

AYUDANTÍA I

Profesora: Adriana Piazza. Ayudantes: Agustín Farías Lobo, Camila Carrasco.

Pregunta 1

Demuestre la siguiente proposición vista en clases:

"Si $(\mathcal{B}, C(\cdot))$ es una estructura de elección que cumple con

- (i) Satisfacer el ADPR.
- (ii) \mathcal{B} incluye a todos los subconjuntos de X que tienen al menos tres elementos.

Luego, existe una única relación de preferencia racional \succsim que *racionaliza* $C(\cdot)$ relativo a \mathscr{B} , es decir, $C(B) = C^*(B, \succsim), \forall B \in \mathscr{B}$."

Respuesta

Se define la relación de preferencia revelada \succeq^* como sigue: si para un $B \in \mathscr{B}$ se tiene que $x, y \in B$, y que $x \in C(B)$, entonces $x \succeq^* y$.

Primero comprobamos que \succsim^* es racional y que racionaliza $C(\cdot)$ relativo a \mathscr{B} , para posteriormente chequear su unicidad.

Suponga que $\{x,y\} \in X$. Luego, por la hipótesis (ii), $\{x,y\} \in \mathcal{B}$. Por la definición $C(\cdot)$, x y/o y deben ser un elemento de $C(\{x,y\})$, por lo que se debe tener que $x \succeq^* y$ y/o que $y \succeq^* x$. Así, \succeq^* es completa.

Suponga que $x \succeq^* y$, que $y \succeq^* z$ y que $B = \{x, y, z\}$. Para demostrar la transitividad nos basta demostrar que $x \in C(B)$, pues ello implica que $x \succeq^*$. Se sabe que $C(B) \neq \emptyset$, por lo que x, y o z deben estar en C(B). Suponga que $y \in C(B)$. Dado que $x \succeq^* y$, se debe tener que $x \in C(B)$. Suponga ahora que $z \in C(B)$. Puesto que $y \succeq^* z$, se tiene que $y \in C(B)$, por lo que se llega al mismo resultado. Por tanto, $x \in C(\{x,y,z\})$, lo que $x \succeq^* z$. Luego, \succeq^* es transitiva. Con ello, \succeq^* es racional.

Suponga que $x \in C(B)$, lo que implica que $x \succeq^* y$, $\forall y \in B$. Ello lleva a que $x \in C^*(B; \succeq^*)$, por lo que $C(B) \subset C^*(B; \succeq^*)$.

A continuación, suponga ahora que $x \in C^*(B; \succeq)$, lo que implica que $x \succeq^* y$, $\forall y \in B$. Luego, para $y \in B$ debe existir un conjunto $B_y \in \mathcal{B}$, tal que $x, y \in B_y$ y que $x \in C(B_y)$. Dado que por el ADPR cualquier conjunto B' que contenga a x y a y debe cumplir con que $x \in C(B')$ (en otro caso, se contradiría el ADPR), es posible afirmar que $x \in C^*(B, \succeq^*)$. Luego, $C^*(B; \succeq^*) \subset C(B)$. Por tanto, se concluye que $C(B) = C^*(B, \succeq^*)$.

Para asegurar la unicidad, es posible notar que \mathcal{B} incluye a todos los subconjuntos de X con dos elementos. Por ello, la elección $C(\cdot)$ determina completamente las relaciones de preferencias entre dos elementos (*de a pares*) de X para cualquier relación de preferencias que racionalice a $C(\cdot)$ relativo a \mathcal{B} .

Pregunta 2

Suponga que $X = \{x, y, z\}$, $\mathcal{B} = \{\{x, y\}, \{x, z\}, \{y, z\}\}, C(\{x, y\}) = \{x\}, C(\{y, z\}) = \{y\}$, y que $C(\{x, z\}) = \{z\}$.

- (a) Demuestre que esta estructura de elección satisface ADPR.
- (b) Demuestre que no se pueden obtener preferencias racionales a partir de esta estructura, ¿Qué propiedad necesaria no se está cumpliendo?

Suponga ahora que $\mathscr{B} = \{\{x,y\},\{x,z\},\{y,z\},\{x,y,z\}\}\$, que $C(\{x,y,z\})$ está definido, y que el resto de elementos se mantienen iguales.

(c) Demuestre que esta estructura de elección no satisface ADPR.

Pregunta 3 (Examen de Grado, Enero 2025)

Sea \mathscr{B} el conjunto de todos los subconjuntos no vacíos de X, y sea $C: \mathscr{B} \to \mathscr{B}$ una regla de elección. Recuerde que una regla de elección C asocia a cada conjunto $A \in \mathscr{B}$ un conjunto C(A) tal que $C(A) \subseteq A$.

a) Enuncie el Axioma Débil de la Preferencia Revelada (ADPR).

Considere la propiedad de estabilidad frente a subconjuntos definida a continuación:

$$x \in C(A) \implies x \in C(B)$$
, para todo $B \subseteq A$ con $x \in B$.

b) Demuestre o dé un contraejemplo de la siguiente afirmación: "Si la regla de elección *C* cumple con el ADPR, entonces también cumple estabilidad frente a subconjuntos."

Pregunta 4 (Solemne, Otoño 2024)

Sea \mathscr{B} el conjunto de intervalos cerrados y acotados en \mathbb{R}^+ , $(\mathscr{B} = [a,b] : a,b \in \mathbb{R}^+, a < b)$.

1. Considere la regla de elección definida por C([a,b]) = a. Determine si la estructura de elección $(\mathcal{B}, C(\cdot))$ satisface el ADPR. Demuestre o de un contraejemplo.

Respuesta

Sean $x, y \in \mathbb{R}^+$ tales que $x \neq y$, y que $x, y \in B$. Si $x \in C(B)$, entonces x < y. Así, para todo conjunto B' tal que $y \in C(B')$ se cumplirá que $x \notin B'$. Por tanto, se cumple el ADPR.

2. Considere la regla de elección definida por C([a,b]) = a,b. Determine si la estructura de elección $(\mathcal{B}, C(\cdot))$ satisface el ADPR. Demuestre o de un contraejemplo.

Respuesta

Considere los conjuntos [0,1] y [0,2]. Note que 0 y 1 pertenecen a C([0,1]) y a [0,2], pero $1 \notin C([0,2])$. Así, la estructura de elección no satisface el ADPR.

Pregunta 5

Suponga que la estructura de elección de $(\mathcal{B}, C(\cdot))$ satisface el axioma débil de la preferencia revelada (ADPR). Considere las siguientes posibles relaciones de preferencia revelada, $\succ^* y \succ^{**}$:

$$x \succ^* y \iff \text{existe un } B \in \mathcal{B} \text{ tal que } x, y \in B, x \in C(B), \text{ e } y \notin C(B).$$
 (1)

$$x \succ^{**} y \iff x \succsim^{*} y \text{ pero no } y \succsim^{*} x,$$
 (2)

donde ≿* es la relación revelada de "tan preferido como".

1. Muestre que $\succ^* y \succ^{**}$ entregan la misma relación sobre X. Esto es, para cualquier $x, y \in X$, se tiene que $x \succ^* y \iff x \succsim^{**} y$.

Respuesta

Suponga que $x \succ^* y$. Por la definición de \succ^* se sabe que existe un $B \in \mathcal{B}$ tal que $x, y \in B$, donde $x \in C(B)$ e $y \notin C(B)$. De la definición de una regla de elección sabemos que si $x \in C(B)$, entonces $x \succsim z$, $\forall z \in B$. Por lo tanto, $x \succsim y$. Ahora bien, puesto que $y \notin C(B)$, se sabe que $y \not\succsim x$. Luego, $x \succsim^{**} y$. Con ello, hemos demostrado que $x \succ^* y \Longrightarrow x \succ^{**} y$.

Suponga ahora que $x \succ^{**} y$. Dada la definición de \succ^{**} , sabemos que $x \succsim^{*} y$ pero que $y \not\succsim^{*} x$. De esta manera, $x \in C(\{x,y\})$ e $y \notin C(\{x,y\})$, por lo que $x \succsim^{*} y$. Así, hemos demostrado que $x \succ^{**} y \Longrightarrow x \succ^{*} y$.

Dados los resultados anteriores, concluimos que $x \succ^* y \iff x \succsim^{**} y$.

2. ¿El resultado de 1. se sostiene si $(\mathcal{B}, C(\cdot))$ no satisface el ADPR?

Respuesta

El resultado anterior no se sostiene si $(\mathcal{B}, C(\cdot))$ no satisface el ADPR. Ello lo mostramos con el siguiente contraejemplo.

Suponga que $x = C(\{x,y\})$ y que $y = C(\{x,y,z\})$. En este caso $y \notin C(\{x,y\})$, por lo que $x \succ^*$; y $x \notin C(\{x,y,z\})$, por lo que $y \succ^* x$. Ahora bien, se tiene $x \succ^* y \land y \succ^*$, por lo que no se cumple que $x \succsim^* y \land y \not\succeq^* x$. Así, concluimos que $x \succ^* y \not\Rightarrow x \succ^{**} y$.

3. La relación revelada ≻* debe ser transitiva. Demuestre o dé un contraejemplo.

Respuesta

Suponga que $\mathcal{B} = \{\{x,y\}, \{y,z\}\}$. Asimismo, suponga que $x = C(\{x,y\})$ y que $y = C(\{y,z\})$. Con lo anterior se tiene que $x \succ^* y \land y \succ^* z$. Sin embargo, dado que no existe ningún $B \in \mathcal{B}$ que contenga a x y a z simultáneamente, no es posible asegurar $x \succ^* z$. Luego, \succ^* no necesariamente es transitiva.

4. Muestre que si \mathcal{B} incluye todos los subconjuntos de al menos tres elementos de X, entonces \succ^* es transitiva.

Respuesta

Suponga por contradicción que \mathcal{B} incluye a todos los subconjuntos de al menos tres elementos de X, pero que \succ^* no es transitiva.

Suponga que $x,y,z \in B$, que $x \succ^* y \land y \succ^* z$, pero que $x \not\succ^* z$. Por la definición de \succ^* , se sabe que $x \in C(B)$, pero que $y \notin C(B)$; y que siendo $B' \subset B$ que no contiene a x, se tiene que $y \in C(B')$ y que $z \notin C(B')$.

Ahora bien, si $x \not\succ^* z$, entonces $z \in C(B)$. Como la estructura de elección satisface el ADPR, entonces puesto que $y, z \in B$, $y, z \in B'$, $y \in C(B')$ e $z \in C(B)$, entonces $z \in C(B')$. Sin embargo, ello contradice que $y \succ^* z$. Hemos alcanzado una contradicción.

Luego, concluimos que \succ^* debe ser transitiva.