

ETE102 - Fundamentos de Circuitos Digitais Trabalho — 2. Bimestre 2020 — Exercícios

Prezados alunos. O objetivo deste trabalho é resolver os exercícios apresentados. Para isso, leiam as instruções a seguir:

- Este trabalho será aplicado para os alunos dos período diurno e noturno.
- Nas questões os enunciados apresentam uma dependência do valor da variável N, onde N = A + B obtido a partir do RA do aluno, conforme explicado a seguir:

RA: [][] _• [][A][][B][]-[]

- O trabalho é individual. Divulgação no Moodle a partir de 19/06/2020 (sexta-feira). Entrega até o dia 25/06/2020 (sexta-feira). Os trabalhos não serão aceitos após esta data; o MoodleRooms estará programado para isto. Não deixem para entregar em cima da hora, para evitar problemas (por exemplo, problemas de conexão com a internet).
- Os exercícios devem ser resolvidos e, depois de concluídos, digitalizados, gerando um arquivo em PDF o qual deverá ser postado no MoodleRooms, fazendo o Upload na Tarefa "Trabalho do 2. Bimestre Diurno" ou na Tarefa "Trabalho do 2. Bimestre Noturno" na pasta "Ensino-Aprendizagem Mediados por Tecnologias Repositórios". Serão aceitos arquivos no formato PDF.

	RA: •
A.1	Meu dígito é $N = A + B = $
Aluno:	

Valores das questões:

Questão	Valor	Nota
1ª Questão	4,0	
2ª Questão	4,0	
3ª Questão	2,0	
Total	10,0	

Orientações adicionais:

- Se em alguma questão for necessário utilizar Mapas de Karnaugh, considere sempre a solução mais simples dentre as obtidas com enlaces de "0"s ou "1"s e que torne necessário utilizar o menor número de portas; por exemplo, havendo mais de uma solução diferente, escolha sempre a solução mais simples e se houver uma solução que permita a implementação utilizando porta XOR essas soluções devem ser usadas se resultar no menor número de portas utilizadas;
- se precisar de folhas em branco adicionais para resolver as questões pode adicioná-las livremente;
- quando for postar a solução na tarefa do Moodle, não precisa incluir todas as folhas da 3ª questão; inclua apenas a folha referente à carta de tempo de seu "N" específico; contudo fique atento para que, quando for enviar o trabalho, não se esqueça de nenhuma página; confira após fazer o *upload*;
- lembre-se que não é permitido o "plágio" portanto jamais copie a solução desenvolvida por um colega; cópias flagrantes com erros grosseiros, podem resultar em "0" na questão ou até na prova inteira:
- na 3ª questão, trace as formas de onda até o final do período, até que todos os sinais sejam verificados.

1ª Questão (4,0 ponto)

Considere o seguinte diagrama de estados.

a) Projete um circuito contador síncrono (**obrigatório**) que desenvolva o diagrama de estados apresentado acima. Na obtenção as expressões booleanas devem ser o mais simplificadas possíveis. Considere que $\overline{POR1}$ e $\overline{POR2}$ são sinais produzidos pelo acionamento de botões, os quais pode ser pressionados em qualquer momento, garantindo respectivamente os valores 12_{10} e N_{10} independente da condição inicial. Apresente todo o passo a passo da dedução do circuito bem como o resultado com o circuito completo. (3,5 pontos)

b) Complemente o diagrama de estados (o qual está sendo apresentado novamente abaixo) inserindo todos os estados não apresentados. O diagrama de estados resultante deve demonstrar a lógica de funcionamento do circuito caso estes estados apareçam como condição inicial. **(0,5 ponto)**

2ª Questão (4,0 ponto)

Considere o seguinte diagrama de estados.

a) Projete um circuito contador assíncrono decrescente (**obrigatório**) que desenvolva o diagrama de estados apresentado acima. Utilize obrigatoriamente flip-flops JK Master Slave com Preset (\overline{PR}) e Clear (\overline{CL}) . Podem ser utilizados quaisquer dos três modos para obtenção do contador decrescente (ensinados pelo professor). Considere que \overline{POR} é um sinal produzido pelo acionamento de um botão, o qual pode ser pressionado em qualquer momento, garantindo o valor N_{10} independente da condição inicial. Apresente todo o passo a passo da dedução do circuito bem como o resultado com o circuito completo. (3,5 pontos)

b) Complemente o diagrama de estados (o qual está sendo apresentado novamente abaixo) inserindo todos os estados não apresentados. O diagrama de estados resultante deve demonstrar a lógica de funcionamento do circuito caso estes estados apareçam como condição inicial. **(0,5 ponto)**

3ª Questão (2,0 pontos)

Numa placa didática foram utilizados os seguintes dispositivos, conforme ilustrado na Figura a seguir:

- um teclado similar ao utilizado em computadores incluindo circuito decodificador, e conectado em um latch de 8 bits;
 - 8 LEDs conectados na saída de um segundo latch de 8 bits.

Considere que cada Latch da aplicação apresenta internamente o seguinte circuito com flip-flops.

Considere que o circuito decodificador converte o sinal produzido pelo teclado para produzir um sinal binário diferente para cada tecla, como apresentado na tabela de caracteres apresentado a seguir. Por exemplo, caso a tecla acionada seja a tecla "A" o número binário produzido equivale ao 65_{10} (ou seja $41_{16} = 0100.0001_2$). Caso a tecla acionada seja a tecla "a" o código binário produzido será o 97_{10} (ou seja $61_{16} = 0110.0001_2$).

TAB	ELA	DE	CA	RAC	TER	ES I	00 0	ÓDIG	0 4	SCI
1 0	25 ↓	49 1	73 I	97 a	121 y	145 æ	169 -	193 4	217 4	241 ±
2 .	26	50 2	74 J	98 b	122 z	146 Æ	170 -	194 -	218 -	242 >
3 💗	27	51 3	75 K	99 c	123 (147 ô	171	195	219	243 ≤
4 •	28 _	52 4	76 L	100 d	124	148 ö	172	196 -	220	244 [
5 .	29 😁	53 5	77 M	101 e	125	149 0	173	197 +	221	245
6 🌲	30 🛦	54 6	78 N	102 f	126 ~	150 û	174 «	198	222	246 ÷
7	31 🔻	55 7	79 0	103 g	127 💥	151 ù	175 »	199	223	247 ≈
8	32	56 8	80 P	104 h	128 C	152 ÿ	176	200	224 a	248 °
9	33 !	57 9	81 Q	105 i	129 ü	153 Ö	177	201 [225 B	249 .
10	34 "	58 :	82 R	106 j	130 é	154 Ü	178	202 4	226 Г	250 .
11	35 #	59 ;	83 S	107 k	131 â	155 ¢	179	203 =	227 #	251 /
12	36 \$	60 <	84 T	108 1	132 ä	156 £	180 -	204	228 ∑	252 n
13	37 %	61 =	85 U	109 m	133 à	157 ¥	181	E 205 =	229 σ	253 2
14	38 &	62 >	86 V	110 n	134 å	158 P	182	8 206 #	230 4	254 .
15	39 '	63 ?	87 W	111 0	135 c	159 f	183	Ü 207 🛓	231 7	255
16	40 (64 @	88 X	112 p	136 ê	160 á	184	o 208 [⊥]	232 4	PRESIONA LA TECLA
17	41)	65 A	89 Y	113 q	137 ë	161 1	185	⊅ 209 =	233 ⊖	
18 ‡	42 *	66 B	90 Z	114 r	138 è	162 6	186	210 +	234 Ω	Alt
19 !!	43 +	67 C	91 [115 s	139 ï	163 ú	187	§ 211 L	235 8	MÁS EL NÚMERO
20 ¶	44 ,	68 D	92 \	116 t	140 1	164 ñ	188	₹ 212 ₺	236 ∞	2020000000000
21 §	45 -	69 E	93]	117 u	141 ì	165 N	189 4	₹213 =	237 ø	CORTESIA DE
22 _	46 .	70 F	94 ^	118 v	142 Ä	166	190 1	1 214	238 €	TO EC
23 ‡	47 /	71 G	95	119 w	143 Å	167 2	191	215	239 n	- a 10
24 +	48 0	72 H	96 1	120 x	144 É	168 ¿	192	U U	240 ≡	EMP OF DE

Fonte: TEMA ESPETACULAR LTDA. "Padrões de Codificação de Caracteres" Disponível em: http://turmad2013.blogspot.com/2013/10/padroes-de-codificacao-de-caracteres.html

Analise o circuito da placa didática para determinar os estados dos LEDs considerando os sinais de controle aplicados nas entradas CONTROL1 e CONTROL2 conforme ilustrado na carta de tempo a seguir. Fique atento!!! Apresente as formas de onda sincronizadas com os sinais de controle e verificando o funcionamento do circuito completo.

Considere a seguintes cartas de tempo. Assuma como "N" o seu dígito obtido a partir do RA conforme orientações passadas anteriormente.

Assuma que inicialmente os latches apresentam estados indefinidos.

Carta de tempo se N = 0.

Carta de tempo se N = 1.

Carta de tempo se N = 2.

Carta de tempo se N = 3.

Carta de tempo se N = 4.

Carta de tempo se N = 5.

Carta de tempo se N = 6.

Carta de tempo se N = 7.

Carta de tempo se N = 8.

Carta de tempo se N = 9.

Carta de tempo se N = 10.

Carta de tempo se N = 11.

