PK11195

Jonathan Tjerkaski 23 February 2019

Aims

The aim of this assignment is to analyze the PK11195 data in kinfitr

Libraries

CRAN libraries

First, the libraries for the analysis and plotting are loaded.

```
library(tidyverse)
library(stringr)
library(corrplot)
library(grid)
library(gridExtra)
library(RColorBrewer)
library(psych)
library(readxl)
library(pracma)
library(jracma)
library(ime4)
library(rjags)
library(knitr)
library(cowplot)
library(corrplot)
library(ggplotify)
```

Non-CRAN libraries

The libraries above can be installed from CRAN. Those which cannot are installed as follows:

```
install.packages("devtools") # If you do not already have devtools
devtools::install_github("mathesong/kinfitr")
devtools::install_github("mathesong/granviller")
devtools::install_github("mvuorre/vmisc")
devtools::install_github("mathesong/kipettools")
devtools::install_github("mathesong/relfeas")
```

Loading Non_CRAN libraries and setting theme

```
library(kinfitr)
library(vmisc)
library(kipettools)
library(granviller)
library(relfeas)
theme_set(theme_light())
```

Creating folders using "initProjectFolder()"

```
initProjectFolder()
```

Extracting roistats and Tidying data.

```
#Extracting tac data
tacs <- tibble(Filename = list.files(path = "../RawData/",</pre>
                                            pattern = "roistats.mat")) %>%
   group by(Filename) %>%
   mutate(tacdata = map(Filename, ~kipettools::roistats_getData(
     paste0("../RawData/", .x))))
tacs <- tacs %>%
  ungroup() %>%
  mutate(Subjname = map_chr(tacdata, "Subjname"),
         PETNo = map_dbl(tacdata, "PETNo"),
         tacdata = map(tacdata, "tacdata")) %>%
  select(-Filename) %>%
  mutate(PET = paste(Subjname, PETNo, sep='_'))
#loading weights and blood data
oldwd <- getwd()</pre>
setwd("../RawData/")
blood <- list()</pre>
bloodfiles <- list.files(pattern='blood_processed_pfhill')</pre>
for(i in 1:length(bloodfiles)) {
blood[[bloodfiles[i]]] <- read_tsv(bloodfiles[i])</pre>
   print(paste0('Progress: ', i, ' / ', length(bloodfiles)))
}
blood <- tibble(blood)</pre>
Weights_list <- list()</pre>
weightfiles <- list.files(pattern='_weights2009')</pre>
for(i in 1:length(weightfiles)) {
Weights_list[[weightfiles[i]]] <- read_csv(weightfiles[i], col_names = FALSE)</pre>
   print(paste0('Progress: ', i, ' / ', length(weightfiles)))
}
setwd(oldwd)
Weights_list <- tibble(Weights_list)</pre>
Weights_list$PET <- weightfiles %>%
str replace(" weights2009.txt", " ")
Weights_list <- Weights_list %>%
group_by(PET) %>%
unnest() %>%
rename(weights = X1) %>%
ungroup()
#Note: new weights added
tacs <- tacs %>%
unnest() %>%
rename(Times = times) %>%
select(Subjname:PET, Times, durations, WM, GM, WB, FC, OC, THA, STR, TC, ACC, CBL = CER, INS) %>%
add_column(weights = Weights_list$weights) %>%
select(-weights) %>%
```

```
mutate("start" = Times - (durations/2)) %>%
mutate("end" = Times + (durations/2))
tacs$weights <- weights_create(t_start = tacs$start, t_end = tacs$end,</pre>
                               tac = tacs$WB, radioisotope = "C11")
tacs <- tacs %>%
group by (PET, Subjname, PETNo) %>%
nest(.key = tacdata) %>%
ungroup()
blood$PET. <- bloodfiles %>%
str_replace("_blood_processed_pfhill.txt", " ")
blood <- blood %>%
  unnest() %>%
rename(Cbl.disp.corr = "Cbl disp corr", Cpl = "Cpl (nCi/cc)", ABSS.sec = "ABSS sec" ) %>%
  mutate(Cbl.disp.corr = ifelse(Cbl.disp.corr < 0, 0, Cbl.disp.corr)) %%</pre>
  group_by(PET.) %>%
  nest(.key='blooddata') %>%
  ungroup() %>%
   mutate(input = map(blooddata, ~blood_interp(
             t_blood = .x$ABSS.sec/60, blood =.x$Cbl.disp.corr,
             t_plasma=.x$ABSS.sec/60, plasma =.x$Cpl,
             t_parentfrac = .x$ABSS.sec/60 , parentfrac= .x$parent_fract ) ))
tacs <- tacs %>%
  arrange(PET, Subjname, PETNo) %>%
  bind_cols(blood)%>%
  select(-PET.)
saveRDS(tacs, '../DerivedData/tacs.rds')
```

Fitting of the Delay and Blood Volume Fraction

$creating \ logan_tstar$

```
logantstar <- function(tacdata, input, inpshift) {
  Logan_tstar(t_tac = tacdata$Times, input = input, lowroi = tacdata$FC, medroi = tacdata$CBL, highro
}
tacs <- tacs %>%
  group_by(Subjname, PETNo) %>%
  mutate(logan_tstar = pmap(list(tacdata, input, inpshift), logantstar))
```

#Rearrangement of the Data into Long Format

```
tacs_long <- tacs %>%
  select(PET, Subjname, PETNo, tacdata, logan_tstar, inpshift) %>%
  unnest(tacdata, .drop = FALSE) %>%
  gather(Region, TAC, -(PET:durations) , -(start:weights)) %>%
  group_by(PET, Subjname, PETNo, Region) %>%
  nest(.key = 'tacdata')

tacs_long <- tacs %>%
  select(PET, Subjname, PETNo, input, delayFit) %>%
  inner_join(tacs_long, by = c("PET", "Subjname", "PETNo"))
```

Plotting logan_tstar

```
set.seed(123)
tstar_fits <- tacs_long %>%
  ungroup() %>%
  select(tacdata, PET) %>%
  unnest() %>%
  select(PET, logan_tstar) %>%
  select(PET, logan_tstar) %>%
  sample_n(size = 4, replace = F)
walk2(list(tstar_fits$logan_tstar), tstar_fits$PET,
    ~print(plot_grid(plotlist = .x, ncol = 1, nrow = 1, labels = paste('PET:',.y), label_x = 0.5, label
```

All 4 tstar plots on a single page

```
plot_grid(plotlist = tstar_fits$logan_tstar, ncol = 2, nrow = 1, labels = paste('PET:',tstar_fits$PET),
    draw_figure_label("t*", position = "top", fontface = "bold", size = 32, colour = "red")
```

Define functions for fitting the models

Comment: when the argumant "multstart_iter" is equal to 1 for 2TCM, the estimated microparameters of a number of study participants have a tendency of approaching or even exceeding their default limits.

Fit kinetic models

#Plot kinetic models

Plot 2tcm

```
delayFits <- map(tacs_long$delayFit[tacs_long$Region=='WB'],</pre>
                ~plot_inptac_fit(.x) + ggtitle('Delay'))
delayFits <- data.frame(PET = unique(tacs_long$PET)) %>%
              mutate(fit = delayFits)
plot_2tcm <- tacs_long %>%
group_by(PET, Region) %>%
  mutate(fit = map2(fit_2tcm, Region,
      ~ plot_kinfit(.x, roiname = .y))) %>%
  ungroup() %>%
  filter(Region %in% c('FC', 'WB', 'ACC', 'CBL', 'THA')) %>%
  select(PET, fit) %>%
  group_by(PET) %>%
  arrange(PET) %>%
  bind_rows(delayFits)
walk2(list(plot_2tcm\fit), unique(plot_2tcm\fit),
    ~print(plot_grid( plotlist = .x, ncol = 2, nrow = 3, align = 'hv') +
  draw_plot_label( label = .y , y = 1, x = 0.5, fontface = "bold", size = 20, colour = "red", hjust = 1
###subplot version
plot.TAC <- plot_kinfit(tacs_long$fit_2tcm[[4]], roiname = tacs_long$Region[4])</pre>
plot.AIF <- plot_kinfit(tacs_long$fit_2tcm[[4]], roiname = tacs_long$Region[4]) +</pre>
coord_cartesian(ylim=c(0,3000))
p <- ggdraw() +
 draw_plot(plot.TAC + theme(legend.position = "none"), 0, 0, 1, 1) +
```

new plot 2tcm

```
k <- tacs_long %>%
group_by(PET, Region) %>%
mutate(twotcm = map(fit_2tcm, c("tacs"))) %>%
select(PET, Region, twotcm) %>%
filter(Region %in% c('FC', 'WB', 'ACC', 'CBL')) %>%
unnest()

ggplot(k, aes(x=Time, y=Target, color = Region)) +
geom_point() + geom_line(aes(y=Target_fitted, color = Region)) +
facet_wrap(~ PET , ncol=2)
```

Plot ma1

Plot Loganplot

```
group_by(PET) %>%
arrange(PET)

walk2(list(plot_Logan$fit), unique(plot_Logan$PET),
    ~print(plot_grid( plotlist = .x, ncol = 2, nrow = 2, align = 'hv') +
draw_plot_label( label = .y , y = 1, x = 0.5, fontface = "bold", size = 20, colour = "red", hjust = 1
```

Test-retest

trt preparation

```
trt_check <- tacs_long %>%
  select(Subjname, PETNo, Region, Vt_ma1, Vt_2tcm, Vt_Logan) %>%
  gather(Measure, Value, -Subjname, -PETNo, -Region) %>%
  group_by(Region, Measure) %>%
  nest(.key = "data")

# saveRDS(tacs_long,'../DerivedData/raw_kinfit_pk11195.rds')
```

trt results

Region	Measure	mean	sd	cov	skew	kurtosis	icc	icc_l	icc_u	wscv	sdd	absvar	signv
WM	Vt_ma1	0.850	0.213	0.251	0.121	-1.703	0.708	0.031	0.951	0.142	0.335	0.129	-0.10
GM	Vt_ma1	0.794	0.178	0.224	0.170	-1.546	0.675	-0.078	0.946	0.132	0.291	0.150	-0.04
WB	Vt_ma1	0.802	0.185	0.231	0.175	-1.557	0.666	-0.095	0.944	0.137	0.306	0.156	-0.04
FC	Vt_ma1	0.785	0.162	0.206	0.176	-1.560	0.652	-0.120	0.941	0.125	0.273	0.148	-0.04
OC	Vt_ma1	0.849	0.200	0.236	0.069	-1.596	0.683	-0.063	0.947	0.137	0.323	0.153	-0.04
THA	Vt_ma1	0.836	0.220	0.264	0.405	-1.180	0.731	0.034	0.956	0.141	0.328	0.179	-0.04
STR	Vt_ma1	0.793	0.167	0.211	0.281	-0.736	0.584	-0.228	0.928	0.140	0.308	0.154	0.07
TC	Vt_ma1	0.784	0.179	0.229	0.061	-1.643	0.660	-0.105	0.943	0.138	0.299	0.156	-0.04
ACC	Vt_ma1	0.760	0.180	0.236	0.436	-1.122	0.569	-0.250	0.924	0.160	0.337	0.212	-0.09
CBL	Vt_ma1	0.797	0.199	0.250	0.095	-1.602	0.696	-0.038	0.950	0.142	0.314	0.151	-0.0
INS	Vt_ma1	0.776	0.193	0.249	0.217	-1.647	0.621	-0.171	0.935	0.158	0.340	0.169	-0.07
WM	Vt_2tcm	14.879	23.778	1.598	1.013	-1.024	0.637	-0.146	0.938	0.993	40.932	0.445	-0.33
GM	Vt_2tcm	0.683	0.156	0.228	0.472	-0.799	0.749	0.075	0.960	0.118	0.224	0.156	0.00
WB	Vt_2tcm	0.725	0.155	0.214	0.231	-1.333	0.734	0.039	0.957	0.115	0.230	0.145	-0.02
FC	Vt_2tcm	0.689	0.141	0.205	0.369	-1.072	0.711	-0.007	0.953	0.115	0.220	0.152	-0.00
OC	Vt_2tcm	0.728	0.168	0.230	0.308	-1.002	0.731	0.033	0.956	0.124	0.249	0.168	0.0

Region	Measure	mean	sd	cov	skew	kurtosis	icc	icc_l	icc_u	wscv	sdd	absvar	signv
THA	Vt_2tcm	0.760	0.206	0.271	0.689	-0.601	0.753	0.083	0.960	0.139	0.294	0.189	-0.01
STR	Vt_2tcm	0.761	0.180	0.237	0.541	-0.796	0.132	-0.672	0.804	0.222	0.468	0.248	0.07
TC	Vt_2tcm	0.673	0.149	0.221	0.320	-1.035	0.715	0.001	0.954	0.122	0.228	0.159	0.00
ACC	Vt_2tcm	0.670	0.162	0.242	0.812	-0.320	0.643	-0.135	0.940	0.149	0.277	0.175	-0.03
CBL	Vt_2tcm	0.689	0.170	0.247	0.529	-0.992	0.617	-0.178	0.934	0.157	0.300	0.175	-0.0
INS	Vt_2tcm	0.664	0.173	0.260	0.694	-0.586	0.792	0.178	0.967	0.123	0.227	0.154	0.00
WM	Vt_Logan	0.720	0.191	0.265	0.097	-1.620	0.659	-0.089	0.943	0.160	0.319	0.174	-0.08
GM	Vt_Logan	0.691	0.164	0.238	0.483	-1.010	0.753	0.084	0.960	0.122	0.234	0.151	-0.03
WB	Vt_Logan	0.688	0.168	0.245	0.407	-1.104	0.730	0.032	0.956	0.131	0.251	0.163	-0.04
FC	Vt_Logan	0.673	0.152	0.226	0.525	-0.937	0.728	0.028	0.956	0.122	0.227	0.152	-0.04
OC	Vt_Logan	0.730	0.177	0.242	0.341	-1.155	0.752	0.080	0.960	0.125	0.253	0.153	-0.03
THA	Vt_Logan	0.764	0.208	0.272	0.645	-0.741	0.795	0.186	0.968	0.129	0.273	0.172	-0.01
STR	Vt_Logan	0.674	0.160	0.238	0.674	-0.299	0.683	-0.062	0.948	0.138	0.258	0.149	0.00
TC	Vt_Logan	0.679	0.157	0.231	0.380	-1.183	0.762	0.105	0.962	0.117	0.220	0.144	-0.0
ACC	Vt_Logan	0.682	0.172	0.252	0.515	-0.851	0.631	-0.154	0.937	0.157	0.297	0.204	-0.0
CBL	Vt_Logan	0.701	0.168	0.239	0.553	-0.850	0.738	0.049	0.958	0.127	0.246	0.152	-0.0
INS	Vt_Logan	0.690	0.179	0.259	0.489	-1.032	0.781	0.151	0.965	0.126	0.241	0.154	-0.0

Interregional Correlation

Here the interregional correlations for V_T are assessed

```
Vt_2TCM <- tacs_long %>%
  ungroup() %>%
  select(PET, Region, Vt_2tcm) %>%
  spread(Region, Vt_2tcm)
Vt_MA1 <- tacs_long %>%
  ungroup() %>%
  select(PET, Region, Vt_ma1) %>%
  spread(Region, Vt_ma1)
Vt_logan <- tacs_long %>%
  ungroup() %>%
  select(PET, Region, Vt_Logan) %>%
  spread(Region, Vt_Logan)
col2 <- colorRampPalette(rev(c("#67001F", "#B2182B", "#D6604D", "#F4A582", "#FDDBC7",</pre>
                           "#FFFFFF", "#D1E5F0", "#92C5DE", "#4393C3", "#2166AC", "#053061")))
par(mfrow=c(2,2))
Vt_2TCM %>%
  select(FC:WB) %>%
  cor() %>%
  corrplot.mixed(lower='ellipse', upper='number',
                 lower.col = col2(200), upper.col = col2(200), diag='n',
                 number.digits = 2, title=expression(Vt_2TCM ~ Correlations),
                 mar=c(0,0,1,0)
Vt_logan %>%
 select(FC:WB) %>%
```

Vt_2TCM Correlations

Vt_logan Correlations

Vt_MA1 Correlations

#Corrplot between measures for a single region

```
compare <- tacs_long %>%
  ungroup() %>%
  select(PET, Region, Vt_2tcm, Vt_Logan ,Vt_ma1 ) %>%
  filter(Region %in% c('FC', 'WB', 'STR', 'OC'))
par(mfrow=c(2,2))
compare %>%
  filter(Region == "FC") %>%
  select(Vt_2tcm:Vt_ma1) %>%
  cor() %>%
  corrplot.mixed(lower='ellipse', upper='number',
                 lower.col = col2(200), upper.col = col2(200), diag='n',
                 number.digits = 2, title=expression(Model ~ Correlations ~ Region: FC),
                 mar=c(0,0,1,0)
compare %>%
  filter(Region == "OC") %>%
  select(Vt_2tcm:Vt_ma1) %>%
  cor() %>%
  corrplot.mixed(lower='ellipse', upper='number',
                 lower.col = col2(200), upper.col = col2(200), diag='n',
                 number.digits = 2, title=expression(Model ~ Correlations ~ Region: OC),
                 mar=c(0,0,1,0)
compare %>%
  filter(Region == "STR") %>%
  select(Vt_2tcm:Vt_ma1) %>%
  cor() %>%
  corrplot.mixed(lower='ellipse', upper='number',
                 lower.col = col2(200), upper.col = col2(200), diag='n',
                 number.digits = 2, title=expression(Model ~ Correlations ~ Region: STR),
                 mar=c(0,0,1,0)
compare %>%
  filter(Region == "WB") %>%
  select(Vt_2tcm:Vt_ma1) %>%
  cor() %>%
  corrplot.mixed(lower='ellipse', upper='number',
                 lower.col = col2(200), upper.col = col2(200), diag='n',
                 number.digits = 2, title=expression(Model ~ Correlations ~ Region: WB),
                 mar=c(0,0,1,0)
```


Model Correlations Region : OC

Model Correlations Region : STR

Model Correlations Region : WB

Vt corellation

R-squared

```
trtdata <- tacs_long %>%
    select(PET, Subjname, PETNo, Region, Vt_2tcm, Vt_Logan ,Vt_ma1) %>%
    gather(Measure, Value, -(PET:Region)) %>%
    spread(Region, Value)

trtdata <- trtdata %>%
    gather(Region, Value, -(PET:Measure)) %>%
    unite(Outcome, Measure, Region) %>%
    spread(Outcome, Value)
```

```
corout <- trtdata %>%
  gather(Measure, Binding, -(PET:PETNo), -Vt_2tcm_WB) %>%
  group by(Measure) %>%
  summarise('R^2'=cor(Binding, Vt 2tcm WB)^2) %>%
  arrange(Measure) %>%
  ungroup() %>%
  mutate(Measure = str_replace(string=Measure, pattern='_', replacement='~')) %>%
  mutate(Measure = str replace(string=Measure, pattern='FC', replacement='FC')) %>%
  mutate(Measure = str_replace(string=Measure, pattern='CBL', replacement='CBL~')) %>%
  mutate(Measure = str_replace(string=Measure, pattern='ACC', replacement='ACC')) %>%
  mutate(Measure = str_replace(string=Measure, pattern='INS', replacement='INS')) %>%
  mutate(Measure = str_replace(string=Measure, pattern='THA', replacement='THA')) %>%
  mutate(Measure = str_replace(string=Measure, pattern='WB', replacement='WB~')) %>%
  mutate(Measure = str_replace(string=Measure, pattern='0C', replacement='0C~')) %>%
  mutate(Measure = str_replace(string=Measure, pattern='WM', replacement='WM~')) %>%
  mutate(Measure = str_replace(string=Measure, pattern='GM', replacement='GM-')) %>%
  mutate(Measure = str_replace(string=Measure, pattern='STR', replacement='STR'))
kable(corout, digits=2, caption="Correlations with BP_srtm~WB~")
```

Table 2: Correlations with BP_srtm_{WB}

Measure	R^2
$\overline{\mathrm{Vt}_{\mathrm{2tcm_ACC}}}$	0.86
Vt_{2tcm_CBL}	0.94
${ m Vt}_{ m 2tcm_FC}$	0.98
Vt_{2tcm_GM}	0.96
${ m Vt}_{ m 2tcm_INS}$	0.87
Vt_{2tcm_OC}	0.96
Vt_{2tcm_STR}	0.66
$Vt{\sim}2tcm_TC$	0.97
$\rm Vt_{2tcm_THA}$	0.88
Vt_{2tcm_WM}	0.52
Vt_{Logan_ACC}	0.81
$Vt_{\rm Logan_CBL}$	0.87
Vt_{Logan_FC}	0.87
Vt_{Logan_GM}	0.87
Vt_{Logan_INS}	0.86
Vt_{Logan_OC}	0.91
Vt_{Logan_STR}	0.80
$Vt\sim Logan_TC$	0.88
Vt_{Logan_THA}	0.81
Vt_{Logan_WB}	0.89
Vt_{Logan_WM}	0.88
${ m Vt_{ma1_ACC}}$	0.85
${\rm Vt_{ma1_CBL}}$	0.95
${ m Vt_{ma1_FC}}$	0.96
${ m Vt_{ma1_GM}}$	0.95
${ m Vt_{ma1_INS}}$	0.89
Vt_{ma1} _OC	0.94
Vt_{ma1_STR}	0.84
$Vt\sim ma1_TC$	0.94
$\rm Vt_{ma1_THA}$	0.90

Measure	\mathbb{R}^2			
	$0.95 \\ 0.86$			

#Plot of the change between PETNo = 1 and PETNo = 2.

#all estimates in all models using facet grid.

```
trt_table_2tcm <- trt_table %>%
  gather(estimate, Value, -(Region:Measure))

ggplot(trt_table_2tcm, aes(y = Region, x = Value, colour = Region ))+
  geom_point()+
  facet_grid( Measure ~ estimate)+
  coord_flip()
```

###All estimates in all models using facet_wrap, improved version?

```
trt_table_2TCM <- trt_table %%
  gather(estimate, Value, -(Region:mean)) %>%
  filter(estimate %in% c('icc', 'wscv', 'sd', 'cov'))

ggplot(trt_table_2TCM, aes(y = estimate, x = Value, colour = Region ))+
  geom_point()+
  facet_wrap( ~ Measure)+
  coord_flip()+
  xlim( 0, 1.25)
```

#Old version ma1 plot

Kept in case we would require this code in the future

```
bind_rows(DelayFits) %>%
   arrange(PET, Plot)

allFits_ma1_excluded <- allfits_2tcm %>%
   filter(grepl(PET, pattern='uqis_2'))

allfits_ma1 <- allfits_ma1 %>%
   filter(!grepl(PET, pattern='uqis_2'))

fitLabels <- unique(allfits_ma1$PET)
marrangeGrob(allfits_ma1$Fit, nrow=2, ncol=3, top=quote(paste('PET: ', PETs[g])))</pre>
```