Multivariate Statistik, Übung 12

HENRY HAUSTEIN

Aufgabe 1

Wir benutzen die Identitäten $k_{ij}=f_{ij}\cdot k_{\cdot\cdot\cdot},\,k_{i\cdot\cdot}=f_{i\cdot\cdot\cdot}\cdot k_{\cdot\cdot\cdot}$ und $k_{\cdot\cdot j}=f_{\cdot\cdot j}\cdot k_{\cdot\cdot\cdot}$ Dann ergibt sich:

$$\sum_{i=1}^{p} \sum_{i=1}^{q} \frac{\left(k_{ij} - \frac{k_{i \cdot k \cdot j}}{k \cdot \cdot}\right)^{2}}{\frac{k_{i \cdot k \cdot j}}{k \cdot \cdot}} = \sum_{i=1}^{p} \sum_{i=1}^{q} \frac{\left(f_{ij} \cdot k_{\cdot \cdot \cdot} - \frac{f_{i \cdot \cdot k_{\cdot \cdot \cdot f \cdot j} \cdot k_{\cdot \cdot \cdot}}}{k_{\cdot \cdot \cdot}}\right)^{2}}{\frac{f_{i \cdot \cdot k_{\cdot \cdot \cdot f \cdot j} \cdot k_{\cdot \cdot}}}{k_{\cdot \cdot \cdot}}}$$

$$= \sum_{i=1}^{p} \sum_{i=1}^{q} \frac{\left(k_{\cdot \cdot \cdot} \left[f_{ij} - f_{i \cdot f \cdot j}\right]\right)^{2}}{f_{i \cdot f \cdot j} \cdot k_{\cdot \cdot}}$$

$$= \sum_{i=1}^{p} \sum_{i=1}^{q} \frac{k_{\cdot \cdot \cdot} \left(f_{ij} - f_{i \cdot f \cdot j}\right)^{2}}{f_{i \cdot f \cdot j}}$$

$$= k_{\cdot \cdot \cdot} \sum_{i=1}^{p} \sum_{i=1}^{q} \frac{\left(f_{ij} - f_{i \cdot f \cdot j}\right)^{2}}{f_{i \cdot f \cdot j}}$$

Aufgabe 2

Der Term $\frac{k_i \cdot k_{\cdot j}}{k_{\cdot \cdot}}$ drückt die erwartete Anzahl bei Unabhängigkeit aus. Die Teststatistik ist also eine Art relative Abweichung zur Unabhängigkeit.

Aufgabe 3

(a) Die (unvollständige) Kontingenztafel lautet

	Zulassung	Ablehnung	Σ
Soziologie	12	88	100
Maschinenbau	x	y	x + y
Sportwissenschaften	25	25	50
Σ	37 + x	113 + y	150 + x + y

Wir wissen, dass $\frac{37+x}{150+x+y}=0.484$ und $\frac{x}{x+y}=7\cdot\frac{12}{100}$ ist. Aus der zweiten Gleichung erhalten wir

$$\frac{x}{x+y} = \frac{84}{100}$$

$$x = \frac{84}{100}x + \frac{84}{100}y$$

$$\frac{16}{100}x = \frac{84}{100}y$$

$$y = \frac{16}{84}x$$

Aus der ersten Gleichung erhalten wir:

$$\frac{37+x}{150+x+y} = 0.484$$

$$37+x = 72.6+0.484x+0.484y$$

$$\frac{129}{250}x = 35.6+0.484y$$

$$\frac{129}{250}x = 35.6+0.484 \cdot \frac{16}{84}x$$

$$\frac{89}{210}x = 35.6$$

$$x = 84$$

$$y = 16$$

(b) Die Tabelle der relativen Häufigkeiten ist dann

	Zulassung	Ablehnung	Σ
Soziologie	0.048	0.352	0.4
Maschinenbau	0.336	0.064	0.4
Sportwissenschaften	0.1	0.1	0.2
Σ	0.484	0.516	1

(c) Wir benutzen den χ^2 -Unabhängigkeitstest, weil wir nur nominale Daten haben.

 H_0 : Studiengang und Zulassung sind unabhängig

 H_1 : Studiengang und Zulassung sind nicht unabhängig

Die Teststatistik ergibt sich zu

$$T = k \cdot \sum_{i=1}^{p} \sum_{i=1}^{q} \frac{(f_{ij} - f_{i} \cdot f_{\cdot j})^{2}}{f_{i} \cdot f_{\cdot j}}$$

$$= 103.83$$

Der kritische Wert ist $\chi^2_{(k-1)(l-1);1-\alpha}=\chi^2_{2\cdot 1;1-0.05}=5.9915$. Damit wird H_0 abgelehnt und H_1 angenommen. Es besteht also ein Zusammenhang zwischen Studiengang und Zulassung.