<u>Les factorisations</u> – CORRECTION

• Savoir factoriser des expressions algébriques dans lesquelles le facteur est apparent

EXERCICE 24 page 189:

EXERCICE 26 page 189:

CORRECTION:

A =
$$4r + 4t$$

B = $7z + 9z$
C = $3y^2 + 2y$
D = $4x(x + 2) + 3(x + 2)$
E = $-3y(y + 6) + 7(y + 6)$
F = $(x - 1)(5x + 4) + (3 + x)(x - 1)$
A = $4(r + t)$

$$A = 4(r + t)$$

$$B = 16z$$

$$C = y(3y + 2)$$

$$D = (x + 2)(4x + 3)$$

$$E = (y + 6)(-3y + 7)$$

$$F = (x - 1)(6x + 7)$$

1.
$$D = 5x^{2}(x - 3) - 6x(x + 7)$$

 $= (x) \times 5x(x - 3) - (x) \times 6(x + 7)$
 $E = (x + 3)(6x + 2) - (x + 3)^{2}$
 $= (x + 3)(6x + 2) - (x + 3)(x + 3)$
 $F = (3x + 2)(x + 5) + 3x + 2$
 $= (3x + 2)(x + 5) + (3x + 2) \times 1$
 $G = (x + 1)(4x + 5) - x - 1$
 $= (x + 1)(4x + 5) - 1 \times (x + 1)$
2. $D = x(5x(x - 3) - 6(x + 7))$
 $= x(5x^{2} - 15x - 6x - 42) = x(5x^{2} - 21x - 42)$
 $E = (x + 3)(6x + 2 - x - 3) = (x + 3)(5x - 1)$
 $F = (3x + 2)(x + 5 + 1) = (3x + 2)(x + 6)$
 $G = (x + 1)(4x + 5 - 1) = (x + 1)(4x - 4)$

Les identités remarquables – CORRECTION

• Savoir développer en utilisant une identité remarquable

FEUILLE D'EXERCICE 1

EXERCICE 1 : On cherche à développer les expressions suivantes avec les identités remarquables. On utilise ici les 2 premières identités remarquables :

$$(a + b)^2 = a^2 + 2ab + b^2$$

 $(a - b)^2 = a^2 - 2ab + b^2$

$$M = (x + 5)^2$$
$$M = x^2 + 10x + 25$$

$$M = (x + 5)^2$$
 $T = (4 - 7x)^2$
 $M = x^2 + 10x + 25$ $T = 16 - 56x + 49x^2$

$$D = (3x - 9)^2$$
$$D = 9x^2 - 48x + 81$$

EXERCICE 2 : On cherche à développer les expressions suivantes avec les identités remarquables. $(a + b)(a - b) = a^2 - b^2$ On utilise ici la troisième identité remarquable :

$$J = (3 - x)(3 + x)$$
$$J = 9 - x^2$$

$$A = (2x - 5)(2x + 5)$$

$$A = 4x^2 - 25$$

$$K = (6 + 8x)(6 - 8x)$$
$$K = 36 - 64x^2$$

◆ Savoir factoriser en utilisant une identité remarquable

FEUILLE D'EXERCICE 2

EXERCICE 1: On cherche à développer les expressions suivantes avec les identités remarquables. On utilise ici les 2 premières identités remarquables :

$$a^{2} + 2ab + b^{2} = (a + b)^{2}$$

 $a^{2} - 2ab + b^{2} = (a - b)^{2}$

$$C = x^2 - 6x + 9$$

$$C = (x - 3)^2$$

$$0 = x^2 + 4x + 4$$
$$0 = (x+2)^2$$

$$C = x^{2} - 6x + 9$$

$$C = (x - 3)^{2}$$

$$O = x^{2} + 4x + 4$$

$$O = (x + 2)^{2}$$

$$X = 9x^{2} - 30x + 25$$

$$X = (3x - 5)^{2}$$

EXERCICE 2 : On cherche à développer les expressions suivantes avec les identités remarquables. On utilise ici la troisième identité remarquable : $a^2 - b^2 = (a + b)(a - b)$

$$G = 16x^2 - 9$$
$$G = (4x - 3)(4x + 3)$$

$$E = 25x^2 - 1$$
$$E = (5x - 1)(5x + 1)$$

$$\begin{array}{ccc}
 G &=& 16x^2 - 9 \\
 G &=& (4x - 3)(4x + 3)
 \end{array}
 \qquad
 \begin{array}{cccc}
 E &=& 25x^2 - 1 \\
 E &=& (5x - 1)(5x + 1)
 \end{array}
 \qquad
 \begin{array}{cccc}
 D &=& 64 - 36x^2 \\
 D &=& (8 - 6x)(8 + 6x)
 \end{array}$$

Les équations-produits – CORRECTION

♦ Savoir résoudre une équation-produit

FEUILLE D'EXERCICE 3

EXERCICE 1 : Résoudre les équations-produits

a)
$$(3x+1)(x-5)=0$$

Or, si un produit de facteurs est nul, alors l'un au moins des facteurs est nul.

Ainsi,

$$3x + 1 = 0$$
 ou $x - 5 = 0$
 $3x = -1$ ou $x = 5$
 $x = -\frac{1}{3}$ ou $x = 5$

Les solutions de l'équation sont $-\frac{1}{3}$ et 5.

b)
$$(7-6x)(4x+8)=0$$

Or, si un produit de facteurs est nul, alors l'un au moins des facteurs est nul.

Ainsi,

$$7-6x = 0$$
 ou $4x + 8 = 0$
 $6x = -7$ ou $4x = -8$
 $x = -\frac{7}{6}$ ou $x = -2$

Les solutions de l'équation sont $-\frac{7}{6}$ et - 2.

EXERCICE 2:

a)
$$(9x-4)(-2+5x) = (9x-4)(3x-5)$$

$$(9x-4)(-2+5x) - (9x-4)(3x-5) = 0$$

$$(9x-4)[(-2+5x)-(3x-5)]=0$$

$$(9x-4)(-2+5x-3x+5)=0$$

$$(9x-4)(2x+3)=0$$

Or, si un produit de facteurs est nul, alors l'un au moins des facteurs est nul.

Ainsi, 9x - 4 = 0 ou 2x + 3 = 0 9x = 4 ou 2x = -3 $x = \frac{4}{9}$ ou $x = -\frac{3}{2}$

Les solutions de l'équation sont $-\frac{3}{2}$ et $\frac{4}{9}$.

b)
$$25x^2 = 16$$

 $25x^2 - 16 = 0$ (On utilise la troisième identité remarquable)

$$(5x-4)(5x+4)=0$$

Or, si un produit de facteurs est nul, alors l'un au moins des facteurs est nul.

Ainsi, 5x - 4 = 0 ou 5x + 4 = 0 5x = 4 ou 5x = -4 $x = \frac{4}{5}$ ou $x = -\frac{4}{5}$

Les solutions de l'équation sont $-\frac{4}{5}$ et $\frac{4}{5}$.

c)
$$9x^2 - 12x = -4$$

 $9x^2 - 12x + 4 = 0$ (On utilise la deuxième identité remarquable)

$$(3x-2)^2=0$$

Or, si un produit de facteurs est nul, alors l'un au moins des facteurs est nul.

Ainsi, 3x - 2 = 03x = 2 $x = \frac{2}{3}$

La solution de l'équation est $\frac{2}{3}$.

◆ Exercices Type-Brevet

EXERCICE 43 page 193:

1.
$$(11-6) \times 11 + 9 = 5 \times 11 + 9 = 64$$

2.
$$(-4-6) \times (-4) + 9 = (-10) \times (-4) + 9 = 49$$

3. Notons x le nombre choisi au départ.

Après lui avoir appliqué le programme de calcul, on obtient $(x-6) \times x + 9$.

Or $(x - 6) \times x + 9 = x^2 - 6x + 9 = (x + 3)^2$. Et un carré est toujours positif, donc Théo a raison.

EXERCICE 44 page 193:

1. a.
$$(4+3)^2 - 4^2 = 7^2 - 4^2 = 49 - 16 = 33$$

b. $(-5+3)^2 - (-5)^2 = (-2)^2 - (-5)^2 = 4 - 25 = -21$

2. Notons x le nombre choisi au départ.

Avec le programme A, on obtient : $(x + 3)^2 - x^2$.

Avec le programme B, on obtient : 6x + 9.

Or
$$(x + 3)^2 - x^2 = x^2 + 6x + 9 - x^2 = 6x + 9$$
.

Donc les deux programmes donnent le même résultat, Clément a raison.

3. Notons *a* le nombre de départ qui permettra d'obtenir 54 comme résultat des deux programmes.

En utilisant le programme B, on voit que a doit vérifier l'égalité 6a + 9 = 54.

Il ne reste donc qu'à résoudre l'équation 6a + 9 = 54 pour déterminer a.

$$6a + 9 = 54$$

$$6a = 45$$

$$a = 7.5$$

Ainsi, pour obtenir 54 avec ces deux programmes de calcul, il suffit de prendre 7,5 comme nombre de départ.