Digital Signal Processing

Class 1 01/21/2025

ENGR 71

- Class Overview
 - Syllabus, Class Policies
 - Introduction to DSP
- Assignments
 - Reading:
 - Chapter 1: Introduction
 - Chapter 2: Discrete-Time Signals and Systems
 - Homework 1: Due Jan. 26 (Sun.)

ENGR 71

Homework Assignment:

Homework 1 - Review of Complex Numbers

(on Moodle page <u>here</u>)

- Homework: Due Jan 26 (Sunday)
 - Please scan in as a pdf and put in dropbox

Class Information

Class Information:

- Office Hours

Office Hours: Available after class

Wednesday 1:15 (during lab time)

By appointment

Office: Singer Rm 346

Phone: (610) 328-8446

E-mail: amoser2@swarthmore.edu

- When and Where?

Class: Science Center 264 TTh 9:55 – 11:10

Lab: Nominally Self-scheduled

Time resérved: Wed. 1:15 - 4:00, Singer 246

Class Information

Textbook (Required reading & problems):

```
J.G. Proakis & D.G. Manolakis, Digital Signal Processing. Fifth Edition, Pearson, 2022. ISBN: 978-0137348244

Digital edition available through TAP+ Program: <a href="here">here</a>
```

 Reference useful for review of analog signal processing (not required)

Chaparro, Luis F. (2014), Signals and Systems Using Matlab, 2nd Edition, Academic Press, ISBN: 978-0123948120.

Other resources on class <u>Moodle page</u>

Grades

- Grades:

• Homework: 20%

• Exam 1: 25%

• Exam 2: 25%

• Labs: 15%

• Final Project: 15%

- See Syllabus and Schedule on Moodle

Labs

• Labs:

- Nominally self scheduled, but there is a time and room available: Wed. 1:15 – 4:00 PM, Singer 246
- 2-3 students per lab group
- Most labs will be computational
- Possibly a few hardware labs

Topics

- Plan for class (order of topics we will cover)
 - Introduction to Digital Signal Processing (Chapter 1)
 - Review of Complex Variables
 - Review of Analog Signals & Systems
 - Sampling
 - Digital Signals and Systems (Chapter 2)
 - Z-Transform (Chapter 3)
 - Frequency Analysis of Signals (Chapter 4)
 - Frequency Analysis of LTI Systems (Chapter 5)
 - Discrete Fourier Transform (Chapter 7)
 - Design of Digital Filters (Chapter 10)
 - Special Topics if Time

Introduction to DSP

- Why is Digital Signal Processing Useful?
 - Practically every electronic device involves DSP
 - Delivery of content on internet
 - Speech recognition
 - Siri / Google Assistant
 - Irritating phone trees when you try to reach a human being
 - Audio processing / TV
 - Music recording/playback, video
 - Image processing
 - Enhancement, object recognition, compression
 - Telecommunications
 - Error correction, modulation/demodulation, software defined radio
 - Medical imaging
 - Almost all imaging modalities are now digital (CT, MRI, Ultrasound)

The Analog World

In the good old days, life was analog

- How did we get here?
 - Conceptual advancements
 - Binary system (1679 Leibniz)
 - Mathematical basis like Information Theory (1948 – Shannon)
 - Advancement in electronics
 - Transistors replaced vacuum tubes (Bardeen, Brattain, Shockley 1947)
 - Integrated circuits (Kilby 1958)
 - Digital computers (1946 -ENIAC at Upenn)
 - Digital Storage
 - Punch cards and magnetic tape to disks→solid state drives→ cloud

washing machine size

Capacity: 7.25 MB

Transfer rate: 156 kB/sec.

- How did we get here?
 - Telecommunications
 - Analog to digital phone systems
 - Internet relies on digital data transmission
 - Consumer electronics
 - Mobile phones analog to digital 2G, 3G,...
 - Standards: Wi-Fi, Bluetooth
 - Digital economy

- What drove the change
 - Efficiency
 - less susceptible to noise
 - Precision
 - error corrections
 - Economics
 - cost reduction associated with technology to mass produce integrated circuits and put more on a chip
 - Scalability
 - Easier to scale and upgrade

- What drove the change
 - Miniaturization
 - smaller device
 - portability
 - Global connectivity
 - Internet
 - Standardization
 - standardized formats allow devices to communicate and storage to be interpretable
 - Ease of duplication

- What drove the change
 - Consumer demand
 - convenience, content consumption, price reduction
 - Funding
 - Government and Military
- Innovation builds on itself
 - With devices came development of algorithms (DSP)

The world is digital now

Data, Data, Data

402.74 million terabytes created per day

Doubles about every 2 years

By 2030 there will be 660 zettabytes zettabyte is 1,000,000 terrabytes (zetta is 10²¹)

16 TB solid state drives use ~3.5 Watts 150 GW to store all this data (about 150 nuclear)

The next wave?

- Edge computing
 - More computation on low-level devices
 - Decentralized
 - low latency
 - bandwidth efficiency
 - security
- Internet of things
 - Everything will be connected
 - Smart homes
 - Supply chain
 - Optimized operations
- Decentralized technology
 - Blockchain
 - Digital currency

The next wave?

- AI and Machine Learning
 - Generative AI music, text, ... (these lectures?)
 - Autonomous systems
 - Personalization
- Quantum computing
 - Dramatic increase in computing power
 - New algorithms will have to be developed
- 5G and beyond
 - Faster connectivity, higher speeds
 - Metaverse collection of shared virtual spaces
- Are we heading toward a technological singularity?
 - Technical growth becomes uncontrollable?
 - New hybrid/human species making analog humans obsolete?
 - Transhumanism?

Transhumanism

Signals

- Functions of 1 or more variables that carry useful information.
 - Typically, we think of 1-D signals as functions of time, but could be function of one spatial dimension
 - Example of 2-D signals are images
 - Higher dimensionality multispectral data

- Examples
 - Speech signal

Examples

• Electrocardiogram

- What is a signal?
 - Ordered sequence of numbers (1-D)
 - e.g., sequence of amplitudes ordered by time
 - Ordered array of numbers
 - e.g., images (2 −D), volumes (3-D), higher dimensions
 - Types of signals (relevant to signal processing)
 - Continuous: time and amplitude are real numbers
 - Discrete: time sampled, amplitude is continuous
 - Digital: time sampled, amplitude quantized

- What is a system?
 - Operates on signals.
 - May be realized in hardware or software or combination of the two
 - e.g. Filtering to reduce noise
 - Systems have certain properties based on how they operate on signals
 - Linear
 - Non-linear systems

- System
 - Transforms input signal to output signal
 - Illustrated by "black box"

- Systems modeled as mathematical operations transforming input, x(t), to output, y(t)=S[x(t)]

- System
 - For digital signal processing, need to include conversion of analog signal to digital (and back again)

01/21/2025 ENGR 071 - Class 1

SISO and multivariate systems

- Single Input Single Output (SISO) is simplest
- Other possibilities include
 - Single Input Multiple Outputs (SIMO)
 - Multiple Input Single Output (MISO)
 - Multiple Input Multiple Outputs (MIMO)

31

Classification of systems

Continuous-time

-Input and output signals are continuous time functions

Discrete-time

-Input and output signals consist of sampled times

Digital

 Inputs and outputs are discrete in time and amplitudes are quantized

Hybrid

- Input and output signals can be mixed
- -Example Analog to Digital (A/D) converter

- Static or Dynamic (Also called memoryless or with memory)
 - Static system depend on the input at the present time
 - Example: resistive circuit excited by input voltage

- Dynamic system depends not only on the input at the current time, but also on the input at previous times.
 - Example would be circuits with capacitors and inductors

$$v_c(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau$$

• Another example would be a combination lock. (i.e., needs to know two previous inputs plus present input to unlock.)

Causal Systems

- If output y(t) at time t_0 only depends on input x(t) for $t \le t_0$, system is causal.
- In other words, output can only be influenced by current input and what has happened before.

Non-Causal (or Acausal) Systems

- Can depend on current, previous, and <u>future</u> inputs
 - With buffers, you could include future inputs
 - Would not be real-time systems
 - For image data, non-causal systems are common

Anticausal Systems

Depend only future inputs

Linear Systems

- If you scale the input to the system, the output scales by the same factor.
- If you add two inputs and let the system operate on the inputs, the output is same as if you gave each input separately and summed the individual responses.
- Mathematically:

$$S[\alpha x(t) + \beta y(t)] = \alpha S[x(t)] + \beta S[y(t)]$$

If you superimpose two signals, output is superposition of two outputs.

Principle of superposition

- Example of Linear and Non-linear Systems
 - RLC circuits (linear)

- Examples of Linear and Non-linear Systems
 - Diode circuits (non-linear)

- Examples of Linear and Non-linear Systems
 - RLC circuits (linear)
 - Diode circuits (non-linear)
 - Mass and Spring systems
 - linear if spring isn't stretched too far
 - Non-linear if spring stretched beyond its elastic limit
 - No system is truly linear, but within some limited range of operation many systems can be treated as linear systems

Mathematical examples of linear and non-linear systems

$$S[x(t)] = Ax(t)$$

$$S[x(t)] = x^{2}(t)$$

$$S[x(t)] = \sin(x(t))$$

$$S[x(t)] = \frac{dx(t)}{dt} + ax(t)$$

Mathematical examples of linear and non-linear systems

Linear

$$S[x(t)] = Ax(t)$$

$$S[ax(t) + by(t)] = A\alpha x(t) + A\beta y(t) = \alpha S[x(t)] + \beta S[y(t)]$$

Non-linear

$$S[x(t)] = x^{2}(t)$$

$$S[\alpha x(t) + \beta y(t)] = (\alpha x(t) + \beta y(t))^{2} = \alpha^{2} x^{2}(t) + 2\alpha \beta x(t) y(t) + \beta^{2} y^{2}(t) \neq \alpha S[x(t)] + \beta S[y(t)]$$

Non-linear

$$S[x(t)] = \sin(x(t))$$

$$S[\alpha x(t) + \beta y(t)] = \sin(\alpha x(t) + \beta y(t)) = \sin(\alpha x(t))\cos(\beta x(t)) + \cos(\alpha x(t))\sin(\beta x(t)) \neq \alpha S[x(t)] + \beta S[y(t)]$$

Linear

$$S[x(t)] = \frac{dx(t)}{dt} + ax(t)$$

$$S[\alpha x(t) + \beta y(t)] = \frac{d(\alpha x(t) + \beta y(t))}{dt} + a(\alpha x(t) + \beta y(t))$$

$$= \frac{\alpha dx(t)}{dt} + \alpha ax(t) + \frac{\beta dy(t)}{dt} + \beta ay(t) = \alpha S[x(t)] + \beta S[y(t)]$$

Time Invariant

- Parameters of system do not change with time.
- If you shift input time, output is shifted in same way
- If input x(t) produces output y(t), then for input at $x(t-t_0)$ the output produced would be $y(t-t_0)$
- Examples
 - Capacitor is time invariant since:

$$v(t) = \frac{q(t)}{C} = \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau$$

If you consider input shifted by time t_0

$$v_{t_0}(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau - t_0) d\tau = \frac{1}{C} \int_{-\infty}^{t - t_0} i(\tau) d\tau = v(t - t_0)$$

• Example that is not time invariant:

$$y(t) = x(t) + \sin \omega t$$

Shifting input $x(t)$ by t_0 :
 $y_{t_0}(t) = x(t - t_0) + \sin \omega t$
but $y(t - t_0) \neq x(t - t_0) + \sin \omega (t - t_0)$

Stable Systems

Any bounded input gives a bounded output.

Invertible Systems

- System is invertible if you can determine the input by observing the output.
- An inverse system exists that could convert the output into the input.

Memoryless Systems

Output at a given time depends only on input at that same time.
 (i.e., system doesn't change with time)

Linear Time Invariant Systems

- Important class of systems
- Can be represented by ordinary linear differential equation with constant coefficients.
- Not all Linear D.E.'s with constant coefficients correspond to LTI systems
 - Must be causal and initially quiescent
- What is so special about LTI systems?
 - LTI systems can be completely characterized by impulse response

High level classification of systems

Lumped or Distributed

- Lumped means elements of systems are localized and you need only consider the evolution of components in time.
 - Described by ordinary differential equations
 - Example is circuit with discrete elements (like R, L, C)
- Distributed means system is distributed over space
 - Described by partial differential equations
 - Example is transmission lines

Passive or Active

- Passive systems can not deliver energy outside of system
 - Example: R-L-C circuits
- Active systems can deliver energy outside of system
 - Example: Op Amp circuits

Review of Complex Numbers

Review of Complex Numbers

- What is *i* if $i^2 = -1$?
 - Definition for square root of -1: $i \triangleq \sqrt{-1}$ $\left(\text{or } j \triangleq \sqrt{-1}\right)$ i is standard in mathematics, physics, most engineering fields j used in electrical engineering to avoid confusion with current
 - *i* is an **imaginary number**
 - Complex numbers (variables) have real and imaginary parts
 - Rectangular form:

Complex number: n = a + ib, a = Re(n), b = Im(n)

Complex variable: z = x + iy, x = Re(z), y = Im(z) $[z \in \mathbb{C}, x, y \in \mathbb{R}]$

• Polar form:

 $z = r \angle \theta$, magnitude: |z| = r , angle: θ

Argand Diagram

- Argand Diagram:
 - Complex number plotted as point in 2-D plane: complex plane
 - Conversion between rectangular and polar forms

$$Z = X + iy \Leftrightarrow Z = r \angle \theta$$

$$X = r \cos \theta$$

$$Y = r \sin \theta$$

$$Z = r (\cos \theta + i \sin \theta)$$

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \arctan \frac{y}{x} \qquad (-\pi < \theta < \pi)$$

$$z = 1 + i \Leftrightarrow \sqrt{2} \angle \pi/4$$

$$z = 1 + i\sqrt{3} \Leftrightarrow 2\angle \pi/3$$

$$z = 3 + i4 \Leftrightarrow 5 \angle 0.9273$$

Complex Conjugation

- Complex Conjugation:
 - Reverse the sign of imaginary part.

```
Complex conjugate of z: z = x + iy ; z = r \angle \theta

Denoted as \overline{z} or z^*

z^* = x - iy ; z^* = r \angle (-\theta)
```

- For functions, reverse sign of *i* everywhere in the function
 - Example:

$$f(t) = e^{it^2} + it$$
 (where t is a real-valued variable)
 $f^*(t) = e^{-it^2} - it$

Euler's Formula

Euler's Formula:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

- There are several proofs of this formula

Expand $e^{i\theta}$ in a Taylor series:

$$e^{i\theta} = 1 + i\theta + \frac{(i\theta)^{2}}{2!} + \frac{(i\theta)^{3}}{3!} + \frac{(i\theta)^{4}}{4!} + \frac{(i\theta)^{5}}{5!} + \frac{(i\theta)^{6}}{6!} + \dots$$

$$e^{i\theta} = \left[1 - \frac{\theta^{2}}{2} + \frac{\theta^{4}}{4!} + \dots\right] + i\left[\theta - \frac{\theta^{3}}{3!} + \frac{\theta^{6}}{6!} + \dots\right] = \cos\theta + i\sin\theta$$

recognizing that the first term in brackets is the Taylor series expansion for $\cos \theta$ and the second term is the series expansion for $\sin \theta$.

Euler's Formula

Another proof:

 $\therefore e^{i\theta} = \cos\theta + i \sin\theta$

Define the function: $f(\theta) = e^{-i\theta} \left(\cos\theta + i\sin\theta\right)$ $f'(\theta) = -ie^{-i\theta} \left(\cos\theta + i\sin\theta\right) + e^{-i\theta} \left(-\sin\theta + i\cos\theta\right)$ $f'(\theta) = e^{-i\theta} \left(-i\cos\theta + \sin\theta - \sin\theta + i\cos\theta\right) = 0$ Since the derivative is zero, $f(\theta) = \text{constant}$. Evaluating it at $\theta = 0$, $f(0) = e^{0} \left(\cos 0 + i\sin 0\right) = 1$ so, $f(\theta) = \text{constant} = 1 = e^{-i\theta} \left(\cos\theta + i\sin\theta\right)$.

01/21/2025

Euler's Identity

• Euler's Identity is found setting $\theta = \pi$

$$e^{i\pi} = \cos \pi + i \sin \pi$$

$$\left|e^{i\pi}+1=0\right|$$

- This is often called the most beautiful equation in mathematics
 - Links five fundamental mathematical constants: e, i, π , 1, 0
 - Also relates complex exponentiation with trigonometry

Polar Form of Complex Number

Polar form of complex number using Euler's formula:

$$Z = X + iy \Leftrightarrow Z = r \angle \theta$$

$$X = r \cos \theta$$

$$Y = r \sin \theta$$

$$r = \sqrt{X^2 + Y^2}$$

$$\theta = \arctan \frac{Y}{X}$$

$$Z = r(\cos \theta + i \sin \theta)$$

$$z = re^{i\theta}$$

Example of rectangular to polar form

$$z = 1 - i$$
 \Leftrightarrow $z = \sqrt{2}e^{-i\pi/4}$

$$z = -1 + i\sqrt{3}$$
 \Leftrightarrow $z = 2e^{i2\pi/3}$

$$z = 3 + i4 \qquad \Leftrightarrow \qquad z = 5e^{i0.9273}$$

Example of polar to rectangular form

$$z=5e^{i\pi/3}$$

$$\Leftrightarrow \quad Z = \frac{5}{2} + i \frac{5\sqrt{3}}{2}$$

$$z=e^{i3\pi/2}$$

$$\Leftrightarrow z = 0 - i$$

$$z=e^{-i\pi/2}$$

$$\Leftrightarrow z = 0 - i$$

$$z = e^{-i3\pi}$$

$$\Leftrightarrow$$
 $z = -1 + i0$

Addition & Subtraction

- Addition (Subtraction)
 - Easiest to do addition (subtraction) in rectangular form:

$$z_1 = a_1 + ib_1$$
 and $z_2 = a_2 + ib_2$
 $z_1 + z_2 = (a_1 + ib_1) + (a_2 + ib_2)$
 $= (a_1 + a_2) + i(b_1 + b_2)$

$$(1-i)+(2+i3)$$

$$\Leftrightarrow$$
 3 + *i*2

$$\left(1+i\sqrt{3}\right)+\left(1+i\sqrt{3}\right)^* \Leftrightarrow 2$$

$$\left(1+i\sqrt{3}\right)-\left(1+i\sqrt{3}\right)^* \qquad \Leftrightarrow \quad i2\sqrt{3}$$

$$i2\sqrt{3}$$

Multiplication & Division

• Multiplication $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ib_2$

$$Z_{1}Z_{2} = (a_{1} + ib_{1})(a_{2} + ib_{2})$$

$$= a_{1}a_{2} + ib_{1}a_{2} + ia_{1}b_{2} + i^{2}b_{1}b_{2}$$

$$Z_{1}Z_{2} = (a_{1}a_{2} - b_{1}b_{2}) + i(a_{1}b_{2} + a_{2}b_{1})$$

Division

$$\frac{z_1}{z_2} = \frac{a_1 + ib_1}{a_2 + ib_2} = \frac{\left(a_1 + ib_1\right)}{a_2 + ib_2}$$

$$= \frac{z_1}{z_2} \frac{z_2^*}{z_2^*} = \frac{\left(a_1 + ib_1\right)\left(a_2 - ib_2\right)}{a_2^2 + b_2^2}$$

$$\frac{z_1}{z_2} = \frac{\left(a_1a_2 + b_1b_2\right) - i\left(a_1b_2 - a_2b_1\right)}{a_2^2 + b_2^2}$$

$$(1-i)(1+i3)$$

$$\Leftrightarrow$$
 4 + *i*2

$$(1+i)(1-i)$$

$$\Leftrightarrow$$
 2

$$(1+i\sqrt{3})(1+i\sqrt{3})$$

$$\Leftrightarrow$$
 $-2+i2\sqrt{3}$

$$\frac{1-i}{1+i3}$$

$$\Leftrightarrow -\frac{1}{5} - i\frac{2}{5}$$

$$\frac{1+i}{1-i}$$

$$\Rightarrow i$$

$$\frac{1+i2}{3-i4}$$

$$\Leftrightarrow -\frac{1}{5} + i\frac{2}{5}$$

Multiplication & Division

Easier to do multiplication and division in polar form

$$Z_1 Z_2 = r_1 e^{i\theta_1} r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

$$\frac{Z_1}{Z_2} = \frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$

$$(1-i)(1+i\sqrt{3})$$

$$\sqrt{2}e^{-i\pi/4}2e^{i\pi/3}=2\sqrt{2}e^{i\pi/12}$$

$$(1+i)(1-i)$$

$$\sqrt{2}e^{i\pi/4}\sqrt{2}e^{-i\pi/4} = 2$$

$$(1+i\sqrt{3})(1+i\sqrt{3})$$

$$2e^{i\pi/3}2e^{i\pi/3} = 4e^{i2\pi/3} = 2\left(-1 + i\sqrt{3}\right)$$

$$\frac{1-i}{1+i\sqrt{3}}$$

$$\frac{1+i}{1-i}$$

$$\frac{1+i2}{3-i4}$$

$$\frac{\sqrt{2}e^{-i\pi/4}}{2e^{i\pi/3}} = \frac{1}{\sqrt{2}}e^{-i7\pi/12}$$

$$\frac{\sqrt{2}e^{i\pi/4}}{\sqrt{2}e^{-i\pi/4}} = e^{-i\pi/2} = -i$$

$$\frac{\sqrt{5}e^{i\tan^{-1}(2)}}{5e^{-i\tan^{-1}(4/3)}} = \frac{1}{\sqrt{5}}e^{i\left(\tan^{-1}(2) + \tan^{-1}(4/3)\right)} = \frac{1}{5}\left(-1 + i2\right)$$

Power & DeMoivre's Formula

Powers of complex numbers

$$z^n = (re^{i\theta})^n = r^n e^{in\theta}$$

 DeMoivre's formula comes from the relationship between complex exponential and trigonometric function

$$e^{in\theta} = (\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$$

$$(1-i)^3$$
 $\left[\sqrt{2}e^{-i\pi/4}\right]^3 = 2^{3/2}e^{-i3\pi/4} = -2(1+i)$

$$i^5$$

$$\left[e^{-i\pi/2}\right]^5 = e^{-i5\pi/2} = i$$

Roots of Complex Numbers

- Roots of complex numbers $z^{\frac{1}{n}} = (re^{i\theta})^{\frac{1}{n}}$
 - Must be careful, because there will be *n* roots
 - Note that $e^{i\theta} = e^{i(\theta+2k\pi)}$ for integer values of kYou can see this from

$$e^{i(\theta+2k\pi)} = \cos(\theta+2k\pi) + i\sin(\theta+2k\pi) = \cos(\theta) + i\sin(\theta)$$

$$z^{\frac{1}{n}} = \left(re^{i\theta}\right)^{\frac{1}{n}} = \left(re^{i(\theta+2k\pi)}\right)^{\frac{1}{n}} = r^{\frac{1}{n}}e^{i\left(\frac{\theta}{n}+\frac{2k\pi}{n}\right)}$$

n roots since this yields unique values for k = 0, 1, ..., n - 1

$$\sqrt[3]{1-i}$$

$$\left[\sqrt{2}e^{-i(\pi/4+k2\pi)}\right]^{1/3}=2^{1/6}e^{i7\pi/12}$$
 , $2^{1/6}e^{i15\pi/12}$, $2^{1/6}e^{i23\pi/12}$

$$i^{1/4}$$

$$\left[e^{i(\pi/2+k2\pi)}
ight]^{1/4}=e^{i\pi/8}$$
 , $e^{i5\pi/8}$, $e^{i9\pi/8}$, $e^{i13\pi/8}$

$$\sqrt{1}$$

$$\left\lceil e^{i(0+k2\pi)}
ight
ceil^{1/2}=e^0$$
 , $e^{i\pi}=1$, -1

$$\left[e^{i(0+k2\pi)}\right]^{1/3} = e^0, e^{i2\pi/3}, e^{i4\pi/3}$$

Matlab Commands

Matlab commands for complex values

abs	Absolute value and complex magnitude
angle	Phase angle
complex	Create complex array
conj	Complex conjugate
cplxpair	Sort complex numbers into complex conjugate pairs
i	Imaginary unit
imag	Imaginary part of complex number
isreal	Determine whether array uses complex storage
j	Imaginary unit
real	Real part of complex number
sign	Sign function (signum function)
unwrap	Shift phase angles

A few odds and ends to remember

A few odds and ends to remember:

$$i^2 = -1$$
 $e^{\pm i\pi} = -1$
 $e^{i2\pi k} = 1$ (for integer k)
 $e^{\pm i\frac{\pi}{2}} = \pm i$
 $-i = \frac{1}{i}$

Points on the unit circle in complex plane

A few odds and ends to remember

Convenient triangles:

70

A few odds and ends to remember

• Geometric Series:

$$\sum_{k=0}^{n} r^{k} = \frac{1 - r^{n+1}}{1 - r}$$

$$\sum_{k=1}^{n} r^{k} = \frac{r(1-r^{n})}{1-r}$$

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$$
for $|r| < 1$

$$\sum_{k=1}^{\infty} r^k = \frac{r}{1-r}$$
for $|r| < 1$

- Example using geometric series:
 - a) If you drop a ball from 20 meters, and it recovers ¾ of its height at each bounce (coefficient of restitution), how far has the ball travelled after 10 bounces?

$$T_n = H + 2Hr\sum_{k=0}^{n-1}r^k = 20 + 2\cdot20\cdot(3/4)\frac{1-(3/4)^n}{1-(3/4)}, \quad T_{10} = 133.2424$$

72

b) If you let it bounce forever (and it is a perfect ball), how far will it travel?

$$T_{\infty} = H + 2Hr\sum_{k=0}^{\infty} r^{k} = 20 + 2\cdot20\cdot(3/4)\frac{1}{1-(3/4)}, \quad T_{\infty} = 140$$