Math 1230 Section 4.1a

Graph: $y = \sin x$ over a period of 2π .

x (radians)	$y = \sin x$

Period:

Amplitude:

Graph: $y = \cos x$ over a period of 2π .

x (radians)	$y = \cos x$
-	

Period:

Amplitude:

Vertical and Horizontal Stretch and Compress

$$y = a \sin bx$$

 $y = a \cos bx$

Amplitude:

Period:

Graph: $y = 2 \sin x$ over one period.

Period:

Amplitude:

$y = 2 \sin x$

Graph: $y = -\frac{1}{2} \sin x$ over one period.

Period:

Amplitude:

Reflection:

x (radians)	$y = \sin x$	$y = -\frac{1}{2}\sin x$

Graph: $y = \cos 2x$ over one period.

Period:

Amplitude:

Reflection:

x (radians) for y = cosx	$y = \cos x$	$x (radians) for y = \cos 2x$

Math 1230 Section 4.1b

Recall from last class:

Equations are of the form:

$$y = a \sin bx$$

 $y = a \cos bx$

Period:

Amplitude:

Graph of $y = \sin x$. Period: , Amplitude:

Graph of $y = \cos x$. Period: , Amplitude:

Graph: $y = \cos \frac{1}{2}x$.

Period:

Amplitude:

Reflection:

x (radians)	$y = \cos \frac{1}{2}x$

Graph: $y = \cos \frac{1}{2}x$ over two periods.

Graph of $y = \sin x$.

Flip $y = \sin x$ over x-axis. This is the graph of $y = -\sin x$.

Graph of $y = \cos x$.

Flip $y = \cos x$ over x-axis. This is the graph of $y = -\cos x$.

Graph: $y = -3 \sin 2x$ over one period.

Period:

Amplitude:

Reflection:

x (radians)	$y = \sin 2x$	$y = -3\sin 2x$

Graph: $y = 5 \cos \frac{\pi}{2} x$ over one period.

Period:

Amplitude:

Reflection:

x (radians)	$y = \cos \frac{\pi}{2} x$	$y = 5\cos\frac{\pi}{2}x$

Start with graph and find formula.

Determine the formula for the graph given.

Strategies:

 Function: Look at the y-intercept, look at the maximum.

Looks like: cos or sin

- 2. <u>Period:</u> Where does the graph start to repeat?
 Use ^{2π}/_{|b|} = period, to find *b*.
- 3. **Amplitude:** so a =
- 4. Flip:
- 5. Fill in appropriate general formula:

$$y = a \cos bx$$
$$y = a \sin bx$$

Math 1230 Section 4.2

Recall from last class:

Equations are of the form:

$$y = a \sin bx$$

 $y = a \cos bx$

If we have horizontal or vertical shifts, our general form changes slightly to take them into account:

$$y = c + a \sin [b(x - d)]$$

$$y = c + a \cos [b(x - d)]$$

|*a*| is:

-a means:

 $\frac{2\pi}{|b|}$ is:

d is:

c is:

Graph of $y = \sin\left(x + \frac{3\pi}{4}\right)$.

Amplitude:

Period:

Reflection:

Translation: (phase shift)

<u>x</u>	$y = \sin\left(x + \frac{3\pi}{4}\right)$

Graph: $y = -2 \cos\left(x - \frac{\pi}{3}\right)$.

Amplitude:

Period:

Reflection:

Translation: (phase shift)

x	$y = \cos\left(x - \frac{\pi}{3}\right)$	$y = -2\cos\left(x - \frac{\pi}{3}\right)$

Graph: $y = \frac{3}{2} \cos{(2x - \pi)}$.

Amplitude:

Period:

Reflection:

Translation: (phase shift)

x	$y = \cos(2x - \pi)$	$y = \frac{3}{2}\cos\left(2x - \pi\right)$

Graph: $y = 4 - 2 \sin(3x - \pi)$.

Amplitude:

Period:

Reflection:

Translation: (H)

$y = \sin(3x - \pi)$	$y = 4 - 2\sin(3x - \pi)$
	$y = \sin(3x - \pi)$

Extend the graph of $y = 4 - 2 \sin(3x - \pi)$ to two periods.

Graphs of tan and cot.

Use the unit circle to find the initial graph. Recall (x, y) is (cos, sin). Recall that $tan s = \frac{y \ coord}{x \ coord}$ for point of intersection of terminal side with the unit circle. Look back at 3.3 for the unit circle with ordered pairs for each standard angle.

$$y = tan x$$

	y
radians	$\frac{y}{x}$
0	
$\frac{\pi}{4}$	
$\frac{\pi}{2}$	

Period of y = tan x:

So the equation to find b is:

Differences from sin/cos graphs:

Example: $y = tan \frac{1}{3}x$

Vertical scaling (formerly amplitude):

Period:

Reflections:

Phase shift:

x	$\tan\left(\frac{1}{3}x\right)$

Example: $y = -\frac{1}{2} \tan 2x$

Vertical scaling (formerly amplitude):

Period:

Reflections:

Phase shift:

x	tan(2x)	$-\frac{1}{2}\tan(2x)$

Extend the graph of $y = -\frac{1}{2} \tan 2x$ to two periods.

ν	=	cot	x .
,		COL	<i>y</i> 0 .

Shortcut method: Because	 , where $\tan x = 0$, co	t x will
be undefined.		

io dofinad an	(coordinate) but also as —	1	. Which is easier to find?
cot x is defined as	(coordinate)	(trig function)	. William S easier to linu:

Asymptotes:

Asymptotes of tan graph become:

Period:

Asymptote to Asymptote:

<u>x</u>	tan x	cot x

Word: Don't rely on a graphing calculator – learn to recognize the shapes of each trig graph!

Graph
$$y = 1 + 3 \cot \left(2x + \frac{\pi}{2}\right)$$

Vertical scaling:

Period:

Reflections:

Phase shift:

x	$\cot\left(2x+\frac{\pi}{2}\right)$	$1 + 3\cot\left(2x + \frac{\pi}{2}\right)$

Graphs of sec and csc:

Consider the graph of $y = \sin x$:

$$y = \underline{\qquad} x = \frac{1}{\sin x}$$

Period:

x	sin x	$\frac{1}{\sin x} =$

Example: $y = 3 \csc 2x$

Same as:

Consider the graph of $y = \cos x$:

$$y = \underline{\qquad} x = \frac{1}{\cos x}$$

Period:

x	cos x	$\frac{1}{\cos x} =$

Example: $y = 1 - 3\sec(2x + \pi)$

Same as:

Amplitude: Period: Reflection: Phase shift: Vertical shift:

<u>x</u>	$\cos(2x+\pi)$	$y = \frac{1}{\cos(2x + \pi)}$	1-3(y)

Graphing Summary

One Period's Width	One Period's Domain	Trig Function(s)

Function	Shape of Graph	Function	Shape of Graph
sin x		cos x	
csc x		sec x	
tan x		cot x	

Create the formula from a graph:

You can write these as either csc or sec, just take the shift into account.

Period:

Scaling:

Reflection:

Phase shift:

$$y = c + a fcn [b(x - d)]$$

21.

Period:

Scaling:

Reflection:

Phase shift:

22.

Period:

Scaling:

Reflection:

Phase shift: