Modèles de calcul Université de Montpellier TD 2

Sauf mention contraire, on utilisera l'alphabet $\{a,b\}$.

Exercice 1 Reconnaissance

Quel est le langage reconnu par chacun des automates suivants?

Exercice 2 Modulo

Dans cet exercice, on utilisera l'alphabet $\{a,b,c\}$. Rappel : $|u|_a$ désigne le nombre de "a" dans u.

- 1. Construisez un automate reconnaissant les mots u tels que : $|u|_a \equiv 1 \pmod 3$.
- 2. Construisez un automate reconnaissant tous les mots ayant aacbac comme sous-mot.

Exercice 3 Égalité

Montrez que les deux automates suivants reconnaissent le même langage.

Exercice 4 Atteignable

Considérons un automate quelconque. Définissons F^i comme l'ensemble des états à partir desquels on peut atteindre un état final en lisant un mot d'au plus i lettres.

- I. Que vaut F^0 ?
- 2. Montrez que $F^n \subset F^{n+1}$.
- 3. Montrez que si $F^n = F^{n+1}$, alors $F^n = F^{n+1} = F^{n+2}$.
- 4. Montrez que $\exists n \, \forall m > n, \; F^m = F^n$. On notera F^∞ cet ensemble F^n .
- 5. Notons e le nombre d'états de l'automate. Est-il vrai que $\forall n>e, \;\; F^e=F^n$?
- 6. Trouvez un automate ayant un état q tel que $q \notin F^{\infty}$.
- 7. Que se passe-t-il quand $q_0 \notin F^{\infty}$?
- 8. On suppose que $q_0 \in F^{\infty}$ et on enlève de l'automate tous les états qui ne sont pas dans F^{∞} , ainsi que toutes les transitions qui partent ou arrivent de ces états. Quel langage reconnait l'automate ainsi obtenu? (Justifiez avec soin)

Exercice 5 Produits cartésiens

Soient deux automates sur le même alphabet Σ , notés A et B, d'ensembles d'états Q_A et Q_B , d'état initiaux q_{0A} et q_{0B} , d'état finaux F_A et F_B , de fonctions de transitions δ_A et δ_B .

Construisons l'automate C sur le même alphabet dont l'ensemble des états est $Q_A \times Q_B$, l'état inital (q_{0A}, q_{0B}) , vérifiant $\delta_C((x, x'), \alpha) = (y, y')$ pour $\alpha \in \Sigma$ si et seulement si $\delta_A(x, \alpha) = y$ et $\delta_B(x', \alpha) = y'$. De plus, $(x, y) \in F_C$ si et seulement si $x \in F_A$ et $y \in F_B$.

On appelle \mathcal{R}_A , \mathcal{R}_B et \mathcal{R}_C les langages reconnus par A, B et C respectivement. Que vaut \mathcal{R}_C en fonction de \mathcal{R}_A et \mathcal{R}_B ? Prouvez soigneusement votre réponse.