

Гипотезы

Майнор ИАД, 20 февраля 2020 г.

Денис Деркач

Лаборатория Lambda, ФКН ВШЭ

Оглавление

Понятие статистической гипотезы

Статистический критерий

Параметрические тесты

t-тест

Непараметрические тесты

 χ^2 тест

Критерий Манна-Уитни

Критерий перестановок

Бутстрэп

Понятие

гипотезы

статистической

Мотивирующий пример

 > В первой группе — 26 студентов, а во второй — 24. Средний балл за тест №1 в первой группе 4.4 балла, во второй — 2.81.

> Что можно спрашивать об этих данных?

Понятие статистической гипотезы

Определение

Статистическая гипотеза — определённое предположение о распределении вероятностей, лежащем в основе наблюдаемой выборки данных.

- Простая гипотеза однозначно определяет функцию распределения на рассматриваемом множестве.
 - > **Пример:** $\theta = \theta_0$ простая гипотеза.
- > Сложная гипотеза утверждает принадлежность распределения к некоторому множеству распределений на рассматриваемом множестве.
 - > Пример: $\theta > \theta_0$ или $\theta < \theta_0$ сложная гипотеза.

Проверка статистической гипотезы

Определение

Проверка статистической гипотезы — это процесс принятия решения о том, противоречит ли рассматриваемая статистическая гипотеза наблюдаемой выборке данных.

Всегда рассматривается задача проверки:

- \rightarrow нулевой гипотезы H_0 ;
- \rightarrow против альтернативной гипотезы H_1 .

Пример

 > В первой группе — 26 студентов, а во второй — 24. Средний балл за тест №1 в первой группе 4.4 балла, во второй — 2.81.

- $ightarrow H_0$: студенты в обеих группах одинаково знают материал;
- $ightarrow H_1$: студенты знают материал по-разному.

Формулировки и правила

- > мы говорим про "отклонение H_0 ", "принятие H_1 " не рассматривается;
- \rightarrow мы говорим "имеющихся количества данных недостаточно для отклонение H_0 ";
- > мы тестируем только пару $(H_0; H_1)$ и ничего не знаем о неописанных состояниях системы:
 - пример: контрольная работа была слишком простая и студенты получили максимум.

Статистический

критерий

Статистический критерий

Определение

Статистический критерий — правило, по которому на основании реализации выборки (x_1, x_2, \dots, x_n) , принимается или отвергается статистическая гипотеза.

Обычно критерий задаётся при помощи статистики критерия $T(x_1, x_2, ..., x_n)$.

Пример: взболтать, но не смешивать

- Джеймс Бонд говорит, что предпочитает мартини взболтанным, но не смешанным.
- > Проведём слепой тест: предложим ему n раз пару напитков и спросим, какой из двух он предпочитает
- > Выборка: объём из n нулей и единиц (предпочёл взболтанный 1, смешанный 0), получается вектор.
- > Нулевая гипотеза: Джеймс Бонд выбирает наугад.
- > Статистика: число единиц в выборке.

Статистика шотов

- Если нулевая гипотеза справедлива и Джеймс Бонд не различает напитки, то все исходы равновероятны.
- > Пусть n=16 тогда существует 65535 различных бинарных исходов.

Распределение количества единиц в векторе исходов.

Эксперимент

- Провели эксперимент Джеймс
 Бонд выбрал взболтанный мартини
 в 12 из 16 раз.
- > Вероятность того, что он выберет взболтанный мартини 12 раз или больше при условии, что выбирает наугад: $2512/65536 \approx 0.0384$
- Отклоняем ли мы гипотезу о том, что Джеймс Бонд не разбирается в мартини?

р-значение

Определение

р-значением называется вероятность того, что статистика может быть такой или более экстремальной при верной нулевой гипотезе.

В примере с Бондом мы уже её подсчитали.

Типы критериев

> Односторонний критерий

$$H_0: \theta \leq \theta_0 \ vs \ H_1: \theta > \theta_0.$$

> Двусторонний критерий

$$H_0: \theta = \theta_0 \ vs \ H_1: \theta \neq \theta_0.$$

Эксперимент

- Провели эксперимент Джеймс
 Бонд выбрал взболтанный мартини
 в 12 из 16 раз.
- > Вероятность того, что он выберет взболтанный мартини 12 раз или больше при условии, что выбирает наугад: $2512/65536 \approx 0.0384$
- Отклоняем ли мы гипотезу о том, что Джеймс Бонд не разбирается в мартини?

Критическая область

Нам надо **заранее задать** значения статистики, где гипотеза будет отклонена.

Определение

- χ_0 область принятия гипотезы H_0 ,
- χ_1 область ее отклонения (критическая область).

Говорят, что критерий имеет уровень значимости α , если

$$\mathbb{P}(T \in \chi_1 | \mathbb{H}_0) \leqslant \alpha.$$

Эксперимент

- Провели эксперимент Джеймс
 Бонд выбрал взболтанный мартини
 в 12 из 16 раз.
- > Вероятность того, что он выберет взболтанный мартини 12 раз или больше при условии, что выбирает наугад: $2512/65536 \approx 0.0384$
- Отклоняем ли мы гипотезу о том, что Джеймс Бонд не разбирается в мартини?
- > Да, если заранее определили уровень значимости $\alpha = 0.05$.

Ход проверки гипотез

- 1. Формулируем задачу.
- 2. Формулируем нулевую и альтернативную гипотезу.
- 3. Задаём критическое значение.
- 4. Ищем нужный статистический критерий.
- 5. Ищем правильное распределение статистического критерия.
- 6. Проводим измерение.
- 7. Ищем р-значение.
- 8. Сравниваем его с критическим значением.
- 9. Делаем вывод.

Проблемы использования р-значений

p-значение очень часто неправильно интерпретируется как что-то полностью описывающее эксперимент.

- Don't base your conclusions solely on whether an association
 or effect was found to be "statistically significant" (i.e., the pvalue passed some arbitrary threshold such as p < 0.05).
- Don't believe that an association or effect exists just because it was statistically significant.
- Don't believe that an association or effect is absent just because it was not statistically significant.
- Don't believe that your p-value gives the probability that chance alone produced the observed association or effect or the probability that your test hypothesis is true.
- Don't conclude anything about scientific or practical importance based on statistical significance (or lack thereof).

Don't. Don't. Just...don't. Yes, we talk a lot about don'ts. The ASA

Внимательно следите за тем, как вы интерпретируете результаты эксперимента.

Ошибки

Следуя любому критерию мы можем принять правильное решение, либо совершить одну из двух ошибок — первого или второго рода.

		Верная	гипотеза
		H_0	H_1
Результат применения	H_0	OK	ошибка 2-го рода
критерия	H_1	ошибка 1-го рода	OK

Примеры

 H_0 : not-pregnant!

Мощность теста

Определение

Мощность критерия показывает вероятность попадания значения критерия T в критическую область, когда F — ее истинное распределение.

Чем мощнее критерий, тем лучше для нас. В идеале мы должны использовать самый мощный критерий.

Выбор критерия

- Логично стремление построить критерий так, чтобы свести к минимуму вероятности ошибок обоих типов.
- Однако при фиксированном объеме выборки сумма вероятностей ошибок обоих типов не может быть сделана сколь угодно малой.
- Поэтому руководствуются рациональным принципом выбора критической области.

Из всех критических областей удовлетворяющих заданному уровню значимости выбирается та, для которой вероятность ошибки 2-го рода минимальна.

Параметрические

тесты

Описание критерия

- В примере с Бондом мы просчитывали все возможные варианты.
- > В реальной жизни это сделать трудно.
- Зато у нас есть некоторые соображения как правильно выбирать критерии под конкретную задачу. Это автоматически будет давать нужные распределения.

Типы критериев

- > Одновыборочные: например, среднее равно нулю.
- Двухвыборочные: например, среднее одной выборки равно среднему другой.
- > Согласия: например, эта кривая хорошо описывает выборку.
- Распределения: например, эта выборка из нормального распределения.

Критерий Стьюдента

- > Пусть $X, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$, где (μ, σ^2) неизвестны.
- > Задача

$$\mathbb{H}_0: \mu = \mu_0 \quad vs. \quad \mathbb{H}_1: \mu \neq \mu_0$$

> Обозначим через S_n^2 выборочную дисперсию. Статистика критерия:

$$T = \frac{\sqrt{n}(\overline{X_n} - \mu_0)}{S_n}$$

- > Основная гипотеза отвергается, если $|T|>t_{n-1,\alpha/2}$, где $t_{n-1,\alpha/2}$ квантиль распределения Стьюдента с n-1 степенями свободы.
- > При больших n выполняется $T \sim \mathcal{N}(0,1)$, то есть при больших n t-критерий эквивалентен критерию Вальда.

Критерий Стьюдента (t-test)

Рис.: https://ru.wikipedia.org/wiki/Распределение_Стьюдента

Критерий Стьюдента (t-test)

Рис.: http://tananyag.geomatech.hu/m/53882

Двухвыборочный t-критерий

- > $\{X_i\}_{i=1}^n, \{Y_j\}_{j=1}^m$ две выборки из нормальных распределений $\mathcal{N}(\mu_X, \sigma_X^2), \mathcal{N}(\mu_Y, \sigma_Y^2)$
- Задача

$$\mathbb{H}_0: \mu_X = \mu_Y$$
 vs. $\mathbb{H}_1: \mu_X \neq \mu_Y$

> Механика проверки гипотезы та же, что и раньше.

Непараметрические тесты

Непараметрические тесты

- > Параметрические тесты хороши, когда известны распределения выборки.
- > Например, t-тест работает для нормального распределения.
- > Для остальных случаев есть непараметрические тесты.

χ^2 тест Пирсона

- Тест согласия с распределением/функцией.
- > Составляется как

$$\chi^2 = N \sum_{i=1}^{n} \frac{(O_i/N - p_i)^2}{p_i}.$$

здесь N - количество событий всего, O_i - количество событий в этой точке, p_i ожидаемая частота событий.

 \rightarrow распределено как χ^2 с N-1 степенью свободы.

Ненормальность данных

- Иногда нам нужно сравнить две выборки, которые явно ненормальны.
- > t-тест не работает, что делать?
- > Использовать критерий Манна-Уитни-Вилкоксона.

Критерий Манна-Уитни-Вилкоксона

- 1. Выстроить обе выборки в одну.
- 2. Присвоить номер по возрастанию.
- 3. Найти средний номер в выборках (R1 или R2).
- 4. Подсчитать:

$$U_1 = R_1 - \frac{n_1(n_1+1)}{2}$$

$$U_2 = R_2 - \frac{n_2(n_2+1)}{2}$$

5. Получить критическое значение (U распределение, для больших семплов, нормальное), сравнить с p-value.

NB: Этот критерий сравнивает распределения, а не средние.

Критерий перестановок:

- 1. Обозначим через $T(x_1,...,x_m,y_1,...,y_n)$ некоторую тестовую статистику, например, $T(X_1,...,X_m,Y_1,...,Y_n)=|\overline{X}_m-\overline{Y}_n|.$
- 2. Положим N=m+n и рассмотрим все N! перестановок объединенной выборки $X_1,...,X_m,Y_1,...,Y_n$.
- 3. Для каждой из перестановок подсчитаем значение статистики $T. \ \ \,$
- 4. Обозначим эти значения $T_1, ..., T_{N!}$.

Если \mathbb{H}_0 верна, то при фиксированных упорядоченных значениях $\{X_1,...,X_m,Y_1,...,Y_n\}$ значение статистики T распределены равномерно на множестве $T_1,...,T_{N!}$.

Критерий перестановок

Для критерия перестановок количество более критических значений и есть p-значения.

$$p\text{-value} = \mathbf{P}(T > t_{obs}) = \frac{1}{N!} \sum_{j=1}^{N!} \mathbb{I}(T_j > t_{obs})$$

Критерий перестановок: пример

- > Пусть $(X_1, X_2, Y_1) = (1, 9, 3)$.
- ightarrow Пусть $T(X_1,X_2,Y_1)=|\overline{X}-\overline{Y}|=2$, тогда

Перестановка	Значение Т	Вероятность
(1,9,3)	2	1/6
(9,1,3)	2	1/6
(1,3,9)	7	1/6
(3,1,9)	7	1/6
(3,9,1)	5	1/6
(9,3,1)	5	1/6

> p-value = P(T > 2) = 4/6.

Бутстрэп и Гипотезы

- > В критерии перестановок мы просто перемешивали события.
- В принципе, мы можем вытаскивать произвольные события с возвращением и получать новые выборки.

> Это будет бутстрэпным тестом.

Финальный слайд

- > Тестирование гипотез центральная задача статистики.
- Для каждой задачи скорее всего есть специальный тест, нужно его просто сформулировать.