Solution

MATB41 Quiz 7 Tutorial 5

Last Name:	First Name:

Student Number:

Set up iterated integrals of both orders of integration. Then evaluate the double integral using the easier order and explain why it is easier.

- @ is more difficult to integrate than () because
- 2) involves multiplication of y and exy

$$0 \int_{0}^{4} \int_{0}^{y} y^{2} e^{xy} dx dy$$

$$= \int_{0}^{4} y e^{xy} \Big|_{0}^{y} dy$$

$$=\int_{0}^{4} y e^{y^{2}} - y dy$$

$$=\frac{1}{2}e^{y^2}-\frac{y^2}{2}\Big|_0^4$$

$$=\frac{1}{2}e^{16}-\frac{16}{2}-\frac{1}{2}$$

$$=\frac{1}{2}(e^{16}-17)$$

Solution

MATB41 Quiz 8 Tutorial 9

Last Name:	First Name:

Student Number:____

Find the volume of the solid bounded by the cylinder $y^2 + z^2 = 4$ and the planes x = 2y, x = 0, z = 0 in the first octant.

$$x = 2y, x = 0, z = 0 \text{ in the first octant.}$$

$$\int_{0}^{2} \int_{0}^{\sqrt{4+z^{2}}} \int_{0}^{2y} dy dz$$

$$= \int_{0}^{2} \int_{0}^{\sqrt{4-z^{2}}} dy dy dz$$

$$= \int_{0}^{2} \int_{0}^{\sqrt{4-z^{2}}} dz dz$$

$$= \int_{0}^{2} 4 - z^{2} dz$$

$$= 4z - \frac{z}{3} \Big|_{0}^{2}$$

$$= 8 - \frac{8}{3}$$

Solution.

MATB41 Quiz 9 Tutorial 5

Last Name:	First Name:	
Student Number:		

Express the integral $\iiint_E f(x, y, z) dV$ as an iterated integral in 4 different ways in the order as specified below, where E is the solid bounded by the given surfaces $y = 4 - x^2 - z^2$, y = 0.

Please complete the boundaries of the integrals below.

the complete the boundaries of the integrals below.

1.
$$\iint_{E} f(x,y,z) dx dy dz = \int_{-\lambda}^{\lambda} \int_{0}^{4-z^{2}} \int_{-\sqrt{4-z^{2}-y}}^{4-z^{2}-y} f(x,y,z) dx dy dz$$

2.
$$\iint_{E} f(x,y,z) dz dy dx = \int_{-\lambda}^{\lambda} \int_{0}^{4-x^{2}} \int_{-\sqrt{4-x^{2}-y}}^{4-x^{2}-y} f(x,y,z) dz dy dx$$

3.
$$\iint_{E} f(x,y,z) dx dz dy = \int_{0}^{4} \int_{-\sqrt{4-y^{2}-y}}^{4-y^{2}} \int_{-\sqrt{4-z^{2}-y}}^{4-z^{2}-y} f(x,y,z) dx dz dy$$

4.
$$\iint_{E} f(x,y,z) dy dz dx$$

$$= \int_{-\lambda}^{2} \int_{-\sqrt{4-x^{2}-y}}^{4-x^{2}-z^{2}} \int_{0}^{4-x^{2}-z^{2}-z^{2}} f(x,y,z) dy dz dx$$

MATB41 Quiz 10 Tutorial 5

Last Name: First Name:

Student Number:

Find the volume of the solid inside the sphere $x^2 + y^2 + z^2 = 16$ and outside the P= 41

Sol'n:

Switch to polar coordinate on xy-plane

 $z^{2}+y^{2}+z^{2}=16$ $r^{2}+z^{2}=16$ $z=\pm\sqrt{16-r^{2}}$ $z=\pm\sqrt{16-r^{2}}$

$$= \int_{0}^{2} \sqrt{16-r^{2}} dz dr d0$$

$$= \int_{0}^{2} \sqrt{16-r^{2}} dz dr d0$$

$$= \int_{0}^{2\pi} \int_{0}^{12} \sqrt{u} \, du \, d\theta$$

$$= \int_{0}^{2\pi} \frac{u^{3/2}}{(\frac{3}{2})} \int_{0}^{12} d\theta$$

Aside: $u = 1b - \Gamma^2$ $\frac{du}{dr} = -2r$ dr = du 2 4 5 4 12 = W = 0

$$= \int_{0}^{2\pi} 16 \, \sqrt{3} \, d\theta$$

$$= 16 \, \sqrt{3} \, \theta \, \Big|_{0}^{2\pi}$$

$$= 32 \, \sqrt{3} \, \pi$$