解析函数

December 3, 2016

1. 设 E 为平面点集。若对于 E 内每一个复数 z,按一定规律,有一个复数 ω 与之对应,则称 ω 为 z 的函数 (单值函数),记作 $\omega = f(z)$,点集 E 称为这个函数的自变量 z 的定义域, ω 称为因变量。

若对于自变量 $z \in E$,对应着几个或无穷多个值 ω ,则称在 E 上确定了一个多值函数 $\omega = f(z)$ 。

若 P 中每一个点 ω ,通过关系式 $\omega=f(z)$ 只有一个点 $z\in E$ 与之对应,则在 P 上也确定了一个单值函数,记作 $z=g(\omega)$,称为函数 $\omega=f(z)$ 的反函数或称变换 f(z) 的逆变换。

若 P 中存在点 ω ,通过关系式 $\omega = f(z)$ 在 E 中至少有两个点与之相对应,则在 P 上就确定了一个多值函数,记作 $z = g(\omega)$,称为变换 f(z) 的逆变换。

1 极限与连续

1.1 极限

设 E 是复平面上的点集, z_0 是 E 的一个<mark>凝聚点</mark>,而函数 $\omega = f(z)$ 定义在 E 上。若存在复数 l,使得对于任意给定的实数 s>0,都存在实数 $\delta>0$,使当 $z\in E$ 及 $0<|z-z_0|<\delta$ 时,都满足

$$|f(z) - l| < s (1)$$

则称函数 f(z) 当 z 在 E 中趋向于 z_0 时有极限l, 记作

$$\lim_{\substack{z \to z_0 \\ (z \in E)}} f(z) = l \ . \tag{2}$$

若 E 包含有 z_0 的邻域 $S(z_0)$ 或包含有 z_0 的邻域除去 z_0 的点集,则以上极限关系简写为

$$\lim_{z \to z_0} f(z) = l \ . \tag{3}$$

几何意义:以复数 l 为中心,半径 $\epsilon > 0$ 作一个圆 $S_{\epsilon}(l)$,则可以找到 z_0 的一个充分小的邻域——它可以是半径为 δ 、中心为 z_0 的圆 $S_{\delta}(z_0)$,当 $z \in E$, $z \neq z_0$ 进入这个邻域中时,对应的值 $\omega = f(z)$ 就位于圆 $S_{\epsilon}(l)$ 中。

1.2 连续

设 E 是复平面上的点集, z_0 是 E 的一个凝聚点, $z_0 \in E$,而函数 $\omega = f(z)$ 定义在 E 上。若

$$\lim_{\substack{z \to z_0 \\ (z \in E)}} f(z) = f(z_0) . \tag{4}$$

即任给 $\epsilon > 0$,存在数 $\delta > 0$,使得当 $z \in E$,且满足 $|z - z_0| < \delta$ 时,总有

$$|f(z) - f(z_0)| < \epsilon \tag{5}$$

则称函数 $\omega = f(z)$ 沿着集合 E 在点 $z = z_0$ 处<mark>连续</mark>。

若复平面的集合 E 上的每一点都是 E 的凝聚点, 且函数 $\omega = f(z)$ 在 E 上每一点都连 续,则称函数 f(z) 在 E 上连续。

2 复变函数的导数

设函数 $\omega = f(z)$ 在 $z = z_0$ 的邻域 $S(z_0)$ 上有定义,比值

$$\frac{\Delta\omega}{\Delta z} = \frac{f(z) - f(z_0)}{z - z_0} \tag{6}$$

若 z 不论以什么方式趋向于 z_0 时,上式都存在极限,则称这个极限值为函数 f(z) 在 $z=z_0$ 处的<mark>导数</mark>,记作 $f'(z_0)$,并说函数 f(z) 在 $z=z_0$ 处可导,即

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0) \quad \vec{\boxtimes} \quad [f(z_0)]' \tag{7}$$

柯西-黎曼方程 2.1

设函数 f(z) = u(x,y) + iv(x,y) 在区域 D 内有定义,则它在 D 内<mark>解析的充分必要条</mark> 件是:

- 1. u(x,y) 与 v(x,y) 在 D 内处处可微;
- 2. u(x,y) 与 v(x,y) 在 D 内处处满足一阶偏微分方程组

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \tag{8}$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \tag{8}$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \tag{9}$$