Calcolo differenziale

Andrea Canale

May 20, 2025

Contents

1	\mathbf{Suc}	cessioni numeriche	2
	1.1	Definizione di successioni	2
2	Pro	prietà delle successioni	2
3	Lim	iti delle successioni	3
	3.1	Limiti finiti all'infinito	3
		3.1.1 Osservazione	3
	3.2	Limiti infiniti all'infinito	3
		3.2.1 Osservazioni	3
	3.3	Teoremi sui limiti delle successioni	4
		3.3.1 Teorema 1	4
		3.3.2 Teorema 2	4
		3.3.3 Teorema 3	4
4	Suc	cessioni geometriche	5
5	Cor	nfronti di crescita	5
	5.1	Esempio	5
6	Sim	boli di Landau	6
	6.1	o-piccolo	6
	6.2	O-grande	6
	6.3	Theta-grande	6
	6.4	Equivalenza	6
		6.4.1 Osservazione	7
	6.5	Simboli di Landau per le funzioni	7

1 Successioni numeriche

Una successione numerica è una funzione del tipo:

$$a:N\to\mathbb{R}$$

$$n \to a_n$$

Una successione è un insieme numerico di lunghezza infinita perchè $\mathbb N$ ha cardinalità infinita.

Una successione forma un grafico a punti:

1.1 Definizione di successioni

Per rappresentare una successione abbiamo 2 notazioni:

- Forma esplicita: $a_n = \frac{1}{n}$
- Forma ricorsive: $\begin{cases} a_0 = 3 \\ a_{n+1} = a_n 2 \end{cases}$

2 Proprietà delle successioni

Le successioni condividono con le funzioni diverse proprietà:

- Monotona crescente se $a_n + 1 \ge a_n \forall n \in \mathbb{N}$
- Monotona decrescente se $a_n + 1 \le a_n \forall n \in \mathbb{N}$
- Inferiormente limitata se $\exists m \in \mathbb{R}$ tale che $a_n \geq m \forall n \in \mathbb{N}$
- Superiormente limitata se $\exists M \in \mathbb{R}$ tale che $a_n \leq m \forall n \in \mathbb{N}$
- Limitata se è sia inferiormente sia superiormente limitata

3 Limiti delle successioni

Come per le funzioni, possiamo studiare il comportamento di una successione vicino ad un punto.

3.1 Limiti finiti all'infinito

Si dice che $a_n \to l$ per $n \to \infty$ se:

$$\forall \epsilon > 0 \ \exists N_{\epsilon} \ \text{tale che} \ n > N_{\epsilon} \implies |a_n - l| < \epsilon$$

In questo caso si dice che la successione **converge** ad l.

3.1.1 Osservazione

Il numero n non può tendere ad un numero razionale (ad esempio 1^+ perchè siamo in \mathbb{N})

3.2 Limiti infiniti all'infinito

Si dice che $a_n \to \infty$ per $n \to \infty$ se:

$$\forall M > 0 \ \exists N_{\epsilon} \text{ tale che } n \geq N_{\epsilon} \implies a_n > M$$

In questi casi si dice che la successione è divergente

3.2.1 Osservazioni

- Questi sono gli unici due tipi di limiti che esistono per le successioni perchè $\mathbb N$ ha cardinalità ∞
- Le regole algebriche dei limiti valgono anche per le successioni

• Se una successione non è nè divergente nè convergente, si dice **indeterminata**.

3.3 Teoremi sui limiti delle successioni

3.3.1 Teorema 1

Se a_n è convergente, allora a_n è limitata. Non vale il viceversa

3.3.2 Teorema 2

Se a_n è monotona, allora ha sicuramente un limite. Distinguiamo 4 casi: Se a_n è crescente, allora:

- Se è superiormente limitata converge
- Se è inferiormente limitata diverge

Se a_n è decrescente, allora:

- Se è inferiormente limitata converge
- Se è inferiormente illimitata diverge

3.3.3 Teorema 3

Sia a_n una successione tale che

$$\lim_{n \to \infty} a_n = l \in \mathbb{R}$$

e sia un altra successione

$$a_n + m$$

con $m \in \mathbb{R}$ arbitrario. Allora questa due successioni sono diverse ma si comportano allo stesso modo:

$$\lim_{n \to \infty} a_n + m = l$$

Inoltre se a_n è indeterminata, anche a_n+m lo è.

4 Successioni geometriche

Una successione si dice geometrica se $\exists q \in \mathbb{R}$ tale che

$$a_{n+1} = q \cdot a_n$$

La costante q si dice base o ragione della successione.

5 Confronti di crescita

Date due successioni $\{a_n\}$ e $\{b_n\}$ tali che

$$\lim_{n \to \infty} a_n = +\infty = \lim_{n \to \infty} b_n$$

vogliamo capire quale sia la più "grande".

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0$$

Indica che $\{a_n\}$ tende a $+\infty$ più le
ntamente di $\{b_n\}$

* * *

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$$

Indica che $\{a_n\}$ tende a $+\infty$ più velocemente di $\{b_n\}$.

5.1 Esempio

Date due successioni $\{n^2\}$ e $\{n^2+1\}$ verifichiamo se vale il teorema 3.

$$\lim_{n \to \infty} \frac{n^2}{n^2 + 1}$$

In generale per risolvere limiti di questo tipo, dobbiamo scomporre la successione che è composta da più termini, in questo caso $\{n^2 + 1\}$. Otteniamo quindi:

$$\lim_{n \to \infty} \frac{n^2}{n^2 \cdot \left(1 + \frac{1}{n^2}\right)}$$

Notiamo che $\frac{1}{n^2} \to 0$ per $x \to \infty,$ inoltre semplifichiamo n^2

$$\lim_{n\to\infty}\frac{1}{1\cdot(1+0)}=1$$

Le due successioni vanno alla stessa velocità e questo conferma il teorema 3.

6 Simboli di Landau

Date due successioni $\{a_n\}$ e $\{b_n\}$ con $b_n \neq 0$, abbiamo le seguenti definizioni:

6.1 o-piccolo

 a_n è o-piccolo di b_n , $a_n = o(b_n)$ se

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0$$

Cioè se a_n cresce più lentamente di b_n

6.2 O-grande

 a_n è O-grande di b_n , $a_n = O(b_n)$ se

$$\exists c > 0 \text{ tale che } \left| \frac{a_n}{b_n} \right| \le c$$

Cioè se a_n non cresce più velocemente di b_n . Infatti $\lim_{n\to\infty} \frac{a_n}{b_n} \neq \infty$.

Inoltre $a_n = o(b_n) \implies a_n = O(b_n)$, non vale il viceversa.

A livello di limiti, $a_n = O(b_n)$ indica che

$$\lim_{n \to \infty} \frac{a_n}{b_n} = l$$

6.3 Theta-grande

 a_n è theta-piccolo di $b_n,\,a_n=\Theta(b_n)$ se

$$\exists c > 0, C > 0 \text{ tale che } c \leq \left| \frac{a_n}{b_n} \right| \leq C$$

Cioè se a_n non cresce nè più lentamente nè più velocemente di b_n

6.4 Equivalenza

 a_n è equivalente o asintotica a b_n e si sccrive $a_n \sim b_n$ se

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 1$$

Questo succede se a_n e b_n hanno la stessa velocità di crescita e sono simili. Infatti a_n $b_n \implies a_n = \Theta(b_n)$ ma non il viceversa.

6.4.1 Osservazione

Sia

$$p(n) = a_0 n_k + a_1 n^{k-1} + \dots + a_{k-1} n + a_k$$

allora l'andamento asintotico viene stabilito dal termine di grado massimo, cioè

$$p(n) \sim a_0 n_k$$

6.5 Simboli di Landau per le funzioni

I simboli di Landau possono essere usati anche per le funzioni nello stesso modo che sono usati per le successioni. Ad esempio vengono usati per lo studio di complessità di algoritmo.