What part of 'no' don't you understand?

Some thoughts on Negative Quantifiers

by Sasson Margaliot 2019

The goal of this short article is to present a novel idea that both Universal Quantifier and Existential Quantifier can be reduced to a Negative Quantifier.

In mathematics, only Universal Quantifiers and Existential Quantifiers are traditionally used. There are even special symbols for this: \forall (a vertically inverted "A") and \exists (a vertically inverted "E").

The letter A stands for All and the letter E stands for Exists.

When describing natural language, semanticists actually use more than just these two quantifiers. In English, quantifiers may compound with other words.

Universal Quantifier: everyone, everything, everywhere, ...

Existential Quantifier: someone, something, somewhere, ...

Negative Quantifier: noone, nothing, nowhere, ...

Interestingly, we can derive the other quantifiers from the negative one. But first we need a symbol for the Negative Quantifier. For this I suggest we use a vertically inverted $\bf N$. (Luckily it isn't hard to find on the keyboard, since an inverted $\bf N$ is also written $\bf N$.)

 $\mathbf{N}x \, \mathsf{P}(x)$ means "there is no x such that $\mathsf{P}(x)$ ".

Both the Universal Quantifier $\forall x$ and the Existential Quantifier $\exists x$ can be defined in terms of $\mathbf{N}x$ in the following way:

(1)
$$\forall x P(x) = \mathbf{N}y \mathbf{N}x P(x)$$

(2)
$$\exists x P(x) = \mathbf{N}x \mathbf{N}y P(x)$$

Of course, the variable y must be free in P(x).

 $\forall x$ and $\exists x$ are no longer elementary.

A Regular Negation likewise can be expressed in terms of a Negative Quantifier **N**x:

(3)
$$\neg P(x) = \mathbf{N}y P(x)$$

As is well know, all other logical connectives can be expressed in terms of Conjunction and Negation. Assuming that pre-linguistic intelligence (Margaliot, 2017) already has Conjunction, adding Negative Quantifier **N** immediately gives us all the other quantifiers as well as all of the logical connectives.

References

Margaliot, Sasson 2017 "Minimalist Semantics and Pre-Linguistic Intelligence", lingbuzz/003409