Cours de la 4éme année 2017-2018

Gestion de la Production et GPAO L.OUZIZI

Plan de la matière

- Introduction à la Gestion de Production et Opérations
 - La gestion des stocks
- La gestion des données techniques pour l'élaboration d'une GPAO
 - Planification hiérarchique : PDP, MRP1, MRP2
 - La méthode KANBAN
 - La méthode OPT
 - Les Ordonnancements
 - · Ordonnancement d'un projet avec la méthode PERT
 - Ordonnancement de la production
 - Cas d'une machine et 2 machines

CHAPITRE 1

Introduction à la GPO

La fonction production

Gestion de la Production?

Prendre à tout moment des décisions adéquates concernant la production

Niveaux de décisions?

- Décisions stratégiques à long terme
- Décisions tactiques à moyen terme
- Décisions opérationnelles à court terme

Niveaux de décisions Stratégique

Tactique?

22/03/2018 GPAO 8

Opérationnel?

GP&GPAO L.OUZIZI 18

Pourquoi la GP est elle si difficile ?

- a) Incertitude des données
- b) Interconnexion des services
- c) Antagonisme des critères
- d) Multiplicité des système de production
- e) Complexité des calculs pour obtenir des solutions

GP&GPAO L.OUZIZI 18

Pourquoi la GP est elle si difficile ?

b) Interconnexion des services

La GP intervient dans tous les services traditionnellement présents dans une entreprise :

- Direction générale
- BE
- BM
- Service de vente
- Service d'achats
- Services financier
- Services d'ordonnancement

2. Pourquoi la GP est elle si difficile ?

- c) Antagonisme des critères
- La maximisation des bénéfices
- La minimisations des en-cours (stocks)
- La minimisation des retards
- La maximisation des charges (utilisation des moyens normaux) équivalent à minimiser les heures supplémentaires et la sous-traitance.
- Le respect de l'environnement...

Pourquoi la GP est elle si difficile ?

d) Multiplicité des systèmes de production

Pourquoi la GP est elle si difficile ?

d) Complexité des calculs pour obtenir des solutions

Le cercle vicieux de la gestion de production

Les clients ne sont pas livrés a temps

Ruptures des stocks fréquentes

 \uparrow

Le besoin en fond de roulement augmente Tous les ordres de fabrication deviennent urgents

Les stocks se gonflent

Les cycles financiers s'allongent

Planification en entreprise

- Décisions prises au sein de l'entreprise (Commercial, financier, production). Long, moyen et court terme.
- Définir une politique : (orientations générales: capital, construction d'une usine, innovation, Formation ...etc.
- Les décisions relatives à la capacité (Le combien, Le quand, Le comment, Le ou)
 - Établissement du plan de production ⇒ Tactique
- Architecture de planification à quatre niveaux de décision

Architecture d'un système de planification de production

^{*} Production and inventory management. D.W.Foraty. 1991

Le processus de planification : la planification hiérarchisée

Niveau 0 : Plan stratégique à très long terme Niveau 1: Plan directeur Planification de la capacité Niveau 2: Gestion des flux Calcul des besoins et gestion des stocks Niveau 3: Ordonnancement Gestion des priorités

Nécessité de prévisions pour disposer des ressources nécessaires à la fabrication

Prévisions à long terme pour ajustements majeurs des capacités de production

Prévisions à moyen terme pour ajustements mineurs des capacités et passation de commandes aux fournisseurs

Prévisions à court terme pour réaffectation des ressources et gestion des priorités

Gestion des stocks

- Classification ABC (critère = stock moyen x Prix...)
- Q économique, formule de Wilson
- Stock de sécurité : SS = SS_c + SSd
- Inventaires
- Méthode d'approvisionnement

	Q fixe	Q variable
T fixe	Classe : C	Te : période économique NR : SS + C(Te+D) Classe : B
T variable	Qe PC = SS + C(D) Classe : A	Classe : A ++

- calculs de coûts directs et indirects,
- coûts de fabrication par OF, par articles,
- des indicateurs de performance etc.

Enterprise Resource Planning

Progiciel de gestion intégré (PGI) Comptabi lité Gestion **GRH.....** de Producti Gestion on Gestion commerci de la ale maintena nce Base de données communes

- l'unicité de la saisie,
- la grande disponibilité des informations,
- une interface utilisateur unique,
- une parfaite liaison entre les différentes applications.

CHAPITRE 2

La gestion des stocks

Les types de stocks

- Stock amont(MP)
 - Stock aval (PF)
 - Stock en cours
- Stock de rechange
- Stock de maintenance.

Coûts de stockage

Coût d'Acquisition (Pu*Ca).

Pu :prix unitaire – Ca :consommation annuelle.

Coût de Possession(Q/2*Pu*t).

Q:quantité commandé – t:taux de possession.

Coût de Passation de commande(F*Ca/Q).

F:Coût de passation d'une commande.

Coût de Rupture.

Problème de gestion de stock

Problème est trouver une politique de gestion de stock qui minimise le coût global :

$$Cg = CA + CP + CC + CR$$

Quelle est la quantité à commander? Quelle est la périodicité de la commande?

	Période fixe	Période variable
Quantité fixe	Plan d'approvisionnement WILSON	Point de commande
Quantité variable	Recomplèment	Méthode à quantités et périodes variables

Modèle de Wilson

Hypothèses:

- 1. Consommation régulière
- 2. Délai de réapprovisionnement régulier
- 3. Le réapprovisionnement se fait en une seule fois
- 4. Rupture de stock interdite
- 5. Le prix d'achat est indépendant de la quantité achetée

La formule de Wilson

· La quantité économique Qe minimise le coût global Cg.

$$Cg = Pu Ca + \frac{Q}{2} Pu t + F \frac{Ca}{Q}$$

$$Qe = \sqrt{\frac{2 F Ca}{Pu t}}$$

Qte en stock

Exemple d'application de la Formule de Wilson

Les quantités consommées d'un article sur une année = 6000 unités

Coût de lancement d'une commande = 60 DH

Prix du produit = 8 DH

Taux de possession de cet article par an = 9%

Question: quelle est la fréquence de commande pour minimiser le coût de stockage de cet article?

Fiche de stock nº 14

Rayon : petit éléctroménager

Désignation : grille pain Référence : GPP 4325

Unité de vente : 1 pièce Délai de livraison: 8 jours

Cadence de vente hebdomadaire: 4

Quantité à commander : 10

0	Stock	maximum	:11
---	-------	---------	-----

Stock minimum: 4

Stock tampon :
Stock d'alerte :

Opération	Résultat	
Vente moyenne hebdomadaire : 4		
Délai de livraison : 8 jours	4	

Opération	Résultat
Stock minimum: 4	
+	
Stock tampon: 1	5

Opération	Résultat
Stock maximum: 11	
-	
Stock tampon: 1	10

Opération	Résultat
Stock initial : 1 + Entrée : 10	11
Stock disponible : 11 Sortie : 2	9

Commande		Date de livraison			
Date	N°	Quantité	Prévue	Effectuée	Quantité
26/12 09/01	C678 C681	10 10	02/01 17/01	02/01 16/01	10 10

Date	Nature de l'opération	Entrée	Sortie	Stock disponible
01/01	Stock initial 0			1
02/01	Bon de livraison nº 4228	10 🔞		11 10
03/01	Vente	I E E T	2 9	9 \
06/01	Vente		2	7
08/01	Vente		1	6
09/01	Vente		2	4
11/01	Vente		1	3
14/01	Vente		1	2
15/01	Vente		1	1
16/01	Bon de livraison nº 6123	10		11
16/01	Vente		2	9

Loi de Pareto et Courbe ABC

20% des articles représentent 80% de la valeur totale du stock.

Distinguer trois classes d'articles :

- Classe A : articles les plus consommées 80%.
- Classe B : classe intermédiaire 15%.
- Classe C : articles les moins consommés 05%.

Les critères significatifs pour le gestionnaire de stock

- Quantité de commande
 - Stock moyen
- Analyse sur les prix unitaires,
- Analyse des consommations en quantités/périodicité
 - stock moyen x prix

Les étapes d'une analyse ABC

Première étape :

Classez les articles par ordre décroissant du critère retenu.

Deuxième étape :

 Faire le cumul du critère retenu à partir du tableau obtenu grâce à l'étape précédente.

Troisième étape :

Calculer le % du cumul du critère par article.

Quatrième étape :

 Détermination des classes (Classe A, articles représentant 80 % du total cumulé, Classe B, représentant 95 % et Classe C, reste.

Application

 La consommation trimestrielle des différents articles relatifs aux stocks d'une entreprise figurent ci-dessous:

N° Produit	1	2	3	4	5	6	7	8	9	10
Prix Unitaire (DH)	76	122	3,5	54	305	153	9,2	64	307	161
Consommation	300	100	7000	200	55	130	1500	120	500	91
sur 3 mois										

- Avant de déterminer sa politique de réapprovisionnement, le responsable des stocks souhaite affecter des classes d'importance aux produits qu'il gère.
- 1. Sur quels critères peut-on effectuer les différentes analyses ? Précisez, à chaque fois, l'objectif visé.
- 2. Effectuer les analyses correspondant à ces critères. Qu'en concluez-vous?
- 3. Détermination des classes des produits.

Courbe ABC

N° Produit	Conso (3 mois)	Cumul	% Cumul	
3	7000	7000	70,03%	
7	1500	8500	85,03%	
9	500	9000	90,04%	
1	300	9300	93,04%	
4	200	9500	95,04%	
2	100	9600	96,04%	
6	130	9730	97,34%	
8	120	9850	98,54%	
10	91	9941	99,45%	
5	55	9996	100,00%	

Les politiques d'approvisionnement

Méthode de Point de Commande

- Qe : quantité commandée.
- PC = SS + Conso *(délais de livraison)
- Délais de livraison= lead time moyen pour la réception de l'article

Méthode de Point de Commande : Avantages et Inconvénients

Avantages:

- ✓ absorbe les variations périodiques de la consommation
- ✓ stock de sécurité faible
- ✓ Grande fiabilité.

Inconvénients:

✓ Méthode chère car le gestionnaire doit suivre constamment l'évolution du stock pour détecter le point de commande

Méthode de re-complètement

À période fixe, on ramène le stock à un niveau dénommé « niveau de recomplètement)

- Te : Périodicité de la quantité commandée.
 - NR = SS + Conso * (Te + D livr).

Méthode de re-complètement : Avantages et inconvénients

Avantages:

- Gestion automatique car commandes à dates fixes. Il est donc possible de regrouper des commandes
- Suivi simplifié.
- Inconvénients
- Importance du stock de sécurité.

Stock de sécurité

Le stock de sécurité = le niveau de stock qui permet de limiter les ruptures de stock dues aux aléas (prévisions non conformes à la demande, délai d'approvisionnement plus long que prévu, etc.)

Le SS doit corriger les

- Consommations irrégulières.
- Délais de livraison non respectées.

Taux de service (Ts)

- Probabilité de satisfaction de la demande.
 - Complément du taux de rupture.
- Ts = nbre de demandes servies / nbre total de demandes.

Irrégularités de consommation

• Si la consommation (X) est une V.a qui suit une loi normale de moyenne Cm et d'écart type σc, alors le stock de sécurité correspondant est :

Écart Conso
$$Ec = Fs \sigma c$$

Fs correspond à

P (X≤ stock de sécurité)

À partir du taux de service et de la table de la loi normale centré réduite on obtient Fs

$$SSc = Ec \sqrt{Dm}$$

Fs en fonction du taux de service (Table de la loi normale)

Taux de service	Fs
50%	0
80%	0,84
90%	1,28
95%	1,65
99%	2,23
99,5%	2,58
99,9%	3,09

Retard de livraison

Lorsque le délai de livraison est aléatoire de moyenne **Dm** et d'écart type **od**, le stock de sécurité est donné par la relation suivante :

Écart Délais Ed = Fs σd SSd = Ed Cm.

Stock de sécurité pour la Méthode de Recomplètement

$$SSc = Ec \sqrt{Te + Dm} + EdCm$$

CHAPITRE 3

La gestion des données techniques

Système de gestion de données techniques

On distingue trois types de données :

De l'extérieur

Principalement constitués des données commerciales

Prévisions des ventes,
Commandes clients fermes

du système physique de production

Permettent de connaitre son état

Stocks disponibles, en-cours;

décrivant les ressources, les produits, et la manière de les transformer

C'est la gestion primaire des données techniques.

Articles

Nomenclatures

Ressources
Centre de
charges

Gammes et outillages

Article

- Produit fini
- Semi œuvré
- Matériel et fourniture

 Deux objets sont définis par le même article s'ils sont interchangeables du point de vue de l'utilisateur.

Articles

Nomenclatures

Ressources
Centre de
charges

Gammes et outillages

- Un identifiant ou un code : précis, discriminent, souple, simple..
- Une désignation ou le libellé : l'appellation en clair de l'article
- Données de classification utilisées pour des tris (familles, sous-familles, catégories..)
- Données de description physique (la couleur, la matière, la masse, la forme...)
- Données de gestion comme lôt de lancement ou de commande, article de remplacement, fréquence de gestionnaire, référence des fournisseurs, stock minimal de déclenchement, délai d'obtention, lieu de stockage, coefficient de perte...

Articles

Nomenclatures

Ressources
Centre de
charges

Gammes et outillages

Liste hiérarchisée et quantifiée des articles entrant dans la composition d'un article-parent :

Composés (sous-ensembles) Composants (articles entrant dans les composés).

Nomenclature

Articles

Nomenclatures

Ressources
Centre de
charges

Gammes et outillages

 Un document de synthèse présentant la manière dont est composé un produit et les relations entre les différents composants au sein du composé.

- Nomenclature d'étude.
- Nomenclature de fabrication.
- Nomenclature d'approvisionnement.
 - DESCRIPTION D'UNE NOMENCLATURE
 - Niveau de nomenclature
 - Coefficient

Code	Code composant	Libellé	Quantité	Niveau
composé			composition	
120		Table	1	0
	204	Support	1	1
	206	Plateau	1	1
204		Support	1	1
	212	Entretoises courtes	2	2
	213	Entretoises longues	2	2
	214	Pieds	4	2

Articles

Nomenclatures

Ressources
Centre de
charges

Gammes et outillages

- Homme
- Machine
- Outillage
- **...**

Caractérisée par :

- nature
- utilisation possible
- nombre
- localisation...

Pour les opérateurs :

- la qualification
- compétence...

Les ressources

Définir les ressources ?

Décrire leurs caractéristiques

Articles

Nomenclatures

Ressources
Centre de charges

Gammes et outillages

Enumération de la succession des actions et autres événements nécessaires à la réalisation de l'article concerné.

Gamme de fabrication

Articles

Nomenclatures

Ressources
Centre de
charges

Gammes et outillages

• Un document élaboré par le bureaux des méthodes décrivant l'ensemble des opérations pour l'élaboration d'un produit dans l'ordre ou elle sont exécutées.

- Il couvre les 2 aspect:
 - Technique
 - De gestion.

Exemple des gammes d'un produit fini

Articles

Nomenclatures

Ressources
Centre de
charges

Gammes et outillages

On y trouve :

- La nature du travail à effectuer,
- La liste des opérations à effectuer,
- Le poste ou la famille de postes où l'opération doit être effectuée.
- Les outils nécessaires à l'opération.
- La qualification des personnes qui exécuteront l'opération.
- La durée standard de l'opération, ainsi que les opérations de transit et d'attente.

Articles

On distingue plusieurs types de gammes d'opération :

Nomenclatures

- Les gammes de fabrication,
- Les gammes de contrôle,
- Les gammes de réparation, de remplacement

Ressources
Centre de
charges

...

Gammes et outillages

La gestion des données techniques et L'informatisation

Gérer les DT?

les actualiser au cours de leur cycle de vie et les transmettre au services concernés

Attention!

Valeurs erronées

Planification et programmation irréalisable

CHAPITRE 4

La planification de production

Le processus de planification : la planification hiérarchisée

Niveau 0 : Plan stratégique à très long terme Niveau 1: Plan directeur Planification de la capacité Niveau 2: Gestion des flux Calcul des besoins et gestion des stocks Niveau 3: Ordonnancement Gestion des priorités

Nécessité de prévisions pour disposer des ressources nécessaires à la fabrication

Prévisions à long terme pour ajustements majeurs des capacités de production

Prévisions à moyen terme pour ajustements mineurs des capacités et passation de commandes aux fournisseurs

Prévisions à court terme pour réaffectation des ressources et gestion des priorités

La planification de production

- Recouvre l'ensemble des décisions prises dans les domaines :
 - Commercial, financier, production.
 - Moyen terme (une année) Plan de production
 - Ajustements de la capacités par rapport à la demande
- Moyen terme (1 à 3 mois) Programme directeur de production
 - Détermine pour chaque article les quantités à produire.
 - Plan de besoin en matières
 - Détermine les matières premières à commander et les composants à produire.
 - Court terme Ordonnancement de la production
 - Affecter les ressources aux différentes opérations.

Horizon de la Planification à moyen terme

Ajustement de la capacité aux variations de la demande

REGULATION INTERNE

- Heures supplémentaires
- Embauche/licenciement
- Taux d'utilisation des équipements (nombre d'équipes).
 - Stocks d'anticipation

REGULATION EXTERNE

- Sous-traitance
- Les temporaires
- Partage d'équipements

Les coûts des modes de régulation

- Les coûts d'embauche et de réduction des effectifs.
- Les coûts des heures supplémentaires et des heures non œuvrées.
 - Les coûts de la sous-traitance.
 - Les coûts de stockage.
 - Les coûts de lancement

STRATEGIES DE PLANIFICATION:

- De nivellement
 - Synchrone
 - Modéré.

Elaboration d'un plan de production

- Une entreprise de fabrication de compresseurs pour climatiseurs, veut élaborer un plan de production pour adapter les capacités aux irrégularités de la demande (la demande présente une saisonnalité de six mois).
- L'entreprise travaille en une équipe de 8h/ jour. La cadence de l'atelier de production est de 250 unités par jour.
- La prévision de la demande, ainsi que la capacité de production en jours ouvrables sont définies dans le tableau suivant :

	Janvier	Février	Mars	Avril	Mai	Juin
Demande	3200	4200	4800	7000	7500	3500
Nbre de jours ouvrables	22	20	22	21	19	21

- Les heures supplémentaires ne peuvent pas dépasser 30 % des heures normales.
- Définir le plan de production pour les stratégies de nivellement et synchrone

Stratégie de nivellement

	Janvier	Février	Mars	Avril	Mai	Juin
Demande	3200	4200	4800	7000	7500	3500
Cumul demande	3200	7400	12200	19200	26700	30200
Capacités	5500	5000	5500	500 5250 4750		5250
Production HN	5500	5000	5500	5250	4750	5250
Production HS					700	
Production Sous-traitée						
Cumul Production	5500	10500	16000	21250	26700	31950
Stock fin du mois	2300	3100	3800	2050	0	1750

GP&GPAO L.OUZIZI 18

Stratégie synchrone

	Janvier	Février	Mars	Avril	Mai	Juin
Demande	3200	4200	4800	7000	7500	3500
Cumul demande	3200	7400	12200	19200	26700	30200
Capacitées	5500	5000	5500	5250	4750	5250
Production HN	3200	4200 5000	4800 5500	5250	4750	3500
Production HS				1575 (1575- (700- 175)=1050) 1050+525= 1575	1425	
Production Sous-traitée				175 <mark>0</mark>	1325 525 0	
Cumul Production	3200	7400 8200	12200 12900 13700	19200 20700	26700 28200	30200 31700
Stock fin du mois	0	0 800	0 700 1500	0	0	0

Elaboration d'un plan de production (suite)

- Calculer le coût de stockage ainsi que le surcoûts des heures supplémentaires et de la sous-traitance :
 - Le coût de main d'oeuvre est de 30Dh /h l'heure normale et de 35Dh /h l'heure supplémentaire et il faut 5h de travail pour fabriquer un climatiseur.
 - Le coût total par unité (prix de revient) est estimé à 500 Dh mais nous pouvons également sous—traiter au prix de 550 Dh l'unité.
 - Le taux de possession d'un stock est estimé à 30 % par an de la valeur stockée estimé à son prix de revient.
- 3. Proposer une stratégie modérée minimisant le surcoût total de production (stockage, heures supplémentaires et sous-traitance).

Planification à moyen terme :PDP

Combien faut-il produire et quand?

<u>Réponse</u>: le MSP (Master Production Schedule) ou le PDP (Plan Directeur de production)

Comment l'obtient-on?

<u>Réponse</u>: commandes confirmées + prévisions + décisions

Gestion des flux de production

Planification à moyen terme

La règle fondamentale :

Obtenir le produit qui convient au bon moment et au meilleur coût.

« Push systems » ou Systèmes poussés « Pull systems » ou Systèmes tirés

Systèmes hybrides

Système tiré versus système poussé

Systèmes hybrides

Aval

Système tiré

Système poussé

Peu de composants de chaque type Grandes quantités Demande stable

> Peu de pannes Petits temps de réglage Petits coûts de réglage

Les fournisseurs travaillent aussi en flux tiré ou possèdent des stocks Stocks normalisés ou standardisés Produits finis personnalisés

Quantités moyennes

Prévisions correctes
ou même commandes connues

M.R.P. « Material Requirements Planning »

Kanban ou autres méthodes appelées « J.I.T. » ou JAT

Exemple d'élaboration d'un PDP

Pour chaque produit fini :

	Période 1	Période 2	 	
Prévisions				
Commandes				
Commandes acceptées				
Production				
stock				

Programme directeur de production

On considère les commandes acceptées:

- $stock_i = stock_{i-1} + P_i C_i$.
- stock: la quantité disponible en stock.
 - P: Production planifiée.
 - C: Commandes acceptées.

Plan de besoins en matières

Afin de pouvoir réaliser le PDP, il faut déterminer:

- La date et la quantité des matières à commander
- La date et la quantité des pièces ou composants à lancer en production,

Méthode MRP

- MRP 1 (Material Requirement Planning)
- MRP 2 (Manufacturing Resource Planning)

La méthode MRP 1 (Material Requirement Planning)

Les données nécessaires :

- La demande en produits finis et pièces détachées
- Les nomenclatures des différents articles
- Les délais de fabrication et d'approvisionnement des différents articles
- Les quantités économiques d'approvisionnement et de production

Dépendance de la demande

Besoins indépendants : estimés

Besoins dépendants : calculés

Disponibilité simultanée Roue = jante + valve +pneu

Taux de service Composant 95%⇒ composé 85%

Nomenclature Exemple d'une Brouette

Explosion de la nomenclature

• Un projet de fabrication d'un composé à la période t induit un besoin sur un composant à la période t.

Délais et cycle de fabrication. Exemple de la Brouette

•Brouettes: 1 semaine

•Roue assemblé : 1 semaine

•Manches: 2 semaine

•Fonds: 2 semaine

•Axes:2 semaine

•Pneu et paliers: 3 semaine

•Tube Diam 40mm: 3 semaine

Délais et cycle de fabrication.

- Nombre de périodes ouvertes.
 - Cycle de fabrication
- Le MRP exécute un jalonnement régressif
 - En partant de la date d'exigibilité.

Quantité économique

- Cycle de fabrication dépend de la quantité en projet.
- On doit proposer un projet au moins égal à la quantité économique.

La procédure interne de M.R.P.1

Pour tout composant

dont on a déjà traité les composants qui l'utilisent faire

Transformer les besoins bruts de ce composant en besoins nets (en tenant compte des demandes différées, des stocks et des livraisons attendues).

« Négocier pour traiter les anomalies sans ajouter de besoins nets ».

Regrouper les besoins nets et les décaler du délai standard pour obtenir des lancements en fabrication.

Déduire des lancements en fabrication les besoins bruts qu'ils induisent sur les composants intervenant dans la nomenclature en tenant compte des facteurs de répétition.

Fin pour tout

- 4 Facteur de répétitions
- 2 Délais standards

Pas de regroupements demandés pour P1, P2 et SP1.

C1 par palettes de 25.

C2 et C3 : au minimum 15 composants par lancement.

Périodes	1	2	3	4	5	6	7	8
BB (P1)	10	25	5	25	12	15	10	25
	10	35	40	65	<u>77</u>	92	102	127
S & L (P1)	40	25	10					
	40	65	<u>75</u>	SV	<u>75</u>			
BN (P1)	0	0	0	0	2	15	10	25
BN(P1) à lancer	0	0	2	15	10	25	?	?

Périodes	1	2	3	4	5	6	7	8
BB (P1)	10	25	5	25	12	15	10	25
S & L (P1)	40	25	10					
BN (P1)	0	0	0	0	2	15	10	25
BN (P1) à lancer	0	0	2	15	10	25	?	?
BB (SP1) pour P1	0	0	2	15	10	25		
	0	0	2	<u>17</u>	27	52		
S & L (SP1)	10							
	10	SV		10				
BN (SP1)	0	0	0	7	10	25		
BN (SP1) à lancer	0	7	10	25	?	?		

Périodes	1	2	3	4	5	6	7	8
BB (P1)	10	25	5	25	12	15	10	25
S & L (P1)	40	25	10					
BN (P1)	0	0	0	0	2	15	10	25
BN (P1) à lancer	0	0	2	15	10	25		
BB (C3) pour P1	0	0	8	60	40	100		
	0	0	8	68	108	208		
S & L (C3)	75	75	75					
	75	150	225	SV				
BN (C3)	0	0	0	0	0	0		
BN (C3) regroup.	0	0	0	0	0	0		
Commandes de C3	0	0	?	?	?	?		

Périodes	1	2	3	4	5	6	7	8
BB (P2)	25	20	10	35	15	30	15	25
	25	45	<u>55</u>	90	<u>105</u>	135	150	175
S & L (P2)	30	10	10					
	30	40	<u>50</u>	SV				
BN (P2)	0	0	5	35	15	30	15	25
Anomalie		X						
BN (P2) à lancer	5	35	15	30	15	25	?	?

Périodes	1	2	3	4	5	6	7	8
BN (SP1) à lancer	0	7	10	25				
BN (P2) à lancer	5	35	15	30	15	25		
BB (C1) pour SP1	0	28	40	100				
BB (C1) pour P2	15	105	45	90	45	75		
BB (C1) au total	15	133	85	190	45	75		
	15	148	233	423	468	543		
S & L (C1)	200	100	100					
	200	300	400	400	SV			
BN (C1)	0	0	0	23	45	75		
BN (C1) regroup.	0	0	0	25	50	75		
Commandes de C1	25	50	75	?	?	?		

Périodes	1	2	3	4	5	6	7	8
BN (SP1) à lancer	0	7	10	25				
BN (P2) à lancer	5	35	15	30	15	25		
BB (C2) pour SP1	0	7	10	25				
BB (C2) pour P2	10	70	30	60	30	50		
BB (C2) rechange	0	5	0	5	0	5	0	5
BB (C2) au total	10	82	40	90	30	55	0	5
	10	92	132	222	<u>252</u>	307	307	312
S & L (C2)	55	50	50	75				
	55	105	155	230	230	SV		
BN (C2)	0	0	0	0	22	55	0	5
Commandes de C2 regr.	22	55	0	15	?	?	?	?

M.R.P. 1 : points délicats (1)

- Souvent les regroupements en production sont effectués en utilisant ce qui est appelé une « quantité économique » comme en gestion de stocks.
- Cette quantité économique est demandée et non pas calculée par le progiciel MRP de GPAO (Gestion de Production Assistée par Ordinateur) dès l'instant où ce type de regroupement est spécifié pour le composant considéré.
- Les modèles de calcul de la quantité économique vus en gestion de stock, formule de Wilson en particulier, sont abusivement utilisés ici même si les hypothèses de leur utilisation ne sont pas réunies.

M.R.P. 1 : points délicats (2)

- L'utilisation de M.R.P. nécessite de fournir pour chaque commande à un fournisseur et pour chaque stade interne de fabrication un « délai standard ».
- Ce délai standard est demandé et non pas calculé par le progiciel MRP de GPAO (Gestion de Production Assistée par Ordinateur).
- Ce délai standard par stade de fabrication d'un composant est particulièrement instable, car il dépend de la charge de la ressource de production qui va le fabriquer : si la charge de l'atelier diminue, les délais diminuent ; mais si on diminue les délais standards pris en compte par le système de GPAO, on augmente la charge de l'atelier et donc les délais standards réels augmentent (cercle vicieux, vicié par la présence de plusieurs produits et la possibilité au niveau de l'ordonnancement de jouer avec leurs priorités).

M.R.P. 1 : points délicats (3) Analyse et calcul des délais standards

Le lot arrive dans la file d'attente du poste de travail

Le lot arrive dans la file d'attente du poste de travail suivant

D.S. = délai standard

M.R.P. 1: points délicats (4)

Analyse et calcul des délais standards

- TE Temps d'exécution du lot sur la machine
- TM Temps de montage des outils et de préparation de la machine
- TD Temps de démontage des outils et de nettoyage de la machine
- TO Temps opératoire = charge du poste de travail (machine)

M.R.P. 1: points délicats (5) L.OUZIZI 18

Analyse et calcul des délais standards

- TP1 Temps de préparation du lot (exemple : marquage des pièces)
- TP2 Temps post-opératoire (contrôle ou refroidissement)
- TQ Temps d'attente en amont du poste de travail
- TA Temps d'attente avant transit

M.R.P. 1: points delicats (6)

Analyse et calcul des délais standards

- C.P. Cycle de production ou durée de présence au poste de travail
- TT Temps de transport vers le poste suivant

MRP et extensions financières

- OA ordres d'achat ⇒ engagements d'achat, par période.
- OF ordres de fabrication ⇒ par section, charge prévisionnelle (frais du personnel, amortissement machines, sous-traitances etc.).
- Somme des deux coûts (matière + main d'œuvre) ⇒ charges directes de l'entreprise.
 - Programme de production (commandes fermes) ⇒ Produits de l'entreprise.
 - Synthèse globale en valeur au niveau de l'entreprise.
 - La méthode MRP 2 (Management des Ressources de Production) s'étend ainsi jusqu'à la planification financière et comptable.

M.R.P. 2: principes

- M.R.P. 1 ne tient compte des charges et des capacités que de manière indirecte par le biais des délais standards.
- M.R.P. 2 est appelé après l'exécution de M.R.P. 1. Il utilise les macro-gammes et la connaissance des charges induites et des capacités disponibles par période du moyen terme.
- M.R.P. 2 ne lisse pas les charges, il se contente de signaler les périodes et les secteurs de production où il existe des surcharges et de suggérer des solutions afin de résorber les dépassements de capacité.

ETUDE DE CAS PDP-MRP

- on suppose une entreprise fabriquant 3 produits finis A, B et C à partir des semi finis F, G et H. ces derniers sont constitués des composants V,W,X et Y. V,W,Y sont fabriqués en interne tandis que X est acheté.
- •Les nomenclatures sont données.
- •Les produits finis sont assemblés dans un atelier d'assemblage à grande capacité.
- •Les capacités des autres ateliers ainsi que les PDP, les stocks et livraisons attendues, les délais ainsi que les coûts matière sont donnés sur les tableaux suivants.

Calcul de besoin - MRP 1 - PBM

Nomenclature des produits

Plan Directeur de production – Produits finis

	Janvier	Février	Mars	Avril	Mai	Juin
А	10300	12800	9700	10500	9700	10000
В	12600	13400	12000	10700	10100	11500
С	17400	20100	16300	17500	18000	19000
	Juillet	Aout	Septemb	Octobre	Novemb	Décembr
А	10600	11000	13000	10000	10000	10000
В	12000	11600	11200	11000	11000	11000
С	21500	20900	20100	19000	19500	19500

Calcul de besoin - MRP 1 - PBM

Plan Directeur de production – Sous Ensembles

	Janvier	Février	Mars	Avril	Mai	Juin
F	1500	1400	1500	1600	2100	1800
G	1700	1200	1700	1600	1800	1500
Н	2000	2300	1800	1900	2100	2000
	Juillet	Aout	Septemb	Octobre	Novemb	Décembr
F	1800	2000	1600	1400	1600	1600
G	1400	1300	1200	1400	1800	1700
Н	2100	2000	2000	2000	2000	2000

Plan Directeur de production – Composants

	Janvier	Février	Mars	Avril	Mai	Juin
V	4000	3500	3800	3100	3600	3600
W	700	1000	1100	900	1100	1300
Χ	3000	2500	2500	2500	2500	2500
Υ	1600	1700	1100	1500	1500	1500
	Juillet	Aout	Septemb	Octobre	Novemb	Décembr
V	3500	3400	3500	3500	3500	3500
W	1000	1000	1000	1000	1000	1000
Χ	2500	2500	2500	2500	2500	2500
Υ	1500	1500	1500	1500	1500	1500

Calcul de besoin - MRP 1 - PBM

Livraison attendue – Position du Stock et Délai (mois) – Produits Finis

	Janvier	Février
А	10000	0
В	12500	0
С	17300	0

	Décembre
А	300
В	100
С	100

	Délai (mois)
А	1
В	1
С	1

Livraison attendue – Position du Stock et Délai (mois) – Sous Ensembles

	Janvier	Février
F	27400	23000
G	48200	0
Н	31400	0

	Décembre
F	700
G	500
Н	4800

	Délai (mois)
F	2
G	1
Н	1

Livraison attendue – Position du Stock et Délai (mois) – Composants

	Janvier	Février
V	56600	55500
W	91200	0
Χ	154000	0
Υ	31800	0

	Décembre
V	500
W	500
Χ	1000
Υ	300

	Délai (mois)
V	2
W	1
X	1
Υ	1

Calcul de besoin - PF: A

	Décem b	Janvier	Février	Mars	Avril	Mai	Juin
BB		10300	12800	9700	10500	9700	10000
LA		10000					
PS	300	0	0	0	0	0	0
BN		0	12800	9700	10500	9700	10000
LP	10000	12800	9700	10500	9700	10000	10600
		Juillet	Aout	Septem b	Octobre	Novemb	Décemb r
BB		10600	11000	13000	10000	10000	10000
LA							
PS		0	0	0	0	0	0
BN		10600	11000	13000	10000	10000	10000
LP		11000	13000	10000	10000	10000	

Calcul de besoin - PF: B

	Décem b	Janvier	Février	Mars	Avril	Mai	Juin
BB		12600	13400	12000	10700	10100	11500
LA		12500					
PS	100	0	0	0	0	0	0
BN		0	13400	12000	10700	10100	11500
LP	12500	13400	12000	10700	10100	11500	12000
		Juillet	Aout	Septem b	Octobre	Novemb	Décemb r
BB		12000	11600	11200	11000	11000	11000
LA							
PS		0	0	0	0	0	0
BN		12000	11600	11200	11000	11000	11000
LP		11600	11200	11000	11000	11000	

Calcul de besoin - PF : C

	Décem b	Janvier	Février	Mars	Avril	Mai	Juin
BB		17400	20100	16300	17500	18000	19000
LA		17300					
PS	100	0	0	0	0	0	0
BN		0	20100	16300	17500	18000	19000
LP	17300	20100	16300	17500	18000	19000	21500
		Juillet	Aout	Septem b	Octobre	Novemb	Décemb r
BB		21500	20900	20100	19000	19500	19500
LA							
PS		0	0	0	0	0	0
BN		21500	20900	20100	19000	19500	19500
LP		20900	20100	19000	19500	19500	

Calcul de besoin - PF: F

	Décemb	Janvier	Février	Mars	Avril	Mai	Juin
BB (A)		12800	9700	10500	9700	10000	10600
BB (B)		13400	12000	10700	10100	11500	12000
BB (pdr)		1500	1400	1500	1600	2100	1800
BB total		27700	23100	22700	21400	23600	24400
LA		27400	23000				
PS	500	200	100	0	0	0	0
BN		0	0	22600	21400	23600	24400
LP		22600	21400	23600	24400	24400	26200
		Juillet	Aout	Septemb	Octobre	Novemb	Décembr
BB (A)		11000	13000	10000	10000	10000	
BB (B)		11600	11200	11000	11000	11000	
BB (pdr)		1800	2000	1600	1400	1600	
BB total		24400	26200	22600	22400	22600	
LA							
PS		0	0	0	0	0	
BN		24400	26200	22600	22400	22600	
LP		22600	22400	22600			

Calcul de besoin - PF: G

	Décemb	Janvier	Février	Mars	Avril	Mai	Juin
BB (A)		12800	9700	10500	9700	10000	10600
BB (B)		13400	12000	10700	10100	11500	12000
BB (C)		20100	16300	17500	18000	19000	21500
BB (pdr)		1700	1200	1700	1600	1800	1500
BB total		48000	39200	40400	39400	42300	54600
LA		48200					
PS	700	900	0	0	0	0	0
BN		0	38300	40400	39400	42300	54600
LP		38300	40400	39400	42300	54600	44900
		Juillet	Aout	Septemb	Octobre	Novemb	Décembr
BB (A)		11000	13000	10000	10000	10000	
BB (B)		11600	11200	11000	11000	11000	
BB (C)		20900	20100	19000	19500	19500	
BB (pdr)		1400	1300	1200	1400	1800	
BB total		44900	45600	41200	41900	42300	
LA							
PS		0	0	0	0	0	
BN		44900	45600	41200	41900	42300	
LP		45600	41200	41900	42300		

Calcul de besoin - PF: H

	Décemb	Janvier	Février	Mars	Avril	Mai	Juin
BB (B)		13400	12000	10700	10100	11500	12000
BB (C)		20100	16300	17500	18000	19000	21500
BB (pdr)		2000	2300	1800	1900	2100	2000
BB total		35500	30600	30000	30000	32600	35500
LA		31400					
PS	4800	700	0	0	0	0	0
BN		0	29900	30000	30000	32600	35500
LP		29900	30000	30000	32600	35500	34600
		Juillet	Aout	Septemb	Octobre	Novemb	Décembr
BB (B)		11600	11200	11000	11000	11000	
BB (C)		20900	20100	19000	19500	19500	
BB (pdr)		2100	2000	2000	2000	2000	
BB total		34600	33300	32000	32500	32500	
LA							
PS		0	0	0	0	0	
BN		34600	33300	32000	32500	32500	
LP		33300	32000	32500	32500		

Planification des Ressources - MRP 2 - PBC

Capacités de production (heurs)

	Janvier	Février	Mars	Avril	Mai	Juin
Ass Interm	1150	1150	1150	1250	1250	1280
Usinage	1630	1600	1700	1650	1650	1700
	Juillet	Aout	Septemb	Octobre	Novemb	Décembr
Ass Interm	1250	1200	1200	1200	1200	1200
Usinage	1600	1650	1650	1650	1650	1650

Temps Opératoire en heures /unités Produits Finis – Sous Ensembles - Composants

	TO (h/u)
А	0.02
В	0.01
С	0.02

	TO (h/u)
F	0.005
G	0.01
Н	0.02

	TO (h/u)
V	0.005
W	0.01
Χ	0.01
Υ	-

MRP 2 - PBC Comparaison Charge Capacité Ass Inter

Charge Assemblage Intermédiaire = Projet F * 0.005 + Projet G * 0.01 + Projet H * 0.02

	Janvier	Février	Mars	Avril	Mai	Juin
Ass F	113	107	118	122	122	131
Ass G	383	404	394	423	456	449
Ass H	598	600	600	652	710	692
Total	1094	1111	1112	1197	1288	1272
Dispo	1150	1150	1150	1250	1250	1280
Excès					38	
	Juillet	Aout	Septemb	Octobre	Novemb	Décembr
Ass F	113	112	113	-		
Ass G	456	412	419	423		
Ass H	666	640	650	650		
Total	1235	1164	1182	-		
	1233	1104	1102			
Dispo	1250	1200	1200	1200	1200	1200

L'excédent de 38 h doit être reporté à une période antérieure L'excédent du mois d'avril est de 53 h, on peut donc produire au mois d'Avril les sous ensembles et les stocker pour le mois de Mai

MRP 2 - PBC Comparaison Charge Capacité

Lequel des 3 sous ensembles on va transférer ?

Cout Horaire des ateliers

	TO (Fr/h)
Ass Final	90
Ass Inter	100
Usinage	150

Cout des Matières premières

	Cm (Fr/u)		
А	5		
В	6		
С	6.5		

	Cm (Fr/u)			
F	1			
G	2			
Н	1			

	Cm (Fr/u)		
V	0.5		
W	0.75		
Χ	1		
Υ	2		

$$Cr = Cmat + Cmo$$

 $Cr v = 0.5 + 0.05 * 150 = 1.25 F$
 $Cr w = 2.25 F - Crx = 2 F - Cry = 2.5 F$

On calcule la valeur de la production horaire Pour F Cd = 1/0.005 = 200 u/h

MRP 2 - PBC Ajustement Charge Capacité Ass Inter

	Janvier	Février	Mars	Avril	Mai	Juin
LP F	22600	21400	23600	24400	24400	26200
LP G	38300	40400	39400	42300	54600	44900
LP H	29900	30000	30000	32600	35500	34600
Ass F	113	107	118	122	122	131
Ass G	383	404	394	423	456	449
Ass H	598	600	600	652	710	692
Total	1094	1111	1112	1197	1288	1272
Dispo	1150	1150	1150	1250	1250	1280
Ajustement				+38	-38	
Report de H				+1900	-1900	
Nouv LP H	29900	30000	30000	34500	33600	34600
	Juillet	Aout	Septemb	Octobre	Novemb	Décembr
LP F	22600	22400	22600			
LP G	45600	41200	41900	42300		
LP H	33300	32000	32500	32500		
Ass F	113	112	113	-		
Ass G	456	412	419	423		
Ass H	666	640	650	650		
Total	1235	1164	1182	-		
Dispo	1250	1200	1200	1200	1200	1200
Ajustement						

Pour H Top = 0.02h/u

Donc la Qte à reporter est:

$$Q = 38/0.02 = 1900 u$$

M.R.P. 3: principes

- M.R.P. 3 est supposé travailler à capacités limités.
- Le problème à résoudre est NP-difficile et il est difficile de savoir qu'elles sont les heuristiques qui sont incorporés dans les progiciel M.R.P. à capacités limitées.
- Souvent, il s'agit d'un ordonnancement à capacités limitées, calé à gauche et utilisant des heuristiques simples (à règles de priorité) qui suit l'application de M.R.P.
- Une approche intéressante consiste à utiliser de la programmation linéaire en nombres entiers tout en simplifiant le problème grâce à la théorie des contraintes de OPT (= ne modéliser en détail que les outils de production qui sont goulets d'étranglement et simplifier la modélisation des contraintes des autres outils).