1.	(2 Punkte) Liste ist unser selbstgebastelter Datentyp. Wir nummerieren die Einträge der Liste mit Zeiger anf an der Stelle 0.
	a. Welche Zahlenfolge findet sich in den Listenlementen?b. Gib den Index des Elements an, auf das der Zeiger pos zeigt.
	<pre>a = Liste() a.insert(1) a.insert(2) a.advance() a.insert(3) a.insert(4) a.reset() a.advance() a.insert(6)</pre>
2.	(2 Punkte) Liste ist unser selbstgebastelter Datentyp. Wir nummerieren die Einträge der Liste mit Zeiger anf an der Stelle 0.
	a. Welche Zahlenfolge findet sich in den Listenlementen?b. Gib den Index des Elements an, auf das der Zeiger pos zeigt.
	a = Liste() a.insert(1) a.insert(2) a.insert(3) a.insert(4)

3. (5 Punkte) Liste ist unser selbstgebastelter Datentyp. Das Bild zeigt die Situation der Liste a.

a. Was liefern die folgenden Anweisungen:

```
print(a.elem())
print(a.endpos())
```

- b. Zeichne die Situation nach der Ausführung von a.insert(12)
- c. Was liefern jetzt die folgenden Anweisungen:

```
print(a.elem())
print(a.endpos())
```

- d. Wir gehen nochmal von der Anfangssituation aus. Zeichne die Situation nach Ausführung von a.delete()
- e. Was liefern jetzt die folgenden Anweisungen:

```
print(a.elem())
print(a.endpos())
```

4. (3 Punkte) Welche Ausgabe erscheint auf der Konsole?

```
class VerweisBox:
                                              \label{eq:def_def} \mathbf{def} \ \underline{\hspace{0.1in}} : 
                                                                                 inhalt: ein Zeichen
                                                                                 unten, oben: eine Verweisbox
                                                                                 self.inhalt = inhalt
                                                                                 self.unten = unten
                                                                                 self.oben = oben
                                                                                 if unten is not None: self.unten.oben = self
                                                                                 if oben is not None: self.oben.unten = self
                                              def __str__(self):
    return self.inhalt
   a = VerweisBox('a')
b = VerweisBox('b')
c = VerweisBox('c',a,b)
d = VerweisBox('d',b,c)
   print(a.unten)
    print(b.unten.oben)
    print(b.oben.oben.oben)
    print(c.unten)
   print(c.oben.oben.unten.unten.unten)
```

5. (3 Punkte) Welche Ausgabe erscheint auf der Konsole?

```
class VerweisBox:
    def __init__(self, inhalt, unten=None, oben=None):
        s\overline{elf}.in\overline{halt} = inhalt
        self.unten = unten
        self.oben = oben
        if unten is not None: self.unten.oben = self
        if oben is not None: self.oben.unten = self
          _str__(self):
    \mathbf{def}
       return self.inhalt
a = VerweisBox('a')
b = VerweisBox(',b')
c = VerweisBox(', c', a, b)
e = VerweisBox(',e',c,c)
print(a.oben)
print (b.oben)
print(b.unten)
print(c.oben.unten)
print(e.oben.unten.unten.oben)
```

i	4 Punkte) Die Klasse FeatureListe erbt von Liste. Sie hat zusätzlich ein Attribut gerade, das genau dann Trust, wenn die Anzahl der gespeicherten Listenelemente gerade ist. Schreibe die Klasse FeatureListe.
	(2 Punkte) a. Welche Datenstruktur wird hier verwendet (Liste/Keller/Schlange)? b. Was erscheint auf der Konsole?
ε	$\mathbf{a} = []$
f	<pre>for k in range(3): for i in range(3): a.append(i) print(a.pop(), end = ' ')</pre>
V	<pre>while a: print(a.pop(), end = ' ')</pre>
	(2 Punkte) a. Welche Datenstruktur wird hier verwendet (Liste/Keller/Schlange)? b. Was erscheint auf der Konsole?
	$egin{aligned} \mathbf{\hat{r}om} & \mathbf{collections} & \mathbf{import} & \mathbf{deque} \\ \mathbf{\hat{a}} & = \mathbf{deque}\left(\left[\right] \right) \end{aligned}$
f	<pre>for i in range(3): for i in range(3): a.append(i) print(a.popleft(), end = ' ')</pre>
V	<pre>while a: print(a.popleft(), end = ' ')</pre>