

QUÍMICA NIVEL MEDIO PRUEBA 1

Martes 11 de noviembre de 2008 (tarde)

45 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.

•	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
7		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
ю		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es
Tabla periódica				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
	Número atómico	Elemento Masa atómica		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
				23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
			•	22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	:-	**
2		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

- 1. Los químicos analíticos pueden determinar cantidades de aminoácidos tan pequeñas como 2.0×10^{-21} moles de moléculas. ¿Cuántas moléculas representa este número?
 - A. 2.0×10^{-21}
 - B. 1.2×10^3
 - C. 6.0×10^{23}
 - D. 3.0×10^{44}
- 2. La oxidación del amoníaco es una etapa de la fabricación del ácido nítrico:

$$_NH_3(g) + _O_2(g) \rightarrow _NO(g) + _H_2O(l)$$

 ξ Cuál es el coeficiente del NH_3 cuando se ajusta la ecuación usando los números más pequeños posibles?

- A. 2
- B. 4
- C. 5
- D. 6
- 3. ¿Cuántos moles de iones de soluto hay en 50 cm³ de una solución de hidróxido de sodio de concentración 0,10 mol dm⁻³?
 - A. 2.5×10^{-3}
 - B. 5.0×10^{-3}
 - C. $1,0 \times 10^{-2}$
 - D. $5,0 \times 10^{-2}$

- **4.** La combustión completa de un hidrocarburo produce 0,44 g de CO₂ y 0,18 g de H₂O. ¿Cuál es la fórmula empírica del hidrocarburo?
 - A. CH
 - B. CH₂
 - C. CH₃
 - D. CH₄
- 5. ¿Qué especie contiene el mismo número de electrones y neutrones?
 - A. $^{1}_{1}H$
 - B. ${}^{2}_{1}H^{-}$
 - C. ${}^{7}_{3}\text{Li}^{+}$
 - D. 35 Cl

6. A continuación se representa el espectro de masas de una muestra de un elemento.

¿Qué valor es el más cercano a la masa atómica relativa del elemento?

- A. 64,5
- B. 65,0
- C. 65,5
- D. 66,0
- 7. ¿En qué orden se disponen los elementos en la tabla periódica?
 - A. De acuerdo con la masa atómica relativa
 - B. De acuerdo con la reactividad
 - C. De acuerdo con la carga nuclear
 - D. De acuerdo con la electronegatividad

8. El gráfico muestra la tendencia que presenta una propiedad física hacia abajo del grupo 7 de la tabla periódica.

¿Cuál es la propiedad física?

- A. Radio atómico
- B. Electronegatividad
- C. Densidad
- D. Punto de fusión

9. La tabla muestra los puntos de ebullición de los haluros de hidrógeno.

Compuesto	Punto de ebullición / °C
HF	20
HC1	-85
HBr	-67
HI	-35

¿Qué enunciado explica el mayor punto de ebullición del fluoruro de hidrógeno?

- A. El enlace covalente en el fluoruro de hidrógeno es más fuerte que en el caso de los demás haluros de hidrógeno.
- B. Existe un fuerte enlace de hidrógeno entre las moléculas de fluoruro de hidrógeno.
- C. El flúor es el elemento más reactivo del grupo 7.
- D. El flúor tiene la primera energía de ionización más elevada del grupo 7.

10.	· Oná ono	ada anar	ام ما	litio	v 01	ovigana	reaccionan	antra ail
IU.	7.Que suc	cue cuai	iuo ci	HUO	y CI	UXIZCIIU	Teaccionan	citile St.

- A. Cada átomo de litio gana un electrón.
- B. Cada átomo de litio pierde un electrón.
- C. Cada átomo de oxígeno gana un electrón.
- D. Cada átomo de oxígeno pierde un electrón.

11. ¿Qué sustancia tiene la menor conductividad eléctrica?

- A. Al(s)
- B. $Al_2O_3(1)$
- C. KCl(aq)
- D. HCl(g)

12. ¿Cuál es el ángulo de enlace C-C-C en el CH₃COCH₃?

- A. 180°
- B. 120°
- C. 109°
- D. 90°

13. ¿Qué muestra contiene moléculas con la mayor energía cinética media?

- A. H₂ a 100 K
- B. C_3H_8 a 273 K
- C. N₂ a 273 K
- D. Br₂ a 373 K

14. ¿Qué gráfica representa la variación de volumen de una masa fija de un gas ideal con la temperatura, en °C, a presión constante?

Temp / °C

- 15. ¿Qué enunciado sobre los enlaces covalentes es correcto?
 - La ruptura de enlaces covalentes es exotérmica y libera energía. A.
 - La ruptura de enlaces covalentes es endotérmica y absorbe energía. B.
 - C. La formación de enlaces covalentes es exotérmica y absorbe energía.
 - D. La formación de enlaces covalentes es endotérmica y libera energía.

16. La entalpía media de enlace del enlace C–H es de 412 kJ mol⁻¹ . ¿Cuál proceso tiene la variación de entalpía más cercana a este valor?

A.
$$CH_4(g) \rightarrow C(s) + 2H_2(g)$$

B.
$$CH_4(g) \rightarrow C(g) + 2H_2(g)$$

C.
$$CH_4(g) \rightarrow C(g) + 4H(g)$$

D.
$$CH_4(g) \rightarrow CH_3(g) + H(g)$$

- 17. Para una reacción, el valor de ΔH^{\ominus} es positivo y el de ΔS^{\ominus} es negativo. ¿Qué enunciado sobre esta reacción es correcto?
 - A. No es espontánea a ninguna temperatura.
 - B. Es espontánea a cualquier temperatura.
 - C. Es espontánea sólo a baja temperatura.
 - D. Es espontánea sólo a alta temperatura.
- 18. Cuando se añaden 50 cm³ de una solución de ácido nítrico, HNO₃(aq), de concentración 1,0 mol dm⁻³ a 50 cm³ de una solución de hidróxido de potasio, KOH(aq), de concentración 1,0 mol dm⁻³, la temperatura de la mezcla se eleva 6,4°C. ¿Cuál será la variación de temperatura cuando 25 cm³ de cada una de estas soluciones se mezclen entre sí?
 - A. 1,6°C
 - B. 3,2°C
 - C. 6,4°C
 - D. 12,8°C

19. La siguiente gráfica muestra como varía la concentración de X con el transcurso del tiempo durante la reacción:

¿Qué gráfica muestra la variación de concentración de Y en el mismo periodo de tiempo?

A.

В.

C.

D.

- **20.** ¿Qué enunciado sobre la energía de activación de una reacción es correcto?
 - A. La energía de activación se modifica en presencia de un catalizador, pero no lo hace cuando aumenta la temperatura.
 - B. La energía de activación se modifica cuando aumenta la temperatura pero no lo hace en presencia de un catalizador.
 - C. La energía de activación se modifica en ambos casos, cuando aumenta la temperatura y en presencia de un catalizador.
 - D. La energía de activación no se modifica ni por el aumento de temperatura ni por la presencia de un catalizador.
- **21.** La fabricación de amoníaco se basa en el equilibrio:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H^{\ominus} = -92 \text{ kJ mol}^{-1}$

¿Qué cambios aumentarán la concentración de amoníaco en el equilibrio?

- I. Aumento de la presión
- II. Disminución de la temperatura
- III. Agregado de un catalizador de hierro
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III
- 22. ¿Qué altera el valor de la constante de equilibrio, K_c , para una reacción reversible?
 - A. La variación de la temperatura
 - B. La variación de la concentración de un reactivo
 - C. La variación de la concentración de un producto
 - D. El agregado de un catalizador

- 23. ¿Qué enunciado describe una diferencia entre ácidos fuertes y ácidos débiles?
 - A. Las soluciones de ácidos débiles no conducen la corriente eléctrica mientras que las soluciones de ácidos fuertes conducen la corriente eléctrica.
 - B. Los ácidos fuertes forman soluciones concentradas mientras que los ácidos débiles no forman soluciones concentradas.
 - C. Los ácidos débiles son menos solubles que los ácidos fuertes.
 - D. Los ácidos fuertes están más disociados en solución acuosa que los ácidos débiles.
- 24. ¿Qué combinaciones forman soluciones buffer?
 - I. 50 cm³ de CH₃COOH(aq) de concentración 0,1 mol dm⁻³ + 25 cm³ de NaOH(aq) de concentración 0,1 mol dm⁻³
 - II. 50 cm³ de CH₃COOH(aq) de concentración 0,1 mol dm⁻³ + 50 cm³ de NaOH(aq) de concentración 0,1 mol dm⁻³
 - III. 50 cm³ de CH₃COOH (aq) de concentración 0,1 mol dm⁻³ + 50 cm³ de CH₃COONa (aq) de concentración 0,1 mol dm⁻³
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- **25.** ¿Qué enunciado sobre la electrólisis de bromuro de sodio fundido es correcto?
 - A. Los iones bromuro pierden electrones en el electrodo negativo.
 - B. Los iones bromuro ganan electrones en el electrodo positivo.
 - C. Los iones bromuro ganan electrones en el electrodo negativo.
 - D. Los iones bromuro se mueven aún cuando no circula corriente.

- **26.** ¿En qué compuesto el manganeso actúa con mayor número de oxidación?
 - A. MnCl₂
 - B. MnO_2
 - C. Mn_2O_3
 - D. MnSO₄
- **27.** El cloruro de paladio cambia de color en presencia de monóxido de carbono como se muestra a continuación.

$$PdCl_2(s) + CO(g) + H_2O(l) \rightarrow Pd(s) + CO_2(g) + 2HCl(aq)$$

naranja negro

¿Qué cambios se producen durante la reacción, en cuanto a los números de oxidación?

- I. El paladio se reduce.
- II. El carbono se oxida.
- III. El hidrógeno se reduce.
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III
- **28.** ¿Cuál de los siguientes puede formar un polímero de adición?
 - A. Alanina (ácido 2-aminopropanoico)
 - B. Butano
 - C. 2-buteno
 - D. 1,2-diclorobutano

- **29.** ¿Cuántos compuestos diferentes tienen fórmula molecular C₃H₈O?
 - A. 2
 - B. 3
 - C. 4
 - D. 5
- **30.** ¿Qué compuesto, después de hidrogenado, origina un producto con un centro quiral?
 - A. $CH_2 = CH_2$
 - B. $CH_3CBr = CH_2$
 - C. $CH_3CH_2CBr = CH_2$
 - D. $CH_3CH_2C(CH_3) = CH_2$