3ª Lista de Exercícios Matemática/Informática Prof. Eduardo 2013/2

- 1. Uma força **F** aplicada a um objeto de massa m_1 produz uma aceleração de 3,0 m/s². A mesma força aplicada a um segundo objeto de massa m_2 produz uma aceleração de 1,0 m/s². (a) Qual é o valor da razão m_1/m_2 ? (b) Se m_1 e m_2 são combinados encontre a aceleração sob ação da mesma força **F**. Resp.:(a) 1/3; (b) $0.75m/s^2$
- 2. Um corpo de massa 3,0 kg está sujeito a uma aceleração dada por $\mathbf{a} = (2 \mathbf{i} + 5 \mathbf{j})$ m/s². Encontre a força resultante \mathbf{F} e sua magnitude. Resp.: $(6\mathbf{i}+15\mathbf{j})$ N; 16,2 N
- 3. (a) Um objeto possui uma aceleração de 3 m/s² quando uma certa força F_0 atua nele. Qual é a aceleração quando a força é duplicada? (b) Um segundo objeto adquire uma aceleração de 9 m/s² sob ação da força F_0 . Qual é a razão entre as massas dos dois objetos? (c) Se os objetos são colados, qual será aceleração que a força F_0 produzirá? Resp.: (a) 6 m/s²; (b) $m_1/m_2 = 3$; (c) 2.25 m/s²
- 4. Um saco de cimento de peso F_g é suspenso por três fios como mostrado na figura ao lado. Se o sistema está em equilíbrio mostre que a tensão no fio da esquerda é T_I = $F_g \cos \theta_2/\sin(\theta_1+\theta_2)$.
- 5. Determinar a aceleração dos corpos mostrados na figura abaixo, assim como a tensão no fio. Suponha ausência de atritos. Resolver o problema algebricamente para em seguida obter os valores numéricos para m₁=200g, m₂=180g, θ =30° e θ =60°. Resp.: a=g(m₂ senβ m₁ senα)/(m₁+m₂); T= gm₁m₂(senα+senβ)/(m₁+m₂)

- 6. Um automóvel estacionado no alto de uma ladeira molhada pela chuva, de 100 m de comprimento e 25 m de altura, perde os freios e desliza pela ladeira (despreze o atrito). Com que velocidade, em km/h, ele atinge o pé da ladeira? *Resp.: 78 km/h*
- 7. Uma criança desliza, para mergulhar dentro de uma piscina, do alto de um escorrega de 3 m de comprimento e 30° de inclinação com respeito à horizontal. A extremidade inferior do escorrega está 3 m acima da água. A que distância horizontal dessa extremidade a criança mergulha na água? *Resp.: 2,6 m*

8. Na figura abaixo, os blocos A e B pesam 44 N e 22 N, respectivamente. (a) Determine o menor peso do bloco C que evita que o bloco A deslize se μ_e entre a mesa e o bloco A é 0,20. (b) O bloco C é removido bruscamente de cima do bloco A. Qual é a aceleração do bloco A se μ_c entre A e a mesa é 0,15? Resp.: (a) 66 N; (b)2,3 m/s²

9. Determine a distância que o esquiador percorrerá antes de parar se sua velocidade de descida é de 20 m/s. Considere que o coeficiente de atrito cinético é 0,18 e a inclinação da rampa é $\theta = 5^{\circ}$. Resp.: 12 m.

10. Um bloco de massa 3 kg é empurrado contra uma parede por uma força **P** que faz um ângulo de 50.0° com a horizontal como mostrado na figura. O coeficiente de atrito estático entre o bloco e a parede vale 0,25. Determine os valores possíveis para a magnitude de **P** de modo que o bloco permaneça em repouso na posição da figura. *Resp.:* 31,7 N < P < 48,6 N

11. Um bloco cuja massa é 3 kg está colocado em cima de outro bloco de massa 5 kg (vide figura). Suponha não haver atrito entre o bloco e a superfície horizontal. Os coeficientes de atrito estático e cinético entre os blocos são 0,2 e 0,1, respectivamente. (a) Qual é a máxima força que pode ser aplicada a qualquer bloco de modo que ambos deslizem juntos? (b) Qual é a aceleração quando se

aplica a força máxima? (c) Qual é a aceleração do bloco de 3 kg se a força é maior que a força máxima e se aplica no bloco de 5 kg? Resp.: (a) 15,7 N; (b) $1,96 \text{ m/s}^2;$ (c) $0,98 \text{ m/s}^2.$

12. Considere um pêndulo cônico constituído por um corpo de massa de 80 kg preso num fio de comprimento de 10 m que faz um ângulo θ =5° com a vertical (vide figura). Determine (a) as componentes horizontal e vertical da força exercida pelo fio no corpo e (b) a aceleração radial do corpo. *Resp.: (a)* 68,6 *N* e 784 *N*; (b) $0.86m/s^2$

13. Um brinquedo num parque de diversões consiste em um grande cilindro vertical que gira em torno de seu eixo rápido o suficiente para que qualquer pessoa dentro fique "grudada" na parede quando o chão é removido (vide figura). O coeficiente de atrito estático entre a pessoa e a parede é μ, e o raio do cilindro é R. (a) Mostre que o máximo período de revolução necessário para manter a pessoa livre de cair é $T = (4\pi^2 R\mu /g)^{1/2}$. (b) Obtenho o valor numérico para T se R = 4 m e $\mu = 0, 4$. Quantas revoluções por minuto o cilindro faz? Resp.: T = 2, 5s, 24 rpm.

14. No sistema da figura abaixo (máquina de Atwood), mostre que a aceleração a da massa M e a tensão T da corda (desprezando as massas da corda e da polia) são dadas por a = g (M-m)/(M+m) e T = 2mMg/(M+m).

15. No sistema da figura abaixo, $m_1 = 1$ kg, $m_2 = 3$ kg e $m_3 = 2$ kg, e as massas das polias e das cordas são desprezíveis. Calcule as acelerações a_1 , a_2 e a_3 das massas m_1 , m_2 e m_3 e a tensão T da corda. $Resp.: a_1 = g/5$ (\nearrow), $a_2 = -3g/5$ (\checkmark) e $a_3 = g/5$ (\nearrow); T = 6g/5

16. No sistema da figura abaixo, $m_1 = 20 \text{ kg}$, $m_2 = 40 \text{ kg}$ e $m_3 = 60 \text{ kg}$. Desprezando as massas das polias e dos fios e o atrito, calcule a aceleração do sistema e as tensões nos fios 1, 2 e 3. Resp.: $a = 1,79 \text{ m/s}^2$; Em 1: 134 N; em 2 e 3: 402 N.

