TERMOCHIMICA

deriva dal bilancio energetico dei legami rotti e formati

Esempio:

$$C_{(s)} + O_{2(g)} \Rightarrow CO_{2(g)}$$

combustione, sviluppa calore

- · Prodotti di combustione più stabili dei reagenti.
- · Legami che si formano sono più stabili di quelli rotti

L'energia che utilizziamo è in gran parte di origine chimica (es. combustione di petrolio e carbone, pile)

Sistema, Ambiente e Universo

Nello studio di un fenomeno, si cerca di isolare la 'zona di spazio' (provetta, becher, reattore) dove avviene il processo, cioè si separa il sistema dall'ambiente.

Sistemi in Chimica

Isolato

non scambia energia né materia

Chiuso

scambia energia ma non materia

Aperto

scambia energia e materia

Convenzioni per energia, calore e lavoro scambiati:

Se non specifico, le variazioni sono riferite al sistema (chiuso!) e non all'ambiente.

I trasferimenti di E, di calore e di lavoro sono regolati dalla termodinamica e in particolare dal 1° principio

Convenzioni:

Lavoro w fatto sul sistema è positivo \longrightarrow aumenta $E_{sistema}$ w fatto dal sistema è negativo \longrightarrow diminuisce $E_{sistema}$

Calore q dato dall'ambiente al sistema è > 0 \longrightarrow aumenta $E_{sistema}$ q dato dal sistema all'ambiente è <0 \longrightarrow diminuisce $E_{sistema}$

Lavoro

$$w = F \cdot (r_f - r_i)$$

Prodotto tra forza e spostamento nella direzione della forza (= prodotto scalare).

Esempio:

sollevando un oggetto di massa M in un campo gravitazionale con g accelerazione gravitazionale:

$$w = M g \cdot (h_f - h_i) = M \cdot g \Delta h$$

 $con \Delta h = variazione altezza oggetto.$

Lavoro PV

Per sistemi chimici il principale tipo di lavoro è di tipo PV, quindi di espansione o di compressione.

Se espando un sistema contro una pressione esterna costante:

$$w = -F_{est} \cdot (h_f - h_i) = -(F_{est}/A) \cdot A(h_f - h_i) = -P_{est} \Delta V$$

 $1.0 L = 10^{-3} m^3$

1 atm = 1.01325 bar = $1.01325 \cdot 10^5 \text{ kg m}^{-1} \text{ s}^{-2}$

 $1 L \cdot atm = 1.01325 L \cdot bar = 1.01325 10^2 J$

Primo principio della termodinamica:

per un sistema: $\Delta E = q + w$ oppure

- ·L'energia interna di un sistema è una funzione di stato
- ·L'energia dell'universo (sistema + ambiente) si conserva

Energia interna: somma di tutti i tipi di energia possedute da un sistema: potenziale, termica, cinetica

Funzione di stato

- ·Funzione il cui valore dipende soltanto dallo stato del sistema e non da come questo stato viene raggiunto.
- ·L'entità della variazione di una funzione di stato è indipendente dal percorso della trasformazione.

q e w, nel caso generale, non sono funzioni di stato ma sono misurabili o calcolabili più o meno facilmente

 E_{int} di un sistema non è in generale determinabile.

Il caso del gas ideale:

$$E = E_{cin} = 3/2 RT$$

è eccezionalmente semplice.

Normalmente posso misurare o calcolare ΔE proprio misurando o calcolando q e w.

Termochimica: misure scambio di calore

Capacità termica: C (J K⁻¹) Calore necessario per innalzare di 1 K la T di un sistema generico $\rightarrow q = C \Delta T$

Capacità termica molare: C_V (J K⁻¹ mol⁻¹) a $V = \cos t$. C_P (J K⁻¹ mol⁻¹) a $P = \cos t$.

Se q_v trasferito ad n moli di una sostanza: q_v =n C_v ΔT

Calore specifico: c_{spV} (J K⁻¹ g⁻¹) a V = cost. c_{spP} (J K⁻¹ g⁻¹) a P = cost. Capacità termica per 1 g di sostanza

Termochimica: misure scambio di calore

Calore specifico: $c_{sp(P)}$ (J K⁻¹ g⁻¹) a P = cost.

Esempio: Calorimetro a P = cost

Calori specifici a pressione costante (a 25°C)

Sostanza	Calore specifico (J K ⁻¹ g ⁻¹)
$\mathrm{Hg}(\ell)$	0,140
Cu(s)	0,385
Fe(s)	0,449
$SiO_2(s)$	0,739
$CaCO_3(s)$	0,818
$O_{2}(g)$	0,917
$H_2O(\ell)$	4,18

Immergo pezzo di Fe (72.4 g) a $100^{\circ}C$ in 100g di H_2O a $10^{\circ}C$; qual è T_{fin} del sistema? Qual è il calore scambiato nel sistema? Determino i q_P , considerando che: q_{P1} (calore assorbito da H_2O) + q_{P2} (calore ceduto da Fe) = 0. Quindi:

$$q_{\text{P1}} = m_1(c_{\text{sp1}}) \Delta T_1 = -m_2(c_{\text{sp2}}) \Delta T_2 = -q_{\text{P2}} \quad \text{assumendo isolamento termico} \\ = 100g(4.18 \text{ J} ^{\circ}C^{-1} g^{-1})(T_f - 10^{\circ}C) = -72.4g \ (0.449 \text{ J} ^{\circ}C^{-1} g^{-1})(T_f - 100^{\circ}C) \\ -4.18 \ 10^3 \text{ J} + 418 \text{ J}T_f - 3.25 \ 10^3 \text{ J} + 32.5 \text{ J} T_f = 0 \quad T_f = 16.5^{\circ}C \quad q_{\text{P1}} = -q_{\text{P2}} = 2720 \text{ J}$$

Termochimica: misure scambio di calore

Esempio: Calorimetro a V = cost (Calorimetro a bomba)

Tuttavia è in genere più semplice determinare q_P

\Rightarrow Entalpia: H = E + PV

- L'entalpia è una funzione di stato: dipende solo dallo stato iniziale e da quello finale (E, P,V sono funzioni o variabili di stato)
- A P costante, il ΔH di un processo in cui si ha solo lavoro di espansione $(P\Delta V)$, è pari al calore scambiato q_p :

$$\Delta H = \Delta E + P \Delta V + V \Delta P = q_p + w + P \Delta V = q_p - P \Delta V + P \Delta V = q_p$$

 $\Delta H < 0$: processo esotermico

 $\Delta H > 0$: processo endotermico

Anche H (come E) per sistemi generici non è in generale determinabile

H, come E e tutte le forme di energia, è una funzione di stato estensiva: dipende dalla quantità di materia.

Per sistemi che fanno unicamente lavoro di tipo $P\Delta V$, il calore scambiato a P costante $q_P = \Delta H$.

Per una generica reazione, è importante prevedere:

- 1. il calore che si può ottenere (o che viene sviluppato)
- 2. se è permessa, e se è spostata verso i prodotti o meno.

Per fare queste cose dobbiamo definire bene le condizioni e i processi che vogliamo studiare

Entalpia di reazione

· La variazione di entalpia per una reazione chimica è definita come

$$\Delta H_{\text{reaz}} = H_{\text{prodotti}} - H_{\text{reagenti.}}$$

· Una equazione termochimica deve essere bilanciata e include il valore di ΔH

$$CH_{4(g)}+2O_{2(g)} \rightarrow CO_{2(g)}+2H_2O_{(g)} \Delta H=-802 \text{ kJ mol}^{-1}$$

E' riferita, in genere, a 1 mole del reagente più significativo, qui $CH_4(g)$: quindi è molare e ad una certa T (da precisare). E' essenziale indicare gli stati di aggregazione.

Stati Standard

- E' utile considerare le variazioni di entalpia (ΔH) di processi vari, riferite ad un insieme di condizioni standard (definite):
- La convenzione è P standard di 1 bar. Mentre per T NON
 è fissato uno standard, ma convenzionalmente vengono
 tabulati i dati a 25 °C (298.15 K)
- Lo stato standard di una sostanza ad una certa temperatura
 T, è la sua forma pura più stabile alla pressione di 1 bar

Stati standard e ΔH standard (ΔH°)

- · Ad es., lo stato standard dell'etanolo (CH₃CH₂OH) a 298 K è etanolo liquido puro a 298 K e 1 bar.
- Per sostanze allo stato solido, si considera la forma cristallina (allotropica se è un elemento) più stabile. Ad es.: lo stato standard del C a 400 K è C solido in forma di grafite $C_{(grafite)}$ ad 1 bar.
- · Una variazione di entalpia standard, è il ΔH di un processo dove sia lo stato iniziale che quello finale sono stati standard.

ΔH Standard

Entalpie di reazione e diagrammi d'entalpia

- · Cambiando fasi, cambia ΔH ! Fasi vanno indicate!
- · $CH_4(g)+2 O_2(g) \rightarrow CO_2(g)+2 H_2O(I) \Delta H^{\circ}_{reaz}=-890 kJ$
- · valori relativi di H per stato iniziale e finale

H
$$CH_{4}(g) + 2 O_{2}(g)$$

$$\Delta H_{reaz} = -802 \text{ kJ}$$

$$CO_{2}(g) + 2 H_{2}O(g)$$

$$CO_{2}(g) + 2 H_{2}O(l)$$

$$CO_{2}(g) + 2 H_{2}O(l)$$

Entalpia di Combustione

• L'entalpia standard di combustione $\Delta H_{\text{comb}}^{\circ}$, a 25°C, è l'entalpia standard per una ossidazione completa con $O_2(g)$ di un composto organico, a dare $H_2O(l)$ e $CO_2(g)$

•

$$C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(1)$$

Altri esempi di ΔH standard

- Ionizzazione ΔH_{ion}°
- Idratazione $\Delta H_{\text{hyd}}^{\circ}$
- Miscelazione $\Delta H_{\text{mix}}^{\circ}$

• E' comodo dare il ΔH° delle transizioni di fase alla Ta cui avviene la transizione a 1 bar (o a 1 atm).

Esercizio:

Qual è il ΔH° per la combustione di 11.0 g di CH_4 in eccesso di ossigeno, noto ΔH°_{comb} di CH_4 ?

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(I)$$
 $\Delta H^{\circ}_{comb} = -890 \text{ kJ/mol}$

11.0 g CH₄/(16.0 g CH₄ mol⁻¹)
$$\times \frac{-890 \, kJ}{1 \, mol \, CH_4} = -612 \, kJ$$

Esercizio:

Quanto butano deve bruciare per produrre 100 kJ di calore?

$$2 C_4H_{10}(g) + 13 O_2(g) \rightarrow 8 CO_2(g) + 10 H_2O(I)$$

 $\Delta H^{\circ}_{comb} = -5755 \text{ kJ}$

$$mC_4H_{10}$$
 (g)/(58.1g mol⁻¹) $\times \frac{5755 \ kJ}{2 \ mol \ C_4H_{10}} = 100 \ kJ$

$$mC_4H_{10} = 2.02 g C_4H_{10}$$

Legge di Hess

Se scomponiamo una reazione in più passaggi, il ΔH totale è la somma dei ΔH dei singoli passaggi

Consideriamo una reazione in due passaggi:

$$C(s) + \frac{1}{2} O_2(g) \to CO(g)$$
 $\Delta H_1^{\circ} = -110 \text{ kJ}$

$$CO(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g)$$
 $\Delta H_2^{\circ} = -283 \text{ kJ}$

Il ΔH ° complessivo è:

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\circ} = -393 \text{ kJ}$

Legge di Hess

Consegue dal fatto che H è una funzione di stato (ΔH non dipende dal percorso)

Legge di Hess: Applicazioni

• Date le reazioni chimiche (#1 e #2) e il loro ΔH° :

```
#1: Fe_2O_{3(s)} + 3CO_{(g)} \rightarrow 2Fe_{(s)} + 3CO_{2(g)} \Delta H_1^\circ = -26.7kJ
#2: CO_{(g)} + 1/2 O_{2(g)} \rightarrow CO_{2(g)} \Delta H_2^\circ = -283.0 kJ
```

calcolare il ΔH° della seguente reazione:

#3: 2 Fe_(s) + 3/2
$$O_{2(g)} \rightarrow Fe_2O_{3(s)}$$
 $\Delta H_3^{\circ}=?$

- Scriviamo la reazione 1 nella direzione in cui da il prodotto desiderato.
- Combiniamo la 2 moltiplicandola in modo da far scomparire CO₂ e CO: dobbiamo moltiplicarla per 3.

-#1 2Fe(s) +3
$$CO_2(g) \rightarrow Fe_2O_3(s) + 3CO(g) \Delta H^\circ = + 26.7 kJ +3 \cdot #2 3 $CO(g) + 3/2 O_2(g) \rightarrow 3 CO_2(g) \Delta H^\circ = - 849.0 kJ$$$

2Fe(s) +3CO₂(g) +3CO₂(g) + 3/2O₂(g)
$$\rightarrow$$
 Fe₂O₃(s) + 3CO₂(g)+ 3CO₂(g)

#3 2Fe(s)+3/2
$$O_2(g) \rightarrow Fe_2O_3(s)$$
 $\Delta H^\circ = -822.3 \text{ kJ}$

Reazione di Formazione e ΔH° (formazione)

- Reazione di Formazione di una mole di una data sostanza dagli elementi che la compongono, nei loro stati standard (fase, ed eventualmente forma cristallina più stabile a 25°C e 1 bar)
- As es., la reazione di formazione di $CaCO_3(s)$ è:

Ca(s) + C(grafite) +
$$3/2 O_2(g) \rightarrow CaCO_3(s)$$

$$\Delta H_f^{\circ}(CaCO_3, s) = -1207 \text{ kJ}$$

Formula	$\Delta H_{\rm f}^0$ (kJ/mol)	Formula	ΔH_f^0 (kJ/mol)
Calcium		Nitrogen	
Ca(s)	0	$N_2(g)$	0
CaO(s)	-635.1	$NH_3(g)$	-45.9
$CaCO_3(s)$	-1206.9	NO(g)	90.3
Carbon		Oxygen	
C(graphite)	0	$O_2(g)$	0
C(diamond)	1.9	$O_3(g)$	143
CO(g)	-110.5	$H_2 O(g)$	-241.8
$CO_2(g)$	-393.5	$H_2^2O(I)$	-285.8
$CH_4(g)$	-74.9	Silver	
CH ₃ OH(I)	-238.6	Ag(s)	0
HCN(g)	135	AgCl(s)	-127.0
$CS_2(I)$	87.9	Sodium	
Chlorine		Na(s)	0
CI(g)	121.0	Na(g)	107.8
$Cl_2(g)$	0	NaCI(s)	-411.1
HCI(g)	-92.3	Sulfur	
Hydrogen		S ₈ (rhombic)	0
H(g)	218.0	S ₈ (monoclinic)	
$H_2(g)$	0	$SO_2(g)$	-296.8
2(3)		$SO_3(g)$	-396.0

Entalpia Standard di Formazione

Come si determina $\Delta H_{f(diamante)} = 1.9 \text{ kJ}$?

- Conversione diretta grafite \Rightarrow diamante difficile: ΔH non misurabile direttamente.
- · Possibile bruciare grafite e diamante, misurare i calori di combustione, e usare la legge di Hess

$$C_{\text{(grafite)}} + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H_{\text{comb}}^{\circ} (1) = -393.5 \text{ kJ}$
 $C_{\text{(diamante)}} + O_2(g) \rightarrow CO_2(g)$ $\Delta H_{\text{comb}}^{\circ} (2) = -395.4 \text{ kJ}$
 $C_{\text{(grafite)}} \rightarrow C_{\text{(diamante)}}$

 $\Delta H_f^{\circ}_{\text{(diamante)}} = \Delta H_{\text{comb}}^{\circ}(1) - \Delta H_{\text{comb}}^{\circ}(2) = 1.9 \text{ kJ}$

Altri esempi di reazioni di formazione e di entalpia standard di formazione, $\Delta H_{\rm f}^{\rm o}$:

Ca(s) +
$$\frac{1}{2}$$
 O₂(g) \rightarrow CaO(s) ΔH_f° (CaO,s) = -636 kJ
C(grafite) +O₂(g) \rightarrow CO₂(g)
 ΔH_f° (CO₂,g) = -394 kJ
O₂(g) \rightarrow O₂(g) ΔH_f° °(O₂,g) = 0 kJ
C(grafite) \rightarrow C(diamante) ΔH_f° = 1.9 kJ
 $\frac{1}{2}$ Cl₂(g) \rightarrow Cl(g) ΔH_f° = 122 kJ

Entalpia standard di reazione

Calcoliamo il ΔH_r° della reazione

$$CaCO_{3}(s) \rightarrow CaO(s) + CO_{2}(g)$$

$$Ca(s) + C(s) + \frac{3}{2}O_{2}(g)$$

$$-636 + (-394 \text{ kJ})$$

$$1207 \text{ kJ}$$

$$CaCO_{3}(s)$$

$$177 \text{ kJ}$$

$$\Delta H^{\circ} = \Delta H_f^{\circ}(CaO_s) + \Delta H_f^{\circ}(CO_2,g) - \Delta H_f^{\circ}(CaCO_3,s)$$

Applicazioni legge di Hess: ΔH°_{reaz} dai ΔH°_{f}

- Possiamo considerare formalmente ogni reazione in due passaggi: 1) la decomposizione dei reagenti agli elementi, e 2) la formazione dei prodotti dagli elementi
- Quindi il ΔH_r° è esprimibile come: $\Delta H_r^{\circ} = -\sum_{i} m \Delta H_f^{\circ}$ (reagenti) + $\sum_{i} n \Delta H_f^{\circ}$ (prodotti)
 - Reagenti e prodotti devono essere alla stessa
 T, altrimenti devo anche considerare il calore associato al cambiamento di T

Entalpia standard di reazione

$$a A + b B + ... \Rightarrow l L + m M + ...$$

$$\Delta H^{\circ}_{reaz} = (l \cdot \Delta H^{\circ}_{L} + m \cdot \Delta H^{\circ}_{M} + ...) -$$

$$(a \cdot \Delta H^{\circ}_{A} + b \cdot \Delta H^{\circ}_{B} + ...)$$

$$CH_{4}(g) + O_{2}(g) \rightarrow C(diamante) + 2 H_{2}O(l)$$

	$\Delta H^{\circ}_{f}(kJ \text{ mol}^{-1})$
CH ₄ (g)	-74,81
C(diamante)	+1,895
H ₂ O(1)	-285,83

 ΔH °=2×(-285,83)+1,895-(-74,81)=-494,95 kJ mol⁻¹

Formula	$\Delta H_{\rm f}^0$ (kJ/mol)	Formula	ΔH_f^0 (kJ/mol)
Calcium		Nitrogen	
Ca(s)	0	$N_2(g)$	0
CaO(s)	-635.1	$NH_3(g)$	-45.9
$CaCO_3(s)$	-1206.9	NO(g)	90.3
Carbon		Oxygen	
C(graphite)	0	$O_2(g)$	0
C(diamond)	1.9	$O_3(g)$	143
CO(g)	-110.5	$H_2 O(g)$	-241.8
$CO_2(g)$	-393.5	$H_2^2O(I)$	-285.8
$CH_4(g)$	-74.9	Silver	
CH ₃ OH(I)	-238.6	Ag(s)	0
HCN(g)	135	AgCl(s)	-127.0
$CS_2(I)$	87.9	Sodium	
Chlorine		Na(s)	0
CI(g)	121.0	Na(g)	107.8
$Cl_2(g)$	0	NaCI(s)	-411.1
HCI(g)	-92.3	Sulfur	
Hydrogen		S ₈ (rhombic)	0
H(g)	218.0	S ₈ (monoclinic)	
$H_2(g)$	0	$SO_2(g)$	-296.8
2(3)		$SO_3(g)$	-396.0

Possiamo stimare ΔH°_{reaz} dal bilancio delle entalpie di legame:

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$
 $\Delta H^\circ = -184 \text{ kJ}$
 $\Delta H_r^\circ = \sum - n \Delta H_{\text{(legami formati)}} + \sum m H_{\text{(legami rotti)}}$

Sequenza schematica di rottura e di formazione dei legami nella reazione (riferimento atomi isolati gassosi):

 $\Delta H_{\text{reazione}}$: bilancio entalpico dei legami rotti e formati $\Delta H_r^{\circ} = \sum n H_{legame}(rotti) - \sum m H_{legame}(formati)$ $\Delta H^{\circ}_{reaz} = 2 \Delta H_{f}^{\circ} (HCI) = 2 (-92.3 \text{ kJ mol}^{-1}) = -184.6 \text{ kJ}$ $H_2(q) + Cl_2(q) \rightarrow 2HCl(q)$ H-H CI-CI H-CI $\Delta H_r^{\circ} = H_{\text{legame}(H-H)} + H_{\text{legame}(Cl-Cl)} - 2H_{\text{legame}(H-Cl)} =$ 436kJ + 243kJ - 2x431kJ= -184kJ

Le cose vanno abbastanza bene rispetto all'uso dei ΔH_f° . In generale le differenze tra ΔH e ΔE sono modeste anche per reazioni tutte in fase gas (in cui non cambia il nr delle moli di gas). ΔH e ΔE di rottura del legame sono abbastanza poco diversi.

Entalpia di Legame ≈ Energia di LEGAME

$$O_{2(g)} \rightarrow 2O_{(g)} \Delta H_r^\circ = H_{legame(O=O)} = 497 \text{ kJ/mol}$$
 energia legame $O=O$ è 497 kJ/mol

$$CH_{4(g,)} \rightarrow C_{(g)} + 4H_{(g)} \Delta H_{r}^{\circ} = 4H_{legame(C-H)} = 1656 \text{ kJ/mol}$$

E media di C-H nel metano = 1656/4 = 414 kJ/mol

Entalpia di LEGAME

L'entalpia media di legame (o meglio H media molare di dissociazione omolitica di legame) è q_P necessario per la rottura di un legame chimico di una mole di composto in fase gassosa a $25^{\circ}C$ e 1 bar per formare frammenti (radicali, atomi, etc.) in fase gassosa.

Entalpie di legame medie (kJ mol⁻¹)

	Н	С	N	0	F	CI	Br	I	S	Р	Si
Н	436										
С	412	348 s 612 d 837 t 538 a									
N	388	305 s 613 d 890 t	163s 409 d 946 t	157s							
0	463	360 s 743 d	157s	146 s 497 d							
F	565	484	270	185	155						
CI	431	338	200	203	254	242					
Br	366	276				219	193				
I	299	238				210	178	151			
S	338	259	464	523	343	250	212		264		
Р	322			360	490					201 480	
Si	318	307	333	466	584	400					326

ENERGIE DI DISSOCIAZIONE OMOLITICA DI LEGAME IN KCAL/MOLE*

A:B-	$\rightarrow A \cdot + \cdot$	B $\Delta H = \text{Er}$	nergia di disso	ociazione omo	olitica del lega	ame o D(A-	-B)	
H-	—H 104	435 <i>∆H</i> =	△H= entalpia di dissociazione omolitica del legame A-B					
H-	-F 136	569	F-F	38 159	CH ₃ -	-F 108 452		
H-	-Cl 103	431	Cl—Cl	58 243		-Cl 84 352		
H-	−Br 88	368	Br—Br	46 193	CH ₃ -	-Br 70 293	,	
H-	-I 71	297	I—I	36 151	CH ₃ -	-I 56 234		
CH ₃ —H		CH ₃	$-CH_3$ 88 36	8 C	$^{\circ}H_{3}$ —Cl 84 352	2	$CH_3 - Br 70 293$	
C_2H_5-H	98 410	C_2H_2	$-CH_3$ 85 35	C_2	H ₅ -Cl 81 339	C	$_{2}H_{5}$ —Br 69 289	
$n-C_3H_7-H$		$n-C_3H_7$	$-CH_3$ 85 35	$n-C_3$	H_7 —Cl 82 343	n-C	$_{3}H_{7}$ —Br 69 289	
$i-C_3H_7-H$		i-C ₃ H ₇	$-CH_3$ 84 35	$i-C_3$	H ₇ —Cl 81 339	i-C	$_{3}H_{7}$ —Br 68 285	
t - C_4H_9 — H	92 385	t-C ₄ H ₉	$-CH_3 80 33$	t-C ₄	H ₉ -Cl 79 331	t-C	4H ₉ —Br 63 264	
$H_2C=CH-H$		•	—CH ₃ 92 38		CH—Cl 84 352			
$H_2C = CHCH_2 - H$	88 368	$H_2C = CHCH_2$	$-CH_3$ 72 30	H ₂ C=CHC	H_2 —Cl 60 251	$H_2C = CHC$	CH_2 —Br 47 197	
C_6H_5-H	110 460	C_6H_5	-CH ₃ 93 389		H ₅ -Cl 86 360		₆ H ₅ —Br 72 301	
C ₆ H ₅ CH ₂ —H	85 356	C ₆ H ₅ CH ₂	$-CH_3$ 70 29:	C_6H_5C	H_2 —C1 68 285		CH ₂ —Br 51 213	

*(blu kJ mol⁻¹)

Entalpia reticolare a 25°C (kJ mol⁻¹): cicli di Born-Haber

Halides			
LiF	1046	LiCl	861
NaF	929	NaCl	787
KF	826	KC1	717
AgF	971	AgCl	916
$BeCl_2$	3017	MgCl_2	2524
_		MgF_2	2961
Oxides MgO	3850.	CaO	3461
Sulfides MgS	3406	CaS	3119

Per solidi ionici: stima H reticolare da cicli con dati entalpici (riferimento sono ioni in fase gas)

ΔE , ΔH e Temperatura

 $H = E + PV \Rightarrow dH = dE + P dV + V dP$, e a P = cost. $\Delta H = \Delta E + P\Delta V = \Delta E + \Delta n$ (gas) RT Poiché 1 L· atm= 1.013 10²J (1 L·bar = 100J), se ΔH è > 100 kJ mol⁻¹, gli effetti di $P\Delta V$ saranno piccoli in %. Se non cambia il nr. di moli gassose nella trasformazione, $P\Delta V$ conta poco e $\Delta E \cong \Delta H$

Inoltre:

 E_{legame} variano poco con T: quindi anche ΔH_{reaz} varia poco con T, se non cambia lo stato di aggregazione o fase di alcuni reagenti o prodotti. Se ciò non si verifica assumeremo ΔH_{reaz} ~ indipendente da T

E, H, Cp, CveT

Per una mole di gas ideale monoatomico, se cambio T ho $\Delta E = 3/2 R (\Delta T) = q_v$

 $\Rightarrow C_v$ (capacità termica molare a V costante) = $q_v/(\Delta T)$ = 3/2 R

Tutti i gas ideali monoatomici hanno la stessa C_V molare.

```
Per q_P, poiché si ha anche un lavoro di espansione, si ha:

\Delta H = q_P = \Delta E + P\Delta V ma P\Delta V = nR\Delta T e per n = 1

\Delta H = 3/2 R (\Delta T) + R\Delta T

Quindi C_P = q_P/\Delta T = 3/2 R + R = 5/2 R
```

E, equipartizione dell'Energia e T

Per un una mole di gas ideale:

$$E = E_{cin} = (3/2) RT$$
 e per molecola = $(3/2) kT$

Il principio di equipartizione dell'energia richiede che l'energia media su ogni grado di libertà sia eguale. Molecola monoatomica: 3 gradi di libertà traslazionali: \Rightarrow E = $\frac{1}{2}$ kT per grado di libertà e $E_m = (3/2)RT = 2.48$ kJ mol⁻¹ a 298K

Molecola lineare, due ulteriori gradi di libertà: può ruotare intorno a due assi indipendenti quindi: $E_{cin} = (5/2)kT$. $\frac{1}{2}kT$

Molecola angolata, 3 gradi di libertà, oltre alle traslazioni:

$$E_{cin} = (6/2)kT = 3kT$$

C_V e T di gas reali

gas reale biatomico

