Implementing the Solo Calculus

A REPL environment for evaluation of Solo Calculus expressions

Lassiter, Adam T.

Department of Computer Science University of Bath

February 19, 2018

Rationale

- Recent decline in yearly single-core performance increase of processors has led to a need to think seriously about parallelism in even everyday applications.
- From a theoretical viewpoint, one may wish to exhibit useful properties for multiple processes, such as equivalence of computation.
- What does a parallel λ -calculus look like?

Solo Calculus

- A calculus of communicating mobile processes.
- ▶ Based on Fusion Calculus, based on π -calculus, inspired by λ -calculus. . .
 - All of these have been fairly well studied so far.
 - ▶ There exist interpreters for λ -calculus expressions, but not for any other.
 - ► The suitability of the alternatives for a teaching tool is poor due to the syntax being more complicated.

Solo Calculus

Solo
$$\alpha$$
 := $u\tilde{x}$ (input) $u\tilde{x}$ (output)

Agent P := 0 (inaction) $u\tilde{x}$ (solo) $u\tilde{x}$ (composition) $u\tilde{x}$ (scope) $u\tilde{x}$ (scope) $u\tilde{x}$ (replication)

Solo Calculus

$$\overline{x} yz \mid !(uv)(x uv \mid \overline{u} v) \rightarrow$$

$$\overline{x} yz \mid (uv)(x uv \mid \overline{u} v) \mid !(uv)(x uv \mid \overline{u} v) \rightarrow$$

$$(uv)(\overline{u} v)\{y/u, z/v\} \mid !(uv)(x uv \mid \overline{u} v) \rightarrow$$

$$\overline{y} z \mid !(uv)(x uv \mid \overline{u} v)$$

Solo Diagrams

- ► A canonical representation of calculus expressions.
- ► There exists an obvious analog between these algebraic 'diagrams' and traditional graphical diagrams.
- Research led to easier calculation of replicated terms in calculi expressions.

Solo Diagrams

```
\begin{array}{llll} \mathsf{Diagram} & \mathcal{D} & := & \mathit{triple} \ (\mathcal{G}, \mathcal{M}, \mathcal{L}) \\ \\ \mathsf{Graph} & \mathcal{G} & := & \mathit{multiset} \ \{\mathcal{E}\} \\ \\ \mathsf{Boxes} & \mathcal{M} & := & \mathit{multiset} \ \{\mathcal{B}\} \\ \\ \mathsf{Label} & \mathcal{L} & := & \mathit{map} \ \mathcal{N} \in \mathcal{G} \mapsto \mathcal{N} \\ \\ \mathsf{Edge} & \mathcal{E} & := & \mathit{tuple} \ (\mathcal{N}, \mathcal{N}_1 \ \dots \mathcal{N}_n)_{s \in \{i, o\}} \\ \\ \mathsf{Box} & \mathcal{B} & := & \mathit{pair} \ (\mathcal{G}, \mathit{set} \ \{\mathcal{N}\}) \\ \end{array}
```

Solo Diagrams

 \overline{x} $yz \mid !(uv)(x \ uv \mid \overline{u} \ v) \longrightarrow \overline{x}$ $yz \mid (uv)(x \ uv \mid \overline{u} \ v) \mid !(uv)(x \ uv \mid \overline{u} \ v) \longrightarrow \overline{y}$ $z \mid !(uv)(x \ uv \mid \overline{u} \ v)$

Methods and Results

- Datatypes implementing Solo Calculus expressions and operations
- Simple Read-Eval-Print-Loop interface for inputting expressions and computing reductions
- Datatypes for Solo Diagrams and (some) operations
- Proof-of-Concept for Diagram visualisation
- Demonstration at the end . . .

Plans Moving Forward

- Completion of Solo Diagrams operations (full reduction semantics)
- Possible conversion between Diagrams and Calculus expressions
- Realtime visualisation of Diagrams using Javascript's D3 library

Demonstration Time

Any questions ...?