BIOL-B HST PHARM

Prüfung zur Vorlesung Mathematik I/II

- **1.** (8 Punkte)
 - a) Mit Kürzen des Bruchs folgt

$$\lim_{x \to 0} \left(\frac{x + \sin(x) - \sin(x)\cos(x)}{\sin(x)} \right) = \lim_{x \to 0} \left(\frac{x}{\sin(x)} + 1 - \cos(x) \right) = 1.$$

Alternativ folgt die Lösung mit L'Hospital:

$$\lim_{x \to 0} \left(\frac{x + \sin(x) - \sin(x)\cos(x)}{\sin(x)} \right) = \lim_{x \to 0} \left(\frac{1 + \cos(x) - \cos(x)^2 + \sin(x)^2}{\cos(x)} \right) = 1.$$

- **b)** Für einen Fixpunkt gilt $f(x_{\infty}) = x_{\infty}$, damit folgt $x_{\infty,1} = -\frac{1}{2}$, $x_{\infty,2} = \frac{1}{2}$.
- c) Teste die Bedingung $|f'(x_{\infty,i})| < 1$ für i = 1, 2.

 Das stimmt für $x_{\infty,1} = -\frac{1}{2}$, jedoch nicht für $x_{\infty,2} = \frac{1}{2}$. Damit folgt für den Fixpunkt $x_{\infty} = -\frac{1}{2}$ gilt: Für jeden Startwert x_0 in der Nähe von $x_{\infty} = -\frac{1}{2}$ konvergiert die Folge (x_n) gegen x_{∞} .
- d) Es ist $x_0 = 1$ ein Fixpunkt, also f(1) = 1 und damit auch $f^{-1}(1) = 1$. Darum ist $\underbrace{(f^{-1} \circ f^{-1} \circ \ldots \circ f^{-1})}_{2014 \text{ Stück}}(1) = \underbrace{(f^{-1} \circ f^{-1} \circ \ldots \circ f^{-1})}_{2013 \text{ Stück}}(f^{-1}(1)) = \ldots = 1.$
- e) Mit Substitution $t = \sqrt{x}$ und partieller Integration folgt

$$\int_{1}^{4} e^{\sqrt{x}} dx = \int_{1}^{2} e^{t} 2t dt = e^{t} 2t \Big|_{1}^{2} - \int_{1}^{2} 2e^{t} dt = 2e^{2}$$

f) Mit dem Hauptsatz ist $\mu = \frac{1}{T} \int_0^T f(x) dx = \frac{1}{T} \int_0^T \frac{M_0}{(x+1)^2} dx = \frac{M_0}{T+1}$ und daher

richtig	falsch	
\otimes	0	$M_0 = 1, T = 1.$
$\overline{}$	\otimes	$M_0 > 5, T = 2.$
\otimes	0	$M_0 = \frac{3}{2}, \ T = 1.$
$\overline{}$	\otimes	$M_0 = \frac{3}{2}, \ T = \frac{1}{3}.$

2. (14 Punkte)

a) Wir sehen $A^2 = \begin{pmatrix} \cos^2(\varphi) - \sin^2(\varphi) & -2\cos(\varphi)\sin(\varphi) & 0 \\ 2\cos(\varphi)\sin(\varphi) & \cos^2(\varphi) - \sin^2(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$ und mit den Additionstheoremen $A^2 = \begin{pmatrix} \cos(2\varphi) & -\sin(2\varphi) & 0 \\ \sin(2\varphi) & \cos(2\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$ und damit $\alpha = \beta = \gamma = \delta = 2\varphi$.

richtig	falsch	
\otimes	0	$\alpha = \beta = \gamma = \delta$
\otimes	0	$\alpha = \delta = 2\varphi$
$\overline{}$	\otimes	$\beta = \gamma = \varphi^2$
$\overline{}$	\otimes	$\beta = -\gamma$

b) Da
$$A^4 = \begin{pmatrix} \cos(4\varphi) & -\sin(4\varphi) & 0 \\ \sin(4\varphi) & \cos(4\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, gilt für die Winkel $0 < \frac{\pi}{2}, \pi, \frac{3\pi}{2} < 2\pi$ somit $A^4 = E_3$.

c) Die Eigenwerte sind die Lösungen der Gleichung $(\sqrt{3}-\lambda)^2+1=\lambda^2-2\sqrt{3}\lambda+4=0$ und damit

Kartesisch

$$\lambda_1 = \sqrt{3} + i, \quad \lambda_2 = \sqrt{3} - i.$$

Polar

$$\lambda_1 = 2e^{i\frac{\pi}{6}}, \quad \lambda_2 = 2e^{-i\frac{\pi}{6}}.$$

d) Wende die Matrix auf den Vektor an. Mit der Gleichung $Bv = \lambda v$ folgt dann b = y = 1.

e)

richtig	falsch	
0	\otimes	$\widetilde{B} = \frac{1}{4}B = \begin{pmatrix} \frac{\sqrt{3}}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{\sqrt{3}}{4} \end{pmatrix}. \text{ Gegenbeispiel: } \widetilde{B} = \begin{pmatrix} \mu_1 & 0 \\ 0 & \mu_2 \end{pmatrix}.$
\otimes	0	\widetilde{B} ist invertierbar.
\otimes	0	Sei $v_n = \left(\widetilde{B}\right)^n v_0$. Für jeden Startvektor v_0 konvergiert die Folge der Vektoren v_n gegen den Nullvektor. Begründung: $ \mu_1 < 1$ und $ \mu_2 < 1$.
\bigcirc	\otimes	$\frac{\det(B)}{4} = \det(\widetilde{B})$. Es ist $\det(\widetilde{B}) = \frac{\det(B)}{16}$.

f) Mit Gauss-Verfahren folgt:

$$\begin{bmatrix} 3 & 2 & 7 & 2 \\ -1 & 3 & 2 & 1 \\ 1 & 1 & 3 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 3 & 0 \\ 3 & 2 & 7 & 2 \\ -1 & 3 & 2 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & -1 & -2 & 2 \\ 0 & 4 & 5 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & -1 & -2 & 2 \\ 0 & 0 & -3 & 9 \end{bmatrix}$$

Dann $x_3 = -3$, deswegen ist $x_2 = 4$ und $x_1 = 5$. Dass heisst

$$x = \begin{pmatrix} 5\\4\\-3 \end{pmatrix}.$$

3. (12 Punkte)

a) Die DGL ist

$$y'(x)(1 - y(x)) + y(x) = a(1 - y(x)). (1)$$

richtig	falsch	
\otimes	0	Für jedes $a \in \mathbb{R}$, hat die DGL (1) unendlich viele Lösungen.
0	\otimes	Für jedes $a \in \mathbb{R}$, hat die DGL (1) mindestens eine stationäre Lösung. (Für $a=-1$ gibt es keine.)
\otimes	0	Für $a=2$ ist die Lösungsfunktion f der DGL (1) mit einem Anfangswert $y(0)=2$ streng monoton wachsend. (Weil $y'(0)=\frac{y(0)}{y(0)-1}+a=4>0$ und für $z>2$ ist auch $\frac{z}{z-1}+2>0$).
0	\otimes	Für $a = \frac{1}{2}$ ist die Lösungsfunktion f der DGL (1) mit einem Anfangswert $y(0) = \frac{1}{2}$ streng monoton wachsend. (Weil $y'(0) = \frac{y(0)}{y(0)-1} + a = -\frac{1}{2} < 0$).

- b) Für eine stationäre Lösung y_{∞} gilt $y_{\infty}^2 \frac{1}{4} = 0$. Also $y_{\infty,1} = -\frac{1}{2}$ und $y_{\infty,2} = \frac{1}{2}$. Das **Richtungsfeld 3** ist korrekt.
- c) Die dazugehörige homogene Differentialgleichung ist von der Form

$$y'(x) = -\sin(x)y.$$

Via Trennung der Variablen sehen wir direkt, dass die allgemeine Loösung der homogenen DGL von der Form

$$y_{\text{hom}} = Ke^{\cos(x)}$$

ist. Um die allgemeine Lösung der inhomogenen Differentialgleichung zu finden, verwenden wir die Methode der Variation der Konstanten. Für die allgemeine Lösung $y_{\rm allg}$ verwenden wir den Ansatz

$$y_{\text{allg}} = K(x)e^{\cos(x)}.$$

Durch Ableiten erhalten wir

$$y'_{\text{allg}} = K'(x)e^{\cos(x)} - K(x)\sin(x)e^{\cos(x)}.$$

Durch Einsetzen in die inhomogene Differentialgleichung erhalten wir

$$K'(x)e^{\cos(x)} - K(x)\sin(x)e^{\cos(x)} = -\sin(x)K(x)e^{\cos(x)} + e^{\cos(x)+x}$$

Daraus folgern wir $K'(x) = e^x$ und daher

$$K(x) = e^x + \widetilde{K}.$$

Durch die Wahl unseres Ansatzes schliessen wir

$$y_{\text{allg}} = (e^x + \widetilde{K})e^{\cos(x)}.$$

Mit dem Anfangswert $y(\frac{\pi}{2})=1$ folgt $K=1-e^{\pi/2}.$ Die Lösung lautet somit

$$y(x) = (e^x + 1 - e^{\pi/2})e^{\cos(x)}.$$

d) Die dazugehörige homogene Differentialgleichung ist

$$y''(x) - 5y'(x) + 4y(x) = 0$$

Die Charakteristische Gleichung ist

$$\lambda^2 - 5\lambda + 4 = 0.$$

Mit Lösungen $\lambda_1=1$ und $\lambda_2=4$ folgt die allgemeine Lösung

$$y = C_1 e^x + C_2 e^{4x}, C_1, C_2 \in \mathbb{R}.$$

- **4.** (10 Punkte)
 - a) Es ist

$$f_x(x,y) = e^{x+2y} + 5\sin(5x - 5y) - 3x^2$$

und

$$f_y(x,y) = 2e^{x+2y} - 5\sin(5x - 5y).$$

b) Sei K(x,y) = (P(x,y), Q(x,y)). Nach der Formel von Green ist der Wert des gesuchten Kurvenintegrals gleich dem Gebietsintegral der Funktion $Q_x - P_y$ über die von γ eingeschlossene Fläche.

Da hier $Q_x - P_y = 0$ die Nullfunktion ist, verschwindet auch das Kurvenintegral $\oint_{\gamma} K \cdot d\gamma = 0$.

c) i) Durch Einsetzen von y = -x - 1 in $x^2 - y^2 - 3xy + 1 = 0$ erhalten wir $3x^2 + x = 0$

und finden die Schnittpunkte $(x_1, y_1) = (0, -1)$ und $(x_2, y_2) = (-\frac{1}{3}, -\frac{2}{3})$.

ii) Wir bestimmen die Steigung der Tangente an die Kurve im Punkt (x_0, y_0) mit Impliziter Differentiation:

$$y'(x_0) = -\frac{F_x(x_0, y_0)}{F_y(x_0, y_0)} = -\frac{2x_0 - 3y_0}{-2y_0 - 3x_0}$$

Im Punkt $(x_0, y_0) = (0, -1)$, dass ergibt $y' = -\frac{3}{2}$ und die Tangentialgerade ist gegeben durch

$$y = y'(x - x_0) + y_0 = -\frac{3}{2}x - 1.$$

d) Die Tangentialebene an z = f(x, y) im Punkt (x_0, y_0) ist

$$z = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + f(x_0, y_0).$$

Für unsere Funktion hier ist es

$$z = 2(x_0 - 2)(x - x_0) + 2(y_0 + 3)(y - y_0) + f(x_0, y_0)$$

und nach Einsetzen der Punkte

$$E_1: 6-2x+2y=z$$
 $E_2: 11-4x+6y=z.$

richtig	falsch	
\otimes	0	Der Punkt $(0,0,6)$ liegt auf E_1 .
0	\otimes	Der Punkt $(1, -1, 2)$ liegt auf E_1 und E_2 .
	\otimes	Der Punkt $(1, -1, 2)$ liegt auf E_2 .
\otimes	0	Der Punkt $\left(-\frac{3}{2}, -2, 5\right)$ liegt auf E_1 und E_2 .

5. (16 Punkte)

a) Wir prüfen, ob die notwendige Bedingung $(F_1)_y = (F_2)_x$ erfüllt ist. Da der Definitionsbereich \mathbb{R}^2 einfach zusammenhängend ist, ist dies auch hinreichend.

richtig	falsch	
\otimes	0	$F(x,y) = \begin{pmatrix} 2x\sin(y) \\ x^2\cos(y) \end{pmatrix}. \text{ Potenzial: } x^2\sin(x)$
0	\otimes	$F(x,y) = \begin{pmatrix} e^{\cos(x)\sin(y)} \\ e^{\cos(x)\sin(y)} \end{pmatrix}.$
\otimes	0	$F(x,y) = \begin{pmatrix} \frac{2xy}{x^2+1} \\ \ln(x^2+1) \end{pmatrix}. \text{ Potenzial: } y \log(x^2+1)$
0	\otimes	$F(x,y) = \begin{pmatrix} 9x^2y^2 - 4xy^3 \\ 6x^2y^2 - 6x^3y \end{pmatrix}.$

b)

$$\sigma_1: t \mapsto \sigma_1(t) = \begin{pmatrix} t \\ t \\ 0 \end{pmatrix}, \qquad 0 \le t \le 1.$$

$$\sigma_2: t \mapsto \sigma_2(t) = \begin{pmatrix} \sqrt{2}\cos(t) \\ \sqrt{2}\sin(t) \\ 0 \end{pmatrix}, \qquad \frac{\pi}{4} \le t \le \frac{7\pi}{4}.$$

$$\sigma_3: t \mapsto \sigma_3(t) = \begin{pmatrix} 1-t \\ t-1 \\ 0 \end{pmatrix}, \qquad 0 \le t \le 1.$$

c) Es ist

$$\iint_S f(x,y,z) \; dS = \iint_S 1 \; dS = \text{ Flächeninhalt von } S = 2\pi(1-\frac{1}{4}) = \frac{3}{2}\pi$$

Alternativ können wir das Oberflächenintegral als Gebietsintegral berechnen, daS eine ebene Fläche ist und sich damit selbst parametrisiert.

Mit Polarkoordinaten ergibt sich

$$\iint_{S} f(x, y, z) \ dS = \int_{\varphi = \pi/4}^{7\pi/4} \int_{r=0}^{\sqrt{2}} r \, \mathrm{d}r \mathrm{d}\varphi = \frac{6}{4}\pi \cdot \frac{2}{2} = \frac{3}{2}\pi.$$

d) Es sind

$$\begin{split} \int_{\sigma_{\mathbf{1}}} K \cdot d\gamma &= \int_{0}^{1} (t^{2} + t^{2}, 1, 0) \cdot (1, 1, 0) dt = \int_{0}^{1} (2t^{2} + 1) dt = \frac{\mathbf{5}}{\mathbf{3}}, \\ \int_{\sigma_{\mathbf{2}}} K \cdot d\gamma &= \int_{\frac{\pi}{4}}^{\frac{7\pi}{4}} (2\cos(t)^{2} + 2\sin(t)^{2}, 1, 0) \cdot (-\sqrt{2}\sin(t), \sqrt{2}\cos(t), 0) dt \\ &= \int_{\frac{\pi}{4}}^{\frac{7\pi}{4}} [-2\sin(t) + \cos(t)] dt = -\mathbf{2}, \\ \int_{\sigma_{\mathbf{3}}} K \cdot d\gamma &= \int_{0}^{1} ((t - 1)^{2} + (1 - t)^{2}, 1, 0) \cdot (-1, 1, 0) dt \\ &= \int_{0}^{1} -2t^{2} + 4t - 1 dt = \frac{\mathbf{1}}{\mathbf{3}}. \end{split}$$

- **e)** $n_3 = 1$.
- f) Die Voraussetzungen für den Satz von Stokes sind gegeben, und es gilt

$$\iint_{S} \operatorname{rot}(K) \cdot n \, dS = \oint_{\partial S} K \cdot d\gamma = \sum_{i=1}^{3} \int_{\sigma_{i}} K \cdot d\gamma = 0$$