

New Product

P-Channel 20-V (D-S) MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	$r_{DS(on)}(\Omega)$	I _D (A)		
	0.039 @ V _{GS} = -4.5 V	-4.7		
-20	0.052 @ V _{GS} = -2.5 V	- 4.1		
	0.068 @ V _{GS} = -1.8 V	- 3.5		

FEATURES

• TrenchFET® Power MOSFET

APPLICATIONS

- Load Switch
- PA Switch

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C UNLESS OTHERWISE NOTED)					
Parameter		Symbol	5 sec	Steady State	Unit
Drain-Source Voltage		V _{DS}	-20		V
Gate-Source Voltage		V _{GS}	±8		
Continuous Drain Current (T ₁ = 150°C) ^{a, b}	T _A = 25°C		- 4.7	-3.7	
Continuous Diain Current (1) = 150 C) 4.5	T _A = 70°C	ID	-3.8	-2.9	А
Pulsed Drain Current		I _{DM}	-20		^
Continuous Source Current (Diode Conduction) ^{a, b}		I _S	-1.0	-0.6	
Manifestore Description 2 h	T _A = 25°C	D	1.25	0.75	10/
Maximum Power Dissipation ^{a, b}	T _A = 70°C	P_{D}	0.8	0.48	W
Operating Junction and Storage Temperature Range		T _J , T _{sta}	-55 to 150		°C

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
	t ≤ 5 sec	R _{thJA}	75	100		
Maximum Junction-to-Ambient ^a	Steady State		120	166	°C/W	
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	40	50		

Notes

a. Surface Mounted on 1" x 1" FR4 Board.
b. Pulse width limited by maximum junction temperature.

Vishay Siliconix

New Product

Parameter	Symbol	Test Conditions	Limits				
			Min	Тур	Max	Unit	
Static			•	•		•	
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-20			V	
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.40		-1.0		
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			±100	nA	
Zero Gate Voltage Drain Current		V_{DS} = -16 V, V_{GS} = 0 V			-1	μΑ	
	I _{DSS}	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^{\circ}\text{C}$			-10		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	-20			А	
		$V_{GS} = -4.5 \text{ V}, I_D = -4.7 \text{ A}$		0.031	0.039	Ω	
Drain-Source On-Resistance ^a	r _{DS(on)}	$V_{GS} = -2.5$ V, $I_{D} = -4.1$ A		0.041	0.052		
		$V_{GS} = -1.8$ V, $I_{D} = -2.0$ A		0.054	0.068		
Forward Transconductance ^a	9 _{fs}	$V_{DS} = -5 \text{ V}, I_{D} = -4.7 \text{ A}$		16		S	
Diode Forward Voltage	V _{SD}	I _S = -1.0 A, V _{GS} = 0 V		0.7	-1.2	V	
Dynamic ^b							
Total Gate Charge	Q_{g}			12.5	19	nC	
Gate-Source Charge	Q _{gs}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}$ $I_{D} \cong -4.7 \text{ A}$		1.7			
Gate-Drain Charge	Q _{gd}			3.3			
Input Capacitance	C _{iss}			1020		pF	
Output Capacitance	C _{oss}	V _{DS} = -10 V, V _{GS} = 0, f = 1 MHz		191			
Reverse Transfer Capacitance	C _{rss}			140			
Switching ^c				•			
Turn-On Time	t _{d(on)}			25	40		
	t _r	$V_{DD} = -10 \text{ V, R}_{L} = 10 \Omega$ $I_{D} \cong -1.0 \text{ A, V}_{GEN} = -4.5 \text{ V}$		43	65	ns	
Turn-Off Time	t _{d(off)}	$R_{G} = 6 \Omega$		71	110	113	
Turn-Off Time	t _f			48	75	1	

Notes

- a. Pulse test: PW ≤ 300 µs duty cycle ≤ 2%.
 b. For DESIGN AID ONLY, not subject to production testing.
 c. Switching time is essentially independent of operating temperature.

•

New Product

V_{DS} - Drain-to-Source Voltage (V)

Gate Charge

5

V_{DS} = 6 V
I_D = 4.7 A

Q_g - Total Gate Charge (nC)

V_{GS} - Gate-to-Source Voltage (V)

V_{DS} - Drain-to-Source Voltage (V)

Document Number: 72024 S-22121—Rev. B, 25-Nov-02

New Product

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

V_{DS} - Drain-to-Source Voltage (V)

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

New Product

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com Revision: 08-Apr-05