Kurs:Mathematik für Anwender/Teil I/59/Klausur mit Lösungen

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \sum

Punkte 3312234805 0 5 0 0 4 1 2 2 5 50

Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

- 1. Die *Vereinigung* der Mengen $m{L}$ und $m{M}$.
- 2. Das abgeschlossene Intervall [a, b].
- 3. Die *absolute Konvergenz* einer reellen Reihe $\sum_{k=0}^{\infty} a_k$.
- 4. Die *Riemann-Integrierbarkeit* einer Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$.
- 5. Die *inverse Matrix* zu einer invertierbaren Matrix $M \in \operatorname{Mat}_n(K)$ über einem Körper K.
- 6. Das *charakteristische Polynom* zu einer $n \times n$ -Matrix M mit Einträgen in einem Körper K.

Lösung

1. Die Menge

$$L \cup M = \{x \mid x \in L \text{ oder } x \in M\}$$

heißt die Vereinigung der beiden Mengen.

- 2. Das abgeschlossene Intervall ist $[a,b]=\{x\in\mathbb{R}\mid x\geq a ext{ und } x\leq b\}.$
- 3. Die Reihe

$$\sum_{k=0}^{\infty} a_k$$

heißt absolut konvergent, wenn die Reihe

$$\sum_{k=0}^{\infty}|a_k|$$

konvergiert.

- 4. Die Funktion f heißt Riemann-integrierbar, wenn die Einschränkung von f auf jedes kompakte Intervall $[a,b]\subseteq\mathbb{R}$ Riemann-integrierbar ist.
- 5. Die Matrix $A \in \operatorname{Mat}_n(K)$ mit

$$A\circ M=E_n=M\circ A$$

heißt die *inverse Matrix* von M.

6. Das Polynom

$$\chi_M := \det \left(X \cdot E_n - M
ight)$$

heißt charakteristisches Polynom von $oldsymbol{M}$.

Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Der Fundamentalsatz der Algebra.
- 2. Der Satz über die Charakterisierung von Extrema mit höheren Ableitungen.
- 3. Die Substitutionsregel zur Integration von stetigen Funktionen (erste Version).

Lösung

- 1. Jedes nichtkonstante Polynom $P\in\mathbb{C}[X]$ über den komplexen Zahlen besitzt eine Nullstelle.
- 2. Es sei \boldsymbol{I} ein reelles Intervall,

$$f:I\longrightarrow \mathbb{R}$$

eine (n+1)-mal stetig differenzierbare Funktion und $a \in I$ ein innerer Punkt des Intervalls. Es gelte

$$f'(a) = f''(a) = \ldots = f^{(n)}(a) = 0 \text{ und } f^{(n+1)}(a) \neq 0.$$

Dann gelten folgende Aussagen.

- 1. Wenn n gerade ist, so besitzt f in a kein lokales Extremum.
- 2. Sei n ungerade. Bei $f^{(n+1)}(a) > 0$ besitzt f in a ein isoliertes Minimum.
- 3. Sei n ungerade. Bei $f^{(n+1)}(a) < 0$ besitzt f in a ein isoliertes Maximum.
- 3. Sei \boldsymbol{I} ein reelles Intervall und sei

$$f:I\longrightarrow \mathbb{R}$$

eine stetige Funktion. Es sei

$$g:[a,b]\longrightarrow I$$

stetig differenzierbar. Dann gilt

$$\int_a^b f(g(t))g'(t)\,dt = \int_{g(a)}^{g(b)} f(s)\,ds\,.$$

Aufgabe (1 Punkt)

Finde einen möglichst einfachen aussagenlogischen Ausdruck, der die folgende tabellarisch dargestellte Wahrheitsfunktion ergibt.

pq?

ww f

wf f

f ww

f f f

Lösung

 $\neg p \wedge q$.

Aufgabe (2 (1+1) Punkte)

Wir betrachten auf der Menge

$$M = \{a,b,c,d\}$$

die durch die Tabelle

 $\star abcd$

abacd

bdaaa

cdbba

db ddc

gegebene Verknüpfung *.

1. Berechne

$$a \star (b \star (c \star d)).$$

2. Besitzt die Verknüpfung ★ ein neutrales Element?

Lösung

1. Es ist

$$a \star (b \star (c \star d)) = a \star (b \star a) = a \star d = d$$
.

2. Es gibt kein neutrales Element, da dann eine Zeile eine Wiederholung der Leitzeile sein müsste, was nicht der Fall ist.

Aufgabe (2 Punkte)

Bestätige die folgende Identität.

$$2^7 + 17^3 = 71^2$$
.

Lösung

Es ist

$$2^7 = 128$$

und

$$17^3 = 289 \cdot 17 = 4913$$

und somit

$$2^7 + 17^3 = 128 + 4913 = 5041$$
.

Andererseits ist

$$71 \cdot 71 = 5041$$
.

Aufgabe (3 Punkte)

Bestimme die reellen Intervalle, die die Lösungsmenge der folgenden Ungleichung sind.

$$|2x-5|<|3x-4|$$
.

Lösung

Für $x<rac{4}{3}\leqrac{5}{2}$ sind sowohl 3x-4 als auch 2x-5 negativ. In diesem Bereich ist die Betragsungleichung daher äquivalent zu

$$-2x+5<-3x+4$$
.

Dies ist äquivalent zu x < -1.

Für $\frac{4}{3} \leq x < \frac{5}{2}$ ist 3x-4 nichtnegativ und 2x-5 negativ. In diesem Bereich ist die Betragsungleichung daher äquivalent zu

$$-2x+5 < 3x-4$$
.

Dies ist äquivalent zu 5x>9 und zu $x>\frac{9}{5}$.

Für $x \geq \frac{5}{2}$ sind sowohl 3x-4 als auch 2x-5 nichtnegativ. In diesem Bereich ist die Betragsungleichung daher äquivalent zu

$$2x-5<3x-4$$

und dies ist äquivalent zu x > -1.

Als Lösungsmenge ergeben sich also die beiden offenen Intervalle $]-\infty,-1[$ und $]\frac{9}{5},\infty[$.

Aufgabe (4 Punkte)

Sei K ein Körper und sei K[X] der Polynomring über K. Es sei $P=X^n\in K[X]$ mit $n\geq 1$. Zeige, dass sämtliche normierten Teiler von P die Form X^k , $1\leq k\leq n$, besitzen.

Lösung

Die angegeben Potenzen sind offenbar Teiler von X^n . Die Umkehrung beweisen wir durch Induktion über n. Als Teiler kommen nur Polynome in Frage, deren Grad kleiner/gleich n ist. Sei n=1. Eine Faktorzerlegung in normierte Polynome muss die Form

$$X = (X + a) \cdot 1$$

haben, was a=0 erzwingt. Sei nun n beliebig und eine Faktorzerlegung

$$X^n = P \cdot Q$$

in normierte Polynome P,Q vorgegeben. Da 0 eine Nullstelle links ist, muss P(0)=0 oder Q(0)=0 sein. Sagen wir der erste Fall liegt vor. Nach Lemma 6.5 (Mathematik für Anwender (Osnabrück 2019-2020)) ist X ein Teiler von P und somit ist

$$X^n = (\tilde{P}X) \cdot Q$$
.

Da K[X] nullteilerfrei ist, folgt

$$X^{n-1} = \tilde{P} \cdot Q$$

und die Aussage folgt aus der Induktionsvoraussetzung.

Aufgabe (8 (2+3+3) Punkte)

1. Zeige die Abschätzungen

$$\frac{5}{2} \le \sqrt{7} \le \frac{8}{3} \,.$$

2. Zeige die Abschätzungen

$$15 < 3^{\sqrt{7}} < 19$$
 .

3. Zeige die Abschätzung

$$17 \leq 3^{\sqrt{7}} \, .$$

Lösung

1. Die angegebenen Abschätzungen kann man durch Quadrieren überprüfen. Wegen

$$\left(\frac{5}{2}\right)^2 = \frac{25}{4} \le \frac{28}{4} = 7 = \frac{63}{9} \le \frac{64}{9} = \left(\frac{8}{3}\right)^2$$

ist dies richtig.

2. Nach Teil (1) ist

$$\frac{5}{2} \leq \sqrt{7}$$

und damit ist

$$3^{\frac{5}{2}} \leq 3^{\sqrt{7}}$$
 .

Wegen

$$15^2 = 225 \le 243 = 3^5$$

ist

$$15 \leq 3^{\frac{5}{2}}$$

und damit

$$15 \leq 3^{\sqrt{7}} .$$

Nach Teil (1) ist

$$\sqrt{7} \leq \frac{8}{3}$$

und damit ist

$$3^{\sqrt{7}} < 3^{rac{8}{3}}$$
 .

Wegen

$$3^8 = 6561 \le 6859 = 19^3$$

ist

$$3^{\frac{8}{3}} \leq 19$$

und damit

$$3^{\sqrt{7}} \leq 19$$
 .

3. Zunächst ist

$$\frac{13}{5} \leq \sqrt{7},$$

da

$$\left(\frac{13}{5}\right)^2 = \frac{169}{25} \le \frac{175}{25} = 7$$

ist. Somit gilt

$$3^{rac{13}{5}} \leq 3^{\sqrt{7}}$$
 .

Wegen

$$17^5 = 1419857 \le 1594323 = 81 \cdot 81 \cdot 81 \cdot 3 = 3^{13}$$

ist

$$17 \leq 3^{\frac{5}{13}}$$

und damit auch

$$17 \leq 3^{\sqrt{7}}$$
 .

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (5 Punkte)

Es sei $oldsymbol{x_n}$ eine gegen $oldsymbol{x}$ konvergente reelle Folge. Es sei

$$\varphi : \mathbb{N} \longrightarrow \mathbb{N}$$

eine bijektive Abbildung. Zeige, dass auch die durch

$$y_n := x_{arphi(n)}$$

definierte Folge gegen $oldsymbol{x}$ konvergiert.

Lösung

Sei $\epsilon>0$ vorgegeben. Wegen der Konvergenz der Ausgangsfolge gibt es ein $n_0\in\mathbb{N}$ derart, dass für alle $n\geq n_0$ die Beziehung

$$|x_n-x|\leq \epsilon$$

gilt. Das Urbild von $\{0,1,\ldots,n_0-1\}$ unter der bijektiven Abbildung φ ist endlich. Es sei $m\in\mathbb{N}$ eine Zahl, die größer als all diese Zahlen ist. Dann gilt für $n\geq m$ die Beziehung $\varphi(n)\geq n_0$, und somit ist für diese n auch

$$|y_n-x|=|x_{arphi(n)}-x|\leq \epsilon$$
 .

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (5 Punkte)

Beweise den Satz über die Ableitung der Umkehrfunktion.

Lösung

Wir betrachten den Differenzenquotienten

$$\frac{f^{-1}(y)-f^{-1}(b)}{y-b}=\frac{f^{-1}(y)-a}{y-b}$$

und müssen zeigen, dass der Limes für $y \to b$ existiert und den behaupteten Wert annimmt. Sei dazu $(y_n)_{n \in \mathbb{N}}$ eine Folge in $E \setminus \{b\}$, die gegen b konvergiert. Nach Satz 11.7 (Mathematik für Anwender (Osnabrück 2019-2020)) ist f^{-1} stetig. Daher konvergiert auch die Folge mit den Gliedern $x_n := f^{-1}(y_n)$ gegen a. Wegen der Bijektivität ist $x_n \neq a$ für alle n. Damit ist

$$\lim_{n o\infty}rac{f^{-1}(y_n)-a}{y_n-b}=\lim_{n o\infty}rac{x_n-a}{f(x_n)-f(a)}=\left(\lim_{n o\infty}rac{f(x_n)-f(a)}{x_n-a}
ight)^{-1},$$

wobei die rechte Seite nach Voraussetzung existiert und die zweite Gleichheit auf Lemma 8.1 (Mathematik für Anwender (Osnabrück 2019-2020)) (5) beruht.

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (4 Punkte)

Beweise die Substitutionsregel zur Integration von stetigen Funktionen.

Lösung

Wegen der Stetigkeit von ${m f}$ und der vorausgesetzten stetigen Differenzierbarkeit von ${m g}$ existieren beide Integrale. Es sei ${m F}$ eine Stammfunktion von ${m f}$, die aufgrund von Korollar 19.5 (Mathematik für Anwender (Osnabrück 2019-2020)) existiert. Nach der Kettenregel hat die zusammengesetzte Funktion

$$t\mapsto F(g(t))=(F\circ g)(t)$$

die Ableitung $F^{\prime}(g(t))g^{\prime}(t)=f(g(t))g^{\prime}(t)$. Daher gilt insgesamt

$$\int_a^b f(g(t))g'(t)\,dt = (F\circ g)|_a^b = F(g(b)) - F(g(a)) = F|_{g(a)}^{g(b)} = \int_{g(a)}^{g(b)} f(s)\,ds\,.$$

Aufgabe (1 Punkt)

Bei einem linearen Gleichungssystem führe das Eliminationsverfahren auf die Gleichung

$$0 = 0$$
.

Welche Folgerung kann man daraus schließen?

Lösung

Daraus kann man nichts schließen.

Aufgabe (2 (1+1) Punkte)

Es sei K ein Körper. Wir betrachten die Untervektorräume $U,V\subseteq \operatorname{Mat}_3(K)$, die durch

$$U = \{M = (a_{ij}) \in \operatorname{Mat}_3(K) \mid a_{31} = 0\}$$

bzw.

$$V = \{M = (a_{ij}) \in \operatorname{Mat}_3(K) \mid a_{21} = 0 \text{ und } a_{31} = 0\}$$

gegeben sind.

- 1. Ist $oldsymbol{U}$ abgeschlossen unter der Matrizenmultiplikation?
- 2. Ist V abgeschlossen unter der Matrizenmultiplikation?

Lösung

1. $oldsymbol{U}$ ist nicht abgeschlossen unter der Matrizenmultiplikation, da beispielsweise

$$\begin{pmatrix} 1 & * & * \\ 1 & * & * \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & * & * \\ 1 & * & * \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} * & * & * \\ * & * & * \\ 1 & * & * \end{pmatrix}$$

ist.

2. $oldsymbol{V}$ ist abgeschlossen unter der Matrizenmultiplikation. Es ist ja

$$\begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix} \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix} = \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

ist, da, wenn man die zweite oder dritte Zeile links mit der ersten Spalte rechts multipliziert, in jedem Summanden eine Null beteiligt ist.

Aufgabe (2 Punkte)

Es sei $\varphi \colon \mathbb{Q}^3 \to \mathbb{Q}^2$ eine lineare Abbildung mit

$$arphi(e_1)=\left(rac{5}{7}
ight),$$

$$arphi(e_2)=\left(egin{array}{c} 3 \ -3 \end{array}
ight)$$

und

$$arphi(e_3)=\left(egin{array}{c} 4 \ -11 \end{array}
ight).$$

Berechne
$$arphi \left(\left(egin{array}{c} 3 \ -4 \ 2 \end{array} \right)
ight)$$
 .

Lösung

Es ist

$$egin{aligned} arphi\left(egin{pmatrix} 3 \ -4 \ 2 \end{pmatrix}
ight) &= arphi(3e_1 - 4e_2 + 2e_3) \ &= 3arphi(e_1) - 4arphi(e_2) + 2arphi(e_3) \ &= 3\left(egin{pmatrix} 5 \ 7 \end{pmatrix} - 4\left(egin{pmatrix} 3 \ -3 \end{pmatrix} + 2\left(egin{pmatrix} 4 \ -11 \end{pmatrix}
ight) \ &= egin{pmatrix} 3 \cdot 5 - 4 \cdot 3 + 2 \cdot 4 \ 3 \cdot 7 - 4 \cdot (-3) + 2 \cdot (-11) \end{pmatrix} \ &= egin{pmatrix} 11 \ 11 \end{pmatrix}. \end{aligned}$$

Aufgabe (5 Punkte)

Es sei $\chi_{arphi} \in \mathbb{R}[X]$ das charakteristische Polynom zu einer linearen Abbildung

$$\varphi : V \longrightarrow V$$

auf einem reellen Vektorraum V endlicher Dimension. Kann man daraus das charakteristische Polynom zu den Hintereinanderschaltungen φ^n bestimmen?

Lösung

Es sei M eine beschreibende Matrix. Diese können wir auch über den komplexen Zahlen $\mathbb C$ auffassen, dadurch ändert sich weder das charakteristische Polynom noch die Matrizenmultiplikation. Wir können also über $\mathbb C$ arbeiten. Über $\mathbb C$ ist die Matrix

trigonalisierbar, d.h. es gibt eine Basis, bezüglich der die beschreibende Matrix obere Dreiecksgestalt hat, sagen wir

$$egin{pmatrix} \lambda_1 & * & \cdots & \cdots & * \ 0 & \lambda_2 & * & \cdots & * \ dots & \ddots & \ddots & \ddots & dots \ 0 & \cdots & 0 & \lambda_{d-1} & * \ 0 & \cdots & \cdots & 0 & \lambda_d \end{pmatrix}.$$

Das charakteristische Polynom hat somit die Form

$$(X-\lambda_1)\cdots(X-\lambda_d).$$

Die n-te Potenz dieser Matrix hat die Form

$$egin{pmatrix} \lambda_1^n & * & \cdots & \cdots & * \ 0 & \lambda_2^n & * & \cdots & * \ dots & \ddots & \ddots & \ddots & dots \ 0 & \cdots & 0 & \lambda_{d-1}^n & * \ 0 & \cdots & \cdots & 0 & \lambda_d^n \end{pmatrix}.$$

Daher ist deren charakteristisches Polynom gleich

$$(X-\lambda_1^n)\cdots(X-\lambda_d^n).$$

Das charakteristische Polynom der Potenzen hängt also nur vom charakteristischen Polynom der Ausgangsmatrix ab.