MTH 411: Theory of Ordinary Differential Equation Assignment

OKWHAROBO Solomon Monday

December 5, 2023

 $\begin{array}{c} {\rm Anchor~University} \\ {\rm Department~of~Mathematics} \\ {\rm AUL/SCI/20/00605} \end{array}$

Q1: 1

Theorem: Suppose f is continuous on an open set $U \subset \mathbb{R} \times \mathbb{R}^n$. Let $(t_0, x_0) \in U$, and ϕ be a function defined on an open set I of \mathbb{R} such that $t_0 \in I$. Then ϕ is a solution of the IVP (1.3) if, and only if,

- 1. $\forall t \in I, (t, \phi(t)) \in U$.
- 2. ϕ is continuous on I.
- 3. $\forall t \in I, \ \phi(t) = x_0 + \int_{t_0}^t f(s, \phi(s)) \, ds.$

Proof:

 (\Rightarrow) Let us suppose that $\phi' = f(t, \phi)$ for all $t \in I$ and that $\phi(t_0) = x_0$. Then for all $t \in I$, $(t,\phi(t))\in U$ (i). Also, ϕ is differentiable and thus continuous on I (ii). Finally,

$$\phi'(s) = f(s, \phi(s))$$

so integrating both sides from t_0 to t,

$$\phi(t) - \phi(t_0) = \int_{t_0}^t f(s, \phi(s)) ds$$

and thus

$$\phi(t) = x_0 + \int_{t_0}^t f(s, \phi(s)) ds$$

hence (iii).

(\Leftarrow) Assume i), ii), and iii). Then ϕ is differentiable on I, and $\phi'(t) = f(t, \phi(t))$ for all $t \in I$. From (iii), $\phi(t_0) = x_0 + \int_{t_0}^t f(s, \phi(s)) \, ds = x_0$.

Q2: 2

Claim: If $f \in C^k$, then all solutions ϕ of the differential equation $\frac{dx}{dt} = f(t,x)$ are of class C^{k+1} .

Proof:

Assume f is C^k , and let $\phi(t)$ be a solution to the given differential equation on some open interval I containing t_0 . We want to show that ϕ is C^{k+1} on I.

- 1. Existence of Derivatives: Since ϕ is a solution, it is differentiable. We want to show that ϕ' (the first derivative) exists and is continuous.
 - 2. Differentiability: Differentiate the given differential equation with respect to t:

$$\frac{d}{dt}\left(\frac{dx}{dt}\right) = \frac{d}{dt}f(t,\phi(t))$$

This gives us $\frac{d^2\phi}{dt^2} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x} \frac{dx}{dt}$.

3. Continuity of Derivatives: Since f is C^k , its partial derivatives up to order k are continuous. Also, $\frac{dx}{dt} = f(t, \phi(t))$ implies that $\frac{dx}{dt}$ is continuous.

4. Inductive Step: Repeat the process for higher-order derivatives. In general, you will have:

$$\frac{d^{k+1}\phi}{dt^{k+1}}=$$
 (a sum of terms involving derivatives of f and ϕ up to order $k)$

Again, continuity follows from the continuity of partial derivatives of f and lower-order derivatives of ϕ .

Therefore, by induction, all derivatives of ϕ up to order k+1 exist and are continuous, implying that ϕ is of class C^{k+1} .

This completes the modified proof, specifically tailored for the differential equation $\frac{dx}{dt} = f(t,x)$.