Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/001003

International filing date:

26 January 2005 (26.01.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2004-040628

Filing date:

17 February 2004 (17.02.2004)

Date of receipt at the International Bureau: 24 March 2005 (24.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

31. 1. 2005

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 2月17日

出 願 番 号 Application Number:

特願2004-040628

[ST. 10/C]:

[JP2004-040628]

出 願 人
Applicant(s):

後藤 俊夫 堀 勝

田 昭治

2005年 3月10日

1) 11]


```
【睿類名】
             特許願
             P04013Z
【整理番号】
             特許法第30条第1項の規定の適用を受けようとする特許出願
【特記事項】
             平成16年 2月17日
【提出日】
              特許庁長官 殿
【あて先】
             CO7B 57/330
【国際特許分類】
【発明者】
              愛知県日進市五色園3-2110
  【住所又は居所】
              後藤 俊夫
  【氏名】
【発明者】
              愛知県日進市藤塚6-176
  【住所又は居所】
  【氏名】
              堀 勝
【発明者】
              埼玉県比企郡鳩山町鳩ケ丘1-13-10
  【住所又は居所】
              田 昭治
  【氏名】
【発明者】
              愛知県小牧市林1754-15
  【住所又は居所】
              永井 幹雄
   【氏名】
【特許出願人】
   【識別番号】
              591074172 -
              後藤 俊夫
   【氏名又は名称】
【特許出願人】
              395022731
   【識別番号】
              堀 勝・
   【氏名又は名称】
【特許出願人】
              503422664
   【識別番号】
   【氏名又は名称】
              田 昭治
【代理人】
              100087723
   【識別番号】
   【弁理士】
              藤谷 修
   【氏名又は名称】
   【電話番号】
              052-232-0733
【手数料の表示】
              007445
   【予納台帳番号】
   【納付金額】
              21,000円
【提出物件の目録】
              特許請求の範囲 1
   【物件名】
              明細曹 1
   【物件名】
              図面 1
   【物件名】
   【物件名】
              要約曹 1
              新規性の喪失の例外証明書 1
   【物件名】
   【提出物件の特記事項】
                  追って補充する。
```


【請求項1】

プラズマを生成すべきガスが通過すると共に導波されたマイクロ波の電界密度を高くす るための微小ギャップを構成する導体から成る電極を有したプラズマ発生装置において、 前記電極の少なくとも微小ギャップを形成する表面部分には絶縁膜が形成されているこ とを特徴とするプラズマ発生装置。

【 請求項 2 】

前記マイクロ波を導入する導体から成る筐体と、この筐体を前記マイクロが導入される 端面とは反対側の端面で電磁遮蔽する導体からなる底板とを有し、前記微小ギャップはこ の底板に形成されていることを特徴とする請求項1に記載のプラズマ発生装置。

【請求項3】

前記マイクロ波を導入する導体から成る筐体と、この筐体を前記マイクロが導入される 端面とは反対側の端面で電磁遮蔽する導体からなる底板とを有し、この底板に形成された 窓においてその窓をさらに閉じるように微小ギャップを構成する前記電極が底板に配設さ れていることを特徴とする請求項1又は請求項2に記載のプラズマ装置。

【請求項4】

前記電極は微小ギャップを構成する部分まで電極内部から冷却媒体で冷却される構造で あることを特徴とする請求項1乃至請求項3の何れか1項に記載のプラズマ発生装置。

【餶求項5】

ガス及びマイクロ波を導入する筒状の筺体と、

この筐体の底面に設けられた孔と、

前記筺体の軸方向に設けられ、前記孔の輪郭の内側に底面の輪郭を有した柱状の導体と

この導体の底面の輪郭と前記孔の輪郭との間に形成された微小ギャップと、

前記導体と前記筺体により形成される同軸導波路と、

前記微小ギャップにおける前記孔の少なくとも輪郭部に形成された絶縁膜と

を有し

前記マイクロ波は前記同軸導波路により前記微小ギャップに誘導され、前記ガスを前記 微小ギャップを通過させて、この微小ギャップにおいて前記ガスをプラズマとすることを 特徴とするプラズマ発生装置。

【請求項6】

前記導体の少なくとも微小ギャップを形成する部分には絶縁膜が形成されていることを 特徴とする請求項5に記載のプラズマ発生装置。

【請求項7】

前記導体はその底面において内部から冷却されていることを特徴とする請求項1乃至請 求項6の何れか1項に記載のプラズマ発生装置。

前記筺体の底面の前記孔の部分は、冷却されていることを特徴とする請求項5乃至請求 項7の何れか1項に記載のプラズマ発生装置。

前記マイクロ波を繰り返しパルスで与えることを特徴とする請求項1乃至請求項8の何 れか1項に記載のプラズマ発生装置。

【請求項10】

前記プラズマはアルゴン又は窒素ガスのプラズマであることを特徴とする請求項1乃至 請求項9の何れか1項に記載のプラズマ発生装置。

【會類名】明細暬

【発明の名称】プラズマ発生装置

【技術分野】

[0001]

本発明は、プラズマを安定して得る装置に関する。特に、大気圧(ガス流以外の要因では減圧されない)で、マイクロ波を用いてプラズマを安定して得る装置に関する。例えば、半導体のエッチング、成膜プロセスや、これらの工程において用いられたフルオロカーボンガスを分解して微粒子として回収する装置に用いることができる。

【背景技術】

[0002]

近年、半導体プロセスのエッチング工程や成膜工程において、フルオロカーボンガスのプラズが用いられている。例えば、半導体集積回路の集積度を向上させるためには、超微細加工技術やエピタキシャル成長技術の向上が必要であるが、なかでも、超微細加工技術の向上は必須である。この超微細加工技術には高アスペクト比やエッチング幅 0.1μ m以下の最小線幅の狭小化などの加工精度の向上が強く求められている。そして、大面積を対象とした高効率な超微細加工技術として、プラズマエッチングが注目されている。このプラズマエッチングは、プラズマ雰囲気中のラジカル、イオンなどを用いてエッチングを行うものである。特に、絶縁膜である SiO_2 膜の超微細エッチングを下層のSi層で停止する超微細選択エッチングには、 $Arガスと、CF_4、C_4F_8ガスを用いて分解されたCF、CF2 ラジカルが用いられている。$

【発明の開示】

【発明が解決しようとする課題】

[0003]

しかしながら、これらのプラズマエッチグや成膜技術に使用される CF_4 、 C_4F_8 、 C_2F_6 などのフルオロカーボンガスは、炭酸ガスに比べて極めて寿命が長く地球温暖化係数は極めて高いものであった。このため、これらのフルオロカーボンガスの使用は地球の環境破壊に繋がり、大気への放出が禁止される可能性がある。ところが、使用済みのフルオロカーボンガスを回収する技術については未開拓な部分が多い。本発明者らは、マイクロギャップを用いることで大気圧でプラズマを生成し、このプラズマ中にフルオロカーボンガスを通過させることで、炭酸ガスを排出することなく、そのガスを分解してポリマーに合成して粒子として回収することに成功した。また、大気圧でプラズマを安定して発生する技術自体は、エッチング、成膜、機械加工、クリーニングなどの多方面の用途においる有益な技術であり、本発明者らは、大気圧で安定して非平衡プラズマを発生させる機構について研究を重ねてきた。本発明は、これらの研究の成果として、特に、用途を限定しないプラズマを安定して発生する装置として完成されたものである。

[0004]

本発明の第1の目的は、プラズマを安定して発生させることである。また、第2の目的は、特に、大気圧(ガス流以外には意図的に減圧要素を用いない状態)や、大気圧よりも加圧した高圧において、マイクロ波を用いて非平衡プラズマを安定して発生させることである。さらに、第3の目的は、安定して発生したプラズマを用いたフルオロカーボンガスの微粒子による回収を可能とすることである。第4の目的は、エッチング、成膜、機械加工などに用いるためのプラズマ発生装置を提供することである。

これらの複数の目的は、発明のそれぞれが達成されるものと認識されるべきであって、 それぞれの発明が全ての目的を達成すべきものと認識されるべきではない。

【課題を解決するための手段】

[0005]

上記の課題を解決するための請求項1に記載の発明は、プラズマを生成すべきガスが通過すると共に導波されたマイクロ波の電界密度を高くするための微小ギャップを構成する 導体から成る電極を有したプラズマ発生装置において、電極の少なくとも微小ギャップを 形成する表面部分には絶縁膜が形成されていることを特徴とするプラズマ発生装置である 。すなわち、本発明は、少なくともプラズマが形成される微小ギャップ部分の表面に絶縁 膜が形成されいることを特徴とするものである。この構成を採用することで、大気圧で電 子温度がガス温度よりも高い状態、すなわち、非平衡のプラズマを得ることができる。

すなわち、本発明は、大気圧非平衡プラズマ発生装置とすることができる。

[0006]

請求項2に記載の発明は、マイクロ波を導入する導体から成る筐体と、この筐体をマイ クロが導入される端面とは反対側の端面で電磁遮蔽する導体からなる底板とを有し、微小 ギャップはこの底板に形成されていることを特徴とする請求項1に記載のプラズマ発生装 置である。すなわち、本発明は、導体から成る有低の筒状体(底を構成する部材は側面を 構成する部材と一体でも別体でも良い。) でマイクロ波の共振器を構成したことを特徴と する。マイクロ波が導入される筐体の端面は、電磁的に開口されたものであって、ガスな どは逆流しない構成となっている。例えば、誘電体で封止されている。そして、導体から 成る底板と導体から成る筐体で内部はマイクロ波の導入部を除き電磁的に外部と遮蔽され ている。この底板に微小ギャップが形成されている。すなわち、底板自身が微小ギャップ を構成する電極となっている。マイクロ波はこの微小ギャップにおいて電力密度が高めら れる。また、ガスは筐体の何れかの箇所から筐体内部へと導入されて、微小ギャップに案 内されるように構成されている。この請求項の発明では、底板の微小ギャップを構成する 部分の表面に絶縁膜が形成されている。もちろん、絶縁膜の外面、内面、微小ギャップの 側面の全てに絶縁膜を形成しても良い。微小ギャップは短冊状、リング状など形状は任意 である。スリットの幅は、プラズマが容易に発生できる範囲であれば良い。0.1~0. 3mm程度であるが、特に、限定はしない。

[0007]

請求項3に記載の発明は、マイクロ波を導入する導体から成る筐体と、この筐体をマイクロが導入される端面とは反対側の端面で電磁遮蔽する導体からなる底板とを有し、この底板に形成された窓においてその窓をさらに閉じるように微小ギャップを構成する電極が底板に配設されていることを特徴とする請求項1又は請求項2に記載のプラズマ装置である。電極の少なくとも微小ギャップを構成する部分の表面に絶縁膜が形成されていることが特徴である。もちろん、電極の表面全体に絶縁膜を形成しても良い。

[0008]

間求項4の発明は、電極は微小ギャップを構成する部分まで電極内部から冷却媒体で冷却される構造であることを特徴とする間求項1乃至間求項3の何れか1項に記載のプラズマ発生装置である。この構成は微小ギャップの表面を冷却するために、電極内部に冷媒を循環させるようにしたことが特徴である。冷却媒体としては、水の他、フロリナートやガルデン、−100℃の冷却媒体などを用いることができる。

[0009]

請求項5の発明は、ガス及びマイクロ波を導入する筒状の筐体と、この筐体の底面に設けられた孔と、筐体の軸方向に設けられ、孔の輪郭の内側に底面の輪郭を有した柱状の導体と、この導体の底面の輪郭と孔の輪郭との間に形成された微小ギャップと、導体と筐体により形成される同軸導波路と、微小ギャップにおける孔の少なくとも輪郭部に形成された絶縁膜とを有し、マイクロ波は同軸導波路により微小ギャップに誘導され、ガスを微小ギャップを通過させて、この微小ギャップにおいてガスをプラズマとすることを特徴とするプラズマ発生装置である。

[0010]

本発明においては、

圧力は限定するものではないが、大気圧(流速に起因する減圧以外、意図的な減圧をしない状態)や大気圧よりも高い高圧、たとえば、2気圧で用いることに効果がある(請求項1乃至請求項4の発明も同様)。すなわち、大気圧においてはプラズマが安定して得られ難いことから、本発明の装置を用いることで、大気圧下で安定したプラズマを得ることができる。中心導体と導体から成る筺体とで導波路が形成され、マイクロ波はこの導波路に沿って誘導されて、微小ギャップにおけるマイクロ波のエネルギー密度が高くなる。この

結果、微小ギャップにガスを供給すれば、この微小ギャップにおいてプラズマが得られる 。筺体の導体から成る底面の中心部に形成された孔の輪郭と、中心導体の底面の輪郭とで 微小ギャップが構成される。中心導体と筺体の底面との距離が最も短くなるところを微小 ギャップとしている。本発明では、筐体の底面の孔の周囲の少なくとも輪郭部に絶縁膜が 形成されている。すなわち、最も電界が集中する部分の筺体の底面の孔の周囲を絶縁膜で 被膜したことが、本発明の特徴である。もちろん、筺体の底面の表面、裏面、孔の側壁を 全て絶縁膜で被膜しても良い。絶縁膜には、Al2O3、 SiO2、Si2O3、TiO、 などのセラミクスやBN、ダイヤモンドなどを用いることができる。その他、高融点絶縁 材料であれば、任意の材料を用いることができる(絶縁膜の材料は請求項1~4も同様) 。筺体内に存在する導体は、筺体と共にマイクロ波を誘導する作用をする。孔が筺体の底 面に1つもうけられる場合には、導体は筒状の筐体の中心軸に設けられるのが望ましい。 孔が筺体の底面に複数設けられる場合には、マイクロ波を複数の微小ギャップに導くこと ができるならば、導体の配設位置は任意である。孔の筺体の軸方向に平行な断面において 、孔の側面は筺体の外側に向かうに連れて開口面積が小さくなるようにテーパ形状になっ ているのが望ましい。そのテーパの先端の角度は30度~60が望ましい。しかし、孔の 外側に向かって開口が広くなるテーパ形状でも良い。したがって、先端の角度は、30度 ~150の範囲で使用可能である。(テーパに構成する点、及びその望ましい角度に関し て、請求項1~4も同様である。)。マイクロ波の周波数は任意であるが、一例として2 . 45 G H z が用いられる。マイクロ波の筐体への導波は、矩形導波管、同軸ケーブルな ど任意であるが、矩形導波管を用いた場合には、筺体の入り口部分で伝搬モードが変換さ れる。

[0011]

以上の構成を採用することで、大気圧で電子温度がガス温度よりも高い状態、すなわち、非平衡のプラズマを得ることができる。

すなわち、本発明は、大気圧非平衡プラズマ発生装置とすることができる。

[0012]

請求項6に記載の発

明は、導体の少なくとも微小ギャップを形成する部分には絶縁膜が形成されていることを 特徴とする請求項 5 に記載のプラズマ発生装置である。すなわち、導体の孔と対向し微小 ギャップを形成する部分も絶縁膜が形成されていることが特徴である。もちろん、導体の 表面全体に渡り絶縁膜を被膜されていても良い。絶縁膜の材料は上記したセラミックスな どを用いることができる。

[0013]

[0014]

請求項8に記載の発明は、筐体の底面の孔の部分は、冷却されていることを特徴とする 請求項5乃至請求項7の何れか1項に記載のプラズマ発生装置である。この筐体の底面の 孔の部分を水などの冷媒を循環させることで、孔の部分の温度上昇を防止することができ る。この時、孔に至る先端まで冷媒を循環させることが必要である。

[0015]

間求項9に記載の発明は、マイクロ波を繰り返しパルスで与えることを特徴とする請求項1乃至請求項8の何れか1項に記載のプラズマ発生装置である。マイクロ波の周期、デューティ比を変化させて、微小ギャップにおける電力密度を制御することができる。また、プラズマ温度や微小ギャップを構成する部材の温度を測定して、それらが所定の温度となるようにマイクロ波のデューティ比や繰り返し周期をフィードバック制御することにより、温度制御が完全となり、安定したプラズマを発生させることが可能となる。

[0016]

請求項10に記載の

発明は、プラズマはアルゴン又は窒素ガスのプラズマであることを特徴とする請求項1乃 至 請求項9の何れか1項に記載のプラズマ発生装置である。本発明の構成を用いることで 、アルゴン、窒素ガスのプラズマを安定して得ることができる。このプラズマ中にフルオ ロカーボンガスを導入することで、分解、合成重合の後、炭酸ガスを発生することなく、 微粒子に変換することができた。

【発明の効果】

[0017]

請求項1乃至4によると、少なくとも微小ギャップ部分には絶縁膜が被膜されているの で、導入されたマイクロ波の電界強度が微小ギャップにおいて高められても、微小ギャッ プにおいてアーク放電が発生することが防止される。その結果、プラズマを安定して発生 させることができる。特に、大気圧では電子温度がガス温度よりも高い状態、すなわち、 非平衡状態を得ることが困難であるところ、本発明により、大気圧で非平衡プラズマを得 ることができた。大気圧非平衡プラズマは、電子濃度が 10^{15} / cm^3 程度と低圧高密度プ ラズマに比べて3桁程度高いので、高密度のラジカルやイオンの生成が可能となり高速プ ロセスが可能となり、エッチングガスの分解、合成などに、極めて有効な技術となる。

[0018]

請求項5の発明によると、筐体の導体である底面の孔の少なくとも微小ギャップ部分に は絶縁膜が被膜されているので、微小ギャップにおいてアーク放電が発生することが防止 される。その結果、プラズマを安定して発生させることができる。上記の発明と同様に、 特に、大気圧では電子温度がガス温度よりも高い状態、すなわち、非平衡状態を得ること が困難であるところ、本発明により、大気圧で非平衡プラズマを得ることができた。大気 圧非平衡プラズマは、電子濃度が10¹⁵/cm³ 程度と低圧高密度プラズマに比べて3桁程 度高いので、高密度のラジカルやイオンの生成が可能となり高速プロセスが可能となり、 エッチングガスの分解、合成などに、極めて有効な技術となる。

[0019]

請求項6の発明は、筐体の内部空間に設けられた導体の底面の少なくとも微小ギャップ を構成する部分を絶縁膜で被膜した。すなわち、微小ギャップを構成する対向する両導体 (電極) 部分は、共に、絶縁膜で被膜されることになり、極めて効果的にアーク放電が防 止される。この結果、極めて安定したプラズマを発生することができた。

[0020]

請求項7、8の発明は、微小ギャップを構成する両導体(電極)を水、その他の冷媒な どで冷却することで、微小ギャップに発生したプラズマの温度上昇を防止して、安定した 温度に制御することができた。プラズマの温度を安定して制御できる結果、プラズマによ り加工される加工基板への熱影響を防止でき、加工品質を向上させることができる。また フルオロカーボンガスをプラズマ中に流して分解と合成を行う場合には、安定した温度 制御により安定した重合反応を実現でき、粒子としての回収効率が向上する。

[0021]

請求項9の発明は、マイクロ波を繰り返しパルスで与えているので、パルス周期やデュ ーティ比を制御することで、微小ギャップにおけるマイクロ波の電界を所定値に制御する ことができる。よって、プラズマを安定化し、プラズマの温度を制御でき、プラズマの発 生畳を制御できることから、プラズマを用いた加工、プラズマとの反応をより精度良く制 御することができる。

[0022]

請求項10の発明は、プラズマをアルゴン又は窒素ガスで発生させている。本発明の装 置によると、アルゴン又は窒素ガスであっても大気圧で安定してプラズマを発生させるこ とができた。また、このガスのプラズマ中にフルオロカーボンガスを導入を導入すること で、高効率での微粒子回収に成功した。

【発明を実施するための最良の形態】

[0023]

【実施例1】

[0024]

[0025]

筐体10の中心軸に沿って中心導体40が設けられており、この中心導体40は孔30の中心に位置し、中心導体40の先端面41が電極20の外面20aと同じ高さ(同じ x 軸座標)に配置されている。また、中心導体40の先端部分の外表面にはA12O3から成る絶縁膜42が厚さ150μmに被膜されている。この配置において、電極20の孔30を形成している部分の先端部の円形の輪郭23と中心導体40の先端面41(底面)の円形の輪郭43との間で微小ギャップAが構成されている。微小ギャップAの幅は0.1~0.2mmである。この中心導体40の内部空間には冷却水がその先端に至るまで循環し、中心導体40の先端部や先端面41を冷却するように構成されている。

[0026]

一方、筐体10の上部には、マイクロ波を筐体10に誘導するための導波管50が設けられており、この導波管50で誘導されたマイクロ波は、モード変換器52により、導波管モードから同軸モードに変換されて、微小ギャップA側へと伝搬される。なお、筐体10と電極20はアースされている。このような構造により供給されたマイクロ波は微小ギャップAに集められる結果、微小ギャップAにおける電界密度は最大となる。

[0027]

筺体10の側面には、ガス流入口12が設けられており、このガス流入口12からプラズマを生成するためのガスが導入される。本実施例では、Heガスが用いられた。筺体10の他方の側面には、ガス導入口13が設けられており、そのガス導入口13からは、フルオロカーボンガスが導入される。本実施例ではCF₄ガスを導入した。

[0028]

電極20の下部には、排気室60が設けられており、排気孔61からの吸引により、ガス流入口12及び13から流入されたガスは、微小ギャップAを通過するように構成されている。また、排気室60の内部で微小ギャップAの下方には生成された粉体を集積して排気室60の外部へ搬送するための搬送装置62が設けられている。搬送装置62は図1の紙面に垂直な方向(z軸方向)に粉体を搬送し、排気室60から取り出されるように構成されている。

[0029]

上記の装置を次のように作動させた。中心導体40の内部及び電極20の内部に冷却水を循環させた。次に、2.45GHz、ピーク電力300W、パルス繰返周波数10kHz、デューティ比50%で、マイクロ波を導波管50から供給した。筐体10内の圧力は1atmであり、ガス流入口12からHeガスが2L/分で筐体10に流入するように排気口61からの排気量を調整した。この状態で微小ギャップAにおいてHeプラズマが安定して生成された。次に、流入口13からCF4ガスを導入し、2L/分で筐体10に流入するように排気口61からの排気量を調整した。この結果、微小ギャップAにおいて、CF4の分解と重合反応により、ポリテトラフルオルエチレンの粉体が生成され、その粉体は搬送装置62上に落下蓄積された。この時、炭酸ガスの発生は観測されなかった。C

F4の分解率は80%以上であった。

【実施例2】

[0030]

[0031]

次に、金属電極20の側面、外面及び内面と中心導体40の先端部の表面に絶縁膜22と絶縁膜42を、それぞれ形成した装置を用いた。そして、同様に、それぞれ、別々に、3種類のガスを2L/分で供給した。3種類のガス共に、リング状の微小ギャップAにおいて安定したプラズマが観測された。そのプラズマの状態を調べるために、ICCDカメラによりガス温度と、FTIRにより電極温度とを測定した。プラズマのガス温度はICCDカメラによる発光スペクトルを測定し、その第二正帯の発光スペクトルから求めた。すなわち、シミュレーションスペクトルと測定スペクトルとが一致するように係数を決定することで、回転温度を求めた。この回転温度をプラズマ温度とした。以下の結果は、プラズマ温度は、Heガスが350K、Arガスが720K、N2がスが900Kであり、プラズマ温度の関係はHe < Ar < N2 が得られた。電極温度、プラズマ温度を検出しながら、フィードバック回路を設けて、マイクロ波のデューティ比を制御して、それらの温度を一定に保持するようにすることが望ましい。

[0032]

また、中心導体40の表面には絶縁膜42を形成せずに、電極20にのみ上記と同様に 絶縁膜22を形成して、上記と同様な実験を行った。この場合には、安定性にやや欠ける ものの上記と略同様な結果が得られた。逆に、中心導体40の表面に絶縁膜42を形成し て、電極20には絶縁膜22を形成せずに、上記と同様な実験を行った。この場合にも、 安定性がさらに欠けるものの比較的安定したプラズマが観測された。したがって、中心導 体40と電極20の両者に絶縁膜を形成することが最も望ましい。

【実施例3】

[0033]

【実施例4】

[0034]

次に、周波数2.45GHz、平均電力200W、パルス周期100kHzのマイクロ波を用いて、デューティ比を変化させて、各ガスのプラズマ温度を測定した。他の条件は

実施例 2 と同一である。測定結果を図 4 に示す。なお、1 0 0 k H z 、デューティ比 5 0 %の 1 パルスは、図 3 の時間で言えば、マイクロ波を印加した後 5 μ s 後を意味している。特に、 N_2 のプラズマ温度が 9 0 0 K 程度に安定していることが理解される。一方、図 3 から、マイクロ波を 5 0 μ s 印加した場合には 1 3 0 0 K に上昇していることからも、如何に、 N_2 ガスの場合には、マイクロ波をデューティ制御することがプラズマ温度を制御するのに如何に重要であるかが理解される。特に、 N_2 ガスの場合には温度上昇の抑制 効果が高いので、 N_2 ガスとマイクロ波をデューティ制御とは特有な組み合わせである。

[0035]

【実施例5】

次に、実施例4においてデューティ比を100% (連続給電) として、電極20と中心 導体 40に対する水冷をしない場合において、 N_2 ガスを導入してプラズマ温度を測定した。図4に示すように、電極20と中心導体40を水冷した場合には、900 Kであるが、水冷しない場合には1250 Kと温度は上昇した。このことからも、プラズマ温度の制御には、中心導体40と電極20の水冷が有効であることが理解される。特に、 N_2 ガスの場合には温度上昇の抑制効果が高いので、 N_2 ガスとマイクロ波をデューティ制御とは特有な組み合わせである。また、電極の冷却構造とマイクロ波をデューティ制御と微小ギャップの部分を絶縁膜で被膜することは、プラズマの温度を制御するために、特に、有効であり、これらの3 要素は特有な組み合わせとなる。

【実施例6】

[0036]

実施例4により、中心導体40と電極20の水冷がプラズマ温度の制御に有効であるこ とが解ったので、さらに、詳しく調べるために、中心導体40と電極20(以下、両者を 区別する必要がない場合には、単に「電極」という。)の温度(以下、両者の温度を区別 する必要がない場合には、単に、「電極温度」という)とプラズマ温度との相関関係を測 定した。ただし、本実験では、ガスは流すことなく、閉じた空間に封入することで行った 。すなわち、図1において排気室60を外部と遮断した状態で実験を行った。条件は、H eガスを1atmでチャンバー(筐体10と排気室60とで個性されるチャンバー)に封 じ込めて、マイクロ波を連続して給電した。そのマイクロ波の電力を変化させて、プラズ マ温度と電極温度を測定した。プラズマ温度を図5に示し、電極温度を図6に示す。異な る水温280Kと300Kとで冷却した場合と全く冷却しない場合の3通りで測定したが 、マイクロ波の電力が変化してもプラズマ温度は電極温度に良く一致していることが解る 。そして、電極を冷却すると、冷却しない場合のプラズマ温度に比べてプラズマ温度は2 00K以上も低下していることが理解される。なお、電極を冷却しない場合にも、プラズ マ温度と電極温度とが一致しているのは、Heガスはマイクロ波の電力によるプラズマ温 度の上昇が比較的小さいためであると思われる。これらの測定結果から電極の冷却はプラ ズマ温度を制御するのに極めて有効であることが理解される。

【実施例7】

[0037]

本プラズマ発生装置は、図7に示す構成とすることも可能である。直径100mmの円筒状の導体で構成された筺体110と導体で構成された底板120とで共振器が構成されている。そして、底板120の中心部において、幅0.1~0.2mmで長さ30mmの短冊状の孔(スリット)300が形成されている。この孔300は図示すように断面がテーバ状をしている。この底板120の孔300に至る部分まで底板120の内部には冷却水122が巡回されている。冷却水122は孔300のテーパ状の側壁に至っている。そして、底板120の外面120a、内面120b、側面120cの表面に、絶縁膜320が形成されている。絶縁膜の材料は上記した実施例と同様である。筐体110の上部は石英板130で封止されており、筐体110の内部に導入されたガスが逆流しないように構成されている。マイクロ波は、この石英板130を通過して共振器である筐体110の内部に導かれ、底板120に形成された孔300によって形成される微小ギャップAにおいて電力密度が高められる。NF3ガス及びH2OをバブリングしたHeガスは、ガス

[0038]

この時、マイクロ波の電力で、微小ギャップAの部分でHeプラズマが生成されて、 NF_3 、 H_2 Oが分解されて、Fラジカル、Hラジカル、OHラジカル、Fイオン、 F_2 分子、HF分子などが生成される。このラジカルなどにより、H300の下に設けられた回転するサセプタ410上に設けられた半導体基板がエッチングされることになる。発生されるプラズマの状態は、レーザによる吸収分光により観測され、最も良好な状態が得られるように制御されている。

[0039]

マイクロ波は連続でもパルスでも良いこと、パルスで与えた場合には、パルスの繰返周期とデューティ比によりプラズマ温度が制御できることなどは、上記の実施例と同様である。

【本発明の応用分野】

[0040]

本発明は、プラズマを安定して発生する装置である。特に、大気圧で用いることに利点がある。したがって、プラズマを用いる半導体のエッチング、成膜プロセス、機械加工、クリーニング、表面改質などに、加工チャンバーの真空引きをしなくとも良いために、特に、有効である。大気圧プラズマは低圧高密度プラズマに比べて電子密度が3桁ほど大きい 10^{15} /cm³程度であるため、高密度のラジカルやイオンの生成が可能となり、高速プロセスが可能となる。また、ガスをプラズマで分解したり重合させることができることから排気ガスの粒子による回収、グラファイトと F_2 ガスからフルオロカーボンガス、これらのラジカルの生成に有効である。

【産業上の利用可能性】

[0041]

本発明は、半導体プロセス等に有効なプラズマを安定して供給することが可能である。 よって、半導体工場において、極めて有効な技術である。

[0042]

上記における記載において、個々の構成要素は、分離して抽出可能なものであるので、 独立して抽出構成要件を組み合わせた発明も認識されている。請求項に記載した任意の構 成要件を削除した発明も認識されているものである。

【図面の簡単な説明】

[0043]

- 【図1】本発明の具体的な実施例に係るプラズマ発生装置の構成図。
- 【図2】本装置で発生したプラズマの温度を特定するための光吸収特性の測定図。
- 【図3】本装置におけるマイクロ波の印加開始時刻からの経過時間に対するプラズ温度を測定した測定図。
- 【図4】本装置におけるマイクロ波のデューティ比に対するプラズマ温度を測定した 測定図。
- 【図5】本装置におけるマイクロ波電力に対するプラズマ温度を測定した測定図。
- 【図6】本装置におけるマイクロ波電力に対する電極温度を測定した測定図。
- 【図7】本発明の具体的な他の実施例に係るプラズマ発生装置の構成図。

【符号の説明】

[0044]

- 10…箧体
- 11…底面
- 20…電極
- 3 0 …孔
- 60…排気室
- 110…筐体
- 300…孔

320…絶縁膜120…冷却媒体410…サセプタ

4 2 0 …半導体基板

A…微小ギャップ

【図2】

【図3】

ピークパワー: 300 W

放電周波数: 10 kHz

Duty比: 50%

大気圧(1atm)

ガス流量: 2L/min

【図4】

平均パワー: 200 W

放電周波数: 100 kHz

Duty比: 25~100%(CW)

大気圧(1atm)

ガス流量: 2L/min

【図5】

【図6】

【要約】

【課題】大気圧において安定してプラズマを発生させること。

【解決手段】ガス及びマイクロ波を導入する筒状の筐体10と、この筐体の底面に設けられた孔30と、筐体の軸方向に設けられ、孔の輪郭の内側に底面の輪郭を有した柱状の導体40とを有している。この導体40の底面41の輪郭と孔の輪郭との間に形成された微小ギャップAと、導体と筐体により形成される同軸導波路と、微小ギャップにおける孔の少なくとも輪郭部に形成された絶縁膜22とを有している。この構成において、マイクロ波は同軸導波路により微小ギャップに誘導され、ガスを微小ギャップを通過させて、この微小ギャップにおいてガスをプラズマとする。マイクロ波はパルスでデューティ制御され、孔30の輪郭部は冷媒で電極20の内部から冷却されている。これによりプラズマ温度の上昇を抑制することができ、安定したプラズマを発生することができる。

【選択図】図1

特願2004-040628

出願人履歴情報

識別番号

[591074172]

1. 変更年月日

1995年12月21日

[変更理由]

住所変更

住所

愛知県日進市五色園3-2110

氏 名

後藤 俊夫

特願2004-040628

出願人履歴情報

識別番号

[395022731]

1. 変更年月日

2002年 4月 8日

[変更理由]

住所変更

住所

愛知県日進市藤塚6-176

. 氏 名 堀 勝

ページ: 3/E

特願2004-040628

出願人履歴情報

識別番号

[503422664]

1. 変更年月日

2003年11月17日

[変更理由]

新規登録

住 所

埼玉県比企郡鳩山町鳩ヶ丘1-13-10

氏 名

田 昭治