

RESOLUÇÃO DE PROBLEMAS COM LÓGICA MATEMÁTICA

2023

Tableaux Semântico na Lógica Proposicional

Tableaux Semânticos

- Método que serve para provar a validade de deduções
- Baseado em árvores
 - Ramos são decomposições de H em sub-fórmulas
- Elementos básicos:
 - O alfabeto da Lógica Proposicional
 - O conjunto das fórmulas da Lógica Proposicional
 - Um conjunto de regras de dedução
- O tableaux semântico (Tb_a) contém apenas regras de dedução
 - Definem o mecanismo de inferência, permitindo a dedução de conhecimento

Regras de Inferência do Tableaux Semântico

Sejam A e B duas fórmulas da Lógica Proposicional

$$R_{1} = A \wedge B$$

$$A$$

$$B$$

$$R_{2} = A \vee B$$

$$A \otimes B$$

$$A \otimes$$

Dica para construção do tableaux

- Aplique inicialmente regras que não bifurcam a árvore
 - Preferencialmente as regras R₁, R₅, R₇ e R₈.

$$R_1 = A \wedge B$$

$$A$$

$$B$$

$$R_7 = \neg (A \lor B)$$

$$\neg A$$

$$\neg B$$

$$R_5 = \neg \neg A$$

$$A$$

$$R_8 = \neg (A \to B)$$

$$A$$

$$\neg B$$

Construção de um Tableaux

- Para construir a árvore de possibilidades de uma fórmula H, iniciamos por H e então vamos "desmontando" esta fórmula em subfórmulas através das regras do tableaux
 - Até não haver mais subfórmulas na qual possamos usar alguma regra

Exemplo I

Tableaux semântico para o conjunto de fórmulas

Exemplo 2

Tableaux semântico para o conjunto de fórmulas

$$\left| \{ (A \rightarrow B), \sim (A \lor B), \sim (C \rightarrow A) \} \right|$$

Ramos da Árvore

- Um ramo em um tableaux é uma sequência de fórmulas
- Ramo fechado: contém uma fórmula B e sua negação ~B
- Ramo Aberto: quando não é fechado
- Tableaux fechado: quando todos os seus ramos são fechados
- Tableaux aberto: quando possui algum ramo aberto

Exemplo – Tableaux Fechado

Exemplo – Tableaux Aberto

Regras de Inferência do Tableaux Semântico

- O método de prova no tableaux é feita utilizando o método da negação ou absurdo
 - Para provar uma fórmula H, é considerada inicialmente a sua negação ~H (provar por negação ou absurdo)
 - Depois, o tableaux semântico associado a ~H é construído
 - Para provar que H é válido, tenho que gerar um tableaux fechado associado a ~H
 - Então H é verdadeiro

Esse sistema também é chamado de sistema de refutação

Provas e Teoremas

- Seja H uma fórmula da lógica proposicional
 - Uma prova de H usando tableaux semânticos é:
 - Um tableaux fechado
 - A construção do tableaux se inicia com a fórmula ~H
 - Neste caso, H é um teorema do sistema de tableaux semânticos

Como provar?

$$H = \sim ((P \rightarrow Q) \land \sim (P \leftrightarrow Q) \land (\sim \sim P))$$

Devemos criar um tableaux fechado para ~H

$$\sim H = \sim (\sim ((P \rightarrow Q) \land \sim (P \leftrightarrow Q) \land (\sim \sim P)))$$

$$\sim H = \sim (\sim ((P \rightarrow Q) \land \sim (P \leftrightarrow Q) \land (\sim \sim P)))$$

(I)
$$\sim (\sim ((P \rightarrow Q) \land \sim (P \leftrightarrow Q) \land (\sim \sim P)))$$
 Prem

Como provar?

$$H = (P \leftrightarrow Q) \vee \neg P$$

Devemos criar um tableaux fechado para ~H

$$\sim$$
H = \sim ((P \leftrightarrow Q) v \sim P)

$$\sim$$
H = \sim ((P \leftrightarrow Q) v \sim P)

(I)
$$\sim ((P \leftrightarrow Q) \vee \sim P)$$
 Prem

Atividade:

- Em dupla
- Elaborar uma lista com 10 questões sobre os assuntos vistos após a Prova l
- Resolvê-la
- Enviar para o Canvas (lista e gabarito)
- Entrega: 02/06
- Depois, enviar lista sem gabarito para o grupo de WhatsApp
- Posso usar algumas questões na prova

TDE II:

- Em dupla
- Resolver 02 listas de colegas
- Colocar o nome da dupla
- Entrega: 07/06/23

