

Neyman-Pearson Decision Theory

Neyman-Pearson Decision Theory

In Neyman-Pearson decision theory, we consider two competing hypotheses, denoted H_0 and H_1 .

As before, we seek to **reject** H_0 , in which case we accept H_1 .

We say that

- \blacktriangleright H_0 is the *null hypothesis*,
- ► H₁ is the *research hypothesis* or *alternative* hypothesis. / Ha

The main difference to Fisher's approach is that we actually want to make a decision between two discrete possibilities instead of just finding evidence for or against H_0 .

Neyman, Jerzy (1894-1981) Jerzy Nevman, Book of Proofs. https://www.bookofproofs.org/history/ierzy-

Egon Sharpe Pearson (1895-1980) Bartlett, M. S. Egon Sharpe Pearson. 11 August 1895-12 June 1980. Biographical Memoirs of Fellows of the Royal Society, vol. 27, 1981, pp.

Example of Neyman-Pearson Decision Theory

15.1. Example. Let us revisit Example 14.4. The mean burning rate for a rocket propellant is supposed to be $\mu_0 = 40 \,\mathrm{cm/s}$. It is known that the standard deviation is $\sigma = 2 \, \text{cm/s}$. If the rocket propellant burns significantly too fast or too slowly, it can not be used. An experimenter sets out the two hypotheses

$$H_0$$
: $\mu = 40$, H_1 : $|\mu - 40| \ge 1$.

If there is evidence that H_1 is true, the rocket propellant must be discarded, otherwise it can be used. H. & H. & 10 to distance

The P-value in Fisher's test procedure represents a continuum of evidence against H_0 , while in the Neyman-Pearson approach we will define a sharp cut-off point for our data. If the data lies beyond this cut-off point, H_0 is rejected and H_1 is accepted.

Accepting Hypotheses

The statistical test will end with either

- ▶ failing to reject H_0 , therefore accepting H_0 or
- rejecting H_0 , thereby accepting H_1 .

If we accept H_0 , we do not necessarily believe H_0 to be true; we simply decide to act as if it were true. The same is the case if we decide to accept H_1 ; we are not necessarily convinced that H_1 is true, we merely decide to assume that it is.

- 15.2. Example. In the situation described in Example 15.1,
 - ▶ accepting H_0 means that we assume that the rocket propellant burns at a mean rate of $40 \, \text{cm/s}$. It does not mean that we actually believe that the value is precisely 40 and not 39.993, for instance.
 - ▶ accepting H_1 means that we assume that the rocket fuel burns at a rate different by more than $1 \, \text{cm/s}$ from the nominal rate. It does not necessarily mean that we have evidence to support this, merely that we will assume that it is the case.

Slide 5

Type I and Type II Errors

Given a choice between H_0 and H_1 , there are four possible outcomes of the decision-making process:

- (i) We reject H_0 (and accept H_1) when H_0 is false.
- (ii) We reject H_0 (accept H_1) even though H_0 is true (*Type I error*).
- (iii) We fail to reject H_0 even though H_1 is true (*Type II error*).
- (iv) We fail to reject H_0 when H_0 is true.

We will design a test to decide between rejecting or failing to reject H_0 based solely on the probability of committing Type I or Type II errors, which we want (of course) to keep as small as possible.

Power, Type I & Type II Error Probabilities

We define the probability of committing a Type I error,

$$\alpha := P[\text{Type I error}] = P[\text{reject } H_0 \mid H_0 \text{ true}]$$

= $P[\text{accept } H_1 \mid H_0 \text{ true}].$

The probability of committing a Type II error is denoted

$$\beta := P[\text{Type II error}] = P[\text{fail to reject } H_0 \mid H_1 \text{ true}]$$

= $P[\text{accept } H_0 \mid H_1 \text{ true}].$

Related to β is the **power** of the test, defined as

Power :=
$$1 - \beta = P[\text{reject } H_0 \mid H_1 \text{ true}]$$

= $P[\text{accept } H_1 \mid H_1 \text{ true}]$.

To set up the test, we select a test statistic and determine a **critical region** for the test: if the value of the test statistic falls into the critical region, then we reject H_0 . Our critical region is determined by the desire to keep α small, e.g., less than 5%.

Hence, we determine the critical region in such a way that if H_0 is true, then the probability of the test statistic's values falling into the critical region is not more than α .

15.3. Example. In the situation described in Example 15.1, we may use X as a test statistic. The experimenter tests a sample of n=25 specimen.

If H_0 is true, \overline{X} will follow a normal distribution with mean $\mu=40$ and $\sigma/\sqrt{n}=2/5$, i.e.,

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

follows a standard normal distribution.

Hence, with a probability of $1 - \alpha$,

$$-z_{\alpha/2} \leq Z \leq z_{\alpha/2}$$
.

If H_0 is true, then the probability that

$$\frac{|\overline{X} - \mu_0|}{\sigma/\sqrt{n}} > z_{\alpha/2}$$

is equal to α . Therefore, the critical region is determined by

$$\overline{x} \neq \mu_0 \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
.

(15.1)

Suppose the experimenter would like to limit α , the probability of committing a Type I error if she rejects H_0 , to 5%. This corresponds to $z_{\alpha/2}=1.96$ and inserting the values for μ_0 , σ and n, we find with probability $1 - \alpha$,

$$39.216 < \overline{X} < 40.784.$$

Hence the *critical region* is determined by

$$|\overline{X} - 40| > 0.784. \tag{15.2}$$

If \overline{X} falls into the range of values satisfying (15.2), the experimenter will reject H_0 , knowing that this decision will be wrong with a probability of at most 5%.

15.4. Remarks.

- (i) In this scheme, The decision whether to reject H_0 or not is not driven by the probability of H_0 being true or not, but solely by the probability of committing an error if H_0 is falsely rejected.
- (ii) Only H_0 plays a role in the calculation of the critical region. H_1 does not enter into the discussion at all.
- (iii) Rejecting H_0 (when the data falls into the critical region) does not actually mean that there is proof that H_1 is true; in the example above, H_0 can be rejected even if $|\overline{X} 40| < 1$.

If the experimenter in the previous example had wanted to reduce the probability of making a wrong decision when rejecting H_0 , she could have set a higher bar for rejection: to achieve $\alpha = 1\%$, she would require

$$\left|\frac{X-\mu_0}{\sigma/\sqrt{n}}\right| \geq z_{\alpha/2} = 2.575.$$

This would lead to a critical region of

$$|\overline{X} - 40| > 1.03.$$

If H_0 were then rejected because the sample mean fell into the critical region, the chance of this being in error would only be 1%. The trade-off is that it becomes less likely that the data will allow rejection of H_0 in the first place.

In this context, it is important to note:

In order for the statistical procedure to be valid, the critical region must be fixed **before data are obtained**.

β and the Sample Size

The second type of error concerns failing to reject H_0 even though H_1 is true. We calculate this probability in the case of

$$H_0: \mu = \mu_0, \qquad \qquad H_1: |\mu - \mu_0| \ge \delta_0$$

as follows. Suppose that the true value of the mean is $\mu = \mu_0 + \delta$, $\delta > 0$. The test statistic

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

will then follow a normal distribution with unit variance and mean $\delta \sqrt{n/\sigma}$. Supposing that α has been fixed, we will **fail to reject H₀** if

$$-z_{\alpha/2} \leq Z \leq z_{\alpha/2}$$
.

or

$$\mu_0 - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \overline{x} < \mu_0 + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Illustration of β

Calculating β for the Normal Distribution

Using the density of the normal distribution, we then find

$$P[\text{fail to reject } H_0 \mid \mu = \mu_0 + \delta]$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-z_{\alpha/2}}^{z_{\alpha/2}} e^{-(t-\delta\sqrt{n}/\sigma)^{2}/2} dt$$

$$=rac{1}{\sqrt{2\pi}}\int\limits_{-z_{lpha/2}-\delta\sqrt{n}/\sigma}^{z_{lpha/2}-\delta\sqrt{n}/\sigma}e^{-t^2/2}\,dt$$

$$pprox rac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{z_{lpha/2}-\delta\sqrt{n}/\sigma}e^{-t^2/2}\,dt.$$

(15.3)

Calculating β for the Normal Distribution

Let us suppose H_1 is true, i.e., $|\mu - \mu_0| \ge \delta_0$. Then

$$eta = P[ext{fail to reject } H_0 \mid H_1 ext{ true}]$$

 $\leq P[ext{fail to reject } H_0 \mid \mu = \mu_0 + \delta_0]$

and we have (to good approximation)

$$\beta(\mu) \leq \frac{1}{\sqrt{2\pi}} \int_{0}^{z_{\alpha/2} - \delta\sqrt{n}/\sigma} e^{-t^2/2} dt.$$

Adapting the notation from (13.2), we use the number $z_{\beta} \in \mathbb{R}$ to indicate

$$eta=rac{1}{\sqrt{2\pi}}\int\limits^{-z_{eta}}e^{-t^2/2}\,dt.$$

Calculating β for the Normal Distribution

Then the relationship between δ , α , β and n with σ known is given by

$$-z_{\beta} \approx z_{\alpha/2} - \delta \sqrt{n}/\sigma$$

or

$$n \approx \frac{(z_{\alpha/2} + z_{\beta})^2 \sigma^2}{\delta^2}.$$
 (15.4)

In this way a desired (small) β can be attained by choosing an appropriate sample size *n*.

Similarly to the convention used for α , the number β when quoted for a Neyman-Pearson test usually refers to the upper bound of committing a Type II error.

Designing an Experiment for Desired α and β

15.5. Example. Revisiting Example 15.1, the experimenter would like to test the hypotheses

$$H_0$$
: $\mu = 40$, H_1 : $|\mu - 40| \ge 1$.

in such a way that $\alpha = 5\%$ and $\beta = 10\%$, i.e, if H_0 is rejected, there is a 5% chance of this being in error, and if H_0 is not rejected (H_1 is accepted) there is a 10% chance of this being in error.

The critical region is set as before and the necessary sample size is calculated from (15.4) using $\beta = 0.10$, $\alpha = 0.05$, $\sigma = 2$ cm/s and $\delta = 1 \, \mathrm{cm/s}$. Then

$$n \approx 42$$
,

so the sample size should be at least 42 to ensure $\beta \leq 0.10$.

Another way to think about β is in terms of **power**, defined as $1-\beta$ and formally given by

$$1 - \beta = P[\text{accept } H_1 \mid H_1 \text{ true}].$$

A given experiment is set up so that we either reject H_0 or we don't. Generally, we would like the probability of rejecting H_0 if the alternative hypothesis is true to be high, i.e., β to be small. Choosing a sufficiently large sample size ensures that the data gathered is powerful enough to actually reject H_0 , assuming H_1 is true.

One says that an experiment has **high power** if rejection of H_0 is likely, assuming H_1 is true. Generally speaking, a given test is more powerful than another if it requires a smaller sample size to attain the same β .

Operating Characteristic (OC) Curves

In (15.3) we calculated the probability of failing to reject H_0 as an integral. In practice, it may be difficult to perform such a calculations for non-normal distributions and evaluating the resulting integral may be impractical. For this reason, it is possible to refer to so-called **operating characteristic curves**, known also as **OC curves**.

A single OC curve plots the probability of failing to reject H_0 in a one-sided or two-sided test as a function of the parameter θ . A single such curve represents a choice of test parameters α and n. Other parameters of the distribution are also incorporated into the graph.

Operating Characteristic (OC) Curves

The figure below shows an OC curve for a two-sided test of the null hypothesis H_0 : $\mu = \mu_0$ performed at fixed level α and fixed sample size n.

P[fail to reject H_0]

Effect of α on an OC Curve

Note that

P[fail to reject
$$H_0 \mid \mu = \mu_0$$
] = $1 - \alpha$,

since

$$P[\text{reject } H_0 \mid \mu = \mu_0] = P[\text{reject } H_0 \mid H_0 \text{ true}] = \alpha,$$

by the construction of the test. For different values of α , the curves scale correspondingly:

P[fail to reject H_0]

Effect of the Sample Size on an OC Curve

The sample size affects an OC curve as shown below for $n_2 > n_1$:

A typical graph will show OC curves for various values of n. Furthermore, for two-sided tests, only the right-hand half of the curve is shown to save space.

Using OC Curves to Relate Sample Sizes with β

15.6. Example. Continuing from Example 14.4, suppose that the analyst is concerned about the probability of a Type II error if the true mean burning rate is $\mu = 41 \, \text{cm/s}$. We may use the following operating characteristic curve (specific to $\alpha = 0.05$) to find β :

Using OC Curves to Relate Sample Sizes with β

In this graph,

$$d := \frac{|\mu - \mu_0|}{\sigma} = \frac{41 - 40}{2} = \frac{1}{2}.$$

Since in our example n=25 we can read off $\beta \approx 0.30$.

15.7. Example. In Examples 15.5 we used a formula to find the sample size necessary to reject H_0 if H_1 is actually true. We can also read the result directly from the OC curve as follows:

We want to have $\beta < 0.1$ if

$$d = \frac{|\mu - \mu_0|}{\sigma} = \frac{|\mu - 40|}{2} \ge \frac{1}{2}.$$

We see that the point $(d, \beta) = (0.5, 0.1)$ is between the OC curves for n=40 and n=50 and that the curve remains below 0.1 for d>1/2.

Thus the test should involve a sample size of about n = 45 or more.

OC Curves for One-Tailed Tests

Given a one-sided null hypothesis of the form

$$H_0$$
: $\theta \leq \theta_0$,

or

$$H_0: \theta \geq \theta_0$$

an analogous calculation the probability of failing to reject H_0 may be performed, leading to an OC curve as shown below:

P[fail to reject H_0]

Summary of Neyman-Pearson Decision Theory

- (i) Select appropriate hypotheses H_1 and H_0 and a test statistic;
- (ii) Fix α and β for the test;
- (iii) Use α and β to determine the appropriate the sample size;
- (iv) Use α and the sample size to determine the critical region;
 - (v) Obtain the sample statistic; if the test statistic falls into the critical region, reject H_0 at significance level α and accept H_1 . Otherwise, accept H_0 .

Comparison of Fisher and Neyman-Pearson Tests

Superficially, Fisher's test of H_0 and the Neyman-Pearson test are related as follows:

If the P-value in Fisher's test is no greater than the value of α in Neyman-Pearson's decision process, then H_0 is rejected and H_1 accepted. Otherwise, H_0 is not rejected.

However, this ignores the different philosophies of the approaches: Fisher is concerned about gathering evidence against H_0 , without necessarily coming to an outright rejection, while Neyman-Pearson desire a definite decision for either H_1 or H_0 .

Relationship to Confidence Intervals

We have seen in (15.1) that the two-tailed null hypothesis H_0 : $\mu=\mu_0$ is rejected if

$$\overline{x} \neq \mu_0 \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
.

This is equivalent to

$$\mu_0 \neq \overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
.

Hence, we have the following relationship to hypothesis tests:

- Neyman-Pearson: \overline{x} lies in the critical region for α if and only if the null value μ_0 does not lie in a $100(1-\alpha)\%$ two-sided confidence interval for μ .
- ▶ Fisher: H_0 is rejected at significance level α if and only if the null value μ_0 does not lie in a $100(1-\alpha)\%$ two-sided confidence interval for μ .

This generalizes to one-sided tests and is also true for other (non-normal) distributions.

Interpretation of the Neyman-Pearson Decision

Suppose that you are performing a Neyman-Pearson test for a population mean with

$$H_0: \mu \leq \mu_0, \qquad H_1: \mu > \mu_1$$

where $\mu_0 < \mu_1$. The test has been designed so that $\alpha = 1\%$, $\beta = 5\%$.

Finally, H_0 is not rejected, i.e., H_0 is accepted. Then

- (1) There is at most a 5% chance that H_1 is true.
- (2) There is a 99% chance that H_0 is true.
- (3) There is a 95% chance of this conclusion being correct.
- (4) If H_1 is in fact true, the chance of reaching this conclusion is at most 5%.