

Report No: CCISE170600103

FCC REPORT

(Bluetooth)

Applicant: Plus One Marketing Ltd.

Address of Applicant: Sumitomofudosan Hibiya building 2F, 2-8-6 Shinbashi,

Minatoku, Tokyo, Japan

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: ÖWN FUN PLUS, FTU17B00

Trade mark: ÖWN, Freetel

FCC ID: 2AG5L-FTU161G

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 01 Jun., 2017

Date of Test: 02 Jun., to 14 Jun., 2017

Date of report issued: 16 Jun., 2017

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	16 Jun., 2017	This report was amended on FCC ID: 2AG5L-FTU161G follow FCC Class II Permissive Change which were tested and issued by Shenzhen Zhongjian Nanfang Testing Co., Ltd. The differences between them as below: Memory and camera mode. Base on the differences description, AC Power Line Conducted Emission, Spurious Emission
		for BT/BLE/WIFI, the FCC Part 15 Subpart B were re-tested.

Tested by:	reter zhu	Date:	16 Jun., 2017	
	Test Engineer			
Reviewed by:	2 yan. Lee	Date:	16 Jun., 2017	
	Project Engineer			

3 Contents

		F	Page
1	С	OVER PAGE	1
2	V	ERSION	2
3	C	ONTENTS	2
4	T	EST SUMMARY	4
5	G	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	8
6	T	EST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSIONS	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	20dB Occupy Bandwidth	14
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE	
	-	9.2 Radiated Emission Method	
	6.10		
		.10.1 Conducted Emission Method	
	٠.	.10.2 Radiated Emission Method	
7	T	EST SETUP PHOTO	27
		UT CONSTRUCTIONAL DETAILS	
8		UT GUNSTRUGTIUNAL DETAILS	28

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass*
20dB Occupied Bandwidth	15.247 (a)(1)	Pass*
Carrier Frequencies Separation	15.247 (a)(1)	Pass*
Hopping Channel Number	15.247 (a)(1)	Pass*
Dwell Time	15.247 (a)(1)	Pass*
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass*

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AG5L-FTU161G(CCISE160302803 test report).

5 General Information

5.1 Client Information

Applicant:	Plus One Marketing Ltd.		
Address of Applicant:	Sumitomofudosan Hibiya building 2F, 2-8-6 Shinbashi, Minatoku, Tokyo, Japan		
Manufacturer:	Nollec Wireless Co.,Ltd.		
Address of Manufacturer:	Tower A North, TCL Building, High-tech Industrial Park, Nanshan Dist, Shenzhen, China		

5.2 General Description of E.U.T.

Product Name:	Smart Phone
Model No.:	ÖWN FUN PLUS, FTU17B00
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	1.1 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-2800mAh
AC adapter:	Model: ÖWN Fun+ Input:100-300V AC,50/60Hz 0.2A Output:5V DC MAX 1A
Remark:	The No.: ÖWN FUN PLUS, FTU17B00 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

			el for GFSK, π			T T	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Report No: CCISE170600103

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.	
Remark	GFSK (1 Mbps) is the worst case mode.	

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Report No: CCISE170600103

5.6 Test Instruments list

Radia	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018			
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018			
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018			
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018			
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018			
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018			
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018			
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018			
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018			

Cond	Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017					
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018					
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018					
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018					
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 1.1 dBi.

6.2 Conducted Emissions

0.2	Conducted Linissions						
	Test Requirement:	FCC Part 15 C Section 15.207					
	Test Method:	ANSI C63.4:2009					
	Test Frequency Range:	150 kHz to 30 MHz					
	Class / Severity:	Class B					
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
	Limit:	[Limit (c	dBuV)			
		Frequency range (MHz) Quasi-peak Average					
		0.15-0.5 66 to 56* 56 to 46*					
		0.5-5	56	46			
		5-30	60	50			
		* Decreases with the logarithn	n of the frequency.				
	Test setup:	Reference Plane		-			
		AUX Equipment Test table/Insulation plane Remark E U T: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m					
	Test procedure:	 The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impedance. The peripheral devices are LISN that provides a 50ohm termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.4: 2 	n network (L.I.S.N.). The edance for the measuri also connected to the n/50uH coupling imped to the block diagram of checked for maximum d the maximum emissic all of the interface cab	nis provides a ng equipment. main power through a dance with 500hm the test setup and conducted on, the relative bles must be changed			
	Test Uncertainty:	-		±3.28 dB			
	Test Instruments:	Refer to section 5.7 for details	}				
	Test mode:	Bluetooth (Continuous transm	itting) mode				
	Test results:	Pass					
		<u> </u>					

Measurement Data

Line:

Trace: 13

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : Smart Phone : OWN FUN PLUS Site Condition

EUT Model Test Mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Peter

Remark

Komark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	₫B	dBu∀	dBu∜	<u>ab</u>	
1	0.170	38.96	0.14	10.77	49.87	64.94	-15.07	QP
2	0.186	19.68	0.15	10.76	30.59	54.20	-23.61	Average
3	0.249	31.12	0.16	10.75	42.03	61.78	-19.75	QP
1 2 3 4 5 6 7 8 9	0.249	12.29	0.16	10.75	23.20	51.78	-28.58	Average
5	0.373	26.75	0.22	10.73	37.70	58.43	-20.73	QP
6	0.373	10.97	0.22	10.73	21.92	48.43	-26.51	Average
7	0.449	10.22	0.24	10.74	21.20	46.89	-25.69	Average
8	0.502	24.08	0.24	10.76	35.08	56.00	-20.92	QP
9	0.579	8.07	0.27	10.77	19.11	46.00	-26.89	Average
10	0.923	20.97	0.27	10.85	32.09	56.00	-23.91	QP
11	1.480	4.74	0.29	10.92	15.95	46.00	-30.05	Average
12	2.422	18.34	0.33	10.94	29.61	56.00	-26.39	QP

Neutral:

Trace: 15

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: Smart Phone : OWN FUN PLUS EUT Model Test Mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Peter

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
35 2777	MHz	dBu∜	₫B	₫B	dBu∀	dBu∀	<u>d</u> B	
1	0.166	15.11	0.13	10.77	26.01	55.16	-29.15	Average
2	0.170	32.16	0.13	10.77	43.06	64.94	-21.88	QP
3	0.222	28.30	0.16	10.75	39.21	62.74	-23.53	QP
4	0.381	13.04	0.22	10.72	23.98	48.25	-24.27	Average
5	0.449	14.66	0.24	10.74	25.64	46.89	-21.25	Average
6	0.489	28.29	0.24	10.76	39.29	56.19	-16.90	QP
2 3 4 5 6 7 8 9	0.494	16.79	0.24	10.76	27.79	46.10	-18.31	Average
8	0.601	13.21	0.29	10.77	24.27	46.00	-21.73	Average
9	0.876	10.22	0.29	10.83	21.34	46.00	-24.66	Average
10	0.923	24.65	0.28	10.85	35.78		-20.22	
11	1.037	24.77	0.26	10.87	35.90	56.00	-20.10	QP
12	1.593	22.49	0.26	10.93	33.68	56.00	-22.32	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2009 and DA00-705
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and <
Limit:	125 mW(21 dBm)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Refer to FCC ID: 2AG5L-FTU161G(CCISE160302803 test report)

6.4 20dB Occupy Bandwidth

. ,						
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2009 and DA00-705					
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak					
Limit:	NA					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Non-hopping mode					
Test results:	Refer to FCC ID: 2AG5L-FTU161G(CCISE160302803 test report)					

6.5 Carrier Frequencies Separation

• • • • • • • • • • • • • • • • • • •	•
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2009 and DA00-705
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Hopping mode
Test results:	Refer to FCC ID: 2AG5L-FTU161G(CCISE160302803 test report)

6.6 Hopping Channel Number

or riopping on announcement					
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2009 and DA00-705				
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz Detector=Peak				
Limit:	15 channels				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Hopping mode				
Test results:	Refer to FCC ID: 2AG5L-FTU161G(CCISE160302803 test report)				

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2009 and KDB DA00-705
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Hopping mode
Test results:	Refer to FCC ID: 2AG5L-FTU161G(CCISE160302803 test report)

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2009 and DA00-705			
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Non-hopping mode and hopping mode			
Test results:	Refer to FCC ID: 2AG5L-FTU161G(CCISE160302803 test report)			

6.9.2 Radiated Emission Method

6.9.2	Radiated Emission Wet	illou					
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205					
	Test Method:	ANSI C63.10: 2009					
	Test Frequency Range:	2.3GHz to 2.5GHz					
	Test site:	Measurement D	istance: 3m				
	Receiver setup:	Frequency Detector RBW VBW Rem					
		Above 1GHz Peak		1MHz 1MHz	3MHz 3MHz	Peak Value	
	Limit:	Freque	RMS	Limit (dBuV/m @3m)		Average Value Remark	
	Liniic		_	54.0		Average Value	
		Above 1	Peak Value				
	Test setup:	Horn Antenna Tower Ground Reference Plane Test Receiver Ground Reference Plane					
	Test Procedure:	ground at a 3 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota maximum results. The test-recesus Specified Ba 6. If the emission limit specified EUT would be 10dB margin	B meter cambine position of the position of the position of the set 3 meters of was mountained the management of the position	er. The table was set to Pea Maximum Hole Was set to Pea Maximum Hole Was set to Pea Maximum Hole EUT in peak I could be stop therwise the e	was rotated diation. The interference of a variable of the field one antenna was arrangents from 1 regrees to 360 Mode. The mode was apped and the missions the one using processions of the state of th	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters of degrees to find the function and fold lower than the peak values of the nat did not have beak, quasi-peak or	
	Test Instruments:	Refer to section 5.7 for details					
	Test mode:	Non-hopping mode					
	Test results:	Refer to FCC ID): 2AG5L-FTU	J161G(CCISE	160302803	test report)	
	<u> </u>						

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2009 and DA00-705				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Non-hopping mode				
Test results:	Refer to FCC ID: 2AG5L-FTU161G(CCISE160302803 test report)				

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission Me	2 Radiated Emission Method						
Test Requirement:	FCC Part 15 C Section 15.209						
Test Method:	ANSI C63.10: 2009						
Test Frequency Range:	9 kHz to 25 GHz						
Test site:	Measurement Dis	tance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz Quasi-pea		120kHz	300kHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	Above 1G112	RMS	1MHz	3MHz	Average Value		
Limit:	Frequen	су	Limit (dBuV/	/m @3m)	Remark		
	30MHz-88I	MHz	40.0)	Quasi-peak Value		
	88MHz-216	6MHz	43.5	5	Quasi-peak Value		
	216MHz-960	OMHz	46.0)	Quasi-peak Value		
	960MHz-1	GHz	54.0)	Quasi-peak Value		
	Above 1G	H ₇	54.0)	Average Value		
	Above 10)1 IZ	74.0)	Peak Value		
Test setup:	Tum Table 0.8 Ground Plane — Above 1GHz	EUT Jam	Pa	Antenra Tower			

Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Uncertainty: ±4.88 dB Test Instruments: Refer to section 5.7 for details

Report No: CCISE170600103

Remark:

Test mode:

Test results:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Non-hopping mode

Pass

Measurement data:

Below 1GHz

Vertical:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : Smart Phone : OWN FUN PLUS Condition

EUT : OWN FUN PLUS
Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Peter
REMARK :

AARM.	:									
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu∜	dB/m	<u>dB</u>	<u>d</u> B	dBu√/m	dBu√/m	<u>dB</u>		7
1	40.559	29.66	16.98	1.22	29.90	17.96	40.00	-22.04	QP	
1 2 3	83.816	40.47	7.27	1.79	29.61	19.92	40.00	-20.08	QP	
3	119.856	39.47	11.80	2.17	29.39	24.05	43.50	-19.45	QP	
4 5	125.886	37.02	12.09	2.24	29.35	22.00	43.50	-21.50	QP	
5	178.758	35.38	9.25	2.72	28.98	18.37	43.50	-25.13	QP	
6	283.979	33.50	12.24	2.90	28.48	20.16	46.00	-25.84	QP	

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : Smart Phone : OWN FUN PLUS Condition

EUT : OWN FUN PLUS

Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Peter
REMARK :

mit Over ine Limit Remark
V/m dB
.00 -17.60 QP
.50 -19.41 QP
.50 −18.58 QP
.50 -19.68 QP
.00 -21.21 QP
.00 −20.29 QP

Above 1GHz:

Test channel:			Lowest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	56.26	35.99	6.80	41.81	57.24	74.00	-16.76	Vertical
4804.00	54.29	35.99	6.80	41.81	55.27	74.00	-18.73	Horizontal
Test channel:			Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	43.16	35.99	6.80	41.81	44.14	54.00	-9.86	Vertical
4804.00	42.39	35.99	6.80	41.81	43.37	54.00	-10.63	Horizontal

Test channel:			Middle		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	56.06	36.38	6.86	41.84	57.46	74.00	-16.54	Vertical
4882.00	57.92	36.38	6.86	41.84	59.32	74.00	-14.68	Horizontal
Test channel:			Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	41.01	36.38	6.86	41.84	42.41	54.00	-11.59	Vertical
4882.00	40.69	36.38	6.86	41.84	42.09	54.00	-11.91	Horizontal

Test channel:			Highest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	57.19	36.71	6.91	41.87	58.94	74.00	-15.06	Vertical
4960.00	54.39	36.71	6.91	41.87	56.14	74.00	-17.86	Horizontal
Test channel:			Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	40.39	36.71	6.91	41.87	42.14	54.00	-11.86	Vertical
4960.00	42.69	36.71	6.91	41.87	44.44	54.00	-9.56	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.