# **Cyclic Quadruples**



You need to count the number of quadruples of integers  $(X_1, X_2, X_3, X_4)$ , such that  $L_i \le X_i \le R_i$  for i = 1, 2, 3, 4 and  $X_1 \ne X_2, X_2 \ne X_3, X_3 \ne X_4, X_4 \ne X_1$ .

The answer could be quite large.

Hence you should output it modulo  $(10^9 + 7)$ .

That is, you need to find the remainder of the answer by  $(10^9 + 7)$ .

#### **Input Format**

The first line of the input contains an integer T denoting the number of test cases. The description of T test cases follows. The only line of each test case contains 8 space-separated integers  $L_1$ ,  $R_1$ ,  $L_2$ ,  $R_2$ ,  $L_3$ ,  $R_3$ ,  $L_4$ ,  $R_4$ , in order.

## **Output Format**

For each test case, output a single line containing the number of required quadruples modulo  $(10^9 + 7)$ .

#### **Constraints**

 $1 \le T \le 1000$  $1 \le L_i \le R_i \le 10^9$ 

### **Sample Input**

```
5
1 4 1 3 1 2 4 4
1 3 1 2 1 3 3 4
1 3 3 4 2 4 1 4
1 1 2 4 2 3 3 4
3 3 1 2 2 3 1 2
```

#### **Sample Output**

```
8
10
23
6
5
```

### **Explanation**

**Example case 1.** All quadruples in this case are

```
1214
1314
1324
2124
2314
2324
3124
3214
```

### Example case 2. All quadruples in this case are

```
1213
1214
1234
2123
2124
2134
3124
3134
3214
```

# **Example case 3.** All quadruples in this case are



# **Example case 4.** All quadruples in this case are

```
1234
1323
1324
1423
1424
1434
```

# **Example case 5.** All quadruples in this case are

```
3121
3131
3132
3231
3232
```