Tóm tắt nội dung

Quy hoạch tuyến tính và cơ sở lý thuyết

Nguyễn Chí Bằng, Đỗ Ngọc Minh Thư, Lê Đức Anh, Nguyễn Thành Nam Ngày 21 tháng 12 năm 2023

Mục lục

1	Thuật toán đơn hình				
		1.0.1 Phương pháp đơn hình đối ngẫu	3		
2	Bài toán đối ngẫu				
	2.1	Giới thiệu	6		
	2.2	Cơ sở lý thuyết	6		
		2.2.1 Ví dụ hướng đến bài toán đối ngẫu	6		
		2.2.2 Qui tắc đối ngẫu (trang 33 chương 2 quy hoạch			
		$\operatorname{tuy\acute{e}n}\ \operatorname{t\acute{n}h})$	8		
		2.2.3 Bài toán đối ngẫu dạng chuẩn tắc	9		
		2.2.4 Bài toán đối ngẫu dạng chính tắc	11		
	2.3	Ví dụ minh hoạ	12		
3	Tài	liệu tham khảo	13		

1 Thuật toán đơn hình

1.0.1 Phương pháp đơn hình đối ngẫu

1. Giới thiệu

Trong thực tế, việc giải một bài toán bằng thuật toán đơn hình ban đầu cho ta mội giải pháp tối ưu nhưng không khả thi. Trong trường hợp này, thuật toán đơn hình đối ngẫu cung cấp cho ta một giải pháp khả thi bằng cách điều chỉnh phương án thông qua \overline{b}_r sao cho $\overline{b}_r \geq 0$ trong khi đó với thuật toán đơn hình, ta tập trung vào \overline{c}_s sao cho $\overline{c}_s < 0$. Trong khi vẫn giữ được tính khả thi.

2. Nội dung

Cho bài toán dạng chính tắc

$$Min c^{T} x = z$$

$$Ax = b,$$

$$x \ge 0,$$
(1)

Như ta thấy, sau quá trình biến đổi với thuật toán đơn hình ta luôn nhận được một hệ phương trình với các biến cơ sở $-z, x_1, x_2, \ldots, x_m$.

Với $x_B = (x_1, x_2, \dots, x_m)^T$ và $x_N = (x_{m+1}, x_{m+2}, \dots, x_n)^T$, Hệ phương trình được viết lại dưới dạng:

$$(-z) + \overline{c}x_N = -\overline{z}_0$$

$$Ix_B + \overline{A}x_N = \overline{b},$$
(2)

Hoặc dưới dạng ma trận, hệ có thể viết lại thành:

$$\begin{pmatrix} 1 & 0 & \overline{c} \\ 0 & I & \overline{A} \end{pmatrix} \begin{pmatrix} -z \\ x_B \\ x_N \end{pmatrix} = \begin{pmatrix} -\overline{z}_0 \\ \overline{b} \end{pmatrix}, \tag{3}$$

Hình 1: Mối quan hệ giữa bài toán gốc và bài toán đối ngẫu

	Bài toán gốc	Bài toán đối ngẫu
Cơ sở	В	$\overline{\mathbf{B}} = \begin{pmatrix} B^T & 0 \\ N^T & I_{n-m} \end{pmatrix}$
Biến cơ sở	x_B	$\pi, y_N = \overline{\mathbf{c}}_N$
Biến không cơ sở	x_N	$y_B = \overline{\mathrm{c}}_B$
Điều kiện	$Ax = b, x \ge 0$	$\overline{c} \ge 0$

Từ đây, ta xét dạng đối ngẫu của bài toán

$$Max b^{T} \pi = v$$

$$A^{T} \pi \le c,$$
(4)

Với các ẩn giả được thêm vào ta viết lại

$$Max b^{T} \pi = v$$

$$A^{T} \pi + Iy = c,$$

$$y \ge 0$$
(5)

Xét mối quan hệ giữ bài toán dạng chính tắc và dạng đối ngẫu của nó ta có cái mối tương quan như bảng trên. Ta có thể thấy cột cơ sở và không cơ sở của bài toán dạng đối ngẫu lần lượt được ký hiệu là \overline{B} và \overline{N} .

$$\overline{\mathbf{B}} = \begin{pmatrix} B^T & 0\\ N^T & I_{n-m} \end{pmatrix},\tag{6}$$

$$\overline{\mathbf{N}} = \begin{pmatrix} I_m \\ 0 \end{pmatrix}, \tag{7}$$

Thuật toán đơn hình đối ngẫu gồm các bước sau: Bước 1 (Chon cơ sở vào)

Nếu $\overline{\mathbf{b}}_r = \min \overline{\mathbf{b}}_i < 0$, chọn x_r tương đương với hàng r.

Bước 2 (Chọn cơ sở ra)

Nếu $\frac{\overline{c}_s}{-\overline{a}_{rs}} = min \frac{\overline{c}_j}{-\overline{a}_{rj}} \ge 0$ trong đó $\overline{a}_{rj} > 0$, loại bỏ x_s tương ứng với côt s.

Bước 3 (Kiểm tra)

Xoay vòng theo $\overline{\mathbf{a}}_{rs}$ để xác định một giải pháp khả thi mới, đặt $j_r = s$ và quay lại bước 1.

2 Bài toán đối ngẫu

2.1 Giới thiệu

Trong Lý thuyết tối ưu, với một bài toán tối ưu cho trước, người ta quan tâm làm sao thiết lập được bài toán liên kết với bài toán đã cho mà khi giải bài toán này ta thu được thông tin về bài toán ban đầu. Đó chíng là bài toán đối ngẫu.

Việc giải và tìm hiểu hai bài toán song song rất có ý nghĩa về mặt thực tiễn. Đôi khi ta giả bài toán đối ngẫu lại dễ dàng hơn so với bài toán gốc. Vì sao lại dễ dàng hơn thì mục dưới đây chính là trình bày và nghiên cứu bài toán đối ngẫu của bài toán quy hoạch tuyến tính.

2.2 Cơ sở lý thuyết

2.2.1 Ví dụ hướng đến bài toán đối ngẫu

Một công ty A sản xuất 4 mặt hàng, sử dụng hai loại vật liệu loại I và II với số lượng là b_1,b_2 . Để sản xuất mặt hàng thứ j (j=1,2,3,4)

cần có a_{1j} đơn vị nguyên liệu loại I và a_{2j} đơn vị nguyên liệu loại II. Mặt hàng thứ j, được bán tương ứng với giá cj. Hãy lập kế hoạch để công ty sản xuất có tổng giá trị sản phẩm cao nhất.

Giải

Gọi x_1 , x_2 , x_4 lần lượt là số lượng mặt hàng cần sản xuất ($x_i \ge 0$, i = 1, 2, 3, 4). Bài toán đặt ra là ta cần làm cực đại hàm mục tiêu số lượng như sau:

$$f(x) = c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 \to Max \tag{8}$$

Số lượng vật tư b_1 được phân bố cho 4 mặt hàng trên :

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 \le b_1 \tag{9}$$

Số lượng vật tư b_2 được phân bố cho 4 mặt hàng trên :

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 \le b_2 \tag{10}$$

Vậy ta thu được thông tin của bài toán với các điều kiện được ghi lại như sau:

$$f(x) = c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 \to Max$$

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 + a_{14} x_4 \le b_1$$

$$a_{21} x_1 + a_{22} x_2 + a_{23} x_3 + a_{24} x_4 \le b_2$$

$$x_i \ge 0$$

$$i = 1, 2, 3, 4$$

$$(11)$$

Dĩ nhiên rằng công ty muốn đầu tư làm sao cho chi phí thấp nhất. Do đó công ty mua vật liệu của công ty khác. Giá bán vật liệu loại I và loại II tương ứng là y_1 , y_2 . Công ty phải làm cực tiểu chi phí đầu tư vào, hiển nhiên ta có hàm mục tiêu như sau:

$$g(y) = b_1 y_1 + b_2 y_2 \to Min \tag{12}$$

Ta có thêm các ràng buộc tương ứng về giá cả thương lượng hợp lí của bên bán vật liệu:

$$a_{11}y_{1} + a_{21}y_{2} \ge c_{1}$$

$$a_{12}y_{1} + a_{22}y_{2} \ge c_{2}$$

$$a_{13}y_{1} + a_{23}y_{2} \ge c_{3}$$

$$a_{14}y_{1} + a_{24}y_{2} \ge c_{4}$$

$$y_{i} \ge 0$$

$$i = 1, 2, 3, 4$$

$$(13)$$

Hai bài toán trên viết lại dưới dạng ma trận ta sẽ có thông tin ngắn gọn như sau:

$$f(x) = \langle c.x \rangle = c^T x \longrightarrow \text{Max}$$
 $g(y) = \langle b, y \rangle = b^T y \longrightarrow \text{Min}$
 $Ax \le b$ $A^T y \ge c$
 $x \ge 0$ $y \ge 0$

Hai bài toán trên chính là đối ngẫu của nhau, giải quyết cực đại của bài toán gốc (P) và cực tiểu của bài toán liên kết $(P^*)/(D)$ và tìm phương án tối ưu thông qua đó.

2.2.2 Qui tắc đối ngẫu (trang 33 chương 2 quy hoạch tuyến tính)

Khảo sát đối ngẫu cho các dạng tổng quát, ta có các qui tắc sau:

$$M = \{1, 2, 3, \dots, m\}, M_1 = \{1, 2, 3, \dots, m_1\}, m_1 \le m$$

$$N = \{1, 2, 3, \dots, n\}, N_1 = \{1, 2, 3, \dots, n_1\}, n_1 \le n$$
(14)

Trường hợp 1: $(P) Min \rightarrow (Q) Max$

	Gốc (P)	\Rightarrow	Đối ngẫu (Q)
1.	$c^T x \to min$		$b^T y \to max$
2.	$\sum_{j=1}^{n} a_{ij} \ge b_i$	$i \in M_1$	$y_i \ge 0, i \in M_1$
3.	$\sum_{j=1}^{n} a_{ij} = b_i$	$i \in M \backslash M_1$	y_i tự do , $i \in M \backslash M_1$
4.	$x_j \ge 0$	$j \in N_1$	$\sum_{i=1}^{m} a_{ij} y_i \le c_j, j \in N_1$
5.	x_j có dấu tuỳ ý	$j \in N_1$	$\sum_{i=1}^{m} a_{ij} y_i = c_j, j \in N \backslash N_1$
6.	$x_j \le 0$	$j \in N_2$	$\sum_{i=1}^{m} a_{ij} y_i \ge c_j, j \in N_2$

Chú ý: Nếu có $\sum_{j=1}^n \leq b_i$, thì theo nguyên tắc đối ngẫu sẽ ứng với biến $y_i \leq 0$. Trong thực tế nên chuyển về trường hợp 2 bằng cách nhân cả hai vế của bđt cho -1.

Trường hợp 2: $(P) Max \rightarrow (Q) Min$

	Gốc (P)	\Rightarrow	Đối ngẫu (Q)
1.	$c^T x \to max$		$b^Ty o min$
2.	$\sum_{j=1}^{n} a_{ij} \le b_i$	$i \in M_1$	y_i tự do, $i \in M_1$
3.	$\sum_{j=1}^{n} a_{ij} = b_i$	$i \in M \backslash M_1$	y_i tự do , $i \in M \backslash M_1$
4.	$x_j \ge 0$	$j \in N_1$	$\sum_{i=1}^{m} a_{ij} y_i \ge c_j, j \in N_1$
5.	x_j có dấu tuỳ ý	$j \in N_1$	$\sum_{i=1}^{m} a_{ij} y_i = c_j, j \in N \backslash N_1$
6.	$x_j \le 0$	$j \in N_2$	$\sum_{i=1}^{m} a_{ij} y_i \le c_j, j \in N_2$

Chú ý: Nếu có $\sum_{j=1}^n a_{ij} \geq b_i$, thì theo nguyên tắc đối ngẫu sẽ ứng với

biến $y_i \leq 0$. Trong thực tế nên chuyển về trường hợp 2 bằng cách nhân cả hai vế của bất đẳng thức cho -1. (Các ràng buộc ẩn tự do thường ta không cần ghi và bỏ qua nó).

2.2.3 Bài toán đối ngẫu dạng chuẩn tắc

Bài toán chuẩn tắc có dạng như sau, với $A \in M_{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n$

$$(P) c^{T}x \to Min$$

$$Ax \ge b$$

$$x > 0$$
(15)

Với bài toán như trên ta có bài toán đối ngẫu như sau với $y \in \mathbb{R}^m$:

$$(D) b^{T}y \to Max$$

$$A^{T}y \le c$$

$$y \ge 0$$
(16)

Cặp bài toán trên được gọi là cặp bài toán đối ngẫu đối xứng vì chứa đủ ba phần : Hàm mục tiêu, ràng buộc đẳng thức (bất đẳng thức) và biến không âm.

Định lý 1 Với mọi phương án x của bài toán (P) và mọi phương án y của bài toán $(P^*)/(D)$, ta có

$$g(y) \le f(x)$$

Định lý 2

Nếu bài toán (P) có phương án tối ưu thì bài toán $(P^*)/(D)$ cũng có phương án tối ưu và ngược lại. Đồng thời $V(P) = V(P^*)$.

Nếu hàm mục tiêu của bài toán này không bị chặn thì tập các phương án của bài toán kia là rỗng.

Hệ quả 1 Nếu các bài toán (P) và (P^*) đều có các phương án khác rỗng thì chúng đều có phương án tối ưu.

Hệ quả 2 $Giả sử x^* và y^* lần lượt là các phương án tối ưu tương ứng của bài toán <math>(P)$ $và <math>(P^*)$. Ta có:

$$V(P) = f(x^*) = g(y^*) = V(P^*)$$

Hệ quả 3 Giả sử x^* và y^* tương ứng là các phương án chấp nhận được của các bài toán (P) và $(P^*)/(D)$. Nếu $f(x^*) = g(y^*)$ thì x^* và y^* lần lượt là phương án tối ưu của (P) và $(P^*)/(D)$.

Định lý 3 Độ lệch bù trong đối ngẫu đối xứng

Cho x^* và y^* tương ứng là phương án của bài toán (P) và (P^*) . Phương án x^* và y^* tối ưu khi và chỉ khi:

$$\begin{cases} x_j^* > 0 \Longrightarrow \sum_{i=1}^n a_{ij} y_i^* = c_j \lor \sum_{i=1}^n a_{ij} y_i^* < c_j \Longrightarrow x_j^* = 0, j = \overline{1, n} \\ y_j^* > 0 \Longrightarrow \sum_{i=1}^n a_{ij} x_i^* = b_j \lor \sum_{i=1}^n a_{ij} x_i^* < b_j \Longrightarrow y_j^* = 0, j = \overline{1, m} \end{cases}$$

2.2.4 Bài toán đối ngẫu dạng chính tắc

Bài toán chính tắc có dạng như sau, với $A \in M_{m \times n}, b \in R^m, c \in R^n$:

$$(P) c^{T}x \to Min$$

$$Ax = b$$

$$x \ge 0$$
(17)

Với bài toán như trên ta có bài toán đối ngẫu như sau với $y \in \mathbb{R}^m$:

$$(D) b^{T} y \to Max$$

$$A^{T} y \le c$$

$$(18)$$

"Bài toán đối ngẫu không đối xứng như trên có tất cả cá tính chất như đối ngẫu đối xứng".

Định lí về độ lệch bù trong đối ngẫu không đối xứng (hay còn gọi là độ lệch bù yếu).

Định lý 4 Cặp (x^*, y^*) tướng ứng là nghiệm tối ưu của bài toán (1) và (2) khi và chỉ khi

$$N\acute{e}u \; x_j^* > 0 \; thi \; \sum_{i=1}^m a_{ij} y_i^* = c_j \; hoặc$$

$$N\hat{e}u \sum_{i=1}^{m} a_{ij}y_i^* < c_j \ thi \ x_j^* = 0$$

2.3 Ví dụ minh hoạ

1. Cho bài toán quy hoạch tuyến tính như sau:

(P)
$$f(x) = 2x_1 - 3x_2 + 4x_3 - 6x_4 \longrightarrow Min$$

$$\begin{cases} x_1 + 2x - 2 + 3x_3 - x_4 = 20 & (1) \\ -3x_1 - x_2 + 7x_3 + 7x_4 \le 32 & (2) \\ 2x_1 + 4x_2 + x_3 + x_4 \ge 18 & (3) \\ x_i \ge 0, \forall i = 1, 2, 3 \end{cases}$$

 \Longrightarrow Ta có bài toán đối ngẫu như sau :(D) $g(y) = 20y_1 + 32y_2 + 18y_3 \longrightarrow Max$

$$\begin{cases} y_1 - 3y_2 + 2y_3 \le 2 & (4) \\ 2y_1 - y_2 + 4y_3 \le -3 & (5) \\ 3y_1 + 7y_2 + y_3 \le 4 & (6) \\ -y_1 + 7y_2 + y_3 = -6 & (7) \\ y_2 \le 0, y_3 \ge 0 \end{cases}$$

Cặp ràng buộc :
$$x_1 \ge 0 \& (4)$$
 $y_2 \le 0 \& (2)$ $x_2 \ge 0 \& (5)$ $y_3 < 0 \& (3)$

2.Cho bài toán quy hoạch tuyến tính như sau:

(P)
$$f(x) = 2x_1 + 2x_2 + x_3 + x_4 \longrightarrow Max$$

$$\begin{cases}
5x_1 + x_2 + x_3 + 6x_4 = 50 \\
-3x_1 + x_3 + 2x_4 \ge 16 \\
4x_1 + 3x_3 + x_4 \le 23 \\
x_i \ge 0, i = 1, 2, 3, 4
\end{cases}$$

- 1. Viết bài toán đối ngẫu (D)
- 2. Cho biết $x^*=(0,14,6,5)$ là nghiệm tối ưu của bài toán (P). Tìm nghiệm tối ưu của bài toán đối ngẫu (D)

Giải

i.Ta có bài toán đối ngẫu như sau:

(D):
$$g(y) = 50y_1 + 16y_2 + 23y_3 \longrightarrow Min$$

$$\begin{cases} 5y_1 - 3y_2 + 4y_3 \ge 2\\ y_1 \ge 2\\ y_1 + y_2 + 3y_3 \ge 1\\ 6y_1 + 2y_2 + y_3 \ge 1\\ y_2 \le 0, y_3 \ge 0 \end{cases}$$

Áp dụng định lí độ lệch bù của bài toán đối ngẫu đối xứng,
với \mathbf{PATU}

vậng tinh h độ lệch bư của bài toàn đối ngấu dời xung, với TATC của
$$(P)$$
 là $(0,14,6,5)$ có $x_2\geq 0, x_3\geq 0, x_4\geq 0$ ta suy ra :
$$\begin{cases} y_1+y_2+3y_3=1\\ 6y_1+2y_2+y_3=1 \end{cases}$$
 Vậy nghiệm tối ưu của bài toán đối ngấu (D) là $y^*=\left(2,\frac{-32}{5},\frac{9}{5}\right)$

3 Tài liệu tham khảo