Modern Algebra (Yiu) November 6, 2015

Irreducible polynomials of small degrees in $\mathbb{F}_3[x]$

We enumerate irreducible polynomials of degrees ≤ 4 in $\mathbb{F}_3[x]$.

Note: $\mathbb{F}_3 = \{0, 1, -1\}.$

We need only consider **monic** polynomials, those with leading coefficients equal to $1 \in \mathbb{F}_3$.

- (1) Linear: all 3 linear (monic) polynomials are irreducible.
- (2) Quadratic: There are altogether $3^2 = 9$ monic quadratic polynomials. 6 of these are product of linear polynomials. Therefore, there are 3 irreducible quadratics: $x^2 + 1$, $x^2 + x 1$, $x^2 x 1$.
 - (3) Cubic: There are $3^3 = 27$ monic cubic polynomials.
- $3+3\cdot 2+1=10$ are products of three polynomials.
- $3 \times 3 = 9$ are product of a linear and a quadratic polynomials.

There are 27 - 10 - 9 = 8 irreducible cubic polynomials:

(4) Quartic: There are $3^4 = 64$ monic polynomials of degree 4.

Cubic \times linear: $8 \times 3 = 24$,

Quadratic \times quadratic: 3 + 3 = 6,

Ouadratic \times linear \times linear: $3 \times (3+3) = 18$,

Four linear: $3 + 3 \times 2 + 3 + 3 = 15$.

These account for 63 monic quartic polynomials.

Therefore, there are 81 - 63 = 18 irreducible monic quartic polynomials in $\mathbb{F}_3[x]$.

1

Irreducible cubic polynomials in $\mathbb{F}_5[x]$

An irreducible monic cubic polynomial is of the form

$$f(x) = x^3 + ax^2 + bx + c,$$

for $a,b,c\in\mathbb{F}_5$ and $c\neq 0$. None of the following values should be 0:

$$f(1) = 1 + a + b + c,$$

$$f(2) = 3 - a + 2b + c,$$

$$f(3) = 2 - a - 2b + c,$$

f(4)=-1+a-b+c. In each of the following four tables, corresponding to c=1,2,3,4, an entry under in the spot (a,b) means f(k)=0 for $f(x)=x^3+ax^2+bx+c$ (so that f(x) has x-c as a

the spot (a, b) means f(k) = 0 for $f(x) = x^3 + ax^2 + bx + c$ (so that f(x) has x - c as a linear factor). The blank entries therefore correspond to irreducible polynomials which we list at the end of each row. There are altogether 40 irreducible monic cubic polynomials.

$$c = 1$$
:

$a \setminus b$	0	1	2	3	4			
0	4			1, 2	3	$x^3 + x + 1$	$x^3 + 2x + 1$	
1		2, 3, 4	1			$x^3 + x^2 + 1$	$x^3 + x^2 + 3x + 1$	$x^3 + x^2 + 4x + 1$
2		1	4	3	2	$x^3 + 2x^2 + 1$		
3	1,3		2	4		$x^3 + 3x^2 + x + 1$	$x^3 + 3x^2 + 4x + 1$	
4	2		3		1,4	$x^3 + 4x^2 + x + 1$	$x^3 + 4x^2 + 3x + 1$	

$$c = 2$$
:

$a \setminus b$	0	1	2	3	4			
0	2	4	1,3			$x^3 + 2x + 2$	$x^3 + 3x + 2$	
1		1	4	2	3	$x^3 + x^2 + 2$		
2	1	2, 3		4		$x^3 + 2x^2 + 2x + 2$	$x^3 + 2x^2 + 4x + 2$	
3				3	1, 2, 4	$x^3 + 3x^2 + 2$	$x^3 + 3x^2 + x + 2$	$x^3 + 3x^2 + 2x + 2$
4	3,4		2	1		$x^3 + 4x^2 + x + 2$	$x^3 + 4x^2 + 4x + 2$	

$$c = 3$$
:

$a \setminus b$	0	1	2	3	4			
0	3	1	2, 4			$x^3 + 3x + 3$	$x^3 + 4x + 3$	
1	2		3	4		$x^3 + x^2 + x + 3$	$x^3 + x^2 + 2x + 3$	
2				2	1, 3, 4	$x^3 + 2x^2 + 3$	$x^3 + 2x^2 + x + 3$	$x^3 + 2x^2 + 2x + 3$
3	4	2, 3		1		$x^3 + 3x^2 + 2x + 3$	$x^3 + 3x^2 + 4x + 3$	
4		4	1	3	2	$x^3 + 4x^2 + 3$		

$$c=4$$
:

	$a \setminus b$	0	1	2	3	4			
	0	1			3, 4	2	$x^3 + x + 4$	$x^3 + 2x + 4$	
ſ	1	3		2		1, 4	$x^3 + x^2 + x + 4$	$x^3 + x^2 + 3x + 4$	
ſ	2	2, 4		3	1		$x^3 + 2x^2 + x + 4$	$x^3 + 2x^2 + 2x + 4$	
ſ	3		4	1	2	3	$x^3 + 3x^2 + 4$		
Ī	4		1, 2, 3	4			$x^3 + 4x^2 + 4$	$x^3 + 4x^2 + 3x + 4$	$x^3 + 4x^2 + 4x + 4$