· A word about operators on finite din. Revector spaces:

Let V real vector space (din. n), $\varphi: V \rightarrow V$ linear operator.

Since R is not alg. closed, if night not have eigenvalues, and we can't put I in triangular or Jordan form.

Yet: every real operator has an invariant subspace of dim. 1 or 2

Apprach, work over I which is alg. closed. How do we do this?

Del: The complexition of V is $V_C = V \times V = \{v + iw \mid v, w \in V\},$ with addition $(v_1+iw_1)+(v_2+iw_2)=(v_1+v_2)+i(w_1+w_2)$ scalar mult: (a+ib)(v+iw)=(av-bw)+i(bv+aw) $a,b\in\mathbb{R}$

- · This is a C-vector space of dimension n: if (e,...en) is a basis of Vove IR, then $e_1(=e_1+i0)$, ..., e_n is also a Lasis of V_C over C.
- · Gran op: V-s V R. mear, we can extend it to po: Vo Ve C. linear simply by $y_{\alpha}(v+iw) = \varphi(v) + i \psi(w)$. Choosing a basis (e,...en) as above, the matrix of $\varphi_{\mathbb{C}}$ is the same as that of φ $(\varphi_{\mathbb{C}}(e_j+i0)=\varphi(e_j)+i0)$.

But now... ye is guaranteed to have an eigenvector!

(and gent eigenpaces, and Jordan form, ...)

Let V=V+iW be an eigenvector of $\psi_{\mathbb{C}}$ for eigenvalue $\lambda \in \mathbb{C}$, $\psi_{\mathbb{C}}(w)=\lambda w$. There are two cases:

- · if λ∈ R, her φ(v+iw) = φ(v) +iq(w) = λv + iλw
 - \Rightarrow v = Re(v) and w = Im(v) are eigenvectors of φ with the Same eigenvalue & (if they are nonzero; one of them is). (& the multiplicity of & for φ has no reason to be even).

• if $\lambda = a + ib \notin \mathbb{R}$, hen $\psi_{\mathbb{C}}(v + i\omega) = (a + ib)(v + i\omega)$

 $\Rightarrow \varphi_{\mathbb{C}}(v_{-}iw) = (a_{-}ib)(v_{-}iw) \quad (compare real and imaginary parts!)$

ie. W=V-iw is an eigenvector of the with eigenvalue 7.

It follows that v and w are linearly independent, and span a 2-dimensional invariant subspace UCV: $\varphi(v) = av - bw$ $\mathcal{M}(\varphi_{U}, [v, w]) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$.

(One could histher study block himyelar decompositions of 4 etc. starting from 40).

Intelude: the language of categories. (then we'll return to (bi) linear algebra)

Defi A category is a collection of objects + for each pair of objects, a collection of morphisms Mor(A,B), and an operation called conjustion of morphisms, Mor(A,B) × Mor(B,C) \longrightarrow Mor(A,C) of.

f, g \longmapsto gof

1) every object A how an identity morphism $id_A \in Mor(A,A)$ st. $\forall f \in Mor(A,B)$, $f \circ id_A = id_B \circ f = f$.

2) compacition is associative; (fog) oh = fo(goh).

Ex: 1) category of sets, $Mor(A,B) = all maps <math>A \rightarrow B$

2) Vect K finite dim sucher spaces/k, linear maps.

3) groups, group homomorphisms

4) top. spaces, continuos maps.

Def. $f \in \Pi \circ r(A,B)$ is an ismorphism if $\exists g \in \Pi \circ r(B,A)$ strengthism)

(the inverse isomorphism)

Check: • the invest of f, if it exists, is unique..

• id is an isomorphism; f iso $\Rightarrow f^{-1}$ iso; f, g isos $\Rightarrow g \cdot f$ isos.

~> The automorphisms of A. Aw(A) = firomorphisms A → A} < Nor(A, A), form a group.

· Isomorphic abjects have isomorphic automorphism groups: an isomorphism $f \in Mor(A,B)$ determines an isom. of groups $c_f: AW(A) \rightarrow Aut(B)$, $g \mapsto fog_0 f^{-1}$.

 $E_{\mathbf{K}}$: 1) In Sets, A Rink set with n elements => $Awt(A) = \{bijediano A \rightarrow A\} \cong \mathcal{B}_n$ 2) $V = n \cdot din!$ vector space/k: => $Awt(V) \cong GL_n(k)$ invalide non metrices

* Products and snows in categories:

• Given objects A,B in a category C, a product A × B is an object Z of C and a part of maps π₁: Z→A, π₂: Z→B st. VTE ob C, Vf, ∈ Mor(T, A), f₂ ∈ Mor(T, B), ∃! (unique) φ∈ Mor(T, Z) st. π₁ο φ = f₁ and π₂οφ = f₂.

Ex. in Sets, Z = A×B would Cartesian product

π₁, π₂ prijection maps

given f₁: T→A, f₂: T→B, def. φ, t→ (f₁(f) f₂(f))

Same in Groups, Vector

• A <u>sum</u> of objects A and B is an object Ξ of \emptyset + raps $i_1: A \rightarrow Z$, $i_2: B \rightarrow Z$ \emptyset .

If VTE G E, V f_1 E Mor(A,T), V f_2 E Mor(B,T), $\exists i, \varphi \in Mor(Z,T)$ sh. $\varphi \circ i_1 = f_1$, $\xi \varphi \circ i_2 = f_2$.

Ex: in Sets, this is $Z = A \sqcup B$ disjoint union; define $\varphi : Z \rightarrow T$ × $\mapsto \{f_1(x) \text{ if } x \in A\}$ in $Vect_k$, it's $Z = A \oplus B$ (so… sum = product!)

with $i_1, i_2 = inclusion$ of A as $A \oplus O \subset Z$ define $\varphi : Z \rightarrow T$ B $O \oplus B \subset Z$ (a,b) $\mapsto f_1(a) + f_2(b)$.

* Functors:

Def: C, D categories. A (covariant) functor F; C \rightarrow D is an assignment of to each object X in C, an object F(X) in D.

• to each numerical fe Mor_C(X,Y), a morphism F(f) \in Mor_D(F(X), F(Y)) st. 1) F(id_X) = id_F(X)

2) F(g o f) = F(g) o F(f).

- Ex: 1) horgetful function taking a group, a top space, ... to he underlying set.
 - 2) on vector spaces, given a vect-space V, F: W > Hom(V,W)

 if f: W W' is linear, then induced map Hom(V, W) = Hom(V,W)

 This gives a functor Vector Vector (denoted Hom(V,)) a > foa.
 - 3) Complexification, Vector Vector : on objects, V -> VC, on morphisms & -> Complexification, Vector -> Vector on objects, V -> VC, on morphisms & -> Complexification, Vector -> Vector on objects, V -> VC, on morphisms & -> Complexification, Vector -> Vector on objects, V -> VC, on morphisms & -> Complexification, Vector -> Vector on objects, V -> VC, on morphisms & -> Complexification, Vector -> Vect
- A contravariant finctor = same except direction of morphisms is reversed: $f \in Mor_{C}(X,Y) \longrightarrow F(f) \in Mor_{D}(F(Y),F(X)) ; F(gof) = F(f) \circ F(g).$

Ex: on Vector, V -> V* dud (see 4W5).

* Thee's one more layer to Nis, if you love calegory theory: given 2 fundors $F,G;E\to D$, a natural transformation t from F to G is the data, $\forall X \in ObE$, of a morphism $t \in Mor_{\mathcal{D}}(F(X),G(X))$, s.t. $\forall X,Y \in ObE$, $\forall f \in Mor_{\mathcal{D}}(X,Y)$,

 $F(X) \xrightarrow{f_X} G(X)$ $F(Y) \xrightarrow{f_X} G(Y)$ $G(Y) \xrightarrow{f_Y} G(Y)$

Ex: on Vector, $V \mapsto V^{\text{var}}$ double dual is a (covariant) functor. We said G there is a "natural" map $ev: V \to V^{\text{var}}$ (isom. if $dim \angle \infty$)

The precise meaning is: ev, is part of a natural bransformation of functors Vect -> Vect , from the identity functor to the double dead hundrer. (see HW5)

<u>Bilinear forms</u>:

Def: A bilinear form on a vector space V over field k is a map $b: V \times V \rightarrow k$ that is linear in each variable: $\forall u, v, w \in V$, $\int b(\lambda v, w) = b(v, \lambda w) = \lambda b(v, w)$ $\forall \lambda \in k$, b(u+v, w) = b(u, v) + b(v, w)b(u, v+w) = b(u, v) + b(u, w).

This is not a linear map $V \times V \rightarrow k$ $(6(\lambda(v, \omega)) = 6(\lambda v, \lambda \omega) = \lambda^2 b(v, \omega) \neq \lambda b(v, \omega))$

Def: Lie say b is synnehic if $b(v, \omega) = b(\omega, v)$ $\forall v, \omega \in V$ $skew \cdot synnehic$ if $b(v, \omega) = -b(\omega, v)$

Ex: . The usual dot product on k, (V, W) - Evivi is synnthic.

• b. $k^2 \times k^2 \longrightarrow k$, $b((x_1, x_2), (y_1, y_2)) = x_1 y_2 - x_2 y_1 (= det(\frac{x_1}{x_2}, \frac{y_1}{y_2}))$ is skew symmetric

Given a bilinear map $b: V \times V \to k$, we get a linear map $(\psi_b: V \to V^*)$ by defining $(\psi_b(v) = b(v, \cdot) \in V^*$ (maps $w \in V$ to $b(v, w) \in k$).

Conversely, $\varphi: V \rightarrow V^*$ determines $b(v, w) = (\varphi(v))(w)$ bilinear form.

This defines a bijection $B(V) \cong Hom(V,V^*)$.

Def. The rank of b: VeV-k is the rank of 4; V-1 V" (= dm Im \$p_6).

If \$\phi_b\$ is an isomorphism, say b is non-degenerate.

For a given vector space V, $B(V) = \{b | linear borns VaV-ak\}$ is a vector space over k. What is its dimension? If we chook a Lasis $\{e_1 \dots e_n\}$ for V, it is enough to specify $b(e_i,e_j)$ $V_{i,j}$ in order to determine b: by bilineasity, $b(\sum_{i} x_i e_i, \sum_{j} y_j e_j) = \sum_{i,j} x_i y_j b(e_i,e_j)$. The values of $b(e_i,e_j)$ can be chosen freely $-e_g$. a basis of B(V) is given by $\binom{b}{k}$ $\binom{b}{$

So: $dm B(V) = (din V)^2$ (consistent with $B(V) = Hom(V, V^2)!$)

The bijection $b \mapsto \psi_b$ is an isom. of vector spaces!) * Given a basis {e,.. en} of V, b: VxV-sk is represented by an non ration a; = b(e; e;) $b(\sum_{i} x; e_{i}, \sum_{j} y_{j}; e_{j}) = \sum_{i,j} x_{i}y_{j} b(e_{i}, e_{j}) = (x_{i} \cdots x_{n}) A \begin{pmatrix} y_{i} \\ \vdots \\ y_{n} \end{pmatrix}$ makix of b ; aij = b(ei, ej) so: in terms of column vectors, $b(X, Y) = X^TAY$. * Remark: The isomorphism $B(V) \longrightarrow Hom(V, V^*)$ is natural, in the sense that we have contravariant functors V -> B(V) and V -> Hom(V, V"), (on northisms, $f. V \rightarrow W \rightarrow B(f): B(W) \rightarrow B(V)$ and $Hom(W, W') \rightarrow Hom(V, V'')$ $b(\cdot, \cdot) \longmapsto b(f(\cdot), f(\cdot))$ $\varphi \mapsto f^{t} \circ \varphi \circ f$

and the isom's B(V) => Hom(V, V") define a natural transformation between them.