Notation

Rubem Vasconcelos Pacelli rubem.engenharia@gmail.com

Department of Teleinformatics Engineering, Federal University of Ceará. Fortaleza, Ceará, Brazil.

 ${\tt Version:} {\rm May}\ 3,\ 2023$

Contents

1	Fon	t notation
2	Sign	nals and functions
	2.1	Time indexing
	2.2	Common signals
	2.3	Common functions
	2.4	Operations and symbols
	2.5	Transformations
3	Pro	bability, statistics, and stochastic processes
	3.1	Operators and symbols
	3.2	Stochastic processes
	3.3	Functions
	3.4	Distributions
4	Ma	chine learning, optimization theory, and
	stat	sistical signal processing
	4.1	Derivative terms
	4.2	Estimated terms
		Signals, (hyper) parameters, system performance, and criteria $$.
5 Linear Algebra		ear Algebra
	5.1	Common matrices and vectors
	5.2	Indexing
	5.3	General operations
	5.4	Operations with matrices and tensors
	5.5	Operations with vectors
	5.6	Decompositions
	5.7	

	5.8 Set operations	
6	Communication systems 6.1 Symbols	
7	Discrete mathematics 7.1 Quantifiers, inferences	
8	Electromagnetic waves	
9	Calculus	
10	Generic mathematical symbols	
11 Abbreviations		

1 Font notation

$a, b, c, \ldots, A, B, C, \ldots$	Scalars
a, b, c, \dots	Vectors
A, B, C, \dots	Matrices
$\mathcal{A}, \mathcal{B}, \mathcal{C}, \dots$	Tensors
$A, B, C, \ldots, A, B, C, \ldots, A, B, C, \ldots$	Sets
test	

2 Signals and functions

2.1 Time indexing

x(t)	Continuous-time t
$x[n],x[k],x[m],x[i],\ldots$	Discrete-time n, k, m, i, \dots (parenthe-
$x_n, x_k, x_m, x_i, \dots$	sis should be adopted only if there
$x(n), x(k), x(m), x(i), \dots$	are no continuous-time signals in the
	context to avoid ambiguity)
$x[((n-m))_N], x((n-m))_N$	Circular shift in m samples within a
	N-samples window [11, 17]

2.2 Common signals

$\delta(t)$	Delta function
$\delta[n], \delta_{i,j}$	Kronecker function $(n = i - j)$
h(t), h[n]	Impulse response (continuous and
	discrete time)
$\tilde{x}[n], \tilde{x}(t)$	Periodic discrete- or continuous-time
	signal
$\hat{x}[n], \hat{x}(t)$	Estimate of $x[n]$ or $x(t)$
$\dot{x}[m]$	Interpolation of $x[n]$

2.3 Common functions

$\mathcal{O}(\cdot), O(\cdot)$	Big-O notation
$\Gamma(\cdot)$	Gamma function
$Q(\cdot)$	Quantization function
$I_{\alpha}(\cdot)$	Modified Bessel function of the first
	kind and order α
$\binom{n}{k}$	Binomial coefficient

2.4 Operations and symbols

$f:A\to B$	A function f whose domain is A and
	codomain is B
$\mathbf{f}:A\to\mathbb{R}^n$	A vector-valued function \mathbf{f} , i.e., $n \geq 2$
$f^n, x^n(t), x^n[k]$	<i>n</i> th power of the function f , $x[n]$ or
	x(t)
$f^{(n)}, x^{(n)}(t)$	nth derivative of the function f or
	x(t)
$f', f^{(1)}, x'(t)$	1th derivative of the function f or
	x(t)
$f'', f^{(2)}, x''(t)$	2th derivative of the function f or
	x(t)
$ \operatorname{argmax}_{x \in A} f(x) $	Value of x that minimizes x
$ \frac{x \in \mathcal{A}}{\arg\min f(x)} $ $ x \in \mathcal{A} $	Value of x that minimizes x
$f(\mathbf{x}) = \inf_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$	Infimum, i.e., $f(\mathbf{x}) =$
$\mathbf{y} \in \mathcal{A}$	$\min \{ g(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x}, \mathbf{y}) \in \text{dom}(g) \},\$
	which is the greatest lower bound of
	this set [3]
$f(\mathbf{x}) = \sup g(\mathbf{x}, \mathbf{y})$	Supremum, i.e., $f(\mathbf{x}) =$
$\mathbf{y} \in \mathcal{A}$	$\max \{g(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x}, \mathbf{y}) \in \text{dom}(g)\}\$
	which is the least upper bound of
	this set [3]
$f \circ g$	Composition of the functions f and
	g
*	Convolution (discrete or continuous)
⊗ , N	Circular convolution [7, 17]

2.5 Transformations

W_N	Twiddle factor, $e^{-j\frac{2\pi}{N}}$ [11]
$\mathcal{F}\left\{\cdot\right\}$	Fourier transform
$\mathcal{L}\left\{ \cdot \right\}$	Laplace transform
$\overline{\mathcal{Z}\left\{ \cdot \right\}}$	z-transform
$\hat{x}(t), \hat{x}[n]$	Hilbert transform of $x(t)$ or $x[n]$
X(s)	Laplace transform of $x(t)$
X(f)	Fourier transform (FT) (in linear fre-
	quency, Hz) of $x(t)$
$X(j\omega)$	Fourier transform (FT) (in angular
	frequency, rad/sec) of $x(t)$
$X(e^{j\omega})$	Discrete-time Fourier transform
	(DTFT) of $x[n]$

$X[k], X(k), X_k$	Discrete Fourier transform (DFT) or
	fast Fourier transform (FFT) of $x[n]$,
	or even the Fourier series (FS) of the
	periodic signal $x(t)$
$\tilde{X}[k], \tilde{X}(k), \tilde{X}_k$	Discrete Fourier series (DFS) of $\tilde{x}[n]$
X(z)	z-transform of $x[n]$

3 Probability, statistics, and stochastic processes

3.1 Operators and symbols

$\mathrm{E}\left[\cdot ight],\mathbf{E}\left[\cdot ight],E\left[\cdot ight]$	Statistical expectation operator [6,
	16]
$E_{u}\left[\cdot\right], \mathbf{E}_{u}\left[\cdot\right], E_{u}\left[\cdot\right], \mathbb{E}_{u}\left[\cdot\right]$	Statistical expectation operator with
	respect to u
$\langle \cdot \rangle$	Ensamble average
$\operatorname{var}\left[\cdot\right], \operatorname{VAR}\left[\cdot\right]$	Variance operator [2, 10, 15, 19]
$\operatorname{var}_{u}\left[\cdot\right]\left[\cdot\right], \operatorname{VAR}_{u}\left[\cdot\right]$	Variance operator with respect to u
$cov[\cdot], COV[\cdot]$	Covariance operator [2]
$\operatorname{cov}_{u}\left[\cdot\right], \operatorname{COV}_{u}\left[\cdot\right]$	Covariance operator with respect to
	и
μ_{x}	Mean of the random variable x
$\mu_{\mathrm{x}}, \mathrm{m}_{\mathrm{x}}$	Mean vector of the random variable
	x [4]
μ_n	nth-order moment of a random vari-
	able
σ_x^2, κ_2	Variance of the random variable x
\mathcal{K}_x, μ_4	Kurtosis (4th-order moment) of the
	random variable x
κ_n	nth-order cumulant of a random vari-
	able
$ ho_{x,y}$	Pearson correlation coefficient be-
	tween x and y
$a \sim P$	Random variable a with distribution
	P
\mathcal{R}	Rayleigh's quotient

3.2 Stochastic processes

$r_{x}(\tau), R_{x}(\tau)$	Autocorrelation function of the signal
	x(t) or $x[n]$ [16]

$S_x(f), S_x(j\omega)$	Power spectral density (PSD) of $x(t)$
	in linear (f) or angular (ω) frequency
$S_{x,y}(f), S_{x,y}(j\omega)$	Cross PSD of $x(t)$ and $y(t)$ in linear
	or angular (ω) frequency
R_{x}	(Auto)correlation matrix of $\mathbf{x}(n)$
$r_{x,d}(\tau), R_{x,d}(\tau)$	Cross-correlation between $x[n]$ and
	d[n] or $x(t)$ and $d(t)$ [16]
R_{xy}	Cross-correlation matrix of $\mathbf{x}(n)$ and
	$\mathbf{y}(n)$
$\mathbf{p}_{\mathbf{x}d}$	Cross-correlation vector
	between $\mathbf{x}(n)$ and $d(n)$
	$[{ m diniz Adaptive Filtering 1997}]$
$c_x(\tau), C_x(\tau)$	Autocovariance function of the signal
	x(t) or x[n] [16]
$C_x, K_x, \Sigma_x, \text{cov}[x]$	(Auto)covariance matrix of \mathbf{x} [10, 15,
	19, 25]
$c_{xy}(\tau), C_{xy}(\tau)$	Cross-covariance function of the sig-
	$\operatorname{nal} x(t) \text{ or } x[n] \text{ [16]}$
$C_{xy}, K_{xy}, \Sigma_{xy}$	Cross-covariance matrix of ${\bf x}$ and ${\bf y}$

3.3 Functions

$Q(\cdot)$	Q-function, i.e., $P[\mathcal{N}(0,1) > x]$ [19]
$erf(\cdot)$	Error function [19]
$\operatorname{erfc}(\cdot)$	Complementary error function i.e.,
	$\operatorname{erfc}(x) = 2Q(\sqrt{2}x) - \operatorname{erf}(x) [19]$
P[A]	Probability of the event or set A [15]
$p(\cdot), f(\cdot)$	Probability density function (PDF)
	or probability mass function (PMF)
	[15]
$p(x \mid A)$	Conditional PDF or PMF [15]
$F(\cdot)$	Cumulative distribution function
	(CDF)
$\Phi_{X}(\omega), M_{X}(j\omega), E\left[e^{j\omega X}\right]$	First characteristic function (CF) of
	x [19, 24]
$M_X(t), \Phi_X(-jt), E[e^{tX}]$	Moment-generating function (MGF)
	of $x [19, 24]$
$\Psi_{x}(\omega), \ln \Phi_{x}(\omega), \ln E\left[e^{j\omega x}\right]$	Second characteristic function
$K_x(t)$, $\ln E\left[e^{tx}\right]$, $\ln M_x(t)$	Cumulant-generating function
	(CGF) of x [10]

3.4 Distributions

$\mathcal{N}(\mu,\sigma^2)$	Gaussian distribution of a random variable with mean μ and variance σ^2
$\mathcal{CN}(\mu, \sigma^2)$	Complex Gaussian distribution of a random variable with mean μ and variance σ^2
$\mathcal{N}(\pmb{\mu},\pmb{\Sigma})$	Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ
$\mathcal{CN}(oldsymbol{\mu}, oldsymbol{\Sigma})$	Complex Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ
$\frac{\mathcal{U}(a,b)}{\chi^2(n),\chi_n^2}$	Uniform distribution from a to b
$\chi^2(n), \chi_n^2$	Chi-square distribution with n degree of freedom (assuming that the Gaussians are $\mathcal{N}(0,1)$)
$\operatorname{Exp}(\lambda)$	Exponential distribution with rate parameter λ
$\Gamma(\alpha, \beta)$	Gamma distribution with shape parameter α and rate parameter β
$\Gamma(\alpha, \theta)$	Gamma distribution with shape parameter α and scale parameter $\theta = 1/\beta$
$\operatorname{Nakagami}(m,\Omega)$	Nakagami-m distribution with shape parameter or fading figure m and spread, scale, or shape parameter Ω
Rayleigh(σ)	Rayleigh distribution with scale parameter σ
$\operatorname{Rayleigh}(\Omega)$	Rayleigh distribution with the second moment $\Omega = E[x^2] = 2\sigma^2$
$\mathrm{Rice}(s,\sigma)$	Rice distribution with noncentrality parameter s and σ . s^2 represent the specular component power
$\overline{\mathrm{Rice}(A,K)}$	Rice distribution with Rice factor $K = s^2/2\sigma^2$ and scale parameter $A = s^2 + 2\sigma^2$

4 Machine learning, optimization theory, and statistical signal processing

4.1 Derivative terms

$\mathbf{\nabla} f, \mathbf{g}$	Gradient descent vector

$\nabla_x f, \mathbf{g}_x$	Gradient descent vector with respect x [2]
J	Jacobian matrix
H	Hessian matrix

4.2 Estimated terms

\mathbf{g} (or $\hat{\mathbf{g}}$ if the gradient vector is $\mathbf{g})$	Stochastic gradient descent (SGD), i.e., instantaneous approximation of
	gradient descent vector
$\hat{x}(t)$ or $\hat{x}[n]$	Estimate of $x(t)$ or $x[n]$
$\hat{\boldsymbol{\mu}}_{\scriptscriptstyle X},\hat{\mathbf{m}}_{\scriptscriptstyle X}$	Sample mean of $x[n]$ or $x(t)$
$\frac{\hat{\boldsymbol{\mu}}_{\mathbf{x}}, \hat{\mathbf{m}}_{\mathbf{x}}}{\hat{r}_{x}(\tau), \hat{R}_{x}(\tau)}$	Sample mean vector of $\mathbf{x}[n]$ or $\mathbf{x}(t)$
$\hat{r}_{x}(au), \hat{R}_{x}(au)$	Estimated autocorrelation function
	of the signal $x(t)$ or $x[n]$
$\hat{S}_{x}(f), \hat{S}_{x}(j\omega)$	Estimated power spectral density (PSD) of $x(t)$ in linear (f) or angular (ω) frequency
$\hat{\mathbf{R}}_{\mathbf{x}}$	Sample (auto)correlation matrix
$\frac{\hat{\mathbf{R}}_{\mathbf{x}}}{\hat{r}_{x,d}(\tau),\hat{R}_{x,d}(\tau)}$	Estimated cross-correlation between
	x[n] and $d[n]$ or $x(t)$ and $d(t)$
$\hat{S}_{x,y}(f), \hat{S}_{x,y}(j\omega)$	Estimated cross PSD of $x(t)$ and $y(t)$
	in linear or angular (ω) frequency
$\hat{\mathbf{R}}_{\mathbf{x}\mathbf{y}}$	Sample cross-correlation matrix of
	$\mathbf{R}_{\mathbf{x}\mathbf{y}}$
$\hat{c}_x(au), \hat{C}_x(au)$	Estimated autocovariance function of
	the signal $x(t)$ or $x[n]$
$\frac{\hat{\mathbf{C}}_{\mathbf{x}}, \hat{\mathbf{K}}_{\mathbf{x}}, \hat{\boldsymbol{\Sigma}}_{\mathbf{x}}}{\hat{c}_{xy}(\tau), \hat{C}_{xy}(\tau)}$	Sample (auto)covariance matrix
$\hat{c}_{xy}(\tau), \hat{C}_{xy}(\tau)$	Estimated cross-covariance function
	of the signal $x(t)$ or $x[n]$
$\frac{\hat{\mathbf{C}}_{\mathrm{xy}},\hat{\mathbf{K}}_{\mathrm{xy}},\hat{\mathbf{\Sigma}}_{\mathrm{xy}}}{\hat{\mathbf{H}}}$	Sample cross-covariance matrix
Ĥ	Estimate of the Hessian matrix

4.3 Signals, (hyper)parameters, system performance, and criteria

$\mathbf{x}(n), \mathbf{x}_n$	Input signal
$\mathbf{y}(n), \mathbf{y}_n$	Output signal
$\hat{\mathbf{y}}(n), \hat{\mathbf{y}}_n$	Alternative output signal
$d(n), d_n$	Desired label (in case of supervised
	learning)

$\hat{\mathbf{y}}(n), \hat{\mathbf{y}}_n$	Alternative desired signal if the out-
	put is $\mathbf{y}(n), \mathbf{y}_n$
$\mathbf{w}(n), \mathbf{w}_n, \mathbf{\theta}(n), \mathbf{\theta}_n$	Parameters, coefficients, or weights
	vector
$\mathbf{w}_o, \mathbf{w}^{\star}, \mathbf{\theta}_o, \mathbf{\theta}^{\star}$	Optimum value of the parameters,
	coefficients, or weights vector
W	Matrix of the weights
η	Learning rate hyperparameter
$J(\cdot), \mathcal{E}(\cdot)$	Cost-function or objective function
$\Lambda(\cdot)$	Likelihood function
$\Lambda_l(\cdot)$	Log-likelihood function
$\hat{ ho}_{x,y}$	Estimated Pearson correlation coeffi-
•	cient between x and y
ρ	Distance of the margin of separation
	between two classes (Support Vector
	Machine, SVM)
$g(\cdot)$	Discriminant function, i.e., $g(\mathbf{w}^*) = 0$

5 Linear Algebra

5.1 Common matrices and vectors

\mathbf{W}, \mathbf{D}	Diagonal matrix
P	Projection matrix; Permutation ma-
	trix
J	Jordan matrix
L	Lower matrix
U	Upper matrix
$\overline{\mathbf{C}}$	Cofactor matrix
$\mathbf{C}_{\mathbf{A}}, \operatorname{cof}\left(\mathbf{A}\right)$	Cofactor matrix of A
S	Symmetric matrix
Q	Orthogonal matrix
$\overline{\mathbf{I}_N}$	$N \times N$ -dimensional identity matrix
$0_{M imes N}$	$M \times N$ -dimensional null matrix
0_N	N-dimensional null vector
$1_{M imes N}$	$M \times N$ -dimensional ones matrix
$\overline{1_N}$	N-dimensional ones vector
0	Null matrix, vector, or tensor (di-
	mensionality understood by context)
1	Ones matrix, vector, or tensor (di-
	mensionality understood by context)

5.2 Indexing

$x_{i_1,i_2,,i_N}, [\mathcal{X}]_{i_1,i_2,,i_N}$	Element in the position
2,2, ,1,	(i_1, i_2, \ldots, i_N) of the tensor \mathcal{X}
$\mathcal{X}^{(n)}$	nth tensor of a nontemporal sequence
$\mathbf{x}_n, \mathbf{x}_{:n}$	nth column of the matrix X
X_{n} :	nth row of the matrix X
$\mathbf{x}_{i_1,\ldots,i_{n-1},:,i_{n+1},\ldots,i_N}$	Mode- n fiber of the tensor \mathcal{X}
$\mathbf{x}_{:,i_2,i_3}$	Column fiber (mode-1 fiber) of the
	thrid-order tensor \mathcal{X}
$\mathbf{x}_{i_1,:,i_3}$	Row fiber (mode-2 fiber) of the thrid-
	order tensor \mathcal{X}
$X_{i_1,i_2,:}$	Tube fiber (mode-3 fiber) of the
	thrid-order tensor \mathcal{X}
$X_{i_1,:,:}$	Horizontal slice of the thrid-order
	tensor \mathcal{X}
$X_{:,i_2,:}$	Lateral slices slice of the thrid-order
	tensor \mathcal{X}
$X_{i_3}, X_{:,:,i_3}$	Frontal slices slice of the thrid-order
	tensor \mathcal{X}

5.3 General operations

$\langle \mathbf{a}, \mathbf{b} angle$, $\mathbf{a}^{T} \mathbf{b}$, $\mathbf{a} \cdot \mathbf{b}$	Inner or dot product
$\mathbf{a} \circ \mathbf{b}, \mathbf{a} \mathbf{b}^{ op}$	Outer product
⊗	Kronecker product
· ·	Hadamard (or Schur) (elementwise)
	product
.⊙n	nth-order Hadamard power
$0.00 \frac{1}{n}$	nth-order Hadamard root
Ø	Hadamard (or Schur) (elementwise)
	division
♦	Khatri-Rao product
8	Kronecker Product
\times_n	<i>n</i> -mode product

5.4 Operations with matrices and tensors

\mathbf{A}^{-1}	Inverse matrix
$\mathbf{A}^{+},\mathbf{A}^{\dagger}$	Moore-Penrose left pseudoinverse
$\mathbf{A}^{ op}$	Transpose

$\mathbf{A}^{- op}$	Transpose of the inverse, i.e.,
	$(\mathbf{A}^{-1})^{\top} = (\mathbf{A}^{\top})^{-1} [8, 18]$
\mathbf{A}^*	Complex conjugate
\mathbf{A}^H	Hermitian
$\ \mathbf{A}\ _{\mathrm{F}}$	Frobenius norm
A	Matrix norm
$ \mathbf{A} , \det(\mathbf{A})$	Determinant
$\operatorname{diag}\left(\mathbf{A}\right)$	The elements in the diagonal of A
E [A]	Vectorization: stacks the columns of
	the matrix \mathbf{A} into a long column vec-
	tor
$\mathbf{E}_d\left[\mathbf{A}\right]$	Extracts the diagonal elements of a
	square matrix and returns them in a
	column vector
$\mathbf{E}_{l}\left[\mathbf{A} ight]$	Extracts the elements strictly below
	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\mathbf{E}_{u}\left[\mathbf{A}\right]$	Extracts the elements strictly above
	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\mathbf{E}_b\left[\mathbf{A} ight]$	Block vectorization operator: stacks
	square block matrices of the input
	into a long block column matrix
$\operatorname{unvec}\left(\mathbf{A}\right)$	Reshapes a column vector into a ma-
	trix
tr{ A }	trace
$X_{(n)}$	n -mode matricization of the tensor $\mathcal X$

5.5 Operations with vectors

$\ \mathbf{a}\ $	l_1 norm, 1-norm, or Manhatan norm
$\ \mathbf{a}\ , \ \mathbf{a}\ _2$	l_2 norm, 2-norm, or Euclidean norm
$\ \mathbf{a}\ _p$	l_p norm, p -norm, or Minkowski norm
$\ \mathbf{a}\ _{\infty}$	l_{∞} norm, ∞ -norm, or Chebyshev
	norm
diag (a)	Diagonalization: a square, diagonal
	matrix with entries given by the vec-
	tor a

5.6 Decompositions

Λ	Eigenvalue matrix [23]
Q	Eigenvectors matrix; Orthogonal ma-
	trix of the QR decomposition[23]
R	Upper triangular matrix of the QR
	decomposition[23]
U	Left singular vectors[23]
$\frac{\mathrm{U}_r}{\Sigma}$	Left singular nondegenerated vectors
	Singular value matrix
Σ_r	Singular value matrix with nonzero
	singular values in the main diagonal
Σ^+	Singular value matrix of the pseu-
	doinverse [23]
Σ_r^+	Singular value matrix of the pseu-
	doinverse with nonzero singular val-
	ues in the main diagonal
V	Right singular vectors [23]
$\overline{\mathbf{V}_r}$	Right singular nondegenerated vec-
	tors
$\operatorname{eig}\left(\mathbf{A} ight)$	Set of the eigenvalues of A [5, 15, 18]
$\llbracket A, B, C, \ldots bracket$	CANDECOMP/PARAFAC (CP) de-
	composition of the tensor \mathcal{X} from the
	outer product of column vectors of A ,
	$\mathbf{B},\mathbf{C},\dots$
$\boxed{\llbracket \boldsymbol{\lambda}; \mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots \rrbracket}$	Normalized CANDE-
	COMP/PARAFAC (CP) decom-
	position of the tensor \mathcal{X} from the
	outer product of column vectors of
	A, B, C, \dots

5.7 Spaces and sets

$\mathrm{span}\left\{\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_n\right\}$	Vector space spanned by the argument vectors [8]
$C(\mathbf{A})$, columnspace(\mathbf{A}), range(\mathbf{A}), span { \mathbf{A} }, image(\mathbf{A})	Columnspace, range or image, i.e., the space span $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$, where \mathbf{a}_i is the ith column vector of the ma-
	trix A [16, 23]
$C(\mathbf{A}^{H})$	Row space (also called left columnspace) [16, 23]
$N(\mathbf{A})$, nullspace(\mathbf{A}), null(\mathbf{A}), kernel(\mathbf{A})	Nullspace (or kernel space) [16, 23, 24]
$N(\mathbf{A}^{H})$	Left nullspace
rank A	Rank, that is, $\dim(\operatorname{span}\{A\}) = \dim(\operatorname{C}(A))$ [16]

nullity (A)	Nullity of \mathbf{A} , i.e., dim $(N(\mathbf{A}))$
$\{1,2,\ldots,n\}$	Discrete set containing the integer el-
	ements $1, 2, \ldots, n$
U	Universe
2^A	Power set of A
\mathbb{R}	Set of real numbers
C	Set of complex numbers
\mathbb{Z}	Set of integer number
$\mathbb{B} = \{0, 1\}$	Boolean set
Ø	Empty set
N	Set of natural numbers
$\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$	Real or complex space (field)
$\mathbb{K}^{I_1 \times I_2 \times \cdots \times I_N}$	$I_1 \times I_2 \times \cdots \times I_N$ -dimensional real (or
	complex) space
K +	Nonnegative real (or complex) space
	[3]
K++	Positive real (or complex) space, i.e.,
	$\mathbb{K}_{++} = \mathbb{K}_+ \setminus \{0\} [3]$
$\mathbb{S}^n, \mathcal{S}^n$	Conic set of the symmetric matrices
	in $\mathbb{R}^{n \times n}$ [3]
$\mathbb{S}^n_+, \mathcal{S}^n_+$	Conic set of the symmetric positive
	semidefinite matrices in $\mathbb{R}^{n \times n}$ [3]
$\mathbb{S}^n_{++}, \mathcal{S}^n_{++}$	Conic set of the symmetric positive
	definite matrices in $\mathbb{R}^{n\times n}$, i.e., \mathbb{S}^n_{++} =
	$\mathbb{S}^n_+ \setminus \{0\} \ [3]$
\mathbb{H}^n	Set of all hermitian matrices in $\mathbb{C}^{n\times n}$
[a,b]	Closed interval of a real set from a to
	b
(a,b)	Opened interval of a real set from a
	to b
[a,b),(a,b]	Half-opened intervals of a real set
	from a to b
$\operatorname{conv} C$	Convex hull
$\operatorname{aff} C$	Affune hull
\mathcal{R}	Ray
\mathcal{H}	Hyperplane
$\mathcal{H}_+, \mathcal{H}$	Positive/negative halfspace
$B(\mathbf{x}_c, r)$	Euclidean ball with radium r and
	centered at \mathbf{x}_c
\mathcal{E}	Ellipsoid
С	Norm cone
K	Proper cone
<i>K</i> *	Dual cone

\mathcal{P}	Polyhedra
S	Simplex
C_{α}	α -sublevel set
epi f	Epigraph of the function f
hypo f	Hypograph of the function f

5.8 Set operations

A + B	Set addition (Minkowski sum), i.e.,
	$\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} = \mathbf{x} + \mathbf{y}, \ \forall \ \mathbf{x} \in \mathcal{X} \land \mathbf{y} \in \mathcal{Y}\}$ [13]
A-B	Minkowski difference, i.e.,
	$\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} = \mathbf{x} - \mathbf{y}, \ \forall \ \mathbf{x} \in \mathcal{X} \land \mathbf{y} \in \mathcal{Y}\}$
$A\ominus B$	Pontryagin difference, i.e.,
	$\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} + \mathbf{y} \in \mathcal{X}, \ \forall \ \mathbf{y} \in \mathcal{Y}\} $ [13]
$A \setminus B, A - B$	Set difference or set subtraction, i.e.,
	$A \setminus B = \{x x \in A \land x \notin B\}$ the set con-
	taining the elements of A that are not
	in B [21]
$A \cup B$	Set of union
$A \cap B$	Set of intersection
$A \times B$	Cartesian product
A^n	$A \times A \times \cdots \times A$
	n times
A^{\perp}	Orthogonal complement of A , e.g.,
	$N(\mathbf{A}) = C(\mathbf{A}^{T})^{\perp} [3]$
$\mathbf{a} \perp \mathbf{b}$	a is orthogonal to b
a ⊥ b	${f a}$ is not orthogonal to ${f b}$
$A \oplus B$	Direct sum, i.e., each $\mathbf{v} \in$
	$\{\sum \mathbf{a}_i \mid \mathbf{a}_i \in S_i, i = 1, \dots, k\}$ has a
	unique representation of $\sum \mathbf{a}_i$ with
	$\mathbf{a}_i \in S_i$. That is, they expand to a
	space. Note that $\{S_i\}$ might not be
	orthogonal each other [8]
$A \stackrel{ ightharpoonup}{\oplus} B$	Direct sum of two space that are or-
	thogonal and span a <i>n</i> -dimensional
	space, e.g., $C(\mathbf{A}^{T}) \stackrel{\perp}{\oplus} C(\mathbf{A}^{T})^{\perp} =$
	\mathbb{R}^n (this decomposition of \mathbb{R}^n is
	called the orthogonal decomposition
	induced by \mathbf{A}) [3]
\bar{A}, A^c	Complement set (given U)
#A, A	Cardinality

$a \in A$	a is element of A
$a \notin A$	a is not element of A

5.9 Inequalities

$\mathcal{X} \leq 0$	Nonnegative tensor
$\mathbf{a} \leq_K \mathbf{b}$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the conic subset K in
	the space $\mathbb{R}^n[3]$
$\mathbf{a} \prec_K \mathbf{b}$	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the interior of
	the conic subset K in the space $\mathbb{R}^n[3]$
$a \le b$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the nonnegative or-
	thant conic subset, \mathbb{R}^n_+ , in the space
	\mathbb{R}^n .[3]
a < b	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the positive or-
	thant conic subset, \mathbb{R}^n_{++} , in the space
	$\mathbb{R}^n[3]$
$\mathbf{A} \leq_K \mathbf{B}$	Generalized inequality meaning that
	${\bf B}-{\bf A}$ belongs to the conic subset K
	in the space $\mathbb{S}^n[3]$
$A \prec_K B$	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the interior of
	the conic subset K in the space $\mathbb{S}^n[3]$
$A \leq B$	Generalized inequality meaning that
	$\mathbf{B} - \mathbf{A}$ belongs to the positive semidef-
	inite conic subset, \mathbb{S}_{+}^{n} , in the space
	$\mathbb{S}^n[3]$
A < B	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the positive or-
	thant conic subset, \mathbb{S}_{++}^n , in the space
	$\mathbb{S}^n[3]$

6 Communication systems

6.1 Symbols

B	One-sided bandwidth of the trans-
	mitted signal, in Hz

\overline{W}	One-sided bandwidth of the trans-
	mitted signal, in rad/s
$\overline{x_i}$	Real or in-phase part of x
x_q	Imaginary or quadrature part of x
f_c, f_{RF}	Carrier frequency (in Hertz)
$\frac{f_L}{f_L}$	Carrier frequency in L-band (in
JL	Hertz)
f_{IF}	Intermediate frequency (in Hertz)
f_s	Sampling frequency or sampling rate
	(in Hertz)
T_s	Sampling time interval/duration/pe-
	riod
R	Bit rate
T	Bit interval/duration/period
T_c	Chip interval/duration/period
T_{sy}, T_{sym}	Symbol/signaling[19] interval/dura-
	tion/period
S_{RF}	Transmitted signal in RF
S_{FI}	Transmitted signal in FI
S, S_l	Lowpass (or baseband) equivalent
	signal or envelope complex of trans-
	mitted signal
r_{RF}	Received signal in RF
r_{FI}	Received signal in FI
r, r_l	Lowpass (or baseband) equivalent
	signal or envelope complex of re-
	ceived signal
$\overline{\phi}$	Signal phase
ϕ_0	Initial phase
η_{RF}, w_{RF}	Noise in RF
η_{FI}, w_{FI}	Noise in FI
η , w	Noise in baseband
τ	Timing delay
Δau	Timing error (delay - estimated)
arphi	Phase offset
$\Delta arphi$	Phase error (offset - estimated)
f_d	Linear Doppler frequency
Δf_d	Frequency error (Doppler frequency -
	estimated)
ν	Angular Doppler frequency
$\Delta \nu$	Frequency error (Doppler frequency -
	estimated)
γ, A	Transmitted signal amplitude

γ_0, A_0	Combined effect of the path loss and
	antenna gain

6.2 Fading multipath channels

$ \begin{array}{c} \tau \overset{\mathcal{F}}{\leftrightarrow} f & \text{Second support temporal of the signal } (c(t) \text{ varies with with the input at the time } \tau). \ f \text{ is obtained after taking the Fourier transform on } \tau. \\ c(t,\tau) & \text{Complex envelope of the channel response at the time } t \text{ due to an impulse applied at the } t-\tau \\ \hline C(f,t) & \text{Transfer function of } c(t,\tau) \text{ in } \tau \\ \alpha(t,\tau) & \text{Attenuation of } c(t,\tau), \text{ i.e., } c(t,\tau) = \\ \alpha(t,\tau)e^{e\pi f_c\tau} \\ \hline R_c(\tau_1,\tau_2,\Delta t) & \text{Autocorrelation function of } c(t,\tau_1), \text{ i.e., } R_c(\tau_1,\tau_2,\Delta t) = \\ E\left[c^*(t,\tau_1),c^*(t+\Delta t,\tau_2)\right] \\ R_c(\tau,\Delta t) & \text{Autocorrelation function of } c(t,\tau) \text{ assuming uncorrelated scattering} \\ R_c(\tau),R_c(\tau,\Delta t)\Big _{\Delta t=0} & \text{Multipath intensity profile or delay power spectrum} \\ R_C(\Delta f,\Delta t),R_C(f_1,f_2;\Delta t), & \text{Spaced-frequency, spaced-time correlation function } (\Delta f=f_2-f_1) \\ F_{\tau}\left\{R_c(\tau,\Delta t)\right\} \\ R_C(\Delta f),R_C(\Delta f,\Delta t)\Big _{\Delta t=0},F\left\{R_c(\tau)\right\} & \text{Spaced-frequency correlation function} \\ (\Delta f)_c & \text{Coherence bandwidth of } c(t), \text{ that is, the frequency interval in which } R_C(\Delta f) \text{ is nonzero} \\ T_m & \text{Multipath spread of the channel, that is, the time interval in which } R_c(\tau) \text{ is nonzero} \\ C_{C}(\Delta f),R_C(\Delta f,\Delta t)\Big _{\Delta f=0} & \text{Spaced-time correlation function} \\ S_C(\lambda),\mathcal{F}\left\{R_C(\Delta t)\right\} & \text{Doppler power spectrum} \\ C_{Oherence time of } c(t), \text{ that is, the time interval in which } R_C(\Delta t) \text{ is nonzero} \\ C_{Oherence time of } c(t), \text{ that is, the time interval in which } R_C(\Delta t) \text{ is nonzero} \\ C_{Oherence time of } c(t), \text{ that is, the time interval in which } R_C(\Delta t) \text{ is nonzero} \\ C_{Oherence time of } c(t), \text{ that is, the time interval in which } R_C(\Delta t) \text{ is nonzero} \\ C_{Oherence time of } c(t), \text{ that is, the time interval in which } R_C(\Delta t) \text{ is nonzero} \\ C_{Oherence time of } c(t), \text{ that is, the time interval in which } R_C(\Delta t) \text{ is nonzero} \\ C_{Oherence time of } c(t), \text{ that is, the time interval in which } R_C(\Delta t) \text{ is nonzero} \\ C_{Oherence time of } c(t), \text{ that is, the time interval in which } R_C(\Delta t) is $	$t \stackrel{\mathcal{F}}{\leftrightarrow} \lambda$	Support temporal of the signal. λ is obtained after taking the Fourier transform on t .
	$\tau \stackrel{\mathcal{F}}{\leftrightarrow} f$	nal $(c(t))$ varies with with the input at the time τ). f is obtained after
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	c(t, au)	sponse at the time t due to an impulse
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(f,t)	Transfer function of $c(t, \tau)$ in τ
$R_c(\tau_1,\tau_2,\Delta t) \qquad \text{Autocorrelation function of } c(t,\tau), \text{i.e.,} R_c(\tau_1,\tau_2,\Delta t) = \\ \text{E}\left[c^*(t,\tau_1),c^*(t+\Delta t,\tau_2)\right] \qquad \\ R_c(\tau,\Delta t) \qquad \text{Autocorrelation function of } c(t,\tau) \text{ assuming uncorrelated scattering} \\ R_c(\tau),R_c(\tau,\Delta t)\Big _{\Delta t=0} \qquad \text{Multipath intensity profile or delay power spectrum} \\ R_C(\Delta f,\Delta t),R_C(f_1,f_2;\Delta t), \qquad \text{Spaced-frequency, spaced-time correlation function } (\Delta f=f_2-f_1) \\ \mathcal{F}_{\tau}\{R_c(\tau,\Delta t)\} \qquad \qquad \text{Spaced-frequency correlation function} \\ (\Delta f)_c \qquad \qquad \text{Coherence bandwidth of } c(t), \text{ that is, the frequency interval in which } \\ R_C(\Delta f),R_C(\Delta f,\Delta t)\Big _{\Delta t=0}, \mathcal{F}\{R_c(\tau)\} \qquad \text{Spaced-frequency interval in which } \\ R_C(\Delta f) \text{ is nonzero} \\ T_m \qquad \qquad \text{Multipath spread of the channel, that is, the time interval in which } \\ R_C(\Delta t),R_C(\Delta f,\Delta t)\Big _{\Delta f=0} \qquad \text{Spaced-time correlation function} \\ S_C(\lambda),\mathcal{F}\{R_C(\Delta t)\} \qquad \text{Doppler power spectrum} \\ (\Delta t)_c \qquad \qquad \text{Coherence time of } c(t), \text{ that is, the time interval in which } \\ R_C(\Delta t) \text{ is moder} \end{aligned}$		
$E\left[c^*(t,\tau_1),c^*(t+\Delta t,\tau_2)\right]$ $R_c(\tau,\Delta t)$ Autocorrelation function of $c(t,\tau)$ assuming uncorrelated scattering $R_c(\tau),R_c(\tau,\Delta t)\big _{\Delta t=0}$ Multipath intensity profile or delay power spectrum $R_C(\Delta f,\Delta t),R_C(f_1,f_2;\Delta t), \qquad \text{Spaced-frequency, spaced-time correlation function } (\Delta f=f_2-f_1)$ $F_{\tau}\left\{R_c(\tau,\Delta t)\right\}$ $R_C(\Delta f),R_C(\Delta f,\Delta t)\big _{\Delta t=0}, \mathcal{F}\left\{R_c(\tau)\right\}$ Spaced-frequency correlation function $(\Delta f)_c \qquad \text{Coherence bandwidth of } c(t), \text{ that is, the frequency interval in which } R_C(\Delta f) \text{ is nonzero}}$ $T_m \qquad \qquad \text{Multipath spread of the channel, that is, the time interval in which } R_c(\Delta f)$ $R_C(\Delta t),R_C(\Delta f,\Delta t)\big _{\Delta f=0}$ Spaced-time correlation function $S_C(\lambda),\mathcal{F}\left\{R_C(\Delta t)\right\}$ Doppler power spectrum $(\Delta t)_c \qquad \text{Coherence time of } c(t), \text{ that is, the time interval in which } R_C(\Delta t) \text{ is}}$	$R_c(au_1, au_2,\Delta t)$	
$R_{C}(\tau), R_{C}(\tau, \Delta t)\big _{\Delta t = 0} \qquad \text{Suming uncorrelated scattering} \\ R_{C}(\tau), R_{C}(\tau, \Delta t)\big _{\Delta t = 0} \qquad \text{Multipath intensity profile or delay power spectrum} \\ R_{C}(\Delta f, \Delta t), R_{C}(f_{1}, f_{2}; \Delta t), \qquad \text{Spaced-frequency, spaced-time correlation function } (\Delta f = f_{2} - f_{1}) \\ \mathcal{F}_{\tau} \left\{ R_{C}(\tau, \Delta t) \right\} \\ R_{C}(\Delta f), R_{C}(\Delta f, \Delta t)\big _{\Delta t = 0}, \mathcal{F} \left\{ R_{C}(\tau) \right\} \qquad \text{Spaced-frequency correlation function} \\ (\Delta f)_{c} \qquad \qquad \text{Coherence bandwidth of } c(t), \text{ that is, the frequency interval in which } \\ R_{C}(\Delta f) \text{ is nonzero} \\ T_{m} \qquad \qquad \text{Multipath spread of the channel, that is, the time interval in which } \\ R_{C}(\Delta t), R_{C}(\Delta f, \Delta t)\big _{\Delta f = 0} \qquad \text{Spaced-time correlation function} \\ S_{C}(\lambda), \mathcal{F} \left\{ R_{C}(\Delta t) \right\} \qquad \text{Doppler power spectrum} \\ (\Delta t)_{c} \qquad \qquad \text{Coherence time of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is} \\ \text{The sum of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is} \\ \text{The sum of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is} \\ \text{The sum of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is} \\ \text{The sum of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is} \\ \text{The sum of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is} \\ \text{The sum of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is} \\ \text{The sum of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is} \\ \text{The sum of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is} \\ \text{The sum of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is} \\ \text{The sum of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is} \\ \text{The sum of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is} \\ \text{The sum of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is} \\ \text{The sum of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is} \\ \text{The sum of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is} \\ The sum of $	- \ - \ - \ - \ ,	, ,,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_c(au, \Delta t)$	Autocorrelation function of $c(t, \tau)$ as-
$R_{C}(\Delta f, \Delta t), R_{C}(f_{1}, f_{2}; \Delta t),$ Spaced-frequency, spaced-time correlation function $(\Delta f = f_{2} - f_{1})$ $\mathcal{F}_{\tau} \{R_{c}(\tau, \Delta t)\}$ Spaced-frequency correlation function $(\Delta f)_{c}$ Coherence bandwidth of $c(t)$, that is, the frequency interval in which $R_{C}(\Delta f)$ is nonzero T_{m} Multipath spread of the channel, that is, the time interval in which $R_{C}(\Delta t)$ is nonzero $T_{m} \approx 1/(\Delta f)_{c}$ Spaced-time correlation function $S_{C}(\lambda), \mathcal{F}\{R_{C}(\Delta t)\}$ Doppler power spectrum $(\Delta t)_{c}$ Coherence time of $c(t)$, that is, the time interval in which $R_{C}(\Delta t)$ is		suming uncorrelated scattering
$\begin{array}{lll} R_C(\Delta f, \Delta t), R_C(f_1, f_2; \Delta t), & \operatorname{Spaced-frequency, spaced-time correlation function} \\ E\left[C(f_1, t), C(f_2, t + \Delta t)\right], & \operatorname{lation function} \left(\Delta f = f_2 - f_1\right) \\ \mathcal{F}_{\tau}\left\{R_c(\tau, \Delta t)\right\} & \operatorname{Spaced-frequency correlation function} \\ (\Delta f)_c & \operatorname{Coherence bandwidth of } c(t), \text{ that is, the frequency interval in which} \\ R_C(\Delta f) \text{ is nonzero} \\ T_m & \operatorname{Multipath spread of the channel, that is, the time interval in which } R_C(\Delta f) \text{ is} \\ R_C(\Delta t), R_C(\Delta f, \Delta t) _{\Delta f = 0} & \operatorname{Spaced-time correlation function} \\ S_C(\lambda), \mathcal{F}\left\{R_C(\Delta t)\right\} & \operatorname{Doppler power spectrum} \\ (\Delta t)_c & \operatorname{Coherence time of } c(t), \text{ that is, the time interval in which } R_C(\Delta t) \text{ is} \\ \end{array}$	$R_c(\tau), R_c(\tau, \Delta t)\Big _{\Delta t=0}$	Multipath intensity profile or delay
$\begin{array}{lll} & \text{E}\left[C(f_1,t),C(f_2,t+\Delta t)\right], & \text{lation function } (\Delta f = f_2 - f_1) \\ & \mathcal{F}_{\tau}\left\{R_c(\tau,\Delta t)\right\} \\ & R_C(\Delta f),R_C(\Delta f,\Delta t)\big _{\Delta t = 0}, \mathcal{F}\left\{R_c(\tau)\right\} & \text{Spaced-frequency correlation function} \\ & (\Delta f)_c & \text{Coherence bandwidth of } c(t), \text{that is, the frequency interval in which } \\ & R_C(\Delta f) \text{is nonzero} \\ & T_m & \text{Multipath spread of the channel, that is, the time interval in which } R_c(\tau) \text{is nonzero} (T_m \approx 1/(\Delta f)_c) \\ & R_C(\Delta t), R_C(\Delta f, \Delta t)\big _{\Delta f = 0} & \text{Spaced-time correlation function} \\ & S_C(\lambda), \mathcal{F}\left\{R_C(\Delta t)\right\} & \text{Doppler power spectrum} \\ & (\Delta t)_c & \text{Coherence time of } c(t), \text{that is, the time interval in which } R_C(\Delta t) \text{is} \\ & \text{Spaced-time correlation function} \\ & (\Delta t)_c & \text{Coherence time of } c(t), \text{that is, the time interval in which } R_C(\Delta t) \text{is} \\ & \text{Spaced-time correlation function} \\ & (\Delta t)_c & \text{Coherence time of } c(t), \text{that is, the time interval in which } R_C(\Delta t) \text{is} \\ & \text{Spaced-time correlation function} \\ & (\Delta t)_c & \text{Coherence time of } c(t), \text{that is, the time interval in which } R_C(\Delta t) \text{is} \\ & \text{Spaced-time correlation function} \\ & (\Delta t)_c & \text{Coherence time of } c(t), \text{that is, the time interval in which } R_C(\Delta t) \text{is} \\ & \text{Spaced-time correlation function} \\ & (\Delta t)_c & \text{Coherence time of } c(t), \text{that is, the time interval in which } R_C(\Delta t) \text{is} \\ & \text{Spaced-time correlation function} \\ & (\Delta t)_c & \text{Coherence time of } c(t), \text{that is, the time interval in which } R_C(\Delta t) \text{is} \\ & \text{Spaced-frequency correlation function} \\ & (\Delta t)_c & \text{Coherence time of } c(t), \text{that is, the time interval in which } R_C(\Delta t) \text{is} \\ & (\Delta t)_c & (\Delta t)_c$		
$\begin{array}{c c} \mathcal{F}_{\tau}\left\{R_{c}(\tau,\Delta t)\right\} \\ R_{C}(\Delta f), R_{C}(\Delta f, \Delta t)\big _{\Delta t=0}, \mathcal{F}\left\{R_{c}(\tau)\right\} & \text{Spaced-frequency correlation function} \\ (\Delta f)_{c} & \text{Coherence bandwidth of } c(t), \text{ that is, the frequency interval in which } \\ R_{C}(\Delta f) \text{ is nonzero} \\ T_{m} & \text{Multipath spread of the channel, that is, the time interval in which } R_{c}(\tau) \text{ is nonzero } (T_{m} \approx 1/(\Delta f)_{c}) \\ R_{C}(\Delta t), R_{C}(\Delta f, \Delta t)\big _{\Delta f=0} & \text{Spaced-time correlation function} \\ S_{C}(\lambda), \mathcal{F}\left\{R_{C}(\Delta t)\right\} & \text{Doppler power spectrum} \\ (\Delta t)_{c} & \text{Coherence time of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is} \\ \end{array}$		- * * -
$(\Delta f)_{c} \qquad \qquad \text{Coherence bandwidth of } c(t), \text{ that } \\ \text{is, the frequency interval in which } \\ R_{C}(\Delta f) \text{ is nonzero} \\ \\ T_{m} \qquad \qquad \text{Multipath spread of the channel, that } \\ \text{is, the time interval in which } R_{c}(\tau) \text{ is } \\ \text{nonzero } (T_{m} \approx 1/(\Delta f)_{c}) \\ \\ R_{C}(\Delta t), R_{C}(\Delta f, \Delta t)\big _{\Delta f = 0} \qquad \text{Spaced-time correlation function} \\ \\ S_{C}(\lambda), \mathcal{F}\{R_{C}(\Delta t)\} \qquad \qquad \text{Doppler power spectrum} \\ (\Delta t)_{c} \qquad \qquad \text{Coherence time of } c(t), \text{ that is, the } \\ \text{time interval in which } R_{C}(\Delta t) \text{ is} \\ \\ \end{cases}$		lation function $(\Delta f = f_2 - f_1)$
$(\Delta f)_{c} \qquad \qquad \text{Coherence bandwidth of } c(t), \text{ that } \\ \text{is, the frequency interval in which } \\ R_{C}(\Delta f) \text{ is nonzero} \\ \\ T_{m} \qquad \qquad \text{Multipath spread of the channel, that } \\ \text{is, the time interval in which } R_{c}(\tau) \text{ is } \\ \text{nonzero } (T_{m} \approx 1/(\Delta f)_{c}) \\ \\ R_{C}(\Delta t), R_{C}(\Delta f, \Delta t)\big _{\Delta f = 0} \qquad \text{Spaced-time correlation function} \\ \\ S_{C}(\lambda), \mathcal{F}\{R_{C}(\Delta t)\} \qquad \qquad \text{Doppler power spectrum} \\ (\Delta t)_{c} \qquad \qquad \text{Coherence time of } c(t), \text{ that is, the } \\ \text{time interval in which } R_{C}(\Delta t) \text{ is} \\ \\ \end{cases}$	$\frac{\mathcal{F}_{\tau}\left\{K_{c}(\tau,\Delta t)\right\}}{R_{c}(\Lambda,C,\Lambda,C,\Lambda,C,L,C,L,C,L,C,L,C,L,C,L,C,L,C,$	
$R_{C}(\Delta f) \text{ is nonzero}$ $T_{m} \qquad \qquad \text{Multipath spread of the channel, that is, the time interval in which } R_{C}(\tau) \text{ is nonzero} (T_{m} \approx 1/(\Delta f)_{c})$ $R_{C}(\Delta t), R_{C}(\Delta f, \Delta t) _{\Delta f=0} \qquad \text{Spaced-time correlation function}$ $S_{C}(\lambda), \mathcal{F}\{R_{C}(\Delta t)\} \qquad \text{Doppler power spectrum}$ $(\Delta t)_{c} \qquad \text{Coherence time of } c(t), \text{ that is, the time interval in which } R_{C}(\Delta t) \text{ is}$		tion
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(\Delta f)_c$	
$T_{m} \qquad \qquad \text{Multipath spread of the channel, that} \\ \text{is, the time interval in which } R_{c}(\tau) \text{ is} \\ \text{nonzero } (T_{m} \approx 1/(\Delta f)_{c}) \\ R_{C}(\Delta t), R_{C}(\Delta f, \Delta t)\big _{\Delta f=0} \qquad \text{Spaced-time correlation function} \\ S_{C}(\lambda), \mathcal{F}\{R_{C}(\Delta t)\} \qquad \qquad \text{Doppler power spectrum} \\ (\Delta t)_{c} \qquad \qquad \text{Coherence time of } c(t), \text{ that is, the} \\ \text{time interval in which } R_{C}(\Delta t) \text{ is} \\ \end{cases}$		
$\begin{array}{c} \text{is, the time interval in which } R_c(\tau) \text{ is} \\ \text{nonzero } (T_m \approx 1/(\Delta f)_c) \\ \hline R_C(\Delta t), R_C(\Delta f, \Delta t)\big _{\Delta f = 0} \\ \hline S_C(\lambda), \mathcal{F}\{R_C(\Delta t)\} \\ \hline (\Delta t)_c \\ \hline \end{array} \begin{array}{c} \text{Spaced-time correlation function} \\ \hline \text{Coherence time of } c(t), \text{ that is, the} \\ \text{time interval in which } R_C(\Delta t) \text{ is} \\ \hline \end{array}$		· · · · · · · · · · · · · · · · · · ·
$\begin{array}{ll} & \operatorname{nonzero} \left(T_m \approx 1/(\Delta f)_c \right) \\ R_C(\Delta t), R_C(\Delta f, \Delta t) \big _{\Delta f = 0} & \operatorname{Spaced-time \ correlation \ function} \\ S_C(\lambda), \mathcal{F} \left\{ R_C(\Delta t) \right\} & \operatorname{Doppler \ power \ spectrum} \\ (\Delta t)_c & \operatorname{Coherence \ time \ of} \ c(t), \ \operatorname{that \ is, \ the} \\ & \operatorname{time \ interval \ in \ which} \ R_C(\Delta t) \ \operatorname{is} \end{array}$	T_m	
$R_C(\Delta t), R_C(\Delta f, \Delta t) _{\Delta f=0}$ Spaced-time correlation function $S_C(\lambda), \mathcal{F}\{R_C(\Delta t)\}$ Doppler power spectrum $(\Delta t)_c$ Coherence time of $c(t)$, that is, the time interval in which $R_C(\Delta t)$ is		
$S_C(\lambda), \mathcal{F}\{R_C(\Delta t)\}$ Doppler power spectrum $(\Delta t)_c$ Coherence time of $c(t)$, that is, the time interval in which $R_C(\Delta t)$ is	$\mathbf{p}_{\mathbf{r}}(\mathbf{A}_{\mathbf{r}}) \mathbf{p}_{\mathbf{r}}(\mathbf{A}_{\mathbf{r}}, \mathbf{A}_{\mathbf{r}})$	
$(\Delta t)_c$ Coherence time of $c(t)$, that is, the time interval in which $R_C(\Delta t)$ is	$\frac{\kappa_C(\Delta t), \kappa_C(\Delta J, \Delta t) _{\Delta f=0}}{\sigma_{C(\Delta J)} \sigma_{C(\Delta J)} \sigma_{C(\Delta J)}}$	
time interval in which $R_C(\Delta t)$ is		
	$(\Delta t)_c$	time interval in which $R_C(\Delta t)$ is

B_m	Multipath spread of the channel, that
	is, the frequency interval in which
	$S_c(\lambda)$ is nonzero $(B_d \approx 1/(\Delta t)_c)$
$S_C(\tau,\lambda), \mathcal{F}_{\Delta f,\Delta t} \left\{ R_C(\Delta f,\Delta t) \right\}$	Scattering function

7 Discrete mathematics

7.1 Quantifiers, inferences

A	For all (universal quantifier) [9]
3	There exists (existential quantifier)
	[9]
<u></u> ∄ ∃!	There does not exist [9]
	There exist an unique [9]
€	Belongs to [9]
<u>∉</u> ∵	Does not belong to [9]
::	Because [9]
<u> ,:</u>	Such that, sometimes that paranthe-
	ses is used [9]
$\overline{},,(\cdot)$	Used to separate the quantifier with
	restricted domain from the its scope,
	e.g., $\forall x < 0 (x^2 > 0)$ or $\forall x < 0$
	$0, x^2 > 0$ [9]
·:	Therefore [9]

7.2 Propositional Logic

$\neg a$	Logical negation of a [21]
$a \wedge b$	Conjunction (logical AND) operator
	between a and $b[21]$
$a \lor b$	Disjunction (logical OR) operator be-
	tween a and $b[21]$
$a \oplus b$	Exclusive OR (logical XOR) operator
	between a and $b[21]$
$a \rightarrow b$	Implication (or conditional) state-
	ment[21]
$a \leftrightarrow b$	Bi-implication (or biconditional)
	statement, i.e., $(a \rightarrow b) \land (b \rightarrow a)$
	[21]
$a \equiv b, a \iff b, a \Leftrightarrow b$	Logical equivalence, i.e., $a \leftrightarrow b$ is a
	tautology[21]

7.3 Operations

a	Absolute value of a
log	Base-10 logarithm or decimal loga-
	rithm
ln	Natual logarithm
$\operatorname{Re}\left\{ x\right\}$	Real part of x
$\operatorname{Im}\left\{ x\right\}$	Imaginary part of x
۲٠	Phase (complex argument)
$x \mod y$	Remainder, i.e., $x - y \lfloor x/y \rfloor$, for $y \neq 0$
x div y	Quotient [21]
$x \equiv y \pmod{m}$	Congruent, i.e., $m \setminus (x - y)$ [21]
frac(x)	Fractional part, i.e., $x \mod 1$ [9]
$a \setminus b, a \mid b$	b is a positive integer multiple of a ,
	i.e., $\exists \ n \in \mathbb{Z}_{++} \mid b = na \ [9, \ 21]$
$a \not\setminus b, a \not\mid b$	b is not a positive integer multiple of
	$a, \text{ i.e., } \not\exists n \in \mathbb{Z}_{++} \mid b = na \ [9, 21]$
[·]	Ceiling operation [9]
[·]	Floor operation [9]

8 Electromagnetic waves

Electric flux (scalar) (in V m)
Electric current density vector (in
A/m^2)
Magnetic field vector (in A/m)
Magnetic flux density vector (in
$Wb/m^2 = T$
Electric charge strength/magnitude
(in C)
Electric charge density (for volumes)
(in C/m^3)
Electric charge density (for surface)
(in C/m^2)
Electric charge density (for volumes)
(in C/m)
Electrostatic force (Coulomb force),
(in kg m/s^2)
Electric permittivity(in F/m) [20]
Relative electric permittivity or di-
electric constant (in F/m) [20]

$\overline{\varepsilon_0}$	Electric permittivity in vacuum,
	$8.854 \times 10^{-12} \mathrm{F/m}$ [20]
E	Electric field vector (in V/m)
D	Electric flux density, electric dis-
	placement, or electric induction vec-
	tor (in C/m^2)
P	Electric polarization of the material
	$(in C/m^2)$
Χe	Electric susceptibility (for linear and
	isotropic materiais)
μ	Magnetic permeability
$\frac{\mu_0}{\mu_0}$	Magnetic permeability in vacuum

9 Calculus

abla	Vector differential operator (Nabla symbol), i.e., ∇f is the gradient of the scalar-valued function f , i.e., f : $\mathbb{R}^n \to \mathbb{R}$
t,(u,v)	Parametric variables commonly used,
	t for one variable, (u, v) for two vari-
	ables[22]
$\mathbf{r}(t)$	Vector position $(x(t), y(t), z(t))$
	parametrized by $t[22]$
$\mathbf{r}'(t)$	First derivative of $\mathbf{r}(t)$, i.e.,
	the tangent vector of the curve
	(x(t), y(t), z(t)) [22]
$\mathbf{T}(t),\mathbf{u}(t)$	Tangent unit vector of $\mathbf{r}(t)$, i.e.,
	$\mathbf{u}(t) = \mathbf{r}'(t)/ \mathbf{r}'(t) [14, 22]$
$\mathbf{n}(t), \left(\frac{y'(t)}{ \mathbf{r}'(t) }, -\frac{x'(t)}{ \mathbf{r}'(t) }\right)$	Normal vector of $\mathbf{r}(t)$, i.e.,
<u> </u>	$\mathbf{n}(t) \perp \mathbf{T}(t)[22]$
C	Contour that traveled by $\mathbf{r}(t)$, for $a \leq t$
1.1(0)	$t \le b \ [22]$
L, L(C)	Total length of the contour C
	(which can be defined the vector
	\mathbf{r} , parametrized by t), i.e., $L_C =$
	$\int_a^b \mathbf{r}'(t) \mathrm{d}t[22]$
s(t)	Length of the arc, which can be de-
	fined by the vector \mathbf{r} and t , that is,
	$s(t) = \int_a^t \mathbf{r}'(u) \mathrm{d}u \ (s(b) = L)[22]$

$\mathrm{d}s$, $\mathrm{d}l$	Differential operator of the length of
	the contour C , i.e., $ds = \mathbf{r}'(t) dt$. It
	is also denoted by dl [20]
$\int_C f(\mathbf{r}) \mathrm{d}s, \int_a^b f(\mathbf{r}(t)) \mathbf{r}'(t) \mathrm{d}t$	Line integral of the function $f: \mathbb{R}^n \to$
	\mathbb{R} along the contour C [1, 22]
$\int_C \mathbf{F} \cdot d\mathbf{r}, \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt, \int_C \mathbf{F} \cdot \mathbf{T} ds$	Line integral of vector field \mathbf{F} along
	the contour C [1, 22]
$\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F}, \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F} \cdot d\mathbf{r}$	Alternative notation to the line inte-
	gral, where the parametric variable t
	goes from a to b , making r goes from
	$\mathbf{r}(a) = \mathbf{a} \text{ to } \mathbf{r}(b) = \mathbf{b} [1]$
\oint_C, \oint_C	Closed line integral along the contour
	C
$\mathbf{r}(u,v)$	Vector position
	(x(u, v), y(u, v), z(u, v)) parametrized
	by (u, v)
\mathbf{r}_u	$(\partial x/\partial u, \partial y/\partial u, \partial z/\partial u)$
\mathbf{r}_{v}	$(\partial x/\partial v, \partial y/\partial v, \partial z/\partial v)$
$\mathrm{d}A$	Differential operator of a 2D area
	(denoted by D or R) in the \mathbb{R}^2 do-
	main. This differential operator can
	be solved in different ways (rectangu-
D D	lar, polar, cylindric, etc) [22]
D,R	Integration domain in which dA is in-
S	tegrated, i.e., $\iint_D f dA$ [22]
3	Smooth surface S , i.e., a 2D area in a 3D space (\mathbb{R}^3 domain)
$\mathrm{d}S$, $ \mathbf{r}_u \times \mathbf{r}_v \mathrm{d}A$	Differential operator of a 2D area in
\mathbf{u}_{S} , $ \mathbf{I}_{u} \wedge \mathbf{I}_{v} \mathbf{u}_{A}$	a 3D domain (an surface). Note that
	$dS = \mathbf{r}_u \times \mathbf{r}_v dA$ should be accompa-
	nied with the change of the integra-
	tion interval(from S to D)
$A(S), \iint_{S} dS, \iint_{D} \mathbf{r}_{u} \times \mathbf{r}_{v} dA$	Area of the surface S parametrized by
(-), JJS , JJD -u · · -v	(u, v), in which dA is the area defined
	in the D domain (which is form by
	the u -by- v graph)
$\mathrm{d}V$	Differential operator of a shape vol-
	ume (denoted by E) in \mathbb{R}^3 domain,
	i.e., $\iiint_E dV = V$
E	Integration domain in which $\mathrm{d}V$ is in-
	tegrated, i.e., $\iiint_E f dV$ [22]

$V, \iint_D f \mathrm{d}A, \iiint_E f \mathrm{d}V$	Volume of the function f over the re-
2	gions D (in the case of double inte-
	grais) or E (in the case of triple inte-
	grais)
$\iint_{S} f \mathrm{d}S$, $\iint_{D} f \mathbf{r}_{u} \times \mathbf{r}_{v} \mathrm{d}A$	Surface integral over S
$\mathbf{n}(u,v), \frac{\mathbf{r}_u(u,v) \times \mathbf{r}_v(u,v)}{ \mathbf{r}_v(u,v) \times \mathbf{r}_v(u,v) }$	Normal vector of of the smooth sur-
$ \mathbf{r}_{u}(u,v)\times\mathbf{r}_{v}(u,v) $	face S
$\iint_{\mathbf{S}} \mathbf{F} \cdot \mathbf{n} \mathrm{d}S, \iint_{\mathbf{S}} \mathbf{F} \cdot \mathrm{d}\mathbf{S},$	Flux integral of vector field F through
$\iint_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) \mathrm{d}A$	the smooth surface S ($\mathbf{n} dS \triangleq d\mathbf{S}$)
$\nabla \times \mathbf{F}$, curl \mathbf{F}	Curl (rotacional) of the vector field ${\bf F}$
$\nabla \cdot \mathbf{F}, \operatorname{div} \mathbf{F}$	Divercence of the vector field ${f F}$
$\nabla^2 f, \nabla \cdot (\nabla f), \Delta f,$	Scalar Laplacian operator (per-
$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$	formed on a scalar-valued function
	$f: \mathbb{R}^n \to \mathbb{R}$
$\nabla^2 \mathbf{F}, \nabla \times \nabla \times \mathbf{F} - \nabla (\nabla \cdot \mathbf{F}), \Delta \mathbf{F},$	Vector Laplacian operator (per-
$(\partial^2 \mathbf{F}/\partial x^2, \partial^2 \mathbf{F}/\partial y^2, \partial^2 \mathbf{F}/\partial z^2)$	formed on a vector field, i.e., a vector-
	valued function, $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$).
	∇^2 denotes the scalar (vector) Lapla-
	cian if the function is scalar-valued
	(vector-valued)
	(vector-varued)

10 Generic mathematical symbols

	Q.E.D.
<u>_</u>	Equal by definition
:=, ←	Assignment [21]
≠	Not equal
∞	Infinity
i	$\sqrt{-1}$

11 Abbreviations

PS: Only names of techniques and algorithms or usual abbreviations are considered.

wrt.	With respect to
st.	Subject to
iff.	If and only if
EVD	Eigenvalue decomposition, or eigen-
	decomposition [16]
SVD	Singular value decomposition
СР	CANDECOMP/PARAFAC

SGD	Stochastic gradient descent
SVM	Support vector machine
BPNN	Backpropagation neural network [12]
RBF	Radial basis function

References

- [1] TM Apostol. Calculus, 2nd Edn., Vol. 2. 1967.
- [2] Christopher M Bishop and Nasser M Nasrabadi. Pattern Recognition and Machine Learning. Vol. 4. 4. Springer, 2006.
- [3] Stephen Boyd, Stephen P. Boyd, and Lieven Vandenberghe. *Convex Optimization*. Cambridge university press, 2004.
- [4] Robert Grover Brown and Patrick YC Hwang. "Introduction to Random Signals and Applied Kalman Filtering: With MATLAB Exercises and Solutions". In: Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions (1997).
- [5] Rama Chellappa and Sergios Theodoridis. Signal Processing Theory and Machine Learning. Academic Press, 2014. ISBN: 0-12-396502-0.
- [6] Paulo SR Diniz. Adaptive Filtering: Algorithms and Practical Implementation. Nowell, MA: Kluwer Academic Publishers, 2002.
- [7] Paulo SR Diniz, Eduardo AB Da Silva, and Sergio L Netto. Digital Signal Processing: System Analysis and Design. Cambridge University Press, 2010. ISBN: 1-139-49157-1.
- [8] Gene H Golub and Charles F Van Loan. *Matrix Computations*. JHU press, 2013. ISBN: 1-4214-0859-7.
- [9] Ronald L Graham et al. "Concrete Mathematics: A Foundation for Computer Science". In: Computers in Physics 3.5 (1989), pp. 106–107. ISSN: 0894-1866.
- [10] Simon S Haykin. *Adaptive Filter Theory*. Pearson Education India, 2002. ISBN: 81-317-0869-1.
- [11] Vinay K Ingle and John G Proakis. *Digital Signal Processing Using MAT-LAB*. Cole Publishing Company, 2000.
- [12] Yu Jiao, John J Hall, and Yu T Morton. "Automatic Equatorial GPS Amplitude Scintillation Detection Using a Machine Learning Algorithm". In: *IEEE Transactions on Aerospace and Electronic Systems* 53.1 (2017), pp. 405–418. ISSN: 0018-9251.
- [13] Basil Kouvaritakis and Mark Cannon. "Model Predictive Control". In: Switzerland: Springer International Publishing 38 (2016).
- [14] Erwin Kreyszig, K Stroud, and G Stephenson. *Advanced Engineering Mathematics*. Vol. 9. John Wiley & Sons, Inc. 9 th edition, 2006 Page 2 of 6 Teaching methods ..., 2008.

- [15] Alberto Leon-Garcia. Probability, Statistics, and Random Processes for Electrical Engineering. 3rd ed. edição. Upper Saddle River, NJ: Prentice Hall, 2007. ISBN: 978-0-13-147122-1.
- [16] Josef Nossek. Adaptive and Array Signal Processing. 2015.
- [17] Alan V. Oppenheim and Ronald W. Schafer. *Discrete-Time Signal Processing: International Edition.* 3^a edição. Upper Saddle River Munich: Pearson, Nov. 12, 2009. ISBN: 978-0-13-206709-6.
- [18] Kaare Brandt Petersen and Michael Syskind Pedersen. "The Matrix Cookbook". In: *Technical University of Denmark* 7.15 (2008), p. 510.
- [19] John Proakis and Masoud Salehi. *Digital Communications*. 5th ed. edição. Boston: Mc Graw Hill, Jan. 1, 2007. ISBN: 978-0-07-295716-7.
- [20] Simon Ramo, John R Whinnery, and Theodore Van Duzer. Fields and Waves in Communication Electronics. John Wiley & Sons, 1994. ISBN: 81-265-1525-2.
- [21] Kenneth H Rosen. "Discrete Mathematics and Its Applications (7Th Editio)". In: William C Brown Pub (2011).
- [22] James Stewart. Calculus. Cengage Learning, 2011. ISBN: 1-133-17069-2.
- [23] Gilbert Strang et al. Introduction to Linear Algebra. Vol. 3. Wellesley-Cambridge Press Wellesley, MA, 1993.
- [24] Sergios Theodoridis. *Machine Learning: A Bayesian and Optimization Perspective*. 2nd ed. Academic Pr. 2020. ISBN: 978-0-12-818803-3.
- [25] Harry L Van Trees. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. John Wiley & Sons, 2002. ISBN: 0-471-09390-4.