Note: Preview of slides from (SpectralDecomposition.tex) by Qirui Li (https://orcid.org/0000-0002-6042-1291). For educational and non-commercial use only. Any unlawful use will be prosecuted.

© 2025 Qirui Li Licensed under CC BY-NC-SA 4.0. You may modify, share, or adapt with proper attribution, for non-commercial educational use only, and must include the license link: https://github.com/honeymath/Linear-Algebra-Slides/blob/main/LICENSE

Full license: https://creativecommons.org/licenses/by-nc-sa/4.0/

Spectural decomposition

We summarize the method. Suppose A is a matrix with

$$(A - \lambda_1 I)(A - \lambda_2 I) \cdots (A - \lambda_m I) = 0,$$

to find g(A) for any polynomial A, we know it only depends on the value of $g(\lambda_1),...,g(\lambda_m)$.

Theorem 1

Let A be matrix with $(A - \lambda_1 I) \cdots (A - \lambda_m I) = 0$ then for any polynomial g(x) and polynomial h(x) such that $h(\lambda_i) \neq 0$

$$\frac{g(A)}{h(A)} = \frac{g(\lambda_1)}{h(\lambda_1)} f_{\lambda_1}(A) + \cdots + \frac{g(\lambda_m)}{h(\lambda_m)} f_{\lambda_m}(A)$$

1

Spectural decomposition

We wanna prove

$$g(A) = h(A) \left(\frac{g(\lambda_1)}{h(\lambda_1)} f_{\lambda_1}(A) + \cdots + \frac{g(\lambda_m)}{h(\lambda_m)} f_{\lambda_m}(A) \right)$$

For this purpose, we compare the two polynomial

$$g(t)$$
 v.s. $h(t)\left(\frac{g(\lambda_1)}{h(\lambda_1)}f_{\lambda_1}(t)+\cdots+\frac{g(\lambda_m)}{h(\lambda_m)}f_{\lambda_m}(t)\right)$

Note that this two polynomial have the same value when $t=\lambda_1, t=\lambda_2$ until $t=\lambda_m$. Therefore the theorem is true.

Proposition 1

Suppose $(A - \lambda_1 I)(A - \lambda_2 I) \cdots (A - \lambda_m I) = 0$. Let $f_{\lambda_1}, f_{\lambda_2}, \cdots, f_{\lambda_m}$ be corresponding interpolation polynomials as before, denote by

$$P_{\lambda_i} := f_{\lambda_i}(A),$$

it is a projection matrix.

Proof: Remember the polynomial f_{λ_i} is defined by

$$f_{\lambda_i}(\lambda_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

No matter what value it takes, they all satisfies $f_{\lambda_i}(\lambda_j)^2 = f_{\lambda_i}(\lambda_j)$ for any j. Therefore

$$f_{\lambda_i}(A)^2 = f_{\lambda_i}(A) \implies P_{\lambda_i}^2 = P_{\lambda_i}$$

is a projection matrix.

Proposition 2

We have

$$AP_{\lambda_i} = P_{\lambda_i}A = \lambda_i P_{\lambda_i}$$

and

$$A = \lambda_1 P_{\lambda_1} + \dots + \lambda_m P_{\lambda_m}$$
$$I = P_{\lambda_1} + \dots + P_{\lambda_m}$$

Note that either AP_{λ_i} or $P_{\lambda_i}A$ is obtained by plug in t=A to the polynomial $tf_{\lambda_i}(t)=f_{\lambda_i}(t)t$. And the matrix $\lambda_iP_{\lambda_i}$ is obtained by plug in t=A into polynomial $\lambda_if_{\lambda_i}(t)$.

		$t = \lambda_{i-1}$	$t = \lambda_i$	$t = \lambda_{i+1}$	 $t = \lambda_n$
$\lambda_i f_{\lambda_i}(t)$	0	 0	λ_i	0	 0
$f_{\lambda_i}(t)t$	0	 0	λ_i	0	 0

Therefore, the two polynomials $\lambda_i f_{\lambda_i}(t)$ and $f_{\lambda_i}(t)t$ have the same value for all $\lambda_1, \lambda_2, ..., \lambda_m$. Then we have $AP_{\lambda_i} = \lambda_i P_{\lambda_i}$ and $P_{\lambda_i} A = \lambda_i P_{\lambda_i}$

To prove
$$A = \lambda_1 P_{\lambda_1} + \cdots + \lambda_m P_{\lambda_m}$$
 and $I = P_{\lambda_1} + \cdots + P_{\lambda_m}$, we apply $h(t) = 1$, $g(t) = t$ and $g(t) = 1$ to the spectural decomposition

$$\frac{g(A)}{h(A)} = \frac{g(\lambda_1)}{h(\lambda_1)} P_{\lambda_1} + \cdots + \frac{g(\lambda_m)}{h(\lambda_m)} P_{\lambda_m}$$

Another proof that P_{λ_i} saties fies $AP=\lambda P$ is easy. Note that the construction of Lagurange interpolation polynomial

$$f_{\lambda_i}(t) = \frac{(t - \lambda_1) \cdots (t - \lambda_{i-1}) \qquad (t - \lambda_{i+1}) \cdots (t - \lambda_m)}{\text{Constant}}$$

$$P_{\lambda_i} = \frac{(A - \lambda_1) \cdots (A - \lambda_{i-1}) \qquad (A - \lambda_{i+1}) \cdots (A - \lambda_m)}{\text{Constant}}$$

Thus

$$(A-\lambda_i)P_{\lambda_i} = \frac{(A-\lambda_1)\cdots(A-\lambda_{i-1})(A-\lambda_i)(A-\lambda_{i+1})\cdots(A-\lambda_m)}{\text{Constant}} = 0$$

The matrix P_{λ_i} has something to do with

Definition 1

A non-zero column vector \vec{v} is called an eigenvector of eigenvalue λ if $A\vec{v} = \lambda \vec{v}$ for some saclar λ .

Definition 2

A non-zero row vector \vec{w}^T is called a left eigenvector of eigenvalue λ if $\vec{w}^T A = \lambda \vec{w}^T$ for some saclar λ .

Corollary 1

All non-zero columns of P_{λ_i} is a eigenvector of eigenvalue λ_i of A. All non-zero rows of P_{λ_i} is a left-eigenvector of eigenvalue λ_i of A.

If we write

$$P_{\lambda_i} = \begin{pmatrix} | & | & \cdots & | \\ \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \\ | & | & \cdots & | \end{pmatrix}$$

Then

$$AP_{\lambda_i} = \begin{pmatrix} | & | & \cdots & | \\ A\vec{v}_1 & A\vec{v}_2 & \cdots & A\vec{v}_n \\ | & | & \cdots & | \end{pmatrix}$$

and

$$\lambda_i P_{\lambda_i} = \begin{pmatrix} | & | & \cdots & | \\ \lambda_i \vec{\mathbf{v}}_1 & \lambda_i \vec{\mathbf{v}}_2 & \cdots & \lambda_i \vec{\mathbf{v}}_n \\ | & | & \cdots & | \end{pmatrix}$$

then $AP_{\lambda_i} = \lambda_i P_{\lambda_i}$ implies $A\vec{v}_j = \lambda_i \vec{v}_j$.

Therefore all columns are eigenvectors.

For rows, we write

$$P_{\lambda_i} = \begin{pmatrix} - & w_1 & - \\ - & \vec{w}_2 & - \\ \vdots & \vdots & \vdots \\ - & \vec{w}_n & - \end{pmatrix}$$

Note that

$$P_{\lambda_i} A = \begin{pmatrix} - & \vec{w}_1^T A & - \\ - & \vec{w}_2 A & - \\ \vdots & \vdots & \vdots \\ - & \vec{w}_n A & - \end{pmatrix}$$

and that

$$P_{\lambda_i}\lambda_i = \begin{pmatrix} - & \lambda_i \vec{w}_1^T & - \\ - & \lambda_i \vec{w}_2 & - \\ \vdots & \vdots & \vdots \\ - & \lambda_i \vec{w}_n & - \end{pmatrix}$$

Excercise. Suppose $\lambda_1, \lambda_2, \dots, \lambda_m$ are distinct numbers. A is a matrix with

$$A = \lambda_1 P_1 + \lambda_2 P_2 + \dots + \lambda_m P_m$$
$$I = P_1 + P_2 + \dots + P_m$$

How many different projection matrices can be written as polynomial g(A) of A?

	$t = \lambda_1$	$t = \lambda_2$	 $t = \lambda_m$
g(t)			

Some application of spectural decomposition

Theorem 2

If det(tI - A) is of simple roots, then A satisfies a polynomial with simple roots.

This is because any matrix satiesfies its characteristic polynomial.

Some application of spectural decomposition

However, even if det(tI - A) is not of simple roots, it is still possible that A satisfies a polynomial of simple roots. For example, for

$$A = \begin{pmatrix} 1 & & & & \\ & 2 & & & \\ & & 2 & & \\ & & & 3 & \\ & & & & 3 \end{pmatrix}$$

it has characteristic polynomial $(x-1)(x-2)^2(x-3)^2$. However, it satisfies the polynomial

$$(A-I)(A-2I)(A-3I) = 0$$

For any matrix A, we have its characteristic polynomial $f(t) = \det(tI - A)$. If f(t) is of simple roots, then f(A) = 0 implies A satisfying polynomial of simple roots as well.

However, if f(t) is not of simple roots, how do we know if or not A satisfying polynomial of simple roots?

Theorem 3

Suppose

$$\det(tI-A)=(t-\lambda_1)^{n_1}\cdots(t-\lambda_k)^{n_k},$$

then A satisfies a polynomial of simple roots if and only if

$$(A - \lambda_1 I)(A - \lambda_2 I) \cdots (A - \lambda_k I) = 0$$

In other words, we only need to check one polynomial $(t - \lambda_1) \cdots (t - \lambda_k)$, instead of checking for all polynomials of simple roots.

Let's suppose A satisfies a polynomial of simple roots.

$$(A-x_1I)\cdots(A-x_mI)=0.$$

For any $x_i \notin \{\lambda_1, ..., \lambda_k\}$, we have $x_i - \lambda_j \neq 0$ and therefore $\det(x_i I - A) = (x_i - \lambda_1)^{n_1} \cdots (x_i - \lambda_k)^{n_k} \neq 0$, this means $x_i I - A$ is invertible, therefore

$$(A-x_1I)\cdots(\widehat{A-x_i}I)\cdots(A-x_mI)=0.$$

where

$$\widehat{(A-x_iI)}$$

means deleting the factor. Since all factor with root outside $\{\lambda_1,...,\lambda_k\}$ can be deleted, it only left with factors with root in $\{\lambda_1,...,\lambda_k\}$.

Excercise. Computer the characteristic polynomial of

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

Will this matrix satisfies a polynomial of simple roots? why?

The characteristic polynoimal is

$$(t-4)(t-1)^2$$

Therefore, to see if it satisfies a polynomial of simple roots, we only need to check if (A - 4I)(A - I) = 0. Indeed.

$$\underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}}_{A-I} \underbrace{\begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}}_{A-I} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

We see some applications of the spectural decomposition.

Excercise. Find a formula for

$$A^n := \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}^n$$

Solution. Firstly, we calculate characteristic polynomial of A

$$\det\begin{pmatrix} t-1 & & -1 \\ & t-1 & \\ -1 & & t-1 \end{pmatrix} = t(t-1)(t-2)$$

By Calay - Hamilton theorem, we have

$$A(A-I)(A-2I)=0$$

so it is diagonalizable! Based on the information, we need interpolation polynomials at point 0,1,2. Now construct some.

	$\frac{(t-1)(t-2)}{2}$	-t(t-2)	$\frac{t(t-1)}{2}$
t=0	1	0	0
t=1	0	1	0
t=2	0	0	1

Therefore, by Spectural Decomposition, we have

$$A^{n} = 0^{n} \cdot \frac{(A-I)(A-2I)}{2} - 1^{n} \cdot A(A-2I) + 2^{n} \cdot \frac{A(A-I)}{2}.$$

For $n \ge 1$, this can be calculated as

$$-A(A-2I)+2^{n-1}A(A-I).$$

Let us finish this exercise

$$A(A-I) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$A(A-2I) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

So for $n \ge 1$, we have

$$A^{n} = \begin{pmatrix} 2^{n-1} & 0 & 2^{n-1} \\ 0 & 1 & 0 \\ 2^{n-1} & 0 & 2^{n-1} \end{pmatrix}$$

Excercise. Suppose $a_0 = 0$, $a_1 = 1$ and

$$a_{n+1} = 3a_n - 2a_{n-1}$$

Find a formula for a_n .

Solution. We may complete this equation as

$$\begin{cases} a_{n+1} = 3a_n - 2a_{n-1} \\ a_n = a_n \end{cases}$$

So we can write it as

$$\begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_n \\ a_{n-1} \end{pmatrix}$$

Since this formula is true for all n, we have an induction formula

$$\begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} a_1 \\ a_0 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

To calculate

$$\begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}^n$$

we need an annihilating polynomial. For this,

$$\det\begin{pmatrix} t-3 & 2 \\ -1 & t \end{pmatrix} = t(t-3) + 2 = t^2 - 3t + 2 = (t-1)(t-2).$$

This motivate us to write t^n via interpolation at 1 and 2.

	-(t-2)	t-1
t=1	1	0
t=2	0	1

$$t^{n} = Q(t)(t-1)(t-2) - 1^{n}(t-2) + 2^{n}(t-1)$$

Plug in t = A, we have

$$A^{n} = -(A - 2I) + 2^{n}(A - I)$$

$$= \begin{pmatrix} -1 & 2 \\ -1 & 2 \end{pmatrix} + 2^{n} \begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix}$$

Therefore

$$\begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix} = A^n \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix} + 2^n \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2^{n+1} - 1 \\ 2^n - 1 \end{pmatrix}$$

This implies that $a_n = 2^n - 1$.

Excercise.Rolling a coin, if face up, proceed 3 meters, if not, proceed 2 meters. Calculate the possibility that the man has stopped at n meters.

Solution.To n meters, the man has to reach n-3 meterand proceed 3 meter, or reach n-2 meter and proceed 2 meters. Let p_n be such probability. We have

$$\begin{cases} p_n = \frac{1}{2}p_{n-3} + \frac{1}{2}p_{n-2}. \\ \begin{pmatrix} 0 & .5 & .5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \end{cases}$$

characteristic polynomial $t^{3} - .5t - .5 = (t - 1)(t^{2} + 0.5t + 1)$