ICCS200: Assignment 1 Vikrom Narula

vikrom.nar@gmail.com 2/05/2019

Exercise 2:

(1)

$$f(n) = n \text{ is } O(n \log n) \Rightarrow \lim_{n \to \infty} \frac{n}{n * \log n} < \infty \Rightarrow \lim_{n \to \infty} \frac{1}{\log n}$$

If we take the limit we will get $\frac{1}{\infty}$ which is zero which is lesser than ∞ .

(2)

We know

$$\lim_{n\to\infty}\frac{d(n)}{f(n)}<\infty \ , \ \lim_{n\to\infty}\frac{e(n)}{g(n)}<\infty$$

Let say

 $\frac{d(n)}{f(n)}$ and $\frac{e(n)}{g(n)}$ are Real number

We know if Real number * Real number = Real number

Hence prove because Real number is lesser than ∞ .

(3)

We know it cost in loop 1,1k,2k,3k,4k,...,nk (k is 1000)

So we can use geometric formula we will get $\frac{1000n^2+1000n}{2}$ and other are constant so we know this code will take $O(n^2)$.

$$\lim_{n \to \infty} \frac{16n^2 + 11n^4 + 0.1n^5}{n^4} < \infty \implies \lim_{n \to \infty} \frac{16}{n^4} + 11 + 0.1n < \infty$$

If we take the limit

 $0+11+0.1*\infty<\infty$ and $\infty=\infty$ not lesser hence the big O isn't n^4

Exercise 3:

programA

Cost is c+k,0.5c+k,0.25c+k,...,1 which is (log n)

So it's Θ (log n)

ProgramB

Cost is 3 times each iterations and the cost will be the amount of times n can be divided by 3 which is $\log_{3}n$

So the cost is $\Theta(\log_3 n)$

Exercise 4:

(4)

 $\frac{k_1 z}{2} + 2zk_2 + C$ {I just look and see the answers}

(3)

Iterations	Cost
$n = 2^k$	$2^k + c$
$0.5n = 2^{k-1}$	$2^{k-1} + c$
$0.25n = 2^{k-2}$	$2^{k-2} + c$
21	С

Cost is k times and n-1 times

By the (3) we know z = 2(n-1) cause we repeat half two times Then we will get

$$2(0.5k_1 + 2k_2)(n-1) + C \log n \Rightarrow (k_1 + 4k_2)(n-1) + C \log n$$

Exercise 5:

(1)

$$O(1) * 3 + \Theta(n) + O(1) + O(n) + O(n) + O(1)$$

(2)

Cost(size of input)	Runtime(run 100 times each){ms}
$2^{0} * 1000$	2.855508
2 ¹ * 1000	8.054605
$2^2 * 1000$	24.533155
$2^3 * 1000$	72.385585
$2^4 * 1000$	191.015185
$2^5 * 1000$	450.287061
$2^6 * 1000$	1004.507601
2 ⁸ * 1000	2143.65359
2 ⁹ * 1000	4472.271875

(3)

The cost and runtime increase linearly.