$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Year . Month .	Date .				
$W^{T}X_{i}^{e} = A \qquad variance \qquad g^{2}(e) \qquad$	رود و طولل قبعا وکی	ی حرمت ک	ریانس بدم - آمده مرا	/. / رئیم به وا	این W را تعبیری:	ا موری
$W^{T}X_{i}^{e} = A \qquad variance \qquad g^{2}(e) \qquad$	6-6				. in	
$W^{T}X_{i}^{e} = A \qquad variance \qquad g^{2}(e) \qquad$	ش رماد م	بم وارط		***************************************	•	
$F(\omega) = \ w^{T} x_{i}^{r} \ ^{2} w^{T} (x_{i}^{r} x_{i}^{r}) w w^{T} R_{x}^{r} w$ $F(\omega) = \ w^{T} x_{i}^{r} \ ^{2} w^{T} (x_{i}^{r} x_{i}^{r}) w w^{T} R_{x}^{r} w$ $\ w^{T} x_{i}^{e} \ ^{2} w^{T} (x_{i}^{r} x_{i}^{r}) w w^{T} R_{x}^{r} w$ $R_{x}^{(r)} = 1 \sum_{i} x_{i}^{r} x_{i}^{r} x_{i}^{r} \qquad N_{e} x_{i}^{r} x_{i}^{r}$ $R_{x}^{(r)} = 1 \sum_{i} x_{i}^{r} x_{i}^{r} x_{i}^{r} \qquad N_{e} x_{i}^{r} x_{i}^{r}$ $R_{x}^{(r)} = 1 \sum_{i} x_{i}^{r} x_{i}^{r} x_{i}^{r} \qquad N_{e} x_{i}^{r} x_{i}^{r}$ $R_{x}^{(r)} = 1 \sum_{i} x_{i}^{r} x_{i}^{r} x_{i}^{r} \qquad N_{e} x_{i}^{r} x_{i$	₩ ⁺ X, ^r =		Variance	6, (r)		
$F(\omega) = \frac{\ \omega^{T}x_{i}^{r}\ ^{2}}{\ w^{T}x_{i}^{e}\ ^{2}} \frac{w^{T}x_{i}^{r}x_{i}^{r}w}{\ w^{T}x_{i}^{e}x_{i}^{t}w} \frac{w^{T}R_{n}^{r}w}{\ w^{T}x_{i}^{e}x_{i}^{t}w} \frac{w^{T}R_{n}^{r}w}{\ w^{T}x_{i}^{e}x_{i}^{t}w} \frac{w^{T}R_{n}^{r}w}{\ w^{T}x_{i}^{e}x_{i}^{t}w} \frac{w^{T}R_{n}^{r}w}{\ w^{T}R_{n}^{r}w\ ^{2}} \frac{w^{T}R_{n}^{r}w}{\ w^{T}R_{n}^{r}$	$w^T X^{\ell} = t$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\) Variance	2 (l) S,	6,2(8)	$\delta_i^{2(r)}$
$F(\omega) = \frac{\ \omega^{T}x_{i}^{r}\ ^{2}}{\ w^{T}x_{i}^{e}\ ^{2}} \frac{w^{T}x_{i}^{r}x_{i}^{r}w}{\ w^{T}x_{i}^{e}x_{i}^{t}w} \frac{w^{T}R_{n}^{r}w}{\ w^{T}x_{i}^{e}x_{i}^{t}w} \frac{w^{T}R_{n}^{r}w}{\ w^{T}x_{i}^{e}x_{i}^{t}w} \frac{w^{T}R_{n}^{r}w}{\ w^{T}x_{i}^{e}x_{i}^{t}w} \frac{w^{T}R_{n}^{r}w}{\ w^{T}R_{n}^{r}w\ ^{2}} \frac{w^{T}R_{n}^{r}w}{\ w^{T}R_{n}^{r}$	ئىن ئې	ly K				
$F(\omega) = \frac{\ \omega^{T}x_{i}^{r}\ ^{2}}{\ w^{T}x_{i}^{e}\ ^{2}} \frac{w^{T}x_{i}^{r}x_{i}^{r}w}{\ w^{T}x_{i}^{e}x_{i}^{t}w} \frac{w^{T}R_{n}^{r}w}{\ w^{T}x_{i}^{e}x_{i}^{t}w} \frac{w^{T}R_{n}^{r}w}{\ w^{T}x_{i}^{e}x_{i}^{t}w} \frac{w^{T}R_{n}^{r}w}{\ w^{T}x_{i}^{e}x_{i}^{t}w} \frac{w^{T}R_{n}^{r}w}{\ w^{T}R_{n}^{r}w\ ^{2}} \frac{w^{T}R_{n}^{r}w}{\ w^{T}R_{n}^{r}$			ت زير ده رف ځي نيم	آ بارصور	F((4)) - 17 91	. House
R_{x} $= \sum_{i} \sum_{n=1}^{N_{i}} \sum_{n=1}^{N_{$				2. *	ر در جا مرسد رسی	
R_{x} $= \sum_{i} \sum_{n=1}^{N_{i}} \sum_{n=1}^{N_{$	f(w) = 11	WTX, 112	wxxxx, Dw			
$R_{x}^{(r)} = \frac{1}{1} \sum_{x_{n}} \sum_$	11	WTX, E 112	WTXXXI		WT RX W	
$R_{x}^{(r)} = \frac{1}{1} \sum_{n=1}^{N_{r}} X_{n}^{r} X_{n}^{rT}, R_{x}^{e} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{e} X_{n}^{rT}$ $N_{e}^{r} N_{v}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} X_{n}^{rT}, N_{e}^{r} N_{v}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} X_{n}^{rT}$ $P_{e}^{r} N_{v}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} X_{n}^{rT}, N_{e}^{r} N_{v}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} X_{n}^{rT}$ $P_{e}^{r} N_{v}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} X_{n}^{rT}, N_{e}^{r} N_{v}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} X_{n}^{rT}, N_{e}^{r} N_{v}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} X_{n}^{rT}, N_{e}^{r} N_{v}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} X_{n}^{r} X_{n}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} =$			* Rx			
$R_{x}^{(r)} = \frac{1}{1} \sum_{n=1}^{N_{r}} X_{n}^{r} X_{n}^{rT}, R_{x}^{e} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{e} X_{n}^{rT}$ $N_{e}^{r} N_{v}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} X_{n}^{rT}, N_{e}^{r} N_{v}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} X_{n}^{rT}$ $P_{e}^{r} N_{v}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} X_{n}^{rT}, N_{e}^{r} N_{v}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} X_{n}^{rT}$ $P_{e}^{r} N_{v}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} X_{n}^{rT}, N_{e}^{r} N_{v}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} X_{n}^{rT}, N_{e}^{r} N_{v}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} X_{n}^{rT}, N_{e}^{r} N_{v}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} X_{n}^{r} X_{n}^{r} = \frac{1}{1} \sum_{n=1}^{N_{e}} X_{n}^{r} =$		- i 1 6	(Sas (Ses train	1 -0:0	ص تر که جنین ب	
$ \frac{1}{\sqrt{N}} = \frac{N^{T} R_{x}^{(r)}}{\sqrt{N}} \qquad Ne^{-N_{x}=1} $ $ \frac{1}{\sqrt{N}} = \frac{N^{T} R_{x}^{(r)}}{\sqrt{N}} \qquad Sit. Ne^{-N_{x}=1} $ $ \frac{1}{\sqrt{N}} = \frac{N^{T} R_{x}^{(e)}}{\sqrt{N}} \qquad Sit. Ne^{-N_{x}=1} $			~		7)	·
$ \frac{1}{\sqrt{N}} = \frac{N^{T} R_{x}^{(r)}}{\sqrt{N}} \qquad Ne^{-N_{x}=1} $ $ \frac{1}{\sqrt{N}} = \frac{N^{T} R_{x}^{(r)}}{\sqrt{N}} \qquad Sit. Ne^{-N_{x}=1} $ $ \frac{1}{\sqrt{N}} = \frac{N^{T} R_{x}^{(e)}}{\sqrt{N}} \qquad Sit. Ne^{-N_{x}=1} $	R (r) _	1	X X Y T	R.	Ne Ne	Y LT
	cubic -	Nr n=1	, , , , , , , , , , , , , , , , , , ,	X	Ne musi	h
	Lu	WTR.	(r) (W		2Tax = 1	
$\nabla f = \frac{2R_{x} \omega (\omega^{T} R_{x}^{(t)} \omega) - 2R_{x}^{(t)} \omega (\omega^{T} R_{x}^{(t')} \omega)}{-2} = 0$	7 (00	WTR.	(e) w	ē. C.,	w = 1	
$\nabla_{w}^{f} = \frac{2R_{x} \omega (\omega^{T} R_{x}^{(t)} \omega) - 2R_{x}^{(t)} \omega (\omega^{T} R_{x}^{(t')} \omega)}{-2} = 0$						
W 2	Vf = 2	Rx W (WT	$R_{\alpha}^{(\ell)} \omega) = 2R_{\alpha}$	e w (w	$TR_{\chi}^{(r)}\omega)$	= 6
	W		O ²			

 $R_{\alpha}^{(r)} \omega = \left(\begin{array}{c} \omega^{T} R_{\alpha} & \omega \\ \end{array} \right) R_{\alpha}^{(e)} \omega = \left(\begin{array}{c} \omega^{T} R_{\alpha} & \omega \\ \end{array} \right) R_{\alpha}^{(e)} \omega$

 $R_{\alpha}^{(\ell)} = R_{\alpha}^{(r)} = \lambda W \qquad (GEVD)$

 $-i\sigma_{\Delta S, \gamma} \Rightarrow [U, \Lambda] = eig(R_{\alpha}^{(r)}, R_{\alpha}^{(e)})$

ور حقیت ویزگی استواج سده از تردار ۲۰ ۱۷ ، واریانس (ایرزی) آل بود ، در

عت رس کے است جند ویری لا اتخراج کی

سرى الملاعات درفتر الست.

Batus

Year	Month	Date

* الله: در ورو W درم - آوره ، عنصر مروط رع سور رام درم - ی آورع و
عی مدرانم ی نم . هردام معدار برنمری دامت یعنی در داریانس بی در فرارات و
ور توانيم از آک منسسوردرسراسفاره ميم . (سمای واسسور ۱۵ اسسور ۱۱ سفاره اسفاده ميم .)
* می دننی ریک و فرگی اے اس بار سا را طوری قوف نے کہ دلیات راست
م خلی فرنسر راز دان سی از دان سی سی سی سی سی سی می سی سی می سی
var (wTX, (r)) >> var (wTX, (e) : w _ws : 1 sty
var (wTX, (*)) K var (wTX, (e)) w is sydiet
مراحل مدسمت آوردن مد برای ویتری از قبل دیتری از طی می سود نازی قیارت که ماجه در
دی کور سی از دری می ماکر مهم ویزگی یا م قسیم ویزگی اعی تبود سی از جروجی ما مج
eig ی دانیم ۱۳ را به عنوال و ترکی ۲ استخداج کسی
$[U, \Lambda] = eig(R_{i}^{(r)}, R_{i}^{(e)})$
$\longrightarrow \lambda_1 \rightarrow \lambda_2 \rightarrow \cdots \rightarrow \lambda_M$
u_1 , u_2 , u_N
Batus 1377 Color

Subject: Year. Month. Date . Right Xx (e) Left Feature 21 XXXX Feature 1 12

Batus_

2m features , Finish St. 2m / 6 - 160 x

 $W_{esp} = \left[w_1, w_2, \dots, w_m \mid w_{m-m+1}, \dots, w_{m-1}, w_m \right]$

بعداز استراج ویزی باید داده ها را کلاس بیزی نبی موز ویزی ها را متحفی

* Linear Discriminant analysis (LDA) : in and *

طبقه ندخلی دو کاری کند: ۵ میا کسی طبارهم دوری کند.

@ واربان هاراكم ي نسر

 $\frac{1}{\mu} = \frac{1}{N_1} \sum_{t=1}^{N_1} \frac{1}{\mu_{tDA}} \chi''(t) = \frac{1}{\mu_{tDA}} \left(\frac{1}{N_1} \sum_{t=1}^{N_1} \chi''(t) \right) = \frac{1}{\mu_{tDA}} \frac{1}{\mu_{t}}$

 $\mu^{(1)} = \mathcal{W}_{LDA} \mathcal{M}_{L}, \qquad \mu^{(2)} = \mathcal{W}_{LDA} \mathcal{H}_{2}$

 $\frac{1}{b^{2}} = \frac{1}{N_{i}} \sum_{t=1}^{N_{i}} \left(w_{icA} \propto (t) - \mu^{(i)} \right)^{2}$

 $= \frac{1}{N_1} \sum_{t=1}^{N_1} \left(\mathcal{W}_{LDA}^T \left(\chi^{(i)}(t) - \mu_1 \right) \left(\chi^{(i)}(t) - \mu_1 \right)^T \mathcal{W}_{LDA}^T \right)$

Batus

0 1	
Sub	1PCT
Duo	JUCL.

Year .

Month.

Date.

$$\longrightarrow 6^{2^{(1)}} = W_{DA}^{T} \left[\frac{1}{N_{1}} \sum_{t=1}^{N_{1}} (\chi^{(1)}_{(t)} - \mu_{1}) (\chi^{(1)}_{(t)} - \mu_{1})^{T} \right] W_{DA}$$

Σ.

$$\boldsymbol{\beta}^{2^{(1)}} = \boldsymbol{\omega}_{LDA}^{T} \boldsymbol{\Sigma}_{L} \boldsymbol{\omega}_{LDA} , \boldsymbol{\delta}^{2^{(2)}} = \boldsymbol{\omega}_{LDA}^{T} \boldsymbol{\Sigma}_{L} \boldsymbol{\omega}_{LDA}$$

$$f(\omega_{LDA}) = (M^{(1)} - M^{(2)}) - (\omega_{LDA}^T M_1 - \omega_{DA}^T M_2)^2$$

$$6^{2^{(1)}} + 6^{2^{(2)}} - \omega_{LDA}^T \sum_{i} \omega_{LDA} + \omega_{LDA}^T \sum_{i} \omega_{LDA}$$

 $W_{LDA}^{T}(\Sigma, +\Sigma_{z})W_{LDA}$

برداردیزه مناظره کریس و ساردیزه سلام کریس عقراردیزه سلام کریس عقراردیزه

ادفیلی میاب eio

$$[U, \Lambda] = eig(\Theta, \Theta) \Rightarrow$$

 $\lambda_1 > \lambda_2 > \cdots > \lambda_m$ $\lambda_1 > \lambda_2 > \cdots > \lambda_m$

WLOA

Batus

1

Year . Month	. Date .		
1.7.5	ie (thr	ل دو کرد و را محص کے طبیعات آ ساز (wie lalect
9.1-	-		, , , , ,
			/
		رنگس در کرده است ، رفتی:	
		ا در کرده ایک	ر در می س
			_
		1 ((1) (2)	
	••••••	thr = $\frac{1}{2} \left(\mu^{(1)} + \mu^{(2)} \right)$	
		2	
			* حاسه ماردهم:
		درسان:	FFt 2,6 x
		. /	, J/- K
	x(t) =		
•••••	17		
			
	=		
	<u> </u>		
