Universität Zürich FS 2025 STA110 Introduction to Probability Michael Hediger

Mock Exam 3

Instructions

- The exam is open book the use of Al or any form of communication is not allowed;
- Please make sure that every paper you need has your name and student number on it;
- Unless otherwise stated, full points will not be awarded for solutions without explanation;
- Do not use pencil, red or green pens.

Notation

We recall some of the terminology:

- Given a nonempty set Ω , $P(\Omega)$ is the power set on Ω .
- $B(R^k)$ denotes the Borel σ -field on R^k , $k \geq 1$.
- The measure $\mu(A)=egin{cases} \#A, & \text{if A is finite;} \\ \infty, & \text{otherwise,} \end{cases} A\in P(\Omega)$ is referred to as the counting measure on $P(\Omega)$.
- Given a measurable space (Ω,F) and $x\in\Omega$, we write δ_x for the measure $F\ni A\mapsto \delta_x(A)=egin{cases} 1, & \text{if } \mathbf{x}\in \mathbf{A}; \\ 0, & \text{otherwise.} \end{cases}$
- If not mentioned explicitly, a random vector is assumed to be defined on a probability space (Ω, F, P) .

Exercise 1 (10 points)

(a) Definition of a Semiring

Given a nonempty set Ω , write down the definition of a semiring on Ω . [1 point]

A semiring on Ω is a collection of subsets $S\subset P(\Omega)$ such that:

- 1. $\emptyset \in S$
- 2. S is closed under finite intersections, i.e., $A,B\in S\Rightarrow A\cap B\in S$

3. For any $A,B\in S$, there exists a finite sequence of disjoint sets $C_1,...,C_n\in S$ such that $A\setminus B=\cup_{i=1}^n C_i$

(b) Measures on a Measurable Space

Given a measurable space (Ω, F) , which of the following set functions μ_i , i = 1, 2, 3, is not a measure on F? [1.5 point — single choice, no explanation is needed to earn full points]

- 1. $F = P(\Omega)$ and $\mu_1(A) = 5\mu(A)$, where μ is the counting measure on $P(\Omega)$.
- 2. F any σ -field on Ω , μ any measure on F and $\mu_2(A)=\int_A f(\omega)\mu(d\omega)$, $A\in F$, where $f:\Omega\to R$ is nonnegative and F measurable.
- 3. $\Omega=N$, F=P(N) and $\mu_3(A)=(\#A)^2$, $A\in P(N)$.

The correct answer is 3.

(c) Probability Measures on a Measurable Space

Given a measurable space (E,B), which of the following set functions P_i , i=1,2,3, is not a probability measure on B? [1.5 point — single choice, no explanation is needed to earn full points]

- 1. E=N, B=P(N) and $P_1(A)=\sum_{n\in A\cap N}(1/2)^n$, $A\in P(N)$.
- 2. E=R, B=B(R), and $P_2(A)=\lambda(A)$, $A\in B(R)$, where λ is the Lebesgue measure on B(R).
- 3. E=R, B=B(R) and $P_3(A)=\int_A (1/2) 1_{[0,1]}(x) dx$, $A\in B(R)$.

The correct answer is 2 and 3.

(d) Integrals

Calculate the following integrals: [1 point each]

1. $\int_R x^2 1_{[-2,2]}(x) \lambda(dx)$, where λ is the Lebesgue measure on B(R).

$$\int_{-2}^{2} x^2 dx = \frac{x^3}{3} \Big|_{-2}^{2} = \frac{8}{3} - \frac{-8}{3} = \frac{16}{3}$$

2. $\int_R |x| P(dx)$, where $P(A) = (1/3)\delta_{-1}(A) + (2/3)\delta_1(A)$, $A \in B(R)$.

$$\int |x|P(dx) = |-1| \cdot \frac{1}{3} + |1| \cdot \frac{2}{3} = \frac{1}{3} + \frac{2}{3} = 1$$

3. $\int_N \frac{1}{x+1} \mu(dx)$, where μ is the counting measure on P(N).

 $\sum_{n\in N}rac{1}{n+1}.$ Since N is the natural numbers, this sum diverges to infinity. Thus, $\int_Nrac{1}{x+1}\mu(dx)=\infty$

(e) Discrete Laws

Which of the following laws P_i , i=1,2,3, is not discrete? [1.5 point — single choice, no explanation is needed to earn full points

- 1. The law P_1 of a random variable X with distribution function $F_X(t)=\begin{cases} 0, & \text{if } t<0; \\ 0.3, & \text{if } 0\leq t<1; \\ 0.7, & \text{if } 1\leq t<2; \\ 1, & \text{if } t\geq 2 \end{cases}$ 2. The law P_2 of a random variable X with distribution function $F_X(t)=\begin{cases} 0, & \text{if } t<0; \\ t, & \text{if } 0\leq t<1; \\ 1, & \text{if } t\geq 1 \end{cases}$
- 3. The law P_3 of the random variable X defined on $\Omega=a,b,c$ with P(X=a)=1(b) = 1/3, P(X = c) = 1/3.

The correct answer is 2.

(f) True or False

Decide whether the following statements are true or false: [0.5 point each - no explanation is]needed to earn full points

1. The family of all subsets of Ω , denoted $P(\Omega)$, is the largest possible σ -field on Ω .

True

2. If f:R o R is continuous, then f is measurable B(R)/B(R).

True

3. If X and Y are two independent random variables, then Cov(X,Y)=0.

True

4. Convergence in probability implies almost sure convergence.

False

Exercise 2 (13 points)

Let X be a discrete random variable with support -2,2 and law $P_X(A)=(1/2)\delta_{-2}(A)+$ $(1/2)\delta_2(A), A \in B(R).$

(a) Probabilities

What are P(X=-2) and P(X=2)? [1 point]

$$P(X=-2)=rac{1}{2}$$
 and $P(X=2)=rac{1}{2}$

(b) Expected Value

Calculate $E[|X|^2]$. [1.5 point]

$$E[|X|^2] = \frac{1}{2}|-2|^2 + \frac{1}{2}|2|^2 = \frac{1}{2}(4) + \frac{1}{2}(4) = 4$$

(c) Expected Value and Variance

Find E[X] and Var(X). [2 points]

$$E[X] = \frac{1}{2}(-2) + \frac{1}{2}(2) = 0$$
 $Var(X) = E[X^2] - (E[X])^2 = \frac{1}{2}(-2)^2 + \frac{1}{2}(2)^2 - 0^2 = 4$

(d) Law of $(X/2)^2$

What is the law of $(X/2)^2$? [1.5 points]

$$(X/2)^2=1$$
 with probability 1. The law is $P((X/2)^2=1)=1$.

Exercise 3 (18 points)

Let
$$\phi(x) = egin{cases} x, & ext{if } 0 \leq \mathbf{x} < 1; \ 2-x, & ext{if } 1 \leq \mathbf{x} < 2; . \ 0, & ext{otherwise} \end{cases}$$

(a) Integral of $\phi(x)$

Verify that $\int_R \phi(x) dx = 1$. [2 points]

$$\int_0^1 x dx + \int_1^2 (2-x) dx = \left[\frac{x^2}{2}\right]_0^1 + \left[2x - \frac{x^2}{2}\right]_1^2 = \frac{1}{2} + (4-2) - (2 - \frac{1}{2}) = \frac{1}{2} + 2 - \frac{3}{2} = 1$$

Exercise 4 (6 points)

Let X_1 and X_2 be two random variables that are independent with common law that is continuous uniform on the interval [0,1]. What is the probability density function of the random vector Y=

$$(X_1 + X_2, X_1 - X_2)$$
?

Exercise 5 (6 points)

Let X be a discrete random variable with support 0,1,...,M, where M is a positive integer. Suppose that X has law defined upon: P(X=k)=C(k+1), k=0,1,...,M, where $C\in R$. Find C.

To find
$$C$$
, we need $\sum_{k=0}^M P(X=k)=1$. Thus, $\sum_{k=0}^M C(k+1)=1$. $C\sum_{k=0}^M (k+1)=C\sum_{j=1}^{M+1}j=C\frac{(M+1)(M+2)}{2}=1$. $C=\frac{2}{(M+1)(M+2)}$