

- 1. Bayesian Linear Regression
- 2. Bayesian Linear Regression via Message Passing
 - Normal Distribution Revisited
 - Posterior and Predictive Distribution
- 3. Fast Bayesian Linear Regression
- 4. Bayesian Linear Regression via Linear Algebra

Introduction to Probabilistic Machine Learning

- 1. Bayesian Linear Regression
- 2. Bayesian Linear Regression via Message Passing
 - Normal Distribution Revisited
 - Posterior and Predictive Distribution
- 3. Fast Bayesian Linear Regression
- 4. Bayesian Linear Regression via Linear Algebra

Introduction to Probabilistic Machine Learning

Bayesian Inference of Linear Basis Function Models

Given:

- **Training Data**: $D \in (\mathcal{X} \times \mathbb{R})^n$ of n (labelled) examples (x_i, y_i)
- **Linear Basis Functions**: Basis function mapping $\phi: \mathcal{X} \to \mathbb{R}^M$ and linear function model $f(x; \mathbf{w}) := \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(x)$
- Likelihood of functions: 3.

weight vector feature vector

$$p(D|f) = p(D|\mathbf{w}) = \prod_{i=1}^{n} \mathcal{N}(y_i; \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(x_i), \beta^2)$$

Prior belief over functions:

$$p(f) = p(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

- **Bayesian Inference:**
 - Posterior belief over functions:

$$p(f|D) = p(\mathbf{w}|D) = \frac{\prod_{i=1}^{n} \mathcal{N}(y_i; \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(x_i), \beta^2) \cdot \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\int_{\mathbb{R}^M} \prod_{i=1}^{n} \mathcal{N}(y_i; \widetilde{\mathbf{w}}^{\mathrm{T}} \boldsymbol{\phi}(x_i), \beta^2) \cdot \mathcal{N}(\widetilde{\mathbf{w}}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\widetilde{\mathbf{w}}}$$

Bayesian Network

Factor Graph

Introduction to **Probabilistic Machine** Learning

Bayesian Inference in Pictures

Likelihood 0.30 1.5 1.2 0.25 n = 20.20 0.9 0.15 0.6 0.10 0.3 0.05 $-1.0_{-0.5}^{-0.5}$ 0.0 0.5 1.0 -1.0

Input Space

1.0

$$f(x) = w_1 x + w_2$$

$$P(y|x) = \mathcal{N}(y; f(x), 0.2^2)$$

$$P(w_j) = \mathcal{N}(w_j; 0, 0.5)$$

Introduction to **Probabilistic Machine** Learning

- 1. Bayesian Linear Regression
- 2. Bayesian Linear Regression via Message Passing
 - Normal Distribution Revisited
 - Posterior and Predictive Distribution
- 3. Fast Bayesian Linear Regression
- 4. Bayesian Linear Regression via Linear Algebra

Introduction to Probabilistic Machine Learning

Multivariate Normal Distribution

■ Multivariate Normal Distribution. A continuous random variable $X \in \mathbb{R}^M$ is said to have a multivariate normal distribution if the density is given by

$$p(x) = \frac{1}{\sqrt{(2\pi)^M |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

where Σ must be a positive definite $M \times M$ matrix.

Properties:

$$E[X] = \mu$$
$$cov[X] = \Sigma$$

- **Covariance**. For any two random variables X_1 and X_2 the covariance expresses the extent to which X_1 and X_2 vary together **linearly** and is given by $cov[X_1, X_2] = E_{X_1X_2}[(X_1 E[X_1]) \cdot (X_2 E[X_2])] = E_{X_1X_2}[X_1X_2] E[X_1] \cdot E[X_2]$
 - Generalization of the variance to two random variables: var[X] = cov[X, X]
 - □ **Theorem**. If two random variables X_1 and X_2 are independent, then $cov[X_1, X_2] = 0$. The converse is not true!

Introduction to
Probabilistic Machine
Learning

Unit 7 – Bayesian Regression

Multivariate Normal Distribution: Representations

- Two Parameterizations (for different purposes):
 - Scale-Location Parameters

$$\mathcal{N}(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = (2\pi)^{-\frac{M}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} \cdot \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}-\boldsymbol{\mu})\right)$$

Natural Parameters

$$G(\mathbf{x}; \boldsymbol{\tau}, \mathbf{P}) = (2\pi)^{-\frac{M}{2}} |\mathbf{P}|^{\frac{1}{2}} \cdot \exp\left(-\frac{1}{2}\boldsymbol{\tau}^{\mathrm{T}}\mathbf{P}^{-1}\boldsymbol{\tau}\right) \cdot \exp\left(\boldsymbol{\tau}^{\mathrm{T}}\mathbf{x} - \frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{P}\mathbf{x}\right)$$

Conversions

$$\mathcal{N}(x; \mu, \Sigma) = \mathcal{G}(x; \Sigma^{-1}\mu, \Sigma^{-1})$$
Matrix inverse
$$\mathcal{G}(x; \tau, P) = \mathcal{N}(x; P^{-1}\tau, P^{-1})$$

Introduction to Probabilistic Machine Learning

Sampling Multivariate Normal Distribution

- **Assumption**: We have access to a random number generator $x \sim \text{Unif}([0,1])$
- **Box-Mueller**: If $x_1 \sim \text{Unif}([0,1])$ and $x_2 \sim \text{Unif}([0,1])$ then $f(x) \sim N(\cdot; 0, I)$ for

$$f\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} \sqrt{-2\ln(x_1)} \cdot \cos(2\pi x_2) \\ \sqrt{-2\ln(x_1)} \cdot \sin(2\pi x_2) \end{bmatrix}$$

In pictures:

- Sampling a multivariate Gaussian. If $x \sim \mathcal{N}(x; \mu, \Sigma)$ then for y = Ax + b $y \sim \mathcal{N}(y; A\mu + b, A\Sigma A^{\mathrm{T}})$
 - For sampling a multivariate distribution, we require either the SVD or Cholesky decomposition of the covariance matrix, $\Sigma = LL^{T}$ (see exercises)
 - Can be easily proven from the properties of expectation and covariance

George Box (1919 - 2013)

Mervin Mueller (1928 - 2018) Introduction to Probabilistic Machine Learning

- 1. Bayesian Linear Regression
- 2. Bayesian Linear Regression via Message Passing
 - Normal Distribution Revisited
 - Posterior and Predictive Distribution
- 3. Fast Bayesian Linear Regression
- 4. Bayesian Linear Regression via Linear Algebra

Introduction to Probabilistic Machine Learning

Multivariate Message Update Equations

Gaussian Factor

$$m_{f\to w}(w)=\mathcal{N}(w;\mu,\Sigma)$$

Gaussian Projection Factor

$$m_{f \to t}(t) = \int \delta(t - \mathbf{w}^{\mathrm{T}} \mathbf{x}) \cdot \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \ d\mathbf{w} = \mathcal{N}(t; \boldsymbol{\mu}^{\mathrm{T}} \mathbf{x}, \mathbf{x}^{\mathrm{T}} \boldsymbol{\Sigma} \mathbf{x})$$

$$m_{f \to \mathbf{w}}(\mathbf{w}) = \int \delta(t - \mathbf{w}^{\mathrm{T}} \mathbf{x}) \cdot \mathcal{N}(t; m, s^{2}) dt = \mathcal{G}\left(\mathbf{w}; \frac{m}{s^{2}} \mathbf{x}, \frac{1}{s^{2}} \mathbf{x} \mathbf{x}^{\mathrm{T}}\right)$$

Factor Graph

Introduction to Probabilistic Machine Learning

Bayesian Linear Regression by Message Passing

- **Message**: Simple factor tree where each training example is summarized in an *M*-dimensional message
 - Prior Message $m_{1.0}(\mathbf{w}) = \mathcal{G}(\mathbf{w}; \mathbf{\Sigma}^{-1}\boldsymbol{\mu}, \mathbf{\Sigma}^{-1}) = p(\mathbf{w})$
 - □ Target Message $m_{2,i}(t_i) = \mathcal{N}(t_i; y_i, \beta^2) = p(y_i|t_i)$
 - Data Message $m_{1,i}(\mathbf{w}) = \mathcal{G}\left(\mathbf{w}; \beta^{-2}y_i \boldsymbol{\phi}(x_i), \beta^{-2} \boldsymbol{\phi}(x_i) \boldsymbol{\phi}^{\mathrm{T}}(x_i)\right) = p(y_i | \mathbf{w})$
- **Posterior**: Multiplying prior and data messages we have

$$p(\boldsymbol{w}|D) = \mathcal{G}\left(\boldsymbol{w}; \boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} + \beta^{-2} \sum_{i=1}^{n} y_{i} \boldsymbol{\phi}(x_{i}), \boldsymbol{\Sigma}^{-1} + \beta^{-2} \sum_{i=1}^{n} \boldsymbol{\phi}(x_{i}) \boldsymbol{\phi}^{\mathrm{T}}(x_{i})\right)$$

Feature Matrix: All feature vectors are stacked on top of each other in a feature matrix feature vector (x) (x) (x) (x)

Introduction to Probabilistic Machine Learning

feature matrix feature vector
$$\boldsymbol{\phi} = \begin{bmatrix} \boldsymbol{\phi}_{1}(x_{1}) & \cdots & \boldsymbol{\phi}_{M}(x_{1}) \\ \vdots & \ddots & \vdots \\ \boldsymbol{\phi}_{1}(x_{n}) & \cdots & \boldsymbol{\phi}_{M}(x_{n}) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\phi}^{T}(x_{1}) \\ \vdots \\ \boldsymbol{\phi}^{T}(x_{n}) \end{bmatrix}$$
$$\boldsymbol{\phi}^{T}\boldsymbol{y} = [\boldsymbol{\phi}(x_{1}) & \cdots & \boldsymbol{\phi}(x_{n})] \begin{bmatrix} y_{1} \\ \vdots \\ y \end{bmatrix} = \sum_{i=1}^{n} y_{i} \boldsymbol{\phi}(x_{i})$$
$$\boldsymbol{\phi}^{T}\boldsymbol{\phi} = [\boldsymbol{\phi}(x_{1}) & \cdots & \boldsymbol{\phi}(x_{n})] \begin{bmatrix} y_{1} \\ \vdots \\ y \end{bmatrix} = \sum_{i=1}^{n} y_{i} \boldsymbol{\phi}(x_{i})$$

$$\boldsymbol{\phi}^{\mathrm{T}}\boldsymbol{\phi} = [\boldsymbol{\phi}(x_1) \quad \cdots \quad \boldsymbol{\phi}(x_n)] \begin{bmatrix} \boldsymbol{\phi}^{\mathrm{T}}(x_1) \\ \vdots \\ \boldsymbol{\phi}^{\mathrm{T}}(x_n) \end{bmatrix} = \sum_{i=1}^{n} \boldsymbol{\phi}(x_i) \boldsymbol{\phi}^{\mathrm{T}}(x_i)$$
12/23

Predictions

- **Predicition Tree**: Simple factor chain given posterior $p(w|x,D) = \mathcal{N}(w; \mu, \Sigma)$
 - Posterior Message $m_1(w) = \mathcal{N}(w; \mu, \Sigma) = p(w|x, D)$
 - Projection Message $m_2(t) = \mathcal{N}\left(t; \boldsymbol{\mu}^{\mathrm{T}}\boldsymbol{\phi}(x), \boldsymbol{\phi}^{\mathrm{T}}(x)\boldsymbol{\Sigma}\boldsymbol{\phi}(x)\right) = p(t|x,D)$
 - Prediction Message $m_3(y) = \mathcal{N}\left(y; \boldsymbol{\mu}^T \boldsymbol{\phi}(x), \beta^2 + \boldsymbol{\phi}^T(x) \boldsymbol{\Sigma} \boldsymbol{\phi}(x)\right) = p(y|x, D)$
- Bayesian Linear Regression in Matrix Notation

$$p(\boldsymbol{w}|D) = \mathcal{N}\left(\boldsymbol{w}; \underbrace{\boldsymbol{S}_{D}(\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} + \boldsymbol{\beta}^{-2}\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y})}_{\boldsymbol{m}}, \boldsymbol{S}_{D}\right), \qquad \boldsymbol{S}_{D} = \left(\boldsymbol{\Sigma}^{-1} + \boldsymbol{\beta}^{-2}\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}\right)^{-1}$$

Introduction to Probabilistic Machine Learning

Bayesian Linear Regression: Example

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \mathbf{0}, \lambda^2 \mathbf{I})$$

 $\lambda = 1$

Polynomial Basis

Introduction to Probabilistic Machine Learning

- 1. Bayesian Linear Regression
- 2. Bayesian Linear Regression via Message Passing
 - Normal Distribution Revisited
 - Posterior and Predictive Distribution
- 3. Fast Bayesian Linear Regression
- 4. Bayesian Linear Regression via Linear Algebra

Introduction to Probabilistic Machine Learning

Fast Bayesian Linear Regression

- Speeding up Bayesian Linear Regression: Factorize the prior and posterior over the weight vector and then use message passing
 - Since x is fixed, we used $\phi := \phi(x)$
 - $\square \quad \text{Message } m_{1,i}(w_i) = \mathcal{N}(w_i; \mu_i, \sigma_i^2)$
 - □ Message $m_3(t) = \mathcal{N}(t; y, \beta^2)$
 - $\qquad \text{Message } m_{2,i}(w_i) = \mathcal{N}\left(w_i; \phi_i^{-1} \cdot \left(y \pmb{\mu}^{\mathrm{T}} \pmb{\phi} + \mu_i \phi_i\right), \phi_i^{-2} \cdot \left(\beta^2 + \sum_{j=1}^M \phi_j^2 \sigma_j^2 \phi_i^2 \sigma_i^2\right)\right)$
- One can show that the product of $m_{1,i}(w_i)$ and $m_{2,i}(w_i)$ gives

largest for parameter with largest uncertainty so far

Introduction to Probabilistic Machine Learning

Speeding up Bayesian Linear Regression

Nearly orthogonal features

Weakly correlated features

Strongly correlated features

Introduction to Probabilistic Machine Learning

- 1. Bayesian Linear Regression
- 2. Bayesian Linear Regression via Message Passing
 - Normal Distribution Revisited
 - Posterior and Predictive Distribution
- 3. Fast Bayesian Linear Regression
- 4. Bayesian Linear Regression via Linear Algebra

Introduction to Probabilistic Machine Learning

Bayes' Theorem for Normal Distributions

■ Conjugate Gaussians. Given a normally distributed variable

$$x \sim \mathcal{N}(x; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

and a conditional distribution for y given x such that $y|x \sim \mathcal{N}(y; Ax + b, S)$ we have the following for the marginal p(y) and the "inverse" conditional p(x|y)

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}; A\boldsymbol{\mu} + \boldsymbol{b}, \boldsymbol{S} + \boldsymbol{A}\boldsymbol{\Sigma}\boldsymbol{A}^{\mathrm{T}})$$
$$p(\mathbf{x}|\mathbf{y}) = \mathcal{G}(\mathbf{x}; \boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} + \boldsymbol{A}^{\mathrm{T}}\boldsymbol{S}^{-1}(\mathbf{y} - \boldsymbol{b}), \boldsymbol{\Sigma}^{-1} + \boldsymbol{A}^{\mathrm{T}}\boldsymbol{S}^{-1}\boldsymbol{A}),$$

$$p(x_2|x_1) = \mathcal{N}\left(x_2; x_1 + 1, \frac{1}{2}\right)$$

$$p(x_1|x_2) = \mathcal{N}\left(x_1; \frac{2}{3}(x_2 - 1), \frac{1}{3}\right)$$

Introduction to Probabilistic Machine Learning

Conjugate Gaussians: Derivation

Main Ideas:

- **1. Representation**: Represent the Gaussian distribution via natural parameters and introduce a log-normalization constant to capture the marginal
- **2. Multiplication**: Derive the update of the multiplication of two Gaussians over x
- 3. **Linear Mapping**: Derive a relation between Gaussian in x and in y = Ax

1D Warm-Up

Theorem (Multiplication). Given two non-normalized one-dimensional Gaussian distributions $\mathcal{G}(x; \tau_1, \rho_1)$ and $\mathcal{G}(x; \tau_2, \rho_2)$ we have

$$\mathcal{G}(x; \tau_1, \rho_1) \cdot \mathcal{G}(x; \tau_2, \rho_2) = \mathcal{G}(x; \tau_1 + \tau_2, \rho_1 + \rho_2) \cdot \mathcal{N}(\mu_1; \mu_2, \sigma_1^2 + \sigma_2^2)$$

Theorem (Linearity). Given a non-normalized one-dimensional Gaussian distribution $\mathcal{N}(y; aw + b, \beta^2)$ we have

$$\mathcal{N}(y; aw + b, \beta^2) = \mathcal{N}(w; a^{-1}(y - b), a^{-2}\beta^2) \cdot \frac{1}{a}$$

 These two theorems combined allow to both efficiently and robustly compute the posterior parameters and derive the conjugate Gaussian equations

Introduction to Probabilistic Machine Learning

Bayesian Linear Regression

Bayesian Linear Regression: For the linear basis function model $f(x; w) := w^T \phi(x)$ with likelihood $p(D|w) = \mathcal{N}(y; \Phi w, \beta^2 I)$ and prior $p(w) = \mathcal{N}(w; \mu, \Sigma)$

$$p(\boldsymbol{w}|D) = \mathcal{N}\left(\boldsymbol{w}; \boldsymbol{S}\left(\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} + \frac{1}{\beta^2}\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}\right), \boldsymbol{S}\right), \qquad \boldsymbol{S}^{-1} = \boldsymbol{\Sigma}^{-1} + \frac{1}{\beta^2}\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}$$

- Special Case: $\mu = 0$ and $\Sigma = \tau^2 I$
 - For the posterior **mean** we have (Why?):

$$\mu_{\text{posterior}} = \left(\boldsymbol{\Phi}^{\text{T}}\boldsymbol{\Phi} + \frac{\beta^2}{\tau^2}\boldsymbol{I}\right)^{-1}\boldsymbol{\Phi}^{\text{T}}\boldsymbol{y} = \boldsymbol{w}_{\text{MAP}}$$

If the mean of the full Bayesian inference and the maximum-a-posteriori are the same, what's the difference?! The **variance** of the predictive distribution!

$$p(y|x,D) = \int p(y|x, \mathbf{w}) \cdot p(\mathbf{w}|D) d\mathbf{w} = \int \mathcal{N}(y; \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(x), \beta^{2}) \cdot p(\mathbf{w}|D) d\mathbf{w}$$

$$p(y|x,D) = \mathcal{N}\left(y; \left(\mathbf{S}\left(\mathbf{\Sigma}^{-1}\boldsymbol{\mu} + \frac{1}{\beta^2}\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}\right)\right)^{\mathrm{T}}\boldsymbol{\phi}(x), \boldsymbol{\beta}^2 + \boldsymbol{\phi}^{\mathrm{T}}(x)\mathbf{S}\boldsymbol{\phi}(x)\right)$$

Properties of Gaussians

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$p(\mathbf{v}|\mathbf{w}) = \mathcal{N}(\mathbf{v}; A\mathbf{w}, \boldsymbol{\Xi})$$

$$p(v) = \mathcal{N}(v; A\mu, \Xi + A\Sigma A^{T})$$
$$p(w|v) = \mathcal{N}(w; m, S)$$
$$m = S(A^{T}\Xi^{-1}v + \Sigma^{-1}\mu)$$
$$S^{-1} = \Sigma^{-1} + A^{T}\Xi^{-1}A$$

Introduction to Probabilistic Machine Learning

Summary

1. Bayesian Linear Regression

- Averaging over all functions weighting them by their posterior probability gives both a smoother mean and confidence intervals for each prediction (predictive distribution)
- Marginals and conditionals for multivariate Normals are linearly transformed Normals!
- Message passing on the Bayesian Regression factor graph involves no loops and is exact
- For linear basis function models with Normal noise, the posterior can be computed closed form
- Mean of Bayesian regression equals MAP solution but variance accounts for model uncertainty

2. Fast Bayesian Linear Regression

- The Bayesian linear regression algorithm is of cubic complexity in the features and quadratic in the training set size
- By factorizing both the prior and posterior distribution over the weight vector, we get a completely linear-complexity algorithm!

Introduction to Probabilistic Machine Learning

See you next week!