Варіант 1

- 1. Камінь кинули вертикально вгору і він піднявся на висоту h_0 . Через який час він впаде на землю? На яку висоту h підніметься камінь, якщо його початкову швидкість збільшити вдвічі?
- 2. Диск діаметром D та масою m обертається навколо осі, що проходить через його центр перпендикулярно до площини, з частотою v. Яку роботу A потрібно виконати, щоб зупинити диск?

Варіант 2

- 1. Тіло ковзає по похилій площині, що утворює кут α з горизонтом. Залежність шляху тіла S від часу t описується виразом S = C t^2 , де C відома стала. Знайти коефіцієнт тертя k між тілом та площиною.
- 2. На барабан масою M намотана нитка, до кінця якої прив'язаний вантаж масою m. Знайти прискорення вантажу, вважаючи барабан однорідним циліндром. Тертям знехтувати.

Варіант 3

- 1. Яку роботу А потрібно виконати, щоб пружину жорсткістю k, стиснуту на x, додатково стиснути на Δx .
- 2. На малюнку зображено замкнутий процес, що здійснює певна маса азоту. Відомо, що максимальний тиск газу в цьому процесі дорівнює р0. Визначити масу газу і його тиск в точці 1, якщо значення T1, T2, V1 і V2 відомі.

Варіант 4

- 1. Поїзд метрополітену рухається зі швидкістю V_0 . Якщо вимкнути струм, то поїзд, рухаючись рівносповільнено, зупиниться через час t. Яке прискорення поїду? На якій відстані S від станції потрібно вимкнути струм.
- 2. Користуючись розподілом Максвела знайти середнє значення оберненої швидкості молекул ідеального газу, що знаходиться при температурі T. Молекулярна маса газу дорівнює M.

Варіант 5

- 1. Куля масою m, що летить зі швидкістю V, потрапляє у дерево і заглиблюється на глибину L. Знайти силу опору дерева і час руху кулі в дереві.
- 2. В балоні міститься m_1 кисню та m_2 аргону. Тиск суміші p, температура T. Вважаючи, що гази ідеальні визначити об'єм балону.

Варіант 6

- 1. До нижнього кінця пружини, підвішеної вертикально, під'єднана інша пружина, до кінця якої прикріплено вантаж. Жорсткості пружин дорівнюють k_1 та k_2 . Нехтуючи масою пружин порівняно з масою вантажу, знайти відношення потенційних енергій цих пружин.
- 2. Колесо радіусом R і масою m під дією моменту сил M набуло кутової швидкості ω. Знайти час, протягом якого колесо розганялося до цієї швидкості. Колесо вважати суцільним диском.

Варіант 7

- 1. Людина, що стоїть на нерухомому візку, кидає у горизонтальному напрямі камінь масою т. Візок з людиною загальною масою М після кидка починає котитися зі швидкістю V. Знайти кінетичну енергію каменю через час t після початку руху.
- 2. Обруч та диск з однаковою масою m котяться без проковзування з однаковою швидкістю V. Кінетична енергія обруча дорівнює E_{k1} . Знайти кінетичну енергію диску E_{k2} .

Варіант 8

- 1. Гармата, що має ствол масою M, стріляє в горизонтальному напрямі. Маса снаряду m, його початкова швидкість V. При пострілі ствол відкатується на відстань S. Знайти середню силу гальмування F, що гальмує ствол.
- 2. Азот масою m ізотермічно розширюється при температурі T, причому його тиск зменшується від величини p_1 до p_2 . Знайти роботу A, виконану газом при розширенні.

Варіант 9

- 1. Теплохід довжиною L рухається в нерухомій воді з деякою швидкістю. Катер, що має відносно води швидкість V, проходить відстань від корми теплохода до його носа за час t. Знайти швидкість теплоходу U.
- 2. Циліндр починає обертатися з кутовим прискоренням є в через час t_1 після початку руху набуває момент імпульсу L. Знайти кінетичну енергію циліндру E_k через час t_2 після початку руху.

Варіант 10

1. На горизонтальній площині знаходяться два тіла, масами m і M, зв'язані нерозтяжною ниткою. До тіла більшої маси прикладена сила F, направлена під кутом α по площини. Вважаючи, що коефіцієнт тертя μ знайти силу натягу нитки.

2. За 10 діб зі склянки повністю випаровувалось 100 г води. Скільки в середньому вилітало молекул з поверхні за 1 с.

Варіант 11

- 1. При підніманні вантажу масою m на висоту h сила F виконує роботу A. З яким прискоренням а піднімається вантаж?
- 2. Однорідний диск радіусом R та масою m обертається навколо осі, що проходить через його центр перпендикулярно до площини. Залежність кутової швидкості обертання ω від часу t описується рівнянням $\omega = A + B t$, де Aта B відомі сталі. Знайти дотичну силу F, прикладену до ободу диску. Тертям знехтувати.

Варіант 12

- 1. Дана система див. рис. Маси М та m відомі. Знайти прискорення тіл. Блоки невагомі, тертя нема.
- 2. Скільки електронів міститься в 1 см3 свинцю. Густина свинцю $\rho=11000~{\rm kr/m^3}.$

Варіант 13

- 1. З башти висотою h горизонтально кинули камінь зі швидкістю V_0 . Який час камінь перебуватиме у русі? На якій відстань L від основи башти він впаде на землю? З якою швидкістю V він впаде на землю? Який кут φ складе швидкість каменя у точці падіння?
- 2. Знайти відношення середніх квадратичних швидкостей молекул гелію та азоту при однакових температурах.

Варіант 14

- 1. З гармати масою M вилітає снаряд масою m. Кінетична енергія снаряду при вильоті дорівнює E_{km} . Яку кінетичну енергію отримує гармата внаслідок віддачі?
- 2. Тиск повітря всередині закоркованої пляшки при температурі $t_1 = 7^{\circ}\mathrm{C}$ був $p_1 = 100$ кПа. При нагріванні корок вилетів. До якої температури нагріли пляшку, якщо відомо, що корок вилітає при тиску p = 130 кПа.