

Prayas JEE AIR 2025

WEEKLY TEST 01

DURATION: 180 Minutes

DATE: 14/07/2024

M. MARKS: 300

ANSWER KEY

PHYSICS

- 1. (1)
- 2. (4)
- 3. (2)
- 4. (4)
- **5.** (1)
- **6.** (3)
- 7. (1)
- 8. (2)9. (4)
- 10. (2)
- 10. (2)
- **11.** (3)
- 12. (2)
- 13. (3)14. (3)
- **15.** (1)
- **16.** (3)
- **17.** (3)
- **18.** (1)
- **19.** (3)
- 20. (3)
- 21. (2)
- 22. (10)23. (4)
- 24. (34)
- 25. (53)
- 26. (20)
- 27. (375)
- 28. (3)
- 29. (2)
- **30.** (3)

CHEMISTRY

- 31. (3)
- **32.** (2)
- **33.** (1)
- **34.** (2)
- **35.** (1)
- **36.** (4)
- 37. (2)
- 38. (3)
- 39. (2)
- 40. (3)
- 41. (1)
- 42. (3)43. (4)
- 44. (3)
- **45.** (1)
- 46. (4)
- **47.** (2)
- **48.** (3)
- 49. (2)
- **50.** (4)
- **51.** (33)
- **52.** (25)
- 53. (43)
- **54.** (21)
- 55. (31)
- **56.** (144)
- 57. (34)58. (16)
- 58. (16)59. (535)
- **60.** (20)

MATHEMATICS

- **61. (3)**
- **62.** (1)
- **63.** (4)
- **64.** (4)
- **65.** (3)
- **66.** (3)
- 67. (3) 68. (3)
- **69.** (4)
- **70.** (3)
- **71.** (3)
- 72. (3)
- **73.** (4)
- **74.** (3)
- **75.** (4)
- **76.** (2)
- **77.** (2)
- 78. (3)79. (3)
- 80. (1)
- **81.** (3)
- **82.** (17)
- 83. (2)
- 84. (21)
- **85.** (3)
- **86.** (9)
- **87.** (6)
- **88.** (1)
- **89.** (0)
- 90. (161)

SECTION-I (PHYSICS)

1. (1)

$$a_t = t \Rightarrow v = \frac{t^2}{2}$$

$$a_n = \frac{v^2}{R} = \frac{t^4}{4(2)} = \frac{t^4}{8}$$

$$\therefore a_t = a_n$$

$$\Rightarrow t = \frac{t^4}{8}$$

$$\therefore t = 2$$
 second

2. (4)

$$\vec{f}_1 = 5N\hat{i}, \quad \vec{f}_2 = -15N\hat{i}, T = 5N$$

$$\downarrow 10N \qquad 2 \text{ kg} \qquad \Rightarrow 5N \qquad \downarrow 3 \text{ kg} \qquad \Rightarrow 20N$$

$$\downarrow 10N \qquad 2 \text{ kg} \qquad \Rightarrow 5N \qquad \downarrow 3 \text{ kg} \qquad \Rightarrow 20N$$

3. (2

$$W_g + W_{sp} + W_{fr} = 0$$
$$\Rightarrow mgx_m - \frac{1}{2}kx_m^2 - \mu mgx_m = 0$$

$$\Rightarrow mgx_m - \frac{1}{2}kx_m - \mu mgx_m$$

$$\Rightarrow \frac{3mg}{4} = \frac{kx_m}{2}$$

$$4 2$$
Hence, $x_m = \frac{3mg}{2k}$

4. (4

$$v_B = \sqrt{2 g l \sin \theta}$$

$$v_C = \sqrt{2 gl}$$

$$\therefore 2\sqrt{2 \text{ g}l\sin\theta} = \sqrt{2 \text{ g}l}$$

Hence,
$$\sin\theta = \frac{1}{4}$$

5. (1

Acceleration of each block is

$$a = \frac{4g - \mu(4g)}{4 + 4} = 4 \text{ m/s}^2$$

$$\therefore a_{CM} = 2\sqrt{2} \text{ m/s}^2$$

6. (3)

Range R = 12 + 4 = 16 m

We know,
$$y = x \tan\theta \left(1 - \frac{x}{R}\right)$$

$$H = (12) \left(\frac{4}{3}\right) \left(1 - \frac{12}{16}\right)$$

$$=4 \text{ m}$$

7. (1

$$\frac{1}{2}mv_0^2 = \frac{1}{2}k\left(\frac{l_0}{2}\right)^2 - \frac{1}{2}k\left(\frac{l_0}{4}\right)^2 \implies k = \frac{16}{3}\frac{mv}{l_0^2}$$

8. (2)

$$t_0 = \frac{2u\sin\alpha}{g}$$

$$-H = D\tan\alpha - \frac{gD^2}{2\left(\frac{g^2t_0^2}{4\sin^2\alpha}\right)\cos^2\alpha}$$

$$= \frac{gt_0^2}{4D} \left| 1 + \sqrt{1 + \frac{8H}{gt_0^2}} \right|$$

9. (4)

$$x = A(1 - e^{-\lambda t})$$

$$v = A\lambda e^{-\lambda t}$$

$$\frac{v}{A\lambda} + \frac{x}{A} = 1$$

10. (2)

$$v = \frac{dx}{dt} = \sqrt{x}$$

$$\Rightarrow \int_{4}^{x} \frac{dx}{\sqrt{x}} = \int_{0}^{t} dt$$

$$\Rightarrow x = \left(\frac{t}{2} + 2\right)^2$$

$$v^2 = x$$
 and $2v \frac{dv}{dx} = 1$

$$\Rightarrow a = \frac{vdv}{dx} = \frac{1}{2}$$

11. (3)

Using equation of Trajectory, we get $u = 15\sqrt{2}$ m/s

12. (2)

Using constraint : $a_A = 2a_B$ and writing equation of motion & solving we get the answer.

13. (3)

$$T_{\min} = mg\cos\theta_0$$
 ... (i)

$$T_{\text{max}} - mg = \frac{mv^2}{R} \qquad \dots \text{ (ii)}$$

$$\frac{1}{2}mv^2 = mg\left(R - R\cos\theta\right)$$
 ... (iii)

$$\frac{T_{\text{max}}}{T_{\text{min}}} = 4$$

$$\theta_0 = \cos^{-1}\left(\frac{1}{2}\right)$$

14. (3)

As the vertical component of velocity of both the particles is same.

$$\Rightarrow \vec{v}_{yO/O'} = 0$$

So the distance *h* between them will be constant with time and $\vec{v}_{xO/O'} = 2v\cos\alpha$

Total distance between the particles is minimum when horizontal distance between them is zero

$$\Rightarrow t = \frac{d}{2v\cos\alpha}$$

15. (1

$$x_{cm} = \frac{m(x) + 4m(-x) + 5m(-x) + 8m(x)}{m + 4m + 5m + 8m} = 0$$

$$y_{cm} = \frac{m(x) + 4m(x) + 5m(-x) + 8m(-x)}{18m}$$

$$= -\frac{8mx}{18m} = \frac{-4}{9}x = \frac{-4}{9} \times \left(\frac{4R}{3\pi}\right) = -\frac{16R}{27\pi}$$

16. (3)

$$A_{r}r_{r} = A_{T}r_{T} - A_{\text{cut}}r_{\text{cut}}$$

$$\left(4a^{2} - \frac{\pi a^{2}}{2}\right)r_{r} = 4a^{2} \times a - \frac{\pi a^{2}}{2}\frac{4a}{3\pi}$$

$$r_r = \left(0, \frac{20a}{3(8-\pi)}\right)$$

17. (3

$$m_1x_1 = x_2x_2$$

$$\Rightarrow 10 \times 6 = 30 \times x_2$$

 \Rightarrow $x_2 = 2$ cm towards 10 kg block

18. (1)

$$M_1 = \frac{4}{3}\pi R^3 \rho$$

$$M_2 = \frac{4}{3}\pi(1)^3(-\rho)$$

$$X_{\text{com}} = \frac{M_1 X_1 + M_2 X_2}{M_1 + M_2}$$

$$\Rightarrow \frac{\left[\frac{4}{3}\pi R^3 \rho\right] 0 + \left[\frac{4}{3}\pi (1)^3 \left(-\rho\right)\right] \left[R-1\right]}{\frac{4}{3}\pi R^3 \rho + \frac{4}{3}\pi (1)^3 \left(-\rho\right)}$$

$$\Rightarrow \frac{\left(R-1\right)}{\left(R^3-1\right)} = \left(2-R\right)$$

$$\frac{(R-1)}{(R-1)(R^2+R+1)} = 2 - R$$

$$(R^2 + R + 1)(2 - R) = 1$$

19. (3

Given $v = a_0 t$

$$a_t = \frac{dv}{dt} = a_0$$

Now,
$$v^2 = u^2 + 2a_t S$$

$$=0+2a_0\frac{\pi R}{2}$$

$$v^2 = \pi a_0 R$$

So,
$$a_n = \frac{v^2}{R} = \pi a_0$$

The angle between the velocity vector and the acceleration vector is

$$\phi = \tan^{-1} \left(\frac{a_{\text{n}}}{a_{\text{t}}} \right) = \tan^{-1} \left(\frac{\pi a_{0}}{a_{0}} \right) = \tan^{-1} \left(\pi \right)$$

20. (3)

$$\frac{m}{2}g - T = \frac{m}{2}a \qquad \dots (i)$$

$$T\cos 60^{\circ} = \frac{\text{ma}}{\cos 60^{\circ}} \qquad \dots \text{ (ii)}$$

Solving (i) and (ii) acceleration of ring = $\frac{2g}{9}$

21. (2)

$$y = \sin^{-1} x$$
 or $\sin y = x$

Or
$$\frac{d(\sin y)}{dx} = \frac{dx}{dx}$$
 or $\frac{d(\sin y)}{dy} \frac{dy}{dx} = 1$

Or
$$\cos y \frac{dy}{dx} = 1$$

$$\therefore \frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\cos \frac{\pi}{2}} = \frac{1}{\frac{1}{2}} = 2$$

22. (10)

$$AA' = AC' = 10 \text{ m}$$

 $\Rightarrow A'C' = 20 \sin 30^\circ = 10 \text{ m}$

23. (4)

f = 1N

$$F_{\text{ext}} = 2 \text{ N}$$

 $v = (1) (2) = 2 \text{ m/s}$

Hence, Power P = Fv = 4 watt

24. (34)

$$a_{CM} = 10 = \frac{2m(-2) + m(a)}{2m + m}$$
$$\Rightarrow a - 4 = 30$$
$$\Rightarrow a = 34 \text{ m/s}^2$$

25. (53)

When it leaves contact, $mgcos\theta = \frac{mv}{R}$... (i)

From conservation of mechanical energy at A and B,

$$\frac{1}{2}m\left(\sqrt{\frac{95}{25}Rg}\right)^{2}$$

$$= mgR(1+\cos\theta) + \frac{mv^{2}}{2} \qquad \dots (i)$$

From (i) and (ii)

$$\cos\theta = \frac{3}{5}$$

$$\Rightarrow \theta = 53^{\circ}$$

26. (20) $W = \mu mgx = 20 \text{ J}$

27. (375)

Centre of mass of the system stops moving after both the blocks stop. Left block stops at t = 10 s and the right block stops at t = 5 s

$$v_{\rm cm} = \frac{(20)(2) - (10)(2)}{2 + 2} = 5 \text{ m/s}$$

Displacement of centre of mass in 5 sec $S_1 = 25$ m Retardation of centre of mass between t = 5 to t = 10 s is $a_{CM} = -1$ m/s² Further displacement of centre of mass before it stops

$$S_2 = (5)(5) - \frac{1}{2}(1)(5)^2 = 12.5 \text{ m}$$

Hence, total displacement of centre of mass of the system = 37.50 m = 3750 cm

28. (3)

For minimum value of $y(0.75\sin\theta + \cos\theta)$ should be maximum.

$$\therefore \frac{d}{d\theta} (0.75 \sin\theta + \cos\theta) = 0$$

Or,
$$0.75\cos\theta - \sin\theta = 0$$

Or,
$$\tan\theta = 0.75 = \frac{3}{4} \Rightarrow \sin\theta = \frac{3}{5}$$

and
$$\cos\theta = \frac{4}{5}$$

$$\therefore y_{\min} = \frac{15}{4\left(0.75 \times \frac{3}{5} + \frac{4}{5}\right)}$$

$$=\frac{15}{4\left(\frac{9}{20} + \frac{4}{5}\right)} = \frac{15}{4\left(\frac{9+16}{20}\right)}$$

$$15 \times 20$$

$$=\frac{15\times20}{4\times25}=3$$

$$\frac{dy}{dt} = 18x \frac{dx}{dt} = 6x$$

$$a_y = \frac{d^2y}{dt^2} = 6\frac{dx}{dt} = 2 \text{ m/s}^2$$

30. (3

The acceleration of center of mass of the system

$$a_{cm} = \frac{\left| m_1 \vec{a}_1 + m_2 \vec{a}_2 + m_3 \vec{a}_3 \right|}{m_1 + m_2 + m_3}$$

 \Rightarrow The net force acting on the system

$$= |m_1\vec{a}_1 + \vec{m}_2a_2 + m_3\vec{a}_3|$$

$$\Rightarrow F_{\text{net}} = (m_1 a_1 + m_2 a_2 - m_3 a_3)$$

$$= \left| (1)(1) + (2)(2) - \frac{1}{2}(4) \right| N = 3 N.$$

SECTION-II (CHEMISTRY)

31. **(3)**

$$Molarity = \frac{(w/w) \times d \times 10}{Molar \ mass \ of \ solute}$$

$$=\frac{12.8 \times 1.313 \times 10}{40}$$

$$\because \frac{\text{mol of solute}}{\text{Vol}} = \frac{12.8 \times 1.13 \times 10}{40} \text{ vol} = 1.38$$

32. (2)

Let the mass of CH₄ in the mixture is x gm.

on solving x = 6.182 g

Now the amount of water formed

$$= \left(\frac{6.182 \times 2}{16} + \frac{3.818}{28} \times 2\right) \times 18 = 18.81g$$

33. **(1)**

(a) In 100 mL (140 g) solution mass of solute 100 mL (140 g) = 70

$$=\frac{70}{140}\times46=23 \text{ g}$$

(b)
$$10M = \frac{\text{Mass of solute } / 46}{\frac{50}{19000}}$$

Mass of solute = 23 g

(c) 100 g solution contain 25g of solute mass of

solute =
$$\frac{25}{100} \times 50 = 12.5 \,\mathrm{g}$$

(d)
$$5M = \frac{\text{Mass of solute } / 46}{46 / 1000}$$

Mass of solute = 10.58 g

34. **(2)**

FeSO₄

1 mole of SO₄²⁻ combines with 1 mole Fe²⁺

In Fe₂ (SO_4)₃

3 mole of SO_4^{2-} combines with = 2 mole Fe^{3+}

1 mole of SO_4^{2-} combines with $=\frac{2}{3}$ mole Fe^{3+}

Ratio =
$$\frac{\text{Fe}^{2+}}{\text{Fe}^{3+}} = \frac{1}{\frac{2}{3}} = \frac{3}{2}$$

$$A \rightarrow S ; B \rightarrow Q; C \rightarrow R; D \rightarrow P$$

$$3\text{CN}^- + 7\text{NO}_3^- + 10\text{H}^+ \rightarrow 3\text{CO}_2 + 10\text{NO} + 5\text{H}_2\text{O}$$

: $a = 3$: $b = 7$: $a = 10$

$$\therefore a = 3 ; b = 7, c = 10$$

$$I_2 + Na_2S_2O_3 \rightarrow I^- + S_4O_6^{2-}$$

Let x mL of I₂ react with hypo

Meq of
$$I_2 = meq$$
 of Hypo

$$xN = 15 \times 0.4 \Rightarrow xN = 6$$

Meq of H_2SO_4 used by base = $10 \times 0.3 \times 2 = 6$

Meq of NaOH used by $I_2 = (30 - 6)$

$$(150 - x) N = 24$$
 (ii)

$$\frac{150-x}{x} = 4 \Rightarrow 5x = 150$$

$$x = 30 \text{ mL}$$

$$30N = 6$$

$$N = \frac{1}{5}$$
 $N = M \times n - factor$

$$\frac{1}{5} = M \times 2$$

$$M = \frac{1}{10} = 0.1$$

38. (3)

AB = isochoric heating

BC = isothermal expansion

CA = isobaric cooling

39. (2)

Theory Based

Appling Hess's law,

$$\Delta$$
H = [3 (110.5) – 282.9 + 2 (–285.8) +3 (–74.8)]
= –747.4

$$h = \sqrt{\frac{K_h}{C}} \qquad h = \sqrt{\frac{K_w}{K_a \times C}}$$

$$n = \sqrt{\frac{K_{\rm w}}{K_{\rm a} \times C}}$$

$$h = \sqrt{\frac{10^{-14} \times 80}{1.3 \times 10^{-9} \times 1}} \qquad h\% = 2.48\%$$

$$n\% = 2.48\%$$

$$\begin{array}{ccc}
 & & \uparrow \\
 & & \uparrow \\
 & & \downarrow \\
 & \downarrow$$

At. Initial 5mmol 2.5mmol

At. Final 2.5mmol 0

2.5mmol

$$8 = pK_a + log \left| \frac{2.5}{2.5} \right| \Rightarrow pK_a = 8, pK_b = 6$$

Now pH =
$$\frac{1}{2}(14-6-\log(10^{-2}))$$

$$=\frac{1}{2}(10)=5$$

43. (4

$$K_{sp} = [Cd^{2+}][S^{-2}]$$

$$K_{a_1} \times K_{a_2} = \frac{[H^+]^2 [S^{2-}]}{[H_2 S]} \Rightarrow [S^{-2}] = 1.1 \times 10^{-21} M$$

$$\therefore \ 6.33 \times 10^{-15} \times 6.33 \times 10^{-15} = [Cd^{2+}] \ [1.1 \times 10^{-21}]$$

$$[Cd^{2+}] = 3.643 \times 10^{-8} M$$

44. (3)

As the container is rigid and closed, so volume will be constant and we know that addition of inert gas at constant volume does not affect the equilibrium

45. (1)

Pseudo unimolecular reactions are in presence of one or more reactants in excess. Usually such reactions are carried out in solvents, which are themselves one of the reactants.

46. (4)

Rate =
$$-\frac{1}{2} \frac{d[N_2O_5]}{dt} = +\frac{1}{4} \frac{d[NO_2]}{dt}$$

$$=+\frac{d[O_2]}{dt}$$

Here
$$\frac{d[NO_2]}{dt} = 0.0076 \text{ mole / lit / sec}$$

(a) Rate of appearance of O₂

$$=\frac{1}{4}\times$$
 rate of appearance of NO₂

$$\frac{d[O_2]}{dt} = \frac{1}{4} \times \frac{d[NO_2]}{dt}$$

$$=\frac{1}{4}\times0.0076$$

= 0.0019 mole / lit / sec

(b) Rate of disappearance of N₂O₅

$$=\frac{1}{2}\times$$
 rate of appearance of NO₂

$$-\frac{d[N_2O_5]}{dt} = \frac{1}{2} \times \frac{d[NO_2]}{dt}$$

$$\frac{d[N_2O_5]}{dt} = -\frac{1}{2} \times 0.0076$$

=-0.0038 mole / lit / sec

(c) Rate of reaction =
$$\frac{1}{4} \times \frac{d[NO_2]}{dt}$$

$$=\frac{1}{4} \times 0.0076 = 0.0019 \text{ mol/lit/sec}$$

$$i \times \frac{1.2}{58.5} \times 10 \times RT = \frac{7.2}{180} \times 10 \times RT$$

Theory Based

$$X_A = 2/5 = 0.4, X_B = 0.6$$

$$P_A = X_A P_A^0$$

$$= 0.4 \times 120 = 48 \text{ mm}$$

$$P_{B} = X_{B}P_{B}^{o}$$

$$= 0.6 \times 180 = 108 \text{ mm}$$

So, total vapour pressure

$$=48+108=156$$
 mm.

50. (4)

$$\pi = \frac{w}{M}RT$$

$$M = \frac{0.082 \times 300 \times 50}{4.11} = 300$$

This is the apparent molecule weight.

$$i = \frac{M_{nor}}{M_{apparent}} = \frac{180}{300} = \frac{3}{5} = 0.6$$

$$Asi = 1 + \alpha(1/n - 1)$$

here $n = 2 \alpha = degree of dissociation$

So
$$0.6 = 1 + \alpha (-1/2)$$

$$\frac{1}{2} \alpha = 0.4$$

 $\alpha = 0.8$ or 80%

$$M = \frac{(27/98)}{100/12} \times 1000 = 3.3$$

$$X_{\text{ethanol}} = \frac{46/46}{46/46 + 54/18} = 0.25$$

KMnO₄ +
$$X^{+n} \rightarrow XO_3^- + Mn^{+2}$$

1.61 × 10⁻³ mole 2.63×10⁻³ mole

Eq. of
$$KMnO_4 = Eq.$$
 of X^{+n}

$$1.61 \times 10^{-3} \times 5 = 2.63 \times 10^{-3} \times (5 - n)$$

$$n = 2 \implies 56 = \frac{M}{2} + 35.5$$
 $M = 41$

54. (21)

$$\Delta S = \frac{nC_P dT}{T}$$

$$= 1 \times \int \left(\frac{25.5}{T} + 13.6 \times 10^{-3} - 42.5 \times 10^{-7} T\right) dT$$

$$= 2.303 \times 25.5 \log 2 + 13.6 \times 10^{-3} \times 300 - 42.5$$

$$\times 10^{-7} \frac{[(600)^2 - (300)^2]}{2}$$

$$\Delta S = 21.356 \text{ J K}^{-1} \text{ mol}^{-1}$$

55. (31)

Process is reversible adiabatic

$$T_1 = 298.15K$$

$$V_2 = 2V_1$$

$$T_2 = 248.44 \text{ K}$$

$$T_2 = 248.44 \text{ K}$$
 $PV^{\gamma} = K PV = nRT$

$$\frac{T}{V}V^{\gamma} = K, T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1}$$

$$\left(\frac{T_1}{T_2}\right) = \left(\frac{V_2}{V_1}\right)^{\gamma - 1}$$

$$\left(\frac{298.15}{248.44}\right) = 2^{\gamma - 1}$$

$$\log (298.15) - \log (248.44) = (\gamma - 1) \log 2$$

$$(\gamma - 1) = \frac{0.08}{0.3}$$

$$C_{V,m} = 8.3 \times \frac{0.3}{0.08}$$
 $C_{V,m} = 31.125$

56. (144)

$$2HI \quad \rightleftharpoons \quad H_2 \quad + \quad I_2$$

$$K_C = \frac{0.4 \times 0.4}{(0.2)^2} = 4$$

Let x mol of H₂ & I₂ react

$$4 = \frac{(0.135 - x)^2}{(2x)^2}$$

On solving

$$x = 0.027$$

$$I_2 \hspace{1cm} + \hspace{1cm} 2Na_2S_2O_3 \hspace{1cm} \rightarrow \hspace{1cm} 2NaI + Na_2S_4O_6$$

$$(0.135 - x)$$
 1.5 M

If V L of hypo is used

$$(0.135 - x) 2 = 1.5 V$$

$$V = \frac{(0.135 - 0.027) \times 2}{1.5} = 0.144L = 144mL$$

57.

Let equilibrium concentration of C be a M.

$$K_C = \frac{(4^2)(a)}{3} = \frac{16a}{3}$$
....(i)

On doubling volume, all concentrations are halved and equilibrium shifts forward

$$A \rightleftharpoons 2B + C$$

$$3/2-x$$
 $2+2x$ $a/2+x$

Given: $2x + 2 = 3 \Rightarrow x = \frac{1}{2}$

$$K_{C} = \frac{(3)^{2} \left(\frac{a}{2} + \frac{1}{2}\right)}{\left(\frac{3}{2} - \frac{1}{2}\right)}$$
 (ii)

From (1) & (2),

$$32a = 27a + 27$$

$$5a = 27$$

$$a = 5.4$$

$$K_C = \frac{9(3.2)}{(1)} = 28.8$$

58.

$$t = \frac{2.303}{k} \log_{10} \frac{a}{a - x}$$

If
$$t = t / 2$$
, $x = a / 2$

$$t_{1/2} = \frac{2.303}{k} \log_{10} \frac{a}{a - a/2}$$
 ...(i)

If
$$t = t_{99\%}$$
, $x = 99a / 100$

$$t_{99\%} = \frac{2.303}{k} \log_{10} \frac{a}{a - 99a/100}$$

From equation (i) and (ii)

$$t_{99\%} = \frac{\log_{10} 100}{\log_{10} 2} \times t_{1/2}$$

$$= \frac{2}{0.3010} \times 2.1 = 13.95 \text{ hour}$$

Mole of N₂O formed

$$=\frac{99}{100} \times \text{mole of NH}_2 \text{NO}_2 \text{ taken}$$

$$=\frac{99}{100}\times\frac{6.2}{62}=0.099$$

Thus, volume of N₂O formed at STP

$$= 0.099 \times 22.4$$

$$= 2.217$$
 litre

From question,
$$2P_0 + \frac{P_0}{2} + 25 = 625 \Rightarrow P_0 = 240$$

and
$$(P_0 - x) + 2x + \frac{x}{2} + 25 = 445 \Rightarrow x = 120$$

Now,
$$\frac{1}{30} \cdot \ln \frac{P_0}{P_0 - x} = \frac{1}{60} \cdot \ln \frac{P_0}{P_0 - y} \Rightarrow y = 180$$

$$\therefore P_{60} = (P_0 - y) + 2y + \frac{y}{2} + 25$$

$$= 240 + 3 \times 90 + 25 = 535 \text{ mm Hg}$$

60. (20)

Given:

$$\pi = 4.92$$
 atm; $T = 27 + 273 = 300$ K

V = 1 litre

$$n_1 = \text{mole of non-electrolyte} = \frac{X}{200}$$

$$n_2$$
 = more of NaCl = 0.05

According to $\pi V = nRT$

$$\pi V = n_1 RT + n_2 (1 + \alpha) RT$$

$$\pi V = [n_1 + n_2(1+\alpha)]RT$$

Here $\alpha = 1$ given for NaCl

$$4.92 \times 1 = \left| \left(\frac{X}{200} \right) + 0.05 \times 2 \right| \times 0.082 \times 300$$

$$X = 20 g$$
.

SECTION-III (MATHEMATICS)

61. (3)

We have for $\cos^{-1}(1-x) \ge 0 \Rightarrow -1 \le (1-x) \le 1$

$$\Rightarrow -2 \le -x \le 0$$

$$\Rightarrow 0 \le x \le 2$$
 ...(1)

also
$$10 \cdot 3^{x-2} - 9^{x-1} - 1 > 0$$

$$10 \cdot 3^x - 9^x - 9 > 0$$

$$10 \cdot 3^x - 3^{2x} - 9 > 0$$

$$3^{2x} - 10 \cdot 3^x + 9 < 0$$

$$(3^x - 1)(3^x - 9) < 0$$

$$1 < 3^x < 9$$

$$\Rightarrow 0 < x < 2$$
 ...(2)

from (1) and (2)

62. (1)

$$f(x) = \frac{e^x \ln 5^{(x^2+2)} \cdot (x-2)(x-5)}{(2x-3)(x-4)}$$

Note that at x = 3/2 and x = 4 function is not defined and in open interval (3/2, 4) function is continuous.

$$\lim_{x \to \frac{3}{2}^{+}} = \frac{(+ve)(-ve)(-ve)}{(+ve)(-ve)} \to -\infty$$

$$\lim_{x \to 4^{-}} = \frac{(+ve)(+ve)(-ve)}{(+ve)(-ve)} \to \infty$$

In the open interval (3/2, 4) the function is continuous and takes up all real values from $(-\infty, \infty)$ Hence range of the function is $(-\infty, \infty)$ or R.

63. (4)

64. (4)

I.
$$f(x) = x$$
 and $g(x) = -x$ or $f(x) = x$ and $g(x) = -x^3$

II.
$$f(x) = x$$
 and $g(x) = x^3$

III. $f(x) = \sin x$ which is odd but not one-one or $f(x) = x^2 \sin x$ which is odd but many one.

65. (3)

(1) We have

$$f: A \to B$$

$$g: B \to C$$

and gof : $A \rightarrow C$

clearly gof is one-one but g is many one function

- 66. (3) conceptual
- **67. (3)**

Statement-1: $A = \{(x, y) \hat{I} R \times R : y - x \text{ is an integer}\}$

- (a) **Reflexive** xRx : (x x) is an integer
- i.e., True
- :. Reflexive
- (b) **Symmetric** xRy:(x-y) is an integer
- \Rightarrow (y-x) is an integer
- \Rightarrow (y-x) is an integer.
- \Rightarrow yRx : Symmetric
- (c) **Transitive** xRy and yRz
- \Rightarrow (x-y) is an integer and (y-z) is an integer.
- \Rightarrow (x-y)+(y-z) is an integer
- \Rightarrow (x-z) is an integer
- $\Rightarrow xRz$: Transitive
- ⇒ Equivalence Relation

 $B = \{(x, y) \in R \times R : x = \alpha y \text{ for some rational number } \alpha\}$

If $\alpha = 1$

xRy : x = y (To check equivalence)

- (a) **Reflexive** xRx : x = x (True)
- :. Reflexive
- (b) Symmetric $xRy: x = y \Rightarrow y = x \Rightarrow yRx$
- :. Symmetric
- (c) Transitive xRy and yRz
- \Rightarrow x = y and y = z
- $\Rightarrow x = z$
- $\Rightarrow xR \Rightarrow \text{Equivalence}$
- ... Both are true but Statement-2 is not correct explanation of Statement-1.

Note: Statement-2 is not equivalence for $\alpha \in R - \{1\}$.

- 68. (3) Since, $A \cap B = A \cap C$ and $A \cup B = A \cup C$ $\Rightarrow B = C$.
- 69. (4) $AB = A \Rightarrow A^{2} = A \Rightarrow A^{n} = A$ and $BA = B \Rightarrow B^{2} = B \Rightarrow B^{n} = B$ Now $(A^{2010} + B^{2010})^{2011} = (A + B)^{2011}$ $(A + B)^{2} = A^{2} + B^{2} + AB + BA$ = 2(A + B) $(A + B)^{k} = 2^{k}(A + B)$ Hence, the correct answer is (4).
- 70. (3) $A^{5}(AB^{2}) = A^{5}BA$ $\Rightarrow B^{2} = A^{5}BA$ $\Rightarrow B^{4} = (A^{5}BA)(A^{5}BA) = A^{5}B^{2}A = A^{5}(A^{5}BA)A$ $\Rightarrow B^{4} = A^{4}BA^{2}$ $\Rightarrow B^{8} = (A^{4}BA^{2})(A^{4}BA^{2}) = A^{4}B^{2}A^{2}$ $= A^{4}(A^{5}BA)A^{2}$ $\Rightarrow B^{8} = A^{3}BA^{3}$ $\Rightarrow B^{16} = (A^{3}BA^{3})(A^{3}BA^{3}) = A^{3}B^{2}A^{3}$ $\Rightarrow B^{32} = (A^{2}BA^{4})(A^{2}BA^{4}) = A^{2}B^{2}A^{4}$ $= A^{2}(A^{5}BA)A^{4} = ABA^{5}$ $\Rightarrow B^{64} = (ABA^{5})(ABA^{5}) = AB^{2}A^{5}$ $= A(A^{5}BA)A^{5} = B$ $\Rightarrow B^{63} = I$
- Hence, the correct answer is (3).

71.

(3)

We have 2b = a + c and a, p, b and b, q, c are in A.P $\Rightarrow p = \frac{a+b}{2}, q = \frac{b+c}{2}$ Again, $p' = \sqrt{ab}$ and $q' = \sqrt{bc}$ $\therefore p^2 - q^2 = \frac{(a+b)^2 - (b+c)^2}{4}$ $= \frac{(a-c)(a+c+2b)}{4} = (a-c)b = p'^2 - q'^2$

Hence, the correct answer is (3).

72. (3)

If $\tan \theta + \cot \theta$ are roots of the equation $x^2 + 2x + 1 = 0$ then $\tan \theta + \cot \theta = -2$ then $\tan \theta = -1$ and $\cot \theta = -1$ then the least value of $x^2 + \tan x + \cot \theta$

$$\Rightarrow x^2 - x - 1$$

$$\Rightarrow \left(x^2 - x + \frac{1}{4}\right) - \frac{5}{4}$$

$$\Rightarrow \left(x - \frac{1}{2}\right)^2 + \left(-\frac{5}{4}\right)$$

 \therefore least value of function is $-\frac{5}{4}$.

73. (4)

$$x + y + z = 4$$
 and $x^2 + y^2 + z^2 = 6$

then xy + yz + zx = 5

$$\therefore$$
 $y+z=4-x$

$$y z = 5 - x(4 - x)$$

then if y and z are roots of any quadratic then

$$f(t) = t^2 - (4 - x)t + 5 - x(4 - x)$$

If *t* is real then $D \ge 0$

$$\Rightarrow (4-x)^2 - 4(5-x(4-x)) \ge 0$$

$$\Rightarrow$$
 16 + x^2 - 8x - 20 + 4x(4 - x) > 0

$$\Rightarrow 16 + x^2 - 8x - 20 + 16x - 4x^2 \ge 0$$

$$\Rightarrow$$
 $-3x^2 + 8x - 4 \ge 0$

$$\Rightarrow$$
 $-3x^2 - 8x + 4 \le 0$

$$x \in \left[\frac{2}{3}, 2\right]$$

74. (3)

Let $2^x = t$ then

$$t^2 + (k-3)t + (k-4) = 0$$

$$\Rightarrow t = \frac{-(k-3) \pm \sqrt{(k-3)^2 - 4(k-4)}}{2}$$

$$\Rightarrow t = \frac{-(k-3) \pm (k-5)}{2}$$

$$\Rightarrow t = \frac{-2k+8}{2}$$

$$\Rightarrow -k+4$$

 \therefore x is non positive then $x \le 0$

$$\therefore 0 < 2^x \le 1$$

$$\Rightarrow 0 < -k + 4 \le 1$$

$$-3 \le k < 4$$

 \therefore largest integral value of k is 3.

$$f(x) = (2+b+b^2)x^2 + 2\sqrt{2}(2b+1)x + 8$$

Min value of

$$f(x) = \frac{-D}{4a} = \frac{-[8(2b+1)^2 - 32(2+b+b^2)]}{4(b^2+b+2)}$$

$$m(b) = \frac{56}{4(b^2 + b + 2)}$$

Maximum value of m(b) is obtain when minimum value of $b^2 + b + 2$ is obtain minimum value

$$b^2 + b + 2 = \left(\frac{-1}{2}\right)^2 + \left(\frac{-1}{2}\right) + 2$$

$$=\frac{1}{4}-\frac{1}{2}+2=\frac{7}{8}$$

Maximum value of $m(b) = \frac{56}{4 \times \frac{7}{4}} = 8$.

76. (2)

If roots are real and distinct then $\Delta > 0$

 \therefore For equation $x^2 + 6x + a = 0$

then 36 - 4a > 0

or
$$a < 9$$
 ...(1) $\alpha - \beta \le 4$

$$\Rightarrow 0 < (\alpha - \beta)^2 \le 16$$

$$\Rightarrow 0 < (\alpha - \beta)^2 - 4\alpha\beta \le 16$$

$$\Rightarrow$$
 0 < 36 - 4a \leq 16

$$5 \le a < 9$$

77. (2)

$$R_2 \rightarrow R_2 - R_3$$

$$\begin{vmatrix} \alpha^2 & \beta^2 & \gamma^2 \\ \alpha & \beta & \gamma \\ (\alpha - 1)^2 & (\beta - 1)^2 & (\gamma - 1)^2 \end{vmatrix} = 0$$

Apply
$$R_3 \rightarrow R_3 - R_1$$

$$\begin{vmatrix} \alpha^2 & \beta^2 & \gamma^2 \\ \alpha & \beta & \gamma^2 \\ 1 - 2\alpha & 1 - 2\beta & 1 - 2\gamma \end{vmatrix} = 0$$

$$R_3 \rightarrow R_3 + 2R_2$$

$$\begin{vmatrix} \alpha^2 & \beta^2 & \gamma^2 \\ \alpha & \beta & \gamma \\ 1 & 1 & 1 \end{vmatrix} = 0$$

$$\Rightarrow (\beta - \alpha)(\gamma - \alpha)(\beta - \gamma) = 0$$

Hence, the correct answer is (2).

$$\Delta \cdot \Delta^2 = 64$$
 (: Δ and its adjoint)

$$\Rightarrow \Delta^3 = 64$$

$$\Rightarrow \Delta = 4$$

G.E. =
$$[(2 \times 3 \times 5) + (3 \times 5 \times 4)]\Delta$$

$$=(30+60)\Delta=90(4)=360$$

(∵ splitting into 8 determinants only 2 will survive)

Hence, the correct answer is (3).

79. (3)

$$a_r = \frac{20}{r}, r = 1, 2, 3, \dots 9$$

The value of determinant is 50/21.

80. (1)

We have

$$A = \begin{pmatrix} 0 & \sin \alpha & \sin \alpha \cdot \sin \beta \\ -\sin \alpha & 0 & \cos \alpha \cdot \cos \beta \\ -\sin \alpha \cdot \sin \beta & -\cos \alpha \cdot \cos \beta & 0 \end{pmatrix}$$

As, matrix A is skew-symmetric matrix of odd order

$$\Rightarrow |A| = 0 \Rightarrow A$$
 is a singular matrix

$$\therefore$$
 A⁻¹ does not exists.

$$\Rightarrow |A|$$
 is independents of α and β .

Hence, the correct answer is (1).

81. (3

$$\log(\log_3 10) = \log\left(\frac{1}{\log_{10} 3}\right) = -\log_{10}(\log_{10} 3)$$

Given
$$f(-\log_{10}(\log_{10} 3)) = 5$$

Now
$$f(x) = a \sin x + bx^{1/3} + 4$$

$$f(-x) = -a \sin x - bx^{1/3} + 4$$

$$f(x) + f(-x) = 8$$

$$f(\log_{10}(\log_{10}3)) + f(-\log_{10}(\log_{10}3)) = 8$$

$$f(\log_{10}(\log_{10}3)) + 5 = 8$$

$$f(\log_{10}(\log_{10}3)) = 3$$

82. (17)

For tangency,
$$x^2 - 9 = x - a$$

$$\Rightarrow$$
 x² - x + a - 9 = 0

Put
$$D = 0 \Rightarrow 1 - 4a + 36 = 0 \Rightarrow a = \frac{37}{4}$$

$$a = \frac{-37}{4}$$

.. For 4 distinct solution,

$$a \in \left(\frac{-37}{4}, -3\right) \cup \left(-3, 3\right) \cup \left(3, \frac{37}{4}\right)$$

Hence, number of integers are 17.

83. (2

$$c_1 \rightarrow c_1 + c_2$$

$$\begin{vmatrix} 2 & \cos^2 \theta & 4\sin 4\theta \\ 2 & 1 + \cos^2 \theta & 4\sin 4\theta \\ 1 & \cos^2 \theta & 1 + 4\sin 4\theta \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 2 & \cos^2 \theta & 4\sin 4\theta \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix} = 0$$

$$\Rightarrow$$
 2 + 4 sin 40 = 0 \Rightarrow sin 40 = $\frac{-1}{2}$

Hence, the correct answer is (2).

84. (21)

The integer $m\gamma = \gamma(111) = \gamma.3.37$ with γ equal to the final digit of β . Now 37 must divide one of $(\alpha\beta)$ and $(\delta\beta)$ say $(\alpha\beta)$. Therefore $\alpha\beta = 37$ or 74. $\alpha\beta = 74$ is not possible because

$$(\alpha\beta)(\delta\beta) \ge 74.14 = 1036$$

$$\Rightarrow \alpha\beta = 37, \delta\beta = 27, \gamma = 9$$

 \Rightarrow trace of matrix A = 3 + 7 + 9 + 2 = 21.

85. (3)

conceptual

86. (9)

 $A.M. \geq H.M.$

$$\Rightarrow \left(\sum x_i\right) \left(\sum \frac{1}{x_i}\right) \ge 3^2 = 9$$

Hence, the correct answer is (6).

87. (6)

General term

$$(t_r^2) = 1 + \frac{1}{n^2} + \frac{1}{(n+1)^2} = \frac{n^2(n+1)^2 + (n+1)^2 + 2}{n^2(n+1)^2}$$

$$\Rightarrow t_r^2 = \frac{n^4 + 2n^3 + 3n^2 + 2n + 1}{n^2 (n+1)^2}$$

$$= \left\{ \frac{n^2 + n + 1}{n(n+1)} \right\}^2$$

$$\therefore t_r = 1 + \frac{1}{n(n+1)'};$$

Required sum

$$= \sum_{r=1}^{999} \left(1 + \frac{1}{r} - \frac{1}{r+1} \right) = 999 + 1 - \frac{1}{1000} = \frac{10^6 - 1}{10^3}$$

$$k = 6$$

Hence, the correct answer is (6).

88. (1)

$$\tan A + \tan B + \tan C$$

 $= \tan A \tan B \tan C = 6$
 $\therefore \cot A \cot B \cot C = 1/6$

89. (0)

From the third relation, we get $\cos \theta \cos \phi + \sin \theta \sin \phi = \sin \beta \sin \gamma$

$$\Rightarrow \sin^2\theta\sin^2\phi = (\cos\theta\cos\phi - \sin\beta\sin\gamma)^2$$

$$\Rightarrow \left(1 - \frac{\sin^2 \beta}{\sin^2 \alpha}\right) \left(1 - \frac{\sin^2 \gamma}{\sin^2 \alpha}\right)$$

$$= \left(\frac{\sin\beta\sin\gamma}{\sin^2\alpha} - \sin\beta\sin\gamma\right)^2$$

$$\Rightarrow (\sin^2 \alpha - \sin^2 \beta)(\sin^2 \alpha - \sin^2 \gamma)$$

$$= \sin^2 \beta \sin^2 \gamma (1 - \sin^2 \alpha)^2$$

$$\Rightarrow \sin^4\alpha(1-\sin^2\beta\sin^2\gamma)$$

$$-\sin^2\alpha(\sin^2\beta + \sin^2\gamma - 2\sin^2\beta\sin^2\gamma) = 0$$

$$\sin^2 \alpha = \frac{\sin^2 \beta + \sin^2 \gamma - 2\sin^2 \beta \sin^2 \gamma}{1 - \sin^2 \beta \sin^2 \gamma}$$
and $\cos^2 \alpha = \frac{1 - \sin^2 \beta - \sin^2 \gamma + \sin^2 \beta \sin^2 \gamma}{1 - \sin^2 \beta - \sin^2 \gamma + \sin^2 \beta \sin^2 \gamma}$

and
$$\cos^2 \alpha = \frac{1 - \sin^2 \beta - \sin^2 \gamma + \sin^2 \beta \sin^2 \gamma}{1 - \sin^2 \beta \sin^2 \gamma}$$

$$\Rightarrow \tan^2 \alpha$$

$$=\frac{\sin^2\beta-\sin^2\beta\sin^2\gamma+\sin^2\gamma-\sin^2\beta\sin^2\gamma}{\cos^2\beta-\sin^2\gamma(1-\sin^2\beta)}$$

$$=\frac{\sin^2\beta\cos^2\gamma+\cos^2\beta\sin^2\gamma}{\cos^2\beta\cos^2\gamma}$$

$$= \tan^2 \beta + \tan^2 \gamma$$

$$\Rightarrow \tan^2 \alpha - \tan^2 \beta - \tan^2 \gamma = 0$$

90. (161)

$$\sin x \sin y + 3\cos y + 4\sin y \cos x = \sqrt{26}$$

$$\therefore 3\cos y + (\sin x + 4\cos x)\sin y = \sqrt{26}$$

$$\therefore$$
 3cos y + (sin x + 4cos x) sin y

$$\leq \sqrt{9 + \left(\sin x + 4\cos x\right)^2}$$

$$\leq \sqrt{9+1+16}$$

$$=\sqrt{26}$$

$$\therefore \sin x \sin y + 3\cos y + 4\sin y \cos x = \sqrt{26}$$

$$\Rightarrow \sin x \sin y = \frac{\cos y}{3} = \frac{\sin y \cos x}{4}$$

$$\Rightarrow$$
 3 tan $y = \csc x$ and $\tan x = 1/4$

$$\Rightarrow$$
 9 tan² $y = \csc^2 x = (1 + \cot^2 x) = 17$

$$\Rightarrow \tan^2 x + \cot^2 y = \frac{1}{16} + \frac{9}{17}$$

PW Web/App - https://smart.link/7wwosivoicgd4

Library- https://smart.link/sdfez8ejd80if