(1) Consider two one-Dimensional Functions Given Below
$$(x-x_A)$$

$$\psi_A(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-x_A)}$$

$$\psi_B(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-x_B)}$$
Where $(x-x_B)$

WHERE XA, XB, AND O ARE CONSTANT PARAMETERS WHOSE VALUES

2 = 3.0, 2 = 5.0, AND

O=0.5.

PLOT (a)
$$\Psi_{A}(x) + \Psi_{B}(x)$$
 $V_{S}(x)$
(b) $(\Psi_{A}(x) + \Psi_{B}(x))$ $V_{S}(x)$
(c) $(\Psi_{A}(x) - \Psi_{B}(x))$ $V_{S}(x)$
(d) $\Psi_{A}(x) - \Psi_{B}(x)$ $V_{S}(x)$

FOR 0 = 2 = 8.

IF ZA AND XB DENOTE THE POSITIONS OF ATOMS A AND B ON THE X-AXES, AND U AND UB DENOTE THEIR WAVE FUNCTIONS, COMPARE THE PLOTS (b) AND (C) IN THE REGION ZAEX E ZB.