

10.5.3 Manageability Host Interface

10.5.3.1 HOST CSR Interface (Function 1/0)

The software device driver of function 0/1 communicates with the manageability block through CSR access. The manageability is mapped to address space 0x15800 to 0x15FFF on the slave bus of each function.

Note:

Writing to address 0x15800 from function 0 or from function 1 is targeted to the same address in the RAM.

10.5.3.2 Host Slave Command Interface to Manageability

This interface is used by the software device driver for several of the commands and for delivering various types of data in both directions (manageability-to-host and host-to-manageability).

The address space is separated into two areas:

- Direct access to the internal ARC data RAM: The internal data RAM is mapped to address space 0x15800 to 0x15EFF. Writing/reading to this address space goes directly to the RAM.
- Control registers are located at address 0x15F00.

10.5.3.3 Host Slave Command Interface Low Level Flow

This interface is used for the external host software to access the manageability subsystem. Host software writes a command block or read data structure directly from the data RAM. Host software controls these transactions through a slave access to the control register.

The following flow shows the process of initiating a command to the manageability block:

- The software device driver reads the control register and checks that the Enable bit is set.
- 2. The software device driver writes the relevant command block into the RAM area.
- 3. The software device driver sets the *Command* bit in the control register. Setting this bit causes an interrupt to the ARC (can be masked).
- 4. The software device driver polls the control register for the command bit to be cleared by hardware.
- 5. When manageability finishes with the command, it clears the command bit (if the manageability should reply with data, it should clear the bit only after the data is in the RAM area where the software device driver can read it).

If the software device driver reads the control register and the SV bit is set, then there is a valid status of the last command in the RAM. If the SV bit is not set, then the command has failed with no status in the RAM.

10.5.3.4 Host Slave Command Registers

The Host Slave Command registers (listed below) are described in Section 8.2.3.27.1. These register participates in the Host / Software / Firmware interface:

Host Interface Control Register — CSR Address 0x15F00; AUX 0x0700

Firmware Status 0 (FWS0R) Register — CSR Address 0x15F0C; AUX 0x0702

Software Status Register — CSR Address 0x15F10; AUX 0x0703

10.5.3.5 Host Interface Command Structure

The following table describes the structure used by the host driver to send a command to manageability firmware via the host interface slave command interface:

#Byte	Description	Bit	Value	Description
0	Command	7:0	Command Dependent	Specifies which host command to process.
1	Buffer Length	7:0	Command Length	Command Data Buffer length: 0 to 252, not including 32 bits of header.
2	Default/ Implicit Interface	0	Command Dependent	Used for commands might refer to one of two interfaces (LAN or SMBus). 0b = Use default interface. 1b = Use specific interface.
	Interface Number	1	Command Dependent	Used when bit 0 (Default/Implicit interface) is set: 0b = Apply command for interface 0. 1b = Apply command for interface 1. When bit 0 is set to 0b, it is ignored.
	Reserved	7:2	0x0	Reserved
3	Checksum	7:0	Defined Below	Checksum signature.
255:4	Data Buffer	7:0	Command Dependent	Command Specific Data Minimum buffer size: 0. Maximum buffer size: 252.

10.5.3.6 Host Interface Status Structure

The following table lists the structure used by manageability firmware to return a status to the host driver via the host interface slave command interface. A status is returned after a command has been executed.

#Byte	Description	Bit	Value	Description
0	Command	7:0	Command Dependent	Command ID.
1	Buffer Length	7:0	Status Dependent	Status buffer length: 252:0
2	Return Status	7:0	Depends on Command Executing Results	Defined in commands description.
3	Checksum	7:0	Defined Below	Checksum signature.
255:4	Data Buffer		Status Dependent	Status configuration parameters Minimum Buffer Size: 0. Maximal Buffer Size: 252.

10.5.3.7 Checksum Calculation Algorithm

The Host Command/Status structure is summed with this field cleared to 0b. The calculation is done using 8-bit unsigned math with no carry. The inverse of this sum is stored in this field (0b minus the result). Result: The current sum of this buffer (8-bit unsigned math) is 0b.

10.5.3.8 Host Slave Interface Commands

In SMBus PT mode the only host interface command that is supported is the fail-over configuration command (besides debug commands that will not be described in this document).

10.5.3.8.1 Fail-Over Configuration Host Command

This command is used to update the Fail-Over Configuration register:

Byte	Description	Bit	Value	Description
0	Command	7:0	0x26	Fail-over configuration command.
1	Buffer Length	7:0	0x4	Four bytes of the fail-over configuration register.
2		7:0	0x0	

Byte	Description	Bit	Value	Description
3	Checksum	7:0		Checksum signature of the Host command.
7:4	Reserved	7:0	Reserved	Reserved.

Following is the status returned on this command:

Byte	Description	Bit	Value	Description
0	Command	7:0	0x26	Four bytes of the fail over register value.
1	Buffer Length	7:0	0x0	No data in return status.
2	Return Status	7:0	0x1	0x1 for good status.
3	Checksum	7:0		Checksum signature.

10.5.3.8.2 Read Fail-Over Configuration Host Command

This command is used to read the Fail-Over Configuration register:

Byte	Description	Bit	Value	Description
0	Command	7:0	0x27	Read Fail-Over Configuration command.
1	Buffer Length	7:0	0x0	No data attached to this command.
2		7:0	0x0	
3	Checksum	7:0		Checksum signature of the Host command.

Following is the status returned on this command:

Byte	Description	Bit	Value	Description
0	Command	7:0	0x27	Fail-over configuration command.
1	Buffer Length	7:0	0x4	Indicates four bytes of the fail-over register (7:4 below).
2	Return Status	7:0	0x1	Indicates good status.
3	Checksum	7:0		Checksum signature.
7:4	Data Buffer	7:0	Fail-over configuration Dwords	Fail over register content. Byte 4 is byte 0 of the configuration register.

10.5.4 Software and Firmware Synchronization

Software and firmware synchronize accesses to shared resources in the 82599 through a semaphore mechanism and a shared configuration register between the host interface of the two ports and firmware. This semaphore enables synchronized accesses to the following shared resources:

- FFPROM
- · PHY 0 and PHY 1 registers
- MAC (LAN controller) shared registers (reserved option for future use)

The SWSM.SWESMBI bit and the FWSM.FWSMBI bit are used as a semaphore mechanism between software and firmware. Once software or firmware takes control over these semaphore flags, it can access the SW_FW_SYNC register and claim ownership of the specific resources. The SW_FW_SYNC includes pairs of bits (one owned by software and the other by firmware), while each pair of bits control a different resource. A resource is owned by software or firmware when the respective bit is set. It is illegal to have both bits in a pair set at the same time. Following are the required sequences for gaining and releasing control over the shared resources:

Gaining Control of Shared Resource by Software

- Software checks that the software on the other LAN function does not use the software/firmware semaphore
 - Software polls the SWSM.SMBI bit until it is read as 0b or time expires (recommended expiration is ~10 ms+ expiration time used for the SWSM.SWESMBI).
 - If SWSM.SMBI is found at 0b, the semaphore is taken. Note that following this read cycle hardware auto sets the bit to 1b.
 - If time expired, it is assumed that the software of the other function malfunctions. Software proceeds to the next steps checking SWESMBI for firmware use.
- Software checks that the firmware does not use the software/firmware semaphore and then takes its control
 - Software writes a 1b to the SWSM.SWESMBI bit
 - Software polls the SWSM.SWESMBI bit until it is read as 1b or time expires (recommended expiration is ~3 sec). If time has expired software assumes that the firmware malfunctioned and proceeds to the next step while ignoring the firmware bits in the SW_FW_SYNC register.
- Software takes control of the requested resource(s)
 - Software reads the firmware and software bit(s) of the requested resource(s) in the SW_FW_SYNC register.
 - If time has expired in the previous steps due to a malfunction firmware, the software should clear the firmware bits in the SW_FW_SYNC register. If time has expired in the previous steps due to malfunction software of the other LAN function, software should clear the software bits in the SW_FW_SYNC register that it does not own.

- If the software and firmware bit(s) of the requested resource(s) in the SW_FW_SYNC register are cleared, it means that these resources are accessible. In this case software sets the software bit(s) of the requested resource(s) in the SW_FW_SYNC register. Then the SW clears the SWSM.SWESMBI and SWSM.SMBI bits (releasing the SW/FW semaphore register) and can use the specific resource(s).
- Otherwise (either firmware or software of the other LAN function owns the resource), software clears the SWSM.SWESMBI and SWSM.SMBI bits and then repeats the entire process after some delay (recommended 5-10 ms). If the resources are not released by software of the other LAN function long enough (recommended expiration time is ~1 sec) software can assume that the other software malfunctioned. In that case software should clear all software flags that it does not own and then repeat the entire process once again.

Note that firmware initializes its semaphore flags as part of its initialization flow.

Releasing a Shared Resource by Software

- The software takes control over the software/firmware semaphore as previously described for gaining shared resources.
- Software clears the bit(s) of the released resource(s) in the SW FW SYNC register.
- Software releases the software/firmware semaphore by clearing the SWSM.SWESMBI and SWSM.SMBI bits
- Software should wait a minimum delay (recommended 5-10 ms) before trying to gain the semaphore again

Gaining Control of Shared Resource by Firmware

- Firmware takes control over the software/firmware semaphore (SW_FW_SYNC register)
 - Firmware writes a 1b to the FWSM.FWSMBI bit
 - Firmware polls the FWSM.FWSMBI bit until it is read as 1b or time is expired (recommended expiration time is \sim 10 ms).
 - If time has expired firmware ignores the FWSM.FWSMBI bit and continues to the next step (assuming software does not function well).
- Firmware takes ownership of the requested resources
 - Firmware reads the matched software bit(s) to the requested resource(s) in the SW_FW_SYNC register.
 - If the software bit(s) are cleared (such as software does not own the resource), firmware sets the firmware bit(s) of the requested resource(s). Then firmware clears the FWSM.FWSMBI bit (releasing the software/firmware semaphore) and can use the specific resource(s).
 - Otherwise (software owns the resource), firmware clears the FWSM.FWSMBI bit and then repeats the previous process after some delay (recommended delay of 5-10 ms). If the resources are not released long enough (~1 sec) firmware accesses by force the requested resources. Firmware also clears the software flags of the requested resources in the SW_FW_SYNC register (assuming software that set those flags malfunctioned).

Releasing a Shared Resource by Firmware

- Firmware takes control over the software/firmware semaphore as previously described for gaining shared resources.
- Firmware clears the bit(s) of the selected resource(s) in the SW_FW_SYNC register.
- Firmware releases the software/firmware semaphore by clearing the FWSM.FWSMBI bit
- Firmware should wait some delay before trying to gain the semaphore once again (recommended 5-10 ms)

NOTE: This page intentionally left blank.

11.0 Electrical / Mechanical Specification

11.1 Introduction

This section describes the 82599 DC and AC (timing) electrical characteristics and the 82599 package specification. This includes absolute maximum rating, recommended operating conditions, power sequencing requirements, DC and AC timing specifications. The DC and AC characteristics include generic digital IO specification as well as other specifications of interfaces supported by the 82599.

11.2 Operating Conditions

11.2.1 Absolute Maximum Ratings

Table 11-1 Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Units
T _{case}	Case Temperature Under Bias	0	120	°C
T _{storage}	Storage Temperature Range	-65	140	°C
Vi	3.3V I/O input Voltage	Vss-0.5	4.0	V
VCC3P3	3.3V Periphery Supply Voltage	Vss -0.5	4.0	V
VCC1P2	1.2V Core/Periphery/Analog Supply Voltage	Vss-0.2	1.68V	V
ICC3P3	3.3V Periphery Supply Current	-	0.25	А
ICC1P2	1.2V Core/Periphery/Analog Supply Current	-	5.3	А

lote: Stresses above those listed in the table can cause permanent device damage. These values should not be used as limits for normal device operation. Exposure to absolute maximum rating conditions for an extended period of time can affect device reliability.

11.2.2 Recommended Operating Conditions

Table 11-2 Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units
Та	Operating Temperature Range Commercial (Ambient; 0 CFS airflow)	0		See Section 13.0	°C
Tj	Junction Temperature	Driven by min Ta		123	°C
VCC3P3	3.3V Power Supply	3.14	3.3	3.46	V
VCC1P2	1.2V Power Supply	1.14	1.2	1.26	V

Notes:

- For normal device operation, adhere to the limits in this table. Sustained operation of a device at conditions exceeding these
 values, even if they are within the absolute maximum rating limits, can result in permanent device damage or impaired device
 reliability. Device functionality to stated DC and AC limits is not guaranteed if conditions exceed recommended operating
 conditions.
- 2. Recommended operation conditions require accuracy of power supply of $\pm 5\%$ relative to the nominal voltage.
- 3. External Heat Sink (EHS) is needed.
- 4. Refer to Section 13.0 for a description of the allowable thermal environment.

11.3 Power Delivery

11.3.1 Power Supply Specifications

Table 11-3 VCC3P3 External Power Supply Specifications

Title	Description	Min	Max	Units
Rise Time	Time from 10% to 90% mark	0.1	100	ms
Monotonicity	Voltage dip allowed in ramp	n/a	0	mV
Slope	Ramp rate at any given time between 10% and 90% Min 0.8*V(min)/rise time (max) Max 0.8*V(max)/rise time (min)	24	28,800	V/S
Operational Range	Voltage range for normal operating conditions	3.3 — 5%	3.3 + 5%	V
Ripple	Maximum voltage ripple (peak to peak)	n/a	70	mV
Overshoot	Maximum overshoot allowed	n/a	100	mV
Overshoot Settling Time	Maximum overshoot allowed duration. (At that time delta voltage should be lower than 5 mV from steady state voltage)	n/a	0.05	ms

Table 11-4 VCC1P2 External Power Supply Specification

Title	Description	Min	Max	Units
Rise Time	Time from 10% to 90% mark	0.1	100	ms
Monotonicity	Voltage dip allowed in ramp	n/a	0	mV
Slope	Ramp rate at any given time between 10% and 90% Min 0.8*V(min)/rise time (max) Max 0.8*V(max)/rise time (min)	9.1	10000	V/S
Operational Range	Voltage range for normal operating conditions	1.14	1.26	V
Ripple	Maximum voltage ripple (peak to peak)	n/a	40	mV
Overshoot	Maximum overshoot allowed	n/a	60	mV
Overshoot Duration	Maximum overshoot allowed duration. (At that time delta voltage should be lower than 5 mV from steady state voltage)	0.0	0.05	ms

11.3.1.1 Power On/Off Sequence

The following relationships between the rise time of the different power supplies should be maintained at all times when external power supplies are in use to avoid risk of either latch-up or forward-biased internal diodes:

$$T_{3.3} \le T_{1.2}$$

 $V_{1.2} \le V_{3.3}$

At power-on and after 3.3V reaches 90% of its final value, the 1.2V voltage rail is allowed 100 ms to reach it's final operating voltage. Once the 1.2V power supply reaches 80% of it's final value the 3.3V power supply should always be above 80% of it's final value until power down.

For power down, it is recommended to turn off all rails at the same time and allow voltage to decay.

Table 11-5 Power Sequencing for the 82599

Symbol	Parameter	Min	Max	units
T _{3_1}	VCC3P3 (3.3V) stable to VCC1P2 (1.2V) stable	0	100	ms
Tm-per, Tm-ppo	3.3V core to PE_RST_N and MAIN_PWR_OK on	0		ms
Tper-m, Tppo-m	PE_RST_Nand MAIN_PWR_OK off before 3.3V core down	0		ms
Tlpgw	LAN_PWR_GOOD Minimum Width	5		μS
Tlpg-per	LAN_PWR_GOOD High Setup	100		ms
Tlpg	LAN_PWR_GOOD High Hold	40	80	ms

Figure 11-1 Power and Reset Sequencing

In-Rush Current 11.3.2

Note: NICs should limit in-rush current to under 3A from 3.3V power supply and

2.1A from 12V power supply

11.4 DC/AC Specification

DC Specifications 11.4.1

Table 11-6 Power Summary for Dual Port Devices (82599ES, 82599EB)

Interface	Typical [W] TTT, 60 °C, Vnom, 512 B Security On ¹		Maximu FFF, 125 °C, V Securit	Vnom, 512 B	
	SP ²	DP ³	SP	DP	
кх	2.3	2.7	3.1	3.5	
XAUI/KX4	3.3	4.5	4.0	5.2	
SFI Optics	3.4	4.7	4.2	5.6	
SFI Twinax	3.6	5.2	4.5	6.2	
KR (IEEE)	3.3	4.5	4.1	5.4	

^{1.} The security engine in 10 GbE mode contributes 200 mW maximum power (180 mW typical power).

922 331520-004

SP = Single port.
 DP = Dual port.

Table 11-7 Power Summary for Single Port Device (82599EN)

Interface	Typical [W] TTT, 60 °C, Vnom, 512 B Security On ¹			Maximum [W] F, 125 °C, Vnom, 512 B Security On ¹		
	SP ²		SP			
SFI Optics	3.4		4.2			
SFI Twinax	3.6		4.5			

^{1.} The security engine in 10 GbE mode contributes 200 mW maximum power (180 mW typical power).

11.4.1.1 Current Consumption

The 82599 priorities for power reduction are as follows (in descending order):

• TDP: D0 active @ 10 GbE maximum load, fast silicon

• D0 idle: 10 GbE/1 GbE link and no activity

• D0 idle: 10 GbE/1 GbE link with one port disabled

• System sleep: D3cold with wake (link at 10 GbE or 1 GbE)

• System Sleep: D3cold without wake and without manageability

· Other states

The following tables list the targets for device power. The numbers listed apply to device current and power and do not include power losses on external components.

Table 11-8 D0a — Active Link - Both Ports Active; L0s and L1 Disabled

	1000	Mb/s		(KX4, XAUI)	10 GbE	KR IEEE	SFI O	ptics	10 GbE	Twinax
Parameter	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Max
3.3v Idd [mA]	42	42	42	42	62	64	126	126	126	126
1.2v Idd [mA]	2170	2810	3660	4380	3570	4330	3590	4350	4010	4790
Power [mW]	2700	3500	4500	5400	4500	5400	4700	5600	5200	6200

Notes:

- 1. Typical conditions: typical material TJ = 60 °C, nominal voltages and continuous network traffic at link speed.
- 2. Maximum conditions: fast material maximum operating temperature (TJ) values, typical voltage values and continuous network traffic at link speed.
- 3. Maximum power at $110 \, ^{\circ}\text{C}$ is expected to be $\sim 0.5 \, \text{W}$ less than the power at $123 \, ^{\circ}\text{C}$ (max TJ).
- 4. Power numbers are measured with security offload on. Disabling it reduces ~200 mW (max) and 180 mW (Typical).

^{2.} SP = Single port.

Table 11-9 D0a — Active Link - Single Port Active; L0s and L1 Disabled

	1000	Mb/s	10 GbE (KX4, CX4, XAUI)		10 GbE KR IEEE		SFI Optics		10 GbE Twinax	
Parameter	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Max
3.3v Idd [mA]	42	42	42	42	53	53	84	84	84	84
1.2v Idd [mA]	1830	2460	2600	3240	2560	3260	2570	3270	2780	3490
Power [mW]	2300	3100	3300	4000	3300	4100	3400	4200	3600	4500

Notes:

- 1. Typical conditions: typical material TJ = 60 °C, nominal voltages and continuous network traffic at link speed.
- 2. Maximum conditions: fast material maximum operating temperature (TJ) values, typical voltage values and continuous network traffic at link speed.
- 3. Maximum power at 110 $^{\circ}$ C is expected to be \sim 0.5 W less than the power at 123 $^{\circ}$ C (max TJ).
- 4. Power numbers are measured with security offload on. Disabling it reduces ~200 mW (max) and 180 mW (Typical).

Table 11-10 D0a — Idle Link - Both Ports Active, L0s and L1 Disabled, No Rx/Tx Traffic

	1000	Mb/s		(KX4, KAUI)	10 GbE	KR IEEE	SFI C	ptics	10 GbE	Twinax
Parameter	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Max
3.3v Idd [mA]	42	42	42	42	62	64	126	126	126	126
1.2v Idd [mA]	2110	2740	3070	3740	2930	3655	2950	3675	3770	4120
Power [mW]	2700	3400	3800	4600	3700	4600	4000	4800	4500	5400

Notes:

- 1. Typical conditions: typical material TJ = 60 °C, nominal voltages and no network traffic.
- 2. Maximum conditions: fast material maximum operating temperature (TJ) values, nominal voltages and no network traffic.

Table 11-11 Typical D3cold Wake Up Enable - One Port With Wakeup Enabled; Second Port With Wakeup Disabled

	1000 Mb/s		10 GbE (KX4	, XAUI, CX4)
Parameter	Тур	Max	Тур	Max
3.3v Idd [mA]	31.5	31.5	26.8	31.5
1.2v Idd [mA]	1010.1	1010.1	1291.5	1396.5
Power [mW]	1316.1	1316.1	1638.2	1779.8

Notes:

- 1. In this measurement one port is set to D3 wake-up enabled and one port at D3 no wake up.
- 2. Typical conditions: typical material TJ = 25, nominal voltages and no network traffic.
- 3. TJ = 25, nominal voltages and no network traffic.

Table 11-12 Power Down

	IDDq (Tj =	123 °C)	IDDq (Tj	= 25 °C)	D3cold No Wake Up	
Parameter	Тур	Max	Тур	Max	Тур	Max
3.3v Idd [mA]	2	2	2	2	15.8	15.8
1.2v Idd [mA]	230	670	60	100	720.3	805.4
Power [mW]	280	810	75	125	916.3	1018.4

Notes:

- 1. Typical conditions: typical material, nominal voltages and no network traffic.
- 2. Maximum conditions: fast material, nominal voltages and no network traffic.

11.4.1.2 Digital I/O DC Specifications

Table 11-13 Digital Functional 3.3V I/O DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Max	Units	Note
VOH	Output High Voltage	IOH = -8mA; VCC3P3 = Min	2.4		V	
VOL	Output Low Voltage	IOL = 8mA; VCC3P3=Min		0.4	V	
VOH _{led}	LED Output High Voltage	IOL = 12mA; VCC3P3 = Min	2.4		V	
VOL _{led}	LED Output Low Voltage	IOL = 12mA; VCC3P3 = Min		0.4	V	
VIH	Input High Voltage		2.0	VCC3P3 + 0.3	V	
VIL	Input Low Voltage		-0.3	0.8	V	
Iil	Input Current	VCC3P3 = Max; VIn = 3.6V/GND		15	μΑ	
PU	Internal pull-up		27	34	ΚΩ	
Cin	Pin capacitance			7	pF	[2]

Notes:

- 1. Table 11-13 applies to PE_RST_N, LED0[3:0], LED1[3:0], LAN_PWR_GOOD, MAIN_PWR_OK, JTCK, JTDI, JTDO, JTMS, SDP0[7:0], SDP1[7:0], FLSH_SI, FLSH_SO, FLSH_SCK, FLSH_CE_N, EE_DI, EE_DO, EE_SK, EE_CS_N, MDIO0, MDC1 and MDIO1, LAN0_DIS_N, LAN1_DIS_N, AUX_PWR, OSC_SEL.
- 2. Characterized not tested.

11.4.1.3 Open Drain I/O DC Specification

Table 11-14 Open Drain I/O DC Characteristics

Symbol	Parameter	Condition	Min	Max	Units	Note
Vih	Input High Voltage		VCC3P3 * 0.7	VCC3P3 + 0.5	V	
Vil	Input Low Voltage		-0.3	VCC3P3 * 0.3	V	
Ileakage	Output Leakage Current	0 ≤ Vin ≤ VCC3P3 max	-10	10	μА	[2]
Vol	Output Low Voltage	@ Ipullup = 4 mA		0.4	V	[5]
Ipullup	Current Sink	Vol = 0.4V		4	mA	[4]
Cin	Input Pin Capacitance			7	pF	[3]
Ioffsmb	Input leakage Current	VCC3P3 off or floating	-10	10	μΑ	[2]

Notes:

- 1. Table 11-14 applies to SMBD, SMBCLK, SMBALRT _N, PE_WAKE_N, SCL0, SDA0, SCL1 and SDA1.
- 2. Device must meet this specification whether powered or unpowered.
- 3. Characterized, not tested.
- 4. The IPULLUP max specification is determined primarily by the need to operate at a certain frequency with a certain capacitive load.
- 5. OD no high output drive. VOL max=0.4V at 8mA, VOL max=0.2V at 0.1mA.

The buffer specification meets the SMBus specification requirements defined at: www.smbus.org.

11.4.1.4 NC-SI I/O DC Specification

Table 11-15 NC-SI I/O DC Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max	Units
Bus High Reference	Vref ^[1]		3.0	3.3	3.46	V
Signal Voltage Range	Vabs		-0.300		3.765	V
Input Low Voltage	Vil				0.8	V
Input High Voltage	Vih		2.0			V
Output Low Voltage	Vol	Iol = 4mA, Vref= Vref _{min}	0		0.4	V
Output High Voltage	Voh	Iol = -4mA, Vref= Vref _{min}	2.4		Vref	V
Input High Current	Iih	Vin = 3.6V, Vref = 3.6V	0		200	μА
Input Low Current	Iil	Vin = 0V, Vref _{min} to Vref _{max}	-20		0	μΑ

Table 11-15 NC-SI I/O DC Characteristics (Continued)

Parameter	Symbol	Conditions	Min.	Тур.	Max	Units
Clock Midpoint Reference Level	Vckm		1.4			V
Leakage Current for Output Signals in High-Impedance State	Iz	0 ≤ Vin ≤ Vih _{max} @Vref = Vref _{max}	-20		20	μΑ

Notes:

- 1. Vref = Bus high reference level. This parameter replaces the term 'supply voltage' since actual devices may have internal mechanisms that determine the operating reference for the sideband interface that are different from the devices overall power supply inputs. Vref is a reference point that is used for measuring parameters such as overshoot and undershoot and for determining limits on signal levels that are generated by a device. In order to facilitate system implementations, a device must provide a mechanism (e.g. a power supply pin, internal programmable reference, or reference level pin) to allow Vref to be set to within 20 mV of any point in the specified Vref range. This is to enable a system integrator to establish an interoperable Vref level for devices on the sideband interface. Although the NC-SI spec define the Vrefmax up to 3.6V, the 82599 supports the Vrefmax up to 3.46V (3.3V +5%).
- 2. Table 11-15 applies to NCSI_CLK_IN, NCSI_CRS_DV, NCSI_RXD[0:0], NCSI_TX_EN and NCSI_TXD[1:0].
- 3. Please refer also to the Network Controller Sideband Interface (NC-SI) Specification for more details.

11.4.2 Digital I/F AC Specifications

11.4.2.1 Digital I/O AC Specifications

Table 11-16 Digital Functional 3.3V I/O AC Electrical Characteristics

Parameters	Description	Min	Max	Condition	Note
F _{max}	Maximum Operating Frequency		50 MHz	Cload 25 pF	[2]
Tor	Output Rise Time	1 ns	5 ns	Cload 25 pF	
Tof	Output Fall Time	1 ns	5 ns	Cload 25 pF	
Todr	Core to Output Rise Delay Time	1 ns	7 ns	Cload 25 pF	[2]
Todf	Core to Output Fall Delay Time	1 ns	7 ns	Cload 25 pF	[2]
Tidr	Input to Core Rise Delay Time	0. 2ns	1.3 ns	Internal Load 200 pF	[2]
Tidf	Input to Core Fall Delay time	0.2 ns	1.3 ns	Internal Load 200 pF	[2]
Tir	Internal Core Rise Time	0.03 ns	0.1 ns	Internal Load 200 pF	[1],[2]

Table 11-16 Digital Functional 3.3V I/O AC Electrical Characteristics (Continued)

Paramet	ters	Description	Min	Max	Condition	Note
Tif		nternal Core Fall ime	0.03 ns	0.1 ns	Internal Load 200 pF	[1],[2]

Notes:

- 1. The input delay test conditions: Maximum input level = VIN = 2.7V; Input rise/fall time (0.2VIN to 0.8VIN) = 1 ns (Slew Rate ~ 1.5 ns).
- 2. Characterized but not tested.
- 3. Table 11-16 applies to PE_RST_N, LED0[3:0], LED1[3:0], LAN_PWR_GOOD, MAIN_PWR_OK, JTCK, JTDI, JTDO, JTMS, SDP0[7:0], SDP1[7:0], FLSH_SI, FLSH_SO, FLSH_SCK, FLSH_CE_N, EE_DI, EE_DO, EE_SK, EE_CS_N, MDIO0, MDC1 and MDIO1.
- 4. Table 11-16 applies to PE_RST_N, LED0[3:0], LED1[3:0], LAN_PWR_GOOD, MAIN_PWR_OK, JTCK, JTDI, JTDO, JTMS, SDP0[7:0], SDP1[7:0], FLSH_SI, FLSH_SO, FLSH_SCK, FLSH_CE_N, EE_DI, EE_DO, EE_SK, EE_CS_N, MDIO0, MDC1 and MDIO1, LAN0_DIS_N, LAN1_DIS_N, AUX_PWR, OSC_SEL.

5.

Table 11-17 Digital Test Port 3.3V I/O AC Electrical Characteristics

Parameters	Description	Min	Max	Condition	Note
F _{max}	Maximum Operating Frequency		312.5 MHz	Cload 16 pF	[2]
Tor	Output Rise Time	0.2 ns	1 ns	Cload 16 pF	
Tof	Output Fall Time	0.2 ns	1 ns	Cload 16 pF	
Todr	Core to Output Rise Delay Time	0.2 ns	2 ns	Cload 16 pF	[2]
Todf	Core to Output Fall Delay Time	0.2 ns	2 ns	Cload 16 pF	[2]
Tidr	Input to Core Rise Delay Time	0.2 ns	1.3 ns	Internal Load 200 pF	[2]
Tidf	Input to Core Fall Delay Time	0.2 ns	1.3 ns	Internal Load 200 pF	[2]
Tir	Internal Core Rise Time	0.03 ns	0.1 ns	Internal Load 200 pF	[1],[2]
Tif	Internal Core Fall Time	0.03 ns	0.1 ns	Internal Load 200 pF	[1],[2]

Notes:

- 1. The input delay test conditions: Maximum input level = VIN = 2.7V; Input rise/fall time (0.2VIN to 0.8VIN) = 1 ns (Slew Rate ~ 1.5 ns).
- 2. Characterized but not tested.
- 3. Table 11-17 applies to Digital Test Pins and Pins used for Scan out during Scan operation.

Figure 11-2 Digital 3.3V I/O Output Timing Diagram

Figure 11-3 Digital 3.3V I/O Input Timing Diagram

11.4.2.2 SMBus and I²C AC Specifications

The 82599 meets the SMBus AC specification as defined in SMBus specification version 2, section 3.1.1 (http://www.smbus.org/specs/) and the I^2C specification.

The 82599 also supports a 400 KHz SMBus (as a slave) and meets the specifications listed in the following table:

Table 11-18 Support for 400 KHz SMBus

Symbol	Parameter	Min	Тур	Max	Units
F _{SMB}	SMBus Frequency	10		400	KHz
T _{BUF}	Time Bus Free Before New Transmission Can Start (Between Stop and Start)	20			μs
T _{HD,STA}	Hold Time After Start Condition. After This Period, the First Clock is Generated.	0.6			μѕ
T _{SU,STA}	Start Condition Setup Time	0.6			μs
T _{SU,STO}	Stop Condition Setup Time	0.6			μs
T _{HD,DAT}	Data in Hold Time	0			μs
T _{SU,DAT}	Data in Setup Time	0.1			μs
T _{LOW}	SMBClk Low Time	1.3			μs
T _{HIGH}	SMBClk High Time	0.6			μs

Notes:

1. Table 11-18 applies to SMBD, SMBCLK, SCL0, SDA0, SCL1 and SDA1.

Figure 11-4 SMBus I/F Timing Diagram

11.4.2.3 Flash AC Specification

The 82599 is designed to support a serial Flash. Applicable over recommended operating range from Ta = 0 °C to +70 °C, VCC3P3 = 3.3V, Cload = 16 pF (unless otherwise noted). For Flash I/F timing specifications, see Table 11-19 and Figure 11-5.

Table 11-19 Flash I/F Timing Parameters

Symbol	Parameter	Min	Тур	Max	Units	Note
t _{SCK}	FLSH_SCK Clock Frequency	0	12.5	15	MHz	[2]
t _{RI}	FLSH_SO Rise Time		2.5	20	ns	
t _{FI}	FLSH_SO Fall Time		2.5	20	ns	
t _{WH}	FLSH_SCK High Time	20	50		ns	[1]
t _{WL}	FLSH_SCK Low Time	20	50		ns	[1]
t _{CS}	FLSH_CE_N High Time	25			ns	
t _{CSS}	FLSH_CE_N Setup Time	25			ns	
t _{CSH}	FLSH_CE_N Hold Time	25			ns	
t _{SU}	Data-in Setup Time	5			ns	
t _H	Data-in Hold Time	5			ns	
t _V	Output Valid			20	ns	
t _{HO}	Output Hold Time	0			ns	
t _{DIS}	Output Disable Time			100	ns	
t _{EC}	Erase Cycle Time per Sector			1.1	Seconds	
t _{BPC}	Byte Program Cycle Time		60	100	μs	

Notes:

- 1. 50% duty cycle.
- 2. Clock is either 25 MHz or 26.04 MHz divided by 2.
- 3. Table 11-19 applies to FLSH_SI, FLSH_SO, FLSH_SCK and FLSH_CE_N.

Figure 11-5 Flash I/F Timing Diagram

11.4.2.4 EEPROM AC Specification

The 82599 is designed to support a standard serial EEPROM. Applicable over recommended operating range from Ta = -0 °C to +70 °C, VCC3P3 = 3.3V, Cload = 16pF (unless otherwise noted). For EEPROM I/F timing specifications, see Table 11-20 and Figure 11-6.

Table 11-20 EEPROM I/F Timing Parameters

Symbol	Parameter	Min	Тур	Max	Units	Note
t _{SCK}	EE_CK Clock Frequency		2	2.1	MHz	
t _{RI}	EE_DO Rise Time		2.5 ns	2 μs	ns / μs	
t _{FI}	EE_DO Fall Time		2.5 ns	2 μs	ns / μs	
t _{WH}	EE_CK High Time	200	250		ns	
t _{WL}	EE_CK Low Time	200	250		ns	
t _{CS}	EE_CS_N High Time	250			ns	
t _{CSS}	EE_CS_N Setup Time	250			ns	
t _{CSH}	EE_CS_N Hold Time	250			ns	
t _{SU}	Data-in Setup Time	50			ns	
t _H	Data-in Hold Time	50			ns	
t _V	Output Valid	0		200	ns	
t _{HO}	Output Hold Time	0			ns	

Table 11-20 EEPROM I/F Timing Parameters (Continued)

Symbol	Parameter	Min	Тур	Max	Units	Note
t _{DIS}	Output Disable Time			250	ns	
t _{WC}	Write Cycle Time			10	ms	

Notes:

1. Table 11-20 applies to EE_DI, EE_DO, EE_SK and EE_CS_N.

Figure 11-6 EEPROM I/F Timing Diagram

11.4.2.5 NC-SI AC Specifications

The 82599 supports the NC-SI standard as defined in the DMTF Network Controller Sideband Interface (NC_SI) specification. The NC-SI timing specifications can be found in Table 11-21 and Figure 11-7.

Table 11-21 NC-SI Interface AC Specifications

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units	Notes
REF_CLK Frequency				50	50+100 ppm	MHz	
REF_CLK Duty Cycle			35		65	%	2
Clock-to-Out (10pF<=cload<=50 pF)	Тсо		2.5		12.5	ns	1,3
Skew Between Clocks	Tskew				1.5	ns	
TXD[1:0], TX_EN, RXD[1:0], CRS_DV, RX_ER Data Setup to REF_CLK Rising Edge	Tsu		3			ns	3

Table 11-21 NC-SI Interface AC Specifications (Continued)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units	Notes
TXD[1:0], TX_EN, RXD[1:0], CRS_DV, RX_ER Data Hold From REF_CLK Rising Edge	Thd		1			ns	3
Signal Rise/Fall Time	Tr/Tf		1		6	ns	4
REF_CLK Rise/Fall Time	Tckr/Tckf		0.5		3.5	ns	
Interface Power-Up High Impedance Interval	Tpwrz		2			μs	
Power Up Transient Interval (recommendation)	Tpwrt				100	ns	
Power Up Transient Level (recommendation)	Vpwrt		-200		200	mV	
Interface Power-Up Output Enable Interval	Tpwre				10	ms	
EXT_CLK Startup Interval	Tclkstrt				100	ms	

Notes:

- 1. This timing relates to the output pins timing while Tsu and Thd relate to timing at the input pins.
- 2. REF_CLK duty cycle measurements are made from Vckm to Vckm. Clock skew Tskew is measured from Vckm to Vckm of two NC-SI devices and represents maximum clock skew between any two devices in the system.
- 3. All timing measurements are made between Vckm and Vm. All output timing parameters are measured with a capacitive load between 10 pF and 50 pF.
- 4. Rise and fall time are measured between points that cross 10% and 90% of Vref (see Table 11-15). The middle points (50% of Vref) are marked as Vckm and Vm for clock and data, respectively.

Figure 11-7 NC-SI AC Timing Diagram

11.4.2.6 JTAG AC Specification

The 82599 is designed to support the IEEE 1149.1 standard. The following timing specifications are applicable over recommended operating range from Ta = 0 $^{\rm o}$ C to +70 $^{\rm o}$ C, VCC3P3 = 3.3V, Cload =

16 pF (unless otherwise noted). For JTAG I/F timing specifications, see Table 11-22 and Figure 11-8.

Table 11-22 JTAG I/F Timing Parameters

Symbol	Parameter	Min	Тур	Max	Units	Note
t _{JCLK}	JTCK Clock Frequency			10	MHz	
t _{JH}	JTMS and JTDI Hold Time	10			ns	
t _{JSU}	JTMS and JTDI Setup Time	10			ns	
t _{JPR}	JTDO Propagation Delay			15	ns	

Notes:

- 1. Table 11-22 applies to JTCK, JTMS, JTDI and JTDO.
- 2. Timing measured relative to JTCK reference voltage of VCC3P3/2.

Figure 11-8 JTAG AC Timing Diagram

11.4.2.7 MDIO AC Specification

The 82599 is designed to support the MDIO specifications defined in IEEE 802.3 clause 22. The following timing specifications are applicable over recommended operating range from Ta = 0 °C to +70 °C, VCC3P3 = 3.3V, Cload = 16 pF (unless otherwise noted). For MDIO I/F timing specifications, see Table 11-23, Figure 11-9 and Figure 11-10.

Table 11-23 MDIO I/F Timing Parameters

Symbol	Parameter	Min	Тур	Max	Units	Note
t _{MCLK}	MDC Clock Frequency	2.4		24	MHz	
t _{MH}	MDIO Hold Time	10			ns	
t _{MSU}	MDIO Setup Time	10			ns	
t _{MPR}	MDIO Propagation Delay	10		30	ns	

Notes:

- 1. Table 11-23 applies to MDIO0, MDC0, MDIO1 and MDC1.
- 2. Timing measured relative to MDC reference voltage of 2.0V (Vih).

Figure 11-9 MDIO Input AC Timing Diagram