Set Theory

Definitions:

- an object either belongs or does not belong
- set-collection of things that are brought together because they obey a certain (well defined) rule
 - ex: numbers, people, shapes
- element-"thing" that belongs to a given set

Symbols:

- $\{...\}$ -the set of ...
 - ex: $\{-3,-2,-1,0,1,2\}$, {integers between -3 and 3 inclusive}, $\{x|x \text{ is an integer amd } |x| < 4\}$
- (\in) symbol means element of
- set usually uppercase A,B and elements lowercase x,y
- U-universal set, all things under discussion
- $\{\}, (\emptyset)$ -empty set, null set
- N-natural numbers, whole numbers starting at 1
- Z-integers
- R-real numbers

Set Operations:

- $(A \cap B)$ intersection (two sets overlap)
- $(A \cup B)$ union (elements in either)
- (A B) or (A B) difference (elements in A but not B)
- (A') or (A^C) or complement (everything not in A is in A')
- cardinality (if $A = \{\text{lowercase letters of the alphabet}\}, |A| = 26$)
- P(A) powerset-set of all subsets (including empty) of A

- if | A |=k then | P(A)| =2^k proof (for each element we can choose to include element or not)
- Cartesian Products
 - if we have n sets: A1 , A2, ..., An, then their Cartesian product is defined by: A1A2...An = { (a1, a2, ..., an) | a1 ∈ A1, a2 ∈ A2, ..., an ∈ An) } and (a1, a2, ..., an) is called an ordered n-tuple.

Relationships:

- Equality = (same elements, repeats ignored)
- subsets $(A\subseteq B)$ all elements of A are also elements of B
 - $-A \subseteq B$ and $B \subseteq A$, then A = B
 - proper subset $(A \subset B)$ if B contains at least one element that isn't in A
- disjoint no elements in common

Foundational Rules of Set Theory:

- The Laws of Sets
 - Commutative Laws
 - $* \cap B = B \cap A$
 - $* A \cup B = B \cup A$
 - Associative Laws
 - $* (A \cap B) \cap C = A \cap (B \cap C)$
 - $* (A \cup B) \cup C = A \cup (B \cup C)$
 - Distributive Laws
 - $*A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - $* A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - Idempotent Laws
 - $* A \cap A = A$
 - $* A \cup A = A$
 - Identity Laws
 - $* A \cup \varnothing = A$
 - $* A \cap U = A$
 - $* A \cup U = U$
 - $* A \cap \emptyset = \emptyset$
 - Involution Law

$$* (A') = A$$

- Complement Laws

$$*\ A\cup A'=U$$

$$* A \cap A' = \emptyset$$

$$\ast \ U \ ,=\varnothing$$

$$* \varnothing ' = \mathbf{U}$$

– De Morgan's Laws

* (A
$$\cap$$
 B) ' = A ' \cup B '

*
$$(A \cup B)' = A' \cap B'$$

$$*$$
 proof

·
$$(A \cup B)$$
 ' $\subseteq A$ ' $\cap B$ '

$$\cdot A' \cap B' \subseteq (A \cup B)'$$

Sources:

• https://en.wikibooks.org/wiki/Discrete_Mathematics/Set_theory