Combinatorics 2018 Fall

Teaching by: Professor Xiande Zhang

2018.09.17

Key words: estimate, IEP

Estimates

Definition. f(n) = O(g(n)) means \exists constants n_0 and C such that for $\forall n \ge n_0$, the inequality $|f(n)| \le C \cdot g(n)$ holds.

Fact. Let C, α , β , a > 0 be fixed real numbers. Then

(1)
$$n^{\alpha} = O(n^{\beta})$$
 if $\beta \geqslant \alpha$

(2)
$$n^C = O(a^n)$$
 if $a > 1$

(3)
$$(\ln n)^C = O(n^{\alpha})$$
 if $\alpha > 0$

Definition.

(1)
$$f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

(2)
$$f(n) = \Omega(g(n)) \Leftrightarrow g(n) = O(f(n))$$

(3)
$$f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$

(4)
$$f(n) \sim g(n) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

Theorem 1. For $\forall n \ge 1$, we have

$$e(\frac{n}{e})^n\leqslant n!\leqslant en(\frac{n}{e})^n$$

<u>proof:</u> Consider $\int_1^n \ln x dx$, then

$$\ln(n-1)! = \sum_{i=1}^{n-1} \ln i \leqslant \int_1^n \ln x dx \leqslant \sum_{i=1}^n \ln i = \ln n!$$

$$\implies \ln(n-1)! \leqslant n \ln n - n + 1 \leqslant \ln n!$$

Thus,

$$(n-1)! \leqslant e^{n \ln n - n + 1} \leqslant n!$$

where $e^{n \ln n - n + 1} = (e^{\ln n})^n e^{-n} e = (\frac{n}{e})^n e$.

Therefore,

$$e(\frac{n}{e})^n \leqslant n! \leqslant en(\frac{n}{e})^n$$

Exercise.

- (1) Prove Theorem 1 by induction using the fact: $1 + x \leq e^x$.
- (2) Prove $n! \leq e\sqrt{n}(\frac{n}{e})^n$ by definite integral.

Stirling formula. $n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$

Fact.
$$\max \{ \binom{n}{k} : k = 0, 1, 2, \dots, n \} = \begin{cases} \binom{n}{\frac{n}{2}}, if \ n \ is \ even; \\ \binom{n}{\lfloor \frac{n}{2} \rfloor} = \binom{n}{\lfloor \frac{n}{2} \rfloor}, if \ n \ is \ odd. \end{cases}$$

Corollary. $\frac{2^n}{n+1} \leqslant \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor} \leqslant 2^n$.

Stirling approximation. $\binom{n}{\left|\frac{n}{2}\right|} \sim \frac{2^n}{\sqrt{n}} \sqrt{\frac{2}{\pi}}$.

Theorem 2. For $1 \leq k \leq n$, we have

$$(\frac{n}{k})^k \leqslant \binom{n}{k} \leqslant (\frac{en}{k})^k$$

<u>proof:</u> For lower bound, note that $\frac{n}{k} \leq \frac{n-i}{k-i}$ for $\forall i < k$, then

$$\left(\frac{n}{k}\right)^k \leqslant \frac{n}{k} \cdot \frac{n-1}{k-1} \cdot \dots \cdot \frac{n-k+1}{1} = \binom{n}{k}$$

For upper bound, note that for 0 < t < 1, we have

$$\binom{n}{k} \leqslant \sum_{i=0}^{k} \binom{n}{i} \leqslant \sum_{i=0}^{k} \binom{n}{i} \frac{t^i}{t^k} \leqslant \sum_{i=0}^{n} \binom{n}{i} \frac{t^i}{t^k} = \frac{(1+t)^n}{t^k}$$

Let
$$t = \frac{k}{n} < 1$$
, then

$$\binom{n}{k} \leqslant \sum_{i=0}^{k} \binom{n}{i} \leqslant \frac{(1+t)^n}{t^k} = \frac{(1+\frac{k}{n})^n}{(\frac{k}{n})^k} \leqslant \frac{(e^{\frac{k}{n}})^n}{(\frac{k}{n})^k} = (\frac{en}{k})^k$$

The Inclusion-exclusion Principle (IEP)

Let A_1, A_2, \dots, A_n be subsets of Ω (general set). For $I \subseteq [n], A_I := \bigcap_{i \in I} A_i$. $A_{\emptyset} := \Omega$.

Theorem 3 (IEP).

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} \sum_{I \in \binom{[n]}{k}} |A_I| = \sum_{\emptyset \neq I \subseteq [n]} (-1)^{|I|+1} |A_I|.$$

proof: Rewrite the right hand side

$$\sum_{\emptyset \neq I \subseteq [n]} (-1)^{|I|+1} |A_I| = \sum_{\emptyset \neq I \subseteq [n]} (-1)^{|I|+1} \sum_{x \in A_I} 1 = \sum_{x \in \Omega} \sum_{\emptyset \neq I \subseteq [n]: x \in A_I} (-1)^{|I|+1}$$

Consider the contribution of each $x \in \Omega$ to both sides. For the left hand side, $|A_1 \cup A_2 \cup \cdots \cup A_n| = \sum_{x \in \Omega} \delta_x$, where $\delta_x = 1$ if $x \in A_1 \cup A_2 \cup \cdots \cup A_n$ and 0 otherwise. For the right hand side, when $x \notin A_1 \cup A_2 \cup \cdots \cup A_n$, we have $\sum_{\emptyset \neq I: x \in A_I} (-1)^{|I|+1} = 0.$

When $x \in A_1 \cup A_2 \cup \cdots \cup A_n$, let $J = \{j : x \in A_j\}$, then

$$\begin{split} \sum_{\emptyset \neq I: x \in A_I} (-1)^{|I|+1} &= \sum_{\emptyset \neq I \subseteq J} (-1)^{|I|+1} = \sum_{i=1}^{|J|} \binom{|J|}{i} (-1)^{i+1} \\ &= (-1) \sum_{i=1}^{|J|} \binom{|J|}{i} (-1)^i = (-1)[(1-1)^{|J|} - 1] = 1 \end{split}$$

by the Binomial Theorem.

Exercise. Prove Theorem 3 by induction on n.

Theorem 4.
$$|A_1^c \cap A_2^c \cap \cdots \cap A_n^c| = \sum_{I \subseteq [n]} (-1)^{|I|} |A_I|$$
.

$$\frac{\text{proof:}}{\sum\limits_{\emptyset \neq I \subseteq [n]} (-1)^{|I|+1} |A_I| = |A_\emptyset| + \sum\limits_{\emptyset \neq I \subseteq [n]} (-1)^{|I|} |A_I| = \sum\limits_{I \subseteq [n]} (-1)^{|I|} |A_I|. \quad \Box$$

Applications of IEP

Recall.

- (1) S(n,k) = # partitions of [n] into k non-empty parts.
- (2) $S(n,k) \cdot k! = \#$ surjections from [n] to [k].

Proposition 1.
$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n}$$

<u>proof:</u> It suffices to show that the number of surjections from [n]

to
$$[k]$$
 is $\sum_{i=0}^{k} (-1)^i \binom{k}{i} (k-i)^n$.

Let $X = [k], Y = [n], \Omega = X^{Y}$.

Define $A_i = \{f : Y \to X \setminus \{i\}\}$ for $i \in [k]$, then $|A_i| = (k-1)^n$, and $A_I = \bigcap_{i \in I} A_i = \{f : Y \to X \setminus I\}$ for $I \subseteq [k]$ with $|A_I| = (k-|I|)^n$. Note that # surjections from [n] to [k] is $A_1^c \cap A_2^c \cap \cdots \cap A_k^c$. Using

IEP, we can easily get what we want.

Definition. $\varphi(n) = \#$ integers $m \in [n]$ s.t. gcd(m, n) = 1.

Proposition 2. If $n = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}$ where p_i are distinct primes in [n], then $\varphi(n) = n \prod_{i=1}^t (1 - \frac{1}{p_i})$.