Задача А. Хип ли?

Имя входного файла: isheap.in Имя выходного файла: isheap.out

Структуру данных Неар можно реализовать на основе массива.

Для этого должно выполнятся *основное свойство Heap'a*, которое заключается в следующем. Для каждого $0 \le i < n$ выполняются следующие условия:

- Если 2i + 1 < n, то $a[i] \le a[2i + 1]$
- Если 2i+2 < n, то $a[i] \leqslant a[2i+2]$

Дан массив целых чисел. Определите является ли он Неар'ом.

Формат входного файла

Первая строка входного файла содержит целое число n ($1 \le n \le 10^5$). Вторая строка содержит n целых чисел по модулю не превосходящих $2 \cdot 10^9$.

Формат выходного файла

Выведите «YES», если массив является Неар'ом и «NO» в противном случае.

isheap.in	isheap.out
5	NO
1 0 1 2 0	
5	YES
1 3 2 5 4	

Задача В. Приоритетная очередь

Имя входного файла: priorityqueue.in Имя выходного файла: priorityqueue.out

Реализуйте приоритетную очередь. Ваша очередь должна поддерживать следующие операции: добавить элемент, извлечь минимальный элемент, уменьшить элемент, добавленный во время одной из операций.

Все операции нумеруются по порядку, начиная с 1.

Формат входного файла

Входной файл содержит описание операций со очередью. В очередь помещаются и извлекаются только целые числа, не превышающие по модулю 10^9 .

Формат выходного файла

Выведите последовательно результат выполнения всех операций extract-min. Если перед очередной операции extract-min очередь пуста, выведите вместо числа звездочку.

priorityqueue.in	priorityqueue.out
push 3	2
push 4	1
push 2	3
extract-min	*
decrease-key 2 1	
extract-min	
extract-min	
extract-min	

Задача С. Сортировка

Имя входного файла: sort.in Имя выходного файла: sort.out

Дан массив целых чисел. Ваша задача — отсортировать его в порядке неубывания.

Для того, чтобы узнать, какую сортировку вам нужно реализовать, возьмите остаток от деления вашего номера на 3.

- 0 Сортировка слиянием.
- 1 Сортировка кучей.
- 2 Быстрая сортировка.

Формат входного файла

В первой строке входного файла содержится число n ($1 \le n \le 100000$) — количество элементов в массиве. Во второй строке находятся n целых чисел, по модулю не превосходящих 10^9 .

Формат выходного файла

В выходной файл надо вывести этот же массив в порядке неубывания, между любыми двумя числами должен стоять ровно один пробел.

sort.in	sort.out
10	1 1 2 2 3 3 4 6 7 8
1821473236	

Задача D. Цифровая сортировка

Имя входного файла: radixsort.in Имя выходного файла: radixsort.out

Дано n строк, выведите их порядок после k фаз цифровой сортировки.

Формат входного файла

В первой строке входного файла содержится число n — количество строк, m — их длина и k — число фаз цифровой сортировки ($1 \le n \le 1000, \ 1 \le k \le m \le 1000$). В следующих n строках находятся сами строки.

Формат выходного файла

Выведите строки в порядке в котором они будут после k фаз цифровой сортировки.

radixsort.in	radixsort.out
3 3 1	aba
bbb	baa
aba	bbb
baa	
3 3 2	baa
bbb	aba
aba	bbb
baa	
3 3 3	aba
bbb	baa
aba	bbb
baa	

Задача E. Анти-QuickSort

Имя входного файла: antiqs.in Имя выходного файла: antiqs.out

Для сортировки последовательности чисел широко используется быстрая сортировка — Quick-Sort. Далее приведена программа, которая сортирует массив а, используя этот алгоритм.

```
def qsort(left, right):
key = a[(left + right) // 2]
i = left
j = right
while i \le j:
    \mathbf{while} \ \ \mathbf{a[i]} \ < \ \mathrm{key:} \qquad \# \ \mathit{first} \ \ \mathit{while}
         i += 1
    while a[j] > key: # second while
        j -= 1
     if i \le j:
         a\,[\,i\,]\,\,,\  \, a\,[\,j\,]\,\,=\,\,a\,[\,j\,]\,\,,\  \, a\,[\,i\,]
         i += 1
         i -= 1
if left < j:
     qsort(left, j)
if i < right:
     qsort(i, right)
```

```
qsort(0, n-1)
```

Хотя QuickSort является самой быстрой сортировкой в среднем, существуют тесты, на которых она работает очень долго. Оценивать время работы алгоритма будем количеством сравнений с элементами массива (то есть суммарным количеством сравнений в первом и втором while). Требуется написать программу, генерирующую тест, на котором быстрая сортировка сделает наибольшее число таких сравнений.

Формат входного файла

В первой строке находится единственное число $n \ (1 \le n \le 70000)$.

Формат выходного файла

Вывести перестановку чисел от 1 до n, на которой быстрая сортировка выполнит максимальное число сравнений. Если таких перестановок несколько, вывести любую из них.

antiqs.in	antiqs.out
3	1 3 2

Задача F. Стильная одежда

Имя входного файла: style.in Имя выходного файла: style.out

Глеб обожает шоппинг. Как-то раз он загорелся идеей подобрать себе майку и штаны так, чтобы выглядеть в них максимально стильно. В понимании Глеба стильность одежды тем больше, чем меньше разница в цвете элементов его одежды.

В наличии имеется N ($1 \le N \le 100\,000$) маек и M ($1 \le M \le 100\,000$) штанов, про каждый элемент известен его цвет (целое число от 1 до $10\,000\,000$). Помогите Глебу выбрать одну майку и одни штаны так, чтобы разница в их цвете была как можно меньше.

Формат входного файла

Сначала вводится информация о майках: в первой строке целое число N ($1 \le N \le 100\,000$) и во второй N целых чисел от 1 до $10\,000\,000$ — цвета имеющихся в наличии маек. Гарантируется, что номера цветов идут в возрастающем порядке (в частности, цвета никаких двух маек не совпадают).

Далее в том же формате идёт описание штанов: их количество M ($1 \le M \le 100\,000$) и в следующей строке M целых чисел от 1 до $10\,000\,000$ в возрастающем порядке — цвета штанов.

Формат выходного файла

Выведите пару неотрицательных чисел — цвет майки и цвет штанов, которые следует выбрать Глебу. Если вариантов выбора несколько, выведите любой из них.

style.in	style.out
2	3 3
3 4	
3	
1 2 3	
2	4 3
4 5	
3	
1 2 3	

Задача G. Стильная одежда 2

Имя входного файла: style.in Имя выходного файла: style.out

Глеб решил развить успех и купить более сложный комплект: из кепки, майки, штанов и ботинок. В понимании Глеба стильность комплекта тем больше, чем меньше максимальная разница в цвете элементов его одежды.

В наличии имеется N_1 кепок, N_2 маек, N_3 штанов и N_4 ботинок, про каждый элемент известен его цвет. Помогите Глебу выбрать комплект.

Формат входного файла

Сначала вводится информация о кепках, потом о майках, потом о штанах и в конце о ботинках:. Про каждый тип одежды в первой строке целое число N_i ($1 \le N_i \le 100\,000$) и во второй N_i целых чисел от 1 до $100\,000$ — цвета имеющихся предметов.

Формат выходного файла

Выведите четыре числа — цвета кепки, майки, штанов и ботинок. Если вариантов выбора несколько, выведите любой из них.

style.in	style.out
3	3 3 3 3
1 2 3	
2	
1 3	
2	
3 4	
2	
2 3	
1	5 7 9 20
5	
4	
3 6 7 10	
4	
18 3 9 11	
1	
20	

Задача Н. К-ая порядковая статистика

Имя входного файла: kth.in Имя выходного файла: kth.out

Дан массив из n элементов. Какое число k-ое в порядке возрастания в этом массиве.

Формат входного файла

В первую строке входного файла содержится два числа n — размер массива и $k.(1 \le k \le n \le 3 \cdot 10^7)$. Во второй строке находятся числа A, B, C, a_1, a_2 по модулю не превосходящие 10^9 . Вы должны получить элементы массива начиная с третьего по формуле: $a_i = A*a_{i-2} + B*a_{i-1} + C$. Все вычисления должны производится в 32 битном знаковом типе, переполнения должны игнорироваться.

Формат выходного файла

Выведите значение k-ое в порядке возрастания число в массиве a.

Пример

kth.in	kth.out
5 3	13
2 3 5 1 2	
5 3	2
200000 300000 5 1 2	

Во втором примере элементы массива a равны: (1, 2, 800005, -516268571, 1331571109).

Задача І. Двоичный поиск

Имя входного файла: binsearch.in Имя выходного файла: binsearch.out

Дан массив из n элементов, упорядоченный в порядке неубывания и m запросов: найти первое и последнее вхождение числа в массив.

Формат входного файла

В первую строке входного файла содержится одно число n — размер массива. ($1 \le n \le 100000$). Во второй строке находится n чисел в порядке неубывания — элементы массива. В третьей строке находится число m — количество запросов. В следующей строке находится m чисел — запросы.

Формат выходного файла

Для каждого запроса выведите в отдельной строке номер первого и последнего вхождения этого числа в массив. Если числа в массиве нет выведите два раза -1.

binsearch.in	binsearch.out
5	1 2
1 1 2 2 2	3 5
3	-1 -1
1 2 3	

Задача Ј. Гирлянда

Имя входного файла: garland.in Имя выходного файла: garland.out

Гирлянда состоит из n лампочек на общем проводе. Один её конец закреплён на заданной высоте A мм $(h_1=A)$. Благодаря силе тяжести гирлянда прогибается: высота каждой неконцевой лампы на 1 мм меньше, чем средняя высота ближайших соседей $(h_i = \frac{(h_{i-1}+h_{i+1})}{2}-1$ для 1 < i < N). Требуется найти минимальную высоту второго конца B $(B=h_n)$ при условии, что ни одна из лампочек не должна лежать на земле $(h_i > 0$ для $1 \le i \le N)$.

Формат входного файла

В первую строке входного файла содержится два числа n и A (3 $\leq n \leq 1000, n$ —целое, $10 \leq A \leq 1000, A$ —вещественное).

Формат выходного файла

Вывести одно вещественное число В с двумя знаками после запятой.

garland.in	garland.out
8 15	9.75
692 532.81	446113.34

Задача К. Поезда

Имя входного файла: trains.in Имя выходного файла: trains.out

В связи с участившимся числом аварий на железнодорожной ветке Москва-Саратов, руководство железной дороги решило изменить график движения поездов. Тщательный анализ состояния железнодорожного полотна показал, что оптимальным является следующий график движения поездов с учетом остановок на станциях: сначала поезд идет на протяжении T_1 минут со скоростью V_1 метров в минуту, затем T_2 минут со скоростью V_2 метров в минуту, ..., наконец, T_N минут со скоростью V_N метров в минуту. В течение некоторых интервалов поезд может стоять (скорость равна 0).

По действующей инструкции обеспечения безопасности движения поездов расстояние между локомотивами двух следующих друг за другом поездов должно быть не менее L метров. Определите минимально допустимый интервал в минутах между отправлениями поездов, позволяющий им двигаться по этому графику без опасного сближения.

Формат входного файла

В первых двух строках входного файла содержится два натуральных числа, задающие минимально допустимое расстояние L и количество участков пути N (100 $\leqslant L \leqslant 10\,00$, $1 \leqslant N \leqslant 1000$). Далее следует N пар целых чисел T_i и V_i , задающих график движения поездов (1 $\leqslant T_i \leqslant 1000$, 0 $\leqslant V_i \leqslant 1000$).

Формат выходного файла

В выходной файл необходимо вывести искомый интервал между отправлениями поездов в минутах, не менее чем с тремя верными знаками после десятичной точки.

trains.in	trains.out
1000	27.500
4	
10 0	
30 80	
15 0	
20 100	