## CURSO EN DIAGNÓSTICO Y MODELAMIENTO DE DAÑO DE FORMACIÓN

#### ESCAMAS INORGÁNICAS

Bucaramanga, Diciembre de 2016











#### **Agenda**

#### Daño a la Formación

- · Mecanismos de daño
- · Escamas Inorgánicas

Panorama nacional - Análisis del ST

- · Carbonato de Calcio
- · Sulfato de Bario
- · Evaluación del riesgo

#### Fenómenos de Depositación

· Escenarios de daño

¿Como remediar?

Ejercicios Aplicación













# Daño a la Formación











#### Daño a la Formación













#### Mecanismos de daño a la Formación

1 Incremento de la viscosidad

Reducción de la permeabilidad relativa al petróleo o al gas

Reducción de la permeabilidad absoluta















#### Mecanismos de depositación

Interacción iónica

 $Ca^{+2}$ 

 $CO_3^{-2}$ 



- Rugosidad
- Estabilidad de la escama





- Difusión
  - Tiempo de contacto











#### Carbonato de Calcio



Factores que afectan su solubilidad:



 $Ca^{+2} + 2HCO_3^- \Leftrightarrow CaCO_3 \downarrow +CO_2 + H_2O$ 











#### Sulfato de Bario



$$Ba^{+2} + SO_4^{-2} \Leftrightarrow BaSO_4 \downarrow$$











## Panorama Colombiano











#### Análisis fisicoquímicos de aguas





3328



91

Tipo de agua

Balance Iónico

Tiempo

Análisis incompletos

469 Análisis











#### Análisis fisicoquímicos de aguas





#### Mayor riesgo:

CaCO<sub>3</sub> SrSO<sub>4</sub>
BaSO<sub>4</sub> FeCO<sub>3</sub>







#### **Análisis ST**

#### Carbonato de Calcio



| Datos | Media<br>Aritmetica | Desviacion<br>Estandar | min | 25%    | 50%     | 75%     | max      |
|-------|---------------------|------------------------|-----|--------|---------|---------|----------|
| 469   | 25,5423             | 34,4245                | 0   | 6,9128 | 18,7539 | 29,2484 | 395,2063 |











#### **Análisis ST**

#### Sulfato de Bario



| Datos | Media<br>Aritmetica | Desviacion<br>Estandar | min | 25%    | 50%    | 75%    | max    |
|-------|---------------------|------------------------|-----|--------|--------|--------|--------|
| 469   | 0,4924              | 1,1026                 | 0   | 0,0133 | 0,2579 | 0,6258 | 20,176 |











#### Evaluación del Riesgo

|               |              | Condici       | ones de Fon    |                     |          |                       |                   |
|---------------|--------------|---------------|----------------|---------------------|----------|-----------------------|-------------------|
| САМРО         | ST<br>Barita | ST<br>Calcita | ST<br>Siderita | ST<br>Estroncianita | Promedio | Producción<br>Bbl/día | Riesgo<br>Bbl/día |
| ACAÉ          | 1.2          | 97.0          | 93.0           | 0.0                 | 0.7      | 2149                  | 2149              |
| APIAY         | 1.4          | 7.3           | 7.3            | 1.2                 | 0.3      | 6050                  | 1722              |
| BRISAS        | ս[ 1.1       | 52.5          | 0.0            | 0.0                 | 0.3      | 137                   | 44                |
| BUENOSAIRES   | 1.5          | 36.5          | 11.3           | 3.4                 | 0.4      | 0                     | 0                 |
| CAÑO LIMON    | 0.8          | 2.9           | 41.2           | 0.0                 | 0.2      | 0                     | 0                 |
| CASABE        | 0.5          | 22.5          | 46.3           | 0.0                 | 0.2      | 5825                  | 1430              |
| CASABE SUR    | 0.2          | 10.3          | 0.1            | 0.0                 | 0.1      | 12629                 | 765               |
| CASTILLA      | 0.7          | 4.1           | 13.3           | 0.0                 | 0.2      | 122103                | 19176             |
| CEBU          | 0.0          | 27.7          | 0.0            | 0.0                 | 0.1      | 155                   | 11                |
| CHICHIMENE    | 0.7          | 3.8           | 39.2           | 0.0                 | 0.2      | 57175                 | 12001             |
| COLORADO      | 0.4          | 35.6          | 0.0            | 0.0                 | 0.2      | 0                     | 0                 |
| CRISTALINA    | 0.7          | 44.8          | 0.0            | 0.0                 | 0.2      | 123                   | 28                |
| CUSIANA       | 1.5          | 34.2          | 11.7           | 3.3                 | 0.4      | 4545                  | 1852              |
| DINA          | 0.2          | 16.5          | 19.9           | 0.0                 | 0.1      | 3367                  | 382               |
| PALOGRANDE    | 0.2          | 22.3          | 13.4           | 0.0                 | 0.1      | 968                   | 112               |
| PETROLEA      | 0.3          | 73.4          | 10.5           | 18.3                | 0.5      | 0                     | 0                 |
| PIEDEMONTE    | 1.0          | 26.5          | 7.3            | 2.2                 | 0.3      | 9102                  | 2498              |
| SAN FRANCISCO | 0.8          | 57.4          | 22.4           | 0.0                 | 0.3      | 0                     | 0                 |
| SANTA CLARA   | 0.5          | 85.7          | 112.3          | 6.3                 | 0.6      | 805                   | 516               |
| TELLO         | 0.2          | 59.0          | 12.6           | 0.0                 | 0.2      | 4683                  | 982               |
| TENAY         | 0.8          | 25.6          | 21.9           | 0.0                 | 0.2      | 299                   | 74                |
| TIBU          | 0.0          | 12.1          | 8.7            | 1.3                 | 0.1      | 2875                  | 207               |
| TOLADO        | 0.4          | 36.8          | 7.1            | 0.0                 | 0.2      | 703                   | 119               |
| YARIGUI       | 0.6          | 17.9          | 14.0           | 1.8                 | 0.2      | 19694                 | 3850              |
| PROMEDIO      | 0.7          | 33.9          | 21.4           | 1.6                 | Total    | 253387                | 47918             |

La producción de los diferentes pozos fue tomada del último reporte de la ANH











## Fenómenos de depositación











#### **Escenarios de Severidad**

### Estimación de la cantidad de Incrustación de CaCO<sub>3</sub> formada (PTB) Valone & Skillern

$$PTB = 17500(G - \sqrt{X^2 + 4 * 10^{-pKc}})17500$$

$$pKc = pH - 2.76 + 9.88 \times 10^{-3} T + 0.61 \times 10^{-6} T^2 - 3.03 \times 10^{-5} P - 2.348 \mu^{1/2} + 0.77 \mu$$

#### Donde:

PTB = lb/1000 bbl

 $G = Ca^{++} + HCO_3^-$  (moles/L)

 $X = Ca^{++} - HCO_3^-$  (moles/L)

| Escenario       | Severidad             |  |  |  |  |
|-----------------|-----------------------|--|--|--|--|
| PTB < O         | NO HAY INCRUSTACION   |  |  |  |  |
| 0 < PTB < 100   | INCRUSTACION LEVE     |  |  |  |  |
| 100 < PTB < 250 | INCRUSTACION MODERADA |  |  |  |  |
| PTB > 250       | INCRUSTACION SEVERA   |  |  |  |  |











#### **Escenario** nacional













#### Depositación en plug

**Experimento 13** 

Plug B-5-10



### ¿Como remediar?











#### Fluidos usados para remediar



#### Aplicación en campo



#### **Tratamiento Aplicado**

Preflujo: 150 bbls diesel +

surfactante

Tratamiento: 373 bbl de EDTA

0.18 M

**Postflujo:** 470 bbl salmuera **Tiempo de remojo:** 12 horas



**US \$ 0.21 MM** 











#### Secuencia de estimulación

**Pickling** 

 Limpiar tubería e intervalos cañoneados.

Tratamiento Químico

- Bombeo del ácido escogido.
- Estimulación selectiva o Bullheading.



**Fuente**:http://www.franklinwell.com/equipment/co il-tubing.php

Levantamiento del pozo





• Análisis de retornos.







## Fluidos usados para remediar – CaCO<sub>3</sub>



49 tratamientos de estimulación ácida aplicados por el GEE entre 2008 - 2014











#### Análisis de producción



# Identificación de Problemas de escamas

Ejercicio de aplicación











#### **How is it Prevented?**

#### Scale Tendency

$$ST_{MeAn} = \log \left( \frac{[Me][An]\gamma_{Me} \gamma_{An}}{K_{sp}^{MeAn} = f(T, P, x)} \right)$$

#### Solubility Product Constants

$$K_{sp}^{MeAn} = f(T, P, x)$$

Training Set

Learning Algorithm

Temperature

Pressure

Hypothesis

 $K_{sp} = f(T, P, x)$ 

Composition

$$ST_{MeAn} > 0$$
 Precipitation

$$ST_{MeAn} = 0$$
 Thermodynamic Equilibrium

$$ST_{MeAn} < 0$$
 NO-Precipitation

#### Activity and Fugacity Coefficients

#### Thermodynamic Models

- Debye-Hückel
- UNIQUAC Ext.
- SRK
- Pitzer











#### Software para ST













#### Input – Análisis fisicoquímico del agua













#### Identificación de la escama













#### Resultados y validación



#### Resultados y validación



## Gracias









