

01.03.2018

Вычислительные модели с использованием научных библиотек Python Линейная алгебра

Базовые типы, dense matrix

```
>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2],[3,4]])
>>> A array([[1, 2], [3, 4]])
>>> linalg.inv(A)
array([[-2. , 1. ], [ 1.5, -0.5]])
>>> b = np.array([[5,6]]) #2D array
>>> b
array([[5, 6]])
>>> b.T
array([[5], [6]])
>>> A*b #not matrix multiplication!
array([[ 5, 12], [15, 24]])
>>> A.dot(b.T) #matrix
multiplication array([[17], [39]])
```

```
#2
           >>> import numpy as np
           >>> A = np.mat('[1 2;3 4]')
           >>> A
           matrix([[1, 2], [3, 4]])
           >>> A.I
           matrix([[-2., 1.], [1.5, -0.5]])
           >>> b = np.mat('[5 6]')
           >>> b
           matrix([[5, 6]])
           >>> b.T
           matrix([[5], [6]])
           >>> A*b.T
           matrix([[17], [39]])
```


01.03.2018

#1

Базовые типы, sparse matrix

Способы хранения

- 1.csc_matrix: Compressed Sparse Column format
- 2.csr_matrix: Compressed Sparse Row format
- 3. bsr_matrix: Block Sparse Row format
- 4. lil matrix: List of Lists format
- 5. dok_matrix: Dictionary of Keys format
- 6. coo matrix: COOrdinate format (aka IJV, triplet format)

7. dia matrix: DIAgonal format

```
>>> import numpy as np
>>> import scipy.sparse as sps
```


СЛАУ

Постановка задачи

$$Au = f$$

Число обусловленности матрицы А

$$\mu(\mathbf{A}) = \left\|\mathbf{A}^{-1}\right\| \left\|\mathbf{A}\right\|$$

$$\mu \approx 1 \div 10$$

-хорошо обусловленная СЛАУ

$$\mu >> 10^2 \div 10^3$$

-плохо обусловленная СЛАУ

СЛАУ, точные методы

LU-разложение

```
\mathbf{A} = \mathbf{L}\mathbf{U}\mathbf{L}\mathbf{v} = \mathbf{f}, \mathbf{U}\mathbf{u} = \mathbf{v}
```

```
>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1, 2], [3, 4]])
>>> A = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5], [6]])
>>> b
array([[5], [6]])
>>> linalg.inv(A).dot(b) # slow
array([[-4. ], [ 4.5]])
>>> np.linalg.solve(A, b) # fast
array([[-4. ], [ 4.5]])
```


СЛАУ, точные методы

Метод Холецкого

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T$$

$$\mathbf{L} = \begin{pmatrix} l_{11} & 0 & \cdots & 0 \\ l_{12} & l_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{1n} & l_{2n} & \cdots & l_{nn} \end{pmatrix}$$

$$\mathbf{L}\mathbf{v} = \mathbf{f}, \mathbf{L}^{\mathrm{T}}\mathbf{u} = \mathbf{v}.$$

Метод QR

$$A=Q\cdot R$$
,

Q – ортогональная

R - верхняя треугольная

$$\mathbf{Q}^{\mathrm{T}} \cdot \mathbf{Q} \cdot \mathbf{R} \cdot \mathbf{x} = \mathbf{Q}^{\mathrm{T}} \cdot \mathbf{b}$$

$$\mathbf{R} \cdot \mathbf{x} = \mathbf{Q}^{\mathrm{T}} \cdot \mathbf{b}$$
.

СЛАУ, итерационные методы

Список методов

- BIConjugate Gradient
- BIConjugate Gradient STABilized
- Conjugate Gradient
- Conjugate Gradient Squared
- Generalized Minimal RESidual(GMRES)
- LGMRES
- MINimum RESidual
- Quasi-Minimal Residual

```
>>> import numpy as np
>>> import scipy.sparse.linalg as linalg
```


СЛАУ, предобусловливание

Общая идея

 $M^{-1}Ax=M^{-1}b$,

М должна быть по возможности близка к матрице А;

М должна быть легко вычислима;

М должна быть легко обратима.

ILU разложение

 $M=LU+R\approx LU$

Функция spilu()

Задание

Рекомендовать пользователям новые фильмы

userId	movield	rating	timestamp
1	1	5	847117005
1	2	3	847642142
1	10	3	847641896
1	32	4	847642008
1	34	4	847641956
1	47	3	847641956
1	50	4	847642073
1	62	4	847642105
1	150	4	847116751
1	153	3	847116787
1	160	3	847642008
1	161	4	847641896
1	165	4	847116787
1	185	3	847641919

movield	title	genres		
1 Toy Story (1995)		Adventure Animation Children		
2	Jumanji (1995)	Adventure Children Fantasy		
3 Grumpier Old Men (1995)		Comedy Romance		
4 Waiting to Exhale (1995)		Comedy Drama Romance		
5 Father of the Bride Part II (199		Comedy		
6	Heat (1995)	Action Crime Thriller		
7	Sabrina (1995)	Comedy Romance		
8	Tom and Huck (1995)	Adventure Children		
9 Sudden Death (1995)		Action		
10	GoldenEye (1995)	Action Adventure Thriller		
11	American President, The (1995)	Comedy Drama Romance		
12	Dracula: Dead and Loving It (1995)	Comedy Horror		
13	Balto (1995)	Adventure Animation Children		
14	Nixon (1995)	Drama		

	Movies (features)					
)		Movie 1	Movie 2	Movie 3	Movie 4	
	User 1	1	3	2	1	
	User 2	2			5	
	User 3	5	1	5	3	
	User 4	4		1	4	

8913 – фильмов718 - пользователей

Задание

<u>Подход на основе SVD разложения</u>

$$X = U \times S \times V^T$$

