Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Севастопольский государственный университет»

Исследование транзисторов и ключевых схем на биполярных и униполярных транзисторах

Методические указания

к выполнению лабораторной работы для студентов, обучающихся по направлению **09.03.02 "Информационные системы и технологии"** дневной и заочной формы обучения

УДК 004.732

Исследование транзисторов и ключевых схем на биполярных и униполярных транзисторах. Методические указания к лабораторным занятиям по дисциплине "Компьютерная схемотехника" / Сост. В.С. Чернега — Севастополь: Изд-во СевГУ, 2021 — 12 с.

Методические указания предназначены для проведения лабораторных работ по дисциплине "Компьютерная схемотехника". Целью методических указаний является помощь студентом в освоении методики снятия вольтамперных характеристик транзисторов и измерения их параметров, экспериментального исследования ключевых схем на биполярных и полевых транзисторах. Излагаются теоретические и практические сведения необходимые для выполнения лабораторной работы, программа исследований, требования к содержанию отчета.

Методические указания рассмотрены и утверждены на методическом семинаре и заседании кафедры информационных систем (протокол № 1 от 31 августа 2021 г)

Допущено учебно-методическим центром СевГУ в качестве методических указаний.

Рецензент: Кротов К.В., канд. техн. наук, доцент кафедры ИС

Лабораторная работа

Исследование транзисторов и ключевых схем на биполярных и униполярных транзисторах

1. Цель работы

Экспериментальные исследования характеристик биполярных и униполярных транзисторов и ключевых схем. Приобретение практических навыков измерения электрических параметров и регистрации временных диаграмм с помощью электро- и радиоизмерительных приборов.

2. Основные теоретические положения

Транзистор — трехэлектродный полупроводниковый прибор, позволяющий входным сигналом управлять током в электрической цепи. В зависимости от используемых носителей заряда различают биполярные и полевые транзисторы.

В биполярных транзисторах одновременно используются два типа носителей заряда — электроны и дырки. Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.

В биполярных транзисторах используется два p-n перехода от которых выводятся три электрода. Управляющим электродом в биполярных транзисторах обычно является база, а основной ток протекает между эмиттером и коллектором. Носители заряда движутся от эмиттера через тонкую базу к коллектору. База отделена от эмиттера и коллектора p-n переходами. Ток протекает через транзистор лишь тогда, когда носители заряда инжектируются из эмиттера в базу через p-n переход. В базе они являются неосновными носителями заряда и легко проникают через другой p-n переход между базой и коллектором, ускоряясь при этом. Управление выходным током транзистора осуществляется за счет изменения тока базы.

Униполярный транзистор имеет три электрода: исток, сток и затвор. В таком транзисторе ток протекает от истока до стока через канал под затвором. Канал образуется в легированном полупроводнике в промежутке между затвором и нелегированной подложкой, в которой нет носителей заряда, и она не может проводить ток. Управление выходным током униполярного транзистора осуществляется за счет изменения напряжения (электрического поля) на затворе, в связи с чем униполярный транзистор называют полевым.

В зависимости от того, какой электрод является общим для входной и выходной цепей, различают три схемы включения транзисторов:

с общей базой (ОБ), общим эмиттером (ОЭ) и общим коллектором (ОК) – для биполярных транзисторов;

с общим истоком, с общим затвором и с общим стоком — для униполярных транзисторов.

На практике чаще всего используются схемы включения с общим эмиттером и общим истоком, в которых наблюдается максимальное усиление сигналов.

Основными параметрами биполярных транзисторов являются коэффициенты передачи токов:

 $\alpha = I_{\rm K} / I_{\rm B} - коэ \phi \phi$ ициент передачи эмиттерного тока в коллектор, равный от 0,9 до 0,99;

 $\beta = I_{\rm K} / I_{\rm F} - \kappa$ оэффициент передачи базового тока в коллектор, принимающий значения от 10 до 1000.

Для оценки максимально допустимых режимов работы транзисторов используют следующие параметры:

максимально допустимое напряжение коллектор—эмиттер (для различных транзисторов $U_{\text{кэ макс}} = 10 - 2000 \text{ B}$);

максимально допустимая мощность рассеяния коллектора P_{κ} макс — по ней транзисторы делят на транзисторы малой мощности (до 0,3 Вт), средней мощности (0,3 - 1,5 Вт) и большой мощности (более 1,5 Вт), транзисторы средней и большой мощности часто снабжаются специальным теплоотводящим устройством — радиатором;

максимально допустимый ток коллектора $I_{\kappa \text{ макс}}$ – до 100 А и более;

граничная частота передачи тока $f_{\rm rp}$ (частота, на которой коэффициент усиления по току становится равным единице).

Важнейшими характеристиками биполярных транзисторов являются входные $I_{\kappa} = \varphi(U_{69})$ и выходные $I_{\kappa} = \psi(U_{\kappa 9})$ при $I_{6} = \text{const}$ вольт-амперные характеристики.

Основными параметрами униполярных транзисторов являются следующие:

коэффициент усиления — отношение изменения напряжения исток-сток к изменению напряжения затвор-исток при постоянном токе стока;

крутизна стоко-затворной характеристики, чем она больше, тем «острее» реакция транзистора на изменение напряжения на затворе;

входное сопротивление $R_{\rm вx}$, определяется сопротивлением обратно смещенного p-n перехода и обычно достигает единиц и десятков МОм (что выгодно отличает полевые транзисторы от биполярных «родственников»);

максимальный ток стока $I_{\text{с макс}}$ при фиксированном напряжении затвористок;

максимальное напряжение сток-исток U_{cu} , после которого уже наступает пробой;

внутреннее (выходное) сопротивление $R_{вых}$. Оно представляет собой сопротивление канала для переменного тока (напряжение затвор-исток — константа).

Основными характеристиками униполярных транзисторов являются:

выходная (стоковая) — зависимость тока стока $I_{\rm c}$ от напряжения истоксток $U_{\rm иc}$ при постоянном напряжении затвор-исток $U_{\rm 3u}$;

cmoкo-затворная — зависимость тока стока $I_{\rm c}$ от напряжения затвористок $U_{\rm зи}$ при постоянном напряжении между истоком и стоком $U_{\rm cu}$.

Практически все цифровые элементы информационной и вычислительной техники построены на транзисторах (биполярных или чаще на КМОП), работающих в ключевом режиме.

Биполярные транзисторы, работающие в режиме ключа обычно включаются по схеме с общим эмиттером. На рис.2.1 приведены схема транзисторного ключа (a), его эквивалентная схема контактного ключа (δ) и временная диаграмма входного и выходного сигналов (δ).

Рисунок 2.1 – Схема ключа на биполярном транзисторе (*a*), эквивалентная схема (δ) и временная диаграмма (ϵ)

Резистор R_6 предназначен для ограничения тока базы транзистора I_6 , чтобы он не превышал максимально допустимого значения. В промежуток времени от 0 до t_1 входное напряжение и ток базы близки к нулю, и транзистор находится в режиме отсечки. Напряжение $U_{\rm K3}$, является выходным и будет близко к $E_{\rm K}$. В промежуток времени от t_1 до t_2 входное напряжение и ток базы транзистора становятся максимальными, и транзистор перейдёт в режим насыщения. После момента времени t_2 транзистор переходит в режим отсечки. Следовательно, можно сделать вывод, что транзисторный ключ является инвертором, т. е. изменяет фазу сигнала на 180° .

На рисунке 2.2a изображена схема КМОП ключа (вентиля) на основе униполярных транзисторов с индуцированным каналом, который осуществляет инверсию входного сигнала (элемент НЕ). То есть если на вход подается высокий уровень напряжения (логическая единица), то с выхода снимается логический ноль и наоборот. Эквивалентные схемы КМОП ключа на контактных ключах при двух значениях сигналов управления показаны на рис. 2.2b и рис.2.2b. Как видно из эквивалентных схем, выход инвертора соединен либо с шиной сигнального заземления (на выходе логический 0), либо с шиной источника пита-

ния (на выходе логическая 1). В схеме КМОП инвертора, в отличие от схем с резистором, сквозной ток отсутствует при любом состоянии вентиля. Это означает, что при идеальных ключах схема не потребляет энергии. В реальных условиях закрытый транзистор имеет очень большое, но конечное сопротивление и в устройстве протекает очень маленький (доли микроампер) ток. В момент переключения, когда оба транзистора находятся в полуоктрытом состоянии, сквозной ток существенно возрастает.

Рисунок 2.2 – Схема КМОП-ключа (a), эквивалентные схемы при различных сигналах управления на входе (б,в)

Это приводит к тому, что при увеличении частоты переключения средний ток, потребляемый схемой, увеличивается, что приводит к разогреву ключевых элементов.

Для снятия вольт-амперных характеристик биполярного транзистора применяется схема, изображенная на рис.2.3. Для снятия ВАХ униполярных транзисторов схема аналогичная, только вместо биполярного используется униполярный транзистор. Входной сигнал подается на затвор, а общим электродом является сток транзистора.

Рисунок 2.3 – Схема снятия ВАХ транзисторов

3. Описание лабораторной установки

Лабораторная установка состоит из персонального компьютера, на котором инсталлированы система симулирования электронных и микропроцессорных систем Proteus VSM. Proteus VSM по умолчанию устанавливается в папку C:\Program\Files\Labcenter Electronics\Proteus. Особенности работой с данной системой описаны в методических указаниях к лабораторной работе №1. Схемы лабораторных установок изображены в приложениях А-В.

4. Программа выполнения лабораторной работы

- 4.1. Создать на рабочем поле симулятора схему для измерения ВАХ биполярного *n-p-n* транзистора (Приложение А). Тип транзистора выбирается согласно варианту. В качестве источника входного сигнала использовать источник напряжения 1,5 В и потенциометр. Напряжение источника задается преподавателем согласно варианту (Приложение А).
- 4.2. Снять зависимость тока I_6 базы от напряжения U_{69} база-эмиттер. Входной ток изменять от 0 до 500 мкА.
- 4.3. Снять зависимость тока коллектора I_{κ} от тока базы I_{δ} и определить коэффициент усиления транзистора по току β .
- 4.4. Создать на рабочем поле симулятора схему транзисторного ключа (инвертора) на n-p-n транзисторе.
- 4.5. Подключить на вход ключа генератор прямоугольных импульсов, а выход ключа соединить со входом 2-го канала осциллографа. Первый вход осциллографа подключить к генератору прямоугольных импульсов. Амплитуду импульсов установить равной 3В, форма импульсов меандр. Длительности передних и задних фронтов 1 мкс.
- 4.6. Снять осциллограммы входных и выходных импульсов при частотах прямоугольной последовательности 10, 50 и 100 кГц. Измерить время задержки переключения ключа при переходе из режима отсечки в насыщение и обратно.
- 4.7. Создать на рабочем поле симулятора схему транзисторного ключа (инвертора) на КМОП-транзисторах (см. рис. Приложения). Для этой цели использовать транзисторную пару 2SJ118 и 2SK1058.
 - 4.8. Повторить пп. 4.5 и 4.6 для инвертора на КМОП-транзисторах.
- 4.9. Измерить величину потребляемого тока при изменении частоты переключения инвертора от 10 100 кГц.

5. Содержание отчета

- 5.1. Цель и программа работы.
- 5.2. Расчетные соотношения для исследуемых схем.
- 5.3. Принципиальные электрические схемы исследуемых устройств.
- 5.4. Измеренные параметры исследуемых устройств.

- 5.5. Таблицы, графики и временные диаграммы экспериментальных исследований.
- 5.6. Выводы по результатам экспериментов.

6. Контрольные вопросы

- 6.1. Расскажите о принципе функционирования биполярного транзистора.
- 6.2. Начертите схемы включения биполярного транзистора.
- 6.3. Назовите основные параметры транзисторов и расскажите, как на практике определить эти параметры.
- 6.4. Начертите схемы снятия вольт-амперных характеристик биполярных и униполярных транзисторов.
- 6.5. Расскажите о принципе функционирования униполярного транзистора.
- 6.6. Начертите схемы включения полевого транзистора.
- 6.7. Начертите схему транзисторного ключа на *n-p-n*-транзисторе, поясните назначение резисторов в схеме и работу устройства.
- 6.8. Начертите схему транзисторного ключа на КМОП-транзисторе и поясните работу устройства.
- 6.9. Каковы преимущества КМОП-инвертора по сравнению с инвертором на биполярных транзисторах?
- 6.10.Поясните, почему возрастает потребляемая мощность КМОП-инвертором с ростом частоты переключения.
- 6.11.Поясните, каким образом на практике можно определить задержку переключения транзисторного ключа.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Шишкин, Г. Г. Электроника: учебник для бакалавров / Г. Г. Шишкин, А. Г. Шишкин. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2019. 703 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-9916-3391-8. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/bcode/425494 (дата обращения: 08.04.2019).
- 2. Бобровников, Л. З. Электроника в 2 ч. Часть 1 : учебник для академического бакалавриата / Л. З. Бобровников. 6-е изд., испр. и доп. Москва: Издательство Юрайт, 2019. 288 с. (Серия : Бакалавр. Академический курс). ISBN 978-5-534-00109-9. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/book/elektronika-v-2-ch-chast-1-438210 (дата обращения: 08.04.2019).
- 3. Бобровников, Л. З. Электроника в 2 ч. Часть 2: учебник для академического бакалавриата / Л. З. Бобровников. 6-е изд., испр. и доп. Москва: Издательство Юрайт, 2019. 275 с. (Серия : Бакалавр. Академический курс). ISBN 978-5-534-00112-9. Текст : электронный //

- ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/book/elektronika-v-2-ch-chast-2-438244 (дата обращения: 08.04.2019).
- 4. Новожилов, О. П. Электроника и схемотехника в 2 т : учебник для академического бакалавриата / О. П. Новожилов. Москва : Издательство Юрайт, 2015. 804 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-9916-4182-1. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/book/elektronika-i-shemotehnika-v-2-t-382342 (дата обращения: 08.04.2019).
- 5. Миленина С.А. Электротехника, электроника и схемотехника: учебник и практикум для академического бакалавриата/С.А. Миленина; под ред. Н.К. Миленина. М.: Изд-во Юрайт, 2019. 406 с. https://biblio-online.ru/book/elektrotehnika-elektronika-i-shemotehnika-432925

ПРИЛОЖЕНИЕ А.

Схема стенда для измерения вольт-амперных характеристик биполярного транзистора.

Варианты заданий

Номер варианта	Напряжение источника питания (BAT2), B	Тип транзистора	Примечание
1	9	2N1711	
2	10	2N1893	
3	12	2N2219	
4	15	2N3019	
5	8	2N3053	
7	6	2N3054	
8	7	2N3055	
9	11	2N3390	
10	14	2N3705	
11	20	2N3707	
12	16	2N3392	
13	18	2N3415	

Приложение Б

Схема стенда для исследования транзисторного ключа.

Приложение В Схема стенда для исследования ключа на основе комплементарных МОП транзисторов

