**Problem 2.79** Suppose the voltage waveform shown in Fig. P2.77 was observed at the sending end of a 50-Ω transmission line in response to a step voltage introduced by a generator with  $V_{\rm g}=15~{\rm V}$  and an unknown series resistance  $R_{\rm g}$ . The line is 1 km in length, its velocity of propagation is  $1\times10^8~{\rm m/s}$ , and it is terminated in a load  $R_{\rm L}=100~{\rm \Omega}$ .

- (a) Determine  $R_g$ .
- (b) Explain why the drop in level of V(0,t) at t=6  $\mu$ s cannot be due to reflection from the load.
- (c) Determine the shunt resistance  $R_f$  and location of the fault responsible for the observed waveform.

## **Solution:**



Figure P2.79: Observed voltage at sending end.

(a) 
$$V_1^+ = \frac{V_{\rm g} Z_0}{R_{\rm g} + Z_0} \, .$$

From Fig. P2.79,  $V_1^+ = 5 \text{ V}$ . Hence,

$$5 = \frac{15 \times 50}{R_{\mathfrak{g}} + 50},$$

which gives  $R_{\rm g} = 100 \ \Omega$  and  $\Gamma_{\rm g} = 1/3$ .

(b) Roundtrip time delay of pulse return from the load is

$$2T = \frac{2l}{u_p} = \frac{2 \times 10^3}{1 \times 10^8} = 20 \ \mu \text{s},$$

which is much longer than 6  $\mu$ s, the instance at which V(0,t) drops in level.

(c) The new level of 3 V is equal to  $V_1^+$  plus  $V_1^-$  plus  $V_2^+$ ,

$$V_1^+ + V_1^- + V_2^+ = 5 + 5\Gamma_f + 5\Gamma_f \Gamma_g = 3 \quad (V),$$

which yields  $\Gamma_f = -0.3. \ But$ 

$$\Gamma_{\rm f} = \frac{Z_{\rm Lf} - Z_0}{Z_{\rm Lf} + Z_0} = -0.3,$$

which gives  $Z_{\rm Lf}=26.92~\Omega$ . Since  $Z_{\rm Lf}$  is equal to  $R_{\rm f}$  and  $Z_0$  in parallel,  $R_{\rm f}=58.33~\Omega$ .