Ejercicios

November 30, 2024

1 Ejercicio 1

En este primer ejercicio procedemos a indexar la colección de documentos train.docs, dicha colección será tokenizada y se creará un índice BM25.

Primero empezamos importando las dependencias necesarias:

```
[]: import bm25s import Stemmer
```

Estas librerías nos permiten: - bm25s: Crear índices y buscar documentos usando BM25 - Stemmer: Realizar stemming de los términos

Una vez importadas dichas librerías necesitamos carga el corpus para ello se define la siguiente función:

```
[]: def prepareCorpus():
         # Cargamos el archivo train.docs, y lo separamos por el salto de línea
         with open("../archivos/train.docs", "r", encoding="utf-8") as f:
             corpus_content = f.read()
             corpus_content = corpus_content.split("\n")
         #Inicializamos unas listas vacías
         corpus_plainText = list()
         corpus_verbatim = list()
         \#Recorremos\ el\ corpus\_content\ y\ lo\ dividimos\ en\ tres\ partes,\ el\ id,\ el_{\sqcup}
      ⇔título y el texto
         for valor in corpus_content:
             partes = valor.split("\t")
             valor = partes[1].lower()
             document = {"id": partes[0], "title":partes[0].lower(), "text": valor}
             corpus_verbatim.append(document)
             corpus_plainText.append(valor)
         #Inicializamos el stemmer
         stemmer = Stemmer.Stemmer("english")
```

```
#Tokenizamos el corpus
corpus_tokenized = bm25s.tokenize(corpus_plainText, stopwords="en",
stemmer=stemmer, show_progress=True)

#Creamos el índice BM25 y lo guardamos en un archivo
retriever = createAndSaveRetriever(corpus_verbatim, corpus_tokenized)
```

La función anterior lee el archivo train.docs y lo divide en tres partes, la primera parte es el id1 del documento, la segunda es el título del documento y la tercera parte es el texto del documento. Luego se tokeniza el texto del documento y se guarda en un índice BM25.

Este método llama a la función createAndSaveRetriever() que se encarga de crear el índice BM25 y guardarlo en un archivo.

1 El id es el mismo valor que el título presente en train.docs

La función createAndSaveRetriever() realiza lo siguiente:

- 1. Crea un retriever BM25 con el corpus verbatim y los métodos de cálculo de BM25 y de idf.
- 2. Indexa el corpus tokenizado.
- 3. Guarda el retriever en un archivo, para posteriormente ser recuperado

En este documento también hay presente una función para poder cargar el retriever de un archivo, dicha función es openRetriever():

```
[]: def openRetriever():
    retriever = bm25s.BM25.load("../archivos/NFcorpus",load_corpus=True)
    return retriever
```

2 Ejercicio 2

En este segundo ejercicio se procede a cargar las queries y procesarlas con diferentes modelos de búsqueda para el retriever, y realizando dichas consultas con la combinación del steamer y

stopwords1, para posteriormente poder calcular la precisión de las consultas y guardarlas en un archivo.

1Se harán combinaciones de steamer y stopwords para poder comparar los resultados, dichas combinaciones son y para cada modelo de retriever: stopword-steaming, stopword-none-steaming, none-stopword-none-steaming.

Primero empezaremos cargando y preparando el corpus, para ello se utilizará la función prepareCorpus() y createRetriever() usadas en el ejercicio anterior y presentes en el archivo python del ejercicio 2. También se usará la función de tokenizado(), para poder tokenizar el corpus y las consultas según diferentes configuraciones

```
[]: def tokenizado(texto, stemmer, stopwords):
    # Tokenizamos el corpus
    corpus_tokenized = bm25s.tokenize(texto, stopwords=stopwords,__
    stemmer=stemmer, show_progress=True)
    return corpus_tokenized
```

2.0.1 Tabla de resultados

Macro promedios

Modelo	Steamer	Stopwords	Precision	Recall	F1
Robertson	No	No	0.064	0.261	0.101
Robertson	No	Si	0.066	0.265	0.103
Robertson	Si	No	0.067	0.273	0.105
Robertson	Si	Si	0.069	0.279	0.106
Atire	No	No	0.064	0.261	0.1
Atire	No	Si	0.066	0.265	0.102
Atire	Si	No	0.067	0.273	0.104
Atire	Si	Si	0.069	0.278	0.107
Bm25l	No	No	0.064	0.263	0.101
Bm25l	No	Si	0.066	0.266	0.102
Bm25l	Si	No	0.068	0.275	0.105
Bm25l	Si	Si	0.069	0.279	0.107
Bm25+	No	No	0.064	0.261	0.1
Bm25+	No	Si	0.066	0.265	0.102
Bm25+	Si	No	0.067	0.273	0.104
Bm25+	Si	Si	0.069	0.278	0.107
Lucene	No	No	0.064	0.261	0.1
Lucene	No	Si	0.066	0.265	0.102
Lucene	Si	No	0.067	0.273	0.104
Lucene	Si	Si	0.069	0.278	0.107

Micro promedios

Modelo	Steamer	Stopwords	Precision	Recall	F1
Robertson	No	No	0.064	0.196	0.097
Robertson	No	Si	0.066	0.2	0.099
Robertson	Si	No	0.067	0.205	0.101
Robertson	Si	Si	0.069	0.21	0.104
Atire	No	No	0.064	0.196	0.097
Atire	No	Si	0.066	0.2	0.099
Atire	Si	No	0.067	0.205	0.101
Atire	Si	Si	0.069	0.21	0.104
Bm25l	No	No	0.064	0.197	0.097
Bm25l	No	Si	0.066	0.2	0.099
Bm25l	Si	No	0.068	0.206	0.102
Bm25l	Si	Si	0.069	0.21	0.104
Bm25+	No	No	0.064	0.196	0.097
Bm25+	No	Si	0.066	0.2	0.099
Bm25+	Si	No	0.067	0.205	0.101
Bm25+	Si	Si	0.069	0.21	0.104
Lucene	No	No	0.064	0.196	0.097
Lucene	No	Si	0.066	0.2	0.099
Lucene	Si	No	0.067	0.205	0.101
Lucene	Si	Si	0.069	0.21	0.104

Gracias a los datos obtenidos podemos concluir lo siguiente:

- Macro promedios -> se consigue un valor F1 de 0.107
 - Robertson con steamer v stopwords
 - Atire con steamer y stopwords
 - Lucene con steamer y stopwords
 - Bm25+ con steamer y stopwords
 - Bm25l con steamer v stopwords
- Micro promedios -> se consigue un valor F1 de 0.104
 - Atire con steamer y stopwords
 - Bm25l con steamer y stopwords
 - Robertson con steamer y stopwords
 - Bm25+ con steamer y stopwords
 - Lucene con steamer y stopwords

De los modelos que mejor se comportan podemos extraer que a términos de Macro promedios el mejor modelo es Bm25l y Robertson, ambos con steamer y stopwords, ya posee un mayor recall. En cuanto a los Micro promedios, no hay ninguno que destaque por encima de los demás.

Podemos concluir que Bm251 y Robertson son los modelos que mejor se comportan en valores de Macro y Micro, haciendo que cualquiera de los dos sea una buena elección para realizar consultas. Basándonos en estos resultados, el modelo con el cual se seguirá trabajando será Bm251 con steamer y stopwords.

3 Bibliografía

Enlaces consultado para la realización de los ejercicios:

3.1 Ejercicio 1

• Introduction to Lexical Search

3.2 Ejercicio 2

- Introduction to Lexical Search
- Lexical Search and Performance Evaluation