CAI Check-In

Dylan Blechner (with a lot of help from my dad)

December 11, 2016

So Far

So far, we have successfully read in ten years of NBA data from basketball-reference.com. My dataset now includes player data for each year including Career totals, Playoff data, and Career Playoff totals data. Each player data row also includes the Salary for the year following the data. This is so I can try to understand what factors from this year contribute to the salary the player gets paid in the following year.

Grabbing the data has been one of the more difficult aspects of the project so far and has taken up most of our time.

R Coding Script Examples

NBA Dataset for 2016

Here I show the first nine rows and ten columns of the data table, using the **select** command:

NBAData2016 %>% select(1:9) %>% tbl df

##	#	A tibb	le: 366 ×	9							
##		No.		Player	Pos.x	Ht	Wt	Bi	rth	.Date	Х.
##		<int></int>		<fctr></fctr>	<fctr></fctr>	<dbl></dbl>	<int></int>		<:	fctr>	<fctr></fctr>
##	1	0	Aaron	n Brooks	PG	6.000000	161	January	14,	1985	us
##	2	0	Aaron	Gordon	SF	6.750000	220	September	16,	1995	us
##	3	9	Aaron H	Harrison	SG	6.500000	210	October	28,	1994	us
##	4	33	Adreia	an Payne	PF	6.833333	237	February	19,	1991	us
##	5	9	Alan A	Anderson	SF	6.500000	220	October	16,	1982	us
##	6	15	Alan W	<i>l</i> illiams	PF	6.666667	260	January	28,	1993	us
##	7	10	Ale	ec Burks	SG	6.500000	214	July	20,	1991	us
##	8	42	Alexis	Ajinca	C	7.166667	248	May	6,	1988	fr
##	9	21	A	lex Len	C	7.083333	260	June	16,	1993	ua
##	10	8 (Al-Farou	ıq Aminu	SF	6.750000	220	September	21,	1990	us
##	#	wi	th 356 mc	re rows,	and 2	more var	iables	: Exp <int></int>	, C	ollege	<fctr></fctr>

The 2016 data set has 366 rows and 111 columns.

Regression Analysis of the 2016 NBA Data by Player Position

Here is an example script I am working on to calculate a multiple linear regression of Salary vs. many other statistics.

```
Player_Salary16 <-
  read.csv("/home/steve/R/R Projects/NBA Salaries BBRef/Data/2016BBRef.csv", check.names = FALSE)
#Sample Regression for Each Position#
#PG#
subset(Player_Salary16, Pos.x == "PG")
subset(Player_Salary16, Pos.x == "PG") -> PG
PGMod <- lm(data = PG, Salary ~ `Ht` + `Wt` + `Age` + `G` + `GS` + `MP` + `FG` + `FGA` +
              `FG%` + `3P` + `3PA` + `3P%` + `2P` + `2PA` + `2P%` + `eFG%` + `FT` + `FTA` +
              `FT%` + `ORB` + `DRB` + `TRB` + `AST` + `STL` + `BLK` + `TOV` + `PF` + `PTS` +
              `CareerG` + `CareerGS` + `CareerMP` + `CareerFG` + `CareerFGA` + `Career3P` +
              `Career3PA` + `Career2P` + `Career2PA` + `CareerFT` + `CareerFTA` + `CareerORB` +
              `CareerDRB` + `CareerTRB` + `CareerAST` + `CareerSTL` + `CareerBLK` + `CareerTOV` +
              `CareerPF` + `CareerPTS` + `PlayoffG` + `PlayoffGS` + `PlayoffMP` + `PlayoffFG` +
              `PlayoffFGA` + `PlayoffFG%` + `Playoff3P` + `Playoff3PA` + `Playoff3P%` +
              `Playoff2P` + `Playoff2PA` + `Playoff2P%` + `PlayoffeFG%` + `PlayoffFT` +
              `PlayoffFTA` + `PlayoffFT%` + `PlayoffORB` + `PlayoffDRB` + `PlayoffTRB` +
              `PlayoffAST` + `PlayoffSTL` + `PlayoffBLK` + `PlayoffTOV` + `PlayoffPF` +
              `PlayoffPTS` + `CareerPlayoffG` + `CareerPlayoffGS` + `CareerPlayoffMP` +
              `CareerPlayoffFG` + `CareerPlayoffFGA` + `CareerPlayoff3P` + `CareerPlayoff3PA` +
              `CareerPlayoff2P` + `CareerPlayoff5PA` + `CareerPlayoffFTA` +
              `CareerPlayoffORB` + `CareerPlayoffDRB` + `CareerPlayoffTRB` + `CareerPlayoffAST` +
              `CareerPlayoffSTL` + `CareerPlayoffBLK` + `CareerPlayoffTOV` + `CareerPlayoffPF` +
              `CareerPlayoffPTS`)
summary(PGMod)
anova(PGMod)
#SG#
subset(Player_Salary16, Pos.x == "SG")
subset(Player Salary16, Pos.x == "SG") -> SG
SGMod <- lm(data = SG, Salary ~ `Ht` + `Wt` + `Age` + `G` + `GS` + `MP` + `FG` + `FGA` +
              `FG%` + `3P` + `3PA` + `3P%` + `2P` + `2PA` + `2P%` + `eFG%` + `FT` + `FTA` +
              `FT%` + `ORB` + `DRB` + `TRB` + `AST` + `STL` + `BLK` + `TOV` + `PF` + `PTS` +
              `CareerG` + `CareerGS` + `CareerMP` + `CareerFG` + `CareerFGA` + `Career3P` +
              `Career3PA` + `Career2P` + `Career2PA` + `CareerFT` + `CareerFTA` + `CareerORB` +
              `CareerDRB` + `CareerTRB` + `CareerAST` + `CareerSTL` + `CareerBLK` + `CareerTOV` +
              `CareerPF` + `CareerPTS` + `PlayoffG` + `PlayoffGS` + `PlayoffMP` + `PlayoffFG` +
              `PlayoffFGA` + `PlayoffFG%` + `Playoff3P` + `Playoff3PA` + `Playoff3P%` +
              `Playoff2P` + `Playoff2PA` + `Playoff2P%` + `PlayoffeFG%` + `PlayoffFT` +
              `PlayoffFTA` + `PlayoffFT%` + `PlayoffORB` + `PlayoffDRB` + `PlayoffTRB` +
              `PlayoffAST` + `PlayoffSTL` + `PlayoffBLK` + `PlayoffTOV` + `PlayoffPF` +
              `PlayoffPTS` + `CareerPlayoffG` + `CareerPlayoffGS` + `CareerPlayoffMP` +
              `CareerPlayoffFG` + `CareerPlayoffFGA` + `CareerPlayoff3P` + `CareerPlayoff3PA` +
              `CareerPlayoff2P` + `CareerPlayoff5PA` + `CareerPlayoffFTA` +
              `CareerPlayoffORB` + `CareerPlayoffDRB` + `CareerPlayoffTRB` + `CareerPlayoffAST` +
              `CareerPlayoffSTL` + `CareerPlayoffBLK` + `CareerPlayoffTOV` + `CareerPlayoffPF` +
              `CareerPlayoffPTS`)
summary(SGMod)
anova(SGMod)
```

```
#SF#
subset(Player_Salary16, Pos.x == "SF")
subset(Player Salary16, Pos.x == "SF") -> SF
SFMod <- lm(data = SF, Salary ~ `Ht` + `Wt` + `Age` + `G` + `GS` + `MP` + `FG` + `FGA` +
              `FG%` + `3P` + `3PA` + `3P%` + `2P` + `2PA` + `2P%` + `eFG%` + `FT` + `FTA` +
              `FT%` + `ORB` + `DRB` + `TRB` + `AST` + `STL` + `BLK` + `TOV` + `PF` + `PTS` +
              `CareerG` + `CareerGS` + `CareerMP` + `CareerFG` + `CareerFGA` + `Career3P` +
              `Career3PA` + `Career2P` + `Career2PA` + `CareerFT` + `CareerFTA` + `CareerORB` +
              `CareerDRB` + `CareerTRB` + `CareerAST` + `CareerSTL` + `CareerBLK` + `CareerTOV` +
              `CareerPF` + `CareerPTS` + `PlayoffG` + `PlayoffGS` + `PlayoffMP` + `PlayoffFG` +
              `PlayoffFGA` + `PlayoffFG%` + `Playoff3P\` + `Playoff3PA` + `Playoff3P\` +
              `Playoff2P` + `Playoff2PA` + `Playoff2P%` + `PlayoffeFG%` + `PlayoffFT` +
              `PlayoffFTA` + `PlayoffFT%` + `PlayoffORB` + `PlayoffDRB` + `PlayoffTRB` +
              `PlayoffAST` + `PlayoffSTL` + `PlayoffBLK` + `PlayoffTOV` + `PlayoffPF` +
              `PlayoffPTS` + `CareerPlayoffG` + `CareerPlayoffGS` + `CareerPlayoffMP` +
              `CareerPlayoffFG` + `CareerPlayoffFGA` + `CareerPlayoff3P` + `CareerPlayoff3PA` +
              `CareerPlayoff2P` + `CareerPlayoff5PA` + `CareerPlayoffFTA` +
              `CareerPlayoffORB` + `CareerPlayoffDRB` + `CareerPlayoffTRB` + `CareerPlayoffAST` +
              `CareerPlayoffSTL` + `CareerPlayoffBLK` + `CareerPlayoffTOV` + `CareerPlayoffPF` +
              `CareerPlayoffPTS`)
summary(SFMod)
anova (SFMod)
#PF#
subset(Player_Salary16, Pos.x == "PF")
subset(Player_Salary16, Pos.x == "PF") -> PF
PFMod <- lm(data = PF, Salary ~ `Ht` + `Wt` + `Age` + `G` + `GS` + `MP` + `FG` + `FGA` +
              `FG%` + `3P` + `3PA` + `3P%` + `2P` + `2PA` + `2P%` + `eFG%` + `FT` + `FTA` +
              `FT%` + `ORB` + `DRB` + `TRB` + `AST` + `STL` + `BLK` + `TOV` + `PF` + `PTS` +
              `CareerG` + `CareerGS` + `CareerMP` + `CareerFG` + `CareerFGA` + `Career3P` +
              `Career3PA` + `Career2P` + `Career2PA` + `CareerFT` + `CareerFTA` + `CareerORB` +
              `CareerDRB` + `CareerTRB` + `CareerAST` + `CareerSTL` + `CareerBLK` + `CareerTOV` +
              `CareerPF` + `CareerPTS` + `PlayoffG` + `PlayoffGS` + `PlayoffMP` + `PlayoffFG` +
              `PlayoffFGA` + `PlayoffFG%` + `Playoff3P` + `Playoff3PA` + `Playoff3P%` +
              `Playoff2P` + `Playoff2PA` + `Playoff2P%` + `PlayoffeFG%` + `PlayoffFT` +
              `PlayoffFTA` + `PlayoffFT%` + `PlayoffORB` + `PlayoffDRB` + `PlayoffTRB` +
              `PlayoffAST` + `PlayoffSTL` + `PlayoffBLK` + `PlayoffTOV` + `PlayoffPF` +
              `PlayoffPTS` + `CareerPlayoffG` + `CareerPlayoffGS` + `CareerPlayoffMP` +
              `CareerPlayoffFG` + `CareerPlayoffFGA` + `CareerPlayoff3P` + `CareerPlayoff3PA` +
              `CareerPlayoff2P` + `CareerPlayoffFTA` + `CareerPlayoffFTA` +
              `CareerPlayoffORB` + `CareerPlayoffDRB` + `CareerPlayoffTRB` + `CareerPlayoffAST` +
              `CareerPlayoffSTL` + `CareerPlayoffBLK` + `CareerPlayoffTOV` + `CareerPlayoffPF` +
              `CareerPlayoffPTS`)
summary(PFMod)
anova(PFMod)
#C#
subset(Player_Salary16, Pos.x == "C")
subset(Player_Salary16, Pos.x == "C") -> C
CMod <- lm(data = C, Salary ~ `Ht` + `Wt` + `Age` + `G` + `GS` + `MP` + `FG` + `FGA` +</pre>
              `FG%` + `3P` + `3PA` + `3P%` + `2P` + `2PA` + `2P%` + `eFG%` + `FT` + `FTA` +
              `FT%` + `ORB` + `DRB` + `TRB` + `AST` + `STL` + `BLK` + `TOV` + `PF` + `PTS` +
              `CareerG` + `CareerGS` + `CareerMP` + `CareerFG` + `CareerFGA` + `Career3P` +
```

R Plot Examples of 2016 NBA Data

A histogram of salaries for the 2016 NBA Season, for each of the 5 positions:

- C = Center
- PF = Power Forward
- PG = Point Guard
- SF = Small Forward
- SG = Shooting Guard

The width of each salary bin is \$1,000,000.

For the 2016-2017 season, the salary distribution for each position is skewed towards lower salaries, with outliers at the higher end. For example, LeBron James, a small forward, is the extreme value for the above \mathbf{SF} plot at $\sim \$31$ million.

I can see that by taking the 2016 dataset, then filtering it by the player, LeBron James, then selecting only the columns of interest (Player name, Postion, Salary):

```
NBAData2016 %>% filter(Player=="LeBron James") %>% select(Player, Pos.x, Salary)
```

Player Pos.x Salary
1 LeBron James SF 30963450