

Sistemas de Equações Lineares

1. Inversa

O sistema de equações lineares

$$\begin{cases} 0.125x + 0.2y + 0.4z = 2.3\\ 0.375x + 0.5y + 0.6z = 4.8\\ 0.5x + 0.3y = 2.9 \end{cases}$$

Pode ser escrito na forma matricial por AX=B

Onde

$$A = \begin{bmatrix} 0.125 & 0.2 & 0.4 \\ 0.375 & 0.5 & 0.6 \\ 0.5 & 0.3 & 0 \end{bmatrix} \qquad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \text{e} \quad B = \begin{bmatrix} 2.3 \\ 4.8 \\ 2.9 \end{bmatrix}$$

O sistema terá solução única caso

$$\det(A) \neq 0$$

e a sua solução pode ser obtida por

$$X = A^{-1}B$$
.

Em Matlab:

```
det(A)
X=inv(A)*B
A*X % verificação
```

2. Método de Eliminação de Gauss

O método de eliminação de Gauss consiste em escrever a matriz ampliada A|B em escada e depois fazer-se a retrosubstituição. Para resolver o sistema dado na secção 1 basta guardar um m-file (script) com o nome Gauss e depois correr a instrução

Gauss(A,B)

3. Factorização LU

Neste método usa-se o comando do Matlab lu:

[L,U,P]=lu(A)

A matriz L que se obtém é triangular inferior, a matriz U é triangular superior e a matriz P é uma matriz de permutações que indica se é necessário fazer troca de linhas para obter a factorização LU. Se P não for a matriz identidade, então é necessário trocar linhas nas matrizes A e B. Tais trocas deduzem-se da transformação de P na matriz identidade.

No exemplo da secção 1, obtém-se o seguinte resultado para a matriz P

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

que mostra que se teve de trocar a linha 3 com a linha 1. Assim para resolvermos por este método poder-se-á trocar logo no início as matrizes A e B pela seguintes matrizes

$$A_2 = \begin{bmatrix} 0.5 & 0.3 & 0 \\ 0.375 & 0.5 & 0.6 \\ 0.125 & 0.2 & 0.4 \end{bmatrix} \quad \text{e} \quad B_2 = \begin{bmatrix} 2.9 \\ 4.8 \\ 2.3 \end{bmatrix}$$

 $[L,U,P]=lu(A_2)$

Recomeça-se a factorização no Matlab

Note-se que o sistema escreve-se agora por

$$AX = B \le LUX = B$$

E portanto tem-se que que realizar os seguintes passos para resolver o sistema:

1. LY=B para descobrirmos a matriz Y

2. UX=Y para descobrirmos a solução X.

Ou seja, no Matlab

```
Y=subs(L,B2)
X=retro(U,Y)
```

onde as funções subs e retro são definidas por

e

4. Pesquisa Parcial de Redutor

O Matlab tem por defeito uma função que factoriza a matriz A em LU e resolve o sistema com escolha parcial de redutor:

5. Exemplo

O sistema AX=B onde as matrizes A e B são

$$A = \begin{bmatrix} 1^9 & 1^8 & \dots & 1^0 \\ 2^9 & 2^8 & \dots & 2^0 \\ 3^9 & 3^8 & \dots & 3^0 \\ \vdots & \vdots & \vdots & \vdots \\ 10^9 10^8 & \dots & 10^0 \end{bmatrix} \qquad e \qquad B = \begin{bmatrix} 2 \\ 3 \\ 4 \\ \vdots \\ 11 \end{bmatrix}$$

Tem como solução

$$X = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ 1 \end{bmatrix}$$

Resolva-se no Matlab pelos diversos métodos:

Inversa	Gauss	PPR
-0.000000000000000	0.000000000000879	0.000000000000000
0.000000000000000	-0.000000000043309	-0.000000000000000
-0.000000000000000	0.000000000911107	0.000000000000000
0.000000000000003	-0.000000010687355	-0.000000000000001
0.000000000000002	0.000000076621056	0.000000000000004
0.00000000000112	-0.000000346091310	-0.000000000000012
-0.00000000000057	0.000000977862633	0.00000000000018
0.000000000000405	-0.000001651213377	-0.000000000000000
1.00000000000284	1.000001492906150	0.9999999999974
1.000000000000076	1.000000000000076	1.00000000000018

6. Factorização de Cholesky

Dada uma matriz A simétrica definida positiva, a factorização de Cholesky consiste em obter uma matriz L triangular inferior tal que

$$A=LL^T.$$

Em Matlab, o comando

```
chol(A,'lower')
```

fornece a matriz L. Se se só fizer chol(A), obtém-se a matriz L^T .

Para resolver o sistema matricial AX=B, onde

$$A = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & 10 \end{bmatrix} \qquad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \text{e} \quad B = \begin{bmatrix} 6 \\ 14 \\ 42 \end{bmatrix}$$

Ter-se-á que usar os seguintes comandos:

```
L= chol(A,'lower')
Y=subs(L,B)
X=retro(L',Y)
```

7. Método de Jacobi

Um método iterativo é um conjunto sequencial de procedimentos que permite obter uma solução aproximada e melhorada do sistema a partir da solução aproximada anterior .

```
function X=jacobi(A,B,P,delta, max1)
% P é a aproximação inicial
% delta é o majorante do erro da última solução aproximada obtida
% max1 é o número máximo de iterações
% Output - X é uma matriz N x 1 que corresponde à solução aproximada do
% do sistema AX=B pelo método de Jacobi.
N = length(B);
for k=1:max1
   for j=1:N
      X(j) = (B(j) - A(j, [1:j-1,j+1:N]) *P([1:j-1,j+1:N])) / A(j,j);
   end
   err=abs(norm(X'-P));
   relerr=err/(norm(X)+eps);
   P=X';
      if (err<delta) | (relerr<delta)</pre>
     break
   end
end
X=X';
```

Os métodos iterativos que se irão estudar são o método de Jacobi e o método de Gauss-Seidel.

O código para estes métodos foi retirado do file Exchange do Matlab e que se encontra no livro "Numerical Methods Using Matlab" de J.H.Mathews e de K.D.Fink.

8. Método de Gauss-Seidel

```
function X=gseid(A,B,P,delta, max1)
N = length(B);
for k=1:max1
   for j=1:N
      if j==1
        X(1) = (B(1) - A(1,2:N) *P(2:N)) / A(1,1);
      elseif j==N
          X(N) = (B(N) - A(N, 1:N-1) * (X(1:N-1))')/A(N, N);
      else
         X(j) = (B(j) - A(j, 1:j-1) *X(1:j-1) - A(j, j+1:N) *P(j+1:N)) /A(j, j);
      end
   end
   err=abs(norm(X'-P));
   relerr=err/(norm(X)+eps);
   P=X';
      if (err<delta) | (relerr<delta)</pre>
   end
end
X=X';
```

9. Exemplo

Resolva-se pelos métodos iterativos o sistema AX=B onde

$$A = \begin{bmatrix} 4 & -1 - 1 & 0 & 0 & 0 \\ -1 & 4 & 0 & -1 & 0 & 0 \\ -1 & 0 & 4 & -1 - 1 & 0 \\ 0 & -1 - 1 & 4 & 0 & -1 \\ 0 & 0 & -1 - 1 & 4 \end{bmatrix} \quad \text{e} \quad \text{B} = \begin{bmatrix} 1 \\ 5 \\ 0 \\ 3 \\ 1 \\ 5 \end{bmatrix}$$

A solução deste sistema é

$$X = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \end{bmatrix}$$

Use-se a seguinte aproximação inicial

$$X^{(0)} = \begin{bmatrix} 0.25 \\ 1.25 \\ 0 \\ 0.75 \\ 0.25 \\ 1.25 \end{bmatrix}.$$

Jacobi								
k	x_1	x_2	<i>x</i> ₃	x ₄	<i>x</i> ₅	<i>x</i> ₆		
0	0,25	1,25	0	0,75	0,25	1,25		
1	0,5625	1,5	0,3125	1,375	0,5625	1,5		
2	0,703125	1,734375	0,625	1,578125	0,703125	1,734375		
3	0,839844	1,820313	0,746094	1,773438	0,839844	1,820313		
4	0,891602	1,90332	0,863281	1,84668	0,891602	1,90332		
5	0,94165	1,93457	0,907471	1,91748	0,94165	1,93457		
6	0,96051	1,964783	0,950195	1,944153	0,96051	1,964783		
7	0,978745	1,976166	0,966293	1,96994	0,978745	1,976166		
8	0,985615	1,987171	0,981857	1,979656	0,985615	1,987171		
9	0,992257	1,991318	0,987721	1,98905	0,992257	1,991318		
10	0,99476	1,995327	0,993391	1,992589	0,99476	1,995327		
11	0,997179	1,996837	0,995527	1,996011	0,997179	1,996837		
12	0,998091	1,998298	0,997593	1,9973	0,998091	1,998298		
13	0,998091	1,998298	0,997593	1,9973	0,998091	1,998298		
14	0,998973	1,998848	0,998371	1,998547	0,998973	1,998848		
15	0,999305	1,99938	0,999123	1,999017	0,999305	1,99938		
16	0,999626	1,99958	0,999406	1,999471	0,999626	1,99958		

	Gauss-Seidel							
k	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆		
0	0,25	1,25	0	0,75	0,25	1,25		
1	0,5625	1,578125	0,390625	1,554688	0,660156	1,803711		
2	0,742188	1,824219	0,739258	1,841797	0,885742	1,931885		
3	0,890869	1,933167	0,904602	1,942413	0,959122	1,975384		
4	0,959442	1,975464	0,965244	1,979023	0,985157	1,991045		
5	0,985177	1,99105	0,987339	1,992359	0,994596	1,996739		
6	0,994597	1,996739	0,995388	1,997216	0,998032	1,998812		
7	0,998032	1,998812	0,99832	1,998986	0,999283	1,999567		
8	0,998032	1,998812	0,99832	1,998986	0,999283	1,999567		
9	0,999739	1,999842	0,999777	1,999865	0,999905	1,999943		
10	0,999905	1,999943	0,999919	1,999951	0,999965	1,999979		
11	0,999965	1,999979	0,99997	1,999982	0,999987	1,999992		
12	0,999987	1,999992	0,999989	1,999993	0,999995	1,999997		
13	0,999995	1,999997	0,999996	1,999998	0,999998	1,999999		
14	0,999998	1,999999	0,999999	1,999999	0,999999	2		
15	0,999999	2	0,999999	2	1	2		
16	1	2	1	2	1	2		