SO(10) Group Theory for the Unified Model Building

Takeshi Fukuyama † , Amon Ilakovac ‡ , Tatsuru Kikuchi † , Stjepan Meljanac * and Nobuchika Okada $^{\diamond}$ 5

†Department of Physics, Ritsumeikan University,
Kusatsu, Shiga, 525-8577 Japan

†Department of Physics, University of Zagreb, P.O. Box 331, Bijenička cesta 32,
HR-10002 Zagreb, Croatia

*Institut Rudjer Bošković, Bijenička cesta 54, P.O. Box 180, HR-10002 Zagreb, Croatia

*Theory Group, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan

February 2, 2008

Abstract

The complete tables of Clebsch-Gordan (CG) coefficients for a wide class of SO(10) SUSY grand unified theories (GUTs) are given. Explicit expressions of states of all corresponding multiplets under standard model gauge group $G_{321} = SU(3)_C \times SU(2)_L \times U(1)_Y$, necessary for evaluation of the CG coefficients are presented. The SUSY SO(10) GUT model considered here includes most of the Higgs irreducible representations usually used in the literature: 10, 45, 54, 120, 126, 126 and 210. Mass matrices of all G_{321} multiplets are found for the most general superpotential. These results are indispensable for the precision calculations of the gauge couplings unification and proton decay, etc.

¹E-Mail: fukuyama@se.ritsumei.ac.jp

²E-Mail: ailakov@rosalind.phy.hr

³E-Mail: rp009979@se.ritsumei.ac.jp

⁴E-Mail: meljanac@irb.hr

⁵E-Mail: nobuchika.okada@kek.jp

1 Introduction

A particularly attractive idea for the physics beyond the standard model (SM) is the possible appearance of grand unified theories (GUTs) [1]. The idea of GUTs bears several profound features. Perhaps the most obvious one is that GUTs have the potential to unify the diverse set of particle representations and parameters found in the SM into a single, comprehensive, and hopefully predictive framework. For example, through the GUT symmetry one might hope to explain the quantum numbers of the fermion spectrum, or even the origins of fermion mass. Moreover, by unifying all U(1) generators within a non-Abelian theory, GUTs would also provide an explanation for the quantization of electric charge. By combining GUTs with supersymmetry (SUSY), we hope to unify the attractive features of GUTs simultaneously with those of SUSY into a single theory, SUSY GUTs [2]. The apparent gauge couplings unification of the minimal supersymmetric standard model (MSSM) is strong circumstantial evidence in favor of the emergence of a SUSY GUT near $M_G \simeq 2 \times 10^{16}$ GeV [3].

While there are a priori many choices for such possible groups, the list can be narrowed down by requiring groups of rank ≥ 4 that have complex representations. The smallest groups satisfying these requirements are SU(5), SU(6), SO(10), and E_6 . Amongst these choices, SO(10) is particularly attractive [4], because SO(10) is the smallest simple Lie group for which a single anomaly-free irreducible representation (irrep) (namely the spinor 16 representation) can accommodate the entire SM fermion content of each generation.

Once we fix SO(10) as the gauge group, we have also many choices of the Higgs fields though they are limited by the gauge symmetry. The Higgs fields play an essential role in the spontaneous symmetry breaking of the SO(10) gauge group and as a source of the observed fermion masses. The SO(10) gauge group must be broken down to the standard model gauge group $G_{321} = SU(3)_C \times SU(2)_L \times U(1)_Y$ gauge group, and each SO(10) irrep has to be decomposed into G_{321} multiplets. In this paper, we make an explicit construction of the states of these G_{321} multiplets. Using these states, we calculate the CG coefficients appearing in the mass matrices for the states belonging to G_{321} irreps and corresponding mass matrices in a wide class of the SO(10) models. The purpose of the present paper is to give detailed structures of the SO(10) GUTs based on a general model as far as has been possible, and to serve a wide range of unified model builders.

The paper is organized as follows. In Sec. 2, we give a class of SUSY SO(10) GUTs and give an explicit form of the most general superpotential. In such a superpotential, we postulate a renormalizability in order to keep the predictability [5, 6, 7]. However, the result developed here is also applicable to the non-renormalizable models [8, 9, 10, 11, 12, 13, 14]. The symmetry breakings are considered in Sec. 3. Sec. 4 is devoted to present explicit forms of the states in the G_{321} multiplets for all SO(10) irreps. This is the central part of the present paper. Using these tables, we give in Sec. 5 the mass matrices with the CG coefficients for a class of SUSY SO(10) GUTs, together with suitable tests and consistency checks for them. In Sec. 6, we consider the quark and lepton mass matrices in

general SUSY SO(10) models. Sec. 7 is devoted to conclusion. We list the decompositions of each SO(10) irreps under G_{321} subgroup in Appendix A. In Appendix B, we present the complete list of the CG coefficients for the G_{321} multiplets for all SO(10) irreps.

2 A Class of SUSY SO(10) GUTs

In this section, we consider a class of renormalizable SUSY SO(10) models. They include three families of matter fields Ψ_i (i=1,2,3) transforming as 16 dimensional fundamental spinor representation, 16, gauge fields contained in the adjoint representation, and set of SO(10) multiplets of Higgs fields, enabling most general Yukawa couplings. The most general Yukawa couplings follow from decomposition of $\mathbf{16} \times \mathbf{16} = \mathbf{10} + \mathbf{120} + \mathbf{126}$, i.e. they include the Higgs fields in $H = \mathbf{10}$, $D = \mathbf{120}$, $\overline{\Delta} = \overline{\mathbf{126}}$ irreps, respectively. Furthermore, to consider as general case of the symmetry breaking of SO(10) to the standard model gauge group G_{321} as possible, we add several Higgs fields containing G_{321} singlets. They are $A = \mathbf{45}$, $\Delta = \mathbf{126}$, $\Phi = \mathbf{210}$ and $E = \mathbf{54}$ irreps. Of course, that is not the most general case. However, this set of Higgs fields is quite rich and gives rise to several realistic SUSY SO(10) models. Our aim is to give a systematic method for treatment of models with complicated Higgs sectors. This is a generalization of the method proposed in Refs. [15], [16] and [17]. We shall assume that the SUSY is preserved so that we consider the breaking of SUSY SO(10) to the MSSM.

Then the Yukawa couplings are

$$W_Y = Y_{10}^{ij} \Psi_i H \Psi_j + Y_{120}^{ij} \Psi_i D \Psi_j + Y_{126}^{ij} \Psi_i \overline{\Delta} \Psi_j, \tag{1}$$

where i, j = 1, 2, 3 denote the generation indices. Note that H is a fundamental SO(10) irrep, and A, D, Φ and $\Delta + \overline{\Delta}$ are antisymmetric tensors of rank 2, 3, 4, and 5, respectively. E is a symmetric traceless tensor of rank 2.

The most general Higgs superpotential is given by:

$$W = \frac{1}{2}m_{1}\Phi^{2} + m_{2}\overline{\Delta}\Delta + \frac{1}{2}m_{3}H^{2} + \frac{1}{2}m_{4}A^{2} + \frac{1}{2}m_{5}E^{2} + \frac{1}{2}m_{6}D^{2} + \lambda_{1}\Phi^{3} + \lambda_{2}\Phi\overline{\Delta}\Delta + (\lambda_{3}\Delta + \lambda_{4}\overline{\Delta})H\Phi + \lambda_{5}A^{2}\Phi - i\lambda_{6}A\overline{\Delta}\Delta + \frac{\lambda_{7}}{120}\varepsilon A\Phi^{2} + E(\lambda_{8}E^{2} + \lambda_{9}A^{2} + \lambda_{10}\Phi^{2} + \lambda_{11}\Delta^{2} + \lambda_{12}\overline{\Delta}^{2} + \lambda_{13}H^{2}) + D^{2}(\lambda_{14}E + \lambda_{15}\Phi) + D\{\lambda_{16}HA + \lambda_{17}H\Phi + (\lambda_{18}\Delta + \lambda_{19}\overline{\Delta})A + (\lambda_{20}\Delta + \lambda_{21}\overline{\Delta})\Phi\},$$
 (2)

where SO(10) invariants are defined in the fundamental SO(10) basis $1', 2', \dots, 9', 0'$ and in the Y diagonal basis $1, 2, \dots, 9, 0$ (which we will define in the next section) as follows:

Here $a', b', c', \dots (a, b, c, \dots)$ run over all the SO(10) vector (Y diagonal) indices and ε is

a totally antisymmetric SO(10) invariant tensor with

$$\varepsilon_{1'2'3'4'5'6'7'8'9'0'} = i\varepsilon_{1234567890} = 1.$$
 (4)

3 Symmetry Breaking

Here we first introduce Y diagonal basis (see also Ref. [18]): 1 = 1' + 2'i, 2 = 1' - 2'i, 3 = 3' + 4'i, 4 = 3' - 4'i, 5 = 5' + 6'i, 6 = 5' - 6'i, 7 = 7' + 8'i, 8 = 7' - 8'i, 9 = 9' + 0'i, 0 = 9' - 0'i, up to the normalization factor $\frac{1}{\sqrt{2}}$. It is more convenient since (1, 3, 5, 7, 9) transforms as $\overline{\bf 5}$ -plet under $SU(5) \times U(1)_X$ (for that reason Y diagonal basis could also be called SU(5) basis). Consequently, (1, 3) and (2, 4) are $SU(2)_L$ doublets with definite hypercharges $Y = \frac{1}{2}$ and $Y = -\frac{1}{2}$, respectively. Similarly, (5, 7, 9) and (6, 8, 0) transform under $SU(3)_C$ as $\bf 3$ and $\bf \overline{\bf 3}$ with definite hypercharges $Y = -\frac{1}{3}$ and $Y = \frac{1}{3}$, respectively. Note that under the complex conjugation (c.c.), $\overline{\bf 1} = 2$, $\overline{\bf 3} = 4$, $\overline{\bf 5} = 6$, $\overline{\bf 7} = 8$, $\overline{\bf 9} = 0$, and vice versa. The SO(10) invariants are build in such a way that an index a is contracted (summed) with the corresponding c.c. index \overline{a} , for example, $T...a...T...\overline{a}....$

The basis in A = 45, D = 120, $\Phi = 210$ and $\Delta + \overline{\Delta} = 126 + \overline{126}$ dimensional spaces are defined by totally antisymmetric (unit) tensors (a'b'), (a'b'c'), (a'b'c'd') and (a'b'c'd'e'), respectively, and similarly in a, b, c, d, e indices in Y diagonal basis. The states of the Δ and $\overline{\Delta}$ have additional properties,

$$i\varepsilon_{\bar{a}_1\bar{a}_2\bar{a}_3\bar{a}_4\bar{a}_5\bar{a}_6\bar{a}_7\bar{a}_8\bar{a}_9\bar{a}_{10}} \overline{\Delta}_{a_6a_7a_8a_9a_{10}} = \overline{\Delta}_{\bar{a}_1\bar{a}_2\bar{a}_3\bar{a}_4\bar{a}_5}, i\varepsilon_{\bar{a}_1\bar{a}_2\bar{a}_3\bar{a}_4\bar{a}_5\bar{a}_6\bar{a}_7\bar{a}_8\bar{a}_9\bar{a}_{10}} \Delta_{a_6a_7a_8a_9a_{10}} = -\Delta_{\bar{a}_1\bar{a}_2\bar{a}_3\bar{a}_4\bar{a}_5},$$
 (5)

that allow one to project out the Δ and $\overline{\Delta}$ states, respectively, from the 256 antisymmetric states (abcde). The explicit expressions for antisymmetric tensors are, for example,

$$(ab) = ab - ba,$$

$$(abc) = abc + cab + bca - bac - acb - cba$$
(6)

etc. Important relations are

$$(12) = -i(1'2'),$$

$$(34) = -i(3'4'),$$

$$(56) = -i(5'6'),$$

$$(78) = -i(7'8'),$$

$$(90) = -i(9'0')$$

$$(7)$$

Symmetric E = 54 dimensional space is spanned by traceless symmetric states $\{a'b'\} \equiv a'b' + b'a' \ (a', b' = 1', 2', \dots, 9', 0')$ and $\sum_{a'} c_{a'} \{a'a'\}$ with $\sum_{a'} c_{a'} \equiv 0$. Also, important

relations are

$$\begin{aligned}
\{12\} &= 1'1' + 2'2', \\
\{34\} &= 3'3' + 4'4', \\
\{56\} &= 5'5' + 6'6', \\
\{78\} &= 7'7' + 8'8', \\
\{90\} &= 9'9' + 0'0'.
\end{aligned} \tag{8}$$

Now, the Higgs fields A, E, Δ , $\overline{\Delta}$, and Φ contain 8 directions of singlets under the G_{321} subgroup (see Appendix A). The corresponding vacuum expectation values (VEVs) are defined by:

$$\langle A \rangle = \sum_{i=1}^{2} A_i \, \widehat{A}_i, \tag{9}$$

$$\langle E \rangle = E \, \widehat{E}, \tag{10}$$

$$\langle \Delta \rangle = v_R \, \widehat{v_R}, \tag{11}$$

$$\langle \overline{\Delta} \rangle = \overline{v_R} \, \widehat{v_R}, \tag{12}$$

$$\langle \Phi \rangle = \sum_{i=1}^{3} \Phi_i \, \widehat{\Phi}_i, \tag{13}$$

where unit directions \widehat{A}_i (i = 1, 2), \widehat{E} , $\widehat{v_R}$, $\widehat{\overline{v_R}}$ and $\widehat{\Phi}_i$ (i = 1, 2, 3) in the Y diagonal basis are:

$$\hat{A}_1 = \hat{A}_{(1,1,3)}^{(1,1,0)} = \frac{i}{2}(12+34),$$
 (14)

$$\hat{A}_2 = \hat{A}_{(15,1,1)}^{(1,1,0)} = \frac{i}{\sqrt{6}} (56 + 78 + 90),$$
 (15)

$$\widehat{E} = \widehat{E}_{(1,1,1)}^{(1,1,0)} = \frac{1}{\sqrt{60}} \{ 3 \times [12 + 34] - 2 \times [56 + 78 + 90] \}, \tag{16}$$

$$\widehat{v}_R = \widehat{\Delta}_{(\overline{10},1,3)}^{(1,1,0)} = \frac{1}{\sqrt{120}}(24680),$$
 (17)

$$\widehat{\overline{v_R}} = \widehat{\Delta}_{(10,1,3)}^{(1,1,0)} = \frac{1}{\sqrt{120}}(13579),$$
 (18)

$$\widehat{\Phi}_1 = \widehat{\Phi}_{(1,1,1)}^{(1,1,0)} = -\frac{1}{\sqrt{24}}(1234), \tag{19}$$

$$\hat{\Phi}_2 = \hat{\Phi}_{(15,1,1)}^{(1,1,0)} = -\frac{1}{\sqrt{72}} (5678 + 5690 + 7890),$$
 (20)

$$\widehat{\Phi}_3 = \widehat{\Phi}_{(15,1,3)}^{(1,1,0)} = -\frac{1}{12}([12+34][56+78+90]). \tag{21}$$

Here and hereafter, the upper and the lower indices indicate the $SU(3)_C \times SU(2)_L \times U(1)_Y$, $SU(4) \times SU(2)_L \times SU(2)_R$ quantum numbers, respectively in the case of double indices. A

word about notation: the square brackets are used for grouping of indices. This grouping of indices is used to emphasize the $SU(2)_L$ and $SU(3)_C$ structures within the state vectors. The square brackets satisfy usual distributive law with respect to summation of indices and tensor product of indices, e.g.

$$([12+34][56+78+90])$$

$$= (1256+1278+1290+3456+3478+3490)$$

$$= (1256)+(1278)+(1290)+(3456)+(3478)+(3490),$$

$$([1,3][5[78+90],7[56+90],9[56+78]])$$

$$= (1578+1590,1756+1790,1956+1978,$$

$$3578+3590,3756+3790,3956+3978)$$

$$= (1578,1756,1956,3578,3756,3956)$$

$$+ (1590,1790,1978,3590,3790,3978). \tag{22}$$

Further, the numerical factors which could be misinterpreted as additional SO(10) indices are written in italics.

The unit directions appearing in VEVs satisfy the following orthonormality relations

$$\widehat{A}_{i} \cdot \widehat{A}_{j} = \delta_{ij} \quad (i, j = 1, 2) ,$$

$$\widehat{E}^{2} = 1 ,$$

$$\widehat{v}_{R} \cdot \widehat{v}_{R} = \widehat{v}_{R} \cdot \widehat{v}_{R} = 0 ,$$

$$\widehat{v}_{R} \cdot \widehat{v}_{R} = 1 ,$$

$$\widehat{\Phi}_{i} \cdot \widehat{\Phi}_{j} = \delta_{ij} \quad (i, j = 1, 2, 3) .$$
(23)

Due to the D-flatness condition the absolute values of the VEVs, v_R and $\overline{v_R}$ are equal,

$$|v_R| = |\overline{v_R}|. \tag{24}$$

The superpotential of Eq. (2) calculated at the VEVs in Eqs. (14)–(21) is:

$$\langle W \rangle = \frac{1}{2} m_1 \langle \Phi \rangle^2 + m_2 \langle \overline{\Delta} \rangle \langle \Delta \rangle + \frac{1}{2} m_4 \langle A \rangle^2 + \frac{1}{2} m_5 \langle E \rangle^2 + \lambda_1 \langle \Phi \rangle^3 + \lambda_2 \langle \Phi \rangle \langle \overline{\Delta} \rangle \langle \Delta \rangle + \lambda_5 \langle A \rangle^2 \langle \Phi \rangle - i \lambda_6 \langle A \rangle \langle \overline{\Delta} \rangle \langle \Delta \rangle + \frac{\lambda_7}{120} \varepsilon \langle A \rangle \langle \Phi \rangle^2 + \langle E \rangle \left[\lambda_8 \langle E \rangle^2 + \lambda_9 \langle A \rangle^2 + \lambda_{10} \langle \Phi \rangle^2 \right].$$
 (25)

Inserting the VEVs from Eqs. (14)–(21), one obtains

$$\langle W \rangle = \frac{1}{2} m_1 \left[\Phi_1^2 + \Phi_2^2 + \Phi_3^2 \right] + m_2 v_R \overline{v_R}$$

$$+ \frac{1}{2}m_{4}\left(A_{1}^{2} + A_{2}^{2}\right) + \frac{1}{2}m_{5}E^{2}$$

$$+ \lambda_{1}\left[\Phi_{2}^{3}\frac{1}{9\sqrt{2}} + 3\Phi_{1}\Phi_{3}^{2}\frac{1}{6\sqrt{6}} + 3\Phi_{2}\Phi_{3}^{2}\frac{1}{9\sqrt{2}}\right]$$

$$+ \lambda_{2}\left[\Phi_{1}\frac{1}{10\sqrt{6}} + \Phi_{2}\frac{1}{10\sqrt{2}} + \Phi_{3}\frac{1}{10}\right]v_{R}\overline{v_{R}}$$

$$+ \lambda_{5}\left[A_{1}^{2}\Phi_{1}\frac{1}{\sqrt{6}} + A_{2}^{2}\Phi_{2}\frac{\sqrt{2}}{3} + A_{1}A_{2}\Phi_{3}\frac{2}{\sqrt{6}}\right]$$

$$+ \lambda_{6}\left[A_{1}\left(-\frac{1}{5}\right) + A_{2}\left(-\frac{3}{5\sqrt{6}}\right)\right]v_{R}\overline{v_{R}}$$

$$+ \lambda_{7}\left[2A_{2}\Phi_{1}\Phi_{2}\frac{\sqrt{2}}{5} + A_{2}\Phi_{3}^{2}\frac{2\sqrt{2}}{5\sqrt{3}} + 2A_{1}\Phi_{2}\Phi_{3}\frac{\sqrt{2}}{5}\right]$$

$$+ \lambda_{8}E^{3}\frac{1}{2\sqrt{15}} + \lambda_{9}E\left[A_{1}^{2}\frac{\sqrt{3}}{2\sqrt{5}} + A_{2}^{2}\left(-\frac{1}{\sqrt{15}}\right)\right]$$

$$+ \lambda_{10}E\left[\Phi_{1}^{2}\frac{\sqrt{3}}{2\sqrt{5}} + \Phi_{2}^{2}\left(-\frac{1}{\sqrt{15}}\right) + \Phi_{3}^{2}\frac{1}{4\sqrt{15}}\right].$$

$$(26)$$

The VEVs are determined by the following equation:

$$\left\{ \frac{\partial}{\partial \Phi_1}, \frac{\partial}{\partial \Phi_2}, \frac{\partial}{\partial \Phi_3}, \frac{\partial}{\partial v_R}, \frac{\partial}{\partial v_R}, \frac{\partial}{\partial A_1}, \frac{\partial}{\partial A_2}, \frac{\partial}{\partial E} \right\} \langle W \rangle = 0.$$
(27)

From Eq. (27), we obtain seven equations for Φ_1 , Φ_2 , Φ_3 , A_1 , A_1 , E and $v_R \overline{v_R}$. They are:

$$0 = m_1 \Phi_1 + \frac{\lambda_1 \Phi_3^2}{2\sqrt{6}} + \frac{\lambda_2 v_R \overline{v_R}}{10\sqrt{6}} + \frac{\lambda_5 A_1^2}{\sqrt{6}} + \frac{2\sqrt{2}\lambda_7 A_2 \Phi_2}{5} + \frac{\sqrt{3}\lambda_{10} \Phi_1 E}{\sqrt{5}},$$

$$0 = m_1 \Phi_2 + \frac{\lambda_1 \Phi_2^2}{3\sqrt{2}} + \frac{\lambda_1 \Phi_3^2}{3\sqrt{2}} + \frac{\lambda_2 v_R \overline{v_R}}{10\sqrt{2}} + \frac{\sqrt{2}}{3}\lambda_5 A_2^2 + \frac{2\sqrt{2}\lambda_7 \Phi_1 A_2}{5}$$

$$+ \frac{2\sqrt{2}\lambda_7 A_1 \Phi_3}{5} - \frac{2\lambda_{10} \Phi_2 E}{\sqrt{15}},$$

$$0 = m_1 \Phi_3 + \frac{\lambda_1 \Phi_1 \Phi_3}{\sqrt{6}} + \frac{\sqrt{2}\lambda_1 \Phi_2 \Phi_3}{3} + \frac{\lambda_2 v_R \overline{v_R}}{10} + \frac{\sqrt{2}\lambda_5 A_1 A_2}{\sqrt{3}} + \frac{2\sqrt{2}\lambda_7 A_1 \Phi_2}{5}$$

$$+ \frac{4\sqrt{2}\lambda_7 A_2 \Phi_3}{5\sqrt{3}} + \frac{\lambda_{10} \Phi_3 E}{2\sqrt{15}},$$

$$0 = v_R \overline{v_R} \left[m_2 + \frac{\lambda_2 \Phi_1}{10\sqrt{6}} + \frac{\lambda_2 \Phi_2}{10\sqrt{2}} + \frac{\lambda_2 \Phi_3}{10} - \frac{\lambda_6 A_1}{5} - \frac{\sqrt{3}\lambda_6 A_2}{5\sqrt{2}} \right],$$

$$0 = m_4 A_1 + \frac{\sqrt{2}\lambda_5 A_1 \Phi_1}{\sqrt{3}} + \frac{\sqrt{2}\lambda_5 A_2 \Phi_3}{\sqrt{3}} - \frac{\lambda_6 v_R \overline{v_R}}{5} + \frac{2\sqrt{2}\lambda_7 \Phi_2 \Phi_3}{5} + \frac{\sqrt{3}\lambda_9 A_1 E}{\sqrt{5}},$$

$$0 = m_4 A_2 + \frac{\sqrt{2}\lambda_5 A_1 \Phi_3}{\sqrt{3}} + \frac{2\sqrt{2}\lambda_5 A_2 \Phi_2}{3} - \frac{\sqrt{3}\lambda_6 v_R \overline{v_R}}{5\sqrt{2}} + \frac{2\sqrt{2}\lambda_7 \Phi_3^2}{5\sqrt{3}} + \frac{2\sqrt{2}\lambda_7 \Phi_1 \Phi_2}{5} - \frac{2\lambda_9 A_2 E}{\sqrt{15}},$$

$$0 = m_5 E + \frac{\sqrt{3}\lambda_8 E^2}{2\sqrt{5}} + \frac{\sqrt{3}\lambda_9 A_1^2}{2\sqrt{5}} - \frac{\lambda_9 A_2^2}{\sqrt{15}} + \frac{\sqrt{3}\lambda_{10} \Phi_1^2}{2\sqrt{5}} - \frac{\lambda_{10} \Phi_2^2}{\sqrt{15}} + \frac{\lambda_{10} \Phi_3^2}{4\sqrt{15}}.$$
 (28)

If we assume $v_R \overline{v_R} \neq 0$, we obtain five quadratic equations and one linear equation for Φ_i , A_i and E. For that case there are 32 solutions. Two of them correspond to SU(5) symmetry and remaining 30 solutions to G_{321} standard gauge group symmetry solutions. If we set $v_R = 0$, we find six quadratic equations for Φ_1 , Φ_2 , Φ_3 , A_1 , A_2 and E with 64 solutions with symmetry groups having rank 5. They are isomorphic to $G_{3211} \equiv SU(3)_C \times SU(2)_L \times U(1)_R \times U(1)_{B-L}$. However, there are solutions with higher symmetries. They are G_{3221} , G_{421} , G_{422} and G_{51} . For general coupling constants $\lambda_1, \dots, \lambda_{21}, m_1, \dots, m_8$, the solutions with higher symmetries are specified by following relations. Solutions with higher symmetries are characterized by:

1. $SU(5) \times U(1)_X$ and $(SU(5) \times U(1))^{\text{flipped}}$ symmetry solutions

$$\begin{cases}
E = v_R = 0, \\
\Phi_1 = \frac{\varepsilon}{\sqrt{6}}\Phi_3, \quad \Phi_2 = \frac{\varepsilon}{\sqrt{2}}\Phi_3, A_1 = \frac{2\varepsilon}{\sqrt{6}}A_2,
\end{cases}$$
(29)

where $\varepsilon = 1$ and $\varepsilon = -1$ correspond to the $SU(5) \times U(1)_X$ symmetric vacua and $(SU(5) \times U(1))^{\text{flipped}}$ symmetric vacua, respectively.

2. SU(5) symmetry solutions

$$\begin{cases}
E = 0, \\
\Phi_1 = \frac{1}{\sqrt{6}}\Phi_3, & \Phi_2 = \frac{1}{\sqrt{2}}\Phi_3, & A_1 = \frac{2}{\sqrt{6}}A_2, & v_R \neq 0.
\end{cases}$$
(30)

3. $G_{422} \equiv SU(4) \times SU(2)_L \times SU(2)_R$ symmetry solutions

$$\begin{cases}
\Phi_2 = \Phi_3 = A_1 = A_2 = v_R = 0, \\
\Phi_1 \neq 0, E \neq 0.
\end{cases}$$
(31)

4. $G_{3221} \equiv SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ symmetry solutions

$$\begin{cases}
\Phi_3 = A_1 = v_R = 0, \\
\Phi_1 \neq 0, \quad \Phi_2 \neq 0, \quad A_2 \neq 0, \quad E \neq 0.
\end{cases}$$
(32)

⁶For reader's convenience, we list the decompositions of each representation in Appendix A.

5. $G_{421} \equiv SU(4) \times SU(2)_L \times U(1)$ symmetry solutions

$$\begin{cases}
\Phi_2 = \Phi_3 = A_2 = v_R = 0 \\
\Phi_1 \neq 0, \quad A_1 \neq 0, \quad E \neq 0.
\end{cases}$$
(33)

6. $G_{3211} \equiv SU(3)_C \times SU(2)_L \times U(1)_R \times U(1)_{B-L}$ symmetry solutions

$$\begin{cases} v_R = 0, \\ \Phi_i \neq 0 \ (i = 1, 2, 3), \quad A_i \neq (i = 1, 2), \quad E \neq 0. \end{cases}$$
 (34)

The higher symmetry solutions given in Eqs. (29)-(34) lead to the crucial consistency checks for all results in this paper.

4 The states and Clebsch-Gordan coefficients

4.1 The states in the G_{321} multiplets

In order to obtain and study the mass matrices, it is convenient to decompose the Higgs representations under the G_{321} gauge group. The explicit decompositions of 10, 45, 54, 120, 126, $\overline{126}$, and 210 representations in Y diagonal basis are presented according to the G_{321} multiplets with the same quantum numbers which generally mix among themselves. The 8 singlets (1,1,0) are already given in Eqs. (14)–(21). There are 45-12=33would-be NG modes. They are in the following multiplets: (1,1,0), $[(3,2,-\frac{5}{6})+c.c.]$, $[(1,1,1)+c.c.], [(3,1,\frac{2}{3})+c.c.], \text{ and } [(3,2,\frac{1}{6})+c.c.].$ The corresponding orthonormal states are listed in Table 1 in Y-diagonal basis. The physically important modes, so called, Higgs doublets $[(1,2,\frac{1}{2})+c.c.]$ and color triplets $[(3,1,-\frac{1}{3})+c.c.]$ states are listed in Tables 2 and 3, respectively. The remaining G_{321} multiplets are listed in Tables 4 and 5. There are altogether 691 states accommodated in G_{321} multiplets (see Table 6). There are 26 mass matrices, 5 containing NG modes, 1 containing doublets, 1 containing color triplets, 19 containing the other modes. There are 5 multiplets (33 states) with zero mass and 69 G_{321} multiplets with masses different from zero (containing 691-33=658 states). Hence the mass spectrum contains 70 different mass eigenvalues. For the SU(5) solutions, there are only 21 different masses and G_{321} multiplets are grouped into multiplets transforming under the SU(5) group. For the G_{422} solutions, there are 27 different mass eigenvalues and G_{321} multiplets are grouped into multiplets transforming under the G_{422} group (see Appendix A). The higher symmetries serve as a strong consistency check of our mass matrices and CG coefficients.

We point out that the main basic blocks in all 961 states are $SU(2)_L$ irreps 1, 2 and

3, and SU(3) irreps **1**, **3**, $\bar{\bf 3}$, **6**, $\bar{\bf 6}$ and **8**:

$$SU(2)_{L}$$

$$\mathbf{1} \qquad [12+34], \ (13), \ (24), \ (1234),$$

$$\mathbf{2} \qquad [1,3], \ [-3,1], \ [2,4], \ [-4,2],$$

$$\mathbf{3} \qquad \left[14,32,\frac{12-34}{\sqrt{2}}\right], \ \left\{\frac{11}{2}, -\frac{33}{2}, -\frac{13}{\sqrt{2}}\right\}, \ \left\{\frac{22}{2}, -\frac{44}{2}, -\frac{24}{\sqrt{2}}\right\}$$

$$SU(3)_{C}$$

$$\mathbf{1} \qquad [56+78+90], \ (579), \ (680), \ (5678+5690+7890)$$

$$\mathbf{3} \qquad [5,7,9], \ (80,06,68), \ (5680,7806,9068)$$

$$\mathbf{\bar{3}} \qquad [6,8,0], \ (79,95,57), \ (5697,7859,9075)$$

$$\mathbf{6} \qquad \left(580,670,689,\frac{6[90-78]}{\sqrt{2}},\frac{8[56-90]}{\sqrt{2}},\frac{0[78-56]}{\sqrt{2}}\right),$$

$$\left\{\frac{55}{2},\frac{77}{2},\frac{99}{2},\frac{79}{\sqrt{2}},\frac{95}{\sqrt{2}},\frac{57}{\sqrt{2}}\right\},$$

$$\left\{\frac{66}{2},\frac{88}{2},\frac{90}{2},\frac{\{80\}}{\sqrt{2}},\frac{\{668\}}{\sqrt{2}}\right\},$$

$$\left\{\frac{66}{2},\frac{88}{2},\frac{90}{2},\frac{\{80\}}{\sqrt{2}},\frac{\{66\}}{\sqrt{2}},\frac{\{688\}}{\sqrt{2}}\right\},$$

$$\left\{58,50,70,76,96,98,\frac{56-78}{\sqrt{2}},\frac{56+78-2\times90}{\sqrt{6}}\right],$$

$$\left\{5890,5078,7056,7690,9678,9856,\frac{5690-7890}{\sqrt{2}},\frac{2\times5678-5690-7890}{\sqrt{6}}\right).$$

All states can be constructed combining and antisymmetrizing or symmetrizing the basic blocks. The basic blocks (35) and (36) which appear only in antisymmetric tensors are embraced by parenthesis, the basic blocks which appear only in the symmetric tensors are embraced by curly brackets ($\{aa\}/2 = aa$), while the basic blocks that appear both in symmetric and antisymmetric tensors are embraced by square brackets.

Table 1: States in the would-be NG modes

(1,1,1) + c.c.	$\widehat{A}_{(1,1,3)}^{(1,1,1)}$	$\frac{i}{\sqrt{2}}(13) + c.c.$
	$\widehat{D}_{(\overline{10},1,1)}^{(1,1,1)}$	$\frac{1}{\sqrt{6}}(680) + c.c.$
	$\widehat{\Delta}_{(\overline{10},1,3)}^{(10,1,1)}$	$\frac{1}{\sqrt{240}}([12+34]680)+c.c.$
	$\widehat{\Phi}_{(15,1,3)}^{(10,1,3)}$	$\frac{1}{\sqrt{72}}(13[56+78+90])+c.c.$
$(3,1,\frac{2}{3})+c.c.$	$\widehat{A}_{(15,1,1)}^{(3,1,\frac{2}{3})}$	$\frac{i}{\sqrt{2}}(80,06,68) + c.c.$
Ü	$\widehat{D}_{(6,1,3)}^{(3,1,\frac{2}{3})}$	$\frac{1}{\sqrt{6}}(13[5,7,9]) + c.c.$
	$\frac{\hat{\Delta}^{(3,1,\frac{2}{3})}}{\hat{\Delta}_{(10,1,3)}}$	$\frac{1}{\sqrt{240}} \left(13 \left[5 \left[78+90\right], 7 \left[56+90\right], 9 \left[56+78\right]\right]\right) + c.c.$
	$\widehat{\mathbf{A}}(3,1,\frac{2}{3})$	$\frac{1}{\sqrt{240}}$ (5680, 7806, 9068) + c.c.
	$\widehat{\Phi}_{(15,1,3)}^{(15,1,1)}$ $\widehat{\Phi}_{(15,1,3)}^{(3,1,\frac{2}{3})}$	$\frac{1}{\sqrt{48}}([12+34][80,06,68]) + c.c.$
$(3,2,-\frac{5}{6})+c.c.$	$\widehat{A}_{(6,2,2)}^{(3,2,-\frac{5}{6})}$	$\frac{i}{\sqrt{2}}([2,4][5,7,9]) + c.c.$
6) + 6.0.	$\widehat{E}_{(6,2,2)}^{(6,2,2)}$	V 2
	$E_{(6,2,2)}$	$\frac{1}{\sqrt{2}}\left\{ [2,4]\left[5,7,9\right] \right\} + c.c.$
	$\widehat{\Phi}_{(6,2,2)}^{(3,2,-\frac{5}{6})}$	$\frac{1}{\sqrt{24}}\left([234, 124][5, 7, 9]\right) + c.c.$
	$\widehat{\Phi}_{(10,2,2)}^{(3,2,-\frac{5}{6})}$	$\frac{1}{\sqrt{48}}([2,4][5[78+90],7[56+90],9[56+78]])+c.c.$
$(3,2,\frac{1}{6})+c.c.$	$\widehat{A}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$\frac{i}{\sqrt{2}}([1,3][5,7,9]) + c.c.$
	$\widehat{E}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$\frac{1}{\sqrt{2}}\left\{ [1,3]\left[5,7,9\right] \right\} + c.c.$
	$\widehat{D}_{(15,2,2)}^{(3,2,\frac{1}{6})}$	$\frac{1}{\sqrt{6}}([-4,2][80,06,68]) + c.c.$
	$\widehat{\Delta}_{(15,2,2)}^{(13,2,\frac{1}{6})}$ $\widehat{\Delta}_{(15,2,2)}^{(13,2,2)}$	$ \frac{1}{\sqrt{240}} \left[\left(\left[-124, 234 \right] \left[80, 06, 68 \right] \right) + \left(\left[-4, 2 \right] \left[5680, 7806, 9068 \right] \right) \right] + c.c. $
	$\frac{\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{1}{6})}}{\widehat{\Delta}_{(15,2,2)}}$	$ \frac{1}{\sqrt{240}} \Big[([-124, 234] [80, 06, 68]) - ([-4, 2] [5680, 7806, 9068]) \Big] + c.c. $
	$\widehat{\Phi}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$\frac{1}{\sqrt{24}}\left([134, 123][5, 7, 9]\right) + c.c.$
	$\widehat{\Phi}_{(10,2,2)}^{(3,2,\frac{1}{6})}$	$\frac{1}{\sqrt{48}}\left(\left[1,3\right]\left[5\left[78+90\right],7\left[56+90\right],9\left[56+78\right]\right]\right)+c.c.$

Table 2: States in the doublets $[(\mathbf{1}, \mathbf{2}, \frac{1}{2}) + c.c.]$

$$\begin{array}{|c|c|c|} \hline (\mathbf{1},\mathbf{2},\frac{1}{2}) + c.c. & \widehat{H}^{(1,2,\frac{1}{2})}_{(1,2,2)} & [1,3] + c.c. \\ \widehat{D}^{(1,2,\frac{1}{2})}_{(1,2,2)} & \frac{1}{\sqrt{6}} \left(134,123\right) + c.c. \\ \widehat{D}^{(1,2,\frac{1}{2})}_{(15,2,2)} & \frac{1}{\sqrt{18}} \left([1,3]\left[56 + 78 + 90\right]\right) + c.c. \\ \widehat{\Delta}^{(1,2,\frac{1}{2})}_{(15,2,2)} & \frac{1}{\sqrt{720}} \Big[\left([134,123]\left[56 + 78 + 90\right]\right) - \left([1,3]\left[5678 + 5690 + 7890\right]\right) \Big] + c.c. \\ \widehat{\Phi}^{(1,2,\frac{1}{2})}_{(15,2,2)} & \frac{1}{\sqrt{720}} \Big[\left([134,123]\left[56 + 78 + 90\right]\right) + \left([1,3]\left[5678 + 5690 + 7890\right]\right) \Big] + c.c. \\ \widehat{\Phi}^{(1,2,\frac{1}{2})}_{(10,2,2)} & \frac{1}{\sqrt{720}} \Big[\left([134,123]\left[56 + 78 + 90\right]\right) + \left([1,3]\left[5678 + 5690 + 7890\right]\right) \Big] + c.c. \\ \end{array}$$

Table 3: States in the color triplets $[(\mathbf{3}, \mathbf{1}, -\frac{1}{3}) + c.c.]$

$$\begin{array}{c|c} (\mathbf{3},\mathbf{1},-\frac{1}{3})+c.c. & \widehat{H}_{(6,1,1)}^{(3,1,-\frac{1}{3})} & [5,7,9]+c.c. \\ \widehat{D}_{(6,1,3)}^{(3,1,-\frac{1}{3})} & \widehat{\frac{1}{\sqrt{12}}}\left([12+34]\left[5,7,9\right]\right)+c.c. \\ \widehat{D}_{(10,1,1)}^{(3,1,-\frac{1}{3})} & \widehat{\frac{1}{\sqrt{12}}}\left(5\left[78+90\right],7\left[56+90\right],9\left[56+78\right]\right)+c.c. \\ \widehat{\Delta}_{(6,1,1)}^{(3,1,-\frac{1}{3})} & \widehat{\frac{1}{\sqrt{240}}}\left[\left(1234\left[5,7,9\right]\right)-\left(57890,56790,56789\right)\right]+c.c. \\ \widehat{\frac{1}{\sqrt{240}}}\left[\left(1234\left[5,7,9\right]\right)+\left(57890,56790,56789\right)\right]+c.c. \\ \widehat{\frac{1}{\sqrt{240}}}\left[\left(1234\left[5,7,9\right]\right)+\left(57890,56790,56790\right)$$

Table 4: States in the other G_{321} multiplets including Δ or $\overline{\Delta}$

(1,1,2) + c.c.	$\widehat{\Lambda}^{(\underline{1},\underline{1},2)}$	$\frac{1}{\sqrt{120}}(13680) + c.c.$
	$\frac{\Delta_{(\overline{10},1,3)}}{\widehat{E}_{(1,3,1)}^{(1,3,1)}}$	V == 0
(1,3,1) + c.c.	-(1,3,3)	$\left[11, -33, -\frac{\{13\}}{\sqrt{2}}\right] + c.c$
	$\widehat{\overline{\Delta}}_{(\overline{10},3,1)}^{(1,3,1)}$	$\frac{1}{\sqrt{120}} \left(\left[14, 32, \frac{12-34}{\sqrt{2}} \right] 680 \right) + c.c.$
$(3,1,-\frac{4}{3})+c.c.$	$\widehat{D}_{(6,1,3)}^{(3,1,-\frac{4}{3})}$	$\frac{1}{\sqrt{6}} (24 [5, 7, 9]) + c.c.$
	$\frac{\widehat{\Delta}^{(3,1,-\frac{4}{3})}}{\widehat{\Delta}_{(10,1,3)}}$	$\frac{1}{\sqrt{240}} \left(24 \left[5 \left[78+90\right], 7 \left[56+90\right], 9 \left[56+78\right]\right]\right) + c.c.$
$(3,2,\frac{7}{6})+c.c.$	$\widehat{D}_{(15,2,2)}^{(3,2,\frac{7}{6})}$	$\frac{1}{\sqrt{6}}([1,3][80,06,68]) + c.c.$
	$\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{7}{6})}$	$\frac{1}{\sqrt{240}} \left([134, 123] [80, 06, 68] - [1, 3] [5680, 7806, 9068] \right) + \text{c.c}$
	$\frac{\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{7}{6})}}{\Delta_{(15,2,2)}}$	$\frac{1}{\sqrt{240}} \left([134, 123] [80, 06, 68] + [1, 3] [5680, 7806, 9068] \right) + \text{c.c}$
$(3,3,-\frac{1}{3})+c.c.$	$\widehat{D}_{(6,3,1)}^{(3,3,-\frac{1}{3})}$	$\frac{1}{\sqrt{6}}\left(\left[14,32,\frac{12-34}{\sqrt{2}}\right]\left[5,7,9\right]\right)+c.c.$
	$\widehat{\Delta}_{(10,3,1)}^{(3,3,-\frac{1}{3})}$	$\frac{1}{\sqrt{240}} \left(\left[14, 32, \frac{12-34}{\sqrt{2}} \right] \right)$
	(-) -)	[5 [78 + 90], 7 [56 + 90], 9 [56 + 78]]) + c.c.
$(6,1,-\frac{2}{3})+c.c.$	$\widehat{E}_{(20',1,1)}^{(6,1,-\frac{2}{3})}$	$\left[55,77,99,\frac{\{79\}}{\sqrt{2}},\frac{\{95\}}{\sqrt{2}},\frac{\{57\}}{\sqrt{2}}\right]+c.c.$
	$\frac{\widehat{\Delta}^{(6,1,-\frac{2}{3})}}{\widehat{\Delta}_{(10,1,3)}}$	$\frac{1}{\sqrt{120}} \left(24 \left[580, 670, 689, \frac{6[90-78]}{\sqrt{2}}, \frac{8[56-90]}{\sqrt{2}}, \frac{0[78-56]}{\sqrt{2}} \right] \right) + c.c.$
$(6,1,\frac{1}{3})+c.c.$	$\widehat{D}_{(10,1,1)}^{(6,1,\frac{1}{3})}$	$\frac{1}{\sqrt{6}}\left(580,670,689,\frac{6[90-78]}{\sqrt{2}},\frac{8[56-90]}{\sqrt{2}},\frac{0[78-56]}{\sqrt{2}}\right)+c.c.$
	$\frac{\widehat{\Delta}_{(10,1,3)}^{(6,1,\frac{1}{3})}}{\Delta_{(10,1,3)}}$	$\frac{1}{\sqrt{240}} \left(\left[12 + 34 \right] \left[580, 670, 689, \frac{6[90 - 78]}{\sqrt{2}}, \frac{8[56 - 90]}{\sqrt{2}}, \frac{0[78 - 56]}{\sqrt{2}} \right] \right) + c.c.$
$(6,1,\frac{4}{3})+c.c.$	$\frac{\widehat{\Delta}^{(6,1,\frac{4}{3})}}{\widehat{\Delta}_{(10,1,3)}}$	$\frac{1}{\sqrt{120}} \left(13 \left[580, 670, 689, \frac{6[90-78]}{\sqrt{2}}, \frac{8[56-90]}{\sqrt{2}}, \frac{0[78-56]}{\sqrt{2}} \right] \right) + c.c.$
$(6,3,\frac{1}{3})+c.c.$	$\widehat{\Delta}_{(10,3,1)}^{(6,3,\frac{1}{3})}$	$\frac{1}{\sqrt{120}} \left(\left[14, 32, \frac{12-34}{\sqrt{2}} \right] \right)$
J.		$\left[580,670,689,\frac{6[90-78]}{\sqrt{2}},\frac{8[56-90]}{\sqrt{2}},\frac{0[78-56]}{\sqrt{2}}\right]\right)+c.c.$
$(8,2,\frac{1}{2})+c.c.$	$\widehat{D}_{(15,2,2)}^{(8,2,\frac{1}{2})}$	$\frac{1}{\sqrt{6}}\left([1,3]\left[58,50,70,76,96,98,\frac{56-78}{\sqrt{2}},\frac{56+78-2[90]}{\sqrt{6}}\right]\right)+c.c.$
	$\widehat{\Delta}_{(15,2,2)}^{(8,2,\frac{1}{2})}$	$\frac{1}{\sqrt{240}} \left([134, 123] \left[58, 50, 70, 76, 96, 98, \frac{56 - 78}{\sqrt{2}}, \frac{56 + 78 - 2[90]}{\sqrt{6}} \right] \right)$
		+[1,3][5890,5078,7056,7690,9678,9856,
	. 1.	$\frac{5690-7890}{\sqrt{2}}, \frac{2[5678]-5690-7890}{\sqrt{6}} \Big] + c.c.$
	$\frac{\widehat{\Delta}^{(8,2,\frac{1}{2})}}{\Delta_{(15,2,2)}}$	$\frac{1}{\sqrt{240}} \left([134, 123] \left[58, 50, 70, 76, 96, 98, \frac{56 - 78}{\sqrt{2}}, \frac{56 + 78 - 2[90]}{\sqrt{6}} \right] \right)$
		-[1,3][5890,5078,7056,7690,9678,9856,
		$\left[\frac{5690-7890}{\sqrt{2}}, \frac{2[5678]-5690-7890}{\sqrt{6}}\right]\right) + c.c.$

Table 5: States in the other G_{321} multiplets including Φ

$(1,2,\frac{3}{2})+c.c.$	$\widehat{\Phi}_{(\overline{10},2,2)}^{(1,2,\frac{3}{2})}$	$\frac{1}{\sqrt{24}}([1,3]680) + c.c.$
$({f 1},{f 3},0)$	$\widehat{A}_{(1,3,1)}^{(1,3,2)}$	$\frac{i}{\sqrt{2}}\left(14,32,\frac{12-34}{\sqrt{2}}\right)$
	$\widehat{E}_{(1,3,3)}^{(1,3,0)}$	$\frac{1}{\sqrt{2}}\left\{14, 32, \frac{12-34}{\sqrt{2}}\right\}$
	$\widehat{\Phi}_{(15,3,1)}^{(1,3,0)}$	$\frac{1}{\sqrt{72}} \left(\left[14, 32, \frac{12-34}{\sqrt{2}} \right] \left[56 + 78 + 90 \right] \right)$
$(3,1,\frac{5}{3})+c.c.$	$\widehat{\Phi}_{(15,1,3)}^{(3,1,\frac{5}{3})}$	$\frac{1}{\sqrt{24}}(13[80,06,68]) + c.c.$
$(3,3,\frac{2}{3})+c.c.$	$\widehat{\Phi}_{(15,3,1)}^{(3,3,\frac{2}{3})}$	$\frac{1}{\sqrt{24}} \left(\left[14, 32, \frac{12 - 34}{\sqrt{2}} \right] \right) \left[80, 06, 68 \right] + c.c.$
$(6,2,-\frac{1}{6})+c.c.$	$\widehat{\Phi}_{(10,2,2)}^{(6,2,-\frac{1}{6})}$	$\frac{1}{\sqrt{24}}\left([2,4]\left[580,670,689,\frac{6(90-78)}{\sqrt{2}},\frac{8(56-90)}{\sqrt{2}},\frac{0(78-56)}{\sqrt{2}}\right]\right)+c.c.$
$(6,2,\frac{5}{6})+c.c.$	$\widehat{\Phi}_{(10,2,2)}^{(6,2,\frac{5}{6})}$	$\frac{1}{\sqrt{24}}\left([1,3]\left[580,670,689,\frac{6(90-78)}{\sqrt{2}},\frac{8(56-90)}{\sqrt{2}},\frac{0(78-56)}{\sqrt{2}}\right]\right)+c.c.$
(8, 1, 0)	$\widehat{A}_{(15,1,1)}^{(8,1,0)}$	$\frac{i}{\sqrt{2}} \left(58, 50, 70, 76, 96, 98, \frac{1}{\sqrt{2}} [56 - 78], \frac{1}{\sqrt{6}} [56 + 78 - 2[90]]\right)$
	$\hat{E}_{(20',1,1)}^{(8,1,0)}$	$\frac{1}{\sqrt{2}} \left\{ 58, 50, 70, 76, 96, 98, \frac{1}{\sqrt{2}} \left[56 - 78 \right], \frac{1}{\sqrt{6}} \left[56 + 78 - 2 \left[90 \right] \right] \right\}$
	$\widehat{\Phi}_{(15,1,1)}^{(8,1,0)}$	$\frac{1}{\sqrt{24}}$ (5890, 5078, 7056, 7690, 9678, 9856, $\frac{1}{\sqrt{2}}$ [5690 - 7890],
		$\frac{1}{\sqrt{6}} \left[2[5678] - 5690 - 7890] \right]$
	$\widehat{\Phi}_{(15,1,3)}^{(8,1,0)}$	$\frac{1}{\sqrt{48}}\left([12+34]\left[58,50,70,76,96,98,\frac{1}{\sqrt{2}}\left[56-78\right],\right]\right)$
		$\frac{1}{\sqrt{6}}[56+78-2[90]]$
(8,1,1) + c.c.	$\widehat{\Phi}_{(15,1,3)}^{(8,1,1)}$	$\frac{1}{\sqrt{24}}\left(13\left[58,50,70,76,96,98,\frac{1}{\sqrt{2}}\left[56-78\right],\right.\right)$
		$\frac{1}{\sqrt{6}}[56 + 78 - 2[90]] + c.c.$
(8, 3, 0)	$\widehat{\Phi}_{(15,3,1)}^{(8,3,0)}$	$\frac{1}{\sqrt{24}} \left(\left[14, 32, \frac{12-34}{\sqrt{2}} \right] \left[58, 50, 70, 76, 96, 98, \frac{1}{\sqrt{2}} \left[56 - 78 \right], \right] \right)$
		$\frac{1}{\sqrt{6}}[56 + 78 - 2[90]]$

Table 6: Number of G_{321} multiplets

	8	(1, 1, 0)
	4	[(1 , 1 ,1)+c.c.]
	1	[(1,1,2)+c.c.]
	6	$[(1,2,\frac{1}{2})+c.c.]$
	1	$[(1,2,\frac{3}{2})+c.c.]$
	3	$({f 1},{f 3},0)$
	2	[(1 , 3 , 1) + c.c.]
	2	$[(3, 1, -\frac{4}{3}) + c.c.]$ [(3 , 1 , -\frac{1}{3}) + c.c.]
	7	$[(3,1,-\frac{3}{3})+c.c.]$
	5	$[(3,1,\frac{2}{3})+c.c.]$
	1	$[(3,1,\frac{5}{2})+c.c.]$
	4	$[(3,2,-\frac{5}{6})+c.c.]$
	7	$[(3, 2, \frac{1}{6}) + c.c.]$ $[(3, 2, \frac{7}{6}) + c.c.]$
	3	$[(3,2,\frac{7}{6})+c.c.]$
	2	$[(3,3,-\frac{1}{2})+c.c.]$
	1	$[(3,3,\frac{2}{3})+c.c.]$
	2	$[(6,1,-\frac{2}{3})+c.c.]$
	2	$[(6,1,\frac{1}{3})+c.c.]$
	1	$[(6,1,\frac{4}{3})+c.c.]$
	1	$[(6, 2, -\frac{1}{6}) + c.c.]$
	1	$[(6, 2, \frac{5}{6}) + c.c.]$
	1	$[(6, 2, \frac{5}{6}) + c.c.]$ $[(6, 3, \frac{1}{3}) + c.c.]$
	4	(8, 1, 0)
	1	[(8,1,1)+c.c.]
	3	$[(8, 2, -\frac{1}{2}) + c.c.]$
	1	(8, 3, 0)
sum	74	multiplets
_	5	NG multiplets
	69	massive multiplets

4.2 \mathcal{H} operators and Clebsch-Gordan coefficients

Let us denote by R the sum of all representations 10, 45, 54, 120, 126, $\overline{126}$, and 210,

$$R = \sum_{I} R^{I}, \quad dim R = 961.$$
 (37)

There are 21 cubic invariants (see Eq. (3)),

$$\mathcal{I}(R^I, R^J, R^{\overline{K}}) \equiv \mathcal{I}^{IJ\overline{K}}, \qquad \overline{R^K} \equiv R^{\overline{K}}$$
 (38)

where $R^I \times R^J = \sum_K R^K$.

Let us denote \mathcal{H} -operators (see Refs. [15] and [16])

$$\mathcal{H}_K(R^I, R^J) = \mathcal{H}_K(R^J, R^I) \sim R^K \tag{39}$$

transforming as \mathbb{R}^K and

$$\mathcal{H}_K(R^I, R^J) = \frac{1}{N} \frac{\partial \mathcal{I}^{IJ\overline{K}}}{\partial R^{\overline{K}}}.$$
 (40)

The normalization factor N is chosen so that

$$\mathcal{H}_K(R^I, R^J) \ R^{\overline{K}} = \mathcal{I}^{IJ\overline{K}}. \tag{41}$$

For example, in the Y-diagonal basis

$$[\mathcal{H}_{\Phi}(\Phi_{1}, \Phi_{2})]_{abcd} = \frac{1}{6} \left[(\Phi_{1})_{abef}(\Phi_{2})_{cd\bar{e}\bar{f}} - (\Phi_{1})_{acef}(\Phi_{2})_{bd\bar{e}\bar{f}} + (\Phi_{1})_{adef}(\Phi_{2})_{bc\bar{e}\bar{f}} + (\Phi_{1})_{cdef}(\Phi_{2})_{ab\bar{e}\bar{f}} - (\Phi_{1})_{bdef}(\Phi_{2})_{ac\bar{e}\bar{f}} + (\Phi_{1})_{bcef}(\Phi_{2})_{ad\bar{e}\bar{f}} \right]$$

$$(42)$$

For invariants of the type \mathcal{I}^{III} , there is only one \mathcal{H} operator, \mathcal{H}_I , for invariants of the type $\mathcal{I}^{II\overline{K}}$ there are two \mathcal{H} operators, $\mathcal{H}_{\overline{I}}$ and \mathcal{H}_K and for invariants of the type $\mathcal{I}^{IJ\overline{K}}$ there are three \mathcal{H} operators, $\mathcal{H}_{\overline{I}}$, $\mathcal{H}_{\overline{J}}$ and \mathcal{H}_K . The \mathcal{H} operators are symmetric in R^I and R^J , $\mathcal{H}(R^I, R^J) = \mathcal{H}(R^J, R^I)$. More generally,

$$\mathcal{I}^{IJ\overline{K}} = \mathcal{I}^{JI\overline{K}} = \mathcal{I}^{I\overline{K}J} = \mathcal{I}^{J\overline{K}I} = \mathcal{I}^{\overline{K}IJ} = \mathcal{I}^{\overline{K}JI}. \tag{43}$$

Specially, we are interested in CG coefficients when at least one of the states transforms as a singlet under the G_{321} group. That requires the decomposition of each SO(10) irrep R^I into G_{321} irreps,

$$R^{I} = \sum_{i} R_{i}^{I}, \tag{44}$$

where indices "i" just enumerate the G_{321} irreps with fixed Y contained in a specific R^I irrep. There are eight singlets, denoted here shortly by S_i^I , defined in Eqs. (14)-(21). For

this choice of G_{321} -singlet states, the action of \mathcal{H} operators are reduced to the invariant subspaces of states with fixed G_{321} quantum numbers, which are listed in Tables 1–5,

$$\mathcal{H}_K(\hat{S}_i^I, R_j^J) = \sum_k C_{ijk}^{IJK} R_k^K, \tag{45}$$

where R_j^J and R_k^K transform as identical G_{321} irreps (have the same G_{321} quantum numbers). For example, for the evaluation of the first column in the $(\mathbf{1}, \mathbf{3}, 1)$ mass matrix (see Eq. (74)), the following \mathcal{H} operators have to be evaluated,

$$\mathcal{H}_{E}(\widehat{E}, \widehat{E}_{(1,3,3)}^{(1,3,1)}) = \frac{\sqrt{3}}{2\sqrt{5}} \widehat{E}_{(1,3,3)}^{(1,3,1)},$$

$$\mathcal{H}_{\overline{\Delta}}(\widehat{v}_{R}, \widehat{E}_{(1,3,3)}^{(1,3,1)}) = \frac{1}{5} \widehat{\Delta}_{(\overline{10},3,1)}^{(1,3,1)}.$$
(46)

Note that

$$C_{ijk}^{IJK} = \mathcal{I}(\hat{S}_i^I, \hat{R}_j^J, \hat{R}_{\overline{k}}^{\overline{K}}) \equiv \hat{S}_i^I \hat{R}_j^J \hat{R}_{\overline{k}}^{\overline{K}}, \tag{47}$$

(the second part of Eq. (47) defines shortand notation) where

$$\hat{R}_{\overline{i}}^{\overline{I}} \equiv \overline{\hat{R}_{i}^{I}} \tag{48}$$

is the complex conjugated irrep of \hat{R}_i^I . The CG coefficients are listed in 25 tables in Appendix B. Note that the CG coefficients depend only on the indices i, j, \dots , that represent G_{321} multiplets and not on the specific states within the G_{321} multiplets. That can be used as a consistency check of the states belonging to the specific G_{321} multiplets.

We choose all SO(10) invariants in Eq. (3) to be real, except for invariants containing the Δ or the $\overline{\Delta}$ field separately (for example, $\Delta H\Phi$ or $E\overline{\Delta}^2$). In this last case, the sum of the two invariants, one containing Δ field and the other having $\overline{\Delta}$ field in place of Δ , are real. Generally, CG coefficients are complex (in our case they are either real or pure imaginary). Starting with cubic invariants in Eq. (3), our choice of phases of states in Tables 1 – 5 is such that it leads to the minimal number of imaginary terms in the mass matrices.

Symmetry relations imply

$$C_{ijk}^{IJK} = C_{jik}^{JIK}. (49)$$

CG coefficients also satisfy hermiticity relations,

$$\overline{C_{ijk}^{IJK}} = C_{\overline{i}kj}^{\overline{I}KJ}. \tag{50}$$

Here the \bar{i} represents the label assigned to the irrep complex conjugated to the irrep designated by i.

Furthermore, following relations are valid,

$$\sum_{j} C_{ij\bar{j}}^{IJ\bar{J}} dim R_{j}^{J} = 0, \qquad \sum_{j} dim R_{j}^{J} = dim R^{J}$$

$$\sum_{i} \sum_{j} C_{ijk}^{IJK} C_{i\bar{j}\bar{l}}^{I\bar{J}K} dim R_{i}^{I} dim R_{j}^{J} = C(I, J, K) \delta_{k\bar{l}},$$

$$\sum_{i} dim R_{i}^{I} = dim R^{I}, \qquad \sum_{j} dim R_{j}^{J} = dim R^{J},$$
(52)

where C(I,J,K) are constants depending on irreps $\mathbb{R}^{I},\,\mathbb{R}^{J}$ and $\mathbb{R}^{K}.$

5 Mass Matrices

5.1 Mass Matrices

For the sum of all representations R (see Eq. (37)), we define fluctuations of the Higgs field around the VEVs as

$$R = \langle R \rangle + \sum_{I,i} r_i^I. \tag{53}$$

Then the matrix element of the mass matrix corresponding to G_{321} multiplets i, j (R_i^I and R_i^J transform identically under G_{321}) is:

$$\mathcal{M}_{ij}^{IJ} = \left(\frac{\partial^2 W}{\partial r_i^I \partial \overline{r_j^J}}\right)_{R=\langle R \rangle},\tag{54}$$

$$\mathcal{M}_{ij}^{IJ} = m_I \delta_{IJ} \delta_{ij} + \sum_{K,k} \lambda^{IJK} S_i^I C_{ijk}^{IJK}, \tag{55}$$

where $\lambda^{III}=6\lambda_p$, $\lambda^{IIK}=2\lambda_p$ and $\lambda^{IJK}=\lambda_p$ for invariants containing three identical representations, two identical representations (different from the third one), and three different representations, respectively. Specifically, $\{\lambda^{IJK}\}=\{6\lambda_1, 6\lambda_8, 2\lambda_5, 2\lambda_7, 2\lambda_9, 2\lambda_{10}, 2\lambda_{11}, 2\lambda_{12}, 2\lambda_{13}, 2\lambda_{14}, 2\lambda_{15}, \lambda_2, \lambda_3, \lambda_4, \lambda_6, \lambda_{16}, \lambda_{17}, \lambda_{18}, \lambda_{19}, \lambda_{20}, \lambda_{21}\}.$

According to Eq. (51) the trace of the total mass matrix over all $\dim R$ states in R is

$$\operatorname{Tr} \mathcal{M} = \sum_{I} m_{I} \dim R^{I}. \tag{56}$$

The mass matrices are generally non-hermitian. So the squares of the physical masses are equal to the absolute values of eigenvalues of matrices $\mathcal{M}^{\dagger}\mathcal{M}$ and $\mathcal{M}\mathcal{M}^{\dagger}$. (One can obtain hermitian matrices $\mathcal{M}^{\dagger}\mathcal{M}$, *i.e.* $\mathcal{M}\mathcal{M}^{\dagger}$ with the same spectra.) For a real superpotential, that is for $\lambda_3 = \lambda_4$, $\lambda_{11} = \lambda_{12}$, $\lambda_{18} = \lambda_{19}$ and $\lambda_{20} = \lambda_{21}$ and all coupling constants and VEVs real, the matrices are hermitian due to the hermiticity relation (50).

Now we are ready to present the explicit forms of the mass matrices calculated from the superpotential of Eq. (2). Every matrix is designated with the corresponding G_{321} multiplet and appears $dim R_i^I$ times in the total mass matrix \mathcal{M} . A mass matrix associated with a G_{321} multiplet and the mass matrix associated with the corresponding complex conjugated G_{321} multiplet are equal up to transposition, and therefore for multiplets with $Y \neq 0$ we list only one of the two mass matrices. Of course, when enumerating the total degrees of freedom, one has to include all mass eigenvalues (961 in total). The basis designating the columns (c:) of the mass matrices listed below is given in the same way as shown in Tables 1, 2, 3, 4 and 5, while the rows are designated by the corresponding complex conjugated G_{321} multiplets (r:):

(1, 1, 0)

$$\mathbf{c:} \ \ \widehat{A}_{(1,1,3)}^{(1,1,0)}, \ \widehat{A}_{(15,1,1)}^{(1,1,0)}, \ \widehat{E}_{(1,1,1)}^{(1,1,0)}, \ \widehat{\Delta}_{\overline{(10,1,3)}}^{(1,1,0)}, \ \widehat{\overline{\Delta}}_{(10,1,3)}^{(1,1,0)}, \ \widehat{\Phi}_{(1,1,1)}^{(1,1,0)}, \ \widehat{\Phi}_{(15,1,1)}^{(1,1,0)}, \ \widehat{\Phi}_{(15,1,3)}^{(1,1,0)}$$

$$\mathbf{r:} \ \ \widehat{A}_{(1,1,3)}^{(1,1,0)}, \ \widehat{A}_{(15,1,1)}^{(1,1,0)}, \ \widehat{E}_{(1,1,1)}^{(1,1,0)}, \ \widehat{\overline{\Delta}}_{(10,1,3)}^{(1,1,0)}, \ \widehat{\Delta}_{(\overline{10},1,3)}^{(1,1,0)}, \ \widehat{\Phi}_{(1,1,1)}^{(1,1,0)}, \ \widehat{\Phi}_{(15,1,1)}^{(1,1,0)}, \ \widehat{\Phi}_{(15,1,3)}^{(1,1,0)}, \ \widehat$$

$$\begin{pmatrix} m_{11}^{(1,1,0)} & \sqrt{\frac{2}{3}}\lambda_5\Phi_3 & \sqrt{\frac{3}{5}}\lambda_9A_1 & -\frac{\lambda_6\overline{v_R}}{5} & -\frac{\lambda_6v_R}{5} & \sqrt{\frac{2}{3}}\lambda_5A_1 & \frac{2\sqrt{2}\lambda_7\Phi_3}{5} & m_{81}^{(1,1,0)} \\ \sqrt{\frac{2}{3}}\lambda_5\Phi_3 & m_{22}^{(1,1,0)} & -\frac{2\lambda_9A_2}{\sqrt{15}} & -\frac{1}{5}\sqrt{\frac{3}{2}}\lambda_6\overline{v_R} & -\frac{1}{5}\sqrt{\frac{3}{2}}\lambda_6v_R & \frac{2\sqrt{2}\lambda_7\Phi_2}{5} & m_{72}^{(1,1,0)} & m_{82}^{(1,1,0)} \\ \sqrt{\frac{3}{5}}\lambda_9A_1 & -\frac{2\lambda_9A_2}{\sqrt{15}} & m_{33}^{(1,1,0)} & 0 & 0 & \sqrt{\frac{3}{5}}\lambda_{10}\Phi_1 & -\frac{2\lambda_{10}\Phi_2}{\sqrt{15}} & \frac{\lambda_{10}\Phi_3}{2\sqrt{15}} \\ -\frac{\lambda_6v_R}{5} & -\frac{1}{5}\sqrt{\frac{3}{2}}\lambda_6v_R & 0 & m_{44}^{(1,1,0)} & 0 & \frac{\lambda_2v_R}{10\sqrt{6}} & \frac{\lambda_2v_R}{10\sqrt{6}} & \frac{\lambda_2v_R}{10\sqrt{6}} & \frac{\lambda_2v_R}{10\sqrt{6}} \\ -\frac{\lambda_6v_R}{5} & -\frac{1}{5}\sqrt{\frac{3}{2}}\lambda_6\overline{v_R} & 0 & 0 & m_{44}^{(1,1,0)} & \frac{\lambda_2v_R}{10\sqrt{6}} & \frac{\lambda_2v_R}{10\sqrt{6}} & \frac{\lambda_2v_R}{10\sqrt{6}} & \frac{\lambda_2v_R}{10\sqrt{6}} & \frac{\lambda_2v_R}{10\sqrt{6}} \\ \sqrt{\frac{2}{3}}\lambda_5A_1 & \frac{2\sqrt{2}\lambda_7\Phi_2}{5} & \sqrt{\frac{3}{5}}\lambda_{10}\Phi_1 & \frac{\lambda_2v_R}{10\sqrt{6}} & \frac{\lambda_2v_R}{10\sqrt{6}} & \frac{\lambda_2v_R}{10\sqrt{6}} & \frac{\lambda_2v_R}{10\sqrt{6}} & \frac{\lambda_2v_R}{10\sqrt{6}} \\ \frac{2\sqrt{2}\lambda_7\Phi_3}{5} & m_{72}^{(1,1,0)} & -\frac{2\lambda_{10}\Phi_2}{\sqrt{15}} & \frac{\lambda_2v_R}{10\sqrt{2}} & \frac{\lambda_2v_R}{10\sqrt{2}} & \frac{\lambda_2v_R}{10\sqrt{2}} & \frac{\lambda_2v_R}{10\sqrt{2}} & \frac{\lambda_2v_R}{10\sqrt{6}} & m_{66}^{(1,1,0)} & m_{87}^{(1,1,0)} \\ m_{81}^{(1,1,0)} & m_{82}^{(1,1,0)} & \frac{\lambda_{10}\Phi_3}{2\sqrt{15}} & \frac{\lambda_2v_R}{10} & \frac{\lambda_2v_R}{10} & \frac{\lambda_2v_R}{10} & \frac{\lambda_2v_R}{10} & \frac{\lambda_2v_R}{10} & \frac{\lambda_2v_R}{10} \\ \end{pmatrix}$$

$$\begin{split} m_{11}^{(1,1,0)} &\equiv m_4 + \sqrt{\frac{2}{3}}\lambda_5\Phi_1 + \sqrt{\frac{3}{5}}\lambda_9E, \\ m_{22}^{(1,1,0)} &\equiv m_4 + \frac{2\sqrt{2}\lambda_5\Phi_2}{3} - \frac{2\lambda_9E}{\sqrt{15}}, \\ m_{33}^{(1,1,0)} &\equiv m_5 + \sqrt{\frac{3}{5}}\lambda_8E, \\ m_{44}^{(1,1,0)} &\equiv m_2 + \frac{\lambda_2\Phi_1}{10\sqrt{6}} + \frac{\lambda_2\Phi_2}{10\sqrt{2}} + \frac{\lambda_2\Phi_3}{10} - \frac{\lambda_6A_1}{5} - \frac{\sqrt{3}\lambda_6A_2}{5\sqrt{2}} \\ m_{66}^{(1,1,0)} &\equiv m_1 + \sqrt{\frac{3}{5}}\lambda_{10}E, \\ m_{72}^{(1,1,0)} &\equiv \frac{2\sqrt{2}\lambda_5A_2}{3} + \frac{2\sqrt{2}\lambda_7\Phi_1}{5}, \\ m_{77}^{(1,1,0)} &\equiv m_1 + \frac{\sqrt{2}\lambda_1\Phi_2}{3} - \frac{2\lambda_{10}E}{\sqrt{15}}, \\ m_{81}^{(1,1,0)} &\equiv \sqrt{\frac{2}{3}}\lambda_5A_2 + \frac{2\sqrt{2}\lambda_7\Phi_2}{5}, \\ m_{82}^{(1,1,0)} &\equiv \sqrt{\frac{2}{3}}\lambda_5A_1 + \frac{4}{5}\sqrt{\frac{2}{3}}\lambda_7\Phi_3, \\ m_{87}^{(1,1,0)} &\equiv \frac{\sqrt{2}\lambda_1\Phi_3}{3} + \frac{2\sqrt{2}\lambda_7A_1}{5}, \end{split}$$

$$m_{88}^{(1,1,0)} \equiv m_1 + \frac{\lambda_1 \Phi_1}{\sqrt{6}} + \frac{\sqrt{2}\lambda_1 \Phi_2}{3} + \frac{4}{5}\sqrt{\frac{2}{3}}\lambda_7 A_2 + \frac{\lambda_{10}E}{2\sqrt{15}}.$$
 (58)

 $[(\mathbf{1}, \mathbf{1}, 1) + c.c.]$

c:
$$\widehat{A}_{(1,1,3)}^{(1,1,1)}$$
, $\widehat{D}_{(\overline{10},1,1)}^{(1,1,1)}$, $\widehat{\Delta}_{(\overline{10},1,3)}^{(1,1,1)}$

$$\mathbf{r:} \ \widehat{A}_{(1,1,3)}^{(1,1,-1)}, \ \widehat{D}_{(10,1,1)}^{(1,1,-1)}, \ \widehat{\Delta}_{(10,1,3)}^{(1,1,-1)}$$

$$\begin{pmatrix} m_4 + \frac{\sqrt{2}\lambda_5\Phi_1}{\sqrt{3}} + \frac{\sqrt{3}\lambda_9E}{\sqrt{5}} & -\frac{i\lambda_{19}\overline{v_R}}{\sqrt{10}} & -\frac{\lambda_6\overline{v_R}}{5} & -\sqrt{\frac{2}{3}}\lambda_5A_2 - \frac{2\sqrt{2}\lambda_7\Phi_2}{5} \\ \frac{i\lambda_{18}v_R}{\sqrt{10}} & m_6 - \frac{2\lambda_{14}E}{\sqrt{15}} + \frac{\sqrt{2}\lambda_{15}\Phi_2}{3} & -\frac{i\lambda_{18}A_1}{\sqrt{10}} - \frac{\lambda_{20}\Phi_3}{2\sqrt{10}} & -\frac{\lambda_{20}v_R}{\sqrt{10}} \\ -\frac{\lambda_6v_R}{5} & \frac{i\lambda_{19}A_1}{\sqrt{10}} - \frac{\lambda_{21}\Phi_3}{2\sqrt{10}} & m_{33}^{(1,1,1)} & -\frac{\lambda_2v_R}{2\sqrt{10}} \\ -\sqrt{\frac{2}{3}}\lambda_5A_2 - \frac{2\sqrt{2}\lambda_7\Phi_2}{5} & -\frac{\lambda_{21}\overline{v_R}}{\sqrt{10}} & -\frac{\lambda_2\overline{v_R}}{10} & m_{44}^{(1,1,1)} \end{pmatrix},$$

$$(59)$$

where

$$m_{33}^{(1,1,1)} \equiv m_2 + \frac{\lambda_2 \Phi_1}{10\sqrt{6}} + \frac{\lambda_2 \Phi_2}{10\sqrt{2}} - \frac{1}{5} \sqrt{\frac{3}{2}} \lambda_6 A_2,$$

$$m_{44}^{(1,1,1)} \equiv m_1 + \frac{\lambda_1 \Phi_1}{\sqrt{6}} + \frac{\sqrt{2}\lambda_1 \Phi_2}{3} + \frac{4}{5} \sqrt{\frac{2}{3}} \lambda_7 A_2 + \frac{\lambda_{10} E}{2\sqrt{15}}.$$
(60)

$$\left[(3, 1, \frac{2}{3}) + c.c. \right]$$

$$\mathbf{c:} \ \ \widehat{A}_{(15,1,1)}^{(3,1,\frac{2}{3})}, \ \widehat{D}_{(6,1,3)}^{(3,1,\frac{2}{3})}, \ \widehat{\overline{\Delta}}_{(10,1,3)}^{(3,1,\frac{2}{3})}, \ \widehat{\Phi}_{(15,1,1)}^{(3,1,\frac{2}{3})}, \ \widehat{\Phi}_{(15,1,3)}^{(3,1,\frac{2}{3})}$$

$$\mathbf{r} \colon \, \widehat{A}_{(15,1,1)}^{\left(\overline{3},1,-\frac{2}{3}\right)}, \, \widehat{D}_{(6,1,3)}^{\left(\overline{3},1,-\frac{2}{3}\right)}, \, \widehat{\Delta}_{\overline{(10},1,3)}^{\left(\overline{3},1,-\frac{2}{3}\right)}, \, \widehat{\Phi}_{(15,1,1)}^{\left(\overline{3},1,-\frac{2}{3}\right)}, \, \widehat{\Phi}_{(15,1,3)}^{\left(\overline{3},1,-\frac{2}{3}\right)}$$

$$\begin{pmatrix} m_{11}^{(3,1,\frac{2}{3})} & -\frac{i\lambda_{18}v_R}{\sqrt{10}} & -\frac{\lambda_6v_R}{5} & -\frac{\sqrt{2}}{3}\lambda_5A_2 - \frac{2\sqrt{2}\lambda_7\Phi_1}{5} & -\sqrt{\frac{2}{3}}\lambda_5A_1 - \frac{2}{5}\sqrt{\frac{2}{3}}\lambda_7\Phi_3 \\ \frac{i\lambda_{19}\overline{v_R}}{\sqrt{10}} & m_{22}^{(3,1,\frac{2}{3})} & m_{23}^{(3,1,\frac{2}{3})} & \frac{\lambda_{21}\overline{v_R}}{2\sqrt{30}} & \frac{\lambda_{21}\overline{v_R}}{2\sqrt{15}} \\ -\frac{\lambda_6v_R}{5} & m_{32}^{(3,1,\frac{2}{3})} & m_{33}^{(3,1,\frac{2}{3})} & -\frac{\lambda_2v_R}{10\sqrt{3}} & -\frac{\lambda_2v_R}{2\sqrt{30}} \\ -\frac{\sqrt{2}}{3}\lambda_5A_2 - \frac{2\sqrt{2}\lambda_7\Phi_1}{5} & \frac{\lambda_{20}v_R}{2\sqrt{30}} & -\frac{\lambda_2v_R}{10\sqrt{3}} & m_{44}^{(3,1,\frac{2}{3})} & m_{45}^{(3,1,\frac{2}{3})} \\ -\sqrt{\frac{2}{3}}\lambda_5A_1 - \frac{2}{5}\sqrt{\frac{2}{3}}\lambda_7\Phi_3 & \frac{\lambda_{20}v_R}{2\sqrt{15}} & -\frac{\lambda_2v_R}{5\sqrt{6}} & m_{45}^{(3,1,\frac{2}{3})} & m_{55}^{(3,1,\frac{2}{3})} \end{pmatrix},$$

$$(61)$$

$$m_{11}^{(3,1,\frac{2}{3})} \equiv m_4 + \frac{\sqrt{2}\lambda_5\Phi_2}{3} - \frac{2\lambda_9E}{\sqrt{15}},$$

$$m_{22}^{(3,1,\frac{2}{3})} \equiv m_6 + \frac{4\lambda_{14}E}{3\sqrt{15}} + \frac{1}{3}\sqrt{\frac{2}{3}}\lambda_{15}\Phi_1 + \frac{2\lambda_{15}\Phi_3}{9},$$

$$m_{23}^{(3,1,\frac{2}{3})} \equiv -\frac{i\lambda_{19}A_2}{\sqrt{15}} + \frac{\lambda_{21}\Phi_2}{6\sqrt{5}} + \frac{\lambda_{21}\Phi_3}{3\sqrt{10}},$$

$$m_{32}^{(3,1,\frac{2}{3})} \equiv \frac{i\lambda_{18}A_{2}}{\sqrt{15}} + \frac{\lambda_{20}\Phi_{2}}{6\sqrt{5}} + \frac{\lambda_{20}\Phi_{3}}{3\sqrt{10}},$$

$$m_{33}^{(3,1,\frac{2}{3})} \equiv m_{2} + \frac{\lambda_{2}\Phi_{1}}{10\sqrt{6}} + \frac{\lambda_{2}\Phi_{2}}{30\sqrt{2}} + \frac{\lambda_{2}\Phi_{3}}{30} - \frac{\lambda_{6}A_{1}}{5} - \frac{\lambda_{6}A_{2}}{5\sqrt{6}},$$

$$m_{44}^{(3,1,\frac{2}{3})} \equiv m_{1} + \frac{\lambda_{1}\Phi_{2}}{3\sqrt{2}} - \frac{2\lambda_{10}E}{\sqrt{15}},$$

$$m_{45}^{(3,1,\frac{2}{3})} \equiv \frac{\lambda_{1}\Phi_{3}}{3\sqrt{2}} + \frac{2\sqrt{2}\lambda_{7}A_{1}}{5},$$

$$m_{55}^{(3,1,\frac{2}{3})} \equiv m_{1} + \frac{\lambda_{1}\Phi_{1}}{\sqrt{6}} + \frac{\lambda_{1}\Phi_{2}}{3\sqrt{2}} + \frac{2}{5}\sqrt{\frac{2}{3}}\lambda_{7}A_{2} + \frac{\lambda_{10}E}{2\sqrt{15}}.$$

$$(62)$$

$$\left[(\mathbf{3}, \mathbf{2}, -\frac{5}{6}) + c.c. \right]$$

c:
$$\widehat{A}_{(6,2,2)}^{(3,2,-\frac{5}{6})}$$
, $\widehat{E}_{(6,2,2)}^{(3,2,-\frac{5}{6})}$, $\widehat{\Phi}_{(6,2,2)}^{(3,2,-\frac{5}{6})}$ $\widehat{\Phi}_{(10,2,2)}^{(3,2,-\frac{5}{6})}$

$$\mathbf{r} \colon \, \widehat{A}_{(6,2,2)}^{(\overline{3},2,\frac{5}{6})}, \, \widehat{E}_{(6,2,2)}^{(\overline{3},2,\frac{5}{6})}, \, \widehat{\Phi}_{(6,2,2)}^{(\overline{3},2,\frac{5}{6})} \, \, \widehat{\Phi}_{(\overline{10},2,2)}^{(\overline{3},2,\frac{5}{6})}$$

$$\begin{pmatrix} m_4 - \frac{\lambda_5 \Phi_3}{3} + \frac{\lambda_9 E}{2\sqrt{15}} & -\frac{\lambda_9 A_1}{2} - \frac{\lambda_9 A_2}{\sqrt{6}} & -\frac{\lambda_5 A_1}{\sqrt{3}} + \frac{2}{5} \sqrt{\frac{2}{3}} \lambda_7 \Phi_2 & -\frac{2\lambda_5 A_2}{3} + \frac{2}{5} \sqrt{\frac{2}{3}} \lambda_7 \Phi_3 \\ -\frac{\lambda_9 A_1}{2} - \frac{\lambda_9 A_2}{\sqrt{6}} & m_5 + \frac{1}{2} \sqrt{\frac{3}{5}} \lambda_8 E & \frac{\lambda_{10} \Phi_1}{2\sqrt{2}} + \frac{\lambda_{10} \Phi_3}{4\sqrt{3}} & \frac{\lambda_{10} \Phi_2}{2\sqrt{3}} + \frac{\lambda_{10} \Phi_3}{2\sqrt{6}} \\ -\frac{\lambda_5 A_1}{\sqrt{3}} + \frac{2}{5} \sqrt{\frac{2}{3}} \lambda_7 \Phi_2 & \frac{\lambda_{10} \Phi_2}{2\sqrt{2}} + \frac{\lambda_{10} \Phi_3}{4\sqrt{3}} & m_1 - \frac{\lambda_1 \Phi_3}{6} + \frac{7\lambda_{10} E}{4\sqrt{15}} & \frac{\lambda_1 \Phi_3}{3\sqrt{2}} - \frac{4\lambda_7 A_2}{5\sqrt{3}} \\ -\frac{2\lambda_5 A_2}{3} + \frac{2}{5} \sqrt{\frac{2}{3}} \lambda_7 \Phi_3 & \frac{\lambda_{10} \Phi_2}{2\sqrt{3}} + \frac{\lambda_{10} \Phi_3}{2\sqrt{6}} & \frac{\lambda_1 \Phi_3}{3\sqrt{2}} - \frac{4\lambda_7 A_2}{5\sqrt{3}} & m_{44} \end{pmatrix},$$

$$(63)$$

$$m_{44}^{(3,2,-\frac{5}{6})} \equiv m_1 + \frac{\lambda_1 \Phi_2}{3\sqrt{2}} - \frac{\lambda_1 \Phi_3}{6} - \frac{2\lambda_7 A_1}{5} - \frac{1}{4} \sqrt{\frac{3}{5}} \lambda_{10} E.$$
 (64)

$$\left[(\mathbf{3}, \mathbf{2}, \frac{1}{6}) + c.c. \right]$$

$$\mathbf{c:}\ \ \widehat{A}^{(3,2,\frac{1}{6})}_{(6,2,2)},\ \widehat{E}^{(3,2,\frac{1}{6})}_{(6,2,2)},\ \widehat{D}^{(3,2,\frac{1}{6})}_{(15,2,2)},\ \widehat{\Delta}^{(3,2,\frac{1}{6})}_{(15,2,2)},\ \widehat{\overline{\Delta}}^{(3,2,\frac{1}{6})}_{(15,2,2)},\ \widehat{\Phi}^{(3,2,\frac{1}{6})}_{(6,2,2)},\ \widehat{\Phi}^{(3,2,\frac{1}{6})}_{(10,2,2)}$$

$$\mathbf{r:} \ \ \widehat{A}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}, \ \widehat{E}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}, \ \widehat{D}_{(15,2,2)}^{(\overline{3},2,-\frac{1}{6})}, \ \widehat{\Delta}_{(15,2,2)}^{(\overline{3},2,-\frac{1}{6})}, \ \widehat{\Delta}_{(15,2,2)}^{(\overline{3},2,-\frac{1}{6})}, \ \widehat{\Phi}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}, \ \widehat{\Phi}_{(\overline{10},2,2)}^{(\overline{3},2,-\frac{1}{6})}$$

$$\begin{pmatrix} m_{11}^{(3,2,\frac{1}{6})} & \frac{\lambda_9 A_1}{2} - \frac{\lambda_9 A_2}{\sqrt{6}} & -\frac{i\lambda_{19}\overline{v_R}}{\sqrt{10}} & -\frac{\lambda_6 \overline{v_R}}{5} & 0 & m_{61}^{(3,2,\frac{1}{6})} & m_{71}^{(3,2,\frac{1}{6})} \\ \frac{\lambda_9 A_1}{2} - \frac{\lambda_9 A_2}{\sqrt{6}} & m_5 + \frac{1}{2}\sqrt{\frac{3}{5}}\lambda_8 E & 0 & 0 & -\frac{2\lambda_{12}v_R}{5} & \frac{\lambda_{10}\Phi_3}{4\sqrt{3}} - \frac{\lambda_{10}\Phi_1}{2\sqrt{2}} & \frac{\lambda_{10}\Phi_2}{2\sqrt{3}} - \frac{\lambda_{10}\Phi_3}{2\sqrt{6}} \\ \frac{i\lambda_{18}v_R}{\sqrt{10}} & 0 & m_{33}^{(3,2,\frac{1}{6})} & m_{34}^{(3,2,\frac{1}{6})} & m_{35}^{(3,2,\frac{1}{6})} & -\frac{\lambda_{20}v_R}{2\sqrt{30}} & -\frac{\lambda_{20}v_R}{2\sqrt{15}} \\ -\frac{\lambda_6 v_R}{5} & 0 & m_{43}^{(3,2,\frac{1}{6})} & m_{44}^{(3,2,\frac{1}{6})} & \frac{\lambda_{12}E}{\sqrt{15}} & -\frac{\lambda_{20}v_R}{10\sqrt{3}} & -\frac{\lambda_{20}v_R}{5\sqrt{6}} \\ 0 & -\frac{2\lambda_{11}v_R}{5} & m_{53}^{(3,2,\frac{1}{6})} & \frac{\lambda_{11}E}{\sqrt{15}} & m_{55}^{(3,2,\frac{1}{6})} & 0 & 0 \\ m_{61}^{(3,2,\frac{1}{6})} & \frac{\lambda_{10}\Phi_3}{4\sqrt{3}} - \frac{\lambda_{10}\Phi_1}{2\sqrt{2}} & -\frac{\lambda_{21}v_R}{2\sqrt{30}} & -\frac{\lambda_{22}v_R}{5\sqrt{6}} & 0 \\ m_{61}^{(3,2,\frac{1}{6})} & \frac{\lambda_{10}\Phi_2}{2\sqrt{3}} - \frac{\lambda_{10}\Phi_3}{2\sqrt{15}} & -\frac{\lambda_{21}v_R}{5\sqrt{6}} & 0 & \frac{\lambda_1\Phi_3}{3\sqrt{2}} + \frac{4\lambda_7 A_2}{5\sqrt{3}} \\ m_{71}^{(3,2,\frac{1}{6})} & \frac{\lambda_{10}\Phi_2}{2\sqrt{3}} - \frac{\lambda_{21}v_R}{2\sqrt{15}} & -\frac{\lambda_{22}v_R}{5\sqrt{6}} & 0 & \frac{\lambda_1\Phi_3}{3\sqrt{2}} + \frac{4\lambda_7 A_2}{5\sqrt{3}} & m_{77}^{(3,2,\frac{1}{6})} \end{pmatrix}$$

$$\begin{array}{lll} m_{11}^{(3,2,\frac{1}{6})} & \equiv & m_4 + \frac{\lambda_5\Phi_3}{3} + \frac{\lambda_9E}{2\sqrt{15}}, \\ m_{33}^{(3,2,\frac{1}{6})} & \equiv & m_6 - \frac{\lambda_{14}E}{3\sqrt{15}} + \frac{\sqrt{2}\lambda_{15}\Phi_2}{9} + \frac{2\lambda_{15}\Phi_3}{9}, \\ m_{34}^{(3,2,\frac{1}{6})} & \equiv & -\frac{i\lambda_{18}A_1}{2\sqrt{10}} - \frac{i\lambda_{18}A_2}{2\sqrt{15}} - \frac{\lambda_{20}\Phi_1}{4\sqrt{15}} - \frac{\lambda_{20}\Phi_2}{6\sqrt{5}} - \frac{\lambda_{20}\Phi_3}{4\sqrt{10}}, \\ m_{35}^{(3,2,\frac{1}{6})} & \equiv & -\frac{i\lambda_{19}A_1}{2\sqrt{10}} + \frac{i\lambda_{19}A_2}{2\sqrt{15}} - \frac{\lambda_{21}\Phi_1}{4\sqrt{15}} + \frac{\lambda_{21}\Phi_2}{6\sqrt{5}} - \frac{\lambda_{21}\Phi_3}{12\sqrt{10}}, \\ m_{43}^{(3,2,\frac{1}{6})} & \equiv & \frac{i\lambda_{19}A_1}{2\sqrt{10}} + \frac{i\lambda_{19}A_2}{2\sqrt{15}} - \frac{\lambda_{21}\Phi_1}{4\sqrt{15}} - \frac{\lambda_{21}\Phi_2}{6\sqrt{5}} - \frac{\lambda_{21}\Phi_3}{4\sqrt{10}}, \\ m_{44}^{(3,2,\frac{1}{6})} & \equiv & m_2 + \frac{\lambda_2\Phi_2}{30\sqrt{2}} + \frac{\lambda_2\Phi_3}{20} - \frac{\lambda_6A_1}{10} - \frac{1}{5}\sqrt{\frac{2}{3}}\lambda_6A_2, \\ m_{53}^{(3,2,\frac{1}{6})} & \equiv & \frac{i\lambda_{18}A_1}{2\sqrt{10}} - \frac{i\lambda_{18}A_2}{2\sqrt{15}} - \frac{\lambda_{20}\Phi_1}{4\sqrt{15}} + \frac{\lambda_{20}\Phi_2}{6\sqrt{5}} - \frac{\lambda_{20}\Phi_3}{12\sqrt{10}}, \\ m_{55}^{(3,2,\frac{1}{6})} & \equiv & m_2 + \frac{\lambda_2\Phi_2}{30\sqrt{2}} + \frac{\lambda_2\Phi_3}{60} + \frac{\lambda_6A_1}{4\sqrt{15}} + \frac{1}{5}\sqrt{\frac{2}{3}}\lambda_6A_2, \\ m_{61}^{(3,2,\frac{1}{6})} & \equiv & m_2 + \frac{\lambda_2\Phi_2}{30\sqrt{2}} + \frac{\lambda_2\Phi_3}{60} + \frac{\lambda_6A_1}{10} + \frac{1}{5}\sqrt{\frac{2}{3}}\lambda_6A_2, \\ m_{61}^{(3,2,\frac{1}{6})} & \equiv & m_1 + \frac{\lambda_1\Phi_3}{\sqrt{3}} - \frac{2}{5}\sqrt{\frac{2}{3}}\lambda_7\Phi_2, \\ m_{66}^{(3,2,\frac{1}{6})} & \equiv & m_1 + \frac{\lambda_1\Phi_3}{6} + \frac{7\lambda_{10}E}{4\sqrt{15}}, \\ m_{71}^{(3,2,\frac{1}{6})} & \equiv & -\frac{2\lambda_5A_2}{3} - \frac{2}{5}\sqrt{\frac{2}{3}}\lambda_7\Phi_3, \\ \end{array}$$

$$m_{77}^{(3,2,\frac{1}{6})} \equiv m_1 + \frac{\lambda_1 \Phi_2}{3\sqrt{2}} + \frac{\lambda_1 \Phi_3}{6} + \frac{2\lambda_7 A_1}{5} - \frac{1}{4} \sqrt{\frac{3}{5}} \lambda_{10} E$$
 (66)

$$\left[(1, 2, \frac{1}{2}) + c.c. \right]$$

$$\mathbf{c:} \ \ \widehat{H}_{(1,2,2)}^{(1,2,\frac{1}{2})}, \ \widehat{D}_{(1,2,2)}^{(1,2,\frac{1}{2})}, \ \widehat{D}_{(15,2,2)}^{(1,2,\frac{1}{2})}, \ \widehat{\Delta}_{(15,2,2)}^{(1,2,\frac{1}{2})}, \ \widehat{\Delta}_{(15,2,2)}^{(1,2,\frac{1}{2})}, \ \widehat{\Phi}_{(6,2,2)}^{(1,2,\frac{1}{2})}$$

$$\mathbf{r} \colon \, \widehat{H}_{(1,2,2)}^{(1,2,-\frac{1}{2})}, \, \widehat{D}_{(1,2,2)}^{(1,2,-\frac{1}{2})}, \, \widehat{D}_{(15,2,2)}^{(1,2,-\frac{1}{2})}, \, \widehat{\Delta}_{(15,2,2)}^{(1,2,-\frac{1}{2})}, \, \widehat{\Delta}_{(15,2,2)}^{(1,2,-\frac{1}{2})}, \, \widehat{\Phi}_{(6,2,2)}^{(1,2,-\frac{1}{2})}$$

$$\begin{pmatrix} m_{3} + \sqrt{\frac{3}{5}}\lambda_{13}E & -\frac{i\lambda_{16}A_{1}}{\sqrt{6}} - \frac{\lambda_{17}\Phi_{1}}{2} & -\frac{i\lambda_{16}A_{2}}{\sqrt{3}} - \frac{\lambda_{17}\Phi_{3}}{2\sqrt{2}} & \frac{\lambda_{3}\Phi_{2}}{\sqrt{10}} - \frac{\lambda_{3}\Phi_{3}}{2\sqrt{5}} & -\frac{\lambda_{4}\Phi_{2}}{\sqrt{10}} - \frac{\lambda_{4}\Phi_{3}}{2\sqrt{5}} & -\frac{\lambda_{4}\overline{v_{R}}}{\sqrt{5}} \\ \frac{i\lambda_{16}A_{1}}{\sqrt{6}} - \frac{\lambda_{17}\Phi_{1}}{2} & m_{6} + \sqrt{\frac{3}{5}}\lambda_{14}E & \frac{\lambda_{15}\Phi_{3}}{3\sqrt{3}} & -\frac{i\lambda_{18}A_{2}}{2\sqrt{5}} + \frac{\lambda_{20}\Phi_{3}}{4\sqrt{30}} & -\frac{i\lambda_{19}A_{2}}{2\sqrt{5}} + \frac{\lambda_{21}\Phi_{3}}{4\sqrt{30}} & -\frac{\lambda_{21}\overline{v_{R}}}{2\sqrt{30}} \\ \frac{i\lambda_{16}A_{2}}{\sqrt{3}} - \frac{\lambda_{17}\Phi_{3}}{2\sqrt{2}} & \frac{\lambda_{15}\Phi_{3}}{3\sqrt{3}} & m_{33}^{(1,2,\frac{1}{2})} & m_{34}^{(1,2,\frac{1}{2})} & m_{35}^{(1,2,\frac{1}{2})} & -\frac{\lambda_{21}\overline{v_{R}}}{2\sqrt{10}} \\ \frac{\lambda_{4}\Phi_{2}}{\sqrt{10}} - \frac{\lambda_{4}\Phi_{3}}{2\sqrt{5}} & \frac{i\lambda_{19}A_{2}}{2\sqrt{5}} + \frac{\lambda_{21}\Phi_{3}}{4\sqrt{30}} & m_{43}^{(1,2,\frac{1}{2})} & m_{34}^{(1,2,\frac{1}{2})} & \frac{\lambda_{12}E}{\sqrt{15}} & 0 \\ -\frac{\lambda_{3}\Phi_{2}}{\sqrt{10}} - \frac{\lambda_{3}\Phi_{3}}{2\sqrt{5}} & \frac{i\lambda_{18}A_{2}}{2\sqrt{5}} + \frac{\lambda_{20}\Phi_{3}}{4\sqrt{30}} & m_{53}^{(1,2,\frac{1}{2})} & \frac{\lambda_{11}E}{\sqrt{15}} & m_{55}^{(1,2,\frac{1}{2})} & \frac{\lambda_{2}\overline{v_{R}}}{10} \\ -\frac{\lambda_{3}v_{R}}{\sqrt{5}} & -\frac{\lambda_{20}v_{R}}{2\sqrt{30}} & -\frac{\lambda_{20}v_{R}}{2\sqrt{10}} & 0 & \frac{\lambda_{2}v_{R}}{10} & m_{66}^{(1,2,\frac{1}{2})} \end{pmatrix}$$

$$m_{33}^{(1,2,\frac{1}{2})} \equiv m_{6} - \frac{\lambda_{14}E}{3\sqrt{15}} + \frac{2\sqrt{2}\lambda_{15}\Phi_{2}}{9},$$

$$m_{34}^{(1,2,\frac{1}{2})} \equiv -\frac{i\lambda_{18}A_{1}}{2\sqrt{10}} + \frac{i\lambda_{18}A_{2}}{\sqrt{15}} + \frac{\lambda_{20}\Phi_{1}}{4\sqrt{15}} - \frac{\lambda_{20}\Phi_{3}}{6\sqrt{10}},$$

$$m_{35}^{(1,2,\frac{1}{2})} \equiv -\frac{i\lambda_{19}A_{1}}{2\sqrt{10}} - \frac{i\lambda_{19}A_{2}}{\sqrt{15}} + \frac{\lambda_{21}\Phi_{1}}{4\sqrt{15}} + \frac{\lambda_{21}\Phi_{3}}{6\sqrt{10}},$$

$$m_{43}^{(1,2,\frac{1}{2})} \equiv \frac{i\lambda_{19}A_{1}}{2\sqrt{10}} - \frac{i\lambda_{19}A_{2}}{\sqrt{15}} + \frac{\lambda_{21}\Phi_{1}}{4\sqrt{15}} - \frac{\lambda_{21}\Phi_{3}}{6\sqrt{10}},$$

$$m_{44}^{(1,2,\frac{1}{2})} \equiv m_{2} + \frac{\lambda_{2}\Phi_{2}}{15\sqrt{2}} - \frac{\lambda_{2}\Phi_{3}}{30} + \frac{\lambda_{6}A_{1}}{10},$$

$$m_{55}^{(1,2,\frac{1}{2})} \equiv \frac{i\lambda_{18}A_{1}}{2\sqrt{10}} + \frac{i\lambda_{18}A_{2}}{\sqrt{15}} + \frac{\lambda_{20}\Phi_{1}}{4\sqrt{15}} + \frac{\lambda_{20}\Phi_{3}}{6\sqrt{10}},$$

$$m_{55}^{(1,2,\frac{1}{2})} \equiv m_{2} + \frac{\lambda_{2}\Phi_{2}}{15\sqrt{2}} + \frac{\lambda_{2}\Phi_{3}}{30} - \frac{\lambda_{6}A_{1}}{10},$$

$$m_{66}^{(1,2,\frac{1}{2})} \equiv m_{1} + \frac{\lambda_{1}\Phi_{2}}{\sqrt{2}} + \frac{\lambda_{1}\Phi_{3}}{2} + \frac{2\lambda_{7}A_{1}}{5} - \frac{1}{4}\sqrt{\frac{3}{5}}\lambda_{10}E.$$

$$(68)$$

$$\left[(\mathbf{3}, \mathbf{1}, -\frac{1}{3}) + c.c. \right]$$

$$\mathbf{c:} \ \ \widehat{H}_{(6,1,1)}^{(3,1,-\frac{1}{3})}, \ \widehat{D}_{(6,1,3)}^{(3,1,-\frac{1}{3})}, \ \widehat{D}_{(10,1,1)}^{(3,1,-\frac{1}{3})}, \ \widehat{\Delta}_{(6,1,1)}^{(3,1,-\frac{1}{3})}, \ \widehat{\overline{\Delta}}_{(6,1,1)}^{(3,1,-\frac{1}{3})}, \ \widehat{\overline{\Delta}}_{(10,1,3)}^{(3,1,-\frac{1}{3})}, \ \widehat{\Phi}_{(15,1,3)}^{(3,1,-\frac{1}{3})}$$

$$\mathbf{r:} \ \widehat{H}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}, \ \widehat{D}_{(6,1,3)}^{(\overline{3},1,\frac{1}{3})}, \ \widehat{D}_{(\overline{10},1,1)}^{(\overline{3},1,\frac{1}{3})}, \ \widehat{\Delta}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}, \ \widehat{\Delta}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}, \ \widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{3},1,\frac{1}{3})}, \ \widehat{\Phi}_{(15,1,3)}^{(\overline{3},1,\frac{1}{3})}$$

$$\begin{pmatrix} m_{3} - \frac{2\lambda_{13}E}{\sqrt{15}} & m_{12}^{(3,1,-\frac{1}{3})} & m_{13}^{(3,1,-\frac{1}{3})} & m_{14}^{(3,1,-\frac{1}{3})} & -\sqrt{\frac{2}{15}}\lambda_{4}\Phi_{3} & \frac{\lambda_{4}\overline{v_{R}}}{\sqrt{5}} \\ m_{21}^{(3,1,-\frac{1}{3})} & m_{22}^{(3,1,-\frac{1}{3})} & \frac{2\lambda_{15}\Phi_{3}}{9} & m_{24}^{(3,1,-\frac{1}{3})} & m_{25}^{(3,1,-\frac{1}{3})} & m_{26}^{(3,1,-\frac{1}{3})} & \frac{\lambda_{21}\overline{v_{R}}}{2\sqrt{15}} \\ m_{31}^{(3,1,-\frac{1}{3})} & \frac{2\lambda_{15}\Phi_{3}}{9} & m_{33}^{(3,1,-\frac{1}{3})} & m_{34}^{(3,1,-\frac{1}{3})} & m_{36}^{(3,1,-\frac{1}{3})} & \frac{\lambda_{21}\overline{v_{R}}}{2\sqrt{15}} \\ m_{41}^{(3,1,-\frac{1}{3})} & m_{42}^{(3,1,-\frac{1}{3})} & m_{34}^{(3,1,-\frac{1}{3})} & m_{36}^{(3,1,-\frac{1}{3})} & m_{36}^{(3,1,-\frac{1}{3})} & \frac{\lambda_{21}\overline{v_{R}}}{2\sqrt{15}} \\ m_{51}^{(3,1,-\frac{1}{3})} & m_{53}^{(3,1,-\frac{1}{3})} & m_{53}^{(3,1,-\frac{1}{3})} & \frac{2\lambda_{11}E}{\sqrt{15}} & m_{2} - \frac{\lambda_{2}\Phi_{3}}{5\sqrt{6}} & \frac{\lambda_{2}\Phi_{3}}{15\sqrt{2}} & -\frac{\lambda_{2}\overline{v_{R}}}{10\sqrt{3}} \\ m_{51}^{(3,1,-\frac{1}{3})} & m_{53}^{(3,1,-\frac{1}{3})} & 0 & \frac{\lambda_{2}\Phi_{3}}{15\sqrt{2}} & m_{66}^{(3,1,-\frac{1}{3})} & -\frac{\lambda_{2}\overline{v_{R}}}{5\sqrt{6}} \\ \frac{\lambda_{3}\overline{v_{R}}}{\sqrt{5}} & \frac{\lambda_{20}\overline{v_{R}}}{2\sqrt{15}} & \frac{\lambda_{20}\overline{v_{R}}}{2\sqrt{15}} & 0 & -\frac{\lambda_{2}\overline{v_{R}}}{10\sqrt{3}} & -\frac{\lambda_{2}\overline{v_{R}}}{5\sqrt{6}} & m_{77}^{(3,1,-\frac{1}{3})} \end{pmatrix}$$

$$(69)$$

$$m_{12}^{(3,1,-\frac{1}{3})} \equiv -\frac{i\lambda_{16}A_{1}}{\sqrt{3}} - \frac{\lambda_{17}\Phi_{3}}{2\sqrt{3}},$$

$$m_{13}^{(3,1,-\frac{1}{3})} \equiv -\frac{i\sqrt{2}\lambda_{16}A_{2}}{3} - \frac{\lambda_{17}\Phi_{2}}{\sqrt{6}},$$

$$m_{14}^{(3,1,-\frac{1}{3})} \equiv \frac{\lambda_{3}\Phi_{2}}{\sqrt{30}} - \frac{\lambda_{3}\Phi_{1}}{\sqrt{10}},$$

$$m_{15}^{(3,1,-\frac{1}{3})} \equiv -\frac{\lambda_{4}\Phi_{1}}{\sqrt{10}} - \frac{\lambda_{4}\Phi_{2}}{\sqrt{30}},$$

$$m_{21}^{(3,1,-\frac{1}{3})} \equiv \frac{i\lambda_{16}A_{1}}{\sqrt{3}} - \frac{\lambda_{17}\Phi_{3}}{2\sqrt{3}},$$

$$m_{22}^{(3,1,-\frac{1}{3})} \equiv m_{6} + \frac{4\lambda_{14}E}{3\sqrt{15}} + \frac{1}{3}\sqrt{\frac{2}{3}}\lambda_{15}\Phi_{1},$$

$$m_{24}^{(3,1,-\frac{1}{3})} \equiv -\frac{i\lambda_{18}A_{1}}{2\sqrt{5}} + \frac{\lambda_{20}\Phi_{3}}{12\sqrt{5}},$$

$$m_{25}^{(3,1,-\frac{1}{3})} \equiv -\frac{i\lambda_{19}A_{1}}{2\sqrt{5}} + \frac{\lambda_{21}\Phi_{3}}{12\sqrt{5}},$$

$$m_{26}^{(3,1,-\frac{1}{3})} \equiv -\frac{i\lambda_{19}A_{2}}{\sqrt{15}} + \frac{\lambda_{21}\Phi_{2}}{6\sqrt{5}},$$

$$m_{31}^{(3,1,-\frac{1}{3})} \equiv \frac{i\sqrt{2}\lambda_{16}A_{2}}{3} - \frac{\lambda_{17}\Phi_{2}}{\sqrt{6}},$$

$$m_{33}^{(3,1,-\frac{1}{3})} \equiv m_{6} - \frac{2\lambda_{14}E}{\sqrt{15}} + \frac{\sqrt{2}\lambda_{15}\Phi_{2}}{9}$$

$$\begin{split} m_{34}^{(3,1,-\frac{1}{3})} &\equiv \frac{i\lambda_{18}A_{2}}{\sqrt{30}} - \frac{\lambda_{20}\Phi_{2}}{6\sqrt{10}}, \\ m_{35}^{(3,1,-\frac{1}{3})} &\equiv -\frac{i\lambda_{19}A_{2}}{\sqrt{30}} + \frac{\lambda_{21}\Phi_{2}}{6\sqrt{10}}, \\ m_{36}^{(3,1,-\frac{1}{3})} &\equiv -\frac{i\lambda_{19}A_{1}}{\sqrt{10}} + \frac{\lambda_{21}\Phi_{3}}{6\sqrt{10}}, \\ m_{41}^{(3,1,-\frac{1}{3})} &\equiv \frac{\lambda_{4}\Phi_{2}}{\sqrt{30}} - \frac{\lambda_{4}\Phi_{1}}{\sqrt{10}}, \\ m_{42}^{(3,1,-\frac{1}{3})} &\equiv \frac{i\lambda_{19}A_{1}}{2\sqrt{5}} + \frac{\lambda_{21}\Phi_{3}}{12\sqrt{5}}, \\ m_{43}^{(3,1,-\frac{1}{3})} &\equiv -\frac{i\lambda_{19}A_{2}}{\sqrt{30}} - \frac{\lambda_{21}\Phi_{2}}{6\sqrt{10}}, \\ m_{51}^{(3,1,-\frac{1}{3})} &\equiv -\frac{\lambda_{3}\Phi_{1}}{\sqrt{10}} - \frac{\lambda_{3}\Phi_{2}}{\sqrt{30}}, \\ m_{52}^{(3,1,-\frac{1}{3})} &\equiv \frac{i\lambda_{18}A_{1}}{2\sqrt{5}} + \frac{\lambda_{20}\Phi_{3}}{12\sqrt{5}}, \\ m_{63}^{(3,1,-\frac{1}{3})} &\equiv \frac{i\lambda_{18}A_{2}}{\sqrt{30}} + \frac{\lambda_{20}\Phi_{2}}{6\sqrt{10}}, \\ m_{63}^{(3,1,-\frac{1}{3})} &\equiv \frac{i\lambda_{18}A_{2}}{\sqrt{15}} + \frac{\lambda_{20}\Phi_{2}}{6\sqrt{5}}, \\ m_{66}^{(3,1,-\frac{1}{3})} &\equiv \frac{i\lambda_{18}A_{1}}{\sqrt{10}} + \frac{\lambda_{20}\Phi_{3}}{6\sqrt{10}}, \\ m_{66}^{(3,1,-\frac{1}{3})} &\equiv \frac{i\lambda_{18}A_{1}}{\sqrt{10}} + \frac{\lambda_{20}\Phi_{3}}{6\sqrt{10}}, \\ m_{66}^{(3,1,-\frac{1}{3})} &\equiv m_{2} + \frac{\lambda_{2}\Phi_{1}}{10\sqrt{6}} + \frac{\lambda_{2}\Phi_{2}}{30\sqrt{2}} - \frac{\lambda_{6}A_{2}}{5\sqrt{6}}, \\ m_{77}^{(3,1,-\frac{1}{3})} &\equiv m_{1} + \frac{\lambda_{1}\Phi_{1}}{\sqrt{6}} + \frac{\lambda_{1}\Phi_{2}}{3\sqrt{2}} + \frac{2\lambda_{1}\Phi_{3}}{3} + \frac{2}{5}\sqrt{\frac{2}{3}}\lambda_{7}A_{2} + \frac{\lambda_{10}E}{2\sqrt{15}}. \end{split}$$

$$[(1,1,2)+c.c.]$$

c:
$$\widehat{\Delta}_{(\overline{10},1,3)}^{(1,1,2)}$$

$$r: \frac{\widehat{\Delta}_{(10,1,3)}^{(1,1,-2)}}{\widehat{\Delta}_{(10,1,3)}}$$

$$m_2 + \frac{\lambda_2 \Phi_1}{10\sqrt{6}} + \frac{\lambda_2 \Phi_2}{10\sqrt{2}} - \frac{\lambda_2 \Phi_3}{10} + \frac{\lambda_6 A_1}{5} - \frac{1}{5} \sqrt{\frac{3}{2}} \lambda_6 A_2. \tag{71}$$

$$\left[(\mathbf{1}, \mathbf{2}, \frac{3}{2}) + c.c. \right]$$

c:
$$\widehat{\Phi}_{(\overline{10},2,2)}^{(1,2,\frac{3}{2})}$$

$$\mathbf{r}: \widehat{\Phi}_{(10,2,2)}^{(1,2,-\frac{3}{2})}$$

$$m_1 + \frac{\lambda_1 \Phi_2}{\sqrt{2}} - \frac{\lambda_1 \Phi_3}{2} - \frac{2}{5} \lambda_7 A_1 - \frac{1}{4} \sqrt{\frac{3}{5}} \lambda_{10} E.$$
 (72)

(1, 3, 0)

c:
$$\widehat{A}_{(1,3,1)}^{(1,3,0)}$$
, $\widehat{E}_{(1,3,3)}^{(1,3,0)}$, $\widehat{\Phi}_{(15,3,1)}^{(1,3,0)}$

r:
$$\widehat{A}_{(1,3,1)}^{(1,3,0)}$$
, $\widehat{E}_{(1,3,3)}^{(1,3,0)}$, $\widehat{\Phi}_{(15,3,1)}^{(1,3,0)}$

$$\begin{pmatrix}
m_4 - \sqrt{\frac{2}{3}}\lambda_5\Phi_1 + \sqrt{\frac{3}{5}}\lambda_9E & \lambda_9A_1 & -\sqrt{\frac{2}{3}}\lambda_5A_2 + \frac{2}{5}\sqrt{2}\lambda_7\Phi_2 \\
\lambda_9A_1 & m_5 + 3\sqrt{\frac{3}{5}}\lambda_8E & -\frac{\lambda_{10}\Phi_3}{2} \\
-\sqrt{\frac{2}{3}}\lambda_5A_2 + \frac{2}{5}\sqrt{2}\lambda_7\Phi_2 & -\frac{\lambda_{10}\Phi_3}{2} & m_1 - \frac{\lambda_1\Phi_1}{\sqrt{6}} + \frac{\sqrt{2}\lambda_1\Phi_2}{3} - \frac{4}{5}\sqrt{\frac{2}{3}}\lambda_7A_2 + \frac{\lambda_{10}E}{2\sqrt{15}}
\end{pmatrix}.$$
(73)

$$[(1,3,1)+c.c.]$$

c:
$$\hat{E}_{(1,3,3)}^{(1,3,1)}$$
, $\hat{\overline{\Delta}}_{(\overline{10},3,1)}^{(1,3,1)}$

r:
$$\widehat{E}_{(1,3,3)}^{(1,3,-1)}$$
, $\widehat{\Delta}_{(10,3,1)}^{(1,3,-1)}$

$$\begin{pmatrix}
m_5 + 3\sqrt{\frac{3}{5}}\lambda_8 E & \frac{2\lambda_{12}\overline{v_R}}{5} \\
\frac{2\lambda_{11}v_R}{5} & m_2 - \frac{\lambda_2\Phi_1}{10\sqrt{6}} + \frac{\lambda_2\Phi_2}{10\sqrt{2}} + \frac{1}{5}\sqrt{\frac{3}{2}}\lambda_6 A_2
\end{pmatrix}.$$
(74)

$$\left[(3, 1, -\frac{4}{3}) + c.c. \right]$$

c:
$$\widehat{D}_{(6,1,3)}^{(3,1,-\frac{4}{3})}, \, \widehat{\overline{\Delta}}_{(10,1,3)}^{(3,1,-\frac{4}{3})}$$

$$\mathbf{r} \colon \widehat{\overline{D}}_{(6,1,3)}^{(\overline{3},1,\frac{4}{3})}, \, \widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{3},1,\frac{4}{3})}$$

$$\begin{pmatrix}
m_6 + \frac{4\lambda_{14}E}{3\sqrt{15}} + \frac{1}{3}\sqrt{\frac{2}{3}}\lambda_{15}\Phi_1 - \frac{2\lambda_{15}\Phi_3}{9} & -\frac{i\lambda_{19}A_2}{\sqrt{15}} + \frac{\lambda_{21}\Phi_2}{6\sqrt{5}} - \frac{\lambda_{21}\Phi_3}{3\sqrt{10}} \\
\frac{i\lambda_{18}A_2}{\sqrt{15}} + \frac{\lambda_{20}\Phi_2}{6\sqrt{5}} - \frac{\lambda_{20}\Phi_3}{3\sqrt{10}} & m_2 + \frac{\lambda_2\Phi_1}{10\sqrt{6}} + \frac{\lambda_2\Phi_2}{30\sqrt{2}} - \frac{\lambda_2\Phi_3}{30} + \frac{\lambda_6A_1}{5} - \frac{\lambda_6A_2}{5\sqrt{6}}
\end{pmatrix}. (75)$$

$$\left[(3, 1, \frac{5}{3}) + c.c. \right]$$

c:
$$\widehat{\Phi}_{(15,1,3)}^{(3,1,\frac{5}{3})}$$

$$\mathbf{r}: \ \widehat{\Phi}_{(15,1,3)}^{(\overline{3},1,-\frac{5}{3})}$$

$$m_1 + \frac{\lambda_1 \Phi_1}{\sqrt{6}} + \frac{\lambda_1 \Phi_2}{3\sqrt{2}} - \frac{2\lambda_1 \Phi_3}{3} + \frac{2}{5} \sqrt{\frac{2}{3}} \lambda_7 A_2 + \frac{\lambda_{10} E}{2\sqrt{15}}.$$
 (76)

$$\left[(\mathbf{3}, \mathbf{2}, \frac{7}{6}) + c.c. \right]$$

c:
$$\widehat{D}_{(15,2,2)}^{(3,2,\frac{7}{6})}$$
, $\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{7}{6})}$, $\widehat{\overline{\Delta}}_{(15,2,2)}^{(3,2,\frac{7}{6})}$

$$\mathbf{r} \colon \, \widehat{D}_{(15,2,2)}^{(\overline{3},2,-\frac{7}{6})}, \, \widehat{\overline{\Delta}}_{(15,2,2)}^{(\overline{3},2,-\frac{7}{6})}, \, \widehat{\Delta}_{(15,2,2)}^{(\overline{3},2,-\frac{7}{6})}$$

$$\begin{pmatrix}
m_{11}^{(3,2,\frac{7}{6})} & m_{12}^{(3,2,\frac{7}{6})} & m_{13}^{(3,2,\frac{7}{6})} \\
m_{21}^{(3,2,\frac{7}{6})} & m_{22}^{(3,2,\frac{7}{6})} & \frac{\lambda_{12}E}{\sqrt{15}} \\
m_{31}^{(3,2,\frac{7}{6})} & \frac{\lambda_{11}E}{\sqrt{15}} & m_{33}^{(3,2,\frac{7}{6})}
\end{pmatrix},$$
(77)

$$m_{11}^{(3,2,\frac{7}{6})} \equiv m_{6} - \frac{\lambda_{14}E}{3\sqrt{15}} + \frac{\sqrt{2}\lambda_{15}\Phi_{2}}{9} - \frac{2\lambda_{15}\Phi_{3}}{9},$$

$$m_{12}^{(3,2,\frac{7}{6})} \equiv -\frac{i\lambda_{18}A_{1}}{2\sqrt{10}} + \frac{i\lambda_{18}A_{2}}{2\sqrt{15}} + \frac{\lambda_{20}\Phi_{1}}{4\sqrt{15}} + \frac{\lambda_{20}\Phi_{2}}{6\sqrt{5}} - \frac{\lambda_{20}\Phi_{3}}{4\sqrt{10}},$$

$$m_{13}^{(3,2,\frac{7}{6})} \equiv -\frac{i\lambda_{19}A_{1}}{2\sqrt{10}} - \frac{i\lambda_{19}A_{2}}{2\sqrt{15}} + \frac{\lambda_{21}\Phi_{1}}{4\sqrt{15}} - \frac{\lambda_{21}\Phi_{2}}{6\sqrt{5}} - \frac{\lambda_{21}\Phi_{3}}{12\sqrt{10}},$$

$$m_{21}^{(3,2,\frac{7}{6})} \equiv \frac{i\lambda_{19}A_{1}}{2\sqrt{10}} - \frac{i\lambda_{19}A_{2}}{2\sqrt{15}} + \frac{\lambda_{21}\Phi_{1}}{4\sqrt{15}} + \frac{\lambda_{21}\Phi_{2}}{6\sqrt{5}} - \frac{\lambda_{21}\Phi_{3}}{4\sqrt{10}},$$

$$m_{22}^{(3,2,\frac{7}{6})} \equiv m_{2} + \frac{\lambda_{2}\Phi_{2}}{30\sqrt{2}} - \frac{\lambda_{2}\Phi_{3}}{20} + \frac{\lambda_{6}A_{1}}{10} - \frac{1}{5}\sqrt{\frac{2}{3}}\lambda_{6}A_{2},$$

$$m_{31}^{(3,2,\frac{7}{6})} \equiv \frac{i\lambda_{18}A_{1}}{2\sqrt{10}} + \frac{i\lambda_{18}A_{2}}{2\sqrt{15}} + \frac{\lambda_{20}\Phi_{1}}{4\sqrt{15}} - \frac{\lambda_{20}\Phi_{2}}{6\sqrt{5}} - \frac{\lambda_{20}\Phi_{3}}{12\sqrt{10}},$$

$$m_{33}^{(3,2,\frac{7}{6})} \equiv m_{2} + \frac{\lambda_{2}\Phi_{2}}{30\sqrt{2}} - \frac{\lambda_{2}\Phi_{3}}{60} - \frac{\lambda_{6}A_{1}}{10} + \frac{1}{5}\sqrt{\frac{2}{3}}\lambda_{6}A_{2}.$$

$$(78)$$

$$\left[(\mathbf{3}, \mathbf{3}, -\frac{1}{3}) + c.c. \right]$$

c:
$$\widehat{D}_{(6,3,1)}^{(3,3,-\frac{1}{3})}, \, \widehat{\Delta}_{(10,3,1)}^{(3,3,-\frac{1}{3})}$$

r:
$$\widehat{D}_{(6,3,1)}^{(\overline{3},3,\frac{1}{3})} \widehat{\overline{\Delta}}_{(\overline{10},3,1)}^{(\overline{3},3,\frac{1}{3})}$$

$$\begin{pmatrix}
m_6 + \frac{4\lambda_{14}E}{3\sqrt{15}} - \frac{1}{3}\sqrt{\frac{2}{3}}\lambda_{15}\Phi_1 & -\frac{i\lambda_{18}A_2}{\sqrt{15}} + \frac{\lambda_{20}\Phi_2}{6\sqrt{5}} \\
\frac{i\lambda_{19}A_2}{\sqrt{15}} + \frac{\lambda_{21}\Phi_2}{6\sqrt{5}} & m_2 - \frac{\lambda_2\Phi_1}{10\sqrt{6}} + \frac{\lambda_2\Phi_2}{30\sqrt{2}} + \frac{\lambda_6A_2}{5\sqrt{6}}
\end{pmatrix}.$$
(79)

$$\left[(\mathbf{3}, \mathbf{3}, \frac{2}{3}) + c.c. \right]$$

c:
$$\widehat{\Phi}_{(15,3,1)}^{(3,3,\frac{2}{3})}$$

r:
$$\widehat{\Phi}_{(15,3,1)}^{(\overline{3},3,-\frac{2}{3})}$$

$$m_1 - \frac{\lambda_1 \Phi_1}{\sqrt{6}} + \frac{\lambda_1 \Phi_2}{3\sqrt{2}} - \frac{2}{5} \sqrt{\frac{2}{3}} \lambda_7 A_2 + \frac{\lambda_{10} E}{2\sqrt{15}}.$$
 (80)

$$\left[(\mathbf{6}, \mathbf{1}, -\frac{2}{3}) + c.c. \right]$$

c:
$$\widehat{E}_{(20',1,1)}^{(6,1,-\frac{2}{3})}, \, \widehat{\overline{\Delta}}_{(10,1,3)}^{(6,1,-\frac{2}{3})}$$

$$\mathbf{r} \colon \, \widehat{E}_{(20',1,1)}^{(6,1,\frac{2}{3})}, \, \widehat{\Delta}_{(\overline{10},1,3)}^{(6,1,\frac{2}{3})}$$

$$\begin{pmatrix}
m_5 - 2\sqrt{\frac{3}{5}}\lambda_8 E & \frac{2\lambda_{12}\overline{v_R}}{5} \\
\frac{2\lambda_{11}v_R}{5} & m_2 + \frac{\lambda_2\Phi_1}{10\sqrt{6}} - \frac{\lambda_2\Phi_2}{30\sqrt{2}} + \frac{\lambda_2\Phi_3}{30} + \frac{\lambda_6A_1}{5} + \frac{\lambda_6A_2}{5\sqrt{6}}
\end{pmatrix}.$$
(81)

$$\left[(\mathbf{6}, \mathbf{1}, \frac{1}{3}) + c.c. \right]$$

c:
$$\widehat{D}_{(10,1,1)}^{(6,1,\frac{1}{3})}, \, \widehat{\overline{\Delta}}_{(10,1,3)}^{(6,1,\frac{1}{3})}$$

$$\mathbf{r} \colon \, \widehat{D}_{(\overline{10},1,1)}^{(6,1,-\frac{1}{3})}, \, \widehat{\Delta}_{(\overline{10},1,3)}^{(6,1,-\frac{1}{3})}$$

$$\begin{pmatrix}
m_6 - \frac{2\lambda_{14}E}{\sqrt{15}} - \frac{\sqrt{2}\lambda_{15}\Phi_2}{9} & -\frac{i\lambda_{19}A_1}{6\sqrt{10}} - \frac{\lambda_{21}\Phi_3}{6\sqrt{10}} \\
\frac{i\lambda_{18}A_1}{\sqrt{10}} - \frac{\lambda_{20}\Phi_3}{6\sqrt{10}} & m_2 + \frac{\lambda_2\Phi_1}{10\sqrt{6}} - \frac{\lambda_2\Phi_2}{30\sqrt{2}} + \frac{\lambda_6A_2}{5\sqrt{6}}
\end{pmatrix}.$$
(82)

$$\left[(\mathbf{6}, \mathbf{1}, \frac{4}{3}) + c.c. \right]$$

c:
$$\widehat{\overline{\Delta}}_{(10,1,3)}^{(6,1,\frac{4}{3})}$$

$$\mathbf{r} : \widehat{\Delta}_{(\overline{10},1,3)}^{(6,1,-\frac{4}{3})}$$

$$m_2 + \frac{\lambda_2 \Phi_1}{10\sqrt{6}} - \frac{\lambda_2 \Phi_2}{30\sqrt{2}} - \frac{\lambda_2 \Phi_3}{30} - \frac{\lambda_6 A_1}{5} + \frac{\lambda_6 A_2}{5\sqrt{6}}.$$
 (83)

$$\left[(\mathbf{6}, \mathbf{2}, -\frac{1}{6}) + c.c. \right]$$

c:
$$\widehat{\Phi}_{(10,2,2)}^{(6,2,-\frac{1}{6})}$$

r:
$$\widehat{\Phi}_{(\overline{10},2,2)}^{(6,2,\frac{1}{6})}$$

$$m_1 - \frac{\lambda_1 \Phi_2}{3\sqrt{2}} + \frac{\lambda_1 \Phi_3}{6} - \frac{2}{5}\lambda_7 A_1 - \frac{1}{4}\sqrt{\frac{3}{5}}\lambda_{10}E.$$
 (84)

$$\left[(\mathbf{6}, \mathbf{2}, \frac{5}{6}) + c.c. \right]$$

c:
$$\widehat{\Phi}_{(10,2,2)}^{(6,2,\frac{5}{6})}$$

r:
$$\widehat{\Phi}_{(\overline{10},2,2)}^{(6,2,-\frac{5}{6})}$$

$$m_1 - \frac{\lambda_1 \Phi_2}{3\sqrt{2}} - \frac{\lambda_1 \Phi_3}{6} + \frac{2}{5}\lambda_7 A_1 - \frac{1}{4}\sqrt{\frac{3}{5}}\lambda_{10}E.$$
 (85)

$$\left[(\mathbf{6}, \mathbf{3}, \frac{1}{3}) + c.c. \right]$$

c:
$$\widehat{\Delta}_{(10,3,1)}^{(6,3,\frac{1}{3})}$$

$$\mathbf{r} : \frac{\widehat{\Delta}_{(10,3,1)}^{(6,3,-\frac{1}{3})}$$

$$m_2 - \frac{\lambda_2 \Phi_1}{10\sqrt{6}} - \frac{\lambda_2 \Phi_2}{30\sqrt{2}} - \frac{\lambda_6 A_2}{5\sqrt{6}}.$$
 (86)

(8, 1, 0)

c:
$$\widehat{A}_{(15,1,1)}^{(8,1,0)}$$
, $\widehat{E}_{(20',1,1)}^{(8,1,0)}$, $\widehat{\Phi}_{(15,1,1)}^{(8,1,0)}$, $\widehat{\Phi}_{(15,1,3)}^{(8,1,0)}$

$$\mathbf{r} \colon \, \widehat{A}_{(15,1,1)}^{(8,1,0)}, \, \widehat{E}_{(20',1,1)}^{(8,1,0)}, \, \widehat{\Phi}_{(15,1,1)}^{(8,1,0)}, \, \widehat{\Phi}_{(15,1,3)}^{(8,1,0)}$$

$$\begin{pmatrix} m_4 - \frac{\sqrt{2}\lambda_5\Phi_2}{3} - \frac{2\lambda_9E}{\sqrt{15}} & \sqrt{\frac{2}{3}}\lambda_9A_2 & -\frac{\sqrt{2}\lambda_5A_2}{3} + \frac{2\sqrt{2}\lambda_7\Phi_1}{5} & -\sqrt{\frac{2}{3}}\lambda_5A_1 + \frac{2}{5}\sqrt{\frac{2}{3}}\lambda_7\Phi_3 \\ \sqrt{\frac{2}{3}}\lambda_9A_2 & m_5 - 2\sqrt{\frac{3}{5}}\lambda_8E & -\frac{\lambda_{10}\Phi_2}{\sqrt{6}} & -\frac{\lambda_{10}\Phi_3}{\sqrt{6}} \\ -\frac{\sqrt{2}\lambda_5A_2}{3} + \frac{2}{5}\sqrt{2}\lambda_7\Phi_1 & -\frac{\lambda_{10}\Phi_2}{\sqrt{6}} & m_1 - \frac{\lambda_1\Phi_2}{3\sqrt{2}} - \frac{2\lambda_{10}E}{\sqrt{15}} & \frac{\lambda_1\Phi_3}{3\sqrt{2}} - \frac{2\sqrt{2}\lambda_7A_1}{5} \\ -\sqrt{\frac{2}{3}}\lambda_5A_1 + \frac{2}{5}\sqrt{\frac{2}{3}}\lambda_7\Phi_3 & -\frac{\lambda_{10}\Phi_3}{\sqrt{6}} & \frac{\lambda_1\Phi_3}{3\sqrt{2}} - \frac{2\sqrt{2}\lambda_7A_1}{5} & m_{44}^{(8,1,0)} \end{pmatrix},$$

$$(87)$$

where

$$m_{44}^{(8,1,0)} \equiv m_1 + \frac{\lambda_1 \Phi_1}{\sqrt{6}} - \frac{\lambda_1 \Phi_2}{3\sqrt{2}} - \frac{2}{5} \sqrt{\frac{2}{3}} \lambda_7 A_2 + \frac{\lambda_{10} E}{2\sqrt{15}}.$$
 (88)

$$[(8,1,1)+c.c.]$$

c:
$$\widehat{\Phi}_{(15,1,3)}^{(8,1,1)}$$

$$\mathbf{r}: \ \widehat{\Phi}_{(15,1,3)}^{(8,1,-1)}$$

$$m_1 + \frac{\lambda_1 \Phi_1}{\sqrt{6}} - \frac{\lambda_1 \Phi_2}{3\sqrt{2}} - \frac{2}{5} \sqrt{\frac{2}{3}} \lambda_7 A_2 + \frac{\lambda_{10} E}{2\sqrt{15}}.$$
 (89)

$$\left[(8, \mathbf{2}, -\frac{1}{2}) + c.c. \right]$$

c:
$$\widehat{D}_{(15,2,2)}^{(8,2,\frac{1}{2})}$$
, $\widehat{\Delta}_{(15,2,2)}^{(8,2,\frac{1}{2})}$, $\widehat{\overline{\Delta}}_{(15,2,2)}^{(8,2,\frac{1}{2})}$

$$\mathbf{r} \colon \, \widehat{D}_{(15,2,2)}^{(8,2,-\frac{1}{2})}, \, \widehat{\overline{\Delta}}_{(15,2,2)}^{(8,2,-\frac{1}{2})}, \, \widehat{\Delta}_{(15,2,2)}^{(8,2,-\frac{1}{2})}$$

$$\begin{pmatrix}
m_{11}^{(8,2,-\frac{1}{2})} & m_{12}^{(8,2,-\frac{1}{2})} & m_{13}^{(8,2,-\frac{1}{2})} \\
m_{21}^{(8,2,-\frac{1}{2})} & m_{22}^{(8,2,-\frac{1}{2})} & \frac{\lambda_{12}E}{\sqrt{15}} \\
m_{31}^{(8,2,-\frac{1}{2})} & \frac{\lambda_{11}E}{\sqrt{15}} & m_{33}^{(8,2,-\frac{1}{2})}
\end{pmatrix},$$
(90)

$$m_{11}^{(8,2,-\frac{1}{2})} \equiv m_6 - \frac{\lambda_{14}E}{3\sqrt{15}} - \frac{\sqrt{2}\lambda_{15}\Phi_2}{9},$$

$$m_{12}^{(8,2,-\frac{1}{2})} \equiv -\frac{i\lambda_{18}A_1}{2\sqrt{10}} - \frac{i\lambda_{18}A_2}{2\sqrt{15}} + \frac{\lambda_{20}\Phi_1}{4\sqrt{15}} + \frac{\lambda_{20}\Phi_3}{12\sqrt{10}},$$

$$m_{13}^{(8,2,-\frac{1}{2})} \equiv -\frac{i\lambda_{19}A_{1}}{2\sqrt{10}} + \frac{i\lambda_{19}A_{2}}{2\sqrt{15}} + \frac{\lambda_{21}\Phi_{1}}{4\sqrt{15}} - \frac{\lambda_{21}\Phi_{3}}{12\sqrt{10}},$$

$$m_{21}^{(8,2,-\frac{1}{2})} \equiv \frac{i\lambda_{19}A_{1}}{2\sqrt{10}} + \frac{i\lambda_{19}A_{2}}{2\sqrt{15}} + \frac{\lambda_{21}\Phi_{1}}{4\sqrt{15}} + \frac{\lambda_{21}\Phi_{3}}{12\sqrt{10}},$$

$$m_{22}^{(8,2,-\frac{1}{2})} \equiv m_{2} - \frac{\lambda_{2}\Phi_{2}}{30\sqrt{2}} + \frac{\lambda_{2}\Phi_{3}}{60} + \frac{\lambda_{6}A_{1}}{10},$$

$$m_{31}^{(8,2,-\frac{1}{2})} \equiv \frac{i\lambda_{18}A_{1}}{2\sqrt{10}} - \frac{i\lambda_{18}A_{2}}{2\sqrt{15}} + \frac{\lambda_{20}\Phi_{1}}{4\sqrt{15}} - \frac{\lambda_{20}\Phi_{3}}{12\sqrt{10}},$$

$$m_{33}^{(8,2,-\frac{1}{2})} \equiv m_{2} - \frac{\lambda_{2}\Phi_{2}}{30\sqrt{2}} - \frac{\lambda_{2}\Phi_{3}}{60} - \frac{\lambda_{6}A_{1}}{10}.$$

$$(91)$$

(8, 3, 0)

c: $\widehat{\Phi}_{(15,3,1)}^{(8,3,0)}$

r: $\widehat{\Phi}_{(15,3,1)}^{(8,3,0)}$

$$m_1 - \frac{\lambda_1 \Phi_1}{\sqrt{6}} - \frac{\lambda_1 \Phi_2}{3\sqrt{2}} + \frac{2}{5} \sqrt{\frac{2}{3}} \lambda_7 A_2 + \frac{\lambda_{10} E}{2\sqrt{15}}.$$
 (92)

5.2 Tests and consistency checks of the total mass matrix

The following consistency checks of the total mass matrix have been performed (see also Ref. ([17])):

- 1. The CG coefficients appearing in the total mass matrix have been found to satisfy the hermiticity relation (50).
- 2. The trace of the total mass matrix has been evaluated and it has been found that it satisfies Eq. (56).
- 3. For the G_{321} symmetric vacuum, the number of the would-be NG modes have been found to be equal to the number of the broken generators i.e. massive gauge bosons, 45-12=33. Here, 45 represents the number of gauge bosons in the adjoint irrep of the SO(10) group, and 12 represents the number of the gauge bosons in the standard model (G_{321} group). The check has been performed numerically for several tens of randomly chosen sets of the parameters of the superpotential $\lambda_1, \dots, \lambda_{21}$ and m_1, \dots, m_6 , constrained by VEV Eqs. (28).
- 4. For the SU(5) symmetric vacuum, it has been found that the number of the different mass eigenvalues is 21. The number of independent SU(5) irreps contained in the total representation of the model R is 22 (see Appendix A), and the would-be NG bosons are in two multiplets $((1) + (10 + \overline{10}))$. Therefore, there are in total 21 mass

eigenvalues: 20 different from zero and one equal to zero. All other states have to be accommodated in the SU(5) irreps. Further, for the SU(5) symmetric vacuum, all eigenvalues of the doublet Higgs matrix $(\mathbf{1}, \mathbf{2}, \frac{1}{2})$ are contained in the spectrum of the triplet Higgs matrix $(\mathbf{3}, \mathbf{1}, -\frac{1}{3})$. The only mass eigenvalue of the triplet Higgs matrix spectrum not contained in the doublet mass spectrum belongs to the SU(5) multiplet $\mathbf{50}$, leading to the following relation between determinants of these two matrices,

$$\det(M^{(3,1,-\frac{1}{3})} - \lambda \times \mathbf{1}) = (m_{50}^{(3,1,-\frac{1}{3})} - \lambda) \det(M^{(1,2,\frac{1}{2})} - \lambda \times \mathbf{1}). \tag{93}$$

The above relation gives a very strong test for these two matrices. All above checks have been performed numerically, in the same way as explained in the previous item. Our mass matrices passed all checks. For the SU(5) symmetric vacuum, all VEVs, except E, are different from zero, and they are non trivially correlated through the VEV Eqs. (28) and SU(5) symmetry conditions (30). Therefore, these tests serve as a strong check of the total mass matrix up to terms which depend on E.

- 5. For the G_{422} symmetric vacuum, it has been found that the number of different mass eigenvalues is 27, what is just the number of the independent G_{422} irreps (see Appendix A). The number of NG states, contained in G_{422} irrep (6, 2, 2) is 45-21=24. These checks have been performed numerically as explained above. All other states have been found to be accommodated in G_{422} irreps. For the G_{422} symmetric vacuum, VEVs different from zero are Φ_1 and E, and therefore this serves as a check of the E-dependent parts of the total mass matrix.
- 6. Similar tests are satisfied for other higher symmetries G_{51} , G_{421} , G_{3221} and G_{3211} .

We stress that all mass matrices in Ref. [17], derived for minimal SO(10) model $(R = \mathbf{10} + \mathbf{126} + \mathbf{\overline{126}} + \mathbf{210})$, satisfy all above consistency checks, and are just a special case of the mass matrices in this paper. Further, all results including CG coefficients and mass matrices were obtained analytically including checks.

In the recent calculations in Refs. [19, 20], that appeared after Ref. [17], the necessary condition (93) between doublets and triplets is not satisfied. The hermiticity condition (50) and the total trace relation (56) are also not satisfied in these references. Further, none of the higher symmetry tests is satisfied. That is a consequence of different phase conventions in Ref. [17] and phase conventions in Refs. [19] and [20].

In this paper, all results for the CG coefficients and mass matrices have been also obtained analytically. Checks have been performed numerically and it has been found that the mass matrices satisfy ALL consistency checks.

6 Mass Matrices of Quarks and Leptons

After the symmetry breaking down to the G_{321} subgroup, the electroweak symmetry breaking $SU(2)_L \times U(1)_Y \to U(1)_{\rm em}$ can be achieved by the VEVs of doublets included in the fields H, D, Δ , $\overline{\Delta}$ and Φ . These fields are given by (see Table 2) $\widetilde{H}_{u/d} = H_{(1,2,2)}^{(1,2,\pm\frac{1}{2})}$, $D_{u/d} = D_{(1,2,2)}^{(1,2,\pm\frac{1}{2})}$, $\overline{\Delta}_{u/d} = \overline{\Delta}_{(15,2,2)}^{(1,2,\pm\frac{1}{2})}$, $\Delta_{u/d} = \Delta_{(15,2,2)}^{(1,2,\pm\frac{1}{2})}$, $\Phi_{u/d} = \Phi_{(\overline{10},2,2)}^{(1,2,\pm\frac{1}{2})}$. The Yukawa couplings of Eq. (1) including these doublets can be written as follows:

$$W_{Y} = U_{i}^{c} \left(Y_{10}^{ij} \widetilde{H}_{u} + Y_{120}^{ij} D_{u} + Y_{120}^{ij} \widetilde{D}_{u} + Y_{126}^{ij} \overline{\Delta}_{u} \right) Q_{j}$$

$$+ D_{i}^{c} \left(Y_{10}^{ij} \widetilde{H}_{d} + Y_{120}^{ij} D_{d} + Y_{120}^{ij} \widetilde{D}_{d} + Y_{126}^{ij} \overline{\Delta}_{d} \right) Q_{j}$$

$$+ N_{i}^{c} \left(Y_{10}^{ij} \widetilde{H}_{u} + Y_{120}^{ij} D_{u} - 3 Y_{120}^{ij} \widetilde{D}_{u} - 3 Y_{126}^{ij} \overline{\Delta}_{u} \right) L_{j}$$

$$+ E_{i}^{c} \left(Y_{10}^{ij} \widetilde{H}_{d} + Y_{120}^{ij} D_{d} - 3 Y_{120}^{ij} \widetilde{D}_{d} - 3 Y_{126}^{ij} \overline{\Delta}_{d} \right) L_{j}. \tag{94}$$

where U^c , D^c , N^c and E^c are the right-handed $SU(2)_L$ singlet quark and lepton superfields, Q and L are the left-handed $SU(2)_L$ doublet quark and lepton superfields, respectively. This is a generalization of the renormalizable minimal SO(10) model [6, 7], including 120. Note that the successful gauge-couplings unification is realized with only the MSSM particle contents. This means that only one pair of Higgs doublets remains light and others should be heavy ($\geq M_G$). Here we accept the simple picture that the low-energy superpotential is described by only one pair of light Higgs doublets (H_u and H_d) in the MSSM. But, in general, these Higgs fields are admixtures of all Higgs doublets having the same quantum numbers in the original model such as:

$$H_{u} = \widetilde{\alpha}_{u}^{1} \widetilde{H}_{u} + \widetilde{\alpha}_{u}^{2} D_{u} + \widetilde{\alpha}_{u}^{3} \widetilde{D}_{u} + \widetilde{\alpha}_{u}^{4} \overline{\Delta}_{u} + \widetilde{\alpha}_{u}^{5} \Delta_{u} + \widetilde{\alpha}_{u}^{6} \Phi_{u},$$

$$H_{d} = \widetilde{\alpha}_{d}^{1} \widetilde{H}_{d} + \widetilde{\alpha}_{d}^{2} D_{d} + \widetilde{\alpha}_{d}^{3} \widetilde{D}_{d} + \widetilde{\alpha}_{d}^{4} \overline{\Delta}_{d} + \widetilde{\alpha}_{d}^{5} \Delta_{d} + \widetilde{\alpha}_{d}^{6} \Phi_{d},$$

$$(95)$$

where $\tilde{\alpha}_{u,d}^i$ $(i=1,2,\cdots,5,6)$ denote elements of the unitary matrix which rotate the flavor basis in the original model into the (SUSY) mass eigenstates. As mentioned above, the low-energy superpotential is described only by the light Higgs doublets H_u and H_d

$$W_{Y} = U_{i}^{c} \left(\alpha_{u}^{1} Y_{10}^{ij} + \alpha_{u}^{2} Y_{120}^{ij} + \alpha_{u}^{3} Y_{120}^{ij} + \alpha_{u}^{4} Y_{126}^{ij}\right) H_{u} Q_{j}$$

$$+ D_{i}^{c} \left(\alpha_{d}^{1} Y_{10}^{ij} + \alpha_{d}^{2} Y_{120}^{ij} + \alpha_{d}^{3} Y_{120}^{ij} + \alpha_{d}^{4} Y_{126}^{ij}\right) H_{d} Q_{j}$$

$$+ N_{i}^{c} \left(\alpha_{u}^{1} Y_{10}^{ij} + \alpha_{u}^{2} Y_{120}^{ij} - 3\alpha_{u}^{3} Y_{120}^{ij} - 3\alpha_{u}^{4} Y_{126}^{ij}\right) H_{u} L_{j}$$

$$+ E_{i}^{c} \left(\alpha_{d}^{1} Y_{10}^{ij} + \alpha_{d}^{2} Y_{120}^{ij} - 3\alpha_{d}^{3} Y_{120}^{ij} - 3\alpha_{d}^{4} Y_{126}^{ij}\right) H_{d} L_{j}, \tag{96}$$

where the formulae of the inverse unitary transformation of Eq. (95),

$$\widetilde{H}_{u} = \alpha_{u}^{1} H_{u}, \qquad D_{u} = \alpha_{u}^{2} H_{u},
\widetilde{D}_{u} = \alpha_{u}^{3} H_{u}, \qquad \overline{\Delta}_{u} = \alpha_{u}^{4} H_{u},
\widetilde{H}_{d} = \alpha_{d}^{1} H_{d}, \qquad D_{d} = \alpha_{d}^{2} H_{d},
\widetilde{D}_{d} = \alpha_{d}^{3} H_{d}, \qquad \overline{\Delta}_{d} = \alpha_{d}^{4} H_{d},$$
(97)

have been used.

Providing the Higgs VEVs, $H_u = v \sin \beta$ and $H_d = v \cos \beta$ with $v \simeq 174.1$ [GeV], the quark and lepton mass matrices can be read off as

$$M_{u} = c_{10} M_{10} + c_{120} M_{120} + \widetilde{c}_{120} \widetilde{M}_{120} + c_{126} M_{126},$$

$$M_{d} = M_{10} + M_{120} + \widetilde{M}_{120} + M_{126},$$

$$M_{D} = c_{10} M_{10} + c_{120} M_{120} - 3 \widetilde{c}_{120} \widetilde{M}_{120} - 3 c_{126} M_{126},$$

$$M_{e} = M_{10} + M_{120} - 3 \widetilde{M}_{120} - 3 M_{126},$$

$$M_{R} = c_{R} M_{126},$$

$$(98)$$

where M_u , M_d , M_D , M_e , and M_R denote the up-type quark, down-type quark, neutrino Dirac, charged-lepton, and right-handed neutrino Majorana mass matrices, respectively. Note that the mass matrices at the right-hand side of Eq. (98) are defined as $M_{10} = Y_{10} \alpha_d^1 v \cos \beta$, $M_{120} = Y_{120} \alpha_d^2 v \cos \beta$, $M_{120} = Y_{120} \alpha_d^3 v \cos \beta$, and $M_{126} = Y_{126} \alpha_d^4 v \cos \beta$, respectively, and the coefficients are defined as $c_{10} = (\alpha_u^1/\alpha_d^1) \tan \beta$, $c_{120} = (\alpha_u^2/\alpha_d^2) \tan \beta$, $\tilde{c}_{120} = (\alpha_u^3/\alpha_d^3) \tan \beta$, $c_{126} = (\alpha_u^4/\alpha_d^4) \tan \beta$, and $c_R = v_R/(\alpha_d^4 v \cos \beta)$. These mass matrices are directly connected with low-energy observations and are crucial to model judgement.

7 Conclusion

We have presented a simple method for the calculation of CG coefficients. We have constructed all states for all antisymmetric and symmetric SO(10) tensor irreps. We list all tables for the CG coefficients for the SO(10) irreps 10, 45, 54, 120, 126, 126 and 210, for all possible cubic invariants. We have constructed all mass matrices for the corresponding Higgs-Higgsino sector is SUSY GUT SO(10) models. We have found a set of consistency checks for the CG coefficients and mass matrices which proved the correctness of all our results. The results obtained here are useful for a wide class of GUT models based on the SO(10) group.

Acknowledgements

The work of A.I. and S.M. is supported by the Ministry of the Science and Technology of the Republic of Croatia under contracts No. 00119261 and No. 0098003, respectively. The work of T.F., T.K. and N.O. is supported by the Grant in Aid for Scientific Research from the Ministry of Education, Science and Culture. The work of T.K. is also supported by the Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists. T.F would like to thank G. Senjanović and A.Y. Smirnov for their hospitality at ICTP.

Appendix

A Decomposition of Representations under G_{321}

Here we list the decompositions of **10**, **16**, **45**, **54**, **120**, $\overline{\bf 126}$, and **210** representations under the chain of subgroups $G_{422} \supset G_{3122} \supset G_{3121} \supset G_{321}$ in Tables 7, 8, 9, 10, 11, 12 and 13, where U(1) groups are related to $SU(4) \to SU(3)_C \times U(1)_{B-L}$, $SU(2)_L \times SU(2)_R \to SU(2)_L \times U(1)_R$. Note also that we may consider another chain of subgroups $SO(10) \to SU(5) \times U(1)_X$ and $SU(5) \to G_{321}$. The relations between the generators of $U(1)_{X,Y}$ and $U(1)_{B-L,R}$ are:

$$\frac{1}{10} (-X + 4Y) = B - L,$$

$$Y = B - L + T_R^3,$$
(99)

where T_R^3 denotes the $U(1)_R$ generator.

⁷We use the same notation as Slansky [21] but with the proper U(1) normalizations.

Table 7: Decomposition of the representation ${f 10}$

$(4,2_L,2_R)$	$(3_C, 2_L, 2_R, 1_{B-L})$	$(3_C, 2_L, 1_R, 1_{B-L})$	$(3_C, 2_L, 1_Y)$	$(5,1_X)$
(6, 1, 1)	$\left(3,1,1;-rac{1}{3} ight)$	$(3,1;0,-\frac{1}{3})$	$\left(3,1;-rac{1}{3} ight)$	(5,2)
	$\left(\overline{3},1,1;\frac{1}{3}\right)$	$({\bf \overline{3}},{\bf 1};0,{1\over 3})$	$\left(\overline{3},1;\frac{1}{3}\right)$	$(\overline{\bf 5}, -2)$
$({f 1},{f 2},{f 2})$	$({f 1},{f 2},{f 2};0)$	$\left(1,2;\frac{1}{2},0\right)$	$\left(1,2;rac{1}{2} ight)$	(5,2)
		$\left(1,2;-\frac{1}{2},0\right)$	$\left(\hat{1},2;-\hat{rac{1}{2}} ight)$	$(\overline{\bf 5}, -2)$

Table 8: Decomposition of the representation ${\bf 16}$

$(4,2_L,2_R)$	$(3_C, 2_L, 2_R, 1_{B-L})$	$(3_C, 2_L, 1_R, 1_{B-L})$	$(3_C, 2_L, 1_Y)$	$(5,1_X)$
$({f 4},{f 2},{f 1})$	$\left(3,2,1;rac{1}{6} ight)$	$({f 3},{f 2};0,{1\over 6})$	$\left(3,2;rac{1}{6} ight)$	(10, -1)
	$\left(\hat{f 1},{f 2},{f 1};-\hat{f rac{1}{2}} ight)$	$(1, 2; 0, -\frac{1}{2})$	$\left(\hat{f 1},{f 2};-\hat{f rac{1}{2}} ight)$	$\left(\overline{5},3\right)$
$\left(\overline{f 4},{f 1},{f 2} ight)$	$\left(\overline{f 3},{f 1},{f 2};-rac{1}{6} ight)$	$\left(\overline{3},1;rac{1}{2},-rac{1}{6} ight)$	$\left(\overline{3},1;\frac{1}{3}\right)$	$\left(\overline{\bf 5},3\right)$
		$\left(\overline{3},1;-\frac{1}{2},-\frac{1}{6}\right)$	$\left(\overline{f 3},{f 1};-rac{2}{3} ight)$	(10, -1)
	$\left(1,1,2;rac{1}{2} ight)$	$\left(1,1;rac{1}{2},rac{1}{2} ight)$	$({f 1},{f 1};1)$	(10, -1)
	,	$\left(1,1;-\frac{1}{2},\frac{1}{2}\right)$	(1, 1; 0)	(1, -5)

Table 9: Decomposition of the representation ${\bf 45}$

$(4,2_L,2_R)$	$(3_C, 2_L, 2_R, 1_{B-L})$	$(3_C, 2_L, 1_R, 1_{B-L})$	$(3_C, 2_L, 1_Y)$	$(5,1_X)$
(1, 1, 3)	(1, 1, 3; 0)	(1 , 1 ; 1, 0) $(1, 1; 1)$		(10, 4)
		(1 , 1 ; 0, 0)	$({f 1},{f 1};0)$	(1,0)
		(1 , 1 ; -1, 0)	$({f 1},{f 1};-1)$	$\left(\overline{10}, -4\right)$
(1, 3, 1)	(1, 3, 1; 0)	(1 , 3 ; 0, 0)	(1, 3; 0)	(24,0)
$({f 6},{f 2},{f 2})$	$\left(3,2,2;-rac{1}{3} ight)$	$\left(3,2; frac{1}{2},- frac{1}{3} ight)$	$\left(3,2;rac{1}{6} ight)$	(10, 4)
		$\left({f 3},{f 2};-rac{1}{2},-rac{1}{3} ight)$	$\left(3,2;-rac{5}{6} ight)$	(24,0)
	$\left(\overline{f 3},{f 2},{f 2};rac{1}{3} ight)$	$\left(\overline{3},2;rac{1}{2},rac{1}{3} ight)$	$\left(\overline{f 3},{f 2};rac{5}{6} ight)$	(24,0)
		$\left(\overline{f 3},{f 2};-rac{1}{2},rac{1}{3} ight)$	$\left(\overline{f 3},{f 2};-rac{1}{6} ight)$	$\left(\overline{10}, -4\right)$
(15, 1, 1)	(1, 1, 1; 0)	(1 , 1 ; 0, 0)	$({\bf 1},{\bf 1};0)$	(24,0)
	$\left(3,1,1; frac{2}{3} ight)$	$(3,1;0,\frac{2}{3})$	$\left(3,1; frac{2}{3} ight)$	$\left(\overline{10}, -4\right)$
	$(\overline{\bf 3},{f 1},{f 1};-rac{2}{3})$	$(\overline{\bf 3},{\bf 1};0,-\frac{2}{3})$	$\left(\overline{3},1;-\frac{2}{3}\right)$	(10, 4)
	(8, 1, 1; 0)	(8 , 1 ; 0, 0)'	(8,1;0)'	(24,0)

Table 10: Decomposition of the representation ${\bf 54}$

$(4,2_L,2_R)$	$(3_C, 2_L, 2_R, 1_{B-L})$	$(3_C, 2_L, 1_R, 1_{B-L})$	$(3_C, 2_L, 1_Y)$	$(5,1_X)$
(1, 1, 1)	(1, 1, 1; 0)	(1 , 1 ; 0, 0)	(1,1;0)	(24,0)
(1, 3, 3)	(1, 3, 3; 0)	(1, 3; 1, 0)	(1, 3; 1)	(15, 4)
		(1 , 3 ; 0, 0)	(1, 3; 0)	(24,0)
		(1,3;-1,0)	(1, 3; -1)	$\left(\overline{15}, -4\right)$
(20', 1, 1)	$\left(\overline{f 6},{f 1},{f 1};rac{2}{3} ight)$	$\left(\overline{6},1;0,\frac{2}{3}\right)$	$\left(\overline{6},1;\frac{2}{3}\right)$	$(\overline{15}, -4)$
	$\left({f 6},{f 1},{f 1};-rac{2}{3} ight)$	$\left(6,1;0,-\frac{2}{3}\right)$	$(6,1;-\frac{2}{3})$	(15, 4)
	(8, 1, 1; 0)	(8,1;0,0)	(8,1;0)	(24, 0)
$({f 6},{f 2},{f 2})$	$\left(3,2,2;-rac{1}{3} ight)$	$\left(3,2; frac{1}{2},- frac{1}{3} ight)$	$\left(3,2;rac{1}{6} ight)$	(15, 4)
		$(3,2;-\frac{1}{2},-\frac{1}{3})$	$\left(3,2;-\frac{5}{6}\right)$	(24,0)
	$\left(\overline{f 3},{f 2},{f 2};rac{1}{3} ight)$	$\left(\overline{3},2;\frac{1}{2},\frac{1}{3}\right)$	$\left(\overline{3},2;\frac{5}{6}\right)$	(24,0)
	,	$\left(\overline{3},2;-\frac{1}{2},\frac{1}{3}\right)$	$\left(\overline{3},2;-\overline{\frac{1}{6}}\right)$	$\left(\overline{15}, -4\right)$

Table 11: Decomposition of the representation ${\bf 120}$

$(4,2_L,2_R)$	$(3_C, 2_L, 2_R, 1_{B-L})$	$(3_C, 2_L, 1_R, 1_{B-L})$	$(3_C, 2_L, 1_Y)$	$(5,1_X)$
(1, 2, 2)	$({f 1},{f 2},{f 2};0)$	$\left(1,2;\frac{1}{2},0\right)$	$\left(1,2;rac{1}{2} ight)$	(5, 2)
		$\left(1,2;-\frac{1}{2},0\right)$	$\left(1,2;-\hat{rac{1}{2}} ight)$	$(\overline{\bf 5}, -2)$
(10, 1, 1)	$({f 1},{f 1},{f 1};-1)$	(1,1;0,-1)	(1,1;-1)	$(\overline{10}, 6)$
	$\left(3,1,1;-rac{1}{3} ight)$	$(3,1;0,-\frac{1}{3})$	$\left(3,1;-rac{1}{3} ight)$	(5 ,2)
	$\left(6,1,1;rac{1}{3} ight)$	$(6,1;0,\frac{1}{3})$	$\left(6,1;rac{1}{3} ight)$	$\left(\overline{45}, -2\right)$
$\left(\overline{f 10},f 1,f 1 ight)$	(1, 1, 1; 1)	$({f 1},{f 1};0,1)$	(1,1;1)	(10, -6)
	$\left(\overline{3},1,1;\frac{1}{3}\right)$	$({\bf \overline{3}},{\bf 1};0,{1\over 3})$	$\left(\overline{3},1;\frac{1}{3}\right)$	$\left(\overline{\bf 5}, -2\right)$
	$\left(\overline{f 6},{f 1},{f 1};-rac{1}{3} ight)$	$(\overline{\bf 6},{\bf 1};0,-\frac{1}{3})$	$\left(\overline{6},1;-\frac{1}{3}\right)$	(45, 2)
(6, 3, 1)	$(3,3,1;-\frac{1}{3})$	$(3,3;0,-\frac{1}{3})$	$(3,3;-\frac{1}{3})$	(45, 2)
	$\left(\overline{3},3,1;rac{1}{3} ight)$	$(\overline{\bf 3},{\bf 3};0,\frac{1}{3})$	$(\overline{3},3;\frac{1}{3})'$	$(\overline{45}, -2)$
(6, 1, 3)	$\left(3,1,3;-rac{1}{3} ight)$	$(3,1;1,-\frac{1}{3})$	$\left(3,1;\frac{2}{3}\right)$	$(\overline{10}, 6)$
		$(3,1;0,-\frac{1}{3})$	$\left(3,1;-rac{1}{3} ight)$	(45, 2)
		$(3,1;-1,-\frac{1}{3})$	$(3,1;-\frac{4}{3})$	$\left(\overline{45}, -2\right)$
	$\left(\overline{f 3},{f 1},{f 3};rac{1}{3} ight)$	$\left(\overline{3},1;1,\frac{1}{3}\right)$	$\left(\overline{f 3},{f 1};rac{4}{3} ight)$	(45, 2)
		$({\bf \overline{3}},{\bf 1};0,{1\over 3})$	$\left(\overline{3},1;\frac{1}{3}\right)$	$\left(\overline{45}, -2\right)$
		$\left(\overline{3},1;-1,\frac{1}{3}\right)$	$\left(\overline{3},1;-\frac{2}{3}\right)$	(10, -6)
$({f 15},{f 2},{f 2})$	$({f 1},{f 2},{f 2};0)$	$\left(1,2;\frac{1}{2},0\right)$	$\left(1,2;rac{1}{2} ight)$	(45, 2)
		$\left(1,2;-\frac{1}{2},0\right)$	$(1,2;-\frac{1}{2})$	$\left(\overline{45}, -2\right)$
	$\left(3,2,2;rac{2}{3} ight)$	$\left(3,2;\frac{1}{2},\frac{2}{3}\right)$	$\left(3,2;\frac{7}{6}\right)$	$\left(\overline{45}, -2\right)$
	(-	$(3,2;-\frac{1}{2},\frac{2}{3})$	$\left(3,2;\frac{1}{6}\right)$	(10, -6)
	$\left(\overline{f 3},{f 2},{f 2};-rac{2}{3} ight)$	$(\overline{\bf 3},{f 2};-{1\over 2},-{2\over 3})$	$\left(\overline{3},2;-\frac{7}{6}\right)$	(45, 2)
	,	$\left(\overline{3},2;\frac{1}{2},-\frac{2}{3}\right)$	$\left(\overline{3},2;-\frac{1}{6}\right)$	$(\overline{10}, 6)$
	(8, 2, 2; 0)	$(8, 2; \frac{1}{2}, 0)$	$\left(8,2;\frac{1}{2}\right)$	(45,2)
		$(8, 2; -\frac{1}{2}, 0)$	$\left(8,2;-rac{1}{2} ight)$	$\left(\overline{45}, -2\right)$

Table 12: Decomposition of the representation $\overline{\bf 126}$

(4.2r.2r)	(3a 2r 2r 1r r)	(3a 2r 1r 1r r)	(3a, 2r, 1r)	$(5,1_X)$
$(4, 2_L, 2_R)$	$(3_C, 2_L, 2_R, 1_{B-L})$	$(3_C, 2_L, 1_R, 1_{B-L})$	$(3_C, 2_L, 1_Y)$	
(6, 1, 1)	$(3,1,1;-\frac{1}{3})$	$(3,1;0,-\frac{1}{3})$	$(3,1;-\frac{1}{3})$	(5,2)
	$\left(\overline{3},1,1;rac{1}{3} ight)$	$(\overline{\bf 3},{\bf 1};0,\frac{1}{3})$	$\left(\overline{f 3},{f 1};rac{1}{3} ight)$	$\left(\overline{45}, -2\right)$
$\left(\overline{f 10}, f 3, f 1 ight)$	(1, 3, 1; 1)	(1, 3; 0, 1)	(1, 3; 1)	(15, -6)
	$\left(\overline{f 3},{f 1},{f 3};rac{1}{3} ight)$	$\left(\overline{3},3;0,\frac{1}{3}\right)$	$\left(\overline{f 3},{f 3};rac{1}{3} ight)$	$\left(\overline{45}, -2\right)$
	$\left(\overline{f 6},{f 1},{f 3};-rac{1}{3} ight)$	$(\overline{\bf 6},{\bf 3};0,-\frac{1}{3})$	$\left(\overline{f 6},{f 3};-rac{1}{3} ight)$	(50, 2)
(10, 1, 3)	(1, 1, 3; -1)	(1,1;1,-1)	(1,1;0)	(1, 10)
		(1 , 1 ; 0, -1)	$({f 1},{f 1};-1)$	$(\overline{10}, 6)$
		(1,1;-1,-1)	(1,1;-2)	(50, 2)
	$\left(3,1,3;-rac{1}{3} ight)$	$(3,1;1,-\frac{1}{3})$	$\left(3,1;\frac{2}{3}\right)$	$(\overline{10}, 6)$
		$\left(3,1;0,-\frac{1}{3}\right)$	$\left(3,1;-rac{1}{3} ight)$	(50, 2)
		$\left(3,1;-1,-\frac{1}{3}\right)$	$(3,1;-\frac{4}{3})$	$\left(\overline{45}, -2\right)$
	$\left(6,1,3;rac{1}{3} ight)$	$(6,1;1,\frac{1}{3})$	$\left(6,1;\frac{4}{3}\right)$	(50, 2)
		$(6,1;0,\frac{1}{3})$	$\left(6,1;\frac{1}{3}\right)$	$\left(\overline{45}, -2\right)$
		$\left({f 6},{f 1};-1,rac{1}{3} ight)$	$\left(6,1;-rac{2}{3} ight)$	(15, -6)
$({f 15},{f 2},{f 2})$	$({f 1},{f 2},{f 2};0)$	$\left(1,2;\frac{1}{2},0\right)$	$\left(1,2;rac{1}{2} ight)$	(5, 2)
		$\left(1,2;-\frac{1}{2},0\right)$	$\left(1,2;-rac{1}{2} ight)$	$\left(\overline{45}, -2\right)$
	$\left(3,2,2;rac{2}{3} ight)$	$\left(3,2;rac{1}{2},rac{2}{3} ight)$	$\left(3,2;rac{7}{6} ight)$	$\left(\overline{45}, -2\right)$
		$\left(3,2;-rac{1}{2},rac{2}{3} ight)$	$\left(3,2;rac{1}{6} ight)$	(15, -6)
	$\left(\overline{f 3},{f 2},{f 2};-rac{2}{3} ight)$	$\left(\overline{3},2;-\frac{1}{2},-\frac{2}{3}\right)$	$\left(\overline{3},2;-\frac{7}{6}\right)$	(50, 2)
		$\left(\overline{f 3},{f 2};rac{1}{2},-rac{2}{3} ight)$	$\left(\overline{f 3},{f 2};-rac{1}{6} ight)$	$(\overline{10}, 6)$
	(8, 2, 2; 0)	$(8, 2; \frac{1}{2}, 0)$	$\left(8,2;rac{1}{2} ight)$	(50, 2)
		$(8,2;-\frac{1}{2},0)$	$\left(8,2;-rac{1}{2} ight)$	$\left(\overline{45}, -2\right)$

Table 13: Decomposition of the representation 210

	Table 15: Decomposition of the representation 210				
$(4,2_L,2_R)$	$(3_C, 2_L, 2_R, 1_{B-L})$	$(3_C, 2_L, 1_R, 1_{B-L})$	$(3_C, 2_L, 1_Y)$	$(5,1_X)$	
(1, 1, 1)	(1, 1, 1; 0)	(1 , 1 ; 0, 0)	(1, 1; 0)	(1,0)	
(15, 1, 1)	(1, 1, 1; 0)	(1, 1; 0, 0)	$({\bf 1},{\bf 1};0)$	(24,0)	
	$\left(3,1,1;\frac{2}{3}\right)$	$(3,1;0,\frac{2}{3})$	$\left(3,1;\frac{2}{3}\right)$	$\left(\overline{10}, -4\right)$	
	$\left(\overline{f 3},{f 1},{f 1};-rac{2}{3} ight)$	$\left(\overline{3},1;0,-\frac{2}{3}\right)$ $\left(\overline{3},1;-\frac{2}{3}\right)$		(10, 4)	
	(8, 1, 1; 0)	(8,1;0,0) $(8,1;0)$		(24,0)	
$({f 6},{f 2},{f 2})$	$\left(3,2,2;-rac{1}{3} ight)$	$\left(3,2; frac{1}{2},- frac{1}{3} ight)$	$\left(3,2;rac{1}{6} ight)$	(10, 4)	
		$\left({f 3},{f 2};-rac{1}{2},-rac{1}{3} ight)$	$\left(3,2;-rac{5}{6} ight)$	(24, 0)	
	$\left(\overline{f 3},{f 2},{f 2};rac{1}{3} ight)$	$\left(\overline{f 3},{f 2};rac{1}{2},rac{1}{3} ight)$	$\left(\overline{f 3},{f 2};rac{5}{6} ight)$	(24, 0)	
		$\left(\overline{f 3},{f 2};-rac{1}{2},rac{1}{3} ight)$	$\left(\overline{f 3},{f 2};-rac{1}{6} ight)$	$\left(\overline{10}, -4\right)$	
(15, 3, 1)	(1, 3, 1; 0)	(1 , 3 ; 0, 0)	(1, 3; 0)	(24,0)	
	$\left(3,3,1;rac{2}{3} ight)$	$(3,3;0,\frac{2}{3})$	$\left(3,3;rac{2}{3} ight)$	(40, -4)	
	$\left(\overline{f 3},{f 3},{f 1};-rac{2}{3} ight)$	$(\overline{\bf 3},{\bf 3};0,-\frac{2}{3})$	$\left(\overline{3},3;-\frac{2}{3}\right)$	$\left(\overline{40},4\right)$	
	(8, 3, 1; 0)	(8, 3; 0, 0)	(8, 3; 0)	(75, 0)	
(15, 1, 3)	(1, 1, 3; 0)	(1 , 1 ; 1, 0)	$({f 1},{f 1};1)$	(10, 4)	
		$({f 1},{f 1};0,0)$	$({\bf 1},{\bf 1};0)$	(75, 0)	
		(1 , 1 ; -1, 0)	(1, 1; -1)	$\left(\overline{10}, -4\right)$	
	$\left(3,1,3; frac{2}{3} ight)$	$(3,1;1,\frac{2}{3})$	$\left(3,1;rac{5}{3} ight)$	(75,0)	
		$(3,1;0,\frac{2}{3})$	$\left(3,1; frac{2}{3} ight)$	(40, -4)	
		$(3,1;-1,\frac{2}{3})$	$(3,1;-\frac{1}{3})$	(5, -8)	
	$\left(\overline{f 3},{f 1},{f 3};-rac{2}{3} ight)$	$({\bf \overline{3}},{\bf 1};1,-{\textstyle {2\over 3}})$	$\left(\overline{3},1;\frac{1}{3}\right)$	$\left(\overline{\bf 5}, 8\right)$	
		$(\overline{\bf 3},{\bf 1};0,-\frac{2}{3})$	$\left(\overline{3},1;-\frac{2}{3}\right)$	$\left(\overline{40},4\right)$	
		$\left(\overline{3},1;-1,-\frac{2}{3}\right)$	$\left(\overline{3},1;-\frac{5}{3}\right)$	(75,0)	
	(8, 1, 3; 0)	(8,1;1,0)	(8,1;1)	$\left(\overline{40},4\right)$	
		(8, 1; 0, 0)	(8, 1; 0)	(75, 0)	
		(8,1;-1,0)	(8, 1; -1)	(40, -4)	

(10, 2, 2)	(1, 2, 2; -1)	$\left(1,2;\frac{1}{2},-1\right)$	$\left(1,2;-rac{1}{2} ight)$	$(\overline{\bf 5},8)$
		$(1, 2; -\frac{1}{2}, -1)$	$\left(1,2;-rac{3}{2} ight)$	$\left(\overline{40}, 4\right)$
	$\left(3,2,2;-rac{1}{3} ight)$	$\left(3,2;rac{1}{2},rac{1}{3} ight)$	$\left(3,2;\frac{1}{6}\right)$	$\left(\overline{40},4\right)$
		$\left(3,2;-\frac{1}{2},-\frac{1}{3}\right)$	$\left(3,2;-rac{5}{6} ight)$	(75, 0)
	$\left(6,2,2;rac{1}{3} ight)$	$\left(6,2;rac{1}{2},rac{1}{3} ight)$	$\left(6,2;rac{5}{6} ight)$	(75, 0)
		$\left(6,2;-rac{1}{2},rac{1}{3} ight)$	$\left(6,2;-rac{1}{6} ight)$	(40, -4)
$\left(\overline{f 10},{f 2},{f 2} ight)$	$({f 1},{f 2},{f 2};1)$	$\left(1,2;\frac{1}{2},1\right)$	$\left(1,2;rac{3}{2} ight)$	(40, -4)
		$\left(1,2;-\frac{1}{2},1\right)$	$\left(1,2;rac{1}{2} ight)$	(5, -8)
	$\left(\overline{f 3},{f 2},{f 2};rac{1}{3} ight)$	$\left(\overline{f 3},{f 2};rac{1}{2},rac{1}{3} ight)$	$\left(\overline{3},2;rac{5}{6} ight)$	(75, 0)
		$\left(\overline{3},2;-rac{1}{2},rac{1}{3} ight)$	$\left(\overline{3},2;-\frac{1}{6}\right)$	(40, -4)
	$\left(\overline{f 6},{f 2},{f 2};-rac{1}{3} ight)$	$\left(\overline{f 6},{f 2};rac{1}{2},-rac{1}{3} ight)$	$\left(\overline{6},2;rac{1}{6} ight)$	$\left(\overline{40},4\right)$
		$\left(\overline{6},2;-\frac{1}{2},-\frac{1}{3}\right)$	$\left(\overline{f 6},{f 2};-rac{5}{6} ight)$	(75, 0)

B CG coefficients

The CG coefficients for HH, AA, EE, DD, $\Delta\Delta$, $\overline{\Delta\Delta}$, $\overline{\Delta\Delta}$, $\overline{\Delta}\Delta$, $\Phi\Phi$, EA, $A\Phi$, $E\Delta$, $E\overline{\Delta}$, $E\Phi$, ΔH , $\overline{\Delta}H$, $H\Phi$, $\Phi\Delta$, $\Phi\overline{\Delta}$, $A\Delta$, $A\overline{\Delta}$, DH, DA, $D\Delta$, $D\overline{\Delta}$ and $D\Phi$ combinations are listed in Tables 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, and 38, respectively.

Table 14: CG coefficients for the HH combination of fields

Н	Н	$\hat{E}HH$
$\widehat{H}_{(1,2,2)}^{(1,2,\frac{1}{2})}$ $\widehat{H}_{(6,1,1)}^{(3,1,-\frac{1}{3})}$	$\widehat{H}_{(1,2,2)}^{(1,2,-\frac{1}{2})}$ $\widehat{H}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	$ \frac{\sqrt{3}}{2\sqrt{5}} $ $ -\frac{1}{\sqrt{15}} $

Table 15: CG coefficients for the AA combination of fields

A	A	$\widehat{E}AA$	$AA\widehat{\Phi}_1$	$AA\widehat{\Phi}_2$	$AA\widehat{\Phi}_3$
$\widehat{A}_{(1,1,3)}^{(1,1,0)}$	$\widehat{A}_{(1,1,3)}^{(1,1,0)}$	$\frac{\sqrt{3}}{2\sqrt{5}}$	$\frac{1}{\sqrt{6}}$	0	0
$\widehat{A}_{(15,1,1)}^{(1,1,0)}$	$\widehat{A}_{(15,1,1)}^{(1,1,0)}$	$-\frac{1}{\sqrt{15}}$	0	$\frac{\sqrt{2}}{3}$	0
$\widehat{A}_{(1,1,3)}^{(1,1,0)}$	$\widehat{A}_{(15,1,1)}^{(1,1,0)}$	0	0	0	$\frac{1}{\sqrt{6}}$
$\widehat{A}_{(1,1,3)}^{(1,1,1)}$	$\widehat{A}_{(1,1,3)}^{(1,1,-1)}$	$\frac{\sqrt{3}}{2\sqrt{5}}$	$\frac{1}{\sqrt{6}}$	0	0
$\widehat{A}_{(1,3,1)}^{(1,3,0)}$	$\widehat{A}_{(1,3,1)}^{(1,3,0)}$	$ \begin{array}{r} \hline 2\sqrt{5} \\ \hline 2\sqrt{5} \\ \hline 2\sqrt{5} \end{array} $	$-\frac{1}{\sqrt{6}}$	0	0
$\widehat{A}_{(15,1,1)}^{(3,1,\frac{2}{3})}$	$\widehat{A}_{(15,1,1)}^{(\overline{3},1,-\frac{2}{3})}$	$-\frac{1}{\sqrt{15}}$	0	$\frac{1}{3\sqrt{2}}$	0
$\widehat{A}^{(3,2,-\frac{5}{6})}$	$\widehat{A}^{\left(\overline{3},2,\frac{5}{6}\right)}$	$\frac{1}{4\sqrt{15}}$	0	0	$-\frac{1}{6}$
$\widehat{A}^{(6,2,2)}$	$\widehat{A}^{(6,2,2)}$ $\widehat{A}^{(\overline{3},2,-\frac{1}{6})}$	$ \begin{array}{c} 4\sqrt{15} \\ \underline{1} \\ 4\sqrt{15} \end{array} $	0	0	$\frac{1}{6}$
$\widehat{A}_{(15,1,1)}^{(6,2,2)}$	$\widehat{A}_{(15,1,1)}^{(6,2,2)}$	$-\frac{4\sqrt{15}}{\sqrt{15}}$	0	$-\frac{1}{3\sqrt{2}}$	$\overset{6}{0}$

Table 16: CG coefficients for the ${\cal EE}$ combination of fields

E	E	$\widehat{E}EE$
$\widehat{E}_{(1,1,1)}^{(1,1,0)}$	$\widehat{E}_{(1,1,1)}^{(1,1,0)}$	$\frac{1}{2\sqrt{15}}$
$\widehat{E}_{(1,3,3)}^{(1,1,1)}$	$\hat{E}_{(1,3,3)}^{(1,1,1)}$	$\sqrt{3}$
$\widehat{\mathbf{L}}(1,3,3)$ $\widehat{\mathbf{L}}(1,3,1)$	$\widehat{\mathbf{L}}(1,3,3)$ $\widehat{\mathbf{L}}(1,3,-1)$	$\frac{2\sqrt{5}}{\sqrt{3}}$
$\widehat{E}_{(1,3,3)}^{(1,3,1)}$	$\hat{E}_{(1,3,3)}^{(1,3,-1)}$	$\frac{\sqrt{3}}{2\sqrt{5}}$
$\widehat{E}_{(6,2,2)}^{(3,2,-\frac{5}{6})}$	$\widehat{E}_{(6,2,2)}^{(\overline{3},2,\frac{5}{6})}$	$\frac{1}{4\sqrt{15}}$
$\widehat{E}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$\widehat{E}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$\frac{1}{4\sqrt{15}}$
$\widehat{\Box}(6,2,2)$ $\widehat{\Box}(6,1,-\frac{2}{2})$	-(6,2,2) $-(6,1,\frac{2}{2})$	1
$\hat{E}_{(20',1,1)}^{(6,1,-\frac{2}{3})}$	$\hat{E}_{(20',1,1)}^{(\overline{6},1,\frac{2}{3})}$	$-\frac{1}{\sqrt{15}}$
$\hat{E}_{(20',1,1)}^{(8,1,0)}$	$\widehat{E}_{(20',1,1)}^{(8,1,0)}$	$-\frac{1}{\sqrt{15}}$

Table 17: CG coefficients for the DD combination of fields

D	D	ÊDD	$DD\widehat{\Phi}_1$	$DD\widehat{\Phi}_2$	$DD\widehat{\Phi}_3$
$\widehat{D}_{(\overline{10},1,1)}^{(1,1,1)}$	$\widehat{D}_{(10,1,1)}^{(1,1,-1)}$	$-\frac{1}{\sqrt{15}}$	0	$\frac{1}{3\sqrt{2}}$	0
$\widehat{D}_{(1,2,\frac{1}{2})}^{(1,2,\frac{1}{2})}$	$\widehat{D}_{(1,2,2)}^{(1,2,-\frac{1}{2})}$	$\frac{\sqrt{3}}{2\sqrt{5}}$	0	0	0
$\widehat{D}_{(15,2,2)}^{(1,2,\frac{1}{2})}$	$\widehat{D}_{(15,2,2)}^{(1,2,-\frac{1}{2})}$	$-\frac{1}{6\sqrt{15}}$	0	$\frac{\sqrt{2}}{9}$	0
$\widehat{D}_{(1,2,2)}^{(1,2,\frac{1}{2})}$	$\widehat{D}_{(15,2,2)}^{(1,2,-\frac{1}{2})}$	0	0	0	$\frac{1}{6\sqrt{3}}$
$\widehat{D}_{(15,2,2)}^{(1,2,\frac{1}{2})}$	$\widehat{D}_{(1,2,2)}^{(1,2,-\frac{1}{2})}$	0	0	0	$\frac{1}{6\sqrt{3}}$
$\widehat{D}_{(6,1,3)}^{(3,1,-\frac{4}{3})}$	$\widehat{D}_{(6,1,3)}^{(\overline{3},1,\frac{4}{3})}$	$\frac{2}{3\sqrt{15}}$	$\frac{1}{3\sqrt{6}}$	0	$-\frac{1}{9}$
$\widehat{D}_{(6,1,3)}^{(3,1,-\frac{1}{3})}$	$\widehat{\mathcal{D}}(\overline{3},1,\frac{1}{3})$	$\frac{2}{3\sqrt{15}}$	$\frac{1}{3\sqrt{6}}$	0	0
$\widehat{D}_{(10,1,1)}^{(3,1,-\frac{1}{3})}$	$\widehat{D}_{(\overline{3},1,\frac{1}{3})}^{(\overline{3},1,\frac{1}{3})}$ $\widehat{D}_{(\overline{10},1,1)}^{(\overline{3},1,1)}$	$-\frac{1}{\sqrt{15}}$	0	$\frac{1}{9\sqrt{2}}$	0
$\widehat{D}_{(6,1,3)}^{(3,1,-\frac{1}{3})}$	$\widehat{D}_{(\overline{10},1,1)}^{(\overline{3},1,\frac{1}{3})}$	0	0	0	$\frac{1}{9}$
$\widehat{S}(3,1,-\frac{1}{2})$	$\widehat{D}_{\underline{(6,1,3)}}^{(\overline{3},1,\frac{1}{3})}$	0	0	0	$\frac{1}{9}$
$\widehat{D}_{(6,1,3)}^{(10,1,1)}$ $\widehat{D}_{(6,1,3)}^{(3,1,\frac{2}{3})}$	$\widehat{D}_{(6,1,3)}^{(\overline{3},1,-\frac{2}{3})}$	$\frac{2}{3\sqrt{15}}$	$\frac{1}{3\sqrt{6}}$	0	$\frac{1}{9}$
$\widehat{D}_{(15,2,2)}^{(3,2,\frac{1}{6})}$	$\widehat{D}_{(15,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$-\frac{1}{6\sqrt{15}}$	0	$\frac{1}{9\sqrt{2}}$	$\frac{1}{9}$
$\widehat{D}_{(15,2,2)}^{(3,2,\frac{7}{6})}$	$\widehat{D}_{(15,2,2)}^{(\overline{3},2,-\frac{7}{6})}$	$-\frac{1}{6\sqrt{15}}$	0	$\frac{1}{9\sqrt{2}}$	$-\frac{1}{9}$
$\widehat{D}_{(6,3,1)}^{(3,3,-\frac{1}{3})}$	$\widehat{D}_{\underline{(6,3,1)}}^{(\overline{3},\overline{3},\frac{1}{3})}$	$\frac{2}{3\sqrt{15}}$	$-\frac{1}{3\sqrt{6}}$	0	0
$\widehat{D}_{(10,1,1)}^{(6,1,\frac{1}{3})}$	$\widehat{D}_{(\overline{10},1,1)}^{(\overline{6},1,-\frac{1}{3})}$	$-\frac{1}{\sqrt{15}}$	0	$-\frac{1}{9\sqrt{2}}$	0
$\widehat{D}_{(15,2,2)}^{(8,2,-\frac{1}{2})}$	$\widehat{D}_{(15,2,2)}^{(8,2,\frac{1}{2})}$	$-\frac{1}{6\sqrt{15}}$	0	$-\frac{1}{9\sqrt{2}}$	0

Table 18: CG coefficients for the $\Delta\Delta$ combination of fields

Δ	Δ	$\hat{E}\Delta\Delta$
$\hat{\Delta}_{(\overline{10},1,3)}^{(1,1,0)}$	$\widehat{\Delta}_{(\overline{10},1,3))}^{(1,1,0)}$	0
$\widehat{\Delta}_{(15,2,2)}^{(1,2,\frac{1}{2})}$	$ \begin{array}{c} \Delta_{(\overline{10},1,3)} \\ \widehat{\Delta}_{(1,2,-\frac{1}{2})} \\ \widehat{\Delta}_{(15,2,2)} \\ \widehat{\Delta}_{(15,2,2)} \end{array} $	$\frac{1}{2\sqrt{15}}$
$\widehat{\Delta}_{(6,1,1)}^{(13,2,2)}$	$\widehat{\Delta}_{(\underline{6},1,\underline{1})}^{(\overline{3},2,\underline{2})}$	$\frac{2\sqrt{15}}{\sqrt{15}}$
$\widehat{\Delta}_{(6,1,1)}^{(6,1,1)}$ $\widehat{\Delta}_{(6,1,1)}^{(6,1,1)}$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(6,1,1)}$	$\sqrt{15}$
$\Delta(6,1,1)$ $\Rightarrow (3,2,\frac{1}{6})$		1
$\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{1}{6})}$	$\widehat{\Delta}_{(15,2,2)}^{(\overline{3},2,-\frac{1}{6})}$ $\widehat{\Delta}_{(3,2,-\frac{7}{2})}^{(\overline{3},2,-\frac{7}{6})}$	$\frac{1}{2\sqrt{15}}$
$\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{7}{6})}$	$\widehat{\Delta}_{(15,2,2)}^{(\overline{3},2,-\frac{7}{6})}$	$\frac{1}{2\sqrt{15}}$
$\widehat{\Delta}_{(15,2,2)}^{(8,2,-\frac{1}{2})}$	$\widehat{\Delta}_{(15,2,2)}^{(8,2,\frac{1}{2})}$	$\frac{1}{2\sqrt{15}}$

Table 19: CG coefficients for the $\overline{\Delta\Delta}$ combination of fields

$\overline{\Delta}$	$\overline{\Delta}$	$\widehat{E}\overline{\Delta\Delta}$
$\frac{\widehat{\Delta}^{(1,1,0)}}{\widehat{\Delta}_{(10,1,3)}}$	$\widehat{\underline{\Delta}}_{(10,1,3))}^{(1,1,0)}$	0
$\frac{\widehat{\Delta}_{(15,2,2)}^{(1,2,\frac{1}{2})}}{\Delta_{(15,2,2)}}$	$\frac{\hat{\Delta}^{(1,2,-\frac{1}{2})}}{\hat{\Delta}_{(15,2,2)}}$	$\frac{1}{2\sqrt{15}}$
$\frac{\widehat{\Delta}^{(3,1,-\frac{1}{3})}}{\widehat{\Delta}_{(6,1,1)}}$	$\widehat{\underline{\Delta}}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	$\frac{1}{\sqrt{15}}$
$\frac{\widehat{\Delta}_{(10,1,3)}^{(3,1,-\frac{1}{3})}}{\widehat{\Delta}_{(10,1,3)}^{(10,1,3)}}$	$ \frac{\widehat{\Delta}_{(5,1,1)}^{(\overline{3},1,\frac{1}{3})}}{\widehat{\Delta}_{(6,1,1)}^{(6,1,1)}} $	0
$\frac{\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{1}{6})}}{\widehat{\Delta}_{(15,2,2)}}$	$ \hat{\overline{\Delta}}_{(15,2,2)}^{(5,1,1)} $	$\frac{1}{2\sqrt{15}}$
$\frac{\hat{\Delta}(3,2,\frac{7}{6})}{\hat{\Delta}_{(15,2,2)}}$	$\frac{\hat{\Delta}(3,2,-\frac{7}{6})}{\hat{\Delta}_{(15,2,2)}}$	$\frac{2\sqrt{15}}{2\sqrt{15}}$
${}$ (8,2, $-\frac{1}{2}$)	${\Lambda}(8,2,\frac{1}{2})$	$2\sqrt{15}$ 1
$\Delta_{(15,2,2)}$	$\Delta_{(15,2,2)}$	$2\sqrt{15}$

Table 20: CG coefficients for the $\overline{\Delta}\Delta$ combination of fields

$\overline{\Delta}$	Δ	$-i\widehat{A}_1\overline{\Delta}\Delta$	$-i\widehat{A}_2\overline{\Delta}\Delta$	$\widehat{\Phi}_1 \overline{\Delta} \Delta$	$\widehat{\Phi}_2 \overline{\Delta} \Delta$	$\widehat{\Phi}_3 \overline{\Delta} \Delta$
$ \widehat{\underline{\Delta}}_{(10,1,3)}^{(1,1,0)} $	$\widehat{\Delta}_{(\overline{10},1,3)}^{(1,1,0)}$	$-\frac{1}{5}$	$-\frac{\sqrt{3}}{5\sqrt{2}}$	$\frac{1}{10\sqrt{6}}$	$\frac{1}{10\sqrt{2}}$	$\frac{1}{10}$
$\Delta_{(10,1,3)}^{(1,1,-1)}$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(1,1,1)}$	0	$-\frac{\sqrt{3}}{5\sqrt{2}}$	$\frac{1}{10\sqrt{6}}$	$\frac{1}{10\sqrt{2}}$	0
$\Delta_{(10,1,3)}^{(1,1,-2)}$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(1,1,2)}$	$\frac{1}{5}$	$-\frac{\sqrt{3}}{5\sqrt{2}}$	$\frac{1}{10\sqrt{6}}$	$\frac{1}{10\sqrt{2}}$	$-\frac{1}{10}$
$\widehat{\Delta}_{(15,2,2)}^{(1,2,\frac{1}{2})}$	$\widehat{\Delta}_{(15,2,2)}^{(1,2,-\frac{1}{2})}$	$-\frac{1}{10}$	0	0	$\frac{1}{15\sqrt{2}}$	$\frac{1}{30}$
$\frac{\hat{\Delta}^{(1,2,-\frac{1}{2})}}{\hat{\Delta}^{(15,2,2)}}$	$\widehat{\Delta}_{(15,2,2)}^{(1,2,\frac{1}{2})}$	$\frac{1}{10}$	0	0	$\frac{1}{15\sqrt{2}}$	$-\frac{1}{30}$
$\overline{\Delta}_{(\overline{10},3,1)}^{(1,3,1)}$	$\widehat{\Delta}_{(10,3,1)}^{(1,3,-1)}$	0	$\frac{\sqrt{3}}{5\sqrt{2}}$	$-\frac{1}{10\sqrt{6}}$	$\frac{1}{10\sqrt{2}}$	0
$\frac{\widehat{\Delta}^{(3,1,-\frac{4}{3})}}{\widehat{\Delta}_{(10,1,3)}}$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{3},1,\frac{4}{3})}$	<u>1</u> 5	$-\frac{1}{5\sqrt{6}}$	$\frac{1}{10\sqrt{6}}$	$\frac{1}{30\sqrt{2}}$	$-\frac{1}{30}$
$\widehat{\overline{\Delta}}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	$\widehat{\Delta}_{(6,1,1)}^{(3,1,-\frac{1}{3})}$	0	$\frac{1}{5\sqrt{6}}$	0	0	0
$\frac{\widehat{\Delta}_{(6,1,1)}^{(3,1,-\frac{1}{3})}}{\widehat{\Delta}_{(6,1,1)}}$	$\widehat{\Delta}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	0	$-\frac{1}{5\sqrt{6}}$	0	0	0
$\frac{\widehat{\Delta}_{(6,1,1)}^{(3,1,-\frac{1}{3})}$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{3},1,\frac{1}{3})}$	0	0	0	0	$\frac{1}{15\sqrt{2}}$
$\frac{\widehat{\Delta}^{(3,1,-\frac{1}{3})}}{\widehat{\Delta}_{(10,1,3)}}$	$\widehat{\Delta}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	0	0	0	0	$\frac{1}{15\sqrt{2}}$
$\frac{\hat{\Delta}(3,1,-\frac{1}{3})}{\hat{\Delta}_{(10,1,3)}}$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{3},1,\frac{1}{3})}$	0	$-\frac{1}{5\sqrt{6}}$	$\frac{1}{10\sqrt{6}}$	$\frac{1}{30\sqrt{2}}$	0
$\frac{\widehat{\Delta}_{(10,1,3)}^{(3,1,\frac{2}{3})}}{\widehat{\Delta}_{(10,1,3)}}$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{3},1,-\frac{2}{3})}$	$-\frac{1}{5}$	$-\frac{1}{5\sqrt{6}}$	$\frac{1}{10\sqrt{6}}$	$\frac{1}{30\sqrt{2}}$	$\frac{1}{30}$
$\frac{\widehat{\Delta}^{(\overline{3},2,-\frac{1}{6})}}{\widehat{\Delta}_{(15,2,2)}}$	$\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{1}{6})}$	$-\frac{1}{10}$	$-\frac{\sqrt{2}}{5\sqrt{3}}$	0	$\frac{1}{30\sqrt{2}}$	$\frac{1}{20}$
$\frac{\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{1}{6})}}{\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{1}{6})}}$	$\widehat{\Delta}_{(15,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$\frac{1}{10}$	$\frac{\sqrt{2}}{5\sqrt{3}}$	0	$\frac{1}{30\sqrt{2}}$	$\frac{1}{60}$
$\frac{\widehat{\Delta}(\overline{3},2,-\frac{7}{6})}{\widehat{\Delta}_{(15,2,2)}}$	$\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{7}{6})}$	$\frac{1}{10}$	$-\frac{\sqrt{2}}{5\sqrt{3}}$	0	$\frac{1}{30\sqrt{2}}$	$-\frac{1}{20}$
$\frac{\widehat{\Delta}_{(15,2,2)}^{(3,2,\overline{6})}}{\Delta_{(15,2,2)}}$	$\widehat{\Delta}_{(15,2,2)}^{(\overline{3},2,-\frac{7}{6})}$	$-\frac{1}{10}$	$\frac{\sqrt{2}}{5\sqrt{3}}$	0	$\frac{1}{30\sqrt{2}}$	$-\frac{1}{60}$
$\frac{\widehat{\Delta}(\overline{3},3,\frac{1}{3})}{\widehat{\Delta}(\overline{10},3,1)}$	$\widehat{\Delta}_{(10,2,1)}^{(3,3,\frac{1}{3})}$	0	$\frac{1}{5\sqrt{6}}$	$-\frac{1}{10\sqrt{6}}$	$\frac{1}{30\sqrt{2}}$	0
$\frac{\widehat{\Lambda}}{\widehat{\Lambda}}(6,1,-\frac{2}{3})$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{6},1,\frac{2}{3})}$	<u>1</u> 5	$\frac{1}{5\sqrt{6}}$	$\frac{1}{10\sqrt{6}}$	$-\frac{1}{30\sqrt{2}}$	$\frac{1}{30}$
$\frac{\widehat{\Delta}^{(6,1,\frac{1}{3})}}{\widehat{\Delta}_{(10,1,3)}}$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{6},1,-\frac{1}{3})}$	0	$\frac{1}{5\sqrt{6}}$		$-\frac{1}{30\sqrt{2}}$	0
$\frac{\widehat{\Delta}^{(6,1,\frac{4}{3})}}{\widehat{\Delta}_{(10,1,3)}}$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{10},1,3)}$ $\widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{6},1,-\frac{1}{3})}$ $\widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{6},1,-\frac{4}{3})}$ $\widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{6},1,-\frac{4}{3})}$ $\widehat{\Delta}_{(10,3,1)}^{(6,3,\frac{1}{3})}$ $\widehat{\Delta}_{(15,2,2)}^{(8,2,-\frac{1}{2})}$	$-\frac{1}{5}$	$\frac{1}{5\sqrt{6}}$		$-\frac{1}{30\sqrt{2}}$	$-\frac{1}{30}$
$\frac{\widehat{\Delta}(\overline{6},3,-\frac{1}{3})}{\widehat{\Delta}(\overline{10},3,1)}$	$\widehat{\Delta}_{(10,3,1)}^{(6,3,\frac{1}{3})}$	0	$-\frac{1}{5\sqrt{6}}$		$-\frac{1}{30\sqrt{2}}$	
$\frac{\widehat{\Delta}^{(8,2,\frac{1}{2})}}{\widehat{\Delta}_{(15,2,2)}}$	$\widehat{\Delta}_{(15,2,2)}^{(8,2,-\frac{1}{2})}$	$-\frac{1}{10}$	0	0	$-\frac{1}{30\sqrt{2}}$	
$ \frac{\Delta(10,1,3)}{\widehat{\Delta}(6,1,\frac{1}{3})} \\ \frac{\widehat{\Delta}(6,1,\frac{1}{3})}{\widehat{\Delta}(10,1,3)} \\ \frac{\widehat{\Delta}(6,1,\frac{4}{3})}{\widehat{\Delta}(10,1,3)} \\ \frac{\widehat{\Delta}(\overline{6},3,-\frac{1}{3})}{\widehat{\Delta}(\overline{10},3,1)} \\ \frac{\widehat{\Delta}(8,2,\frac{1}{2})}{\widehat{\Delta}(15,2,2)} \\ \frac{\widehat{\Delta}(8,2,-\frac{1}{2})}{\widehat{\Delta}(15,2,2)} $	$\widehat{\Delta}_{(15,2,2)}^{(8,2,\frac{1}{2})}$	<u>1</u> 10	0	0	$-\frac{1}{30\sqrt{2}}$	1 60

Table 21: CG coefficients for the $\Phi\Phi$ combination of fields

Φ	Φ	$\frac{1}{120}\varepsilon\widehat{A}_1\Phi\Phi$	$\frac{1}{120}\varepsilon\widehat{A}_2\Phi\Phi$	$\widehat{E}\Phi\Phi$	$\hat{\Phi}_1 \Phi \Phi$	$\hat{\Phi}_2 \Phi \Phi$	$\hat{\Phi}_3 \Phi \Phi$
$\widehat{\Phi}_{(1,1,1)}^{(1,1,0)}$	$\widehat{\Phi}_{(1,1,1)}^{(1,1,0)}$	0	0	$\frac{\sqrt{3}}{2\sqrt{5}}$	0	0	0
$\hat{\Phi}_{(1,1,1)}^{(1,1,0)}$	$\widehat{\Phi}_{(15,1,1)}^{(1,1,0)}$	0	$\frac{\sqrt{2}}{5}$	0	0	0	0
$\hat{\Phi}_{(1,1,1)}^{(1,1,0)}$	$\widehat{\Phi}_{(15,1,3)}^{(1,1,0)}$	0	0	0	0	0	$\frac{1}{6\sqrt{6}}$
$\widehat{\Phi}_{(15,1,1)}^{(1,1,1)}$	$\widehat{\Phi}_{(15,1,1)}^{(15,1,3)}$	0_	0	$-\frac{1}{\sqrt{15}}$	0	$\frac{1}{9\sqrt{2}}$	0
$\widehat{\Phi}_{(15,1,1)}^{(1,1,0)}$	$\widehat{\Phi}_{(15,1,3)}^{(1,1,0)}$	$\frac{\sqrt{2}}{5}$	0_	0	0	0	$\frac{1}{9\sqrt{2}}$
$\widehat{\Phi}_{(15,1,3)}^{(1,1,0)}$	$\widehat{\Phi}_{(15,1,3)}^{(1,1,0)}$	0	$\frac{2\sqrt{2}}{5\sqrt{3}}$	$\frac{1}{4\sqrt{15}}$	$\frac{1}{6\sqrt{6}}$	$\frac{1}{9\sqrt{2}}$	0
$\widehat{\Phi}_{(15,1,3)}^{(1,1,1)}$	$\widehat{\Phi}_{(15,1,3)}^{(1,1,-1)}$	0	$ \begin{array}{r} 2\sqrt{2} \\ 5\sqrt{3} \\ 2\sqrt{2} \\ 5\sqrt{3} \end{array} $	$\frac{1}{4\sqrt{15}}$	$\frac{1}{6\sqrt{6}}$	$\frac{1}{9\sqrt{2}}$	0
$\widehat{\Phi}_{(\overline{10},2,2)}^{(1,2,\frac{1}{2})}$	$\widehat{\Phi}_{(10,2,2)}^{(1,2,-\frac{1}{2})}$	$\frac{1}{5}$	0	$-\frac{\sqrt{3}}{8\sqrt{5}}$	0	$\frac{1}{6\sqrt{2}}$	$\frac{1}{12}$
$\widehat{\Phi}_{(\overline{10},2,2)}^{(\overline{10},2,2)}$ $\widehat{\Phi}_{(\overline{10},2,2)}^{(1,2,\frac{3}{2})}$	$\widehat{\Phi}_{(10,2,2)}^{(1,2,-\frac{3}{2})}$	$-\frac{1}{5}$	0	$-\frac{\sqrt{3}}{8\sqrt{5}}$	0	$\frac{1}{6\sqrt{2}}$	$-\frac{1}{12}$
$\widehat{\Phi}_{(15,3,1)}^{(1,3,0)}$	$\widehat{\Phi}_{(15,3,1)}^{(1,3,0)}$	0	$-rac{2\sqrt{2}}{5\sqrt{3}}$	$\frac{1}{4\sqrt{15}}$	$-\frac{1}{6\sqrt{6}}$	$\frac{1}{9\sqrt{2}}$	0
$\hat{\Phi}_{(15,1,2)}^{(3,1,-\frac{1}{3})}$	$\widehat{\Phi}_{(15,1,3)}^{(\overline{3},1,\frac{1}{3})}$	0	$\frac{\sqrt{2}}{5\sqrt{3}}$	$\frac{1}{4\sqrt{15}}$	$\frac{1}{6\sqrt{6}}$	$\frac{1}{18\sqrt{2}}$	$\frac{1}{9}$
$\widehat{\Phi}_{(15,1,1)}^{(15,1,3)}$	$\widehat{\Phi}_{(15,1,1)}^{(\overline{3},1,-\frac{2}{3})}$	0	0	$-\frac{1}{\sqrt{15}}$	0	$\frac{1}{18\sqrt{2}}$	0
$\widehat{\Phi}_{(15,1,1)}^{(3,1,\frac{2}{3})}$	$\widehat{\Phi}_{(15,1,3)}^{(\overline{3},1,-\frac{2}{3})}$	$\frac{\sqrt{2}}{5}$	0	0	0	0	$\frac{1}{18\sqrt{2}}$
$\widehat{\Phi}_{(15,1,1)}^{(\overline{15},1,1)}$	$\widehat{\mathbf{A}}^{(3,1,\frac{2}{3})}$	$\frac{\sqrt{2}}{5}$	0	0	0	0	$\frac{18\sqrt{2}}{18\sqrt{2}}$
$\widehat{A}^{(3,1,\frac{2}{3})}$	$\widehat{\mathbf{A}}(\overline{3},1,-\frac{2}{3})$	0	$\frac{\sqrt{2}}{5\sqrt{3}}$	$\frac{1}{4\sqrt{15}}$	$\frac{1}{6\sqrt{6}}$	$\frac{1}{18\sqrt{2}}$	0
$\widehat{\Phi}^{(3,1,\frac{5}{3})}$	$\widehat{\mathbf{x}}(\overline{3},1,-\frac{5}{3})$	0	$ \begin{array}{r} 5\sqrt{3} \\ \sqrt{2} \\ 5\sqrt{3} \end{array} $	1			
$\widehat{\mathbf{a}}(3,2,-\frac{5}{6})$	$\Phi_{(15,1,3)}$ $\widehat{\Phi}_{(\overline{3},2,\frac{5}{6})}^{(\overline{3},2,\frac{5}{6})}$		$\frac{5\sqrt{3}}{0}$	$\frac{4\sqrt{15}}{\sqrt{3}}$	$\frac{1}{6\sqrt{6}}$	$\frac{1}{18\sqrt{2}}$	$-\frac{1}{9}$
(10,4,4)	(10,2,2)	$-\frac{1}{5}$		$-\frac{\sqrt{3}}{8\sqrt{5}}$	0	$\frac{1}{18\sqrt{2}}$	$-\frac{1}{36}$
$\widehat{\Phi}_{(10,2,2)}^{(3,2,-\frac{5}{6})}$	(6,2,2)	0	$-\frac{2}{5\sqrt{3}}$	0	0	0	$\frac{1}{18\sqrt{2}}$
$\widehat{\Phi}_{(\overline{10},2,2)}^{(\overline{3},2,\frac{5}{6})}$	Ψ (6,2,2)	0	$-\frac{2}{5\sqrt{3}}$	0	0	0	$\frac{1}{18\sqrt{2}}$
$\widehat{\Phi}_{(6,2,2)}^{(3,2,-\frac{5}{6})}$	$\widehat{\Phi}_{(6,2,2)}^{(\overline{3},2,\frac{5}{6})}$	0	0	$\frac{7}{8\sqrt{15}}$	0	0	$-\frac{1}{36}$
$\widehat{\Phi}_{(10,2,2)}^{(3,2,\frac{1}{6})}$	$\hat{\mathbf{x}}(3,2,-\frac{1}{6})$	$\frac{1}{5}$	0	$-\frac{\sqrt{3}}{8\sqrt{5}}$	0	$\frac{1}{18\sqrt{2}}$	$\frac{1}{36}$
$\hat{\Phi}_{(10,2,2)}^{(3,2,\frac{1}{6})}$	$\widehat{\Phi}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	0	$\frac{2}{5\sqrt{3}}$	0	0	0	$\frac{1}{18\sqrt{2}}$
$\hat{\Phi}_{(\overline{10},2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$ \begin{array}{c} \Phi(\overline{10},2,2) \\ \widehat{\Phi}(\overline{3},2,-\frac{1}{6}) \\ \widehat{\Phi}(6,2,2) \\ \widehat{\Phi}(6,2,2) \\ \widehat{\Phi}(6,2,2) \end{array} $	0	$\frac{2}{5\sqrt{3}}$	0	0	0	$\frac{1}{18\sqrt{2}}$
$\widehat{\Phi}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$\widehat{\Phi}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	0	0	$\frac{7}{8\sqrt{15}}$	0	0	$\frac{1}{36}$
$ \widehat{\Phi}_{(10,2,2)}^{(3,2,\frac{1}{6})} \widehat{\Phi}_{(10,2,2)}^{(3,2,-\frac{1}{6})} \widehat{\Phi}_{(\overline{10},2,2)}^{(\overline{3},2,\frac{1}{6})} \widehat{\Phi}_{(6,2,2)}^{(3,3,\frac{2}{3})} \widehat{\Phi}_{(15,3,1)}^{(3,3,\frac{2}{3})} $	$\widehat{\Phi}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$ $\widehat{\Phi}_{(3,3,-\frac{2}{3})}^{(\overline{3},3,-\frac{2}{3})}$ $(15,3,1)$	0	$-\frac{\sqrt{2}}{5\sqrt{3}}$	$\frac{1}{4\sqrt{15}}$	$-\frac{1}{6\sqrt{6}}$	$\frac{1}{18\sqrt{2}}$	0

Φ	Φ	$\frac{1}{120}\varepsilon \hat{A}_1 \Phi \Phi$	$\frac{1}{120}\varepsilon\widehat{A}_1\Phi\Phi$	$\hat{E}\Phi\Phi$	$\hat{\Phi}_1 \Phi \Phi$	$\widehat{\Phi}_2 \Phi \Phi$	$\hat{\Phi}_3 \Phi \Phi$
$\widehat{\Phi}_{(10,2,2)}^{(6,2,-\frac{1}{6})}$	$\widehat{\Phi}_{(\overline{10},2,2)}^{(\overline{6},2,\frac{1}{6})}$	$-\frac{1}{5}$	0	$-\frac{\sqrt{3}}{8\sqrt{5}}$	0	$-\frac{1}{18\sqrt{2}}$	$\frac{1}{36}$
$\widehat{\Phi}_{(10,2,2)}^{(6,2,\frac{5}{6})}$	$\widehat{\Phi}_{(\overline{10},2,2)}^{(\overline{6},2,-\frac{5}{6})}$	$\frac{1}{5}$	0	$ \begin{array}{r} -\frac{1}{8\sqrt{5}} \\ -\frac{\sqrt{3}}{8\sqrt{5}} \end{array} $	0	$-\frac{1}{18\sqrt{2}}$	$-\frac{1}{36}$
$\widehat{\Phi}_{(15,1,1)}^{(8,1,0)}$	$\widehat{\Phi}_{(15,1,1)}^{(8,1,0)}$	0	0	$-\frac{1}{\sqrt{15}}$	0	$-\frac{1}{18\sqrt{2}}$	0
$\widehat{\Phi}_{(15,1,1)}^{(8,1,0)}$	$\widehat{\Phi}_{(15,1,3)}^{(8,1,0)}$	$-\frac{\sqrt{2}}{5}$	0	0	0	0	$\frac{1}{18\sqrt{2}}$
$\widehat{\Phi}_{(15,1,3)}^{(8,1,0)}$	$\widehat{\Phi}_{(15,1,3)}^{(8,1,0)}$	0	$-\frac{\sqrt{2}}{5\sqrt{3}}$	$\frac{1}{4\sqrt{15}}$	$\frac{1}{6\sqrt{6}}$	$-\frac{1}{18\sqrt{2}}$	0
$\widehat{\Phi}_{(15,1,3)}^{(8,1,1)}$	$\widehat{\Phi}_{(15,1,3)}^{(8,1,-1)}$	0	$-\frac{\sqrt{2}}{5\sqrt{3}}$	$\frac{1}{4\sqrt{15}}$	$\frac{1}{6\sqrt{6}}$	$-\frac{1}{18\sqrt{2}}$	0
$\widehat{\Phi}_{(15,3,1)}^{(8,3,0)}$	$\widehat{\Phi}_{(15,3,1)}^{(8,3,0)}$	0	$\frac{\sqrt{2}}{5\sqrt{3}}$	$\frac{1}{4\sqrt{15}}$	$-\frac{1}{6\sqrt{6}}$	$-\frac{1}{18\sqrt{2}}$	0

Table 22: CG coefficients for the EA combination of fields

E	A	$EA\widehat{A}_1$	$EA\widehat{A}_2$
$\widehat{E}_{(1,1,1)}^{(1,1,0)}$	$\widehat{A}_{(1,1,3)}^{(1,1,0)}$	$\frac{\sqrt{3}}{2\sqrt{5}}$	0
$\widehat{E}_{(1,1,1)}^{(1,1,0)}$	$\widehat{A}_{(15,1,1)}^{(1,1,0)}$	0	$-\frac{1}{\sqrt{15}}$
$\widehat{E}_{(1,3,3)}^{(1,3,0)}$	$\widehat{A}_{(1,3,1)}^{(1,3,0)}$	$\frac{1}{2}$	0
$\widehat{E}_{(6,2,2)}^{(3,2,-\frac{5}{6})}$	$\widehat{A}_{(6,2,2)}^{(\overline{3},2,\overline{6})}$	$-\frac{1}{4}$	$-\frac{1}{2\sqrt{6}}$
$\widehat{E}_{(6,2,2)}^{(\overline{3},2,\frac{5}{6})}$	$\widehat{A}^{(3,2,-\frac{5}{6})}$	$-\frac{1}{4}$	$-\frac{1}{2\sqrt{6}}$
$\widehat{E}_{(6,2,2)}^{(6,2,2)}$ $\widehat{E}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$\widehat{A}(6,2,2)$ $\widehat{A}(\overline{3},2,-\frac{1}{6})$		
$\hat{E}_{(6,2,2)}^{(6,2,2)}$	$A(6,2,2)$ $\widehat{A}(3,2,\frac{1}{6})$	$\frac{1}{4}$	$-\frac{1}{2\sqrt{6}}$
$\hat{E}_{(6,2,2)}^{(6,2,2)}$	$A_{(6,2,2)}^{(6,2,2)}$ $\widehat{A}^{(8,1,0)}$	$\frac{1}{4}$	$-\frac{1}{2\sqrt{6}}$
$E_{(20',1,1)}^{(8,1,0)}$	$A_{(15,1,1)}^{(8,1,0)}$	0	$\frac{1}{\sqrt{6}}$

Table 23: CG coefficients for the $A\Phi$ combination of fields

A	Φ	$\widehat{A}_1 A \Phi$	$\widehat{A}_2 A \Phi$	$\frac{1}{120}\varepsilon A\Phi\widehat{\Phi}_1$	$\frac{1}{120}\varepsilon A\Phi\widehat{\Phi}_2$	$\frac{1}{120}\varepsilon A\Phi\widehat{\Phi}_3$
$\widehat{A}_{(1,1,3)}^{(1,1,0)}$	$\widehat{\Phi}_{(1,1,1)}^{(1,1,0)}$	$\frac{1}{\sqrt{6}}$	0	0	0	0
$\widehat{A}_{(1,1,3)}^{(1,1,0)}$	$\widehat{\Phi}_{(15,1,1)}^{(1,1,0)}$	0	0	0	0	$0 \\ \frac{\sqrt{2}}{5}$
$\widehat{A}_{(1,1,3)}^{(1,1,0)}$	$\widehat{\Phi}_{(15,1,3)}^{(1,1,0)}$	0	$\frac{1}{\sqrt{6}}$	0	$\frac{\sqrt{2}}{5}$	0
$\widehat{A}_{(15,1,1)}^{(1,1,0)}$	$\widehat{\Phi}_{(1,1,1)}^{(1,1,0)}$	0	0	0	$\begin{array}{r} \frac{\sqrt{2}}{5} \\ \frac{\sqrt{2}}{5} \end{array}$	0
$\widehat{A}_{(15,1,1)}^{(1,1,0)}$	$\widehat{\Phi}_{(15,1,1)}^{(1,1,1)}$	0	$\frac{\sqrt{2}}{3}$	$\begin{array}{c} \frac{\sqrt{2}}{5} \\ 0 \end{array}$	0	0
$ \widehat{A}_{(15,1,1)}^{(1,1,0)} $ $ \widehat{A}_{(1,1,1)}^{(1,1,1)} $	$\widehat{\Phi}_{(15,1,3)}^{(1,1,0)}$	$\frac{1}{\sqrt{6}}$	0	0	0	$\frac{2\sqrt{2}}{5\sqrt{3}}$
$A_{(1,1,3)}$	$\widehat{\Phi}_{(15,1,3)}^{(1,1,-1)}$	0	$-\frac{1}{\sqrt{6}}$	0	$-\frac{\sqrt{2}}{5}$	0
$\widehat{A}_{(1,1,3)}^{(1,1,-1)}$	$\widehat{\Phi}_{(15,1,3)}^{(1,1,1)}$	0	$-\frac{1}{\sqrt{6}}$	0	$-\frac{\sqrt{2}}{5}$	0
$\widehat{A}_{(1,3,1)}^{(1,3,0)}$	$\widehat{\Phi}_{(15,3,1)}^{(1,3,0)}$	0	$-\frac{1}{\sqrt{6}}$	0	$-\frac{\sqrt{2}}{5} \\ -\frac{\sqrt{2}}{5} \\ \frac{\sqrt{2}}{5}$	0
$ \hat{A}_{(1,3,1)}^{(1,3,0)} \\ \hat{A}_{(1,3,1)}^{(3,1,\frac{2}{3})} \\ \hat{A}_{(15,1,1)}^{(15,1,1)} $	$\widehat{\Phi}_{(15,1,1)}^{(\overline{3},1,-\frac{2}{3})}$	0	$-\frac{1}{3\sqrt{2}}$	$-\frac{\sqrt{2}}{5}$	0	0
$\hat{A}_{(15,1,1)}^{(3,1,-\frac{1}{3})}$	$\widehat{\Phi}_{(15,1,1)}^{(3,1,\frac{2}{3})}$	0	$-\frac{1}{3\sqrt{2}}$	$-\frac{\sqrt{2}}{5}$	0	0
$\widehat{A}_{(15,1,1)}^{(3,1,\frac{2}{3})}$	$\widehat{\Phi}_{(15,1,3)}^{(\overline{3},1,-\frac{2}{3})}$	$-\frac{1}{\sqrt{6}}$	0	0	0	$-rac{\sqrt{2}}{5\sqrt{3}}$
$\hat{A}_{(15,1,1)}^{(3,1,-\frac{2}{3})}$	$\widehat{\Phi}_{(15,1,3)}^{(3,1,\frac{2}{3})}$	$-\frac{1}{\sqrt{6}}$	0	0	0	$-\frac{\sqrt{2}}{5\sqrt{3}}$
$\widehat{A}_{(6,2,2)}^{(3,2,-\frac{5}{6})}$	$\widehat{\Phi}_{(\overline{10},2,2)}^{(3,2,\frac{5}{6})}$	0	$-\frac{1}{3}$	0	0	$-\frac{\sqrt{2}}{5\sqrt{3}}$ $-\frac{\sqrt{2}}{5\sqrt{3}}$ $\frac{\sqrt{2}}{5\sqrt{3}}$
$\hat{A}_{(6,2,2)}^{(3,2,\frac{5}{6})}$	$\widehat{\Phi}_{(10,2,2)}^{(3,2,-\frac{5}{6})}$	0	$-\frac{1}{3}$	0	0	$\frac{\sqrt{2}}{5\sqrt{3}}$
$\widehat{A}_{(6,2,2)}^{(3,2,-\frac{5}{6})}$	$\widehat{\Phi}_{(6,2,2)}^{(\overline{3},2,\frac{5}{6})}$	$-\frac{1}{2\sqrt{3}}$	0	0	$\frac{\sqrt{2}}{5\sqrt{3}}$	0
$\widehat{A}_{(6,2,2)}^{(3,2,\frac{5}{6})}$	$\widehat{\Phi}_{(6,2,2)}^{(3,2,-\frac{5}{6})}$	$-\frac{1}{2\sqrt{3}}$	0	0	$\frac{\sqrt{2}}{5\sqrt{3}}$	0
$\widehat{A}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$\widehat{\Phi}_{(\overline{10},2,2)}^{(\overline{3},2,-\frac{1}{6})}$	0	$-\frac{1}{3}$	0	0	$-rac{\sqrt{2}}{5\sqrt{3}}$
$\widehat{A}_{(6.2.2)}^{(\overline{3},2,-\frac{1}{6})}$	$ \begin{array}{c} \Psi_{(\overline{10},2,2)} \\ \widehat{\Phi}_{(10,2,2)}^{(3,2,\frac{1}{6})} \end{array} $	0	$-\frac{1}{3}$	0	0	$-\frac{\sqrt{2}}{5\sqrt{3}}$
$\widehat{A}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$\widehat{\Phi}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$-\frac{1}{2\sqrt{3}}$	0	0	$-\frac{\sqrt{2}}{5\sqrt{3}}$	0
$\hat{A}_{(6,2,2)}^{(3,2,-\frac{1}{6})}$	$\widehat{\Phi}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$-\frac{1}{2\sqrt{3}}$	0	0	$-\frac{\sqrt{2}}{5\sqrt{3}}$	0
$A_{(15,1,1)}^{(0,1,0)}$	$\widehat{\Phi}_{(15,1,1)}^{(8,1,0)}$	0	$-\frac{1}{3\sqrt{2}}$	$\frac{\sqrt{2}}{5}$	0	0
$\widehat{A}_{(15,1,1)}^{(8,1,0)}$	$\widehat{\Phi}_{(15,1,3)}^{(8,1,0)}$	$-\frac{1}{\sqrt{6}}$	0	0	0	$\frac{\sqrt{2}}{5\sqrt{3}}$

Table 24: CG coefficients for the $E\Delta$ combination of fields

E	Δ	$E\Delta\widehat{\Delta}$
$\hat{E}_{(1,1,1)}^{(1,1,0)}$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(1,1,0)}$	0
$E_{(1,2,2)}^{(1,0,1)}$	$\hat{\Delta}_{(10,1,3)}^{(1,0,1,3)}$ $\hat{\Delta}_{(10,3,1)}^{(1,3,-1)}$	$\frac{1}{5}$
$\widehat{E}_{(c,2,2)}^{(1,3,3)}$	$\Delta_{(10,3,1)}^{(3,3,1)}$ $\widehat{\Delta}_{(15,2,2)}^{(3,2,-\frac{1}{6})}$	$-\frac{1}{5}$
$ \hat{E}_{(6,2,2)}^{(3,2,\frac{1}{6})} \\ \hat{E}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})} \\ \hat{E}_{(6,2,2)}^{(6,2,2)} $	$\widehat{\Delta}_{(\underline{15},2,2)}^{(15,2,2)}$	0
→(0,1,-==)	$\widehat{\Lambda}^{(15,2,2)}$ $\widehat{\Lambda}^{(\overline{6},1,\frac{2}{3})}$	1
$E_{(20',1,1)}^{(3',1,3)}$	$\Delta_{(\overline{10},1,3)}$	5

Table 25: CG coefficients for the $E\overline{\Delta}$ combination of fields

E	$\overline{\Delta}$	$E\overline{\Delta}\widehat{\Delta}$
$\widehat{E}_{(1,1,1)}^{(1,1,0)}$	$\hat{\Delta}_{(10,1,3)}^{(1,1,0)}$	0
$\widehat{E}_{(1,3,3)}^{(1,3,-1)}$	$\widehat{\Delta}_{(\overline{10},3,1)}^{(1,3,1)}$	$\frac{1}{5}$
$\widehat{E}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$\frac{\widehat{\Delta}^{(3,2,\frac{1}{6})}}{\widehat{\Delta}_{(15,2,2)}}$	$-\frac{1}{5}$
$\widehat{E}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$ \frac{\widehat{\Delta}^{(3,2,-\frac{1}{6})}}{\widehat{\Delta}_{(15,2,2)}} $	0
$\widehat{E}_{(20',1,1)}^{(\overline{6},1,\frac{2}{3})}$	$\frac{\widehat{\Delta}^{(6,1,-\frac{2}{3})}}{\widehat{\Delta}_{(10,1,3)}}$	<u>1</u> 5

Table 26: CG coefficients for the $E\Phi$ combination of fields

E	Φ	$E\Phi\widehat{\Phi}_1$	$E\Phi\widehat{\Phi}_2$	$E\Phi\widehat{\Phi}_3$
$\widehat{E}_{(1,1,1)}^{(1,1,0)}$	$\widehat{\Phi}_{(1,1,1)}^{(1,1,0)}$	$\frac{\sqrt{3}}{2\sqrt{5}}$	0	0
$\hat{E}_{(1,1,1)}^{(1,1,0)}$	$\widehat{\Phi}_{(15,1,1)}^{(1,1,0)}$	0	$-\frac{1}{\sqrt{15}}$	0
$\hat{E}_{(1,1,1)}^{(1,1,0)}$	$\widehat{\Phi}_{(15,1,3)}^{(1,1,0)}$	0	Ö	$\frac{1}{4\sqrt{15}}$
$\hat{E}_{(1,3,3)}^{(1,3,0)}$	$\hat{\mathbf{x}}(1.3.0)$	0	0	$ \frac{\frac{1}{4\sqrt{15}}}{-\frac{1}{4}} $
$\widehat{E}_{(6,2,2)}^{(3,2,-\frac{5}{6})}$	$ \begin{array}{c} \Phi_{(15,3,1)} \\ \widehat{\Phi}_{(\overline{10},2,2)} \\ \end{array} $	0	$\frac{1}{4\sqrt{3}}$	$\frac{1}{4\sqrt{6}}$
$\hat{E}_{(6,2,2)}^{(\overline{3},2,\frac{5}{6})}$	$ \Phi_{(\overline{10},2,2)}^{(\overline{10},2,2)} \widehat{\Phi}_{(10,2,2)}^{(3,2,-\frac{5}{6})} $	0	$\frac{1}{4\sqrt{3}}$	$\frac{1}{4\sqrt{6}}$
$\widehat{E}_{(6,2,2)}^{(3,2,-\frac{5}{6})}$	$\widehat{\Phi}_{(6,2,2)}^{(\overline{3},2,\overline{5})}$	$\frac{1}{4\sqrt{2}}$	0	$\frac{1}{8\sqrt{3}}$
$\widehat{E}_{(6,2,2)}^{(\overline{3},2,\frac{5}{6})}$	$\widehat{\Phi}_{(6,2,2)}^{(3,2,-\frac{5}{6})}$	$\frac{1}{4\sqrt{2}}$	0	$\frac{1}{8\sqrt{3}}$
$\widehat{E}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$\widehat{\Phi}_{(\overline{10},2,2)}^{(\overline{3},2,-\frac{1}{6})}$	0	$\frac{1}{4\sqrt{3}}$	$-\frac{1}{4\sqrt{6}}$
$\widehat{E}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$\widehat{\Phi}_{(10,2,2)}^{(3,2,\frac{1}{6})}$	0	$\frac{1}{4\sqrt{3}}$	$-\frac{1}{4\sqrt{6}}$
$\hat{E}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$\widehat{\Phi}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$-\frac{1}{4\sqrt{2}}$	0	$\frac{1}{8\sqrt{3}}$
$\widehat{E}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$\widehat{\Phi}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$-\frac{1}{4\sqrt{2}}$	0	$\frac{1}{8\sqrt{3}}$
$\hat{E}_{(20',1,1)}^{(8,1,0)}$	$\widehat{\Phi}_{(15,1,1)}^{(8,1,0)}$	0	$-\frac{1}{2\sqrt{6}}$	0
$\widehat{E}_{(20',1,1)}^{(8,1,0)}$	$\widehat{\Phi}_{(15,1,3)}^{(8,1,0)}$	0	0	$-\frac{1}{2\sqrt{6}}$

Table 27: CG coefficients for the ΔH combination of fields

Δ	Н	$\Delta H \widehat{\Phi}_1$	$\Delta H \widehat{\Phi}_2$	$\Delta H \hat{\Phi}_3$
$\hat{\Delta}_{(15,2,2)}^{(1,2,\frac{1}{2})}$	$\widehat{H}_{(1,2,2)}^{(1,2,-\frac{1}{2})}$	0	$\frac{1}{\sqrt{10}}$	$-\frac{1}{2\sqrt{5}}$
$\widehat{\Delta}_{(15,2,2)}^{(1,2,-\frac{1}{2})}$	$\widehat{H}_{(1,2,2)}^{(1,2,rac{1}{2})}$	0	$-\frac{1}{\sqrt{10}}$	$-\frac{1}{2\sqrt{5}}$
$\widehat{\Delta}_{(6,1,1)}^{(3,1,-\frac{1}{3})}$	$\widehat{H}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	$-\frac{1}{\sqrt{10}}$	$\frac{1}{\sqrt{30}}$	0
$\hat{\Delta}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	$\widehat{H}_{(6,1,1)}^{(3,1,-\frac{1}{3})}$	$-\frac{1}{\sqrt{10}}$	$-\frac{1}{\sqrt{30}}$	0
$\widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{3},1,\frac{1}{3})}$	$\widehat{H}_{(6,1,1)}^{(3,1,-\frac{1}{3})}$	0	0	$-\frac{\sqrt{2}}{\sqrt{15}}$

Table 28: CG coefficients for the $\overline{\Delta}H$ combination of fields

$\overline{\Delta}$	Н	$\overline{\Delta}H\widehat{\Phi}_1$	$\overline{\Delta}H\widehat{\Phi}_2$	$\overline{\Delta}H\widehat{\Phi}_3$
$\frac{\hat{\Delta}^{(1,2,-\frac{1}{2})}}{\hat{\Delta}_{(15,2,2)}}$	$\widehat{H}_{(1,2,2)}^{(1,2,\frac{1}{2})}$	0	$\frac{1}{\sqrt{10}}$	$-\frac{1}{2\sqrt{5}}$
$\frac{\hat{\Delta}^{(1,2,\frac{1}{2})}}{\hat{\Delta}^{(15,2,2)}}$	$\widehat{H}_{(1,2,2)}^{(1,2,-\frac{1}{2})}$	0	$-\frac{1}{\sqrt{10}}$	$-\frac{1}{2\sqrt{5}}$
$\widehat{\overline{\Delta}}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	$\widehat{H}_{(6,1,1)}^{(3,1,-\frac{1}{3})}$	$-\frac{1}{\sqrt{10}}$	$\frac{1}{\sqrt{30}}$	0
$\frac{\widehat{\Delta}^{(3,1,-\frac{1}{3})}}{\widehat{\Delta}_{(6,1,1)}}$	$\widehat{H}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	$-\frac{1}{\sqrt{10}}$	$-\frac{1}{\sqrt{30}}$	0
$\frac{\hat{\Delta}(3,1,-\frac{1}{3})}{\hat{\Delta}_{(10,1,3)}}$	$\widehat{H}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	0	0	$-\frac{\sqrt{2}}{\sqrt{15}}$

Table 29: CG coefficients for the $H\Phi$ combination of fields

Н	Φ	$\widehat{\Delta}H\Phi$	$\widehat{\overline{\Delta}}H\Phi$
$\widehat{H}_{(1,2,2)}^{(1,2,\frac{1}{2})}$	$\widehat{\Phi}_{(10,2,2)}^{(1,2,-\frac{1}{2})}$	$-\frac{1}{\sqrt{5}}$	0
$\widehat{H}_{(1,2,2)}^{(1,2,-\frac{1}{2})}$	$\widehat{\Phi}_{(\overline{10},2,2)}^{(1,2,\frac{1}{2})}$	0	$-\frac{1}{\sqrt{5}}$
$\widehat{H}_{(6,1,1)}^{(3,1,-\frac{1}{3})}$ $\widehat{H}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	$ \widehat{\Phi}_{(\overline{10},2,2)}^{(1,2,\frac{1}{2})} \\ \widehat{\Phi}_{(\overline{3},1,\frac{1}{3})}^{(\overline{3},1,\frac{1}{3})} \\ \widehat{\Phi}_{(15,1,3)}^{(15,1,3)} $	$\frac{1}{\sqrt{5}}$	0
$\widehat{H}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	$\widehat{\Phi}_{(15,1,3)}^{(3,1,-\frac{1}{3})}$	0	$\frac{1}{\sqrt{5}}$

Table 30: CG coefficients for the $\Phi\Delta$ combination of fields

Φ	Δ	$\Phi \widehat{\overline{\Delta}} \Delta$
$\widehat{\Phi}_{(1,1,1)}^{(1,1,0)}$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(1,1,0)}$	$\frac{1}{10\sqrt{6}}$
$\widehat{\Phi}_{(15,1,1)}^{(1,1,1)}$	$ \frac{\Delta(\overline{10},1,3)}{\widehat{\Delta}(\overline{10},1,3)} $	$\frac{1}{10\sqrt{2}}$
$\widehat{\Phi}_{(15,1,3)}^{(15,1,1)}$	$\widehat{\mathbf{A}}$ (1.1.0)	$\frac{10\sqrt{2}}{10}$
$\widehat{\Phi}_{(15,1,3)}^{(15,1,3)}$	$ \frac{\Delta(\overline{10}, 1, 3)}{\widehat{\Delta}(1, 1, 1)} \\ \widehat{\Delta}(\overline{10}, 1, 3) \\ \widehat{\Delta}(1, 2, \frac{1}{2}) \\ \widehat{\Delta}(15, 2, 2) $	$-\frac{10}{10}$
$(15,1,3)$ $\Rightarrow (1,2,-\frac{1}{2})$	$(\overline{10},1,3)$ $(1,2,\frac{1}{2})$	
$\Phi_{(10,2,2)}^{(10,2,2)}$	$\Delta_{(15,2,2)}^{(15,2,2)}$	0
$\widehat{\Phi}_{(10,2,2)}^{(1,2,-\frac{1}{2})}$ $\widehat{\Phi}_{(\overline{10},2,2)}^{(1,2,\frac{1}{2})}$	$\widehat{\Delta}_{(15,2,2)}^{(1,2,-\frac{1}{2})}$	$\frac{1}{10}$
$\widehat{\Phi}_{(15,1,3)}^{(10,2,2)}$	$\widehat{\Delta}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	$-\frac{1}{10\sqrt{3}}$
$\widehat{\mathbf{A}}(3,1,-\frac{1}{3})$	$\widehat{\Lambda}$ $(3,1,\frac{1}{3})$	
(15,1,3)	(10,1,3) $(31-\frac{1}{2})$	
$\Phi_{(15,1,3)}^{(15,1,3)}$	$\Delta_{(\underline{6},1,1)}^{(5,1,1)}^{3}$	_
		$-\frac{1}{10\sqrt{3}}$
$\widehat{\Phi}(3,1,\frac{2}{3})$	$\widehat{\Lambda}(\overline{3},1,-\frac{2}{3})$	
(10,1,3)	$\widehat{\Lambda}^{(\overline{3},2,-\frac{1}{6})}$	
$\Psi_{(10,2,2)}$ $\hat{\varphi}_{(3,2,-\frac{1}{2})}$	$\stackrel{\triangle}{}(15,2,2)$ $\stackrel{\triangle}{}(3,2,\frac{1}{2})$	Ü
$\Phi_{(\overline{10},2,2)}^{(10,2,2)}$	(10,2,2)	$-\frac{1}{5\sqrt{6}}$
$\widehat{\Phi}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$\Delta_{(15,2,2)}$	0
$\widehat{\Phi}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$\widehat{\Lambda}$ $(3,2,\frac{1}{6})$	$-\frac{1}{10\sqrt{3}}$
$\widehat{\Phi}_{(15,1,3)}^{(3,1,-\frac{1}{3})}$ $\widehat{\Phi}_{(15,1,3)}^{(15,1,3)}$ $\widehat{\Phi}_{(15,1,1)}^{(3,1,\frac{2}{3})}$ $\widehat{\Phi}_{(15,1,1)}^{(3,1,\frac{2}{3})}$ $\widehat{\Phi}_{(15,1,3)}^{(15,1,3)}$ $\widehat{\Phi}_{(10,2,2)}^{(3,2,\frac{1}{6})}$ $\widehat{\Phi}_{(\overline{10},2,2)}^{(\overline{3},2,-\frac{1}{6})}$ $\widehat{\Phi}_{(\overline{10},2,2)}^{(\overline{3},2,\frac{1}{6})}$ $\widehat{\Phi}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$ $\widehat{\Phi}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$ \widehat{\Delta}_{(6,1,1)}^{(3,1,-\frac{1}{3})} \widehat{\Delta}_{(6,1,1)}^{(6,1,1)} \widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{3},1,-\frac{2}{3})} \widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{10},1,3)} \widehat{\Delta}_{(\overline{3},2,-\frac{1}{6})}^{(\overline{3},2,\frac{1}{6})} \widehat{\Delta}_{(3,2,\frac{1}{6})}^{(3,2,\frac{1}{6})} $	$-\frac{1}{5\sqrt{6}} \\ 0 \\ -\frac{1}{10\sqrt{3}} \\ -\frac{1}{5\sqrt{6}} \\ 0 \\ -\frac{1}{5\sqrt{6}} \\ 0 \\ -\frac{1}{10\sqrt{3}}$

Table 31: CG coefficients for the $\Phi \overline{\Delta}$ combination of fields

Φ	$\overline{\Delta}$	$\Phi \widehat{\Delta} \overline{\Delta}$
$\widehat{\Phi}_{(1,1,1)}^{(1,1,0)}$	$\widehat{\overline{\Delta}}_{(10,1,3)}^{(1,1,0)}$	$\frac{1}{10\sqrt{6}}$
$\widehat{\Phi}_{(15,1,1)}^{(1,1,0)}$	$\widehat{\overline{\Delta}}_{(10,1,3)}^{(1,1,0)}$	$\frac{1}{10\sqrt{2}}$
$\widehat{\Phi}_{(15,1,3)}^{(1,1,0)}$	$ \frac{\widehat{\Delta}_{(1,1,0)}^{(1,1,0)}}{\widehat{\Delta}_{(10,1,3)}^{(10,1,3)}} $ $ \frac{\widehat{\Delta}_{(10,1,3)}^{(10,1,3)}}{\widehat{\Delta}_{(10,1,3)}^{(10,1,3)}} $	$\frac{1}{10}$
$\widehat{\Phi}_{(15,1,3)}^{(1,1,1)}$	$\frac{\hat{\Delta}^{(1,1,-1)}}{\hat{\Delta}^{(10,1,3)}}$	$-\frac{1}{10}$
$\widehat{\Phi}_{(\overline{10},2,2)}^{(1,2,\frac{1}{2})}$	$\frac{\hat{\Delta}}{\Delta}_{(15,2,2)}^{(1,2,-\frac{1}{2})}$	0
$\widehat{\Phi}_{(10,2,2)}^{(1,2,-\frac{1}{2})}$	$ \hat{\Delta}_{(15,2,2)}^{(1,2,\frac{1}{2})} $	$\frac{1}{10}$
$\widehat{\Phi}_{(15,1,3)}^{(\overline{3},1,\frac{1}{3})}$	$\frac{\widehat{\Delta}_{(6,1,1)}^{(3,1,-\frac{1}{3})}$	$-\frac{1}{10\sqrt{3}}$
$\widehat{\Phi}_{(15,1,3)}^{(\overline{3},1,\frac{1}{3})}$	$ \widehat{\Delta}_{(10,1,3)}^{(3,1,-\frac{1}{3})} $	$-\frac{1}{5\sqrt{6}}$
$\widehat{\Phi}_{(15,1,3)}^{(3,1,-\frac{1}{3})}$	$\frac{\widehat{\Delta}(\overline{3},1,\frac{1}{3})}{\widehat{\Delta}_{(6,1,\frac{1}{3})}}$	0
$\widehat{\Phi}_{(15,1,1)}^{(\overline{3},1,-\frac{2}{3})}$	$\widehat{\Delta}_{(10,1,3)}^{(3,1,\frac{2}{3})}$	$-\frac{1}{10\sqrt{3}}$
$\widehat{\Phi}_{(15,1,3)}^{(\overline{3},1,-\frac{2}{3})}$	$ \widehat{\overline{\Delta}}_{(10,1,3)}^{(3,1,\frac{2}{3})} $	$-\frac{1}{5\sqrt{6}}$
$\widehat{\Phi}_{(\overline{10},2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$\frac{\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{1}{6})}}{\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{1}{6})}}$	0
$\widehat{\Phi}_{(10,2,2)}^{(3,2,\frac{1}{6})}$	$\frac{\hat{\Delta}^{(3,2,-\frac{1}{6})}}{\hat{\Delta}_{(15,2,2)}}$	$-\frac{1}{5\sqrt{6}}$
$\widehat{\Phi}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$\frac{\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{1}{6})}$	0
$\widehat{\Phi}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$\frac{\widehat{\Delta}_{(15,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$-\frac{1}{10\sqrt{3}}$

Table 32: CG coefficients for the $A\Delta$ combination of fields

A	Δ	$-iA\widehat{\overline{\Delta}}\Delta$
$\widehat{A}_{(1,1,3)}^{(1,1,0)}$	$\hat{\Delta}_{(\overline{10},1,3)}^{(1,1,0)}$	$-\frac{1}{5}$
$\widehat{A}_{(15,1,1)}^{(1,1,0)}$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(1,1,0)}$	$-\frac{\sqrt{3}}{5\sqrt{2}}$
$\widehat{A}_{(1,1,3)}^{(1,1,-1)}$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(1,1,1)}$	$-\frac{1}{5}$
$\widehat{A}_{(15,1,1)}^{(3,1,\frac{2}{3})}$	$\widehat{\Delta}_{(\underline{10},1,3)}^{(\underline{3},1,-\frac{2}{3})}$	$-\frac{1}{5}$
$\widehat{A}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$\widehat{\Delta}_{(15,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	0
$\widehat{A}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{1}{6})}$	$-\frac{1}{5}$

Table 33: CG coefficients for the $A\overline{\Delta}$ combination of fields

A	$\overline{\Delta}$	$-iA\overline{\Delta}\widehat{\Delta}$
$\widehat{A}_{(1,1,3)}^{(1,1,0)}$	$ \frac{\hat{\Delta}^{(1,1,0)}}{\hat{\Delta}^{(10,1,3)}} $	$-\frac{1}{5}$
$\widehat{A}_{(15,1,1)}^{(1,1,3)}$		$-\frac{\sqrt{3}}{5\sqrt{2}}$
	$ \overline{\Delta}_{(10,1,3)} $ $ \underline{}_{(1,1,-1)} $	
$\widehat{A}_{(1,1,3)}^{(1,1,1)}$	$\frac{\hat{\Delta}^{(1,1,-1)}}{\hat{\Delta}^{(10,1,3)}}$	$-\frac{1}{5}$
$\widehat{A}_{(15,1,1)}^{(\overline{3},1,-\frac{2}{3})}$	$ \hat{\Delta}_{(10,1,3)}^{(3,1,\frac{2}{3})} $	$-\frac{1}{5}$
$\widehat{A}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$\frac{\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{1}{6})}$	0
$\widehat{A}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$\frac{\widehat{\Delta}(\overline{3},2,-\frac{1}{6})}{\widehat{\Delta}_{(15,2,2)}}$	$-\frac{1}{5}$

Table 34: CG coefficients for the DH combination of fields

D	Н	$DH\widehat{A}_1$	$DH\widehat{A}_2$	$DH\widehat{\Phi}_1$	$DH\widehat{\Phi}_2$	$DH\widehat{\Phi}_3$
$\widehat{D}_{(1,2,2)}^{(1,2,\frac{1}{2})}$	$\widehat{H}_{(1,2,2)}^{(1,2,-\frac{1}{2})}$	$-\frac{i}{\sqrt{6}}$	0	$-\frac{1}{2}$	0	0
$\widehat{D}_{(1,2,2)}^{(1,2,-\frac{1}{2})}$	$\widehat{H}_{(1,2,2)}^{(1,2,\frac{1}{2})}$	$\frac{i}{\sqrt{6}}$	0	$-\frac{1}{2}$	0	0
$\widehat{D}_{(15,2,2)}^{(1,2,\frac{1}{2})}$	$\widehat{H}_{(1,2,2)}^{(1,2,-\frac{1}{2})}$	0	$-\frac{i}{\sqrt{3}}$	0	0	$-\frac{1}{2\sqrt{2}}$
$\widehat{D}_{(15,2,2)}^{(1,2,-\frac{1}{2})}$	$\widehat{H}_{(1,2,2)}^{(1,2,\frac{1}{2}))}$ $\widehat{-}_{(3,1,\frac{1}{2})}^{(3,1,\frac{1}{2})}$	0	$\frac{i}{\sqrt{3}}$	0	0	$-\frac{1}{2\sqrt{2}}$
$D_{(6,1,3)}^{(6,1,3)}$	$H_{(6,1,1)}^{(6,1,3)}$	$-\frac{i}{\sqrt{3}}$	0	0	0	$-\frac{1}{2\sqrt{3}}$
$\widehat{D}_{(6,1,3)}^{(\overline{3},1,\frac{1}{3})}$	$\widehat{H}_{(6,\underline{1},1)}^{(3,1,-\frac{1}{3})}$	$\frac{i}{\sqrt{3}}$	0	0	0	$-\frac{1}{2\sqrt{3}}$
$\widehat{D}_{(\underline{10},1,\underline{1})}^{(3,1,-\frac{1}{3})}$	$\widehat{H}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	0	$-\frac{i\sqrt{2}}{3}$	0	$-\frac{1}{\sqrt{6}}$	0
$\widehat{D}_{(\overline{10},1,1)}^{(\overline{3},1,\frac{1}{3})}$	$\widehat{H}_{(6,1,1)}^{(3,1,-\frac{1}{3})}$	0	$\frac{i\sqrt{2}}{3}$	0	$-\frac{1}{\sqrt{6}}$	0

Table 35: CG coefficients for the DA combination of fields

D	A	$D\widehat{\Delta}A$	$D\widehat{\overline{\Delta}}A$
$\widehat{D}_{(\overline{10},1,1)}^{(1,1,1)}$	$\widehat{A}_{(1,1,3)}^{(1,1,-1)}$	0	$-\frac{i}{10}$
$\widehat{D}_{(10,1,1)}^{(1,1,-1)}$	$\widehat{A}_{(1,1,3)}^{(1,1,1)}$	$\frac{i}{10}$	0
$\widehat{D}_{(6,1,3)}^{(3,1,\frac{2}{3})}$	$\widehat{A}_{(15,1,1)}^{(\overline{3},1,-\frac{2}{3})}$	$-\frac{i}{10}$	0
$\widehat{D}_{(6,1,3)}^{(\overline{3},1,-\frac{2}{3})}$	$\widehat{A}_{(15,1,1)}^{(3,1,\frac{2}{3})}$	0	$\frac{i}{10}$
$\widehat{D}_{(15,2,2)}^{(3,2,\frac{1}{6})}$	$\widehat{A}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	0	$-\frac{i}{10}$
$\widehat{D}_{(15,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$\widehat{A}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$\frac{i}{10}$	0

Table 36: CG coefficients for the $D\Delta$ combination of fields

D	Δ	$D\Delta \widehat{A}_1$	$D\Delta \widehat{A}_2$	$D\Delta\widehat{\Phi}_1$	$D\Delta\widehat{\Phi}_2$	$D\Delta\widehat{\Phi}_3$
$\widehat{D}_{(10,1,1)}^{(1,1,-1)}$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(1,1,1)}$	$-\frac{i}{\sqrt{10}}$	0	0	0	$-\frac{1}{2\sqrt{10}}$
$\widehat{D}_{(1,2,2)}^{(1,2,\frac{1}{2})}$	$\widehat{\Delta}_{(15,2,2)}^{(1,2,-\frac{1}{2})}$	0	$\frac{i}{2\sqrt{5}}$	0	0	$\frac{1}{4\sqrt{30}}$
$\widehat{D}_{(1,2,2)}^{(1,2,-\frac{1}{2})}$	$\widehat{\Delta}_{(15,2,2)}^{(1,2,\frac{1}{2})}$	0	$-\frac{i}{2\sqrt{5}}$	0	0	$\frac{1}{4\sqrt{30}}$
$\widehat{D}_{(15,2,2)}^{(1,2,\frac{1}{2})}$	$\widehat{\Delta}_{(15,2,2)}^{(13,2,2)}$	$\frac{i}{2\sqrt{10}}$	$\frac{i}{\sqrt{15}}$	$\frac{1}{4\sqrt{15}}$	0	$\frac{1}{6\sqrt{10}}$
$\widehat{D}_{(15,2,2)}^{(15,2,2)}$	$\widehat{\Delta}_{(15,2,2)}^{(1,2,\frac{1}{2})}$	$-\frac{i}{2\sqrt{10}}$	$\frac{i}{\sqrt{15}}$	$\frac{1}{4\sqrt{15}}$	0	$-\frac{1}{6\sqrt{10}}$
$\widehat{D}_{(6,1,3)}^{(3,1,-\frac{4}{3})}$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{3},1,\frac{4}{3})}$	0	$\frac{i}{\sqrt{15}}$	0	$\frac{1}{6\sqrt{5}}$	$-\frac{1}{3\sqrt{10}}$
$\widehat{D}_{(6,1,3)}^{(\overline{3},1,\frac{1}{3})}$	$\widehat{\Delta}_{(6,1,1)}^{(10,1,3)}$	$-\frac{i}{2\sqrt{5}}$	0	0	0	$\frac{1}{12\sqrt{5}}$
$\widehat{D}_{(6,1,2)}^{(3,1,-\frac{1}{3})}$	$\widehat{\Delta}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	$\frac{i}{2\sqrt{5}}$	0	0	0	$\frac{1}{12\sqrt{5}}$
$\widehat{D}_{(6,1,3)}^{(3,1,-\frac{1}{3})}$	$\widehat{\Delta}_{(\overline{10},1,3))}^{(\overline{3},1,\overline{1})}$	0	$\frac{i}{\sqrt{15}}$	0	$\frac{1}{6\sqrt{5}}$	0
$\widehat{D}_{(\overline{10},1,1)}^{(\overline{3},1,\frac{1}{3})}$	$\widehat{\Delta}_{(6,1,1)}^{(3,1,-\frac{1}{3})}$	0	$\frac{i}{\sqrt{30}}$	0	$-\frac{1}{6\sqrt{10}}$	0
$\widehat{D}_{(10,1,1)}^{(3,1,-\frac{1}{3})}$	$\widehat{\Delta}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	0	$\frac{i}{\sqrt{30}}$	0	$\frac{1}{6\sqrt{10}}$	0
$\widehat{D}_{(10,1,1)}^{(3,1,-\frac{1}{3})}$	$\widehat{\Delta}_{(\overline{10},1,1)}^{(\overline{3},1,\frac{1}{3})}$	$\frac{i}{\sqrt{10}}$	0	0	0	$\frac{1}{6\sqrt{10}}$
$\widehat{D}_{(6,1,3)}^{(3,1,\frac{2}{3})}$	$\widehat{\Delta}_{(\overline{10},1,2)}^{(\overline{3},1,-\frac{2}{3})}$	0	$\frac{i}{\sqrt{15}}$	0	$\frac{1}{6\sqrt{5}}$	$\frac{1}{3\sqrt{10}}$
$\widehat{D}_{(15,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{1}{6})}$	$-\frac{i}{2\sqrt{10}}$	$-\frac{i}{2\sqrt{15}}$	$-\frac{1}{4\sqrt{15}}$	$-\frac{1}{6\sqrt{5}}$	$-\frac{1}{4\sqrt{10}}$
$\widehat{D}_{(15,2,2)}^{(3,2,\frac{1}{6})}$	$\widehat{\Delta}_{(15,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$\frac{i}{2\sqrt{10}}$	$-\frac{i}{2\sqrt{15}}$	$-\frac{1}{4\sqrt{15}}$	$\frac{1}{6\sqrt{5}}$	$-\frac{1}{12\sqrt{10}}$
$\widehat{D}_{(15,2,2)}^{(\overline{3},2,-\frac{7}{6})}$	$\widehat{\Delta}_{(15,2,2)}^{(3,2,\frac{7}{6})}$	$-\frac{i}{2\sqrt{10}}$	$\frac{i}{2\sqrt{15}}$	$\frac{1}{4\sqrt{15}}$	$\frac{1}{6\sqrt{5}}$	$-\frac{1}{4\sqrt{10}}$
$\widehat{D}_{(15,2,2)}^{(3,2,\frac{7}{6})}$	$\widehat{\Delta}_{(15,2,2)}^{(\overline{3},2,-\frac{7}{6})}$	$\frac{i}{2\sqrt{10}}$	$\frac{i}{2\sqrt{15}}$	$\frac{1}{4\sqrt{15}}$	$-\frac{1}{6\sqrt{5}}$	$-\frac{1}{12\sqrt{10}}$
$\widehat{D}_{(6,3,1)}^{(\overline{3},3,\frac{1}{3})}$	$\widehat{\Delta}_{(10,3,1)}^{(3,3,-\frac{1}{3})}$	0	$-\frac{i}{\sqrt{15}}$	0	$\frac{6\sqrt{5}}{6\sqrt{5}}$	0
$\widehat{D}_{(10,1,1)}^{(6,1,\frac{1}{3})}$	$\widehat{\Delta}_{(\overline{10},1,3)}^{(\overline{6},1,-\frac{1}{3})}$	$\frac{i}{\sqrt{10}}$	0	0	0	$-\frac{1}{6\sqrt{10}}$
$\widehat{D}_{(15,2,2)}^{(8,2,-\frac{1}{2})}$	$\widehat{\Delta}_{(15,2,2)}^{(8,2,\frac{1}{2})}$	$-\frac{i}{2\sqrt{10}}$	$-\frac{i}{2\sqrt{15}}$	$\frac{1}{4\sqrt{15}}$	0	$\frac{1}{12\sqrt{10}}$
$\widehat{D}_{(15,2,2)}^{(8,2,\frac{1}{2})}$	$\widehat{\Delta}_{(15,2,2)}^{(15,2,2)}$	$\frac{i}{2\sqrt{10}}$	$-\frac{i}{2\sqrt{15}}$	$\frac{4\sqrt{15}}{4\sqrt{15}}$	0	$-\frac{12\sqrt{10}}{12\sqrt{10}}$

Table 37: CG coefficients for the $D\overline{\Delta}$ combination of fields

D	Δ	$D\overline{\Delta}\widehat{A}_1$	$D\overline{\Delta}\widehat{A}_2$	$D\overline{\Delta}\widehat{\Phi}_1$	$D\overline{\Delta}\widehat{\Phi}_2$	$D\overline{\Delta}\widehat{\Phi}_3$
$\widehat{D}_{(\overline{10},1,1)}^{(1,1,1)}$	$\frac{\widehat{\Delta}^{(1,1,-1)}}{\widehat{\Delta}_{(10,1,3)}}$	$\frac{i}{\sqrt{10}}$	0	0	0	$-\frac{1}{2\sqrt{10}}$
$\widehat{D}_{(1,2,2)}^{(1,2,-\frac{1}{2})}$	$ \hat{\overline{\Delta}}_{(15,2,2)}^{(1,2,\frac{1}{2})} $	0	$-\frac{i}{2\sqrt{5}}$	0	0	$\frac{1}{4\sqrt{30}}$
$\widehat{D}_{(1,2,2)}^{(1,2,\frac{1}{2})}$	$\widehat{\overline{\Delta}}_{(15,2,2)}^{(1,2,-\frac{1}{2})}$	0	$\frac{i}{2\sqrt{5}}$	0	0	$\frac{1}{4\sqrt{30}}$
$\widehat{D}_{(15,2,2)}^{(1,2,-\frac{1}{2})}$	$\widehat{\overline{\Delta}}_{(15,2,2)}^{(1,2,\frac{1}{2})}$	$-\frac{i}{2\sqrt{10}}$	$-\frac{i}{\sqrt{15}}$	$\frac{1}{4\sqrt{15}}$	0	$\frac{1}{6\sqrt{10}}$
$\widehat{D}_{(15,2,2)}^{(1,2,\frac{1}{2})}$	$\frac{\hat{\Delta}^{(1,2,-\frac{1}{2})}}{\hat{\Delta}^{(15,2,2)}}$	$\frac{i}{2\sqrt{10}}$	$-\frac{i}{\sqrt{15}}$	$\frac{1}{4\sqrt{15}}$	0	$-\frac{1}{6\sqrt{10}}$
$\widehat{D}_{(6,1,3)}^{(\overline{3},1,\frac{4}{3})}$	$\frac{\overline{\Delta}_{(10,1,3)}^{(3,1,-\frac{1}{3})}$	0	$-\frac{i}{\sqrt{15}}$	0	$\frac{1}{6\sqrt{5}}$	$-\frac{1}{3\sqrt{10}}$
$\widehat{D}_{(6,1,3)}^{(3,1,-\frac{1}{3})}$	$\widehat{\underline{\Delta}}_{(6,1,1)}^{(\overline{3},1,\frac{1}{3})}$	$\frac{i}{2\sqrt{5}}$	0	0	0	$\frac{1}{12\sqrt{5}}$
$\widehat{D}_{(6,1,3)}^{(\overline{3},1,\frac{1}{3})}$	$\frac{\widehat{\Delta}(3,1,-\frac{1}{3})}{\widehat{\Delta}_{(6,1,1)}}$	$-\frac{i}{2\sqrt{5}}$	0	0	0	$\frac{1}{12\sqrt{5}}$
$\widehat{D}_{(6,1,3)}^{(\overline{3},1,\frac{1}{3})}$	$\frac{\widehat{\Delta}_{(10,1,3)}^{(3,1,-\frac{2}{3})}}{\widehat{\Delta}_{(10,1,3)}}$	0	$-\frac{i}{\sqrt{15}}$	0	$\frac{1}{6\sqrt{5}}$	0
$\widehat{D}_{(10,1,1)}^{(3,1,-\frac{1}{3})}$	$\overline{\Delta}_{(6,1,1)}^{(3,1,\frac{3}{3})}$	0	$-\frac{i}{\sqrt{30}}$	0	$-\frac{1}{6\sqrt{10}}$	0
$\widehat{D}_{(\overline{10},1,1)}^{(\overline{3},1,\frac{1}{3})}$	$\frac{\widehat{\Delta}(3,1,-\frac{1}{3})}{\widehat{\Delta}_{(6,1,1)}}$	0	$-\frac{i}{\sqrt{30}}$	0	$\frac{1}{6\sqrt{10}}$	0
$\widehat{D}_{(\overline{10},1,1)}^{(\overline{3},1,\frac{1}{3})}$	$\widehat{\Delta}_{(10,1,3)}^{(3,1,-\frac{1}{3})}$	$-\frac{i}{\sqrt{10}}$	0	0	0	$\frac{1}{6\sqrt{10}}$
$\widehat{D}_{(6,1,3)}^{(\overline{3},1,-\frac{2}{3})}$	$ \hat{\overline{\Delta}}_{(10,1,3)}^{(3,1,\frac{2}{3})} $	0	$-\frac{i}{\sqrt{15}}$	0	$\frac{1}{6\sqrt{5}}$	$\frac{1}{3\sqrt{10}}$
$\widehat{D}_{(15,2,2)}^{(3,2,\frac{1}{6})}$	$\frac{\hat{\Delta}^{(3,2,-\frac{1}{6})}}{\hat{\Delta}_{(15,2,2)}}$	$\frac{i}{2\sqrt{10}}$	$\frac{i}{2\sqrt{15}}$	$-\frac{1}{4\sqrt{15}}$	$-\frac{1}{6\sqrt{5}}$	$-\frac{1}{4\sqrt{10}}$
$\widehat{D}_{(15,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$\frac{\widehat{\Delta}^{(3,2,\frac{1}{6})}}{\Delta_{(15,2,2)}}$	$-\frac{i}{2\sqrt{10}}$	$\frac{i}{2\sqrt{15}}$	$-\frac{1}{4\sqrt{15}}$	$\frac{1}{6\sqrt{5}}$	$-\frac{1}{12\sqrt{10}}$
$\widehat{D}_{(15,2,2)}^{(3,2,\frac{7}{6})}$	$\frac{\widehat{\Delta}(\overline{3},2,-\frac{7}{6})}{\widehat{\Delta}_{(15,2,2)}}$	$\frac{i}{2\sqrt{10}}$	$-\frac{i}{2\sqrt{15}}$	$\frac{1}{4\sqrt{15}}$	$\frac{1}{6\sqrt{5}}$	$-\frac{1}{4\sqrt{10}}$
$\widehat{D}_{(15,2,2)}^{(\overline{3},2,-\frac{7}{6})}$	$\widehat{\overline{\Delta}}_{(15,2,2)}^{(3,2,\frac{1}{6})}$	$-\frac{i}{2\sqrt{10}}$	$-\frac{i}{2\sqrt{15}}$	$\frac{1}{4\sqrt{15}}$	$-\frac{1}{6\sqrt{5}}$	$-\frac{1}{12\sqrt{10}}$
$\widehat{D}_{(6,3,1)}^{(3,3,-\frac{1}{3})}$	$\frac{\widehat{\Delta}(\overline{3},3,\frac{1}{3})}{\widehat{\Delta}(\overline{10},3,1)}$	0	$\frac{i}{\sqrt{15}}$	0	$\frac{1}{6\sqrt{5}}$	0
$\widehat{D}_{(\overline{10},1,1)}^{(\overline{6},1,-\frac{1}{3})}$	$\frac{\widehat{\Delta}^{(0,1,\frac{3}{3})}}{\widehat{\Delta}_{(10,1,3)}}$	$-\frac{i}{\sqrt{10}}$	0	0	0	$-\frac{1}{6\sqrt{10}}$
$\widehat{D}_{(15,2,2)}^{(8,2,\frac{1}{2})}$	$\frac{\widehat{\Delta}^{(8,2,-\frac{1}{2})}}{\widehat{\Delta}_{(15,2,2)}}$	$\frac{i}{2\sqrt{10}}$	$\frac{i}{2\sqrt{15}}$	$\frac{1}{4\sqrt{15}}$	0	$\frac{1}{12\sqrt{10}}$
$\widehat{D}_{(15,2,2)}^{(8,2,-\frac{1}{2})}$	$\widehat{\overline{\Delta}}_{(15,2,2)}^{(8,2,\frac{1}{2})}$	$-\frac{i}{2\sqrt{10}}$	$\frac{i}{2\sqrt{15}}$	$\frac{1}{4\sqrt{15}}$	0	$-\frac{1}{12\sqrt{10}}$

Table 38: CG coefficients for the $D\Phi$ combination of fields

D	Φ	$D\widehat{\Delta}\Phi$	$D\widehat{\overline{\Delta}}\Phi$
$\widehat{D}_{(\overline{10},1,1)}^{(1,1,1)}$ $\widehat{D}_{(10,1,1)}^{(10,1,1)}$	$\widehat{\Phi}_{(15,1,3)}^{(1,1,-1)}$	0	$-\frac{1}{2\sqrt{10}}$
$D_{(10,1,1)}^{(1,1,-1)}$	$\widehat{\Phi}_{(15,1,3)}^{(1,1,1)}$	$-\frac{1}{2\sqrt{10}}$	0
$D_{(1,2,2)}^{(1,2,\frac{1}{2})}$	$\widehat{\Phi}_{(10,2,2)}^{(13,1,0)}$	$-\frac{1}{2\sqrt{30}}$	0
$\widehat{D}_{(1,2,2)}^{(1,2,-\frac{1}{2})}$	$\widehat{\Phi}_{(\overline{10},2,2)}^{(1,2,\frac{1}{2})}$	0	$-\frac{1}{2\sqrt{30}}$
$\widehat{D}_{(15,2,2)}^{(1,2,\frac{1}{2})}$	$\widehat{\Phi}_{(10,2,2)}^{(10,2,2)}$	$-\frac{1}{2\sqrt{10}}$	0
$\widehat{D}_{(15,2,2)}^{(1,2,-\frac{1}{2})}$	$\widehat{\Phi}_{(\underline{10},2,\underline{2})}^{(1,2,\frac{1}{2})}$	0	$-\frac{1}{2\sqrt{10}}$
$\widehat{D}_{(6,1,3)}^{(3,1,-\frac{1}{3})}$	$\Phi_{(\overline{10},2,2)}^{(\overline{10},2,2)}$ $\widehat{\Phi}_{(15,1,3)}^{(\overline{3},1,\frac{1}{3})}$	$-\frac{1}{2\sqrt{15}}$	0
$\widehat{D}_{(6,1,3)}^{(\overline{3},1,\frac{1}{3})}$	$\widehat{\Phi}_{(15,1,3)}^{(3,1,-\frac{1}{3})}$	0	$-\frac{1}{2\sqrt{15}}$
$\widehat{D}_{(10,1,1)}^{(3,1,-\frac{1}{3})}$	$\widehat{\Phi}_{(15,1,3)}^{(\overline{3},1,\frac{1}{3})}$	$\frac{1}{2\sqrt{15}}$	0
$\widehat{D}_{(\overline{10},1,1)}^{(\overline{3},1,\frac{1}{3})}$	$\widehat{\Phi}_{(\underline{15},1,3)}^{(3,1,-\frac{1}{3})}$	0	$\frac{1}{2\sqrt{15}}$
$\widehat{D}_{\underline{(6,1,3)}}^{(3,1,\frac{2}{3})}$	$\widehat{\Phi}_{(15,1,1)}^{(\overline{3},1,-\frac{2}{3})}$	$\frac{1}{2\sqrt{30}}$	0
$\widehat{D}_{(6,1,3)}^{(\overline{3},1,-\frac{2}{3})}$	$\widehat{\Phi}_{(15,1,1)}^{(3,1,\frac{2}{3})}$	0	$\frac{1}{2\sqrt{30}}$
$\widehat{D}_{(6,1,3)}^{(3,1,\frac{2}{3})}$	$\widehat{\Phi}_{(15,1,3)}^{(\overline{3},1,-\frac{2}{3})}$	$\frac{1}{2\sqrt{15}}$	0
$\widehat{D}_{(6,1,3)}^{(\overline{3},1,-\frac{2}{3})}$	$\widehat{\Phi}_{(15,1,3)}^{(3,1,\frac{2}{3})}$	0	$\frac{1}{2\sqrt{15}}$
$\widehat{D}_{(15,2,2)}^{(3,2,\frac{1}{6})}$	$\widehat{\Phi}_{(\overline{10},2,2)}^{(\overline{3},2,-\frac{1}{6})}$	0	$-\frac{1}{2\sqrt{15}}$
$\widehat{D}_{(15,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$\widehat{\Phi}_{(10,2,2)}^{(3,2,\frac{1}{6})}$	$-\frac{1}{2\sqrt{15}}$	0
$\widehat{D}_{(15,2,2)}^{(3,2,\frac{1}{6})}$	$\widehat{\Phi}_{(6,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	0	$-\frac{1}{2\sqrt{30}}$
$\widehat{D}_{(15,2,2)}^{(\overline{3},2,-\frac{1}{6})}$	$\widehat{\Phi}_{(6,2,2)}^{(3,2,\frac{1}{6})}$	$-\frac{1}{2\sqrt{30}}$	0

References

- J.C. Pati and A. Salam, Phys. Rev. **D10**, 275 (1974);
 H. Georgi and S.L. Glashow, Phys. Rev. Lett. **32**, 438 (1974).
- [2] N. Sakai, Z. Phys. C11, 153, (1981);
 S. Dimopoulos and H. Georgi, Nucl. Phys. B193, 150 (1981).
- [3] U. Amaldi, W.de Boer, and H. Fürstenau, Phys. Lett. **B260**, 447 (1991);
 P. Langacker and M. Luo, Phys. Rev. **D44**, 817 (1991).
- [4] H. Fritzsch and P. Minkowski, Annals. Phys. **93**, 193 (1975).
- [5] K.S. Babu and R.N. Mohapatra, Phys. Rev. Lett. **70**, 2845 (1993).
- [6] T. Fukuyama and N. Okada, JHEP 0211, 011 (2002); K. Matsuda, Y. Koide, T. Fukuyama and H. Nishiura, Phys. Rev. D65, 033008 (2002) [Erratum-ibid. D65, 079904 (2002)]; K. Matsuda, Y. Koide and T. Fukuyama, Phys. Rev. D64, 053015 (2001).
- [7] B. Bajc, G. Senjanović and F. Vissani, Phys. Rev. Lett. 90, 051802 (2003); H.S. Goh, R.N. Mohapatra and Siew-Phang Ng, Phys. Lett. B570, 215 (2003), Phys. Rev. D68, 115008 (2003).
- [8] L.J. Hall, R. Rattazzi and U. Sarid, Phys. Rev. **D50**, 7048 (1994); R. Rattazzi and U. Sarid, Phys. Rev. **D53**, 1553 (1996).
- [9] G. Anderson, S. Raby, S. Dimopoulos, L.J. Hall and G. D. Starkman, Phys. Rev. D49, 3660 (1994).
- [10] L.J. Hall and S. Raby, Phys. Rev. **D51**, 6524, (1995).
- [11] T. Blazek, S. Raby and K. Tobe, Phys. Rev. D60, 113001 (1999), Phys. Rev. D62, 055001 (2000).
- [12] C.H. Albright, K.S. Babu and S.M. Barr, Phys. Rev. Lett. 81, 1167 (1998); C.H. Albright and S.M. Barr, Phys. Lett. B461, 218 (1999), Phys. Rev. Lett. 85, 244 (2000); Phys. Rev. D62, 093008 (2000).
- [13] Q. Shafi and Z. Tavartkiladze, Phys. Lett. **B482**, 145 (2000).
- [14] K.S. Babu, J.C. Pati and F. Wilczek, Nucl. Phys. **B566**, 33 (2000).
- [15] Xiao-Gang He and S. Meljanac, Phys. Rev. **D41**, 1620 (1990).
- [16] Dae-Gyu Lee, Phys. Rev. **D49**, 1417 (1994).

- [17] T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac, and N. Okada, Eur. Phys. J. C42, 191, (2005) [arXiv: hep-ph/0401213].
- [18] J. Sato, Phys. Rev. **D53**, 3884 (1996).
- [19] B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Phys.Rev. D70, 035007 (2004) [arXiv:hep-ph/0402122].
- [20] C.S. Aulakh and A. Girdhar, Nucl. Phys. **B711**, 275, (2005) [arXiv:hep-ph/0405074].
- [21] R. Slansky, Phys. Rep. **79**, 1 (1981).