CS-E4600 Algorithmic methods for data mining

Aristides Gionis

Dept of Computer Science

Slide set 4: Similarity search

reading assignment

LRU book : rest of chapter 3

An introductory tutorial on k-d trees by Andrew Moore

finding similar objects

nearest-neighbor search

again, objects can be

documents

records of users

images

videos

strings

time series

similarity search: applications

in machine learning: nearest-neighbor rule

similarity search: applications

in information retrieval

a user wants to find similar documents or similar images to a given one

for clustering algorithms

the k-means algorithm assigns points to their nearest centers

finding similar objects

informal definition two problems

1. similarity search problem

```
given a set X of objects (off-line)
given a query object q (query time)
find the object in X that is most similar to q
```

2. all-pairs similarity problem

```
given a set X of objects (off-line) find all pairs of objects in X that are similar
```


naïve solutions

```
(assume a distance function d: X \times X \to \mathbb{R})

I. similarity search problem given a set X of objects (off-line) given a query object q (query time) find the object in X that is most similar to q
```

naïve solution:

compute
$$d(q,x)$$
 for all $x \in X$ return $x^* = \arg\min_{x \in X} d(q,x)$

naive solutions

```
(assume a distance function d:X	imes X	o \mathbb{R})
```

2. all-pairs similarity problem

```
given a set X of objects (off-line)
find all pairs of objects in X that are similar
(say distance less than t)
```

naïve solution:

compute d(x,y) for all $x,y\in X$ return all pairs such that $d(x,y)\leq t$

naïve solutions too inefficient

```
I.similarity search problem
    given a set X of objects (off-line)
    given a query object q (query time)
    find the object in X that is most similar to q
complexity O(nd)
    applications often require fast answers (milliseconds)
    we cannot afford scanning through all objects
goal to beat linear-time algorithm
    what does it mean?
    O(logn) O(poly(logn)) O(n^{1/2}) O(n^{1-e}) O(n+d)?
```


naïve solutions too inefficient

2. all-pairs similarity problem

given a set X of objects (off-line) find all pairs of objects in X that are similar

complexity O(n²d)

quadratic time is prohibitive for almost any setting for billions of data points, computation takes years

warm up

let's focus on problem I

how to solve a problem for I-d points?

example:

given $X = \{5, 9, 1, 11, 14, 3, 21, 7, 2, 17, 26\}$ given q=6, what is the nearest point of q in X?

answer: sorting and binary search!

any lessons to learn?

- 1. trade-off preprocessing for query time
- 2. with one comparison prune away many points

generalization of the idea

space-partition algorithms

many algorithms that follow these principles

k-d trees is a popular variant

k-d trees in 2-d

a data structure to support range queries in R² not the most efficient solution in theory everyone uses it in practice

preprocessing time: O(nlogn)

space complexity: O(n)

query time: $O(n^{1/2}+k)$ (for range queries, not similarity search)

k-d trees in 2-d

```
algorithm:
    choose x or y coordinate (alternate)
    choose the median of the coordinate;
    (this defines a horizontal or vertical line)
    recurse on both sides
we get a binary tree
    size : O(n)
    depth: O(logn)
```

construction time : O(nlogn)

construction of k-d trees

searching in k-d trees

searching for nearest neighbor of a query q

start from the root and visit down the tree at each point keep the NN found so far before visiting a tree node

estimate a lower bound distance if lower bound larger than the current distance to NN,

do not visit (prune)

(possible to visit both children of a node)

region of a node

region(v): the subtree rooted at v stores the points in **black** dots

lower bound and pruning

green point: query

red point: current NN

purple line: lower bound

searching in k-d trees

range searching in X

given a rectangle R find all points of X contained in R

consider only axis-aligned rectangles R

range searching in k-d trees

```
start from v = root
search(v,R)
  if v is a leaf
    then report the point stored in v if it lies in R
  otherwise, if region(v) is contained in R
    report all points in the subtree(v)
  otherwise:
    if region(left(v)) intersects R
       then search(left(v),R)
    if reg(right(v)) intersects R
       then search(right(v),R)
```

query time analysis

time required by range searching in k-d trees is $O(n^{1/2}+k)$ where k is the number of points reported

total time to report all points is O(k)

just need to bound the number of nodes v such that region(v) intersects R but is not contained in R

query time analysis

let Q(n) be the max number of regions in an n-point k-d tree intersecting a line I, boundary of R

if I intersects region(v) then after two levels it intersects 2 regions the number of regions intersecting I is Q(n)=2+2Q(n/4) solving the recurrence gives $Q(n)=(n^{1/2})$

k-d trees in d dimensions

supporting range queries in Rd

preprocessing time: O(nlogn)

space complexity: O(n)

query time : $O(n^{1-1/d}+k)$

k-d trees in d dimensions

construction is similar as in 2-d split at the median by alternating coordinates recursion stops when there is only one point left, which is stored as a leaf

impact of high dimensionality in similarity search

as dimension grows the similarity search problem becomes harder

for the range searching problem this is shown by the $O(n^{1-1/d}+k)$ bound

for the nearest neighbor problem, the pruning rule becomes not effective

as dimension grows the performance of any index degrades to linear search

point of frustration in the research community

a.k.a. the curse of the dimensionality

any catch?

idea relies on having vector-space objects what happens with points in a metric space?

the space-partition idea generalizes to metric spaces


```
consider a metric space (X,d)
partition the objects in X using a binary tree
at each step, when partitioning n objects, choose a point v
in X (vantage point)
right subtree R(v):
    the set of the n/2 points that are closest to v
left subtree L(v):
    the rest of the points
recurse on R(v) and L(v)
```


similarity search in metric spaces

- I. what are the pruning rules?
- 2. can you see how the triangle inequality is used for the vantage-point pruning rules?

these two questions are left as exercise

problem in metric spaces becomes more difficult than in vector spaces

how to fight against the curse of dimensionality?

idea: approximations!

find approximate nearest neighbors

find approximately similar pairs

why does it make sense?

distance functions are proxies to human notion of similarity

approximate nearest neighbor

given a set X of objects (off-line)
given accuracy parameter e (off-line or query time)
given a query object q (query time)
find an object z in X, such that

$$d(q,z) \leq (1+e)d(q,x) \ \text{ for all x in X}$$

k-d trees for approximate similarity search

k-d trees for approximate similarity search

solid circle has radius d(q, x)

k-d trees for approximate similarity search

dashed circle has radius d(q,x)/(1+e)

next lecture locality sensitive hashing