#### CE7453: Photogrammetric Computer Vision

#### Lecture 5

Central Perspective Model Homogenous Coordinate System Camera Matrix, Projection Matrix

Acknowledgements: Ping Tan, Yung-Yu Chuang. part of the materials of the all the lecture notes are from Cyrill Stachniss, Marc Pollefey, Wolfgang Foerstner, Bernhard Wrobel, James Hays, A. Dermanis, Armin Gruen, Alper Yilmaz.

# **Central Perspective Model**

$$\frac{c}{Z} = \frac{x}{X} = m$$

$$x = \frac{c}{Z}X = mX$$

c: camera constant

m: map scale



# Central Perspective Model

$$\begin{bmatrix} X \\ Z \end{bmatrix} = R \begin{bmatrix} X' - X'_{o} \\ Z' - Z'_{o} \end{bmatrix}$$

$$R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

$$x = \frac{c}{Z}X$$



X, Z: Camera Frame

X',Y': World Frame / Geodetic Frame

# Co-linearity Equation — Cont.

#### The collinearity equations

$$\begin{pmatrix} x - x_p \\ y - y_p \\ -c \end{pmatrix} = kR \begin{pmatrix} X - X_0 \\ Y - Y_0 \\ Z - Z_0 \end{pmatrix} Z$$

describe the relationship between the object point  $(X, Y, Z)^T$ , the position  $C = (X_0, Y_0, Z_0)^T$  of the camera center and the orientation R of the camera.



# Co-linearity Equation — Cont.

- The distance c is known as the *principal distance* or camera constant.
- The point  $q_p = (x_p, y_p)^T$  is called the *principal point*.
- The ray passing through the camera center C and the principal point q<sub>p</sub> is called the principal ray.



# Co-linearity Equation — Cont.

From

$$\begin{pmatrix} x - x_p \\ y - y_p \\ -c \end{pmatrix} = kR \begin{pmatrix} X - X_0 \\ Y - Y_0 \\ Z - Z_0 \end{pmatrix}, \text{ and } R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix},$$

We can get rid of k by ratioing the first and the third, the second and the third equation

$$x = x_p - c \frac{r_{11}(X - X_0) + r_{12}(Y - Y_0) + r_{13}(Z - Z_0)}{r_{31}(X - X_0) + r_{32}(Y - Y_0) + r_{33}(Z - Z_0)},$$
  

$$y = y_p - c \frac{r_{21}(X - X_0) + r_{22}(Y - Y_0) + r_{23}(Z - Z_0)}{r_{31}(X - X_0) + r_{32}(Y - Y_0) + r_{33}(Z - Z_0)}.$$

### **Rotation Matrix**

#### angles κ, φ, ω



- Right handed coordinate system
- Left handed coordinate system (invert Z direction)



#### Computer vision Convention

- Camera coordinate frame
- Left handed system Z in a different direction as previous one

$$R_x(\omega) \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\omega) & \sin(\omega) \\ 0 & -\sin(\omega) & \cos(\omega) \end{bmatrix}$$

$$R_{y}(\varphi) = \begin{bmatrix} \cos(\varphi) & 0 & -\sin(\varphi) \\ 0 & 1 & 0 \\ \sin(\varphi) & 0 & \cos(\varphi) \end{bmatrix}$$

$$R_{z}(\kappa) = \begin{bmatrix} \cos(\kappa) & \sin(\kappa) & 0 \\ -\sin(\kappa) & \cos(\kappa) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R = R_z R_y R_x = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

Would changing the sequent result in a different matrix?

$$\begin{pmatrix} \cos \phi \cos \kappa & \sin \omega \sin \phi \cos \kappa + \cos \omega \sin \kappa & -\cos \omega \sin \phi \cos \kappa + \sin \omega \sin \kappa \\ -\cos \phi \sin \kappa & -\sin \omega \sin \phi \sin \kappa + \cos \omega \cos \kappa & \cos \omega \sin \phi \sin \kappa + \sin \omega \cos \kappa \\ \sin \phi & -\sin \omega \cos \phi & \cos \omega \cos \phi \end{pmatrix}$$

Question: given a rotation matrix, how to compute the angles? – Any problem you foresee?

```
ome = atan(-r32/r 33); kappa = atan(-r21/11)); phi = asin(r13);
```

Geometric meaning of Rotation Matrix

$$\begin{bmatrix} x - xp \\ y - yp \\ -c \end{bmatrix} = kR \begin{bmatrix} X - X_0 \\ Y - Y_0 \\ Z - Z_0 \end{bmatrix} \longrightarrow R^T \begin{bmatrix} x - xp \\ y - yp \\ -c \end{bmatrix} = k \begin{bmatrix} X - X_0 \\ Y - Y_0 \\ Z - Z_0 \end{bmatrix}$$



Where are they in the figure?

## Rotation Matrix – Quaternion.

• Representing the rotation using a rotating vector  $W=(w_1, w_2, w_3)$  and an angle  $\theta$ .

Rodrigues' rotation formula: the rotation then being

$$R_{w}(\theta) = I_{3x3} + \sin(\theta) \times S + [1 - \cos(\theta)] \times S^{2}$$

where

$$S = \begin{bmatrix} 0 & -w_3 & w_2 \\ w_3 & 0 & -w_1 \\ -w_2 & w_1 & 0 \end{bmatrix}$$

Full proof see here:

https://en.wikipedia.org/wiki/Rodrigues%27\_rotation\_formula

- A rotation matrix can be represented by four parameters, θ,w<sub>1</sub>,w<sub>2</sub>,w<sub>3</sub>, where[w<sub>1</sub>,w<sub>2</sub>,w<sub>3</sub>] is a unit vector
- Let's do a little bit of mathematical trick here:
- $q_1 = \sin(\theta/2)w_1, q_2 = \sin(\theta/2)w_2,$  $q_3 = \sin(\theta/2)w_3,$
- Then

$$q_1 = w_1 \sin(\theta/2)$$

$$q_2 = w_2 \sin(\theta/2)$$

$$q_3 = w_3 \sin(\theta/2)$$

Do a little bit of math by replacing these elements back to the previous *Rodrigues equation* 

#### Note:

$$sin(\theta) = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right),$$

$$cos(\theta) = \cos^{2}\left(\frac{\theta}{2}\right) - \sin^{2}\left(\frac{\theta}{2}\right)$$

$$S^{2} = S \times S$$

$$= \begin{bmatrix} -w_{3}^{2} - w_{2}^{2} & w_{1}w_{2} & w_{1}w_{3} \\ w_{1}w_{2} & -w_{3}^{2} - w_{1}^{2} & w_{2}w_{3} \\ w_{1}w_{3} & w_{2}w_{3} & -w_{2}^{2} - w_{1}^{2} \end{bmatrix}$$

$$R_{w}(\theta) = I_{3x3} + \sin(\theta) \times S + [1 - \cos(\theta)] \times S^{2}$$

$$S \times \sin(\theta) = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) \begin{bmatrix} 0 & -q_3 & q_2 \\ q_3 & 0 & -q_1 \\ -q_2 & q_1 & 0 \end{bmatrix} / \sin\left(\frac{\theta}{2}\right)$$

$$S^{2} \times [1 - \cos(\theta)] = S^{2}[1 - \cos^{2}(\frac{\theta}{2}) + \sin^{2}(\frac{\theta}{2})]$$

$$= 2\sin^{2}(\frac{\theta}{2}) \begin{bmatrix} -w_{3}^{2} - w_{2}^{2} & w_{1}w_{2} & w_{1}w_{3} \\ w_{1}w_{2} & -w_{3}^{2} - w_{1}^{2} & w_{2}w_{3} \\ w_{1}w_{3} & w_{2}w_{3} & -w_{2}^{2} - w_{1}^{2} \end{bmatrix}$$

$$= 2\begin{bmatrix} -q_{3}^{2} - q_{2}^{2} & q_{1}q_{2} & q_{1}q_{3} \\ q_{1}q_{2} & -q_{3}^{2} - q_{1}^{2} & q_{2}q_{3} \\ q_{1}q_{3} & q_{2}q_{3} & -q_{2}^{2} - q_{1}^{2} \end{bmatrix}$$

#### Then

$$R_{w}(\theta) = I + 2\cos(\frac{\theta}{2}) \begin{bmatrix} 0 & -q_3 & q_2 \\ q_3 & 0 & -q_1 \\ -q_2 & q_1 & 0 \end{bmatrix} + \\ 2 \begin{bmatrix} -q_3^2 - q_2^2 & q_1q_2 & q_1q_3 \\ q_1q_2 & -q_3^2 - q_1^2 & q_2q_3 \\ q_1q_3 & q_2q_3 & -q_2^2 - q_1^2 \end{bmatrix}$$
Let  $q_0 = \cos(\frac{\theta}{2})$ 

#### Then

$$R_{w(\theta)}$$

$$= \begin{bmatrix} 1 - 2q_3^2 - 2q_2^2 & 2q_1q_2 - 2q_0q_3 & 2q_1q_3 + 2q_0q_2 \\ 2q_1q_2 + 2q_0q_3 & 1 - 2q_3^2 - 2q_1^2 & 2q_2q_3 - 2q_0q_1 \\ 2q_1q_3 - 2q_0q_2 & 2q_2q_3 + 2q_0q_1 & 1 - 2q_2^2 - 2q_1^2 \end{bmatrix}$$

Where 
$$q_0 = \cos(\frac{\theta}{2})$$
,  $\boldsymbol{q} = [w_1, w_2, w_3] \sin(\frac{\theta}{2})$ 

We have  $q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1$ 

This is just another parameterization of your rotation Matrix! – **Nothing special, you can even use all the elements in the matrix as your parameters** 

- Given a rotation matrix, how to get  $\mathbf{n} = [w_1, w_2, w_3]$  and  $\theta$ ?
- Tip 1: take the trace of the previous matrix to get  $\theta$ .
- Tip 2: make combinations of the elements to get n

$$\theta = \cos^{-1}\left(\frac{\operatorname{trace}(\mathbf{R}) - 1}{2}\right), \hat{\mathbf{n}} = \frac{1}{2\sin\theta} \begin{pmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{pmatrix}$$

- Advantage, easy to formulate when given the rotation axis and angle, this is very common
  - Have vector  $v_1$ , want to rotate to  $v_2$
  - Need rotation vector  $\hat{r}$ , angle  $\theta$

$$\theta = a\cos(\hat{\mathbf{v}}_1 \bullet \hat{\mathbf{v}}_2)$$
$$\mathbf{r} = \mathbf{v}_1 \times \mathbf{v}_2$$

$$n = r/|r|$$

$$q_0 = \cos(\frac{\theta}{2})$$
,  $q = n \sin(\frac{\theta}{2})$ , Plug back

# Rotation Matrix – Comparison.

| Euler                                                                                                                | Quternion                                     |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Advantage: Minimal representation (3                                                                                 | Advantage: Easy to represent rotating vectors |
| parameters) Easy interpretation                                                                                      | Inverse = easy to compute                     |
| Disadvantages:                                                                                                       | Disadvantages:                                |
| Many "alternative" Euler representations exist (XYZ, ZXZ, ZYX,) Difficult to concatenate Singularities (gimbal lock) | One over-parameterization                     |
|                                                                                                                      |                                               |

$$x = x_p - c \frac{r_{11}(X - X_0) + r_{12}(Y - Y_0) + r_{13}(Z - Z_0)}{r_{31}(X - X_0) + r_{32}(Y - Y_0) + r_{33}(Z - Z_0)},$$
  

$$y = y_p - c \frac{r_{21}(X - X_0) + r_{22}(Y - Y_0) + r_{23}(Z - Z_0)}{r_{31}(X - X_0) + r_{32}(Y - Y_0) + r_{33}(Z - Z_0)}.$$

 $r_{ij}$  can be parameterized by  $\omega$ ,  $\varphi$ ,  $\kappa$  or  $q_0$ ,  $q_1$ ,  $q_2$ ,  $q_3$ 

Given any ground points X,Y,Z, to get its position in the image, you need to know,  $r_{ij}$ ,  $X_0$ , $Y_0$ , $Z_0$  of this image, and the principal points  $x_p$  and  $y_{p, j}$  and  $x_p$ ; image position in the actual films.

 Then you need to know pixel size, in order to navigate back to its pixel location:

$$x_{pix} = \frac{x}{psz_{x}}$$

$$y_{pix} = \frac{y}{psz_{y}} \text{ or imgheight } -\frac{y}{psz_{y}}$$

 $psz_x$  and  $psz_y$ : pixel size of one cell in CCD

Recall

$$\begin{bmatrix} x - xp \\ y - yp \\ -c \end{bmatrix} = kR \begin{bmatrix} x - x_0 \\ Y - Y_0 \\ Z - Z_0 \end{bmatrix}$$

$$\begin{bmatrix} x_{pix} \\ y_{pix} \\ -c \end{bmatrix} = \begin{bmatrix} \frac{1}{psz_x} & \frac{xp}{(-c)(psz_x)} \\ \frac{1}{psz_y} & \frac{yp}{(-c)(psz_y)} \\ 1 \end{bmatrix} \begin{bmatrix} x - xp \\ y - yp \\ -c \end{bmatrix}$$

$$\begin{bmatrix} x_{pix} \\ y_{pix} \\ -c \end{bmatrix} = \begin{bmatrix} \frac{1}{psz_x} & \frac{xp}{(-c)(psz_x)} \\ \frac{1}{psz_y} & \frac{yp}{(-c)(psz_y)} \\ \end{bmatrix} \begin{bmatrix} x - xp \\ y - yp \\ -c \end{bmatrix}$$

$$= \begin{bmatrix} \frac{-c}{psz_x} & \frac{xp}{(psz_x)} \\ \frac{-c}{psz_y} & \frac{yp}{(psz_y)} \\ \end{bmatrix} \begin{bmatrix} (x - xp)/(-c) \\ (y - yp)/(-c) \\ 1 \end{bmatrix}$$

# 3D to 2D relationship – Camera matrix

$$\begin{bmatrix} x_{pix} \\ y_{pix} \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{-c}{psz_x} & \frac{xp}{(psz_x)} \\ \frac{-c}{psz_y} & \frac{yp}{(psz_y)} \end{bmatrix} \begin{bmatrix} (x-xp)/(-c) \\ (y-yp)/(-c) \end{bmatrix}$$

$$\begin{bmatrix} x_{pix} \\ y_{pix} \\ 1 \end{bmatrix} = K \begin{bmatrix} (x-xp)/(-c) \\ (y-yp)/(-c) \end{bmatrix} = KkR \begin{bmatrix} X-X_0 \\ Y-Y_0 \\ Z-Z_0 \end{bmatrix} / (-c)$$

$$= K\lambda R \begin{bmatrix} X-X_0 \\ Y-Y_0 \\ Z-Z_0 \end{bmatrix}$$

**K** is called camera matrix in computer vision

## 3D to 2D relationship – Projection Matrix

Let's make it looks even more compact:

$$\begin{bmatrix} x_{pix} \\ y_{pix} \\ 1 \end{bmatrix} = \lambda \mathbf{K} \begin{bmatrix} R & -RT \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}, \mathbf{T} = \begin{bmatrix} X_0 \\ Y_0 \\ Z_0 \end{bmatrix}$$

Let  $P = \lambda K[R -RT]$ , then P is called Projection Matrix.

$$\begin{bmatrix} x_{pix} \\ y_{pix} \\ 1 \end{bmatrix} = P \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

## **Projection Matrix**

$$\begin{bmatrix} x_{pix} \\ y_{pix} \\ 1 \end{bmatrix} = \lambda \mathbf{K}[R \quad -RT] \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}, \mathbf{T} = \begin{bmatrix} X_0 \\ Y_0 \\ Z_0 \end{bmatrix}$$

$$\mathbf{P} = \lambda \mathbf{K}[R \quad -RT] - Projection Matrix$$

# Homogeneous Coordinates



$$\frac{c}{Z} = \frac{x}{X} = m$$

$$x = \frac{c}{Z}X = mX$$

Given X we are getting x through a scale, this is represented by scaling through Z

For any  $(\bar{X}, \bar{Z}) = k(X, Z)$ , we get the same point x on the image, We want to just represent such points in the space as one point.

Purpose: Easy to represent; a image point x, can be represented in the space by associating to the a scale factor  $k[x,1]^T$ 

 $\begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} kx \\ k \end{bmatrix}$ , this is defined under the homogeneous coordinate representation

### Motivation

- Cameras generate a projected image of the world
- Euclidian geometry is suboptimal to describe the central projection
- In Euclidian geometry, the math can get difficult
- Projective geometry is an alternative algebraic representation of geometric objects and transformations

- Math becomes simpler
- Projective geometry does not change the geometric relations
- Computations can also be done in Euclidian geometry (but more difficult)

- H.C. are a system of coordinates used in projective geometry
- Formulas involving H.C. are often simpler than in the Cartesian world
- Points at infinity can be represented using finite coordinates
- A single matrix can represent affine and projective transformations

#### **Definition**

The representation x of a geometric object is **homogeneous** if x and  $\lambda x$  represent the same object for  $\lambda \neq 0$ 

## Example

$$\mathbf{x} = \lambda \mathbf{x}$$

homogeneous

$$x \neq \lambda x$$

Euclidian

- H.C. use a n+1 dimensional vector to represent the same (n-dim.) point
- Example for  $\mathbb{R}^2/\mathbb{P}^2$

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \longrightarrow \mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = w \begin{bmatrix} u/w \\ v/w \\ 1 \end{bmatrix} = \begin{bmatrix} u/w \\ v/w \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

#### **Definition**

The representation x of a geometric object is **homogeneous** if x and  $\lambda x$  represent the same object for  $\lambda \neq 0$ 

#### **Example**

$$\mathbf{x} = \left[ \begin{array}{c} u \\ v \\ w \end{array} \right] = \left[ \begin{array}{c} wx \\ wy \\ w1 \end{array} \right] = \left[ \begin{array}{c} x \\ y \\ 1 \end{array} \right] \qquad \pmb{x} = \left[ \begin{array}{c} x \\ y \end{array} \right]$$
 homogeneous Euclidian

Aug-Dec 2017

• Homogeneous Coordinates of a point  $\chi$  in the plane  $\mathbb{R}^2$  is a 3-dim. vector

$$\chi: \mathbf{x} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} \text{ with } |\mathbf{x}|^2 = u^2 + v^2 + w^2 \neq 0$$

it corresponds to Euclidian coordinates

$$\boldsymbol{\chi}: \quad \boldsymbol{x} = \left[ \begin{array}{c} u/w \\ v/w \end{array} \right] \text{ with } w \neq 0$$

The projective plane  $\mathbb{P}^2(\mathbb{R})$  or  $\mathbb{P}^2$  contains

- All points  $\mathcal{X}$  of the Euclidian plane  $\mathbb{R}^2$  with  $\mathbf{x} = [x, y]^{\top}$  expressed through the 3-valued vector (e.g.,  $\mathbf{x} = [x, y, 1]^{\top}$ )
- and all points at infinity, i.e.,

$$\mathbf{x} = [x, y, 0]^{\top}$$

• except  $[0, 0, 0]^{\top}$ 

### From Homogeneous to Euclidian Coordinates

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} u/w \\ v/w \\ 1 \end{bmatrix} \to \begin{bmatrix} u/w \\ v/w \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

## From Homogeneous to Euclidian Coordinates



Aug-Dec 2017 Instructor: Rongjun Qin, Ph.D. Page 39

#### 3D Points

Analogous for points in 3D Euclidian space  $\mathbb{R}^3$ 

homogeneous Euclidian 
$$\mathbf{X} = \begin{bmatrix} U \\ V \\ W \\ T \end{bmatrix} = \begin{bmatrix} U/T \\ V/T \\ W/T \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} U/T \\ V/T \\ W/T \end{bmatrix}$$

# Origin of the Euclidian Coordinate System in H.C.



#### H.C. – Lines

### Representations of Lines

• Hesse normal form (angle $\phi$ , distanced)

$$x\cos\phi + y\sin\phi - d = 0$$

Intercept form

$$\frac{x}{x_0} + \frac{y}{y_0} = 1$$
 or  $\frac{x}{x_0} + \frac{y}{y_0} - 1 = 0$ 

Standard form

$$ax + by + c = 0$$

All form linear equations that are equal to zero

#### Representations of Lines

$$\mathbf{x} = \left[ egin{array}{c} x \ y \ 1 \end{array} 
ight]$$

$$\mathbf{l} = \left[egin{array}{c} \cos\phi \ \sin\phi \ -d \end{array}
ight]$$

$$\mathbf{l}=\left[egin{array}{c} \dfrac{1}{x_0} \\ \dfrac{1}{y_0} \\ -1 \end{array}
ight]$$
 intercept

$$\mathbf{l} = \left[egin{array}{c} a \ b \ c \end{array}
ight]$$
standard $\left[egin{array}{c} c \end{array}
ight]$ 

$$\mathbf{x} \cdot \mathbf{l} = \mathbf{x}^\mathsf{T} \mathbf{l} = \mathbf{l}^\mathsf{T} \mathbf{x} = 0$$

#### **Definition**

Homogeneous Coordinates of a line line to the plane is a 3-dim. vector

$$\ell: \quad \mathbf{l} = \begin{bmatrix} l_1 \\ l_2 \\ l_3 \end{bmatrix} \text{ with } |\mathbf{l}|^2 = l_1^2 + l_2^2 + l_3^2 \neq 0$$

it corresponds to Euclidian representation

$$l_1 x + l_2 y + l_3 = 0$$

 $\mathbf{l} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$  does not corresponds to any line and hence is excluded

#### Test If a Point Lies on a Line

A point

$$\mathbf{x} = \left[ \begin{array}{c} x \\ y \\ 1 \end{array} \right]$$

lies on a line

$$\mathbf{l} = \left[ egin{array}{c} l_1 \ l_2 \ l_3 \end{array} 
ight]$$

• if  $\mathbf{x} \cdot \mathbf{l} = 0$ 

### **Intersecting Lines**

The intersection of two lines in H.C. is

$$\chi = l \cap m : \mathbf{x} = \mathbf{l} \times \mathbf{m}$$

 Simple way for computing the intersection of two lines using H.C.

• Line l between two points x, y:

Idea: both points line on that line, meaning:

$$x \cdot l = 0, y \cdot l = 0$$

We know that

$$(x \times y) \cdot x = 0$$
$$(x \times y) \cdot y = 0$$

Therefore:

$$l = x \times y$$

### H.C. Lines and points – Duality

A point lies on a line if

$$\mathbf{x} \cdot \mathbf{l} = 0$$

Intersection of two lines

$$\chi = l \cap m : \mathbf{x} = \mathbf{l} \times \mathbf{m}$$

A line through two given points

$$l = \chi \wedge y : \mathbf{l} = \mathbf{x} \times \mathbf{y}$$

### Duality

 Without proof we give the definition of duality in the homogenous coordinate system formulation

To any theorem of 2-dimension projective geometry, there corresponds a dual theorem, which may be derived by interchanging the roles of points and lines in the original theorem.

### H.C. – Infinity

#### **Points at Infinity**

 It is possible to explicitly model infinitively distant points with finite

coordinates

$$oldsymbol{\chi}_{\infty}: \quad \mathbf{x}_{\infty} = \left[egin{array}{c} u \ v \ 0 \end{array}
ight]$$

$$\chi_{\infty}: \quad \mathbf{x}_{\infty} = \left[ egin{array}{c} u \\ v \\ 0 \end{array} 
ight] \qquad \qquad \chi_{\infty} = \left[ egin{array}{c} 0 \\ 0 \\ 0 \end{array} 
ight] ext{ (ideal point, all the lines intersect to this infinity point)}$$

- We can maintain the direction to that infinitively distant point
- Great tool when working with cameras as they are bearing-only sensors

### H.C. – Infinity – Cont.

### **Intersection at Infinity**

- All lines  $\ell$  with  $\ell \cdot \chi_{\infty} = 0$  pass through  $\chi_{\infty}$
- This means  $[u,v]\cdot[\cos\phi,\sin\phi]=0$
- This hold for any line  $\mathbf{m} = [\cos \phi, \sin \phi, *]^T$  i.e. for any line that is parallel to  $\ell$

$$\mathbf{l} imes \mathbf{m} = \left[ egin{array}{c} a \\ b \\ c \end{array} 
ight] imes \left[ egin{array}{c} a \\ b \\ d \end{array} 
ight] = \left[ egin{array}{c} bd - bc \\ ac - ad \\ ab - ab \end{array} 
ight] = \left[ egin{array}{c} bd - bc \\ ac - ad \\ 0 \end{array} 
ight]$$

All parallel lines meet at one point at infinity!

### H.C. – Infinity – Cont.

### **Lines at Infinity**

$$l_{\infty} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
, all the points at infinity will lie on this line. (also called ideal line)

line. (also called ideal line)

i.e. 
$$p_{\infty} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$

The line at infinity is invariant of affine!

### H.C. – Infinity – Cont.



Image Courtesy: J. Jannene

#### H.C. in 3D

#### **Analogous for 3D Objects**

3D point

$$\mathbf{X} = \begin{bmatrix} U \\ V \\ W \\ T \end{bmatrix} = \begin{bmatrix} U/T \\ V/T \\ W/T \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} U/T \\ V/T \\ W/T \end{bmatrix}$$

Plane

$$\mathbf{A} = \left[ egin{array}{c} A \ B \ C \ D \end{array} 
ight]$$

Similar properties in terms of infinity, can be extended

#### H.C. in 3D

#### Point on a Plane

 Via the scalar product, we can again test if a point lies on a plane

$$\mathbf{A} \cdot \mathbf{X} = \mathbf{A}^\mathsf{T} \mathbf{X} = \mathbf{X}^\mathsf{T} \mathbf{A} = 0$$

which is based on

$$AX + BY + CZ + D = 0$$

### H.C. in 3D

### **3D Objects at Infinity**

3D point

$$\mathbf{P}_{\infty} = \left[ egin{array}{c} U \ V \ W \ 0 \end{array} 
ight]$$

Plane

$$\mathbf{A}_{\infty} = \left[ egin{array}{c} 0 \ 0 \ 0 \ 1 \end{array} 
ight]$$



### **Projection Matrix**

$$\begin{bmatrix} x_{pix} \\ y_{pix} \\ 1 \end{bmatrix} = \lambda \mathbf{K}[R \quad -RT] \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}, \mathbf{T} = \begin{bmatrix} X_0 \\ Y_0 \\ Z_0 \end{bmatrix}$$
$$\mathbf{P} = \lambda \mathbf{K}[R \quad -RT] - Projection \ Matrix$$

$$\begin{bmatrix} x_{pix} \\ y_{pix} \\ 1 \end{bmatrix} = \mathbf{K}[R \quad -RT] \lambda \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \quad \text{or understand as} \quad \frac{1}{\lambda} \begin{bmatrix} x_{pix} \\ y_{pix} \\ 1 \end{bmatrix} = \mathbf{K}[R \quad -RT] \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

This is represented as H.C. for the output, we can get the results by ignoring  $\lambda$  in the definition of P

$$\frac{1}{\lambda} \begin{bmatrix} x_{pix} \\ y_{pix} \\ 1 \end{bmatrix} = \boldsymbol{P} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

#### **Next Class**

- Geometric Transformation
- RANSAC Algorithm
- Panorama Assignment 2