1 September 10th, 2020

1.1 More Linear Algebra Review

Definition 1.1. If $T: \mathbb{R}^m \to \mathbb{R}^n$, then the **image** of T is:

$$image T = \{ y \in \mathbb{R}^n : \exists x \in \mathbb{R}^m \text{ s.t. } y = T(x) \}.$$

The image

Definition 1.2. Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. The **rank** of T is the dimension of the image of T.

Lemma 1.3

If $T: \mathbb{R}^m \to \mathbb{R}^n$ is linear, then:

- 1. rank $T \leq n$
- 2. rank $T \leq m$

Proof. The proof of 1) is trivial. For 2), we use the theorem below.

Theorem 1.4

 $\operatorname{rank} T + \dim \ker T = m.$

Definition 1.5. A linear transformation $T: \mathbb{R}^m \to \mathbb{R}^n$ has full rank if:

rank
$$T = \min\{n, m\}$$
.

Lemma 1.6

If $T: \mathbb{R}^m \to \mathbb{R}^n$ has full rank, and:

- 1. if $m \geq n$, then the matrix of T relative to certain basis is $\begin{bmatrix} I_n & 0 \end{bmatrix}$
- 2. if $m \leq n$, then the matrix of T relative to a certain basis is $\begin{bmatrix} I_m \\ 0 \end{bmatrix}$

Example 1.7

Fix $e \in \mathbb{R}^n$, define $T : \mathbb{R}^n \to \mathbb{R}$ by $T(x) = \langle x, e \rangle$, $\forall x \in \mathbb{R}^n$, then:

- its rank is 1 if $e \neq 0$
- its rank is 0 if e = 0.

Definition 1.8. In the case we choose $e = e_j$, which is the *j*-th standard basis of \mathbb{R}^n , then the map T above is called the **projection to the** *j*-th **coordinate**, symbolically written as Π_j .

Definition 1.9. For a given $c \in \mathbb{R}$, then the set $\{x \in \mathbb{R}^n : T(x) = c\}$ forms a hyperplane

Definition 1.10. Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation whose matrix relative to the standard basis is

$$\begin{bmatrix} t_{11} & t_{12} & \dots & t_m \\ \vdots & \ddots & & \vdots \\ t_{m_1} & t_{m_2} & \dots & t_{mn} \end{bmatrix}$$

then the **norm** of T is

$$\|T\| = \sqrt{\sum_{i,j} t_{ij}^2} = \sqrt{\operatorname{tr}(TT^\top)}.$$

Theorem 1.11

Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be linear. Then for every $x \in \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \in \mathbb{R}^m$, then:

$$||T(x)|| \le ||T|| ||x||.$$

Proof. Denote the matrix T relative to the standard basis as above. If $x \in \mathbb{R}^m$, we have:

$$||T(x)||^{2} = ||T\left(\sum_{i=1}^{m} x_{i}e_{i}\right)||^{2}$$

$$= ||\sum_{i=1}^{m} x_{i}T(e_{i})||^{2}$$

$$= ||\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i}t_{ij}e_{j}||^{2}$$

$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{m} x_{i}t_{ij}\right)^{2}$$

$$\leq \sum_{j=1}^{n} \left(\left(\sum_{i=1}^{m} x_{i}^{2}\right)\left(\sum_{i=1}^{m} t_{ij}^{2}\right)\right) \quad \text{Cauchy-Schwarz}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{m} t_{ij}^{2}||x||$$

$$= ||T|||x||$$

Lemma 1.12 1. If ||T|| = 0, then T = 0

- 2. If $T, S : \mathbb{R}^m \to \mathbb{R}^n$ are linear, then: $||T + S|| \le ||T|| + ||S||$
- 3. If $T: \mathbb{R}^m \to \mathbb{R}^n$, $S: \mathbb{R}^\ell \to \mathbb{R}^m$ are linear, then $||TS|| \leq ||T|| ||S||$

Definition 1.13. For a given sequence $\{a_n\}$ of real numbers, $\{a_n\}$ converges to $a \in \mathbb{R}$ if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$, such that n > N implies that $|a_n - a| < \epsilon$

Definition 1.14. For a given sequence $\{v_n\}$ of vectors in \mathbb{R}^n , $\{v_n\}$ converges to $v \in \mathbb{R}^n$ if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$, such that n > N implies that $|v_n - v| < \epsilon$

Definition 1.15. For a given sequence $\{T_n\}$ of linear transformations $\mathbb{R}^{\ell} \to \mathbb{R}^n$, $\{T_n\}$ converges to T if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$, such that n > N implies that $||T_n - T|| < \epsilon$

Lemma 1.16

Let $\{v_n\}$ be a sequence in \mathbb{R}^m which converges to $v \in \mathbb{R}^m$. Then: $\forall j \in \{1, \dots, m\}, \{\Pi_j(v_n)\}$ converges to $\Pi_j(v)$

Proof. Since $\{v_n\}$ converges, $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ s.t. if n > N, then $||v_n - v|| < \epsilon >$, Thus if n > N, then $|\Pi_j(v_n) - \Pi_j(v)| = |\Pi_j(v_n - v)|$ For every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that if n > N, then if n > N, then $|\Pi_j(v_n) - \Pi_j(v)| \le ||v_n - v|| < \epsilon$

Lemma 1.17

Let $\{v_n\}$ be a sequence in \mathbb{R}^m so that $\forall j \in \{1,..,m\}$, $\{\Pi_j(v_n)\}$ converges. Then $\{v_n\}$ is a convergent sequence of vectors.

Proof. Suppose that $\{\Pi_j(v_n)\}$ converges to a_j and let $v = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix}$. Thus if $n > N_j$, then $|\Pi_j(v_n - v)| < \frac{\epsilon}{m}$ if $n > N = \max\{N_1, N_2, N_m\}$, we have:

$$||v_n - v|| < \sum_j |\Pi_j(v_n - v)| < \frac{\epsilon}{m} \times m = \epsilon.$$

Since \Box