Placement optimal de pompiers pour éteindre des incendies

Déborah Nash, Lin Hirwa Shema, Lucas Villenave, Martin Debouté

Contexte

Protéger les villes des départs de feux

- Villes
- Zones inaccessibles
- Départs de feux
- Pompiers
- Terrains vagues
- Propagation du feu

REPRÉSENTATION DU PROBLÈME

CENTRE RÉEL

(x + 0.5, y + 0.5)

PLACEMENT DES POMPIERS

Pixels communs

FOURNAISE

Tout pixel traversé par le cercle

LIGNE DE FEU

Tout pixel traversé par la droite

RÉDUCTION DU PROBLÈME

RÉDUCTION DU PROBLÈME

Non réalisables

Ville et eau

Symétrie

Coupe la même ligne

Inutiles

Coupe aucune ligne de feu

Inclusion

Coupe moins de lignes qu'un autre

CRÉATION DU GRAPHE

STRUCTURE DE DONNÉES

Dimensions:

 $I = \{1, ..., n \times m\}$: l'ensemble des pixels de l'image.

 $F \subset I$: l'ensemble des pixels qui correspondent à des foyers de feux.

 $R = \bigcup_{f \in F} R(f)$: l'ensemble de lignes de feux dirigé vers des villes. $P = \bigcup_{r \in R} P(r)$: l'ensemble de pixels réalisables pour le placement d'un pompier.

Données:

 $\forall f \in F, R(f)$: l'ensemble des lignes de feux émis par le feu f qui se dirigent vers une ville. $\forall r \in R, P(r)$: l'ensemble des pixels réalisables pour le placement d'un pompier qui se trouvent dans le voisinage de la ligne de feux r (placer un pompier sur un de ces pixels arrête la propagation de cette ligne de feux vers la ville).

Variables de décision

 $x_p \in \{0,1\}$: 1 si on place un pompier au pixel $p \in P$, 0 sinon.

Fonction objectif

$$\min : \sum_{p \in P} x_p \tag{3.1}$$

L'objectif (3.1) est de minimiser le nombre total de pompiers à placer.

Contraintes

$$\sum_{p \in P(r)} x_p \geqslant 1 \qquad \forall r \in R \tag{3.2}$$

La contrainte (3.2) assure que chaque ligne de feux dirigée vers une ville se trouve dans le champ d'action d'un pompier (i.e. est stoppé).

RÉSOLUTION DU PROBLÈME

BRUTE FORCE

- Solution optimale
- Long
- Optimisation

GLOUTON

- "Bonne" solution
- Rapide

RECUIT SIMULÉ

- Très bonne solution
- Long
- Paramétrage précis

Nombre d'angles	10		48	
Durée d'élimination des symétries (sec)	0.	00	0.00	
	Taille	Temps	Taille	Temps
Glouton	1	0.00	4	0.00
Recuit Simulé	1	0.00	4	0.00
Brute force	1	0.00	4	0.00
MIP	1	0.00	4	0.00

15x15 1 Feu

Nombre d'angles	10		
Durée d'élimination des symétries (sec)	0.00		
	Taille	Temps	
Glouton	6	0.00	
Recuit Simulé	6	0.00	
Brute force	6	0.00	

Nombre d'angles	10			
Durée d'élimination des symétries (sec)	0.00			
	Taille	Temps		
Glouton	4	0.00		
Recuit Simulé	4	0.00		
Brute force	4	0.00		
MIP	4	0.00		

١	Nombre d'angles 10			13		14	33		
	urée d'élimination es symétries (sec)	0.	01	0	.02	0.02 0.		.11	
		Taille	Temps	Taille	Temps	Taille	Temps	Taille	Temps
	Glouton	8	0.00	9	0.00	9	0.00	11	0.00
	Recuit Simulé	8	0.00	9	0.00	9	0.00	11	0.40
	Brute force	8	0.24	9	20.9	9	57.3	-	-
	MIP	8	0.00	9	0.00	9	0.00	10	0.01

50x50 3 Feux

Nombre d'angles	5	60	700		
Durée d'élimination des symétries (sec)	0.	09	3.34		
	Taille Temps		Taille	Temps	
Glouton	6	0.00	8	0.01	
Recuit Simulé	6	0.11	7	7.54	
Brute force	5	8.67	-	-	
MIP	5	0.01	6	0.06	

100x100 2 Feux

Nombre d'angles	1	50	200		
Durée d'élimination des symétries (sec)	13	3.5	25.1		
	Taille Temps		Taille	Temps	
Glouton	14	0.00	14	0.01	
Recuit Simulé	12	1.76	12	7.47	
Brute force	-	-	-	-	
MIP	12	0.06	12	0.06	

486x421 3 Feux

Nombre d'angles	3	80	150		
Durée d'élimination des symétries (sec)	2.	35	48.8		
	Taille	Temps	Taille	Temps	
Glouton	18	0.00	22	0.00	
Recuit Simulé	17	0.00	20	0.02	
Brute force	- 1	-	1	1	
MIP	16	0.05	19	0.20	

789x1388 4 Feux

Merci pour votre attention

Avez-vous des questions?

Déborah Nash, Lin Hirwa Shema, Lucas Villenave, Martin Debouté

UE Algorithmique Appliquée - 2022-2023

université BORDEAU