MATLAB ® / R Reference

David Hiebeler
Dept. of Mathematics and Statistics
University of Maine
Orono, ME 04469-5752
http://www.math.umaine.edu/~hiebeler

I wrote the first version of this reference during Spring 2007, as I learned R while teaching my Modeling & Simulation course at the University of Maine. The course covers population and epidemiological modeling, including deterministic and stochastic models in discrete and continuous time, along with spatial models. Earlier versions of the course had used Matlab. In Spring 2007, some biology graduate students in the class asked if they could use R; I said "yes." My colleague Bill Halteman was a great help as I frantically learned R to stay ahead of the class. As I went along, I started building this reference for my own use. In the end, I was pleasantly surprised that most things I do in Matlab have fairly direct equivalents in R. I was also inspired to write this after seeing the "R for Octave Users" reference written by Robin Hankin, and have continued to add to the document.

This reference is organized into general categories. There is also a MATLAB index and an R index at the end, which should make it easy to look up a command you know in one of the languages and learn how to do it in the other (or if you're trying to read code in whichever language is unfamiliar to you, allow you to translate back to the one you are more familiar with). The index entries refer to the item numbers in the first column of the reference document, rather than page numbers.

Any corrections, suggested improvements, or even just notification that the reference has been useful are appreciated. I hope all the time I spent on this will prove useful for others in addition to myself and my students. Note that sometimes I don't necessarily do things in what you may consider the "best" way in a particular language. I often tried to do things in a similar way in both languages, and where possible I've avoided the use of MATLAB toolboxes or R packages which are not part of the core distributions. But if you believe you have a "better" way (either simpler, or more computationally efficient) to do something, feel free to let me know.

For those transitioning from Matlab to R, you should check out the **pracma** package for R ("Practical Numerical Math Routines") — it has more than 200 functions which emulate Matlab functions, which you may find very handy.

Acknowledgements: Thanks to Juan David Ospina Arango, Berry Boessenkool, Robert Bryce, Thomas Clerc, Alan Cobo-Lewis, Richard Cotton, Stephen Eglen, Andreas Handel, Niels Richard Hansen, Luke Hartigan, Roger Jeurissen, David Khabie-Zeitoune, Seungyeon Kim, Michael Kiparsky, Isaac Michaud, Andy Moody, Ben Morin, Lee Pang, Manas A. Pathak, Rachel Rier, Rune Schjellerup Philosof, Rachel Rier, William Simpson, David Winsemius, Corey Yanofsky, and Jian Ye for corrections and contributions.

Permission is granted to make and distribute verbatim copies of this manual provided this permission notice is preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation.

D.	Hiebeler, Matlab / R Reference	2	
C	ontents	3 6 7 8 8 9 9 16 16 17	
1	Help	3	
2	Entering/building/indexing matrices 2.1 Cell arrays and lists	6	
3	Computations 3.1 Basic computations 3.2 Complex numbers 3.3 Matrix/vector computations 3.4 Root-finding 3.5 Function optimization/minimization 3.6 Numerical integration / quadrature 3.7 Curve fitting	8 9 9 16 16 17	
4	Conditionals, control structure, loops	19	
5	Functions, ODEs	23	
6	Probability and random values	25	
7	Graphics 7.1 Various types of plotting	29 29 37 38	
8	Working with files	39	
9	Miscellaneous 9.1 Variables	40 40 41	
10	Spatial Modeling	45	
In	dex of MATLAB commands and concepts	46	
In	dex of R commands and concepts	51	

1 Help

No.	Description	Matlab	R
1	Show help for a function (e.g.	help sqrt, or helpwin sqrt to see	help(sqrt) or ?sqrt
	$\mathbf{sqrt})$	it in a separate window	
2	Show help for a built-in key-	help for	help('for') or ?'for'
	word (e.g. for)		
3	General list of many help top-	help	library() to see available libraries,
	ics		or library(help='base') for very
			long list of stuff in base package which
			you can see help for
4	Explore main documentation	doc or helpbrowser (previously it	help.start()
	in browser	was helpdesk, which is now being	
		phased out)	
5	Search documentation for	lookfor binomial	help.search('binomial')
	keyword or partial keyword		
	(e.g. functions which refer to		
	"binomial")		

${\bf 2}\quad {\bf Entering/building/indexing\ matrices}$

No.	Description	Matlab	R
6	Enter a row vector \vec{v} =	v=[1 2 3 4]	v=c(1,2,3,4) or alternatively
	$[\begin{array}{ccccc}1&2&3&4\end{array}]$		v=scan() then enter "1 2 3 4" and
	_		press Enter twice (the blank line
			terminates input)
7	Enter a column vector $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$	[1; 2; 3; 4]	c(1,2,3,4)
			(R does not distinguish between row and column vectors.)
8	Enter a matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	[1 2 3 ; 4 5 6]	To enter values by row: matrix(c(1,2,3,4,5,6), nrow=2, byrow=TRUE) To enter values by column: matrix(c(1,4,2,5,3,6), nrow=2)
9	Access an element of vector \mathbf{v}	v(3)	v[3]
10	Access an element of matrix A	A(2,3)	A[2,3]
11	Access an element of matrix	A(5)	A[5]
	A using a single index: in-		
	dices count down the first col-		
	umn, then down the second		
	column, etc.		
12	Build the vector [2 3 4 5 6 7]	2:7	2:7
13	Build the vector [7 6 5 4 3 2]	7:-1:2	7:2
14	Build the vector [2 5 8 11 14]	2:3:14	seq(2,14,3)

No.	Description	MATLAB	R
15	Build a vector containing n equally-spaced values between a and b inclusive	linspace(a,b,n)	<pre>seq(a,b,length.out=n) or just seq(a,b,len=n)</pre>
16	Build a vector containing n logarithmically equally-spaced values between 10^a and 10^b inclusive	logspace(a,b,n)	10^seq(a,b,len=n)
17	Build a vector of length k containing all zeros	zeros(k,1) (for a column vector) or zeros(1,k) (for a row vector)	rep(0,k)
18	Build a vector of length k containing the value j in all positions	<pre>j*ones(k,1) (for a column vector) or j*ones(1,k) (for a row vector)</pre>	rep(j,k)
19	Build an $m \times n$ matrix of zeros	zeros(m,n)	<pre>matrix(0,nrow=m,ncol=n) or just matrix(0,m,n)</pre>
20	Build an $m \times n$ matrix containing j in all positions	j*ones(m,n)	<pre>matrix(j,nrow=m,ncol=n) or just matrix(j,m,n)</pre>
21	$n \times n$ identity matrix I_n	eye(n)	diag(n)
22	Build diagonal matrix A us-	diag(v)	diag(v,nrow=length(v)) (Note: if
	ing elements of vector \mathbf{v} as diagonal entries		you are sure the length of vector v is 2 or more, you can simply say diag(v).)
23	Extract diagonal elements of matrix A	v=diag(A)	v=diag(A)
24	"Glue" two matrices a1 and a2 (with the same number of rows) side-by-side	[a1 a2]	cbind(a1,a2)
25	"Stack" two matrices a1 and a2 (with the same number of columns) on top of each other	[a1; a2]	rbind(a1,a2)
26	Given $r \times c$ matrix A , build an $rm \times cn$ matrix by sticking m copies of A horizontally and n copies vertically	repmat(A,m,n)	<pre>kronecker(matrix(1,m,n),A) or matrix(1,m,n) %x% A</pre>
27	Given vectors \mathbf{x} and \mathbf{y} of lengths m and n respectively, build $n \times m$ matrices \mathbf{X} whose rows are copies of \mathbf{x} and \mathbf{Y} whose columns are copies of \mathbf{y}	<pre>[X,Y]=meshgrid(x,y)</pre>	Use the meshgrid function from the pracma package as follows: tmp=meshgrid(x,y); X=tmp\$X; Y=tmp\$Y Or do the following: m=length(x); n=length(y); X=matrix(rep(x,each=n),nrow=n); Y=matrix(rep(y,m),nrow=n)
28	Given vectors \mathbf{x} and \mathbf{y} of lengths m and n respectively, build $n \times m$ matrices \mathbf{A} where element $a_{ij} = e^{-x_i} \sin(3y_j)$	bsxfun(@(x,y) exp(-x).*sin(3*y), x, y)' Note that x must be a row vector and y must be a column vector; use x(:)' and y(:) to ensure this if necessary	outer(exp(-x), sin(3*y))
29	Reverse the order of elements in vector \mathbf{v}	v(end:-1:1)	rev(v)

No.	Description	Matlab	R
30	Column 2 of matrix A	A(:,2)	A[,2] Note: that gives the result as a vector. To make the result a $m \times 1$ matrix instead, do A[,2,drop=FALSE]
31	Row 7 of matrix A	A(7,:)	A[7,] Note: that gives the result as a vector. To make the result a $1 \times n$ matrix instead, do A[7,,drop=FALSE]
32	All elements of A as a vector, column-by-column	A(:) (gives a column vector)	c(A)
33	Rows 2–4, columns 6–10 of \mathbf{A} (this is a 3×5 matrix)	A(2:4,6:10)	A[2:4,6:10]
34	A 3×2 matrix consisting of rows 7, 7, and 6 and columns 2 and 1 of A (in that order)	A([7 7 6], [2 1])	A[c(7,7,6),c(2,1)]
35	Circularly shift the rows of matrix A down by s_1 elements, and right by s_2 elements	circshift(A, [s1 s2])	<pre>circshift(A, c(s1,s2)) where circshift is in the pracma pack- age. Or modulo arithmetic on indices will work: m=dim(A)[1]; n=dim(A)[2]; A[(1:m-s1-1)%/m+1, (1:n-s2-1)%/n+1]</pre>
36	Flip the order of elements in each row of matrix A	fliplr(A)	fliplr(A) using fliplr from the pracma package, or t(apply(A,1,rev)) or A[,ncol(A):1]
37	Flip the order of elements in each column of matrix A	flipud(A)	<pre>flipud(A) using flipud from the pracma package, or apply(A,2,rev) or A[nrow(A):1,]</pre>
38	Given a single index ind into an $m \times n$ matrix A , compute the row r and column c of that position (also works if ind is a vector)	<pre>[r,c] = ind2sub(size(A), ind)</pre>	<pre>arrayInd(ind, c(m,n)) or r = ((ind-1) %% m) + 1 c = floor((ind-1) / m) + 1 or r=row(A)[ind]; c=col(A)[ind]</pre>
39	Given the row \mathbf{r} and column \mathbf{c} of an element of an $m \times n$ matrix \mathbf{A} , compute the single index ind which can be used to access that element of \mathbf{A} (also works if \mathbf{r} and \mathbf{c} are vectors)	<pre>ind = sub2ind(size(A), r, c)</pre>	ind = (c-1)*m + r
40	Given equal-sized vectors \mathbf{r} and \mathbf{c} (each of length k), set elements in rows (given by \mathbf{r}) and columns (given by \mathbf{c}) of matrix \mathbf{A} equal to 12. That is, k elements of k will be modified.	<pre>inds = sub2ind(size(A),r,c); A(inds) = 12;</pre>	<pre>inds = cbind(r,c) A[inds] = 12</pre>
41	Truncate vector \mathbf{v} , keeping only the first 10 elements	v = v(1:10)	v = v[1:10], or length(v) = 10 also works

No.	Description	Matlab	R
42	Extract elements of vector \mathbf{v}	v(a:end)	v[a:length(v)]
	from position a to the end		
43	All but the k^{th} element of	v([1:(k-1) (k+1):end]) or	v[-k]
	vector \mathbf{v}	v([k]) = [] (but this will modify	
		the original vector \mathbf{v})	
44	All but the j^{th} and k^{th} ele-	v(~ismember(1:length(v),[j k]))	v[c(-j,-k)]
	ments of vector \mathbf{v}	or $v([j k]) = []$ (but this will	
		modify the original vector \mathbf{v})	
45	Reshape matrix A , making it	A = reshape(A,m,n)	dim(A) = c(m,n)
	an $m \times n$ matrix with ele-		
	ments taken columnwise from		
	the original A (which must		
	have mn elements)		
46	Extract the lower-triangular	L = tril(A)	L = A; L[upper.tri(L)]=0
	portion of matrix A		
47	Extract the upper-triangular	U = triu(A)	U = A; U[lower.tri(U)]=0
	portion of matrix A		
48	Enter $n \times n$ Hilbert matrix H	hilb(n)	Hilbert(n), but this is part of the
	where $H_{ij} = 1/(i+j-1)$		Matrix package which you'll need to
			install (see item 348 for how to in-
			stall/load packages).
49	Enter an n -dimensional array,	reshape(1:24, 3, 4, 2) or	array(1:24, c(3,4,2)) (Note that
	e.g. a $3 \times 4 \times 2$ array with the	reshape(1:24, [3 4 2])	a matrix is 2-D, i.e. rows and
	values 1 through 24		columns, while an array is more gen-
			erally N -D)

2.1 Cell arrays and lists

No.	Description	Matlab	R
50	Build a vector v of length n , capable of containing different data types in different elements (called a <i>cell array</i> in MATLAB, and a <i>list</i> in R)	$v = cell(1,n)$ In general, $cell(m,n)$ makes an $m \times n$ cell array. Then you can do e.g.: $v\{1\} = 12$ $v\{2\} = 'hi there'$ $v\{3\} = rand(3)$	<pre>v = vector('list',n) Then you can do e.g.: v[[1]] = 12 v[[2]] = 'hi there' v[[3]] = matrix(runif(9),3)</pre>
51	Extract the i^{th} element of a cell/list vector ${\bf v}$	<pre>w = v{i} If you use regular indexing, i.e. w = v(i), then w will be a 1 × 1 cell matrix containing the contents of the ith element of v.</pre>	<pre>w = v[[i]] If you use regular indexing, i.e. w = v[i], then w will be a list of length 1 containing the contents of the ith element of v.</pre>
52	Set the name of the i^{th} element in a list.	(Matlab does not have names associated with elements of cell arrays.)	names(v)[3] = 'myrandmatrix' Use names(v) to see all names, and names(v)=NULL to clear all names.

2.2 Structs and data frames

No.	Description	Matlab	R
53	Create a matrix-like object	avals=2*ones(1,6);	v=c(1,5,3,2,3,7); d=data.frame(
	with different named columns	yvals=6:-1:1; v=[1 5 3 2 3 7];	cbind(a=2, yy=6:1), v)
	(a struct in Matlab, or a	d=struct('a',avals,	
	data frame in R)	'yy', yyvals, 'fac', v);	

Note that I (surprisingly) don't use R for statistics, and therefore have very little experience with data frames (and also very little with MATLAB structs). I will try to add more to this section later on.

3 Computations

3.1 Basic computations

No.	Description	Matlab	R
54	a+b, a-b, ab, a/b	a+b, a-b, a*b, a/b	a+b, a-b, a*b, a/b
55	\sqrt{a}	sqrt(a)	sqrt(a)
56	a^b	a^b	a^b
57	a (note: for complex ar-	abs(a)	abs(a)
	guments, this computes the		
	modulus)		
58	e^a	exp(a)	exp(a)
59	$\ln(a)$	log(a)	log(a)
60	$\log_2(a), \log_{10}(a)$	log2(a), log10(a)	log2(a), log10(a)
61	$\sin(a), \cos(a), \tan(a)$	sin(a), cos(a), tan(a)	sin(a), cos(a), tan(a)
62	$\sin^{-1}(a), \cos^{-1}(a), \tan^{-1}(a)$	asin(a), acos(a), atan(a)	asin(a), acos(a), atan(a)
63	$\sinh(a)$, $\cosh(a)$, $\tanh(a)$	sinh(a), cosh(a), tanh(a)	sinh(a), cosh(a), tanh(a)
64	$\sinh^{-1}(a), \qquad \cosh^{-1}(a),$ $\tanh^{-1}(a)$	asinh(a), acosh(a), atanh(a)	asinh(a), acosh(a), atanh(a)
65	$n \mod k$ (modulo arithmetic)	mod(n,k)	n %% k
66	Round to nearest integer	round(x)	round(x) (Note: R uses IEC 60559 standard, rounding 5 to the even digit — so e.g. round(0.5) gives 0, not 1.)
67	Round down to next lowest integer	floor(x)	floor(x)
68	Round up to next largest integer	ceil(x)	ceiling(x)
69	Round toward zero	fix(x)	trunc(x)
70	Sign of $x (+1, 0, \text{ or } -1)$	<pre>sign(x) (Note: for complex values, this computes x/abs(x).)</pre>	sign(x) (Does not work with complex values)
71	Error function $\operatorname{erf}(x) = (2/\sqrt{\pi}) \int_0^x e^{-t^2} dt$	erf(x)	2*pnorm(x*sqrt(2))-1
72	Complementary error function $\operatorname{cerf}(x) = (2/\sqrt{\pi}) \int_x^{\infty} e^{-t^2} dt = 1\operatorname{-erf}(x)$	erfc(x)	2*pnorm(x*sqrt(2),lower=FALSE)
73	Inverse error function	erfinv(x)	qnorm((1+x)/2)/sqrt(2)
74	Inverse complementary error function	erfcinv(x)	qnorm(x/2,lower=FALSE)/sqrt(2)
75	Binomial coefficient $\binom{n}{k} = n!/(n!(n-k)!)$	nchoosek(n,k)	choose(n,k)
76	Bitwise logical operations (NOT, AND, OR, XOR, bit-shifting)	bitcmp, bitand, bitor, bitxor, bitshift	bitwNot, bitwAnd, bitwOr, bitwXor, bitwShiftL, bitwShiftR

Note: the various functions above (logarithm, exponential, trig, abs, and rounding functions) all work with vectors and matrices, applying the function to each element, as well as with scalars.

3.2 Complex numbers

No.	Description	Matlab	R
77	Enter a complex number	1+2i	1+2i
78	Modulus (magnitude)	abs(z)	abs(z) or Mod(z)
79	Argument (angle)	angle(z)	Arg(z)
80	Complex conjugate	conj(z)	Conj(z)
81	Real part of z	real(z)	Re(z)
82	Imaginary part of z	imag(z)	Im(z)

3.3 Matrix/vector computations

No.	Description	Matlab	R
83	Vector dot product $\vec{x} \cdot \vec{y} = \vec{x}^T \vec{y}$	dot(x,y)	sum(x*y)
84	Vector cross product $\vec{x} \times \vec{y}$	cross(x,y)	Not in base R, but you can use cross(x,y) after loading the pracma package (see item 348 for how to install/load packages)
85	Matrix multiplication AB	A * B	A %*% B
86	Element-by-element multiplication of A and B	A .* B	A * B
87	Transpose of a matrix, A^T	A' (This is actually the complex conjugate (i.e. Hermitian) transpose; use A.' for the non-conjugate transpose if you like; they are equivalent for real matrices.)	t(A) for transpose, or Conj(t(A)) for conjugate (Hermitian) transpose
88	Solve $A\vec{x} = \vec{b}$	A\b Warning: if there is no solution, MATLAB gives you a least-squares "best fit." If there are many solutions, MATLAB just gives you one of them.	solve(A,b) Warning: this only works with square invertible matrices.
89	Reduced echelon form of A	rref(A)	R does not have a function to do this
90	Determinant of A	det(A)	det(A)
91	Inverse of A	inv(A)	solve(A)
92	Trace of A	trace(A)	<pre>sum(diag(A))</pre>
93	AB^{-1}	A/B	A %*% solve(B)
94	Element-by-element division of A and B	A ./ B	A / B
95	$A^{-1}B$	A\B	solve(A,B)
96	Square the matrix A	A^2	A %*% A
97	Raise matrix A to the k^{th} power	A^k	(No easy way to do this in R other than repeated multiplication A %*% A %*% A)
98	Raise each element of A to the k^{th} power	A.^k	A^k
99	Rank of matrix A	rank(A)	qr(A)\$rank
100	Set w to be a vector of eigenvalues of A, and V a matrix containing the corresponding eigenvectors	[V,D]=eig(A) and then w=diag(D) since MATLAB returns the eigenvalues on the diagonal of D	<pre>tmp=eigen(A); w=tmp\$values; V=tmp\$vectors</pre>

No.	Description	Matlab	R
101	Permuted LU factorization of a matrix	[L,U,P]=lu(A) then the matrices satisfy $PA = LU$. Note that this works even with non-square matrices	tmp=expand(lu(Matrix(A))); L=tmp\$L; U=tmp\$U; P=tmp\$P then the matrices satisfy $A = PLU$, i.e. $P^{-1}A = LU$. Note that the lu and expand functions are part of the Ma- trix package (see item 348 for how to install/load packages). Also note that this doesn't seem to work correctly with non-square matrices. L , U , and P will be of class Matrix rather than class matrix; to make them the latter, instead do L=as.matrix(tmp\$L), U=as.matrix(tmp\$U), and P=as.matrix(tmp\$P) above.
102	Singular-value decomposition: given $m \times n$ matrix A with $k = \min(m, n)$, find $m \times k$ matrix P with orthonormal columns, diagonal $k \times k$ matrix S , and $n \times k$ matrix Q with orthonormal columns so that $PSQ^T = A$	[P,S,Q]=svd(A,'econ')	<pre>tmp=svd(A); P=tmp\$u; Q=tmp\$v; S=diag(tmp\$d)</pre>
103	Schur decomposition of square matrix, $A = QTQ^* = QTQ^{-1}$ where Q is unitary (i.e. $Q^*Q = I$) and T is upper triangular; $Q^* = \overline{Q^T}$ is the Hermitian (conjugate) transpose	[Q,T]=schur(A)	tmp=Schur(Matrix(A)); T=tmp@T; Q=tmp@Q Note that Schur is part of the Matrix package (see item 348 for how to install/load packages). T and Q will be of class Matrix rather than class matrix; to make them the latter, instead do T=as.matrix(tmp@T) and Q=as.matrix(tmp@Q) above.
104	Cholesky factorization of a square, symmetric, positive definite matrix $A = R^*R$, where R is upper-triangular	R = chol(A)	R = chol(A)
105	QR factorization of matrix A , where Q is orthogonal (satisfying $QQ^T = I$) and R is upper-triangular	[Q,R]=qr(A) satisfying $QR = A$, or [Q,R,E]=qr(A) to do permuted QR factorization satisfying $AE = QR$	z=qr(A); Q=qr.Q(z); R=qr.R(z); E=diag(n)[,z\$pivot] (where n is the number of columns in A) gives permuted QR factorization satisfying AE = QR
106	Vector norms	$\begin{array}{ll} \operatorname{norm}(\mathbf{v},1) & \text{for } 1\text{-norm} & \ \vec{v}\ _1, \\ \operatorname{norm}(\mathbf{v},2) & \text{for Euclidean norm} \\ \ \vec{v}\ _2, \operatorname{norm}(\mathbf{v},\inf) & \text{for infinity-norm} \\ \ \vec{v}\ _{\infty}, & \text{and norm}(\mathbf{v},\mathbf{p}) & \text{for } p\text{-norm} \\ \ \vec{v}\ _p = \left(\sum v_i ^p\right)^{1/p} \end{array}$	R does not have a norm function for vectors; only one for matrices. But the following will work: $\mathbf{norm}(\mathbf{matrix}(\mathbf{v}),'1')$ for 1-norm $\ \vec{v}\ _1$, $\mathbf{norm}(\mathbf{matrix}(\mathbf{v}),'\mathbf{i}')$ for infinity-norm $\ \vec{v}\ _{\infty}$, and $\mathbf{sum}(\mathbf{abs}(\mathbf{v})^{\mathbf{p}})^{1/p}$ for p -norm $\ \vec{v}\ _p = (\sum v_i ^p)^{1/p}$

No.	Description	MATLAB	R
107	Matrix norms	$norm(A,1)$ for 1-norm $ A _1$,	$norm(A,'1')$ for 1-norm $ A _1$,
		$norm(A)$ for 2-norm $ A _2$,	max(svd(A,0,0)\$d) for 2-norm
		norm(A,inf) for infinity-norm	$ A _2$, norm(A,'i') for infinity-
		$ A _{\infty}$, and norm(A,'fro') for	norm $ A _{\infty}$, and norm(A,'f') for
		Frobenius norm $\left(\sum_{i} (A^{T} A)_{ii}\right)^{1/2}$	Frobenius norm $\left(\sum_{i} (A^{T} A)_{ii}\right)^{1/2}$
108	Condition number $cond(A) =$	cond(A,1) (Note: MATLAB also has	1/rcond(A,'1')
	$ A _1 A^{-1} _1$ of A, using 1-	a function rcond(A) which computes	
	norm	reciprocal condition estimator using	
		the 1-norm)	
109	Condition number $cond(A) =$	cond(A,2)	kappa(A, exact=TRUE) (leave out
	$ A _2 A^{-1} _2$ of A , using 2-		the "exact=TRUE" for an esti-
110	norm	1(4 :	mate)
110	Condition number $\operatorname{cond}(A) = \begin{bmatrix} A & A & B \\ A & B \end{bmatrix}$	<pre>cond(A,inf)</pre>	1/rcond(A,'I')
	$ A _{\infty} A^{-1} _{\infty}$ of A , using infinity-norm		
111	Orthnormal basis for null	null(A)	null(A) with this function provided
111	space of matrix A	(**/	by the pracma package
112	Orthnormal basis for im-	orth(A)	orth(A) with this function provided
	age/range/column space of		by the pracma package
	$\operatorname{matrix} A$		
113	Mean of all elements in vector	mean(v) for vectors, mean(A(:)) for	mean(v) or mean(A)
	or matrix	matrices	
114	Means of columns of a matrix	mean(A)	colMeans(A)
115	Means of rows of a matrix	mean(A,2)	rowMeans(A)
116	Standard deviation of all ele-	std(v) for vectors, std(A(:)) for	sd(v) for vectors, sd(A) for matrices.
	ments in vector or matrix	matrices. This normalizes by $n-1$.	This normalizes by $n-1$.
117	Standard deviations of	Use $std(v,1)$ to normalize by n .	
117	Standard deviations of columns of a matrix	std(A). This normalizes by $n-1$. Use std(A,1) to normalize by n	apply(A,2,sd). This normalizes by $n-1$. Note: in previous versions of
	columns of a matrix	Ose stu(H,1) to normanze by n	R, sd(A) computed this.
118	Standard deviations of rows	std(A,0,2) to normalize by $n-1$,	apply(A,1,sd). This normalizes by
110	of a matrix	$\operatorname{std}(A,1,2)$ to normalize by n	n-1.
119	Variance of all elements in	<pre>var(v) for vectors, var(A(:)) for</pre>	var(v) for vectors, var(c(A)) for
	vector or matrix	matrices. This normalizes by $n-1$.	matrices. This normalizes by $n-1$.
		Use $var(v,1)$ to normalize by n .	
120	Variance of columns of a ma-	var(A). This normalizes by $n-1$.	apply(A,2,var). This normalizes by
	trix	Use $var(A,1)$ to normalize by n	n-1.
121	Variance of rows of a matrix	$\operatorname{var}(A,0,2)$ to normalize by $n-1$,	apply(A,1,var). This normalizes by
100	M-161	$\operatorname{var}(A,1,2)$ to normalize by n	n-1.
122	Mode of values in vector \mathbf{v}	mode(v) (chooses smallest value in	No simple function built in,
		<pre>case of a tie), or [m,f,c]=mode(v); c{1} (gives list of all tied values)</pre>	<pre>but some approaches are: as.numeric(names(sort(-table(v))))</pre>
		(gives hat of all tied values))))[1] (chooses smallest
			value in case of a tie), or
			as.numeric(names(table(v))[
			table(v)==max(sort(table(v)))])
			(gives vector of all tied val-
			ues), or tmp = unique(v);
			<pre>tmp[which.max(tabulate(match(v,</pre>
			tmp)))] (in case of a tie, chooses
			whichever tied value occurs first in \mathbf{v})

No	Description	MATLAR	R
No. 123	Description Median of values in vector v	MATLAB median(v)	median(v)
123	Basic summary statistics of	summary(dataset(v)) Note: only	summary(v)
124	values in vector v	•	summary(V)
	values in vector v	works if v is a column vector; use	
		summary(dataset(v(:))) to make	
		it work regardless of whether \mathbf{v} is a row or column vector.	
125	Covariance for two vectors of	$cov(v,w)$ computes the 2×2 co-	cov(v,w)
125	observations	variance matrix; the off-diagonal ele-	COV(V,W)
	observations	ments give the desired covariance	
126	Covariance matrix, giving co-	cov(A)	var(A) or cov(A)
120	variances between columns of	COV(A)	Val (k) Of COV(k)
	matrix A		
127	Given matrices A and B ,	I don't know of a direct way to	cov(A,B)
121	build covariance matrix C	do this in Matlab. But one way is	COV(R,D)
	where c_{ij} is the covariance be-	[Y,X]=meshgrid(std(B),std(A));	
	tween column i of A and col-	X.*Y.*corr(A,B)	
	$\operatorname{umn} j \text{ of } B$	11. · 1 · · · · · · · · · · · · · · · ·	
128	Pearson's linear correlation	corr(v,w) Note: v and w	cor(v,w)
120	coefficient between elements	must be column vectors. Or	
	of vectors \mathbf{v} and \mathbf{w}	corr(v(:),w(:)) will work for	
	or vectors v and w	both row and column vectors.	
129	Kendall's tau correlation	<pre>corr(v,w,'type','kendall')</pre>	cor(v,w,method='kendall')
120	statistic for vectors \mathbf{v} and \mathbf{w}	ooli (,, ,, ojpo , nondali ,	, , , , , , , , , , , , , , , , , , , ,
130	Spearman's rho correlation	<pre>corr(v,w,'type','spearman')</pre>	cor(v,w,method='spearman')
	statistic for vectors \mathbf{v} and \mathbf{w}	, -JF- , -F,	, , , , , , , , , , , , , , , , , , , ,
131	Pairwise Pearson's corre-	corr(A) The 'type' argument may	cor(A) The method argument may
	lation coefficient between	also be used as in the previous two	also be used as in the previous two
	columns of matrix A	items	items
132	Matrix C of pairwise Pear-	corr(A,B) The 'type' argument	cor(A,B) The method argument
	son's correlation coefficients	may also be used as just above	may also be used as just above
	between each pair of columns		
	of matrices A and B , i.e. c_{ij}		
	is correlation between column		
	i of A and column j of B		
133	Sum of all elements in vector	<pre>sum(v) for vectors, sum(A(:)) for</pre>	sum(v) or sum(A)
	or matrix	matrices	
134	Sums of columns of matrix	sum(A)	colSums(A)
135	Sums of rows of matrix	sum(A,2)	rowSums(A)
136	Product of all elements in	<pre>prod(v) for vectors, prod(A(:)) for</pre>	prod(v) or prod(A)
	vector or matrix	matrices	
137	Products of columns of ma-	prod(A)	apply(A,2,prod)
	trix		
138	Products of rows of matrix	prod(A,2)	apply(A,1,prod)
139	Matrix exponential $e^A =$	expm(A)	<pre>expm(Matrix(A)), but this is part of</pre>
	$\sum_{k=0}^{\infty} A^k / k!$		the Matrix package which you'll need
			to install (see item 348 for how to in-
			stall/load packages).
140	Cumulative sum of values in	cumsum(v)	cumsum(v)
	vector		
141	Cumulative sums of columns	cumsum(A)	apply(A,2,cumsum)
	of matrix		

No.	Description	Matlab	R
142	Cumulative sums of rows of	cumsum(A,2)	t(apply(A,1,cumsum))
	matrix		
143	Cumulative sum of all ele-	<pre>cumsum(A(:))</pre>	cumsum(A)
	ments of matrix (column-by-column)		
144	Cumulative product of ele-	cumprod(v) (Can also be used in the	cumprod(v) (Can also be used in the
	ments in vector \mathbf{v}	various ways cumsum can)	various ways cumsum can)
145	Cumulative minimum or	,	cummin(v) or cummax(v)
	maximum of elements in	w=zeros(size(v)); w(1)=v(1);	
	vector \mathbf{v}	for i=2:length(v)	
		w(i)=min(w(i-1),v(i));	
		end	
		This actually runs very efficiently be-	
		cause Matlab optimizes/accelerates	
		simple for loops	
146	Differences between consecu-	diff(v)	diff(v)
	tive elements of vector v . Re-		
	sult is a vector w 1 element		
	shorter than \mathbf{v} , where element i of \mathbf{w} is element $i+1$		
	of \mathbf{v} minus element $i \in \mathbf{v}$		
147	Make a vector \mathbf{y} the same size	$z = [3 \ 4]; y = z((x > 5)+1)$	y = ifelse(x > 5, 4, 3)
	as vector \mathbf{x} , which equals 4	Or this will also work:	
	everywhere that \mathbf{x} is greater	y=3*ones(size(x)); y(x>5)=4	
	than 5, and equals 3 every-		
	where else (done via a vectorized computation).		
148	Minimum of values in vector	min(v)	min(v)
	\mathbf{v}		
149	Minimum of all values in ma-	min(A(:))	min(A)
150	trix A Minimum value of each col-		[
150	umn of matrix \mathbf{A}	min(A) (returns a row vector)	apply(A,2,min) (returns a vector)
151	Minimum value of each row of	min(A, [], 2) (returns a column	apply(A,1,min) (returns a vector)
	matrix \mathbf{A}	vector)	,
152	Given matrices \mathbf{A} and \mathbf{B} ,	min(A,B)	pmin(A,B)
	compute a matrix where each		
	element is the minimum of the corresponding elements of		
	A and B		
153	Given matrix A and scalar	min(A,c)	pmin(A,c)
	\mathbf{c} , compute a matrix where		_
	each element is the minimum		
	of c and the corresponding el-		
154	ement of A Find minimum among all val-	min([A(:) ; B(:)])	min(A,B)
194	ues in matrices A and B	min([A(.) , D(.)])	min(K,D)
155	Find index of the first time	[y,ind] = min(v)	ind = which.min(v)
	$\mathtt{min}(\mathtt{v})$ appears in $\mathbf{v},$ and		
	store that index in ind		

Notes:

- Matlab and R both have a max function (and R has pmax and which.max as well) which behaves in the same ways as min but to compute maxima rather than minima.
- Functions like exp, sin, sqrt etc. will operate on arrays in both Matlab and R, doing the computations for each element of the matrix.

No.	Description	Matlab	R
156	Number of rows in A	size(A,1)	nrow(A) or dim(A)[1]
157	Number of columns in A	size(A,2)	ncol(A) or dim(A)[2]
158	Dimensions of A , listed in a	size(A)	dim(A)
	vector		
159	Number of elements in vector	length(v)	length(v)
	v		
160	Total number of elements in	numel(A)	length(A)
	matrix A		
161	Max. dimension of A	length(A)	max(dim(A))
162	Sort values in vector \mathbf{v}	sort(v)	sort(v)
163	Sort values in \mathbf{v} , putting	[s,idx]=sort(v)	<pre>tmp=sort(v,index.return=TRUE);</pre>
	sorted values in \mathbf{s} , and indices		s=tmp\$x; idx=tmp\$ix
	in idx , in the sense that $s[k]$		
	= x[idx[k]]		
164	Sort the order of the rows of	sortrows(m)	m[order(m[,1]),]
	matrix m	This sorts according to the first col-	This only sorts according to the first
		umn, then uses column 2 to break	column. To use column 2 to break
		ties, then column 3 for remaining	ties, and then column 3 to break fur-
		ties, etc. Complex numbers are	ther ties, do
		sorted by $abs(x)$, and ties are then	m[order(m[,1], m[,2], m[,3]),]
		broken by $angle(x)$.	Complex numbers are sorted first by
			real part, then by imaginary part.
165	Sort order of rows of matrix	sortrows(m, [x y z])	m[order(m[,x], m[,y], m[,z]),]
	m, specifying to use columns		
	\mathbf{x} , \mathbf{y} , \mathbf{z} as the sorting "keys"		

No.	Description	Matlab	R
166	Same as previous item, but	sortrows(m, [-x -y z])	m[order(-m[,x], -m[,y],
100	sort in decreasing order for	, 201010112(m, 1 m y 21)	m[,z]),]
	columns \mathbf{x} and \mathbf{y}		
167	Sort order of rows of matrix	[y,i] = sortrows(m)	i=order(m[1,]); y=m[i,]
,	m, and keep indices used for	2, , = 2 = = = = (==,	_ = ==== (====,3,,
	sorting		
168	To count how many values in	sum((v > 4) & (v <= 7))	sum((v > 4) & (v <= 7))
100	the vector \mathbf{v} are between 4		
	and 7 (inclusive on the upper		
	end)		
169	Given vector v , return list of	find(v > 5)	which(v > 5)
100	indices of elements of \mathbf{v} which		will cir(v > 0)
	are greater than 5		
170	Given matrix A, return list	find(A > 5)	which(A > 5)
170	of indices of elements of A	1111d(k > 5)	which(A > 3)
	which are greater than 5, using single indexing		
171	ing single-indexing Given matrix A, generate	[r,c] = find(A > 5)	<pre>w = which(A > 5, arr.ind=TRUE);</pre>
1/1		$[\Gamma,C] = \text{IInd}(A > 5)$	
	vectors r and c giving rows		r=w[,1]; c=w[,2]
	and columns of elements of A		
150	which are greater than 5		
172	Given vector x , build a vector	unique(x) gives the values sorted	unique(x) gives the values in
	containing the unique values	numerically; unique(x, 'stable')	the order they appear in \mathbf{x} ;
	in \mathbf{x} (i.e. with duplicates re-	gives them in the order they appear	sort(unique(x)) builds a sorted set
150	moved).	in x	of unique values
173	Given vector x (of presum-	<pre>v = unique(x); c = hist(x,v);</pre>	<pre>w=table(x); c=as.numeric(w);</pre>
	ably discrete values), build a		v=as.numeric(names(w))
	vector v listing unique val-		
	ues in \mathbf{x} , and corresponding		
	vector \mathbf{c} indicating how many		
	times those values appear in		
	X		
174	Given vector \mathbf{x} (of presum-	[c,m] = hist(x,k)	w=hist(x,seq(min(x),max(x),
	ably continuous values), di-		<pre>length.out=k+1), plot=FALSE);</pre>
	vide the range of values into k		m=w\$mids; c=w\$counts
	equally-sized bins, and build		
	a vector m containing the		
	midpoints of the bins and a		
	corresponding vector ${\bf c}$ con-		
	taining the counts of values in		
	the bins		
175	Convolution / polynomial	conv(x,y)	<pre>convolve(x,rev(y),type='open')</pre>
	multiplication (given vectors		Note: the accuracy of this is not
	\mathbf{x} and \mathbf{y} containing polyno-		as good as Matlab; e.g. doing
	mial coefficients, their convo-		v=c(1,-1); for (i in 2:20)
	lution is a vector containing		v=convolve(v,c(-i,1),
	coefficients of the product of		type='open') to generate the
	the two polynomials)		20 th -degree Wilkinson polynomial
	•		$W(x) = \prod_{i=1}^{20} (x-i)$ gives a coefficient
			of ≈ -780.19 for x^{19} , rather than the
			correct value -210.

3.4 Root-finding

No.	Description	Matlab	R
176	Find roots of polynomial	roots(v)	polyroot(rev(v)) (This function
	whose coefficients are stored		really wants the vector to have the
	in vector \mathbf{v} (coefficients in \mathbf{v}		constant coefficient first in v; rev re-
	are highest-order first)		verses their order to achieve this.)
177	Find zero (root) of a function	Define function $f(x)$, then do	Define function $f(x)$, then do
	f(x) of one variable	fzero(f,x0) to search for a root	uniroot(f, c(a,b)) to find a root
		near $x0$, or fzero(f,[a b]) to find	between a and b , assuming the sign
		a root between a and b , assuming	of $f(x)$ differs at $x = a$ and $x = b$.
		the sign of $f(x)$ differs at $x = a$	Default forward error tolerance (i.e.
		and $x = b$. Default forward error	error in x) is fourth root of machine
		tolerance (i.e. error in x) is machine	epsilon, $(\epsilon_{\rm mach})^{0.25}$. To specify e.g.
		epsilon ϵ_{mach} .	a tolerance of 2^{-52} , do uniroot(f,
			c(a,b), tol=2^-52).

${\bf 3.5}\quad {\bf Function\ optimization/minimization}$

No.	Description	MATLAB	R
178	Find value m which mini-	Define function $f(x)$, then do	Define function $f(x)$, then do
	mizes a function $f(x)$ of one variable within the interval from a to b	m = fminbnd(@f, a, b)	<pre>m = optimize(f,c(a,b))\$minimum</pre>
179	Find value m which minimizes a function $f(x, p_1, p_2)$ with given extra parameters (but minimization is only occuring over the first argument), in the interval from a to b .	Define function f(x,p1,p2), then use an "anonymous function": % first define values for p1 % and p2, and then do: m=fminbnd(@(x) f(x,p1,p2),a,b)	Define function f(x,p1,p2), then: # first define values for p1 # and p2, and then do: m = optimize(f, c(a,b), p1=p1, p2=p2)\$minimum
180	Find values of x, y, z which minimize function $f(x, y, z)$, using a starting guess of $x = 1$, $y = 2.2$, and $z = 3.4$.	First write function $f(v)$ which accepts a vector argument v containing values of x , y , and z , and returns the scalar value $f(x, y, z)$, then do: fminsearch(@f,[1 2.2 3.4])	First write function $f(v)$ which accepts a vector argument v containing values of x , y , and z , and returns the scalar value $f(x,y,z)$, then do: optim(c(1,2.2,3.4),f)\$par
181	Find values of x, y, z which minimize function $f(x, y, z, p_1, p_2)$, using a starting guess of $x = 1$, $y = 2.2$, and $z = 3.4$, where the function takes some extra parameters (useful e.g. for doing things like nonlinear least-squares optimization where you pass in some data vectors as extra parameters).	First write function $f(v,p1,p2)$ which accepts a vector argument \mathbf{v} containing values of x, y , and z , along with the extra parameters, and returns the scalar value $f(x,y,z,p_1,p_2)$, then do: fminsearch(@f,[1 2.2 3.4], [], p1, p2) Or use an anonymous function: fminsearch(@(x) f(x,p1,p2), [1 2.2 3.4])	First write function $\mathbf{f(v,p1,p2)}$ which accepts a vector argument \mathbf{v} containing values of $x, y,$ and $z,$ along with the extra parameters, and returns the scalar value $f(x,y,z,p_1,p_2),$ then do: optim(c(1,2.2,3.4), f, p1=p1, p2=p2)\$par

${\bf 3.6}\quad {\bf Numerical\ integration\ /\ quadrature}$

No.	Description	Matlab	R
182	Numerically integrate func-	quad(f,a,b) uses adaptive Simp-	integrate(f,a,b) uses adaptive
	tion $f(x)$ over interval from	son's quadrature, with a default	quadrature with default absolute
	a to b	absolute tolerance of 10^{-6} . To	and relative error tolerances being
		specify absolute tolerance, use	the fourth root of machine epsilon,
		quad(f,a,b,tol)	$(\epsilon_{\rm mach})^{0.25} \approx 1.22 \times 10^{-4}$. Tol-
			erances can be specified by using
			<pre>integrate(f,a,b, rel.tol=tol1,</pre>
			abs.tol=tol2). Note that the func-
			tion f must be written to work even
			when given a vector of x values as its
			argument.
183	Simple trapezoidal numerical	trapz(x,y)	sum(diff(x)*(y[-length(y)]+
	integration using (x, y) values		y[-1])/2)
	in vectors \mathbf{x} and \mathbf{y}		

3.7 Curve fitting

No.	Description	Matlab	R
184	Fit the line $y = c_1 x + c_0$ to		
	data in vectors \mathbf{x} and \mathbf{y} .	<pre>p = polyfit(x,y,1)</pre>	p = coef(lm(y ~ x))
		The return vector \mathbf{p} has the coefficients in descending order, i.e. $\mathbf{p(1)}$ is c_1 , and $\mathbf{p(2)}$ is c_0 .	The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p[1]}$ is c_0 , and $\mathbf{p[2]}$ is c_1 .
185	Fit the quadratic polynomial $y = c_2 x^2 + c_1 x + c_0$ to data in vectors x and y .	<pre>p = polyfit(x,y,2)</pre>	p = coef(lm(y ~ x + I(x^2)))
		The return vector \mathbf{p} has the coefficients in descending order, i.e. $\mathbf{p}(1)$ is c_2 , $\mathbf{p}(2)$ is c_1 , and $\mathbf{p}(3)$ is c_0 .	The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is c_0 , $\mathbf{p}[2]$ is c_1 , and $\mathbf{p}[3]$ is c_2 .
186	Fit n^{th} degree polynomial $y = c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0$ to data in vectors \mathbf{x} and \mathbf{y} .	$\mathbf{p} = \mathbf{polyfit}(\mathbf{x}, \mathbf{y}, \mathbf{n})$ The return vector \mathbf{p} has the coefficients in descending order, $\mathbf{p(1)}$ is c^n , $\mathbf{p(2)}$ is c^{n-1} , etc.	No simple built-in way. But this will work: coef(lm(as.formula(paste('y^"),paste('I(x^"),1:n,')', sep='',collapse='+')))) This more concise "lower-level" method will also work: coef(lm.fit(outer(x,0:n,'^"),y)) Note that both of the above return the coefficients in ascending order. Also see the polyreg function in the mda package (see item 348 for how to install/load packages).
187	Fit the quadratic polynomial with zero intercept, $y = c_2x^2 + c_1x$ to data in vectors \mathbf{x} and \mathbf{y} .	(I don't know a simple way do this in MATLAB, other than to write a function which computes the sum of squared residuals and use fmin- search on that function. There is likely an easy way to do it in the Statistics Toolbox.)	p=coef(lm(y ~ -1 + x + I(x^2))) The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is c_1 , and $\mathbf{p}[2]$ is c_2 .
188	Fit natural cubic spline $(S''(x)) = 0$ at both endpoints) to points (x_i, y_i) whose coordinates are in vectors \mathbf{x} and \mathbf{y} ; evaluate at points whose x coordinates are in vector $\mathbf{x}\mathbf{x}$, storing corresponding y 's in $\mathbf{y}\mathbf{y}$	<pre>pp=csape(x,y,'variational'); yy=ppval(pp,xx) but note that csape is in MATLAB's Spline Toolbox</pre>	<pre>tmp=spline(x,y,method='natural', xout=xx); yy=tmp\$y</pre>
189	Fit cubic spline using Forsythe, Malcolm and Moler method (third derivatives at endpoints match third derivatives of exact cubics through the four points at each end) to points (x_i, y_i) whose coordinates are in vectors \mathbf{x} and \mathbf{y} ; evaluate at points whose x coordinates are in vector $\mathbf{x}\mathbf{x}$, storing corresponding y 's in $\mathbf{y}\mathbf{y}$	I'm not aware of a function to do this in Matlab	<pre>tmp=spline(x,y,xout=xx); yy=tmp\$y</pre>

No.	Description	Matlab	R
190	Fit cubic spline such that	<pre>pp=csape(x,y); yy=ppval(pp,xx)</pre>	I'm not aware of a function to do this
	first derivatives at endpoints	but csape is in Matlab's Spline	in R
	match first derivatives of ex-	Toolbox	
	act cubics through the four		
	points at each end) to points		
	(x_i, y_i) whose coordinates are		
	in vectors \mathbf{x} and \mathbf{y} ; evaluate		
	at points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing cor-		
	responding y 's in yy		
191	Fit cubic spline with periodic	<pre>pp=csape(x,y,'periodic');</pre>	<pre>tmp=spline(x,y,method=</pre>
	boundaries, i.e. so that first	yy=ppval(pp,xx) but csape is in	'periodic', xout=xx); yy=tmp\$y
	and second derivatives match	Matlab's Spline Toolbox	
	at the left and right ends		
	(the first and last y values		
	of the provided data should		
	also agree), to points (x_i, y_i)		
	whose coordinates are in vec-		
	tors \mathbf{x} and \mathbf{y} ; evaluate at		
	points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing cor-		
	responding y 's in yy		
192	Fit cubic spline with "not-	<pre>yy=spline(x,y,xx)</pre>	I'm not aware of a function to do this
	a-knot" conditions (the first		in R
	two piecewise cubics coincide,		
	as do the last two), to points		
	(x_i, y_i) whose coordinates are		
	in vectors \mathbf{x} and \mathbf{y} ; evaluate		
	at points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing cor-		
	responding y 's in yy		

${\bf 4}\quad {\bf Conditionals,\ control\ structure,\ loops}$

No.	Description	Matlab	R
193	"for" loops over values in a vector v (the vector v is often constructed via a:b)	for i=v command1 command2 end	If only one command inside the loop: for (i in v) command or for (i in v) command If multiple commands inside the loop: for (i in v) { command1 command2 }

No.	Description	Matlab	R
194	"if" statements with no else		If only one command inside the clause
	clause	if cond	if (cond)
		command1	command
		command2	
		end	or
			if (cond) command
			If multiple commands:
			if (cond) {
			command1
			command2
			}
195	"if/else" statement		If one command in clauses:
		if cond	if (cond)
		command1	command1 else
		command2	command2
		else	
		command3	or
		command4 end Note: MATLAB also has an "elseif" statement, e.g.:	if (cond) cmd1 else cmd2
			If multiple commands:
			if (cond) {
		if cond1	command1
		commands1	command2
		elseif cond2	} else {
		commands2	command3
		elseif cond3	command4
		commands3	}
		else	Warning: the "else" must be on th
		commands4	same line as command1 or the "}
		end	(when typed interactively at the com
			mand prompt), otherwise R thinks th
			"if" statement was finished and give
			an error.
			R does not have an "elseif" statemen
			(though see item 147 for something re
			lated), but you can do this:
			if (cond1) {
			commands1
			} else if (cond2) {
			commands2
			} else if (cond3) {
			commands3
			} else {
			commands4
			}
	I		*

 $\label{logical comparisons} \mbox{ which can be used on scalars in "if" statements, or which operate element-by-element on vectors/matrices:$

Matlab	R	Description
x < a	x < a	True if x is less than a
x > a	x > a	True if x is greater than a
x <= a	x <= a	True if x is less than or equal to a
x >= a	x >= a	True if x is greater than or equal to a
x == a	x == a	True if x is equal to a
x ~= a	x != a	True if x is not equal to a

Scalar logical operators:

Description	Matlab	R
a AND b	a && b	a && b
a OR b	a b	a b
a XOR b	xor(a,b)	xor(a,b)
NOT a	~a	!a

The && and | | operators are short-circuiting, i.e. && stops as soon as any of its terms are FALSE, and | | stops as soon as any of its terms are TRUE.

Matrix logical operators (they operate element-by-element):

Description	Matlab	R
a AND b	a & b	a & b
a OR b	a b	a b
a XOR b	xor(a,b)	xor(a,b)
NOT a	~a	!a

No.	Description	Matlab	R
196	To test whether a scalar value	if ((x > 4) && (x <= 7))	if ((x > 4) && (x <= 7))
	\mathbf{x} is between 4 and 7 (inclu-		
	sive on the upper end)		
197	Count how many values in	sum((x > 4) & (x <= 7))	sum((x > 4) & (x <= 7))
	the vector \mathbf{x} are between 4		
	and 7 (inclusive on the upper		
	end)		
198	Test whether all values in	all(v)	all(v)
	a logical/boolean vector are		
	TRUE		
199	Test whether any values in	any(v)	any(v)
	a logical/boolean vector are		
	TRUE		

No.	Description	Matlab	R
200	"while" statements to do iteration (useful when you don't know ahead of time how many iterations you'll need). E.g. to add uniform random numbers between 0 and 1 (and their squares) until their sum is greater than 20:	<pre>mysum = 0; mysumsqr = 0; while (mysum < 20) r = rand; mysum = mysum + r; mysumsqr = mysumsqr + r^2; end</pre>	<pre>mysum = 0 mysumsqr = 0 while (mysum < 20) { r = runif(1) mysum = mysum + r mysumsqr = mysumsqr + r^2 } (As with "if" statements and "for" loops, the curly brackets are not necessary if there's only one statement inside the "while" loop.)</pre>
201	More flow control: these commands exit or move on to the next iteration of the innermost while or for loop, respectively.	break and continue	break and next
202	"Switch" statements for integers	<pre>switch (x) case 10 disp('ten') case {12,13} disp('dozen (bakers?)') otherwise disp('unrecognized') end</pre>	R doesn't have a switch statement capable of doing this. It has a function which is fairly limited for integers, but can which do string matching. See ?switch for more. But a basic example of what it can do for integers is below, showing that you can use it to return different expressions based on whether a value is 1,2, mystr = switch(x, 'one', 'two', 'three'); print(mystr) Note that switch returns NULL if x is larger than 3 in the above case. Also, continuous values of x will be truncated to integers.

5 Functions, ODEs

No	. Description	Matlab	R
20	add(x,y)	Put the following in add.m: function retval=add(x,y) retval = x+y; Then you can do e.g. add(2,3)	Enter the following, or put it in a file and source that file: add = function(x,y) { return(x+y) } Then you can do e.g. add(2,3). Note, the curly brackets aren't needed if your function only has one line. Also, the return keyword is optional in the above example, as the value of the last expression in a function gets returned, so just x+y would work too.
20	Implement a function $f(x,y,z)$ which returns multiple values, and store those return values in variables u and v	Write function as follows: function [a,b] = f(x,y,z) a = x*y+z; b=2*sin(x-z); Then call the function by doing: [u,v] = f(2,8,12)	Write function as follows: f = function(x,y,z) { a = x*y+z; b=2*sin(x-z) return(list(a,b)) } Then call the function by doing: tmp=f(2,8,12); u=tmp[[1]]; v=tmp[[2]]. The above is most general, and will work even when u and v are different types of data. If they are both scalars, the function could simply return them packed in a vector, i.e. return(c(a,b)). If they are vectors of the same size, the function could return them packed together into the columns of a matrix, i.e. return(cbind(a,b)).

No.	Description	Matlab	R
205	Numerically solve ODE	First implement function	First implement function
	dx/dt = 5x from $t = 3$ to $t = 12$ with initial condition $x(3) = 7$	<pre>function retval=f(t,x) retval = 5*x;</pre>	<pre>f = function(t,x,parms) { return(list(5*x))</pre>
20.5		Then do ode45(@f,[3,12],7) to plot solution, or [t,x]=ode45(@f,[3,12],7) to get back vector t containing time values and vector x containing corresponding function values. If you want function values at specific times, e.g. 3,3.1,3.2,,11.9,12, you can do [t,x]=ode45(@f,3:0.1:12,7). Note: in older versions of MATLAB, use 'f' instead of @f.	Then do y=lsoda(7, seq(3,12, 0.1), f,NA) to obtain solution values at times 3,3.1,3.2,,11.9,12. The first column of y, namely y[,1] contains the time values; the second column y[,2] contains the corresponding function values. Note: lsoda is part of the deSolve package (see item 348 for how to install/load packages).
206	Numerically solve system of ODEs $dw/dt = 5w$, $dz/dt = 3w + 7z$ from $t = 3$ to $t = 12$ with initial conditions $w(3) = 7$, $z(3) = 8.2$	First implement function function retval=myfunc(t,x) w = x(1); z = x(2); retval = zeros(2,1); retval(1) = 5*w; retval(2) = 3*w + 7*z; Then do ode45(@myfunc,[3,12],[7; 8.2]) to plot solution, or [t,x]=ode45(@myfunc,[3,12],[7; 8.2]) to get back vector t containing time values and matrix x, whose first column containing corresponding w(t) values and second column	First implement function myfunc = function(t,x,parms) { $w = x[1]; z = x[2];$ return(list(c(5*w, 3*w+7*z))) } Then do y=lsoda(c(7,8.2), seq(3,12, 0.1), myfunc,NA) to obtain solution values at times $3,3.1,3.2,,11.9,12$. The first column of y, namely y[,1] contains the time values; the second column y[,2] contains the corresponding values of $w(t)$; and the third column contains $z(t)$. Note: lsoda is part of
		contains $z(t)$ values. If you want function values at specific times, e.g. $3, 3.1, 3.2, \ldots, 11.9, 12$, you can do $[t,x]=ode45(@myfunc,3:0.1:12,[7:8.2])$. Note: in older versions of MATLAB, use 'f' instead of $@f$.	the deSolve package (see item 348 for how to install/load packages).
207	Pass parameters such as $r = 1.3$ and $K = 50$ to an ODE function from the command line, solving $dx/dt = rx(1 - x/K)$ from $t = 0$ to $t = 20$ with initial condition $x(0) = 2.5$.	First implement function function retval=func2(t,x,r,K) retval = r*x*(1-x/K) Then do ode45(@func2,[0 20], 2.5, [], 1.3, 50). The empty matrix is necessary between the initial condition and the beginning of your extra parameters.	<pre>First implement function func2=function(t,x,parms) { r=parms[1]; K=parms[2] return(list(r*x*(1-x/K))) } Then do y=lsoda(2.5,seq(0,20,0.1), func2,c(1.3,50))</pre>
			Note: lsoda is part of the deSolve package (see item 348 for how to install/load packages).

6 Probability and random values

No.	Description	Matlab	R
208	Generate a continuous uniform random value between 0 and 1	rand	runif(1)
209	Generate vector of n uniform random vals between 0 and 1	rand(n,1) or rand(1,n)	runif(n)
210	Generate $m \times n$ matrix of uniform random values between 0 and 1	rand(m,n)	<pre>matrix(runif(m*n),m,n) or just matrix(runif(m*n),m)</pre>
211	Generate $m \times n$ matrix of continuous uniform random values between a and b	a+rand(m,n)*(b-a) or if you have the Statistics toolbox then unifrnd(a,b,m,n)	<pre>matrix(runif(m*n,a,b),m)</pre>
212	Generate a random integer between 1 and k	randi(k) or floor(k*rand)+1	floor(k*runif(1)) + 1 or sample(k,1)
213	Generate $m \times n$ matrix of discrete uniform random integers between 1 and k	randi(k, m, n) or floor(k*rand(m,n))+1 or if you have the Statistics toolbox then unidrnd(k,m,n)	floor(k*matrix(runif(m*n),m))+1 or matrix(sample(k, m*n, replace=TRUE), m)
214	Generate $m \times n$ matrix where each entry is 1 with probability p , otherwise is 0	<pre>(rand(m,n)<p)*1 (true="" 1="" also="" back="" by="" could="" do="" double(rand(m,n)<p)<="" false)="" into="" logical="" multiplying="" note:="" numeric="" pre="" re-="" sult="" the="" turns="" values.="" you=""></p)*1></pre>	matrix(sample(c(0,1), m*n, replace=TRUE, prob=c(1-p, p)), m) or (matrix(runif(m,n),m) <p)*1 (note:="" (true="" 1="" as.numeric()="" back="" by="" do="" false)="" into="" it="" logical="" lose="" matrix.)<="" multiplying="" numeric="" of="" result="" shape="" td="" the="" to="" turns="" using="" values;="" would=""></p)*1>
215	Generate $m \times n$ matrix where each entry is a with probability p , otherwise is b	b + (a-b)*(rand(m,n) <p)< td=""><td><pre>matrix(sample(c(b,a), m*n, replace=TRUE, prob=c(1-p, p)), m) or b + (a-b)*(matrix(runif(m,n),m)<p)< pre=""></p)<></pre></td></p)<>	<pre>matrix(sample(c(b,a), m*n, replace=TRUE, prob=c(1-p, p)), m) or b + (a-b)*(matrix(runif(m,n),m)<p)< pre=""></p)<></pre>
216	Generate a random integer between a and b inclusive	floor((b-a+1)*rand)+a or if you have the Statistics toolbox then unidrnd(b-a+1)+a-1	<pre>sample(a:b, 1) or floor((b-a+1)*runif(1))+a</pre>
217	Flip a coin which comes up heads with probability p , and perform some action if it does come up heads	<pre>if (rand < p) some commands end</pre>	<pre>if (runif(1) < p) { some commands }</pre>
218	Generate a random permutation of the integers $1, 2, \ldots, n$	randperm(n)	sample(n)
219	Generate a random selection of k unique integers between 1 and n (i.e. sampling without replacement)	<pre>[s,idx]=sort(rand(n,1)); ri=idx(1:k) or another way is ri=randperm(n); ri=ri(1:k). Or if you have the Statistics Toolbox, then randsample(n,k)</pre>	ri=sample(n,k)
220	Choose k values (with replacement) from the vector \mathbf{v} , storing result in \mathbf{w}	L=length(v); w=v(floor(L*rand(k,1))+1) Or, if you have the Statistics Toolbox, w=randsample(v,k,true)	w=sample(v,k,replace=TRUE)

No.	Description	Matlab	R
221	Choose k values (without re-	<pre>L=length(v); ri=randperm(L);</pre>	w=sample(v,k,replace=FALSE)
	placement) from the vector \mathbf{v} ,	ri=ri(1:k); w=v(ri) Or, if	
	storing result in \mathbf{w}	you have the Statistics Toolbox,	
		w=randsample(v,k)	
222	Generate a value from 1 to n	<pre>sum(rand > cumsum(pv))+1 If en-</pre>	sample(n, 1, prob=pv) If the en-
	with corresponding probabil-	tries of pv don't sum to one,	tries of pv don't sum to one, sample
	ities in vector pv	rescale them first: sum(rand >	automatically rescales them to do so.
		<pre>cumsum(pv)/sum(pv))+1</pre>	
223	Set the random-number gen-	rng(12) See also RandStream for	set.seed(12)
	erator back to a known state	how to create and use multiple	
	(useful to do at the beginning	streams of random numbers. And	
	of a stochastic simulation	note: in versions of Matlab prior	
	when debugging, so you'll get	to 7.7, instead use rand('state',	
	the same sequence of random	12).	
	numbers each time)		

Note that the "*rnd," "*pdf," and "*cdf" functions described below are all part of the MATLAB Statistics Toolbox, and not part of the core MATLAB distribution.

	Statistics Toolbox, and not part of the core MATLAB distribution.			
No.	Description	Matlab	R	
224	Generate a random value	binornd(n,p) or	rbinom(1,n,p)	
	from the binomial (n, p) dis-	<pre>sum(rand(n,1)<p) pre="" will="" work<=""></p)></pre>		
	tribution	even without the Statistics Toolbox.		
225	Generate a random value	poissrnd(lambda)	rpois(1,lambda)	
	from the Poisson distribution			
	with parameter λ			
226	Generate a random value	exprnd(mu) or -mu*log(rand) will	rexp(1, 1/mu)	
	from the exponential distri-	work even without the Statistics	-	
	bution with mean μ	Toolbox.		
227	Generate a random value	unidrnd(k) or floor(rand*k)+1	sample(k,1)	
	from the discrete uniform dis-	will work even without the Statistics	-	
	tribution on integers $1 \dots k$	Toolbox.		
228	Generate n iid random values	unidrnd(k,n,1) or	sample(k,n,replace=TRUE)	
	from the discrete uniform dis-	floor(rand(n,1)*k)+1 will work	•	
	tribution on integers $1 \dots k$	even without the Statistics Toolbox.		
229	Generate a random value	unifrnd(a,b) or (b-a)*rand + a	runif(1,a,b)	
	from the continuous uniform	will work even without the Statistics		
	distribution on the interval	Toolbox.		
	(a,b)			
230	Generate a random value	normrnd(mu, sigma) or	rnorm(1,mu,sigma)	
	from the normal distribution	mu + sigma*randn will work	<u> </u>	
	with mean μ and standard	even without the Statistics Toolbox.		
	deviation σ			
231	Generate a random vector	mnrnd(n,p)	rmultinom(1,n,p)	
	from the multinomial distri-		_	
	bution, with n trials and			
	probability vector p			
232	Generate j random vectors	mnrnd(n,p,j)	rmultinom(j,n,p)	
	from the multinomial distri-	The vectors are returned as rows of	The vectors are returned as columns	
	bution, with n trials and	a matrix	of a matrix	
	probability vector p			
	<u> </u>	I .	l .	

Notes:

- The Matlab "*rnd" functions above can all take additional \mathbf{r} , \mathbf{c} arguments to build an $r \times c$ matrix of iid random values. E.g. $\mathtt{poissrnd}(3.5,4,7)$ for a 4×7 matrix of iid values from the Poisson distribution with mean $\lambda = 3.5$. The $\mathtt{unidrnd}(\mathtt{k},\mathtt{n},\mathtt{1})$ command above is an example of this, to generate a $k \times 1$ column vector.
- The first parameter of the R "r*" functions above specifies how many values are desired. E.g. to generate 28 iid random values from a Poisson distribution with mean 3.5, use rpois(28,3.5). To get a 4 × 7 matrix of such values, use matrix(rpois(28,3.5),4).

No.	Description	Matlab	R
233	Probability that a ran-	binopdf(x,n,p) or	dbinom(x,n,p)
	dom variable from the	$nchoosek(n,x)*p^x*(1-p)^(n-x)$	_
	Binomial (n, p) distribution	will work even without the Statistics	
	has value \mathbf{x} (i.e. the density,	Toolbox, as long as \mathbf{n} and \mathbf{x} are	
	or pdf).	non-negative integers and $0 \leq \mathbf{p}$	
		≤ 1 .	
234	Probability that a random	poisspdf(x,lambda) or	dpois(x,lambda)
	variable from the $Poisson(\lambda)$	exp(-lambda)*lambda^x /	
	distribution has value \mathbf{x} .	factorial(x) will work even	
		without the Statistics Toolbox, as	
		long as \mathbf{x} is a non-negative integer	
		and $lambda \ge 0$.	
235	Probability density function	exppdf(x,mu) or	dexp(x,1/mu)
	at \mathbf{x} for a random variable	(x>=0)*exp(-x/mu)/mu will work	
	from the exponential distri-	even without the Statistics Toolbox,	
	bution with mean μ .	as long as mu is positive.	
236	Probability density function	normpdf(x,mu,sigma) or	dnorm(x,mu,sigma)
	at \mathbf{x} for a random variable	exp(-(x-mu)^2/(2*sigma^2))/	
	from the Normal distribution	(sqrt(2*pi)*sigma) will work even	
	with mean μ and standard	without the Statistics Toolbox.	
	deviation σ .		
237	Probability density function	unifpdf(x,a,b) or	<pre>dunif(x,a,b)</pre>
	at \mathbf{x} for a random variable	((x>=a)&&(x<=b))/(b-a) will	
	from the continuous uniform	work even without the Statistics	
	distribution on interval (a, b) .	Toolbox.	
238	Probability that a random	unidpdf(x,n) or ((x==floor(x))	((x==round(x)) && (x >= 1) &&
	variable from the discrete	&& (x>=1)&&(x<=n))/n will work	$(x \le n)/n$
	uniform distribution on inte-	even without the Statistics Toolbox,	
	gers $1 \dots n$ has value \mathbf{x} .	as long as n is a positive integer.	
239	Probability that a random	mnpdf(x,p)	<pre>dmultinom(x,prob=p)</pre>
	vector from the multinomial	Note: vector p must sum to one.	
	distribution with probability	Also, \mathbf{x} and \mathbf{p} can be vectors of	
	vector \vec{p} has the value \vec{x}	length k , or if one or both are $m \times k$	
		matrices then the computations are	
	Notes and a control of the control	performed for each row.	

Note: one or more of the parameters in the above "*pdf" (MATLAB) or "d*" (R) functions can be vectors, but they must be the same size. Scalars are promoted to arrays of the appropriate size.

The corresponding CDF functions are below:

No.	Description Description	Matlab	R
240	Probability that a ran-	binocdf(x,n,p). Without the	pbinom(x,n,p)
	dom variable from the	Statistics Toolbox, as long	
	Binomial (n, p) distribution is	as n is a non-negative in-	
	less than or equal to \mathbf{x} (i.e.	teger, this will work: $r =$	
	the cumulative distribution	<pre>0:floor(x); sum(factorial(n)./</pre>	
	function, or cdf).	<pre>(factorial(r).*factorial(n-r))</pre>	
	·	.*p.^r.*(1-p).^(n-r)). (Un-	
		fortunately, Matlab's nchoosek	
		function won't take a vector argu-	
		ment for \mathbf{k} .)	
241	Probability that a random	poisscdf(x,lambda). With-	<pre>ppois(x,lambda)</pre>
	variable from the $Poisson(\lambda)$	out the Statistics Toolbox, as	
	distribution is less than or	$long$ as $lambda \ge 0$, this	
	equal to \mathbf{x} .	<pre>will work: r = 0:floor(x);</pre>	
		<pre>sum(exp(-lambda)*lambda.^r</pre>	
		./factorial(r))	
242	Cumulative distribution	expcdf(x,mu) or	pexp(x,1/mu)
	function at \mathbf{x} for a random	(x>=0)*(1-exp(-x/mu)) will	
	variable from the exponential	work even without the Statistics	
	distribution with mean μ .	Toolbox, as long as mu is positive.	
243	Cumulative distribution	normcdf(x,mu,sigma) or 1/2 -	<pre>pnorm(x,mu,sigma)</pre>
	function at \mathbf{x} for a random	erf(-(x-mu)/(sigma*sqrt(2)))/2	
	variable from the Normal	will work even without the Statis-	
	distribution with mean μ and	tics Toolbox, as long as sigma is	
	standard deviation σ .	positive.	
244	Cumulative distribution	unifcdf(x,a,b) or	<pre>punif(x,a,b)</pre>
	function at \mathbf{x} for a random	(x>a)*(min(x,b)-a)/(b-a) will	
	variable from the continuous	work even without the Statistics	
	uniform distribution on	Toolbox, as long as $\mathbf{b} > \mathbf{a}$.	
2.15	interval (a,b) .		
245	Probability that a random	unidcdf(x,n) or	(x>=1)*min(floor(x),n)/n
	variable from the discrete	(x>=1)*min(floor(x),n)/n will	
	uniform distribution on in-	work even without the Statistics	
	tegers $1 \dots n$ is less than or	Toolbox, as long as \mathbf{n} is a positive	
	equal to \mathbf{x} .	integer.	

7 Graphics

7.1 Various types of plotting

No.	Description	Matlab	R
No. 246	Create a new figure window	figure	dev.new() Notes: internally, on Windows this calls windows(), on MacOS it calls quartz(), and on Linux it calls X11(). X11() is also available on MacOS; you can tell R to use it by default by doing options(device='X11'). In R sometime after 2.7.0, X11 graphics started doing antialising by default, which makes plots look smoother but takes longer to draw. If you are using X11 graphics in R and notice that figure plotting is extremely slow (especially if making many plots), do this before calling dev.new(): X11.options(type='Xlib') or X11.options(antialias='none'). Or just use e.g. X11(type='Xlib') to make new figure windows. They are uglier (lines are more jagged), but
247	Select figure number n	figure(n) (will create the figure if it doesn't exist)	render much more quickly. dev.set(n) (returns the actual device selected; will be different from n if there is no figure device with number n)
248	Determine which figure window is currently active	gcf	dev.cur()
249	List open figure windows	get(0,'children') (The 0 handle refers to the root graphics object.)	dev.list()
250	Close figure window(s)	close to close the current figure window, close(n) to close a specified figure, and close all to close all figures	<pre>dev.off() to close the currently ac- tive figure device, dev.off(n) to close a specified one, and graphics.off() to close all figure devices.</pre>
251	Plot points using open circles	plot(x,y,'o')	plot(x,y)
252	Plot points using solid lines	plot(x,y)	plot(x,y,type='1') (Note: that's a lower-case 'L', not the number 1)
253	Plotting: color, point markers, linestyle	plot(x,y,str) where str is a string specifying color, point marker, and/or linestyle (see table below) (e.g. 'gs' for green squares with dashed line)	<pre>plot(x,y,type=str1, pch=arg2,col=str3, lty=arg4)</pre>
254	Plotting with logarithmic axes	semilogx, semilogy, and loglog functions take arguments like plot , and plot with logarithmic scales for x, y , and both axes, respectively	See tables below for possible values of the 4 parameters plot(, log='x'), plot(, log='y'), and plot(, log='xy') plot with logarithmic scales for x, y, and both axes, respectively

No.	Description	Matlab	R
255	Make bar graph where the x coordinates of the bars are in \mathbf{x} , and their heights are in \mathbf{y}	bar(x,y) Or just bar(y) if you only want to specify heights. Note: if A is a matrix, bar(A) interprets each column as a separate set of observations, and each row as a different observation within a set. So a 20×2 matrix is plotted as 2 sets of 20 observations, while a 2×20 matrix is plotted as 20 sets of 2 observations.	plot(x,y,type='h',lwd=8,lend=1) You may wish to adjust the line width (the lwd parameter).
256	Make histogram of values in \mathbf{x}	hist(x)	hist(x)
257	Given vector \mathbf{x} containing discrete values, make a bar graph where the x coordinates of bars are the values, and heights are the counts of how many times the values appear in \mathbf{x}	<pre>v=unique(x); c=hist(x,v); bar(v,c)</pre>	plot(table(x), lwd=8, lend=1) or barplot(table(x)) Note that in the latter approach, the bars have the proper labels, but do not actually use the x values as their x coordinates.
258	Given vector \mathbf{x} containing continuous values, lump the data into k bins and make a histogram / bar graph of the binned data	<pre>[c,m] = hist(x,k); bar(m,c) or for slightly different plot style use hist(x,k)</pre>	<pre>hist(x,seq(min(x), max(x), length.out=k+1))</pre>
259	Make a plot containing errorbars of height s above and below (x, y) points	errorbar(x,y,s)	errbar(x,y,y+s,y-s) Note: errbar is part of the Hmisc package (see item 348 for how to install/load packages).
260	Make a plot containing errorbars of height a above and b below (x, y) points	errorbar(x,y,b,a)	errbar(x,y,y+a,y-b) Note: errbar is part of the Hmisc package (see item 348 for how to install/load packages).
261	Other types of 2-D plots	stem(x,y) and stairs(x,y) for other types of 2-D plots. polar(theta,r) to use polar coordinates for plotting.	pie(v)

No.	Description	MATLAB	R
262	Make a 3-D plot of some data points with given x, y, z coordinates in the vectors \mathbf{x}, \mathbf{y} , and \mathbf{z} .	plot3(x,y,z) This works much like plot, as far as plotting symbols, line-types, and colors.	cloud(z~x*y) You can also use arguments pch and col as with plot. To make a 3-D plot with lines, do cloud(z~x*y,type='1', panel.cloud=panel.3dwire). See the rgl package to interactively rotate 3-D plots (and see item 348 for how to load packages).
263	Surface plot of data in matrix \mathbf{A}	surf(A)	persp(A)
		You can then click on the small curved arrow in the figure window (or choose "Rotate 3D" from the "Tools" menu), and then click and drag the mouse in the figure to rotate it in three dimensions.	You can include shading in the image via e.g. persp(A,shade=0.5). There are two viewing angles you can also specify, among other parameters, e.g. persp(A, shade=0.5, theta=50, phi=35).
264	Surface plot of $f(x,y) = \sin(x+y)\sqrt{y}$ for 100 values of x between 0 and 10, and 90 values of y between 2 and 8	<pre>x = linspace(0,10,100); y = linspace(2,8,90); [X,Y] = meshgrid(x,y); Z = sin(X+Y).*sqrt(Y); surf(X,Y,Z) shading flat</pre>	<pre>x = seq(0,10,len=100) y = seq(2,8,len=90) f = function(x,y) return(sin(x+y)*sqrt(y)) z = outer(x,y,f) persp(x,y,z)</pre>
265	Other ways of plotting the data from the previous command	<pre>mesh(X,Y,Z), surfc(X,Y,Z), surfl(X,Y,Z), contour(X,Y,Z), pcolor(X,Y,Z), waterfall(X,Y,Z). Also see the slice command.</pre>	contour(x,y,z) Or do s=expand.grid(x=x,y=y), and then wireframe(z~x*y,s) or wireframe(z~x*y,s,shade=TRUE) (Note: wireframe is part of the lattice package; see item 348 for how to load packages). If you have vectors x, y, and z all the same length, you can also do symbols(x,y,z).
266	Set axis ranges in a figure window	axis([x1 x2 y1 y2])	You have to do this when you make the plot, e.g. plot(x,y,xlim=c(x1,x2), ylim=c(y1,y2))
267	Add title to plot	title('somestring')	title(main='somestring') adds a main title, title(sub='somestring') adds a subtitle. You can also include main= and sub= arguments in a plot command.
268	Add axis labels to plot	<pre>xlabel('somestring') and ylabel('somestring')</pre>	title(xlab='somestring', ylab='anotherstr'). You can also include xlab= and ylab= arguments in a plot command.

No.	Description	Matlab	R
269	Include Greek letters or symbols in plot axis labels	You can use basic TeX commands, e.g. plot(x,y); xlabel('\phi^2 + \mu_{i,j}') or xlabel('fecundity \phi') See also help tex and parts of doc text_props for more about building labels using general LaTeX commands	<pre>plot(x,y,xlab= expression(phi^2 + mu['i,j'])) or plot(x,y,xlab=expression(paste('fecundity ', phi))) See also help(plotmath) and p. 98 of the R Graphics book by Paul Murrell for more.</pre>
270	Change font size to 16 in plot labels	For the legends and numerical axis labels, use set(gca, 'FontSize', 16), and for text labels on axes do e.g. xlabel('my x var', 'FontSize', 16)	For on-screen graphics, do par(ps=16) followed by e.g. a plot command. For PostScript or PDF plots, add a pointsize=16 argument, e.g. pdf('myfile.pdf', width=8, height=8, pointsize=16) (see items 286 and 287)
271	Add grid lines to plot	grid on (and grid off to turn off)	grid() Note that if you'll be printing the plot, the default style for grid-lines is to use gray dotted lines, which are almost invisible on some printers. You may want to do e.g. grid(lty='dashed', col='black') to use black dashed lines which are easier to see.
272	Add a text label to a plot	<pre>text(x,y,'hello')</pre>	<pre>text(x,y,'hello')</pre>
273	Add set of text labels to a plot. xv and yv are vectors.	<pre>s={'hi', 'there'}; text(xv,yv,s)</pre>	<pre>s=c('hi', 'there'); text(xv,yv,s)</pre>
274	Add an arrow to current plot, with tail at (xt, yt) and head at (xh, yh)	annotation('arrow', [xt xh], [yt yh]) Note: coordinates should be normalized figure coordinates, not coordinates within your displayed axes. Find and download from The Mathworks the file dsxy2figxy.m which converts for you, then do this: [fx,fy]=dsxy2figxy([xt xh], [yt yh]); annotation('arrow', fx, fy)	arrows(xt, yt, xh, yh)
275	Add a double-headed arrow to current plot, with coordinates $(x0, y0)$ and $(x1, y1)$	annotation('doublearrow', [x0 x1], [y0 y1]) See note in previous item about normalized figure coordinates.	arrows(x0, y0, x1, y1, code=3)
276	Add figure legend to top-left corner of plot	legend('first', 'second', 'Location', 'NorthWest')	<pre>legend('topleft', legend=c('first', 'second'), col=c('red', 'blue'), pch=c('*','o'))</pre>

MATLAB note: sometimes you build a graph piece-by-piece, and then want to manually add a legend which doesn't correspond with the order you put things in the plot. You can manually construct a legend by plotting "invisible" things, then building the legend using them. E.g. to make a legend with black stars and solid lines, and red circles and dashed lines: h1=plot(0,0,'k*-'); set(h1,'Visible', 'off'); h2=plot(0,0,'k*-'); set(h2,'Visible', 'off'); legend([h1 h2], 'blah, 'whoa'). Just be sure to choose coordinates for your "invisible" points within the current figure's axis ranges.

No.	Description	Matlab	R
277	Adding more things to a figure	hold on means everything plotted from now on in that figure window is added to what's already there. hold off turns it off. clf clears the figure and turns off hold.	points() and lines() work like plot, but add to what's already in the figure rather than clearing the figure first. points and lines are basically identical, just with different default plotting styles. Note: axes are not recalculated/redrawn when adding more things to a figure.
278	Plot multiple data sets at once	plot(x,y) where x and y are 2-D matrices. Each column of x is plotted against the corresponding column of y. If x has only one column, it will be re-used.	matplot(x,y) where x and y are 2-D matrices. Each column of x is plotted against the corresponding column of y. If x has only one column, it will be re-used.
279	Plot $\sin(2x)$ for x between 7 and 18	fplot('sin(2*x)', [7 18])	curve(sin(2*x), 7, 18, 200) makes the plot, by sampling the value of the function at 200 values between 7 and 18 (if you don't specify the number of points, 101 is the default). You could do this manually yourself via commands like tmpx=seq(7,18,len=200); plot(tmpx, sin(2*tmpx)).
280	Plot color image of integer values in matrix A	image(A) to use array values as raw indices into colormap, or imagesc(A) to automatically scale values first (these both draw row 1 of the matrix at the top of the image); or pcolor(A) (draws row 1 of the matrix at the bottom of the image). After using pcolor, try the commands shading flat or shading interp.	image(A) (it rotates the matrix 90 degrees counterclockwise: it draws row 1 of A as the left column of the image, and column 1 of A as the bottom row of the image, so the row number is the x coord and column number is the y coord). It also rescales colors. If you are using a colormap with k entries, but the value k does not appear in A , use image(A,zlim=c(1,k)) to avoid rescaling of colors. Or e.g. image(A,zlim=c(0,k-1)) if you want values 0 through $k-1$ to be plotted using the k colors.
281	Add colorbar legend to image plot	colorbar, after using image or pcolor.	Use filled.contour(A) rather than image(A), although it "blurs" the data via interpolation, or use levelplot(A) from the lattice package (see item 348 for how to load packages). To use a colormap with the latter, do e.g. levelplot(A,col.regions=terrain.colors(100)).
282	Set colormap in image	colormap(hot). Instead of hot, you can also use gray, flag, jet (the default), cool, bone, copper, pink, hsv, prism. By default, the length of the new colormap is the same as the currently-installed one; use e.g. colormap(hot(256)) to specify the number of entries.	<pre>image(A,col=terrain.colors(100)) The parameter 100 specifies the length of the colormap. Other colormaps are heat.colors(), topo.colors(), and cm.colors().</pre>

No.	Description	Matlab	R
283	Build your own colormap us-	Use an $n \times 3$ matrix; each row	Use a vector of hexadecimal strings,
	ing Red/Green/Blue triplets	gives R,G,B intensities between 0	each beginning with '#' and giving
		and 1. Can use as argument with	R,G,B intensities between 00 and FF.
		colormap. E.g. for 2 colors: mycmap	E.g. c('#80CC33','#3333B3'); can
		= [0.5 0.8 0.2 ; 0.2 0.2 0.7]	use as argument to col = parameter
			to image. You can build such a
			vector of strings from vectors of Red,
			Green, and Blue intensities (each
			between 0 and 1) as follows (for a
			2-color example): r=c(0.5,0.2);
			g=c(0.8,0.2); b=c(0.2,0.7);
			mycolors=rgb(r,g,b).

MATLAB plotting specifications, for use with plot, fplot, semilogx, semilogy, loglog, etc:

Symbol	Color	Symbol	Marker	Symbol	Linestyle
b	blue		point (.)	_	solid line
g	green	0	circle (o)	:	dotted line
r	red	х	cross(x)		dash-dot line
С	cyan	+	plus sign (+)		dashed line
m	magenta	*	asterisk (*)		
У	yellow	s	square (\Box)		
k	black	d	diamond (\lozenge)		
W	white	V	v triangle (down) (∇)		
		^	triangle (up) (Δ)		
		<	triangle (left) (\triangleleft)		
		>	triangle (right) (\triangleright)		
		р	pentragram star		
		h	hexagram star		

R plotting specifications for \mathbf{col} (color), \mathbf{pch} (plotting character), and \mathbf{type} arguments, for use with \mathtt{plot} , $\mathtt{matplot}$, \mathtt{points} , and \mathtt{lines} :

col	Description	pch	Description	type	Description
'blue'	Blue	'a'	a (similarly for other	р	points
			characters, but see '.'		
			below for an exception)		
'green'	Green	0	open square	1	lines
'red'	Red	1	open circle	b	both
'cyan'	Cyan	2	triangle point-up	С	lines part only of "b"
'magenta'	Magenta	3	+ (plus)	0	lines, points overplotted
'yellow'	Yellow	4	× (cross)	h	histogram-like lines
'black'	Black	5	diamond	s	steps
'#RRGGBB'	hexadecimal specifica-	6	triangle point-down	S	another kind of steps
	tion of Red, Green,				
	Blue				
(Other names)	See colors() for list of	,.,	rectangle of size 0.01	n	no plotting (can be use-
	available color names.		inch, 1 pixel, or 1 point		ful for setting up axis
			(1/72 inch) depending		ranges, etc.)
			on device		
			(See table on next page		
			for more)		

 R plotting specifications for lty (line-type) argument, for use with plot , $\mathsf{matplot}$, points , and lines :

lty	Description
0	blank
1	solid
2	dashed
3	dotted
4	dotdash
5	longdash
6	twodash

R plotting characters, i.e. values for $\bf pch$ argument (from the book R Graphics, by Paul Murrell, Chapman & Hall / CRC, 2006)

No.	Description	Matlab	R
284	Divide up a figure window	<pre>subplot(m,n,k) divides the current</pre>	There are several ways to do this, e.g.
	into smaller sub-figures	figure window into an $m \times n$ ar-	using layout or split.screen, al-
		ray of subplots, and draws in sub-	though they aren't quite as friendly
		plot number k as numbered in "read-	as Matlab 's. E.g. if you let $A =$
		ing order," i.e. left-to-right, top-to-	
		bottom. E.g. subplot(2,3,4) se-	$\begin{bmatrix} 1 & 1 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, then layout(A) will
		lects the first sub-figure in the second	[4 5 6] divide the figure into 6 sub-figures:
		row of a 2×3 array of sub-figures. You can do more complex things,	you can imagine the figure divide into
		e.g. subplot(5,5,[1 2 6 7]) se-	a 3×3 matrix of smaller blocks; sub-
		lects the first two subplots in the first	figure 1 will take up the upper-left
		row, and first two subplots in the	2×2 portion, and sub-figures 2–6 will
		second row, i.e. gives you a bigger	take up smaller portions, according to
		subplot within a 5×5 array of sub-	the positions of those numbers in the
		plots. (If you that command followed	matrix A. Consecutive plotting com-
		by e.g. subplot(5,5,3) you'll see	mands will draw into successive sub-
		what's meant by that.)	figures; there doesn't seem to be a way
			to explicitly specify which sub-figure
			to draw into next. To use split.screen, you can
			To use split.screen, you can do e.g. split.screen(c(2,1)) to
			split into a 2×1 matrix of sub-
			figures (numbered 1 and 2). Then
			split.screen(c(1,3),2) splits sub-
			figure 2 into a 1×3 matrix of smaller
			sub-figures (numbered 3, 4, and 5).
			screen(4) will then select sub-figure
			number 4, and subsequent plotting
			commands will draw into it.
			A third way to accomplish this is
			via the commands par(mfrow=) or
			<pre>par(mfcol=) to split the figure win- dow, and par(mfg=) to select which</pre>
			sub-figure to draw into.
			Note that the above methods are all
			incompatible with each other.
285	Force graphics windows to	drawnow (MATLAB normally only	R automatically updates graphics
	update	updates figure windows when a	windows even before functions/scripts
		script/function finishes and returns	finish executing, so it's not neces-
		control to the Matlab prompt, or	sary to explictly request it. But note
		under a couple of other circum-	that some graphics functions (partic-
		stances. This forces it to update	ularly those in the lattice package)
		figure windows to reflect any recent	don't display their results when called
		plotting commands.)	from scripts or functions; e.g. rather
			than levelplot() you need to do print(levelplot()). Such func-
			tions will automatically display their
			plots when called interactively from
			the command prompt.

7.2 Printing/saving graphics

No.	Description	Matlab	R
286	To print/save to a PDF file named fname.pdf	print -dpdf fname saves the contents of currently active figure window	First do pdf('fname.pdf'). Then, do various plotting commands to make your image, as if you were plotting in a window. Finally, do dev.off() to close/save the PDF file. To print the contents of the active figure window, do dev.copy(device=pdf, file='fname.pdf'); dev.off(). (But this will not work if you've turned off the display list via dev.control(displaylist='inhibit').) You can also simply use dev.copy2pdf(file='fname.pdf').
287	To print/save to a PostScript file fname.ps or fname.eps	print -dps fname for black & white PostScript; print -dpsc fname for color PostScript; print -deps fname for black & white Encapsulated PostScript; print -depsc fname for color Encapsulated PostScript. The first two save to fname.ps, while the latter two save to fname.eps.	postscript('fname.eps'), followed by your plotting commands, followed by dev.off() to close/save the file. Note: you may want to use postscript('fname.eps', horizontal=FALSE) to save your figure in portrait mode rather than the default landscape mode. To print the contents of the active figure window, do dev.copy(device=postscript, file='fname.eps'); dev.off(). (But this will not work if you've turned off the display list via dev.control(displaylist='inhibit').) You can also include the horizontal=FALSE argument with dev.copy(). The command dev.copy2eps(file='fname.eps') also saves in portrait mode.
288	To print/save to a JPEG file fname.jpg with jpeg quality = 90 (higher quality looks better but makes the file larger)	print -djpeg90 fname	<pre>jpeg('fname.jpg',quality=90), followed by your plotting commands, followed by dev.off() to close/save the file.</pre>

7.3 Animating cellular automata / lattice simulations

No.	Description	Matlab	R
289	To display images of cellu-	Repeatedly use either pcolor or	If you simply call image repeatedly,
	lar automata or other lattice	image to display the data. Don't	there is a great deal of flicker-
	simulations while running in	forget to call drawnow as well, oth-	ing/flashing. To avoid this, after
	real time	erwise the figure window will not be	drawing the image for the first time
		updated with each image.	using e.g. image(A), from then
			on only use image(A,add=TRUE),
			which avoids redrawing the entire
			image (and the associated flicker).
			However, this will soon consume a
			great deal of memory, as all drawn
			images are saved in the image buffer.
			There are two solutions to that
			problem: (1) every k time steps,
			leave off the "add=TRUE" argument
			to flush the image buffer (and get
			occasional flickering), where you
			choose k to balance the flickering
			vs. memory-usage tradeoff; or
			(2) after drawing the first image, do dev.control(displaylist=
			'inhibit') to prohibit retaining the
			data. However, the latter solution
			means that after the simulation is
			done, the figure window will not be
			redrawn if it is resized, or temporarily
			obscured by another window. (A
			call to dev.control(displaylist=
			'enable') and then one final
			image(A) at the end of the sim-
			ulation will re-enable re-drawing
			after resizing or obscuring, without
			consuming extra memory.)

8 Working with files

No.	Description	Matlab	R
290	Create a folder (also known as a "directory")	mkdir dirname	dir.create('dirname')
291	Set/change working directory	cd dirname	setwd('dirname')
292	Get working directory	pwd	getwd()
293	See list of files in current working directory	dir	dir()
294	Run commands in file 'foo.m' or 'foo.R' respectively	foo But see item 344 for how to tell MATLAB where to look for the file foo.m .	source('foo.R')
295	Read data from text file "data.txt" into matrix A	A=load('data.txt') or A=importdata('data.txt') Note that both routines will ignore com- ments (anything on a line following a "%" character)	A=as.matrix(read.table('data.txt')) This will ignore comments (anything on a line following a "#" character). To ignore comments indicated by "%", do A=as.matrix(read.table('data.txt', comment.char='%'))
296	Read data from text file "data.txt" into matrix A , skipping the first \mathbf{s} lines of the file	<pre>tmp=importdata('data.txt', ' ',s); a=tmp.data</pre>	<pre>A=as.matrix(read.table('data.txt', skip=s))</pre>
297	Write data from matrix A into text file "data.txt"	save data.txt A -ascii	<pre>write(t(A), file='data.txt', ncolumn=dim(A)[2])</pre>
298	Save all variables/data in the workspace to a file foo (with appropriate suffix)	save foo.mat (MATLAB recognizes files with ".mat" suffix as binary save files). Just save with no arguments saves to matlab.mat	save.image(file='foo.rda') (You may use whatever filename suffix you like.) Just save.image() with no arguments saves to .RData
299	Reload all variables/data from a saved file foo (with appropriate suffix)	load foo.mat. Just load with no arguments tries to load from matlab.mat.	load('foo.rda')

9 Miscellaneous

9.1 Variables

No.	Description	Matlab	R
300	Assigning to variables	x = 5	$x \leftarrow 5 \text{ or } x = 5 \text{ Note: for compati-}$
			bility with S-plus, many people prefer
901	D		the first form.
301	From within a function, assign a value to variable y	assignin('base', 'y', 7)	y <<- 7
	in the base environment (i.e.		
	the command prompt envi-		
	ronment)		
302	From within a function, ac-	evalin('base', 'y')	<pre>get('y', envir=globalenv())</pre>
	cess the value of variable \mathbf{y}		Though note that inside a function,
	in the base environment (i.e.		if there isn't a local variable y, then
	the command prompt envi-		just the expression y will look for one
	ronment)		in the base environment, but if there
			is a local y then that one will be used instead.
303	Short list of defined variables	who	ls()
304	Long list of defined variables	whos	ls.str()
305	See detailed info about the	whos ab	str(ab)
	variable ab		
306	See detailed info about all	whos *ab*	ls.str(pattern='ab')
	variables with "ab" in their		
20-	name		
307	Open graphical data editor,	openvar(A), or double-click on the	fix(A)
	to edit the value of variable A (useful for editing values in	variable in the Workspace pane (if it's being displayed) of your MAT-	
	a matrix, though it works for	LABdesktop	
	non-matrix variables as well)	LABGESKIOP	
308	Clear one variable	clear x	rm(x)
309	Clear two variables	clear x y	rm(x,y)
310	Clear all variables	clear all	rm(list=ls())
311	See if variable \mathbf{x} exists (the	exist('x')	exists('x')
	commands given can also		
	take more arguments to be		
312	more specific) See what type of object x is	class(x)	class(x), typeof(x), and mode(x)
312	See what type of object x is	Class(x)	give different aspects of the "type" of
			x
313	(Variable names)	Variable names must begin with a	Variable names may contain letters,
	,	letter, but after that they may con-	digits, the period, and the underscore
		tain any combination of letters, dig-	character. They cannot begin with a
		its, and the underscore character.	digit or underscore, or with a period
		Names are case-sensitive.	followed by a digit. Names are case-
914	Dogult of look same a	and contains the second of the last	sensitive.
314	Result of last command	ans contains the result of the last command which did not assign its	.Last.value contains the result of the last command, whether or not its
		value to a variable. E.g. after 2+5;	value was assigned to a variable. E.g.
		x=3, then ans will contain 7.	after 2+5; x=3, then .Last.value will
		-, 001100111	contain 3.
315	See how many bytes of mem-	<pre>tmp = whos('x'); tmp.bytes</pre>	object.size(x)
	ory are used to store a given		
	object \mathbf{x}		

9.2 Strings and Misc.

No.	Description	Matlab	R
316	Line continuation	If you want to break up a MATLAB	In R, you can spread commands out
010	Line continuation	command over more than one line,	over multiple lines, and nothing ex-
		end all but the last line with three	tra is necessary. R will continue read-
		periods: "". E.g.:	ing input until the command is com-
		$x = 3 + \dots$	plete. However, this only works when
		4	the syntax makes it clear that the first
		or	line was not complete. E.g.:
		$x = 3 \dots$	x = 3 +
		+ 4	4
		' '	works, but
			x = 3
			+ 4
			does not treat the second line as a con-
			tinuation of the first.
317	Controlling formatting of	format short g and	options(digits=6) tells R you'd like
011	output	format long g are handy; see	to use 6 digits of precision in values it
	odepat	help format	displays (it is only a suggestion, not
		noip format	strictly followed)
318	Exit the program	quit or exit	q() or quit()
319	Comments	% this is a comment	# this is a comment
320	Display a string	disp('hi there') or to	print('hi there') Note: to
020	Display a string	omit trailing newline use	avoid having double-quotes
		fprintf('hi there')	around the displayed string, do
			print('hi there', quote=FALSE)
			or print(noquote('hi there')).
			Or use cat('hi there'). But note
			that use of cat in a script won't
			put newlines at the end of each
			string. To achieve that, either do
			cat('hi there\n') or cat('hi
			there',fill=TRUE)
321	Display a string containing	disp('It''s nice') or	<pre>print('It\'s nice') or</pre>
	single quotes	to omit trailing newline	print("It's nice") Also see
		<pre>fprintf('It''s nice')</pre>	cat in item above.
322	Give prompt and read numer-	x = input('Enter data:')	<pre>print('Enter data:'); x=scan()</pre>
	ical input from user	-	However, note that if you are exe-
			cuting commands from a file (via the
			source command or some mechanism
			in R's GUI), scan is likely to read its
			input from the following lines of the
			file, rather than from the keyboard.
			Also see cat 2 items above.
323	Give prompt and read char-	<pre>x = input('Enter string:','s')</pre>	<pre>x = readline('Enter string:')</pre>
	acter (string) input from user		
324	Concatenate strings	['two hal' 'ves']	<pre>paste('two hal', 'ves', sep='')</pre>
325	Concatenate strings stored in	<pre>v={'two ', 'halves'};</pre>	<pre>v=c('two ', 'halves');</pre>
	a vector	strcat(v{:}) But note that	<pre>paste(v, collapse=',')</pre>
		this drops trailing spaces on	
		strings. To avoid that, instead do	
		strcat([v{:}])	
326	Extract substring of a string	text1='hi there';	text1='hi there';
		text2=text(2:6)	text2=substr(text1,2,6)

No.	Description	Matlab	R
327	Determine whether elements of a vector are in a set, and give positions of corresponding elements in the set.	<pre>x = {'a', 'aa', 'bc', 'c'}; y = {'da', 'a', 'bc', 'a', 'bc', 'aa'}; [tf, loc]=ismember(x,y) Then loc contains the locations of last occurrences of elements of x in the set y, and 0 for unmatched elements.</pre>	<pre>x = c('a', 'aa', 'bc', 'c'); y = c('da', 'a', 'bc', 'a', 'bc', 'aa'); loc=match(x,y) Then loc contains the locations of first oc- curences of elements of x in the set y, and NA for unmatched elements.</pre>
328	Find indices of regular expression pattern \mathbf{p} in string \mathbf{s}	v=regexp(s,p)	v=gregexpr(p,s)[[1]] (The returned vector also has a "match.length" attribute giving lengths of the matches; this attribute can be removed via attributes(v)=NULL.)
329	Perform some commands only if the regular expression \mathbf{p} is contained in the string \mathbf{s}	<pre>if (regexp(s,p) commands end</pre>	<pre>if (grepl(p,s)) { commands }</pre>
330	Convert number to string	num2str(x)	as.character(x)
331	Use sprintf to create a formatted string. Use %d for integers ("d" stands for "decimal", i.e. base 10), %f for floating-point numbers, %e for scientific-notation floating point, %g to automatically choose %e or %f based on the value. You can specify field-widths/precisions, e.g. %5d for integers with padding to 5 spaces, or %.7f for floating-point with 7 digits of precision. There are many other options too; see the docs.	<pre>x=2; y=3.5; s=sprintf('x is %d, y=%g', x, y)</pre>	<pre>x=2; y=3.5 s=sprintf('x is %d, y is %g', x, y)</pre>
332	Machine epsilon ϵ_{mach} , i.e. difference between 1 and the next largest double-precision floating-point number	eps (See help eps for various other things eps can give.)	.Machine\$double.eps
333	Pause for x seconds	pause(x)	Sys.sleep(x)
334	Wait for user to press any key	pause	Don't know of a way to do this in R, but scan(quiet=TRUE) will wait until the user presses the Enter key
335	Produce a beep (or possibly a visual signal, depending on preferences set)	beep	alarm()
336	Measure CPU time used to	t1=cputime;commands;	t1=proc.time();commands
337	do some commands Measure elapsed ("wall-	<pre>cputime-t1 tic;commands ; toc or</pre>	<pre>; (proc.time()-t1)[1] t1=proc.time();commands</pre>
	clock") time used to do some commands	<pre>t1=clock;commands ; etime(clock,t1)</pre>	; (proc.time()-t1)[3]
338	Print an error message and interrupt execution	error('Problem!')	stop('Problem!')

No.	Description	Matlab	R
339	Print a warning message	<pre>warning('Smaller problem!')</pre>	<pre>warning('Smaller problem!')</pre>
340	Putting multiple statements on one line	Separate statements by commas or semicolons. A semicolon at the end of a statement suppresses display of the results (also useful even with just a single statement on a line), while a comma does not.	Separate statements by semicolons.
341	Evaluate contents of a string s as command(s).	eval(s)	eval(parse(text=s))
342	Get a command prompt for debugging, while executing a script or function. While at that prompt, you can type expressions to see the values of variables, etc.	Insert the command keyboard in your file. Note that your prompt will change to K>>. When you are done debugging and want to continue executing the file, type return.	Insert the command browser() in your file. Note that your prompt will change to Browse[1]>. When you are done debugging and want to continue executing the file, either type c or just press return (i.e. enter a blank line). Note, if you type n, you enter the step debugger.
343	Show where a command is	which sqrt shows you where the file defining the sqrt function is (but note that many basic functions are "built in," so the MATLAB function file is really just a stub containing documentation). This is useful if a command is doing something strange, e.g. sqrt isn't working. If you've accidentally defined a variable called sqrt, then which sqrt will tell you, so you can clear sqrt to erase it so that you can go back to using the function sqrt.	R does not execute commands directly from files, so there is no equivalent command. See item 294 for reading command files in R.
344	Query/set the search path.	path displays the current search path (the list of places MATLAB searches for commands you enter). To add a directory "/foo to the beginning of the search path, do addpath "/foo -begin or to add it to the end of the path, do addpath "/foo -end (Note: you should generally add the full path of a directory, i.e. in Linux or Mac OS-X something like "/foo as above or of the form /usr/local/lib/foo, while under Windows it would be something like C:/foo)	R does not use a search path to look for files. See item 294 for reading command files in R.

No.	Description	Matlab	R
345	Startup sequence	If a file startup.m exists in the	If a file .Rprofile exists in the cur-
		startup directory for Matlab, its	rent directory or the user's home di-
		contents are executed. (See the	rectory (in that order), its contents
		Matlab docs for how to change the	are sourced; saved data from the file
		startup directory.)	.RData (if it exists) are then loaded.
			If a function .First() has been de-
			fined, it is then called (so the obvious
			place to define this function is in your
			.Rprofile file).
346	Shutdown sequence	Upon typing quit or exit, MATLAB	Upon typing q() or quit(), R will call
		will run the script finish.m if present	the function .Last() if it has been de-
		somewhere in the search path.	fined (one obvious place to define it
0.45	D 1/ 1		would be in the .Rprofile file)
347	Execute a command (such as	!date	<pre>system('date')</pre>
	date) in the operating sys-		
348	tem	Magy and least them are least the	The install and the defendance
348	Install and load a package.	MATLAB does not have packages. It	To install e.g. the deSolve package, you can use the command
		has toolboxes, which you can purchase and install. "Contributed"	install.packages('deSolve').
		code (written by end users) can sim-	You then need to load the package
		ply be downloaded and put in a di-	in order to use it, via the command
		rectory which you then add to MAT-	library('deSolve'). When running
		LAB's path (see item 344 for how to	R again later you'll need to load the
		add things to MATLAB's path).	package again to use it, but you
		G	should not need to re-install it. Note
			that the lattice package is typically
			included with binary distributions of
			R, so it only needs to be loaded, not
			installed.

10 Spatial Modeling

No.	Description	Matlab	R
349	Take an $L \times L$ matrix A of	$A = (A \mid (rand(L) < p))*1;$	A = (A (matrix(runif(L^2),L)
	0s and 1s, and "seed" frac-		< p))*1
	tion p of the 0s (turn them		
	into 1s), not changing entries		
	which are already 1.		
350	Take an $L \times L$ matrix A of 0s	A = (A & (rand(L) < 1-p))*1;	$A = (A \& (matrix(runif(L^2),L))$
	and 1s, and "kill" fraction p		< 1-p))*1
	of the 1s (turn them into 0s),		
	not changing the rest of the		
	entries		
351	Do "wraparound" on a coor-	mod(newx-1,L)+1 Note: for porta-	((newx-1) %% L) + 1 Note: for
	dinate newx that you've al-	bility with other languages such as	portability with other languages such
	ready calculated. You can	C which handle MOD of negative	as C which handle MOD of nega-
	replace \mathbf{newx} with $\mathbf{x} + \mathbf{dx}$ if	values differently, you may want to	tive values differently, you may want
	you want to do wraparound	get in the habit of instead doing	to get in the habit of instead doing
	on an offset x coordinate.	mod(newx-1+L,L)+1	((newx-1+L)%%L) + 1
352	Randomly initialize a portion	dx=ix2-ix1+1; dy=iy2-iy1+1;	dx=ix2-ix1+1; dy=iy2-iy1+1;
	of an array: set fraction p of	$A(iy1:iy2,ix1:ix2) = \dots$	A[iy1:iy2,ix1:ix2] =
	sites in rows iy1 through iy2	(rand(dy,dx) < p0)*1;	(matrix(runif(dy*dx),dy) <
	and columns $ix1$ through $ix2$		p0)*1
	equal to 1 (and set the rest of		
	the sites in that block equal		
	to zero). Note: this assume		
	iy1 < iy2 and $ix1 < ix2$.		

Index of MATLAB commands and concepts $\,$

' , 87	$\mathtt{break},201$
, , 340	bsxfun, 28
.*, 86	- 1 901
\dots , 316	cd, 291
./, 94	ceil, 68
.^, 98	cell, 50
/, 93	cell arrays, 50
:, 12–14	extracting elements of, 51
;, 340	cellular automata animation, 289
=, 300	chol, 104
[, 6–8	circshift, 35
% , 319	class, 312
&, 196, 197	clear, 308-310
^, 56, 96, 97	clf, 277 clock, 337
88, 95	close, 250
!, 347	colon, see:
{ 51	colorbar, 281
1 - 77 70	colormap
abs, 57, 78	building your own, 283
acos, 62	colormap, 282, 283
acosh, 64	column vector, 7
addpath, 344	comments, 319
all, 198	complex numbers, 77–82
angle, 79	cond, 108-110
annotation, 274, 275 ans, 314	conj, 80
any, 199	continue, 201
arrows in plots, 274, 275	contour, 265
asin, 62	conv, 175
asinh, 64	corr, 127-132
assignin, 301	$\cos, 61$
atan, 62	cosh, 63
atanh, 64	cov, 125, 126
average, see mean	cputime, 336
axis, 266	cross, 84
	csape, 188, 190, 191
bar, 255, 257, 258	cubic splines, 189, 190
beep, 335	natural, 188
binocdf, 240	not-a-knot, 192
$\mathtt{binopdf},233$	periodic, 191
binornd, 224	cumprod, 144
bitand, 76	$\mathtt{cumsum},\ 140143$
$\mathtt{bitcmp}, 76$	cumulative distribution functions
bitor, 76	binomial, 240
bitshift, 76	continuous uniform on interval (a, b) , 244
bitwise logical operations, 76	discrete uniform from $1n$, 245
$\mathtt{bitxor}, 76$	exponential, 242
boolean tests	normal, 243
scalar, 196	Poisson, 241
vector, 197–199	dataset, 124
	uauaseu, 124

debugging, 342	font size in plots, 270
\det , 90	for, 193
diag, 22, 23	format, 317
diff, 146	fplot, 279
differential equations, see ode45	fprintf, 320, 321
dir, 293	function
disp, 320, 321	multi-variable
doc, 4	minimization, 180
dot, 83	minimization, 100 minimization over first parameter only, 179
drawnow, 285, 289	minimization over only some parameters,
diawiow, 200, 200	181
echelon form, see matrix	
eig, 100	single-variable
element-by-element matrix operations, see ma-	minimization, 178
	user-written, 203
trix	returning multiple values, 204
else, 195	fzero, 177
elseif, 195	070
end, 42	gca, 270
eps, 332	gcf, 248
erf, 71	$\mathtt{get},249$
erfc, 72	Greek letters
erfcinv, 74	in plot labels, 269
erfinv, 73	grid, 271
error, 338	
errorbar, 259, 260	$\mathtt{help},\ 13$
etime, 337	helpbrowser, 4
eval, 341	helpdesk, 4
evalin, 302	hilb, 48
exist, 311	hist, 173, 174, 256, 257
exit, 318, 346	hold, 277
exp, 58	,
expcdf, 242	identity, see matrix
	if, 194-196
expm, 139	imag, 82
exppdf, 235	image, 280, 289
exprnd, 226	imagesc, 280
eye, 21	importdata, 295, 296
f: 246 247	ind2sub, 38
figure, 246, 247	indexing
file	matrix, 10
restoring workspace from, 299	
running commands in, 294	with a single index, 11
saving workspace to, 298	vector, 9
text	input, 322, 323
reading data from, 295, 296	inv, 91
saving data to, 297	inverse, see matrix
find, 169-171	ismember, 327
finish.m, 346	
fix, 69	keyboard, 342
fliplr, 36	11 976
flipud, 37	legend, 276
floor, 67	length, 159, 161
fminbnd, 178, 179	linspace, 15
fminsearch, 180, 181	load, $295, 299$
<u> </u>	log, 59

log10, 60	rank, 99
log2, 60	re-shaping its elements into a vector, 32
loglog, 254	reverse elements in columns, 37
logspace, 16	reverse elements in rows, 36
${ t lookfor}, 5$	Schur decomposition, 103
lu, 101	singular value decomposition, 102
	size of, 156–158, 160, 161
matrix, 8	sum
basis for image/range/column space, 112	of all elements, 133
basis for null space, 111	of columns of, 134
boolean operations on, 170, 171	of rows of, 135
changing shape of, 45	trace, 92
Cholesky factorization, 104	transpose, 87
circular shift, 35	upper-triangular portion of, 47
condition number, 108–110	$\max, see \min$
containing all indentical entries, 20	mean, 113-115
containing all zeros, 19	median, 123
converting row, column to single index, 39	$\mathrm{mesh},265$
converting single-index to row, column, 38	meshgrid, 27, 127, 264
cumulative sums of all elements of, 143	min, 148-151, 153-155
cumulative sums of columns, 141	$\mathtt{mind},152$
cumulative sums of rows, 142	mkdir, 290
determinant, 90	mnpdf, 239
diagonal, 22	mnrnd, 231, 232
echelon form, 89	mod, 65, 351
eigenvalues and eigenvectors of, 100	mode, 122
equation	mode of vector of values, 122
solving, 88	modulo arithmetic, 65, 351
exponential of, 139	multiple statements on one line, 340
extracting a column of, 30	,
extracting a rectangular piece of, 33	nchoosek, 75
extracting a row of, 31	norm, 106, 107
extracting specified rows and columns of, 34	$\mathtt{normcdf},243$
"gluing" together, 24, 25	$\mathtt{normpdf},236$
identity, 21	normrnd, 230
inverse, 91	null, 111
lower-triangular portion of, 46	$\mathtt{num2str},330$
LU factorization, 101	numel, 160
minimum of values of, 149	
minimum value of each column of, 150	ode $45, 205-207$
minimum value of each row of, 151	ones, 18, 20
modifying elements given lists of rows and	openvar, 307
columns, 40	optimization, 178–181
multiplication, 85	orth, 112
element-by-element, 86	path, 344
N-dimensional, 49	pause, 333, 334
norm, 107	pcolor, 265, 280, 289
powers of, 97	
product	perform some commands with probability p , 217
of all elements, 136	permutation of integers 1n, 218
of columns of, 137	plot, 251–253, 278 Creak letters in axis labels, 260
of rows of, 138	Greek letters in axis labels, 269
QR factorization, 105	plot3, 262 poisscdf, 241
	Potobout, 241

poisspdf, 234	$\mathtt{repmat},26$
poissrnd, 225	reshape, 45, 49
polar, 261	$\mathtt{rng}, 2\overline{23}$
polyfit, 184-186	roots
polynomial	of general single-variable function, 177
least-squares fitted, 185–187	polynomial, 176
multiplication, 175	roots, 176
roots of, 176	round, 66
ppval, 188, 190, 191	row vector, 6
print, 286–288	rref, 89
	1161, 03
probability density functions	sampling values from a vector, 220, 221
binomial, 233	save, 297, 298
continuous uniform on interval (a,b) , 237	
discrete uniform from 1n, 238	schur, 103
exponential, 235	semilogx, 254
multinomial, 239	semilogy, 254
normal, 236	set, 270
Poisson, 234	shading, 280
prod, 136-138	sign, 70
pwd, 292	sin, 61
	$\mathtt{sinh},63$
qr, 105	$\mathtt{size},\ 156158$
quad, 182	${ t slice},265$
quit, 318, 346	sort, 162, 163, 219
	sortrows, $164 – 167$
rand, 208-216, 222, 223	spline, 192
randi, 212, 213	splines, see cubic splines
random values	sprintf, 331
Bernoulli, 214	sqrt, 55
binomial, 224	stairs, 261
continuous uniform distribution on interval	standard deviation, see std
(a,b), 211, 229	startup.m, 345
continuous uniform distribution on interval	std, 116-118
(0,1), 208-210	stem, 261
discrete uniform distribution from ab , 216	stop, 338
discrete uniform distribution from 1k, 213,	strcat, 325
227, 228	string
discrete uniform distribution, 212	
exponential, 226	concatenation, 324
general discrete distribution, 222	converting number to, 330
k unique values sampled from integers 1 n ,	pattern matching, 328, 329
219	substrings, 326
	struct, 53
multinomial, 231, 232	sub2ind, 39, 40
normal, 230	subplot, 284
Poisson, 225	sum, 133-135, 197
setting the seed, 223	summary, 124
randperm, 218, 219	$\mathtt{surf},263,264$
randsample, 219-221	$\mathtt{surfc},265$
RandStream, 223	$\mathtt{surfl}, 265$
rank, 99	svd, 102
rcond, 108	$\mathtt{switch},202$
real, 81	
regexp. 328, 329	tan. 61

```
while, 200
tanh, 63
text, 272, 273
                                                        who, 303
tic, 337
                                                        whos, 304-306, 315
title, 267
                                                        xlabel, 268-270
toc, 337
trace, 92
                                                        ylabel, 268, 269
transpose, see matrix
trapz, 183
                                                        zeros, 17, 19
tril, 46
triu, 47
unidcdf, 245
unidpdf, 238
unidrnd, 227, 228
unifcdf, 244
unifpdf, 237
unifrnd, 229
unique, 172, 173, 257
var, 119-121
variables
    assigning, 300
    assigning in base environment from func-
         tion, 301
    evaluating from base environment within func-
         tion, 302
    names, 313
variance, see var
vector
    boolean operations on, 168, 169
    containing all indentical entries, 18
    containing all zeros, 17
    counts of binned values in, 174
    counts of discrete values in, 173
    cross product, 84
    cumulative sum of elements of, 140
    differences between consecutive elements of,
    dot product, 83
    minimum of values of, 148
    norm, 106
    position of first occurance of minimum value
         in, 155
    product of all elements, 136
    reversing order of elements in, 29
    size of, 159
    sum of all elements, 133
    summary of values in, 124
    truncating, 41
    unique values in, 172
warning, 339
waterfall, 265
```

which, 343

Index of ${\sf R}$ commands and concepts

*, 96	$\mathtt{cbind},\ 24,\ 40$
/, 94	ceiling, 68
:, 12, 13	cellular automata animation, 289
;, 340	chol, 104
<-, 300	choose, 75
<<-, 301	class, 312
=, 300	cloud, 262
?, 1, 2	${\tt coef},184187$
[[, 51	${\tt colMeans},114$
#, 319	colon, see:
%% , 65, 351	colormap
%x%, 26	building your own, 283
&, 196, 197	for image, 282
^, 56, 98	colSums, 134
	column vector, 7
abs, 57, 78	comments, 319
$a\cos, 62$	complex numbers, 77–82
acosh, 64	Conj, 80
$\mathtt{alarm},335$	contour, 265
all, 198	convolve, 175
any, 199	cor, 128-132
$\mathtt{apply}, 36, 37, 118, 120, 121, 137, 150, 151$	cos, 61
Arg, 79	$\cosh, 63$
array, 49	cov, 125-127
${ t arrayInd},38$	cubic splines, 189, 190, 192
arrows, 274, 275	natural, 188
${\tt as.character},330$	periodic, 191
as.formula, 186	cummax, 145
as.numeric, 173	cummin, 145
asin, 62	cumprod, 144
asinh, 64	cumsum, 140-143
atan, 62	cumulative distribution functions
atanh, 64	binomial, 240
average, see mean	continuous uniform on interval (a, b) , 244
	discrete uniform from $1n$, 245
barplot, 257	exponential, 242
bitwAnd, 76	normal, 243
bitwise logical operations, 76	Poisson, 241
bitwNot, 76	curve, 279
bitwOr, 76	,
bitwShiftL, 76	$\mathtt{data.frame},53$
bitwShiftR, 76	${\tt dbinom},233$
bitwXor, 76	debugging, 342
boolean tests	$\mathtt{det},90$
scalar, 196	dev.control, 286, 287, 289
vector, 197–199	$\mathtt{dev.copy},286,287$
break, 201	dev.copy2eps, 287
browser, 342	${\tt dev.copy2pdf},286$
c 6 7	dev.cur(), 248
c, 6, 7 cat, 320	${\tt dev.list},249$
Cat, 920	

dev.new, 246	${\tt globalenv},302$
${\tt dev.off},250,286 – 288$	graphics
$\mathtt{dev.set},247$	not being displayed from scripts/functions
dexp, 235	285
$\mathtt{diag},2123$	Greek letters
diff, 146	in plot labels, 269
differential equations, see lsoda	gregexpr, 328
\dim , 45, 156–158, 161	grepl, 329
dir, 293	grid, 271
dir.create, 290	
dmultinom, 239	$\mathtt{help},1,2$
dnorm, 236	$\mathtt{help.search},5$
dpois, 234	${\tt help.start},4$
dunif, 237	Hilbert, 48
,	hist, 174, 256, 258
echelon form, see matrix	
eig, 100	identity, see matrix
element-by-element matrix operations, see ma-	if, 194-196
trix	ifelse, 147
else, 195	Im, 82
errbar, 259, 260	image, 280, 289
eval, 341	indexing
exists, 311	matrix, 10
exp, 58	with a single index, 11
expand, 101	vector, 9
expand.grid, 265	install.packages, 348
expm, 139	integrate, 182
	inverse, see matrix
file	
restoring workspace from, 299	$\mathtt{jpeg},288$
running commands in, 294	
saving workspace to, 298	kappa, 109
text	kronecker, 26
reading data from, 295, 296	. 040
saving data to, 297	.Last, 346
filled.contour, 281	Last.value, 314
.First, 345	lattice package, 265, 281, 285, 348
fix, 307	layout, 284
floor, 67	legend, 276
font size in plots, 270	length, 41, 42, 159, 160
for, 193	levelplot, 281 , 285
function	library, $3,348$
multi-variable	lines, 277
minimization, 180	lists, 50
minimization over first parameter only, 179	extracting elements of, 51
minimization over only some parameters,	lm, 184-187
181	lm.fit, 186
single-variable	load, 299
minimization, 178	log, 59
user-written, 203	log10, 60
· · · · · · · · · · · · · · · · · · ·	log2, 60
returning multiple values, 204	lower.tri, 47
get, 302	ls, 303
getwd, 292	ls.str, 304, 306
0	

1soda, 205-207	reverse elements in columns, 37
	reverse elements in rows, 36
.Machine\$double.eps, 332	Schur decomposition, 103
match, 327	singular value decomposition, 102
matplot, 278	size of, 156–158, 160, 161
matrix, 8	sum
basis for image/range/column space, 112	of all elements, 133
basis for null space, 111	of columns of, 134
boolean operations on, 170, 171	of rows of, 135
changing shape of, 45	trace, 92
Cholesky factorization, 104	transpose, 87
circular shift, 35	upper-triangular portion of, 47
condition number, 108–110	matrix, 8, 19, 20
containing all indentical entries, 20	$\max, see \min$
containing all zeros, 19	mean, 113
converting row, column to single index, 39	median, 123
converting single-index to row, column, 38	$\min, 148-151, 154$
cumulative sums of all elements of, 143	Mod, 78
cumulative sums of columns, 141	mode, 312
cumulative sums of rows, 142	mode of vector of values, 122
determinant, 90	modulo arithmetic, 65, 351
diagonal, 22	multiple statements on one line, 340
echelon form, 89	-
eigenvalues and eigenvectors of, 100	$\mathtt{names},52,173$
equation	$\mathtt{ncol},157$
solving, 88	$\mathtt{next},201$
exponential of, 139	$\mathtt{noquote},320$
extracting a column of, 30	norm, 106, 107
extracting a rectangular piece of, 33	$\mathtt{nrow},156$
extracting a row of, 31	null, 111
extracting specified rows and columns of, 34	21, 21,
"gluing" together, 24, 25	object.size, 315
identity, 21	optim, 180, 181
inverse, 91	optimization, 178–181
lower-triangular portion of, 46	optimize, 178, 179
LU factorization, 101	options
minimum of values of, 149	digits=, 317
minimum value of each column of, 150	order, 164-167
minimum value of each row of, 151	orth, 112
modifying elements given lists of rows and	outer, 28, 186, 264
columns, 40	packages
multiplication, 85	installing, 348
element-by-element, 86	loading, 348
N-dimensional, 49	par, 270
norm, 107	par
powers of, 97	mfcol=, 284
product	mfrow=, 284
of all elements, 136	parse, 341
of columns of, 137	paste, 186, 324, 325
of rows of, 138	pbinom, 240
QR factorization, 105	pdf, 270, 286
rank, 99	perform some commands with probability p , 217
re-shaping its elements into a vector, 32	permutation of integers 1n, 218

persp, 263, 264	discrete uniform distribution, 212
pexp, 242	exponential, 226
pie, 261	general discrete distribution, 222
plot, 255, 257	k unique values sampled from integers $1n$,
plot, 251-254	219
Greek letters in axis labels, 269	multinomial, 231, 232
$\mathtt{main}=,267$	normal, 230
sub=, 267	Poisson, 225
xlab=, 268, 269	setting the seed, 223
xlim=, 266	rbind, 25
ylab=, 268, 269	rbinom, 224
ylim=, 266	rcond, 108, 110
pmin, 152, 153	RData, 345
pnorm, 71, 72, 243	Re, 81
points, 277	read.table, 295, 296
polynomial	readline, 323
least-squares fitted, 185–187	rep, 17, 18
multiplication, 175	rev, 29
roots of, 176	rexp, 226
polyreg, 186	rgb, 283
polyroot, 176	
	rm, 308–310
postscript, 287	rmultinom, 231, 232
ppois, 241 print, 285, 320, 321	rnorm, 230
	roots
probability density functions	of general single-variable function, 177
binomial, 233	polynomial, 176
continuous uniform on interval (a, b) , 237	round, 66
discrete uniform from $1n$, 238	row vector, 6
exponential, 235	rowMeans, 115
multinomial, 239	rpois, 225
normal, 236	Rprofile, 345
Poisson, 234	runif, $208-216$, 229
proc.time, 336, 337	1- 010 016 010 000 007 000
prod, 136-138	sample, 212–216, 218–222, 227, 228
punif, 244	sampling values from a vector, 220, 221
~ 210 246	save.image, 298
q, 318, 346	scan, 322, 334
qnorm, 73, 74	Schur, 103
qr, 99, 105	sd, 116-118
quartz, 246	seq, 14-16
quit, 318, 346	set.seed, 223
random values	setwd, 291
Bernoulli, 214	sign, 70
binomial, 224	$\sin, 61$
continuous uniform distribution on interval	\sinh , 63
(a,b), 211, 229	solve, 88, 91, 93, 95
continuous uniform distribution on interval	sort, 162, 163
(0,1), 208, 210	source, 294
continuous uniform distribution on inteval	spline, 188, 189, 191
(0,1), 209	splines, see cubic splines
discrete uniform distribution from ab , 216	split.screen, 284
discrete uniform distribution from $u0$, 210 discrete uniform distribution from $1k$, 213,	$\mathtt{sprintf},331$
227, 228	sqrt, 55

standard deviation, see sd str, 305 string concatenation, 324 converting number to, 330 pattern matching, 328, 329 substrings, 326 substr, 326 sum, 133, 135, 197	produ- revers: size of sum o summ trunca unique vector, 50
summary, 124 svd, 102 switch, 202 symbols, 265 Sys.sleep, 333 system, 347 t, 87	warning, 3 which, 169 which.max which.min while, 200 windows, 2 wireframe write, 297
table, 122, 173, 257 tan, 61 tanh, 63	x11, 246
text, 272, 273 title, 267, 268 transpose, see matrix trunc, 69 typeof, 312	
unique, 172 uniroot, 177 upper.tri, 46	
var, 119–121, 126 variables assigning, 300 assigning in base environment from function, 301 evaluating from base environment within function, 302	
names, 313 variance, see var vector boolean operations on, 168, 169 containing all indentical entries, 18 containing all zeros, 17 counts of binned values in, 174 counts of discrete values in, 173 cross product, 84 cumulative sum of elements of, 140 differences between consecutive elements of, 146 dot product, 83 minimum of values of, 148	
norm, 106 position of first occurance of minimum value in 155	

product of all elements, 136
reversing order of elements in, 29
size of, 159
sum of all elements, 133
summary of values in, 124
truncating, 41
unique values in, 172
ctor, 50

rning, 339
ich, 169-171
ich.max, see which.min
ich.min, 155
ile, 200
ndows, 246
reframe, 265
ite, 297
1, 246