

Introduction

Matching Problem

our Evaluation Crite

Global Layer and α-Layer Minimum Cost

Evaluation Criteria

Egalitarian Co Regret Cost

Balance Cost

Conclusion

Matching Problem of Preference Model

Institute of Software and Theoretical Computer Science

Jiandong Liu

Supervisors: Prof. Jiong Guo Ph.D Yinghui Wen

School of Computer Science and Technology January 10, 2020

Outline

Matching Problem

Four Evaluation Criteria Global Layer and α -Layer Minimum Cost

Evaluation Criteria

Regret Cost Balance Cost

Conclus

Introduction

Matching Problem

Four Evaluation Criteria

Global Layer and α -Layer Minimum Cost

- 2 Evaluation Criteria Egalitarian Cost Regret Cost Balance Cost
- 3 Conclusion

Outline

Introduction

Matching Problem
Four Evaluation Criteria
Global Layer and
α-Layer Minimum Cost

Evaluatio

Regret Cost
Balance Cost

Conclus

Introduction Matching Problem Four Evaluation Criteria Global Layer and α -Layer Minimum Cost

- Evaluation Criteria Egalitarian Cost Regret Cost Balance Cost
- 3 Conclusion

Matching Problem with Multi-Layer

ntroduction

Matching Problem

Four Evaluation Criter

Global Layer and α-Layer Minimum Cost

Evaluatio

Egalitarian Cost Regret Cost Balance Cost

Conclusio

- Matching
- Preference List
- Multi-Layer
- Cost- $rank_{u_1}^{(1)}(w_1)$

Four Evaluation Criteria

ntroduction

Matching Problem

Four Evaluation Criteria

Evaluation

Regret Cost

Balance Cost

- $egal\text{-}cost(M) := \sum_{\{u,w\} \in M} (rank_u(w) + rank_w(u))$
- $regret-cost(M) := \max_{i \in V(M)} rank_i(M(i))$
- equal-cost $(M) := \sum_{(u,w) \in M} |rank_u(w) rank_w(u)|$
- $balance\text{-}cost(M) := max\{\sum\limits_{(u,w)\in M} rank_u(w), \sum\limits_{(u,w)\in M} rank_w(u)\}$

Global Layer and α -Layer Minimum Cost

Introduction

Matching Problem
Four Evaluation Criteria
Global Layer and
α-Layer Minimum Cost

Evaluatio

Regret Cost
Balance Cost

Conclusion

- Global Layer
 For the global layer cost, the goal is to find a matching M whose sum of cost in each layer is less than D.
- α -Layer In addition, in terms of the α -layer cost, the goal is to find a matching M whose sum of cost in certain α layers chosen from the total I layers is less than D.

$\overline{}$

Matching Problem
Four Evaluation Criteria
Global Layer and
α-Layer Minimum Cost

Evaluation Criteria

Egalitarian Cost Regret Cost Balance Cost

Conclusion

Outline

Itroduction

Matching Problem

Four Evaluation Criteria

Global Layer and α -Layer Minimum Cost

- 2 Evaluation Criteria Egalitarian Cost Regret Cost Balance Cost
- 3 Conclusion

Egalitarian Cost with Global Layer

Introduction

Matching Problem

Four Evaluation Criteria
Global Layer and
α-Layer Minimum Cost

Evaluation

Criteria Egalitarian Cost

Regret Cost Balance Cost

Conclusio

- Cost Flow Algorithm
- No Negative Loop
- $O(n^3 \log n)$

1-IN-3SAT

Introduction

Matching Problem
Four Evaluation Criteri
Global Layer and

Criteria

Egalitarian Cost

Balance Cost

Conclusio

• INSTANCE A collection of clauses $C_1, ..., C_m, m > 1$; each C_i is a disjunction of exactly three literals.

- QUESTION
 Is there a truth assignment to the variables occurring so that exactly one literal is true in each C_i?
- Example $X = \{x_1, ..., x_5\}, C = \{C_1, C_2, C_3\}$ $C_1 = \{\overline{x_1}, \overline{x_2}, x_3\}, C_2 = \{\overline{x_1}, x_4, x_5\}, C_3 = \{\overline{x_2}, x_4, x_5\}$

Egalitarian Cost with α -Layer

Introduction

atching Proble

Global Layer and α-Layer Minimum C

Evaluation Criteria

Egalitarian Cost

Balance Cost

Conclusio

NP-hard

Regret Cost with Global Layer

Introduction

Matching Problem

Four Evaluation Criteria
Global Layer and
α-Layer Minimum Cost

Evaluation

Criteria Egalitarian Cost

Regret Cost

Conclusio

α-Layer Minimum Cost

Regret Cost

Balance Cost

Balance Cost with Global Layer

- Failed attempts on bipartite graph
- Reduce the partitioning problem to the generalized bipartite graph problem
- However, the generalized bipartite graph problem is NP-hard while the original may be not
- Still studying in the original problem

Outline

Introduction

Matching Problem Four Evaluation Criteria Global Layer and lpha-Layer Minimum Cost

Evaluation

Egalitarian Cost Regret Cost Balance Cost

Conclusion

ntroduction $\mathsf{Matching}\ \mathsf{Problem}$ $\mathsf{Four}\ \mathsf{Evaluation}\ \mathsf{Criteria}$ $\mathsf{Global}\ \mathsf{Layer}\ \mathsf{and}\ \alpha\text{-}\mathsf{Layer}\ \mathsf{Minimum}\ \mathsf{Cost}$

- 2 Evaluation Criteria Egalitarian Cost Regret Cost Balance Cost
- 3 Conclusion

Introduction

tching Proble

Global Layer and α-Layer Minimum Cost

Evaluation

Regret Cost

Conclusion

Summary of the Four Matching Model

According to the four models described above, we could summarize our contributions to this Matching Problem of Preference Model.

Table: Complexity Analysis of the Four Matching Models

Global Layer	lpha-Layer
$O(n^3 log n)$	NP-hard
$O(n^3)$	NP-hard
$O(n^3 \log n)$	Studying
Studying	NP-hard
	$O(n^3 \log n)$ $O(n^3)$ $O(n^3 \log n)$

Q & A session

Introduction

Matching Problem

Global Laver and

Global Layer and α-Layer Minimum C

Evaluation

Egalitarian Cost Regret Cost

Balance Cost

Conclusion

Q & A

Matching Problem

Global Laver and

Egalitarian Cost Regret Cost

Balance Cost

Conclusion

Thank you!