

第二章 命题逻辑的等值和推理演算

计算机系 黄民烈

Tel: 18901155050

Office: FIT 4-504

http://coai.cs.tsinghua.edu.cn/hml/

aihuang@tsinghua.edu.cn

本章提纲

● 2.1 等值定理

● 2.8 基本的推理公式

● 2.2 等值公式

- 2.9 推理演算
- 2.3 命题公式与真值表的关系 2.10 归结推理法
- 2.4 联接词的完备集
- <u>● 2.5 对偶式</u>
- ⊙ 2.6 范式
- 2.7 推理形式

本章主要内容

●本章讨论命题逻辑的等值和推理演算,是命题逻辑的核心内容。

●首先介绍命题公式等值的概念,并通过等值定理给 出命题公式等值的充要条件。

2.1 等值定理

●等值

给定两个命题公式 A 和 B,设 P_1 , P_2 ,..., P_n 为出现于 A 和 B 中的所有命题变项,则公式A和B共有 2^n 个解释。

若在其中的任一解释下,公式 A 和 B 的真值都相同,则称 A和 B 是等值的,记作

A=B 或 A⇔B

2.1 等值定理

●定理2-1-1

设A,B为两个命题公式,A = B的充分必要 条件是 $A \leftrightarrow B$ 为一个重言式。

•等值定理的证明

等值定理的证明

●必要性: ←

若 $A \leftrightarrow B$ 是重言式,则在任一解释下, $A \leftrightarrow B$ 的真值均为真。由 $A \leftrightarrow B$ 的定义,仅当 $A \lor B$ 真值相同时,才有 $A \leftrightarrow B = T$ 。 所以在任一解释下, $A \lor B$ 都有相同的真值,从而有A = B。

等值定理的证明

●充分性: →

若有A = B,则在任一解释下, $A \setminus B$ 都有相同的真值,依 $A \leftrightarrow B$ 的定义, $A \leftrightarrow B$ 的取值只能为真,故推出 $A \leftrightarrow B$ 是重言式。

逆命题、否命题与逆否命题

⊙逆命题

若将P→Q视为原命题,则称Q→P为它的**逆命题**。

●否命题

若将P→Q视为原命题,则称¬P→¬Q为它的<u>否命题</u>。

●逆否命题

若将P→Q视为原命题,则 称¬Q→¬P为它的**逆否命题**。

逆命题、否命题与逆否命题

● 一个命题与它的逆否命题等值

$$\neg \mathbf{Q} \rightarrow \neg \mathbf{P} = \mathbf{P} \rightarrow \mathbf{Q}$$

●一个命题P→Q的逆命题与它的否命题等值

$$\mathbf{Q} \rightarrow \mathbf{P} = \neg \mathbf{P} \rightarrow \neg \mathbf{Q}$$

数学证明中的反证法

2.2 等值公式

●2-2-4 子公式

若 X 是合式公式 A 的一部分,且 X 本身也是一个合式公式,则称 X 为公式 A 的子公式。

● 原公式 : P∧(Q∧R)

2.2 等值公式

●2-2-5 置换规则

设 X 为公式 A 的子公式,用与 X 等值的公式Y 将 A中的 X代替,称为置换,该规则称为置换规则。

- ●置换后公式 A 化为公式 B, 置换规则的性质保证 公式 A 与公式 B 等值,即A=B。
- ●当且当 A 是重言式时,置换后的公式B也是重言式。

置换与代入的差别?

- ●置换不要求替换所有的命题变项,代入要求"所有"
- ●代入是相对重言式而言

2.2 等值公式

●定理:

设 $\Phi(A)$ 是含命题公式 A 的命题公式, $\Phi(B)$ 是用命题公式 B 置换了 $\Phi(A)$ 中的 A 之后得到的命题公式

如果 A = B, 则 $\Phi(A) = \Phi(B)$ 。

●双重否定律

$$\neg \neg P = P$$

●结合律

$$(PVQ)VR = PV(QVR)$$

 $(P \wedge Q) \wedge R = P \wedge (Q \wedge R)$

$$(P \leftrightarrow Q) \leftrightarrow R = P \leftrightarrow (Q \leftrightarrow R)$$

$$(P \rightarrow Q) \rightarrow R \neq P \rightarrow (Q \rightarrow R)$$
 (P=F?)

●交換律

$$P \lor Q = Q \lor P$$

$$P \wedge Q = Q \wedge P$$

$$P \leftrightarrow Q = Q \leftrightarrow P$$

$$P \rightarrow Q \neq Q \rightarrow P$$

●分配律

●等幂律(恒等律)

$$PV(Q \land R) = (PVQ) \land (PVR)$$

$$P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R)$$

$$P \rightarrow (Q \rightarrow R) = (P \rightarrow Q) \rightarrow (P \rightarrow R)$$

$$P \leftrightarrow (Q \leftrightarrow R) \neq (P \leftrightarrow Q) \leftrightarrow (P \leftrightarrow R)$$

$$P \lor P = P$$

$$P \wedge P = P$$

$$P \rightarrow P = T$$

$$P \leftrightarrow P = T$$

●吸收律

$$P \lor (P \land Q) = P$$

$$P \wedge (P \vee Q) = P$$

●摩根 (De Morgan) 律:

$$\neg (P \lor Q) = \neg P \land \neg Q$$
$$\neg (P \land Q) = \neg P \lor \neg Q$$

对蕴含词、双条件词作否定有

$$\neg(P \to Q) = P \land \neg Q$$

$$\neg(P \leftrightarrow Q) = \neg P \leftrightarrow Q = P \leftrightarrow \neg Q$$

$$= (\neg P \land Q) \lor (P \land \neg Q)$$

●同一律:

$$P \vee F = P$$
 $P \wedge T = P$

$$T \rightarrow P = P$$
 $T \leftrightarrow P = P$

还有

$$P \rightarrow F = \neg P$$
 $F \leftrightarrow P = \neg P$

●零律:

$$P \lor T = T$$

$$P \wedge F = F$$

还有

$$P \rightarrow T = T$$

$$\mathbf{F} \rightarrow \mathbf{P} = \mathbf{T}$$

●补余律:

$$P \lor \neg P = T$$

$$P \wedge \neg P = F$$

还有

$$\mathbf{P} \rightarrow \neg \mathbf{P} = \neg \mathbf{P}$$

$$\neg P \rightarrow P = P$$

$$P \leftrightarrow \neg P = F$$

常用的等值式

● 蕴涵等值: $P \rightarrow Q = \neg P \lor Q$

 $● 假言易位: P \rightarrow Q = \neg Q \rightarrow \neg P (逆否命题)$

● 前提合并: $P \rightarrow (Q \rightarrow R) = (P \land Q) \rightarrow R$

● 前提互换: $P \rightarrow (Q \rightarrow R) = Q \rightarrow (P \rightarrow R)$

常用的等值式

●等价等值:

$$P \leftrightarrow Q = (P \rightarrow Q) \land (Q \rightarrow P)$$

$$P \leftrightarrow Q = (P \land Q) \lor (\neg P \land \neg Q)$$

$$P \leftrightarrow Q = (\neg P \lor Q) \land (P \lor \neg Q)$$

●等价否定等值:

$$P \leftrightarrow Q = \neg P \leftrightarrow \neg Q$$

⊙归谬论:

$$(P \rightarrow Q) \land (P \rightarrow \neg Q) = \neg P$$

等值与等价的差别?

●A、B为两个命题公式,等值符号不是命题联接词,

 $A \Leftrightarrow B$ 不是复合命题

$$A \longleftrightarrow B$$

A	В	$A \leftrightarrow B$
F	F	T
\mathbf{F}	T	\mathbf{F}
T	F	F
T	T	T

1	/ \	\boldsymbol{D}
\mathcal{A}		B

A	В
T	T
F	F

思考题

●给定由 $P_1, P_2, ..., P_n$ 到命题公式 A 的真值表,如何从取T或者F的行来列写命题公式 A 对 $P_1, P_2, ..., P_n$ 的逻辑表达式?

F	F	F	F
F	T	T	F
T	F	F	F
T	T	F	T

2.3 命题公式与真值表的关系

●对任一依赖于命题变元 $P_1,P_2,...,P_n$ 的命题公式 A来说,可由 $P_1,P_2,...,P_n$ 的真值根据命题公式A给出A的真值,从而建立起由 $P_1,P_2,...,P_n$ 到 A的真值表。

●反之,若给定了由 $P_1,P_2,...,P_n$ 到 A的真值表,可以用下述方法写出命题公式A对 $P_1,P_2,...,P_n$ 的逻辑表达式:

2.3 命题公式与真值表的关系

1. 根据取T的行,进行枚举

考查 A的真值表中取T的行,若取T的行数共有m行,则命题公式 A可以表示成如下形式:

$$A = Q_1 \lor Q_2 \lor \cdots \lor Q_m$$

其中
$$Q_i = (R_1 \land R_2 \land \cdots \land R_n),$$

$$R_i = P_i \ \text{或} \ \neg P_i \quad (i=1, 2, \cdots, n)$$

若该行的
$$P_i = T$$
,则 $R_i = P_i$,若 $P_i = F$,则 $R_i = \neg P_i$

2.3 命题公式与真值表的关系

2. 根据取F的行,进行枚举

考查真值表中取F的行, 若取F的行数共有k行,则命题公式A可以表示成如下形式:

$$A = Q_1 \land Q_2 \land \bullet \bullet \land Q_k$$

其中

$$Q_{i} = (R_{1} \vee R_{2} \vee \bullet \bullet \vee R_{n}) ,$$

$$R_{i} = P_{i} \not \leq R_{i} = \neg P_{i} (i=1, 2, \dots, n)$$

若该行的 $P_i = T$,则 $R_i = \neg P_i$ 若该行的 $P_i = F$,则 $R_i = P_i$

2.4 联接词的完备集

介绍联结词的完备集及其简单的判别方法, 包括对偶式的概念

重点介绍范式和主范式的概念,给出求范式和主范式的步骤,特别是将命题公式化成相应的主析取范式和主合取范式的方法;

两个重要的命题联结词

●与非联接词与非词是二元命题联结词。两个命题P和Q用与非词"。)"联结起来,构成一个新的复合命题,记作P↑Q,读作P和Q的"与非"。

●当且仅当P和Q的真值都是T时,P↑Q的真值为F,否则P↑Q的真值为T。

$$P \uparrow Q = \neg (P \land Q)$$

两个重要的命题联结词

●或非联接词

或非词是二元命题联结词。两个命题P和Q用与非词" \downarrow "联结起来,构成一个新的复合命题,记作 $P\downarrow Q$,读作P和Q的"或非"。

●当且仅当P和Q的真值都是F时,P↓Q的真值为T,否则P↓Q的真值为F。

$$P \downarrow Q = \neg (P \lor Q)$$

2.4 联接词的完备集

●2.4.3 真值函项

对所有的合式公式加以分类,将等值的公式视为同一类,从中选一个作代表称之为真值函项。每一个真值函项就有一个联结词与之对应。

可理解为关于命题变项的函数

N = 2 时的所有真值函项

P	Q	g0	g1	g2	g3	g4	g5	g6	g 7	g8	g9	g10	g11	g12	g13	g14	g15
F	F	F	F	F	F	F	F	F	F	T	T	T	T	T	T	T	T
F	T	F	F	F	F	T	T	T	T	F	F	F	F	T	T	T	T
Т	F	F	F	T	T	F	F	T	T	F	F	T	T	F	F	T	T
T	T	F	Т	F	T	F	T	F	T	F	T	F	T	F	T	F	T

$$g_0 = F$$
 $g_1 = P \land Q$ $g_2 = P \land \neg Q$
 $g_3 = P$ $g_4 = \neg P \land Q$ $g_5 = Q$
 $g_6 = P \lor Q$ $g_7 = P \lor Q$ $g_8 = P \downarrow Q$
 $g_9 = P \leftrightarrow Q$ $g_{10} = \neg Q$ $g_{11} = P \lor \neg Q$
 $g_{12} = \neg P$ $g_{13} = P \rightarrow Q$ $g_{14} = P \uparrow Q$ $g_{15} = T$

2.4 联接词的完备集

●2.4.4 联接词的完备集

设C是一个联结词的集合,如果任何n元($n \ge 1$) 真值函项都可以由仅含C中的联结词构成的公式表 示,则称C是完备的联结词集合,或说C是联结词的 完备集。

联结词的完备集

- ●定理2.4.1{¬, ∨, ∧}是完备的联结词集合。
- ●从前面介绍的由真值表列写命题公式的过程可知, 任一公式都可由¬, ∨, ∧表示出来, 从而{¬,∨,∧}是 完备的。
- ●一般情形下,该定理的证明应用数学归纳法,施归纳于联结词的个数来论证。

定理2.4.1 {¬, V, ∧}是完备的联结词集合

另一证法,因为任何 $n(n\geq 1)$ 元真值函项都与唯一的一个主析取范式(后面介绍)等值,而在主析取范式中仅含联结词¬, V, Λ ,所以 $S = \{\neg, V, \Lambda\}$ 是联结词的完备集。

联结词的完备集

推论: 以下联结词集都是完备集:

$$(1) S_1 = \{\neg, \land\}$$

$$(2) S2 = {\neg, \lor}$$

$$(3) S_3 = \{\neg, \rightarrow\}$$

$$(4) S_{\Delta} = \{\uparrow\}$$

$$(5) S_5 = \{\downarrow\}$$

●课后补充作业:证明(4)和(5)

2.6 范式

●2.6.1 文字与互补对

◆ 命题变项P及其否定式¬P统称文字。且P与¬P称为互补对。

2.6 范式

●2.6.2 合取式

由文字的合取所组成的公式称为合取式。

●2.6.3 析取式

由文字的析取所组成的公式称为析取式。

2.6 范式

●2.6.4 析取范式

析取范式是形如

$$A_1 \vee A_2 \vee \cdots \vee A_n$$

的公式,其中 A_i ($i = 1, \dots, n$)为<u>合取式</u>。

●2.6.5 合取范式

合取范式是形如

$$A_1 \wedge A_2 \wedge \cdots \wedge A_n$$

的公式,其中 A_i ($i = 1, \dots, n$)为<u>析取式</u>。

2.6 范式

●2.6.6 范式存在定理

任一命题公式都存在与之等值的合取范式和析取范式。但命题公式的合取范式和析取范式。但命题公式的合取范式和析取范式不是唯一的。

由于范式一般不唯一,所以有必要进一步研究主范式。

主范式——极小项和极大项

●2.6.7 极小项

n个命题变项 P_1, P_2, \dots, P_n 组成的合取式:

$$Q_1 \wedge Q_2 \wedge \cdots \wedge Q_n$$

其中 $Q_i = P_i$ 或 $\neg P_i$ 。即每个命题变项与它的否定式不同时出现,但二者之一必出现且仅出现一次。则称合取式 $Q_1 \land Q_2 \land \cdots \land Q_n$ 为极小项,并以 m_i 表示。

极小项

●由P₁ P₂两个命题变项组成的极小项

二进制标记法

$$ightharpoonup \neg P_1 \land \neg P_2 \qquad 00$$

$$ightharpoonup P_1 \wedge P_2 \qquad 01$$

$$\bullet$$
 $P_1 \wedge \neg P_2$ 10

$$\bullet$$
 $P_1 \wedge P_2$ 11

"极小": 只有一种赋值可以取到T

主范式——极小项和极大项

●2.6.8 极大项

n个命题变项 P_1, P_2, \cdots, P_n 组成的析取式:

$$Q_1 \lor Q_2 \lor \cdots \lor Q_n$$

其中 $Q_i = P_i$ 或 $\neg P_i$ 。即每个命题变项与它的否定式不同时出现,但二者之一必出现且仅出现一次。则称析取式 $Q_1 \lor Q_2 \lor \cdots \lor Q_n$ 为极大项,并以 M_i 表示。

极大项

●由P1 P2两个命题变项组成的极大项

二进制标记法

$$\bullet \neg P_1 \lor \neg P_2$$
 00

$$\bullet$$
 $P_1 \lor \neg P_2$ 10

$$\bullet$$
 $P_1 \lor P_2$ 11

"极大":有多种赋值可以取到T

主析取范式与主合取范式

●主析取范式

设由n个命题变项构成的析取范式中所 有的合取式都是极小项,则称该析取范式为 主析取范式(仅由极小项构成的析取范式称 为主析取范式)。

主析取范式与主合取范式

●主合取范式

设由n个命题变项构成的合取范式中所有的析取式都是极大项,则称该合取范式为主合取范式(仅由极大项构成的合取范式称为主合取范式)。

主范式

●2.6.11 主析取范式定理

任一含有n个命题变项的公式,都存在 唯一的与之等值的且恰仅含这n个命题变项 的主析取范式。

主范式

●2.6.12 主合取范式定理

任一含有n个命题变项的公式,都存在 唯一的与之等值的且恰仅含这n个命题变项 的主合取范式。

主范式——极小项的性质

- ⊙(2)每个极小项只在一个解释下为真。
- \bullet (3) 极小项两两不等值,并且 $m_i \land m_j = F(i \neq j)$ 。

主范式——极小项的性质(续) Tsinghua University

- \circ (4) 任一含有n个命题变项的公式,都可由k个 $(k \leq 2^n)$ 极小项的析取来表示。
- \bullet (5) 恰由2 n 个极小项的析取构成的公式必为 重言式。即

$$\bigvee_{i=0}^{2^{n}-1} m_i = T$$

主范式——极大项的性质

- ●(2)每个极大项只在一个解释下为假。
- \bullet (3) 极大项两两不等值,并且 $M_i \vee M_j = T \quad (i \neq j)$

主范式——极大项的性质(续)

- ●(4) 任一含有n个命题变项的公式,都可由k个($k \le 2^n$)极大项的合取来表示。
- \odot (5) 恰由2 n 个极大项的合取构成的公式必为矛盾式。即

$$\bigwedge_{i=0}^{2^{n}-1} M_{i} = F$$

主析取范式与主合取范式的求法

• 求主析取范式的方法

◆ 1. 先求析取范式

◆ 2. 再填满变项

主析取范式与主合取范式的求法

• 1
$$P \leftrightarrow Q = (P \land Q) \lor (\neg P \land \neg Q)$$

 $m_3 \qquad m_0$
 $= m_0 \lor m_3 = \bigvee_{0,3}$

● 2 填满命题变项

$$P \rightarrow Q = \neg P \lor Q$$

$$\therefore \neg P = \neg P \land (Q \lor \neg Q)$$

$$= (\neg P \land Q) \lor (\neg P \land \neg Q)$$

$$\therefore Q = Q \land (P \lor \neg P)$$

$$= (P \land Q) \lor (\neg P \land Q)$$

主析取范式与主合取范式的求法

$$P \rightarrow Q = (\neg P \land Q) \lor (\neg P \land \neg Q) \lor (P \land Q)$$

$$m_1 \qquad m_0 \qquad m_3$$

$$= m_0 \lor m_1 \lor m_3$$

$$= \bigvee_{0, 1, 3}$$

填满变项的简便方法

$$\neg P \lor Q$$

$$= m^{0x} \lor m^{x1}$$

$$= m_0 \lor m_1 \lor m_3$$

主范式的求法与举例

◎综合举例

$$(P \lor \neg Q) \rightarrow (\neg P \leftrightarrow (Q \land \neg R))$$
 求主析与主合范式

原式 =
$$\neg (P \lor \neg Q) \lor ((\neg P \land (Q \land \neg R)) \lor (P \land (\neg Q \lor R)))$$

= $(\neg P \land Q) \lor (\neg P \land Q \land \neg R) \lor (P \land \neg Q) \lor (P \land R)$
= $m^{01X} \lor m^{010} \lor m^{10X} \lor m^{1X1}$

列写真值表验算

P Q R P $\lor \neg Q$ Q $\land \neg R$ $\neg P \leftrightarrow (Q \land \neg R)$ 原式

0	0	0	1	0	0	O	\mathbf{M}_7
0	0	1	1	0	0	0	\mathbf{M}_6
0	1	0	O	1	1	1	m_2
0	1	1	О	0	0	1	m_3
1	0	0	1	0	1	1	m_4
1	0	1	1	0	1	1	m_5
1	1	0	1	1	0	O	\mathbf{M}_1
1	1	1	1	0	1	1	m_7

主析与主合之间的转换(简化方法)

已知
$$A = \bigvee_{0, 1, 4, 5, 7}$$

 $= \bigwedge_{\{0, 1, \dots, 7\} - \{0, 1, 4, 5, 7\}\}}$
 $= \bigwedge_{(2.3.6)}$
 $= \bigwedge_{5, 4, 1}$

主析与主合之间的转换(简化方法)

已知
$$A = \bigwedge_{1,4,5}$$

 $= \bigvee_{\{0,1,\dots,7\}-\{1,4,5\}}$
 $= \bigvee_{\{0,1,\dots,7\}-\{2,3,6\}\}}$
 $= \bigvee_{0,1,4,5,7}$

Why?

第二章作业题

- -: 3, 4, 6
- 五: 3, 5, 8

