Algoritmos y Estructuras de Datos I

Primer Cuatrimestre 2018

Guía Práctica 2 Secuencias y Cuantificadores

1. Secuencias

Ejercicio 1. ★ Evaluar las siguientes expresiones:

- a) $|\langle 4, 3, 1 \rangle|$
- b) addFirst $(\pi, \langle 2, 3, 5, 7, 11 \rangle)$
- c) (0, 1, 2, 3)[3]
- d) concat($\langle 2, 3 \rangle, \langle 5, 7, 11 \rangle$)
- e) head(tail($\langle 5, 6, 7, 8 \rangle$))

- $f) \ \mathsf{subseq}(\langle 2, 3, 5, 7, 11 \rangle, 0, 3)$
- g) $\pi \in \langle 2, 3, 5, 7, 11 \rangle$
- h) subseq((2, 3, 5, 7, 11), 3, 2)
- i) $1 \in \langle 1, 2, 3, 4, 5 \rangle$
- j) subseq((2, 3, 5, 7, 11), 0, 65536)

Ejercicio 2. \star Sea x de tipo seq $\langle Z \rangle$. ¿Cuáles de las siguientes igualdades sobre secuencias son válidas?

- a) |x| = |tail(x)| + 1
- b) x = subseq(x, 0, |x| 1)
- c) $x = \operatorname{subseq}(x, 0, |x|)$
- d) concat(addFirst(3, x), y) = addFirst(3, concat(x, y))
- e) $x = \mathsf{addFirst}(\mathsf{head}(x), \mathsf{tail}(x))$
- f) x[0] = head(x)
- g) $i \in x = \mathsf{head}(\mathsf{subseq}(x, i, i + 1))$
- h) tail(x) = subseq(x, 1, |x|)

En los casos incorrectos, ¿puede dar condiciones sobre las listas en cuestión para que lo sean?

Ejercicio 3. \bigstar Sea s_0, s_1 secuencias de tipo T y e un elemento de tipo T. Indicar para cada una de las siguientes afirmaciones si son verdaderas o falsas. En caso de ser falsa, mostrar un contraejemplo.

- a) $|addFirst(e, s_0)| = 1 + |s_0|$
- b) $|\mathsf{addFirst}(e, s_0)| = |\mathsf{tail}(s_0)|$
- c) $|\operatorname{concat}(s_0, s_1)| = |s_0| + |s_1|$
- d) $s_0 = tail(addFirst(e, s_0))$
- e) head(addFirst (e, s_0)) = e
- f) $addFirst(e, s_0) = tail(s_0)$
- g) $head(addFirst(e, tail(s_0))) = head(tail(addFirst(e, s_0)))$
- h) addFirst $(e, s_0)[0] = e$
- i) $addFirst(e, s_0)[0] = head(addFirst(e, s_0))$

Ejercicio 4. ★ Escriba las siguientes predicados auxiliares sobre secuencias de enteros, aclarando los tipos de los parámetros que recibe:

- a) capicúa, que es verdadera sii una secuencia es capicúa. (Por ejemplo, (0,2,1,2,0) es capicúa y (0,2,1,4,0) no).
- b) esPrefijo, que es verdadera sii una secuencia es prefijo de otra.
- c) está Ordenada, que es verdadera sii la secuencia está ordenada de menor a mayor.

- d) todos Primos, que es verdadera sii todos los elementos de la secuencia son números primos.
- e) todos Iquales, que es verdadera sii todos los elementos de la secuencia son iguales.
- f) hay Uno Par Que Divide Al Resto, que determina si hay un elemento par en la secuencia que divide a todos los otros elementos de la secuencia.
- g) hay Uno En Posición Par Que Divide Al Resto, que determina si hay un elemento en una posición par de la secuencia que divide a todos los otros elementos contenidos en la secuencia.
- h) sinRepetidos, que determina si la secuencia no tiene repetidos.
- i) otroMayorADerecha, que determina si todo elemento de la secuencia, salvo el último, tiene otro mayor a su derecha.
- j) todo Es Múltiplo, que determina si todo elemento de la secuencia es múltiplo de algún otro.
- k) enTresPartes, que determina si en la secuencia aparecen (de izquierda a derecha) primero 0s, después 1s y por último 2s. Por ejemplo $\langle 0, 0, 1, 1, 1, 1, 2 \rangle$ cumple con enTresPartes, pero $\langle 0, 1, 3, 0 \rangle$ o $\langle 0, 0, 0, 1, 1 \rangle$ no. ¿Cómo modificaría la expresión para que se admitan cero apariciones de 0s, 1s y 2s (es decir, para que por ejemplo $\langle 0, 0, 0, 1, 1 \rangle$ o $\langle 0 \rangle$ sí cumplan enTresPartes)?

Ejercicio 5. \bigstar Sean P(x:Z) y Q(x:Z) dos predicados cualesquiera que nunca se indefinen y sea s una secuencia de enteros. Escribir el predicado asociado a cada uno de los siguientes enunciados:

- a) "Si un entero en s cumple P, también cumple Q"
- b) "Todos los enteros de s que cumplen P, no cumplen Q"
- c) "Todos los enteros de s que están en posiciones pares y cumplen P, no cumplen Q"
- d) "Todos los enteros de s que cumplen P y están en posiciones que cumplen Q, son pares"
- e) "Si hay un entero en s que no cumple P entonces ninguno en s cumple Q"
- f) "Si hay un entero en s que no cumple P entonces ninguno en s cumple Q; y si todos los enteros de s cumplen P entonces hay al menos dos elementos de s que cumplen Q"

Ejercicio 6. ★

Sean P(x : Z) y Q(x : Z) dos predicados cualesquiera que nunca se indefinen, sea s una secuencia de enteros y sean a, b y k enteros. Decidir en cada caso la relación de fuerza entre las dos fórmulas:

- a) P(3) y $(\forall k : Z)((0 \le k < 10) \to P(k))$
- b) $P(3) \text{ y } k > 5 \land (\forall i : \mathbf{Z})((0 \le i < k) \to P(i)))$
- c) $(\forall n : \mathbf{Z})((n \in s \land P(n)) \rightarrow Q(n)) \ \mathbf{y} \ (\forall n : \mathbf{Z})((n \in s) \rightarrow Q(n))$
- d) $(\exists n : \mathbb{Z})(n \in s \land P(n) \land Q(n)) \ y \ (\forall n : \mathbb{Z})((n \in s) \rightarrow Q(n))$
- e) $(\exists n : \mathbb{Z})(n \in s \land P(n) \land Q(n)) \lor |s| > 0 \land ((\forall n : \mathbb{Z})((n \in s) \rightarrow Q(n)))$
- f) $(\exists n : \mathbf{Z})(n \in s \land P(n) \land Q(n)) \ \mathbf{y} \ (\forall n : \mathbf{Z})(n \in s \rightarrow (P(n) \land Q(n)))$

Ejercicio 7. Sea s una secuencia de enteros. Determinar si los siguientes pares de expresiones son equivalentes. En caso de que no lo sean, ilustrar con ejemplos.

- a) \bullet $(\forall i : Z)((0 \le i < |s|) \to_L ((\forall j : Z)(0 \le j < |s|) \land i < j) \to_L s[i] < s[j])$ y
 - $\bullet (\forall j: \mathbf{Z})((0 \leq j < |s|) \rightarrow_L ((\forall i: \mathbf{Z})(0 \leq i < |s|) \land i < j) \rightarrow_L s[i] < s[j])$
- b) \blacksquare $(\exists i: Z)(0 \le i < |s| \land_L ((\exists j: Z)((0 \le j < |s| \land i < j-1) \land_L TodosIquales(subseq(s,i,j)))))$ y
 - $\blacksquare \ (\exists j: \mathbf{Z}) (0 \leq j < |s| \land_L ((\exists i: \mathbf{Z}) ((0 \leq i < |s| \land i < j-1) \land_L \ \mathit{TodosIguales}(\mathsf{subseq}(s, i, j))))).$

donde todos Iguales es el definido en el item e del ejercicio 6.

- c) \bullet $(\forall i : Z)(0 \le i < |s| \to_L ((\exists j : Z)(0 \le j < |s| \land_L s[i] = s[j]))$ y
 - $(\exists j : \mathbf{Z})(0 \le j < |s| \land_L ((\forall i : \mathbf{Z})(0 \le i < |s|) \rightarrow_L s[i] = s[j]))$

2. Sumatorias y Productorias

Ejercicio 8. ★ Evaluar las siguientes expresiones:

a)
$$\sum_{i=0}^{2} \langle 4, 3, 1 \rangle [i]$$

b)
$$\sum_{i=0}^{0} \langle \pi, 2, 3, 5, 7, 11 \rangle [i]$$

c)
$$\sum_{i=0}^{-1} \langle 1, 2, 3, 4, 5 \rangle [i]$$

d)
$$\sum_{i=0}^{5} \frac{1}{i}$$

e)
$$\sum_{i=0}^{\sqrt{-1}} \langle 2, 3, 5, 7, 11 \rangle [i]$$

f)
$$\sum_{i=15}^{2} \langle 2, 3, 5, 7, 11 \rangle [i]$$

g)
$$\sum_{i=2}^{15} \langle 2, 3, 5, 7, 11 \rangle [i]$$

h)
$$\sum_{i=1}^{3} \langle 2, 3, 5, 7, 11 \rangle [i]$$

i)
$$\sum_{i=0}^{4} \langle 1, 1, 1, 1, 1 \rangle [i]$$

j)
$$\sum_{i=0}^{4} \langle 0, 0, 0, 0, 0 \rangle [i]$$

Ejercicio 9. ★ Escribir un predicado que usando sumatorias indique si un número entero es primo .

Ejercicio 10. Sea s una secuencia de elementos de tipo Z. Escribir una expresión tal que:

- a) Cuente la cantidad de veces que aparece el elemento e de tipo Z en la secuencia s.
- b) Sume los elementos en las posiciones impares de la secuencia s.
- c) Sume los elementos mayores a 0 contenidos en la secuencia s.
- d) Sume los inversos multiplicativos $(\frac{1}{x})$ de los elementos contenidos en la secuencia s distintos a 0.
- e) Cuente la cantidad de elementos primos no repetidos en la secuencia s.

Ejercicio 11. Escribir un predicado que indique si una secuencia es permutación de otra secuencia. Una secuencia es permutación de otra secuencia si ambas secuencias poseen los mismos elementos y la misma cantidad de apariciones por elemento. Ejemplos:

- $\langle 1, 2, 3 \rangle$ es permutación de $\langle 3, 2, 1 \rangle$
- $\langle 1, 2, 3 \rangle$ es permutación de $\langle 1, 2, 3 \rangle$
- $\langle 1, 1, 2, 3 \rangle$ es permutación de $\langle 3, 2, 1, 1 \rangle$
- $\langle 1, 2, 3 \rangle$ no es permutación de $\langle 1, 1, 3 \rangle$
- $\langle 1, 1, 2, 3 \rangle$ es permutación de $\langle 1, 3, 2, 1 \rangle$

Ejercicio 12. \star Sea m una secuencia de secuencias de tipo Z, escribir una expresión tal que:

- a) Sume los elementos contenidos en todas las secuencias.
- b) Cuente la cantidad de secuencias vacías
- c) Sume el valor del último elemento de cada secuencia no vacía
- d) Retorne True sii todas las secuencias poseen el mismo tamaño.
- e) Retorne la suma de todas las posiciones impares de cada secuencia.

Ejercicio 13. Sea s un String, escribir una expresión que cuente la cantidad de apariciones del caracter vacío ('').

Ejercicio 14. ★ Sea s un *String*, escribir una expresión que cuente la cantidad de apariciones de un dígito (caracteres '0' al '9').