Linear System Theory Solution to Homework 1

1. Define

$$z(k) = -a_1 z(k-1) - \dots - a_n z(k-n) + u(k)$$

We claim that $y(k) = b_0 z(k-d) + b_1 z(k-d-1) + \cdots + b_m z(k-n)$. Indeed,

$$y(k) = b_0 z(k-d) + \dots + b_m z(k-n)$$

$$= b_0 (-a_1 z(k-d-1) - \dots - a_n z(k-d-n) + u(k-d))$$

$$+ b_1 (-a_1 z(k-d-2) - \dots - a_n z(k-d-n-1) + u(k-d-1))$$

$$\vdots$$

$$+ b_m (-a_1 z(k-n-1) - \dots - a_n z(k-2n) + u(k-n))$$

$$= -a_1 (b_0 z(k-d-1) + b_1 z(k-d-2) + \dots + b_m z(k-n-1))$$

$$\vdots$$

$$- a_n (b_0 z(k-d-n) + b_1 (k-d-n-1) + \dots + b_m z(k-2n))$$

$$+ b_0 u(k-d) + b_1 u(k-d-1) + \dots + b_m u(k-n)$$

$$= -a_1 y(k-1) - \dots - a_n y(k-n) + b_0 u(k-d) + \dots + b_m u(k-n)$$

Therefore, we choose $x(k) = [z(k-1), z(k-2), \dots, z(k-n)]^T$ as the state, and the state space representation is

$$x(k+1) = \begin{bmatrix} -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} u(k)$$

$$y(k) = \begin{bmatrix} 0 & \cdots & 0 & b_0 & \cdots & b_m \end{bmatrix} x(k)$$

2. For each $p(x) \in P_n$, $p(x) = a_1x^{n-1} + \cdots + a_{n-1}x + a_n$, we can associate $\mathbf{p} = [a_1, \cdots, a_n]^T \in \mathbb{R}^n$ with p(x). Since \mathbf{p} is unique for each p(x), the correspondence between \mathbf{p} and p(x) is one-to-one. Let $p'(x) = Dp(x) = (n-1)a_1x^{n-2} + (n-2)a_2x^{n-3} + \cdots + a_{n-1}$, and \mathbf{p}, \mathbf{p}' be the corresponding vectors of p(x) and p'(x), respectively, i.e.

$$\mathbf{p} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}^T$$

$$\mathbf{p}' = \begin{bmatrix} 0 & (n-1)a_1 & (n-2)a_2 & \cdots & a_{n-1} \end{bmatrix}^T$$

Hence the representative matrix that maps \mathbf{p} to \mathbf{p}' is

$$\mathbf{p}' = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ n-1 & 0 & \cdots & 0 & 0 \\ 0 & n-2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix} \mathbf{p}$$

3. (a) We prove this statement by induction. By the definition of affine functions, the statement is true for k = 2. Suppose that the statement is true for k = l - 1, i.e.

$$f\left(\sum_{i=1}^{l-1} \alpha_i x_i\right) = \sum_{i=1}^{l-1} \alpha_i f(x_i)$$

for $x_1, \dots, x_{l-1} \in \mathbb{R}^n$ and all $\alpha_1, \dots, \alpha_{l-1}$ such that $\sum_{i=1}^{l-1} \alpha_i = 1$. Now, let k = l and consider all $x_1, \dots, x_l \in \mathbb{R}^n$ and all $\alpha_1, \dots, \alpha_l \in \mathbb{R}$ such that $\sum_{i=1}^{l} \alpha_i = 1$. Since the sum of all α_i , $i = 1, \dots l$, is 1, there exists at lease one α_i such that $\alpha_i \neq 1$. Without loss of generality, we can assume that $\alpha_l \neq 1$. Then

$$f\left(\sum_{i=1}^{l} \alpha_{i} x_{i}\right) = f\left(\sum_{i=1}^{l-1} \alpha_{i} x_{i} + \alpha_{l} x_{l}\right)$$

$$= f\left((1 - \alpha_{l}) \sum_{i=1}^{l-1} \frac{\alpha_{i}}{1 - \alpha_{l}} x_{i} + \alpha_{l} x_{l}\right)$$

$$= (1 - \alpha_{l}) f\left(\sum_{i=1}^{l-1} \frac{\alpha_{i}}{1 - \alpha_{l}} x_{i}\right) + \alpha_{l} f(x_{l})$$

$$= (1 - \alpha_{l}) \sum_{i=1}^{l-1} \frac{\alpha_{i}}{1 - \alpha_{l}} f(x_{i}) + \alpha_{l} f(x_{l})$$

$$= \sum_{i=1}^{l} \alpha_{i} f(x_{i})$$

Notice that the fourth equality holds because of the assumption of the induction and $\sum_{i=1}^{l-1} \frac{\alpha_i}{1-\alpha_l} = 1$. Therefore, the statement is true for all $k \in \mathbb{N}$.

(b) Let $x, y \in \mathbb{R}^n$, $\alpha, \beta \in \mathbb{R}$, and $\alpha + \beta = 1$. If f(x) = Ax + b, then

$$f(\alpha x + \beta y) = A(\alpha x + \beta y) + b = \alpha (Ax + b) + \beta (Ay + b) = \alpha f(x) + \beta f(y)$$

Therefore f(x) is affine.

(c) Let $e_i \in \mathbb{R}^n$ be the *n*-th column of the $n \times n$ identity matrix. For any $x \in \mathbb{R}^n$ and $x = [x_1, \dots, x_n]^T$, we can express x as $x = \sum_{i=1}^n x_i e_i + (1 - \sum_{i=1}^n x_i)0$,

where $0 \in \mathbb{R}^n$ is the zero vector. Then

$$f(x) = f\left(\sum_{i=1}^{n} x_i e_i + \left(1 - \sum_{i=1}^{n} x_i\right) 0\right)$$

$$= \sum_{i=1}^{n} x_i f(e_i) + \left(1 - \sum_{i=1}^{n} x_i\right) f(0)$$

$$= \sum_{i=1}^{n} x_i (f(e_i) - f(0)) + f(0)$$

$$= Ax + b$$

where $A = [f(e_1) - f(0), f(e_2) - f(0), \dots, f(e_n) - f(0)]$ and b = f(0).

- 4. (a) Suppose $\hat{0} \in V$ is also a zero element. Since 0 is a zero element, $0 + \hat{0} = \hat{0}$; however, $\hat{0}$ is also a zero element; thus $0 + \hat{0} = 0$. This implies $0 + \hat{0} = 0 = \hat{0}$ and therefore the zero element is unique.
 - (b) Let $(-\hat{x})$ is also an additive inverse of x, i.e. $x + (-\hat{x}) = 0$. Then

$$(-x) = (-x) + 0 = (-x) + (x + (-\hat{x})) = ((-x) + x) + (-\hat{x}) = 0 + (-\hat{x}) = -\hat{x}$$

Hence the additive inverse is unique.

(c) For any $x \in V$,

$$0 \cdot x + x = 0 \cdot x + 1 \cdot x = (0+1) \cdot x = 1 \cdot x = x$$

Since the above equality is true for all $x \in V$, $0 \cdot x$ is the zero element of V. Because the zero element is unique, we have $0 \cdot x = 0$.

5. For any $A, B \in S_{sn}$ and any $\alpha \in \mathbb{R}$, we have $(A+B)^T = A^T + B^T = -(A+B)$ and $(\alpha A)^T = -(\alpha A)$. Therefore, S_{sn} is indeed a subspace of $\mathbb{R}^{n \times n}$.

Notice that if $A \in S_{sn}$, then all diagonal elements of A must be zeros. Therefore A has $\frac{n(n-1)}{2}$ distinct elements, and $\dim S_{sn} = \frac{n(n-1)}{2}$.

One basis of S_{s3} is

$$\left\{ \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \right\}$$