What is claimed is:

1	1. A method for determining the range of a dimensional parameter of a multiplicity of
2	members, comprising:
3	providing at least two sensors including a first sensor and a second sensor;
4	fixing a set of constant distances (Δl) between the sensors including at least
5	one distance between the first sensor and the second sensor, such
6	that the relative distances between sensors are fixed and free from
7	adjustment during the sensors' sensing operation; and
8	measuring the dimensional parameter based upon a ratio ($\Delta t_2/\Delta t_1$) of a first
9	time segment (Δt_1) and a second time segment (Δt_2), whereby no
10	adjustment of the relative distance between sensors is required.
1	2. The method of claim 1, wherein the first time segment (Δt_1) is a duration of time
2	starting when a first sensor starts recording as a fixed point of a member among the
3	multiplicity of members, and ending when a second sensor starts recording as the
4	fixed point of the member.
1	3. The method of claim 1, wherein the second time segment (Δt_2) is a duration of time
2	required for the length of a member to pass a single sensor among the at least two
3	sensors.
1	4. A method for determining the range of a dimensional parameter of a multiplicity of
2	members, comprising:
3	providing two sensors, including a first sensor and a second sensor;
4	fixing a constant distance (Δl) between the a first sensor and a second
5	sensor such that the relative distances between sensors are fixed and
6	free from adjustment;
7	moving the multiplicity of members relative to the two sensors;
8	predetermining a point on each member;

9

DKT03097 10

9	recording a first time segment (Δt_1) ;
10	recording a second time segment (Δt_2); and
11	computing a dimension of the member.
1	5. The method of claim 4, wherein the dimension of the member comprises the
2	length of the member.
1	6. The method of claim 4, wherein the first time segment (Δt_1) is the time segment from a
2	point in which the length of member entering the first sensor range until the point is
3	sensed by the second sensor.
1	7. The method of claim 4, wherein the second time segment (Δt_2) is the time
2	segment required for the length of the to pass a single sensor, wherein the
3	sensor is the first sensor or the second sensor.