

Advanced Algorithms

Lecture 8
Computational Geometry
Algorithms:
Range Searching

Bin Yang

Center for byang@cs.aau.dk

ILO of Lecture 8

- Computational Geometry: range searching
 - to understand and to be able to analyze the balanced binary search tree based 1D range searching algorithm;
 - to understand and to be able to analyze the kd-trees and the range trees;
 - to understand how data structures can be used to trade the space used for the running time of queries.

Agenda

- Range Searching
- 1D range searching
- 2D range searching
- KD-trees
- Range trees

Range searching

- How to efficiently find points that are inside of a rectangle?
 - E.g., road intersections in a region, cars in a parking lot.
- Orthogonal range (Rectangular range) search
 - Given an orthogonal range ($[x_1, x_2], [y_1, y_2]$)
 - Find all points (x, y) such that $x_1 < x < x_2$ and $y_1 < y < y_2$

- The range can be in an n-dimensional space.
 - ([l₁, u₁], [l₂, u₂], [l₃, u₃], ..., [l_n, u_n])

When to use range searching

- Geographic information systems
 - Report all the cars in AAU campus.
- Often useful in a multi-attribute database query
 - Consider a database for personnel administration.
 - Name, address, age, salary of each employee.
 - Report all employees whose ages are between 25 to 35 and who earn between 25.000 dkk to 30.000 dkk per month.

Agenda

- Range Searching
- 1D range searching
- 2D range searching
- KD-trees
- Range trees

1D Range Searching

- How do we conduct a 1D range search [x₁, x₂]?
- Naive method:
 - Check every point to see if it is in range [x₁, x₂].
 - Θ(n)
- What if we use a balanced binary search tree?

Rules of the game

- We preprocess the data into a data structure
- Then, we perform range searches on the data structure
- Analyses:
 - Run time for building the data structure
 - Run time for processing range searches
 - Space that the data structure takes

Assumptions

- No two points have the same x-coordinate
- No two points have the same y-coordinate
- This is an unrealistic assumption, but it can be overcome with a trick covered in Section 5.5 of the reading material on Moodle.

1D Range Searching

- Balanced binary search tree where all data points are stored in the leaves
 - Internal nodes store copies of points.
 - The left sub-tree ≤ internal node < the right sub-tree
- Where do we find the answer to a query?

1D Range Searching

- Sketch of the algorithm:
 - Find the split node where the paths to x₁ and x₂ separate.
 - Continue path p_1 to search for x_1 and identify the leave q_1 .
 - Continue path p_2 to search for x_2 and identify the leave q_2 .
 - When leaves q_1 and q_2 are reached, check if they belong to the range.
 - Report all leaves that are in the sub-trees in between search paths p₁ and p₂.
 - Right sub-trees of p₁ and left sub-trees of p₂.

Example

- Searching for [18, 77]
 - Find the split node: 49, because 18 ≤ 49< 77</p>
 - Search for 18 on the left subtree of 49
 - Search for 77 on the right subtree of 49
 - Grey nodes are on the search paths for 18 and 77
 - Red path p₁ for 18, blue path p₂ for 77.
 - $q_1=19$, $q_2=80$
 - Black nodes are the sub-trees in between the search paths.

Pseudo code


```
1DRangeSearch(T, X_1, X_2)
01 v \leftarrow FindSplit(T, x_1, x_2)
02 if v is a leaf then
      if x_1 \le v.key \le x_2 then return v
04 else return DoLeft(v.leftChild, x_1, x_2) \cup
                DoRight(v.rightChild, x_1, x_2)
DoLeft (v, x_1, x_2)
01 if v is a leaf then
      if x_1 \le v.key \le x_2 then return v
03 else
       if x_1 \le v.key then return ReportSubtree(v.rightChild) \cup
04
                                    DoLeft(v.leftChild, x, x,)
else return DoLeft(v.rightChild, x_1, x_2)
DoRight(v, x_1, x_2)
01 if v is a leaf then
      if x_1 \le v.key \le x_2 then return v
03 else
       if x₂ > v.key then return ReportSubtree(v.leftChild) ∪
04
                               DoRight(v.rightChild, x_1, x_2)
05 else return DoRight(v.rightChild, x,, x,)
```

Example


```
DoLeft (v, x_1, x_2)
01 if v is a leaf then
      if x_1 \le v.key \le x_2 then return v
03 else
      if x_1 \le v.key then return ReportSubtree(v.rightChild) \cup
04
                                    DoLeft(v.leftChild, x_1, x_2)
      else return DoLeft(v.rightChild, x, x,)
05
```


Correctness

- The reported points must lie in the query range [x₁, x₂].
 - If p is stored at the leaf where the path to x₁ or to x₂ ends, then p is tested explicitly for inclusion in the query range.

```
01 if v is a leaf then
02 if x_1 \le v \cdot key \le x_2 then return v
```

If p is reported in the call of ReportSubtree(v.rightChild) in doLeft()

```
if x_1 \le v.key then return ReportSubtree(v.rightChild) \cup DoLeft(v.leftChild, x_1, x_2)
```

- x₁ ≤ v.key.
- p is in v's right sub-tree, so we have v.key < p.
- Since it is doLeft, it must be in v_{split}'s left tree, thus p ≤ v_{split}.key.
- x₂ is in the right sub-tree of v_{split}, thus v_{split}.key<x₂.
- $x_1 \le v.key$
- If p is reported in the call of ReportSubtree(v.leftChild) in doRight()
 - $x_1 \le v_{split}$.key x_2.
- All points that lie in the query range have been reported.

Analysis

- Building a balanced BST
 - O(nlgn) run time.
 - O(n) space.
- What is the worst case running time of a query?
 - It is output-sensitive:
 - Two traversals down the tree, each takes Ign.
 - Report the points in the sub-trees between two searching paths: O(k),
 where k is the number of reported data points.
 - In total: $\Theta(\lg n + k)$
 - In the worst case, all n points should be reported, so $\Theta(n)$
 - It is no better than the naive method without using an BST checking each point to see if it is in the range.

Agenda

- Range Searching
- 1D range searching
- 2D range searching
- KD-trees
- Range trees

2D range searching

- How can we solve a 2D range search?
- A 2D range query is a conjunction of two 1D range queries.
 - $x_1 \le x \le x_2$ and $y_1 \le y \le y_2$
- Naïve idea:
 - have two BSTs on x-coordinate and on y-coordinate, respectively.
 - Ask two 1D range searches.
 - Return the intersection of their results.
- Mini-quiz: What is the worst-case running time (and when does it happen)? Is it output-sensitive?

Worst case

There are k_1 points that satisfy $x_1 \le x \le x_2$ $\Theta(\lg n + k_1)$

There are k_2 points that satisfy $y_1 \le y \le y_2$. $\Theta(\lg n + k_2)$

In total, $\Theta(\lg n + k_1 + k_2)$. In the worst case, $k_1 + k_2 = n$. Thus, $\Theta(n)$. However, the output can be 0.

The main feature of an output sensitive algorithm is that it should take advantage if k is small.

The worst-case running time of two 1D searches plus intersection finding is independent of k. Thus, not output sensitive!

19

Agenda

- Range Searching
- 1D range searching
- 2D range searching
- KD-trees
- Range trees

KD-tree

- Idea: generalization of binary search trees
- Kd-tree is still a binary tree
- Data points are at leaves
- For each internal node v :
 - if the depth of v is even, x-coordinates of left sub-tree $\le v < x$ -coordinates of right sub-tree (split with a vertical line).
 - if the depth of v is odd, y-coordinates of left sub-tree $\leq v < y$ -coordinates of right sub-tree (split with a horizontal line).

Example kd-tree

Example kd-tree

Building a kd-tree from point set P

- Divide-and-conquer
 - Sort the points in P w.r.t. their x-coordinates into array X.
 - Sort the points in P w.r.t. their y-coordinates into array Y.
 - Base case: if P contains only one point, returns a leaf with the point.
 - Otherwise: divide into 2 sub-problems and conquer them recursively.
 - If the depth is even (split w.r.t. x-axis or a vertical line)
 - Take the median v of X and create a root v_{root}
 - Split X into sorted X_L and X_R & split Y into sorted Y_L and Y_R : s.t. for any $p \in X_L$ or $p \in Y_L$, $p.x \le v.x$ and for any $p \in X_R$ or $p \in Y_R$, p.x > v.x
 - Build recursively the left child of v_{root} from X_i and Y_i
 - If the depth is odd (split w.r.t. y-axis or a horizontal line)
 - Take the median v of Y and create a root v_{root}
 - Split X into sorted X_L and X_R & split Y into sorted Y_L and Y_R : s.t. for any $p \in X_L$ or $p \in Y_L$, $p.y \le v.y$ and for any $p \in X_R$ or $p \in Y_R$, p.y > v.y
 - Build recursively the right child of v_{root} from X_R and Y_R

Run-time of building a kd-tree

- What is the running time of building a kd-tree?
- Sorting points in P according to x- and y-coordinates, respectively.
 - Two times of sorting. Each takes Θ(nlgn)
- What is the recurrence?
 - Divide: finding the median Θ(1) (as sorted already) and split X and Y in Θ(n).
 - Conquer: 2T(n/2), 2 sub-problems, each sub-problem is with half the size of the original problem.
 - Combine: constant, connect the left/right children with the root.
 - $T(n)=2T(n/2)+\Theta(n)$
 - Master method, case 2: Θ(nlgn)
- In total, Θ (nlgn).

Mini quiz

Build a kd-tree on the following points.

Querying the kd-tree

- The region of an internal node region(v)
- We can maintain region(v) when we traverse down the tree.

Querying algorithm

- Given a range query with range R:
- Start traversing the kd-tree from the root node v.
 - If region (v) does not intersect R, do not go deeper into the subtree rooted at v.
 - If region (v) is fully contained in R, report all points in the subtree rooted at v.
 - If region (v) only intersects with R, go recursively into v's children, and check its children nodes.

- Note that we are checking if the region of an internal node of a kd-tree is fully contained in the query range R
 - We are not checking if the query range R is fully contained in the region of an internal node of a kd-tree.

Pseudo code

Algorithm SEARCHKDTREE(v, R)

Input. The root of (a subtree of) a kd-tree, and a range R. *Output*. All points at leaves below v that lie in the range.

1		
1. i	f v is a leaf	Leaf node
2.	then Report the point stored at v if it lies in R .	Lear noue
3.	else if $region(lc(v))$ is fully contained in R	
4.	then REPORTSUBTREE($lc(v)$)	l oft out trac
5.	else if $region(lc(v))$ intersects R	Left sub-tree
6.	then SEARCHKDTREE($lc(v), R$)	
7.	if $region(rc(v))$ is fully contained in R	Right sub-tree
8.	then REPORTSUBTREE $(rc(v))$	Right Sub-tree
9.	else if $region(rc(v))$ intersects R	
10.	then SEARCHKDTREE $(rc(v),R)$	
		Internal node

lc(v) and rc(v) return the left and right child node of node v.

Mini-quiz (also on Moodle)

- Range searching [1, 4.5], [3.5, 8]
 - Which leave nodes need to be checked?

Mini-quiz

Range searching [1, 4.5], [3.5, 8]

The left node of the root has its region [1, 5], [1,8]. This region only intersects R, but is not fully contained in R. We need to recursively check the node's left/right children.

The right node of the root has its region (5, 8], [1, 8]. This region does not intersect R. Thus, we do not need to continue from this right branch.

Analysis of the querying algorithm

- When region (v) is fully contained in R, we traverse the whole sub-tree rooted at v.
 - Assume that the total number of points in the output is k, then $\Theta(k)$.
- When region (v) intersects R.
 - R has four edges, i.e., line segments. For each edge, identify how many regions can an edge intersect at most, i.e., an upper bound.
 - Assume that we consider a vertical edge I.
 - At root v with a vertical splitting line, I is either in the region(v.left) or the region(v.right).
 - T(n)=1+T(n/2)
 - At a node in the next level, it is with a horizontal splitting line, so I may intersect both regions.
 - T(n/2)=1+2T(n/4)
 - We have to consider "going down two steps" together.
 - We have recurrence T(n) = 2+2T(n/4). After solving it, we have $\Theta(\sqrt{n})$
- In total, $O(\sqrt{n} + k)$.

kd-tree summary

- Kd-tree:
 - Building (preprocessing time): $\Theta(n \log n)$
 - Size: Θ(*n*)
- Range queries:
 - $O(\sqrt{n} + k)$.

Agenda

- Range Searching
- 1D range searching
- 2D range searching
- KD-trees
- Range trees

Range trees

- Canonical subset P(v) of a node v in a balanced BST is a set of points (leaves) stored in a sub-tree rooted at v.
 - When v is the root, it contains all the points.
 - When v is a leaf node, it contains the point itself in the leave.

Range tree

- The main tree is a BST T on the xcoordinates of points
- Each node v of T stores a pointer to a BST T_a(v) (associated structure of v), which stores the canonical subset P(v) organized on the y-coordinate
- 2D points are stored in all leaves!
- Range tree is a multi-level data structure.
 - When nodes have pointers to associated structures.

BST on x-coords

Building a range tree

- Sort the points on x-axis and on y-axis (two arrays: X,Y)
 - \bullet $\Theta(n \log n)$
- Divide-and-conquer:
- Divide
 - Take the median v of X and create a root,
 - Constant time.
 - Build its associated structure using Y.
 - Run-time: Θ(n), building a BST on sorted points can be done in linear time.
- Conquer
 - Split X into sorted X_L and X_R, split Y into sorted Y_L and Y_R
 - For any $p \in X_L$ or $p \in Y_L$, $p.x \le v.x$
 - For any $p \in X_R$ or $p \in Y_R$, p.x > v.x
 - Build recursively the left child from X_L and Y_L and the right child from X_R and Y_R
- $T(n)=2T(n/2)+\Theta(n)$, Thus, run-time: $\Theta(n \log n)$

Storage of a range tree

 A point p is stored only in the associate structures of nodes that are on the path in the main tree T towards the leaf containing p.

 Thus, in each level of the tree, p is stored exactly once in the associated structure.

- The storage for each level is $\Theta(n)$
- The height of the main tree is Θ(lgn)
- Total storage: Θ(nlgn)

Range query on range trees

- How do we perform range query on such a range tree?
 - For x-range x1, x2
 - Use the 1DRangeSearch on the main tree T
 - For y-range y1, y2
 - Replace ReportSubtree (v) with 1DRangeSearch (T_a (v), y₁, y₂)
 - T_a(v) indicates the associated structure of node v.

Range Query


```
2DRangeSearch (T, x_1, x_2, y_1, y_2)
 01 v \leftarrow FindSplit(T, x_1, x_2)
 02 if v is a leaf then
        if x_1 \le v.key.x \le x_2 and y_1 \le v.key.y \le y_2 then return v
 04 else return DoLeft(v.leftChild, x_1, x_2, y_1, y_2) \cup
                    DoRight(v.rightChild, x_1, x_2, y_1, y_2)
DoLeft (v, x_1, x_2, y_1, y_2)
01 if v is a leaf then
       if x_1 \le v.key.x \le x_2 and y_1 \le v.key.y \le y_2 then return v
                                   1DRangeSearch(T<sub>a</sub>(v.rightChild), y<sub>1</sub>, y<sub>2</sub>)
03 else
       if x_1 \le v.key.x then return ReportSubtree(v.rightChild) \cup
04
                                         DoLeft(v.leftChild, x_1, x_2, y_1, y_2)
05
       else return DoLeft(v.rightChild, x, x, y, y, y)
```

```
DoRight(v, x_1, x_2, y_1, y_2)
// similar to DoLeft, but with modified lines 04-05
```

Runtime of range query

- Worst-case: We need to query the associated structures on all nodes on the path down in the main tree.
 - At a node v on the path down in the main tree, we make a recursive call on its associated structure.
 - If node v is in level j, its canonical set has $\frac{n}{2^j}$ points, thus its associated structure, i.e., the BST on y-coord, has depth $\lg \frac{n}{2^j} = \lg n j$
 - Thus, the cost for this call is $\Theta(\lg n j + k_v)$, where k_v is the number of reported points in the sub-tree that is rooted at v.
 - Then, sum over all possible node v from level 0 to lgn.
 - $\sum_{v} \Theta(\lg n j + k_{v})$
 - $\sum_{v} \Theta(k_{v}) = k$, the total points that are in the 2D range.
 - $\sum_{v} \Theta(\lg n j) = \lg^2 n (0 + 1 + ... + \lg n) = \Theta(\lg^2 n)$. There will be in total at most lgn nodes along the path because the height of the tree is lgn.
- Thus, the total cost O(lg²n + k).

Range-trees vs kd-trees

- Building trees runtime
 - $\Theta(n \log n)$ vs $\Theta(n \log n)$
- Range search runtime
 - $\Theta(\lg^2 n + k)$ vs $\Theta(\sqrt{n} + k)$
 - Which one is faster?
- Storage
 - $\Theta(n | gn) \text{ vs } \Theta(n)$
 - Which one takes more space?
- An example on trading space for efficiency!

2-dimensional vs n-dimensional

- Kd-tree
 - Split on d₁
 - Split on d₂
 - ..
 - Split on d_n
 - Split on d₁
 - Split on d₂
 - ...
 - Split on d_n
- What about the run time of a rang query? How many levels should you consider together?
 - Exercise 5

2-dimensional to n-dimensional

- n-dimensional range tree
 - Main tree on d₁
 - Each interval node has an associated structure which is a (n-1)dimensional range tree
 - In each internal node in a (n-1)-dimensional range tree has an associated structure which is a (n-2)-dimensional range tree.
 - · ...

Quad-trees

- A four-way partition tree
- Linear space
- Good average query performance

ILO of Lecture 8

- Computational Geometry: range searching
 - to understand and to be able to analyze the balanced binary search tree based 1D range searching algorithm;
 - to understand and to be able to analyze the kd-trees and the range trees;
 - to understand how data structures can be used to trade the space used for the running time of queries.

Self-study 2 on 15th March

 Please send your solutions to Simon by email sape@cs.aau.dk by the end of 22th March.