Summary Quiz 1

January 16, 2023 13:49

2.1 Equivalence Relations

Define $R = \{(x, y): x, y \in X, x \sim y\} \subseteq X \times X$ R: set of all pairs that are equivalent

- ∼ is an equivalence relation if it satisfies:
 - Reflexive: $x \sim x \ \forall x \in X$
 - Symmetric: $x \sim y \leftrightarrow y \sim x$
 - Transitive: If $x \sim y$ and $y \sim z$, then $x \sim z$

2.2 Equivalence Classes

$$[x] = \{ y \in X : y \sim x \}$$

3.1 Well-Defined Operations

An operation \cdot is well defined if: $\begin{pmatrix} x \sim y \\ w \sim z \end{pmatrix} \rightarrow (x \cdot w) \sim (y \cdot z)$

+ Theorems

- Let *X* be a set with an equivalence relation, then $[x] \cap [y] \neq \emptyset \rightarrow [x] = [y]$
- ▶ Equivalence classes are either disjoint or equal
- ▶ Let *X* be a set with an equivalence relation, then the equivalence classes form a partition of *X*
- ▶ Let R_j ($j \in J$, for some index set J) form a partition of X. Say that $x \sim y$ means $x, y \in R_j$ for some j, then \sim is an equivalence relation on X

3.2 Number Theory

For every set $S \subseteq \mathbb{N}$, there's a minimum element $d \in S \ (\forall x \in S, \ d \leq x)$ Proposition:

Let $a, b \in \mathbb{Z}$, b > 0, then $\exists ! q, r \in \mathbb{Z}$ such that a = bq + r, $0 \le r < b$