Дифференциальный анализ фазовых пространств в задаче декодирования сигналов

Северилов Павел

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Научный руководитель д.ф.-м.н. В. В. Стрижов

Москва, 2021 г.

Введение

Рассматривается задача выбора оптимальной модели декодирования сигналов. Процесс декодирования заключается в восстановлении зависимости между двумя наборами данных.

Проблема: пространства исходных и целевых переменных обладают существенно избыточной размерностью.

Гипотеза: построение отображения из исходного пространства в целевое как отображения между бесконечномерными пространствами.

Метод решения: Предлагаются подходы нейронного оператора и нейронного Фурье оператора.

Основные работы

- Li et al. Fourier Neural Operator for Parametric Partial Differential Equations, // conference paper at ICLR 2021, 2020
- Lu et al. DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators, // arXiv preprint arXiv:1910.03193, 2019
- Kovachki et al. Neural Operator: Learning Maps Between Function Spaces, //2021
- Wen et al. U-FNO an enhanced Fourier neural operator based-deep learning model for multiphase flow // arXiv preprint arXiv:2109.03697, 2021

Постановка задачи

- $\mathcal{X}=\mathcal{X}\left(D;\mathbb{R}^{d_x}\right)$ и $\mathcal{Y}=\mathcal{Y}\left(D;\mathbb{R}^{d_y}\right)$ банаховы пространства функций на $D\subset\mathbb{R}^x$
- ullet $\Psi: \mathcal{X}
 ightarrow \mathcal{Y}$ нелинейное отображение
- ullet Последовательность наблюдений $\{x_j,y_j\}_{i=1}^N$, где $y_j=\Psi\left(x_j\right)$
- Требуется построить аппроксимацию Ψ

$$\Psi_{\theta}: \mathcal{X} \rightarrow \mathcal{Y}, \quad \theta \in \Theta, \qquad \quad \Psi_{\theta^{\dagger}} \approx \Psi, \quad \theta^{\dagger} \in \Theta,$$

где Θ – конечномерное пространство параметров

• Задача оптимизации

$$\min_{\theta \in \Theta} \mathbb{E}_{x} \left[C \left(\Psi_{\theta}(x), \Psi(x) \right) \right],$$

где $C: \mathcal{Y} imes \mathcal{Y} o \mathbb{R}$ – функция ошибки

Нейронный оператор

Итеративная структура решения:

$$x \mapsto v_0 \mapsto v_1 \mapsto \ldots \mapsto v_K \mapsto y$$
,

где $v_j, j=0,1,\ldots,K-1$ -последовательность функций, $v_0(p)=P(x(t)),\, x(t)=Q\left(v_K(t)\right),\, Q:\mathbb{R}^{d_v}\to\mathbb{R}^{d_y},\, P(.),\, Q(.)$ - полносвязные слои

Определение 1 (Слой нейронного оператора)

$$v_{k+1}(t) := \sigma \left(Wv_k(t) + \left(\mathcal{K}(x; \varphi)v_k \right)(t) \right), \quad \forall t \in D,$$

где $\mathcal{K}(x;\varphi)$ – ядерный интегральный оператор, $W:\mathbb{R}^{d_v}\to\mathbb{R}^{d_v}$ – линейное преобразование, $\sigma:\mathbb{R}\to\mathbb{R}$ – нелинейная функция активации

Определение 2 (Ядерный интегральный оператор)

$$(\mathcal{K}(x;\varphi)v_k)(t) := \int_D \varkappa(t,q,x(t),x(q);\varphi)v_k(q)\mathrm{d}q, \quad \forall p \in D,$$

где $arkappa_{arphi}: \mathbb{R}^{2(d+d_{arkappa})} o \mathbb{R}^{d_{arkappa} imes d_{arkappa}}$ – нейросеть, параметризованная $arphi \in \Theta_{\mathcal{K}}$

Нейронный Фурье оператор

Определение 3 (Интегральный Фурье оператор)

Убирая зависимость от функции x и применяя теорему о свертке, получим:

$$(\mathcal{K}(\varphi)v_k)(t) = \mathcal{F}^{-1}(R_{\varphi}\cdot(\mathcal{F}v_k))(t) \quad \forall t \in D,$$

где $R_{\varphi}=\mathcal{F}\left(\varkappa_{\varphi}\right)$ – преобразование Фурье функции $\varkappa:\bar{D}\to\mathbb{R}^{d_{v}\times d_{v}}$ параметризованной $\varphi\in\Theta_{\mathcal{K}}$

Рис. Структура нейронного Фурье оператора

Понижение размерностей

Гипотеза:

- **1** Понижение размерностей исходного и целевого пространств на основе методов PCA, PLS (отображения $F_{\mathcal{X}}, F_{\mathcal{Y}}$ в размерность ниже, отображения в исходную размерность $G_{\mathcal{X}}, G_{\mathcal{Y}}$)
- Построение отображения χ между пространствами с размерностью ниже исходной

$$G_{\mathcal{X}} \circ F_{\mathcal{X}} \approx I_{\mathcal{X}}$$

$$G_{\mathcal{Y}} \circ F_{\mathcal{Y}} \approx I_{\mathcal{Y}}$$

$$G_{\mathcal{Y}} \circ \chi \circ F_{\mathcal{X}} \approx \Psi$$

$$egin{array}{cccc} \mathcal{X} & \stackrel{F_{\mathcal{X}}}{\longrightarrow} \mathbb{R}^{d_{\mathcal{X}}} & \stackrel{G_{\mathcal{X}}}{\longrightarrow} \mathcal{X} \\ \psi & & \chi \Big\downarrow & & \psi \Big\downarrow \\ \mathcal{Y} & \stackrel{F_{\mathcal{Y}}}{\longrightarrow} \mathbb{R}^{d_{\mathcal{Y}}} & \stackrel{G_{\mathcal{Y}}}{\longrightarrow} \mathcal{Y} \end{array}$$

Рис. коммутативная диаграмма общей схемы декодирования при понижении исходного и целевого пространств $(\mathcal{X},\mathcal{Y})$

Будущая работа

- Проведение экспериментов с применением FNO к декодированию сигналов EEG.
- Проведение экспериментов с применением FNO к декодированию сигналов EEG с понижением исходного и целевого пространств
- Сравнение с существующими подходами