

MX214B

Toy Motor Driver Series

Features

- Low static operating current
- Wide supply voltage range: 2.5V-10V
- Continuous output current capability of 800mA /channel)
- Built-in thermal shutdown function
- Lower saturation voltage
- Has overtemperature protection function
- Three functions -Forward/Reverse/ High Impedance
- Compatible with TTL/CMOS interface, connects directly to CPU
- Built-in clamp diodes suitable for inductive load
- Control and drive circuit integrated into a single IC
- Suitable for 3 to 6 batteries operated application
- Internal ESD protection (4000V HBM)
- Operating temperature range: -20°C −+80°C

Typical Application

Toy car motor drive

Description

The MX214B is a dual-channel push-pull power amplification application-specific IC device designed to control and drive toy motor, integrates discrete devices into a monolithic IC, decreases cost of periphery, and increases reliability of the whole unit. All inputs of the chip are TTL/CMOS-compatible, and have a good interference immunity. The circuit has a current-driving capability, current/channel is 750 mA to 800 mA, peak current reaches 1.5A to 2.0A, the circuit has overtemperature protection function, and on-chip clamping diode releases reverse impulse current of inductive load.

Ordering Guide

Device model	Package	Operating Temperature
MX214B	SOP8	-20°C—+80°C
MX214B	DIP8	-20℃—+ 80℃

Pin Function Descriptions

Pin Number	Mnemonic	I/O	Pin Function Description
1	OA	0	A channel output
2	VCC	-	Supply voltage output
3	VCC	-	Supply voltage output
4	ОВ	0	B channel output
5	GND	-	Ground
6	IA	I	A channel input
7	IB	I	B channel input
8	GND	-	Ground

FUNCTIONAL BLOCK DIAGRAM

Schematics of Inputs and Outputs

Logic Truth Table

IA	IB	OA	ОВ
Н	L	Н	L
L	Н	L	Н
L	L	Z (High Impedance)	Z (High Impedance)
Н	Н	Z (High Impedance)	Z (High Impedance)

Absolute Maximum Ratings

 $(T_A=25^{\circ}C, \text{ unless otherwise specified})$

Parameter		ll	Value			11
		mbol	Min.	Тур.	Max.	Unit
Supply voltage	,	VCC	2.5	6.0	10	V
Peak output current		I _{Max}	-	1500	2000	mA
Input high level	V _{HIN}		2.5	5.0	10	V
Input low level	V _{LIN}		-	0.5	0.7	V
Thermal resistance (1)	$ heta_{J\!A}$	SOP8	-	-	160	°C/W
Thermal resistance	U_{JA}	DIP8	-	-	100	°C/W
Maximum operating junction	TJ		_	_	150	${\mathbb C}$
temperature			_	_	130	C
Soldering temperature		•	-	-	260	℃,10S
Storage temperature Range		Tstg	-65	-	150	${\mathbb C}$

NOTE: (1) Maximum power dissipation can be obtained from the following formula

$$P_D = (T_J - T_A)/\theta_{JA}$$

Where T_J is junction temperature with the circuit working, and T_A is the ambient temperature with the circuit working. Calculation of thermal impedance of package is as per ESD 51-7.

Recommended Operating Conditions

 $(T_A=25^{\circ}C, unless otherwise specified)$

Darameter	Symbol Co	Condition	Range			Unit
Parameter		Condition	Min.	Тур.	Max.	Offic
Supply voltage	VCC		3.0	=	9.0	V
Continuous output current	I _{OUT}		400	600	800	mA
Operating temperature range ⁽¹⁾	T_A		-20	-	80	$^{\circ}$
Power dissipation ⁽²⁾	D	SOP8	-	-	625	mW
	P_{D}	DIP8	-	-	1250	mW

NOTES: (1) T_A is the ambient temperature at the time that circuit operates;

(2) The power dissipation Pd is given by:

 $P_D = I_{OUT} \times V_{O(sat)} + (I_{VCC} - I_{OUT}) \times VCC + V_{IA} \times I_{IA} + V_{IB} \times I_{IB}$

where I_{OUT} is the output current through the circuit or driving motor; $V_{O(sat)}$ is output saturation voltage of circuit; I_{VCC} is the current flowing into power supply pin VCC; VCC is the voltage at power supply pin VCC; V_{IA} and V_{IB} are the input voltage at power supply pins IA and IB, respectively; I_{IA} and I_{IB} are the input current at power supply pins IA and IB, respectively.

In above expression, P_D is mostly determined by $I_{OUT} \times V_{O(sat)}$, where for the relation between output saturation voltage $V_{O(sat)}$ and output current I_{OUT} of circuit the typical parameter curves in Fig. 6 can be referred to. If the internal resistance of a motor is R_M , then a straight line $V_{O(sat)} = VCC - I_{OUT} \times R_M$ is drawn in Fig. 6. From the point of intersection of the straight line with the curve in Fig. 6, $V_{O(sat)}$ and I_{OUT} can be obtained. In combination with practical application and power dissipation, internal resistance of a motor (R_M) is determined, and so a proper motor can be selected.

To make circuit operate safely and normally, make sure that circuit power dissipation is in the range allowed.

Electrical Characteristics

(Unless otherwise specified, VCC=5V, $T_A=25^{\circ}C$)

Parameter	Fig. for test	Condition	Min.	Тур.	Max.	Unit
I _{DD} Quiescent current	1		-	0.1	2.0	uA
I _{IN} Input current	2	V _{IA} =H,V _{OA} =H	-	500	700	uA
V _{O (sat)} Output saturation	3	I _{OUT} =500mA ⁽²⁾	-	1.00	1.15	>
voltage ⁽¹⁾	5	I _{OUT} =200mA	-	0.75	0.85	>
I _{OUT} Continuous output current	3	SOP8	750	800	850	mA
		DIP8	900	1000	1100	mA
I _{Max} Peak output current	3		-	1500	2000	mA
Tsd Over-temperature shutdown		VCC=6V		165		°C
Tsdh Over-temperature shutdown hysteresis		VCC=6V		30		°C

NOTES: (1) The output saturation voltage is the sum of output high- and low-side saturation voltages, i.e. the sum of the measured values in voltmeters V1 and V2 in Fig.3.

(2) By adjusting adjustable resistor R in Fig. 3, the stated current can be obtained from reading of ammeter.

Test Circuit Diagrams

Fig. 1 (Quiescent current I_{DD})

Fig. 2 (Input current I_{IN})

Fig. 3 (Output saturation voltage V_{O(sat)}=V1+V2)

Typical Electrical Characteristic Curves

Fig. 4 High-side saturation voltage VS output current

Fig. 6 Sum of high- and low-side saturation voltage VS output current

Fig. 5 Low-side saturation voltage VS output current

Fig. 7 Output current VS load resistance

Typical Application Circuit Diagrams

Packages

SOP8:

SYMBOL		MILLIMETER			
	MIN	NOM	MAX		
А			1.77		
A1	0.08	0.18	0.28		
A2	1.20	1.40	1.60		
A3	0.55	0.65	0.75		
b	0.39		0.48		
b1	0.38	0.41	0.43		
С	0.21		0.26		
c1	0.19	0.20	0.21		
D	4.70	4.90	5.10		
E	5.80	6.00	6.20		
E1	3.70	3.90	4.10		
е	1.27BSC				
L	0.50	0.65	0.80		
L1	1.05BSC				
θ	0		8°		

DIP8:

SYMBOL	MILLIMETER				
	MIN	NOM	MAX		
А	3.60	3.80	4.00		
A1	0.51	_	_		
A2	3.10	3.30	3.50		
A3	1.50	1.60	1.70		
b	0.44	_	0.53		
b1	0.43	0.46	0.48		
B1	1.52BSC				
С	0.25	_	0.31		
c1	0.24	0.25	0.26		
D	9.05	9.25	9.45		
E1	6.15	6.35	6.55		
е	2.54BSC				
eA	7.62BSC				
еВ	7.62	_	9.50		
eC	0	_	0.94		
L	3.00	_			