Pravděpodobnost a statistika

Úvod do popisné statistiky

Vilém Vychodil

KMI/PRAS, Přednáška 1

Vytvořeno v rámci projektu 2963/2011 FRVŠ

Přednáška 1: Přehled

- Úvodní pojmy:
 - co je a čím se zabývají pravděpodobnost a statistika,
 - náhodné pokusy, elementární jevy, náhodné veličiny,
 - populace, výběrové soubory.
- Grafické metody popisu rozložení dat:
 - absolutní a relativní četnost,
 - frekvenční tabulky,
 - histogramy,
 - intervalové rozdělení četností.
- Míry centrální tendence a míry rozptýlenosti:
 - výběrový průměr,
 - výběrový rozptyl a směrodatná odchylka,
 - zkreslené a nezkreslené odhady populačního rozptylu,
 - empirické pravidlo.

Přehled kursu

- Úvod do popisné statistiky
- Úvod do analýzy závislostí
- Pravděpodobnost
- Podmíněná pravděpodobnost, nezávislost jevů, Bayesova věta
- Diskrétní náhodné veličiny
- O Diskrétní rozdělení: binomické, geometrické, Poissonovo
- Spojité náhodne veličiny
- Vícerozměrné náhodné veličiny
- Normální rozdělení, centrální limitní věta
- Bodové odhady a intervaly spolehlivosti
- Testování statistických hypotéz

Literatura

- Capinski M., Zastawniak T. J.: *Probability Through Problems* Springer 2001, ISBN 978–0–387–95063–1.
- Devore J. L.: *Probability and Statistics for Engineering and the Sciences* Duxbury Press, 7. vydání 2008, ISBN 978–0–495–55744–9.
- Gentle J. E.: Random Number Generation and Monte Carlo Methods Springer 2004, ISBN 978-0-387-00178-4.
- Hendl, J.: *Přehled statistických metod zpracování dat* Portál, Praha 2006, ISBN 978-80-7367-123-5
- Hogg R. V., Tanis E. A.: *Probability and Statistical Inference* Prentice Hall; 7. vydání 2005, ISBN 978-0-13-146413-1.
- Johnson J. L.: *Probability and Statistics for Computer Science* Wiley-Interscience 2008, ISBN 978-0-470-38342-1.

Pravděpodobnost a statistika

Mathematické disciplíny, zabývající se následujícími problémy:

Pravděpodobnostní modely

- modely experimentů jejichž výsledky nemohou být s určitostí predikovány
- zjednodušené modely komplexních systémů

Teorie odhadu

odhady hodnot veličin na základě opakovaných měření

Statistická inference

- predikce, stanovení intervalů spolehlivosti
- testování statistických hypotéz

Anaýza závislostí v datech

- metody rozpoznávání častých/obvyklých/zajímavých vzorů v datech
- data mining (faktorová analýza, dekompozice dat)
- a další...

Statistická inference

Statistická inference = usuzování o populacích na základě výběrů:

- populace obecný pojem (rodiny v ČR, vyrobené elektronické součástky)
- výběr několik vybraných prvků populace (několik rodin / součástek)

Cíl statistické inference: udělat věrohodný závěr o populaci na základě výběru.

polulace: rodiny v ČR

populační parametr: počet dětí

cenzus: průměrný počet dětí v populaci

výběr: 100 vybraných rodin

výběrová statistika: průměrný počet dětí (100)

statistická analýza dat (popisná statistika)

inference (hodnoty neznámého parametru)

Náhodný pokus

Definice (Náhodný pokus a jeho výsledek)

Náhodný pokus je činnost probíhající pod vlivem náhody a jehož výsledek není plně určen podmínkami, za kterých je prováděn. Každý **náhodný pokus** (angl.: random experiment) končí výsledkem, který je nazýván **elementární jev** (angl.: outcome).

Dále předpokládáme, že

- náhodný pokus může být libovolně opakován,
- výsledek náhodného pokusu je nejistý dokud není pokus dokončen,
- předpokládáme, že všechny možné výsledky náhodného pokusu jde vymezit:

Definice (Prostor elementárních jevů Ω)

Množina všech elementární jevů náhodného pokusu, o který se zajímáme, se označuje Ω a nazývá se **prostor** (**elementárních jevů**), angl.: *outcome space*.

Příklady

• Jsou vrženy dvě kostky; zajímáme se o součet teček na obou kostkách.

$$\Omega = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\} .$$

• Každý ze šesti studentů zvolí číslo od nuly do 52; zajímá nás, jestli aspoň dvě z těchto čísel jsou shodná (označíme A) či nikoliv (označíme B).

$$\Omega = \{A, B\} .$$

Házíme mincí tak dlouho, dokud neuvidíme orla; zajímáme se o počet hodů.

$$\Omega = \{1, 2, 3, 4, \dots\} = \mathbb{N} .$$

Zkoumáme hmotnost produktů, rychlost jízdy, čas, a pod.

$$\Omega \subseteq \mathbb{R}$$
 , například $\Omega = (50,400)$.

Příklad

Náhodný pokus: Jsou vrženy dvě různě barevné kostky; zajímáme se počty teček, které padnou na obou kostkách.

$$\Omega = \{ \langle x, y \rangle \mid x, y \in \{1, 2, 3, 4, 5, 6\} \} = \{ \langle 1, 1 \rangle, \langle 1, 2 \rangle, \dots, \langle 6, 6 \rangle \}.$$

 Ω je druhá kartézská mocnina $\{1,2,3,4,5,6\}$, to jest $|\Omega|=6\cdot 6=36$. Uspořádaná dvojice $\langle x,y\rangle\in\Omega$ reprezentuje elementární jev: "první kostka má na horní straně x teček a druhá kostka má na horní straně y teček".

Po provedení experimentu můžeme provést dodatečná měření na Ω :

- součet teček na obou kostkách,
- větší hodnota z hodnot na obou kostkách,
- průměr hodnot na obou kostkách, . . .

Výsledek měření = číselná hodnota z \mathbb{R} .

Náhodný pokus \Longrightarrow výsledek (elementární jev) \Longrightarrow výsledek měření (nejistý)

Náhodné veličiny (neformálně)

Náhodná veličina / proměnná (angl.: random variable)

- zobrazení $X: \Omega \to \mathbb{R}$ (náhodné veličiny označujeme X, Y, Z, \dots)
- formalizuje měření na výsledku náhodného pokusu (Přednáška 5)

Základní problém statistického usuzování:

Sledujeme hodnoty, kterých nabývá náhodná veličina po opakování náhodného pokusu. Některé z hodnot se vyskytují častěji než jiné – chceme tento fenomén formalizovat (kvantifikovat).

Základní cíle statistické inference:

- Popsat rozdělení pravděpodobnosti náhodné veličiny: popsat poměrné množství případů, kdy náhodný pokus a následné měření skončí danými hodnotami.
- Rozdělení pravděpodobnosti jsou obvykle odhadovány pomocí výběrových souborů obsahujících pozorované hodnoty náhodné veličiny.

10 / 53

Základní populace a výběrový soubor

Definice (Základní populace)

Množina všech hodnot, které mohou být teoreticky zaznamenány jako výsledek náhodného pokusu nebo výsledek následného měření, se nazývá (základní) populace, angl.: population.

(Základní) populace = statistický protějšek termínu prostor elementárních jevů.

Definice (Výběrový soubor / výběr / statistický výběr / vzorek)

Uvažujme náhodný pokus s prostorem Ω . Pokud je náhodný pokus opakován n-krát, pak se posloupnost zaznamenaných výsledků x_1, \ldots, x_n nazývá **výběrový soubor** (nebo jen **výběr**) velikosti n z populace Ω , angl.: (statistical) sample.

Zjednodušení: Prostory a výběrové soubory uvažujeme *číselné*, tedy $\Omega \subseteq \mathbb{R}$.

Absolutní četnost a relativní četnost

Definice (Absolutní četnost, relativní četnost)

Uvažujme náhodný pokus s prostorem Ω . Pokud je náhodný pokus opakován n-krát a f je počet výskytů výsledku $x \in \Omega$, pak se f nazývá (absolutní) četnost x, angl.: f se nazývá relativní četnost x, angl.: f requency.

Poznámka: "Frekventistická interpretace pravděpodobnosti"

Relativní četnost x je (obvykle) nestabilní při malém počtu opakování náhodného pokusu, ale má tendenci se stabilizovat a blížit hodnotě p, pokud n roste. Hodnota p se interpretuje jako pravděpodobnost elementárního jevu (Přednáška 3).

Tabulky absolutní / relativní četnosti

• standardní metoda zápisu (relativních) četností hodnot ve výběrech

```
        4
        6
        2
        7
        2
        9
        3
        4
        2
        1
        5
        4
        1
        3
        2
        5
        2
        2
        3
        6
        3
        3
        5
        2
        3

        1
        5
        2
        2
        3
        4
        2
        0
        4
        2
        4
        3
        5
        0
        3
        4
        5
        1
        3
        7
        4
        2
        2

        4
        3
        5
        3
        2
        9
        4
        4
        2
        5
        2
        2
        4
        3
        6
        2
        3
        1
        4
        3
        3
        2

        5
        6
        3
        2
        2
        4
        2
        4
        8
        2
        2
        5
        2
        4
        3
        6
        2
        3
        1
        5
```

počet dětí	tabelace	četnost	relativní četnost
0			
1			
2			
:			
8			
9			

```
4 6 2 7 2 9 3 4 2 1 5 4 1 3 2 5 2 2 3 6 3 3 5 2 3 1 5 2 3 1 5 2 2 3 4 ¾ 4 2 ¼ 4 2 4 3 5 ¼ 3 4 5 1 3 7 4 2 2 4 3 5 6 3 2 2 3 3 3 2 2 4 2 4 8 2 2 5 2 4 3 6 2 3 1 5
```

počet dětí	tabelace	četnost	relativní četnost
0			
1			
2			
:			
8			
9			

počet dětí	tabelace	četnost	relativní četnost
0		3	$\frac{3}{100} = 0.03$
1			
2			
:			
8			
9			

počet dětí	tabelace	četnost	relativní četnost
0		3	0.03
1	MI		
2	`		
:			
8			
9			

počet dětí	tabelace	četnost	relativní četnost
0		3	0.03
1	MI	6	$\frac{6}{100} = 0.06$
2	`		
:			
8			
9			

Grafická reprezentace dat z tabulek četností

Histogram absolutní četnosti / histogram relativní četnosti:

- diagram zakreslený do kartézské roviny,
- pro každý $x \in \Omega$: obdélník s výškou rovnou absolutní/relativní četnosti x,
- šířka všech obdélníků je konstantní.

- možné znázorňovat i v jiném tvaru (koláče a podobně)
- tvar histogramu vztah k hustotě pravděpodobnosti (Přednáška 7)

Příklad (Tabulka a histogram četnosti)

počet	absolutní	relativní
dětí	četnost	četnost
0	3	0.03
1	6	0.06
2	30	0.30
3	23	0.23
4	17	0.17
5	11	0.11
6	5	0.05
7	2	0.02
8	1	0.01
9	2	0.02
\sum :	100	1.00

Příklad (Histogramy absolutních/relativních četností)

Příklad (Skupinové rozdělení četností: motivační příklad)

Uvažujme výběrový soubor obsahující hmotnosti 40 produktů stejného typu:

22.38	21.55	22.20	22.55	22.87	24.40	21.65	23.30	23.58	22.37
19.39	23.86	23.28	24.63	22.35	24.23	23.95	23.21	22.11	21.42
25.92	24.00	22.97	23.43	22.72	22.90	23.32	23.58	21.37	22.67
19.84	21.97	20.11	21.06	20.57	22.48	23.60	22.45	21.00	23.82

hmotnost	četnost	relativní četnost
19.39	1	0.025
19.84	1	0.025
20.11	1	0.025
:	:	:
24.63	1	0.025
25.92	1	0.025

K NIČEMU!

Prostor hodnot je spojitý!

Skupinové (intervalové) rozdělení četností

Pokud je Ω spojitá (např. reálný interval) nebo obsahuje-li Ω mnoho hodnot, rozdělíme Ω na disjunktní podmnožiny (skupiny) a uvažujeme četnosti celých skupin.

Postup:

- Určíme největší (max) a nejmenší (min) hodnotu ve výběru. Rozdíl r = max - min se nazývá **variační rozpětí**, angl.: range.
- 2 Zvolíme k intervalů, angl.: class intervals, které tvoří rozklad na (min, max):

$$(c_0, c_1), (c_1, c_2), \ldots, (c_{k-1}, c_k)$$

Číslo k volíme obvykle $5 \le k \le 20$ (Sturgessovo pravidlo: $k \approx 1 + 3.3 \log n$).

- ullet Čísla c_{i-1} a c_i se nazývají **hranice intervalu** (c_{i-1},c_i) , angl.: class boundaries.
- \bullet Číslo $\frac{c_{i-1}+c_i}{2}$ se nazývá střed intervalu (c_{i-1},c_i) , angl.: class mark.

Tabulky intervalového rozdělení četností

Meze intervalu (c_{i-1}, c_i) , angl.: class limits, isou hodnoty d_{i-1} a d_i z výběru x_1, \ldots, x_n , zapisované (d_{i-1}, d_i) , pro které platí

- $\mathbf{0}$ $d_{i-1} \leq d_i$ a dále
- $\{x_1,\ldots,x_n\}\cap(c_{i-1},d_{i-1})=\emptyset$ a $\{x_1,\ldots,x_n\}\cap(d_i,c_i)=\emptyset$.

Četnost intervalu (c_{i-1}, c_i) , angl.: class frequency, je číslo f_i označující počet hodnot z výběru patřících do (c_{i-1}, c_i) , to jest $f_i = |(c_{i-1}, c_i) \cap \{x_1, \ldots, x_n\}|$.

Tabulka absolutních četností:

- řádky: korespondují s *intervaly* (c_{i-1}, c_i)
- sloupce: interval, meze intervalu, střed intervalu, četnost intervalu

Tabulka relativních četností: jako tabulka absolutních četností + sloupec h_i :

$$h_i = rac{f_i}{n \cdot (c_i - c_{i-1})}$$
 , hodnota $rac{f_i}{n}$ je relativní četnost intervalu (c_{i-1}, c_i) .

Histogramy intervalového rozdělení četností

Histogram int. rozdělení absolutních četností: pro každý interval (c_{i-1}, c_i) zakreslíme obdélník daný body $[c_{i-1}, 0]$, $[c_i, 0]$, $[c_i, f_i]$ a $[c_{i-1}, f_i]$.

Histogram int. rozdělení relativních četností: pro každý interval (c_{i-1}, c_i) zakreslíme obdélník daný body $[c_{i-1}, 0]$, $[c_i, 0]$, $[c_i, h_i]$ a $[c_{i-1}, h_i]$.

Věta

Obsah všech obdélníků v histogramu int. rozdělení relativních četností je rovna 1.

Důkaz.

$$\sum_{i=1}^{k} \left((c_i - c_{i-1}) \cdot h_i \right) = \sum_{i=1}^{k} \frac{(c_i - c_{i-1}) \cdot f_i}{n \cdot (c_i - c_{i-1})} = \sum_{i=1}^{k} \frac{f_i}{n} = \frac{1}{n} \sum_{i=1}^{k} f_i = \frac{1}{n} \cdot n = 1.$$

Příklad (Intervalové rozdělení četností s intervaly stejných délek)

Uvažujme výběrový soubor obsahující hmotnosti 40 produktů stejného typu:

interval	meze	f_i	h_i	střed
$\overline{(19.1, 20.3)}$	(19.39, 20.11)	3	0.063	19.7
(20.3, 21.5)	(20.57, 21.42)	5	0.104	20.9
(21.5, 22.7)	(21.55, 22.67)	12	0.250	22.1
(22.7, 23.9)	(22.72, 23.86)	14	0.292	23.3
(23.9, 25.1)	(23.95, 24.63)	5	0.104	24.5
(25.1, 26.3)	(25.92, 25.92)	1	0.021	25.7

Příklad (Intervalové rozdělení četností s intervaly stejných délek)

interval	f_i	střed
(19.1, 20.3)	3	19.7
(20.3, 21.5)	5	20.9
(21.5, 22.7)	12	22.1
(22.7, 23.9)	14	23.3
(23.9, 25.1)	5	24.5
(25.1, 26.3)	1	25.7

			14	1	
		12			
	5			5	
3					
.					1
19.7	20.9	22.1	23.3	24.5	25.7

interval	h_i	střed
(19.1, 20.3)	0.063	19.7
(20.3, 21.5)	0.104	20.9
(21.5, 22.7)	0.250	22.1
(22.7, 23.9)	0.292	23.3
(23.9, 25.1)	0.104	24.5
(25.1, 26.3)	0.021	25.7

Příklad (Intervalové rozdělení četností s intervaly různých délek)

Uvažujme výběrový soubor obsahující počty mrtvých při 40 živelních pohromách:

2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 6 8 9 12 16 18 22 25 29 32 39 41 47 48 50

interval	meze	f_i	h_i
(1.5, 2.5)	(2, 2)	7	0.175
(2.5, 3.5)	(3,3)	6	0.150
(3.5, 4.5)	(4,4)	5	0.125
(4.5, 5.5)	(5,5)	4	0.100
(5.5, 6.5)	(6,6)	4	0.100
(6.5, 10.5)	(8,9)	2	0.013
(10.5, 20.5)	(12, 18)	3	0.007
(20.5, 30.5)	(22, 29)	3	0.007
(30.5, 40.5)	(32, 39)	2	0.005
(40.5, 50.5)	(41, 50)	4	0.010

Příklad (Intervalové rozdělení četností s intervaly různých délek)

f_i	h_i
7	0.175
6	0.150
5	0.125
4	0.100
4	0.100
2	0.013
3	0.007
3	0.007
2	0.005
4	0.010
	7 6 5 4 4 2 3 3

Míry centrální tendence: výběrový průměr

Definice (Výběrový (aritmetický) průměr)

Výběrový (aritmetický) průměr \overline{x} výběru x_1, \ldots, x_n je číslo definované

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Poznámky:

- interpretace: $\overline{x} = \text{,střední hodnota z výběru"}$
- \overline{x} nemusí být jednou z hodnot x_1, \ldots, x_n
- triviální případy:
 - n=1 (jednoprvkový výběr): $\overline{x}=x_1$;
 - $x_1 = x_2 = \cdots = x_n$ (uniformní výběr): $\overline{x} = x_1 = x_2 = \cdots = x_n$.
- další typy průměru: geometrický, harmonický (požívané zřídka)

Vlastnosti výběrového průměru

Věta (o výběrovém průměru)

Pro každý výběr x_1, \ldots, x_n a jeho průměr \overline{x} platí:

- $\overline{x} = \sum_{i=1}^{n} \frac{x_i}{n},$
- $\sum_{i=1}^{n} (x_i \overline{x}) = 0,$

nabývá v bodě \overline{x} svého globálního minima.

Důsledek: \overline{x} minimalizuje hodnotu $\sum_{i=1}^{n} (x_i - x)^2$.

Důkaz.

První dvě tvrzení jsou zřejmá:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} \frac{1}{n} x_i = \sum_{i=1}^{n} \frac{x_i}{n}$$

$$\sum_{i=1}^{n} (x_i - \overline{x}) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \overline{x} = \sum_{i=1}^{n} x_i - n\overline{x} = \frac{n}{n} \sum_{i=1}^{n} x_i - n\overline{x} = n\overline{x} - n\overline{x} = 0.$$

Stačí ověřit, že $f'(\overline{x}) = 0$ a že $f''(\overline{x}) > 0$.

$$f'(x) = \sum_{i=1} ((x_i - x)^2)' = -2 \sum_{i=1} (x_i - x)$$
, užitím předchozího: $f'(\overline{x}) = -2 \cdot 0 = 0$.

$$f''(x) = -2\sum_{i=1}^{n} (x_i - x)' = -2\sum_{i=1}^{n} -1 = -2 \cdot -n = 2n > 0$$
, to jest: $f''(x) > 0$.

Příklady (Výběrový průměr)

• Pro výběr obsahující n=5 hodnot 3, 7, 2, 5 a 3 máme:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{3+7+2+5+3}{5} = \frac{20}{5} = 4.$$

- Předchozí příklady:
 - ullet průměrný počet dětí v rodinách: $\overline{x}=3.28pprox3$,
 - ullet průměrná hmotnost produktů: $\overline{x}=22.6265$,
 - průměrné ztráty na životech: $\overline{x} = 12.3 \approx 12$.
- Výběrový průměr zaznačený v histogramech:

Míry rozptýlenosti: výběrový rozptyl a směrodatná odchylka

Definice (výběrový rozptyl / výběrová variance / výběrová disperze)

Výběrový rozptyl s^2 výběru x_1, \ldots, x_n je číslo definované

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$
.

Definice (výběrová směrodatná odchylka)

Výběrová směrodatná odchylka s výběru x_1, \ldots, x_n je číslo definované

$$s = \sqrt{s^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}.$$

angl.: sample variance, sample standard deviation

Vlastnosti výběrového rozptylu a směrodatné odchylky

Výběrový rozptyl s^2

- míra rozptýlenosti hodnot ve výběru od jeho průměru,
- $s^2 \ge 0$,
- ullet pokud je hodnota s^2 malá, pak je většina hodnot ve výběru blízko \overline{x} ,
- triviální případy:
 - pro n=1 (jednoprvkový výběr) není s^2 definovaná,
 - $s^2=0$ právě když $x_1=x_2=\cdots=x_n=\overline{x}$ (uniformní výběr).

Výběrová směrodatná odchylka s

- podobné vlastnosti a význam jako výběrový rozptyl,
- používá stejné jednotky jako data ve výběru.

Například: data ve výběru v m (metrech) $\implies s^2$ v $m^2 \implies s$ v m.

Interpretace výběrové směrodatné odchylky

Interpretace hodnoty s

Výběrová směrodatné odchylky $s=\sqrt{s^2}\geq 0$ je mírou disperze dat od jejich středu. Hodnota s může být chápána jako horní aproximace "průměrné vzdálenosti hodnot x_1,\ldots,x_n od \overline{x} ". Symbolicky:

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2} \quad \approx \quad \frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}|.$$

Poznámka

Lze ukázat, že vždy platí $s \geq \frac{1}{n} \sum_{i=1}^n |x_i - \overline{x}|$, ale obecně $s \neq \frac{1}{n} \sum_{i=1}^n |x_i - \overline{x}|$.

Příklad (Výběrová směrodatná odchylka \times průměrná vzdálenost od \overline{x})

Pro výběr obsahující n=5 hodnot 3, 7, 2, 5 a 3 máme $\overline{x}=4$ a dále:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$= \frac{(3-4)^{2} + (7-4)^{2} + (2-4)^{2} + (5-4)^{2} + (3-4)^{2}}{5-1}$$

$$= \frac{(-1)^{2} + 3^{2} + (-2)^{2} + 1^{2} + (-1)^{2}}{4}$$

$$= \frac{1+9+4+1+1}{4} = \frac{16}{4} = 4; \ s = \sqrt{s^{2}} = 2.$$

Průměrná vzdálenost od výběrového průměru je

$$\frac{|3-4|+|7-4|+|2-4|+|5-4|+|3-4|}{5} = \frac{1+3+2+1+1}{5} = \frac{8}{5} = 1.6 < 2.$$

Příklad (Výběrový rozptyl a výběrová směrodatná odchylka)

- Předchozí příklady:
 - počet dětí v rodinách: $\bar{x} = 3.28$, $s^2 = 3.113$, s = 1.764.
 - hmotnost produktů: $\overline{x} = 22.6265$, $s^2 = 1.865$, s = 1.366.
 - ztráty na životech: $\overline{x} = 12.3$, $s^2 = 215.703$, s = 14.687.
- Předchozí histogramy:

$$s = 2.092$$

$$s^2 = 6.706$$

$$s = 2.950$$

$$s^2 = 10.154$$

$$s = 3.187$$

Další vlastnosti rozptylu

Rozptyl definovaný
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$
 | Ize rovněž vyjádřit:

Věta (o výpočtovém tvaru s^2)

$$s^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}}{n-1} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n-1}$$

Poznámka:

$$\bullet \ \sum_{i=1}^n x_i^2 - n\overline{x}^2 \ \text{v předchozí Větě znamená} \ \left(\sum_{i=1}^n x_i^2\right) - n\overline{x}^2 \text{, nikoliv } \sum_{i=1}^n (x_i^2 - n\overline{x}^2)$$

Důkaz.

Nejprve ukážeme rovnost $\sum_{i=1}^n (x_i - \overline{x})^2$ a $\sum_{i=1}^n x_i^2 - n\overline{x}^2$. Platí, že

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} (x_i^2 - 2x_i \overline{x} + \overline{x}^2) = \sum_{i=1}^{n} x_i^2 - 2\overline{x} \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} \overline{x}^2$$

$$= \sum_{i=1}^{n} x_i^2 - 2\overline{x} \left(n \frac{1}{n} \sum_{i=1}^{n} x_i \right) + \sum_{i=1}^{n} \overline{x}^2$$

$$= \sum_{i=1}^{n} x_i^2 - 2\overline{x} (n\overline{x}) + n\overline{x}^2 = \sum_{i=1}^{n} x_i^2 - 2n\overline{x}^2 + n\overline{x}^2$$

$$= \sum_{i=1}^{n} x_i^2 - n\overline{x}^2.$$

Druhá část tvrzení plyne z následující rovnosti:

$$-n\overline{x}^{2} = -n\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)^{2} = -n\frac{1}{n^{2}}\left(\sum_{i=1}^{n}x_{i}\right)^{2} = -\frac{1}{n}\left(\sum_{i=1}^{n}x_{i}\right)^{2}.$$

Příklad

výběr: 3, 7, 2, 5, 3 ($\overline{x} = 4$)

• výpočet s^2 podle definice:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1+9+4+1+1}{4} = \frac{16}{4} = 4.$$

• výpočet s^2 užitím předchozí Věty:

$$n\overline{x}^2 = 5 \cdot 4^2 = 80,$$

$$s^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}}{n-1} = \frac{(3^{2} + 7^{2} + 2^{2} + 5^{2} + 3^{2}) - 80}{4} = \frac{96 - 80}{4} = \frac{16}{4} = 4.$$

Výpočetní složitost algoritmů pro výpočet rozptylu

Algoritmus 1

$$\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\overline{x})^2$$

- výpočet \overline{x} (n operací),
- 2 výpočet všech $(x_i \overline{x})^2$ (2n oper.),
- \odot součet všech $(x_i \overline{x})^2$ (n oper.),
- **o** podíl výsledku n-1 (1 oper.).

Celkem: 4n + 3 operací

Složitost: O(n)

Algoritmus 2

$$\frac{1}{n-1} \bigg(\sum_{i=1}^n x_i^2 - n\overline{x}^2 \bigg)$$

- součet čtverců všech x_i (2n operací),
- $oldsymbol{\circ}$ výpočet \overline{x} (n oper.),
- 3 čtverec předchozího (1 oper.),
- lacktriangle násobení výsledku n (1 oper.),
- odečet dvou výsledků (1 oper.),
- o podíl výsledku n-1 (1 oper.).

Celkem: 3n + 4 operací (**zlepšení**)

Složitost: O(n) (řádově stejná)

Výběrový rozptyl: otázky o tvaru definice

Diskuse

Výběrový rozptyl jsme zavedli jako míru rozptýlenosti hodnot ve výběru od jeho průměrné hodnoty. Nabízí se otázky:

- Je definice přirozená?
- Proč dělíme sumu čtverců číslem n-1 a ne n?
- Můžeme nadefinovat rozptyl jako míru vzájemné rozptýlenosti hodnot bez explicitního použití výběrového průměru?

Ukážeme, že

- s^2 lze definovat bez explicitního použití \overline{x} ,
- existuje rozumná alternativní definice pro s^2 , která používá dělitel n místo n-1 (obě varianty mají smysl, Přednáška 10).

Příklad (Motivační příklad pro definici s^2 nepoužívající \overline{x})

Vezmeme předchozí výběr $x_1=3$, $x_2=7$, $x_3=2$, $x_4=5$ a $x_5=3$.

Tabulka rozdílů hodnot z výběru:

					,
	3	7	2	5	3
3	0	$ \begin{array}{r} -4 \\ 0 \\ -5 \\ -2 \\ -4 \end{array} $	1	-2	0
7	4	0	5	2	4
2	-1	-5	0	-3	-1
5	2	-2	3	0	2
3	0	-4	1	-2	0

Tabulka druhých mocnin rozdílů:

	J			
3	7	2	5	3
0	16	1	4	0
16	0	25	4	16
1	25	0	9	1
4	4	9	0	4
0	16	1	4	0
		16 0 1 25 4 4	0 16 1 16 0 25 1 25 0 4 4 9	0 16 1 4 16 0 25 4 1 25 0 9 4 4 9 0

- Vypočteme průměr všech hodnot mimo diagonálu z tabulky (napravo).
- Podělíme výsledný průměr dvěma (důvod objasníme později).

V případě našeho příkladu:
$$\frac{160}{2n(n-1)} = \frac{160}{10\cdot 4} = \frac{160}{40} = 4 = s^2.$$

Zobecnění předchozího příkladu

Postup z předchozího příkladu vede na obecný vzorec:

$$\frac{1}{2n(n-1)} \sum_{i,j=1}^{n} (x_i - x_j)^2$$

- ullet dále prokážeme, že tato hodnota je rovna s^2
- ullet ve vztahu není použito \overline{x}
- nehodí se na výpočet, asymptotická časová složitost: $O(n^2)$

Lemma (pomocná věta, bude použita později)

$$\sum_{i,j=1}^{n} (x_i - x_j)^2 = 2n \left(\sum_{i=1}^{n} x_i^2 - n\overline{x}^2 \right).$$

Důkaz.

$$\sum_{i,j=1}^{n} (x_i - x_j)^2 = \sum_{i,j=1}^{n} (x_i^2 - 2x_i x_j + x_j^2) = \sum_{i,j=1}^{n} x_i^2 - 2\sum_{i,j=1}^{n} x_i x_j + \sum_{i,j=1}^{n} x_j^2$$

$$= \sum_{i=1}^{n} n x_i^2 - 2\sum_{i,j=1}^{n} x_i x_j + \sum_{j=1}^{n} n x_j^2 = 2\sum_{i=1}^{n} n x_i^2 - 2\sum_{i,j=1}^{n} x_i x_j$$

$$= 2n \sum_{i=1}^{n} x_i^2 - 2\sum_{i,j=1}^{n} x_i x_j = 2n \sum_{i=1}^{n} x_i^2 - 2\sum_{i=1}^{n} \left(x_i \sum_{j=1}^{n} x_j\right)$$

$$= 2n \sum_{i=1}^{n} x_i^2 - 2\sum_{i=1}^{n} (x_i \cdot n \overline{x}) = 2n \sum_{i=1}^{n} x_i^2 - 2n \overline{x} \sum_{i=1}^{n} x_i$$

$$= 2n \sum_{i=1}^{n} x_i^2 - 2n \overline{x} n \overline{x} = 2n \sum_{i=1}^{n} x_i^2 - 2n^2 \overline{x}^2 = 2n \left(\sum_{i=1}^{n} x_i^2 - n \overline{x}^2\right).$$

Výběrový rozptyl vyjádřený bez použití \overline{x}

Věta (o významu dvojnásobku s^2)

$$s^{2} = \frac{1}{2n(n-1)} \sum_{i,j=1}^{n} (x_{i} - x_{j})^{2}$$

Důkaz.

Tvrzení dokážeme použitím předchozích pozorování:

$$\frac{1}{2n(n-1)} \sum_{i,j=1}^{n} (x_i - x_j)^2 = \frac{1}{2n(n-1)} \cdot 2n \left(\sum_{i=1}^{n} x_i^2 - n\overline{x}^2 \right)$$
$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - n\overline{x}^2 \right) = s^2.$$

42 / 53

Příklad (Motivace pro "zkreslený odhad rozptylu")

Zvolme výběr $x_1 = 3$, $x_2 = 7$, $x_3 = 2$, $x_4 = 5$ a $x_5 = 3$.

Tabulka rozdílů hodnot z výběru:

	3	7	2	5	3
3	0	-4	1	-2	0
7	4	0	5	2	4
2	-1	-5	0	-3	-1
5	2	-2	3	0	2
3	0	$0 \\ -5 \\ -2 \\ -4$	1	-2	0

Tabulka druhých mocnin rozdílů:

-						
		3	7	2	5	3
	3	0	16	1	4	0
	7	16	0	25	4	16
	2	1	25	0	9	1
	5	4	4	9	0	4
	3	0	16	1	4	0

- Vypočteme průměr všech hodnot z tabulky (napravo) včetně diagonály.
- 2 Opět podělíme výsledný průměr dvěma.

Zopakováním předchozí úvahy dostaneme:

$$\frac{1}{2n^2} \cdot \sum_{i,j=1}^{n} (x_i - x_j)^2 .$$

Vlastnosti "zkresleného odhadu rozptylu"

Věta

$$\frac{1}{2n^2} \cdot \sum_{i,j=1}^{n} (x_i - x_j)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Důkaz.

Dokážeme použitím předchozích tvrzení:

$$\frac{1}{2n^2} \cdot \sum_{i,j=1}^n (x_i - x_j)^2 = \frac{1}{2n^2} \cdot 2n \left(\sum_{i=1}^n x_i^2 - n\overline{x}^2 \right)$$
$$= \frac{1}{n} \left(\sum_{i=1}^n x_i^2 - n\overline{x}^2 \right) = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2.$$

44 / 53

Nezkreslený × zkreslený odhad rozptylu populace

Odhady rozptylu populace:

- uvažujeme (velkou) populaci a (nepoměrně menší) výběr z populace,
- ullet výběrový rozptyl s^2 slouží jako **nezkreslený odhad** rozptylu celé populace;
- hodnota s_n^2 daná vztahem

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

se nazývá zkreslený odhad rozptylu populace (Přednáška 10);

• rozdíl $s^2 - s_n^2 \ge 0$ se nazývá **zkreslení**.

Terminologie (používají se různé názvy)

- nestranný / nezkreslený / nevychýlený odhad, angl.: unbiased estimate
- stranný / zkreslený / vychýlený odhad, angl.: biased estimate
- zkreslení / vychýlení, angl.: bias

Vzájemný vztah s^2 a s_n^2

Zřejmě platí:

$$s^{2} = \frac{n}{n-1} \cdot s_{n}^{2}, \qquad s_{n}^{2} = \frac{n-1}{n} \cdot s_{n}.$$

Vždy platí:

$$s^2>s_n^2\,,$$
 pokud $\sum_{i=1}^n(x_i-\overline{x})^2>0\,.$

Poznámky o použití s_n^2

- \bullet S rostoucím n (obvykle n>30) je rozdíl mezi hodnotami s^2 a s_n^2 zanedbatelný.
- s_n^2 má tendenci zkreslovat hodnotu rozptylu celé populace (Přednáška 10).
- ullet V případě, že počítáme rozptyl z celé populace, používáme s_n^2 .

Příklad (Rozdíly mezi nezkresleným a zkresleným odhadem rozptylu)

Výběrový soubor počtu dětí ve 100 rodinách:

$$s^{2} = 3.113$$

 $s_{n}^{2} = 3.082$,
 $s = 1.764$
 $s_{n} = \sqrt{s_{n}^{2}} = 1.755$.

Využití absolutních četností při výpočtu \overline{x} a s^2

Mějme výběr x_1,\ldots,x_n v němž se vyskytuje k vzájemně různých hodnot u_1,\ldots,u_k jejichž absolutní četnosti jsou f_1,\ldots,f_k . Pak platí

Výběrový průměr

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{k} f_i u_i$$
.

Příklad:
$$\frac{4+2+5+6+2+2+4}{7} = \frac{3 \cdot 2 + 2 \cdot 4 + 1 \cdot 5 + 1 \cdot 6}{7}$$

Výběrový rozptyl

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \sum_{i=1}^{k} f_{i} (u_{i} - \overline{x})^{2}.$$

Využití intervalového rozdělení četností při výpočtu \overline{x} a s^2

Mějme výběr x_1,\ldots,x_n jehož hodnoty jsou rozděleny do k intervalů $(c_0,c_1),(c_1,c_2),\ldots,(c_{k-1},c_k)$ s absolutními četnostmi f_1,\ldots,f_k a středy intervalů u_1,\ldots,u_k . Pak můžeme uvažovat následující odhady pro hodnoty \overline{x} a s^2 .

Odhad \overline{u} pro výběrový průměr \overline{x}

$$\overline{u} = \frac{1}{n} \sum_{i=1}^{k} f_i u_i \quad \approx \quad \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$
.

Odhad u^2 pro výběrový rozptyl s^2

$$u^{2} = \frac{1}{n-1} \sum_{i=1}^{k} f_{i}(u_{i} - \overline{u})^{2} \approx \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = s^{2}$$
.

Příklad (Přesné hodnoty \overline{x} a s^2 a jejich odhady)

interval	meze	f_i	h_i	střed
(19.1, 20.3)	(19.39, 20.11)	3	0.063	19.7
(20.3, 21.5)	(20.57, 21.42)	5	0.104	20.9
(21.5, 22.7)	(21.55, 22.67)	12	0.250	22.1
(22.7, 23.9)	(22.72, 23.86)	14	0.292	23.3
(23.9, 25.1)	(23.95, 24.63)	5	0.104	24.5
(25.1, 26.3)	(25.92, 25.92)	1	0.021	25.7

$$\overline{u} = \frac{1}{n} \sum_{i=1}^{k} f_i u_i = \frac{3 \cdot 19.7 + 5 \cdot 20.9 + \dots + 1 \cdot 25.7}{40} = \frac{903.2}{40} = 22.58.$$

$$u^2=rac{1}{n-1}\sum_{i=1}^k f_i(u_i-\overline{u})^2=1.979.$$
 V tomto případě: $\overline{x}
eq \overline{u}$ a $s^2
eq u^2.$

Empirické pravidlo

Odhad intervalu hodnot

- aplikace výběrové směrodatné odchylky
- přibližné určení intervalů hodnot
- lze použít, když má histogram tvar "zvonu"
- dokážeme později (PŘEDNÁŠKA 9)

Empirické pravidlo

Uvažujme výběr x_1,\dots,x_n s výběrovým průměrem \overline{x} a výběrovou směrodatnou odchylkou s. Pokud má histogram tvar "zvonu" pak

- ullet přibližně $68\,\%$ dat z výběru se nachází v intervalu $(\overline{x}-s,\overline{x}+s)$,
- přibližně $95\,\%$ dat z výběru se nachází v intervalu $(\overline{x}-2s,\overline{x}+2s)$,
- přibližně 99.7% dat z výběru se nachází v intervalu $(\overline{x} 3s, \overline{x} + 3s)$.

Přednáška 1: Závěr

Pojmy k zapamatování:

- náhodný pokus, elementární jev, prostor elementárních jevů
- základní populace, výběr, relativní/absolutní četnost
- výběrový průměr (míra centrální tendence dat)
- výběrový rozptyl, směrodatná odchylka (míry rozptýlenosti dat)

Použité zdroje:

- Devore J. L.: *Probability and Statistics for Engineering and the Sciences* Duxbury Press, 7. vydání 2008, ISBN 978–0–495–55744–9.
- Hendl, J.: *Přehled statistických metod zpracování dat* Portál, Praha 2006, ISBN 978-80-7367-123-5
- Hogg R. V., Tanis E. A.: *Probability and Statistical Inference* Prentice Hall; 7. vydání 2005, ISBN 978-0-13-146413-1.