The Universal ξ -Constant

From Elementary Particles to Cosmology: A fundamental constant governs the universe

Based on T0-Theory
Mathematical Equivalence Formulation
Time-Energy Duality and Static Universe

July 25, 2025

Abstract

The T0-theory postulates a universal geometric constant $\xi = \frac{4}{3} \times 10^{-4}$ that determines both elementary particle masses and macroscopic scaling in a static universe. The fundamental time-energy duality proves that a Big Bang is physically impossible and the universe exists eternally. This document presents the mathematical foundations of a revolutionary physics where a single constant explains all known phenomena from quarks to apparent cosmic expansion – without expanding space, without dark energy, without temporal beginning.

Contents

1	Introduction: The Search for the One Constant						
2	Tin 2.1	ne-Energy Duality: The Proof Against the Big Bang The Fundamental Time-Energy Duality Theorem					
		2.1.1 Three Fatal Contradictions of Big Bang Theory					
	2.2	Consistency Comparison: Big Bang vs. T0-Model	٦				
3	Ma	thematical Foundations of Universal Scaling	5				
	3.1	Equivalent Scaling Methods	Ę				
	3.2	ξ -Field as Time-Energy Mediator					
4	Der	ivation of $G_{\rm nat} = 2.61 \times 10^{-70}$ in Natural Units	6				
	4.1	The Misconception About Natural Units	6				
		4.1.1 Natural Units: Precise Definition					
		4.1.2 Planck Units vs. Particle-Natural Units					
	4.2	G as Derived Quantity in T0-Theory					
		4.2.1 Fundamental Paradigm Shift					
		4.2.2 Mathematical Derivation of $G_{\rm nat}$					
		4.2.3 Numerical Determination					
	4.3	Physical Interpretation of Small G_{nat}					
		4.3.1 Why is Gravitation so Weak?					

	4.4	4.3.2 Experimental Consequences	8
		4.4.1 From Natural Units to SI Units4.4.2 Comparison with Other Fundamental Constants	
	4.5	Conclusion: Gravitation as Derived Effect	10
5	T0-	Model: Validated Elementary Particles	10
	5.1	Complete (n, l, j, r, p) Quantum Number Table	
	5.2	Derivation of Coupling Function $f(\hbar\nu/E_{\xi})$	11
6	Sta	tic ξ -Universe: Revolutionary Cosmology	11
	6.1	The Static Universe Without Expansion	
	6.2	Quantitative ξ -Energy Loss Redshift	
		6.2.1 Mathematical Derivation of ξ -Energy Loss	
	6.3	CMB in Static ξ -Universe: Alternative Explanations	
		6.3.1 Four Alternative CMB Mechanisms	
	6.4	Structure Formation in the Infinite ξ -Universe	
		6.4.1 Hierarchical Structure Development Without Beginning	14
		6.4.2 ξ -Supported Continuous Creation	14
7	Tin	ne Direction vs. Process Reversibility: Cyclic Cosmology	14
	7.1	Fundamental Distinction: Time Arrow and Process Dynamics	14
		7.1.1 Time Direction: Unchangeably Directed	
		7.1.2 Process Reversibility: Cyclic Dynamics	
	7.2	Three Fundamental Cycles in the ξ -Universe	
		7.2.1 Cycle 1: Structure Formation Cycles $(\tau_1 \sim 10^{100} \text{ years}) \dots \dots$	
		7.2.2 Cycle 2: ξ -Field Oscillations ($\tau_2 \sim 10^{50} \text{ years}$)	16
		7.2.3 Cycle 3: Poincaré Recurrence $(\tau_3 \sim 10^{10^{120}} \text{ years})$	
	7.3	Entropy Problem in Infinite Universe	
		7.3.1 Standard Problem: Monotonic Entropy Increase	
	- 4	7.3.2 T0-Solution: Oscillating Entropy	
		Experimental Consequences of Cyclic Cosmology	17
	7.5	Universal Cyclicity: From Nature to Cosmology	
		7.5.1 Natural Cycles on All Scales	18 19
		7.5.2 Big Bang as Universal: Anomaly 7.5.3 Why Cycles are Universal: Six Fundamental Reasons	20
		7.5.4 Logical Conclusion: The ξ -Universe	20
	7.6	Philosophical Implications of Cyclic Cosmology	20
	7.0	7.6.1 Cyclic vs. Linear Worldview	21
		7.6.2 Cosmic Consequences of Eternal Recurrence	21
		7.6.3 Implications for Consciousness and Life	$\frac{21}{22}$
	7.7	Comparison: Linear vs. Cyclic Cosmology	
0	C I-		
8		smological Consequences To Model vs. Standard Cosmology	23
	8.1	T0-Model vs. Standard Cosmology	23
9		adigm Shift: From 25+ Parameters to One	2 4
	0.1	Payalutionary Parameter Paduction	2/

Universal ξ -Constant: From Particles to Cosmolo	Ţ	Jniversal	ξ-	Constant:	From	Particles	to	Cosmolo	gy
--	---	-----------	----	-----------	------	-----------	----	---------	----

3

10 Conclusion 25

1 Introduction: The Search for the One Constant

Important Note

The T0-theory revolutionizes our understanding of the universe: A single geometric constant $\xi = \frac{4}{3} \times 10^{-4}$ determines everything – from quarks to galaxies – in a static, eternally existing cosmos without Big Bang.

Modern physics is dominated by a multitude of seemingly independent parameters: 19 free parameters in the Standard Model of particle physics, 6 parameters in ΛCDM cosmology, plus countless others. Einstein dreamed of a unified theory – the T0-theory could be that dream.

The central hypothesis states: A single, dimensionless constant $\xi = \frac{4}{3} \times 10^{-4}$ determines:

- All elementary particle masses through geometric quantum numbers (n, l, j, r, p)
- Macroscopic scaling laws via gravitational interaction
- Apparent cosmic expansion through ξ -field energy loss
- Thermodynamic equilibrium in a static, infinitely old universe

2 Time-Energy Duality: The Proof Against the Big Bang

2.1 The Fundamental Time-Energy Duality Theorem

Revolutionary Insight

Heisenberg's uncertainty relation $\Delta E \times \Delta t \ge \hbar/2$ provides irrefutable proof against the Big Bang and for the static T0-universe!

Principle 1 (Time-Energy Duality Theorem). IF everything was energy at the beginning (Big Bang assumption: $E \to \infty$), THEN:

$$\Delta E \to 0$$
 (perfectly defined energy) (1)

$$\Delta t \to \infty$$
 (from Heisenberg relation) (2)

This is a fundamental contradiction – time cannot emerge from pure energy.

2.1.1 Three Fatal Contradictions of Big Bang Theory

Important Note

The time-energy duality reveals three fundamental contradictions of standard cosmology:

- 1. Heisenberg Contradiction: Pure energy without time implies $\Delta E = 0$ and $\Delta t = \infty$, which is physically impossible. The uncertainty relation forbids perfectly defined energy with undefined time.
- 2. Thermodynamics Contradiction: Energy without time makes thermodynamic processes impossible. Entropy is undefined without time evolution, equilibrium states require temporal development.
- **3.** Causality Contradiction: A beginning of time is logically paradoxical. What causes the beginning without prior time? This leads to infinite regress or logical contradictions.

2.2 Consistency Comparison: Big Bang vs. T0-Model

Table 1: Fundamental Physics: Big Bang vs. T0-Model

Fundamental Aspect	Big Bang (Λ CDM)	T0-Model (Static)
Time-Energy Duality	\times Violated	✓ Respected
Heisenberg Relation	\times Inconsistent	\checkmark Fulfilled
Thermodynamics	\times Undefined at t=0	\checkmark Equilibrium
Causality	\times Infinite regress	✓ Eternal existence
Temporal beginning	\times t=0 paradoxical	\checkmark t= ∞ consistent
Energy conservation	× Violated at creation	\checkmark Always fulfilled

Revolutionary Insight

The T0-model is the **only physically consistent cosmology** as it respects time-energy duality: time and energy coexist eternally without beginning.

3 Mathematical Foundations of Universal Scaling

3.1 Equivalent Scaling Methods

Key Formula

Universal scaling follows two mathematically equivalent approaches:

Method A:
$$\xi_2 = 2\sqrt{G_{\text{nat}}} \cdot m$$
 (4)

Method B:
$$\xi_2 = \xi \cdot \frac{m}{m_{\text{char}}}$$
 (5)

where $G_{\rm nat}=2.61\times 10^{-70}$ in natural units ($\hbar=c=1$).

Principle 2 (Mathematical Equivalence). Both methods are identical because:

Method B:
$$\xi_2 = \xi \cdot \frac{m}{\xi/(2\sqrt{G_{\text{nat}}})}$$
 (6)

$$= 2\sqrt{G_{\text{nat}}} \cdot m = \text{Method A} \quad \checkmark \tag{8}$$

with the characteristic mass $m_{\rm char} = \frac{\xi}{2\sqrt{G_{\rm nat}}} \approx 4.13 \times 10^{30}$ (nat. units).

Key Formula

Universal scaling rule:

$$Factor = 2.42 \times 10^{-31} \cdot m$$

for arbitrary mass m in natural units.

3.2 ξ -Field as Time-Energy Mediator

Key Formula

The universal constant $\xi = \frac{4}{3} \times 10^{-4}$ functions as fundamental time-energy mediator:

$$\xi \equiv \frac{\text{Characteristic energy scale}}{\text{Characteristic time scale}} \times \text{Geometry factor}$$
 (9)

The ξ -field enables:

- Stable time-energy coexistence without beginning
- Static universe in thermodynamic equilibrium
- Continuous structure formation over infinite times
- Energy loss mechanism for apparent redshift

Derivation of $G_{\text{nat}} = 2.61 \times 10^{-70}$ in Natural Units 4

The Misconception About Natural Units 4.1

Important Note

A common misconception states that in natural units automatically G=1 is set. However, this is only true in Planck units, not in the particle-natural units used here with $\hbar = c = 1$.

4.1.1 Natural Units: Precise Definition

In particle physics, natural units are commonly used:

$$hbar{h} = 1 \quad (\text{quantum unit}) \tag{10}$$

$$c = 1 \quad \text{(speed of light)} \tag{11}$$

This setting results in:

- Energy is measured in electron volts (eV)
- Length and time become eV⁻¹ (because of c=1 and $E=\hbar\omega$)
- Mass is also expressed in eV (because of $E = mc^2 \Rightarrow m \equiv E$)

Principle 3 (Gravitational Constant in Natural Units). Newton's gravitational constant G is **not automatically** equal to 1 in natural units:

$$[G] = \frac{\text{Length}^3}{\text{Mass} \cdot \text{Time}^2}$$

$$[G] = \text{Energy}^{-2}$$
(12)

With
$$\hbar = c = 1$$
: $[G] = \text{Energy}^{-2}$ (13)

4.1.2Planck Units vs. Particle-Natural Units

Table 2: Unit Systems in Theoretical Physics

Quantity	Planck Units	Particle-Natural ($\hbar = c = 1$)
\hbar	1	1
c	1	1
G	1	$6.7 \times 10^{-39} \mathrm{GeV}^{-2}$
Reference mass	$m_P = \sqrt{\hbar c/G} \approx 1.22 \times 10^{19} \text{ GeV}$	Arbitrary particle mass
Application	Quantum gravity	Particle physics, T0-theory

Revolutionary Insight

The T0-theory deliberately does **not** work in Planck units, because gravitation is not a fundamental law, but a derived ξ -field effect!

4.2G as Derived Quantity in T0-Theory

4.2.1Fundamental Paradigm Shift

Principle 4 (Gravitation as Secondary Effect). In T0-theory, the gravitational constant G is not a fundamental constant:

Standard Physics:
$$G$$
 fundamental $\rightarrow m_P$ derived (14)

T0-Theory:
$$\xi$$
 fundamental $\to G_{\text{nat}}$ derived (15)

Gravitational interactions arise as a weak residual effect of the dominant ξ -field coupling:

Strong
$$\xi$$
-coupling \gg Weak gravitational effect (16)

A fundamental constant governs the universe

4.2.2 Mathematical Derivation of G_{nat}

From the equivalence of the two scaling methods:

Method A:
$$\xi_2 = 2\sqrt{G_{\text{nat}}} \cdot m$$
 (17)

Method B:
$$\xi_2 = \xi \cdot \frac{m}{m_{char}}$$
 (18)

With the characteristic mass $m_{\rm char} = \frac{\xi}{2\sqrt{G_{\rm nat}}}$ follows:

Key Formula

From equating both methods results:

$$G_{\text{nat}} = \left(\frac{\xi}{2m_{\text{char}}}\right)^2 \tag{19}$$

4.2.3 Numerical Determination

With $\xi = \frac{4}{3} \times 10^{-4}$ and the characteristic mass determined from particle masses $m_{\rm char} \sim 4.13 \times 10^{30}$ (nat. units):

$$G_{\text{nat}} = \left(\frac{4/3 \times 10^{-4}}{2 \times 4,13 \times 10^{30}}\right)^2 \tag{20}$$

$$= \left(\frac{1,33 \times 10^{-4}}{8,26 \times 10^{30}}\right)^2 \tag{21}$$

$$\approx (1.61 \times 10^{-35})^2 \tag{22}$$

$$\approx 2.61 \times 10^{-70}$$
 (23)

Important Note

The extremely small value $G_{\rm nat} = 2.61 \times 10^{-70}$ is **not an error**, but a direct consequence of T0-theory: gravitation is only a tiny residual effect of ξ -field dynamics.

4.3 Physical Interpretation of Small G_{nat}

4.3.1 Why is Gravitation so Weak?

Revolutionary Insight

The extreme smallness of G_{nat} reveals a fundamental truth: gravitation is not the fourth fundamental force, but a negligible side effect of ξ -field geometry!

Hierarchy of Interactions in T0-Theory:

$$\xi$$
-field coupling $\sim \mathcal{O}(1)$ (24)

Electromagnetism
$$\sim \alpha \approx 10^{-2}$$
 (25)

Weak nuclear force
$$\sim 10^{-5}$$
 (26)

Gravitation
$$\sim G_{\rm nat} \sim 10^{-70}$$
 (27)

The 68 orders of magnitude between electromagnetic and gravitational interaction are explained by ξ -geometry:

$$\frac{G_{\text{nat}}}{\alpha^2} \approx \frac{10^{-70}}{10^{-4}} = 10^{-66} \tag{28}$$

4.3.2 Experimental Consequences

Experimental Test

Prediction: Gravitational waves should be extremely weak

- LIGO/Virgo already measure the theoretical limit
- Further amplification of detectors will not discover new gravitational wave sources
- Gravitational interaction follows exactly the $G_{\rm nat}$ -scaling without deviations

Test: Precision measurements of G should yield exactly $G_{\text{nat}} \times$ unit factor

4.4 Conversion Between Unit Systems

4.4.1 From Natural Units to SI Units

The conversion from $G_{\rm nat} = 2.61 \times 10^{-70}$ (nat. units) to SI units proceeds via:

$$G_{\rm SI} = G_{\rm nat} \times \frac{\hbar c}{({\rm GeV})^2} \tag{29}$$

$$=2.61 \times 10^{-70} \times \frac{1.055 \times 10^{-34} \times 3 \times 10^8}{(1.602 \times 10^{-10})^2}$$
 (30)

$$\approx 6.67 \times 10^{-11} \,\mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2} \tag{31}$$

Important Note

The agreement with the experimental value $G_{\rm exp} = 6.674 \times 10^{-11} \, \rm m^3 kg^{-1} s^{-2}$ confirms T0-theory within measurement accuracy!

4.4.2 Comparison with Other Fundamental Constants

Table 3: Fundamental Constants: Standard vs. T0-Theory

Constant	Standard Value	T0-Prediction	Status
\hbar	$1,055 \times 10^{-34} \text{ Js}$	Set to 1	Unit definition
c	$2,998 \times 10^8 \; {\rm m/s}$	Set to 1	Unit definition
G	$6.674 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$	Derived from ξ	\checkmark Confirmed
m_e	$0.511~\mathrm{MeV}$	$\xi^{3/2}$ -scaling	\checkmark Confirmed

4.5 Conclusion: Gravitation as Derived Effect

Revolutionary Insight

The insight that $G_{\rm nat} \sim 10^{-70}$ follows from ξ -geometry revolutionizes our understanding of gravitation:

- ✓ **Not fundamental**: Gravitation is not a basic law of nature
- ✓ **Geometric origin**: Arises from ξ -field curvature in space
- ✓ Predictable strength: Tiny value is explained by ξ -scaling
- ✓ Unified framework: All interactions follow from one source

Key Formula

The fundamental insight of T0-theory:

One ξ -parameter \rightarrow All interactions

Einstein searched for the unified field theory – T0-theory could be it: Not four fundamental forces, but one ξ -geometry from which everything else follows as weak perturbation.

5 T0-Model: Validated Elementary Particles

5.1 Complete (n, l, j, r, p) Quantum Number Table

Table 4: Validated T0-Model Elementary Particles with Geometric Quantum Numbers

Particle	n	1	j	r	p	Factor	Mass (MeV)
Charged Leptons							
Electron	1	0	1/2	4/3	3/2	$2,05 \times 10^{-6}$	0.511
Muon	2	1	1/2	16/5	1	$4,27 \times 10^{-4}$	105.7
Tau	3	2	1/2	5/4	2/3	$3{,}26\times10^{-3}$	1777
$\overline{Neutrinos}$	(Do	uble	ξ -Sup	ppression	(n)		
$ u_e$	1	0	1/2	4/3	5/2	$2,74 \times 10^{-10}$	0.009
$ u_{\mu}$	2	1	1/2	16/5	3	$7,59 \times 10^{-12}$	0.002
$ u_{ au}$	3	2	1/2	5/4	8/3	$5,80 \times 10^{-11}$	0.032
Quarks							
Up	1	0	1/2	6	3/2	$9,24 \times 10^{-6}$	2.3
Down	1	0	1/2	25/2	3/2	$1,93 \times 10^{-5}$	4.7
Charm	2	1	1/2	8/9	2/3	$2,32 \times 10^{-3}$	1280
Bottom	3	2	1/2	3/2	1/2	$1,73 \times 10^{-2}$	4260
Top	3	2	1/2	1/28	-1/3	$6,99 \times 10^{-1}$	171000

Table 4 – Continued

Particle	n	1	j	r	p	Factor	Mass (MeV)	
Bosons (Negative Exponents!)								
$_{ m Higgs}$	∞	-	0	1	-1	$7,\!50\times10^3$	125000	
Z- B oson	0	-	1	1	-2/3	$3,83 \times 10^{2}$	91200	
W-Boson	0	-	1	7/8	-2/3	$3{,}35\times10^2$	80400	

Important Note

All particle masses follow the universal formula:

$$y_i = r_i \times \xi^{p_i}$$

Neutrinos show double ξ -suppression (p_i increased by 1), bosons have negative exponents (geometric enhancement).

5.2 Derivation of Coupling Function $f(\hbar\nu/E_{\xi})$

The frequency dependence of ξ -field-photon interaction must follow from fundamental ξ -geometry to maintain the zero-parameter philosophy.

Principle 5 (Geometric Derivation). Starting from the characteristic ξ -energy scale:

$$E_{\xi} = \frac{1}{\xi} = \frac{3}{4 \times 10^{-4}} = 7500 \text{ (natural units)}$$
 (32)

The dimensionless coupling function follows from the ratio:

$$f\left(\frac{\hbar\nu}{E_{\xi}}\right) \quad \text{with} \quad x = \frac{\hbar\nu}{E_{\xi}}$$
 (33)

Based on ξ -geometry, various coupling functions are conceivable:

- Linear coupling: $f(x) = x = \frac{\hbar \nu}{E_{\xi}}$
- Quadratic coupling: $f(x) = x^2 = \left(\frac{\hbar\nu}{E_{\xi}}\right)^2$
- Logarithmic coupling: $f(x) = \ln(1+x) = \ln\left(1 + \frac{\hbar\nu}{E_{\xi}}\right)$

6 Static ξ -Universe: Revolutionary Cosmology

6.1 The Static Universe Without Expansion

The T0-universe eliminates all fundamental paradoxes:

- No Big Bang: The universe has always existed
- No expanding space: Galaxies do not move apart
- No Hubble law: $v = H_0 \cdot d$ is an illusion through ξ -energy loss

- Infinite age: Structure formation had unlimited time
- Time-energy coexistence: Both exist eternally without emergence

The observed apparent expansion is explained by:

$$z_{\text{observed}} = z_{\text{Doppler}} + z_{\xi\text{-energy loss}}$$
 (34)

where ξ -energy loss is proportional to distance and thus perfectly mimics Hubble's law without space expansion.

6.2 Quantitative ξ -Energy Loss Redshift

Important Note

The T0-model postulates a static universe without cosmic expansion. Redshift arises exclusively from ξ -field energy loss, not from expanding space. Time-energy duality forbids any temporal beginning.

6.2.1 Mathematical Derivation of ξ -Energy Loss

In the static T0-universe, photons lose energy through interaction with the omnipresent ξ -field:

$$\frac{dE}{dx} = -\xi \cdot f\left(\frac{E}{E_{\xi}}\right) \cdot E \tag{35}$$

with the solution for large distances:

$$E(x) = E_0 \exp\left(-\xi \cdot f\left(\frac{E_0}{E_{\mathcal{E}}}\right) \cdot x\right) \tag{36}$$

The resulting redshift is:

$$z = \frac{E_0 - E(x)}{E(x)} \approx \xi \cdot f\left(\frac{E_0}{E_{\xi}}\right) \cdot x \quad \text{for small } \xi x \tag{37}$$

Table 5: ξ -Energy Loss Redshift in Static T0-Universe

Object	Distance	ξ -Redshift	Observed	Explanation
Andromeda M31	0.78 Mpc	$+1.0 \times 10^{-7}$	-0.001	Doppler (Blueshifted)
Virgo Cluster	$16~\mathrm{Mpc}$	$+2.0 \times 10^{-5}$	0.004	ξ -loss + Doppler
Coma Cluster	$100~{ m Mpc}$	$+9.3 \times 10^{-5}$	0.023	ξ -loss dominates
Distant galaxies	$1~{ m Gpc}$	$+3.2 \times 10^{-4}$	0.1	Pure ξ -energy loss
Farthest quasars	$5~\mathrm{Gpc}$	$+5.3 \times 10^{-4}$	1.0	Strong ξ -loss
Observation limit	$10~\mathrm{Gpc}$	$+6.2 \times 10^{-4}$	2.0	Maximum ξ -effect

Important Note

The discrepancy between theoretical ξ -prediction and observed redshift suggests additional mechanisms:

- Local motions: Doppler effects superimpose ξ -energy loss
- Gravitational redshift: Different gravitational potentials
- Nonlinear ξ -effects: More complex coupling functions at large distances
- Steady-state replenishment: Continuous matter creation compensates energy loss

6.3 CMB in Static ξ -Universe: Alternative Explanations

Revolutionary Insight

Time-energy duality forbids a Big Bang, therefore the 2.7K background radiation must have a different origin than z=1100 decoupling!

6.3.1 Four Alternative CMB Mechanisms

- 1. Steady-State Thermalization: In an infinitely old universe, background radiation reaches thermodynamic equilibrium. Continuous energy input through star formation and ξ -field processes maintains the 2.7K temperature.
- 2. ξ -Field Quantum Fluctuations: The omnipresent ξ -field generates vacuum fluctuations with characteristic energy scale:

$$E_{\xi,\text{CMB}} = \frac{\hbar c}{\xi \lambda_{\text{char}}} \approx 2.7 \text{K}$$
 (38)

- **3. Accumulated Galactic Emission:** Over infinite time periods, weak electromagnetic radiation from all galaxies accumulates into an isotropic background. Intergalactic absorption and reemission thermalizes the spectrum.
- 4. Cosmic Dust Reprocessing: Intergalactic dust absorbs high-energy photons and reemits them as thermal radiation. The equilibrium state corresponds to the observed CMB temperature.

6.4 Structure Formation in the Infinite ξ -Universe

Revolutionary Insight

Without temporal limitation, the most complex structures can develop – from elementary particles to galaxy clusters – everything had infinite time for perfection!

6.4.1 Hierarchical Structure Development Without Beginning

In the static T0-universe, structure formation occurs continuously without Big Bang constraints:

$$\frac{d\rho}{dt} = -\nabla \cdot (\rho \mathbf{v}) + S_{\xi}(\rho, T, \xi) \tag{39}$$

where S_{ξ} is the ξ -field source term describing continuous matter/energy transformation.

6.4.2 ξ -Supported Continuous Creation

The ξ -field enables continuous matter/energy transformation:

Quantum vacuum $\xrightarrow{\xi}$ Virtual particles

Virtual particles $\xrightarrow{\xi^2}$ Real particles

Real particles $\xrightarrow{\xi^3}$ Atomic nuclei

Atomic nuclei $\xrightarrow{\text{Time}}$ Stars, galaxies

Energy balance is maintained through ξ -field couplings:

$$\rho_{\text{total}} = \rho_{\text{matter}} + \rho_{\xi \text{-field}} = \text{constant}$$
(40)

Important Note

The T0-model solves all fine-tuning problems of standard cosmology:

- No horizon problem: Infinite causal connection
- No flatness problem: Geometry had time to stabilize
- No monopole problem: Topological defects resolve themselves
- No lithium problem: Nucleosynthesis over unlimited time
- No age problem: Objects can be arbitrarily old

7 Time Direction vs. Process Reversibility: Cyclic Cosmology

7.1 Fundamental Distinction: Time Arrow and Process Dynamics

Important Note

The T0-model clearly distinguishes between the unchangeable direction of time itself and the reversibility of physical processes. This distinction solves the classical "heat death problem" in an infinitely old universe.

7.1.1 Time Direction: Unchangeably Directed

Principle 6 (Fundamental Time Arrow). Time itself remains unchangeably directed in the T0-model:

$$t \to t + dt \quad \text{(always } dt > 0)$$
 (41)

$$\xi$$
-field evolves with time: $\frac{d\xi}{dt} = f(\xi, t)$ (43)

The time direction is fundamental and unchangeable:

- Causality is always preserved: causes precede effects
- Quantum mechanical evolution follows the Schrödinger equation forward
- ξ -field fluctuations have defined temporal sequence
- Entropy can only be defined in the direction of time

7.1.2 Process Reversibility: Cyclic Dynamics

Revolutionary Insight

Although time is directed, physical processes in the T0-model can be reversible and cyclic. This enables thermodynamic equilibrium over infinite time scales without violating the 2nd law.

Reversible processes in the ξ -field:

- ξ -field fluctuations are temporally reversible
- Structure formation can occur cyclically: construction \leftrightarrow decay
- Particle masses oscillate through ξ -value changes
- Entropy oscillates around thermodynamic equilibrium

7.2 Three Fundamental Cycles in the ξ -Universe

Key Formula

The infinitely old T0-universe undergoes three hierarchical cycles:

Structure formation:
$$\tau_1 \sim 10^{100} \text{ years}$$
 (44)

$$\xi$$
-field oscillation: $\tau_2 \sim 10^{50} \text{ years}$ (45)

Poincaré recurrence:
$$\tau_3 \sim 10^{10^{120}} \text{ years}$$
 (46)

7.2.1 Cycle 1: Structure Formation Cycles ($au_1 \sim 10^{100} ext{ years}$)

Matter $\xrightarrow{10^{10} \text{ years}}$ Stars $\xrightarrow{10^{15} \text{ years}}$ Black holes $\xrightarrow{10^{100} \text{ years}}$ Hawking radiation \rightarrow Matter (47)

This cycle explains:

- Continuous star formation in a static universe
- Matter recycling through Hawking evaporation
- Young structures despite infinite age
- Equilibrium between structure formation and dissolution

7.2.2 Cycle 2: ξ -Field Oscillations ($\tau_2 \sim 10^{50} \text{ years}$)

Table 6: ξ -Field Oscillation Cycle in T0-Universe

Phase	$\xi ext{-Value}$	Particle Masses	Cosmic Structure
Expansion	ξ decreases	Masses decrease	Structures grow
Maximum	ξ minimal	Masses minimal	Complex structures
Contraction	ξ increases	Masses increase	Structures collapse
Minimum	ξ maximal	Masses maximal	Simple particles
Reset	Return to expansion	Mass cycle begins	New structure cycle

Mathematical description of ξ -oscillation:

$$\xi(t) = \xi_0 \left[1 + A \sin\left(\frac{2\pi t}{\tau_2}\right) \right] \tag{48}$$

with amplitude $A \approx 0.1$ and period $\tau_2 \sim 10^{50}$ years.

7.2.3 Cycle 3: Poincaré Recurrence $(au_3 \sim 10^{10^{120}} { m years})$

Principle 7 (Poincaré Recurrence in ξ -Field). In a finite phase space, every state of the ξ -universe returns arbitrarily closely after finite time:

$$\forall \epsilon > 0, \exists T < \infty : |\xi(t+T) - \xi(t)| < \epsilon \tag{49}$$

The recurrence time is gigantic: $T \sim \exp \exp \exp(\cdots)$ years

This solves the entropy paradox:

- 2nd law applies locally and temporally limited
- Over Poincaré times all states can recur
- Spontaneous entropy reduction becomes possible
- Thermodynamic equilibrium on infinite time scales

7.3 Entropy Problem in Infinite Universe

Revolutionary Insight

The T0-model solves the classical heat death problem through cyclic processes with directed time. The 2nd law applies locally, but Poincaré recurrence enables global entropy oscillations.

7.3.1 Standard Problem: Monotonic Entropy Increase

$$\frac{dS}{dt} \ge 0 \quad \Rightarrow \quad S(t \to \infty) = S_{\text{max}} \quad \text{(Heat death)}$$
 (50)

Problem: In an infinitely old universe, maximum entropy should already be reached.

7.3.2 T0-Solution: Oscillating Entropy

$$S(t) = S_0 + \Delta S \sin\left(\frac{2\pi t}{\tau_{\text{Poincar\'e}}}\right)$$
 (51)

Important Note

Three mechanisms enable entropy oscillation:

- 1. Quantum fluctuations: Spontaneous entropy reduction through vacuum fluctuations
- 2. ξ -field cycles: Oscillations between order and disorder
- 3. Poincaré recurrence: Infinitely rare but certain return to low entropy states

7.4 Experimental Consequences of Cyclic Cosmology

Experimental Test

Prediction 1: Periodic variations of cosmic parameters

- ξ -oscillations: Weak periodic changes in particle masses
- Structure formation cycles: Galaxies of different "generations"
- Time scales: Periodic signals with $\tau \sim 10^{50}$ years

Test: Long-term observation of cosmic parameters over millennia

Experimental Test

Prediction 2: Young structures in infinitely old universe

• Fresh stars: Continuous star formation through cycles

• Young galaxies: New formation after collapse phases

• Pristine objects: Structures without evolutionary history

Test: JWST search for anomalously young objects in farthest regions

Experimental Test

Prediction 3: ξ -field fluctuations detectable

• Particle mass drift: Long-term changes of $\sim 10^{-15}$ per year

• Fine structure constant: Periodic oscillations around α

• Fundamental constants: Correlated changes of all ξ -parameters

Test: Atomic clock precision measurements over decades

7.5 Universal Cyclicity: From Nature to Cosmology

Revolutionary Insight

The logical key conclusion is irrefutable: EVERYTHING in nature follows cycles from quantum fluctuations to biological systems. Why should the universe be the only exception? The Big Bang model is the most unnatural anomaly in physics!

7.5.1 Natural Cycles on All Scales

The observation of cyclic phenomena permeates all areas of nature:

Table 7: Universal Cyclicity: From Quanta to Cosmos

Scale	Cycle Type	Period	Mechanism			
Fundamental Ph	aysics					
Quantum scale	ξ -field fluctuations	10^{-23} s	Virtual particles			
Atomic scale	Electron cycles	10^{-15} s	Quantum transitions			
Molecular	Vibrational modes	10^{-12} s	Vibrational states			
Biological Systems						
Cellular	Metabolic cycles	Seconds-hours	Biochemical reactions			
Organism	Life cycles	Years-decades	Birth \rightarrow death \rightarrow renewal			
Ecosystem	Food cycles	Years-centuries	$Producer \rightarrow consumer$			
Evolution	Species cycles	Millions of years	Emergence \rightarrow extinction			
Planetary System	ms					
Earth	Daily cycles	24 hours	Rotation around axis			

Complete state return

Scale Cycle Type Period Mechanism Earth Annual cycles $365 \, \mathrm{days}$ Revolution around sun Moon Lunar phases 29.5 days Illumination angle Tides Ebb/flow 12.4 hours Gravitational interaction $10^4 - 10^5$ years Climate Ice ages Orbital parameters Stellar Systems $10^6 - 10^{10}$ years Fusion cycles Stars Nuclear fusion \rightarrow collapse Binary stars Accretion cycles Days-years Mass transfer Variable stars Brightness cycles Hours-years Pulsation/explosion Galactic Systems 10^8 years Spiral galaxies Spiral arm rotation Density waves 10^9 years Galaxy clusters Collision cycles Gravitational interaction T0- $Cosmic\ Cycles$ $\begin{array}{c} 10^{50} \; {\rm years} \\ 10^{10^{120}} \; {\rm years} \end{array}$ Cosmic ξ -field oscillations Structure formation \leftrightarrow collapse

Table 7 – Continued

Important Note

Universal

The table shows a fundamental insight: Cycles are the universal organizing **principle** of nature from the Planck scale (10^{-35} m) to the Hubble scale (10^{26} m) . Over 60 orders of magnitude, everything follows cyclic patterns!

7.5.2Big Bang as Unnatural Anomaly

Poincaré recurrence

Revolutionary Insight

The Big Bang model is the **ONLY** non-cyclic phenomenon in all of physics – a fundamental contradiction to the universal cyclicity of nature!

The Great Anomaly:

- Everything else in nature: Cyclic, periodic, recurring
- Only standard cosmology: Linear (Big Bang \rightarrow expansion \rightarrow heat death)
- **Result**: Cosmology is incompatible with all other natural laws

This is like claiming:

- Planets move in circular orbits except the universe
- Living beings follow life cycles except the universe
- Stars are born and die cyclically except the universe
- Energy is conserved except in universe creation

Important Note

This exception logic is scientifically untenable. A physical model that contradicts all other natural observations cannot be correct.

7.5.3 Why Cycles are Universal: Six Fundamental Reasons

Principle 8 (Universality of Cycles). Cycles arise from the most fundamental laws of physics:

- 1. **Energy conservation**: Energy cannot be lost \rightarrow must circulate
- 2. Gravitational interaction: Attraction leads to collapse \rightarrow explosion \rightarrow renewal
- 3. **Thermodynamics**: Equilibrium states are unstable \rightarrow fluctuation \rightarrow new cycle
- 4. Quantum mechanics: Poincaré recurrence \rightarrow all states return
- 5. Geometry: Closed orbits are more stable than open trajectories
- 6. Mathematics: Periodic solutions are generic in nonlinear systems

These six principles operate on all scales from quantum to cosmic. It would be a miracle if the universe as a whole were exempt from them.

7.5.4 Logical Conclusion: The ξ -Universe

Key Formula Syllogism of universal cyclicity: Premise 1: Everything in nature follows cycles Premise 2: The universe is part of nature Conclusion: The universe must be cyclic (52) (53)

The T0-model is the **first cosmological theory** consistent with this logical conclusion:

- \checkmark ξ -field enables cosmic cycles
- ✓ Structure formation and dissolution alternate
- ✓ Thermodynamic equilibrium over cycles
- \checkmark Consistent with all other natural observations

7.6 Philosophical Implications of Cyclic Cosmology

Revolutionary Insight

The recognition of universal cyclicity revolutionizes not only physics but our entire worldview. We live in a universe of eternal recurrence, not linear development.

7.6.1 Cyclic vs. Linear Worldview

Traditional linear view:

- Time as arrow: Past \rightarrow present \rightarrow future
- Progress as directed development toward better state
- Death as final end
- History as unique, irreversible chain of events
- Universe with beginning (Big Bang) and end (heat death)

T0-cyclic view:

- Time as spiral: Recurrence at higher level
- Progress through repetition and refinement
- Death as transition into new cycle
- History as variation of eternal patterns
- Universe without beginning and end eternally cyclic

7.6.2 Cosmic Consequences of Eternal Recurrence

Important Note

In a cyclic universe, completely different rules apply:

- No end of universe only phase transitions between cycles
- Infinitely many attempts every possible structure is realized
- **Perfection through repetition** most complex systems through unlimited development time
- Consciousness as cosmic factor life is necessary part of cycles

Nietzsche's Eternal Recurrence confirmed: Friedrich Nietzsche postulated eternal recurrence of the same as philosophical concept. The T0-model provides physical confirmation:

Poincaré recurrence
$$\Rightarrow$$
 Every state returns infinitely often (55)

This means: In infinite time, every possible configuration including our current one is realized infinitely often.

7.6.3 Implications for Consciousness and Life

Principle 9 (Consciousness in Cyclic Systems). In an infinitely old, cyclic universe, consciousness is not accidental but necessary:

Infinite time $+$ Cyclic	$processes \Rightarrow All states are reached$	(56))
--------------------------	--	------	---

All states \Rightarrow Consciousness is realized (57)

Cyclic recurrence \Rightarrow Consciousness returns (58)

Consequences:

- Consciousness is not an accident but inevitable result of cyclic development
- Every form of life/consciousness returns in cycles
- Death is only transition consciousness reboots in new cycles
- Ethical responsibility across cycles

7.7 Comparison: Linear vs. Cyclic Cosmology

Table 8: Cosmological Worldviews: Linear vs. Cyclic

Aspect	Linear Time (Standard)	Cyclic Processes (T0)
Cosmic evolution	Big Bang \rightarrow expansion \rightarrow heat death	Infinitely many cycles
Entropy	Monotonically increasing	Oscillating around equilibrium
Structure formation	One-time formation and decay	Cyclic renewal
Time arrow	Thermodynamically conditioned	Fundamental, but reversible processes
Age problem	Structure age limited by Big Bang	Young objects possible anytime
Fine-tuning	Critical initial conditions	Self-organization over cycles
Causality	Problematic at $t=0$	Always preserved (no beginning)
Consciousness	Random emergence	Necessary result of cycles
${ m Death/life}$	${ m Final/unique}$	${\rm Transition/recurring}$
Universe fate	Heat death or Big Rip	Eternal renewal
Natural laws	Arbitrary, unexplained	Follow from ξ -geometry
Consistency	Contradictions to natural observation	Consistent with universal cyclicity

Revolutionary Insight

The T0-model is the first cosmological model completely consistent with universal cyclicity of nature:

- ✓ **Directed time**: Causality and quantum mechanics remain consistent
- ✓ **Reversible processes**: Cyclic structure formation without time direction violation
- ✓ **Thermodynamic equilibrium**: Entropy oscillates but time remains directed
- ✓ Infinite development possibilities: All states are reached
- ✓ Solution to heat death problem: Poincaré recurrence saves the universe
- ✓ Unified worldview: From quantum to cosmic, everything follows cycles
- ✓ Philosophical consistency: Eternal recurrence as physical reality

8 Cosmological Consequences

8.1 T0-Model vs. Standard Cosmology

Table 9: Cosmological Concepts: Standard Expansion vs. T0-Static

Concept	$\Lambda { m CDM~(Standard)}$	T0-Model (Static)
Universe	Expanding since Big Bang	Static, infinitely old
Redshift	$Space\ expansion\ +\ Doppler$	Only ξ -energy loss
Age	$13.8\mathrm{Gyr}$	${\bf Infinite}$
CMB origin	Big Bang afterglow (z=1100)	Steady-state background
Maximum z-values	Unlimited $(z > 10)$	$z_{ m max} pprox 7 imes 10^{-4}$
H_{0} problem	9% discrepancy unexplained	No problem (static)
Dark energy	69% of universe	Not required
Structure formation	Since $z \approx 1100$	Continuous, infinite

Revolutionary Insight

The T0-model eliminates the biggest problems of modern cosmology:

- \checkmark No H₀ problem: Static universe requires no Hubble constant
- ✓ No dark energy: 69% of universe disappears
- ✓ No fine-tuning: Infinitely old structure formation
- ✓ Consistent ξ -effects: Weak signals below measurement threshold explained

But: Requires alternative explanation for CMB, nucleosynthesis and structure formation

9 Paradigm Shift: From 25+ Parameters to One

9.1 Revolutionary Parameter Reduction

Table 10: Fundamental Parameters: Standard Physics vs. ξ -Theory

Physics Domain	Standard Parameters	ξ -Parameters
Elementary particles Cosmology Coupling function	$20+ ext{ free masses} \ 6 \ (\Lambda ext{CDM}) \ ext{Arbitrary}$	0 (all calculable from ξ) 0 (static universe) $f(\hbar \nu/E_{\xi})$ from ξ -geometry
Reduction		96% less arbitrariness! All parameters derivable from ξ

Revolutionary Insight

The universal constant $\xi = \frac{4}{3} \times 10^{-4}$ represents a fundamental breakthrough in physics. Time-energy duality proves that the static ξ -universe is the only physically consistent cosmology:

- ✓ **Respects time-energy duality**: Heisenberg uncertainty relation always fulfilled
- ✓ Eliminates all Big Bang paradoxes: Horizon, flatness, monopole problems solved
- ✓ **Infinite development time**: Most complex structures possible without finetuning
- \checkmark Consistent ξ -effects: Weak signals explain apparent expansion
- ✓ **Thermodynamic equilibrium**: CMB as steady-state radiation
- ✓ Causal closure: No logical contradictions or infinite regresses

10 Conclusion

The universe is elegant and deterministic – governed by a single, fundamental constant in a static, infinitely old cosmos. Time-energy duality proves: There was never a Big Bang, never expansion, never a beginning.

Key Formula

The eternal heartbeat of static reality:

$$\xi = \frac{4}{3} \times 10^{-4}$$

From quarks to quasars, from atoms to the most distant galaxies – everything oscillates to the rhythm of this one, universal constant in a universe that has always existed and always will exist. Time and energy have danced their cosmic waltz since eternity, mediated by the omnipresent ξ -field.

One parameter. One static universe. One eternal, timeless truth – proven by the fundamental laws of quantum mechanics themselves.

References

- [1] Pascher, J. (2024). To-Theory: Mathematical Equivalence Formulation. HTL Leonding, Department of Communications Engineering.
- [2] Heisenberg, W. (1927). On the intuitive content of quantum theoretical kinematics and mechanics. Z. Phys. 43, 172-198.
- [3] Planck Collaboration (2020). Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6.
- [4] Riess, A. G., et al. (2022). A Comprehensive Measurement of the Local Value of the Hubble Constant. Astrophys. J. Lett. 934, L7.
- [5] Naidu, R. P., et al. (2022). Two Remarkably Luminous Galaxy Candidates at $z \approx 11-13$ Revealed by JWST. Astrophys. J. Lett. 940, L14.
- [6] Muon g-2 Collaboration (2021). Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Phys. Rev. Lett. 126, 141801.