Conceptual Modeling

(Crow's Foot Notation)

TEXT: CHAPTER 5

1/19/2022

Agenda

Entities

Know: what they are, how do we represent them

Relationships

Types of relationships (binary, ternary, etc.)

Conceptual Modeling

- Chen's Entity-Relationship (E-R) Model
- Crows Foot
 - Example: Highline University (from text)

1/19/2022

The Entity-Relationship (E-R) Model

- Entity-Relationship (E-R) model is a set of concepts and graphical symbols that can be used to create conceptual models (sometime called schemas).
- Versions:
- Original E-R model Peter Chen (1976) MIT
- Extended E-R model—later extensions to Chen model included is-a relationships, etc.
 - Referred to as Extended E-R model.

For this class: We will call this <u>Chen's Notation</u> (Original or extended with subclasses)

Important: Why study conceptual models?

- Means of communication between database designer and users.
- Represents real world application for which a database is needed before implementation.

Entity-Relationship Model: Versions

- Original E-R model—by Peter Chen (1976)
- Extended E-R model extensions to the Chen model adding sub/super classes
- Information Engineering (IE)—by James Martin (1990); uses "crow's foot" notation, in text
- IDEF1X—a national standard developed by the National Institute of Standards and Technology [see Appendix C] [Not for this class.]
- Unified Modeling Language (UML)—by the Object Management Group; supports objectoriented methodology [see Appendix D] [Not for this class.]

For this class (2 versions):

Chen's notation

Crow's foot / Crow's feet notation

Note: Either acceptable for assignments/exams.

Avoid mixing notations

Entities

- Something that can be readily identified and that users want to track:
 - Entity class—a collection of entities of a given type
 - Entity instance—the occurrence of a particular entity
 [Terminology: instance / occurrence / instantiation]
- There are usually many instances of an entity in an entity class.
 - How many? Depends on application.

Note: entity class, entity type, or just entity. For class, use "entity."

Figure 5-1: Crow's Foot Notation CUSTOMER Entity and Two Entity Instances

CUSTOMER Entity

CUSTOMER

CustomerNumber CustomerName

Street

City

State

ZIP

ContactName

EmailAddress

Two CUSTOMER Instances

1234

Ajax Manufacturing 123 Elm Street

Memphis

TN

32455

Peter Schwartz

Peter@ajax.com

99890

Jones Brothers

434 10th Street

Boston

MA

01234

Fritz Billingsley

Fritz@JB.com

Attributes

Attributes describe an entity's characteristics.

All entity instances of a given entity class have the same attributes, but vary in values.

• E.g., all instances of the class student have an attribute, student-name, but the values will vary.

Shown in data models as ellipses.

Data modeling products today commonly show attributes in rectangular form.

- (E.g., Crow's Feet notation)
- Note: the two different representations

Figure 5-2 Variations of Attributes with E-R Models

EMPLOYEE

EmployeeNumber

EmployeeName

Phone

EmailAddress

HireDate

ReviewDate

(a) Attributes in Ellipses

(b) Attributes in Rectangle

Attributes in ellipses: Chen Model

Attributes in rectangle: Crow's feet

Identifiers

Identifiers are attributes that name, or identify, entity instances.

Composite identifiers are identifiers that consist of two or more attributes.

Identifiers become keys.

- Entities have identifiers/keys.
- Relationships do not have keys.
- Tables (or relations) have keys.
- [Note: Do not get these confused. More explanation later.]

Figure 5-3 Entity and Attributes

EMPLOYEE

EmployeeNumber

EmployeeName

Phone

EmailAddress

HireDate

ReviewDate

(a) Entity with All Attributes

EMPLOYEE

EmployeeNumber

EMPLOYEE

- (b) Entity with Identifier Attribute Only
- (c) Entity with No Attributes

Starting to identify entities.
Conceptual models must have minimally a key attribute

Relationships

Entities associated with one another in **relationships**:

- Relationship classes: associations among entity classes
- Relationship instances: associations among entity instances

A relationship class can involve two or more entity classes.

Note from the authors: In the original E-R model, relationships could have attributes, but today this is no longer done.

Note from instructor: Depends on modeling choice. Examples coming.

Important concept: Student takes Course and receives grade

Degree of the Relationship

The **degree** of the relationship is the number of entity classes in the relationship:

- Two entities have a binary relationship of degree two.
- Three entities have a ternary relationship of degree three.

Figure 5-4 Binary Versus Ternary Relationships

Interpretation?

Entities and Tables

- From text: The principle difference between an **entity** and a **table** (**relation**) is that you can express a relationship between entities without using foreign keys.
 - Not exactly. An entity is a conceptual modeling construct.
 - A table (relation) occurs at the logical phase of database design. A table will represent an entity. More on this during logical design.
 - Emphasis on the conceptual modeling phase.
 - This mixes the phrases, so do not be confused.
 - More on this later.

Cardinality

Cardinality means "count," and is expressed as a number.

Maximum cardinality is the maximum number of entity instances that can (allowed to) participate in a relationship.

Minimum cardinality is the minimum number of entity instances that *must* (*required*) participate in a relationship.

KROENKE AND AUER - DATABASE
PROCESSING, 14TH EDITION © 2016
PEARSON EDUCATION, INC.

Parent and Child Entities

In a one-to-many relationship:

- The entity on the one side of the relationship is called the parent entity or just the parent.
- The entity on the many side of the relationship is called the child entity or just the child.

Note: ok to think of it this way, but provided mapping ratios are correct, that is enough.

EMPLOYEE is the parent and COMPUTER is the child:

Min/Max Cardinalities

1/19/2022

Minimum Cardinality

Minimum cardinality is the minimum number of entity instances that *must* participate in a relationship.

Minimums are generally stated as either zero or one:

- IF zero [0] THEN participation in the relationship by the entity is optional, and no entity instance must participate in the relationship.
- IF one [1] THEN participation in the relationship by the entity is mandatory, and at least one entity instance must participate in the relationship.

[Notes: Finer level of detail coming. Optionality is an important concept.]

Indicating Minimum Cardinality

Crow's Feet Notation:

- Minimum cardinality of zero [0] indicating optional participation is indicated by placing an oval next to the optional entity.
- Minimum cardinality of one [1] indicating mandatory (required) participation is indicated by placing a vertical hash mark next to the required entity.

** There are multiple notations. Need to understand this for Crow's Feet.

Reading Minimum Cardinality

Look toward the entity in question [note direction]:

- IF you see an **oval** THEN that entity is **optional** (minimum cardinality of zero [0]).
- IF you see a vertical hash mark THEN that entity is mandatory (required) (minimum cardinality of one [1]).

Note: Optional versus mandatory is important and has implications on the final design of a database and the enforcement of integrity.

Data Modeling Notation: IE Crow's Foot

Symbol	Meaning	Numeric Meaning		
	Mandatory—One	Exactly one		
	Mandatory—Many	One or more		
	Optional—One	Zero or one		
	Optional—Many	Zero or more		

Data Modeling Notation: IE Crow's Foot 1:N

ID-Dependent Entities

An ID-dependent entity is an entity (child) whose identifier includes the identifier of another entity (parent).

The ID-dependent entity is a logical extension or subunit of the parent:

BUILDING : APARTMENT

• PAINTING: PRINT

The minimum cardinality from the ID-dependent entity to the parent is *always one*.

Strong and Weak Entities

A **Strong Entity** is an entity that represents something that can exist on its own.

Examples (PERSON, AUTOMOBILE, BUILDING)

A **Weak Entity** is an entity whose existence depends on the presence of another entity.

Example (APARTMENT – depends on BUILDING)

ID-Dependent Entities

Strong Entity Patterns:

Note: Optional

1:1 Strong Entity Relationships

[Most important to understand the min/max cardinalities. Not required to refer to these as "strong" for the purposes of this course]

Interpretation?

Corresponding business rules?

Recall:

Symbol	Meaning	Numeric Meaning			
	Mandatory - One	Exactly one			
-+	Mandatory – Many	One or more			
	Optional—One	Zero or one			
$-\!\!\!\!-\!$	Optional—Many	Zero or more			

Strong Entity Patterns: 1:N Strong Entity Relationships

CLUB_MEMBER MemberNumber **Phone** Email CLUB_UNIFORM **UniformID** Sport

> UniformType UniformSize

UniformNumber

Real-world interpretation: A club member can have more than one club uniform, but a uniform can only belong to one club member.

Corresponding business rules?

Recall:

Symbol	Meaning	Numeric Meaning		
	Mandatory — One	Exactly one One or more		
-+	Mandatory—Many			
	Optional—One	Zero or one		
	Optional—Many	Zero or more		

Figure 5-13 Examples of Subtype Entities

Figure 5-22 Association Pattern for Report in Figure 5-21 [Many to many]

Figure 5-23 Association Pattern for Tenary Relationship in Fig. 5-4

Figure 5-27 Form with Multivalued Attributes Fig. 5-26

Figure 5-33 Sales Order in Figure 5-32

Figure 5-35: Employee Skills

Figure 5-36 Data Entry Form Suggesting the Need for Subtypes

Resident Fishing License 2018 Season			License No: 03-1123432				
Name:							
Street:	Street:						
City:	State:			ZIP:			
For Use by Commercial Fishers Only			For Use by Sport Fishers Only				
Vessel N	Number:			Number Years at			
				This A	ddress:		
Vessel Name:			Prior Year License				
				Numb	er:		
Vessel 7	Гуре:						
Tax ID:							

Figure 5-37 Data Model for Form in Figure 5-36

Crow's Feet Notation (Summary)

Recall: database design methodology

Conclusion

Data Model

- Model real world situation
 - [Potential Midterm Question: Why is this important?]
- Input from report and requirements (requirements part of database design)
- Entities (a thing of interest in the real world)
- Relationships (different types, importance of cardinality assignments)

Example: Highline University
Requirements analysis and conceptual modeling

Much to be studied and revisited. Note the similarities/differences between Chen notation and Crow's feet notation.

1/19/2022 41