# Function Representation and Reduction



Oleh: Ahmad Zaini

EC.184405 Rangkaian Digital dan Lab

Teknik Komputer

FTEIC - ITS

#### The Sequence Of Logic Circuit Design



### Sum of Product Terms (SOP)

Or-ing of AND-ed terms

$$f(A,B,C) = A + B'C + A'BC$$

**Minterm**: "Any ANDed term containing all the variables of a function In complemented or uncomplemented form"

Representation

$$m_i = m_i(A, B, C, \dots)$$

Complemented variable = Logic '0'
Uncomplemented variable = Logic '1'

#### Canonical SOP

#### "A function composed completely of a logical sum of MINTERM"

$$f(x,y,z) = x'y'z + x'yz' + x'yz + xyz$$

$$f(x,y,z) = 001 + 010 + 011 + 111$$

$$f(x,y,z) = m_1 + m_2 + m_3 + m_7$$

$$f(x,y,z) = \sum m(1,2,3,7)$$

| Row | xyz | Minterm |
|-----|-----|---------|
| 0   | 000 | x'y'z'  |
| 1   | 001 | x'y'z   |
| 2   | 010 | x'yz'   |
| 3   | 011 | x'yz    |
| 4   | 100 | xy'z'   |
| 5   | 101 | xy'z    |
| 6   | 110 | xyz'    |
| 7   | 111 | xyz     |

#### Product of Sum Terms (POS)

AND-ing of OR-ed terms

$$f(A,B,C) = (A + B')(A' + B + C)(B + C)$$

**Maxterm**: "Any ORed term containing all the variables of a function In complemented or uncomplemented form"

Representation

$$M_i = M_i(A, B, C, \dots)$$

Complemented variable = Logic '1'
Uncomplemented variable = Logic '0'

#### Canonical POS

#### "A function composed completely of a logical Product of MAXTERM"

| Row | xyz | Maxterm  | F |
|-----|-----|----------|---|
| 0   | 000 | x+y+z    | 0 |
| 1   | 001 | x+y+z'   | 1 |
| 2   | 010 | x+y'+z   | 1 |
| 3   | 011 | x+y'+z'  | 1 |
| 4   | 100 | x'+y+z   | 0 |
| 5   | 101 | x'+y+z'  | 0 |
| 6   | 110 | x'+y'+z  | 0 |
| 7   | 111 | x'+y'+z' | 1 |

$$F(x,y,z) = (x + y + z) \cdot (x' + y + z) \cdot (x' + y + z') \cdot (x' + y' + z)$$

$$F(x,y,z) = 000 \cdot 100 \cdot 101 \cdot 110$$

$$F(x,y,z) = M_0 \cdot M_4 \cdot M_5 \cdot M_6$$

$$F(x,y,z) = \prod M_i(0,4,5,6)$$

#### Logic Function Graphics









### First Order K-maps







| A | $f_3$ | A |   | . A'  |           |
|---|-------|---|---|-------|-----------|
| 0 | 1     | 0 | 1 |       | $f_3 = 1$ |
| 1 | 1     | 1 | 1 | A     |           |
|   |       |   |   | $f_1$ |           |

## Second Order K-maps

| A | В | $m_i$               |
|---|---|---------------------|
| 0 | 0 | $A' \cdot B' = m_0$ |
| 0 | 1 | $A' \cdot B = m_1$  |
| 1 | 0 | $A \cdot B' = m_2$  |
| 1 | 1 | $A \cdot B = m_3$   |



#### Second Order K-maps

| A | В | $f_1$ |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 0     |
| 1 | 0 | 1     |
| 1 | 1 | 1     |

$$f_{1}(A,B) = \sum m(2,3) = AB' + AB \qquad \leftarrow SOP \Rightarrow \qquad f_{2}(A,B) = \sum m(0,2,3) = A'B' + AB' + AB$$

$$F_{1}(A,B) = \prod M(0,1) = (A+B) \cdot (A+B') \qquad \leftarrow POS \Rightarrow \qquad F_{2}(A,B) = \prod M(1) = (A+B')$$





 $f_2$ 

#### Third Order K-maps



| A | В | С | $m_i$                        |
|---|---|---|------------------------------|
| 0 | 0 | 0 | $A' \cdot B' \cdot C' = m_0$ |
| 0 | 0 | 1 | $A' \cdot B' \cdot C = m_1$  |
| 0 | 1 | 0 | $A' \cdot B \cdot C' = m_2$  |
| 0 | 1 | 1 | $A' \cdot B \cdot C = m_3$   |
| 1 | 0 | 0 | $A \cdot B' \cdot C' = m_4$  |
| 1 | 0 | 1 | $A \cdot B' \cdot C = m_5$   |
| 1 | 1 | 0 | $A \cdot B \cdot C' = m_6$   |
| 1 | 1 | 1 | $A \cdot B \cdot C = m_7$    |





# Fourth Order K-maps

| A | В | С | D | $m_i$                                 |
|---|---|---|---|---------------------------------------|
| 0 | 0 | 0 | 0 | $A' \cdot B' \cdot C' \cdot D' = m_0$ |
| 0 | 0 | 0 | 1 | $A' \cdot B' \cdot C' \cdot D = m_1$  |
| 0 | 0 | 1 | 0 | $A' \cdot B' \cdot C \cdot D' = m_2$  |
| 0 | 0 | 1 | 1 | $A' \cdot B' \cdot C \cdot D = m_3$   |
| 0 | 1 | 0 | 0 | $A' \cdot B \cdot C' \cdot D' = m_4$  |
| 0 | 1 | 0 | 1 | $A' \cdot B \cdot C' \cdot D = m_5$   |
| 0 | 1 | 1 | 0 | $A' \cdot B \cdot C \cdot D' = m_6$   |
| 0 | 1 | 1 | 1 | $A' \cdot B \cdot C \cdot D = m_7$    |

| A | В | С | D | $m_{i}$                                |
|---|---|---|---|----------------------------------------|
| 1 | 0 | 0 | 0 | $A \cdot B' \cdot C' \cdot D' = m_8$   |
| 1 | 0 | 0 | 1 | $A \cdot B' \cdot C' \cdot D = m_9$    |
| 1 | 0 | 1 | 0 | $A \cdot B' \cdot C \cdot D' = m_{10}$ |
| 1 | 0 | 1 | 1 | $A \cdot B' \cdot C \cdot D = m_{11}$  |
| 1 | 1 | 0 | 0 | $A \cdot B \cdot C' \cdot D' = m_{12}$ |
| 1 | 1 | 0 | 1 | $A \cdot B \cdot C' \cdot D = m_{13}$  |
| 1 | 1 | 1 | 0 | $A \cdot B \cdot C \cdot D' = m_{14}$  |
| 1 | 1 | 1 | 1 | $A \cdot B \cdot C \cdot D = m_{15}$   |

#### Fourth Order K-maps





#### Loop Protocol

- *Monads* (n = 0), Single Minterms or Maxterms which have no logic adjacencies should be looped out first.
- **Diads** (n = 1), Group 0f two logically adjcent Minterms or Maxterms which cannot be grouped in any other way to form larger 2<sup>n</sup> groups should be looped out following the monads. A reduction of one variable for each diad will result.
- Quads (n = 2), Group 0f four logically adjcent Minterms or Maxterms which cannot be grouped in any
  other way to form larger 2<sup>n</sup> groups should be looped out following the diads. A reduction of two
  variables for each quad will result.
- Octads (n = 3), Group Of eight logically adjcent Minterms or Maxterms which cannot be further combined to form a hexadecad (sixteen adjacencies) should be looped out next. A reduction of three variables for per octad will result.

# Loop Protocol





#### Prime Implicants (PIs)

"Any Single or Groups of 2<sup>n</sup> adjacent Minterms or Maxterms that they can't be combined with other 2<sup>n</sup> adjacent groups in any way to produce term of fewer variables"

**ESSENTIAL PRIME IMPLICANTs (EPIs)**; Single way PIs, which must be used to achieve minimum cover

OPTIONAL PRIME IMPLICANTs (OPIs); Optional way PIs, which are used for alternative minimum cover

REDUNDANT PRIME IMPLICANTs (RPIs); Superfluous PIs, which cannot be used if minimum cover is to result

$$f(A, B, C, D) = \sum m(0, 2, 4, 5, 7, 10, 11, 14, 15)$$

$$f = \bar{A}\bar{B}\bar{D} + \bar{A}B\bar{C} + BCD + AC$$
  
$$f = \bar{A}\bar{C}\bar{D} + \bar{A}BD + \bar{B}C\bar{D} + AC$$

$$F = (A + \overline{B} + \overline{C} + D)(A + B + \overline{D})(\overline{A} + C)$$





SOP POS

#### Don't Cares "Ø" (Non-essetial State)

- Very often, the specification of a function is incomplete
- Output state is unimportant for that particular set of inputs or input state never occurs
- Any input combination whose state is unimportant is a "don't care" state (d in SOP and D in POS)
- Useful feature for minimization of states
- Example, with minterms AB'C (101) and ABC'(110) are don't cares
  - □ Minterm −  $F(A,B,C) = \Sigma m(0,1,2) + \Sigma d(5,6)$
  - □ Maxterm  $F(A,B,C) = \Pi M(3,4,7) \cdot \Pi D(5,6)$

$$F(A,B,C,D) = \prod_{\text{Essential Maxterms}} M(0,1,4,6,8,14,15) \cdot \emptyset(2,3,9)$$
Essential Maxterms
Maxterms

$$F = (\bar{A} + \bar{B} + \bar{C})(A + D)(B + C)$$

$$f = \bar{A}BD + AB\bar{C} + \bar{B}C$$





POS SOP

#### Entered Variable (EV)

Compressed form of N Variables K-maps into a K-maps of order n < N, then (N-n) variables must be as Entered Variable

$$Map Key = 2^{N-n}$$

- 1. Loop out all Evs following the loop out protocol
- 2. Loop Out the 1's for SOP representation or the 0's for POS representation as a "clean up" operation, also following the loop out protocol

| Dec | imal | A | В | С | f |
|-----|------|---|---|---|---|
|     | 0    | 0 | 0 | 0 | 0 |
| 0   | 1    | 0 | 0 | 1 | 0 |
| 1   | 2    | 0 | 1 | 0 | 1 |
|     | 3    | 0 | 1 | 1 | 0 |
| 2   | 4    | 1 | 0 | 0 | 0 |
| 2   | 5    | 1 | 0 | 1 | 1 |
| 2   | 6    | 1 | 1 | 0 | 1 |
| 3   | 7    | 1 | 1 | 1 | 1 |

| С |   |           |
|---|---|-----------|
| 0 | 0 | 0         |
| 1 | 0 | 0         |
| С |   |           |
| 0 | 1 | $\bar{C}$ |
| 1 | 0 | J         |
| С |   |           |
| 0 | 0 | С         |
| 1 | 1 | C         |
| С |   |           |
| 0 | 1 | 1         |
| 1 | 1 | 1         |
|   |   |           |



| A | В | f  |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | C' |
| 1 | 0 | С  |
| 1 | 1 | 1  |



$$Map Key = 2^{N-n}$$
  
 $Map Key = 2^{3-2}$ 

$$Map Key = 2^{3-2}$$

$$Map Key = 2$$

$$f = AC + B\bar{C}$$
  $F = (A + \bar{C})(B + C)$ 

| Dec | imal | A | В | С | f |
|-----|------|---|---|---|---|
|     | 0    | 0 | 0 | 0 | 0 |
| 0   | 1    | 0 | 0 | 1 | 0 |
| 1   | 2    | 0 | 1 | 0 | 1 |
|     | 3    | 0 | 1 | 1 | 0 |
| 2   | 4    | 1 | 0 | 0 | 0 |
| 2   | 5    | 1 | 0 | 1 | 1 |
| 2   | 6    | 1 | 1 | 0 | 1 |
| 3   | 7    | 1 | 1 | 1 | 1 |

| С |   |   |
|---|---|---|
| 0 | 0 | 0 |
| 1 | 0 | 0 |
| C |   |   |
| 0 | 1 | Ē |
| 1 | 0 | J |
| C |   |   |
| 0 | 0 | С |
| 1 | 1 | C |
| С |   |   |
| 0 | 1 | 1 |
| 1 | 1 | 1 |
|   |   |   |



$$Map Key = 2^{N-n}$$

$$Map Key = 2^{3-2}$$

$$Map Key = 2$$

$$f = AC + B\bar{C}$$
  $F = (A + \bar{C})(B + C)$ 







$$f = \bar{A}CD + \bar{B}C\bar{D} + B\bar{C}$$
  
$$F = (\bar{A} + \bar{C} + \bar{D})(\bar{B} + \bar{C} + D)(B + C)$$

