## Министерство образования Республики Беларусь

# Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра теоретических основ электротехники

Типовой расчет №1 по курсу: «Теория электрических цепей» Шифр студента №950501-6

Проверил: Батюков С. В. Выполнил: ст. гр. 950501

Деркач А. В.

#### 1. Чертеж исходной схемы

Исходные данные приведены в таблице 1.

| Таблица | 1 _ | Исходные | панные |
|---------|-----|----------|--------|
| таолица | 1 — | ислодные | даппыс |

| $E_1$ , | $E_2$ , | $E_8$ , | $J_{02}$ , | $J_{06}$ , | $R_1$ , | $R_2$ , | $R_3$ , | $R_4$ , | $R_5$ , | $R_6$ , | $R_7$ , | $R_8$ , |
|---------|---------|---------|------------|------------|---------|---------|---------|---------|---------|---------|---------|---------|
| В       | В       | В       | Α          | Α          | Ом      |
| 300     | 100     | 200     | 1          | 1          | 910     | 290     | 640     | 910     | 390     | 170     | 650     | 920     |

Начертим схему согласно заданному варианту (рис. 1):



Рисунок 1 – Исходная схема

### 2. Преобразование схемы к двухконтурной

Заменим источники тока  $J_{02}$  и  $J_{06}$  эквивалентными им источниками напряжения  $E_{02}$  и  $E_{06}$ . Объединим последовательно включенные источники напряжения  $E_{02}$  и  $E_2$  в эквивалентный источник напряжения  $E_{22}$ . Объединим последовательно включенные сопротивления  $R_3$  и  $R_4$ ,  $R_5$  и  $R_6$  (рис. 2):

$$E_{02} = J_{02} \cdot R_2 = 290 \text{ B}$$

$$E_{06} = J_{06} \cdot R_6 = 170 \text{ B}$$

$$E_{22} = E_{02} + E_2 = 390 \text{ B}$$

$$R_{34} = R_3 + R_4 = 1550 \text{ Om}$$

$$R_{56} = R_5 + R_6 = 560 \text{ Om}$$



Заменим источники напряжения  $E_1$  и  $E_{22}$  эквивалентными им источниками тока  $J_1$  и  $J_{22}$  (рис. 3):



Преобразуем треугольник  $R_1$ - $R_2$ - $R_7$  в эквивалентную звезду (рис. 4):

$$R_{12} = \frac{R_1 \cdot R_2}{R_1 + R_2 + R_7} = 142,649 \text{ Om}$$

$$R_{17} = \frac{R_1 \cdot R_7}{R_1 + R_2 + R_7} = 319,730 \text{ Om}$$

$$R_{27} = \frac{R_2 \cdot R_7}{R_1 + R_2 + R_7} = 101,892 \text{ Om}$$



Заменим источники тока  $J_1$  и  $J_{22}$  эквивалентными им источниками напряжения  $E_{17}$ ,  $E_{27}$ ,  $E_{121}$  и  $E_{122}$ . Объединим последовательно включенные источники напряжения  $E_{121}$  и  $E_{122}$  в эквивалентный источник напряжения  $E_{12}$  (рис. 5):



$$E_{17} = J_1 \cdot R_{17} = 105,405 \text{ B}$$
  
 $E_{27} = J_{22} \cdot R_{27} = 137,027 \text{ B}$   
 $E_{121} = J_1 \cdot R_{12} = 47,027 \text{ B}$   
 $E_{122} = J_{22} \cdot R_{12} = 191,838 \text{ B}$   
 $E_{12} = E_{122} - E_{121} = 144,811 \text{ B}$ 

После всех преобразований получаем схему (рис. 6):



Объединим последовательно включенные источники напряжения  $E_{06}$  и  $E_{17}$ ,  $E_{12}$  и  $E_8$  в эквивалентные источники напряжения  $E_{167}$  и  $E_{128}$ . Объединим последовательно включенные сопротивления  $R_{17}$  и  $R_{56}$ ,  $R_{12}$  и  $R_8$ ,  $R_{27}$  и  $R_{34}$  в эквивалентные сопротивления (рис. 7):

$$\begin{split} E_{167} &= E_{06} + E_{17} = 275,405 \text{ B} \\ E_{128} &= E_8 - E_{12} = 55,189 \text{ B} \\ R_{1567} &= R_{17} + R_{56} = 879,730 \text{ Om} \\ R_{128} &= R_{12} + R_8 = 1063,649 \text{ Om} \\ R_{2347} &= R_{34} + R_{27} = 1652,892 \text{ Om} \end{split}$$



Рисунок 7

### 3. Метод двух узлов

Принимаем  $\phi_0 = 0$  и находим узловое напряжение  $U_{60}$ .

$$U_{60} \cdot g_{66} = I_{v6}$$

Находим собственную проводимость шестого узла и узловой ток:

$$g_{66} = \frac{1}{R_{1567}} + \frac{1}{R_{128}} + \frac{1}{R_{2347}} = 0,003 \frac{1}{\text{Om}}$$
$$I_{y6} = \frac{E_{128}}{R_{128}} + \frac{E_{27}}{R_{2347}} - \frac{E_{167}}{R_{1567}} = -0,178 \text{ A}$$

Находим  $U_{60}$ :

$$U_{06} = \frac{I_{y6}}{g_{66}} = -66,404 \text{ B}$$

Находим токи в данной схеме:

$$\begin{split} &U_{06} = -E_{167} + I_{1567} \cdot R_{1567} \\ &U_{06} = E_{128} - I_{128} \cdot R_{128} \\ &U_{06} = E_{27} - I_{2347} \cdot R_{2347} \\ &I_{1567} = \frac{U_{06} + E_{167}}{R_{1567}} = 0,238 \text{ A} \end{split}$$

$$I_{128} = \frac{E_{128} - U_{06}}{R_{128}} = 0,144 \text{ A}$$

$$I_{2347} = \frac{E_{27} - U_{06}}{R_{2347}} = 0,123 \text{ A}$$

#### 4. Нахождение токов и исходной схеме

$$I_3 = I_{34} = I_{2347} = 0,123 \text{ A}$$
 $I_4 = I_{34} = I_{2347} = 0,123 \text{ A}$ 
 $I_5 = I_{56} = I_{1567} = 0,238 \text{ A}$ 
 $I_6 = I_{56} - J_{06} = I_{1567} - J_{06} = -0,762 \text{ A}$ 
 $I_8 = I_{128} = 0,144 \text{ A}$ 

Токи в треугольнике  $R_8$ - $R_{56}$ - $R_1$  (рис. 4) найдем с помощью закона Ома:

$$\begin{split} &U_{24} = -E_{17} + I_{56} \cdot R_{17} + I_{34} \cdot R_{27} - E_{27} = -153,925 \text{ B} \\ &U_{25} = -E_{17} + I_{56} \cdot R_{17} + I_{8} \cdot R_{12} + E_{12} = 131,688 \text{ B} \\ &U_{45} = E_{27} - I_{34} \cdot R_{27} + I_{8} \cdot R_{12} + E_{12} = 285,612 \text{ B} \\ &I_{1} = \frac{U_{25} + E_{1}}{R_{1}} = 0,474 \text{ A} \\ &I_{2} = \frac{-U_{45} + E_{22}}{R_{2}} = -0,640 \text{ A} \\ &I_{7} = \frac{-U_{24}}{R_{7}} = 0,237 \text{ A} \end{split}$$

### 5. Нахождение напряжения между узлами 3 и 5

$$U_{35} = -I_5 \cdot R_5 + E_8 - I_8 \cdot R_8 = 2,075 \text{ B}$$

#### 6. Баланс мощностей

Составим баланс мощностей:

Найдём мощность источников энергии:

$$\begin{split} P_{ucm} &= E_1 \cdot I_1 + E_2 \cdot I_2 + E_8 \cdot I_8 - J_{02} \cdot (I_2 \cdot R_2 - E_2) - J_{06} \cdot I_6 \cdot R_6 = \\ &= 516,419868 \; \text{Bt} \end{split}$$

Найдём мощность приёмников энергии:

$$P_{np} = I_1^2 \cdot R_1 + I_2^2 \cdot R_2 + I_3^2 \cdot R_3 + I_4^2 \cdot R_4 + I_5^2 \cdot R_5 + I_6^2 \cdot R_6 + I_7^2 \cdot R_7 + I_8^2 \cdot R_8 = 516,419868 \text{ Bt}$$

Поскольку мощность источников энергии равна мощности приемников энергии, то баланс мощностей выполняется.

#### 7. Метод законов Кирхгофа

Число уравнений для законов Кирхгофа определяем по формулам:

$$N_{\text{yp. y}_3} = N_{\text{y}_3} - 1 = 6 - 1 = 5$$
  
 $N_{\text{yp. K}} = N_{\text{B}} - N_{\text{y}_3} + 1 - N_{\text{J}} = 10 - 6 + 1 - 2 = 3$ 

Выбор контуров указан на рисунке 8:



Составляем систему уравнений:

$$\begin{cases} I_3 = I_4 - 1 \text{ узел} \\ I_7 + I_6 + J_{06} = I_1 - 2 \text{ узел} \\ I_5 = J_{06} + I_6 - 3 \text{ узел} \\ J_{02} + I_2 = I_3 + I_7 - 4 \text{ узел} \\ I_1 = I_8 + I_2 + J_{02} - 5 \text{ узел} \\ I_1 \cdot R_1 + I_8 \cdot R_8 + I_5 \cdot R_5 + I_6 \cdot R_6 = E_1 + E_8 - \text{I контур} \\ I_2 \cdot R_2 + I_3 \cdot R_3 + I_4 \cdot R_4 - I_8 \cdot R_8 = E_2 - E_8 - \text{II контур} \\ -I_7 \cdot R_7 - I_2 \cdot R_2 - I_1 \cdot R_1 = -E_2 - E_1 - \text{III контур} \end{cases}$$

Решение системы уравнений приведено в приложении А:

$$I_1 = 0,474 \text{ A}$$
 $I_2 = -0,64 \text{ A}$ 
 $I_3 = 0,123 \text{ A}$ 
 $I_4 = 0,123 \text{ A}$ 
 $I_5 = 0,238 \text{ A}$ 
 $I_6 = -0,762 \text{ A}$ 
 $I_7 = 0,237 \text{ A}$ 
 $I_8 = 0,114 \text{ A}$ 

#### 8. Метод контурных токов

Число уравнений находим по данной формуле:

$$N_{\text{yp. K}} = N_{\text{B}} - N_{\text{y3}} + 1 - N_{\text{J}} = 9 - 5 + 1 - 2 = 3.$$

Выбор контуров указан на рисунке 9.

Контурные токи  $I_{44}$  и  $I_{55}$  равны соответствующим источникам тока:

$$I_{44} = J_{06} = 1 \text{ A}$$
  
 $I_{55} = J_{02} = 1 \text{ A}$ 



Составляем систему уравнений:

$$\begin{cases} I_{11} \cdot (R_1 + R_8 + R_5 + R_6) - I_{22} \cdot R_8 - I_{33} \cdot R_1 - I_{44} \cdot R_6 = E_1 + E_8 \\ I_{22} \cdot (R_2 + R_3 + R_4 + R_8) - I_{11} \cdot R_8 - I_{33} \cdot R_2 - I_{55} \cdot R_2 = E_2 - E_8 \\ I_{33} \cdot (R_1 + R_7 + R_2) - I_{11} \cdot R_1 - I_{22} \cdot R_2 + I_{55} \cdot R_2 = -E_2 - E_1 \end{cases}$$

Решение системы уравнений приведено в приложении Б:

$$I_{11} = 0.238 \text{ A}$$
  
 $I_{22} = 0.123 \text{ A}$   
 $I_{33} = -0.237 \text{ A}$ 

Токи в цепи находим следующим образом:

$$I_{1} = I_{11} - I_{33} = 0,474 \text{ A}$$

$$I_{2} = I_{22} - I_{33} - I_{55} = -0,640 \text{ A}$$

$$I_{3} = I_{22} = 0,123 \text{ A}$$

$$I_{4} = I_{22} = 0,123 \text{ A}$$

$$I_{5} = I_{11} = 0,238 \text{ A}$$

$$I_{6} = I_{11} - I_{44} = -0,762 \text{ A}$$

$$I_{7} = -I_{33} = 0,237 \text{ A}$$

$$I_{8} = I_{11} - I_{22} = 0,114 \text{ A}$$

## 9. Метод узловых напряжений

Число уравнений, составляемых по методу узловых напряжений, равно:

$$N_{vp} = N_v - 1 - N_{\mathcal{I}\mathcal{I}C} = 5 - 1 - 0 = 4$$

Базисный узел  $\phi_5=0$  В, искомые узловые напряжения –  $U_{25},\,U_{35},\,U_{45},\,U_{65}.$ 

Схема для решения методом узловых напряжений представлена на рисунке 10:



Составим систему уравнений для неизвестных узловых напряжений:

$$\begin{cases} U_{25} \cdot (\frac{1}{R_7} + \frac{1}{R_1} + \frac{1}{R_6}) - U_{35} \cdot \frac{1}{R_6} - U_{45} \cdot \frac{1}{R_7} - U_{65} \cdot 0 = J_{06} - \frac{E_1}{R_1} \\ -U_{25} \cdot \frac{1}{R_6} + U_{35} \cdot (\frac{1}{R_6} + \frac{1}{R_5}) - U_{45} \cdot 0 - U_{65} \cdot \frac{1}{R_5} = -J_{06} \\ -U_{25} \cdot \frac{1}{R_7} - U_{35} \cdot 0 + U_{45} \cdot (\frac{1}{R_7} + \frac{1}{R_2} + \frac{1}{R_3 + R_4}) - U_{65} \cdot \frac{1}{R_3 + R_4} = J_{02} + \frac{E_2}{R_2} \\ -U_{25} \cdot 0 - U_{35} \cdot \frac{1}{R_5} - U_{45} \cdot \frac{1}{R_3 + R_4} + U_{65} \cdot (\frac{1}{R_5} + \frac{1}{R_8} + \frac{1}{R_3 + R_4}) = \frac{E_8}{R_8} \end{cases}$$

Решение системы уравнений приведено в приложении В.

Решив систему уравнений, получили следующие значения узловых напряжений:

$$U_{25} = 131,688 \text{ B}$$
  
 $U_{35} = 2,075 \text{ B}$   
 $U_{45} = 285,612 \text{ B}$   
 $U_{65} = 94,729 \text{ B}$ 

Находим токи в узлах с помощью закона Ома:

$$I_{1} = \frac{U_{25} + E_{1}}{R_{1}} = 0,474 \text{ A}$$

$$I_{2} = \frac{-U_{45} + E_{2}}{R_{2}} = -0,640 \text{ A}$$

$$I_{3} = \frac{U_{45} - U_{65}}{R_{3} + R_{4}} = 0,123 \text{ A}$$

$$I_{4} = I_{3} = 0,123 \text{ A}$$

$$I_{5} = \frac{U_{65} - U_{35}}{R_{5}} = 0,238 \text{ A}$$

$$I_{6} = \frac{U_{35} - U_{25}}{R_{6}} = -0,762 \text{ A}$$

$$I_{7} = \frac{U_{45} - U_{25}}{R_{7}} = 0,237 \text{ A}$$

$$I_8 = \frac{-U_{65} + E_8}{R_8} = 0.114 \text{ A}$$

### 10. Метод эквивалентного генератора

Исключаем сопротивление  $R_1$  и получаем следующую цепь (рис. 11):



Преобразуем источники тока в эквивалентные источники напряжения и получаем цепь, представленную на рисунке 12.

$$E_{06} = J_{06} \cdot R_6 = 170 \text{ B}$$
  
 $E_{22} = J_{02} \cdot R_2 + E_2 = 390 \text{ B}$ 

Находим токи с помощью метода контурных токов. Для этого выберем контуры, которые показаны на рисунке 13.





Составляем систему уравнений:

$$\begin{cases} I_{11} \cdot (R_7 + R_3 + R_4 + R_5 + R_6) + I_{22} \cdot (R_3 + R_4) = E_{06} \\ I_{22} \cdot (R_2 + R_3 + R_4 + R_8) + I_{11} \cdot (R_3 + R_4) = -E_8 + E_{22} \end{cases}$$

Решение системы уравнений:

$$I_{11} = 0.033 \text{ A}$$
  
 $I_{22} = 0.050 \text{ A}$ 

Находим напряжение холостого хода (см. рис. 12):

$$U_{xx} = I_{11} \cdot R_7 + E_{22} + E_1 - I_{22} \cdot R_2 = 697,266 \text{ B}$$

Найдем  $R_{\text{экв}}$ , для этого преобразуем схему в пассивную (рис. 14).



Объединим последовательно включенные сопротивления  $R_5$  и  $R_6$ ,  $R_3$  и  $R_4$  в эквивалентные сопротивления (рис. 15).

$$R_{34} = R_3 + R_4 = 1550 \text{ Om}$$
  
 $R_{56} = R_5 + R_6 = 560 \text{ Om}$ 



Преобразуем треугольник  $R_2$ - $R_8$ - $R_{34}$  в эквивалентную звезду (рис. 16).

$$R_{28} = \frac{R_2 \cdot R_8}{R_2 + R_8 + R_{34}} = 96,667 \text{ Om}$$
 
$$R_{234} = \frac{R_2 \cdot R_{34}}{R_2 + R_8 + R_{34}} = 162,862 \text{ Om}$$
 
$$R_{348} = \frac{R_8 \cdot R_{34}}{R_2 + R_8 + R_{34}} = 516,667 \text{ Om}$$



Объединим последовательно включенные сопротивления  $R_{234}$  и  $R_7$ ,  $R_{56}$  и  $R_{348}$  в эквивалентные сопротивления (рис. 17).

$$R_{2347} = R_{234} + R_7 = 812,862 \text{ Ом}$$
  
 $R_{34568} = R_{348} + R_{56} = 1076,667 \text{ Ом}$ 



Рассчитаем  $R_{\text{экв}}$ :

$$R_{_{9 \text{K} 6}} = \frac{R_{2347} \cdot R_{34568}}{R_{2347} + R_{34568}} + R_{28} = 559,841 \text{ Ом}$$

Находим  $I_1$  по формуле:

$$I_1 = \frac{U_{xx}}{R_{xx} + R_1} = 0,474 \text{ A}$$

Результаты расчета занесены в таблицу 2:

Таблица 2 – Результаты расчетов

| <i>I</i> <sub>1</sub> , A | <i>I</i> <sub>2</sub> , A | <i>I</i> <sub>3</sub> , A | <i>I</i> <sub>4</sub> , A | <i>I</i> <sub>5</sub> , A | <i>I</i> <sub>6</sub> , A | <i>I</i> <sub>7</sub> , A | <i>I</i> <sub>8</sub> , A | $U_{35}$ , B | $U_{ m xx}, \ { m B}$ | $R_{\text{ген}},$ Om | <i>Р</i> ,<br>Вт |
|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------|-----------------------|----------------------|------------------|
| 0,474                     | -0,640                    | 0,123                     | 0,123                     | 0,238                     | -0,762                    | 0,237                     | 0,114                     | 2,075        | 697,266               | 559,841              | 516,420          |

## 11. Построение потенциальной диаграммы

Построим потенциальную по контуру по контуру 2-7-5-8-4-1-6-3-2 (рис. 18)



Найдем потенциалы узлов по следующим формулам:

$$\phi_2 = 0 \text{ B}$$

$$\phi_7 = \phi_2 - I_1 \cdot R_1 = -431,686 \text{ B}$$

$$\phi_5 = \phi_7 + E_1 = -131,688 \text{ B}$$

$$\phi_8 = \phi_5 - I_2 \cdot R_2 = 53,925 \text{ B}$$

$$\phi_4 = \phi_8 + E_2 = 159,925 \text{ B}$$

$$\phi_1 = \phi_4 - I_3 \cdot R_3 = 75,109 \text{ B}$$

$$\phi_6 = \phi_1 - I_4 \cdot R_4 = -36,958 \text{ B}$$

$$\phi_3 = \phi_6 - I_5 \cdot R_5 = -129,612 \text{ B}$$

$$\phi_2 = \phi_3 - I_6 \cdot R_6 = 0 \text{ B}$$

Потенциальная диаграмма изображена на рисунке 19:



Рисунок 19

## ПРИЛОЖЕНИЕ А

## Определение токов методом законов Кирхгофа (расчеты MATHCAD)

| F                               | $R_1 = 910$                                                                                                                                                                                  | $R_5 = 390$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $J_{02} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | £8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =200                |               |     |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|-----|--|
| F                               | $R_2 = 290$                                                                                                                                                                                  | $R_6 = 170$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $J_{06} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |               |     |  |
| F                               | $R_3 = 640$                                                                                                                                                                                  | $E_2 = 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $R_7 = 68$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |               |     |  |
| F                               | R <sub>4</sub> ≔910                                                                                                                                                                          | $E_1 = 300$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $R_8 = 92$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |               |     |  |
| H/H                             | $I_1 = 0$                                                                                                                                                                                    | $I_5 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |               |     |  |
| × ×                             | _                                                                                                                                                                                            | $I_6 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |               |     |  |
| 16/16                           | _                                                                                                                                                                                            | $I_7 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |               |     |  |
| lple IID                        | $I_4 = 0$                                                                                                                                                                                    | $I_8 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |               |     |  |
| May an bi                       | $I_3 = I_4$                                                                                                                                                                                  | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . D + I . I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |               |     |  |
| Ограниченим чальные приближения |                                                                                                                                                                                              | $I_{06} = I_1$ $I_{0$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $R_3 + I_4 \cdot I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $R_4 - I_8 \cdot R$ |               | *** |  |
| Ограничени                      | $I_7 + I_6 + I_6$ $I_5 = J_{06} + I_{02} + I_2 = I_1 = I_8 + I_6$ $\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix}$                                                                   | $I_{06} = I_1$ $I_{0$ | $R_2 \cdot R_2 + I_3 \cdot R_4$<br>$I_7 \cdot R_7 - I_2 \cdot R_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $R_3 + I_4 \cdot I_4 $ | $R_4 - I_8 \cdot R$ | $_{8}=E_{2}-$ | *** |  |
|                                 | $I_7 + I_6 +$ $I_5 = J_{06} +$ $J_{02} + I_2 =$ $I_1 = I_8 +$ $\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \end{bmatrix} := \text{fin}$                                    | $I_{06} = I_1$ $I_{16}$ $I_{16}$ $I_{16}$ $I_{13} + I_{17}$ $I_{12} + J_{02}$ and $(I_1, I_2, I_3, I_4, I_5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $R_2 \cdot R_2 + I_3 \cdot R_4$<br>$I_7 \cdot R_7 - I_2 \cdot R_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $R_3 + I_4 \cdot I_4 $ | $R_4 - I_8 \cdot R$ | $_{8}=E_{2}-$ | *** |  |
|                                 | $I_{7} + I_{6} +$ $I_{5} = J_{06} +$ $J_{02} + I_{2} =$ $I_{1} = I_{8} +$ $\begin{bmatrix} I_{1} \\ I_{2} \\ I_{3} \\ I_{4} \\ I_{5} \\ I_{6} \\ I_{7} \\ I_{8} \end{bmatrix} := \text{fin}$ | $I_{06} = I_1$ $I_{16}$ $I_{16}$ $I_{16}$ $I_{13} + I_{17}$ $I_{12} + J_{02}$ and $I_{11}, I_{12}, I_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $I_{2} \cdot R_{2} + I_{3} \cdot R_{3} + I_{3} \cdot R_{5}$ $I_{7} \cdot R_{7} - I_{2} \cdot R_{5} + I_{5} \cdot R_{5$ | $R_3 + I_4 \cdot I_4 $ | $R_4 - I_8 \cdot R$ | $_{8}=E_{2}-$ | *** |  |
|                                 | $I_7 + I_6 +$ $I_5 = J_{06} +$ $I_5 = J_{06} +$ $I_1 = I_8 +$ $\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \\ I_8 \end{bmatrix} := \text{fin}$ $I_1 = 0.474$               | $I_{06} = I_1$ $I_{16}$ $I_{16}$ $I_{16}$ $I_{13} + I_{17}$ $I_{12} + J_{02}$ and $I_{11}, I_{12}, I_{13}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $I_{4}, I_{5}, I_{6}, I_{7}$ $I_{4}, I_{5}, I_{6}, I_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $R_3 + I_4 \cdot I_4 $ | $R_4 - I_8 \cdot R$ | $_{8}=E_{2}-$ | *** |  |

## ПРИЛОЖЕНИЕ Б

## Определение токов методом контурных токов (расчеты MATHCAD)

|                                   |                                     |                                                       | 02                              | $E_8 = 200$                                       |
|-----------------------------------|-------------------------------------|-------------------------------------------------------|---------------------------------|---------------------------------------------------|
| $R_2$ :=                          | 290                                 | $R_6 = 170$                                           | $J_{06} \coloneqq 1$            |                                                   |
| $R_3$ :=                          | 640                                 | $E_2 = 100$                                           | $R_7 = 650$                     |                                                   |
| $R_4$ :=                          | 910                                 | $E_1 = 300$                                           | $R_8 = 920$                     |                                                   |
| ния                               | $I_{11} = 0$                        |                                                       |                                 |                                                   |
| /Xe                               | $I_{22} = 0$                        |                                                       |                                 |                                                   |
| Ибл                               | $I_{33} = 0$                        |                                                       |                                 |                                                   |
| 은                                 | $I_{44} = 0$                        |                                                       |                                 |                                                   |
| HPI                               | $I_{55} = 0$                        |                                                       |                                 |                                                   |
| Ограничения Начальные приближения |                                     |                                                       |                                 |                                                   |
| P                                 | $I_{44} = J_{06}$                   |                                                       |                                 |                                                   |
| HING                              | $I_{44} = J_{06}$ $I_{55} = J_{02}$ |                                                       |                                 |                                                   |
| P N                               | $I_{11} \cdot (R_1$                 | $+R_8+R_5+R_6$                                        | $-I_{22} \cdot R_8 -$           | $I_{33} \cdot R_1 - I_{44} \cdot R_6 = E_1 + E_8$ |
| ран                               | $I_{22} \cdot \langle R_2 \rangle$  | $+R_3+R_4+R_8$                                        | $-I_{11} \cdot R_8 -$           | $I_{33} \cdot R_2 - I_{55} \cdot R_2 = E_2 - E_8$ |
| 0                                 | $I_{33} \cdot (R_1$                 | $+R_7+R_2$ ) $-I_1$                                   | $_{1}\cdot R_{1}-I_{22}\cdot I$ | $R_2 + I_{55} \cdot R_2 = -E_2 - E_1$             |
|                                   | $[I_{11}]$                          |                                                       |                                 |                                                   |
| 윤                                 | $I_{22}$                            |                                                       |                                 |                                                   |
| Решатель                          | $ I_{33}  := 1$                     | $\operatorname{find}\left(I_{11},I_{22},I_{3}\right)$ | $_{33},I_{44},I_{55}$           |                                                   |
| - Pe                              | $I_{44}$                            |                                                       |                                 |                                                   |
|                                   | $\lfloor I_{55}  floor$             |                                                       |                                 |                                                   |
|                                   | $I_{11} =$                          | 0.238 I <sub>2</sub>                                  | <sub>2</sub> =0.123             | $I_{33}\!=\!-0.237$                               |
|                                   | $I_1 = I_{11}$                      | $-I_{33} = 0.474$                                     |                                 | $I_5 = I_{11} = 0.238$                            |
|                                   | $I_2 := I_{22}$                     | $-I_{33}$ $-I_{55}$ $=$ $-0$                          | .64                             | $I_6\!\coloneqq\!I_{11}\!-\!I_{44}\!=\!-0.762$    |
|                                   | $I_3 := I_{22}$                     | =0.123                                                |                                 | $I_7 \coloneqq -I_{33} = 0.237$                   |
|                                   | $I_4 := I_{22} := I_{23}$           | =0.123                                                |                                 | $I_8 := I_{11} - I_{22} = 0.114$                  |

## ПРИЛОЖЕНИЕ В

## Определение токов методом узловых напряжений (расчеты MATHCAD)

| I                     | $R_1 = 910$                                                                       | $R_5 = 390$                                                              | $J_{02}\!\coloneqq\!1$                    | $E_8\!\coloneqq\!200$                                                  |                                                                |                                             |
|-----------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------|
| 1                     | $R_2 = 290$                                                                       | $R_6 = 170$                                                              | $J_{06} = 1$                              |                                                                        |                                                                |                                             |
| I                     | $R_3 = 640$                                                                       | $E_2 = 100$                                                              | $R_7 = 650$                               |                                                                        |                                                                |                                             |
| I                     | $R_4 = 910$                                                                       | $E_1 = 300$                                                              | $R_8$ := 920                              | $\phi_5$ :=                                                            | 0                                                              |                                             |
| Начальные приближения | $\phi_2 := 0$ $\phi_3 := 0$ $\phi_4 := 0$ $\phi_6 := 0$                           |                                                                          |                                           |                                                                        |                                                                |                                             |
| Начальн               | $\phi_2 \cdot \left(\frac{1}{R_1}\right)$                                         | $+\frac{1}{R_6} + \frac{1}{R_7} - \phi$                                  | $\frac{1}{R_6} - \phi_4$                  | $\frac{1}{R_7} - \phi_6 \cdot 0 = J_{06}$                              | $-\frac{E_1}{R_1}$                                             |                                             |
| Ограничения           | $-\phi_2 \cdot \frac{1}{R_6}$                                                     | $+\phi_3 \cdot \left(\frac{1}{R_6} + \frac{1}{R_6}\right)$               | $-\frac{1}{5}$ $-\phi_4 \cdot 0 - \phi_4$ | $b_6 \cdot \frac{1}{R_5} = -J_{06}$                                    |                                                                |                                             |
| Orpar                 |                                                                                   |                                                                          |                                           | $\left(\frac{1}{R_7}\right) - \phi_6 \cdot \left(\frac{1}{R_7}\right)$ |                                                                |                                             |
|                       | -φ <sub>2</sub> •0-                                                               | $\phi_3 \cdot \frac{1}{R_5} - \phi_4 \cdot \left( \frac{1}{R_5} \right)$ | $\left(\frac{1}{R_3+R_4}\right)+\phi$     | $6 \cdot \left(\frac{1}{R_4 + R_3} + \frac{1}{R_4}\right)$             | $\left(\frac{1}{R_8} + \frac{1}{R_5}\right) = \frac{R_8}{R_8}$ |                                             |
| Решатель              | $\begin{vmatrix} \phi_2 \\ \phi_3 \\ \phi_4 \\ \phi_6 \end{vmatrix} := \text{fi}$ | $\operatorname{nd}\left(\phi_{2},\phi_{3},\phi_{4},\right.$              | $\phi_6)$                                 |                                                                        |                                                                |                                             |
|                       | $\phi_2 = 131.$                                                                   | 688 $\phi_3 = 2$                                                         | .075 $\phi_4$ =                           | 285.612 φ                                                              | <sub>5</sub> =94.729                                           |                                             |
|                       | $I_1 = \frac{\phi_2 - \phi_2}{a}$                                                 | $\frac{\phi_5 + E_1}{R_1} = 0.47$                                        | 4 1                                       | $A := \frac{\phi_4 - \phi_6}{R_3 + R_4} = 0$                           | .123 I <sub>7</sub> ≔                                          | $\frac{\phi_4 - \phi_2}{R_7} = 0.237$       |
|                       | $I_2 = \frac{\phi_5 - \phi_5}{\phi_5}$                                            | $\frac{\phi_4 + E_2}{R_2} = -0.6$                                        | 54 1                                      | $q_5 \coloneqq \frac{\phi_6 - \phi_3}{R_5} = 0.$                       | 238 I <sub>8</sub> ≔                                           | $\frac{\phi_5 - \phi_6 + E_8}{R_8} = 0.114$ |
|                       | $I_3 \coloneqq \frac{\phi_4 - 1}{R_3 + 1}$                                        | $\frac{\phi_6}{R_4} = 0.123$                                             | 1                                         | $\epsilon_6 \coloneqq \frac{\phi_3 - \phi_2}{R_6} = -$                 | 0.762                                                          |                                             |