

Slot-A1 (ODD)

DEPARTMENT OF MATHEMATICS SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022

Test: CLAT-1

Course Code & Title: 18MAB204T / Probability ang Queueing Theory

Year & Sem: II & IV

Date: 07/04/2022

Duration: 50 min

Max. Marks: 25

At the	end of this course, learners will be able to:						Pro	gram	Outo	omes	(PO)			
Cours	e Oulcomes (CO)	Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12
COI	Apply the concepts of probability and random variables in engineering problems.	4	3	3				\vdash						
CO2	Identify random variables and model them using various distributions.	4	3	3						П				
CO3	Infer results by using hypothesis testing on large and small samples	4	3	3										
CO4	Examine F test, Chi Square test in sampling techniques and a nalyse the performance measures of queuing models.	4	3	3										
CO5	Determine the transition probabilities and classify the states of Markov chain.	4	3	3										
CO6	Apply probability techniques and implement them in the study on sampling distributions, queueing models and Markov chain		3	3										

					4 = 12 Marks) the questions					
Q. No.			Quest			Marks	BL	co	PO	PI Code
1		$(x-x^2), 0$ $0, o$	RV with pdf $0 \le x \le 1$, k therwise	> 0 . Find (i)	k (ii) μ_r' and	4	1	1	1	1.2.2
2			nes -1,0,1 w		pabilities $\frac{1}{3}$, find the	4	3	1	1	1.2.2
3		e^{-x} , $0 < x$	ntial distributi < ∞ wise · Find			4	2	1	1	1.2.2
					13= 13 Marks) the questions					
4 (a)	The distrib	ution functio	n of a discrete	RV is given	below.	7	3	1	1	1.2.2
90000	X	1	22	3	4			1		1
	p(x)	15k	10k	30k	6k					
	Find (i) k	(ii) <i>E(X</i>) (ii	i) $P(X > 2/$	X < 4) (iv)	F(x)					
(b)			times. Use To bability of ge		nequality to find a	6	3	1	2	2.5.1

Slot-A1 (EVEN)

DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022

Test: CLAT-1

Course Code & Title: 18MAB204T / Probability ang Queueing Theory

Year & Sem: II & IV

Date: 07/04/2022 Duration: 50 min Max. Marks: 25

At the	end of this course, learners will be able to:						Pro	gram	Outo	omes	(PO)			
Course	Outcomes (CO)	Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12
COI	Apply the concepts of probability and random variables in engineering problems.	4	3	3										4
CO2	Identify random variables and model them using various distributions.	4	3	3										
CO3	Infer results by using hypothesis testing on large and small samples	4	3	3										
CO4	Examine F test, Chi Square test in sampling techniques and analyse the performance measures of queuing models.	4	3	3										L
CO5	Determine the transition probabilities and classify the states of Markov chain.	4	3	3							e		(4)	_
Ç06	Apply probability techniques and implement them in the study on sampling distributions, queueing models and Markov chain	4	3	3					-				4	

	Part – A (3 x 4 = 12 Marks) Answer all the questions					
Q.No	Question	Marks	BL	CO	PO	PI Code
1	A random variable X has the pdf $f(x) = \begin{cases} Kx^2, & 1 \le x \le 2 \\ 0, & otherwise \end{cases}$. Find (i) K (ii) μ_r and hence find the mean.	4	1	1	1	1.2.2
2	If a random variable X has the MGF $M_X(t) = \frac{3}{3-k}$, obtain the mean, variance and μ_3 .	4	3	1	1	1.2.2
3	The pdf of a random variable X is given by $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & elsewhere \end{cases}$ Find the pdf of $Y = 2X^3$	4	2	1	1	1.2.2
	Part-B (1 x 13= 13 Marks) Answer all the questions					
4 (a)	If the CDF of a random variable X is given by $F(x) = \begin{cases} 0, & x < 0 \\ \frac{x^2}{16}, & 0 < x < 4 \end{cases}$ Find (i) the density function $f(x)$ (ii) $E(X)$ (iii) $P(X > 1/X < 3)$ iv) $P(X \le 2)$	7	3	1	1	1.2.2
(b)	If X is the number obtained in a throw of a fair die, find $P\{ X - \mu > 2.5\}$ using Tchebycheff's inequality.	6	3	1	2	2.5.1

Slot-A2 (ODD)

DEPARTMENT OF MATHEMATICS SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022

Test: CLAT-1

Course Code & Title: 18MAB204T / Probability ang Queucing Theory

Year & Sem: II & IV

Date: 07/04/2022

Duration: 50 min Max. Marks: 25

At the	end of this course, learners will be able to:						Pre	gram	Out	comes	(PO)			
Cours	Outcomes (CO)	Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12
coı	Apply the concepts of probability and random variables in engineering problems.	4	3	3										
CO2	Identify random variables and model them using various distributions.	4	3	3										
CO3	Infer results by using hypothesis testing on large and small samples	4	3	3										
C04	Examine F test, Chi Square test in sampling techniques and analyse the performance measures of queuing models.	4	3	3										
COS	Determine the transition probabilities and classify the states of Markov chain.	4	3	3						1				
C06	Apply probability techniques and implement them in the study on sampling distributions, queueing models and Markov chain	4	3	3						_	-			

Q. No.	Questi	on					Marks	BL	СО	PO	PI Code
1	A continuous random variable X has $f(x) = \begin{cases} K(1+x), & 0 < x < 2 \\ 0, & otherwise \end{cases}$ mean.	the densit $i) K$ (ii)	y fiinc μ _r ' a	ction and her	nce fin	d the	4	1	1	1	1.2.2
2	distribution.	x 1 $p(x)$ 1	/4 2		1/4		4	3	1	1	1.2.2
3	Let X be a random variable with dense $f_X(x) = \begin{cases} \frac{x}{12}, & 1 < x < 5 \\ 0, & otherwise \end{cases}$. Let $Y = \int_{-\infty}^{\infty} f_X(x) dx$	ity function 2X3. Fin	on d the	pdf of	Υ.	11 92	4	2	1	1	1.2.2
		Part-B ()	-				
4(i)	If the probability distribution of X is given as Find (i) k (ii) $E(X)$	p(x)	1 4k	2	3 2k	4 k	7	3	1	1	1.2.2
	(iii) $P(X > 1 / X < 4)$ (iv) $F(x)$	P(x)			24	Ш		1			
(ii)	A fair die is tossed 720 times. Use Tche lower bound for the probability of getti	(1.00)			to find	i a	6	3	1	2	2.5.1

Slot-A2 (EVEN)

DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022

Test: CLAT-1

Course Code & Title: 18MAB204T / Probability ang Queueing Theory

Date: 07/04/2022 Duration: 50 min Max. Marks: 25

Year & Sem: II & IV

At the	end of this course, learners will be able to:						Pro	gram	Outo	omes	(PO)			
Course	Outcomes (CO)	Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Apply the concepts of probability and random variables in engineering problems.	4	3	3										
CO2	Identify random variables and model them using various distributions.	4	3	3										
CO3	Infer results by using hypothesis testing on large and small samples	4	3	3										
CO4	Examine F test, Chi Square test in sampling techniques and analyse the performance measures of queuing models.	4	3	3										
CO5	Determine the transition probabilities and classify the states of Markov chain.	4	3	3										
CO6	Apply probability techniques and implement them in the study on sampling distributions, queueing models and Markov chain	. 4	3	3				3	r					8

	Part – A (3 x 4 = 12 Marks) Answer all the questions					
Q.No	Question	Marks	BL	co	PO	PI Code
1	A random variable X has the pdf $f(x) = \begin{cases} Cx^2(1-x), & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$ Find (i) C (ii) μ_r and hence find the mean.	4	1	1	1	1.2.2
2	If the MGF of a random variable X is $M_X(t) = \frac{2}{2-k}$, obtain the	4	3	1	1	1.2.2
	mean, variance and μ_3 .					
3	The pdf of a random variable X is given by $f(x) = \begin{cases} 3x^2, & 0 < x < 1 \\ 0, & elsewhere \end{cases}$ Find the pdf of $Y = 3X + 1$.	4	2	1	1	1.2.2
	Part-B (1 x 13= 13 Marks) Answer all the questions	le I	L			
4 (a)	The CDF of a random variable X is given by $F(x) = \begin{cases} 0, & x < 0 \\ x^2, & 0 \le x \le 1 \end{cases}$ Find (i) $f(x)$ (ii) $E(X)$ $(iii) P(X > \frac{1}{4} / X < \frac{3}{4})$ (iv) $P(X \le \frac{1}{2})$	7	3	1	1	1.2.2
(b)	A discrete random variable X takes the values 1, 2, 3 with probabilities $1/18, 16/18, 1/18$. Evaluate $P\{ X - \mu \ge 2\sigma\}$ using Tchebycheff's inequality.	6	3	1	2	2.5.1

DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022

Test: CLAT-2

Course Code & Title: 18MAB204T / Probability ang Queueing Theory

Year & Sem: 11 & IV

Course Articulation Matrix:

Date:

24 /05/2022

SLOT-A1

EVEN

Duration: 100 min

Max. Marks: 50

At the end of this course, learners will be able to: Program Outcomes (PO) Learning Course Outcomes (CO) Bloom's 11 12 10 7 9 2 3 5 6 8 Level Apply the concepts of probability and 3 COL random variables in engineering problems. Identify random variables and model them 4 3 3 CO2 using various distributions. 3 3 Infer results by using hypothesis testing on CO3 large and small samples Examine F test, Chi Square test in sampling 3 3 CO4 techniques and analyse the performance measures of queuing models 3 3 Determine the transition probabilities and COS classify the states of Markov chain. Apply probability techniques and 3 implement them in the study on sampling 3 CO6 distributions, queueing models and Markov

						(5 x 4 = 20 er all the que						
Q. No.				Questio		. Tan the que	311/013	Marks	BL	co	PO	PI Code
ı		hat X is a I $P(X=3).$	Poisson distri	bution and j	$P(X=2)=\frac{2}{3}$	$\frac{2}{3}P(X=1).$		4	1	2	1	1.2.2
2			n applicant the probabili				oud test on any fourth trial.	4	2	2	1	1.2.2
3		nd S.D 0.50		The state of the s	The state of the s		ght of the tins is om the intended	4	2	3	2	2.8.1
4	students in	this sample		Can it be rea			in height of the the population,	4	2	3	2	2.8.1
5 (1)	exponentia	al distributio					is a RV having uch a watch will	2	1	2	1	1.2.2
(ii)		on the 99% ding sample		limits of a	population	proportion	in terms of the	2	1	3	1	1.2.2
						(3 x 10 = 30 any THREE						
6	Fit a Binon frequencies		ion for the fo	llowing dis	tribution and	d hence find	he theoretical	10	3	2	1	1.2.2
	x	0	1	2	3	4						
	f	5	29	36	25	5						
7			ibuted with $P(X \le 5)$.	mean 8 an	d S.D. 4. F	ind (i) P(5	≤ X ≤ 10), (ii)	10	3	2	1	1.2.2

8	A sample of while anoth S.D. of 85 if and 1% level	urs. Car	we co	nclude t								10	1	3	2	2.8.1
9	The follows coaching as effective in	in the	otuct a	LIGHT COST	chine D	the the	data in	in two	tests, o	ne held machi	before ng was	10	1	3	2	2.8.1
	Test 1	55	60	6.5	75	10	25	18	30	35	54					
	11	1														\$

Evaluation Sheet

Name of the Student:

Register No.

[n]	. 1	\neg							_
K	A		1 1	1	1 1	- 1	1		1
			1 1	- 1	1 1	- 1	- 1		

		Part - A (5x4=20 Ma	rks)
Q. No	со	Marks Obtained	Total
1	2		
2	2		1
3	3		
4	3		
5 (i)	2		
5 (ii)	3		7
)	1 Part- B (3x 10= 30 M	arks)
6	2		
7	2		
8	3		1
9	3		1
			-1

Consolidated Marks:

co	Marks Scored
C02	
C03	
Total	

Signature of the Course Teacher

DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022

Date:

24/05/2022

SLOT-A1

ODD

Duration:

100 min

Max. Marks: 50

Test: CLAT-2 Course Code & Title: 18MAB204T / Probability ang Queueing Theory Year & Sem: II & IV Course Articulation Matrix:

At the end of this course, learners will be a ble to: Program Outcomes (PO) Learning 12 10 8 9 2 3 5 Course Outcomes (CO) Bloom's Level Apply the concepts of probability and 3 3 COL random variables in engineering problems. 4 3 Identify random variables and model them CO2 using various distributions. 4 3 Infer results by using hypothesis testing on 3 CO₃ large and small samples Examine F test, Chi Square test in sampling 4 3 3 techniques and analyse the perfor mance CO4 measures of queuing models. Determine the transition probabilities and 4 3 3 CO5 classify the states of Markov chain. Apply probability techniques and 3 3 implement them in the study on sampling 4 CO6 distributions, queueing models and Markov

					Part – A (5 Answer a	x 4 = 20 N If the quest						(† <u></u>
Q. No.				Question				Marks	BIL	CO	РО	PI Code
1	The probe If 6 bomb target.	bility that a	ped, find t	pped from he probabi	a plane will lity that at	strike the t least 1 wi	arget is 1/8.	4	1	2	.1	1.2.2
2	an expon	ential distr	ribution wi	th a mean	value of than 12 min	6 minutes	staurant has s. Find the restaurant.	4	2	2	1	1.2.2
3	sample of	e 'products 600 product t difference	ucts contain	y a manu led 36 def	facturer are ectives. Tes	defective. t whether	A random here is any	4	2	3	2	2.8.1
4	A samiple	of 400 mer le drawn fro	nbers gave om a norma	a mean of I populatio	6.75. Ca it in of mean 6	be reasonat .8 and S.D	of 1.5?	4	2	3	2	2.8.1
5 (i)	In the bus	y time the possibility of o	probability one getting o	of getting to connection	elephone co in the 5 th at	nnection is tempt?	0.05. What	2	1	2	1	1.2.2
(ii)	A bag co	ntains defec	tive articles	s, the exact	number of	which is no	ot known. A	2	1	3	1	1.2.2
	sample o	f 100 from	or the propo	gives 10 rtion of de	fective artic	eles.	d the 95%		-			
					Part-B (3 x nswer Any				3	, a		
6		on distributi frequencies		ollowing d	istribution a	and hence f	ind the	10	3	2	1	1.2.2
	X	0	1	2 .	3	4	5		-	14		
	f	142	156	69	27	58	1				7-	

7	In a normal di Find the mean	stributionand S.D	n 15% c	of the iter istribution	ms are u	nder 30	and 9% a	rc over 60.	10	3	2	1	1.2.2
8	A machine promachine is over Has the machine	erhauled	, it prod	tive bolt uces 3 de	s in a b	atch of bolts in	500 bolts a batch of	f 100 bolts.	10	4	3	2	2.8.1
9	Two independe	nt samp	les of siz	ces 5 and	6 contain	n the foll	owing val	lues					201
	Sample 1	01	13	15	13	17			10	4	3	2	2,8,1
	Sample 2	12	14	12	16	11	≬0				(to		
	Is the difference	e betwee	en the m	10000	4.05						3 -		

Evaluation Sheet

Name of the Student:

Register No.

R.	A		- 6					
		- 6						

	- 2	Part - A (5x4=20 Ma	rks)
No	со	Marks Obtained	Total
1	2		
2	2		
3	3	L .	
4	3	19 4/1	
(i)	2		
(ii)	3	1 1	
	1	Part- B (3x 10= 30 M	arks)
6	2		
7	2		
8	3		
9	3		

Consolidated Marks:

CO	Marks Scored
CO2	
CO3	1
Total	

Signature of the Course Teacher

DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu

SLOT A2 ODD

Academic Year: 2021-2022

Test: CLAT-2

Course Code & Title: 18MAB204T / Probability and Queueing Theory

Year & Sem: II & IV Course Articulation Matrix: Date:

24/05/2022

100 min Duration: Max. Marks: 50

At the	end of this course, learners will be able to:						Pro	gram	Out	omes	(PO)			
Course	e Outcomes (CO)	Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12
COI	Apply the concepts of probability and random variables in engineering problems.	4	3	3				-						
CO2	Identify random variables and model them using various distributions.	4	3	3										
CO3	Infer results by using hypothesis testing on large and small samples	4	3	3										
CO4	Examine F test, Chi Square test in sampling techniques and analyse the performance measures of queuing models.	4	3	3										
COS	Determine the transition probabilities and classify the states of Markov chain,	4	3	3										
CO6	Apply probability techniques and implement them in the study on sampling distributions, queueing models and Markov chain	4	3	3										

						$5 \times 4 = 20$ fall the ques						
Q. No.				Question		an the ques	ions	Marks	BL	СО	PO	Pl Code
1	The mean $P(X=2)$	and variand	ce of a Bino	mial distrib	ution are 2	and $\frac{2}{3}$ resp	ectively. Find	4	1	2	1	1.2.2
2	distributio	with para		e measured	in minutes)	. If a show	an exponential er has already	. 4	2	2	1	1.2.2
3	A coin is a fa		imes and is	found to resu	III in head 2	45 times. Te	st whether the	4	2	3	2	2.8.1
4			ole have the values differ				and S. D 2.58.	4	2	3	2	2.8.1
5 (i)			obability of p			tion is 0.05	What is the	2	1	2	1	1.2.2
(ii)			ndom sample ce limits of μ		was found	to be 165 w	th S.D. of 7.6.	2	1	3	1	1.2.2
					Part-B (3 Answer Any	x 10 = 30 M THREE Q	larks) uestions		V.77.			
6	Fit a Poisson frequencies	distribution	for the follo	wing distrib	ution and he	nce find the	theoretical	10	3	2	1	1.2.2
Eq.	x	0	1	2	3	4	1					
	f	123	59	14	3	, I						
7	In a normal mean and S.	distribution D of the dist	25% of the ribution.	items are ur	nder 40 and	6% are ove	r 70. Find the	10	3	2	1	1.2.2

	another sample of data indicate that	f 900 m	en chosen	from ano	ther city.	there wer	nined 400 smokers. In e 450 smokers. Do the ond?	10	4	3	2	2.8.1
0	Two independent	samples	of sizes 5	and 6 cor	ntain the fo	llowing v	alues.	10	1	3	. 2	2.8.1
	Sample 1	9	11	13	11	15	·].	10	.,			
	Sample 2	10	12	10	14	9	8					

Evaluation Sheet

Name of the Student:

Register No.

			 	 -	_		$\overline{}$	_		
R	A						111			
		1						M		

s)	Part - A (5x4=20 Mar		
Total	Marks Obtained	со	Q. No
		2	1
		2	2
		3	3
		3	4
-		2	5 (i)
3.	1	3	5 (ii)
·ks)	Part- B (3x 10= 30 Ma	I	100
		2	6
		2	7
702	THE STATE OF	3	8
	Wilder Co.	3	9

Consolidated Marks:

co	Marks Scored
CO2	
CO3	
Total	

Signature of the Course Teacher

DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu

SLOT-A2 EVEN

Academic Year: 2021-2022

Test: CLAT-2

Course Code & Title: 18MAB204T & Probability and Queueing Theory

Year & Sem: II & IV / (CSE)

Date: 24/05/22 Duration: 100 min Max. Marks: 50

At the	end of this course,	learners will be ab	ole to:						Pr.o	gram O	teor	nes (I	PO)			
Course	Outcomes (CO)			Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12
COI	Apply the concepts	of probability and n engineering probl	lems.	4	3	3										
CO2		riables and model t		4	3	3										
CO3	large and small sar		S. T. C. C. C. C. C.	4	3	3										
CO4	techniques and ana measures of queui	ni Square test in san alyse the performaning models.	ce	4	3	3										
CO5	Determine the tran	sition probabilities of Markov chain.	and	4	3	3										
C06	Apply probability techniques and implement them in the study on sampling distributions, queueing models and Markov chain															
				art – A (5					-							
Q. No.	Answer all the questions. Question									Marks	İ	3L	CO	P	O	PI Code
1	If X is a Poisson v	ariate such that P(X	(= 1) =	P(X = 2) fi	nd P	(X = 4)	I) .			4		1	2		1	1.2.2
2		at a person hits a tar target before the 41		ny given trial	is 0.	5, Find	the p	roba bi	lity	4		2	2		1	1.2.2
3		s in Mathematics of have been a rando								4		2	3		2	2.8.1
4		of 13 students gave the mean weight in				ith a S	.D of	4 kg. 7	Cest	4		2	3		2	2.8.1
5 (i)	exponential distrib	The mileage which car owners get with a certain kind of radial tyre is a RV having an exponential distribution with mean 4,000 km. Find the probabilities that one of these tyres will last at least 2000 km.								2		1	2		1	1.2.2
(ii)	A random sample of 500 toys was taken from a large consignment and 65 were found to be defective. Find the 95% confidence limits of the defective toys in the consignment.							und ent.	2		1	3		1	1.2.2	
		Part-B (3 x 10= 30 Marks) Answer any THREE questions,											7		L	
6	Fit a Binomial dist	ribution for the foll	lowing d	istribution ar	d her	ice fin	d the t	theoret	ical	**		_		T	. [
	x c	x 0 1 2 3 4								10		3	2		1	1.2.2
	$\int \int \int d^3x dx$	27	34	27		5										

7	If X is now (ii) $P(X \le 3)$	nnally (25) and	distribu l (iii) P	ted with $(X \ge 42)$	mean .	30 and 5	D 5.	find (i)	P(26	≤ X ≤ 40)	10	3	2	1	1.2.2
8	A simple sa 6.4 cm, whi an S.D of 6 the English	le a sim	nla com	mle of he	to stelpe	1600 Am	ericans	nas a r	rean or	1/2 Citi and	1 10	4	3	2	2.8.
9	Memory ca month. Stat	pacity o	f9 stud er the c	lents was	tested b	efore and ve or not	lafter a from th	course e data l	of med be low.	itation for a	10	4	3	2	2.8.
	Before	10	15	9	3	7	12	16	17	4					
	After	33	35	35	11	34	29	21	28	32					1

Evaluation Sheet

Name of the Student:

Register No.

R A I I I I I I I I I I I I I I I I I I

-Total	A (5x 4= 20 Marks)		
Total	Marks Obtained	CO	Q. No
		2	1
		2	2
1		3	3
1		3	4
		2	5 (i)
		3	(ii)
	B (3x 10= 30 Marks)	Part-	
		2	6
1	The state of	2	7
		3	8
		3	9

Consolidated Marks:

CO	Marks Scored
CO2	
CO3	
Total	

Signature of the course teacher

SLOT-A1 ODD

DEPARTMENT OF MATHEMATICS SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022

Test: CLAT-3

Course Code & Title: 18MAB204T / Probability ang Queueing Theory

Year & Sem: 11 & IV Course Articulation Matrix: Date:

20/06/2022

100 min Duration:

Max. Marks: 50

At the	end of this course, learners will be able to:						Pro	gram	Oute	omes	(PO)			
Course	Outcomes (CO)	Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12
COI	Apply the concepts of probability and random variables in engineering problems.	4	3	3										L
CO2	Identify random variables and model them using various distributions.	4	3	3										
CO3	Infer results by using hypothesis testing on large and small samples	4	3	3										
C04	Examine F test, Chi Square test in sampling techniques and analyse the performance measures of queuing models.	4	3	3										
COS	Determine the transition probabilities and classify the states of Markov chain.	4	3	3										
C06	Apply probability techniques and implement them in the study on sampling distributions, queueing models and Markov chain	4	3	3	139	1111	ı ilə							

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		f				
	-	Questions		Marks	BL	СО	PO	PI Code
The following	data are collected on	two attributes.	,	5	2	4	2	2.8.1
	Cine-goers	Non-Cine-goers	A		10			
Literate	83	57	1.5		×			
Illiterate	45	68	_ = =					
			racy and cine-going	211 2				
				5	1	4	1	1.2.1
			ervice rate is 12 per	52.00	5588			
(a) Probability	that the number in the	he system exceeds 10.						
(b) Probability	that the waiting time	e in the system exceeds	5 hrs.					
	Literate Illiterate Based on this, are independent in a transfer in a	The following data are collected on Cine-goers Literate 83 Illiterate 45 Based on this, can you conclude the are independent? Given χ^2 value at weavers in a textile mill arrive at an needed for keeping the room runn. The average arrival rate of weaver hr. Both follow Poisson process. D (a) Probability that the number in the state of t	Questions The following data are collected on two attributes. Cine-goers Non-Cine-goers Literate 83 57 Illiterate 45 68 Based on this, can you conclude that the two habits of lite are independent? Given χ^2 value at 5% for 1d.f = 3.841 Weavers in a textile mill arrive at a department store room needed for keeping the room running. The store is manner the average arrival rate of weavers is 10 per hr. and the shr. Both follow Poisson process. Determine (a) Probability that the number in the system exceeds 10.	The following data are collected on two attributes. Cine-goers Non-Cine-goers	Answer Any Four questions Questions Marks The following data are collected on two attributes. Cine-goers Non-Cine-goers Literate 83 57 Illiterate 45 Based on this, can you conclude that the two habits of literacy and cine-going are independent? Given χ^2 value at 5% for 1d.f = 3.841 Weavers in a textile mill arrive at a department store room to obtain spare parts needed for keeping the room running. The store is manned by one attendant, The average arrival rate of weavers is 10 per hr. and the service rate is 12 per hr. Both follow Poisson process. Determine (a) Probability that the number in the system exceeds 10.	Answer Any Four questions Questions Marks BL The following data are collected on two attributes. 5 2 Cine-goers Non-Cine-goers Literate 83 57 Illiterate 45 Based on this, can you conclude that the two habits of literacy and cine-going are independent? Given χ^2 value at 5% for 1d.f = 3.841 Weavers in a textile mill arrive at a department store room to obtain spare parts needed for keeping the room running. The store is manned by one attendant, The average arrival rate of weavers is 10 per hr. and the service rate is 12 per hr. Both follow Poisson process. Determine (a) Probability that the number in the system exceeds 10.	Answer Any Four questions Questions Marks BL CO The following data are collected on two attributes. 5 2 4 Cine-goers Non-Cine-goers Literate 83 57 Illiterate 45 68 Based on this, can you conclude that the two habits of literacy and cine-going are independent? Given χ^2 value at 5% for 1d.f = 3.841 Weavers in a textile mill arrive at a department store room to obtain spare parts needed for keeping the room running. The store is manned by one attendant, The average arrival rate of weavers is 10 per hr. and the service rate is 12 per hr. Both follow Poisson process. Determine (a) Probability that the number in the system exceeds 10.	Answer Any Four questions Questions Marks BL CO PO The following data are collected on two attributes. 5 2 4 2 Cine-goers Non-Cine-goers Literate 83 57 Illiterate 45 68 Based on this, can you conclude that the two habits of literacy and cine-going are independent? Given χ^2 value at 5% for 1d.f = 3.841 Weavers in a textile mill arrive at a department store room to obtain spare parts needed for keeping the room running. The store is manned by one attendant, The average arrival rate of weavers is 10 per hr. and the service rate is 12 per hr. Both follow Poisson process. Determine (a) Probability that the number in the system exceeds 10.

3	[5/6		the tpm of th		of a Markov chain is $p(0) = \frac{1}{1/2}$, find the distribution of the	5	2	5	1	1.2.1
4	winnin his losi the firs (a) Wri	g the next ng the nex t game.	game is 0.6. It game is 0.	. However, if i	ins a game, the probability of his a loses a game, the probability of even chance that the gambler wins bility distribution $p^{(1)}$	5	2	5	1	1.2.1
5 (i)		the symb	olic represer	ntation of the C	neucing model due to Kendal and	2.5	1	4	1	1.2.1
(ii)	ball to	B and B al		the ball to C,	o each other. A always throws the but C is just as likely to throw the	2.5	1	5	1	1.2.1
	1				art-B (3 x 10 = 30 Marks) wer Any THREE Questions	1	J			
6	Two rar	dom samp	les gave the	following data		10	3	4	2	2.8.1
	1	8	9.6	1,2						
	Can we populati		16.5 hat the two s	2.5 amples have b	en drawn from the same normal					
7	per hr. 7 the syste per hr. (a) What (b) What	The waiting em). Exam at is the pro at is the ex	g room does in ination time obability that pected no. of	not accommode per patient is an arriving pa f customers wa	distribution at a rate of 30 patients to more than 14 patients. (14+1 in exponential with mean rate of 20 dient will not wait? Iting in the queue? a patient is discharged from the	10	3	4	1	1.2.1
8		1 (0 (2/3 1)		Markov chain	vith the tpm	10	4	5	1	1,2,1
9	occurrin	g in the fi	rst n tosses,		es the maximum of the numbers ition probability matrix P of the 6).	10	4	5	2	2.8.1

SLOT-A1 **EVEN**

DEPARTMENT OF MATHEMATICS'
SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022

Test: CLAT-3

Course Code & Title: 18MAB204T / Probability ang Queueing Theory

Year & Sem: II & IV Course Articulation Matrix: Date:

20/06/2022

Duration:

100 min

Max. Marks: 50

	+:
At the end of this course	learn

At the	end of this course, learners will be able to:	Arres.	13	5 - 110-	i.	, ,	Pro	gra'm	Out	come	s (PO)	1 12		
Course	Outcomes (CO)	Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12
COI	Apply the concepts of probability and random variables in engineering problems.	4	3	3			i.		7.	-	- MENY			
CO2	Identify random variables and model them using various distributions.	4	3	3				fi.		-	7	LI T		
C:03	Infer results by using hypothesis testing on large and small samples	4	3	3		-				1		2010		
CO4	Examine F test, Chi Square test in sampling techniques and analyse the performance measures of queuing models.	4174	3	3	1/2	trie s	A	105		DI.	. ft.	4 6 4	sqrm.	
CO5-	Determine the transition probabilities and classify the states of Markov chain.	that diff he	3	3			27 × 20 4		71		5 (C.	173	0.00	3
C06	Apply probability techniques and implement them in the study on sampling distributions, queueing models and Markov chain	ing 4 says		3		100	eve to	2 gr		41.3	Markey.	10 15 10 10 10	et et e een te	

To during any micropy of process of a major to the second
				Part – A (4 Answer An	FOUR	Questions	7 0 Aug				-
Q. No.		1.1	(1) Quest		al tipo.	lspitaleterio	Marks	BL	СО	PO	PI Code
1	The following various days o		he no. of airc	raft accidents	that occi	arred during the	5 0	2	4	2	2.8.1
	Day	Mon 7	ue Wed	Thu Fr	Sat	C. Las Y	2.50	1 VET -			
	No. of accidents:	15 1	9 13	12 16	. 15	Des Tre	alog e		1 2	1.19.3	
1.0	Test whether is	he accidents	s are uniforml	y distributed	over the	week.	2 17	925	-u ₁ X	11-0	tong
2	Two random s	amples drav				ve the following		1	4	1 1	1.2.1
	Sample no.	Size	Mean	Variance						1.5	7274
	1	5	24.6	4.24			26	i ne	11.11.11.11	1977	11 70 =
	2	6	29	18							
	Test, whether t	the two popu	lations have	the same vari	ance.					1 14	
3	If the tpm of a of the chain.	Markov ch	ain is $\begin{pmatrix} 0 \\ 1/3 \end{pmatrix}$	$\binom{1}{2/3}$ find th	e steady s	state distribution	5	2	5	1	1,2,1

4	cr.real in succe	ssive weel f she buys	B or C ,	buys ceres the next w	and C. She never buys the same al A, the next week she buys cereal eek she is 3 times as likely to buy	5	2	5	1	1,2,1
5 (i)	If $\lambda = 4/hr$ a the probability	$nd \mu = 12,$ that there	/hr in an	(M/M/1) stomer in t	: (4/FIFO) queueing system, find he system.	2.5	1	4	1	1.2.1
(ii)	Suppose that the	at the prob	pability o	dry day (st f a rainy d	ate 0) following a miny day (state ay following a dry day is 1/2. Find	2.5	1	5	1	1.2.1
,					art-B (3 x 10 = 30 Marks) wer Any THREE Questions			12112		****
6	persons with cold	, half of th	nem were	given the	ring cold. In an experiment on 500 drug and half of them were given the treatment are recorded in the	10	3	4	2	2.8.1
	Drug	150	30	70		r id	, C-) ×= (
	Sugar Pills	130	40	80					1.4	
	On the basis of the significantly in ex	is data, ca uring cold	in it be co	oncluded t	hat the drug and sugar pills differ	C-ILAN	-ja-			
7	Customers arrive a mean inter arriv the barber's chair	val time o	nan barb f 12 min	er shop ac . Custome	cording to a Poisson process with rs spend an average of 10 min. in	10	3	4	1	1.2.1
	(b) Calculate the chair without(c) How much ti(d) Management customer's w	percentage thaving to me can a c will prove the proventing time	e of time wait. customer vide anot e in the s	expect to her chair hop ex cee	the barber shop and in the queue? can walk straight into the barber's spend in the barber's shop? and hire another barber, when a ds 1.25 hours. How much must the nt a second barber?	State S	-01			
8	1 1 10	3 is $P = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$	$\begin{array}{ccc} 0.1 & 0.5 \\ 0.6 & 0.3 \\ 0.3 & 0.4 \\ 2 & = 3) a \end{array}$	5 01 2 0.:2 4 0.:3 nd	chain $\{X_n\}$, $n = 1, 2, 3,$ having and the initial distribution is $p^{(0)} = 1 = 3$, $X_0 = 2$).	10	4	5	1	1,2,1
9	Annual Control of the	Rs. 2/ He stops	He bets playing	Re. 1 ag if he los	t a time and wins Re. 1 with es Rs. 2 or wins Rs. 4	10	4	5	2 2	2.8.
*					ost his money at the end of 2	200 M	i i		15	

DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

SLOT-A2 ODD

Test: CLAT-3

Course Code & Title: 18MAB204T / Probability ang Queueing Theory

Academic Year: 2021-2022

Date:

20/06/2022

Duration:

100 min

Max. Marks: 50

Year & Sem: II & IV
Course Articulation Matrix:

At the end of this course, learners will be able to: Course Outcomes (CO)							Pro	gram	Out	comes	(PO)			
		Learning Bloom's Level	1	2	2 3	4	5	6	7	8	9	10	11	12
COI	Apply the concepts of probability and random variables in engineering problems.	4	3	3										
CO2	Identify random variables and model them using various distributions.	4	3	3		37								
CO3	Infer results by using hypothesis testing on large and small samples	4	3	3										
CO4	Examine F test, Chi Square test in sampling techniques and analyse the performance measures of queuing models.	4	3	3										
CO5	Determine the transition probabilities and classify the states of Markov chain.	4	3	3										
CO6	Apply probability techniques and implement them in the study on sampling distributions, queueing models and Markov chain	4	3	3										

								20 Mar r Questi						
Q. No.	Questions										BL	СО	PO	PI Code
1	The following table gives the number of fatal road accidents that occurred during the 7 days of the week. Find whether the accidents are uniformly distributed over the week.							5	2	4	2	2.8.1		
	Day	Sun	Mon	Tue	Wed	Thu	Fri	Sat	1					
	Number	8	14	16	12	11	14	9	1					
	Sample no. Size		ze	Mean	Variance									
	1	8		1234	6	6								
	2	7		1036	6.33	2								
	Test whether	he two	populati	ons have	e the san	ne variar	ice.							
3	If the tpm of a of the chain.	Markov	v chain i	is $\begin{bmatrix} 1/4 \\ 1 \end{bmatrix}$	$\binom{3/4}{0}$ for	ind the s	teady s	tate dist	ribution	5	2	5	1	1.2.1

	A combler has R	s 2/- He	bets Re.	at a time and wins Re. 1 with probability					
1	1/2. He stops pla and p ⁽⁰⁾ of the M	ying if h	5	2	5	1	1.2.1		
5 (i)	If $\lambda = 3$ per hr. source queueing system.	and $\mu =$ model, f	2.5	1	4	1	1.2.1		
(ii)	A gambler's luck winning the next his losing the nex	0.6. How	2.5	1	5	1	1.2.1		
				Part-B (3 x 10 = 30 Marks) Answer Any THREE Questions					
6	In an investigation different social sta		10	3	4	2	2.8.1		
	Below normal	Poor 130	20						
	Normal	102	108						
	Above normal	24	96						
	Discuss the relation								
7	Arrivals at a teleplor of 10 min, between assumed to be dis (a) Find the avera (b) What is the proint the queue? (c) What is the prowait for phone and (d) The telephone an arrival has to with the flow of arrival to the store of the store o	10	3	4	1	1.2.1			
S	The transition prod 3 states 1, 2 and 3 (0.3, 0.3, 0.4). Fin	0.5 0.3 0.4 0.2 0.3 0.3	10	4	5	1	1.2.1		
9	same city on succe B. However, if he	essive day sells eith in the ot	ys. If he s ier in B oi	cities A, B and C. He never sells in the dls in city A, then the next day he sells in C, then the next day he is twice as likely ow often does he sell in each of the cities	10	4	5	2	2.8.1

SLOT-A2 EVEN

DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022

Test: CLAT-3

Course Code & Title: 18MAB204T / Probability ang Queueing Theory

Year & Sem: II & IV

Date: Duration: 20/06/2022 100 min

Max. Marks: 50

At the		Program Outcomes (PO)												
Course Outcomes (CO)		Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12
COI	Apply the concepts of probability and random variables in engineering problems.	4	3	3										
CO2	Identify random variables and model them using various distributions.	4	3	3										
CO3	Infer results by using hypothesis testing on large and small samples	4	3	3										
CO4	Examine F test, Chi Square test in sampling techniques and analyse the performance measures of queuing models.	4	3	3										
CO5	Determine the transition probabilities and classify the states of Markov chain.	4	3	3										
CO6	Apply probability techniques and implement them in the study on sampling distributions, queueing models and Markov chain	4	3	3										

				5 = 20 Marks) OUR Questions					
Q. No.		Q	Marks	BL	СО	PO	PI Code		
1	The following ta their flower colo	1774)	5	2	4	2	2.8.1		
		Flat leaves	Curled Leaves						
	White flower	99	36						
	Real flower	15	10						
	Test whether the Given χ^2 value a		is independent of the 3.84#	ne flatness of leaf.					
2	average time of	12 min. betwee	e Poisson with an e next. The length entially with mean	5	1	4	1	1.2.1	
	4 min. (a) What is the a	average length	of the queue that fo	orms from time to					1
	(b) What is the system?	probability tha	at more than 3 cus	stomers are in the					

3	Suppose that the probability of a dry day (state 0) following a rainy day (state 1) is 1/3 and that the probability of a rainy day following a dry day is 1/2. Given that May † is a dry day, find the probability that May 3 is a dry day.	5	2	5	1	1.2.1
4	Two boys B_1 and B_2 and two girls G_1 and G_2 are throwing a ball from one to the other. Each boys throws the ball to the other boy with probability $1/2$ and to each girl with probability $1/4$. On the other hand each girl throws the ball to each boy with probability $1/2$ and never to the other girl. Find the tpm.	5	2	5	1	1.2.1
5 (i)	Write the formula to find average number $L_{\rm w}$ of customers in non-empty queues in a single server Poisson Queue model with infinite capacity.	2.5	1	4	1	1.2.1
(ii)	A student's study habits are as follows: If he studies one night, he is 70% sure not to study the next night. On the other hand, if he does not study one night, he is 60% sure not to study the next night as well. Find the tpm.	2.5	1	5	1	1.2.1
	Part-B (3 x 10 = 30 Marks) Answer Any THREE Questions					
6	Theory predicts that the proportion of beans in 4 groups A, B, C, D should be 9:3:3:1. In an experiment among 1600 beans, the numbers in the 4 groups were 882, 313, 287 and 118. Does the experiment support the theory?	10	3	4	2	2.8.1
7	The local one-person barber shop can accommodate a maximum of 5 people at a time (4 waiting and 1 getting hair cut). Customers arrive according to a Poisson distribution with mean 5 per hour. The barber cuts hair at an average rate of 4 per hour. (a) What percentage of time is the barber idle? (b) What is the expected number of customers waiting for a hair-cut? (c) How much time can a customer expect to spend in the barber shop?	10	3	4,	1	1.2.1
8	Three boys A, B and C are throwing a ball to each other. A always throws the ball to B and B always throws the ball to C, but C is just as likely to throw the ball to B as to A. Show that the process is Markovian. Find the transition matrix and classify the states	10	4	5	1	1.2.1
9	A man either drives a car or catches a train to go to office each day. He never goes 2 days in a row by train but if he drives one day, then the next day he is just as likely to drive again as he is to travel by train. Now suppose that on the first day of the week, the man tossed a fair dice and drove to work if and only if a 6 appeared. Find (i) the probability that he takes a train on the third day, and (ii) the probability that he drives to work in the long run.	10	4	5	2	2.8.1