Hi!

Alex J. Best

5/28/2018

Boston University

If C/R is a curve, $P,Q\in C$, $\omega\in\Omega^1_C$ (e.g. $\frac{x\mathrm{d}x}{y}$), we have a path integral

$$\int_{P}^{Q} \omega \in \mathbf{R}.$$

If C/R is a curve, $P,Q\in C$, $\omega\in\Omega^1_C$ (e.g. $\frac{x\mathrm{d}x}{y}$), we have a path integral

$$\int_{P}^{Q} \omega \in \mathbf{R}.$$

What about if C/\mathbf{Q}_p ?

Coleman defined

$$\int_P^Q \omega \in \mathbf{Q}_p$$

If C/R is a curve, $P,Q \in C$, $\omega \in \Omega^1_C$ (e.g. $\frac{x dx}{y}$), we have a path integral

$$\int_{P}^{Q} \omega \in \mathbf{R}.$$

What about if C/\mathbb{Q}_p ?

Coleman defined

$$\int_{P}^{Q} \omega \in \mathbf{Q}_{p}$$

a "path" integral, with cool properties .

If C/R is a curve, $P,Q \in C$, $\omega \in \Omega^1_C$ (e.g. $\frac{x dx}{y}$), we have a path integral

$$\int_{P}^{Q} \omega \in \mathbf{R}.$$

What about if C/\mathbb{Q}_p ?

Coleman defined

$$\int_{P}^{Q} \omega \in \mathbf{Q}_{p}$$

a "path" integral, with cool properties

Applications

Rational points: We can sometimes find ω so that

Zeroes
$$\left(\int_{p_0}^x \omega\right) \supseteq C(\mathbf{Q})$$

Applications

Rational points: We can sometimes find ω so that

Zeroes
$$\left(\int_{p_0}^x \omega\right) \supseteq C(\mathbf{Q})$$

Heights:

Coleman-Gross introduced a height pairing on abelian varieties, it be decomposed as a sum of local terms, one of which is

$$h_p(D_1,D_2)=\int_{D_2}\omega_{D_1}$$

Applications

Rational points: We can sometimes find ω so that

Zeroes
$$\left(\int_{p_0}^x \omega\right) \supseteq C(\mathbf{Q})$$

Heights:

Coleman-Gross introduced a height pairing on abelian varieties, it be decomposed as a sum of local terms, one of which is

$$h_p(D_1, D_2) = \int_{D_2} \omega_{D_1}$$

p-adic BSD:

Using the above height pairing one can define a p-adic regulator so that for a modular abelian variety A/\mathbf{Q} conjecturally

$$\mathcal{L}^*(A,0) = \epsilon_p(A) \frac{|\underline{\mathrm{III}}(A/\mathbf{Q})| \operatorname{Reg}_{\gamma}(A/\mathbf{Q}) \prod_{v} c_v}{|A(\mathbf{Q})_{\operatorname{tors}}| |A^{\vee}(\mathbf{Q})_{\operatorname{tors}}|}$$