# (a) Bad Model (continued)

The regression line does *not* fit the points well, as shown here.



r = 0.591, which suggests that there is *not* a linear correlation between shoe print length and height. (The *P*-value is 0.294.)

The given shoe print length of 29 cm is not beyond the scope of the available data.



Because the regression equation  $\hat{y} = 125 + 1.73x$  is *not* a good model, the best predicted height is simply the mean of the sample heights:  $\bar{y} = 177.3$  cm (or 69.8 in.).

# (b) Good Model (continued)

The regression line *does* fit the points well, as shown here. The equation of this regression line can be easily found from technology to be this:

$$\hat{y} = 80.9 + 3.22x$$



r = 0.813, which suggests that there is a linear correlation between shoe print length and height. (The P-value is 0.000.)

The given shoe print length of 29 cm is not beyond the scope of the available data.



Because the regression equation  $\hat{y} = 80.9 + 3.22x$  is a good model, substitute x = 29 cm into this regression equation to get a predicted height of 174.3 cm (or 68.6 in.)

### Interpretation

Key point: Use the regression equation for predictions only if it is a good model. If the regression equation is not a good model, use the predicted value of  $\bar{y}$ .

#### Part 2: Beyond the Basics of Regression

In Part 2 we consider the concept of marginal change, which is helpful in interpreting a regression equation; then we consider the effects of outliers and special points called *influential points*. We also consider residual plots.

# **Interpreting the Regression Equation: Marginal Change**

We can use the regression equation to see the effect on one variable when the other variable changes by some specific amount.

**DEFINITION** In working with two variables related by a regression equation, the **marginal change** in a variable is the amount that it changes when the other variable changes by exactly one unit. The slope  $b_1$  in the regression equation represents the marginal change in y that occurs when x changes by one unit.