

Disciplina: Estruturas de Dados 2 – ED43S Curso: Tecnologia em Análise e Desenvolvimento de Sistemas

Departamento Acadêmico de Informática (Dainf)

Professora: Rúbia Eliza de Oliveira Schultz Ascari rubia@utfpr.edu.br

São usadas em diversas aplicações.

Definição

- Uma árvore é uma abstração matemática usada para representar estruturas hierárquicas não lineares dos objetos modelados.
- É um tipo especial de grafo
 - Definida usando um conjunto de nós (ou vértices) e arestas
 - Qualquer par de vértices está conectado a apenas uma aresta

Exemplo

- Basicamente, qualquer problema em que exista algum tipo de hierarquia pode ser representado por uma árvore .
 - Relações de descendência (pai, filho, etc.);
 - Diagrama hierárquico de uma organização;
 - Estrutura de pastas do computador.

- Raiz
 - Nó mais alto na árvore, o único que não possui pai.
- Pai ou ancestral
 - Nó antecessor imediato de outro nó.
- Filho
 - É o nó sucessor imediato de outro nó.
- Nó folha ou terminal.
 - Qualquer nó que não possui filhos.
- Nó interno ou não-terminal
 - Nó que possui ao menos UM filho.
- Caminho
 - Sequência de nós de modo que existe sempre uma aresta ligando o nó anterior com o seguinte.
- Grau de um nó
 - Número de filhos de um nó.

- Dado um determinado nó da árvore, cada filho seu é considerado a raiz de uma nova sub-árvore.
- Qualquer nó é a raiz de uma sub-árvore consistindo dele e dos nós abaixo dele, recursivamente.

- Grau de uma árvore
 - Grau máximo que aparece dentre os nós da árvore.
- Nível
 - É dado pelo número de nós que existem no caminho entre esse nó e a raiz (nível 0).
 - Nós são classificados em diferentes níveis.
- Altura
 - Número total de níveis de uma árvore.
 - Comprimento do caminho mais longo da raiz até uma das suas folhas.
- Profundidade
 - É o inverso da altura da árvore.

- Há autores que consideram o nível do nó raiz igual a 1, e nesse caso, a altura corresponde ao maior nível da árvore.
- No exemplo abaixo, a altura é contabilizada de acordo com o número de níveis da árvore.

Conceitos Básicos

Floresta = Conjunto de árvores

Formas de representação

Diagrama de inclusão

Formas de representação

Formas de representação

Níveis

1A; 1.1B; 1.1.1D; 1.2C

Aninhamento

(A((B(D))(C)))

Exemplos de aplicação

Sistema de Arquivos

Exemplos de aplicação

Árvore de decisão para jogar tênis

Exemplos de aplicação

Árvore de derivação

Usada pelos compiladores

Expressão aritmética: (a * b) + (c/(d + e))

Exemplos de aplicação

Tags da linguagem HTML

Exemplos de aplicação

Relacionamentos em uma rede social

Uma árvore modelando relacionamentos em uma rede social

Fonte da imagem: https://algol.dev/arvores-estrutura-de-dados/

Tipos de Árvores

- Na computação, assim como na natureza, existem tipos diferentes de árvores.
- Cada uma delas foi desenvolvida pensando diferentes tipos de aplicações:
 - árvore binária de busca (permite pesquisar, inserir e excluir rapidamente um dado classificado. Também permite encontrar o item mais próximo.)
 - <u>árvore AVL</u> (usada extensivamente em aplicativos de banco de dados em que as inserções e exclusões são menores, mas há pesquisas frequentes para os dados necessários.)
 - <u>árvore Rubro-Negra</u> (usada em TreeSet, TreeMap e Hashmap na Java Collections Library. O Linux também usa árvores vermelho-preto nas operações mmap e munmap para mapeamento de arquivo/memória.)
 - árvore B, B+ e B* (usada para implementar a indexação em bancos de dados.)
 - Heap (usada para implementar filas de prioridade.)

Referências

- Conteúdo baseado no material elaborado pelo professor André Backes. Disponível em https://programacaodescomplicada.wordpress.com/complementar/.
- Backes, André Ricardo, Estruturas de dados descomplicada: em linguagem C, 1ª ed., Rio de Janeiro: Elsevier, 2016.
- Braganholo, Vanessa. Estruturas de Dados e Seus Algoritmos –
 Árvores e Árvores Binárias. Disponível em
 http://www2.ic.uff.br/~vanessa/material/ed/03-ArvoresBinarias.pdf.
 Acesso em 05/05/2021.

Dúvidas

• 555