DATA3888: Data Science Capstone

Week 1 - Case study 2: Biomedical data

Andy Tran 22 February, 2023

Outline

- Biomedical data
- Case study 2: Kidney graft rejection
- Feature Selection

What is molecular biomedical data?

Genome sequencing and point mutations

Gene expression Microarrays RNA-Seq

Protein expression
iTRAQ
mass spectrometry

Patient clinical information

DNA

RNA

Protein

Phenotype

Omics data in recent decades

Explosion of omics data

Case study 2: Predicting kidney graft rejection

Case study: Predicting graft status - Kidney transplant

- Treatment of choice to people with end-stage kidney disease.
- Patients may develop graft rejection after kidney transplant.
- Examine public datasets on kidney transplant patients generated from RNA-sequencing.
- RNA-seq measures gene expression of patients' cells.
- Use the gene expression to predict the patient outcome (i.e., stable versus rejection)
 - Stable patients
 - Patients who experienced rejection.

Gene Expression Omnibus database (GEO)

- Public datasets are all taken from GEO database (https://www.ncbi.nlm.nih.gov/geo/).
- Download the dataset by looking up its GSE ID in the database.
- You can go to (https://github.com/seandavi/GEOquery) for installation details

```
library(GEOquery)
gse <- getGEO("GSE46474")
gse <- gse$GSE46474_series_matrix.txt.gz</pre>
```

Gene Expression Omnibus Data - GSE46474

- Focus on how to analyse the data from "GSE46474".
- This dataset contains the gene expression profiles of 40 blood samples.
 - 20 patients rejected their kidney
 - 20 had stable grafts and will be treated as controls.
- For Week 2 lab, you can load the pre-made GSE46474. RData file.

```
load("data/GSE46474.RData")
head(gse$title)

## [1] "WB_AR1" "WB_NR1" "WB_AR2" "WB_NR2" "WB_AR3" "WB_NR3"

Outcome <- ifelse(grepl("AR", gse$title), "Rejection", "Stable") #Tidy the title variable and call i
table(Outcome)

## Outcome
## Rejection Stable
## 20 20</pre>
```

Gene Expression data structure

Data structure - ExpressionSet

[7] ".__classVersion__"

```
## [1] "experimentData" "assayData" "phenoData"
## [4] "featureData" "annotation" "protocolData"
```

- gse is an object of class *ExpressionSet* that has three main slots:
- [1] assayData: Contains a matrix of expression values for each gene (feature) measured.
- [2] phenoData: Contains a data frame of sample information. i.e Covariates.
- [3] featureData: Contains a *data frame* of gene (feature) information. There are other slots with other information
- experimentData: Contains text information about the design of the experiment.
- annotation: Contains a Character describing the type of platform the samples were sequenced on.

Data structure - ExpressionSet

ExpressionSet - gene expression

4.918209

6.726106

7.193593

4.686569

7.437923

7.482420

4.816291

7.950576

7.643679

1053 at

121 at

117 at

Gene expression data can be retrieved by the exprs function from Biobase package. Notice how we
have a matrix where our rows are probes which correspond to a gene of interest, and our columns
correspond to a sample that has been sequenced.

ExpressionSet - phenotype data

Retrieve information on experimental phenotypes (i.e. covariates) by

```
"geo accession"
    [1] "title"
    [3] "status"
                                     "submission date"
                                     "type"
    [5] "last update date"
    [7] "channel count"
                                     "source name ch1"
   [9] "organism_ch1"
                                     "characteristics ch1"
## [11] "characteristics ch1.1"
                                     "characteristics ch1.2"
## [13] "characteristics_ch1.3"
                                     "characteristics_ch1.4"
                                     "characteristics ch1.6"
## [15] "characteristics ch1.5"
## [17] "molecule ch1"
                                     "extract protocol ch1"
                                     "label_protocol_ch1"
## [19] "label_ch1"
                                     "hyb protocol"
## [21] "taxid ch1"
                                     "description"
## [23] "scan_protocol"
                                     "data processing.1"
## [25] "data processing"
## [27] "platform_id"
                                     "contact_name"
                                     "contact_phone"
## [29] "contact_email"
## [31] "contact_department"
                                     "contact institute"
## [33] "contact_address"
                                     "contact_city"
                                     "contact zip/postal code"
## [35] "contact state"
## [37] "contact_country"
                                     "supplementary_file"
## [39] "data_row_count"
                                     "age_tx:ch1"
## [41] "collection_day_post_tx:ch1" "procedure status:ch1"
## [43] "race:ch1"
                                     "sample group:ch1"
```

"tissue:ch1"

pheno <- phenoData(gse)</pre>

colnames(pheno)

[45] "Sex:ch1"

ExpressionSet - phenotype data

```
class(pheno)
## [1] "AnnotatedDataFrame"
## attr(,"package")
## [1] "Biobase"
 pheno$`procedure status:ch1`[1:4]
## [1] "post-transplant acute rejection (AR)"
## [2] "post-transplant non-rejection (NR)"
## [3] "post-transplant acute rejection (AR)"
## [4] "post-transplant non-rejection (NR)"
table(pheno$`sample group:ch1`)
     control discovery
          20
pheno$`age_tx:ch1`
    [1] "55.7" "50.3" "52.6" "44.8" "38.8" "51.1" "55.4" "35.5" "31.8" "55.2"
   \lceil 11 \rceil
       "37" "58.4" "27"
                             "46.6" "50.3" "55.3" "58.7" "47.6" "57.5" "58.1"
```

"38" "47.3" "45.1" "40.1" "42" "56.8" "51.8" "54.6" "37.6" "50.8"

[31] "49.7" "49.5" "43.4" "58.6" "50.2" "20.7" "20.3" "42.3" "71.8" "57.1"

ExpressionSet - feature data

1255_g_at 1255_g_at L36861

The fData function retrieve information on features recorded, that is, gets the probes' annotation.

```
featureData <- fData(gse)</pre>
featureData[1:5, 1:5]
##
                   ID GB_ACC SPOT_ID Species Scientific Name Annotation Date
                                 NA
                                              Homo sapiens
                                                              Oct 6, 2014
## 1007_s_at 1007_s_at U48705
                                              Homo sapiens
## 1053_at 1053_at M87338
                                 NA
                                                              Oct 6, 2014
                                              Homo sapiens Oct 6, 2014
## 117_at 117_at X51757
                                 NA
## 121_at 121_at X69699
                                 NA
                                              Homo sapiens
                                                              Oct 6, 2014
```

NA

Homo sapiens

Oct 6, 2014

Dimensions

What are the dimensions of our data set?

```
eMat = exprs(gse)
dim(eMat)
```

```
## [1] 54613 40
```

- We have a p > n problem! (p = parameters, n = sample size)
- Many machine learning methods assume or require n > p.
- In this case, we could even say p >> n.

Feature selection

Feature Selection

- When we have a p > n problem, we may hypothesise that most of the features aren't useful for our task (eg. classification).
- Feature selection is the process of only selecting a (small) subset of features, so that we can apply our standard machine learning tools.
- The challenge here is how to identify the "useful features".
- For our task, useful features could be genes whose expression is different between the two groups (stable vs rejection).
- A naive approach is to perform a t-test!

Looking at the first gene:

```
e1 = eMat[1,]
 t.test(e1 ~ Outcome)
##
      Welch Two Sample t-test
##
## data: e1 by Outcome
## t = -0.15104, df = 28.352, p-value = 0.881
## alternative hypothesis: true difference in means between group Rejection and group Stable is not equal
## 95 percent confidence interval:
## -0.2211218 0.1907354
## sample estimates:
## mean in group Rejection mean in group Stable
##
                  5.986109
                                          6.001303
```

```
par(mfrow=c(1,2))
boxplot(e1 ~ Outcome, ylim=c(5, 7))
```


• It seems like the first gene isn't that useful in differentiating the Rejection and Stable patients

Lets repeat this again with another gene. Lets us select the 23127th gene and have a look.

```
e23127 = eMat[23127,]
 e23127_t = t.test(e23127 \sim Outcome)
 e23127 t
##
       Welch Two Sample t-test
##
## data: e23127 by Outcome
## t = 4.7974, df = 37.595, p-value = 2.55e-05
## alternative hypothesis: true difference in means between group Rejection and group Stable is not equal
## 95 percent confidence interval:
## 0.4914719 1.2095060
## sample estimates:
## mean in group Rejection mean in group Stable
                  6.809849
##
                                          5,959360
```

boxplot(e23127 ~ Outcome)

- It seems like the 23127th gene could be useful in differentiating the Rejection and Stable patients!
- But how do we perform feature selection to find the most useful features?

Using linear regression

Compare linear regression versus *t*-test

```
fit = lm(e23127 ~ factor(Outcome))
 summary(fit)
##
## Call:
## lm(formula = e23127 ~ factor(Outcome))
##
## Residuals:
##
      Min 10 Median 30
                                    Max
## -1.2139 -0.3792 0.1260 0.4068 1.1738
##
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        6.8098 0.1254 54.323 < 2e-16 ***
## factor(Outcome)Stable -0.8505 0.1773 -4.797 2.5e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5606 on 38 degrees of freedom
## Multiple R-squared: 0.3772, Adjusted R-squared: 0.3608
## F-statistic: 23.01 on 1 and 38 DF, p-value: 2.495e-05
```

Using linear regression

Compare linear regression versus *t*-test

```
e23127 = eMat[23127,]
 e23127_t = t.test(e23127 ~ Outcome, var.equal = TRUE)
 e23127 t
##
      Two Sample t-test
##
## data: e23127 by Outcome
## t = 4.7974, df = 38, p-value = 2.495e-05
## alternative hypothesis: true difference in means between group Rejection and group Stable is not equal
## 95 percent confidence interval:
## 0.4915989 1.2093790
## sample estimates:
## mean in group Rejection mean in group Stable
##
                  6.809849
                                          5,959360
```

Finding differentially expressed genes

Which genes will be the most useful for classification? That is, which genes have the most different expression between stable and rejection patients.

- Use a for loop to perform a series of t-tests.
- Faster options with limma R package speeds up this process.
- Fit a series of linear models

$$Y = X\beta$$

where X is known as the design matrix.

The theory and methods are covered in STAT3022 - Applied linear models.

DE genes using limma

```
design <- model.matrix(~Outcome)</pre>
 design[1:5,]
     (Intercept) OutcomeStable
##
## 1
## 5
 Outcome[1:5]
## [1] "Rejection" "Stable"
                                "Rejection" "Stable"
                                                          "Rejection"
```

DE genes using limma

```
library(limma)
fit <- lmFit(eMat, design) ## Fitting linear model
fit <- eBayes(fit) ## Calculate moderated t-stats and p-value
topTable(fit, n = 5) %>% signif(3) ## Output top ranking genes
```

Removing intercept from test coefficients

```
## NA.8986 -1.060 8.87 -7.10 1.12e-08 0.000614 9.11 ## 210686_x_at -0.756 9.10 -6.79 3.11e-08 0.000849 8.25 ## 202028_s_at -0.893 8.33 -6.35 1.31e-07 0.002280 7.01 ## NA.4677 -0.688 6.87 -6.28 1.67e-07 0.002280 6.81 ## NA.4200 -1.420 7.32 -5.96 4.86e-07 0.005300 5.88
```

- logFC = log(Fold Change), AveExpr = Average Expression.
- Which columns are useful to us?

DE genes using limma

Adding gene symbols to a table

```
topTable(fit, genelist=featureData[,"Gene Symbol"], n = 5)
## Removing intercept from test coefficients
##
                    ID
                            logFC AveExpr t
                                                        P.Value
                                                                  adi.P.Val
## NA.8986
                  <NA> -1.0601112 8.866138 -7.103210 1.123539e-08 0.0006135986
## 210686 x at SLC25A16 -0.7555083 9.095867 -6.791756 3.108334e-08 0.0008487773
## 202028 s at RPL38 -0.8933696 8.326946 -6.353216 1.311499e-07 0.0022774794
## NA.4677
            <NA> -0.6881895 6.871418 -6.280092 1.668086e-07 0.0022774794
## NA.4200
               <NA> -1.4234446 7.323691 -5.955004 4.860532e-07 0.0052974747
##
                     В
## NA.8986
              9.111266
## 210686 x at 8.245293
## 202028 s at 7.012077
## NA.4677
             6.805216
## NA.4200
              5.882729
```

Limitations

- Does the p-value tell you the whole story?
- Not necessarily!
- We often want to consider the **effect size** as well (here, logFC). Small effect sizes may not be meaningful.
- We may also want to consider the **magnitude** as well (here, AveExpr). Lowly expressed genes may not be interesting.
- Let us try visualising our features!

MA-plot

- This plots the logFC against AveExpr, often coloured by the "significance" (here, -log10(P.value))
- The "M" stands for "Minus" and the "A" stands for "Add".
- Where are the important features located on this plot?

MA-plot code

```
library(ggplot2)
df<- topTable(fit, number=nrow(fit), genelist=rownames(gse))</pre>
```

Removing intercept from test coefficients

```
ggplot(df, aes(x = AveExpr, y = logFC))+
    geom_point(aes(colour=-log10(P.Value)), alpha=1/3, size=1) +
    scale_colour_gradient(low="blue",high="red")+
    ylab("log2 fold change") + xlab("Average expression")
```


Volcano plot

- This plots the logFC against against the -log10(P.value).
- We generally observe a volcano-like pattern.
- Where are the important features located on this plot?

Volcano plot code

```
p <- ggplot(df, aes(logFC,-log10(P.Value)))+
    geom_point(aes(colour=-log10(P.Value)), alpha=1/3, size=1) +
    scale_colour_gradient(low="blue",high="red")+
    xlab("log2 fold change") + ylab("-log10 p-value")
p</pre>
```


Summary

- Feature selection is a useful tool, especially for p > n problems.
- One method for feature selection (for a classification task) is to identify features that are different among the two groups of interest.
- We can visualise the features with an MA-plot and volcano plot.