Seleção de Atributos

Prof. Dr. Leandro Balby Marinho

Aprendizagem de Máquina

Roteiro

1. Busca Exaustiva/Gulosa

2. Regressão Lasso

3. Solução para o LASSO

Eficiência:

0000

- ► Se size(ŵ)=100B, cada predição fica cara.
- ▶ Se $\hat{\mathbf{w}}$ é esparso, então cálculos só dependem das entradas $\neq 0$.

Interpretabilidade: Quais atributos são mais relevantes para a predição?

Todos os subconjuntos

- ▶ Para cada subconjunto possível calcule o erro e escolha o de menor erro.
- ► Para escolher a complexidade do modelo:
 - 1. Use um conjunto de validação.
 - 2. Use validação cruzada.
 - 3. Outras métricas como BIC.

Complexidade: Para D atributos temos 2^{D+1} subconjuntos (lembre do w_0).

Abordagem Gulosa

Forward Selection:

- 1. Comece com o conjunto vazio de atributos $F_0 = \emptyset$
- 2. Calcule o ajuste do modelo usando o conjunto atual de atributos F_t para obter $\hat{\mathbf{w}}^{(t)}$
- 3. Selecione o melhor próximo atributo $h_{j^*}(\mathbf{x})$
- 4. $F_{t+1} \to F_t \cup \{h_{i^*}(\mathbf{x})\}$
- 5. Chame o procedimento recursivamente passando F_t
- Itere até que nenhum novo atributo traga ganho significativo em relação ao modelo atual.

Complexidade: $O(D^2) \ll O(2^{D+1})$

Roteiro

1. Busca Exaustiva/Gulosa

2. Regressão Lasso

3. Solução para o LASSO

Usando Regularização para Seleção de Atributos

- ► Comece com o modelo completo (todos os atributos possíveis)
- ► Reduza alguns coeficientes a zero.
- ► Coeficientes diferentes de zero são os selecionados.

Regressão Lasso

Custo total=
$$\underbrace{\text{medida do ajuste}}_{\text{RSS(w)}} + \underbrace{\text{medida da magnitude}}_{||\mathbf{w}||_1}$$

Tarefa: Selecionar ŵ para minimizar

$$\mathsf{RSS}(\mathbf{w}) + \lambda ||\mathbf{w}||_1$$

- $ightharpoonup \lambda = 0$: problema reduz a achar os mínimos quadrados.
- $\lambda = \infty$: $\hat{\mathbf{w}} = 0$
- $ightharpoonup 0 < \lambda < \infty$:

$$0 \le ||\hat{\mathbf{w}}||_1 \le ||\hat{\mathbf{w}}^{MQ}||_1$$

Exemplo

Custo Regressão Lasso

Custo total=RSS(w) +
$$\lambda \sum_{i=0}^{N} |w_i|$$

Problemas:

- ▶ Quais as derivadas de $|w_i|$?
- Mesmo que pudéssemos calcular todas as derivadas, não há solução fechada.

Coordinate Descent

- ▶ Objetivo: $\min_{\mathbf{w}} g(\mathbf{w})$
- ► Geralmente difícil para todas as coordenadas, mas simples para cada coordenada.

Coordinate-Descent

- 1 initialize w
- 2 while not converged
- 3 pick a coordinate j
- 4 $\hat{w}_j = \min_{\omega} g(w_0, \ldots, w_{j-1}, \omega, w_{j+1}, \ldots, w_D)$

Coordinate Descent

- ► Como escolhemos a próxima coordenada?
 - ▶ De forma aleatória, round robin, ...
- Não precisa escolher tamanho do passo da descida.
- Útil para muitos problemas:
 - Converge para o ótimo em alguns casos (e.g. funções fortemente convexas).
 - Converge para a função objetivo do Lasso.

Normalização de Features

► Aplique a normalização nas colunas (não nas linhas):

$$\underline{h}_j(\mathbf{x}^{(k)}) = \frac{h_j(\mathbf{x}^{(k)})}{\sqrt{\sum_{i=1}^N h_j(\mathbf{x}^{(i)})^2}}$$

Aplique o mesmo fator de normalização aos atributos de teste:

Mínimos Quadrados com Coordinate Descent

$$\blacktriangleright \mathsf{RSS}(\mathbf{w}) = \sum_{i=1}^{N} \left(y^{(i)} - \sum_{j=0}^{D} w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)^2$$

ightharpoonup Fixe todas as coordenadas \mathbf{w}_{-j} e calcule a derivada com relação à w_j

$$\blacktriangleright RSS(\mathbf{w}) = \sum_{i=1}^{N} \left(y^{(i)} - \sum_{j=0}^{D} w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)^2$$

lacktriangle Fixe todas as coordenadas lacktriangle e calcule a derivada com relação à w_j

$$\frac{\partial}{\partial w_j} RSS(\mathbf{w}) = -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \left(y^{(i)} - \sum_{j=0}^{D} w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)$$

$$\blacktriangleright RSS(\mathbf{w}) = \sum_{i=1}^{N} \left(y^{(i)} - \sum_{j=0}^{D} w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)^2$$

Fixe todas as coordenadas \mathbf{w}_{-i} e calcule a derivada com relação à \mathbf{w}_{i}

$$\frac{\partial}{\partial w_j} RSS(\mathbf{w}) = -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \left(y^{(i)} - \sum_{j=0}^{D} w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)$$

$$= -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \left(y^{(i)} - \sum_{k \neq j} w_k \underline{\mathbf{h}}_k(\mathbf{x}^{(i)}) - w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)$$

$$\blacktriangleright RSS(\mathbf{w}) = \sum_{i=1}^{N} \left(y^{(i)} - \sum_{j=0}^{D} w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)^2$$

Fixe todas as coordenadas \mathbf{w}_{-i} e calcule a derivada com relação à \mathbf{w}_{i}

$$\frac{\partial}{\partial w_{j}} RSS(\mathbf{w}) = -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_{j}(\mathbf{x}^{(i)}) \left(y^{(i)} - \sum_{j=0}^{D} w_{j} \underline{\mathbf{h}}_{j}(\mathbf{x}^{(i)}) \right)$$

$$= -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_{j}(\mathbf{x}^{(i)}) \left(y^{(i)} - \sum_{k \neq j} w_{k} \underline{\mathbf{h}}_{k}(\mathbf{x}^{(i)}) - w_{j} \underline{\mathbf{h}}_{j}(\mathbf{x}^{(i)}) \right)$$

$$= -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_{j}(\mathbf{x}^{(i)}) \left(y^{(i)} - \sum_{k \neq j} w_{k} \underline{\mathbf{h}}_{k}(\mathbf{x}^{(i)}) \right) + 2w_{j} \sum_{i=1}^{N} \underline{\mathbf{h}}_{j}(\mathbf{x}^{(i)})^{2}$$

Mínimos Quadrados com Coordinate Descent

$$\blacktriangleright \mathsf{RSS}(\mathbf{w}) = \sum_{i=1}^{N} \left(y^{(i)} - \sum_{j=0}^{D} w_j \underline{\mathsf{h}}_j(\mathbf{x}^{(i)}) \right)^2$$

▶ Iguale derivada a 0 e resolva para w_i :

$$-2p_j + 2\hat{w}_j = 0$$
$$\hat{w}_j = \rho_j$$

Mínimos Quadrados com Coordinate Descent

Coordinate-Descent-OLS

- 1 initialize ŵ
- 2 while not converged
- 3 pick a coordinate j

4
$$p_{j} = \sum_{i=1}^{N} \underline{h}_{j}(\mathbf{x}^{(i)})(y^{(i)} - \hat{y}^{(i)}(\hat{\mathbf{w}}_{-j}))$$

$$\hat{\mathbf{w}}_j = p_j$$

Roteiro

1. Busca Exaustiva/Gulosa

2. Regressão Lasso

3. Solução para o LASSO

Otimização do Objetivo Lasso

Busca Gulosa

$$\mathsf{RSS}(\mathbf{w}) + \lambda ||\mathbf{w}||_1 = \sum_{i=1}^N \left(y^{(i)} - \sum_{j=0}^D w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)^2 + \lambda \sum_{j=0}^D |w_j|$$

Fixe todas as coordenadas \mathbf{w}_{-j} e calcule a derivada parcial com relação à \mathbf{w}_i .

Parte 1: Derivada parcial do RSS

$$\mathbf{RSS}(\mathbf{w}) = \sum_{i=1}^{N} \left(y^{(i)} - \sum_{j=0}^{D} w_j h_j(\mathbf{x}^{(i)}) \right)^2$$

$$\frac{\partial}{\partial w_j} \mathbf{RSS}(\mathbf{w}) = -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \left(y^{(i)} - \sum_{j=0}^{D} w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)$$

$$= -2 \sum_{i=1}^{N} \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \left(y^{(i)} - \sum_{k \neq j} w_k \underline{\mathbf{h}}_k(\mathbf{x}^{(i)}) - w_j \underline{\mathbf{h}}_j(\mathbf{x}^{(i)}) \right)$$

$$= -2\sum_{i=1}^{N} h_j(\mathbf{x}^{(i)}) \left(y^{(i)} - \sum_{k \neq j} w_k \underline{\mathbf{h}}_k(\mathbf{x}^{(i)}) \right) + 2w_j \sum_{i=1}^{N} h_j(\mathbf{x}^{(i)})^2$$

$$= -2\rho_j + 2w_j$$

Parte 2: Derivada parcial do termo de penalização L_1

$$\blacktriangleright L_1 = \lambda \sum_{j=0}^{D} |w_j|$$

Parte 2: Subgradiente do termo de penalização L_1

$$L_1 = \lambda \sum_{j=0}^{D} |w_j|$$

$$\lambda \partial_{w_j} |w_j| = \begin{cases} -\lambda & \text{se } w_j < 0 \\ [-\lambda, \lambda] & \text{se } w_j = 0 \\ \lambda & \text{se } w_j > 0 \end{cases}$$

Juntando as partes

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_1 = \sum_{i=1}^{N} \left(y_i - \sum_{j=0}^{D} w_j h_j(\mathbf{x}^{(i)}) \right)^2 + \lambda \sum_{j=0}^{D} |w_j|$$

Juntando as partes

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_{1} = \sum_{i=1}^{N} \left(y_{i} - \sum_{j=0}^{D} w_{j} h_{j}(\mathbf{x}^{(i)}) \right)^{2} + \lambda \sum_{j=0}^{D} |w_{j}|$$

$$\lambda \partial_{w_{j}}(\text{custo lasso}) = \underbrace{2w_{j} - 2\rho_{j}}_{\text{do RSS}} + \underbrace{\begin{cases} -\lambda & \text{se } w_{j} < 0\\ [-\lambda, \lambda] & \text{se } w_{j} = 0\\ \lambda & \text{se } w_{j} > 0 \end{cases}}_{\text{da penalidade } L_{1}$$

Juntando as partes

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_{1} = \sum_{i=1}^{N} \left(y_{i} - \sum_{j=0}^{D} w_{j} h_{j}(\mathbf{x}^{(i)}) \right)^{2} + \lambda \sum_{j=0}^{D} |w_{j}|$$

$$\lambda \partial_{w_{j}}(\text{custo lasso}) = \underbrace{2w_{j} - 2\rho_{j}}_{\text{do RSS}} + \underbrace{\begin{cases} -\lambda & \text{se } w_{j} < 0\\ [-\lambda, \lambda] & \text{se } w_{j} = 0\\ \lambda & \text{se } w_{j} > 0 \end{cases}}_{\text{Se } w_{j} > 0$$

$$= \begin{cases} 2w_j - 2\rho_j - \lambda & \text{se } w_j < 0 \\ [-2\rho_j - \lambda, -2\rho_j + \lambda] & \text{se } w_j = 0 \\ 2w_j - 2\rho_j + \lambda & \text{se } w_j > 0 \end{cases}$$

da penalidade L_1

$$\partial_{w_j}(\text{custo lasso}) = \begin{cases} 2w_j - 2\rho_j - \lambda & \text{se } w_j < 0\\ [-2\rho_j - \lambda, -2\rho_j + \lambda] & \text{se } w_j = 0\\ 2w_j - 2\rho_j + \lambda & \text{se } w_j > 0 \end{cases}$$

Caso 1: $w_i < 0$

$$2\hat{w}_j - 2\rho_j - \lambda = 0$$
$$\hat{w}_j = \frac{2\rho_j + \lambda}{2}$$
$$= \rho_j + \frac{\lambda}{2}$$

Para $\hat{w}_j < 0$ precisamos que $ho_j < -rac{\lambda}{2}$

$$\partial_{w_j}(\text{custo lasso}) = \begin{cases} 2w_j - 2\rho_j - \lambda & \text{se } w_j < 0\\ [-2\rho_j - \lambda, -2\rho_j + \lambda] & \text{se } w_j = 0\\ 2w_j - 2\rho_j + \lambda & \text{se } w_j > 0 \end{cases}$$

Caso 2:
$$w_j = 0$$
: $[-2\rho_j - \lambda, -2\rho_j + \lambda]$ deve conter 0

$$-2\rho_j + \lambda \ge 0 \to \rho_j \le \frac{\lambda}{2}$$
$$-2\rho_j - \lambda \le 0 \to \rho_j \ge \frac{-\lambda}{2}$$
$$\frac{-\lambda}{2} \le \rho_j \le \frac{\lambda}{2}$$

$$\partial_{w_j}(\text{custo lasso}) = \begin{cases} 2w_j - 2\rho_j - \lambda & \text{se } w_j < 0\\ [-2\rho_j - \lambda, -2\rho_j + \lambda] & \text{se } w_j = 0\\ 2w_j - 2\rho_j + \lambda & \text{se } w_j > 0 \end{cases}$$

Caso 3: $w_i > 0$

$$\hat{\mathbf{w}}_j = \rho_j - \frac{\lambda}{2}$$

Para $\hat{w}_j > 0$ precisamos que $ho_j > \frac{\lambda}{2}$

$$\partial_{w_j}(\text{custo lasso}) = \begin{cases} 2w_j - 2\rho_j - \lambda & \text{se } w_j < 0 \\ [-2\rho_j - \lambda, -2\rho_j + \lambda] & \text{se } w_j = 0 \\ 2w_j - 2\rho_j + \lambda & \text{se } w_j > 0 \end{cases}$$

$$\hat{\mathbf{w}}_{j} = \begin{cases} \rho_{j} + \frac{\lambda}{2} & \text{se } \rho_{j} < -\frac{\lambda}{2} \\ 0 & \text{se } \rho_{j} \in \left[-\frac{\lambda}{2}, \frac{\lambda}{2} \right] \\ \rho_{j} - \frac{\lambda}{2} & \text{se } \rho_{j} > \frac{\lambda}{2} \end{cases}$$

Busca Gulosa

$$\hat{w}_{j} = \begin{cases} \rho_{j} + \frac{\lambda}{2} & \text{se } \rho_{j} < -\frac{\lambda}{2} \\ 0 & \text{se } \rho_{j} \in \left[-\frac{\lambda}{2}, \frac{\lambda}{2} \right] \\ \rho_{j} - \frac{\lambda}{2} & \text{se } \rho_{j} > \frac{\lambda}{2} \end{cases}$$

Lasso com Coordinate Descent

Coordinate-Descent-Lasso(λ)

- 1 initialize ŵ
- 2 while not converged
- 3 pick a coordinate j

4
$$p_j = \sum_{i=1}^{N} \underline{h}_j(\mathbf{x}^{(i)})(y_i - \hat{y}_i(\hat{\mathbf{w}}_{-j}))$$

$$\hat{\mathbf{w}}_{j} = \begin{cases} \rho_{j} + \frac{\lambda}{2} & \text{se } \rho_{j} < -\frac{\lambda}{2} \\ 0 & \text{se } \rho_{j} \in \left[-\frac{\lambda}{2}, \frac{\lambda}{2} \right] \\ \rho_{j} - \frac{\lambda}{2} & \text{se } \rho_{j} > \frac{\lambda}{2} \end{cases}$$

Referências

- Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. An Introduction to Statistical Learning with Applications in R. Springer, 2013.
- Emily Fox and Carlos Guestrin. Machine Learning Specialization. Curso online disponível em https://www.coursera.org/specializations/machine-learning. Último acesso: 18/11/2016.]