METODY NUMERYCZNE – LABORATORIUM

Zadanie 4 – Implementacja metod całkowania numerycznego

Opis rozwiązania

W zadaniu zastosowano metody: złożoną kwadraturę Newtona-Cotesa na trzech węzłach, wykorzystującą wzór Simpsona, a także kwadraturę Gaussa przy użyciu wielomianów Laguerre'a.

Algorytm pierwszej metody prezentuje się następujaco:

1. Metoda wymaga podzielenia przedziału całkowania przy każdej iteracji, w celu obliczenia wyniku z zadaną dokładnością. W naszym programie zwiększamy dwukrotnie ilość podprzedziałów.

2. Wykorzystując złożony wzór Simpsona
$$\int_{a}^{b} f(x) dx = \frac{1}{3} h(f_0 + f_m + 2 \sum_{i=1}^{\frac{m}{2} - 1} f_{2i} + 4 \sum_{i=1}^{\frac{m}{2} - 1} f_{2i+1}) \text{ liczymy}$$

wartość całki i porównujemy ją z wynikiem otrzymanym w poprzedniej iteracji.

3. Algorytm kończy się jeśli różnica wyników z dwóch ostatnich iteracji jest mniejsza niż zadana dokładność.

Algorytm drugiej metody prezentuje się następująco:

- 1. Jako, że w programie użyto ilości węzłów jako warunku kończącego, zależy od tego ilość iteracji dla wzoru zaokrąglającego całkę.
 - 2. Dla każdego węzła wyliczany jest iloczyn jego wagi i wartości funkcji w tym węźle, zgodnie ze wzorem $H_i f(x_i)$ gdzie H_j jest wagą węzła, a x_j wartością węzła. Dane te zostały zaczerpnięte z literatury.
 - 3. Z każdą iteracją, do ostatecznego wyniku dodawany jest wynik z poprzedniej iteracji.

Wyniki

W poniższej tabeli zaprezentowane zostały wyniki uzyskane przez program dla konkretnych przykładów funkcji wejściowych.

	Kwadratura Newtona- Cotesa w przedziale [0; 100]			Kwadratura Gaussa w przedziale $[0; \infty)$			Wartość
Funkcja	Dokładn ość	Ilość iteracji	Wynik	Ilość węzłów	Ilość iteracji	Wynik	oczekiwana
$8x^3 + 2x + 0.25$	0.0001	17	50.2499				
$8x^3 + 2x + 0.25$	0.001	14	50.2489	3	3	50.2495	50.25
$8x^3 + 2x + 0.25$	0.01	11	50.239				
cos(x)	0.0001	19	0.499873	3	3	0.47652	0.5
cos(x)	0.001	16	0.498984	4	4	0.502494	0.5
cos(x)	0.01	12	0.484121	5	5	0.500548	0.5
$\cos(0.5x)$	0.0001	19	0.799873	3	3	0.799891	0.8
cos(0.5x)	0.001	16	0.798984	4	4	0.800026	0.8
cos(0.5x)	0.01	12	0.784121	2	2	0.797302	0.8

Wnioski

- Metoda wykorzystująca kwadraturę Gaussa okazuje się być bardziej wydajna, gdyż potrzebuje mniejszej liczby iteracji aby otrzymany wynik był bardzo bliski oczekiwanej przez nas wartości.
- Kwadratura Gaussa wykorzystująca wielomiany Laguerre'a jest łatwiejsza do zaimplementowania dzięki wykorzystaniu wzoru opartego o ilość węzłów.