Acceмблер Atmel AVR

Занятие №4: Регистр статуса, стек, подпрограммы

Память AVR

Flash 16-bits

SRAM 8-bits

EEPROM 8-bits

0x0000

0x0000 POH 0x001F

0x0020 I/O 0x005F

0x0060

Внутренняя SRAM

RAMEND

RAMEND+1

Внешняя SRAM

OxFFFF

0x0000

Память EEPROM

EEPROMEND – 0xFFFF

FLASHEND — 0xFFFF

Память программ

Стек

Стек (англ. Stack – стопка) — структура данных, представляющая собой список элементов, организованных по принципу LIFO.

LIFO (англ. last in first out) — принцип когда элемент пришедший последним выходит первым.

Стек в AVR

SRAM 8-bits

0x0000 POH 0x001F

0x0020 I/O 0x005F

0x0060

Внутренняя SRAM

RAMEND

RAMEND+1

Внешняя SRAM

OxFFFF

SP (Stack Pointer) – указатель стека, указывает на начало стека. Стек растет в верх, указатель стека вниз. При добавлении элемента указатель стека уменьшается

SPH, **SPL** – Если у МК больше 256 байт памяти для адресации стека требуется 16 бит.

ОUТ – Записать данные из регистра в порт I/O

Синтаксис: OUT P, Rr **Размер:** 2 байта

1011 1PPr rrrr PPPP

Операнды: $0 \le r \le 31$, $0 \le P \le 63$

Счетчик: PC += 1 **Ц**иклы: 1

 I
 T
 H
 S
 V
 N
 Z
 C

Определение: Команда сохраняет данные регистра Rr в пространстве I/O памяти SRAM

Инициализация стека

LDI R16, Low (RAMEND)

OUT SPL, R16

LDI R16, High (RAMEND)

OUT SPH, R16

PUSH – Загрузить регистр в стек

Синтаксис: PUSH Rd Размер: 2 байта

1001 001d	dddd	1111
-----------	------	------

Операнды: 0 ≤ d ≤ 31

Счетчик: PC += 1 **Ц**иклы: 2

I	Т	Н	S	V	N	Z	С
_	_	_	_	_	_	_	_

Определение: Команда помещает содержимое регистра Rd в стек.

POP – Загрузить значение из стека в регистр

Синтаксис: POP Rd **Размер:** 2 байта

1001 000d	dddd	1111
-----------	------	------

Операнды: $0 \le d \le 31$

	Т	Н	S	V	N	Z	С
_	_	_	_	_	_	_	_

Определение: Команда загружает регистр Rd байтом содержимого стека.

Что таится за этими командами на самом деле:

```
PUSH R16
    SRAM[SP] = R16
    SP--

POP R16
    SP++
    R16 = SRAM[SP]
```

IN – Загрузить данные из порта I/O в регистр

Синтаксис: IN Rd, P

Размер: 2 байта

1011 OPPd dddd PPPP

Операнды: $0 \le d \le 31$, $0 \le P \le 63$

 I
 T
 H
 S
 V
 N
 Z
 C

Определение: Команда загружает данные из пространства I/O памяти SRAM в регистр Rd

Пример того как реализовывается 2й стек

LDI R16, 24 PUSH R16 LDI R16, 32 PUSH R16 LDI R16, 65 PUSH R16

IN R30, SPH IN R31, SPL

LDI R16, low(RAMEND-100) OUT SPL, R16 LDI R16, high(RAMEND-100) OUT SPH, R16

LDI R16, 68
PUSH R16
LDI R16, 12
PUSH R16
LDI R16, 5
PUSH R16

IN R28, SPH IN R29, SPL

OUT SPL, R31 OUT SPH, R30

POP R17