Line Rasterization

1. Transformation

a. Transform (-3,2) to (-6,10) into the first octant (-3,8) $(3,-2) \longrightarrow (0,0)$ and (-3,8) (-3,8) (-3,8)

b. Transform (3,3) to (5,10) into the first octant Add (-3,-3) -> (0,0) and (2,7) c. Transform (-2,-2) to (-5,1) into the first octant

Add (2,2) -> (0,0) and (-3,3) x'=-x z'= y -> (0,0) and (3,3)

2. Rasterization

Wx+p-9=

Bresenham's Algorithm

Basic idea: use line equation to choose E or NE

$$y = mx + b$$

 $m = (y_1 - y_0)/(x_1 - x_0)$
 $b = y_0 - mx_0$

$$f(x,y) = mx + b - y$$

If
$$f(M) < 0 \rightarrow E$$

If $f(M) \ge 0 \rightarrow NE$

Using Bresenham's Algorithm, what pixels are illuminated to rasterize the

line segment (0,0) to (4,3)?

(2)
$$f(2, \frac{3}{2}) = \frac{3}{4}(2) - \frac{3}{2} = 0$$
NE

(3)
$$f(3)$$
 = (3/4) 3 - 5/2 = $9/4$ - $10/4$ = -14