THE MAXIMAL ORDERS OF FINITE SUBGROUPS IN $GL_n(\mathbf{Q})$

SHMUEL FRIEDLAND

(Communicated by Ronald M. Solomon)

ABSTRACT. We give a relatively simple proof that the orthogonal group over the integers is the unique finite subgroup (up to a conjugation) in $GL_n(\mathbf{Z})$ of the maximal order for n >> 1.

§0. Introduction

In our recent paper [Fri] the following problem arose naturally. Let $\Gamma \leq GL_n(\mathbf{Z})$ be a finite group. What is the exact upper bound for $|\Gamma|$? (It is well known that any finite group in $GL_n(\mathbf{Q})$ is conjugate to a finite group in $GL_n(\mathbf{Z})$, e.g. [Ser, p. 124].) In [Fri] we conjectured that $O_n(\mathbf{Z})$, the orthogonal group over the integers whose order is $2^n n!$, has the maximal order for all n. Very recently, Feit [Fei] gave the complete solution of the problem of characterizing the finite groups of the maximal order in $GL_n(\mathbf{Q})$ and their orders for all n. The orthogonal group is maximal exactly for n=1,3,5 and n>10. For n=2,4,6,7,8,9,10, Feit characterizes the corresponding maximal groups. One of the main ingredients of Feit's proof for large values of n is the unpublished paper of Weisfeiler [Wei2] which gives almost sharp estimates of the Jordan number $j(n) \leq (n+2)!$ for n>63. (Jordan's theorem claims that any finite group $G \subset GL_n(\mathbf{C})$ contains a normal abelian subgroup whose index is at most j(n). Note that $j(n) \geq (n+1)!$ and it is a common belief that j(n) = (n+1)! for n >> 1.)

The purpose of this paper is to give a relatively simple proof of our conjecture that the orthogonal group is the unique (up to a conjugation) finite subgroup in $GL_n(\mathbf{Z})$ of the maximal order for n >> 1. Let $\Delta \leq GL_n(\mathbf{Q})$ be a finite abelian group. We prove the sharp inequalities:

$$\begin{aligned} |\Delta| &\leq 6^{\lfloor \frac{n}{2} \rfloor} 2^{n-2\lfloor \frac{n}{2} \rfloor}, \\ |\Delta| &\leq 3^{\lfloor \frac{n}{2} \rfloor}, \quad \text{if} \quad 2 \not\mid |\Delta|, \\ |\Delta| &\leq 2^n, \quad \text{if} \quad 3 \not\mid |\Delta|. \end{aligned}$$

The proof of the above inequality uses the well known fact that if Δ acts irreducibly on \mathbf{Q}^n then Δ imbeds in a cyclotomic extension field of \mathbf{Q} of degree n at most, and $|\Delta|$ is bounded appropriately. Let $\Gamma \leq GL_n(\mathbf{Z})$ be a finite group with a normal abelian subgroup $\Delta \leq \Gamma$ of the maximal order. Then $|\Gamma| \leq j(n)|\Delta|$. We deduce our main result by combining (0.1) with Weisfeiler's asymptotic bound [Wei1]

$$(0.2) j(n) < n^{a \log n + b} n!.$$

Received by the editors August 5, 1996.

1991 Mathematics Subject Classification. Primary 20C10, 20G30.

©1997 American Mathematical Society

We remark that the problem of estimating the size of a finite group $\Gamma \leq GL_n(\mathbf{Z})$ was considered by Minkowski [Min]. In fact, Minkowski [Min] found $\kappa(n)$ —the least common multiple of all finite subgroups of $GL_n(\mathbf{Z})$. The right asymptotic order of $\kappa(n)$ was recently determined by Y. Katznelson [Kat]. See [R-T] for weaker bounds on $|\Gamma|$.

§1. Preliminary results

Lemma 1. Let F be a field of characteristic 0 and assume that $\Delta \leq GL_n(F)$ is a finite abelian group. Let

$$R(\Delta) = \sum_{i=1}^{s} R_i$$
, and $F^n = \sum_{i=1}^{s} \oplus W_i$, $W_i = R_i F^n$, $i = 1, ..., s$,

be a decomposition of $R(\Delta)$ to $R(\Delta)$ -simple ideals and the induced decomposition of F^n into Δ -invariant subspaces. Let $\Delta_i = \Delta | W_i, i = 1, ..., s$, and denote by \mathbf{K}_i the minimal extension of F which splits the characteristic polynomial of each element in Δ_i . Then Δ_i is cyclic of order m_i and $[\mathbf{K}_i : F] = \frac{\phi(m_i)}{\phi(p_i)}$, where p_i is the maximal order of m_i —th root of unity contained in F. Furthermore, $\dim_F W_i = \frac{d_i \phi(m_i)}{\phi(p_i)}$, i = 1, ..., s. The ring $R(\Delta_i)$ generated by $\Delta_i \subset End_F(W_i)$ is simple and isomorphic to R_i . Finally, Δ is isomorphic to a subgroup of $\sum_{i=1}^{s} \Phi_i$.

Proof. Let $V \leq F^n$ be a Δ -irreducible subspace, i.e. V is a simple $R(\Delta)$ -module. Set $\Theta = \Delta | V$. Assume that $l = \dim V$. We view $\Theta \leq GL_l(F)$. We claim that Θ is a cyclic group. Observe that the centralizer $C \subset M_l(F)$ of $R := R(\Theta)$ is exactly the ring of R endomorphisms of V. By Schur's lemma C is a division ring. In particular, R generates a commutative division ring D, i.e. D is a field. Hence, R is a simple ring. For each k the equation $x^k = e, x \in \Theta$, has at most k solutions. Therefore $\Theta \leq D$ is cyclic of order m. Assume that Θ is generated by $\theta \in GL_l(F)$. As V is Θ -irreducible space it follows that the characteristic polynomial of θ is irreducible over F. Since the order of θ is m we deduce that $det(xI - \theta)|x^m - 1$. Let ζ be an m - th primitive root of unity. Then degree of cyclotomic polynomial $\sigma_m(x)$ corresponding to all m - th primitive roots of 1 is $\phi(m)$. Let $F \cap \mathbb{Q}[\zeta] = \mathbb{Q}[\xi]$ where ξ is a p - th primitive root and $p \mid m$. Then $det(xI - \theta)$ is an irreducible polynomial

of degree l over $\mathbf{Q}[\xi]$ so that the extension of $\mathbf{Q}[\xi]$ with respect to $det(xI - \theta)$ yields $\mathbf{Q}[\zeta]$. Hence $l = \frac{\phi(m)}{\phi(p)}$.

Consider the above decomposition of $R(\Delta)$ to simple ideals. The simplicity of each R_i implies that $R_jR_i=R_iR_j=0, j\neq i$. Hence this decomposition of $R(\Delta)$ induces the above decomposition of F^n . The natural projection $\pi:\Delta\to \sum_1^s \oplus \Delta_i$ is a faithful homomorphism. Hence, $\Delta\cong\pi(\Delta)$. Let $W_i=\sum_{j=1}^{d_i} \oplus V_{ij}$ be a decomposition to Δ_i -irreducible subspaces. Let $\Theta_{ij}=\Delta_i|V_{ij}$. The above arguments show that Θ_{ij} is cyclic and $R(\Theta_{ij})$ is simple. We claim that $\Delta_i\cong\Theta_{ij}$. Assume to the contrary that $\pi_{ij}:\Delta_i\to\Theta_{ij}$ has a nontrivial kernel $\Psi_{ij}\leq\Delta_i$. Consider the ideal $R_{ij}\subset R_i$ generated by all elements in R_i that act trivially on V_{ij} . Note that $\psi-e\in R_{ij}$ for any $\psi\in\Phi_{ij}$. Thus R_{ij} is a nontrivial $R(\Delta)$ -submodule of R_j which contradicts the simplicity of R_j . Hence

$$[\mathbf{K_i} : F] = \frac{\phi(m_i)}{\phi(p_i)}, \quad \dim_F W_i = \frac{d_i \phi(m_i)}{\phi(p_i)}, \quad i = 1, ..., s.$$

Clearly $R(\Delta_i) \cong R_i$ and these rings are simple.

Theorem 1. Let F be a field of characteristic 0 and assume that $\Gamma \leq GL_n(F)$ is a finite group with a normal abelian subgroup $\Delta \triangleleft \Gamma$. Then there exists a decomposition $F^n = \sum_{i=1}^t \oplus W_i$ to Γ -invariant subspaces such that each W_i has a decomposition to Δ -invariant subspaces $W_{ij} = \sum_{i=1}^{k_i} \oplus W_{ij}, i = 1, ..., t$, with the following properties: If we set

$$G_i = \Gamma | W_i, \quad D_i = \Delta | W_i, \quad \tilde{\Gamma}_{ij} = \{ \gamma : \ \gamma \in \Gamma, \gamma(W_{ij}) = W_{ij} \},$$

$$\Gamma_{ij} = \tilde{\Gamma}_{ij} | W_{ij}, \quad \Delta_{ij} = \Delta | W_{ij}, \quad i = 1, ..., t, \quad j = 1, ..., k_i,$$

then each Δ_{ij} is a normal cyclic subgroup of Γ_{ij} of order m_i and $\dim_F W_{ij} = \frac{d_i \phi(m_i)}{\phi(p_i)}$, where p_i is the maximal order of m_i —th root of unity contained in F. Γ acts as a transitive subgroup of permutation $P_i \leq S_{k_i} \leq GL_{k_i}(\mathbf{Z})$ on $\{W_{i1}, ..., W_{ik_i}\}, i = 1, ..., t$. In particular, Γ is a subgroup of the direct product $G_1 \times \cdots \times G_t$ and each G_i is isomorphic to a subgroup of $\Gamma_{i1} \wr P_i$.

Assume that $\Gamma \leq GL_n(F)$ is a finite strongly maximal subgroup, i.e. Γ is not isomorphic to any proper subgroup of a finite group $\Gamma' \leq GL_n(F)$. Let $\Delta \triangleleft \Gamma$ be a maximal normal abelian subgroup of the maximal order. Consider the above decomposition of F^n to Γ and Δ -invariant subspaces. Then

(1.1)
$$\Gamma = G_1 \times \cdots \times G_t, \quad G_i \cong \Gamma_{i1} \wr S_{k_i}, \quad i = 1, ..., t.$$

For $1 \leq q < r \leq t$ $\Gamma_{q1} \ncong \Gamma_{r1}$. Any normal abelian subgroup of $\Phi \triangleleft \Gamma_{i1}$ satisfies the inequality $|\Phi| \leq |\Delta_{i1}|$. If F is a subfield of the field of complex numbers \mathbf{C} then $[\Gamma_{ij} : \Delta_{ij}] \leq j(\dim_F W_{ij})$.

Proof. Use Clifford's Theorem and Schur's Lemma (as in the proof of Lemma 1) to deduce the first part of the theorem which ends with the statement: Γ is a subgroup of the direct product $G_1 \times \cdots \times G_t$ and each G_i is isomorphic to a subgroup of $\Gamma_{i1} \wr P_i$.

Assume now that $\Gamma \leq GL_n(F)$ is a strongly maximal finite group. Thus $\Gamma \leq G = G_1 \times \cdots \times G_t \leq GL_n(F)$. The strong maximality of Γ implies that $\Gamma = G$. The maximality of Δ yields $\Delta = D_1 \times \cdots \times D_t$. Recall that G_i is isomorphic to a subgroup of $\Gamma_{i1} \wr P_i$. Observe next $\Gamma_{i1} \wr S_{k_i}$ can be viewed as a finite group in $GL_{\dim_F W_i}(F)$ as follows: View the group $\tilde{G}_i = \Gamma_{i1} \times \cdots \times \Gamma_{i1}$ (k_i times) as a group of block diagonal $k_i \times k_i$ matrices. Set $G'_i = \tilde{G}_i S'_{k_i}$ where $S'_{k_i} \cong S_{k_i}$ is the

group $k_i \times k_i$ block permutation matrix whose all square blocks are the identity matrices of dimension $\dim_F W_{i1}$. Then $\Gamma_{i1} \wr S_{k_i} \cong G_i' \leq GL_{\dim_F W_i}(F)$. The strong maximality of Γ yields that $G_i \cong \Gamma_{i1} \wr S_{k_i}$.

Suppose that $\Gamma_{q1} \cong \Gamma_{r1}, 1 \leq q < r \leq t$. Then $G_q \times G_r$ is isomorphic to a proper subgroup $\Gamma_{q1} \wr S_{k_q+k_r}$. This contradicts the strong maximality of Γ .

We now show that $\Delta_{i1} \triangleleft \Gamma_{i1}$ has maximal order out of all normal abelian subgroups of Γ_{i1} . As W_{ij} is a Δ -invariant subspace for $j = 1, ..., k_i$ we deduce that $D_i \leq \Delta_{i1} \times \cdots \times \Delta_{k_i}$. The maximal order of Δ yields that D_i is a normal abelian subgroup of G_i of the maximal order. Hence

$$D_i = \Delta_{i1} \times \cdots \times \Delta_{k_i}, \quad |D_i| = |\Delta_{i1}|^{k_i}.$$

Suppose that $\Delta'_{i1} \triangleleft \Gamma_{i1}$. Then G_i has a normal abelian subgroup isomorphic to $\Delta'_{i1} \times \cdots \times \Delta'_{i1}$ (k_i times). As Δ_i has a maximal order we deduce that $|\Delta'_{i1}| \leq |\Delta_{i1}|$. Suppose that F is a subfield of \mathbf{C} . Then Jordan's theorem yields that $[\Gamma_{ij}:\Delta_{ij}] \leq j(\dim_F W_{ij})$.

In what follows we need the following lemmas.

Lemma 2. Let $1 < l \in \mathbb{Z}$ and denote by $\zeta_{l,j}, j = 1, ..., \phi(l)$, all l-primitive roots of 1. Set $\psi(l) = \max_{1 < j < \phi(l)} |1 - \zeta_{l,j}|$. Then

$$\psi(2k-1) = 2\cos\frac{\pi}{2(2k-1)},$$

$$\psi(2(2k-1)) = 2|\cos\frac{\pi}{(2k-1)}|,$$

$$\psi(2^m(2k-1)) = 2\cos\frac{\pi}{2^m(2k-1)}, \quad k \ge 1, \quad m > 1.$$

Proof. Clearly, $\psi(2)=2$. Assume now that $l=2k-1, k\geq 1$. Then $\zeta=e^{\frac{2\pi\sqrt{-1}k}{2k-1}}$ is a primitive l-root of unity. As $-1=e^{\frac{2\pi\sqrt{-1}(k-\frac{1}{2})}{2k-1}}$ we easily deduce that ζ is the closest l-root of 1 to -1. Hence, $\psi(2k-1)=|1-\zeta|=2\cos\frac{\pi}{2(2k-1)}$. Assume now that l=2(2k-1), k>1. As -1 is a nonprimitive l-root the above argument shows that $\zeta=e^{\frac{2\pi\sqrt{-1}(2k+1)}{2(2k-1)}}$ is the closest l-primitive root to -1 and the lemma follows for this case. Assume finally that $l=2^m(2k-1), m>1$. Then $e^{\frac{2\pi\sqrt{-1}(2m-1)(2k-1)+1}{2^m(2k-1)}}$ is the closest l-primitive root to -1 and the lemma follows in this case too.

Lemma 3. Let $m \neq 1, 2, 4, 6$. Then $m \leq 3.5^{\frac{\phi(m)}{2}}$.

Proof. Let

$$m = \prod_{i=1}^{k} p_i^{r_i}, \quad 2 \le p_1 < \dots < p_k, \quad 1 \le r_i, \quad i = 1, \dots, k,$$

be the prime decomposition of m > 1. Recall that $\phi(m) = \prod_{i=1}^{k} p_i^{r_i-1}(p_i-1)$. A simple induction on n proves that $n \geq 8 \Rightarrow n < 3^{\frac{n}{4}}$; $n \geq 3 \Rightarrow 3^{\frac{n-1}{2}}$. Then for every prime $p \geq 3$ and $r \geq 1$

$$p^r \le 3^{\frac{r(p-1)}{2}} \le 3^{\frac{p^{r-1}(p-1)}{2}}.$$

For p=2 and $r\geq 3$

$$2^r < 3^{\frac{2^r}{4}} = 3^{\frac{\phi(2^r)}{2}}.$$

Thus $m \leq 3^{\frac{\phi(m)}{2}}$ if either $p_1 \geq 3$ or $p_1 = 2$ and $k_1 \geq 3$. It is left to consider the cases $p_1 = 2$ and $k_1 = 1, 2$. A straightforward calculation shows that the lemma is valid for $m \leq 30$. Suppose first that $p_1 = 2$, $k_1 = 1$, i.e. m = 2(2q - 1). For 2q - 1 > 15 we have $\phi(2q - 1) \geq 12$. Then

$$3.5^{\frac{\phi(m)}{2}} = 3.5^{\frac{\phi(2q-1)}{2}} = \left(\frac{3.5}{3}\right)^{\frac{\phi(2q-1)}{2}} 3^{\frac{\phi(2q-1)}{2}}$$
$$\geq \left(\frac{3.5}{3}\right)^{6} (2q-1) > m, \quad m = 2(2q-1) > 30.$$

Assume that $p_1 = 2$, $k_1 = 2$, i.e. m = 4(2q - 1). Then $\phi(m) = 2\phi(2q - 1)$. For 2q - 1 > 7

$$3^{\frac{\phi(m)}{2}} = 3^{\phi(2q-1)} \ge (2q-1)^2 > \frac{7}{4}m, \quad m = 4(2q-1) > 30,$$

and the lemma follows.

For $A \in M_n(\mathbf{C}), x \in \mathbf{C}^n$, let A^*, x^* be the respective conjugate transposes. Assume that F is a subfield of \mathbf{C} and suppose that $\Gamma \leq GL_n(F)$ is a finite group. Set $S(\Gamma) = \sum_{\gamma \in \Gamma} \gamma^* \gamma$. Then $S(\Gamma) \in M_n(\mathbf{C})$ is a positive definite matrix. Define an inner product on \mathbf{C}^n :

$$(x,y) = y^* S(\Gamma) x, \quad x, y \in \mathbf{C}^n.$$

Then Γ is a finite group of unitary matrices with respect to (\cdot, \cdot) . If F is invariant under the conjugation, i.e. $\bar{F} = F$, then $S(\Gamma) \in GL_n(F)$ and (\cdot, \cdot) is an inner product on F^n . Suppose furthermore that $\Gamma \leq GL_n(\mathbf{R})$. In that case we view Γ as a subgroup of orthogonal matrices (with respect to (\cdot, \cdot)).

Assume in addition that Γ is abelian. Then \mathbf{C}^n has an orthonormal basis consisting of the common eigenvectors of the elements of Γ . Since the complex eigenvectors come in conjugate pairs we deduce that \mathbf{R}^n has a Γ -invariant orthogonal decomposition $V_1 \oplus \cdots \oplus V_m$, where each V_i is of dimension one or two. Assume that V_i is two dimensional. Then $\gamma^{(i)} = \gamma | V_i, \gamma \in \Gamma$, is a 2×2 orthogonal matrix. We call $\gamma^{(i)}$ a rotation if its two eigenvalues are conjugate complex numbers of the form $e^{\sqrt{-1}\theta}$, $e^{-\sqrt{-1}\theta}$. Otherwise $\gamma^{(i)}$ is called a reflection and its eigenvalues are 1, -1.

For $A \in M_n(\mathbf{C})$ we denote by ||A|| the spectral norm of A with respect to the given inner product (\cdot, \cdot) :

$$||A||^2 = \max_{(x,x)=1} (Ax, Ax).$$

§2. Main results

Theorem 2. Let $\Gamma \leq GL_n(\mathbf{R})$ be a finite abelian group over the field of real numbers \mathbf{R} . Assume that each $A \in \Gamma$ is conjugate to some rational valued matrix $\tilde{A} \in GL_n(\mathbf{Q})$, i.e. $A = T\tilde{A}T^{-1}, T \in GL_n(\mathbf{R})$. Then (0.1) holds. All the bounds in (0.1) are sharp.

Proof. As Γ is finite, each $\hat{A} \in GL_n(\mathbf{Q})$ has a finite order. It is known that \hat{A} is similar to a matrix $\hat{A} \in GL_n(\mathbf{Z})$, e.g. [Ser, p. 124]. By considering the inner product induced by $S(\Gamma) \in GL_n(\mathbf{R})$ we may assume that Γ is a finite group of orthogonal matrices. As Γ is abelian we fix a real orthonormal basis so that each $A \in \Gamma$ is a direct sum of 2×2 or 1×1 real orthogonal matrices. Obviously, each 1×1 block is equal to ± 1 . Assume that we factored out the maximal number of

 1×1 blocks. Let $\Gamma' \leq \Gamma$ be the subgroup of all elements which have the entry 1 on 1×1 blocks. It easily follows that Γ' is normal and $|\Gamma/\Gamma'| \leq 2^k$, where k is the number of 1×1 blocks. Note that 2m = n - k, where m is the number of 2×2 blocks in each $A \in \Gamma$. Let $A, B \in \Gamma'$. Then $A_1 \oplus \cdots \oplus A_m, B_1 \oplus \cdots \oplus B_m$ are the 2×2 components of A, B respectively. We claim that each A_i, B_i is a rotation on \mathbf{R}^2 . Assume to the contrary that A_i is a reflection on \mathbf{R}^2 . Since AB = BA it follows that $B_i = A_i, -A_i, I, -I$. Obviously, by changing the orthogonal basis in \mathbf{R}^2 we get that all A_i are diagonal matrices, contrary to our assumption that we factored out the maximal number of 1×1 blocks. Let θ_i, ϕ_i be the the angles of rotations A_i, B_i respectively in \mathbf{R}^2 for i = 1, ..., m.

We now prove the first inequality of the theorem. Clearly, it is enough to show that $|\Gamma'| \leq 6^m$. Divide the unit circle $[0, 2\pi)$ to six equal parts each one consisting of half open and half closed intervals of length $\frac{\pi}{3}$. Assume that θ_i, ϕ_i are in the same part of $[0, 2\pi)$ for i = 1, ..., m. We claim that A = B. Assume to the contrary that $A \neq B$. As

$$||A_i - B_i|| = |e^{\sqrt{-1}\theta_i} - e^{\sqrt{-1}\phi_i}|, \quad i = 1, ..., m,$$

we deduce that 0 < ||A - B|| < 1. Observe next that $||A - B|| = ||I - A^{-1}B||$. Our assumptions that each $E \in \Gamma$ is similar to $E' \in GL_n(\mathbf{Q})$ yields that $C = A^{-1}B$ is similar to $\hat{C} \in GL_{2m}(\mathbf{Z})$. As Γ is a finite group, it follows that $\hat{C}^q = I$. Hence, the spectrum of \hat{C} is a union of the roots of several cyclotomic polynomials. As $\hat{C} \neq I$, it follows from Lemma 2 that

$$||I - C|| \ge \inf_{l > 1} \psi(l) = \psi(6) = 1.$$

This contradicts our assumption that ||A - B|| < 1. Hence, A = B. Thus, the matrix A is completely determined by specifying one of the six intervals where θ_i lies for i = 1, ..., m. Hence, $|\Gamma'| \leq 6^m$. To see that this inequality is sharp observe that a companion matrix of the cyclotomic polynomial $x^2 - x + 1$ generates a cyclic group of order 6 in $GL_2(\mathbf{Z})$.

Assume now that the order of Γ is odd. Then all 1×1 blocks consist of 1. That is $\Gamma = \Gamma'$. Partition the unit circle to three half open and half closed intervals of length $\frac{2\pi}{3}$. Lemma 2 yields that

$$\inf_{k>1} \psi(2k-1) = \psi(3) = \sqrt{3}.$$

Deduce as above that if each θ_i , ϕ_i lie in the same part of $[0, 2\pi)$ for i = 1, ..., m, then A = B. Therefore $|\Gamma| \leq 3^m$. To see that this inequality is sharp observe that a companion matrix of the cyclotomic polynomial $x^2 + x + 1$ generates a cyclic group of order 3 in $GL_2(\mathbf{Z})$.

Assume finally that $3 \not | |\Gamma|$. Consider the subgroup Γ' . Partition the unit circle to four half open and half closed intervals of length $\frac{\pi}{2}$. According to Lemma 2 $\inf_{k>1,3\not \mid k}\psi(k)=\psi(4)=\sqrt{2}$. Deduce as above that if each θ_i,ϕ_i lie in the same part of $[0,2\pi)$ for i=1,...,m, then A=B. Therefore $|\Gamma'|\leq 4^m$. Hence, $|\Gamma|\leq 2^n$. This inequality is sharp for the following groups. For n=1 the theorem is sharp for $G_1=\{1,-1\}$. For n=2 the theorem is sharp for G_2 —the group of rotations of \mathbb{R}^2 by the angles $0,\frac{\pi}{2},\pi,\frac{3\pi}{2}$. Then the theorem is sharp for any group which is a direct sum of copies of G_1,G_2 . Note that if n=2m then $G_2\oplus\cdots\oplus G_2\subset SO_{2m}(\mathbf{Z})$. \square

Theorem 3. Let $\Gamma \leq GL_n(\mathbf{Q})$ be a finite group. Then there exists K so that $|\Gamma| \leq 2^n n!$ for n > K. Furthermore, $|\Gamma| = 2^n n!$ iff $\Gamma = TO_n(\mathbf{Z})T^{-1}$ for some $T \in GL_n(\mathbf{Q})$.

Proof. Let $\Gamma \leq GL_n(\mathbf{Q})$ be a finite group of the maximal order. (See for example [Fri] for a crude upper bound on $|\Gamma|$.) Then Γ is strongly maximal. Let Δ be a maximal normal abelian subgroup of Γ of the maximal order. In what follows we use the notations and the results of Theorem 1.

Set $I = \{i : 1 \le i \le t, m_i \ne 1, 2, 4, 6\}$. Let $G' \subset GL_{n'}(\mathbf{Q})$ be the direct product of all $G_i, i \in I$. Since Δ is maximal, it follows that $D' = \prod_{i \in I} \times D_i$ is a normal abelian group of the maximal order. In view of Lemma 3,

$$|D'| = \prod_{i \in I} m_i^{k_i} \le \prod_{i \in I} 3.5^{\frac{k_i \phi(m_i)}{2}} \le 3.5^{\frac{n'}{2}}.$$

Hence

$$|G'| \le j(n')3.5^{\frac{n'}{2}}.$$

Use Weisfeiler's bound (0.2) for j(l) to deduce the existence of K' such that

$$j(l)3.5^{\frac{l}{2}} < 2^{l}l!, \quad l > K'.$$

We claim that $n' \leq K'$. Assume to the contrary that n' > K'. In the decomposition $\Gamma = \prod_{1}^{t} \times G_{i}$ replace the factor G' by $O_{n'}(\mathbf{Z})$ to obtain a finite group $\Gamma' \leq GL_{n}(\mathbf{Q})$ with $|\Gamma'| > |\Gamma|$. This contradicts that Γ has the maximal order.

We now treat the cases $m_i = 1, 2, 4, 6$. For the simplicity of notation for a positive integer k we let $J_k = \{i : 1 \le i \le t, m_i = k\}$. Set $G^{(k)}$ to be the direct product of all $G_i, i \in I_k$. Assume that $G^{(k)} \le GL_{n^{(k)}}(\mathbf{Q})$.

Consider first the case $m_i = 6$. Observe that $\phi(6) = 2$. Hence, any $\Gamma_{i1} \leq GL_2(\mathbf{Q})$ (where Γ_{i1} is as in Theorem 1) is a finite group which contains a normal cyclic group Δ_{i1} of order 6. It is easy to show that $|\Gamma_{i1}| \leq 12$ and the equality holds iff $\Gamma_{i1} \cong \Lambda$ —the group of rigid motions of the hexagon. Note that $n^{(6)}$ is even. From the assumption that Γ has the maximal order it follows that $G^{(6)} \cong \Lambda \wr S_{n^{(6)}}$. Thus

$$|G^{(6)}| = 12^{\frac{n^{(6)}}{2}} (\frac{n^{(6)}}{2})!.$$

Use Stirling's formula to deduce that

$$12^{l}l! < 2^{2l}(2l)!, \quad l > K^{(6)}.$$

Hence $n^{(6)} \le 2K^{(6)}$.

We now consider the case $m_i=4$. In that case $\phi(4)=2$. Then $|\Gamma_{i1}|\leq 8$ where the equality holds iff $\Gamma_{i1}\cong O_2(\mathbf{Z})$ —the group of the rigid motions of the square. Again, $n^{(4)}$ is even. Since Γ has the maximal order it follows that $G^{(4)}\cong O_2(\mathbf{Z})\wr S_{\underline{n^{(4)}}}$. Thus

$$|G^{(4)}| = 8^{\frac{n^{(4)}}{2}} (\frac{n^{(4)}}{2})!.$$

Clearly

$$8^{l}l! < 2^{2l}(2l)!, \quad l > 1.$$

Thus, if J_4 is not empty, $n^{(4)} = 2$.

Assume that $m_1 = 1$. Then

$$|G^{(1)}| = n^{(1)}! < 2^{n^{(1)}}n^{(1)}!.$$

Hence, $J_1 = \emptyset$.

Consider now the case $m_i = 2$. As $\phi(2) = 1$ it follows that either $\Gamma_{i1} = \{1\}$ or $\Gamma_{i1} = \{\pm 1\} = O_1(\mathbf{Z})$. The assumption that Γ has the maximal order implies that $\Gamma_{i1} = O_1(\mathbf{Z})$ and $G^{(2)}$ is conjugate to $O_{n^{(2)}}(\mathbf{Z})$. Thus

$$|G^{(2)}| = 2^{n^{(2)}} (n^{(2)})!.$$

We thus showed that

(2.1)
$$|\Gamma| = |G^{(2)}||G'||G^{(4)}||G^{(6)}|, \quad n^{(2)} \ge n - r, \quad r = (K' + 2 + 2K^{(6)}),$$

$$|G'||G^{(4)}||G^{(6)}| \le \tilde{K}.$$

Let L be the smallest number so that

(2.2)
$$\frac{|O_{L+1}(\mathbf{Z})|}{|O_{L}(\mathbf{Z})|} = 2(L+1) > \tilde{K}.$$

Assume that n > L + r. Use (2.1) and (2.2) to deduce that if one of the groups $G', G^{(4)}, G^{(6)}$ appears in the decomposition of Γ then by discarding one of these subgroups and enlarging correspondingly the size of the group $G^{(2)}$ we increase the order of Γ . This contradicts the maximality the order of Γ . Hence $\Gamma = G^{(2)}$. That is, in the decomposition of Γ given by Theorem 1 t = 1 and $k_1 = n$. Let $0 \neq w_1 \in W_{11}$. Note that $\{w_1\}$ form a basis in W_{11} . Let $w_i = \gamma w_1 \in W_{1i}$ for a corresponding $\gamma \in \Gamma$. Then $\{w_1, ..., w_n\}$ form a basis in \mathbb{Q}^n . In this basis Γ is represented by $O_n(\mathbb{Z})$. Thus, for n > L + r the group $O_n(\mathbb{Z})$ is the unique subgroup (up to conjugacy) of the maximal order. The proof of the theorem is completed. \square

ACKNOWLEDGEMENT

I would like to thank the referee for his valuable remarks.

References

- [C-R] C.W. Curtis and I. Reiner, Methods of representation theory I, J. Wiley, 1981. MR 82i:20001
- $[{\rm Fei}]$ $\;$ W. Feit, The orders of finite linear groups, preprint 1995.
- [Fri] S. Friedland, Discrete groups of unitary isometries and balls in hyperbolic manifolds, *Linear Algebra Appl.*, 241-243 (1996), 305-341. CMP 96:15
- [Kat] Y. Katznelson, On the orders of finite subgroups of $GL(n, \mathbf{Z})$, preprint, 1994.
- [Min] H. Minkowski, Collected Works I, 212-218.
- [R-T] D.N. Rockmore and K.S. Tan, A note on the order of finite subgroups of $GL(n, \mathbf{Z})$, Arch. Math. 64 (1995), 283-288. MR $\mathbf{95k}$:20075
- [Ser] J.P. Serre, Lie algebras and Lie groups, 2nd ed., Springer-Verlag, Berlin, 1992. MR 93h:17001
- [Wei1] B. Weisfeiler, Post-classification of Jordan's theorem on finite linear groups, Proc. Natl. Acad. Sci. USA, 81 (1984), 5278- 5279. MR 85j:20041
- [Wei2] B. Weisfeiler, On the size and structure of finite linear groups, preprint.

Department of Mathematics, University of Illinois at Chicago, Chicago, Illinois 60607-7045

E-mail address: friedlan@uic.edu