Introduction to DBMS

Rajeev Srivastava

ToC

- Basic Terminology
- Database & DBMS
- Problems in Manual Database
- Applications of DBMS
- Functions/Characteristics of DBMS
- Advantages of DBMS
- <u>DBMS Examples</u>

- <u>Database Systems Architecture</u>
- Data Models
 - Relational Model
 - ER Model
- Cardinality Ratio of a Relation
- Database Design
- ER Model

Basic Terminology

- Data Raw information,
 A value representing an quality or quantity
 A recorded fact.
- **Information** Processed data
- Record A collection of related data/information.
- <u>Data Dictionary</u> Data dictionary is a detailed description of data objects exists in a system.
- <u>Data Warehouse</u> Centralized repository of data from one or more sources and used for reporting and data analysis.
- Type of Data Structured, Semi-Structured, Unstructured

Database & DBMS

Database – A database is an organized collection of data, that can be easily accessed, managed and manipulated.

OR

A database is a collection of interrelated data stored together without harmful or unnecessary redundancy.

DBMS

A database management system(DBMS) is a software package used to store and manage data.

Problems in Manual/File System Database

- No Sharing
- Data isolation
- Diffused responsibilities
- Poor coordination
- Data redundancy
- No/Weak Security
- Cumbersome Retrieval Process
- Cumbersome/No Update Possible
- Weak (data) integrity

Functions/Characteristics of DBMS

- Data Representation
- Data Manipulation Management
- Performance
- <u>Transaction</u> Management
- Data Access Management

Features & Advantages of DBMS

- Data Representation
- Data Manipulation Management
- Transaction Management
- Data Access Management
- Storage and Data Redundancy Management
- Increased Security
- Faster Retrieval
- Analysis Summary Reports
- Centralized Management and Control
- Data Sharing

Applications of DBMS

- Banking
- Railway
- Airlines
- Educational Organizations / University
- Data Warehouses
- And many more...

- Enterprise Business
 - Manufacturing
 - Sales
 - Human Resource
 - Payroll
 - And many more...

Find at least 3 more applications of DBMS

Find names of at least 5 additional popular DBMS

DBMS Examples

- Oracle
- Microsoft SQL Server
- IBM DB2
- Microsoft Access
- PostgreSQL (Open Source)
- MySQL (Open Source)
- MariaDB (Open Source)
- SQLite
- Teradata

- NoSQL Databases
 - MongoDB
 - Apache CouchDB
 - Apache Cassandra
 - Apache Hbase
 - Neo4J
 - Oracle NoSQL

Find more about these listed databases – Type, License, Uses, Latest Versions, Underlying Data Modals, Owner Companies etc.

Database System Architecture

Database System Architecture can be defined on three levels

- External Level (View Level) The way data will be represented to the end user. High Level Architecture
- <u>Conceptual Level (Logical Level)</u> Defines logical structure of the database in terms of entities, relationships, attributes, datatypes etc.
- <u>Internal Level (Physical Level)</u> Defines the way data is stored on physical storage. Low level architecture.

Database Design: Goals

- Accuracy-Integrity
- Consistency
- Speed/Performance for all CRUD operations
- Persistency
- Extensibility
- Scalability
- Error Correction

- Robustness
- ACID Support
- Ease of Use
- Portability
- Security
- Sharing
- Ability to Perform Complex Calculations

Understand User/System's Requirements for Database Design

- Functional Requirements (+Reports Requirement)
- Data Flow
- Data Format & Validity
- Data Security Needs

Create Use Cases and Identify Data Needs for each Use Case

Data Model

- A Data Model is a plan. It's a blueprint for building a Database.
- Defines how data in a database system get stored and represented.
- A data model uses a set of rules to provide a representation of data content, structure and constraints required by an application/system.

Learn more about these listed Data Modals.

Data Models: Types

Find out few other data models with their examples

Network Model – Data is represented in collection of records and relationship among records is in form of links (similar to pointers).

Hierarchical Model – Data is represented in collection of records, and relationship among records is represented in form of hierarchical trees.

Relational Model – Data is represented in tabular format. A table is comprises of rows and columns.

Object Oriented Model – Data is represented in form of objects and based on the concept of <u>Object Oriented Programming (OOPs) Concepts</u>.

Hybrid Models - Ex. Object Relational Database Management Systems

*NoSQL

Relational [Database] Model

- First defined by Computer Scientist **Edgar Frank Codd** in 1969.
- Mathematical model, based on <u>Relational Algebra and</u> <u>Predicate Logic</u>.
- Very well defined and extremely mature model in terms of data storage and representation.
- All RDBMS (Relational Database Management Systems) derived from Relational model.

Entity Relationship (ER) Model

- Proposed by Peter Chen in 1970s.
- An object model: graphically represents logical relationship among entities (or objects).
- Describes data aspects of a system under implementation on abstract level.
- Conceptual Model, representing Logical Design of a database.
- Notations
 - Chen Notation
 - Crow-Foot Notation
 - Bachman Notation
 - Martin Notation
 - IDEF1X Notation

Database Designing for RDBMS

- Gather Functional Requirements (Data Needs)
- Convert Data Needs into a Data Model ([Interface Model ->] ER Model)
- Convert the ER Model to Relational Model
- Implement the Relational Model using RDBMS of your Choice.

 \rightarrow SQL

Entity Relationship (ER) Model different Entity Relationship (ER) Model

Learn about various symbols available in different ER notations.

Component	Symbol	Example
Entity	Rectangle	
Attribute	Ellipse	
Link between Entity and Attribute	Line	
Relationship Among Entities	Diamond	

Simple ER Depiction

Identify Entities, Relation among entities and Attributes in a System/Business and create an ER Diagram.

Cardinality Ratio of Relationship

Relationship among entities can be represented in following three ways -

- One-to-one
- One-to-many or Many-to-one
- Many-to-many

Find out at least 3 examples of each type of Relationship in real world

ER Diagram...more

- An entity that can not be identified by its attributes alone is called as Weak Entity. Its existence depends on another entity – it is represented by double border rectangle.
- Multivalued attribute (an attribute representing more than one value for a single entity) is represented by double line ellipse.
- Inheritance is A represented by a Triangle

ER Diagram...more

- Entities are generally Nouns. Relationships are Verbs
- Draw relationships from Left to Right and Top to Bottom.
- Ternary or n-nary Relationship can be depicted in the same way as Binary.
- Notes and comments may be added to ERD. But it should be done in a clean way.
- The ultimate goal of creating an ERD is to help understanding the project.
 Hence easy information representation should be given priority over technical correctness.

ER Model to Relational Mapping: Example

Attributions:

- Database System Concepts Abraham Silberschatz, Henry F. Korth, S. Sudarshan
- Beginning Database Design Solutions Rod Stephens