Novo Espaço - Matemática A 11.º ano

Proposta de teste de avaliação [novembro - 2021]

Ano / Turma: _____ N.º: ____

Data: ___ - ___ - __

$$a = \cos 0 + \cos \frac{\pi}{3} + \cos \frac{2\pi}{3}$$
 e $b = \cos \left(0 + \frac{\pi}{3} + \frac{2\pi}{3}\right)$

$$b = \cos\left(0 + \frac{\pi}{3} + \frac{2\pi}{3}\right)$$

Podes concluir que:

- $(\mathbf{A}) \quad a = b$
- **(B)** a+b=0
- **(C)** a = 2b
- **(D)** a-b=1

2. "Trigonometria na árvore de Natal".

- **2.1.** No triângulo [ABC] representado na figura, tem-se:
 - $A = 80^{\circ}$
 - $C = 65^{\circ}$
 - $\overline{AB} = 40$

Determina o perímetro do triângulo [ABC].

Apresenta o resultado arredondado às décimas.

2.2. Na figura está assinalada a amplitude α , em radianos, de um ângulo agudo de um dos triângulos.

Sabe-se que
$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\frac{1}{3}$$
, com $\alpha \in \left]0, \frac{\pi}{2}\right[$.

Determina o valor exato de $\sin\left(-\frac{9\pi}{2} - \alpha\right) + \tan(\alpha - 3\pi)$.

- **3.** Na figura estão representados, num referencial o.n. Oxy, uma circunferência e um trapézio [ABCD]. Sabe-se que:
 - a circunferência tem raio 1 e centro em O;
 - o ângulo *DOA* tem amplitude $\frac{\pi}{3}$ radianos
 - o ponto A tem abcissa -1;
 - o ponto C pertence ao semieixo positivo O_{Y} .

Qual é a medida da área do trapézio [ABCD]?

$$(\mathbf{A}) \quad \frac{5\sqrt{3}}{9}$$

(A)
$$\frac{5\sqrt{3}}{8}$$
 (B) $\frac{5+\sqrt{3}}{4}$ (C) $\frac{3\sqrt{3}}{4}$

$$(\mathbf{C}) \quad \frac{3\sqrt{3}}{4}$$

(D)
$$\frac{4+\sqrt{3}}{8}$$

4. Na entrada de uma escola foi instalada uma iluminação de Natal.

As lâmpadas coloridas foram penduradas num fio que é representado na figura pelo gráfico da função f definida por $f(x) = 2.5 + 0.5 \sin x$.

Tem atenção à figura e determina:

- **4.1.** a diferença entre as abcissas dos pontos $C \in A$;
- **4.2.** a abcissa do ponto B.
- 5. O número de soluções da equação $3+5\cos\left(x-\frac{\pi}{2}\right)=0$ no intervalo $\left]-\frac{3\pi}{2}, 0\right[$ é:
 - **(A)** 3
- **(B)** 0
- **(C)** 1
- **(D)** 2
- **6.** Na figura está representado um losango [*ABCD*]. Sabe-se que:
 - o perímetro do losango é 16;
 - a amplitude do ângulo *ADC* é 60°

Qual é o valor do produto escalar $\overrightarrow{AB} \cdot \overrightarrow{AD}$?

- **(A)** −2
- **(B)** 16
- **(C)**
- **(D)** $-8\sqrt{3}$

Proposta de teste de avaliação [novembro - 2021]

7. Na figura, em referencial o.n. *Oxy*, está representada uma circunferência de centro *O* e raio 1. Sabe-se que:

- os pontos P e Q são simétricos em relação ao eixo Oy e pertencem à circunferência;
- M é o ponto médio de [PQ];
- *R* e *M* são simétricos em relação ao eixo *Ox*;
- α é a amplitude, em radianos, do ângulo AOP, com $\alpha \in \left[0, \frac{\pi}{2}\right]$.

Seja f a função, de domínio $\left]0, \frac{\pi}{2}\right[$, definida por $f(x) = \sin(x)\cos(x)$.

7.1. Seja k um número real, pertencente ao intervalo $\left]0, \frac{\pi}{2}\right[$, tal que $f(k) = \frac{3}{8}$.

Determina o valor de $(\sin(k) + \cos(k))^2$.

- **7.2.** Resolve, no intervalo $\left]0, \frac{\pi}{2}\right[$, a equação $\tan(x) f(x) = \frac{3}{4}$.
- **7.3.** Mostra que a área da região sombreada da figura é dada por $f(\alpha)$.

7.4. Sabe-se que $f(\alpha)$ representa a área da região sombreada da figura e é máxima quando $\alpha = \frac{\pi}{4}.$

Recorre às capacidades gráficas da calculadora e determina para que valores de α a medida da área da região sombreada é 80% da medida da área máxima.

Na tua resposta deves:

- Reproduzir, num referencial, o gráfico da função f que visualizas na calculadora, no respetivo domínio.
- Assinalar o(s) ponto(s) do gráfico relevante(s) para a resposta.
- Apresentar a(s) solução(ões) arredondada(s) às centésimas.

8. Na figura, num referencial o.n. Oxy, está representada uma reta r.

Sabe-se que:

- a reta r é definida por uma equação do tipo $y = \frac{1}{2}x + b$, b < 0;
- θ representa a inclinação da reta r;
- o ponto A é interseção de r com o eixo Oy;
- o ponto B é a interseção de r com o eixo Ox.

Mostra que $\overrightarrow{AO} \cdot \overrightarrow{AB} = b^2$.

FIM

Cotações														Total
Questões	1.	2.1.	2.2.	3.	4.1.	4.2.	5.	6.	7.1.	7.2.	7.3.	7.4.	8.	
Pontos	12	18	18	12	18	15	12	12	18	15	18	18	14	200