Notater speilsymmetry

Fredrik Meyer

1 Litt historie

Kort historisk oppsummering.

- 1980s: Studier av superstringkompaktifisering. "Speilsymmetri"-prinsippet (og masse matematisk hurlumhei) sier at det burde eksistere to "speil", X og Y med lignende, men speilede egenskaper.
- 1991: Candelas, de la Ossa, Green Parkes: kom med formodning som spådde "antall" rasjonale kurver av alle grader på en grad 5 Calabi-Yau-mangfoldighet, uttrykt ved "periodene" til en holomorf 3-form på en annen "speil"-mangfoldighet.
- 1994: Maxim Kontsevich (han siste i "Colors of Math"), foreslår en teori, "homologisk speil-symmetri". Formodningen er at det er en ekvivalens mellom to deriverte kategorier, hver assosiert til en Calabi-Yaumangfoldighet.
- 1994: Batyrev og Borisov viser hvordan en kan bruke torisk geometri for å konstruere eksempler på Calabi-Yau-mangfoldigheter.
- 1995: Ellingsrud og Strømme viste at antall vridde kubikker på en generell kvintikk er 317.206.375, noe som stemmer med det speilsymmetri forutsier.
- 1996: Stroming, Yau, Zaslow kom med sin "SYZ-formodning". Denne er veldig "topologisk", og inneholder ord som "Lagrangian fibration", "torus bundles", osv.
- 1997: Kreuzer og Skarke klassifiserte alle 4-dimensjonale refleksive polytoper. Det er 473.800.776 av dem.
- 2003: Mark Gross, Berndt Siebert publiserte artikkelen "Mirror Symmetry via Logarithmic Degeneration Data" (144 sider!). Det er en

algebraisk-geometrisk versjon av SYZ-formodningen. De bruker ideer som log geometri, tropisk geometri, polyhedre, torisk geometri, deformasjonsteori, nilpotente elementer, osv. Dette er hva Nordfjordeid skal gi en innføring i.

2 Hva sier speilsymmetri?

2.1 Fysikk

Noe om supersymmetrisk strengteori og egenvektorer. Valg av basis fører til valg av Calabi-Yau-mangfoldighet, men dette skal ikke ha noe å si. Resultat: to familier av Calabi-Yau.

Resten er hokus-pokus.

2.2 Matematiske påstander

Har "noe å gjøre" med Calabi-Yau-mangfoldigheter. Så la oss starte med definisjonen.

Definition 2.1. En Calabi-Yau mangfoldighet (av dimensjon 3) er en glatt, proper varietet X over \mathbb{C} slik at den kanoniske bunten ω_X er triviell og slik at $H^j(X, \mathcal{O}_X) = 0$ for $j \neq 0, 3$.

Husk at den kanoniske bunten er per definisjon $\bigwedge^n \Omega_X^1$. Lokalt er seksjoner av denne beskrevet som $f dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n$ for $f \in \mathscr{O}_X(U)$. At den er triviell betyr at $\omega_X \simeq \mathscr{O}_X$. Det finnes med andre ord en n-form $\omega \in \omega_X$ som aldri er null.

Det er andre definisjoner av Calabi-Yau, men de bruker ord jeg ikke kan (for å droppe ord: en kompakt 3-dimensjonal kompleks mangfoldighet med en Kähler-metrikk g slik at holonomi-gruppen er SU(3)).

Til glatte komplekse mangfoldigheter kan vi tilordne Hodge-tall. Disse er per definisjon $h^{ij} := \dim_{\mathbb{C}} H^i(X, \Omega_X^j)$. Ved Serre-dualitet og kompleks konjugering følger det at $h^{ij} = h^{ji}$, så disse tallene er symmetriske. Fra dette, og betingelsen kan vi skrive opp "Hodge-diamanten":

Figur 1: Hodge-plot av alle kjente Calabi-Yau-mangfoldigheter.

Hvor $h^{11}=h^{22}$ og $h^{12}=h^{21}.$ Da er Euler-karakteristikken $\chi=2(h^{11}-h^{12}).$

Nå kan vi komme med én av speilsymmetriens formodninger:

Formodning 1. For hver Calabi-Yau 3-mangfoldighet X, finnes en Calabi-Yau 3-mangfoldighet Y slik $h^{11}(X) = h^{21}(Y)$ og $h^{21}(X) = h^{11}(Y)$.

Mer presist/vagt (alt etter som), sier påstanden at det finnes en dualitet mellom familier av Calabi-Yau-mangfoldigheter. Enda mer "presist", skal variasjon av kompleks struktur på X svare til variasjon av "symplektisk struktur" på Y (hva nå enn det betyr!).

2.3 Det kanoniske eksemplet: kvintikken

La X være en generell kvintikk i \mathbb{P}^4 , altså definert ved et generelt femtegradspolynom.

Theorem 2.2. X er Calabi-Yau.

Bevis. De fleste varieteter er glatte, så X er glatt. Projektive varieteter er propre. For å se at $h^1 = h^2 = 0$, må man ty til teoremer. La \mathfrak{I}_X være idealknippet til X i \mathbb{P}^4 . Men $\mathfrak{I}_X \simeq \mathscr{O}_{\mathbb{P}^4}(-5)$, og $H^2(\mathscr{O}_{\mathbb{P}^4}(-5)) = 0$ ved et teorem i Hartshorne. Samme oppskrift for $H^2(\mathscr{O}_X)$.

Alternativt: X degenererer til et Stanley-Reisner-skjema med ideal $I = \langle x_0 x_1 \cdots x_4 \rangle$ som svarer til $\partial \Delta^4$, altså randen til en 4-ball, som er en 3-sfære. Et folketeorem i Stanley-Reisner-teori sier at $H^i(X, \mathcal{O}_X) \simeq H^i(\mathcal{K}, \mathbb{C})$ (der høyresiden er simplisialkohomologi). Så X har kohomologien til en sfære.

For å vise at den kanoniske er triviell, har vi adjunksjonsteoremet (også fra Hartshorne), som sier at $K_X = (K_{\mathbb{P}^4} + D_X)|_X$. Klassen til $K_{\mathbb{P}^4}$ er 5H, der H er klassen til et hyperplan. Her er $D_X = -5H$. Det følger at $K_X = 5H - 5H|_X = 0$, så K_X er triviell.

Neste spørsmål i utforskingen av X er å regne ut Hodge-diamanten. For det trenger vi to tall: $h^{11} = \dim_{\mathbb{C}} H^1(X, \Omega^1_X)$ og $h^{12} = \dim_{\mathbb{C}} H^1(X, \Omega^2_X)$. For å gjøre trenger man snitteori (eller mer erfaring). Svaret er at $h^{11} = 1$

For å gjøre trenger man snitteori (eller mer erfaring). Svaret er at $h^{11}=1$ og $h^{12}=101$. Heuristisk dukker tallet 101 opp på følgende måte: dimension h^{12} skal svare til rommet av kvintiske hyperflater. Antall kvintikker opp til \mathbb{C}^* 125, men vi må trekke fra automorfier av \mathbb{P}^5 , som det er 24 av. Så $h^{12}=101$. (ikke spør meg hvorfor!) Macaulay2 gir ihvertfall samme svar, med kommandoen HH^1(cotangentSheaf(2,X)).

2.3.1 Speilet til X

Først av alt, X passer naturlig inn i en familie X_{ψ} av skjema, nesten alle Calabi-Yau:

$$X_{\psi} = \{x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 + \psi x_0 x_1 x_2 x_3 x_4 x_5 = 0\}$$

Legg merke til at X_{ψ} er invariant under den naturlige virkningen fra $(\mathbb{Z}_5)^5/\mathbb{Z}_5$. Undergruppen $H \subset G$ definert ved $\vec{a} \in H \Leftrightarrow \sum \vec{a}_i \equiv 0 \pmod{5}$ virker på X_{ψ} , og det kan bli vist at kvotienten X_{ψ}/H har en desingularisering som fortsatt er Calabi-Yau, og at denne har speilede Hodge-tall.

3 Batyrev-Borisov-konstruksjonen

BB-konstruksjonen er den sålangt mest fruktbare konstruksjonen av konkrete eksempler på Calabi-Yau-mangfoldigheter. Vi trenger noen begreper. Husk at et gitterpolytop er et polytop med hjørner i et gitter \mathbb{Z}^d .

Definition 3.1. Et gitter-polytop Δ er *refleksivt* om det kun har ett indre gitterpunkt, og også Δ° er et gitterpolytop.

Enkelt 2-dimensjonalt eksempel: \square og \diamond . I tre dimensjoner er kuben og oktaederet polare. Det er bare endelig mange refleksive polytoper i en gitt dimensjon.

La nå \mathbb{P}_{Δ} være den toriske varieteten assosiert til polytopet Δ . Dette kan bli realisert som Proj av $\mathbb{C}[\mathbb{Z} \cap C(\Delta \times \{1\})]$, der $C(\Delta \times \{1\})$ er kjeglen over polytopet.

Her er Batyrev-Borisov-konstruksjonen: La f være polynomet med monomer parametrisert av hjørnene til Newton-polytopet Δ . Da er tillukningen til Z(f) i \mathbb{P}_{Δ} en Calabi-Yau-mangfoldighet.

Speilet er konstruert ved å gjøre det samme med det polare polytopet. Denne konstruksjonen kan generaliseres til komplette snitt i mange dimensjoner.

4 Gross-Siebert-programmet

Toriske degenerasjoner.

Log geometri.

Lagrangian subvarieties?