NOCIONES BASICAS DE PROBABILIDAD

- Leyes de Morgan I: $\left(\bigcup_{i=1}^n A_i\right)^c = \bigcap_{i=1}^n A_i^c$ II: $\left(\bigcap_{i=1}^n A_i\right)^c = \bigcup_{i=1}^n A_i^c$
- Principio Inclusión Exclusión $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i) \sum_{1 \le i < j \le n} P(A_i \cap A_j) + \dots + (-1)^{n-1} P(A_1 \cap \dots \cap A_n)$
- Definición axiomática probabilidad I: $P(\Omega) = 1$ II: $P(A) \ge 0$ III: $A \subset B \Rightarrow P(A) \le P(B)$ IV: $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$
- Permutaciones y combinaciones I: $\binom{n}{r} = \binom{n}{n-r}$ II: $k\binom{k-1}{r-1} = r\binom{k}{r}$
- Distribución multinomial $(x_1 + \cdots x_r)^n = \sum \binom{n}{n_1 \cdots n_r} x_1^{n_1} \cdots x_r^{n_r}$, donde la suma es sobre los n_i de manera que $\sum_{i=1}^r n_i = n$
- Condicional $\bigcup_{i=1}^n B_i = \Omega$, $B_i \cap B_j = \emptyset \ \forall_{i \neq j}$ LPT: $P(A) = \sum_{i=1}^n P(A/B_i)P(B_i)$ Bayes: $P(B_i/A) = \frac{P(A/B_i)P(B_i)}{\sum_{i=1}^n P(A/B_i)P(B_i)}$ dato: $P(\bigcup_{i=1}^\infty A_i|B) = \sum_{i=1}^\infty P(A_i|B)$
- Independencia $P(A/B) = P(A) \longrightarrow P(A \cap B) = P(A)P(B)$

DISTRIBUCIONES DISCRETAS

- Binomial $X \sim B(n,p)$ **PMF:** $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ **FGM:** $M(t) = (pe^t + 1 p)^n$ **E(X)** = np **V(X)** = np(1-p)
- Geométrica $X \sim G(p)$ **PMF:** $P(X = k) = (1 p)^{k-1} p, k \ge 1$ **FGM:** $M(t) = \frac{pe^t}{1 (1 p)e^t}$ **E(X)** $= \frac{1}{p}$ **V(X)** $= \frac{1}{p^2} \frac{1}{p}$
- BinomNeg $X \sim BN(r,p)$ **PMF:** $P(X = k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}, k \ge r$ **FGM:** $M(t) = \left(\frac{pe^t}{1-(1-p)e^t}\right)^r$ **E(X):** $\frac{r}{p}$ **V(X):** $\frac{r(1-p)}{p^2}$
- Poisson $X \sim P(\lambda)$ PMF: $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, k \ge 0$ FGM: $M(t) = e^{\lambda(e^t 1)} \mathbf{E}(\mathbf{X}) = \lambda$ (recordar reescalar λ)
- Hipergeométrica $X \sim H(n,r,m)$ PMF: $P(X=k) = \frac{\binom{r}{k}\binom{n-r}{m-k}}{\binom{n}{m}}$ FGM: $E(X) = \frac{mr}{n}$ $Var(X) = \frac{mr}{n^2(n-1)}(m-n)(r-n)$,

DISTRIBUCIONES CONTINUAS

- Definición I: $f: \mathbb{R} \to \mathbb{R}$ $P(X \in B) = \int_B f(x) dx$ II: $P(X \in (-\infty, \infty)) = \int_{-\infty}^{+\infty} f(x) dx = 1$ III: $P(a \le X \le b) = \int_a^b f(x) dx$
- Distribución Uniforme $X \sim U(a,b)$ PDF: $a \leq x \leq b \rightarrow f(x) = 1$ FGM: $M(t) = \frac{e^{tb} e^{ta}}{t(b-a)}$
- Exponencial $X \sim Exp(\lambda)$ **PDF:** $x \geq 0 \rightarrow f(x) = \lambda e^{-\lambda x}$ **FGM:** $M(t) = \frac{\lambda}{\lambda t}$, **prop olvido**: P(T > t + s | T > s) = P(T > t)
- Gamma $X \sim G(\alpha, \lambda)$ **PDF:** $x \ge 0 \to f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha 1} e^{-\lambda x}$ $\Gamma(\alpha) = \int_{0}^{\infty} u^{\alpha 1} e^{-u} du$ **FGM:** $M(t) = \left(\frac{\lambda}{\lambda t}\right)^{\alpha}$
- $\blacksquare \ \ \textit{Notas de Color sobre la Gamma} \ \Gamma(n) = (n-1)! \ \text{si } n \ \text{entero} \ \Gamma(\frac{1}{2}) = \sqrt{\pi}, \ \Gamma(\alpha) = (\alpha-1)\Gamma(\alpha-1), \ \Gamma(\frac{n}{2}) = \frac{(n-2)!!\sqrt{\pi}}{2^{\frac{n-1}{2}}}$
- Normal $X \sim N(\mu, \sigma^2)$ **PDF:** $-\infty \le x \le \infty \to f(x) = \frac{1}{\sigma\sqrt{2\pi}}exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$ **FGM:** $M(t) = exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)$
- Functiones de variables aleatorias $I Y = g(X) F_Y(y) = P(Y \le y) = P(g(X) \le y) = F_x(g^{-1}(y)) \rightarrow f_y(y) = f_x(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$
- Funciones de v.a. IIX con dist F, si $Z = F(X) \Rightarrow Z \sim U[0,1]$ $P(Z \le z) = P(F(X) \le z) = P(X \le F^{-1}(z)) = F(F^{-1}(z)) = Z$
- Funciones de v.a. III $U \sim U[0,1] \, X = F^{-1}(U) \Rightarrow X \sim F(U)$. $P(X \le x) = P(F^{-1}(U) \le x) = p(U \le F(x)) = F(x)$
- $Exp(\lambda) \equiv G(1,\lambda), \chi^2_g \equiv G(\frac{g}{2},\frac{1}{2}) \ X_i \sim P(\lambda_i) \ \text{indep} \Rightarrow X_1 + X_2 \sim P(\lambda_1 + \lambda_2), \ X_i \sim Exp(\lambda) \ \text{indep} \Rightarrow \sum X_i \sim G(n,\lambda), \ Z \sim P(\lambda), \ X|_{Z=z} \sim Bi(z,p) \Rightarrow X \sim P(p\lambda), \ \text{si} \ n \to \infty, p \to 0, np \to \lambda \Rightarrow B(n,p) \approx P(\lambda)$
- $\blacksquare X \sim U[a,b], E(X) = \tfrac{a+b}{2}, V(X) = \tfrac{(b-a)^2}{12}, \ X \sim Exp(\lambda), E(X) = \tfrac{1}{\lambda}, V(X) = \tfrac{1}{\lambda^2}, X \sim \Gamma(\alpha,\lambda)E(X) = \tfrac{\alpha}{\lambda}, V(X) = \tfrac{\alpha}{\lambda^2}$

DISTRIBUCION CONJUNTA

- $P(x_1 \le X \le x_2, y_1 \le Y \le y_2) = F(x_2, y_2) F(x_1, y_2) F(x_2, y_1) + F(x_1, y_1)$
- Variables continuas $F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv \ f(x,y) = \frac{\partial^{2}}{\partial x \partial y} F(x,y)$
- $\bullet \ (X,Y) \sim f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}(\frac{X-\mu_x}{\sigma_x})^2 + (\frac{y-\mu_y}{\sigma_y})^2 \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}} \\ \Rightarrow Y|_{X=x} \sim N(\mu_y \rho\frac{\sigma_x}{\sigma_y}(x-\mu_x), \sigma_y^2(1-\rho^2))$
- Incrementos $P(x \le X \le X + \delta_x, y \le Y \le y + \delta_y) \approx f(x, y)\delta_x\delta_y$
- Distribuciones marginales $f_x(x) = F_X'(x) = \int_{-\infty}^{\infty} f(x,y) dy$ (Si quiero $P(X \ge Y)$ hago $\int_{-\infty}^{x} f(x,y) dy$)
- Independencia $\vec{X} \to F(\vec{X}) = \prod F_{x_i}$ Estadístico k-ésimo de orden $X_{(k)}$ con $f_k(x) = \frac{n!}{(k-1)!(n-k)!} f(x) F^{k-1}(x) (1 F(x))^{n-k}$

■ Estadísticos de orden y extremos \vec{X} iid F,f. $U = max\{X_i\}$ $V = min\{X_i\}$. $F_U(u) = [F(u)]^n$ $F_V(v) = 1 - [1 - F(v)]^n$

PROBABILIDAD CONDICIONAL

- Caso Discreto: $P(X = x_i/Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_i)}$
- Independencia Discreto: X e Y independientes, $P(X = x_i/Y = y_j) = p_x(x:i)$
- Caso Continuo: $f_{x/y}(x/y) = \frac{f_{xy}(x,y)}{f_y(y_j)} f_{xy}(x,y) = f_{x/y}(x/y) f_y(y_j) = f_{y/x}(y/x) f_x$
- Independencia Continuo: X e Y independientes, $P(X = x_i/Y = y_i) = f_x(x_i)$

FUNCIONES DE VARIABLES ALEATORIAS CONTINUAS

- Suma $X \in Y$ Z = X + Y $F_z(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_{xy}(x,y) dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z} f_{xy}(x,v-x) dv dx$
- Convolución: $f_z(z) = \int_{-\infty}^{\infty} f_{xy}(x, z x) dx$. Si X e Y independientes $f_z(z) = \int_{-\infty}^{\infty} f_x(x) f_y(z x) dx$.
- Cocientes: Z = Y/X. $x > 0 \rightarrow y \le xz$ $x < 0 \rightarrow y \ge xz$ $F_z(z) = \int_{-\infty}^0 \int_{xz}^\infty f_{xy}(x,y) dy dx + \int_0^\infty \int_{-\infty}^{xz} f_{xy}(x,y) dy dx = \int_{-\infty}^\infty z \int_{-\infty}^\infty |x| f_{xy}(x,xv) dx dv$, Z con dist. de Cauchy $f_Z(z) = \frac{1}{\pi(z^2+1)}$
- densidad del cociente $f_z(z) = \int_{-\infty}^{\infty} |x| f_{xy}(x,xz) dx$ Si X e Y son indep $\Rightarrow f_z(z) = \int_{-\infty}^{\infty} |x| f_X(x) f_Y(xz) dx$
- Función Invertible: X e Y con $f_{xy}(x,y)$ $u = g_1(x,y)$ $v = g_2(x,y)$ invertibles $x = h_1(u,v)$ $y = h_2(u,v)$. $f_{uv}(u,v) = f_{xy}(h_1(u,v),h_2(u,v)) \cdot |J(h_1(u,v),h_2(u,v))|$

ESPERANZA MATEMATICA

- $\bullet \ E(g(X)) = \sum_{i:p(x_i)>0} g(x_i)p(x_i), \text{ en part: } M_X(t) = E(e^{tX}) = \sum_{x:p(x)>0} e^{tx}p(x), \ E(X^n) = \sum_{x:p(x)>0} x^np(x), \ E(X) = \int_{-\infty}^{\infty} xf(x)dx$
- FGM: I: Si $0 \in X \Rightarrow \exists ! F(x)$ II: $M^{(r)}(0) = E(X^r)$ III: $Y = aX + b, M_Y(t) = e^{bt}M_x(at)$ IV: X, Y ind Z = X + Y $M_Z(t) = E(e^{t(X+Y)}) = E(e^{tX}e^{tY}) = E(e^{tX})E(e^{tY}) = M_x(t)M_y(t)$.
- Functiones de Variables: $Y = g(X_1, \dots, X_n)$ $E(Y) = \int \dots \int_{x_1, \dots, x_n} g(x_1, \dots, x_n) p(x_1, \dots, x_n) dx_1 \dots dx_n$
- Independencia: X, Y independences. E(g(X)h(Y)) = E(g(X))E(h(Y))
- Suma: $Y = a + \sum_{i=1}^{n} b_i X_i \ E(Y) = a + \sum_{i=1}^{n} b_i E(X_i)$
- Designaldad Jensen: X y ϕ convexa. $\phi(E(X)) \leq E(\phi(X))$, Designaldad Markov: X no negativa. $P(X \geq a) \leq \frac{E(X)}{a}$
- Designal and Chebyshev: $X \sim (\mu, \sigma^2) P(|X \mu| > t) \leq \frac{\sigma^2}{t^2} P(|X \mu| > k\sigma) \leq \frac{1}{k^2}$
- Covariancia: Cov(X,Y) = E(XY) E(X)E(Y) $Cov(aX,bY) = a \cdot b \cdot Cov(X,Y)$ Cov(X+Y,Z) = Cov(X,Z) + Cov(Y,Z) $Var\left(a + \sum_{i=1}^{n} b_i X_i\right) = \sum_{j=1}^{n} \sum_{i=1}^{n} b_i b_j Cov(X_i, X_j)$, Coeficiente de Correlación: $\rho = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} 1 \le \rho \le 1$
- Esperanza Condicional: $E(Y/X=x)=\int_{-\infty}^{\infty}yf_{y/x}(y/x)dy,\ E(h(Y)/X=x)=\int_{-\infty}^{\infty}h(y)f_{y/x}dy$
- $L.E.I.: \mathbf{I}: E(Y) = E(E(Y/X)) \mathbf{II}: Var(Y) = Var(E(Y/X)) + E(Var(Y/X)), V(Y|X) = E[(Y E(Y|X))^2|X]$

NOCIONES DE CONVERGENCIA

- Convergencia en probabilidad: $\lim_{x\to\infty} Prob(|x_n-c|>\epsilon)=0 \ \forall \epsilon>0 \longrightarrow plim\ x_n=c$
- Convergencia en media cuadrática: $x_n \sim (\mu_n, \sigma_n^2) \lim_{n \to \infty} \mu_n = c \lim_{n \to \infty} \sigma_n^2 = 0 \Rightarrow plim x_n = c$
- Ley débil GN: X_1, \ldots, X_n i.i.d. $E(X_i) = \mu \ Var(X_i) = \sigma^2 \ \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \longrightarrow plim \ \bar{X} = \mu$
- Convergencia A.S.: $\lim_{n\to\infty} Prob(|x_i-c|>\epsilon, \exists i\geq n)=0 \longrightarrow x \stackrel{a.s.}{\to} c$
- Ley fuerte GN: X_1, \ldots, X_n iid $E(X_i) = \mu_i < \infty \ Var(X_i) = \sigma_i^2 < \infty \ \sum_{i=1}^{\infty} \sigma_i^2/i^2 < \infty \longrightarrow \bar{x}_n \mu_n \stackrel{a.s.}{\to} 0$
- Teorema Slutsky: $plim g(x_n) = g(plim x_n) g(x_n)$ es continua y no es función de n
- Reglas plim: plim $(x_n, y_n) = (c, d)$ I:plim $(x_n + y_n) = c + d$ II:plim $(x_n \cdot y_n) = c \cdot d$ III:plim $(x_n/y_n) = c/d$
- Convergencia en distribución: $\lim_{n\to\infty} F(x_n) = F(x) \ (M_n(t) \to M(t)) \longrightarrow (F(x_n) \to F(x))$ si contiene a 0
- Reglas distribuciones límite I: $x_n \stackrel{d}{\to} x$ plim $y_n = c$ I: $x_n \cdot y_n \stackrel{d}{\to} c \cdot x$ II: $x_n + y_n \stackrel{d}{\to} x + c$ III: $x_n/y_n \stackrel{d}{\to} x/c$
- Reglas distribuciones límite II: $x_n \stackrel{d}{\to} x$ $g(x_n)$ continua $\Rightarrow g(x_n) \stackrel{d}{\to} g(x)$
- TCL Lindberg-Levy: $X_1, \ldots, X_n \ \mu < \infty, \sigma^2 < \infty \ \bar{x}_n = \frac{1}{n} \sum_{i=1}^n X_i \Rightarrow \sqrt{n}(\bar{x}_n \mu) \stackrel{d}{\to} N(0, \sigma^2)$
- Método Delta Si $\sqrt{n}(Z_n \mu) \stackrel{d}{\to} N(0, \sigma^2)$ y $g(Z_n)$ derivable y que no depende de $n \Rightarrow \sqrt{n}(g(Z_n) g(\mu)) \stackrel{d}{\to} N(0, (g'(\mu))^2 \sigma^2)$