Advances in Quantitative MRI: Acquisition, Estimation, and Applications

Gopal Nataraj

Dissertation Proposal May 15, 2017

Dept. of Electrical Engineering and Computer Science University of Michigan

Goal: rapidly and reliably localize biomarkers from MR data

• biomarker measurable tissue property (e.g., elasticity) that characterizes a biological process (e.g., sclerosis)

- biomarker measurable tissue property (e.g., elasticity) that characterizes a biological process (e.g., sclerosis)
- localize produce quantitative MR images

- biomarker measurable tissue property (e.g., elasticity) that characterizes a biological process (e.g., sclerosis)
- localize produce quantitative MR images
- rapidly fast acquisition, fast estimation

- biomarker measurable tissue property (e.g., elasticity) that characterizes a biological process (e.g., sclerosis)
- localize produce quantitative MR images
- rapidly fast acquisition, fast estimation
- reliably accurate signal models, precise estimation

Goal: rapidly and reliably localize biomarkers from MR data

- biomarker measurable tissue property (e.g., elasticity) that characterizes a biological process (e.g., sclerosis)
- localize produce quantitative MR images
- rapidly fast acquisition, fast estimation
- reliably accurate signal models, precise estimation

Challenges (beyond conventional MRI):

- complicated, nonlinear signal models
- more data required, so longer scan times

Advances in Quantitative MRI:

• Acquisition [Ch. 4]

How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

• Estimation [Ch. 5]
Given data from an informative acquisition,
how can we rapidly and accurately quantify these biomarkers?

Advances in Quantitative MRI:

- Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?
- Estimation [Ch. 5]
 Given data from an informative acquisition,
 how can we rapidly and accurately quantify these biomarkers?
- **Application** [Ch. 6] Using these tools, can we design a state-of-the-art biomarker?

Advances in Quantitative MRI:

- Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?
- Estimation [Ch. 5]
 Given data from an informative acquisition,
 how can we rapidly and accurately quantify these biomarkers?
- **Application** [Ch. 6] Using these tools, can we design a state-of-the-art biomarker?

Signal Model

After reconstruction, single voxel y_d in dth image modeled as

$$y_d = s_d(\mathbf{x}; \boldsymbol{\nu}, \mathbf{p}_d) + \epsilon_d \tag{1}$$

- $\mathbf{x} \in \mathbb{R}^L$
- $\nu \in \mathbb{R}^K$
- $\mathbf{p}_d \in \mathbb{R}^A$
- $s_d: \mathbb{R}^{L+K+A} \mapsto \mathbb{C}$
- $\epsilon_d \in \mathbb{C}$

latent free parameters

known parameters

acquisition parameters

dth signal model

noise $\sim \mathbb{C}\mathcal{N}ig(0,\sigma_d^2ig)$

Signal Model

A scan profile contains D voxels $\mathbf{y} := [y_1, \dots, y_D]^\mathsf{T}$, modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) + \boldsymbol{\epsilon} \tag{1}$$

•
$$\mathbf{x} \in \mathbb{R}^L$$

• $\nu \in \mathbb{R}^K$

• $P := [p_1, \ldots, p_D]$

• $\mathbf{s}: \mathbb{R}^{L+K+AD} \mapsto \mathbb{C}^D$

ullet $\epsilon \sim \mathbb{C}\mathcal{N}(oldsymbol{0}_D, oldsymbol{\Sigma})$

latent free parameters

known parameters

acquisition parameter matrix

vector signal model

noise, with $\Sigma := \mathsf{diag} ig(\sigma_1^2, \dots, \sigma_D^2 ig)$

Signal Model

A scan profile contains D voxels $\mathbf{y} := [y_1, \dots, y_D]^\mathsf{T}$, modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) + \boldsymbol{\epsilon} \tag{1}$$

•
$$\mathbf{x} \in \mathbb{R}^L$$
 latent free parameters

•
$$u \in \mathbb{R}^K$$
 known parameters

•
$$P := [p_1, \dots, p_D]$$
 acquisition parameter matrix

•
$$\mathbf{s}: \mathbb{R}^{L+K+AD} \mapsto \mathbb{C}^D$$
 vector signal model

$$ullet$$
 $\epsilon \sim \mathbb{C} \mathcal{N}(\mathbf{0}_D, \mathbf{\Sigma})$ noise, with $\mathbf{\Sigma} := \mathsf{diag} \left(\sigma_1^2, \dots, \sigma_D^2\right)$

Task: design P to enable precise unbiased estimation of x

When \mathbf{s} is analytic in \mathbf{x} (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}))^{\mathsf{H}} \boldsymbol{\Sigma}^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{2}$$

When s is analytic in x (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}))^{\mathsf{H}} \boldsymbol{\Sigma}^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{2}$$

When **F** is invertible, Cramér-Rao Bound (CRB) [Cramér, 1946] ensures covariance of unbiased estimates $\hat{\mathbf{x}}$ of \mathbf{x} satisfy

$$\operatorname{cov}(\widehat{\mathbf{x}}; \boldsymbol{\nu}, \mathbf{P}) \succeq \mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{3}$$

When s is analytic in x (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}))^{\mathsf{H}} \boldsymbol{\Sigma}^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{2}$$

When **F** is invertible, Cramér-Rao Bound (CRB) [Cramér, 1946] ensures covariance of unbiased estimates $\hat{\mathbf{x}}$ of \mathbf{x} satisfy

$$\operatorname{cov}(\widehat{\mathbf{x}}; \boldsymbol{\nu}, \mathbf{P}) \succeq \mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{3}$$

Maximum-likelihood (ML) estimates achieve CRB asymptotically or equivalently (for Gaussian data) at sufficiently high SNR.

When s is analytic in x (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \nu, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \nu, \mathbf{P}))^{\mathsf{H}} \mathbf{\Sigma}^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \nu, \mathbf{P}). \tag{2}$$

When **F** is invertible, Cramér-Rao Bound (CRB) [Cramér, 1946] ensures covariance of unbiased estimates $\hat{\mathbf{x}}$ of \mathbf{x} satisfy

$$\operatorname{cov}(\widehat{\mathbf{x}}; \boldsymbol{\nu}, \mathbf{P}) \succeq \mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}).$$
 (3)

Maximum-likelihood (ML) estimates achieve CRB asymptotically or equivalently (for Gaussian data) at sufficiently high SNR.

Idea: choose ${\bf P}$ such that imprecision matrix ${\bf F}^{-1}$ "small"

Idea: choose P to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \text{tr}\Big(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\Big), \tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Idea: choose P to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Idea: choose P to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Two problems considered:

min-max scan design

[Nataraj et al., 2017]

$$\mathbf{\breve{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \max_{\substack{\mathbf{x} \in \mathbb{X}^{t} \\ \boldsymbol{\nu} \in \mathbb{N}^{t}}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}), \right\} \tag{5}$$

where $\mathbb{X}^t \subseteq \mathbb{R}^L$ and $\mathbb{N}^t \subseteq \mathbb{R}^K$ are "tight" ranges of interest and \mathbb{P} is defined by acquisition/timing constraints

Idea: choose **P** to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Two problems considered:

min-max scan design

[Nataraj et al., 2017]

$$\check{\mathbf{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \max_{\substack{\mathbf{x} \in \mathbb{X}^t \\ \boldsymbol{\nu} \in \mathbb{N}^t}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}), \right\} \tag{5}$$

Bayesian scan design

[§6.3]

$$\check{\mathbf{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \, \mathsf{E}_{\mathbf{x}, \nu}(\Psi(\mathbf{x}; \nu, \mathbf{P})) \right\} \tag{6}$$

Idea: choose **P** to minimize the objective

$$\Psi(\mathbf{x}; \nu, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \nu, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Two problems considered:

min-max scan design

[Nataraj et al., 2017]

$$\check{\mathbf{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \max_{\substack{\mathbf{x} \in \mathbb{X}^t \\ \boldsymbol{\nu} \in \mathbb{N}^t}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}), \right\} \tag{5}$$

Bayesian scan design

[§6.3]

$$\check{\mathbf{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \, \mathsf{E}_{\mathbf{x}, \nu}(\Psi(\mathbf{x}; \nu, \mathbf{P})) \right\} \tag{6}$$

Detailed Example Study

Task: design fast acquisition for precise estimation of relaxation parameters T_1 , T_2 in white/gray matter (WM/GM) of brain

Detailed Example Study

Task: design fast acquisition for precise estimation of relaxation parameters T_1 , T_2 in white/gray matter (WM/GM) of brain

- Consider scan profiles consisting of two fast pulse sequences
 - Spoiled Gradient-Recalled Echo (SPGR) [Zur et al., 1991]
 - Dual-Echo Steady-State (DESS) [Redpath and Jones, 1988]

Detailed Example Study

Task: design fast acquisition for precise estimation of relaxation parameters T_1 , T_2 in white/gray matter (WM/GM) of brain

- Consider scan profiles consisting of two fast pulse sequences
 - Spoiled Gradient-Recalled Echo (SPGR) [Zur et al., 1991]
 - Dual-Echo Steady-State (DESS) [Redpath and Jones, 1988]
- For each scan profile feasible under total time constraint:
 - 1. Let **s** model corresponding single-component signal
 - $\mathbf{x} \leftarrow [m_0, T_1, T_2]^\mathsf{T}$, where m_0 is a scale factor
 - ullet u \leftarrow flip angle variation
 - ullet P \leftarrow nominal flip angles, repetition times
 - 2. Optimize **P** subject to flip angle, sequence timing constraints
 - $\mathbf{W} \leftarrow \mathsf{diag}(0, 0.1, 1)$ emphasizes T_1, T_2 est roughly equally
 - ullet \mathbb{X}^t chosen to focus on WM/GM at 3T field strength
 - ullet \mathbb{N}^{t} chosen to allow 10% flip angle variation

Scan Profile Comparison

(#SPGR, #DESS) Profiles	(2,1)	(1, 1)	(0, 2)
SPGR nom. flip (deg)	(15, 5)	15	_
DESS nom. flip (deg)	30	10	(35, 10)
SPGR rep. times (ms)	(12.2, 12.2)	13.9	_
DESS rep. times (ms)	17.5	28.0	(24.4, 17.5)
Optimized Cost	4.0	4.9	3.5

Scan Profile Comparison

(#SPGR, #DESS) Profiles	(2,1)	(1, 1)	(0, 2)
SPGR nom. flip (deg)	(15, 5)	15	_
DESS nom. flip (deg)	30	10	(35, 10)
SPGR rep. times (ms)	(12.2, 12.2)	13.9	_
DESS rep. times (ms)	17.5	28.0	(24.4, 17.5)
Optimized Cost	4.0	4.9	3.5

Main finding: 2 DESS sequences can yield T_1 , T_2 WM/GM estimates that are at least as precise as T_1 , T_2 estimates from SPGR/DESS scan profiles, under this competitive time constraint.

Numerical Simulation

- Simulated many WM-like, GM-like voxel realizations
- ullet Studied sample statistics of $\mathcal{T}_1,\,\mathcal{T}_2$ ML estimates $\widehat{\mathcal{T}}_1^{\mathrm{ML}},\,\widehat{\mathcal{T}}_2^{\mathrm{ML}}$

Numerical Simulation

- Simulated many WM-like, GM-like voxel realizations
- \bullet Studied sample statistics of $\mathit{T}_{1},\,\mathit{T}_{2}$ ML estimates $\widehat{\mathit{T}}_{1}^{\mathrm{ML}},\,\widehat{\mathit{T}}_{2}^{\mathrm{ML}}$

Profile	(2, 1)	(1, 1)	(0,2)	Truth
WM $\widehat{\mathcal{T}}_1^{ ext{ML}}$	830 ± 17	830 ± 15	830 ± 14	832
GM $\widehat{\mathcal{T}}_1^{ ext{ML}}$	$1330 \pm 30.$	1330 ± 24	1330 ± 24	1331
WM $\widehat{T}_2^{ ext{ML}}$	$80. \pm 1.0$	$80. \pm 2.1$	79.6 ± 0.94	79.6
GM $\widehat{T}_2^{ ext{ML}}$	$110.\pm1.4$	$110.\pm3.0$	$110.\pm1.6$	110

Table 1: $\widehat{T}_1^{\mathrm{ML}}, \widehat{T}_2^{\mathrm{ML}}$ sample means \pm sample standard deviations

Experimental Setup

Candidate (2,1), (1,1), (0,2) SPGR/DESS scan profiles

- Prescribed optimized nominal flip angles, repetition times
- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 1m37s scan time for each profile

Experimental Setup

Candidate (2,1), (1,1), (0,2) SPGR/DESS scan profiles

- Prescribed optimized nominal flip angles, repetition times
- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 1m37s scan time for each profile

Reference scan profile

- Four inversion recovery (IR) scans for T_1 estimation
- Four spin-echo (SE) scans for T_2 estimation
- 256×256 matrix over $24 \times 24 \times 0.5$ cm FOV
- Required 40m58s scan time total

Experimental Setup

Candidate (2,1), (1,1), (0,2) SPGR/DESS scan profiles

- Prescribed optimized nominal flip angles, repetition times
- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 1m37s scan time for each profile

Reference scan profile

- ullet Four inversion recovery (IR) scans for \mathcal{T}_1 estimation
- Four spin-echo (SE) scans for T_2 estimation
- 256×256 matrix over $24 \times 24 \times 0.5$ cm FOV
- Required 40m58s scan time total

Bloch-Siegert (BS) acquisition for separate flip angle calibration

Acquired 2 BS-shifted SPGR scans in 1m40s total

Phantom Accuracy Results

Compared against NIST NMR measurements [Keenan et al., 2016]

Phantom Precision Results

- Repeated each profile 10 times
- ullet Estimated T_1, T_2 std dev of typical voxel across repetitions

Phantom Precision Results

	(2, 1)	(1, 1)	(0, 2)
V5 $\widehat{\sigma}_{\widehat{T}_1^{\mathrm{ML}}}$	50 ± 12	$40\pm10.$	39 ± 9.4
V6 $\widehat{\sigma}_{\widehat{\mathcal{T}}_1^{ ext{ML}}}$	70 ± 18	60 ± 15	70 ± 16
V7 $\widehat{\sigma}_{\widehat{T}_1^{\mathrm{ML}}}$	60 ± 13	50 ± 13	50 ± 13
V5 $\widehat{\sigma}_{\widehat{\mathcal{T}}_2^{\mathrm{ML}}}$	2.6 ± 0.63	6 ± 1.4	3.5 ± 0.84
V6 $\widehat{\sigma}_{\widehat{\mathcal{T}}_2^{ ext{ML}}}$	1.9 ± 0.46	5 ± 1.1	2.3 ± 0.54
V7 $\widehat{\sigma}_{\widehat{T}_2^{\mathrm{ML}}}$	1.4 ± 0.34	3.4 ± 0.80	1.5 ± 0.35

Table 2: Pooled sample standard deviations \pm pooled standard errors of sample standard deviations (ms), from optimized SPGR/DESS profiles.

Phantom Precision Results

	(2, 1)	(1, 1)	(0, 2)
V5 $\widehat{\sigma}_{\widehat{T}_1^{\mathrm{ML}}}$	50 ± 12	40 ± 10 .	39 ± 9.4
V6 $\widehat{\sigma}_{\widehat{\mathcal{T}}_1^{\mathrm{ML}}}$	70 ± 18	60 ± 15	70 ± 16
V7 $\widehat{\sigma}_{\widehat{T}_1^{\mathrm{ML}}}$	60 ± 13	50 ± 13	50 ± 13
V5 $\widehat{\sigma}_{\widehat{T}_2^{\mathrm{ML}}}$	2.6 ± 0.63	6 ± 1.4	3.5 ± 0.84
V6 $\widehat{\sigma}_{\widehat{\mathcal{T}}_2^{\mathrm{ML}}}$	1.9 ± 0.46	5 ± 1.1	2.3 ± 0.54
V7 $\widehat{\sigma}_{\widehat{T}_2^{\mathrm{ML}}}$	1.4 ± 0.34	3.4 ± 0.80	1.5 ± 0.35

Table 2: Pooled sample standard deviations \pm pooled standard errors of sample standard deviations (ms), from optimized SPGR/DESS profiles.

Similar trends across profiles of empirical vs. theoretical std dev!

In vivo Results

```
../{\tt fig/c,scn-dsgn/2016-05-31,brain,t1-ml,jet.eps}
```

```
../ \texttt{fig/c,scn-dsgn/2016-05-31,brain,t2-ml,jet.eps}
```

Figure 1: Colorbar ranges in ms.

Contributions

- MR scan design method for precise parameter estimation
- ullet Fast SPGR/DESS scan profile for $T_1,\,T_2$ estimation in brain

Contributions

- MR scan design method for precise parameter estimation
- Fast SPGR/DESS scan profile for T_1 , T_2 estimation in brain
 - Simulation and phantom results validate method as a predictor of unbiased estimation precision.

Contributions

- MR scan design method for precise parameter estimation
- Fast SPGR/DESS scan profile for T_1 , T_2 estimation in brain
 - Simulation and phantom results validate method as a predictor of unbiased estimation precision.
 - In vivo results reveal discrepancies (especially in T₂ estimates), suggesting sensitivity to model mismatch.

Contributions

- MR scan design method for precise parameter estimation
- Fast SPGR/DESS scan profile for T_1 , T_2 estimation in brain
 - Simulation and phantom results validate method as a predictor of unbiased estimation precision.
 - In vivo results reveal discrepancies (especially in T₂ estimates), suggesting sensitivity to model mismatch.

How to address model mismatch?

- More complete in vivo signal models
- More scalable parameter estimation

Overview

Advances in Quantitative MRI:

- Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?
- Estimation [Ch. 5]
 Given data from an informative acquisition,
 how can we rapidly and accurately quantify these biomarkers?
- Application [Ch. 6]
 Using these tools, can we design a state-of-the-art biomarker?

Signal Model

Given: at each voxel, image sequence $\mathbf{y} \in \mathbb{C}^D$ modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}, \boldsymbol{\nu}) + \boldsymbol{\epsilon} \tag{7}$$

•
$$\mathbf{x} \in \mathbb{R}^L$$

• $\nu \in \mathbb{R}^K$

• $\mathbf{s}: \mathbb{R}^{L+K} \mapsto \mathbb{C}^D$

 $oldsymbol{\epsilon} \in \mathbb{C}^D$

latent free parameters

known parameters

vector signal model

noise $\sim \mathbb{C}\mathcal{N}(\mathbf{0}_D, \mathbf{\Sigma})$

Signal Model

Given: at each voxel, image sequence $\mathbf{y} \in \mathbb{C}^D$ modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}, \boldsymbol{\nu}) + \boldsymbol{\epsilon} \tag{7}$$

• $\mathbf{x} \in \mathbb{R}^L$ latent free parameters

• $u \in \mathbb{R}^K$ known parameters

• $\mathbf{s} : \mathbb{R}^{L+K} \mapsto \mathbb{C}^D$ vector signal model

ullet $\epsilon \in \mathbb{C}^D$ noise $\sim \mathbb{C} \mathcal{N}(oldsymbol{0}_D, oldsymbol{\Sigma})$

Task: construct fast estimator $\widehat{\mathbf{x}}(\mathbf{y}, \nu)$

Task: construct fast estimator $\widehat{\mathbf{x}}(\mathbf{y}, \nu)$

Challenges:

- signal **s** often nonlinear in **x**: non-convex inverse problems
- signal s might be difficult to write in closed form

Task: construct fast estimator $\hat{\mathbf{x}}(\mathbf{y}, \boldsymbol{\nu})$

Challenges:

- signal **s** often nonlinear in **x**: non-convex inverse problems
- signal **s** might be difficult to write in closed form

Conventional Approaches:

- gradient-based local optimization
 - initialization-dependent solution
 - requires signal gradients

Task: construct fast estimator $\hat{\mathbf{x}}(\mathbf{y}, \nu)$

Challenges:

- signal s often nonlinear in x: non-convex inverse problems
- signal s might be difficult to write in closed form

Conventional Approaches:

- gradient-based local optimization
 - initialization-dependent solution
 - requires signal gradients
- stochastic methods (e.g., simulated annealing)
 - unclear convergence analysis [Bertsimas and Tsitsiklis, 1993]
 - several unintuitive tuning parameters

Task: construct fast estimator $\widehat{\mathbf{x}}(\mathbf{y}, \boldsymbol{\nu})$

Challenges:

- signal s often nonlinear in x: non-convex inverse problems
- signal **s** might be difficult to write in closed form

Conventional Approaches:

- gradient-based local optimization
 - initialization-dependent solution
 - requires signal gradients
- stochastic methods (e.g., simulated annealing)
 - unclear convergence analysis [Bertsimas and Tsitsiklis, 1993]
 - several unintuitive tuning parameters
- grid search *e.g.*, for 1-compartment relaxivity [Ch. 4]

Motivation

Grid search computational costs

	L	\sim number dictionary atoms
1-compartment relaxivity	3	$\sim 100^2$

Motivation

Grid search computational costs

	L	\sim number dictionary atoms
1-compartment relaxivity	3	$\sim \! 100^2$
flow velocity	4	${\sim}100^3$
diffusivity tensor	7	${\sim}100^6$
2-3 compartment relaxivity	6-10	$\sim \! 100^5 - 100^9$

Motivation

Grid search computational costs

	L	\sim number dictionary atoms
1-compartment relaxivity	3	${\sim}100^2$
flow velocity	4	${\sim}100^3$
diffusivity tensor	7	$\sim\!100^6$
2-3 compartment relaxivity	6-10	$\sim \! 100^5 - 100^9$

Can we scale computation with ${\it L}$ more gracefully?

- sample $(\mathbf{x}_1, \mathbf{\nu}_1, \epsilon_1), \dots, (\mathbf{x}_N, \mathbf{\nu}_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}

- sample $(\mathbf{x}_1, \mathbf{\nu}_1, \epsilon_1), \dots, (\mathbf{x}_N, \mathbf{\nu}_N, \epsilon_N)$ from prior distributions
- ullet simulate image data vectors $\mathbf{y}_1,\dots,\mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_{l}(\cdot) := \widehat{h}_{l}(\cdot) + \widehat{b}_{l}$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_{n} := [\operatorname{Re}(\mathbf{y}_{n})^{\mathsf{T}}, \operatorname{Im}(\mathbf{y}_{n})^{\mathsf{T}}, \boldsymbol{\nu}_{n}^{\mathsf{T}}]^{\mathsf{T}} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

- ullet sample $(\mathbf{x}_1, \mathbf{
 u}_1, \epsilon_1), \dots, (\mathbf{x}_N, \mathbf{
 u}_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_{l}(\cdot) := \widehat{h}_{l}(\cdot) + \widehat{b}_{l}$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_{n} := [\operatorname{Re}(\mathbf{y}_{n})^{\mathsf{T}}, \operatorname{Im}(\mathbf{y}_{n})^{\mathsf{T}}, \boldsymbol{\nu}_{n}^{\mathsf{T}}]^{\mathsf{T}} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

$$\left(\widehat{h}_{l},\widehat{b}_{l}\right)\in\left\{ \operatorname*{arg\ min}_{\substack{h_{l}\b_{l}\in\mathbb{R}}}\frac{1}{N}\sum_{n=1}^{N}(h_{l}(\mathbf{q}_{n})+b_{l}-x_{l,n})^{2}
ight\}$$

- ullet sample $(\mathbf{x}_1, \mathbf{
 u}_1, \epsilon_1), \dots, (\mathbf{x}_N, \mathbf{
 u}_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_{l}(\cdot) := \widehat{h}_{l}(\cdot) + \widehat{b}_{l}$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_{n} := [\operatorname{Re}(\mathbf{y}_{n})^{\mathsf{T}}, \operatorname{Im}(\mathbf{y}_{n})^{\mathsf{T}}, \boldsymbol{\nu}_{n}^{\mathsf{T}}]^{\mathsf{T}} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

$$(\widehat{h}_l, \widehat{b}_l) \in \left\{ \arg \min_{\substack{h_l \\ b_l \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_l(\mathbf{q}_n) + b_l - x_{l,n})^2 \right\}$$
 ill-posed!

Idea: learn a nonlinear estimator from simulated training data

- sample $(\mathbf{x}_1, \mathbf{\nu}_1, \epsilon_1), \dots, (\mathbf{x}_N, \mathbf{\nu}_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_l(\cdot) := \widehat{h}_l(\cdot) + \widehat{b}_l$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_n := [\operatorname{Re}(\mathbf{y}_n)^\mathsf{T}, \operatorname{Im}(\mathbf{y}_n)^\mathsf{T}, \boldsymbol{\nu}_n^\mathsf{T}]^\mathsf{T} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

$$\left(\widehat{h}_{l}, \widehat{b}_{l}\right) \in \left\{ \arg \min_{\substack{h_{l} \in \mathbb{H} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - \mathbf{x}_{l,n})^{2} + \rho_{l} \|h_{l}\|_{\mathbb{H}}^{2} \right\}$$
(8)

Solution: solve a kernel ridge regression (KRR) problem

- restrict function space over which we optimize
- include function regularization

A Function Space over which Optimization is Tractable

Hilbert space: complete inner product function space

A Function Space over which Optimization is Tractable

Hilbert space: complete inner product function space

Reproducing kernel Hilbert space (RKHS)

Hilbert space $\mathbb H$ over input space $\mathcal Q$ with reproducing property

$$\langle h, \mathbf{k}(\cdot, \mathbf{q}) \rangle_{\mathbb{H}} = h(\mathbf{q}), \qquad \forall h \in \mathbb{H}, \mathbf{q} \in \mathcal{Q}$$

for some $k: \mathcal{Q}^2 \mapsto \mathbb{R}$ called a reproducing kernel (RK)

A Function Space over which Optimization is Tractable

Hilbert space: complete inner product function space

Reproducing kernel Hilbert space (RKHS)

Hilbert space $\mathbb H$ over input space $\mathcal Q$ with reproducing property

$$\langle h, \mathbf{k}(\cdot, \mathbf{q}) \rangle_{\mathbb{H}} = h(\mathbf{q}), \qquad \forall h \in \mathbb{H}, \mathbf{q} \in \mathcal{Q}$$

for some $k: \mathcal{Q}^2 \mapsto \mathbb{R}$ called a reproducing kernel (RK)

Relevant facts

- Bijection between RKHS \mathbb{H} and RK k [Aronszajn, 1950]
- Function $k(\cdot, \mathbf{q}) \in \mathbb{H}$ called a *feature mapping*

Choose: RK $k : \mathcal{Q}^2 \mapsto \mathbb{R}$, which induces choice of RKHS \mathbb{H}

Choose: RK $k : Q^2 \mapsto \mathbb{R}$, which induces choice of RKHS \mathbb{H}

- Nonlinear kernel corresponds to nonlinear estimation
- We use $k(\mathbf{q},\mathbf{q}') \leftarrow \exp\left(-\frac{1}{2}\big\|\mathbf{\Lambda}^{-1}(\mathbf{q}-\mathbf{q}')\big\|_2^2\right)$

Choose: RK $k : \mathcal{Q}^2 \mapsto \mathbb{R}$, which induces choice of RKHS \mathbb{H}

Solve: for each desired latent parameter $l \in \{1, \dots, L\}$,

$$\left(\widehat{h}_{l}, \widehat{b}_{l}\right) \in \left\{ \arg \min_{\substack{h_{l} \in \mathbb{H} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} + \rho_{l} \|h_{l}\|_{\mathbb{H}}^{2} \right\} \tag{9}$$

Choose: RK $k: \mathcal{Q}^2 \mapsto \mathbb{R}$, which induces choice of RKHS \mathbb{H}

Solve: for each desired latent parameter $l \in \{1, ..., L\}$,

$$\left(\widehat{h}_{l}, \widehat{b}_{l}\right) \in \left\{ \arg \min_{\substack{h_{l} \in \mathbb{H} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} + \rho_{l} \|h_{l}\|_{\mathbb{H}}^{2} \right\} \tag{9}$$

• Optimal \widehat{h}_l over \mathbb{H} takes form [Schölkopf et al., 2001]

$$\widehat{h}_{l}(\cdot) \equiv \sum_{n=1}^{N} \widehat{a}_{l,n} \mathbf{k}(\cdot, \mathbf{q}_{n})$$
(10)

Choose: RK $k: \mathcal{Q}^2 \mapsto \mathbb{R}$, which induces choice of RKHS \mathbb{H}

Solve: for each desired latent parameter $l \in \{1, ..., L\}$,

$$\left(\widehat{h}_{l}, \widehat{b}_{l}\right) \in \left\{ \arg \min_{\substack{h_{l} \in \mathbb{H} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} + \rho_{l} \|h_{l}\|_{\mathbb{H}}^{2} \right\}$$
(9)

• Optimal \widehat{h}_l over \mathbb{H} takes form [Schölkopf et al., 2001]

$$\widehat{h}_{l}(\cdot) \equiv \sum_{n=1}^{N} \widehat{a}_{l,n} \mathbf{k}(\cdot, \mathbf{q}_{n})$$
(10)

• Plug (10) into (9); solve now instead for $(\widehat{a}_l, \widehat{b}_l)$; construct:

$$\widehat{x}_{l}(\cdot) = \sum_{n=1}^{N} \widehat{a}_{l,n} \mathbf{k}(\cdot, \mathbf{q}_{n}) + \widehat{b}_{l}$$
(11)

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{x}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right) \tag{12}$$

• $\mathbf{x}_{l} := [x_{l,1}, \dots, x_{l,N}]^{\mathsf{T}}$

training pt regressands

Non-iterative closed-form solution, for $I \in \{1, ..., L\}$:

$$\widehat{x}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(12)

$$\bullet \ \mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^\mathsf{T} \qquad \text{training pt regressands}$$

$$\bullet \ \mathbf{K} := \begin{bmatrix} \mathbf{k}(\mathbf{q}_1, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ \mathbf{k}(\mathbf{q}_N, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$$
 Gram matrix

Non-iterative closed-form solution, for $I \in \{1, ..., L\}$:

$$\widehat{x}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M} (\mathsf{K} \mathsf{M} + N \rho_{l} \mathbf{I}_{N})^{-1} \left(\mathsf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right) \tag{12}$$

$$\bullet \ \mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^\mathsf{T} \qquad \text{training pt regressands}$$

$$\bullet \ \mathbf{K} := \begin{bmatrix} \mathbf{k}(\mathbf{q}_1, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ \mathbf{k}(\mathbf{q}_N, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix} \qquad \text{Gram matrix}$$

$$\bullet \ \mathbf{M} := \mathbf{I}_N - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^\mathsf{T} \qquad \text{de-meaning operator}$$

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{x}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(12)

•
$$\mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^\mathsf{T}$$
 training pt re

• $\mathbf{K} := \begin{bmatrix} \mathbf{k}(\mathbf{q}_1, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ \mathbf{k}(\mathbf{q}_N, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$ Gram matrix

• $\mathbf{M} := \mathbf{I}_N - \frac{1}{N} \mathbf{I}_N \mathbf{I}_N^\mathsf{T}$ de-meaning of

• $\mathbf{k}(\cdot) := [\mathbf{k}(\cdot, \mathbf{q}_1), \dots, \mathbf{k}(\cdot, \mathbf{q}_N)]^{\mathsf{T}}$

training pt regressands

de-meaning operator nonlin kernel embedding

Non-iterative closed-form solution, for $I \in \{1, ..., L\}$:

$$\widehat{\mathbf{x}}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(12)

•
$$\mathbf{x}_{I} := [x_{I,1}, \dots, x_{I,N}]^{\mathsf{T}}$$
 training pt regressands
• $\mathbf{K} := \begin{bmatrix} k(\mathbf{q}_{1}, \mathbf{q}_{1}) & \cdots & k(\mathbf{q}_{1}, \mathbf{q}_{N}) \\ \vdots & \ddots & \vdots \\ k(\mathbf{q}_{N}, \mathbf{q}_{1}) & \cdots & k(\mathbf{q}_{N}, \mathbf{q}_{N}) \end{bmatrix}$ Gram matrix
• $\mathbf{M} := \mathbf{I}_{N} - \frac{1}{N} \mathbf{1}_{N} \mathbf{1}_{N}^{\mathsf{T}}$ de-meaning operator
• $\mathbf{k}(\cdot) := [k(\cdot, \mathbf{q}_{1}), \dots, k(\cdot, \mathbf{q}_{N})]^{\mathsf{T}}$ nonlin kernel embedding

Can we scale computation with L more gracefully?

ullet Yes, in fact (12) separable in $I \in \{1, \dots, L\}$ by construction

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{x}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right) \tag{12}$$

•
$$\mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^{\mathsf{T}}$$
 training pt re

• $\mathbf{K} := \begin{bmatrix} \mathbf{k}(\mathbf{q}_1, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ \mathbf{k}(\mathbf{q}_N, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$ Gram matrix

• $\mathbf{M} := \mathbf{I}_N - \frac{1}{N} \mathbf{I}_N \mathbf{I}_N^{\mathsf{T}}$ de-meaning of

• $\mathbf{k}(\cdot) := [\mathbf{k}(\cdot, \mathbf{q}_1), \dots, \mathbf{k}(\cdot, \mathbf{q}_N)]^{\mathsf{T}}$

training pt regressands

de-meaning operator nonlin kernel embedding

Can we scale computation with L more gracefully?

• Yes, in fact (12) separable in $l \in \{1, ..., L\}$ by construction

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\ldots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.$$
 (13)

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\ldots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.$$
 (13)

Plugging (13) into KRR solution (12) and rearranging gives

$$\widehat{\mathbf{x}}_{l}(\cdot) \approx \frac{1}{N}\mathbf{x}_{l}^{\mathsf{T}}\mathbf{1}_{N} + \frac{1}{N}\mathbf{x}_{l}^{\mathsf{T}}\mathsf{M}\widetilde{\mathsf{Z}}^{\mathsf{T}}\left(\frac{1}{N}\widetilde{\mathsf{Z}}\mathsf{M}\widetilde{\mathsf{Z}}^{\mathsf{T}} + \rho_{l}\mathsf{I}_{Z}\right)^{-1}\left(\widetilde{\mathsf{z}}(\cdot) - \frac{1}{N}\widetilde{\mathsf{Z}}\mathbf{1}_{N}\right)$$

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\ldots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.$$
 (13)

Plugging (13) into KRR solution (12) and rearranging gives

$$\widehat{x}_{l}(\cdot) \approx \widehat{m}_{x_{l}} + \widehat{\mathbf{c}}_{x_{l}\tilde{\mathbf{z}}}^{\mathsf{T}} \Big(\widehat{\mathbf{C}}_{\tilde{\mathbf{z}}\tilde{\mathbf{z}}} + \rho_{l} \mathbf{I}_{Z} \Big)^{-1} (\tilde{\mathbf{z}}(\cdot) - \widehat{\mathbf{m}}_{\tilde{\mathbf{z}}})$$
(14)

which is regularized ("ridge") Z-dimensional affine regression!

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\ldots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.$$
 (13)

Plugging (13) into KRR solution (12) and rearranging gives

$$\widehat{x}_{l}(\cdot) \approx \widehat{m}_{x_{l}} + \widehat{\mathbf{c}}_{x_{l}\tilde{\mathbf{z}}}^{\mathsf{T}} \left(\widehat{\mathbf{C}}_{\tilde{\mathbf{z}}\tilde{\mathbf{z}}} + \rho_{l} \mathbf{I}_{Z} \right)^{-1} (\tilde{\mathbf{z}}(\cdot) - \widehat{\mathbf{m}}_{\tilde{\mathbf{z}}})$$
(14)

which is regularized ("ridge") Z-dimensional affine regression!

Does such a $\tilde{\mathbf{z}}$ exist and work well in practice?

- Yes, e.g. for "shift invariant" kernels (like our Gaussian) of form $k(\mathbf{q}, \mathbf{q}') \equiv k(\mathbf{q} \mathbf{q}')$ [Rahimi and Recht, 2007]
- In such cases, can reduce from $\sim N^2$ to $\sim NZ$ computations

Online model selection: train after observing (unlabeled) test data

Online model selection: train after observing (unlabeled) test data

ullet Prior on known u

ullet Noise covariance Σ

density estimation low-signal data regions

Online model selection: train after observing (unlabeled) test data

- Prior on known ν
- ullet Noise covariance $oldsymbol{\Sigma}$
- Regularization parameters

density estimation

low-signal data regions

Bayesian perspective...

Online model selection: train after observing (unlabeled) test data

• Prior on known ν

density estimation low-signal data regions

ullet Noise covariance $oldsymbol{\Sigma}$

Bayesian perspective...

Regularization parameters

• Assume prior $h_l(\cdot) + b_l \sim \mathcal{GP}(0(\cdot), \mathbf{k}(\cdot, \cdot)), l \in \{1, \dots, L\}$

Online model selection: train after observing (unlabeled) test data

- Prior on known ν
- ullet Noise covariance Σ
- Regularization parameters

density estimation low-signal data regions Bayesian perspective...

- Assume prior $h_l(\cdot) + b_l \sim \mathcal{GP}(0(\cdot), k(\cdot, \cdot)), l \in \{1, \dots, L\}$
- Include latent parameter variability ϵ_{x_l} in observed regressand model $x_l(\mathbf{q}) + b_l + \epsilon_{x_l}$

Online model selection: train after observing (unlabeled) test data

- Prior on known ν
- ullet Noise covariance Σ
- Regularization parameters

density estimation

low-signal data regions

Bayesian perspective...

- Assume prior $h_l(\cdot) + b_l \sim \mathcal{GP}(0(\cdot), k(\cdot, \cdot)), l \in \{1, \dots, L\}$
- Include latent parameter variability ϵ_{x_l} in observed regressand model $x_l(\mathbf{q}) + b_l + \epsilon_{x_l}$
- If we further assume $\epsilon_{x_l} \sim \mathcal{N}(0, N\rho_l)$ then posterior mean function is KRR solution (12) [Rasmussen and Williams, 2005]
- Reasonable to set $N\rho_I \leftarrow \text{cov}(x_I) \approx \frac{1}{N}\mathbf{x}_I^\mathsf{T}\mathbf{M}\mathbf{x}_I$

Online model selection: train after observing (unlabeled) test data

• Prior on known ν

density estimation low-signal data regions

- Noise covariance Σ
- Regularization parameters $\rho_I \leftarrow \frac{1}{NZ} \mathbf{x}_I^\mathsf{T} \mathbf{M} \mathbf{x}_I$
 - Assume prior $h_l(\cdot) + b_l \sim \mathcal{GP}(0(\cdot), k(\cdot, \cdot)), l \in \{1, \dots, L\}$
 - Include latent parameter variability ϵ_{x_i} in observed regressand model $x_l(\mathbf{q}) + b_l + \epsilon_{x_l}$
 - If we further assume $\epsilon_{x_l} \sim \mathcal{N}(0, N\rho_l)$ then posterior mean function is KRR solution (12) [Rasmussen and Williams, 2005]
 - Reasonable to set $N\rho_I \leftarrow \text{cov}(x_I) \approx \frac{1}{N} \mathbf{x}_I^\mathsf{T} \mathbf{M} \mathbf{x}_I$
- Kernel smoothing length-scale $\Lambda \leftarrow \operatorname{diag}\left(\sum_{n=1}^{N} \mathbf{q}_{n}\right)$

$$\Lambda \leftarrow \mathsf{diag}\Big(\sum_{n=1}^{N} \mathbf{q}_n\Big)$$

Online model selection: train after observing (unlabeled) test data

Prior on known v

Noise covariance Σ

• Regularization parameters $\rho_I \leftarrow \frac{1}{NZ} \mathbf{x}_I^\mathsf{T} \mathbf{M} \mathbf{x}_I$

$$\rho_l \leftarrow \frac{1}{N^2} \mathbf{x}_l^{\mathsf{T}} \mathbf{M} \mathbf{x}_l$$

• Assume prior $h_l(\cdot) + b_l \sim \mathcal{GP}(0(\cdot), k(\cdot, \cdot)), l \in \{1, \dots, L\}$

• Include latent parameter variability ϵ_{x_i}

• If we further assume $\epsilon_{x_l} \sim \mathcal{N}(0, N\rho_l)$ then posterior mean

• Reasonable to set $N\rho_I \leftarrow \text{cov}(x_I) \approx \frac{1}{N} \mathbf{x}_I^\mathsf{T} \mathbf{M} \mathbf{x}_I$

• Kernel smoothing length-scale $\Lambda \leftarrow \operatorname{diag}\left(\sum_{n=1}^{N} \mathbf{q}_{n}\right)$

$$\Lambda \leftarrow \operatorname{diag}\left(\sum_{n=1}^{N} \mathbf{q}_n\right)$$

Some parameters still require manual selection...

• Prior on x

from tissue properties

Contribution

• Fast KRR method for nonlinear MRI parameter estimation

Contribution

- Fast KRR method for nonlinear MRI parameter estimation
 - Key insight: even with complicated MR signal models, can simulate training points "for free"
 - Convert *nonlinear estimation* problem into *nonlinear regression* problem that we solve in closed-form with kernels

Contribution

- Fast KRR method for nonlinear MRI parameter estimation
 - Key insight: even with complicated MR signal models, can simulate training points "for free"
 - Convert nonlinear estimation problem into nonlinear regression problem that we solve in closed-form with kernels

Ongoing work

Performance analysis: how should N scale with L, Q?

Contribution

- Fast KRR method for nonlinear MRI parameter estimation
 - Key insight: even with complicated MR signal models, can simulate training points "for free"
 - Convert nonlinear estimation problem into nonlinear regression problem that we solve in closed-form with kernels

Ongoing work

- Performance analysis: how should N scale with L, Q?
- Exploit partially linear structure to incorporate scale invariance

Contribution

- Fast KRR method for nonlinear MRI parameter estimation
 - Key insight: even with complicated MR signal models, can simulate training points "for free"
 - Convert nonlinear estimation problem into nonlinear regression problem that we solve in closed-form with kernels

Ongoing work

- Performance analysis: how should N scale with L, Q?
- Exploit partially linear structure to incorporate scale invariance
- Validation on a compelling problem...

Overview

Advances in Quantitative MRI:

- Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?
- Estimation [Ch. 5]
 Given data from an informative acquisition,
 how can we rapidly and accurately quantify these biomarkers?
- **Application** [Ch. 6] Using these tools, can we design a state-of-the-art biomarker?

Background

www.mayoclinic.org

Background

Myelin water fraction (MWF):

 Proportion of MR signal arising from water trapped within healthy myelin bilayers, relative to total [Mackay et al., 1994]

```
../fig/c,mwf/myelin.ps
```

www.mayoclinic.org

Background

Myelin water fraction (MWF):

- Proportion of MR signal arising from water trapped within healthy myelin bilayers, relative to total [Mackay et al., 1994]
- Correlates well with myelin content [Webb et al., 2003]

```
../fig/c,mwf/myelin.ps
```

www.mayoclinic.org

Previous MWF imaging acquisitions

Multi-echo spin-echo (MESE)

[Mackay et al., 1994]

- Gold-standard
- Speed-limited by long repetition times (\sim 2s)

Previous MWF imaging acquisitions

Multi-echo spin-echo (MESE)

[Mackay et al., 1994]

- Gold-standard
- Speed-limited by long repetition times (~2s)

Combinations of fast steady-state scans using variable flip angles ("mcDESPOT") [Deoni et al., 2008]

- ullet Whole-brain, high-resolution MWF imaging in $\sim 30 \mathrm{m}$
- Disagree with MESE MWF estimates, [Zhang et al., 2015]
 likely due to insufficient precision [Lankford and Does, 2013]

Previous MWF imaging acquisitions

Multi-echo spin-echo (MESE)

[Mackay et al., 1994]

- Gold-standard
- Speed-limited by long repetition times (\sim 2s)

Combinations of fast steady-state scans using variable flip angles ("mcDESPOT") [Deoni et al., 2008]

- ullet Whole-brain, high-resolution MWF imaging in \sim 30m
- Disagree with MESE MWF estimates, [Zhang et al., 2015]
 likely due to insufficient precision [Lankford and Does, 2013]

Goal: fast, precise MWF quantification in WM

A voxel-scale MWF model

simple two-compartment model

A voxel-scale MWF model

simple two-compartment model

A voxel-scale MWF model

simple two-compartment model

Take fast-relaxing fraction $f_{\rm F}$ as a simple proxy for MWF

2-compartment SPGR model

[Spencer and Fishbein, 2000]

• included first-order physical exchange

2-compartment SPGR model

[Spencer and Fishbein, 2000]

- included first-order physical exchange
- neglected relaxation, precession, exchange during excitation

2-compartment SPGR model

[Spencer and Fishbein, 2000]

- included first-order physical exchange
- neglected relaxation, precession, exchange during excitation
- absorbing off-resonance effects into m_0 implies neglecting exchange between excitation and readout

2-compartment SPGR model

[Spencer and Fishbein, 2000]

- included first-order physical exchange
- neglected relaxation, precession, exchange during excitation
- ullet absorbing off-resonance effects into m_0 implies neglecting exchange between excitation and readout

Two-compartment DESS model

 $\S 6.2.2$

 additional approximations required unless we assume time-independent diff in compartmental off-resonance freq

2-compartment SPGR model

[Spencer and Fishbein, 2000]

- included first-order physical exchange
- neglected relaxation, precession, exchange during excitation
- ullet absorbing off-resonance effects into m_0 implies neglecting exchange between excitation and readout

Two-compartment DESS model

§6.2.2

- additional approximations required unless we assume time-independent diff in compartmental off-resonance freq
- including exchange, closed-form solutions still elusive

2-compartment SPGR model

[Spencer and Fishbein, 2000]

- included first-order physical exchange
- neglected relaxation, precession, exchange during excitation
- ullet absorbing off-resonance effects into m_0 implies neglecting exchange between excitation and readout

Two-compartment DESS model

§6.2.2

- additional approximations required unless we assume time-independent diff in compartmental off-resonance freq
- including exchange, closed-form solutions still elusive

For simplicity, we neglect exchange.

Bayesian MWF Scan Design

$$\begin{split} \breve{\boldsymbol{P}} &\in \left\{ \text{arg } \min_{\boldsymbol{P} \in \mathbb{P}} \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) \right\}, \text{ where} \\ \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) &:= \mathsf{E}_{\boldsymbol{x}, \boldsymbol{\nu}} \Big(\mathsf{tr} \Big(\boldsymbol{W} \boldsymbol{F}^{-1}(\boldsymbol{x}; \boldsymbol{\nu}, \boldsymbol{P}) \boldsymbol{W}^{\mathsf{T}} \Big) \Big) \end{split} \tag{15}$$

Bayesian MWF Scan Design

$$\begin{split} \breve{\boldsymbol{P}} \in \left\{ \text{arg } \min_{\boldsymbol{P} \in \mathbb{P}} \, \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) \right\}, \text{ where} \\ \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) := E_{\boldsymbol{x}, \boldsymbol{\nu}} \Big(\text{tr} \Big(\boldsymbol{W} \boldsymbol{F}^{-1}(\boldsymbol{x}; \boldsymbol{\nu}, \boldsymbol{P}) \boldsymbol{W}^{\mathsf{T}} \Big) \Big) \end{split} \tag{15}$$

- $\mathbf{x} [f_{\mathrm{F}}, T_{1,\mathrm{F}}, T_{2,\mathrm{F}}, T_{1,\mathrm{S}}, T_{2,\mathrm{S}}, m_0]^{\mathrm{T}}$
- ullet flip angle variation
- P SPGR/DESS nominal flip angles, repetition times

Bayesian MWF Scan Design

$$\begin{split} \breve{\boldsymbol{P}} &\in \left\{ \text{arg } \min_{\boldsymbol{P} \in \mathbb{P}} \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) \right\}, \text{ where} \\ \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) &:= \mathsf{E}_{\boldsymbol{x}, \boldsymbol{\nu}} \Big(\mathsf{tr} \Big(\boldsymbol{W} \boldsymbol{F}^{-1}(\boldsymbol{x}; \boldsymbol{\nu}, \boldsymbol{P}) \boldsymbol{W}^{\mathsf{T}} \Big) \Big) \end{split} \tag{15}$$

- $\mathbf{x} \qquad [f_{\text{F}}, T_{1,\text{F}}, T_{2,\text{F}}, T_{1,\text{S}}, T_{2,\text{S}}, m_0]^{\mathsf{T}}$
- ullet flip angle variation
- P SPGR/DESS nominal flip angles, repetition times
- W diag $\left(\left[\left(\mathsf{E}_{\mathsf{x},\nu}(f_{\mathrm{F}})\right)^{-1},\mathbf{0}_{5}^{\mathsf{T}}\right]^{\mathsf{T}}\right)$

Bayesian MWF Scan Design

$$\begin{split} \breve{\boldsymbol{P}} \in \left\{ \text{arg } \min_{\boldsymbol{P} \in \mathbb{P}} \, \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) \right\}, \text{ where} \\ \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) := E_{\boldsymbol{x}, \boldsymbol{\nu}} \Big(\text{tr} \Big(\boldsymbol{W} \boldsymbol{F}^{-1}(\boldsymbol{x}; \boldsymbol{\nu}, \boldsymbol{P}) \boldsymbol{W}^{\mathsf{T}} \Big) \Big) \end{split} \tag{15}$$

- $\mathbf{x} \qquad [f_{\text{F}}, T_{1,\text{F}}, T_{2,\text{F}}, T_{1,\text{S}}, T_{2,\text{S}}, m_0]^{\mathsf{T}}$
- ullet flip angle variation
- P SPGR/DESS nominal flip angles, repetition times
- W diag $\left(\left[\left(\mathsf{E}_{\mathsf{x},\nu}(f_{\mathrm{F}})\right)^{-1},\mathbf{0}_{5}^{\mathsf{T}}\right]^{\mathsf{T}}\right)$
- \bullet $\mathsf{E}_{\mathsf{x},
 u}(\cdot)$ approximated via empirical averages of samples drawn from separable prior

Bayesian MWF Scan Design

$$\begin{split} \breve{\boldsymbol{P}} \in \left\{ \text{arg } \min_{\boldsymbol{P} \in \mathbb{P}} \, \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) \right\}, \text{ where} \\ \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) := E_{\boldsymbol{x}, \boldsymbol{\nu}} \Big(\text{tr} \Big(\boldsymbol{W} \boldsymbol{F}^{-1}(\boldsymbol{x}; \boldsymbol{\nu}, \boldsymbol{P}) \boldsymbol{W}^{\mathsf{T}} \Big) \Big) \end{split} \tag{15}$$

- $\mathbf{x} \qquad [f_{\mathrm{F}}, T_{1,\mathrm{F}}, T_{2,\mathrm{F}}, T_{1,\mathrm{S}}, T_{2,\mathrm{S}}, m_0]^{\mathrm{T}}$
- ullet flip angle variation
- P SPGR/DESS nominal flip angles, repetition times
- W diag $\left(\left[\left(\mathsf{E}_{\mathsf{x},\nu}(f_{\mathrm{F}})\right)^{-1},\mathbf{0}_{5}^{\mathsf{T}}\right]^{\mathsf{T}}\right)$
- \bullet $\mathsf{E}_{\mathsf{x}, \nu}(\cdot)$ approximated via empirical averages of samples drawn from separable prior
- ullet nom flip angle, total scan time constraints

Optimized SPGR/DESS Acquisition

	Optimized flip angles (deg)	Optimized rep. times (ms)
SPGR	38.1, 12.9, 9.2, 33.5	50.2, 32.4, 16.4, 11.8
DESS	32.0, 40.3, 52.9	17.5, 98.0, 37.6

Table 3: Optimized Scan Parameters, P

Predicted MWF relative standard deviation in WM

$$\begin{array}{l} \bullet \ \ \, \text{Optimized SPGR/DESS:} \ \sqrt{\bar{\Psi}\left(\breve{\mathbf{P}}\right)} = 0.285 \\ \bullet \ \ \, \text{mcDESPOT:} \ \, \text{at least 1} \end{array} \quad \text{[Lankford and Does, 2013]}$$

MWF Estimation via KRR

Simulation Setup

- ullet At each voxel, generate ground-truth ${f x}, {m
 u}$
- Using 2-compartment SPGR/DESS model ${\bf s}$ with optimized (and now fixed) parameters $\check{\bf P}$, generate voxel data ${\bf y} \in \mathbb{C}^{10}$

MWF Estimation via KRR

Simulation Setup

- ullet At each voxel, generate ground-truth ${f x}, {m
 u}$
- Using 2-compartment SPGR/DESS model ${\bf s}$ with optimized (and now fixed) parameters $\check{\bf P}$, generate voxel data ${\bf y} \in \mathbb{C}^{10}$

Use KRR to estimate just $f_{\rm F}$

- ullet Separable prior on $oldsymbol{x}$: f_{F}, m_0 uniform; others log-uniform
- $N \leftarrow 10^6$ training points
- $\bullet \ \ Z \leftarrow 10^3 \ \ \text{kernel approximation order}$

MWF Estimation via KRR

Simulation Setup

- ullet At each voxel, generate ground-truth ${f x}, {m
 u}$
- Using 2-compartment SPGR/DESS model ${\bf s}$ with optimized (and now fixed) parameters $\check{\bf P}$, generate voxel data ${\bf y} \in \mathbb{C}^{10}$

Use KRR to estimate just $f_{\rm F}$

- Separable prior on \mathbf{x} : f_{F}, m_0 uniform; others log-uniform
- N ← 10⁶ training points
- ullet $Z \leftarrow 10^3$ kernel approximation order

Compare against grid search

- \bullet unconstrained search would require $\sim 100^5$ dictionary atoms
- we artificially constrain search here to limit computation

MWF Simulation Result

MWF Simulation Result

Fast-fraction $f_{\rm F}$ estimates, in simulation: ../fig/c,krr/sim.eps

Acquired in vivo data using optimized MWF protocol

- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 11m48s total (including BS scan)

Acquired in vivo data using optimized MWF protocol

- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 11m48s total (including BS scan)

Rapidly estimated $f_{\rm F}$ as proxy for MWF

Full-scale grid search intractable on typical desktop

Acquired in vivo data using optimized MWF protocol

- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 11m48s total (including BS scan)

Rapidly estimated $f_{\rm F}$ as proxy for MWF

- Full-scale grid search intractable on typical desktop
- KRR training and testing took 35s and 5s/slice

Acquired in vivo data using optimized MWF protocol

- Used 256 \times 256 \times 8 3D matrix over 24 \times 24 \times 4cm FOV
- Required 11m48s total (including BS scan)

Rapidly estimated $f_{\rm F}$ as proxy for MWF

- Full-scale grid search intractable on typical desktop
- KRR training and testing took 35s and 5s/slice
- Iterative ML refinement took 29s/slice

Acquired in vivo data using optimized MWF protocol

- Used 256 \times 256 \times 8 3D matrix over 24 \times 24 \times 4cm FOV
- Required 11m48s total (including BS scan)

Rapidly estimated $f_{\rm F}$ as proxy for MWF

- Full-scale grid search intractable on typical desktop
- KRR training and testing took **35s** and **5s/slice**
- Iterative ML refinement took 29s/slice

Compared (qualitatively) with results in

[Zhang et al., 2015]

GRASE: accelerated MESE acq

[Prasloski et al., 2012]

• mcDESPOT: 9 SPGR, 18 bSSFP scans

[Deoni, 2011]

MWF Proof-of-concept In Vivo Result

 $../{\tt fig/c,mwf/ff,log2c-0,krr-ml.eps}$

```
../fig/c,mwf/mwf,gr/asieg/epsmwf/mwf,mcdespot.eps
```

Summary

Contributions

- Two-compartment DESS signal model
- Fast acquisition for precise WM MWF estimation
- Proof-of-concept in vivo MWF images via KRR

Summary

Contributions

- Two-compartment DESS signal model
- Fast acquisition for precise WM MWF estimation
- Proof-of-concept in vivo MWF images via KRR

Ongoing work

• Systematic validation

Summary

Contributions

- Two-compartment DESS signal model
- Fast acquisition for precise WM MWF estimation
- Proof-of-concept in vivo MWF images via KRR

Ongoing work

- Systematic validation
- Further-optimized MWF acquisition

Future Work

Table 4: Timeline to Defense

start date	task
2017-05	validate KRR estimation
2017-08	prepare KRR journal paper
2017-10	validate $f_{ m F}$ estimates from SPGR/DESS acquisition
2018-01	prepare fast MWF imaging journal paper
2018-03	defend dissertation

Future Work

Table 4: Timeline to Defense

start date	task
2017-05	validate KRR estimation
2017-08	prepare KRR journal paper
2017-10	validate $f_{ m F}$ estimates from SPGR/DESS acquisition
2018-01	prepare fast MWF imaging journal paper
2018-03	defend dissertation

Longer-term research directions

- combine image reconstruction and KRR estimation
- correlate our MWF estimates with other myelin biomarkers
- apply KRR to other problems

References i

beamericonartingas)eps

Mathematical methods of statistics.

Princeton Univ. Press, Princeton.

beamoris231a; tvi.cl199500);

Theory of reproducing kernels.

Trans. Amer. Math. Soc., 68(3):337-404.

beamerisina, ticanderstsiklis, J. (1993).

Simulated annealing.

Statistical Science, 8(1):10-15.

beamericosarticle2@ps).

Correction of main and transmit magnetic field (B0 and B1) inhomogeneity effects in multicomponent-driven equilibrium single-pulse observation of T1 and T2.

Mag. Res. Med., 65(4):1021-35.

References ii

be an Decoi မှ ့ ရေးကို ပြေးချို့ Repps B. K., Arun, T., Pierpaoli, C., and Jones, D. K. (2008).

Gleaning multicomponent T1 and T2 information from steady-state imaging data.

Mag. Res. Med., 60(6):1372-87.

beakeeinennakt.t Ec,1 Steppe, K. F., Boss, M. A., Russek, S. E., Chenevert, T. L., Prasad, P. V., Reddick, W. E., Cecil, K. M., Zheng, J., Hu, P., and Jackson, E. F. (2016).

Multi-site, multi-vendor comparison of T1 measurement using ISMRM/NIST system phantom.

In Proc. Intl. Soc. Mag. Res. Med., page 3290.

beangrik เดนลุงปีเยโลกฮาอิoes, M. D. (2013).

On the inherent precision of mcDESPOT.

Mag. Res. Med., 69(1):127-36.

References iii

be annercikay, क्या, बेल्पेक्सक्षाड़ K., Adler, J., Li, D., Paty, D., and Graeb, D. (1994).

In vivo visualization of myelin water in brain by magnetic resonance. *Mag. Res. Med.*, 31(6):673–7.

beanetismating at interesposition. F., and Fessler, J. A. (2017).

Optimizing MR scan design for model-based T1, T2 estimation from steady-state sequences.

IEEE Trans. Med. Imag., 36(2):467-77.

beapersioska្rtiqueumer, A., MacKay, A. L., Hodgson, M., Vavasour, I. M., Laule, C., and Mädler, B. (2012).

Rapid whole cerebrum myelin water imaging using a 3D GRASE sequence.

Neurolmage, 63(1):533-9.

References iv

be alreatritism, nav. tainal recente, B. (2007).

Random features for large-scale kernel machines.

In NIPS.

beareasinែលនិក្សាប៉ុន្តែ និក្សា Williams, C. K. I. (2005).

Gaussian processes for machine learning (adaptive computation and machine learning).

MIT Press.

beamanipaenantiwileanenslones, R. A. (1988).

FADE-A new fast imaging sequence.

Mag. Res. Med., 6(2):224-34.

beasekiskepar biçlerepeth, R., and Smola, A. J. (2001).

A generalized representer theorem.

In *Proc. Computational Learning Theory (COLT)*, pages 416–426. LNCS 2111.

References v

beaßpeneenaRticlandPashbein, K. W. (2000).

Measurement of spin-lattice relaxation times and concentrations in systems with chemical exchange using the one-pulse sequence: breakdown of the Ernst model for partial saturation in nuclear magnetic resonance spectroscopy.

J. Mag. Res., 142(1):120-35.

beamveris, osa, Winho; Osa, Midha, R., and Stanisz, G. J. (2003).

Is multicomponent T2 a good measure of myelin content in peripheral nerve?

Mag. Res. Med., 49(4):628-45.

bea**यका**नंदुरुग्रम् रिजीन्स, कु.इ.Н., Laule, C., and MacKay, A. L. (2015).

Comparison of myelin water fraction from multiecho T2 decay curve and steady-state methods.

Mag. Res. Med., 73(1):223-32.

References vi

beaTerisonWbidleMens, and Neuringer, L. J. (1991).

Spoiling of transverse magnetization in steady-state sequences.

Mag. Res. Med., 21(2):251–63.