Hyperplan dans l'espace des matrices carrées

Soit n un entier, $n \ge 2$; on note $E = M_n(\mathbb{R})$ l'espace des matrices carrées d'ordre n à coefficients réels et $E^* = \mathcal{L}(E,\mathbb{R})$ le \mathbb{R} -espace vectoriel des formes linéaires sur E.

Les éléments de E sont notés $M=(m_{i,j})$, la matrice élémentaire $E_{i,j}$ est la matrice de E dont les coefficients sont tous nuls à l'exception de celui qui se trouve sur la i ème ligne et sur la j ème colonne, qui vaut 1.

Lorsque A et B sont des éléments de E, on note A.B leur produit.

Si $M \in E$, on note Vect(M) le sous-espace vectoriel de E engendré par M.

L'objectif du problème est de montrer que chaque hyperplan vectoriel de $\it E$ possède au moins une matrice inversible.

Si
$$M=(m_{i,j})\in E$$
 , on note $T(M)$ le réel $\sum_{k=1}^n m_{k,k}$.

On définit ainsi une application $\,T\,$ de $\,E\,$ vers $\,\mathbb{R}\,$: $\,M\mapsto T(M)\,$.

A chaque matrice U de E, on associe l'application T_U de E vers $\mathbb{R}: M \mapsto T_U(M) = T(U.M)$.

- 1. Montrer que T est une forme linaire sur E puis qu'il en est de même de T_U pour tout U de E. On note H_U le noyau de T_U .
- 2. Soit $A = (a_{i,j})$ et $B = (b_{i,j})$ des éléments de E .
- 2.a Montrer que $T(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{j,i} b_{i,j}$.
- 2.b En déduire les identités :

$$T({}^{t}AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}b_{i,j} \text{ et } T(BA) = T(AB).$$

- 3. Soit U dans E.
- 3.a Si U est la matrice nulle, déterminer $\ker T_U$.
- 3.b Si U n'est pas la matrice nulle, montrer que l'on peut trouver un couple d'entiers (i_0,j_0) tel que $T_U(E_{i_0,j_0}) \neq 0$. Décrire alors $\operatorname{Im} T_U$ puis déterminer la dimension de H_U .
- 4. Pour $(i, j) \in \{1, 2, ..., n\}^2$, on note $T_{i,j} = T_{E_{j,i}}$.
- 4.a Les indices k et ℓ étant fixés, calculer $T_{i,j}(E_{k,\ell})$ en utilisant la première relation du 2.b.
- 4.b En déduire que les n^2 éléments $T_{i,j}$ de E^* permettent de définir une base de E^* .
- 4.c Montrer que l'application φ de E vers $E^*:U\mapsto \varphi(U)=T_U$ est un isomorphisme d'espaces vectoriels.
- 5. On considère un hyperplan vectoriel H de E.
- 5.a Soit A une matrice de E qui n'appartient pas à H, montrer que les sous-espaces vectoriels H et Vect(A) sont supplémentaires dans E.
- 5.b Construire alors un élément ℓ de E tel que $H = \ker \ell$.
- 5.c Prouver l'existence d'un élément U de E, non nul, tel que $H=H_U$.

6. Pour
$$1 \le r \le n$$
, on note $J_r = \sum_{i=1}^r E_{i,i}$ et A la matrice définie par $A = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \ddots & \vdots & 0 \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$.

- 6.a Prouver que A est inversible.
- 6.b Prouver que A appartient à l'hyperplan H_{J_x} .

7. Conclure que chaque hyperplan vectoriel H de E possède au moins une matrice inversible. Indication : lorsque $H=H_U$, avec U de rang r , on rappelle l'existence de matrices P,Q inversibles telles que $PUQ=J_r$.