Total No. of Questions: 8] SEAT

P3337

[5461]-597

[Total No. of Pages: 3

B.E. (Computer Engineering) DATA MININGAND WAREHOUSING (2015 Course) (Semester - I) (End Sem.) (410244D)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Assume suitable data if necessary.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- **Q1)** a) For the given attribute AGE values: 16, 16, 180, 4, 12, 24, 26, 28, apply following Binning technique for smoothing the noise. [6]
 - i) Bin Medians
 - ii) Bin Boundaries
 - iii) Bin Means
 - b) Differentiate between Star schema and Snowflake schema.
 - c) Calculate the Jaccard coefficient between Ram and Hari assuming that all binary attributes are a symmetric and for each pair values for an attribute, first one is more frequent than the second. [8]

Object	Gender	Food	Caste	Education	Hobby	Job
Hari	M(1)	V(1)	M(0)	L(1)	C(0)	N
		5				$(0)_{\circ}$
Ram	M(1)	N(0)	M(0)	I(0)	T(1)	N
					9	(0)
Tomi	F(0)	N(0)	H(1)	L(1)	C(0)	Y
					7 67	(1)

OR

Q2) a) Explain following attribute types with example.

[6]

[6]

- i) Ordinal
- ii) Binary
- iii) Nominal
- b) Differentiate between OLTP and OLAP with example.

[6]

P.T.O.

point	X	У
p1	0	2
p2	2	0
р3	3	1
p4	5	1

Q3) a) A database has 6 transactions. Let minimum support = 60% and Minimum confidence = 70% [8]

Transaction ID	Items Bought
71	$\{A, B, C, E\}$
T2	$\{A, C, D, E\}$
T30	$\{B, C, E\}$
T4	$\{A, C, D, E\}$
T5	{C, D, E}
T6	$\{A, D, E\}$

- i) Find Closed frequent Itemsets
- ii) Find Maximal frequent itemsets
- iii) Design FP Tree using FP growth algorithm
- b) Explain with example Multi level and Constraint based association Rule mining. [5]
- c) How can we improve the efficiency of a-priori algorithm. [4]

OR

- Q4) a) Consider the Market basket transactions shown below. Assuming the minimum support = 50% and Minimum confidence = 80% [8]
 - i) Find all frequent item sets using Apriori algorithm
 - ii) Find all association rules using Apriori algorithm

Transaction ID	Items Bought
T1 💉	{Mango, Apple, Banana, Dates}
T2	{Apple, Dates, Coconut, Banana, Fig}
Т3	{Apple, Coconut, Banana, Fig}
T4	{Apple, Banana, Dates}

b) Explain FP growth algorithm with example.

[5]

c) Explain following measures used in association Rule mining

[4]

[8]

- i) Minimum Support
- ii) Minimum Confidence
- iii) Support
- iv) Confidence

Q5)	a)	Explain the training and testing phase using Decision Tree in detail. Support your answer with relevant example. [8]		
	b)	Apply KNN algorithm to find class of new tissue paper $(X1 = 3, X2 = 7)$. Assume $K = 3$ [5]		
X 1	$=A_0$	cid Durability (secs) $X2 = Strength(kg/sq.meter)$ $Y = Classification$		
		7 Bad		
		7 Bad		
		3 Good		
		1 Good		
	c)	Explain the use of regression model in prediction of real estate prices.[4]		
		OR OR		
Q6)	a)	What is Bayesian Belief Network. Elaborate the training process of a Bayesian Belief Network with suitable example. [8]		
	b)	Explain K-nearest neighbor classifier algorithm with suitable application. [5]		
	c) ^{\(\rightarrow\)}	Elaborate on Associative Classification with appropriate applications.[4]		
Q 7)	a)	Discuss the Sequential Covering algorithm in detail. [8]		
	b)	Explain following measures for evaluating classifier accuracy [4]		
		i) Specificity		
		ii) Sensitivity		
	c)	Differentiate between Wholistic learning and Multi perspective learning.[4]		
		OR OR		
Q8)	a)	How is the performance of Classifiers algorithms evaluated. Discuss in detail. [8]		
	b)	Discuss Reinforcement learning relevance and its applications in real time environment. [4]		
	c)	Explain following measures for evaluating classifier accuracy [4]		
		i) Recall		
		ii) Precision		
		♦ ♦ ♦		