Week 6 System Modeling

Definition

 System modeling is the process of developing abstract models of a system, with each model presenting a difference view or perspective of that system

Usages

- For the existing system
 - Help clarify what are the existing system does
 - A basis for discussing its strengths and weaknesses
 - Lead to requirements for the new system
- For new system
 - Help explain the proposed requirements to other system stakeholders
 - Engineers use these models to discuss design proposals and to document the system for implementation

Unified Modeling Language (UML)

- Use case diagram
 - ▼ Show the interactions between a system and its environment
 - Drawbacks
 - Inappropriate for non-functional requirements
 - For situations in which the requirements model must have significant detail and precision (e.g. safety critical systems), a use case may not be sufficient
- Activity diagram
 - Shows the activities involved in a process or in data processing
 - With swimlanes
 - Show who is responsible for each activity in a process
 - Each swimlane shows the name of a role at the top
- Sequence diagram
 - Show the interactions between actors and the system and between system components
- Class diagram
 - Show the object classes in the system and the associations between these classes
- State machine diagram
 - Show how the system reacts to internal and external events

Models

- Interaction Models
 - Helps to identify user requirements
 - System-to-system interaction
 - Component interaction
- Class-based Models
- Behavioral Models
 - Models of dynamic behavior of a system as it is executing
- Context Models
 - Context models are used to illustrate the operational context of a system -- they show what lies outside the system boundaries (show other systems in the environment)
 - System boundaries
 - System boundaries are established to define what is inside and what is outside the system.

The position of the system boundary is a political judgement

Modeling

- Data-driven Modeling
 - Controlled by the data input to the system
 - Show the sequence of actions involved in processing input data and generating an associated output
- Event-driven Modelling
 - Shows how a system responds to external and internal events (state machine diagram)

Model-driven Engineering

- Definition
 - Model-driven engineering (MDE) is an approach to software development where models rather than programs are the principal outputs of the development process.
 - The programs that execute on a hardware/software platform are then generated automatically from the models

Usage

- Pros
 - Allows systems to be considered at higher levels of abstraction
 - Generating code automatically means that it is cheaper to adapt systems to new platforms

Cons

- Models for abstraction and not necessarily right for implementation
- Savings from generating code may be out weighted by the costs of developing translators for new platforms