Optique

Chapitre 3 : Déphasage entre signaux périodiques

CUPGE 2 - 2025 - V1

Prof. Robert Georges – Université de Rennes

Chapitre 3

- 1. Introduction
- 2. Définition mathématique
- 3. Déphasage réduit
- 4. Cas particuliers
- 5. Avance et retard de phase sur une représentation graphique
- 6. Représentation de Fresnel

1. Introduction

- Le déphasage entre deux ondes (ou de manière plus générale entre deux phénomènes) est la différence entre leur phase respective.
- La notion de déphasage est lié au caractère périodique du signal qui se propage
- La notion de déphasage ne se limite pas aux signaux sinusoïdaux
- On ne peut pas déterminer un déphasage entre deux phénomènes qui n'ont pas la même période (temporelle ou spatiale), on parle plutôt de décalage

1. Introduction

 Deux phénomènes peuvent être déphasés dans l'espace. Ainsi en certains points de l'espace les ondes sont en opposition de phase, l'amplitude résultante est nulle.

Exemple de 2 ondes transversales se propageant à la surface de l'eau

Exemple de deux ondes lumineuses interférant. Les zones sombres correspondent aux interférences destructives (opposition de phase)

1. Introduction

• Deux phénomènes peuvent être déphasés dans le temps

Exemple de 2 oscillateurs mécaniques. $y_1(t)$ et $y_2(t)$ sont les l'amplitudes de déplacement respectives des masselottes 1 et 2.

2. Définition mathématique

Considérons deux ondes sinusoïdales de mêmes pulsation ω et nombre d'onde k, mais avec des phases initiales φ différentes :

$$s_1 = A_1 \cos(\omega t - kx_1 + \varphi_1)$$
 et $s_2 = A_2 \cos(\omega t - kx_2 + \varphi_2)$

Le déphasage $\Delta \varphi$ à l'instant t est :

$$\Delta \varphi = (\omega t - kx_2 + \varphi_2) - (\omega t - kx_1 + \varphi_1)$$

$$\Delta \varphi = (-kx_2 + \varphi_2) - (-kx_1 + \varphi_1) = constante$$

Si $\Delta \varphi > 0$, l'onde 2 est en avance de phase par rapport à l'onde 1.

Si $\Delta \varphi < 0$, l'onde 2 est en retard de phase par rapport à l'onde 1.

3. Déphasage réduit

• Dans le cas des ondes périodiques, on limite le déphasage à une période.

- Une mesure du déphasage pourrait être $\Delta \varphi = 2\pi \frac{\tau + T}{T} = 2\pi \frac{\tau}{T} + 2\pi$
- En pratique on se limite au déphasage réduit : $\Delta \varphi' = 2\pi \frac{\tau}{T}$
- $-\pi \le \Delta \varphi' \le +\pi$
- En représentation temporelle, le déphasage s'obtient : $\Delta \varphi' = 2\pi \frac{\tau}{T} = \omega \tau$
- En représentation spatiale : $\Delta \varphi' = 2\pi \frac{\ell}{\lambda} = k\ell$

4. Cas particuliers

• $\Delta \varphi = 0$: les ondes sont en phase

• $\Delta \varphi = \pm \pi$: les ondes sont en opposition de phase

- $\Delta \varphi = \pm \frac{\pi}{2}$: les ondes sont en quadrature de phase
 - Correspondance du min/max de l'une des courbes avec la valeur nulle de l'autre
 - Sur l'axe des temps, une courbe est en avance sur l'autre quand son max apparaît à un temps plus petit

La courbe bleue est en avance de phase : $\Delta \varphi = +\frac{\pi}{2}$

La courbe bleue est en retard de phase : $\Delta \varphi = -\frac{\pi}{2}$

5. Avance et retard de phase sur une représentation graphique

Deux ondes sont représentées ci-dessous en fonction du temps ou de l'espace :

- Sur la représentation en fonction du temps, le signal rouge est en retard de phase par rapport au signal noir
- Sur la représentation en fonction de l'espace, si les ondes se propagent de gauche à droite (sens des x croissants), c'est le signal noir qui est cette fois en retard sur le signal rouge

6. Représentation de Fresnel

Considérons un signal de la forme : $s(x,t) = s_0 \sin(\omega t - kx - \phi_0)$

À ce signal on associe un vecteur \vec{S} , appelé vecteur de Fresnel, qui a une norme s_0 et qui fait à l'instant t un angle $(\omega t - kx - \phi_0)$ avec l'axe des abscisses. Le vecteur \vec{S} , pour x donné, tourne autour de l'origine à la vitesse ω , sa projection sur l'axe des ordonnées est s(x,t). La rotation de ce vecteur se fait sur un cercle de rayon s_0 . Visualisation du vecteur à x=0:

6. Représentation de Fresnel

Interférence de plusieurs signaux périodiques de <u>même pulsation</u> ω (ou même vitesse angulaire) : $s(x,t) = s_1(x,t) + s_2(x,t) + s_3(x,t) = s_0 \cos(\omega t - kx + \varphi)$, avec :

$$s_1(x,t) = s_{01}\cos(\omega t - kx + \varphi_1)$$
; avec $\varphi_1 = 0$
 $s_2(x,t) = s_{02}\cos(\omega t - kx + \varphi_2)$; avec $\varphi_2 = -\frac{\pi}{4}$
 $s_3(x,t) = s_{03}\cos(\omega t - kx + \varphi_3)$; avec $\varphi_3 + \frac{\pi}{2}$

Chaque onde est représentée par son vecteur de Fresnel. L'amplitude ($s_0 = \|\vec{S}\|$) et la phase de l'onde résultante $s(x_0,t)$ se mesurent sur le diagramme.