STATE SPACE SEARCH - A state space is represented by a four-tuple [N,A,S,GD], where:

N - is the set of nodes or states of the graph. These correspond to the states in a problem-solving process.

A - is the set of arcs (or links) between nodes. These correspond to the steps in a problem-solving process.

S - a nonempty subset of N, contains the start state(s) of the problem.

GD - a nonempty subset of N, contains the goal state(s) of the problem. The states in GD are described using either:

- 1. A measurable property of the states encountered in the search.
- 2. A measurable property of the path developed in the search, for example, the sum of the transition costs for the arcs of the path.

A solution path is a path through this graph from a node in S to a node in GD.

Logic as State Space Language

- Propositional and predicate logic can represent:
 - Nodes: logical assertions or truth values
 - Arcs: logical inference rules
- **Search algorithms** can then traverse this graph to reach conclusions (e.g., derive a goal formula from axioms).

EXAMPLE 3.3.1: THE PROPOSITIONAL CALCULUS

The first example of how a set of logic relationships may be viewed as defining a graph is from the propositional calculus. If p, q, r,... are propositions, assume the assertions:

Figure 3.20 State space graph of a set of implications in the propositional calculus.

In Figure 3.20 the arcs correspond to logical implications (\rightarrow). Propositions that are given as true (s and t) correspond to the given data of the problem

FYI - **Forward-Chaining** (start from known facts and infer new facts) and **Backward-Chaining** (start from goal and trace backward)

The second example is also from the propositional calculus but generates a graph that contains both and and or descendants. Assume a situation where the following propositions are true:

Figure 3.23 And/or graph of a set of propositional calculus expressions.

This set of assertions generates the and/or graph in Figure 3.23.

Questions that might be asked (answers deduced by the search of this graph) are:

- 1. Is h true? A and C are true -> E is true -> A and E are true therefore h is true.
- 2. Is h true if b is no longer true?

More examples:

Consider the following propositional logic KB in Horn form:

- A1: $A \wedge B \implies D$
- A2: $A \wedge F \implies G$
- A3: $B \wedge C \implies F$
- A4: $D \wedge C \implies H$
- A5: $A \wedge C \implies E$
- A6: $G \wedge E \wedge H \implies I$
- A7: A
- A8: B
- A9: C
- 4. (30 pt) Consider the following knowledge base
 - a. Prove that Q is true with:
 - 1. $P \rightarrow Q$
 - 2. $L \wedge M \rightarrow P$
 - 3. $B \wedge L \rightarrow M$
 - 4. $A \land P \rightarrow L$
 - 5. $A \wedge B \rightarrow L$
 - 6. A
 - 7. B
 - i. (4 pt) Forward-Chaining
 - ii. (4 pt) Backward-Chaining

i. Forward-Chaining (start from known facts and infer new facts)Known:

MIOWII.

- A
- B

Step 1:

From (5): A \land B \rightarrow L \rightarrow infer **L**

Step 2:

From (3): B \wedge L \rightarrow M \rightarrow infer **M**

Step 3:

From (2): L \wedge M \rightarrow P \rightarrow infer **P**

Step 4:

From (1): $P \rightarrow Q \rightarrow infer \mathbf{Q}$

Q is inferred by forward chaining

Backward-Chaining (start from Q and trace backward)

Goal: O

- To prove Q, need P (from 1: $P \rightarrow Q$)
- To get P, need L ∧ M (from 2)
 - o To get M, need B ∧ L (from 3)
 - We already have B
 - o To get L:
 - (5): $A \wedge B \rightarrow L$ (we have both A and B) \rightarrow infer **L**
 - Now have B and L \rightarrow infer **M**
- Now L and M → infer P
- $P \rightarrow Q \rightarrow infer Q$

Q is proven by backward chaining