# Case Study 5: Deep Q-learning for Tic-Tac-Go challenge

Reporter: Zong Fan

Email: zongfan2@illinois.edu

## 1. Objective

- Train an AI agent with deep Q-learning to play Tic-Tac-Go.
- What is Tic-Tac-Go?
  - Similar to Tic-Tac-Toe game, but is expanded 4 × 4 grid.
  - The winner is the player whose final score is higher than the other's.
  - The final score is computed as:

$$score = \sum_{i} (m_i - 1)^2 + \sum_{i} (n_j - 1)^2$$
  
 $winner \stackrel{i}{=} argmax_i (score_{player\ i})$ 

m\_i, n\_j is length of chain in the i th row and j th column.



X score: 
$$(2-1)^2 + (2-1)^2 + (3-1)^2 = 6$$
0 score: 
$$(2-1)^2 + (2-1)^2 = 2$$

#### 2. Method

- In this study, we employed deep Q-learning to train a deep neural network as the agent.
- As the lecture said, the pipeline to train a deep Q-learning model includes:
  - 1. Construct a network Q(s,a) with random weights W.
  - 2. Generate a trajectory  $s_0$ ,  $a_0$ ,  $r_0$ , ...,  $s_T$ ,  $r_T$ .
  - 3. Compute Q-factor target for each (s, a) pair as:  $Q' = r_i + \gamma \times max_a\{Q(s_{i+1},a)\}$  r: reward of the state,  $\gamma$ : discounting factor
  - 4. Compute loss between the network and the target using MSE loss.
  - 5. Backpropagate the gradient to update network parameters W.
  - 6. Go to #2 and repeat.

## 2.1 Player 1: Deep Network

- The input of the network is the borad status, including:
  - blocked positions S<sub>b</sub>
  - empty positions S<sub>e</sub>
  - palyer 1 occupied positions S<sub>p1</sub>
  - player 2 occupire positions S<sub>p2</sub>
- The output of the network is the probability of action to put on each board locations.
- We define the dimension of input and output as (N, 4, 4, 4) and (N, 16).

Output position code:

10

14

13

12

16

#### 2.2 Network architecure

- We designed a convolutional neural network with 2 convolutional layers and 2 fully-connected layers.
- Rectified linearUnits (ReLU) is followed after each layer as the non-linear acitvation function.
- The final softmax layer transform the output values into probabilities.

$$P(y = j|x) = \frac{e^x}{\sum_{j=0}^k e^x}$$



# 2.3 Player 2: random player

 For comparison, we designed a random player who randomly choose a empty position as the action when it was his turn.

 After the intial deep network player was trained, it could be used as the baseline Al agent for further optimization.

# 2.3 Training

- We trained the network by setting discounting factor as 0.95.
- Reward for win, lose, tie is 1, -1, 0 respectively.
- Adam optimizer is employed to update model weights with initial learning rate as 0.0001.
- 1000,000 rounds of games are played to train the network.
- To exploit game states, we play random rollout in first 1/4 iterations with proability of 0.6; it drops to 0.1 for the next 1/4 iterations; and the rest iterations uses 0.05.

#### 3. Results

• During the training process, the maximum average reward of Q-player reaches 0.65. It indicates more training iterations should be done to achieve higher performance.

Several game sets:













Q-player: player 2 (o)

Q-player: player 1(x)

#### 4. Code

Link to access the code:

https://gist.github.com/CasiaFan/6a83b4a159fc5a2f3ed75e9a76f38aa8