A law of adversarial risk, interpolation, and label noise

Daniel Paleka*1, Amartya Sanyal*1,2

*Equal contribution; ¹Department of Computer Science, ETH Zürich; ²ETH AI Center

A law of adversarial risk, interpolation, and label noise

Daniel Paleka*1, Amartya Sanyal*1,2

*Equal contribution; ¹Department of Computer Science, ETH Zürich; ²ETH AI Center

ETHzürich

Overview

We study adversarial robustness in interpolating classifiers in presence of label noise.

Label noise is ubiquitous in real world datasets e.g. CIFAR-10.

Q: Does fitting label noise hurt adversarial accuracy?

Our Contribution Improve upon existing work [1]: *Give a sharper characterisation of*

how interpolating label noise causes large adversarial risk for sufficient sample size.

Main Result

Theorem (Informal): Any classifier that interpolates training data with uniform label noise, has large adversarial risk when the training set size m is large. Formally, with label noise η , we have

$$\mathcal{R}_{\mathrm{Adv},\rho}(f,\mu) \geq \mathrm{const.} > 0$$

for f trained on $\mathbf{x}_1, \dots, \mathbf{x}_m \sim \mu$.

Let N be the covering number of Support (μ) . Our result holds for dataset set size $m \gtrsim \frac{N \log N}{\eta}$.

Proof Sketch:

Observation 1: If a $\|\cdot\|$ -ball of radius $\frac{\rho}{2}$ contains a noisy point, the entire ball is vulnerable.

Observation 2: The expected number of noisy training points is ηm ; however a priori those could be anywhere in Support (μ).

Key lemma: Can always find a set of $\|\cdot\|$ -balls of radius ρ covering a significant portion of μ , with each of the balls having a large enough density of μ .

When m is large enough, with high probability, each chosen $\|\cdot\|$ -ball will contain noisy labels, resulting in adversarial risk.

Mathematical notation and setting

Data Distribution μ on \mathbb{R}^d with norm $\|\cdot\|$. **Ground truth** binary classifier $f^*: \mathbb{R}^d \to \{0, 1\}$. **Adversarial risk** of a classifier f with regards to balls of radius ρ

$$\mathcal{R}_{\mathrm{Adv},\rho}(f,\mu) = \mathbb{P}_{\mathbf{x} \sim \mu} \left[\exists \mathbf{z} \in B_{\rho}(\mathbf{x}), \ f^*(\mathbf{x}) \neq f(\mathbf{z}) \right].$$

where $z \in B_{\rho}(x)$ means $\|\mathbf{z} - \mathbf{x}\| \leq \rho$.

Setting: Adversarial risk in interpolation regime under uniform label noise

Dataset of size m sampled uniformly from μ . Label the dataset with f and flip each label with probability η .

Classifier *f* obtains zero training error on this dataset.

Q: Can we lower bound $\mathcal{R}_{\mathrm{Adv},\rho}(f,\mu)$?

Tightness in sample size

Theorem (Informal) For arbitrary interpolators f on arbitrary distributions μ on \mathbb{R}^d , no guarantees possible unless m is exponential in d.

Proof Sketch: Let f^* be the threshold classifier $\mathbb{I}\left\{x_1 > \frac{1}{2}\right\}$. Sample $\mathbf{z}_1, \ldots, \mathbf{z}_m$ from the unit sphere $\mathbb{S}^{d-1} \subseteq \mathbb{R}^d$ with label noise η . For $m \leq \lfloor 1.01^d \rfloor$, there is an interpolator with adversarial risk o(1).

 ${f Q}$: What about empirical results regarding required sample size ?

Empirically, much smaller sample size required for large adversarial risk.

Inductive bias affects adversarial risk

Theorem (Informal) For any ρ , there exists model classes \mathcal{H}, \mathcal{C} such that for $m = \Theta\left(\frac{1}{\eta}\right)$

All interpolators $h \in \mathcal{H}$ suffer constant $\mathcal{R}_{\mathrm{Adv},\rho}(h,\mu)$. Exists interpolators $c \in \mathcal{C}$ with vanishing $\mathcal{R}_{\mathrm{Adv},\rho}(c,\mu)$.

Illustration of C below.

References and QR

[1] Amartya Sanyal, Puneet K. Dokania, Varun Kanade, and

Philip Torr. How benign is benign overfitting? ICLR (2021)