

Project Documentation

Interactive Lighting Detector

written by

Vera Brockmeyer (Matrikelnr. 11077082) Laura Anger (Matrikelnr. 11086356)

Image Processing in SS 2017

Supervisor:

Prof. Dr. Dietmar Kunz Institute for Media- and Phototechnology CONTENTS 2

Contents

1	Intr	roduction	4
	1.1	Motivation	4
	1.2	Usage Context	4
	1.3	Project Goal	4
2	Sta	te of the Art	5
	2.1	Image Forensic	5
	2.2	Related Approaches	5
3	Ma	terials	6
	3.1	Hardware	6
	3.2	Software	6
		3.2.1 QT	6
		3.2.2 OpenCV	7
	3.3	Testimages	7
		3.3.1 First Batch	7
		3.3.2 Second Batch	8
4	Sys	tem	10
	4.1	Lighting Model	10
	4.2	Contours	10
		4.2.1 Find Contours	10
	4.3	Subcontours	11
	4.4	Different Approaches	11
		4.4.1 1. Approach: One Lightvector	11
		4.4.2 2. Approach: Averaging Lightvectors	11
		4.4.3 3. Approach: Lightvector with highest Intensity	11
5	Eva	luation	12
6	Pro	ject Management	13
	6.1	Project Proposal	13
	6.2	Catalogue of Requirements and Specification	14
	6.3	Project Structure Plan	16

CONTENTS	3

7	Con	aclusion	21
	6.6	Risks	20
	6.5	Time Exposure	18
	6.4	Milestones	18

1 INTRODUCTION 4

1 Introduction

Vera

1.1 Motivation

Vera

1.2 Usage Context

Vera

1.3 Project Goal

Vera

2 State of the Art

Laura

In the following sections the basic scientific knowledge to understand the *Lighting Detector*, whose functionality is explained in section 4, is presented.

A general introduction to image forensic is given in section 2.1. Furthermore, other approaches using light vectors to detect image manipulation are shortly presented in section 2.2.

2.1 Image Forensic

Laura

In [6] the authors claim image forensic to become more important over the years. Furthermore, they divide the field in two approaches. First of all image forensic can be used to identify the recording device of an image. This can, inter alia, be done by taking sensor imperfections, like for example pixel defects, or the lens aberration of the camera into consideration.

The second field of interest is the detection of image forgery [2]. Besides of using the camera response function there can be other details in the image which can be informative whether an image is real or a forgery. For example the light situation in an image must be consistent. This can be proofed by calculating light vectors in various points in the image. The *Light Detector* is using exactly this method (compare section 4). Related approaches are described briefly in section 2.2.

2.2 Related Approaches

Laura

The Lighting Detector was implemented according to the paper by Johnson and Farid [4]. The foundation of their assumptions where set in 2001 by the publication of Nillius and Eklundh on an "automatic estimation of the projected light source direction" [7]. Where as the earlier theory is taking three dimensional surface normals to determine the light vectors pointing into the direction if the light source, the newer approach by Johnson and Farid uses only one image, and therefore two dimensional surface normals, to achieve the same goal.

An other related approach, which is also presented by Johnson and Farid estimates the three dimensional light direction from the light's reflections in the eyes of human. Therefore they determine the light vector by using the surface normal and the view direction of the person [5].

Hast du noch andere Ansätze gefunden die enen ähnlichen Ansatz verfolgen??? Alle paper die ich sonst gefunden habe, fahren einen anderen Ansatz.

3 Materials

Laura

The following sections describe the resources and tools required for the completion of the project. Furthermore, the test images are presented in chapter 3.3.

3.1 Hardware

Laura

During the implementation phase, the application was run on two computers, which are described in the following two sections. Both computers needed to be able to deal with the software components described in section 3.2. An extract from your data sheet is shown in table 1 respectively table 2.

3.2 Software

Laura

In order to develop the *Interactive Lighting Detector Qt* was used (compare section 3.2.1). To take advantage of already existing functionalities the OpenCV-library, which is described in section 3.2.2, was taken advantage of.

3.2.1 QT

Laura

The QT Creator was invented by The Qt Company. It is an integrated software development environment in the programming language C++. More functionality can be added by using the Qt project's library, which is called Qt. As a cross-platform tool, the QT Creator can be used on all common operating systems [9].

Besides extensive database functions and XML-support the software can build graphic user interfaces (GUI).

For this project the algorithm was transcribed in source code using the *Qt Creator* and the GUI was designed in the *Qt Designer* [8].

NAME?	Description
Processor	??
RAM	??
Graphic Card	??
Operating System	??

Table 1: Extract from the Data Sheet of the NAME?

.

Acer Aspire 5820TG	Description
Processor	Intel Core i3 CPU @ 2.40 GHz
RAM	4 GB
Graphic Card 1	AMD Mobilty Radeon HD 5000 Series
Graphic Card 2	Intel(R) HD Graphics
Operating System	Windows 10 Education 64 bit

Table 2: Extract from the Data Sheet of the Acer Aspire 5820TG Notebook.

3.2.2 OpenCV

Laura

The Open Source Computer Vision (OpenCV) is an open source library for imageand video processing, which is among others available in the programming language C++. It has been introduced ten years ago and is developed by various programmers since then. This library offers the most common algorithms, as well as current developments in image processing [1].

On the case of the implementation of the $Light\ Detector$ the library was mainly used for the detecting of the contours (compare section 4.2) and solving the minimization problem (compare section 4.4) introduced by Johnson and Farid [4].

3.3 Testimages

Laura

Due to the assumption that the objects shown on the test images described in section 3.3.1 have a too complicated shape, a second batch of images was made (compare section 3.3.2). Images of both batches were used to test the functionality of the the algorithms used for the lighting detection. All images have in common that besides the actual object they show a sundial to simplify the determination of the light direction for the user.

3.3.1 First Batch

Laura

Four examples of the first batch of test images are shown on figure 1. Next to the mandatory sundial there are different objects depicted, like a helmet, a handbag, a bucket or a hot-water bottle. Those objects differ in their surface texture, as well as their size. They are shot from different angles to produce different light directions. it is necessary that the objects are not trimmed at the boarders of the image, because the algorithm requires a full contour of the selected object.

Figure 1: Examples of the Test Images of the first Batch.

3.3.2 Second Batch

Laura

In contrast to the first batch, the test images described in this section show easier objects with a round surface. As depicted in figure 2 all images show the madatory sundial and one or two table tennis balls in yellow and pink, which have a matt texture. For the actual algorithm of the *Light Detector* only one of this balls is taken into consideration (compare section 4). Properties like size of the object, the camera angle and the lighting direction differs in each image.

 ${\bf Figure \ 2:} \ {\bf Examples \ of \ the \ Test \ Images \ of \ the \ second \ Batch}.$

4 SYSTEM 10

4 System

Vera

4.1 Lighting Model

Vera

4.2 Contours

Vera

4.2.1 Find Contours

Vera

Figure 3: Bildunterschrift.

4 SYSTEM 11

Figure 4: Bildunterschrift.

4.3 Subcontours

Vera

4.4 Different Approaches

Laura

4.4.1 1. Approach: One Lightvector

Laura

4.4.2 2. Approach: Averaging Lightvectors

Laura

4.4.3 3. Approach: Lightvector with highest Intensity

5 EVALUATION 12

5 Evaluation

Vera und Laura: Stichpunkte

Vera: Ausformulierung

6 Project Management

Laura

In this section the planning and the management of the *Lighting Lab* is described. As there were only two persons involved this project the following part is going to be a bit more compressed than the reader might expected it.

To give the customer an all-encompassing idea about the *Interaction Lab* a project proposal was handed in, which is written in German. It is divided in two sections. First of all a motivation is given and afterwards the exercise, which should be implemented is determined. It is translated into English and can be found in section sec:ProjectProposal.

Before starting the actual project it is wise to make some mindful project plans in order to organize the project. First of all a catalogue of requirements and specifications (compare section 6.2) was written to formulate all important basic information of the project.

The project structure plan, which is presented in section 6.3, serves to arrange the work packages of the project in a sorted way. The relating milestone description can found in section 6.4.

For staying in time while the implementation phase, a time exposure is required (compare section 6.5).

A list with all early detectable risks can be found in the table in section 6.6.

6.1 Project Proposal

Laura

Motivation

Due to progressive changes in image processing programs and high-resolution images, the manipulation of digital images is became easier. A common form of manipulation is the so-called "image splicing". Therefore image regions of at least two images where combined to a new one. The transitions between the individual image parts can get invisible for the user by using accurate and user-friendly image processing tools. According to [3] there is is still no algorithm, which makes images completely forgery-proof by adding watermarks to it. There is put much effort in the integrity of images and the recognition of manipulated image parts, despite the lack of prior knowledge of the image content. This should be improved by the Interaction Lab. An algorithm should be established, which proofs the consistence in light directions on various surfaces presented on an image. The light vectors will be conveniently estimated to give an assertion on whether the image is manipulated or not.

Work Steps

Until now there is no implementation given by OpenCV, which estimates the light vector of an infinite light source on one surface and compares it with the according vector of another surface in the same image. An approach in the programming

language C++ should be implemented using the assumptions of Johnson and Farid [4] to compute, analyse and visualize the light vectors.

The following work stages are necessary:

- Creation of test images with an infinite light source, e.g. in nature on a sunny day
- Implementation of a GUI for visualize the approach
- Implementation of the algorithm of Johnson and Farid [4]
- Optional: The approach might be amended by also taking a local (not infinite) light source into consideration [4]

6.2 Catalogue of Requirements and Specification

Laura

Project Manager: Laura Anger Team Member: Vera Brockmeyer Supervisor: Prof. Dr. Dietmar Kunz

Project Goals

This project aims to implement an interactive image forensic tool to detect lighting detections of various objects in an image. The tool is limited to images with infinitive light sources. All resulting direction vectors are compared with each other to give a statement if the image is partly digital modified.

The development of the tool requires the following parts:

- a set of test images with a simulated infinitive light source
- an interactive partial contour detection tool
- a calculation and validation of lighting detection vectors
- a graphic user interface which includes Live-Wire and visualisation tools

The project will be realised in the programming languages C++ with the OpenCV, the Dlib C++ Library and the Qt Library. The release of the project is planned on 4th August 2017.

List of Requirements

Set of Test Images

A set of ten test images is required to validate the image forensic tool. These images have to be captured with an simulated infinitive light source. Thus, all image are taken at a sunny day with no cloudy heaven. Each image shows either different types of objects with surfaces and contours like reflecting metal and glass, diffuse natural tissues as well as different persons. Another interesting option is the validation of concave and convex objects. Furthermore, a sun clock is placed in each image to display the current lighting direction precisely. Finally, all collected test images are partly composed together with images of other lighting.

Calculation and Validation of lighting detection vectors

The Method of the image forensic tool to calculate and validate lighting detection vectors of objects in an image is given by the publication of Johnson [1]. Johnson offers an algorithm that calculates the lighting direction of infinite light sources by minimizing several samples of direction vectors along a contour segment of an object. Each sample is computed by extracting and minimizing features from the inner and nearby neighborhood of a contour patch. Every required minimization is computed by the least square method of the Dlib C++ library. After a successful computation of the vectors the method computes angles of all calculated vectors and compare them with each other. If the difference between them is off a predefined threshold, the object has probably been retouched into the image.

Interactive contour detection tool

The interactive Live-Wire tool [2] is going to be realized to compute the required surface contour segments of the objects. This tool serves a segmentation algorithm which is initialized and controlled by seed points. Every seed point is set by the user with the mouse cursor and a cost minimisation of local features computes the optimal path between the last two seed points. These required features are extracted with OpenCV functions and minimised with the Dlib C++ library. Furthermore, all specified seed-points and resulting contour segments between them are previewed in the GUI.

Graphic User Interface (GUI)

The GUI includes two main parts. First, the interface of the Live-Wire tool, which provide the interactive generation of the contour segment in the current image. This image is opened and displayed in a preview panel. The second part serves visualisations of the computed final direction vectors, all vectors of each contour patch as well as an indication of the digitally modified image sections. For the implementation is the QT Library used.

Functionally test of the prototypes

All prototypes are tested with the predefined set of images with a simulated infinitive light source. For the second prototype, the accuracy of the Live-Wire is going to be tested visually by the developers. On the other hand, the angles of each computed

direction vector are going to be compared with the angle of the sun clock shadows to validate the functionality of third prototype.

<u>Dates</u>

There will be a first prototype in form of a Paper Mock Up on the 20th of April 2017 and a second prototype on the 9th June 2017. The final version of the Interactive Lightning Detector will be realised until the 17th of July 2017. The deadline for this project is the 4th of August 2017.

6.3 Project Structure Plan

6.4 Milestones

Laura

Number	Milestone	Description	How to get there	Planned Date
1	Start Implementation		Tasks 1.1, 1.2 and 1.3 needs to be done before, as well as WP 2.	17.04.2017
2	First Prototype (GUI)	Paper Mockup of the GUI should show the possibilties for the future user.	WP 2 should be concluded.	20.04.2017
3	Second Prototype	GUI is working, as well as the edgedetection	Mostly MS 1 and MS 2 must finished.	09.06.2017
4	Third Prototype	Algorithm by Johnson is implemented and working.	Mostly WP 2, WP 3 must finished.	10.07.2017
5	Final Version	Implementation is ready.	All bugs found while testing, must be fixed.	17.07.2017
6	Submission	This includes source code and the documentation	The final version of the Image Forensic Tool is ready, as well as the documentation.	04.08.2017

6.5 Time Exposure

Number	Workpackage	Subpackage	Planned Time Period	Working time i	n days		Description
				minimum	average	maximum	
1	WP 01: Project Management			3	4	5	
1.1		Create Projectdescription	27.03.2017 - 01.04.2017	1	1	1	Brief description of the project. Can be found in our Ilias folder.
1.2		Define Workpackages	01.04.2017 - 10.04.2017	1	2		Includes the definition of the Work packages (project-structure- plan. pdf in our Ilias Folder), as well as this time exposure.
1.3		Calculate Risks	01.04.2017 - 10.04.2017	1	1	1	This plan describes the risks, which may arise. Will be found in our Ilias Folder.
2	WP 02: Research			8	12	16	
2.1		General Topic Search	13.03.2017 - 27.03.2017	3		5	
2.2		Boundary Extraction	03.04.2017 - 17.04.2017	2	3	4	Search a semi-automatic algorithm and become familiar with its possible implementation
2.3		Algorithm of Johnson	03.04.2017 - 17.04.2017	2	3	4	Understand the algorithm of Johnson and find its mathematical basic functions in a library
2.4		GUI Implementation	03.04.2017 - 17.04.2017	1	2	3	Find out about the possible ways to build a GUI in c++
3	WP 03: Boundary Extraction			8	12	14	
		Implementation of Live-Wire	24.04.2017 - 09.06.2017	8	12	14	Implementation of the interactive Live-Wire tool; interagtion of the tool in the GUI
4	WP 04: Algorithm of Johnson			6	11	18	
4.1		Compute Lighting Vectors as Johnson	10.06.2017 - 10.07.2017	4	7	12	Exctract Features for Lighting Vector Computation, compute Minimizations with Math Lib
4.2		Validate Lighting Vectors	10.06.2017 - 10.07.2017	2	4	6	Measure Angles of each surface and validate them
5	WP 05: GUI			3	5	7	
5.1		Basic Surface	24.04.2017 - 09.06.2017	1	1		The GUI frame can be seen on the screen and basic functions, like loading a new image are included
5.2		Boundary Extraction	24.04.2017 - 09.06.2017	1	2	3	The GUI gives the user the possibility to mark areas in the image to allow the algorithm described under 3 to run the semi-automatic boundary extraction
5.3		Visualisation	24.04.2017 - 09.06.2017	1	2	3	Feautures like object boundaries and the light vectors can be drawn into the images.
6	WP 06: Test Images			2	2	2	
6.1	Ü	make images	15.05.2017-21.05.2017	1	1	1	Pictures with an infinite light source are needed. The presented objects should differ in number and form as well as viewing angle.
6.2		select images		1	1	1	An adequate number of useful images must be selected
7	W/D 07: Functionality shock				-	7	
	WP 07: Functionality check		40.07.0047.44.07.0047	3		7	External Parties should be invited to test the application. This
7.1		Testing	10.07.2017-14.07.2017	2	2		includes NO usability study. The most pressing issues must
7.2		Correction	14.07.2017-17.07.2017	1	3	5	be fixed.
8	WP 08: Documentation			12	18	24	
8.1		write documentation	17.07.2017 - 03.08.2017	10	15	20	Description of the actual system as well as its functionality.
8.2		add comments to source code	17.07.2017 - 03.08.2017	10	2		Clean up the soucre code and add descriptions.
8.3		print documentation	04.08.2017	1	1		Print documentation and submission.
			Estimated Duration	45	69	93	

6.6 Risks

Description and Source of the Risk	Possible Area of Appereance	Effects	Preventive Measures
1. Technical Problems			
1.1 Implementation Problems	mostly Implementation	Some parts of the implementation might take longer than planned. Maybe other solutions need to be taken into consideration	Try to get to know how complicated the implementation is during the research period
1.2 Algorithm	mostly Implementation	Sometimes the described algorithm is limited. For instace the described results can only be achieved using a specific type of input data.	One should read the according paper carefully. Sometimes more or less hidden hints are given on how good the algorithm works.
1.3 GUI latency	Preview of image	preview of image has a latency which is reconsiable for the users	regard an low costly implementation and prevent from unnecessary memory and code implementations
1.4 wrongness of Lighting Vectors	concave and convex objects	lighting direction is misinterpret because for concave objects the lighting seems to come from the opposite direction	observe problem and figure out characteristics of the problem
2. Time Problems			
2.1 time-collision with other projects	all Workpackages	On Task or a whole Workpackage can't be finished in time.	Try to plan all upcoming projects as detailed as possible to avoid time overlap
2.2 false planning	all Workpackages	It is not possible to stick to the Sheduling	Try to make a thoughtful project planning and do not forget buffer time
2.3 illness	all Workpackages	Restriction of workability and thus problems with finishing a task or a even a whole workpackage in time.	

7 CONCLUSION 21

7 Conclusion

Vera und Laura

REFERENCES 22

References

[1] I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek. A brief introduction to opency. pages 1725–1730, May 2012.

- [2] H. Farid. Image forgery detection. *IEEE Signal Processing Magazine*, 26(2):16–25, March 2009.
- [3] Yu-Feng Hsu and Shih-Fu Chang. Detecting image splicing using geometry invariants and camera characteristics consistency. In *ICME*, 2006.
- [4] Micah K. Johnson and Hany Farid. Exposing digital forgeries by detecting inconsistencies in lighting. In *Proceedings of the 7th Workshop on Multimedia and Security*, pages 1–10, New York, NY, USA, 2005. ACM.
- [5] Micah K. Johnson and Hany Farid. Exposing digital forgeries through specular highlights on the eye. In Teddy Furon, François Cayre, Gwenaël J. Doërr, and Patrick Bas, editors, *Information Hiding*, volume 4567 of *Lecture Notes in Computer Science*, pages 311–325, 2008.
- [6] T. Van Lanh, K. S. Chong, S. Emmanuel, and M. S. Kankanhalli. A survey on digital camera image forensic methods. In 2007 IEEE International Conference on Multimedia and Expo, pages 16–19, July 2007.
- [7] P. Nillius and J. O. Eklundh. Automatic estimation of the projected light source direction. In *Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001*, volume 1, pages I–1076–I–1083 vol.1, 2001.
- [8] Qt. Qt Designer Manual. http://doc.qt.io/qt-5/qtdesigner-manual.html. Aufgerufen: 13. Juli 2017.
- [9] Ray Rischpater. Application Development with Qt Creator Second Edition, volume 2. Packt Publishing, 2014.