# San José State University Department of Computer Science

#### **Ahmad Yazdankhah**

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

# Non-Regular Languages (Part 2)

Lecture 25 Day 29/31

CS 154
Formal Languages and Computability
Spring 2019

# **Agenda of Day 29**

- Summary of Lecture 24
- Quiz 10
- Lecture 25: Teaching ...
  - Non-Regular Languages (Part 2)

# **Summary of Lecture 24: We learned ...**

#### **Non-Regular Languages**

We started with this question:

How to prove a language is NONREGULAR?

We stated an important property of "infinite regular languages".



# **Summary of Lecture 24: We learned ...**

- We took L as a regular language.
- Since L is regular, then there is an DFA for it.
- Assume it has m states.
- Take a string  $w = a_1 a_2 ... a_k \in L$  whose size is  $|w| \ge m$ .
- Since |w| ≥ m, based on pigeonhole principle, in the walk of w, at least one state is visited more than once.
- We called the first repeated-state as 'q'.
- We pick the q in such a way that there is no nested repeated-state between two q's.



# **Summary of Lecture 24: We learned ...**

- The original DFA looks like the following figure:
- We named the 3 portions as: x y z

#### **Questions**

- |xy| ≤ m ?
- $|y| \ge 1$  ?
- $xz = a_1 a_2 ... a_i a_{i+1} ... a_k \in L$ ?
- How about xyyz ∈ L?
- Or, xyyyz ∈ L?
- Or in general:
   x y<sup>i</sup> z, for i = 0, 1, 2, ...

- The answer is yes to all questions, so all strings x y<sup>i</sup> z ∈ L.
- So, if some certain conditions are satisfied, we can pump any number of y's in the original string and the resulting string is still part of the language.

#### **Any Question**



| NAME    | Alan M. Turing |             |       |
|---------|----------------|-------------|-------|
| SUBJECT | CS 154         | TEST<br>NO. | 10    |
| DATE    | 05/02/2019     | PERIOD      | 1/2/3 |



# Quiz 10 No Scantron

# **① Pumping Lemma**

#### What is a Lemma?

#### **Etymology**



- "Lemma" is a smaller theorem to help proving a bigger one.
- Very occasionally lemmas can take on a life of their own.
- In computer science, "pumping lemma" is one of them.

# **Pumping Lemma**

If L is an INFINITE REGULAR language,

Then there exists an  $m \ge 1$  such that

If  $w \in L$  and  $|w| \ge m$ 



Then //pumping lemma guarantees that ...

We must be able to divide w into three parts xyz in such a way that all of the following conditions are satisfied:

```
|xy| \le m, and |y| \ge 1, and w_i = x y^i z \in L for i = 0, 1, 2, 3, ...
```

# **Formal Statement of Pumping Lemma**

If L is an infinite regular language,

**Then** 

(1) There exists an m ≥ 1 such that

If (2)  $w \in L$  and (3)  $|w| \ge m$ 

Then //P. L. guarantees that ...

- (4) We must be able to divide w into xyz in such a way that all of the following conditions are satisfied:
- (5)  $|xy| \le m$ , and
- (6)  $|y| \ge 1$ , and
- (7)  $W_i = x y^i z \in L$
- (8) for i = 0, 1, 2, ...

#### **Predicate Calculus Version**



This part is only for your information!

If L is an infinite regular language,

**Then** 

```
(\exists m \geq 1)
     [(w \in L \text{ and } |w| \ge m) \rightarrow
         (\exists x,y,z)
             W = XYZ \wedge
             |xy| \leq m \wedge
             |y| \geq 1 \wedge
              (\forall i \in \mathbb{N}) (w_i = x y^i z \in L)
       )]
```

# **Steps of Pumping Lemma**

| Step | Description                                      | Comment                                   |
|------|--------------------------------------------------|-------------------------------------------|
| 1    | Take an m                                        | Always take it as m                       |
| 2    | Take w                                           | A string from the language dependent to m |
| 3    | Check  w  ≥ m                                    |                                           |
| 4    | Find x, y, z                                     | w = x y z                                 |
| 5    | Check  xy  ≤ m                                   |                                           |
| 6    | Check  y  ≥ 1                                    |                                           |
| 7    | Construct w <sub>i</sub> = xy <sup>i</sup> z ∈ L |                                           |
| 8    | Check various i's                                | For i = 0, 1, 2, 3,                       |

# **Pumping Lemma**

#### **Example 7**

 Verify the pumping lemma property on the following infinite regular language.

$$L = \{a^n b : n \ge 0\}$$

#### **Solution**

- (1) Let's take the m = 2. Why not 3?OK, let's take it as m.
  - If we need, we'd make some boundary on m later.
- (2) Let's take  $w = a^m b$ 
  - Note that m is a constant.
  - It means, a<sup>m</sup>b is a string, NOT a pattern.
- (3) Check w's size: |w| = |a<sup>m</sup>b| = m+1 ≥ m



- Pumping lemma guarantees that:
- (4) There exists x, y, z such that:

$$w = a^m b = xyz = \lambda \quad a \quad a^{m-1}b$$

- (5)  $|xy| = |a| = 1 \le m$
- (6)  $|y| = 1 \ge 1$
- (7)  $w_i = xy^iz = \lambda a^i a^{m-1}b \in L$
- (8) Check various i's:
- i=0  $w_0 = xz = a^{m-1}b \in L$
- i=1  $w_1 = xy^1z = a^mb \in L$
- i=2  $w_2 = xy^2z = a^{m+1}b \in L$
- i=3  $w_3 = xy^3z = a^{m+2}b \in L$
- ...

#### **Pumping Lemma**



#### **Example 8**

 Verify the pumping lemma property on the following infinite regular language.

$$L = \{bba^n : n \ge 0\}$$

#### **Solution**

#### **Homework**



 Verify the pumping lemma property on the following infinite regular languages.

```
1. L = \{a^n b^k : n \ge 0, k \ge 0\}
```

2. 
$$L = \{aaab^n (ab)^k : n \ge 0, k \ge 0\}$$

3. 
$$L = \{(ab)^n : n \ge 0\}$$

# ① Conclusion

This is a property of INFINITE REGULAR languages.



 If an "infinite language" does not have this property, it is "non-regular".

# **Pumping Lemma: Notes**

- 1. A strings such as a<sup>m</sup>b is just one string of the language, and NOT a pattern because m is a constant.
- 2. In the previous example (#7), one could take w something like:
  - $a^{2m}b$  or  $a^{m+100}b$
  - But, try to take it as simple as possible.
- We should always make sure that no string gets negative power.
  - For example, if, somewhere in our proof, we have something like  $a^{m-3}$ , then we should mention "we pick  $m \ge 3$ ".
  - Recall that pumping lemma has the power of making a boundary for 'm'.
- But if you have something like a<sup>m-1</sup>, you don't need to mention it because by default m ≥ 1.

# **Application of Pumping Lemma**

# ① How to Prove a Language is Non-Regular?

- Use "proof by contradiction"
  - 1. Assume L is regular. So, the pumping lemma should hold for L.
  - 2. Apply pumping lemma
  - 3. Find a contradiction.
  - 4. Then, blame your assumption and conclude that L must be non-regular.
- Recall that all non-regular languages are infinite.
- Let's take some examples!

# **Applications of Pumping Lemma**



#### **Example 9**



• Prove  $L = \{a^nb^n : n \ge 0\}$  is non-regular language.

#### **Proof**

# **Applications of Pumping Lemma**



#### **Example 10**

• Prove L =  $\{uu : u \in \{a, b\}^*\}$  is non-regular language.

#### **Proof**

#### **Homework**



Prove that the following languages are non-regular:

```
1. L = \{uu^R : u \in \{a, b\}^*\}
```

2. 
$$L = \{a^n b^n c^n : n \ge 0\}$$

3. 
$$L = \{uuu : u \in \{a, b\}^*\}$$

4. 
$$L = \{a^n b^k c^{n+k}: n \ge 0, k \ge 0\}$$

# (1)

# **More Notes About Pumping Lemma**

Pumping lemma is difficult to understand! [Text book, P#121]
 NOT anymore!

- 2. Pumping lemma is not applicable to finite languages.

  Because we need to pump infinite y's!
- 3. Pumping lemma cannot prove that a languages is regular.
  Because you'd need to verify infinite cases!

#### References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5<sup>th</sup> ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Costas Busch's website: http://csc.lsu.edu/~busch/
- Michael Sipser, "Introduction to the Theory of Computation, 3<sup>rd</sup> ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790