Mathematical modelling for determining COVID-19 incidence from testing data

Rasmus Kristoffer Pedersen

Postdoc, PandemiX Center, IMFUFA
Dept. Science and Environment,
Roskilde University, Denmark
Email: rakrpe@ruc.dk
Joint work with Christian Berrig and Viggo Andreasen

Contributed talk at "Data-driven mechanistic mathematical modelling for life-science applications" Göteborg, October 23rd, 2023

Determining COVID incidence

RK Pedersen

Introduction

The problemati

Our approach

Model presentation

Analysis

Model dynamics Model analysis

Calculating correction-

Data and simulations

The data Relating to data

Discussion

Calculation of assertion

Simplification and extension

Introduction to the problem

throughout the world

▶ Different approaches to COVID-19 mitigation

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Our appr

Model presentation

Analysis

r tilaly 313

Model analysis

Data and

simulations
The data
Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

throughout the world

▶ Different approaches to COVID-19 mitigation

► To compare mitigation-strategies, the impact of

differences in data-collection must be understood.

Introduction

The problematic

Our app

Model presentation

Analysis

.

Model analysis

Calculating correction-facto

Data and simulations

The data Relating to data

Relating to data

Calculation of assertion

mplification and extension

The problematic

Model presentation

Analysis

Data and simulations

Relating to data

Discussion

- ▶ Different approaches to COVID-19 mitigation throughout the world
- ► To compare mitigation-strategies, the impact of differences in data-collection must be understood.
- ► The role of testing: Confirmation of symptoms, required for various activities or entirely voluntary?

The problematic

Model presentation

Analysis

Model dynamic

Model analysis

Calculating correction-factor

Data and simulations

The data Relating to data

Relating to data

Calculation of assertion

simplification and extension

Implification and exter

- ► Different approaches to COVID-19 mitigation throughout the world
- ➤ To compare mitigation-strategies, the impact of differences in data-collection must be understood.
- ► The role of testing: Confirmation of symptoms, required for various activities or entirely voluntary?
- ► How do we compare case-counts between periods and places where testing activity was different?

The problematic

Model presentation

Analysis

Data and simulations

Discussion

▶ Different approaches to COVID-19 mitigation throughout the world

- ► To compare mitigation-strategies, the impact of differences in data-collection must be understood.
- ► The role of testing: Confirmation of symptoms, required for various activities or entirely voluntary?
- ► How do we compare case-counts between periods and places where testing activity was different?

Let's look at some data...

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Model presentation

Analysis

Model dynamics Model analysis

Calculating correction-facto

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension General discussion

Our approach

Determining COVID incidence

RK Pedersen

Introduction

Our approach

Model presentation

▶ Overall question: For each reported case of COVID-19, how many unidentified cases?

Analysis

Data and simulations

Relating to data

Discussion

data.

▶ Overall question: For each reported case of COVID-19,

▶ We aim to determine a correction factor for observed

how many unidentified cases?

Introduction

Our approach

Model presentation

Analysis

Model applyric

Calculating correction-fa

Data and simulations

The data

Relating to data

Discussion

Calculation of assertion

plification and extension

Our approach

Model presentation

Analysis

Data and simulations

Relating to data

Discussion

- ▶ Overall question: For each reported case of COVID-19, how many unidentified cases?
- ▶ We aim to determine a correction factor for observed data.
- ► Approach: Extend the classic SIR-model to include testing.

The conceptual idea

Determining COVID incidence

RK Pedersen

Introduction

he problematic

Model presentation

Analysis

Model dynamics

Calculating correction-fact

Data and simulations

The data Relating to data

Discussion

Calculation of assertion

Simplification and extension

The model

Determining COVID incidence

RK Pedersen

Introduction

The problemat

Model presentation

Analysis

Model dynami

Calculating correction-factor

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

The model

Determining

$$\dot{S} = -\beta S(P+A) \qquad \dot{A} = \gamma (1-\rho)P - (\nu+\tau)A
\dot{E}_1 = \beta S(P+A) - \gamma E_1 \qquad \dot{Q} = \tau (E_2+P+A) - \nu Q
\dot{E}_2 = \gamma E_1 - (\gamma+\tau)E_2 \qquad \dot{R}_p = \nu Q + \nu I
\dot{P} = \gamma E_2 - (\gamma+\tau)P \qquad \dot{R}_n = \nu A
\dot{I} = \gamma \rho P - \nu I$$

COVID incidence

RK Pedersen

Introduction

Model presentation

Analysis

Data and simulations

Relating to data

Discussion

Simplification and extension

 τ : Testing-rate. β : Infectivity.

General model dynamics

Determining COVID incidence

Introduction

Model presentation

Analysis

Model dynamics

Data and simulations

Relating to data

Discussion

Simplification and extension

Other parameters: $\gamma = \nu =$

Model analysis and correction ratio

Determining COVID incidence

RK Pedersen

Introduction

Model presentation

Analysis

(1)

Model analysis

Data and simulations

Relating to data

Discussion

Simplification and extension

We describe the correction factor as ratio between all cases

 $\frac{R_n(t) + R_p(t)}{R_p(t)}$

and cases identified:

Model analysis and correction ratio

Determining COVID incidence

RK Pedersen

Introduction

Model presentation

Analysis

Model analysis

Data and

simulations

Discussion

Simplification and extension

We describe the correction factor as ratio between all cases and cases identified:

$$\frac{R_n(t) + R_p(t)}{R_p(t)} \tag{1}$$

Inspired by previous work on epidemic final size¹ (and after a lot of analysis and calculation), we find that as $t \to \infty$

$$\frac{R_{p}}{R_{n}+R_{p}}=1-\left(1-\frac{\tau}{\gamma+\tau}\right)\left(1-\frac{\gamma\rho+\tau}{\gamma+\tau}\right)\left(\frac{\nu}{\nu+\tau}\right) \tag{2}$$

⁽Andreasen, 2018, Bull. Math. Biol.)

Model analysis and correction ratio

We describe the correction factor as ratio between all cases

 $\frac{R_n(t) + R_p(t)}{R_n(t)}$

Inspired by previous work on epidemic final size¹ (and after a lot of analysis and calculation), we find that as $t \to \infty$

 $\frac{R_p}{R_p + R_p} = 1 - \left(1 - \frac{\tau}{\gamma + \tau}\right) \left(1 - \frac{\gamma \rho + \tau}{\gamma + \tau}\right) \left(\frac{\nu}{\nu + \tau}\right) \tag{2}$

Determining COVID incidence

RK Pedersen

Introduction

Analysis

(1)

Data and

Model presentation

Model analysis

simulations

Discussion

Simplification and extension

1 (Andreasen, 2018, Bull. Math. Biol.)

Note that this is independent of β .

and cases identified:

The problematic

Model presentation

Analysis

Model analysis

Calculating correction-factor

Data and simulations

The data Relating to data

Calculation of assertion

Simplification and extension

Discussion

With parameters: $\gamma = \nu = \frac{1}{3}$ and $\rho = \frac{1}{2}$.

 $\frac{R_p}{R_p + R_p} = 1 - \left(1 - \frac{\tau}{\gamma + \tau}\right) \left(1 - \frac{\gamma \rho + \tau}{\gamma + \tau}\right) \left(\frac{\nu}{\nu + \tau}\right)$

Model presentation

Analysis

Calculating correction-factor

Data and simulations

Discussion

Simplification and extension

$\frac{R_p}{R_n + R_p} = 1 - \left(1 - \frac{\tau}{\frac{1}{2} + \tau}\right) \left(1 - \frac{\frac{1}{3} \cdot \frac{1}{2} + \tau}{\frac{1}{2} + \tau}\right) \left(\frac{\frac{1}{3}}{\frac{1}{2} + \tau}\right)$

With parameters: $\gamma = \nu = \frac{1}{3}$ and $\rho = \frac{1}{2}$.

Calculating the correction-factor

Determining COVID incidence

RK Pedersen

Model presentation

Analysis

Calculating correction-factor

Data and simulations

Relating to data

Discussion

Simplification and extension

With parameters: $\gamma = \nu = \frac{1}{3}$ and $\rho = \frac{1}{2}$.

The Danish data

Determining COVID incidence

Introduction

The problemat

Model presentation

Analysis

Model dynamics

Calculating correction-fact

Data and simulations

The data

Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

The Danish data

Cases, omicron variant

Cases, all variants

10 7

Determining COVID incidence

Introduction

Model presentation

Analysis

-500

Data and simulations

The data

Relating to data

Discussion

ratio

Determining COVID incidence

Introduction

The problematic

Model presentation

Analysis

Model dynamics

Calculating correction-facto

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

Determining COVID incidence

Introduction

Model presentation

Analysis

Data and simulations

Relating to data

Discussion

ratio

Introduction

The problematic

Model presentation

Analysis

Model dynamics

Calculating correction-factor

Data and simulations

Relating to data

Discussion

Calculation of assertion ratio

Cases, omicron variant

Cases, all variants

Model, total cases

10 7

8

6

4

Weekly cases [% of population]

Introduction

The problematic

Model presentation

Analysis

-500

-400

-300

-200 -100

Model dynamics

Calculating correction-fact

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Analysis

(7b)

(7d)

(85)

Data and

Calculation of assertion

Model presentation

simulations

Discussion

ratio

In general, we consider initial conditions such that the vast majority of the population is initially susceptible, $S_1 \approx 1$, and the initial number of cases is low, $0 < E_{1:n} \ll 1$. In the limit where $S_1 \to 1$, with $E_{1:n} \to 0$, $E_{2:n} \to 0$. $P_0 \rightarrow 0$ and $A_0 \rightarrow 0$, equations (4) become:

 $\log \sigma = -\beta (T_P - T_A)$ $\sigma = 1 - (\gamma + \tau)T\nu$ $\sigma = 1 - (\gamma + \tau)T_{\theta} - \tau T_{\theta}$. $\sigma = 1 - (\nu + \tau)T_{\delta} - (\gamma \rho + \tau)T_{\theta} - \tau T \nu.$ Assuming $T_0 + T_+ \neq 0$, this can be written as:

 $T_P = \frac{1}{1 - \tau} \left(1 - \sigma - \tau T_{E_2}\right)$

 $T_A = \frac{1}{\nu + \tau} \left(1 - \sigma - (\gamma \rho + \tau)T_P - \tau T_{E_2}\right)$

We define $K_F = \frac{r_p}{r_n + r_n}$ and note that at steady state $\sigma = 1 - r_p - r_n$ must hold. This implies that $K_F = \frac{r_F}{r_F}$. Combining equations (8) with equations (5) and (6) under the assumptions $R_{p,0} = 0$ and $R_{\alpha,0} = 0$ and simplifying yields:

> $K_F = \frac{r_p}{r_p + r_n} = \frac{r_p + r_n - r_n}{r_p + r_n} = 1 - \frac{r_n}{r_p + r_n} = 1 - \frac{r_n}{1 - \sigma} = 1 - \frac{\nu}{1 - \sigma} T_A$ $K_F = 1 - \left(\frac{\nu}{\nu + \tau}\right) \left(1 - \frac{\tau}{\nu + \tau}\right) \left(1 - \frac{\gamma \rho + \tau}{\nu + \tau}\right)$

For initial conditions sufficiently close to the case where $S_n = 1$ and all other variables are zero, K_F is an approximation of the final size of K(t) as $t \to \infty$

We note that equation (8a) describes a relation between β and σ . Since T_P and T_A are described in terms

Note that the expression for K_F , equation (10) is independent of σ and β . Furthermore, in the absence of tests, i.e. for $\tau = 0$, we have $K_F = 1 - 1(1 - 0)(1 - \rho) = \rho$. This is expected, as only the symptomatic cases, I, are found in the situation where $\tau = 0$, and the symptomatic cases make up exactly ρ of all cases In the situation where all cases are symptomatic, $\rho = 1$, we obtain $K_F = 1$, that is, all cases are identified of γ , τ , ν and σ , it is possible to use equation (8a) to determine a value of β that yields a particular σ .

(4b)

(40)

$$r_p = R_{p,0} = \nu T_0 + \nu T_I$$
 (f
 $r_n = R_{n,0} = \nu T_A$ (f

As $t \to \infty$, the model system approaches a steady state without any active cases. In this section, we derive an analytic expression for the value that the fraction of cases identified, K(t), approaches as $t \to \infty$. To obtain an expression for K_F , we follow the methodology previously considered by 7. For notational numbers, we define for each variable x, the integral over the full endemic as $T_- = \int_{-\infty}^{\infty} x dt$. From the system of differential equations given in equations (1), we write up the following quantities:

S/S = -B(P + A)

As t approaches infinity, the stability of the systems implies that all variables apart from S, R_0 and R_n are

 $\log \sigma = -\beta (T_P - T_A)$ $\sigma - S_0 - E_{1,0} - E_{2,0} = -(\gamma + \tau)T_{E_1}$

 $\dot{S} + \dot{E_1} + \dot{E_2} = -(\gamma + \tau)E_1$

 $\dot{S} + \dot{E_1} + \dot{E_2} + \dot{P} = -(\gamma + \tau)P - \tau E_2$ $S + E_1 + E_2 + P + A = -(\nu + \tau)A - (\gamma \rho + \tau)P - \tau E_2$

 $\sigma - S_0 - E_{1,0} - E_{2,0} - P_0 = -(\gamma + \tau)T_P - \tau T_{E_1}$

 $\sigma = S_0 - F_1 \circ - F_2 \circ - P_2 - P_3 = -(\nu + \tau)T_4 - (\gamma \sigma + \tau)T_9 - \tau T_9$

Furthermore, observe that the equations for \hat{R}_0 and \hat{R}_0 , equations (1) and (1h) respectively, when integrated

A.3 Final Size Calculations

Integrating equations (3) from t=0 to $t=\infty$ yields:

Where X_0 denote the initial condition for variable X.

The seeklessetic

Model presentation

Analysis

Model dynamics Model analysis

Calculating correction-fac

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

General discussion

$$\frac{R_p}{R_n + R_p} = 1 - \left(1 - \frac{\tau}{\gamma + \tau}\right) \left(1 - \frac{\gamma \rho + \tau}{\gamma + \tau}\right) \left(\frac{\nu}{\nu + \tau}\right)$$

can be rewritten as:

$$1 - \frac{R_p}{R_n + R_p} = \frac{R_n}{R_n + R_p} = \left(\frac{\gamma}{\gamma + \tau}\right) \left(\frac{(1 - \rho)\gamma}{\gamma + \tau}\right) \left(\frac{\nu}{\nu + \tau}\right)$$

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Our approach

Model presentation

Analysis

Model analysis

Calculating correction

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

Determining COVID incidence

RK Pedersen

Introduction

The oddered

Model presentation

Analysis

Model dynamic Model analysis

iviodei ariaiysis

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

General discussion

$\left(\frac{\gamma}{\gamma}\right)$

Determining COVID incidence

RK Pedersen

Introduction

The souldeness:

Model presentation

Analysis

Model dynamic

iviodel allalysis

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

Conoral discussion

$\left(\frac{\gamma}{\gamma}\right)\left(\frac{\gamma}{\gamma+\tau}\right)$

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Model presentation

Analysis

Model dynamics Model analysis

Calculating correction

Data and simulations

The data Relating to data

Discussion

Calculation of assertion

Simplification and extension

$$\left(\frac{\gamma}{\gamma}\right)\left(\frac{\gamma}{\gamma+\tau}\right)\left(\frac{(1-\rho)\gamma}{\gamma+\tau}\right)$$

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Model presentation

Analysis

Model dynamics

Calculating correction-fa

Data and simulations

The data Relating to data

Discussion

Calculation of assertion

Simplification and extension

$$\left(\frac{\gamma}{\gamma}\right)\left(\frac{\gamma}{\gamma+\tau}\right)\left(\frac{(1-\rho)\gamma}{\gamma+\tau}\right)\left(\frac{\nu}{\nu+\tau}\right)$$

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Model presentation

Analysis

Model dynamics

Calculating correction-f

Data and simulations

The data Relating to data

Discussion

Calculation of assertion

Simplification and extension

$$\frac{R_n}{R_n + R_p} = \left(\frac{\gamma}{\gamma + \tau}\right) \left(\frac{\gamma(1 - \rho)}{\gamma + \tau}\right) \left(\frac{\nu}{\nu + \tau}\right)$$

Extension to other models, example 1

Determining COVID incidence

RK Pedersen

Introduction

The problemat

Model presentation

Analysis

Model dynamic

Calculating correction-factor

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

General discussion

Flow-considerations:

Extension to other models, example 1

RK Pedersen

Introduction

The problemati

Model presentation

Analysis

Model dynamic

Calculating correction-factor

Data and simulations

The data Relating to data

Discussion

Calculation of assertion

Simplification and extension

Flow-considerations:
$$\frac{R_n}{R_n + R_n} = \frac{\nu}{\nu + \tau}$$

Determining COVID incidence

RK Pedersen

Introduction

The problemati

Model presentation

Analysis

Model analysis

Calculating correction-factor

Data and simulations

The data Relating to data

Discussion

Calculation of assertion

Simplification and extension

General discussion

Flow-considerations:
$$\frac{R_n}{R_n + R_n} = \frac{\nu}{\nu + \tau}$$

Correction factor: $\frac{\nu + \tau}{\tau}$

Simplified method, Matrix-form

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Model presentation

Analysis

Model dynamics

Calculating correction-factor

Data and simulations

The data Relating to data

Relating to data

Discussion

Calculation of assertio ratio

Simplification and extension

neral discussion

For SIR-type models², the inverse of a matrix V describing flows in the "infected sub-system" is typically computed to determine the reproduction number \mathcal{R}_0 .

 $^{^{1}}$ See (van den Drische and Watmough, 2002) for definition and derivation.

Simplified method, Matrix-form

RK Pedersen

Introduction

The problemation

Model presentation

Analysis

Model dynamics Model analysis

Data and simulations

The data Relating to data

Discussion

Calculation of assertion

Simplification and extension

General discussion

For SIR-type models², the inverse of a matrix V describing flows in the "infected sub-system" is typically computed to determine the reproduction number \mathcal{R}_0 .

With sub-system $x = (E_1, E_2, P, I, A)$ and matrix V, we consider "inputs" $\alpha = (1, 0, 0, 0, 0)$ and "outputs" $\omega = (0, 0, 0, 0, \nu)$, and find that:

$$\frac{R_n}{R_n + R_p} = \omega V^{-1} \alpha^T$$

 $^{^{1}}$ See (van den Drische and Watmough, 2002) for definition and derivation.

 τ_H

 τ_L

 τ_H

 $\beta(I_L + I_H)$

 $\beta(I_L + I_H)$

Determining COVID incidence

RK Pedersen

Introduction

The problemat

Model presentation

Analysis

Model dyn

iviouei alialysis

Data and simulations

The data

Relating to data

Discussion Calculation of assertion

Calculation of assertion ratio

Simplification and extension

Determining COVID incidence

RK Pedersen

Model presentation

Analysis

Data and simulations

Discussion

Calculation of assertion

Simplification and extension

$$x = (E_H, E_L, I_H, I_L), \quad V = \begin{pmatrix} \gamma + \tau_H & 0 & 0 & 0 \\ 0 & \gamma + \tau_L & 0 & 0 \\ \gamma & 0 & \nu + \tau_H & 0 \\ 0 & \gamma & 0 & \nu + \tau_L \end{pmatrix}$$

Determining COVID incidence

RK Pedersen

Introduction

Model presentation

Analysis

Data and simulations

Discussion Calculation of assertion

$$x = (E_H, E_L, I_H, I_L), \quad V = \begin{pmatrix} \gamma + \tau_H & 0 & 0 & 0 \\ 0 & \gamma + \tau_L & 0 & 0 \\ \gamma & 0 & \nu + \tau_H & 0 \\ 0 & \gamma & 0 & \nu + \tau_L \end{pmatrix}$$

$$lpha = \left(rac{S_H}{S_H + S_L}, rac{S_L}{S_H + S_L}, 0, 0
ight)$$
 and $\omega = (0, 0, \nu, \nu)$

Determining COVID incidence

RK Pedersen

Introduction

Model presentation

Analysis

simulations

Data and

Discussion

$$x = (E_H, E_L, I_H, I_L), \quad V = \begin{pmatrix} \gamma + \tau_H & 0 & 0 & 0 \\ 0 & \gamma + \tau_L & 0 & 0 \\ \gamma & 0 & \nu + \tau_H & 0 \\ 0 & \gamma & 0 & \nu + \tau_L \end{pmatrix}$$

$$lpha = \left(rac{S_H}{S_H + S_L}, rac{S_L}{S_H + S_L}, 0, 0
ight)$$
 and $\omega = (0, 0,
u,
u)$

Hence:
$$\omega V^{-1} \alpha^T = \frac{\nu \gamma}{S_H + S_L} \left(\frac{S_H}{(\nu + \tau_H)(\gamma + \tau_H)} + \frac{S_L}{(\nu + \tau_L)(\gamma + \tau_L)} \right)$$

► We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.

RK Pedersen

Introduction

The problematic

Model presentation

Analysis

Model dynamic Model analysis

Calculating correction-factor

Data and simulations

The data Relating to data

Discussion

Calculation of assertion

Simplification and extension

countries.

► We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.

► This relation may help us compare incidence between

Introduction

The problemation

Model presentation

Analysis

illalysis

Model analysis

Calculating correction-facto

Data and simulations

Relating to data

Discussion

Calculation of assertion ratio

Simplification and extension

► We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.

- ► This relation may help us compare incidence between countries.
- ► Our initial analysis was model-specific and based on calculations of final-size of variables.

Introduction

The problematic

Model presentation

Analysis

Model dynar

Model analysis

Calculating correction-facto

Data and simulations

The data

Relating to data

Discussion

Calculation of assertion

implification and extension

Introduction

The problematic

Model presentation

Analysis

Model dynamics

C-1-------

Data and simulations

The data

Relating to data

Discussion Calculation of assertion

Calculation of assertion ratio

implification and extension

General discussion

► We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.

- ► This relation may help us compare incidence between countries.
- ► Our initial analysis was model-specific and based on calculations of final-size of variables.
- Our new method follows from well-known results from the litterature, and requires only observing the model diagram or inverting a matrix

Introduction

The problematic

Model presentation

Analysis

Model dynamics

Model analysis

Calculating correction-factor

Data and simulations

The data

Relating to data

Discussion Calculation of assertion

Calculation of assertion ratio

Simplification and extension

General discussion

► We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.

- ► This relation may help us compare incidence between countries.
- ► Our initial analysis was model-specific and based on calculations of final-size of variables.
- ► Our new method follows from well-known results from the litterature, and requires only observing the model diagram or inverting a matrix...

► We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.

- ► This relation may help us compare incidence between countries.
- ► Our initial analysis was model-specific and based on calculations of final-size of variables.
- ► Our new method follows from well-known results from the litterature, and requires only observing the model diagram or inverting a matrix, but also extends to a wider family of SIR-type models.

Introduction

The problematic

Model presentation

Analysis

Model dynamics

iviodei anaiysis

Data and

simulations

The data Relating to data

Relating to dat

Discussion Calculation of assertion

ratio

Simplification and extension

RK Pedersen

Introduction

Model presentation

Analysis

Data and

simulations

Relating to data

Discussion

Simplification and extension

General discussion

► We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.

- ► This relation may help us compare incidence between countries.
- ► Our initial analysis was model-specific and based on calculations of final-size of variables.
- Our new method follows from well-known results from the litterature, and requires only observing the model diagram or inverting a matrix, but also extends to a wider family of SIR-type models.
- ► My lesson from this: Consider carefully if a problem you're trying to solve can be reformulated, before throwing yourself at the analysis

RK Pedersen

Introduction

Model presentation

Analysis

Data and simulations

Relating to data

General discussion

Discussion

Simplification and extension

- ► We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.
- ► This relation may help us compare incidence between countries.
- ► Our initial analysis was model-specific and based on calculations of final-size of variables.
- Our new method follows from well-known results from the litterature, and requires only observing the model diagram or inverting a matrix, but also extends to a wider family of SIR-type models.
- ► My lesson from this: Consider carefully if a problem you're trying to solve can be reformulated, before throwing yourself at the analysis...

Introduction

Model presentation

Analysis

Data and simulations

Relating to data

Discussion

Simplification and extension

General discussion

► We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.

- ► This relation may help us compare incidence between countries.
- ► Our initial analysis was model-specific and based on calculations of final-size of variables.
- Our new method follows from well-known results from the litterature, and requires only observing the model diagram or inverting a matrix, but also extends to a wider family of SIR-type models.
- ► My lesson from this: Consider carefully if a problem you're trying to solve can be reformulated, before throwing yourself at the analysis, even if doing the calculations might be fun!

Thank you for your attention.

Feel free to email me with questions or comments

Website: rasmuspedersen.com Email: rakrpe@ruc.dk

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Model presentation

Analysis

Model dynamics Model analysis

Data and

simulations The data

Relating to data

Discussion

Calculation of assertion

Simplification and extension