Database Access Methods

File Organization

Outline

- Heap file
- Sequential file
- Indexed sequential file
- Index file
- Hashed file

Heap file

- Variable-length records ~ file is not homogeneous
- Data not sorted in any way, a record placed always at the end of the file
- Usually used only along with another supporting structure

- Insert : O(1)
- Find : O(N / b)

Unsorted sequential file

- Fixed size record
- Data not sorted in any way
- Suitable when data are collected without any relationship to other data

• Insert : O(1)

Find : O(N / b)

Block	Name	Department	
0	Galvin Janice	Purchasing	
	Walters Rob	Marketing	
	Brown Kevin	Marketing	
1	Walters Rob	Developlment	
	Duffy Terri	Research	
	Brown Kevin	PR	
2	Duffy Terri	Developlment	
	Walters David	Production	
	Brown Kevin	Purchasing	
3	Matthew Gigi	Purchasing	
	Walters Rob	PR	

Sorted sequential file

- Fixed size record
- Records sorted in the file on the primary search key

Fetch

- Sequential scan
 - o O(N/b)
- Binary search
 - O(log(N/b))

Block	Name	Department	
0	Brown Kevin	PR	
	Brown Kevin	Purchasing	
1	Brown Kevin	Marketing	
	Duffy Terri	Developlment	
2	Duffy Terri	Research	
	Galvin Janice	Purchasing	
3	Matthew Gigi	Purchasing	
	Walters David	Production	
4	Walters Rob	Marketing	
	Walters Rob	Developlment	
5	Walters Rob	PR	

Sorted sequential file - modification

Insert

- Inserting new record into the structure would be costly since all the following records would have to be shifted
- Auxiliary file/blocks called overflow file/bucket needs to be established where the new records are inserted
- The file is periodically reorganized

Update

 Simple if the update does not include the primary search key

Delete

- Deleted records are not directly removed since reorganization would have to take place
- A bit designating deleted records is set
- Deleted records are removed during periodical reorganization

- An index is an auxiliary structure for a data file that consists of a specifically arranged structure containing key-pointer pairs
- Storage of the index
 - Main memory
 - Secondary memory
 Accessing index must also be taken into account when computing the find/fetch time

Indexed sequential file

- Fixed size record
- Structure
 - Primary file/area
 - Index/secondary file/area
 - Overflow file/area
- Data can be accessed either using the index or sequentially

Index file 2. (top) level

Block	Name	
8	Brown	6
	Walters Rob	7

Index file
1. (base) level

Block	Name	
6	Brown	0
	Clinard	1
	Duffy	2
	Leavy	3
	Peagler	4
7	Walters Rob	5

Primary file

Block	Name	
0	Brown Kevin	
	Berkman Doloris	
1	Clinard Stephnie	
	Coolidge Emily	
2	Duffy Terri	
	Galvin Janice	
3	Leavy Shirleen	
	Matthew Gigi	
4	Peagler David	
	Shackelford Elsie	
5	Walters Rob	

Indexed sequential file - fetch

Searching for a specific value (query key)

- Check the top level of the index and identify a key-value pair with the highest value lower than the query key
- Fetch the block referenced by the value
- Repeat the previous steps with lower index levels until a primary file block is reached
- Search the primary file block for the specified key

Searching for a range of values

- Search for the lower bound key of the interval
- Sequentially scan the blocks of the primary file until record corresponding to the upper bound key is found

Indexed sequential file - fetch

Index file
1. (base) level

Block	Name	
6	Brown	0
	Clinard	1
	Duffy	2
	Leavy	3
	Peagler	4
7	Walters Rob	5

Primary file

Block	Name	•
0	Brown Kevin	
	Berkman Doloris	
1	Clinard Stephnie	
	Coolidge Emily	
2	Duffy Terri	
	Galvin Janice	
3	Leavy Shirleen	
	Matthew Gigi	
4	Peagler David	
	Shackelford Elsie	
5	Walters Rob	

Index file 2. (top) level

Block	Name	
8	Brown	6
	Walters Rob	7

Indexed sequential file - insert

- Index structure stays static when inserting data
- New records need to be stored in reserved areas (pockets) within the primary file
- Overflown data are inserted into a new block (created dynamically) pointed to by the overflown block
- Buckets can be chained and therefore theoretically the ISF does not need to be rebuilt
- Pointers to the overflow area
 - with each record
 - with each block

Indexed sequential file

Pros

- Fast access using primary search key
- Shares pros of the sequential file

Cons

- Fast access only when using primary search key
- Problems with primary file when updating

Indexed file organization

- Allow search the file according to different attributes without the need to sequentially scan the whole file
- The primary file stays unsorted or is sorted according to one key only (primary index)
- For each query key an index file can be built
 - → one primary data file, multiple index files
- Basically corresponds to a standard DB table where we have one table and multiple indexes built over it (possibly of different types).

Primary index

- Index over the attribute based on which the records in the primary file are sorted
- If the value of the primary attribute is modified the file needs to be reorganized → should be relatively invariable
- Well-suited for range queries
- There does not have to be a primary index in the IF

Secondary index

- There can have multiple secondary indexes
- Range queries for long ranges can be very expensive (an extreme example is a sequential scan based on a secondary index which can lead to an extremely deteriorated performance)

Direct index

- Index is bound directly to the record
- Primary file reorganization leads to modification the indexing structures

Indirect index

- Indirect indexes contain keys of the primary index and not pointers to the primary file
- Accessing a record needs one more accesses to the primary index
- If the primary file is reorganized, the secondary indexes stay intact

Hashed file organization

- Direct access with one unique key
- Use hash function to map records to pages/blocks addresses
- If the data can not fit into a page/block when inserting an overflow strategy is employed
- Placement within the page is not specified
- When file is being reorganized, the pages are not filled only to, e.g., 80%

