CONCOURS CENTRALE-SUPÉLEC 2021

CORRIGÉ DE MATHÉMATIQUES 2 MP

m.laamoum@gmail.com

Inégalités de Bernstein

I Inégalité polynomiale de Bernstein et applications

I.A Polynômes de Tchebychev

On a $T_0 = 1, T_1 = X$ et $\forall n \in \mathbb{N}, T_{n+2} = 2XT_{n+1} - T_n$.

Q 1.

- Par récurrence sur n. On a $\deg T_0=0$ et $\deg T_1=1$, supposons que $\deg T_k=k$ pour $k\in [0,n]$, comme $T_{n+1}=2XT_n-T_{n-1}$, $\deg XT_n=n+1$ et $\deg T_{n-1}=n-1$ alors $\deg T_{n+1}=n+1$. Ainsi $\forall n\in \mathbb{N},$ $\deg T_n=n$.
- Soit $(\alpha_k)_{0 \le k \le n}$ dans \mathbb{C}^{n+1} telle que $\alpha_0 T_0 + \ldots + \alpha_n T_n = 0$ donc $\alpha_n T_n = -\alpha_0 T_0 \ldots \alpha_{n-1} T_{n-1}$. La suite $(\deg T_k)_{k \in \mathbb{N}}$ est strictement croissante donc $\deg(\alpha_n T_n) = \deg(-\alpha_0 T_0 - \ldots - \alpha_{n-1} T_{n-1}) \le n-1$, si $\alpha_n \ne 0$ alors $\deg(\alpha_n T_n) = n$ ce qui est absurde. Ainsi par récurrence (descendante) on a $\alpha_0 = \ldots = \alpha_n = 0$ et $(T_k)_{0 \le k \le n}$ est libre .

La famille $(T_k)_{0 \le k \le n}$ est libre a n+1 éléments dans $\mathbb{C}_n[X]$ qui est de dimension n+1, donc $(T_k)_{0 \le k \le n}$ est une base de $\mathbb{C}_n[X]$

Q 2. Montrons par récurrence que, pour tous $n \in \mathbb{N}$ et $\theta \in R$, $T_n(\cos \theta) = \cos(n\theta)$.

C'est vrai pour n=0, n=1, supposons pour tout $k \in [0,n]$ et $\theta \in R, T_k(\cos \theta) = \cos(k\theta)$.

On a $T_{n+1}(\cos\theta) = 2\cos\theta \ T_n(\cos\theta) - T_{n-1}(\cos\theta)$, l'hypothèse de récurrence donne

$$T_{n+1}(\cos\theta) = 2\cos(\theta) \cos(n\theta) - \cos((n-1)\theta)$$

On sait que $\cos(\theta) \cos(n\theta) = \frac{1}{2}(\cos((n+1)\theta) + \cos((n+1)\theta))$, d'où

$$T_{n+1}(\cos\theta) = \cos((n+1)\theta)$$

Q 3. Soit $P \in \mathbb{C}_n[X]$ et $(T_k)_{0 \le k \le n}$ est une base de $\mathbb{C}_n[X]$ donc $P = \sum_{k=0}^n \alpha_k T_k$ avec $\alpha_0, ..., \alpha_n \in \mathbb{R}$, par suite

$$P(\cos \theta) = \sum_{k=0}^{n} \alpha_k T_k(\cos \theta) = \sum_{k=0}^{n} \alpha_k \cos(k\theta)$$

Ainsi $\theta \mapsto P(\cos \theta)$ est dans S_n .

Q 4. Soit $x \in [-1, 1]$ alors il existe $\theta \in [0, \pi]$ unique, tel que $\cos \theta = x$, donc $|T_n(x)| = |\cos(n\theta)|$, ce qui donne

$$\sup_{x \in [-1,1]} |T_n(x)| = \sup_{\theta \in [0,\pi]} |\cos(n\theta)| = 1$$

Q 5. Montrons par récurrence que $|\sin(n\theta)| \le n |\sin \theta|$.

C'est vrai pour n=0 , supposons le pour n , on a

$$|\sin((n+1)\theta)| \le |\cos n\theta| |\sin \theta| + |\cos \theta| |\sin n\theta|$$

 $\le |\sin \theta| + |\sin n\theta|)$

l'hypothèse de récurrence donne $|\sin((n+1)\theta)| \le (n+1)|\sin\theta|$.

On a

$$\sup_{x \in [-1,1]} |T_n'(x)| = \sup_{\theta \in [0,\pi]} |T_n'(\cos \theta)|$$

de la relation $T_n(\cos\theta) = \cos(n\theta)$ on a $\sin(\theta)T'_n(\cos\theta) = n\sin(n\theta)$ donc $|\sin(\theta)T'_n(\cos\theta)| \le n^2 |\sin\theta|$ et

$$|T'_n(\cos\theta)| < n^2$$

 $\begin{aligned} & \text{Pour } \theta \neq k\pi \text{ , } T_n'(\cos\theta) = n \frac{\sin(n\theta)}{\sin(\theta)} \text{ donc } |T_n'(\cos\theta)| \underset{\theta \to 0}{\rightarrow} n^2 \text{ et } |T_n'(\cos\theta)| \underset{\theta \to 0}{\rightarrow} |T_n'(1)| \text{ , donc } |T_n'(1)| = n^2. \end{aligned} \\ & \text{Ainsi } \sup_{\theta \in [0,\pi]} |T_n'(\cos\theta)| = n^2. \end{aligned}$

Inégalité de Bernstein

Q 6. Soit $A \in \mathbb{C}_{2n}[X]$, scindé à racines simples, (a_1, \dots, a_{2n}) ses racines et $B \in \mathbb{C}_{2n-1}[X]$. La décomposition de la fraction $\frac{B}{A}$ en éléments simples s'écrit

$$\frac{B(X)}{A(X)} = \sum_{k=1}^{2n} \frac{\alpha_k}{X - a_k}$$

Soit $i \in [0, n]$ on a $(X - a_i) \frac{B(X)}{A(X)} = \alpha_i + (X - a_i) \sum_{k=1}^{2n} \frac{\alpha_k}{X - a_k}$ donc $\alpha_i = \lim_{t \to a_i} (t - a_i) \frac{B(t)}{A(t)}$, comme a_i est racine

simple de A alors $\lim_{t \to a_i} \frac{A(t)}{t - a_i} = A'(a_i) \neq 0$ ce qui donne $\alpha_i = \frac{B(a_i)}{A(a_i)}$ et $\frac{B(X)}{A(X)} = \sum_{k=1}^{2n} \frac{B(\alpha_k)}{(X - \alpha_k)A'(\alpha_k)}$.

Q 7. Soit P dans $\mathbb{C}_{2n}[X]$, et $\lambda \in \mathbb{C}$, $P_{\lambda}(X) = P(\lambda X) - P(\lambda)$.

On a $P_{\lambda}(1) = 0$ donc X - 1 divise P_{λ} .

Q 8. La formule de Taylor en λ s'écrit

$$P(X) = P(\lambda) + (X - \lambda) \sum_{k=1}^{2n} \frac{P^{(k)}(\lambda)}{k!} (X - \lambda)^{k-1}$$

donc

$$P(\lambda X) = P(\lambda) + \lambda (X - 1) \sum_{k=1}^{2n} \frac{P^{(k)}(\lambda)}{k!} \lambda^{k-1} (X - 1)^{k-1}$$

et

$$Q_{\lambda}(X) = \lambda P'(\lambda) + \sum_{k=2}^{2n} \frac{P^{(k)}(\lambda)}{k!} \lambda^k (X - 1)^{k-1}$$

ce qui donne $Q_{\lambda}(1) = \lambda P'(\lambda)$.

On considère le polynôme $R(X) = X^{2n} + 1$. Pour k dans $[\![1,2n]\!]$, on note $\varphi_k = \frac{\pi}{2n} + \frac{k\pi}{n}$ et $\omega_k = \mathrm{e}^{i\varphi_k}$. Q 9. Les racines de $R(X) = X^{2n} + 1$ sont les racines d'ordre 2n de -1 qui sont $e^{i\frac{(2k+1)\pi}{2n}} = \omega_k$ avec k dans $[\![1,2n]\!]$, R est unitaire donc

$$R(X) = \prod_{k=1}^{2n} (X - \omega_k).$$

Q 10. Soit $\lambda \in \mathbb{C}$. La formule (I.1), donne

$$Q_{\lambda}(X) = \sum_{k=1}^{2n} Q_{\lambda}(\omega_k) \frac{R(X)}{(X - \omega_k) R'(\omega_k)}$$

on a $Q_{\lambda}(\omega_k) = \frac{P(\lambda \omega_k) - P(\lambda)}{\omega_k - 1}$ et $R'(\omega_k) = 2n\omega_k^{2n-1} = \frac{-2n}{\omega_k}$ d'où

$$Q_{\lambda}(X) = -\frac{1}{2n} \sum_{k=1}^{2n} \frac{P(\lambda \omega_k) - P(\lambda)}{\omega_k - 1} \frac{X^{2n} + 1}{X - \omega_k} \omega_k$$

On a $Q_{\lambda}(1) = \lambda P'(\lambda)$ donc

$$\lambda P'(\lambda) = \frac{1}{2n} \sum_{k=1}^{2n} \frac{P(\lambda \omega_k) - P(\lambda)}{(\omega_k - 1)^2} 2\omega_k$$
$$= \frac{1}{2n} \sum_{k=1}^{2n} P(\lambda \omega_k) \frac{2\omega_k}{(1 - \omega_k)^2} - \frac{P(\lambda)}{2n} \sum_{k=1}^{2n} \frac{2\omega_k}{(1 - \omega_k)^2}.$$

L'égalité (I.2) appliquée au polynôme $P(X) = X^{2n}$ donne

$$2n\lambda^{2n} = \frac{1}{2n} \sum_{k=1}^{2n} \frac{-2\lambda^{2n}}{(\omega_k - 1)^2} 2\omega_k.$$

après simplification

$$\sum_{k=1}^{2n} \frac{\omega_k}{\left(\omega_k - 1\right)^2} = -n^2.$$

La formule (I.2) s'écrit alors

$$\forall \lambda \in \mathbb{C}, \quad \lambda P'(\lambda) = \frac{1}{2n} \sum_{k=1}^{2n} P(\lambda \omega_k) \frac{2\omega_k}{(1-\omega_k)^2} + nP(\lambda).$$

Q 12. Soit $f \in \mathcal{S}_n$ donc $f(t) = a_0 + \sum_{k=1}^n (a_k \cos(kt) + b_k \sin(kt))$ avec $a_k, b_k \in \mathbb{C} \ \forall k \in [1, n]$. On utilise la formule d'Euler pour ecrire

$$f(t) = a_0 + \sum_{k=1}^{n} \left(\alpha_k e^{ik\theta} + \beta_k e^{-ik\theta} \right)$$

$$= e^{-in\theta} \left(e^{in\theta} a_0 + \sum_{k=1}^{n} \left(\alpha_k e^{i(k+n)\theta} + \beta_k e^{i(n-k)\theta} \right) \right)$$

$$= e^{-in\theta} \left(e^{in\theta} a_0 + \sum_{k=n+1}^{2n} \alpha_{k-n} e^{ik\theta} + \sum_{k=0}^{n-1} \beta_{n-k} e^{ik\theta} \right)$$

Donc $f(\theta) = e^{-in\theta}U\left(e^{i\theta}\right)$ avec $U(X) = a_0X^n + \sum_{k=n+1}^{2n} \alpha_{k-n}X^k + \sum_{k=0}^{n-1} \beta_{n-k}X^k \in \mathbb{C}_{2n}\left[X\right]$ **Q 13.** Soit $k \in [1, 2n]$,

$$\frac{2\omega_k}{(1-\omega_k)^2} = \frac{2(e^{i\varphi_k/2})^2}{(1-e^{i\varphi_k})^2}$$
$$= \frac{2}{(e^{-i\varphi_k/2} - e^{i\varphi_k/2})^2}$$
$$= \frac{-1}{2\sin(\varphi_k/2)^2}$$

On sait que $f(\theta) = e^{-in\theta}U\left(e^{i\theta}\right)$ (Q12) avec $U \in \mathbb{C}_{2n}\left[X\right]$. On applique la question Q11 à U avec $\lambda = e^{i\theta}$,

$$e^{i\theta}U'(e^{i\theta}) = \frac{1}{2n}\sum_{k=1}^{2n}U\left(e^{i(\theta+\varphi_k)}\right)\frac{2\omega_k}{(1-\omega_k)^2} + nU(e^{i\theta})$$
$$= \frac{-1}{2n}\sum_{k=1}^{2n}U\left(e^{i(\theta+\varphi_k)}\right)\frac{1}{2\sin(\varphi_k/2)^2} + nU(e^{i\theta})$$

D'autre part

$$f'(\theta) = -ine^{-in\theta}U(e^{i\theta}) + ie^{i(1-n)\theta}U'(e^{i\theta})$$
$$= ie^{-in\theta}(-nU(e^{i\theta}) + e^{\theta}U'(e^{i\theta}))$$

et $e^{-in\varphi_k} = -i(-1)^k$ donc

$$f'(\theta) = i e^{-in\theta} \frac{-1}{2n} \sum_{k=1}^{2n} U\left(e^{i(\theta+\varphi_k)}\right) \frac{1}{2\sin(\varphi_k/2)^2}$$
$$= \frac{1}{2n} \sum_{k=1}^{2n} e^{-i(\theta+\varphi_k)} U\left(e^{i(\theta+\varphi_k)}\right) \frac{(-1)^k}{2\sin(\varphi_k/2)^2}$$
$$= \frac{1}{2n} \sum_{k=1}^{2n} f\left(\theta+\varphi_k\right) \frac{(-1)^k}{2\sin(\varphi_k/2)^2}$$

Q 14. f est bornée sur \mathbb{R} donc $||f||_{L^{\infty}(\mathbb{R})}$ existe. Soit $\theta \in \mathbb{R}$ on a

$$|f'(\theta)| \le \frac{1}{2n} \sum_{k=1}^{2n} |f(\theta + \varphi_k)| \frac{1}{2\sin(\varphi_k/2)^2} \le \frac{||f||_{L^{\infty}(\mathbb{R})}}{2n} \sum_{k=1}^{2n} \frac{1}{2\sin(\varphi_k/2)^2}.$$

Les questions Q11 et Q12 donnent

$$\sum_{k=1}^{2n} \frac{\omega_k}{(\omega_k - 1)^2} = -n^2 \text{ et } \frac{2\omega_k}{(1 - \omega_k)^2} = \frac{-1}{2\sin(\varphi_k/2)^2}$$

donc

$$\sum_{k=1}^{2n} \frac{1}{2\sin(\varphi_k/2)^2} = 2n^2$$

ainsi

$$|f'(\theta)| \leqslant n||f||_{L^{\infty}(\mathbb{R})}.$$

I.C Quelques conséquences de l'inégalité (I.4)

Q 15. Soit $x \in [-1, 1]$ et $t \in \mathbb{R}$ tel que $x = \cos t$. Soit $P \in \mathbb{C}_n[X]$ posons $f(t) = P(\cos(t))$. D'après la question Q3 on a $f \in \mathcal{S}_n$, la question Q14 donne $|f'(t)| \leq n||f||_{L^{\infty}(\mathbb{R})}$. De plus

$$||f||_{L^{\infty}(\mathbb{R})} = ||P||_{L^{\infty}([-1,1])}$$

 et

$$|f'(t)| = |\sin(t)P'(\cos(t))| = |P'(x)\sqrt{1-x^2}|$$

ainsi

$$|P'(x)\sqrt{1-x^2}| \leqslant n \|P\|_{L^{\infty}([-1,1])}$$

Q 16. Soit $Q \in \mathbb{C}_{n-1}[X]$ avec $Q(X) = \sum_{k=0}^{n} a_k X^k$ et $f : \theta \mapsto Q(\cos \theta) \sin \theta$, on a $f(\theta) = \sum_{k=0}^{n-1} a_k \sin \theta \cos^k(\theta)$. Remarquons que

 $\sin \theta \cos^k(\theta) = -\frac{1}{k+1} \left(\cos^{k+1}(\theta)\right)'$

Comme $(T_h)_{0 \leq h \leq k+1}$ est une base de $\mathbb{C}_{k+1}[X]$ alors il existe $\alpha_0,..,\alpha_h \in \mathbb{C}$, $X^{k+1} = \sum_{h=0}^{k+1} \alpha_h T_h(X)$ donc

$$\cos^{k+1}(\theta) = \sum_{h=0}^{k+1} \alpha_h T_h(\cos(\theta)) = \sum_{h=0}^{k+1} \alpha_h \cos(h\theta)$$

et

$$\sin \theta \cos^k(\theta) = \sum_{h=0}^{k+1} \frac{h\alpha_h}{k+1} \sin(h\theta)$$

ce qui permet d'écrire $f(\theta)$ sous la forme $\sum_{k=0}^{n-1} b_k \sin(k\theta)$ ainsi $f \in \mathcal{S}_n$. Soit $x \in [-1, 1]$ et $\theta \in \mathbb{R}$ tel que $x = \cos \theta$. On a

$$f'(\theta) = \cos(\theta) Q(\cos\theta) - \sin^2(\theta) Q'(\cos\theta)$$

et f'(0) = Q(1) de plus

$$||f||_{L^{\infty}(\mathbb{R})} = \sup_{-1 \le x \le 1} \left| Q(x)\sqrt{1 - x^2} \right|$$

L'inégalité $|f'(0)| \leq n ||f||_{L^{\infty}(\mathbb{R})}$ s'écrit alors

$$|Q(1)| \leqslant n \sup_{-1 \leqslant x \leqslant 1} \left| Q(x) \sqrt{1 - x^2} \right|$$

Q 17. Soit $R \in \mathbb{C}_{n-1}[X]$ et $t \in [-1,1]$. $S_t(X) = R(tX)$, on a $|S_t(1)| \le n \sup_{-1 \le x \le 1} |R(tx)\sqrt{1-x^2}|$.

On a $\sqrt{1-x^2} \le \sqrt{1-(tx)^2}$ donc $|R(tx)|\sqrt{1-x^2} \le |R(tx)|\sqrt{1-(tx)^2} \le \sup_{-1 \le x \le 1} |R(x)\sqrt{1-x^2}|$

et

$$\sup_{-1\leqslant x\leqslant 1}\left|R(tx)\sqrt{1-x^2}\right|\leq \sup_{-1\leqslant x\leqslant 1}\left|R(x)\sqrt{1-x^2}\right|$$

Finalement $|R(t)| = |S_t(1)| \le n \sup_{-1 \le x \le 1} |R(x)\sqrt{1-x^2}|$

Q 18. Soit P dans $\mathbb{C}_n[X]$, la question Q17 appliquée à P donne

$$|P'(t)| \le n \sup_{-1 \le x \le 1} \left| P'(x) \sqrt{1 - x^2} \right|$$

De la question Q15 on a

$$|P'(x)\sqrt{1-x^2}| \leqslant n \|P\|_{L^{\infty}([-1,1])}$$

donc

$$\sup_{-1 \leqslant x \leqslant 1} \left| P'(x) \sqrt{1 - x^2} \right| \leqslant n \ \|P\|_{L^{\infty}([-1,1])}$$

et

$$|P'(t)| \le n^2 ||P||_{L^{\infty}([-1,1])}$$

ceci est vrai pout tout t dans [-1,1] d'où

$$||P'||_{L^{\infty}([-1,1])} \le n^2 ||P||_{L^{\infty}([-1,1])}$$

Q 19. Il y'a égalité pour les polynômes de Tchebychev. En effet des questions Q4 et Q5 on a $||T_n||_{L^{\infty}([-1,1])} = 1$ et $||T'_n||_{L^{\infty}([-1,1])} = n^2$ donc $||T'_n||_{L^{\infty}([-1,1])} = ||T_n||_{L^{\infty}([-1,1])} n^2$.

II Inégalités de Bernstein et transformée de Fourier

II.A Transformée de Fourier d'une fonction

Soit $f \in L^1(\mathbb{R})$. $\hat{f}(\xi) = \int_{-\infty}^{+\infty} f(x) e^{-ix\xi} dx$, $\xi \in \mathbb{R}$

Q 20. La fonction $g:(x,\xi)\mapsto f(x)\mathrm{e}^{-ix\xi}$ est continue sur $\mathbb{R}^2, |g(x,\xi)|\leq |f(x)|$ et $f\in L^1(\mathbb{R}),$ donc $\xi\mapsto f(x)\mathrm{e}^{-ix\xi}$ est intégrable et \hat{f} est bien définie, le théorème de continuité assure que \hat{f} est continue sur \mathbb{R} .

Q 21. Soit $f,g \in L^1(\mathbb{R})$ et $\alpha,\beta \in \mathbb{R}$.On a $\alpha f + \beta g \in L^1(\mathbb{R})$ donc $\widehat{\alpha f + \beta g}$ est bien définie, par linéarité de l'intégrale on a $\widehat{\alpha f + \beta g} = \widehat{\alpha f} + \beta \widehat{g}$.

 $\text{Comme } \left| \hat{f}(\xi) \right| \leq \int_{-\infty}^{+\infty} |f(x)| \, dx \text{ alors } \left\| \hat{f} \right\|_{\infty} \leq \|f\|_{1} \text{ ,ce qui assure que l'application linéaire } f \mapsto \hat{f} \text{ est continue de } \left(L^{1}(\mathbb{R}), \|\cdot\|_{1} \right) \text{ dans } (L^{\infty}(\mathbb{R}), \|\cdot\|_{\infty}).$

Q 22. Soit $f \in L^1(\mathbb{R}), \lambda \in \mathbb{R}_+^*$ et soit g la fonction de \mathbb{R} dans \mathbb{C} telle que $g(x) = f(\lambda x)$ pour tout réel x. On sait que $g \in L^1(\mathbb{R})$ si et seulement si $g \in L^1(\mathbb{R}^+)$ et $g \in L^1(\mathbb{R}^-)$. Soit $A \in \mathbb{R}$ on a

$$\int_0^A |g(x)| dx = \frac{1}{\lambda} \int_0^{\lambda A} |f(x)| dx$$

 $f \in L^1(\mathbb{R}^+)$ donc $\lim_{A \to +\infty} \int_0^A |g(x)| \, dx$ existe et $g \in L^1(\mathbb{R}^+)$, de même on a $\lim_{A \to -\infty} \int_A^0 |g(x)| \, dx$ existe et $g \in L^1(\mathbb{R}^-)$, par suite $g \in L^1(\mathbb{R})$.

Par le changement $t = \lambda x$ on obtient

$$\hat{g}(\xi) = \frac{1}{\lambda} \int_{-\infty}^{+\infty} f(t) e^{-i\xi/\lambda} dt$$
$$= \frac{1}{\lambda} \hat{f}\left(\frac{\xi}{\lambda}\right)$$

II.B Produit de convolution

Q 23. Soit $f \in L^1(\mathbb{R})$ et $g \in L^\infty(\mathbb{R})$, $|f(t)g(x-t)| \le ||g||_\infty |f(t)|$, donc $t \mapsto f(t)g(x-t)$ est intégrable sur \mathbb{R} et f * g est définie sur \mathbb{R} . Soit $x \in \mathbb{R}$, le changement s = x - t donne $(f * g)(x) = \int_{-\infty}^{+\infty} f(s)g(x-s)ds = (g * f)(x)$.

 $\mathbf{Q} \ \mathbf{24.} \quad \text{Soit} \ x \in \mathbb{R}, \ |(f * g)(x)| \leq \|g\|_{\infty} \int_{-\infty}^{+\infty} |f(t)| \, dt \ , \ \text{donc} \ f * g \ \text{est born\'ee} \ \text{et} \ \|f * g\|_{\infty} \leqslant \|f\|_1 \|g\|_{\infty}.$

Q 25. Soit $k \in \mathbb{N}$ et g est de classe \mathcal{C}^k telle que les fonctions $g^{(j)}$ sont bornées pour $j \in [0, k]$. Soit $j \in [0, k]$ la fonction $h: (t, x) \mapsto f(t)g(x - t)$ est de classe \mathcal{C}^k et

$$\frac{\partial^{j} h}{\partial x^{j}}(t, x) = f(t)g^{(j)}(x - t)$$

donc

$$\left|\frac{\partial^{j} h}{\partial x^{j}}(t,x)\right| \leq |f(t)| \left\|g^{(j)}\right\|_{\infty}$$

Ainsi f * g est de classe \mathcal{C}^k et $(f * g)^{(k)} = \int_{-\infty}^{+\infty} f(t)g^{(k)}(x-t)dt = f * \left(g^{(k)}\right)$.

Q 26. On suppose que $f \in L^1(\mathbb{R})$, $g \in L^{\infty}(\mathbb{R})$, $g \in L^1(\mathbb{R})$ et $f * g \in L^1(\mathbb{R})$. Soit $\xi \in \mathbb{R}$, on a

$$\widehat{f * g}(\xi) = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(t)g(x-t)dt \right) e^{-ix\xi} dx$$
$$= \int_{-\infty}^{+\infty} f(t) \left(\int_{-\infty}^{+\infty} e^{-ix\xi} g(x-t) dx \right) dt$$

par le changement s=x-t on a $\int_{-\infty}^{+\infty} \mathrm{e}^{-ix\xi} g(x-t) dx = \mathrm{e}^{-it\xi} \int_{-\infty}^{+\infty} \mathrm{e}^{-i(s+t)\xi} g(s) ds$, ce qui donne

$$\widehat{f * g}(\xi) = \int_{-\infty}^{+\infty} f(t) e^{-it\xi} \left(\int_{-\infty}^{+\infty} e^{-i(s+t)\xi} g(s) ds \right) dt$$
$$= \hat{f}(\xi) \hat{g}(\xi)$$

II.C Introduction d'une fonction plateau

Q 27. Montrons par récurrence que φ est de classe \mathcal{C}^k sur \mathbb{R} , $\forall k \in \mathbb{N}$.

- On a φ est continue sur \mathbb{R}^* et $\lim_{\substack{x \to 0 \\ <}} \varphi(x) = \lim_{\substack{x \to 0 \\ <}} \varphi(x) = 0$, donc φ est de classe \mathcal{C}^0 sur \mathbb{R} .
- Soit $k \geq 1$, supposons que : φ est de classe \mathcal{C}^k sur $\mathbb R$ et

$$\exists P_k \in \mathbb{R}[X], \varphi^{(k)}(t) = \begin{cases} P_k(1/t)e^{-1/t} & \text{si } t > 0\\ 0 & \text{si } t \leq 0 \end{cases}$$

• $\varphi^{(k)}$ est de classe \mathcal{C}^1 sur \mathbb{R}^* , $(\varphi^{(k)})'(t) = 0$ si t < 0 et $(\varphi^{(k)})'(t) = \frac{1}{t^2} (-P_k'(1/t) + P_k(1/t)) e^{-1/t}$ si t > 0, posons

$$P_k(X) = X^2 \left(-P'_k(X) + P_k(X) \right)$$

alors φ est de classe \mathcal{C}^{k+1} sur \mathbb{R}^* et $\varphi^{(k+1)}(t) = \begin{cases} P_{k+1}(1/t)e^{-1/t} & \text{si } t > 0 \\ 0 & \text{si } t < 0 \end{cases}$.

• On a

$$\frac{\varphi^{(k)}(t) - \varphi^{(k)}(0)}{t} = \begin{cases} \frac{1}{t} P_{k+1}(1/t) e^{-1/t} & \text{si } t > 0\\ 0 & \text{si } t < 0 \end{cases}$$

ce qui donne

$$\lim_{\substack{x \to 0 \\ <}} \frac{\varphi^{(k)}(t) - \varphi^{(k)}(0)}{t} = \lim_{\substack{x \to 0 \\ >}} \frac{\varphi^{(k)}(t) - \varphi^{(k)}(0)}{t} = 0$$

donc φ est k+1 fois dérivable en 0 et $\varphi^{(k+1)}(0)=0$.

• $\lim_{\substack{x \to 0 \\ >}} \varphi^{(k+1)}(t) = \lim_{\substack{x \to 0 \\ >}} \varphi^{(k+1)}(t) = 0$ donc φ est de classe \mathcal{C}^{k+1} en 0.

Ainsi φ est de classe \mathcal{C}^{k+1} sur \mathbb{R} et $\varphi^{(k+1)}(t) = \begin{cases} P_{k+1}(1/t)e^{-1/t} & \text{si } t > 0 \\ 0 & \text{si } t \leq 0 \end{cases}$

Finalement φ est de classe \mathcal{C}^k $\forall k \in \mathbb{N}$ sur \mathbb{I}

 $\mathbf{Q} \ \mathbf{28.} \quad \text{Soit} \ \psi: t \mapsto \left\{ \begin{array}{ll} 0 & \text{si} \ t \notin]-1,1[\\ \mathrm{e}^{1/(t^2-1)} & \text{sinon.} \end{array} \right. \ \text{définie sur} \ \mathbb{R} \ \text{, on a} \ \psi(t) = \varphi(1-t^2) \ . \ \psi \ \text{est composée de deux}$ fonctions de classe \mathcal{C}^{∞} sur \mathbb{R} donc elle est aussi.

Q 29. Soit $\theta: x \mapsto \int_0^x \psi(t) dt$ l'unique primitive de ψ s'annulant en 0. Comme $\theta' = \psi$ alors θ est de classe \mathcal{C}^{∞} sur \mathbb{R} .

Soit $x\in \left]-\infty,-1\right]$, on a $\psi\left(t\right)=0$ pour $t\in\left[0,x\right]$ donc $\theta(x)=0=A$.

Soit $x \in [1, +\infty[$, $\theta(x) = \int_0^1 \psi(t) dt + \int_1^x \psi(t) dt$ et $\int_1^x \psi(t) dt = 0$, car $\psi(t) = 0$ pour $t \in [0, x]$, donc $\theta(x) = \int_0^1 \psi(t) \ dt = B \ .$

De plus $B\neq 0$ car ψ est continue et strictement positive sur [0,1].

Q 30. Posons $h: x \mapsto \frac{1}{B}\theta(x)$, elle est de classe \mathcal{C}^{∞} sur \mathbb{R} , h(x) = 0 si $x \in]-\infty, -1]$ et h(x) = 1 si $x \in [1, +\infty[$. On compose h avec une fonction affine $x \mapsto ax + b$ qui envoie -2 sur 1 et -1 sur -1. On a donc a = 2 et b = 3.

La fonction
$$x \mapsto h(2x+3)$$
 est \mathcal{C}^{∞} sur \mathbb{R} et $h(2x+3) = \begin{cases} 0 \text{ si } x \in]-\infty,-2] \\ 1 \text{ si } x \in [-1,+\infty[\end{cases}$.
De même on compose h avec la fonction affine $x \mapsto -2x+3$ qui envoie $2 \text{ sur } -1 \text{ et } 1 \text{ sur } 1$.

La fonction
$$x \mapsto h(-2x+3)$$
 est \mathcal{C}^{∞} sur \mathbb{R} et $h(-2x+3) = \begin{cases} 0 \text{ si } x \in [2, +\infty[\\ 1 \text{ si } x \in]-\infty, 1] \end{cases}$.

Donc la fonction suivante convient :

$$\rho: x \mapsto h(2x+3) h(-2x+3)$$

en effet $\rho \in \mathcal{C}^{\infty}(\mathbb{R})$ et :

Si $x \in [-1, 1]$ alors h(2x + 3) = h(-2x + 3) = 1 donc $\rho(x) = 1$.

Si $x \in \mathbb{R} \setminus [-2, 2]$ alors h(2x+3) = 0 ou h(-2x+3) = 0 donc $\rho(x) = 0$.

Plus précisément
$$\rho(x) = \begin{cases} 0 \text{ si } x \in \mathbb{R} \setminus [-2, 2] \\ 1 \text{ si } x \in [-1, 1] \\ h(2x+3) \text{ si } x \in [-2, -1] \\ h(-2x+3) \text{ si } x \in [1, -2] \end{cases}$$

II.DInégalités de Bernstein

Soit r la fonction de \mathbb{R} dans \mathbb{C} telle que, pour tout réel x,

$$r(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ix\xi} \rho(\xi) d\xi$$

Q 31. On a $\rho(\xi) = 0$ si $\xi \in \mathbb{R} \setminus [-2, 2]$ donc $\xi \mapsto e^{ix\xi} \rho(\xi)$ est intégrable sur \mathbb{R} et r est bien définie sur \mathbb{R} .

$$r(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ix\xi} \rho(\xi) d\xi = \frac{1}{2\pi} \int_{-2}^{+2} e^{ix\xi} \rho(\xi) d\xi$$

La fonction $(x,\xi) \mapsto e^{ix\xi}\rho(\xi)$ est de classe \mathcal{C}^1 sur \mathbb{R}^2 , et $\frac{\partial}{\partial x}\left(e^{ix\xi}\rho(\xi)\right) = i\xi e^{ix\xi}\rho(\xi)$. La fonction $\xi \mapsto \xi\rho(\xi)$ est continue sur le compact [-2,2], elle est donc bornée, $|\xi\rho(\xi)| \leq M$ et $M \in \mathbb{R}^+$, par suite $\left|\frac{\partial}{\partial x}\left(\mathrm{e}^{ix\xi}\rho(\xi)\right)\right| \leq M$ et la fonction $\xi \mapsto M$ est intégrable sur [-2,2], ce qui donne que r est de classe \mathcal{C}^{-1} sur \mathbb{R} et $r'(x) = \frac{1}{2\pi} \int_{-2}^{+2} i\xi e^{ix\xi} \rho(\xi) d\xi$

Q 32. Une double intégration par parties donne

$$r(x) = \frac{1}{2i\pi x} \int_{-2}^{2} (e^{ix\xi})' \rho(\xi) d\xi$$
$$= \frac{1}{2i\pi x} \int_{-2}^{2} e^{ix\xi} \rho'(\xi) d\xi$$
$$= \frac{-1}{2\pi x^2} \int_{-2}^{2} e^{ix\xi} \rho''(\xi) d\xi$$

 ρ'' est bornée sur [-2,2] ce qui donne $x\mapsto x^2r(x)$ est bornée sur $\mathbb R$, et $r(x)=O(\frac{1}{x^2})$ donc r est intégrable sur $\mathbb R$. Comme ρ est bornée sur [-2,2] et $r(x)=\frac{1}{2\pi}\int_{-2}^{+2}\mathrm{e}^{ix\xi}\rho(\xi)d\xi$ alors r est bornée sur $\mathbb R$.

Q 33. On a
$$r(\lambda x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ix\lambda\xi} \rho(\xi) d\xi = \frac{1}{2\pi\lambda} \int_{-\infty}^{+\infty} e^{ixt} \rho(\frac{t}{\lambda}) dt$$
 donc $\widehat{r_{\lambda}} = \frac{1}{\lambda} \rho_{1/\lambda}$ avec $\rho_{1/\lambda} : t \mapsto \rho(\frac{t}{\lambda})$.

Remarquons que $\rho_{1/\lambda}(t)=1$ si $t\in [-\lambda,\lambda]$ et \hat{f} est nulle en dehors de $[-\lambda,\lambda]$ donc $\hat{f}=\hat{f}$ $\rho_{1/\lambda}=\lambda \hat{f}$ $\hat{r_{\lambda}}$, comme $f*r_{\lambda}$ est intégrable alors \hat{f} $\hat{r_{\lambda}}=\widehat{f*r_{\lambda}}$ et $\hat{f}=\lambda \widehat{f*r_{\lambda}}$, ce qui donne $f=\lambda f*r_{\lambda}$.et \hat{f} $\hat{r_{\lambda}}=\widehat{f*r_{\lambda}}$ ainsi $f=\lambda f*r_{\lambda}$ Q 34. On a r'_{λ} est bornneé et intégrable sue \mathbb{R} . Les question Q24 et Q25 et la relation $f=\lambda f*r_{\lambda}$ donnent $f'=\lambda f*r'_{\lambda}$ et $\|f'\|_{\infty}=\lambda \|f*r'_{\lambda}\|_{\infty} \leqslant \|r'_{\lambda}\|_{1}\|f\|_{\infty}$.

$$f' = \lambda f * r'_{\lambda} \text{ et } ||f'||_{\infty} = \lambda ||f * r'_{\lambda}||_{\infty} \leqslant ||r'_{\lambda}||_{1} ||f||_{\infty} .$$
On a $||r'_{\lambda}||_{1} = \int_{-\infty}^{+\infty} \lambda |r'(\lambda t)| dt = \int_{-\infty}^{+\infty} |r'(s)| ds = C \text{ indépendante de } \lambda, \text{d'où}$

$$||f'||_{\infty} \leqslant C\lambda ||f||_{\infty}.$$