强化学习及其应用

Reinforcement Learning and Its Applications

第四章 策略控制 Policy Control

授课人: 周晓飞 zhouxiaofei@iie.ac.cn 2018-6-26

第四章 策略控制

- 4.1 策略优化
- 4.2 蒙特卡洛策略控制
- 4.3 时序差分策略控制
- 4.4 算法总结

第四章 策略控制

- 4.1 策略优化
- 4.2 蒙特卡洛策略控制
- 4.3 时序差分策略控制
- 4.4 算法总结

问题描述

- For prediction:
 - Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and policy π
 - or: MRP $\langle \mathcal{S}, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$
 - Output: value function v_{π}
- Or for control:
 - Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$
 - \blacksquare Output: optimal value function v_*
 - and: optimal policy π_*

策略迭代

策略迭代

两个步骤: Evaluation & Improvement

Policy evaluation Estimate v_{π} e.g. Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ e.g. Greedy policy improvement

策略优化

最优的行动问题:最大的 Action-Value (Q值) 问题

 \blacksquare Greedy policy improvement over Q(s, a) is model-free

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s, a)$$

策略优化

类似V迭代的过程,Q替代V值

迭代收敛时,满足 bellman 优化方程

策略优化

类似V迭代的过程,Q替代V值

一次随机的优化过程

策略优化

比较 V 迭代和 Q 迭代

策略优化

如何改善 Policy?

 ϵ -greedy policy improvement

- Simplest idea for ensuring continual exploration
- All m actions are tried with non-zero probability
- With probability 1ϵ choose the greedy action
- With probability ϵ choose an action at random

$$\pi(a|s) = \begin{cases} \epsilon/m + 1 - \epsilon & \text{if } a^* = \operatorname{argmax} \ Q(s, a) \\ \epsilon/m & \text{otherwise} \end{cases}$$

始终让最优的 a 具有最大的概率,策略分布近似 one-hot 分布。

第四章 策略控制

- 4.1 策略优化
- 4.2 蒙特卡洛策略控制
- 4.3 时序差分策略控制
- 4.4 算法总结

MC Policy Iteration

两个部分:

Policy evaluation Monte-Carlo policy evaluation, $Q=q_\pi$

Policy improvement *e*-greedy policy improvement

MC Control

每次 Policy 的提升,没有充分采样,都是随机的逼近

Every episode:

Policy evaluation Monte-Carlo policy evaluation, $Q \approx q_{\pi}$

Policy improvement ϵ -greedy policy improvement

GLIE MC Control

- Sample kth episode using π : $\{S_1, A_1, R_2, ..., S_T\} \sim \pi$
- \blacksquare For each state S_t and action A_t in the episode,

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

Improve policy based on new action-value function

$$\epsilon \leftarrow 1/k$$
 $\pi \leftarrow \epsilon$ -greedy(Q)

Theorem

GLIE Monte-Carlo control converges to the optimal action-value function, $Q(s,a) \rightarrow q_*(s,a)$

GLIE MC Control

- Sample kth episode using π : $\{S_1, A_1, R_2, ..., S_T\} \sim \pi$
- For each state S_t and action A_t in the episode,

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

■ Improve policy based on new action-value function

$$\epsilon \leftarrow 1/k$$
 收敛技巧 $\pi \leftarrow \epsilon$ -greedy(Q)

MC Evaluation

 ϵ -greedy policy improvement

Theorem

GLIE Monte-Carlo control converges to the optimal action-value function, $Q(s,a) \rightarrow q_*(s,a)$

第四章 策略控制

- 4.1 策略优化
- 4.2 蒙特卡洛策略控制
- 4.3 时序差分策略控制
- 4.4 算法总结

TD for Policy Iteration

- Temporal-difference (TD) learning has several advantages over Monte-Carlo (MC)
 - Lower variance
 - Online
 - Incomplete sequences
- Natural idea: use TD instead of MC in our control loop
 - \blacksquare Apply TD to Q(S, A)
 - Use ϵ -greedy policy improvement
 - Update every time-step

Sarsa Control

Every time-step:

Policy evaluation Sarsa, $Q \approx q_{\pi}$

Policy improvement ϵ -greedy policy improvement

Sarsa Control

Action-Value Evaluation

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A)\right)$$

Policy Improvement

 ϵ -greedy policy improvement

Sarsa Control

Sarsa Algorithm

```
Initialize Q(s, a), \forall s \in S, a \in A(s), arbitrarily, and Q(terminal-state, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
   Repeat (for each step of episode):
       Take action A, observe R, S'
       Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
      Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]
      S \leftarrow S' : A \leftarrow A' :
   until S is terminal
```

Sarsa (λ)

n-step returns

■ Consider the following *n*-step returns for $n = 1, 2, \infty$:

$$n = 1$$
 (Sarsa) $q_t^{(1)} = R_{t+1} + \gamma Q(S_{t+1})$
 $n = 2$ $q_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 Q(S_{t+2})$
 \vdots \vdots
 $n = \infty$ (MC) $q_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T$

■ Define the *n*-step Q-return

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n})$$

■ n-step Sarsa updates Q(s, a) towards the n-step Q-return

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(q_t^{(n)} - Q(S_t, A_t)\right)$$

Chapter 4 Policy Control

-22- 中国科学院大学网络安全学院 2018 年研究生夏季课程

Sarsa (λ)

Forward Sarsa(λ)

$$q_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} q_t^{(n)}$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(q_t^{\lambda} - Q(S_t, A_t)\right)$$

Sarsa (λ)

Backward Sarsa(λ)

- Just like $TD(\lambda)$, we use eligibility traces in an online algorithm
- But Sarsa(λ) has one eligibility trace for each state-action pair

$$E_0(s, a) = 0$$

 $E_t(s, a) = \gamma \lambda E_{t-1}(s, a) + \mathbf{1}(S_t = s, A_t = a)$

- $\mathbb{Q}(s,a)$ is updated for every state s and action a
- In proportion to TD-error δ_t and eligibility trace $E_t(s,a)$

$$\delta_t = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)$$
$$Q(s, a) \leftarrow Q(s, a) + \alpha \delta_t E_t(s, a)$$

Sarsa (λ)

Backward Sarsa(λ) Algorithm

```
Initialize Q(s, a) arbitrarily, for all s \in \mathcal{S}, a \in \mathcal{A}(s)
Repeat (for each episode):
   E(s,a)=0, for all s\in S, a\in A(s)
   Initialize S, A
   Repeat (for each step of episode):
       Take action A, observe R, S'
        Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
       \delta \leftarrow R + \gamma Q(S', A') - Q(S, A)
       E(S,A) \leftarrow E(S,A) + 1
       For all s \in \mathcal{S}, a \in \mathcal{A}(s):
           Q(s,a) \leftarrow Q(s,a) + \alpha \delta E(s,a)
           E(s,a) \leftarrow \gamma \lambda E(s,a)
        S \leftarrow S'; A \leftarrow A'
   until S is terminal
```

Q-Learning

■ Q-Learning Control (本质原理可参看重要性采样)

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \max_{a'} Q(S', a') - Q(S, A)\right)$$

Theorem

Q-learning control converges to the optimal action-value function, $Q(s,a) \rightarrow q_*(s,a)$

Q-Learning

Q-Learning Algorithm

```
Initialize Q(s,a), \forall s \in \mathbb{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
   Initialize S
Repeat (for each step of episode):
   Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
   Take action A, observe R, S'
   Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
   S \leftarrow S';
   until S is terminal
```

第四章 策略控制

- 4.1 策略优化
- 4.2 蒙特卡洛策略控制
- 4.3 时序差分策略控制
- 4.4 算法总结

TD V.S. DP

	Full Backup (DP)	Sample Backup (TD)
Bellman Expectation	$v_{\pi}(s) \leftrightarrow s$ $v_{\pi}(s') \leftrightarrow s'$	
Equation for $v_{\pi}(s)$	Iterative Policy Evaluation	TD Learning
Bellman Expectation	$q_{\pi}(s,a) \leftrightarrow s,a$ r s' $q_{\pi}(s',a') \leftrightarrow a'$	S,A R S'
Equation for $q_{\pi}(s,a)$	Q-Policy Iteration	Sarsa
Bellman Optimality Equation for $q_*(s, a)$	$q_{\bullet}(s,a) \leftrightarrow s,a$ r $q_{\bullet}(s',a') \leftrightarrow a'$ $q_{\bullet}(s',a') \leftrightarrow a'$ $q_{\bullet}(s',a') \leftrightarrow a'$ $q_{\bullet}(s',a') \leftrightarrow a'$	Q-Learning

TD V.S. DP

Full Backup (DP)	Sample Backup (TD)	
Iterative Policy Evaluation	TD Learning	
$V(s) \leftarrow \mathbb{E}\left[R + \gamma V(S') \mid s\right]$	$V(S) \stackrel{\alpha}{\leftarrow} R + \gamma V(S')$	
Q-Policy Iteration	Sarsa	
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma Q(S', A') \mid s, a\right]$	$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma Q(S',A')$	
Q-Value Iteration	Q-Learning	
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma \max_{a' \in \mathcal{A}} Q(S', a') \mid s, a\right]$	$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma \max_{a' \in \mathcal{A}} Q(S',a')$	

本讲参考文献

- 1. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. (Second edition, in progress, draft).
- 2. David Silver, Slides@ «Reinforcement Learning: An Introduction», 2016.