Algebra liniară Lucrare scrisă Varianta A

- 1. a) Să se definească aplicația liniară și să se dea un exemplu de aplicație liniară de la \mathbb{R}^2 la \mathbb{R} .
- b) Fie V un K-spațiu vectorial și fie $U \subseteq V$. Să se arate că urmatoarele afirmații sunt echivalente:
 - (i) $\forall x, y \in U, \forall a \in K : x + y \in U \text{ si } ax \in U$;
 - (ii) $\forall x, y \in U, \forall a, b \in K : ax + by \in U$.
- c) Fie $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid 2x_1 + x_2 5x_3 = 0\}$. Să se arate că $S \leq \mathbb{R}^3$ și să se găsească o bază pentru S.
- 2. a) Să se definească independența liniară și să se dea un exemplu de doi vectori în \mathbb{R}^3 care sunt liniar independenți.
- b) Fie V un K-spațiu vectorial și $\mathbf{b} = [b_1, b_2, b_3]^t \in V^{3 \times 1}$. Să se arate că \mathbf{b} este bază pentru V dacă și numai dacă ${\bf b}$ este liniar independentă și pentru orice $v \in V$ lista $[b_1, b_2, b_3, v]^t$ nu mai este liniar independentă.
- c) Să se arate că

$$\mathbf{b} = (b_1 = (1, 3, 2), b_2 = (1, -2, 5), b_3 = (-2, 1, -1))^t$$

este o bază pentru \mathbb{R}^3 și să se determine $[x]_{\mathbf{b}}$, unde x=(0,1,3).

- 3. a) Fie V un K-spațiu vectorial și $S,T \leq_K V$, cu proprietatea $S \cap T = \{0\}$. Să se arate că dacă $\{y_1,\ldots,y_n\}$ este o bază pentru S și $\{z_1,\ldots,z_m\}$ este o bază pentru T atunci $\{y_1,\ldots,y_n,z_1,\ldots,z_m\}$ este o bază pentru S+T.b) Se consideră subspațiile lui \mathbb{R}^4 :

$$S = \langle s_1 = (1, -1, 3, 1), s_2 = (2, 0, 5, 3), s_3 = (1, -1, 2, 2), s_4 = (1, 1, 1, 3) \rangle$$

şi

$$T = \langle t_1 = (1, -3, 3, 0), t_2 = (1, -1, 4, 1), t_3 = (1, 1, 5, 2) \rangle.$$

Să se determine câte o bază și dimensiunea pentru S, T S + T și $S \cap T$.

- 4. a) a) Să se definească imaginea unei aplicații liniare și să se găsescă un exemplu de aplicație liniară $f: \mathbb{R}^2 \to \mathbb{R}^2$ cu $\mathrm{Im} f \neq \mathbb{R}^2$.
- b) Fie $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x_1, x_2, x_3) = (x_1 x_2 + 2x_3, 3x_2 + x_3, 2x_1 + x_2 + 5x_3)$. Să se arate că f este liniară și să se determine câte o bază și dimensiunea pentru $\operatorname{Ker} f$ şi $\operatorname{Im} f$.

Algebra liniară Lucrare scrisă Varianta B

- 1. a) Să se definească spațiul vectorial și să se dea exemplu de un \mathbb{C} -spațiu vectorial.
- b) Fie $f:V\to W$ o funcție între două K-spații vectoriale V și $W\subseteq V$. Să se arate că urmatoarele afirmații sunt echivalente:
 - (i) $\forall x, y \in U, \forall a \in K : f(x+y) = f(x) + f(y) \text{ si } f(ax) = af(x);$
 - (ii) $\forall x, y \in U, \forall a, b \in K : f(ax + by) = af(x) + bf(y)$.
- c) Fie $S=\{(x_1,x_2,x_3)\in\mathbb{R}^3\mid x_1+x_2-2x_3=0\}$. Să se arate că $S\leq\mathbb{R}^3$ și să se găsească o bază pentru S.
- 2. a) Să se definească baza unui spațiu vectorial și să se dea un exemplu de bază în \mathbb{R}^2 (peste \mathbb{R}).
- b) Fie V un K-spaţiu vectorial. Să se arate că $[b_1, b_2]^t \in V^{2 \times 1}$ este bază pentru V dacă şi numai dacă $V = \langle b_1, b_2 \rangle$ şi $\langle b_i \rangle \neq V$, pentru orice $i \in \{1, 2\}$.
- c) Să se arate că

$$\mathbf{b} = (b_1 = (1, 1, -2), b_2 = (3, -2, 1), b_3 = (2, 5, -1))^t$$

este o bază pentru \mathbb{R}^3 și să se determine $[x]_{\mathbf{b}}$, unde x=(3,2,-1).

- 3. a) Fie $f \in \operatorname{Hom}_K(V, W)$ unde V și W sunt două K-spații vectoriale. Să se arate că dacă f este injectivă și $\{x_1, x_2, \ldots, x_n\}$ este o bază în V atunci $\{f(x_1), f(x_2), \ldots, f(x_n)\}$ este o bază în $\operatorname{Im} f$.
- b) Se consideră subspațiile lui \mathbb{R}^4 :

$$S = \langle s_1 = (1, -2, 3, 1), s_2 = (2, 0, -1, 3), s_3 = (3, 2, 0, -2), s_4 = (0, -2, 1, 3) \rangle$$

şi

$$T = \langle t_1 = (1, -3, 2, 0), t_2 = (1, -1, 3, 1), t_3 = (0, 2, 1, 1) \rangle.$$

Să se determine câte o bază și dimensiunea pentru S, T S + T și $S \cap T$.

- 4. Să se definească nucleul unei aplicații liniare și să se găsescă un exemplu de aplicație liniară $f: \mathbb{R}^2 \to \mathbb{R}^2$ cu $\operatorname{Ker} f \neq \{0\}$.
- b) Fie $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x_1, x_2, x_3) = (x_1 2x_2, 2x_1 x_2 + x_3, x_1 + x_2 + x_3)$. Să se arate că f este liniară și să se determine câte o bază și dimensiunea pentru Ker f și Im f.