KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS

Skaitiniai metodai ir algoritmai (P170B115) *Laboratorinių darbų ataskaita*

Atliko:

IFF-1/4 gr. studentas Mildaras Karvelis

2023 m. spalio 26 d.

Priėmė:

Prof. Barauskas Rimantas

TURINYS

1.	Net	iesinių lygčių sprendimas	3
	1.1.	f(x) daugianario sprendimas	3
	1.2.	g(x) daugianario grafiškas vaizdavimas	5
	1.3.	Programos kodo fragmentai	5
2.	Šak	nų atskyrimas skenavimo metodu	7
	2.1.	f(x) ir g(x) grafikai ir intervalai	7
	2.2.	Programos kodo fragmentai	8
3.	Šak	nų tikslinimas skenavimo, pusiaukirtos , Kvazi-Niutono (kirstinių)	
me	todais	5	9
	3.1.	f(x) daugianaris	9
	3.2.	g(x) funkcija	14
	3.3	Programos kodo fragmentai	15

1. Netiesinių lygčių sprendimas

Varianto Nr.	Daugianariai f(x)	Funkcijos $g(x)$	Metodai ¹
8	$-0.67x^4 + 2.51x^3 + 2.27x^2 - 4.02x - 2.48$	$e^{-x^2}\sin(x^2)(x+2); -3 \le x \le 3$	2, 4

Sprendimo metodai: Pusiaukirtos ir Kvazi-Niutono (kirstinių)

1.1. f(x) daugianario sprendimas

1 pav. Daugianario tikslus įvertis

2 pav. Daugianario grubaus įverčio grafikas

Grubus lygties $f(x) = 0$ šaknų intervalo įvertis	[-6.9999999999999999999999999999]
Tikslesnis lygties $f(x) = 0$ šaknų intervalo įvertis	[-3.449489742783178; 4.746268656716417]

1 lentelė Tikslūs ir grubūs įverčiai

1.2. g(x) daugianario grafiškas vaizdavimas

3 pav. g(x) daugianario grafinis vaizdas

1.3. Programos kodo fragmentai

```
function iverciai_ir_grafikai
clc, close all, clear all;
format long;
% Daugianaris f(x)
f = Q(x)(-0.67*x.^4) + 2.51*x.^3+2.27*x.^2-4.02*x-2.48;
%f = @(x)(0.67*x.^4) - 2.51*x.^3-2.27*x.^2+4.02*x+2.48;
f_name = '-0.67x^4+2.51x^3+2.27x^2-4.02x-2.48';
% Funkcija g(x)
g = @(x)exp(-1*x.^2).*sin(x.^2).*(x+2);
g_name = 'e^-x*sin(x^2)*(x+2)';
a = [0.67 -2.51 -2.27 4.02 2.48];
n = numel(a);
[R_grub, R_neig, R_teig]=Reziai(n, a);
Grubus = [-R grub R grub]
Tikslesnis = [R_neig R_teig]
% grafikų braižymas
grubus_intervalas = -R_grub:0.1:R_grub;
tikslus_intervalas = R_neig:0.1:R_teig;
% f(x) grubus
figure(1); hold on; grid on;
% plot(-min(R_grub, R_neig), 0, 'bp', 'LineWidth', 2);
% plot(min(R_grub,R_teig),0,'bp', 'LineWidth', 2);
plot([-R_grub,R_grub],[0 0],'r*', 'LineWidth', 2);
```

```
plot([R_neig R_teig], [0 0], 'bp', 'LineWidth', 2);
plot(grubus_intervalas, f(grubus_intervalas), 'k-', 'LineWidth', 2);
title(['f(x)=', f_name, ' Grubus intervalas.']);
legend('Grubus šaknų intervalo įvertis', 'Tikslesnis šaknų intervalo įvertis', 'Daugianaris f(x)');
axis([-R_grub R_grub -R_grub R_grub]);
plot([-R_grub, R_grub], [0, 0], 'b'); % X ašies linija
% f(x) tikslus
figure(2); hold on; grid on;
plot([-R_grub,R_grub],[0 0],'r*', 'LineWidth', 2);
plot([R_neig R_teig], [0 0], 'bp', 'LineWidth', 2);
plot(tikslus_intervalas, f(tikslus_intervalas), 'k-', 'LineWidth', 2);
title(['f(x)=', f_name, ' Tikslus intervalas.']);
legend('Grubus šaknų intervalo įvertis', 'Tikslesnis šaknų intervalo įvertis', 'Daugianaris f(x)');
axis([R_neig R_teig -25 50]);
plot([-R_grub, R_grub], [0, 0], 'b'); % X ašies linija
% g(x)
figure(3); hold on; grid on;
g min = -3;
g_max = 3;
g_intervalas = g_min:0.1:g_max;
plot([g_min g_max], [0 0], 'r*', 'LineWidth', 2);
plot(g_intervalas, g(g_intervalas), 'k-', 'LineWidth', 2);
title(['g(x)=', g_name]);
legend('funkcijos g(x) intervalo rėžiai', 'Funkcija g(x)');
axis([g_min g_max -6 2]);
plot([-R_grub, R_grub], [0, 0], 'b'); % X ašies linija
end
```

```
function [R grub, R neig, R teig] = Reziai(n, a)
    %Rgrub
    R_{grub} = 1 + max(abs(a(2:end)))/a(1);
    % Rteig skaiciavimas
    b = a(2:end);
    B = \max(abs(b(b<0)));
    k = n - (n - (find(b<0, 1)));
    R_{\text{teig}} = 1 + (B/a(1))^{(1/k)};
    % Rneig skaiciavimas
    if mod(n, 2) == 0
        a(end:-2:1) = -a(end:-2:1);
         b = a(2:end);
        B = \max(abs(b(b<0)));
        k = n - (n - (find(b<0, 1)));
        R_{\text{neig}} = 1 + (B/a(1))^{(1/k)};
        R_neig = -R_neig;
    else
        a(end:-2:1) = -a(end:-2:1);
        a = a.*-1;
        b = a(2:end);
        B = \max(abs(b(b<0)));
        k = n - (n - (find(b<0, 1)));
        R_{\text{neig}} = 1 + (B/a(1))^{(1/k)};
         R \text{ neig} = -R \text{ neig};
    end:
end
```

2. Šaknų atskyrimas skenavimo metodu.

2.1. f(x) ir g(x) grafikai ir intervalai

Skenavimas atliekamas intervale [-3.449; 4.746], skenavimo žingsnis lygus 0,35. Funkcijos [-3; 3]

4 pav. Daugianario šaknų atskyrio intervalai.

5 pav. Funkcijos šaknų atskyrimo intervalai

Intervalas Nr.	Daugianario intervalas
1	[-1.349489742783177; -0.999489742783177]
2	[-0.649489742783177; -0.299489742783177]
3	[1.100510257216822; 1.450510257216822]
4	[3.900510257216823; 4.250510257216823]

Intervalo Nr.	Funkcijos intervalas
1	[-2.6000000000000000000000000000000000000
2	[-2.19999999999999999999999999999]
3	[-1.79999999999999999999999999999]
4	[1.600000000000000; 1.8000000000000000]
5	[2.40000000000001; 2.600000000000001]

2.2. Programos kodo fragmentai

```
function saknu intervalai
   clc, close all, clear all;
   format long;
   % -----
   % Daugianaris f(x)
   f = @(x)(-0.67*x.^4) + 2.51*x.^3+2.27*x.^2-4.02*x-2.48;
   %f = @(x)(0.67*x.^4) - 2.51*x.^3-2.27*x.^2+4.02*x+2.48;
   f_name = '-0.67x^4+2.51x^3+2.27x^2-4.02x-2.48';
   % -----
   % Funkcija g(x)
   g = @(x)exp(-1*x.^2).*sin(x.^2).*(x+2);
   g_name = 'e^-x*sin(x^2)*(x+2)';
   a = [0.67 -2.51 -2.27 4.02 2.48];
   n = numel(a);
   [R_grub, R_neig, R_teig]=Reziai(n, a);
   colors = ['g', 'r', 'b', 'k', 'y', 'c'];
   % šaknų intervalų atskyrimas daugianariui f(x)
   zingsnis = 0.35; % zingsnio nustatymas
   [SaknuIntervalai_fx]=SkenavimasPastoviu(R_neig, R_teig, zingsnis, f);
   SaknuIntervalai_fx
   % daugianario f(x) ir jo šaknų intervalų atvaizdavimas
```

```
figure(1); hold on; grid on;
    tikslus intervalas = R neig:0.1:R teig;
    plot([R_neig R_teig], [0 0], 'bp', 'LineWidth', 2);
plot(tikslus_intervalas, f(tikslus_intervalas), 'k-', 'LineWidth', 2);
    for i = 1:length(SaknuIntervalai_fx)
        plot(SaknuIntervalai_fx(i, 1), 0*SaknuIntervalai_fx(i, 1), 'o', 'MarkerFaceColor', colors(i),
'MarkerSize', 5);
        plot(SaknuIntervalai_fx(i, 2), 0*SaknuIntervalai_fx(i, 2), 'o', 'MarkerFaceColor', colors(i),
'MarkerSize', 5);
    title(['f(x)=', f_name, ' Šaknų atskyrimo intervalai. Žingsnis: ', num2str(zingsnis)]);
    legend('f(x) šaknų intervalo rėžiai', 'Daugianaris f(x)');
    axis([R_neig R_teig -25 50]);
    % šakny intervaly atskyrimas funkcijai g(x)
    zingsnis = 0.2; % zingsnio nustatymas
    g min = -3;
    g_max = 3;
    g_intervalas = g_min:0.1:g_max;
    [SaknuIntervalai gx]=SkenavimasPastoviu(g min, g max, zingsnis, g);
    SaknuIntervalai gx
    figure(2); hold on; grid on;
    plot([g_min g_max], [0 0], 'rp', 'LineWidth', 2);
    plot(g_intervalas, g(g_intervalas), 'k-', 'LineWidth', 2);
    for i = 1:length(SaknuIntervalai_gx)
        plot(SaknuIntervalai_gx(i, 1), 0*SaknuIntervalai_gx(i, 1), 'o', 'MarkerFaceColor', colors(i),
'MarkerSize', 5);
        plot(SaknuIntervalai_gx(i, 2), 0*SaknuIntervalai_gx(i, 2), 'o', 'MarkerFaceColor', colors(i),
'MarkerSize', 5);
    end
    title(['g(x)=', g name, ' Šakny atskyrimo intervalai. Žingsnis: ', num2str(zingsnis)]);
    legend('funkcijos g(x) intervalo rėžiai', 'Funkcija g(x)');
    axis([g min g max -6 2]);
end
```

3. Šaknų tikslinimas skenavimo, pusiaukirtos, Kvazi-Niutono (kirstinių) metodais.

3.1. f(x) daugianaris

	Pradinis intervalas	Šaknis	Tikslumas	Iteracijų
utono				skaičius
iut	[-1.349489742783177;	-1.180246029145651	0.000000000000012	7
as -	- 0.999489742783177]			
azi	[-0.649489742783177;	-0.566365716276059	0.00000000001030	5
\sim \sim	-0.299489742783177]			
E X	[1.100510257216822;	1.330278155028645	0.000000000006279	5
	1.450510257216822]			
	[3.900510257216823;	4.162602247119908	0.000000000453074	5
	4.250510257216823]			

	Pradinis intervalas	Šaknis	Tikslumas	Iteracijų
10				skaičius
'imo	[-1.349489742783177;	-1.180246029145651	0.000000004758209	10
nav as	- 0.999489742783177]			
Skena ^v etodas	[-0.649489742783177;	-0.566365716276059	0.00000001819280	10
	-0.299489742783177]			
B	[1.100510257216822;	1.330278155028645	0.000000006224549	10
	1.450510257216822]			
	[3.900510257216823;	4.162602247119908	0.000000053046186	10
	4.250510257216823]			

	Pradinis intervalas	Šaknis (fzero)	Šaknis (roots)	
AB os	-1.349489742783177	-1.180246029145653	-1.180246029145654	
rL/ cijc	-0.649489742783177	-0.566365716276339	-0.566365716276338	
[A]	1.100510257216822	1.330278155027950	1.330278155027949	
Z g	1. 3.900510257216823	4.162602247110461	4.162602247110462	

3.2. g(x) funkcija

	Pradinis intervalas	Šaknis	Tikslumas	Iteracijų
				skaičius
-Niutono as	[-2.800000000000000;	-3.069980129481733	0.00000000002991	8
iut	-2.7000000000000000]			
as	[-2.399999999999999999;	-2.506628140055660	0.00000000638296	4
azi tod	-2.29999999999999]			
Kvazi-N metodas	[-1.9999999999999;	-2.0000000000000000	0	1
	-1.89999999999999]			
	[1.40000000000000;	1.772453850902849	0.00000000001541	7
	1.50000000000000000			
	[2.20000000000001;	2.506628274240725	0.00000000016466	7
	2.300000000000001]			

→ Pradinis intervalas	Šaknis	Tikslumas	Iteracijų
-----------------------	--------	-----------	-----------

			skaičius
[-2.60000000000000; -2.39999999999999]	-2.506628275000000	0.000000000002993	10
[-2.1999999999999; -1.99999999999999]	-1.99999999000001	0.000000000027723	10
[-1.7999999999999; -1.5999999999999]	-1.772453850999999	0.000000000031564	10
[1.6000000000000; 1.800000000000000]	1.772453850999999	0.000000000632502	10
[2.4000000000001; 2.500000000000001]	2.506628275000001	0.000000000057759	10

3	Pradinis intervalas	Šaknis (fzero)
AE os	-2.600000000000000	-2.506628274631001
TL cij	-2.19999999999999	-2
IA' ink	1.6000000000000000	1.772453850905516
N fr	2.400000000000001	2.506628274631001

3.3. Programos kodo fragmentai

```
function saknu tikslinimas
   clc, close all, clear all;
   format long;
   % -----
   % Daugianaris f(x)
   f = Q(x)(-0.67*x.^4) + 2.51*x.^3+2.27*x.^2-4.02*x-2.48;
   %f = @(x)(0.67*x.^4) - 2.51*x.^3-2.27*x.^2+4.02*x+2.48;
   f_name = '-0.67x^4+2.51x^3+2.27x^2-4.02x-2.48';
   % -----
   % Funkcija g(x)
   g = @(x)exp(-1*x.^2).*sin(x.^2).*(x+2);
   g_name = 'e^-x*sin(x^2)*(x+2)';
   a = [0.67 -2.51 -2.27 4.02 2.48];
   n = numel(a);
   [R_grub, R_neig, R_teig]=Reziai(n, a);
   % -----
   % šaknų intervalų atskyrimas daugianariui f(x)
   % -----
   zingsnis = 0.35; % zingsnio nustatymas
   [SaknuIntervalai_fx]=SkenavimasPastoviu(R_neig, R_teig, zingsnis, f);
   % REKURSINIS SKENAVIMAS (MAŽINANT ŽINGSNĮ)
   % -----
   % šaknų tikslinimas daugianariui f(x)
   fprintf( '----\n');
    fprintf( 'Šakny tikslinimas skenavimo metodu, mažinant žingsni\n');
    fprintf( 'Daugianaris f(x)=-0.67x^4+2.51x^3+2.27x^2-4.02x-2.48n');
    fprintf( '----\n');
    fprintf( 'Stulpelių reikšmės:\n');
    fprintf( '1:2 - pradiniai šaknų tikslinimo intervalai\n');
    fprintf( '3 - šaknis\n');
   fprintf( '4 - tikslumas\n');
   fprintf( '5 - atliktų iteracijų kiekis\n');
   fprintf( '----\n');
   Saknys_intervalai_fx = [];
   Tikslumai = [];
   Iteracijos = [];
   tikslumas = 1e-9;
   for i=1:length(SaknuIntervalai_fx)
```

```
x_min = SaknuIntervalai_fx(i,1);
        x max = SaknuIntervalai fx(i, 2);
        if i == 1
           draw = 1;
           figure(1); grid on; hold on;
           npoints= 1000;
           x = x_{min}:(x_{max}-x_{min})/(npoints - 1):x_{max};
           plot(x, f(x), 'r-', 'LineWidth', 2);
        else
           draw = 0;
       end;
        if (sign(f(x_min)) ~= sign(f(x_max)))
           iteracijos_sk = 0;
           [a, b, it, t]=SkenavimasRekursija(x_min, x_max, zingsnis, tikslumas, f, iteracijos_sk,
draw);
           Saknys_intervalai_fx = [Saknys_intervalai_fx; a b];
           Iteracijos = [Iteracijos; it];
           Tikslumai = [Tikslumai; t];
        end
    end
    close all;
    Saknys_fx = (Saknys_intervalai_fx(:,1) + Saknys_intervalai_fx(:,2))/2;
    Rez_fx = [];
    for i=1:length(Saknys_fx)
        Rez_fx = [Rez_fx; SaknuIntervalai_fx(i,:) Saknys_fx(i) Tikslumai(i) Iteracijos(i)];
    end
    Rez_fx
   % -----
   % šaknų tikslinimas funkcijai g(x)
   % -----
   % šakny intervaly atskyrimas funkcijai g(x)
   % -----
   zingsnis = 0.2; % zingsnio nustatymas
    g_{min} = -3;
    g_max = 3;
    [SaknuIntervalai_gx]=SkenavimasPastoviu(g_min, g_max, zingsnis, g);
    fprintf(
    fprintf( 'Šakny tikslinimas skenavimo metodu, mažinant žingsni\n');
    fprintf( 'Funkcija g(x)=e^-x*sin(x^2)*(x+2)\n');
    fprintf(
    fprintf( 'Stulpelių reikšmės:\n');
     fprintf( '1:2 - pradiniai šaknų tikslinimo intervalai\n');
     fprintf( '3 - šaknis\n');
    fprintf( '4 - tikslumas\n');
    fprintf( '5 - atliktų iteracijų kiekis\n');
    fprintf( '-----
    Saknys_intervalai_gx = [];
    Tikslumai = [];
    Iteracijos = [];
    tikslumas = 1e-9;
    for i=1:length(SaknuIntervalai_gx)
       x_min = SaknuIntervalai_gx(i, 1);
       x_max = SaknuIntervalai_gx(i, 2);
        draw = 0;
        if (sign(g(x_min)) ~= sign(g(x_max)))
           iteracijos_sk = 0;
           [a, b, it, t]=SkenavimasRekursija(x_min, x_max, zingsnis, tikslumas, g, iteracijos_sk,
draw);
           Saknys_intervalai_gx = [Saknys_intervalai_gx; a b];
           Iteracijos = [Iteracijos; it];
           Tikslumai = [Tikslumai; t];
        end
    end
    Saknys_gx = (Saknys_intervalai_gx(:,1) + Saknys_intervalai_gx(:,2))/2;
```

```
Rez_gx = [];
for i=1:length(Saknys gx)
    Rez gx = [Rez gx; SaknuIntervalai gx(i,:) Saknys gx(i) Tikslumai(i) Iteracijos(i)];
Rez_gx
% -----
% Kvazi-Niutono (kirstinių) metodas
eps = 1e-9;
% -----
% šaknų tikslinimas daugianariui f(x)
fprintf( '----\n');
 fprintf( 'Šaknų tikslinimas Kvazi-Niutono (kirstinių) metodu\n');
 fprintf( 'Daugianaris f(x)=-0.67x^4+2.51x^3+2.27x^2-4.02x-2.48n');
 fprintf(
 fprintf( 'Stulpelių reikšmės:\n');
fprintf( '1 - pirmasis pradinis artinys\n');
 fprintf( '2 - antrasis pradinis artinys\n');
 fprintf( '3 - šaknis\n');
 fprintf( '4 - tikslumas\n');
 fprintf( '5 - atliktų iteracijų kiekis\n');
 fprintf( '-----
Tikslumai = [];
Iteracijos = [];
Saknys_fx = [];
Artiniai = [];
iteracijos_sk_max = 200;
figure(1); grid on; hold on;
for i=1:length(SaknuIntervalai_fx)
    x0 = SaknuIntervalai_fx(i, 1);
    x01 = SaknuIntervalai fx(i, 2);
    npoints=1000;
    x=x0:(x01-x0)/(npoints-1):x01;
    axis([(x0-0.01) (x01+0.01) -2.5 8.5]);
    Artiniai = [Artiniai; x0 x01];
    fxn = f(x0);
    fxn1 = f(x01);
    xn = x0;
    xn_plot = x0;
    xn1_plot = x01;
    fxn_plot = f(x0);
    fxn1_plot = f(x01);
    dfxn = (fxn1 - fxn)/(x01-x0);
    tikslumas = 1;
    iteracijos sk = 0;
    while tikslumas > eps
        iteracijos_sk = iteracijos_sk + 1;
        if (iteracijos_sk > iteracijos_sk_max)
           fprintf('Virsytas leistinas iteraciju skaicius');
           break;
        end
        xn1 = xn - fxn/dfxn;
        if(i == 1 && iteracijos_sk < 7)</pre>
           plot(x,f(x),'r-');
           plot([x0 x01],[0 0],'b-');
           plot(x0,0,'mp');
           h = findobj(gca,'Type','line');h1=h(1);
           plot([xn_plot,xn_plot,xn1_plot,xn1_plot],[0,fxn_plot,fxn1_plot,0],'k-');
           plot([xn,xn,xn1],[0,fxn,0],'k-');
           delete(h1);plot(xn1,0,'mp');h = findobj(gca,'Type','line');h1=h(1);
           input('Press Enter'), figure(1);
        end
        fxn1 = f(xn1);
        dfxn = (fxn1 - fxn)/(xn1 - xn);
```

```
xn = xn1;
       fxn = f(xn);
       tikslumas = abs(fxn);
    Iteracijos = [Iteracijos; iteracijos_sk];
   Tikslumai = [Tikslumai; tikslumas];
   Saknys_fx = [Saknys_fx; xn];
end;
close all;
Rez_fx = [];
for i=1:length(Saknys_fx)
   Rez_fx = [Rez_fx; Artiniai(i, :) Saknys_fx(i) Tikslumai(i) Iteracijos(i)];
end;
Rez_fx
% -----
% šaknų tikslinimas funkcijai g(x)
% -----
fprintf( '----\n');
 fprintf( 'Šaknų tikslinimas Kvazi-Niutono (kirstinių) metodu\n');
 fprintf( 'Funkcija g(x)=\sin(x)\ln(x)-(x/6)\ln');
 fprintf( '-----
 fprintf( 'Stulpelių reikšmės:\n');
 fprintf( '1 - pirmasis pradinis artinys\n');
 fprintf( '2 - antrasis pradinis artinys\n');
 fprintf( '3 - šaknis\n');
fprintf( '4 - tikslumas\n');
fprintf( '5 - atliktų iteracijų kiekis\n');
         fprintf(
Tikslumai = [];
Iteracijos = [];
Saknys gx = [];
Artiniai = [];
iteracijos sk max = 200;
for i=1:length(SaknuIntervalai_gx)
   x0 = SaknuIntervalai_gx(i, 1) - 0.2;
   x01 = SaknuIntervalai_gx(i, 1) - 0.1;
   Artiniai = [Artiniai; x0 x01];
   fxn = g(x0);
   fxn1 = g(x01);
   dfxn = (fxn1 - fxn)/(x01-x0);
   xn = x0;
   tikslumas = 1;
    iteracijos_sk = 0;
    while tikslumas > eps
       iteracijos_sk = iteracijos_sk + 1;
       if (iteracijos_sk > iteracijos_sk_max)
           fprintf('Virsytas leistinas iteraciju skaicius');
           break;
       end
       xn1 = xn - fxn/dfxn;
       fxn1 = g(xn1);
       dfxn = (fxn1 - fxn)/(xn1 - xn);
       xn = xn1;
       fxn = g(xn);
       tikslumas = abs(fxn);
    Iteracijos = [Iteracijos; iteracijos_sk];
    Tikslumai = [Tikslumai; tikslumas];
    Saknys_gx = [Saknys_gx; xn];
end;
Rez_gx = [];
for i=1:length(Saknys_gx)
   Rez_gx = [Rez_gx; Artiniai(i, :) Saknys_gx(i) Tikslumai(i) Iteracijos(i)];
end;
```

```
Rez_gx
   % Matlab funkcijos
   % Daugianaris f(x)
    fprintf( '----\n');
fprintf( 'MATLAB funkcijos\n');
    fprintf( '----\n');
fprintf( 'Daugianaris f(x)\n');
    fprintf( '----\n');
   a = [0.67 -2.51 -2.27 4.02 2.48];
   saknys_roots = roots(a)
   for i=1:length(SaknuIntervalai_fx)
      fzero(f, SaknuIntervalai_fx(i, 1))
   end
   % Matlab funkcijos
   % Funkcija g(x)
   fprintf( '-----\n');
fprintf( 'Funkcija g(x)\n');
fprintf( '----\n');
   for i=1:length(SaknuIntervalai_gx)
      fzero(g, SaknuIntervalai_gx(i, 1))
   end
end
```