| <b>N</b> оме: | Cognome: |
|---------------|----------|
| Matricola:    | Firma:   |

# Esame di Ricerca Operativa - 19 febbraio 2025

Facoltà di Scienze MM.FF.NN. - Verona

4 esercizi per 64 punti in palio (voto  $\geq$  punti -6,  $40 \rightarrow 30$  e lode)

# Esercizio 1 (con 10 richieste: 1+2+1+2+1+1+1+1+3+3 = 26 punti [modellazione/riduzioni]):



In un grafo G = (V, E), chiamiamo:

- 1. *node cover* ogni  $X \subseteq V$  che contenga almeno un estremo di ogni arco  $uv \in E$ ,
- 2.  $matching ogni M \subseteq E$  non contenente due archi con un estremo in comune.

Un grafo è detto *bipartito tra* A e B se  $V = A \cup B$  con  $A \cap B = \emptyset$  e ogni arco in E ha un estremo in A e l'altro in B.

Sei importanti problemi modello espressi nel linguaggio dei grafi sono:

- 1,2- MIN (BIPARTITE) NODE COVER: trova un node cover di minima cardinalità in un grafo (bipartito) dato in input.
- 3,4- MAX (BIPARTITE) MATCHING: trova un matching di massima cardinalità in un grafo (bipartito) dato in input.
- 5- DIRECTED S,T-CONNECTIVITY: trova un massimo numero di cammini tra due nodi s e t di un generico grafo diretto in input, col vincolo che i cammini siano disgiunti sugli archi (ogni arco compare in al più un cammino).
- 6- Undirected s,t-Connectivity: trova un massimo numero di cammini disgiunti sugli archi tra due nodi dati di un generico grafo non-diretto.

# Richieste dell'Esercizio 1

- 1.1 (1 pt, problems basic comprehension) con riferimento all'istanza in figura, fornire: un matching ottimo e dire quanti sono, un matching massimale ma non di massima cardinalità e dire quanti sono, un node cover ottimo e dire quanti sono, un node cover minimale ma non ottimo e dire quanti sono.
- **1.2** (2 pt, model as ILP) Formula come problemi di Programmazione Lineare Intera (PLI) i problemi Max Matching e Min Node Cover per la specifica istanza in figura (1pt) e per grafo generico (1pt).
- **1.3** (1 pt, model generality) Tra il MAX MATCHING e il MAX BIPARTITE MATCHING quale dei due modelli è più espressivo? Ossia, quale dei due problemi è più generale e quindi più ambizioso da risolvere?
- 1 .4 ( 2 pt, classic model knowledge ) Descrivere i modelli/problemi del massimo flusso e del minimo taglio in un grafo diretto con capacità intere sugli archi. Quale relazione vi è tra questi due modelli?
- ${f 1}$  .5 (  ${f 1}$  pt, model Directed Connectivity ) Modella Directed s,t-Connectivity in termini di Max Flow.
- **1.6** (1 pt, model Undirected Connectivity 1) Riduci Undirected s,T-Connectivity a Max Flow.
- 1.7 (1 pt, model Undirected Connectivity 2) Riduci Undirected- a Directed s,t-Connectivity.
- 1.8 ( 11 pt, model Bipartite Matching ) Modella Max Bipartite Matching in termini di Max Flow. (1pt se spieghi in modo chiaro come produrre un'istanza  $I_F$  di Max Flow a partire dalla generica istanza  $I_M$  di Max Bipartite Matching), (1pt se è chiaro come da un matching M di  $I_M$  si possa

produrre un flusso dello stesso valore per  $I_F$ ), (1pt se chiaro come da un s,t-flow per  $I_F$  si ottenga un matching M di  $I_M$  dello stesso valore), (1pt se chiaro come da un node cover X di  $I_M$  si ottenga un s,t-cut per  $I_F$  dello stesso costo), (1pt se chiaro come da un s,t-cut per  $I_F$  si ottenga un node cover X di  $I_M$  dello stesso costo), (1pt se dimostri che la cardinalità di nessun node cover può essere inferiore a quella di un matching), (1pt se enunci correttamente il MaxFlow-MinCut Theorem), (1pt se indichi come possa essere dimostrato), (3pt se lo dimostri).

- **1.9** (3 pt, model flow as ILP) Offri la formulazione PLI del problema MAX FLOW. Dimostra l'integralità del rilassamento di tale formulazione (2pt).
- **1.10** ( 3 pt, explore the dual ) Scrivi il duale di tale rilassamento. Scrivi una formulazione di PLI del modello MIN CUT che abbia tale duale come suo rilassamento (2pt).

## Esercizio 2 (con 8 richieste: 1+1+1+1+1+2+1+2 = 10 punti [programmazione dinamica]):

Un robot, inizialmente situato nella cella A-1, deve portarsi nella sua home, nella cella I-10.

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|----|
| A | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | • | 6  |
| В | 2 | • | 1 | • | 0 | 0 | • | 0 | 0 | 5  |
| С | 0 | • | 0 | • | • | 0 | 0 | 1 | 1 | 4  |
| D | 0 | 0 | 1 | 0 | 0 | 0 | 1 | • | 0 | 3  |
| E | 0 | 0 | • | 1 | 0 | 1 | 2 | 0 | 0 | 1  |
| F | 0 | 1 | 3 | 1 | • | 3 | 1 | • | 0 | 1  |
| G | 3 | • | 2 | 1 | 2 | • | • | 3 | 1 | •  |
| Н | 2 | 1 | 2 | • | • | 1 | 1 | 1 | • | 0  |
| I | 4 | 4 | 3 | 3 | 2 | 1 | 1 | • | 0 | 0  |

I movimenti base consentiti da ogni cella sono il passo verso destra (ad esempio dalla cella A−3 alla cella A−3 o il passo verso in basso (ad esempio dalla cella A−3 alla cella B−3) e il passo diagonale (che in pratica porta direttamente alla cella raggiunta concatenando quello orizzontale e quello verticale). Se il robot deve evitare le celle proibite (•), quanti sono i percorsi ammissibili? Inoltre, se in ogni cella permessa si incontra un pedaggio del valore riportato nella cella stessa, sapresti minimizzare la somma dei numeri che appaiono lungo il suo percorso?

#### Richieste dell'Esercizio 2

- 2.1 (1 pt, numero percorsi) Numero di percorsi ammissibili da A-1 a I-10
- 2.2 (1 pt, num percorsi da B-3) Numero di percorsi ammissibili da B-3 a I-10
- 2.3 (1 pt, num percorsi a F-6) Numero di percorsi ammissibili da A-1 a F-6
- 2.4 (1 pt, num percorsi per D-5) Numero di percorsi da A-1 a I-10 passanti per D-5
- 2.5 (1 pt, opt val) Minimo totale di pedaggi su un cammino da A-1 a I-10. (E soluzione di tale valore).
- 2.6 (2 pt, numero cammini ottimi) Numero cammini ottimi da A-1 a I-10
- 2.7 (1 pt, opt val per D-5) Minimo totale di pedaggi su un cammino da A-1 a I-10 passante per D-5
- 2.8 (2 pt, num paths of opt val via D-5) Numero cammini ottimi da A-1 a I-10 passanti per D-5

## Quadro delle risposte dell'Esercizio 2

| consegna               | num. paths | opt val | un path (percorso) ottimo |
|------------------------|------------|---------|---------------------------|
| $A-1 \rightarrow I-10$ |            |         |                           |
| $B-3 \rightarrow I-10$ |            |         |                           |
| $A-1 \rightarrow F-6$  |            |         |                           |
| passaggio per D-5      |            |         |                           |
| minimo costo           |            |         |                           |
| n. min-cost paths      |            |         |                           |
| min-cost D-5-path      |            |         |                           |
| n. min-cost D-5-paths  |            |         |                           |

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|----|
| A |   |   |   |   |   |   |   |   |   |    |
| В |   |   |   |   |   |   |   |   |   |    |
| С |   |   |   |   |   |   |   |   |   |    |
| D |   |   |   |   |   |   |   |   |   |    |
| E |   |   |   |   |   |   |   |   |   |    |
| F |   |   |   |   |   |   |   |   |   |    |
| G |   |   |   |   |   |   |   |   |   |    |
| Н |   |   |   |   |   |   |   |   |   |    |
| Ι |   |   |   |   |   |   |   |   |   |    |

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|----|
| A |   |   |   |   |   |   |   |   |   |    |
| В |   |   |   |   |   |   |   |   |   |    |
| С |   |   |   |   |   |   |   |   |   |    |
| D |   |   |   |   |   |   |   |   |   |    |
| Е |   |   |   |   |   |   |   |   |   |    |
| F |   |   |   |   |   |   |   |   |   |    |
| G |   |   |   |   |   |   |   |   |   |    |
| Н |   |   |   |   |   |   |   |   |   |    |
| I |   |   |   |   |   |   |   |   |   |    |

Tabella 3: num cammini a

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|----|
| A |   |   |   |   |   |   |   |   |   |    |
| В |   |   |   |   |   |   |   |   |   |    |
| С |   |   |   |   |   |   |   |   |   |    |
| D |   |   |   |   |   |   |   |   |   |    |
| Е |   |   |   |   |   |   |   |   |   |    |
| F |   |   |   |   |   |   |   |   |   |    |
| G |   |   |   |   |   |   |   |   |   |    |
| Н |   |   |   |   |   |   |   |   |   |    |
| I |   |   |   |   |   |   |   |   |   |    |

Tabella 4: num cammini da

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|----|
| A |   |   |   |   |   |   |   |   |   |    |
| В |   |   |   |   |   |   |   |   |   |    |
| С |   |   |   |   |   |   |   |   |   |    |
| D |   |   |   |   |   |   |   |   |   |    |
| E |   |   |   |   |   |   |   |   |   |    |
| F |   |   |   |   |   |   |   |   |   |    |
| G |   |   |   |   |   |   |   |   |   |    |
| Н |   |   |   |   |   |   |   |   |   |    |
| I |   |   |   |   |   |   |   |   |   |    |

Tabella 5: opt val path to (e num opt paths)

Tabella 6: opt val path from (e num opt paths)

# Esercizio 3 (con 11 richieste: 3+2+2+2+2+1+3+4+5+2 = 28 punti [grafi]):



#### Richieste dell'Esercizio 3

- **3 .1** (3 pt, recognize planarity ) Dire, certificandolo, se siano planari o meno il grafo G e il grafo G' ottenuto da G sostituendo l'arco ar con un arco ap.
- 3 .2 ( $^2$  pt, recognize 2-colorability) Dire, certificandolo, quale sia il minimo numero di archi da rimuovere per rendere bipartiti i grafi G e G' ( $^1$  punto per ogni soluzione certificata da bicolorazione e  $^1$  per ogni certificato di ottimalità, ove i grafi non siano bipartiti di loro).
- 3.3 (2 pt, max flow) In G, trovare un massimo flusso dal nodo s al nodo t.
- 3.4 (2 pt, min cut) Certificare l'ottimalità di tale flusso massimo.
- **3 .5** ( 2 pt, flow sensitivity ) Per quali archi un incremento della capacità dell'arco modifica il massimo valore di flusso? Specificare il massimo incremento ottenibile agendo su ciascun singolo arco.
- **3.6** (2 pt, certify flow sensitivity) Scegli uno qualsiasi degli archi per cui il valore di incremento che hai fornito al punto precedente è massimo ed esibisci prova che rilassandone la capacità si possa ottenere quel valore di flusso (1pt). Certifica anche che l'aumento non è superiore a quanto dichiarato (1pt).
- ${\bf 3}$  .7 (  ${\bf 1}$  pt, one MST ) In G , for nire un albero ricoprente di peso minimo.
- **3 .8** (3 pt, MST categorize edges ) Etichetta ciascun arco con la lettera A se appartiene a ogni MST, B se a nessuno, C altrimenti. (Se li hai ti conviene usare 3 colori.)
- **3.9** (4 pt, count MSTs ) Quanti sono gli MST in G?
- ${f 3}$  .10 (  ${f 5}$  pt, MST certificates ) Per ciascuno dei quattro archi incidenti in u certificare l'etichetta assegnatagli al punto precedente.
- **3.11** ( $^2$  pt, max match) Fornire un matching di massima cardinalità in G (1pt). Sapresti dire perche non possa esserci un matching con un numero maggiore di archi? (1pt)

## Quadro delle risposte dell'Esercizio 3



Figura 1: eventuale certificato di non planarità di G.



Figura 2: eventuale certificato di non planarità di G'.



Figura 3: bipartiteness di G.



Figura 4: bipartiteness di G'«.



Figura 5: **MST.** 



Figura 6:  $arco\ un$ .



Figura 7:  $\mathbf{arco}\ uq$ .



Figura 8:  $\mathbf{arco}\; \boldsymbol{uv}$ .



Figura 9: **arco** *ur*.



Figura 10: max-flow min-cut.



Figura 11: certificati di corretta valutazione della sensitività per l'arco scelto.



Figura 12: max matching.

# Esercizio 4 (con 1 richieste: 0 = 0 punti [simplesso]):

Nelle intenzioni era presente anche un esercizio da 12 punti sul simplesso ed analisi di sensitività. Ma all'esame abbiamo omesso di distribuire i fogli relativi a tale esercizio.

#### Richieste dell'Esercizio 4

4.1(0 pt, )

#### LEGGERE CON MOLTA ATTENZIONE:

## Procedura da seguire per l'esame -collaborare al controllo

- 1) Vostro nome, cognome e matricola vanno scritti, prima di incominciare il compito, negli appositi spazi previsti nell'intestazione di questa copertina. Passando tra i banchi verificherò la corrispondenza di queste identità. Ulteriori verifiche alla consegna.
- 2) Ripiega questa copertina a mo' di teca (intestazione coi dati personali su faccia esterna). In essa inserirai i fogli col tuo lavoro per raccoglierli. Vi conviene (non richiesto) che anche essi riportino Nome/Cognome/Matricola per scongiurare smarrimenti. Conviene consegnare tutto quanto possa contenere ulteriore valore (potete tirare una riga su inutili ripetizioni, risposte sbagliate, parti obsolete).
- 3) **non consentito:** utilizzare sussidi elettronici, consultare libri o appunti, comunicare con i compagni.
- 4) Una volta che sono stati distribuiti i compiti non è possibile allontanarsi dall'aula per le prime 2 ore. Quindi: (1) andate al bagno prima della distribuzione dei compiti, (2) portatevi snacks e maglioncino (specie nei laboratori, specie in estate, stando fermi a lungo si patisce il freddo), e (3) non venite all'esame solo per fare i curiosi con quella di uscirvene quando vi pare (testi e correzione vengono pubblicati a valle dell'esame) oppure portatevi altre cose da fare in quelle ore.

#### Procedura da seguire per ogni esercizio -assegnazione punti

- 1) Assicurarsi di fornire i certificati idonei ovunque richiesti.
- 2) Trascrivere i risultati ottenuti negli appositi riquadri ove previsti.

### Comunicazione esiti e registrazione voti -completamento esame

I voti conseguiti restano validi fino ad eventuale consegna ad un qualche appello successivo. La registrazione dell'ultimo voto conseguito và richiesta come da dettagli nella comunicazione degli esiti.