TD n°11 : Intégralité et caractères 7 et 10/01/2025

Exercice 1. Étude du groupe dihédral

Soit D_8 le groupe dihédral à 8 éléments, qu'il sera très opportun de voir comme le groupe d'isométries du carré Conv(1, i, -1, -i) dans cet exercice.

- 1. En se rappelant que l'on connaît les classes de conjugaison dans $O_2(\mathbb{R})$, démontrer qu'il existe cinq classes de conjugaison de D_8 et les expliciter.
- 2. Donner une représentation de dimension 1 évidente. Donnez-en une autre qui vient du point de vue matriciel, on l'appelle det.
- 3. Trouver une autre représentation de dimension 1 en considérant l'action sur les deux axes du plan, que l'on appelle ε . En déduire un quatrième caractère de dimension 1.
- 4. Trouver la dimension de la représentation manquante. Grâce à l'inclusion dans $O_2(\mathbb{R})$, la trouver explicitement. On l'appelle ρ .
- 5. Construire la table de caractères de D_8 .

On remarque que l'on a construit par produit tensoriel le quatrième caractère de dimension 1.

6. Démontrer que

$$\rho\otimes\rho\cong 1\oplus\det\oplus\varepsilon\oplus\det\varepsilon.$$

Correction de l'exercice 1:

L'idée essentielle est de se rappeler que D_8 est construit comme le groupes d'isométries du carré. Il est produit semi-direct par le groupe des isométries directes engendré par la rotation d'angle $\pi/2$ que l'on note $\{\mathrm{Id},r,-\mathrm{Id},-r\}$ du groupe engendré par la symétrie s d'axe les abscisses. Les trois derniers éléments sont -s d'axe les ordonnées ainsi que rs et -rs les symétries d'axe l'une des médianes des côtés. On rappelle aussi que srs=-r.

1. Les classes de conjugaison dans $O_2(\mathbb{R})$ sont les rotations d'angle θ ou $-\theta$ pour $\theta \in \mathbb{R}/\pi\mathbb{Z}$ et les symétries. Puisque $D_8 \subset O_2(\mathbb{R})$, nous savons que la partition en classes de conjugaison de D_8 est un raffinement de

$$\{\operatorname{Id}\} \cup \{-\operatorname{Id}\} \cup \{r, -r\} \cup \{s, rs, -s, -rs\}.$$

Nous avons déjà que $rsr^{-1} = -rsr = -s$ et $r(rs)r^{-1} = -rs$. De plus, si $\rho s \rho^{-1} = rs$ alors ρ envoie l'axe des abscisses sur la médiane du premier côté. Ceci n'est pas possible pour $\rho \in D_8$. Les classes de conjugaison sont donc au nombre de 5 et sont

$$D_8 = \{ \mathrm{Id} \} \sqcup \{ -\mathrm{Id} \} \sqcup \{ r, -r \} \sqcup \{ s, -s \} \sqcup \{ rs, -rs \}.$$

- 2. Le caractère trivial en est un. Le déterminant est un caractère de dimension 1 (un autre puisque det(s) = -1).
- 3. On vérifie que D_8 agit sur l'ensemble formé des deux axes du plan. On appelle ε la signature de la permutation obtenue. C'est un caractère. De plus $\varepsilon(r) = -1$, il diffère donc des deux précédents. Enfin, le produit det ε fournit un quatrième caractère. Il correspond à la signature de l'action l'ensemble des médianes des côtés.

- 4. Nous savons que la somme des carrés dimensions des ¹ représentations irréductibles fait $\#D_8=8$ et qu'il y a en a 5. Si ρ est la représentations manquante alors dim $\rho=2$. On pourrait calculer χ_{ρ} directement par orthogonalité des colonnes de la table de caractères.
 - L'inclusion $D_8 \subset O_2(\mathbb{R}) \subset GL_2(\mathbb{C})$ fournit une représentation de dimension 2. Si elle était réductible, elle serait somme de deux caractères de dimension 1. Ainsi, ces deux sous-représentations devraient être les espaces propres de s, qui ne sont pas stables par r. La représentation est donc irréductible.
- 5. La table de caractère s'écrit

	$\{\mathrm{Id}\}$	$\{-\mathrm{Id}\}$	$\{r, -r\}$	$\{s, -s\}$	$\{rs, -rs\}$
1	1	1	1	1	1
\det	1	1	1	-1	-1
ε	1	1	-1	1	-1
$\det \varepsilon$	1	1	-1	-1	1
ρ	2	-2	0	0	0

6. On sait que $\chi_{\rho\otimes\rho}=\chi^2_{\rho}$. On calcule alors que

$$\langle \chi_{\rho\otimes\rho},\chi_{\rho}\rangle = \frac{1}{8}\left(1\times4\times2+1\times4\times(-2)+2\times0\times0+2\times0\times0+2\times0\times0\right) = 0.$$

De même,

$$\langle \chi_{\rho \otimes \rho}, 1 \rangle = \frac{1}{8} \left(1 \times 4 \times 1 + 1 \times 4 \times 1 + 2 \times 0 \times 0 + 2 \times 0 \times 0 + 2 \times 0 \times 0 \right) = 1$$

et même

$$\langle \chi_{\rho \otimes \rho}, \det \rangle = \langle \chi_{\rho \otimes \rho}, \varepsilon \rangle = \langle \chi_{\rho \otimes \rho}, \det \varepsilon \rangle = 1.$$

Ceci conclut bien.

Exercice 2. Mieux que $\dim V \mid \#G$

Soit G un groupe fini et V une représentation irréductible (donc de dimension finie) sur \mathbb{C} . Nous cherchons à démontrer que dim $V \mid [G: \mathbb{Z}(G)]$. Pour ce faire, on considère pour tout $n \geq 1$ la représentation $V^{\boxtimes n}$ de G^n .

- 1. Retrouver que $V^{\boxtimes n}$ est une représentation irréductible de G^n de dimension $(\dim V)^n$.
- 2. Soit $Z^n(G)=\{(z_1,\ldots,z_n)\in Z(G)^n\,|\,z_1\ldots z_n=1\}$. Démontrer que $Z^n(G)\subset \mathrm{Ker}(V^{\boxtimes n})$
- 3. En déduire que

$$\forall n \ge 1, \ (\dim V)^n \mid \frac{\#G^n}{\#Z(G)^{n-1}}.$$

En déduire que dim $V \mid [G : Z(G)]$.

Correction de l'exercice 2:

1. Pour la dimension, constater que celle d'un produit tensoriel est le produit des dimension. Pour voir l'irréductibilité, nous retraçons brièvement la stratégie du TD précédent. Pour V et W des représentations complexes de dimension finie de groupes G_1 et G_2 , nous avons

$$\chi_{V\boxtimes W}(g_1,g_2)=\chi_V(g_1)\chi_W(g_2).$$

Ainsi, ici

$$\langle \chi_{V^{\boxtimes n}}, \chi_{V^{\boxtimes n}} \rangle_{G^n} = \langle \chi_V, \chi_V \rangle^n = 1$$

ce qui prouve l'irréductibilité.

^{1.} classes de conjugaisons de

- 2. Pour tout $z \in \mathbf{Z}(G)$, l'action de z sur V fournit un automorphisme de représentation; par lemme de Schur, cela implique que z agit sur V comme une homothétie, disons de rapport λ_z . Ainsi, par multilinéarité, un élément $(z_1,\ldots,z_n)\in \mathbf{Z}^n(G)$ agit sur $V^{\boxtimes n}$ comme une homothétie de rapport $\lambda_{z_1}\ldots\lambda_{z_n}=\lambda_{z_1\ldots z_n}=1$. Nous avons l'inclusion demandée.
- 3. Pour tout $n \geq 1$, nous pouvons donc voir $V^{\boxtimes n}$ comme une représentation irréductible de $G^n/\mathbb{Z}^n(G)$. En appliquant la divisibilité de la dimension à ce quotient nous avons

$$(\dim V)^n \mid \#(G^n/\mathbb{Z}^n(G)) = \frac{\#G^n}{\#\mathbb{Z}^n(G)}.$$

Il reste à remarquer que

$$Z(G)^{n-1} \to Z^n(G), (z_1, \dots, z_{n-1}) \mapsto (z_1, \dots, z_{n-1}, z_1^{-1} \dots z_{n-1}^{-1})$$

est une bijection.

Exercice 3. Théorèmes de Burnside

Cet exercice vise à démontrer deux théorèmes importants de Burnside, qui sont des théorèmes de structure des groupes finis mais dont la preuve utilise finement l'intégralité des caractères.

Nous utiliserons les résultats de l'exercice 1 TD 11 de la feuille de familiarisation, sur les entiers algébriques.

1. Soit G un groupe fini. Pour $g \in G$, on note c(g) le cardinal de sa classe de conjugaison. Esquisser la preuve du fait suivant (Théorème de Frobenius) :

$$\forall \chi \text{ irréductible, } \frac{c(g)\chi(g)}{\chi(1)}.$$

- 2. En déduire, dans le cas où $gcd(\chi(1), c(g)) = 1$ que $\chi(g)/\chi(1)$ est un entier algébrique.
- 3. En déduire, dans le cas où $\gcd(\chi(1), c(g)) = 1$, que $\chi(g) = 0$ ou g agit comme une homothétie pour la représentation associée à χ .
- 4. Démontrer un autre résultat indépendant. Soit $k \geq 2$ et $g \in G \setminus \{1\}$. Montrer qu'il existe un caractère irréductible non trivial χ tel que $\chi(1)\chi(g)/k$ n'est pas un entier algébrique.

<u>Indication</u>: on pourra considérer la représentation régulière.

Nous pouvons à présent passer à la démonstration du théorème de Burnside suivant :

Soit G un groupe fini possédant une classe de conjugaison d'ordre p^n avec p premier et $n \ge 1$. Alors G n'est pas simple.

- 5. Soit g dans ladite classe de conjugaison et χ comme à la question précédente pour k=p. Démontrer que $\chi(g) \neq 0$ et que $p \nmid \chi(1)$.
- 6. En déduire que g agit comme une homothétie pour la représentation associée à χ .
- 7. En déduire que $g\text{Ker}(\chi)$ appartient à $Z(G/\text{Ker}(\chi))$.
- 8. Conclure.

Il en découle un corollaire sur la résolubilité de certains groupes.

9. Soit G un groupe fini d'ordre p^nq^m où p et q sont premiers. Démontrer que G est résoluble. Indication : on pourra procéder par récurrence et séparer le cas où le centre est non trivial.

Correction de l'exercice 3:

1. La preuve est très maline. On regarde A le sous-anneau (a priori non commutatif) de $\mathbb{Z}[G]$ engendré par $\} = \sum_{g' \in C(g)} g'$, où C(g) est la classe de conjugaison de g. Il est commutatif et de type fini 2 . Ainsi, il est annulé par un polynôme unitaire à coefficients entiers P. Faisons agir l'élément $\}$ sur la représentation ρ associé à χ . On vérifie que $\rho(\}$) donne un morphisme de représentations, donc une homothétie par lemme de Schur. Cette homothétie est donc de rapport

$$\frac{\operatorname{Tr}(\rho(\S))}{\dim \rho} = \frac{\sum_{g' \in C(g)} \operatorname{Tr}(\rho(g'))}{\chi(1)} = \frac{c(g)\chi(g)}{\chi(1)}.$$

Ce rapport est annulé par P puisque $\}$ l'est : notre quotient est un entier algébrique.

2. On écrit une relation de Bézout $ac(g) + b\chi(1) = 1$. Alors

$$\frac{\chi(g)}{\chi(1)} = a \frac{c(g)\chi(g)}{\chi(1)} + b\chi(g)$$

ce qui prouve que $\chi(g)/\chi(1)$ est une somme d'entiers algébriques 3, donc un entier algébrique.

- 3. En toute généralité, pour une représentation complexe de dimension finie d'un groupe fini, comme $\rho(g)$ est diagonalisable, $\chi(g)$ est comme de $\chi(1)$ racines de l'unité. Pour que $\chi(g)/\chi(1)$ soit un entier algébrique, il faut qu'il soit nulle ou que toutes les racines de l'unité soient égale. Cela se traduit par $\chi(g)=0$ ou que $\rho(g)$ est une homothétie.
- 4. Pour comprendre toutes les représentations d'un coup, l'idée récurrente est d'aller voir dans la représentation régulière. La représentation régulière est somme de dim ρ copies de chaque représentation irréductible ρ , d'où

$$\frac{\chi_{\text{rég}}(g)}{k} = \sum_{\chi \text{ irréductible}} \frac{\chi(1)\chi(g)}{k}$$

Or, la représentation régulière est une représentation de permutation pour la multiplication à gauche. Ainsi, $\chi_{\text{rég}}(g) = 0$ pour $G \setminus \{1\}$. On en déduit que

$$-\frac{1}{k} = \sum_{\substack{\chi \text{ irréductible non trivial}}} \frac{\chi(1)\chi(g)}{k}.$$

Cette dernière somme n'est pas un entier algébrique (le terme de gauche ne l'est pas), donc l'un de ses termes n'est pas un entier algébrique.

- 5. Si $\chi(g) = 0$ ou $p|\chi(1)$ alors $\chi(1)\chi(g)/k$ est un entier algébrique (on rappelle que $\chi(g)$ l'est).
- 6. La condition $p|\chi(g)$ et l'hypothèse sur c(g) indique que l'on peut appliquer la question 3). Comme $\chi(g) \neq 0$, on sait que g agit comme une homothétie sur la représentation associée à χ .
- 7. Le quotient $G/\mathrm{Ker}(\chi)$ est isomorphe à $\rho(G)$. Comme $\rho(g)$ est une homothétie, cela se traduit en particulier par $\rho(g) \in \mathrm{Z}(\rho(G))$, i.e. l'appartenance souhaitée.
- 8. Il faut faire une disjonction de cas. Soit $\{1\} \subsetneq \operatorname{Ker}(\chi)$ et alors $\operatorname{Ker}(\chi)$ est sous-groupe distingué non trivial. Il est stricte puisque $\chi \neq 1$. Dans ce cas G n'est pas simple. Sinon, $g \neq 1$ et appartient au centre de G, donc G n'est pas simple.
- 9. On démontre le résultat par récurrence sur le cardinal (le cas #G = 1 étant... aisé), une jolie propriété des groupes finis d'ordre p^nq^m étant qu'ils sont stables par sous-groupe et par quotient. Supposons le résultat prouvé pour #H < #G.
 - Si Z(G) n'est pas trivial alors Z(G) est résoluble (car abélien) et G/Z(G) est résoluble (par hypothèse de récurrence). De fait, G est résoluble.

^{2.} Le groupe abélien sous-jacent est sous-groupe d'un groupe libre de type fini, donc de type fini comme groupe abélien, a fortiori comme module.

^{3.} On rappelle que pour une groupe fini G, toute matrice $\rho(g)$ pour $g \in G$ et ρ une représentation complexe est diagonalisable, donc que $\chi_{\rho}(g)$ est une somme de racines de l'unité.

Sinon, on écrit que p^nq^m est la somme des cardinaux des classes de conjugaisons. Seule l'une d'entre elles est un singleton puisque $\mathbf{Z}(G)=\{1\}$. De plus, elles sont toutes de cardinal $G/\mathbf{C}_G(g)$ qui divise p^nq^m . Si aucun n'est une puissance non triviale de p, toutes les cardinaux de ces classes sont divisible par q; pas leur somme (puisqu'il y a aussi la classe $\{1\}$). Par l'absurde, il existe donc une classe de conjugaison d'ordre une puissance de p et le théorème de Burnside d'applique disant que G n'est pas simple. Soit H un sous-groupe distingué strict non trivial. Par hypothèse de récurrence H et G/H sont résolubles, donc G aussi.