Теоретические вопросы для подготовки к РК-3

1) Дать определение производной функции. Сформулировать ее механический и геометрический смысл.

Пусть a - предельная точка множества $E, a \in E$. **Производной функции** $f: E \to \mathbb{R}$ в точке a называют предел при $\Delta x \to 0$ разностного отношения (при условии, что этот предел существует), т.е.

$$\lim_{\Delta x o 0} rac{\Delta f(a)}{\Delta x} = \lim_{x o a} rac{f(x) - f(a)}{x - a}$$

Механический смысл производной функции s=f(t), описывающей движение точки в зависимости от времени t, состоит в том, что значение производной $f'(t_0)$ равно мгновенной скорости в момент времени t_0 .

Геометрический смысл производной: производная f'(a) равна угловому коэффициенту касательной к графику функции y = f(x) в точке M(a; f(a)).

2) Дать определения касательной и нормали к графику функции.

Если существует предельное положение секущей MM_1 , когда точка M_1 , перемещаясь вдоль кривой, стремится к точке M, то прямую, к которой стремится секущая, называют касательной к графику функции y=f(x) в точке M.

Прямую, проходящую через точку M перпендикулярно касательной, называют **нормалью** к графику функции y = f(x) в точке M.

3) Дать определения односторонних и бесконечных производных. Сформулировать их геометрический смысл. Пусть функция y=f(x) не определена на $(a-\delta,a)$ для некоторого δ . Тогда при вычислении предела разностного отношения $\Delta y/\Delta x$ приходится ограничиться приближением x к нулю только справа. При существовании такого одностороннего предела его называют **односторонней производной** в точке a **справа** и обозначают $f'_+(a)$. Аналогично определяется **односторонняя производная** в точке a **слева** $f'_-(a)$. Если производная является односторонней в точке, то в этой точке график функции имеет **одностороннюю касательную**.

Один или оба односторонних предела разностного отношения $\Delta y/\Delta x$ в точке a могут быть бесконечными. Тогда говорят о **бесконечной односторонней производной** функции y=f(x) слева или справа в точке a. Если функция имеет **бесконечную производную определённого знака**, то касательная в этой точке вертикальная. Если знаки различны, то эта точка является **точкой заострения**.

4) Дать определения точки заострения и угловой точки графика функции.

Если знаки бесконечных односторонних производных различны, то соответствующую точку графика функции называют **точкой заострения**

Если в некоторой точке x=a того промежутка, в котором определена и непрерывна функция y=f(x), существует не равные между собой односторонние пределы разностного отношения $\Delta y/\Delta x$, то в соответствующей точке графика функции будут существовать односторонние касательные, образующие некоторый угол. Точку M(a,f(a)) при этом называют **угловой точкой графика** функции.

5) Сформулировать определения дифференцируемости функции в точке и дифференциала.

Пусть $a \in E$ - предельная точка множества $E \subset \mathbb{R}$. Функцию $f : E \to \mathbb{R}$ называют **дифференцируемой в точке** a, если приращение этой функции в этой точке можно представить в виде суммы двух слагаемых, первое - линейное относительно Δx , второе - o-малое от Δx :

$$\Delta f(a) = L\Delta x + \alpha(\Delta x)\Delta x,$$

где L - число, не зависящее от Δx , $a+\Delta x\in E$, а функция $\alpha(\Delta x)$ является бесконечно малой при $\Delta x\to 0$ (любое o-малое от Δx можно представить в виде $\alpha(\Delta x)\Delta x$). При этом линейную относительно Δx часть приращения функции f называют **дифференциалом функции** f и обозначают через df или df(a), $dy(a,\Delta x)$ и т.п.

6) Сформулировать необходимое и достаточное условие дифференцируемости функции в точке.

Для дифференцируемости функции y=f(x) в точке a необходимо и достаточно, чтобы она имела в этой точке конечную производную

7) Сформулировать теорему о связи дифференцируемости и непрерывности функции.

Если функция y = f(x) дифференцируема в точке x = a, то она непрерывна в этой точке.

8) Сформулировать определения производных и дифференциалов высших порядков.

Производной n-го порядка функции f(x) называют производную от производной (n-1)-го порядка этой функции и обозначают $f^{(n)}(x)$, $\frac{d^ny}{dx^n}$, $\frac{d^nf(x)}{dx^n}$ и т.п **Дифференциалом** n-го порядка функции y=f(x) называют дифференциал от дифференциала (n-1)-го порядка в предположении, что dx постоянно.

9) Сформулировать теорему о производной сложной функции.

Пусть функция $g:X\to Z$ и дифференцируема в точке $a\in X$, а функция $f:Z\to \mathbb{R}$ дифференцируема в соответствующей в точке $b=g(a)\in Z$. Тогда сложная функция $f\circ g:X\to \mathbb{R}$ дифференцируема в точке a и

$$(f\circ g)(a)=f_z'(g(a))g_x'(a)$$

10) Сформулировать теорему о производной обратной функции.

Пусть функция y=f(x) в точке x=a имеет конечную производную $f'(a)\neq 0$, и для f(x) существует обратная функция x=g(y) непрерывная в соответствующей точке y=b=f(a) . Тогда существует производная g'(b) и

$$g'(b) = rac{1}{f'(a)}$$

11) Сформулировать свойство инвариантности формы записи дифференциала первого порядка.

Формула для дифференциала функции dy=f'(u)du одинакова для случая, когда u - аргумент этой функции, и для случая, когда u - функция какого-либо другого аргумента.

12) Сформулировать теорему о производной параметрически заданной функции.

$$x = x(t), \qquad y = y(t)$$

Пусть функции x(t) и y(t) дифференцируемы в промежутке T, причём $x'(t) \neq 0$ для всех $t \in T$, и функция x(t) строго монотонная в этом промежутке. Тогда производная функции, заданной параметрически, является функцией, параметрически заданной соотношениями

$$y_x'=rac{y'(t)}{x'(t)},\quad x=x(t),\quad t\in(a,b)$$

13) Сформулировать теорему Ферма и ее геометрический смысл.

Если функция y = f(x) имеет конечную производную в точке локального экстремума c, то f'(c) = 0.

Геометрический смысл: Обращение в нуль производной f'(c) означает, что касательная к кривой графика функции f(x) в точке M(c;f(c)) параллельна оси Ox.

14) Сформулировать теорему Ролля и ее геометрический смысл.

Если функция y = f(x)

- 1. непрерывна на отрезке [a,b]
- 2. дифференцируема в интервале (a,b)
- 3. на концах отрезка принимает равные значения f(a) = f(b) то между точками a и b найдётся, по крайней мере, одна точка c (a < c < b), в которой f'(c) = 0.

Геометрическое толкование: если ординаты непрерывной кривой на концах отрезка [a,b] равны между собой и кривая в каждой внутренней точке этого отрезка имеет невертикальную касательную, то на кривой найдётся хотя бы одна точка, в которой касательная параллельная оси Ox.

15) Сформулировать теорему Лагранжа и ее геометрический смысл.

Пусть функция y = f(x)

- 1. непрерывна на отрезке [a,b]
- 2. дифференцируема в интервале (a,b) Тогда между точками a и b найдётся хотя бы одна такая c (a < c < b), для которой справедливо равенство

$$f(b) - f(a) = f'(c)(b - a)$$

Геометрический смысл: на непрерывной дуге AB, имеющей в каждой точке невертикальную касательную, всегда найдётся по крайней мере одна точка M, в

которой касательная параллельна хорде AB.

16) Сформулировать теорему Коши.

Пусть функции f(x) и g(x)

- 1. непрерывны на отрезке [a,b]
- 2. дифференцируемы в интервале (a, b)
- 3. производная g'(x) не обращается в нуль в интервале (a,b) Тогда между точками a и b найдётся хотя бы одна такая точка c (a < c < b), для которой

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

17, 18) Сформулировать теорему Бернулли — Лопиталя для предела отношения двух бесконечно малых/больших функций.

Пусть

- 1. функция f(x) и g(x) дифференцируемы в интервале $(a,a+\delta)$ для некоторого δ
- 2. $\lim_{x o a+}f(x)=0$ (или $=\infty$) и $\lim_{x o a+}g(x)=0$ (соот. $=\infty$)
- 3. $g'(x) \neq 0$ во всех точках указанного интервала
- 4. существует конечный или бесконечный предел отношения производных

$$\lim_{x o a+}rac{f'(x)}{g'(x)}$$

Тогда существует и предел отношения самих функций и

$$\lim_{x o a+}rac{f(x)}{g(x)}=\lim_{x o a+}rac{f'(x)}{g'(x)}$$

19) Сформулировать теорему о сравнение на бесконечности роста показательной, степенной и логарифмической функций.

При $x\to +\infty$ показательная функции a^x при a>1 является б.б. более высокого порядка (растёт быстрее), чем степенная x^s с любым положительным показателем s, которая, в свою очередь, является б.б. более высокого порядка, чем логарифмическая функция $log_a x$ при a>1.

20) Сформулировать теорему о неинвариантности формы записи дифференциала второго порядка.

Пусть y = f(z). Тогда

- 1. если z аргумент функции y, то $d^2y=f''(z)dz^2$
- 2. если z функции какого-либо другого аргумента, то $d^2y=f_{zz}^{\prime\prime}(z)dz^2+f_z^{\prime}(z)d^2z$

21) Сформулировать теорему Тейлора с остаточным членом в форме Пеано.

Если функции f(x) имеет в окрестности точки a производные до порядка n-1 и производную порядка n в точке a, то при $x \to a$

$$R_n(x) = o((x-a)^n)$$

22) Сформулировать теорему Тейлора с остаточным членом в форме Лагранжа.

Если на отрезке с концами x,a функция f непрерывна вместе с первыми n своими производными, а во внутренних точках этого отрезка она имеет производную порядка n+1, то найдётся такое число Θ , что

$$R_n(x) = rac{f^{(n+1)}(a+\Theta(x-a))}{(n+1)!}(x-a)^{n+1}, \quad 0 < \Theta < 1$$

23) Сформулировать теорему о разложении элементарных функций по формуле Тейлора — Маклорена.

Формула Маклорена - формула Тейлора при a=0. Вычисляя производную до порядка n основных элементарных функций в точке 0, получим для них формулы Маклорена.

$$e^x = 1 + x + rac{x^2}{2!} + \ldots + rac{x^n}{n!} + R_n(x),$$
 $\sin x = x - rac{x^3}{3!} + rac{x^5}{5!} - \ldots + (-1)^{n-1} rac{x^{2n-1}}{(2n-1)!} + R_{2n}(x)$
 $\cos x = 1 - rac{x^2}{2!} + rac{x^4}{4!} - \ldots + (-1)^n rac{x^{2n}}{(2n)!} + R_{2n+1}(x)$
 $ln(1+x) = x - rac{x^2}{2} + rac{x^3}{3} - \ldots + (-1)^{n-1} rac{x^n}{n} + R_n(x)$
 $(1+x)^s = 1 + sx + s(s-1) rac{x^2}{2!} + \ldots + s(s-1) \ldots (s-n+1) rac{x^n}{n!} + R_n(x)$

24) Сформулировать определение асимптоты графика функции.

Асимптотой неограниченной кривой называется прямая, к которой приближаются точки кривой, удаляясь от начала координат.

25) Сформулировать необходимые и достаточные условия существования вертикальных и наклонных асимптот.

Прямая $\{x=a\}$ является вертикальной асимптотой графика функции $y=f(x)\iff f(a+0)=\pm\infty$ или $f(a-0)=\pm\infty$.

Прямая $\{y=kx+b\}$ является правой наклонной асимптотой графика функции $y=f(x)\iff \lim_{x\to +\infty}\frac{f(x)}{x}=k$ и $\lim_{x\to +\infty}[f(x)-kx]=b$. В случае левой наклонной асимптоты формулировка аналогична, только в обоих пределах $x\to -\infty$.

26) Сформулировать достаточное условие возрастания (убывания) дифференцируемой функции.

- 1. Если для дифференцируемой в интервале (a,b) функции f(x) имеем f'(x)>0 $(f'(x)<0) \ \forall x\in (a,b),$ то f(x) возрастает (убывает) на этом интервале.
- 2. Если, кроме того, функция f(x) непрерывна на отрезке [a,b], то она возрастает (убывает) на отрезке [a,b].

27) Дать определение точки локального экстремума и строгого локального экстремума функции.

Точку $x_0 \in E \subset \mathbb{R}$ называют **точкой локального минимума** функции $f: E \to \mathbb{R}$, а значение функции в ней **локальным минимумом**, если

1. точка x_0 является предельной для левой $E\cap (-\infty;x_0)$ и правой $E\cap (x_0;+\infty)$ частей области определения функции.

2. существует выколотая окрестность $U(x_0)$ точки x_0 такая что в любой точке $x \in U(x_0) \cap E$ имеем $f(x_0) \leqslant f(x)$. Аналогично (изменяя только тип неравенства) определяются **точки локального максимума** $(f(x_0) \geqslant f(x))$, строгого локального минимума $(f(x_0) < f(x))$ и строгого локального максимума $(f(x_0) > f(x))$.

28) Сформулировать необходимое условия экстремума дифференцируемой функции.

Если x_0 - точка локального экстремума функции, то x_0 - критическая точка I порядка этой функции.

29) Сформулировать первое достаточное условия экстремума дифференцируемой функции.

Пусть функция y=f(x) непрерывна в некоторой окрестности критической точки x_0 и дифференцируема во всех точках соответствующей выколотой окрестности. Если при переходе аргумента x слева направо через эту точку производная f'(x) меняет знак, то в точке x_0 функция f(x) имеет экстремум, причём если производная меняет знак с минуса на плюс, то x_0 - точка локального минимума, если же с плюса на минус, то x_0 - точка локального максимума. Если и слева, и справа от точки x_0 в некоторой выколотой окрестности этой точки производная f'(x) имеет один знак, то точка x_0 не является точкой локального экстремума функции f(x).

30) Сформулировать второе достаточное условие экстремума функции.

Пусть функция y=f(x) дифференцируема в некоторой окрестности точки $x_0, f'(x_0)=0$, а $f''(x_0)$ существует, конечна и не равна нулю. Тогда при $f''(x_0)<0$ x_0 - точка локального максимума, а при $f''(x_0)>0$ x_0 - точка локального минимума.

31) Дать определение выпуклых и вогнутых функций. Сформулировать геометрическую интерпретацию этого определения.

Функцию f(x), определённую на интервале (a,b), называют **выпуклой вниз** (вверх) в интервале, если любая дуга её графика лежит не выше (не ниже) стягивающей эту дугу хорды.

Функцию строго (или нестрого) выпуклую вверх называют также строго (нестрого) вогнутой вниз, а функцию выпуклую вниз вогнутой вверх.

32) Сформулировать достаточное условие строгой выпуклости графика дважды дифференцируемой функции.

Пусть функция f(x) имеет на интервале (a,b) вторую производную.

- 1. Функция f(x) выпукла вниз на интервале $(a,b) \iff \forall x \in (a,b) \ f''(x) \geqslant 0$.
- 2. Если же f''(x) > 0 на (a, b), то функция строго выпукла вниз на этом интервале

33) Дать определение и сформулировать необходимое условие точки перегиба графика функции.

Пусть функция f(x) определена и непрерывна в некоторой окрестности точки x_0 , в точке $(x_0; f(x_0))$ у графика функции существует касательная, а при переходе аргумента x через точку x_0 меняется направление строгой выпуклости функции f(x). Тогда x_0 называют точкой перегиба этой функции, а точку $(x_0; f(x_0))$ — точкой перегиба графика функции f(x).

Если функция f(x) дифференцируема в некоторой окрестности точки перегиба x_0 и у неё существует конечная вторая производная в точке x_0 , то $f''(x_0) = 0$.

34) Сформулировать достаточное условия существования точки перегиба функции.

Пусть функция f(x) непрерывна в точке x_0 , имеет первую и вторую производную в выколотой окрестности $U(x_0)$ в этой точки и существует конечная или бесконечная производная $f''(x_0)$. Тогда

- 1. если вторая производная f''(x) меняет знак при переходе аргумента x через значение x_0 , то x_0 является точкой перегиба функции f(x);
- 2. если знак f''(x) не меняется при переходе через x_0 , то x_0 не является точкой перегиба функции f(x)

Пусть функция f(x) имеет в окрестности точки x_0 производную до порядка n-1 (n>2) и производную порядка n в точке x_0 причём $f''(x_0)=\ldots=f^{(n-1)}(x_0)=0$, а $f^{(n)}(x_0)\neq 0$. Тогда при нечётном n x_0 является точкой перегиба функции f(x), а при чётном n не является.