graphs

example graphs

lots of things can be represented as graphs

maps

nodes: intersections

edges: roads?

airline routes

flowcharts

PREDICTION FLOWCHART FOR GEEK GIFTS.

pre-requisite tree

formal definition

```
graph G: G = (V, E)
```

V: set of vertices (possibly empty)

E: set of edges — pairs of vertices (possibly empty) directed graph/digraph — ordered pairs undirected graph — unordered pairs

paths, etc.

vertices v and w adjacent iff $(v, w) \in E$ or $(w, v) \in E$

path: $v_1, v_2, \dots v_n$ such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le n$

length of path: number of edges in path

simple path: path of distinct vertices

weighted graphs

some graphs have **weights** or **costs** associated with edges example motivation:

graph representing roads: weight = travel time

weight or cost of a path = sum of weights of edges in path

weighted graph example

cycles, etc.

cycle: path where length ≥ 1 , $v_1 = v_n$ undirected graph: ...and no repeated edges

loops

$$(v,v)\in E$$

graph terminology is not universal

some sources will use slightly different definitions:

walk instead of path

path instead of simple path

closed walk instead of cycle

cycle instead of cycle that is also a simple path

connectivity

connected graph: for all $x,y\in V$, there exists a path from x to y N.B: includes 0-length paths

a connected graph a non-connected graph

in a directed graph...

DAG — directed acyclic graph no cycles

strongly connected — path from every vertex to every other implies cycles (or digraph of 0 or 1 nodes)

weakly connected — would be connected as undirected graph

strong/weak connected examples

a strongly connected graph drawn in two ways

another strongly connected graph

a weakly connected graph

strong/weak connected examples

a strongly connected graph drawn in two ways

another strongly connected graph

a weakly connected graph

two strongly connected components

trees as graphs

trees are connected, acyclic graphs (with a root chosen)

complete graph

complete graph: graph with edges between every pair of distinct vertices

$$A[u][v] = \begin{cases} weight & \text{if } (u,v) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{2} \quad \frac{2}{0} \quad \frac{3}{1} \quad \frac{4}{1} \quad \frac{1}{0} \quad \frac{1$$

$$A[u][v] = \begin{cases} weight & \text{if } (u,v) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{2} \quad \frac{0}{0} \quad \frac{1}{1} \quad \frac{1}{1} \quad \frac{1}{0} \quad \frac{1$$

$$A[u][v] = \begin{cases} weight & \text{if } (u,v) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{2} \quad \frac{0}{0} \quad \frac{1}{0} \quad \frac{1$$

$$A[u][v] = \begin{cases} weight & \text{if } (u,v) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{2} \quad \frac{2}{0} \quad \frac{3}{1} \quad \frac{4}{1} \quad \frac{1}{1} \quad \frac{1}{1} \quad \frac{1}{2} \quad \frac{3}{4} \quad \frac{4}{1} \quad \frac{9}{0} \quad \frac{17}{0} \quad 0 \quad 0 \quad 0 \quad \frac{3}{0} \quad \frac{3}{1} \quad \frac{3}{1} \quad \frac{9}{0} \quad \frac{17}{0} \quad 0 \quad 0 \quad 0 \quad \frac{13}{0} \quad 0 \quad 0 \quad 10 \quad 0 \quad \frac{13}{0} \quad 0 \quad 0 \quad 10 \quad \frac{10}{0} \quad \frac{16}{0} \quad 18 \quad 0 \quad 0 \quad 0 \quad 16 \quad 18 \quad 0 \end{cases}$$

adjacency lists

adjacency lists

choosing representations

choice:

```
adjacency matrix
adjacency list
more?

issues to consider:
size
ease of listing edges from node
ease of determining if node X has an edge
```

variations and alternate representations

adjacency lists might not use linked lists
adjacency matrix can be stored as hashtable (keys=pair of nodes)

additional information with nodes

often want to store additional information with vertices, edges...

street names, speed limits, ...

IP addresses, link speeds, ...

topological sort

only defined for directed acyclic graph

order vertices such that if there is a path from v_i to v_j , then v_j is after v_i

topological sorts:

A, C, B, D, F, G, E, H *or* F, A, H, C, G, B, D, E *or*

•••

exercise: topological sort

exercise: topological sort

possible answers: A, B, C, D or A, C, B, D

no topological sort

pre-requisite tree

definition: in-degree

indegree of vertex: number of incoming edges

algorithm (simple)

```
psuedocode:
vector<Vertex> topologicalSort(Graph g) {
    vector<Vertex> result;
    for (int i = 0; i < g.numVertices(); ++i) {</pre>
        Vertex v = g.findVertexOfInDegreeZero();
        if (did not find v) throw CycleFound();
        result.push back(v);
        for (Vertex w : v.adjacentVertices()) {
            g.deleteEdge(v, w);
    return result:
```


initial in-degree 0 vertices — two choices

choose one (A — arbitrary), add to result, remove edges result: A,

result: A, F, H,

result: A, F, H,

result: A, F, H, C, B, G,

simple topological sort problems

problem: copying the graph?

problem: finding in-degree 0 vertex?

scan all vertices and all edges???

better pseudocode

```
vector<Vertex> topologicalSort(Graph g) {
    vector<Vertex> result;
    map<Vertex, int> remainingInDegree = g.getInDegrees();
    Queue<Vertex> pending;
    for (Vertex v : g.vertices())
        if (remainingInDegree[v] == 0)
            pending.enqueue(v);
    while (!pending.empty()) {
        Vertex v = pending.dequeue();
        result.push back(v);
        for (Edge e: g.edgesFrom(v)) {
            int newDegree = --remainingInDegree[e.toVertex()];
            if (newDegree == 0) pending.enqueue(e.toVertex());
    return result:
```

psuedocode idea

track in-degree changes instead of full list of edges all we care about is in-degree becoming 0

queue: vertices which have in-degree 0 to process

detect cycles? see if result size == number of vertices

runtime analysis

- assuming |E| edges, |V| vertices, and adjacency lists and in-degree map is constant time (e.g. vertices are 0, 1, 2, ..., so it's an array)
- step 1: get all in-degrees $\Theta(|E|)$ (iterate over edges)
- step 2: find + enqueue in-degree 0 vertices $\Theta(|V|)$ (iterate over vertices)
- step 3: for each vertex, check outgoing edges $\Theta(|V|+|E|)$ (each vertex checked exactly once, each edge checked exactly once)
- overall: $\Theta(|V| + |E|)$

queue: A, D, F, H, E,

result: A, D,

queue: A, D, F, H, E, C,

result: A, D, F,

queue: A_7 , D_7 , F_7 , H_7 , E_7 , C_7

result: A, D, F, H,

queue: A, D, F, H, E, C,

result: A, D, F, H, E,

queue: A, D, F, H, E, C, B,

result: A, D, F, H, E, C,

queue: A_7 , D_7 , F_7 , H_7 , E_7 , C_7 , C_8 , C_9 , C_9 ,

result: A, D, F, H, E, C, B,

queue: A, D, F, H, E, C, B, G,

result: A, D, F, H, E, C, B, G

shortest path

shortest path

lowest $\{\text{weight,number of edges}\}\$ path from vertex i to j

shortest path applications

map routing

N degrees of separation'

Internet routing

puzzle/game solving (e.g. rubrik's cube, tic-tac-toe, ...)

shortest path algorithm kinds

single pair: path from V to W

single source: for each vertex W, path from V to W

all pairs: for each pair of vertices V, W, path from V to W

shortest path algorithm kinds

single pair: path from V to W

single source: for each vertex W, path from V to W

all pairs: for each pair of vertices V, W, path from V to W

more formally

given graph G=(V,E) and a vertex s (the source)...

where an edges (v, w) has weight $w_{v,w}$

for each vertex x find a path $v_1 = s, v_2, \dots, v_n = x$ such that the $\sum w_{v_i,v_{i+1}}$ is minimum

breadth-first search

shortest path special case: weights =1 algorithm is breadth-first search

special case: breadth-first search on trees

can look at breadth-first search as generalization of pre-order traversal

difference: now we can have other paths from roots

start with just source

follow edges to first find vertices at distance 1

start with just source

follow edges to first find vertices at distance 1

start with just source

follow edges to first find vertices at distance 1

start with just source

follow edges to first find vertices at distance 1

start with just source

follow edges to first find vertices at distance 1

start with just source

follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, ...

key idea: track visited nodes so we don't check them again (already found the shortest path)

start with just source

follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, ...

could have list of paths, one per node but more compact idea: store one source edge per node also called *shortest path tree*

start with just source

follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, ...

multiple possible answers!

```
breadth first search pseudocode
void Graph::bfs(Vertex start) {
    for (Vertex v: vertices) {
       v.distance = INFINITY;
       v.previous = NULL;
   Queue frontier;
   start.distance = 0;
    frontier.enqueue(start);
```

for (Vertex w : verticesWithEdgeFrom(v)) {

w.distance = v.distance + 1;

if (w.distance == INFINITY) {

frontier.enqueue(w);

w.previous = v;

// w.distance == INFINITY --> we haven't visited t

while (!frontier.isEmpty()) {
 Vertex v = q.dequeue();

BFS runtime?

need to initialize distances to infinity: $\Theta(|V|)$ operations need to check every edge: $\Theta(|E|)$ operations runtime $\Theta(|V|+|E|)$

breadth-first search is greedy

greedy algorithms: make the locally optimal choice, never take it back

BFS: once one finds a node, one enqueues it once find the node later — skip it

why this is okay: find nodes in order of distance

second time 'visiting' a node — won't be a shorter path!

```
void Graph::BROKEN_bestFirstSarch(Vertex start) {
  . . .
  while (!frontier.isEmpty()) {
    Vertex v = q.dequeue();
    for (Vertex w : verticesWithEdgeFrom(v)) {
       // BROKEN!
       if (w.distance == INFINITY) {
          w.distance = v.distance + weight0fEdge(v, w);
          w.previous = v;
          frontier.enqueue(w);
```

```
void Graph::BROKEN_bestFirstSarch(Vertex start) {
  while (!frontier.isEmpty()) {
    Vertex v = q.dequeue();
    for (Vertex w : verticesWithEdgeFrom(v)) {
       // BROKEN!
       if (w.distance == INFINITY) {
          w.distance = v.distance + weight0fEdge(v, w);
          w.previous = v;
          frontier.enqueue(w);
```



```
distance 50
                                                    previous: A
                                                                      110
void Graph::BROKEN_bestFirstSarch(Vertex start)
  while (!frontier.isEmpty()) {
                                                     distance \infty
    Vertex v = q.dequeue();
                                                     previous: (none)
    for (Vertex w : verticesWithEdgeFrom(v))
       // BROKEN!
       if (w.distance == INFINITY) {
          w.distance = v.distance + weight0fEdge(v, w);
          w.previous = v;
          frontier.enqueue(w);
```

```
distance 50
                                                   previous: A
                                                                     110
void Graph::BROKEN_bestFirstSarch(Vertex start)
                                                               50
  while (!frontier.isEmpty()) {
                                                        distance 110
    Vertex v = q.dequeue();
                                                        previous: A
    for (Vertex w : verticesWithEdgeFrom(v)) {
       // BROKEN!
       if (w.distance == INFINITY) {
          w.distance = v.distance + weight0fEdge(v, w);
          w.previous = v;
          frontier.enqueue(w);
```

```
distance 50
                                                    previous: A
                                                                     110
void Graph::BROKEN_bestFirstSarch(Vertex start)
                                                               50
  while (!frontier.isEmpty()) {
                                                        distance 110
    Vertex v = q.dequeue();
                                                        previous: A
    for (Vertex w : verticesWithEdgeFrom(v)) {
       // BROKEN!
       if (w.distance == INFINITY) {
          w.distance = v.distance + weight0fEdge(v, w);
          w.previous = v;
          frontier.enqueue(w);
```

```
distance 50
                                                    previous: A
                                                                     110
void Graph::BROKEN_bestFirstSarch(Vertex start)
                                                               50
  while (!frontier.isEmpty()) {
                                                        distance 110
    Vertex v = q.dequeue();
                                                        previous: A
    for (Vertex w : verticesWithEdgeFrom(v)) {
       // BROKEN!
       if (w.distance == INFINITY) {
          w.distance = v.distance + weight0fEdge(v, w);
          w.previous = v;
          frontier.enqueue(w);
```

```
distance 50
                                                   previous: A
void Graph::BROKEN_bestFirstSarch(Vertex start)
  while (!frontier.isEmpty()) {
                                                       distance 110
    Vertex v = q.dequeue();
                                                       previous: A
    for (Vertex w : verticesWithEdgeFrom(v)) {
       // BROKEN!
       if (w.distance == INFINITY) {
          w.distance = v.distance + weight0fEdge(v, w);
          w.previous = v;
          frontier.enqueue(w);
```

fix part 1: update to smaller distance

```
void Graph::BROKEN_bestFirstSarch(Vertex start) {
  while (!frontier.isEmpty()) {
    Vertex v = q.dequeue();
    for (Vertex w : verticesWithEdgeFrom(v)) {
       int newDistance = v.distance + weightOfEdge(v, w);
       if (newDistance < w.distance) {</pre>
          w.distance = newDistance;
          w.previous = v;
          frontier.enqueue(w);
```

fix part 1: update to smaller distance

```
void Graph::BROKEN_bestFirstSarch(Vertex start) {
  while (!frontier.isEmpty()) {
    Vertex v = q.dequeue();
    for (Vertex w : verticesWithEdgeFrom(v)) {
       int newDistance = v.distance + weightOfEdge(v, w);
       if (newDistance < w.distance) {</pre>
          w.distance = newDistance;
          w.previous = v;
          frontier.enqueue(w);
```

problem: now enqueuing nodes multiple timeswant to only visit node once

fix part 2: visit nodes once, order by distance

```
void Graph::SLOW_bestFirstSarch(Vertex start) {
    for (Vertex v: vertices) {
        v.distance = INFINITY;
        v.previous = NULL;
        v.visited = false;
    start.distance = 0;
    while (!haveUnvisitedNode()) {
        Vertex v = findUnvisitedNodeWithSmallestDistance();
        v.visited = true;
        for (Vertex w : verticesWithEdgeFrom(v)) {
            // w.distance == INFINITY --> we haven't visited this ve
           int newDistance = v.distance + weightOfEdge(v, w);
            if (newDistance < w.distance) {</pre>
                w.distance = newDistance;
                w.previous = v;
```

visiting by distance?

assumption: no negative weights

given this: distance only decreases

and can't find shorter path from further node!

fix part 3: a faster search

```
void Graph::bestFirstSarch(Vertex start) {
    PriorityQueue pq;
    for (Vertex v: vertices) {
        v.distance = INFINITY; v.previous = NULL;
    start.distance = 0;
    pq.insert(0, start);
    while (!pq.empty()) {
        Vertex v = pq.deleteMin();
        for (Vertex w : verticesWithEdgeFrom(v)) {
            // w.distance == INFINITY --> we haven't visited this ve
            int oldDistance = w.distance;
            int newDistance = v.distance + weightOfEdge(v, w);
            if (newDistance < oldDistance) {</pre>
                w.distance = newDistance;
```

if (oldDistance == INFINITY)

pq.insert(newDistance, w);

w.previous = v;

else

a note on names

often also called Dijkstra's algorithm

	dist	prev	path
	0		A
	∞		

dist	prev	path
0		A
∞	_	
2	А	$A \rightarrow C$
1	А	$A \rightarrow D$
∞		_
∞		
∞		_

Ε

	-	•
0		A
6	D	$A \rightarrow D \rightarrow B$
2	А	$A \rightarrow C$
1	Α	$A \rightarrow D$
2	D	$A \rightarrow D \rightarrow E$
7	D	$A \rightarrow D \rightarrow F$
6	D	$A \rightarrow D \rightarrow G$

	1	I · · ·
0		A
3	Е	$A \rightarrow D \rightarrow E \rightarrow B$
2	А	A→C
1	А	$A \rightarrow D$
2	D	$A \rightarrow D \rightarrow E$
4	С	$A \rightarrow C \rightarrow F$
6	D	$A \rightarrow D \rightarrow G$

	1.	I · · ·
0		A
3	Е	$A \rightarrow D \rightarrow E \rightarrow B$
2	Α	$A \rightarrow C$
1	А	$A \rightarrow D$
2	D	$A \rightarrow D \rightarrow E$
4	С	$A \rightarrow C \rightarrow F$
6	D	$A \rightarrow D \rightarrow G$

	-	-
0		A
3	E	$A \rightarrow D \rightarrow E \rightarrow B$
2	Α	A→C
1	А	$A \rightarrow D$
2	D	$A \rightarrow D \rightarrow E$
4	C	$A \rightarrow C \rightarrow F$
6	D	$A \rightarrow D \rightarrow G$

	•	•
0		A
3	E	$A \rightarrow D \rightarrow E \rightarrow B$
2	А	A→C
1	А	$A \rightarrow D$
2	D	$A \rightarrow D \rightarrow E$
4	С	$A \rightarrow C \rightarrow F$
6	D	$A \rightarrow D \rightarrow G$

dist	prev	path
0		A
7	А	A→B
9	А	A→C
∞		_
∞		_
14	А	$A \rightarrow G$

	dist	prev	path
	0		A
	7	А	A→B
	9	А	A→C
	20	С	$A \rightarrow C \rightarrow D$
	∞		_
	11	С	$A \rightarrow C \rightarrow G$

Dijkstra's algorithm example 2

dist	prev	path
0	_	A
7	А	$A \rightarrow B$
9	А	$A \rightarrow C$
20	С	$A \rightarrow C \rightarrow D$
20	G	$A \rightarrow C \rightarrow G \rightarrow E$
11	С	$A \rightarrow C \rightarrow G$

Dijkstra's algorithm example 2

dist	prev	path
0		A
7	А	$A \rightarrow B$
9	А	$A \rightarrow C$
20	С	$A \rightarrow C \rightarrow D$
20	G	$A \rightarrow C \rightarrow G \rightarrow E$
11	С	$A \rightarrow C \rightarrow G$

Dijkstra's algorithm example 2

dist	prev	path
0		A
7	А	A→B
9	А	$A \rightarrow C$
20	С	$A \rightarrow C \rightarrow D$
20	G	$A \rightarrow C \rightarrow G \rightarrow E$
11	С	$A \rightarrow C \rightarrow G$

Dijkstra's algorithm runtime

for every vertex (worst case):

find vertex smallest unknown distance $\Theta(|V|^2)$ total — if checking every vertex

 $\Theta(|V|\log |V|)$ total — if removing from heap

scan all edges of vertex, update distances

 $\Theta(|E|)$ total — if not maintaining priority queue

 $\Theta(|E|\log |V|)$ if updating binary heap

total with binary heap: $\Theta((|E| + |V|) \log |V|)$ Fibanocci heap instead: $\Theta(|E| + |V| \log |V|)$

negative weights

example: weight = fuel used; negative weight = refueling

Dijkstra's algorithm doesn't work

assumption: won't update a node's distance after visiting its edges

alternative algorithms do — e.g. Bellman-Ford ($\Theta(|E||V|)$ runtime)

negative cost cycles — infinitely small cost!

single-source to single-source+destination

what if want to get from A to Z

solution: Dijkstra's algorithm from A but stop early — when we proesss ${\cal Z}$

gaurentee: won't update Z's distance again

heuristic shortest path

```
road map — still slow!
```

some ideas for speeding up:

search highways instead of side-roads earlier search edges in correct direction earlier search from both directions, try to meet

if you take AI — major topic is heuristic search taking advantage of ideas like the above ...and still getting shortest path, if you want it

travelling salesperson problem

```
given cities, costs to travel between, least-cost trip that:
```

visits each city exactly once, and returns to the starting city

as a graph:

cities = nodes

costs = edge weights

assume fully connected graph

alternative: first add infinite weight edges between disconnected nodes

TSP difficulty

solving TSP exactly is NP-hard

worst case: essentially need to enumerate all possible tours

but, we can practically solve up to 10000s of cities on real (e.g. road) maps

obviously doing something smarter...

some definitions

Hamiltonian path — path that visits every vertex on a graph exactly once

Hamiltonian cycle — Hamiltonian path that where start node = end node

traveling sales man problem: find least weight Hamiltonian cycle

naive TSP algorithm

```
choose a starting city x_1
for each unused next city x_2: (n-1 possible)
     for each unused next city x_3: (n-2 possible)
           for each unused next city x_4: (n-3 possible)
     see if x_1, x_2, x_3, x_4, \ldots, x_n is shorter than anything else
output shortest seen
```

(N-1)! factorial runtime $=\Theta(N!)$ worse than $\Theta(2^N)$

naive TSP implementation

```
psuedocode:
vector<Vertex> partial_tour;
void TestTours() {
    if (partial_tour.size() == vertices.size()) {
        partial_tour.push_back(partial_tour[0]);
        if (weightOf(partial tour[0]) < best tour weight) {</pre>
            best tour = partial tour;
            best tour weight = weightOf(best tour);
        partial tour.pop back();
    } else {
        for (Vertex v : vertices - partial_tour) {
            partial_tour.push_back(v);
            FindTour();
            partial_tour.pop_back(v);
```

(n-1)! is big

20 cities — $> 10^{16}$ tours to check

30 cities — $> 10^{30}$ tours to check

...

best gaurenteed TSP algorithm

TSP is NP-hard — no known subexponetial solution

```
best general algorithm: \Theta(N^2 2^N)
20 cities — > 10^8 operations
30 cities — > 10^1 1 operations
```

uses dynamic programming — covered in 4102

basic idea: if we know 1,3,2,4 is the best way to visit cities 1, 2, 3, 4 starting at city 1 and ending at 4, then don't figure that out multiple times

e.g. 1, 2, 3, 4, 5, 1 cannot be shorter than 1, 3, 2, 4, 5, 1

TSP heuristics

one idea: branch and bound

still: construct lots and lots of possible tours keep adding cities

but maintain track extra numbers:

the best cost found so far lower bound on the tours we could find with chosen nodes

stop enumerating (return from FindTour early) if lower bound is too low

a lower bound

example lower bound:

if I've chosen cities 1, 2, 4, 3 in that order

$$w(1,2) + w(2,4) + w(4,3) + \sum\limits_{i=3}^{n} \text{minimum weight of edge from i}$$

if this is worse than best we've found so far — no sense continuing further

other TSP ideas

TSP on real maps — take advantage of geometry
try cities close to each other first
use map distances to compute minimum costs quickly
some approximation algorithms
get within a certain factor of best solution
good for pruning very bad solutiosn quickly

TSP records

2006: 85,900 'cities'

distances, etc. from real circuit production problem from the 1980s

lab 11

pre-lab: topological sort

in-lab: naive travelling salesperson (map = Tolkein's middle earth)

post-lab: some acceleration techniques

spanning tree definition

given a connected graph G, a spanning tree G'=(V,E') is a subgraph such that:

its edges are a subset of the original graph's (what *subgraph* means) it has the same vertices

it is connected

it has no cycles — i.e. it is a tree

spanning tree construction

take a connected graph

repeatedly: remove an edge that does not disconnect the graph

can't remove any more: a spanning tree — same vertices, but is a tree

spanning tree examples

original graph

spanning trees of graph

73

minimum spanning tree

A **minimum spanning tree** T = (V, E') of a weighted graph G is a spanning tree such that $\sum e \in E'$ weight(e) is smallest.

NB: can be multiple minimum spanning trees

Prim's greedy MST algorithm

track: vertices in spanning tree, edges in spanning tree add a vertex to the spanning tree (arbitrarily)

while not all vertices are in the spanning tree:

pick an edge (u,v) such that u is already in the spanning tree v is not already in the spanning tree (u,v) has the smallest weight of all possible edges

add the edge and \boldsymbol{v} to the spanning tree