Representación y operaciones

Conceptos sobre formatos de almacenamiento y manejo de la información en computadoras.

- Formatos numéricos de representación.
- Convenios de almacenamiento.
- Operaciones aritméticas y lógicas de procesadores reales.
- Conceptos avanzados de interrupciones.
- Lenguajes ensambladores y proceso de carga de programas.

Tipos de datos que un computador puede procesar

• Bits		0 ó 1
• Números -	• Enteros sin signo (no negativos)	27432
	• Enteros con signo	31421 -12311
	• Fraccionarios en coma fija	0,9721221
	• Fraccionarios en coma flotante	2,376 × 10 ¹²
• Texto "Esto es una c		cadena de texto"
• Instruccion	es LD	.A,[/37][.X]

Números enteros

Enteros sin signo

Rango de representación con n dígitos: $[0, 2^n-1]$

Ejemplos:

$$n=8: B'00100100 = 36_{10}$$

¡Fácil de sumar! B'10000000

Se invierten bits y se suma 1. Repr $(-N) = 2^n - N$

Rango de representación: $[-2^{n-1}, 2^{n-1}-1]$

Enteros con signo

1.Formato signo B'00011001= 25₁₀)
y magnitud: B'10011001=-25₁₀)

Rango de representación: $[-2^{n-1}+1, 2^{n-1}-1]$

2.Complemento B'00011001= 25₁₀₎ a uno: B'11100110=-25₁₀₎

Se invierten los bits. Repr(-N) = 2^n - N- 1

Rango de representación: $[-2^{n-1}+1, 2^{n-1}-1]$

Números fraccionarios

(representación aproximada de números reales)

n bits

$$101,10011_{2} = 5,59375_{10}$$

$$1\times2^{2}+0\times2^{1}+1\times2^{0}+1\times2^{-1}+0\times2^{-2}+0\times2^{-3}+1\times2^{-4}+1\times2^{-5}$$

$$101,10011_{2)} = \frac{10110011_{2)}}{100000_{2)}} = \frac{179_{10)}}{32_{10)}} = 5,59375_{10)}$$

Coma fija con signo (complemento a dos)

Coma flotante

$$3,7124 \cdot 10^{7} \xrightarrow{\log_{a} N = \frac{\log_{b} N}{\log_{a} a}} 2^{25,1458} = 1,1063 \cdot 2^{25}$$
Mantisa Exponente

- Mantisa (1,M): $1,1063_{10)} \cong 1,0001110_{2)}$ Se guardan en la mantisa los bits detrás de la coma.
- Característica: en exceso de $2^{a-1}-1$ Característica = $2^{a-1}-1$ + Exponente Si a es 6, entonces Característica = $2^{6-1}-1+25=56_{10}$

Norma IEEE 754

11 bits 52 bits

S exponente mantisa

64 bits (8 bytes)

Precisión simple (single en lenguaje C)

Precisión doble (double en lenguaje C)

Ejemplo: convertir el número $-4,731 \times 10^{12}$ a la norma IEEE 754 precisión simple.

1. Calculamos equivalencia en exponente 2:

$$\frac{\log_{10} 4,731 \cdot 10^{12}}{\log_{10} 2} = \frac{12 + 0,674952}{0,301030} = 42,10528$$

$$4,731 \cdot 10^{12} = 2^{42,10528} = 2^{42} \cdot 2^{0,10528} = 1,0757 \cdot 2^{42}$$

2. Calculamos el exponente en exceso 2^7 -1=127 Repr(exponente) = $127 + 42 = 169_{10} = 10101001_{2}$ 3. Calculamos la mantisa:

$$\frac{0,0757 \cdot 2^{23}}{2^{23}} = \frac{635017,6}{2^{23}} = \frac{635018}{2^{23}}$$

$$635018_{10} = 00010011011000010001010_{2}$$

4. Construimos el número resultante:

1 10101001 00010011011000010001010 **D** 4 8 9 B 0 8 A

Nota: Utilizando más decimales en los cálculos logarítmicos intermedios se logra una mayor precisión en la representación numérica

Almacenamiento en memoria

¿ Cómo almacenar números de 32 bits en un computador con tamaño de palabra de 8 bits ?

Utilizando 4 palabras contiguas de memoria.

H'D489B08A

Convenio "extremista mayor" (big endian)

Motorola (MAC)

Convenio "extremista menor " (little endian)

Power PC

Intel (IBM PC)

Operaciones aritméticas y lógicas. Indicadores.

- Operaciones aritméticas Suma, resta, multiplicación, división, etc ...
- Operaciones lógicas

Se realizan bit a bit entre los operandos

op1	op2	AND	OR	XOR	NAND	NOR
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	1	0
	1	1	1	0	0	0

• Indicadores de la unidad aritmética lógica (ALU):

Z → Resultado cero (*zero*)

V → Desbordamiento (*overflow*)

N → Resultado negativo

C → Acarreo ; "llevada" (*carry*)

Operaciones de desplazamiento

Vectores de interrupción

Posibles fuentes de interrupción:

Internas al procesador (síncronas):

- Desbordamiento en operaciones aritméticas.
- Código de operación ilegal.
- Interrupción forzada por el programa.
- Fallo en la lectura de la memoria (memory fault)
- Interrupción "perro guardian" (watchdog)

...

Externas al procesador (asíncronas):

- Periféricos (teclado, pantalla, comunicaciones ...)
- Reloj de tiempo real.
- Fallo de alimentación del procesador.

. .