RESOLUCIÓN EJERCICIOS DE REVISIÓN:

1) Figura de análisis:

Deben tener ambos rectángulos la misma superficie, entonces:

$$2x.x = (2x-2).(x+2)$$

$$2x^{2} = 2x^{2} + 4x - 2x - 4$$

$$0 = 2x - 4$$

$$x = 2$$

Luego, las medidas del rectángulo original son:

Base= 4 u.

Altura= 2 u.

2) Valor original: V

2^a) Hoy:
$$V - \frac{12}{100}V = \frac{88}{100}V$$

Mañana: $\frac{88}{100}V + \frac{12}{100}\frac{88}{100}V = \frac{9856}{10000}V = 98,56V = 98,56\%$ **de** V

2b) Hoy:
$$V + \frac{12}{100}V = \frac{112}{100}V$$

Mañana: $\frac{112}{100}V - \frac{12}{100}\frac{112}{100}V = \frac{9856}{10000}V = 98,56V = 98,56\%$ **de** V

3) Para que una ecuación de segundo grado admita soluciones reales y diferentes:

$$\Delta = b^2 - 4ac > 0$$

Entonces, para este caso:

$$[-2(m+4)]^{2} - 4(2m-1)(5m+2) > o$$

$$4(m+4)^{2} - 4(10m^{2} + 4m - 5m - 2) > 0$$

$$4(m^{2} + 32m + 16) - 4(10m^{2} - m - 2) > 0$$

$$-36m^{2} + 36m + 72 > 0$$

$$-36(m^{2} - m - 2) > 0$$

$$m^{2} - m - 2 < 0$$

$$(m+1)(m-2) < 0$$

$$[m+1>0 \land m-2<0] \lor [m+1<0 \land m-2>0]$$

$$[m>-1\wedge m<2]\vee [m<-1\wedge m>2]$$

$$-1 < m < 2$$

4) Se presenta un par que cumple con cada condición a modo de ejemplo:

Condición	$x^2 < y$	$x \in \Re^+; x + y = -6$	III cuadrante	Eje x
Par ordenado	(2;4)	(5;-11)	(-1;-3)	(4;0)

5)
$$\frac{a+b+c+d+e}{5}$$

$$\frac{(a+b)+(c+d+e)}{5}$$

$$como \frac{a+b}{2} = 8 \text{ entonces } a+b=16$$

$$como \frac{c+d+e}{3} = 4 \text{ entonces } c+d+e=12$$

al sustituir resulta:

$$\frac{16+12}{5}$$

$$\frac{28}{5}$$

Entonces la respuesta es la opción b.

6) Figura de análisis:

60

 C_2

$$100^{2} = (C_{2})^{2} + 60^{2}$$
$$10000 = (C_{2})^{2} + 3600$$
$$6400 = (C_{2})^{2}$$
$$80 = C_{2}$$

Entonces:

en el triángulo rectángulo superior :

$$80^2 = h^2 + x_1^2$$

$$6400 = h^2 + x_1^2$$

en el triángulo rectángulo inferior:

$$60^2 = h^2 + (100 - x_1)^2$$

$$3600 = h^2 + 10000 - 200x_1 + x_1^2$$

utilizando la igualdad anterior:

$$3600 = 6400 + 10000 - 200x_1$$

luego
$$x_1 = 64$$

entonces
$$x_2 = 36$$

$$h = 48$$

6a) Perímetro del triángulo superior = 64cm + 80cm + 48cm = 192cmPerímetro del triángulo inferior = 60cm + 48cm + 36cm = 144cm

6b)
$$\sin \alpha = \frac{60}{100}$$
 $sen \beta = \frac{80}{100}$
 $\alpha = \arcsin 0.6$ $\beta = \arcsin \frac{80}{100}$
 $\alpha = 36^{\circ}52'11''$ $\beta = 53^{\circ}7'49''$

7) Figura de análisis:

a) entonces: a=2;b=8a Dist (a:m)=3 Dist (m:b)

8)
$$2x^4 - 26x^3 + 34x^2 + 290x - 300 = (x - 1)(x - 5)(x - m)(2x - n)$$

de esta igualdad se desprende que x = 1 y x = 5 son raices del polinomio, entonces dividimos por los factores x - 1 y x - 5

$$2x^4 - 26x^3 + 34x^2 + 290x - 300$$

Llegamos entonces a la siguiente igualdad:

$$(x-1)(x-5)(2x^2-14x-60) = (x-1)(x-5)(x-m)(2x-n)$$

de donde se desprende:

$$(2x^2 - 14x - 60) = (x - m)(2x - n)$$

Teniendo ahora que factorear un polinomio de segundo grado aplicamos la fórmula resolvente:

 $x = \frac{14 \pm \sqrt{(-14)^2 - 4.2.(-60)}}{2.2}$ obteniendo como raíces x= 10 y x= -3 quedando entonces el polinomio $(2x^2 - 14x - 60)$ factoreado como 2(x-10).(x+3) o bien (2x-20).(x+3) o (x-10).(2x+6) al comparar la primer posibilidad con (x-m)(2x-n) se deduce que n=20 y m=-3; comparando la segunda posibilidad con (x-m)(2x-n) resulta m=10 y n=-6.

9) a) no es verdadera para todo número real a pues por ejemplo a=-3 no lo verifica. La igualdad $\sqrt{a^2}=|a|$ es la que sí resulta verdadera para todo número real a.

- b) no es verdadera para todo número real a ya que por ejemplo a=0,1 no lo verifica.
- c) no es verdadera para todo número real a ya que por ejemplo a=-2 no la verifica.
- d) no es verdadera para todo número real a ya que la potencia no es distributiva respecto de la suma o resta; por ejemplo $(a+3)^2 = a^2 + 6a + 9 \neq a^2 + 9$
- 10) Figura de análisis:

$$AB = 2.BC$$

$$\cos \hat{B} = \frac{CB}{BA} = \frac{CB}{2.CB} = \frac{1}{2}$$
entonces opción c)

11)
$$\frac{n}{n+1} + \frac{1}{(n+1) + (n+1)^2} = \frac{n+A}{n+2}$$

como $(n+1) + (n+1)^2$ puede factorearse resulta (n+1)(1+n+1) = (n+1)(n+2) entonces :

$$\frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n+A}{n+2}$$
$$\frac{n \cdot (n+2) + 1}{(n+1)(n+2)} = \frac{n+A}{n+2}$$
$$\frac{n^2 + 2n + 1}{(n+1)(n+2)} = \frac{n+A}{n+2}$$

buscando las raíces del numerador de la fracción de la izquierda (-1 raíz doble), puede factorearse :

$$\frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+A}{n+2}$$

simplifica ndo:

$$\frac{(n+1)}{(n+2)} = \frac{n+A}{n+2}$$

resulta entonces al comparar que A debe ser 1.

12) La pendiente de la recta que pasa por los puntos (1;5) y (9;3) resulta: $\frac{3-5}{9-1} = -\frac{2}{8} = -\frac{1}{4}$

Entonces tenemos:

 $y = -\frac{1}{4}x + b$, para determinar b utilizamos un punto que debe pertenecer a la recta por ejemplo el (1;5) que

debe entonces verificar la fórmula obteniendo $5 = -\frac{1}{4}.1 + b$;

$$5 + \frac{1}{4} = b$$

$$\frac{21}{4} = 4$$

entonces $y = -\frac{1}{4}x + \frac{21}{4}$ es la recta.

a) para calcular la intersecci ón con el eje x consideram os : y = 0,

$$-\frac{1}{4}x + \frac{21}{4} = 0$$

$$x = 21$$

entonces el punto de intersecci ón con el eje x es (21;0)

b) para calcular la intersecci ón con el eje y consideram os : x = 0

$$y = -\frac{1}{4}0 + \frac{21}{4}$$

$$y = \frac{21}{4}$$

ntonces el punto de intersecci ón con el eje y es $(0; \frac{21}{4})$

c) para calcular la intersección con la recta 6y-8x-3=0 conformamos un sistema de ecuaciones y la resolvemos:

$$\begin{cases} y = -\frac{1}{4}x + \frac{21}{4} \text{ sustituimos la primer ecuación en la segunda obteniendo} : 6.(-\frac{1}{4}x + \frac{21}{4}) - 8x - 3 = 0 \\ 6y - 8x - 3 = 0 \end{cases}$$

resolviendo esta última ecuación obtenemos : x = 3, entonces $y = \frac{9}{2}$ resulta entonces que el punto de intersección es el punto $(3; \frac{9}{2})$.

13) a) Figura de análisis:

b)
$$x \cdot \frac{400 - x}{2} = 400$$

$$400x - x^2 = 1600$$

$$-x^2 + 400x - 1600 = 0$$
al resolver esto obtenemos que existen dos valores para x, x = 397,95 o bien x = 2,05.
para x = 397,95 la medida de y será 1,025
para x = 2,05 la medida de y será 198,975

14) Figura de análisis:

Resulta entonces que la intersección con el eje x de la recta es en el punto (16;0). Tenemos entonces dos puntos de la recta para determinar su pendiente (16;0) y (0;2) obtenemos entonces: $m = \frac{2-0}{0-16} = -\frac{1}{8}$

$$(x^{-2/3} - y^{-2/3}).x.y - \frac{\sqrt[3]{xy^2}}{(y^{1/3})^{-1}}$$

$$x^{-2/3}.x.y - y^{-2/3}.x.y - \frac{\sqrt[3]{xy^2}}{y^{-1/3}}$$

$$x^{-2/3+1}y - y^{-2/3+1}x - \frac{x^{1/3}y^{2/3}}{y^{-1/3}}$$

$$x^{1/3}y - y^{1/3}x - x^{1/3}y$$

$$- y^{1/3}x$$

resulta entonces que ninguna de las presentadas es la respuesta correcta.

16) a) VERDADERO

a < b

resto a miembro. Resulta:

$$a - a < b - a$$

$$0 < b - a$$

b) VERDADERO

Como a<0 entonces -a>0 por lo que al dividir a con -a se estaría dividiendo un número positivo y uno negativo y esto resultaría negativo (a no puede ser cero pues en tal caso no existiría para ese caso tal división)

c) FALSO

Contraejemplo: a = -3 y b = -2

17) Figura de análisis:

$$x+d=\sqrt{2} \rightarrow x=\sqrt{2}-d$$

Por Pitágoras:

$$d^2 = x^2 + x^2 = 2x^2$$

$$d^2 = 2(\sqrt{2} - d)^2$$

$$d^2 = 2(2 - 2\sqrt{2}d + d^2)$$

$$d^2 - 4 + 4\sqrt{2}d - 2d^2 = 0$$

$$-d^2 + 4\sqrt{2}d - 4 = 0$$

resolviendo la ec. cuadrática obtenemos:

$$d_1 = 2\sqrt{2} - 2$$
 ; $d_2 = 2\sqrt{2} - 2$

para los cuales:

$$x_1 = 2 - \sqrt{2}$$
 ; $x_2 = -2 - \sqrt{2}$ (absurdo)

Resulta entonces : lado = $(2 - \sqrt{2})$ u y diagonal = $(2\sqrt{2} - 2)$ u

18) Para que una ecuación cuadrática tenga única solución se debe pedir que:

$$\Delta = b^2 - 4ac = 0$$

para este caso resulta:

$$10^2 - 4.(-1).(-\frac{150}{k}) = 0$$

$$100 - \frac{600}{k} = 0$$

$$\frac{600}{k} = 100$$

$$600 = 100k$$

$$6 = k$$

19) Por 120 unidades se abonaron \$1380.

Por cada unidad se abonó: $\frac{$1380}{120} = $11,5$

Entonces:

$$11,5 = x \% \text{ de } 13$$

$$11,5 = \frac{x}{100}.13$$

$$\frac{11,5.100}{13} = x$$

$$88 = x$$

Si se abonó el 88% del valor, el descuento ha sido del 12%.

20) a)

$$(3+4x^{2})^{1/2} = 2x-3$$

$$\sqrt{3+4x^{2}} = 2x-3$$

$$3+4x^{2} = (2x-3)^{2}$$

$$3+4x^{2} = 4x^{2}-12x+9$$

$$0 = -12x+6$$

$$-6 = -12x$$

$$\frac{1}{2} = x$$

Como no verifica la ecuación, resulta que la misma no tiene solución.

b)

$$(x^{2} + 9)^{1/2} = 3 - 2x$$

$$\sqrt{x^{2} + 9} = 3 - 2x$$

$$x^{2} + 9 = (3 - 2x)^{2}$$

$$x^{2} + 9 = 9 - 12x + 4x^{2}$$

$$0 = 3x^{2} - 12x$$

$$0 = 3x(x - 4)$$

$$x = 0 \text{ (verifica)} \qquad x = 4 \text{ (no verifica)}$$

La solución es entonces x=0.

21)
$$2x^{2} + \frac{3x}{2} = 0$$

$$x(2x + \frac{3}{2}) = 0$$

$$x = 0 , 2x + \frac{3}{2} = 0$$

$$x = -\frac{3}{4}$$

Como ambos valores verifican, son la respuesta.

22) Figura de análisis:

Si consideramos ahora que el ángulo de elevación disminuye en un 20%, resultará $\frac{80}{100}.52^{\circ} = 41^{\circ}36'$, la figura de análisis correspondiente será

$$sen41°36' = \frac{600m}{LV}$$

$$LV = \frac{600m}{sen41°36'}$$

$$LV = 903,71m$$

Long de la base del triángulo:

$$tg41^{\circ}36' = \frac{600m}{X_2}$$

$$X_2 = \frac{600m}{tg41°36'}$$

$$X_2 = 675,8m$$

Entonces: El trayecto de vías aumento 903,7m-761,41m= 142,29m y será necesaria comenzar la construcción de las mismas a 675,8m-468,77m=207,03m del pie de la montaña.

23) a) Pasaje al 1° cuadrante : $sen245^{\circ} = -sen(245^{\circ}-180^{\circ})$

Por ser el seno en el tercer cuadrante negativo y en el primero positivo no existirá ángulo que verifique lo pedido.

b) Pasaje al 1° cuadrante: $sen240^\circ = sen(240^\circ - 180^\circ) = sen60^\circ$ El ángulo correspondiente es de 60°

24)

Expresión 1	¿<0>?	Expresión 2	Justificación
a^2	<	ab	Pues si <i>a</i> < <i>b</i> y se multiplica m. <i>a</i> m. por a siendo a mayor que cero la
			desigualdad se conserva y resulta $a^2 < ab$
- <i>a</i>	^	-b	Pues si $a < b$ y se multiplica m. a m. por -1 entonces se invierte el sentido de la desigualdad obteniendo: $-a > -b$
$\frac{1}{a}$	>	$\frac{1}{a+b}$	Pues como a y b son positivos resulta que $b < a + b$ luego al comparar las fracciones $\frac{1}{b} con \frac{1}{a+b}$ resulta que ante un mismo numerador la segunda tiene mayor denominador entonces deberá ser menor que la primera.

25) Figura de Análisis:

R2 pasa por los puntos (0;3) y (4;0)

entonces
$$m = \frac{0-3}{4-0} = -\frac{4}{3}$$

resulta R2:
$$y = -\frac{4}{3}x + 3$$

R1 paralela a R2 y pasa por el punto (1;1) entonces m= $-\frac{4}{3}$, resulta y= $-\frac{4}{3}x+b$. Como R1 pasa por el punto (1,1) este debe verificar su fórmula: $1=-\frac{4}{3}1+b$, despejando b obtenemos $b=\frac{7}{4}$. Llegamos así a la ecuación de R1: y= $-\frac{4}{3}x+\frac{7}{4}$

Buscamos ahora la intersección con el eje x de R1 que según la figura de análisis es el valor a que buscamos: $-\frac{4}{3}x + \frac{7}{4} = 0$, despejando $x = a = \frac{7}{3}$.

26) Figura de análisis:

$$sen 35° = \frac{3}{y}$$

$$y = \frac{3}{sen35°}$$

$$y = 5,23 \text{ m. aprox.}$$

$$tg35° = \frac{3}{x}$$

$$x = \frac{3}{tg35°}$$

$$x = 4,28 \text{ m. aprox.}$$

La altura del poste era de 9,51m. aproximadamente.

27) Figura de análisis:

Área del segundo rectángulo: (x-9).(x+6)=126 $x^2-3x-180=0$ Utilizando la fórmula resolvente obtenemos: x=-12(absurdo)

x = 15

Entonces el perímetro de la figura original: 4.15m=60m.

28) $(a^{120} + 25)^2 - (a^{120} - 25)^2 = 100a^n$ resolviendo los cuadrados de binomios planteados se obtiene: $(a^{120})^2 + 2 \cdot a^{120} \cdot 25 + (25)^2 - [(a^{120})^2 - 2 \cdot a^{120} \cdot 25 + (-25)^2] = 100a^n$

Aplicando propiedades de potencias, realizando las operaciones posibles y efectuando los cambios de signos correspondientes se obtiene:

$$a^{240} + 50.a^{120} + 625 - a^{240} + 50.a^{120} - 625 = 100a^n$$

$$100a^{120} = 100a^n$$

De aquí se desprende que n debe ser 120.

Fórmula:	$\beta = 5.\alpha$

Cálculos:

$$\frac{150}{100} = \frac{750}{\beta_1} \qquad \frac{150}{\alpha_1} = \frac{750}{200} \qquad \frac{150}{\alpha} = \frac{750}{\beta}$$

$$\beta_1 = 500 \qquad \alpha_1 = 40 \qquad \beta = 5\alpha$$

30) La recta
$$\begin{vmatrix} y = 2x - 4 \\ y = -x^2 + x + 14 \end{vmatrix}$$
 pasa por el punto $\begin{vmatrix} (-2, -8) \\ (1, -2) \end{vmatrix}$ del $\begin{vmatrix} segundo \\ cuarto \end{vmatrix}$ cuadrante.

31) Ecuación dada:

$$\frac{-x-2}{x^2-1} = \frac{(x+1)^2 - 2x(x-1)}{(x-1)(x+1)(x+2)}$$

$$\frac{-x-2}{x^2-1} = \frac{x^2 + 2x + 1 - 2x^2 + 2x}{(x-1)(x+1)(x+2)}$$

$$\frac{-x-2}{(x-1)(x+1)} (x-1)(x+1)(x+2) = -x^2 + 4x + 1$$

$$(-x-2)(x+2) = -x^2 + 4x + 1$$

$$-x^2 - 2x - 2x - 4 - x^2 + 4x + 1$$

$$-8x = 5$$

$$x = -\frac{5}{8}$$

Opción a) $x.(x+\frac{5}{8}) = 0$ soluciones x=0 o $x=-\frac{5}{8}$ entonces no tiene el mismo conjunto solución.

Opción b) $\frac{8x+5}{x+\frac{5}{8}} = 0$ al igualar a cero el numerados surge $x = -\frac{5}{8}$ como solución pero como no

es un valor permitido por la expresión pues anula el denominador la solución de la ecuación no existe y esto es diferente a la solución de la ecuación dada.

Opción c) $(x^2 + 4).(x + \frac{5}{8}) = 0$ se debe analizar cada factor por separado pero de la primer igualdad $x^2 + 4 = 0$ surge un absurdo y de la segunda igualdad $x + \frac{5}{8} = 0$ surge $x = -\frac{5}{8}$ como solución. Por lo tanto la solución de la ecuación es $-\frac{5}{8}$ y coincide con la solución de la ecuación original.

32) Costo: x

Precio de venta
$$x + \frac{35}{100}x = 54$$

$$\frac{135}{100}x = 54$$

$$x = 40$$

Entonces la respuesta correspondiente es la dada en la **opción b**.

33)

a) La expresión: $\frac{2x^2 + 10x}{x+1}$ existe si $x \ne -1$ y luego factoreándola resulta: $\frac{2x(x+5)}{x+1}$ no pudiendo entonces simplificar ningún factor esa es la expresión resultante y por lo tanto diferente a la dada.

b) La expresión: $\frac{2x^3 + 12x^2 + 10x}{x+1}$ existe si $x \ne -1$ y luego factoreándola resulta: $\frac{2x(x^2 + 6x + 5)}{x+1} = \frac{2x(x+1)(x+5)}{x+1}$ pudiendo entonces simplificar la expresión resultante es 2x(x+5) y por lo tanto diferente a la dada.

La opción c entonces es la opción correcta.

34)
$$(ma^{-3})^2 + (a+1)^2 - a^{-6}(a^8 + m^2) = 16$$

$$m^{2}(a^{-3})^{2} + a^{2} + 2a + 1 - a^{-6}a^{8} - a^{-6}m^{2} = 16$$

$$m^2a^{-6} + a^2 + 2a + 1 - a^2 - a^{-6}m^2 = 16$$

$$2a + 1 = 16$$

$$a = \frac{15}{2}$$

a debe ser $\frac{15}{2}$ y m puede tomar cualquier valor real.

35)

$$tg35^{\circ} = \frac{x}{150m}$$

$$x = 105,03m$$

$$tg52^{\circ} = \frac{y}{150m}$$

$$y = 192m$$

Entonces: distancia entre los autos 297,03m aproximadamente.

36) De la recta dada despejamos y para observar la pendiente: -2x + 6y = 9 resultando $y = \frac{1}{3}x + \frac{3}{2}$ entonces:

$$R: \begin{cases} m = \frac{1}{3} \\ pasa \quad por \quad (4;0) \end{cases}$$

Luego:

$$y = \frac{1}{3}x + b$$

$$0 = \frac{1}{3}4 + b$$

$$b = -\frac{4}{3}$$

Resulta entonces **R**: $y = \frac{1}{3}x - \frac{4}{3}$

Como el punto A de coordenadas (a;5) pertenece a R debe verificar su fórmula, por lo tanto:

$$5 = \frac{1}{3}a - \frac{4}{3}$$
 obteniendo a partir de esto $a = 19$

37) Figura de análisis:

Perímetro área impresa:

100cm.2+140cm.2=480cm

Perímetro área cartel:

$$(140 + 2x).2 + (100 + 2x).2$$

Entonces:

$$(140 + 2x).2 + (100 + 2x).2 = 1,5.480$$

$$280 + 4x + 200 + 4x = 720$$

$$8x = 240$$

$$x = 30$$

Ancho de la banda que rodea la zona impresa: 30cm Dimensión del cartel: largo=200cm y ancho= 160cm.

$$\frac{\frac{x}{y} - \frac{y}{x}}{\frac{1}{x^{2}} - \frac{1}{y^{2}}} = \frac{\frac{x \cdot x - y \cdot y}{yx}}{\frac{y^{2} - x^{2}}{x^{2}y^{2}}} = \frac{\frac{x^{2} - y^{2}}{yx}}{\frac{y^{2} - x^{2}}{x^{2}y^{2}}} = \frac{\frac{(x - y)(x + y)}{yx}}{\frac{(y - x)(y + x)}{x^{2}y^{2}}} = \frac{(x - y)(x + y)}{yx} \cdot \frac{x^{2}y^{2}}{(y - x)(y + x)} = \frac{xy(x - y)}{(y - x)} = -xy$$

como los factores x-y e y-x son opuestos pueden simplificarse y dicha simplificación da por resultado -1, quedando entonces: -xy

39) Figura de análisis:

$$Sup_1 = \frac{10.8}{2} = 40$$

12

$$Sup_2: \frac{12.9,2}{2} = 55,2$$

 $\frac{40}{55,2} = \frac{100}{x}$ luego x = 138 entonces el porcentaje de aumento de la superficie es del 38%

40) R: $\begin{cases} m = -\frac{4}{5} & \text{para que resulte perpendicular a la recta dada.} \\ b = \frac{11}{5} & \end{cases}$

R: $y = -\frac{4}{5}x + \frac{11}{5}$

Como A y B pertenecen a R deben verificar su fórmula resultando entonces que debe cumplirse

en simultáneo: $\begin{cases} t = -\frac{8}{5}r + \frac{11}{5} \\ r = -\frac{4}{5}t + \frac{11}{5} \end{cases}$

Sustituyendo la primera ecuación en la segunda resulta: $r=-\frac{4}{5}(-\frac{8}{5}r+\frac{11}{5})+\frac{11}{5}$ $r=\frac{32}{25}r-\frac{44}{25}+\frac{11}{5}$ $-\frac{7}{25}r=\frac{11}{25}$ $r=-\frac{11}{7}$

Entonces a) si $r = -\frac{11}{7}$, $t = \frac{33}{7}$ b) $\mathbf{A} = \left(-\frac{22}{7}; \frac{33}{7}\right) \in IICuadrante$ $\mathbf{B} = \left(\frac{33}{7}; -\frac{11}{7}\right) \in IVCuadrante$

41)
$$2(x-3)-5(x+6)>3$$

 $2x-6-5x-30>3$
 $-3x>3+36$
 $x<39:(-3)$
 $x<-13$

La opción correcta es e) $(-\infty;-13)$

- 42) a) No es una respuesta posible porque la expresión no está factoreada.
 - b) No es una respuesta posible porque la expresión no está factoreada.
 - c) Es una respuesta posible porque la expresión está factoreada, se debe analizar.
 - d) No es una respuesta posible porque la expresión no está factoreada.
- e) No es una respuesta posible porque ya no cumplen lo indicado algunas de las respuestas anteriores.
 - f) Es una respuesta posible, se debe analizar.

Si tomamos la opción c, las raíces del polinomio dado deberían ser: 3 raíz doble y -2 raíz simple, probamos:

Resulta entonces que x=-2 es raíz y ahora si tomamos el polinomio resultante: $p(x) = 2x^2 - 12x + 18$ y le buscamos sus

raíces verificamos que x=3 es raíz doble. Resulta entonces que la opción c es la correcta.

43)
$$\frac{18}{10} = \frac{27}{x_1} \qquad \frac{18}{10} = \frac{36}{x_2} \qquad \frac{18}{10} = \frac{3}{x_3}$$

$$x_1 = \frac{27.10}{18} = 15 \qquad x_2 = \frac{36.10}{18} = 20 \qquad x_3 = \frac{3.10}{18} = \frac{5}{3}$$

$$\frac{18}{10} = \frac{36}{x_2}$$
$$x_2 = \frac{36.10}{18} = 20$$

$$\frac{18}{10} = \frac{3}{x_3}$$
$$x_3 = \frac{3.10}{18} = \frac{5}{3}$$