Propriétés de \mathbb{R} Corrigé

DARVOUX Théo

Septembre 2023

Exercices.	
négalités.	2
Exercice 2.1	2
Exercice 2.2	3
Exercice 2.3	3
Exercice 2.4	4
aleurs absolues.	5
Exercice 2.5	5
Exercice 2.6	6
ntiers, rationnels.	6
Exercice 2.7	6
Exercice 2.8	7
Exercice 2.9	8
Exercice 2.10	8
arties bornées	9
Exercice 2.11	9
Exercice 2.12	10

Exercice 2.1 $[\Diamond \Diamond \Diamond]$

Soient a et b deux nombres réels strictement positifs. Démontrer l'inégalité

$$\frac{a^2}{b} + \frac{b^2}{a} \ge a + b$$

On a:

$$\frac{a^2}{b} + \frac{b^2}{a} \ge a + b$$

$$\iff \frac{a^3 - a^2b + b^3 - ab^2}{ab} \ge 0$$

$$\iff \frac{a^2(a - b) + b^2(b - a)}{ab} \ge 0$$

$$\iff \frac{(a - b)(a^2 - b^2)}{ab} \ge 0$$

$$\iff \frac{(a - b)^2(a + b)}{ab} \ge 0$$

Or $(a - b)^2 \ge 0$, $(a + b) \ge 0$ et $ab \ge 0$.

Ainsi, cette inégalité est vraie pour tout $(a, b) \in \mathbb{R}_+^*$.

Exercice 2.2 $[\Diamond \Diamond \Diamond]$

1. Montrer que $\forall (a,b) \in (\mathbb{R}_+)^2 \sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$. Soit $(a,b) \in (\mathbb{R}_+)^2$.

$$\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$$

$$\iff a+b \le a + 2\sqrt{ab} + b$$

$$\iff 2\sqrt{ab} \ge 0$$

$$\iff \sqrt{ab} \ge 0$$

$$\iff ab \ge 0$$

Ainsi, $\forall (a, b) \in (\mathbb{R}_+)^2 \sqrt{a+b} \le \sqrt{a} + \sqrt{b}$.

2. Montrer que $\forall (a,b) \in (\mathbb{R}_+)^2 |\sqrt{a} - \sqrt{b}| \leq \sqrt{|a-b|}$. Soit $(a,b) \in (\mathbb{R}_+)^2$.

Considérons $a \ge b$, alors |a - b| = a - b.

$$|\sqrt{a} - \sqrt{b}| \le \sqrt{a - b}$$

$$\iff a - 2\sqrt{ab} + b \le a - b$$

$$\iff 2b \le 2\sqrt{ab}$$

$$\iff b^2 \le ab$$

$$\iff b \le a$$

Le raisonnement est symétrique lorsque $b \ge a$. Ainsi, $\forall (a,b) \in (\mathbb{R}_+)^2 | \sqrt{a} - \sqrt{b} | \le \sqrt{|a-b|}$.

Exercice 2.3 $[\blacklozenge \lozenge \lozenge]$ Manipuler la notion de distance

En utilisant la notion de distance sur \mathbb{R} , écrire comme réunion d'intervalles l'ensemble

$$E = \{x \in \mathbb{R} \mid |x+3| \le 6 \text{ et } |x^2 - 1| > 3\}$$

On a:

$$x \in [-9,3]$$
 et $x \in]-\infty,-2[\cup]2,+\infty[$

Donc:

$$x \in [-9, -2] \cup [2, 3]$$

Exercice 2.4 $[\blacklozenge \blacklozenge \lozenge]$ Plusieurs façons de définir une moyenne

Soient a et b deux réels tels que $0 < a \le b$. On définit les nombres m, g, h par

$$m = \frac{a+b}{2},$$
 $g = \sqrt{ab},$ $\frac{1}{h} = \frac{1}{2}\left(\frac{1}{a} + \frac{1}{b}\right).$

Et on les appelle respectivement moyenne arithmétique, géométrique et harmonique de a et b. Démontrer l'encadrement

$$a \leq h \leq g \leq m \leq b$$

Montrons les inégalités une par une :

- $m \le b \iff \frac{a+b}{2} b \le 0 \iff \frac{a-b}{2} \le 0 \iff a-b \le 0 \iff a \le b$.
- $g \le m \iff \sqrt{ab} \le \frac{a+b}{2} \iff \frac{a-2\sqrt{ab}+b}{2} \ge 0 \iff \frac{(\sqrt{a}-\sqrt{b})^2}{2} \ge 0.$
- $\bullet \ h \leq g \iff \tfrac{1}{h} \geq \tfrac{1}{g} \iff \tfrac{1}{2a} + \tfrac{1}{2b} \tfrac{1}{\sqrt{ab}} \geq 0 \iff \tfrac{a 2\sqrt{ab} + b}{2ab} \geq 0 \iff \tfrac{(\sqrt{a} \sqrt{b})^2}{2ab} \geq 0.$
- $\bullet \ a \leq h \iff \tfrac{1}{a} \geq \tfrac{1}{h} \iff \tfrac{1}{a} \tfrac{1}{2a} \tfrac{1}{2b} \geq 0 \iff \tfrac{b-a}{2ab} \geq 0 \iff b-a \geq 0 \iff a \leq b$

Ainsi, $a \le h \le g \le m \le b$.

Exercice 2.5 $[\Diamond \Diamond \Diamond]$

Résoudre l'équation

$$\ln|x| + \ln|x+1| = 0$$

Soit $x \in \mathbb{R} \setminus \{-1, 0\}$.

$$\ln|x| + \ln|x + 1| = 0$$

$$\iff \ln(|x(x+1|) = 0)$$

$$\iff |x(x+1)| = 1$$

Supposons $x \in]-\infty, -1[\cup]0, +\infty[$.

On a:

$$|x(x+1)| = 1$$

$$\iff x(x+1) = 1$$

$$\iff x^2 + x - 1 = 0$$

$$\iff x = \frac{1 \pm \sqrt{5}}{2}$$

Supposons $x \in]-1,0[$.

$$|x(x+1)| = 1$$

$$\iff -x^2 - x - 1 = 0$$

Il n'y a donc pas de solutions dans]-1,0[.

L'ensemble des solutions de l'équation est : $\{\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\}$

Exercice 2.6 $[\Diamond \Diamond \Diamond]$

Résoudre l'équation

$$|x-2| = 6 - 2x$$

Soit $x \in \mathbb{R}$.

Considérons $x \ge 2$

$$|x - 2| = 6 - 2x$$

$$\iff x - 2 = 6 - 2x$$

$$\iff x = \frac{8}{3}$$

Considérons $x \leq 2$

$$|x - 2| = 6 - 2x$$

$$\iff 2 - x = 6 - 2x$$

$$\iff x = 4$$

Seul la solution $x = \frac{8}{3}$ convient. Ainsi, l'unique solution à l'équation est $\frac{8}{3}$.

Exercice 2.7 $[\blacklozenge \blacklozenge \blacklozenge]$

Démontrer l'égalité $\lfloor \frac{\lfloor nx \rfloor}{n} \rfloor = \lfloor x \rfloor$ pour tout entier $n \in \mathbb{N}^*$ et tout réel x.

Soient $(x, n) \in \mathbb{R} \times \mathbb{N}^*$.

Notons r la partie fractionnaire de x, ainsi $x = \lfloor x \rfloor + r$.

On a alors $nx = n\lfloor x \rfloor + nr$ et $\lfloor nx \rfloor = \lfloor n\lfloor x \rfloor + nr \rfloor = n\lfloor x \rfloor + \lfloor nr \rfloor$.

Conséquemment, $\frac{\lfloor nx \rfloor}{n} = \lfloor x \rfloor + \frac{\lfloor nr \rfloor}{n}$.

Or, $0 \le \frac{\lfloor nr \rfloor}{n} < 1$ car $0 \le r < 1$, donc $\lfloor x \rfloor \le \lfloor x \rfloor + \frac{\lfloor nr \rfloor}{n} < \lfloor x \rfloor + 1$.

Ainsi, $\lfloor x \rfloor \le \lfloor \frac{\lfloor nx \rfloor}{n} \rfloor < \lfloor x + 1 \rfloor$.

Par conséquent, $\lfloor \frac{\lfloor nx \rfloor}{n} \rfloor = \lfloor x \rfloor$.

1. Démontrer :

$$\forall x \in \mathbb{R}_+^* \quad \frac{1}{2\sqrt{x+1}} < \sqrt{x+1} - \sqrt{x} < \frac{1}{2\sqrt{x}}.$$

Soit $x \in \mathbb{R}_+^*$.

On a:

$$\sqrt{x+1} - \sqrt{x} < \frac{1}{2\sqrt{x}}$$

$$\iff 2\sqrt{x(x+1)} - 2x < 1$$

$$\iff (2\sqrt{x(x+1)})^2 < (1+2x)^2$$

$$\iff 4x(x+1) < 4x^2 + 4x + 1$$

$$\iff 4x^2 + 4x - 4x^2 - 4x < 1$$

$$\iff 0 < 1$$

 Et :

$$\frac{1}{2\sqrt{x+1}} < \sqrt{x+1} - \sqrt{x}$$

$$\iff 1 < 2\sqrt{(x+1)^2} - 2\sqrt{x(x+1)}$$

$$\iff 1 < 2|x+1| - 2\sqrt{x(x+1)}$$

$$\iff (2x+1)^2 > (2\sqrt{x(x+1)})^2$$

$$\iff 4x^2 + 4x + 1 > 4x^2 + 4x$$

$$\iff 1 > 0$$

2. Soit p un entier supérieur à 2. Que vaut la partie entière de

$$\sum_{k=1}^{p^2-1} \frac{1}{\sqrt{k}}$$

Soit $x \in \mathbb{R}_+^*$

On a:

$$\frac{1}{2\sqrt{x+1}} < \sqrt{x+1} - \sqrt{x} < \frac{1}{2\sqrt{x}}$$

Donc, en remplaçant x par x-1:

$$\frac{1}{2\sqrt{x}} < \sqrt{x} - \sqrt{x-1} < \frac{1}{2\sqrt{x-1}}$$

Ainsi,

$$\sqrt{x+1} - \sqrt{x} < \frac{1}{2\sqrt{x}} < \sqrt{x} - \sqrt{x-1}$$

MAIS ALORS:

$$\sum_{k=1}^{p^2-1} \left(\sqrt{k+1} - \sqrt{k} \right) < \sum_{k=1}^{p^2-1} \frac{1}{2\sqrt{k}} < \sum_{k=1}^{p^2-1} \left(\sqrt{k} - \sqrt{k-1} \right)$$

$$\iff \sqrt{p^2} - \sqrt{1} < \frac{1}{2} \sum_{k=1}^{p^2-1} \frac{1}{\sqrt{k}} < \sqrt{p^2 - 1} - \sqrt{0}$$

$$\iff 2p - 2 < \sum_{k=1}^{p^2-1} \frac{1}{\sqrt{k}} < 2\sqrt{p^2 - 1}$$

$$\iff 2p - 2 < \sum_{k=1}^{p^2-1} \frac{1}{\sqrt{k}} < \lfloor 2\sqrt{p^2 - 1} \rfloor$$

Or $2p - 2 < 2\sqrt{p^2 - 1} < 2p \text{ donc } \lfloor 2\sqrt{p^2 - 2} \rfloor = 2p - 2$

On en conclut:

$$\lfloor \sum_{k=1}^{p^2-1} \frac{1}{\sqrt{k}} \rfloor = 2p - 2$$

Exercice 2.9 $[\blacklozenge \blacklozenge \blacklozenge]$

Prouver que $\frac{\ln(2)}{\ln(3)}$ est un nombre irrationnel.

Supposons que $\frac{\ln 2}{\ln 3} \in \mathbb{Q}$. Alors il existe $p \in \mathbb{N}$ et $q \in \mathbb{N}^*$ premiers entre eux tels que :

$$\frac{\ln 2}{\ln 3} = \frac{p}{q}$$

Alors:

$$p \ln 3 = q \ln 2$$

$$\iff \ln(3^p) = \ln(2^q)$$

$$\iff e^{\ln(3^p)} = e^{\ln 2^q}$$

$$\iff 3^p = 2^q$$

Or 3^p est toujours impair et 2^q est toujours pair, donc cela est absurde. Ainsi, $\frac{\ln 2}{\ln 3}$ est irrationnel.

Soient x et y deux rationnels positifs tels que

 \sqrt{x} et \sqrt{y} soient irrationnels.

Montrer que $\sqrt{x} + \sqrt{y}$ est irrationnel. Supposons $\sqrt{x} + \sqrt{y} \in \mathbb{Q}$.

On a:

$$(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y}) = x - y$$

$$\iff \sqrt{x} - \sqrt{y} = \frac{x - y}{\sqrt{x} + \sqrt{y}}$$

Or $x - y \in \mathbb{Q}$ et $\sqrt{x} + \sqrt{y} \in \mathbb{Q}$ par hypothèse. Donc $\sqrt{x} - \sqrt{y} \in \mathbb{Q}$. D'autre part,

$$\sqrt{x} + \sqrt{y} + \sqrt{x} - \sqrt{y} = 2\sqrt{x}$$

 \sqrt{x} est donc la somme de deux rationnels, et est donc rationnel.

C'est absurde. On en conclut que $\sqrt{x} + \sqrt{y}$ est irrationnel.

Soit l'ensemble

$$A = \left\{ \frac{n - \frac{1}{n}}{n + \frac{1}{n}}, n \in \mathbb{N}^* \right\}$$

Cette partie de \mathbb{R} est-elle bornée ? Possède-t-elle un maximum ? Un minimum ? Soit (u_n) une suite telle que $\forall n \in \mathbb{N}^*, u_n = \frac{n-\frac{1}{n}}{n+\frac{1}{n}}$.

Soit $n \in \mathbb{N}^*$.

On a:

$$u_n = \frac{n - \frac{1}{n}}{n + \frac{1}{n}} = \frac{n^2 - 1}{n} \cdot \frac{n}{n^2 + 1}$$
$$= \frac{n^3 - n}{n^3 + n} = \frac{n^3 + n}{n^3 + n} - \frac{2n}{n^3 + n}$$
$$= 1 - \frac{2}{n^2 + 1}$$

Étudions le signe de $u_{n+1} - u_n$.

$$u_{n+1} - u_n = 1 - \frac{2}{(n+1)^2 + 1} - 1 + \frac{2}{n^2 + 1}$$

$$= \frac{2}{n^2 + 1} - \frac{2}{n^2 + 2n + 2}$$

$$= \frac{4n + 2}{(n^2)(n^2 + 2n + 2)}$$

C'est toujours positif : on en déduit que, (u_n) est croissante sur \mathbb{N}^* .

Elle admet donc un minimum en 1, qui est 0.

Elle admet aussi un majorant lorsque n tend vers l'infini :

$$\lim_{n \to +\infty} u_n = 1$$

Ainsi, A admet 0 comme minimum, n'a pas de maximum et est majorée par 1.

1. Montrer que

$$\forall (a,b) \in (\mathbb{R}_+^*)^2 : \frac{a^2}{a+b} \ge \frac{3a-b}{4}.$$

Étudier le cas d'égalité.

2. En déduire que l'ensemble

$$E = \left\{ \frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{c+a} \mid (a,b,c) \in (\mathbb{R}_+^*)^3 \text{ et } a+b+c \ge 2 \right\}$$

admet un minimum et le calculer.

1. Soit $(a, b) \in (\mathbb{R}_+^*)^2$ On a :

$$\frac{a^2}{a+b} - \frac{3a-b}{4} \ge 0$$

$$\iff \frac{a^2 - 2ab + b^2}{4(a+b)} \ge 0$$

$$\iff (a-b)^2 \ge 0$$

D'autre part,

$$\frac{a^2}{a+b} = \frac{3a-b}{4}$$

$$\iff (a-b)^2 = 0$$

$$\iff a = b$$

2. Soient $(a, b, c) \in \mathbb{R}_+^{*\,3}$ tels que $a+b+c \geq 2$. On a :

$$\frac{a^{2}}{a+b} + \frac{b^{2}}{b+c} + \frac{c^{2}}{c+a} \ge \frac{3a-b}{4} + \frac{3b-c}{4} + \frac{3c-a}{4}$$

$$\ge \frac{2a+2b+2c}{4}$$

$$\ge \frac{a+b+c}{2}$$

$$\ge 1$$

Or, lorsque $a=b=c=\frac{2}{3},$ on a $a+b+c\geq 2$ et:

$$\frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{c+a} = 3\frac{a}{2} = 3 \cdot \frac{2}{3} \cdot \frac{1}{2} = 1$$

Ainsi, $1 \in E$ et $\forall x \in E, x \ge 1$ donc 1 est minimum de E.