浙江水学

本科实验报告

名称:	计算机体系结构
名:	姜雨童
院:	计算机科学与技术学院
业:	计算机科学与技术
箱:	3220103450@zju.edu.cn
号:	1369218489
话:	18867766468
效师:	王小航
∃期:	2024年 10月 7日
	名院业箱号话师

浙江大学实验报告

课程名称:	计算机体系结构	Ŋ实验类型:	综合	
实验项目名	称: _Lab01 Pipelined	d CPU supporting RIS	C-V RVI32 Instructions	-
学生姓名:	姜雨童 学号: _	33220103450 同]组学生姓名:	<u>/</u>
实验地点:	玉泉曹西 301	实验日期: <u>202</u> 4	年 <u>10</u> 月 7 日]

一、目标与原理

1-1 实验目标

- Understand RISC-V RV32I instructions
- Master the design methods of pipelined CPU executing RV32I instructions
- Master the method of Pipeline Forwarding Detection and bypass unit design
- Master the methods of 1-cycle stall of Predict-not-taken branch design
- Master methods of program verification of Pipelined CPU executing RV32I instructions

1-2 实验原理

在流水线中有三种 hazards: data hazard, structure hazard 和 control hazard。 而实验中设计的五级流水线主要解决 data hazard 和 control hazard,解决方法为 forwarding、stall 和 predict-not-taken。

1-2-1 forwarding

常见的 forwarding 实现为:将 MEM 阶段的 ALU 结果/WB 阶段的 ALU 结果/MemoryLoad 的结果 forward 给 EXE 阶段的 forwarding unit(图 1-1)。与之不同的是,本实验提供的代码中,forwarding 的判断位于 ID 阶段,因此需要将 EX 和 MEM 阶段的数据 forward 给 ID 阶段(图 1-2)。此时,供选择的值(FWA/FWB)分别为 reg 中的值、EXE 阶段 ALU 结果、MEM 阶段 ALU 结果,以及 MEM 阶段 memory 中的值。

(图 1-1)

(图1-2)

1-2-2 stall

Forwarding 无法解决的情况,需要 stall(插入空指令)。 通过 IF 和 ID 阶段维持当前指令,冲刷后续阶段指令来实现。

1-2-3 predict-not-taken

流水线假设不发生跳转,继续按顺序执行指令。

若在 ID 阶段得知 Branch 结果时,发现预测错误,则 flush 下一条错误的指令 (具体表现为 flush IF/ID pipeline register)。

二、操作方法与实验步骤

本实验框架代码已经给出,只需要补全以下四个文件中的代码: CtrlUnit.v、HazardDetectionUnit.v、cmp 32.v、RV32core.v

2-1 cmp 32.v

本模块用于判断传入两个值的大小关系是否符合传入信号 ctrl (如 3'b001 代表两个值相等),符合时返回 1,否则返回 0。

```
assign c = (EQ & res_EQ |

NE & res_NE |

LT & res_LT |

LTU & res_LTU|

GE & res_GE |

GEU & res_GEU

); //to fill sth. in ()
```

2-2 CtrlUnit.v

根据上下文补全指令解码部分(仅展示部分代码,下同):

仿照 ImmSel 补全 cmp_ctrl 信号 (比较结果用来确定是否跳转):

```
assign Branch = (cmp_res & B_valid) | JAL | JALR;

//to fill sth. in 2.再这里用比较后的结果确定是否跳转

parameter cmp_EQ = 3'b001; // copied from cmp_32.v

parameter cmp_NE = 3'b010;

parameter cmp_LT = 3'b011;

parameter cmp_LTU = 3'b100;

parameter cmp_GE = 3'b101;

parameter cmp_GEU = 3'b110;

assign cmp_ctrl = {3{BEQ }} & cmp_EQ |

{3{BNE }} & cmp_NE |

{3{BLT }} & cmp_LT |

{3{BLTU}} & cmp_LTU |

{3{BLTU}} & cmp_LTU |
```

```
{3{BGEU}}} & cmp_GEU;
//to fill sth. in 1.先这里判断应该怎么比较
```

根据 DataPath 补全信号:

区分 hazard 类型 (一个原因在于提前到 ID 阶段判断时,需要用 hazard 类型来怕 阶段 MEM 阶段 forward 的是 ALU 结果还是 memory 中的值):

```
parameter hazard_optype_ALU = 2'd1;

// copied from PPT page-40, 和 HazardDetectionUnit.v 保持一致

parameter hazard_optype_LOAD = 2'd2;

parameter hazard_optype_STORE = 2'd3;

assign hazard_optype = hazard_optype_ALU & {2{R_valid | I_valid | LUI | AUIPC | JAL | JALR}} | hazard_optype_LOAD & {2{L_valid}} |

hazard_optype_STORE & {2{S_valid}};

//to fill sth. in, ID 阶段解码指令是 ALU/LOAD/STORE
```

2-3 RV32core.v

根据 DataPath 补全模块调用代码 (判断是否跳转 Branch):

```
MUX2T1_32 mux_IF(.I0(PC_4_IF),.I1(jump_PC_ID),.s(Branch_ctrl),.o(next_PC_IF));
//to fill sth. in () +branch prediction, 0 不跳, 1跳
```

根据图 1-2 补全模块调用代码 (forward 部分):

根绝图 1-2 补全模块调用代码 (EXE 部分):

```
MUX2T1_32 mux_A_EXE(.I0(PC_EXE),.I1(rs1_data_EXE),.s(ALUSrc_A_EXE),.o(ALUA_EXE));
//to fill sth. in ()*
MUX2T1_32 mux_B_EXE(.I0(rs2_data_EXE),.I1(Imm_EXE),.s(ALUSrc_B_EXE),.o(ALUB_EXE));
//to fill sth. in ()
```

2-4 HazardDetectionUnit.v

处理 hazard (包括 forward, stall 和 predict-not-taken-branch)

判断是否符合 forward 或 stall 的情况:

```
wire forward_A_1 = rs1use_ID && rd_EXE && rs1_ID == rd_EXE && hazard_optype_EXE == hazard_optype_ALU; // ALU_EXE
    wire forward_A_2 = rs1use_ID && rd_MEM && rs1_ID == rd_MEM && hazard_optype_MEM == hazard_optype_ALU; // ALU_MEM
    wire forward_A_3 = rs1use_ID && rd_MEM && rs1_ID == rd_MEM && hazard_optype_MEM == hazard_optype_LOAD; // LOAD_MEM
    wire forward_A_stall = rs1use_ID && rd_EXE && rs1_ID == rd_EXE && hazard_optype_EXE
    == hazard_optype_LOAD && hazard_optype_ID != hazard_optype_STORE;
    // 要用上一条指令 load 的结果
```

确定 forwardA 是三种情况中的哪一种:

```
assign forward_ctrl_A = \{2\{forward_A_1\}\}\ & 2'b01 |  \{2\{forward_A_2\}\}\ & 2'b10 | \{2\{forward_A_3\}\}\ & 2'b11 ;
```

Stall: IF 和 ID 阶段维持当前指令,冲刷后续阶段的指令

```
// Case: stall
wire stall = forward_A_stall | forward_B_stall;
assign PC_EN_IF = ~stall; // PC 寄存器不会更新, IF 阶段维持当前指令
assign reg_FD_stall = stall; // ID 阶段维持当前指令
assign reg_DE_flush = stall; // EX 阶段不会执行 ID 阶段的指令

assign forward_ctrl_ls = rs2_EXE == rd_MEM && hazard_optype_MEM == hazard_optype_LOAD
&& hazard_optype_EXE == hazard_optype_STORE; // MEM 阶段 forward 的是 LOAD 指令
```

branch: ID 阶段知道结果错误, flush 后一条指令

```
// Case: branch
assign reg_FD_flush = Branch_ID; // ID 阶段知道结果错误,flush 后一条指令
```

三、实验结果与分析

3-1 仿真结果

仿真结果完全符合预期,这里列举几个例子佐证:

Forward/stall:

截图中用红色方框框出对应指令和 forward/stall 信号。

00402103	4	lw x2, 4(x0)
00802203	8	lw x4, 8(x0)
004100b3	С	add x1, x2, x4

branch:

截图中用红色方框框出相关指令,粉色方框框出 branch 信号(包含了 stall)。

	71/11/6/11/6/		JI WII OII	
fff3b093	78		slti	u x1, x7, -1
00520863	7C		beq	x4,x5,label0
00420663	80		beq	x4,x4,label0
00000013	84		addi	x0,x0,0
00000013	88		addi	x0,x0,0
00421863	8C	label0:	bne	x4,x4,label1
00521663	90		bne	x4,x5,label1
	fff3b093 00520863 00420663 00000013 00000013	fff3b093 78 00520863 7C 00420663 80 00000013 84 00000013 88 00421863 8C	fff3b093 78 00520863 7C 00420663 80 00000013 84 00000013 88 00421863 8C label0:	00520863 7C beq 00420663 80 beq 00000013 84 addi 00000013 88 addi 00421863 8C label0: bne

3-2 上板验证

上板后界面如下:

```
SOC Test Environment (With RISC-V)
31: ra 00000000 x02: sp 000000000
                            x05: t0 00000000
x09: s1 00000000
x13: a3 00000000
  x84: tp 00000000
x8:fps0 00000000
                                                        ×86: t1 00000000
                                                        ×10: a0 00000000
                                                       ×14: a4 00000000
×18: s2 00000000
        a6 000000000
s4 00000000
                            ×17: a7 00000000
        s4 00000000
s8 00000000
                            x21: s5 00000000
                                                        x22: s6 000000000
                            x25: s9 00000000
                                                       x26:s10 000000000
                            ×29: t4 явяяяяяя
                                                        x30: t5 000000000
   1F 00000000
1D 00000000
EXE 00000004
                                                       rs1Data 00000000
                            INST-ID 00802203
                            INST-EX 00402103
 C MEM 88888888
                            INST-M 00000013
                            INST-WB 00000000
  M.U Ain 00000000
LU-Bin 00000004
                           WB-Data 80000000
WB-Addr 80000000
                                                                                   WR--MIO DEDEDEDE
                                                        CODE-02 00000000
                                                       CODE-06 попопопоп
CODE-ОА ООООООО
                           CODE-0D 00000000
                                                       CODE-DE DODDODDO
                                                                                   CODE-OF
                           CODE-11 00000000
CODE-15 00000000
                                                       CODE-1A 00000000
CODE-1E 00000000
                                                       CODE-22 00000000
                                                                                   CODE-23 000000000
CODE-27 000000000
                           CODE-25 00000000
```

下面截取连续几帧画面对报告 3-1 仿真结果中的两个例子进行说明:

Forward/stall (IF 阶段 PC 从 0C 到 14):

第三张图可以看出,IF和ID指令不变,EXE阶段插入了空指令。

```
INST-IF 004100B3
                                               rs1Data 000000
                      INST-ID 00802203
                                               rsiaddr 000000
                      INST-EX 00402103
                      INST-M 00000013
                                               B/PCE-S 00000
                      INST-WB 00000000
                                               I/ABSel 000101
                      ALU-Out 00000000
                                              CPUAddr 000000
U-Bin 00000004
                      WB-Data 00000000
                                              CPU-DAI FFFFFI
m321D 00000008
                      WB-Addr 00000000
                                              CPU-DAO 000000
                     t4 800000000
                                  ×30: t5 00000000
                                                    ×31: t6 00000
    IF BBBBBB18
                 INST-IF FFF08093
                                  rs1Data 00000000
    ID GREGGERS
                                                    PCJumpA 0000
                                                    D/C-Hzd 8001
                ALU-Out 80000004
                WB-Addr 00000000
CODE-01 00000000
                                CPU-DAO 00000000
```

x24: s8 00000000 x28: t3 00000000 PC	x25: s9 00000000 x29: t4 00000000 INST-IF FFF88093 INST-ID 88410083 INST-EX 00000000 INST-EX 00000000 INST-WB 00402103 INST-WB 00402103 ALU-Out 00000000 WB-Data 00000000 WB-Data 000000000 CODE-01 000000000 CODE-05 000000000	x26:s18 80000000 x38: t5 90000000 rs1Data 90000002 rs1Addr 90000002 AA55AA55 B/PCE-S 90000100 I/ABSel 90000100 CPU-DAi 90000000 CPU-DAi 90000000 CPU-DAi 90000000 CPU-DAi 90000000 CODE-82 900000000 CODE-86 900000000	×27:s11 806 ×31: t6 906 rs2Data 901 rs2Addr 901 PCJumph 901 D/C-Hzd 901 PCIFNxt 901 ALUCtr1 901 WRMIO 901 RegW/DR 901 CODE-93 901 CODE-93 901
x28: t3 00000000 PC	x29: t4 00000000 INST-IF 00C02283 INST-ID FFF08093 INST-EX 00410003 INST-M 000000000 INST-M 000000000 INST-M 000000000 ALU Out 000000000 WB-Data 000000000 WB-Addr 000000000 CODE-01 000000000 CODE-05 000000000	X20:S10 00000000 x30: t5 00000000 rs1Data 00000000 rs1Addr 00000000 1/ABSel 00010101 CPUAddr 00000000 CPU-DAI 00000000 CPU-DAI 00000000 CODE-02 00000000 CODE-06 00000000	x31: t6 rs2Data rs2Addi PCJumpi D/C-Hza PCIFNx ALUCtr WRMI RegW/DI CODE-0

Branch (IF 阶段 PC 从 78 到 84):

其中 PC_IF 为 80 和 8C 的帧很快被跳过,对视频进行慢速处理后截图,因此部分数字不稳定,有闪动或是显示不清的情况。

四、讨论、心得

本次实验基本上都是上学期计组所学的内容,因此难度并没有那么高。但是各种判断条件/mux 选择的线路都需要对照线路图仔细填写,一旦有细节出错就可能整个跑不出来(下图),因此实验过程还是略有些繁琐。

Name	Value	0 ps		5 ps	10 ps	15 ps	20 ps	25 ps
¼ clk	0							
> ® PC_IF[31:0]	00000000			00000000				
> • inst_IF[31:0]	XXXXXX		XXXXXXXX					
> WPC_ID[31:0]	00000000		00000000					
> Winst_ID[31:0]	00000000		0000000					
> ₩PC_EXE[31:0]	00000000			-		00000000		