"I do not know": Quantifying Uncertainty in Neural Network Based Approaches for Non-Intrusive Load Monitoring

Vibhuti Bansal*
Bharati Vidyapeeth's College of Engineering, India

Rohit Khoiwal*
Rajasthan Technical University
India

Hetvi Shastri*
UMass Amherst
USA

Haikoo Khandor IIT Gandhinagar India Nipun Batra
IIT Gandhinagar
India

Buildsys 2022, Boston, MA

Non Intrusive Load Monitoring (NILM)

• Non intrusive load monitoring is a task of disaggregating mains reading into its constituent appliances.

Motivation

 Normally, conventional neural networks for NILM give provide a point estimate for the appliance reading.

Motivation

Problem Statement

To estimate the value of uncertainty along with model prediction.

Aleatoric (Data) Uncertainty

Uncertainty caused due missing data, imprecise tools used to capture data.

Aleatoric (Data) Uncertainty

Uncertainty caused due missing data, imprecise tools used to capture data.

Homoskedastic Regression

 Estimates constant variance distribution across entire dataset.

Heteroskedastic Regression

• Estimates of different variance for different datapoint.

Heteroskedastic MLP

Epistemic (Model) Uncertainty

Uncertainty caused due to limited amount of data and knowledge.

Epistemic (Model) Uncertainty

Uncertainty caused due to limited amount of data and knowledge.

Monte Carlo dropout (MC)

MC dropout on Heteroskedastic Model

Deep Ensemble (DE)

Deep Ensemble on Heteroskedastic Model

Bootstrap (BS)

Bootstrap on Heteroskedastic Model

Mixture

Model

Quantifying predictive uncertainty

• The chosen confidence interval as p and empirically found fraction of points \hat{p} within the band should be ideally equal.

Quantifying predictive uncertainty

• The chosen confidence interval as p and empirically found fraction of points \hat{p} within the band should be ideally equal.

Quantifying predictive uncertainty

• The chosen confidence interval as p and empirically found fraction of points \hat{p} within the band should be ideally equal.

Expected Calibration Error (ECE) =
$$\frac{\sum_{p=0.1}^{P} |\hat{p}(p) - p|}{P}$$

Model Recalibration

• Increase or decrease the band width of the confidence interval to cover same number empirically found points as confidence interval.

Evaluation

Dataset	ReDD
Appliances	Fridge, Dishwasher, Microwave
Metric	Mean absolute error (MAE), Expected calibration Error (ECE)
Neural Network Models	Seq2point, Bilstm with Attention

Do NNs with uncertainty achieve comparable error on conventional metrics to the baselines?

 Comparable or better performance on MAE while additionally incorporating the notion of uncertainty.

Do NNs with uncertainty achieve comparable error on conventional metrics to the baselines?

 Comparable or better performance on MAE while additionally incorporating the notion of uncertainty.

Do we need to do analysis of statewise (On and Off) calibration?

Do we need to do analysis of statewise (On and Off) calibration?

Do we need to do analysis of statewise (On and Off) calibration?

Can recalibration improve model uncertainty?

After recalibration the reliability plot approaches more towards the ideal line.

Studied performance over one dataset, we plan to expand over more datasets.

- Studied performance over one dataset, we plan to expand over more datasets.
- In future we plan to add Markov chain Monte Carlo (MCMC) methods and variational inference methods.

- Studied performance over one dataset, we plan to expand over more datasets.
- In future we plan to add Markov chain Monte Carlo (MCMC) methods and variational inference methods.
- We plan to study our techniques on out of distribution (O.O.D) settings.

We implemented three ways to get uncertainty from neural network for NILM.

- We implemented three ways to get uncertainty from neural network for NILM.
- We found that new models incorporating uncertainty performed well on conventional metrics.

- We implemented three ways to get uncertainty from neural network for NILM.
- We found that new models incorporating uncertainty performed well on conventional metrics.
- We showed the need of studying calibration of different states of an appliance separately.

Backup Slides

Motivation

• If value of uncertainty is high then model is unsure and decision maker can consider predictive uncertainty.

Motivation

• If value of uncertainty is high then model is unsure and decision maker can consider predictive uncertainty before deciding.

Contribution

- •We have implemented a total of 14 such model variants over the state-of-the-art NNs for NILM.
- •Proposed "re-calibration" method to improve the uncertainty quantification for our models
- Provided qualitative understanding of predictive uncertainty from NILM perspective.

Loss details

Homoskedastic Regression

$$Loss = \frac{\sum_{i=1}^{N} (\hat{y}_i - y_i)^2}{N}$$

Heteroskedastic Regression

• Loss =
$$\frac{\sum_{i=1}^{N} \left(-\frac{1}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \left(y_i - \hat{y}_i \right)^2 \right)}{N}$$

Prediction from an ensemble of NNs

Neural Networks for NILM

1. Seq2Point

Seq2Point maps the sequence of mains power to a point appliance power prediction.

2. BiLSTM with Attention Mechanism

- BiLSTM considers the future and past aggregate reading data while training and testing.
- Attention mechanism provide more focus to some part of the sequence window.

Prediction from an ensemble of NNs

Homoskedastic NN

• μ_i :- Prediction after forward pass in NN.

$$\mu_{\text{ensemble}} = \frac{\sum_{i=1}^{N} \mu_i}{N}$$

$$\sigma_{\text{ensemble}} = \sqrt{\frac{\sum_{i=1}^{N} (\mu_i - \mu_{\text{ensemble}})^2}{N}}$$

Heteroskedastic NN

• μ_i , σ_i :- Prediction after forward pass in NN.

$$\mu_{\text{ensemble}} = \frac{\sum_{i=1}^{N} \mu_i}{N}$$

$$\sigma_{\text{ensemble}} = \sqrt{\frac{\sum_{i=1}^{N} (\sigma_i^2 + \mu_i^2)}{N} - \mu_{\text{ensemble}}^2}$$

Types of Uncertainty

Aleatoric Uncertainty

This type of uncertainty deals with data uncertainty.

Epistemic Uncertainty

This type of uncertainty deals with data uncertainty of parameters.

Quantifying predictive uncertainty

• The chosen confidence interval as p and empirically found fraction of points \hat{p} within the band should be ideally equal.

Quantifying predictive uncertainty

• The chosen confidence interval as p and empirically found fraction of points \hat{p} within the band should be ideally equal.

Expected Calibration Error (ECE) =
$$\frac{\sum_{p=1}^{P} |\hat{p}(p) - p|}{P}$$

Quantifying predictive uncertainty

• The chosen confidence interval as p and empirically found fraction of points \hat{p} within the band should be ideally equal.

Expected Calibration Error (ECE) =
$$\frac{\sum_{p=1}^{P} |\hat{p}(p) - p|}{P}$$

How we found Standard deviation factor from CI?

- $Pr(\mu z\sigma \le X \le \mu + z\sigma) = 2cdf(z) 1 = mass$
- $z = cdf^{-1}((mass + 1)/2)$

Model Recalibration

 Model recalibration methods tries to increase or decrease the band width of the confidence interval to cover same number empirically found points as confidence interval.

• Higher uncertainty when appliance changes state as model likely to be uncertain during transition and more confident once it observes more sample.

- Different appliance states can have highly varying calibration curves.
- Can achieve an overall low calibration if the individual states calibration errors cancel out each other.

- Different appliance states can have highly varying calibration curves.
- Can achieve an overall low calibration if the individual states calibration errors cancel out each other.

- Different appliance states can have highly varying calibration curves.
- Can achieve an overall low calibration if the individual states calibration errors cancel out each other.

- Good ECE may hide the imbalance between the different states and so recommended to see state-wise ECE.
- Difficult to estimate uncertainty accurately for sparse appliances.

MAE = 11.49 ECE = 0.06

- Improvement in quantifying model uncertainty of dishwasher and microwave for both "ON" and "OFF" state.
- Still chances of improvement in quantifying model uncertainty in "ON" state.

BiLSTM with Attention, Before: 14%, After: 26%

Can recalibration improve model uncertainty?

• Improvement from 65% points in 95% confidence interval to 80% points which can be seen even in reliability diagram.

Seq2point HOMO MC, Before: 65%, After 80%

 Good recalibration will require similar characteristic between calibration and test dataset.

(a). Before Recalibration

(b). After Recalibration