Recurrent Dynamic Embedding for Video Object Segmentation

CVPR 2022

Authors Introduction Methodology Experiments and Result Conclusion Inspiration

Authors

Authors

Recurrent Dynamic Embedding for Video Object Segmentation

Mingxing Li^{1*}, Li Hu^{2*}, Zhiwei Xiong^{1†}, Bang Zhang², Pan Pan², Dong Liu¹

¹University of Science and Technology of China

²Alibaba DAMO Academy, Alibaba Group

mxli@mail.ustc.edu.cn {zwxiong, dongeliu}@ustc.edu.cn
{hooks.hl, zhangbang.zb, panpan.pp}@alibaba-inc.com

引用次数		查看全部
	总计	2017 年至今
引用	10121	9658
h 指数	40	37
i10 指数	115	109

Introduction

□ Space-Time Memory(STM)

Introduction

Memory Bank

☐ Framework

Recurrent Dynamic Embedding

Unbiased Guidance Loss

(a) Main pipeline of our framework

Self-correction Strategy

$$L_{MC} = KL(\mathbf{k}_1||\ddot{\mathbf{k}}_1) + \sum_{i} KL(\mathbf{v}_{1,i}||\ddot{\mathbf{v}}_{1,i})$$

Training Strategy

$$L_{Seg} = \frac{1}{2} \left(\sum_{i} \sum_{t=2,4} \underbrace{BCE(\tilde{\mathbf{y}}_{t,i}^{M}, \mathbf{y}_{t,i})}_{STM \ pattern \ item} + \underbrace{\sum_{i} \sum_{t=3,5} \underbrace{BCE(\tilde{\mathbf{y}}_{t,i}^{m}, \mathbf{y}_{t,i})}_{SAM \ pattern \ item} \right)$$

$$Loss = L_{Seg} + \mathbb{1}[t = 3, 5]\mu L_{UG} + \gamma L_{MC}$$

Method	CC	$\mathcal{J}\&\mathcal{F}$	$\mathcal J$	\mathcal{F}	FPS
RMNet [†] [37]	×	88.8	88.9	88.7	11.9
STM^{\dagger} [25]	×	89.3	88.7	89.9	6.3
KMN^{\dagger} [30]	×	90.5	89.5	91.5	8.4
LCM [†] [13]	×	90.7	89.9	91.4	8.5
HMMN [†] [31]	×	90.8	89.6	92.0	10.0
MiVOS ^{†*} [5]	×	91.0	89.7	92.4	16.9
STCN ^{†*} [6]	×	91.7	90.4	93.0	26.9
GCNet [17]		86.6	87.6	85.7	25.0
CFBI+ [†] [41]		89.9	88.7	91.1	5.9
SwiftNet [†] [33]		90.4	90.5	90.3	25.0
$RDE-VOS^{\dagger}$		91.1	89.7	92.5	35.0
RDE-VOS ^{†*}		91.6	90.0	93.2	35.0

Fable 3. Results on the DAVIS 2016 validation set. CC denotes constant cost during the inference.

Method	CC	Overall	\mathcal{J}_{seen}	\mathcal{F}_{seen}	\mathcal{J}_{unseen}	\mathcal{F}_{unseen}
STM [†] [25]	×	79.2	79.6	83.6	73.0	80.6
MiVOS ^{†*} [5]	×	82.4	80.6	84.7	78.2	85.9
STCN ^{†*} [6]	×	84.2	82.6	87.0	79.4	87.7
CFBI [†] [40]		81.0	80.6	85.1	75.2	83.0
SST [†] [8]		81.8	80.9	-	76.6	-
RDE-VOS †		81.9	81.1	85.5	76.2	84.8
RDE-VOS †*		83.3	81.9	86.3	78.0	86.9

Table 4. Results on the YouTube-VOS 2019 validation set.

Method	CC	$\mathcal{J}\&\mathcal{F}$	\mathcal{J}	\mathcal{F}	FPS
STM [†] [25]	×	81.8	79.2	84.3	10.2
KMN^{\dagger} [30]	×	82.8	80.0	85.6	< 8.4
$JOINT^{\dagger}$ [23]	×	83.5	80.8	86.2	4.0
LCM [†] [13]	×	83.5	80.5	86.5	< 8.5
RMNet [†] [37]	×	83.5	81.0	86.0	<11.9
MiVOS ^{†*} [5]	×	84.5	81.7	87.4	11.2
$HMMN^{\dagger}$ [31]	×	84.7	81.9	87.5	<10.0
STCN ^{†*} [6]	×	85.3	82.0	88.6	20.2
GCNet [17]		71.4	69.3	73.5	<25.0
Liang <i>et al.</i> [19]		74.6	73.0	76.1	4.0
G-FRTM [†] [26]		76.4	-	-	18.2
PReMVOS [21]		77.8	73.9	81.7	0.01
SwiftNet [†] [33]		81.1	78.3	83.9	<25.0
SST [†] [8]		82.5	79.9	85.1	-
Ge <i>et al.</i> † [10]		82.7	80.2	85.3	6.7
$\mathbf{RDE\text{-}VOS^{\dagger}}$		84.2	80.8	87.5	27.0
$RDE-VOS^{\dagger*}$	$\sqrt{}$	86.1	82.1	90.0	27.0

Method	CC	600p	$\mathcal{J}\&\mathcal{F}$	\mathcal{J}	\mathcal{F}
STM [†] [25]	×		72.2	69.3	75.2
KMN^{\dagger} [30]	×		77.2	74.1	80.3
RMNet [†] [37]	×	×	75.0	71.9	78.1
Ge <i>et al.</i> † [10]	×	×	75.2	72.0	78.3
STCN ^{†*} [6]	×	\times	77.8	74.3	81.3
MiVOS ^{†*} [5]	×	×	78.6	74.9	82.2
CFBI [†] [40]		×	74.8	71.1	78.5
Ge <i>et al.</i> † [10]		×	75.2	72.0	78.3
CFBI+ † [41]		×	75.6	71.6	79.6
$RDE-VOS^{\dagger}$		×	77.4	73.6	81.2
RDE-VOS ^{†*}		×	78.9	74.9	82.9

Variants	$\mathcal{J}\&\mathcal{F}$	$\mathcal J$	\mathcal{F}		
Strategy permutation					
RDE	81.8	78.0	85.7		
First frame	71.6	67.8	75.4		
First frame & RDE	85.3	81.6	89.0		
Latest frame	80.4	76.9	83.8		
Latest frame & RDE	82.2	78.4	86.0		
First frame & latest frame	84.6	81.0	88.2		
F & L & RDE	85.4	81.6	89.2		
First frame $\times 2$ & latest frame	85.1	81.5	88.7		
First frame & latest frame $\times 2$	84.0	80.4	87.6		
2F & L & RDE	86.1	82.1	90.0		
Sampling inte	rval θ				
$2F \& L \& RDE (\theta = 2)$	85.1	81.4	88.9		
2F & L & RDE ($\theta = 3$)	86.1	82.1	90.0		
2F & L & RDE ($\theta = 4$)	85.1	81.5	88.8		
2F & L & RDE ($\theta = 5$)	84.2	80.5	87.9		

	Ablation Settings	$\mathcal{J}\&\mathcal{F}$	$\mathcal J$	\mathcal{F}
	w/o L_{MC}	83.7	80.5	86.9
Loss	w/o L_{UG}	82.9	79.5	86.4
	w/o L_{MC} & L_{UG}	82.5	79.1	86.0
	L_{Seg} w/o STM pattern item	83.0	79.4	86.6
	Full	84.2	80.8	87.5

Table 6. Ablation of different loss functions without the BL30K [5] pre-training.

Conclusion

- Conclusion:
- Constant memory cost
- Lack of Intuitive Interpretation for memory update

