Maintaining Densest Subsets Efficiently in Evolving Hypergraphs

Shuguang Hu The University of Hong Kong Pokfulam Road, Hong Kong sghu@cs.hku.hk Xiaowei Wu The University of Hong Kong Pokfulam Road, Hong Kong wxw0711@gmail.com T-H. Hubert Chan
The University of Hong Kong
Pokfulam Road, Hong Kong
hubert@cs.hku.hk

Abstract

Problems: The densest subgraph problem in hypergraphs

Methods:

- 1) We present two exact algorithms and a near-linear time r-approximation algorithm for the problem.
- 2) We also consider the dynamic version of the problem. We present two dynamic approximation algorithms in this paper with amortized $poly(\frac{1}{n}\log n)$ update time, for any $\epsilon > 0$.

吕筱玮 Abstract

Intelligent Network and Optimization Laboratory, Renmin University

Introduction

- H(V, E) find a subset of nodes $S \subseteq V$ such that $\rho(S) = |E[s]|/|S|$ is maximized. $E[s] = \{e \in E : e \subseteq S\}$
- The Densest Subgraph Problem:
- 1) Goldberg provided a $O(\log n)$ max-flow computations, where n = |V|.
- 2) Charikar provided a O(m) 2-approximation algorithm.
- 3) A LP was proposed with O(m+n) variables.

吕筱玮 3 Introduction

Introduction

- Densest Subset in Hypergraphs:
- 1. In many applications, nodes under consideration are connected by hyperedges that involve more than 2 objects.
- 2. Given the hypergraph, the goal of the Densest Subgraph Problem is to identify a group of researchers S such that the average number of collaborations within S is maximized.

Introduction

Introduction

• Dynamic Setting:

• The dynamic Densest Subgraph Problem aims at maintaining an (approximate) densest subgraph under edge insertions and deletions.

The Densest Subgraph Problem:

- **Bahmani**: $O(\frac{1}{\epsilon} \log n)$ passes, within a factor $(2 + \epsilon)$ of the optimum fixes a threshold β and removes nodes with degree smaller than β in each iteration.
- **Epasto** considered the problem where insertions are adversarial and deletions are random. $(2 + \epsilon)$ approximation algorithm poly $O(\frac{1}{\epsilon} \log n)$ time, using O(m+n) space.

Introduction 吕筱玮

Intelligent Network and Optimization Laboratory, Renmin University

Introduction

- **Bhattachary**: consider the deletions are also adversarial. $(4 + \epsilon)$ –approximation $O(\frac{1}{\epsilon} \log n)$ update time and $O(n.poly(\frac{1}{\epsilon} \log n))$ space.
- **Esfandiari et al. and Mitzenmacher** presented semi-streaming algorithms for the problem that maintain a $(1+\epsilon)$ -approximation using $O(n.poly\left(\frac{1}{\epsilon}logn\right))$ space. Their algorithms process each update also in $poly\left(\frac{1}{\epsilon}logn\right)$ time, but the query-time can be as large as $\Omega(n.poly\left(\frac{1}{\epsilon}logn\right))$.

Introduction 吕筱玮

Intelligent Network and Optimization Laboratory, Renmin University

Introduction

- Our Methods:
- $r = \max_{e \in E} \{|e|\}$ to denote the maximum cardinality of a hyperedge.
- $M := \sum_{e \in E} |e| \le rm$

Theorem 1.1. Given a weighted hypergraph H(V, E) with n = |V| nodes and m = |E| edges, the Densest Subgraph Problem can be solved by either using $O(\log W)$ computations of max-flow in a flow network with O(M) edges, where W is the total weight of nodes and edges, or solving a linear program with O(m + n) variables and O(M) constraints.

Intelligent Network and Optimization Laboratory, Renmin University

Introduction

Theorem 1.2. There exists a dynamic algorithm for the Densest Subgraph Problem in unweighted hypergraphs that maintains an $r(1+\epsilon)$ -approximation under arbitrary edge insertions using O(n) extra space, in amortized poly($\frac{r}{\epsilon}\log n$) time per update.

Theorem 1.3. There exists a dynamic algorithm for the Densest Subgraph Problem in unweighted hypergraphs that maintains an $r^2(1+\epsilon)$ -approximation under arbitrary edge insertions and deletions using $O(rm \cdot \operatorname{poly}(\frac{1}{\epsilon}\log n))$ extra space, in amortized $\operatorname{poly}(\frac{r}{\epsilon}\log n)$ time per update.

Introduction 吕筱玮

Introduction

• Experimental Evaluation:

- Moreover, our approximation algorithm runs several times faster than the exact algorithm, and returns a solution with density very close to the optimum.
- Moreover, as the first to implement the fully-dynamic maintenance algorithm for densest subgraph on hypergraphs, compared to, our maintained solution has a higher density, and is more stable.

Introduction

Intelligent Network and Optimization Laboratory, Renmin University

Static Algorithms

- Notations:
- n=|V|, m=|E|, and $r = \max_{e \in E} |e| M = \sum_{e \in E} |e|$
- $E_u = \{e \in E : u \in e\}$ $E_u[S] = \{e \in E : u \in e \subseteq S\}$ where $S \subseteq V$.
- $F \subseteq E (resp. S \subseteq V) w(F) = \sum_{e \in F} w_e(resp. w(S)) = \sum_{u \in S} w_u)$
- $\rho(S^*) = \max_{S \subset V} \rho(S) \ \rho(S^*) \ge \frac{w(E)}{w(V)}$
- For an integer $k \ge 1$, we use [k] to denote $\{1,2,...k\}$.

Intelligent Network and Optimization Laboratory, Renmin University

Max-Flow-Based Exact Algorithm

•
$$\frac{w(E)}{w(V)} \le \beta \le w(E) \ G_{\beta} = \{s, t\} \cup V \cup E$$

•
$$c(s,u) = \delta_u = \sum_{e \in E_u} \frac{w_e}{|e|}$$
 $c(u,t) = \beta w_u$ $c(u,e) = \frac{w_e}{|e|}$ $c(e,u) = \infty$

• G_{β} has n+m+2 nodes

Lemma 2.1. The maximum flow from s to t in G_{β} is less than w(E) if and only if $\rho(S^*) > \beta$.

Figure 1: Auxiliary Graph G_{β}

Intelligent Network and Optimization Laboratory, Renmin University

Max-Flow-Based Exact Algorithm

LEMMA 2.1. The maximum flow from s to t in G_{β} is less than w(E) if and only if $\rho(S^*) > \beta$.

PROOF. Note that we always have max-flow(s, t) $\leq w(E)$ since there is an st-cut ($\{s\}, \{t\} \cup V \cup E$) of capacity $\sum_{u \in V} \delta_u = w(E)$. Now suppose we compute the max-flow from s to t in G_β and find a minimum st-cut as ($\{s\} \cup V_1 \cup E_1, \{t\} \cup V_2 \cup E_2$), where $V_2 = V \setminus V_1, E_2 = E \setminus E_1$, then we have (where cut(A, B) is the total capacities of edges from A to B):

max-flow(s, t;
$$G_{\beta}$$
) = cut({s} $\cup V_1 \cup E_1$, {t} $\cup V_2 \cup E_2$)
= $\sum_{u \in V_2} \delta_u + \sum_{u \in V_1} \beta w_u + \text{cut}(V_1, E_2) + \text{cut}(E_1, V_2)$.

First, observe that $\operatorname{cut}(E_1, V_2) = 0$, since otherwise $\operatorname{cut}(E_1, V_2) = \infty$; this implies that any edge e intersecting V_2 cannot be in E_1 . On the other hand, since $(\{s\} \cup V_1 \cup E_1, \{t\} \cup V_2 \cup E_2)$ is a minimum st-cut, if there is an edge $e \subseteq V_1$ such that $e \in E_2$, then we can strictly reduce the cut by moving e from E_2 to E_1 . Hence, we have shown that $E_1 = E[V_1]$ and $E_2 = E \setminus E[V_1]$ and have the following:

$$\max_{u \in V} \text{flow}(s, t; G_{\beta})$$

$$= \sum_{u \in V} \delta_{u} - \sum_{u \in V_{1}} \delta_{u} + \beta w(V_{1}) + \text{cut}(V_{1}, E \setminus E[V_{1}])$$

$$= w(E) - (\text{cut}(V_{1}, E) - \beta w(V_{1}) - \text{cut}(V_{1}, E \setminus E[V_{1}]))$$

$$= w(E) - (\text{cut}(V_{1}, E[V_{1}]) - \beta w(V_{1}))$$

$$= w(E) - w(V_{1})(\rho(V_{1}) - \beta).$$

Intelligent Network and Optimization Laboratory, Renmin University

Max-Flow-Based Exact Algorithm

Algorithm 1 Weighted-densest-subgraph(H(V, E)):

```
1: lower := \frac{w(E)}{w(V)}, upper := w(E), S^* := V.

2: while upper - lower \geq \frac{1}{(w(V))^2} do

3: \beta := \frac{\text{upper+lower}}{2}.

4: if max-flow(s, t; G_{\beta}) = \text{cut}(S_{\beta}, T_{\beta}) < w(E) then

5: lower := \beta, S^* := S_{\beta} \cap V. \triangleright S^* keeps a candidate solution: \rho(S^*) > \beta

6: else

7: upper := \beta. \triangleright \forall S \subseteq V, \rho(S) \leq \beta

8: return S^*.
```

For any two subsets of nodes S_1 and S_2 , if $\rho(S_1) \neq \rho(S_2)$, then we have $|\rho(S_1) - \rho(S_2)| \geq \frac{1}{w(S_1) \cdot w(S_2)} \geq \frac{1}{(w(V))^2}$. Hence, the above binary search terminates in $\log((w(V))^2 \cdot (w(E) - \frac{w(E)}{w(V)})) = O(\log W)$

Intelligent Network and Optimization Laboratory, Renmin University

LP-Based Exact Algorithm

$$\max \sum_{e \in E} w_e x_e$$
s.t. $x_e \le y_u$, $\forall u \in e$

$$\sum_{u \in V} w_u y_u = 1$$
, $x_e, y_u \ge 0$, $\forall e \in E, u \in V$.

Lemma 2.2. Given any optimal solution $z^* = (y^*, x^*)$ for the above LP, $P = \{u \in V : y_u^* > 0\}$ induces a graph with maximum density.

Intelligent Network and Optimization Laboratory, Renmin University

LP-Based Exact Algorithm

Lemma 2.2. Given any optimal solution $z^* = (y^*, x^*)$ for the above LP, $P = \{u \in V : y_u^* > 0\}$ induces a graph with maximum density.

PROOF. First notice that given variables y_u , the objective is maximized when $x_e = \min_{u \in e} y_u$ for all $e \in E$ since $w_e \ge 0$. As noted above, for any $S \subseteq V$, we can derive a feasible solution $z^S = (y^S, x^S)$, whose objective value is $\rho(S)$. Let $LP^* = LP(z^*)$ be the optimal value of the LP, then for all $S \subseteq V$ we have

$$LP^* \ge LP(z^S) = \sum_{e \in E[S]} w_e \frac{1}{w(S)} = \rho(S).$$
 (1)

Let $P \subseteq V$ be the nodes v such that $y_v^* > 0$. Let a = w(P) and $b = \min_{u \in P} y_u^*$. Note that $ab \leq \sum_{u \in P} w_u y_u^* = 1$. Then we have $z^* = abz^P + (1 - ab)\widehat{z}$, where

$$\widehat{z} = (\widehat{x}, \widehat{y}), \quad \widehat{y}_u = \max\{0, \frac{y_u^* - b}{1 - ab}\}, \quad \widehat{x}_e = \max\{0, \frac{x_e^* - b}{1 - ab}\}.$$

Note that \widehat{z} is feasible since $\widehat{x}_e = \min_{u \in e} \widehat{y}_u$ and $\sum_{u \in V} w_u \widehat{y}_u = \sum_{u \in P} \frac{\sum_{u \in P} w_u y_u^* - ab}{1 - ab} = 1.$

Because the objective value is linear and the optimal solution is a convex combination of feasible solutions z^S and \widehat{z} , it follows that $LP^* = LP(z^*) = LP(\widehat{z}) = LP(z^P) = \rho(P)$, which combined with (1) implies that $\rho(P) \ge \max_{S \subseteq V} \rho(S)$.

Intelligent Network and Optimization Laboratory, Renmin University

Near Linear-Time r-Approximation

•
$$\frac{w(E_u[s^*])}{w_u} \ge \rho(S^*)$$
 as otherwise $\rho(S^*\{u\}) = \frac{w(E[s^*]) - w(E_u[S^*])}{w(S^*) - w_u} > \rho(S^*)$

Algorithm 2 Approx-densest-subgraph(H(V, E)):

```
1: S_1 := V.
```

2: **for**
$$i = 1, 2, ..., n-1$$
 do

3:
$$u_i := \arg\min_{u \in S_i} \frac{w(E_u[S_i])}{w_u}$$
.

4:
$$S_{i+1} := S_i \setminus \{u_i\}.$$

5: **return** arg $\max_{i \in [n]} \rho(S_i)$.

Intelligent Network and Optimization Laboratory, Renmin University

Near Linear-Time r-Approximation

LEMMA 2.3. Algorithm 2 returns an r-approximate densest subgraph in $O(M \log n)$ time.

PROOF. Consider the iteration such that $S^* \subseteq S_i$ while $S^* \not\subseteq S_{i+1}$, which means $u_i \in S^*$. Then, by the above argument we have

$$\rho(S_i) = \frac{w(E[S_i])}{w(S_i)} \ge \frac{\sum_{u \in S_i} w_u \frac{w(E_u[S_i])}{w_u}}{rw(S_i)} \ge \frac{\sum_{u \in S_i} w_u \frac{w(E_{u_i}[S_i])}{w_{u_i}}}{rw(S_i)}$$
$$= \frac{w(E_{u_i}[S^*])}{rw_{u_i}} \ge \frac{\rho(S^*)}{r}.$$

When an edge e is removed (the first time a node in e is removed), the values of at most |e| nodes in the remaining set will be affected. Hence, in total, there will be at most $\sum_{e \in E} |e|$ updates to the minheap, each of which takes $O(\log n)$ time. Therefore, the total running time of the algorithm is $O(n + \sum_{e \in E} |e| \log n) = O(M \log n)$.

Intelligent Network and Optimization Laboratory, Renmin University

Incremental Algorithm

- $r(1+\epsilon) approximate$, $poly(\frac{r}{\epsilon}\log n)$ time per edge insertion
- Unweighted hypergraphs Define $\tau = \lceil \log_{1+\epsilon} n \rceil$

Algorithm 3 Find($H(V, E), \beta, \epsilon$):

```
1: S_0 := A_0 := V, i := 0.

2: while S_i \neq \emptyset, A_i \neq \emptyset and i < \tau = \lceil \log_{1+\epsilon} n \rceil do

3: A_i := \{u \in S_i : |E_u[S_i]| < \beta\}. \triangleright nodes of small degree

4: S_{i+1} := S_i \setminus A_i.

5: i := i + 1.

6: return \widehat{S} := \arg \max_{i \le \tau} \rho(S_i).
```


Intelligent Network and Optimization Laboratory, Renmin University

Static $r(1 + \epsilon)$ Algorithm

Algorithm 3 Find($H(V, E), \beta, \epsilon$):

```
1: S_0 := A_0 := V, i := 0.

2: while S_i \neq \emptyset, A_i \neq \emptyset and i < \tau = \lceil \log_{1+\epsilon} n \rceil do

3: A_i := \{u \in S_i : |E_u[S_i]| < \beta\}. \triangleright nodes of small degree

4: S_{i+1} := S_i \setminus A_i.

5: i := i + 1.

6: return \widehat{S} := \arg \max_{i \le \tau} \rho(S_i).
```

•
$$A_{\tau} = S_{\tau}$$
 $(A_0, ... A_{\tau})$ $S_i = A_{\geq i} = \bigcup_{j=1}^{\tau} A_j$

LEMMA 3.1. If $\beta > r(1+\epsilon)\rho(\widehat{S})$, then $S_{\tau} = \emptyset$; if $\beta \leq \rho(S^*)$, then $S^* \subseteq S_{\tau} \neq \emptyset$.

 ρ

Intelligent Network and Optimization Laboratory, Renmin University

Static $r(1 + \epsilon)$ Algorithm

LEMMA 3.1. If $\beta > r(1+\epsilon)\rho(\widehat{S})$, then $S_{\tau} = \emptyset$; if $\beta \leq \rho(S^*)$, then $S^* \subseteq S_{\tau} \neq \emptyset$.

PROOF. If $\rho(\widehat{S}) < \frac{\beta}{r(1+\epsilon)}$, then $\rho(S_i) < \frac{\beta}{r(1+\epsilon)}$ for all $S_i \neq \emptyset$. For all $S_i \neq \emptyset$, we have $\rho(S_i)|S_i| = |E[S_i]| \geq \frac{1}{r} \sum_{u \in S_i} |E_u[S_i]| \geq \frac{\beta}{r} |S_i \setminus A_i| > (1+\epsilon)\rho(S_i)|S_{i+1}|$, which implies $|S_{i+1}| < \frac{|S_i|}{1+\epsilon}$. Hence, we have $|S_{\tau}| < \frac{n}{(1+\epsilon)^{\tau}} \leq 1$, which means $S_{\tau} = \emptyset$.

As argued in Section 2.3, for all $u \in S^*$, $|E_u[S^*]| \ge \rho(S^*)$. Hence if $\beta \le \rho(S^*)$, then $|E_u[S_i]| \ge \beta$ for all $i = 0, 1, ..., \tau - 1$, which means that no node from S^* will be removed in any iteration. Thus $S^* \subseteq S_\tau \ne \emptyset$.

Incremental Algorithm 吕筱玮

Intelligent Network and Optimization Laboratory, Renmin University

Static $r(1 + \epsilon)$ Algorithm

Algorithm 4 Approx-densest($H(V, E), \beta_0, \epsilon$):

```
1: \widehat{S} := V, \beta := \max\{\frac{m}{rn}, \beta_0\}. \Rightarrow \beta_0 provides a lower bound

2: while true do \Rightarrow at most O(\tau) iterations

3: S' := \operatorname{Find}(H, \beta, \epsilon). \Rightarrow \widetilde{O}(M) time

4: if \beta \le r(1 + \epsilon)\rho(S') then

5: \widehat{S} := S', \beta := (1 + \epsilon)\beta.

6: else

7: return \widehat{S}.
```

LEMMA 3.2. Algorithm 4 returns an $r(1 + \epsilon)^2$ -approximation \widehat{S} of the densest subgraph in $O(M\tau^2) = \widetilde{O}(M)$ time.

Incremental Algorithm 吕筱玮

Intelligent Network and Optimization Laboratory, Renmin University

Static $r(1 + \epsilon)$ Algorithm

Lemma 3.2. Algorithm 4 returns an $r(1 + \epsilon)^2$ -approximation \widehat{S} of the densest subgraph in $O(M\tau^2) = \widetilde{O}(M)$ time.

PROOF. Define $B = \{\frac{m}{rn}(1+\epsilon)^i : i \in [2\tau]\}$. Let $\beta^* \in B$ be the minimum such that $S_{\tau} = \emptyset$ when Algorithm 3 is run with $\beta = \beta^*$. Note that when run with $\beta = \frac{\beta^*}{1+\epsilon}$ in Algorithm 3, we have $S_{\tau} \neq \emptyset$. Let \widehat{S} be returned by Algorithm 3 when run with $\beta = \beta^*$. By Lemma 3.1, we have $\rho(\widehat{S}) \geq \frac{\beta^*}{r(1+\epsilon)^2} > \frac{\rho(S^*)}{r(1+\epsilon)^2}$, which implies a $r(1+\epsilon)^2$ -approximation.

Since Algorithm 3 can be easily implemented in $O(M\tau)$ time and Algorithm 4 terminates with $O(\tau)$ calls of Algorithm 3, we immediately have the lemma.

Intelligent Network and Optimization Laboratory, Renmin University

Edge Insertion-Only Setting

- maintains $(A_0, ... A_{\tau})$ $A_{\tau} = \emptyset$
- $u \in V \mid (u) \mid be \mid the \mid level \mid of \mid u : u \in A_{l(u)} \mid b(u) = \mid E_u \mid S_{l(u)} \mid \mid < \beta \mid$
- $l(e) = \min_{u \in e} l(u)$ for all $e \in E$
- Idea:
- under edge insertions, the degrees of nodes could only increase and to maintain the partition, we increase the level of node u if $b(u) = |E_u[S_{l(u)}]| \ge \beta$ after edge insertions. To guarantee the approximation ratio, we rebuild the partition if $A_{\tau} \neq \emptyset$.

吕筱玮 23 **Incremental Algorithm**

Intelligent Network and Optimization Laboratory, Renmin University

Edge Insertion-Only Setting

Algorithm 5 Insertion-only-approx-densest(H(V, E), ϵ):

```
1: \widehat{S} := \operatorname{Approx-densest}(H, 0, \epsilon),
 2: let A_i, S_i and \beta be as in the last call of Find().
                                                                         \triangleright S_{\tau} = \emptyset
 3: for each newly inserted edge e do
         E := E \cup \{e\} and update b(u) for all u \in e.
                                                                    \triangleright O(|e|) time
         label all nodes in e "bad".
 5:
         while exists a bad node do
              pick a bad node u, label u "good" and let l'(u) := l(u).
 7:
              while b(u) \ge \beta and l'(u) < \tau do
 8:
                                                                                            if l'(u) > l(u) then
                                                                              11:
                  l'(u) := l'(u) + 1,
 9:
                                                                                                 for each v \in N(u) s.t. l(u) < l(v) \le l'(u) do
                  b(u) := |\{e \in E_u : \min_{v \in e \setminus \{u\}} l(v) \ge l'(u)\}|.
10:
                                                                                                      update b(v), label v "bad".
                                                                                                 l(u) := l'(u).
                                                                              14:
                                                                                            if l(u) = \tau then
                                                                              15:
                                                                                                 Rebuild: \widehat{S} := approx-densest(H, \beta, \epsilon),
                                                                              16:
                                                                                                 update A_i, S_i, \beta, l() and b().
                                                                              17:
                                                                                                 label all nodes "good".
                                                                              18:
```

Incremental Algorithm 日後玮 日後玮 日後玮 24

Intelligent Network and Optimization Laboratory, Renmin University

Edge Insertion-Only Setting

- Approximation Ratio: $r(1 + \epsilon) approximation$
- Update Time: $\max(O(M + \tau r^2 m), O(\frac{r}{\epsilon} \log n))$
- Space Complexity: O(n)
- Remark:

- if $R \ge \frac{m}{\operatorname{poly}(\frac{r}{\epsilon} \log n)}$, then we charge the total update time $\tilde{O}(m)$ to the deletions, yielding an amortized $\operatorname{poly}(\frac{r}{\epsilon} \log n)$ update time;
- otherwise we can show that the density of \widehat{S} is not decreased a lot (since the edges to be deleted are chosen uniformly at random), i.e., after R deletions, $\rho'(\widehat{S}) > \frac{\rho(\widehat{S})}{1+\epsilon}$, which guarantees that \widehat{S} is still an $r(1+\epsilon)^4$ -approximation.

Incremental Algorithm 日筱玮

Intelligent Network and Optimization Laboratory, Renmin University

Fully Dynamic Approximation

• Lazy update: For a fixed threshold β , we remove nodes with degree less than β while keeping nodes with degree at least $\alpha\beta$, for some $\alpha > 1$.

Definition 4.1 ((α , β)-decomposition). An (α , β)-decomposition (for some $\alpha \geq 1$) of H(V, E) is a sequence of subsets of V such that $S_{\tau} \subseteq S_{\tau-1} \subseteq \ldots \subseteq S_1 \subseteq S_0 = V$ and for all $i \in [\tau]$,

(1)
$$\{u \in S_{i-1} : |E_u[S_{i-1}]| \ge \alpha \beta\} \subseteq S_i$$
,

(2)
$$\{u \in S_{i-1} : |E_u[S_{i-1}]| < \beta\} \cap S_i = \emptyset.$$

•
$$A_i = S_i \backslash S_{i+1}, A_\tau = S_\tau$$

•
$$\hat{S} = argmax_{i \le \tau} \rho(S_i)$$

LEMMA 4.2. If
$$\beta > r(1+\epsilon)\rho(\widehat{S})$$
, then $S_{\tau} = \emptyset$; if $\beta \leq \frac{\rho(S^*)}{\alpha}$, then $S^* \subseteq S_{\tau} \neq \emptyset$.

As before, let $\beta^* \in B = \{\frac{m}{\alpha rn}(1+\epsilon)^t : t \in [2\tau]\}$ be the minimum such that $S_{\tau} = \emptyset$ in an (α, β^*) -decomposition. By Lemma 4.2, in the (α, β^*) -decomposition we have $\rho(\widehat{S}) \geq \frac{\beta^*}{r(1+\epsilon)^2} > \frac{\rho(S^*)}{\alpha r(1+\epsilon)^2}$.

Intelligent Network and Optimization Laboratory, Renmin University

Maintaining an (α, β) - Decomposition

- l(u), l(e) as the levels of nodes and edges in partitioning $(A_0, ... A_{\tau})$
- For all $i \le l(u)$, $E_u^{(i)} = E_u[S_i] E_u[S_{i+1}]$ be the hyperedges adjacent to u that are removed at level i.
- $\left(E_u^{(0)}, E_u^{(1)}, \dots E_u^{(l(u))}\right)$ define s a partition of E_u
- For all $i \leq l(u)$, $b_i(u) = |E_u[S_i]|$
- $b_{l(u)}(u) = |E_u[S_{l(u)}]| < \alpha\beta$ for all $u \notin S_{\tau}$ and $b_{l(u)-1}(u) \ge \beta$ for all $u \notin A_0$

Intelligent Network and Optimization Laboratory, Renmin University

Maintaining an (α, β) - Decomposition

- l(u), l(e) as the levels of nodes and edges in partitioning $(A_0, ... A_\tau)$
- For all $i \le l(u)$, $E_u^{(i)} = E_u[S_i] E_u[S_{i+1}]$ be the hyperedges adjacent to u that are removed at level i.
- $\left(E_u^{(0)}, E_u^{(1)}, \dots E_u^{(l(u))}\right)$ define s a partition of E_u
- For all $i \leq l(u)$, $b_i(u) = |E_u[S_i]|$
- $b_{l(u)}(u) = |E_u[S_{l(u)}]| < \alpha\beta$ for all $u \notin S_{\tau}$ and $b_{l(u)-1}(u) \ge \beta$ for all $u \notin A_0$

Intelligent Network and Optimization Laboratory, Renmin University

Maintaining an (α, β) - Decomposition

- We maintain for each $u \in V$ its level l(u), the partitioning $\left(E_u^{(0)}, E_u^{(1)}, \dots E_u^{(l(u))}\right)$ of E_u and the degree of u at each level $b_0(u) \dots b_{l(u)}(u)$.
- We further maintain l(e) for every $e \in E$ and $\rho(S_i)$
- The other can be updated by l(u) and $E_u^{(j)}$

Intelligent Network and Optimization Laboratory, Renmin University

Maintaining an (α, β) - Decomposition

Algorithm 6 Maintain-decomposition(H(V, E)):

```
1: if insert(e) then
                                              \triangleright initialize l(e) := \min_{u \in e} l(u)
         for each u \in e, E_u^{(l(e))} := E_u^{(l(e))} \cup \{e\}.
 3: else if delete(e) then
         for each u \in e, E_u^{(l(e))} := E_u^{(l(e))} \setminus \{e\}.
 5: for each u \in e s.t. l(u) = l(e), label u "bad".
 6: while exists a bad node u do
         if l(u) < \tau and b_{l(u)}(u) \ge \alpha \beta then
             Promote(u).
 8:
         else if l(u) > 0 and b_{l(u)-1}(u) < \beta then
 9:
             Demote(u).
10:
         else
11:
             label u "good".
12:
```

• Update the partitioning of each E_u and guarantees $b_{l(u)}(u) < \alpha \beta$ and $b_{l(u)-1}(u) > \beta$

Intelligent Network and Optimization Laboratory, Renmin University

Maintaining an (α, β) - Decomposition

Algorithm 7 Promote(*u*):

```
1: t := l(u), l(u) := t + 1, E_u^{(t+1)} := \emptyset.
                                                                                \triangleright |E_u^{(t)}| \ge \alpha \beta
                                                                    \triangleright O(|E_u^{(t)}|)-iterations
2: for each e \in E_u^{(t)} do
          if \min_{v \in e \setminus \{u\}} \{l(v)\} \ge t + 1 then
                                                                                \triangleright O(|e|)-time
               for each v \in e do
                    E_{v}^{(t)} := E_{v}^{(t)} \setminus \{e\}, E_{v}^{(t+1)} := E_{v}^{(t+1)} \cup \{e\}. Algorithm 8 Demote(u):
5:
                     if l(v) = t + 1 and v \neq u then
6:
                           label v "bad".
7:
```

```
\triangleright |E_u^{(t)}| < \beta
1: t := l(u), l(u) := t - 1.
                                                                               \triangleright O(\sum_{e \in E_{\cdot \cdot \cdot}^{(t)}} |e|)-time
2: for each v \in e \in E_u^{(t)} do
     E_{\tau}^{(t)} := E_{\tau}^{(t)} \setminus \{e\}, E_{\tau}^{(t-1)} := E_{\tau}^{(t-1)} \cup \{e\}.
          if l(v) = t then
                  label v "bad".
```

Intelligent Network and Optimization Laboratory, Renmin University

Maintaining an (α, β) - Decomposition

Lemma 4.3. For each computation cost in the update procedure (Algorithm 6), the potential decreases by at least $\Omega(\frac{\epsilon}{r})$ while each edge update increases the potential by at most $O(r\tau)$.

- Insert(e): $P' P \le P'(e) \le r\tau$.
- **Delete**(e): $P' P \le \sum_{u \in e} (P'(u) P(u)) \le \epsilon |e|\tau \le \epsilon r\tau$.

Intelligent Network and Optimization Laboratory, Renmin University

Maintaining an (α, β) - Decomposition

Promote(u): assume l(u) = t, then $b_t(u) \ge \alpha \beta$, l'(u) = t + 1 and $S'_{t+1} = S_{t+1} \cup \{u\}$. The potential of nodes and edges are changed as follows.

- Since $S_i' = S_i$ for all $i \le t$, we have $P(u) P'(u) = -\max\{0, \alpha\beta \epsilon b_t(u)\} \ge \epsilon b_t(u) \alpha\beta.$
- For all $v \in e \in E_u[S_t]$ s.t. $l(v) \ge t + 2$,

$$P(v) - P'(v) = \max\{0, \alpha\beta - \epsilon b_{t+1}(v)\} - \max\{0, \alpha\beta - \epsilon b_{t+1}'(v)\} \ge 0.$$

• For all other nodes v, P(v) - P'(v) = 0.

• For all $e \in E_u[S_t]$ s.t. $\min_{v \in e \setminus \{u\}} \{l(v)\} \ge t + 1$,

$$P(e) - P'(e) \ge r(l'(e) - l(e) + \frac{1}{|e|} - 1) = \frac{r}{|e|} \ge 1.$$

• For all $e \in E_u[S_t]$ s.t. $\min_{v \in e \setminus \{u\}} \{l(v)\} = t$,

$$P(e) - P'(e) \ge \frac{r}{|e|} \ge 1.$$

• For all other edges e, P(e) - P'(e) = 0.

Hence, overall the total potential is decreased by at least $P - P' \ge \epsilon b_t(u) - \alpha \beta + |E_u[S_t]| \ge \epsilon |E_u[S_t]|$. Since each promotion executes in $O(r|E_u^{(t)}|) = O(r|E_u[S_t]|)$ time, for each computation cost, the potential is decreased by $\Omega(\frac{\epsilon}{r})$.

Intelligent Network and Optimization Laboratory, Renmin University

Maintaining an (α, β) - Decomposition

Demote(u): assume l(u) = t, then $b_{t-1}(u) < \beta$, l'(u) = t - 1 and $S'_t = S_t \setminus \{u\}$. The potential of nodes and edges are changed as follows.

- Since $S_i' = S_i$ for all $i \le t$, we have $P(u) P'(u) = \max\{0, \alpha\beta \epsilon b_{t-1}(u)\} = \alpha\beta \epsilon b_{t-1}(u)$.
- For all $v \in e \in E_u[S_t]$ s.t. $l(v) \ge t+1$, $P(v)-P'(v) = \max\{0, \alpha\beta \epsilon b_t(v)\} \max\{0, \alpha\beta \epsilon b_t'(v)\} \ge -\epsilon(b_t(v)-b_t'(v))$, which means that the increase in potential of each such node v is at most ϵ fraction of the number of hyperedges adjacent to v at level t that are removed due to the demotion of u. Hence, the total decrease of potential of those nodes is $\sum_{v \in e \in E_u[S_t]} |e| \ge -\epsilon r |E_u[S_t]|$.

- For all other nodes v, P(v) P'(v) = 0.
- For all $e \in E_u[S_t]$, $P(e) P'(e) \ge r(l'(e) l(e) + \frac{1}{|e|} \frac{1}{|e|}) = -r$.
- For all $e \in E_u^{(t-1)}$, $P(e) P'(e) \ge -\frac{r}{|e|} \ge -r$.
- For all other edges e, P(e) P'(e) = 0. Hence, the total potential decrease by (when $\alpha = r(1 + 3\epsilon)$)

$$P - P' \ge \alpha \beta - \epsilon b_{t-1}(u) - \epsilon r b_t(u) - r |E_u(S_t)| - r |E_u^{(t-1)}|$$

$$\ge \alpha \beta - (\epsilon + \epsilon r + r) b_{t-1}(u) \ge \epsilon |E_u[S_{t-1}]|.$$

Since each demotion executes in $O(r|E_u^{(t)}|) = O(r|E_u[S_{t-1}]|)$ time, for each computation cost, the potential is decreased by $\Omega(\frac{\epsilon}{r})$, which completes the analysis.

Intelligent Network and Optimization Laboratory, Renmin University

Maintaining an (α, β) - Decomposition

Demote(u): assume l(u) = t, then $b_{t-1}(u) < \beta$, l'(u) = t - 1 and $S'_t = S_t \setminus \{u\}$. The potential of nodes and edges are changed as follows.

- Since $S_i' = S_i$ for all $i \le t$, we have $P(u) P'(u) = \max\{0, \alpha\beta \epsilon b_{t-1}(u)\} = \alpha\beta \epsilon b_{t-1}(u)$.
- For all $v \in e \in E_u[S_t]$ s.t. $l(v) \ge t+1$, $P(v)-P'(v) = \max\{0, \alpha\beta \epsilon b_t(v)\} \max\{0, \alpha\beta \epsilon b_t'(v)\} \ge -\epsilon(b_t(v)-b_t'(v))$, which means that the increase in potential of each such node v is at most ϵ fraction of the number of hyperedges adjacent to v at level t that are removed due to the demotion of u. Hence, the total decrease of potential of those nodes is $\sum_{v \in e \in E_u[S_t]} |e| \ge -\epsilon r |E_u[S_t]|$.

- For all other nodes v, P(v) P'(v) = 0.
- For all $e \in E_u[S_t]$, $P(e) P'(e) \ge r(l'(e) l(e) + \frac{1}{|e|} \frac{1}{|e|}) = -r$.
- For all $e \in E_u^{(t-1)}$, $P(e) P'(e) \ge -\frac{r}{|e|} \ge -r$.
- For all other edges e, P(e) P'(e) = 0. Hence, the total potential decrease by (when $\alpha = r(1 + 3\epsilon)$)

$$P - P' \ge \alpha \beta - \epsilon b_{t-1}(u) - \epsilon r b_t(u) - r |E_u(S_t)| - r |E_u^{(t-1)}|$$

$$\ge \alpha \beta - (\epsilon + \epsilon r + r) b_{t-1}(u) \ge \epsilon |E_u[S_{t-1}]|.$$

Since each demotion executes in $O(r|E_u^{(t)}|) = O(r|E_u[S_{t-1}]|)$ time, for each computation cost, the potential is decreased by $\Omega(\frac{\epsilon}{r})$, which completes the analysis.

Intelligent Network and Optimization Laboratory, Renmin University

Experiments

Datasets:

Datasets	V	E	Time
DBLP	1,159,694	1,778,467	1959-2016
CiteULike	1,038,323	2,411,819	2005-2008
YouTube	3,223,589	9,375,374	2004

Experiments

Exact vs Approximation

Catagory	# Author	# Paper	Avg. Authors	Max. Authors
TCS	9074	11991	2.56	15
ML	25526	20606	2.78	25
DB	18863	13420	3.27	36

Table 2: Properties of publications, where Avg. Authors denotes the average number of authors per paper and Max. Author denotes the maximum number of authors in a paper.

Intelligent Network and Optimization Laboratory, Renmin University

Experiments

Exact vs Approximation

Method	Measure	TCS	ML	DB
Ours	S	232	43	71
	E[S]	919	127	189
Existing work [19]	S	288	25	48
	E[S]	983	4	2

Table 4: Comparison of hyperedge density

Method	Measure	TCS	ML	DB
Exact	S / V (%)	2.56	0.17	0.38
	Density	3.96	2.95	2.66
	Time(ms)	196.12	314.59	198.90
$\epsilon = 0.1$	S / V (%)	7.76	0.10	0.25
	Density	3.64	2.16	1.60
	Time(ms)	53.57	123.96	82.24
$\epsilon = 0.5$	S / V (%)	7.76	0.10	0.25
	Density	3.64	2.16	1.60
	Time(ms)	54.91	121.08	83.05

Table 3: Performance on real datasets

Intelligent Network and Optimization Laboratory, Renmin University

Experiments

Synthetic Datasets

Method	Measure	(1k, 2)	(1k, 4)	(10k, 2)	(10k, 4)
Exact	S / V (%)	1.25	1.19	0.16	0.13
	Density	12.50	25.93	21.50	74.40
	Time(ms)	15.06	32.93	279.34	543.12
$\epsilon = 0.1$	S / V (%)	1.50	0.98	0.13	0.13
	Density	9.70	23.51	20.83	74.39
	Time(ms)	5.65	6.79	66.23	66.11
$\epsilon = 0.5$	S / V (%)	7.56	2.07	0.09	0.11
	Density	6.31	17.36	17.53	73.26
	Time(ms)	4.43	6.21	67.65	66.25

Table 5: Performance on synthetic datasets

Incremental Case

Evolution of the Densest Subgraph

Figure 2: Evolution of densest subgraph: insertion only.

Intelligent Network and Optimization Laboratory, Renmin University

Incremental Case

Efficiency Accuracy Trade-offs

(a) max. density

- (b) avg. density (c) avg. update time

Figure 3: Effect of ϵ in the incremental case.

Fully Dynamic Case

Improved Maintenance on Normal Graphs

Figure 4: Evolution of the densest subgraph: ours vs ELS

Fully Dynamic Case

Evolution of the Densest Sub-hypergraph

Figure 5: Evolution of densest subgraph: fully Dynamic.

Intelligent Network and Optimization Laboratory, Renmin University

Fully Dynamic Case

Efficiency Accuracy Trade-offs

- (a) avg. density (b) avg. update time

Figure 6: Trade-off between the average update time (in microseconds) and the density of the subgraph.

吕筱玮 44 **PRELIMINARIES**

Intelligent Network and Optimization Laboratory, Renmin University

谢谢大家!

The end 吕筱玮