Wersja:		Numer indeks	su:	_	Grupa ¹ :			
Λ					s. 4	s. 5	s. 103	s. 104
A					s. 105	s. 139	s. 140	s. 141
			Logika dla infor	matyków				
		Kol	lokwium nr 3, 11 Czas pisania: 30 -					
$\dot{z}e A_i \neq A_i$ wpisz dow	A_j oraz $f[$ wolną taką	$[A_i] = f[A_j] d$	stnieje taka surjeko la wszystkich taki odzinę zbiorów. W nie istnieją.	$\mathrm{ch}\ i,j\in\mathbb{N}$	\forall , $\dot{z}e \ i \neq i$	j, to w j	prostokąt	t poniżej
Zadanie	2 (2 pur	nkty). Rozwa	żmy relację binarr	ıą ∼ zdefiı	niowaną r	a zbiorz	se N ^N wz	orem
		$f \sim g \iff$	$\xrightarrow{\mathrm{lf}} \forall n \in \mathbb{N}. \ f(n) \ \mathrm{n}$	nod 3 = g($(n) \mod 5$	б.		
			o w prostokąt poni iedni kontrprzykła		łowo "PF	RZECHC	DNIA".	W prze-
Zadanie wzorem	3 (2 pu		ażmy relację równ $ ightarrow$ zbiór $(X\setminus Y)$ \cup				na zbior	ze $\mathcal{P}(\mathbb{N})$
		ja różnowarto	ściowa $f: \mathbb{N} \to \mathbb{N}$ wnym przypadku	$[\emptyset]_{\sim}$, to w	prostoką	t poniże	ej wpisz	dowolny

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4 (2 punkty). Niech $h(n) = \lfloor \frac{n}{2} \rfloor$ dla $n \in \mathbb{N}$. Na zbiorze $\mathcal{P}(\{0,1,2\})$ wprowadzamy relację równoważności \simeq wzorem

$$X \simeq Y \iff \{h(x) \mid x \in X\} = \{h(y) \mid y \in Y\}.$$

W prostokąt poniżej wpisz wszystkie klasy abstrakcji relacji \simeq .

Zadanie 5 (2 punkty). Niech \underline{n} dla $n \in \mathbb{N}$ oznacza zbiór $\{0, \dots, n-1\}$ i niech \mathcal{M} będzie rodziną zbiorów $\{\underline{n} \mid n \in \mathbb{N}\} \cup \{\mathbb{N}, \mathbb{R}\}$. Dla każdego zbioru w poniższej tabelce wpisz w odpowiednie pole równoliczny z nim zbiór z rodziny \mathcal{M} lub słowo "NIE", jeśli taki zbiór nie istnieje.

$\mathbb{N}\setminus\{0\}$	{1,2,3}	$\mathbb{Z} \times \{0, 1, 2\}$	$\{1,2,3\}^{\{1,2\}}$	$\mathbb{N}_{\overline{0}}$	$\mathcal{P}(\{1,2\})\setminus\{\underline{0}\}$	$\mathcal{P}(\mathbb{Z})$	$\mathbb{Q}^{\mathbb{N}}$
N	3						

Wei	rsja
	_

ner indeksu:	

$Grupa^1$	•
Grupa	٠

s. 4	s. 5	s. 103	s. 104	
s. 105	s. 139	s. 140	s. 141	

Zadanie 6 (5 punktów). Konstruując odpowiednią bijekcję udowodnij, że zbiory $\mathbb{N}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$ oraz $\mathbb{N}^{\mathbb{N}}$ są równoliczne.

Zadanie 7 (5 punktów). Niech P_A oznacza zbiór wszystkich relacji przechodnich na zbiorze A. Na zbiorze P_A definiujemy relację \simeq następująco:

$$R \simeq S \iff \text{relacja } R \cup S \text{ jest przechodnia.}$$

Czy dla każdego zbioru A relacja \simeq jest przechodnia? Podaj dowód albo kontrprzykład.

Zadanie 8 (5 punktów). Funkcja $f: \mathbb{N} \to \mathbb{N}$ jest prawie okresowa, jeśli

$$\exists n_0 \in \mathbb{N} \ \exists k \in \mathbb{N}. \ k > 0 \land \forall n > n_0 \ f(n+k) = f(n).$$

Czy dla dowolnych prawie okresowych funkcji f i g funkcja $h: \mathbb{N} \to \mathbb{N}$ zdefiniowana wzorem h(n) = f(n) + g(n) dla $n \in \mathbb{N}$ jest funkcją prawie okresową? Czy odpowiedź zmieni się, jeśli usuniemy założenie, że $f: \mathbb{N} \to \mathbb{N}$ jest prawie okresowa? Podaj dowody albo kontrprzykłady.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Wersja:		Numer indeksu:		$Grupa^1$:			
				s. 4	s. 5	s. 103	s. 104
L				s. 105	s. 139	s. 140	s. 141
		Logika dla info	rmatyków				
		Kolokwium nr 3, 1: Czas pisania: 30					
Zadanie	1 (2 pur	nkty). Rozważmy relację binar			na zbiorz	$\mathrm{ze}~\mathbb{N}^{\mathbb{N}}~\mathrm{wz}$	orem
		$f \sim g \iff \forall n \in \mathbb{N}. \ f(n)$	$\mod 3 = g$	$(n) \mod \S$	5 .		
		t symetryczna, to w prostoką ypadku wpisz odpowiedni kont		wpisz sło	wo "SY	METRY	CZNA".
Zadania	2 (2	leter). Doggovajnov polonia pávna	in oáci	-d-f-:		ala: amaa	NIN
rem	2 (2 pur	nkty). Rozważmy relację równo $f \sim g \iff ext{zbiór } \{n \in \mathbb{N} \mid f(n) \in \mathbb{N} \mid f(n) \in \mathbb{N} \mid f(n) \in \mathbb{N} $				zoiorze	14. MZO-
$f: \mathbb{N} \to$	$[z]_{\sim}$, to v	$\rightarrow \mathbb{N}$ daną wzorem $z(n) = 0$ dla w prostokąt poniżej wpisz dowowowowo "NIE".	$n \in \mathbb{N}$. Jeśl	i istnieje	funkcja r		
7.1.	9 (9	1. \ 7.20	e ni .	N.T	1 . 1 .		
$A_i \neq A_j$ of wpisz dow	oraz $f^{-1}[A]$ volną taka	kty). Jeśli istnieje taka injekcj $[A_i] = f^{-1}[A_j]$ dla wszystkich ta ą injekcję i rodzinę zbiorów. W cja i rodzina nie istnieją.	kich $i, j \in I$	\mathbb{N} , że $i \neq$	j, to w j	prostoką	t poniżej

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4 (2 punkty). Niech \underline{n} dla $n \in \mathbb{N}$ oznacza zbiór $\{0, \dots, n-1\}$ i niech \mathcal{M} będzie rodziną zbiorów $\{\underline{n} \mid n \in \mathbb{N}\} \cup \{\mathbb{N}, \mathbb{R}\}$. Dla każdego zbioru w poniższej tabelce wpisz w odpowiednie pole równoliczny z nim zbiór z rodziny \mathcal{M} lub słowo "NIE", jeśli taki zbiór nie istnieje.

$\mathbb{N}\setminus\{0\}$	{1,2,3}	$\overline{0}_{\mathbb{N}}$	$\mathcal{P}(\mathbb{Q})$	$\{\underline{0}\} \cap \mathcal{P}(\{1,2\})$	$\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$	$\mathbb{R}^{\mathbb{N}}$	$\{1,2\}^{\{1,2,3\}}$
N	3						

Zadanie 5 (2 punkty). Niech r(n) dla $n \in \mathbb{N}$ oznacza resztę z dzielenia liczby n przez 2. Na zbiorze $\mathcal{P}(\{0,1,2\})$ wprowadzamy relację równoważności \simeq wzorem

$$X \simeq Y \ \stackrel{\mathrm{df}}{\Longleftrightarrow} \ \{r(x) \mid x \in X\} = \{r(y) \mid y \in Y\}.$$

W prostokąt poniżej wpisz wszystkie klasy abstrakcji relacji \simeq .

We	rsja:

Numer inde	ksu:		

Grupa ¹ :				
	s. 4	s. 5	s. 103	s. 104
	s. 105	s. 139	s. 140	s. 141

Zadanie 6 (5 punktów). Niech P_A oznacza zbiór wszystkich relacji przechodnich na zbiorze A. Na zbiorze P_A definiujemy relację \simeq następująco:

$$R \simeq S \iff \text{relacja } R; S \text{ jest przechodnia.}$$

Czy dla każdego zbioru Arelacja \simeq jest przechodnia? Podaj dowód albo kontrprzykład.

Zadanie 7 (5 punktów). Konstruując odpowiednią bijekcję udowodnij, że zbiory $\mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\{0,1\}}$ oraz $\mathbb{N}^{\mathbb{N}}$ są równoliczne.

Zadanie 8 (5 punktów). Funkcja $f: \mathbb{N} \to \mathbb{N}$ jest prawie okresowa, jeśli

$$\exists n_0 \in \mathbb{N} \ \exists k \in \mathbb{N}. \ k > 0 \land \forall n > n_0 \ f(n+k) = f(n).$$

Czy dla dowolnych prawie okresowych funkcji f i g funkcja gf jest funkcją prawie okresową? Czy odpowiedź zmieni się, jeśli usuniemy założenie, że $g:\mathbb{N}\to\mathbb{N}$ jest prawie okresowa? Podaj dowody albo kontrprzykłady.

¹Proszę zakreślić właściwą grupę ćwiczeniową.