Projet de bachelor

Bruteforce Password Attack on FPGAs

Table des matières :

- Introduction
- Bcrypt
- Réalisations
- Résultats
- Conclusion

Introduction

Introduction - Elca Security

Introduction - Durée du travail

Projet de semestre :

- En parallèle des cours
- 8 h par semaine

Projet de Bachelor

- Temps plein
- 450 h de travail

Introduction - Schéma

Introduction - FPGA vs CPU vs GPU

- Consommation
- Hashrate
- Coût

Bcrypt - Algorithme de hash

Bcrypt

Bcrypt - Format du hash

Réalisations - Travail de semestre

Implémentation existante

https://github.com/rub-hgi/high-speed_bcrypt

Implémentation existante - Schéma

Bcrypt - Password Hashing

Password Generator

Bcrypt Core Interface

Implémentation existante - Problèmes

- Documentations
- Versions Incohérences
- Testbenches incomplets
- Petites erreurs

Réalisations - Travail de bachelor

Solutions - Schéma

Password Buffer

Bcrypt Quadcore 3 Bcrypt Quadcore 4

Bcrypt Quadcore N

DMA

PCle

Driver

Passwords (Generated or Dictionnary)

Solution UART

CARTE FPGA - Nexys Video Artix 7

Solution UART - Initialisation des Quadcores

- Le nombre d'essais
- Le HASH et le SALT
- Initialisation du générateur de mots de passe

PAYLOAD FORMAT - BCRYPT QUADCORE INIT

Solution UART - Réponse du système

PAYLOAD FORMAT - RETURN

Return Code	Return
000	ОК
001	Packet size greater than expected
010	Packet size smaller than expected
011	Quadcore ID not valid
100	CRC Error

Solution UART - Retour du système

PAYLOAD FORMAT - STATUS REPORT

PAYLOAD FORMAT - PASSWORD FOUND

Solution UART - Encodage COBS

THE COBS ENCODING PROCESS

PACKET FORMAT

1 Byte	1 Byte	Variable	1 Byte	1 Byte
COBS HEAD	PAYLOAD LENGTH	PAYLOAD	CRC	COBS END

https://blog.mbedded.ninja/programming/serialization-formats/consistent-overhead-byte-stuffing-cobs/

Solution UART - Schéma

Solution PCIe

CARTE FPGA - KCU 116 Kintex Ultrascale +

Solution PCIe - Schéma Général

Solution PCIe - Accès Mémoire

Solution PCIe - Schéma de Test

Résultats

Résultats - Hashrate

Carte FPGA	Freq (MHz)	Quadcores Max.	Utilisations (%)	Hashrate (cost : 5)
Nexys Video	100	22	BRAM : 78.36, LUT : 75	<u>13'554 H/s</u>
KCU 116	100	36	BRAM : 97.50, LUT : 68	22'180 H/s
	200	36	BRAM : 97.50, LUT : 68	44'369 H/s
	250	36	BRAM : 97.50, LUT : 68	<u>55'450 H/s</u>
	275	< 30	-	< 50'820 H/s

Résultats - Comparaisons

Architecture	Puissance (W)	Hashrate (cost : 5)	Efficacité Énergétique	
FPGA (Nexys Video, 22 Quadcores, 100 MHz)	4.38	13'554 H/s	3'094 H/J	11.140 MHash/Wh
FPGA (KCU116, 36 Quadcores, 250 MHz)	11.7	55 [,] 450 H/s	4'739 Hash/J	17.06 MHash/Wh
CPU (AMD Ryzen 7 4800U, 16 threads)	~25	8'200 H/s	328 H/J	1.18 MHash/Wh
GPU (NVIDIA GTX 1660 Super)	125	19'201 H/s	154 Hash/J	552.98 kHash/Wh

Conclusion:

- Optimisation de l'implémentation Bcrypt
- Finir implémentation solution PCIe
- Mettre en place un driver linux pour PCIe

Démo