CS480/680: Introduction to Machine Learning

Lec 03: Logistic Regression

Yaoliang Yu

- Recall that $\hat{y} = \operatorname{sign}(\langle \mathbf{x}, \mathbf{w} \rangle)$
- How confident we are about the prediction ŷ?
- Can use $|\langle \mathbf{x}, \mathbf{w} \rangle|$ as an indication

• Better idea: learn confidence directly

- Recall that $\hat{y} = sign(\langle x, w \rangle)$
- How confident we are about the prediction ŷ?
- Can use | (x, w) | as an indication

• Better idea: learn confidence directly

.03

- Recall that $\hat{y} = \operatorname{sign}(\langle \mathbf{x}, \mathbf{w} \rangle)$
- How confident we are about the prediction ŷ?
- Can use | (x, w) | as an indication

Better idea: learn confidence directly

- Recall that $\hat{y} = \operatorname{sign}(\langle \mathbf{x}, \mathbf{w} \rangle)$
- How confident we are about the prediction ŷ?
- Can use $|\langle \mathbf{x}, \mathbf{w} \rangle|$ as an indication
 - in fact was used in multi-class preceptron
 - real-valued: hard to interpret
 - many ways to transform into $\left[0,1\right]$
- Better idea: learn confidence directly

03 1/16

- Recall that $\hat{y} = \operatorname{sign}(\langle \mathbf{x}, \mathbf{w} \rangle)$
- How confident we are about the prediction ŷ?
- Can use $|\langle \mathbf{x}, \mathbf{w} \rangle|$ as an indication
 - in fact was used in multi-class preceptron
 - real-valued: hard to interpret
 - many ways to transform into [0,1]
- Better idea: learn confidence directly

- Recall that $\hat{y} = sign(\langle x, w \rangle)$
- How confident we are about the prediction ŷ?
- Can use $|\langle \mathbf{x}, \mathbf{w} \rangle|$ as an indication
 - in fact was used in multi-class preceptron
 - real-valued: hard to interpret
 - many ways to transform into [0,1]
- Better idea: learn confidence directly

_03

- Recall that $\hat{y} = \operatorname{sign}(\langle \mathbf{x}, \mathbf{w} \rangle)$
- How confident we are about the prediction ŷ?
- Can use $|\langle \mathbf{x}, \mathbf{w} \rangle|$ as an indication
 - in fact was used in multi-class preceptron
 - real-valued: hard to interpret
 - many ways to transform into $\left[0,1\right]$
- Better idea: learn confidence directly

- Recall that $\hat{y} = sign(\langle x, w \rangle)$
- How confident we are about the prediction ŷ?
- Can use $|\langle \mathbf{x}, \mathbf{w} \rangle|$ as an indication
 - in fact was used in multi-class preceptron
 - real-valued: hard to interpret
 - many ways to transform into $\left[0,1\right]$
- Better idea: learn confidence directly

_03

- $Y_i \overset{i.i.d.}{\sim} \operatorname{Bernoulli}(q)$ for some $q \in [0, 1]$
- How to evaluate a probabilistic forecast \hat{p} ?
- Scoring function: $s: \mathcal{Y} \times [0,1] \to \mathbb{R}, \ s(\mathsf{y},p)$ scores the "fitness"
- Scoring rule: $\mathbb{S}:[0,1]\times[0,1]\to\mathbb{R}$, $\mathbb{S}(q,p):=\mathbb{E}_{\mathsf{Y}\sim\mathrm{Bernoulli}(q)}[s(\mathsf{Y},p)]$
- (Strict) properness (truthfulness): $q = \operatorname{argmin}_p \mathbb{S}(q, p)$
- Entropy: $\mathbb{H}(q) := \min_p \mathbb{S}(q,p)$, under properness, $\mathbb{H}(q) = \mathbb{S}(q,q)$

L03 2/16

- $Y_i \stackrel{i.i.d.}{\sim} \text{Bernoulli}(q)$ for some $q \in [0, 1]$
 - e.g., probability of raining tomorrow
- How to evaluate a probabilistic forecast \hat{p} ?
- Scoring function: $s: \mathcal{Y} \times [0,1] \to \mathbb{R}$, s(y,p) scores the "fitness"
- Scoring rule: $\mathbb{S}:[0,1]\times[0,1]\to\mathbb{R}$, $\mathbb{S}(q,p):=\mathbb{E}_{\mathsf{Y}\sim\mathrm{Bernoulli}(q)}[s(\mathsf{Y},p)]$
- (Strict) properness (truthfulness): $q = \operatorname{argmin}_p \mathbb{S}(q, p)$
- Entropy: $\mathbb{H}(q) := \min_p \mathbb{S}(q,p)$, under properness, $\mathbb{H}(q) = \mathbb{S}(q,q)$

L03 2/16

- $Y_i \stackrel{i.i.d.}{\sim} \text{Bernoulli}(q)$ for some $q \in [0, 1]$
 - e.g., probability of raining tomorrow
- How to evaluate a probabilistic forecast \hat{p} ?
- Scoring function: $s: \mathcal{Y} \times [0,1] \to \mathbb{R}$, s(y,p) scores the "fitness"
- Scoring rule: $\mathbb{S}:[0,1]\times[0,1]\to\mathbb{R}$, $\mathbb{S}(q,p):=\mathbb{E}_{\mathsf{Y}\sim\mathrm{Bernoulli}(q)}[s(\mathsf{Y},p)]$
- (Strict) properness (truthfulness): $q = \operatorname{argmin}_p \mathbb{S}(q, p)$
- Entropy: $\mathbb{H}(q) := \min_p \mathbb{S}(q,p)$, under properness, $\mathbb{H}(q) = \mathbb{S}(q,q)$

- $Y_i \stackrel{i.i.d.}{\sim} \text{Bernoulli}(q) \text{ for some } q \in [0,1]$
 - e.g., probability of raining tomorrow
- How to evaluate a probabilistic forecast \hat{p} ?
- Scoring function: $s: \mathcal{Y} \times [0,1] \to \mathbb{R}$, $s(\mathbf{y},p)$ scores the "fitness"
- Scoring rule: $\mathbb{S}:[0,1]\times[0,1]\to\mathbb{R}$, $\mathbb{S}(q,p):=\mathbb{E}_{\mathsf{Y}\sim\mathrm{Bernoulli}(q)}[s(\mathsf{Y},p)]$
- (Strict) properness (truthfulness): $q = \operatorname{argmin}_p \mathbb{S}(q, p)$
- Entropy: $\mathbb{H}(q) := \min_p \mathbb{S}(q,p)$, under properness, $\mathbb{H}(q) = \mathbb{S}(q,q)$

_03

- $Y_i \stackrel{i.i.d.}{\sim} \text{Bernoulli}(q)$ for some $q \in [0, 1]$
 - e.g., probability of raining tomorrow
- How to evaluate a probabilistic forecast \hat{p} ?
- Scoring function: $s: \mathcal{Y} \times [0,1] \to \mathbb{R}$, s(y,p) scores the "fitness"
- Scoring rule: $\mathbb{S}:[0,1]\times[0,1]\to\mathbb{R}$, $\mathbb{S}(q,p):=\mathbb{E}_{\mathsf{Y}\sim\mathrm{Bernoulli}(q)}[s(\mathsf{Y},p)]$
- (Strict) properness (truthfulness): $q = \operatorname{argmin}_p \mathbb{S}(q, p)$
- Entropy: $\mathbb{H}(q) := \min_p \mathbb{S}(q,p)$, under properness, $\mathbb{H}(q) = \mathbb{S}(q,q)$

- $Y_i \stackrel{i.i.d.}{\sim} \text{Bernoulli}(q)$ for some $q \in [0, 1]$
 - e.g., probability of raining tomorrow
- How to evaluate a probabilistic forecast \hat{p} ?
- Scoring function: $s: \mathcal{Y} \times [0,1] \to \mathbb{R}$, s(y,p) scores the "fitness"
- Scoring rule: $\mathbb{S}:[0,1]\times[0,1]\to\mathbb{R}$, $\mathbb{S}(q,p):=\mathbb{E}_{\mathsf{Y}\sim\mathrm{Bernoulli}(q)}[s(\mathsf{Y},p)]$
- (Strict) properness (truthfulness): $q = \operatorname{argmin}_p \mathbb{S}(q, p)$
- Entropy: $\mathbb{H}(q) := \min_p \mathbb{S}(q,p)$, under properness, $\mathbb{H}(q) = \mathbb{S}(q,q)$

_03

- $Y_i \stackrel{i.i.d.}{\sim} \text{Bernoulli}(q)$ for some $q \in [0, 1]$
 - e.g., probability of raining tomorrow
- How to evaluate a probabilistic forecast \hat{p} ?
- Scoring function: $s: \mathcal{Y} \times [0,1] \to \mathbb{R}$, s(y,p) scores the "fitness"
- Scoring rule: $\mathbb{S}:[0,1]\times[0,1]\to\mathbb{R}$, $\mathbb{S}(q,p):=\mathbb{E}_{\mathsf{Y}\sim\mathrm{Bernoulli}(q)}[s(\mathsf{Y},p)]$
- (Strict) properness (truthfulness): $q = \operatorname{argmin}_p \mathbb{S}(q, p)$
- ullet Entropy: $\mathbb{H}(q) := \min_p \mathbb{S}(q,p)$, under properness, $\mathbb{H}(q) = \mathbb{S}(q,q)$

- $Y_i \stackrel{i.i.d.}{\sim} \text{Bernoulli}(q)$ for some $q \in [0, 1]$
 - e.g., probability of raining tomorrow
- How to evaluate a probabilistic forecast \hat{p} ?
- Scoring function: $s: \mathcal{Y} \times [0,1] \to \mathbb{R}$, s(y,p) scores the "fitness"
- Scoring rule: $\mathbb{S}:[0,1]\times[0,1]\to\mathbb{R}$, $\mathbb{S}(q,p):=\mathbb{E}_{\mathsf{Y}\sim\mathrm{Bernoulli}(q)}[s(\mathsf{Y},p)]$
- (Strict) properness (truthfulness): $q = \operatorname{argmin}_p \mathbb{S}(q, p)$
- ullet Entropy: $\mathbb{H}(q) := \min_p \mathbb{S}(q,p)$, under properness, $\mathbb{H}(q) = \mathbb{S}(q,q)$

$$\begin{split} s(\mathbf{y}, p) &:= -\mathbf{y} \log p - (1 - \mathbf{y}) \log (1 - p) \\ \mathbb{S}(q, p) &:= -q \log p - (1 - q) \log (1 - p) \\ \mathbb{H}(q) &:= -q \log q - (1 - q) \log (1 - q) \end{split}$$

- Indeed a proper scoring rule (could take ∞ value)
- The resulting entropy is exactly Shannon's entropy
- KL divergence: $KL(q, p) := S(q, p) H(q) \ge 0$, with equality iff q = p

$$\begin{split} s(\mathbf{y}, p) &:= -\mathbf{y} \log p - (1 - \mathbf{y}) \log (1 - p) \\ \mathbb{S}(q, p) &:= -q \log p - (1 - q) \log (1 - p) \\ \mathbb{H}(q) &:= -q \log q - (1 - q) \log (1 - q) \end{split}$$

- Indeed a proper scoring rule (could take ∞ value)
- The resulting entropy is exactly Shannon's entropy
- KL divergence: $KL(q, p) := S(q, p) H(q) \ge 0$, with equality iff q = p

I. J. Good. "Rational Decisions". Journal of the Royal Statistical Society. Series B (Methodological), vol. 14, no. 1 (1952), pp. 107-114.

$$\begin{split} s(\mathbf{y}, p) &:= -\mathbf{y} \log p - (1 - \mathbf{y}) \log (1 - p) \\ \mathbb{S}(q, p) &:= -q \log p - (1 - q) \log (1 - p) \\ \mathbb{H}(q) &:= -q \log q - (1 - q) \log (1 - q) \end{split}$$

- Indeed a proper scoring rule (could take ∞ value)
- The resulting entropy is exactly Shannon's entropy
- KL divergence: $\mathsf{KL}(q,p) := \mathbb{S}(q,p) \mathbb{H}(q) \geq 0$, with equality iff q = p

I. J. Good. "Rational Decisions". Journal of the Royal Statistical Society. Series B (Methodological), vol. 14, no. 1 (1952), pp. 107-114.

$$\begin{split} s(\mathbf{y}, p) &:= -\mathbf{y} \log p - (1 - \mathbf{y}) \log (1 - p) \\ \mathbb{S}(q, p) &:= -q \log p - (1 - q) \log (1 - p) \\ \mathbb{H}(q) &:= -q \log q - (1 - q) \log (1 - q) \end{split}$$

- Indeed a proper scoring rule (could take ∞ value)
- The resulting entropy is exactly Shannon's entropy
- KL divergence: $KL(q, p) := S(q, p) H(q) \ge 0$, with equality iff q = p

I. J. Good. "Rational Decisions". Journal of the Royal Statistical Society. Series B (Methodological), vol. 14, no. 1 (1952), pp. 107-114.

$$\begin{split} s(\mathbf{y}, p(\mathbf{x})) &:= -\mathbf{y} \log p(\mathbf{x}) - (1 - \mathbf{y}) \log (1 - p(\mathbf{x})) \\ S(q(\mathbf{x}), p(\mathbf{x})) &:= -q(\mathbf{x}) \log p(\mathbf{x}) - (1 - q(\mathbf{x})) \log (1 - p(\mathbf{x})) \\ \mathbb{S}(q, p) &:= \mathbb{E}[-q(\mathsf{X}) \log p(\mathsf{X}) - (1 - q(\mathsf{X})) \log (1 - p(\mathsf{X}))] \end{split}$$

- $Y|X = x \sim Bernoulli(q(x))$
- Observe that $S(q(\mathbf{x}), p(\mathbf{x})) = \mathbb{E}_{\mathsf{Y}|\mathsf{X}=\mathbf{x}} s(\mathsf{Y}, p(\mathbf{x}))$, $\mathbb{S}(q, p) := \mathbb{E}[s(\mathsf{Y}, p(\mathsf{X}))]$
- Parameterizing the probabilistic forecast, e.g. $p(\mathbf{x}; \mathbf{w}) = \operatorname{sgm}(\langle \mathbf{x}, \mathbf{w} \rangle)$
- Minimum score estimation:

 $\min_{\mathbf{w}} \ \hat{\mathbb{E}}[s(\mathbf{Y}, p(\mathbf{X}; \mathbf{w}))]$

$$\begin{split} s(\mathsf{y}, p(\mathbf{x})) &:= -\mathsf{y} \log p(\mathbf{x}) - (1 - \mathsf{y}) \log (1 - p(\mathbf{x})) \\ S(q(\mathbf{x}), p(\mathbf{x})) &:= -q(\mathbf{x}) \log p(\mathbf{x}) - (1 - q(\mathbf{x})) \log (1 - p(\mathbf{x})) \\ \mathbb{S}(q, p) &:= \mathbb{E}[-q(\mathsf{X}) \log p(\mathsf{X}) - (1 - q(\mathsf{X})) \log (1 - p(\mathsf{X}))] \end{split}$$

- $Y|X = x \sim Bernoulli(q(x))$
- Observe that $S(q(\mathbf{x}),p(\mathbf{x}))=\mathbb{E}_{\mathsf{Y}|\mathsf{X}=\mathbf{x}}s(\mathsf{Y},p(\mathbf{x}))$, $\mathbb{S}(q,p):=\mathbb{E}[s(\mathsf{Y},p(\mathsf{X}))]$
- Parameterizing the probabilistic forecast, e.g. $p(\mathbf{x}; \mathbf{w}) = \operatorname{sgm}(\langle \mathbf{x}, \mathbf{w} \rangle)$
- Minimum score estimation

 $\min_{\mathbf{w}} \ \hat{\mathbb{E}}[s(\mathbf{Y}, p(\mathbf{X}; \mathbf{w}))]$

$$\begin{split} s(\mathbf{y}, p(\mathbf{x})) &:= -\mathbf{y} \log p(\mathbf{x}) - (1 - \mathbf{y}) \log (1 - p(\mathbf{x})) \\ S(q(\mathbf{x}), p(\mathbf{x})) &:= -q(\mathbf{x}) \log p(\mathbf{x}) - (1 - q(\mathbf{x})) \log (1 - p(\mathbf{x})) \\ \mathbb{S}(q, p) &:= \mathbb{E}[-q(\mathsf{X}) \log p(\mathsf{X}) - (1 - q(\mathsf{X})) \log (1 - p(\mathsf{X}))] \end{split}$$

- $Y|X = x \sim Bernoulli(q(x))$
- Observe that $S(q(\mathbf{x}), p(\mathbf{x})) = \mathbb{E}_{\mathsf{Y}|\mathsf{X}=\mathbf{x}} s(\mathsf{Y}, p(\mathbf{x}))$, $\mathbb{S}(q, p) := \mathbb{E}[s(\mathsf{Y}, p(\mathsf{X}))]$
- Parameterizing the probabilistic forecast, e.g. $p(\mathbf{x}; \mathbf{w}) = \operatorname{sgm}(\langle \mathbf{x}, \mathbf{w} \rangle)$
- Minimum score estimation

 $\min_{\mathbf{w}} \ \hat{\mathbb{E}}[s(\mathsf{Y}, p(\mathsf{X}; \mathbf{w}))]$

$$\begin{split} s(\mathbf{y}, p(\mathbf{x})) &:= -\mathbf{y} \log p(\mathbf{x}) - (1 - \mathbf{y}) \log (1 - p(\mathbf{x})) \\ S(q(\mathbf{x}), p(\mathbf{x})) &:= -q(\mathbf{x}) \log p(\mathbf{x}) - (1 - q(\mathbf{x})) \log (1 - p(\mathbf{x})) \\ \mathbb{S}(q, p) &:= \mathbb{E}[-q(\mathsf{X}) \log p(\mathsf{X}) - (1 - q(\mathsf{X})) \log (1 - p(\mathsf{X}))] \end{split}$$

- $Y|X = x \sim Bernoulli(q(x))$
- Observe that $S(q(\mathbf{x}), p(\mathbf{x})) = \mathbb{E}_{\mathsf{Y}|\mathsf{X}=\mathbf{x}} s(\mathsf{Y}, p(\mathbf{x}))$, $\mathbb{S}(q, p) := \mathbb{E}[s(\mathsf{Y}, p(\mathsf{X}))]$
- ullet Parameterizing the probabilistic forecast, e.g. $p(\mathbf{x}; \mathbf{w}) = \operatorname{sgm}(\langle \mathbf{x}, \mathbf{w} \rangle)$
- Minimum score estimation

 $\min_{\mathbf{w}} \ \hat{\mathbb{E}}[s(\mathbf{Y}, p(\mathbf{X}; \mathbf{w}))]$

$$\begin{split} s(\mathbf{y}, p(\mathbf{x})) &:= -\mathbf{y} \log p(\mathbf{x}) - (1 - \mathbf{y}) \log (1 - p(\mathbf{x})) \\ S(q(\mathbf{x}), p(\mathbf{x})) &:= -q(\mathbf{x}) \log p(\mathbf{x}) - (1 - q(\mathbf{x})) \log (1 - p(\mathbf{x})) \\ \mathbb{S}(q, p) &:= \mathbb{E}[-q(\mathsf{X}) \log p(\mathsf{X}) - (1 - q(\mathsf{X})) \log (1 - p(\mathsf{X}))] \end{split}$$

- $Y|X = x \sim Bernoulli(q(x))$
- Observe that $S(q(\mathbf{x}), p(\mathbf{x})) = \mathbb{E}_{\mathsf{Y}|\mathsf{X}=\mathbf{x}} s(\mathsf{Y}, p(\mathbf{x}))$, $\mathbb{S}(q, p) := \mathbb{E}[s(\mathsf{Y}, p(\mathsf{X}))]$
- Parameterizing the probabilistic forecast, e.g. $p(\mathbf{x}; \mathbf{w}) = \operatorname{sgm}(\langle \mathbf{x}, \mathbf{w} \rangle)$
- Minimum score estimation:

$$\min_{\mathbf{w}} \ \hat{\mathbb{E}}[s(\mathbf{Y}, p(\mathbf{X}; \mathbf{w}))]$$

- Model postulates $Y|X = x \sim Bernoulli(p(x; w))$, i.e. Pr(Y = 1|X = x) = p(x; w)
- Given $(\mathbf{X}_i, \mathbf{y}_i), i = 1, \dots, n$, assume independence

$$Pr(\mathsf{Y}_1 = \mathsf{y}_1, \dots, \mathsf{Y}_n = \mathsf{y}_n | \mathsf{X}_1 = \mathbf{x}_1, \dots, \mathsf{X}_n = \mathbf{x}_n) = \prod_{i=1}^n Pr(\mathsf{Y}_i = \mathsf{y}_i | \mathsf{X}_i = \mathbf{x}_i)$$
$$= \prod_{i=1}^n [p(\mathbf{x}_i; \mathbf{w})]^{\mathsf{y}_i} [1 - p(\mathbf{x}_i; \mathbf{w})]^{1-\mathsf{y}_i}$$

• Maximizing the conditional log-likelihood:

$$\max_{\mathbf{w}} \prod_{i=1}^{n} [p(\mathbf{x}_i; \mathbf{w})]^{\mathbf{y}_i} [1 - p(\mathbf{x}_i; \mathbf{w})]^{1-1}$$

- Model postulates $Y|X = x \sim \text{Bernoulli}(p(x; w))$, i.e. $\Pr(Y = 1|X = x) = p(x; w)$
- Given $(\mathbf{X}_i, \mathbf{y}_i), i = 1, \dots, n$, assume independence

$$Pr(Y_1 = y_1, \dots, Y_n = y_n | X_1 = \mathbf{x}_1, \dots, X_n = \mathbf{x}_n) = \prod_{i=1}^n Pr(Y_i = y_i | X_i = \mathbf{x}_i)$$

$$= \prod_{i=1}^n [p(\mathbf{x}_i; \mathbf{w})]^{y_i} [1 - p(\mathbf{x}_i; \mathbf{w})]^{1-y_i}$$

Maximizing the conditional log-likelihood

$$\max_{\mathbf{w}} \prod_{i=1}^{n} [p(\mathbf{x}_i; \mathbf{w})]^{\mathbf{y}_i} [1 - p(\mathbf{x}_i; \mathbf{w})]^{1-\mathbf{y}_i}$$

L03 5/1

- Model postulates $Y|X = x \sim \text{Bernoulli}(p(x; w))$, i.e. $\Pr(Y = 1|X = x) = p(x; w)$
- Given $(\mathbf{X}_i, \mathbf{y}_i)$, $i = 1, \dots, n$, assume independence:

$$Pr(\mathsf{Y}_1 = \mathsf{y}_1, \dots, \mathsf{Y}_n = \mathsf{y}_n | \mathsf{X}_1 = \mathbf{x}_1, \dots, \mathsf{X}_n = \mathbf{x}_n) = \prod_{i=1}^n Pr(\mathsf{Y}_i = \mathsf{y}_i | \mathsf{X}_i = \mathbf{x}_i)$$

$$= \prod_{i=1}^n [p(\mathbf{x}_i; \mathbf{w})]^{\mathsf{y}_i} [1 - p(\mathbf{x}_i; \mathbf{w})]^{1-\mathsf{y}_i}$$

Maximizing the conditional log-likelihood

$$\max_{\mathbf{w}} \prod_{i=1}^{n} [p(\mathbf{x}_i; \mathbf{w})]^{\mathbf{y}_i} [1 - p(\mathbf{x}_i; \mathbf{w})]^{1-\mathbf{y}}$$

- Model postulates $Y|X = x \sim \text{Bernoulli}(p(x; w))$, i.e. $\Pr(Y = 1|X = x) = p(x; w)$
- Given $(\mathbf{X}_i, \mathbf{y}_i)$, $i = 1, \dots, n$, assume independence:

$$Pr(\mathsf{Y}_1 = \mathsf{y}_1, \dots, \mathsf{Y}_n = \mathsf{y}_n | \mathsf{X}_1 = \mathbf{x}_1, \dots, \mathsf{X}_n = \mathbf{x}_n) = \prod_{i=1}^n Pr(\mathsf{Y}_i = \mathsf{y}_i | \mathsf{X}_i = \mathbf{x}_i)$$
$$= \prod_{i=1}^n [p(\mathbf{x}_i; \mathbf{w})]^{\mathsf{y}_i} [1 - p(\mathbf{x}_i; \mathbf{w})]^{1-\mathsf{y}_i}$$

Maximizing the conditional log-likelihood:

$$\max_{\mathbf{w}} \prod_{i=1}^{n} [p(\mathbf{x}_i; \mathbf{w})]^{\mathsf{y}_i} [1 - p(\mathbf{x}_i; \mathbf{w})]^{1 - \mathsf{y}_i}$$

L03 5/16

$$\min_{\mathbf{w}} \sum_{i=1}^{n} -\mathsf{y}_i \log[p(\mathbf{x}_i; \mathbf{w})] - (1 - \mathsf{y}_i) \log[1 - p(\mathbf{x}_i; \mathbf{w})]$$

ullet What is the solution if $p(\mathbf{x}; \mathbf{w}) = p(\mathbf{w})$:

ullet What is the solution if $p(\mathbf{x}; \mathbf{w}) = p(\mathbf{x})$?

$$\min_{\mathbf{w}} \sum_{i=1}^{n} -\mathsf{y}_{i} \log[p(\mathbf{x}_{i}; \mathbf{w})] - (1 - \mathsf{y}_{i}) \log[1 - p(\mathbf{x}_{i}; \mathbf{w})]$$

- What is the solution if $p(\mathbf{x}; \mathbf{w}) = p(\mathbf{w})$?
 - i.e. use the same confidence p for every data point
- What is the solution if $p(\mathbf{x}; \mathbf{w}) = p(\mathbf{x})$?

L03 6/16

$$\min_{\mathbf{w}} \sum_{i=1}^{n} -\mathsf{y}_{i} \log[p(\mathbf{x}_{i}; \mathbf{w})] - (1 - \mathsf{y}_{i}) \log[1 - p(\mathbf{x}_{i}; \mathbf{w})]$$

- What is the solution if $p(\mathbf{x}; \mathbf{w}) = p(\mathbf{w})$?
 - i.e. use the same confidence p for every data point
- What is the solution if $p(\mathbf{x}; \mathbf{w}) = p(\mathbf{x})$?

$$\min_{\mathbf{w}} \sum_{i=1}^{n} -\mathsf{y}_i \log[p(\mathbf{x}_i; \mathbf{w})] - (1 - \mathsf{y}_i) \log[1 - p(\mathbf{x}_i; \mathbf{w})]$$

- What is the solution if $p(\mathbf{x}; \mathbf{w}) = p(\mathbf{w})$?
 - i.e. use the same confidence p for every data point
- What is the solution if $p(\mathbf{x}; \mathbf{w}) = p(\mathbf{x})$?
 - i.e. every data point uses its own confidence $p(\mathbf{x})$

L03 6/16

$$\min_{\mathbf{w}} \sum_{i=1}^{n} -\mathsf{y}_i \log[p(\mathbf{x}_i; \mathbf{w})] - (1 - \mathsf{y}_i) \log[1 - p(\mathbf{x}_i; \mathbf{w})]$$

- What is the solution if $p(\mathbf{x}; \mathbf{w}) = p(\mathbf{w})$?
 - i.e. use the same confidence p for every data point
- What is the solution if $p(\mathbf{x}; \mathbf{w}) = p(\mathbf{x})$?
 - i.e. every data point uses its own confidence $p(\mathbf{x})$

L03 6/16

The Logit Transform

• $p(\mathbf{x}; \mathbf{w}) : \mathcal{X} \to [0, 1]$, how to parameterize using \mathbf{w}

$$\log n(\mathbf{x}; \mathbf{w}) = (\mathbf{x}; \mathbf{w})^{\frac{1}{2}}$$

- Logit transform: $\log \frac{p(\mathbf{x}; \mathbf{w})}{1 p(\mathbf{x}; \mathbf{w})} = \langle \mathbf{x}, \mathbf{w} \rangle$
 - i.e., bile vada iato ia ali alifile idilictio
- ullet Equivalently, the sigmoid transformation: $p(\mathbf{x};\mathbf{w}) = rac{1}{1+\exp(-\langle \mathbf{x},\mathbf{w}
 angle})$

L03 7/16

• $p(\mathbf{x}; \mathbf{w}) : \mathcal{X} \to [0, 1]$, how to parameterize using **w**?

$$- p(\mathbf{x}; \mathbf{w}) = \langle \mathbf{x}, \mathbf{w} \rangle?$$
$$- \log p(\mathbf{x}; \mathbf{w}) = \langle \mathbf{x}, \mathbf{w} \rangle?$$

• Logit transform: $\log \frac{p(\mathbf{x}; \mathbf{w})}{1 - p(\mathbf{x}; \mathbf{w})} = \langle \mathbf{x}, \mathbf{w} \rangle$

• Equivalently, the sigmoid transformation: $p(\mathbf{x};\mathbf{w}) = \frac{1}{1+\exp(-\langle \mathbf{x},\mathbf{w} \rangle)}$

• $p(\mathbf{x}; \mathbf{w}) : \mathcal{X} \to [0, 1]$, how to parameterize using **w**?

-
$$p(\mathbf{x}; \mathbf{w}) = \langle \mathbf{x}, \mathbf{w} \rangle$$
?
- $\log p(\mathbf{x}; \mathbf{w}) = \langle \mathbf{x}, \mathbf{w} \rangle$?

• Logit transform: $\log rac{p(\mathbf{x}; \mathbf{w})}{1 - p(\mathbf{x}; \mathbf{w})} = \langle \mathbf{x}, \mathbf{w}
angle$

ullet Equivalently, the sigmoid transformation: $p(\mathbf{x};\mathbf{w}) = rac{1}{1+\exp(-\langle \mathbf{x},\mathbf{w} \rangle)}$

• $p(\mathbf{x}; \mathbf{w}) : \mathcal{X} \to [0, 1]$, how to parameterize using \mathbf{w} ?

$$- p(\mathbf{x}; \mathbf{w}) = \langle \mathbf{x}, \mathbf{w} \rangle?$$

$$- \log p(\mathbf{x}; \mathbf{w}) = \langle \mathbf{x}, \mathbf{w} \rangle?$$

• Logit transform: $\log \frac{p(\mathbf{x}; \mathbf{w})}{1 - p(\mathbf{x}; \mathbf{w})} = \langle \mathbf{x}, \mathbf{w} \rangle$

• Equivalently, the sigmoid transformation: $p(\mathbf{x};\mathbf{w}) = rac{1}{1+\exp(-\langle \mathbf{x},\mathbf{w} \rangle)}$

• $p(\mathbf{x}; \mathbf{w}) : \mathcal{X} \to [0, 1]$, how to parameterize using **w**?

$$- p(\mathbf{x}; \mathbf{w}) = \langle \mathbf{x}, \mathbf{w} \rangle?$$

$$- \log p(\mathbf{x}; \mathbf{w}) = \langle \mathbf{x}, \mathbf{w} \rangle?$$

- Logit transform: $\log \frac{p(\mathbf{x}; \mathbf{w})}{1 p(\mathbf{x}; \mathbf{w})} = \langle \mathbf{x}, \mathbf{w} \rangle$
 - i.e., the odds ratio is an affine function
- ullet Equivalently, the sigmoid transformation: $p(\mathbf{x};\mathbf{w}) = rac{1}{1+\exp(-\langle \mathbf{x},\mathbf{w}
 angle})$

• $p(\mathbf{x}; \mathbf{w}) : \mathcal{X} \to [0, 1]$, how to parameterize using **w**?

$$- p(\mathbf{x}; \mathbf{w}) = \langle \mathbf{x}, \mathbf{w} \rangle?$$

$$- \log p(\mathbf{x}; \mathbf{w}) = \langle \mathbf{x}, \mathbf{w} \rangle?$$

- Logit transform: $\log \frac{p(\mathbf{x}; \mathbf{w})}{1 p(\mathbf{x}; \mathbf{w})} = \langle \mathbf{x}, \mathbf{w} \rangle$
 - i.e., the odds ratio is an affine function
- Equivalently, the sigmoid transformation: $p(\mathbf{x};\mathbf{w}) = rac{1}{1+\exp(-\langle \mathbf{x},\mathbf{w}
 angle})$

• $p(\mathbf{x}; \mathbf{w}) : \mathcal{X} \to [0, 1]$, how to parameterize using **w**?

$$- p(\mathbf{x}; \mathbf{w}) = \langle \mathbf{x}, \mathbf{w} \rangle?$$
$$- \log p(\mathbf{x}; \mathbf{w}) = \langle \mathbf{x}, \mathbf{w} \rangle?$$

- Logit transform: $\log \frac{p(\mathbf{x}; \mathbf{w})}{1 p(\mathbf{x}; \mathbf{w})} = \langle \mathbf{x}, \mathbf{w} \rangle$
 - i.e., the odds ratio is an affine function
- Equivalently, the sigmoid transformation: $p(\mathbf{x};\mathbf{w}) = rac{1}{1+\exp(-\langle \mathbf{x},\mathbf{w} \rangle)}$

Logistic Regression

$$\min_{\mathbf{w}} \sum_{i=1}^{n} -\mathsf{y}_i \log[p(\mathbf{x}_i; \mathbf{w})] - (1 - \mathsf{y}_i) \log[1 - p(\mathbf{x}_i; \mathbf{w})]$$

ullet Plug in the parameterization $p(\mathbf{x}; \mathbf{w}) = rac{1}{1 + \exp(-\langle \mathbf{x}, \mathbf{w}
angle}$

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \left[\log[1 + \exp(-\langle \mathbf{x}_i, \mathbf{w} \rangle)] + (1 - \mathsf{y}_i) \langle \mathbf{x}_i, \mathbf{w} \rangle \right]$$

ullet Note the label encoding $\mathsf{y}_i \in \{0,1\}$; if instead, $\mathsf{y}_i \in \{\pm 1\}$, then

$$\min_{\mathbf{w}} \sum_{i=1}^{\infty} \left[\log[1 + \exp(-\mathsf{y}_i \langle \mathbf{x}_i, \mathbf{w} \rangle)] \right]$$
logistic loss

Logistic Regression

$$\min_{\mathbf{w}} \sum_{i=1}^{m} -\mathsf{y}_i \log[p(\mathbf{x}_i; \mathbf{w})] - (1 - \mathsf{y}_i) \log[1 - p(\mathbf{x}_i; \mathbf{w})]$$

• Plug in the parameterization $p(\mathbf{x}; \mathbf{w}) = \frac{1}{1 + \exp(-\langle \mathbf{x}, \mathbf{w} \rangle)}$

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \left[\log[1 + \exp(-\langle \mathbf{x}_i, \mathbf{w} \rangle)] + (1 - \mathsf{y}_i) \langle \mathbf{x}_i, \mathbf{w} \rangle \right]$$

ullet Note the label encoding $\mathsf{y}_i \in \{0,1\}$; if instead, $\mathsf{y}_i \in \{\pm 1\}$, then

$$\min_{\mathbf{w}} \sum_{i=1}^{\infty} \underbrace{\log[1 + \exp(-y_i \langle \mathbf{x}_i, \mathbf{w} \rangle)]}_{\text{logistic loss}}$$

Logistic Regression

$$\min_{\mathbf{w}} \sum_{i=1}^{n} -\mathsf{y}_i \log[p(\mathbf{x}_i; \mathbf{w})] - (1 - \mathsf{y}_i) \log[1 - p(\mathbf{x}_i; \mathbf{w})]$$

• Plug in the parameterization $p(\mathbf{x}; \mathbf{w}) = \frac{1}{1 + \exp(-\langle \mathbf{x}, \mathbf{w} \rangle)}$

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \left[\log[1 + \exp(-\langle \mathbf{x}_i, \mathbf{w} \rangle)] + (1 - \mathsf{y}_i) \langle \mathbf{x}_i, \mathbf{w} \rangle \right]$$

• Note the label encoding $y_i \in \{0, 1\}$; if instead, $y_i \in \{\pm 1\}$, then

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \underbrace{\left[\log[1 + \exp(-\mathsf{y}_{i} \langle \mathbf{x}_{i}, \mathbf{w} \rangle)]\right]}_{\text{logistic loss}}$$

9/10

D. R. Cox. "The Regression Analysis of Binary Sequences". Journal of the Royal Statistical Society. Series B (Methodological), vol. 20, no. 2 (1958), pp. 215–242.

$$p(\mathbf{x}; \mathbf{w}) = \operatorname{sgm}(\langle \mathbf{x}, \mathbf{w} \rangle) = \frac{1}{1 + \exp(-\langle \mathbf{x}, \mathbf{w} \rangle)}$$

- ullet $\hat{f y}=1$ iff $p({f x};{f w})=\Pr({f Y}=1|{f X}={f x})>rac{1}{2}$ iff $\langle {f x},{f w}
 angle>0$
- Decision boundary remains to be $H := \{\mathbf{x} : \langle \mathbf{x}, \mathbf{w} \rangle = 0\}$
- Can predict $\hat{\mathbf{y}} = \operatorname{sign}(\langle \mathbf{x}, \mathbf{w} \rangle)$ as before, but now with confidence $p(\mathbf{x}; \mathbf{w})$

$$p(\mathbf{x}; \mathbf{w}) = \operatorname{sgm}(\langle \mathbf{x}, \mathbf{w} \rangle) = \frac{1}{1 + \exp(-\langle \mathbf{x}, \mathbf{w} \rangle)}$$

•
$$\hat{y} = 1$$
 iff $p(\mathbf{x}; \mathbf{w}) = \Pr(Y = 1 | X = \mathbf{x}) > \frac{1}{2}$ iff $\langle \mathbf{x}, \mathbf{w} \rangle > 0$

- Decision boundary remains to be $H := \{\mathbf{x} : \langle \mathbf{x}, \mathbf{w} \rangle = 0\}$
- Can predict $\hat{\mathbf{y}} = \text{sign}(\langle \mathbf{x}, \mathbf{w} \rangle)$ as before, but now with confidence $p(\mathbf{x}; \mathbf{w})$

$$p(\mathbf{x}; \mathbf{w}) = \mathtt{sgm}(\langle \mathbf{x}, \mathbf{w} \rangle) = \frac{1}{1 + \exp(-\langle \mathbf{x}, \mathbf{w} \rangle)}$$

- $\hat{y} = 1$ iff $p(\mathbf{x}; \mathbf{w}) = \Pr(Y = 1 | X = \mathbf{x}) > \frac{1}{2}$ iff $\langle \mathbf{x}, \mathbf{w} \rangle > 0$
- ullet Decision boundary remains to be $H:=\{{f x}:\langle {f x},{f w}
 angle=0\}$
- Can predict $\hat{y} = \text{sign}(\langle x, w \rangle)$ as before, but now with confidence p(x; w)

$$p(\mathbf{x}; \mathbf{w}) = \mathtt{sgm}(\langle \mathbf{x}, \mathbf{w} \rangle) = \frac{1}{1 + \exp(-\langle \mathbf{x}, \mathbf{w} \rangle)}$$

- $\hat{y} = 1$ iff $p(\mathbf{x}; \mathbf{w}) = \Pr(Y = 1 | X = \mathbf{x}) > \frac{1}{2}$ iff $\langle \mathbf{x}, \mathbf{w} \rangle > 0$
- Decision boundary remains to be $H := \{ \mathbf{x} : \langle \mathbf{x}, \mathbf{w} \rangle = 0 \}$

• Can predict $\hat{y} = sign(\langle x, w \rangle)$ as before, but now with confidence p(x; w)

• Logistic regression estimates the posterior probability $\eta(\mathbf{x}) := \Pr(\mathsf{Y} = 1 | \mathsf{X} = \mathbf{x})$ under the linear odds ratio assumption

- ullet Classification itself only requires comparing $\eta(\mathbf{x})$ with
- Possible to do the comparison without estimating $\eta(\mathbf{x})$ explicitly

sufficient but not necessary, be lazy

- Logistic regression estimates the posterior probability $\eta(\mathbf{x}) := \Pr(\mathsf{Y} = 1 | \mathsf{X} = \mathbf{x})$ under the linear odds ratio assumption
 - confidence is meaningless if the assumption is way off
- ullet Classification itself only requires comparing $\eta(\mathbf{x})$ with
- Possible to do the comparison without estimating $\eta(\mathbf{x})$ explicitly

be lazy

L03 11/10

- Logistic regression estimates the posterior probability $\eta(\mathbf{x}) := \Pr(\mathsf{Y} = 1 | \mathsf{X} = \mathbf{x})$ under the linear odds ratio assumption
 - confidence is meaningless if the assumption is way off
- ullet Classification itself only requires comparing $\eta(\mathbf{x})$ with $rac{1}{2}$
- Possible to do the comparison without estimating $\eta(\mathbf{x})$ explicitly

be lazy

L03 11/16

- Logistic regression estimates the posterior probability $\eta(\mathbf{x}) := \Pr(\mathbf{Y} = 1 | \mathbf{X} = \mathbf{x})$ under the linear odds ratio assumption
 - confidence is meaningless if the assumption is way off
- ullet Classification itself only requires comparing $\eta(\mathbf{x})$ with $\frac{1}{2}$
- Possible to do the comparison without estimating $\eta(\mathbf{x})$ explicitly

be lazy

- Logistic regression estimates the posterior probability $\eta(\mathbf{x}) := \Pr(\mathbf{Y} = 1 | \mathbf{X} = \mathbf{x})$ under the linear odds ratio assumption
 - confidence is meaningless if the assumption is way off
- ullet Classification itself only requires comparing $\eta(\mathbf{x})$ with $rac{1}{2}$
- Possible to do the comparison without estimating $\eta(\mathbf{x})$ explicitly!
 - sufficient but not necessary, be lazy... SVM later

- Logistic regression estimates the posterior probability $\eta(\mathbf{x}) := \Pr(\mathbf{Y} = 1 | \mathbf{X} = \mathbf{x})$ under the linear odds ratio assumption
 - confidence is meaningless if the assumption is way off
- ullet Classification itself only requires comparing $\eta(\mathbf{x})$ with $rac{1}{2}$
- Possible to do the comparison without estimating $\eta(\mathbf{x})$ explicitly!
 - sufficient but not necessary, be lazy... SVM later

L03 11/1₁

$$p(\mathbf{x}; \mathbf{w}) = F(\langle \mathbf{x}, \mathbf{w} \rangle)$$

- ullet $F:\mathbb{R}
 ightarrow [0,1]$, increasing: any cumulative distribution function (cdf) would do
- Logistic distribution: $F(x; \mu, s) = \frac{1}{1 + \exp(-\frac{x \mu}{2})}$

$$p(\mathbf{x}; \mathbf{w}) = F(\langle \mathbf{x}, \mathbf{w} \rangle)$$

ullet $F:\mathbb{R}
ightarrow [0,1]$, increasing: any cumulative distribution function (cdf) would do

• Logistic distribution: $F(x; \mu, s) = \frac{1}{1 + \exp(-\frac{x - \mu}{s})}$

L03 12/16

$$p(\mathbf{x}; \mathbf{w}) = F(\langle \mathbf{x}, \mathbf{w} \rangle)$$

- ullet $F:\mathbb{R}
 ightarrow [0,1]$, increasing: any cumulative distribution function (cdf) would do
- Logistic distribution: $F(x; \mu, s) = \frac{1}{1 + \exp(-\frac{x \mu}{s})}$
 - with mean μ and variance $s^2\pi^2/3$
 - sigmoid is exactly when $\mu=0$ and s=1

$$p(\mathbf{x}; \mathbf{w}) = F(\langle \mathbf{x}, \mathbf{w} \rangle)$$

- ullet $F:\mathbb{R}
 ightarrow [0,1]$, increasing: any cumulative distribution function (cdf) would do
- Logistic distribution: $F(x; \mu, s) = \frac{1}{1 + \exp(-\frac{x \mu}{s})}$
 - with mean μ and variance $s^2\pi^2/3$
 - sigmoid is exactly when $\mu = 0$ and s = 1

$$p(\mathbf{x}; \mathbf{w}) = F(\langle \mathbf{x}, \mathbf{w} \rangle)$$

- ullet $F:\mathbb{R}
 ightarrow [0,1]$, increasing: any cumulative distribution function (cdf) would do
- Logistic distribution: $F(x; \mu, s) = \frac{1}{1 + \exp(-\frac{x \mu}{s})}$
 - with mean μ and variance $s^2\pi^2/3$
 - sigmoid is exactly when $\mu=0$ and s=1

L03 13/16

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \left[\log[1 + \exp(-\mathsf{y}_{i} \langle \mathsf{x}_{i}, \mathsf{w} \rangle)] \right]$$

• Newton's algorithm

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \cdot [\nabla^2 f(\mathbf{w})]^{-1} \cdot \nabla f(\mathbf{w})$$

- The gradient $\nabla f(\mathbf{w}) = \mathbf{X}(\hat{\mathbf{p}} \frac{\mathbf{y}+1}{2})$: changing target
- ullet The Hessian $abla^2 f(\mathbf{w}) = \sum_i \hat{p}_i (1-\hat{p}_i) \mathbf{x}_i \mathbf{x}_i^ op$: weighted by confidence
- ullet The confidence $\hat{p}_i = extsf{sgm}(\langle \mathbf{x}_i, \mathbf{w}
 angle)$.

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \left[\log[1 + \exp(-\mathsf{y}_{i} \langle \mathsf{x}_{i}, \mathsf{w} \rangle)] \right]$$

• Newton's algorithm:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \cdot [\nabla^2 f(\mathbf{w})]^{-1} \cdot \nabla f(\mathbf{w})$$

- The gradient $\nabla f(\mathbf{w}) = \mathbf{X}(\hat{\mathbf{p}} \frac{\mathbf{y}+1}{2})$: changing target
- The Hessian $\nabla^2 f(\mathbf{w}) = \sum_i \hat{p}_i (1 \hat{p}_i) \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}}$: weighted by confidence
- The confidence $\hat{p}_i = \operatorname{sgm}(\langle \mathbf{x}_i, \mathbf{w} \rangle)$

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \left[\log[1 + \exp(-\mathsf{y}_{i} \langle \mathsf{x}_{i}, \mathsf{w} \rangle)] \right]$$

• Newton's algorithm:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \cdot [\nabla^2 f(\mathbf{w})]^{-1} \cdot \nabla f(\mathbf{w})$$

- The gradient $\nabla f(\mathbf{w}) = \mathbf{X}(\hat{\mathbf{p}} \frac{\mathbf{y}+1}{2})$: changing target
- The Hessian $abla^2 f(\mathbf{w}) = \sum_i \hat{p}_i (1 \hat{p}_i) \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}}$: weighted by confidence
- The confidence $\hat{p}_i = \mathtt{sgm}(\langle \mathsf{x}_i, \mathsf{w} \rangle)$

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \left[\log[1 + \exp(-\mathsf{y}_{i} \langle \mathsf{x}_{i}, \mathsf{w} \rangle)] \right]$$

• Newton's algorithm:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \cdot [\nabla^2 f(\mathbf{w})]^{-1} \cdot \nabla f(\mathbf{w})$$

- The gradient $\nabla f(\mathbf{w}) = \mathbf{X}(\hat{\mathbf{p}} \frac{\mathbf{y}+1}{2})$: changing target
- The Hessian $\nabla^2 f(\mathbf{w}) = \sum_i \hat{p}_i (1 \hat{p}_i) \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}}$: weighted by confidence
- ullet The confidence $\hat{p}_i = extsf{sgm}(\langle \mathbf{x}_i, \mathbf{w}
 angle)$

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \left[\log[1 + \exp(-\mathsf{y}_{i} \langle \mathsf{x}_{i}, \mathsf{w} \rangle)] \right]$$

• Newton's algorithm:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \cdot [\nabla^2 f(\mathbf{w})]^{-1} \cdot \nabla f(\mathbf{w})$$

- The gradient $\nabla f(\mathbf{w}) = \mathbf{X}(\hat{\mathbf{p}} \frac{\mathbf{y}+1}{2})$: changing target
- The Hessian $\nabla^2 f(\mathbf{w}) = \sum_i \hat{p}_i (1 \hat{p}_i) \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}}$: weighted by confidence
- The confidence $\hat{p}_i = \operatorname{sgm}(\langle \mathbf{x}_i, \mathbf{w} \rangle)$

Linear Regression vs. Logistic Regression

- least-squares: $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- prediction: $\hat{y}_i = \langle \mathbf{x}_i, \mathbf{w} \rangle$
- objective: $\|\mathbf{y} \hat{\mathbf{y}}\|_2^2$
- grad: $\mathbf{w} \leftarrow \mathbf{w} \eta \mathbf{X}(\hat{\mathbf{y}} \mathbf{y})$
- Newton: $\mathbf{w} \leftarrow \mathbf{w} \eta (\mathbf{X} \mathbf{X}^{\top})^{-1} \mathbf{X} (\hat{\mathbf{y}} \mathbf{y})$

- cross-entropy: $\sum_{i=1}^n -\frac{1+y_i}{2}\log \hat{p}_i \frac{1-y_i}{2}\log (1-\hat{p}_i)$
- prediction: $\hat{y}_i = \text{sign}(\langle \mathbf{x}_i, \mathbf{w} \rangle), \ \hat{p}_i = \text{sgm}(\langle \mathbf{x}_i, \mathbf{w} \rangle)$
- objective: $\mathsf{KL}(\frac{1+\mathbf{y}}{2}\|\hat{\mathbf{p}})$
- grad: $\mathbf{w} \leftarrow \mathbf{w} \eta \mathbf{X} (\hat{\mathbf{p}} \frac{1+\mathbf{y}}{2})$
- Newton: $\mathbf{w} \leftarrow \mathbf{w} \eta (\mathbf{X} \hat{S} \mathbf{X}^{\top})^{-1} \mathbf{X} (\hat{\mathbf{p}} \frac{1+\mathbf{y}}{2})$

- Diagonal weight matrix $\hat{S} = \operatorname{diag} (\hat{\mathbf{p}} \odot (1 \hat{\mathbf{p}}))$
- Logistic regression = iteratively weighted linear regression

Linear Regression vs. Logistic Regression

- least-squares: $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- prediction: $\hat{y}_i = \langle \mathbf{x}_i, \mathbf{w} \rangle$
- objective: $\|\mathbf{y} \hat{\mathbf{y}}\|_2^2$
- grad: $\mathbf{w} \leftarrow \mathbf{w} \eta \mathbf{X}(\hat{\mathbf{y}} \mathbf{y})$
- Newton: $\mathbf{w} \leftarrow \mathbf{w} \eta (\mathbf{X} \mathbf{X}^{\top})^{-1} \mathbf{X} (\hat{\mathbf{y}} \mathbf{y})$

- cross-entropy: $\sum_{i=1}^n -\frac{1+\mathsf{y}_i}{2}\log\hat{p}_i \frac{1-\mathsf{y}_i}{2}\log(1-\hat{p}_i)$
- prediction: $\hat{y}_i = \text{sign}(\langle \mathbf{x}_i, \mathbf{w} \rangle), \ \hat{p}_i = \text{sgm}(\langle \mathbf{x}_i, \mathbf{w} \rangle)$
- objective: $\mathsf{KL}(\frac{1+\mathbf{y}}{2}\|\hat{\mathbf{p}})$
- grad: $\mathbf{w} \leftarrow \mathbf{w} \eta \mathbf{X} (\hat{\mathbf{p}} \frac{1+\mathbf{y}}{2})$
- Newton: $\mathbf{w} \leftarrow \mathbf{w} \eta (\mathbf{X} \hat{S} \mathbf{X}^{\top})^{-1} \mathbf{X} (\hat{\mathbf{p}} \frac{1+\mathbf{y}}{2})$

- Diagonal weight matrix $\hat{S} = \operatorname{diag}\left(\hat{\mathbf{p}} \odot (1 \hat{\mathbf{p}})\right)$
- Logistic regression = iteratively weighted linear regression

Linear Regression vs. Logistic Regression

• least-squares:
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• prediction:
$$\hat{y}_i = \langle \mathbf{x}_i, \mathbf{w} \rangle$$

• objective:
$$\|\mathbf{y} - \hat{\mathbf{y}}\|_2^2$$

• grad:
$$\mathbf{w} \leftarrow \mathbf{w} - \eta \mathbf{X}(\hat{\mathbf{y}} - \mathbf{y})$$

• Newton:
$$\mathbf{w} \leftarrow \mathbf{w} - \eta (\mathbf{X} \mathbf{X}^{\top})^{-1} \mathbf{X} (\hat{\mathbf{y}} - \mathbf{y})$$

• cross-entropy:
$$\sum_{i=1}^n -\frac{1+\mathsf{y}_i}{2}\log\hat{p}_i - \frac{1-\mathsf{y}_i}{2}\log(1-\hat{p}_i)$$

• prediction:
$$\hat{y}_i = \text{sign}(\langle \mathbf{x}_i, \mathbf{w} \rangle), \ \hat{p}_i = \text{sgm}(\langle \mathbf{x}_i, \mathbf{w} \rangle)$$

• objective:
$$\mathsf{KL}(\frac{1+\mathbf{y}}{2}\|\hat{\mathbf{p}})$$

• grad:
$$\mathbf{w} \leftarrow \mathbf{w} - \eta \mathbf{X} (\hat{\mathbf{p}} - \frac{1+\mathbf{y}}{2})$$

• Newton:
$$\mathbf{w} \leftarrow \mathbf{w} - \eta (\mathbf{X} \hat{S} \mathbf{X}^{\top})^{-1} \mathbf{X} (\hat{\mathbf{p}} - \frac{1+\mathbf{y}}{2})$$

- Diagonal weight matrix $\hat{S} = \operatorname{diag} (\hat{\mathbf{p}} \odot (1 \hat{\mathbf{p}}))$
- Logistic regression = iteratively weighted linear regression

• Softmax parameterization

$$\Pr(\mathsf{Y} = k | \mathsf{X} = \mathbf{x}; \mathsf{W} = [\mathsf{w}_1, \dots, \mathsf{w}_c]) = \frac{\exp(\langle \mathsf{x}, \mathsf{w}_k \rangle)}{\sum_{l=1}^c \exp(\langle \mathsf{x}, \mathsf{w}_l \rangle)}$$

- F I = G)
- Minimizing again the logarithmic loss:

$$\min_{\mathbf{W}} \hat{\mathbb{E}} \left[-\log \frac{\exp(\langle \mathbf{X}, \mathbf{w_Y} \rangle)}{\sum_{l=1}^{c} \exp(\langle \mathbf{X}, \mathbf{w_l} \rangle)} \right]$$

• Softmax parameterization:

$$\Pr(\mathsf{Y} = k | \mathsf{X} = \mathbf{x}; \mathsf{W} = [\mathsf{w}_1, \dots, \mathsf{w}_c]) = \frac{\exp(\langle \mathsf{x}, \mathsf{w}_k \rangle)}{\sum_{l=1}^{c} \exp(\langle \mathsf{x}, \mathsf{w}_l \rangle)}$$

- nonnegative and sum to 1
- Encode $y \in \{1, \dots, c\}$
- Minimizing again the logarithmic loss:

$$\min_{\mathbf{W}} \ \hat{\mathbb{E}} \left[-\log \frac{\exp(\langle \mathbf{X}, \mathbf{w}_{\mathbf{Y}} \rangle)}{\sum_{l=1}^{c} \exp(\langle \mathbf{X}, \mathbf{w}_{l} \rangle)} \right.$$

L03 16/16

• Softmax parameterization:

$$\Pr(\mathsf{Y} = k | \mathsf{X} = \mathbf{x}; \mathsf{W} = [\mathsf{w}_1, \dots, \mathsf{w}_c]) = \frac{\exp(\langle \mathsf{x}, \mathsf{w}_k \rangle)}{\sum_{l=1}^c \exp(\langle \mathsf{x}, \mathsf{w}_l \rangle)}$$

- nonnegative and sum to 1
- Encode $y \in \{1, \dots, c\}$
- Minimizing again the logarithmic loss

$$\min_{\mathbf{W}} \; \hat{\mathbb{E}} \left[-\log \frac{\exp(\langle \mathbf{X}, \mathbf{w_Y} \rangle)}{\sum_{l=1}^{c} \exp(\langle \mathbf{X}, \mathbf{w}_l \rangle)} \right.$$

• Softmax parameterization:

$$\Pr(\mathsf{Y} = k | \mathsf{X} = \mathbf{x}; \mathsf{W} = [\mathsf{w}_1, \dots, \mathsf{w}_c]) = \frac{\exp(\langle \mathsf{x}, \mathsf{w}_k \rangle)}{\sum_{l=1}^c \exp(\langle \mathsf{x}, \mathsf{w}_l \rangle)}$$

- nonnegative and sum to 1
- Encode $y \in \{1, \dots, c\}$
- Minimizing again the logarithmic loss:

$$\min_{\mathbf{W}} \ \hat{\mathbb{E}} \left[-\log \frac{\exp(\langle \mathbf{X}, \mathbf{w_Y} \rangle)}{\sum_{l=1}^{c} \exp(\langle \mathbf{X}, \mathbf{w}_l \rangle)} \right.$$

• Softmax parameterization:

$$\Pr(\mathsf{Y} = k | \mathsf{X} = \mathbf{x}; \mathsf{W} = [\mathsf{w}_1, \dots, \mathsf{w}_c]) = \frac{\exp(\langle \mathsf{x}, \mathsf{w}_k \rangle)}{\sum_{l=1}^c \exp(\langle \mathsf{x}, \mathsf{w}_l \rangle)}$$

- nonnegative and sum to 1
- Encode $y \in \{1, \dots, c\}$
- Minimizing again the logarithmic loss:

$$\min_{\mathbf{W}} \ \hat{\mathbb{E}} \left[-\log \frac{\exp(\langle \mathbf{X}, \mathbf{w_Y} \rangle)}{\sum_{l=1}^{c} \exp(\langle \mathbf{X}, \mathbf{w}_l \rangle)} \right]$$

