

NEW DESIGNS

RECOMMENDED FOR CD4566B Types

FUNCTIONAL DIAGRAM

CMOS Industrial Time-Base Generator

High-Voltage Types (20-Volt Rating)

Features:

- Falling-edge-triggered counters Schmitt-trigger clock inputs
- Rising or falling-edge-triggered monostable multivibrator
- Standardized symmetrical output characteristics
- Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25° C
- 5 V, 10 V, and 15 V parametric ratings
- 100% tested for quiescent current at 20 V
- Meets all requirements of JEDEC Standard No. 13B, "Standard Specifications for description of "B" Series CMOS devices"

■ CD4566B industrial time-base generator consists of a divide-by-10 ripple counter and a divide-by-5 or divideby-6 ripple counter which allows stable time generation from a 50 Hz or 60 Hz signal. A LOW on the divide-by-5/6 control selects the divide-by-6 counter a HIGH selects the divide-by-5. A HIGH on the RESET clears the outputs of the counters. Counter outputs are presented in BCD format.

A monostable multivibrator is included which can be used to generate a reset or clock pulse. The monostable multivibrator is triggered either on the rising-edge of the +TR input or on the falling-edge of the -TR input. A LOW on the +TR or a HIGH on the -TR inhibits the output of the monostable multivibrator. An unused +TR input should be tied HIGH; an unused -TR input should be tied LOW.

The CD4566B device is supplied in 16-lead ceramic dual-inline packages (D and F suffixes), 16-lead plastic dual-in-line packages (E suffix), and in chip form (H suffix).

MONOSTABLE MULTIVIBRATOR TRUTH TABLE

INP	UTS	ОИТРИТ			
+TR	-TR	Qmono			
	0	J.			
	1	0			
	0	0			
	1	0			
0		0			
1		0			
0	~	О			
1.	~	7.			

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to VSS Terminal)	
INPUT VOLTAGE RANGE, ALL INPUTS0.5V to VDD +0.5V	
DC INPUT CURRENT, ANY ONE INPUT±10mA	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	
For T _A = +100°C to +125°C	
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR T _A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	
OPERATING-TEMPERATURE RANGE (T _A)	
STORAGE TEMPERATURE RANGE (Tsig) -65°C to +150°C	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max	

Fig. 1 - Logic diagram for CD4566B.

STATIC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC		CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)						C)			
						-40	+85	+125	+25			UNITS		
		1 - 1 1	(V)	-55	MIN.				TYP.	MAX.	1			
Quiescent			0, 5	5	5	5	150	150		0.04	5			
Device Current,			0, 10	10	10	10	300	300	_	0.04	10	μΑ		
Max.	IDD	_	0, 15	15	20	20	600	600		0.04	20	μ^		
			0, 20	20	100	100	3000	3000		0.08	100			
Output Low		0.4	0, 5	5	0.64	0.61	0.42	0.36	0.51	1				
(Sink) Current,		0.5	0, 10	10	1.6	1.5	1.1	0.9	1.3	2.6				
Min.	loc	1.5	0, 15	15	4.2	4	2.8	2.4	3.4	6.8	_			
Output High		4.6	0, 5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1		mA		
(Source)		2.5	0, 5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2				
Current, Min.	lon	9.5	0, 10	10	-1.6	-1.5	-1,1	-0.9	-1.3	-2.6				
		13.5	0, 15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	_			
Output Voltage		_	<u> </u>				0.05							
Low-Level,			0, 10	10		0.05				0	0.05	1		
Max.	V_{OL}	_	0, 15	15		0.05 — 0				0	0.05	1		
Output Voltage		-	0, 5	5		4.95 9.95			4.95	5	_	d v		
High-Level,		_	0, 10	10					9.95	10	_			
Min.	Voн		0, 15	15		14	.95		14.95	15	_			
Input Low		0.5,4.5		5	1.5 — —					1.5				
Voltage,		1, 9		10	3 3				3	1				
Max.	VIL	1.5,13.5	_	15	3.5					4	V			
Input High		0.5,4.5		5				3.5	_					
Voltage,		1, 9	-	10	7			7	_	-				
Min.	VIH	1.5,13.5		15	11			11						
Input Current, Max.	lin	_	0, 18	18	±0.1	±0.1	±1	±1	_	±10 ⁻⁵	±0.1	μΑ		

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

011404477014740		V _{DD}	LIM			
CHARACTERISTIC			MIN.	MAX.	UNITS	
Supply-Voltage Range (For T _A = Full Package-Tempe	_	3	18	v		
Clock Pulse Width	t _{w(CL)}	5	300			
		10	130	_	ns	
		15	80	_		
Reset Pulse Width	t _{w(R)}	5	600	_		
		10	300	-	ns	
		15	200	_		
Monostable Multivibrator Pulse Width	t _{w(mono)}	5	800	_		
		10	300		ns	
		15	200	_		

DYNAMIC ELECTRICAL CHARACTERISTICS, at T_A = 25° C; Input t_r , t_t = 20 ns, C_L = 50 pF, R_L = 200 k Ω

CHARACTERISTIC		TEST CONDITIONS VDD (V)	MIN.	TYP.	MAX.	UNITS	
Propagation Delay Time	t _{PHL}	5	 	650	1300	1	
Clock to Q3A	tplH	10	-	250	500	ns	
		15	-	170	340		
Reset to Q3A		5	-	400	800		
		10	_	170	340	ns	
		15		120	240		
Minimum Clock Pulse Width	t _{w(CL)}	5	T -	150	300		
		10		65	130	ns	
		15	-	40	80		
Minimum Reset Pulse Width	t _{w(R)}	5	-	300	600		
		10	_	150	300	ns	
		15	_	100	200		
Minimum Monostable Multivibrator		5		1600	800		
Pulse Width	twimonol	10	-	600	300	ns	
		15	-	400	200		
Transition Time	tTHL	5	<u> </u>	100	200	1	
	t _{TLH}	10	-	50	100	ns	
		15		40	80	ļ	
Input Capacitance	Cin	Any Input	-	5	7.5	pF	

Fig. 2 - Typical output low (sink) current characteristics.

Fig. 4 - Typical output high (source) current characteristics.

Fig. 3 - Minimum output low (sink) current characteristics.

Fig. 5 - Minimum output high (source) current characteristics.

Fig. 7 - Typical dynamic power dissipation as a function of input pulse frequency.

TERMINAL ASSIGNMENT

Dimensions and pad layout for CD4566BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

Fig. 8 - Quiescent device current test circuit.

Fig. 9 - Input voltage test circuits.

Fig. 10 - Input leakage current test circuit.

APPLICATION CIRCUIT

Fig. 11 - 12-hour clock circuit.