Tutorial 5

- 1. We saw five steps which are crucial in designing dynamic programming algorithms. Give dynamic programming solutions to the following string related problems by giving these five steps for each.
 - (a) Given two strings $u, v \in \{0, 1, 2, 3\}^n$, find the longest common subsequence between these two strings.
 - (b) Given a string $u \in [M]^n$, where $M \in \mathbb{N}$, find the longest increasing subsequence in u.
 - (c) Let $\mathcal{C}: \Sigma \to \{0,1\}^*$ be a not necessarily prefix-free encoding of English text, where Σ represents the alphabet of English language. Suppose this encoding table is given to you and to look up the code for any letter in the table takes time O(1).
 - Given a string $u \in \{0,1\}^n$, find the number of possible valid decoded words of u.
 - (d) Given two strings $u, v \in \{0, 1\}^n$ compute the minimum number of changes needed to be made to u so that it becomes v. (The kind of changes allowed are only flip a bit from 0 to 1 or vice-a-versa.)
 - (e) Given two strings $u, v \in [M]^n$, where $M \in \mathbb{N}$, compute the minimum cost of converting u to v. The kind of change allowed is updating a letter u_i with some other letter from the alphabet [M]. Suppose $u_i = m$ and it is made m' then the cost of this change is |m m'|, i.e. the absolute value of the difference between m and m'.
 - (f) Suppose you are given two strings $u \in [M]^n$ and $v \in [M]^N$, where $M, n, N \in \mathbb{N}$ and $n \leq N$. Compute the minimum cost of converting u to v. The kind of changes allowed are: updating a letter u_i with some other letter or dropping a letter. The cost of any change is 1.

f(i) FS namber from

f(i) FS namber from

f(i) FS namber from

gringing

gri