Exercises recipe

Evolutionary Game Theory

A. Fisherman

February 22, 2021

1 Weibull dynamics

1.1 Steps to solve

You are given a matrix $P \in \mathbb{R}^{n \times n}$ which represents the payoffs.

1.1.1 Utilities

Given a vector $\mathbf{x} = \begin{pmatrix} x_1 & x_2 & \dots & x_3 \end{pmatrix}^T$ and \mathbf{y} compute,

$$u(x,y) = xPy \tag{1}$$

Note that you can just set $x \mapsto y$ or vice-versa to get all of the utilities combinations.

1.1.2 Nash equilibria

Compute the Nash Equilibria of the symmetric game (P, P^T) . Remember the mixed strategy. To find the mixed strategy you have to look at every combination of

$$\boldsymbol{x} \in \left\{ \begin{pmatrix} \alpha \\ \beta \\ 1 - \alpha - \beta \end{pmatrix}, \begin{pmatrix} \alpha \\ 1 - \alpha \\ 0 \end{pmatrix}, \begin{pmatrix} \alpha \\ 0 \\ 1 - \alpha \end{pmatrix}, \begin{pmatrix} 0 \\ \alpha \\ 1 - \alpha \end{pmatrix} \right\}$$
 (2)

You can also use the online Irs solver by Avis and Fukuda. Make sure to

- 1. Put 3 3 as dimensions on top
- 2. Click Symmetric under type of game
- 3. Input matrix P
- 4. Only pick the symmetric Nash equilibria

1.1.3 ESS and NSS

Once you found the Nash equilibrium, for each one do,

1.1.4 Replicator dynamics

Let $e^1 = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$. The replicator dynamics are

$$\dot{\boldsymbol{x}}_i = \left[u(\boldsymbol{e}^i, \boldsymbol{x}) - u(\boldsymbol{x}, \boldsymbol{x}) \right] \cdot \boldsymbol{x}_i \tag{3}$$

The main steps to find the dynamics are,

- 1. Find fixed points $u(e^i, x) = u(x, x)$
- 2. Find dynamics on the boundaries, so set $\boldsymbol{x_j} = 0$ for all j
- 3. Find dynamics on the bisector, like $\mathbf{x} = \begin{pmatrix} \alpha & \alpha & 1 2 \cdot \alpha \end{pmatrix}$ with $\alpha < 1/2$

1.2 Example, ex. 14

Given

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \tag{4}$$

1.2.1 Utilities

$$u(\mathbf{x}, \mathbf{y}) = x_1 \cdot y_1 + x_2 \cdot \underbrace{(y_2 + y_3)}_{1-y_1} + \underbrace{(1 - x_1 - x_2)}_{x_3} \cdot y_2$$

$$(\mathbf{y} \mapsto \mathbf{x}), \ u(\mathbf{x}, \mathbf{x}) = x_1^2 + x_2 \cdot (1 - x_1) + x_3 \cdot x_2$$
(5)

1.2.2 Nash equilibria

We get

Rational Output

```
P1: (1) 1/2 1/2
                         0 EP= 1/2 P2:
                                        (1)
                                             1/2 1/2
          (1)
              1/2
                   1/2
                         0 EP=
                                    P2:
                                         (2)
                       0 EP=
      P1:
                                    P2:
EE
  3
                0
                                         (3)
          (2)
                                         (4)
ΕE
      P1:
                0
                       0 EP=
                                    P2:
          (2)
                    1
                                               0
                                1 P2:
                       0 EP=
                                        (5)
          (3)
               1
                                               1
          (4)
              1/2
                    0 1/2 EP=
                                1/2 P2:
                                        (1)
                                             1/2 1/2
  6 P1:
          (5)
                                        (3)
```

We only want the symmetric ones so rows 1, 3, and 5, namely,

$$NE = \{(1,0,0), (0,1,0), (1/2,1/2,0)\}$$
(6)

1.2.3 ESS and NSS

The third one,

1.2.4 Replicator dynamics

Corner utilities are,

$$u(e^{1}, \mathbf{x}) = x_{1}, \ u(e^{2}, \mathbf{x}) = (1 - x_{1}), \ u(e^{3}, \mathbf{x}) = x_{2}$$
 (7)

1. Fixed points

The fixed points here are too complex, probably not there

2. Boundaries

Remember that $\sum_{i} \dot{x}_{i} = 0$ so on the boundaries one only needs to find one x_{i} .

- $\boldsymbol{x} = (\alpha, 0, 1 \alpha)$ yields, $\dot{x}_1 = 1 \alpha > 0$, we move towards (1)
- $\mathbf{x} = (0, \alpha, 1 \alpha)$ yields $1 2\alpha + \alpha^2 > 0$, we move towards (2)
- $x = (\alpha, 1 \alpha, 0)$ yields $2\alpha 1 > 0 \iff \alpha > \frac{1}{2}$, we move away from the mid point.

3. Bisector

The only interesting bisector is the one were 1 and 2 are constant since the whole system moves towards 1 and 2. That is $\mathbf{x} = (\alpha, \alpha, 1 - 2\alpha)$.

Then we can compute,

$$\dot{x}_1 = \left(\alpha - \alpha^2 - \alpha \cdot (1 - \alpha) - \alpha + 2\alpha^2\right) \alpha
= \alpha^2 \cdot (2\alpha - 1) < 0
\dot{x}_2 = \alpha \cdot (1 - \alpha) \cdot (1 - 2\alpha) > 0
\dot{x}_3 = -(\dot{x}_1 + \dot{x}_2) = -\alpha \cdot (1 - 2\alpha)^2 < 0$$
(8)

When we are the bisector apart from the two edge points $\alpha=0$ and $\alpha=\frac{1}{2}$ we are moving towards 2. This implies that the manifold is towards 1.

