Tinkering with the TR80's I/O Bus

Arno Puder

Outline:

- 1. My Story
- 2. TRS-80 I/O Bus
- 3. Boolean Logic
- 4. Connecting Arduino with the I/O Bus

At ODOTOOLE DIN At	High	acores	ы	
** OBSTACLE RUN **			9	
	Arno	180,020	н	
■ Mission: Top Secret !	ALL	91,760	ш	
	A&C	75,770	9	
_ Use arrow keys to move in all directions	A2	73,640	ш	
Press "SPACEBAR" to fire missiles forward	A&P!	64,220	н	
and left & right arrow keys together	Arno	49,990	ы	
to shoot to the sides	A.P.	23,500	9	
Play until all ships are exhausted	A1	9,920	ы	
	UWE2	7,750	П	
■ Depress "BREAK" & "CLEAR" to abort game	UWE2	6,900	ы	

Program written by Arno Puder Hohner Str.16 5206 Neunkirchen-S

	High	Scores
** OBSTACLE RUN **		
	Arno	180,020
■ Mission: Top Secret !	ALL	91,760
	A&C	75,770
_ Use arrow keys to move in all directions	A2	73,640
Press "SPACEBAR" to fire missiles forward	A&P!	64,220
and left & right arrow keys together	Arno	49,990
to shoot to the sides	A.P.	23,500
Play until all ships are exhausted	A1	9,920
_	UWE2	7,750
■ Depress "BREAK" & "CLEAR" to abort game	UWE2	6,900

Program written by Arno Puder Hohner Str.1

180,020 91,760 75,770

nkirchen-S

5206 Ne

Good Old Days

- TRS-80 Model III
- Manufactured by Radio Shack Corporation
- Released in 1980
- 8-bit Z80 CPU @ 1.7 MHz, 48kB RAM
- Great for tinkering!

Modern Devices are Tinker Resistant!

Arduino

- Open source specification for a programmable microcontroller.
- Started in 2003 in Italy.
- Main purpose is to interface with sensors and actuators via GPIO/I2C and SPI.
- CPUs: Atmel AVR, ARM Cortex, Intel Quark (x86)
- Does not run an operating system!
- Arduino Uno R3:
 - CPU: ATmega328P @ 16 MHz
 - Flash memory: 32 kB
 - SRAM: 2 kB
 - Interface: GPIO, UART, SPI, I2C.
 - Size: 68 x 53 mm
 - Power consumption: 225 mW
 - Arduino Pro Mini: 15 μW 12 mW
 (4 years on a 9V battery)
- Homepage: https://www.arduino.cc/

TRS-80 I/O Bus

- 50 pin connector; 25 pins are ground.
- Uses TTL (Transistor-Transistor Logic). High = 5V
- 8 bits data bus D0-D7.
- 8 bits for address lines A0-A7.
- Control lines for read, write, wait, interrupts
- BASIC:
 - Input: INP (p)
 - Output: OUT p, n
- Z80:
 - out (p),n
 - -inr,(p)
- I/O bus needs to be enabled first via OUT 236,16

Radio Shaek

Service Manual

CUSTOM MANUFACTURED IN U.S.A. BY RADIO SHACK A DIVISION OF TANDY CORPORATION

SN74LS245

- Octal bus transceiver
- 3-state outputs

To Seven Other Channels

I/O Bus Pins

Name	Description	Pins
D[0-7]	Data lines	1,3,,15
A[0-7]	Address lines	17,19,,31
RD*	Read in progress	33
WR*	Write in progress	35
IORQ*	I/O request	49
EXTIOSEL*	Assert for read operation	43
IOBUS_WAIT*	Force wait-states on Z80	41
IOBUS_INT*	Signal interrupt to Z80	39

I/O Bus Write Cycle

I/O BusRead Cycle

Boolean Logic

AND

Α	В	Z
0	0	0
0	1	0
1	0	0
1	1	1

OR

Α	В	Z
0	0	0
0	1	1
1	0	1
1	1	1

Boolean LogicExample

1 Bit Output

1 BitInput

ATF16V8B

- Generic Array Logic (GAL)
- Ideal for prototyping and minimizing simple Boolean equations.
- Precursor of FPGAs.
- Can be erased and reprogrammed.
- Up to 16 Inputs.
- 8 I/O.
- Requires a programmer (e.g., TL866II)

TL866II Plus

GAL PipAssignments

```
/* Inputs */
Pin [2...9] = [A7...0];
Pin 17 = !RD N;
Pin 18 = !WR_N;
Pin 19 = !IORQ N;
/* Outputs */
Pin 14 = EXTIO SEL;
Pin 13 = !ARDUINO SEL N;
```

GAL Boolean Equations

```
/* Equations */
io bus sel = IORQ N & (RD N # WR N);
/* Arduino is selected at port 31 */
arduino sel = !A7 & !A6 & !A5 & A4 &
               A3 & A2 & A1 & A0 & io bus sel;
ARDUINO SEL N = arduino sel;
/* EXTIO SEL N allows the TRS-80 to read */
EXTIO SEL = arduino sel & RD N;
```

Arduino Starter Kit

Breadboards

- Breadboards are used for fast prototyping.
- Allows to build an electronic circuit without soldering.
- Pins are connected as shown in the schematic on the right.

General Purpose Input/Output (GPIO)

- Generic pin with no pre-defined purpose.
- Can be configured either as input or output.
- Programmable interface:
 - Read state of a binary device (e.g., push button).
 - Control on/off state of a binary output device (e.g., LED)
- Arduino Uno:
 - 14 digital GPIO pins.

"Hello World" Arduino

- First circuit that makes use of the Arduino.
- Push button is connected to GPIO pin 2.
- LED is connected to GPIO pin 6.
- Both LED and the push button are also connected to ground to form a complete circuit with their respective GPIO pins.
- Pushing the button will not turn on the LED.
- Arduino needs to be programmed to implement desired behavior.

Arduino Sketches

- Programs for the Arduino are called Sketches.
- Sketches can be written in C/C++.
- No operating system!
- Only one thread of execution.
- Support for common POSIX functions (e.g., malloc(), strlen(), etc)
- IDE automatically includes common header files.
- Popular IDEs:
 - Arduino IDE.
 - Atom with PlatformIO.

```
// Basic template for
// a sketch

void setup() {
   // ...
}

void loop() {
   // ...
}
```


Arduino IDE

- Download free Arduino IDE: https://www.arduino.cc/en/Main/Software
- Configuration:
 - Tools > Board > Arduino/Genuino Uno
 - Tools > Programmer > AVR ISP
 - Tools > Port > /dev/XXX
- Note: the Arduino needs to be connected to the laptop in order for it to show up under Tools > Port.

```
ArduinoLEDButton | Arduino 1.8.3
                                                           Ø
  ArduinoLEDButton
 2 const int PIN_LED = 6;
3 const int PIN_BUTTON = 2;
 5 void setup() {
   pinMode(PIN_LED, OUTPUT);
    pinMode(PIN_BUTTON, INPUT_PULLUP);
8 }
 9
10 void loop() {
    bool pressed = digitalRead(PIN_BUTTON) == LOW;
    digitalWrite(PIN_LED, pressed ? HIGH : LOW);
13 }
14
                    Arduino/Genuino Uno on /dev/cu.usbmodemFA131
```

Sketch for Button/LED Circuit

```
const int LED_PIN = 6;
const int BUTTON_PIN = 2;

void setup() {
   pinMode(LED_PIN, OUTPUT);
   pinMode(BUTTON_PIN, INPUT_PULLUP);
}

void loop() {
   bool pressed = digitalRead(BUTTON_PIN) == LOW;
   digitalWrite(LED_PIN, pressed ? HIGH : LOW);
}
```

- This sketch assumes the wiring as shown on the "Hello World" for Arduino slide.
- GPIO pins can be configured either as input (INPUT PULLUP) or output (OUTPUT) via pinMode ()
- **digitalRead()** can return either **HIGH** or **LOW**. For a pin configured as **INPUT_PULLUP** it will return **LOW** when the button is pressed. It will also activate an internal pull-up resistor on that pin.
- The value of HIGH or LOW can be set for an output pin via digitalWrite()
- This sketch will constantly update the LED with each call to loop ()

Fritzing

- Design tool fritzing.org allows simple schematics.
- Uses ATF16V8B, transistor, LED, resistor, button.
- Button: pseudo input.
- LED: pseudo output.

Main Polling Loop

```
#define PIN8 (1 << 0)
#define PIN9 (1 << 1)
void setup() {
  setup app();
  pinMode(8, INPUT);
 pinMode(9, INPUT);
  // Configure pins
  // 0-7 as input
  DDRD = 0;
  noInterrupts();
```

```
void loop() {
  // Wait for ARDUINO SEL N to go low
  while (PINB & PIN8);
  if (PINB & PIN9) {
    // Read from I/O bus
    z80 out(PIND);
  } else {
    // Write to I/O bus
    DDRD = 0xff;
    PORTD = z80 in();
  // Wait for ARDUINO SEL N to go high
  while (!(PINB & PIN8));
  DDRD = 0;
```

Examples

Blinking LED

```
10 OUT 236,16
20 OUT 31,0
30 FOR X=1TO1000:NEXT
40 OUT 31,1
50 FOR X=1TO1000:NEXT
60 GOTO 20
```

Pushing Button turns off LED

```
10 OUT 236,16
20 OUT 31,ABS(INP(31)-1)
30 GOTO 20
```

Read Button State

```
10 OUT 236,16
20 IF INP(31) = 1 THEN PRINT "BUTTON PRESSED"
30 GOTO 20
```

Logic Analyzer

Sensors

Passive Infrared Motion Sensor

Soil Moisture

Sound Detector

Accelerometer, Gyroscope Temperature – MPU6050

Photocell

Reed Switch TMP36

Actuators/Displays

Gear motor with Wheel Set

Solenoid

Water Valve

Relay

Liquid Crystal Display (LCD)

7 Segment Display

ESPWROOM-32

- Low-cost microcontroller including WiFi and Bluetooth.
- Produced by Shanghai-based Chinese manufacturer, Espressif Systems.
- CPU: dual core 32-bit RISC Tensilica Xtensa LX6 @ 240 MHz.
- FreeRTOS
- Flash memory: 4MB
- SRAM: 520 kB
- WiFi:
 - IEEE 802.11 b/g/n
 - WEP or WPA/WPA2 authentication, or open networks.
- Interface: 16 GPIO pins, SPI, I2C, UART, 400t ADC.
- Price point: \$11

Introducing TR®

- Same components as the RetroStoreCard(backward compatible).
- Only differences:
 - A0-A3 are routed to the ESP
 - GAL scans for port 31 and ports 0xC0-0xCF
- Features:
 - RetroStore access
 - trs-nic (Berkeley Socket API)
 - trs-fs (POSIX file access API)
 - FreHD
 - OTA

TRSIO

All Good Things...

- Summary:
 - Old computers were great for learning.
 - Today's devices are tinker resistant.
 - Arduino to the rescue!
 - Connect an Arduino to the TRS-80's I/O Bus.
- Outlook:
 - TRSIO: Connecting the TRS-80 to the World!
 - Display at Tandy Assembly's Exhibition.
- Complete source and slides freely available at:

 The second slides are also as a second slide at:

 The second slides are also as a second slide at:

 The second slides are also as a second slide at:

 The second slides are also as a second slide at:

 The second slides are also as a second slide at:

 The second slides are also as a second slide at:

 The second slides are also as a second slide at:

 The second slides are also as a second slide at:

 The second slides are also as a second slide at:

 The second slides are also as a second slide at:

 The second slides are also as a second slide at:

 The second slides are also as a second slide at:

 The second slides are also as a second slide at:

 The second slides are also as a second slide at:

 The second slide at a seco

https://github.com/apuder /TRS-80-Arduino

Contact: arno@retrostore.org