

Asignatura:

MÉTODOS COMPUTACIONALES - MÉTODOS NUMÉRICOS

Método de Lagrange – Método Interpolación Inversa Lineal Método Interpolación Inversa Cuadrática

2024

Universidad Nacional del Nordeste Facultad de Ciencias Exactas y Naturales y Agrimensura

Método de Lagrange

En un laboratorio se obtuvo en forma experimental, la presión del vapor de agua para distintas

a) Hallar la presión del vapor para T=180°C por el método de Lagrange.

Resolución:

x = 180

$$\frac{P_n(x)}{(x-x_0)*(x-x_1)*(x-x_2)*(x-x_3)} = \frac{y_0}{(x-x_0)*(x_0-x_1)*(x_0-x_2)*(x_0-x_3)} +$$

$$\frac{y_1}{(x-x_1)*(x_1-x_0)*(x_1-x_2)*(x_1-x_3)} + \frac{y_2}{(x-x_2)*(x_2-x_0)*(x_2-x_1)*(x_2-x_3)} + \\$$

$$\frac{y_3}{(x-x_3)*(x_3-x_0)*(x_3-x_1)*(x_3-x_2)} = >$$

2024

Universidad Nacional del Nordeste Facultad de Ciencias Exactas y Naturales y Agrimensura

Dado el siguiente problema:

La viscosidad del agua se ha determinado experimentalmente a temperaturas diferentes, como se indica en la tabla siguiente:

temperaturas unerentes, como se muica en la tabla								
	Temperatura	0°	5°	10°	15°			
ſ	Viscosidad	1,792	1,519	1,308	1,140			

Determine a qué temperatura se tiene una viscosidad de 1,702 usando interpolación inversa lineal y cuadrática.

Tabla de diferencias avanzadas

Temperatura (x)	Viscosidad (y)	Δy	$\Delta^2 y$	$\Delta^3 y$
0	1,792	-0,273		
5	1,519	-0,211	0,062 0,043	-0,019
10	1,308			
15	1,140	-0,168		

2024

Universidad Nacional del Nordeste Facultad de Ciencias Exactas y Naturales y Agrimensura

• Interpolación Inversa Lineal

$$P(x) = y_0 + \frac{\Delta y_0}{h} * (x - x_0)$$

Tenemos que $y_0=$ 1,792 ; $x_0=$ 0; $\Delta y_0=$ -0,273 ; h= 5

$$1,702 = 1,792 + \left[\left(-\frac{0,273}{5} \right) \cdot (x - 0) \right]$$

$$1,702 = 1,792 + (-0,0546 \cdot x)$$

$$1,702 - 1,792 = -0,0546x$$

$$-0,09 = -0,0546x$$

$$\frac{-0,09}{-0,0546} = x$$

$$x = 1,64$$

2024

Universidad Nacional del Nordeste Facultad de Ciencias Exactas y Naturales y Agrimensura

• Interpolación Inversa Cuadrática

$$P(x) = y_0 + \frac{\Delta y_0}{h} * (x - x_0) + \frac{\Delta^2 y_0}{2! \, h^2} * (x - x_0) * (x - x_1)$$

$$1,702 = 1,792 + \left[\left(-\frac{0,273}{5} \right).(x-0) \right] + \left[\frac{0,062}{2! \ 5^2} .(x-0).(x-5) \right]$$

$$1,702 = 1,792 + (-0,0546.x) + [0,00124x(x-5)]$$

$$1,702 = 1,792 + (-0,0546.x) + [0,00124(x^2 - 5x)]$$

$$1,702 = 1,792 - 0,0546x + 0,00124x^2 - 0,0062x$$

$$0.00124x^2 - 0.0062x - 0.0546x + 1.792 - 1.702 = 0$$

$$0.00124x^2 - 0.0608x + 0.09 = 0$$

2024

Universidad Nacional del Nordeste Facultad de Ciencias Exactas y Naturales y Agrimensura

$$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

$$\rightarrow \frac{0.0608 \pm \sqrt{(-0.0608)^2 - 4.0.00124.0.09}}{2.0.00124} =$$

$$= \frac{0,0608 \pm \sqrt{0,00325024}}{0,00248} \rightarrow$$

$$x_1 = 47,50$$

$$x_2 = 1,52$$

2024