ДЗ №3, Функциональное программирование

Сороковикова Александра

28 сентября 2021 г.

Задание 1

- 1) Пусть $u=a^n, \ v=b^n,$ тогда их длина совпадает. Следовательно, слово будет выглядеть так: $a^nabb^n.$ Если язык L регулярный, то по лемме о накачке должны существовать x,y,z, такие что $xyz=a^nabb^n,\ |xy|\le n,$ и для любого k $xy^kz\in L.$ Так как у a^n длина n, то xy точно содержатся в $a^n.$ Соответственно, $x=a^s,\ y=a^t,$ где s+t<=n. Тогда слово $xy^kz=a^sa^{kt}bz,$ но s+kt>n, следовательно, в таком слове $|u|\neq |v|,$ то есть слово не принадлежит языку, а значит, он нерегулярный.
- 2) Пусть k=n, следовательно, слово выглядит вот так: $a^nc^me^n$. Теперь это почти предыдущий пункт, то есть $|xy| \le n$, $x=a^s$, $y=a^t$, где s+t <= n. Соответственно, в слове $xy^kz=a^sa^{kt}c^me^n=a^{s+kt}c^me^n$, но s+kt>n, следовательно, m!=k+n+1, следовательно, слово не принадлежит языку, а значит, он нерегулярный.
- 3) Пусть множество P-2-prime = $\{p \in N: p \text{ is prime } \& (p+2) \text{ is prime} \}.$

Тогда если |P-2-prime $|=+\infty$, то нам подойдет любое слово, так как оно подойдет под регулярное выражение a*.

Если |P-2-prime| < ∞ , то $\exists M \in$ |P-2-prime| : $\forall p \in$ |P-2-prime| & $p \leq M$, следовательно, подойдет выражение $a\{0,M\}$