Attrition Assignment

Step1 - Launching

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

dataset1=pd.read_excel('C:/group_Folder/TheDataScience/Dinesh/Group 1- HR Analytics - Employee Attrition rate analysis/Working_sheet.xlsx', sheet_name=0)

dataset1.head()

Out[41]:

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

0 51 0 No ... 0 1 31 Yes ... 3 2 32 No ... 0 7 5 3 38 No ... 0 4 32 No ...

[5 rows x 18 columns]

dataset1.columns

Out[42]:

dataset1

Out[45]:

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

0	51	No	0	0
1	31	Yes	1	4
2	32	No	0	3
3	38	No	7	5

4 3	2	No	0	4
				••
4405	42	No	0	2
4406	29	No	0	2
4407	25	No	1	2
4408	42	No	7	8
4409	40	No	3	9

[4410 rows x 18 columns]

Step 2 - Data Treatment:

dataset1.isnull()

Out[47]:

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

4	False	False	False	False
3	False	False	False	False
2	False	False	False	False
1	False	False	False	False
0	False	False	False	False

...

4405 False	False	False	False
4406 False	False	False	False
4407 False	False	False	False
4408 False	False	False	False
4409 False	False	False	False

[4410 rows x 18 columns]

dataset1.duplicated()

Out[50]:

- 0 False
- 1 False
- 2 False
- 3 False
- 4 False

```
4405 True
```

4406 True

4407 True

4408 True

4409 False

Length: 4410, dtype: bool

dataset1.drop_duplicates()

Out[53]:

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

4	32	No	(ס	4
3	38	No	-	7	5
2	32	No	(ס	3
1	31	Yes	-	1	4
0	51	No	()	0

3818	28	Yes	0	0
3910	41	No	1	2
4226	36	No	0	0
4395	40	No	4	7
4409	40	No	3	9

[1498 rows x 18 columns]

Step 3 - Univariate Analysis:

dataset3=dataset1[['Age','DistanceFromHome','Education','MonthlyIncome',
'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].describe()

Index	Age	DistanceFromHome	Education	Monthlylncome	NumCompaniesWorked	PercentSalaryHike	TotalWorkingYears	TrainingTimesLastYear	YearsAtCompany	YearsSinceLastPromotion	YearsWithCu
count	4410	4410	4410	4410	4391	4410	4401	4410	4410	4410	4410
mean	36	9.19252	2.91293	65029.3	2.69483	15.2095	11.2799	2.79932	7.00816	2.18776	4.12313
std	9.1	8.10503	1.02393	47068.9	2.49889	3.65911	7.78222	1.28898	6.12514	3.2217	3.56733
min	18	1	1	10090	0	11	0	0	0	0	0
25%	30	2	2	29110	1	12	6	2	3	0	2
50%	36	7	3	49190	2	14	10	3	5	1	3
75%	43	14	4	83800	4	18	15	3	9	3	7
max	60	29	5	199990	9	25	40	6	40	15	17

dataset3=dataset1[['Age','DistanceFromHome','Education','MonthlyIncome,
'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].median()

dataset3

Out[67]:

Age 36.0 7.0 DistanceFromHome Education 3.0 49190.0 MonthlyIncome 2.0 NumCompaniesWorked 14.0 PercentSalaryHike **TotalWorkingYears** 10.0 Training Times Last Year3.0 YearsAtCompany 5.0 YearsSinceLastPromotion 1.0 YearsWithCurrManager 3.0

dtype: float64

dataset3=dataset1[['Age','DistanceFromHome','Education','MonthlyIncome',
'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].mode()

Out[69]:

Age 35

DistanceFromHome 2

Education 3

MonthlyIncome 23420

NumCompaniesWorked 1

PercentSalaryHike 11

TotalWorkingYears 10

TrainingTimesLastYear 2

YearsAtCompany 5.0

YearsSinceLastPromotion 0

YearsWithCurrManager 2

dtype: float64

dataset3=dataset1[['Age','DistanceFromHome','Education','MonthlyIncome',
'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].var()

dataset3=dataset1[['Age','DistanceFromHome','Education','MonthlyIncome',
'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].skew()

dataset3=dataset1[['Age','DistanceFromHome','Education','MonthlyIncome',
'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion', YearsWithCurrManager']].kurt()

	Mean	Median	Mode	Variance	Std Deviation	IQR	Skewness	Kurto	is
Mean Age (Yrs)	36	36	35	83.14	9.1	13	0.418	-	.4
Mean Distance from Home (Kms)	9	7	2	65.69	8.1	2	0.957	-0	22
Mean Monthly Income (Rs)	65000	49190	23420	2215480000	47068	54000	1.36		1
Mean Work Experience (Yrs)	11.29	10	10	60	7.72	9	1.11	0	91
Mean Years at Company (Yrs)	7	5	5	37.51	6.12	6	1.76	3	92
Mean Years since last promotion (Yrs)	2	1	0	10.37	3.22	3	1.98		.6
Mean Years with Current Manager (Yrs)	4	3	2	12.72	3.56	5	0.83	0	16

Inference from the analysis:

- All the above variables show positive skewness; while Age & Mean_distance_from_home are leptokurtic and all other variables are platykurtic.
- The Mean_Monthly_Income's IQR is at 54K suggesting company wide attrition across all income bands
- Mean age forms a near normal distribution with 13 years of IQR

Outliers:

There's no regression found while plotting Age, MonthlyIncome, TotalWorkingYears, YearsAtCompany, etc., on a scatter plot

box_plot=dataset1.Age

plt.boxplot(box_plot)

Out[23]:

Age is normally distributed without any outliers

box_plot=dataset1.MonthlyIncome

plt.boxplot(box_plot)

Monthly Income is Right skewed with several outliers

box_plot=dataset1.YearsAtCompany

plt.boxplot(box_plot)

Years at company is also Right Skewed with several outliers observed.

Step 4 – Visualisation:

Step 5 – Statistical Tests (Mann-Whitney)

Attrition Vs Distance from Home

```
import pandas as pd
```

dataset=pd.read_excel('C:/Group_Folder/TheDataScience/Dinesh/Group 1- HR Analytics - Employee Attrition rate analysis/Working_sheet.xlsx', sheet_name=1)

dataset.head()

Out[3]:

DistanceFromHome_Yes ... YearsWithCurrManager_No

0 0 ... 0

1 10 ... 0

2 0 ... 3

3 0 ...

0 ...

[5 rows x 10 columns]

dataset.columns

Out[4]:

Index(['DistanceFromHome_Yes', 'DistanceFromHome_No', 'MonthlyIncome_Yes',

'MonthlyIncome_No', 'TotalWorkingYears_Yes', 'TotalWorkingYears_No',

'YearsAtCompany_Yes', 'YearsAtCompany_No', 'YearsWithCurrManager_Yes',

'YearsWithCurrManager_No']

dtype='object')

from scipy.stats import mannwhitneyu

a1=dataset.DistanceFromHome_Yes

a2=dataset.DistanceFromHome_No

stat, p=mannwhitneyu(a1,a2)

print(stat, p)

3132625.5 0.0

As the P value of 0.0 is < 0.05, the H0 is rejected and Ha is accepted.

H0: There is no significant differences in the Distance From Home between attrition (Y) and attirition (N)

Ha: There is significant differences in the Distance From Home between attrition (Y) and attirition (N)

Attrition Vs Income

```
a1=dataset.MonthlyIncome Yes
a2=dataset.MonthlyIncome No
stat, p=mannwhitneyu(a1,a2)
print(stat, p)
3085416.0 0.0
As the P value is again 0.0, which is < than 0.05, the H0 is rejected and ha is accepted.
H0: There is no significant differences in the income between attrition (Y) and attirition (N)
Ha: There is significant differences in the income between attrition (Y) and attirition(N)
Attrition Vs Total Working Years
a1=dataset.TotalWorkingYears Yes
a2=dataset.TotalWorkingYears No
stat, p=mannwhitneyu(a1,a2)
print(stat, p)
2760982.0 0.0
As the P value is again 0.0, which is < than 0.05, the HO is rejected and ha is accepted.
HO: There is no significant differences in the Total Working Years between attrition (Y) and attirition
(N)
Ha: There is significant differences in the Total Working Years between attrition (Y) and attirition (N)
Attrition Vs Years at company
a1=dataset.YearsAtCompany Ve
a2=dataset.YearsAtCompany No
stat, p=mannwhitneyu(a1,a2
print(stat, p)
2882047.5 0.0
As the Ryalue is again 0.0, which is < than 0.05, the H0 is rejected and ha is accepted.
H0: There is no significant differences in the Years At Company between attrition (Y) and attirition
(N)
Ha: There is significant differences in the Years At Company between attrition (Y) and attirition (N)
Attrition Vs YearsWithCurrentManager
a1=dataset.YearsWithCurrManager_Yes
a2=dataset.YearsWithCurrManager_No
stat, p=mannwhitneyu(a1,a2)
```

```
print(stat, p)
3674749.5 0.0
As the P value is again 0.0, which is < than 0.05, the H0 is rejected and ha is accepted.
H0: There is no significant differences in the Years With Current Manager between attrition (Y) and
attirition (N)
Ha: There is significant differences in the Years With Current Manager between attrition (Y) and
attirition (N)
Step 6 – Statistical Tests (Separate T Test)
Attrition Vs Distance From Home
from scipy.stats import ttest_ind
dataset.columns
Out[49]:
Index(['DistanceFromHome_Yes', 'DistanceFromHome_No', 'MonthlyIncome_Yes',
   'MonthlyIncome_No', 'TotalWorkingYears_Yes', 'TotalWorkingYears_No',
   'YearsAtCompany_Yes', 'YearsAtCompany_No', 'YearsWithCurrManager_Yes',
   'YearsWithCurrManager No'],
   dtype='object')
z1=dataset.DistanceFromHome Yes
z2=dataset.DistanceFromHome No
stat, p=ttest_ind(z2,z1)
print(stat, p)
44.45445917636664 0.0
As the P value is again 0.0, which is < than 0.05, the HO is rejected and ha is accepted.
H0: There is no significant differences in the Distance From Home between attrition (Y) and attirition
(N)
Ha: There is significant differences in the Distance From Home between attrition (Y) and attirition (N)
Attrition Vs Income
z1=dataset.MonthlyIncome Yes
z2=dataset.MonthlyIncome No
stat, p=ttest_ind(z2, z1)
print(stat, p)
52.09279408504947 0.0
```

As the P value is again 0.0, which is < than 0.05, the H0 is rejected and ha is accepted.

H0: There is no significant differences in the Monthly Income between attrition (Y) and attirition (N)

Ha: There is significant differences in the Monthly Income between attrition (Y) and attirition (N)

Attrition Vs Yeats At Company

z1=dataset.YearsAtCompany_Yes

z2=dataset.YearsAtCompany_No

stat, p=ttest ind(z2, z1)

print(stat, p)

51.45296941515692 0.0

As the P value is again 0.0, which is < than 0.05, the H0 is rejected and ha is accepted.

H0: There is no significant differences in the Years At Company between attrition (Y) and attirition (N)

Ha: There is significant differences in the Years At Company between attrition (Y) and attirition (N)

Attrition Vs Years With Current Manager

z1=dataset.YearsWithCurrManager_Yes

z2=dataset.YearsWithCurrManager_No

stat, p=ttest_ind(z2, z1)

print(stat, p)

53.02424349024521 0.0

As the P value is again 0.0, which is < than 0.05, the H0 is rejected and ha is accepted.

H0: There is no significant differences in the Years With Current Manager between attrition (Y) and attirition (N)

Ha: There is significant differences in the Years With Current Manager between attrition (Y) and attirition (N)

Step 8 – Unsupervised Learning - Correlation Analysis

In order to find the interdependency of the variables DistanceFromHome, MonthlyIncome, TotalWorkingYears, YearsAtCompany, YearsWithCurrManager from that of Attrition, we executed the Correlation Analysis as follows.

```
dataset=pd.read excel('C:/Group Folder/TheDataScience/Dinesh/Group 1- HR Analytics - Employee
Attrition rate analysis/Working sheet.xlsx', sheet name=0)
from scipy.stats import pearsonr
dataset['TotalWorkingYears']=dataset['TotalWorkingYears'].fillna(11.28)
dataset.columns
Out[258]:
Index(['Age', 'Attrition', 'BusinessTravel', 'Department', 'DistanceFromHome'
   'Education', 'EducationField', 'Gender', 'JobRole', 'MaritalStatus'
   'MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike'
   'TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtCompany
   'YearsSinceLastPromotion', 'YearsWithCurrManager'],
   dtype='object')
stats, p=pearsonr(dataset.Attrition, dataset.DistanceFromHome)
print(stats, p)
-0.009730141010179438 0.5182860428049617
stats, p=pearsonr(dataset.Attrition, dataset.MonthlyIncome)
print(stats, p)
-0.031176281698114025 0.0384274849060192
stats, p=pearsonr(dataset,Attrition, dataset.TotalWorkingYears)
print(stats, p)
-0.17011136355964646 5.4731597518148054e-30
stats, p=pearsonr(dataset.Attrition, dataset.YearsAtCompany)
print(stats, p)
-0.13439221398997386 3.163883122493571e-19
stats, p=pearsonr(dataset.Attrition, dataset.YearsWithCurrManager)
print(stats, p)
-0.15619931590162422 1.7339322652951965e-25
The inference of the above analysis are as follows:
```

Attrition & DistanceFromHome:

As r = -0.009, there's low negative correlation between Attrition and DistanceFromHome

As the P value of 0.518 is > 0.05, we are accepting H0 and hence there's no significant correlation between Attrition & DistanceFromHome

Attrition & MonthlyIncome:

As r = -0.031, there's low negative correlation between Attrition and MonthlyIncome

As the P value of 0.038 is < 0.05, we are accepting Ha and hence there's significant correlation between Attrition & MonthlyIncome

Attrition & TotalWorkingYears:

As r = -0.17, there's low negative correlation between Attrition and TotalWorkingYears

As the P value is < 0.05, we are accepting Ha and hence there's significant correlation between Attrition & TotalWorkingYears

Attrition & YearsAtCompany:

As r = -0.1343, there's low negative correlation between Attrition and YearsAtCompany

As the P value is < 0.05, we are accepting Ha and hence there's significant correlation between Attrition & YearsAtCompany

Attrition & YearsWithCurrManager:

As r = -0.1561, there's low negative correlation between Attrition and YearsWithCurrManager

As the P value is < 0.05, we are accepting Ha and hence there's significant correlation between Attrition & YearsWithCurrManager