Machine learning and physical modelling-2

julien.brajard@nersc.no 21-25 January 2018

NERSC/Sorbonne University https://github.com/brajard/Geilo-Winter-school

Table of contents

- 1. Steps of a machine learning process
- 2. A standard Machine learning model: Random Forests
- 3. Neural Networks
- 4. A quick typology of few neural nets

Steps of a machine learning process

Collect data

Design model

In summary

From one dataset, 3 sub-datasets have to be extracted:

- · A training dataset
- A validation dataset

Can be done iteratively in a cross-validation procedure. Some parameters of the model (e.g. polynomial order in a polynomial regression) were determined from the validation dataset.

• A test dataset (independent from the two other) to estimate the final performance of the model.

A standard Machine learning model:

Random Forests

A decision tree

CRIM

NOX

RM

DIS

LSTAT

Predict house price (in \$1000's) from 13 features:

per capita crime rate by town
nitric oxides concentration
average number of rooms per dwelling
distance to employment centres
lower status of the population

Uni-variate example

Uni-variate example

Uni-variate example

From tree to forest

Disadvantages of regression tree:

· Can overfit the data

From tree to forest

Disadvantages of regression tree:

· Can overfit the data

One extension of Regression Tree: Random Forest

Results on the univariate experiment

Prediction of Randoms trees

Results on the univariate experiment

Prediction of a Random Forest

Some key parameters

```
from sklearn.ensemble import RandomForestClassifier

rf = RandomForestRegressor(n_estimators=n, max_features=
    maxf, min_samples_split=min_split,...)
```

• n_estimators: number of trees (generally the larger is the better)

Some key parameters

```
from sklearn.ensemble import RandomForestClassifier

rf = RandomForestRegressor(n_estimators=n, max_features=
    maxf, min_samples_split=min_split,...)
```

- n_estimators: number of trees (generally the larger is the better)
- max_features: number of features to consider at each split. The default number is the total number of features.
 A larger value makes provides a smaller bias (accuracy) but a bigger variance (risk of overfitting)

Some key parameters

```
from sklearn.ensemble import RandomForestClassifier

rf = RandomForestRegressor(n_estimators=n, max_features=
    maxf, min_samples_split=min_split,...)
```

- n_estimators: number of trees (generally the larger is the better)
- max_features: number of features to consider at each split. The default number is the total number of features.
 A larger value makes provides a smaller bias (accuracy) but a bigger variance (risk of overfitting)
- min_samples_fit: number of features to consider at each split. The minimum value of 2 means that the tree is fully developed (small bias but great variance).

Determination of the parameters

 Parameters that are not optimized during the training are called hyper parameters.

Determination of the parameters

- Parameters that are not optimized during the training are called hyper parameters.
- They can be determined using a score on the validation dataset or using a cross-validation procedure.

Determination of the parameters

- Parameters that are not optimized during the training are called hyper parameters.
- They can be determined using a score on the validation dataset or using a cross-validation procedure.
- A convenient (but very costly) procedure in scikit-learn: gridsearch.

Example on notebook

Feature importance

```
rf = RandomForestRegressor(n_estimators=1000,
    max_features=10,random_state=10)
rf.fit(X,y)
importances = rf.feature_importances_
```

Indicates the impact of a feature in predicting the target.

Neural Networks

The perceptron: an artificial neuron

inputs weights

Computation

$$y = f(w_0 + w_1.x_1 + w_2.x_2 + \dots + w_n.x_n) = f(w_0 + \sum_{i=1}^n w_i.x_i)$$

Some remarks

• Inputs x_i are the different features of the data

Some remarks

- Inputs x_i are the different features of the data
- \cdot Weight w_i are the parameters of the model to optimize

Some remarks

- Inputs x_i are the different features of the data
- Weight w_i are the parameters of the model to optimize
- If the activation function is identity, it is equivalent to a linear regression

Some remarks

- Inputs x_i are the different features of the data
- \cdot Weight w_i are the parameters of the model to optimize
- If the activation function is identity, it is equivalent to a linear regression

More complexe models are build by combining several perceptrons

Multi-layer perceptron

More usual activation functions

1. Given a couple (x, y)

Objective

Determination of the best set of weights \mathbf{w} to minimize the Loss function $L = ||\hat{y} - y||$.

Gradient descent algorithms based on $\partial L/\partial w$

- 1. Given a couple (x, y)
- 2. Forward computation: $h_j = f_0(\sum_{i=1}^2 w_{ij}^0.x_i)$ $\hat{y} = f_1(\sum_{i=1}^2 w_i^1.h_i)$

Objective

Determination of the best set of weights ${\bf w}$ to minimize the Loss function $L=||\hat{y}-y||.$

Gradient descent algorithms based on $\partial L/\partial w$

Objective

based on $\partial L/\partial w$

Determination of the best set of weights \mathbf{w} to minimize the Loss function $L = ||\hat{y} - y||$. Gradient descent algorithms

- 1. Given a couple (x, y)
- 2. Forward computation:

$$h_j = f_0(\sum_{i=1}^2 w_{ij}^0.x_i)$$
$$\hat{y} = f_1(\sum_{j=1}^2 w_j^1.h_j)$$

3. Compute the gradient of the loss:

$$\partial L/\partial \hat{y}$$

Objective

based on $\partial L/\partial w$

Determination of the best set of weights ${\bf w}$ to minimize the Loss function $L=||\hat{y}-y||.$ Gradient descent algorithms

- 1. Given a couple (x, y)
- 2. Forward computation:

$$h_j = f_0(\sum_{i=1}^2 w_{ij}^0 \cdot x_i)$$
$$\hat{y} = f_1(\sum_{j=1}^2 w_j^1 \cdot h_j)$$

- 3. Compute the gradient of the loss:
- 4. Gradient Backpropagation:

Objective

Determination of the best set of weights ${\bf w}$ to minimize the Loss function $L=||\hat{y}-y||$. Gradient descent algorithms based on $\partial L/\partial w$

- 1. Given a couple (x, y)
- 2. Forward computation:

$$h_j = f_0(\sum_{i=1}^2 w_{ij}^0.x_i)$$
$$\hat{y} = f_1(\sum_{j=1}^2 w_j^1.h_j)$$

- 3. Compute the gradient of the loss: $\partial L/\partial \hat{y}$
- 4. Gradient Backpropagation:

$$\begin{array}{c} \cdot \text{ Layer 1} \\ \frac{\partial L/\partial w_j^1}{\partial L/\partial h_j} = \boxed{\frac{\partial L/\partial \hat{y}}{\partial L/\partial h_j}}.\partial f_1/\partial w_j^1 \\ \boxed{\frac{\partial L/\partial h_j}{\partial h_j}} = \boxed{\frac{\partial L/\partial \hat{y}}{\partial h_j}}.\partial f_1/\partial h_j \end{array}$$

Objective

Determination of the best set of weights ${\bf w}$ to minimize the Loss function $L=||\hat{y}-y||$. Gradient descent algorithms based on $\partial L/\partial w$

- 1. Given a couple (x, y)
- 2. Forward computation:

$$h_j = f_0(\sum_{i=1}^2 w_{ij}^0.x_i)$$
$$\hat{y} = f_1(\sum_{j=1}^2 w_j^1.h_j)$$

- 3. Compute the gradient of the loss: $\partial L/\partial \hat{y}$
- 4. Gradient Backpropagation:

· Layer 1
$$\frac{\partial L/\partial w_j^1}{\partial L/\partial h_j} = \boxed{\frac{\partial L/\partial \hat{y}}{\partial L/\partial h_j}}.\partial f_1/\partial w_j^1$$
$$\boxed{\frac{\partial L/\partial h_j}{\partial u_j^2}} = \boxed{\frac{\partial L/\partial \hat{y}}{\partial u_j^2}}.\partial f_1/\partial h_j$$

Layer 0
$$\frac{\partial L}{\partial w_{ij}^0} = \frac{\partial L}{\partial h_j} . \partial f_1 / \partial w_{ij}^0$$

Classification and regression loss

Regression

- Last layer: linear or hyperbolic tangent
- Loss function:

$$L(\hat{y}, y) = \sum_{i} (\hat{y}_i - y_i)^2$$

Classification and regression loss

Regression

- Last layer: linear or hyperbolic tangent
- · Loss function:

$$L(\hat{y}, y) = \sum_{i} (\hat{y}_i - y_i)^2$$

Classification

Last layer:
 Soft-max

$$p_j = f_j(\mathbf{h}) = \frac{e^{h_j}}{\sum_k e^{h_k}}$$

Loss function:
 Negative crossentropy

$$L(p, y) = -\sum_{i} \sum_{j} y_{i,j} \cdot \log p_{i,j}$$

Batch/Stochastic training

Dataset: (X, y) with N samples, w: initial weights

Batch Training:

• For i from 1 to N:

1.
$$L = L + L(f(x_i), y_i)$$

- Calculate $\partial L/\partial w$
- · update weights:w

1 Update is performed after N forward passes of the neural net.

Batch/Stochastic training

Dataset: (X, y) with N samples, w: initial weights

Batch Training:

• For *i* from 1 to *N*:

1.
$$L = L + L(f(x_i), y_i)$$

- Calculate $\partial L/\partial w$
- · update weights:w

1 Update is performed after N forward passes of the neural net.

Stochastic Training:

- For i from 1 to N:
 - 1. Compute $L(f(x_i), y_i)$
 - 2. Calculate $\partial L/\partial w$
 - 3. update weights:w

N Updates are performed after N forward passes of the neural net.

Batch training

Dataset: (X, y) with N samples, \mathbf{w} : initial weights

- for k from 1 to N//B:
 - for i from B(k-1) + 1 to Bk:
 - 1. Compute $L(f(x_i), y_i)$
 - Calculate $\partial L/\partial w$
 - · update weights:w

N//B updates are performed after N forward passes of the neural net

B is the batchsize

- B=1: stochastic training
- B=N: batch training
- Generally B«N

Convolutional neural net

<i>X</i> : an image							
x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}		
x_{21}	x_{22}	x_{23}	x_{24}	x_{25}	x ₂₆		
x_{31}	x_{32}	x33	x_{34}	x ₃₅	x ₃₆		
x_{41}	x_{42}	x43	x44	x_{45}	x46		
x_{51}	x_{52}	x_{53}	x_{54}	x_{55}	x_{56}		
x_{61}	x_{62}	x ₆₃	x ₆₄	x ₆₅	x66		

Perform a standard convolution

$$h_{i,j} = \sum_{k=1}^{3} \sum_{l=1}^{3} x_{i+k-1,j+l-1} \cdot w_{k,l}$$

Convolutional layer

A convolutional layer is composed of p convolutions (size of layer) extracting p features from the data.

Convolutional layer

A convolutional layer is composed of p convolutions (size of layer) extracting p features from the data.

The size of the feature space is generally very big

Max-Pooling

In order to reduce the size of the feature space, a common operation is to perform a max-pooling.

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

A traditionnal CNN architecture

Example of AlexNet

AlexNet is the first Deep architecture used on ImageNet challenge in 2012 and achieved an error of 15.3% (10% better than the previous best classifier). The paper was cited more than 34,000 times.

Alex Krizhevsky and Geoffrey E Hinton, *ImageNet Classification with Deep Convolutional Neural Networks*, Neural Information Processing Systems (2012), 1–9.

	Layer	Feature Map	Size	Kernel Size	Stride	Activation
Input	Image	1	227x227x3	-	-	-
1	Convolution	96	55 x 55 x 96	11x11	4	relu
	Max Pooling	96	27 x 27 x 96	3x3	2	relu
2	Convolution	256	27 x 27 x 256	5x5	1	relu
	Max Pooling	256	13 x 13 x 256	3x3	2	relu
3	Convolution	384	13 x 13 x 384	3x3	1	relu
4	Convolution	384	13 x 13 x 384	3x3	1	relu
5	Convolution	256	13 x 13 x 256	3x3	1	relu
	Max Pooling	256	6 x 6 x 256	3x3	2	relu
6	FC	-	9216	-	-	relu
7	FC	-	4096	-	-	relu
8	FC	-	4096	-	-	relu
Output	FC		1000			Softmax

A quick typology of few neural nets

Recurrent Neural Networks

Some popular types of recurrent neural networks:

- · Long short-term memory (LSTM)
- Gated Reccurent Unit (GRU)

Used in machine translation and text processing

Autoencoders

Used in image denoising, compressing, generation,...

Generative adversarial networks

Residual Networks

x: input, y: output

$$y = x + \mathcal{F}(x)$$

Residual Networks

x: input, y: output

$$y = x + \mathcal{F}(x)$$

