Devoir surveillé n°10 Version 2

Durée : 3 heures, calculatrices et documents interdits

I. Vers le théorème de Cayley-Hamilton.

Soient E un \mathbb{K} -ev, avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On suppose E de dimension finie $n \in \mathbb{N}^*$. Soit $u \in \mathcal{L}(E)$. On considère l'application :

$$\begin{array}{cccc} P : & \mathbb{K} & \to & \mathbb{K} \\ & x & \mapsto & \det(x \mathrm{Id} - u) \end{array}.$$

Propriétés générales

- 1) Montrer que P est une fonction polynomiale de degré n. Quel est son coefficient dominant? Quel est son terme constant?
- 2) Soit $\lambda \in \mathbb{K}$. Montrer que λ est racine de P si et seulement si $\lambda \operatorname{Id} u$ n'est pas injectif. Que peut-on dans ce cas dire de $\operatorname{Ker}(\lambda \operatorname{Id} u)$?
- 3) Soit $\lambda \in \mathbb{K}$ une racine de P. On pose $d = \dim \operatorname{Ker}(\lambda \operatorname{Id} u)$. Justifier l'existence d'une base \mathscr{B} de E dont les d premiers vecteurs vérifient l'équation $u(x) = \lambda x$.
- 4) Expliciter les d premières colonnes de la matrice représentative de u dans cette \mathscr{B} .
- 5) En déduire que d est inférieur à la multiplicité de λ en tant que racine de P.

Quelques endomorphismes diagonalisables

On reprend toutes les notations de la partie précédente, en supposant de plus que dim E=3 et que le polynôme P est scindé dans \mathbb{K} . On étudie quelques cas particuliers.

- 6) On suppose ici que P a trois racines distinctes α, β et γ . Soient $e \in \text{Ker}(\alpha \text{Id} u)$, $f \in \text{Ker}(\beta \text{Id} u)$ et $g \in \text{Ker}(\gamma \text{Id} u)$, tels que e, f et g soient tous trois non nuls.
 - a) Montrer que (e, f, g) est une base de E.
 - **b)** Quelle est la matrice de u dans cette base?
 - c) Application: Soit $u \in \mathcal{L}(\mathbb{R}^3)$ dont la matrice dans la base canonique est $\begin{pmatrix} 1 & 3 & 0 \\ 3 & -2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$.

Déterminer une base dans laquelle la matrice de u est diagonale.

- 7) On suppose ici que P a deux racines distinctes α racine simple et β racine double, et que dim $\text{Ker}(\beta \text{Id} u) = 2$.
 - a) Montrer que $Ker(\alpha Id u)$ et $Ker(\beta Id u)$ sont en somme directe.
 - **b)** Justifier le fait que dim $Ker(\alpha Id u) = 1$.
 - c) Montrer qu'il existe une base de E dans laquelle la matrice de u est diagonale.

d) Application: Soit $u \in \mathcal{L}(\mathbb{R}^3)$ dont la matrice dans la base canonique est $\begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 2 \\ 0 & 0 & 1 \end{pmatrix}$. Déterminer une base dans laquelle la matrice de u est diagonale.

Matrice compagnon

Soient $r \in \mathbb{N}^*$ et $a_0, \ldots, a_{r-1} \in \mathbb{K}$. On note M la matrice carrée d'ordre r suivante, appelée matrice compagnon de la famille (a_0, \ldots, a_{r-1}) :

8) Montrer que:

$$\det(xI_3 - M) = x^r - \sum_{k=0}^{r-1} a_k x^k.$$

Polynômes d'endomorphisme

À tout polynôme $A \in \mathbb{K}[X]$ noté $\sum_{k=0}^{p} \alpha_k X^k$, on associe l'endomorphisme noté A(u) tel que $A(u) = \sum_{k=0}^{p} \alpha_k u^k$.

- 9) Soient $A \in \mathbb{K}[X]$ et $s \in \mathbb{N}^*$. On note $\tilde{A} = X^s.A$. Montrer que $u^s \circ A(u) = \tilde{A}(u)$.
- **10)** Soient $A, B \in \mathbb{K}[X]$. Montrer que $(BA)(u) = B(u) \circ A(u)$.

Théorème de Cayley-Hamilton

Soit $x \in E \setminus \{0\}$. On note $\mathscr{E} = \{k \in \mathbb{N}^* \mid (x, u(x), \dots, u^{k-1}(x)) \text{ est libre}\}.$

- 11) Montrer que $\mathscr E$ admet un plus grand élément r, et que $r\leqslant n$.
- **12)** En déduire qu'il existe r éléments $a_0, \ldots, a_{r-1} \in \mathbb{K}$ tels que $u^r(x) = \sum_{k=0}^{r-1} a_k u^k(x)$.
- 13) Justifier alors l'existence d'une base \mathcal{B}' de E dont les r premiers vecteurs sont

$$(x, u(x), \dots, u^{r-1}(x)).$$

- 14) Expliciter les r premières colonnes de la matrice représentative de u dans cette \mathscr{B}' .
- **15)** En déduire l'existence d'un polynôme $Q \in \mathbb{K}[X]$ tel que $P = Q \times \left(X^r \sum_{k=0}^{r-1} a_k X^k\right)$.
- 16) Établir le théorème de Cayley-Hamilton : P(u) = 0 .

II. Calcul approché de $\zeta(3)$.

Le but de ce problème est de mettre en oeuvre une méthode d'accélération de convergence pour calculer la somme de la série $\sum_{n=1}^{+\infty} \frac{1}{n^3}$ à ε près, avec ici $\varepsilon = 5.10^{-5}$.

La somme $\sum_{n=1}^{+\infty} \frac{1}{n^3}$ est notée $\zeta(3)$, où ζ est la fonction de Riemann.

1) a) Soient q un entier ≥ 2 et N un entier ≥ 1 . Donner une majoration du reste

$$R(N,q) = \sum_{n=N+1}^{+\infty} \frac{1}{n^q}$$

en le comparant à une intégrale.

- b) Déterminer un entier naturel N pour que R(N,3) soit inférieur à ε .
- 2) Pour tout entier p naturel non nul, on pose

$$\forall n \in \mathbb{N}^*, \ u(n,p) = \frac{1}{n(n+1)(n+2)\cdots(n+p)}.$$

- a) Montrer que la série $\sum_{n\geqslant 1} u(n,p)$ est convergente.
- b) On pose

$$\sigma(p) = \sum_{n=1}^{+\infty} u(n, p).$$

Calculer $\sigma(1)$.

- c) Pour $p \ge 2$ et pour n quelconque dans \mathbb{N}^* , exprimer u(n, p-1) u(n+1, p-1) en fonction de p et u(n, p).
- d) En déduire la valeur de $\sigma(p)$ en fonction de p pour tout $p \ge 2$.
- 3) a) Montrer par récurrence l'existence de trois suites (a_p) , (b_p) et (c_p) d'entiers naturels définies pour $p \ge 2$ telles que, pour tout réel x strictement positif et pour tout entier $p \ge 2$ on ait :

$$\frac{1}{x^3} = \sum_{k=2}^p \frac{a_k}{x(x+1)\cdots(x+k)} + \frac{b_p x + c_p}{x^3(x+1)(x+2)\cdots(x+p)}.$$

On explicitera en particulier les valeurs de a_{p+1} , b_{p+1} et c_{p+1} en fonction de celles de a_p , b_p , c_p et p.

- **b)** Montrer que pour tout $p \ge 2$, $b_p \ge c_p \ge 0$.
- c) Calculer a_p , b_p et c_p pour p=2, 3 et 4.
- d) Expliciter pour $p \ge 2$ la valeur de c_p , puis celle de b_p à l'aide d'une somme. En déduire un équivalent simple de b_p lorsque p tend vers $+\infty$.

4) Donner un majorant simple de

$$\sum_{n=N+1}^{+\infty} \frac{b_4 n + c_4}{n^3 (n+1) \cdots (n+4)}$$

et montrer, à l'aide de tout ce qui précède, comment calculer $\zeta(3)$ à ε près avec une valeur de N moins grande que celle trouvée à la question $\mathbf{1})\mathbf{b}$).

— FIN —