1. Prove that the following polynomials are irreducible in $\mathbb{Z}[x]$ (briefly justify answers):

(a)
$$x^4 - 4x^3 + 6$$
,

(b)
$$x^6 + 30x^5 - 15x^3 + 6x - 120$$
,

(c)
$$x^4 + 4x^3 + 6x^2 + 2x + 1$$
 [Hint: Substitute $x - 1$ for x .],

(d)
$$\frac{(x+2)^p-2^p}{x}$$
, where p is an odd prime.

- 2. Prove that $x^3 + nx + 2$ is irreducible in $\mathbb{Z}[x]$ for all integers $n \neq 1, -3, -5$.
- 3. Factor each of the two polynomials: x^8-1 and x^6-1 into irreducibles over each of the following rings: (a) \mathbb{Z} , (b) $\mathbb{Z}/2\mathbb{Z}$, (c) $\mathbb{Z}/3\mathbb{Z}$.

Let F be any field and let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in F[x]$. The derivative, $D_x(f(x))$, of f(x) is defined by

$$D_x(f(x)) = na_n x^{n-1} + (n-1)a_{n-1}x^{n-2} + \dots + a_1$$

where, as usual, $na = a + a + \cdots + a$ (n times) in the field F. Note that $D_x(f(x))$ is again a polynomial with coefficients in F. For example, if $f(x) = x^4 + x^3 + x^2 + x + 1 \in \mathbb{F}_2[x]$, then $D(f(x)) = x^2 + 1$, because the terms $4x^3$ and 2x are zero in $\mathbb{F}_2[x]$.

The polynomial f(x) is said to have a multiple root if there is some field E containing F and some $\alpha \in E$ such that $(x-\alpha)^2$ divides f(x) in E[x]. For example, the polynomial $f(x) = (x-1)^2(x-2) \in \mathbb{Q}[x]$ has $\alpha = 1$ as a multiple root and the polynomial $f(x) = x^4 + 2x^2 + 1 = (x^2 + 1)^2 \in \mathbb{R}[x]$ has $\alpha = \pm i \in \mathbb{C}$ as multiple roots. We shall prove in Section 13.5 that a nonconstant polynomial f(x) has a multiple root if and only if f(x) is not relatively prime to its derivative (which can be detected by the Euclidean Algorithm in F[x]).

4. Use the derivative criterion described above to determine whether the following polynomials have multiple roots (do not factor these polynomials):

(a)
$$x^3 - 3x - 2 \in \mathbb{Q}[x]$$

(b)
$$x^3 + 3x + 2 \in \mathbb{Q}[x]$$

(c)
$$x^6 - 4x^4 + 6x^3 + 4x^2 - 12x + 9 \in \mathbb{Q}[x]$$

- (d) Show for any prime p and any $a \in \mathbb{F}_p$ that the polynomial $x^p a$ has a multiple root.
- 5. Show that the polynomial $(x-1)(x-2)\cdots(x-n)-1$ is irreducible over \mathbb{Z} for all $n\geq 1$. [Hint: If the polynomial factors, consider the values of the factors at $x=1,2,\ldots,n$.]