# Model Selection using RFE(HOUSING CASE STUDY)

## **Importing and Understanding Data**

housing.head()

```
In [1]: import pandas as pd
import numpy as np

In [2]: # Importing Housing.csv
housing = pd.read_csv('Housing.csv')

In [3]: # Looking at the first five rows
```

Out[3]:

|   | price    | area | bedrooms | bathrooms | stories | mainroad | guestroom | basement | hot |
|---|----------|------|----------|-----------|---------|----------|-----------|----------|-----|
| 0 | 13300000 | 7420 | 4        | 2         | 3       | yes      | no        | no       | no  |
| 1 | 12250000 | 8960 | 4        | 4         | 4       | yes      | no        | no       | no  |
| 2 | 12250000 | 9960 | 3        | 2         | 2       | yes      | no        | yes      | no  |
| 3 | 12215000 | 7500 | 4        | 2         | 2       | yes      | no        | yes      | no  |
| 4 | 11410000 | 7420 | 4        | 1         | 2       | yes      | yes       | yes      | no  |

## **Data Preparation**

```
In [4]: # Converting Yes to 1 and No to 0
housing['mainroad'] = housing['mainroad'].map({'yes': 1, 'no': 0})
housing['guestroom'] = housing['guestroom'].map({'yes': 1, 'no': 0})
housing['basement'] = housing['basement'].map({'yes': 1, 'no': 0})
housing['hotwaterheating'] = housing['hotwaterheating'].map({'yes': 1, 'no': 0})
housing['airconditioning'] = housing['airconditioning'].map({'yes': 1, 'no': 0})
housing['prefarea'] = housing['prefarea'].map({'yes': 1, 'no': 0})
```

```
In [5]: # Creating dummy variable for variable furnishingstatus and dropping the first
    one
    status = pd.get_dummies(housing['furnishingstatus'],drop_first=True)
```

```
In [6]: #Adding the results to the master dataframe
housing = pd.concat([housing,status],axis=1)
```

```
In [7]: # Dropping the variable 'furnishingstatus'
housing.drop(['furnishingstatus'],axis=1,inplace=True)
```

#### Creating a new variable

```
In [8]: # Let us create the new metric and assign it to "areaperbedroom"
housing['areaperbedroom'] = housing['area']/housing['bedrooms']
In [9]: # Metric: bathrooms per bedroom
housing['bbratio'] = housing['bathrooms']/housing['bedrooms']
```

## **Rescaling the Features**

It is extremely important to rescale the variables so that they have a comparable scale. There are twocoon ways of rescaling

- 1. Normalisation (min-max scaling) and
- 2. standardisation (mean-o, sigma-1) Let's try normalisation

```
In [10]: #defining a normalisation function
    def normalize (x):
        return ( (x-np.mean(x))/ (max(x) - min(x)))

# applying normalize ( ) to all columns
housing = housing.apply(normalize)
```

## Splitting data into training and testing sets

```
In [12]: #random_state is the seed used by the random number generator, it can be any i
    nteger.
    from sklearn.cross_validation import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7 ,test
    _size = 0.3, random_state=100)
```

C:\Users\Sumit\Anaconda3\lib\site-packages\sklearn\cross\_validation.py:41: De precationWarning: This module was deprecated in version 0.18 in favor of the model\_selection module into which all the refactored classes and functions ar e moved. Also note that the interface of the new CV iterators are different f rom that of this module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

```
In [13]: # UDF for calculating vif value
def vif_cal(input_data, dependent_col):
    vif_df = pd.DataFrame( columns = ['Var', 'Vif'])
    x_vars=input_data.drop([dependent_col], axis=1)
    xvar_names=x_vars.columns
    for i in range(0,xvar_names.shape[0]):
        y=x_vars[xvar_names[i]]
        x=x_vars[xvar_names.drop(xvar_names[i])]
        rsq=sm.OLS(y,x).fit().rsquared
        vif=round(1/(1-rsq),2)
        vif_df.loc[i] = [xvar_names[i], vif]
        return vif_df.sort_values(by = 'Vif', axis=0, ascending=False, inplace=False)
```

#### **RFE**

```
In [15]: # Importing RFE and LinearRegression
         from sklearn.feature selection import RFE
         from sklearn.linear model import LinearRegression
In [16]:
         # Running RFE with the output number of the variable equal to 9
         lm = LinearRegression()
         rfe = RFE(lm, 9)
                                      # running RFE
         rfe = rfe.fit(X train, y train)
         print(rfe.support )
                                      # Printing the boolean results
         print(rfe.ranking )
         [ True False True True False False True True False True False
          False True True]
         [1 3 1 1 1 4 6 1 1 2 1 7 5 1 1]
In [17]: col = X_train.columns[rfe.support_]
```

## **Building model using sklearn**

```
In [18]: # Creating X_test dataframe with RFE selected variables
X_train_rfe = X_train[col]
```

In [20]: # Adding a constant variable
import statsmodels.api as sm
X\_train\_rfe = sm.add\_constant(X\_train\_rfe)

C:\Users\Sumit\Anaconda3\lib\site-packages\statsmodels\compat\pandas.py:56: F
utureWarning: The pandas.core.datetools module is deprecated and will be remo
ved in a future version. Please use the pandas.tseries module instead.
from pandas.core import datetools

In [21]: lm = sm.OLS(y\_train,X\_train\_rfe).fit() # Running the linear model

In [22]: #Let's see the summary of our linear model
print(lm.summary())

## OLS Regression Results

|                                         | :======          | •         | ========<br>210U K6201C2 | :======: | ========  | === |
|-----------------------------------------|------------------|-----------|--------------------------|----------|-----------|-----|
| =<br>Dep. Variable:                     |                  | price     | R-squared:               |          | 0         | .66 |
| <pre>0 Model:</pre>                     | OLS              |           | Adj. R-squared:          |          | 0.65      |     |
| 2<br>Method:                            |                  |           |                          |          | 80.1      |     |
| 4                                       | Least Squares    |           | F-STATISTIC:             |          | 80.1      |     |
| Date:<br>1                              | Tue, 13 Mar 2018 |           | Prob (F-statistic):      |          | 1.88e-8   |     |
| Time:<br>4                              | 15:56:09         |           | Log-Likelih              | ood:     | 369.5     |     |
| No. Observations:                       | 381              |           | AIC:                     |          | -719.     |     |
| Df Residuals:<br>7                      |                  | 371       | BIC:                     |          | -67       | 79. |
| Df Model:                               |                  | 9         |                          |          |           |     |
| Covariance Type:                        |                  | nonrobust |                          |          |           |     |
| ======                                  |                  |           | ========                 |          |           | === |
| 0.0753                                  | coef             | std err   | t                        | P> t     | [0.025    |     |
| 0.975]                                  |                  |           |                          |          |           |     |
|                                         |                  |           |                          |          |           |     |
| const                                   | 0.0034           | 0.005     | 0.704                    | 0.482    | -0.006    |     |
| 0.013<br>area                           | 0.7022           | 0.130     | 5.421                    | 0.000    | 0.447     |     |
| 0.957<br>bathrooms                      | 0.1718           | 0.098     | 1.759                    | 0.079    | -0.020    |     |
| 0.364<br>stories                        | 0.0814           | 0.019     | 4.321                    | 0.000    | 0.044     |     |
| 0.118<br>mainroad                       | 0.0647           | 0.014     | 4.470                    | 0.000    | 0.036     |     |
| 0.093                                   | 0.0047           | 0.014     | 4.470                    | 0.000    | 0.030     |     |
| hotwaterheating<br>0.144                | 0.1002           | 0.022     | 4.523                    | 0.000    | 0.057     |     |
| airconditioning<br>0.100                | 0.0776           | 0.011     | 6.806                    | 0.000    | 0.055     |     |
| prefarea<br>0.087                       | 0.0631           | 0.012     | 5.286                    | 0.000    | 0.040     |     |
| areaperbedroom -0.129                   | -0.4095          | 0.143     | -2.868                   | 0.004    | -0.690    |     |
| bbratio<br>0.272                        | 0.1156           | 0.080     | 1.450                    | 0.148    | -0.041    |     |
| ======================================= | :=======         | :======:  | ========                 | :======: | ========= |     |
| Omnibus:<br>8                           |                  | 85.512    | Durbin-Wats              | son:     | 2         | .10 |
| Prob(Omnibus):<br>9                     |                  | 0.000     | Jarque-Bera (JB):        |          | 273.42    |     |
| Skew:                                   |                  | 0.998     | Prob(JB):                |          | 4.22      | e-6 |
| 0<br>Kurtosis:<br>6                     |                  | 6.638     | Cond. No.                |          | 4         | 46. |
| ======================================= | :======          | :======:  |                          | :======: | =======   | === |

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [23]: # Calculating Vif value
    vif_cal(input_data=housing.drop(['area','bedrooms','stories','basement','semi-
    furnished','areaperbedroom'], axis=1), dependent_col="price")
```

Out[23]:

|   | Var             | Vif  |
|---|-----------------|------|
| 0 | bathrooms       | 2.35 |
| 8 | bbratio         | 2.19 |
| 5 | parking         | 1.12 |
| 4 | airconditioning | 1.11 |
| 1 | mainroad        | 1.10 |
| 6 | prefarea        | 1.09 |
| 7 | unfurnished     | 1.07 |
| 2 | guestroom       | 1.06 |
| 3 | hotwaterheating | 1.04 |

# **Making Predictions**

```
In [24]: # Now let's use our model to make predictions.

# Creating X_test_6 dataframe by dropping variables from X_test
X_test_rfe = X_test[col]

# Adding a constant variable
X_test_rfe = sm.add_constant(X_test_rfe)

# Making predictions
y_pred = lm.predict(X_test_rfe)
```

## **Model Evaluation**

```
In [25]: # Now let's check how well our model is able to make predictions.

# Importing the required libraries for plots.
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

```
In [26]: # Actual and Predicted
    import matplotlib.pyplot as plt
    c = [i for i in range(1,165,1)] # generating index
    fig = plt.figure()
    plt.plot(c,y_test, color="blue", linewidth=2.5, linestyle="-") #Plotting Actua
    l
    plt.plot(c,y_pred, color="red", linewidth=2.5, linestyle="-") #Plotting predicted
    fig.suptitle('Actual and Predicted', fontsize=20) # Plot heading
    plt.xlabel('Index', fontsize=18) # X-label
    plt.ylabel('Housing Price', fontsize=16) # Y-label
```

Out[26]: Text(0,0.5, 'Housing Price')

## Actual and Predicted



```
In [27]: # Error terms
    c = [i for i in range(1,165,1)]
    fig = plt.figure()
    plt.plot(c,y_test-y_pred, color="blue", linewidth=2.5, linestyle="-")
    fig.suptitle('Error Terms', fontsize=20)  # Plot heading
    plt.xlabel('Index', fontsize=18)  # X-label
    plt.ylabel('ytest-ypred', fontsize=16)  # Y-label
```

Out[27]: Text(0,0.5,'ytest-ypred')



```
In [28]: # Plotting y_test and y_pred to understand the spread.
    fig = plt.figure()
    plt.scatter(y_test,y_pred)
    fig.suptitle('y_test vs y_pred', fontsize=20)  # Plot heading
    plt.xlabel('y_test', fontsize=18)  # X-label
    plt.ylabel('y_pred', fontsize=16)  # Y-label
```

Out[28]: Text(0,0.5,'y\_pred')



```
In [29]: # Plotting the error terms to understand the distribution.
    fig = plt.figure()
        sns.distplot((y_test-y_pred),bins=50)
        fig.suptitle('Error Terms', fontsize=20)  # Plot heading
        plt.xlabel('y_test-y_pred', fontsize=18)  # X-label
        plt.ylabel('Index', fontsize=16)  # Y-label
```

#### Out[29]: Text(0,0.5,'Index')



In [30]: # Now let's check the Root Mean Square Error of our model.
import numpy as np
from sklearn import metrics
print('RMSE :', np.sqrt(metrics.mean\_squared\_error(y\_test, y\_pred)))

RMSE: 0.108203525381