

54F/74F74 Dual D-Type Positive Edge-Triggered Flip-Flop

General Description

The 'F74 is a dual D-type flip-flop with Direct Clear and Set inputs and complementary $(Q,\,\overline{Q})$ outputs. Information at the input is transferred to the outputs on the positive edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. After the Clock Pulse input threshold voltage has been passed, the Data input is locked out and information present will not be transferred to the outputs until the next rising edge of the Clock Pulse input.

Asynchronous Inputs:

LOW input to \overline{S}_D sets Q to HIGH level LOW input to \overline{C}_D sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH

Features

■ Guaranteed 4000V minimum ESD protection

Commercial	Military	Package Number	Package Description
74F74PC		N14A	14-Lead (0.300" Wide) Molded Dual-In-Line
	54F74DM (Note 2)	J14A	14-Lead Ceramic Dual-In-Line
74F74SC (Note 1)		M14A	14-Lead (0.150" Wide) Molded Small Outline, JEDEC
74F74SJ (Note 1)		M14D	14-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F74FM (Note 2)	W14B	14-Lead Cerpack
	54F74LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13" reel. Use Suffix = SCX.

 $\textbf{Note 2:} \ \textbf{Military grade device with environmental and burn-in processing.} \ \textbf{Use suffix} = \textbf{DMQB, FMQB and LMQB.}$

Logic Symbols

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Connection Diagrams

Pin Assignment for DIP, SOIC, and Flatpak

TL/F/9469-1

TL/F/9469-2

Unit Loading/Fan Out

		54F/74F			
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
D ₁ , D ₂	Data Inputs	1.0/1.0	20 μA/-0.6 mA		
CP ₁ , CP ₂	Clock Pulse Inputs (Active Rising Edge)	1.0/1.0	20 μA/ – 0.6 mA		
$\overline{C}_{D1}, \overline{C}_{D2}$	Direct Clear Inputs (Active LOW)	1.0/3.0	20 μA/ – 1.8 mA		
$\overline{S}_{D1}, \overline{S}_{D2}$	Direct Set Inputs (Active LOW)	1.0/3.0	20 μA/ – 1.8 mA		
$Q_1, \overline{Q}_1, Q_2, \overline{Q}_2$	Outputs	50/33.3	−1 mA/20 mA		

Truth Table

	Inp	Outputs			
\overline{s}_{D}	\overline{c}_{D}	СР	D	Q	Q
L	Н	Х	Х	Н	L
Н	L	Χ	X	L	Н
L	L	Χ	X	Н	Н
Н	Н	_	h	Н	L
Н	Н	_	1	L	Н
Н	Н	L	X	Q_0	\overline{Q}_0

H (h) = HIGH Voltage Level

L (I) = LOW Voltage Level

X = Immaterial

 $Q_0 = Previous Q (\overline{Q})$ before LOW-to-HIGH Clock Transition

Lower case letters indicate the state of the referenced input or output one setup time prior to the LOW-to-HIGH clock transition.

Logic Diagram

TL/F/9469-5

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \text{Storage Temperature} & -65^{\circ}\text{C to} + 150^{\circ}\text{C} \\ \text{Ambient Temperature under Bias} & -55^{\circ}\text{C to} + 125^{\circ}\text{C} \\ \text{Junction Temperature under Bias} & -55^{\circ}\text{C to} + 175^{\circ}\text{C} \\ \text{Plastic} & -55^{\circ}\text{C to} + 150^{\circ}\text{C} \\ \end{array}$

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{lll} \text{Standard Output} & -0.5 \text{V to V}_{\text{CC}} \\ \text{TRI-STATE} \tiny{\$} \text{ Output} & -0.5 \text{V to } +5.5 \text{V} \end{array}$

Current Applied to Output in LOW State (Max) twice

twice the rated I_{OL} (mA)

ESD Last Passing Voltage (Min) 4000V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military $-55^{\circ}\text{C to} + 125^{\circ}\text{C}$ Commercial $0^{\circ}\text{C to} + 70^{\circ}\text{C}$

Supply Voltage

Military + 4.5V to + 5.5V Commercial + 4.5V to + 5.5V

DC Electrical Characteristics

Symbol	Parameter .		54F/74F			Units	Vcc	Conditions	
Symbol			Min	Тур	Max	Oille	VCC	Conditions	
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{\text{IN}} = -18 \text{mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	٧	Min	I _{OL} = 20 mA I _{OL} = 20 mA	
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage Test	74F	4.75			٧	0.0	$I_{\text{ID}} = 1.9 \ \mu\text{A}$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current				-0.6 -1.8	mA	Max	$V_{IN} = 0.5V (D, CP)$ $V_{IN} = 0.5V (\overline{C}_D, \overline{S}_D)$	
Ios	Output Short-Circuit (Current	-60		-150	mA	Max	V _{OUT} = 0V	
Icc	Power Supply Curren	t		10.5	16.0	mA	Max		

AC Electrical Characteristics

		$74F \\ T_{A} = +25^{\circ}C \\ V_{CC} = +5.0V \\ C_{L} = 50 pF$			54 F		74F		Units
Symbol	Parameter				T_A , $V_{CC}=Mil$ $C_L=50$ pF		T _A , V _{CC} = Com C _L = 50 pF		
		Min	Тур	Max	Min	Max	Min	Max	
f _{max}	Maximum Clock Frequency	100	125		80		100		MHz
t _{PLH}	Propagation Delay CP_n to Q_n or \overline{Q}_n	3.8 4.4	5.3 6.2	6.8 8.0	3.8 4.4	8.5 10.5	3.8 4.4	7.8 9.2	ns
t _{PLH}	Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to \overline{Q}_{n}	3.2 3.5	4.6 7.0	6.1 9.0	3.2 3.5	8.0 11.5	3.2 3.5	7.1 10.5	ns

AC Operating Requirements

		$74F$ $T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$		54	F	74F T _A , V _{CC} = Com		Units
Symbol	Parameter			T _A , V _{CC}	; = Mil			
		Min	Max	Min	Max	Min	Max	
t _S (H) t _S (L)	Setup Time, HIGH or LOW D _n to CP _n	2.0 3.0		3.0 4.0		2.0 3.0		ns
t _h (H)	Hold Time, HIGH or LOW D _n to CP _n	1.0 1.0		2.0 2.0		1.0 1.0		
t _w (H) t _w (L)	CP _n Pulse Width HIGH or LOW	4.0 5.0		4.0 6.0		4.0 5.0		ns
t _w (L)	C Dn or S Dn Pulse Width LOW	4.0		4.0		4.0		ns
t _{rec}	Recovery Time \overline{C}_{Dn} or \overline{S}_{Dn} to CP	2.0		3.0		2.0		ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters)

SJ = Small Outline SOIC EIAJ

20-Lead Ceramic Leadless Chip Carrier (L) NS Package Number E20A E20A (REV D)

14-Lead (0.300" Wide) Molded Small Outline, EIAJ (SJ) NS Package Number M14D

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240

National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1 National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998 This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.