Artificial Intelligence

- Learning with Decision Trees -

Prof. Dr. Eduard Kromer
Winter Semester 2023/2024
University of Applied Sciences Landshut

Content

- Introduction to Learning
- Decision Trees as Data Structures
- Decision Trees for Classification
- Maximizing Information Gain
- Decision Tree Learning Algorithms
- Decision Trees for Regression
- Computational Complexity
- Advantages and Disadvantages

Learning

What is learning?

An agent learns when it improves its performance w.r.t. a specific task with experience.

• There is no intelligence without learning!

Agents that learn - Supervised Learning

- we want to build agents that learn from observations about the world and are able to improve their performance on future tasks
- in this lecture, we will focus only on supervised learning:
 - ullet we have a training set of N example-label pairs

$$(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$$

that were generated by an unknown function f(f(x) = y)

- our goal is to discover a function \hat{f} that approximates f well
- supervised learning involves learning a function from examples of its inputs and outputs

• discrete output \rightarrow classification problem; continuous output \rightarrow regression problem

Learning Algorithm

• a learning algorithm receives as input a learning sample and returns a function \hat{f} :

- It is defined by
 - \triangleright a hypothesis space H, which is a set of candidate models
 - a quality measure for a model
 - an optimization strategy

Source: Wikipedia

Decision Trees as Data Structures

- Decision Trees are based on the data structure of a tree
 - a tree consists of a root (R) at the top this is where the decision process starts
 - leafs (L) represent possible outcomes of the decision process (classification or regression result)
 - at the root (R) and all the edges (E) a decision is made and a specific path is followed
 - the training data is used to build / learn the tree structure - this is the ML part

Decision Trees as Data Structures

Decision Trees for Classification

- DTs classify instances by sorting them down the tree from the root to some leaf node, which provides the classification of the instance
- each node in the tree specifies a test of some attribute of the instance
 - each branch descending from that node corresponds to one of the possible values for this attribute
- in general, DTs represent a disjunction of conjunctions of constraints on the attribute values of instances

Disjunction of Conjunctions

(Outlook = Sunny ∧ Humidity = Normal)

V (Outlook = Overcast)

 \lor (Outlook = Rain \land Wind = Weak)

Source: Mitchell - Machine Learning

Training a Decision Tree for Classification

- we could simply construct a tree with one path to a leaf for each example
 - we test all attributes along the path and attach the classification of the example to the leaf
 - this tree will classify all given examples correctly it just memorizes the observations and does not generalize
- instead we want to find the smallest decision tree that is consistent with the training set (finding the smallest tree is computationally intractable)
- Goal: learn decision trees that are small and generalize well

Training a Decision Tree for Classification

- we start at the root of the tree and split the data on the feature that results in the largest Information Gain (IG)
- we repeat this process at each child node until the leaves are pure or $IG \leq 0$
 - pure: samples at each node belong to the same class
- in practice this procedure can result in a very deep tree which might lead to overfitting
 - typically, we <u>prune</u> the tree by setting a limit for the maximal depth of the tree

Top-Down Induction of Decision Trees

 choose the best attribute, split the learning sample accordingly and proceed recursively until each object is correctly classified

Outlook: Rain						
Day	Outlook	Temperature	Humidity	Wind	Play Tennis	
3	Rain	Mild	High	Weak	Yes	
4	Rain	Cool	Normal	Weak	Yes	
5	Rain	Cool	Normal	Strong	No	
9	Rain	Mild	Normal	Weak	Yes	
13	Rain	Mild	High	Strong	No	

Decision Tree Pruning

Pre-Training:

- set a depth cut-off a priori (maximal depth of the tree)
- set a minimum number of data points for each node
- •

Post-Training:

- grow full tree first, then remove nodes
- remove nodes using a validation set
- •

Pre-Training

- stop splitting a node if either:
 - the local sample size is below some threshold N_{\min}
 - the local sample information value is below some threshold I_{\min}
 - the information gain of the best test is not large enough (statistical hypothesis test at some level α)

Post-Training

- split the learning sample into two sets, a growing sample ${\cal G}$ and a validation sample ${\cal V}$
 - compute a sequence of trees $\{T_1, T_2, ...\}$ where:
 - T_1 is the complete tree
 - T_i is obtained by removing some test nodes from T_{i-1}
 - select the tree $T_{i^{*}}$ from the sequence the minimizes the validation error

Maximizing Information Gain

Which objective function do we want to optimize with our tree learning algorithm?

$$S = \{(\mathbf{x}_1, y_1), \dots (\mathbf{x}_n, y_n)\}, y_i \in \{1, \dots, c\}$$

our labeled data with c classes

$$S_k = \{ (\mathbf{x}, y) \in S \mid y = k \}$$

all inputs with labels k

$$p_k = \frac{|S_k|}{|S|} \quad \text{fraction of inputs in S with labels k}$$

$$I_H(S) = -\sum_{k=1}^{c} p_k \log_2(p_k) \qquad I_G(S) = \sum_{k=1}^{c} p_k (1 - p_k)$$

$$I_G(S) = \sum_{k=1}^{c} p_k (1 - p_k)$$

$$I_E(S) = 1 - \max_k(p_k)$$

Classification Error

Entropy for Two-Class Classification

Maximizing Information Gain

Which objective function do we want to optimize with our tree learning algorithm?

$$IG(S_{parent}, A) = I(S_{parent}) - \sum_{v \in Values(A)} \frac{|S_v|}{|S_{parent}|} I(S_v) \quad \text{the general case: multiple splits are allowed}$$

$$IG(S_{parent}) = I(S_{parent}) - \frac{|S_{left}|}{|S_{parent}|} I(S_{left}) - \frac{|S_{right}|}{|S_{parent}|} I(S_{right}) \qquad \text{for binary decision trees}$$

The ID3 Training Algorithm

ID3 (Iterative Dichotomiser 3; Ross Quinlan 1986)

- cannot handle numeric features
- no pruning
- uses Entropy minimization

ID3 - Example

	Outlook	Temperature	Humidity	Wind	Play Tennis
0	Sunny	Hot	High	Weak	No
1	Sunny	Hot	High	Strong	No
2	Overcast	Hot	High	Weak	Yes
3	Rain	Mild	High	Weak	Yes
4	Rain	Cool	Normal	Weak	Yes
5	Rain	Cool	Normal	Strong	No
6	Overcast	Cool	Normal	Strong	Yes
7	Sunny	Mild	High	Weak	No
8	Sunny	Cool	Normal	Weak	Yes
9	Rain	Mild	Normal	Weak	Yes
10	Sunny	Mild	Normal	Strong	Yes
11	Overcast	Mild	High	Strong	Yes
12	Overcast	Hot	Normal	Weak	Yes
13	Rain	Mild	High	Strong	No

- Which attribute should be first tested in the tree?
- ID3 determines the information gain for each candidate in the tree (Outlook, Temperature, Humidity, Wind), then selects one with highest information gain

$$Values(Wind) = \{Weak, Strong\}$$

$$S_{Strong} \leftarrow [3 + ,3-]$$

 $S = [9 + ,5-]$
 $S_{Weak} \leftarrow [6 + ,2-]$

Source: Mitchell - Machine Learning

ID3 - Example

	Outlook	Temperature	Humidity	Wind	Play Tennis
0	Sunny	Hot	High	Weak	No
1	Sunny	Hot	High	Strong	No
2	Overcast	Hot	High	Weak	Yes
3	Rain	Mild	High	Weak	Yes
4	Rain	Cool	Normal	Weak	Yes
5	Rain	Cool	Normal	Strong	No
6	Overcast	Cool	Normal	Strong	Yes
7	Sunny	Mild	High	Weak	No
8	Sunny	Cool	Normal	Weak	Yes
9	Rain	Mild	Normal	Weak	Yes
10	Sunny	Mild	Normal	Strong	Yes
11	Overcast	Mild	High	Strong	Yes
12	Overcast	Hot	Normal	Weak	Yes
13	Rain	Mild	High	Strong	No

$$Values(Wind) = \{Weak, Strong\}$$

$$S = [9 + ,5-]$$
 $S_{Strong} \leftarrow [3 + ,3-]$ $S_{Weak} \leftarrow [6 + ,2-]$

Entropy(
$$S_{Strong}$$
) = $-\frac{3}{6}\log_2(3/6) - \frac{3}{6}\log_2(3/6) = 1$

Entropy(
$$S_{Weak}$$
) = $-\frac{6}{8}\log_2(6/8) - \frac{2}{8}\log_2(2/8) \approx 0.811$

ID3 - Example

	Outlook	Temperature	Humidity	Wind	Play Tennis
0	Sunny	Hot	High	Weak	No
1	Sunny	Hot	High	Strong	No
2	Overcast	Hot	High	Weak	Yes
3	Rain	Mild	High	Weak	Yes
4	Rain	Cool	Normal	Weak	Yes
5	Rain	Cool	Normal	Strong	No
6	Overcast	Cool	Normal	Strong	Yes
7	Sunny	Mild	High	Weak	No
8	Sunny	Cool	Normal	Weak	Yes
9	Rain	Mild	Normal	Weak	Yes
10	Sunny	Mild	Normal	Strong	Yes
11	Overcast	Mild	High	Strong	Yes
12	Overcast	Hot	Normal	Weak	Yes
13	Rain	Mild	High	Strong	No
Source	· Mitchell - Machine	l earning			

$$IG(S, Wind) = I(S) - \sum_{v \in \{Weak, Strong\}} \frac{|S_v|}{|S|} I(S_v)$$

$$= Entropy(S) - \frac{8}{14} Entropy(S_{Weak}) - \frac{6}{14} Entropy(S_{Strong})$$

$$= 0.940 - \frac{8}{14}0.811 - \frac{6}{14}1.00$$

IG(S, Outlook) = 0.246

IG(S, Humidity) = 0.151

IG(S, Temperature) = 0.029

ID3 on Tennis Dataset

	Outlook	Temperature	Humidity	Wind	Play Tennis
0	Sunny	Hot	High	Weak	No
1	Sunny	Hot	High	Strong	No
2	Overcast	Hot	High	Weak	Yes
3	Rain	Mild	High	Weak	Yes
4	Rain	Cool	Normal	Weak	Yes
5	Rain	Cool	Normal	Strong	No
6	Overcast	Cool	Normal	Strong	Yes
7	Sunny	Mild	High	Weak	No
8	Sunny	Cool	Normal	Weak	Yes
9	Rain	Mild	Normal	Weak	Yes
10	Sunny	Mild	Normal	Strong	Yes
11	Overcast	Mild	High	Strong	Yes
12	Overcast	Hot	Normal	Weak	Yes
13	Rain	Mild	High	Strong	No


```
Outlook Overcast: Yes (4)
Outlook Rain
| Wind Strong: No (2)
| Wind Weak: Yes (3)
Outlook Sunny
| Humidity High: No (3)
| Humidity Normal: Yes (2)
```


Missing Values?

not all attribute values are known for every object during learning or testing

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
X	Sunny	Hot	High	?	No

- there are three strategies:
 - use most common value in the learning sample
 - use most common value in the tree
 - assign a probability to each possible value

Information Theory — Measuring Information with Entropy

- information on a computer is represented by binary strings
- imagine that you want to encode a character from the Latin alphabet (including a few other characters like punctuation marks)

- with sequences of $log_2(32) = 5$ bits you could encode all 32 characters as a = 000000, b = 00001, c = 00010, ...
- Are 5 bits enough?

Information Theory — Measuring Information with Entropy

|S| = 32 characters

$$\log_2(|S|) = \log_2(1/p_i) = -\log_2(p_i), \quad p_i = \frac{1}{|S|}$$

Information Theory — Measuring Information with Entropy

• if we are interested in the "expected" number of bits necessary to display a message, we should take into account the relative frequencies of letters; p_i for letter with index i

• thus, for |S| characters we compute

$$-\sum_{i=1}^{|S|} p_i \log_2(p_i)$$

$$= 1$$

Decision Trees for Regression

- labels are continuous $y_i \in \mathbb{R}$
- Impurity:

$$I(S) = MSE(S) = \frac{1}{|S|} \sum_{(x,y) \in S} (y - \bar{y}_S)^2$$

$$\bar{y}_S = \frac{1}{|S|} \sum_{(x,y) \in S} y$$

https://scikit-learn.org/stable/modules/tree.html#tree

Computational Complexity

Prediction complexity

- making predictions requires traversing the Decision Tree from root to leaf
- traversing the tree requires going through roughly $O(log_2(|S|))$ nodes
- since each node requires checking the value of one feature only, the overall prediction complexity is $O(log_2(|S|))$

Training complexity

- the training algorithm compares all features on all samples at each node
- training complexity: $O(m \cdot |S| log_2(|S|))$

Decision Trees for Regression and Classification

- Decision Trees (DTs) are powerful algorithms capable of performing regression and classification tasks, and even multi-output tasks
- they are attractive models if we care about interpretability
- DTs can handle categorical features as well as features represented by real numbers
- *DTs* are very fast during test time, as the inputs just need to traverse down the tree to the leaf
- DTs require no metric because splits are based on feature thresholds and not distances

Advantages / Disadvantages

- + model interpretability (white-box model)
- + require little data preparation
- + low prediction complexity
- + training data may contain errors (decision tree learning algorithms are robust to errors; errors in classification and errors in the attribute values that describe these examples)
- + training data may contain missing attribute values

- easy to overfit (do not generalize well)
- unstable (small variations in data might result in completely different tree)
- problems with unbalanced datasets
- sophisticated pruning required

Broadening the Applicability of Decision Trees

- decision trees can be made more widely useful by handling the following complications
 - missing data
 - continuous and multivalued input attributes
 - continuous-valued output attribute

Decision Tree Learning

```
function Learn-Decision-Tree(examples, attributes, parent_examples) returns a tree if examples is empty then return Plurality-Value(parent_examples) else if all examples have the same classification then return the classification else if attributes is empty then return Plurality-Value(examples) else A \leftarrow \operatorname{argmax}_{a \in attributes} \text{ Importance}(a, examples) \\ tree \leftarrow \text{ a new decision tree with root test } A \\ \text{ for each value } v \text{ of } A \text{ do} \\ exs \leftarrow \{e : e \in examples \text{ and } e.A = v\} \\ subtree \leftarrow \text{Learn-Decision-Tree}(exs, attributes - A, examples) \\ \text{ add a branch to tree with label } (A = v) \text{ and subtree } subtree \\ \text{ return tree}
```

Literature

- L. Breiman et al.:
 Classification and
 regression trees
- J.R. Quinlan, C4.5: programs for machine learning
- Hastie et al., The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Chapter 9

