



Segurança em Sistemas: Autenticação

+Uma das bases para um sistema de segurança é o controle no acesso

+"Alguém tem acesso a algo"

+Um sistema não tem forma de identificar um individuo "visualmente"

+Necessita da algum tipo de dados

+Identificação: Quem é o individuo que quer aceder ao sistema

+Autenticação: Confirmar que o individue é quem afirma ser

Segurança em Sistemas: Autenticação vs Identificação

\*\*A Identificação poderá ser facilmente conhecida ou pelo menos previsivel

\*\*Por exémplo quando recebernos um email, ficamos a conhecer o email do remetente

\*\*O email e um dos métodos de identificação mais comuns em diversos sistemas online

\*\*Do mesma forma o nosso IBAN è impresso em qualquer recibo de multibanco

\*\*Por outro Iado, a autenticação deverá ser fiável

\*\*Se a identificação afirma a identificade de um individuo/sistema a autenticação deverá confirmar essa identidade

\*\*A autenticação é composta por 1 (ou mais) das seguintes qualidades:

\*\*A jo que o utilizado rable: Password, pin, handahake, nomes, datas de nascimento, etc

\*\*A jo que o utilizado rable: Password, pin, handahake, nomes, datas de nascimento, etc

\*\*A jo que o utilizado e Dados biométricos, baseados em caracteristicas do utilizador, impressão digital, reconhecimento de voz ou sparência

\*\*A jo que o utilizador tem: distintivos de identificação, chaves fisicas, cardos de identificação, etc.

3 4















Segurança em Sistemas: algo que o utilizador ... Sistemas mais avançado utilizam técnicas como + Multifactor-Authentication AS abordagens discutidas até agora possuem algumas desvantagens +Um token só funciona se não for partilhado, uma password só tem valor se for mantida +A abordagem Multifactor ou Two-factor authentication tenta mitigar a desvantagens de técnicas individuais +Combinando-as Por exemplo o cartão de cidadão é um token de autenticação + Mas a autenticação da identidade também é garantida pela foto, e pela assinatura

11 12









15 16





Segurança em Sistemas: Encriptação simétrica - algoritmos

Os algoritmos de encriptação simétrica mais comuns são cifras de bloco
(block ciphers)

+ Processa o input em blocos com um tamanho fixo, e cada bloco encriptado
tem o mesmo tamanho que o input

Os algoritmos mais comuns são o Data Encryption Standard (DES) o Triple
DES e o Advanced Encryption Standard (AES)

Segurança em Sistemas: Encriptação simétrica - DES

+ Alé recentemente o DES foi o algoritmo mais usado

- Recebe um bloco de 64 bits e uma chave de 56 bits para produzir um bloco encriptado de 64 bits
- O tamanho da chave é uma das vulnerabilidades de segurança do DES
- Existem 2ºº possíveis chaves
- Considerando a velocidade dos CPUs atuais um computador pode quebrar um algoritmo DES em pouco mais de um ano
- Esta velor é multo mais reduzido quando consideramos uma abordagem paraleta com mais sistemas
- Chave maiores (e.g. 128 bits) tomariam uma ataque por força bruta efetivamente impraticável
- Por outro lado, dada a sua popularidade, o DES é um dos algoritmos mais estudados
- E apesar de inúmeras tentativas ainda não foi explorada nenhuma vulnerabilidade utilizando uma abordagem de criptoanálise

19 20











Segurança em Sistemas: Encriptação simétrica - Performance Time Required at  $10^{13}$  decryptions/ $\mu$ s Number of Alternative Keys Time Required at  $10^9$  decryptions/ $\mu$ s Key size (bits) Cipher  $2^{55} \mu s = 1.125 \text{ years}$  $2^{56} \approx 7.2 \times 10^{16}$  $2^{128} \approx 3.4 \times 10^{38}$  $2^{127} \mu s = 5.3 \times 10^{21} \text{ years}$  $5.3 \times 10^{17}$  years Triple DES  $2^{168} \approx 3.7 \times 10^{50}$  $2^{167} \mu s = 5.8 \times 10^{33} \text{ years}$  $5.8 \times 10^{29}$  years  $2^{192} \approx 6.3 \times 10^{57}$  $2^{191} \mu s = 9.8 \times 10^{40} \text{ years}$  $9.8 \times 10^{36} \, \text{years}$  $2^{256} \approx 1.2 \times 10^{77}$  $2^{255}\mu s = 1.8 \times 10^{60} \text{ years}$  $1.8 imes 10^{56}$  years

25 26





27 28









31 32



Segurança em Sistemas: Encriptação simétrica – Um caso prático

O algoritmo de encriptação PA é muito simples

+ Convérte o conteúdo para minúsculas
+ Encripta linha a linha (cifra de "bloco")

+ Substituindo o conteúdo carater a carater com um valor da chave
+ Neste caso usamos o código ascii de cada carater de origem para selecionar um elemento da chave
+ Ao indice subtraimos o valor 97, para criar um indice que começa em 0
+ Para o carater \* foi adicionado um caso especial
+ A função de desencriptação realiza o processo inverso
+ Este algoritmo não deveria ser usada em nenhum tipo de sistema seguro
+ Contém vários problemas
+ TPC: Identificar 4 oroblemas com este algoritmo

33



Segurança em Sistemas: Encriptação simétrica – Um caso prático

+ A utilização dos algoritmos DES e AES é semelhante

+ Existem diversas bibliotecas que permitem a utilização destes algoritmos

+ Por exemplo:

+ Criação de chaves aleatórias:

Random srandom = new Random();
byte[] iv = new byte[128/8]://16 bytes
srandom.nextlytes(iv);
b/ParameterSpec ivspec = null;
kgen = KeyGenerator kgen = null;
kgen = KeyGenerator kgen = null;
kgen = KeyGenerator kgen = null;
secretKey skey = kgen.generateKey();
deskey = sktgeneratorscer(IdS);
deskey = sktgeneratorscer(CES\*);
deskey = sktgeneratorscer(CES\*);
desc.joher-init(mode.deskey);

35 36









39 40