Design de projetos para criação de modelos preditivos

Fabrício Jailson Barth

Faculdade BandTec

Sumário e Objetivos

- Etapas em estudos preditivos
- Escolha dos dados
- Medidas de erro (para classificação e regressão)
- O problema de *overfitting* e *underfitting*

Etapas em estudos preditivos

- Escolher o conjunto de dados corretos.
- Dividir os dados em:
 - * Treinamento.
 - **★** Teste.
 - ⋆ Validação (opcional).

- Selecionar atributos que devem formar o conjunto de treinamento.
- Identificar modelos preditivos usando o conjunto de treinamento.

- Aplicar cross-validation sobre o conjunto de treinamento.
- Se não existe conjunto de validação então aplicar o modelo 1x no conjunto de teste.
- Se existe conjunto de validação então aplicar o modelo no conjunto de teste e refinar o modelo.
- Se existe conjunto de validação então aplicar o modelo 1x no conjunto de validação.

Identificando o conjunto de dados corretos

- Em alguns casos é fácil (avaliação de filmes → novas avaliações de filmes).
- Em outros pode ser mais difícil (dados genéticos → doenças).
- Geralmente, quanto maior a quantidade de dados, melhor são os modelos.
- Conhecer bench marks ajuda!
- Sempre começamos com dados brutos e precisamos processá-los

Definição de Erro para problemas de Classificação

Table 1: Conjunto de teste

Exemplo	Classe real	Classe inferida
1	Positivo	Positivo
2	Positivo	Negativo
3	Negativo	Negativo
4	Negativo	Negativo
5	Negativo	Negativo
6	Positivo	Positivo
7	Positivo	Negativo
8	Negativo	Negativo

$$erro(modelo) = \frac{qtd_incorretos}{qtd_exemplos}$$
 (1)

onde:

- $qtd_exemplos$: quantidade de exemplos do conjunto de teste.
- qtd_corretos: quantidade de exemplos do conjunto de teste incorretamente classificados.

Neste exemplo:

Table 2: Conjunto de teste

Exemplo	Classe real	Classe inferida	
1	Positivo	Positivo	
2	Positivo	Negativo	
3	Negativo	Negativo	
4	Negativo	Negativo	
5	Negativo	Negativo	
6	Positivo	Positivo	
7	Positivo	Negativo	
8	Negativo	Negativo	

$$erro(modelo) = \frac{2}{8} = 0.25 \tag{2}$$

Definição de Verdadeiro e Falso Positivo

- Verdadeiro Positivo = identificado corretamente.
- Falso Positivo = identificado incorretamente.
- Verdadeiro Negativo = rejeitado corretamente.
- Falso Negativo = rejeitado incorretamente.

Exemplo de teste médico:

- Verdadeiro Positivo = Pessoa doente corretamente classificada como doente.
- Falso Positivo = Pessoa saudável incorretamente classificada como doente.
- Verdadeiro Negativo = Pessoa saudável corretamente classificada como saudável.
- Falso Negativo = Pessoa doente incorretamente classificada como saudável.

Matriz de precisão e cobertura

	Positivo de fato	Negativo de fato	Precisão
Classificados	Verdadeiro	Falso	VP/(VP+FP)
pelo modelo	Positivo	Positivo	
como positivo	(VP)	(FP)	
Classificados	Falso	Verdadeiro	VN/(VN+FN)
pelo modelo	Negativo	Negativo	
como negativo	(FN)	(VN)	
Cobertura	VP/(VP+FN)	VN/(FP+VN)	Acurácia: $(VP+VN)/(FP+FN)$

Cross-validation

Medida de Erro para problemas de Regressão

As medidas de erro mais usadas nesse caso são o raiz quadrada do erro quadrático médio (RMSE - root mean squared error) e a distância absoluta média (MAD - mean absolute distance):

$$RMSE(f) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - f(\vec{x}_i))^2}$$
 (3)

$$MAD(f) = \frac{1}{n} \sum_{i=1}^{n} |y_i - f(\vec{x}_i)|$$
 (4)

Material de consulta

- Tom Mitchell. Machine Learning, 1997. (Capítulo 5).
- Iah H. Witteh and Eibe Frank. Data Mining, 2000.
 (Capítulo 5).
- Prediction study design. Data Analysis Course.
 Coursera.org
- Imagens retiradas de http://genome.tugraz.at/proclassify/help/pages/XV.html