Linear Algebra for MLDS - Homework 5

Coordinates, Rank, Linear Transformations, Matrices of L.T

Make sure to read and follow the "Homework Submission Instructions" file

Submit by: June 2, 2022 at 23:59

Exercise 1: Given
$$B = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

1. Prove that B is a basis for \mathbb{R}^3

- 2. Find the coordinate vector of $\begin{pmatrix} 2\\3\\4 \end{pmatrix}$ with repsect to the basis B.
- 3. Find a vector $v \in \mathbb{R}^3$ such that $[v]_B = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$
- 4. Find the coordinate vector $[w]_B$ for a general vector $w = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Exercise 2: For each of the following matrices:
$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 and $A = \begin{pmatrix} 1 & 2 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 2 & 4 & -1 & 3 & 1 \end{pmatrix}$

Find bases for Row(A), Col(A), Nul(A), and rank(A), nullity(A)

Exercise 3: For each of the following, determine whether it is a linear transformation.

1.
$$F: \mathbb{R}^2 \to \mathbb{R}^3, F\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x^2 \\ x \\ y \end{pmatrix}$$

2.
$$F: \mathbb{R}^{2 \times 2} \to \mathbb{R}, F\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + d$$

3.
$$F: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}, F\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Exercise 4: For each the following linear tranformations: find $\dim(\operatorname{Range}(T))$, $\dim(\operatorname{Ker}(T))$ and determine whether T is invertible.

1

1.
$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ y+z \end{pmatrix}$$

2.
$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - 2z \\ y + z \\ x + 2y \\ x + y - z \end{pmatrix}$$

Exercise 5: Given $B = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$ and $F \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ x+y \\ -x \end{pmatrix}$

- 1. Find the matrix of F with respect to B
- 2. Use that matrix to calculate $F \begin{pmatrix} 2 \\ 4 \\ 4 \end{pmatrix}$
- 3. Is the matrix singular? What does that say nabout F?

Exercise 6: Prove or disprove the following claims:

- 1. If $F: \mathbb{R}^3 \to \mathbb{R}^4$ is a one-to-one linear transformation, then $\dim(\operatorname{Range}(F)) = 4$
- 2. If $F: \mathbb{R}^5 \to \mathbb{R}^3$ is a linear transformation and F is onto \mathbb{R}^3 then $\dim(\operatorname{Ker}(F)) = 2$
- 3. There does not exist a linear transformation $F: \mathbb{R}^4 \to \mathbb{R}^3$ that is one-to-one.
- 4. If $F: \mathbb{R}^n \to \mathbb{R}^m$ is an invertible linear transformation then n=m
- 5. There does not exist a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $\operatorname{Ker}(T) = \operatorname{Range}(T)$
- 6. Let T, S be two linear transformations $\mathbb{R}^2 \to \mathbb{R}^2$ such that $\operatorname{Ker}(T) = \operatorname{Ker}(S)$, then $\operatorname{Range}(T) = \operatorname{Range}(S)$