Generative Model GAN + DCGAN

Yunjey Choi
DAVIAN Lab Study
2017.1.5

Table of Contents

1. Generative Model

2. GAN

3. DCGAN

4. TensorFlow Implementation

Table of Contents

1. Generative Model

2. GAN

3. **DCGAN** Code에 대한 분석을 하고 싶다면 여기로 (p.88)

4. TensorFlow Implementation

"What I cannot create, I do not understand."

—Richard Feynman

mage Modeling

Language Modeling이 있듯이 Image Modeling도 존재한다

적은 수의 parameter로 image data의 distribution 함수를 만드는게 목표

120만 개의 imagenet dataset 1.2M x 256 x 256 x 3 (약 200GB의 pixel data)

Image Modeling

Code가 주어지면 Imagenet 데이터셋을 생성하는 모델

100MB of weights < 200GB of pixels

Generative Adversarial
Networks

Variational Auto-Encoders

Pixel-RNN/CNN

생성자와 식별자 두 모델 간의 적대적 학습 (Adversarial Learning) 문제를 PGM형태로 치환 후 data의 log likelihood lower bound를 maximize하는 쪽으로 학습

모든 pixel들의 conditional distribution을 modeling (left-to-right, top-to-bottom)

	Generative Adversarial Networks	Variational Auto-Encoders	Pixel-RNN/CNN
2013			
		VAE (2013.12)	
2014			
	GAN (2014.6)		
2015			
	DCGAN (2015.1 1)		
2016			Pixel-RNN (2016.1)
	InfoGAN (2016.6)	Improved VAE (2016.6)	Pixel-CNN (2016.6)
			Pixel-CNN++ (2016.11)
	EBGAN (2016.9)		Pyramid Pixel-CNN(2016.12)

2. GAN

생성자는 가짜 이미지를 생성하고

식별자는 가짜이미지를 '가짜'라고 판별하도록 학습

생성자는 식별자가 '가짜'를 '진짜'로 판별하도록 학습

진짜 이미지를 가지고 학습할 때 구조 (식별자만 학습)

가짜 이미지를 가지고 학습할 때 구조 (식별자와 생성자 모두 학습)

3. DCGAN

Deep Convolutional GAN (DCGAN)

Deep Convolutional GAN (DCGAN)

Deep Convolutional GAN (DCGAN)

Deconvolution?

Deconvolutional Neural Network

Deconvolutional Neural Network

Convolutional Network

Deconvolutional Neural Network

Deconvolutional Network

Deconvolutional Neural Network

Deconvolutional Network = CNN Backpropagation

visualizing and understanding convolutional networks (2013)

convolution forward

w1	w2
w3	w4

convolution forward

 $y1 = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + w4 \cdot x4$

convolution forward

w1	w2
w3	w4

=

$$y1 = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + w4 \cdot x4$$

convolution backward

dx1	dx2
dx3	dx4

w1	w2
w3	w4

dy1

convolution forward

w1	w2
w3	w4

$$y1 = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + w4 \cdot x4$$

convolution backward

dx1	dx2
dx3	dx4

 $dy1 = \frac{\partial L}{\partial y_1}$

(L은 loss값)

convolution forward

w1	w2
w3	w4

$$y1 = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + w4 \cdot x4$$

convolution backward

w1	w2
w3	w4

$$dy1 = \frac{\partial L}{\partial y_1}$$

dx1 = ?

convolution forward

w1	w2
w3	w4

 $y1 = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + w4 \cdot x4$

convolution backward

dx1	dx2
dx3	dx4

w1	w2
w3	w4

 $dy1 = \frac{\partial L}{\partial y_1}$

convolution forward

y1

$$y1 = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + w4 \cdot x4$$

convolution backward

w1	w2
w3	w4

 $dy1 = \frac{\partial L}{\partial y1}$

convolution forward

w1	w2
w3	w4

y1

$$y1 = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + w4 \cdot x4$$

convolution backward

 $dx1 = \frac{\partial L}{\partial x1} = \frac{\partial L}{\partial y1} \frac{\partial y1}{\partial x1} = dy1 \cdot w1$

w1	w2
w3	w4

convolution forward

w1	w2
w3	w4

=

y1

$$y1 = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + w4 \cdot x4$$

convolution backward

w1	w2
w3	w4

$$\partial y$$

$$dx1 = \frac{\partial L}{\partial x1} = \frac{\partial L}{\partial y1} \frac{\partial y1}{\partial x1} = dy1 \cdot w1 \longrightarrow dxi = dy1 \cdot wi \quad (1 \le i \le 4)$$

숫자로 예를 들어보자

convolution backward

1	0
-1	2

$$dy1 = \frac{\partial L}{\partial y1}$$

convolution backward

위에 있는 layer로 부터 받은 미분 값

 $dy1 = \frac{\partial L}{\partial y1}$

convolution backward

위에 있는 layer로 부터 받은 미분 깂

convolution backward

위에 있는 layer로 부터 받은 미분 값

$$dxi = dy1 \cdot wi \ (1 \le i \le 4)$$
 $i = 1$

convolution backward

위에 있는 layer로 부터 받은 미분 값

$$dxi = dy1 \cdot wi \ (1 \le i \le 4)$$
 $i = 2$

convolution backward

위에 있는 layer로 부터 받은 미분 깂

$$dxi = dy1 \cdot wi \ (1 \le i \le 4)$$

$$i = 3$$

convolution backward

위에 있는 layer로 부터 받은 미분 깂

$$dxi = dy1 \cdot wi \ (1 \le i \le 4)$$

deconvolution forward

w1	w2
w3	w4

y1

$$xi = y1 \cdot wi \ (1 \le i \le 4)$$

convolution backward

dx1	dx2
dx3	dx4

dy1

deconvolution forward

y1

 $xi = y1 \cdot wi \ (1 \le i \le 4)$

convolution backward

dx1	dx2
dx3	dx4

w1	w2
w3	w4

위에 있는 layer도 부터 받은 미문 û

dy1

deconvolution forward

w1	w2
w3	w4

아래에 있는 layer로 부터 받은 activation 값

 $xi = y1 \cdot wi \ (1 \le i \le 4)$

convolution backward

dx1	dx2
dx3	dx4

w1	w2
w3	w4

위에 있는 layer로 부터 받은 미분 깂

deconvolution forward

w1	w2
w3	w4

아래에 있는 layer로 부터 받은 activation 값

convolution backward

w1	w2
w3	w4

결론은

Convolution Backward = Deconvolution Forward

Convolution Forward = Deconvolution Backward

DAVIAN Lab

다시 DCGAN으로 돌아와서

Discriminator = Convolutional Network

Generator= Deconvolutional Network

이전에도 CNN과 DCNN을 사용한 연구는 많았지만 DCGAN에서 다른 점이 있다

1. Pooling Layer를 사용하지 않음 -> All Strided Convolution

Pooling Layer를 사용하게 되면 Blocky한 이미지들이 생성되는데 이를 방지

Striving for simplicity: The all convolutional net (2014) 에서 아이디어를 얻음

이전에도 CNN과 DCNN을 사용한 연구는 많았지만 DCGAN에서 다른 점이 있다

- 1. Pooling Layer를 사용하지 않음
 - 2. Batch Normalization

CNN과 DCNN에 Batch Normalization Layer를 추가

이전에도 CNN과 DCNN을 사용한 연구는 많았지만 DCGAN에서 다른 점이 있다

- 1. Pooling Layer를 사용하지 않음
 - 2. Batch Normalization 사용
- 3. Fully Connected Layer 최소화 -> All Convolution Layer

Generator의 첫 번째 layer와 Discriminator의 마지막 layer를 제외하고는 모두 Convolution Layer를 사용

Going deeper into neural networks (2015)에서 아이디어를 얻음

이전에도 CNN과 DCNN을 사용한 연구는 많았지만 DCGAN에서 다른 점이 있다

- 1. Pooling Layer를 사용하지 않음
 - 2. Batch Normalization 사용
- 3. Fully Connected Layer 최소화

4. ReLU와 Leaky ReLU 사용 Generator는 ReLU를 사용, Discriminator는 Leaky ReLu를 사용 실험적으로 더 높은 퀄리티의 이미지를 생성

이전에도 CNN과 DCNN을 사용한 연구는 많았지만 DCGAN에서 다른 점이 있다

- 1. Pooling Layer를 사용하지 않음
 - 2. Batch Normalization 사용
- 3. Fully Connected Layer 최소화
 - 4. ReLU와 Leaky ReLU 사용

결과적으로 이전 연구보다 퀄리티가 더 높은 이미지를 생성

DAVIAN Lab

DAVIAN Lab

DAVIAN Lab

Discriminator(식별자)

Reshape 8192 to 4x4x512

가짜 이미지

가짜 이미지

가짜 이미지

DAVIAN Lab

가짜 이미지

가짜 이미지

backpropagation

DAVIAN Lab

https://github.com/yunjey/davian-tensorflow/tree/master/notebooks/week4

먼저 코드 구조부터 파악해보자

DAVIAN Lab

아래 3개가 핵심 코드!

a config.py	fixed to be compatible with python 3 and tensorflow 0.12	a day ago
download.sh	download celeb image dataset	7 days ago
model.py	fixed to be compatible with python 3 and tensorflow 0.13	a day ago
☐ ops.py	conv2d, deconv2d, linear, batch_norm, Irelu etc	7 days ago
prepro.py	fixed to be compatible with python 3	a day ago
solver.py	fixed to be compatible with python 3 and tensorflow 0.12	a day ago
train.py	train module	7 days ago

DAVIAN Lab

convolution, deconvolution과 같은 연산자들을 정의

DCGAN 모델을 정의 discriminator와 generator 정의

build_model 함수호출 시 TensorFlow Graph를 생성

학습 데이터를 불러온 뒤 DCGAN 모델을 학습

__init__ 함수에서 build_model 호출

train 함수 호출 시 Session이 실행되고 학습시작

DCGAN model을 생성

Solver를 통해 DCGAN 모델을 학습

부수적인 역할을 해주는 module

TensorFlow 0.11과 0.12 버전 모두 호환이 되게 설정

TensorFlow 0.11 -> 0.12 바뀐점

- 1. Variable -> Global Variable로 명칭이 바뀜
- 2. Tensorboard를 위한 함수들을 부르는 방식이 바뀜

CelebA 이미지 데이터셋 다운로드

download.sh

prepro.py

CelebA 이미지를 64x64 형태로 center crop한 후 resize

download.sh

prepro.py

- 1. ops.py에서 batch_norm만 class로 구현한 이유는?
- 2. model.py에서 sampled images(57번째 줄)를 생성할 때 batch_norm 함수가 moving average와 variance를 사용하는가?

(사용하지 않는 다면 사용하게끔 코드를 수정하시오)

Thank You