Ejercicios

Rigoberto Canseco López

Podemos definir la idea de construcción como: Sea una sucesión de construcción finita $\langle \epsilon_1, \epsilon_2, \dots, \epsilon_{n-1}, \epsilon_n \rangle$ de expresiones tal que, para cada i < n, tenemos al menos uno de los siguientes hechos:

- ϵ_i es un símbolo de enunciado.
- $\epsilon_i = \epsilon_\square(\epsilon_i, \epsilon_j)$ para algún j < n, i < n , y \square un símbolo de conectivo binarios $(\vee, \wedge, \rightarrow, \leftrightarrow)$

Sea S un conjunto de fórmulas que contiene todos los símbolos de enunciado y es cerrado bajo las operaciones de construcción, entonces S es el conjunto de todas las fórmulas.

1. Sea α la fórmula, sea c el número posible de lugares en los que aparecen símbolos de conectivo binarios $(\vee, \wedge, \rightarrow, \leftrightarrow)$ en α ; sea s el número de lugares en los que aparece símbolos de enunciado en α . (Por ejemplo, si α es $(A \rightarrow (\neg A))$, entonces c=1 y s=2). Usando el principio de inducción, pruebe que s=c+1.

Demostración por inducción

• Caso base: Sea α una fórmula bien formada con un símbolo de enunciado y ningún conector binario, es decir $\alpha = A_1$

Por lo tanto se cumple que s=c+1 ya que el numero de símbolos conectivos es c=0 y el número de símbolos de enunciado es s=1.

$$s_1 = c_0 + 1$$

- **Hipótesis de inducción:** Entonces s=c+1 es cierta para cualquier paso ϵ_n de construcción y $\epsilon_n \in S$.
- **Paso inductivo:** Se demuestra que, s=c+1 es cierta para el paso n de construcción, entonces para el paso ϵ_{n+1} lo es también.

Al agregar un símbolo de conector binario \square a la formula α es evidente que debemos agregar un símbolo de enunciado , es decir.

Para
$$\epsilon_1$$

$$\alpha = A_1$$
 Para ϵ_n
$$\alpha = (A_1 \square_1 \ __) \quad \text{Agregamos un sí mbolo conectivo binario}$$

$$\alpha = (A_1 \square_1 A_2)$$
 Para ϵ_{n+1}
$$\alpha = (\alpha_n \square_n A_{n+1})$$

Por lo tanto

$$s_n=c_n+1$$
 Agregando un sí mbolo conectivo al paso n $s_{n+1}=s_n+1=c_n+1+1$ $s_{n+1}=(c_n+1)+1$

Como $\epsilon_n \in S$ también lo es ϵ_{n+1} , queda demostrado s=c+1

- 2. Suponga que α es una fórmula que no contiene el símbolo de negación \neg
 - \circ Muestre que la longitud de a (es decir, el número de símbolos en la sucesión) es impar.

Longitud de $\alpha = 4k + 1$

Demostración por inducción

• Caso base: Sea α una fórmula bien formada con un símbolo de enunciado y ningún conector binario, es decir $\alpha=A_1$

Para
$$k=0$$

Longitud de $\alpha=4k+1=4(0)+1=1$
Longitud de $\alpha=1$

Por lo tanto se cumple que la longitud de α es impar.

- **Hipótesis de inducción:** Entonces la longitud de $\alpha = 4k + 1$ es cierta para cualquier paso ϵ_n de construcción y $\epsilon_n \in S$. Donde k es el numero de símbolos conectivos y $k \le n$.
- **Paso inductivo:** Se demuestra que, la longitud de $\alpha = 4k + 1$ es cierta para el paso n de construcción, entonces para el paso ϵ_{n+1} lo es también.

Al agregar un símbolo de conector binario \square a la formula α es evidente que debemos agregar un símbolo de enunciado y en consecuencia se agregan 4 símbolos más es decir, $\{(,),\square,A\}$,

Para
$$\epsilon_1$$

$$\alpha = A_1$$

$$\operatorname{Para} \epsilon_n$$

$$\alpha = (A_1 \square_1 \underline{\hspace{0.5cm}}) \quad \operatorname{Agregamos} \text{ un sí mbolo conectivo binario}$$

$$\alpha = (A_1 \square_1 A_2) \quad \operatorname{Tenemos} 5 \text{ sí mbolos y que es un nú mero impar}$$

$$\operatorname{Para} \epsilon_{n+1}$$

$$\alpha = (\alpha_n \square_n A_{n+1})$$

Por lo tanto

Longitud de α para n

$$=\sum_{k=0}^{n}4k+1$$
 Es impar

Para n+1 tenemos que

$$4 + (\sum_{k=0}^{n} 4k + 1) = (4k+1) + 4$$
 $= 4(k+1) + 1$ Es impar

Como $\epsilon_n \in S$ también lo es ϵ_{n+1} , queda demostrado la longitud de α es un número impar

• Muestre que más de una cuarta parte de los símbolos son símbolos de enunciado.

Número de símbolos de enunciado es k+1

Demostración por inducción

- Caso base: Sea α una fórmula bien formada $\alpha = (A_1 \square A_2)$ con un total de 5 símbolos $\{(A_1, \square, A_2, n)\}$
 - Donde 2/5 son símbolos de enunciados y por lo tanto cumple que, 1/5>1/4 parte de los símbolos.
- Hipótesis de inducción: Entonces más de una cuarta parte de los símbolos son símbolos de enunciado.

Donde el número de símbolos de enunciado es k+1 es cierta para cualquier paso ϵ_n de construcción y $\epsilon_n \in S$. Donde k es el numero de símbolos conectivos y $k \leq n$.

■ **Paso inductivo:** Se demuestra que, la longitud de $\alpha = k + 1$ es cierta para el paso n de construcción, entonces para el paso ϵ_{n+1} lo es también.

Al agregar un símbolo de conector binario \square a la formula α es evidente que debemos agregar un símbolo de enunciado y en consecuencia se agregan 4 símbolos más es decir, $\{(,),\square,A\}$,

$$\begin{aligned} \operatorname{Para} \epsilon_1 \\ \alpha &= (A_1 \square_1 A_{n+1}) \\ \operatorname{Tenemos} 2/5 \text{ son sí mbolos de enunciado} \\ \operatorname{Para} \epsilon_n \\ \alpha &= ((A_1 \square_1 \ A_n) \square_n A_{n+1}) \\ \operatorname{Tenemos} 3/9 \text{ son sí mbolos de enunciado} \\ \operatorname{Para} \epsilon_{n+1} \\ \alpha &= (((A_1 \square_1 \ A_2) \square_2 A_3) \square_{n+1} A_{n+1}) \\ \operatorname{Tenemos} 4/13 \text{ son sí mbolos de enunciado} \end{aligned}$$

Por lo tanto la longitud de símbolos de enunciado es $\sum_{k=0}^n k+1$ del total de símbolos de $\alpha(\sum_{k=0}^n 4k+1)$ donde k es el número de símbolos conectivos.

Es decir, longitud de símbolos de enunciado es:

$$\begin{aligned} & \text{Para } n \text{ tenemos que} \\ & = \sum_{k=0}^{n} \frac{k+1}{4k+1} \\ & \text{Para } n+1 \text{ tenemos que} \\ & = \frac{\sum_{k=0}^{n} (k+1)+1}{\sum_{k=0}^{n} (4k+1)+4} = \frac{k+1+1}{(4k+1)+4} \\ & = \frac{(k+1)+1}{4(k+1)+1} > \frac{1}{4} \end{aligned}$$

Como $\epsilon_n \in S$ también lo es ϵ_{n+1} , queda demostrado la longitud de símbolos es más de una cuarta parte de símbolos de α