

# General anesthetics, Local anesthetics, Muscle relaxants

László Drimba M.D.

University of Debrecen

Department of Pharmacology and Pharmacotherapy

- ,,reversible" switch off period
  - □ sensoric/motoric/vegetative reflexes
  - □ nociception,
  - □ awareness, consciousness.
- main components:
  - □ analgesia
  - □ amnesia (anterograde, retrograde)
  - □ muscle relaxation (immobility)
  - □ hypnosis (unconsciousness)
  - □ reduction/attenuation sensory/autonomic functions (stability!)





- Main periods/phases of anaesthesia:
  - □ premedication
  - □ anesthesia induction
  - □ anesthesia maintenance
  - □ recovery
  - postoperative



### History:

- □ ancient Egypt: morphine, scopolamine
- □ medieval ages: ethanol
- □ 1842 –Henry Morton diethyl ether
- □ 1845 Horace Wells N<sub>2</sub>O
- □ 1847 James Simpson chloroform
- □ 1935 Lundy barbiturates (thiopental)
- □ 1956 halothan
- □ 1960 benzodiazepines, etc (TIVA)

## Drugs used in anesthesia

narcotics (anesthetics) intravenous narcotics benzodiazepines barbiturates ethomidat ketamin propofol inhalational narcotics gasous narcotics  $N_2O$ □ volatile narcotics halothan sevofluran enfluran isofluran maior analgetics fentanyl, sufentanyl morphin pethidin (meperidin) muscle relaxants non depolarizing muscle relaxants pancuronium mivacurium depolarizing muscle relaxants

□ succinyl-choline



#### Mech. of action of anesthetics:

- □ blocking VG Na<sup>+</sup> channels
  - general-local anaesthetics
  - N.B.: no i.v. application (lidocain, novocain)
- □ blocking T and L-type Ca<sup>2+</sup> channels
- □ NMDA R blocking (glutamate gated cation channels)
  - $\blacksquare$  Ca<sup>2+</sup> $\downarrow$
- ☐ GABA<sub>A</sub>R agonism (agonist vs. allosteric modulator)
  - inhaled narcotics
  - intravenous narcotics (BDZ, barbiturates)
- □ mAChR blocking
  - halothan, isofluran, sevofluran

**brain stem (formatio reticularis)** – suppression of CV/resp. syst., hypnoid effects, loose of consciousness

hyppocampus — amnesia, loose of awareness/consc premotor cortex/spinal cord — muscle relaxants, reflexes↓ sensory cortex, thalamus, spinothal. tract - analgesia





### levels of narcosis (ether narcosis)

- level of analgesia (stage of analgesia) narcosis induction → disappearance of regular ventillation analgesia, amnesia, loosing of awareness level of excitement (stage of excitement) loosing of awareness  $\rightarrow$  regular ventillation muscle tone↑, RR↑, HR↑ reflex1 level of tolerance (stage of surgical anaesthesia) 3. surgical procedures are performed in this phase regular ventillation  $\rightarrow$  asphyxia muscle tone↓, reflex↓ general anaesthesia
- 4. level of asphyxia (stage of medullary depression)
  - □ overdosage
  - □ RR↓ bradycardia

NEDICO NEDICO

- □ minimal alveolar concentration (MAC)
  - relative potency
  - intraalveolar narcotic concentration (MAC<sub>50</sub>)
  - modified MAC: MAC<sub>EI50</sub>
- □ Blood solubility (blood : alveolar gas partition coefficient)
  - low. rapid onset
  - high slow onset
- □ Lipid solubility "1" (lipid : gas partition coefficient) Meyer Overton lipid theory
  - high fast onset
  - slow onset
- □ Lipid solubility ,,2" (fat: blood partition coefficient) accumulation in fat
  - high: slow recovery
  - low: fast recovery
- □ "Brain solubility" (brain : blood partition coefficient)
  - high: rapid onset
  - low slow: onset
- ☐ Anaesthetic concentration in the inspired air (inhalational concentration)
  - Ficks's law
- □ Pulmonary ventillation
  - anesthesia induction





- Hazards in anaesthesia:
  - □ nausea, vomiting
  - □ aspiration (asphyxia, Mendelsohn's syndrome → pneumonia)
  - □ hypotension (collapse of circulation)
  - □ (-) inotropic effects
  - □ suppression of respiration
  - □ allergic reactions
  - □ hepatotoxic effects (MD!)

### Inhalational narcotics



- $\square$  N<sub>2</sub>O (dinitrogene-oxid) "laughing gas"
  - 25% O<sub>2</sub>, 75% N<sub>2</sub>O
  - low blood solubility (rapid narcosis induction)
  - rapid absorption from lungs (second gas effect) anesthesia induction
  - th.: analgetic effect
    - □ stimulation of opioid neurons in limbic area
    - □ "demand mask" analgesia at labour
  - expandive effect alveolus
    - $\Box$  O<sub>2</sub> dilution relative hypoxia (recovery)
  - a.e..: > 6 h methionine synthase inhib. →anaemia, leukopenia
  - CI.: ileus, PTX expandive effect
- □ ether
  - fluid at room temperature
  - "vitrum fuscum"
  - potent muscle relaxant effect
  - RR↑ (indirect sympathomimetic effect)
  - old-fashioned

## Inhalational narcotics



|       | halogenated compound, low cost                                                          |  |  |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|       | high blood solubility – slow induction                                                  |  |  |  |  |  |  |  |
|       | high lipid : blood partition coefficient – slow recovery                                |  |  |  |  |  |  |  |
|       | CNS, stimulation of nucl. X.                                                            |  |  |  |  |  |  |  |
|       | <ul><li>bradycardia</li></ul>                                                           |  |  |  |  |  |  |  |
|       | <ul><li>hypotension</li></ul>                                                           |  |  |  |  |  |  |  |
|       | tocolysis (never appl. during delivery!!!)                                              |  |  |  |  |  |  |  |
|       | bronchodilation                                                                         |  |  |  |  |  |  |  |
|       | a.e.:                                                                                   |  |  |  |  |  |  |  |
|       | ■ arrhythmia (sensitization of myocardiumto catecholamines – CI.: pheochromocytoma th.) |  |  |  |  |  |  |  |
|       | <ul><li>halothane hepatitis</li></ul>                                                   |  |  |  |  |  |  |  |
|       | $\Box$ 1/100.000                                                                        |  |  |  |  |  |  |  |
|       | □ trifluoracetate (metabolite)                                                          |  |  |  |  |  |  |  |
|       | □ repeated exposure                                                                     |  |  |  |  |  |  |  |
|       | <ul> <li>malignant hyperthermia</li> </ul>                                              |  |  |  |  |  |  |  |
|       | □ excessive Ca <sup>2+</sup> release                                                    |  |  |  |  |  |  |  |
|       | <ul> <li>hyperpyrexia, convulsions, hypertonia, DIC, arrhythmia</li> </ul>              |  |  |  |  |  |  |  |
|       | □ th.: danthrolen                                                                       |  |  |  |  |  |  |  |
| enflu | rane                                                                                    |  |  |  |  |  |  |  |
|       | alternative drug (halothan)                                                             |  |  |  |  |  |  |  |
|       | similar pharmacokinetic features                                                        |  |  |  |  |  |  |  |
|       | metabolism: proconvulsive metabolites!                                                  |  |  |  |  |  |  |  |
|       | a.e.: epileptiform convulsions                                                          |  |  |  |  |  |  |  |
|       | wen sprispristri con anionio                                                            |  |  |  |  |  |  |  |

metabolism: fluoride- nephrotoxic effect (CRF, diabetes insipidus)

no tocolysis – obstetrics!





- isoflurane
  - □ low blood solubility (faster induction)
  - commonly used
  - arterial vasodilation
    - hypotonia
    - coronary steal effect (myocard. ischaemia)
- desflurane
  - □ low blood solubility, low lipid : blood partition coefficient
  - ,,one day surgery"
  - □ struct. resemblence to isoflurane
  - □ airway irritation, broncho/laryngospasm (not used for induction)
- sevoflurane
  - □ low blood solubility, low lipid solubility
  - reduced adverse effect profile
  - $\square$  CO formation (when  $CO_2$  absorber is dehydrated)

### Intravenous narcotics

#### Classification

- barbiturates (thiopental Trapanal<sup>®</sup>)
- ethomidate
- propofol (Diprivan<sup>®</sup>)
- BZD (midazolam Dormicum ®)
- ketamine (Calypsol ®)

#### Barbiturates

- thiopental
  - ultrarapid/ultrashort effect (20 sec./10-20 min.)
  - †lipid-solubility- repeated administration accumulation!
    - □ only for induction!
  - respiratory depression
  - CV depression
  - Th.i.:anticonvulsive effect,
  - a.e.: porphyria (fatal attacks), induce ALA synthase



### Intravenous narcotics



- etomidate
  - rapid metabolism!
  - no CV depression!
    - □ ACS, LVF! (in patients with limited CV reserve)
  - chr. application→adrenocort. supp, acute adrenal failure
  - th.: 0,3 mg/kg
- propofol
  - commonly used for anesthesia induction/maintenance
  - no accumulation rapid metabolism→long term use
  - RR↓, negative inotropic effect!!!
  - th.: 2mg/kg

#### ketamin

- structural resemblence phencyclidine (hallucinogenic)
- dissociative anesthesia: amnesia, analgesia, but!intact consciousness
- euphoria, hallucinations, nightmares (esp. in children)
  - □ supportive th.: BDZ!
- HR↑, BP↑, positive inotropic effect
- ICP↑
- analgetic effect:0,5 mg/kg
- anesthesia ind.: 2 mg/kg

# Clinical phases of anesthesia



- Preoperative
  - premedication
    - anti-acid therapy (H<sub>2</sub>R block, PPI)
    - PONV (metoclopramide, ,,setrons")
    - preoperative anxiolysis (diazepam i.m./p.o.)
    - cholinolytics/parasympatholytics
      - □ secretion↓
      - □ to prevent bradycardia
- Intraoperative phase (anaesthesia induction/maintenance, recovery)
  - □ iv. anaesthesia (TIVA)
  - □ inhalational anaesthesia (avoid irritative narcotics)
  - □ balanced anaesthesia
  - □ + opioid analgetics, muscle relaxants
- Postoperative phase
  - ☐ ANTIDOTUM (flumazenil, naloxon, neostigmin/physostigmin)
  - $\Box$   $O_2$
  - ☐ ChE blocking drugs

## Local anesthetics

| C   | 11  | <b>~</b> 11 | _t | 11 | re ' |
|-----|-----|-------------|----|----|------|
| . 7 | 111 |             |    |    | . —  |

- ☐ Esters: cocaine, procaine, tetracaine
- ☐ Amides: lidocaine, bupivacaine, ropivacaine
- □ hidrophobic structure (internal binding place of VGNa<sup>+</sup> channels)

#### Mechanism of action:

- □ blocking VG Na<sup>+</sup> channels
- □ use-dependent, voltage dependent dependent effects
- □ + adrenaline

#### Clinical use:

- □ infiltrational anesthesia
- nerve blockade
- epidural anesthesia
- □ spinal anesthesia

### COCAINE

$$H_2N = \begin{array}{c} 2 & O \\ 1 & C - OCH_2CH_2 - N \\ C_2H_5 \end{array}$$

### **PROCAINE**

$$CH_3$$
  $C_2H_5$ 
 $CH_3$   $C_2H_5$ 
 $CH_3$   $C_2H_5$ 

#### LIDOCAINE

# Local anesthetics

Table 14-1

| Table 14–1                                       |                                                        |        |               |                                   |                                                        |                                     |  |  |  |  |  |
|--------------------------------------------------|--------------------------------------------------------|--------|---------------|-----------------------------------|--------------------------------------------------------|-------------------------------------|--|--|--|--|--|
| Susceptibility to Block of Types of Nerve Fibers |                                                        |        |               |                                   |                                                        |                                     |  |  |  |  |  |
| Conduction<br>Biophysical<br>Classification      | Anatomic<br>Location                                   | Myelin | Diameter (µm) | Conduction<br>Velocity<br>(m/sec) | Function                                               | Clinical<br>Sensitivity<br>to Block |  |  |  |  |  |
| A fibers                                         |                                                        |        |               |                                   |                                                        |                                     |  |  |  |  |  |
| A α<br>A β                                       | Afferent to and<br>efferent from<br>muscles and joints | Yes    | 6–22          | 10–85                             | Motor and proprioception                               | +                                   |  |  |  |  |  |
| Αγ                                               | Efferent to muscle spindles                            | Yes    | 3–6           | 15–35                             | Muscle tone                                            | ++                                  |  |  |  |  |  |
| Αδ                                               | Sensory roots<br>and afferent<br>peripheral nerves     | Yes    | 1–4           | 5–25                              | Pain,<br>temperature,<br>touch                         | +++                                 |  |  |  |  |  |
| B fibers                                         | Preganglionic<br>sympathetic                           | Yes    | <3            | 3–15                              | Vasomotor,<br>visceromotor,<br>sudomotor,<br>pilomotor | ++++                                |  |  |  |  |  |
| C fibers<br>Sympathetic                          | Postganglionic sympathetic                             | No     | 0.3–1.3       | 0.7–1.3                           | Vasomotor,<br>visceromotor,<br>sudomotor,<br>pilomotor | ++++                                |  |  |  |  |  |
| Dorsal root                                      | Sensory roots<br>and afferent<br>peripheral nerves     | No     | 0.4–1.2       | 0.1–2                             | Pain,<br>temperature,<br>touch                         | ++++                                |  |  |  |  |  |

### Muscle relaxants



## Peripheral muscle relaxants



- Non depolarizing muscle relaxants
  - competitive antagonism on nAch<sub>m</sub>R
  - structural resemblence to ACh
  - flaccid paralysis
  - □ d-tubocurarin (curare)
    - arrow poison, blocked motorium but! intact sensory functions
    - hypotension (symp.ggl.block)
  - □ atracurium (Tacrium<sup>®</sup>)
    - spontaneous degradation
    - active metabolite: laudanosin (CNS effects, tachycardia)
  - cisatracurium
    - "most commonly used"
    - no laudanosine
  - pancuronium (Pavulon ®)
    - no sympathomimetic effect
    - no histamin release



## Peripheral muscle relaxants



- Depolarizing muscle relaxants (Dual phase blockade)
  - 1. Depolarisatrion block (= large dose of Ach): FASCICULATION
  - 2. Desensitisation block (molecular conversion)
  - succinyl-choline:
    - □ ultrashort effect (5-10 min 0,5-1mg/tskg)
    - □ BChE/PChE!!!
    - □ a.e.:
      - □ hyperkalemia (K+ release from ic. sites)
      - arrhythmia (digitalis th.)
      - malignant hyperthermia
- Clinical use of muscle relaxants
  - □ surgical relaxation, immobilization
  - endotracheal intubation
  - controll of ventillation (to reduce the chest wall resistance)
  - treatment of convulsions