Mobius Transformations and Inversions

Dhruv Kohli Complex Analysis

August 22, 2018

- 1. M(z) = (az + b)/(cz + d); $M(z) = -(ad bc)/(c^2(z + d/c)) + a/c$; Take z, apply translation of d/c, apply complex inversion, apply dilative rotation of $-(ad bc)/c^2$ and apply translation of a/c, and the resulting complex number would be M.T. of z.
- 2. Complex inversion comprise of : $z \to 1/\bar{z}$, $z \to \bar{z}$; Geometric inversion: $\mathcal{I}_C(z) = 1/\bar{z}$, where C is origin centered unit circle; For geometric inversion in general circle K, $\tilde{z} = \mathcal{I}_K(z)$ is obtained by: $(\tilde{z} q)(\bar{z} \bar{q}) = R^2$, $\tilde{z} = (R^2 |q|^2 + \bar{z}q)/(\bar{z} \bar{q})$.

3. Line L divides plane into two parts, \mathcal{R}_L (reflection in L) interchanges those parts, $\mathcal{R}_L(L) = L$, $\mathcal{R}_L(\mathcal{R}_L(z)) = z$; \mathcal{I}_K shares all three properties. As K gets larger or the point to be inverted/reflected comes closer to K, \mathcal{I}_K behaves as \mathcal{R}_K .

4. $\tilde{a} = \mathcal{I}_K(a)$, $\tilde{b} = \mathcal{I}_K(b)$, $[q\tilde{a}][qa] = R^2 = [qb][q\tilde{b}]$, $aqb \sim \tilde{b}q\tilde{a}$, $[\tilde{a}\tilde{b}]/[ab] = [q\tilde{a}]/[qb]$, $[\tilde{a}\tilde{b}] = ([ab]R^2)/([qa][qb])$.

5. L pass through q then $\mathcal{I}_K(L) = L$; L does not pass through q then $\mathcal{I}_K(L) = K'$ where K' is a circle through q, tangent to which at q is parallel to L. K_1, K_2 with centre q then $[q\tilde{z}_2]/[q\tilde{z}_1] = R_1^2/R_2^2 = k$, so, $\mathcal{I}_{K_2} = \mathcal{D}_q^k \circ \mathcal{I}_{K_1}$.

6. K' passing through q then $\mathcal{I}_K(K') = L$ where L is parallel to tangent to K' at q; K' doesn't pass through q then $\mathcal{I}_K(K') = K''$ where K'' doesn't pass through q.

- 7. $K' \perp K$ then $\mathcal{I}_K(K') = K'$. $K' \perp K, K'' \perp K$ s.t. K' and K'' intersect at z_1, z_2 , then $I_K(z_1) = z_2$; $\tilde{z} = I_K(z)$ is the second intersection point of any two circles passing through z and \perp to K.
- 8. As $R \to \infty$, $I_K(z) = (iR\bar{z})/(\bar{z}+iR) = \bar{z}/(1-(i\bar{z}/R)) \to \bar{z} = \mathcal{R}_L(z)$; As z gets closer to a point p (say 0) on circle (R is fixed) and |z| < R, $\mathcal{I}_K(z) = \bar{z} + i\bar{z}^2/R + \ldots \to \bar{z}$.

9. Conformal at p: When transformation preserves sign and magnitude of the angle between any two curves sufficiently smooth at p; Anticonformal at p: Magnitude preserved, sign reversed; Conformal map: Conformal for all p; Anticonformal map: Anticonformal for all p; Isogonal map: Magnitude preserved for all p, can't say anything about sign.

10. Geometric inversion is anticonformal (draw \perp circle to K passing through z at a specific angle). Complex inversion is conformal. Even number of reflections (in lines or circles) is conformal, odd is anticonformal.

- 11. Inversion maps any pair of \perp circles to another pair of \perp circles; If a and b are symmetric wrt K then $\tilde{a}, \tilde{b}, \tilde{K} = \mathcal{I}_J(a, b, K), \tilde{a}$ and \tilde{b} are symmetric wrt \tilde{K} .
- 12. Analogous results for inversion in a sphere; Let S_1 and S_2 be intersecting spheres, and let C_1 and C_2 be the great circles in which these spheres intersect a plane \prod passing through their centres. Then $S_1 \perp S_2 \iff C_1 \perp C_2$.
- 13. Plotemy's theorem [ab][cd] + [ad][bc] = [ac][bd] where a,b,c,d lie on a circle.

14. Extended complex plane = complex plan with a point ∞ ; Stereographic projection: Angle preserving (conformal (if sense of angle on Σ by observer inside it)) mapping

from extended complex plane to unit sphere Σ . Stereographic image of a line in the plane is a circle on Σ passing through $N=\infty$. Circles on plane are mapped to circles on Σ .

15. If K is sphere of radius $\sqrt{2}$ centred at N then stereographic projection of plane is nothing but its inversion in K; This is another reason why steregraphic projection preserves circles.

- 16. Transformation on stereographic image of complex plane corresponding to: complex conjugation is reflection of Σ in vertical plane through real axis; geometric inversion is reflection of Σ in its equitorial plane; complex inversion is rotation of Σ with π about real axis.
- 17. Transferring a function from complex plane to Σ can tell about its behaviour at $\infty \equiv N$; Complex inversion is conformal everywhere; $z \to z^2$ is conformal everywhere except

at 0 and $N=\infty$; Such points where conformality of an otherwise conformal map breaks down are called critical points; To investigate conformality of f(z) at ∞ , take F(z)=f(1/z) and check its conformality at O.

18. Stereographic formulae: Given Cartesian coordinates of z as x+iy, and Cartesian coordinates of its stereographic image on Σ as (X,Y,Z), we have, x+iy=(X+iY)/(1-Z) and $X+iY=2z/(1+|z|^2)$ where $Z=(|z|^2-1)/(|z|^2+1)$; Also, if polar coordinates of stereographic image are (ϕ,θ) where θ measures angle around Z-axis and ϕ is the angle subtended at the centre of Σ by points N and \hat{z} , then, $z=e^{i\theta}\cot(\phi/2)$; \hat{p} and \hat{q} are antipodal on Σ then $q=-1/\bar{p}$.

19. M.T. map circles to circles, are conformal, if two points are symmetric wrt a circle then their images are symmetric wrt image circle, maps an oriented circle C to an oriented circle \tilde{C} s.t. region to the left of C is mapped to the region to the left of \tilde{C} .

- 20. There exist a unique M.T. sending any three points to any other three points; ad-bc=1 then M.T. is normalized; set of M.T. forms a group under composition; z=M(z) is a quadratic in z, so, with exception of identity mapping, a M.T. has atmost two fixed points, this fact is used to prove uniqueness part; if $c \neq 0$ then both fixed points lie on a finite plane; if c=0 then M(z)=Az+B, which is a similarity, has a fixed points at ∞ ;
- 21. Transfer $M(z) = e^{i\theta}z$ on Σ to see that origin centered circles are invariant curves, origin originating rays map to another such ray, and fixed points are 0 and ∞ : Such M.T. is called elliptic M.T.; transfer $M(z) = \rho z$ on Σ to see that origin centered circles map to another such circle, origin originating rays are invariant curves, and fixed points are 0 and ∞ : Such M.T. is called hyperbolic M.T.; Transfer $M(z) = \rho e^{i\theta}z$ to see the combined effect, 0 and ∞ are fixed points: Such M.T. is called loxodromic M.T.; M(z) = z + b has lines parallel to b as invariant curves and only ∞ as its fixed point: Such M.T. is called parabolic M.T.; A M.T. has a fixed point at ∞ it is a similarity M(z) = az + b; ∞ is the sole fixed point \iff it is a translation M(z) = z + b.

- 22. M.T. taking q, r, s to q', r', s' is given by $M'(z) = M_{q',r',s'}^{-1} \circ M_{q,r,s}(z)$ where $M_{q,r,s} = [z,q,r,s] = ((z-q)(r-s))/((z-s)(r-q))$ is a M.T. mapping $q \to 0$, $r \to 1$, $s \to \infty$; [z,q,r,s] is called cross-ratio; A point p lies on the circle through $q,r,s \iff Im[p,q,r,s] = 0$; if q,r,s induce positive orientation to circle then z lies outside $\iff Im[p,q,r,s] < 0$ and inside if Im[p,q,r,s] > 0.
- 23. M.T. in matrix form [a, b; c, d] which is non-unique; if M.T. is normalized then matrix

form is unique upto sign; check following in matrix form: Identity M.T., normalization coefficient as determinant, normalized \times normalized = normalized, composition of M.T., inverse of M.T.; M.T. are linear transformations, only they act on homogeneous coordinates in \mathbb{C}^2 ; $z = \zeta_1/\zeta_2$ is a fixed point of $M(z) \iff [\zeta_1, \zeta_2]^T$ is evec of [M]; Check with matrix form that if ∞ is a fixed point then c = 0; Suppose M(z) is normalized then det([M]) = 1, so, $det([M] - \lambda I) = \lambda^2 - (a + d)\lambda + 1 = 0$; $\lambda_1\lambda_2 = 1$ and $\lambda_1 + \lambda_2 = a + d$.

- 24. Two vectors in \mathbb{C}^2 are $\bot \iff$ they are homogeneous coordinates of antipodal points on Σ ; A linear transformation [R] analogous to a rotation must preserve inner product: <[R]p,[R]q>=< p,q>, so, $[R]^*[R]=I$; We get form of $[R]=[a,b;-\bar{b},\bar{a}]$ and therefore the most general rotation of Σ can be expressed as $R(z)=(az+b)/(-\bar{b}z+\bar{a})$.
- 25. M.T. M(z) with two fixed points ξ_+ and ξ_i ; Consider family of circles through them as C_1 and family of circles s.t. each circle is \bot all circles of C_1 as C_2 ; Note that ξ_+ and ξ_i are symmetric wrt to a circle in C_2 ; $F(z) = (z \xi_+)/(z \xi_-)$ sends $\xi_+ \to 0$ and $\xi_- \to \infty$; C_1 circles become straight lines from origin and C_2 circles become concentric origin centred circles; w = M(z) in z-plane and in w-plane $\tilde{w} = \tilde{M}(\tilde{z})$ so that $\tilde{M}(\tilde{z}) = F(M(F^{-1}(\tilde{z})))$; Two fixed points, so, $\tilde{M}(z) = mz$ where $m = \rho w^{i\alpha}$; m is the multiplier of M(z); M(z) is elliptic if $m = e^{i\alpha} C_1$ circles permutate among themselves and C_2 circles are invariant, $\alpha = (m/n)2\pi$ then period of M is n.

- 26. M(z) is hyperbolic if $m = \rho$: C_1 circles are invariant and C_2 circles permutate, $\rho < 1$ is contraction and movement is from ξ_- to ξ_+ and analogously with $\rho > 1$.
- 27. M(z) is loxodromic if $m = \rho e^{i\alpha}$; m is the multiplier associated with ξ_+ and 1/m is the multiplier associated with ξ_- ; Locally, i.e. near ξ_+ the effect of M(z) is just dilative rotation m and near ξ_- the effect of M(z) is again dilative rotation 1/m.

- 28. M.T. M(z) with one fixed point ξ ; C_1 and C_2 be two \bot families of circle passing through ξ , so, \bot at the second point of intersections too; $G(z) = 1/(z \xi)$ sends $\xi \to \infty$; C_1 and C_2 are mapped to two \bot families of lines; $\tilde{M}(\tilde{z}) = G(M(G^{-1}(\tilde{z})))$; ∞ is only fixed point, so, $\tilde{M}(\tilde{z}) = \tilde{z} + T$; C_1 circles permutate and C_2 circles permutate; M(z) is said to be parabolic in such case; Also, normalized M(z) is parabolic $\iff (a + d) = \pm 2$ so $\xi = (a d)/2c$ and we get $T = \pm c$.

 $det([M]), \tilde{M}(\tilde{z}) = m\tilde{z}$ and normalized form of $[\tilde{M}] = [\sqrt{m}, 0; 0, 1/\sqrt{m}]$ we get $tr([\tilde{M}]) = tr([F][M][F^{-1}]) = tr([M]) = a + d$, so, $\sqrt{m} + 1/\sqrt{m} = a + d$; M(z) is elliptic $\iff a + d$ is real and |a + d| < 2; M(z) is parabolic $\iff (a + d) = \pm 2$; M(z) is hyperbolic $\iff a = d$ is real and |a + d| > 2; M(z) is loxodromic $\iff a + d$ is complex.

- 30. If a fixed points of M(z) is represented as an evec with eval λ of a normalized matrix [M] then the multiplier associated with the fixed point is given by $m = 1/\lambda^2$. The two reciprocal values of m equal to the two reciprocal values of λ^2 . Easy exercise to show that $m_+ = 1/\lambda_+^2$ where λ_+ is the eval corresponsing to evec/fixed point ξ_+ .
- 31. Composition of any two reflections is a M.T.; Composition of 2 reflections is a non-loxodromic M.T. and composition of 4 reflections is a loxodromic M.T.; Elliptic case $-m = e^{i\alpha}$ then $M(z) = \mathcal{I}_B(\mathcal{I}_A(z))$ where A and B are two circles from C_1 s.t. angle from A to B is $\alpha/2$.; Hyperbolic case $-m = \rho$ then $M(z) = \mathcal{I}_B(\mathcal{I}_A(z))$ where A and B are two circles of Appolonius with limit points ξ_{\pm} s.t. $r_B/r_A = \sqrt{\rho}$ if a point moves s.t. ratio of its distance from ξ_+ and ξ_- is constant then the point moves on a circle, $r_A = |\tilde{z}| = |F(z)| = |(z \xi_+)/(z \xi_-)|$; Parabolic case $-M(z) = \mathcal{I}_B(\mathcal{I}_A(z))$ where A and B are circles that touch each other at ξ s.t. the distance between parallel line G(A) and G(B) is T/2.

32. Automorphisms of unit disc. An automorphism of a region R of the complex plane is a one-to-one, conformal mapping of R to itself. A M.T. has six degress of freedom (need image of 3 fixed complex numbers to specify). M.A. of unit disc D have three degrees of freedom (need three angles to specify images of three fixed points on the boundary of disc). Another way to fill up 3 degrees of freedom: specify which point a inside D is to be mapped to origin and which point p on C is image of the point 1.

- 33. If two M.A. M and N map two interior points to the same image points, then M=N; Since C is mapped to itself by M, the symmetry principle tells us that if a pair of points are symmetric wrt to C then so are their images. Since a is mapped to 0, $1/\bar{a}$ will map to ∞ . Thus, form of M is $M=k(z-a)/(\bar{a}z-1)$ where k is a constant. Also, p=M(1). So, $1=|p|=|k|(|1-a|)/(|\bar{a}-1|)=|k|$. So $k=e^{i\phi}$. Choice of p is equivalent to choice of ϕ . $M_0^{\phi}=e^{-i\phi}$ which rotates D about origin by $\pi+\phi$. $M_a^{\phi}=R_0^{\phi}\circ M_a^0$. $M_a^0\equiv M_a$; M_a swaps 0 and a. This is the only M.A. with this property. $M_a=R_L\circ I_J$ where J is the circle orthogonal to C which swaps a and 0 and has $1/\bar{a}$ as centre, and L is the line passing through 0 and a (and so through $1/\bar{a}$). Fixed points ξ_{\pm} are intersection points of J and L, and so they are symmetric with repect to C. Since reflections occur in orthogonal circles through these points, M_a is elliptic and $m=e^{i\pi}$ associated with both ξ_{pm} . So, M_a is involuntary and any pair of points z, $M_a(z)$ is swapped by M_a . M_a can also be expressed as $I_{L'}\circ I_{J'}$ where J' and L' are any two circles through ξ_+ that are orthogonal to C. If $\Phi\equiv 2\cos^{-1}|a|$, then M_a^{ϕ} is elliptic if $|\phi|<\Phi$, parabolic if $|\phi|=\Phi$ and hyperbolic if $|\phi|>\Phi$.
- 34. Riemann's Mapping Theorem: Any simply connected region R (other than the entire plane) may be mapped one-to-one and conformally to any other such region S. It is

sufficient to establish this in case of S being D, for if, F_R is a one-to-one conformal mapping from R to D, and F_S is a one-to-one mapping of S to D, then $F_S^{-1} \circ F_R$ is a one-to-one conformal mapping of R to S. $\tilde{F}_R \circ F_R^{-1}$ would always be some automorphism M of D so that $\tilde{F}_R = M \circ F_R$. Number of one-to-one conformal mappings from R to S is equal to the number from R to S, which in turn is equal to the number of automorphisms of S. We will show that these automorphisms are S0 which form a parameter family. This imples that there exist a 3-parameter family of one-to-one conformal mappings from S1 to S2.