Assignment #2, Total: 10 pts

Name: Aditya Rajesh NetlD: arr 210

Chapter 4. Diodes

1. (0.5 pts) Assuming that the diodes in the circuits are *ideal*, find the values of the labeled voltage and current.

$$V = IR$$

$$3 - 0 = I(Ik)$$

$$\Gamma = \frac{3}{Ik}$$

like a short circuit.

Therefore, the voltage at the node where DI connects is Ov, because it is directly connected

to ground through DI.

- 2. (2 pts) Design a zener regulator circuit using a 7.5-V zener specified at 10 mA. The zener has an incremental resistance r_z = 30 Ω and a knee current of 0.5 mA. The regulator operates from a 10-V supply and delivers a nominal current of 5 mA to the load.
 - (a) What is the value of R you have chosen?
 - (b) What is the output voltage when both the supply is 10% high and the load is removed?
 - (c) What is the largest load current that can be delivered while the zener operates at a current no lower than the knee current while the supply is 10% low?

$$I_{R} \bigvee \bigotimes_{\mathbf{Z}K} R$$

$$I_{ZK} \bigvee \sum_{\mathbf{Z}K} \bigvee I_{L\max}$$
(c)

$$I_{R} = I_{2} + I_{L}$$

$$= 10 \text{ mA} + 5 \text{ mA}$$

$$= 15 \text{ mA}$$

$$R = \frac{V_{s} - V_{2}}{I_{R}}$$

$$= \frac{10 - 7.5}{15 \times 10^{-3}}$$

$$= \frac{2.5}{0.015}$$

=166.67_2

$$V_{s} = 1.1 \times 10 = 11 \text{ V}$$

$$I_{\frac{3}{2}} = \frac{V_{s} - V_{\frac{3}{2}}}{R}$$

$$= \frac{11 - 7.5}{166.67}$$

$$= \frac{3.5}{166.67}$$

$$= 21 \text{ MA}$$

$$V_{0} = V_{2} + (I_{\frac{3}{2}}) \cdot c_{2}$$

$$= 7.5 + (21 \cdot 10^{-3}) \cdot 30$$

$$= 7.5 + 0.63$$

$$= 8.13 \text{ V}$$

$$\begin{array}{c}
V_{s} = 0.9 \cdot 10 \\
 = 9 V \\
\end{array}$$

$$\begin{array}{c}
I_{R} = \frac{V_{s} - V_{z}}{R} \\
= \frac{9 - 7.5}{166.67} \\
= \frac{1.5}{166.67} \\
= 9 \text{ MA}
\end{array}$$

$$I_{2h} = 0.5 \text{ MA}$$

$$I_{L_{Max}} = I_R - I_{\ge t}$$

= 9 MA - 0.5 MA
= 8.5 MA

Chapter 5. MOS Field-Effect Transistors (MOSFETs)

3. (1 pt) The PMOS transistor in the circuit has $V_t = -0.5$ V, $\mu_p C_{ox} = 100 \,\mu\text{A/V}^2$, L = 0.18 μm , and $\lambda = 0$. Find the values required for W and R in order to establish a drain current of 160 μA and a voltage V_D of 0.8 V.

$$V_{t} = -0.5 \text{ V}$$

$$V_{t} = -0.8 \text{ V}$$

$$V_{t} =$$

4. (1 pt) For a particular MOSFET operating in the saturation region at a constant v_{GS} , i_D is found to be 200 μ A for v_{DS} = 1 V and 205 μ A for v_{DS} = 1.5 V. Find the values of r_o , V_A , and λ .

$$\begin{aligned}
| O_1 &= 200 \cdot 10^{-6} \\
| O_2 &= 205 \cdot 10^{-6}
\end{aligned}$$

$$\begin{aligned}
| O_2 &= 205 \cdot 10^{-6} \\
| O_3 &= 1.0 \text{ V}
\end{aligned}$$

$$\begin{aligned}
| O_3 &= V_{032} - V_{031} \\
| O_4 &= 0.5 \text{ V}
\end{aligned}$$

$$\begin{aligned}
| O_2 &= 205 \cdot 10^{-6} \\
| O_3 &= 1.0 \text{ V}
\end{aligned}$$

$$\begin{aligned}
| O_4 &= 1.5 \text{ V}
\end{aligned}$$

$$\begin{aligned}
| O_5 &= 1.5 \text{ V}
\end{aligned}$$

$$\begin{aligned}
| O_6 &= \frac{\Delta V_{05}}{5 \cdot 10^{-6}}
\end{aligned}$$

$$\begin{aligned}
| O_6 &= \frac{\Delta V_{05}}{5 \cdot 10^{-6}}
\end{aligned}$$

$$\begin{aligned}
| O_6 &= \frac{O \cdot 5 \text{ V}}{5 \cdot 10^{-6}}
\end{aligned}$$

$$\begin{aligned}
| O_6 &= \frac{O \cdot 5 \text{ V}}{5 \cdot 10^{-6}}
\end{aligned}$$

$$\begin{aligned}
| O_7 &= \frac{O \cdot 5 \text{ V}}{5 \cdot 10^{-6}}
\end{aligned}$$

$$\frac{1}{100000} = \sqrt{0.5} = \sqrt{0.5} = \sqrt{0.5}$$

$$= 0.5 V$$

$$= (205-200) \cdot 10^{-6}$$

$$= 5 \cdot 10^{-6} A$$

$$\frac{1}{100000} = \sqrt{0.05} = \sqrt{0.05}$$

Chapter 6. Bipolar Junction Transistors (BJTs)

5. (1 pt) In the circuit shown in the figure, the power supplies are ± 3 V and the voltage at the emitter was measured and found to be -0.7 V. If $\beta = 50$, find I_E , I_B , I_C , and V_C .

$$V_E = -0.7 \text{ V}$$

Power Supplies: ±3 V

 $\beta = 50$
 $R_E = 10 \text{ k.a.}$
 $R_C = 5 \text{ k.a.}$

$$I_{E} = \frac{V_{E} - V_{-}}{R_{E}}$$

$$I_{E} = \frac{-0.1 - C - 3}{10000}$$

$$I_{E} = \frac{2.3}{10000}$$

$$I_{E} = 0.00023 A$$

$$I_{E} = 0.230 MA$$

$$I_{C} = \frac{50}{51} \cdot 0.00023$$

$$I_{C} = 0.00022549 A$$

$$I_{C} = 0.225 MA$$

$$I_{R} = \frac{I_{C}}{B}$$

$$I_{R} = \frac{0.00022549}{50}$$

$$I_{R} = 4.5018 \cdot 10^{-C} A$$

IB = 4.510 pA

$$V_{c} = V_{+} - (I_{c} \cdot R_{c})$$

$$V_{c} = 3 - (0.00022540.5000)$$

$$V_{c} = 3 - 1.12745$$

$$V_{c} = 1.8725 \text{ V}$$

$$V_{c} = 1.873 \text{ V}$$

Chapter 7. Transistor Amplifiers

6. (1 pt) A designer wants to create a BJT amplifier with a gm of 20 mA/V and a base input resistance of 4000 Ω or more. What collector-bias current should she choose? What is the minimum β she can tolerate for the transistor used?

$$g_{M} = \frac{\overline{\perp}_{c}}{V_{T}}$$

Ic = Om · VT

$$I_c = (20.10^{-3}) \cdot (25.10^{-3})$$

$$I_c = 0.5 \cdot (0^{-3})$$

$$I_c = 0.5 \cdot A$$

$$r_{J} \frac{\beta}{5^{M}}$$

$$\beta = 4000 \cdot (20.10^{-3})$$

- 7. (1.5 pt) Consider the amplifier of the following circuit: V_{DD} = 5 V, R_D = 24 k Ω , (W/L) = 1 mA/V², and V_t = 1 V.
 - (a) Find the coordinates of the two end points of the saturation-region segment of the amplifier transfer characteristic, that is, points A and B.
 - (b) If the amplifier is biased to operate with an overdrive voltage V_{OV} of 0.5 V, find the coordinates of the bias point Q on the transfer characteristic. Also, find the value of I_D and of the incremental gain A_V at the bias point.

- 8. (2 pts) The following figure shows a discrete-circuit amplifier. The input signal v_{sig} is coupled to the gate through a very large capacitor (shown as infinite). The transistor source is connected to ground at signal frequencies via a very large capacitor (shown as infinite). The output voltage signal that develops at the drain is coupled to a load resistance via a very large capacitor (shown as infinite). All capacitors behave as short circuits for signals and as open circuits for dc.
 - (a) If the transistor has $V_t = 1$ V, and $k_n = 4$ mA/V², verify that the bias circuit establishes $V_{GS} = 1.5$ V, $I_D = 0.5$ mA, and $V_D = +7.0$ V. That is, assume these values, and verify that they are consistent with the values of the circuit components and the device parameters.
 - (b) Find gm and r_o if $V_A = 100$ V.

= 3.495 V

(c) Find R_{in} , v_{gs}/v_{sig} , v_o/v_{gs} , and v_o/v_{sig} .

