

NASA Student Launch 2018-2019
Preliminary Design Review (PDR)
Presentation

A FOLIS

Length (feet)	Diameter (inches)		Mass	Motor Selection	Recovery System		Predicted	Vehicle	CG	СР
	Outer	Inner	(lbs)	Motor Selection	Drogue (in)	Main (in)	Altitude (feet)	Material	Cu	CP
7.75	5.52	5.36	14.38	AeroTech K560W	15	58	5280	Carbon Fiber	40	27

Static Stability Margin: 2.35

Motor Selection and Justification

Motor: AeroTech K560W

Thrust to Weight Ratio: 7.7

Exit Rail velocity: 56 ft/s

High-Level Payload Flowchart

Preliminary Payload Design

Recovery/Mission Performance Predictions

- Dual deployment design
- Satisfies drift, and landing energy requirements

58in Main Parachute, 15in Drogue Parachute

	0 MPH	5 MPH	10 MPH	15 MPH	20 MPH
Main Parachute (58in)	8.2 ft	164 ft	387 ft	1150 ft	2400 ft
Drogue Parachute (15in)					

Table 3.2: Drift values from OpenRocket

Table 3.3 details the drift using the flight time provided by OpenRocket.

	0 MPH	5 MPH	10 MPH	15 MPH	20 MPH	
Main Parachute (58in)		246 ft		1523 ft		
Drogue Parachute (15in)	0 ft		658 ft		2345 ft	

Table 3.3: Drift using flight times from OpenRocket

ADaptive Aerobraking System (ADAS)

- Fully deployed dual, semi-circular fins
- Increases cross sectional area by 25%, thus increasing drag and decreasing speed
- Allows the rocket to reach the desired altitude by doing real-time calculations

Thrust Section

Requirements Compliance Plan

- Strictly adhere to verification plans
- Conduct extensive tests during development and before deployment as outlined in Section 6 of the PDR
- Demonstrate adherence to NASA handbook requirements, including the High Power Rocket Safety Code
- Abide by safety manual and ensure that all members complete safety training and adhere to best practices

Budget and Funding

- UCSC's Giving Day event
- GoFundMe
- Combined, raised over \$5,000
- Refer to section 6.2 for details about budget
 - Estimated cost of rocket: \$933
 - Estimated total cost, including transportation: \$5333.70
- Financial outreach program
 - Establish sponsorships with companies
 - Capital grants, material discounts
 - Partner with local and non-local businesses

Outreach

that this will create a brighter future.

To support our continuing mission to promote diverse STEM education, the team hosts various outreach events for students of all ages, at the University and in the local community. Events usually include launching paper rockets and other hands-on activities. Topics discussed include the history, science, and significance of rocketry, past and future NASA missions, and of mentor local robotics and rocketry teams, lending generation of scientists and engineers. The team a diversity and gender representation to STEM through