Exercices: Couples de variables aléatoires discrètes

Exercice 1 La loi d'un couple est donnée par le tableau suivant :

$X \setminus Y$	1	2	3
1	0	0,4	0
2	0, 1	0, 2	0, 1
3	0	0	0, 2

On a donc, par exemple $P((X = 2) \cap (Y = 1)) = 0, 1$ et $P((X = 1) \cap (Y = 3)) = 0$.

- 1) Donner les lois marginales de X et Y.
- 2) Les variables X et Y sont-elles indépendantes?

Exercice 2 Soient α un réel positif et a un réel élément de]0,1[.

Soient X et Y deux variables aléatoires à valeurs dans \mathbb{N} .

On suppose que leur loi conjointe est donnée par :

$$\forall (i,j) \in \mathbf{N}^2, P((X=i) \cap (Y=j)) = \alpha(i+j)a^i(1-a)^j.$$

- 1) Déterminer α en fonction de a.
- 2) Donner les lois de X et Y.
- 3) X et Y sont-elles indépendantes?

Exercice 3 Soit (X,Y) un couple de variables aléatoires à valeurs dans \mathbb{N}^2 tel que

$$\forall (p,q) \in \mathbb{N}^2, P((X=p) \cap (Y=q)) = \lambda \frac{p+q}{p!q!2^{p+q}}$$

- 1) Déterminer λ .
- 2) Calculer les lois marginales.
- 3) Les variables aléatoires X et Y sont-elles indépendantes?

Exercice 4 On désigne par X_1 et X_2 deux variables aléatoires indépendantes et suivant toutes les deux la loi géométrique de paramètre p (0 < p < 1).

Déterminer la loi de $X_1 + X_2$.

Exercice 5 On lance indéfiniment une pièce qui donne Pile avec une probabilité p (avec 0) et Face avec la probabilité <math>1 - p. Pour tout k de \mathbb{N}^* , on note P_k l'événement : "obtenir un Pile au $k^{\grave{e}me}$ tirage" et F_k l'événement : "obtenir un Face au $k^{\grave{e}me}$ tirage". On note également X la variable aléatoire égale au rang du premier Pile et Y la variable aléatoire égale au rang du deuxième Pile.

1) Déterminer la loi du couple (X,Y). On trouvera :

$$\forall (i,j) \in \mathbb{N}^* \times [2, +\infty[, i < j, P(X=i \cap Y=j) = q^{j-2}p^2.$$

$$\forall (i,j) \in \mathbb{N}^* \times [2,+\infty[,i \geq j, P(X=i \cap Y=j) = 0.$$

- 2) Déterminer les lois de X et Y.
- 3) Les variables X et Y sont-elles indépendantes.

Exercice 6 On dispose de n boîtes numérotées de 1 à n. La boîte k contient k boules numérotées de 1 à k

On choisit au hasard une boîte puis une boule dans cette boîte.

Soit X le numéro de la boîte et Y le numéro de la boule.

- 1) Déterminer la loi du couple (X, Y).
- 2) Calculer P(X = Y).
- 3) Déterminer la loi de Y et E(Y).

Exercice 7 Soient X et Y deux V.A.R. indépendantes, prenant toutes les valeurs entières entre 1 et n, avec les probabilités : $P(X=k) = P(Y=k) = \frac{1}{n}$ pour tout $k \in [\![1,n]\!]$. Calculer P(X=Y) et $P(X \geq Y)$. Déterminer la loi de D=X-Y.

Exercice 8 Soient X et Y deux V.A.R. indépendantes vérifiant :

$$P(X = n) = P(Y = n) = \frac{1}{4} \left(\frac{1 + a^n}{n!}\right) \text{ pour tout } n \in \mathbb{N}.$$

- 1) Déterminer a.
- 2) Calculer E(X) et V(X).
- 3) Déterminer la loi de S = X + Y.

Exercice 9 On choisit X au hasard dans [1, 2n], et Y au hasard dans [1, X]. Soit: $p_n = P((Y \le n) \cap (X \ge n) \cap (X - Y \le n))$. Calculer $\lim_{n \to +\infty} p_n$.

Exercice 10 Soient X et Y deux V.A.R. telles que $Y = X^2$ et que la loi de X soit donnée par le tableau :

x_i	-2	-1	0	2	2
$P(X=x_i)$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{6}$

- 1) Donner la loi conjointe de X et Y.
- 2) Déterminer la loi de Y.
- 3) X et Y sont-elles indépendantes?
- 4) Calculer cov(X, Y).

Exercice 11 Soit a un nombre réel. Soient X et Y deux V.A.R. à valeurs dans \mathbb{N} telle que $P[(X=k)\cap (Y=j)]=\frac{a}{2^{k+1}j!}$ pour tout $(k,j)\in \mathbb{N}^2$.

- 1) Déterminer a.
- 2) X et Y sont-elles indépendantes?
- 3) Déterminer cov(X,Y). Conclusion?

 $\underline{\mathbf{Exercice}}\ \mathbf{13}\ \mathit{Soit}\ \mathit{X}\ \mathit{une}\ \mathit{V.A.R.}\ \grave{\mathit{a}}\ \mathit{valeurs}\ \mathit{dans}\ \mathbb{N}^*\ \mathit{et}\ \mathit{admettant}\ \mathit{une}\ \mathit{esp\'{e}rance}.$

- 1) Montrer que $\frac{1}{X}$ admet une espérance.
- 2) Développer $E((t\sqrt{X} + \frac{1}{\sqrt{X}})^2)$ et en déduire que $E(X)E(\frac{1}{X}) \ge 1$.

Exercice 14 Inégalité de Jensen

Soit X une V.A.R. à valeurs dans \mathbb{N} . Soit f une fonction de \mathbb{R} dans \mathbb{R} dérivable telle que f' est croissante (f est donc convexe). On suppose que X et f(X) admettent toutes deux une espérance. On se propose de démontrer l'inéqalité de Jensen

$$f(E(X)) \le E(f(X))$$

- 1) Démontrer que $\forall x \in \mathbb{R}, f(x) \ge f'(E(X))(x E(X)) + f(E(X)).$
- 2) En déduire l'inégalité de Jensen.

Exercice 15 Soient X et Y deux V.A.R discrètes admettant une variance.

1) Montrer que XY admet une espérance et que :

$$E(|XY|) \le \frac{1}{2}(E(X^2) + E(Y^2))$$

2) Montrer que $E(|XY|) \le \sqrt{E(X^2)E(Y^2)}$

Exercice 16 On lance deux fois une pièce de monnaie équilibrée. Soient X la variable prenant pour valeur le nombre de Pile obtenus moins 1, et Y la la variable prenant pour valeur le nombre de Pile au deuxième lancer moins le nombre de Pile au premier lancer.

- 1) Déterminer la loi conjointe du couple (X, Y).
- 2) Calculer cov(X, Y).
- 3) Les variables X et Y sont-elles indépendantes?

Exercice 17 Soit (X,Y) un couple de VAR discrètes dont la loi est donnée par le tableau suivant :

$X \backslash Y$	1	2	3	4		
1	0,08	0,04	0, 16	0, 16		
2	0,04	0,02	0,08	0,06		
3	0,08	0,04	0, 16	0, 12		

- 1) Déterminer les lois marginales du couple et préciser si X et Y sont indépendantes.
- 2) Calculer cov(X, Y).
- 3) Déterminer la loi du couple (min(X,Y), max(X,Y)).

Exercice 18 On lance trois fois une pièce de monnaie équilibrée; X et Y désignent respectivement le nombre de Face apparues lors des deux premiers lancers et le nombre de Pile apparus lors des deux derniers.

- 1) Déterminer la loi du couple (X,Y) puis les lois marginales de X et Y.
- 2) X et Y sont-elles indépendantes?
- 3) Calculer cov(X, Y).

Exercice 19 Soient X et Y deux variables indépendantes à valeurs dans $\{-1,1\}$ et distribuées uniformément, c'est-à-dire P(X=-1) = P(X=1) = P(Y=-1) = P(Y=1) = 0,5. On considère Z = XY.

- 1) Déterminer la loi de Z puis la loi du couple (X, Y).
- 2) Les variables X, Y et Z sont-elles indépendantes?
- 3) Les variables X, Y et Z sont-elles mutuellement indépendantes.

Exercice 20 Soit X une variable aléatoire telle que $X(\Omega) = \{-a, -b, b, a\}(0 < b < a)$ distribuée uniformément, c'est-à-dire P(X = -a) = P(X = -b) = P(X = b) = P(X = a) = 0,25.

- 1) Déterminer la loi de X^2 et la loi du couple (X, X^2) .
- 2) Calculer $cov(X, X^2)$.
- 3) Les variables X et X^2 sont-elles indépendantes?

Exercice 21 Soient X et Y suivent toutes les deux une loi de Bernoulli $\mathcal{B}(p)$. Montrer que : X et Y sont indépendantes $\Leftrightarrow cov(X,Y) = 0$.

Exercice 22 Soit X de loi binomiale $\mathcal{B}(n,p)$ et soit Y une V.A.R. à valeurs dans \mathbb{N} telle que la loi conditionnelle de Y sachant (X = k) est la loi $\mathcal{B}(k,q)$.

- 1) Montrer que $\forall \alpha \in [0, n], \forall \alpha \in [\alpha, n], \binom{i}{\alpha} \binom{n}{i} = \binom{n}{\alpha} \binom{n-\alpha}{i-\alpha}.$
- 2) Déterminer la loi de Y.

Exercice 23 Une particule se déplace sur une droite graduée. À l'instant zéro, la particule est en zéro. À l'issue de chaque instant, elle s'est déplacée d'une unité dans le sens positif avec la probabilité p, ou dans le sens négatif avec la probabilité 1-p. On note X_n la variable aléatoire prenant pour valeur l'abscisse de la particule à l'issue de l'instant n.

- 1) Déterminer $P(X_n = 0)$.
- 2) Calculer $E(X_n)$ et $V(X_n)$.

Indication : on pourra décomposer X_n comme une somme de V.A.R. qui prennent les valeurs +1 et -1.

La fonction génératrice.

Exercice 24 Soit X une variable aléatoire à valeurs dans \mathbb{N} . On note g_X sa fonction génératrice, définie sur un intervalle de la forme]-R,R[(avec R>1).

Les questions suivantes sont indépendantes.

- 1) Soit $(a,b) \in \mathbb{N}^2$. Justifier l'existence de la fonction génératrice de aX + b. La déterminer en fonction $de g_X$.
- 2) Justifier que g_X est définie en 1 et en -1. En déduire que

$$P(X \ pair) = \frac{g_X(1) + g_X(-1)}{2} \ et \ P(X \ impair) = \frac{g_X(1) - g_X(-1)}{2}.$$

 $P(X \ pair) = \frac{g_X(1) + g_X(-1)}{2} \ et \ P(X \ impair) = \frac{g_X(1) - g_X(-1)}{2}.$ 3) Si X suit la loi de Poisson $\mathcal{P}(\lambda)$ quelle est la probabilité que X soit pair? Et si X suit la loi géométrique de paramètre p?

Exercice 25 Soit X une variable aléatoire telle que $X(\Omega) = \mathbb{N}$ et que

$$\forall k \in \mathbb{N}, P(X = k) = ak^2 \frac{\lambda^k}{k!}.$$

où λ est un réel strictement positif donné et a un réel à déterminer.

- 1) En supposant qu'une telle variable puisse être définie, quelle est sa fonction génératrice?
- 2) En déduire la valeur de a.
- 3) Calculer E(X).

Exercice 26 Soient X et Y deux variables aléatoires indépendantes. On suppose que X suit la loi de Poisson $\mathcal{P}(\lambda)$ et Y suit la loi de Bernoulli $\mathcal{B}(p)$.

On pose Z = XY et on note g_X, g_Y et g_Z les fonctions génératrices de ces variables aléatoires.

- 1) Donner la fonction génératrice de Y.
- 2) Démontrer que $q_Z = q_Y o q_X$.
- 3) En déduire E(Z) et V(Z).

Exercice 27 Soit X une variable aléatoire à valeurs dans N de fonction génératrice

$$\forall u \in \mathbb{R}, g_X(u) = ae^{1+u^2}$$

- 1) Déterminer a.
- 2) Donner la loi de X et calculer son espérance et sa variance.

Exercice 28 Soit X une variable aléatoire à valeurs dans $\mathbb N$ dont la fonction génératrice est

$$\forall s \in]-2, 2[, g_X(s) = \frac{s}{2-s^2}$$

- 1) Déterminer la loi de X.
- 2) Reconnaître la loi de $Y = \frac{1}{2}(X 1)$.
- 3) En déduire E(X) et V(X).

Exercice 29 Soient $\alpha \in \mathbb{R}_+^*$ et Xune variable aléatoire à valeurs dans \mathbb{N} telle que

$$\forall k \in \mathbb{N}, P(X = k) = \frac{e^{-2}2^{k-2}}{k!}(1 + \alpha k)$$

- 1) Montrer que $\alpha = \frac{1}{2}$.
- 2)Démontrer que, pour tout entier naturel k,

$$P(=k) = \frac{1}{4}P(X=k) + \frac{3}{4}P(Z=k-1)$$

- où Y et Z sont deux variables aléatoires suivant la loi de Poisson de paramètre 2.
- 3) En déduire la fonction génératrice de X.

Exercice 30 . Loi de Pascal Soient $n \in \mathbb{N}^*$ et $p \in]0,1[$. On note q=1-p.

- 1) Démontrer que $\forall n \in \mathbb{N}, \forall x \in]-1, 1[\frac{1}{(1-x)^{n+1}} = \sum_{k=0}^{+\infty} {k+n \choose n} x^k.$
- 2) Démontrer que la suite de réels $\forall k \in \mathbb{N}, p_k = \binom{k+n-1}{n-1} p^n q^k$ définit la loi de probabilité d'une variable aléatoire à valeurs dans \mathbb{N} . On la dénomme " loi de Pascal de paramètres n et p".
- 3) Soit X une variable aléatoire suivant la loi définie à la question précédente.
- a) Déterminer la fonction génératrice de X.
- b) En déduire que X admet une espérance et une variance et les calculer.
- 4) Deux variables aléatoires X et Y indépendantes suivant deux lois de Pascal de paramètres respectifs (n,p) et (m,p). On pose S=X+Y. Déterminer la loi de S.

Couples aléatoires à densité.

Exercice 31 . Dans le carré unité, on choisit au hasard un point (X,Y), c'est-à-dire

$$\forall S \subset [0,1]^2, P((X,Y) \in S) = aire(S)$$

- 1) Donner une densité de (X, Y).
- 2) Déterminer les lois de X et Y.
- 3) X et Y sont-elles indépendantes?

Exercice 32 . Soit le polynôme $P(X) = X^2 - 2AX + B$. On suppose que A et B sont des VAR. indépendantes qui suivent la loi uniforme sur [0,1].

- 1) Quelle est la probabilité que P possède deux racines réelles distinctes?
- 2) Quelle est la probabilité que P possède une racine double?
- 3) Quelle est la probabilité que P possède deux racines complexes (et non réelles)?

Exercice 33 . Soit (X,Y) de loi uniforme sur D(0,R), disque de centre 0 et de rayon R (R>0).

- 1) Donner une densité de (X, Y).
- 2) Déterminer les densités marginales de X et Y.
- 3) X et Y sont-elles indépendantes?
- 4) Calculer cov(X, Y).
- 5) Soit $U = \sqrt{X^2 + Y^2}$. Déterminer la fonction de répartition, une densité et l'espérance de U.

Exercice 34 . Soit f définie par :

$$f(x,y) = \begin{cases} ae^{-(x+y)} & si \ 0 \le x \le y \\ 0 & sinon \end{cases}$$

- 1) Déterminer a pour que f soit la densité d'un vecteur aléatoire V = (X, Y).
- 2) Déterminer les densités marginales de X et Y.
- 3) Les composantes sont-elles indépendantes?

Exercice 35 . Soient X et Y deux V.A.R. qui suivent une loi normale.

- 1) Leur somme Z = X + Y suit-elles nécessairement une loi normale?
- 2) En supposant en plus cov(X,Y), Z suit-elle une loi normale?
- 3) Le vecteur V = (X, Y) est-il nécessairement gaussien?

Exercice 36 . Soient X et Y deux V.A.R. à densité. Le vecteur V=(X,Y) est-il nécessairement un vecteur à densité?