Interdependent Values II

Submodularity over Signals [1]

Definition 1. Valuation $v_i(\cdot)$ is submodular over signals if, for all j, when \mathbf{s}_{-j} is lower, $v_i(\cdot)$ is more sensitive to s_j . For all j, and for any $\mathbf{s}_{-j} \leq \mathbf{s}'_{-j}$:

$$\frac{\partial}{\partial s_i} v_i(s_j, \mathbf{s}_{-j}) \ge \frac{\partial}{\partial s_i} v_i(s_j, \mathbf{s}'_{-j})$$

Random-Sampling Vickrey Auction.

- Elicit s_i from each bidder i.
- Assign each bidder into set A or set B w.p. 1/2 independently.
- For each bidder $i \in A$, calculate and use proxy value $\hat{v}_i = v_i(s_i, \mathbf{0}_{A \setminus i}, \mathbf{s}_B)$.
- Allocate to the potential winner in A with the highest proxy value.

Theorem 1. The RS Vickrey Auction is EPIC and achieves a prior-free $\frac{1}{4}$ -approximation to the optimal welfare.

To prove this theorem, we need to address (1) truthfulness and (2) the approximation guarantee.

Truthfulness. Is this allocation EPIC?

Approximation. Is $v_i(s_i, \mathbf{0}_{A \setminus i}, \mathbf{s}_B)$ a good way to choose a winner?

Lemma 1 (Key Lemma). Let v_i be a submodular over signals valuation. Partition all agents other than i uniformly at random into sets A and B. Then

$$\mathbb{E}_{A,B}[v_i(s_i, \mathbf{0}_A, \mathbf{s}_B)] \ge \frac{1}{2}v_i(\mathbf{s}).$$

Proof.					
Proof of Theorem 1.					
References					
[1] Alon Eden, Michal Feldman,	Amos Fiat,	Kira Goldner,	and Anna	R. Karlin.	Combi-

natorial auctions with interdependent valuations: Sos to the rescue. In *Proceedings of the 2019 ACM Conference on Economics and Computation*, EC '19, Phoenix, AZ, USA,

2019. ACM.