Lecture No. 13 Joint Cumulative Density Function

Azeem Iqbal

University of Engineering and Technology, Lahore (Faisalabad Campus)

Definition Joint Cumulative Density Function (CDF)

The joint CDF of the continuous random variables X and Y is a function $F_{X,Y}(x,y)$ with the property

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) \, dv \, du$$

Theorem

Joint PDF and Joint CDF relation

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \, \partial y}$$

Theorem

Probability of a finite rectangle in the X, Y plane in terms of the joint CDF

$$P[x_1 < X \le x_2, y_1 < Y \le y_2] = F_{X,Y}(x_2, y_2) - F_{X,Y}(x_2, y_1) - F_{X,Y}(x_1, y_2) + F_{X,Y}(x_1, y_1)$$

$$P[x_1 < X \le x_2, y_1 < Y \le y_2] = F_{X,Y}(x_2, y_2) - F_{X,Y}(x_2, y_1) - F_{X,Y}(x_1, y_2) + F_{X,Y}(x_1, y_1)$$

Theorem

A joint PDF $f_{X,Y}(x,y)$ has the following properties corresponding to first and second axioms of probability

(a)
$$f_{X,Y}(x, y) \ge 0$$
 for all (x, y) ,

(b)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx \, dy = 1$$

Theorem

The probability that the continuous random variables (X, Y) are in A is

$$P[A] = \iint_A f_{X,Y}(x, y) dx dy$$

Example

Random variables *X* and *Y* have join *PDF*

$$f_{X,Y}(x,y) = \begin{cases} c & 0 \le x \le 5, 0 \le y \le 3, \\ 0 & \text{otherwise.} \end{cases}$$

Find the

- a) constant c
- b) $P[A] = P[2 \le X < 3, 1 \le Y < 3]$

Solution

We studied that integral of the joint PDF over this rectangle is 1.

$$1 = \int_0^5 \int_0^3 c \, dy \, dx = 15c.$$

Therefore, c = 1/15.

Solution

The small dark rectangle in the diagram is the event

$$A = \{2 \le X < 3, 1 \le Y < 3\}$$

P[A] is the integral of the PDF over this rectangle, which is

$$P[A] = \int_{2}^{3} \int_{1}^{3} \frac{1}{15} \, dv \, du = 2/15$$