Due algoritmi di ordinamento

basati sulla tecnica Divide et Impera:

Mergesort e Quicksort

(13 ottobre 2009, 2 novembre 2010)

Ordinamento

INPUT: un insieme di n oggetti a₁, a₂, ..., a_n presi da un dominio totalmente ordinato secondo ≤

OUTPUT: una permutazione degli oggetti $a'_1, a'_2, ..., a'_n$ tale che $a'_1 \le a'_2 \le ... \le a'_n$

Applicazioni:

- Ordinare alfabeticamente lista di nomi, o insieme di numeri, o insieme di compiti d'esame in base a cognome studente
- Velocizzare altre operazioni (per es. è possibile effettuare ricerche in array ordinati in tempo O(log n))
- Subroutine di molti algoritmi (per es. greedy)

•

Algoritmi per l'ordinamento

Data l'importanza, esistono svariati algoritmi di ordinamento, basati su tecniche diverse:

Insertionsort
Selectionsort
Heapsort
Mergesort
Quicksort
Bubblesort
Countingsort

.

Ognuno con i suoi lati positivi e negativi.

Il Mergesort e il Quicksort sono entrambi basati sulla tecnica Divide et Impera, ma risultano avere differenti prestazioni

Mergesort

Dato un array di n elementi

- I) Divide: trova l'indice della posizione centrale e divide l'array in due parti ciascuna con n/2 elementi (più precisamente \[\ln/2 \right] e \[\ln/2 \])
- II) Risolve i due sottoproblemi ricorsivamente
- III) Impera: fonde i due sotto-array ordinati usando la procedura Merge

$$T(n) = \Theta(1) + 2T(n/2) + \Theta(n)$$

Vedremo che la soluzione è $T(n) = \Theta(n \log n)$

Nota:

Il tempo di esecuzione di Merge è $\Theta(n)$ (e non solo O(n)).

Infatti

nel caso peggiore faremo O(n) confronti:

nel caso migliore faremo $\Omega(n)$ confronti

Ricorda: Il tempo di esecuzione di un algoritmo è $\Theta(f(n))$ se nel caso peggiore è O(f(n)) e nel caso migliore è $\Omega(f(n))$

Il tempo di esecuzione di Mergesort è ⊕(n log n)

Quicksort

Dato un array di n elementi

- I) Divide: scegli un elemento x dell'array (detto "pivot" o perno) e partiziona la sequenza in elementi ≤ x ed elementi ≥ x
- II) Risolvi i due sottoproblemi ricorsivamente
- III) Impera: restituisci la concatenazione dei due sotto-array ordinati

Scelta del pivot

L'algoritmo funziona per qualsiasi scelta (primo / ultimo / ...), ma se voglio algoritmo "deterministico" devo fissare la scelta; nel seguito sceglierò il **primo**.

Altrimenti: scelgo "random" e avrò "algoritmi randomizzati" (vedi Kleinberg, Tardos)

Partizionamento

Partiziona l'array in elementi ≤ x ed elementi ≥ x

Banalmente:

scorro l'array da 1 ad n e inserisco gli elementi ≤ pivot in un nuovo array e quelli ≥ del pivot in un altro nuovo array

Però:

- 1) avrei bisogno di array ausiliari
- 2) di che dimensione? I due sotto-array hanno un numero variabile di elementi

Partizione "in loco"

Partition:

- pivot = A[1]
- Scorri l'array da destra verso sinistra (con un indice j) e da sinistra verso destra (con un indice i) :

da destra verso sinistra, ci si ferma su un elemento ≤ del pivot da sinistra verso destra, ci si ferma su un elemento ≥ del pivot;

- Scambia gli elementi
- Riprendi la scansione finché i e j si incrociano

```
Partition (A, p, r)
x = A[p]
i = p-1
j = r+1
while True
      do repeat j=j-1 until A[j]≤ x
         repeat i=i+1 until A[i]≥ x
         if i < j
             then scambia A[i] ↔ A[j]
             else return j
```

Partizione in loco: un esempio

Correttezza di Partition

Perché funziona?

Ad ogni iterazione (quando raggiungo il while): la "parte verde" di sinistra (da p ad i) contiene elementi ≤ 5; la "parte verde" di destra (da j a r) contiene elementi ≥ 5.

Tale affermazione è vera all'inizio e si mantiene vera ad ogni iterazione (per induzione)

Analisi Partition

Il tempo di esecuzione è $\Theta(n)$

```
Quicksort (A, p, r)

if p < r then
    q = Partition (A,p,r)
    Quicksort(A, p, q)
    Quicksort(A, q+1, r)</pre>
```

Correttezza: la concatenazione di due array ordinati in cui l'array di sinistra contiene elementi minori o uguali degli elementi dell'array di destra è un array ordinato

Analisi:
$$T(n) = \Theta(n) + T(k) + T(n-k)$$

Se k sono gli elementi da p a q (e n-k i rimanenti da q+1 a r) con $1 \le k \le n-1$

Analisi Quicksort

Un primo caso: ad ogni passo il pivot scelto è il minimo o il massimo degli elementi nell'array (la partizione è 1 | n-1):

$$T(n) = T(n-1) + T(1) + \Theta(n)$$

essendo $T(1) = \Theta(1)$

$$T(n) = T(n-1) + \Theta(n)$$

La cui soluzione (vedremo) è $T(n) = \Theta(n^2)$

Si può dimostrare che questo è il caso peggiore; quindi per il Quicksort:

$$T(n) = O(n^2)$$

Un esempio del caso peggiore del Quicksort

Un array ordinato

Analisi Quicksort

Un altro caso: ad ogni passo il pivot scelto è la "mediana" degli elementi nell'array (la partizione è n/2 | n/2):

$$T(n) = 2 T(n/2) + \Theta(n)$$

La cui soluzione è $T(n) = \Theta(n \log n)$

(è la stessa relazione di ricorrenza del Mergesort)

Si può dimostrare che questo è il caso migliore; quindi per il Quicksort:

$$T(n) = \Omega(n \log n)$$

Riassumendo: $T(n) = O(n^2)$ e $T(n) = \Omega(n \log n)$

Il caso migliore è diverso dal caso peggiore quindi T(n) **non** è ⊕ di nessuna funzione

Quicksort vs Mergesort

Fase		MergeSort	Tempi	QuickSort	Tempi
I	Divide	$q = \lfloor (p+r)/2 \rfloor$	$\Theta(1)$	Partition	$\Theta(n)$
II	Ricorsione	$\lfloor n/2 \rfloor \rfloor \lceil n/2 \rceil$	2T(n/2)	k n-k	T(k) + T(n-k)
III	Combina	Merge	$\Theta(n)$	niente	$\Theta(1)$
			$T(n) = 2T(n/2) + \Theta(n)$		$T(n) = T(k) + T(n - k) + \Theta(n)$
			$T(n) = \Theta(n \log n)$		$T(n) = O(n^2), T(n) = \Omega(n \log n)$

Da ricordare

Esistono algoritmi di ordinamento con tempo nel caso peggiore

 Θ (n²)

Θ(nlogn)

Esistono anche algoritmi di ordinamento con tempo nel caso peggiore $\Theta(n)$

ma non sono basati sui confronti e funzionano solo sotto certe ipotesi

Inoltre si può dimostrare che **tutti** gli algoritmi di ordinamento basati sui confronti richiedono $\Omega(n \log n)$ confronti nel caso peggiore!

Si dice che $\Omega(n \log n)$ è una delimitazione inferiore (lower bound) al numero di confronti richiesti per ordinare n oggetti.

Delimitazione inferiore = quantità di risorsa **necessaria** per risolvere un determinato problema

Indica la difficoltà intrinseca del problema.