# MS&E 233 Game Theory, Data Science and Al Lecture 13

Vasilis Syrgkanis

**Assistant Professor** 

Management Science and Engineering

(by courtesy) Computer Science and Electrical Engineering

Institute for Computational and Mathematical Engineering

#### **Computational Game Theory for Complex Games**

- Basics of game theory and zero-sum games (T)
- Basics of online learning theory (T)
- Solving zero-sum games via online learning (T)
- HW1: implement simple algorithms to solve zero-sum games
- Applications to ML and AI (T+A)
- HW2: implement boosting as solving a zero-sum game
- Basics of extensive-form games
- Solving extensive-form games via online learning (T)
- HW3: implement agents to solve very simple variants of poker
- General games, equilibria and online learning (T)
- Online learning in general games

(3)

• HW4: implement no-regret algorithms that converge to correlated equilibria in general games

#### **Data Science for Auctions and Mechanisms**

- Basics and applications of auction theory (T+A)
- Basic Auctions and Learning to bid in auctions (T)
- HW5: implement bandit algorithms to bid in ad auctions

- Optimal auctions and mechanisms (T)
- · Simple vs optimal mechanisms (T)
- HW6: implement simple and optimal auctions, analyze revenue empirically
- Basics of Statistical Learning Theory (T)
- Optimizing Mechanisms from Samples (T)
- HW7: implement procedures to learn approximately optimal auctions from historical samples and in an online manner

#### **Further Topics**

5

- Econometrics in games and auctions (T+A)
- A/B testing in markets (T+A)
- HW8: implement procedure to estimate values from bids in an auction, empirically analyze inaccuracy of A/B tests in markets

#### **Guest Lectures**

- Mechanism Design for LLMs, Renato Paes Leme, Google Research
- Auto-bidding in Sponsored Search Auctions, Kshipra Bhawalkar, Google Research

## Summarizing Last Lecture

Myerson's Theorem. When valuations are independently distributed, for any BIC, NNT and IR mechanism (and any BNE of a non-truthful mechanism), the payment contribution of each player is their expected virtual value

$$E[\hat{p}_{i}(v_{i})] = E[\hat{x}_{i}(v_{i}) \cdot \phi_{i}(v_{i})], \qquad \phi_{i}(v_{i}) = v_{i} - \frac{1 - F_{i}(v_{i})}{f_{i}(v_{i})}$$

Corollary. When valuations are independently distributed, for any Bayes-Nash equilibrium of any non-truthful mechanism, the payment contribution of each player is their expected virtual value

$$E[\hat{p}_{i}(v)] = E[\hat{x}_{i}(v_{i}) \cdot \phi_{i}(v_{i})], \qquad \phi_{i}(v_{i}) = v_{i} - \frac{1 - F_{i}(v_{i})}{f_{i}(v_{i})}$$

Myerson's Optimal Auction. Assuming that virtual value functions are monotone non-decreasing, the mechanism that maximizes virtual welfare, achieves the largest possible revenue among all possible mechanisms and Bayes-Nash

$$x(v) = \operatorname{argmax}_{x \in X} \sum_{i} x \cdot \phi_{i}(v_{i}), \qquad p_{i}(v) = v_{i}x_{i}(v) - \int_{0}^{v_{i}} x_{i}(z, v_{-i}) dz$$

$$Rev = E \left[ \max_{x \in X} \sum_{i} x \cdot \phi_i(v_i) \right]$$

#### Optimal auction is

1) cumbersome, 2) hard to understand, 3) hard to explain, 4) does not always allocate to the highest value player, 5) discriminates a lot, 6) is many times counter-intuitive, 7) can seem unfair!

#### Second-Price with Player-Specific Reserves

- What if we simply run a second price auction but have different reserves for each bidder
- Each bidder i has a reserve price  $r_i$
- Reject all bidders with bid below the reserve
- Among all bidders with value  $v_i \geq r_i$ , allocate to highest bidder
- Charge winner max of their reserve and the next highest surviving bid

#### Second-Price with Player-Specific Reserves

**Theorem.** There exist personalized reserve prices such that the above auction achieves at least ½ of the optimal auction revenue!

• Choose  $\theta$  such that:

$$\Pr\left(\max_{i} \phi_{i}^{+}(v_{i}) \ge \theta\right) = 1/2$$

• Then set personalized reserve prices implied by:

$$\phi_i^+(v_i) \ge \theta \Leftrightarrow v_i \ge r_i$$

# All these designs required knowledge of distributions of values $F_i$ !

# What can we do if we only have data from $F_i$ ?

## Learning Auctions from Samples

### Learning from Samples

• We are given a set S of m samples of value profiles

$$S = \left\{ v^j = \left( v_1^j, \dots, v_n^j \right) \right\}_{j=1}^m$$

• Each sample is drawn i.i.d. from the distribution of values

$$v_i^j \sim F_i, \qquad v^j \sim \mathbf{F} \stackrel{\text{def}}{=} F_1 \times \cdots \times F_n$$

- Samples can be collected from historical runs of truthful auction
- ullet Bids of each bidder in each of the m historical runs of the auction

#### Desiderata

- Without knowledge of distributions  $F_i$ , we want to produce a mechanism  $M_S$ , that achieves good revenue on these distributions
- For some  $\epsilon(m) \to 0$  as the number of samples grows:

$$\operatorname{Rev}(M_S) \stackrel{\text{def}}{=} E_{v \sim F} \left[ \sum_i p_i(v) \right] \ge \operatorname{OPT}(F) - \epsilon(m)$$

Either in expectation over the draw of the samples, i.e.

$$E_S[\text{Rev}(M_S)] \ge \text{OPT}(\mathbf{F}) - \epsilon(m)$$

Or with high-probability over the draw of the samples, i.e.

w.p. 
$$1 - \delta$$
: Rev $(M_S) \ge OPT(F) - \epsilon_{\delta}(m)$ 

## Easy Start: Pricing from Samples

### Pricing from Samples

- Suppose we have only one bidder with  $v \sim F$ , for simplicity in [0,1]
- Optimal mechanism is to post the monopoly reserve price
- ullet The optimal price r is the one that maximizes

$$Rev(r) = E_{v \sim F}[r \cdot 1\{v \ge r\}] = r Pr(v \ge r) = r (1 - F(r))$$

which is the monopoly reserve price  $\eta$  that solves:

$$\eta - \frac{1 - F(\eta)}{f(\eta)} = 0$$

- Choosing  $\eta$  requires knowledge of the CDF F and the pdf f
- Can we optimize r if we have m samples of v?

#### The Obvious Algorithm

We want to choose r that maximizes

$$\max_{r \in [0,1]} \text{Rev}(r) \stackrel{\text{def}}{=} E_{v \sim F}[r \cdot 1\{v \geq r\}], \qquad \text{(population objective)}$$

• With m samples, we can optimize average revenue on samples!

$$\max_{r \in [0,1]} \operatorname{Rev}_m(r) \stackrel{\text{def}}{=} \frac{1}{m} \sum_{j=1}^m r \cdot 1\{v^j \ge r\}, \quad \text{(empirical objective)}$$

- This approach is called Empirical Risk Maximization (ERM)
- Intuition. Since each value is drawn from distribution F the empirical average over i.i.d. draws from F, by law of large numbers, should be very close to expected value

#### A Potential Problem with ERM

- The Law of Large Numbers applies if we wanted to evaluate the revenue of a fixed reserve price, we had in mind using the samples
- If we optimize over a very large set of reserve prices, then by random chance, it could be that we find a reserve price that has a large revenue on the samples, but small on the distribution

- This behavior is called overfitting to the samples
- We need to argue that overfitting cannot arise when we optimize over the reserve price!

# Basic Elements of Statistical Learning Theory

#### **Uniform Convergence**

• Uniform Convergence. Suppose that we show that, w.p.  $1-\delta$ 

$$\forall r \in [0,1]: |\text{Rev}_m(r) - \text{Rev}(r)| \le \epsilon_{\delta}(m)$$

• Alert. Note that this is different than:  $\forall r \in [0,1]$ , w.p.  $1-\delta$ 

$$|\operatorname{Rev}_m(r) - \operatorname{Rev}(r)| \le \epsilon_{\delta}(m)$$

- The first asks that with probability  $1-\delta$ , the empirical revenue of all reserve prices is close to their population revenue
- The second asks that for a given reserve price, with probability  $1-\delta$  its empirical revenue is close to its population
- The second claims nothing about the probability of the joint event that this is satisfied for all prices simultaneously

### Uniform Converges Suffices for No-Overfitting

• Uniform Convergence. Suppose that we show that, w.p.  $1 - \delta$  $\forall r \in [0,1]$ :  $|\text{Rev}_m(r) - \text{Rev}(r)| \leq \epsilon_{\delta}(m)$ 

$$r_S = \underset{r \in [0,1]}{\operatorname{argmax}} \operatorname{Rev}_m(r)$$

**Theorem.** If uniform convergence holds then, w.p.  $1-\delta$ 

$$\operatorname{Rev}_m(r_S) \ge \operatorname{Rev}(\eta) - 2\epsilon_{\delta}(m) = \operatorname{OPT}(F) - 2\epsilon_{\delta}(m)$$

### Uniform Converges Suffices for No-Overfitting

**Theorem.** If uniform convergence holds then, w.p.  $1-\delta$ 

$$\operatorname{Rev}_m(r_S) \ge \operatorname{Rev}(\eta) - 2\epsilon_{\delta}(m) = \operatorname{OPT}(F) - 2\epsilon_{\delta}(m)$$

- By uniform convergence, with probability  $1 \delta$ :  $\operatorname{Rev}(\mathbf{r}_S) \geq \operatorname{Rev}_m(r_S) \epsilon_\delta(m)$
- Since,  $r_S$  optimizes the empirical objective  $\operatorname{Rev}_m(r_S) \geq \operatorname{Rev}_m(\eta)$
- By uniform convergence:

$$\operatorname{Rev}_m(\eta) \ge \operatorname{Rev}(\eta) - \epsilon_{\delta}(m)$$

Putting it all together:

$$Rev(r_s) \ge Rev(\eta) - 2\epsilon_{\delta}(m)$$

This is the no-overfitting property: It **cannot be** that we found a reserve price that has *large empirical revenue* but very *small population revenue* 

The *monopoly reserve* is a **feasible** reserve price but **was not chosen** by ERM. So, it must have had smaller empirical average revenue.

#### LLN vs Uniform Convergence

- Crucial Argument: with probability  $1 \delta$ : Rev $(r_S) \ge \text{Rev}_m(r_S) \epsilon_\delta(m)$
- Cannot be argued solely using Law of Large Numbers: if we have i.i.d.  $X^j$  with mean E[X]

$$\left| \frac{1}{m} \sum_{j=1}^{m} X^j - E[X] \right| \to 0$$

• For reserve price r that is chosen before looking at the samples, define  $X^j(r) = r \cdot 1\{v^j \ge r\}$ 

$$|\operatorname{Rev}_m(r) - \operatorname{Rev}(r)| = \left| \frac{1}{m} \sum_j r \cdot 1\{v^j \ge r\} - E[r \cdot 1\{v \ge r\}] \right| \to 0$$

- ullet Problem. The reserve price  $r_{\mathcal{S}}$  was chosen by looking at all the samples in  ${\mathcal{S}}$
- If I tell you  $r_{\rm S}$  you learn something about the samples
- Conditional on  $r_S$  the samples are no-longer i.i.d.
- Uniform convergence, essentially means "what I learn about S from  $r_S$  is not that much..."

#### Concentration Inequalities and Uniform Convergence

- Concentration inequalities give us a stronger version of LLN
- Chernoff-Hoeffding Bound. If we have i.i.d.  $X^j \in [0,1]$  with mean E[X], w.p.  $1 \delta$ :

$$\left| \frac{1}{m} \sum_{j=1}^{m} X^j - E[X] \right| \le \epsilon_{\delta}(m) \stackrel{\text{def}}{=} \sqrt{\frac{\log(2/\delta)}{2m}}$$

ullet Crucial. The bound grows only logarithmically with  $1/\delta$ 

#### **Union Bound**

- Suppose we had only K possible reserve prices  $\left\{\frac{1}{K}, \frac{2}{K}, \frac{3}{K}, \dots, 1\right\}$
- For each reserve price r on the grid, for any probability  $\delta'$ , by Chernoff bound

$$\Pr((\text{Bad Event})_r) = \Pr\left(\left|\frac{1}{m}\sum_{j=1}^m X^j(r) - E[X(r)]\right| > \epsilon_{\delta'}(m)\right) \le \delta'$$

• Union Bound. The probability of the union of events is at most the sum of the probabilities

$$\Pr(\bigcup_{r=1}^{K} (\text{Bad Event})_r) \le \sum_{r=1}^{K} \Pr((\text{Bad Event})_r) \le K \cdot \delta'$$

• Apply Chernoff bound with  $\delta' = \delta/K$ 

$$\Pr(\bigcup_{r=1}^K (\text{Bad Event})_r) \leq \delta$$

• Probability that there exists reserve price whose empirical revenue is far from its population is at most  $\delta$ 

#### Uniform Convergence via Union Bound

**Theorem.** Suppose we had K possible reserve prices  $Grid_K \stackrel{\text{def}}{=} \left\{ \frac{1}{K}, \frac{2}{K}, \frac{3}{K}, \dots, 1 \right\}$ 

Then with probability at least  $1-\delta$ 

$$\forall r \in \operatorname{Grid}_{K}: |\operatorname{Rev}_{m}(r) - \operatorname{Rev}(r)| \leq \epsilon_{\delta/K}(m) \stackrel{\text{def}}{=} \sqrt{\frac{\log(2K/\delta)}{2m}}$$

Problem. The optimal reserve  $\eta$  can potentially not be among these K reserves Intuition. For a sufficiently large K, for any reserve price, we can find a reserve price on this discretized grid that achieves almost as good revenue We don't lose much by optimizing over the grid!

#### Discretization

- ullet For a reserve price r, pick largest reserve price below r on the grid
- Denote this discretization of r as  $r_K$

- By doing so, you allocate to any value you used to allocate before
- For any such value you receive revenue at least r-1/K
- Overall, you lose revenue at most 1/K $\operatorname{Rev}(r_K) \geq \operatorname{Rev}(r) - 1/K$

#### **Discretized ERM**

Let's modify ERM to optimize only over the grid

$$r_S = \max_{r \in Grid_K} Rev_m(r)$$

We can apply the uniform convergence over the grid

$$\operatorname{Rev}(r_S) \ge \operatorname{Rev}_m(r_S) - \epsilon_{\delta/K}(m)$$

We cannot overfit, when optimizing over the grid of reserves

• Since,  $r_S$  optimizes the empirical objective over the grid

$$\operatorname{Rev}_m(r_S) \ge \operatorname{Rev}_m(\eta_K)$$

By uniform convergence over the grid:

$$\operatorname{Rev}_m(\eta_K) \ge \operatorname{Rev}(\eta_K) - \epsilon_{\delta}(m)$$

• By the discretization error argument:

$$Rev(\eta_K) \ge Rev(\eta) - 1/K$$

The discretized monopoly reserve is a **feasible** reserve in the grid but **was not chosen** by ERM.

**Theorem.** The revenue of the reserve price output by discretized ERM over the K-grid satisfies, with probability  $1-\delta$ 

$$\operatorname{Rev}(r_S) \ge \operatorname{OPT}(F) - \sqrt{\frac{\log(2K/\delta)}{2m} - \frac{1}{K}}$$

Choosing K = 1/m

$$\operatorname{Rev}(r_S) \ge \operatorname{OPT}(F) - 2\sqrt{\frac{\log(2m/\delta)}{2m}}$$

Desideratum satisfied!  $\epsilon_{\delta}(m) \rightarrow 0$  as m grows

#### The Limits of Discretization

- Do we really need to optimize over the discrete grid?
- What if we insist on optimizing over [0,1]. Can we still overfit?
- Now that we have infinite possible reserves, we cannot apply the union bound argument  $(K = \infty)!$
- How do we argue about optima over continuous, infinite cardinality spaces?
- It would have been ideal if we could argue about behavior of choices, on the given set of value samples, as opposed to the distribution of values
- What if we can find a small set of reserves and argue that for all reserves there is an approximately equivalent one in the small set, in terms of revenue on the samples
- Maybe then it suffices to invoke the union bound over the smaller space

## Statistical Learning Theory

#### General Framework

- Given samples  $S = \{v^1, \dots, v^m\}$  that are i.i.d. from distribution F
- Given a hypothesis/function space H
- Given a reward function r(v; h)

• Goal is to maximize the expected reward over distribution F  $R(h) = E_{v \sim F}[r(v;h)]$ 

#### Desiderata

- Without knowledge of distribution F, we want to produce a hypothesis  $h_S$ , that achieves good reward on this distribution
- For some  $\epsilon(m) \to 0$  as the number of samples grows:

$$R(h_S) \stackrel{\text{def}}{=} E_{v \sim F}[r(v; h)] \ge \max_{h \in H} R(h) - \epsilon(m)$$

• Either in expectation over the draw of the samples, i.e.

$$E_S[R(h_S)] \ge \max_{h \in H} R(h) - \epsilon(m)$$

• Or with high-probability over the draw of the samples, i.e.

w.p. 
$$1 - \delta$$
:  $R(h_S) \ge \max_{h \in H} R(h) - \epsilon_{\delta}(m)$ 

### Desiderata (Mechanism Design from Samples)

- Without knowledge of  $\underbrace{\text{Distribution of value profiles } F}$ , we want to produce a hypothesis  $h_S$ , that achieves good Revenue on this distribution
- For some  $\epsilon(m) \to 0$  as the number of samples grows:

$$R(h_S) \stackrel{\text{def}}{=} E_{v \sim F} \left| \sum_i p_i(v) \right| \ge \max_{h \in H} R(h) - \epsilon(m)$$

• Either in expectation over the draw of the samples, i.e.

$$E_S[R(h_S)] \ge \max_{h \in H} R(h) - \epsilon(m)$$

• Or with high-probability over the draw of the samples, i.e.

w.p. 
$$1 - \delta$$
:  $R(h_S) \ge \max_{h \in H} R(h) - \epsilon_{\delta}(m)$ 

#### Standard Classification Example

• Suppose samples v=(x,y) where  $x\sim U[-1,1]$  and  $y\in\{-1,1\}$ 

• We want to choose a "labeling" function  $h(x) \in \{-1,1\}$ 



That achieves good accuracy

$$r(v; h) = 1\{h(x) = y\}$$

#### **ERM Gone Bad**

• Suppose we choose the following  $h_S$ : label all samples correctly and predict  $\pm 1$  for any value that is not on the samples



- The empirical average reward of this  $h_S$  is 1. The largest possible!
- The expected reward of this  $h_S$  is  $\frac{1}{2}$
- The discrepancy between the empirical reward of the ERM solution and its population reward never vanishes! Overifitting!

#### **ERM Over Threshold Functions**

- Suppose we restrict to optimizing over threshold functions
- Label every  $x \ge \theta$  with +1 and every  $x \le \theta$  with -1

$$H = \{x \to 1(x > \theta) - 1(x \le \theta) : \theta \in \Theta\}$$



- Optimizing over such  $\theta$  we will never be able to overfit
- How do we argue this?
- Discretization argument fails!
- No matter how we discretize, there exists a distribution of x that will have a very large discretization error

### Representative Subsets on Samples

- Suppose we restrict to optimizing over threshold functions
- Label every  $x \ge \theta$  with +1 and every  $x < \theta$  with -1

$$H = \{x \to 1(x \ge \theta) - 1(x < \theta) : \theta \in \Theta\}$$



- Given the m samples, then on the samples there are at most m+1 equivalent hypothesis: choose the threshold on the sample (or  $\theta=1$ )
- Every other hypothesis produces the exact same labeling of the samples and achieves the same empirical reward
- Is there an argument that only takes union bound over this set?

#### Back to the General Framework

We will try to argue the expected performance

$$E_S[R(h_S)] \ge \max_{h \in H} R(h) - \epsilon(m)$$

• Representativeness: suppose that we can argue that

Rep = 
$$E_S \left[ \sup_h R_S(h_S) - R(h) \right] \le \epsilon(m)$$

• Then we can prove expected error of  $\epsilon(m)$ 

$$E_S[R(h_S)] = E[R_S(h_S)] - E[R_S(h_S) - R(h_S)] \ge E[R_S(h_S)] - \epsilon(m)$$

• Since  $h_S$  optimizes  $R_S(h)$  and  $h_* = \operatorname{argmax}_{h \in H} R(h)$  is feasible

$$E[R_S(h_S)] \ge E[R_S(h_*)] = R(h_*) \Big|_{h_* \text{ does not depend on the samples}}$$

$$\sum_{E[h(s_i,h_i)] = E[h(s_i,h_i)] = R(h_*)$$

$$\sum_{i} E[h(v^{j}; h_{*})] = E[h(v; h_{*})] = R(h_{*})$$

If we can bound representativeness

Rep = 
$$E_S \left[ \sup_h R_S(h_S) - R(h) \right] \le \epsilon(m)$$

Then we can bound expected performance  $E[R(h_S)] \ge E[R(h_*)] - \epsilon(m)$ 

# Samples Jo Population



# Samples Jo **Population**

#### Population of Samples

Draw 2m samples Q















Flip a coin  $\sigma_i \in \{-1, 1\}$  to decide which goes into S and which to S'













$$\vdots E_{Q,\sigma} \left[ \frac{1}{m} \sum_{i=1}^{m} \left( r(z_i, h_S) - r(z_i', h_S) \right) \right]$$







Adversary

Choose  $h \in H$  to maximize the average difference

$$E_{Q,\sigma}\left[\frac{1}{m}\sum_{i=1}^{m}\sigma_{i}\cdot\left(r(v_{i},h_{S})-r(v_{i}',h_{S})\right)\right]$$

$$E_{Q,\sigma} \left[ \sup_{h \in H} \frac{1}{m} \sum_{i=1}^{m} \sigma_i \cdot \left( r(v_i, h) - r(v_i', h) \right) \right]$$

# Symmetrization

We can upper bound representativeness by

$$Rep \le E_{S,S',\sigma} \left[ \max_{h \in H} \frac{1}{m} \sum_{j=1}^{m} \sigma_j \left( r(v_j; h) - r(v'_j; h) \right) \right]$$

We can upper bound by splitting the max into the two separate

$$\operatorname{Rep} \leq E_{S,\sigma} \left[ \max_{h \in H} \frac{1}{m} \sum_{j=1}^{m} \sigma_j r(v_j; h) \right] + E_{S',\sigma} \left[ \max_{h \in H} -\frac{1}{m} \sum_{j=1}^{m} \sigma_j r(v_j'; h) \right]$$

But these two quantities are the same

$$\operatorname{Rep} \leq \left[ 2 E_{S,\sigma} \left[ \max_{h \in H} \frac{1}{m} \sum_{j=1}^{m} \sigma_j r(v_j; h) \right] \right]$$
 Rademacher Complexity of Hypothesis Space H

# **Empirical Rademacher Complexity**

• Empirical Rademacher complexity of a hypothesis space H on a set of samples S:

$$\operatorname{Rad}(S, H) \coloneqq 2E_{\sigma} \left| \sup_{h} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \cdot r(v_{i}, h) \right|$$

We have thus proven that:

$$E[R(h_S)] \ge R(h_*) - E_S[Rad(S, H)]$$

- For any fixed h, the sum  $\frac{1}{m}\sum_{i=1}^m \sigma_i \cdot r(v_i,h)$  is a sum of i.i.d. mean zero r.v.s
- By a Chernoff-Hoeffding bound it concentrates, i.e. at most  $O\left(\sqrt{\frac{\log(2/\delta)}{2m}}\right)$
- If H was finite then by union bound, the supremum  $O\left(\sqrt{\frac{\log(2|H|/\delta)}{2m}}\right)$

Massart's lemma. For any finite hypothesis space  $H: \operatorname{Rad}(S, H) \leq 2\sqrt{\frac{2\log(|H|)}{m}}$ 

#### Growth Rate

- $\diamond$  Crucially: if we can find a subset of functions  $H_{\epsilon}$  that approximate well or such that the behavior of any function in H is equivalent to some function in  $H_{\epsilon}$  on the sample S, then union bound only over  $H_{\epsilon}$
- $\diamond$  Growth rate  $\tau(m, H)$ : the size of the smallest function space  $H_{\epsilon}$  that satisfies the above equivalence property on a sample of size m
- $\diamond$  For threshold classifiers:  $\tau(m, H) = m + 1$
- $\Rightarrow$  Thus for threshold classifiers: Rad $(S, H) \le O\left(\sqrt{\frac{\log(2|H|/\delta)}{2m}}\right)$

## On-sample Discretization Lemma

- ♦ Given a set of samples S, suppose that there is a subset  $H_{\epsilon}$  such that for any  $h \in H$ , there exists an  $h_{\epsilon} \in H_{\epsilon}$ , such that for all  $v_i \in S$ :  $|r(v_i, h) r(v_i, h_{\epsilon})| \leq \epsilon$
- ♦ Then:

$$Rad(S, H) \le R(S, H_{\epsilon}) + 2\epsilon$$

Proof:

$$\operatorname{Rad}(S, H) = E_{\sigma} \left[ \sup_{h} \frac{2}{m} \sum_{i=1}^{m} \sigma_{i} \cdot r(v_{i}, h) \right]$$

$$\leq E_{\sigma} \left[ \sup_{h \in H} \frac{2}{m} \sum_{i=1}^{m} \sigma_{i} \cdot r(v_{i}, h_{\epsilon}) \right] + 2\epsilon \leq E_{\sigma} \left[ \sup_{h \in H_{\epsilon}} \frac{2}{m} \sum_{i=1}^{m} \sigma_{i} \cdot r(v_{i}, h) \right] + 2\epsilon = R(S, H_{\epsilon}) + 2\epsilon$$

# Back to Pricing

 $\diamond$  It suffices to consider prices on the union of the samples and the  $\epsilon$  grid to approximate the behavior of r(p, v) on the samples to within  $\epsilon = 1/m$ 

$$\operatorname{Rad}(S, H) \le 2\sqrt{\frac{2\log\left(m + \frac{1}{\epsilon}\right)}{m}} + \epsilon \le 3\sqrt{\frac{2\log(2m)}{m}}$$

$$\epsilon$$
  $v_1$   $2\epsilon$   $v_2$   $3\epsilon$   $4\epsilon$   $v_3$   $5\epsilon$   $6\epsilon$  ...  $v_4$ 

## Single-Item Auction

- $\diamond$  Consider a single-item auction with n i.i.d. bidders and regular distribution
- ♦ By Myerson's theorem, optimal auction is second-price with a reserve-price
- $\diamond$  On any given sample, we can consider  $H_{\epsilon}$  to be the  $\epsilon$ -grid, plus the  $n \cdot m$  values of the bidders

$$\operatorname{Rad}(S, H) \le 2\sqrt{\frac{2\log\left(n \cdot m + \frac{1}{\epsilon}\right)}{m}} + \epsilon \le 3\sqrt{\frac{2\log(2n \cdot m)}{m}}$$

#### Next lecture

- $\diamond$  Single-item auction with n asymmetric bidders and regular distributions
- What is the sample complexity of learning the optimal auction?
- $\diamond$  Now the optimal mechanism is defined via n monotone virtual value functions
- $\diamond$  Can we compete with the optimal revenue with m samples?
- \* We will examine a variant of the growth-rate and the symmetrization analysis, which combined with a discretization argument, will give us rates of the form:

$$\left(\frac{2\log(2n\cdot m)}{m}\right)^{\frac{1}{3}}$$

 We will give an overview of recent results in single and multi-dimensional mechanism design from samples that go beyond the basic statistical learning theory