Improving the Performance of GMRES with Mixed Precision

Neil Lindquist, Piotr Luszczek, Jack Dongarra SIAM PP20 February 13th, 2020

GMRES

- General purpose, sparse linear solver
- Memory bound performance

GMRES Algorithm

```
\mathsf{GMRES}_{res}(A, x_0, b, M^{-1})
     for i = 0, 1, 2, ...
              r_i \leftarrow b - Ax_i
              w \leftarrow M^{-1}r_i
              \beta \leftarrow ||w||_2
               V_{:0} \leftarrow w/\beta
              s \leftarrow [\beta, 0, 0, ..., 0]^T
              for j = 0, 1, 2, ..., k
                       w \leftarrow M^{-1}AV_{:,i}
                       for l = 0, 1, ..., j
                                H_{l,j} \leftarrow w \cdot V_{:,l}
                                 w \leftarrow w - H_{l,i}V_{:,l}
                        H_{j+1,j} \leftarrow ||w||_2
                       Let G_j s.t. 0 = (G_j H)_{j+1,j}
                       H_{:,j} \leftarrow G_0 G_1 \dots G_{j-1} H_{:,i}
                        H \leftarrow G_i H
                        s \leftarrow G_i s
                        If s_i small enough, then break.
               u_i \leftarrow VH^{-1}s
               x_{i+1} \leftarrow x_i + u_i
```

Computing Ax = b. $A^{-1} \approx M^{-1}$ Restarts

Iteration count

Computation Requirement

- Each iteration, *j*, requires:
 - $4jn + 4nnz + \Theta(n)$ FLOP
- Restart with k iterations requires:
 - $2k^2n + 4k nnz + \Theta(kn + nnz)$ FLOP
 - $8kn + 32n + 8k^2 + \Theta(k)$ bytes

GMRES Algorithm

```
\mathsf{GMRES}_{res}(A, x_0, b, M^{-1})
     for i = 0, 1, 2, ...
              r_i \leftarrow b - Ax_i
              w \leftarrow M^{-1}r_i
              \beta \leftarrow ||w||_2
               V_{:0} \leftarrow w/\beta
              s \leftarrow [\beta, 0, 0, ..., 0]^T
              for j = 0, 1, 2, ..., k
                       w \leftarrow M^{-1}AV_{:,i}
                       for l = 0, 1, ..., j
                                H_{l,j} \leftarrow w \cdot V_{:,l}
                                 w \leftarrow w - H_{l,i}V_{:,l}
                        H_{j+1,j} \leftarrow ||w||_2
                       Let G_j s.t. 0 = (G_j H)_{j+1,j}
                       H_{:,j} \leftarrow G_0 G_1 \dots G_{j-1} H_{:,i}
                        H \leftarrow G_i H
                        s \leftarrow G_i s
                        If s_i small enough, then break.
               u_i \leftarrow VH^{-1}s
               x_{i+1} \leftarrow x_i + u_i
```

Computing Ax = b. $A^{-1} \approx M^{-1}$ Restarts

Iteration count

GMRES Algorithm

Double:

Single:

Double:

 $\mathsf{GMRES}_{res}(A, x_0, b, M^{-1})$ for i = 0, 1, 2, ... $r_i \leftarrow b - Ax_i$ $w \leftarrow M^{-1}r_i$ $\beta \leftarrow ||w||_2$ $V_{:.0} \leftarrow w/\beta$ $s \leftarrow [\beta, 0, 0, ..., 0]^T$ for j = 0, 1, 2, ..., k $w \leftarrow M^{-1}AV_{:,i}$ for l = 0, 1, ..., j $H_{l,j} \leftarrow w \cdot V_{:,l}$ $w \leftarrow w - H_{l,j}V_{:,l}$ $H_{j+1,j} \leftarrow ||w||_2$ Let G_j s.t. $0 = (G_j H)_{j+1,j}$ $H_{:,j} \leftarrow G_0 G_1 \dots G_{j-1} H_{:,j}$ $H \leftarrow G_i H$ $s \leftarrow G_i s$ If s_i small enough, then break. $u_i \leftarrow VH^{-1}s$ $x_{i+1} \leftarrow x_i + u_i$

Computing Ax = b. $A^{-1} \approx M^{-1}$ Restarts

Iteration count

GMRES Simplified Algorithm

GMRES_{res}
$$(A, x_0, b, M^{-1})$$

for $i = 0, 1, 2, ...$

Double:

$$r_i \leftarrow b - Ax_i$$

Single:

$$u_i \leftarrow \mathsf{GMRES}_{no\ res}(A, \overline{0}, r_i, M^{-1})$$

Double:

$$x_{i+1} \leftarrow x_i + u_i$$

Effect on Memory Allocation

- Double: $8kn + 12nnz + 32n + 8k^2$ bytes
- Mixed: $4kn + 12nnz + 28n + 4k^2$ bytes
 - Including GMRES internals, $M^{-1} = ILU(0)$
 - Excluding A, x, b
 - At most k inner iterations before restarting

Effect on Convergence: Setup

- •ILU(0) preconditioner (M^{-1})
- CSR matrix format
- Custom, mixed precision kernels
 - Kokkos for storage and parallelism
- A 20-core Haswell node
 - 2x Intel® Xeon® E5-2650 v3 processors

Effect on Convergence: Setup

- airfoil_2d from SuiteSparse collection
 - n = 14,214
 - nnz = 259,688
 - $\kappa_2 = 1.8 \cdot 10^6$
- Plots show residual if GMRES terminated after that iteration

Effect on Convergence: Without Restarts

Effect on Convergence: With Restarts

When to Restart?

- Too few restarts: improvement stalls
- Too many restarts: rate of convergence slows

Possible Restart Strategies

- Fixed iteration count
- Fixed improvement tolerance
- Detecting stalled improvement
 - Change in improvement
 - Versus double precision iteration

Restart Strategy: Fixed Iteration (100)

Restart Strategy: Fixed Iteration (200)

Restart Strategy: Fixed Improvement

Performance Results: Setup

- ILU(0) preconditioner (M^{-1})
- CSR matrix format
- KokkosKernels
 - Backed by Intel's MKL
 - Except for preconditioner
- A 20-core Haswell node
 - 2x Intel® Xeon® E5-2650 v3 processors

Performance Results: Setup

- Matrices from SuiteSparse collection
- •Solved for preconditioned residual accuracy of 10^{-10}
- Each trial run 5 times
 - Speedup of medians
 - Error bars for max and min speedup

Performance Results: Optimal Configuration

- Optimal restart length found for double precision
- Optimal restart length and improvement tolerance found for mixed precision
- •Speedup: $\frac{\text{GMRES}_{\text{Double}} + \text{ILU}_{\text{Double}}}{\text{GMRES}_{\text{Mixed}} + \text{ILU}_{\text{Mixed}}}$

Improvement

Timing Results: Optimal Configuration

Performance Results: Forced Restarts

- k iterations for non-restarting, double precision GMRES to reach 10^{-10}
- Double and mixed precision were run, restarting every $^k/_2$ iterations
- $\textbf{-Speedup:} \frac{\text{GMRES}_{\text{Double}} + \text{ILU}_{\text{Double}}}{\text{GMRES}_{\text{Mixed}} + \text{ILU}_{\text{Mixed}}}$

Performance Results: Forced Restarts

Conclusions

- With appropriate restarts, mixed precision
 GMRES has
 - double precision accuracy
 - better performance

Jobs @ ICL

- http://www.icl.utk.edu/jobs
- Research Positions in
 - Numerical Linear Algebra
 - Distributed Computing
 - Performance Measurement and Modeling

