

เรื่อง

การศึกษาประสิทธิภาพของตัวประมาณค่าส่วนเบี่ยงเบนมาตรฐานในการแจกแจงปรกติ A study of performance of standard deviation estimator in the normal distribution

โดย

นายภูมิพัฒน์	มีเจริญวรานนท์	เลขทะเบียน	6109680667
นางสาวกุลรัศมิ์	ทรัพย์อุดมมาก	เลขทะเบียน	6109680725
นาวสาวธมลวรรณ	กิจวรวุฒิ	เลขทะเบียน	6109680758

รายงานนี้เป็นส่วนหนึ่งของวิชา ส.495 โครงงานพิเศษ 2
ตามหลักสูตรวิทยาศาสตรบัณฑิต สาขาวิชาสถิติ
คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์
ปีการศึกษา 2564

Mrssmi 10002

หัวข้อโครงงานพิเศษ การศึกษาประสิทธิภาพของตัวประมาณค่าส่วนเบี่ยงเบนมาตรฐานในการ

แจกแจงปรกติ

คณะผู้จัดทำ นายภูมิพัฒน์ มีเจริญวรานนท์

นางสาวกุลรัศมิ์ ทรัพย์อุดมมาก

นาวสาวธมลวรรณ กิจวรวุฒิ

ชื่อปริญญา วิทยาศาสตรบัณฑิต

หลักสูตร/สาขา หลักสูตรวิทยาศาสตรบัณฑิต สาขาวิชาสถิติ

คณะ/มหาวิทยาลัย คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์

อาจารย์ที่ปรึกษางานวิจัย ผศ.ดร.ภทรวรรณ แสงนวกิจ

ปีการศึกษา 2564

บทคัดย่อ

การแจกแจงปรกติเป็นการแจกแจงหนึ่งที่พบได้บ่อยครั้งในการทำงานวิจัย การประมาณค่า ส่วนเบี่ยงเบนมาตรฐานในการแจกแจงปรกติที่มีผู้นำเสนอไปแล้วนั้นอาศัยวิธีแบบดั้งเดิมและวิธี ภาวะน่าจะเป็นสูงสุด แต่อย่างไรก็ตามผู้วิจัยเห็นว่าการนำเสนอการประมาณค่าส่วนเบี่ยงเบนมาตรฐานจากตัว ประมาณที่มีสมบัติเป็นตัวประมาณไม่เอนเอียงจะทำให้ได้ตัวประมาณที่เหมาะสมในการวิเคราะห์ข้อมูลมากขึ้น ดังนั้นในงานวิจัยครั้งนี้จึงได้สนใจสร้างช่วงความเชื่อมั่น ศึกษาประสิทธิภาพ และเปรียบเทียบประสิทธิภาพของ ตัวประมาณดังกล่าวกับตัวประมาณด้วยวิธีดั้งเดิมและวิธีภาวะน่าจะเป็นสูงสุด ผลที่ได้พบว่าช่วงความเชื่อมั่นใน การศึกษาครั้งนี้มีประสิทธิภาพที่ดี คือมีค่าความน่าจะเป็นคุ้มรวมใกล้เคียงกับค่าความน่าจะเป็นที่กำหนดหลาย กรณีในการจำลอง นอกจากนั้นตัวประมาณที่ได้นำเสนอนั้นได้ถูกนำไปใช้กับข้อมูลจริงทางด้านราคาน้ำมันซึ่ง เกี่ยวข้องกับราคาของน้ำมันแก๊สโซฮอล 91 ผลที่ได้จากการจำลองข้อมูลและสถานการณ์จริงมีความสอดคล้อง กัน

คำสำคัญ : วิธีภาวะน่าจะเป็นสูงสุด, ส่วนเบี่ยงเบนมาตรฐาน, ช่วงความเชื่อมั่น, ความน่าจะเป็น คุ้มรวม

กิตติกรรมประกาศ

โครงงานเรื่อง "การศึกษาประสิทธิภาพของตัวประมาณค่าส่วนเบี่ยงเบนมาตรฐานในการแจกแจง ปรกติ" สามารถประสบความสำเร็จลุล่วงด้วยดี เนื่องจากได้รับความอนุเคราะห์ ความกรุณาและการสนับสนุน จาก ผศ.ดร.ภทรวรรณ แสงนวกิจ อาจารย์ที่ปรึกษาโครงงาน โดยให้คำปรึกษา คำแนะนำ ข้อคิดเห็นและ ตรวจสอบความถูกต้องจนปรับปรุงแก้ไขข้อบกพร่องต่าง ๆ ทั้งให้ความเมตตาและเสียสละเวลาแก่คณะผู้วิจัย มาโดยตลอด

ขอขอบพระคุณ ผศ.ดร.มณฑิรา ดวงสาพล และ ผศ.เบญจมาศ ตุลยนิติกุล คณะกรรมการสอบและ อาจารย์ประจำสาขาคณิตศาสตร์และสถิติทุกท่าน สำหรับคำแนะนำในการปรับปรุงแก้ไขข้อบกพร่องต่าง ๆ รวมถึงเจ้าหน้าที่สาขาคณิตศาสตร์และสถิติที่เอื้อเฟื้อสถานที่ในการทำงานของคณะผู้วิจัย

ขอขอบพระคุณคณะผู้จัดทำที่ให้ความช่วยเหลือ ตลอดจนคำแนะนำที่เป็นประโยชน์ในการจัดทำ โครงงานครั้งนี้ให้ออกมาได้อย่างดี

คณะผู้วิจัยหวังว่าโครงงานฉบับนี้คงมีประโยชน์เป็นอย่างมากสำหรับผู้ที่สนใจในเรื่องการศึกษา ประสิทธิภาพของตัวประมาณค่าส่วนเบี่ยงเบนมาตรฐานในการแจกแจงปรกติ จึงขอมอบส่วนดีทั้งหมดนี้ให้ คณะอาจารย์ที่ประสงค์สิทธิประสาทวิชา หากมีข้อผิดพลาดประการใดคณะผู้วิจัยต้องขออภัยและน้อมรับไว้ ณ ที่นี้ด้วย

> นายภูมิพัฒน์ มีเจริญวรานนท์ นางสาวกุลรัศมิ์ ทรัพย์อุดมมาก นาวสาวธมลวรรณ กิจวรวุฒิ

สารบัญ

	หน้า
บทคัดย่อ	ก
กิตติกรรมประกาศ	ข
สารบัญ	ค
สารบัญรูปภาพ ตารางและกราฟ	ฉ
บทที่ 1 บทนำ	1
1.1 ที่มาและความสำคัญของปัญหา	1
1.2 วัตถุประสงค์	3
1.3 ขอบเขตการศึกษา	3
บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง	5
2.1 ส่วนเบี่ยงเบนมาตรฐาน (Standard Deviation)	5
1. ส่วนเบี่ยงเบนมาตรฐานของประชากร	5
2. ส่วนเบี่ยงเบนมาตรฐานตัวอย่าง	5
2.2 ค่าคาดหมาย (Expected Value)	5
2.3 การแจกแจงปรกติ (Normal Distribution)	6
2.4 ตัวประมาณที่ไม่เอนเอียง (Unbiasedness)	7
2.5 ตัวประมาณคงเส้นคงวา (Consistency)	7
2.6 ตัวประมาณภาวะน่าจะเป็นสูงสุด (Maximum Likelihood Estimator)	8
2.7 ความคลาดเคลื่อนกำลังสองเฉลี่ย (Mean Squared Error)	8
2.8 การแจกแจงค่าเฉลี่ยตัวอย่าง (Mean of Random Sample Distribution)	9
2.9 หลักการจำลองข้อมูล (Simulation)	10
2.9.1 เกณฑ์การวัดประสิทธิภาพของตัวประมาณค่าพารามิเตอร์แบบจุด	10
1. ความเอนเอียง (Bias)	10
2 ความคลาดเคลื่อนกำลังสองเฉลี่ย (Mean Squared Frror)	10

2.9.2 เกณฑ์การวัดประส	สิทธิภาพของช่วงความเชื่อมั่นสำหรับพารามิเตอร์	11
1. ความน่าจะเป็นคุ้ม	มรวม (Coverage Probability)	11
2. ช่วงความเชื่อมั่นข	องค่าความน่าจะเป็นคุ้มรวม	11
3. ค่าเฉลี่ยความกว้า	งของช่วงความเชื่อมั่นที่จะใช้ในการจำลองข้อมูล	11
2.10 งานวิจัยที่เกี่ยวข้อง		12
บทที่ 3 วิธีการดำเนินงานวิจัย.		13
3.1 สมบัติของตัวประมาณค	จ่าพารามิเตอร์ในการแจกแจงปรกติ	13
3.1.1 ตัวประมาณค่าพา	รามิเตอร์ μ	13
1. พิจารณาตัวประม	าณภาวะน่าจะเป็นสูงสุดของพารามิเตอร์ μ	13
2. พิสูจน์สมบัติความ	งไม่เอนเอียงของตัวประมาณภาวะน่าจะเป็นสูงสุดสำหรับ μ	14
3. พิสูจน์สมบัติความ	เคงเส้นคงวาของตัวประมาณภาวะน่าจะเป็นสูงสุดสำหรับ μ	14
3.1.2 สมบัติของตัวประส	มาณพารามิเตอร์ σ^2 ในการแจกแจงปรกติ	15
1. พิสูจน์สมบัติความ	ป่มเอนเอียงของตัวประมาณ $oldsymbol{S}^2$	15
2. พิสูจน์สมบัติความ	มคงเส้นคงวาของ S^2	15
3.1.3 สมบัติของตัวประส	มาณภาวะน่าจะเป็นสูงสุดของพารามิเตอร์ σ^2 ในการแจกแจ	จงปรกติ. 15
1. พิจารณาตัวประม	าณภาวะน่าจะเป็นสูงสุดของพารามิเตอร์ σ^2	15
2. พิสูจน์สมบัติความ	มไม่เอนเอียงของตัวประมาณภาวะน่าจะเป็นสูงสุดสำหรับ σ^2	16
3. พิสูจน์สมบัติความ	มคงเส้นคงวาของตัวประมาณภาวะน่าจะเป็นสูงสุดสำหรับ $oldsymbol{\sigma}^2$	² 17
3.2 สมบัติของตัวประมาณค	า่าส่วนเบี่ยงเบนมาตรฐานในการแจกแจงปรกติ	17
3.2.1 พิสูจน์ค่าคาดหมา	ยที่มีความสัมพันธ์กับตัวประมาณ <i>S</i>	18
3.2.2 ความเอนเอียงขอ _ง	งตัวประมาณ S	19
3.2.3 ความแปรปรวนขอ	องตัวประมาณ S	20
3.2.4 ความเอนเอียงขอ	งตัวประมาณ $S_{\scriptscriptstyle MLE}$	20
3.2.5 ความแปรปรวนขถ	องตัวประมาณ $S_{{\scriptscriptstyle MLE}}$	21
3.3 ตัวประมาณไม่เอนเอียง	สำหรับส่วนเบี่ยงเบนมาตรฐาน	22

3.3.1 ตัวประมาณไม่เอนเอียงสำหรับตัวประมาณส่วนเบี่ยงเบนมาตรฐาน	22
3.3.2 ตัวประมาณไม่เอนเอียงสำหรับตัวประมาณส่วนเบี่ยงเบนมาตรฐานภาวะน่าจะเป็นสูงสุด	23
3.3.3 สมบัติของตัวประมาณที่มีสมบัติไม่เอนเอียง (\hat{S} $$ และ $ ilde{S} $)	24
3.4 สรุปตัวประมาณค่า σ ความแปรปรวนและค่าความเอนเอียงของตัวประมาณ	25
3.5 ผังการจำลองข้อมูล	27
บทที่ 4 ผลการวิจัยและอภิปรายผล	28
4.1 ประสิทธิภาพของตัวประมาณแบบจุดจากค่าความเอนเอียงและค่าความคลาดเคลื่อนกำลังสอง	
เฉลี่ย	29
4.2 ประสิทธิภาพของช่วงความเชื่อมั่นพิจารณา ค่าความน่าจะเป็นคุ้มรวมและค่าเฉลี่ยความกว้าง	
ของช่วงความเชื่อมั่น	36
4.3 ตัวอย่างการคำนวณจากข้อมูลจริง	43
บทที่ 5 สรุปผลการวิจัยและข้อเสนอแนะ	45
5.1 สรุปผลการวิจัย	45
5.2 ข้อเสนอแนะ	45
บรรณานุกรม	46
ภาคผนวก	47
การตรวจสอบการแจกแจงของข้อมูลจริง	47
ผลลัพธ์ที่ได้เพิ่มเติม	48
โปรแกรมที่ใช้ในการวิจัย	49

สารบัญรูปภาพ ตารางและกราฟ

รูปภาพ	หน้า
รูปที่ 1.1 การแจกแจงเบ้ซ้าย, รูปที่ 1.2 การแจงแจงปรกติ, รูปที่ 1.3 การแจกแจงเบ้ชวา	1
รูปที่ 2.1 เส้นโค้งปรกติ	
รูปที่ 3.1 ผังการจำลองข้อมูล	27
ตาราง	หน้า
ตารางที่ 3.1 เปรียบเทียบตัวประมาณส่วนเบี่ยงเบนมาตรฐาน	26
ตารางที่ 4.1 ค่าความเอนเอียง ความแปรปรวน และความคลาดเคลื่อนกำลังสองเฉลี่ย กรณี $\mu\!=\!0$	30
ตารางที่ 4.2 ค่าความเอนเอียง ความแปรปรวน และความคลาดเคลื่อนกำลังสองเฉลี่ย กรณี $\mu\!=\!5$	31
ตารางที่ 4.3 ค่าความเอนเอียง ความแปรปรวน และความคลาดเคลื่อนกำลังสองเฉลี่ย กรณี $\mu\!=\!-\!5.$	32
ตารางที่ 4.4 ค่าความน่าจะเป็นคุ้มรวมและค่าเฉลี่ยความกว้างของช่วงความเชื่อมั่น กรณี $\mu \! = \! 0 $	37
ตารางที่ 4.5 ค่าความน่าจะเป็นคุ้มรวมและค่าเฉลี่ยความกว้างของช่วงความเชื่อมั่น กรณี $\mu = 5$	38
ตารางที่ 4.6 ค่าความน่าจะเป็นคุ้มรวมและค่าเฉลี่ยความกว้างของช่วงความเชื่อมั่น กรณี μ = -5	39
ตารางที่ 8 ค่าความน่าจะเป็นคุ้มรวมและค่าเฉลี่ยความกว้างของช่วงความเชื่อมั่น กรณี $\mu = 5$	48
กราฟ	หน้า
กราฟที่ 4.1 Bias กรณีที่ $\sigma\!=\!0.5$, กราฟที่ 4.2 Bias กรณีที่ $\sigma\!=\!1$	33
กราฟที่ 4.3 Bias กรณีที่ $\sigma\!=\!2$, กราฟที่ 4.4 Bias กรณีที่ $\sigma\!=\!5$	33
กราฟที่ 4.5 Bias กรณีที่ $\sigma\!=\!10$	33
กราฟที่ 4.6 Variance กรณีที่ $\sigma\!=\!0.5$, กราฟที่ 4.7 Variance กรณีที่ $\sigma\!=\!1$	
กราฟที่ 4.8 Variance กรณีที่ $\sigma\!=\!2$,กราฟที่ 4.9 Variance กรณีที่ $\sigma\!=\!5$	34
กราฟที่ 4.10 Variance กรณีที่ $\sigma\!=\!10$	34
กราฟที่ 4.11 MSE กรณีที่ $\sigma\!=\!0.5$, กราฟที่ 4.12 MSE กรณีที่ $\sigma\!=\!1$	35
กราฟที่ 4.13 MSE กรณีที่ $\sigma\!=\!2$,กราฟที่ 4.14 MSE กรณีที่ $\sigma\!=\!5$	35

กราฟที่ 4.15 MSE กรณีที่ $\sigma\!=\!10$	35
กราฟที่ 4.16 CP กรณีที่ $\sigma\!=\!0.5$, กราฟที่ 4.17 CP กรณีที่ $\sigma\!=\!1$	40
กราฟที่ 4.18 CP กรณีที่ $\sigma\!=\!2$, กราฟที่ 4.19 CP กรณีที่ $\sigma\!=\!5$	40
กราฟที่ 4.20 CP กรณีที่ $\sigma\!=\!10$	40
กราฟที่ 4.21 EL กรณีที่ $\sigma\!=\!0.5$, กราฟที่ 4.22 EL กรณีที่ $\sigma\!=\!1$	41
กราฟที่ 4.23 EL กรณีที่ σ = 2 , กราฟที่ 4.24 EL กรณีที่ σ = 5	41
กราฟที่ 4.25 EL กรณีที่ $\sigma\!=\!10$	41
กราฟที่ 4.26 กราฟแสดงแผนภูมิข้อมูลจริงของราคาน้ำมันแก๊สโซฮอล 91	43
กราฟที่ 4.27 กราฟแสดงการทดสอบการแจกแจงแบบปรกติ	44

บทที่ 1

บทน้ำ

1.1 ที่มาและความสำคัญของปัญหา

การประมาณค่าพารามิเตอร์เป็นเครื่องมือทางคณิตศาสตร์และสถิติที่สำคัญที่จะช่วยให้สามารถ วิเคราะห์ข้อมูลและวางแผนการทำงานในหลากหลายด้าน เช่น งานทางด้านเศรษฐศาสตร์ การบริหาร การตลาด การบริหารประเทศ และการทดลองวิทยาศาสตร์ แต่ปัญหาส่วนใหญ่ที่พบมักจะเป็นการนำวิธีการ ประมาณค่าพารามิเตอร์มาใช้ไม่สอดคล้องกับลักษณะของข้อมูลที่มีอยู่ ทั้งนี้เนื่องมาจากข้อมูลมีลักษณะหรือมี การแจกแจงได้หลายรูปแบบ เช่น ข้อมูลที่มีลักษณะสมมาตร และข้อมูลที่มีลักษณะไม่สมมาตร (เบ้ซ้ายหรือเบ้ ขวา) ถ้าหากนักวิเคราะห์ข้อมูลเลือกใช้วิธีการทางสถิติที่ไม่เหมาะสมอาจส่งผลทำให้เกิดความคลาดเคลื่อนใน การอนุมานทางสถิติได้

รูปที่ 1.1 การแจกแจงเบ้ซ้าย

รูปที่ 1.2 การแจกแจงปรกติ

รูปที่ 1.3 การแจกแจงเบ้ขวา

สำหรับข้อมูลตามธรรมชาติที่มักจะพบบ่อยครั้ง คือ การแจกแจงปรกติ (Normal distribution) ตัว แปรสุ่มที่เกี่ยวข้องกับการแจกแจงนี้จะเป็นตัวแปรที่มัลักษณะแบบต่อเนื่อง โดยจุดกึ่งกลาง คือ จุดที่มีความถี่ สูงสุด ซึ่งจะแสดงค่าเฉลี่ยเลขคณิต ค่ามัธยฐาน และค่าฐานนิยม ค่าดังกล่าวจะมีค่าเท่ากัน อีกทั้ง ณ จุด กึ่งกลางจะมีแกนสมมาตร คือ เส้นตรงที่ลากผ่านจุดโด่งสุดของเส้นโค้งนั้นตั้งฉากกับแกนนอน และแกน สมมาตรจะแบ่งพื้นที่ใต้เส้นโค้งปรกติออกเป็น 2 ส่วนเท่ากัน ถ้าหากนำพื้นที่ดังกล่าวมาพิจารณาผลรวมของ พื้นที่ใต้เส้นโค้งปรกติจะมีค่าเท่ากับ 1 เสมอ นอกจากนี้เส้นโค้งจะเข้าใกล้แกนนอน แต่จะไม่ตัดแกนนอนดัง แสดงในรูปที่ 1.2

ถ้าตัวแปรสุ่ม X มีการแจกแจงปรกติด้วยค่าเฉลี่ยเท่ากับ μ ความแปรปรวนเท่ากับ σ^2 หรือใช้ สัญลักษณ์แทนด้วย $X \sim N\left(\mu,\sigma^2\right)$ แล้ว X จะมีฟังก์ชันความหนาแน่นความน่าจะเป็น (Probability density function) คือ

$$f\left(x \middle| \mu, \sigma^2\right) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \; ; \; -\infty < x < \infty, \; -\infty < \mu \; < \infty, \; 0 < \sigma^2 < \infty$$

โดยที่ μ คือ พารามิเตอร์แทนค่าเฉลี่ย และ σ^2 คือ พารามิเตอร์แทนความแปรปรวน เมื่อ $\pi\!=\!3.141$ และ $e\!=\!2.718$

การแจกแจงปรกติจะมีพารามิเตอร์สองตัว คือ ค่าเฉลี่ยประชากร (Population mean) แทนด้วย $\,\mu$ และความแปรปรวนประชากร (Population variance) แทนด้วย σ^2 ดังนั้นหากหารากที่สองของความ แปรปรวนประชากรแล้วจะเรียกว่าค่าดังกล่าวว่า ส่วนเบี่ยงเบนมาตรฐาน (Population standard deviation) แทนด้วย σ ในการอนุมานทางสถิติที่อิงพารามิเตอร์ (Parametric method) ตัวสถิติที่เราสร้างขึ้นมักจะ อาศัยตัวแปรสุ่มที่มีพื้นมาจากการแจกแจงปรกติ เช่น การประมาณค่าแบบช่วงของค่าเฉลี่ยประชากรจะอาศัย ปริมาณหมุน (Pivotal quantity) ที่มาจากการแจกแจงปรกติมาตรฐาน และการสร้างตัวสถิติทดสอบ อัตราส่วนภาวะน่าจะเป็นจะอาศัยทฤษฎีขีดจำกัดกลาง (Central limit theorem) และการแจกแจงปรกติ มาตรฐาน เนื่องจากในการแจกแจงปรกติมีพารามิเตอร์ที่ไม่ทราบค่า ได้แก่ μ และ σ^2 ตามที่ได้กล่าวไป ดังนั้นจึงต้องมีการสุ่มตัวอย่างเพื่อนำค่าสถิติที่ได้มาประมาณค่าพารามิเตอร์ สำหรับการประมาณค่าเฉลี่ยนั้น อาจอาศัยค่าเฉลี่ยตัวอย่าง มัธยฐาน หรือฐานนิยม ซึ่งเรียกว่า วิธีการวัดแนวโน้มเข้าสู่ส่วนกลาง ส่วนการ ประมาณค่าความแปรปรวนประชากร โดยทั่วไปมักใช้ความแปรปรวนตัวอย่างซึ่งหาได้จาก $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ และมีหน่วยในการวัด คือ หน่วยของข้อมูลยกกำลังสอง ตัวสถิตินี้เป็นตัว ประมาณไม่เอนเอียงของ σ^2 อย่างไรก็ตามในการรายงานผลเกี่ยวกับการกระจายของข้อมูลโดยใช้ค่าความ แปรปรวนที่มีหน่วยยกกำลังสองอาจทำให้เกิดความเข้าใจผิดไปได้ เนื่องจากเป็นตัวเลขเชิงปริมาณที่จะทำให้ เกิดความรู้สึกว่ามีค่ามาก ดังนั้นจึงถอดรากที่สองจากความแปรปรวนตัวอย่างเพื่อให้ได้ค่าส่วนเบี่ยงเบน มาตรฐาน หรือ $S=\sqrt{S^2}$ ซึ่งตัวประมาณนี้จะมีหน่วยของข้อมูลเป็นไปตามตัวแปรที่ศึกษาและเข้าใจง่ายขึ้น ในกรณีนี้ตัวสถิติ S จึงถือว่าเป็นตัวแทนของพารามิเตอร์ σ

จากการประมาณค่าส่วนเบี่ยงเบนมาตรฐานข้างต้น ผู้วิจัยเล็งเห็นว่าการประมาณค่า σ^2 ด้วย S^2 เพราะ S^2 เป็นตัวประมาณที่มีสมบัติที่ดีสำหรับ σ^2 นั่นคือเป็นตัวประมาณไม่เอนเอียง แต่อย่างไรก็ตาม ผู้วิจัยยังมีคำถามต่อไปว่าการประมาณค่า σ ด้วย S จะเหมาะสมหรือไม่ และตัวประมาณ S จะยังคงมี สมบัติที่ดีทางสถิติเช่นเดียวกับ S^2 กล่าวคือเป็นตัวประมาณไม่เอนเอียงของ σ หรือไม่ ซึ่งหาก S ไม่ได้มี สมบัติที่ดีทางสถิติในเรื่องความไม่เอนเอียงอาจทำให้การประมาณค่าส่วนเบี่ยงเบนมาตรฐานประชากร เบี่ยงเบนไปจากค่าจริง และมีความคลาดเคลื่อนสูงในสถานการณ์ใดสถานการณ์หนึ่งได้ ดังนั้นในงานวิจัยฉบับ นี้จึงต้องการที่จะศึกษาวิธีการประมาณค่าส่วนเบี่ยงเบนมาตรฐานในการแจกแจงปรกติ เพื่อให้ได้ตัวประมาณที่ มีสมบัติไม่เอนเอียงในการประมาณค่าต่อไป

1.2 วัตถุประสงค์

- 1. เพื่อศึกษาวิธีการประมาณค่าส่วนเบี่ยงเบนมาตรฐานที่มีสมบัติเป็นตัวประมาณไม่เอนเอียงสำหรับ ส่วนเบี่ยงเบนมาตรฐานประชากรในการแจกแจงปรกติ
- 2. เพื่อศึกษาประสิทธิภาพของตัวประมาณที่นำเสนอในข้อที่ 1. เทียบตัวประมาณค่าส่วนเบี่ยงเบน มาตรฐานที่ใช้วิธีดั้งเดิมและวิธีภาวะน่าจะเป็นสูงสุด
 - 3. เพื่อเปรียบเทียบช่วงความเชื่อมั่นสำหรับส่วนเบี่ยงเบนมาตรฐานประชากรในการแจกแจงปรกติ

1.3 ขอบเขตการศึกษา

1. กำหนดให้ $X = (X_1, X_2, X_n)$ เป็นตัวอย่างสุ่มขนาด n จากประชากรที่มีการแจกแจง ปรกติ ซึ่งมีค่าเฉลี่ยเท่ากับ μ และความแปรปรวนเท่ากับ σ^2 และฟังก์ชันความหนาแน่นความน่าจะเป็นของ X คือ

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-1}{2}(\frac{x-\mu}{\sigma})^2}; -\infty < x < \infty, -\infty < \mu < \infty, 0 < \sigma^2 < \infty$$

- 2. เปรียบเทียบประสิทธิภาพของตัวประมาณแบบจุดสำหรับส่วนเบี่ยงเบนมาตรฐานที่สนใจใน การศึกษาครั้งนี้และเป็นตัวประมาณไม่เอนเอียง (แทนด้วย \hat{S}) กับตัวประมาณค่าส่วนเบี่ยงเบนมาตรฐานที่ใช้ วิธีดั้งเดิม (แทนด้วย S) และวิธีภาวะน่าจะเป็นสูงสุด (แทนด้วย S_{MLE})
- 3. เปรียบเทียบประสิทธิภาพของตัวประมาณจากการจำลอง (Simulation) ภายใต้สถานการณ์ต่าง ๆ โดยใช้โปรแกรม R
- 4. กำหนดค่าพารามิเตอร์ในสถานการณ์จำลองเพื่อศึกษาประสิทธิภาพของตัวประมาณ คือ μ เท่ากับ -5 0 และ 5 และกำหนด σ เท่ากับ 0.5 1 2 5 และ 10 สำหรับการกำหนดค่า σ หลายระดับนั้น เพื่อแทนการกระจายข้อมูลจากน้อยไปหามาก
- 5. กำหนดขนาดตัวอย่างที่ใช้ในการจำลอง คือ $\,n\,$ เท่ากับ 10 20 30 50 100 และ 300 เพื่อแทน ขนาดตัวอย่างจากน้อยไปหามาก
 - 6. กำหนดจำนวนการทำซ้ำ M เท่ากับ 10.000 รอบในแต่ละสถานการณ์จำลอง
- 7. ศึกษาประสิทธิภาพของตัวประมาณแบบจุดจากค่าความเอนเอียง (Bias) และค่าความคลาดเคลื่อน กำลังสองเฉลี่ย (Mean squared error)

8. ศึกษาประสิทธิภาพของช่วงความเชื่อมั่น $(1-\alpha)100\%$ สำหรับส่วนเบี่ยงเบนมาตรฐานประชากร โดยพิจารณาจากค่าความน่าจะเป็นคุ้มรวม (Coverage probability) และค่าเฉลี่ยความกว้างของช่วงความ เชื่อมั่น (Expected length) ของช่วงความเชื่อมั่นที่อยู่ในรูปแบบดังนี้

$$\hat{\theta} \pm t_{\alpha/2} \sqrt{Var(\hat{\theta})}$$

เมื่อ $\hat{\theta}$ คือ ตัวประมาณแบบจุดใด ๆ ของส่วนเบี่ยงเบนมาตรฐานประชากร $Var(\hat{\theta})$ คือ ตัวประมาณค่าความ แปรปรวนของ $\hat{\theta}$ และ $t_{\alpha/2}$ คือ ค่าเปอร์เซ็นไทล์ที่ $(\alpha/2)100\%$ ของการแจกแจงที (t-distribution) ช่วง ความเชื่อมั่นที่แสดงไว้ข้างต้นจะถูกนำมาเปรียบเทียบประสิทธิภาพกับช่วงความเชื่อมั่นของส่วนเบี่ยงเบน มาตรฐานจากวิธีดั้งเดิม นั่นคือ

$$\frac{\sqrt{(n-1)}}{\sqrt{\chi_{\frac{\alpha}{2},n-1}^2}} S \le \sigma \le \frac{\sqrt{(n-1)}}{\sqrt{\chi_{1-\frac{\alpha}{2},n-1}^2}} S$$

เมื่อ $\chi^2_{rac{lpha}{2},n-1}$ คือ ค่าเปอร์เซ็นไทล์ที่ (lpha/2)100% ของการแจกแจงไคกำลังสอง (Chi-square distribution) ที่มีองศาเสรีเป็น $n\!-\!1$

1.4 ประโยชน์ที่คาดว่าจะได้รับ

- 1. ทราบวิธีการสร้างตัวประมาณค่าพารามิเตอร์ที่มีสมบัติที่ดีในเรื่องความไม่เอนเอียง และเป็น แนวทางในการประมาณค่าพารามิเตอร์ในการแจกแจงอื่น ๆ ต่อไป
- 2. ทราบสถานการณ์ที่เหมาะสมในการเลือกใช้ตัวประมาณค่าส่วนเบี่ยงเบนมาตรฐานในการแจกแจง ปรกติ

บทที่ 2 ทฤษฎีทางสถิติและงานวิจัยที่เกี่ยวข้อง

ในการศึกษาประสิทธิภาพของตัวประมาณค่าส่วนเบี่ยงเบนมาตรฐานในการแจกแจงปรกติมีทฤษฎี และงานวิจัยที่เกี่ยวข้องดังนี้

2.1 ส่วนเบี่ยงเบนมาตรฐาน (Standard Deviation)

ส่วนเบี่ยงเบนมาตรฐาน คือ ระยะห่างเฉลี่ยของค่าสังเกตจากค่าเฉลี่ย ซึ่งเป็นค่าที่แสดงถึงการกระจาย ของข้อมูลว่าเบี่ยงเบนไปจากค่าเฉลี่ยมากน้อยเพียงใด ถ้าหากค่าส่วนเบี่ยงเบนมาตรฐานมีค่าน้อยจะบ่งชี้ว่า ข้อมูลมีการกระจายใกล้กับค่าเฉลี่ย แต่หากค่าส่วนเบี่ยงเบนมาตรฐานมีขนาดใหญ่จะบ่งชี้ว่าข้อมูลมีกระจายอยู่ ไกลจากค่าเฉลี่ยนั่นเอง สูตรในการคำนวณค่าส่วนเบี่ยงเบนมาตรฐานโดยทั่วไปมีดังนี้

1. ส่วนเบี่ยงเบนมาตรฐานของประชากร

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}}$$

2. ส่วนเบี่ยงเบนมาตรฐานตัวอย่าง

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}$$

2.2 ค่าคาดหมาย (Expected Value)

<u>นิยาม 1</u> ให้ \times เป็นตัวแปรสุ่มไม่ต่อเนื่องที่มีฟังก์ชันมวลความน่าจะเป็นคือ f(x). ค่าคาดหมายของ \times คือ

$$E(X) = \sum_{all\ x} x f(x)$$

นิยาม 2 ให้ X เป็นตัวแปรสุ่มต่อเนื่องที่มีฟังก์ชันความหนาแน่นความน่าจะเป็น f(x). ค่าคาดหมายของ X คือ

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

ทฤษฎีบท 3 ให้ X และ Y เป็นตัวแปรสุ่มที่ค่าคาดหมายหาค่าได้ และ a, b เป็นค่าคงที่ คุณสมบัติของค่าคาดหมายมีดังนี้

- 1. E(b) = b
- 2. E(aX + b) = aE(X) + b
- 3. $E(aX \pm bY) = aE(X) + bE(Y)$
- 4. สำหรับฟังก์ชัน g และ h ใด ๆ จะได้ว่า $E\left[g\left(X\right)\pm h\left(Y\right)\right]=E\left[g\left(X\right)\right]\pm E\left[h\left(Y\right)\right]$
- 5. ถ้า X และ Y เป็นตัวแปรสุ่มที่เป็นอิสระต่อกัน จะได้ว่า E(XY) = E(X)E(Y)
- 6. ถ้า X และ Y เป็นตัวแปรสุ่มที่เป็นอิสระต่อกัน และ สำหรับฟังก์ชัน g และ h ใด ๆ จะได้ว่า $E\lceil g(X)h(Y)\rceil = E\lceil g(X)\rceil E\lceil h(Y)\rceil$

ทฤษฎีบท 4 ความแปรปรวนของตัวแปรสุ่ม X คือ

$$Var(X) = E(X^2) - E^2(X)$$

ทฤษฎีบท 5 ให้ \times และ Y เป็นตัวแปรสุ่มที่ค่าคาดหมายหาค่าได้ และ a, b เป็นค่าคงที่ จะได้ว่า

$$Var(aX + b) = a^2 Var(X)$$

2.3 การแจกแจงปรกติ (Normal Distribution)

การแจกแจงปรกติเป็นตัวแปรสุ่มชนิดต่อเนื่อง ทฤษฎีต่าง ๆ ในทางสถิติมักจะใช้พื้นฐานของการแจก แจงนี้ในการสร้างสูตรในการคำนวณ ลักษณะกราฟของข้อมูลที่มีการแจกแจงปรกติจะเป็นเส้นโค้งที่มีลักษณะ เป็นรูประฆังที่สมมาตร และเมื่อแบ่งครึ่งโค้งการแจกแจงปรกติจะมีพื้นที่เท่ากันดังแสดงใน รูปที่ 2.1

รูปที่ 2.1 เส้นโค้งปรกติ

ถ้าตัวแปรสุ่ม X มีการแจกแจงปรกติด้วยค่าเฉลี่ยเท่ากับ μ ความแปรปรวนเท่ากับ σ^2 หรือใช้ สัญลักษณ์แทนด้วย $X\sim N\left(\mu,\sigma^2\right)$ มีฟังก์ชันความหนาแน่นความน่าจะเป็น (Probability density function) คือ

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-1}{2}(\frac{x-\mu}{\sigma})^2}; -\infty < x < \infty, -\infty < \mu < \infty, 0 < \sigma^2 < \infty$$

โดยที่ μ คือ พารามิเตอร์แทนค่าเฉลี่ย และ σ^2 คือ พารามิเตอร์แทนความแปรปรวน เมื่อ $\pi=3.141$ และ e=2.718 ฟังก์ชันก่อกำเนิดโมเมนต์ของการแจกแจงปรกติที่มีค่าเฉลี่ยเท่ากับ μ และความแปรปรวน σ^2 คือ $M_{_X}(t)=e^{\mu t+\frac{1}{2}\sigma^2t^2}$

2.4 ตัวประมาณที่ไม่เอนเอียง (Unbiasedness)

ความไม่เอนเอียง คือ สมบัติตัวประมาณที่มีค่าเฉลี่ยเท่ากันกับค่าพารามิเตอร์ของตัวประมาณนั้น ๆ เช่น สมมติให้ θ เป็นพารามิเตอร์ ดังนั้นตัวสถิติ $\hat{\theta}$ เป็นตัวประมาณที่ไม่เอนเอียงของ θ ก็ต่อเมื่อ $E(\hat{\theta}) = \theta$ ซึ่งค่าความเอนเอียงของ $\hat{\theta}$ จะหาได้จาก $Bias(\hat{\theta}) = E(\hat{\theta}) - \theta$

ในกรณีการประมาณค่าเฉลี่ย ถ้ากำหนดให้ $X_1,X_2,...,X_n$ เป็นตัวอย่างสุ่มขนาด ที่มีการแจกแจง ปรกติด้วยค่าเฉลี่ยเท่ากับ μ และความแปรปรวนเท่ากับ σ^2 จะได้ว่า $E(\bar{X})=\mu$ ดังนั้น \bar{X} เป็นตัว ประมาณที่ไม่เอนเอียงของ μ

ในกรณีการประมาณค่าความแปรปรวน ถ้าให้ตัวประมาณของ σ^2 คือ $S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2$ จะได้ว่า $E\left(S^2\right)=\sigma^2$ แต่หากพิจารณาตัวประมาณค่าความแปรปรวนด้วยวิธีภาวะน่าจะเป็นสูงสุด $S^2_{MLE}=\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2$ แล้ว จะพบว่า $E\left(S^2_{MLE}\right)=\frac{(n-1)\sigma^2}{n}\neq\sigma^2$ ดังนั้นจึงสรุปได้ว่า S^2 เป็นตัวประมาณที่ไม่เอนเอียงของ σ^2 แต่ S^2_{MLE} เป็นตัวประมาณที่เอนเอียงของ σ^2 (การพิสูจน์แสดงไว้ในบทที่ 3)

2.5 ตัวประมาณคงเส้นคงวา (Consistency)

ความคงเส้นคงวา คือ สมบัติของตัวประมาณแบบจุดที่จะต้องมีค่าประมาณเข้าใกล้ค่าจริงของ ประชากร เมื่อขนาดตัวอย่างเพิ่มขึ้น นิยามของความคงเส้นคงวามีดังนี้ ตัวสถิติ $\hat{\theta}$ จะเป็นตัวประมาณคงเส้น คงวาของพารามิเตอร์ θ ก็ต่อเมื่อ $P\Big(\Big|\hat{\theta}-\theta\Big|<\mathcal{E}\Big) \to 1$ เมื่อ $n\to\infty$ และ $\mathcal{E}>0$ ความคงเส้นคงวาของตัว ประมาณพิจารณาได้จากทฤษฎีดังนี้ ตัวสถิติ $\hat{\theta}$ จะเป็นตัวประมาณคงเส้นคงวาของพารามิเตอร์ θ ก็ต่อเมื่อ

1.
$$\hat{\theta}$$
 เป็นตัวประมาณที่ไม่เอนเอียงของ θ เมื่อ $n \to \infty$ กล่าวคือ $\lim_{n \to \infty} E\Big(\hat{\theta}\Big) = \theta$ และ

2. ความแปรปรวนของ $\hat{ heta}$ มีค่าเข้าสู่ศูนย์ เมื่อ $n o \infty$ กล่าวคือ $\lim_{n o \infty} Var\Big(\hat{ heta}\Big) = 0$

2.6 ตัวประมาณภาวะน่าจะเป็นสูงสุด (Maximum Likelihood Estimator)

วิธีภาวะน่าจะเป็นสูงสุดเป็นวิธีการหนึ่งที่พบบ่อยและเป็นที่นิยมใช้ในทางสถิติ เนื่องจากวิธีการสร้าง ตัวประมาณค่าด้วยวิธีนี้จะได้ตัวประมาณค่าพารามิเตอร์ที่มีคุณสมบัติที่ดีหลายอย่าง

กำหนดให้ $X_1,X_2,...,X_n$ เป็นตัวอย่างสุ่มขนาด n จากประชากรหนึ่งที่มีพารามิเตอร์แทนด้วย θ ซึ่งเป็นค่าคงที่ที่ไม่ทราบค่า และให้ $\hat{\theta}=\hat{\theta}\big(X_1,X_2,...,X_n\big)$ เป็นตัวประมาณของ θ แล้ว $\hat{\theta}\big(x_1,x_2,...,x_n\big)$ จะเป็นค่าประมาณของ θ โดยที่ $X_i=x_i$ ทุกค่า i=1,2,3,...,n

กำหนดให้ $X_1, X_2, ..., X_n$ เป็นตัวอย่างสุ่มขนาด n จากประชากรหนึ่งที่มี pdf. หรือ pmf. เป็น $f\left(x\right)$ และมีพารามิเตอร์แทนด้วย θ ซึ่งเป็นค่าคงที่ที่ไม่ทราบค่า และกำหนดให้

$$L(\theta; X_1, X_2, ..., X_n) = L(\theta) = f(x_1, x_2, ..., x_n; \theta)$$

แทนฟังก์ชันภาวะน่าจะเป็นของ heta ส่วน $f\left(x_1,x_2,...,x_n; heta
ight)$ คือฟังก์ชันความหนาแน่นความน่าจะเป็นร่วม (Joint pdf.) หรือ ฟังก์ชันมวลความน่าจะเป็นร่วม (Joint pmf.) ของ $X_1,X_2,...,X_n$ ที่มีพารามิเตอร์ heta ใน กรณีที่ $X_1,X_2,...,X_n$ เป็นอิสระต่อกันและมีการแจกแจงเหมือนกัน (Independence and identically distributed)

การหาฟังก์ชันภาวะน่าจะเป็นของ heta จะได้จาก

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \prod_{i=1}^{n} f(x_i)$$

ตัวประมาณภาวะน่าจะเป็นสูงสุดคือ heta ที่ทำให้ L(heta) มีค่าสูงสุด หรือกล่าวได้ว่า ถ้าให้ $\hat{ heta}$ เป็นตัวประมาณ ภาวะน่าจะเป็นสูงสุดของ heta แล้ว $L(\hat{ heta}) = \max_{ heta} L(heta)$ เมื่อ $\hat{ heta} = \hat{ heta}(X_1, X_2, ..., X_n)$

2.7 ความคลาดเคลื่อนกำลังสองเฉลี่ย (Mean Squared Error)

ความคลาดเคลื่อนกำลังสองเฉลี่ย หมายถึง ค่าคาดหมายของกำลังสองของความแตกต่าง ระหว่างตัวประมาณ $\hat{ heta}$ และพารามิเตอร์ heta ที่กำลังจะประมาณค่าคือ $\mathit{MSE}(\hat{ heta}) = E\Big[(\hat{ heta} - heta)^2 \Big]$

โดยมีความสัมพันธ์คือ $E\Big[\Big(\hat{\theta}-\theta\Big)^2\Big] = Var\Big(\hat{\theta}\Big) + \Big\{E\Big[\hat{\theta}\Big] - \theta\Big\}^2 = Var\Big(\hat{\theta}\Big) + Bias\Big(\hat{\theta}\Big)^2$ (ผลบวก ของความแปรปรวนของตัวประมาณกับกำลังสองของความเอนเอียงของตัวประมาณ)

ถ้า $\hat{ heta}$ เป็นตัวประมาณที่ไม่เอนเอียงของพารามิเตอร์ $\hat{ heta}$

แล้ว
$$MSE\left(\hat{\theta}\right) = E\left[\left(\hat{\theta} - \theta\right)^2\right] = Var\left(\hat{\theta}\right)$$

2.8 การแจกแจงค่าเฉลี่ยตัวอย่าง (Mean of Random Sample Distribution)

ทฤษฎีบท ให้ X_1,\dots,X_n เป็นตัวอย่างสุ่มขนาด n จากการแจกแจงปรกติที่มีค่าเฉลี่ย μ และความ แปรปรวน σ^2 จะได้ว่า $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ มีการแจกแจงปรกติที่มีค่าเฉลี่ยคือ μ และความแปรปรวนเท่ากับ σ^2/n

พิสูจน์ เนื่องจาก X_1,\dots,X_n เป็นตัวอย่างสุ่มจากการแจกแจงปรกติที่มีค่าเฉลี่ยคือ μ และความ แปรปรวนเท่ากับ σ^2 นั่นคือ $X_i,i=1,2,3,\dots,n$ แต่ละตัวเป็นอิสระกันและมีการแจกแจงปรกติเหมือนกันที่ มี $E(X_i)=\mu$ และ $V(X_i)=\sigma^2$ นอกจากนั้นยังจะเห็นได้ว่า

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} = \frac{1}{n} X_{1} + \frac{1}{n} X_{2} + \dots + \frac{1}{n} X_{n} = a_{1} X_{1} + a_{2} X_{2} + \dots + a_{n} X_{n}$$

โดยที่ $a_i = \frac{1}{n}, i = 1, 2, ..., n$ นั่นคือ \overline{X} สามารถเขียนในรูปผลรวมเชิงเส้นของ $X_1, ..., X_n$ ดังนั้น ตาม ทฤษฎีบท สามารถสรุปได้ว่า \overline{X} มีการแจกแจงปรกติที่มีค่าเฉลี่ย

$$E\left[\bar{X}\right] = E\left[\frac{1}{n}X_{1} + \frac{1}{n}X_{2} + \dots + \frac{1}{n}X_{n}\right] = \frac{1}{n}E(X_{1}) + \frac{1}{n}E(X_{2}) + \dots + \frac{1}{n}E(X_{n})$$

$$= \frac{1}{n}\mu + \frac{1}{n}\mu + \dots + \frac{1}{n}\mu = \mu$$

และมีความแปรปรวน คือ

$$V\left[\overline{X}\right] = V\left[\frac{1}{n}X_1 + \frac{1}{n}X_2 + \dots + \frac{1}{n}X_n\right] = \frac{1}{n^2}V(X_1) + \frac{1}{n^2}V(X_2) + \dots + \frac{1}{n^2}V(X_n)$$
$$= \frac{1}{n^2}\sigma^2 + \frac{1}{n^2}\sigma^2 + \dots + \frac{1}{n^2}\sigma^2 = \frac{\sigma^2}{n}$$

นั่นหมายความว่า การแจกแจงค่าตัวอย่างของ $\overline{X}=rac{1}{n}\sum_{i=1}^n X_i$ จากประชากรที่มีการแจกแจงปรกติจะมีการ แจกแจงปรกติที่มีค่าเฉลี่ยคือ μ และความแปรปรวนเท่ากับ $rac{\sigma^2}{n}$

2.9 หลักการจำลองข้อมูล (Simulation)

ในการวิจัยหรือการศึกษาบางเรื่องนั้นผู้วิจัยไม่สามารถหาข้อมูลที่มีลักษณะตรงตามที่ต้องการมาศึกษา ได้โดยง่าย ดังนั้นจึงจำเป็นต้องอาศัยข้อมูลจากการจำลอง (Simulated data) มาช่วยให้งานวิจัยสามารถ ดำเนินต่อไปได้อย่างสมบูรณ์ โดยการจำลองข้อมูลนั้นจะใช้ในการสร้างตัวเลขสุ่มให้มีลักษณะเป็นไปตามที่ ต้องการและสามารถใช้ในการตรวจสอบประสิทธิภาพของตัวประมาณทางสถิติได้อีกด้วย

2.9.1 เกณฑ์การวัดประสิทธิภาพของตัวประมาณค่าพารามิเตอร์แบบจุด

ตัวประมาณค่าแบบจุดของพารามิเตอร์ที่สนใจมีเกณฑ์ที่นิยมใช้ในการวัดประสิทธิภาพ 2 เกณฑ์ คือ ความเอนเอียงและความคลาดเคลื่อนกำลังสองเฉลี่ย หากตัวประมาณค่าแบบจุดใดมีค่าความเอนเอียงเท่ากับ หรือเข้าใกล้ศูนย์ และมีค่าความคลาดเคลื่อนกำลังสองเฉลี่ยต่ำ จะถือว่าตัวประมาณแบบจุดนั้นมีประสิทธิภาพ ที่ดีกว่าตัวประมาณที่นำมาเปรียบเทียบ สำหรับวิธีการหาค่าวัดประสิทธิภาพในการจำลองมีดังนี้

1. ความเอนเอียง (Bias)

จากนิยาม $\hat{\theta}$ เป็นตัวประมาณที่ไม่เอนเอียง (Unbiased estimator) ของพารามิเตอร์ θ ก็ต่อเมื่อ $E(\hat{\theta}) = \theta$ และความเอนเอียงของตัวประมาณ $\hat{\theta}$ คือ $Bias(\hat{\theta}) = E(\hat{\theta}) - \theta$ เมื่อ $E(\hat{\theta})$ คือ ค่าความหวัง ของตัวประมาณ θ ในการจำลองข้อมูล $E(\hat{\theta})$ ประมาณได้จาก $\hat{E}(\hat{\theta}) = \frac{1}{M} \sum_{i=1}^M \hat{\theta}_i$ ดังนั้น $Bias(\hat{\theta}) = \frac{1}{M} \sum_{i=1}^M \hat{\theta}_i - \theta$ เมื่อ M คือ จำนวนรอบของการทำซ้ำในการจำลอง และ $\hat{\theta}_i$ คือ ค่าประมาณใน รอบการทำซ้ำในรอบที่ i

2. ความคลาดเคลื่อนกำลังสองเฉลี่ย (Mean Squared Error)

จากนิยาม ความคลาดเคลื่อนกำลังสองเฉลี่ยของตัวประมาณ $\hat{\theta}$ คือ $\mathit{MSE}(\hat{\theta}) = E(\hat{\theta} - \theta)^2 = \mathrm{Var}(\hat{\theta}) + \left[\mathit{Bias}(\theta)\right]^2$ เมื่อ $\mathit{Var}(\hat{\theta})$ คือ ค่าความแปรปรวนของตัวประมาณ θ ในการจำลองข้อมูล $\mathit{Var}(\hat{\theta})$ ประมาณได้จาก $\mathit{Var}(\hat{\theta}) = \frac{1}{M} \sum_{i=1}^{M} \left[\hat{\theta}_i - \hat{E}(\hat{\theta})\right]^2$ ดังนั้น $\mathit{MSE}(\hat{\theta}) = \mathit{Var}(\hat{\theta}) + \left[\mathit{Bias}(\theta)\right]^2 = \frac{1}{M} \left[\hat{\theta}_i - \hat{E}(\hat{\theta})\right]^2 + \left(\frac{1}{M} \sum_{i=1}^{M} \hat{\theta}_i - \theta\right)^2$

2.9.2 เกณฑ์การวัดประสิทธิภาพของช่วงความเชื่อมั่นสำหรับพารามิเตอร์

ช่วงความเชื่อมั่นมีเกณฑ์ที่นิยมใช้ในการวัดประสิทธิภาพ 2 เกณฑ์ คือ ความน่าจะเป็นคุ้มรวมและ ความยาวช่วงเฉลี่ย หากช่วงความเชื่อมั่นใดมีค่าความน่าจะเป็นคุ้มรวมมากกว่าหรือเท่ากับระดับความเชื่อมั่นที่ กำหนด $(1-\alpha)$ และมีค่าเฉลี่ยความกว้างของช่วงความเชื่อมั่นต่ำกว่า จะถือว่าช่วงความเชื่อมั่นมี ประสิทธิภาพที่ดีกว่าช่วงความเชื่อมั่นที่นำมาเปรียบเทียบ สำหรับวิธีการหาค่าวัดประสิทธิภาพในการจำลองมี ดังนี้

1. ความน่าจะเป็นคุ้มรวม (Coverage Probability)

การหาค่าความน่าจะเป็นคุ้มรวมของช่วงความเชื่อมั่น จะใช้ในการตรวจสอบว่าช่วงความเชื่อมั่นที่ คำนวณได้นั้นครอบคลุมค่าพารามิเตอร์ที่สนใจด้วยความน่าจะเป็นมาน้อยเพียงใด ในการจำลองข้อมูลค่าความ น่าจะเป็นคุ้มรวมหาได้จากวิธีการดังนี้ $CP=rac{c\left(L\leq\theta\leq U
ight)}{M}$ เมื่อ $c\left(L\leq\theta\leq U
ight)$ คือ จำนวนครั้งที่ ขอบเขตล่าง (Lower Limit: L) และขอบเขตบน (Upper Limit: U) ของช่วงความเชื่อมั่น $\left(1-lpha
ight)100\%$ ครอบคลุมพารามิเตอร์ที่สนใจ ทั้งนี้ความยาวของช่วงความเชื่อมั่นสามารถคำนวณได้จาก Length=U-L

2. ช่วงความเชื่อมั่นของค่าความน่าจะเป็นคุ้มรวม ช่วงความเชื่อมั่น (1-lpha)100% ของค่าความน่าจะเป็นคุ้มรวม (CP) อยู่ในรูปแบบ

$$c_0 \pm z_{\frac{\alpha}{2}} \sqrt{\frac{c_0 \left(1 - c_0\right)}{M}}$$

เมื่อ $c_{\scriptscriptstyle 0}$ คือค่าความน่าจะเป็นคุ้มรวม

z คือเปอร์เซ็นไทล์ที่ (lpha/2)100% ของการแจกแจงปรกติมาตรฐาน

M คือจำนวนรอบของการทำซ้ำในการจำลองข้อมูล

ในงานวิจัยนี้พิจารณา $c_0=0.95$ $z_{0.025}=1.96$ และ M=10,000 คำนวณช่วงความเชื่อมั่น 95% ของค่าความน่าจะเป็นคุ้มรวม คือ $\left[0.9457,0.9543\right]$ ดังนั้นผู้วิจัยจะตัดสินใจว่าตัวประมาณแบบช่วงจะมี ประสิทธิภาพที่ดี เมื่อค่าความน่าจะเป็นคุ้มรวมที่ได้จากการจำลองข้อมูลอยู่ในช่วง $\left[0.9457,0.9543\right]$

3. ค่าเฉลี่ยความกว้างของช่วงความเชื่อมั่นที่จะใช้ในการจำลองข้อมูล ซึ่งเป็นการหาค่าเฉลี่ยของความ ยาวของช่วงความเชื่อมั่นจากการทำซ้ำจำนวน M ครั้ง ซึ่งหาได้จากวิธีการดังนี้

$$EL = \frac{1}{M} \sum_{i=1}^{M} \left(U_i - L_i \right)$$

เมื่อ U_i และ L_i คือ ขอบเขตบนและขอบเขตล่างในรอบการทำซ้ำที่ i ตามลำดับ

2.10 งานวิจัยที่เกี่ยวข้อง

Mahamoudvand and Hassani (2009) นำเสนอวิธีการประมาณค่าแบบช่วงสำหรับสัมประสิทธิ์ การแปรผันในการแจกแจงปรกติ โดยอาศัยตัวประมาณแบบจุดที่มีสมบัติไม่เอนเอียง เมื่อตัวอย่างมีขนาดใหญ่ สำหรับค่าสัมประสิทธิ์การแปรผันประชากร จากนั้นจึงหาค่าความแปรปรวนของตัวประมาณแบบจุดดังกล่าว เพื่อนำไปสร้างช่วงความเชื่อมั่นสำหรับสัมประสิทธิ์การแปรผัน จากการจำลองในสถานการณ์ที่ค่าสัมประสิทธิ์การแปรผัน จากการจำลองในสถานการณ์ที่ค่าสัมประสิทธิ์การแปรผันประชากรน้อยกว่า 0.5 พบว่าช่วงความเชื่อมั่นที่เขานำเสนอให้ค่าความน่าจะเป็นคุ้มรวมใกล้เคียง กับความน่าจะเป็นที่กำหนด แต่เมื่อสัมประสิทธิ์การแปรผันประชากรมีค่าตั้งแต่ 0.5 ขึ้นไปช่วงความเชื่อมั่น กลับให้ค่าความน่าจะเป็นคุ้มรวมต่ำกว่าความน่าจะเป็นที่กำหนดเป็นอย่างมากทั้งที่ตัวอย่างมีขนาดใหญ่

Donner ans Tou (2010) นำเสนอวิธีการหาช่วงความเชื่อมั่นสำหรับฟังก์ชันของพารามิเตอร์ในการ แจกแจงใด ๆ โดยอาศัยวิธีการสร้างช่วงความเชื่อมั่นสำหรับตัวอย่างขนาดใหญ่ วิธีดังกล่าวเรียกว่า Method of Variance Estimates Recovery ในงานวิจัยของ Donner ans Tou (2010) ได้นำเสนอสูตรปิดที่ใช้ในการ หาช่วงความเชื่อมั่นสำหรับฟังก์ชันของพารามิเตอร์ที่อยู่ในรูปผลบวก ผลต่าง และอัตราส่วนไว้ด้วย

วรพจน์ แซ่หลี (2554) ได้นำเสนอช่วงความเชื่อมั่นสำหรับสัมประสิทธิ์การแปรผันในการแจกแจง ปรกติสำหรับตัวอย่างขนาดใหญ่ ในงานวิจัยนี้เขาได้ทำการพิสูจน์หาความแปรปรวนของ $\hat{\tau}$ โดยประมาณ เมื่อ ได้ปริมาณหมุน (Pivot) ที่มีการแจกแจงปรกติมาตรฐานแล้วเขาจึงสร้างช่วงความเชื่อมั่นโดยอาศัยวิธีของ Wald (Wilson, 1927) อย่างไรก็ตามในการศึกษาดังกล่าวไม่ได้มีการศึกษาประสิทธิภาพของช่วงความเชื่อมั่น แต่อย่างใด

บทที่ 3

วิธีดำเนินการศึกษา

ในการศึกษาประสิทธิภาพของตัวประมาณค่าส่วนเบี่ยงเบนมาตรฐานในการแจกแจงปรกติมีวิธีการ ดำเนินการดังต่อไปนี้

3.1 สมบัติของตัวประมาณค่าพารามิเตอร์ในการแจกแจงปรกติ

กำหนดให้ $X_1,X_2,...,X_n$ เป็นตัวอย่างสุ่มจากประชากรที่มีการแจกแจงปรกติซึ่งมีค่าเฉลี่ย คือ μ และความแปรปรวน คือ σ^2 โดยที่ μ และ σ^2 ต่างเป็นค่าคงตัวที่ไม่ทราบค่า ในการประมาณ ค่าพารามิเตอร์ μ และ σ^2 โดยทั่วไปนั้นมักจะอาศัยวิธีภาวะน่าจะเป็นสูงสุดหรือการประมาณค่า σ^2 ด้วย ตัวประมาณไม่เอนเอียง ซึ่งในหัวข้อต่อไปผู้วิจัยจะกล่าวถึงขั้นตอนการประมาณค่าพารามิเตอร์จากวิธีดังกล่าว และสมบัติบางประการของตัวประมาณ

3.1.1 ตัวประมาณค่าพารามิเตอร์ μ

ในการประมาณค่า μ ที่อาศัยวิธีภาวะน่าจะเป็นสูงสุดสามารถหาได้จากขั้นตอนดังต่อไปนี้

1. พิจารณาตัวประมาณภาวะน่าจะเป็นสูงสุดของพารามิเตอร์ μ พิจารณาฟังก์ชันความหนาแน่นความน่าจะเป็นของตัวแปรสุ่ม X จาก

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (x - \mu)^2\right)$$

จากนั้นหาฟังก์ชันภาวะน่าจะเป็นสูงสุด (Likelihood function) ของ μ และ σ^2 โดยพิจารณาจากฟังก์ชัน ความหนาแน่นความน่าจะเป็นร่วม (Joint probability density function) ของ $X_1,X_2,...,X_n$ ซึ่งจะได้ว่า

$$L(\mu, \sigma^{2}) = \prod_{i=1}^{n} f(x; \mu, \sigma^{2}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{1}{2\sigma^{2}} (x_{i} - \mu)^{2}\right)$$
$$= \left(2\pi\sigma^{2}\right)^{-\frac{n}{2}} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}\right)$$

ดังนั้นจะได้ ล็อก-ฟังก์ชันภาวะน่าจะเป็นสูงสุด (Log-likelihood function) คือ

$$\ln L(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$
$$= -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$

เมื่อหาอนุพันธ์ย่อยอันดับที่หนึ่งเทียบกับ μ แล้วจะได้

$$\frac{\partial}{\partial \mu} \ln L(\mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} 2(x_i - \mu)(-1) = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu)$$

และหาค่าสุดขีดจากการนำค่าของอนุพันธ์ย่อยเทียบกับ μ มีค่าเป็น 0 เราจะพบว่า

$$\frac{\partial}{\partial \mu} \ln L(\mu, \sigma^2) = 0 \quad \Leftrightarrow \quad \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \hat{\mu}_{MLE}) = 0$$

$$\sum_{i=1}^{n} \left(x_i - \hat{\mu}_{MLE} \right) = 0 \quad \Leftrightarrow \quad \sum_{i=1}^{n} x_i - n \hat{\mu}_{MLE} = 0$$

ดังนั้น ตัวประมาณค่าของ μ คือ $\hat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X}$

และพบว่า $\frac{\partial^2}{\partial \mu^2} \ln L(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n (-1) = -\frac{n}{\sigma^2} < 0$ เมื่อ $-\infty < \mu < \infty$, $\sigma^2 > 0$, n > 1 ซึ่งทำให้ค่า ของ $\ln L(\mu, \sigma^2)$ มีค่าสูงสุด จากการพิสูจน์ข้างต้นจึงสรุปได้ว่า \overline{X} เป็นตัวประมาณภาวะน่าจะเป็นสูงสุด ของ μ

- 2. พิสูจน์สมบัติความไม่เอนเอียงของตัวประมาณภาวะน่าจะเป็นสูงสุดสำหรับ μ จากข้อ 1. เราทราบว่าตัวประมาณ $\hat{\mu}_{MLE} = \frac{1}{n}\sum_{i=1}^n X_i = \overline{X}$ และเนื่องจาก $X_i \sim N\Big(\mu,\sigma^2\Big)$ จะได้ ว่า $\overline{X} \sim N\Big(\mu,\frac{\sigma^2}{n}\Big)$ เมื่อพิจารณาค่าคาดหมายของ \overline{X} จะได้ว่า $E\Big(\overline{X}\Big) = \mu$ ดังนั้นจึงสามารถสรุปได้ว่า $\hat{\mu}_{MLE} = \overline{X}$ เป็นตัวประมาณที่ไม่เอนเอียงของ μ
 - 3. พิสูจน์สมบัติความคงเส้นคงวาของตัวประมาณภาวะน่าจะเป็นสูงสุดสำหรับ μ ในทำนองเดียวกัน จากข้อ 1. เราทราบว่า $\hat{\mu}_{MLE}=ar{X}$ และ $ar{X}\sim Nigg(\mu,\frac{\sigma^2}{n}igg)$ เมื่อพิจารณาค่า แปรปรวบของ $ar{X}$ ได้ว่า $Var(ar{X})=\frac{\sigma^2}{n}$ และ $E(ar{X})=\mu$ นอกจากนั้นเมื่อทำการพิจารณาค่า

ความแปรปรวนของ \overline{X} ได้ว่า $Var(\overline{X})=rac{\sigma^2}{n}$ และ $E\Big(\overline{X}\Big)=\mu$ นอกจากนั้นเมื่อทำการพิจารณาค่า ดังกล่าวเมื่อตัวอย่างมีขนาดใหญ่ $(n o\infty)$ พบว่า

$$\lim_{n \to \infty} E(\hat{\mu}_{MLE}) = \lim_{n \to \infty} E(\overline{X}) = \lim_{n \to \infty} \mu = \mu$$
 และ

$$\lim_{n \to \infty} Var(\hat{\mu}_{MLE}) = \lim_{n \to \infty} Var(\overline{X}) = \lim_{n \to \infty} \frac{\sigma^2}{n} = 0 \; ; \; 0 < \sigma^2 < \infty$$

ดังนั้นจึงสรุปได้ว่า $\hat{\mu}_{MLE}=ar{X}$ เป็นตัวประมาณคงเส้นคงวาของ μ

3.1.2 สมบัติของตัวประมาณพารามิเตอร์ σ^2 ในการแจกแจงปรกติ

การประมาณค่า σ^2 โดยทั่วไปนั้น เรามักพบว่านักวิจัยใช้ตัวประมาณ $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ ซึ่งตัวประมาณดังกล่าวมีสมบัติดังนี้

1. พิสูจน์สมบัติความไม่เอนเอียงของตัวประมาณ \boldsymbol{S}^2

กำหนดให้ $X_i \sim N\left(\mu,\sigma^2\right)$ และ $S^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X})^2$ จากความสัมพันธ์ระหว่างการแจก แจงปรกติและการแจกแจงไคกำลังสองจะได้ว่า

$$\frac{1}{\sigma^2} \sum_{i=1}^n \left(X_i - \bar{X} \right)^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$$
 (1.1)

นั่นคือตัวแปรดังกล่าวจะมีค่าคาดหมายเท่ากับ

$$E\left[\frac{(n-1)S^2}{\sigma^2}\right] = n-1 \iff \frac{(n-1)}{\sigma^2}E(S^2) = n-1$$

และ

$$E(S^2) = \sigma^2$$

ดังนั้นจึงกล่าวได้ว่า $S^2=rac{1}{n-1}\sum_{i=1}^n(X_i-ar{X})^2$ เป็นตัวประมาณที่ไม่เอนเอียงของ σ^2

2. พิสูจน์สมบัติความคงเส้นคงวาของ S^2

จากสมการ (1.1) เราพบว่า $Varigg[rac{(n-1)S^2}{\sigma^2}igg] = 2(n-1)$ อาศัยทฤษฎีที่เกี่ยวข้องกับการพิสูจน์ ความคงเส้นคงวาของตัวประมาณจะพบว่า

$$\lim_{n\to\infty} E(S^2) = \lim_{n\to\infty} \sigma^2 = \sigma^2$$
 และ

$$\lim_{n\to\infty} Var(S^2) = \lim_{n\to\infty} \frac{2\sigma^4}{(n-1)} = 0 ; 0 < \sigma^2 < \infty$$

ดังนั้นจึงสรุปได้ว่า $S^2=rac{1}{n-1}\sum_{i=1}^n(X_i-ar{X})^2$ เป็นตัวประมาณคงเส้นคงวาของ σ^2

- 3.1.3 สมบัติของตัวประมาณภาวะน่าจะเป็นสูงสุดของพารามิเตอร์ σ^2 ในการแจกแจงปรกติ
 - 1. พิจารณาตัวประมาณภาวะน่าจะเป็นสูงสุดของพารามิเตอร์ σ^2

จากฟังก์ชันความหนาแน่นความน่าจะเป็นของตัวแปรสุ่ม X หรือ $f(x\;;\mu,\sigma^2)$ และ ล็อกฟังก์ชัน ภาวะน่าจะเป็นสูงสุด $\ln L(\mu,\sigma^2)$ เมื่อหาอนุพันธ์ย่อยอันดับที่หนึ่งเทียบกับ σ^2 จะได้ว่า

$$\frac{\partial}{\partial \sigma^2} \ln L(\mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2$$

หาค่าสุดขีดจากการนำค่าของอนุพันธ์ย่อยข้างต้นเทียบกับ σ^2 มีค่าเป็น 0 จะพบว่า

$$\frac{\partial}{\partial \sigma^2} \ln L(\mu, \sigma^2) = 0$$

$$-\frac{n}{2\hat{\sigma}_{MLE}^2} + \frac{1}{2\hat{\sigma}_{MLE}^4} \sum_{i=1}^n (x_i - \hat{\mu}_{MLE})^2 = 0$$

$$\frac{1}{2\hat{\sigma}_{MLE}^4} \sum_{i=1}^n (x_i - \hat{\mu}_{MLE})^2 = \frac{n}{2\hat{\sigma}_{MLE}^2}$$

$$\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu}_{MLE})^2$$

$$\left[\sum_{i=1}^n (x_i - \hat{\mu}_{MLE})^2\right]$$

นละพบว่า
$$\frac{\hat{\sigma}^2}{\partial \sigma^4} \ln L(\mu, \sigma^2) = \frac{n}{2 \left[\frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu}_{MLE})^2 \right]^2 - \left[\frac{\sum_{i=1}^n (x_i - \hat{\mu}_{MLE})^2}{\left[\frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu}_{MLE})^2 \right]^3} \right]$$

$$= \frac{1}{\left[\sum_{i=1}^n (x_i - \hat{\mu}_{MLE})^2 \right]^2} \left(\frac{n^3}{2} - n^3 \right)$$

$$= \frac{1}{\left[\sum_{i=1}^n (x_i - \hat{\mu}_{MLE})^2 \right]^2} \left(-\frac{1}{2} n^3 \right) < 0 \; ; \; \sigma^2 > 0 \; , n > 1$$

ทำให้ค่าของ $\ln L(\mu,\sigma^2)$ มีค่าสูงสุด และถ้ากำหนดให้ $S^2_{MLE}=\hat{\sigma}^2_{MLE}$ แล้ว เราจะสามารถสรุปได้ว่า $S^2_{MLE}=\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2$ เป็นตัวประมาณภาวะน่าจะเป็นสูงสุดของ σ^2

2. พิสูจน์สมบัติความไม่เอนเอียงของตัวประมาณภาวะน่าจะเป็นสูงสุดสำหรับพารามิเตอร์ σ^2 เนื่องจาก $X_i \sim N\left(\mu,\sigma^2\right)$ และตัวประมาณภาวะน่าจะเป็นสูงสุดสำหรับพารามิเตอร์ σ^2 คือ $S^2_{MLE} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$

อาศัยทฤษฎี
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{nS_{MLE}^2}{\sigma^2} \sim \chi_{(n-1)}^2$$
 (1.2)

ในการหาค่าคาดหมายของตัวแปรสุ่มจะได้ดังนี้

$$E\left[\frac{nS_{MLE}^2}{\sigma^2}\right] = n - 1 \iff \frac{n}{\sigma^2}E(S_{MLE}^2) = n - 1$$
$$E\left(S_{MLE}^2\right) = \left(\frac{n - 1}{n}\right)\sigma^2$$

ดังนั้น $S^2_{MLE} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ เป็นตัวประมาณเอนเอียงสำหรับ σ^2 โดยมีค่าความเอนเอียงของตัว

ประมาณเท่ากับ
$$Bias(S_{MLE}^2) = \left(\frac{n-1}{n}\right)\sigma^2 - \sigma^2 = \frac{-\sigma^2}{n}$$

3. พิสูจน์สมบัติความคงเส้นคงวาของตัวประมาณภาวะน่าจะเป็นสูงสุดสำหรับพารามิเตอร์ σ^2

จากสมการ (1.2) เราทราบแล้วว่า
$$Var\left[\frac{nS_{MLE}^2}{\sigma^2}\right] = 2\left(n-1\right)$$
 ดังนั้น

$$\frac{n^2}{\sigma^4} Var(S_{MLE}^2) = 2(n-1)$$

$$Var(S_{MLE}^2) = \left(\frac{2(n-1)}{n^2}\right)\sigma^4$$

เมื่อพิจารณาค่าคาดหมายและค่าความแปรปรวนของ S^2_{MLE} เมื่อตัวอย่างมีขนาดใหญ่ จะพบว่า

$$\lim_{n\to\infty} E(S_{MLE}^2) = \lim_{n\to\infty} \left(\frac{n-1}{n}\right) \sigma^2 = \lim_{n\to\infty} \left(1 - \frac{1}{n}\right) \sigma^2 = \sigma^2$$

$$\lim_{n\to\infty} Var(S_{MLE}^2) = \lim_{n\to\infty} \left(\frac{2(n-1)}{n^2}\right) \sigma^4 = \lim_{n\to\infty} \left(\frac{2}{n} - \frac{2}{n^2}\right) \sigma^4 = 0 ; 0 < \sigma^2 < \infty$$

ดังนั้น $S^2_{MLE}=rac{1}{n}\sum_{i=1}^n(X_i-ar{X})^2$ จึงเป็นตัวประมาณที่คงเส้นคงวาของ σ^2

3.2 สมบัติของตัวประมาณค่าส่วนเบี่ยงเบนมาตรฐานในการแจกแจงปรกติ

จากหัวข้อ 3.1 ผู้วิจัยทราบแล้วว่า S^2 และ S^2_{MLE} มีสมบัติบางประการในเรื่องความไม่เอนเอียง และความคงเส้นคงวาอย่างไร โดยเฉพาะอย่างยิ่ง S^2 มีสมบัติที่ดีถึงสองประการ คือ เป็นตัวประมาณไม่เอน เอียงและคงเส้นคงวาสำหรับ μ และ σ^2 ตามลำดับ ส่วน S^2_{MLE} เป็นตัวประมาณคงเส้นคงวาของ σ^2 อย่างไรก็ตามผู้วิจัยยังคงต้องการทราบว่าตัวประมาณ S และ S_{MLE} ซึ่งได้จากวิธีการที่ง่าย คือ ถอดรากที่สอง ของตัวประมาณ S^2 และ S^2_{MLE} ตามลำดับเท่านั้น จะยังคงเป็นตัวประมาณแบบจุดที่มีสมบัติที่ดีหรือไม่เพื่อ

ใช้ในการประมาณค่าส่วนเบี่ยงเบนมาตรฐานของประชากร σ การพิสูจน์สมบัติที่กล่าวไปของ S และ S_{MLE} ตามทฤษฎีมีดังต่อไปนี้

3.2.1 พิสูจน์ค่าคาดหมายที่มีความสัมพันธ์กับตัวประมาณ \emph{S}

การหาค่าคาดหมายของตัวประมาณ S จะเริ่มต้นการแจกแจงของ $\frac{1}{\sigma^2}\sum_{i=1}^n \left(X_i - \overline{X}\right)^2 = \frac{(n-1)S^2}{\sigma^2}$ ซึ่งมีการแจกแจงไคกำลังสองด้วยค่าองศาเสรีเท่ากับ n-1

ถ้ากำหนดให้ $Y=rac{1}{\sigma^2}\sum_{i=1}^n ig(X_i-ar{X}ig)^2=rac{(n-1)S^2}{\sigma^2}\sim \chi^2_{(n-1)}$ และพิจารณาการแจกแจงของ $W=\sqrt{Y}$ จะได้ฟังก์ชั่นความหนาแน่นความน่าจะเป็นของ Y คือ

$$\begin{split} f_{\gamma}(y) &= \frac{y^{\frac{(n-1)}{2}} e^{\frac{-y}{2}}}{\Gamma\left(\frac{n-1}{2}\right) 2^{\frac{n-1}{2}}}, \ y > 0, \ n-1 > 0 \end{split}$$
 เนื่องจาก
$$w &= \sqrt{y}, \ y > 0, \ n-1 > 0 \end{split}$$
 จะได้
$$y &= w^2 \quad \text{และ} \quad J = \frac{dy}{dw} = 2w$$
 ดังนั้น
$$f_W(w) = f_{\gamma}(w^2) \cdot |2w| \\ &= \frac{(w^2)^{\frac{(n-1)}{2}-1} e^{\frac{-w^2}{2}}}{\Gamma\left(\frac{n-1}{2}\right) 2^{\frac{(n-1)}{2}-1}} (2w) = \frac{w^{(n-1)-1} e^{\frac{-w^2}{2}}}{\Gamma\left(\frac{n-1}{2}\right) 2^{\frac{(n-1)}{2}-1}} \ , w > 0 \end{split}$$

$$E(W) = \int_0^\infty w \frac{w^{(n-1)-1} e^{\frac{-w^2}{2}}}{\Gamma\left(\frac{n-1}{2}\right) 2^{\frac{(n-1)}{2}-1}} dw = \int_0^\infty \frac{w^{(n-1)} e^{\frac{-w^2}{2}}}{\Gamma\left(\frac{n-1}{2}\right) 2^{\frac{(n-1)}{2}-1}} dw \end{split}$$

เมื่อพิจารณา $\int\limits_0^\infty w^{(n-1)}e^{rac{-w^2}{2}}dw$ จากการอินทิเกรต โดยการแทนค่า นั่นคือ กำหนดให้ $u=rac{w^2}{2}$ และ du=wdw ได้ว่า $w=\sqrt{2u}$ และ $dw=rac{du}{\sqrt{2u}}$ นอกจากนั้นจะได้ว่า

$$\int_{0}^{\infty} w^{(n-1)} e^{\frac{-w^{2}}{2}} dw = \int_{0}^{\infty} \sqrt{2u}^{(n-1)} e^{-u} \frac{du}{\sqrt{2u}} = \int_{0}^{\infty} \sqrt{2u}^{n-2} e^{-u} du$$
$$= \sqrt{2}^{n-2} \int_{0}^{\infty} u^{\frac{n}{2}-1} e^{-u} du = 2^{\frac{n}{2}-1} \Gamma\left(\frac{n}{2}\right)$$

ดังนั้น
$$E(W) = \frac{2^{\frac{n}{2}-1}\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)2^{\frac{(n-1)}{2}-1}} \quad \text{และ} \quad E(\sqrt{Y}) = \sqrt{2}\,\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}$$

เราจึงสรุปได้ว่า
$$E\left(\sqrt{Y}\right) = E\left[\sqrt{\frac{1}{\sigma^2}\sum_{i=1}^n\left(X_i - \bar{X}\right)^2}\right] = E\left(\sqrt{\frac{(n-1)S^2}{\sigma^2}}\right) = \sqrt{2}\,\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}$$

3.2.2 ความเอนเอียงของตัวประมาณ S

ใช้ข้อมูลในหัวข้อที่ผ่านมาในการพิจารณาค่าคาดหมายของ S ซึ่งจะได้ว่า

$$E\left(\sqrt{\frac{(n-1)S^2}{\sigma^2}}\right) = \sqrt{2} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}$$

$$\frac{\sqrt{n-1}}{\sigma}E(S) = \sqrt{2}\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}$$

และ

$$E(S) = \sqrt{\frac{2}{n-1}} \cdot \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \sigma \neq \sigma$$

ดังนั้นจึงสรุปได้ว่า $S=\sqrt{\frac{1}{n-1}\sum_{i=1}^n \left(X_i-\overline{X}\right)^2}$ เป็นตัวประมาณที่เอนเอียงของ σ โดยค่าความเอนเอียงของ

ตัวประมาณจะหาได้จาก
$$Bias(S) = E(S) - \sigma = \left[\sqrt{\frac{2}{n-1}} \cdot \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} - 1 \right] \sigma$$

3.2.3 ความแปรปรวนของตัวประมาณ $\,S\,$

เนื่องจาก
$$E\left(W\right) = E\left(\sqrt{Y}\right) = E\left[\sqrt{\frac{1}{\sigma^2}\sum_{i=1}^n\left(X_i - \bar{X}\right)^2}\right] = \sqrt{2}\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}$$
 และ
$$E\left(W^2\right) = E\left(Y\right) = E\left[\frac{1}{\sigma^2}\sum_{i=1}^n\left(X_i - \bar{X}\right)^2\right] = n-1$$

เมื่อพิจารณา $Var(W) = E(W^2) - [E(W)]^2 = E(Y) - [E(W)]^2$

$$= (n-1) - \left[\sqrt{2} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \right]^2 = (n-1) - 2 \left[\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \right]^2$$

นล้ว พบว่า
$$Var \left[\sqrt{\frac{(n-1)S^2}{\sigma^2}} \right] = (n-1) - 2 \left[\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \right]^2$$

$$\frac{(n-1)}{\sigma^2} Var(S) = (n-1) - 2 \left\lceil \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \right\rceil^2$$

ดังนั้น
$$Var(S) = \left(1 - \frac{2}{(n-1)} \left[\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \right]^2 \right) \sigma^2$$

3.2.4 ความเอนเอียงของตัวประมาณ $S_{\scriptscriptstyle MLE}$

การพิสูจน์จะทำในทำนองเดียวกันกับหัวข้อที่ผ่านมา นั่นคือ จากที่เราทราบแล้วว่า $\frac{nS_{MLE}^2}{\sigma^2} \sim \chi_{(n-1)}^2$

จึงทำให้
$$E\!\left(\sqrt{\frac{nS_{MLE}^2}{\sigma^2}}\right) = \sqrt{2}\, \frac{\Gamma\!\left(\frac{n}{2}\right)}{\Gamma\!\left(\frac{n-1}{2}\right)}$$
 และ $E\!\left(S_{MLE}\right) = \sqrt{\frac{2}{n}}\, \frac{\Gamma\!\left(\frac{n}{2}\right)}{\Gamma\!\left(\frac{n-1}{2}\right)}\sigma$

ดังนั้น $S_{MLE} = \sqrt{\frac{1}{n}\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}$ จึงเป็นตัวประมาณเอนเอียงของ σ โดยมีค่าความเอนเอียงเท่ากับ

$$Bias(S_{MLE}) = E(S_{MLE}) - \sigma = \left\lceil \sqrt{\frac{2}{n}} \cdot \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} - 1 \right\rceil \sigma$$

3.2.5 ความแปรปรวนของตัวประมาณ $S_{\scriptscriptstyle MLE}$

จากทฤษฎี
$$\frac{1}{\sigma^2}\sum_{i=1}^n \left(X_i - \bar{X}\right)^2 = \frac{nS_{MLE}^2}{\sigma^2} \sim \chi_{(n-1)}^2$$
 และข้อมูลในหัวข้อ 3.2.3 เราพิสูจน์ได้ว่า

$$E(W^{2}) = E(Y) = E\left[\frac{1}{\sigma^{2}}\sum_{i=1}^{n}\left(X_{i} - \overline{X}\right)^{2}\right] = n - 1$$

และ

$$E(W) = E\left(\sqrt{Y}\right) = E\left[\sqrt{\frac{1}{\sigma^2} \sum_{i=1}^{n} \left(X_i - \bar{X}\right)^2}\right] = \sqrt{2} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}$$

นอกจากนั้นเมื่อหาค่าความแปรปรวนของ $oldsymbol{W}$ จะได้

$$Var(W) = E(W^2) - [E(W)]^2$$

$$Var\left(\sqrt{\frac{1}{\sigma^{2}}\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)=Var\left(\sqrt{\frac{nS_{MLE}^{2}}{\sigma^{2}}}\right)=\left(n-1\right)-\left[\sqrt{2}\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}\right]^{2}$$

$$\frac{n}{\sigma^2} Var(S_{MLE}) = (n-1) - \left[\sqrt{2} \frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n-1}{2})} \right]^2$$

ดังนั้น ความแปรปรวนของตัวประมาณ $S_{MLE} = \sqrt{rac{1}{n}\sum_{i=1}^n \left(X_i - \overline{X}
ight)^2}$ คือ

$$Var(S_{MLE}) = \left(1 - \frac{1}{n}\right) - \frac{2}{n} \left[\frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n-1}{2})}\right]^{2} \sigma^{2}$$

3.3 ตัวประมาณไม่เอนเอียงสำหรับส่วนเบี่ยงเบนมาตรฐาน

จากข้อมูลที่ได้จากการพิสูจน์เกี่ยวกับสมบัติของตัวประมาณในหัวข้อที่ผ่านมา ทำให้ผู้วิจัยสามารถ พิจารณาตัวประมาณไม่เอนเอียงสำหรับส่วนเบี่ยงเบนมาตรฐานได้ดังนี้

3.3.1 ตัวประมาณไม่เอนเอียงสำหรับตัวประมาณส่วนเบี่ยงเบนมาตรฐาน

จากหัวข้อ 3.2.3 ได้ว่า
$$E(S) = \sqrt{\frac{2}{n-1}} \cdot \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \sigma$$
 และ $E\left[\sqrt{\frac{n-1}{2}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} S\right] = \sigma$

ดังนั้น
$$\hat{S}=\sqrt{rac{n-1}{2}}rac{\Gammaigg(rac{n-1}{2}igg)}{\Gammaigg(rac{n}{2}igg)}S$$
 เป็นตัวประมาณไม่เอนเอียงของ σ

และพบว่า

$$\hat{S} = \sqrt{\frac{n-1}{2}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} S = \sqrt{\frac{n-1}{2}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}} = \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \sqrt{\frac{1}{2} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}$$

ต่อมาผู้วิจัยสามารถพิสูจน์ความแปรปรวนของ \hat{S} ได้ดังต่อไปนี้

จากหัวข้อ 3.3.1 เราพบว่า
$$\hat{S}=\sqrt{\frac{n-1}{2}}\frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}S$$
 เมื่อ $S=\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}\left(X_{i}-\overline{X}\right)^{2}}$ และ

$$Var(S) = \left(1 - \frac{2}{(n-1)} \left[\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \right]^{2} \right) \sigma^{2}$$

เมื่อพิจารณา
$$Var\left(\hat{S}\right) = Var\left[\sqrt{\frac{n-1}{2}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} S\right]$$

จะได้ว่าความแปรปรวนของ \hat{S} คือ

$$Var(\hat{S}) = \left(\sqrt{\frac{n-1}{2}} \frac{\Gamma(\frac{n-1}{2})}{\Gamma(\frac{n}{2})}\right)^{2} Var[S]$$

$$= \left(\sqrt{\frac{n-1}{2}} \frac{\Gamma(\frac{n-1}{2})}{\Gamma(\frac{n}{2})}\right)^{2} \left(1 - \frac{2}{(n-1)} \left[\frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n-1}{2})}\right]^{2}\right) \sigma^{2}$$

$$= \left(\frac{(n-1)}{2} \left(\frac{\Gamma(\frac{n-1}{2})}{\Gamma(\frac{n}{2})}\right)^{2} - 1\right) \sigma^{2}$$

3.3.2 ตัวประมาณไม่เอนเอียงสำหรับตัวประมาณส่วนเบี่ยงเบนมาตรฐานภาวะน่าจะเป็นสูงสุด

จากหัวข้อ 3.2.4 ได้พิสูจน์ว่า
$$E\left(S_{\scriptscriptstyle MLE}\right) = \sqrt{\frac{2}{n}} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \sigma$$
 และ $E\left[\sqrt{\frac{n}{2}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} S_{\scriptscriptstyle MLE}\right] = \sigma$

ดังนั้น
$$\tilde{S}=\sqrt{\frac{n}{2}}rac{\Gammaigg(rac{n-1}{2}igg)}{\Gammaigg(rac{n}{2}igg)}S_{MLE}$$
 เป็นตัวประมาณไม่เอนเอียงของ σ

และพบว่า

$$\tilde{S} = \sqrt{\frac{n}{2}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} S_{MLE} = \sqrt{\frac{n}{2}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}} = \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \sqrt{\frac{1}{2} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}} = \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \sqrt{\frac{1}{2} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}} =$$

ต่อมาผู้วิจัยสามารถพิสูจน์ความแปรปรวนของ $ilde{S}$ ได้ดังต่อไปนี้

จากหัวข้อ 3.3.2 เราได้ว่า
$$\tilde{S}=\sqrt{\frac{n}{2}}\frac{\Gamma\!\left(\frac{n-1}{2}\right)}{\Gamma\!\left(\frac{n}{2}\right)}S_{MLE}$$
 เมื่อ $S_{MLE}=\sqrt{\frac{1}{n}\sum_{i=1}^{n}\!\left(X_{i}-\overline{X}\right)^{2}}$ และ

$$Var(S_{MLE}) = \left(1 - \frac{1}{n}\right) - \frac{2}{n} \left[\frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n-1}{2})}\right]^{2} \sigma^{2}$$

เมื่อพิจารณา
$$Var\left(\tilde{S}\right) = Var\left[\sqrt{\frac{n}{2}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} S_{MLE}\right] = \left(\sqrt{\frac{n}{2}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}\right)^2 Var\left(S_{MLE}\right)$$

จึงพบว่าความแปรปรวนของ $ilde{S}$ คือ

$$Var(\tilde{S}) = \left(\sqrt{\frac{n}{2}} \frac{\Gamma(\frac{n-1}{2})}{\Gamma(\frac{n}{2})}\right)^{2} \left(1 - \frac{1}{n}\right) - \frac{2}{n} \left[\frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n-1}{2})}\right]^{2} \sigma^{2}$$

$$= \left(\frac{(n-1)}{2} \left(\frac{\Gamma(\frac{n-1}{2})}{\Gamma(\frac{n}{2})}\right)^{2} - 1\right) \sigma^{2}$$

3.3.3 สมบัติของตัวประมาณที่มีสมบัติไม่เอนเอียง (\hat{S} และ $ilde{S}$)

จาก 3.3.1

พบว่า
$$\hat{S} = \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \sqrt{\frac{1}{2} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}$$
 และ $Var(\hat{S}) = \left(\frac{(n-1)}{2} \left(\frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}\right)^{2} - 1\right) \sigma^{2}$

และ 3.3.2

พบว่า
$$\tilde{S} = \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \sqrt{\frac{1}{2} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}$$
 และ $Var\left(\tilde{S}\right) = \left(\frac{(n-1)}{2} \left(\frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}\right)^{2} - 1\right) \sigma^{2}$

ผู้วิจัยได้พบว่า $\hat{S}= ilde{S}$ และยิ่งไปกว่านั้น $Varig(\hat{S}ig)=Varig(ilde{S}ig)$

จึงสรุปว่า ตัวประมาณที่จะศึกษาต่อคือ
$$\hat{S}=rac{\Gammaigg(rac{n-1}{2}igg)}{\Gammaigg(rac{n}{2}igg)}\sqrt{rac{1}{2}\sum_{i=1}^{n}ig(X_{i}-ar{X}ig)^{2}}$$
 เท่านั้น

3.4 สรุปตัวประมาณค่า σ ความแปรปรวนของตัวประมาณ และค่าความเอนเอียงของตัวประมาณ

จากการศึกษาตัวประมาณแบบดั้งเดิม (S และ S_{MLE}) และตัวประมาณที่มีสมบัติไม่เอนเอียง (\hat{S}) ในครั้งนี้ สามารถสรุปสูตรได้ดังตารางที่ 3.1

ตารางที่ 3.1 เปรียบเทียบตัวประมาณส่วนเบี่ยงเบนมาตรฐาน

ตัวประมาณ	ค่าความเอนเอียงของตัวประมาณ	ความแปรปรวนของตัวประมาณ
$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$	$Bias(S) = \left[\sqrt{\frac{2}{n-1}} \cdot \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} - 1 \right] \sigma$	$Var(S) = \left[1 - \frac{2}{(n-1)} \left(\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}\right)^{2}\right] \sigma^{2}$
$S_{MLE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2}$	$Bias(S_{MLE}) = \left[\sqrt{\frac{2}{n}} \cdot \frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n-1}{2})} - 1\right] \sigma$	$Var(S_{MLE}) = \left[\left(1 - \frac{1}{n} \right) - \frac{2}{n} \left(\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \right) \right] \sigma^{2}$
$\hat{S} = \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \sqrt{\frac{1}{2} \sum_{i=1}^{n} (X_i - \overline{X})^2}$	$Biasig(\hat{S}ig) = 0$ (\hat{S} เป็นตัวประมาณที่ไม่เอนเอียง)	$Var(\hat{S}) = \left[\frac{(n-1)}{2} \left(\frac{\Gamma(\frac{n-1}{2})}{\Gamma(\frac{n}{2})}\right)^{2} - 1\right] \sigma^{2}$

3.5 ผังการจำลองข้อมูล

รูปที่ 3.1 ผังการจำลองข้อมูล

บทที่ 4

ผลจากการดำเนินงานวิจัย

ผลการวิจัยที่นำเสนอในหัวข้อต่อไปนี้ได้จากการจำลองข้อมูลที่มีการแจกแจงปรกติโดยมีการทำซ้ำ 10,000 รอบในแต่ละสถานการณ์ ผลการจำลองแบ่งเป็น 3 ตอนดังนี้

- 4.1 ประสิทธิภาพของตัวประมาณแบบจุดจากค่าความเอนเอียง (Bias) และค่าความคลาดเคลื่อน กำลังสองเฉลี่ย (Mean squared error)
- 4.2 ประสิทธิภาพของช่วงความเชื่อมั่นสำหรับส่วนเบี่ยงเบนมาตรฐานประชากรโดยพิจารณาจากค่า ความน่าจะเป็นคุ้มรวม (Coverage probability) และค่าเฉลี่ยความกว้างของช่วงความเชื่อมั่น (Expected length)
 - 4.3 ตัวอย่างการคำนวณจากข้อมูลจริง

สำหรับสัญลักษณ์ที่ใช้ในตารางมีความหมายดังนี้

S หมายถึงตัวประมาณ
$$S = \sqrt{\frac{1}{n-1}\sum_{i=1}^n(X_i - \overline{X})^2}$$

S.mle หมายถึงตัวประมาณ
$$S_{MLE} = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(X_i - \bar{X})^2}$$

S.hat หมายถึงตัวประมาณ
$$\hat{S} = \frac{\Gamma\!\left(\frac{n-1}{2}\right)}{\Gamma\!\left(\frac{n}{2}\right)} \sqrt{\frac{1}{2} \sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)^{2}}$$

4.1 ประสิทธิภาพของตัวประมาณแบบจุดจากค่าความเอนเอียง (Bias) และค่าความคลาดเคลื่อน กำลังสองเฉลี่ย (Mean squared error)

ตารางที่ 4.1 4.2 และ 4.3 แสดงค่าความเอนเอียง ความแปรปรวน และค่าความคลาดเคลื่อนกำลัง สองเฉลี่ย กรณี $\mu=0$ $\mu=5$ และ $\mu=-5$ ตามลำดับ ผลการวิจัยในกรณี กรณี $\mu=0$ พบว่าค่าความเอน เอียง ของตัวประมาณ \hat{S} มีค่าน้อยที่สุดในทุกกรณีศึกษา และ 2 ตัวประมาณที่เหลือมีค่าความเอนเอียง มากกว่า (ดูกราฟที่ 4.1-4.5) ซึ่งสอดคล้องกับผลจากการพิสูจน์ก่อนหน้านี้ เมื่อพิจารณาขนาดตัวอย่างน้อย กว่า 50 พบว่าค่าความแปรปรวนของตัวประมาณ (ดูกราฟที่ 4.6-4.10) และค่าคลาดเคลื่อนกำลังสองเฉลี่ย ของตัวประมาณ \hat{S} (ดูกราฟที่ 4.11-4.15) มีค่ามากกว่า 2 ตัวประมาณที่เหลือเล็กน้อย แต่เมื่อขนาดตัวอย่าง ที่ใหญ่ขึ้นพบว่าค่าความแปรปรวนของตัวประมาณและค่าคลาดเคลื่อนกำลังสองเฉลี่ยของทั้ง 3 ตัวประมาณมี ค่าใกล้เคียงกันมาก ผู้วิจัยพบว่าผลลัพธ์ กรณีที่ $\mu=5$ และ $\mu=-5$ ให้ข้อสรุปของผลลัพธ์สอดคล้องกันกับ กรณี $\mu=0$

ตารางที่ 4.1 ค่าความเอนเอียง ความแปรปรวน และความคลาดเคลื่อนกำลังสองเฉลี่ย กรณี $\mu = 0$

				Bias		,	Variance			MSE	
μ	σ	n	S	S.mle	S.hat	S	S.mle	S.hat	S	S.mle	S.hat
0	0.5	10	-0.0139	-0.0388	-0.0002	0.0132	0.0119	0.0139	0.0134	0.0134	0.0139
		20	-0.0053	-0.0178	0.0013	0.0065	0.0062	0.0067	0.0066	0.0065	0.0067
		30	-0.0045	-0.0128	-0.0002	0.0042	0.0041	0.0043	0.0042	0.0042	0.0043
		50	-0.0023	-0.0073	0.0002	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
		100	-0.0014	-0.0039	-0.0001	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013
		300	-0.0003	-0.0012	0.0001	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004
	1	10	-0.0282	-0.0780	-0.0008	0.0533	0.0480	0.0564	0.0541	0.0541	0.0564
		20	-0.0096	-0.0347	0.0035	0.0263	0.0250	0.0270	0.0264	0.0262	0.0270
		30	-0.0104	-0.0270	-0.0018	0.0175	0.0169	0.0178	0.0176	0.0176	0.0178
		50	-0.0048	-0.0148	0.0003	0.0100	0.0098	0.0101	0.0100	0.0100	0.0101
		100	-0.0034	-0.0084	-0.0009	0.0050	0.0049	0.0050	0.0050	0.0050	0.0050
		300	-0.0009	-0.0026	-0.0001	0.0016	0.0016	0.0017	0.0016	0.0016	0.0017
	2	10	-0.0577	-0.1574	-0.0031	0.2167	0.1950	0.2291	0.2200	0.2198	0.2291
		20	-0.0277	-0.0776	-0.0016	0.1019	0.0968	0.1047	0.1027	0.1029	0.1047
		30	-0.0150	-0.0484	0.0022	0.0679	0.0656	0.0691	0.0681	0.0680	0.0691
		50	-0.0111	-0.0311	-0.0009	0.0409	0.0401	0.0413	0.0410	0.0410	0.0413
		100	-0.0066	-0.0166	-0.0016	0.0200	0.0198	0.0201	0.0200	0.0200	0.0201
		300	-0.0015	-0.0048	0.0002	0.0066	0.0066	0.0066	0.0066	0.0066	0.0066
	5	10	-0.1408	-0.3902	-0.0042	1.3112	1.1801	1.3859	1.3310	1.3323	1.3859
		20	-0.0619	-0.1869	0.0035	0.6421	0.6100	0.6592	0.6459	0.6449	0.6592
		30	-0.0469	-0.1302	-0.0040	0.4159	0.4020	0.4231	0.4181	0.4190	0.4231
		50	-0.0238	-0.0738	0.0016	0.2520	0.2470	0.2546	0.2526	0.2524	0.2546
		100	-0.0109	-0.0359	0.0017	0.1269	0.1256	0.1275	0.1270	0.1269	0.1275
		300	-0.0028	-0.0112	0.0014	0.0417	0.0415	0.0418	0.0417	0.0417	0.0418
	10	10	-0.2587	-0.7586	0.0152	5.3965	4.8569	5.7042	5.4634	5.4323	5.7044
		20	-0.1222	-0.3724	0.0085	2.5932	2.4635	2.6623	2.6081	2.6022	2.6624
		30	-0.0768	-0.2436	0.0091	1.7220	1.6646	1.7520	1.7279	1.7240	1.7521
		50	-0.0567	-0.1567	-0.0059	1.0157	0.9954	1.0261	1.0189	1.0199	1.0261
		100	-0.0086	-0.0587	0.0166	0.4973	0.4923	0.4998	0.4973	0.4957	0.5001
		300	-0.0075	-0.0242	0.0008	0.1674	0.1668	0.1677	0.1674	0.1674	0.1677

ตารางที่ 4.2 ค่าความเอนเอียง ความแปรปรวน และความคลาดเคลื่อนกำลังสองเฉลี่ย กรณี $\,\mu = 5\,$

				Bias		\	/ariance			MSE	
μ	σ	n	S	S.mle	S.hat	S	S.mle	S.hat	S	S.mle	S.hat
	0.5	10	-0.0121	-0.0371	0.0016	0.0136	0.0122	0.0143	0.0137	0.0123	0.0152
		20	-0.0060	-0.0185	0.0005	0.0063	0.0059	0.0064	0.0065	0.0062	0.0068
		30	-0.0054	-0.0138	-0.0012	0.0043	0.0041	0.0043	0.0043	0.0041	0.0044
		50	-0.0024	-0.0074	0.0001	0.0025	0.0024	0.0025	0.0025	0.0025	0.0026
		100	-0.0011	-0.0036	0.0002	0.0013	0.0013	0.0013	0.0013	0.0012	0.0013
		300	-0.0006	-0.0014	-0.0001	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004
	1	10	-0.0267	-0.0767	0.0007	0.0546	0.0491	0.0577	0.0547	0.0489	0.0604
		20	-0.0122	-0.0372	0.0009	0.0261	0.0248	0.0268	0.0262	0.0248	0.0274
		30	-0.0080	-0.0247	0.0006	0.0170	0.0164	0.0173	0.0172	0.0166	0.0177
		50	-0.0033	-0.0134	0.0018	0.0102	0.0100	0.0103	0.0102	0.0100	0.0104
		100	-0.0019	-0.0069	0.0006	0.0050	0.0050	0.0051	0.0050	0.0050	0.0051
		300	-0.0004	-0.0021	0.0004	0.0017	0.0017	0.0017	0.0017	0.0017	0.0017
	2	10	-0.0495	-0.1496	0.0054	0.2133	0.1920	0.2255	0.2195	0.1960	0.2421
		20	-0.0263	-0.0762	-0.0001	0.1044	0.0992	0.1072	0.1045	0.0991	0.1095
		30	-0.0181	-0.0514	-0.0009	0.0675	0.0652	0.0687	0.0686	0.0662	0.0707
		50	-0.0122	-0.0322	-0.0021	0.0411	0.0403	0.0416	0.0406	0.0398	0.0414
		100	-0.0056	-0.0156	-0.0006	0.0202	0.0200	0.0203	0.0202	0.0200	0.0203
		300	-0.0020	-0.0054	-0.0004	0.0067	0.0067	0.0068	0.0067	0.0067	0.0067
	5	10	-0.1265	-0.3766	0.0105	1.3441	1.2097	1.4207	1.3712	1.2239	1.5122
		20	-0.0804	-0.2050	-0.0153	0.6340	0.6023	0.6509	0.6489	0.6152	0.6796
		30	-0.0454	-0.1287	-0.0025	0.4253	0.4111	0.4327	0.4286	0.4139	0.4418
		50	-0.0215	-0.0715	0.0040	0.2541	0.2490	0.2567	0.2548	0.2497	0.2594
		100	-0.0097	-0.0347	0.0029	0.1264	0.1252	0.1271	0.1263	0.1250	0.1274
		300	-0.0044	-0.0128	-0.0002	0.0422	0.0421	0.0423	0.0418	0.0416	0.0419
	10	10	-0.2720	-0.7712	0.0015	5.3902	4.8512	5.6975	5.4655	4.8780	6.0273
		20	-0.1446	-0.3941	-0.0141	2.6124	2.4818	2.6820	2.6060	2.4705	2.7292
		30	-0.0968	-0.2632	-0.0111	1.7350	1.6772	1.7652	1.7130	1.6544	1.7656
		50	-0.0654	-0.1653	-0.0146	1.0332	1.0125	1.0438	1.0150	0.9943	1.0333
		100	-0.0335	-0.0834	-0.0083	0.5040	0.4990	0.5066	0.5036	0.4985	0.5080
		300	-0.0023	-0.0190	0.0061	0.1709	0.1704	0.1712	0.1674	0.1668	0.1679

ตารางที่ 4.3 ค่าความเอนเอียง ความแปรปรวน และความคลาดเคลื่อนกำลังสองเฉลี่ย กรณี $\,\mu=-5\,$

				Bias		,	Variance			MSE	
μ	σ	n	S	S.mle	S.hat	S	S.mle	S.hat	S	S.mle	S.hat
-5	0.5	10	-0.0144	-0.0393	-0.0008	0.0135	0.0122	0.0143	0.0136	0.0122	0.0150
		20	-0.0055	-0.0180	0.0010	0.0065	0.0062	0.0067	0.0066	0.0062	0.0069
		30	-0.0030	-0.0113	0.0013	0.0043	0.0041	0.0044	0.0043	0.0042	0.0044
		50	-0.0022	-0.0072	0.0004	0.0025	0.0025	0.0025	0.0025	0.0025	0.0026
		100	-0.0011	-0.0037	0.0001	0.0013	0.0013	0.0013	0.0013	0.0012	0.0013
		300	-0.0004	-0.0012	0.0001	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004
	1	10	-0.0223	-0.0725	0.0052	0.0532	0.0479	0.0563	0.0551	0.0492	0.0608
		20	-0.0113	-0.0363	0.0018	0.0266	0.0253	0.0273	0.0262	0.0249	0.0275
		30	-0.0081	-0.0248	0.0004	0.0173	0.0167	0.0176	0.0172	0.0166	0.0177
		50	-0.0045	-0.0146	0.0005	0.0102	0.0100	0.0103	0.0102	0.0100	0.0104
		100	-0.0039	-0.0089	-0.0014	0.0051	0.0051	0.0052	0.0050	0.0050	0.0051
		300	-0.0001	-0.0017	0.0008	0.0017	0.0017	0.0017	0.0017	0.0017	0.0017
	2	10	-0.0618	-0.1612	-0.0073	0.2137	0.1923	0.2259	0.2169	0.1936	0.2393
		20	-0.0248	-0.0748	0.0014	0.1057	0.1004	0.1085	0.1047	0.0993	0.1096
		30	-0.0222	-0.0554	-0.0050	0.0678	0.0656	0.0690	0.0683	0.0660	0.0704
		50	-0.0086	-0.0286	0.0016	0.0411	0.0403	0.0416	0.0408	0.0400	0.0415
		100	-0.0059	-0.0159	-0.0008	0.0205	0.0203	0.0206	0.0202	0.0200	0.0203
		300	-0.0022	-0.0055	-0.0005	0.0068	0.0068	0.0068	0.0067	0.0067	0.0067
	5	10	-0.1496	-0.3985	-0.0133	1.3492	1.2143	1.4261	1.3592	1.2131	1.4989
		20	-0.0778	-0.2025	-0.0127	0.6547	0.6220	0.6722	0.6501	0.6163	0.6809
		30	-0.0458	-0.1291	-0.0029	0.4288	0.4145	0.4363	0.4286	0.4139	0.4418
		50	-0.0281	-0.0780	-0.0026	0.2562	0.2510	0.2588	0.2542	0.2490	0.2588
		100	-0.0082	-0.0332	0.0044	0.1258	0.1246	0.1265	0.1263	0.1250	0.1274
		300	-0.0061	-0.0144	-0.0019	0.0422	0.0421	0.0423	0.0418	0.0416	0.0419
	10	10	-0.2642	-0.7638	0.0095	5.4918	4.9426	5.8049	5.4792	4.8899	6.0426
		20	-0.1431	-0.3927	-0.0127	2.5909	2.4614	2.6600	2.6061	2.4707	2.7294
		30	-0.0991	-0.2656	-0.0134	1.7098	1.6528	1.7395	1.7117	1.6532	1.7643
		50	-0.0545	-0.1544	-0.0036	1.0354	1.0147	1.0461	1.0172	0.9965	1.0355
		100	-0.0257	-0.0757	-0.0005	0.4993	0.4943	0.5019	0.5043	0.4992	0.5088
		300	-0.0144	-0.0311	-0.0060	0.1709	0.1703	0.1712	0.1670	0.1664	0.1674

กราฟแสดงค่าความเอนเอียง กรณี $\,\mu = 0\,$

กราฟที่ 4.1 Bias กรณีที่ $\sigma = 0.5$

กราฟที่ 4.2 Bias กรณีที่ σ = 1

กราฟที่ 4.3 Bias กรณีที่ $\sigma = 2$

กราฟที่ 4.4 Bias กรณีที่ $\sigma \! = \! 5$

กราฟที่ 4.5 Bias กรณีที่ σ = 10

กราฟแสดงค่าความแปรปรวน กรณี $\,\mu = 0\,$

กราฟที่ 4.6 Variance กรณีที่ σ = 0.5

กราฟที่ 4.8 Variance กรณีที่ σ = 2

กราฟที่ 4.9 Variance กรณีที่ $\sigma = 5$

กราฟที่ 4.10 Variance กรณีที่ $\sigma = 10$

กราฟแสดงค่าความคลาดเคลื่อนกำลังสองเฉลี่ย กรณี $\,\mu = 0\,$

กราฟที่ 4.15 MSE กรณีที่ σ = 10

4.2 ประสิทธิภาพของช่วงความเชื่อมั่นสำหรับส่วนเบี่ยงเบนมาตรฐานประชากรโดยพิจารณาจากค่า ความน่าจะเป็นคุ้มรวม (Coverage probability) และค่าเฉลี่ยความกว้างของช่วงความเชื่อมั่น (Expected length)

ตารางที่ 4.4 4.5 และ 4.6 แสดงค่าความน่าจะเป็นคุ้มรวม (CP) และค่าเฉลี่ยความกว้างของช่วงความ เชื่อมั่น (EL) กรณี $\mu=0$, กรณี $\mu=5$ และ $\mu=-5$ ตามลำดับ กราฟที่ 4.16-4.20 แสดงค่าความน่าจะ เป็นคุ้มรวม และ กราฟที่ 4.21-4.25 แสดงค่าเฉลี่ยความกว้างของช่วงความเชื่อมั่นสำหรับ

กำหนดสัญลักษณ์ที่ใช้ในตารางดังนี้

ร หมายถึง ช่วงความเชื่อมั่น (1-lpha)100% ที่อยู่ในรูปแบบ

$$S \pm t_{\alpha/2} \sqrt{Var(S)}$$

เมื่อ
$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

S.mle หมายถึง ช่วงความเชื่อมั่น (1-lpha)100% ที่อยู่ในรูปแบบ

$$S_{MLE} \pm t_{\alpha/2} \sqrt{Var(S_{MLE})}$$

เมื่อ
$$S_{MLE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

S.hat หมายถึง ช่วงความเชื่อมั่น (1-lpha)100% ที่อยู่ในรูปแบบ

$$\hat{S} \pm t_{\alpha/2} \sqrt{Var(\hat{S})}$$

เมื่อ
$$\hat{S} = \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \sqrt{\frac{1}{2} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

S_chisq หมายถึง ช่วงความเชื่อมั่น (1-lpha)100% ที่อยู่ในรูปแบบ

$$\frac{\sqrt{(n-1)}}{\sqrt{\mathcal{X}_{\frac{\alpha}{2},n-1}^2}}S \leq \sigma \leq \frac{\sqrt{(n-1)}}{\sqrt{\mathcal{X}_{1-\frac{\alpha}{2},n-1}^2}}S$$

ตารางที่ 4.4 ค่าความน่าจะเป็นคุ้มรวมและค่าเฉลี่ยความกว้างของช่วงความเชื่อมั่น กรณี $\mu = 0$

				CI)			El	L	
μ	σ	n	S	S.mle	S.hat	S	S.mle	S.hat	S	S.mle
0	0.5	10	0.9251	0.8850	0.9424	0.9470	0.5108	0.4597	0.5399	0.5528
		20	0.9367	0.9126	0.9457	0.9495	0.3337	0.3170	0.3426	0.3458
		30	0.9403	0.9241	0.9484	0.9498	0.2650	0.2561	0.2696	0.2710
		50	0.9462	0.9372	0.9500	0.9503	0.2015	0.1975	0.2036	0.2041
		100	0.9453	0.9402	0.9474	0.9492	0.1404	0.1390	0.1412	0.1415
		300	0.9481	0.9479	0.9491	0.9452	0.0804	0.0801	0.0805	0.0805
	1	10	0.9211	0.8794	0.9360	0.9518	1.0211	0.9190	1.0793	1.1069
		20	0.9375	0.9146	0.9465	0.9511	0.6680	0.6346	0.6858	0.6900
		30	0.9353	0.9177	0.9434	0.9527	0.5292	0.5115	0.5384	0.5426
		50	0.9439	0.9338	0.9480	0.9495	0.4030	0.3950	0.4072	0.4082
		100	0.9478	0.9432	0.9496	0.9490	0.2807	0.2779	0.2821	0.2831
		300	0.9514	0.9500	0.9523	0.9495	0.1607	0.1602	0.1610	0.1611
	2	10	0.9169	0.8753	0.9350	0.9497	2.0408	1.8367	2.1571	2.2207
		20	0.9324	0.9103	0.9441	0.9514	1.3303	1.2638	1.3657	1.3800
		30	0.9428	0.9248	0.9503	0.9510	1.0615	1.0261	1.0799	1.0858
		50	0.9419	0.9315	0.9464	0.9495	0.8054	0.7893	0.8137	0.8166
		100	0.9483	0.9441	0.9500	0.9504	0.5615	0.5559	0.5643	0.5656
		300	0.9488	0.9465	0.9501	0.9492	0.3215	0.3204	0.3221	0.3222
	5	10	0.9227	0.8813	0.9392	0.9512	5.1056	4.5951	5.3967	5.5347
		20	0.9374	0.9121	0.9477	0.9470	3.3306	3.1641	3.4194	3.4502
		30	0.9417	0.9270	0.9480	0.9547	2.6486	2.5604	2.6947	2.7086
		50	0.9451	0.9356	0.9486	0.9504	2.0151	1.9748	2.0358	2.0413
		100	0.9489	0.9419	0.9513	0.9467	1.4053	1.3912	1.4124	1.4151
		300	0.9511	0.9495	0.9515	0.9481	0.8040	0.8013	0.8053	0.8058
	10	10	0.9237	0.8789	0.9396	0.9511	10.2354	9.2118	10.8189	11.0877
		20	0.9354	0.9140	0.9442	0.9494	6.6623	6.3291	6.8398	6.9197
		30	0.9406	0.9245	0.9494	0.9523	5.3064	5.1295	5.3986	5.4356
		50	0.9428	0.9339	0.9471	0.9529	4.0265	3.9460	4.0678	4.0766
		100	0.9489	0.9462	0.9505	0.9487	2.8142	2.7861	2.8285	2.8320
		300	0.9471	0.9462	0.9479	0.9491	1.6076	1.6023	1.6103	1.6115

หมายเหตุ ตัวพิมพ์หนาหมายถึงค่าความน่าจะเป็นคุ้มรวมที่อยู่ในช่วงความเชื่อมั่น [0.9457, 0.9543]

ตารางที่ 4.5 ค่าความน่าจะเป็นคุ้มรวมและค่าเฉลี่ยความกว้างของช่วงความเชื่อมั่น กรณี $\mu = 5$

				CF)			EL	-	
μ	σ	n	S	S.mle	S.hat	S	S.mle	S.hat	S	S.mle
5	0.5	10	0.9244	0.8846	0.9387	0.9468	0.5127	0.4614	0.5419	0.5545
		20	0.9390	0.9159	0.9465	0.9515	0.3332	0.3165	0.3421	0.3450
		30	0.9385	0.9224	0.9461	0.9510	0.2645	0.2556	0.2691	0.2712
		50	0.9472	0.9375	0.9512	0.9509	0.2015	0.1975	0.2036	0.2043
		100	0.9448	0.9398	0.9471	0.9532	0.1405	0.1391	0.1412	0.1417
		300	0.9522	0.9506	0.9531	0.9504	0.0804	0.0801	0.0805	0.0806
	1	10	0.9209	0.8793	0.9392	0.9510	1.0233	0.9209	1.0816	1.1008
		20	0.9342	0.9111	0.9431	0.9527	0.6654	0.6322	0.6832	0.6896
		30	0.9433	0.9274	0.9506	0.9494	0.5306	0.5129	0.5398	0.5434
		50	0.9429	0.9332	0.9466	0.9477	0.4023	0.3943	0.4064	0.4092
		100	0.9466	0.9412	0.9484	0.9486	0.2806	0.2778	0.2820	0.2826
		300	0.9483	0.9475	0.9490	0.9504	0.1609	0.1603	0.1611	0.1611
	2	10	0.9175	0.8799	0.9326	0.9491	2.0447	1.8403	2.1613	2.2143
		20	0.9310	0.9080	0.9403	0.9482	1.3273	1.2610	1.3627	1.3830
		30	0.9411	0.9231	0.9487	0.9482	1.0602	1.0248	1.0786	1.0869
		50	0.9441	0.9346	0.9491	0.9499	0.8059	0.7898	0.8141	0.8193
		100	0.9453	0.9408	0.9478	0.9453	0.5617	0.5561	0.5646	0.5663
		300	0.9499	0.9484	0.9506	0.9446	0.3214	0.3203	0.3219	0.3223
	5	10	0.9168	0.8762	0.9330	0.9480	5.1007	4.5907	5.3915	5.5462
		20	0.9356	0.9110	0.9430	0.9479	3.3294	3.1629	3.4181	3.4540
		30	0.9418	0.9252	0.9480	0.9512	2.6495	2.5612	2.6956	2.7171
		50	0.9498	0.9402	0.9537	0.9468	2.0165	1.9762	2.0372	2.0456
		100	0.9476	0.9432	0.9497	0.9480	1.4057	1.3916	1.4128	1.4137
		300	0.9484	0.9477	0.9497	0.9494	0.8038	0.8011	0.8051	0.8060
	10	10	0.9233	0.8818	0.9385	0.9499	10.1996	9.1797	10.7811	11.0864
		20	0.9351	0.9119	0.9449	0.9491	6.6754	6.3416	6.8533	6.9219
		30	0.9359	0.9206	0.9421	0.9532	5.3024	5.1256	5.3946	5.4318
		50	0.9409	0.9314	0.9457	0.9479	4.0270	3.9465	4.0683	4.0831
		100	0.9454	0.9396	0.9479	0.9525	2.8074	2.7794	2.8216	2.8330
		300	0.9499	0.9496	0.9502	0.9493	1.6078	1.6025	1.6105	1.6097

หมายเหตุ ตัวพิมพ์หนาหมายถึงค่าความน่าจะเป็นคุ้มรวมที่อยู่ในช่วงความเชื่อมั่น [0.9457, 0.9543]

ตารางที่ 4.6 ค่าความน่าจะเป็นคุ้มรวมและค่าเฉลี่ยความกว้างของช่วงความเชื่อมั่น กรณี $\mu=-5$

μ	σ	n					EL			
		71	S	S.mle	S.hat	S	S.mle	S.hat	S	S.mle
-5	0.5	10	0.9185	0.8776	0.9343	0.9495	0.5102	0.4592	0.5393	0.5520
		20	0.9392	0.9164	0.9477	0.9497	0.3335	0.3168	0.3424	0.3452
		30	0.9440	0.9273	0.9514	0.9524	0.2658	0.2569	0.2704	0.2720
		50	0.9454	0.9342	0.9499	0.9504	0.2016	0.1976	0.2037	0.2045
		100	0.9443	0.9393	0.9470	0.9465	0.1405	0.1391	0.1412	0.1415
		300	0.9443	0.9414	0.9444	0.9466	0.0804	0.0801	0.0805	0.0806
	1	10	0.9264	0.8861	0.9410	0.9487	1.0273	0.9245	1.0858	1.1044
		20	0.9337	0.9103	0.9423	0.9484	0.6669	0.6335	0.6847	0.6919
		30	0.9377	0.9210	0.9446	0.9513	0.5304	0.5127	0.5396	0.5428
		50	0.9459	0.9345	0.9495	0.9477	0.4031	0.3950	0.4072	0.4089
		100	0.9466	0.9402	0.9484	0.9516	0.2806	0.2778	0.2820	0.2829
		300	0.9520	0.9499	0.9525	0.9544	0.1609	0.1603	0.1611	0.1611
	2	10	0.9203	0.8773	0.9371	0.9452	2.0365	1.8329	2.1526	2.2122
		20	0.9318	0.9086	0.9412	0.9495	1.3322	1.2656	1.3677	1.3818
		30	0.9351	0.9215	0.9428	0.9487	1.0576	1.0224	1.0760	1.0857
		50	0.9444	0.9334	0.9481	0.9497	0.8064	0.7903	0.8147	0.8173
		100	0.9427	0.9365	0.9466	0.9530	0.5617	0.5561	0.5645	0.5651
		300	0.9464	0.9428	0.9467	0.9477	0.3214	0.3203	0.3220	0.3224
	5	10	0.9183	0.8765	0.9361	0.9498	5.0964	4.5867	5.3869	5.5437
		20	0.9340	0.9081	0.9425	0.9503	3.3199	3.1539	3.4083	3.4418
		30	0.9412	0.9255	0.9485	0.9486	2.6492	2.5609	2.6953	2.7136
		50	0.9415	0.9315	0.9461	0.9532	2.0134	1.9731	2.0340	2.0432
		100	0.9493	0.9449	0.9520	0.9498	1.4060	1.3920	1.4131	1.4153
		300	0.9495	0.9475	0.9499	0.9520	0.8034	0.8007	0.8048	0.8058
	10	10	0.9152	0.8758	0.9331	0.9493	10.2296	9.2066	10.8128	11.0729
		20	0.9369	0.9144	0.9455	0.9496	6.6482	6.3157	6.8253	6.9187
		30	0.9380	0.9210	0.9434	0.9505	5.2944	5.1179	5.3865	5.4343
		50	0.9409	0.9318	0.9456	0.9474	4.0274	3.9469	4.0687	4.0908
		100	0.9463	0.9407	0.9481	0.9512	2.8094	2.7813	2.8236	2.8308
		300	0.9449	0.9431	0.9462	0.9480	1.6065	1.6011	1.6092	1.6118

หมายเหตุ ตัวพิมพ์หนาหมายถึงค่าความน่าจะเป็นคุ้มรวมที่อยู่ในช่วงความเชื่อมั่น [0.9457, 0.9543]

กราฟแสดงค่าความน่าจะเป็นคุ้มรวม กรณี $\,\mu \! = \! 0\,$

กราฟที่ 4.20 CP กรณีที่ σ = 10

กราฟแสดงค่าเฉลี่ยความกว้างของช่วงความเชื่อมั่นช่วงกรณี $\,\mu = 0\,$

จากตารางและกราฟกรณี $\mu = 0$ ที่แสดงข้างต้น ผลที่ได้พบว่า

ค่าความน่าจะเป็นคุ้มรวมของตัวประมาณ \hat{S} ให้ค่าที่สูงกว่าวิธีของตัวประมาณ S และ S_{MLE} ในทุก กรณี โดยเฉพาะอย่างยิ่งค่าความน่าจะเป็นคุ้มรวมของตัวประมาณ S และ S_{MLE} โดยส่วนใหญ่มีค่าที่ห่างจาก 0.95 อย่างมากทำให้ส่งผลต่อการพิจารณาค่าความกว้างของช่วงความเชื่อมั่น

ถ้าหากพิจารณาโดยใช้ช่วงความเชื่อมั่นของค่าความน่าจะเป็นคุ้มรวม ผู้วิจัยพบว่าตัวประมาณ S ที่ ใช้ตัวสถิติไคกำลังสอง ให้ค่าความน่าจะเป็นคุ้มรวมตกอยู่ในช่วง $\begin{bmatrix} 0.9457, 0.9543 \end{bmatrix}$ เป็นส่วนใหญ่มากกว่าตัว ประมาณ \hat{S} แต่ตัวประมาณ \hat{S} ก็ยังให้ค่าความน่าจะเป็นคุ้มรวมตกอยู่ในช่วง $\begin{bmatrix} 0.9457, 0.9543 \end{bmatrix}$ เป็นส่วน ใหญ่มากกว่าตัวประมาณ S และ S_{MLF}

เนื่องจากค่าความน่าจะเป็นคุ้มรวมของช่วงความเชื่อมั่นของตัวประมาณ S และ S_{MLE} ต่ำกว่าที่ควร จะเป็นจึงจะไม่นำค่าความกว้างของช่วงมาเปรียบเทียบ จากนั้นเปรียบเทียบวิธีที่เหลืออยู่ได้ข้อสรุปว่า ค่าความกว้างของช่วงความเชื่อมั่นของตัวประมาณ S ที่ใช้ตัวสถิติไคกำลังสอง มีค่ามากกว่า ตัวประมาณ \hat{S} ในทุกกรณี

ผู้วิจัยพบว่าผลลัพธ์ กรณี $\mu=5$ และ $\mu=-5$ ให้ข้อสรุปของผลลัพธ์สอดคล้องกันกับกรณี $\mu=0$ จากผลลัพธ์และข้อสรุปใน (4.1) และ (4.2) จึงกล่าวได้ว่าวิธีที่นำเสนอตัวประมาณแบบจุด \hat{S} มีประสิทธิภาพ ที่ดีกว่าและตัวประมาณแบบช่วง S ที่ใช้ตัวสถิติไคกำลังสอง ซึ่งนิยมใช้มีประสิทธิภาพที่ดีกว่า

4.3 ตัวอย่างการคำนวณจากข้อมูลจริง

จากข้อมูลจริงของราคาขายปลีกรายวันของน้ำมันแก๊สโซฮอล 91 (มีหน่วยเป็น บาท/ลิตร) ซึ่งนับจาก จำนวนวันที่ราคาน้ำมันมีการเปลี่ยนแปลง ในกรุงเทพมหานคร และปริมณฑลในเดือนธันวาคม พ.ศ.2564 ถึง มีนาคม พ.ศ.2565 จากเว็บไซต์บริษัท ปตท. น้ำมันและการค้าปลีก จำกัด (มหาชน) รวมทั้งสิ้นจำนวน 32 วัน ดังแสดงในกราฟที่ 4.26 ผู้วิจัยเลือกข้อมูลชุดนี้มาศึกษาเนื่องจากในช่วงเวลาดังกล่าวมีเหตุการณ์ที่กระทบต่อ ราคาน้ำมันในตลาดโลก การคำนวณค่าส่วนเบี่ยงเบนมาตรฐานจะทำให้ทราบถึงความผันผวนของข้อมูล เบื้องต้นได้

กราฟที่ 4.26 กราฟแสดงแผนภูมิข้อมูลจริงของราคาน้ำมันแก๊สโซฮอล 91

เมื่อทำการทดสอบการแจกแจงของข้อมูลโดยใช้สถิติทดสอบจาก Anderson-Darling ดังกราฟที่ 4.2 สรุปได้ว่า ข้อมูลมีการแจกแจงแบบปรกติ เนื่องจาก p-value มีค่าเท่ากับ 0.184 พบว่า p-value มีค่า มากกว่า ระดับนัยสำคัญ 0.05 ซึ่งให้ผลสอดคล้องกับแผนภูมิซึ่งมีลักษณะสมมาตร เมื่อทำการหาส่วน เบี่ยงเบนมาตรฐาน คำนวณได้ค่าดังนี้

$$S=3.2009$$
 $S_{MLE}=3.1505$ $\hat{S}=3.2269$ (หน่วย : บาทต่อลิตร) จากนั้นคำนวณช่วงความเชื่อมั่นได้ค่าดังนี้ ช่วงความเชื่อมั่น 95% ของ σ โดยใช้ตัวประมาณ S คือ $(2.3752,4.0266)$ ค่าความกว้างของช่วง คือ 1.6514

ช่วงความเชื่อมั่น 95% ของ σ โดยใช้ตัวประมาณ $S_{\scriptscriptstyle MLE}$ คือ (2.3506,3.9504)

ค่าความกว้างของช่วง คือ 1.5998

ช่วงความเชื่อมั่น 95% ของ σ โดยใช้ตัวประมาณ \hat{S} คือ (2.3877,4.0660)

ค่าความกว้างของช่วง คือ 1.6782

ช่วงความเชื่อมั่น 95% ของ σ โดยใช้ตัวประมาณ S ที่ใช้สถิติไคกำลังสอง คือ (2.5662,4.2556)

ค่าความกว้างของช่วง คือ 1.6894

ผลจากการคำนวณด้วยข้อมูลจริงข้างต้นพบว่าสอดคล้องกับผลจากการจำลองข้อมูล

เมื่อทำการค่าเฉลี่ยของข้อมูลคำนวณได้ค่าดังนี้ $\overset{-}{x}=34.7894$

(หน่วย : บาทต่อลิตร)

จากนั้นคำนวณสัมประสิทธิ์ของการแปรผันจาก $CV = \frac{\hat{S}}{\overline{x}} \times 100\% = \frac{3.2269}{34.7894} \times 100\% = 9.2755\%$

จะเห็นได้ว่า ราคาน้ำมันในช่วงเดือน ธันวาคม-มีนาคม มีความผันผวนปานกลาง

กราฟที่ 4.27 กราฟแสดงการทดสอบการแจกแจงแบบปรกติ

บทที่ 5

สรุปและอภิปรายผลการศึกษา

5.1 สรุปผลการวิจัย

จากการศึกษาค่าประมาณแบบจุดสำหรับส่วนเบี่ยงเบนมาตรฐานในการแจกแจงปรกติ โดยวิธีที่ นำเสนอ คือ ตัวประมาณ \hat{S} เขียนโปรแกรมในการจำลองข้อมูลและตรวจสอบข้อมูลที่จำลอง มีการแจกแจง ปรกติ คำนวณค่าความเอนเอียง ค่าความแปรปรวน และค่าคลาดเคลื่อนกำลังสองเฉลี่ย พบว่าค่า ความเอนเอียงน้อยกว่าวิธีพื้นฐานและวิธีภาวะน่าจะเป็นสูงสุด แต่ค่าความแปรปรวนและค่าคลาดเคลื่อน กำลังสองเฉลี่ย มีค่าใกล้เคียงกัน เมื่อขนาดตัวอย่างมากขึ้น จากนั้นคำนวณหาค่าความน่าจะเป็นคุ้มรวมและ ความกว้างของช่วงความเชื่อมั่นพบว่า ค่าความน่าจะเป็นคุ้มรวมมีค่ามากกว่าวิธีพื้นฐานและวิธีภาวะน่าจะเป็น สูงสุด แต่ความกว้างของช่วงความเชื่อมั่นมีค่าสูงกว่าวิธีพื้นฐานและวิธีภาวะน่าจะเป็นสูงสุด เมื่อนำข้อมูลจริงที่ มีการแจกแจงปรกติมาคำนวณด้วยโปรแกรม ก็ได้ผลลัพธ์สอดคล้องกันกับการจำลองข้อมูล

จากการวิจัยในครั้งนี้จึงสามารถสรุปได้ว่าตัวประมาณ \hat{S} มีความเหมาะสมและสามารถนำเสนอมาใช้ เป็นทางเลือกในการประมาณค่าส่วนเบี่ยงเบนมาตรฐานในการแจกแจงปรกติได้

5.2 ข้อเสนอแนะ

- 1. ศึกษาประสิทธิภาพสัมประสิทธิ์ของการแปรผันที่ใช้ส่วนเบี่ยงเบนมาตรฐานแบบที่นำเสนอ
- 2. ศึกษาความเป็นไปได้ในการใช้ตัวประมาณส่วนเบี่ยงเบนมาตรฐานแบบที่นำเสนอ เพื่อประมาณค่า ความแปรปรวนประชากร
- 3. ในวิธีการสถิติเชิงอนุมาน อาจใช้ส่วนเบี่ยงเบนมาตรฐานแบบที่นำเสนอแทนแบบดั้งเดิมในการ ทดสอบสมมติฐาน

บรรณานุกรม

- กมล บุษบา. (2564). คณิตสถิติศาสตร์ 1. กรุงเทพฯ: สำนักพิมพ์มหาวิทยาลัยธรรมศาสตร์.
- จิรัชย์ สุขะเกตุ. (2548). ความน่าจะเป็นและทฤษฎีสถิติเบื้องต้น. กรุงเทพฯ: สำนักพิมพ์มหาวิทยาลัย เกษตรศาสตร์.
- ดวงตา สิงหกลางพล. (2561). การเปรียบเทียบวิธีการประมาณค่าแบบช่วงสำหรับค่าเฉลี่ยประชากรที่มีการ แจกแจงปรกติของข้อมูลที่ถูกปัดเศษ. doi:10.14457/TU.the.2018.698
- ภทรวรรณ แสงนวกิจ. (2563). *เทคนิคการซักตัวอย่างเบื้องต้นและการสำรวจตัวอย่างเบื้องต้น.* มหาวิทยาลัยธรรมศาสตร์.
- วรพจน์ แซ่หลี. (2554). การประมาณช่วงความเชื่อมั่นของสัมประสิทธิ์การแปรผันใหม่. *วารสารวิทยาศาสตร์* ลาดกระบัง, 20, 61-71.
- วราฤทธิ์ พานิชกิจโกศลกุล. (2558). คณิตสถิติศาสตร์: การทดสอบสมมติฐานเชิงสถิติ. กรุงเทพฯ: สำนักพิมพ์ สุชาดา กีระนันทน์. (2545). ทฤษฎีความน่าจะเป็น. กรุงเทพฯ: โรงพิมพ์มหาวิทยาลัยศิลปากร.
- Casella, G., & Berger, R. L. (2015). Statistical Inference. Pacific Grove: Duxbury.
- Donner, A., & Zou, G. Y. (2010). Closed-form confidence intervals for functions of the normal mean and standard deviation. *Statistical Methods in Medical Research*, *21*, 347-359.
- Krithikadatta, J. (2014). Normal Distribution. Journal of conservative dentistry: JCD, 96-97. doi:10.4103/0972-0707.124171
- Mahmoudvand, R., & Hassani, H. (2009). Two new confidence intervals for the coefficient of variation in a normal distribution. *Journal of Applied Statistics*, *36*, 429-442.
- Muraleedharan, K., & Raval, N. (2012). Estimation of Process Standard deviation. *International journal of Computational Mathematics and Numerical Simulations, 5,* 179-186.
- Sangnawakij, P., & Niwitpong, S.-A. (2020). Interval Estimation forthe Common Coefficient of Variation of Gamma Distributions. *Thailand Statistician*, *18*(3), 340-353.
- Nadarajah, S. (2005). A generalized normal distribution. *Journal of Applied Statistics, 32,* 685-694. doi:10.1080/02664760500079464

ภาคผนวก

การตรวจสอบการแจกแจงของข้อมูลจริง

การจำลองข้อมูลในงานวิจัยครั้งนี้ ได้จำลองสถานการณ์ต่าง ๆ ที่เป็นการแจกแจงปรกติ ผู้วิจัยยังคงมี ข้อสงสัยว่า ข้อมูลจริงมีการแจกแจงปรกติหรือไม่ ดังนั้นผู้วิจัยจึงทำการตรวจสอบข้อสงสัยดังกล่าวในหัวข้อนี้

การตรวจสอบการแจกแจงของข้อมูล จะใช้การทดสอบ Goodness of fit Test ซึ่งมีสมมติฐานที่ พิจารณาดังนี้

 H_0 : การแจกแจงข้อมูลจริงเป็นการแจกแจงปรกติ

 H_{l} : การแจกแจงข้อมูลจริงไม่เป็นการแจกแจงปรกติ

กำหนดระดับนัยสำคัญ lpha

โดยใช้สถิติทดสอบคือ $\chi^2 = \sum_{i=1}^k rac{\left(O_i - E_i
ight)^2}{E_i}$

เมื่อ O_i คือ ค่าความถี่ที่ได้จากการสังเกต

 E_i คือ ค่าความถี่ที่คาดหวัง

k คือ จำนวนกลุ่ม

สถิติทดสอบ χ^2 ดังกล่าว มีการแจกแจงไคกำลังสอง ที่มีองศาเสรีเท่ากับ k-1 การตัดสินใจในการทดสอบสมมติฐาน คือ จะทำการปฏิเสธ H_0 เมื่อ χ^2 ที่คำนวณได้มีค่ามากกว่าค่าวิกฤต $\chi^2{}_{\alpha,df=k-1}$ หรือในทางปฏิบัติอาจพิจารณาการปฏิเสธ H_0 ได้จากค่า $p-value < \alpha$

ผลลัพธ์ที่ได้เพิ่มเติม

ตารางแสดงค่าความน่าจะเป็นคุ้มรวมและความกว้างของช่วงความเชื่อมั่นกรณี $\mu\!=\!0$ ที่ใช้ตัวสถิติ z ที่มา จากช่วงความเชื่อมั่น $(1\!-\!\alpha)100\%$ ที่อยู่ในรูปแบบ

$$\hat{\theta} \pm z_{\alpha/2} \sqrt{Var(\hat{\theta})}$$

เมื่อ $\hat{ heta}$ คือ ตัวประมาณแบบจุดใด ๆ ของส่วนเบี่ยงเบนมาตรฐานประชากร $Var(\hat{ heta})$ คือ ตัวประมาณค่าความ แปรปรวนของ $\hat{ heta}$ และ $z_{lpha/2}$ คือ เปอร์เซ็นไทล์ที่ (lpha/2)100% ของการแจกแจงปรกติมาตรฐาน

				СР			EL	
μ	σ	n	S	S.mle	S.hat	S	S.mle	S.hat
5	0.5	10	0.8991	0.8484	0.9171	0.4442	0.3998	0.4695
		20	0.9273	0.9027	0.9374	0.3120	0.2964	0.3203
		30	0.9291	0.9133	0.9379	0.2534	0.2450	0.2578
		50	0.9427	0.9322	0.9473	0.1965	0.1926	0.1985
		100	0.9419	0.9373	0.9446	0.1388	0.1374	0.1395
		300	0.9514	0.9499	0.9526	0.0800	0.0798	0.0802
	1	10	0.8915	0.8409	0.9132	0.8860	0.7974	0.9366
		20	0.9231	0.8975	0.9341	0.6239	0.5927	0.6405
		30	0.9322	0.9172	0.9406	0.5083	0.4914	0.5172
		50	0.9396	0.9285	0.9443	0.3936	0.3858	0.3977
		100	0.9470	0.9425	0.9478	0.2777	0.2749	0.2791
		300	0.9510	0.9500	0.9516	0.1602	0.1596	0.1604
	2	10	0.8971	0.8501	0.9152	1.7757	1.5981	1.8769
		20	0.9183	0.8954	0.9296	1.2466	1.1843	1.2798
		30	0.9314	0.9153	0.9383	1.0156	0.9818	1.0333
		50	0.9352	0.9241	0.9393	0.7851	0.7694	0.7931
		100	0.9433	0.9364	0.9441	0.5549	0.5493	0.5577
		300	0.9461	0.9450	0.9477	0.3201	0.3191	0.3207
	5	10	0.8982	0.8495	0.9175	4.4366	3.9929	4.6895
		20	0.9189	0.8945	0.9297	3.1072	2.9518	3.1900
		30	0.9312	0.9108	0.9382	2.5390	2.4544	2.5831
		50	0.9412	0.9305	0.9446	1.9663	1.9269	1.9864
		100	0.9464	0.9428	0.9476	1.3884	1.3745	1.3955
		300	0.9490	0.9473	0.9507	0.8004	0.7978	0.8018
	10	10	0.8943	0.8440	0.9140	8.8559	7.9704	9.3608

				СР			EL	
μ	σ	n	S	S.mle	S.hat	S	S.mle	S.hat
5	10	20	0.9181	0.8929	0.9281	6.2246	5.9134	6.3905
		30	0.9288	0.9106	0.9357	5.0749	4.9057	5.1631
		50	0.9332	0.9230	0.9398	3.9237	3.8452	3.9639
		100	0.9462	0.9403	0.9474	2.7729	2.7452	2.7870
		300	0.9460	0.9437	0.9473	1.6019	1.5966	1.6046

ตารางที่ 8 ค่าความน่าจะเป็นคุ้มรวมและค่าเฉลี่ยความกว้างของช่วงความเชื่อมั่นกรณี $\mu=5$ จากตาราง พบว่าค่าความน่าจะเป็นคุ้มรวมต่ำกว่าที่ควรจะเป็น

โปรแกรมที่ใช้ในการวิจัย

งานวิจัยครั้งนี้ใช้โปรแกรม R ในการจำลองข้อมูลเพื่อศึกษาประสิทธิภาพของตัวประมาณค่า ส่วนเบี่ยงเบนมาตรฐานในการแจกแจงปรกติ ซึ่งต้องมีการกำหนดจำนวนรอบของการทำซ้ำ ขนาดของ ประชากร ขนาดตัวอย่าง นอกจากนั้นการจำลองข้อมูลยังคำนวณค่าความเอนเอียง ค่าความแปรปรวน ค่าความคลาดเคลื่อนกำลังสองเฉลี่ย ค่าความน่าจะเป็นคุ้มรวมและค่าเฉลี่ยความกว้างของช่วงความเชื่อมั่น เพื่อใช้เป็นเกณฑ์ในการเปรียบเทียบประสิทธิภาพของตัวประมาณส่วนเบี่ยงเบนมาตรฐานที่นำเสนอกับตัว ประมาณส่วนเบี่ยงเบนมาตรฐานที่นำเสนอกับตัว ประมาณส่วนเบี่ยงเบนมาตรฐานโดยวิธีดั้งเดิมและวิธีภาวะน่าจะเป็นสูงสุด

ตัวอย่างฟังก์ชันสำหรับการจำลองข้อมูลเพื่อเปรียบเทียบประสิทธิภาพของตัวประมาณส่วนเบี่ยงเบน มาตรฐานที่นำเสนอกับตัวประมาณส่วนเบี่ยงเบนมาตรฐานโดยวิธีดั้งเดิมและวิธีภาวะน่าจะเป็นสูงสุด มีดังนี้

$$var.s = rep(0,b)$$

$$s.mle = rep(0,b)$$

bias.s.mle =
$$rep(0,b)$$

$$var.s.mle = rep(0,b)$$

$$s.hat = rep(0,b)$$

bias.s.hat =
$$rep(0,b)$$

$$var.s.hat = rep(0,b)$$

$$lower.1 = rep(0,b)$$

upper.1 =
$$rep(0,b)$$

$$length.1 = rep(0,b)$$

$$cp.1 = rep(0,b)$$

$$lower.2 = rep(0,b)$$

upper.2 =
$$rep(0,b)$$

$$length.2 = rep(0,b)$$

$$cp.2 = rep(0,b)$$

$$lower.3 = rep(0,b)$$

upper.3 =
$$rep(0,b)$$

$$length.3 = rep(0,b)$$

$$cp.3 = rep(0,b)$$

$$lower.4 = rep(0,b)$$

upper.4 =
$$rep(0,b)$$

$$length.4 = rep(0,b)$$

```
cp.4 = rep(0,b)
t = qt(1-alpha/2,n-1)
x1 = qchisq(alpha/2,n-1)
x2 = qchisq(1-alpha/2,n-1)
n1 = gamma((n-1)/2)
n2 = gamma(n/2)
for (i in 1:b) { ##start for loop
## Gen data for normal
x = rnorm(n, mu, sigma)
## Calculate point estimators
s[i] = sd(x)
s.mle[i]=((sqrt(n-1))/sqrt(n))*sd(x)
s.hat[i]=sqrt((n-1)/2)*(n1/n2)* s[i]
## Calculate theoretical bias and variance of estimators
bias.s[i] = (sqrt(2/(n-1)) * (n2/n1)-1) * s[i]
bias.s.mle[i] = (sqrt(2/n) * (n2/n1)-1)* s.mle[i]
bias.s.hat[i] = 0
var.s[i] = (1-2/(n-1)*(n2/n1)^2)*s[i]^2
var.s.mle[i] = ((1-(1/n))-(2/n)*(n2/n1)^2)*s.mle[i]^2
var.s.hat[i]=(((n-1)/2)*(n1/n2)^2-1)* s.hat[i]^2
### CP/EL/CI
lower.1[i] = s[i] - t*sqrt(var.s[i])
```

```
upper.1[i] = s[i] + t*sqrt(var.s[i])
length.1[i] = upper.1[i]-lower.1[i]
## Find CP
if(sigma >= lower.1[i] & sigma <= upper.1[i] ) {cp.1[i] = 1}
else {cp.1[i] = 0 }
lower.2[i] = s.mle[i] - t*sqrt(var.s.mle[i])
upper.2[i] = s.mle[i] + t*sqrt(var.s.mle[i])
length.2[i] = upper.2[i]-lower.2[i]
## Find CP
if(sigma >= lower.2[i] & sigma <= upper.2[i] ) {cp.2[i] = 1}
else {cp.2[i] = 0 }
lower.3[i] = s.hat[i] - t*sqrt(var.s.hat[i])
upper.3[i] = s.hat[i] + t*sqrt(var.s.hat[i])
length.3[i] = upper.3[i]-lower.3[i]
## Find CP
if(sigma >= lower.3[i] & sigma <= upper.3[i] ) {cp.3[i] = 1}
else {cp.3[i] = 0 }
### Calculate CI,CP,EL for S using chi square statistics
lower.4[i] = s[i]*sqrt(n-1)/sqrt(x2)
upper.4[i] = s[i]*sqrt(n-1)/sqrt(x1)
length.4[i] = upper.4[i]-lower.4[i]
## Find CP
if(sigma >= lower.4[i] & sigma <= upper.4[i] ) {cp.4[i] = 1}
```

```
else {cp.4[i] = 0 }
} ##end for loop
## Average values from b simulation runs
ave.s = mean(s)
ave.bias.s = mean(bias.s)
ave.var.s = mean(var.s)
ave.s.mle = mean(s.mle)
ave.bias.s.mle = mean(bias.s.mle)
ave.var.s.mle = mean(var.s.mle)
ave.s.hat = mean(s.hat)
ave.bias.s.hat = mean(bias.s.hat)
ave.var.s.hat = mean(var.s.hat)
## empirical value for bias and variance of estimator
em.ave.bias.s = mean(s)-sigma
em.ave.var.s = var(s)
em.ave.bias.s.mle = mean(s.mle)-sigma
em.ave.var.s.mle = var(s.mle)
em.ave.bias.s.hat = mean(s.hat)-sigma
em.ave.var.s.hat = var(s.hat)
## Calculate MSE
mse.s = mean(var.s) + (mean(bias.s))^2
mse.s.mle = mean(var.s.mle) + (mean(bias.s.mle))^2
```

```
mse.s.hat = mean(var.s.hat) + (mean(bias.s.hat))^2
## Calculate Empirical MSE
em.mse.s = em.ave.var.s + (em.ave.bias.s)^2
em.mse.s.mle = em.ave.var.s.mle + (em.ave.bias.s.mle)^2
em.mse.s.hat = em.ave.var.s.hat + (em.ave.bias.s.hat)^2
## Average values of CP/EL from b simulation runs
ave.cp.1 = mean(cp.1)
ave.length.1 = mean(length.1)
ave.cp.2 = mean(cp.2)
ave.length.2 = mean(length.2)
ave.cp.3 = mean(cp.3)
ave.length.3 = mean(length.3)
ave.cp.4 = mean(cp.4)
ave.length.4 = mean(length.4)
ave.cp.5 = mean(cp.5)
ave.length.5 = mean(length.5)
cat(n, '\t', mu, '\t', sigma, '\n',
ave.s, '\t', ave.s.mle , '\t', ave.s.hat ,'\n' ,
ave.bias.s, '\t',ave.bias.s.mle , '\t',ave.bias.s.hat ,'\n',
em.ave.bias.s, '\t',em.ave.bias.s.mle , '\t' , em.ave.bias.s.hat ,'\n' ,
ave.var.s, '\t', ave.var.s.hat, '\n',
em.ave.var.s,'\t', em.ave.var.s.mle, '\t', em.ave.var.s.hat,'\n',
```

```
mse.s, '\t', mse.s.mle , '\t', mse.s.hat,'\n',
ave.cp.1, '\t', ave.cp.2, '\t', ave.cp.3, '\t', ave.cp.4 ,'\n',
ave.length.1, '\t' , ave.length.2, '\t' ,ave.length.3, '\t', ave.length.4 ,'\n')
}
```

```
##### Part 3: run in R console #####

## Case mu=0

sdnorm(n=10 ,mu=0 ,sigma=0.5 ,alpha=0.05 ,b=10000)

sdnorm(n=20 ,mu=0 ,sigma=0.5 ,alpha=0.05 ,b=10000)

sdnorm(n=30 ,mu=0 ,sigma=0.5 ,alpha=0.05 ,b=10000)

sdnorm(n=50 ,mu=0 ,sigma=0.5 ,alpha=0.05 ,b=10000)

sdnorm(n=100 ,mu=0 ,sigma=0.5 ,alpha=0.05 ,b=10000)

sdnorm(n=300 ,mu=0 ,sigma=0.5 ,alpha=0.05 ,b=10000)
```

sdnorm(n=10 ,mu=0 ,sigma=1 ,alpha=0.05 ,b=10000)

sdnorm(n=20 ,mu=0 ,sigma=1 ,alpha=0.05 ,b=10000)

sdnorm(n=30 ,mu=0 ,sigma=1 ,alpha=0.05 ,b=10000)

sdnorm(n=50 ,mu=0 ,sigma=1 ,alpha=0.05 ,b=10000)

sdnorm(n=100 ,mu=0 ,sigma=1 ,alpha=0.05 ,b=10000)

sdnorm(n=300 ,mu=0 ,sigma=1 ,alpha=0.05 ,b=10000)

sdnorm(n=10, mu=0, sigma=2, alpha=0.05, b=10000)

sdnorm(n=20 ,mu=0 ,sigma=2 ,alpha=0.05 ,b=10000)
sdnorm(n=30 ,mu=0 ,sigma=2 ,alpha=0.05 ,b=10000)
sdnorm(n=50 ,mu=0 ,sigma=2 ,alpha=0.05 ,b=10000)
sdnorm(n=100 ,mu=0 ,sigma=2 ,alpha=0.05 ,b=10000)
sdnorm(n=300 ,mu=0 ,sigma=2 ,alpha=0.05 ,b=10000)

sdnorm(n=10 ,mu=0 ,sigma=5 ,alpha=0.05 ,b=10000)

sdnorm(n=20 ,mu=0 ,sigma=5 ,alpha=0.05 ,b=10000)

sdnorm(n=30 ,mu=0 ,sigma=5 ,alpha=0.05 ,b=10000)

sdnorm(n=50 ,mu=0 ,sigma=5 ,alpha=0.05 ,b=10000)

sdnorm(n=100 ,mu=0 ,sigma=5 ,alpha=0.05 ,b=10000)

sdnorm(n=300 ,mu=0 ,sigma=5 ,alpha=0.05 ,b=10000)

sdnorm(n=10 ,mu=0 ,sigma=10 ,alpha=0.05 ,b=10000)

sdnorm(n=20 ,mu=0 ,sigma=10 ,alpha=0.05 ,b=10000)

sdnorm(n=30 ,mu=0 ,sigma=10 ,alpha=0.05 ,b=10000)

sdnorm(n=50 ,mu=0 ,sigma=10 ,alpha=0.05 ,b=10000)

sdnorm(n=100 ,mu=0 ,sigma=10 ,alpha=0.05 ,b=10000)

sdnorm(n=300 ,mu=0 ,sigma=10 ,alpha=0.05 ,b=10000)

```
ตัวอย่างฟังก์ชันที่ใช้ในข้อมูลจริง
######## Part 1 ##########
fix(sd)
##### Part 2: run in R Editor #####
function (alpha)
{
x = c(39.68, 39.08, 38.48, 39.48, 39.88, 39.08, 38.08, 37.48, 36.88, 36.28, 36.28, 36.28, 35.48, 35.48, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 36.28, 3
        5.88, 35.88, 35.28, 34.78, 34.28, 33.78, 33.28, 32.88, 32.38, 31.88, 31.48, 31.48, 30.88, 30.38, 30.6
       8,30.28,29.68,30.18)
n = length(x)
t = qt(1-alpha/2,n-1)
x1 = qchisq(alpha/2,n-1)
x2 = qchisq(1-alpha/2,n-1)
n1 = gamma((n-1)/2)
n2 = gamma(n/2)
## Calculate mean
xbar = mean(x)
## Calculate point estimators
s = sd(x)
s.mle=((sqrt(n-1))/sqrt(n))*sd(x)
s.hat=sqrt((n-1)/2)*(n1/n2)*sd(x)
```

Calculate variance of estimators

 $var.s = (1-2/(n-1)*(n2/n1)^2)*s^2$

 $var.s.mle = ((1-(1/n))-(2/n)*(n2/n1)^2)*s.mle^2$

 $var.s.hat = (((n-1)/2)*(n1/n2)^2-1)* s.hat^2$

Calculate CV

CV.s = (s/mean(x))*100

CV.s.mle = (s.mle/mean(x))*100

CV.s.hat = (s.hat/mean(x))*100

Calculate lower and upper limit of CI and Length

lower.1 = s - t*sqrt(var.s)

upper.1 = s + t*sqrt(var.s)

length.1 = upper.1-lower.1

lower.2 = s.mle - t*sqrt(var.s.mle)

upper.2 = s.mle + t*sqrt(var.s.mle)

length.2 = upper.2-lower.2

lower.3 = s.hat - t*sqrt(var.s.hat)

upper.3 = s.hat + t*sqrt(var.s.hat)

length.3 = upper.3-lower.3

lower.4 = s*sqrt(n-1)/sqrt(x2)

upper.4 = s*sqrt(n-1)/sqrt(x1)

length.4 = upper.4-lower.4

cat(n,'\t', xbar,'\t', alpha, '\n',

```
s,'\t', s.mle ,'\t', s.hat ,'\n' ,

CV.s,'\t', CV.s.mle ,'\t', CV.s.hat ,'\n' ,

var.s ,'\t',var.s.mle, '\t', var.s.hat,'\n',

lower.1, '\t', upper.1, '\t', length.1,'\n',

lower.2, '\t', upper.2, '\t', length.2,'\n',

lower.3, '\t', upper.3, '\t', length.3,'\n',

lower.4, '\t', upper.4, '\t', length.4,'\n')

}
```

Part 3: run in R console
sd(0.05)