Multiplication Principle

	Repetition	No Repitition
Ordered	n^r	$\frac{n!}{(n-r)!}$
Unordered	$\binom{n+r-1}{r}$	$\frac{n!}{r!(n-r)!}$

$$P(A \mid B) = \frac{P(A \cup B)}{P(B)}$$

Basic Number Theory

Euclidean Algorithm

$$ax + by = d$$

$$\gcd(6, 10) = 2$$
$$2 = 10x + 6y$$
$$= 10(-1) + 6(2)$$

Congruence Theory

Fast Powering Algorithm

$$2^{100} \pmod{5} \equiv 2^{64} \cdot 2^{32} \cdot 2^4 \pmod{5}$$
 $2^1 = 2 \pmod{5}$
 $\equiv 1 \cdot 4 \pmod{5}$ $2^2 = 4 \pmod{5}$
 $\equiv 4 \pmod{5}$ $2^4 = 1 \pmod{5}$

Fermat's Little Theorem

If $p \nmid a \land p$ is prime $\implies a^{p-1} \equiv 1 \pmod{p}$

Euler's Theorem

 $a^{\phi(n)} \equiv 1 \pmod{n}$

Primitve Root Theorem

Every prime p has a primitive root

Cryptography

Symmetric

${\bf Ideal\ Requirements}$

- 1) With key it should be easy to encrypt/decrpyt.
- 2) Without key it should be difficult to encrypt/decrypt.
- 3) Even with lots of plaintexts <-> combinations, it should be difficult to find the key.
- 4) Choosen plaintext attack: Attacker can choose plaintexts and see the corresponding ciphertexts.

Multiplication

vulnerable to plaintext <-> cyphertext attacks

$$E(x) = x \cdot k \pmod{n}$$

Primality Testing

Miller-Rabin Test

builds off of Fermat's Test

Probabilistic \rightarrow try 100 candidates (to be witnesses)

If n is composite overwhelmingly likely to find a witness

If
$$n$$
 is prime, $a^{n-1} \equiv 1 \pmod{n}$

1. Make a table where $n-1=2^kq, q\in \mathrm{Odd}$

$$a^q, a^{2q}, a^{4q}, \dots, a^{2^{k-1}q}$$

- 2. Either first number is 1 (probably prime), or one of the numbers is -1
- 3. Last number has to be 1 (we passed Fermat's test)
- 4. If second to last number is not 1, then n is composite
- 5. Consider the first term in the sequence congruent to 1. If the preceding term is not congruent to -1, then n is composite.

$$n = 252601, n - 1 = 2^3 \cdot 31575$$
 $n = 3057601, n - 1 = 2^6 \cdot 47775$
 $a = 85132$ $a = 99908$

$$a^{31575} \equiv 191102 \pmod{n}$$
 $a^{47775} \equiv 1193206 \pmod{n}$ $a^{2\cdot31575} \equiv 184829 \pmod{n}$ $a^{2\cdot47775} \equiv 2286397 \pmod{n}$ $a^{4\cdot31575} \equiv 1 \pmod{n}$ $a^{2^2\cdot47775} \equiv 235899 \pmod{n}$ Conclusion: n is composite. $a^{2^3\cdot47775} \equiv 1 \pmod{n}$

 $n = 104717, n - 1 = 2^2 \cdot 26179$ Conclusion: n is **composite**.

$$a = 96152 \qquad n = 577757, n-1 = 2^2 \cdot 144439$$

$$a = 314997$$

$$a^{26179} \equiv 1 \pmod{n}$$

Conclusion: n is **probably prime**. $a^{144439} \equiv 373220 \pmod{n}$ $a^{2\cdot 144439} \equiv -1 \pmod{n}$

Conclusion: n is probably prime.

Shanks's Algorithm

$$g^x \equiv h \pmod{p} \qquad \qquad g, g^2, g^3, \dots, g^n$$

$$p \text{ prime} \qquad \qquad g^{-n}, g^{-n+1}, \dots, g^{-1}$$

$$g \text{ primitive root} \qquad \qquad hg^{-n}, hg^{-2n}, \dots, hg^{-(n-1)n}$$

$$N = p-1$$
 Solve for $x : g^x \equiv h \pmod{p}$
$$p = 101$$

$$n = \lceil \sqrt{N} \rceil \qquad g = 2$$
 Once you get $hg^{-jn} = g^i \pmod{p}$
$$h = g^{i+jn} \pmod{p}$$

Pollart's Rho Algorithm

An improvement only in space.

Randomized Algorithm

Work out random powers of g, and random powers of hg. Compare the two lists, and if you find a match, you can solve for x.

$$g^{x} \equiv h \pmod{p}$$
$$h = g^{x} \pmod{p}$$
$$h = g^{x+kn} \pmod{p}$$

RSA

Public Key Cryptography

p,q large prime numbers $\sim 2^{1000}$

$$N = pq$$

$$\phi(N) = (p-1)(q-1)$$

• Encryption exponent
$$e$$
 s.t $gcd(e, \phi(n) = 1)$

• Decryption exponent d s.t $ed \equiv 1 \pmod{\phi(N)}$

• Encrypting: $m \to m^e \equiv c \pmod{N}$

• Decrypting: $c \to c^d \equiv m^{ed} \equiv m \pmod{N}$

Digital Signatures

Private signing key d, public verification key e

Signer (Sam)
$$S \equiv D^d \pmod{N}$$

Verifier (Victor) $D \equiv S^e \pmod{N}$

Size of input

Given N, the size of the input is $\log_2 N$ bits.

Group Theory

Multiplicative Group Mod p

 $\mathbf{F}_p^x = \{1, 2, 3, \dots, p-1\}, \text{ under multiplication modulo } p.$

A group G is a set, together with a rule for combining ordered pairs of elements to yield another element in the same set.

(I)
$$e \times a = a \times e = a$$
 for all $a \in G$

(II)
$$a^{-1} \times a = a^{-1} \times a = e$$
 for all $a \in G$

(III)
$$a \times (b \times c) = (a \times b) \times c$$
 for all $a, b, c \in G$

All the numbers in the set must be coprime to p to form a cyclic group.

$$13^{-1} \equiv 1 \pmod{17}$$

$$13x + 17y = 1$$

$$17 = 1(13) + 4$$

$$13 = 3(4) + 1$$

$$1 = 13 - 3(4)$$

$$= 13 - 3(17 - 13)$$

$$=4(13)-3(17)$$

$$\equiv 4 \pmod{17}$$

Diffie-Hellman

Key Exchange

p large prime ($\sim 2^{1000}$) $g \in \mathbf{F}_p^x$ has large prime order in \mathbf{F}_p^x

- 1. Alice picks a and sends $A \equiv g^a \pmod{p}$ to Bob
- 2. Bob picks b and sends $B \equiv g^b \pmod{p}$ to Alice
- 3. Alice computes $B^a \equiv (g^b)^a \equiv g^{ab} \pmod{p}$
- 4. Bob computes $A^b \equiv (g^a)^b \equiv g^{ab} \pmod{p}$

El Gamel

- Alice picks a and sends $A \equiv g^a \pmod{p}$ to Bob
- Bob chooses k and computes $c_1 \equiv g^k, g_2 \equiv mA^k$
- Alice receives c_1, c_2 and computes $m \equiv c_2(c_1^{-a}) \pmod{p}$

$$c_2 c_2^{-a}$$

$$\equiv m g^{ak} (g^k)^{-a}$$

$$\equiv m \pmod{p}$$

Digital Signatures

- Samantha chooses a (secret), computes $A \equiv g^a \pmod{p}$
- Also chooses k coprime to p-1, ie gcd(k, p-1) = 1

$$S_1 = g^k \pmod{p}$$

$$S_2 = (D - aS_1)k^{-1} \pmod{p-1}$$

Verification

$$A^{S_1} S_1^{S_2} \equiv g^D \pmod{p}$$

$$\begin{split} A_1^{S_1} S_1^{S_2} &= g^{aS_1} g^{\not k(D-aS_1)\not k} \\ &= g^{aS_1} g^{D-aS_1} = g^D \end{split}$$