Einführung Code-basierte Kryptografie Code-basiertes Kryptosystem – McEliece

Fahrplan

Grundlagen

McEliece - Code-basierte Kryptografie

Quellen

Zusammenfassung

- ▶ McEliece asymmetrisches Public-Key-Kryptosystem 1978 nach Robert McEliece [McE78]
- Grundlegende Idee: Führe absichtliche Fehler in die Chiffre ein
- Verwenden eines allgemeinen fehlerkorrigierende Codes
 - ▶ Dekodierung i.A. *NP*-Hart [Sch07, S. 479], [SP18, S. 353ff]
 - lacktriangle Unterklasse an linearen Codes auch in P lösbar ightarrow Goppa-Codes
- ightharpoonup Angreifer ohne Goppa-Code kann nur in \mathcal{P} , also polynomiell viel rechnen
 - ightharpoonup Die Entschlüsselung eines zufälligen linearen Codes ist ein \mathcal{NP} -Hartes Problem -> [Lju04]
 - ▶ Die Generatormatrix eines Goppa-Codes sieht zufällig aus -> [Fau+13]

Fahrplan Grundlagen Grundlagen

Galoiskörper

Hamming Gewicht und Distanz

Generatormatrix

Parity-Check-Matrix

Lineare Codes

Zyklischer Code

Zyklischer linearer Code

Generatorpolynom

Generatorpolynom

McElice Kodierungsproblem

McElice Kodierungsproblem

McEliece – Code-basierte Kryptografie

McEliece-Kryptosystem

Parameter Definition

Galoiskörper/Galoisfeld

- ▶ Ein Galoiskörper GF(p), wobei p prim, ist ein endlicher Körper welcher bezüglich '+' und '*' abgeschlossen ist.
- ► Beispiel:

$$\mathit{GF}(2) = \mathbb{F}_2 = \{0,1\}$$
: [Kun91]

Addition :	Multiplikation :
0 + 0 = 0	0 * 0 = 0
0 + 1 = 1	0 * 1 = 0
1 + 0 = 1	1 * 0 = 0
1 + 1 = 0	1 * 1 = 1

Hamming Gewicht

▶ Das Hamming Gewicht $w(\cdot)$ eines Vektors x mit Länge n ist definiert als:

$$w(x) := \sum_{i=1}^{n} w(x_i)$$
 mit $w(x_i) = \begin{cases} w(x_i) = 1 : x_i \neq 0 \\ w(x_i) = 0 : x_i = 0 \end{cases}$

Beispiel:

$$w(\underline{1}00\underline{1}) = 2$$
$$w(0\underline{1}\underline{1}\underline{1}) = 3$$

Hamming Distanz

▶ Hamming Distanz $D(\cdot, \cdot)$ zwischen zwei validen Codewörten c und c' ist definiert als:

$$D(c,c') := |\{i \in \{1,\ldots,n\} | c_i \neq c_i'\}|$$

► Beispiel:

$$D(\underline{000}, \underline{111}) = 3$$

$$D(0011\underline{0}, 0011\underline{1}) = 1$$

$$D(\vec{c}, 0000) = w(\vec{c})$$

Minimale Hamming Distanz

▶ Die minimale Hamming Distanz d ist die kleinste Hamming Distanz zwischen zwei beliebigen gültigen Codewörten.

$$d = \min_{c \neq c'} D(c, c')$$

▶ Beispiel: d = 3

Codewort 000 111

Einführung Code-basierte Kryptografie Lea Muth Benjamin Tröster, FU Berlin

Minimale Hamming Distanz

▶ Beispiel: d = 2

Minimale Hamming Distanz

▶ Beispiel: d = 1

Hamming Code Projektion

- ► Ein (7,4) Hamming-Code ohne mgl. Fehlerkorretur, da d=1
- ▶ Projektion von $4d \rightarrow 7d$
 - ▶ D.h. 4 Bit Nachricht abcd auf 7 Bit Code-Wort abcd xzy abgebildet
- ightharpoonup Bsp. abcd o abcd imes yz

$$x = a \oplus b \oplus d$$
$$y = a \oplus c \oplus d$$
$$z = b \oplus c \oplus d$$

► Beispiel:

► Check-Bits xyz können folgende Check-Bit-Status haben (Syndrome s)

хуz	Error-State	abcd	хуz
\checkmark	no error	\checkmark	$\checkmark\checkmark\checkmark$
\times \checkmark \checkmark	x is wrong	\checkmark	$\times \checkmark \checkmark$
\checkmark × \checkmark	y is wrong	\checkmark	$\checkmark \times \checkmark$
$\checkmark\checkmark$	z is wrong	\checkmark	$\checkmark\checkmark$
-××√	a is wrong	\times \checkmark \checkmark \checkmark	~~~~~
\times \checkmark \times	b is wrong	$\times \checkmark \checkmark \checkmark$	\checkmark
\checkmark × ×	c is wrong	$\checkmark\checkmark\checkmark$	\checkmark
\times \times \times	d is wrong	$\checkmark\checkmark\checkmark$	\checkmark

► Aus den Spalten können die Gleichungen wie folgt abgeleitet werden:

	хуz
a is wrong	$\times \times \checkmark$
b is wrong	×√×
c is wrong	\checkmark × ×
d is wrong	$\times \times \times$

$$x = a \oplus b \oplus d$$

$$y = a \oplus c \oplus d$$

$$z = b \oplus c \oplus d$$

► Beispiel: (Fehlerkorrektur)

abcd xyz
$$x = a \oplus b \oplus d$$

$$1001 \ 010$$

$$y = a \oplus c \oplus d$$

$$z = b \oplus c \oplus d$$

Generatormatrix I

▶ Ein linearer binärer (n, k, d)-Code C kann durch die Generatormatrix G wie folgt charakterisiert werden:

$$C = \{c \in GF(2^n), m \in GF(2^k) : c = m \cdot G\}$$

- n Länge des Codeworts
- k Nachrichtenlänge
- d minimale Distanz
- Beispiel:

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$
 (Hamming(7, 4)-Code mit der Generatormatrix G)

Generatormatrix II

► Beispiel:

Nachricht m wird mittels der Generatormatrix G in das zugehörige in das jeweilige Codewort c transformiert und es gilt $m \cdot G = c$:

$$(a \quad b \quad c \quad d) \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} = (a \quad b \quad c \quad d \quad x \quad y \quad z)$$

Parity-Check-Matrix / Prüfmatrix

▶ Ein linearer binärer (n, k, d)-Code C kann durch die Prüfmatrix H wie folgt charakterisiert werden:

$$C = \{c \in GF(2^n) : H\vec{c}^T = \vec{0}\}\$$

ightharpoonup Bsp.: Hamming-Code (7,4) mit Parity-Check-Bit-Gleichungen abcd xyz

$$a \oplus b \oplus d = x$$

$$a \oplus c \oplus d = y$$

$$b \oplus c \oplus d = z$$

Parity-Check-Matrix / Prüfmatrix

▶ Durch umformen erhalten wir ($\oplus \equiv -$):

$$a \oplus b \oplus 0c \oplus d \oplus x \oplus 0y \oplus 0z = 0$$
$$a \oplus 0b \oplus c \oplus d \oplus 0x \oplus y \oplus 0z = 0$$
$$0a \oplus b \oplus c \oplus d \oplus 0x \oplus 0y \oplus z = 0$$

▶ LGS kann als Matrix geschrieben werden, alle validen Codeworte erfüllen dies

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \\ d \\ x \\ y \\ z \end{pmatrix}^{T} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Parity-Check-Matrix Beispiel

- ► Ist 1101100 ein valides Codewort?
- Für valide Codewörter gilt: $H \cdot \vec{c}^T = \vec{0}$
- \blacktriangleright Wende H auf \vec{c}^T an:

$$H \cdot \vec{c}^{T} = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Parity-Check-Matrix Beispiel

▶ Durch addieren eines Fehlers $H(\vec{c} + \vec{e})^T = H \cdot \vec{c}^T + H \cdot \vec{e}^T = H \cdot \vec{e}^T$

$$H \cdot \vec{c}^{T} = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}^{T} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}^{T} + \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}^{T} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}^{T}$$

Recap / Idee der fehlerkorrigierenden Codes

- Gültige Codewörter helfen nicht bei der Fehlerkorrektur
- Ungültige helfen, da wir diese "auseinander" ziehen können

Recap / Idee der fehlerkorrigierenden Codes

- ▶ Generatormatrix G = [1, 1, 1] transformiert 1-Bit Nachrichten in 3-Bit Codeworte
- Fehler können angeordnet werden, durch das Füllen der Lücken mit ungültigen Codeworten werden Fehler zuordenbar und korrigierbar
- ▶ Beispiel: $0 \cdot [111] \rightarrow [0, 0, 0]$ und $1 \cdot [1, 1, 1] \rightarrow [0, 0, 0]$

Beispiel Hamming(7,4)-Code

Lineare Codes

▶ **Defintion:** Ein binärer (n, k, d)-Code ist linear, die \oplus -Summe zweier beliebiger gültiger Codeworte c und c' wiederum ein gültiges Codewort ergibt:

$$\forall c, c' \in C \colon c \oplus c' \in C$$

- ▶ Beispiel: (0,1,1) + (0,1,1) = (0,0,0)
- ightharpoonup Bei gegebener Hamming Distanz d wird der Code C auch (n, k, d)-Code genannt

Zyklischer Code

▶ **Definition:** Ein binärer (n, k, d)-Code heißt zyklisch, wenn jede zyklische Verschiebung (Shift) eines gültiges Codewortes c wiederum ein gültiges Codewort ergibt:

$$\forall c = (c_1, c_2, \dots, c_n) \in C \implies c' = (c_n, c_1, c_2, \dots, c_{n-1}) \in C$$

▶ Beispiel: $(10100) \in C \implies (01010) \in C$

Zyklischer linearer Code

- **Defintion:** Ein binärer (n, k, d)-Code ist linear und zyklisch wenn:
 - ▶ Die ⊕-Summe zweier beliebiger Codeworte c und c' wiederum ein gültiges Codewort ergibt:

$$\forall c, c' \in C : c \oplus c' \in C$$

▶ Jede zyklische Verschiebung eines Codeworte *c* wiederum ein gültiges Codewort ergibt:

$$\forall c = (c_0, c_1, \dots, c_{n_1}) \in C \implies c' = (c_{n_1}, c_0, c_1, \dots, c_{n_2}) \in C$$

Zyklischer linearer Code

- ▶ Beispiel: Gegeben ein Generatorcodewort (100100):
 - ► Mehrfaches Verschieben bis hin zum ursprünglichen Codewort

$$(100100) \implies (010010) \implies (001001) \implies (100100)$$

Zyklischer linearer Code

- Beispiel: Gegeben ein Generatorcodewort c_{gen} (100100):
 - ► Addieren um die restlichen Codeworte zu erhalten:

$$(100100) + (100100) = (000000)$$

 $(100100) + (010010) = (110110)$
 $(100100) + (001001) = (101101)$
 $(010010) + (101101) = (111111)$

Zyklischer linearer Code in polynomialer Darstellung

▶ Die Zeichen eines Codewortes c lassen sich als Koeffizienten eines Polynomes c(x) betrachten:

$$\forall c = (c_0, c_1, \dots, c_{n_1}) \iff c(x) = c_0 + c_1 x + \dots + c_{n_1}$$

- Das Polynom des Generatorcodewortes ist das Generatorpolynom
 - ► Beispiel:

$$(1011) = \underline{1} \cdot X^{0} + \underline{0} \cdot X^{1} + \underline{1} \cdot X^{1} + \underline{1} \cdot X^{3}$$

Generatorpolynom

- ▶ **Defintion:** Ein von null verschiedenes Polynom *g* minimalen Grades eines zyklischen Codes heißt Generatorpolynom.
- ▶ Ein zyklischer Code der Länge n mit einem Generatorpolynom g des Grades r hat einen Coderaum der Dimension r = n k und codiert somit r -viele Bits pro Codewort.

Generatorpolynom

Nachricht	Codewortpolynomial
0	0
1	$x^3 + 1$
X	$x^4 + x$
x + 1	$x^4 + x^3 + x + 1$
x^2	$x^5 + x^2$
$x^2 + 1$	$x^5 + x^3 + x^2 + 1$
$x^{2} + x$	$x^5 + x^4 + x^2 + x$
$x^2 + x + 1$	$x^5 + x^4 + x^3 + x^2 + x + 1$

Recap Generatormatrix / Generatorpolynom

Nachricht	Codewort
0	00
1	11

Nachricht	Codewort
0	0
1	1 + x

Recap Generatormatrix / Generatorpolynom

Nachricht	Codewort
0	000
1	111

Nachricht	Codewort
0	0
1	$1 + x + x^2$

Goppa-Code

▶ Ein binärer Goppa-Code ist ein linearer zyklischer (n, k, d)-Code, der durch ein Generatorpolynom g definiert ist und $\lfloor \frac{d-1}{2} \rfloor$ Fehler korrigieren kann.

McElice Kodierungsproblem

- McElice basiert auf klassischen Dekodierungsproblemen [berlekamp1978inherent]
- ▶ Sei C ein linearer (n, k) Code über \mathbb{F} und $y \in C$ das empfangene Codewort
- Somit ist $s = y \cdot H$ Syndrom des empfangenen Worts, wobei H die Parity-Check-Matrix ist
- ▶ Die beste Abschätzung der empfangen Nachricht des Codeworts ist $x = y + z_0$ (z Fehlervektor), wobei z_0 minimal bzgl. der Gleichung $s = z \cdot H$ ist
- ▶ Problem: finde $x \in C$ mit minimaler Distanz zwischen y, x
- ▶ Im Mittel muss jedoch die gesamte Lösungsmenge für $s = y \cdot H$ durchsucht werden, um die minimale Distanz zu finden
 - ► Größe des Lösungsraums ist jedoch 2^k
- ▶ Ein Algorithmus \mathcal{A} mit gegebener Matrix H und Vektor s soll die Lösung der minimale Gewichtung für $y \cdot H = s$ finden, kann für die Eingabe nur eine Exponentialfunktion sein.

McElice Kodierungsproblem

- ▶ Beweis der *NP*-Härte in [berlekamp1978inherent] via Reduktionsbeweis der Entschediugngsprobleme
 - Coset-Weight
 - ► Subspace-Weight

Fahrplan Code-basierte Kryptografie

Grundlagen

Galoiskörper

Hamming Gewicht und Distanz

Generatormatrix

Parity-Check-Matrix

Lineare Codes

Zyklischer Code

Zyklischer linearer Code

Generatorpolynom

Generatorpolynom

McElice Kodierungsproblem

McElice Kodierungsproblem

McEliece – Code-basierte Kryptografie

McEliece-Kryptosystem

Parameter Definition

Grundlegende Idee McEliece Kryptosystem

- ► Transformiere Klartext *m* (Message) mithilfe einer Generator-Matrix in allgemeinen Goppa-Code
- Multiplikation mit randomisierten Matrizen führt zu allgemeinem linearen Code
 - ► Gist: Reihe von Matrix-Multiplikationen ist Verschlüsselung
- ► Retransformation ohne Matrizen in Goppa-Code ist problemtisch: *NP*-Hart [SP18]
- Öffentlicher Schlüssel:
 - ▶ Beinhaltet Generator-Matrix zur Umwandlung in allg. linearen Code
 - ► Zusätzlich: Anzahl der maximal einbaubaren Fehler in der Chiffre c
 - Fehler sind also die Anzahl der Bits, die invertiert werden sollen
- Privater Schlüssel: Umwandlung des allgemeinen, linearen Codes in Goppa-Code
 - ► Für performante Retransformation
 - ▶ Und Fehlerkorrektur

Parameter Definitionen

- Systemparameter m gibt die Blockgröße an, für zu verschlüsselnde Nachricht
- ightharpoonup C sei ein binärer (n, k) Goppa-Code mit t effizient korrigierbaren Fehlern
- ightharpoonup t gibt die maximale Anz. eff. korrigierbarer Fehler durch Goppa-Code C^{-1}
- Daraus ergeben sich:
 - ▶ Blocklänge Chiffretext: $n = 2^m$
 - Nachricht Blocklänge $k = n m \cdot t$
 - ▶ Minimale Hamming-Distanz d des Codes C: $d = 2 \cdot t + 1$

¹McEliece fixiert t = 50, als Maximalwert [McE78]

McEliece als CPA-Sicheres kryptografisches Shema

- ▶ Das McEliece-Kryptosystem $\Pi := (Gen, Enc, Dec)$
- ► Wobei:
 - Gen Schlüsselerzeugung
 - Enc Verschlüsselung
 - Dec Entschlüsselung
- ► Korrekheit: Es muss gelten

$$m = Dec_{priv}(c) = Dec_{priv}(Enc_{pub}(m))$$

Schlüsselerzeugung Gen

- ightharpoonup Erzeuge Generator-Matrix $G^{k \times n}$ für Goppa-Code C
 - ▶ Matrix aus der binärer Klartext mit Länge *k* die Chiffre der Länge *n* berechnet werden kann
- ightharpoonup Erzeuge zufällige, binäre, nicht singuläre² Scramble-Matrix $S^{k \times k}$
 - ightharpoonup S muss in GF(2) invertierbar sein
- ightharpoonup Permutationsmatrix $P^{n \times n}$
 - Binärmatrix, je Zeile genau ein 1 Element enthalten ist
- ▶ Berechne: $G'^{k \times n} = S \cdot G \cdot P$
- ightharpoonup Schlüssel: K := (G, S, P, G', t)
 - ightharpoonup Öffentlicher Schlüssel: $K_{pub} := (G', t)$
 - ▶ Privater Schlüssel: $K_{priv} := (G, S, P)$

²M.a.W. *S* ist regulär, $\det S \neq 0$; wichtig für Invertierbarkeit

Verschlüsselung Enc

- Nachricht in Blöcke, sodass $m \in \mathbb{Z}_2^k$
- $lackbox{f Sei}\ z\in\mathbb{Z}_2^n$ ein belieber Vektor der Länge n, mit maximaler Gewichtung t
 - ► Gewichtung t: maximale Anzahl Einsen in z
 - Fehlervektor erlaubt es Chiffre an maximal *t* Stellen zu invertieren
- $Enc_{pub}(m, G', z) = m \cdot G' + z = c$

Entschlüsselung Dec

- ▶ Berechne $c' = cP^{-1}$
 - $ightharpoonup c' = c \cdot P^{-1} = (mG' + z) \cdot P^{-1} = (mG' \cdot P^{-1} + z \cdot P^{-1}) = m(SGP \cdot P^{-1}) + z \cdot P^{-1}$
- ightharpoonup Anwenden decode(c') des Goppa-Codes auf c', sodass m' gefunden werden kann
 - ► Rausrechnen des Fehlervektors z
 - ▶ D.h. wir erhalten: $m' = m(SGP \cdot P^{-1}) = m \cdot SG$
 - ► Hamming-Distanz: $d_H(m'G, c') \le t$
 - ► Invertiere mit Generatormatrix *G*
- ▶ Multiplikation mit S^{-1} : $m = m'S^{-1}$
- ► Kompakt: $dec_{priv}(c) = decode(cP^{-1}) \cdot S^{-1}$

Beispiel McElicece-Kryptosystem

- ▶ Kryptosystem (n, k, d) mit Systmeparameter: n = 7, k = 4, d = 3
 - ▶ 4 Bit Klartext auf 7 Bit Chiffretext
 - ightharpoonup Hamming-Distanz d=3
 - ▶ Somit lassen sich $t = \frac{d-1}{2} = 1$ Bitfehler korrigieren

► Schlüsselerzeugung *Gen*: Generator-Matrix erzeugt Hamming-Code statt Goppa-Code

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Da d=3 unterscheidet sich jede Zeile in mindestens drei Werten

► Zufällige Matrizen S und P

$$S = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \qquad P = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Berechnung des öffentlichen Schlüssels $G' = S \cdot G \cdot P$:

Berechnung des öffentlichen Schlüssels $G' = S \cdot G \cdot P$:

Der öffentlichen Schlüssels $K_{pub} = (G', t)$:

$$\mathcal{K}_{pub} = (\mathcal{G}',t) = \left(egin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 1 & 1 & 0 & 1 \ 0 & 1 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}, 1
ight)$$

Nachricht m = (1101), Fehlervektor z mit maximalem Gewicht t = 1 und Länge n = 7: Wähle z = (0000100)

$$Enc_{pub}(m, G', z) = c = m \cdot G' + z$$

$$m = \begin{pmatrix} 1 & 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 0 \end{pmatrix} = c$$

Entschlüsselung der Chiffre: Invertierung der Permuation $c' = cP^{-1}$

Code-basierte Kryptografie, 5. Januar 2021

- Dekodierung des Hamming-Codes:
- ▶ Berechne Hamming-Distanz d der Generator-Matrix G: $\begin{pmatrix} 1 & 3 & 3 & 2 \end{pmatrix}$
- Somit ist $m' = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}$
- ▶ Berechne Klartext *m*

$$m = m'S^{-1} =$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 0 & 1 \end{pmatrix}$$

Ausblick

- ► The good news: Es gab keine erfolgreichen Angriffe gegen das eigentliche McEliece-Verfahren
- Verhfahren gilt als IND-CCA2 [Dot+12] sicher, somit ist es auch IND-CPA sicher [Noj+08]
- ➤ Angriffe McEliece mit originalen Parametern von 1978 in 1400 Tagen (Einzelne Machine) oder in 7 Tagen mithilfe von 200 CPUs [Bal+16]
- Statisches Angriff auf McEliece [CS98]
- ► Jedoch:
 - Bruce Schneier: McEliece-Kryptosystem etwa 2 bis 3 mal langsamer als RSA [Sch07, S. 479ff]
 - ► Leider keine Angabe, wie die Werte zustande kommen
 - ightharpoonup Extrem große öffentliche Schlüssel: G' ist Matrix $k \times n$
 - ▶ Bei Parameter (1024, 524, 101) ist $k \cdot n = 1024 \cdot 524 = 536576$ Bit also etwa 67kBytes
 - ► Chiffretext ist fast doppelt so groß wie Klartext, aus 524Bit klartext werden zu 1024 Bit Chiffre

Quellen I

- [Bal+16] Marco Baldi u. a. "Enhanced public key security for the McEliece cryptosystem". In: *Journal of Cryptology* 29.1 (2016), S. 1–27.
- [CS98] Anne Canteaut und Nicolas Sendrier. "Cryptanalysis of the original McEliece cryptosystem". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 1998, S. 187–199.
- [Dot+12] Nico Dottling u. a. "A CCA2 secure variant of the McEliece cryptosystem". In: *IEEE Transactions on Information Theory* 58.10 (2012), S. 6672–6680.
- [Fau+13] J. Faugère u. a. "A Distinguisher for High-Rate McEliece Cryptosystems". In: *IEEE Transactions on Information Theory* 59.10 (2013).
- [Kun91] Ernst Kunz. Endliche Körper (Galois-Felder). Vieweg+Teubner Verlag, 1991, S. 185–190.

Quellen II

- [Lju04] Ivana Ljubic. "Exact and memetic algorithms for two network design problems". In: *PhD, Technische Universitat Wien, Vienna Austria* (2004).
- [McE78] Robert J McEliece. "A public-key cryptosystem based on algebraic". In: Coding Thv 4244 (1978), S. 114–116.
- [Noj+08] Ryo Nojima u. a. "Semantic security for the McEliece cryptosystem without random oracles". In: *Designs, Codes and Cryptography* 49.1-3 (2008), S. 289–305.
- [Sch07] Bruce Schneier. Applied cryptography: protocols, algorithms, and source code in C. John Wiley & Sons, 2007.
- [SP18] Douglas Robert Stinson und Maura Paterson. *Cryptography: theory and practice.* CRC press, 2018.

Genereller Hamming-Code

- ▶ **Defintion:** Ein genereller Hamming-Code kann als Parity-Check-Matrix H mit allen möglichen Kombinationen aus Einsen und Nullen dargestellt werden (ausgenommen eine Null-Spalte)
- Matrix hat r Zeilen und 2^r (n,k,d)-Code r dieser Spalten sind für die Paritäts-Bits, da es $2^r 1 r = k$
- Längere Codes werden Effizienter hinsichtlich der Fehlerkorrektur