PØ6

Serial No. 09/734,147

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1. (Currently amended) A method of detecting one of a set of preamble
 2 sequences in a spread signal comprising the steps of:
 3 (a) correlating the received spread signal with sequences of a first orthogonal Gold
- code (OGC) set in accordance with a first fast transform to provide a preamble signal;

 (b) correlating the preamble signal with the set of preamble sequences in
- (b) correlating the preamble signal with the set of preamble sequences in accordance with a second fast transform to generate a set of index values;
 - (c) forming a decision statistic based on the set of index values; and
- (d) selecting, as the detected one of the set of preamble sequences, a preamble
 sequence corresponding to the decision statistic;
- wherein step (c) comprises the steps of:
- 1) forming an initial decision statistic based on the relative maximum index of the
 set of index values:
- 2) selecting the signal generated by the preamble sequence combined with the preamble signal corresponding to the initial decision statistic;
- 3) adjusting, in one or more of amplitude and phase, the signal selected in step 2):
- 16 <u>and</u>
- 17 4) forming the decision statistic based on the adjusted signal.

11:29

1	2. (Original) The invention as recited in claim 1, wherein, for step (a), the						
2	first fast transform method is a fast orthogonal Gold code transform (FOGT) comprising						
3	the steps of						
4	1) multiplying the received spread signal with a first sequence vector and a						
5	forward permutation vector to generate a permuted sequence signal, wherein:						
6	the first OGC set is generated from the first sequence vector and a cyclic						
7	shift matrix of a second sequence vector, and the forward permutation vector						
8	maps between i) the cyclic shift matrix and ii) a matrix of Walsh-Hadamaard						
9	sequences; and						
0	2) applying the fast Hadamaard transform to the permuted sequence signal to						
1	generate a set of correlated signals, the preamble signal selected as one of the set of						
2	correlated signals based on a predetermined decision criterion.						
1	3. (Original) The invention as recited in claim 1, wherein:						
2	for step (b), the set of preamble sequences are selected from a second OGC set						
3	formed from first and second sequence vectors, the second OGC set generated from the						
4	first sequence vector and a cyclic shift matrix of a second sequence vector; and wherein						
5	the second fast transform is a fast orthogonal Gold code transform (FOGT)						
6	comprising the steps of						
7	1) multiplying the preamble signal with a first sequence vector and a						
8	forward permutation vector to generate a permuted preamble signal, the forward						
9	permutation vector mapping between i) the cyclic shift matrix and ii) a matrix of						
0	Walsh-Hadamaard sequences, and						
1	2) applying the fast Hadamaard transform to the permuted preamble signal						
2	to generate the set of index values.						
1	4. (Original) The invention as recited in claim 1, wherein, for step (b), the set						
2	of preamble sequences are selected from set of Walsh-Hadamaard sequences, and the						
3	second fast transform is a fast Hadamaard transform.						

- 5. (Original) The invention as recited in claim 1, wherein, for step (a), the received spread signal is a burst of a random-access channel in a code-division, multiple-access communication system.
 - 6. (Cancelled)
- 7. (Currently amended) The invention as recited in claim 6 1, wherein step
 (c3) adjusts the selected signal by estimating a channel response from the preamble
 signal, forming a de-rotation signal from the preamble signal, and combining the derotation signal with the preamble signal for coherent sequence detection.
- 8. (Currently amended) The invention as recited in claim 6 1, wherein step
 (c2) employs the initial decision statistic to locally generate a corresponding preamble
 sequence, the locally generated preamble sequence being combined with the preamble
 signal f

5	(Currently amended) A method of detecting one of a set of preamble					
6	sequences in a spread signal comprising the steps of:					
7	(a) correlating the received spread signal with a set of orthogonal sequences to					
8	provide a preamble signal;					
9	(b) correlating the preamble signal with one or more preamble sequences of an					
10	orthogonal Gold code (OGC) set in accordance with a fast transform to generate a set of					
11	index values;					
12	(c) forming a decision statistic based on the set of index values; and					
13	(d) selecting, as the detected one of the set of preamble sequences, a preamble					
14	sequence corresponding to the decision statistic;					
15	wherein step (c) comprises the steps of:					
16	1) forming an initial decision statistic based on the relative maximum index of the					
17	set of index values;					
18	2) selecting the signal generated by the preamble sequence combined with the					
19	preamble signal corresponding to the initial decision statistic;					
20	3) adjusting, in one or more of amplitude and phase, the signal selected in step 2);					
21	<u>and</u>					
22	4) forming the decision statistic based on the adjusted signal.					
,						

ı	10. (Original) The invention as recited in claim 9, wherein:
2	for step (b), each preamble sequence is selected from the OGC set formed from
3	first and second sequence vectors, wherein the OGC set is generated from the first
4	sequence vector and a cyclic shift matrix of a second sequence vector; and wherein
5	the fast transform is a fast orthogonal Gold code transform (POGT) comprising
6	the steps of
7	1) multiplying the preamble signal with a first sequence vector and a forward
8	permutation vector to generate a permuted preamble signal, the forward permutation
9	vector mapping between i) the cyclic shift matrix and ii) a matrix of Walsh-Hadamaard
0	sequences; and
1	2) applying the fast Hadamaard transform to the permuted preamble signal to
2	generate the set of index values.

11:29

•	11. (Currently amended) A proamble detector its detecting the or a set of
2	preamble sequences in a spread signal, the preamble detector comprising:
3	a first correlator correlating the received spread signal with sequences of a first
4	orthogonal Gold code (OGC) set in accordance with a first fast transform to provide a
5	preamble signal;
6	a second correlator correlating the preamble signal with the set of preamble
7	sequences in accordance with a second fast transform method to generate a set of index
8	values;
9	a circuit forming a decision statistic based on the set of index values; and
10	a selector selecting, as the detected one of the set of preamble sequences, a
11	preamble sequence corresponding to the decision statistic;
12	wherein the circuit forming the decision statistic comprises:
13	a first magnitude detector forming an initial decision statistic based on the relative
14	maximum index of the set of index values;
15	a signal selector selecting the signal generated by the preamble sequence
16	combined with the preamble signal corresponding to the initial decision statistic;
17	a coherent detector adjusting, in one or more of amplitude and phase, the signal
18	selected in step 2); and
19	a second magnitude detector forming the decision statistic based on the adjusted
20	signal.

11:29

1	12. (Original) The invention as recited in claim 11, wherein the first fast					
2	transform is a fast orthogonal Gold code transform (FOGT), the first OGC set is					
.3	generated from a first sequence vector and a cyclic shift matrix of a second sequence					
4	vector, and the forward permutation vector maps between i) the cyclic shift matrix and ii)					
5	a matrix of Walsh-Hadamaard sequences; and wherein:					
6	the first correlator comprises:					
7	a multiplier multiplying the received spread signal with the first sequence					
8	vector and a forward permutation vector to generate a permuted sequence signal;					
9	and					
10	a combiner applying the fast Hadamaard transform to the permuted					
11	sequence signal to generate a set of correlated signals, the preamble signal					
12	selected as one of the set of correlated signals based on a predetermined decision					
13	criterion.					
l	13. (Original) The invention as recited in claim 11, wherein:					
2	the set of preamble sequences is selected from a second OGC set formed from					
3	first and second sequence vectors, the second OGC set generated from the first sequence					
4	vector and a cyclic shift matrix of a second sequence vector; and the second fast					
5	transform is a fast orthogonal Gold code transform (FOGT); and wherein:					
6	the second correlator comprises:					
7	a multiplier multiplying the preamble signal with a first sequence vector					
8	and a forward permutation vector to generate a permuted preamble signal, the					
9	forward permutation vector mapping between i) the cyclic shift matrix and ii) a					
10	matrix of Walsh-Hadamaard sequences, and					
11	a combiner applying the fast Hadamaard transform to the permuted					
12	preamble signal to generate the set of index values.					
	•					

2

, 3

ı

1

2

3

4

5

1

2

3

4

5

ı

2

1

P13

- 1 14. (Original) The invention as recited in claim 11, wherein the set of
 2 preamble sequences is selected from a set of Walsh-Hadamaard sequences, and the
 3 second fast transform is a fast Hadamaard transform.
 - 15. (Original) The invention as recited in claim 11, wherein the received spread signal is a burst of a random-access channel in a code-division, multiple-access communication system.
 - 16. (Cancelled)
 - 17. (Currently amended) The invention as recited in claim 46 11, wherein the coherent detector includes a channel estimator for i) estimating a channel response from the preamble signal, and ii) forming a de-rotation signal from the preamble signal, and a combiner for combining the de-rotation signal with the preamble signal for coherent sequence detection.
 - 18. (Currently amended) The invention as recited in claim 16 11, wherein the coherent detector includes a sequence generator, the sequence generator employing the initial decision statistic to locally generate a corresponding preamble sequence; and a combiner combining the locally generated preamble sequence with the preamble signal for coherent sequence detection.
 - 19. (Original) The invention as recited in claim 11, wherein the preamble detector is embodied in an integrated circuit.

ı	20. (Currently attended) A premiuse detector for detecting the or 2 set 51
2	preamble sequences in a spread signal comprising the steps of:
3	a first correlator correlating the received spread signal with a set of orthogonal
4	sequences to provide a preamble signal;
5	a second correlator correlating the preamble signal with one or more preamble
6	sequences of an orthogonal Gold code (OGC) set in accordance with a fast transform to
7	generate a set of index values;
8	a circuit forming a decision statistic based on the set of index values; and
9	a selector selecting, as the detected one of the set of preamble sequences, a
10	preamble sequence corresponding to the decision statistic;
ŧ1	wherein the circuit forming the decision statistic comprises:
12	a first magnitude detector forming an initial decision statistic based on the relative
13	maximum index of the set of index values;
14	a signal selector selecting the signal generated by the preamble sequence
15	combined with the preamble signal corresponding to the initial decision statistic:
16	a coherent detector adjusting, in one or more of amplitude and phase, the signal
17	selected in step 2); and
18	a second magnitude detector forming the decision statistic based on the adjusted
19	signal.

Serial No. 09/734,147

21.	(Original)	The invention a	as recited in	claim 20,	wherein:
-----	------------	-----------------	---------------	-----------	----------

- each preamble sequence is selected from the OGC set formed from first and 2
- second sequence vectors, wherein the OGC set is generated from the first sequence vector 3 and a cyclic shift matrix of a second sequence vector and the fast transform is a fast
- orthogonal Gold code transform (FOGT); and wherein
- the second correlator comprises: 6
- a multiplier multiplying the preamble signal with a first sequence vector and a 7
- forward permutation vector to generate a permuted preamble signal, the forward 8
- permutation vector mapping between i) the cyclic shift matrix and ii) a matrix of Walsh-9
- Hadamaard sequences; and 10
- a combiner applying the fast Hadamaard transform to the permuted preamble 11 signal to generate the set of index values. 12
- (Original) The invention as recited in claim 20, wherein the preamble 22. 1 detector is embodied in an integrated circuit.

23-29. (Cancelled)