Wyznaczanie granicznej prędkości, przy której nastąpi zarzucenie samochodu poruszającego się po łuku o zadanym promieniu R. W obliczeniach uwzględniono napęd na poszczególne osie.

Pojazd:

Zmienne opisowe

Wielkość	Jednostka	Opis	Zakres dopuszczalnych wartości
M	Kg	Masa pojazdu	600-3000
$(\frac{dV}{dT})$	$\frac{m}{s_2}$	Przyśpieszenie pojazdu	1-5
V_0	km h	Prędkość początkowa auta	20
H _s	М	Wysokość środka ciężkości auta	0.2-0.6

Uproszczenia

W obliczeniach nie bierzemy pod uwagę:

opory powietrza

Interakcje

- tarcie z podłożem
 W zależności od współczynnika tarcia różnić się będą siłą poprzeczna, która zapobiega wpadnięcia samochodu w poślizg
- siła napędu
- siła nacisku

$$\sqrt{\mu^2 Z_1^2 - X_1^2} + \sqrt{\mu^2 Z_2^2 - X_2^2}$$

Przednia oś

Parametry

Wielkość	Jednostka	Opis	Zakres dopuszczalnych wartości
A	M	Odległość przedniej osi od środka ciężkości auta	0.5 - 2
N	Liczba całkowita	Określa, czy oś jest osią napędową	0-1

Uproszczenia

 opory toczenia (w rozpatrywanym przypadku ich wartość jest znacznie mniejsza niż wartości pozostałych sił dlatego nie są istotne z punktu widzenia prowadzonych obliczeń)

Interakcje

- promień skrętu

W zależności od promienia łuku będzie zmieniać się promień skrętu kół. W obliczeniach jest on przedstawiony jako R^I i wyraża się wzorem:

$$R^{I} = R * \sqrt{1 - \sin^{2} \alpha}$$

Tylna oś

Parametry

1 at affect y					
Wielkość	Jednostka	Opis	Zakres dopuszczalnych wartości		
В	M	Odległość Tylnej osi od środka ciężkości auta	0.5 - 2		
N	Liczba całkowita	Określa, czy oś jest osią napędową	0-1		

Uproszczenia

 opory toczenia (w rozpatrywanym przypadku ich wartość jest znacznie mniejsza niż wartości pozostałych sił dlatego nie są istotne z punktu widzenia prowadzonych obliczeń)

Interakcje

promień skrętu

W zależności od promienia łuku będzie zmieniać się promień skrętu kół. W obliczeniach jest on przedstawiony jako R^{II} i wyraża się wzorem:

$$R^{II} = \sqrt{L^2 + R^{I2}}$$

Droga

Parametry

Wielkość	Jednostka	Opis	Zakres dopuszczalnych wartości
μ	Liczba zmiennoprzecinkowa	Współczynnik tarcia	0.1 - 5
R	M	Promień skrętu	20-500

Uproszczenia

 Rodzaj nawierzchni – powierzchnia będzie definiowana jedynie poprzez współczynnik tarcia. Zmieniać się on będzie względem warunków atmosferycznych.

Interakcje

tarcie

W zależności od tego, jakie tarcie jest pomiędzy oponami a powierzchnią tak zmieniać się będzie prędkość, przy której pojazd wpadnie w poślizg.

$$V > \sqrt{\frac{R}{m}} (\sqrt{\mu^2 ([\frac{(m*g*a - ((\frac{dV}{dT})*m)*h_s)^2}{L}]) + \sqrt{\mu^2 (m*g - \frac{(m*g*a - ((\frac{dV}{dT})*m)*h_s)^2}{L}) + ((\frac{dV}{dT})*m))}}$$

$$V > \sqrt{\frac{R}{m}} (\sqrt{\mu^2 ([\frac{(m*g*a - ((\frac{dV}{dT})*m)*h_s)}{L}]^2) + ((\frac{dV}{dT})*m)} + \sqrt{\mu^2 (m*g - \frac{(m*g*a - ((\frac{dV}{dT})*m)*h_s)}{L})^2)}$$

$$V > \sqrt{\frac{R}{m}} (\sqrt{\mu^2 ([\frac{(m*g*a - ((\frac{dV}{dT})*m)*h_s)}{L}]^2 + ((\frac{dV}{dT})*m)} + (\frac{dV}{dT})*m)} + \sqrt{\mu^2 (m*g - \frac{(m*g*a - ((\frac{dV}{dT})*m)*h_s)}{L})^2 + (\frac{dV}{dT})*m)} + \frac{((\frac{dV}{dT})*m)}{L})^2 + (\frac{dV}{dT})*m}$$

oraz uwzględniając prędkość graniczną, przy której dojdzie do przewrócenia pojazdu:

$$V_{max} = \sqrt{\frac{LgR}{2h_s}}$$

to od współczynnika tarcia zależy również, czy dojdzie do wywrócenia pojazdu:

$$\mu < \frac{L}{2h_s}$$