CHUONG 2

2.1 Trần Thái Bảo - 19120458

a) Phương pháp chia đôi

b) Phương pháp lặp

c) Phương pháp tiếp tuyến

d) Phương pháp cát tuyến

2.2

Hà Bảo Khang -19120252

a)
$$x^3 - 2x - 6 = 0$$

Chọn đoạn [2;3], $\gamma = 3.10^{-3}$

Phương pháp chia đôi

Vì f(2).f(3)<0 nên f(x) liên tục

Bước	a	Ь	С	f(c)	f(c)<γ	f(a).f(c)
1	2	3	2.5	4.625	N	-
2	2	2.5	2.25	0.891	N	-
3	2	2.25	2.125	-0.654	N	+

Phương pháp lặp

Đặt
$$f(x) = x^3 - 2x - 6 = 0$$
; $\varphi(x) = \sqrt[3]{2x + 6}$

Hàm f liên tục có f(2).f(3)<0 và $|\phi'(x)| < 1$ với x thuộc [2,3]

Chọn $x_0 = 2.5$

Bước	$x_k = \varphi(x_{k-1})$	$f(x_k)$	$f(x_k) < \gamma$
0	2.5	4.625	N
2	2.224	0.552	N
2	2.186	0.074	N
3	2.181	0.012	N

Phương pháp tiếp tuyến

Đặt
$$f(x) = x^3 - 2x - 6$$
; $f'(x) = 3x^2 - 2$; $f''(x) = 6x$

 $f^{\prime}(x)$ và $f^{\prime\prime}(x)$ không đổi dấu trên [2,3]

$$f(2).f(3)<0 => Chon x_0 = 2$$

Bước	x_k	$f(x_k)$	$f(x_k) < \gamma$
1	2.2	0.248	N
2	2.18019	2.10-3	N
3	2.17998	-8.8.10 ⁻⁷	Y

Phương pháp cát tuyến

Đặt
$$f(x) = x^3 - 2x - 6$$
 và $f(x)$ liên tục trên [2;3]

$$f(2).f(3)<0 => Chọn a = 2, b = 3$$

Bước	a	b	Xk	f(xk)	$ f(x_k) < \gamma$	f(a)f(xk)
1	2	3	2.118	-0.739	N	+
X	2.118	3	2.159	0.253	N	-
3	2.118	2.159	2.181	8.806 x 10 ⁻³	N	+

b)
$$x^4 - x^2 + 5 = 0$$

Vì phương trình vô nghiệm nên bài toán không có lời giải

c)
$$x^4 - 3x^3 + 1 = 0$$

Chọn đoạn [0;1], $\gamma=3.10^{\text{-}3}$

Phương pháp chia đôi

$$\text{Đặt } f(x) = x^4 - 3x^3 + 1$$

Vì f(0).f(1)<0 nên f(x) liên tục

Bước	a	b	С	f(c)	f(c)<γ	f(a).f(c)
1	0	1	0.5	0.6875	N	+
2	0.5	1	0.75	0.051	N	+
3	0.75	1	0.875	-0.424	N	-

Phương pháp lặp

Đặt
$$f(x) = x^4 - 3x^3 + 1$$
; $\varphi(x) = \frac{1}{3} \sqrt[3]{x^4 + 1}$

Hàm f liên tục có $f(0).f(1) \le 0$ mà $|\phi'(x)| \le 1$ không thỏa nên bài toán không thể giải bằng phương pháp lặp.

Phương pháp tiếp tuyến

Đặt
$$f(x) = x^4 - 3x^3 + 1$$
 → $f'(x) = 4x^3 - 9x^2$, $f''(x) = 12x^2 - 18x$

f'(x) và f''(x) không đổi dấu trên [0,1]

$$f(0).f(1)<0 => Chọn x_0 = 0.5$$

Bước	x_k	$f(x_k)$	$f(x_k) < \gamma$
1	0.893	-0.499	N
2	0.777	-0.044	N
3	0.765	-5.162 x 10 ⁻⁴	Y

Phương pháp cát tuyến

Đặt
$$f(x) = x^4 - 3x^3 + 1$$
 và $f(x)$ liên tục trên [0.5;1]

$$f(0.5).f(1)<0 => Chọn a = 0.5, b = 1$$

Bước	a	b	Xk	f(xk)	$ f(x_k) < \gamma$	f(a)f(xk)
1	0.5	1	0.703	0.199	N	+
2	0.703	1	0.753	0.04	N	+
3	0.753	1	0.763	7.75 x 10 ⁻³	N	+

d)
$$2x^5 - 3x^2 - 4 = 0$$

Chọn đoạn [1;2], $\gamma = 3.10^{-3}$

Phương pháp chia đôi

$$\text{Đặt } f(x) = 2x^5 - 3x^2 - 4$$

Vì f(1).f(2)<0 nên f(x) liên tục

Bước	a	b	с	f(c)	f(c)<γ	f(a).f(c)
1	1	2	1.5	4.4375	N	-
2	1	1.5	1.25	-2.534	N	+
3	1.25	1.5	1.375	0.158	N	-

Phương pháp lặp

Đặt
$$f(x) = 2x^5 - 3x^2 - 4$$
; $\varphi(x) = \frac{1}{2} \sqrt[5]{3x^2 + 4}$

Hàm f liên tục có f(1).f(2) < 0 và $|\varphi'(x)| < 1$ với x thuộc [1,2]

Chọn $x_0 = 1.3$

Bước	$x_k = \varphi(x_{k-1})$	$f(x_k)$	$f(x_k) < \gamma$
0	1.3	4.625	N
2	2.224	0.552	N
2	2.186	0.074	N
3	2.181	0.012	N

Phương pháp tiếp tuyến

Đặt
$$f(x) = 2x^5 - 3x^2 - 4 \rightarrow f'(x) = 10x^4 - 6x, f''(x) = 40x^3 - 6$$

 $f^{\prime\prime}(x)$ và $f^{\prime\prime\prime}(x)$ không đổi dấu trên [1,2]

$$f(1).f(2) < 0 \Longrightarrow Chọn x_0 = 1$$

Bước	x_k	$f(x_k)$	$f(x_k) < \gamma$
1	2.25	96.1425	N
2	1.854	29.499	N
3	1.578	8.119	N

Phương pháp cát tuyến

Đặt
$$f(x) = 2x^5 - 3x^2 - 4$$
 và $f(x)$ liên tục trên [1;2]

$$f(1).f(2)<0 => Chọn a = 1, b = 2$$

Bước	a	b	Xk	f(xk)	$ f(x_k) < \gamma$	$f(a)f(x_k)$
1	1	2	1.111	-4.317	N	+
2	1.111	2	1.21	-3.204	N	+
3	1.21	2	1.295	-1.743	N	+

2.3 Ngô Trọng Đức - 19120061

Ngô Trọng Đức - 19120061
endong J.
10 that 1 (1) = 10 (0.1 +) (1.0 +)
V a b c ye
0 0 1 0,3 0,300
1 0 0,5 0,25 0,100
2 (,2) (,3) (,4)
3 0,395 0,5 0,4375 - 0,85 NO >0
Philosop Phap lap
Phicing phosp lap: (4(x) = sm(n+1), 1 (6(x) 1< 1 face [0], 1]. Chen x = 0,5
K 2 = 4(x2) 3 (x2)
0 0,4987 0,000002
=) Nguyễn Nghiêm của pt 22 = sin (x+1) là 0,4987
Phicing phap tup tuybo's
3'= eos (2+1) -2; 3'=-sin (2+1), 1' va 3" không đối doù trà 121
$f' = \cos(x+1) - 2$; $f' = -\sin(x+1)$, $f' = \sin(x+1)$, $f' = \sin(x+1)$. $f' = \cos(x+1) - 2$; $f' = -\sin(x+1)$, $f' = \cos(x+1)$.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
, your s
1 0,4987 0,000008 458
-) r/g. and pt dr = sin (n+1) lo 0 4987
VIBOOK

Philip ph	ap eat thuch			
K a	D 7x=	a b-a Ha) flax) (g)	(8 (6) 56)
01 0,4351	1 0	4914	0,014 N	0 >0
3 0,4979		14978	0,001	0 >0
The state of the s	000	2n = 8m(x+1)	THE COLUMN TWO IS NOT THE OWNER,	F& >6
80u 8 jarde	da phuona	phiring that	chia đại không	cho ra nghiên
والمقا والمن شرور البر	who has so	Was say to	hap cat typis	a ryinas
4 103 200				

17	2				Ca 77	
3).	D3 48	m(1)	10=C	$\frac{1}{\sin(8\pi)}$	-40 lin to	c.
	Philag p	hop chia	da			
k O	6	1	C	1644	186) 5 NO	
100.1	6	6,5	6,25	-0,83 8	II NO	
				0,368		
5	6,0	6,37	6,5126	-0,24	7.40	1>0
	Phoong p	المه المه				
k	(G) -	180n3x +1	0,146	The state of the s	The state of the s	$\begin{cases} 1, & \text{then } x_0 = 6, 5 \\ f(x_k) & \text{if } s \end{cases}$
1	STATE OF THE PERSON NAMED IN	6,370		0,3	24.11	NO
y		6 34	4		3785	NB
3		6 33	The second of th		182	NO NO
	Phicing p	hop tiep	tuyin:		9	
k	g = xx	$-2\cos 3$	flag	1)	1 (7.)	13 (xx) < 8
14		6,34	15 flax	1)	0,0746	15 (x,) < 8 NO
12		6,3	373		-0,000	YE\$
	the ng	, cua p	+ 12 -	stn3x	40 = 0	la 6 3373.

Phương pháp	car turo	
k a	2 x a /(x) f(x) f(a) 1 (v) 13 (8 16) [(n e)
1 6,017		>0
2 6,3265 3 6,3350	6,3350 -0,023 NO ;	>0
ra nahidin	2001 10 00000 100 100	King cho
mahilm cha	11 2 - 80 3x - 40 = 0 la 6 3373	no fa

e) xcosx -213 + 2 = 0, Dê thay (a) = 1 cosx Phieng phase chies dei: 1 - 1,5 1,25 - 2 - 1,25 1,0625	fle) (c) < 4,6439 NO -1,5121 NO NO	S f(a) f(a) <0 <0 <0 <0 <0
Phương pháp lào: (P(u) = \(\frac{1}{2}\) \(\f	10) K 11, the [12] 3 (42) 0,4285 -0,0269 0,0026 x -2x ³ +2=0 ta	13(x_)1 (8 NO NO
Phảchg pháp tiếp tuyến 8'= cosk - xsin x - 6x K = x + 3'(x + 1) 1, 1889 2	Choo $x_0 = 1.5$ $ \frac{1}{2}(x_1) $ $ -0.9179 $ $ -0.0866 $ $ -0.007 $ $ 91 - 2x^2 + 2 = 0 $	180,) < 8 NO NO SES à 1,0787

	Phiong pho	6 cal	rujer					-
K	a	9 1	1 x a - 6	gla) fla)	1(2)	111 < 8	f(a) (be)	1984
1	07 0327	and of	1,095	1	0,3103	NO	>0	
2	1,0549	2	1,045	8	0,0943	NO	>0	
3	1,0686	2 mich	1,071		0,0512	NO	>0	- MA
Sar	bo bude	las		nop del	, cat tuyon the	thing the	ra milien	- 100
N	ó hón sa	10 pm	and phap	lop.				

Physiog k a 0 1 1 1 82 1,25	-2x ² + 3x -1 J(x) - x cosx phap chia cosi 2 15 15 1,25 15 1,375 1,375 1,375	-dn ² +3n -1 -0,8939 0,0192 -0,3887	Limituc (c) K & NO NO NO	\$(a) \$(a) \$0 \$0 \$0
Phúong x =	1,2706	Chon 16 = - (1/4) - 0,0413	13(x,	2) 1 < 8
k 4	1 2583 1,2566 eva phr x eos	-0,005 0,00007	136	NO NO YES 1,2566

2.4

Phan Đặng Diễm Uyên – 19120426

Bài 2.4a
$$\frac{1}{x^2+1} + \sqrt{x+2} = x^2$$

Đặt
$$f(x) = \frac{1}{x^2 + 1} + \sqrt{x + 2} - x^2$$

Dễ thấy f(x) liên tục trên $[-2, +\infty)$

Chọn
$$a = 0$$
 thì $f(a) = \frac{1}{0^2 + 1} + \sqrt{0 + 2} - 0^2 = (1 + \sqrt{2}) > 0$

Chọn
$$b = 2$$
 thì $f(b) = \frac{1}{2^2 + 1} + \sqrt{2 + 2} - 2^2 = \frac{-9}{5} < 0$

Vậy khoảng phân ly nghiệm là [0, 2]

- Phương pháp chia đôi

Bước	a	b	c	f(c)	$ f(c) < \delta$	f(a)f(c)
1	0	2	1	1,2321	No	> 0
2	1	2	1,5	-0,0715	No	< 0
3	1	1,5	1,25	0,6305	No	> 0

Phương pháp lặp

$$\varphi(x)=\sqrt{\tfrac{1}{x^2+1}+\sqrt{x+2}},\ |\varphi'(x)|<1\ \forall x\in[0,2].\ \mathrm{Chọn}\ x_0=1$$

Bước	$x_k = \varphi(x_{k-1})$	$f(x_k)$	$ f(x_k) < \delta$
0	1	1,2321	No
1	1,4940	-0,0534	No
2	1,4760	0,0004	Yes
3	1,4761	0,0001	Yes

Phương pháp tiếp tuyến

$$f'(x) = \frac{-2x}{(x^2+1)^2} + \frac{1}{2\sqrt{x+2}} - 2x$$

Bước	$x_k = x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})}$	$f(x_k)$	$ f(x_k) < \delta$
0	1	1,2321	No
1	1,5572	-0,2468	No
2	1,4780	-0,0055	Yes
3	1,4761	0,0001	Yes

- Phương pháp cát tuyến

Bước	а	b	$x_k = a - \frac{b-a}{f(b) - f(a)} f(a)$	$f(x_k)$	$ f(x_k) < \delta$	$f(x_k)f(a)$
1	0	2	1,1457	0,8934	No	> 0
2	1,1457	2	1,4291	0,1382	No	> 0
3	1,4291	2	1,4697	0,0191	Yes	> 0

So sánh: ở bài 2.4a, trừ phương pháp chia đôi, cả 3 phương pháp lặp, phương pháp tiếp tuyến, phương pháp cát tuyến đều cho ra nghiệm sau 3 bước lặp. Tuy nhiên, nghiệm tìm được ở phương pháp lặp và phương pháp tiếp tuyến cho giá trị hàm số gần bằng 0 hơn so với phương pháp cát tuyến.

Bài 2.4b
$$\frac{1}{x+1} + \frac{2}{(x+1)^2} + \frac{3}{(x+1)^3} = 4$$

Đặt
$$f(x) = \frac{1}{x+1} + \frac{2}{(x+1)^2} + \frac{3}{(x+1)^3} - 4$$

Dễ thấy f(x) liên tục trên $\mathbb{R}\setminus\{-1\}$

Chọn
$$a = 0$$
 thì $f(a) = \frac{1}{0+1} + \frac{2}{(0+1)^2} + \frac{3}{(0+1)^3} - 4 = 2 > 0$

Chọn
$$b = 1$$
 thì $f(b) = \frac{1}{1+1} + \frac{2}{(1+1)^2} + \frac{3}{(1+1)^3} - 4 = \frac{-21}{8} < 0$

Vậy khoảng phân ly nghiệm của f(x) là [0,1]

Phương pháp chia đôi

Bước	a	b	c	f(c)	$ f(c) < \delta$	f(a)f(c)
1	0	1	0,5	-1,5556	No	< 0
2	0	0,5	0,25	-0,384	No	< 0
3	0	0,25	0,125	0,5761	No	> 0

- Phương pháp lặp

$$\varphi(x) = \frac{-4x^3 - 11x^2 + 2}{8}, \ |\varphi'(x)| < 1 \ \forall x \in [0,1]. \ \text{Chọn} \ x_0 = 0$$

Bước	$x_k = \varphi(x_{k-1})$	$f(x_k)$	$ f(x_k) < \delta$
0	0	2	No
1	0,25	-0,384	No
2	01563	0,3012	No
3	0,2145	-0,1460	No

- Phương pháp tiếp tuyến

$$f'(x) = \frac{-1}{(x+1)^2} - \frac{4}{(x+1)^3} - \frac{9}{(x+1)^4}$$

Bước	$x_k = x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})}$	$f(x_k)$	$ f(x_k) < \delta$
0	0	2	No
1	0,1429	0,4156	No
2	0,1906	0,0284	Yes
3	0,1944	-0,0001	Yes

Phương pháp cát tuyến

Bước	а	b	$x_k = a - \frac{b-a}{f(b)-f(a)}f(a)$	$f(x_k)$	$ f(x_k) < \delta$	$f(x_k)f(a)$
1	0	1	0,4324	-1,3063	No	< 0
2	0	0,4324	0,2616	-0,4568	No	< 0
3	0	0,2616	0,2130	-0,1354	No	< 0

So sánh: ở bài 2.4b, chỉ có phương pháp tiếp tuyến cho ra nghiệm sau 3 bước lặp.

Bài 2.4c
$$x^2 - x + \sqrt{\sin x + 2} = 0$$

$$\operatorname{Dat} f(x) = x^2 - x + \sqrt{\sin x + 2}$$

Dễ thấy f(x) liên tục trên \mathbb{R}

-
$$X \text{\'et } g(x) = x^2 - x$$

$$=> g(x) = x^2 - 2 \cdot \frac{1}{2} \cdot x + \frac{1}{4} - \frac{1}{4} = \left(x - \frac{1}{2}\right)^2 - \frac{1}{4}$$

Ta có
$$\left(x - \frac{1}{2}\right)^2 \ge 0 = \left(x - \frac{1}{2}\right)^2 - \frac{1}{4} \ge -\frac{1}{4} = x^2 - x \ge -\frac{1}{4} (\forall x \in \mathbb{R})$$

-
$$X\acute{e}t h(x) = \sqrt{\sin x + 2}$$

Ta có
$$-1 \le \sin x \le 1 = 1 \le \sin x + 2 \le 3 = 1 \le \sqrt{\sin x + 2} \le \sqrt{3} (\forall x \in \mathbb{R})$$

$$- X\acute{e}t f(x) = x^2 - x + \sqrt{\sin x + 2}$$

Ta có
$$\begin{cases} x^2 - x \ge -\frac{1}{4} \\ \sqrt{\sin x + 2} \ge 1 \end{cases} => x^2 - x + \sqrt{\sin x + 2} \ge -\frac{1}{4} + 1$$

$$=>x^2-x+\sqrt{\sin x+2}\geq \frac{3}{4}>0 (\forall x\in\mathbb{R})$$

$$Vi f(x) > 0 (\forall x \in \mathbb{R})$$

Suy ra
$$f(x) = 0$$
 vô nghiệm

Bài 2.4d
$$\sqrt{x^2 + 2x} = 2 - x \sin x$$

$$\text{Đặt } f(x) = \sqrt{x^2 + 2x} - 2 + x \sin x$$

Dễ thấy f(x) liên tục trên \mathbb{R}

Chọn
$$a = 3$$
 thì $f(a) = \sqrt{3^2 + 2.3} - 2 + 3$. $sin = 2,2963 > 0$

Chọn
$$b = 4$$
 thì $f(b) = \sqrt{4^2 + 2.4} - 2 + 4$. $sin 4 = -0.1282 < 0$

Vây khoảng phân ly nghiệm của f(x) là [3,4]

Phương pháp chia đôi

Bước	a	b	c	f(c)	$ f(c) < \delta$	f(a)f(c)
1	3	4	3,5	1,1597	No	> 0
2	3,5	4	3,75	0,5002	No	> 0
3	3,75	4	3,875	0,1774	No	> 0

- Phương pháp lặp

$$\varphi(x)=\frac{2-\sqrt{x^2+2x}}{sinx}, |\varphi'(x)|<1 \ \forall x\in[3,4].$$
 Chọn $x_0=4$

Bước	$x_k = \varphi(x_{k-1})$	$f(x_k)$	$ f(x_k) < \delta$
0	4	-0,1282	No
1	3,8306	0,2906	No
2	4,2876	-0,7144	No
3	3,5036	1,1504	No

Phương pháp tiếp tuyến

$$f'(x) = \frac{2x+2}{2\sqrt{x^2+2x}} + \sin x + x \cos x$$

Bước	$x_k = x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})}$	$f(x_k)$	$ f(x_k) < \delta$
0	4	-0,1282	No
1	3,9455	0,0023	Yes
2	3,9464	0,0001	Yes
3	3,9464	0,0001	Yes

- Phương pháp cát tuyến

Bước	а	b	$x_k = a - \frac{b-a}{f(b) - f(a)} f(a)$	$f(x_k)$	$ f(x_k) < \delta$	$f(x_k)f(a)$
1	3	4	3,9471	-0,0016	Yes	< 0
2	3	3,9471	3,9464	0,0001	Yes	> 0
3	3,9464	3,9471	3,9464	0,0001	Yes	> 0

So sánh: ở bài 2.4d, phương pháp chia đôi và phương pháp lặp không cho ra nghiệm sau 3 bước lặp, phương pháp tiếp tuyến và phương pháp cát tuyến cho ra nghiệm ngay sau bước lặp 1. Tuy nhiên, nghiệm tìm được ở phương pháp cát tuyến cho giá trị hàm số gần bằng 0 hơn so với phương pháp tiếp tuyến.

2.5 Đinh Huỳnh Tiến Phú - 19120325

a) Chia đôi:

k	a	b	С	f(c)	f(c) <eps< th=""><th>f(c)*f(a)</th></eps<>	f(c)*f(a)
1	-1	1	0	-1	no	+
2	0	1	0.5	0.39	no	+
3	0	0.5	0.25	-0.15	no	+

Tiếp tuyến:

k	xk	f(xk)	f(xk) <eps< th=""></eps<>
0	-1	-7	no
1	0.8	0.7	no
2	1.32	0.4	no
3	-0.53	0.4	no

Cát tuyến

k	a	b	xk	f(xk) <eps< th=""><th>f(xk)*f(a)</th></eps<>	f(xk)*f(a)
1	-1	1	0.83	no	<0
2	-1	0.83	0.67	no	<0
3	-1	0.67	0.54	no	<0

Lặp:

k	xk	f(xk) <eps< th=""></eps<>
0	1	no
1	0.6931	no
2	0.3089	yes

b)

Chia đôi

k	a	b	С	fc	fc <eps< th=""><th>fc*fa</th></eps<>	fc*fa
1	1	2	1.5	-2.16	no	+
2	1.5	2	1.75	10	no	-
3	1.5	1.75	1.625	3.14	no	-

Tiếp tuyến

k	xk	f(xk)`	f <eps< th=""></eps<>
0	1	-13	no
2	1.74	10.038	no
3	1.5897	1.5036	no

Cát tuyến

k	a	b	xk	f(xk) <eps< th=""><th>f(xk)*f(a)</th></eps<>	f(xk)*f(a)
1	0	2	0.766	no	>0
2	0766	2	1.1891	no	>0
3	1.1891	2	1.3981	no	>0

Lặp

 $x=ln(x^2+20)*1/2$

k	xk	f(xk) <eps< th=""></eps<>
0	1	no
1	1.5223	no
2	1.5527	no
3	1.5548	yes

c) Chia đôi:

k	a	b	С	f(c)	`f(c) <ep s</ep 	f(c)*f(a)
1	1	4	2.5	-0.6663	no	-
2	1	2.5	1.75	-0.4971	no	-
3	1	1.75	1.375	0.0721	no	+

Tiếp tuyến:

k	xk	f(xk)	f(xk) <eps< th=""></eps<>
0	1	1	no
1	1.3333	0.1568	no
2	1.4086	7.19*e-3	no
3	1.4124	0	yes

Cát tuyến:

k	a	b	xk	f(xk) <eps< th=""><th>f(xk)f(a)</th></eps<>	f(xk)f(a)
1	1	3	2.8205	no	<0
2	1	2.8205	2.3349	no	<0
3	1	2.3349	1.7691	no	<0

Lặp:

x = sqrt(ln(x)) + 2

k	xk	ff(xk) <eps< th=""></eps<>
0	1	no
1	2.8326	no
2	3.0204	no
3	3.0514	yes

d) Chia đôi

k	a	b	С	f(c)	f(c) <eps< th=""><th>f(c)*f(a)</th></eps<>	f(c)*f(a)
1	20	40	30	6.8035	no	-
2	20	30	25	1.4394	no	-
3	20	25	22	-1.27	no	+

Tiếp tuyến

k	xk	f(xk)	f(xf) <eps< th=""></eps<>
0	20	-4.006	no
1	23.643	-0.029	no
2	23.670	0	yes

Cát tuyến

k	a	b	X	f(xk <eps< th=""><th>f(xk)f(a)</th></eps<>	f(xk)f(a)
1	20	40	23.747	no	-
2	20	23.747	23.670	yes	

Lặp

$$x = -\ln(x^2+1)+30$$

k	xk	f(xk) <eps< th=""></eps<>
0	20	no
1	24.006	no

2	23.642	no
3	23.674	yes

2.6

Huỳnh Tấn Thọ - 19120383

Bài 2.6a

$$e^x+2^{-x}+2cosx=6; x\in[1,\!2]$$
. Dễ thấy, $f(x)=e^x+2^{-x}+2cosx-6$ liên tục

Phương pháp chia đôi:

k	а	b	С	f(c)	$ f(c) < \delta$	f(a).f(c)
0	1	2	1,5	-1,0233	NO	> 0
1	1,5	2	1,75	-0,3046	NO	> 0
2	1,75	2	1,875	0,1944	NO	< 0
3	1,75	1,875	1,8125	-0,0683	NO	> 0

Phương pháp lặp:

$$\varphi(x) = \ln (6 - 2\cos(x) - 2^{-x}), |\varphi'(x)| < 1 \ \forall \ x \in [1,2].$$
 Chọn $x_0 = 1.5$

k	Xk	f(x _k)	$ f(x_k) < \delta$
0	1,5	-1,0233	NO
1	1,7057	-0,4572	NO
2	1,7855	-0,1735	NO
3	1,8142	-0,0615	NO

Phương pháp tiếp tuyến:

$$f'(x)=e^x-2\sin(x)-\frac{\ln(2)}{2^x}$$
; f'(x) và f''(x) không đổi dấu trên [1,2]

k	Xk	f(x _k)	$ f(x_k) < \delta$
0	1,5	-1,0233	NO
1	1,9565	0,5798	NO
2	1,8415	0,0502	NO
3	1,8295	0,0005	YES

Vậy nghiệm của phương trình $e^x + 2^{-x} + 2\cos x = 6$ là 1,8295

Phương pháp cát tuyến:

k	a	b	x_k	$f(x_k)$	$ f < \delta$	$f(a).f(x_k)$
0	1	2	1,6783	-0,5457	NO	> 0
1	1,6783	2	1,8081	-0,0858	NO	> 0
2	1,8081	2	1,8265	-0,0118	YES	> 0
3	1,8265	2	1,829	-0,0016	YES	> 0

Vậy nghiệm của phương trình $e^x + 2^{-x} + 2\cos x = 6$ là 1,829

Kết luận: ở bài 2.6a, phương pháp chia đôi và phương pháp lặp không cho ra nghiệm sau 3 bước lặp, phương pháp tiếp tuyến cho nghiệm với sai số nhỏ hơn so với phương pháp cát tuyến.

Bài 2.6b

$$\sin(x) = e^{-x}$$
; $x \in [0,1]$. Dễ thấy, $f(x) = \sin(x) - e^{-x}$ liên tục

Phương pháp chia đôi:

k	a	b	С	f(c)	$ f(c) < \delta$	f(a).f(c)
0	0	1	0,5	-0,1271	NO	> 0
1	0,5	1	0,75	0,2093	NO	< 0
2	0,5	0,75	0,625	0,0498	NO	< 0
3	0,5	0,625	0,5625	-0,0365	NO	> 0

Phương pháp lặp:

$$\varphi(x) = -\ln(\sin(x))$$
. Chọn $x_0 = 0.5$

k	Xk	f(xk)	$ f(x_k) < \delta$
0	0,5	-0,1271	NO
1	0,7352	0,1913	NO
2	0,3994	-0,2819	NO
3	0,9445	0,4214	NO

Phương pháp tiếp tuyến:

$$f'(x) = \cos(x) + e^{-x}$$
; $f'(x)$ và $f''(x)$ không đổi dấu trên [0,1]

k	Xk	f(x _k)	$ f(x_k) < \delta$
0	0,5	-0,1271	NO
1	0,5856	-0,004	YES

Vậy nghiệm của phương trình $\sin(x) = e^{-x}$ là 0,5856

Phương pháp cát tuyến:

k	а	b	x_k	$f(x_k)$	$ f < \delta$	$f(a).f(x_k)$
0	0	1	0,6786	0,1204	NO	< 0
1	0	0,6786	0,6057	0,0236	YES	< 0

Vậy nghiệm của phương trình $sin(x) = e^{-x}$ là 0,6057

Kết luận: ở bài 2.6b, phương pháp chia đôi và phương pháp lặp không cho ra nghiệm sau 3 bước lặp, phương pháp tiếp tuyến cho nghiệm với sai số nhỏ hơn so với phương pháp cát tuyến.

Bài 2.6c

$$\ln(x-1) + \cos(x-1) = 0$$
; $x \in [1,25; 1,5]$. Dễ thấy, $f(x) = \ln(x-1) + \cos(x-1)$ liên tục Phương pháp chia đôi:

k	a	b	С	f(c)	$ f(c) < \delta$	f(a).f(c)
0	1,25	1,5	1,375	-0,0503	NO	> 0
1	1,375	1,5	1,4375	0,0791	NO	< 0
2	1,375	1,4375	1,4062	0,0178	YES	< 0

Vậy nghiệm của phương trình ln(x-1) + cos(x-1) là 1,4062

Phương pháp lặp:

$$\varphi(x) = e^{-\cos(x-1)} + 1; \ |\varphi'(x)| < 1 \ \forall \ x \in [1,25; \ 1,5].$$
 Chọn $x_0 = 1,3$

k	Xk	x_k $f(x_k)$	
0	1,3	-0,2486	NO
1	1,3847	-0,0284	YES

Vậy nghiệm của phương trình ln(x-1) + cos(x-1) là 1,3847

Phương pháp tiếp tuyến:

$$f'(x) = \frac{1}{x-1} - \sin(x-1)$$
; f'(x) và f'(x) không đổi dấu trên [1,25;1,5]

k	Xk	x_k $f(x_k)$	
0	1,3	-0,2486	NO
1	1,3818	-0,0348	NO
2	1,3973	-0,0009	YES

Vậy nghiệm của phương trình ln(x-1) + cos(x-1) là 1,3973

Phương pháp cát tuyến:

k	а	b	x_k	$f(x_k)$	$ f < \delta$	$f(a).f(x_k)$
0	1,25	1,5	1,4234	0,0522	NO	< 0
1	1,25	1,4234	1,4041	0,0134	YES	< 0

Vây nghiệm của phương trình ln(x-1) + cos(x-1) là 1,4041

Kết luận: ở bài 2.6c, cả 4 phương pháp đều cho ra nghiệm, phương pháp tiếp tuyến cho ra nghiệm với sai số nhỏ nhất.

Bài 2.6d

$$\ln(x^2 + 1) = x^3 - \cos(x); x \in [1; 1,2]$$
. Dễ thấy, $f(x) = \ln(x^2 + 1) - x^3 + \cos(x)$ liên tục Phương pháp chia đôi:

k	а	b	С	f(c)	$ f(c) < \delta$	f(a).f(c)
0	1	1,2	1,1	-0,0844	NO	< 0
1	1	1,1	1,05	0,0831	NO	> 0
2	1,05	1,1	1,075	0,0015	YES	> 0

Vậy nghiệm của phương trình $\ln(x^2 + 1) = x^3 - \cos(x)$ là 1,075

Phương pháp lặp:

$$\varphi(x) = \sqrt[3]{\ln(x^2 + 1) + \cos(x)}; \ |\varphi'(x)| < 1 \ \forall \ x \in [1; 1, 2]. \ \text{Chọn } x_0 = 1, 1$$

k	X_k	f(x _k)	$ f(x_k) < \delta$	
0	1,1	-0,0844	NO	
1	1,0762	-0,0026	YES	

Vậy nghiệm của phương trình $\ln(x^2 + 1) = x^3 - \cos(x)$ là 1,0762

Phương pháp tiếp tuyến:

$$f'(x) = \frac{2x}{x^2+1} - \sin(x) - 3x^2$$
; $f'(x)$ và $f''(x)$ không đổi dấu trên [1;1,2]

k	Xk	f(x _k)	$ f(x_k) < \delta$	
0	1,1	-0,0844	NO	
1	1,0761	-0,002	YES	

Vậy nghiệm của phương trình $ln(x^2 + 1) = x^3 - cos(x)$ là 1,0761

Phương pháp cát tuyến:

k	a	b	x_k	$f(x_k)$	$ f < \delta$	$f(a).f(x_k)$
0	1	1,2	1,066	0,0313	NO	> 0
1	1,066	1,2	1,0743	0,0038	YES	> 0

Vậy nghiệm của phương trình $\ln(x^2 + 1) = x^3 - \cos(x)$ là 1,0743

Kết luận: ở bài 2.6d, cả 4 phương pháp đều cho ra nghiệm, phương pháp chia đôi cho ra nghiệm với sai số nhỏ nhất.