Desenvolvimento econômico

Convergência e o caso do Japão após a 2ª Guerra Mundial

João Ricardo Costa Filho

Quanto falta para chegar no equilíbrio estacionário?

A taxa de convergência

Tipos de convergência

Tipos de convergência

• Absoluta: os parâmetros de duas economia são iguais.

Tipos de convergência

- Absoluta: os parâmetros de duas economia são iguais.
- Relativa: os parâmetros de duas economia são diferentes.

Convergência Absoluta

Assuma dois países com parâmetros iguais, mas com estoques de capital em níveis diferentes.

Convergência Absoluta

Convergência Relativa

Assuma dois países com taxas de poupança diferentes.

Convergência Relativa

Lembremos que a equação diferencial que dá a dinâmica do modelo é:

$$\dot{k}(t) = sy(t) - (g + n + \delta)k(t).$$

Lembremos que a equação diferencial que dá a dinâmica do modelo é:

$$\dot{k}(t) = sy(t) - (g + n + \delta)k(t).$$

Podemos fazer uma expansão de Taylor para aproximar a dinâmica em torno do equilíbrio estacionário:

Lembremos que a equação diferencial que dá a dinâmica do modelo é:

$$\dot{k}(t) = sy(t) - (g + n + \delta)k(t).$$

Podemos fazer uma expansão de Taylor para aproximar a dinâmica em torno do equilíbrio estacionário:

$$\dot{k}(t) = \frac{\partial \dot{k}(t)}{\partial k(t)} \Big|_{k(t)=k^*}$$

Portanto, temos:

$$\dot{k}(t) = [sf'(k^* - (g + n + \delta)](k(t) - k^*).$$

Portanto, temos:

$$\dot{k}(t) = [sf'(k^* - (g + n + \delta)](k(t) - k^*).$$

Do equilíbrio estacionário, sabemos que:

$$sf(k^*) = (g + n + \delta)k^*$$

Portanto, temos:

$$\dot{k}(t) = [sf'(k^* - (g + n + \delta)](k(t) - k^*).$$

Do equilíbrio estacionário, sabemos que:

$$sf(k^*) = (g+n+\delta)k^* \iff s = \frac{(g+n+\delta)}{f(k^*)}k^*.$$

9

Ao substituirmos o resultado anterior, temos:

$$\dot{k}(t) = \left[\frac{(g+n+\delta)}{f(k^*)}k^*f'(k^*) - (g+n+\delta)\right](k(t)-k^*)$$

Ao substituirmos o resultado anterior, temos:

$$\dot{k}(t) = \left[\frac{(g+n+\delta)}{f(k^*)}k^*f'(k^*) - (g+n+\delta)\right](k(t)-k^*)$$

$$\dot{k}(t) = \left[\frac{k^*f'(k^*)}{f(k^*)} - 1\right](g+n+\delta)(k(t)-k^*)$$

Ao substituirmos o resultado anterior, temos:

$$\dot{k}(t) = \left[\frac{(g+n+\delta)}{f(k^*)}k^*f'(k^*) - (g+n+\delta)\right](k(t)-k^*)$$

$$\dot{k}(t) = \left[\frac{k^*f'(k^*)}{f(k^*)} - 1\right](g+n+\delta)(k(t)-k^*)$$

O que significa $\frac{k^*f'(k^*)}{f(k^*)}$ no modelo?

$$\dot{k}(t) = -(1-\alpha)(g+n+\delta)(k(t)-k^*)$$

$$\dot{k}(t) = -(1-\alpha)(g+n+\delta)(k(t)-k^*)$$

Finalmente, defina $\lambda = (1 - \alpha)(g + n + \delta)$. Assim, temos:

$$\dot{k}(t) = -\lambda \left(k(t) - k^* \right)$$

Analogamente (veja a derivação em Barbosa (2017)), temos:

$$\dot{y}(t) = -\lambda \left(y(t) - y^* \right)$$

Analogamente (veja a derivação em Barbosa (2017)), temos:

$$\dot{y}(t) = -\lambda \left(y(t) - y^* \right)$$

Finalmente, podemos aproximar essa equação diferencial linearmente:

Analogamente (veja a derivação em Barbosa (2017)), temos:

$$\dot{y}(t) = -\lambda \left(y(t) - y^* \right)$$

Finalmente, podemos aproximar essa equação diferencial linearmente:

$$y(t) - y^* \approx e^{-\lambda t} \left(y(0) - y^* \right)$$

Analogamente (veja a derivação em Barbosa (2017)), temos:

$$\dot{y}(t) = -\lambda \left(y(t) - y^* \right)$$

Finalmente, podemos aproximar essa equação diferencial linearmente:

$$y(t) - y^* \approx e^{-\lambda t} \left(y(0) - y^* \right)$$

Agora vamos compreender o significado do λ .

Assuma uma economia dada por essas características: $\alpha = 0.45, n = 1\%, g = 2\%, \delta = 5\%$ e s = 0.3.

- Assuma uma economia dada por essas características: $\alpha = 0.45$, n = 1%, g = 2%, $\delta = 5\%$ e s = 0.3.
- Nesse caso, sabemos que $k^* = 11.1$ e $y^* = 2.9$.

- Assuma uma economia dada por essas características: $\alpha = 0.45$, n = 1%, g = 2%, $\delta = 5\%$ e s = 0.3.
- Nesse caso, sabemos que $k^* = 11.1$ e $y^* = 2.9$.
- Sabemos também que $\lambda = 4.4\%$.

- Assuma uma economia dada por essas características: $\alpha = 0.45$, n = 1%, g = 2%, $\delta = 5\%$ e s = 0.3.
- Nesse caso, sabemos que $k^* = 11.1$ e $y^* = 2.9$.
- Sabemos também que $\lambda = 4.4\%$.
- Assuma que y(0) = 2.7.

- Assuma uma economia dada por essas características: $\alpha = 0.45$, n = 1%, g = 2%, $\delta = 5\%$ e s = 0.3.
- Nesse caso, sabemos que $k^* = 11.1$ e $y^* = 2.9$.
- Sabemos também que $\lambda = 4.4\%$.
- Assuma que y(0) = 2.7.
- Se estivermos em t = 10,

- Assuma uma economia dada por essas características: $\alpha = 0.45$, n = 1%, g = 2%, $\delta = 5\%$ e s = 0.3.
- Nesse caso, sabemos que $k^* = 11.1$ e $y^* = 2.9$.
- Sabemos também que $\lambda = 4.4\%$.
- Assuma que y(0) = 2.7.
- Se estivermos em t=10, então $y(10)-y^*pprox -0.06$,

- Assuma uma economia dada por essas características: $\alpha = 0.45$, n = 1%, g = 2%, $\delta = 5\%$ e s = 0.3.
- Nesse caso, sabemos que $k^* = 11.1$ e $y^* = 2.9$.
- Sabemos também que $\lambda = 4.4\%$.
- Assuma que y(0) = 2.7.
- Se estivermos em t=10, então $y(10)-y^*\approx -0.06$, ou seja, essa é a diferença do PIB por unidade eficiente de trabalhadores do seu nível no equilíbrio.

• Assuma uma economia dada por essas características: $\alpha=0.45,\ n=1\%,\ g=2\%,\ \delta=5\%$ e s=0.3.

- Assuma uma economia dada por essas características: $\alpha = 0.45$, n = 1%, g = 2%, $\delta = 5\%$ e s = 0.3.
- Nesse caso, sabemos que $k^* = 11.1$ e $y^* = 2.9$.

- Assuma uma economia dada por essas características: $\alpha = 0.45$, n = 1%, g = 2%, $\delta = 5\%$ e s = 0.3.
- Nesse caso, sabemos que $k^* = 11.1$ e $y^* = 2.9$.
- Sabemos também que $\lambda = 4.4\%$.

- Assuma uma economia dada por essas características: $\alpha = 0.45$, n = 1%, g = 2%, $\delta = 5\%$ e s = 0.3.
- Nesse caso, sabemos que $k^* = 11.1$ e $y^* = 2.9$.
- Sabemos também que $\lambda = 4.4\%$.
- Assuma que y(0) = 2.4.

- Assuma uma economia dada por essas características: $\alpha = 0.45$, n = 1%, g = 2%, $\delta = 5\%$ e s = 0.3.
- Nesse caso, sabemos que $k^* = 11.1$ e $y^* = 2.9$.
- Sabemos também que $\lambda = 4.4\%$.
- Assuma que y(0) = 2.4.
- Se estivermos em t = 10,

- Assuma uma economia dada por essas características: $\alpha = 0.45$, n = 1%, g = 2%, $\delta = 5\%$ e s = 0.3.
- Nesse caso, sabemos que $k^* = 11.1$ e $y^* = 2.9$.
- Sabemos também que $\lambda = 4.4\%$.
- Assuma que y(0) = 2.4.
- Se estivermos em t=10, então $y(10)-y^* \approx -0.133$,

- Assuma uma economia dada por essas características: $\alpha = 0.45$, n = 1%, g = 2%, $\delta = 5\%$ e s = 0.3.
- Nesse caso, sabemos que $k^* = 11.1$ e $y^* = 2.9$.
- Sabemos também que $\lambda = 4.4\%$.
- Assuma que y(0) = 2.4.
- Se estivermos em t=10, então $y(10)-y^*\approx -0.133$, ou seja, essa é a diferença do PIB por unidade eficiente de trabalhadores do seu nível no equilíbrio.

Assuma uma economia com

• Assuma uma economia com $k^* = 11.1$, $y^* = 2.9$,

• Assuma uma economia com $k^* = 11.1$, $y^* = 2.9$, y(0) = 2.4 e

• Assuma uma economia com $k^* = 11.1$, $y^* = 2.9$, y(0) = 2.4 e t = 10.

- Assuma uma economia com $k^* = 11.1$, $y^* = 2.9$, y(0) = 2.4 e t = 10.
- Se $\lambda=1\%$, então $y(10)-y^*pprox -0.084$.

- Assuma uma economia com $k^* = 11.1$, $y^* = 2.9$, y(0) = 2.4 e t = 10.
- Se $\lambda = 1\%$, então $y(10) y^* \approx -0.084$.
- Se $\lambda=6\%$, então $y(10)-y^*\approx -0.113$.

- Assuma uma economia com $k^* = 11.1$, $y^* = 2.9$, y(0) = 2.4 e t = 10.
- Se $\lambda = 1\%$, então $y(10) y^* \approx -0.084$.
- Se $\lambda = 6\%$, então $y(10) y^* \approx -0.113$.
- Se $\lambda = 9\%$, então $y(10) y^* \approx -0.0836627$.

- Assuma uma economia com $k^* = 11.1$, $y^* = 2.9$, y(0) = 2.4 e t = 10.
- Se $\lambda = 1\%$, então $y(10) y^* \approx -0.084$.
- Se $\lambda = 6\%$, então $y(10) y^* \approx -0.113$.
- Se $\lambda = 9\%$, então $y(10) y^* \approx -0.0836627$.

Exercício

Sejam duas economias com os seguintes parâmetros:

• Economia 1

- $\alpha = 0, 3$
 - n = 0,01
 - g = 0,02
 - $\delta = 0,03$

Economia 2

- $\alpha = 0.7$
 - n = 0,01
 - g = 0,02
 - $\delta = 0,03$

Em 10 anos, qual será o percentual da diferença entre o ponto inicial e o equilíbrio que as economias percorrerão? Explique a diferença.

O caso do Japão após a 2ª Guerra Mundial

Como o modelo de Solow-Swan explica o crescimento econômico do Japão após a 2ª Guerra Mundial?

Ln do PIB per capita

Ln do PIB per capita – Um novo y^* ?

Vamos seguir Valdés (2003) e analisar o desempenho japonês com o modelo de Solow-Swan. Para isso, vamos considerar o que acontece com o log do PIB per capita em três casos:

Vamos seguir Valdés (2003) e analisar o desempenho japonês com o modelo de Solow-Swan. Para isso, vamos considerar o que acontece com o log do PIB per capita em três casos:

1) Aumento temporário da taxa de investimento para acelerar a volta ao equilíbrio original.

Vamos seguir Valdés (2003) e analisar o desempenho japonês com o modelo de Solow-Swan. Para isso, vamos considerar o que acontece com o log do PIB per capita em três casos:

- Aumento temporário da taxa de investimento para acelerar a volta ao equilíbrio original.
- 2) Aumento permanente da taxa de investimento.

Vamos seguir Valdés (2003) e analisar o desempenho japonês com o modelo de Solow-Swan. Para isso, vamos considerar o que acontece com o log do PIB per capita em três casos:

- Aumento temporário da taxa de investimento para acelerar a volta ao equilíbrio original.
- 2) Aumento permanente da taxa de investimento.
- Aumendo permanente da taxa de investimento e da taxa de crescimento da produtividade.

Aumento temporário da taxa de investimento

Aumento permanente da taxa de investimento

Aumento permanente da taxa de inv. e da produtividade

Qual parece ser o caso do Japão?

Qual parece ser o caso do Japão? Os dados suportam essa conclusão?

Taxa de investimento (% PIB)

Ln da produtividade total dos fatores

Leia os livros e os artigos, não fique só com os slides!!!!

Referências

Barbosa, Fernando de Holanda. 2017. *Macroeconomia*. Editora FGV.

Valdés, Benigno. 2003. "An Application of Convergence Theory to Japan's Post-Wwii Economic 'Miracle'." *The Journal of Economic Education* 34 (1): 61–81.