Tutorial questions - Lectures 4+5

- 1. What is more general: Bragg's law or the Ewald's sphere construction? Explain your answer.
- 2. For GaAs with unit cell parameter a=0.565nm, calculate g_{200} and g_{111} .
- 3. The following shows a diffraction pattern of a sphalerite semiconductor viewed along <110> zone axis. Calculate its lattice parameter.

4. Index the following simple cubic diffraction pattern. Which zone axis is it from?

- 5. Calculate the wavelength of 30kV electrons typically used in an SEM.
- 6. Sketch how a transmission electron diffraction pattern of a simple cubic crystal differs along <100> zone axis without and with the electron beam tilted off the zone axis.
- 7. The following is a list of systematic absences of reflections for all lattice types.

lattice	absence of $g_{hk^{\ell}}$
Р	none
С	h+k odd
1	h+k+ℓ odd
F	h, k and ℓ not all odd or all even

Write down which of the following reflections can exist in simple cubic, bcc and fcc structures: $\{100\}$, $\{110\}$, $\{111\}$, $\{200\}$, $\{210\}$, $\{211\}$.

8. Using the above result, how can you distinguish a bcc from an fcc lattice using the diffraction pattern?