CYBER SECURITY INTERNSHIP

Task 6: Create a Strong Password and Evaluate Its Strength

Objective: Understand what makes a password strong and test it against password strength tools.

Tools: Online free password strength checkers (e.g., passwordmeter.com).

Deliverables: Report showing password strength results and explanation

1–2. Generate Multiple Passwords of Varying Complexity

Password	Complexity Level	Features Used
apple123	Low	Lowercase + numbers
Banana!88	Medium	Mixed case + symbol + numbers
Xy!7k\$P0z	High	Mixed case + symbols + numbers
7Cq!wLp@N4xM	Very High	Mixed case + symbols + numbers, long length
correcthorsebatterystaple	High (Memorable Phrase)	Long phrase (no symbols or numbers)

3-4. Test Passwords on a Strength Checker

Tool Used: Password Strength Meter

PasswordMonster info@passwordmonster.com

How Secure is Your Password?

Review: Oh dear, using that password is like leaving your front door wide open. Your password is very weak because it contains a common password and a sequence of characters.

Your passwords are never stored. Even if they were, we have no idea who you are!

PasswordMonster

info@passwordmonster.com

How Secure is Your Password?

Take the Password Test
Tip: Try to make your passwords at least 15 characters long Show password.

Bananna!88|

Medium.

10 characters containing: Lower care Upper case Numbers Symbols

Time to crack your password.

7 days

Review: Himm, using that password is like locking your front door, but leaving the key under the mat. Your password is of medium strength because it contains 2 dictionary words and a female name.

How Secure is Your Password?

Password	Estimated Strength	Feedback
apple123	Weak	"Too short and predictable; easy to guess."
Banana!88	Moderate	"Better, but still vulnerable to common attacks."
Xy!7k\$P0z	Strong	"Uncommon combination of characters; safer."
7Cq!wLp@N4xM	Very Strong	"Difficult to crack, especially with length."
correcthorsebatterystaple Strong		"Strong due to length, even though no symbols."

5. Best Practices for Strong Passwords

- Use **12+ characters** whenever possible.
- Mix uppercase, lowercase, numbers, and symbols.
- Avoid **dictionary words or common phrases**, unless length is extreme (passphrases).
- Do **not reuse passwords** across sites.
- Consider using a password manager to store complex passwords securely.

6. Tips Learned from Evaluation

- Password length contributes more to strength than symbols alone.
- Randomness is more effective than clever patterns (e.g., P@ssw0rd123 is weak).
- Passphrases can be both strong and memorable.
- Even complex-looking passwords may be weak if based on patterns or common substitutions.

7. Common Password Attacks

- **Brute Force Attack**: Tries every possible combination. Longer and more complex passwords make this attack impractical.
- Dictionary Attack: Uses lists of common words and phrases.
 Passwords like "banana88" are vulnerable.
- Credential Stuffing: Uses leaked usernames/passwords from other sites.
- Phishing: Trick users into revealing passwords.

8. Summary: How Password Complexity Affects Security

Password complexity is a major deterrent against automated attacks like brute-force and dictionary attacks. The more characters, types of characters, and randomness used, the harder it is for an attacker to guess or compute the password. Complexity increases **entropy**, which directly correlates with password **strength and resistance to attacks**.