Support Vector Machine

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Margin Distance

- Let's say
 - $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$
 - A point x on the boundary has

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = 0$$

- A positive point x has
 - $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = a, a > 0$

- We are going to measure the distance
 - between an arbitrary point x and a point x_p on the boundary and on the perpendicular line from x to the boundary

•
$$x = x_p + r \frac{w}{||w||}$$
, $f(x_p) = 0$
• $f(x) = w \cdot x + b = w \left(x_p + r \frac{w}{||w||} \right) + b = w \left(x_p + r \frac{w \cdot w}{||w||} = r ||w|| \right)$

• The distance is $r = \frac{f(x)}{||w||}$

Maximizing the Margin

- Good decision boundary?
 - Maximum margin!

•
$$r = \frac{a}{||w||}$$

- Need to consider the both side
- Optimization problem?

•
$$max_{w,b} 2r = \frac{2a}{||w||}$$

 $s.t.(wx_j + b)y_j \ge a, \forall j$

- *a* is an arbitrary number and can be normalized
 - $min_{w,b}||w||$ $s.t.(wx_j + b)y_j \ge 1, \forall j$

This becomes a quadratic optimization problem. Why?