

Statistical methods in recognition

- Basic steps in classifier design
 - Collect training data
 - Choose a classification model
 - Statistical
 - Linguistic
 - Estimate "parameters" of classification model from training images
 - Learning
 - Evaluate model on training data and refine
 - Collect test data set
 - Apply classifier to test data

Why is classification a problem?

- Because classes overlap in our (impoverished) representations
- ♦ Example: Classify a person as a male or female based on weight
 - Male training set :{ 155, 122, 135, 160, 240, 220, 180, 145}
 - Female training set: {95, 132, 115, 124, 145, 110, 150}
 - Unknown sample has weight 125. Male or female?

Factors that should influence our decision

- ♦ How likely is it that a person weighs 125 pounds given that the person is a male? Is a female?
 - Class-conditional probabilities
- ■How likely is it that an arbitrary person is a male? A female?
 - -Prior class probabilities
- What are the costs of calling a male a female?
- A female a male?
 - -Risks

Basic approaches to statistical classification

- 1. Build (parametric) probabilistic models of our training data, and compute the probability that an unknown sample belongs to each of our possible classes using these models.
- 2. Compare an unknown sample directly to each member of the training set, looking for the training element "most similar" to the unknown.
 - Nearest neighbor classification
- 3. Train a neural network to recognize unknown samples by "teaching it" how to correctly train the elements of the training set.

- Probability spaces models of random phenomena
- Example: a box contains s balls labeled 1, ..., s
 - Experiment: Pick a ball, note its label and then replace it in the box. Repeat this experiment n times.
 - Let N_n(k) be the number of times that a ball labeled k
 was chosen in an experiment of length n
 - example: s = 3, n = 20
 - 1 1 3 2 1 2 2 3 2 3 3 2 1 2 3 3 1 3 2 2
 - $-N_{20}(1) = 5$ $N_{20}(2) = 8$ $N_{20}(3) = 7$

The relative frequencies of the outcomes 1,2,3 are

- $-N_{20}(1)/20 = .25 N_{20}(2)/20 = .40 N_{20}(3)/20 = .35$
- As n gets large, these numbers should settle down to fixed numbers p₁, p₂, p₃
- We say p_i is the probability that the i'th ball will be chosen when the experiment is performed once

- ♦ Suppose: we color balls 1, ..., r red and balls r+1, .., s green
 - What is the probability of choosing a red ball?
 - Intuitively it is $r/s = \sum p_k$ where the sum is over all ω_k such that the k'th ball is red
- Let A be the subset of possible outcomes, ω_k , such that k is red.
 - A has r points
 - A is called an event
 - When we say that A has occurred we mean that an experiment has been run and the outcome is represented by a point in A.
- If A and B are events, then so are $A \cap B$, $A \cup B$ and A^c

Assigning probabilities to events:

$$P(B) = \sum_{\mathbf{W}k \in B} p_k$$

- A probability measure on a set Ω of possible outcomes is a real valued function having domain 2^{Ω} satisfying
 - $-P(\Omega)=1$
 - $-0 \le P(A) \le 1$, for all $A \subseteq \Omega$
 - If A_n are mutually disjoint sets then

$$P(\bigcup_{n=1}^k A_n) = \sum_{n=1}^k P(A_n)$$

- Simple properties of probabilities
 - $P(A^c) = 1 P(A)$
 - $P(\emptyset)=1-P(\Omega)=1-1=0$
 - if A is a subset of B, then $P(A) \le P(B)$
 - $P(A \cup B) = P(A) + P(B) P(A \cap B)$

- Conditional probabilities
 - Our box has r red balls labeled 1, ..., r and b black balls labeled r+1, ..., r+b. If the ball drawn is known to be red, what is the probability that its label is 1?
 - A event "red"
 - B event "1"
 - interested in conditional probability of B knowing that A has occurred P(B|A)

• Let A and B be two events such that P(A) > 0. Then the conditional probability that B occurs given A, written P(B|A) is defined to be

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$

- ♦ Ball example: what is P("1" | "red")
 - Let r = 5 and b = 15
 - P(1 and red) = .05
 - P(red) = .25
 - So, P(1 | red) = .05/.25 = .20

Recognition

- $-A_1, ..., A_n$ are mutually disjoint events with union Ω .
 - think of the A_i as the possible identities of an object
- B is an event with P(B) > 0
 - think of B as an observable event, like the area of a component in an image
- $P(B|A_k)$ and $P(A_k)$ are known, k = 1,..., n
 - $P(B|A_k)$ is the probability that we would observe a component with area B if the identify of the object is A_i
 - $P(A_k)$ is the prior probability that an event is in class k.
- Question: What is $P(A_i|B)$
 - What we will really be after the probability that the identity of the object is A_i given that we make measurements B

Primer on probability $P(B|A) = \frac{P(B \cap A)}{P(A)}$

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$

$$B=B\cap (\bigcup_{k=1}^{n}A_{k})=\bigcup_{k=1}^{n}(B\cap A_{k})$$

$$k=1 \quad k=1$$

So intersections are disjoint since the A_k are and

$$P(B) = \sum_{k=1}^{n} P(B \cap A_k)$$

But

$$P(B \cap A_k) = P(A_k)P(B|A_k)$$

Combining all this we get Bayes Rule

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum_{k=1}^{n} P(A_k)P(B|A_k)}$$

Training - computing P(B|A_i)

- Our training data is used to compute the P(B|A_i), where B is the vector of features we plan to use to classify unknown images in the classes A_i
 - B might be (area, perimeter, moments)
- How might we represent $P(B|A_i)$?
 - as a table
 - quantize area, perimeter and average gray level suitably, and then use the training samples to fill in the three dimensional histogram.
 - analytically, by a standard probability density function such as the normal, uniform, ...

Primer on probability - training

- ♦ When we have many random variables it is usually impractical to create a table of the values of P(B|A_i)from our training set.
 - Example
 - 5 measurements
 - quantize each to 50 possible values
 - Then there are 50⁵ possible 5-tuples we might observe in any element of the training set, and we would need to estimate this many probabilities to represent the conditional probability
 - too few training samples
 - too much storage required for the table

- ♦ Instead, it is usually assumed that P(B|A_i) has some simple mathematical form
 - uniform density function
 - each x_i takes on values only in the finite range [a_i, b_i]
 - $P(B|A_i)$ is constant for any realizable $(x_1, ..., x_n)$
 - for one random variable, $P(B|A_i)=1/(b-a)$ for a <= x <= b and 0 elsewhere
 - Normal distribution

$$f(x) = n(x; \mathbf{m}, \mathbf{s}) = \frac{1}{\sqrt{2p}\mathbf{s}} e^{-(\frac{x-\mathbf{m}}{\mathbf{s}})^2}$$

 In any case, once the parameters of the assumed density function are estimated, its goodness of fit should also be evaluated.

- Density function is called the Gaussian function and the error function
 - μ is called the locatio parameter
 - σ is called the scale parameter
- Generalization to multivariate density functions
 - mean vector
 - covariance matrix

Prior probabilities and their role in classification

- Prior probabilities of each object class
 - probabilities of the events: object is from class i $(P(A_i))$
 - Example
 - two classes A and B; two measurement outcomes: 0 and 1
 - prob(0|A) = .5, prob(1|A) = .5; prob(0|B) = .2prob(1|B)=.8
 - Might guess that if we measure 0 we should decide that the class is A, but if we measure 1 we should decide B

- But suppose that P(A) = .10 and P(B) = .90
 - Out of 100 samples, 90 will be B's and 18 of these (20% of those 90) will have measurement 0
 - We will classify these incorrectly as A's
 - Total error is nP(B)P(0|B)
 - 10 of these samples will be A's and 5 of them will have measurement 0 these we'll get right
 - Total correct is nP(A)P(0|A)

Prior probabilities

- ♦ So, how do we balance the effects of the prior probabilities and the class conditional probabilities?
- We want a rule that will make the fewest errors
 - Errors in A proportional to P(A)P(x|A)
 - Errors in B proportional to P(B)P(x|B)
 - To minimize the number of errors choose A if P(A)P(x|A) > P(B)P(x|B); choose B otherwise
- The rule generalizes to many classes. Choose the C_i such that $P(C_i)P(x|C_i)$ is greatest.
- Of course, this is just Bayes' rule again

Bayes error

• The formula for $P(C_i|x)$ is

$$P(C_i|x) = \frac{P(C_i)P(x|C_i)}{P(x)}$$

where

$$P(x) = \sum_{i} P(C_{i}) P(x \mid C_{i})$$

is a normalization factor that is the same for all classes.

◆ To evaluate the performance of our decision rule we can calculate the probability of error - probability that the sample is assigned to the wrong class.

Bayes error

• The **total error** which is called the **Bayes error** is defined as E[r(x)] =

$$e = \int \min[P(C_1)P(x \mid C_1), P(C_2)P(x \mid C_2)]p(x)dx$$

$$= P(C_1) \int_{L_1} P(C_1 | x) dx + P(C_2) \int_{L_2} P(C_2 | x) dx$$

$$= P(C_1)e_1 + P(C_2)e_2$$

• The regions L_1 and L_2 are the regions where x is classified as C_1 and C_2 respectively.

Example

Moving T either left or right would increase the overall probability of error

Example - normal distributions

- In the case of normal distributions, the decision boundaries that provide the Bayes error can be shown to be quadratic functions quadratic curves for two dimensional probability density functions
- In the special case where the classes have the same covariance matrix, decision boundary is a linear function - classes can be separated by a hyperplane

Bayes error for normal

distributions

Adding risks

- Minimizing total number of errors does not take into account the cost of different types of errors
- ♦ Example: Screening X-rays for diagnosis
 - two classes healthy and diseased
 - two types of errors
 - classifying a healthy patient as diseased might lead to a human reviewing X-rays to verify computer classification
 - classifying diseased patient as healthy might allow disease to progress to more threatening level
- ♦ Technically, including costs in the decision rule is accomplished by modifying the a priori probabilities

An example from image segmentation

- ♦ How do we know which groups of pixels in a digital image correspond to the objects or features to be analyzed?
 - In some simple cases, objects may be uniformly darker or brighter than the background against which they appear
 - Black characters imaged against the white background of a page
 - High gradient magnitude points tend to lie on edges

Image segmentation

- ◆ Ideally, object pixels would be black (0 intensity) and background pixels white (maximum intensity)
- But this rarely happens
 - pixels overlap regions from both the object and the background, yielding intensities between pure black and white - edge blur
 - cameras introduce "noise" during imaging measurement "noise"

Image segmentation by thresholding

- ◆ If the objects and background occupy different ranges of gray levels, we can correctly "mark" the object pixels by a process called **thresholding**:
 - Let F(i,j) be the original, gray level image
 - B(i,j) is a binary image (pixels are either 0 or 1)
 created by thresholding F(i,j)
 - B(i,j) = 1 if F(i,j) < t
 - B(i,j) = 0 if F(i,j) >= t

Thresholding

- ♦ How do we choose the threshold t?
- Histogram (h) gray level frequency distribution of the gray level image F.
 - $-h_F(g)$ = number of pixels in F whose gray level is g
 - $-H_F(g)$ = number of pixels in F whose gray level is <= g

h(g)

Thresholding – a heuristic algorithm

- Peak and valley method
 - Find the two most prominent peaks of h
 - g is a peak if $h_F(g) > h_F(g \pm \Delta g)$, $\Delta g = 1, ..., k$
 - Let g_1 and g_2 be the two highest peaks, with g_1 $< g_2$
 - Find the deepest valley, g, between g_1 and g_2
 - g is the valley if $h_F(g) \le h_F(g')$, g,g' in $[g_1, g_2]$
 - Use g as the threshold

A probabilistic threshold selection method - minimizing Kullback information distance

The observed histogram, f, is a mixture of the gray levels of the pixels from the object(s) and the pixels from the background

- in an ideal world the histogram would contain just two spikes
- but
 - measurement noise,
 - model noise (e.g., variations in ink density within a character) and
 - edge blur (misalignment of object boundaries with pixel boundaries and optical imperfections of camera)

spread these spikes out into hills

- Make a parametric model of the shapes of the component histograms of the objects(s) and background
- Parametric model the component histograms are assumed to be Gaussian
 - p_o and p_b are the proportions of the image that comprise the objects and background
 - μ_o and μ_b are the mean gray levels of the objects and background
 - $-\sigma_0$ and σ_b are their standard deviations

$$f_{o}(g) = \frac{p_{o}}{\sqrt{2\boldsymbol{p}}\boldsymbol{s}_{o}} e^{-1/2(\frac{g-\boldsymbol{n}_{o}}{\boldsymbol{s}_{o}})^{2}}$$

$$f_{b}(g) = \frac{p_{b}}{\sqrt{2\boldsymbol{p}}\boldsymbol{s}_{b}} e^{-1/2(\frac{g-u_{b}}{\boldsymbol{s}_{b}})^{2}}$$

$$f_b(g) = \frac{p_b}{\sqrt{2\boldsymbol{p}}\boldsymbol{s}_b} e^{-1/2(\frac{g-u_b}{\boldsymbol{s}_b})^2}$$

- ◆ Now, if we hypothesize a threshold, t, then all of these unknown parameters can be approximated from the image histogram.
- Let f(g) be the observed and normalized histogram
 - f(g) = percentage of pixels from image having gray level g

$$p_{o}(t) = \sum_{g=0}^{t} f(g)$$

$$p_{b}(t) = 1 - p_{0}(t)$$

$$m(t) = \sum_{g=0}^{max} f(g)g$$

$$m(t) = \sum_{g=t+1}^{max} f(g)g$$

- ♦ So, for any hypothesized t, we can "predict" what the total normalized image histogram **should** be if our model (mixture of two Gaussians) is correct.
 - $P_t(g) = p_o f_o(g) + p_b f_b(g)$
- ♦ The total normalized image histogram is observed to be f(g)
- ♦ So, the question reduces to:
 - determine a suitable way to measure the <u>similarity</u> of P and f
 - then search for the t that gives the highest similarity

♦ A suitable similarity measure is the Kullback directed divergence, defined as

$$K(t) = \sum_{g=0}^{\text{max}} f(g) \log \left[\frac{f(g)}{P_t(g)} \right]$$

- ◆ If P_t matches f exactly, then each term of the sum is 0 and K(t) takes on its minimal value of 0
- Gray levels where P_t and f disagree are penalized by the log term, weighted by the importance of that gray level (f(g))

An alternative - minimize probability of error

- ◆ Using the same mixture model, we can search for the t that minimizes the predicted probability of error during thresholding
- ◆ Two types of errors
 - background points that are marked as object points. These are points from the background that are darker than the threshold
 - object points that are marked as background points. These are points from the object that are brighter than the threshold

An alternative - mimimize probability of error

- For each "reasonable" threshold
 - compute the parameters of the two Gaussians and the proportions
 - compute the two probability of errors
- Find the threshold that gives
 - minimal overall error
 - most equal errors

$$e_b(t) = p_b \sum_{g=0}^t f_b(g)$$

$$e_o(t) = p_o \sum_{g=t+1}^{\max} f_o(g)$$

Nearest neighbor classifiers

- ♦ Can use the training set directly to classify objects from the test set.
 - Compare the new object to every element of the training set
 - need a measure of closeness between an object from the training set and a test object

$$D(x,y) = \sum_{i} \frac{(x_i - y_i)^2}{\mathbf{s}_i^2}$$

- Choose the class corresponding to the closest element from the training set
- Generalization k nearest neighbors: find k nearest neighbors and perform a majority vote

Nearest neighbor classification

- Computational problems
 - Choosing a suitable similarity measurement
 - Efficient algorithms for computing nearest neighbors with large measurement sets (high dimensional spaces)
 - k-d trees
 - quadtrees
 - but must use a suitable similarity measure
 - Algorithms for "editing" the training set to produce a smaller set for comparisons
 - clustering: replace similar elements with a single element
 - removal: remove elements that are not chosen as nearest neighbors

Other classification models

- Neural networks
- ♦ Structural models
 - grammatical models
 - graph models
 - logical models
- Mixed models

