Практическое занятие 13.

«Анализ стационарности и моделирование сезонности во временных рядах»

План занятия

- 1. Стационарность сезонных рядов.
- 2. Тесты единичного корня, HEGY.
- 3. Моделирование сезонности с помощью ARIMA и детерминированных составляющих.

Задание 1. Стационарность сезонного временного ряда. Проверить стационарность ряда. В случае нестационарности ряда определить, какие единичные корни являются сезонными и несезонными.

(1)
$$y_t = 3 + 0.1y_{t-1} + 0.2y_{t-2} + \varepsilon_t + 0.3\varepsilon_{t-1} + \sum_{i=1}^4 \alpha_i d_i$$

(2)
$$y_t = -2 + \frac{1}{16} y_{t-4} + \varepsilon_t$$

(3)
$$y_t = 2 + y_{t-4} - y_{t-3} + y_{t-1} + \varepsilon_t - 0.2\varepsilon_{t-1}$$

(4)
$$(1-0.5L)(1-L^4)y_t = \varepsilon_t$$

(5)
$$(1-0.5L)(1-L)(1-L^4)y_t = \varepsilon_t$$

Замечание. При решении характ. уравнения 4-й степени также возможно использовать метод Феррари. https://www.resolventa.ru/spr/algebra/ferrary.htm

Задание 2. HEGY: анализ сезонных единичных корней.

- 2.1. В чем суть HEGY-теста для квартальных данных? Какие H0 проверяются? Как выявить сезонные единичные корни?
- 2.2.Для данных рассмотрите различные модификации HEGY-теста (с конст/трендом/фиктивн переменными) в уровнях/первая разность/сезонная разность.
- 2.3. Сделайте вывод о несезонных и сезонных единичных корнях? Являются ли ряды тренд/разностно-стационарными, какая сезонность (детерминированная случайная)?

Замечание. Сезонная разность.

$$\Delta_{s} y_{t} = y_{t} - y_{t-s}$$

$$\Delta_{4} y_{t} = y_{t} - y_{t-4}$$

$$\Delta_{12} y_{t} = y_{t} - y_{t-12}$$

Единичные корни для сезонных данных.

 $(1-L^4)=0 \rightarrow (1-z^4)=0$ имеет 4 единичных корня:

 $Z_1 = 1$, обычный ед. корень

 $Z_2 = -1$, сезонный полугодовой ед. корень

 $z_{_{3,4}}=\pm i, \quad i^{^{2}}=-1$ сезонный квартальный ед. корень

Данные:

1. Уровень безработицы в России (1 кв.2000-4 кв.2018 гг.)

Файл: unemp.gdt

HEGY test of seasonal unit roots for series unemp:

AR order = 2 (determined by BIC with max.order=8)

Deterministic component: constant

Dof (T-k) = 63

Statistic	p-value	Ang. Frequency	Period
t1= -1,63	1,00000	zero	infinity
F1= 1,88	0,04858 **	+-pi/2	4
t2= -1,89	0,98905	pi	2
Fs= 2,42	0,00646	All the seasonal	cycles
Ft= 2,64	0,03059	Delta_s (all the	seas. + zero freq.)

Команда Stata:

ssc install hegy

hegy unemp, det(const) hegy unemp, det(trend)

hegy unemp

Результат (Stata):

Stat	1%	critical	5%	critical	10%	critical

t[0]	-1.586	-3.414	-2.805	-2.500	(несезонный ед корень)
t[Pi]	-2.849	-3.414	-2.805	-2.500	(сезонный полугодовой ед корень)
F[Pi/2]	4.592	9.058	6.604	5.507	(сезонный квартальный ед корень)
F[All se	eas] 6.21	8.030	6.044	5.147	
F[All]	5.491	7.479	5.747	4.958	

Проведите серию тестов и сделайте вывод о наличии сезонных/несезонных ед корней.

Модификации hegy в Stata:						
Опция det(string)	Контролирует детерминированные составляющие во временном ряду					
hegy unemp	По умолчанию включаются фиктивные дамми-переменные					
hegy <i>unemp</i> , det(none)	Нет детерминированных составляющих (тренд/фиктивные переменные) во временном ряду					

hegy unemp, det(trend)	Добавление линейного тренда
hegy unemp, det(const)	Добавление только константы

Последовательность проверки стационарности для рядов с сезонностью:

- для ряда в уровнях без детерминированных составляющих
- для ряда в уровнях с трендом
- для ряда в уровнях с сезонными дамми
- для ряда первой несезонной разности без детерминированных составляющих
- для ряда первой несезонной разности с трендом
- для ряда первой несезонной разности с сезонными дамми
- для ряда первой сезонной разности без детерминированных составляющих
- для ряда первой сезонной разности с трендом
- для ряда первой сезонной разности с сезонными дамми
- для ряда первой несезонной и сезонной разности без детерминированных составляющих
- для ряда первой несезонной и сезонной разности с трендом
- для ряда первой несезонной и сезонной разности с сезонными дамми и т.д.

Данные:

2. Количество рожденных детей в России (янв 2006-нояб 2018)(Источник: Росстат) $\Phi a \ddot{u} n$: birth. gdt

3. (самостоятельно) Ежемесячные данные об авиаперевозках пассажиров (1949 – 1960). Файл: air. gdt

2.4. Результаты тестирования для каждого показателя сведите в таблицу:

Ī	BP	Тест	Нулевая	Статистика	р-значение	Вывод
			гипотеза	критерия		
Ī	y	HEGY (с трендом/без)				

	НЕGY (с фикт пер/без)		
	НЕGY (с трендом+ фикт		
	пер)		
Δy	НЕСУ (без тренда)		
	НЕGY (с фикт пер)		
	НЕСУ (с гарм пер)		
$\Delta_s y$	НЕGY (с трендом/без)		
	НЕGY (с фикт пер/без)		
$\Delta\Delta_{\rm s} y$	НЕGY (с трендом/без)		
	НЕGY (с фикт пер/без)		

Задание 3. Моделирование сезонности: случай детерминированной сезонности (ARIMA+фиктивные/гармонические переменные).

Исходные данные: Количество рожденных детей в России (янв 2006-нояб 2018) (Источник: Росстат) birth. gdt

- 1. Анализ динамики ВР.
- 2. Тесты единичного корня. Определения порядка несезонной/сезонной интегрируемости, детерминированных составляющих.
- 3. Анализ ACF/PACF для идентификации порядков p, q в ARIMA(p,d,q)
- 4. Оценивание ARIMA(p,d,q) с фиктивными/гармоническими переменными. Адекватность модели.
- 5. Прогноз. Совмещенные графики: исходные данные и предсказанные значения по модели.
- 6. Как аналитически рассчитать прогноз на 1 шаг для модели с детерминированными составляющими?

Пример. Пусть рассматриваются ежеквартальные данные, T=40, с 1 по 4 квартал. $\Delta\Delta_4 y_t = 3 + 0.1 y_{t-1} + 0.5 t + \varepsilon_t + 0.3 \varepsilon_{t-1} + 0.1 d_1 + 0.3 d_2 - 0.2 d_3$

Домашняя работа 13 (ТДЗ13-14). См занятие 14