

(a) Wheel "= duk "

Initial Energy $E_{
m wheel}$:

$$egin{align} E_{
m wheel} &= rac{1}{2} m (r \Omega_0)^2 + rac{1}{2} \left(rac{1}{2} m r^2
ight) \Omega_0^2 \ &= rac{1}{2} m r^2 \Omega_0^2 + rac{1}{4} m r^2 \Omega_0^2 \ &= \left(rac{3}{4}
ight) m r^2 \Omega_0^2 \ \end{aligned}$$

Thus:

$$mgh_{
m wheel}=rac{3}{4}mr^2\Omega_0^2$$

Thus:

$$h_{ ext{wheel}} = rac{3}{4} rac{r^2 \Omega_0^2}{g}$$

(b) Ring

Initial Energy $E_{\rm ring}$:

$$egin{align} E_{
m ring} &= rac{1}{2} m (r \Omega_0)^2 + rac{1}{2} (m r^2) \Omega_0^2 \ &= rac{1}{2} m r^2 \Omega_0^2 + rac{1}{2} m r^2 \Omega_0^2 \ &= m r^2 \Omega_0^2 \ \end{array}$$

Thus:

$$mgh_{\mathrm{ring}}=mr^2\Omega_0^2$$

Thus:

$$h_{
m ring} = rac{r^2\Omega}{g}$$

Comparing the heights achieved by the two bodies, the ring reaches a higher level by 33% times than the wheel

ED > zero-force

members

(visual
inspection)

*2 members,
non-collinear

at H

F_{BQ} = 5kn (T) Joint with 3 members

F_{FQ} = 5kn (T) Joint with 3 members

Aligned,

Skn 5(C) 5kn

Visual Mapechia

2 members

aligned,

aligned

with a force

+1 ≥ Fy = 0 > Fcg/12 - 10 kN = 0

2 members - not-

Arswer

$$\frac{T_3}{T_2} = e^{\frac{M3\pi}{4}}, \quad \frac{T_2}{T_1} = e^{\frac{M3\pi}{4}}$$

$$T_1 = Mg$$
, $T_3 = 500N \Rightarrow M = 15.69 kg$
 $T_3 = 600N \Rightarrow M = 18.82 kg$

Ox, Uy: Work less torces, mg, mg, Fs

Conservative forces. $[V_e = \frac{1}{2}kx^2] \qquad V_e = \frac{1}{2}k\left(2b\sin\frac{\theta}{2}\right)^2 = 2kb^2\sin^2\frac{\theta}{2}$ Pokahal function, Spring With the datum for zero gravitational potential energy taken through the support at O for convenience, the expression for V_g becomes

$$[V_g = mgh] V_g = 2mg\left(-b\cos\frac{\theta}{2}\right)$$

The distance between O and C is $4b \sin \theta/2$, so that the virtual work done by P is

$$\delta U' = P \delta \left(4b \sin \frac{\theta}{2} \right) = 2Pb \cos \frac{\theta}{2} \delta \theta$$

The virtual-work equation now gives

$$\begin{split} [\delta U' &= \delta V_e + \delta V_g] \\ &2Pb\,\cos\frac{\theta}{2}\,\delta\theta = \delta\,\left(2kb^2\sin^2\frac{\theta}{2}\right) + \delta\,\left(-2mgb\,\cos\frac{\theta}{2}\right) \\ &= 2kb^2\sin\frac{\theta}{2}\cos\frac{\theta}{2}\,\delta\theta + mgb\,\sin\frac{\theta}{2}\,\delta\theta \end{split}$$

Simplifying gives finally

$$P = kb \sin \frac{\theta}{2} + \frac{1}{2}mg \tan \frac{\theta}{2}$$

Ans.

$$\begin{array}{c|c}
\hat{\underline{e}}_{2} & \omega, \dot{\omega} \\
C & H \\
\hline
V_{0}, a_{0} \\
\hline
No slip & \hat{\underline{e}}_{1}
\end{array}$$

$$\frac{\hat{e}_{2}}{C} = (\hat{\omega}r - \omega^{2}r + a_{o}) \hat{e}_{1} - \hat{\omega}r \hat{e}_{2}$$

$$+ is a valid point if $\hat{\omega} = 0$

$$\Rightarrow 2_{HII} = (a_{o} - \omega^{2}r) \hat{e}_{1} // \underline{r}_{CH}$$
and possing through C$$

Point H is a valid point, only if $\dot{\omega}=0$

The Euler's first axiom and the the modified Euler's second axiom for an RB in static equilibrium with respect to an inertial reference frame I simplify to: $\underline{F} = 0$ and $\underline{M}_A = 0$, where \underline{F} is the net external force acting on the RB, and \underline{M}_A represents the net moment due to all forces acting on the RB about point A. Choose the correct statement.

Answer

Acceleration of A w.r.t. frame I may or may not be zero.

Consider a rigid body which has its angular velocity always along a direction (\hat{e}_3) which is fixed w.r.t. to the inertial reference frame in context. The net moment due to all external forces is also known to be aligned along \hat{e}_3 . P is a point fixed to the RB as well as to the frame I. We choose a body-fixed Cartesian coordinate system (CSYS) $Px_1(\hat{e}_1)x_2(\hat{e}_2)x_3(\hat{e}_3)$ as our working CSYS, such that P lies in the $x_1(\hat{e}_1) - x_2(\hat{e}_2)$ plane at all time instants. The modified Euler's axiom for this body is known to reduce to only one non-trivial scalar equation at all time instants: $M_{P,3} = I_{33}^P \dot{\omega}$. Based on the given information, choose the correct option.

The axis $x_3(\hat{e}_3)$ must be a principal axis of the inertia tensor of the body at P.

Answer

only $x_1(\hat{e}_1) - x_3(\hat{e}_3)$ plane is a symm. Plane at B only $x_2(\hat{e}_2)$ is a p-axis — based on visual inspection

None of these is correct.

Avewar

B

mgsing -
$$\mu_{k}N = m_{s}^{2}$$

mg coo $\theta - N = \frac{m_{s}^{2}}{g}$ $f:given 1597.5m$.
Eliminate $N = \frac{g}{g} = \frac{g \sin \theta - \mu_{k}(0.00 + \mu_{k})^{2}}{g}$
 $y = 200 \cos(\pi \times 1800) \Rightarrow dy/dx = -\tan \theta = \frac{\pi}{4} \sin 3\pi \Rightarrow \sin \theta = 0.58$, coo $\theta = 0.8$)
If $v = 100 \cos^{2} \Rightarrow \ddot{s} = 5.45 \cos^{2}$
 $y = 150 \cos^{2} \Rightarrow \ddot{s} = 7.01 \cos^{2}$.

A force depends only on the Cartesian coordinates x, y and z: $\underline{F} = (-2xy + z)\hat{i} + (-x^2 + xz - z)\hat{j} + (xy - y)\hat{k}$.

