## Assignment#2 CS207 Fall 2023

Ben Chen(12212231)

November 8, 2023

PROBLEM 1. Obtain the simplified boolean expressions for the output F and G in terms of the input variables in the given circuit.

SOLUTION. a) Considering the dependency of each function, we obtain T2 and T3 first, then T1 and finally F and G.

$$T2(A, B, C, D) = (A'D)'$$

$$T3(A, B, C, D) = A' + BC$$

$$T1(A, B, C, D) = (A' \cdot T2)' = (A'(A'D)')'$$

$$F(A, B, C, D) = T1 \cdot T3 = (A' + BC)((A'(A'D)')')$$

$$G(A, B, C, D) = (T2 \cdot T3)' = ((A' + BC)(A'D)')'$$

b) Simplify the outputs of F and G

$$F(A, B, C, D) = (A' + BC)((A'(A'D)')')$$
$$= (A' + BC)(A + A'D) = A'D + ABC$$

$$G(A, B, C, D) = ((A' + BC)(A'D)')'$$

$$= (A' + BC)' + A'D = A(BC)' + A'D$$

$$= AB' + AC' + A'D$$

## c) The truth table of F and G

| A | B | C | D | F(A, B, C, D) | G(A, B, C, D) |
|---|---|---|---|---------------|---------------|
| 0 | 0 | 0 | 0 | 0             | 0             |
| 0 | 0 | 0 | 1 | 1             | 1             |
| 0 | 0 | 1 | 0 | 0             | 0             |
| 0 | 0 | 1 | 1 | 1             | 1             |
| 0 | 1 | 0 | 0 | 0             | 0             |
| 0 | 1 | 0 | 1 | 1             | 1             |
| 0 | 1 | 1 | 0 | 0             | 0             |
| 0 | 1 | 1 | 1 | 1             | 1             |
| 1 | 0 | 0 | 0 | 0             | 1             |
| 1 | 0 | 0 | 1 | 0             | 1             |
| 1 | 0 | 1 | 0 | 0             | 1             |
| 1 | 0 | 1 | 1 | 0             | 1             |
| 1 | 1 | 0 | 0 | 0             | 1             |
| 1 | 1 | 0 | 1 | 0             | 1             |
| 1 | 1 | 1 | 0 | 1             | 0             |
| 1 | 1 | 1 | 1 | 1             | 0             |

PROBLEM 2. A circuit with four inputs  $A_3A_2A_1A_0$  and two output P and D, where the former one is TRUE when the number is prime number and the latter one is TRUE if the number is a multiple of 3.

SOLUTION. a) It's obvious that

$$P = \Sigma(2, 3, 5, 7, 11, 13)$$

$$D = \Sigma(0, 3, 6, 9, 12, 15)$$

so the truth table of the circuit is

| $A_3$ | $A_2$ | $A_1$ | $A_0$ | P | D |
|-------|-------|-------|-------|---|---|
| 0     | 0     | 0     | 0     | 0 | 0 |
| 0     | 0     | 0     | 1     | 0 | 0 |
| 0     | 0     | 1     | 0     | 1 | 0 |
| 0     | 0     | 1     | 1     | 1 | 1 |
| 0     | 1     | 0     | 0     | 0 | 0 |
| 0     | 1     | 0     | 1     | 1 | 0 |
| 0     | 1     | 1     | 0     | 0 | 1 |
| 0     | 1     | 1     | 1     | 1 | 0 |
| 1     | 0     | 0     | 0     | 0 | 0 |
| 1     | 0     | 0     | 1     | 0 | 1 |
| 1     | 0     | 1     | 0     | 0 | 0 |
| 1     | 0     | 1     | 1     | 1 | 0 |
| 1     | 1     | 0     | 0     | 0 | 1 |
| 1     | 1     | 0     | 1     | 1 | 0 |
| 1     | 1     | 1     | 0     | 0 | 0 |
| 1     | 1     | 1     | 1     | 0 | 1 |

## **b)** The K-map of P and D are

| 00<br>333 | g 00 | 01 | 11 | 10 |
|-----------|------|----|----|----|
| 00        | 0    | 0  | 1  | 1  |
| 01        | 0    | 1  | 1  | 0  |
| 11        | 0    | 1  | 0  | 0  |
| 10        | 0    | 0  | 1  | 0  |

| 00<br>37<br>37<br>37<br>37<br>37 | z 00 | 01 | 11 | 10 |
|----------------------------------|------|----|----|----|
| 00                               | 1    | 0  | 1  | 0  |
| 01                               | 0    | 0  | 0  | 1  |
| 11                               | 1    | 0  | 1  | 0  |
| 10                               | 0    | 1  | 0  | 0  |

PROBLEM 3. Design a circuit to implement the three functions with decoder and NAND gates, and draw the diagram.

Solution. Convert the equations into sum of minterms

$$F1 = \Sigma(0, 6, 7)$$

$$F2 = \Sigma(1, 2, 3, 4, 5, 6, 7)$$

$$F3 = \Sigma(2, 3, 4, 5)$$

and then design the circuit



PROBLEM 4. Develop a 3-to-8 line decoder using NOR gates only, and draw its logic diagram.

SOLUTION. To implement a 3-to-8 decoder with nor gates only, we can come up with a method similar to the method using AND gates only. For example,

$$(x' + y' + z')' = xyz$$
  
 $(x + y + z)' = x'y'z' = 0$ 



PROBLEM 5. An 8:1 multiplexer has inputs A, B, and C connected to the selection inputs  $S_2$ ,  $S_1$ , and  $S_0$ , respectively. The data inputs  $I_0$  through  $I_7$  are as follows:  $I_1 = I_2 = 0$ ;  $I_3 = I_5 = I_7 = 1$ ;  $I_0 = I_4 = D$ ; and  $I_6 = D'$ . Determine the Boolean function F(A, B, C, D) that the multiplexer implements.

Solution. a) The truth table of F is

| A | В | C | D | F(A, B, C, D) |
|---|---|---|---|---------------|
| 0 | 0 | 0 | 0 | 0             |
| 0 | 0 | 0 | 1 | 1             |
| 0 | 0 | 1 | 0 | 0             |
| 0 | 0 | 1 | 1 | 0             |
| 0 | 1 | 0 | 0 | 0             |
| 0 | 1 | 0 | 1 | 0             |
| 0 | 1 | 1 | 0 | 1             |
| 0 | 1 | 1 | 1 | 1             |
| 1 | 0 | 0 | 0 | 0             |
| 1 | 0 | 0 | 1 | 1             |
| 1 | 0 | 1 | 0 | 1             |
| 1 | 0 | 1 | 1 | 1             |
| 1 | 1 | 0 | 0 | 1             |
| 1 | 1 | 0 | 1 | 0             |
| 1 | 1 | 1 | 0 | 1             |
| 1 | 1 | 1 | 1 | 1             |

## **b)** And the K-map is



Thus, we got the sum of products from the K-map

$$F(A, B, C, D) = BC + BD + AB'C' + A'CD$$

PROBLEM 6. Implement the boolean function  $F(A, B, C, D) = \Sigma(1, 9, 10, 12, 13, 14) + d(4, 5, 8)$  using the following component.

SOLUTION. a) The truth table is shown below, which is obtained from the midterms and the don't care terms are denoted by X.

|   |   |   |   | I             |
|---|---|---|---|---------------|
| A | В | C | D | F(A, B, C, D) |
| 0 | 0 | 0 | 0 | 0             |
| 0 | 0 | 0 | 1 | 1             |
| 0 | 0 | 1 | 0 | 0             |
| 0 | 0 | 1 | 1 | 0             |
| 0 | 1 | 0 | 0 | X             |
| 0 | 1 | 0 | 1 | X             |
| 0 | 1 | 1 | 0 | 0             |
| 0 | 1 | 1 | 1 | 0             |
| 1 | 0 | 0 | 0 | X             |
| 1 | 0 | 0 | 1 | 1             |
| 1 | 0 | 1 | 0 | 1             |
| 1 | 0 | 1 | 1 | 0             |
| 1 | 1 | 0 | 0 | 1             |
| 1 | 1 | 0 | 1 | 1             |
| 1 | 1 | 1 | 0 | 1             |
| 1 | 1 | 1 | 1 | 0             |

b) Simplify the boolean function using K-map first

| 2/3 | , 00 | 01 | 11 | 10 |
|-----|------|----|----|----|
| 00  | 0    | 1  | 0  | 0  |
| 01  | X    | X  | 0  | 0  |
| 11  | 1    | 1  | 0  | 1  |
| 10  | X    | 1  | 0  | 1  |

we got the terms

$$F(A, B, C, D) = B'C + B'D + A'D + AB'$$

and the logic diagram using AND OR gates  $\,$ 



c) The implementation with 74157 decoder and NAND gate is



d) The diagram uses one decoder to decode  $D_0 - D_7$  and the other to decode  $D_8 - D_{15}$ . And then connect the output of minterms with a OR gate.



e) The 8-to-1 multiplexer uses A, B, C as its selector and the input is determined by D or 0/1 according to the truth table.



**f)** Design the 4-to-1 multiplexer with B, C with its selector from the (a) truth table. So we got when BC = 00 inputs A = A + D, when BC = 01 inputs A = AD', when BC = 10 inputs AD'.

