Uvod v univerzalno algebro in Mal'cev pogoj

Andraž Kukovičič

Mentorica: izr. prof. dr. Ganna Kudryavtseva

Fakulteta za matematiko in fiziko

2. 12. 2024

Definicija algebre

Tip ali jezik algebre je množica F funkcijskih simbolov. Vsak simbol $f \in \mathcal{F}$ ima prirejeno nenegativno celo število n, ki ga imenujemo -arnost ali $rang\ f$.

Algebra $\bf A$ tipa $\cal F$ je urejeni par (A,F), kjer je A neprazna množica in $\cal F$ družina operacij s končnim številom argumentov na $\cal A$ indeksirana z jezikom $\cal F$ tako, da je vsakemu $\it n$ -arnemu funkcijskemu simbolu $\it f$ iz $\cal F$ prirejena $\it n$ -arna operacija $\it f^A$ na $\it A$, ki jo imenujemo fundamnetalna operacija algebre $\it A$ Množico $\it A$ imenujemo univerzalna množica algebre $\it A$ = $(\it A,F)$.

Primeri algeber

Grupe Grupa **G** je algebra $(G,\cdot,^{-1},1)$ v kateri veljajo naslednje identitete:

G1
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$\mathsf{G2}\ x \cdot 1 = 1 \cdot x = x$$

G3
$$x \cdot x^{-1} = x^{-1} \cdot x = 1$$
.

Polgrupe so algebre (G, \cdot)

Monoidi so algebre $(M, \cdot, 1)$

Mreže so algebre (L, \vee, \wedge)

Mreže

Neprazna množica M z dvema binarnima operacijama, ki ju označimo z \vee in \wedge je mreža, če zadošča:

M1
$$x \lor y = y \lor x$$

$$\mathsf{M2}\ x \lor (y \lor z) = (x \lor y) \lor z$$

M3
$$x \lor x = x$$

M4
$$x = x \lor (x \land y)$$
.

Ekvivalentno:

Delno urejena množica M je mreža natanko takrat ko za vsaka $a,b\in M$ obstajata $sup\{a,b\}$ in $inf\{a,b\}$.

Primer:

 $M=\mathbb{N}$, z \vee označimo najmanjši skupni večkratnik, z \wedge pa največji skupni delitelj števil. Potem je (\mathbb{N},\vee,\wedge) mreža.

Kongruence

Naj bo $\bf A$ algebra tipa $\cal F$ in naj bo $\theta \in Eq(A)$. Tedaj je θ kongruenca na $\bf A$, če zadošča naslednjemu pogoju: Za vsak n-arni funkcijski simbol $f \in \cal F$ in elemente $a_i,b_i \in A$, če velja $a_i\theta b_i$ za vse $1 \le i \le n$, potem velja $f^{\bf A}(a_1,\ldots,a_n)\,\theta f^{\bf A}(b_1,,b_n)$. Z ConA označimo množico vseh kongruenc algebre A. Če ConA opremimo z operacijama \wedge in \vee , ki sta definirani: $\theta_1 \wedge \theta_2 = \theta_1 \cap \theta_2$ in $\theta_1 \vee \theta_2 = \theta_1 \cup (\theta_1 \circ \theta_2) \cup (\theta_1 \circ \theta_2 \circ \theta_1) \cup \ldots$ postane ConA mreža.

Primer:

Naj bo **G** grupa.

Če je $\theta \in Con\mathbf{G}$ potem je $1/\theta$ univerzalna množica podgrupe edinke grupe \mathbf{G} in velja $a,b\in G$ velja $(a,b)\in \theta \Leftrightarrow a\cdot b^{-1}\in 1/\theta$. Če je $\mathbf{N}\lhd \mathbf{G}$, potem je relacija na G definirana:

 $(a,b)\in heta \Leftrightarrow a\dots b^{-1}\in extbf{N}$ kongruenca na ${f G}$ in $1/ heta= extbf{N}$

. Preslikava s predpisom $\theta\mapsto 1/\theta$ je bijekcija med kongruencami na ${\bf G}$ in edinkami grupe ${\bf G}$.

Mal'cev izrek

Algebra **A** je *kongruenčno-permutabilna*, če vsak par kongruenc permutira:

$$\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$$

Neprazen razred K algeber tipa \mathcal{F} imenujemo raznoterost, če je zaprt za podalgebre, slike homomorfizmov in direkten produkte.

Izrek : Naj bo V raznoterost tipa F. Raznoterost V je kongruenčno-permutabilna natanko takrat, ko obstaja pogoj p(x, y, z), da:

$$V \models p(x, x, y) = y$$

in

$$V \models p(x, y, y) = x$$
.