Prova scritta di Ricerca Operativa

Corso di Laurea in Ingegneria Informatica e Automatica

3 settembre 2020

Istruzioni

- Usate i fogli bianchi allegati per calcoli, ragionamenti e quanto altro reputiate necessario fare per rispondere alle 10 domande seguenti.
- Per ciascuna delle 10 domande indicare in corrispondenza di ciascuna delle affermazioni a), b),
 c) e d) se essa è VERA o FALSA, apponendo un segno sul rettangolo VERO o sul rettangolo FALSO sul foglio risposte.
- Ricordatevi di scrivere su tale *foglio risposte* tutte le informazioni richieste ed in particolare il vostro nome e cognome (i fogli senza nome e cognome saranno cestinati e dovrete ripetere l'esame in un'altra sessione).
- Avete un'ora esatta di tempo per svolgere gli esercizi. Al termine del tempo dovete consegnare il solo foglio risposte (potete tenere il testo delle domande e i fogli bianchi).
- Ricordatevi di segnare esattamente sui fogli che rimarranno a voi le risposte che avete dato in modo da potervi autovalutare una volta che vi verrà fornita la soluzione.
- Scaduta l'ora rimanete seduti. Passeremo a raccogliere i fogli risposte. Chi non consegna immediatamente il foglio al nostro passaggio non avrà altra possibilità di consegna e dovrà ripetere l'esame in un altro appello.
- ATTENZIONE. Durante la prova di esame:
 - Non è possibile parlare, per nessuna ragione, con i vostri colleghi.
 - Non è possibile allontanarsi dall'aula.
 - Non si possono usare telefoni cellulari
 - Non si possono usare calcolatrici, palmari o simili
 - Non è possibile usare dispense, libri o appunti.

Chi contravviene anche a una sola di queste regole dovrà ripetere la prova di esame in altro appello.

Valutazione

- Per ogni affermazione VERO/FALSO correttamente individuata viene assegnato 1 punto
- Per ogni affermazione VERO/FALSO non risposta vengono assegnati 0 punti
- Per ogni affermazione VERO/FALSO NON correttamente individuata viene assegnato un punteggio negativo pari a -0.25 punti

Supera la prova chi totalizza un punteggio pari ad almeno 28 punti

- 1. Sia $P = \{x \in \mathbb{R}^n : 0 \le x_i \le 1, i = 1, ..., n\}$. Dire quali delle seguenti affermazioni sono corrette.
- \vdash (a) Il punto $(1/2, 1/2, \dots, 1/2)^{\top}$ è un vertice di P.
- \lor \vdash (b) Il punto $(0, 0, \dots, 0, 1)^{\top}$ è un vertice di P.
- \checkmark (c) Nel punto $(0, 0, ..., 0)^{\top}$ sono attivi n vincoli.
- \bullet (d) Nell punto $(0, 1/2, 0, \dots, 0)^{\top}$ sono attivi n vincoli.
 - 2. Sia $P = \{x \in \mathbb{R}^n : Ax \ge b\}$ un poliedro, con $A \in \mathbb{R}^{m \times n}$ e $b \in \mathbb{R}^m$, e sia $v \in P$ un suo vertice.
- \mathbf{F} (a) È sempre possibile trovare un vettore $d \neq 0_n$ tale che risulti $x = v + \lambda d \in P$ per ogni $\lambda \in \mathbb{R}$.
- \checkmark (b) In v sono attivi almeno n vincoli.
- ϵ (c) In v sono attivi al più n vincoli.
- ✓ (d) P può contenere semirette, ma non rette.
 - 3. Sia PL un problema di Programammazione Lineare.
- 🗲 V V (a) Se l'insieme ammissibile di PL è un politopo, allora PL ammette sempre soluzione ottima.
- √ (b) PL non può ammettere un numero finito maggiore o uguale a 2 di soluzioni ottime distinte.
- (c) PL può ammettere un numero infinito di soluzioni ottime distinte.
- V (d) Affinché PL sia illimitato è necessario, ma non sufficiente che il suo insieme ammissibile sia illimitato.
 - 4. Sia (PA) il problema che si risolve nella Fase I del metodo del Simplesso.
- (a) (PA) ammette soluzioni il cui valore della funzione obiettivo è negativo.
- \mathbf{F} (b) Per il problema (PA) esiste sempre soluzione ottima con valore ottimo pari a zero.
- **P** (c) Se il problema originario è inammissibile allora (PA) è illimitato inferiormente.
- V (d) (PA) ammettere sempre soluzioni di base ammissibili.
 - 5. Sia data una soluzione di base ammissibile $x=(1, 2, 0, 0, 0)^T$ di un problema di Programmazione Lineare (in forma standard) alla quale corrisponde un valore della funzione obiettivo pari a 28. Sia $\gamma=(-2, 2)^T$ il vettore dei costi ridotti associati alle variabili fuori base x_3, x_5 . Se $y=(1, 2, 0, 1, 4)^T$ è un punto ammissibile, dire quali delle seguenti affermazioni sono corrette
- \triangleright (a) Il valore della funzione obiettivo nel punto y vale 18.
- \mathbf{r} (b) Il valore della funzione obiettivo nel punto y è sicuramente minore o uguale di 28.
- \bigvee (c) Non sono fornite tutte le informazioni necessarie per determinare il valore della funzione obiettivo nel punto y.
- V (d) Se il problema di PL è in forma di minimizzazione, allora utilizzando le informazioni date si può escludere che x sia soluzione ottima del problema.

6. Si consideri il seguente poliedro

$$x_1 + x_2 - x_3 \le \tau$$
 $x_1 + x_3 \ge 2$
 $x_3 \le 0$
 $x_1 \ge 0$

- \vdash (a) Il punto $(2, 1, 0)^{\top}$ è un vertice per ogni $\tau \in \mathbb{R}$.
- (5) Il punto $(2, -1, 0)^{\top}$ è un vertice per ogni $\tau \in \mathbb{R}$.
- **f** (c) Per $\tau = 2$, il punto $(2, -1, 0)^{\mathsf{T}}$ è un vertice.
- - 7. Al termine della Fase I del metodo del Simplesso risulta

$$x_B = (x_1, \ \alpha_1, \ x_3)^{\top}, \qquad x_N = (x_2, \ \alpha_2, x_4)^{\top},$$

$$B^{-1}N = \begin{pmatrix} 5 & -1 & -1 \\ 0 & 3 & 0 \\ 2 & 4 & 4 \end{pmatrix}, \qquad B^{-1}b = \begin{pmatrix} 0 \\ \beta \\ 1 \end{pmatrix}.$$

- \mathbf{F} (a) Per ogni $\beta \in \mathbb{R}$, il problema originario è inammissibile.
- ϵ (b) Se $\beta > 0$, nel problema originario è presente un vincolo ridondante.
- \checkmark (c) Se $\beta = 0$, il problema orginario è ammissibile e una base ammissibile da cui far partire la Fase II del metodo del Simplesso è $\{x_1, x_4, x_3\}$.
- \bigvee (d) Se $\beta = 0$, il problema originario è ammissibile.
 - 8. Sia A una matrice $m \times n$ di rango m.
- \digamma (a) A si dice totalmente unimodulare se ogni sua sottomatrice quadrata ha determinante pari a 0, 1, o -1.
 - (b) Se A è non singolare e ha elementi pari a 0, 1 o -1 allora è totalmente unimodulare.
- \bigvee (c) Se A è totalmente unimodulare allora i suoi elementi devono essere pari a 0, 1 o -1.
- $m{V}$ $\mbox{\bf f}$ (d) La matrice $A=\begin{pmatrix}1&0&1&0\\0&1&0&-1\\0&0&1&1\end{pmatrix}$ è totalmente unimodulare.
 - 9. Sia $P = \{x \in \mathbb{R}^n : Ax = b, x \ge 0_n\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Inoltre risulti rg(A) = m.
- \digamma (a) Una sottomatrice B di A, quadrata e di rango m è una base ammissibile se e solo se $B^{-1}b>0$.
- \bigvee (b) Una sottomatrice B di A, quadrata e di rango m è una base ammissibile se e solo se $B^{-1}b \geq 0$.
- \digamma (c) Esistono matrici di base di ordine strettamente minore di m.
- \boldsymbol{V} (d) Esiste sempre una matrice di base di A.
 - $10.\,$ Sia dato un problema di PL in forma standard di minimizzazione.
- **F** (a) La Fase II del metodo del simplesso con regole anticiclaggio si arresta, in un numero finito di passi, in una SBA ottima.

- F (b) La Fase I del metodo del Simplesso con regole anticiclaggio determina, in un numero finito di passi una prima SBA.
- ← (c) La Fase I del metodo del Simplesso con regole anticiclaggio determina, in un numero finito di passi se il problema è illimitato inferiormente.
- \bigvee (d) La Fase I del metodo del Simplesso con regole anticiclaggio determina, in un numero finito di passi se il problema è ammissibile.

31.25