MARTIN MARIETTA

M 602	N65 13561	(THRU)
PAGILITY FORM	(PAGES) CM 5-9 66 4 (NASA CR OR TMX OR AD NUMBER)	(CATEGORY)

GPO PRICE \$
OTS PRICE(S) \$
Hard copy (HC)

MARTIN COMPANY

Supplement No. 1
Final Report on Acceptance Testing
Phase One of NASA
Nickel-Cadmium Battery Test Project
Contract No. NAS 5-3027
ER 13219

Martin Marietta Corporation Baltimore, Maryland November, 1963

1.0 Introduction

This paper is a supplement to Engineering Report No. ER-13179, Final Report on Acceptance Testing, published under NASA contract No. NAS 5-3027, (October, 1963).

This report presents acceptance test data, acquired after publication of the previously mentioned report, on 13 pressure transducer equipped cells received from the manufacturer on 15 October 1963. Also included in this report is a battery breakdown list, by cell, of the 12 batteries to be used in performance of the phase two, cycling test, portion of the battery test project.

2.0 Test Results

2.1 Phenolphthalein Leak Test

No leaks were found in any of the cells tested.

2. 2 Capacity Test

2. 2. 1 Capacity. Capacity values are listed in Table 1 below. The average capacity of the 13 cells was 6.00 ampere hours with a standard deviation of 0.28 ampere hours.

TABLE 1

Mfg's Serial No.	Test Cell No.	Ampere-Hour Capacity
4785	F240S	6, 022
4778	241	5, 808
4812	242G	6, 000
4807	243	5. 633
4790	244	6,402
4813	245	6. 087
4780	246	6, 140
4787	247	6.175
4768	248	5. 567
4770	249	6. 485
4784	250	5. 751
4789	251	6, 161
4796	252	5, 790

Legend

Prefix

<u>Suffix</u>

S - Shorted Cell G - Blocked Gauge 2.2. 2 Terminal Voltages. Terminal Charging voltages are listed in Table 2. The average terminal voltages for charges 1, 2 and 3 are as follows.

Charge No. 1 ------ 1.456 volts Charge No. 2 ----- 1.438 volts Charge No. 3 ----- 1.433 volts

TABLE 2

Test Cell No.	F240S	241	242G	243	244	245	246	247	248	249	250 251	252
Chg. 1 Chg. 2 Chg. 3	147 145 144	143	1 47 1 46 1 46	142	144	142	142	144	142	149	145 146 143 145 142 145	143

2.2.3 Pressure. Terminal Pressure readings are listed in Table 3. Readings labeled CHG. 1 TERM, CHG. 2 TERM and CHG. 3 TERM represent cell pressures recorded at the termination of capacity test charges No. 1, No. 2 and No. 3, respectively. All negative readings are in Inches of Mercury and all positive readings are in Pounds Per Square Inch. Pressure Readings on cell 242 indicated a blocked gauge.

F240S	241	242	243	244	245	246	247	248	249	Time
+05	+10	00 +	+25	+20	+00	+00	+11	+20	+05	CHG 1 TERM
+05	+35	00+	+35	+33	+08	+07	+11	+40	+20	CHG 2 TERM
+00	+05	00+	+15	+05	-05	-15	+05	+10	+05	11-1
+00	+04	+00	+17	+04	-04	-14	+02	+12	+05	11-2
+00	60+	+00	+19	+09	-03	-13	90+	+14	90+	11-3
+01	1 11	+00	+21	+11	-02	-11	90+	+17	90+	11-4
+01	+12	+00	+22	+12	-01	-10	+07	+20	+07	12-1
+02	+14	00+	+24	+14	00+	60-	+07	+22	+07	12-2
+02	+15	00+	+26	+16	00+	-07	+08	+24	+08	12-3
+03	+16	00+	+58	+17	+ 01	-05	+08	+56	+08	12-4
+04	+18	+00	+30	+18	+01	-04	+09	+28	+09	13-1
+04	+20	+00	+31	+19	+0.2	-03	+0.9	+29	60+	13-2
+05	+21	+00	+32	+20	+03	-02	+10	+30	+10	13-3
+05	+23	00+	+34	+22	+03	-01	+10	+32	+11	13-4
+05	+25	00+	+36	+24	+04	00+	+10	+34	+12	14-1
90+	+27	00+	+38	+25	+04	+01	+11	+35	+13	14-2
90+	+29	00+	+40	+26	+05	+02	+111	+37	+14	14-3
90+	+31	00+	+41	+27	90+	+03	+11	+38	+15	14-4
90+	+34	00+	+43	+30	+0,4	+04	+11	+40	+1.7	15-1
90+	+37	00+	+46	+32	+04	+04	+12	+42	+20	15-2
90+	+39	00+	+48	+34	60+	+05	+12	+44	+22	15-3
+0.7	4	00+	+48	+3.5	+10	+05	+12	+45	+23	15-4
90+	+42	+00	+49	+35	+10	+11	+12	+45	+24	16-1
+06	+42	+00	+49	+35	+10	+11	+12	+46	+24	16-2
90+	14 3	+00	+50	+35	+10	+11	+11	+46	+24	16-3
+06	+43	00+	+50	+35	+10	+11	+10	14 8	+24	CHG. 3 TERM

TABLE 3 (CONTINUED)

250	251	252	
+15	+24	+24	CHG. 1 TERM
+24	+2 9	+37	CHG. 2 TERM
+28	+32	+40	CHG. 3 TERM

Pressure readings on these 13 cells as they were received from the manufacturer are listed in Table 4:

TABLE 4

Cell No.	Pressure	Cell No.	Pressure
240 241 242 243 244 245 246	-18 	247 248 249 250 251 252	-11 -12 -18 +00

2. 3 Cell Short Test

Cell number 240 was rejected because of an internal short circuit. All cells are listed below with their open circuit voltage after the specified 24 hour stand period.

TABLE 5

Test Cell No.	Cell Voltage (Volts
240	0.013
241	1.124
242	1.155
243	1.155
244	1.152
245	1.156
246	1.153
247	1.125
248	1.142
249	1.152
250	1. 236
251	1.200
252	1.191

2.4 Internal Resistance

The internal resistance for each cell is listed in Table 6.

TABLE 6

Cell No.	Milliohm Int. Res.	Cell No.	Milliohms Int. Res.
240 241 242 243 244 245 246	4. 2 3. 5 3. 7 3. 7 3. 7 3. 5	247 248 249 250 251 252	3. 9 4. 2 3. 7 3. 9

3.0 Battery Selection

Computer techniques were used to assign all accepted cells to the various batteries required for the cycling tests. The 12 batteries were selected in a manner that resulted in each battery having an average capacity and standard deviation as close as possible to the average capacity and standard deviation of all accepted cells. These Batteries are listed in Table 7.

	252 5. 790		241 5. 808		031 6. 327		096 6. 331		072 6. 331		206 6.340
АН	213 6.366		017		034 6.384		005 6, 301		228 6.309		095 6.314
. 205	089	229 AH	019		198 6.269		231		046 6.279		030 6. 279
Std. Deviation = . 205 AH	059 6.418	Deviation = . 22	063 6. 279	.147 AH	068 6. 432	3 A. H	054 6.248	.147 AH	007 6. 248	АН	006 6. 253
Std.	049 6. 266		227 6. 445	Deviation .	003 6. 213	on * .193	011		093 6. 231	z . 234	073 6. 235
28 A. H.	064 6. 209	A. H. Std.	027 6, 453	Std. Dev	193 6, 506	, Deviation	021 6. 209	. Deviation *	020 6.497	Deviation	214 6. 475
Avg. Capacity = 6.228 A.H.	041 6.187	339	218	6, 332	009	53 Std.	108 6.148	338 Std.	092 6.174	77 Std.	042 6.148
rg. Capac	208 6.515	Avg. Capacity * 6.	088 6.519	Capacity *	229 6. 549	city = 6, 153	075 6.104	Capacity # 6.338	052 6.549	Capacity = 6.177	002 6.104
Aı	091 6.130	Avg. C	060	Avg. C	029 6.052	Avg. Capacity	102 6.056	Avg. Capa	023	Avg. Capac	032 6. 056
Battery No. "O"	Cell No. 210 A. H. Cap. 6.004	Battery No. "1"	Cell No. 100 A. H. Cap. 6. 672	Battery No. "2"	Cell No. 244 A. H. Cap. 6, 401	Battery No. 3 Av	Cell No. 243 A. H. Cap. 5. 633	Battery No. 4 Av	Cell No. 251 A. H. Cap. 6. 161	Battery No. 5 Av	Cell No. 248 A. H. Cap. 5.567

TABLE 7 (CONTINUED)

Battery No. 6	Avg. Ca	Avg. Capacity = 6.	3.375	Std. De	Std. Deviation * .146	.146			
Cell No. 247 A. H. Cap. 6.174	078 6.602	016	070 6.174	111 6. 488	109	200 6.423	053 6.410	195 6.318	216 6.349
Battery No. 7	Avg. Capacity * 6.234	city # 6.	234 Std.	h	Deviation = . 215				
Cell No. 044 A. H. Cap. 6.030	120 6.558	004 6.170	071	211	037 6. 257	047 6. 418	110 6.392	244 6, 353	250 5, 751
Battery No. 8	Avg. Capacity - 6.	acity - 6	. 352	Std. Dev	Deviation = . 151	. 151			
Cell No. 246 A. H. Cap. 6.140	018 6.606	205	197 6.152	086 6, 475	097 6. 462	057 6.423	094 6.405	225 6.375	010 6.344
Battery No. 9	Avg. Capacity = 6, 329	city = 6.	329 Std.		Deviation . 164				
Cell No. 245 A. H. Cap. 6. 087	217	056 6.143	036 6.152	015	067 6. 248	024 6. 418	090 6. 401	099 6.370	079 6.349
Battery No. 10	Avg. Capacity - 6.3	acity - 6.	39	Std. Devi	Deviation = . 155	155			
Cell No. 249 A. H. Cap. 6. 484	209	215 6.100	212 6.506	105 6.183	221 6. 471	085 6. 436	028 6.414	107 6. 392	040 6.327
Battery No. 11	Avg. Capacity * 6.	acity = 6	356	Std. Devi	Deviation .	. 186			
Cell No. 230 A. H. Cap. 6. 654	066	106 6.523	033 6, 484	026 6, 453	062 6.440	103 6.274	065 6.301	014 6.322	242 6. 000