Cachés Multibanco


```
a. A7 A6

(cada 64 direcciones contiguas cambiaría de caché)

- M0 -> 0x00..0x3F

- M1 -> 0x40..0x7F

- M2 -> 0x80..0xBF

- M3 -> 0xC0..0xFF
```

```
b. A1 A0

(cada 1 dirección contigua cambiaría de caché)

- M0 -> @ % 4 == 0
- M1 -> @ % 4 == 1
- M2 -> @ % 4 == 2
- M3 -> @ % 4 == 3
```

```
c. A4 A3

(cada 8 direcciones contiguas cambia de caché)

- M0 -> (@ >> 3) % 4 == 0
- M1 -> (@ >> 3) % 4 == 1
- M2 -> (@ >> 3) % 4 == 2
- M3 -> (@ >> 3) % 4 == 3
```

Reducir penalización por fallo

Actualizar MP después de leer a caché

Pasamos de esto:

A esto:

Envío antes el byte de fallo

- Continuación anticipada
- Este es el que se usa (+ rápido).

Transferencia en desorden + Continuación anticipada

Buffer de lectura

Buffer de escritura

Copy-back

Para reducir la penalización en caso de fallo hay que dar prioridad a leer el boque que contiene el dato que provoca el fallo a la escritura en MP del bloque reemplazado.

Write-through

El coste de una escritura es el coste de escribir en Memoria Principal (no es aceptable)

Merge buffer (para el write-through)

@	٧	data				
100	1	M[100]				
104	1	M[104]				
108	1	M[108]				
112	1	M[112]				
116	1	M[116]				
120	1	M[120]				
_	0	-				
_	0	-				

Buffer convencional

@	٧	data	٧	data	٧	data	٧	data
100	1	M[100]	1	M[104]	1	M[108]	1	M[112]
116	1	M[116]	1	M[120]	0	-	0	_
_	0	-	0	-	0	-	0	_

Merge Buffer

Se puede aprovechar el hecho de que escribir un bloque de memoria tiene prácticamente el mismo coste que escribir una palabra.

Buffer de escritura

La CPU tarda 2 ciclos en leer de caché

Pero si añadimos segmentación

