des nouveau-nés était de 3084g et on notait un sex-ratio (H/F) de 1,25.

- Au plan biologique : le taux moyen de GB était de 12840±4485 cel/μl, celui des ly totaux était de 5276±2158 cel/μl et celui des CMN était de 5611±2330 cel/μl. 2,32% de ces cellules exprimaient le CD34. La numération en valeurs relatives des sous populations lymphocytaires TCD3+ et TCD4+ était respectivement de 67,13±10,72% et de 47,27±10,78%. Cela représentait en valeurs absolues 3499±1399 TCD3+ cel/μl et 2455±1092 TCD4+ cel/μl.
- Les facteurs susceptibles d'influencer les populations lymphocytaires étaient la parité, les taux de GB, de CMN et de cellules CD34+. En effet chez les nullipares, le nombre de lymphocytes totaux était le plus élevé. De même plus l'échantillon de sang était riche en GB et en CMN, plus le nombre de LT et LTCD4+ dans celui-ci était important.

Conclusion

Les lymphocytes T ont été retrouvés en nombre important dans le sang de cordon ombilical. Cependant de nombreux auteurs évoquent que ces lymphocytes bien que nombreux sont naïfs et donc incapables d'une éventuelle implication dans le rejet de greffe. D'où l'intérêt d'une étude plus poussée sur l'expression de l'isoforme naïf CD45RA par ces lymphocytes T.

Mots clés: Sang de cordon ombilical, cellules souches hématopoïétiques, TCD3+/ TCD4+, Abidjan.