Analise Dimensional

Autor: Abmael Carvalho Barberino Junior Ultima atualização: 07/02/2019

MLTI Θ NJ, Massa, Comprimento, Tempo, Corrente elétrica, Temperatura, Quantidade de substância, Intensidade luminosa

	1 1			
Descrição	Unidade SI mais simples	Unidade SI alternativa	MLTIΘNJ	
Comprimento, espaço	m		L	
Tempo e Período	S		T	
Frequencia	Hz	1/s	T-1	
Velocidade	m/s		L·T−1	
Aceleração	m/s2	M/s/s	L·T−2	
Massa	Kg	N·s2/m	M	
Força	N	Kg·m/s2	M·L·T-2	
Área	m2		L2	
Volume	m3		L3	
Energia, Trabalho	J	N·m	M·L2·T-2	
Torque	N·m	J	M·L2·T-2	
Potencia	W	J/s=N·m/s	M·L2·T-3	
Momento, Quantidade de movimento, Impulso, Impulso de uma força	N·s	Kg·m/s	M·L·T−1	
Momento de inércia	Kg·m2	N·m·s2=J·s2	M·L2	
Constante da gravitação universal	J·m/Kg2	N·m2/Kg2	M-1·L3·T-2	
Pressão, Tensão mecânica	Pa	N/m2	M·L-1·T-2	
Tensão superficial	N/m	J/m2	M·T-2	
Constante elástica	N/m	J/m2	M·T-2	
Densidade	Kg/m3		M·L-3	
Peso especifico	N/m3		M·L-2·T-2	
Viscosidade absoluta ou dinâmica	Pa∙s	Kg/m·s=N·s/m2	M·L-1·T-1	
Viscosidade cinemática	m2/s		L2·T-1	

Vazão volumétrica	m3/s		L3·T-1	
Vazão mássica	Kg/s		M·T−1	
Temperatura	K°		Θ	
Coeficiente de Dilatação, linear, superficial ou volumétrica	1/K°		Θ-1	
Capacidade térmica sensível de um objeto	J/K°	N·m/K°	M·L2·T−2·Θ−1	
Calor especifico, Capacidade termica sensivel de uma substancia	J/Kg·K°	N·m/Kg·K⁰	L2·T-2·Θ-1	
Calor especifico molar, Capacidade termica sensivel molar de uma substancia	J/mol·K°	N·m/mol·K⁰	M·L2·T-2·Θ-1·N-1	
Capacidade térmica latente	J/Kg	N·m/Kg	L2·T-2	
Condutância térmica	W/m·Kº	N/s·K°	M·L·T-3·Θ-1	
Carga elétrica	С	A⋅s	T·I	
0	·	110		
Corrente elétrica	A	C/s	I	
Corrente elétrica	A	C/s	I	
Corrente elétrica Tensão elétrica Resistência	A V	C/s J/C=N·m/C	I M·L2·T-3·I-1	
Corrente elétrica Tensão elétrica Resistência elétrica Capacitância	A V Ω	C/s J/C=N·m/C J·s/C2	I M·L2·T-3·I-1 M·L2·T-3·I-2	
Corrente elétrica Tensão elétrica Resistência elétrica Capacitância elétrica	A V Ω F	C/s J/C=N·m/C J·s/C2 C/V=C2/J=C2/N·m	I M·L2·T-3·I-1 M·L2·T-3·I-2 M-1·L-2·T4·I2	
Corrente elétrica Tensão elétrica Resistência elétrica Capacitância elétrica Campo elétrico, E	A V Ω F N/C	C/s J/C=N·m/C J·s/C2 C/V=C2/J=C2/N·m V/m=J/C·m	I M·L2·T-3·I-1 M·L2·T-3·I-2 M-1·L-2·T4·I2 M·L·T-3·I-1	
Corrente elétrica Tensão elétrica Resistência elétrica Capacitância elétrica Campo elétrico, E Fluxo elétrico Permissividade	A V Ω F N/C V·m	C/s J/C=N·m/C J·s/C2 C/V=C2/J=C2/N·m V/m=J/C·m N·m2/C=J·m/C	I M·L2·T-3·I-1 M·L2·T-3·I-2 M-1·L-2·T4·I2 M·L·T-3·I-1 M·L3·T-3·I-1	
Corrente elétrica Tensão elétrica Resistência elétrica Capacitância elétrica Campo elétrico, E Fluxo elétrico Permissividade elétrica Campo magnético, B, campo magnetico em um ponto do	A V Ω F N/C V·m F/m	C/s J/C=N·m/C J·s/C2 C/V=C2/J=C2/N·m V/m=J/C·m N·m2/C=J·m/C C/V·m	I M·L2·T-3·I-1 M·L2·T-3·I-2 M-1·L-2·T4·I2 M·L·T-3·I-1 M·L3·T-3·I-1 M-1·L-3·T4·I2	
Corrente elétrica Tensão elétrica Resistência elétrica Capacitância elétrica Campo elétrico, E Fluxo elétrico Permissividade elétrica Campo magnético, B, campo magnético, em um ponto do espaço	A V Ω F N/C V·m F/m	C/s J/C=N·m/C J·s/C2 C/V=C2/J=C2/N·m V/m=J/C·m N·m2/C=J·m/C C/V·m T=Wb/m2=N/m·A	I M·L2·T-3·I-1 M·L2·T-3·I-2 M-1·L-2·T4·I2 M·L·T-3·I-1 M·L3·T-3·I-1 M-1·L-3·T4·I2 M·T-2·I-1	
Corrente elétrica Tensão elétrica Resistência elétrica Capacitância elétrica Campo elétrico, E Fluxo elétrico Permissividade elétrica Campo magnético, B, campo magnético, B, campo magnetico em um ponto do espaço Fluxo magnético Permeabilidade	A V Ω F N/C V·m F/m T	C/s J/C=N·m/C J·s/C2 C/V=C2/J=C2/N·m V/m=J/C·m N·m2/C=J·m/C C/V·m T=Wb/m2=N/m·A	I M·L2·T-3·I-1 M·L2·T-3·I-2 M-1·L-2·T4·I2 M·L·T-3·I-1 M·L3·T-3·I-1 M-1·L-3·T4·I2 M·T-2·I-1 M·L2·T-2I-1	
Corrente elétrica Tensão elétrica Resistência elétrica Capacitância elétrica Campo elétrico, E Fluxo elétrico Permissividade elétrica Campo magnético, B, campo magnético, em um ponto do espaço Fluxo magnético Permeabilidade magnética, µ Campo	A V Ω F N/C V·m F/m T Wb H/m	C/s J/C=N·m/C J·s/C2 C/V=C2/J=C2/N·m V/m=J/C·m N·m2/C=J·m/C C/V·m T=Wb/m2=N/m·A Wb=T·m2=N·m/A=J/A N/A2 T·m/H=Wb/m·H=	I M·L2·T-3·I-1 M·L2·T-3·I-2 M-1·L-2·T4·I2 M·L·T-3·I-1 M·L3·T-3·I-1 M-1·L-3·T4·I2 M·T-2·I-1 M·L2·T-2I-1 M·L2·T-2I-1	

Momento magnetico, Dipólo magnetico, μ	J/T	N·m/T=m2·A	L2·I	
Constante universal dos gases	J/mol∙K⁰	N·m/mol·K⁰	M·L2·T−2·Θ−1·N−1	

Adimensionais

Numero de Reynolds

```
\begin{array}{l} \rho = densidade \\ \mu = viscosidade absoluta \\ v = velocidade média do fluido \\ D = diametro do tubo \\ &\Re = \rho \cdot v \cdot D \cdot \mu \\ &(M \cdot L - 3) \cdot (L \cdot T - 1) \cdot (L) \cdot (M \cdot L - 1 \cdot T - 1) = 1 \\ &Numero de Euler \\ \\ \rho = Densidade \\ P = Pressão \\ v = Velocidade \\ &\rho \cdot v \cdot 2 \cdot P \\ &(M \cdot L - 3) \cdot (L \cdot T - 1) \cdot (M \cdot L - 1 \cdot T - 2) = 1 \\ &Numero de Weber \\ \\ \rho = Densidade do fluido \end{array}
```

v = Velocidade do objeto flutuante σ = Tensão superficial do fluido

S = Comprimento

```
ρ·v2·Sσ
(M·L-3)·(L·T-1)2·(L·M·T-2)=1

Numero de Froude

v = Velocidade
g = Aceleração da gravidade
S = Comprimento

v·g·S
(L·T-1)·(L·T-2)·L=1

Orbita dos planetas

m = massa do planeta
p = período de translação
G = constante de gravitação universal
R = raio da órbita

m·p2·G·R3
(M)·(T)2·(M-1·L3·T-2)·(L3)=1
```

Refazendo os cálculos usando a massa do Sol, o adimensional permanece constante

```
Barra de aço
σ = tensão de escoamento
k = constante elástica
d = comprimento
      (M \cdot L - 1 \cdot T - 2) \cdot (L) \cdot (M \cdot T - 2) = 1
      Musculação
Mv = Ganho de massa por unidade de tempo no corpo inteiro
Bv = Ganho de perímetro de braço por unidade de tempo
F = Força no braço (bíceps)
      Mv \cdot Bv \cdot F
      (M \cdot T - 1) \cdot (L \cdot T - 1) \cdot (M \cdot L \cdot T - 2) = 1
      Circuito RC
C = capacitância elétrica
R = Resistência elétrica
t = Tempo
f = frequência
      (M-1\cdot L-2\cdot T4\cdot I2)\cdot (M\cdot L2\cdot T-3\cdot I-2)\cdot (T)=1
      C \cdot R \cdot f
```

```
(M-1\cdot L-2\cdot T4\cdot I2)\cdot (M\cdot L2\cdot T-3\cdot I-2)\cdot (T-1)=1
```

Permeabilidade magnética e Permissividade elétrica e Velocidade

```
μ = Permeabilidade magnética
ε = Permissividade elétrica
v = Velocidade
      ν2·μ·ε
      (L \cdot T - 1)2 \cdot (M \cdot L \cdot T - 2 \cdot I - 2) \cdot (M - 1 \cdot L - 3 \cdot T4 \cdot I2) = 1
      Detector de ouro
R = Resistência elétrica
L = Indutância
f = Frequência
      L·f·R
      (M \cdot L2 \cdot T - 2I - 2) \cdot (T - 1) \cdot (M \cdot L2 \cdot T - 3 \cdot I - 2) = 1
      Mudança de estado físico e dilatação
Cs = Capacidade térmica sensível
Cl = Capacidade térmica latente
T = Temperatura
      Cs·T·Cl
      (L2 \cdot T - 2 \cdot \Theta - 1) \cdot (\Theta) \cdot (L2 \cdot T - 2) = 1
Cs = Capacidade térmica sensível
Cl = Capacidade térmica latente
α = Dilatação térmica
      Cs·Cl·a
      (L2 \cdot T - 2 \cdot \Theta - 1)(L2 \cdot T - 2) \cdot (\Theta - 1) = 1
      Viscosidade, Capacidade térmica e Condutância térmica
\mu = Viscosidade dinamica
Cs = Capacidade térmica sensível
C = Condutância térmica
       \mu \cdot Cs \cdot C
      (M \cdot L - 1 \cdot T - 1) \cdot (L2 \cdot T - 2 \cdot \Theta - 1) \cdot (M \cdot L \cdot T - 3 \cdot \Theta - 1) = 1
      Tamanho máximo de gotas liquidas
\gamma = Peso especifico
\sigma = Tensão superficial
D = Diâmetro máximo da gota de liquido
       \gamma \cdot D2 \cdot \sigma
      (M\cdot L-2\cdot T-2)\cdot (L)2\cdot M\cdot T-2=1
      Vibração de gota liquida em gravidade zero
f = Frequência
m = Massa
\sigma = Tensão superficial
      m \cdot f2 \cdot \sigma
```

 $(M)\cdot (T-1)2\cdot (M\cdot T-2)=1$

Vibração de massa planetária

f = Frequência

d = Densidade

G = Constante da gravitação universal

$$G \cdot d \cdot f2$$

(M-1·L3·T-2)·(M·L-3)·(T-1)2=1

Vibração elástica

m = Massa

k = Constante elástica da mola

f = Frequência

$$m \cdot f2 \cdot k$$

(M)·(T-1)2·(M·T-2)=1

Em usinagem mecanica podemos listar os seguintes parametros

Velocidade de corte da ferramenta $[V_c] = L \cdot T^{-1}$

Profundidade do passo $[a_x] = L$

Avanço $[a_z]=L$

Densidade do material $[\rho] = M \cdot L^{-3}$

Tensão de ruptura do material $[\sigma_r] = M \cdot L^{-1} \cdot T^{-2}$

Tensão de escoamento do material $[\sigma_e] = M \cdot L^{-1} \cdot T^{-2}$

Modulo de elasticidade do material $[E] = M \cdot L^{-1} \cdot T^{-2}$

Força aplicada na ferramenta de corte $[F] = M \cdot L \cdot T^{-2}$

Algumas grandezas possuem mesma dimensão portanto, vou eliminar as redundancias do processo de calculo dos admensionais.

$$\begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & -3 & -1 & 1 & 0 \\ -1 & 0 & 0 & -2 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & -3 & -1 & 1 & 0 \\ 0 & 1 & -3 & -3 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 2 & 4 & 0 \\ 0 & 1 & 0 & 0 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 2 & 4 & 0 \\ 0 & 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix} \sim$$

$$\sim \begin{cases}
v+w+2 & y+4 & z=0 \\
w+2 & z=0 \\
x+y+z=0
\end{cases}
\qquad seja \begin{cases}
y=\alpha \\
z=\beta
\end{cases}
\Rightarrow \begin{cases}
x=-\alpha-\beta \\
w=-2\beta \\
v+(-2\beta)+2\alpha+4\beta=0
\end{cases}$$

$$\begin{bmatrix} v \\ w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2\alpha - 2\beta \\ -2\beta \\ -\alpha - \beta \\ \alpha \\ \beta \end{bmatrix} = \alpha \cdot \begin{bmatrix} -2 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} + \beta \cdot \begin{bmatrix} -2 \\ -2 \\ -1 \\ 0 \\ 1 \end{bmatrix} \implies \pi_{(1,0)} = \frac{\sigma}{V_c^2 \cdot \rho} ; \pi_{(0,1)} = \frac{F}{V_c^2 \cdot \rho \cdot a^2}$$

Podemos colocar as outras grandezas no sistema:

$$\pi_1 = \frac{\sigma_r}{V_c^2 \cdot \rho} \qquad \pi_2 = \frac{\sigma_e}{V_c^2 \cdot \rho} \qquad \pi_3 = \frac{E}{V_c^2 \cdot \rho} \qquad \pi_4 = \frac{F}{V_c^2 \cdot \rho \cdot a_x \cdot a_z}$$