FCC TEST REPORT

For

Wintop Electronics Co., Limited

Wireless Mouse

Model No.: WM-779, WM-779B

Prepared For : Wintop Electronics Co., Limited

Address : Unit 04 7/F, Bright Way Tower 33, Mong Kok RD, KL, Hong Kong

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW180622009-01

Date of Test : Jun. 22~Jul. 02, 2018

Date of Report : Jul. 02, 2018

Contents

1. General Information		"'por	- P.U	ote	, du4		4
1.1. Client Information			Anbore	A.D.	, vol	tpofek.	4
1.2. Description of Device (EUT)		t Joden	Anb	······	Motek.	4
1.3. Auxiliary Equipment Used I	Ouring Test	Anb		ote ^k A	upore	VII	<u></u> 4
1.4 Description of Test Modes							5
1.5 List of Channels							O'
1.6. Description of Test Setup 1.7. Test Equipment List 1.8. Measurement Uncertainty 1.9. Description of Test Facility 2. Summary of Test Results	ote. An		notek	Aupor	by.		6
1.7. Test Equipment List	nbotek	Anbo	b. Matek	Hopoge,	Anb		7
1.8. Measurement Uncertainty	, otek	hopoge	Anv.	ăă	tek A	/por	8
1.9. Description of Test Facility	Yu. Vak	otel	Anbo	Pr.	notek	Kupo _{ter}	8
2. Summary of Test Results	Anbe	% "// ₀ c	tek pob	Ofe. W		otel	9
3. Conducted Emission Test.	r anbo	P.C.	Nove	10010	AUL		10
3.1. Test Standard and Limit	, Na	ooten A	Upo I	otek	pobole	Ann	10
3.2. Test Setup		Sotek	Aupore	VII.	0,000	er A	10
3.3. Test Procedure	Upor.	bu.	W.Poter.	Anbe	.016	Potek	10
3.4. Test Data	- Wipole.	Anb	otel	*11po	P.	tok	10
 Radiated Emission and Band Edge. Test Standard and Limit 	botek	- Vupor	bo.	, Aor	poter	Anbe	11
4.1. Test Standard and Limit	b.,	<u> </u>	ier Vup.		Botek	- Aupora	11
4.2. Test Setup	An		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Upor.	Votek.	Anho	11
4.1. Test Standard and Limit 4.2. Test Setup	Kek Vup	, , , , , , , , , , , , , , , , , , ,	yek	At/poter.	Amb		13
4.4. Test Data	notek	Mpofe.	Vur.	otek	W.po,		13
4.4. Test Procedure		. nootek	Anbo	Pr.	ek	ooter	23
5.1. Test Standard and Limit	Anbo	P. Porek	Kupo _{fe} ,	Anv		- neotek	23
5.2. Test Setup	Anbore	Nun.		iek Vu	00,	Pr. Motek	23
5.3. Test Procedure	bote	k Anbo		notek.	Kupo _{te} ,	Anb	23
5.4. Test Data	.ok	otek po	pote A			Anbo.	23
5.2. Test Setup 5.3. Test Procedure 5.4. Test Data 6. Antenna Requirement 6.1. Test Standard and Requirem	re Arre		VIIBOTEK	Anbo		K K	26
6.1. Test Standard and Requirem	ent	'upo	hotek	- Aupore	An		26
6.2. Antenna Connected Construc	ction	v.upor.	b2,	ot	S _L		26
APPENDIX I TEST SETUP PHOT	OGRAPH	Nipotek Nipotek	Anbo	P.D.	Ne K	opote.	27
APPENDIX II EXTERNAL PHOT	OGRAPH		8K ************************************	(0)			
ADDENIDIZ III DITEDNIAI DIIOT	OCD A DII						V

TEST REPORT

Applicant : Wintop Electronics Co., Limited

Manufacturer : Shenzhen Wintop Electronics Co.,Ltd

Product Name : Wireless Mouse

Model No. : WM-779, WM-779B

Trade Mark : N.A.

Rating(s) : Mouse: Input: DC 1.5V 20mA by AAA Battery*1

Keyboard: Input: DC 5V by USB Port

Test Standard(s) : FCC Part15 Subpart C, Paragraph 15.249

Test Method(s) : **ANSI C63.10: 2013**

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test	Jun. 22~Jul. 02, 2018
	obiay arg
Prepared by	Anbo An An Ann Ann
BOTE.	(Engineer / Oliay Yang)
Anbotek	Edwin Liss
Reviewer	ak hor Air tek abolt
TO THE TOTAL PARTY OF THE TOTAL	(Supervisor / Calvin Liu)
ootek Anbotek Anbotek Anbote	L. C.
	Anbotek Anbotek Jon Alenbotek Anbotek Anbotek Anbotek
Approved & Authorized Signer	Ar tek abot A. Arbore
	(Manager / Tom Chen)

1. General Information

1.1. Client Information

Applicant	:	Wintop Electronics Co., Limited
Address	:	Unit 04 7/F, Bright Way Tower 33, Mong Kok RD, KL, Hong Kong
Manufacturer	:	Shenzhen Wintop Electronics Co.,Ltd
Address	:	No.46 Xinhe Road Shangmugu Pinghu Town Longgang District Shenzhen China

1.2. Description of Device (EUT)

Product Name	: Wireless	Mouse						
Model No.	1	9, WM-779B Ill samples are th	ie same e	xcept the na	me, so we	prepare "	WM-779"	for test
Test Sample No.	: S1, S2	Anbotek	Anbote	Anbo.	pote ^K	Anbotek	Anbot	e. A
Trade Mark	: N.A.	Anbotek		hotek Air	Anbotek		rek An	anbotek ************************************
Test Power Supply	: DC 1.5V	battery inside	lotek A	Anbotek	Anbotek	ek Anb	abotek	Anbotek
	Operatio	on Frequency:	Inbotek	2405-24701	MHz	botek	Anbotek	Anbo
	Number	of Channel:	Anbote	8 Channel	otek A	Anbotek	Anbote	otek A
Product Description	: Modulat	ion Type:	K Anbo	GFSK	Anbotek	Anbote	tek Ani	nbotek
	Antenna	Type:	otek A	PCB Anten	na _N nboten	ek Aup	abotek	Anbotek
	Antenna	Gain(Peak):	nbotek	0 dBi	K Aupo	otek	Anbotek	Anbo,

Remark: 1)For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

6	N/A		49	Anboten	And	rek	anbotek	, K	Viv	Anbote	

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Keeping TX mode
Mode 2	Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
Mode 3	CH04
Mode 4	CH08 dek Anbotek

For Radiated Emission								
Final Test Mode	Description							
Mode 1	Keeping TX mode							
Mode 2	CH01 Anbotek Anbotek Anbotek							
Mode 3	CH04							
Mode 4	CH08							

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode
- 2. EUT built-in battery-powered, fully-charged battery use of the test battery.

1.5. List of Channels

Channel	Freq.	Freq.		Channel	Freq.	Channel	Freq.
Chamie	(MHz)	Chamie	(MHz)	Chamiei	(MHz)	Chamie	(MHz)
potek 1 Anh	2405	abotek 2 Ar	2413	John Am	2422	ibotek 4 An	2430
Anbotes 5	2440	Anbotek	2450	Anbraek K	2460	8	2470

1.6. Description of Test Setup

RE

1.7. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
lek 1. potek	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 17, 2017	1 Year
2.00	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 17, 2017	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 17, 2017	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 17, 2017	1 Year
5.	Spectrum Analysis	Agilent	N9038A	MY53227295	Nov. 17, 2017	1 Year
6.e ^k	Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 17, 2017	1 Year
7.,0	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 17, 2017	1 Year
8.20	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2017	1 Year
9.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 20, 2017	1 Year
10.	Loop Antenna	Schwarzbeck	HFH2-Z2	100047	Nov. 17, 2017	1 Year
11.00	Horn Antenna	Schewarzbeck	BBHA9170	9170-375	Nov. 17, 2017	1 Year
12.	Pre-amplifier	SONOMA	310N	186860	Nov. 17, 2017	1 Year
13.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
14.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 18, 2017	1 Year
15.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 17, 2017	1 Year
16.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 17, 2017	1 Year
17.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 18, 2017	1 Year
18.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 18, 2017	1 Year
19.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 18, 2017	1 Year
20.	DC Power Supply	LW	TPR-6410D	349315	Nov. 01, 2017	1 Year
21.	Constant Temperature Humidity Chamber	Sertep	ZJ-HWHS80B	ZJ-17042804	Nov. 01, 2017	1 Year

1.8. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 3.9 dB (Horizontal)
		Ur = 3.8 dB (Vertical)
		nbotek Anbotek Anbotek Anbotek Anbotek
Conduction Uncertainty	:	Uc = 3.4 dB

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

All Emissions tests were performed at Shenzhen Anbotek Compliance Laboratory Limited. at 1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

Standard Section	Test Item	Result
15.203	Antenna Requirement	PASS
15.207	Conducted Emission	N/A
15.249	Radiated Emission	PASS
15.215(c)	20dB Bandwidth	PASS
15.249(c)	Band Edge	PASS
Remark: "N/A" is an abbre	otek Nupote Ann Lak Botek Anbo	K Anbotek

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.20	7 Anbore An botek	Anbotek Anbo tek					
Test Limit	Γ	Maximum RF Line Voltage (dBuV)						
	Frequency	Quasi-peak Level	Average Level					
	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *					
	500kHz~5MHz	56	46					
	5MHz~30MHz	60	50					

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

The EUT is powered by DC 1.5V battery inside, so there is no need to conduct this test.

4. Radiated Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.20	99 and 15.205	Anhotek	Anbotek	Yupo Hek
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	obotek - Anbo	ok Nun	300
	0.490MHz-1.705MHz	24000/F(kHz)	Anbotek Ar	Pose Vin	30
	1.705MHz-30MHz	30	Anbatek	Anbore P	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3.ek
	88MHz~216MHz	150	43.5	Quasi-peak	3 _{botek}
	216MHz~960MHz	200	46.0	Quasi-peak	sek 3 nbote
	960MHz~1000MHz	500	54.0	Quasi-peak	Jek 3
	Above 1000MII-	500	54.0	Average	3
	Above 1000MHz	botek - Anbote	74.0	Peak	3

Remark:

- (1) The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test Standard	FCC Part15 C	Section 15.249				
	Frequency (MHz)	Field Strength of fundamental ((millivolts /meter)	Field Strength of Harmonics (microvolts/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
Test Limit	2400~2483.5	50	Anbor An	114.0	Peak	otek3
	2400~2483.5	50	Vupor Vi	94.0	Average	Anb. 3k
	2400~2483.5	hotek - Anbotek	500	74.0	Peak	Anno 3 tek
	2400~2483.5	hotek - Anbote	500	54.0	Average	K And wotek

Remark:

(1) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setun

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW = 1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz,Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis is the worst case.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Test Results (30~1000MHz)

23.3℃/54%RH Job No.: SZAWW180622009-01 Temp.(°C)/Hum.(%RH):

Standard: FCC PART 15C Power Source: DC 1.5V battery inside

Test Mode: Keeping TX mode Polarization: Horizontal

Test Results (30~1000MHz)

Job No.: SZAWW180622009-01 Temp.(°C)/Hum.(%RH): 23.3°C/54%RH

Standard: FCC PART 15C Power Source: DC 1.5V battery inside

Test Mode: Keeping TX mode Polarization: Vertical

Test Results (1GHz-25GHz)

Test Mode: 0	CH01 (Low cl	nannel)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Detector
2405.0000	93.88	31.12	2.18	35.33	91.85	114.00	-22.15	Vanb	Peak
2405.0000	82.11	31.12	2.18	35.33	80.08	94.00	-13.92	V	AVG
4810.0000	47.92	34.01	2.58	34.65	49.86	74.00	-24.14	ke ^k V	Peak
4810.0000	41.05	34.01	2.58	34.65	42.99	54.00	-11.01	v° V'	AVG
7215.0000	48.45	36.16	2.97	35.07	52.51	74.00	-21.49	Vote	Peak
7215.0000	35.56	36.16	2.97	35.07	39.62	54.00	-14.38	V	AVG
9620.0000	*	Anbotek	Aupor	ok Nu	botek	Anbotek	Anbo	P	obotek
12025.0000	* ***	Anbote	k Aupo	rek by	Anbotek	Anbotek	Aup.	iek p	Anbotek
14430.0000	*	K Ant	otek Yu	po tek	An abotek	Anbore	KANDO	hotek	Anbote
16835.0000	*	otek 1	hotek	Anbo. otek	Anbote	K AUP	ote, by	,botel	Anb
2405.0000	95.42	31.12	2.18	35.33	93.39	114.00	-20.61	H	Peak
2405.0000	82.73	31.12	2.18	35.33	80.70	94.00	-13.30	Н	AVG
4810.0000	50.72	34.01	2.58	34.65	52.66	74.00	-21.34	_e γ H	Peak
4810.0000	41.93	34.01	2.58	34.65	43.87	54.00	-10.13	Н	AVG
7215.0000	45.22	36.16	2.97	35.07	49.28	74.00	-24.72	Hyek	Peak
7215.0000	38.58	36.16	2.97	35.07	42.64	54.00	-11.36	H	AVG
9620.0000	*	, botek	Anbotek	Vupo,	stek All	nbotek	Anboten	Ana	notek
12025.0000	Anbote *	Anbotel	Anbote	K An'	hotek	Anbotek	Anboter	K DY	hotek
14430.0000	*	Anbr	tek Aup	otok	Aupotek	Anbotek Anbotek	Anbot	rek	Anv
16835.0000	*	vek W	botek l	upoter	Anbo	Aupo	ick bu	ote	Pur.

Note:

- 1. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

-07	V11.		200	P	S	260.	400		Non
Test Mode: 0	CH04 (Middle	e channel)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Detecto
2430.0000	96.03	31.12	2.20	34.51	94.84	114.00	-19.16	V	Peak
2430.0000	84.62	31.22	2.20	34.51	83.53	94.00	-10.47	V	AVG
4860.0000	47.54	34.98	2.49	34.14	50.87	74.00	-23.13	V	Peak
4860.0000	38.13	34.98	2.49	34.14	41.46	54.00	-12.54	V	AVG
7290.0000	45.63	36.01	3.01	34.56	50.09	74.00	-23.91	V	Peak
7290.0000	38.39	36.01	3.01	34.56	42.85	54.00	-11.15	V	AVG
9720.0000	*	abotek	Anbotek	Anbo	stek A.	nbotek	Anboten	NUC	notek
12150.0000	Anbot	An	k Anbot	by	hotek	Anbotek	Anbote	p ok	hotek
14580.0000	*	k 20.	otek An	ooter v	Anbotek	Anbote	Anbo	Yek	Pur
17010.0000	*	atek A.	nbotek	Aupoter	Aug	k Anb	otek Ar	loor el	- All
2430.0000	94.05	31.12	2.20	34.51	92.86	114.00	-21.14	Aubor H	Peak
2430.0000	83.33	31.12	2.20	34.51	82.14	94.00	-11.86	\mathbf{H}^{h}	AVG
4860.0000	48.63	34.98	2.49	34.14	51.96	74.00	-22.04	, н	Peak
4860.0000	38.89	34.98	2.49	34.14	42.22	54.00	-11.78	Н	AVG
7290.0000	46.57	36.01	3.01	34.56	51.03	74.00	-22.97	H	Peak
7290.0000	37.10	36.01	3.01	34.56	41.56	54.00	-12.44	Aupole.	AVG
9720.0000	*	nbor	A. nbotek	Anbot	V. Bulo	"potek	Anbotek	Aupo	tek
12150.0000	Anborek	Aupo.	Anbote	k NU	orek b	hotek	Anbotek	P.	Por Lek
14580.0000	M.*	Mipo	tek Aup	otek	Yupore,	Pur	Anbok	V.	Vupo,
17010.0000	*	K Vup,	notek I	nbotek	Anbore	V.V.	lek An	otek	Vupor
51.	L	16,	VD.	49.1	20070	PUL		484	100

Note:

- 1. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 - 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Test Mode: 0	CH08 (High c	hannel)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Detecto
2470.0000	97.00	31.65	2.23	36.07	94.81	114.00	-19.19	V	Peak
2470.0000	83.03	31.65	2.23	36.07	80.84	94.00	-13.16	V	AVG
4940.0000	47.06	35.06	2.60	34.93	49.79	74.00	-24.21	V	Peak
4940.0000	38.65	35.06	2.60	34.93	41.38	54.00	-12.62	V	AVG
7410.0000	47.49	36.19	3.12	35.11	51.69	74.00	-22.31	V	Peak
7410.0000	35.21	36.19	3.12	35.11	39.41	54.00	-14.59	V	AVG
9880.0000	*	abotek	Anboten	Anbo	otek	Inbotek	Anbote	Dien	hotek
12350.0000	****	, abote	K Anbor	P.	potek	Anbotek	Anbote	o.K.	no botek
14820.0000	*	k Pulp	otek Ani	poto.	Anna	Anbote	Anbo	rek	An abo
17290.0000	*	018K	hotek	Anbote. ok	Pur Pote	K Anb	otek bu	hor tel	. P.,
2470.0000	94.35	31.65	2.23	36.07	92.16	114.00	-21.84	And H	Peak
2470.0000	84.62	31.65	2.23	36.07	82.43	94.00	-11.57	\mathbf{H}^{Anb}	AVG
4940.0000	48.36	35.06	2.60	34.93	51.09	74.00	-22.91	Н	Peak
4940.0000	40.33	35.06	2.60	34.93	43.06	54.00	-10.94	Н	AVG
7410.0000	45.56	36.19	3.12	35.11	49.76	74.00	-24.24	H	Peak
7410.0000	36.88	36.19	3.12	35.11	41.08	54.00	-12.92	Pupor	AVG
9880.0000	*	nbonotek	Anbotek	Anbot	rok Vuo	hotek	Anbotek	Anbo	-tek
12350.0000	*	Pup.	Anbote	K An'	Par b	nbotek	Anbotek	N P.	(bo. Ctek
14820.0000	*	Yuo.	tek Anb	otek	Anbore otek	All	Anbot	V	Anbu
17290.0000	***************************************	K NUD	notek p	mbotek	Anbor	P//	lek Ani	oton	Aupr

Note:

- 1. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 - 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Radiated Band Edge:

Test Mode: 0	CH01			Test	Test channel: Lowest					
				Peak Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
2390.00	55.94	29.15	3.41	34.01	54.49	74.00	-19.51	boteV		
2400.00	58.50	29.16	3.43	34.01	57.08	74.00	-16.92	AnbV		
2390.00	54.58	29.15	3.41	34.01	53.13	74.00	-20.87	Hoote		
2400.00	56.30	29.16	3.43	34.01	54.88	74.00	-19.12	$H_{Pu_{k}}$		
			A	verage Valu	e					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
2390.00	45.68	29.15	3.41 And	34.01	44.23	54.00	-9.77	Vote		
2400.00	43.40	29.16	3.43	34.01	41.98	54.00	-12.02	V		
2390.00	44.36	29.15	3.41	34.01	42.91	54.00	-11.09	ek H		
2400.00	43.49	29.16	3.43	34.01	42.07	54.00	-11.93	H		

Test Mode: C	CH08			Test	Test channel: Highest					
				Peak Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
2483.50	54.56	29.28	3.53	34.03	53.34	74.00	-20.66	V.		
2500.00	58.90	29.30	3.56	34.03	57.73	74.00	-16.27	Vote		
2483.50	54.78	29.28	3.53	34.03	53.56	74.00	-20.44	H		
2500.00	55.11	29.30	3.56	34.03	53.94	74.00	-20.06	Н		
			A	verage Valu	ie					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
2483.50	42.66	29.28	3.53	34.03	41.44	54.00	-12.56	V		
2500.00	45.00	29.30	3.56	34.03	43.83	54.00	-10.17	V		
2483.50	42.25	29.28	3.53	34.03	41.03	54.00	-12.97	Н Р		
2500.00	45.16	29.30	3.56	34.03	43.99	54.00	-10.01	Н		

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Conducted band edge

Lowest

Highest

Conducted Emission Method

CH: Low

CH: Middle

CH: High

5. 20dB Bandwidth Test

5.1. Test Standard and Limit

5.2. Test Setup

5.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

 $RBW = 30kHz, VBW \ge 3*RBW = 100kHz,$

Detector= Average

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and -20dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

5.4. Test Data

Test Item	:	20dB Bandwidth	Test Mode :	Keeping TX mode
Test Voltage	:	DC 1.5V battery inside	Temperature :	24℃
Test Result	:	PASS	Humidity :	55%RH

	Frequency (MHz)			Bandwidth (kHz)	P (0.)		Result	M
Anbotek	2405MHZ	,nbotek	Anbotek	2617	Anbote	K AN	PASS	Anbotek
Anbote	2430MHZ	Anbotek	Anbore	2612	k Anb	otek	PASS	Anbot
ar Anb	2470MHZ		te Ans	2614	otek p	upo.	PASS	

Test Mode: Low

Test Mode: Middle

Test Mode: High

6. Antenna Requirement

6.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203
Requirement	1) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

6.2. Antenna Connected Construction

The antenna is a PCB Antenna which permanently attached, and the best case gain of the antenna is 0 dBi. It complies with the standard requirement.

APPENDIX I -- TEST SETUP PHOTOGRAPH

APPENDIX II -- EXTERNAL PHOTOGRAPH

APPENDIX III -- INTERNAL PHOTOGRAPH

--- End of Report ----