ADVANCED STATISTICS

Exam (Length 1H30)

Notes and duplicated copy are allowed, computers and tablets are prohibited.

Kernel estimation of a smooth density

Let $\mathcal{D}_n = \{X_1, \ldots, X_n\}$ be an i.i.d. sample of probability distribution F(dx) on \mathbb{R} . We suppose that F has a bounded density f(x) with respect to Lebesgue measure, twice differentiable and with a Lipschitz second derivative : $\forall (x, y) \in \mathbb{R}^2$,

$$|f''(x) - f''(y)| \le L|x - y|.$$

The estimation problem considered here is that of the density f at a given point $x_0 \in \mathbb{R}$ for the quadratic risk.

1. Let $K: \mathbb{R} \to \mathbb{R}$ be a continuous symmetric kernel (i.e. even, K(x) = K(-x)) such that :

$$\int_{x \in \mathbb{R}} K(x)dx = +1, \ \int_{x \in \mathbb{R}} x^2 K(x)dx = 0, \ C_K = \int_{x \in \mathbb{R}} |x^3 K(x)|dx < +\infty$$

Give the explicit form of the kernel estimator of $f(x_0)$, denoted by \widehat{f}_h based on the sample \mathcal{D}_n , kernel K and a window size h > 0. Prove that its bias at the point $x_0 \in \mathbb{R}$ is bounded by Ch^3 , where C is a constant that depends on L and C_K only.

2. Let α and α' be two strictly positive real numbers and set : $\forall u \in \mathbb{R}$,

$$\kappa(u) = \frac{\alpha}{2} \mathbf{1} \{ u \in [-1, 1] \} + \frac{\alpha'}{2} \mathbf{1} \{ u \in [-2, 2] \}.$$

Find α and α' so that κ fulfills the conditions stipulated in the previous question.

3. We suppose in addition that $K(0)f(x_0) > 0$ and $\int_{x \in \mathbb{R}} K^2(x) dx < +\infty$. Show that the variance of the random variable $\widehat{f}_h(x_0)$ (random, as a function of the random observations \mathcal{D}_n) is lower/upper bounded as follows:

$$\frac{c_1}{nh} \le var\left(\widehat{f}_h(x_0)\right) \le \frac{c_2}{nh},$$

 c_1 and c_2 being appropriate constants.

4. Deduce that an optimal choice for the bandwidth is $h_n \sim n^{-1}$. What is the order of the rate of convergence of the resulting estimator $\hat{f}_{h_n}(x_0)$?

MULTIPLICATIVE REGRESSION MODEL

Suppose we observe $(Y_i, X_i)_{i=1,...,n}$ according to the (multiplicative) model:

$$Y_i = \sigma(X_i)\varepsilon_i, \qquad i = 1, \dots, n,$$

where $(X_i, \varepsilon_i)_{i=1,...,n}$ is an independent and identically distributed sequence of random variables valued in $[0,1] \times \mathbb{R}$ and $\sigma : [0,1] \to \mathbb{R}_+$ is a bounded function. We suppose that for each $i=1,\ldots,n,\,X_i$ is independent from ε_i and that $\mathbb{E}[\varepsilon_1^2]=1$. Let $f:[0,1]\to\mathbb{R}_+$ be the density of X_1 and define

$$\hat{\gamma}_n(g) = \int_0^1 g(x)^2 dx - \frac{2}{n} \sum_{i=1}^n Y_i^2 g(X_i)$$

- 1. Express $\mathbb{E}[\hat{\gamma}_n(g)]$ with the help of g, f and σ . Explain how $\hat{\gamma}_n(g)$ can be used to estimate $\sigma^2 f$.
- 2. Let S_D be the linear subspace of $L^2([0,1], d\lambda)$ generated by $(\varphi_1, \ldots, \varphi_D)$ where for any (k,ℓ) , $\int \varphi_k(x)\varphi_\ell(x)dx$ equal 0 if $k \neq \ell$ and equal 1 if $k = \ell$. Any function in $\psi \in S_D$ can be written as

$$\psi(x) = \sum_{k=1}^{D} c_k \varphi_k(x), \quad \forall x \in [0, 1]$$

where the c_k are unique and are called the coefficients of ψ in S_D . Express $\hat{\psi}_{n,D} = \arg\min_{\psi \in S_D} \hat{\gamma}_n(\psi)$ using its coefficients, $\hat{\alpha}_k$, in S_D .

- 3. Let $x \in [0,1]$, compute $\mathbb{E}[\hat{\psi}_{n,D}(x)]$ in terms of the coefficients $\alpha_k = \int \sigma(x)^2 \varphi_k(x) f(x) dx$, $k = 1, \ldots, D$.
- 4. Let $e_D(x) = \left(\sum_{k=1}^D \alpha_k \varphi_k(x)\right) \sigma(x)^2 f(x)$. Compute the integrated error : $I_e = \mathbb{E} \int (\hat{\psi}_{n,D}(x) \sigma(x)^2 f(x))^2 dx$ with the help of e_D , $v_k = \text{Var}(Y_1^2 \varphi_k(X_1))$, $k = 1, \ldots, D$, and n.
- 5. Suppose that $\mathbb{E}[\varepsilon_1^4] < \infty$. Show that $I_e \leq CD/n + B_D$ where C and B_D shall be specified. Conclude on the choice of D with respect to n.