Machine Learning - Quiz $2\,$

Name:	
irections: Write complete solutions with enough detail so that your reasoning is clear to Prof. Chakrabo	rty
uestion 1 $[1+2+4=7 \text{ points}]$	
ven below is a confusion matrix for a classifier evaluated on a test dataset. The class of interest is A , the A is the positive class.	ıaı
Predicted A B	
r the following questions, show your work to receive full credit.	
a) How many observations were there in the test dataset?	
b) Report the accuracy of the classifier.	

(c) Report the recall and precision of the classifier.

Question 2 [2+3+2=7 points]

Consider the toy dataset below.

Obs.	Y	X
1	A	1.0
2	A	1.8
3	В	3.2
4	A	4
5	В	5
6	В	5.8

The Euclidean distance between two p-dimensional vectors $\mathbf{a} = (a_1, a_2, \dots, a_p)$ and $\mathbf{b} = (b_1, b_2, \dots, b_p)$ is

$$||\mathbf{a} - \mathbf{b}||_2 = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_p - b_p)^2}$$

(a) Consider K = 1. Predict the class for a test data point with X = 4.5. Explain how you arrived at your prediction.

(b) Consider K = 3. Predict the class for a test data point with X = 3.7. Explain how you arrived at your prediction.

(c) Explain why standardizing the predictor X is not necessary for the dataset above.

Question 3 [3 points]

For the KNN approach, is a large or small K more prone to overfitting? Is a large or small K more prone to underfitting? **Explain your answer in terms of the bias-variance trade-off.**

Question 4 [3 points]

Prof. Chakraborty is working on a classification problem. He takes a data set, divides it into equally-sized training and test sets, and then tries out two different classification procedures. First, he uses logistic regression and gets an error rate of 23% on the training data and 27% on the test data. Next, he uses 1-nearest neighbors (i.e. K=1) and gets an average error rate (averaged over both test and training data sets) of 18%. Based on these results, which method should he prefer to use for classifying new (unseen) observations? **Explain your answer.**