Started on Friday, 13 October 2023, 7:42 PM

State Finished

Completed on Friday, 13 October 2023, 7:47 PM

Time taken 5 mins 19 secs

Grade 10.00 out of 10.00 (**100**%)

Question 1

Correct

Mark 1.00 out of 1.00

▼ Flag question

False alarm occurs when

Select one:

- igcup The test correctly detects the absence of signal under $\mathcal{H}_{
 m o}$
- lacksquare The test falsely detects the presence of signal under \mathcal{H}_{o}
- igcup The test falsely detects the absence of signal under $\mathcal{H}_{\scriptscriptstyle 1}$
- igcup The test correctly detects the presence of signal under \mathcal{H}_1

Your answer is correct.

The correct answer is: The test falsely detects the presence of signal under \mathcal{H}_{o}

Question **2**

Correct

Mark 1.00 out of 1.00

Consider $\bar{\mathbf{s}} = [1 \quad 1 \quad -1]^T$ and $\sigma^2 = \frac{1}{2}$. The distribution of the test statistic $\bar{\mathbf{s}}^T \bar{\mathbf{y}}$ under \mathcal{H}_0 is

Select one:

 \circ $\mathcal{N}(0,2)$

~

- $\mathcal{N}(0,16)$
- $\mathcal{N}(0,4)$
- $\mathcal{N}(0,8)$

Your answer is correct.

The correct answer is: $\mathcal{N}(0,2)$

Question **3**

Correct

Mark 1.00 out of 1.00

 $\ensuremath{\mathbb{V}}$ Flag question

Consider $\bar{\mathbf{s}} = [1 \ 1 \ -1]^T$, $\gamma = 1$ and $\sigma^2 = \frac{1}{2}$. The probability of false alarm for the signal detection problem described in lectures is

Select one:

- $Q\left(\frac{1}{4}\right)$
- $Q\left(\frac{1}{2}\right)$
- Q(1)

The correct answer is:

Question ${f 4}$

Correct

Mark 1.00 out of 1.00

Detection occurs when

Select one:

- igcup The test correctly detects the absence of signal under \mathcal{H}_o
- igcup The test falsely detects the absence of signal under $\mathcal{H}_{\scriptscriptstyle 1}$
- $\, \bigcirc \,$ The test falsely detects the presence of signal under ${\cal H}_o$
- lacksquare The test correctly detects the presence of signal under \mathcal{H}_1

Your answer is correct.

The correct answer is: The test correctly detects the presence of signal under $\mathcal{H}_{\scriptscriptstyle 1}$

Question **5**

Correct

Mark 1.00 out of 1.00

Consider $\bar{\mathbf{s}} = [1 \quad -1 \quad 1]^T$ and $\sigma^2 = 2$. The distribution of the test statistic $\bar{\mathbf{s}}^T \bar{\mathbf{y}}$ under \mathcal{H}_1 is

Select one:

- $\mathcal{N}(2,16)$
- $\mathcal{N}(4,16)$
- $\mathcal{N}(4.8)$
- $\mathcal{N}(2,4)$

Your answer is correct.

The correct answer is: $\mathcal{N}(4.8)$

Question **6**

Correct

Mark 1.00 out of 1.00

Consider $\bar{\mathbf{s}} = [1 \quad -1 \quad 1]^T$, $\gamma = 1$ and $\sigma^2 = 2$. The probability of detection for the signal detection problem described in lectures is

Select one:

- $Q\left(-\frac{1}{2}\right)$
- $Q\left(-\frac{1}{2\sqrt{2}}\right)$
- $Q\left(\frac{1}{\sqrt{2}}\right)$
- $Q\left(-\frac{3}{2\sqrt{2}}\right) \quad \checkmark$

Your answer is correct.

The correct answer is: $Q\left(-\frac{3}{2\sqrt{2}}\right)$

Question **7**

Correct

Mark 1.00 out of 1.00

As $\gamma \to -\infty$

Select one:

Flag question

$$P_D \to 0, P_{FA} \to 1$$

$$P_D \to 1, P_{FA} \to 0$$

Your answer is correct.

The correct answer is: $P_D \rightarrow 1, P_{FA} \rightarrow 1$

Question ${\bf 8}$

Correct

Mark 1.00 out of 1.00

▼ Flag question

The quantity Q(x), where $Q(\cdot)$ denotes the Gaussian Q -function, equals

Select one:

$$\int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

$$\int_{-x}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

Your answer is correct.

The correct answer is:
$$\int_{-\infty}^{-x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

Question **9**

Correct

Mark 1.00 out of 1.00

For a Gaussian random variable $X \sim \mathcal{N}(1,4)$, the corresponding standard normal can be derived as

Select one:

$$\frac{X-1}{4}$$

$$\frac{x-1}{2}$$

$$\frac{X}{2}-2$$

$$\frac{X-2}{\sqrt{2}}$$

Your answer is correct.

The correct answer is:
$$\frac{X-1}{2}$$

Question 10

Correct

The ROC of the signal detection problem is given as

Mark 1.00 out of 1.00

▼ Flag question

Select one:

$$Q(Q^{-1}(P_{FA}) - \sqrt{SNR})$$

$$Q\left(Q^{-1}(P_{FA})-\sqrt{\frac{1}{SNR}}\right)$$

$$\bigcirc \quad Q(Q^{-1}(P_{FA})-SNR)$$

$$\bigcirc Q\left(Q^{-1}(P_{FA}) - \frac{1}{SNR}\right)$$

Your answer is correct.

The correct answer is: $Q(Q^{-1}(P_{FA}) - \sqrt{SNR})$

Finish review