CS771 Assignment-1

Padulkar Rohan Ravikumar

Harshit Shakya

210689 rohan21@iitk.ac.in

210427 harshit21@iitk.ac.in

Utkarsh Mishra 211131 Shishir Gujarey 210977

Suvrat Pal 211089 suvratp21@iitk.ac.in

utkarshm21@iitk.ac.in

shishirg21@iitk.ac.in

Aakash Yadav

210010

aakashy21@iitk.ac.in

1 Part 1

For a single arbiter PUF, we know:

$$\Delta = \mathbf{w}^T \mathbf{x} + b$$

where $w_0 = \alpha_0$, $w_i = \alpha_i + \beta_{i-1}$ (for i > 0) and α_i , β_i account for the delays incurred in the individual mux

and x is defined by the map $\zeta: \mathbf{c} \to \mathbf{x}$ (for the case of 32-bit challenges) such that:

$$\mathbf{x} \triangleq \begin{bmatrix} (1 - 2c_0)(1 - 2c_1)\dots(1 - 2c_{31}) \\ \vdots \\ (1 - 2c_{31}) \end{bmatrix}_{32}$$
 (1)

where c_i are the challenge bits

Thus, for the CAR-PUF, we have

$$\Delta_w = \mathbf{u}^T \mathbf{x} + p$$
$$\Delta_r = \mathbf{v}^T \mathbf{x} + q$$

where Δ_w and Δ_r are the difference in timings experienced by the working and reference PUFs respectively for the same challenge.

According to the question, The response is 0 if $|\Delta_w - \Delta_r| \le \tau$ and 1 otherwise. Let us consider the case where the response should be 0. Squaring both sides to handle mod:

$$\Rightarrow (\Delta_w - \Delta_r)^2 \le \tau^2$$

$$\Rightarrow \left[(\mathbf{u} - \mathbf{v})^T \mathbf{x} + (p - q) \right]^2 < \tau^2$$

$$\Rightarrow (\mathbf{w}^T \mathbf{x} + b)^2 \le \tau^2$$

where $\mathbf{w} \triangleq \mathbf{u} - \mathbf{v}$ and $b \triangleq p - q$. Thus,

$$\Rightarrow (\mathbf{w}^T \mathbf{x})^2 + b^2 + 2(\mathbf{w}^T \mathbf{x})b \le \tau^2$$

$$\Rightarrow \left(\sum_{i=0}^{31} w_i x_i\right)^2 + 2(\mathbf{w}^T \mathbf{x})b + (b^2 - \tau^2) \le 0$$

$$\Rightarrow \sum_{i=0}^{31} (w_i x_i)^2 + 2 \sum_{i=0}^{31} \sum_{j=i+1}^{31} w_i w_j x_i x_j + 2(\mathbf{w}^T \mathbf{x}) b + (b^2 - \tau^2) \le 0$$

$$\Rightarrow \sum_{i=0}^{31} (w_i x_i)^2 + 2 \sum_{i=0}^{31} \sum_{j=i+1}^{31} w_i w_j x_i x_j + 2 \left(\sum_{i=0}^{31} w_i x_i\right) b + (b^2 - \tau^2) \le 0$$

Since $c_i \in \{0, 1\}$, $x_i = 1 - 2c_i = \pm 1 \implies x_i^2 = 1$. Hence, $\sum_{i=0}^{31} (w_i x_i)^2 = \sum_{i=0}^{31} w_i^2$, which is a constant for 2 fixed PUFs

$$\Rightarrow 2\sum_{i=0}^{31} \sum_{j=i+1}^{31} w_i w_j x_i x_j + 2\left(\sum_{i=0}^{31} w_i x_i\right) b + \left(b^2 + \sum_{i=0}^{31} w_i^2 - \tau^2\right) \le 0$$
 (2)

In the above expression, the first summation consists of $\binom{32}{2}$ = 496 terms, the second summation consists of 32 terms and the rest are constants:

Now, let ψ be the map $\mathbf{x} \to \mathbf{X}$ such that:

$$\mathbf{X} \triangleq \begin{bmatrix} x_{0}x_{1} \\ \vdots \\ x_{0}x_{31} \\ x_{1}x_{2} \\ \vdots \\ \vdots \\ x_{1}x_{31} \\ \vdots \\ \vdots \\ \vdots \\ x_{30}x_{31} \\ x_{0} \\ \vdots \\ \vdots \\ x_{31} \end{bmatrix}_{528}$$
(3)

We already know a map $\zeta: \mathbf{c} \to \mathbf{x}$

Hence, we can get a map $\phi : \mathbf{c} \to \mathbf{X}$, where $\phi(c) = \psi(\zeta(c))$

Let **W** be the vector:

$$\mathbf{W} \triangleq \begin{bmatrix} 2w_{0}w_{1} \\ \vdots \\ 2w_{0}w_{31} \\ 2w_{1}w_{2} \\ \vdots \\ 2w_{1}w_{31} \\ \vdots \\ \vdots \\ 2w_{30}w_{31} \\ 2bw_{0} \\ \vdots \\ 2bw_{31} \end{bmatrix}_{528}$$

$$(4)$$

and let
$$B = (b^2 + \sum w_i^2 - \tau^2)/2$$

Now, we can write equation (2) in the form:

$$\mathbf{W}^T \mathbf{X} + B \le 0 \tag{5}$$

Now, we need the response to be 0 if equation (5) is true and 1 otherwise.

Hence, we can write the response r simply as:

$$r = \frac{1 + sign(\mathbf{W}^T \mathbf{X} + B)}{2}$$

Now, if c is the challenge vector, $\mathbf{X} = \phi(c)$. Hence,

$$r = \frac{1 + sign(\mathbf{W}^T \phi(c) + B)}{2}$$

By definition, we can clearly see that both \mathbf{X} and \mathbf{W} are 528-dimensional vectors. Hence, we have found a 528-dimensional linear model which can perfectly predict the responses of a CAR-PUF.

3 Part 3

The following data shows how various hyperparameters affected training time and test accuracy.

3.1 (a) Changing the loss hyperparameter in LinearSVC (Hinge vs Squared Hinge)

	Hinge	Squared Hinge
Training Time(s)	8.1138	10.6717
Test Accuracy(%)	98.88	99.02

3.2 (b) Setting Cost Parameter to high/low/medium value

For Linear SVC:

	High(C=10.0)	Medium(C=1.0)	Low(C=0.1)
Training Time(s)	8.4517	8.2536	9.9972
Test Accuracy(%)	98.95	99.12	98.99

For LogisticRegression:

	High(C=10.0)	Medium(C=1.0)	Low(C=0.1)
Training Time(s)	0.8814	0.8971	0.8232
Test Accuracy(%)	99.22	99.07	98.71

3.3 (c) Changing tolerance to high/low/medium value

For Linear SVC:

	High(tol=1e-3)	Medium(tol=1e-4)	Low(tol=1e-5)
Training Time(s)	8.5121	7.8091	8.4429
Test Accuracy(%)	99.17	99.12	99.16

For LogisticRegression:

	High(tol=1e-3)	Medium(tol=1e-4)	Low(tol=1e-5)
Training Time(s)	0.7067	0.6907	0.7221
Test Accuracy(%)	99.07	99.07	99.07

3.4 Changing the penalty (regularization) hyperparameter (l2 vs l1)

For Linear SVC:

	11	12
Training Time(s)	161.6858	3.7122
Test Accuracy(%)	99.09,	99.19

For LogisticRegression (solver = 'liblinear'):

	11	12
Training Time(s)	202.8877	7.6563
Test Accuracy(%)	99.18	99.06