Assembly Language for x86 Processors

Seventh Edition

Chapter 1

Basic Concepts

Chapter Overview

- Virtual Machine Concept
- Boolean Operations
- Data Representation

Virtual Machines

- Tanenbaum: Virtual machine concept
- Programming Language analogy:
 - Each computer has a native machine language (language L0) that runs directly on its hardware
 - A more human-friendly language is usually constructed above machine language, called Language L1
- Programs written in L1 can run two different ways:
 - Interpretation L0 program interprets and executes L1 instructions one by one
 - Translation L1 program is completely translated into an L0 program, which then runs on the computer hardware

Translating Languages

Specific Machine Levels

High-Level Language

- Level 4
- Application-oriented languages
 - C++, Java, Pascal, Visual Basic . . .
- Programs compile into assembly language (Level 4)

Assembly Language

- Level 3
- Instruction mnemonics that have a one-to-one correspondence to machine language
- Programs are translated into Instruction Set Architecture Level - machine language (Level 2)

Instruction Set Architecture (ISA)

- Level 2
- Also known as conventional machine language
- Executed by Level 1 (Digital Logic)

Digital Logic

- Level 1
- CPU, constructed from digital logic gates
- System bus
- Memory
- Implemented using bipolar transistors

Boolean Operations

- NOT
- AND
- OR
- Operator Precedence
- Truth Tables

Boolean Algebra

- Based on symbolic logic, designed by George Boole
- Boolean expressions created from:
 - NOT, AND, OR

Expression	Description
\neg_X	NOT X
$X \wedge Y$	X AND Y
$X \vee Y$	X OR Y
$\neg X \lor Y$	(NOT X) OR Y
$\neg(X \land Y)$	NOT (X AND Y)
X ∧ ¬Y	X AND (NOT Y)

NOT

- Inverts (reverses) a boolean value
- Truth table for Boolean NOT operator:

Х	¬х
F	T
Т	F

AND

Truth table for Boolean AND operator:

Х	Υ	$\mathbf{X} \wedge \mathbf{Y}$
F	F	F
F	T	F
T	F	F
T	Т	Т

Digital gate diagram for AND:

OR

Truth table for Boolean OR operator:

X	Υ	$X \vee Y$
F	F	F
F	Т	Т
Т	F	T
Т	Т	Т

Digital gate diagram for OR:

Operator Precedence

Examples showing the order of operations:

Expression	Order of Operations
$\neg X \lor Y$	NOT, then OR
$\neg(X \lor Y)$	OR, then NOT
$X \vee (Y \wedge Z)$	AND, then OR

Truth Tables (1 of 3)

- A Boolean function has one or more Boolean inputs, and returns a single Boolean output.
- A truth table shows all the inputs and outputs of a Boolean function

Example: $\neg X \lor Y$

X	¬х	Υ	¬x ∨ y
F	Т	F	Т
F	Т	Т	Т
Т	F	F	F
Т	F	Т	Т

Truth Tables (2 of 3)

• Example: $X \land \neg Y$

X	Y	$\neg_{\mathbf{Y}}$	X ∧¬Y
F	F	Т	F
F	Т	F	F
Т	F	Т	Т
Т	Т	F	F

Truth Tables (3 of 3)

• Example: $(Y \land S) \lor (X \land \neg S)$

X	Y	S	$Y\wedge S$	¬s	x∧¬s	$(Y \wedge S) \vee (X \wedge \neg S)$
F	F	F	F	T	F	F
F	T	F	F	T	F	F
Т	F	F	F	Т	Т	Т
Т	T	F	F	T	Т	T
F	F	T	F	F	F	F
F	Т	T	Т	F	F	T
Т	F	T	F	F	F	F
Т	T	T	T	F	F	Т

Two-input multiplexer

Data Representation

- Binary Numbers
 - Translating between binary and decimal
- Binary Addition
- Integer Storage Sizes
- Hexadecimal Integers
 - Translating between decimal and hexadecimal
 - Hexadecimal subtraction
- Signed Integers
 - Binary subtraction
- Character Storage

Binary Numbers (1 of 2)

- Digits are 1 and 0
 - -1 = true
 - -0 = false
- MSB -most significant bit
- LSB least significant bit
- Bit numbering:

Binary Numbers (2 of 2)

Each digit (bit) is either 1 or 0

Each bit represents a power of 2:

Every binary number is a sum of powers of 2

Table 1-3 Binary Bit Position Values.

2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
20	1	28	256
21	2	29	512
22	4	210	1024
23	8	211	2048
24	16	212	4096
25	32	2 ¹³	8192
26	64	214	16384
27	128	215	32768

Translating Binary to Decimal

Weighted positional notation shows how to calculate the decimal value of each binary bit:

$$dec = (D_{n-1} \times 2^{n-1}) + (D_{n-2} \times 2^{n-2}) + ... + (D_1 \times 2^1) + (D_0 \times 2^0)$$

Binary 10001001 = ?D (D: decimal)

Integer Storage Sizes

Standard sizes:

byte 8

word 16

doubleword 32

quadword 64

Table 1-4 Ranges of Unsigned Integers.

Storage Type	Range (low-high)	Powers of 2
Unsigned byte	0 to 255	0 to $(2^8 - 1)$
Unsigned word	0 to 65,535	0 to $(2^{16} - 1)$
Unsigned doubleword	0 to 4,294,967,295	0 to $(2^{32} - 1)$
Unsigned quadword	0 to 18,446,744,073,709,551,615	0 to $(2^{64} - 1)$

Hexadecimal Integers

Binary values are represented in hexadecimal.

Table 1-5 Binary, Decimal, and Hexadecimal Equivalents.

Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	A
0011	3	3	1011	11	В
0100	4	4	1100	12	С
0101	5	5	1101	13	D
0110	6	6	1110	14	Е
0111	7	7	1111	15	F

Powers of 16

Used when calculating hexadecimal values up to 8 digits long:

16 ⁿ	Decimal Value	16 ⁿ	Decimal Value
16 ⁰	1	16 ⁴	65,536
16 ¹	16	16 ⁵	1,048,576
16 ²	256	16 ⁶	16,777,216
16 ³	4096	16 ⁷	268,435,456

Characters Recognition

- People can easily recognize human-readable characters
 - **+**1, +2, -2.....
 - A, a.....
- Unfortunately, in digital circuits there is no provision made to put a "+" or "-" symbol thanks to desperate numbers: "0's" and "1's"

Computer Architecture

von Neumann Architecture

Signed Binary Integers

The highest bit indicates the sign. 1 = negative, 0 = positive

If the highest digit of a hexadecimal integer is > 7, the value is negative. Examples: 8A, C5, A2, 9D

Sign-Magnitude Representation

- Left most digit can be used to indicate the sign
- The remaining digits can be used to indicate the magnitude or absolute value of the number

• Practice (4-bit): (5+5)D, (5-5)D

1's Complement

- Positive numbers: remain unchanged as before with the sign-magnitude numbers
- Negative numbers: keep a sign bit and invert remaining bits
 - $-(-2)_D = (1010)_{s_m} = (1101)_{1's}$
- Again practice (4-bit): (2-2)D, (1-2)D, (2-1)D, (-1-2)D

2's Complement

- Positive numbers: remain unchanged as before with the sign-magnitude numbers
- Negative numbers: keep a sign bit, invert remaining bits and add 1 to LSB→1's + 1
 - $-(-2)_D = (1010)_{s_m} = (1101)_{1's} = (1110)_{2's}$
- Again practice (4-bit): (2-2)D, (1-2)D, (2-1)D, (-1-2)D

Forming the Two's Complement

- Negative numbers are stored in two's complement notation
- Represents the additive Inverse

Starting value	00000001
Step 1: reverse the bits	11111110
Step 2: add 1 to the value from Step 1	11111110 +00000001
Sum: two's complement representation	11111111

Note that 00000001 + 11111111 = 00000000

Binary Subtraction

- When subtracting A-B, convert B to its two's complement
- Add A to (-B)

Practice: Subtract 0101 from 1001.

Ranges of Signed Integers

The highest bit is reserved for the sign. This limits the range:

Storage Type	Range (low–high)	Powers of 2
Signed byte	-128 to +127	-2^7 to $(2^7 - 1)$
Signed word	-32,768 to +32,767	-2^{15} to $(2^{15}-1)$
Signed doubleword	-2,147,483,648 to 2,147,483,647	-2^{31} to $(2^{31}-1)$
Signed quadword	-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807	-2^{63} to $(2^{63} - 1)$

Summary

- Assembly language helps you learn how software is constructed at the lowest levels
- Assembly language has a one-to-one relationship with machine language
- Each layer in a computer's architecture is an abstraction of a machine
 - layers can be hardware or software
- Boolean expressions are essential to the design of computer hardware and software

