Lecture #7 Sort (4)

Algorithm
JBNU Spring 2021
Jinhong Jung

In Previous Lecture

Desired properties of a sorting algorithm

Name	Stable	In-place : Extra memory	# of comparisons		# of swaps		Adap
			Best	Worst	Best	Worst	- tive
Selection	No	Yes: 0(1)	$O(n^2)$	$O(n^2)$	0(1)	O(n)	No
Bubble	Yes	Yes: 0(1)	$O(n^2)$	$O(n^2)$	0(1)	$O(n^2)$	No
Opt. bubble	Yes	Yes: 0(1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes
Insertion	Yes	Yes: 0(1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes
Merge	Yes	No: <i>0</i> (<i>n</i>)	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	No
Quick	No	Yes: $O(\log n)$	$O(n \log n)$	$O(n^2)$	$O(n \log n)$	$O(n^2)$	No

Quick sort

- Divide the input based on a pivot & sort them recursively
 - \circ Lomuto partition gives $O(n \log n)$ average time complexity
 - \circ (Optimized) quick sort has $O(\log n)$ extra space

Heap sort

Build a heap from the input & repeatedly extract the max

In This Lecture

Analysis of heap sort

Discussion on advanced sorting algorithms

Which of them is better when?

Theoretic lower bound of comparison-based sorting algorithm

■ Can we make a sorting algorithm faster than $\Omega(n \log n)$?

Non-comparative sorting algorithms

Fast under special conditions

Outline

Analysis of heap sort -

Discussion on advanced sorting algorithms

Theoretic lower bound of comparison-based sorting algorithm

Non-comparative sorting algorithms

Heap Sort (1) - Remind

Idea of heap sort

- Step 1) Build a heap from the input
- Step 2) For each loop, extract the max from the heap & place it into the front of sorted area

```
def heap-sort(A, n):
    build-heap(A, n)
    for i ← n downto 2:
        swap A[i] and A[1]
        down-heap(A, 1, i-1)

def build-heap(A, n):
    for i ← [n/2] downto 1:
        down-heap(A, i, n)
```


Heap Sort (2) - Analysis

Correctness of heap sort

 At each time, the maximum is correctly extracted from the heap and the sorted area is correctly expanded

Time complexity of heap sort

- Heap sort requires $\Theta(n \log n)$ time
 - $\circ \Theta(n)$ for building a heap from the input array (refer to 114p)
 - $\circ \Theta(n \log n)$ for sorting elements based on the heap
 - At each time, it requires $O(\log n)$ at most due to down-heap() $\Rightarrow O(n \log n)$
 - Theoretical lower bound of a comparative algorithm is $\Omega(n \log n)$

Space complexity of heap sort

- $S(n) = \Theta(n)$
 - \circ O(n) is required to store n input data
 - \circ 0(1) is required for extra space \Rightarrow In-place algorithm

Heap Sort (3) - Analysis

Stability of heap sort

- Heap sort is not stable
 - Relative order of duplicated items can be inverted while building the heap and extracting the max

Adaptivity of heap sort

 Heap sort is not adaptive because of building of the max heap

Summary

Desired properties of a sorting algorithm

Name	Stable	In-place : Extra memory	# of comparisons		# of swaps		Adap
			Best	Worst	Best	Worst	– tive
Selection	No	Yes: 0(1)	$O(n^2)$	$O(n^2)$	0(1)	0(n)	No
Bubble	Yes	Yes: <i>0</i> (1)	$O(n^2)$	$O(n^2)$	0(1)	$O(n^2)$	No
Opt. bubble	Yes	Yes: <i>0</i> (1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes
Insertion	Yes	Yes: <i>0</i> (1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes
Merge	Yes	No: <i>0</i> (<i>n</i>)	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	No
Quick	No	Yes: $O(\log n)$	$O(n \log n)$	$O(n^2)$	$O(n \log n)$	$O(n^2)$	No
Heap	No	Yes: <i>0</i> (1)	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	No

Remarks

- No ideal answer in the above algorithms
- The average case time complexity of {merge, quick, heap} sort is $O(n \log n)$
 - Which of them is better when?

Outline

Analysis of heap sort

Discussion on advanced sorting algorithms $\sqrt{100}$

Theoretic lower bound of comparison-based sorting algorithm

Non-comparative sorting algorithms

Which Is Better When? (1)

Suppose all of items are located in memory

- Then, pracical choice is quick sort since it has the lowest average time cost
- Quicksort: $11.667(n+1)\ln(n) 1.74n 18.74$
- Mergesort: $12.5n \ln(n)$
- Heapsort: $16n \ln(n) + 0.01n$
- Insertionsort: $2.25n^2 + 7.75n 3ln(n)$

Ref: The Art of Computer Programming

Which Is Better When? (2)

What if the items are in a singly linked list?

- Then, merge sort is better since it can do merge() in one single pass
 - Quick sort and heap sort require swap operations which are inefficient in such a list

- This implies merge sort is beneficial for sorting items on a disk which forces us to read them sequentially
 - Merge sort is default for external sorting, and it's also easy-toparallelize

Which Is Better When? (3)

Suppose $0(n \log n)$ time and 0(1) extra space should be guaranteed (& no need to be super fast)

- Then, heap sort should be used
 - Quick sort has $O(n^2)$ time and $O(\log n)$ space for worst case
 - \circ Merge sort has O(n) space for worst case

What if we just need top-k items, not all?

- Then, heap sort is better (i.e., it takes $O(k \log n + n)$ time)
 - \circ Extract the maximum k times from the heap (partially sorted)
 - \circ Quick and merge sort need to sort all items requiring $O(n \log n)$ time in average

Outline

Analysis of heap sort

Discussion on advanced sorting algorithms

Theoretic lower bound of comparison-based sorting algorithm

Non-comparative sorting algorithms

Better Sorting Algorithm?

- Q. Can we make a comparative sorting algorithm faster than $n \log n$ time?
 - e.g., is there a sorting algorithm in O(n)?

Unfortunately, it's impossible if we should compare arbitrary two elements

- The theoretical lower bound is $\Omega(n \log n)$
- Why?

Lower Bound Of Sorting (1)

Consider the problem of sorting $\{a, b, c\}$ comprised of three distinct items

- A sorting algorithm is represented as decision tree
 - Each node of the decision tree represents binary comparison
 - If a < b < c, then the comparisons on the red path are performed
 - i.e., # of comparisons required in the worst case = the height of the tree

Lower Bound Of Sorting (2)

Decision tree of a sorting algorithm of n items

- Binary tree having *n*! leaf nodes
 - $\circ n!$ indicates # of all possible permutations of n items
- The height of the binary tree having n! leaf nodes is at least $\lceil \log_2 n! \rceil$
 - Tree of height h has at most 2^h leaf nodes, i.e., $2^h \ge n! \Leftrightarrow h \ge \log_2 n!$

$$\lceil \log_2 n! \rceil \ge \log_2 n!$$

$$= \sum_{i=1}^{n} \log_2 i \ge \sum_{i=1}^{n/2} \log_2 n/2$$
$$= \frac{n}{2} \log_2 \frac{n}{2} = \Omega(n \log_2 n)$$

Outline

Analysis of heap sort

Discussion on advanced sorting algorithms

Theoretic lower bound of comparison-based sorting algorithm

Non-comparative sorting algorithms

- Counting sort حِيْلًا
- Radix sort

Counting Sort (1)

Conditions for counting sort

- C1) Element of the array A should be natural number
 - Can include 0 if the array's index starts from 0
- C2) The maximum element should be at most k
 - \circ If k is unknown, the maximum of the array A is set to k

$$k = 5$$

Main idea of counting sort

- 1) Count each element of the array A from key 1 to k
- 2) Enumerate each key by its frequency in the ascending order

Counting Sort (2)

Step 1) Count each element of the array A

• From key 1 to k

```
def counting sort(A, k, n):
        initialize count of size k with zero
count for key in A:
    count[key] += 1
cumu for i ← 2 to k:
late count[i] ← count[i] + count[i-1]
        initialize sorted A of size n
 sort for key in A:
    sorted_A[count[key]] = key
    count[key] -= 1
        return sorted A
```


each value indicates
the index where its element is
located at

Counting Sort (3)

Step 1) Count each element of the array A

• From key 1 to kdef counting sort(A, k, n): initialize count of size k with zero count for key in A:
 count[key] += 1 $\begin{array}{cccc} \mathsf{cumu} & & \mathsf{for} \ i \leftarrow 2 \ \mathsf{to} \ k \text{:} \\ \mathsf{late} & & \mathsf{count}[\mathtt{i}] \leftarrow \mathsf{count}[\mathtt{i}] + \mathsf{count}[\mathtt{i-1}] \end{array}$ **initialize** *sorted* A of size n for key in reversed(A): sort { sorted_A[count[key]] = key
 count[key] -= 1 return sorted A

Counting Sort (4)

Step 1) Count each element of the array A

• From key 1 to kdef counting_sort(A, k, n): initialize count of size k with zero count for key in A:
 count[key] += 1 $\begin{array}{c|c} \mathsf{cumu} & \mathsf{for} \ i \leftarrow 2 \ \mathsf{to} \ \mathsf{k:} \\ \mathsf{late} & \mathsf{count}[\mathtt{i}] \leftarrow \mathsf{count}[\mathtt{i}] + \mathsf{count}[\mathtt{i-1}] \end{array}$ **initialize** *sorted* A of size n for key in reversed(A): sort = sorted_A[count[key]] = key
count[key] -= 1 return sorted A

Counting Sort (5)

Step 1) Count each element of the array A

From key 1 to k

def counting_sort(A, k, n):
 initialize count of size k with zero

count {
 for key in A:
 count[key] += 1

cumu {
 for i ← 2 to k:
 count[i] ← count[i] + count[i-1]

 initialize sorted A of size n

sort { for key in reversed(A):
 sorted_A[count[key]] = key
 count[key] -= 1

return sorted_A

Counting Sort (6) - Analysis

Time & space complexity of counting sort

■ $\Theta(n+k)$ for worst case (if $n \ge k$, then it's $\Theta(n)$)

• If $k = n \log n$, it's $\Theta(n \log n) \Rightarrow$ no need to use it in this case

```
def counting_sort(A, k, n):
\Theta(k) time {initialize count of size k with zero \Theta(k) space
\Theta(n) \text{ time } \begin{cases} \text{for key in A:} \\ \text{count[key] += 1} \end{cases}
\Theta(k) \text{ time } \begin{cases} \text{for } i \leftarrow 2 \text{ to } k: \\ \text{count}[i] \leftarrow \text{count}[i] + \text{count}[i-1] \end{cases}
                 initialize sorted\_A of size n \ni \Theta(n) space (including A)
\Theta(n) time \exists for key in reversed(A):
                      sorted_A[count[key]] = key
count[key] -= 1
```

return sorted_A

Counting Sort (7) - Analysis

Is counting sort in-place?

- Counting sort is not-in-place
 - \circ Because of $\Theta(n+k)$ extra memory space

Stability of counting sort

- Counting sort is stable
 - Because the relative order of duplicate items is preserved

Adaptivity of counting sort

- Counting sort is not adaptive
 - Because the counting and sorting parts do not take the advantage of pre-sortness
 - \circ But its time complexity is $\Theta(n)$

Outline

Analysis of heap sort

Discussion on advanced sorting algorithms

Theoretic lower bound of comparison-based sorting algorithm

Non-comparative sorting algorithms

- Counting sort
- Radix sort ح

Radix Sort (1)

Conditions for radix sort

- C1) An element is represented by unique units such as digits or alphabet
 - ∘ e.g., [170, 45, 2, 24] or [b, ba, c, d, ef]
 - \circ In the textbook, natural decimal numbers are considered, and the maximum number of digits is denoted by w

Main idea of radix sort

■ 1) From the least significant digit to the most significant digit, repeat stably sorting the input numbers based on each digit

Radix Sort (2)

Example of radix sort

 1) From the least significant digit to the most significant digit, repeat stably sorting the input numbers based on each digit

Radix Sort (3)

Pseudocode of radix sort

```
def radix_sort(A, n, w):
    for i ← 1 to w:
        A ← stable sort on A by the i-th digit
```

- If the elements of A are decimal numbers, then counting sort can be used for each step
 - Note that counting sort is a stable sorting algorithm and efficient (i.e., $\Theta(n+k) = \Theta(n)$ where k=10)
 - Introduce an easier version using queues (but its principle is the same as the counting sort!)

Radix Sort (4)

```
def radix_sort(A, n, w):
    queue Q[10]
    for i \leftarrow 1 to w:
         # A \leftarrow stable sort on A by the i-th digit
         for j \leftarrow 1 to n: # push each number into d-th bucket sequentially
              d \leftarrow digit(A[j], i) \# extract number d on i-th digit
             Q[d].enqueue(A[j])
         p ← 1
         for d \leftarrow 0 to 9: # extract each number from d-th bucket sequentially
             while O[d] is not empty:
                  A[p++] \leftarrow Q[d].dequeue()
 1
                                     3
                         1
                                          4
                                                5
                                                     6
               Q
0
                        121
                              432 023
                                                                788
         3
                                                                                    3
0
                        011
    3
                                                                                        3
4
    8
                                                                                    8
```

Radix Sort (5)

```
def radix sort(A, n, w):
    queue Q[10]
    for i \leftarrow 1 to w:
         # A \leftarrow stable sort on A by the i-th digit
         for j \leftarrow 1 to n: # push each number into d-th bucket sequentially
              d \leftarrow digit(A[j], i) \# extract number d on i-th digit
              Q[d].enqueue(A[j])
         p ← 1
         for d \leftarrow 0 to 9: # extract each number from d-th bucket sequentially
              while O[d] is not empty:
                  A[p++] \leftarrow O[d].dequeue()
 1
                                     3
                                                5
                          1
                                          4
                                                      6
0
                        011
                              121 432
                                                                788
     3
                                                                                        3
4
                              023
        3
                                                                                    3
0
     8
                                                                                    8
```

Radix Sort (6)

```
def radix_sort(A, n, w):
    queue Q[10]
    for i \leftarrow 1 to w:
         # A \leftarrow stable sort on A by the i-th digit
         for j \leftarrow 1 to n: # push each number into d-th bucket sequentially
              d \leftarrow digit(A[j], i) \# extract number d on i-th digit
              Q[d].enqueue(A[j])
         p ← 1
         for d \leftarrow 0 to 9: # extract each number from d-th bucket sequentially
              while O[d] is not empty:
                  A[p++] \leftarrow O[d].dequeue()
     1
                                                                                     1
                                     3
                                                5
                          1
                                                      6
               Q
                                                                                        3
                   011
                        121
                                         432
                                                          788
O
                   023
    3
                                                                                    3
                                                                                        2
4
     8
                                                                                    8
```

Radix Sort (7) - Analysis

Time complexity of radix sort

- $\Theta(w(n+k))$ for worst case (if w & k are small, it's $\Theta(n)$)
 - n: the number of items to be sorted
 - w: the length of digits of an item
 - k: the maximum number of digits

```
w=7
1234123
```

k=10 for decimal scale

Radix Sort (8) - Analysis

Space complexity of radix sort

- $\Theta(n+k)$ for worst case (if k is small, it's $\Theta(n)$)
 - $\circ \Theta(n)$ is required for storing the input data in both A and queues
 - $\circ \Theta(k)$ is required for the array of queues
- Radix sort is not-in-place algorithm

Stability of radix sort

Radix sort is stable in nature (due to counting sort)

Adaptivity of radix sort

- Radix sort is not adaptive (due to counting sort)
 - \circ But its time complexity is $\Theta(n)$

Discussion

Counting sort and radix sort are under the same time complexity

- Counting sort is beneficial for repeated numbers in a limited range
 - e.g., sorting 1 million numbers all having value between 1 to 100

- Radix sort is beneficial when numbers are not so much repeated, but their lengths are fixed
 - e.g., sorting back account numbers of 1 million people each having
 14-digit account numbers

What You Need To Know

Name	Stable	In-place : Extra memory	# of comparisons		# of swaps		Adap
			Best	Worst	Best	Worst	tive
Selection	No	Yes: <i>0</i> (1)	$O(n^2)$	$O(n^2)$	0(1)	0(n)	No
Bubble	Yes	Yes: <i>0</i> (1)	$O(n^2)$	$O(n^2)$	0(1)	$O(n^2)$	No
Opt. bubble	Yes	Yes: <i>0</i> (1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes
Insertion	Yes	Yes: <i>0</i> (1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes
Merge	Yes	No: <i>0</i> (<i>n</i>)	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	No
Quick	No	Yes: $O(\log n)$	$O(n \log n)$	$O(n^2)$	$O(n \log n)$	$O(n^2)$	No
Heap	No	Yes: <i>0</i> (1)	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	No
Counting	Yes	No: $O(n+k)$	No comparison : $O(1)$		Time: $O(n+k)$		No
Radix	Yes	No: $O(n+k)$	No comparison : $0(1)$		Time: $O(w(n+k))$		No

Remarks

 $\frac{w=7}{1234123}$

No ideal answer in the above algorithms

k=10 for decimal scale

■ The average case time complexity of {merge, quick, heap} sort is $O(n \log n)$

In Next Lecture

Selection algorithm

- Find *i*-th smallest number in an array
- Can we find the number in linear time for a worst case?

Thank You