

Description

Image

Caption

The single largest use of metallic lead is as electrodes for lead-acid batteries, accounting for 70% of all production.

The material

When the Romans conquered Britain in 43AD they discovered rich deposits of lead ore and started a mining and refining industry that was to continue for 1000 years (the symbol for lead - Pb - derives from its Latin name: Plumbum). They used it for pipes, cisterns, and for roofs - this last a use that continues to the present day. For many years tea was wrapped in lead foil to protect it on the sea voyage from India. The use of lead in many applications is diminishing because of the long-term toxic nature of lead salts, but its qualities as an acoustic insulator and its outstanding resistance to atmospheric corrosion still make it an attractive material for architecture.

Composition (summary)

>99.5 Pb

General properties

Density	705	- 712	lb/ft^3		
Price	* 0.975	- 1.08	USD/lb		
Date first used	-6500				
Mechanical properties					
Young's modulus	1.89	- 2.18	10^6 psi		
Shear modulus	* 0.58	- 0.87	10^6 psi		
Bulk modulus	4.35	- 6.53	10^6 psi		
Poisson's ratio	* 0.435	- 0.445			
Yield strength (elastic limit)	0.58	- 1.74	ksi		
Tensile strength	1.74	- 2.9	ksi		
Compressive strength	0.58	- 1.74	ksi		
Elongation	30	- 60	% strain		
Hardness - Vickers	3	- 6.5	HV		
Fatigue strength at 10^7 cycles	0.29	- 1.31	ksi		
Fracture toughness	* 4.55	- 13.7	ksi.in^0.5		
Mechanical loss coefficient (tan delta)	* 0.065	- 0.14			
Thermal properties					
Melting point	611	- 622	°F		
Maximum service temperature	* 140	- 194	°F		
•	-459	458	°F		
Minimum service temperature			I		
Thermal conductor or insulator?	19.1	Good conductor 19.1 - 20.8 BTU.ft/h.ft^2.F			
Thermal conductivity	19.1	- 20.8	D I U.II/II.II''\(\frac{1}{2}\).		

Commercially pure lead

Specific heat capacity 0.0291 - 0.0322 BTU/lb.°F
Thermal expansion coefficient 15.6 - 17.2 µstrain/°F

Electrical properties

Electrical conductor or insulator? Good conductor
Electrical resistivity 20 - 22 µohm.cm

Optical properties

Transparency Opaque

Processability

 Castability
 5

 Formability
 4
 - 5

 Machinability
 4
 - 5

 Weldability
 3
 - 4

 Solder/brazability
 5

Durability: water and aqueous solutions

Water (fresh)

Water (salt)

Soils, acidic (peat)

Soils, alkaline (clay)

Excellent

Excellent

Excellent

Excellent

Excellent

Limited use

Durability: acids

Acetic acid (10%) Excellent Acetic acid (glacial) Excellent Citric acid (10%) Excellent Hydrochloric acid (10%) Excellent Hydrochloric acid (36%) Limited use Hydrofluoric acid (40%) Unacceptable Nitric acid (10%) Acceptable Acceptable Nitric acid (70%) Phosphoric acid (10%) Excellent Phosphoric acid (85%) Excellent Sulfuric acid (10%) Excellent Sulfuric acid (70%) Excellent

Durability: alkalis

Sodium hydroxide (10%)

Sodium hydroxide (60%)

Acceptable

Acceptable

Durability: fuels, oils and solvents

Amyl acetate Acceptable Excellent Benzene Carbon tetrachloride Excellent Chloroform Acceptable Crude oil Acceptable Diesel oil Excellent Lubricating oil Excellent Paraffin oil (kerosene) Excellent Petrol (gasoline) Excellent Silicone fluids Excellent Toluene Excellent **Turpentine** Excellent

Commercially pure lead

Vegetable oils (general)

White spirit

Unacceptable

Excellent

Durability: alcohols, aldehydes, ketones

Acceptable
Acetone Excellent
Ethyl alcohol (ethanol) Excellent
Ethylene glycol Excellent
Formaldehyde (40%) Acceptable
Glycerol Acceptable
Methyl alcohol (methanol) Excellent

Durability: halogens and gases

Chlorine gas (dry)

Fluorine (gas)

C2 (oxygen gas)

Sulfur dioxide (gas)

Excellent

Acceptable

Excellent

Durability: built environments

Industrial atmosphereExcellentRural atmosphereExcellentMarine atmosphereExcellentUV radiation (sunlight)Excellent

Durability: flammability

Flammability Non-flammable

Durability: thermal environments

Tolerance to cryogenic temperatures

Excellent
Tolerance up to 150 C (302 F)

Acceptable
Tolerance up to 250 C (482 F)

Tolerance up to 450 C (842 F)

Tolerance up to 850 C (1562 F)

Tolerance above 850 C (1562 F)

Unacceptable
Unacceptable
Unacceptable

Geo-economic data for principal component

Annual world production 3.84e6 ton/yr Reserves 7.78e7 I. ton

Primary material production: energy, CO2 and water

Embodied energy, primary production * 2.78e3 3.08e3 kcal/lb CO2 footprint, primary production * 1.83 2.02 lb/lb * 39.3 - 43.4 Water usage gal(US)/lb Eco-indicator 95 640 millipoints/kg Eco-indicator 99 millipoints/kg 284

Material processing: energy

Casting energy * 557 615 kcal/lb * 37.3 Extrusion, foil rolling energy 41.2 kcal/lb Rough rolling, forging energy * 34.1 37.7 kcal/lb 60.7 kcal/lb Wire drawing energy * 54.8 Metal powder forming energy * 559 617 kcal/lb * 9.93e4 Vaporization energy 1.09e5 kcal/lb Coarse machining energy (per unit wt removed) * 51.9 57.4 kcal/lb

Fine machining energy (per unit wt removed)

	* 56.2	-	02.2	kcal/lb
Grinding energy (per unit wt removed)	* 61.1	-	67.5	kcal/lb
Non-conventional machining energy (per unit wt removed)	993	-	1.09e3	kcal/lb
Material processing: CO2 footprint				
Casting CO2	* 0.386	_	0.426	lb/lb
Extrusion, foil rolling CO2	* 0.0258	-	0.0285	lb/lb
Rough rolling, forging CO2	* 0.0236	-	0.0261	lb/lb
Wire drawing CO2	* 0.038	-	0.042	lb/lb
Metal powder forming CO2	* 0.413	-	0.455	lb/lb
Vaporization CO2	* 68.8	-	76	lb/lb
Coarse machining CO2 (per unit wt removed)	* 0.036	-	0.0397	lb/lb
Fine machining CO2 (per unit wt removed)	* 0.0389	-	0.043	lb/lb
Grinding CO2 (per unit wt removed)	* 0.0423	-	0.0467	lb/lb
Non-conventional machining CO2 (per unit wt removed)	0.688	-	0.76	lb/lb
Material recycling: energy, CO2 and recycle f	raction			
Recycle	√			
Embodied energy, recycling	* 767	-	848	kcal/lb
CO2 footprint, recycling	* 0.556	-	0.615	lb/lb
Recycle fraction in current supply	70	-	75	%
Downcycle	✓			
Combust for energy recovery	×			
Landfill	×			
Biodegrade	×			
Toxicity rating	Toxic			
A renewable resource?	×			

Environmental notes

Lead is one of the "heavy metals" that include cadmium, thallium and mercury. They have a bad reputation: when ingested they accumulate in the body, causing slow poisoning. It is for this reason that lead has been eliminated as an additive to petrol and as a pigment in paint, and that alternatives are sought for lead-tin solders. Lead in decorative and architectural applications offers no threat and is easily recycled.

Supporting information

Design guidelines

Lead is easy to shape because it melts at a low temperature (328 C) and is soft and ductile. It is exceptionally corrosion resistant, weathers to an attractive patina, and has good sound-insulating properties. It is readily cast to complex shapes in cheap molds, can be cut, soldered or welded with ease, and requires no special finishing or protective coating.

Technical notes

Lead, with an atomic weight of 207, is one of the heaviest of elements. For this reason it is used for flywheels, counter weights, projectiles (bullets) and X-ray shielding.

Typical uses

Roofs, wall cladding, pipe work, window seals, and flooring in buildings; sculpture and table wear as pewter; solder for electrical circuits and for mechanical joining, bearings; printing type; ammunition; pigments, X-ray shielding; corrosion resistant material in the chemical industry; electrodes for lead acid batteries; protective cable coverings.

Links

Reference

ProcessUniverse

Producers

