Simulation time is 50 and thread number is 5:

Person number	Serial Time	Parallel Time v1	Parallel time v2	Speedup	
10000	7.251778	1.719243	2.016292	4.2180064	3.596591168
20000	11.225926	2.725856	3.24211	4.1183122	3.462537051
50000	31.918359	7.362754	8.86593	4.3351114	3.600114032
100000	79.841153	18.944076	22.74137	4.214571	3.510833032

Simulation time is 100 and thread number is 5:

Person number	Serial Time	Parallel Time v1	Parallel time v2	Speedup	
10000	14.358048	3.335065	4.002571	4.3051779	3.587206323
20000	21.110597	5.258612	6.28255	4.0144808	3.360195621
50000	59.109685	13.602453	16.56716	4.3455166	3.567882787
100000	141.9743	34.115749	40.72607	4.1615472	3.486079064

Simulation time is 150 and thread number is 5:

		_			
Person number	Serial Time	Parallel Time v1	Parallel time v2	Speedup	
10000	22.039412	5.083667	6.103196	4.3353375	3.611126367
20000	32.100394	7.79739	9.519323	4.1168127	3.37212993
50000	82.197718	19.669215	23.879782	4.1790035	3.442146917
100000	207.70747	48.758314	60.137088	4.2599396	3.453899747

For 10k pers.			For 50k pers.		
Chunk size	Static Sch.	Dynamic Sch.	Chunk size	Static Sch.	Dynamic Sch.
5	7.288	7.35	5	33.331	31.93
10	7.316	7.738	10	31.453	33.992
20	7.704	8.02	20	32.266	32.188
100	6.978	7.05	100	32.697	33.395

Din graficele de mai sus se poate observa o crestere usor liniara a timpului in functie de numarul de persoane procesate sau in functie de timpul de simulare a epidemiei. De asemenea timpii obtinuti dupa rularea algoritmilor paralelizati sunt considerabil mai buni (mici) decat dupa rularea algoritmului serial.

OBSERVATIE: in cele doua tabele in care se prezinta timpii de executie obtinuti in urma modificatilor parametriilor schedule si chunk size se poate observa ca se obtin timpi mai mari daca algoritmului i se ofera parametrul "dynamic", deoarece datele sunt impartite oarecum liniar adica executia programului nu difera intre thread-uri, timpul de solutionare a unui for fiind asemanator, task-urile durand aproximativ acelasi interval de timp.

Ca si concluzie a masuratorilor cel mai optim este un schedule static cu un chunk size de 100 pentru a imparti datele egal intre thread-uri.