CE344: COMPUTER NETWORKS

Credits and Hours:

Teaching Scheme	Theory	Practical	Tutorial	Total	Credit
Hours/week	3	2	-	5	4
Marks	100	50	-	150	

Pre-requisite courses:

• Data Communication and Networking

Outline of the Course:

Sr.	Title of the unit	Minimum number		
No.		of hours		
1.	Introduction to Computer Networks	04		
2.	Data Link Layer	08		
3.	Medium Access Control Sub Layer	10		
4.	Network Layer	12		
5.	Transport Layer	08		
6.	Application Layer	03		
	Total hours (Theory):	45		
	Total hours (Lab):	30		
	Total hours:	75		

Detailed Syllabus:

1.	Introduction to Computer Networks	04 Hours	09%
	Uses of computer network, network hardware, network		
	software, OSI model, TCP/IP model, Comparison of OSI and		
	TCP/IP model, Example network		
2.	Data Link Layer	08 Hours	18%
	Design Issues, framing, error control, flow control, Error		
	detection and correction, Elementary data link protocols,		
	simplex, stop and wait, sliding window protocol, HDLC		
3.	Medium Access Control Sub Layer	10 Hours	22%
	The channel allocation problem, Multiple Access protocols:		
	ALOHA, CSMA, Collision Free Protocols, Limited		

	Contention Protocols, Wavelength Division Multiple Access		
	Protocols, Wireless LAN protocols; Ethernet: Traditional		
	Ethernet, Switched Ethernet, Fast Ethernet, Gigabit Ethernet,		
	IEEE 802.2: LLC, Data link layer switching		
4.	Network Layer	12 Hours	27%
	Implementation of connection oriented and connection less		
	service, Comparison of virtual circuit and datagram subnets,		
	Routing algorithms, Shortest path routing, Flooding, Distance		
	vector routing, Link state routing, Hierarchical routing,		
	Broadcast routing, Multicast routing, Routing for mobile host,		
	Routing in ad hoc network, Congestion control algorithms		
	principles, Prevention policies, Congestion control in virtual		
	circuit subnets, Congestion control in datagram subnets, Load		
	shedding, virtual circuit, Connectionless internetworking,		
	Tunneling, Internetwork routing and fragmentation, The		
	network layer in the internet: The IP protocol, IP addresses,		
	Internet control protocol, OSPF, BGP.		
5.	Transport Layer	08 Hours	18%
	The transport service: Services provided to the upper layers,		
	Transport service primitives, Socket elements of transport		
	protocols addressing, Connection establishment, Connection		
	release, Flow control, Multiplexing, Crash recovery the		
	transport protocol: UDP, TCP.		
6.	Application Layer	03 Hours	06%
	DNS: The DNS name space, Resource records, Name servers,		
	Electronic mail: Architecture and services, World Wide Web:		
		I	I

Course Outcome (COs):

At the end of the course, the students will be able to

CO1	Analyze layered network architecture and passage of data over communication
	links

CO2	Analyze delay models in Data Networks using Queueing Systems for messaging
	and delay sensitive applications
CO3	Design and analyze routing algorithms for Internet and multi-hop autonomous
	networks
CO4	Analyze flow and rate control algorithms between a sender and receiver in wide
	area networks
CO5	Apply the network fundamentals to analyze performance.
CO6	Use key networking algorithms in simulation.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	3	3	1	3	1	-	-	-	-	-	-	-	2	-
1														
CO 2	3	3	1	3	1	-	-	-	-	-	-	-	1	-
CO 3	3	3	1	3	1	-	-	-	-	-	-	-	1	-
CO 4	3	3	1	3	1	-	-	-	-	ı	ı	ı	1	-
CO 5	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	-	-	-	-	3	-	-	-	-	-	-	-	-	-

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

Recommended Study Material:

***** Text book:

1. Computer Network, Andrew S. Tanenbaum, Prentice Hall PTR

Reference book:

- ❖ Introduction to Data Communication and Networking by Behrouz Forouzan, McGraw Hill
- ❖ Data and Computer Communications, William Stallings, Prentice Hall

***** Web material:

1. http://www.cisco.com

2. http://compnetworking.about.com

Software:

- 1. Wireshark
- 2. Cisco packet tracer
- 3. Network Simulator