EnCPos

Fernanda Lang Schumacher

23/11/2020

Motivation: sleepstudy data

- ▶ The average reaction time per day for subjects was evaluated by Gregory et al. (2003) in a sleep deprivation study.
- On day 0 the subjects had their normal amount of sleep and starting that night they were restricted to 3 hours of sleep per night for 9 days, and the reaction time basead on a series of tests was measured on each day for each subject.
- ▶ The data are avaliable at the R package *lme4*.

Motivation: sleepstudy data

Introduction

- ▶ Bullet 1
- ▶ Bullet 2
- ▶ Bullet 3

Linear mixed models

Fitting a LMM to the sleepstudy dataset

Model formulation

Tools for model evaluation

The R package skewlmm

- ► The package skewlmm implemets an EM-type algorithm in R using S3 class, containing methods for estimating and predicting the SM(S)N-LMM.
- It has an user-friendly interface with generic R functions print, summary, plot, fitted, residuals and predict implemented.
- ► The main functions in the package are smsn.lmm() and smn.lmm(), which fit a SMSN-LMM and a SMN-LMM, respectively.

The R package skewlmm

The basic syntax of these functions is as follows:

where

- data: A data frame containing all the variables to be used in the model.
- formFixed: A two-sided linear formula object describing the fixed effects part of the model.
- groupVar: A character containing the name of the variable which represents the subjects or groups in data.

- formRandom: A one-sided linear formula object describing the random effects part of the model.
- depStruct: A character indicating which dependence structure should be used.
- distr: A character indicating which distribution should be used.

- formRandom: A one-sided linear formula object describing the random effects part of the model.
- depStruct: A character indicating which dependence structure should be used.
- distr: A character indicating which distribution should be used.

Some other useful arguments:

- ▶ timeVar: A character containing the name of the variable which represents the time in data.
- ▶ pAR: The order of the autoregressive process that should be used (if depStruct="ARp").
- initialValues: A named list containing initial parameter values.

The functions return an object of the class SMSN and SMN, respectively, containing a list of elements, and the following methods/functions are available to these classes:

- print
- summary
- ▶ fitted
- ▶ plot
- predict
- residuals
- ranef
- ▶ acfresid
- ▶ healy.plot
- ▶ lr.test
 - mahalDist

Example: sleepstudy data

```
#fitting a (CI)-SMN-LMM, default is distr='norm'
fit0<-smn.lmm(data=sleepstudy,formFixed = Reaction~Days,
             formRandom = "Days, groupVar = "Subject", quiet = T)
fit0
## Linear mixed models with distribution norm and dependency structure CI
## Call:
## smn.lmm(data = sleepstudy, formFixed = Reaction ~ Days, groupVar = "Subject",
      formRandom = ~Davs, quiet = T)
##
##
## Fixed:Reaction ~ Days
## Random: ~Days
## Estimated variance (D):
##
              (Intercept)
                             Days
## (Intercept) 560.68002 11.91827
## Davs
           11.91827 32.52525
##
## Estimated parameters:
##
       (Intercept) Davs sigma2 Dsgrt1 Dsgrt2 Dsgrt3
##
          251,4051 10,4673 655,4400 23,6752 0,4059 5,6886
            7.2257 1.5541 31.3784 10.0856 1.7514 1.4270
## s.e.
##
## Model selection criteria:
               ATC
                        BTC
## logLik
## -875.97 1763.94 1783.098
##
## Number of observations: 180
## Number of groups: 18
```

```
#fitting a (CI)-SMSN-LMM, default is distr='sn'
fitskew0<-smsn.lmm(data=sleepstudy,formFixed = Reaction-Days,
             formRandom = "Days, groupVar = "Subject", quiet = T)
fitskew0
## Linear mixed models with distribution sn and dependency structure CI
## Call:
## smsn.lmm(data = sleepstudy, formFixed = Reaction ~ Days, groupVar = "Subject",
      formRandom = ~Days, quiet = T)
##
## Fixed:Reaction ~ Davs
## Random: ~Days
## Estimated variance (D):
##
              (Intercept)
                              Davs
## (Intercept) 1432.65701 35.22718
                 35.22718 33.76855
## Days
##
## Estimated parameters:
       (Intercept) Days sigma2 Dsqrt1 Dsqrt2 Dsqrt3 lambda1 lambda2
##
##
          251 4073 10 4657 652 6598 37 8418 0 8080 5 7546 -4 2917 -0 2477
## s.e. 11.6328 2.1610 32.7878 28.9642 5.2063 1.6311
                                                              NΑ
                                                                      NΑ
##
## Model selection criteria:
## logLik AIC
                          RTC
## -875.354 1766.709 1792.253
##
## Number of observations: 180
## Number of groups: 18
```

Changing the distribution

```
fit1<-smn.lmm(data=sleepstudy,formFixed = Reaction~Days,distr = 't',</pre>
              formRandom = ~Days,groupVar = "Subject",quiet = T)
fitskew1<-smsn.lmm(data=sleepstudy,formFixed = Reaction~Days,distr = 'st',
                  formRandom = ~Days, groupVar = "Subject", quiet = T)
fit2<-smn.lmm(data=sleepstudy,formFixed = Reaction~Days,distr = 'sl',</pre>
              formRandom = ~Days,groupVar = "Subject",quiet = T)
fitskew2<-smsn.lmm(data=sleepstudy,formFixed = Reaction~Days,distr = 'ssl',
                  formRandom = ~Days, groupVar = "Subject", quiet = T)
fit3<-smn.lmm(data=sleepstudy,formFixed = Reaction~Days,distr = 'cn',</pre>
              formRandom = ~Days, groupVar = "Subject", quiet = T)
fitskew3<-smsn.lmm(data=sleepstudy,formFixed = Reaction~Days,distr = 'scn',
                  formRandom = ~Days,groupVar = "Subject",quiet = T)
```

Comparing the fitted models

distr	AIC	BIC
norm	1763.9	1783.1
sn	1766.7	1792.3
t	1737.5	1759.8
st	1739.8	1768.6
sl	1736.2	1758.5
ssl	1738.4	1767.2
cn	1733.7	1759.3
scn	1735.9	1767.8

Assessing the goodness of fit using a Healy-type plot

LR test for H_0 : $\lambda = 0$ in the CN-LMM

lr.test(fitskew3,fit3)

```
##
## Model selection criteria.
##
             logLik
                        AIC
                                 BIC
## fitskew3 -857.926 1735.851 1767.781
## fit3 -858.861 1733.722 1759.266
##
##
      Likelihood-ratio Test
##
## chi-square statistics = 1.871248
## df = 2
## p-value = 0.392341
##
## The null hypothesis that both models represent the
## data equally well is not rejected at level 0.05
```

Computing the ACF of the residuals from CN-LMM

acfresid(fit3)

```
##
      lag
                   ACF n.used
## 1
           1.00000000
                           180
## 2
          0.19793878
                           162
## 3
        2 -0.07329748
                           144
## 4
        3 -0.21972223
                           126
## 5
        4 -0.06519806
                           108
## 6
        5 -0.13723727
                            90
                            72
## 7
        6 -0.27485055
                            54
##
        7 -0.08778128
                            36
##
           0.19912222
##
   10
           0.58707921
                            18
```

Plotting the ACF (CI-CN-LMM)

Fitting an AR(p)-SMN-LMM

```
#s1.
fit2ar1<-smn.lmm(data=sleepstudy,formFixed = Reaction~Days,</pre>
                 formRandom = ~Days, groupVar = "Subject",
                 distr="sl",depStruct = "ARp",pAR=1,quiet=T)
fit2ar2<-smn.lmm(data=sleepstudy,formFixed = Reaction~Days,
                 formRandom = ~Days, groupVar = "Subject",
                 distr="sl",depStruct = "ARp",pAR=2,quiet=T)
#cn
fit3ar1<-smn.lmm(data=sleepstudy,formFixed = Reaction~Days,
                 formRandom = ~Days,groupVar = "Subject",
                 distr="cn",depStruct = "ARp",pAR=1,quiet=T)
fit3ar2<-smn.lmm(data=sleepstudy,formFixed = Reaction~Days,</pre>
                 formRandom = ~Days,groupVar = "Subject",
                 distr="cn",depStruct = "ARp",pAR=2,quiet=T)
```

Fitting a DEC-SMN-LMM

Since the data are equally spaced and sorted by time, the use of timeVar in here is optional (the function will use the position if timeVar is not provided).

Comparing the fitted models

distr	depStruct	AIC	BIC
sl	CI	1736.2	1758.5
sl	AR1	1716.9	1742.5
sl	AR2	1717.3	1746.0
sl	DEC	1718.2	1746.9
cn	CI	1733.7	1759.3
cn	AR1	1715.5	1744.3
cn	AR2	1714.9	1746.9
cn	DEC	1716.3	1748.2

Healy plot for the AR(p)-SMN-LMM

LR test for $H_0: \phi_2 = 0$ in the CN-LMM

lr.test(fit3ar1,fit3ar2)

```
##
## Model selection criteria:
            logLik AIC
##
                                 BTC
## fit3ar1 -848.760 1715.520 1744.257
## fit3ar2 -847.463 1714.925 1746.855
##
      Likelihood-ratio Test
##
##
## chi-square statistics = 2.594949
## df = 1
## p-value = 0.1072049
##
## The null hypothesis that both models represent the
## data equally well is not rejected at level 0.05
```

ACF plot for AR(1)-SMN-LMM

Fitted models

	estimate	std.error	estimate	std.error
(Intercept)	251.55	7.56	252.55	7.02
Days	9.81	1.66	9.99	1.57
sigma2	266.24	63.43	417.84	78.77
phiAR1	0.57	0.14	0.56	0.14
Dsqrt1	14.21	10.15	16.90	11.82
Dsqrt2	2.58	4.16	2.82	4.76
Dsqrt3	2.17	6.45	2.89	6.31
nu1	1.52	NA	0.12	NA
	NA	NA	0.16	NA

Mahalanobis distance for AR(1)-SMN-LMM

Mahalanobis distance versus \hat{u} for AR(1)-SMN-LMM

Plot fitted models

Prediction of future measurements

```
tail(sleepstudy,n=3)
##
      Reaction Days Subject
## 178 343,2199
                        372
## 179 369 1417 8 372
## 180 364.1236
               9 372
predData <- data.frame(Reaction=NA, Days=10:11, Subject="372")</pre>
predict(fit2ar1,newData = predData)
##
    groupVar Days
                  ypred
## 1
         372 10 377 0998
## 2
         372
               11 389.5745
predict(fit3ar1,newData = predData)
##
    groupVar Days
                    ypred
## 1
         372 10 377 1056
## 2
         372
               11 389.5576
```

References

- Gregory Belenky, Nancy J. Wesensten, David R. Thorne, Maria L. Thomas, Helen C. Sing, Daniel P. Redmond, Michael B. Russo & Thomas J. Balkin (2003) Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. Journal of Sleep Research 12, 1–12.
- Schumacher, F. L., Matos, L. A., & Lachos, V. H. (2020). Scale mixture of skew-normal linear mixed models with within-subject serial dependence. arXiv preprint arXiv:2002.01040.