23. Odabir značajki

Strojno učenje 1, UNIZG FER, ak. god. 2021./2022.

Jan Šnajder, natuknice s predavanja, v1.1

1 Motivacija i pristupi

- Metode za smanjenje dimenzionalnosti ulaznog prostora:
 - **Odabir značajki** (feature selection) odabir podskupa izvornih značajki
 - Transformacija značajki izvođenje novih značajki iz izvornih značajki
- Syrha:
 - Uklanjanje irelevantnih i redundatnih značajki povećava točnost modela
 - Lakše razumijevanje i objašnjavanje modela
 - Pomoć u vizualizaciji podataka
- Odabir značajki čuva izvornu semantiku značajki ⇒ bolja tumačivost modela

2 Univarijatni filtar

- Procjena intrinsične vrijednosti (merit) svake značajke pa odabir po pragu ili rangu
- Prednosti: dobro skalira, računalno jednostavno, nezavisno od modela
- Nedostatci: nezavisno od modela, ne uzima u obzir interakciju između značajki
- Ideja: značajka x_k je **relevantna** \Leftrightarrow postoji **zavisnost** između varijabli x_k i y
- Uzajamna informacija zavisnost varijabli x i y kao odstupanje P(x, y) od P(x)P(y):

$$I(x,y) = D_{KL}(P(x,y)||P(x)P(y)) = \sum_{x,y} P(x,y) \ln \frac{P(x,y)}{P(x)P(y)}$$

- \Rightarrow relevantnost značajke x_k za klasu y proporcionalna je sa $I(x_k, y)$
- **t-test** (primjenjivo za K = 2)
 - Test značajnosti razlike srednje vrijednosti od x_k za klase y=0 i y=1
 - Hipoteza H_0 : srednje vrijednosti su jednake

- t-statistika (pod H_0 distribuirana po t-distribuciji):

$$t = \frac{\bar{x}_k^0 - \bar{x}_k^1}{\hat{\sigma}_i \sqrt{\frac{1}{N_0} + \frac{1}{N_1}}} \sim t(N_0 + N_1 - 2)$$

gdje
$$N_y = \sum_{i=1}^N \mathbf{1}\{y^{(i)} = y\}$$
 i $\bar{x}_k^y = \frac{1}{N_y} \sum_{i=1}^N x_k^{(i)} \mathbf{1}\{y^{(i)} = y\}$

- \Rightarrow relevantnost značajke x_k obrnuto je proporcionalna p-vrijednosti
- ANOVA (za K > 2)
 - Testiranje razlika srednjih vrijednosti značajke x_k kroz K klasa
- χ^2 -test (primjenjivo za kategoričke značajke)
 - Hipoteza H_0 : varijable x_k i y su nezavisne $(x_k \perp y)$
 - N broj primjera, K broj klasa, K_k broj vrijednosti varijable \boldsymbol{x}_k
 - Tablica kontingencije dimenzije $K_k \times K$ sadrži opažene frekvencije $O_{i,j}$
 - Izračun očekivanih frekvencija $(E_{i,j})$ uz pretpostavku H_0 :

$$P(x_k = i) = \sum_{j} P(x_k = i, y = j)$$

$$P(y = j) = \sum_{i} P(x_k = i, y = j)$$

$$E_{i,j} = NP(x_k = i)P(y = j)$$

 $-\chi^2$ -statistika (pod H_0 distribu
irana po χ^2 -distribuciji):

$$\chi^2 = \sum_{i=1}^{K_k} \sum_{j=1}^K \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}} \sim \chi^2 ((K_k - 1)(K - 1))$$

- \Rightarrow relevantnost značajke x_k obrnuto je proporcionalna **p-vrijednosti**
- \bullet p-mjera neparametarska usporedba srednjih vrijednosti x_k za klase y=0 i y=1:

$$p(x_k, y) = \frac{\bar{x}_k^0 - \bar{x}_k^1}{\hat{\sigma}_1^2 + \hat{\sigma}_2^2}$$

 \Rightarrow relevantnost značajke x_k proporcionalna je vrijednosti p-mjere

- **RELIEF** (Kira i Rendell, 1992) neparametarska iterativna metoda (za K=2)
 - Iterativno ugađanje vektora relevantnosti svih n značajki (vektor \mathbf{w})
 - Slučajan odabir pivotnog primjera i primjera iste (hit) i različite klase (miss)
 - Relevantnost x_k pada ako primjeri istih klasa imaju različite vrijednosti
 - Relevantnost x_k raste ako primjeri različitih klasa imaju različite vrijednosti

Algoritam RELIEF

- 1: postavi $w_k \leftarrow 0$ za svaku značajku $k = 1, \dots, n$
- 2: **za** i = 1, ..., m **radi**: -- m je broj iteracija
- 3: nasumično odaberi primjer $\mathbf{x} \in \mathcal{D}$
- 4: pronađi najbliži pogodak $\mathbf{x}^h \in \mathcal{D}$ i promašaj $\mathbf{x}^m \in \mathcal{D}$ (po L2-normi)
- 5: $\operatorname{za} k = 1, \ldots, n \operatorname{radi}$:
- 6: $w_k = w_k \frac{1}{N}(x_k x_k^h)^2 + \frac{1}{N}(x_k x_k^m)^2$

3 Multivarijatni filtar

- Univarijatne metode ocjenjuju relevantnost, neovisno o redundanciji značajki
- Multivarijatne metode ocjenjuju relevantnost i redundantnost skupa značajki
- Uklanjanje značajki faktorom inflacije varijance (VIF) (variance inflation factor)
 - Ideja: x_k je redundantna \Leftrightarrow može ju se dobro predvidjeti iz drugih varijabli
 - Model linearne regresije sa x_k kao zavisnom varijablom:

$$h_k(x_k; \mathbf{w}) = w_1 x_1 + \dots + w_{k-1} x_{k-1} + w_{k+1} x_{k+1} + \dots + w_n x_n$$

– VIF varijable x_k :

$$\mathrm{VIF}_k = \frac{1}{1 - R_h^2} \in [1, \infty)$$

gdje je R_k^2 koeficijent determinacije za h_k (v. odjeljak 5.1.3 dodatka skripti)

- U praksi, značajke za koje VIF $\geqslant 10$ smatraju se redundantnima
- Iterativno uklanjanje redundantnih značajki i ažuriranja VIF vrijednosti
- VIF uklanja isključivo redundante značajke (ne odabire relevantne značajke)

Postepeno (stepwise) uklanjanje značajki VIF-om

```
S \leftarrow \{1, \dots, n\}
2:
      za k \in S radi:
3:
          izračunaj VIF_k sa S \setminus \{k\} kao nezavisnim varijablama
      m \leftarrow \operatorname{argmax}_{k \in S} \operatorname{VIF}_k
      dok VIF_m \ge 10 radi:
5:
6:
          S \leftarrow S \setminus \{m\}
          za k \in S radi:
7:
8:
              izračunaj VIF_k sa S \setminus \{k\} kao nezavisnim varijablama
          m \leftarrow \operatorname{argmax}_{k \in S} \operatorname{VIF}_k
9:
```

- Correlation feature selection (CFS) nalazi relevantne i neredundantne značajke
 - Ocjena vrijednosti **podskupa značajki** S koji sadrži k značajki:

$$Merit_S = \frac{k\bar{r}_{x,y}}{\sqrt{k + k(k-1)\bar{r}_{x,x}}}$$

- $\bar{r}_{x,y}$ prosječna korelacija (npr. Pearsonova) između varijabli iz Si varijable y
- $\bar{r}_{x,x}$ prosječna korelacija između svih k varijabli iz S
- Unaprijedno pretraživanje prostora od 2^n podskupova metodom najbolji prvi
- Markovljev pokrivač (Markov blanket) izravan odabir značajki za PGM-ove
 - Markovljev pokrivač od x_k : roditelji od x_k , njegova djeca i roditelji djece
 - Vrijednost varijable x_k u Bayesovoj mreži ovisi samo o Markovljevom pokrivaču

4 Metoda omotača

• Pretraživanje prostora od 2ⁿ podskupova značajki i provjera točnosti modela

- Kriterijska funkcija:
 - Točnost modela procijenjena unakrsnom provjerom
 - Mjera **prikladnosti modela** (goodness of fit) (npr. F-test)
- Pretraživanje:
 - Unaprijedni odabir kreće od praznog skupa i dodaje značajke
 - Unatražni odabir kreće od svih značajki i uklanja značajke
 - **Stepenast odabir** (*stepwise*) unaprijedan odabir s unatražnim uklanjanjem

• Prednost: prilagođenost konkretnom modelu; nedostatak: računalna složenost

5 Ugrađene metode

- Neki algoritmi odabiru značajke pri postupku učenju: stabla odluke, slučajne šume
- Svaki algoritam s **L1-regularizacijom** implicitno provodi odabir značajki