Atom: Low-bit Quantization for Efficient and Accurate LLM Serving

Yilong Zhao^{1,2}, Chien-Yu Lin¹, Kan Zhu¹, Zihao Ye¹, Lequn Chen¹, Size Zheng^{1,3}, Luis Ceze^{1,4}, Arvind Krishnamurthy¹, Tianqi Chen⁵, Baris Kasikci¹

UW¹, SJTU², PKU³, OctoAl⁴, CMU⁵

Serving LLMs is Challenging

1. Large Memory Consumption

- Model weights and KV-Cache consumes significant memory.
- High memory demand **limits #requests** can be served concurrently.

2. Low Computate Utilization

- GPU's compute is **under utilization** when **batch size is small**
- Batch size can be increased if model and KV cache are compressed

Memory Consumption (Llama-65B)

GEMM performance of Llama2-7B

Why Quantization?

- **Save memory** by reducing effective bits per element.
- **Boost compute** by increasing batch and using low-bit hardware, tensor cores.

Illustration of uniform quantization

Prior Works Fall Short

- Weight-only quantizations (GPTQ, AWQ, QUIP...) falls short to boost efficiency when op intensity increases (larger batch)
- Prior 4-bit weight-activation quantizations fails to maintain accuracy

Overview of Atom's design

Reorder-based Mixed Precision

- Outliers severely degrades quant accuracy, calling higher precision.
- Reorder-based method avoids irregular memory access, with 30% speedup.

Activation outliers in LLMs

Atom's GEMM with reordering

Fined-grained Group Quantization

- Atom performs quant at a **finer granularity**, with small group sharing parameter
- Atom manages the dequant overhead by a specialized GPU kernel

Quantization method	WikiText2 PPL↓
FP16 baseline	5.68
W4A4 RTN	2315.52
+ Keeping 128 outliers in FP16	11.34 (2304.2↓)
+ Quantizing outliers to INT8	$11.39\ (0.05\uparrow)$
+ Group size 128	6.22 (5.17↓)
+ Clipping	6.13 (0.09\\$)
+ GPTQ	$6.04 (0.09 \downarrow)$
+ Quantizing KV-cache to INT4	6.16 (0.12†)

Atom's group quant

Ablation study of quant. techniques

Results

- Atom can maintain accuracy while increasing serving throughput for up to 7.7x
- Performance is measured on a RTX 4090 GPU and based on Llama-7B

Size	#Bits	Method	Zero-shot Accuracy ↑						
			PQ	Arc-e	Arc-c	BQ	HS	WG	Avg.
65B	FP16	-	80.79	58.71	46.33	82.26	80.71	77.03	70.97
	W4A4	SmoothQuant	60.72	38.80	30.29	57.61	36.81	53.43	46.28
		OmniQuant	71.81	48.02	35.92	73.27	66.81	59.51	59.22
		QLLM	73.56	52.06	39.68	-	70.94	62.90	59.83
		Atom	80.41	58.12	45.22	82.02	79.10	72.53	69.57

Llama-65B zero shot accuracy

2500

→ FP16

→ W8A8

Llama2 & Mixtral perplexity

Throughput of dense layer

Latency of self-attn layer

End-to-end performance