

Amanda Belden

Committee: Dr. Franz Kurfess (CS), Dr. Hunter Glanz, Dr. Soma Roy

01 Background

Project Background

Al for Search and Rescue (SAR)

- Research project in the CS department since 2021
- Under the direction of Dr. Franz Kurfess, CS and two SMEs
- Aims to build a platform and AI models to improve Search and Rescue mission outcomes in the US

Search Methodologies

Probabilities of subjects movements and survival based on their categorization

-> Aim to improve this method by having one model that represents all categories of subjects and adds nuance to probabilities based on other variables

Hiker

Distance (horizontal) from the IPP (miles)					
	Temperate		Dry		Urban
	Mtn	Flat	Mtn	Flat	
n	568	274	221	58	8
25%	0.7	0.4	1.0	0.8	
50%	1.9	1.1	2.0	1.3	1.6
75%	3.6	2.0	4.0	4.1	11.20
95%	11.3	6.1	11.9	8.1	

Distance (horizontal) from the IPP (kilometers)					
	Temperate		Dry		Urban
	Mtn	Flat	Mtn	Flat	
n	568	274	221	58	8
25%	1.1	0.6	1.6	1.3	
50%	3.1	1.8	3.2	2.1	2.6
75%	5.8	3.2	6.5	6.6	
95%	18.3	9.9	19.3	13.1	

	Elevatio	n (vertical	Change	from the I	PP (feet)	
	Temperate				Dry	
	Uphill	Down	Same	Uphill	Down	Same
%	32%	52%	16%	48%	52%	
25%	182	160		317	500	-
50%	480	400		956	975	
75%	1175	1166		1500	2109	
95%	2634	2175		3623	5094	

	Horizontal	Change fr	om IPP (miles) for	Mtn Terra	in
	Temperate				Dry	
	Uphill	Down	Same	Uphill	Down	Same
n	58	131	34	47	57	0
25%	0.5	0.7	0.0	1.8	1.0	
50%	1.4	1.7	0.0	2.2	2.0	
75%	2.6	4.0	1.5	4.0	5.0	
95%	7.2	17.4	12.8	10.7	12.3	

Hiker

	Mobility (h	ours)
	Temperate	Dry
n	232	112
25%	0	4
50%	3	8
75%	6	12
95%	14	26

	Dispersion Ang (degrees)		
	Temperate	Dry	
n	134	28	
25%	2	20	
50%	23	47	
75%	64	124	
95%	132	175	

Find Location (%)				
	Temp	Dry	Urban	
n	312	196	17	
Structure	13%	10%	24%	
Road	13%	17%	35%	
Linear	25%	31%	18%	
Drainage	12%	18%	6%	
Water	8%	9%	12%	
Brush	2%	2%		
Scrub	3%	3%		
Woods	7%	6%		
Field	14%	1%	6%	
Rock	4%	2%		

Scenario (%)		
n	2242	
Avalanche		
Criminal		
Despondent		
Evading	1%	
Investigative	1%	
Lost	68%	
Medical	2%	
Drowning		
Overdue	16%	
Stranded	4%	
Trauma	7%	

Survivability				
	Wilderness	Urban		
Uninjured	78%	59%		
Injured	16%	24%		
Fatality	6%	12%		
No Trace		6%		
Survivability	Alive	n		
<24 hours	97%	2460		
>24 hours	76%	361		
>48 hours	60%	118		
>72 hours	52%	51		

>96 hours

Track Offset (meters)		
n	40	
25%	50	
50%	100	
75%	238	
95%	424	

Why is exploring computer based models for SAR important?

Employing ML models can discover ways to **improve SAR missions** by discovering previously unknown relationships could be found that could **reduce mission time or casualties.**

Reduce operation time by having a more accessible way to access previous mission probabilities by changing from flipbook to evidence based model.

Dataset Information

~3000 missions from New York state, 80+ variables

Missing Subject

- Gender
- Age
- Fitness level
- Last known activity

SAR Team

- Number of resources (dogs, helicopters, rangers)
- Notification time
- Number agencies involved

Location

- Last known & found locations
- Elevation
- Type of terrain

Weather

- Min/max temp
- Min/max snow depth
- Rain indicator

02 Methods

What is a Bayesian Network

A type of probability model that can be represented as a network:

- each node is a variable
- each connecting arrow is an association between those variables

Does Situation have an association or causal relationship with Response Type?

Association ≠ Causation

What is a Causal Inference?

- We can determine if an association is a causal relationship, where one variables causes a change in the probability of another.
- Experiments vs Observational Data

Do-Calculus and ACE

Based on our causal assumption that X is the cause variable and Y is the effect variable

- We can intervene on X, forcing it to be a certain value, denoted as do(X=x).
- We can find both postintervention values of P(Y=y|do[X=x]) and P(Y=y|do[X=x-])
- Average Causal Effect (ACE) = P(Y=y|do[X=x]) P(Y=y|do[X=x-])

-> We can make an inductive conclusion that X = x is a probabilistic cause of Y = y if the ACE is calculated to be positive, indicating a rise in the probability of Y = y when X is changed from x - to x by our action

Model 03 Building

Data Cleaning

- Data Aggregation
- Bin Quantitative Variables
- One-Hot Encoding
- Combine Like Categories and Variables
- Remove Sparse or Redundant Variables

Model Specifications

- Uninformative prior -> assumes no associations
- Hill-Climb Search algorithm
 - Compares all one-step changes and selects best performing
- Uses BIC to compare models

Modeling Process

- Feature Selection
 Algorithm
- 2. Manual Pruning

Final Model

Causal 04 Inference -----

Example: Missing Indicator

Probability of Condition When Found Given do(Missing Situation)

do(Missing Situation Indicator)	Condition When Found	Probability
do(Yes)	Deceased	0.3071
	No Medical Assistance Required	0.3106
\	Required Medical Treatment	0.3823
do(No)	Deceased	0.0561
	No Medical Assistance Required	0.5118
	Required Medical Treatment	0.4321

P(Deceased | do[Missing = Yes]) = 0.3071

P(Deceased | do[Missing = No]) = 0.0561

Average Causal Effect = 0.3071 - 0.0561 = 0.251

Being missing causes a higher probability of being found deceased

05 Conclusion

Takeaways

- Bayesian networks can be used to represent the associations between factors that affect Search and Rescue missions
- Changing from a flipbook to a nuanced, evidence based model is possible
- → Given more data they could discover previously unknown patterns between missions and between different types of missing subjects.
- As experienced SAR members age out and younger members mainly experience "easier" missions because of cell phones, it is important to codify as much knowledge as possible to be used in future missions in something more accessible and nuanced than a book

Future Works

- Compare informative priors from experienced SAR professionals
- Collate more data beyond NY
- Create interactive graph and interface, highlighting actionable nodes
- Applying other ML and DL models to SAR data

