Properties at Nanoscale II

27TH SEPTEMBER 2017

KIRSI YLINIEMI

Last Lecture

1) Electric Properties

- Metals
- Semiconductors
- Insulators (dielectrics)

2) Optical Properties

- Excitons and WL
- Localised Surface Plasmon Resonance

3) Mechanical Properties

- Nanodispersions
- Nanocrystalline solids
- Nanolaminates

T. Tan, C. Tian, Z. Ren, J. Yang, Y. Chen, L. Sun, Z. Li, A. Wu, J. Yin, H. Fu, *Phys.Chem. Chem. Phys.*, **15** (2013) 21034-21042.

Groeneveld, E.: Synthesis and optical spectroscopy of (hetero)-nanocrystals. Ph.D. Thesis, Utrecht University, Utrecht (2012) (From Book R. Koole)

M.F Ashby, P.J. Ferreira, D.L. Schodek, Nanomaterials, Nanotechnologies and Design – An Introduction to Engineers and Architects (2009) Elsevier., p. 205.

Properties at Nanoscale I & II

After This Lecture You Can

Estimate the melting point of nanomaterials and explain its' behaviour vs. size

Explain the concept superparamagnetism

Estimate blocking temperature and Neel relaxation time

1st Thermal Properties at Nanoscale

Thermal Properties

MELTING POINT

THERMAL TRANSPORT

Melting Point: Intuitive Explanations

P. Buffat and J. P. Borel, Phys. Rev. A: At., Mol., Opt. Phys., 1976, 13, 2287–2298.

Melting Point: Intuitive Explanations

1) Atom binding:

- Surface atoms bind with less cohesive energy to the neighbouring atoms
 - Easier to "release" surface atoms than bulk atoms

2) Thermodynamic:

- "Melting opposite to nucleation"
- Change in the volume energy vs. surface energy
- Predicted 1909 [1], first proved 1954 [2]

P. Buffat and J. P. Borel, Phys. Rev. A: At., Mol., Opt. Phys., 1976, 13, 2287–2298.

Melting of Nanoparticle

As a function of time

➤ The solid | liquid interface changes

Melting Changes Gibbs Energy

$$\Delta G_{TOTAL} = \Delta G_{Bulk} + \Delta G_{Surface}$$

$$\Delta G_{Bulk} = \frac{L_0(T_0 - T)}{T_0} V_L$$

 $\Delta G_{Surface} = \gamma \Delta A$

Where

 L_0 = latent heat of melting

 T_0 = melting point of bulk

T= melting point of extended system

 V_1 =volume of liquid

 γ = surface energy

 ΔA = increment of surface area

Melting of Nanoparticle

Thickness, t

 $\Delta G_{Surface} = A_L \gamma_L + A_{SL} \gamma_{SL} - A_S \gamma_S$

Where

 A_{i} = new liquid surface area

 A_{SI} = new solid-liquid interface area

 A_s = destroyed solid interface

 γ_1 = surface energy of liquid (per unit area)

 γ_{si} = surface energy of solid/liquid (per unit area)

 y_s = surface energy of solid (per unit area)

Melting of Nanoparticle

At equilibrium

$$\frac{\partial G}{\partial t} = 0$$

Liquid layer
Thickness, t

Solid

Melting of Nanoparticles in Matrix

Young's theorem

$$\gamma_{SL}\cos\theta=\gamma_{LM}-\gamma_{SM}$$

LM = liquid | matrix

SM = solid | matrix

SL = solid | liquid

 $0 < \theta < 90^{\circ}$

If
$$\gamma_{SL} > \gamma_{LM}$$
 $\rightarrow T_{\rm m} < T_{\rm 0}$

If
$$\gamma_{SL} < \gamma_{LM}$$
 $\rightarrow T_{m} > T_{0}$

$$\Delta G_{bulk} = \frac{L_0(T_0 - T)}{T_0} V_L$$

$$\Delta G_{surf} = A_{LM} \gamma_{LM} + A_{SL} \gamma_{SL} - A_{SM} \gamma_{SM}$$

$$\Delta G_{tot} = \Delta G_{bulk} + \Delta G_{surf}$$

Example: Flexible Electronics

➤ Low melting point = Advantage in flexible electronics

C. Yang, C. Ping Wong, M. M. F. Yuen, *J. Mater. Chem. C*, **1** (2013) 4052-4069.

Thermal Transport (Thermal Conductivity)

- 1. Lattice wave vibrations (phonons)
 - More pronounced in non-metals
- 2. Free electrons
 - More pronounced in metals

Thermal Transport (Thermal Conductivity)

- 1. Lattice wave vibrations (phonons)
 - More pronounced in non-metals
- 2. Free electrons
 - More pronounced in metals
 - Quantum confinement when size close to the phonon wavelength

Note! CNT 3000 W/mK Bulk Cu 400 W/mK $0D \rightarrow QF$ in **three** dimensions $1D \rightarrow QF$ in **two** dimensions $2D \rightarrow QF$ in **one** dimension

Effect on thermal conductivity

Thermal Conductivity

60

•First observed 2003 [1] for a individual silicon nanowire

Temperature (K)

Example: 2D Materials

Example: Thermoelectric Materials

Lower Thermal Conductivity = Advantage in thermoelectric materials

(i.e. materials changing heat to electricity)

 Thermoelectric material should be a good electrical conductor and bad thermal conductor

Figure of merit

$$ZT = \frac{\sigma S}{k}$$

 σ =electrical conductivity

S = Seebeck coefficient

k =thermal conductivity

L. Yang, N. Yang, B. Li, Nano Lett. 14 (2014) 1734-1738.

Heat Capacity and Thermal Expansion

HEAT CAPACITY

- Nanocsytalline iron > "normal" iron
- > entropy effect

BUT

ZnO flakes < bulk ZnO

THERMAL EXPANSION

• 3.2 nm AgNP in glass > bulk Ag

BUT

- 5.1 nm AgNP in glass ≈ bulk Ag
- SWCNT very very low

Conflicting results....

Concept Checks

True or false

- Thermoelectric materials is a lousy electric conductor and good thermal conductor.
- 2) Lower melting point of nanomaterials can be assumed to be due to the fact that small nanoparticles are thermodynamically less stable than their bulk counterparts.
- 3) Heat transfer in single layered, metallic 2D materials is lower due to lower freedom of electrons

2nd Part: Magnetic Properties at Nanoscale

Magnetic Properties

- All magnetic properties are related to magnetic moment of electrons
 - 1. Electron's movement around the positive nucleus
 - 2. Spinning around its own axis

- •Macsrocopic magnetism depends on how the atoms are in the bulk and how freely electrons' magnetic moment can change
 - Domains

Magnetic Properties

A. G. Kolhatkar, A. C. Jamison, D. Litvinov, R. C. Willson, T. R. Lee, Int J Mol Sci. 14 (2013) 15977–16009.

Properties are affected by

■Size

Shape

Composition

■Core-Shell structure

$$E_{Total} = E_{exc} + E_{ani} + E_{dem} + E_{app}$$

 $E_{\rm exc}$ = energy related to an atomic magnetic moment

 E_{ani} = energy related to the electron alignment in anisotropic crystals

 E_{dem} = energy related to magnetic domains (dipole-dipole interactions)

 E_{app} = energy related to an applied field

$$E_{Total} = E_{exc} + E_{ani} + E_{dem} + E_{app}$$

 $E_{\rm exc}$ = energy related to an atomic magnetic moment

$$E_{Total} = E_{exc} + E_{ani} + E_{dem} + E_{app}$$

 E_{ani} = energy related to the electron alignment in anisotropic crystals ("easy-axis")

$$E_{Total} = E_{exc} + E_{ani} + E_{dem} + E_{app}$$

 E_{dem} = energy related to magnetic domains (dipole-dipole interactions)

$$E_{Total} = E_{exc} + E_{ani} + E_{dem} + E_{app}$$

 E_{app} = energy related to an applied field

Magnetic Properties in Bulk

Field is increased, *magnetization* increases

- **≻**Saturation (Ms)
- •Field is decreased
- > Hysteresis
- Remanence (Mr)
 - = magnetization left when the *field is back to zero*
- **≻**Coecervity (-Hc)
 - = field needed to get back to zero magnetization

Ferromagnetics at Nanoscale

Critical size for single domain

Size decreases and the exhange forces dominate

Ferromagnetics at Nanoscale

Critical size for single domain

$$D_{cri} = \frac{9\gamma_B}{\mu_0 M_s^2} = \frac{9 \cdot 4(AK_1)^{1/2}}{\mu_0 M_s^2}$$

Where γ_0 = wall energy of materials, A is an exchange constant (exchange stiffness), K_1 anisotropic constant, μ_0 permittivity of free space and M_s saturation magnetimism

Size decreases and the exhange forces dominate

Single-Domain: Coecervity and Hysteresis

Single-Domain: Spin Flip

$$E_a = KV \sin^2 \Theta$$

Where

K = magnetic anistropic constant

V =volume of the particle

 Θ = angle between magnetization vector and easy axis of magnetization

Ferromagnetics at Nanoscale

Size decreases even more, thermal fluctuations dominate over exchange forces

 t_1

Thermal fluctations flip the spin so fast that ferromagnetic material "feels and looks" from outside as paramagnetic

Superparamagnetism

Superparamagnetism

- Single-domain
- No hysteresis
- ■Paramagnetic without external field
- ■Immediate response to magnetic field
 - ■High saturations magnetism

Without field, spin up/down (thermal fluctations)

With field, spin up or down

Superparamagnetism

BLOCKING TEMPERATURE $T_{\rm B}$

$$T_B = \frac{KV}{25k_B} = \frac{K(\frac{4\pi r_0^3}{3})}{25k_B}$$

K = anisotropic constant V= volume of single-domain particle $k_{\rm B}$ = Boltzmann constant $r_{\rm O}$ = radius of the single-domain particle

Above T_B (superparamagnetism)

- ■No field = magnetism is zero
 - Enough energy to flip the spin back and forth (randomly and quickly)
- ■With field = magnetism
 - particle spins follow the external magnetic field

Below T_B

- "Blocked" to one spin orientation
 - One domain = one spin direction (easy axis) = magnetism
 - Not enough energy to follow the external field
- Permanent magnetism

Superparamagnetism

NEEL RELAXATION TIME (T_N)

Time between the spin flip (up/down) = Neel relaxation time

$$T_B = \frac{KV}{k_B \ln(\frac{\tau_N}{\tau_0})}$$

 $\tau_{\rm N}$ = Neel relaxation time

 τ_0 = observation time

Superparamagnetic Nanoparticles

Strong response to the external field

- No magnetism without the field
 - Paramagnetic behaviour without the field
- Immediate response to magnetic field
 - no hysteresis
- With field, high saturation magnetism
 - Ferri- or ferromagnetic materials ("supermagnetic" behaviour)

Biomedical Application

- No magnetism without the field
- **→** Reduces aggregation in body
- Immediate response to magnetic field
- > Fast response time (for example in imaging)
- High saturation magnetism
- Lower concentrations needed / better contrast (in imaging)

Biomedical Applications of Superparamagnetic Nanoparticles

Blocking temperature T_B Growth in

D. Kami, S. Takeda, Y. Itakura, S. Gojo, M. Watanabe, M. Toyoda, *Int. J. Mol. Sci.* **12** (2011) 3705-3722.

K. Yan, P. Li, H. Zhu, Y. Zhou, J. Ding, J. Shen, Z. Li, Z. Xu, P. K. Chu, *RSC Advances* **3** (2013) 10598-10618.

High saturation magnetization Ms

- high contrasts in MRI

http://www.theamedical.com/index.php?r=web/view&id=125&action=Product

Neel relaxation time (τ_N)

Giant & Colossal Magnetoresistance (GMR, CMR)

Antiferromagnetic coupling

Magnet

Exchange bias

Curiosity: Graphene

➤ Straining of graphene can give even 300 T pseudomagnetic fields

➤ Before graphene, largest strain induced field observed

was 85 T!

T. Dumitrica et al., *J. Nanophoton*. **6** (2012) 064501.

Concept Checks

True of false

- 1) Below $T_{\rm B}$ (blocking temperature) superparamagnetic is not magnetic.
- 2) Spin-flipping takes place only at high temperatures.
- 3) Nanomaterials which are below critical size are superparamagnetic.
- 4) Neel relaxation time does not depend on the observation time.

Review of Physical Properties

Reading Material

For the exam

M.F. Ashby, P.J. Ferreira, D.L. Schodek: *Nanomaterials, Nanotechnologies and Design*

- ■Thermal Properties: pp. 211-218
- ■Magnetic Properties: pp. 222-227

For Interested Reader (optional)

G. Cao, Y. Wang: Nanostructures and Nanomaterials - Synthesis, Properties, and Applications

- 1st Edition (thermal, magnetic): pp. 353-357, 382-384.
- •2nd Edition (thermal, magnetic): pp. 462-467, 496-499.

Tomorrow is the deadline for abstract submission!

Conference Abstract

- Different from the abstract of a scientific paper
- One A4 (no more!)
- •Usually contain image(s)
- Proper references

Short background, main findings, possibilities/future prospects

A lure for your poster!

