prog_start → functions

function → FUNCTION ident SEMICOLON BEGIN_PARAMS declarations

END_PARAMS BEGIN_LOCALS declarations END_LOCALS BEGIN_BODY

statements END_BODY

functions \rightarrow function functions | (epsilon)

declarations → declaration SEMICOLON declarations | (epsilon)

declaration → identifiers COLON ARRAY L_SQUARE_BRACKET NUMBER

R_SQUARE_BRACKET OF INTEGER

identifiers → ident COMMA identifiers

 $ident \rightarrow IDENT$

statements → statement SEMICOLON | statement SEMICOLON statements

statement → var ASSIGN expression | IF bool_exp THEN statements ENDIF | IF

bool_exp THEN statements ELSE statements ENDIF | WHILE bool_exp

BEGINLOOP statements ENDLOOP | DO BEGINLOOP statements ENDLOOP

WHILE bool_exp | READ vars | WRITE vars | CONTINUE | RETURN expression

bool_exp → relation_and_exp | relation_and_exp OR bool_exp

relation_and_exp → relation_ exp | relation_exp AND relation_and_exp

relation_exp → expression comp expression | NOT expression comp expression |

TRUE | NOT TRUE | FALSE | NOT FALSE | L_PAREN bool_exp R_PAREN |

NOT L PAREN bool exp R_PAREN

```
\mathsf{comp} \to \mathsf{EQ} \mid \mathsf{NEQ} \mid \mathsf{LT} \mid \mathsf{GT} \mid \mathsf{LTE} \; \mathsf{GTE}
```

 $expression \rightarrow multiplicative_exp \mid multiplicative_exp \; ADD \; expression \mid$

multiplicative_exp SUB expression

expressions → multiple_exp | (epsilon)

multiplicative exp → term | term MULT multiplicative exp | term DIV

multiplicative exp | term MOD multiplicative exp

multiple exp → expression | expression COMMA multiple exp

term \rightarrow var | SUB | NUMBER | SUB NUMBER | L_PAREN expression

 $\label{eq:rate} $$R_PAREN \mid SUB \; L_PAREN \; expression \; R_PAREN \mid ident \; L_PAREN \; expressions \\ $R_PAREN \; expression \; R_PAREN \; expression \;$

 $var \rightarrow ident \mid ident L_SQUARE_BRACKET expression R_SQUARE_BRACKET$ $vars \rightarrow var \mid var COMMA \ vars$