30. Сравнение двух дисперсий (критерий Фишера)

Пример 30.1. По двум независимым выборкам из нормальных генеральных совокупностей, объёмы которых равны $n_1=12$ и $n_2=15$, найдены исправленные выборочные дисперсии $S_1^{*^2}=10$, $S_2^{*^2}=5,5$. С уровнем значимости $\alpha=0,05$ проверить нулевую гипотезу о равенстве дисперсий $H_0: \sigma_1^2=\sigma_2^2$ при конкурирующей гипотезе $H_1: \sigma_1^2>\sigma_2^2$.

■ В качестве критерия проверки гипотезы примем отношение большей исправленной дисперсии к меньшей:

$$F = \frac{S_1^{*^2}}{S_2^{*^2}}.$$

Известно, что при условии справедливости нулевой гипотезы, величина F имеет распределение Фишера–Снедекора со степенями свободы $k_1=n_1-1$, $k_2=n_2-1$. Решающее правило зависит от конкурирующей гипотезы. В данном примере $k_1=12-1=11$, $k_2=15-1=14$, $F_{\text{набл}}=\frac{S_1^{*^2}}{S_2^{*^2}}=1,82$. По таблице критические точки распределения F Фишера-Снедокера (Приложение 5) находим $F_{\text{кр}}=2,56$.

В Excel это значение можно найти командой = $FPAC\Pi OFP(0,05;11;14)$.

Так как $F_{\text{набл}} < F_{\text{кр}}$, то нет оснований отвергнуть нулевую гипотезу о равенстве дисперсий. \blacktriangleright

Ответ: Нулевая гипотеза принимается.

30.1. Критерии согласия

Пример 30.2. Произведено n = 100 измерений некоторой случайной величины. Вся совокупность элементов выборки разбита на 9 интервалов $(a_i; a_{i+1}), i = 1, 2, ..., 9$. В итоге получен следующий статистический ряд.

i	1	2	3	4	5	6	7	8	9
a_i	69,2	69,8	70,4	71,0	71,6	72,2	72,8	73,4	74,0
a_{i+1}	69,8	70,4	71,0	71,6	72,2	72,8	73,4	74,0	74,6
m_j	1	4	11	21	27	22	10	3	1

Oпределить закон распределения данной случайной величины ξ .

« Как видим из таблицы, длина интервала $\Delta a_j = 0.6$. Для выдвижения гипотезы о виде распределения на рис. 61 построим гистограмму данного вариационного ряда.

Рисунок 61. Гистограмма примера 30.2

Поскольку распределение симметрично и имеет максимум в середине, то можно выдвинуть нулевую гипотезу H_0 о том, что изучаемая величина подчиняется нормальному закону. Вследствие этого нужно сделать оценки для каждого из неизвестных параметров нормального распределения.

Для расчётов возьмём середины интервалов $u_j = (x_{j-1} + x_j)/2$, j = 1, 2, ..., s, где s — число интервалов. Тогда выборочное среднее и дисперсия определятся по формулам:

$$\overline{x} = \sum_{i=1}^{s} m_i u_i / n, \qquad S^2 = \sum_{i=1}^{s} m_i u_i^2 / n - \overline{x}^2.$$

Исправленная дисперсия $S^{*2}=nS^2/(n-1)$. В результате вычислений получим: $\overline{x}=71,876,\ S^*=0,8982.$

Вероятность попадания случайной величины ξ в определённый интервал (x_{j-1}, x_j) можно найти с помощью функции распределения, как это указано в лекции, или для нормальной случайной величины по формуле

$$P_j = P(x_{j-1} < \xi < x_j) = \Phi\left(\frac{x_j - \overline{x}}{S^*}\right) - \Phi\left(\frac{x_{j-1} - \overline{x}}{S^*}\right).$$

Здесь значения функции Лапласа можно найти по таблицам. Тогда теоретические частоты определятся как $m_j = P_j \cdot n$. В итоге вместо эмпирических частот получим следующие приближённые значения теоретических частот m_i' :

N	1	2	3	4	5	6	7	8
m_j'	0,8961	3,9749	11,4545	21,4611	26,1543	20,7354	10,6927	3,5848
N	9							
m_j'	0,7808							

После этого последовательно находим $m_i-m'_i$, $(m_i-m'_i)^2$, и $(m_i-m_i)^2/m'_i$, а затем сумму последних значений.

Далее применяем критерий Пирсона

$$\chi_{\text{\tiny Ha6JI}}^2 = \sum_{j=1}^S \frac{(m_j - m'_j)^2}{m'_j}.$$
 (30.1)

Определяем число степеней свободы k случайной величины χ^2 :

$$k = s - 1 - r, (30.2)$$

где r — число параметров закона распределения (для нормального закона распределения r=2), s — число интервалов.

Согласно (30.1), критерий $\chi^2_{\text{набл}} = \mathbf{0.349}$.

Учитывая, что здесь количество интервалов s=9, определяем число степеней свободы k по формуле (30.2): k=9-1-2=6. Зададимся уровнем значимости $\alpha=0.05$. Тогда с числом степеней свободы 6 по таблице критических точек распределения χ^2 (приложение 4) находим значение критерия

$$\chi^2_{\mathrm{kp}}(\alpha, k) = \chi^2_{\mathrm{kp}}(0.05; 6) = \mathbf{12.6}.$$

Так как $\chi^2_{\text{набл}} < \chi^2_{\text{кр}}$, то нет оснований отвергнуть гипотезу о нормальном распределении. Другими словами, расхождение эмпирических и теоретических частот незначимо. Следовательно, опытные данные согласуются с гипотезой о нормальном распределении изучаемой случайной величины ξ .

Ответ: ξ — нормальная случайная величина.

Задания для самостоятельной работы

30.1. При испытании образцов алюминиевого сплава АМг5 В на растяжение были получены следующие значения относительного удлинения (в %):

Исходные данные задания 30.1										
17,2	18,7	15,0	18,4	19,7	18,1	18,5	16,8	14,8	19,3	
14,4	15,3	16,4	18,0	15,6	19,2	20,1	17,8	$ _{16,0}$	16,5	
19,7	19,5	15,5	16,1	16,8	18,8	16,6	18,7	17,1	15,9	
18,4	18,3	20,8	19,5	17,7	15,8	18,2	19,1	16,7	20,0	
16,9	18,1	16,4	16,7	16,2	18,8	19,6	19,6	17,7	17,1	
15,6	16,9	17,8	18,0	20,4	15,1	18,7	18,2	17,1	16,6	
15,4	19,6	18,7	16,9	15,8	18,6	19,9	17,0	18,2	18,0	
15,7	17,2	17,3	17,2	17,4	19,0	18,9	17,5	16,3	16,4 $ $	
17,9	18,4	$ _{16,3}$	18,9	20,5	18,4	16,5	16,9	17,2	18,5	
17,5	19,4	16,5	17,0	19,5	17,3	17,6	18,6	17,5	20,5	

Построить гистограмму относительных частот при длине интервала h=0,8. Определить закон распределения данной случайной величины $\xi.$ Принять уровень значимости $\alpha=0,05.$

- **30.2.** По выборке объёма n=30 найден выборочный коэффициент корреляции $r_{xy}^*=0.35$. При уровне значимости 0.1 проверить гипотезу о равенстве нулю теоретического коэффициента корреляции при конкурирующей гипотезе $r_{\mathcal{E}\eta} \neq 0$.
- **30.3.** По выборке объёма n=100, извлеченной из двумерной нормальной генеральной совокупности, составлена корреляционная таблица:

Исходные данные задания 30.3									
$\xi \setminus \eta$	2	6	10	14	18				
2	5	4	-	=	-				
4	-	8	10	-					
8	-	-	30	12	-				
16	_	2	10	13	6				

30.4. Найти выборочный коэффициент корреляции и при уровне значимости 0,1 проверить нулевую гипотезу о равенстве нулю теоретического коэффициента корреляции при конкурирующей гипотезе $r_{\xi\eta} \neq 0$.

Таблица 30.3

	таолица зо.с						
N	n_1	$ n_2 $	$\overline{x_1}$	$\overline{x_2}$	σ_1^2	σ_2^2	α
варианта	701	102	w ₁	2	1	_	
1	13	17	51,4	55,0	4,38	1,29	0,01
2	12	16	81,66	85,00	29,96	12,97	0,05
3	11	15	35,40	30,30	9,84	3,90	0,01
4	10	14	25,65	23,55	2,08	0,98	0,05
5	9	13	4,40	4,00	0,0295	0,008	0,01
6	8	12	80,53	82,40	21,34	7,34	0,05
7	7	11	14,31	12,21	17,82	3,70	0,01
8	6	10	16,62	13,34	13,32	4,47	0,05
9	5	9	32,12	30,10	18,92	3,45	0,01
10	10	8	7,20	5,15	10,52	3,18	0,05
11	13	17	8,81	5,85	11,68	4,62	0,01
12	12	16	5,03	6,21	5,22	2,90	0,05
13	11	15	4,64	4,02	6,73	2,39	0,01
14	10	14	13,33	16,22	8,94	4,52	0,05
15	9	13	16,08	13,11	7,35	2,02	0,01
16	13	10	28,43	30,50	11,22	2,38	0,01
17	12	11	80,34	78,10	24,35	11,71	0,05
18	11	12	45,78	40,32	18,43	7,84	0,05
19	10	13	25,31	22,84	8,51	3,04	0,01
20	9	14	23,46	25,81	12,38	5,87	0,05
21	8	15	16,38	18,21	11,64	3,66	0,01
22	7	16	17,64	15,32	10,52	4,52	0,05
23	6	17	5,32	7,55	4,32	1,38	0,01
24	5	8	4,38	4,01	2,35	0,75	0,05
25	10	9	19,23	17,34	7,48	1,82	0,01
26	13	13	8,32	6,29	4,35	8,25	0,01
27	12	14	12,48	10,31	19,38	8,25	0,01
28	11	15	23,45	20,81	17,25	8,50	0.05
29	10	16	20,44	23,00	13,11	4,54	0,01
30	9	17	13,25	11,49	10,12	6,98	0,05

- **30.5.** По выборке объёма n=100 найден средний вес деталей $\overline{x}=210$ г, изготовленных на первом станке; по выборке объёма m=90 найден средний вес $\overline{y}=208$ г деталей, изготовленных на втором станке. Генеральные дисперсии известны: $\sigma_1^2=80,\ \sigma_2^2=70.$ Предполагается, что случайные величины ξ и η распределены нормально и выборки независимы. При уровне значимости 0,05 проверить гипотезу $H_0:M(\xi)=M(\eta)$ при конкурирующей гипотезе $M(\xi)\neq M(\eta)$.
- **30.6.** В таблице 30.3 даны варианты заданий. Для каждого варианта приведены две независимые выборки объёмами n_1 и n_2 , найдены выборочные средние \overline{x}_1 , \overline{x}_2 и известны дисперсии σ_1^2 , σ_2^2 . Нужно проверить при заданном уровне значимости α равенство математических ожиданий при конкурирующей гипотезе об их неравенстве.
- **30.7.** Задана выборка объёма n=120 из нормальной совокупности с известным средним квадратическим отклонением $\sigma=5$ и выборочной средней $\overline{x}=23,54$. Необходимо при уровне значимости 0,01 проверить нулевую гипотезу $H_0: a=a_0=23$ при конкурирующей гипотезе $H_1: a\neq 23$.
- **30.8.** Фирма рассылает рекламные каталоги торговым организациям. Вероятность того, что организация, получившая каталог, закажет рекламируемое изделие, равна 0,1. Фирма разослала 200 новых улучшенных каталогов и получила 30 заказов. Можно ли считать, что новые каталоги значимо лучше старых?

Указание. Принять нулевую гипотезу $H_0: p=p_0=0,1;$ конкурирующую — $H_1: p>0,1;$ уровень значимости $\alpha=0,05.$