Marco Bayesiano para el análisis de datos, calibración de parámetros y modelamiento inverso

Variables Aleatorias

Universidad Industrial de Santander U18 Fest

Introducción

- Cubrimos los elementos de la teoría de probabilidades
 - Resultados, variables aleatorias, eventos, y probabilidades
- El modelamiento probabilístico en la práctica se basa en variables aleatorias, eventos asociados a variables aleatorias, y sus probabilidades
- \blacksquare Usualmente, la definición de espacio de resultados Ω se puede tratar de manera implícita, i.e., no es necesario definir Ω explícitamente

Introducción

Ejemplo: Altura de una población

$$\Omega = \{ personas en la población \}$$

■ Variable aleatoria: Altura

$$A\colon \Omega\to \mathbb{R}$$

- Eventos:
 - Altura mayor o igual a cierto valor $a: P(A \ge a)$
 - Altura menor a cierto valor b: P(A < b)

Introducción

Ejemplo: Altura de una población

$$\Omega = \{ personas en la población \}$$

■ Variable aleatoria: Altura

$$A \colon \Omega \to \mathbb{R}$$

- Eventos:
 - Altura mayor o igual a cierto valor $a: P(A \ge a)$
 - Altura menor a cierto valor b: P(A < b)

Si el interés es en las *propiedades* de la "altura"...

- lacksquare ...no es necesario pensar en Ω
- Sólo hace falta pensar en A y los valores que puede tomar

)

Funciones de masa y densidad de probabilidad

Asocian probabilidades a los valores de variables aleatorias

- Variables discretas:
 - Función de masa de probabilidad (pmf)
- Variables contínuas:
 - Función de densidad acumulada (cdf)
 - Función de densidad de probabilidad (pdf)

Variable aleatoria

$$X \colon \Omega \to C$$

■ pmf $p: C \rightarrow [0,1]$ definida como

$$p(c) = P(X = c) = P(\{\omega \in \Omega \colon X(\omega) = c\})$$

Ejemplo: Lanzar dos dados. Suma $X \colon \Omega \to \mathbb{N}$

	1	2	3	4	5	6
1	2	თ	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

pmf:

$$p(1) = 0$$

$$p(2) = 1/36$$

$$p(3) = 2/36$$

$$p(4) = 3/36$$

Ejemplo: Lanzar dos dados. Suma $X \colon \Omega \to \mathbb{N}$

	1	2	3	4	5	6
1	2	თ	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

pmf:

■ Para la variable aleatoria discreta $X \colon \Omega \to C$, se puede utilizar la pmf para calcular la probabilidad del evento del valor de X estar en cualquier subconjunto $B \subseteq C$:

$$P(X \in B) = \sum_{b \in B} p(b)$$

■ Para la variable aleatoria discreta $X \colon \Omega \to C$, se puede utilizar la pmf para calcular la probabilidad del evento del valor de X estar en cualquier subconjunto $B \subseteq C$:

$$P(X \in B) = \sum_{b \in B} p(b)$$

Como consecuencia,

$$\sum_{b \in C} p(b) = 1$$

■ **Ejemplo**: Lanzar dos dados

$$p(1) + p(2) + p(3) + \dots + p(11) + p(12) + \dots = 1$$

Muestrear variables aleatorias

- Vamos a usar generadores de números pseudo-aleatorios (PRNGs)
- PRNGs **no** generan números realmente aleatorios...
- ...pero generan una secuencia de números con propiedades aproximadamente iguales a las propiedades de secuencias de números aleatorios
- La secuencia de un PRNG es determinada por un valor inicial llamdo semilla (seed)
- Dada la misma semilla, un cierto PRNG genera la misma secuencia cada vez que es invocado

Función de densidad acumulada (cdf)

Variable aleatoria

$$X \colon \Omega \to C$$

$$\blacksquare \ \operatorname{cdf} F(c) = P(X \le c) \in [0,1]$$

Función de densidad acumulada (cdf)

Variable aleatoria

$$X \colon \Omega \to C$$

- $\blacksquare \ \operatorname{cdf} F(c) = P(X \le c) \in [0,1]$
- **Ejemplo**: Variable aleatoria normal estándar

Función de densidad cumulativa

La cdf puede utilizarse para evaluar la probabilidad de varios escenarios:

$$P(X > 2) = 1 - P(X \le 2) = 1 - F(2)$$

$$\blacksquare \ P(0.4 \le X \le 2) = P(X \le 2) - P(X \le 0.4) = F(2) - F(0.4)$$

Variables aleatorias contínuas

- La cdf no es la equivalente de la pmf para variables aleatorias contínuas
 - La pmf asigna probabilidades a valores individuales
 - La cdf asigna probabilidades a intervalos de valores
- Para generalizar la pmf debemos utilizar el concepto de densidad

La pdf (o densidad) p(a) cuantifica la cantidad de probabilidad en un intervalo alrededor de a relativa a la longitud del intervalo

Ejemplo: Variable aleatoria normal estándar

La pdf (o densidad) p(a) cuantifica la cantidad de probabilidad en un intervalo alrededor de a relativa a la longitud del intervalo

Ejemplo: Variable aleatoria normal estándar

■ Para la variable aleatoria $X: \Omega \to C$, la pdf y la cdf están conectadas a través de la relación

$$F(a) = P(X \le a) = \int_{-\infty}^{a} p(x) \, \mathrm{d}x$$

Qué quiere decir ésto?

■ Para la variable aleatoria $X: \Omega \to C$, la pdf y la cdf están conectadas a través de la relación

$$F(a) = P(X \le a) = \int_{-\infty}^{a} p(x) dx$$

Qué quiere decir ésto?

- Si quiero calcular la probabilidad del evento $\infty \le X \le a$, basta con "integrar" la densidad sobre el intervalo $(-\infty, a]$
- Podemos generalizar ésta relación para calcular la probabilidad del evento del valor de X estar en cualquier subconjunto $B \subseteq C$:

$$P(X \in B) = \int_{B} p(x) \, \mathrm{d}x$$

Como consecuencia,

$$P(X \in C) = \int_C p(x) \, \mathrm{d}x = 1$$

Para variables aleatorias discretαs,

$$P(X \in B) = \sum_{b \in B} p(b)$$

■ Para variables aleatorias contínuas,

$$P(X \in B) = \int_{B} p(x) \, \mathrm{d}x$$

- La pdf generaliza la pmf a variables aleatorias contínuas
- La integral \int generaliza la suma \sum a variables aleatorias contínuas

- \blacksquare La integral $\int_B p(x) \, \mathrm{d}x$ puede interpretarse como el área bajo la curva y=p(x) en el intervalo B
- \blacksquare E.g., para el intervalo B=(a,b),

- \blacksquare Dado que $\int_C p(x) \, \mathrm{d}x = 1$, eso indica que el área bajo la pdf es 1
- lacksquare La cdf F(a) corresponde al área bajo la curva entre $-\infty$ y a

Ejemplo

- lacktriangle Variable aleatoria normal estándar $X \sim \mathcal{N}(0,1)$
- Intervalo de mayor densidad (HDI): Para un valor $\alpha \in [0,1]$, hay un intervalo B=(a,b) para el cual
 - p(a) = p(b)
 - $P(X \in B) = 1 \alpha$
- Para $\alpha = 0.2$:

Ejemplo

- lacktriangle Variable aleatoria normal estándar $X \sim \mathcal{N}(0,1)$
- Intervalo de mayor densidad (HDI): Para un valor $\alpha \in [0,1]$, hay un intervalo B=(a,b) para el cual
 - p(a) = p(b)
 - $P(X \in B) = 1 \alpha$
- Para $\alpha = 0.2$:

Ejemplo

lacksquare Para la variable aleatoria $X \sim \mathcal{N}(\mu, \sigma)$ y $\alpha = 0.05$,

$$\mathsf{HDI} = (\mu - 1.96\sigma, \mu + 1.96\sigma)$$

- Éste intervalo se conoce comúnmente como el intervalo de credibilidad de 95%
- Compárese con la noción de intervalo de confianza, que visitaremos luego