Algorithmique Avancée et Programmation en C Graphes

Rym Guibadj

LISIC, EILCO

Problème des sept ponts de Königsberg

Existe il une promenade dans les rues de Königsberg permettant, à partir d'un point de départ au choix, qui permet de passer une et une seule fois par chaque pont, et de revenir à son point de départ?

Inroduction Définitions Représentation Parcours Plus court chemin

Exemples de modélisation par les graphes

Digramme UML

 Diagrammes d'états-transitions UML modélisant les états d'un processus

Exemples de modélisation par les graphes

Réseaux de régulation génétique

- Sommets = gènes
- Arcs = influence entre gènes

Exemples de modélisation par les graphes

Web et Réseaux sociaux

- Sommets = URL de blogs
- Arcs = Hyper-liens

Graphes non orientés

Définition

G = (S, A) est non orienté si $\forall (s_i, s_i) \in S \times S, (s_i, s_i) \in A \Leftrightarrow (s_i, s_i) \in A$. La relation binaire définie par A est symétrique.

Exemple

$$\begin{array}{lll} S & = & \{1,2,3,4,5,6\} \\ A & = & \{(1,2),(2,1),(1,5),(5,1),\\ & & (5,2),(2,5),(3,6),(6,3)\} \end{array}$$

Terminologie:

- Les éléments de A sont appelés arêtes
- s_i est adjacent à s_i si $(s_i, s_i) \in A$: $adj(s_i) = s_i | (s_i, s_i) \in A$
- **degré** d'un sommet = nombre de sommets adjacents : $d(s_i) = |adj(s_i)|$
- Graphe complet si $A = (s_i, s_i) \in S \times S | s_i \neq s_i$

Graphes orientés

Définition

G = (S, A) est orienté si $\exists (si, sj) \in S \times S, (s_i, s_i) \in A$ et $(s_i, s_i) \notin A$. La relation binaire définie par A n'est pas symétrique.

Exemple

$$\begin{array}{lll} S & = & \{1,2,3,4,5,6\} \\ A & = & \{(1,2),(2,4),(2,5),(4,1),\\ & & (4,4),(4,5),(5,4),(6,3)\} \end{array}$$

Terminologie:

- Les éléments de A sont appelés arcs
- s_i est successeur de s_i si $(s_i, s_i) \in A$: $succ(s_i) = s_i | (s_i, s_i) \in A$
- s_i est **prédécesseur** de s_i si $(s_i, s_i) \in A$: $pred(s_i) = s_i | (s_i, s_i) \in A$
- **demi-degré extérieur** = nombre de successeurs : $d^+(s_i) = |succ(s_i)|$
- **demi-degré intérieur** = nombre de prédécesseurs : $d^-(si) = |pred(si)|$

Cheminements et connexités

Définition dans le cas d'un graphe non orienté G = (S, A)

- Chaîne = Séquence de sommets $< s_0, s_1, s_2, ..., s_k >$ (notée $s_0 \sim s_k$) telle que $\forall i \in [1, k], (s_{i-1}, s_i) \in A$
- Longueur d'une chaîne = Nombre d'arêtes dans la chaîne
- Chaîne élémentaire = Chaîne dont tous les sommets sont distincts
- Cycle = Chaîne commençant et terminant par un même sommet
- Boucle = Cycle de longueur 1
- G = (S, A) est connexe si $\forall (s_i, s_j) \in S^2, s_i \sim s_j$
- Composante connexe de G = sous-graphe de G connexe et maximal

Définition dans le cas d'un graphe orienté G = (S, A)

- Chemin = Séquence de sommets $< s_0, s_1, s_2, ..., s_k >$ (notée $s_0 \leadsto s_k$) telle que $\forall i \in [1, k], (s_{i-1}, s_i) \in A$
- Longueur d'un chemin = Nombre d'arcs dans le chemin
- Chemin élémentaire = Chemin dont tous les sommets sont distincts
- Circuit = Chemin commençant et terminant par un même sommet
- Boucle = Circuit de longueur 1
- G = (S, A) est fortement connexe si $\forall (s_i, s_j) \in S^2, s_i \leadsto s_j$
- Composante fortement connexe = ss-graphe fortement connexe maximal

Matrice d'adjacence

Définition : matrice d'adjacence d'un graphe G = (S, A)

Matrice M telle que $M[s_i][s_j] = 1$ si $(s_i, s_j) \in A$, et $M[s_i][s_j] = 0$ sinon

Exemples:

M	0	1	2	3	4	5
0	0	1	0	0	1	0
1	1	0	1	1 1	1	1
2	0	1	0	1	0	0
3	0	1	1	0	0	1
1 2 3 4 5	1	1	0 1 0 1 0 0	0	0	0 1 0 1 1
5	0	1	0	1	1	0

М	0	1	2	3	4	5
0	0	1	0	1	0	0
1	0	0	0	0	1	0
2	0	0	0	0	1	1
3	1	1	0	1 0 0 0 1	0	0
4	0	0	0	1	0	0
5	0	0	0	0	0	1

Matrice d'adjacence

Complexité en mémoire

 $O(n^2)$ avec n = nombre de sommets de g

Complexité en temps pour déterminer si (s_i, s_i) est un arc :

O(1)

Complexité en temps de *afficherSucc*(g, s_i):

O(n) avec n le nombre de sommets de g

Listes d'adjacence

Définition : listes d'adjacence d'un graphe G = (S, A)

Tableau *succ* tel que $succ[s_i]$ = liste des successeurs de s_i

Complexité en mémoire

O(n+p) avec n = nombre de sommets de g et p = nombre d'arcs

Complexité en temps pour déterminer si (s_i, s_i) est un arc :

 $O(d(s_i))$

Complexité en temps de *afficherSucc* (g, s_i) :

 $O(d(s_i))$

Inroduction Définitions Représentation Parcours Plus court chemin

Généralités

Parcourir un graphe :

Visiter tous les sommets accessibles depuis un sommet de départ donné

Comment parcourir un graphe?

- Marquage des sommets par des couleurs :
 - Blanc = Sommet pas encore visité
 - Gris = Sommet en cours d'exploitation
 - Noir = Sommet que l'on a fini d'exploiter
- Au début, le sommet de départ est gris et tous les autres sont blancs
- A chaque étape, un sommet gris est sélectionné
 - Si tous ses voisins sont déjà gris ou noirs, alors il est colorié en noir
 - Sinon, il colorie un (ou plusieurs) de ses voisins blancs en gris

Jusqu'à ce que tous les sommets soient noirs ou blancs

Mise en oeuvre : Stockage des sommets gris dans une structure

- Si on utilise une file (FIFO), alors parcours en largeur
- Si on utilise une pile (LIFO), alors parcours en profondeur

Spécification d'un algorithme de parcours

Fonction parcours (g, s_0) :

- Entrée : Un graphe g et un sommet s_0 de g
- **Sortie** : Retourne l'arborescence π du parcours de g à partir de s_0

Arborescence associée à un parcours :

- s_i est le père de s_i si c'est s_i qui a colorié s_i en gris
- s_i est racine si $s_i = s_0$ ou si pas de chemin de s_0 jusque s_i
- Mémorisation dans un tableau π tel que $\pi[s_i] = null$ si s_i est racine, et $\pi[s_i] = p$ ère de s_i sinon

Exemples:

Tableau π correspondant :

Parcours en largeur (Breadth First Search / BFS)

```
Algorithm 1: BFS(g, s_0)
foreach s_i \in S do
    Colorier s_i en blanc ;
f = enfiler(f, s_0);
Colorier s<sub>0</sub> en gris;
while fileNonVide(f) do
    f = defiler(f, s_k);
    while \exists s_i \in succ(s_k) tq s_i soit blanc do
        f = enfiler(f, s_i);
        Colorier si en gris;
    Colorier s_k en noir ;
    Afficher s_k:
```


Parcours en largeur (Breadth First Search / BFS) : Exemple

Contenu de la File	Sommet noir affiché
{ <i>a</i> }	
{ <i>b</i> , <i>g</i> }	a
{ <i>g</i> , <i>c</i> , <i>e</i> }	a, b
$\{c,e,h\}$	a, b, g
{ e, h, d}	a, b, g, c
$\{h,d,f\}$	a, b, g, c, e
$\{d,f,i\}$	a, b, g, c, e, h
$\{f,i\}$	a, b, g, c, e, h, d
{ <i>i</i> }	a, b, g, c, e, h, d, f
{}	a,b,g,c,e,h,d,f,i

Parcours en profondeur (Depth First search / DFS)

```
Algorithm 2: DFS(g, s_0)
foreach s_i \in S do
    \pi[s_i] = null;
    Colorier s_i en blanc;
pile = empiler(pile, s_0);
Colorier so en aris :
while pileNonVide(pile) do
    s_k = le dernier sommet empilé (en sommet de pile) ;
    if \exists s_i \in succ(s_k) tq s_i soit blanc then
        pile = empiler(pile, s_i);
        Colorier si en gris :
        \pi[s_i] = s_k:
    else
        pile = depiler(pile, s_k);
        Colorier s_k en noir ;
```

Parcours en profondeur (Depth First search / DFS)

Parcours en profondeur (Depth First search / DFS)

Pile	Sommet noir affiché
{a}	
{ <i>b</i> , <i>a</i> }	
{ <i>c</i> , <i>b</i> , <i>a</i> }	
{ <i>d</i> , <i>c</i> , <i>b</i> , <i>a</i> }	
{ <i>c</i> , <i>b</i> , <i>a</i> }	d
{ e, c, b, a}	d
$\{h, e, c, b, a\}$	d
{ e, c, b, a}	d, h
{c, b, a}	d, h, e
{b, a}	d, h, e, c
{ <i>f</i> , <i>b</i> , <i>a</i> }	d, h, e, c
{b, a}	d, h, e, c, f
{a}	d, h, e, c, f, b
{ <i>g</i> , <i>a</i> }	d, h, e, c, f, b
{a}	d, h, e, c, f, b, g
{}	d, h, e, c, f, b, g, a

Généralités

Définitions

- Soit G = (S, A) un graphe (orienté ou non) et une fonction coût $c: A \rightarrow R$
- Coût d'un chemin $p = \langle s_0, s_1, s_2, ..., s_k \rangle$: $c(p) = \sum_{i=1}^k c(s_{i-1}, s_i)$
- Coût d'un plus court chemin de s_i vers $s_i = \delta(s_i, s_i)$

 - $\begin{array}{ll} \bullet \ \delta(s_i,s_j) = +\infty \ \text{si} \ \nexists \ \text{chemin de} \ s_i \ \text{vers} \ s_j \\ \bullet \ \delta(s_i,s_j) = -\infty \ \text{si} \ \exists \ \text{circuit absorbant} \\ \bullet \ \delta(s_i,s_j) = \min\{c(p)|p = \text{chemin de} \ s_i \ \text{a} \ s_j\} \ \text{sinon} \end{array}$

Exemples

Principe d'optimalité d'une sous-structure

Tout sous-chemin d'un plus court chemin est un plus court chemin :

Si $p=< s_0, s_1,...,s_k>$ est un plus court chemin alors $\forall i,j \text{ tq } 0 \leq i \leq j \leq k, p_{ij}=< s_i,s_{i+1},...,s_j>$ est un plus court chemin

Exploitation par des algorithmes gloutons (Dijkstra)

Si $s_i \leadsto s_j \to s_k$ est un plus court chemin, alors $\delta(s_i, s_k) = \delta(s_i, s_j) + c(s_j, s_k) \to \text{Dès qu'on connait } \delta(s_i, s_j)$, on peut calculer $\delta(s_i, s_k)$

Exploitation par programmation dynamique (Bellman-Ford)

$$\delta(s_i, s_j) = \min_{s_k \in pred(s_i)} \delta(s_i, s_k) + c(s_k, s_j)$$

Algorithm 3: relacher($(s_i, s_j), \pi, d$)

$$\begin{array}{ll} \text{if} & d[s_j] > d[s_i] + c(s_i, s_j) \text{ then} \\ & d[s_j] = d[s_i] + c(s_i, s_j) \ ; \\ & \pi[s_j] = s_i; \end{array}$$

relacher (s_i, s_j) = mettre à jour $d[s_j]$ en considérant l'arc (s_i, s_j)

Principe de l'algorithme de Dijkstra

- Procède par coloriage des sommets :
 - s_i est blanc s'il n'a pas encore été découvert : $d[s_i] = +\infty$
 - s_i est gris s'il a été découvert et sa borne peut encore diminuer : $\delta(s_0, s_i) < d[s_i] < +\infty$
 - s_i est noir si sa borne ne peut plus diminuer : $d[s_i] = \delta(s_0, s_i)$ et tous les arcs partant de si peuvent être relâchés
- A chaque itération, un sommet gris est colorié en noir et ses arcs sont relâchés
 - Stratégie gloutonne pour choisir ce sommet gris : sommet gris minimisant d
 - Ne marche que si tous les coûts sont positifs : Précondition à Dijkstra : Pour tout arc $(s_i, s_i) \in A$, $cout(s_i, s_i) > 0$


```
Algorithm 4: Dijkstra(g, c, s_0)
foreach s_i \in S do
    d[s_i] = +\infty;
   \pi[s_i] = null;
    Colorier si en blanc;
d[s_0] = 0;
Colorier s<sub>0</sub> en gris;
while il existe un sommet gris do
    Soit s_i le sommet gris tel que d[s_i] soit minimal ;
    foreach s_i \in Successeur(s_i) do
        if si est blanc ou gris then
            relacher((s_i, s_i), \pi, d);
            if si est blanc then
                Colorier si en gris;
    Colorier si en noir ;
```

Déroulez l'algorithme de Dijkstra sur le graphe suivant :

Si	Arcs Relachés	d[a]	d[b]	d[c]	d[d]	d[e]
а		0	∞	∞	∞	∞
а	$\{(a,b),(a,e)\}$	0	3	∞	∞	5
b	$\{(b,c),(b,e)\}$	0	3	9	∞	4
e	$\{(e,b),(e,c),(e,d)\}$	0	3	7	10	4
С	$\{(c,d)\}$	0	3	7	9	4
Si	Arcs Relachés	$\pi[a]$	$\pi[b]$	$\pi[c]$	$\pi[d]$	$\pi[e]$
а		null	null	null	null	null
а	$\{(a,b),(a,e)\}$	null	а	null	null	а
b	$\{(b,c),(b,e)\}$	null	а	b	null	b
e	$\{(e,b),(e,c),(e,d)\}$	null	а	e	e	b
С	$\{(c,d)\}$	null	а	e	С	b

Complexité pour un graphe ayant n sommets et p arcs?

- O(n²) si recherche linéaire du sommet gris minimisant d
- O((n+p) * log(n)) si les sommets gris sont stockés dans un tas binaire

Programmation dynamique pour le calcul de plus courts chemins

Programmation dynamique

- Idée : Décomposer le problème en sous-problèmes (diviser pour régner)
 - Définition de la solution optimale par des équations récursives
 - Calculer en partant des cas de base
 - Ne pas recalculer plusieurs fois la même chose; "Mémoization"
- Proposé par Bellman (1952) pour résoudre des problèmes de planification

Equations récursives pour calculer des plus courts chemins :

- Utiliser l'optimalité des sous-structures pour décomposer le problème
- $\delta^k(s_i)$ = longueur du plus court chemin de s_0 jusque s_i passant par au plus k arcs
- Définition récursive (sur k) de $\delta^k(s_i)$:
 - Si k = 0: $\delta^0(s_0) = 0$ et $\delta^0(s_i) = +\infty$, $\forall s_i \in S \{s_0\}$
 - Si k > 1: $\delta^k(s_i) = min(\{\delta^{k-1}(s_i)\} \cup \{\delta^{k-1}(s_i) + c(s_i, s_i) | s_i \in pred(s_i)\})$
- Pour quelle valeur de k a-t-on $\delta^k(s_i) = \delta(s_0, s_i)$?

Algorithm 5: Bellman-Ford (g, c, s_0)

```
foreach s_i \in S do
    d[s_i] = +\infty;
    \pi[s_i] = null;
    Colorier s_i en blanc;
d[s_0] = 0;
for k \leftarrow 1 to |S| - 1 do
    foreach (s_i, s_i) \in A do
        relacher((s_i, s_i), \pi, d);
```

Algorithme de Bellman-Ford

Algorithm 6: Bellman-Ford (g, c, s_0)

Détecter les circuits absorbants :

Tester si $\exists (s_i, s_i) \in A$ tel que $d[s_i] > d[s_i] + cout(s_i, s_i)$

Complexité pour un graphe ayant n sommets et p arcs :

- O(np)
- Possibilité d'améliorer les performances (sans changer la complexité) :
 - Arrêter dès que d n'est plus modifié
 - Ne relâcher que les arcs (s_i, s_i) pour lesquels $d[s_i]$ a été modifié

	d[a]	d[b]	d[c]	d[d]	d[e]
init	0	∞	∞	∞	∞
k = 1	0	3	∞	∞	4
k=2	0	3	8	11	4
k=3	0	3	8	10	4
k=4	0	3	7	9	4
		_		-	
	π[a]	π[b]	$\pi[c]$	$\pi[d]$	$\pi[e]$
init	π[<i>a</i>]	$\pi[b]$	π[c] null	π[d] null	π[e] null
init <i>k</i> = 1					
l	0	null	null	null	null
k = 1	0 0	null a	null null	null null	null a