EVALUATION OF ADVANCED 1.&D TOPICS IN PHOTOVOLTAICS

SOLAR ENERGY RESEARCH INSTITUTE

T. Surek

Objective

DEVELOP PRIORITIZED LIST OF ADVANCED R&D AREAS
 IN PHOTOVOLTAICS TO ASSURE OPTIMAL USE OF LIMITED FUNDS.

Approach

- IDENTIFY AR&D AREAS (SERI/JPL/SANDIA PV PROGRAM MANAGERS/RESEARCHERS,
 OMB GUIDELINES, SPEAC AND ERAB REPORTS)
- DEVELOP EVALUATION CRITERIA
- SOLICIT EVALUATIONS FROM PV LYPERTS IN INDUSTRY, UNIVERSITIES AND GOVERNMENT
- EVALUATE RESPONSES; IDENTIFY RELATIVE IMPORTANCE OF AR&D AREAS;
 ALLOCATE FUNDING

AR&D Areas

- 35 AR&D ACTIVITIES WERE IDENTIFIED IN 10 MAJOR AREAS:
 - AMORPHOUS SILICON
 - CONCENTRATOR CELLS
 - CRYSTALLINE SILICON
 - HIGH EFFICIENCY: III-√ AND RELATED AREAS
 - INNOVATIVE CONCEPTS
 - LUMINESCENT CONCENTRATORS
 - PHOTOELECTROCHEMICAL AREAS
 - SUPPORT RESEARCH
 - SYSTEMS AND MODULES
 - II-VI AND RELATED AREAS

PLENARY SESSION. T. SUREK

Evaluation Criteria

• CONTRIBUTION TO BASIC SCIENTIFIC UNDERSTANDING:

VERY LIKELY

TO PRODUCE SIGNIFICANT ADVANCES, DISCOVERIES,...

LIKELY

TO ADD FUNDAMENTAL KNOWLEDGE

NOT LIKELY

TO ADD NEW KNOWLEDGE

• POTENTIAL IMPACT (IN 5 YEARS OR MORE) ON FURTHER TECHNOLOGY DEVELOPMENT BY PRIVATE INDUSTRY:

EXCELLENT

PROBABILITY OF SIGNIFICANT IMPACT

PROBABLE

THAT POSITIVE OR INDIRECT IMPACT WILL RESULT

UNLIKELY

TO HAVE ANY IMPACT

PRIORITIES FOR FEDERAL AR&D FUNDING:

VERY HIGH PRIORITY

MUST BE FUNDED, REGARDLESS OF TOTAL BUDGET AVAILABLE

HIGH PRIORITY

SHOULD BE FUNDED IF POSSIBLE

MEDIUM PRIORITY

FUND IF ADEQUATE FUNDS EXIST

LOW PRIORITY

FUND ONLY UNDER HIGHEST BUDGET

VERY LOW PRIORITY

SHOULD NOT BE FUNDED

Example

III-V COMPOUND SEMICONDUCTOR MATERIALS FOR HIGH EFFICIENCY PHOTOVOLTAIC CELLS

THIS INCLUDES STUDIES OF NUCLEATION AND GROWTH, DOPANT INCORPORATION, DEFECT DENSITY REDUCTION, LATTICE MISMATCHED GROWTHS, STRESSED LAYERS AND SUBSTRATE DEVELOPMENT. MATERIALS SHOULD INCLUDE BINARY, TERNARY, AND QUATERNARY III-V COMPOUNDS, THIN POLYCRYSTALLINE FILMS AND THIN FILMS ON REUSABLE OR BACRIFICIAL SUBSTRATES.

CONTRIBUTION TO BASIC

VERY LIKELY

LIKELY

NOT LIKELY

SCIENTIFIC UNDERSTANDING

POTENTIAL IMPACT ON FURTHER TECHNOLOGY DEVELOPMENT BY

PRIORITY FOR FEDERAL AR&D

EXCELLENT

PROBABLE

UNLIKELY

PRIVATE INDUSTRY

ERY HIGH

HIGH MEDIUM

LOW LOWEST

COMMENTS:

Evaluation Summary

- 62 RESPONSES WERE RECEIVED FROM PV EXPERTS IN INDUSTRY, UNIVERSITIES AND GOVERNMENT:
 - 29 INDUSTRY
 9 UNIVERSITY
 24 GOVERNMENT
- NORMALIZED SCORES WERE CALCULATED BY ASSIGNING VALUES TO QUALITATIVE RATINGS; AREAS WERE RANK-ORDERED FOR EACH EVALUATION CRITERION
- FOLLOWING CHARTS SHOW RANKINGS (1ST THROUGH 35TH) OF ARED AREAS FOR THE THREE EVALUATION CRITERIA

Amorphous Silicon

	SCIENTIFIC Value	TECHNOLOGY IMPACT	FUNDING PRIORITY
LIGHT INDUCED CHANGES IN AMORPHOUS SILICON AND EFFECTS O.I SOLAR CELL STABILITY	1	2-3	1
INTERFACE PROBLEMS ASSOCIATED WITH AMORPHOUS SILICON PHOTOVOLTAIC DEVICES	11-12	2-3	4
DEPOSITION METHODS FOR AMORPHOUS FILMS	11-12	1	2
MATERIAL CHARACTERIZATION AND THEORETICAL UNDERSTANDING OF THIN FILM AMORPHOUS MATERIALS	2	7	3
NEW AMORPHOUS MATERIALS	8-9	9-10	15

Concentrator Cells

	SCIENTIFIC VALUE	TECHNOLOGY	FUNDING PRIORITY
CONCENTRATOR CELL OPTIMIZATION	28	21	20

PLENARY SESSION: T. SUREK

Crystalline Silicon

	SCIENTIFIC VALUE	TECHNOLOGY IMPACT	FUNDING PRIORITY
DEFECT PASSIVATION AND MATERIALS MODIFICATION FOR POLYCRYSTALLINE SILICON	10	8	12
BASIC MECHANISMS IN POLYCRYSTALLINE SILICON	6	15-16	10-11
CELL PHYSICS IN CRYSTALLINE SILICON	15-17	15-16	14
SILICON SOURCE MATERIAL RESEARCH	29	17-18	22
SILICON MATERIAL GROWTH	21	4	18-19

High Efficiency: III-V and Related Areas

	SCIENTIFIC VALUE	TECHNOLOGY IMPACT	FUNDING PRIORITY
III-V COMPOUND SEMICONDUCTOR MATERIALS FOR HIGH EFFICIENCY PHOTOVOLTAIC LELLS	4	12	6-7
FUNDAMENTAL STUDIES IN 111-V COMPOUND SEMICONDUCTOR MATERIALS AND SOLAR CELLS	3	19	10-11
STRUCTURAL ELEMENTS OF HIGH EFFICIENCY PHOTOVOLTAIC CELLS	15-17	6	5

Innovative Concepts

	SCIENTIFIC VALUE	TECHNOLOGY IMPACT	FUNDING PRIORITY
NEW CONCEPTS	14	13-14	8
ORGANIC MATERIALS AND DEVICES	13	29	30

PLENARY SESSION: T. SUREK

Luminescent Concentrators

	SCIENTIFIC VALUE	TECHNOLOGY IMPACT	FUNDING PRIORITY
PHOTOCHEMICAL RESEARCH ON LUMINESCENCE IN SOLIDS	19	33-34	31-32
LUMINESCENT CONCENTRATORS	27	33-34	31-32

Photoelectrochemical Areas

	SCIENTIFIC VALUE	TECHNOLOGY IMPACT	FUNDING PRIORITY
FUNDAMENTAL PHOTOELECTROCHEMICAL PROCESSES	8-9	30-31	26-27
POLYCRYSTALLINE THIN FILMS FOR PHOTOELECTRO- CHEMICAL SOLAR CELLS	22-23	28	28
PHOTOELECTROCHEMICAL CELL STABILITY	20	30-31	26-27
OTHER RESEARCH IN PHOTOELECTROCH.MICAL CELLS	26	32	34
PHOTOELECTROCHEMICAL STORAGE	18	24-25	21

Support Research

	SCIENTIFIC VALUE	TECHNOLOGY 1MPACT	FUNDING PRIORITY
ENCAPSULANT REJEARCH	24	9 10	16-1?
INSOLATION RESOURCE AS: 4ENT	30	24-25	24
MEASUREMENTS AND CHARACTERIZATION	25	5	6-7
METALLIZATION RESEARCH	22-23	17-18	16-17

PLENARY SESSION: T. SUREK

Systems and Modules

	SCIENTIFIC VALUE	TECHNOLOGY IMPACT	FUNDING PRIORITY
FLAT PLATE MODULE RESEARCH	34	13-14	23
CONCENTRATOR MODULE RESEARCH	33	23	25
ADVANCED PHOTOYOLTAIC SYSTEMS RESEARCH	32	22	29
FRESNEL LENS RESEARCH	35	27	33

II - VI and Related Areas

	SCIENTIFIC VALUE	TECHNOLOGY IMPACT	FUNDING PRIORITY
RESEARCH ON COPPER INDIUM DISELENIDE (CUINSE2) CELL STRUCTURES AND FABRICATION	15-17	11	9
BASIC STUDIES IN COPPER INDIUM DISELENIDE (CulnSe ₂)	5	20	13
CONTINUED RESEARCH ON CDS/Cu2S	31	35	3 5
ALTERNATE POLYCRYSTALLINE THIN FILM PHOTOVOLTAIC MATERIALS	7	26	18-19

Conclusions

- RANKINGS WERE GENERALLY CONSISTENT AMONG THE TPREE GROUPS OF RESPONDEES
- "CONTRIBUTION TO BASIC SCIENTIFIC UNDERSTANDING" WAS RATED HIGHEST IN HIGH-RISK AREAS
- "POTENTIAL IMPACT ON FURTHER TECHNOLOGY DEVELOPMENT BY FRIVATE INDUSTRY"
 HAS ASSOCIATED WITH NEAR-TERM TECHNOLOGIES
- "PRIORITIES FOR FEDERAL ARED FUNDING" WERE HIGHEST IN AREAS NOT WIDELY ADDRESSED BY INDUSTRY
- COPIES OF EVALUATION RESULTS ARE AVAILABLE ON REQUEST

