BFGS Algorithm for finding minimizer

Line search procedure

The method is adapted directly from *Numerical Optimization* by Jorge Nocedal and Stephen J. Wright, called the *strong backtracking*. The procedure will be explained later.

- 1. Set a = 1. Set $a_{old} = 0$, then go to 2.
- 2. If $f(x + as) > f(x) + \mu as^T \nabla f(x)$ or $f(x + as) > f(x + a_{old})$, then set $a_{low} = a_{old}$ and $a_{high} = a$ and go to step 6. Else, go to step 3.
- 3. If $|s^T \nabla f(x+as)| \leq -\eta s^T \nabla f(x)$, then $\lambda = a$ and Exit. Else, go to step 4.
- 4. If $s^T \nabla f(x+as) \geq 0$ then set $a_{low} = a_{old}$ and $a_{high} = a$ and go to step 6. Else, go to step 5.
- 5. Let $a_{old} = a$ and a = 2a. Back to step 2.
- 6. Set $f_{low} = f(x + a_{low}s)$. Go to step 7. Note that this value will be fixed regardless of changing a_{low} .
- 7. Use binary search or golden section search to find a suitable a between a_{low} and a_{high} .
 - (a) For binary search, let $a = (a_{low} + a_{high})/2$
 - (b) For golden section search, let $c = a_{low} + (a_{high} a_{low})/\phi$ and $d = a_{high} (a_{high} a_{low})/\phi$, where ϕ is a golden ratio. If f(x + cs) < f(x + ds), let a = c. Otherwise, let a = d.

Then go to step 8.

- 8. If $f(x + as) > f(x) + \mu as^T \nabla f(x)$ or $f(x + as) > f_{low}$, then let $a_{high} = a$. Then go back to step 7. Else, go to step 9.
- 9. If $|s^T \nabla f(x + as)| \le -\eta s^T \nabla f(x)$, then $\lambda = a$ and Exit. Else, go to step 10.
- 10. If $(s^T \nabla f(x+as))(a_{high}-a_{low}) \geq 0$, then let $a_{high}=a_{low}$ and goto step 11.
- 11. Let $a_{low} = a$ and back to step 7.

The step-by-step explanation is as follows:

- 1. a is representing λ . Let it be 1 first.
- 2. If $f(x + as) > f(x) + \mu as^T \nabla f(x)$, then it is violating first Wolfe's condition. It is thus ensuring that the bracket (a_{old}, a) will contain a range that does not violate that. (The slope at $s^T \nabla f(x + a_{old}s)$ is always negative according to step 4, so that (a_{old}, a) must contain local minimum, that is, containing second Wolfe's point.) Also, $f(x + as) > f(x + a_{old})$ is indicating that the function is going to increase, thus (a_{old}, a) must also contain local minimum (that is second Wolfe's point, too.) Note that a_{high} and a_{low} can swap regardless of their values.
- 3. The first Wolfe's condition is already checked in step 2. Thus, if the point also satisfies the second Wolfe's condition, then let it be λ and exit.
- 4. If $s^T \nabla f(x + as) \ge 0$ then it is indicating that the function is going to increase, thus (a_{old}, a) must contain local minimum (that is second Wolfe's point.) (It is cleared because $s^T \nabla f(x + a_{old}s)$ is always negative.) Also, note that a_{high} and a_{low} can swap regardless of their values.
- 5. If the range (a_{old}, a) does not contain the second Wolfe's point, slide it to the immediate right and expand it two times.
- 6. This evaluated value will be used in step 8.
- 7. Finding a between a_{high} and a_{low} . a will converge to a range that satisfies the second Wolfe's condition.

- 8. If $f(x + as) > f(x) + \mu as^T \nabla f(x)$ or $f(x + as) > f_{low}$, then f(x + as) value is to big. Thus, let a_{high} be it to lower the upper bound.
- 9. The first Wolfe's condition is already checked in step 8. Thus, if the point also satisfies the second Wolfe's condition, then let it be λ and exit.
- 10. $(s^T \nabla f(x+as))(a_{high} a_{low}) \ge 0$, together with step 11, ensures us that the range between a_{high} and a_{low} always contain local minimum(s). To see that, let $a_{high} < a_{low}$, so $a_{high} a_{low} < 0$. Moreover, the slope at a_{high} must be negative and the slope at a_{low} must be positive (from step 2, step 4, and recursive characteristics that happens here.) $a_{high} < a < a_{low}$ must be true, and in step 11 a_{low} becomes a, so the slope at a must be positive. If the slope at a is negative, then a_{high} must be swapped with a_{low} to make the slope of a_{high} positive. Then between a_{high} and a will be ensured to have a local minimum. The same is applied when $a_{high} > a_{low}$. Just swap the pair accordingly, and we will get the same proof.
- 11. Let $a_{low} = a$ to shorten the length.

From the book *Numerical Optimization*, steps 2 to 5 are called *Bracket phase*, and steps 7 to 11 are called *Zoom phase*.

BFGS algorithm

First is an implementation of StrongBacktrack.m. The explanation is already given in greater detail in the last section. I chose to use the binary search because it usually takes fewer steps than the golden section search.

```
1 function [lambda,nF,nG] = StrongBacktrack(FcnName, x0, s, a, mu, eta)
    ----- Function inputs -----
_{5} % FcnName: function to return the value, the gradient, and the Hessian
6 % of the particular function.
     Mode 1: return only f.
     Mode 2: return f and gradient.
10 \% x0: starting point of searching.
11
12 % s: search direction.
13 %
14 % a: size of initial lambda.
15 %
_{16} % mu, eta: the parameters used in the stopping criterion for line search.
17
18 %
    ----- Function outputs -----
20 % lambda: returned the lambda value that satisfies strong Wolfe's.
21
22 % nF, nG: numbers of f and gradient calculations.
_{24} nF = 0; % number of f calculations.
nG = 0; % number of gradient calculations.
[f0, g0] = FcnName(x0, 2); nF = nF + 1; nG = nG + 1;
28 % first evaluation of f and gradient.
29 fprev = f0; aprev = 0;
30 % fprev: previous value of f at (x0 + a*s).
_{31} % aprev: previous value of a (that is the value going to represent lambda.)
32 alo = NaN; ahi = NaN; % the bracket that contain strong Wolfe's.
33 % alo represent lower value of f, ahi represent higher value of f.
_{34} % However, the value of alo and ahi can be swap without ruining the algorithm.
36 gr = (sqrt(5) + 1) / 2; % golden ratio.
38 % finding suitable bracket.
```

```
39 while 1
       [f1, g1] = FcnName(x0 + a*s, 2); nF = nF + 1; nG = nG + 1;
40
       % evaluate function at (x0 + a*s).
41
       if f1 > f0 + mu*a*dot(s,g0) || f1 >= fprev
           % If the function value of the right point is more than Armijo's rule or
43
           \% more than that of previous value,
44
           % it is sure that the lowest point is there in the bracket, and
45
           % there is strong Wolfe's point in that bracket. (Since it is ensured that
46
           % at aprev, the slope is negative.)
47
           alo = aprev; ahi = a;
48
           break
49
       elseif abs(dot(g1,s)) <= -eta*dot(g0,s)</pre>
50
           % Checking the second strong Wolfe's condition.
51
           lambda = a;
52
53
           return
       elseif dot(g1,s) >= 0
           \mbox{\ensuremath{\%}} If the slope on the right point is positive, it is sure that the
55
           % lowest point is there in the bracket, and
56
57
           % there is strong Wolfe's point in that bracket.
           % (Since it is ensured that at aprev, the slope is negative.)
58
59
           alo = aprev; ahi = a;
60
           break
61
       \% slide the bracket to the right and expand it by multiple of 2.
62
63
       fprev = f1; aprev = a; a = 2*a;
65
66 [flo,~] = FcnName(x0 + alo*s, 1); nF = nF + 1; % f value at (x0 + alo*s).
67 while 1
68
       \% if want to use golden search, use these lines.
69
       % ----Golden search to find a between alo and ahi.
70
       % ----f1 is f at (x0 + a*s), g1 is gradient at (x0 + a*s).
71
            c = ahi - (ahi - alo) / gr;
72
             d = alo + (ahi - alo) / gr;
73
74
       %
       %
             [fc,gc] = FcnName(x0 + c*s, 2);
75
76
       %
             [fd,gd] = FcnName(x0 + d*s, 2);
       %
77
78
             if fc < fd % f(c) > f(d) to find the maximum.
                 f1 = fc; g1 = gc; a = c;
79
       %
       %
80
       %
                 f1 = fd; g1 = gd; a = d;
81
       %
             end
82
       % ----end of Golden search
83
84
85
       % if want to use binary search, use this line.
       a = (ahi+alo)/2; [f1,g1] = FcnName(x0 + a*s, 2);
86
       nF = nF + 1; nG = nG + 1;
87
       if f1 > f0 + mu*a*dot(s,g0) || f1 > flo
89
           % if violating Armijo's rule or if f1 still higher than flo, then,
90
           \% set new hi to decrease f at ahi.
91
           ahi = a;
92
93
       else
           if abs(dot(g1,s)) <= -eta*dot(g0,s)</pre>
94
               % Checking the second strong Wolfe's condition.
95
96
               lambda = a;
97
           elseif dot(g1,s)*(ahi - alo) >= 0
98
                % This condition ensures that ahi and alo always bracket the
99
                % lowest point. That is, there is strong Wolfe's point between
               % alo and ahi.
               ahi = alo;
           end
           alo = a;
106
```

```
107 end
108
109 end
```

Implementation of function BFGS.m is given here. The epsilon value is used to give a threshold for the norm of the gradient (the gradient of the local minimum must converge to zero).

```
1 function [xmin,fmin, Xk, Fk, Gk, Lk, nF, nG, IFLAG] = BFGS (FcnName, x0, epsilon, mu, eta, itmax)
 3 % ----- Function inputs -----
 4 %
 {\ensuremath{\mathtt{5}}} % FcnName: function to return the value, the gradient, and the Hessian
 6 % of the particular function.
 7 %
           Mode 1: return only f.
           Mode 2: return f and gradient.
 8 %
 9 %
10 % x0: starting point of searching.
11 %
12 % epsilon: stoping criterion of the minimum search. (norm(x1-x0) < epsilon.)
13 %
_{14} % mu, eta: the parameters used in the stopping criterion for line search.
15 %
16 % itmax: max allowed number of iterations.
17 %
18 % IFRAG: success (0) or not success (-999).
19
20 % ------ Function outputs -----
21 %
22 % xmin, fmin: returned minimum function argument and value, respectively.
23 %
^{24} % Xk ,Fk, Gk, Lk: arrays to keep x, f, gradient and lambda along the search steps.
25 %
26 % nF, nG: numbers of f and gradient calculations.
27 %
_{28} % IFLAG: indicate the success. 0 if success, -999 otherwise.
30 Xk = []; % list to store x_k.
31 Fk = []; % list to store f_k.
^{32} Gk = []; % list to store g_k.
33 Lk = []; % list to store l_k.
34
mF = 0; % number of f calculations.
mG = 0; % number of gradient calculations.
37
38 IFLAG = -999; % IFLAG: indicate the success.
39
40 B = eye(2); % Let the first matrix B be an identity matrix.
41
42 for i = 1:itmax
43
             % strong backtracking.
44
             [f0, g0] = FcnName(x0, 2); nF = nF + 1; nG = nG + 1;
45
             a = 1; % first value of lambda.
46
47
             s = B \setminus (-g0); % set line search direction.
             [lambda,nFnew,nGnew] = StrongBacktrack(FcnName, x0, s, a, mu, eta);
48
             % finding lambda that satisfied strong Wolfe's.
49
             nF = nF + nFnew; nG = nG + nGnew;
50
51
             % store values.
52
53
             Xk(:,i) = x0; Fk(i) = f0; Gk(:,i) = g0; Lk(i) = lambda;
54
             % update B.
55
             x1 = x0 + lambda*s;
56
57
             [f1,g1] = FcnName(x1, 2); nF = nF + 1; nG = nG + 1;
58
             delta_g = g1 - g0;
             delta_x = lambda*s;
59
             B = B + delta_g*delta_g'/dot(delta_g, delta_x) - B*(delta_x*delta_x')*B/(delta_x'*B*) + B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(delta_x')*B*(del
             delta_x);
61
```

```
% terminate
62
63
       if norm(g1) < epsilon % at local minimum, gradient converges to 0.
           xmin = x1; fmin = f1; IFLAG = 0;
64
           disp('search successful.');
66
           break
67
68
       % update values
69
       x0 = x1; f0 = f1; g0 = g1;
70
71 end
72
73 if IFLAG == -999
       xmin = 0; fmin = 0; disp('search unsuccessful.');
74
75 end
76
77 end
```

Implementation of Rosenbrock.m is here.

```
function [f,gradient] = Rosenbrock(x,options)
      % Declare the functions.
      f_fun = @(x) 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
      gradient_fun = @(x)[400*x(1)*(x(1)^2 - x(2)) - 2*(1-x(1)); 200*(x(2)-x(1)^2)];
6
      % Evaluate numerical values.
      switch options
          case 1 % calculate only f.
9
10
              f = f_fun(x);
               gradient = 0;
11
          case 2 % calculate f and gradient.
              f = f_fun(x);
13
14
               gradient = gradient_fun(x);
          otherwise % invalid option.
15
16
              disp('invalid option.')
               f = 0; gradient = 0;
17
18
      end
19
20 end
```

This is a script used to test the code.

```
[xmin,fmin,Xk,Fk,Gk,Lk,nF,nG,IFLAG] = BFGS(@Rosenbrock,[10;12],0.000002,1e-4,0.95,10000);

print out the result.

fprintf('% 5s % 13s % 13s % 15s % 15s % 15s \n', 'Iter', 'x_1', 'x_2', 'f', 'gradient_1', 'gradient_2');

for i = 0:length(Xk)-1

fprintf('% 5.2d % 13.7f % 13.7f % 15.5f % 15.5f % 15.5f \n', i, Xk(1,i+1), Xk(2,i+1), Fk (i+1), Gk(1,i+1), Gk(2,i+1));

end

fprintf("Number of f calculations: %i \n", nF)

fprintf("Number of gradient calculations: %i \n", nG)
```

The reported tabular is given here when setting x0 = [10;12], epsilon = 2e-6, mu = 1e-4, eta = 0.1.

```
search successful.
                                                             gradient_1
                                                                              gradient_2
  Iter
                   x 1
                                  x 2
                                                     f
            10.0000000
                           12.0000000
                                          774481.00000
                                                           352018.00000
                                                                            -17600.00000
3
     00
     01
            -0.7427368
                           12.5371094
                                           14368.14165
                                                             3557.32893
                                                                              2397.09028
     02
            -1.3243799
                            2.4088612
                                              48.28939
                                                              342.27468
                                                                               130.97580
5
     03
            -1.3592801
                            1.8692915
                                               5.61307
                                                                7.05237
                                                                                 4.32984
            -1.3603042
     04
                            1.8516118
                                               5.57118
                                                                -4.07623
                                                                                 0.23685
7
8
     05
            -1.1513687
                            1.2774932
                                               4.86029
                                                              -26.48116
                                                                                 -9.63133
            -0.9980416
                            0.9288701
                                                              -30.83025
9
     06
                                               4.44398
                                                                                -13.44341
10
     07
            -0.7386240
                            0.6116981
                                               3.46017
                                                               16.06163
                                                                                13.22654
11
     08
            -0.5535744
                            0.2865384
                                               2.45322
                                                               -7.51499
                                                                                -3.98125
     09
            -0.5106769
                            0.2249715
                                               2.41045
                                                              -10.33820
                                                                                 -7.16387
12
     10
            -0.3238515
                            0.0558135
                                               1.99333
                                                               -9.00379
                                                                                -9.81327
13
```

14	11	-0.2	558141	. 0.	0796349		1.59722	- 1	.05922	2	.83880	
15	12	-0.1	089611	-0.	0123586		1.28851	-3	3.27402	-4	.84622	
16	13	-0.0	343320	-0.	0372802		1.21775	-2	2.59681	-7	.69178	
17	14	0.2	377167	0.	0245037		0.68351	1	.51873	-6	.40111	
18	15	0.2	279841	. 0.	0512564		0.59606	-1	.47834	-0	.14406	
19	16	0.3	709929	0.	1168103		0.43902	1	.83241	-4	.16508	
20	17	0.4	885548	0.	2088254		0.35074	4	.81248	-5	.97208	
21	18	0.5	326485	0.	2882858		0.22051	-1	.90869	0	.91428	
22	19	0.6	365177	0.	3911262		0.15180	2	2.84484	-2	.80573	
23	20	0.7	350614	0.	5217170		0.10478	4	.93849	-3	.71967	
24	21	0.7	609271	. 0.	5815879		0.05782	-1	.26277	0	.51557	
25	22	0.8	381920	0.	6951434		0.03169	2	2.16497	-1	.48449	
26	23	0.8	999793	0.	7999008		0.02013	3	3.42218	-2	.01239	
27	24	0.9	190669	0.	8464102		0.00685	-0	.79648	0	.34525	
28	25	0.9	634323	0.	9253881		0.00213	1	.01122	-0	.56276	
29	26	0.9	967803	0.	9931595		0.00003	0	.15760	-0	.08228	
30	27	0.9	967820	0.	9935801		0.00001	-0	0.00868	0	.00113	
31	28	1.0	000038	0.	9999972		0.00000	0	0.00416	-0	.00208	
32	29	0.9	999966	0.	9999933		0.00000	- C	0.00001	0	.00000	
33	Number	of f c	f f calculations:			245						
34	Number	of gra	dient	calcula	tions:	222						

The reported tabular is given here when setting x0 = [10;12], epsilon = 2e-6, mu = 1e-4, eta = 0.95.

		-	J	9	-		
1	search	successful.					
2	Iter	x_1	x_2	f	gradient_1	gradient_2	
3	00	10.0000000	12.0000000	774481.00000	352018.00000	-17600.00000	
4	01	-0.7427368	12.5371094	14368.14165	3557.32893	2397.09028	
5	02	-1.3243799	2.4088612	48.28939	342.27468	130.97580	
6	03	-1.3642658	1.7922101	6.06601	-42.38830	-13.80221	
7	04	-1.3602443	1.8519908	5.57105	-3.78127	0.34524	
8	05	-1.3601578	1.8513708	5.57052	-3.99046	0.26830	
9	06	-1.3566856	1.8352821	5.55679	-7.59695	-1.06273	
10	07	-1.3490352	1.8075806	5.53313	-11.34365	-2.46309	
11	80	-1.3238584	1.7269712	5.46601	-18.21978	-5.12595	
12	09	-1.2746349	1.5827714	5.34971	-25.92367	-8.38452	
13	10	-1.2066696	1.4015248	5.16671	-30.73168	-10.90536	
14	11	-1.1081768	1.1691900	4.79093	-30.30983	-11.77315	
15	12	-0.9882935	0.9393943	4.09266	-18.73367	-7.46594	
16	13	-0.8527599	0.6982302	3.51664	-13.58704	-5.79385	
17	14	-0.6875841	0.4555011	2.87777	-8.12521	-3.45415	
18	15	-0.5618981	0.2697318	2.65110	-13.46220	-9.19954	
19	16	-0.3247234	0.0508937	2.05248	-9.73511	-10.91030	
20	17	-0.3107299	0.1043721	1.72413	-1.64962	1.56380	
21	18	-0.1772295	0.0129858	1.41982	-3.66060	-3.68489	
22	19	-0.0653010	-0.0443728	1.37142	-3.40102	-9.72741	
23	20	-0.0754223	-0.0154689	1.20130	-2.78914	-4.23148	
24	21	0.0036170	-0.0071511	0.99791	-1.98240	-1.43283	
25	22	0.1187272	-0.0102101	0.83572	-0.60822	-4.86125	
26	23	0.2209112	0.0146637	0.72352	1.45842	-6.82762	
27	24	0.2896986	0.0763799	0.51022	-0.54625	-1.50907	
28	25	0.3704396	0.1191009	0.42920	1.42651	-3.62492	
29	26	0.4859078	0.2080054	0.34326	4.43362	-5.62021	
30	27	0.5252493	0.2734521	0.22598	-0.43797	-0.48694	
31	28	0.6496628	0.4010884	0.16672	4.74957	-4.19467	
32	29	0.6504449	0.4171563	0.12570	0.84173	-1.18445	
33	30	0.7402801	0.5398832	0.07407	1.88838	-1.62629	
34	31	0.8187324	0.6579482	0.04817	3.69005	-2.47491	
35	32	0.8567829	0.7355403	0.02073	-0.78796	0.29268	
36	33	0.8978652	0.8033260	0.01124	0.81423	-0.56718	
37	34	0.9527803	0.8998400	0.00855	2.93553	-1.59007	
38	35	0.9428425	0.8867987	0.00373	0.69778	-0.43066	
39	36	0.9605985	0.9222061	0.00158	0.13000	-0.10868	
40	37	0.9894981	0.9779504	0.00024	0.43655	-0.23120	
41	38	0.9953827	0.9904516	0.00003	0.12419	-0.06702	
42	39	0.9995176	0.9989702	0.00000	0.02510	-0.01304	
43	40	0.9998959	0.9997996	0.00000	-0.00332	0.00156	
44	41	1.0000323	1.0000627	0.00000	0.00077	-0.00035	
45	Number	of f calculat	ions:	207			

Number of gradient calculations: 198

The result indicates that when eta is higher, the line search is less rigorous, so it requires more steps to reach the 2-D local minimum. However, when eta is higher, the number of function value and gradient calculations is lower since the less rigorous line search, too.