Bernd Sturmfels' ATIZONA Lecture #4 Tropical Implicitization

work with Jenia Teveler & Josephine Yu

Input:
$$X_1 = C_1 t_1^3$$

$$X_2 = (-2c_1 + c_2) t_1^2 t_2$$

$$X_3 = (c_1 - 2c_2) t_1 t_2^2$$

$$X_4 = C_2 t_2^3$$
Output:

Output:

The Problem of Implicitization

Given n polynomials $f_1,...,f_n$ in d unknowns $t = (t_1,...,t_d)$, compute the Kernel of the ring map $C[x_1,...,x_n] \rightarrow C[t_1,...,t_d]$ $x_i \mapsto f_i(t)$

This is a prime ideal I in C[x].

This is soood hard

... so instead we do

Tropical Implicitization

Compute the tropical variety J(I)directly from $f_1,...,f_n$

$$X_1 = t_1 t_2 (t_1^4 - t_2^4)$$
 $X_2 = Hessian(X_1(t))$
 $X_3 = Jacobian(X_1(t), X_2(t))$
The implicit equation for this map $C^2 \rightarrow C^3$
equals $g(X_1, X_2, X_3) = ???$

Can we recover I from J(I)? Not quite ... but its Chow polytope C = n - dTheorem 2.2. [DFS] Let w be a generic vector in IR" A monomial prime (X,,,,,X,) is associated to the initial monomial ideal inw (I) if and only if J(I) meets the cone w + R≥0 {e, ..., e, }. The number of intersection points, counted appropriately, equals the nultiplicity of this prime in inw (I).

ropical Implicitization of Curves d=1

Here f1(t), f2(t), ..., fn(t) are rational functions in one unknown t

Let $\alpha_1, \alpha_2, ..., \alpha_m \in Cu \{\infty\}$ be all poles and zeros. Write

$$f_i(t) = \frac{m}{\int_{j=1}^{m} (t-\alpha_j)^{u_{ij}}}$$

The m vectors (uiz, uiz, ..., uin) sum to zero in IRⁿ. The union of their rays equals the tropical curve J(I)

A parametrized plane curve

How about for d>2 unknowns? Well, if $f_i = 0$ defines a normal crossing divisor with smooth components on some compactifaction X of (C*)d then a similar construction works ... [Hacking-Keel-Teveler '06] Q: How to make this computational? A: Focus on the Newton polytopes of the fi

Genericity Assumption

Suppose the coefficients of f_i are generic relative to fixing the Newton polytope $P_i = New(f_i)$. Choose an $m \times d$ -matrix A and column vectors $b_1,...,b_n \in \mathbb{R}^m$ such that $P_i = \{u \in \mathbb{R}^d : Au \ge b_i\}$ for i = 1,...,n

Example "Plane (urves" (n=2, d=1 => m=2.

$$A = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, b_1 = \begin{bmatrix} \alpha \\ -\beta \end{bmatrix}, b_2 = \begin{bmatrix} 8 \\ -\delta \end{bmatrix}$$

The incidence fan

The incidence fan of $P_1,...,P_n$ is the coordinate fan in IR^{n+m} with basis $e_1,...,e_n,E_1,...,E_m$ whose cones are the orthants $IR_{20} \{e_{i_1},...,e_{i_K},E_{j_1},...,E_{j_e}\}$ such that the face of

P12 + + Pik

has codimension < C.

For l=0 take all proper subsets of lamens

Theorem

The tropical variety J(I) is the image of the incidence fan of $P_1, ..., P_n$ under the linear map

 $R^{n+m} \to R^n$ $(y,z) \mapsto y + z \cdot B$

where B is the matrix with columns bi.

The hypersurface case

If n=d+1 and $I=\langle g \rangle$ is principal we get a combinatorial rule for constructing the Newton polytope of g from $P_1,...,P_n$

Tropical Implicitization of Mane Curves

Input Two one-dimensional Newton polytope.

Qutput The Newton polygon $Q = IR^2$ of the implicit equation g(x,y) = 0

ase 1: If $\alpha \ge 0$ and $\beta \ge 0$ then $Q = conv\{(0, \beta), (0, \alpha), (8, 0), (6, 0)\}$

Case 2: If $B \le 0$ and $S \le 0$ then $Q = conv\{(0, -\alpha), (0, -B), (-S, 0), (-S, 0)\}$ Case 3: If $\alpha \le 0$, $S \ge 0$ and $BY \ge \alpha S$ then $Q = conv\{(0, B - \alpha), (0, 0), (S - Y, 0), (S, -\alpha)\}$ Case 4: If $B \ge 0$, $Y \le 0$ and $BY \le \alpha S$ then $Q = conv\{(0, B - \alpha), (0, 0), (S - Y, 0), (-Y, B)\}$

