1 Results

1.1 2×2 lattice, analytical expressions

If we scale the value of β from $1/k_BT$ to 1/J (Scaling factor k_BT/J) in the analytical expression from section ??, we will get a good benchmark for computer computations to come. These values are listed in table 1 below. Note that all values are divided by four, since we want the values per bond, and not for the entire lattice.

Mean energy, $\langle E \rangle$:	-1.9960
Mean absolute magnetization, $\langle \mathcal{M} \rangle$:	0.9987
Specific heat capacity, C_V :	0.0321
Susceptibility, χ :	3.9933

Table 1: Benchmark for material characteristics per bond for a 2×2 lattice

1.2 Ising model: simulation over temperature

We ran the program for different amounts of Monte Carlo cycles and plottet the error (analytical - simulated) in figure 1 below. It seems we want to use around 10^7 MC cycles or more to get a good simulation.

Figure 1: Shows the accuracy of different amount of MC cycles over temperature.

1.3 20×20 lattice, analytical expressoins

T=1.0(kT/J): Mean energy and magnetization func of MC cycles: Ordnet orientering: Program initilize.cpp (For T $_{\rm i}$ 1.5 så er alle spinn opp, ellers spinn ned)

sett inn følgende bilder fra mappe M+E under img
: T1_1.pngT1_2.pngTekst : ordnetspinnorienteringfor
T = 1.0

Random spinn orientering: Program initilize $random(Setterspinnned(-1)hvisverdienvif årmellom 0 og 1 ern sett inn følgende bilder fra mappe M+E under img: L20T1random_1.pngL20T1random_2.pngTekst:$

Random spinnorientering for T = 1.0

Likevekt ved:

T=2.4(kT/J): Mean energy and magnetization func of MC cycles: Ordnet orientering: Program initilize.cpp (For T $_{\rm i}$ 1.5 så er alle spinn opp, ellers spinn ned)

sett inn følgende bilder fra mappe M+E(ligger inni img): T2₁. $pngT2_2.pngTekst$: ordnetspinnorienteringforT=2.4

2.4

Likevekt ved:

Oversiktelig tabell med når likevekt nås ca. (antall mcs)

Ordnet magnetisering Random magnetisering Ordnet energi Random energi T1: T2:

Estimat av equilibration time:

Antall aksepterte spinn totalt etter et gitt antall mcs(100k maks): Set start point T = 1 Bilde :accepted_s $pinn_T 1_m cs_c umsum(y)_log 10.pngStabiliserersegvedmcd = 1E3.5(allespinnblirheretterakseptert)$

 $T = 2.4 \text{ Bilde: } accepted_spinn_T 2_m cs_c umsum(y)_log10.pngStabiliserersegvedmcd = 1E3.5, mendetermangefleresomblirakseptert(Seyaksen)$

Random start point: T = 1: Bilde: $accepted_spins_T1_random_cumsum(y)_mcs_log10.pngT = 2.4Bilde: <math>accepted_spins_T2_random_cumsum(y)_mcs_log10.png$

Temperaturavhengighet (skal vi lage plot her også- eller holder det med kommentar i resultater?): Økt temperatur gjør at mange flere spinn aksepteres ved lavere antall mcs dvs tidligere.

Diskusjon/resultater Aksepterte spinn som funksjon av T: Økt temperatur gir flere aksepterte flips. Setter man startpoint til random går den fortere mot likevekt ?