Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-Sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.

Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/Diamond_cubic), tj. plošně centrovanou kubickou mříž.

<u>Atomová hmotnostní konstanta:</u> $m_u = 1.660538921 * 10^{-27} \text{ kg} = 1.660538921 * 10^{-24} \text{ g}$

<u>Počet atomů v krys. buňce:</u> Z = 8

<u>Objem krys. buňky:</u> $V = a^3$ (tj. mřížková konstanta na třetí, protože se jedná o krychli)

Uhlík (C):

<u>Atomová hmotnost:</u> $A_r = 12.0107$

<u>Mřížková konstanta:</u> a = 3.57 Å = 3.57 * 10⁻⁸ cm

Klidová hmotnost: $m = A_r * m_u = 12.0107 * 1.660538921 * 10^{-24} = 1.994423 * 10^{-23} g$

(ze vztahu pro rel. atom. hmotnost $A_r = \frac{m}{m_y}$)

Křemík (Si):

Atomová hmotnost: $A_r = 28.0855$

<u>Mřížková konstanta:</u> $a = 5.43 \text{ Å} = 5.43 \text{ * } 10^{-8} \text{ cm}$

<u>Klidová hmotnost:</u> $m = A_r * m_u = 28.0855 * 1.660538921 * 10^{-24} = 4.663707 * 10^{-23} g$

Germanium (Ge):

Atomová hmotnost: $A_r = 72.63$

<u>Mřížková konstanta:</u> a = 5.66 $^{\text{A}}$ = 5.66 * 10⁻⁸ cm

<u>Klidová hmotnost:</u> $m = A_r * m_u = 72.63 * 1.660538921 * 10^{-24} = 1.206049 * 10^{-22} g$

Šedý cín (α-Sn):

<u>Atomová hmotnost:</u> $A_r = 118.71$

<u>Klidová hmotnost:</u> $m = A_r * m_u = 8 * 118.71 * 1.660538921 * 10⁻²⁴ = 1.971226 * 10⁻²² g$

<u>Hustota:</u>	$\rho = \frac{Z*m}{V} = \frac{Z*m}{a^3}$
Uhlík (C):	$\frac{8*1.994423*10^{-23}}{(3.57*10^{-8})^3} = 3.5067 \text{ g/cm}^3$
Křemík (Si):	$\frac{8*4.663707*10^{-23}}{(5.43*10^{-8})^3} = 2.3304 \text{ g/cm}^3$
Germanium (Ge):	$\frac{8*1.206049*10^{-22}}{(5.66*10^{-8})^3} = 5.3212 \text{ g/cm}^3$
Šedý cín (α-Sn):	$\frac{8*1.971226*10^{-22}}{(6.49*10^{-8})^3} = 5.7689 \text{ g/cm}^3$

Úloha 2: Jaká je vzdálenost nejbližších sousedů v struktuře grafitové roviny (grafen)?

Jaký je počet uhlíkových atomů na ploše velikosti 1 μm² a jaká je její hmotnost?

Mezi dvěma sousedy je minimální vzdálenost 0.142 nm s vazebným úhlem 120°.

Vrstvy grafenu jsou od sebe vzdáleny 0.335 nm.

Vzdálenost AB:
$$a = 0.142 \text{ nm} = 1.42 * 10^{-1} \text{ nm}$$

Obsah plochy:
$$S_p = 1 \mu m^2 = 10^6 \text{ nm}^2$$

Obsah 1 hexagonu:
$$S_h = \frac{3*\sqrt{3}}{2}*a^2 = \frac{3*\sqrt{3}}{2}*(1.42*10^{-1})^2 = 5.23876*10^{-2} \text{ nm}^2$$

Počet hexagonů: $h = \frac{S_p}{S_h} = \frac{10^6}{5.23876*10^{-2}} = 1.908848*10^7 \text{ ploch}$

Počet hexagonů:
$$h = \frac{S_p}{S_h} = \frac{10^{\circ}}{5.23876 * 10^{-2}} = 1.908848 * 10^7 \text{ ploch}$$

Počet atomů:
$$N = \frac{h*6}{3} = 1.908848*10^7*2 = 3.817696*10^7 atomů$$

(krát 6 – jeden hexagon obsahuje 6 atomů, děleno 3 – jeden atom sdílejí 3 hexagony)

Atomová hmotnost C: $A_r = 12.0107$

Atomová hmotnostní konstanta: $m_u = 1.660538921 * 10^{-27} \text{ kg}$

 $m_k = A_r * m_u = 12.0107 * 1.660538921 * 10^{-27} = 1.994423 * 10^{-26} \text{ kg}$ Klidová hmotnost atomu C:

*Hmotnost 1 µm*² grafitu: $m = N * m_k = 3.817696 * 10^7 * 1.994423 * 10^{-26} = 7.6141 * 10^{-19} kg$

Úloha 3: Z mřížkové konstanty C_{60} (kubická plošně centrovaná mříž) spočítejte jeho hustotu a porovnejte s hustotou diamantu a grafitu. Jaký objem připadá na jeden atom v těchto třech formách C?

Fulleren C₆₀ ma kubickou plošně centrovanou mřížku, takže se 1 cm² dá složit z několika krystalových jednotek (krychliček) o hraně délky 'a' (tj. mřížková konstanta, viz níže).

Krystal z jedné krychličky se skládá ze 14 částic C₆₀ (8 vrcholů + 6 středů stěn). Krystal z 8 krychliček (tj. 2*2*2) bude mít 63 částic, 3*3*3 bude mít 172... $= \frac{x*x*x \text{ krychlička bude mít } (x+1)^3 + 3*x^2*(x+1) \text{ částic}}{x^2 + x^2 + x^2$

<u>Atomová hmotnostní konstanta:</u> $m_u = 1.660538921 * 10^{-27} \text{ kg} = 1.660538921 * 10^{-24} \text{ g}$

 Atomová hmotnost C:
 $A_r = 12.0107$

 Mřižková konstanta C_{60} :
 $a = 14.15 \text{ Å} = 1.415 * 10^{-7} \text{ cm}$

 Klidová hmotnost atomu C:
 $m = A_r * m_u = 12.0107 * 1.660538921 * 10^{-24} = 1.994423 * 10^{-23} \text{ g}$

 Počet částic v krystalu o hraně x:
 $Z = (x + 1)^3 + 3 * x^2 * (x + 1)$

Hustota:
$$\rho = \frac{Z*m}{V} = \frac{((x+1)^3 + 3*x^2*(x+1))*(60*m_k)}{V}$$

Pro objem $V = 1 \text{ cm}^3$ bude krystal mít hranu 1/a, hustota tedy bude:

$$\rho = \frac{\left(\left(\frac{1}{a}+1\right)^{3}+3*\left(\frac{1}{a}\right)^{2}*\left(\frac{1}{a}+1\right)\right)*\left(60*m_{k}\right)}{V} = \frac{\left(\left(\frac{1}{1.415*10^{-7}}+1\right)^{3}+3*\left(\frac{1}{1.415*10^{-7}}\right)^{2}*\left(\frac{1}{1.415*10^{-7}}+1\right)\right)*\left(60*1.994423*10^{-23}\right)}{1} = \frac{1.41186*10^{21}*1.1966538*10^{-21}}{1} = 1.6895 \text{ g/cm}^{3}$$

<u>Hustota diamantu:</u> $\rho_d = 3,515 \text{ g/cm}^3$

<u>Hustota grafitu:</u> $\rho_g = 2.267 \text{ g/cm}^3$

=>
$$C_{60}$$
 má asi $\frac{\rho}{\rho_d} = \frac{1.6895}{3.515} = 48\%$ hustoty diamantu a $\frac{\rho}{\rho_g} = \frac{1.6895}{2.267} = 74\%$ hustoty grafitu, je tedy velice lehký.

Objem 1 atom z předchozí rovnice o objemu 1 cm³ tak, že vydělíme objem 1 cm³ počtem molekul * 60 (1 molekula obsahuje 60 atomů):

$$V_{c60} = \frac{1}{1.41186 * 10^{21} * 60} = 1.18048 * 10^{-23} \text{ cm}^3$$

Objem 1 atomu diamantu: Z příkladu 1 víme, že diamant ma v krys. buňce 8 atomů, buňka má objem a³, kde a = $3.57 * 10^{-8}$ cm (mřížková konstanta), zpětně vyjádříme objem 1 atomu: $V_d = \frac{a^3}{8} = \frac{(3.57 * 10^{-8})^3}{8} = \mathbf{5.68741} * \mathbf{10^{-24}} \text{ cm}^3$

$$V_d = \frac{a^3}{8} = \frac{(3.57 * 10^{-8})^3}{8} = 5.68741 * 10^{-24} \text{ cm}^3$$

Objem 1 atomu grafitu: Z příkladu 2 víme, že na 1 µm² je 3.817696 * 10⁷ atomů, vrstvy grafenu jsou od sebe vzdáleny 0.335 nm = 3.35 * 10⁻⁴ μm, do 1 μm se jich tedy vejde $\frac{1}{3.35 \times 10^{-4}}$.

Počet atomů v 1 μ m³ = 10⁻¹² cm³ je tedy 3.817696*10⁷* $\frac{1}{3.35*10^{-4}}$ = 1.1396107 * 10¹¹.

Objem 1 atomu poté bude:
$$V_g = \frac{10^{-12}}{1.1396107 * 10^{11}} = 8.77493 * 10^{-24} \text{ cm}^3$$

Úloha 4: Spočítejte objem na jednu molekulu plynu s tlakem 1 bar, 10^{-12} a 10^{-19} bar při teplotách 0 a 100 °C.

 $\begin{array}{lll} & \frac{\textit{Počet částic:}}{\textit{Tlak 1:}} & \textit{N} = 1 \\ & \frac{\textit{Tlak 1:}}{\textit{Tlak 2:}} & \textit{p}_1 = 1 \; \textit{bar} = 10^5 \; \textit{Pa} \\ & \frac{\textit{Tlak 2:}}{\textit{Tlak 3:}} & \textit{p}_2 = 10^{-12} \; \textit{bar} = 10^{-7} \; \textit{Pa} \\ & \frac{\textit{Tlak 3:}}{\textit{Teplota 1:}} & \textit{T}_1 = 0 \; ^{\circ}\text{C} = 273.15 \; \text{K} \\ & \frac{\textit{Teplota 2:}}{\textit{Teplota 2:}} & \textit{T}_2 = 100 \; ^{\circ}\text{C} = 373.15 \; \text{K} \\ & \frac{\textit{Boltzmannova konstanta:}}{\textit{k}} \; \; k = 1.3806 * 10^{-23} \; \textit{J/K} \\ & \frac{\textit{Stavová rovnice idealního plynu:}}{\textit{p}} \; \; p*V = N*k*T \; => \\ & => \; \underline{\textit{Objem:}} \; \; V = \; \frac{N*k*T}{p} = \frac{\left(1*1.3806*10^{-23}*T\right)}{p} \end{array}$

Objem:	$p_1 = 10^5 \text{Pa}$	$p_2 = 10^{-7} \text{ Pa}$	$p_3 = 10^{-14} \text{ Pa}$
$T_1 = 273.15 \text{ K}$	3.77111 * 10 ⁻²⁶ m ³	3.77111 * 10 ⁻¹⁴ m ³	3.77111 * 10 ⁻⁷ m ³
$T_2 = 373.15 \text{ K}$	5.15171 * 10 ⁻²⁶ m ³	5.15171 * 10 ⁻¹⁴ m ³	5.15171 * 10 ⁻⁷ m ³

Úloha 5: Spočtěte objem plynu za normálních podmínek, ve kterém nastávají relativní fluktuace hmoty velikosti 0,1 a 0,0001.

Normální podmínky: Teplota: T = 273.15 K

 $\overline{Tlak:}$ p = 1.01325 * 10⁵ P

Boltzmannova konstanta: $k = 1.3806 * 10^{-23} \text{ J/K}$

<u>Stavová rovnice idealního plynu:</u> p*V = N*k*T =>

$$\Rightarrow \underline{Objem:} \ V = \frac{N*k*T}{p} = \frac{N*1.3806*10^{-23}*273.15}{1.01325*10^5}$$

Fluktuace (f) je nepřímo úměrná druhé odmocnině počtu molekul: $f = \frac{1}{\sqrt{N}} = N = \frac{1}{f^2}$

Při fluktuacích 0.1 bude
$$N = \frac{1}{0.1^2} = 100$$
:

=>
$$V = \frac{100*1.3806*10^{-23}*273.15}{1.01325*10^5} = 3.7218*10^{-24} m^3$$

<u>Při fluktuacích 0.0001 bude $N = \frac{1}{0.0001^2} = 10^8$:</u>

=>
$$V = \frac{10^8 * 1.3806 * 10^{-23} * 273.15}{1.01325 * 10^5} = 3.7218 * 10^{-18} \text{ m}^3$$

Úloha 6: Jaká je vnitřní energie 1 m^3 idéalního jednoatomového plynu při tlaku $10^{\text{-}10}$ a 1000 bar?

<u>Objem:</u> $V = 1 \text{ m}^3$

Tlak 1: $p_1 = 10^{-10} \text{ bar} = 10^{-5} \text{ Pa}$

<u>Tlak 2:</u> $p_2 = 1000 \text{ bar} = 10^8 \text{ Pa}$

Stavová rovnice idealního plynu: p*V = N*k*T =>

$$\Rightarrow Počet částic: N = \frac{p*V}{k*T}$$

<u>Vnitřní energie ideálního plynu:</u> $U = \frac{3}{2} * N * k * T = \frac{3}{2} * \frac{p * V}{k * T} * k * T = \frac{3}{2} * p * V = \frac{3}{2} * 1 * p = \frac{3}{2} p$

<u>Pro tlak 1:</u> $U = 1.5 * 10^{-5} J$

Pro tlak 2: $U = 1.5 * 10^8 J$

Úloha 7: Jaká je energie tepelného záření v objemu 1 m³ při teplotách -270, 0, 6000°C?

Objem: $V = 1 \text{ m}^3$ Pi: $\pi = 3.1416$

Boltzmannova konstanta: $k = 1.3806 * 10^{-23} \text{ J/K}$ Redukovaná Planckova konstanta: $h = 1.0546 * 10^{-34} \text{ J*s}$ Rychlost světla:c = 299792458 m/s

Energie (podle vzorce pro celkovou hustotu energie):

$$U = \frac{\pi^2 * k^4}{15 * \hbar^3 * c^3} * V * T^4 = \frac{3.1416^2 * (1.3806 * 10^{-23})^4}{15 * (1.0546 * 10^{-34})^3 * 299792458^3} * 1 * T^4 = 7.5641 * 10^{-16} * T^4 J$$

Při teplotě:

$$T_1 = -270^{\circ} C = 3.15 K$$
 => $U = 7.5641*10^{-16} * 3.15^4$
 = $7.4473 * 10^{-14} J$
 $T_2 = 0^{\circ} C = 273.15 K$
 => $U = 7.5641*10^{-16} * 273.15^4$
 = $4.2108 * 10^{-6} J$
 $T_3 = 6000^{\circ} C = 6273.15 K$
 => $U = 7.5641*10^{-16} * 6273.15^4$
 = $1.1714 J$

Úloha 8: Jaký celkový výkon vyzařuje absolutně černé těleso (emisivita 1) z plochy 1 dm² při teplotě 37° C?

<u>Plocha:</u> $S = 1 \text{ dm}^2 = 0.01 \text{ m}^2$ <u>Teplota:</u> T = 37 °C = 310,15 K

Emisivita: $\varepsilon = 1$

<u>Stefan-Boltzmannova konstanta:</u> $\sigma = 5.6704 * 10^{-8}$ $\frac{W}{m^2 * K^4}$

<u>Celkový výkon (podle Stefan-Boltzmannova zákona):</u> $P = \varepsilon * \sigma * S * T^4$ = 1 * 5.6704 * 10⁻⁸ * 0.01 * 310.15⁴ = **5.2469 W**

Úloha 9: Jakou energii má dopadající a rozptýlený foton v Comptonově experimentu při $\lambda_i = 0.1$ nm a úhlu rozptylu 90°?

<u>Počáteční vlnová délka:</u> $\lambda_i = 0.1 \text{ nm} = 10^{-10} \text{ m}$

 $\underline{\acute{U}hel\ rozptylu:}\qquad \theta = 90^{\circ}$

<u>Planckova konstanta:</u> $h = 6.626069 * 10^{-34} J*s$ <u>Rychlost světla:</u> c = 299792458 m/s

<u>Comptonova vlnová délka (elektron):</u> $\lambda_c = \frac{h}{m_e * c} = 2.426310 * 10^{-12} \text{ m}$

<u>Comptonova rovnice:</u> $\lambda - \lambda_i = \frac{h}{m_c * c} * (1 - \cos \theta) =$

=> <u>Vlnová délka:</u> $\lambda = \frac{h}{m_e * c} * (1 - \cos \theta) + \lambda_i = 2.426310 * 10^{-12} * (1 - \cos 90^{\circ}) + 10^{-10} = 1.0242631 * 10^{-10} m$

Energie dopadajícího fotonu: $E_d = \frac{h*c}{\lambda_i} = \frac{6.626069*10^{-34}*299792458}{10^{-10}} = 1.98645*10^{-15} J$

Energie rozptýleného fotonu: $E_d = \frac{h*c}{\lambda} = \frac{6.626069*10^{-34}*299792458}{1.0242631*10^{-10}} = 1.93939*10^{-15} J$

Úloha 10: Jaká je de Broglieho vlnová délka elektronu a neutronu s rychlostmi 10^3 a 10^6 m/s?

<u>Planckova konstanta:</u> $h = 6.62606896 * 10^{-34} J*s$

Rychlost světla: c = 299792458 m/s

$$\lambda = \frac{h}{p} = \frac{h}{\frac{m_o * v}{\sqrt{(1 - \frac{v^2}{c^2})}}} = \frac{h}{m_o * v} * \sqrt{(1 - \frac{v^2}{c^2})} = \frac{6.62606896 * 10^{-34}}{m_o * v} * \sqrt{(1 - \frac{v^2}{299792458^2})}$$

<u>Klidová hmotnost elektronu:</u> $m_e = 9.10938291 * 10^{-31} \text{ kg}$ Klidová hmotnost neutronu: $m_n = 1.674927351 * 10^{-27} \text{ kg}$

<u>Rychlost 1:</u> $v_1 = 10^3 \text{ m/s}$ Rychlost 2: $v_2 = 10^6 \text{ m/s}$

<u>De Broglieho vlnová délka:</u>	$m_e = 9.10938291 * 10^{-31} \text{ kg}$	$m_n = 1.674927351 * 10^{-27} \text{ kg}$
$v_1 = 10^3 \text{ m/s}$	7.27389 * 10 ⁻⁷ m	3.95603 * 10 ⁻¹⁰ m
$v_2 = 10^6 \text{ m/s}$	7.27385 * 10 ⁻¹⁰ m	3.95601 * 10 ⁻¹³ m

Úloha 11: Jaká je neurčitost hybnosti a rychlosti elektronu v jednorozměrném pohybu s prostorovou lokalizací do oblasti velikosti 1 nm?

Klidová hmotnost elektronu: $m_e = 9.10938291 * 10^{-31} \text{ kg}$

Odchylka pozice: $\Delta x = 1 \text{ nm} = 10^{-9} \text{ m}$ c = 299792458 m/s<u>Rychlost světla:</u>

 $\overline{Redukovan\acute{a}\ Planckova\ konstanta}$: $\hbar = 1.0545716 * 10^{-34}\ J*s$

Relace odchylky pozice a hybnosti: $\Delta x \Delta o \ge \frac{\hbar}{2}$

$$\Rightarrow \underline{Odchylka\ hybnosti:} \quad \Delta p \geq \frac{\hbar}{2*\Delta x} = \frac{1.0545716*10^{-34}}{2*10^{-9}} = 5.272858*10^{-26} \text{ (kg*m)/s}$$

<u>Neurčitost rychlosti:</u>

$$\frac{c^2 * p}{\sqrt{(p*c)^2 + (m_e*c^2)^2}} = \frac{299792458^2 * 5.272858 * 10^{-26}}{\sqrt{(5.272858 * 10^{-26} * 299792458)^2 + (9.10938291 * 10^{-31} * 299792458^2)^2}} = \frac{57883.81 \text{ m/s}}$$