

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 3

Arithmetic for Computers

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer Addition

Example: 7 + 6

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — 3

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)
 - +7: 0000 0000 ... 0000 0111
 - <u>-6: 1111 1111 ... 1111 1010</u>
 - +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video

Chapter 3 — Arithmetic for Computers — 5

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication Hardware

NORGAN KAUFHAIN

Chapter 3 — Arithmetic for Computers — 7

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

Chapter 3 — Arithmetic for Computers — 9

LEGv8 Multiplication

- Three multiply instructions:
 - MUL: multiply
 - Gives the lower 64 bits of the product
 - SMULH: signed multiply high
 - Gives the upper 64 bits of the product, assuming the operands are signed
 - UMULH: unsigned multiply high
 - Gives the lower 64 bits of the product, assuming the operands are unsigned

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

MORGAN KAUFMANN

Chapter 3 — Arithmetic for Computers — 11

Division Hardware

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 13

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT devision)
 generate multiple quotient bits per step
 - Still require multiple steps

- Two instructions:
 - SDIV (signed)
 - UDIV (unsigned)
- Both instructions ignore overflow and division-by-zero

Chapter 3 — Arithmetic for Computers — 15

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

■
$$-2.34 \times 10^{56}$$
 normalized

■ $+0.002 \times 10^{-4}$ not normalized

■ $+987.02 \times 10^{9}$

- In binary
 - $\pm 1.xxxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 17

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

 $x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- S: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001
 ⇒ actual exponent = 1 127 = –126
 - Fraction: 000...00 ⇒ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110
 ⇒ actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Chapter 3 — Arithmetic for Computers — 19

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001
 ⇒ actual exponent = 1 1023 = –1022
 - Fraction: 000...00 ⇒ significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110⇒ actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 × log₁₀2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

Chapter 3 — Arithmetic for Computers — 21

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: -1 + 127 = 126 = 011111110₂
 - Double: -1 + 1023 = 1022 = 011111111110₂
- Single: 10111111101000...00
- Double: 10111111111101000...00

Floating-Point Example

 What number is represented by the singleprecision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Fxponent = 10000001₂ = 129

$$x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 - 127)}$$

$$= (-1) \times 1.25 \times 2^{2}$$

$$= -5.0$$

Chapter 3 — Arithmetic for Computers — 23

Denormal Numbers

■ Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$
Two representations of 0.0!

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Chapter 3 — Arithmetic for Computers — 25

Floating-Point Addition

- Consider a 4-digit decimal example
 - $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - \bullet 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - $9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalize result & check for over/underflow
 - 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002 × 10²

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - \bullet 1.000₂ × 2⁻⁴ (no change) = 0.0625

Chapter 3 — Arithmetic for Computers — 27

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

NO NO NA MANUFINAN

Chapter 3 — Arithmetic for Computers — 29

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - 1.110 × 10¹⁰ × 9.200 × 10⁻⁵
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^5$
- 3. Normalize result & check for over/underflow
 - 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 1.021 × 10⁶
- 5. Determine sign of result from signs of operands
 - +1.021 × 10⁶

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve × –ve ⇒ –ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

Chapter 3 — Arithmetic for Computers — 31

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in LEGv8

- Separate FP registers
 - 32 single-precision: S0, ..., S31
 - 32 double-precision: DS0, ..., D31
 - Sn stored in the lower 32 bits of Dn
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - LDURS, LDURD
 - STURS, STURD

Chapter 3 — Arithmetic for Computers — 33

FP Instructions in LEGv8

- Single-precision arithmetic
 - FADDS, FSUBS, FMULS, FDIVS
 - e.g., FADDS S2, S4, S6
- Double-precision arithmetic
 - FADDD, FSUBD, FMULD, FDIVD
 - e.g., FADDD D2, D4, D6
- Single- and double-precision comparison
 - FCMPS, FCMPD
 - Sets or clears FP condition-code bits
- Branch on FP condition code true or false
 - B.cond

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in S12, result in S0, literals in global memory space
- Compiled LEGv8 code:

```
f2c: LDURS S16, [X27,const5] // S16 = 5.0 (5.0 in memory) LDURS S18, [X27,const9] // S18 = 9.0 (9.0 in memory) FDIVS S16, S16, S18 // S16 = 5.0 / 9.0 LDURS S18, [X27,const32] // S18 = 32.0 FSUBS S18, S12, S18 // S18 = fahr - 32.0 FMULS S0, S16, S18 // S0 = (5/9)*(fahr - 32.0) BR LR // return
```

Norgan Kaupimann

Chapter 3 — Arithmetic for Computers — 35

FP Example: Array Multiplication

- $X = X + Y \times Z$
 - All 32 × 32 matrices, 64-bit double-precision elements
- C code:

Addresses of x, y, z in X0, X1, X2, and i, j, k in X19, X20, X21

FP Example: Array Multiplication

LEGv8 code:

```
mm: . . .
     LDI X10, 32
                             // x10 = 32 (row size/loop end)
     LDI X19, 0
                             // i = 0; initialize 1st for loop
  L1:LDI X20, 0
                             // j = 0; restart 2nd for loop
  L2:LDI X21, 0
                             // k = 0; restart 3rd for loop
                             // X11 = i * 2 5 (size of row of c)
     LSL X11, X19, 5
     ADD X11, X11, X20
                             // X11 = i * size(row) + j
     LSL X11, X11, 3
                             // X11 = byte offset of [i][j]
                             // X11 = byte address of c[i][j]
     ADD X11, X0, X11
                             // D4 = 8 bytes of c[i][j]
     LDURD D4, [X11,#0]
  L3:LSL X9, X21, 5
                             // x9 = k * 2 5  (size of row of b)
                             // x9 = k * size(row) + j
     ADD X9, X9, X20
     LSL X9, X9, 3
                             // x9 = byte offset of [k][j]
                             // X9 = byte address of b[k][j]
     ADD X9, X2, X9
     LDURD D16, [X9,#0]
                             // D16 = 8 \text{ bytes of b[k][j]}
     LSL X9, X19, 5
                             // X9 = i * 2 5  (size of row of a)
```


Chapter 3 — Arithmetic for Computers — 37

FP Example: Array Multiplication

```
ADD X9, X9, X21
                           // X9 = i * size(row) + k
LSL X9, X9, 3
                           // x9 = byte offset of [i][k]
ADD X9, X1, X9
                           // x9 = byte address of a[i][k]
LDURD D18, [x9,#0]
                           // D18 = 8 \text{ bytes of a[i][k]}
FMULD D16, D18, D16
                           // D16 = a[i][k] * b[k][j]
                           // f4 = c[i][j] + a[i][k] * b[k][j]
FADDD D4, D4, D16
ADDI X21, X21, 1
                           // test k vs. 32
CMP X21, X10
B.LT L3
                           // if (k < 32) go to L3
STURD D4, [X11,0]
                           // = D4
                           //  $j = j + 1
ADDI X20, X20, #1
CMP X20, X10
                           // test j vs. 32
B.LT L2
                           // if (j < 32) go to L2
ADDI X19, X19, #1
                           // $i = i + 1
CMP X19, X10
                           // test i vs. 32
                           // if (i < 32) go to L1
B.LT L1
```

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Chapter 3 — Arithmetic for Computers — 39

Subword Parallellism

- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
 - Example: 128-bit adder:
 - Sixteen 8-bit adds
 - Eight 16-bit adds
 - Four 32-bit adds
- Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)

ARMv8 SIMD

- 32 128-bit registers (V0, ..., V31)
- Works with integer and FP
- Examples:
 - 16 8-bit integer adds:
 - ADD V1.16B, V2.16B, V3.16B
 - 4 32-bit FP adds:
 - FADD V1.4S, V2.4S, V3.4S

Chapter 3 — Arithmetic for Computers — 41

Other ARMv8 Features

- 245 SIMD instructions, including:
 - Square root
 - Fused multiply-add, multiply-subtract
 - Convertion and scalar and vector round-tointegral
 - Structured (strided) vector load/stores
 - Saturating arithmetic

- 8 × 80-bit extended-precision registers
- Used as a push-down stack
- Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

Chapter 3 — Arithmetic for Computers — 43

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FIUCOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

- Optional variations
 - I: integer operand
 - P: pop operand from stack
 - R: reverse operand order
 - But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

Chapter 3 — Arithmetic for Computers — 45

Matrix Multiply

Unoptimized code:

```
1. void dgemm (int n, double* A, double* B, double* C)
2. {
3. for (int i = 0; i < n; ++i)
4. for (int j = 0; j < n; ++j)
5. {
6. double cij = C[i+j*n]; /* cij = C[i][j] */
7. for(int k = 0; k < n; k++)
8. cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
9. C[i+j*n] = cij; /* C[i][j] = cij */
10. }
11. }</pre>
```

Matrix Multiply

x86 assembly code:

```
1. vmovsd (%r10), %xmm0 # Load 1 element of C into %xmm0
2. mov %rsi,%rcx
                      # register %rcx = %rsi
3. xor %eax, %eax
                      # register %eax = 0
4. vmovsd (%rcx), %xmm1 # Load 1 element of B into %xmm1
5. add %r9,%rcx
                    # register %rcx = %rcx + %r9
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,
element of A
7. add \$0x1, \$rax # register \$rax = \$rax + 1
8. cmp %eax, %edi # compare %eax to %edi
9. vaddsd %xmm1, %xmm0, %xmm0 # Add %xmm1, %xmm0
10. jg 30 <dgemm+0x30> # jump if %eax > %edi
11. add $0x1, %r11d # register %r11 = %r11 + 1
12. vmovsd %xmm0,(%r10) # Store %xmm0 into C element
```


Chapter 3 — Arithmetic for Computers — 47

Matrix Multiply

Optimized C code:

```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
4. for (int i = 0; i < n; i+=4)
5. for (int j = 0; j < n; j++) {
6.
      m256d c0 = mm256 load pd(C+i+j*n); /* c0 = C[i][j]
* /
    for ( int k = 0; k < n; k++ )
7.
     c0 = mm256 \text{ add } pd(c0, /* c0 += A[i][k]*B[k][j] */
9.
                mm256 \text{ mul pd}(mm256 \text{ load pd}(A+i+k*n),
                mm256 broadcast_sd(B+k+j*n)));
10.
11.
     mm256 \text{ store pd}(C+i+j*n, c0); /* C[i][j] = c0 */
12. }
13. }
```

Matrix Multiply

Optimized x86 assembly code:

```
1. vmovapd (%r11),%ymm0
                          # Load 4 elements of C into %ymm0
2. mov %rbx,%rcx
                          # register %rcx = %rbx
3. xor %eax, %eax
                          # register %eax = 0
4. vbroadcastsd (%rax, %r8,1), %ymm1 # Make 4 copies of B element
5. add $0x8,%rax
                          # register %rax = %rax + 8
6. vmulpd (%rcx), %ymm1, %ymm1 # Parallel mul %ymm1, 4 A elements
7. add %r9,%rcx
                         # register %rcx = %rcx + %r9
8. cmp %r10,%rax
                         # compare %r10 to %rax
9. vaddpd %ymm1,%ymm0,%ymm0 # Parallel add %ymm1, %ymm0
11. add $0x1, %esi
                        # register % esi = % esi + 1
12. vmovapd %ymm0,(%r11) # Store %ymm0 into 4 C elements
```

```
NORGAN KAUJIMANN
```

Chapter 3 — Arithmetic for Computers — 49

Right Shift and Division

- Left shift by i places multiplies an integer by 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - 11111011₂ >> 2 = 11111110₂ = -2
 - Rounds toward –∞
 - c.f. $11111011_2 >>> 2 = 001111110_2 = +62$

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
Х	-1.50E+38		-1.50E+38
У	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

Chapter 3 — Arithmetic for Computers — 51

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Chapter 3 — Arithmetic for Computers — 53

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow