TEST REPORT

Reference No. : WTS16S1269388E

Applicant : Rider best,Inc

Address : 428 SOUTH 9TH AVE, CITY OF INDUSTRY, CA91746

Manufacturer : Flyball Electronic (Shenzhen) Co., Ltd.

Address 5-6 Building, Zhiji Industrial Park, Jinye Road, Kuichong Street,

LongGang District, Shenzhen, China

Product Name: MULTIMEDIA SPEAKER SYSTEM

PS-21252, PS-21253, TS-2647, TS-2648, TS-21255, TS-21256

Brand Name. :

Date of Receipt sample Dec. 28, 2016

Date of Test : Jan. 14, 2017 – Mar. 25, 2017

Robin. Zhou

Date of Issue : Mar. 28, 2017

Test Result Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Approved by:

Robin Zhou / Test Engineer

2 Contents

Reference No.: WTS16S1269388E

		Page					
1	COVER PAGE	,					
2	CONTENTS	•••••••••••••••••••••••••••••••••••••••					
3	REVISION HISTORY						
4	GENERAL INFORMATION						
	4.1 GENERAL DESCRIPTION OF E.U.T. 4.2 DETAILS OF E.U.T. 4.3 CHANNEL LIST. 4.4 TEST MODE. 4.5 TEST FACILITY						
5	EQUIPMENT USED DURING TEST						
	5.1 EQUIPMENTS LIST						
6	TEST SUMMARY						
7	CONDUCTED EMISSION	10					
	7.1 E.U.T. OPERATION						
8	RADIATED EMISSIONS						
	8.1 EUT OPERATION						
9	BAND EDGE MEASUREMENT						
	9.1 TEST PROCEDURE						
10							
	10.1 TEST PROCEDURE:						
11							
	11.1 TEST PROCEDURE: 11.2 TEST RESULT:						
12							
	12.1 TEST PROCEDURE:						
13							
	13.1 TEST PROCEDURE: 13.2 TEST RESULT:	4					
14	DWELL TIME	4					
	14.1 Test Procedure:	40					

Reference No.: WTS16S1269388E Page 3 of 77

	14.2	Test Result:	46
15	ANTE	ENNA REQUIREMENT	52
16	RF EX	XPOSURE	53
	16.1	REQUIREMENTS	53
	16.2	THE PROCEDURES / LIMIT	53
	16.3	MPE CALCULATION METHOD	54
17	PHO	FOGRAPHS – MODEL PS-2643 TEST SETUP	55
	17.1	PHOTOGRAPH-CONDUCTED EMISSIONS TEST SETUP AT TEST SITE 2#	55
	17.2	PHOTOGRAPH-RADIATED EMISSIONS	55
18	PHO	FOGRAPHS – CONSTRUCTIONAL DETAILS	58
	18.1	Model PS-2643 – External Photos	58
	18.2	Model PS-2643 – Internal Photos	64

Reference No.: WTS16S1269388E Page 4 of 77

3 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS16S1269388E	Dec. 28, 2016	Jan. 14, 2017 – Mar. 25, 2017	Mar. 28, 2017	original	-	Valid

Reference No.: WTS16S1269388E Page 5 of 77

4 General Information

4.1 General Description of E.U.T.

Product Name : MULTIMEDIA SPEAKER SYSTEM

: PS-2643, PS-4583, PS-2645, PS-2646, PS-4585, PS-4586,

Model No. PS-21251, PS-21252, PS-21253, TS-2647, TS-2648, TS-21255,

TS-21256

: The model PS-2643 is the tested sample. All models are same in all

Model Description respects. Only except for the different model names due to market's

requirement.

Operation Frequency: 2402-2480MHz, 79(EDR) Channels in total

The Lowest Oscillator : 32.768KHz

Antenna Gain : 0dBi

Type of Modulation : GFSK, Pi/4DQPSK, 8DPSK

Antenna installation : PCB Printed Antenna

4.2 Details of E.U.T.

Technical Data : AC 110V, 60Hz

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2402	2	2403	3	2404	4	2405
5	2406	6	2407	7	2408	8	2409
9	2410	10	2411	11	2412	12	2413
13	2414	14	2415	15	2416	16	2417
17	2418	18	2419	19	2420	20	2421
21	2422	22	2423	23	2424	24	2425
25	2426	26	2427	27	2428	28	2429
29	2430	30	2431	31	2432	32	2433
33	2434	34	2435	35	2436	36	2437
37	2438	38	2439	39	2440	40	2441
41	2442	42	2443	43	2444	44	2445
45	2446	46	2447	47	2448	48	2449
49	2450	50	2451	51	2452	52	2453
53	2454	54	2455	55	2456	56	2457
57	2458	58	2459	59	2460	60	2461
61	2462	62	2463	63	2464	64	2465
65	2466	66	2467	67	2468	68	2469
69	2470	70	2471	71	2472	72	2473
73	2474	74	2475	75	2476	76	2477
77	2478	78	2479	79	2480	-	-

Reference No.: WTS16S1269388E Page 6 of 77

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Table 1 Tests Carried Out Under FCC part 15.247

Bluetooth mode	Test mode	Low channel	Middle channel	High channel
EDR	Transmitting	2402MHz	2441MHz	2480MHz

Table 2 Tests carried out under FCC part 15.207 and 15.209

Test Item	Test Mode		
Radiated Emissions	Bluetooth Transmitting		
Conducted Emissions	Bluetooth Transmitting		

4.5 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files.

Registration 7760A-1, October 15, 2015

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

Reference No.: WTS16S1269388E Page 7 of 77

5 Equipment Used during Test

5.1 Equipments List Conducted Emissions Test Site 1#

Item	Equipment Manufacturer		Model No.	Serial No.	Calibration Date	Calibration Due Date
1	EMI Test Receiver	R&S	ESCI	100947	Sep.12, 2016	Sep.11, 2017
2	LISN	R&S	ENV216	100115	Sep.12, 2016	Sep.11, 2017
3	Cable	Тор	TYPE16(3.5M)	-	Sep.12, 2016	Sep.11, 2017
Conduc	cted Emissions Test S	ite 2#		1	•	1
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	EMI Test Receiver	R&S	ESCI	101155	Sep.12, 2016	Sep.11, 2017
2	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.12, 2016	Sep.11, 2017
3	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.12, 2016	Sep.11, 2017
4	Cable	Laplace	RF300	-	Sep.12, 2016	Sep.11, 2017
3m Sen	ni-anechoic Chamber	for Radiation Emiss	sions Test site 1	#		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Spectrum Analyzer	R&S	FSP	100091	Apr. 29, 2016	Apr. 28, 2017
2	Amplifier Agilent		8447D	2944A10178	Jan. 12, 2017	Jan. 11, 2018
3	Active Loop Antenna	Beijing Dazhi	ZN30900A	0703	Oct. 17, 2016	Oct. 16, 2017
4	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr. 09, 2016	Apr. 08, 2017
5	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.12, 2016	Sep.11, 2017
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr. 09, 2016	Apr. 08, 2017
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr. 13, 2016	Apr. 12, 2017
8	Coaxial Cable (above 1GHz)	Тор	1GHz-18GHz	EW02014-7	Apr. 13, 2016	Apr. 12, 2017
3m Sen	ni-anechoic Chamber	for Radiation Emis	sions Test site 2	#		
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	Apr. 13, 2016	Apr. 12, 2017
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Apr. 09, 2016	Apr. 08, 2017
3	Amplifier	ANRITSU	MH648A	M43381	Apr. 13, 2016	Apr. 12, 2017
4	Cable	HUBER+SUHNER	CBL2	525178	Apr. 13, 2016	Apr. 12, 2017

RF Conducted Testing								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.12, 2016	Sep.11, 2017		
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.12, 2016	Sep.11, 2017		
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.12, 2016	Sep.11, 2017		

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS16S1269388E Page 9 of 77

6 Test Summary

Test Items	Test Requirement	Result
Conduct Emission	15.207	С
	15.205(a)	С
Spurious Radiated Emissions	15.209	
	15.247(d)	
Danid adaa	15.247(d)	С
Band edge	15.205(a)	
20dB Bandwidth	15.247(a)(1)	С
Maximum Peak Output Power	15.247(b)(1)	С
Frequency Separation	15.247(a)(1)	С
Number of Hopping Frequency	15.247(a)(1)(iii)	С
Dwell time	15.247(a)(1)(iii)	С
Maximum Permissible Exposure	4.4207/b\/4\	С
(Exposure of Humans to RF Fields)	1.1307(b)(1)	

Note: C=Compliance; NC=Not Compliance; NT=Not Tested; N/A=Not Applicable.

Reference No.: WTS16S1269388E Page 10 of 77

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207
Test Method: ANSI C63.10:2013;ANSI C63.4:2014

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: $66-56 \text{ dB}_{\mu}\text{V}$ between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz~&~5MHz $60~dB\mu V$ between 5MHz~&~30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

7.1 E.U.T. Operation

Operating Environment:

Temperature: 22.8 °C
Humidity: 52.6 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Bluetooth Transmitting mode, the test data were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Neutral line:

Reference No.: WTS16S1269388E Page 13 of 77

8 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013;ANSI C63.4:2014

Test Result: PASS
Measurement Distance: 3m

Limit:

Littit.					
_	Field Strength		Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance uV/m		dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Bluetooth Transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTS16S1269388E Page 15 of 77

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS16S1269388E Page 16 of 77

8.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane;

For above 1GHz, the EUT is 1.5m above ground plane.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission

level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the

maximum emissions.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna

both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the

table, Y denotes side stand and Z denotes vertical stand), the worst condition was tested putting the

eut in X axis, so the worst data were shown as follow.

8. A 2.4GHz high –pass filter is used druing radiated emissions above 1GHz measurement.

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and

subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit

for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WTS16S1269388E Page 17 of 77

8.6 Summary of Test Results

Test Frequency: 9KHz ~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Remark: only the worst data (GFSK modulation mode) were reported.

Frequency I	Receiver	I letector	Turn table Angle	RX Antenna		Corrected	Commonto d	FCC Part 15.247/209/205	
	Reading			Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK Low Channel 2402MHz								
265.45	32.89	QP	244	1.1	Н	-13.35	19.54	46.00	-26.46
265.45	40.77	QP	67	1.4	V	-13.35	27.42	46.00	-18.58
4804.00	45.78	PK	242	2.0	V	-1.06	44.72	74.00	-29.28
4804.00	42.81	Ave	242	2.0	V	-1.06	41.75	54.00	-12.25
7206.00	40.22	PK	330	1.8	Н	1.33	41.55	74.00	-32.45
7206.00	32.59	Ave	330	1.8	Н	1.33	33.92	54.00	-20.08
2344.90	46.71	PK	210	1.9	V	-13.19	33.52	74.00	-40.48
2344.90	38.14	Ave	210	1.9	V	-13.19	24.95	54.00	-29.05
2360.26	43.48	PK	163	1.0	Н	-13.14	30.34	74.00	-43.66
2360.26	36.72	Ave	163	1.0	Н	-13.14	23.58	54.00	-30.42
2499.74	42.24	PK	342	1.9	V	-13.08	29.16	74.00	-44.84
2499.74	38.35	Ave	342	1.9	V	-13.08	25.27	54.00	-28.73

	7 I Deading I I I Lactor I	Detector		RX Antenna		Corrected	0	FCC Part 15.247/209/205	
Frequency		Corrected Amplitude	Limit	Margin					
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
GFSK Middle Channel 2441MHz									
265.45	37.20	QP	187	2.0	Н	-13.35	23.85	46.00	-22.15
265.45	42.45	QP	260	1.1	V	-13.35	29.10	46.00	-16.90
4882.00	46.20	PK	123	1.6	V	-0.62	45.58	74.00	-28.42
4882.00	42.23	Ave	123	1.6	V	-0.62	41.61	54.00	-12.39
7323.00	38.90	PK	169	1.7	Н	2.21	41.11	74.00	-32.89
7323.00	34.56	Ave	169	1.7	Н	2.21	36.77	54.00	-17.23
2334.32	46.64	PK	262	1.6	V	-13.19	33.45	74.00	-40.55
2334.32	38.70	Ave	262	1.6	V	-13.19	25.51	54.00	-28.49
2350.35	44.79	PK	281	1.2	Н	-13.14	31.65	74.00	-42.35
2350.35	38.54	Ave	281	1.2	Н	-13.14	25.40	54.00	-28.60
2493.84	44.14	PK	297	1.7	V	-13.08	31.06	74.00	-42.94
2493.84	36.93	Ave	297	1.7	V	-13.08	23.85	54.00	-30.15

	Receiver		Turn	RX Antenna		Corrected		FCC Part 15.247/209/205		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	GFSK High Channel 2480MHz									
265.45	38.56	QP	161	1.2	Н	-13.35	25.21	46.00	-20.79	
265.45	42.56	QP	1	1.8	V	-13.35	29.21	46.00	-16.79	
4960.00	43.89	PK	134	1.4	V	-0.24	43.65	74.00	-30.35	
4960.00	40.39	Ave	134	1.4	V	-0.24	40.15	54.00	-13.85	
7440.00	39.26	PK	164	1.3	Н	2.84	42.10	74.00	-31.90	
7440.00	36.23	Ave	164	1.3	Н	2.84	39.07	54.00	-14.93	
2347.01	46.67	PK	312	1.1	V	-13.19	33.48	74.00	-40.52	
2347.01	38.44	Ave	312	1.1	V	-13.19	25.25	54.00	-28.75	
2375.32	42.50	PK	235	1.5	Н	-13.14	29.36	74.00	-44.64	
2375.32	38.46	Ave	235	1.5	Н	-13.14	25.32	54.00	-28.68	
2487.85	44.82	PK	128	1.9	V	-13.08	31.74	74.00	-42.26	
2487.85	37.50	Ave	128	1.9	V	-13.08	24.42	54.00	-29.58	

Test Frequency: 18GHz ~ 25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS16S1269388E Page 20 of 77

9 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see

Section 15.205(c)).

Test Method: ANSI C63.10

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100 kHz, VBW = 300 kHz, Sweep = auto Detector function = peak, Trace = max hold

9.2 Test Result:

Test plots

8DPSK Transmitting Band edge-left side

8DPSK Hopping Band edge-left side

8DPSK Transmitting Band edge-right side

8DPSK Hopping Band edge-right side

Reference No.: WTS16S1269388E Page 27 of 77

10 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30 kHz, VBW = 100 kHz

10.2 Test Result:

Modulation	Test Channel	Bandwidth(MHz)		
	Low	0.946		
GFSK	Middle	0.946		
	High	0.946		
	Low	1.252		
Pi/4DQPSK	Middle	1.252		
	High	1.252		
	Low	1.264		
8DPSK	Middle	1.264		
	High	1.264		

Test result plot as follows:

Modulation: GFSK

Modulation: Pi/4DQPSK

Modulation: 8DPSK

Reference No.: WTS16S1269388E Page 32 of 77

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band:

0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 1watts (30 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 3 MHz. VBW =3 MHz. Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Result:

	Data Rate	Pea	ak Power(di	Limit (dBm)	
Test Mode		Low Channel	Middle Channel	High Channel	
GFSK	1Mbps	-0.01	0.56	1.28	20.97
4*π4DQPSK	2Mbps	-1.82	-1.45	-0.55	20.97
8DPSK	3Mbps	-0.88	-0.17	0.53	20.97

Test result plot as follows:

Modulation: GFSK

Modulation: 8DPSK

Reference No.: WTS16S1269388E Page 38 of 77

12 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30 KHz. VBW = 100 KHz , Span = 3 MHz Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Result:

Modulation	Test Channel	Separation (MHz)
	Low	1.000
GFSK	Middle	1.000
	High	1.000
	Low	1.000
Pi/4DQPSK	Middle	1.000
	High	1.000
	Low	1.000
8DPSK	Middle	1.000
	High	1.000

Test result plot as follows:

Modulation: GFSK

Modulation: Pi/4DQPSK

Modulation: 8DPSK

Reference No.: WTS16S1269388E Page 44 of 77

13 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the

2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

13.2 Test Result:

Total Channels are 79 Channels.

Reference No.: WTS16S1269388E Page 46 of 77

14 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are

used.

Test Mode: Test in hopping transmitting operating mode.

14.1 Test Procedure:

1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2.Set spectrum analyzer span = 0. centred on a hopping channel;
- 3.Set RBW = 1MHz and VBW = 1MHz. Sweep = as necessary to capture the entire dwell time per hopping channel.
- 4.Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

14.2 Test Result:

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

The test period: T = 0.4(s) * 79 = 31.6(s)

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 / 2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)		
DH5	1600/79/6*31.6*(MkrDelta)/1000		
DH3	1600/79/4*31.6*(MkrDelta)/1000 1600/79/2*31.6*(MkrDelta)/1000		
DH1			
Remark	Mkr Delta is single pulse time.		

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
	DH5	Low	2.904	0.310	0.4
GFSK		middle	2.904	0.310	0.4
		High	2.912	0.311	0.4
	DH5	Low	2.912	0.311	0.4
Pi/4DQPSK		middle	2.912	0.311	0.4
		High	2.912	0.311	0.4
8DPSK	DH5	Low	2.912	0.311	0.4
		middle	2.912	0.311	0.4
		High	2.912	0.311	0.4

Modulation: GFSK

Data Packet:

DH5.Low channel

Data Packet:

DH5.Middle channel

Data Packet: DH5, High channel

Pi/4DQPSK
Data Packet:

Data Packet: DH5, Middle channel

Data Packet: DH5, High channel

8DPSK
Data Packet:
DH5, Low channel

Data Packet: DH5, Middle channel

Data Packet: DH5, High channel

15 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has one PCB printed antenna, the gain is 0dBi. Meets the requirements of FCC 15.203.

Reference No.: WTS16S1269388E Page 53 of 77

16 RF Exposure

Test Requirement: FCC Part 1.1307

Evaluation Method: FCC Part 2.1091& KDB 447498 D01 General RF Exposure Guidance v06

16.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

16.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

(7 t) Elithic for Goodpational 7 Controlled Exposure					
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ², H ²or S (minutes)	
0.3-3.0	614	1.63	(100)*	6	
3.0-30	1842 / f	4.89 / f	(900 / f)*	6	
30-300	61.4	0.163	1.0	6	
300-1500			F/300	6	
1500-100,000			5	6	

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS16S1269388E Page 54 of 77

16.3 MPE Calculation Method

$$\mathbf{S} = \frac{P \times G}{4 \times \pi \times R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = output power to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

From the peak EUT RF output power, the minimum mobile separation distance, R=20cm, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
0.00	1.000	1.28	1.343	0.000267	1

17 Photographs – Model PS-2643 Test Setup

17.1 Photograph-Conducted Emissions Test Setup at Test Site 2#

17.2 Photograph-Radiated Emissions

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Test Frequency 30MHz to 1000MHz at Test Site 2#

Test Frequency above 1GHz Test Site 1#

18 Photographs – Constructional Details

18.1 Model PS-2643 – External Photos

Reference No.: WTS16S1269388E Page 59 of 77

Reference No.: WTS16S1269388E Page 60 of 77

Reference No.: WTS16S1269388E Page 61 of 77

Reference No.: WTS16S1269388E Page 62 of 77

Reference No.: WTS16S1269388E Page 63 of 77

18.2 Model PS-2643 - Internal Photos

Reference No.: WTS16S1269388E Page 65 of 77

Reference No.: WTS16S1269388E Page 66 of 77

Reference No.: WTS16S1269388E Page 67 of 77

Reference No.: WTS16S1269388E Page 68 of 77

Reference No.: WTS16S1269388E Page 69 of 77

Reference No.: WTS16S1269388E Page 70 of 77

Reference No.: WTS16S1269388E Page 72 of 77

Reference No.: WTS16S1269388E Page 73 of 77

Reference No.: WTS16S1269388E Page 75 of 77

Reference No.: WTS16S1269388E Page 76 of 77

=====End of Report=====