Escolha uma base de dados. Essa base deve ser multivariada e possuir uma variável objetivo, que pode ser usada na fase de treino (modelos supervisionados) e/ou na validação do modelo (modelos supervisionados e não-supervisionados) OBS: Caso você não possua uma base, utilize a base de dados de vinho brancos. Considere bons vinhos aqueles que obtiveram notas >= 6. Como motivo da escolha (questão 2.a) apenas indique utilizou a base proposta pelo professor. Explique a origem dos dados e o motivo para a escolha. Descreva, também, como os dados foram obtidos. Essa é a fase de COMPREENSÃO DO NEGÓCIO.

RESPONDENDO:

Utilizando vinhos brancos, bons com notas >=6. Motivo: base proposta pelo professor.

Esta é uma base real, apresentada no artigo: P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

- Link para o artigo :
 https://www.sciencedirect.com/science/article/abs/pii/S0167923609001377
- Para a base de dados: https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv

Descreva as variáveis do problema e o tipo de cada uma (categórica ou numérica). Mostre a distribuição (usando um histograma) para cada uma delas. Comente sobre a faixa dinâmica de cada uma delas. Essa é a fase de COMPRENSÃO DOS DADOS.

RESPONDENDO:

Compreensão do Negócio: A base de dados de vinhos brancos é uma escolha comum para análise e modelagem na área de Ciência de Dados, devido à sua disponibilidade e variedade de informações relevantes. Esses dados são úteis para avaliar a qualidade dos vinhos brancos e identificar padrões que possam influenciar essa qualidade.

Compreensão dos Dados: As variáveis presentes na base de dados de vinhos brancos incluem características físico-químicas, como acidez, teor alcoólico, pH, dentre outras, além da variável objetivo, que é a qualidade do vinho. A maioria das variáveis é numérica, enquanto a qualidade é uma variável categórica ordinal (mais detalhes na tabela abaixo).

Para obter uma compreensão inicial dos dados, podemos criar histogramas (abaixo) para visualizar a distribuição de cada variável e sua faixa dinâmica. Isso nos ajudará a entender a amplitude e a dispersão dos valores em cada variável, bem como possíveis desequilíbrios nos dados.

Descreva o objetivo do modelo que será criado neste projeto. Agora faça o tratamento de dados necessários para o treinamento: escalonamento, normalização, transformação de variável (ex: aplicar a função log em uma variável com distribuição exponencial), separação entre treino e

teste... Você deve optar pelas tarefas necessárias, descrevendo cada uma delas e justificando o motivo. Essa é a fase PREPARAÇÃO DOS DADOS.

RESPONDENDO:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import random
import numpy as np
from sklearn.preprocessing import StandardScaler, PowerTransformer
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.metrics import (
   accuracy score,
   precision score,
   recall_score,
   f1_score,
   roc_curve,
   auc,
   RocCurveDisplay
)
```

```
wines = pd.read_csv('winequalityN.csv')
wines.info()
```

```
RangeIndex: 6497 entries, 0 to 6496

Data columns (total 13 columns):

# Column Non-Null Count Dtype
--- 0 type 6497 non-null object
```

<class 'pandas.core.frame.DataFrame'>

```
object
  fixed acidity
                       6487 non-null
                                       float64
1
   volatile acidity
2
                        6489 non-null
                                       float64
                        6494 non-null float64
3 citric acid
  residual sugar
                      6495 non-null float64
4
5
   chlorides
                       6495 non-null
                                      float64
   free sulfur dioxide 6497 non-null float64
7
   total sulfur dioxide 6497 non-null
                                      float64
8
   density
                        6497 non-null
                                      float64
9
                        6488 non-null float64
   рН
10 sulphates
                                       float64
                        6493 non-null
11 alcohol
                        6497 non-null
                                       float64
12 quality
                        6497 non-null
                                       int64
```

```
dtypes: float64(11), int64(1), object(1)
memory usage: 660.0+ KB
```

```
removed_rows = (len(wines.dropna()) / len(wines)) - 1
print(f"Remover os valores com NaN diminui {abs(removed_rows) * 100:.2f}% da base original
wines = wines.dropna()
```

Remover os valores com NaN diminui 0.52% da base original de vinhos.

wines.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 6463 entries, 0 to 6496
Data columns (total 13 columns):
```

#	Column	Non-Null Count	Dtype
0	type	6463 non-null	object
1	fixed acidity	6463 non-null	float64
2	volatile acidity	6463 non-null	float64
3	citric acid	6463 non-null	float64
4	residual sugar	6463 non-null	float64
5	chlorides	6463 non-null	float64
6	free sulfur dioxide	6463 non-null	float64
7	total sulfur dioxide	6463 non-null	float64
8	density	6463 non-null	float64
9	рН	6463 non-null	float64
10	sulphates	6463 non-null	float64
11	alcohol	6463 non-null	float64
12	quality	6463 non-null	int64
d+vn	$as \cdot float64(11) int64$	(1) object (1)	

dtypes: float64(11), int64(1), object(1)

memory usage: 706.9+ KB

wines['opinion'] = [0 if quality <6 else 1 for quality in wines['quality']]
wines.head()</pre>

	type	fixed acidity	volatile acidity		residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	
0	white	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3
1	white	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3
2	white	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3
3	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3

wines.type.value_counts()

white 4870 red 1593

Name: type, dtype: int64

```
# Modelo para vinhos brancos (white wines) - como foi pedido apenas vinhos brancos, retira
white_wines = wines[wines.type == 'white'].reset_index().drop('index', axis=1)

fig, axs = plt.subplots(1, 2, figsize=(16, 5))
ax = plt.subplot(121)
white_wines.quality.value_counts().sort_index(ascending=True).plot.bar()
ax.set_title('Notas dos vinhos Brancos')
ax = plt.subplot(122)
```

white_wines.opinion.value_counts().sort_index(ascending=True).plot.bar()
ax.set_title('Qualidade dos Vinhos Brancos');

Descrição das variáveis

white_wines.describe()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	
count	4870.000000	4870.000000	4870.000000	4870.000000	4870.000000	4870.000000	48
mean	6.855123	0.278071	0.334199	6.394343	0.045771	35.317146	1
std	0.843444	0.100528	0.120915	5.070853	0.021846	17.012967	
min	3.800000	0.080000	0.000000	0.600000	0.009000	2.000000	
25%	6.300000	0.210000	0.270000	1.700000	0.036000	23.000000	1
50%	6.800000	0.260000	0.320000	5.200000	0.043000	34.000000	1
75%	7.300000	0.320000	0.390000	9.900000	0.050000	46.000000	1
max	14.200000	1.100000	1.660000	65.800000	0.346000	289.000000	4

Variável	Tipo	Valor Médio	Desvio Padrão
type	Categórica	-	-
fixed acidity	Contínua	6.85	0.84
volatile acidity	Contínua	0.27	0.10

Variável	Tipo	Valor Médio	Desvio Padrão
citric acid	Contínua	0.33	0.12
residual sugar	Contínua	6.39	5.07
chlorides	Contínua	0.04	0.02
free sulfur dioxide	Contínua	35.3	17.01
total sulfur dioxide	Contínua	138.34	42.49
density	Contínua	0.99	0.0029
рН	Contínua	3.18	0.15
sulphates	Contínua	0.48	0.11
quality	Categórica	-	-
opinion	Categórica	-	-

g = sns.PairGrid(white_wines, hue='opinion')

g.map_lower(sns.regplot)

g.map_diag(sns.histplot)

g.map_upper(sns.kdeplot);


```
# Checando Outliers com Boxplot - não há nenhum muito gritante
g = sns.PairGrid(white_wines, hue='opinion', x_vars='opinion')
g.map(sns.boxplot);
```


Analisando distribuição das variáveis com histogramas

white_wines[features].hist(figsize=(16, 12));


```
# Escalonando com StandardScaler (ss)
```

```
df_ss = white_wines.copy()
ss = StandardScaler()
df_ss[features] = ss.fit_transform(white_wines[features])
df_ss[features].hist(figsize=(16,12));
```



```
# Usando PCA / Pareto (Com 7 variáveis já ultrapassa 95%, poderia ser válido reduzir a dim
# !pip install rogeriopradoj-paretochart
from sklearn.decomposition import PCA
from paretochart.paretochart import pareto

pca= PCA(n_components=11)
pca.fit(df_ss)

fig, ax = plt.subplots(1, 1, figsize=(16, 6))
pareto(pca.explained_variance_ratio_)
ax.grid()

pd.DataFrame(pca.components_.T, columns=[f'PC{d}' for d in range(11)], index=df_ss.columns
```

C:\Users\Fabio\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra ax2.set_yticklabels(yt)

_	PC0	PC1	PC2	PC3	PC4	PC5	PC6	
fixed acidity	0.156807	-0.586715	0.128982	0.032206	0.245284	0.105878	-0.200063	0.5
volatile acidity	0.009469	0.041054	-0.600492	0.262179	0.638486	-0.095564	0.272563	0.0
citric acid	0.142362	-0.338542	0.501410	0.177869	0.048582	-0.131000	0.704807	-0.1
residual sugar	0.424859	0.008972	-0.183148	-0.297854	0.013069	0.293808	0.212858	-0.4
chlorides	0.213394	-0.010190	-0.131626	0.682912	-0.338649	-0.401122	-0.079322	-0.1
free sulfur dioxide	0.297051	0.296314	0.288142	-0.282421	0.201516	-0.491878	-0.166277	-0.0
total sulfur dioxide	0.404966	0.245760	0.123673	-0.042399	0.302837	-0.270052	-0.064986	0.2
density	0.510587	0.004957	-0.117580	-0.038118	-0.092970	0.326720	0.108363	0.0
рН	-0.127702	0.582522	0.110817	0.109007	-0.129341	0.190603	0.423009	0.5
sulphates	0.042239	0.224481	0.411649	0.473217	0.371391	0.490529	-0.312507	-0.2
alcohol	-0.438655	-0.032491	0.114509	-0.126452	0.345399	-0.129015	0.130838	-0.2
opinion	-0.074605	0.016758	0.116184	-0.093178	0.005826	0.007963	0.000835	-0.1
0.9982								
0.8000								
0.6000								
0.4000								
0.2000								
0.0000								

pt = PowerTransformer()

[#] Escalonando com PowerTransformer (pt) - Apply a power transform featurewise to make data
df_pt = white_wines.copy()

df_pt[features] = pt.fit_transform(white_wines[features])
df_pt[features].hist(figsize=(16,12));

fixed acidity volatile acidity

Agora defina o modelo de redes neural do tipo MLP que você irá utilizar. Essa é a fase de MODELAGEM: Quantas camadas? Quantos neurônios na camada de entrada? Quantos neurônios na camada de saída? Justifique. Quantos números de neurônios na camada intermediária? Como esse número foi escolhido?

RESPONDENDO:

Como são 11 features, serão 11 neurônios na primeira camada (camada de entrada). Na última camada, sempre é apenas um neurônio, pois é assim que funciona toda rede neural. O número de neurônios na camada intermediária escolhemos usando o gráfico abaixo, de forma a maximizar o resultado de F1 Score mas sem overtraining: 26 neurônios, conforme veremos abaixo.

free

total

		fixed	volatile acidity	acid	residual sugar	chlorides	sulfur dioxide	density	рН
wines	s['opin	nion']							
	0	1							
	1	1							
	2	1							
	3	1							
	4	1							
		• •							
	6491	1							
	6492	0							
	6494	1							
	6495	0							
	6496	1							

▼ Treinamento com validação cruzada

Name: opinion, Length: 6463, dtype: int64

fixed volatile citric residual


```
test_size=0.2, # 20 % da base
random_state=42,
stratify=y)
```

```
X_train_cv
```

```
array([[ 7.3 , 0.17 , 0.23 , ..., 3.36 , 0.54 , 10. ], [10.9 , 0.32 , 0.52 , ..., 3.28 , 0.77 , 11.5 ], [ 6.2 , 0.26 , 0.32 , ..., 3.31 , 0.61 , 9.4 ], ..., [ 6.1 , 0.22 , 0.49 , ..., 3.3 , 0.46 , 9.6 ], [ 8.6 , 0.265 , 0.36 , ..., 2.95 , 0.36 , 11.4 ], [ 6.3 , 0.25 , 0.23 , ..., 3.14 , 0.35 , 9.7 ]])
```

mlp = MLPClassifier(random_state=42)

```
def train(X, y, model_klass, n_splits=5, n_init=1, **kwargs):
   cv = StratifiedKFold(n splits=n splits)
   f1_score_val_list = []
   f1_score_train_list = []
   model_list =[]
   scaler list = []
   # Validação cruzada só em Training Data
   for fold, (train_idx, val_idx) in enumerate(cv.split(X, y)):
       X_train = X[train_idx, :]
       y_train = y[train_idx]
       X_val = X[val_idx, :]
       y_val = y[val_idx]
       # Escala
       scaler = StandardScaler()
       X_train_scaled = scaler.fit_transform(X_train)
       X_val_scaled = scaler.transform(X_val)
       scaler list.append(scaler)
       # TO DO - Fazer a PCA como opcional
       # Treino
       model = None
       f1_score_val = 0.
       for idx in range(n_init):
           model = model klass(**kwargs)
           _model.fit(X_train_scaled, y_train)
           _y_pred = _model.predict(X_train_scaled)
           _y_pred_val = _model.predict(X_val_scaled)
           f1 score val = f1 score(y val, y pred val)
           if _f1_score_val > f1_score_val:
               y_pred_val = _y_pred_val
               y_pred = _y_pred
               model = model
       print(f"Meu resultado para treino de F1-Score é {f1_score(y_train, y_pred):.2}")
       print(f"Meu resultado para validação de F1-Score é {f1_score(y_val, y_pred_val):.2
```

```
f1_score_val_list.append(f1_score(y_val, y_pred_val))
    f1 score train list.append(f1 score(y train, y pred))
    model list.append(model)
print()
print()
mean_val = np.mean(f1_score_val_list)
std_val = np.std(f1_score_val_list)
print(f"Meu resultado de F1-Score Médio de treino é \
      {np.mean(f1_score_train_list): .2} +- {np.std(f1_score_train_list): .2} ")
print(f"Meu resultado de F1-Score Médio de validação é {mean_val: .2} +- {std_val: .2}
print()
best_model_idx = np.argmax(f1_score_val_list)
print(f"Meu melhor fold é: {best_model_idx} ")
best model = model list[best model idx]
best_scaler = scaler_list[best_model_idx]
return best_model, mean_val, std_val, best_scaler
```

Qual será o algoritmo utilizado no treinamento? Qual a função de ativação será utilizada em cada camada? Justifique. Qual a função de otimização será utilizada neste treinamento? Quais serão as figuras de métrica que serão usadas na avaliação do modelo. Justifique. Apresente os seguintes resultados: A matriz de confusão do problema O(s) histograma(s) da(s) saída(s) da rede neural Os valores das figuras de métrica utilizadas. Caso tenha utilizado validação cruzada no treino, apresente as incertezas para cada um dos resultados anteriores. Avalie os resultados, dando sua interpretação de acordo com a compreensão da natureza do problema proposto. Essa é a fase de AVALIAÇÃO DO MODELO.

RESPONDENDO:

A função logística, ou sigmoide, pode ser uma escolha adequada para um problema de classificação binária com 26 neurônios. A função logística mapeia os valores de entrada para um intervalo entre 0 e 1, o que permite interpretar a saída como a probabilidade de pertencer à classe positiva. Porém, atualmente a tangente hiperbólica tende a gerar melhores resultados (também classificação binária), então alteramos para usá-la.

Em resumo, a função logística (sigmóide) ou a tangente hiperbólica pode ser usada como função de ativação para os neurônios de saída em um problema de classificação binária com 26 neurônios, mas é importante considerar a utilização de outras funções de ativação, como a função ReLU, para as camadas ocultas, dependendo da complexidade da sua rede neural.

O algoritmo de treinamento é sempre o backpropagation (retroalimentação).

As figuras de mérito são acurácia, precisão, f1-score, sensibilidade, área sobre a curva ROC (AUC) - figuras usadas para avaliar o modelo. Neste caso, utilizamos as abaixo:

Model

Neural Network

```
nn_results = []
for neurons in range(1, 30):
   nn_model, nn_mean_val, nn_std_val, nn_scaler = train(X_train_cv, y_train_cv,
                                          MLPClassifier,
                                          hidden_layer_sizes=(neurons,),
                                          n init=10,
                                          max_iter=10000,
                                          activation="tanh", # Mudando funç
                                                        # para tangent
                                          alpha=1e-5,
                                          tol=1e-3,
                                          learning_rate_init=.3,
                                          solver='sgd')
   nn_results.append((nn_model, nn_mean_val, nn_std_val, nn_scaler))
   Meu resultado para treino de F1-Score é 0.79
   Meu resultado para validação de F1-Score é 0.77
   Meu resultado para treino de F1-Score é 0.81
   Meu resultado para validação de F1-Score é 0.8
   ============= FOLD 2 ==============
   Meu resultado para treino de F1-Score é 0.8
   Meu resultado para validação de F1-Score é 0.8
   ============ FOLD 3 =============
   Meu resultado para treino de F1-Score é 0.78
   Meu resultado para validação de F1-Score é 0.79
   Meu resultado para treino de F1-Score é 0.79
   Meu resultado para validação de F1-Score é 0.8
   Meu resultado de F1-Score Médio de treino é
                                            0.79 +-
                                                   0.0086
   Meu resultado de F1-Score Médio de validação é 0.79 +- 0.011
   Meu melhor fold é: 4
   Meu resultado para treino de F1-Score é 0.82
   Meu resultado para validação de F1-Score é 0.81
   Meu resultado para treino de F1-Score é 0.81
   Meu resultado para validação de F1-Score é 0.8
   Meu resultado para treino de F1-Score é 0.81
   Meu resultado para validação de F1-Score é 0.81
   Meu resultado para treino de F1-Score é 0.81
   Meu resultado para validação de F1-Score é 0.81
   Meu resultado para treino de F1-Score é 0.81
   Meu resultado para validação de F1-Score é 0.81
```

```
Meu resultado de F1-Score Médio de treino é
                                       0.81 + -
                                             0.0038
Meu resultado de F1-Score Médio de validação é 0.81 +- 0.0059
Meu melhor fold é: 4
Meu resultado para treino de F1-Score é 0.81
Meu resultado para validação de F1-Score é 0.8
Meu resultado para treino de F1-Score é 0.81
Meu resultado para validação de F1-Score é 0.8
Meu resultado para treino de F1-Score é 0.81
Meu resultado para validação de F1-Score é 0.81
============ FOLD 3 =============
Meu resultado para treino de F1-Score é 0.82
Meu resultado para validação de F1-Score é 0.82
Meu resultado para treino de F1-Score é 0.82
Meu resultado para validação de F1-Score é 0.8
```

Alt text

```
sns.set_style("ticks")
sns.set_context("talk")
plt.errorbar(range(1, 30), nn_results["mean f1"], nn_results["std f1"])
plt.grid(True)
sns.despine(offset=5)
plt.ylim([ 0.78 , 0.83])
plt.ylabel("Mean F1 Score ")
plt.xlabel("N Neurons")
```

nn_results = pd.DataFrame(nn_results, columns = ['model', 'mean f1', 'std f1', 'scaler'])

Apenas para voltar ao nn_results não como lista:

Text(0.5, 0, 'N Neurons')

0.83

0.82

n_neurons = 17

X_test_scaled = results.scaler[n_neurons - 1].transform(X_test)

disp = ConfusionMatrixDisplay.from_predictions(y_test, results.model[n_neurons - 1].predictions.figure_.suptitle("Confusion Matrix")
print(f"Confusion matrix:\n{disp.confusion_matrix}")

n_neurons = 20

X_test_scaled = nn_results['scaler'][n_neurons - 1].transform(X_test)

disp = ConfusionMatrixDisplay.from_predictions(y_test, nn_results.model[n_neurons - 1].predictions.figure_.suptitle("Confusion Matrix")
print(f"Confusion matrix:\n{disp.confusion_matrix}")

print(classification_report(y_test, results.model[n_neurons - 1].predict(X_test_scaled)))

	precision	recall	f1-score	support
0 1	0.71 0.80	0.64 0.84	0.67 0.82	475 818
accuracy macro avg weighted avg	0.75 0.77	0.74 0.77	0.77 0.75 0.77	1293 1293 1293
weighted avg	0.77	0.77	0.77	12

35**∃** ■ I

Regressão Logística

3 N → I I

```
from sklearn.linear_model import LogisticRegression
logit, logit_mean_val, logit_std_val, logit_scaler = train(X_train_cv, y_train_cv, Logisti
```

Meu resultado para treino de F1-Score é 0.72 Meu resultado para validação de F1-Score é 0.7 Meu resultado para treino de F1-Score é 0.72 Meu resultado para validação de F1-Score é 0.71 Meu resultado para treino de F1-Score é 0.71 Meu resultado para validação de F1-Score é 0.71 ============ FOLD 3 ============= Meu resultado para treino de F1-Score é 0.71 Meu resultado para validação de F1-Score é 0.72 Meu resultado para treino de F1-Score é 0.71 Meu resultado para validação de F1-Score é 0.71 Meu resultado de F1-Score Médio de treino é 0.71 +- 0.0039

Meu resultado de F1-Score Medio de treino e 0.71 +- 0.0039 Meu resultado de F1-Score Médio de validação é 0.71 +- 0.0053

Meu melhor fold é: 3

pd.DataFrame(logit.predict_proba(X_test_scaled))

	9	1
0	0.313238	0.686762
1	0.052954	0.947046
2	0.073718	0.926282
3	0.528420	0.471580
4	0.211477	0.788523
1288	0.109647	0.890353
1289	0.263083	0.736917
1290	0.267792	0.732208
1291	0.650066	0.349934
1292	0.155907	0.844093
1293 rc	ws × 2 colu	mns

SVM

Meu resultado de F1-Score Médio de treino é 0.78 +- 0.003 Meu resultado de F1-Score Médio de validação é 0.75 +- 0.01

Meu melhor fold é: 1

```
svm_poly_3_model, svm_poly_3_mean_val, svm_poly_3_std_val, svm_poly_3_scaler = train(X_tra
                                                                                        y_tra
                                                                                        SVC,
                                                                                        gamma
                                                                                        C=1,
                                                                                        degre
                                                                                        kerne
svm_poly_5_model, svm_poly_5_mean_val, svm_poly_5_std_val, svm_poly_5_scaler = train(X_tra
                                                                                        y_tra
                                                                                        SVC,
                                                                                        gamma
                                                                                        C=1,
                                                                                        degre
                                                                                        kerne
svm_poly_10_model, svm_poly_10_mean_val, svm_poly_10_std_val, svm_poly_10_scaler = train(X
                                                                                            У.
                                                                                            S
                                                                                            g
                                                                                            C
                                                                                            d
```

```
Heu resultado para treino de F1-Score é 0.83

Meu resultado para validação de F1-Score é 0.81
```

```
Meu resultado para treino de F1-Score é 0.83
Meu resultado para validação de F1-Score é 0.82
Meu resultado para treino de F1-Score é 0.83
Meu resultado para validação de F1-Score é 0.81
============ FOLD 3 ==============
Meu resultado para treino de F1-Score é 0.83
Meu resultado para validação de F1-Score é 0.82
Meu resultado para treino de F1-Score é 0.83
Meu resultado para validação de F1-Score é 0.81
Meu resultado de F1-Score Médio de treino é 0.83 +- 0.002
Meu resultado de F1-Score Médio de validação é 0.81 +- 0.0042
Meu melhor fold é: 3
Meu resultado para treino de F1-Score é 0.84
Meu resultado para validação de F1-Score é 0.81
========== FOLD 1 ==============
Meu resultado para treino de F1-Score é 0.84
Meu resultado para validação de F1-Score é 0.8
Meu resultado para treino de F1-Score é 0.83
Meu resultado para validação de F1-Score é 0.8
Meu resultado para treino de F1-Score é 0.84
Meu resultado para validação de F1-Score é 0.81
Meu resultado para treino de F1-Score é 0.83
Meu resultado para validação de F1-Score é 0.8
Meu resultado de F1-Score Médio de treino é 0.84 +- 0.00093
Meu resultado de F1-Score Médio de validação é 0.8 +- 0.0041
Meu melhor fold é: 0
Meu resultado para treino de F1-Score é 0.85
Meu resultado para validação de F1-Score é 0.8
Meu resultado para treino de F1-Score é 0.84
Meu resultado para validação de F1-Score é 0.79
Meu resultado para treino de F1-Score é 0.85
Meu resultado para validação de F1-Score é 0.79
============ FOLD 3 =============
Meu resultado para treino de F1-Score é 0.84
Meu resultado para validação de F1-Score é 0.8
Meu resultado para treino de F1-Score é 0.85
Meu resultado para validação de F1-Score é 0.79
```

▼ Decision Tree

```
tree_model, tree_mean_val, tree_std_val, tree_scaler = train(X_train_cv, y_train_cv, Deci
   Meu resultado para treino de F1-Score é 1.0
   Meu resultado para validação de F1-Score é 0.73
   Meu resultado para treino de F1-Score é 1.0
   Meu resultado para validação de F1-Score é 0.73
   ============ FOLD 2 ==============
   Meu resultado para treino de F1-Score é 1.0
   Meu resultado para validação de F1-Score é 0.75
   Meu resultado para treino de F1-Score é 1.0
   Meu resultado para validação de F1-Score é 0.76
   Meu resultado para treino de F1-Score é 1.0
   Meu resultado para validação de F1-Score é 0.75
```

Meu resultado de F1-Score Médio de treino é 1.0 +- 0.0 Meu resultado de F1-Score Médio de validação é 0.74 +- 0.01

Meu melhor fold é: 3

```
tree_50_leaf_model, tree_50_leaf_mean_val, tree_50_leaf_std_val, tree_50_leaf_scaler = tr
```

```
Meu resultado para treino de F1-Score é 0.83
Meu resultado para validação de F1-Score é 0.79
Meu resultado para treino de F1-Score é 0.82
Meu resultado para validação de F1-Score é 0.79
Meu resultado para treino de F1-Score é 0.82
Meu resultado para validação de F1-Score é 0.81
Meu resultado para treino de F1-Score é 0.82
Meu resultado para validação de F1-Score é 0.8
Meu resultado para treino de F1-Score é 0.83
Meu resultado para validação de F1-Score é 0.8
Meu resultado de F1-Score Médio de treino é 0.83 +- 0.0038
Meu resultado de F1-Score Médio de validação é 0.8 +- 0.009
Meu melhor fold é: 2
```

Overall Results

```
results = [
    ('Logistic Regression', logit_mean_val, logit_std_val),
```

```
('Decision Tree', tree_mean_val, tree_std_val),
   ('Decision Tree - min. 50 leafs', tree_50_leaf_mean_val, tree_50_leaf_std_val),
   ('SVM - RBF', svm_rbf_mean_val, svm_rbf_std_val),
   ('SVM Poly 3', svm_poly_3_mean_val, svm_poly_3_std_val),
   ('SVM Poly 5', svm_poly_5_mean_val, svm_poly_5_std_val),
   ('SVM Poly 10', svm_poly_10_mean_val, svm_poly_10_std_val),
] + nn_results

results = pd.DataFrame(results, columns=['Model', 'Validation F1', 'Validation F1 deviation results.set_index('Model', inplace=True)
```

results

Validation F1 Validation F1 deviation

Model

Logistic Regression	0.709616	0.005322
Decision Tree	0.743511	0.010492
Decision Tree - min. 50 leafs	0.800908	0.009018
SVM - RBF	0.746212	0.010471
SVM Poly 3	0.812797	0.004168
SVM Poly 5	0.803840	0.004085
SVM Poly 10	0.794429	0.002795
Neural Network (1 neurons)	0.799620	0.013773
Neural Network (2 neurons)	0.805203	0.005840
Neural Network (3 neurons)	0.813723	0.013743
Neural Network (4 neurons)	0.811075	0.009668

• Melhor resultado com 26 neurônios (maior valor e menor erro)

0.813372	0.010045
0.812607	0.013835
0.814640	0.008231
0.817285	0.005418
0.813368	0.009612
0.817202	0.009531
0.814748	0.011426
0.817412	0.009867
0.813715	0.011084
	0.814640 0.817285 0.813368 0.817202 0.814748 0.817412