Math 325 Problem Set 2 Solutions

4. [Lay, p.115, # 11.5] We define $|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}$. Show that for every pair of real numbers $x, y \in \mathbb{R}, |x| \cdot |y| = |xy|$.

There are, essentially, nine cases, depending on the sign of each of x and y. But if either of x or y is 0, then xy = 0, so |xy| = 0; but then also either |x| = 0 or |y| = 0, so $|x| \cdot |y| = 0$. This deals with five of the caes!

If
$$x > 0$$
 and $y > 0$, then $xy > 0$ and $|x| = x$, $|y| = y$, so $|xy| = xy = |x| \cdot |y|$.

If
$$x > 0$$
 and $y < 0$, then $xy < 0$ and $|x| = x$, $|y| = -y$, so

$$|xy| = -(xy) = (x)(-y) = |x| \cdot |y|.$$

If
$$x < 0$$
 and $y > 0$, then $xy < 0$ and $|x| = -x$, $|y| = y$, so

$$|xy| = -(xy) = (-x)(y) = |x| \cdot |y|.$$

If
$$x < 0$$
 and $y < 0$, then $xy > 0$ and $|x| = -x$, $|y| = -y$, so

$$|xy| = xy = (-x)(-y) = |x| \cdot |y|.$$

So in every case, we find that $|xy| = |x| \cdot |y|$, so the result holds for any pair of real numbers.

5. [Lay, p.127, # 12.6(a)] Show that the least upper bound of a set S is unique; that is, if S is bounded from above, and if α and β both satisfy the properties required so be the supremum of S, then $\alpha = \beta$.

Suppose that $\alpha = \beta$ is <u>false</u>. Then it must be the case that either $\alpha < \beta$ or $\alpha > \beta$.

But if $\alpha < \beta$, then since β is a <u>least</u> upper bound, α cannot be an upper bound (there is an $x \in S$ so that $\alpha < x$). But since α is a supremum, it must in particular be an upper bound!, a contradiction. so $\alpha < \beta$ is impossible.

But by a symmetric argument, if $\alpha > \beta$ then since α is a least upper bound, β cannot be an upper bound ($\beta < \alpha$ implies that there is an $x \in S$ with $\beta < x$). So $\beta < \alpha$ is also impossible.

So $\alpha \neq \beta$ leads, in all cases, to a contradiction, so it must be the case that $\alpha = \beta$.

6. [Lay, p.127, # 12.3,12.4(g,h)]

Find the supremum (= lub) and infimum (= glb) of each of the following sets:

$$(\alpha) \left\{ \frac{n}{n+1} : n \in \mathbb{N} \right\} = A$$

Writing out a few terms suggests that the elements of the set get larger as n increases, and calculus tells us that they limit on 1. So we would assert that $\sup(A)=1$ and $\inf(A)=1/2=$ the 'first' element of the set.

Verifying these can be done by noting that $1/2 \in A$, and for every $n \ge 1$, $1/2 \ge n/(n+1)$, since $n \ge 1$ implies that $2n = n+n \ge n+1$, so $n \ge (n+1)/2$ [since 1/2 > 0], so $n/(n+1) \ge 1/2$ [since 1/(n+1) > 0].

 $\sup(A)=1$, since 0<1 implies that n< n+1 for all $n\geq 1$, so n/(n+1)<1 for all n (showing that 1 is an upper bound), and if x<1 then 1-x>0, so (n+1)(1-x)>1 for some n (by a result from class), so 1-x>1/(n+1), so x<1-1/(n+1)=n/(n+1), showing that x cannot be an upper bound for A.

$$(\beta) \left\{ (-1)^n (1 + \frac{1}{n}) : n \in \mathbb{N} \right\} = B$$

Again, writing out a few terms convinces us that the odd-numbered terms are negative and increase from -2 towards -1, and the even-numbered terms decrease from 3/2 towards 1. So we assert that $\sup(B) = 3/2$ and $\inf(B) = -2$.

Verifying this can be done by noting that 3/2 and -2 are in B, and then showing that, if $n \ge 1$ is odd, then $-2 \le (-1)^n (1+1/n) < 0 < 3/2$ and if $n \ge 1$ is even then $-2 < 0 < (-1)^n (1+1/n) \le 3/2$. This is because (using our knowledge of the sign of $-1)^n$, these assert that $0 < 1 + 1/n \le 2$ for n odd and $0 < 1 + 1/n \le 3/2$ for n even. These in turn follow from (muliplying by n > 0 and 2n > 0, respectively) $0 < n + 1 \le 2n$ and $0 < 2n + 2 \le 3n$, which assert that $1 \le n$ and $2 \le n$ respectively.

7. For subsets $A, B \subseteq \mathbb{R}$, we define their 'sum' $A + B = \{a + b : a \in A, b \in B\}$.

Show that if A and B are both bounded from above, then

$$lub(A + B) = lub(A) + lub(B) .$$

[Hint: show that lub(A) + lub(B) is an upper bound! Then worry about whether there might be a smaller one...]

Some of you pointed out, in a burst of honesty, that this result can be found in the textbook... [All that I noticed was that it <u>wasn't</u> in the exercise sets.] The idea is that since $a \leq \text{lub}(A)$ and $b \leq \text{lub}(B)$ for every $a \in A$ and $b \in B$, we then know that $x = a + b \leq \text{lub}(A) + \text{lub}(B)$ for every $a \in A$ and $b \in B$, i.e., for every $x \in A + B$. So lub(A) + lub(B) is an upper bound for A + B.

To so that it is the <u>least</u> upper bound, we suppose we are given a number $\mu < \text{lub}(A) + \text{lub}(B) = \alpha + \beta$. From this what we want to do (at least, this is one approach) is to construct a pair of numbers less than α and β (to use that fact that these are suprema). If we set $(\alpha + \beta) - \mu = \epsilon > 0$, then we can 'split' this excess between α and β , setting $\alpha' = \alpha - \epsilon/2 < \alpha$ and $\beta' = \beta - \epsilon/2 < \beta$.

Then $\alpha' + \beta' = (\alpha + \beta) - \epsilon = \mu$, and by the properties of the suprema, we know that there is an $a \in A$ and $b \in B$ with $\alpha' < a$ and $\beta' < b$, so $\mu = \alpha' + \beta' = \alpha' + b < a + b$ with $a + b \in A + B$. So μ is not an upper bound for A + B, showing that $\alpha + \beta = \sup(A + B)$, as desired.