# Napomena:

• Točno riješen zadatak: 2,5 bodova

• Netočno rješenje: -0,5 bodova

• Zadatak nije rješavan: 0 bodova

• Ukoliko zadatak NIJE rješavan, molim, na obrascu za test NE precrtavati polja!

• Trajanje ispita: 120 minuta

• Ukupni broj zadataka: 10

# Grupa B

#### Zadatak - 1

Na ulaz prijemnika dovodi se signal kojem se spektralna gustoća snage mijenja od od 0 W/Hz do  $-30~\mathrm{dBm/Hz}$ . Prijemnik pregara kad mu se na ulaz dovede snaga signala veća od 1 W. U svrhu zaštite, prije prijemnika stavljen je nisko propropusni filter. Odredite maksimalnu graničnu frekvenciju niskopropusnog idealnog filtra pri kojoj prijemnik neće pregorjeti. Pozadinski bijeli Gaussov šum ima spektralnu gustoću snage od  $-80~\mathrm{dBm/Hz}$ .

A. 
$$\log_{10}(f_g) < 6$$

B. 
$$\log_{10}(f_a) < 12$$

C. 
$$\log_{10}(f_g) = \infty$$

D. 
$$\log_{10}(f_q) < 9$$

E. Niti jedno od navedenog

#### Zadatak - 2

Odredite srednju vrijednost signala, x(t), sa slike:



A. 
$$-0.25 \text{ V}$$

B. 
$$-0.42 \text{ V}$$

C. 
$$-0.07 \text{ V}$$

D. 
$$-0.20 \text{ V}$$

E. Niti jedno od navedenog

#### Zadatak - 3

Dana su dva signala:  $y_1 = \sin(2\pi t) \operatorname{rect}(t-0,5)$  [V] i  $y_2 = \sin(2\pi t) \operatorname{rect}(t-1)$  [V]. Funkcija  $\operatorname{rect}(t)$  općenito je definirana kao  $\operatorname{rect}\left(\frac{t-X}{Y}\right) = u\left(t-X+\frac{Y}{2}\right) - u\left(t-X-\frac{Y}{2}\right)$  gdje je:

$$u(t) = \left\{ \begin{array}{ll} 1 & , & t \ge 0 \\ 0 & , & t < 0 \end{array} \right.$$

Odredite energiju signala  $z(t) = y_1(t) + 2y_2(t)$ .

A. 3,5 Ws

B. 2,5 Ws

C. 1,5 Ws

D. 1.0 Ws

E. Niti jedno od navedenog

#### Zadatak - 4

Signal  $m(t) = 4 \cdot \cos(2\pi f_1 t) + 4 \cdot \cos(2\pi f_2 t)$  [V],  $f_1 = \frac{f_2}{2}$ , dovodi se na ulaz sklopa sa slike. U kanalu djeluje bijeli Gaussov šum spektralne gustoće snage  $\frac{N_0}{2}$  [W/Hz]. Odredite snagu signala na izlazu sklopa (slika, točka a) čija je prijenosna funkcija:

$$H(f) = \begin{cases} 0 & , & |f| = f_c - f_2 \\ 1/4 & , & |f| = f_c - f_1 \\ 1/2 & , & |f| = f_c \\ 3/4 & , & |f| = f_c + f_1 \\ 1 & , & |f| = f_c + f_2 \end{cases}$$



Napomena:  $f_c \gg f_1$  i  $f_c \gg f_2$ , ali ne zanemarivo!

A. 1,6250 W

B. 3,875 W

C. 1,9375 W

D. 3,25 W

E. Niti jedno od navedenog

#### Zadatak - 5

Signal  $u_m(t)=0,8\cdot\sin\left(2\pi4000t+\frac{\pi}{4}\right)$  [V] prigušen je za 5 dB. Odredite kodnu kompleksiju koja će izaći iz PCM kodera za uzorak signala uzet u ternutku  $t_0=1,234$  s. Amplitude uzoraka nalaze se u intervalu  $|u(t)|\leq 0,8$  [V] i kvantiziraju se u kvantizatoru (jednoliko kvantiziranje) s 256 kvantizacijskih razina. Koder izvodi kodiranje uzoraka binarnim kodom na način da je najmanja vrijednost signala kodirana sa nulom (u binarnom zapisu), a maksimalna vrijednost sa L-1 (u binarnom zapisu). Kvantizacijska karakteristika ne prolazi kroz ishodište koordinatnog sustava.

A. 11111101

- B. 11111100
- C. 10111111
- D. 00111111
- E. Niti jedno od navedenog

### Zadatak - 6

Za prijenos podataka na raspolaganju je komunikacijski kanal podijeljen na dva segmenta (dva potkanala) čiji su frekvencijski pojasevi prijenosa  $B_1 = B$  Hz i  $B_2 = 2700$  Hz. Srednja snaga signala u prvom potkanalu iznosi 7 W dok je spektralna gustoća snage bijelog Gaussovog šuma  $(N_0)$  u istom potkanalu  $10^{-5}$  W/Hz. U drugom potkanalu  $(B_2)$  omjer srednje snage signala prema srednjoj snazi šuma iznosi 25 dB. Koliko iznosi frekvencijski pojas prijenosa prvog potkanala ako je zahtjevana maksimalna prijenosna brzina u komunikacijskom kanalu 100 kBit/s.

- A.  $\approx 77,4 \text{ kHz}$
- B.  $\approx 13,5 \text{ kHz}$
- C.  $\approx 19,1 \text{ kHz}$
- D.  $\approx 2.8 \text{ kHz}$
- E. Niti jedno od navedenog

#### Zadatak - 7

Na ulaz PCM kodera (jednoliko uzorkovanje) dolazi signal  $u_m(t) = 3\cos\left(2\pi 2000t + \frac{\pi}{7}\right)$ . Uzimanje uzoraka izvodi se u trenucima  $t = kT_0, k \in \mathcal{N}_0$  i  $T_0 = 250\mu s$ . Odredite potreban kapacitet kanala kojim se uzorkovani signal šalje, ako na odredištu vrijednost svakog uzorka mora biti unutar granica  $\pm 0.2\%$  njegove vrijednosti od vrha do vrha. Svi bitovi koji se šalju na kanal štite se Hammingovim kodom [n, k] = [15, 11].

- A.  $\approx 23.5 \text{ kbit/s}$
- B.  $\approx 43.5 \text{ kbit/s}$
- C.  $\approx 32 \text{ kbit/s}$
- D.  $\approx 4 \text{ kbit/s}$
- E. Niti jedno od navedenog

#### Zadatak - 8

Na ulaz kontinuiranog komunikacijskog kanala pojasa prijenosa 4 kHz (|H(f)| = 1 za |f| < 4 kHz) dovodi se signal čija je snaga -10 dBm. Gubitak snage danog signala na izlazu kanala iznosi 10 dB. U kanalu djeluje aditivni bijeli Gaussov šum spektralne gustoće snage  $N_0 = -80$  dBm/Hz. Odredite učinkovitost prijenosnog pojasa.

- A. 9.93 bit/s/Hz
- B. 7.98 bit/s/Hz
- C. 12.14 bit/s/Hz
- D. 6.25 bit/s/Hz
- E. Niti jedno od navedenog

#### Zadatak - 9

Odredite širinu prijenosnog pojasa RC kruga.  $R = 120 \Omega$ , C = 50 nF.

- A.  $f_g \in (10, 20] \text{ kHz}$
- B.  $f_g \in (40, 50] \text{ Hz}$
- C.  $f_g \in (20, 30] \text{ kHz}$
- D.  $f_q \in (0, 10] \text{ kHz}$

E. Niti jedno od navedenog.

## Zadatak - 10

Na signal s Gaussovom funkcijom gustoće vjerojatnosti i srednje snage 5 W u AWGN kanalu djeluje bijeli Gaussov šum spektralne gustoće snaga  $N_0=-80~\mathrm{dBm/Hz}$ . Odredite maksimalni mogući kapacitet ostavriv u ovakvom kanalu.

- A.  $\approx 360 \text{ Gbit/s}$
- B.  $\approx 720 \text{ Mbit/s}$
- C.  $\approx 720 \text{ Gbit/s}$
- D.  $\approx 360 \text{ Mbit/s}$
- E. Niti jedno od navedenog