Résolution d'équations aux dérivées partielles

A la fin du chapitre, l'étudiant doit être capable de:

- Combiner une formule aux différences finies et un schéma d'intégration en temps pour résoudre une équation aux dérivées partielles
- 2. Définir les nombres de CFL et de Fourier
- 3. Effectuer l'analyse de stabilité de Von Newman d'une approximation spatio-temporelle

Motivation

- Les équations des sciences de l'ingénieur sont connues depuis longtemps ...
 - Eq. de la chaleur (Fourier, 1807)
 - Mécanique des fluides (Navier-Stokes, 1822)
 - Elecromagnétisme (Maxwell, 1873)
- Les inconnues sont des fonctions scalaires ou vectorielles de plusieurs variables: x,y,z,t
- Ces fonctions sont solutions d'équations aux dérivées partielles (EDP) en général non-linéaires

Motivation

- Les cas où une solution analytique peut être trouvée sont très rares et simples:
 - géométrie simple
 - équation linéaire

• Les solutions obtenues sont souvent très lourdes même pour ces cas simplistes ...

Exemple de résolution analytique

 Equation de la chaleur dans une cavité rectangulaire

Exemple de résolution analytique

 Une méthode de séparation des variables permet d'obtenir la solution analytique de ce petit problème d'école ...

$$T(x, y) = T_0 + \sum_{k=1}^{+\infty} \left[A_k \sinh\left(\frac{k\pi}{L}y\right) + \frac{\alpha_k}{\left(\frac{k\pi}{L}\right)^2} \left(\cosh\left(\frac{k\pi}{L}y\right) - 1\right) \right] \times \sin\left(\frac{k\pi}{L}x\right)$$

$$A_{k} = \frac{\alpha_{k}L}{k\pi} \frac{\lambda \sinh\left(\frac{k\pi}{L}H\right) - \frac{hL}{k\pi}\left(\cosh\left(\frac{k\pi}{L}H\right) - 1\right)}{-\lambda \frac{k\pi}{L}\cosh\left(\frac{k\pi}{L}H\right) + h\sinh\left(\frac{k\pi}{L}H\right)} \qquad \alpha_{k} = \frac{2K_{0}}{k\pi\lambda}\left[(-1)^{k} - 1\right]$$

Exemple de résolution analytique Effet des fuites par convection

Discrétisation

- Dans de nombreux cas, les EDP font intervenir des dérivées en temps et en espace.
- Les dérivées en temps peuvent être traitées comme vu dans le chapitre sur les équations différentielles (Euler explicite, Euler implicite, Runge-Kutta d'ordre 2 ou 4, Adams-Bashforth, Crank-Nicolson ...)
- Les dérivées en espace peuvent être traitées par approximation aux différences finies (ordre 1, 2, ...; centrée, décentrée amont/aval)
- Les combinaisons sont donc nombreuses

Analyse de stabilité

• On cherche à répondre à la question simple suivante:

Sous quelles conditions une méthode numérique (discrétisation en temps et en espace) est-elle stable ?

- L'analyse de Von Neumann est bien adaptée et relativement simple à mettre en œuvre, au moins pour les équations linéaires et 1D et en l'absence de conditions limites ...
- Une des multiples contributions de John Von Neumann

Facteur d'amplification

Forme de la solution

$$f(x,t) = \hat{f}(t) \times e^{jkx}$$
$$f(x_i,t_n) = f_i^n = \hat{f}^n \times e^{jkx_i}$$

 Comment l'amplitude d'une perturbation de nombre d'onde k évolue-t-elle en temps ?

$$\hat{f}^{n+1} = \hat{A} \times \hat{f}^{n}$$

• NB: le facteur d'amplification est une quantité complexe

Stabilité Von Neumann

 La stabilité de la méthode peut être reliée au module du facteur d'amplification complexe

•
$$|\hat{A}| < 1$$
: signal amorti

•
$$|\hat{A}| = 1$$
: exact

• $|\hat{A}| > 1$: instabilité

• Convection pure:

$$\frac{\partial f}{\partial t} + U_0 \frac{\partial f}{\partial x} = 0$$

• Schéma centré ordre 2 en espace

• Euler explicite en temps

$$f_i^{n+1} = f_i^n - \Delta t U_0 \frac{f_{i+1}^n - f_{i-1}^n}{2\Delta x}$$

Exemple 1 - suite

Pour une perturbation du type

$$f_i^n = \hat{f}^n \times e^{jkx_i}$$

$$\hat{A} = 1 - j \frac{\Delta t U_0}{\Delta x} \sin(k\Delta x)$$

• Ce schéma est (inconditionnellement) instable

$$\left|\exists k: \left|\hat{A}\right| > 1\right|$$

- Décentré amont d'ordre 1 en espace
- Euler explicite en temps

$$f_i^{n+1} = f_i^n - \Delta t U_0 \frac{f_i^n - f_{i-1}^n}{\Delta x}$$

$$\hat{A} = 1 - \frac{\Delta t U_0}{\Delta x} \left[1 - \cos(k\Delta x) + j\sin(k\Delta x) \right]$$

• Ce schéma est (conditionnellement) stable

$$\left| |\hat{A}| \le 1, \quad \forall k \quad \Leftrightarrow \quad CFL = \frac{\Delta t U_0}{\Delta x} \le 1 \right| \quad \Box$$

- Centré ordre 2 en espace
- Runge-Kutta d'ordre 2 en temps

$$f_{i}^{n+1} = f_{i}^{n} - U_{0} \Delta t \frac{f_{i+1}^{n} - f_{i-1}^{n}}{2\Delta x} + \frac{U_{0}^{2} \Delta t^{2}}{2} \frac{\frac{f_{i+2}^{n} - f_{i}^{n}}{2\Delta x} - \frac{f_{i}^{n} - f_{i-2}^{n}}{2\Delta x}}{2\Delta x}$$

$$\hat{A} = \left[1 - jCFL\sin(k\Delta x) + \frac{CFL^2}{4}\left(\cos(2k\Delta x) - 1\right)\right]$$

• Ce schéma est inconditionnellement instable

Exemple 3 - suite

- Centré ordre 2 en espace
- Runge-Kutta d'ordre 2 en temps

$$Y(f) = -U_0 \frac{\partial f}{\partial x} \qquad \hat{Y} = \frac{Y(\hat{f}^n \times e^{jkx_i})}{\hat{f}^n \times e^{jkx_i}} = -jU_0 \frac{\sin(k\Delta x)}{\Delta x}$$

$$f^{n+1} = f^n + \frac{df}{dt} \Delta t + \frac{d^2 f}{dt^2} \frac{\Delta t^2}{2} \qquad \hat{A} = \sum_{k=0}^{2} \frac{\Delta t^k \hat{Y}^k}{k!}$$

• Ce schéma est inconditionnellement instable

- Centré ordre 2 en espace
- Runge-Kutta d'ordre 3 en temps

$$\hat{A} = \begin{bmatrix} \sum_{k=0}^{3} \frac{\Delta t^{k} \hat{Y}^{k}}{k!} \end{bmatrix} \xrightarrow{1.04} CFL = 1.8$$

$$\hat{Y} = -jU_{0} \frac{\sin(k\Delta x)}{\Delta x} \xrightarrow{0.96} 0.95$$

$$0.94 0.95$$

$$0.94 0.95$$

$$0.94 0.95$$

$$0.94 0.95$$

$$0.94 0.95$$

$$0.94 0.95$$

$$0.94 0.95$$

$$0.94 0.95$$

$$0.94 0.95$$

$$0.94 0.95$$

$$0.94 0.95$$

$$0.94 0.95$$

$$0.94 0.95$$

$$0.94 0.95$$

$$0.94 0.95$$

$$0.94 0.95$$

$$0.94 0.95$$

$$0.95 0.95$$

$$0.96 0.95$$

$$0.96 0.95$$

$$0.96 0.95$$

$$0.96 0.95$$

$$0.97 0.96$$

$$0.98 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.99 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

$$0.90 0.95$$

• Ce schéma est conditionnellement stable

$$|\hat{A}| \le 1, \quad \forall k \iff CFL \le 1.73$$

• Diffusion pure:

$$\frac{\partial f}{\partial t} = D \frac{\partial^2 f}{\partial x^2}$$

• Schéma centré ordre 2 en espace

• Euler explicite en temps

$$f_i^{n+1} = f_i^n + \Delta t D \frac{f_{i+1}^n - 2f_i^n + f_{i-1}^n}{\Delta x^2}$$

Exemple 5 - suite

• Pour une perturbation du type $f_i^n = \hat{f}^n \times e^{jkx_i}$

$$\hat{A} = 1 + \frac{2\Delta tD}{\Delta x^2} \left(\cos(k\Delta x) - 1\right)$$

• Ce schéma est conditionnellement stable. Sa stabilité dépend du nombre de Fourier F_{o} :

$$\left| |\hat{A}| \le 1, \quad \forall k \quad \Leftrightarrow \quad F_o = \frac{\Delta t D}{\Delta x^2} \le 0.5$$

Réalisations sous Matlab

- 1. A partir des programmes précédents, créer un programme permettant de résoudre l'équation de la chaleur à l'aide d'un schéma centré d'ordre 2 et d'une intégration de type Euler explicite. Vérifier numériquement la limite de stabilité et comparer avec la valeur théorique.
- 2. Mêmes questions pour l'équation de convection pure. Etendre à d'autres combinaisons de schéma en espace/intégration temporelle
- 3. Résoudre l'équation de convection/diffusion dans le cas d'une condition initiale en forme de Gaussienne et pour différentes valeurs du nombre de Reynolds/Peclet.