# ERROR BOUND ON SINGULAR VALUES APPROXIMATIONS BY GENERALIZED NYSTRÖM (GN)

Lorenzo Lazzarino

Hussam Al Daas (RAL) Yuji Nakatsukasa

NA Internal Seminar

5 March 2024

$$A = U\Sigma V^*$$

$$n \left[ \begin{array}{c} r \\ \tilde{V} \end{array} \right], \quad m \left[ \begin{array}{c} \tilde{U} \\ \tilde{U} \end{array} \right]$$

**<u>AIM</u>**: Approximate the leading singular values  $\{\sigma_i(A)\}_{i=1}^r$ 

$$A = U\Sigma V^*$$

$$n \left[ \begin{array}{c} r \\ \tilde{V} \end{array} \right], \quad m \left[ \begin{array}{c} \tilde{U} \\ \tilde{U} \end{array} \right]$$

**<u>AIM</u>**: Approximate the leading singular values  $\{\sigma_i(A)\}_{i=1}^r$ 

# Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^*A\tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

$$A = U\Sigma V^*$$

$$n \left[ egin{array}{c} r \\ ilde{V} \end{array} 
ight], \quad m \left[ egin{array}{c} r + \ell \\ ilde{U} \end{array} 
ight]$$

**<u>AIM</u>**: Approximate the leading singular values  $\{\sigma_i(A)\}_{i=1}^r$ 

## Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^*A\tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$



$$A = U\Sigma V^*$$

$$n \left[ egin{array}{c} r \\ ilde{V} \end{array} 
ight], \quad m \left[ egin{array}{c} r+\ell \\ ilde{U} \end{array} 
ight]$$

**<u>AIM</u>**: Approximate the leading singular values  $\{\sigma_i(A)\}_{i=1}^r$ 

• Rayleigh Ritz:  $\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V})$ 

## Generalized Nyström (GN)

$$\sigma_i(A) \approx \sigma_i(A_{GN,\tilde{V},\tilde{U}}) = \sigma_i(A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A)$$



$$A = U\Sigma V^*$$

$$n \left[ egin{array}{c} r \\ ilde{V} \end{array} 
ight], \quad m \left[ egin{array}{c} r+\ell \\ ilde{U} \end{array} 
ight]$$

**<u>AIM</u>**: Approximate the leading singular values  $\{\sigma_i(A)\}_{i=1}^r$ 

• Rayleigh Ritz:  $\sigma_i(A) \approx \sigma_i(\tilde{U}^* A \tilde{V})$ 

# Generalized Nyström (GN)

$$\sigma_i(A) \approx \sigma_i(A_{GN,\tilde{V},\tilde{U}}) = \sigma_i(A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A)$$



- GN AS A PERTURBATION
- MATRIX PERTURBATION THEORY RESULT
- **3** BOUND ON GN APPROXIMATION ERROR
- **4** FUTURE WORK

Lorenzo Lazzarino

## GN and Orthogonal Transformations

Consider  $T_1$  and  $T_2$  orthogonal matrices, then

$$T_1^*(M_{GN,\tilde{V},\tilde{U}})T_2 = (T_1^*MT_2)_{GN,T_2^*\tilde{V},T_1^*\tilde{U}}$$

For any orthonormal  $\tilde{V}$  and  $\tilde{U}$ , we can:

- 1. Define  $Q_1 = \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix}$   $Q_2 = \begin{bmatrix} \tilde{V} & \tilde{V}_{\perp} \end{bmatrix}$ ;
- 2. Consider the transformed matrix:  $Q_1^*AQ_2$ ;
- 3. Consider the transformed GN approximation:

$$Q_1^*A_{GN,\tilde{V},\tilde{U}}Q_2 = (Q_1^*AQ_2)_{GN,Q_2^*\tilde{V},Q_1^*\tilde{U}} = (Q_1^*AQ_2)_{GN,\binom{[r]}{0},\binom{[r_{r+\ell}]}{0}}.$$

## GN and Orthogonal Transformations

Consider  $T_1$  and  $T_2$  orthogonal matrices, then

$$T_1^*(M_{GN,\tilde{V},\tilde{U}})T_2 = (T_1^*MT_2)_{GN,T_2^*\tilde{V},T_1^*\tilde{U}}$$

For any orthonormal  $\tilde{V}$  and  $\tilde{U}$ , we can:

- 1. Define  $Q_1 = \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix}$   $Q_2 = \begin{bmatrix} \tilde{V} & \tilde{V}_{\perp} \end{bmatrix}$ ;
- 2. Consider the transformed matrix:  $Q_1^*AQ_2$ ;
- 3. Consider the transformed GN approximation:

$$Q_1^*A_{GN,\tilde{V},\tilde{U}}Q_2 = (Q_1^*AQ_2)_{GN,Q_2^*\tilde{V},Q_1^*\tilde{U}} = (Q_1^*AQ_2)_{GN,\binom{I_r}{0},\binom{I_{r+\ell}}{0}}\,.$$

$$\rightarrow \quad |\sigma_i(A) - \sigma_i(A_{GN,\tilde{V},\tilde{U}})| = |\sigma_i(Q_1^*AQ_2) - \sigma_i((Q_1^*AQ_2)_{GN,\binom{I_r}{0},\binom{I_{r+\ell}}{0}})|$$

$$\tilde{V} := \begin{bmatrix} r & r + \ell & r & n - r \\ r + \ell & l_{r+\ell} & - & r + \ell \\ - & - & - & - \\ 0 & - & m - (r + \ell) \end{bmatrix}, \quad \tilde{U} := \begin{bmatrix} r & 0 - r \\ l_{r+\ell} & - & - & - \\ - & - & - & - \\ 0 & - & m - (r + \ell) \end{bmatrix}$$

$$A_{GN,\tilde{V},\tilde{U}} = A\tilde{V} (\tilde{U}^*A\tilde{V})^{\dagger} \tilde{U}^*A$$

$$\tilde{V} := \begin{bmatrix} r & r + \ell & r & n - r \\ r & r + \ell & r + \ell & r + \ell & A_{12} \\ r & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - \\ 0 & - & - & - \\ 0 & - & - \\ 0 & - & - & - \\ 0 & - & - \\ 0 & -$$

$$A_{GN,\tilde{V},\tilde{U}} = \left[egin{array}{c} A_{11} \\ - \\ A_{21} \end{array}
ight] ( ilde{U}^*A ilde{V})^\dagger ilde{U}^*A$$

$$\tilde{V} := \begin{bmatrix} r & r + \ell & r & r - r \\ r + \ell & I_{r+\ell} & - & r + \ell \\ 0 & - & 0 \end{bmatrix}, \quad \tilde{U} := \begin{bmatrix} r + \ell & r + \ell & r + \ell \\ I_{r+\ell} & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 & - & - \\ 0 &$$

$$A_{GN,\tilde{V},\tilde{U}} = egin{bmatrix} A_{11} & & & & & & & & & \\ A_{21} & & & & & & & & & & \end{bmatrix}$$

$$\tilde{V} := \begin{bmatrix} r & r + \ell & r & r - r \\ r & I_{r+\ell} & I_{r+\ell} & r + \ell \\ - & 0 & 0 \end{bmatrix}, \quad \tilde{U} := \begin{bmatrix} r & r + \ell & r + \ell \\ I_{r+\ell} & - & r + \ell \\ 0 & 0 & 0 \end{bmatrix}, \quad A := \begin{bmatrix} r & r - r & r - r \\ A_{11} & 1 & A_{12} & - & - & - \\ - & 0 & 0 & 0 \end{bmatrix}$$

$$A_{\mathsf{GN}, ilde{V}, ilde{U}} = \left[egin{array}{c} A_{11} \ - \ A_{21} \end{array}
ight] (A_{11})^\dagger \left[egin{array}{c} A_{11} \ - \end{array}
ight]$$

$$\tilde{V} := \begin{bmatrix} r + \ell & r + \ell & r + \ell & r + \ell & r + \ell \\ I_{r} & I_{r+\ell} & r + \ell & I_{r+\ell} & r + \ell & I_{r+\ell} & I_{r+\ell} \\ I_{r} & I_{r+\ell} & I_$$

$$MM^{\dagger}M=M$$

$$A_{GN,\tilde{V},\tilde{U}} = \begin{bmatrix} A_{11} \\ - \\ A_{21} \end{bmatrix} (A_{11})^{\dagger} \begin{bmatrix} A_{11} \mid A_{12} \end{bmatrix} = \begin{bmatrix} A_{11}A_{11}^{\dagger}A_{11} & | & A_{11}A_{11}^{\dagger}A_{12} \\ - - - - - & - & - - - - \\ | & | & | \\ A_{21}A_{11}^{\dagger}A_{11} & | & A_{21}A_{11}^{\dagger}A_{12} \end{bmatrix}$$

Express  $A_{GN}$  as a perturbation of the original matrix A

M has linearly independent columns  $\implies M^{\dagger}M = M^{-1}M = M$ 

$$\tilde{V} := \begin{bmatrix} r & r + \ell & r & n - r \\ r + \ell & l_{r+\ell} & - & r + \ell & A_{11} & A_{12} \\ - & - & - & - & - & - \\ 0 & - & m - (r + \ell) & 0 \end{bmatrix}, \quad \tilde{U} := \begin{bmatrix} r & 0 - r & n - r \\ l_{r+\ell} & - & - & - & - \\ - & - & - & - & - \\ 0 & - & m - (r + \ell) & A_{21} & A_{22} \end{bmatrix}$$

$$A_{GN,\tilde{V},\tilde{U}} = \begin{bmatrix} A_{11} & | & A_{11}A_{11}^{\dagger}A_{12} \\ ----- & | & ---- \\ A_{21} \end{bmatrix} (A_{11})^{\dagger} \begin{bmatrix} A_{11} | A_{12} \end{bmatrix} = \begin{bmatrix} A_{11} & | & A_{11}A_{11}^{\dagger}A_{12} \\ & | & | & | \\ & A_{21}A_{11}^{\dagger}A_{11} & | & | & A_{21}A_{11}^{\dagger}A_{12} \\ & | & | & | & | \end{bmatrix}$$

$$\tilde{V} := \begin{pmatrix} r & r + \ell & r + \ell$$

$$A_{GN,\tilde{V},\tilde{U}} = A - \begin{bmatrix} 0 & | & A_{12} - A_{11}A_{11}^{\dagger}A_{12} \\ ----- & - & ---- \\ | & | & | \\ 0 & | & A_{22} - A_{21}A_{11}^{\dagger}A_{12} \\ | & | & | \end{bmatrix} =: A - E_{GN}$$

$$\tilde{V} := \begin{pmatrix} r & r + \ell & A_{12} & R_{12} & R_{13} & R_{14} & R_{12} & R_{14} & R$$

Express  $A_{GN}$  as a perturbation of the original matrix A

$$A_{GN,\tilde{V},\tilde{U}} = A - \begin{bmatrix} 0 & | & A_{12} - A_{11}A_{11}^{\dagger}A_{12} \\ - - - - - & - & - & - - - \\ | & | & | \\ 0 & | & A_{22} - A_{21}A_{11}^{\dagger}A_{12} \end{bmatrix} =: A - E_{GN}$$

Note: No-oversample  $(\ell = 0) \rightarrow A_{12} - A_{11}A_{11}^{\dagger}A_{12} = 0$ , but change of block sizes!

## **GN AS A PERTURBATION - WEYL'S BOUND**

Weyl's Theorem

For any matrix M we have that

$$|\sigma_i(M) - \sigma_i(M+E)| \leq \|E\|_2$$

## GN AS A PERTURBATION - WEYL'S BOUND

## Weyl's Theorem

For any matrix M we have that

$$|\sigma_i(M) - \sigma_i(M+E)| \leq ||E||_2$$





## GN AS A PERTURBATION - WEYL'S BOUND

## Weyl's Theorem

For any matrix M we have that

$$|\sigma_i(M) - \sigma_i(M+E)| \leq ||E||_2$$





# MATRIX PERTURBATION THEORY RESULT

Consider the  $n \times n$  Hermitian matrices

$$H:=\begin{bmatrix} H_{11} & H_{21}^* \\ H_{21} & H_{22} \end{bmatrix}, \quad \hat{H}:=H+\begin{bmatrix} E_{11} & E_{21}^* \\ E_{21} & E_{22} \end{bmatrix}=:H+E.$$

Consider the  $n \times n$  Hermitian matrices

$$H:=\begin{bmatrix} H_{11} & H_{21}^* \\ H_{21} & H_{22} \end{bmatrix}, \quad \hat{H}:=H+\begin{bmatrix} E_{11} & E_{21}^* \\ E_{21} & E_{22} \end{bmatrix}=:H+E.$$

Theorem 3.2 (Nakatsukasa, 2012)

Define

$$\tau_i = \left(\frac{\|H_{21}\|_2 + \|E_{21}\|_2}{\min_j |\lambda_i(H) - \lambda_j(H_{22})| - 2\|E\|_2}\right).$$

Then, for each i, if  $\tau_i > 0$ , then

$$|\lambda_i(H) - \lambda_i(\hat{H})| \le ||E_{11}||_2 + 2||E_{21}||_2 \tau_i + ||E_{22}||_2 \tau_i^2,$$

Consider the  $n \times n$  Hermitian matrices

$$H := \begin{bmatrix} H_{11} & H_{21}^* \\ H_{21} & H_{22} \end{bmatrix}, \quad \hat{H} := H + \begin{bmatrix} E_{11} & E_{21}^* \\ E_{21} & E_{22} \end{bmatrix} =: H + E.$$

## Theorem 3.2 (Nakatsukasa, 2012)

Define

$$\tau_i = \left(\frac{\|H_{21}\|_2 + \|E_{21}\|_2}{\min_j |\lambda_i(H) - \lambda_j(H_{22})| - 2\|E\|_2}\right).$$

Then, for each i, if  $\tau_i > 0$ , then

$$|\lambda_i(H) - \lambda_i(\hat{H})| \le ||E_{11}||_2 + 2||E_{21}||_2\tau_i + ||E_{22}||_2\tau_i^2,$$

- ullet  $au_i < 1$  necessary to be better than Weyl
- If  $||E_{11}||_2 \ll ||E||_2$  and  $\lambda_i$  is far from the spectrum of  $H_{22}$  then  $\tau_i \ll 1$
- If  $E_{11} = E_{21} = 0$  and  $H_{21}$  is small, then  $\lambda_i$  is particularly insensitive to the perturbation  $E_{22}$   $\rightarrow$  bound proportional to  $||E_{22}||_2 ||H_{21}||_2^2$

## Generalize (Nakatsukasa, 2012) to the non-Hermitian/rectangular case:

## General case



Transform to Hermitian



Obtain necessary structure



Apply Hermitian Result



Transform back



General Result

Consider the  $2 \times 2$  block matrix:

$$G:=egin{bmatrix} G_1 & B \ C & G_2 \end{bmatrix},$$

and its perturbation:

$$\hat{G} := G + \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix} =: G + F.$$

Strategy: Use a technique in (Li, Li, 2005)



## Transform to Hermitian



Obtain necessary structure



Apply Hermitian Result



Transform back



General Result

## Jordan-Wielandt (JW) Theorem

Let  $\{\sigma_i(M)\}_{i=1}^n$  be the singular values of a matrix  $M\in\mathbb{C}^{m\times n}$ , with  $m\geq n$ . Then, the Hermitian matrix

$$\begin{bmatrix} 0 & M \\ M^* & 0 \end{bmatrix} \tag{1}$$

has eigenvalues  $\pm \sigma_1(M), \ldots, \pm \sigma_n(M)$  and m-n zeros eigenvalues.



### Transform to Hermitian



Obtain necessary structure



Apply Hermitian Result



Transform back



General Result

## Jordan-Wielandt (JW) Theorem

Let  $\{\sigma_i(M)\}_{i=1}^n$  be the singular values of a matrix  $M\in\mathbb{C}^{m\times n}$ , with  $m\geq n$ . Then, the Hermitian matrix

$$\begin{bmatrix} 0 & M \\ M^* & 0 \end{bmatrix} \tag{1}$$

has eigenvalues  $\pm \sigma_1(M), \ldots, \pm \sigma_n(M)$  and m-n zeros eigenvalues.

$$G \to G_{JW} := \left[ \begin{array}{ccc|c} 0 & | & G \\ - & - & - \\ G^* & | & 0 \end{array} \right] = \left[ \begin{array}{ccc|c} 0 & 0 & | & G_1 & B \\ 0 & 0 & | & C & G_2 \\ - & - & - & - & - \\ G_1^* & C^* & | & 0 & 0 \\ B^* & G_2^* & | & 0 & 0 \end{array} \right]$$

 $\downarrow$ 

Transform to Hermitian



## Obtain necessary structure



Apply Hermitian Result



Transform back



General Result

 $\downarrow$ 

Transform to Hermitian



## Obtain necessary structure



Apply Hermitian Result



Transform back



General Result



 $\downarrow$ 

Transform to Hermitian



## Obtain necessary structure



Apply Hermitian Result



Transform back



General Result

1

Transform to Hermitian



## Obtain necessary structure



Apply Hermitian Result



Transform back



General Result



 $\downarrow$ 

Transform to Hermitian



## Obtain necessary structure



Apply Hermitian Result



Transform back



General Result

$$egin{bmatrix} 0 & G_1 & | & 0 & B \ G_1^* & 0 & | & C^* & 0 \ - & - & - & - & - \ 0 & C & | & 0 & G_2 \ B^* & 0 & | & G_2^* & 0 \ \end{bmatrix} =: G_p$$

Note: 
$$\lambda_i(G_p) = \lambda_i(G_{JW}) \stackrel{JW}{=} \pm \sigma_i(G)$$

 $\downarrow$ 

Transform to Hermitian



## Obtain necessary structure



Apply Hermitian Result



Transform back



General Result

$$G_p = egin{bmatrix} 0 & G_1 & | & 0 & B \ G_1^* & 0 & | & C^* & 0 \ - & - & - & - & - \ 0 & C & | & 0 & G_2 \ B^* & 0 & | & G_2^* & 0 \end{bmatrix}$$

$$\hat{G}_{p} = G_{p} + \begin{bmatrix} 0 & F_{11} & | & 0 & F_{12} \\ F_{11}^{*} & 0 & | & F_{21}^{*} & 0 \\ - & - & - & - & - \\ 0 & F_{21} & | & 0 & F_{22} \\ F_{12}^{*} & 0 & | & F_{22}^{*} & 0 \end{bmatrix} =: G_{p} + F_{p}.$$



Transform to Hermitian



Obtain necessary structure



## Apply Hermitian Result



Transform back



General Result

Define

$$\tau_i = \left(\frac{\left\|\begin{bmatrix}0 & C\\B^* & 0\end{bmatrix}\right\|_2 + \left\|\begin{bmatrix}0 & F_{21}\\F_{12}^* & 0\end{bmatrix}\right\|_2}{\min_j |\lambda_i - \lambda_j \left(\begin{bmatrix}0 & G_2\\G_2^* & 0\end{bmatrix}\right)| - 2 \left\|F_p\right\|_2}\right).$$

Then, for each i, if  $\tau_i > 0$ :

$$|\lambda_i(G_p) - \lambda_i(\hat{G}_p)| \le \left\| \begin{bmatrix} 0 & F_{11} \\ F_{11}^* & 0 \end{bmatrix} \right\|_2 + 2 \left\| \begin{bmatrix} 0 & F_{21} \\ F_{12}^* & 0 \end{bmatrix} \right\|_2 \tau_i + \left\| \begin{bmatrix} 0 & F_{22} \\ F_{22}^* & 0 \end{bmatrix} \right\|_2 \tau_i^2,$$

#### General case

Transform to Hermitian



Obtain necessary structure



Apply Hermitian Result



### Transform back



General Result

• 
$$\left\| \begin{bmatrix} 0 & M_1 \\ M_2 & 0 \end{bmatrix} \right\|_2 = \max\{\|M_1\|_2, \|M_2\|_2\};$$

Jordan-Wielandt theorem

$$\implies |\lambda_i(G_p) - \lambda_i(\hat{G}_p)| = |\sigma_i(G) - \sigma_i(\hat{G})|,$$

for 
$$i = 1, \ldots, n$$
;

• By Jordan-Wielandt theorem and by construction of  $F_p$ :

$$||F_p||_2 = ||F||_2$$

General case



Transform to Hermitian



Obtain necessary structure



Apply Hermitian Result



Transform back



**General Result** 

Generalization of result in (Nakatsukasa, 2012)

## Theorem (Al Daas, Lazzarino, Nakatsukasa)

Consider the matrices

$$G:=\begin{bmatrix}G_1 & B\\ C & G_2\end{bmatrix}, \quad \hat{G}:=G+\begin{bmatrix}F_{11} & F_{12}\\ F_{21} & F_{22}\end{bmatrix}=:G+F,$$

and define

$$\tau_i = \left(\frac{\max\{\|B\|_2, \|C\|_2\} + \max\{\|F_{12}\|_2, \|F_{21}\|_2\}}{\min_i |\sigma_i(G) - \sigma_i(G_2)| - 2 \|F\|_2}\right).$$

Then, for each i, if  $\tau_i > 0$ , then

$$|\sigma_i(G) - \sigma_i(\hat{G})| \le ||F_{11}||_2 + 2 \max\{||F_{12}||_2, ||F_{21}||_2\}\tau_i + ||F_{22}||_2\tau_i^2,$$

General case

 $\downarrow$ 

Transform to Hermitian



Obtain necessary structure



Apply Hermitian Result



Transform back



#### General Result

Generalization of result in (Nakatsukasa, 2012)

Theorem (Al Daas, Lazzarino, Nakatsukasa)

Consider the matrices

$$G:=\begin{bmatrix}G_1 & B\\ C & G_2\end{bmatrix}, \quad \hat{G}:=G+\begin{bmatrix}F_{11} & F_{12}\\ F_{21} & F_{22}\end{bmatrix}=:G+F,$$

and define

$$\tau_{i} = \left(\frac{\max\{\|B\|_{2}, \|C\|_{2}\} + \max\{\|F_{12}\|_{2}, \|F_{21}\|_{2}\}}{\min_{j} |\sigma_{i}(G) - \sigma_{j}\left(G_{2}\right)| - 2\|F\|_{2}}\right).$$

Then, for each i, if  $\tau_i > 0$ , then

$$|\sigma_i(G) - \sigma_i(\hat{G})| \leq \|F_{11}\|_2 + 2\max\{\|F_{12}\|_2, \|F_{21}\|_2\}\tau_i + \|F_{22}\|_2\,\tau_i^2,$$

 Generalization to Block Tridiagonal: A Singular Value is insensitive to blockwise perturbation if it is well-separated from the spectrum of the diagonal blocks near the perturbed blocks.

# BOUND ON GN APPROXIMATION ERROR

#### **BOUND ON GN APPROXIMATION ERROR - DERIVATION**

Use previous results to obtain a bound on GN singular values approximation error

• 
$$A, \tilde{V}, \tilde{U} \rightarrow A_{GN} = A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A$$

$$\bullet \ \ \mathsf{Define} \ \bar{A} = [\tilde{U} \ \tilde{U}_\perp]^* A [\tilde{V} \ \tilde{V}_\perp], \quad \bar{A}_{\mathit{GN}} = \Big( [\tilde{U} \ \tilde{U}_\perp]^* A [\tilde{V} \ \tilde{V}_\perp] \Big)_{\mathit{GN}, {r_{\mathsf{C}} \choose \mathsf{0}}, {r_{\mathsf{C}} \choose \mathsf{0}}}, {r_{\mathsf{C}} \choose \mathsf{0}} \Big]$$

$$\implies \bar{A}_{GN} = \bar{A} - \begin{bmatrix} 0 & \bar{A}_{12} - \bar{A}_{11} \bar{A}_{11}^{\dagger} \bar{A}_{12} \\ 0 & \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^{\dagger} \bar{A}_{12} \end{bmatrix} =: \bar{A} - E_{GN}$$

Use previous results to obtain a bound on GN singular values approximation error

- $A, \tilde{V}, \tilde{U} \rightarrow A_{GN} = A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A$
- $\bullet \ \ \mathsf{Define} \ \bar{A} = [\tilde{U} \ \tilde{U}_\perp]^* A [\tilde{V} \ \tilde{V}_\perp], \quad \bar{A}_{\mathit{GN}} = \Big( [\tilde{U} \ \tilde{U}_\perp]^* A [\tilde{V} \ \tilde{V}_\perp] \Big)_{\mathit{GN}, {r \brack 0}, {r \brack r_{\mathsf{T}} + 0}} \Big]$

$$\implies \bar{A}_{GN} = \bar{A} - \begin{bmatrix} 0 & \bar{A}_{12} - \bar{A}_{11} \bar{A}_{11}^{\dagger} \bar{A}_{12} \\ 0 & \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^{\dagger} \bar{A}_{12} \end{bmatrix} =: \bar{A} - E_{GN}$$

Theorem, Bound on GN Singular Values Approximation Error (Al Daas, Lazzarino, Nakatsukasa)

Define

$$\tau_{i} = \frac{\max\{\|\bar{A}_{12}\|_{2}, \|\bar{A}_{21}\|_{2}\} + \left\|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\right\|_{2}}{\min_{j} |\sigma_{i}(\bar{A}) - \sigma_{j}\left(\bar{A}_{22}\right)| - 2 \|E_{GN}\|_{2}}$$

Then, for each i, if  $\tau_i > 0$ 

$$|\sigma_i(A) - \sigma_i(A_{GN})| = |\sigma_i(\bar{A}) - \sigma_i(\bar{A}_{GN})| \le 2 \left\| \bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12} \right\|_2 \tau_i + \left\| \bar{A}_{22} - \bar{A}_{21}\bar{A}_{11}^{\dagger}\bar{A}_{12} \right\|_2 \tau_i^2$$

•  $\tau_i < 1$  necessary to be better than Weyl. If  $\sigma_i(\bar{A})$  is far from the spectrum of  $\bar{A}_{22}$  then  $\tau_i \ll 1$ 

#### BOUND ON GN APPROXIMATION ERROR - NUMERICAL EXPERIMENTS - $\ell=0$

- $A \in \mathbb{R}^{1000 \times 1000}$
- Uex, Vex Haar Matrices
- $\sigma_i(A)$  exponentially decaying
- $[\tilde{V}, \sim] = \operatorname{qr}(A^*\Omega, 0)$
- $[\tilde{U}, \sim] = \operatorname{qr}(A\Omega, 0)$
- $\tilde{V} \in \mathbb{R}^{1000 \times 200}$
- $\tilde{U} \in \mathbb{R}^{1000 \times 200}$
- Compute pseudoinverses by QR factorization

$$\sigma_i(A_{GN,\tilde{V},\tilde{U}}) = \sigma_i(A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A)$$



## BOUND ON GN APPROXIMATION ERROR - NUMERICAL EXPERIMENTS - $\ell=0$

- $A \in \mathbb{R}^{1000 \times 1000}$
- Uex, Vex Haar Matrices
- $\sigma_i(A)$  exponentially decaying
- $[\tilde{V}, \sim] = \operatorname{qr}(A^*\Omega, 0)$
- $[\tilde{U}, \sim] = \operatorname{qr}(A\Omega, 0)$
- $\tilde{V} \in \mathbb{R}^{1000 \times 200}$
- $\tilde{U} \in \mathbb{R}^{1000 \times 200}$
- Compute pseudoinverses by QR factorization

$$\sigma_i(A_{\mathsf{GN},\tilde{V},\tilde{U}}) = \sigma_i(A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A)$$



### BOUND ON GN APPROXIMATION ERROR - NUMERICAL EXPERIMENTS - $r+\ell=1.5r$

- $A \in \mathbb{R}^{1000 \times 1000}$
- Uex, Vex Haar Matrices
- $\sigma_i(A)$  exponentially decaying
- $[\tilde{V}, \sim] = \operatorname{qr}(A^*\Omega, 0)$
- $[\tilde{U}, \sim] = \operatorname{qr}(A\Omega, 0)$
- $\tilde{V} \in \mathbb{R}^{1000 \times 200}$
- $\tilde{U} \in \mathbb{R}^{1000 \times 300}$
- Compute pseudoinverses by QR factorization

$$\sigma_i(A_{GN,\tilde{V},\tilde{U}}) = \sigma_i(A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A)$$



### BOUND ON GN APPROXIMATION ERROR - NUMERICAL EXPERIMENTS - $r+\ell=1.5r$

- $A \in \mathbb{R}^{1000 \times 1000}$
- Uex, Vex Haar Matrices
- $\sigma_i(A)$  exponentially decaying
- $[\tilde{V}, \sim] = \operatorname{qr}(A^*\Omega, 0)$
- $[\tilde{U}, \sim] = \operatorname{qr}(A\Omega, 0)$
- $\tilde{V} \in \mathbb{R}^{1000 \times 200}$
- $\tilde{U} \in \mathbb{R}^{1000 \times 300}$
- Compute pseudoinverses by QR factorization

$$\sigma_i(A_{GN,\tilde{V},\tilde{U}}) = \sigma_i(A\tilde{V}(\tilde{U}^*A\tilde{V})^{\dagger}\tilde{U}^*A)$$



Α







# Ā













## BOUND ON GN APPROXIMATION ERROR - NUMERICAL EXPERIMENTS - $r+\ell=1.5r$



Size of  $\tilde{A}_{11}: 200 \times 200$ 





$$\sigma_i(A) = (\frac{1}{i})^4$$





# With oversample $(r + \ell = 1.5r)$



# Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^*A\tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

• 
$$\bar{A} = [\tilde{U} \ \tilde{U}_{\perp}]^* A [\tilde{V} \ \tilde{V}_{\perp}]$$

• 
$$|\sigma_i(\bar{A}) - \sigma_i(\bar{A}_{RR, \begin{bmatrix} I_r \\ 0 \end{bmatrix}, \begin{bmatrix} I_{r+\ell} \\ 0 \end{bmatrix}})|$$

• 
$$\sigma_i(\bar{A}_{RR}) \stackrel{nnz}{=} \sigma_i \left( \bar{A} - \begin{bmatrix} 0 & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{bmatrix} \right)$$

⇒ Perform the same analysis and derive a similar bound!

# Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^*A\tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

• 
$$\bar{A} = [\tilde{U} \ \tilde{U}_{\perp}]^* A [\tilde{V} \ \tilde{V}_{\perp}]$$

• 
$$|\sigma_i(\bar{A}) - \sigma_i(\bar{A}_{RR, \begin{bmatrix} I_r \\ 0 \end{bmatrix}, \begin{bmatrix} I_{r+\ell} \\ 0 \end{bmatrix}})|$$

• 
$$\sigma_i(\bar{A}_{RR}) \stackrel{nnz}{=} \sigma_i \left( \bar{A} - \begin{bmatrix} 0 & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{bmatrix} \right)$$

⇒ Perform the same analysis and derive a similar bound!



# Rayleigh Ritz (RR)

$$\sigma_i(A) \approx \sigma_i(\tilde{U}^*A\tilde{V}) =: \sigma_i(A_{RR,\tilde{V},\tilde{U}})$$

• 
$$\bar{A} = [\tilde{U} \ \tilde{U}_{\perp}]^* A [\tilde{V} \ \tilde{V}_{\perp}]$$

• 
$$|\sigma_i(\bar{A}) - \sigma_i(\bar{A}_{RR, \begin{bmatrix} I_r \\ 0 \end{bmatrix}, \begin{bmatrix} I_{r+\ell} \\ 0 \end{bmatrix}})|$$

• 
$$\sigma_i(\bar{A}_{RR}) \stackrel{nnz}{=} \sigma_i \left( \bar{A} - \begin{bmatrix} 0 & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{bmatrix} \right)$$

⇒ Perform the same analysis and derive a similar bound!



For 
$$au_i > 0$$
,  $|\sigma_i(A) - \sigma_i(A_{GN})| \leq 2 \left\| \bar{A}_{12} - \bar{A}_{11} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 au_i + \left\| \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 au_i^2$ 

$$\tau_{i} = \frac{\max\{\|\bar{A}_{12}\|_{2}, \|\bar{A}_{21}\|_{2}\} + \left\|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\right\|_{2}}{\min_{j} |\sigma_{i}(\bar{A}) - \sigma_{j}\left(\bar{A}_{22}\right)| - 2 \|E_{GN}\|_{2}}$$

For 
$$au_i > 0$$
,  $|\sigma_i(A) - \sigma_i(A_{GN})| \leq 2 \left\| \bar{A}_{12} - \bar{A}_{11} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 au_i + \left\| \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 au_i^2$ 

$$\text{(Forward Bound)} \quad \bar{A}_{GN} = \bar{A} - E_{GN} \implies \tau_i = \frac{\max\{\|\bar{A}_{12}\|_2, \|\bar{A}_{21}\|_2\} + \left\|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\right\|_2}{\min_j |\sigma_i(\bar{A}) - \sigma_j(\bar{A}_{22})| - 2 \|E_{GN}\|_2}$$

$$\text{For } \tau_i > 0, \quad |\sigma_i(A) - \sigma_i(A_{GN})| \leq 2 \left\| \bar{A}_{12} - \bar{A}_{11} \bar{A}_{11}^\dagger \bar{A}_{12} \right\|_2 \tau_i + \left\| \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^\dagger \bar{A}_{12} \right\|_2 \tau_i^2$$

$$\text{(Backward Bound)} \quad \bar{A} = \bar{A}_{GN} + E_{GN} \implies \tau_i = \frac{\max\{\|\bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_2, \|\bar{A}_{12}\|_2\} + \|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_2}{\min_j |\sigma_i(\bar{A}_{GN}) - \sigma_j(\bar{A}_{21}\bar{A}_{11}^{\dagger}\bar{A}_{12})| - 2 \|E_{GN}\|_2}$$

For 
$$au_i > 0$$
,  $|\sigma_i(A) - \sigma_i(A_{GN})| \le 2 \left\| \bar{A}_{12} - \bar{A}_{11} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 \tau_i + \left\| \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^{\dagger} \bar{A}_{12} \right\|_2 \tau_i^2$ 

$$\tau_{i} = \underbrace{\frac{=\|\bar{A}_{12}\|_{2}}{\max\{\|\bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_{2}, \|\bar{A}_{12}\|_{2}\} + \underbrace{\|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_{2}}_{=\min_{j}|\sigma_{i}(\bar{A}_{GN}) - \sigma_{j}(\bar{A}_{21}\bar{A}_{11}^{\dagger}\bar{A}_{12})| - 2\,\|E_{GN}\|_{2}}^{\leq \|\bar{A}_{12}\|_{2}}$$

## **BOUND ON GN APPROXIMATION ERROR - COMPUTABILITY - (BB)**

$$\text{For } \tau_i > 0, \quad |\sigma_i(\textbf{A}) - \sigma_i(\textbf{A}_{\textit{GN}})| \leq 2 \left\| \bar{A}_{12} - \bar{A}_{11} \bar{A}_{11}^\dagger \bar{A}_{12} \right\|_2 \tau_i + \left\| \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^\dagger \bar{A}_{12} \right\|_2 \tau_i^2$$

$$\tau_{i} = \underbrace{\frac{=\|\bar{A}_{12}\|_{2}}{\max\{\|\bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_{2}, \|\bar{A}_{12}\|_{2}\}}_{=\|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_{2}}}^{=\|\bar{A}_{12}\|_{2}} + \underbrace{\|\bar{A}_{12} - \bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_{2}}_{=\|\bar{A}_{11}\bar{A}_{11}^{\dagger}\bar{A}_{12}\|_{2}}$$



# **FUTURE WORK**

Lorenzo Lazzarino

- More on the difference between oversampled and non-oversampled cases
- More on the strategy to improve the bound;
- Use bounds to formally characterize the differences in behaviors of the different techniques: GN, HMT, Rayleigh-Ritz;
- Use norm estimation strategies to make the bound fully computable.

- More on the difference between oversampled and non-oversampled cases
- More on the strategy to improve the bound;
- Use bounds to formally characterize the differences in behaviors of the different techniques: GN, HMT, Rayleigh-Ritz;
- Use norm estimation strategies to make the bound fully computable.

Thank You!

## BOUND ON GN APPROXIMATION ERROR - NUMERICAL EXPERIMENTS - $r+\ell=1.5r$

$$ilde{V} = qr(A'*randn(1000, \frac{200}{200})); \\ ilde{U} = qr(A*randn(1000, \frac{300}{200}));$$

Size of  $\tilde{A}_{11}: 180 \times 175$ 



