

Timely Accurate Diagonostics for a TB-Free Africa

MGIT CULTURE

Module 13: BACTEC™ MGIT™ 960 culture positive follow up

Date:

Venue:

Presenter:

Outline

- Overview of BD MGIT 960 Instrument
- Removing positive/Negative cultures from the instrument
- Printing MGIT 960 unloaded positives report
- Preparing and reading ZN AFB smear
- Identification tests.

Overview of BD MGIT 960 Instrument

- Drawers designated as A, B & C
- Sample Measurement Module (SMM)
 - Tube Rack "stations"
 - **Detector Assembly** 16 detectors for each row. Moves Left to Right.
 - Status Indicators three lamps on drawer
 - Station Status LED indicators on each station. Colors: red, green or orange

MGIT 960 barcode scanner

- Located on the front of the instrument to provide ability to scan tube labels for specimen identification
- Turns on automatically whenever the system is ready (and expecting) to scan a barcode

LCD display and keypad

- Presents information about system status and function key definitions
- Each display shows icons representing the current soft key assignments at the bottom of the screen

Notification of positives on drawer

- Indicator lamp on drawer illuminates
- Audible alert sounds

BACTEC™ MGIT™ 960 Instrument Interface

Notification of positives on LCD display

Instrument positive cultures

- Open the drawer on which the positive indicator light is illuminated
- Press the "remove positive tubes" key
- Positive station LEDs will light (green)
- Remove the tube from the instrument
- Scan the barcode
- Visually check tube for flaky, clumped growth
- Repeat until instrument beeps 3 times signaling all positives have been removed

Print unloaded positive report

- From the status screen, press the "print reports" soft key
- Press the soft key that corresponds to the "Unloaded Positive Tubes"
- Ensure that all tubes listed on the report correspond to the tubes removed
- Write date positive on the MGIT tube with permanent marker

Unloaded positives report

BACTEC MGIT 960 Unloaded Positives Report

Instrument	Current	Т	emperature		Software	Page
Number	Date/Time	Α	В	С	Version	Number
2	03-28-2011 15:44	36.6°C	36.9°C	36.7°C	V3.06C	1

Tube	Accession	Sequence	Growth	Tube	П	Date	Protocol	Start of
Position	Number	Number	Unit	Status		D Positive	Length	Protocol
A/F02 A/F04 A/E20	2011487016	430171889894 430171889878 43017188990	8 331	+ 9	;5	03-26-2011 03-27-2011 03-26-2011	41 03-18-2	011 14:45

Unloaded positives report

BACTEC MGIT 960 Unloaded Positives Report

Instrument	Current	Т	emperature		Software	Page	
Number	Date/Time	A	В	С	Version	Number	
2	03-28-2011 15:44	36.6°C	36.9°C	36.7°C	V3.06C	1	

Tube Position	Accession Number	Sequence Number	Growth Unit	Tube Status		Date Desitive	Protocol Length	Start of Protocol
A/F02 A/F04 A/E20	2011487016	430171889894 430171889878 43017188990	8 331	+ 9	5	03-26-2011 03-27-2011 03-26-2011	41 03-18-	2011 14:45

Time to detection (TTD) must be ≥ 2 days

•If TTD is less than 2 days, it is likely to be contaminated or an NTM

Unloaded positive report

BACTEC MGIT 960 Unloaded Positives Report

Instrument	Current	1	Temperature		Software	Page
Number	Date∏ime	Α	В	С	Version	Number
2	03-28-2011 15:44	36.6°C	36.9°C	36.7°C	V3.06C	1

Tube	Accession	Sequence	Growth	Tub	e	Date	Protocol	Start of
Position	Number	Number	Unit	Stati	us TT	Positive	Length	Protocol
A/F02 A/F04 A/E20	2011487016	430171889894 430171889878 43017188990	331	+ + +	9;5	03-26-2011 03-27-2011 03-26-2011	41 03-18-	2011 14:45

The MGIT culture must be 1 - 5 days old to be used as a seed for DST inoculation. The day it is determined to be positive by the instrument is day 0.

Members of the MTBC

- M. tuberculosis
- M. africanum
- · M. canetti
- M. bovis
- M. bovis BCG vaccine variant
- M. caprae
- M. microti
- M. pinnepedii

Identification methods for the *M. tuberculosis* complex

TB conventional identification

- Morphology (colonies/cellular)
- Biochemical tests
- Antigen detection (new product)

AFB positive?

- Prepare a smear of the positive MGIT 960 tube
 - *Label a new clean glass slide with specimen ID #, source (MGIT) and date
 - Work in a BSC, wear appropriate PPE
 - Potential high concentration of M. tb

Acid-Fast Staining Principles

- Property of acid fastness is based on the presence of mycolic acid in their cell wall
- Primary stain binds to cell wall mycolic acid.
- Intense decolourisation does not release primary stain from the cell wall of AFB
- Counterstain provides contrasting background

Acid-Fast Staining Principles Cont'd

Principle of ZN in stepwise description

AFB smear preparation

- Do not shake or invert the tube
- Add a drop of fixative(Formal milk) on microscope slide
- Using a sterile transfer pipette add a drop of MGIT broth from the bottom of the tube to slide with fixative
- Spread it into a 1 x 2 cm oval smear
- Allow to dry INSIDE the BSC
- Fixative is usually based on bovine/rabbit serum and Formal milk

Heat fix and stain with Ziehl -Neelsen reagents

- Heat-fix the smear using a hot plate (65-80 °C for 2 hours or with a flame (pass through 3-4 times)
- ZN staining
 - Carbol fuchsin heated to steaming - 5 minutes
 - 3% Acid alcohol 3 minutes
 - Methylene blue 1 minute

Reading AFB smear

- Examine the stained smears using the 100x o objective
- Scanning a series of three parallel sweeps the length of the smear, or by scanning a series of nine parallel sweeps the width of the smear
 - Smears scanned in this manner will give about 60 to 100 consecutive fields in one sweep with a 100x objective
- Looking for red bacilli, possible serpentine cords, on a blue background

Definitive identification

- An AFB + smear with serpentine cording is NOT a definitive identification system for reporting M. tuberculosis complex
 - There are over 100 species of mycobacteria that are all AFB +
 - M. kansasii also exhibits serpentine cords
 - Therefore, it should be used in conjuction with other tests

 Supranational®

Definitive identification options

- Chromatographic lateral flow immunoassay
 - Capilia, SD Bioline, or MTBc
- Line Probe Assay
 - CM or MTBDR+
- GeneXpert MTB/RIF

Antigen detection using chromatographic immunoassay

Procedure:

- Note: Unlike HIV rapid tests, this test must be inoculated, read and discarded inside a BSC!
- A 100 μl suspension of growth from liquid or solid medium is added to the specimen well and, if belonging to the TB complex, will react with the Ab to MPT64
- The test is read after 15 minutes

Test procedure....

- Perform test in a BSC; wear appropriate PPE
- Label test cartridge
- Dispense 100 µl of the well-mixed MGIT culture with a transfer pipette on the specimen placing area of the cartridge
- Examine the reading area of the cartridge after 15 minutes

Note: Test results must be interpreted no later than 60 minutes after inoculation

Quality control (MPT64)

- Done each day test is performed and documented on log sheet
- Positive control
 - Well-characterized MTBC strain (ACCT)
- Negative control
 - Well-characterized strain or reference strain of non-tuberculous mycobacteria (NTM)
 - M. avium, M. fortuitum, etc. growing in liquid media

Interpretation of Results

Positive

 Formation of a purple to red line on the reading areas labeled [T] and [C] of the cartridge

Negative

 Formation of a purple to red line on the reading area labeled [C] of the cartridge but not [T]

Invalid

 If no line is observed on the reading area [C], technical errors or product damage has occurred. In this case the test should be considered invalid and repeated using a new cartridge

Antigen detection using the chromatographic immunoassay

Inoculate a Blood-Agar (BA) plate for contaminants Growth

- Pull out one blood agar plate from the fridge, (this procedure can be done immediately the tube turns MGIT positive)
- Using a marker pen, invert and divide the plate up to 8 sections at the bottom depending on the number of samples to be inoculated.
 - NOTE: In case of an excessively turbid tube, inoculate on one plate.
- Label each of the sections with the Laboratory serial numbers of the patient's culture to be inoculated there.

... cont

- Open one positive MGIT Culture at a time
- Inoculate one loop-full of the contents on the correspondingly labeled portion of the BA plate.
- Seal the plate with tape Incubate at 37°C for 24 hrs
- Remove the plate from the incubator, read the BA results
- Record the results in appropriate format
- Dispose of the BA plate(s)

Assessment

- Describe the procedure for unloading Positive cultures from the MGIT machine.
- Describe a process of confirming MTB from positive MGIT cultures.

Summary

- BACTEC MGIT 960 decreased time to detection for growth
- Prepare a smear to confirm MGIT tube growth is AFB positive and rule our contaminants
- Identify all AFB growth as MTBC before setting up DST
 - Rapid ID system lateral flow
 - Molecular identification

Acknowledgement

