Лабораторная работа 5.4.1 Определение теплоты испарения жидкости Выполнил Жданов Елисей Б01-205

1 Цель работы

Измерить пробег α -частиц в воздухе двумя способами: с помощью торцевого счетчика Гейгера и синтиляционного счетчика, — по полученным данным определить энергию частиц.

2 Теоретическая часть

При α -распаде исходное родительское ядро испускает ядро гелия и превращается в дочернее ядро, число протонов и число протонов уменьшается на две единицы. Функциональная свзяь между энергией α -частицы E и периодом полураспада радиоактивного ядра $T_{1/2}$ хорошо описывается формулой

$$\lg T_{1/2} = \frac{a}{\sqrt{E}} + b.$$

Экспоненциальный характер этого процесса возникает вследствие экспоненциального затухания волновой функции в области под барьером, где потенциальная энергия больше энергии частицы.

Для описания связи между энергией α -частицы и ее пробегом пользуются эмпирическими соотношениями. В диапазоне энергий α -частиц от 4 до 9 МэВ эта связь хорошо описывается выражением

$$R = 0.32E^{3/2}$$

3 Экспериментальная установка

В данной работе пробег α -частиц в воздухе определяется треями способами:

Рис. 1: Экспериментальные установки.

В качестве источника α -частиц используется 239Pu с периодом полураспада $T_{1/2}=2,44\cdot 10^4$ лет. Альфа-частицы, испускаемые 239Pu состоят их трех моноэнергетических групп, различие между которыми лежит в пределах 50 кэВ. При той точности, которая достигается в наших опытах, их можно считать совпадающими по энергии, равной 5,15 МэВ.

4 Обработка результатов

4.1 Исследование пробега α -ч. счетчика Гейгера

Представим результаты измерений (табл.) зависимости N=N(x) в виде графика – рис.

Найдем кривую, приближающую экспериментальные точки, в следующем виде:

$$N(x) = \frac{A}{1 + e^{(x-x_0)/dx}}.$$

Аппроксимация сигмоидой, причем значение на $+\infty$ было выбрано строго 0, чтобы избежать нереалистичного (отрицательного) сдвига отсчетов при больших расстояниях x.

Таблица 1: Параметры аппроксимации.

A_1	x_0 , MM	dx, MM
15.3	7.6	0.6

Погрешность х было решено взять среднему расстоянию от кривой до точек графика на отвесной части графика.

Средний $R_{\rm cp}$ и экстраполированный $R_{\rm экстр}$ пробеги определяются следующими уравнениями:

$$\begin{cases} N''(R_{\rm cp}) = 0, \\ R_{\rm экстр} = R_{\rm cp} + \left| N(R_{\rm cp}) / N'(R_{\rm cp}) \right|. \end{cases}$$

Энергию можно найти из формулы : $E = (R/0.32)^{2/3}$.

$R_{\rm cp}$, cm	$R_{\text{экстр}}$, см
1.76 ± 0.06	1.96 ± 0.08

	•
$E(R_{cp})$, МэВ	$E(R_{экстр})$, МэВ
3.12 ± 0.08	3.35 ± 0.10

4.2 Исследование пробега α -ч. с помощью сцинтилляционного счетчика

Представим результаты измерений (табл.) зависимости N=N(P) в виде графика – рис.

Найдем кривую, приближающую экспериментальные точки, в следующем виде:

$$N(P) = \frac{A}{1 + e^{(P - P_0)/dp}}.$$

Таблица 2: Параметры аппроксимации.

A	P_0 , торр
371	110 ± 50

Давления $P_{\rm cp}$ и $P_{\rm экстр}$, которые соответсвуют среднему $R_{\rm cp}$ и экстраполированному $R_{\rm экстр}$ пробегам, очевидно, определяются следующей системой уравнений:

$$\begin{cases} N''(P_{\rm cp}) = 0, \\ P_{\rm 9KCTP} = P_{\rm cp} + \left| N(P_{\rm cp})/N'(P_{\rm cp}) \right|. \end{cases}$$

Таблица 3: Р.

$P_{\rm cp}$, торр	$P_{экстр}$, торр
105 ± 15	190 ± 20

Так как α -частицы не могут достигнуть люминофора при обычном давлении, то свободный пробег будет равен расстоянию между препаратом и люминофором – 9 см. Следовательно, мы можем пересчитать средний и экстраполированные свободные пробеги частиц к давлению 760 торр и температуре 15°:

$$R = \frac{288 \text{ K}}{T} \cdot \frac{P}{760 \text{ Topp}} \cdot 9 \text{ cm}.$$

$R_{\rm cp}$, cm	$R_{\text{экстр}}$, см	$E(R_{cp})$, МэВ	$E(R_{экстр})$, МэВ
1.3 ± 0.6	2.2 ± 0.2	2.6 ± 0.7	3.6 ± 0.2

4.3 Определение пробега α -ч. с помощью ионизационной камеры

Представим результаты измерений (табл.) зависимости I = I(P) в виде графика – рис.

По графику определим: $P_{\text{экстр}} = (570 \pm 10)$ торр(с использованием кусочного МНК). Аналогично предыдущему пункту найдём экстраполированный пробег $R_{\text{экстр}}$ и соответствующую энергию.

$$R = \frac{288 \text{ K}}{T} \frac{P}{760 \text{ ropp}} \frac{10 - 0.5}{2} \text{ cm},$$

где 0.5 см и 10 см – диаметры первого и второго электродов соответственно.

$R_{\text{экстр}}$, см	$E(R_{\mathfrak{SKCTP}}), M\mathfrak{SB}$
3.44 ± 0.07	4.87 ± 0.07

Обсуждение результатов и выводы 5

В работе тремя различными способами был измерен свободный пробег в воздухе

 α -частиц с энергией 5.15 МэВ. В качестве источника радиоактивных частиц был

использован ²³⁹Pu.

Величины энергий ядер гелия измеренных Гейгером: 3.35 МэВ; сцинциллятором

3.6 МэВ; ионизационной камерой 4.87 МэВ. В пределах возможных случайных и

систематических погрешностей значения совпадают с энергией частиц, но все числа

систематически ниже ожидаемого значения.

Результаты вычислений энергий для экстраполированных и средних пробегов (см.

таблицы) по эмпирической формуле ($R=0.32E^{3/2}$) привели к заниженным значениям.

Это может быть следствием угловой расходимости пучка α -частиц. Экспериментально

наблюдаемые зависимости числа α -частиц от глубины их проникновения качественно

правильно передают провявление брэгговского пика и, тем самым, относительную

величину пробега частиц с разной энергией. Однако в силу указанных причин брэггов-

ский пик оказывается смещенным и сильно размытым. Поэтому экстраполированный

пробег дает лучшую оценку.

Также поскольку источник частиц покрыт слюдяной пленкой, что может происходить

замедление α -частиц. Эмпирическая формула энергии в области энергий 4-5.5

МэВ требует уточнений. Свободный пробег (выраженный в г/см²) слюдяной пленки

несколько больше свободного пробега в воздухе, выраженного в тех же единицах.

Ресурсы

Расчет по МНК: метод-наименьших-квадратов.рф

6