Saturday, July 6, 2024 10:31 PM

"State Elimination"

## DFA to RegEX



RyEx O\*



Region about about





$$9_{0} \rightarrow 9_{1}$$
 ac\*c

 $9_{0} \rightarrow 9_{3}$  ac\*a

 $9_{1} \rightarrow 9_{3}$  ac\*a

 $9_{1} \rightarrow 9_{3}$  bc\*c

 $9_{1} \rightarrow 9_{3}$  bc\*c

 $9_{2} \rightarrow 9_{1}$  bc\*c

 $9_{2} \rightarrow 9_{3}$  bc\*a

## 3×2=6

$$9_{0} \rightarrow 9_{1}$$
 ac\*c
 $9_{0} \rightarrow 9_{2}$  ac\*a
 $9_{1} \rightarrow 9_{3}$  ac\*a
 $9_{1} \rightarrow 9_{3}$  bc\*c
 $9_{1} \rightarrow 9_{3}$  bc\*a

$$9_2 \rightarrow 9_1$$
 bèc  $9_2 \rightarrow 9_3$  bèc a



eliminate 92 first & then 9, 93



elimink 92 first & then 9, 93























## Problem 1: Regular Languages and DFAs (10 points)

Let  $\Sigma = \{0, 1\}.$ 

 $L_1 = \{w \in \Sigma^* : w \text{ starts with odd number of 1's} \}$ 

 $L_2 = \{w \in \Sigma^* : w \text{ starts and ends with same character}\}$ 

- (a) Write down all strings in L<sub>2</sub> which are of length 3. (2 points)
- (b) Give the state diagram for a DFA that recognizes L<sub>1</sub>. (3 points)
- (c) Give the state diagram for a DFA that recognizes L<sub>2</sub>. (3 points)
- (d) Give the state diagram for a DFA that recognizes L<sub>1</sub> ∩ L<sub>2</sub>. (2 points)

