ELECTRIC CURRENT

Rate of flow of Charge $I = \frac{dq}{dt}$ S.I. Unit Ampere (A) Coulomb/ Second Instantaneous, $I_{ins} = \frac{dq}{dt}$ Average, $I_{av} = \frac{q}{t}$

Ohm's Law /

- → At constant temperature current passing through metals or conductors is directly proportional to the potential difference applied across them.
- + I \propto V \Rightarrow V = IR;(R-electric resistance)
- → Substances which Obey Ohm's law called Ohmic and that do not obey called non-ohmic substances.

The slope of V-I plot for Ohmic substance

Drift Velocity

Drift velocity is defined as the velocity with which the free electrons get drifted towards the positive terminal under the effect of the applied external electric field.

$$V_d = \frac{qE}{m}\tau$$

Relation between Drift velocity and current

$$i = neAV_d = \frac{ne^2A\tau E}{m}$$

= $neA\mu_eE = neA\mu_e\frac{V}{\ell}$

CURRENT ELECTRICITY

Current density (J)/

Current per unit cross-section area perpendicular to current flow.

$$J = \frac{I}{A} = \frac{E}{\rho}$$

Resistance /

The property due to which body opposes the flow of current through it, is known as resistance.

$$R = \frac{\rho \ell}{A}$$

S.I unit of Resistivity: ohm (Ω) Factors affecting resistivity:

- → Nature of material
- **→** Temperature.

Relation between resistivity and temprature

$$\rho_f = \rho_i \left[1 + \alpha \left(t_f - t_i \right) \right]$$

Conductance /

$$C = \frac{1}{\text{Resistance}} = \frac{1}{R}$$
Unit is mho (Ω^{-1})

Grouping of Resistance/

Series grouping of resistance

→ Equivalent resistance, R_s = R₁+R₂+R₃.....

- → Current flow through each resistance is same.
- **→** Potential difference, V ∝ R

₹.

Parallel grouping of resistance

★ Equivalent resistance, $\frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2} + \dots$

→ Potential difference across each resistance same current distribution, in each resistance, I \(\alpha \frac{1}{p}\)

Some Important Formula /

- ★ After stretching length of wire increases by n times then resistance will increase by n² times i.e.,
- → If radius be reduced $\frac{1}{n}$ to times then area of cross-section decreases $\frac{1}{n^2}$ time so the resistance become n⁴ times i.e., R₂ = n⁴R₁

Conductivity (a)

$$\sigma = \frac{1}{\text{Resistivity}} = \frac{1}{\rho}$$

Unit =
$$\frac{1}{\Omega m} = \frac{1}{\text{ohm} \times m}$$
 or $\frac{\text{mho}}{m}$

Electric Energy and Power

Heat energy developed across resistor

$$H = I^2RT$$

Power, = VI =
$$I^2R = \frac{V^2}{R}$$

In parallel,
$$P = P_1 + P_2$$

In series,
$$P = \frac{P_1 P_2}{P_1 + P_2}$$

_____ Grouping of cells

Cells in series

Cells in parallel

Current in the circuits, $I = \frac{n\epsilon}{R + nr}$

Current in the circuit, $I = \frac{\varepsilon}{R + \frac{r}{m}}$

Cells in mixed grouping

The current in the circuit,

$$I = \frac{n\varepsilon}{\frac{nr}{m} + R}$$

When cell is discharging

When cell charging

$$\begin{array}{ccc}
& E & r \\
& \vdash & \swarrow & \searrow & \downarrow \\
\Delta V & = E + ir
\end{array}$$

When cell is in an open circuit

$$R = \infty$$

 $I = \frac{E}{R+r} = 0$ and $V = E$

When cell is short circuited

$$R = 0$$
 and $I = \frac{-E}{R+r}$ and $V = IR = 0$

Kirchhoff's laws /

1st law/ Junction law

- → Sum of the incoming currents is equal to sum of the outgoing currents at any junction.
- → Based on law of conservation of charge.

2nd law/loop rule

- ★ The algebraic sum of the potential differences in any loop (including those associated with emf's and those of resistive elements), must equal zero.
- **→** Based on law of conservation of energy.

Wheatstone Bridge /

Balanced Condition of Wheatstone bridge

$$\frac{1}{Q} = \frac{R}{S}$$

$$i_1 \qquad p \qquad 0$$

$$Q \qquad C$$

$$Q$$

Metre bridge/

Based on Wheatstone bridge

$$\frac{P}{Q} = \frac{R}{S} = \frac{\ell}{100 - \ell}$$

Unknown resistance

Resistance box

G Galvanometer

0 10 20 30 40 50 60 70 80 90 100

A P B Q C

(100 - ℓ)