DOBÓR DODATKOWYCH REZYSTORÓW I BOCZNIKÓW DO GAI WANOMETRU

Opis układów pomiarowych

Ponieważ ćwiczenie składa się z dwóch części, wobec tego w trakcie jego wykonywania należy zmontować dwa różne układy pomiarowe. W obu układach wykorzystywane będą te same elementy, jednak spełniać będą one za każdym razem różne role. W ćwiczeniu stosujemy galwanometr o rezystancji wewnętrznej $R_{\rm g}$.

A Galwanometr jako woltomierz

W tej części ćwiczenia wykorzystywany jest układ, którego schemat przedstawiony jest na rysunku 1. Rezystor suwakowy R włączony jest tutaj jako potencjometr, tzn. całe napięcie źródła prądu stałego E podłączone jest do punktów 1 – 2, a mierzone napięcie pobierane jest z odcinka 1 – 3. Praktycznie pożądane napięcie uzyskuje się w ćwiczeniu z zasilacza o regulowanym napięciu wyjściowym. Napięcie zdejmowane z tego odcinka rezystora (czyli uzyskiwane z zasilacza) mierzone jest jednocześnie za pomocą wzorcowego woltomierza V_m oraz za pomocą badanego galwanometru G, z którym szeregowo włączona jest dodatkowa rezystancja R_d (rezystor dekadowy).

Rys. 1. Układ do wzorcowania woltomierza.

B Galwanometr jako amperomierz

W tej części ćwiczenia wykorzystywany jest układ, którego schemat przedstawiony jest na rysunku 2. Rezystor suwakowy R służy do regulacji natężenia prądu w obwodzie i włączony jest szeregowo jako zmienny rezystor. W ćwiczeniu pożądany prąd uzyskuje się z zasilacza o regulowanym prądzie wyjściowym. Natężenie prądu w obwodzie mierzone jest za pomocą amperomierza wzorcowego A_w oraz badanego galwanometru G, z którym równolegle podłączony jest bocznik R_b. Rolę bocznika spełnia rezystor dekadowy.

Rys. 2. Układ do wzorcowania amperomierza.

Zadaniem wykonującego ćwiczenia jest:

- dobranie wartości rezystancji dodatkowego rezystora R_d do galwanometru dla trzech wybranych zakresów pomiaru napięcia,
- dobranie wartości rezystancji bocznika R_b do galwanometru dla trzech wybranych zakresów pomiaru natężenie prądu.

Uwaga: Na początku pomiarów rezystancja wewnętrzna galwanometru i dopuszczalne dla niej natężenie prądu są nieznane, dlatego przy nieostrożnym włączeniu napięć przyrząd może ulec zniszczeniu. W związku z tym dobór odpowiednich rezystorów należy przeprowadzić ściśle według kolejności podanej w następnym podpunkcie opisującym sposób wykonania ćwiczenia.

Przeprowadzenie pomiarów

- A Galwanometr jako woltomierz
- 1. Zmontować układ według schematu z rys.1 nie podłączając układu do źródła prądu.
- 2. Ustawić na rezystorze dekadowym R_d maksymalna wartość oporu.
- 3. Ustawić suwak 3 rezystora R w pobliżu punktu 1 (w tym wypadku zdejmowane napięcie jest prawie równe 0) lub skręcić gałkę regulującą napięcie na zasilaczu na zero.
- 4. Dołączyć obwód do źródła prądu (lub włączyć zasilacz).
- 5. Płynnie przemieszczać suwak potencjometru R zasilacza, dopóki woltomierz V_w nie wskaże wybranego napięcia z zakresu 2 6 V (wybrać odpowiedni zakres woltomierza V_w).
- 6. Stopniowo zmniejszać wielkość R_d , zaczynając od największej dekady, dopóki wskazówka galwanometru nie wychyli się do końca skali. Zanotować wartość R_d jako szukaną rezystancję dodatkową dla wybranego zakresu.

Uwaga: Przy zmniejszaniu rezystancji R_d mogą się zmieniać wskazania woltomierza wzorcowego, dlatego też trzeba je utrzymywać ciągle na tej samej wartości, odpowiednio regulując potencjometrem R zasilacza.

- 7. Te same czynności (punkty 2-7) powtórzyć dla dwóch pozostałych wybranych zakresów napięcia.
- 8. Dla jednego z trzech zakresów należy sprawdzić liniowość galwanometru. W tym celu przy dobranej uprzednio wartości rezystora R_d należy mierzone napięcie płynnie zmieniać za pomocą potencjometru R zasilacza i porównywać wskazania woltomierza wzorcowego ze wskazaniami testowanego galwanometru (wykonać 6-10 odczytów).

B Galwanometr jako amperomierz

- 1. Zmontować układ według schematu na rys. 2 nie podłączając obwodu do źródła prądu.
- 2. Włączyć rezystor R zasilacza na maksymalną rezystancję tzn. gałkę regulującą prąd skręcić na pozycję zero.
- 3. Na rezystorze dekadowym R_b ustawić minimalną rezystancję tzn. 0.
- 4. Podłączyć obwód do źródła prądu (lub włączyć zasilacz).
- 5. Płynnie zmieniać rezystor R zasilacza, dopóki wzorcowy amperomierz nie wskaże wybranego natężenia I_w z zakresu 20 60 mA (przełącznikiem wybrać odpowiedni zakres amperomierza wzorcowego A_w).
- 6. Stopniowo zwiększać rezystancję rezystora dekadowego R_b , zaczynając od najmniejszej dekady, dopóki wskazówka galwanometru nie wychyli się do końca skali. Zanotować wartość szukanej rezystancji bocznika dla wybranego zakresu.

Uwaga: Podobnie, jak w części A przy zwiększaniu rezystancji R_b mogą zmieniać się wskazania amperomierza wzorcowego. Wskazania te należy utrzymać ciągle na tej samej wartości przez odpowiednią regulację rezystora R zasilacza.

7. Dobrać wartość R_b dla pozostałych dwóch wybranych zakresów, postępując zgodnie z punktami 2-7.

8. Dla jednego z trzech zakresów należy sprawdzić liniowość galwanometru. W tym celu przy dobranej uprzednio wartości rezystora R_d należy mierzone natężenie płynnie zmieniać za pomocą potencjometru R zasilacza i porównywać wskazania amperomierza wzorcowego ze wskazaniami testowanego galwanometru (wykonać 6-10 odczytów).

Opracowanie wyników pomiarów

A Galwanometr jako woltomierz

1. Dla wartości R_d otrzymanych dla poszczególnych zakresów obliczyć rezystancję wewnętrzną galwanometru. W tym celu należy zauważyć, że dla dwu dowolnie wybranych zakresów (I, II) prąd płynący przez galwanometr powodujący jego pełne wychylenie jest taki sam, można więc zapisać układ równań:

$$U_{wI} = I_g \left(R_{dI} + R_g \right)$$
$$U_{wII} = I_g \left(R_{dII} + R_g \right)$$

stad:

$$R_{g} = \frac{U_{wI} \ R_{dII} - U_{wII} \ R_{dI}}{U_{wII} - U_{wI}}$$

Zestawiając otrzymane wyniki każdy z każdym (są trzy możliwości) obliczyć w oparciu o powyższy wzór wartość R_g . Jako wynik przyjąć średnią z trzech otrzymanych wartości rezystancji wewnętrznej galwanometru. Jako niepewność maksymalną ΔR_g przyjąć największą odchyłkę od średniej, jaka wystąpiła w eksperymencie.

B Galwanometr jako amperomierz

2. Dla wartości *R_b* otrzymanych dla poszczególnych zakresów obliczyć rezystancję wewnętrzną galwanometru. Analogicznie jak w poprzednim przypadku dla dwu wybranych zakresów (I, II) prąd płynący przez galwanometr powodujący jego pełne wychylenie jest ten sam, można więc zapisać układ równań (rys. 2):

$$(I_{wI} - I_g)R_{bI} = I_g R_g$$
$$(I_{wII} - I_g)R_{bII} = I_g R_g$$

stąd

$$R_g = \frac{R_{bI} R_{bII} (I_{wI} - I_{wII})}{I_{wII} R_{bII} - I_{wI} R_{bI}}$$
(2)

Zestawiając otrzymane wyniki każdy z każdym (są trzy możliwości) obliczyć z powyższego wzoru wartość R_g . Jako wynik przyjąć średnią z trzech otrzymanych wartości rezystancji wewnętrznej galwanometru. Jako niepewność maksymalną ΔR_g przyjąć największą odchyłkę od średniej, jaka zdarzyła się w eksperymencie.

Elementy wspólne dla części A i B

- 1. Rezultaty pomiarów przedstawić w tabeli, której formę wykonujący ćwiczenia powinien opracować samodzielnie.
- 2. Wyniki pomiarów liniowości skali galwanometru (jako woltomierza i jako amperomierza) wraz z niepewnościami pomiarowymi przedstawić w formie wykresów.
- 3. Wyznaczyć metodą regresji liniowej najmniejszych kwadratów Gaussa liniowe charakterystyki woltomierza i amperomierza w postaci $y=\overline{a}x+\overline{b}$:

3.4 Data i podpis osoby prowadzącej......

$$\bar{a} = \frac{\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i} - n \sum_{i=1}^{n} (x_{i} y_{i})}{\left(\sum_{i=1}^{n} x_{i}\right)^{2} - n \sum_{i=1}^{n} x_{i}^{2}}$$

$$\bar{b} = \frac{\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}^{2}}{\left(\sum_{i=1}^{n} x_{i}\right)^{2} - n \sum_{i=1}^{n} x_{i}^{2}}$$

$$\sigma_{\bar{a}} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} \varepsilon_{i}^{2} \frac{n}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}}$$

$$\sigma_{\bar{b}} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} \varepsilon_{i}^{2} \frac{\sum_{i=1}^{n} x_{i}^{2}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}}$$

gdzie:

$$\sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} y_i^2 - \overline{a} \sum_{i=1}^{n} x_i \ y_i - \overline{b} \sum_{i=1}^{n} y_i \ ,$$

a także wyznaczyć współczynnik korelacji (0<R²<1), którego wartość bliska 1 świadczy o zgodności rozkładów punktów eksperymentalnych z wyznaczoną prosta

$$R^{2} = \frac{\left[\sum_{i=1}^{n} (x_{i} - \overline{x})(m_{i} - \overline{m})\right]^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \sum_{i=1}^{n} (m_{i} - \overline{m})^{2}}.$$

W obu przypadkach y_i oznacza mierzone działki galwanometru. W przypadku woltomierza x_i to pomiary napięcia, a w przypadku amperomierza x_i to pomiary natężenia.

4. Porównać otrzymane rezultaty wartości rezystancji wewnętrznej i jej niepewności obliczonej w części A i B. Zastanowić się nad przyczynami ewentualnych rozbieżności. Wszystkie przekształcenia wzorów i obliczenia umieścić w sprawozdaniu.

Stwierdzić czy cel ćwiczenia:

- wyznaczenie rezystancji galwanometru jako amperomierza;
- wyznaczenie rezystancji galwanometru jako woltomierza;
- sprawdzenie liniowości wskazań galwanometru;

został osiągnięty.

Zestawić wyniki, przeanalizować uzyskane rezultaty, wyciągnąć wnioski.

_ , , ,	, ,			
LIAUtr\	/czność	$m \sim c$	いへか	I = M
	//./III/SI.	11100		

Grupa

- 3.1 Wartości teoretyczne wielkości wyznaczanych lub określanych.
- 3.2 Parametry stanowiska (wartości i niepewności). Należy potwierdzić na stanowisku wartości parametrów!
- 3.3 Pomiary i uwagi do ich wykonania.

Galwanometr jako woltomierz	Napięcie V ₁ np. 1,5 V	Napięcie V ₂ np. 3,0 V	Napięcie V ₃ np. 4,5 V
Rezystor dekadowy przy maks. wychyleniu wskazówki galwanometru			
Galwanometr [działek]		Napięcia od 0 do V _{max}	
	0	0	0
	0,5	0,5	0,5
	1,0	1,0	1,0
	1,5	1,5	1,5
		2,0	2,0
		2,5	2,5
		3,0	3,0
			3,5
			4,0
			4,5

Galwanometr jako amperomierz	Natężenie I ₁ np. 20 mA	Natężenie I _{2\} np. 40 mA	Natężenie I ₃ np. 60 mA
Rezystor dekadowy przy maksymalnym wychyleniu wskazówki galwanometru			
Galwanometr [działek]		Natężenia od 0 do I _{max}	
	0	0	0
	4	4	4
	8	8	8
	12	12	12
	16	16	16
	20	20	20
		24	24
		28	28
		32	32
		36	36
		40	40

3.4 Data i podpis osoby prowadzącej.....

ĆWICZENIE 14

			yczność i magnetyzm
			44
			48
			52
			56
			60

NT.	, .	. ,	
N 10	newnosci	nomiarow	,
1 110	pewnoser	pomiarow	