CMPUT 367

Roderick Lan

$\mathbf{C}_{\mathbf{A}}$	\mathbf{nte}	nte
$\mathbf{C}\mathbf{U}$	\mathbf{n}	$:$ 11 \cup 2

1	Convexity Cont'd	2
2	MSE	4

Lecture 7 - Feb 1

1 Convexity Cont'd

Thm 1.0.1

Let f be a twice differentiable function on a convex domain; the following three conditions are equivalent

- 1. f is a convex function
- 2. [1st Order] $\forall x, y \in \text{dom} f$,

$$f(y) \ge f(x) + [\nabla f(x)]^{\top} (y - x)$$

(Linear approx is always a lower bound)

3. 2nd order $\forall x \in \text{dom} f$

$$\nabla^2 f(x) \ge 0$$

(positive semidefinite)

1D: $f''(x) \ge 0$ then curve is convex High-D:

if $\nabla^2 f(x)$ diagonal - eigenval are diagonal elements; nonnegative evals \to every dimension is curving up \to convex

 $\nabla^2 f(x)$ not diagonal - check eigenvals; negative eval \to not convex nonnegative eval only \to convex

Proof 1.1: 2. \rightarrow 1.

 $\forall x, y \in \text{dom} f; \ \forall \lambda \in (0, 1)$

The first order condition:

$$\forall x, y \in \text{dom} f : f(y) \ge f(x) + (\nabla_x f(x))^\top (y - x)$$

Put $z = \lambda x + (1 - \lambda)y$ into the x

$$f(y) \ge f(z) + [\nabla_z f(z)]^\top (y - z) \tag{1}$$

Put z into x and x into y

$$f(x) \ge f(z) + \left[\nabla_z f(z)\right]^\top (x - z) \tag{2}$$

 $\lambda(2) + (1 - \lambda)(1)$ gives us:

$$\lambda f(x) + (1 - \lambda)f(y) \ge \lambda f(z) + (1 - \lambda)f(z)$$

$$+ (1 - \lambda)[\nabla_z f(z)]^\top (y - z) + \lambda[\nabla_z f(z)]^\top (x - z)$$

$$\ge f(z) + [\nabla_z f(z)]^\top (y - z - \lambda y + \lambda z + \lambda x - \lambda z)$$

$$= f(z) + [\nabla_z f(z)]^\top [\lambda x + (1 - \lambda)y - z]$$

Since $z = \lambda x + (1 - \lambda)y$ (from (1))

$$= f(z) + [\nabla_z f(z)]^{\top}[0] = f(z)$$

Proof 1.2: 3. \rightarrow 2.

 $\forall x, y \in \text{dom} f$

$$f(y) = f(x) + [\nabla f(x)]^{\top} (y - x) + \frac{1}{2} (y - x)^{\top} [\nabla^2 f(z)] (y - x)$$

for some z between x and y.

Taylor Expansion to first order:

$$T(y) = f(x) + [\nabla f(z)]^{\top} (y - x)$$
 for z

(MVT) Since $\nabla^2 f(z) \geq 0$, second order term ≥ 0 ; Thus

$$f(y) \ge T(y)$$

2 MSE

$$\nabla_w J_{\text{MSE}} = \frac{1}{M} (X^{\top} X w - X t)$$
$$\nabla w_w^2 J_{\text{MSE}} = \frac{1}{M} X^{\top} X$$

$$\forall v, v^{\top} X^{\top} X v = (Xv)^{\top} X v = \|Xv\|_2^2 \ge 0$$

Definition 2.0.1: Optimality

x is a **Global Optimum** for f iff

$$\forall y \in \text{dom} f, \ f(x) \le f(y)$$

x is a **Local Optimum** of f iff

$$\exists \epsilon > 0 \text{ s.t. } \forall y \in \text{dom} f$$

if $||x - y|| < \epsilon$ then $f(x) \le f(y)$

Thm 2.0.1

Let f be a convex function, a local optimum x of f is a global optimum