ИТМО

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3.06

"Изучение электрических свойств сегнетоэлектриков"

Группа: 1.3.1

Студент: Стафеев И.А., Голованов Д.И., Да-

нилов Н.О., Игнатьев А.Ю. Преподаватель: Рудель А.Е. К работе допущен: Работа выполнена: Отчет принят:

1 Цели работы

- Определение значений электрического смещения насыщения D_s , остаточной поляризации P_r , коэрцитивной силы E_c для предельной петли гистерезиса сегнетоэлектрика;
- Расчёт диэлектрических потерь за цикл переполяризации сегнетоэлектрика;
- Получение зависимостей смещения D и диэлектрической проницаемости ε от напряжённости электрического поля E;
- Определение значений начальной и максимальной диэлектрической проницаемости.

2 Задачи, решаемые при выполнении работы

- Расчёт значения коэрцитивного поля, электрической индукции насыщения и остаточной поляризации;
- Вычисление площади предельной петли гистерезиса, оценка тангенса угла диэлектрических потерь;
- Построение графика зависимости электрической индукции от напряжённости электрического поля;
- Построение графика зависимости диэлектрической проницаемости сегнетоэлектрика от напряжённости поля.

3 Объект исследования

Электрические свойства сегнетоэлектриков

4 Метод экспериментального исследования

Экспериментальный

5 Рабочие формулы и исходные данные

1. Электрический момент

$$\overrightarrow{P}_e = q \overrightarrow{\ell} \tag{1}$$

2. Вектор поляризации диэлектрика

$$\vec{P} = \frac{\sum_{\Delta V} \vec{P_e}}{\Delta V} \tag{2}$$

3. Вектор поляризации изотропного диэлектрика

$$\vec{P} = \chi_e \varepsilon_0 \vec{E} \tag{3}$$

4. Вектор электрического смещения

$$\vec{D} = \vec{P} + \varepsilon_0 \vec{P} = \varepsilon_0 \varepsilon E \tag{4}$$

5. Тангенс угла потерь в конденсатора

$$tg \,\delta \,=\, \frac{R}{X_c} = \frac{1}{Q} = \frac{1}{2\pi} \frac{\Delta W}{W} = \frac{1}{2\pi} \frac{w_r}{w} \tag{5}$$

6. Объемная плотность энергии электрического поля

$$w = \frac{\varepsilon \varepsilon_0 E^2}{2} \tag{6}$$

7. Величина диэлектрических потерь

$$w_r = \oint DdE \tag{7}$$

8. Максимальная плотность энергии электрического поля

$$w_0 = \frac{E_s D_s}{2} \tag{8}$$

9. Модуль вектора электрической индукции

$$D = \sigma = \frac{q}{s} = \frac{C_2 U_{C_2}}{s} = \frac{C_1}{s} \cdot U_{C_1} \tag{9}$$

10. Общее падение напряжения в первичной обмотке

$$U_{R_1} = U \frac{R_1}{R_1 + R_2} \tag{10}$$

11. Напряжение на выходе трансформатора

$$U = U_{C_1} + U_{C_2} = \frac{q}{C_1} + \frac{q}{C_2} \cong \frac{q}{C_2} = U_{C_2}$$
(11)

12. Напряженность электрического поля в сегнетоэлектрике

$$E = \frac{U_{C_2}}{d} = \frac{U}{d} = \frac{R_1 + R_2}{R_1} \cdot \frac{U_{R_1}}{d}$$
 (12)

Исходные данные:

1.
$$R_1 = 47 \text{ кОм} + -10\%$$

2.
$$R_2 = 470 \text{ kOm} + -10\%$$

3.
$$C_1 = 1$$
 мк $\Phi + -10\%$

4.
$$S = 500 \text{ mm}^2 + -10\%$$

5.
$$d = 0.5 \text{ mm} + -10\%$$

6 Измерительные приборы:

№	Наименование	Тип прибора	Предел измерений	$\Delta_{\scriptscriptstyle \mathrm{M}}$
1	ИСХ1	Цифровой	[-4; 4] дел	±0.05 дел

Таблица 1 — Измерительные приборы

7 Схема установки

Общий вид лабораторной установки представлен на рисунке 1. Она состоит из рабочей части Стенд СЗ-РМ02. Петля гистерезиса сегнетоэлектрика с объектом исследования и измерительным прибором ИСХ1

Рисунок 1 — Общий вид лабораторной установки

Внешний вид стенда представлен на рисунке 2. Объектом исследования является вариконд ВК2-4. Стенд содержит термокамеру с исследуемым варикондом, повышающий трансформатор, резистивный делитель и эталонный конденсатор.

Рисунок 2 — Внешний вид стенда СЗ-РМ02

Органы управления прибором ИСХ1 представлены на рисунке 3.

Рисунок 3 — Общий вид лицевой панели ИСХ1

Числами на рисунке обозначены:

- 1. графический дисплей;
- 2. кнопка выбора режима работы «F»;
- 3. кнопка выбора шкалы «Шкл.»;
- 4. кнопка запоминания оцифрованного сигнала «Стоп»;
- 5. кнопка выбора температурного режима «Темп»;
- 6. кнопка управления генератором «Генер.»;
- 7. кнопка выбора коэффициента отклонения « K_{vc} »;
- 8. кнопка уменьшения выбранной величины «-»;
- 9. кнопка увеличения выбранной величины «+»;
- 10. кнопка выключателя «Сеть»;

- 11. выход генератора;
- 12. вход тока I;
- 13. вход напряжения U_1 ;
- 14. вход напряжения U_2 ;

Схема электрической установки приведена на рисунке 4.

Рисунок 4 — Схема электрической установки

8 Прямые измерения

На рисунке 5 представлена петля гистерезиса, полученная для первого задания.

Рисунок $5 - \Pi$ етля гистерезиса для первого задания

По графику определяем: $E_C=X_C=0.7$ дел, $E_S=X_S=3.0$ дел, $D_r=Y_r=1.15$ дел, $D_S=Y_S=2.95$ дел

Таблица 2 — Зависимость диэлектрической проницаемости сегнетоэлектрика от напряженности электрического поля

№	U, B	K_X , В/дел	K_Y , В/дел	Х, дел	<i>Y</i> , дел	E, B/M	D , Кл/м 2	ε
1	17.0	5.00	5.00	3.0	3.2	300000	0.032000	12052.730697
2	15.0	5.00	5.00	2.7	3.0	270000	0.030000	12554.927809
3	13.0	5.00	5.00	2.3	2.7	230000	0.027000	13264.554164
4	11.0	5.00	5.00	1.9	2.0	190000	0.020000	11894.142135
5	9.0	5.00	5.00	1.6	1.6	160000	0.016000	11299.435028
6	7.0	2.00	2.00	3.1	2.7	124000	0.010800	9841.443412
7	5.0	2.00	2.00	2.2	1.5	88000	0.006000	7704.160247
8	4.4	2.00	2.00	1.9	1.1	76000	0.004400	6541.778174
9	3.8	1.00	1.00	3.4	1.8	68000	0.003600	5982.053838
10	3.2	1.00	1.00	2.9	1.2	58000	0.002400	4675.628288
11	2.6	1.00	1.00	2.3	0.8	46000	0.001600	3930.238271
12	2.0	0.50	0.50	3.5	1.1	35000	0.001100	3551.251009
13	1.4	0.50	0.20	2.4	1.6	24000	0.000640	3013.182674
14	0.8	0.20	0.05	3.4	3.0	13600	0.000300	2492.522433
15	0.2	0.05	0.02	3.2	1.7	3200	0.000068	2401.129944

9 Расчёт результатов косвенных измерений

$$\begin{split} E_C &= \frac{R_1 + R_2}{R_1} \frac{X_C K_X}{d} = \frac{47 + 470~\text{kOm}}{47~\text{кOm}} \frac{5~\text{B/дел·}0.7~\text{дел}}{0.0005~\text{m}} = 77000~\text{B/m} \\ D_S &= \frac{C_1}{S} \cdot K_Y Y_S = \frac{1~\text{мк}\Phi}{500~\text{mm}^2} \cdot 5~\text{B/дел·}2.95~\text{дел} = 0.0295~\text{Кл/м}^2 \\ P_r &\cong D_r = \frac{C_1}{S} \cdot K_Y Y_r = \frac{1~\text{мк}\Phi}{500~\text{mm}^2} \cdot 5~\text{B/дел·}1.15~\text{дел} = 0.0115~\text{Кл/м}^2 \end{split}$$

Для расчета площади петля гистерезиса была аппроксимирована с помощью полинома седьмой степени. $y_1(x) = 1.0827170975156002 + 1.396833119948152x^1 - 0.36741320258480165x^2 - 0.05580308648813974x^3 + 0.05328146027639318x^4 - 0.00023079159041665976x^5 - 0.0028234173668188352x^6 + 0.0001284958981818187x^7$ - верхняя линия петли

 $y_2(x) = -1.0772296255204483 + 1.314942065204007x^1 + 0.35181146195618246x^2 - 0.028125577508023282x^3 - 0.047599587572267676x^4 - 0.0044704870969099015x^5 + 0.0024695565394225604x^6 + 0.0003776862675909724x^7 - нижняя линия петли$

Рисунок 6 — Аппроксимация петли гистерезиса

$$S_{\text{петли}} = \oint Y = \int_{-3}^3 y_1(x) - \int_{-3}^3 y_2(x) \approx 6.512 \text{ кв. дел.} = 6.512 \cdot 5 \cdot 5\text{B}^2 = 162.8 \text{ B}^2$$
 tg $\delta = \frac{1}{\pi} \frac{\oint DdE}{D_s E_s} = \frac{1}{\pi} \frac{S_{\text{петли}}}{E_S D_s} = \frac{1}{\pi} \frac{6.512}{3.0 \cdot 2.95} \approx 0.23$

Зависимость $\varepsilon(E)$ была аппроксимирована с помощью полинома 5-й степени (см. график 8).

По графику установлено минимальное значение диэлектрической проницаемости $\varepsilon_{\min}=2497$, достигаемое при $E'=6519~{\rm B/m}$

По тому же графику установлено максимальное значение диэлектрической проницаемости $\varepsilon_{\rm max}=12929,$ достигаемое при $E'=254301~{\rm B/m}$

10 Расчёт погрешностей

$$\begin{array}{l} U_{R_1} = K_X \cdot X_C = 3.5 \; \mathrm{B} \\ \Delta_{U_{R_1}} = K_X \cdot 0.05 = 0.25 \; \mathrm{B} \\ \Delta_{R_1} = 4.7 \cdot 10^4 \cdot 0.1 = 4.7 \cdot 10^3 \; \mathrm{Om} \\ \Delta_{R_2} = 4.7 \cdot 10^5 \cdot 0.1 = 4.7 \cdot 10^4 \; \mathrm{Om} \\ \Delta_d = 0.0005 \cdot 0.1 = 5 \cdot 10^{-4} \mathrm{m} \\ E = \frac{R_1 + R_2}{R_1} \cdot \frac{U_{R_1}}{R_1} \\ \frac{\delta E}{\delta U_{R_1}} = \frac{R_1 + R_2}{R_1} \cdot \frac{1}{d}; \frac{\delta E}{\delta R_1} = -\frac{R_2}{R_1^2} \cdot \frac{U_{R_1}}{d}; \frac{\delta E}{\delta R_2} = \frac{1}{R_1} \cdot \frac{U_{R_1}}{d}; \frac{\delta E}{\delta d} = -\frac{R_1 + R_2}{R_1} \cdot \frac{U_{R_1}}{d^2} \\ \Delta_E = \sqrt{\left(\frac{\delta E}{\delta U_{R_1}} \Delta_{U_{R_1}}\right)^2 + \left(\frac{\delta E}{\delta R_1} \Delta_{R_1}\right)^2 + \left(\frac{\delta E}{\delta R_2} \Delta_{R_1}\right)^2 + \left(\frac{\delta E}{\delta d} \Delta_d\right)^2} = 1.3694 \cdot 10^4 \; \mathrm{B/m} \\ U_{C_1} = K_Y \cdot Y_S \\ D = \frac{C_1 \cdot U_{C_1}}{S} \\ \Delta_D = \sqrt{\left(\frac{\delta D}{\delta U_{C_1}} \Delta_{U_{C_1}}\right)^2 + \left(\frac{\delta D}{\delta C_1} \Delta_{C_1}\right)^2 + \left(\frac{\delta D}{\delta S} \Delta_S\right)^2} = \sqrt{\left(\frac{C_1}{S} \Delta_{U_{C_1}}\right)^2 + \left(\frac{U_{C_1}}{S} \Delta_{C_1}\right)^2 + \left(-\frac{C_1 \cdot U_{C_1}}{S^2} \Delta_S\right)^2} = 4.2 \cdot 10^{-3} \; \mathrm{K} \pi / \mathrm{M}^2 \\ \Delta_F = \Delta_D(Y_S) = 1.7 \cdot 10^{-3} \; \mathrm{K} \pi / \mathrm{M}^2 \\ \Delta_{\varepsilon} = \sqrt{\frac{\delta E}{\delta D} \Delta_E} + \left(\frac{\delta E}{\delta D} \Delta_D\right)^2 = \frac{1}{\varepsilon_0} \sqrt{\left(-\frac{D}{E^2} \Delta_E\right)^2 + \left(\frac{1}{E} \Delta_D\right)^2} \\ D_{E_{min}} = 1.3 \cdot 10^{-4} \; \mathrm{K} \pi / \mathrm{M}^2 \\ \Delta_{\varepsilon_{min}} = 5.8 \cdot 10^2 \\ \end{array}$$

$$\begin{split} &\Delta_{\varepsilon_{max}} = 2.2 \cdot 10^3 \\ &tg(\delta) = \frac{S_{\text{Петли}}}{E_S D_S} \\ &\Delta_{tg(\delta)} = \sqrt{(\frac{\delta tg(\delta)}{\delta S_{\text{петли}}} \Delta_{S_{\text{петли}}})^2 + (\frac{\delta tg(\delta)}{\delta E_S} \Delta_{E_S})^2 + (\frac{\delta tg(\delta)}{\delta D_S} \Delta_{D_S})^2} = \sqrt{(-\frac{E_S \cdot D_s}{S_{\text{петли}}} \Delta_{S_{\text{петли}}})^2 + (\frac{D_S}{S_{\text{петли}}} \Delta_{E_S})^2 + (\frac{E_S}{S_{\text{петли}}} \Delta_{D_S})^2} = 3.2 \cdot 10^{-2} \end{split}$$

11 Графики

Рисунок 7 — График зависимости D(E)

Рисунок 8 — График зависимости $\varepsilon(E)$

12 Окончательные результаты

```
\begin{split} E_C &= (77000 \pm 13694) \text{ B/m}; \ \varepsilon_{E_c} = \frac{13694}{77000} \cdot 100\% = 18\% \\ D_S &= (0.0295 \pm 0.0042) \text{ K}_{\text{J}}/\text{m}^2; \ \varepsilon_{D_S} = \frac{0.0042}{0.0295} \cdot 100\% = 14\% \\ P_r &= (0.0115 \pm 0.0017) \text{ K}_{\text{J}}/\text{m}^2; \ \varepsilon_{P_r} = \frac{0.0017}{0.0115} \cdot 100\% = 15\% \\ \text{tg} \ \delta &= (0.23 \pm 0.03); \ \varepsilon_{\text{tg}} \ \delta = \frac{0.03}{0.23} \cdot 100\% = 12\% \\ \varepsilon_{\text{min}} &= (2497 \pm 580); \ \varepsilon_{\varepsilon_{\text{max}}} = \frac{580}{2497} \cdot 100\% = 23\% \\ \varepsilon_{\text{max}} &= (12929 \pm 2200); \ \varepsilon_{\varepsilon_{\text{max}}} = \frac{2200}{12929} \cdot 100\% = 17\% \end{split}
```

13 Выводы и анализ результатов работы

В ходе выполнения лабораторной работы были вычислены значения электрического смещения насыщения, остаточной поляризации и коэрцитивной силы для предельной петли гистерезиса сегнетоэлектрика, рассчитаны значения начальной и максимальной диэлектрической проницаемости.

Также были построены графики зависимости электрического смещения от напряженности поля и диэлектрической проницаемости от напряженности. В обоих случаях зависимость между величинами получилась нелинейная, что видно на графиках.

Площадь петли гистерезиса и зависимости между D, ε и E были получены численными методами - при помощи аппроксимации кривой (точнее, полиномом седьмой, четвертой и пятой степеней соответственно).