

Michael Lehn Tobias Speidel SoSe 2019 Blatt 2, 38 Punkte

Übungen zur Höheren Mathematik II *

Abgabe am 07.05.2019 vor Beginn der Übung im Hörsaal 2

- 5. Bestimmen Sie die Richtungsableitung der Funktion $f(x, y, z) = 4\cos z \arctan\left(ye^{-x^2}\right)$ im Punkt $\boldsymbol{x}_0 = (0, 1, \pi/4)^T$ in Richtung $\boldsymbol{r} = (1, 1, \sqrt{14})^T$. (4 Punkte)
- **6.** Zeigen Sie, dass die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) := \begin{cases} 0 &, (x,y) = (0,0), \\ \frac{|x|y}{|x| + y^2} &, (x,y) \neq (0,0), \end{cases}$$

im Nullpunkt stetig und in jede Richtung differenzierbar aber nicht (total) differenzierbar ist.

(5 Punkte)

7. Zeigen Sie, dass die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) := \begin{cases} 0 &, (x,y) = (0,0), \\ \frac{y \sin(xy)}{x^2 + y^4} &, (x,y) \neq (0,0), \end{cases}$$

im Nullpunkt in jede Richtung differenzierbar aber nicht stetig ist.

(5 Punkte)

8. Es seien $A \in \mathbb{R}^{n \times n}$ sowie $b \in \mathbb{R}^n$ und $c \in \mathbb{R}$ konstant. Bestimmen Sie jeweils die totale Ableitung der folgenden Funktionen.

a)
$$f(x) := b^T\!Ax$$
, b) $g(x) := x^T\!Ab$, c) $h(x) := x^T\!Ax + b^T\!x + c$. (je 3 Punkte)

9. a) Sei φ ein Skalarfeld, d.h. $\varphi: \mathbb{R}^3 \to \mathbb{R}$ und $\boldsymbol{F}: \mathbb{R}^3 \to \mathbb{R}^3$ ein Vektorfeld. Zeigen Sie die folgenden Identitäten.

i.)
$$\operatorname{div}(\varphi F) = \varphi \operatorname{div} F + \langle F, \operatorname{grad} \varphi \rangle$$
, ii.) $\operatorname{rot}(\varphi F) = \varphi \operatorname{rot} F + \operatorname{grad} \varphi \times F$.

b) Berechnen Sie für die folgenden Vektorfelder jeweils Divergenz und Rotation, wobei $r = \|x\|$ und $a \in \mathbb{R}^3$ ein konstanter Vektor ist.

i.)
$$F(x) := f(r)a$$
, ii.) $G(x) := g(r)x$.

Hinweise: i.) zu a): Komponentenschreibweise in kartesischen Koordinaten, d.h. $\varphi \mathbf{F} = \sum_{i=1}^{3} \varphi F_i \mathbf{e}_i$.

$$(2+3+3+3)$$
 Punkte)

^{*} Allgemein gilt: Ergebnisse sind immer zu begründen. Des Weiteren sind falsche Aussagen durch ein Gegenbeispiel zu widerlegen. Ergebnisse sind nachvollziehbar darzustellen und analytisch so weit wie möglich zu vereinfachen.

- 10. Zeigen Sie jeweils für n=2 und $k\in\mathbb{N}$:
 - a) Eine Folge (a_k) des \mathbb{R}^n konvergiert \Leftrightarrow jede Komponente von (a_k) konvergiert in \mathbb{R} .
 - b) Sei $(a_k) \subseteq \mathbb{R}^n$ beschränkt $\Rightarrow (a_k)$ besitzt eine konvergente Teilfolge.

Hinweise: i.) Der Satz von Bolzano-Weierstraß aus HM1 darf ohne Beweis verwendet werden.

(je 2 Punkte)

Ergänzende Aufgaben

- **A.** Gegeben sei die Funktion $f(x, y, z) = z \tan(xe^y)$. Bestimmen Sie die Richtungsableitung von f im Punkt $(1/3, \log \pi, 1)^T$ in Richtung $1/4 \cdot (1, -3, \sqrt{6})^T$.
- **B.** Gegeben sei die Funktion $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = \begin{cases} \frac{xy}{x+y} & , (x,y) \neq (0,0) \land x + y \neq 0, \\ 0 & , (x,y) = (0,0). \end{cases}$$

Berechnen Sie die Richtungsableitung der Funktion f entlang der Geraden y=2x im Ursprung.

C. a) Gegeben seien die Vektorfelder $F_i: \mathbb{R}^2 \to \mathbb{R}^2$. Skizzieren Sie jeweils die Vektorfelder in einem geeigneten Koordinatensystem.

i.)
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \boldsymbol{F}_1(x,y) = \begin{pmatrix} x \\ y \end{pmatrix}$$
,

ii.)
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \boldsymbol{F}_2(x,y) = \begin{pmatrix} y \\ x \end{pmatrix}$$
,

iii.)
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \boldsymbol{F}_3(x,y) = \begin{pmatrix} y \\ -x \end{pmatrix}$$

$$\begin{split} \text{i.)} & \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \pmb{F}_1(x,y) = \begin{pmatrix} x \\ y \end{pmatrix}, \\ \text{iii.)} & \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \pmb{F}_2(x,y) = \begin{pmatrix} y \\ x \end{pmatrix}, \\ \text{iv.)} & \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \pmb{F}_4(x,y) = \begin{pmatrix} x \\ -y \end{pmatrix}. \\ \end{split}$$

- b) Berechnen Sie jeweils Rotation und Divergenz der gegebenen Vektorfelder F_i aus a) anhand der Definitionen von Seite 1.
- c) Welche Bedeutung hat b) für ein Vektorfeld $F: D \subset \mathbb{R}^2 \to \mathbb{R}^2$ welches an jeder Stelle $u = (x_0, y_0)^T$ in D total differenzierbar ist?
- **D.** Gegeben sei das Vektorfeld $\boldsymbol{E}: \mathbb{R}^3 \to \mathbb{R}^3$ mit $\boldsymbol{r} = (x,y,z)^T \mapsto \boldsymbol{E}(x,y,z) = (\sin y, \cos z, \sin x + y)^T$. Berechnen Sie eine lineare Approximation für das Feld E in der Nähe des Ursprungs.