A Bioeconomic Model for Marine Ecosystems

Tourism, fishing and marine reserves

Carles Falcó i Gandia

Moeller Lab, UCSB

▶ 1D Habitat

- ▶ 1D Habitat
- \triangleright N(x,t): Population density

- ▶ 1D Habitat
- \triangleright N(x,t): Population density
- \blacktriangleright E(x, t): Fishing effort density

- ▶ 1D Habitat
- \triangleright N(x,t): Population density
- \triangleright E(x,t): Fishing effort density
- ▶ PDE describing population dynamics. How does $\frac{\partial N(x,t)}{\partial t}$ change?

- ▶ 1D Habitat
- \triangleright N(x,t): Population density
- \triangleright E(x, t): Fishing effort density
- ▶ PDE describing population dynamics. How does $\frac{\partial N(x,t)}{\partial t}$ change?
 - ▷ Diffusion: $D \frac{\partial^2 N(x,t)}{\partial x^2}$

- ▶ 1D Habitat
- \triangleright N(x,t): Population density
- \triangleright E(x, t): Fishing effort density
- ▶ PDE describing population dynamics. How does $\frac{\partial N(x,t)}{\partial t}$ change?
 - ▷ Diffusion: $D \frac{\partial^2 N(x,t)}{\partial x^2}$
 - ▶ Harvesting:-qE(x,t)N(x,t)

- ▶ 1D Habitat
- \triangleright N(x,t): Population density
- \triangleright E(x, t): Fishing effort density
- ▶ PDE describing population dynamics. How does $\frac{\partial N(x,t)}{\partial t}$ change?
 - ▷ Diffusion: $D \frac{\partial^2 N(x,t)}{\partial x^2}$
 - ▶ Harvesting: $-q\hat{E}(x,t)N(x,t)$
 - ▶ Local population growth: logistic growth + damage from fishing

$$g(N, E) = [r_0 - (r_1 + hE)N]N$$

- ▶ 1D Habitat
- \triangleright N(x,t): Population density
- \blacktriangleright E(x, t): Fishing effort density
- ▶ PDE describing population dynamics. How does $\frac{\partial N(x,t)}{\partial t}$ change?
 - ▷ Diffusion: $D \frac{\partial^2 N(x,t)}{\partial x^2}$
 - ▶ Harvesting: $-q\hat{E}(x,t)N(x,t)$
 - ▶ Local population growth: logistic growth + damage from fishing

$$g(N, E) = [r_0 - (r_1 + hE)N]N$$

▶ PDE: $\frac{\partial N(x,t)}{\partial t} = D \frac{\partial^2 N(x,t)}{\partial x^2} - qE(x,t)N(x,t) + g(N,E)$

- ▶ 1D Habitat
- \triangleright N(x,t): Population density
- \blacktriangleright E(x, t): Fishing effort density
- ▶ PDE describing population dynamics. How does $\frac{\partial N(x,t)}{\partial t}$ change?
 - ▷ Diffusion: $D \frac{\partial^2 N(x,t)}{\partial x^2}$
 - ▶ Harvesting: $-q\hat{E}(x,t)N(x,t)$
 - ▶ Local population growth: logistic growth + damage from fishing

$$g(N, E) = [r_0 - (r_1 + hE)N]N$$

- ▶ PDE: $\frac{\partial N(x,t)}{\partial t} = D \frac{\partial^2 N(x,t)}{\partial x^2} qE(x,t)N(x,t) + g(N,E)$
- System at equilibrium

$$D\frac{d^2N}{dx^2} = qEN - g(N, E)$$

TF(x) = fishing revenue – cost of harvesting

TF(x) = fishing revenue - cost of harvesting

TF(\$)

 $TT(x) \approx a$ if there is enough fish TT(x)

TF(x) = fishing revenue - cost of harvesting

 $TT(x) \approx a$ if there is enough fish TT(x)

▶ Optimization problem: choose E(x) that maximizes total revenue

$$\int_{\text{habitat}} (TT(x) + TF(x)) dx$$

TF(x) = fishing revenue - cost of harvesting

 $TT(x) \approx a$ if there is enough fish TT(x)

▶ Optimization problem: choose E(x) that maximizes total revenue

$$\int_{\text{habitat}} (TT(x) + TF(x)) dx$$

▶ Use Optimal Control Theory! Maximize a function H(E) at each point.

Fishing revenue Π_f . Tourism revenue $\Pi_t = 0$.

 $\Pi_f = 2.93$

Fishing revenue Π_f . Tourism revenue $\Pi_t = 0$.

Other important metrics: Biomass, Reserve length, Capture.

Selected results. Revenue from tourism with $u_0 = 0.6$.

Selected results. Revenue from tourism with $u_0 = 0.6$.

▶ $\Pi_t = 0.67$ $\Pi_f =$ 2.24

▶ $\Pi_t = 0.47$ $\Pi_f =$

 $\alpha = 0.26$

 $\alpha = 0.77$

Selected results. Revenue from tourism with $u_0 = 0.6$.

 $\Pi_t = 0.67 \quad \Pi_f = 2.24$

 $\Pi_t = 0.47 \quad \Pi_f = 0.88$

$$\alpha = 0.26$$

 $\Pi_t = 2.45 \quad \Pi_f = 1.75$

 $\Pi_t = 2.97 \quad \Pi_f = 0.27$

$$\alpha = 0.77$$

 $\Pi_t = 8.70 \quad \Pi_f = 1.00$

 $\Pi_t = 9.21 \quad \Pi_f = 0.09$

Other ideas

▶ Study of heteregoneous systems. Habitats with spatially varying sensitivity.

$$h \longmapsto h(x)/\gamma \longmapsto \gamma(x)$$

ightharpoonup Restricting tourism to areas with limited fishing. Parameter analogous to u_0