

IV. országos magyar matematikaolimpia XXXI. EMMV

országos szakasz, Kolozsvár, 2022. április 20-23.

X. osztály – II. forduló

1. feladat (10 pont). Oldd meg az egész számok halmazán a $615 + x^2 = 2^y$ egyenletet!

Baricz Árpád, Sepsiszentgyörgy

Megoldás. Mivel $615 + x^2$ természetes szám bármely x egész szám esetén, ezért 2^y is az kell legyen. Tehát y nem lehet negatív egész szám.

Az x^2 -nek a 3-mal való osztási maradéka 0 vagy 1; 615 osztható 3-mal; valamint 2^y -nak a 3-mal osztási maradéka 1, ha y páros és 2, ha y páratlan. (2 pont)

Tehát y páros kell legyen, vagyis y = 2k alakú.

(1 pont)

Így az eredeti egyenlet

$$(2^k - x)(2^k + x) = 615$$

alakba írható. Észrevesszük, hogy a bal oldalon szereplő tényezők közül az egyik biztosan pozitív, emiatt a másik is az kell legyen. Mivel

$$(2^k - x) + (2^k + x) = 2^{k+1},$$

ezért a 615-öt fel kell bontani két olyan természetes szám szorzatára, amelyeknek az összege 2-nek hatványa.

(3 pont)

A 615 prímtényezőkre való felbontása $615 = 3 \cdot 5 \cdot 41$, emiatt a lehetséges felbontások a

$$615 = 1 \cdot 615 = 3 \cdot 205 = 5 \cdot 123 = 15 \cdot 41$$

és ezek szimmetrikusai.

(1 pont)

Ezen felbontások közül csak az $5 \cdot 123$ esetén lesz a tényezők összege 2-nek hatványa. Tehát

$$2^{k+1} = 5 + 123 = 2^7.$$

ahonnan k = 6 és y = 12.

(1 pont)

Ekkor $x^2 = 2^{12} - 615 = 4096 - 615 = 3481 = 59^2$. Összefoglalva a $615 + x^2 = 2^y$ egyenletnek két megoldása van az egész számok halmazán: $(x, y) \in \{(-59, 12), (59, 12)\}$. (1 pont) Hivatalból

Megjegyzés. Az $x^2 + d = a \cdot b^y$ alakú diofantoszi egyenleteket Ramanujan-Nagell típusú egyenleteknek nevezik a szakirodalomban. Az $x^2 + 7 = 2^y$ egyenletnek csak $y \in \{3, 4, 5, 7, 15\}$ esetén van megoldása. Ezt az állítást Srinivasa Ramanujan fogalmazta meg 1913-ban és tőle függetlenül Wilhelm Ljunggren, majd 1948-ban igazolta Trygve Nagell.

A $615 + x^2 = 2^y$ egyenletet a $x^2 - 25 = 2^y - 640$ alakba is írhatjuk, ahonnan $(x+5)(x-5) = 2^6(2^{y-6}-10)$ és könnyen igazolható, hogy csak az $x+5=2^6$ és $x-5=2^{y-6}-12$ esetén kapunk megoldást.

2. feladat (10 pont). Az ABCD egységoldalú négyzet AB és AD oldalán a P, illetve Q olyan pontok, amelyekre az APQ háromszög kerülete 2. Határozd meg a PCQ szög mértékét! (***)

Megoldás. Legyen $PB=x,\ DQ=y$. Következik, hogy $AP=1-x,\ AQ=1-y,\ CP=\sqrt{1+x^2},\ CQ=\sqrt{1+y^2}$ (lásd a mellékelt ábrát).

Az APQ háromszög kerülete 2, ezért PQ=2-AP-AQ=x+y. (2 pont) Az APQ háromszög derékszögű, ezért $PQ^2=AP^2+AQ^2$, vagyis $(x+y)^2=(1-x)^2+(1-y)^2$, ahonnan

$$x + y = 1 - xy. (2 pont)$$

Az előbbi összefüggés mindkét oldalát négyzetre emelve kapjuk, hogy $x^2 + 2xy + y^2 = 1 - 2xy + x^2y^2$, ahonnan $x^2y^2 = x^2 + y^2 + 4xy - 1$. A PCQ háromszögben

$$\widehat{PCQ} = \frac{CP^2 + CQ^2 - PQ^2}{2 \cdot PC \cdot CQ} = \frac{1 + x^2 + 1 + y^2 - (x + y)^2}{2\sqrt{1 + x^2}\sqrt{1 + y^2}} = \frac{1 - xy}{\sqrt{1 + x^2}\sqrt{1 + y^2}} \qquad (2 \text{ pont})$$

$$= \sqrt{\frac{(1 - xy)^2}{(1 + x^2)(1 + y^2)}} = \sqrt{\frac{1 - 2xy + x^2y^2}{1 + x^2 + y^2 + x^2y^2}} = \sqrt{\frac{1 - 2xy + x^2 + y^2 + 4xy - 1}{1 + x^2 + y^2 + x^2 + y^2 + 4xy - 1}}$$

$$= \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}.$$
(2 pont)

Innen következik, hogy a PCQ szög mértéke 45° . (1 pont) Hivatalból (1 pont)

 $M'asodik\ megold\'as$. Legyen a BCP szög mértéke lpha és a DCQ szög mértéke eta. Következik, hogy $PB = \operatorname{tg} lpha$, $DQ = \operatorname{tg} eta$ (lásd a mellékelt ábrát). (1 pont)

Az APQ háromszög kerülete 2, vagyis AP + PQ + QA = 2, ahonnan $PQ = \operatorname{tg} \alpha + \operatorname{tg} \beta$. (2 pont) Az APQ háromszögben $PQ^2 = AP^2 + AQ^2$, következik, hogy

$$(tg \alpha + tg \beta)^2 = (1 - tg \alpha)^2 + (1 - tg \beta)^2$$

vagyis

$$tg \alpha tg \beta = 1 - tg \alpha - tg \beta, \qquad (3 pont)$$

ahonnan

$$1 = \frac{\operatorname{tg} \alpha + \operatorname{tg} \beta}{1 - \operatorname{tg} \alpha \operatorname{tg} \beta} = \operatorname{tg}(\alpha + \beta),$$
 (2 pont)

tehát
$$\alpha + \beta = 45^{\circ}$$
, ezért PCQ szög mértéke 45° . (1 pont)

 $Harmadik \ megoldás$. Legyen B_1 a B pontnak a CP egyenesre vonatkoztatott szimmetrikusa és Q_1 a PB_1 és az AD metszéspontja (lásd a mellékelt ábrát). (2 pont)

A szimmetria miatt a CB_1P háromszög kongruens a CBP háromszöggel, ezért $CB_1 = CB = 1$, $\widehat{CB_1P} = 90^\circ$, és ha PB = x, akkor $PB_1 = x$. (2 pont)

Mivel $CD = 1 = CB_1$, $\widehat{CDQ_1} = 90^\circ = \widehat{CB_1Q_1}$ és CQ_1 közös oldal, következik, hogy a CDQ_1 háromszög kongruens a CB_1Q_1 háromszöggel. (1 pont)

Tehát, ha $DQ_1 = y$, akkor $B_1Q_1 = y$. Ekkor $AQ_1 = 1 - y$, AP = 1 - x, tehát az APQ_1 háromszög kerülete $AP + PB_1 + B_1Q_1 + Q_1A = 1 - x + x + 1 - y + y = 2$. Ugyanakkor az APQ háromszög kerülete is 2. Tehát rögzített P esetén a Q_1 és Q pont egybeesik. (3 pont)

Mivel CQ a DCB_1 , a CP pedig BCB_1 szög szögfelezője, következik, hogy

$$\widehat{PCQ} = \frac{1}{2}\widehat{BCD} = \frac{90^{\circ}}{2} = 45^{\circ}. \tag{1 pont}$$

Hivatalból (1 pont)

3. feladat (10 pont). Igazold, hogy 202204 egy síkban fekvő egységvektor között mindig van 67402 olyan vektor, amelyek közül bármely kettőnek az összege legalább egységnyi hosszúságú!

Kovács Bálint, Székelyudvarhely

Megoldás. Tekinthetjük úgy, hogy a vektoroknak közös az O kezdőpontja és ekkor a végpontjaik az O középpontú egységsugarú körön helyezkednek el. (1 pont)

Tekintsük az \overrightarrow{OA} és \overrightarrow{OB} egységvektorokat és az $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$ vektort (lásd a mellékelt ábrát).

Az OAB egyenlő szárú háromszögben P az AB szakasz felezőpontja. Ekkor

$$|\overrightarrow{OC}| = |\overrightarrow{OA} + \overrightarrow{OB}| = |2 \cdot \overrightarrow{OP}| = 2 \cdot |\overrightarrow{OA}| \cdot \cos \frac{\alpha}{2} = 2 \cdot \cos \frac{\alpha}{2},$$

ahol $\alpha \in [0, \pi]$ az \overrightarrow{OA} és \overrightarrow{OB} szöge. (**2 pont**)

Az $|\overrightarrow{OC}| \ge 1$ akkor és csakis akkor teljesül, ha $2\cos\frac{\alpha}{2} \ge 1$, ahonnan $\cos\frac{\alpha}{2} \ge \frac{1}{2}$, azaz $\frac{\alpha}{2} \le 60^\circ$, tehát $\alpha \leq 120^{\circ}$. (**2** pont)

Az O középpontú egységsugarú kört felosztjuk három diszjunkt 120°-os körívre. Mivel 202204 = $3 \cdot 67401 + 1$, ezért a vektorok között biztosan van 67402 olyan, amelyeknek a végpontjai ugyanazon a köríven helyezkednek el. Ezek közül bármely kettő összegének a hossza legalább 1. (4 pont) Hivatalból (1 pont)

4. feladat (10 pont). Tudva, hogy x és y az

$$\begin{cases} x^3 - 3xy^2 = 1\\ y^3 - 3x^2y = -\sqrt{3} \end{cases}$$

egyenletrendszer valós megoldásai, számíts
d ki az $(x^2+y^2)^{\frac{3}{2}}$ kifejezés értékét és old
d meg az egyenletrendszert!

Megoldás. A második egyenlet mindkét oldalát beszorozzuk -i-vel, majd összeadjuk a két egyenlet megfelelő oldalait, és azt kapjuk, hogy

$$x^3 + 3x^2yi - 3xy^2 - y^3i = 1 + i\sqrt{3},$$

vagyis

$$(x+iy)^3 = 1 + i\sqrt{3}.$$
 (3 pont)

Legyen
$$z = x + iy$$
. (1 pont)

A kiszámolandó kifejezés

$$(x^2 + y^2)^{\frac{3}{2}} = |z|^3 = |1 + i\sqrt{3}| = \sqrt{1+3} = 2.$$
 (2 pont)

Másrészt az $(x+iy)^3 = 1 + i\sqrt{3}$ egyenlet a következő alakba írható:

$$z^{3} = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right),$$

amelynek megoldásai

$$z_{k+1} = \sqrt[3]{2} \left(\cos \left(\frac{\frac{\pi}{3} + 2k\pi}{3} \right) + i \sin \left(\frac{\frac{\pi}{3} + 2k\pi}{3} \right) \right),$$

$$= \sqrt[3]{2} \left(\cos \frac{(6k+1)\pi}{9} + i \sin \frac{(6k+1)\pi}{9} \right), \quad k \in \{0, 1, 2\}.$$
(1 pont)

De $z_{k+1} = x_{k+1} + iy_{k+1}$, ezért a megoldások

$$\begin{cases} x_1 = \sqrt[3]{2} \cos \frac{\pi}{9}, \\ y_1 = \sqrt[3]{2} \sin \frac{\pi}{9}, \end{cases} \begin{cases} x_2 = \sqrt[3]{2} \cos \frac{7\pi}{9}, \\ y_2 = \sqrt[3]{2} \sin \frac{7\pi}{9}, \end{cases} \begin{cases} x_3 = \sqrt[3]{2} \cos \frac{13\pi}{9}, \\ y_3 = \sqrt[3]{2} \sin \frac{13\pi}{9}. \end{cases}$$
(2 pont)

Hivatalból
$$(1 \text{ pont})$$

5. feladat (10 pont). Adott az AB szakasz és annak egy C belső pontja. Az AB-vel nem egybeeső, a C ponton áthaladó d egyenes az AC átmérőjű kört másodjára az E pontban, a BC átmérőjű kört másodjára az F pontban, valamint az AB átmérőjű kört a P és Q pontokban metszi. Igazold, hogy PE = FQ!

Dávid Géza, Székelyudvarhely

Megoldás. Legyen O az AB szakasz felezőpontja. Feltételezhetjük, hogy C az AO szakasz belsejében van. Meghúzzuk az O ponton áthaladó PQ-val párhuzamos egyenest, amely az AE egyenest az M pontban, és a BF egyenest az N pontban metszi. (2 pont)

Az \widehat{AEC} , illetve \widehat{CFB} félkörbe írt kerületi szögek, ezért derékszögek, tehát az MNFE négyszög egy téglalap. (2 pont)

Az AMO és BNO háromszögek kongruensek, mert OA = OB, $\widehat{OMA} = \widehat{ONB} = 90^{\circ}$ és $\widehat{AOM} = \widehat{BON}$ (csúcsszögek). (1 pont)

Innen következik, hogy O az MN szakasz felezőpontja.

(1 pont)

Tehát az O pontból a PQ húrra húzott merőleges a PQ szakaszt felezi, valamint az MNFE téglalap szimmetriatengelye, így felezi az EF szakaszt is. (2 pont)

Tehát az EF és a PQ szakaszok felezőpontja közös, amiből következik, hogy PE = FQ. (1 pont) Hivatalból (1 pont)

 $\mathbf{Megjegyz\acute{e}s}$. A fenti megoldás abban az esetben is érvényes, ha a P és a Q pontot felcseréljük. A bizonyítás tehát ábrafüggetlen.

6. feladat (10 pont). Határozd meg az $(a_n)_{n\geq 1}$ sorozatot, tudva, hogy bármely $m,n\in\mathbb{N}^*$ esetén $a_n\in\mathbb{N}^*$ és

$$a_{m \cdot n} = (m, a_n) \cdot [a_m, n].$$

Az (x, y) az x és y természetes számok legnagyobb közös osztóját és [x, y] a legkisebb közös többszörösét jelöli.

Turdean Katalin, Zilah

Megoldás. A feltétel alapján

$$a_{m \cdot n} = (m, a_n) \cdot [a_m, n] = (n, a_m) \cdot [a_n, m] = a_{n \cdot m}, \quad \forall m, n \in \mathbb{N}^*.$$
 (1 pont)

Innen következik, hogy

$$a_{m \cdot n}^2 = (m, a_n) \cdot [m, a_n] \cdot (n, a_m) \cdot [n, a_m], \quad \forall m, n \in \mathbb{N}^*.$$

Tudjuk, hogy ha $a,b \in \mathbb{N}^*$, akkor $a \cdot b = (a,b) \cdot [a,b]$, ezért az előbbi összefüggés a következő alakba írható:

$$a_{m \cdot n}^2 = m \cdot n \cdot a_n \cdot a_m, \quad \forall m, n \in \mathbb{N}^*.$$
 (2 pont)

Ha m=1, akkor bármely $n\in\mathbb{N}^*$ esetén $a_n^2=n\cdot a_n\cdot a_1$, és mivel $a_n\neq 0$, ezért

$$a_n = na_1.$$
 (1 pont)

A feltételből és az előbbi összefüggésből következik, hogy

$$m \cdot n \cdot a_1 = (m, na_1) \cdot [ma_1, n], \quad \forall m, n \in \mathbb{N}^*.$$

Ha m=1, akkor $na_1=(1,na_1)\cdot [a_1,n]=1\cdot [a_1,n]$, bármely $n\in\mathbb{N}^*$ esetén. (2 pont) Ugyanakkor $na_1=(n,a_1)\cdot [n,a_1]=(n,a_1)\cdot na_1$, ahonnan $(n,a_1)=1$, bármely $n\in\mathbb{N}^*$ esetén, ami csak akkor lehetséges, ha $a_1=1$. (2 pont)

Innen következik, hogy $a_n = n$, bármely $n \in \mathbb{N}^*$ esetén. Ez a sorozat teljesíti a feladatban megadott feltételt. (1 pont)

Hivatalból (1 pont)

Második megoldás. Legyen $n \in \mathbb{N}^*$ tetszőleges, ekkor

$$a_n = a_{n \cdot 1} = (n, a_1) \cdot [a_n, 1] = (n, a_1) \cdot a_n.$$

A feltétel szerint $a_n \neq 0$, ezért $(a_1, n) = 1$, bármilyen $n \in \mathbb{N}^*$ esetén. (4 **pont**) Ha $n = a_1$, akkor innen következik, hogy $(a_1, a_1) = 1$, vagyis $a_1 = 1$. Továbbá minden $n \in \mathbb{N}^*$ esetén

$$a_n = a_{1 \cdot n} = (1, a_n) \cdot [a_1, n] = 1 \cdot [n, 1] = n.$$
 (4 pont)

Tehát $a_n=n$, minden $n\in\mathbb{N}^*$ esetén, valamint ez a sorozat teljesíti a kitűzött feltételt, mert

$$a_{m \cdot n} = m \cdot n = (m, n) \cdot [m, n] = (m, a_n) \cdot [a_m, n].$$
 (1 pont)