学院: 光电信息与计算机工程学院

完成时间:2022.6.10

实验一 控制系统数学模型建立

1. 传递函数模型

(1)
$$G(s)=rac{s+3}{s^3+2s^2+2s+1}$$
 (2) $G(s)=rac{s^2+3}{s^3(s^2+4)(s^2+4s)}$

2. 零极点模型

(1)
$$G(s)=rac{10(s+5)}{(s+0.5)(s+2)(s+3)}$$

(2) $G(s)=rac{8(s+1-j)(s+1+j)}{s^2(s+5)(s+6)(s^2-1)}$

- 3. 单位负反馈
- 4. 控制系统的模型间的相互转换

(1) 将
$$G(s)=rac{s^2+5s+6}{s^3+2s^2+s}$$
 转换成零极点模型 (2) 将 $G(s)=rac{8(s+1)(s+2)}{s(s+5)(s+6)(s+3)}$ 转换为传递函数模型

5. 引入反馈环节后传递函数求取

实验二 建立 Simulink 结构图模型

- 1. Simulink基础
 - (1) Simulink 常用模块
 - 1. 信号源: Step,Ramp
 - 2. 连续模块
 - 3. 数学运算模块
 - 4. 信号传输模块
 - 5. 信号输出模块

(2) Simulink 常用模块参数设置

1.
$$G(s) = \frac{s^4 + 2s^3 + 5s}{s^5 + s^4 + 2s^3 + 6s + 8}$$
2. $G(s) = \frac{5(s+1)}{(s+2)(s+3)}$

- 3. 设置 Step 和 Ramp 信号
- 2. 建立 Simulink 结构图模型

实验三 二阶系统单位阶跃响应分析

- 1. 闭环系统特征根/闭环极点
- 2. 二阶系统单位阶跃响应分析
 - (1) 阻尼比 ξ 对二阶系统阶跃响应的影响
 - $(2) \omega_n$ 对二阶系统阶跃响应的影响

实验四 高阶控制系统时域性能改善分析

$$\Phi(s) = rac{10(s+1)(s+3)}{(s+4)(s^2+2s+2)}$$

实验五 基于Simulink 控制系统稳态误差分析

- 1. 研究系统在不同典型输入信号作用下稳态误差的变化
- 2. 研究系统型次的不同、稳态误差的变化
 - (1) 0 型系统在典型输入信号作用下的稳态误差
 - (2) Ⅱ型系统在典型输入信号作用下的稳态误差

实验六 控制系统根轨迹绘制及分析

1. 绘制系统的零极点图

- 2. 绘制控制系统的根轨迹图并分析根轨迹的一般规律
- 3. 根据控制系统的根轨迹,分析控制系统的性能

实验七 控制系统的频域分析(奈式图&伯德图)

- 1. 绘制控制系统Nyquist图
- 2. 根据Nyquist图分析系统稳定性
- 3. 绘制控制系统Bode图
- 4. 根据Bode图分析系统的稳定性

实验八 基于根轨迹编辑器系统校正设计

- 1. 开环传递函数 $G(s)=rac{1}{s^2(s+10)}$ 2. 开环传递函数 $G(s)=rac{1}{0.5s^2+s}$

实验一 控制系统数学模型建立

1. 传递函数模型

(1)
$$G(s)=rac{s+3}{s^3+2s^2+2s+1}$$

```
1  num = [1 3];
2  den = [1 2 2 1];
3  printsys(num,den);
```

(2)
$$G(s)=rac{s^2+3}{s^3(s^2+4)(s^2+4s)}$$

```
1  num = [1 4 2];
2  den = conv([1 0 0 0],conv([1 0 4],[1 4 0]));
3  printsys(num,den);
```

2. 零极点模型

(1)
$$G(s)=rac{10(s+5)}{(s+0.5)(s+2)(s+3)}$$

```
1 | z = -5;

2 | p = [-0.5 -2 -3];

3 | k = 10;

4 | sys = zpk(z,p,k)
```

sys =

10 (s+5)

----(s+0.5) (s+2) (s+3)

Continuous-time zero/pole/gain model.

(2)
$$G(s) = rac{8(s+1-j)(s+1+j)}{s^2(s+5)(s+6)(s^2-1)}$$

```
1 | z = [-1+j -1-j];

2 | p = [0 0 -5 -6 -1 1];

3 | k = 8;

4 | sys = zpk(z,p,k)
```

sys =

Continuous-time zero/pole/gain model.

3. 单位负反馈

$$G(s)=rac{2s+1}{s^2+2s+3)}$$

```
1  num = [2 1];
2  den = [1 2 3];
3  sys = feedback(tf(num,den),1)
```

```
2 s + 1
-----s^2 + 4 s + 4
```

Continuous-time transfer function.

4. 控制系统的模型间的相互转换

(1) 将 $G(s)=rac{s^2+5s+6}{s^3+2s^2+s}$ 转换成零极点模型

```
1  num = [1 5 6];
2  den = [1 2 1 0];
3  [z,p,k]= tf2zp(num,den);
4  sys = zpk(z,p,k);
```

```
sys =

(s+3) (s+2)
-----
s (s+1)^2
```

Continuous-time zero/pole/gain model.

(2) 将 $G(s) = rac{8(s+1)(s+2)}{s(s+5)(s+6)(s+3)}$ 转换为传递函数模型

```
1  z = [-1 -2]';
2  p = [0 -5 -6 -3]';
3  k = 8;
4  [num,den] = zp2tf(z,p,k);
5  printsys(num,den)
```

num/den =

5. 引入反馈环节后传递函数求取

$$G(s) = rac{2s^2 + 5s + 1}{s^2 + 2s + 3} H(s) = rac{5(s+2)}{s+10}$$

```
1  G = tf([2 5 1],[1 2 3]);
2  C = tf([5,10],[1,10]);
3  sys = feedback(G,C,-1)
```

sys =

Continuous-time transfer function.

实验二 建立 Simulink 结构图模型

1. Simulink基础

(1) Simulink 常用模块

1. 信号源: Step,Ramp

2. 连续模块

3. 数学运算模块

4. 信号传输模块

5. 信号输出模块

(2) Simulink 常用模块参数设置

1.
$$G(s) = rac{s^4 + 2s^3 + 5s}{s^5 + s^4 + 2s^3 + 6s + 8}$$

2.
$$G(s) = \frac{5(s+1)}{(s+2)(s+3)}$$

3. 设置 Step 和 Ramp 信号

2. 建立 Simulink 结构图模型

$$G_1(s) = \frac{1}{s+1} \ G_2(s) = \frac{5}{s+2}$$


```
1   [a,b,c,d] = linmod('test2');
2   
3   [num,den] = ss2tf(a,b,c,d);
4   
5   printsys(num,den,'s');
6
```

结果

num/den =

实验三 二阶系统单位阶跃响应分析

1. 闭环系统特征根/闭环极点

$$G_1(s)=rac{\omega_n^2}{s^2+2\omega_n\xi s+w_n^2}$$

```
1  wn = 10;
2  num = [1 2 1];
3  xi = [0 0.25 0.7 1 1.2];
4 
5  for i = 1:length(xi)
6   den = [1 2*xi(i)*wn wn^2];
7  roots(den)
8  end
```

```
root =

0.0000 +10.0000i
0.0000 -10.0000i

root =

-2.5000 + 9.6825i
-2.5000 - 9.6825i

root =

-7.0000 + 7.1414i
-7.0000 - 7.1414i

root =

-10
-10

root =

-18.6332
-5.3668
```

结论

当其他条件不变时,阻尼比越大,闭环极点远离虚轴

2. 二阶系统单位阶跃响应分析

(1) 阻尼比 ξ 对二阶系统阶跃响应的影响

```
1
    wn = 10;
 2
    num = wn^2;
 3
    xi = [0 \ 0.25 \ 0.7 \ 1 \ 1.2];
    figure(1);
 5
    hold on;
    for i = 1:length(xi)
 6
 7
        den = [1 2*xi(i)*wn wn^2];
8
        roots(den)
9
        step(num,den,2);
10
    end
11
12
    legend('xi = 0','xi = 0.25','xi = 0.7','xi = 1','xi = 1.2');
```


编 号/(sys)	阻尼 比/(ξ)	闭环极点/(pole)	上升时 间/(tr/s)	峰值时 间/(tp/s)	超调 量/(Mp %)	调节时 间/(ts/s)
1	0	10.0000i -10.0000i	Null	Null	100%	Null
2	0.25	-2.5000 + 9.6825i -2.5000 - 9.6825i	0.127	0.32	44%	1.41
3	0.7	-7.0000 + 7.1414i -7.0000 - 7.1414i	0.213	0.434	5%	0.598
4	1	-10, -10	0.337	Null	Null	0.584
5	1.2	-18.6332 -5.3668	0.437	Null	Null	0.792

由图可以看出,当其他条件不变时,**提高**系统的阻尼比,上升时间**增大**,超调量**减少**,振荡次数**减少**,调节时间**减短**,动态品质会逐渐**提高**

(2) ω_n 对二阶系统阶跃响应的影响

```
wn = [10 50];
2
    num = wn.^2;
3
    xi = 0.25;
    figure(2);
5
   hold on;
6
    for i = 1:length(wn)
7
        den = [1 2*xi*wn(i) wn(i).^2];
8
        roots(den)
9
        step(num(i),den,2);
10
   end
    legend('wn = 10', 'wn = 50');
11
```


编 号/(sys)	震荡频 率/(ωn)	闭环极点/(pole)	上升时 间/(tr/s)	峰值时 间/(tp/s)	超调量/(Mp %)	调节时 间/(ts/s)
1	10	-2.5000 + 9.6825i -2.5000 - 9.6825i	0.127	0.32	0.44	1.41
2	50	-12.5000+48.4123i -12.5000 - 48.4123i	0.0257	0.0664	0.44	0.282

当**0<ζ<1**是欠阻尼时,自然频率**越小**,上升时间**越短**,超调量不变,调节时间**越短**

实验四 高阶控制系统时域性能改善分析

$$\Phi(s) = rac{10(s+1)(s+3)}{(s+4)(s^2+2s+2)}$$

```
1 \mid wn = [10 \ 50];
   num = wn.^2;
 3 xi = 0.25;
 4 figure(2);
 5 hold on;
 6 for i = 1:length(wn)
        den = [1 2*xi*wn(i) wn(i).^2];
8
        roots(den)
9
        step(num(i),den,2);
10
11
    legend('wn = 10','wn = 50');
12
13
```


编号/(sys)	系统闭环传递函数	上升时间/(tr/s)	峰值时间/(tp/s)	超调量/(Mp %)	调节时间/(ts/s)
1	$\Phi(s) = rac{10(s+1)(s+3)}{(s+4)(s^2+2s+2)}$	0.505	1.43	0.225	3.35
2	$\Phi(s) = rac{1.25(s+1)(s+3)}{(s+0.5)(s^2+2s+2)}$	1.03	2.22	0.0728	3.64
3	$\Phi(s) = rac{5(s+2)(s+3)}{(s+4)(s^2+2s+2)}$	3.3	Null	Null	7.05

- **闭环零点**会**减小**系统阻尼比,从而使超调量**增大**,但**减小**峰值时间,使系统响应速度加快,这种作用会随着闭环零点接近虚轴而加剧。
- **闭环极点**会**增大**系统阻尼比,从而使超调量**较低**,但峰值时间**增大**,使系统响应速度变慢,这种作用会随着闭环极点接近虚轴而加剧。

实验五 基于Simulink 控制系统稳态误差分析

1. 研究系统在不同典型输入信号作用下稳态误差的变化

- 单位负反馈系统开环传递函数 $G(s)=rac{10K}{s(0.1s+1)}$
 - 。 阶跃输入响应

<u>K = 1</u>

<u>K = 10</u>

■ 结论

- 1. I型系统的单位阶跃响应, 其稳态误差会趋近于0
- 2. 当其他条件不变时,随着K的增大,到达稳态时产生的震荡的次数会越来越多

。 斜坡阶跃输入响应

<u>K = 1</u>

K = 0.1

■ 结论

I型系统的单位斜坡响应, 其稳态误差会趋近于1/K

2. 研究系统型次的不同、稳态误差的变化

(1) 0 型系统在典型输入信号作用下的稳态误差

单位阶跃响应

单位斜坡响应

- 1.0型系统的单位阶跃响应,其稳态误差会趋近于 1/(1+K)
- 2.0型系统的单位斜坡响应, 其稳态误差会随着时间增大而增大

(2) 工型系统在典型输入信号作用下的稳态误差

单位阶跃响应

单位斜坡响应

单位加速度响应

- 1. Ⅱ型系统的单位阶跃响应, 其稳态误差趋近于0
- 2. Ⅱ型系统的单位斜坡响应, 其稳态误差也趋近于0
- 3. Ⅱ型系统的单位加速度响应, 其稳态误差趋近于1/K

实验六 控制系统根轨迹绘制及分析

1. 绘制系统的零极点图

```
1  num = [1 5 5];
2  den = conv(conv([1 0],[1 1]),[1 2 2]);
3
4  figure(1);
5  pzmap(num,den);
```


零极点	阻尼比/ξ	超调量/σ(%)	震荡频率ωn
零点1	>1	0	3.62
零点2	>1	0	1.38
极点1	0.707	4.32	1.41
极点2	0.707	4.32	1.41
极点3	1	0	1
极点4	-1	0	0

2. 绘制控制系统的根轨迹图并分析根轨迹的一般规律

系统开环传递函数 $G(s)H(s)=rac{k}{s(s+1)(s+2)}$

```
1  k = 1;
2  z =[];
3  p = [0 -1 -2];
4  [num den] = zp2tf(z,p,k);
5
6  rlocus(num,den);
```


- 根轨迹有3条
- 位于负实轴上的根轨迹,其对应阻尼 $\xi=1$,超调量为 **0**,系统处于**临界阻尼状态**,而且在远离虚轴的方向,随着增益 K 增大,震荡频率 ω n **增大**,系统动态相应衰弱速率**变快**
- 分离点为 (-0.423, 0) ,对应阻尼 $\xi=1$,超调量为 0,开环增益 K=0.385,系统处于**临界状态**
- 分离点至虚轴,闭环极点由 (-0.423, 0) 变为 (0, $\pm j1.41$),对应阻尼 $0 < \xi < 1$,系统处于 欠阻尼状态,其动态响应将出现衰减震荡,而且越靠近虚轴,增益K越大,阻尼越小,超调量越大,震荡频率越大
- 虚轴交点,闭环极点是一对纯虚根 **(0,** $\pm j1.41$ **)** ,阻尼 $\xi=0$,超调量达到**100%**,系统处于**临 界稳定状态**,动态响应出现**等幅震荡**,此时称临界稳定增益 **Kc** = **6**

3. 根据控制系统的根轨迹,分析控制系统的性能

负反馈系统的开环传递函数 $G(s)H(s)=rac{k(s+3)}{s(s+2)}$

```
1  k = 1;
2  z = [-3];
3  p = [0 -2];
4
5  [num den] = zp2tf(z,p,k);
6
7  rlocus(num,den);
```


• 分离点

- 1. (-1.27, 0) K = 0.536
- 2. (-4.73, 0) K = 7.46
- 开环增益范围

0.536 < K < 7.46

• 最小阻尼的闭环极点

$$\mathbf{K}$$
 = 2, $\xi = 0.817$,

即系统最小阻尼比时的闭环极点为**S = -2** \pm **1.414**,最小阻尼比 $\xi=0.817$

实验七 控制系统的频域分析(奈式图&伯德图)

1. 绘制控制系统Nyquist图

```
1   num = 0.5;
2   den = [1 2 1 0.5];
3   root = roots(den);
4   figure(1);
5   nyquist(num,den);
```

```
root =

-1.5652 + 0.0000i
-0.2174 + 0.5217i
-0.2174 - 0.5217i
```


• 因为所有根实数为非整数,所以该系统稳定

2. 根据Nyquist图分析系统稳定性

- 开环传递函数
- T1<T2

```
11
12
    subplot(3,1,2);
13
14
    rlocus(num,den);
15
16
    subplot(3,1,3);
17
    num = [T1 1];
    den = [T2 1 T1 1];
18
19
    step(num,den);
20
    suptitle('T1 = 3, T2 = 6');
21
```

• 结论 如下图,当T1<T2的时候,系统是**不稳定的**

• T1>T2

```
T1 = 6;
 2
    T2 = 3;
    k = 1;
 4
 5
    num = [T1 1];
    den = [T2 \ 1 \ 0 \ 0];
 6
 8
    figure(1);
9
10
    nyquist(num,den);
11
    figure(2);
12
    subplot(2,1,1);
13
14
15
    rlocus(num,den);
16
17
    subplot(2,1,2);
    num = [T1 1];
18
19
    den = [T2 1 T1 1];
20
    step(num,den);
21
    suptitle('T1 = 6, T2 = 3');
22
23
```

结论

如下图,当T1>T2的时候,系统是稳定的

• 综上所述

当我们要分析系统的稳定性时,首先要知道系统的开环传递函数在右半平面的极点数P。若P = 0,图形不包围(-1,j0),则闭环系统稳定,反之则不稳定。若P!=0,图形逆时针包围该点则系统稳定,若逆时针包围的圈数不到P圈或顺时针包围该点,则闭环系统不稳定。

• 开环传递函数

$$G(s)H(s)=rac{k}{s^v(s+1)(s+2)}$$

1. v = 1,k=1、6、7

```
v = 1;
1
 2
 3
    k = [1 6 7];
 4
 5
    figure(1);
    for i=1:3
 6
 7
       subplot(1,3,i)
8
       num = k(i);
9
       den = conv([1 0],conv([1 1],[1 2]));
10
       nyquist(num,den);
11
12
    end
```

当系统的开环增益增大时,系统的快速性变好,稳定性会越来越低

2. k = 1, v = 0, 1, 2

```
1
    k = 1;
 3
    figure(2);
 4
    num = k;
 5
 6
    den1 = conv([1 1],[1 2]);
 7
    den2 = conv([1 0], conv([1 1], [1 2]));
 8
    den3 = conv([1 \ 0 \ 0], conv([1 \ 1], [1 \ 2]));
 9
10
    subplot(1,3,1);
11
    nyquist(num,den1);
12
    subplot(1,3,2);
13
14
    nyquist(num,den2);
15
16
    subplot(1,3,3);
```

```
17
    nyquist(num,den3);
18
19
    figure(4);
20
    subplot(1,3,1);
21
22
    step(num,den1);
23
    subplot(1,3,2);
24
25
    step(num,den2);
26
27
    subplot(1,3,3);
    step(num,den3);
28
29
```

增加开环极点会使系统的动态性能变差。其原因在于惯性环节表现出积分特性,即滞后特性,会使系统的超调推后出现,超调增大,相角稳定裕量减小,直至系统不稳定。

3. 绘制控制系统Bode图

•
$$G(s)H(s) = \frac{10}{s^2 + 2s + 10}$$

```
1  num = 10;
2  den = [1 2 10];
3 
4  figure(1);
5  bode(num,den);
```


如图, 当辐值裕度穿过0°时, 对应的相位裕度大于-180°, 所以该系统稳定

•
$$G(s) = \frac{2}{s(s+1)(s+2)}$$

如图所示, 相位裕度大于零和幅值裕度大于零同时满足, 则系统稳定

4. 根据Bode图分析系统的稳定性

•
$$G(s) = \frac{k}{s(0.5s+1)(0.1s+1)}$$

```
1
    k = 1;
    num = k;
    den = conv([1 0],conv([0.5 1],[0.1 1]));
 5
    [m p w] = bode(num,den);
 6 wi = spline(p,w,-180);
    mi = spline(w,m,wi);
 8
    kc = 1/mi;
9
    num = kc;
10
11
    figure(1);
    margin(num,den);
12
13
14
    figure(2);
    rlocus(num,den);
15
16
```

结论

如图所示, 系统临界稳定时, k = 12

•
$$G(s)=rac{k(s+1)}{s^2(0.1s+1)}$$

```
1  k = 1;
2  num = [1 1];
4  den = conv([1 0 0],[0.1 1]);
6  bode(num,den);
8
```

• 结论 如图, 此时的对应的相位裕度大于-180°, 所以系统稳定

实验八 基于根轨迹编辑器系统校正设计

1. 开环传递函数 $G(s)=rac{1}{s^2(s+10)}$

```
1  num = 1;
2  den = conv([1 0 0],[1 10]);
3  rltool(tf(num,den))
```

增加一个极点(-30,0), 改善该轨迹使其获得一次超调就衰减

2. 开环传递函数 $G(s)=rac{10}{0.5s^2+s}$

```
1  num = 10;
2  den = [0.5 1 0]
3  4  rltool(tf(num,den))
```

增加一个极点和一个零点 取 C = 0.12,此时符合题意

