

planetmath.org

Math for the people, by the people.

${\bf coalgebra}\ {\bf homomorphism}$

Canonical name CoalgebraHomomorphism

Date of creation 2013-03-22 18:49:25 Last modified on 2013-03-22 18:49:25

Owner joking (16130) Last modified by joking (16130)

Numerical id 4

Author joking (16130) Entry type Definition Classification msc 16W30 Let (C, Δ, ε) and $(D, \Delta', \varepsilon')$ be coalgebras.

Definition. Linear map $f: C \to D$ is called *coalgebra homomorphism* if $\Delta' \circ f = (f \otimes f) \circ \Delta$ and $\varepsilon' \circ f = \varepsilon$.

Examples. 1) Of course, if D is a subcoalgebra of C, then the inclusion $i:D\to C$ is a coalgebra homomorphism. In particular, the identity is a coalgebra homomorphism.

2) If (C, Δ, ε) is a coalgebra and $I \subseteq C$ is a coideal, then we have canonical coalgebra structur on C/I (please, see http://planetmath.org/SubcoalgebrasAndCoidealsthis entry for more details). Then the projection $\pi: C \to C/I$ is a coalgebra homomorphism. Furthermore, one can show that the canonical coalgebra structure on C/I is a unique coalgebra structure such that π is a coalgebra homomorphism.