

ANÁLISE DAS CONDIÇÕES MICROLIMÁTICAS DO CENTRO DE TERESINA/PI

Patrícia CRUZ (1); Layara REIS (2); José CARVALHO (3); Rafaela TEIXEIRA (4); Marcos TEIXEIRA (5).

- (1) Centro Federal de Educação Tecnológica do Piauí CEFET-PI, Praça da Liberdade, 1597, CEP 64.000 020, Teresina-PI, (86) 3215-5212, patriciamfc@hotmail.com
 - (2) Centro Federal de Educação Tecnológica do Piauí CEFET-PI, <u>layaracampelo@hotmail.com</u>
 - (3) Centro Federal de Educação Tecnológica do Piauí CEFET-PI, olivanpc@hotmail.com
 - (4) Centro Federal de Educação Tecnológica do Piauí CEFET-PI, raffacoelho@hotmail.com
 - (5) Centro Federal de Educação Tecnológica do Piauí CEFET-PI, , macquete@oi.com.br

RESUMO

Este trabalho analisa as condições microclimáticas do Centro da cidade de Teresina/Pi, compreendido em uma área poligonal delimitada pelas coordenadas: 5º 08'47", 42º48'46"; 5º05'33", 42º48'29"; 5º05'11", 42º48'40"; 5º05'25", 42º49'07", considerando a óptica da interação dos fatores locais (arborização, pavimentação, verticalização e veículos) com os elementos climáticos (insolação, umidade, vento, precipitação e temperatura) e com a atividade antrópica no sítio em pauta. O Centro de Teresina é mais caracterizado pelos aspectos correspondentes às atividades comerciais, financeiras e ao de serviços em geral, sendo considerado, então, como um importante núcleo urbano na cidade. A análise do microclima foi desenvolvida a partir de um levantamento bibliográfico e documental, concomitantemente, com o trabalho de campo que consta com a obtenção de dados meteorológicos. O trabalho apresentou uma pequena variação dos elementos climáticos e maior contribuição de dois fatores locais: alta incidência da radiação solar direta ao solo, devido à ausência de vegetação e superaquecimento da pavimentação do solo, especialmente o asfalto, além do represamento do vento devido à verticalização, principalmente para o centro da cidade.

Palavras-chave: condições microclimáticas, Centro de Teresina/PI, fatores locais, elementos climáticos

1. INTRODUÇÃO

O município de Teresina localiza-se a 05° 05'12" de latitude Sul e a 42°48'42" de longitude Oeste, em altitudes que variam de 55m a 92 metros. A zona urbana da cidade hoje se configura com 248,47 km² de área e a zona rural com 1.560,53 Km², correspondendo, respectivamente, a 13,74% e 86,26% de sua área total de 1.809 Km². A capital do estado representa apenas 0,72% da área total do Estado do Piauí.

Nas cidades, em geral, e em Teresina, particularmente, o espaço urbano deve ser desenhado com o objetivo de satisfazer às exigências de conforto térmico do homem na sua interação social, de forma que os ambientes urbanos sirvam para filtrar os elementos adversos e para promover seu conforto, saúde e qualidade de vida.

A malha urbana da cidade foi traçada considerando a estrutura do sistema viário e o zoneamento urbano, baseado na localização das instituições públicas, dos padrões residenciais das atividades de comércio e até mesmo na localização de serviços de caráter especial, como asilo, cemitério, cadeia pública.

O centro de Teresina é caracterizado pelas atividades comerciais, financeiras e de serviços em geral. Além disso, uma importante característica do sítio é que nele se encontra também uma grande densidade de edificações no plano horizontal. A ocupação do solo neste espaço é mais intensa, proporcionando assim sensações de desconforto em determinadas áreas.

Com isso, o presente estudo visa à análise das condições microclimáticas do Centro de Teresina, associada aos elementos climáticos (insolação, umidade, velocidade do vento, precipitação e temperatura) e aos fatores locais (arborização, pavimentação, verticalização e veículos).

2. REVISÃO BIBLIOGRÁFICA

Pesquisas desenvolvidas sobre o estado do Piauí, visando uma melhor compreensão e visão dos elementos climáticos e fatores locais capazes de modificação ou detecção das variações climáticas que provocam mudanças bruscas para os seres humanos, animais e vegetais, além das variações em alguns ecossistemas naturais. Entre estes trabalhos descrevem-se algumas pesquisas que se julgam importantes para com o trabalho proposto.

Andrade (2000) estudou as representações do calor em Teresina/PI, através de um enfoque ligado à teoria da geografia humanista, concluindo que a cidade de Teresina encontra-se repleta de paisagens, com morfologia e funcionalidade atribuída a amenização do calor.

Souza (2004) analisou as variações climáticas no município de Teresina-PI: 1970 a 1999.

Mello (2004) estudou as ações desenvolvidas em Teresina que possibilitaram a formação da massa verde, hoje existente na zona urbana da cidade, concluindo que educação ambiental não formal tem sido fundamental no processo de formação da consciência ambiental do teresinense; que a cidade possui uma cultura de preservação de áreas verdes em ruas, praças e quintais, decorrente de um processo histórico de conscientização ambiental, influenciado pelos aspectos físico-ambientais, culturais e institucionais da cidade; que as áreas de quintais participam de maneira significativa na formação da massa verde da cidade, igualando-se, em média, aos índices de verde de acesso público, existentes na zona urbana.

3. METODOLOGIA

O centro de Teresina foi planejado pelo Conselheiro Saraiva em 1852, quando projetou a cidade em formato de tabuleiro de xadrez, com ruas alinhadas, quarteirões pequenos e um grande largo circundado por prédios administrativos e religioso, o Largo do Amparo.

A área amostrada nesta pesquisa corresponde a um quadrilátero de área estimada em 5,5 Km², situada na região central desta cidade, estando limitado pelas vias públicas: Avenida Maranhão, Rua Olavo Bilac, Rua Areolino de Abreu e Rua Quintino Bocaiúva (ver Figura 1).

FONTE: GOOGLE EARTH, 2007.

FIGURA 1. Imagem georreferenciada da Área em estudo.

A região centro de Teresina, onde se enquadra o quadrilátero em questão, caracteriza-se por ser uma área de maior atividade comercial que residencial, com tráfego intenso, muita movimentação de pedestres, abundância de asfalto e incômodo climático.

3.1 Materiais & Métodos

Para alcançar os objetivos propostos, o presente estudo desenvolverá seguindo as seguintes fases: pesquisa bibliográfica e documental; coleta de dados nos órgãos públicos federais, estaduais, municipais e privados e trabalho de campo.

Ressalva-se que o trabalho de campo para a análise dos fatores locais constitui no reconhecimento das áreas de estudo, registro fotográfico e levantamentos de dados com o GPS (Sistema de Posicionamento Global). Todavia, para a análise dos elementos climáticos utilizaremos a Interpolação de dados meteorológicos obtidos na Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), com a finalidade da representação real das condições climáticas no sítio em questão.

A interpolação de dados é realizada mediante as coordenadas geográficas (latitude, longitude e altitude) do quadrilátero em questão e da base meteorológica juntamente com os bancos de dados, compreendido no período de 1980 a 2006, das estações meteorológicas e utiliza fundamentos estatísticos comprovados cientificamente. Ressalva-se que esse método de interpolação de dados somente será realizado devido à inexistência de materiais para o estudo em questão, como: termômetro – para medir a temperatura; psicômetro – para medir a umidade relativa do ar; pluviômetro – para calcular a precipitação; radiômetro – para medir o nível de insolação e anemômetro/anemógrafo – pra medir a velocidade do vento.

4 Resultados & Discussões

4.1 Elementos Climáticos

a) Temperatura média

GRAFICO 1.Temperatura média anual da Área estudada referentes ao período de 1980 a 2006 em Teresina/PI.

Verifica-se que no ano de 1980 a 1982 as variações médias de temperatura são ínfimas (28,1 °C e 28 °C), já no ano de 1983 a um aumento significativo da temperatura (28,8 °C). No intervalo de 1984 a 1986, há uma queda da temperatura, assim como a menor média anual da temperatura, constatada no ano de 1985. O pico máximo da temperatura média anual observa-se no ano de 1998.

Entre os anos de 1982 e 2002, houve um leve aumento de temperatura média. Essa tendência do aumento térmico, ao longo dos anos, deve-se ao crescimento da cidade, que eleva a densidade de construções, geralmente com materiais que absorvem grande quantidade de calor, como altos edificios, vidro e concreto, além de outros fatores como o elevado índice de asfaltamento, à falta de espaços livres para a circulação do ar entre as construções, o uso intenso de energia elétrica e as descargas dos veículos automotores.

Então, um dos fatores que influenciam nas médias altas em Teresina e, principalmente, no centro da capital é o seu sistema de planejamento urbano, que não se enquadra às condições climáticas da cidade.

b) Precipitação Pluviométrica

GRÁFICO 2. Valores médios anuais de precipitação pluviométrica (mm), referentes ao período de 1980 a 2006, para a Área estudada em Teresina/ Piauí.

O gráfico constatou que na área estudada, a precipitação pluviométrica varia de 800 a 2455 (mm) nos anos de 1980 a 1999. A partir do ano 2000, essa precipitação sofre um decréscimo que varia de 87 a 126 (mm) anuais, mantendo-se praticamente estável. Com isso, essas flutuações de precipitações como observadas são normais devido à distribuição espacial-temporal e interanual provocado pelos fatores de larga escala.

A precipitação pluvial é o elemento meteorológico de maior variabilidade espacial e temporal, além da grande importância na caracterização do clima de uma região.

Ao se considerar apenas os dados referentes às médias pluviométricas, percebem-se uma acentuada variação de quantidade, freqüência e intensidade de chuvas, que ocorre ao longo dos anos de Teresina. Diante dessas informações, somente podem ser entendidas as condições gerais do clima, sendo uma delas a de que em Teresina, embora esteja localizada numa faixa geográfica de clima mais úmido, em relação à área leste/sudeste do Estado do Piauí, de clima semi-árido, também ocorrem, embora de forma esporádica, os tão conhecidos fenômenos das "secas", que se alternam com períodos de grandes enchentes dos rios Poti e Parnaíba, trazendo transtornos a esta cidade.

c) Velocidade média do vento

GRÁFICO 3. Velocidade média anual do vento, referentes ao período de 1980 a 2006, para a área estudada em Teresina/PI.

Ao longo dos anos, percebeu-se uma pequena variação da velocidade média do vento, encontrando-se na faixa média de 1,5 m/s, sendo que em 1983, há um pico de máxima, 1,9 m/s, e em 2005, um pico de mínima, 1,0 m/s.

A compreensão da variação temporal da velocidade dos ventos possui um valor para o estudo do clima da área em estudo. De acordo com o momento do ano, pode-se encontrar em Teresina, como no centro da cidade, ventos que possuem velocidades de acordo com a "Escala de Beaufort" 0.0-1.0 km/h (calmaria), 2.0-6.0 k/h (corrente débil), 7.0-12.0 km/h (brisa suave). Os ventos com maiores velocidades ocorrem somente em situações esporádicas devido a alguma perturbação atmosférica

As mudanças na velocidade do vento mostram simetrias diferentes para os anos estudados. Este fato é causado pelo posicionamento do centro de alta pressão, com maior ou menor intensidade acarretando, constantemente, a direção predominante do vento, e sua intensidade.

A análise do comportamento dos ventos no espaço configura-se como mais uma parte do cenário climático, pois, no quadrilátero em estudo, a influência dos ventos, na produção de condições diferenciadas de conforto, assume um relevante papel.

d) Umidade Relativa do Ar

GRÁFICO 4. Média Anual da Umidade Relativa do Ar (URA), referentes ao período de 1980 a 2006, da Área estudada em Teresina/PI.

A umidade relativa do ar é uma condição inversa da temperatura do ar. Ou seja, a menor umidade relativa é encontrada durante o dia e a maior durante a noite, constituindo-se, portanto, como um excelente indicador das condições térmicas de um local. O valor da umidade pode variar a partir de mudanças na temperatura do ar, ainda que não tenha havido nenhuma alteração no conteúdo da umidade.

Constatou-se, no gráfico, uma flutuação de 1,5 % a 3,5% ao longo dos anos, sendo que a umidade relativa do ar obteve um pico de mínima em 1983, 60% de umidade relativa do ar, e, um pico de máxima em 2004, 75% de umidade relativa do ar. Com isso, a umidade relativa do ar não apresenta grandes variações, o que não permite afirmar ou concluir sobre possíveis mudanças climáticas para esse parâmetro.

e) Insolação

GRÁFICO 5. Valores médios de insolação (h), referentes ao período de 1980 a 2006, para Área estudada em Teresina/Piauí.

O gráfico em estudo mostra um leve aumento de insolação (h) de 1980 para o ano de 2006, tendo um pico de mínimo de insolação de 6,2 no ano de 1984 e um pico de máximo de insolação de 8,6 no ano de 1992. Nos últimos 5 (cinco) anos o grau de insolação não é abaixo de 8 (oito), sendo um fator de grande importância no clima.

A insolação altera os índices de temperatura e umidade do ar, comprometendo a salubridade urbana e repercutindo no conforto térmico, na sensação de bem-estar e na qualidade vida de toda a população.

Na área de estudo, pela presença de edificações mais baixas permite uma maior insolação durante o dia. Pode-se concluir que a compreensão desta variável climática deve ser considerada para efeito de um planejamento urbano e arquitetônico, que vise a obtenção de um maior conforto térmico e possibilite uma melhor qualidade de vida aos seus habitantes.

4.2 Fatores Locais

a) Arborização

A região estudada apresenta certa diversidade vegetal. Conforme o Senso Florístico/2000 foi identificado 69 (sessenta e nove) espécies plantadas nesta região, totalizando 6.574 árvores assim distribuídas: 5.194 em vias públicas e 1.380 em praças. É considerado baixo o número de árvores existentes nesta região, havendo vários trechos de vias públicas sem nenhuma forma de arborização e praças com distribuição desuniforme. Estes dados demonstram um déficit no número de árvores em espaços públicos do centro da cidade, o que provoca um desequilíbrio urbano, através do aumento no desconforto térmico.

De acordo com Lombardo (1985, p. 215), a maior quantidade de vegetação implica na mudança do balanço de energia, devido à necessidade de as plantas absorverem o calor em função de seus processos vitais. Todavia, a remoção da vegetação para dar lugar a edificações e superfícies pavimentadas implica na anulação de diversos serviços ambientais. Entre eles está o sombreamento, que impede o aquecimento do ar derivado da re-emissão da radiação solar pelas superfícies. O ar quente e seco contribui para o aumento da sensação de desconforto e favorece a incidência de doenças respiratórias.

b) Pavimentação

As áreas construídas da cidade com concreto, vidro e asfalto alteram o albedo, coeficiente de reflexão de radiação ou perda de energia, uma vez que tais materiais são eficientes absorvedores de calor. Asfalto e concreto absorvem mais de 75% da radiação solar incidente

A pavimentação está diretamente relacionada às condições climáticas de uma cidade, pois o tipo de material utilizado influenciará no conforto ou desconforto climático de um determinado sítio.

A área estudada apresenta pavimentação do tipo asfáltica, sendo esta a que mais absorve calor, devido sua cor negra, caracterizando uma superfície que absorve muito calor. Este tipo de pavimentação é o mais inadequado ao clima tropical de Teresina, já que proporciona sensação de desconforto térmico durante a troca de calor pavimentação-atmosfera. Por isso, o tipo de pavimentação que mais se adequa ao clima de Teresina, assim como o do Centro é o paralelepípedo, já que absorve o calor e faz sua distribuição uniforme e lenta, o que facilita a infiltração da água. A pedra poliédrica tem um formato desproporcional à radiação recebida, e por ser menor e ter formas indefinidas se aquece rápido e de forma irregular.

c) Veículos

Nas cidades há produção artificial de calor pelas máquinas, condicionadores de ar, tráfego de pessoas e automóveis, refletindo na diminuição da umidade do ar. Entretanto, o tráfego de automóveis contribui para o aumento de material particulado no ar, especialmente óxidos de enxofre e fósforo, que se constituem em núcleos de condensação ativos, quando a umidade relativa do ar atinge determinado valor.

Segundo o trabalho realizado pela STRANS (Superintendência Municipal de Transporte e Trânsito da Prefeitura de Teresina) em 2006, o volume de tráfego que passam no sentido centro/bairro e bairro/centro sobre a ponte do rio Poti que liga as avenidas Frei Serafim e João XXIII. O total de veículos no sentido centro/bairro neste intervalo de tempo foi de 19.591. Sendo que no horário de pico máximo (12:30 h as 13:30 h) o volume de veículos que passaram sobre a ponte foi de 1.882. O que pode gerar um fator de pico de 0,97, o que se torna alto, considerado-se que o fator de pico regular é de 0,85. Enquanto no sentido centro/bairro o volume de veículos registrados foi de 117.425 veículos no mesmo intervalo de tempo. No horário de pico máximo (7:30 h ás 8:30 h) o volume de veículos registrado foi 1745 veículos. O que implica num fator de pico de 0,88 para o intervalo de 1:00 hora, o que indica que a ordem ainda esta alta levando em consideração que o índice regular é de 0,85.

O resultado do estudo mostra que o tráfego na cidade de Teresina mostra-se saturado. O que contribui para o aumento da concentração de poluentes, principalmente, nos horários de pico (07:00 h as 08:00 h, 12:30 h as 13:30 h e 18:00 h as 19:00 h) na região do centro, o que traz um desconforto climático para os transeuntes.

d) Verticalização

Nas cidades os ventos fortes são desacelerados e os fracos acelerados à medida que se movimentam no interior das mesmas. A concentração de edificações, por um lado, dificulta a ventilação da cidade e por outro cria turbulência, triplicando a velocidade do vento canalizado pelas ruas.

Com a acelerada urbanização, processo pelo qual passa Teresina, caracterizando-se a verticalização das edificações, observa-se que os antigos sítios e quintais arborizados estão sendo substituídos por prédios, mesmo as novas edificações obedecerem a uma taxa máxima de ocupação do solo igual a 60%.

A crise energética desencadeada pela crise do petróleo, na década de 70, teve como uma de suas principais conseqüências o desenvolvimento da arquitetura bioclimática. Esta arquitetura faz esforços para conciliar as necessidades humanas de proteção e abrigo com os elementos do clima, utilizando um consumo reduzido de energia e sem agressões ao meio ambiente. Todavia, para que se otimize uma edificação nos moldes da arquitetura bioclimática, é necessário que o espaço público ofereça melhores condições climáticas.

Como a cidade de Teresina tem grandes espaços horizontais, torna-se absurdo a verticalização da cidade. Com isso, a verticalização irá criar uma barreira de proteção contra a ventilação, que em Teresina e, principalmente n o Centro, é de pouca velocidade.

4. CONCLUSÕES

O Centro é altamente impermeável devido às altas taxas de urbanização do local. As condições climáticas, representadas principalmente pela radiação solar, temperatura, velocidade e direção dos ventos, precipitação, umidade, camadas atmosféricas são modificadas pelo processo de urbanização. Os principais impactos estão relacionados ao desconforto térmico, às inundações, à poluição do ar, ao deslizamento de encostas, que causam perdas materiais e humanas e geram ou agravam inúmeras doenças, principalmente as vinculadas ao sistema respiratório, epidemias, etc.

A ampliação de áreas de cobertura vegetal entre os espaços edificados é fundamental, pois as árvores refrescam o ar, devido à transpiração, filtram alguns tipos de contaminação atmosférica e em forma de barreiras podem evitar a contaminação acústica causada pelas vias urbanas de circulação. É necessário que se protejam as áreas verdes ainda existentes na cidade, delimitando-as como tal, impedindo usos como a construção de vias ou qualquer outro tipo de ocupação que não sejam para o lazer público.

A alteração do revestimento do solo, a redução da cobertura vegetal, o aumento de superfícies refletoras, o tráfego de veículos e atividades geradoras de calor, fatores decorrentes tanto da industrialização como da urbanização, provocam a elevação da temperatura do ar. Por este motivo a temperatura média anual da área estudada local é de 26,8 °C, atingindo 38,7°C nos meses mais quentes. Então, deve-se ter na amenização do clima um fator preponderante para um planejamento urbanístico.

Diante do exposto ressalta-se que para a amenização do clima em Teresina, a urbanização deve estar atenta à baixa velocidade do vento onde o espaço público deverá ser tratado de maneira a não obstruir a circulação do ar. Áreas de sombreamento do solo deverão ser projetadas para reduzir a radiação solar direta e melhorar o conforto de seus usuários. A utilização da vegetação e a presença de água, seguramente, proporcionarão melhores condições de umidade relativa do ar na estação seca.

5. REFERÊNCIAS

ANDRADE, C.S. Representação do calor em Teresina/PI. (Dissertação de Mestrado), Universidade Federal de Pernambuco. Recife, 2000.

ARAÚJO, Maria Mafalda Baldoino de. **Cotidiano e pobreza: a magia da sobrevivência em Teresina**. Teresina: fundação Cultural Monsenhor Chaves, 1995.

AYOADE, J. O. Introdução à climatologia para os trópicos. São Paulo: DIEFEL, 1986.

BASTOS, E.A; ANDRADE JÚNIOR, A. S de. **Dados Agrometeorológicos para o município de Teresina/PI (1980/1999).** Teresina: EMBRAPA Meio-Norte, 2000. (EMBRAPA Meio-Norte, Documentos, 47).

DERISIO, José Carlos. Introdução ao Controle de Poluição Ambiental. São Paulo: CETSB, 1992.

FAÇANHA, A. C. A Evolução Urbana de Teresina: Agentes, Processos e Formas Espaciais da Cidade. 1998. Dissertação (Mestrado em Geografia) — Universidade Federal de Pernambuco, Recife, 1998.

LOMBARDO, M. A. Ilha de Calor nas Metrópoles: o exemplo de São Paulo. Ed.Hucitec. São Paulo, 1985.

MELLO, M.do S. T.M. **Educação Ambiental: A preservação do verde na zona urbana de Teresina-PI.** Dissertação de Pós-Graduação — Universidade Federal do Piauí. Teresina-PI, 2004.

MONTEIRO, C. A. F. **Teoria e clima urbano** Tese de livre-docência apresentada a Faculdade de Filosofia, Letras e Ciências Humanas da Universidade de São Paulo, São Paulo, 1975.

NASCIMENTO, C.C. Urbanização- processo, causas e efeitos. In: Meio Ambiente:

Qualidade de Vida e Desenvolvimento, Belém, UFPA, 1992.

NUCCI, João Carlos. Verde **Urbano: Conceitos, Métodos e Classificação.** VII Congresso Brasileiro de Arborização Urbana. Belém –PA, 2003.

Cobertura Vegetal no Bairro Centro de Curitiba/PR. Artigo publicado na revista GEOUERJ, nº. especial. Rio de Janeiro, 2003.

OLIVEIRA, P.M.P. de. Metodologia do Desenho Urbano considerando Atributos Bioclimatizantes da Forma Urbana. In.; IV ENCONTRO NACIONAL DE TECNOLOGIA NO AMBIENTE CONSTRUÍDO, 1992. Florianópolis. Anais..., Florianópolis: POLI, 1993.

PHILIPPI, Arlindo. Municípios e meio ambiente: perspectivas para a municipalização da gestão ambiental no Brasil. São Paulo: Associação Nacional de Municípios e meio ambiente (ANAMMA), 1999.

PMT (Prefeitura Municipal de Teresina). **Teresina Agenda 2015 – Plano de Desenvolvimento Sustentável**. Prefeitura de Teresina (PMT/ SEMPLAN). Teresina-PI, 2002.

PMT (Prefeitura Municipal de Teresina). Censo Florístico da cidade de Teresina/Piauí: quadrilátero central. Prefeitura de Teresina (PMT/ SEMPLAN). Teresina-PI, 2000.

SILVA, Barbosa Araújo. **A verticalização em Teresina: sonho de muitos e realidade de poucos**. Monografía — Universidade Federal do Piauí. Teresina-PI, 2003.

SOUZA, Jeanne de Leal. **Variações Climáticas no Município de Teresina-PI: 1970 A 1999.** Monografia — Centro Federal de Educação Tecnológica do Piauí. Teresina-Pi, 2004.

STRANS (Superintendência Municipal de Transporte e Trânsito da Prefeitura de Teresina). Diagnóstico do tráfego de veículos do sentido centro/bairro e bairro/centro sobre a ponte do rio Poti que liga as avenidas Frei Serafim e João XXIII. Prefeitura de Teresina (PMT/ STRANS). Teresina-PI, 2006;

TUBELIS, Antônio. **Meteorologia Descritiva: Fundamentos e Aplicações Brasileiras.** São Paulo, editora Nobel, 1937.