

NORTH ZONE, BANGALORE

SETS & RELATIONS – I

		SETS & REEL	11010					
1.	In a class of 140 students	s numbered 1 to 140, all ev	ven numbered students opto	ed Mathematics course,				
	those whose number is d	livisible by 3 opted physics	s course and those whose n	number is divisible by 5				
	opted chemistry course.	Then the number of studer	nts who did not opt for any	of the three course is:				
	A) 42	B) 102	C) 1	D) 29				
	A) 42	,	•	D) 38				
2.	Let Z be the set of integer	ers. If $A = \{x \in Z : 2^{(x+2)(x-1)}\}$	$\{5x+6\} = 1$ and $B = \{x \in Z : -1\}$	-3 < 2x - 1 < 9,				
	Then the number of subs	sets of the set $A \times B$, is:						
	A) 2^{18}	B) 2^{10}	C) 2^{12}	D) 2^{15}				
3.	Let $S = \{1, 2, 3, \dots, 100\}$. The number of non-emp	ty subsets A of S such that	the product of elements in				
	A is even is:							
	A) $2^{50}(2^{50}-1)$	B) $2^{100} - 1$	C) $2^{50} - 1$	D) $2^{50} + 1$				
4. Two sets A and B as under $A = \{(a,b) \in R \times R : a-5 < 1 \text{ and } b-5 < 1\}$ $B = \{(a,b) \in R \times R : 4(a-6)^2 + 9(b-5)^2 \le 36\} \text{ Then}$								
	$B = \{(a,b) \in R \times R : 4(a-6)^2 + 9(b-5)^2 \le 36\} \text{ Then}$							
	A) $A \subset B$		B) $A \cap B = \phi(an empty so)$	et)				
	C) neither $A \subset B$ nor $B \subset B$	$\subset A$	D) $B \subset A$					
5.	Let A and B be two sets	containing four and two el	ements respectively. Then	the number of subjects of				
	the set $A \times B$ each having at least three elements is							
	A)219	B)256	C)275	D)510				
6.	If $X = (4^n - 3n - 1)$: $n \in \mathbb{N}$	Y) and $Y = \{9(n-1) : n \in \mathbb{Z}\}$	N; where N is the set of r	natural numbers, then				
	$X \cup Y$ is equal to							
	A) N	B) Y-X	C) X	D) Y				
7.	Let $X = \{1, 2, 3, 4, 5\}$. The	e number of different orde	red pairs (Y,Z) that can for	ormed such that $Y \subseteq X$,				
	$Z \subseteq X$ and $Y \cap Z$ is em	npty, is						
	$A) 5^2$	B)3 ⁵	C) 2 ⁵	D) 5^{3}				
8.	Let R be the real numbers.							
	Statement I $A = \{(x, y) \in R \times R : y - x \text{ is an int } eger\}$ is an equivalence relation on R.							
	Statement II $R = \{(x, y) \in R \times R : x = ay \text{ for some lational number } \alpha \}$							

is an equivalence relation on R.

- A) Statement I is true, Statement II is true; statement II is not a correct explanation of statement I
- B) Statement I is true, Statement II is false
- C) Statement I is false, Statement II is true
- D) Statement I is true, Statement II is true; statement II is a correct explanation of statement I Condition for equivalence relation A relation which is symmetric, reflexive and transitive is equivalence relation.
- 9. Consider the following relation R on the set or real square matrices of order 3.

$$R = \{(A, B) : A = P^{-1}BP \text{ for some invertible matrix } p\}$$

Statement I R is an equivalence relation

Statement II for any two invertible 3x3 matrices M and N, $(MN)^{-1} = N^{-1}M^{-1}$.

- A) Statement I is false, Statement II is true
- B) Statement I is true, Statement II is true; Statement II is correct explanation of statement I
- C) Statement I is true, Statement II is true; Statement II is not a correct explanation of statement I
- D) Statement I is true, Statement II is false

Condition for equivalence relation A relation which is symmetric, reflexive and transitive is equivalence relation.

10. Consider the following relations

 $R = \{(x, y) | x, y \text{ are real numbers and } x = wy \text{ for some rational number } w\};$

$$S = \left\{ \left(\frac{m}{n}, \frac{p}{q} \right) | m, n, p \text{ and } q \text{ are int egers such that } n, q \neq 0 \text{ and } qm = pn \right\}.$$

Then,

- A) R is an equivalence relation but S is not an equivalence relation
- B) Neither R nor S is an equivalence relation
- C) S is an equivalence relation but R is not an equivalence relation
- D) R and S both are equivalence relations
- 11. If A,B and C are three sets such that $A \cap B = A \cap C$ and $A \cup B = A \cup C$, then

A)
$$A = C$$

B)
$$B = C$$

C)
$$A \cap B = \phi$$

D)
$$A = B$$

12. Let W denotes the words in the English dictionary define the relation R by

 $R = \{(x, y) \in W \times W : \text{ the words } x \text{ and } y \text{ have at least one letter in common} \}.$

Then R is,

A) reflexive, symmetric and not transitive

- B) reflexive, symmetric and transitive
- C) reflexive, not symmetric and transitive
- D) not reflexive, symmetric and transitive
- Let $R = \{(3,3), (6,6), (9,9), (12,12), (6,12), (3,9), (3,12), (3,6)\}$ be a relation on the set $A = \{3,6,9,12\}$. 13.

The relation is

- A) reflexive and symmetric only
- B) an equivalence relation
- C) reflexive only
- D) reflexive and transitive only
- Let $R = \{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a relation on the set $A = \{1,2,3,4\}$. the relation R is 14.
 - A) a function
- B) transitive
- C) not symmetric
- D) reflexive
- Let $A = \{\theta : 2\cos^2\theta + \sin\theta \le 2\}$ and $B = \{\theta : \pi/2 \le \theta \le 3\pi/2\}$. Then $A \cap B_{is}$ 15.

A)
$$\left[\frac{\pi}{2}, \pi\right] \cup \left[\frac{7\pi}{6}, \frac{3\pi}{2}\right]$$

$$\mathrm{B})\left[\frac{\pi}{2},\frac{5\pi}{6}\right] \cup \left[\pi,\frac{3\pi}{2}\right]$$

A)
$$\left[\frac{\pi}{2}, \pi\right] \cup \left[\frac{7\pi}{6}, \frac{3\pi}{2}\right]$$
 B) $\left[\frac{\pi}{2}, \frac{5\pi}{6}\right] \cup \left[\pi, \frac{3\pi}{2}\right]$ C) $\left[\frac{\pi}{2}, \frac{3\pi}{4}\right] \cup \left[\frac{7\pi}{6}, \frac{3\pi}{2}\right]$ D) $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$

- If $A = \{x : |x| < 2\}$, $B = \{x : |x-5| \le 2\}$, $C = \{x : |x| > x\}$, then $A \cap B$ and A C are respectively 16.
 - A) (-2,0),(3,7)
- B) $(-2,2), \phi$
- C) $\phi_{1}[0,2)$
- D) [3,7],(-2,0)
- In a certain city, only two news papers A and B are published. It is known that 25% of the city 17. population reads A and 20% reads B. while 8% reads A and B. It is also known that 30% of those who read A but not B. look into advertisements and 40% of those who read B but not A look into advertisement while, 50% of those who read both A and B, look into advertisements. What % of the population read on advertisement?
 - A) 40.2%
- B) 14.3%
- C) 13.9%
- D) 25.8%
- 18. N is the set of natural numbers. The relation R is defined on $N \times N$ as follows:
 - $(a,b)R(c,d) \Leftrightarrow ad(b+c)=bc(a+d)$. Then R is
 - A) Reflexive but not symmetric, not transitive
 - B) reflexive and symmetric but not transitive
 - C) symmetric but not reflexive
 - D) equivalence relation
- 19. Suppose A_1, A_2, \dots, A_3 are thirty sets each with five elements and B_1, B_2, \dots, B_n are n sets each with three elements.

Let
$$\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j = S$$

A) Reflexive

	Assume that each element of S belongs to exactly ten of the A_i 's and exactly to nine of the B_j 's. Find n.								
	A) 45	B) 150	C) 15	D) 30					
20.	If A and B be two sets containing 3 and 6 elements respectively. What can be the minimum and								
		of elements in $A \cup B$.		_,_,					
	A) 3,9	B) 6,9	C) 3,6	D) 0,9					
21.	Let A and B be two sets then $(A \cup B)^c \cup (A^c \cap B) =$								
	A) A^c	B) B^c	C) \phi	D) U					
22.	A set contains (2n-equal to	+1) elements. The number	of subsets of this set conta	aining more than n element	s is				
	A) 2^{n-1}	$\mathrm{B})2^n$	C) 2^{n+1}	D) 2^{2n}					
23.	The set $(A \cup B \cup C)$	The set $(A \cup B \cup C) \cap (A \cap B' \cap C')' \cap C'$ is equal to							
	$A)B\cap C'$	B) $A \cap C$	$C)B \cup C'$	$D)A\cap C'$					
24.	If $aN = \{ax \mid x \in N\}$ and $bN \cap cN = dN$, where $b, c \in N$ are relatively prime, then								
	A)d=bc	B)c=bd	C)b=cd	D)none					
25.	In a class of 55 students the numbers of students studying different subjects are 23 in mathematics, 24 in physics, 19 in chemistry, 12 in mathematics and physics, 9 in								
	mathematics and chemistry, 7 in physics and chemistry and 4 in all the three								
	subjects. The numbers of students who have taken exactlyone subject is								
	A)6	B)13	C)16	D) 22					
26.	Let $R = \{(2,3), (3,4)\}$ be a relation defined on the set $A = \{1,2,3,4\}$. The minimum number								
	of ordered pairs required to be added in R so that enlarged relation becomes an equivalence relation is								
	A) 5	B) 6	C) 8	D) 14					
27.	Let R be a relation such that $R = \{(1,4), (3,7), (4,5), (4,6), (7,6)\}$, then $(R^{-1}oR)^{-1} =$								
	A) $\{(1,1),(3,3),(4,4),(7,7),(4,7),(7,4),(4,3)\}$								
	B) $\{(1,1),(3,3),(4,4),(7,7),(4,7),(7,4),\}$								
	C) $\{(1,1),(3,3),(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4$	4)}	D) ϕ						
28.	A relation R on the	e set of non zero complex	numbers is defined by z_1R	$z_2 \Leftrightarrow \frac{z_1 - z_2}{z_1 + z_2}$ is real, then R	t is				

C) Transitive

D) Equivalence

B) Symmetric

- 29. Let R be an equivalence relation defined on a set containing numbers of 6 elements. Then the minimum numbers of ordered pairs that R should contain
 - A) 6

B) 12

C) 6^{6}

- D) 36
- 30. Let R and S be two non-void relations on set A which of the following statements is false.
 - A) R and S are transitive $\Rightarrow R \cup S$ is transitive
 - B) R and S are transitive $\Rightarrow R \cap S$ is transitive
 - C) R and S are Symmetric $\Rightarrow R \cup S$ is symmetric
 - D) R and S are Symmetric $\Rightarrow R \cap S$ is symmetric

KEY

1-10	D	D	A	A	A	D	В	В	С	С
11-20	В	A	D	С	В	С	С	D	A	В
21-30	A	D	A	A	D	С	В	D	A	A

SOLUTIONS

- 1. Let n(A)=number of students opted Mathematics=70,
 - n(B)= number of students opted Physics=46,
 - n(C)= number of students opted Chemistry=28,

$$n(A \cap B) = 23$$
,

$$n(B \cap C) = 9$$
,

$$n(A \cap C) = 14$$
,

$$n(A \cap B \cap C) = 4$$
,

Now $n(A \cup B \cup C)$

$$= n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$$

So number of students not opted for any course

=Total-
$$n(A \cup B \cup C)$$

2.
$$A = \left\{ X \in \mathbb{Z} : 2^{(x+2)(x^2-5x+6)} = 1 \right\}$$

$$2^{(x+2)(x^2-5x+6)} = 2^0 \Rightarrow X = -2, 2, 3$$

$$A = \{-2, 2, 3\}$$

$$B = \{ X \in \mathbb{Z} : -3 < 2x - 1 < 9 \}$$

$$B = \{0,1,2,3,4\}$$

 $A \times B$ has is 15 elements so number of subjects of $A \times B$ is 2^{15} .

3.
$$S = \{1, 2, 3, \dots, 100\}$$

=Total non empty subjects -subsets with product of element is odd

$$=2^{100}-1-1\left[\left(2^{50}-1\right)\right]$$

$$=2^{100}-2^{50}$$

$$=2^{50}(2^{50}-1)$$

4.
$$A = \{(a,b) \in R \times R : |a-5| < 1 \text{ and } |b-5| < 1\}$$

Let a-
$$5=x$$
, b- $5=y$

Set A contain all points inside

$$B = \left\{ (a,b) \in R \times R : 4(a-6)^2 + 9(b-5)^2 \le 36 \right\}$$

Set B contain all points inside or on

$$\frac{(x-1)^2}{9} + \frac{y^2}{4} = 1$$

 $(\pm 1, \pm 1)$ lies inside the ellipse

$$\Rightarrow A \subset B$$

5. Number of element of set (AXB)=4x2=8

Total number of subset of (AxB)= 2^8 =256

Number of subset containing 0 elements= $8_{c_0} = 1$

Number of subset containing 1 elements each= $8_{c_1} = 8$

Number of subset containing 2 elements each= $8_{c_2} = 28$

: number of subset having at least 3 elements

$$=219$$

$$X = \{0,9,54,243,....\}$$
 [put $n = 1,2,3,.....$]

$$Y = \{9(n-1) : n \in N\}$$

$$Y = \{0, 1, 18, 27, \ldots\}$$

It is clear that $X \subset Y$.

$$\therefore X \cup Y = Y$$

7. Given A set $X = \{1, 2, 3, 4, 5\}$

To find the number of different ordered pairs (Y,Z) such that $Y \subseteq X$, $Z \subseteq X$ and $Y \cap Z = \phi$.

Since, $Y \subseteq X$, $Z \subseteq X$, Hence we can only use the elements of X to construct sets Y and Z.

		Number of ways to make 7 such that $Y \cap Z = \phi$
n(y)	Number of ways to make y	Number of ways to make Z such that $Y \cap Z = \emptyset$
0	$^{5}C_{0}$	25
1	⁵ C ₁	24
2	⁵ C ₂	2^3
3	⁵ C ₃	2^2
4	$^{5}C_{4}$	21
5	$^{5}C_{5}$	2°

Let us explain anyone of the above 6 rows say third row

In third row Number of elements y=2

 \therefore Number of ways to select of x can be part of $y = {}^{5}C_{2}$ ways

Now, if y contains any 2 elements, then these 2 elements cannot be used in any way to construct Z. because we want $Y \cap Z = \phi$. And from the remaining 3 elements which are not present in y, 2^3 subsets can be made each of which can be equal to Z and still $Y \cap Z = \phi$ will be true.

Hence, total number of ways to construct sets y and z such that $Y \cap Z = \phi$

$$= {}^{5}C_{0} \times 2^{5} + {}^{5}C_{1} \times 2^{5-1} + \dots {}^{5}C_{5} \times 2^{5-5}$$
$$= (2+1)^{5} = 3^{5}$$

8. Statement I

$$A = \{(x, y) \in R \times R : y - x \text{ is an integer}\}$$

- (a) Reflexive
- 1. xRx:(x-x) is an integer.
 - i.e. true
 - .. Reflexive
 - 2. Symmetric

$$xRy:(x-y)$$
 Is an integer

$$\Rightarrow -(y-x)$$
 is an integer.

$$\Rightarrow (y-x)$$
 is an integer

$$\Rightarrow yRx$$

∴ symmetric

(c) Transitive

xRy and yRz

(x-y) is an integer and (y-z) is an integer

$$\Rightarrow$$
 $(x-y)+(y-z)$ is an integer.

$$\Rightarrow$$
 $(x-z)$ is an integer.

$$\Rightarrow xRz$$

:. Transitive

Hence, A ia na equivalence relation.

Statement II

$$B = \{(x, y) \in R \times R : x = ay \text{ for some rational number } \alpha \}$$

If

$$\alpha = \frac{1}{2}$$
, then for reflexive, we have

$$xRx \Rightarrow x = \frac{1}{2}x$$
, Which is not true, $\forall x \in R - \{0\}$.

∴ B is not reflexive on R.

Hence, B is not an equivalence relation on R.

Hence, statement 1 is true, statement 2 is false.

9. Given,
$$R = \{(A, B) : A = P^{-1}BP \text{ for some invertible matrix } P\}$$

For statement I

(i) reflexive $ARA \Rightarrow A = P^{-1}AP$, which is true only, if P = I.

Since, $A = P^{-1}BP$ for some invertible matrix P.

 \therefore we can assume p = I.

$$\Rightarrow ARA \Rightarrow A = I^{-1}AI$$

$$\Rightarrow A = A$$

 \Rightarrow R is reflexive

Note here, due to some invertible matrix, P is used(reflexive) but if for all invertible matrix is used, then R is not reflexive.

(ii) Symmetric

$$ARB \Rightarrow A = P^{-1}BP$$

$$\Rightarrow PAP^{-1} = P(P^{-1}BP)P^{-1}$$

$$\Rightarrow PAP^{-1} = (PP^{-1})B(PP^{-1})$$

$$\therefore B = PAP^{-1}$$

Since, for some invertible matrix P, we can let $Q = p^{-1}$

$$B = (P^{-1})^{-1}AP^{-1}$$

$$\Rightarrow B = Q^{-1}AQ$$

$$\Rightarrow B = Q^{-1}AQ$$

$$\Rightarrow BRA$$

 $\Rightarrow R$ is symmetric.

(iii) Transitive

ARB and BRC

$$\Rightarrow A = P^{-1}BP$$

And
$$B = P^{-1}CP$$

$$\Rightarrow A = P^{-1}(P^{-1}CP)P$$

$$\Rightarrow A = (P^{-1})^2 C(P)^2$$

So, ARC, for some $P^2 = P$

 $\Rightarrow R$ is transitive

So, R is an equivalence relation.

For statement II It is always true that $(MN)^{-1} = N^{-1}M^{-1}$

Hence, both statements are true but second is not the correct explanation of first.

- 10. Given, relation R is defined as $R = \begin{cases} (x, y) \mid x, y \text{ are real numbers and} \\ x = wy \text{ for some rational number } w \end{cases}$
 - (i) Reflexive $xRx \Rightarrow x = wx$

 $\therefore w = 1 \in rational \ number$

The relation R is reflexive.

(ii) symmetric $xRy \Rightarrow yRx$ as oR1

But 1 Ro \Rightarrow 1 = w.(0)

Which is not true for any rational number.

The relation R is not symmetric.

Thus, R is not equivalence relation.

Now, for relation S which is defined as

$$S = \left\{ \frac{m}{n}, \frac{p}{q} \mid m, n, p \text{ and } q \in \text{int egers such that } n, q \neq 0 \text{ and } qm = pn \right\}$$

(i) Reflexive
$$\frac{m}{n}R\frac{m}{n} \Rightarrow mn = mn$$
 [true]

The relation S is reflexive.

(ii) symmetric
$$\frac{m}{n} R \frac{p}{q} \Rightarrow mq = n p$$

$$\Rightarrow np = mq \Rightarrow \frac{p}{q}R\frac{m}{n}$$

The relation S is symmetric.

(iii)
$$\frac{m}{n}R\frac{p}{q}$$

and
$$\frac{p}{q}R\frac{r}{s}$$

$$\Rightarrow mq = mp$$

and
$$ps = rq$$

$$\Rightarrow mq.ps = np.rq$$

$$\Rightarrow ms = nr$$

$$\Rightarrow \frac{m}{n} = \frac{r}{s}$$

$$\Rightarrow \frac{m}{n} R \frac{r}{s}$$

The relation S is transitive. Hence, the relation S is equivalence relation.

- 11. Given $A \cap B = A \cap C$ and $A \cup B = A \cup C$
 - $\therefore B = C$
- 12. Let $W = \{CAT, TOY, YOU.....\}$ Clearly, R is reflexive and symmetric but not transitive.

$$W = \left\{ \underset{CAT \ R_{TOY, \ TOY} \ R_{YOU}}{\Longrightarrow} \right\}_{CAT \ R_{YOU}}$$

- 13. Since for every elements of A, there exists elements $(3,3),(6,6),(9,9),(12,12) \in R \Rightarrow R$ is reflexive relation.
 - Now, $(6,12) \in R$ but $(12,6) \notin R$, so it is not a symmetric relation.

Also,
$$(3,6),(6,12) \in R$$

$$\Rightarrow$$
 (3,12) $\in R$

:. R is transitive relation.

14. Given, $R = \{(1,3), (4,2), (2,4), (2,3), (3,1)\}$

Is a relation on the set $A=\{1,2,3,4\}$.

- (a) Since, $(2,4) \in R$ and $(2,3) \in R$. So, R is not a function.
- (b) Since, $(1,3) \in R$ and $(3,1) \in R$. But $(1,1) \notin R$. So, R is not transitive.
- (c) Since, $(2,3) \in R$ but $(3,2) \notin R$. So, R is not symmetric.
- (d) Since, (1,1), (2,2), (3,3), $(4,4) \notin R$. So, R is not reflexive.
- 15. Since $2\cos^2\theta + \sin\theta \le 2$

$$\Rightarrow 2(1-\sin^2\theta)+\sin\theta \le 2$$

$$\Rightarrow 2\sin^2\theta - \sin\theta \le 0$$

$$\Rightarrow \sin\theta \left(\sin\theta - \frac{1}{2}\right) \ge 0$$

$$\therefore \sin \theta \le 0 \quad and \quad \sin \theta \ge \frac{1}{2}$$

Now the value of θ which lie in the interval $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$

$$\left\{\sin ce \ B = \left\{\theta : \frac{\pi}{2} \le \theta \le \frac{3\pi}{2}\right\}\right\} \text{ and satisfy } \sin \theta \le 0 \text{ are given by } \pi \le \theta \le \frac{3\pi}{2} \text{ and the values of } \theta$$

which lie in the interval $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2} \left\{ \sin ce \ B = \left\{ \theta : \frac{\pi}{2} \le \theta \le \frac{3\pi}{2} \right\} \right\}$ and satisfy $\sin \theta \ge \frac{1}{2}$ are given

by
$$\frac{\pi}{2} \le \theta \le \frac{5\pi}{6}$$

$$\therefore A \cap B = \left\{ \theta : \pi \le \frac{3\pi}{2} \right\} \quad \text{and } A \cap B = \left\{ \theta : \frac{\pi}{2} \le \theta \le \frac{5\pi}{6} \right\}$$

Hence
$$\therefore A \cap B = \left\{ \theta : \frac{\pi}{2} \le \theta \le \frac{5\pi}{6} \text{ or } \pi \le \theta \le \frac{3\pi}{2} \right\}$$

$$= \left\{ \theta : \theta \in \left[\frac{\pi}{2}, \frac{5\pi}{6} \right] \cup \left[\pi, \frac{3\pi}{2} \right] \right\}$$

16.
$$A = \{x : |x| < 2\}$$

$$= \{x: -2 < x < 2\}$$

$$A = (-2, 2)$$

$$B = \{x : |x - 5| \le 2\}$$

$$= \{x: -2 \le x - 5 \le 2\} = \{x: 3 \le x \le 7\}$$

$$B = (3,7)$$

$$C = \left\{ x : |x| > x \right\}$$

$$= \{x: x > x \quad and \quad -x > x\}$$

$$= \{x: x > -x > x\}$$

$$= \{x : x < 0\}$$

$$C = (-\infty, 0)$$

$$\therefore (i)A \cap B = \{x : x \in A \ and \ x \in B\} = \phi$$

$$(iv)A - C = \{x : x \in A \text{ and } x \notin C\} = (0,2)$$

17. Let C= Set of people who read paper A

D= Set of people who read paper B

Given
$$n(C) = 25, n(D) = 20, n(C \cap D) = 8$$

$$n(C \cap D') = n(C) - n(C \cap D)$$
$$25 - 8 = 17$$

But given total people who read A but not B=30%

∴ % of people reading A but not B=30% of 17

$$=\frac{30\times17}{100}=\frac{(51)}{10}$$

And
$$n(C' \cap D) = n(D) - n(C \cap D)$$

But given total people who read B but not A=40%

∴ % of people reading B but not A =40% of 12

$$=\frac{40\times12}{100}=\frac{(24)}{5}$$

Are given total people who read A and B=50%

∴ % of people reading both A and B=50% of 8

$$=\frac{50\times8}{100}=4$$

.. % of people reading an advertisement

$$=\frac{51}{10}+\frac{24}{5}+4=13.9\%$$

18. Reflexive.

Since $(a,b)R(a,b) \Leftrightarrow ab(b+a) = ba(a+b) \forall a,b \in \mathbb{N}$ is true. Hence R is reflexive.

Symmetric.

$$(a,b)R(c,d) \Leftrightarrow ad(b+c) = bc(a+d)$$
$$\Leftrightarrow bc(a+d) = ad(b+c)$$
$$\Leftrightarrow cb(d+a) = da(c+b)$$
$$\Leftrightarrow (c,d)R(a,b)$$

Hence R is symmetric.

Transitive. Since $(a,b)R(c,d) \Leftrightarrow ad(b+c) = bc(a+d)$

$$\Leftrightarrow \frac{b+c}{bc} = \frac{a+d}{ad}$$

$$\Leftrightarrow \frac{1}{c} + \frac{1}{b} = \frac{1}{d} + \frac{1}{a}$$

$$\Leftrightarrow \frac{1}{a} - \frac{1}{b} = \frac{1}{c} - \frac{1}{d}$$

$$(a,b)R(c,d) \Leftrightarrow \frac{1}{a} - \frac{1}{b} = \frac{1}{c} - \frac{1}{d}$$
(1)

And similarly,

$$(c,d)R(e,f) \Leftrightarrow \frac{1}{c} - \frac{1}{d} = \frac{1}{e} - \frac{1}{f}$$
(2)

From (1) and (2),

$$(a,b)R(c,d)$$
 and $(c,d)R(e,f) \Leftrightarrow \frac{1}{a} - \frac{1}{b} = \frac{1}{e} - \frac{1}{f} \Leftrightarrow (a,b)R(e,f)$

Hence R is transitive.

Hence R is equivalence relation.

19. Given A's are thirty sets with five elements each, so

$$\sum_{i=1}^{30} n(A_i) = 5 \times 30 = 150 \quad \dots (i)$$

If the m distinct elements in S and each element of S belongs to exactly 10 of the A_i 's so

We have
$$\sum_{i=1}^{30} n(A_i) = 10m$$
(ii)

 \therefore From (i) and (ii) ,we get 10m=150

Similarly

$$\sum_{i=1}^{n} n(B_i) = 3n$$
 and $\sum_{i=1}^{n} n(B_i) = 9m$

3n=9m

$$n = \frac{9m}{3} = 3m = 3 \times 15 = 45$$
 [from(iii)]

Hence n=45.

20. we have $n(A \cup B) = n(A) + n(B) - n(A \cap B)$, $n(A \cup B)$ is minimum or maximum according as $n(A \cap B)$.

Maximum or minimum respectively.

Case I. If $n(A \cap B)$ is minimum, i.e. $n(A \cap B) = 0$ such that

$$A = \{a, b, c, d, e, f\}$$
 and $B = \{g, h, i\}$

$$n(A \cup B) = n(A) + n(B)$$

$$= 6 + 3 = 9$$

Case II. If $n(A \cap B)$ is maximum i.e. $n(A \cap B) = 3$ such that

$$A = \{a, b, c, d, e, f\} \text{ and } B = \{d, a, c\}$$
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$
$$= 6 + 3 - 3$$
$$= 6$$

21.
$$(A \cup B)^{c} \cup (A^{c} \cup B)$$

$$= (A^{c} \cap B^{c}) \cup (A^{c} \cup B)$$

$$= (A^{c} \cup A^{c}) \cap (A^{c} \cup B) \cap (B^{c} \cup A^{c}) \cap (B^{c} \cup B)$$

$$= A^{c} \cap [A^{c} \cup (B \cap B^{c})] \cap \bigcup$$

$$= A^{c} \cap (A^{c} \cup \phi) \cap \bigcup$$

$$= A^{c} \cap A^{c} \cap \bigcup$$

$$= A^{c} \cap \bigcup$$

$$= A^{c} \cap \bigcup$$

- 22. Let the original set contains 2n+1 elements, then subsets of this set containing more than n elements means subjects containing (n+1) elements, (n+2) elements.....(2n+1) elements.
 - :. Required number of subjects

$$\begin{split} &=^{2n+1} c_{n+1} +^{2n+1} c_{n+2} + \dots +^{2n+1} c_{2n} +^{2n+1} c_{2n+1} \\ &=^{2n+1} c_n +^{2n+1} c_{n+1} + \dots +^{2n+1} c_1 +^{2n+1} c_0. \\ &=^{2n+1} c_0 +^{2n+1} c_1 + \dots +^{2n+1} c_{n-1} +^{2n+1} c_n. \\ &= \frac{1}{2} \Big[\Big(1+1 \Big)^{2n+1} \Big] \\ &= \frac{1}{2} \Big(2^{2n+1} \Big) = 2^{2n}. \end{split}$$

- 23. $(A \cup B \cup C) \cap (A \cap B' \cap C') \cap C' = (A \cup B \cup C) \cap (A' \cup B \cup C) \cap C'$ $= [(A \cap A') \cup (B \cup C)] \cap C' = (B \cup C) \cap C'$ $= (B \cap C') \cup (C \cap C') = B \cap C'$
- 24. We have $bN = \{bx \mid x \in N\}$ = the set of positive integral multiples of b and $cN = \{cx \mid x \in N\}$ = the set of positive integral multiples of c.

 $\therefore bN \cap cN$ = the set of positive integral multiples of $bc = bcN [\therefore b \text{ and } c \text{ are relatively prime}]$ Hence, d = bc

25.

$$n(M) = 23, n(P) = 24, n(C') = 19,$$

$$n(M \cap C) = 9, n(P \cap C) = 7, n(M \cap P \cap C') = 4.$$
We have to find, $n(M \cap P' \cap C')$,
$$n(P \cap M' \cap C'), n(C \cap M' \cap P')$$

$$Now n(M \cap P' \cap C') = n[M \cap (P \cup C)]$$

$$= n(M) - n[M \cap (P \cup C)]$$

$$= n(M) - n[(M \cap P) \cup (M \cup C)]$$

$$= n(M) - n(M \cap P) - n(M \cap C) + n(M \cap P \cap C)$$

$$= 23 - 12 - 9 + 4 = 27 - 21 = 6.$$

$$n(P \cap M' \cap C') = n[P \cap (M \cup C)]$$

$$= n(P) - n[P \cap (M \cup C)]$$

$$= n(P) - n[P \cap M] - n(P \cap C) + n(P \cap M \cap C)$$

$$= 24 - 12 - 7 + 4 = 9, n(C \cap M' \cap P') = n(C) - n(C \cap P) - n(C \cap M) + n(C \cap P \cap M')$$

$$= 19 - 7 - 9 + 4 = 23 - 16 = 7$$

26.

Given
$$R = \{(2,3),(3,4)\}$$

To make it reflexive, enlarge R as following

$$R = \{(1,1),(2,2),(3,3),(4,4),(2,3),(3,4)\}$$

Hence four more ordered pairs are added. To make it symmetric, enlarge R as following

$$R = \{(1,1),(2,2),(3,3),(4,4),$$

Hence two more ordered pairs are added. Finally to make it transitive, we enlarge R to

$$\{(1,1),(2,2),(3,3),(4,4),(2,3),(3,2),(3,4),$$

(4,3),(2,4)(4,2)}. Hence two more ordered pairs are added. \therefore Total 8 ordered pair must be added to make the relation R an equivalence.

27.
$$R = \{(1,4),(3,7),(4,5),(4,6),(7,6)\}$$
$$R^{-1} = \{(4,1),(7,3),(5,4),(6,4),(6,7)\}$$

28. i)
$$z_1 R z_1 \Rightarrow \frac{z_1 - z_1}{z_1 + z_1} \forall z_1 \in C \Rightarrow 0$$

:. R is a reflexive.

ii)
$$z_1Rz_2 \Rightarrow \frac{z_1 - z_2}{z_1 + z_2}$$
 is real

$$\Rightarrow \left(\frac{z_2 - z_1}{z_2 + z_2}\right) is \ real \Rightarrow \left(\frac{z_2 - z_1}{z_2 + z_1}\right) \ is \ real$$

$$\Rightarrow z_2Rz_1\forall z_1, z_2 \in C : R \text{ is a symmetric}$$

iii) let
$$z_1 = a_1 + ib_1$$
, $z_2 = a_2 + ib_2$, $z_3 = a_3 + ib_3$

when
$$a_1b_1, a_2b_2, a_3b_3 \in R$$

$$\operatorname{now} z_1 R z_2 \Rightarrow \frac{z_1 - z_2}{z_1 + z_2} \ is \ real$$

$$\Rightarrow \frac{(a_1 - a_2) + i(b_1 - b_2)}{(a_1 + a_2) + i(b_1 + b_2)} \times \frac{(a_1 + a_2) - (b_1 + b_2)}{(a_1 + a_2) - (b_1 + b_2)} \text{ is real}$$

$$\Rightarrow$$
 $(a_1 + a_2)(b_1 - b_2) - (a_1 - a_2)(b_1 + b_2) = 0$ (for purely real, imaginary part=0)

$$\Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2}$$
, similarly $z_2 R z_3 \Rightarrow \frac{a_2}{b_2} = \frac{a_3}{b_3}$

$$z_1Rz_2$$
 and $z_2Rz_3 \Rightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2}$ and $\frac{a_2}{b_2} = \frac{a_3}{b_3}$

$$\Rightarrow \frac{a_1}{b_1} = \frac{a_3}{b_3}$$
 $z_1 R z_3$ is transitive.

Hence R is an equivalence relation.

- 29. The minimum number of ordered pairs that R should contain 6 elements.
- Let $A = \{1, 2, 3\}$ and $R = \{(1, 1)(1, 2)\}$ and $S = \{(2, 2)(2, 3)\}$ clearly R and S are transitive relations on A 30. now

 $R \cup S = \{(1,1)(2,2)(1,2)(2,3)\}, R \cup S \text{ is not transitive as } (1,3) \notin R \cup S$

BASICS

1. The product of all the solution of the equation $(x-2)^2 - 3 x-2 + $	2 = 0 is
--	-----------

A) 2

B)-4

C)0

D)none of these

The number of solution of the equation $\log(-2x) = 2\log(x+1)$ is 2.

B)1

D)none

Greatest integer less than or equal to the number $\log_2 15.\log 1/6\log_3 1/6$ 3.

B)3

D)1

The number of solutions |[x]-2x|=4 is (where [.] denotes greatest integer function) 4.

A)2

D)infinite

The solution set of the in equation $1 + \log_{\frac{1}{2}}(x^2 + x + 1) > 0$ is 5.

 $A)(-\infty,-2)\cup(1,\infty)$

B)[-1,2]

C)[-2,1]

 $D)[-\infty,\infty]$

Number of values of x satisfying the equations $5\{x\} = x + [x]$ and $[x] - \{x\} = \frac{1}{2}$ is 6.

A)1

B)2

C)3

D)4

If $|x^2-9|+|x^2-4|=5$, then the set values of x is 7.

A) $(-\infty, -3) \cup (3, \infty)$ B) $(-\infty, -2) \cup (3, \infty)$ C) $(-\infty, 3)$

D) $(-3,-2)\cup(2,3)$

If $\frac{|x+2|-x}{x}$ < 2, then the set of values of x is 8.

A) $(-\infty,1)\cup(2,\infty)$

B) $(-\infty, -2) \cup (3, \infty)$ C) $(-\infty, -1) \cup (0, \infty)$

D)none of these

9.	Solution of the inequality	$\log_e^2[2x] - \log[2x] \le 0 \text{ is}$		
	A)[1,3]	B)[0,3]	C) {1,2}	$D)\left[\frac{1}{2},\frac{3}{2}\right)$
10.	Solution set $\left x^2 - 5x + 7 \right $	$+ x^2 - 5x - 14 = 21 $ is		
	A)[-2,7]	B) $\left(-\infty, -2\right] \cup \left[7, \infty\right)$	C) $R - \{4, -4, 0\}$	D){0}
11.	The set of real value (s)	of p for which the $ 2x+3 $ +	2x-3 px + 6s has exactly	two solutions is
	A)[-2,7]	B)(-4,4]	C) $R - \{-4, 4\}$	D){0}
12.	$e^{e^{in\ell n3}}$ is simplified to			
	A)	B) \(\ell n 3	C)3	D) $\ell n (\ell n3)$
13.	$N = \frac{81^{\frac{1}{\log_2 9}} + 3^{\frac{3}{\log_{\sqrt{6}} 3}}}{409} \left(\sqrt{7}^{\frac{3}{\log}}\right)$	$\frac{2}{\log_{25}7} - (125)^{\log_{25}6}$, then \log_{10}	₂ N has value	
	A) 0	B)1	C)-1	D)None of these
14.	If $\ell n(x+z) + \ell n(x-2y+1)$	$(z) = 2\ell n(x-z)$, then		
	$A) y^2 = \frac{2xz}{x+z}$	$\mathbf{B})y^2=xz$	C) 2y = x + z	$D)\frac{x}{z} = \frac{x - y}{y - z}$
15.	If $x,y,z \in R$ then system	$x + y + z = 2, 2xy - z^2 = 4$		
	A)Has only one real solu	tion	B)has no real solution	
	C)has only two real solut		D)has infinite solutions.	
16.	If X satisfies $ x-1 + x-1 $	$2 + x-3 \ge 6, \text{ then}$		
	$A) 0 \le x \le 4$	B) $x \le -2$ or $x \ge 4$	C) $x \le 0$ or $x \ge 4$	D) None of these
17.	The equation $ x-1 +a =$	= 4 can have real solutions	for x, if a belongs to the in	terval
	A) (-∞,5]	B)(-∞,-4]	$C)(4,\infty)$	D)[-5,5]
18.	The least integer value or	f x, which satisfy $ x + \left \frac{x}{x-1} \right $	$\left = \frac{x^2}{ x-1 }, \text{ is} \right $	
	A) 0	B) 1	C) 2	D) 3
19.	Solve the following for x	$\frac{ x+3 +x}{x+2} > 1$		

A) (-5,-2) B) (-5,-1) C) $(-5,-1)\cup(1,\infty)$ D) $(-5,-2)\cup(-1,\infty)$

Solve $|x^2 - 4x + 3| = x + 1$.

29.

20.	What will be the number of digits in the sum of all integral values of x in interval [-4,100] satisfying						
	$\left 2x - \sqrt{(2x-1)^2}\right = 1$						
	A) 2	B) 3	C) 4	D) 5			
21.	Solve the following equa	ations for x. $ x^2-9 + x^2-$	4 = 5				
	A) $[-3,-2] \cup [2,3]$		B) $(-\infty, -3] \cup [-2, 2] \cup [$	3,∞)			
	C) [-3,3]		D) $[0,\infty)$				
22.	Let $u = (\log_2 x)^2 - 6(\log_2 x)$	(x) +12, where x is a real	number, then the equation	$x^u = 256 \ has$			
	A) No solution for x		B) Exactly one solution	for x			
	C) Exactly two distinct s	solutions for x	D) Exactly three distinct	solutions for x			
23.	The product of all value	s of x which make the follo	owing statement true				
	$(\log_3 x)(\log_5 9) - (\log_x x)$	$25) + \log_3 2 = \log_3 54, \text{ is}$					
	A) $\sqrt{5}$	B) 5	C) $5\sqrt{5}$	D) 25			
24.	Suppose n be an integer greater than 1, let $a_n = \frac{1}{\log_n 2002}$. suppose $b = a_2 + a_3 + a_4 + a_5$ And $c = a_{10} + a_{11} + a_{12} + a_{13} + a_{14}$, then $(b-c)$ equals						
	And $c = a_{10} + a_{11} + a_{12} + a_{13}$	$a_{13} + a_{14}$, then $(b-c)$ equa	ls				
	$A)\frac{1}{1001}$	B) $\frac{1}{1002}$	C) –1	D)-2			
25.	Solve $ x-1 -2 < 5$.						
	A) (-6,8)	B) $(-6,4) \cup \{8\}$	C) $(0,8)$	D) $(-6,-4) \cup (4,8)$			
26.	Solve $x > \sqrt{(1-x)}$.						
	A) (0,1)	$B)\left(\frac{\sqrt{5}-1}{2},1\right]$	$C)\left(-\infty,\frac{-\sqrt{5}-1}{2}\right)$	$D)\left(\frac{\sqrt{5}-1}{2},\infty\right)$			
27.	For what value of x , $ ta$	$ n x + \cot x < \tan x + \cot x $	is true.				
	A) $\left(0, \frac{\pi}{4}\right]$	$\mathrm{B)}\left(0,\frac{\pi}{2}\right)$	C) <i>\phi</i>	$D)\left[\frac{\pi}{4},\frac{\pi}{2}\right)$			
28.	Find all possible values	of $\frac{x^2 + 1}{x^2 - 2}$.					
	A) $\left(-\infty, \frac{-1}{2}\right]$	B) $(0,\infty)$	C) $\left(-\infty, \frac{-1}{2}\right] \cup \left(0, \infty\right)$	$D)\left(-\infty,\frac{-1}{2}\right]\cup\left(1,\infty\right)$			

$$A) -1$$

B)
$$-4$$

C)
$$\{-1, -2\}$$

D)
$$(-3,-1)$$

30. Solve
$$|x-1|-|2x-5|=2x$$
.

B)
$$[1,\infty)$$

C)
$$\left[1, \frac{5}{2}\right)$$

KEY

1-10	С	В	С	В	С	A	D	D	D	A
11-20	В	С	A	D	A	С	В	A	D	С
21-30	A	В	С	С	A	В	С	D	A	D

SOLUTIONS

- 1. Since x=0 is one of the solution so the product will be zero.
- 2. $\log(-2x) = 2\log(x+1)$

$$-2x > 0 \Rightarrow x < 0$$

$$x+1 > 0 \Rightarrow x > -1$$

From (i) & (ii), we get $x \in (-1, 0)$

$$\therefore -2x = (x+1)^2 \Rightarrow x^2 + 4x + 1 = 0 \Rightarrow x = \frac{-4 \pm 2\sqrt{3}}{2}$$

So only one solution lies in (-1, 0)

3.
$$\log_2 \log_{\frac{1}{6}}$$
 $2 \log_3 \frac{1}{6} =$

$$= \frac{10(3 \times 5)}{\log 3} = 1 + \log_3 5 > 2$$
 (but<2)

4. case I

$$[x]-2x=4 \qquad \dots (i)$$

$$\Rightarrow [x] - 2([x] + \{x\}) = 4$$

$$\Rightarrow [x] + 2\{x\} + 4 = 0 \qquad \dots (ii)$$

$$\therefore 0 \le 2\{x\} < 2$$

$$\therefore 0 \le -2[x] - 4 < 2$$

$$\Rightarrow [x] = -4, -5$$

$$\therefore from(i) we get x = -4, \frac{-9}{2}$$

case II

$$[x] - 2x = -4$$

(from (iii))

$$[x] = 2x - 4$$

$$\Rightarrow [x] = 2([x] + \{4\}) - 4$$

$$\Rightarrow 2\{x\} = 4 - [x]$$
(iv)

$$\therefore 0 \le 2\{x\} < 2$$

$$\therefore 0 \le 4 - [x] < 2$$

$$\Rightarrow 2 < [x] \le 4$$

$$\Rightarrow [x] = 3,4$$

$$\therefore from(i) we get x = 4, \frac{7}{2}$$

$$\therefore$$
 Number of solutions $|[x]-2x|=4$ are 4

5.
$$\log_{\frac{1}{3}}(X^2+x+1) > -1 \Rightarrow x^2+x+1 < 3$$

$$\Rightarrow x^2 + x - 2 < 0 \Rightarrow (x+2)(x-1) < 0 \Rightarrow X \in (-2,1)$$

6.
$$5\{x\} = x + [x]$$
(*i*

$$[x] - \{x\} = \frac{1}{2}$$
(ii)

$$\therefore 0 \leq [x] < 1$$

$$\Rightarrow 0 \le [x] - \frac{1}{2} < 1$$
 $(by(ii))$

$$\Rightarrow [x] = 1 \qquad \qquad \therefore \{x\} = \frac{1}{2}$$

$$\therefore from(i) we get \frac{5}{2} = x + 1$$

$$\therefore x = \frac{3}{2}, (one value)$$

7.
$$|x^2 - 9| + |x^2 - 4| = 5$$

$$|x^{2}-9|+|x^{2}-4|=|(x^{2}-9)-(x^{2}-4)|$$

$$\Rightarrow (x^{2}-9)(x^{2}-4) \le 0 \{ \therefore |a|+|b|=|a-b| \Leftrightarrow a.b \le 0 \}$$

$$\Rightarrow x \in [-3,-2] \cup [2,3]$$

8. $x \neq 0$ caseI when $x \geq -2$

$$\frac{\left|x+2\right|-x}{2} < 2 \Rightarrow \frac{2}{x} < 2 \Rightarrow \frac{1}{x} < 1 = \left(x-1\right)/x > 0$$

$$x \in [-2,0] \cup [1,\infty]$$
(*i*)

caseII whenx < -2

$$\frac{\left|x+2\right|-x}{x} < 2 \Rightarrow \frac{-2-2x}{x} < 2 \Rightarrow \frac{1+x}{x} + 1 > 0$$

$$\Rightarrow (1+2x)/x > 0 \Rightarrow x \in (-\infty, -2)$$
(ii)

$$\therefore$$
 from (i) and (ii) we get $x \in (-\infty, 0) \cup (1, \infty)$

9.
$$0 < \log_e \left[2x \right] \le 1$$

$$1 \le \lceil 2x \rceil \le e \Longrightarrow \lceil 2x \rceil = 1, 2 \Longrightarrow 1 \le 2x < 3$$

$$\frac{1}{2} \le x \le \frac{3}{2}$$

10.
$$|a| + |b| = |a - b|$$

$$\Rightarrow ab \leq 0$$

$$(x^2-5x+7)(x^2-5x-14) \le 0$$

$$(x-7)(x+2) \le 0$$

$$\Rightarrow x \in [-2, 7]$$

11. When the line y=px+6 has slope 4 then the line will be parallel to the line y=4x and when p=0line will coincide with y=6.In between these 2 position (that is when 0<p<4) both the curve will intersect at 2 points, similarl the case with y=-4x also

12.
$$Use A^{log_A B} = B$$

$$e^{\ln(\ln 3) = \ln 3}$$

$$\therefore e^{e^{\ln(\ln 3)}} = e^{\ln 3} = 3$$

13.
$$N = \frac{\left(3^4\right)^{\log_{3^2} 5} + 3^{3\log_3 \sqrt{6}}}{409} \left[7^{\log_7 25} - \left(5^3\right)^{\log_5 2^6} \right]$$

$$N = \frac{3^{\log_3 25} + 3^{\log_3 \sqrt{6}^3}}{409} \left[25 - 6\sqrt{6} \right]$$

$$N = \frac{\left(25 + 6\sqrt{6}\right)\left(25 - 6\sqrt{6}\right)}{409}$$

$$N = 1$$

$$lag_2N = log_2 1 = 0$$

14.
$$\ln(x+z) + \ln(x-2y+z) = 2\ln(x-z)$$

$$\ln(x+z)(x-2y+z) = \ln(x-z)^2$$

$$x^{2}-2xy+2zx-2yz+z^{2}=x^{2}+z^{2}-2zx$$

$$\Rightarrow y = \frac{2xz}{z+x} \quad or \quad \frac{x}{z} = \frac{x-y}{y-z}$$

15.
$$AM \ge GM$$

$$\frac{x+y}{2} \ge \sqrt{xy}$$

$$\left(\frac{2-z}{2}\right) \ge \sqrt{xy}$$

$$\frac{2-z}{2} \ge \left(\frac{y+z}{2}\right)^{\frac{1}{2}}$$

$$\frac{4+z^2-4z}{4} \ge \frac{4+z^2}{2}$$

$$(z+2)^2 \le 0 :: z = -2$$

$$x + y = 4$$

$$xy = 4$$

$$x-y=0$$

$$\therefore x = 2, y = 2 \text{ and } z = -2$$

Only one real solution

16.
$$|x-1|+|x-2|+|x-3| \ge 6$$
,

Case I When
$$x < 1$$
,

$$-(x-1)-(x-2)-(x-3) \ge 6$$

$$-3x + 6 \ge 6$$

$$x \leq 0$$
(i)

Case II When 1 < x < 2,

$$(x-1)-(x-2)-(x-3) \ge 6$$

$$4-x \ge 6$$

$$x \le -2$$

∴ No solution.

Case III When 2 < x < 3,

$$x-1+x-2-x+3 \ge 6$$

$$x \ge 6$$

∴ No solution.

Case IV When x > 3

$$\Rightarrow x-1+x-2+x-3 \ge 6$$

$$\Rightarrow 3x \ge 12$$

$$\Rightarrow x \ge 4$$

From Eqs. (i) and (iv), we get

$$x \in (-\infty, 0] \cup [4, \infty)$$

17.
$$||x-1|+a|=4$$

$$|x-1|+a=4,-4$$

$$|x-1| = 4 - a \text{ or } -4 - a$$

Can have real solution only, If either

$$4-a \ge 0 \text{ or } -4-a \ge 0$$

$$\Rightarrow a \le 4 \text{ or } a \le -4$$

$$\therefore a \in (-\infty, -4] \text{ or } a \in (-\infty, 4]$$

18.
$$|x| + \left| \frac{x}{x-1} \right| = \frac{x^2}{|x-1|}$$

As,
$$|a| + |b| = |a+b|$$
 only, when $ab \ge 0$

And
$$|x| + \left| \frac{x}{x-1} \right| = \left| x + \frac{x}{x-1} \right|$$
 is true only, if $x \cdot \frac{x}{x-1} \ge 0$

$$\Rightarrow x \in \{0\} \cup (1, \infty)$$

 \therefore Least value of x=0.

$$19. \qquad \frac{\left|x+3\right|+x}{x+2} > 1$$

$$\Rightarrow \frac{|x+3|+x-x-2}{x+2} > 0$$

$$\Rightarrow \frac{|x+3|-2}{x+2} > 0$$

$$\Rightarrow \frac{x+3-2}{x+2} > 0, x > -3$$

or
$$\frac{-x-3-2}{x+2} > 0, x < -3$$

$$\Rightarrow \frac{x+1}{x+2} > 0, \text{ or } -\frac{(x+5)}{x+2} > 0$$

$$\Rightarrow x > -1$$
 and $x > -2$,

$$\Rightarrow x > -5$$
 and $x < -2$

Or

$$x < -1$$
 and $x < -2$,

$$x < -5$$
 and $x > -2$

$$\therefore x \in (-1, \infty) \cup x \in (-5, -2)$$

20.
$$|2x-|2x-1|=1$$

Only, when $2x-1 \ge 0$

i.e.
$$|2x-(2x-1)|=1$$

$$\Rightarrow 1 = 1$$

$$\therefore$$
 $x \ge \frac{1}{2}$, $x \in l$ and $x \in [-4,100]$

Sum of integer values of $x = 1 + 2 + 3 + \dots + 100$

$$=\frac{100}{2}(1+100)$$

$$=5050$$

Number of digits in 5050 is 4.

21.
$$|x^2-9|+|x^2-4|=5$$

Using,
$$|a| + |b| = |a - b|$$

$$\Rightarrow ab \leq 0$$

$$\therefore (x^2-9)(x^2-4) \le 0$$

$$(x-3)(x+3)(x-2)(x+2) \le 0$$

$$\Rightarrow x \in [-3, -2] \cup [2, 3]$$

22. Given,
$$x^4 = 256$$

$$\Rightarrow \log_{x} 256 = 4$$

$$\Rightarrow \log_{x} 2^{8} = 4$$

$$\Rightarrow 8 \log_{x} 2 = 4$$

$$\Rightarrow 4 = \frac{8}{\log_2 x}$$

Now, put $\log_2 x = t$ in

$$4 = (\log_2 x)^2 - 6(\log_2 x) + 12$$

$$\Rightarrow \frac{8}{t} = t^2 - 6t + 12$$

$$\Rightarrow t^3 - 6t^2 + 12t - 8 = 0$$

$$(t-2)^3=0$$

$$\Rightarrow t = 2$$

$$\Rightarrow \log_2 x = 2$$

$$\Rightarrow$$
 2² = x = 4

Hence, solution for x is only one.

23.
$$(\log_3 x)(\log_5 9) - (\log_x 25) + \log_3 2 = \log_3 54$$
,

$$\Rightarrow \frac{\log x}{\log 3} \times \frac{2\log 3}{\log 5} - \frac{2\log 5}{\log x} + \frac{\log 2}{\log 3} = \frac{3\log 3 + \log 2}{\log 3}$$

$$\Rightarrow \frac{2\log x}{\log 5} - 2\frac{\log 5}{\log x} = 3$$

$$2\log_5 x - \frac{2}{\log_5 x} = 3$$

$$2t - \frac{2}{t} = 3 \quad [where, t = \log_5 x]$$

$$2t^2 - 3t - 2 = 0$$

$$(t-2)(2t+1)=0$$

$$t_1 = 2, t_2 = -\frac{1}{2}$$

$$\Rightarrow l \circ g_5 x = 2$$

$$l \circ g_5 x = -\frac{1}{2}$$

$$5^2 = x_1, 5^{-1/2} = x_2$$

$$x_1 \times x_2 = 25 \times \frac{1}{\sqrt{5}} = 5\sqrt{5}$$

24.
$$b-c = \frac{1}{\log_{2} 2002} + \frac{1}{\log_{3} 2002} + \frac{1}{\log_{4} 2002} + \frac{1}{\log_{5} 2002} - \frac{1}{\log_{10} 2002} + \frac{1}{\log_{11} 2002} + \frac{1}{\log_{12} 2002} + \frac{1}{\log_{13} 2002} + \frac{1}{\log_{14} 2002}$$

$$= \log_{2002} 2 + \log_{2002} 3 + \log_{2002} 4 + \log_{2002} 5 - (\log_{2002} 10 + \log_{2002} 11 + \log_{2002} 12 + \log_{2002} 13 + \log_{2002} 14)$$

$$= \log_{2002} (2 \times 3 \times 4 \times 5) - \log_{2002} 11 \times 12 \times 13 \times 14$$

$$= \log_{2002} \left(\frac{2 \times 3 \times 4 \times 5}{10 \times 11 \times 12 \times 13 \times 14} \right)$$

$$= \log_{2002} \frac{1}{2002} = -1$$

25.
$$||x-1|-2| < 5$$

$$\Rightarrow -5 < |x-1|-2 < 5$$

$$\Rightarrow -3 < |x-1| < 7$$

$$\Rightarrow |x-1| < 7$$

$$\Rightarrow -7 < x - 1 < 7$$

$$\Rightarrow -6 < x < 8$$

26. Given inequality can be solved by squaring both sides. But some times squaring gives extraneous solutions which do not satisfy the original equality. Before squaring we must restrict x for which terms in the given inequality are well defined.

$$x > \sqrt{(1-x)}$$
. Here x must be positive.

Here
$$\sqrt{(1-x)}$$
 is defined only when $1-x \ge 0$ or $x \le 1$ (1)

Squaring given inequality but sides $x^2 > 1 - x$

$$\Rightarrow x^2 + x - 1 > 0 \Rightarrow \left(x - \frac{-1 - \sqrt{5}}{2}\right) \left(x - \frac{-1 + \sqrt{5}}{2}\right) > 0$$

$$\Rightarrow x < \frac{-1 - \sqrt{5}}{2} \quad or \quad x > \frac{-1 + \sqrt{5}}{2} \tag{2}$$

From (1) and (2)
$$x \in \left(\frac{\sqrt{5}-1}{2}, 1\right]$$
 (as x is $+ve$)

27. Since $\tan x$ and $\cot x$ have always the same sign,

 $|\tan x + \cot x| < |\tan x| + |\cot x|$ does not hold true for any value of x.

28. Let
$$y = \frac{x^2 + 1}{x^2 - 2} \Rightarrow yx^2 - 2y = x^2 + 1 \Rightarrow x^2 = \frac{2y + 1}{y - 1}$$

Now
$$x^2 \ge 0 \Rightarrow \frac{2y+1}{y-1} \ge 0 \Rightarrow y \le -1/2 \text{ or } y > 1$$

29.
$$|x^2 + 4x + 3| = x + 1 \Rightarrow |(x+1)(x+3)| = x + 1$$

$$\Rightarrow |(x+1)(x+3)| = (x+1)(x+3), when (x+1)(x+3) \ge 0$$

or
$$x \le -3$$
 or $x \ge -1$

Hence given equation reduces to (x+1)(x+3) = x+1

$$\Rightarrow x = -1(x = -2 \text{ is rejected as } x \le -3 \text{ or } x \ge -1)$$

$$|(x+1)(x+3)| = -(x+1)(x+3)$$
, when $(x+1)(x+3) < 0 \implies -3 < x < -1$

Hence given equation reduces to -(x+1)(x+3)=(x+1)

$$\Rightarrow$$
 -4 which is rejected as -3 < x < -1

30. Let
$$f(x) = |x-1| - |2x-5|$$

A.
$$B.f(x)$$
 $C.f(x) \ge 4$ $D.A \cap C$

$$x < 1$$
 $1 - x - (5 - 2x)$ $x - 4 = 2x \Rightarrow x = -4$ $x = -4$

$$1 \le x \le 5/2$$
 $x-1-(5-2x)$ $3x-6=2x \Rightarrow x=6$ no such x exists

$$x > 5/2$$
 $x-1-(2x-5)$ $4-x=2x \Rightarrow x=4/3$ no such x exists

Hence solutions set is $\{-4\}$