

Realce no domínio espacial Realce ponto a ponto: Processamento em que todos os pixels são submetidos à mesma função de transformação, sem levar em conta os pixels vizinhos. Realce por máscara, por template ou por vizinhança: Processamento onde os pixels de cada região da imagem são transformados de forma diferente, de acordo com os valores dos pixels vizinhos.

Realce de imagens

 O realce de contraste pode ser feito através de uma função matemática denominada transformação radiométrica (T). Esta função faz o mapeamento das variações dentro do intervalo original de tons de cinza, para um outro intervalo desejado.

- ◆ K conjunto de valores de níveis de cinza {0,1,2,...,k-1}
- Alguns exemplos de funções que podem ser usadas para manipular o contraste de imagens são:
 - Linear
 - Logarítmico
 - Equalização de histograma
 - Raiz quadrada
 - Quadrado

Realce linear

 Aumenta o contraste de uma imagem, expandindo o intervalo original de níveis de cinza da imagem original. É representado por:

$$g_r(l, p) = G \times g(l, p) + D$$

- gr(l,p) é novo valor do nível de cinza no ponto de coordenadas l e p.
- g(l,p) é valor original de nível de cinza
- G é o ganho desejado (inclinação da reta, tangente do ângulo) associado diretamente com o contraste da imagem.
- D é um fator de incremento a todos os níveis de cinza da imagem – associado diretamente com o brilho da imagem.

Realce linear

 Se o realce produzir níveis de cinza fora do intervalo definido para o mapeamento (o conjunto K), estes níveis serão saturados no nível

g = c.f+b

Negativo da imagem

g original

G=-1; D=0

Binarização

 Limiarização – trasnsforma a imagem em uma imagem binária (2 níveis de cinza)

 $k_3.f(x,y) = W$

$$g(x,y) = \begin{cases} 0 \Rightarrow 0 < f_1(x,y) \\ W \Rightarrow f_1(x,y) \le f(x,y) \le W \end{cases}$$

Realce logarítmico

 Mapeamento logarítmico de valores de níveis de cinza aumenta o contraste em feições escuras (valores de cinza baixos). Equivale a uma curva logarítmica. É expresso pela função:

$$g_t(l,p) = G \log_{10}(g(l,p)+1);$$
 $G = \frac{255}{\log_{10} 255} = 105,9612$

- gt(l,p) é o novo valor de nível de cinza no ponto (l,p)
- g(l,p) é o valor original de nível de cinza
- G fator definido a partir dos limites mínimo e máximo da tabela, para manter valores que estejam entre 0 e o nível de cinza máximo

 Este mapeamento aumenta o contraste de feições claras (altos níveis de cinza da imagem) e é representado pela função:

$$g_t(l,p) = G \times (g(l,p))^2;$$
 $G = \frac{1}{255}$

- gt(l,p) é o novo valor de nível de cinza no ponto (l,p)
- g(l,p) é o valor original de nível de cinza
- G fator de ajuste para os níveis de saída permanecerem entre 0 e 255

Realce por raiz quadrada

 O mapeamento de raiz quadrada aumenta o contraste das regiões escuras da imagem original e é representado pela função:

$$g_t(l,p) = G \times \sqrt{g(l,p)};$$
 $G = \frac{255}{\sqrt{255}} = 15,9687$

- gt(l,p) é o novo valor de nível de cinza no ponto (l,p)
- g(l,p) é o valor original de nível de cinza
- G fator definido a partir dos limites mínimo e máximo da tabela, para manter valores estejam entre 0 e o nível de cinza máximo.
- Este mapeamento difere do logarítmico porque realça um intervalo maior de níveis de cinza baixos (escuros)

Operadores locais (vizinhança)

 Combina a intensidade de um certo número de pixels (janela), para computar o valor da nova intensidade na imagem de saída

 T[f(x,y)]S => Operação sobre todos os píxels dentro da janela S centrada em f(x,y)

- (a,b,c,d,e,f,g,h,i) são os valores dos níveis de cinza na vizinhança de f(x,y) = e, comparativamente ao Template.
- (w1 a w9) são os "pesos", ou seja, os valores dos níveis de cinza em cada posição do Template.
 - O valor do pixel g(x,y) na nova imagem, na posição (x,y) será dada por:

$$g(x,y) = w_1.a + w_2.b + w_3.c + w_4.d + w_3.e + w_6.f + w_7.g + w_8.h + w_9.i$$

Convolução

- O custo computacional da convolução espacial é alto
- Se a imagem é de tamanho M x M e o Template N x N, o número de multiplicações é de M².N²
- Ou seja, se a Imagem é de 512 x 512 e o Template é de 16 x 16, são necessárias 67.108.864 multiplicações
- A alternativa é transformar a imagem e o Template para o domínio da freqüência (Fourier) e multiplicar elemento a elemento
- A transformação só é justificável se o Template for maior que 32 x 32, devido ao custo da Transformada de Fourier.

Filtragem

- Objetivos
 - homogeneização da imagem ou de alvos específicos
 - extração de ruídos da imagem
 - simulação de imagens com resoluções radiométricas menores
 - melhora na discriminação de alvos da imagem
 - detecção de bordas entre alvos distintos presentes na imagem
 - detecção de formas
 - etc.

Filtragem

- Idéia básica
 - No processo de filtragem digital utiliza-se uma operação de convolução de uma máscara pela imagem digital
 - Equivale a uma operação que "passeia" sobre toda imagem original modificando seus valores de acordo com os valores originais da imagem e os pesos da máscara
 - A máscara utilizada é também uma imagem, em geral quadrada, menor que a imagem original. Os valores da imagem máscara são utilizados como pesos a serem aplicados sobre os níveis digitais dos pixels da imagem original
 - A diferenciação dos filtros é dada pelas diferentes máscaras aplicadas a uma imagem digital

Filtro passa-baixa

- · Também conhecido como filtro da média
- Elimina informações de alta frequência, ou seja, extrai informações muito discrepantes (em geral ruídos) da imagem
- suaviza a informação da imagem, gerando uma imagem de saída mais homogênea, ou mais suavizada, em comparação com a imagem original
- Exemplos:

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \frac{1}{4} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \frac{1}{10} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Somatória dos pesos = 1

Filtros passa baixa lineares e não lineares

- · Filtros lineares (filtro da média)
 - Remoção ou suavização de ruídos
 - Desvantagem: afeta fortemente as áreas sem ruído
- Filtros não lineares (filtro da moda e mediana)
 - Remoção de ruído
 - Efeito de homogeneização mais suave
 - Filtros definidos por seqüências lógicas ou algoritmos que descrevem como as máscaras são aplicadas

Filtro da moda

- Implementação a partir do histograma da imagem
- Elemento central de uma região é substituído pelo valor de nível de cinza mais freqüente em sua vizinhança
- O filtro da moda garante que o conjunto de valores digitais da imagem de saída é um subconjunto do domínio de valores da imagem de entrada. Assim, não são criados níveis digitais diferentes daqueles presentes na imagem de entrada.

Filtro da mediana

- · Suaviza a imagem retirando ruído
- Algoritmo
 - ordena todos os vizinhos
 - encontra a mediana
- Exemplo
 - vizinho (kernel) 3x3
 - **(10,20,20,20,15,20,20,25,100)**
 - **(10,15,20,20,20,20,20,25,100)**

Filtro passa-alta

- É chamado de máscara de realce porque tende a realçar mudanças abruptas de níveis de cinza na imagem
- A máscara do filtro passa alta deve ter o peso central positivo e os pesos periféricos negativos tal que a soma seja igual a zero.
- Aumenta a nitidez das transições entre diferentes regiões de uma imagem digital.
- Podem funcionar como detectores de pontos isolados, de linhas e de bordas presentes na imagem.

Filtro passa-alta

• Exemplos de máscaras de filtros passa alta:

$$\frac{1}{9} \begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \qquad \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

- A soma algébrica dos pesos das máscaras é igual a 0.
- Quando aplicadas em regiões homogêneas de uma imagem resultará em um valor igual a 0 ou em um valor muito pequeno.
- Quando aplicada a em regiões heterogêneas resultará num valor muito maior ou menor do que o valor original.

Filtro passa alta – Detector de altas fregüências

255 -

Realce de altas fregüências

Exemplos de filtros passa-alta

Filtros Laplacianos: usados para detectar bordas

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \qquad \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

■ Estas máscaras caracterizam-se por ter a soma dos pesos = 0

Exemplos de filtros passa-alta

 Filtros Laplacianos + Original: usados para detectar bordas mantendo a informação original.

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

Estas máscaras caracterizam-se por ter a soma dos pesos = 1.
 Mas tem como desvantagem o realce de ruídos.

Exemplos de filtros passa-alta

- Filtros Direcionais de borda: são filtros passa alta que realçam bordas em certas direções, dependendo da implementação
- As bordas em imagens são caracterizadas por transições abruptas de níveis de cinza.
- Nestes filtros os pesos são distribuídos de forma assimétrica em torno de um eixo hipotético.
 - Sobel
 - Prewitt

Detectores de linhas

Horizontal, vertical e diagonal

$$\begin{bmatrix} -1 & -1 & -1 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & -1 \end{bmatrix}$$

• Este filtros podem detectar características que não são linhas

Operadores de Roberts e Sobel

- As máscaras conhecidas como operadores de Roberts e operadores de Sobel, são utilizadas para aproximar o operador gradiente aplicado sobre os pixels de uma imagem digital.
- Sobel apresenta resultados de bordas mais realçadas e é mais sensível a ruído, ou seja amplia ruídos presentes na imagem
- · Operador de Roberts

$$\begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Detecção de bordas

- Aplicam-se filtros lineares de dois tipos
 - filtros baseados na *função gradiente* (derivadas de primeira ordem nas direções dos eixos x e y da imagem)
 - filtros baseados na função laplaciano (derivadas de segunda ordem nas direções dos eixos x e y da imagem).
- Filtros de detecção de bordas:
 - Laplace
 - Sobel
 - Prewitt
 - Roberts

Filtros morfológicos

- Exploram as propriedades geométricas dos níveis de cinza da imagem
- · Máscaras elementos estruturantes
- Os elementos apresentam valores 0 ou 1 (considera ou não o "pixel")
- Principais operações: erosão, dilatação, abertura e fechamento
- Pode-se escolher os elementos estruturantes de acordo com a aplicação

Elementos estruturantes

Exemplos

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Erosão

- · valor mínimo dentro da janela
- efeitos de erosão das partes claras da imagem
 → imagens mais escuras

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \Theta \begin{bmatrix} 3 & 6 & 5 \\ 2 & 8 & 2 \\ 2 & 9 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 6 & 5 \\ 2 & 2 & 2 \\ 2 & 9 & 5 \end{bmatrix}$$

Dilatação

· valor máximo dentro da janela

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \oplus \begin{bmatrix} 3 & 6 & 5 \\ 2 & 8 & 2 \\ 2 & 9 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 6 & 5 \\ 2 & 9 & 2 \\ 2 & 9 & 5 \end{bmatrix}$$

Abertura e Fechamento

- Abertura
 - Encadeamento do filtro de erosão seguido pelo filtro de dilatação

- (a) Original (b) Erosão (c) Abertura
- Fechamento
 - Encadeamento do filtro de dilatação, seguido pelo de erosão

