Factores influyentes en la producción de concordancias plurales para cuatro aprendientes italianos de español L2: un análisis de sobrevivencia (material suplementario).

1. Selección de modelos.

Se pueden usar las siguientes medidas para seleccionar modelos (Stroup, 2013; p. 193; Burnham & Anderson, 2010, caps. 2 y 4) $[\theta = \hat{\sigma}, \hat{\beta}]$ es el vector de los coeficientes fijos y aleatorios estimados]:

- (a) <u>Schwarz</u>: $BIC = -2L(\theta) + (p \times log(s))$ [s = número de grupos; y $p = p_{\sigma} + (p_{\beta} = rank[X])$; o sea el número de parámetros fijos más los aleatorios]. Menos es mejor.
- (b) <u>Akaike</u>: $AIC = -2L(\theta) + 2p$. Menos es mejor.
- (c) <u>Akaike corregido</u>: $AICc = -2L(\theta) + 2p(n^*/(n^* p 1))$ [$n^* = N$, tamaño muestral]; Corrige por muestra pequeña. Menos es mejor. Como heurística, se debería usar cuando¹: $\frac{n}{p} < 40$.
- (d) <u>Delta de Akaike</u>: $\Delta AIC = \Delta = AIC_i AIC_{min}$. Indican la distancia del modelo al mejor de todos (el de menor AIC). $\Delta_i \leq 2$ indica evidencia substancial para el modelo i.
- (e) <u>Pesos de Akaike</u> (ω_i): indican el peso de la evidencia en favor de que modelo sea el mejor de entre todos los modelos candidatos. Es decir, responde a la pregunta: ¿Cómo soportan los datos al modelo i con respecto al resto de los modelos? Se define como:

$$\omega_{modelo_i} = \frac{exp(-\Delta_i/2)}{\sum_{i=1}^{R} exp(-\Delta_i/2)}$$

donde i = 1, ..., R son los modelos considerados; y $\sum_{i=1}^{R} w_i = 1$.

(g) <u>Ratio de evidencia</u> ("Evidence Ratio", [ER]): Ratio entre el peso de Akaike del modelo i-ésimo y el peso de Akaike del j-ésimo modelo: $\frac{W(i)}{W(j)}$. Muchas veces resulta de interés establecer i como el índice del mejor modelo: $\frac{W(1)}{W(j)}$. Los ER son invariantes a los demás modelos, a parte de i y j. Responden a la pregunta: ¿Cuántas más veces apoyan los datos al (mejor) modelo i respecto del modelo j?

 $^{^1}$ Las medidas AIC y AIC_c convergen para n grande (manteniendo p constante). Es decir que cuando dicho ratio es suficientemente grande, tienden a seleccionar el mismo modelo. Entonces, en la práctica conviene usar siempre AIC_c .

Una vez ordenados los modelos según alguno de los criterios, se puede reducir dicho conjunto por medio de un "conjunto de confianza" [confidence set] para el mejor modelo hallado. Burnham & Anderson (2010, p. 169) plantean tres alternativas: (i) sumar los pesos de Akaike de los modelos hasta alcanzar ≥ 0.95 (recuérdese que los pesos de Akaike suman I); (ii) tomar los modelos tal que $\Delta_i \leq 2$, ya que indican evidencia sustancial para el modelo i; (iii) establecer un corte usando ratios de evidencia (poniendo ahora el mejor modelo en el denominador), tal que²: $\frac{W(i)}{W(1)} > \frac{1}{8} (\Delta_i = 2)$. Los autores prefieren el tercer criterio debido a su invariancia por adición o borrado de modelos del conjunto de confianza.

Resulta imperativo tener en cuenta la incerteza debida al proceso de selección de modelos. De R modelos considerados se selecciona el mejor modelo i. Sin embargo, ¿Si hubieran cambiado los datos, se elegiría igualmente el modelo i como el mejor o habría variabilidad de entre las muestras de datos en cuanto al modelo elegido?. Una forma de tener en cuenta dicha incerteza es estimar la probabilidad de que un determinado predictor x_j esté en el mejor modelo si se pudiera recoger una nueva muestra de datos. Se trata de una medida de importancia relativa de los predictores. Se lleva a cabo sumando los pesos de Akaike de los modelos en los cuales el predictor x_j está presente: $W_+ = w_i I_j(g_i)$; donde $I_j(g_i)$ es la función indicadora que es "1" si x_j está en el modelo g_i o cero, si no. Entonces, la importancia relativa es la proporción de modelos en los cuales la predictora está presente.

Si se diera el caso de que, por ejemplo, w(i) > 0.9, entonces el modelo i es un claro ganador. En dicho caso es válido hacer inferencia mediante la estimación de los coeficientes β_i y sus errores típicos serán condicionales al modelo seleccionado. Si embargo, muchas veces, especialmente si el conjunto de modelos a considerar es grande, los modelos con $\Delta_i \leq 2$ poseen pesos de Akaike similares o bien deltas de Akaike cercanos al cero. En este caso, β_i puede diferir en los modelos del conjunto considerado. Una solución es usar la información de todos los modelos involucrados mediante un promedio pesado de los coeficientes. En este caso, los errores típicos de los coeficientes estimados no son condicionales al modelo (ganador) en cuestión sino a todo el conjunto de modelos. Por lo tanto, dichos errores típicos "incondicionales" tienen en cuenta la varianza que proviene del proceso de selección de modelos. Para promediar los coeficientes se utilizó:

$$\bar{\beta}_j = \sum_{i=1}^R w_i \, I_j(g_i) \, \hat{\beta}_{j,i} = W_+ \, \hat{\beta}_{j,i}$$

donde:

$$I_j(g_i) = \begin{cases} 1 & x_j \in g_i \\ 0 & x_j \notin g_i \end{cases}$$

 $^{^2}$ También podrían usarse: 0.135 ($\Delta_i=4$); 0.082 ($\Delta_i=5$); 0.05 ($\Delta_i=6$)

y la suma es sobre todos los modelos del conjunto: i = 1, ..., R. En este estimador se usan todos los modelos ("full average"), y cuando la predictora x_j no estuviera presente en un determinado modelo entonces $\beta_j = 0$. Tiene la ventaja de "correr hacia cero" [Shrinkage] las estimaciones de parámetros presentes en "modelos malos". La varianza del estimador resulta:

$$\widehat{var}(\bar{\beta}_j) = \left[\sum\nolimits_{i=1}^R w_i \, \sqrt{\widehat{var}(\bar{\beta}_j|g_i) + \left(\,\hat{\beta}_j - \bar{\beta}_j\right)^2} \right]^2$$

y su error típico: $\sqrt{\widehat{var}(\bar{\beta}_j)}$.

1.1. Selección de modelos: modelo de eventos múltiples.

Se eligió el modelo AG estratificado por alumno, con varianza "sándwich" por individuo (TYPE). Se ajustó el modelo elegido con todas las predictoras mencionadas. Fueron $2^{17} = 131072$ modelos, jerarquizados mediante la medida de información AIC (como: $\frac{n}{p} = \frac{1813}{17} \approx 106 > 40$, no se usó la versión AICc corregida por tamaño muestral). Luego se examinó la frecuencia de las predictoras en el conjunto completo de modelos, que da un panorama de la incerteza por la selección. A continuación se redujo la cantidad de modelos al subconjunto "de confianza" con la regla $\frac{W(i)}{W(1)} > \frac{1}{8}$. Sobre dicho subconjunto se llevó a cabo un promedio de coeficientes con la varianza calculada con "full average". El Cuadro I muestra que las variables con porcentaje de elección arriba del 80 % son: ANIM, EST1, EST5, MORF.f. Las mismas variables son las que resultan significativas en los coeficientes promediados (Cuadro 2).

Cuadro 1. Importancia Relativa de las predictoras

	Names	x
1	ANIM	1.00
2	EST1	0.99
3	EST5	0.98
4	MORF.f	0.89
5	ES	0.74
6	IMA.CONC.f	0.59
7	FAM.LEX.f	0.57
8	EST4	0.50
9	MOD	0.45
10	LDA	0.44
11	STEM.f	0.39
12	EST3	0.39
13	Fabs.SC.f	0.37
14	EST7	0.34
15	EST2	0.32
16	EST6	0.30
17	GRAMS	0.29

Cuadro 2. Promedio de los coeficientes con FULL AVERAGE

	Estimate	Std. Error	z value	Pr(> z)
ANIM1	0.412	0.115	3.596	0.000
ES1	0.244	0.250	0.976	0.329
ES2	-0.604	0.568	1.063	0.288
EST11	-0.495	0.118	4.198	0.000
EST41	-0.332	0.355	0.936	0.349
EST51	-0.598	0.185	3.224	0.001
FAM.LEX.f1	-0.107	0.108	0.989	0.323
IMA.CONC.f1	-0.114	0.117	0.978	0.328
MORF.f1	-0.519	0.174	2.987	0.003
MORF.f2	-0.491	0.279	1.760	0.078
STEM.f1	0.037	0.086	0.426	0.670
LDA1	-0.087	0.174	0.501	0.617
EST71	0.033	0.121	0.275	0.783
MOD1	-0.194	0.372	0.521	0.602
MOD2	0.046	0.096	0.478	0.633
MOD3	0.000	0.074	0.004	0.997
EST31	0.109	0.302	0.360	0.719
EST21	0.009	0.052	0.177	0.859
Fabs.SC.f1	-0.015	0.058	0.264	0.792
GRAMS1	0.003	0.032	0.097	0.923
EST61	0.007	0.063	0.104	0.917

1.2. Selección de modelos: modelo de riesgos competitivos.

Se eligió el modelo de "fragilidad compartida". Se ajustó el modelo elegido con todas las predictoras. Fueron $2^{17}=131072$ modelos, jerarquizados mediante la medida de información AIC (como: $\frac{n}{p}=\frac{7428}{17}\approx 436>40$, no se usó la versión AICc corregida por tamaño muestral). Luego se examinó la frecuencia de las predictoras en el conjunto completo de modelos, que da un panorama de la incerteza por la selección. A continuación se redujo la cantidad de modelos al subconjunto "de confianza" con la regla $\frac{W(i)}{W(1)}>\frac{1}{8}$. Sobre dicho subconjunto se llevó a cabo un promedio de coeficientes con la varianza calculada con "full average". El Cuadro 3 muestra que las variables con porcentaje de elección arriba del 80 % son: ANIM, EST1, EST5, MORF.f, Fabs.SC.f, FAM.LEX.f, MOD, ES. A excepción de ES, las demás predictoras resultan significativas en los coeficientes promediados (Cuadro 4).

Cuadro 3. Importancia Relativa de las predictoras

	Names	X
1	frailty(ID.SESION)	1.00
2	strata(trans)	1.00
3	MOD	1.00

4	EST5	1.00
5	MORF.f	0.99
6	FAM.LEX.f	0.99
7	EST1	0.97
8	Fabs.SC.f	0.93
9	ANIM	0.93
10	ES	0.83
11	EST4	0.70
12	STEM.f	0.56
13	EST3	0.52
14	EST7	0.44
15	EST6	0.43
16	IMA.CONC.f	0.36
17	EST2	0.36
18	GRAMS	0.35
19	LDA	0.28

Cuadro 4. Promedio de los coeficientes con FULL AVERAGE

	Estimate	Std. Error	z value	Pr(> z)
ANIM1	0.352	0.117	3.009	0.003
ES1	0.316	0.262	1.207	0.227
ES2	-0.694	0.571	1.216	0.224
EST11	-0.433	0.127	3.408	0.001
EST41	-0.534	0.369	1.446	0.148
EST51	-0.786	0.200	3.921	0.000
FAM.LEX.f1	-0.347	0.100	3.466	0.001
Fabs.SC.f1	-0.332	0.129	2.568	0.010
MOD1	-0.419	0.429	0.977	0.329
MOD2	0.518	0.126	4.128	0.000
MOD3	0.370	0.143	2.589	0.010
MORF.f1	-0.719	0.183	3.931	0.000
MORF.f2	-0.667	0.293	2.275	0.023
STEM.f1	0.108	0.129	0.837	0.402
EST31	0.312	0.475	0.655	0.512
EST71	0.118	0.214	0.550	0.582
EST61	0.071	0.159	0.445	0.656
GRAMS1	-0.027	0.076	0.351	0.726
IMA.CONC.f1	-0.022	0.069	0.312	0.755
EST21	0.017	0.074	0.230	0.818
LDA1	0.000	0.084	0.006	0.995

Chequeo de residuos.

1.3. Modelo de eventos múltiples.

La Figura 1, a la izquierda, muestra los residuos "dfbetas" escalados. Se observa que ningún gráfico supera dos desvíos en valor absoluto. Por lo tanto, se concluye que no hay observaciones influyentes. Por otra parte, en la derecha se muestran los residuos de devianza. El 5,6 % supera en valor absoluto los dos desvíos (103 observaciones). Está en el borde del cinco por ciento esperado de valores atípicos.

Figura 1. DFBETAS escalados

Residuos de devianza

1.4. Modelo de eventos competitivos.

En la Figura 2 se muestran los residuos de devianza. El 3,7 % supera en valor absoluto los dos desvíos (513 observaciones de 13648). Está dentro del cinco por ciento esperado de valores atípicos. La Figura 3 muestra los residuos "dfbetas" escalados. Se observa que ningún gráfico supera dos desvíos en valor absoluto. Por lo tanto, se concluye que no hay observaciones influyentes.

Figura 2. Residuos de devianza

Figura 3. Residuos DFBETA escalados, para cada coeficiente

Chequeo del supuesto de proporcionalidad.

Grambsch and Therneau (1994) consideraron definir el coeficiente dependiente del tiempo como: $\beta(t) = \beta + \theta g(t)$, donde g(t) es una función del tiempo previamente definida para modelar la dependencia temporal. Si el HR resulta ser función del tiempo, entonces la esperanza de los residuos escalados es aproximadamente: $E[r_i^*] \approx \beta + \beta(t)$. Por lo tanto el coeficiente $\beta(t)$ se podría estimar como: $\hat{\beta}(t) = r_i^* + \beta$. Si se grafica $\hat{\beta}(t)$ versus los tiempos de falla ordenados, se revela la forma funcional de la dependencia temporal. Además es posible testear que $\theta = 0$, ajustando una recta al gráfico y evaluando la significatividad estadística de la pendiente. Si se rechaza, el coeficiente en cuestión depende del tiempo.

1.5. Modelo de eventos múltiples.

La Figura 4 muestra los residuos de *Schoenfeld* versus el tiempo. La recta es $\beta(t)$. Se observa que el coeficiente tiene una leve pendiente negativa a medida que pasa el tiempo.

Figura 4. Residuos de Schoenfeld versus el tiempo. La recta roja es $\beta(t)$

El Cuadro 5 muestra los p-valores del test de $\theta=0$ para $\beta(t)=\beta+\theta g(t)$, donde g(t) es una función del tiempo definida según: (i) g(t)=rank(t); (ii) $g(t)=\hat{S}_{km}(t)$; (iii) g(t)=t; (iv) g(t)=log(t). Según todas las funciones del tiempo, ANIM resulta significativo. Por lo tanto, no se cumple el supuesto de *hazards* proporcionales para dicha variable.

Cuadro 5. Test para theta = 0, según diferentes funciones del tiempo: estadístico de chi cuadrado y p valor

	df	rank.chi2	rank.p	km.chi2	km.p	time.chi2	time.p	log.time.chi2	log.time.p
MORF.f1	1.0000	0.1430	0.7054	0.0087	0.9257	0.0002	0.9881	0.2011	0.6538
MORF.f2	1.0000	0.7136	0.3983	0.5088	0.4757	0.5284	0.4673	1.1555	0.2824
ANIM1	1.0000	11.4895	0.0007	11.0026	0.0009	11.0548	0.0009	7.2430	0.0071
EST11	1.0000	0.4291	0.5125	0.2645	0.6070	0.3078	0.5790	1.1808	0.2772
EST51	1.0000	1.5289	0.2163	1.3443	0.2463	1.3744	0.2411	1.4356	0.2309
GLOBAL	5.0000	11.8179	0.0374	11.2691	0.0463	11.2809	0.0461	7.7530	0.1704

1.6. Modelo de riesgos competitivos.

El Cuadro 6 muestra los p-valores del test de $\theta=0$ para $\beta(t)=\beta+\theta g(t)$, donde g(t) es una función del tiempo definida según: (i) g(t)=rank(t); (ii) $g(t)=\hat{S}_{km}(t)$; (iii) g(t)=t; (iv) g(t)=log(t). Se observa que Fabs.SC.f(1).3, FAM.LEX.f(1).3 y EST1(1).1 resultan significativas. Por lo tanto, no se cumple el supuesto de *hazards* proporcionales para dichas variables.

Test para theta = 0, según diferentes funciones del tiempo: estadístico de chi cuadrado y p valor

	Df	rank.chi2	rank.p	km.chi2	km.p	t.chi2	t.p	log.t.chi2	log.t.p
Fabs.SC.f1.1	1.0000	0.1424	0.7059	0.1719	0.6785	0.2095	0.6471	0.5122	0.4742
Fabs.SC.f1.2	1.0000	0.0874	0.7675	0.0487	0.8254	0.0590	0.8081	0.5978	0.4394
Fabs.SC.f1.3	1.0000	3.4814	0.0621	4.7143	0.0299	4.9946	0.0254	1.8575	0.1729
MORF.f1.2	1.0000	0.1431	0.7052	0.0605	0.8057	0.0558	0.8132	0.7727	0.3794
MORF.f1.3	1.0000	0.0212	0.8842	0.2167	0.6416	0.2568	0.6124	0.0219	0.8823
MORF.f2.3	1.0000	0.2631	0.6080	0.3644	0.5461	0.3385	0.5607	0.1632	0.6862
MOD2.3	1.0000	0.9175	0.3381	0.9863	0.3206	1.2790	0.2581	0.7758	0.3784
MOD2.4	1.0000	0.1414	0.7069	0.0188	0.8910	0.0436	0.8345	0.4572	0.4989
MOD3.3	1.0000	1.2978	0.2546	1.0419	0.3074	0.9624	0.3266	0.9200	0.3375
MOD3.4	1.0000	1.1326	0.2872	0.8331	0.3614	0.8269	0.3632	2.0319	0.1540
ANIM1.2	1.0000	0.0004	0.9840	0.0000	0.9960	0.0002	0.9888	0.4288	0.5126
ANIM1.4	1.0000	1.0977	0.2948	1.4705	0.2253	1.3641	0.2428	1.0714	0.3006
FAM.LEX.f1.2	1.0000	0.1446	0.7037	0.0515	0.8204	0.0587	0.8086	1.2557	0.2625
FAM.LEX.f1.3	1.0000	6.5752	0.0103	4.8466	0.0277	4.2661	0.0389	7.1557	0.0075
FAM.LEX.f1.4	1.0000	0.1442	0.7041	0.0051	0.9432	0.0000	0.9976	0.8679	0.3515
EST11.1	1.0000	5.4959	0.0191	4.2131	0.0401	4.0634	0.0438	4.4186	0.0355
EST11.4	1.0000	0.0042	0.9483	0.1776	0.6734	0.1269	0.7217	0.2670	0.6054

2. Hazard basal estratificada por alumno.

La gráfica siguiente muestra la hazard basal estratificada por alumno. Las curvas tienen diferente longitud porque la censura fue diferente para cada alumno. MIRKA (ID = 4, segunda curva desde arriba) y NATI (ID = 2, cuarta curva desde arriba) perforan el 75 % de probabilidad de sobrevivencia (no sufrir "error"). Las probabilidades de sobrevivencia son superiores al 60 % porque el tiempo de censura fue, por alumno, igual para todos los TYPE. Esto evitó que salieran del conjunto de riesgo para tiempos tardíos. El mejor es, JAKO (ID = 3, primera curva desde arriba), que mantiene alta la probabilidad de no sufrir errores; seguido por SONIA (ID = 1, tercera curva desde arriba). A ojo de buen cubero, no parece haber diferencias entre las curvas de riesgo de JAKO y MIRKA; pero sí entre JAKO y SONIA / NATI. Por otro lado, también se observan diferencias entre las curvas de SONIA y NATI, al menos a partir de t = 200. Además, existen diferencias entre las curvas de MIRKA y SONIA / NATI. La probabilidad de sobrevivencia baja con el tiempo, pero dicha probabilidad parece caer más rápido en NATI y SONIA para los primeros 200 tiempos. Es decir que NATI comete errores más aceleradamente que MIRKA, lo cual es esperable ya que MIRKA es nivel C1 y NATI, B1. El test de log-rank entre los niveles de ID resulta significativo (p < 0.0001). Lo dicho sugiere ajustar modelos que incluyan hazards basales diferentes por alumno.

Figura 5. Hazards basales por alumno: 1 = SONIA, 2 = NATI, 3 = JAKO, 4 = MIRKA

3. Curvas de incidencia para tipos de error.

Se muestran, en la Figura 6 (izquierda), las curvas de incidencia acumulada para los diferentes tipos de error. La probabilidad, para cada punto t_i , de que una concordancia sufra un error del tipo k = 1, ..., 4 está representada como la distancia entre las curvas [mirando los gráficos desde arriba: 1 = error de género (segunda franja); 2 = error de -e- epentética (tercera franja); 3 = error de plural (cuarta franja); 4 = error mixto (quinta franja); EVENT = sin error, o sea censurados (primera franja)]. Por supuesto, cuanto más tiempo pasa, más probabilidad hay de sufrir el evento "error". Se observa que la probabilidad acumulada de error de plural se incrementa sostenidamente hasta acumular aproximadamente 20% de probabilidad de error. Los otros tipos de error acumulan como máximo aproximadamente: 6,6 % (error mixto), 3,5 % (error de género), 1,7 % (error de -e- epentética). Por otra parte, a la derecha se ilustran las incidencias acumuladas de los tipos de error por alumno (1 =SONIA, 2 = NATI, 3 = JAKO, 4 = MIRKA). Las probabilidades acumuladas del error de género y de -e- epentética son mayores en SONIA y NATI que en JAKO y MIRKA; las de los errores mixtos son mayores en MIRKA y NATI que en SONIA y JAKO. Por otro lado, la probabilidad acumulada de error de plural sube más pronunciadamente en MIRKA y NATI.

Figura 6. Incidencias acumuladas.

4. Ajuste del modelo de riesgos competitivos.

A continuación se presenta el ajuste completo del modelo de riesgos competitivos de "fragilidad compartida", con un coeficiente para cada tipo de error.

Cuadro 7. Modelo de riesgos competitivos

	Coef	se.coef.	Chisq	DF	p	exp.coef.	lower95	upper95
Fabs.SC.f1.1	-0.972	0.303	10.248	1.000	0.001	0.378	0.209	0.686
Fabs.SC.f1.2	1.056	0.524	4.066	1.000	0.044	2.876	1.030	8.031
Fabs.SC.f1.3	-0.315	0.152	4.325	1.000	0.038	0.729	0.542	0.982
Fabs.SC.f1.4	-0.258	0.269	0.924	1.000	0.336	0.772	0.456	1.308
MORF.f1.1	0.278	0.480	0.335	1.000	0.563	1.320	0.515	3.384
MORF.f1.2	-1.379	0.612	5.075	1.000	0.024	0.252	0.076	0.836
MORF.f1.3	-0.837	0.173	23.510	1.000	0.000	0.433	0.309	0.608
MORF.f1.4	-0.440	0.355	1.529	1.000	0.216	0.644	0.321	1.293
MORF.f2.1	0.245	0.566	0.187	1.000	0.665	1.278	0.421	3.873
MORF.f2.2	-0.502	0.634	0.626	1.000	0.429	0.605	0.175	2.098
MORF.f2.3	-0.907	0.218	17.247	1.000	0.000	0.404	0.263	0.619
MORF.f2.4	0.370	0.389	0.903	1.000	0.342	1.447	0.675	3.100
MOD1.1	-0.505	1.036	0.237	1.000	0.626	0.604	0.079	4.601
MOD1.3	-0.322	0.523	0.380	1.000	0.538	0.725	0.260	2.018
MOD1.4	-0.294	1.039	0.080	1.000	0.777	0.745	0.097	5.709
MOD2.1	0.551	0.294	3.514	1.000	0.061	1.734	0.975	3.085
MOD2.2	0.373	0.507	0.540	1.000	0.463	1.451	0.537	3.921
MOD2.3	0.409	0.160	6.568	1.000	0.010	1.505	1.101	2.058
MOD2.4	1.062	0.281	14.304	1.000	0.000	2.892	1.668	5.013
MOD3.1	-0.691	0.404	2.921	1.000	0.087	0.501	0.227	1.107
MOD3.2	0.481	0.647	0.553	1.000	0.457	1.618	0.455	5.751
MOD3.3	0.487	0.171	8.108	1.000	0.004	1.627	1.164	2.275
MOD3.4	0.730	0.324	5.064	1.000	0.024	2.076	1.099	3.921
ANIM1.1	0.470	0.277	2.889	1.000	0.089	1.600	0.931	2.753
ANIM1.2	1.654	0.392	17.844	1.000	0.000	5.229	2.427	11.266
ANIM1.3	0.089	0.140	0.403	1.000	0.526	1.093	0.830	1.439
ANIM1.4	0.491	0.242	4.100	1.000	0.043	1.633	1.016	2.626
FAM.LEX.f1.1	-0.110	0.263	0.175	1.000	0.676	0.896	0.535	1.501
FAM.LEX.f1.2	-1.295	0.425	9.278	1.000	0.002	0.274	0.119	0.630
FAM.LEX.f1.3	-0.271	0.125	4.705	1.000	0.030	0.762	0.597	0.974
FAM.LEX.f1.4	-0.510	0.222	5.274	1.000	0.022	0.601	0.389	0.928
EST11.1	-1.721	0.474	13.174	1.000	0.000	0.179	0.071	0.453
EST11.2	-0.118	0.454	0.068	1.000	0.795	0.888	0.365	2.165
EST11.3	-0.097	0.138	0.489	1.000	0.484	0.908	0.692	1.191
EST11.4	-0.996	0.310	10.329	1.000	0.001	0.369	0.201	0.678

EST51.1	-0.792	0.507	2.438	1.000	0.118	0.453	0.168	1.224
EST51.3	-0.155	0.217	0.516	1.000	0.473	0.856	0.560	1.309
EST51.4	-1.388	0.409	11.495	1.000	0.001	0.250	0.112	0.557

coef: betas estimados, exp(coef): hazard ratios, se(coef): error típico de betas estimados,

 $robust\ se:\ error\ t\'(pico\ de\ beta\ con\ estimador\ sandwhich,\ z:\ coef/\ robust\ se,\ Pr(z):\ p-valor,$

lower 95: extremo izquierdo de intervalo de confianza de 95 por ciento para hazard ratio,

upper 95: extremo derecho de intervalo de confianza de 95 por ciento para hazard ratio.

Ejemplos del corpus con MORF.f (bajo) en errores de plural y -e- epentética.

Cuadro 8. Instancias de distancia baja de MORF.f.

	INSTANCIA	TIPO_ERROR	ID	SESION	LINEA
43	vacacione agreables	3	1	4	10
52	calles grandas (1)	2	1	4	60
322	tu pies	3	2	1	78
335	su padres	3	2	1	218
350	mi compañeros	3	2	2	142
356	mis amigo	3	2	2	225
442	su ministros	3	2	6	187
459	la curas (1)	3	2	7	16
526	su ojos	3	2	8	263
534	las investigacione	3	2	9	16
565	el desfiles	3	2	10	65
626	mi compañeros	3	2	12	6
670	las mujeras	2	2	13	129
672	[mujeras] famosas <de los="" políticos=""></de>	2	2	13	129
698	las mujeras	2	2	14	236
750	diferente personas	3	3	2	59
780	tu manos	3	3	2	172
817	sus acuerdo	3	3	4	26
827	su productos	3	3	4	81
914	su condiciones	3	3	7	40
925	su pasiones (1)	3	3	7	150
934	su pensamientos	3	3	7	189
957	diferente postaciones	3	3	8	48
986	tu parámetros (2)	3	3	9	30
1034	cuatrociento kilómetros	3	3	10	71
1039	la [motos] (1)	3	3	10	179
1040	[motos] más cómoda (2)	3	3	10	179
1046	las moto (1)	3	3	10	216
1047	únicas moto (2)	3	3	10	216
1097	cuatrociento habitantes	3	3	12	15
1151	su aspectos (1)	3	3	13	125
1213	mi amigos (2)	3	4	1	250
1243	parte diferentes	3	4	1	425
1264	tu amigos	3	4	2	133
1267	tu amigas	3	4	2	138

1282	otras radio	3	4	2	249
1283	radio especializadas	3	4	2	255
1298	su tareas	3	4	3	50
1270	su tareas	3	4	3	30
1333	su libros	3	4	3	217
1358	costumbre diferentes	3	4	4	20
1383	[costumbres] diferente	3	4	4	183
1459	su instintos (1)	3	4	6	70
1475	su principios	3	4	6	197
1515	su razones	3	4	7	79
1516	las foto	3	4	7	95
1630	su juegos	3	4	9	109
1642	mis amigo (2)	3	4	9	168
1645	mucha motivaciones	3	4	9	185
1651	mi amigos	3	4	9	214
1660	su padres	3	4	9	248
1710	su textos	3	4	10	110
1734	su hijos	3	4	10	207
1764	los video	3	4	11	161

5. Código de R.

Con el objetivo de fomentar la replicación de los resultados de este trabajo, se brinda en adjunto el script de R usado para el análisis, junto a las bases de datos.

Referencias.

BURNHAM, KENNETH P., & ANDERSON, DAVID R. (2010). Model selection and multimodel inference: a practical information-theoretic approach. Springer.

GRAMBSCH, PATRICIA M., & THERNEAU, TERRY M. (1994). Proportional hazards tests and diagnostics based on weighted residuals. *Biometrika*, 81 (3), 515–526.

STROUP, WALTER W. (2013). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press, Chapman Hall.