MATH 680 Computation Intensive Statistics

Matrix Decomposition, PCA and Ridge Regularization

Yi Yang

McGill University

September 5, 2018

Flop Counts

- flop (floating-point operation): one addition, subtraction, multiplication, or division of two floating-point numbers
- to estimate complexity of an algorithm: express number of flops as a (polynomial) function of the problem dimensions, and simplify by keeping only the leading terms
- not an accurate predictor of computation time on modern computers
- useful as a rough estimate of complexity

Flop Counts

Flops

Vector-vector operations $(x, y \in \mathbb{R}^n)$

- Inner product x^Ty : 2n-1 flops (or 2n if n is large)
- sum x + y, scalar multiplication αx : n flops

Matrix-vector product y = Ax with $A \in \mathbb{R}^{n \times p}$

- n(2p-1) flops or 2np if p is large
- $lue{}$ 2N if A is sparse with N nonzero elements
- 2k(n+p) if A is given as $A = UV^T$, $U \in \mathbb{R}^{n \times k}$, $V \in \mathbb{R}^{p \times k}$

Matrix-matrix product C = AB with $A \in \mathbb{R}^{n \times k}$, $B \in \mathbb{R}^{k \times p}$

- \blacksquare np(2k-1) flops (or 2npk if k is large)
- less if A and/or B are sparse
- $(1/2)n(n+1)(2k-1) \approx n^2k$ if n=p and C symmetric

Notation

- 1 M^T : the transpose of M
- |A|: the determinant of A
- $\mathbb{S}^p = \{M \in \mathbb{R}^{p \times p} : M = M^T\}$: the set of symmetric matrices.
- 4 $\mathbb{S}_0^p = \{M \in \mathbb{S}^p : \varphi_{\min}(M) \geq 0\}$: the set of symmetric and positive semi-definite matrices
- 5 $\mathbb{S}^p_+=\{M\in\mathbb{S}^p: \varphi_{\min}(M)>0\}:$ the set of symmetric and positive definite matrices.

Introductory Example: Least Square Regression

- $X \in \mathbb{R}^{n \times p}$ be the nonrandom design matrix, where all entries in its first column equal 1
- $y = (y_1, \dots, y_n)^T \in \mathbb{R}$ be the response vector
- Assume that

$$Y \sim N_n(X\beta_*, \sigma_*^2 I_n).$$

■ The density for $N_n(\mu, \Sigma)$ and its logarithm evaluated at $x \in \mathbb{R}^n$ are

$$\begin{split} \phi(x;\mu,\Sigma) &= (2\pi)^{-n/2} |\Sigma^{-1}|^{1/2} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}, \\ \log \phi(x;\mu,\Sigma) &= -\frac{n}{2} \log(2\pi) + \frac{1}{2} \log |\Sigma^{-1}| - \frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu). \end{split}$$

Introductory Example: Least Square Regression

■ The random log-likelihood function $\ell(\cdot,\cdot;Y): \mathbb{R}^p \times \mathbb{R}_+ \to \mathbb{R}$ is defined by

$$\begin{split} \ell(\beta, \sigma^2; Y, X) &= \log \phi(Y; X\beta, \sigma^2 I_n) \\ &= -\frac{n}{2} \log(2\pi) + \frac{1}{2} \log |\sigma^{-2} I_n| - \frac{1}{2} (Y - X\beta)^T \sigma^{-2} I_n (Y - X\beta) \\ &= -\frac{n}{2} \log(2\pi) + \frac{n}{2} \log \sigma^{-2} - \frac{1}{2} \sigma^{-2} (Y - X\beta)^T (Y - X\beta). \end{split}$$

The maximum likelihood estimator is

$$(\hat{\beta}, \hat{\sigma}^2) = \underset{(\beta, \sigma^2) \in \mathbb{R}^p \times \mathbb{R}_+}{\arg \min} - \ell(\beta, \sigma^2; Y, X).$$

Introductory Example: Least Square Regression

- We call $-\ell$ the *objective function*.
- (β, σ^2) the *optimization variable*.
- $\blacksquare \mathbb{R}^p \times \mathbb{R}_+$ the *feasible set*.
- To get $(\hat{\beta}, \hat{\sigma}^2)$, solve the two equations

$$\nabla_{\beta} - \ell(\beta, \sigma^2; Y, X) = 0$$

$$\nabla_{\sigma^2} - \ell(\beta, \sigma^2; Y, X) = 0$$

Introductory Example: Least Square Regression

We have that

$$(Y - X\beta)^T (Y - X\beta) = Y^T Y - 2\beta^T X^T Y + \beta^T X^T X\beta,$$

SO

$$\nabla_{\beta} - \ell(\beta, \sigma^{2}; Y, X) = \frac{1}{2} \sigma^{-2} \nabla_{\beta} \{ (Y - X\beta)^{T} (Y - X\beta) \}$$

$$= \frac{1}{2} \sigma^{-2} \nabla_{\beta} \{ Y^{T} Y - 2\beta^{T} X^{T} Y + \beta^{T} X^{T} X \beta \}$$

$$= \frac{1}{2} \sigma^{-2} (-2X^{T} Y + 2X^{T} X \beta)$$

$$= \sigma^{-2} (-X^{T} Y + X^{T} X \beta).$$

Introductory Example: Least Square Regression

- $\nabla_{\beta} \ell(\beta, \sigma^2; Y, X) = 0$ is equivalent to $-X^TY + X^TX\beta = 0$, so $\hat{\beta}$ solves $X^TX\hat{\beta} = X^TY$.
- If $(X^TX)^{-1}$ exists, then $\hat{\beta} = (X^TX)^{-1}X^TY$.
- Solving

$$\nabla_{\sigma^2} - \ell(\beta, \sigma^2; Y, X) = \frac{n}{2\sigma^2} - \frac{1}{2\sigma^4} (Y - X\beta)^T (Y - X\beta) = 0$$

we have that

$$\hat{\sigma}^2 = \frac{1}{n} (Y - X\beta)^T (Y - X\beta).$$

Ordinary Least Squares

■ The OLS estimator of β_* is defined by

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^p}{\arg \min} \|Y - X\beta\|_2^2, \tag{1}$$

where here the arg min is a set of global minimizers:

Let $f(\beta) = ||Y - X\beta||^2$

$$f(\beta) = Y^T Y - 2\beta^T X^T Y + \beta^T X^T X \beta,$$

and

$$\nabla f(\beta) = -2X^T Y + 2X^T X \beta.$$

■ A minimizer $\hat{\beta}$ solves $\nabla f(\beta) = 0$

$$-X^TY + X^TX\beta = 0.$$

QR Decomposition: solving $X^T X \hat{\beta} = X^T Y$

- Real matrix $A \in \mathbb{R}^{n \times p}$, n > p, has rank p.
- QR decomposition of A

$$A = QR$$

- $Q \in \mathbb{R}^{n \times p}$ with $Q^T Q = I_p$
- $R \in \mathbb{R}^{p \times p}$ is upper-triangular; $r_{ij} = 0$ when i > j, with non-zero diagonal entries.
- Cost: 2np² flops
- Since R is upper-triangular, $|R| = \prod_{j=1}^p r_{jj} \neq 0$ meaning that R is invertible.

QR Decomposition: solving $X^T X \hat{\beta} = X^T Y$

To solve $X^T X \hat{\beta} = X^T Y$

1 QR Decomposition: $2np^2$ flops

$$X = QR$$

$$R^T Q^T Q R \hat{\beta} = R^T Q^T Y$$

2 Backward substitution: (p^2 flops) since R is invertible (because R is upper-triangular and $|R| = \prod_{i=1}^p r_{ij} \neq 0$), we solve

$$R\hat{\beta} = Q^T Y$$
,

This costs $O(p^2)$.

QR Decomposition

```
set.seed(680)
n=10; p=5; sigma.star=1
## create the design matrix
Z=matrix(rnorm(n*(p-2)), nrow=n, ncol=(p-2))
v2=c(rep(1, n/2), rep(0, n/2))
X = cbind(1, v2, Z)
## create the regression coefficient vector
beta.star=p^{(-0.5)} * rnorm(p)
## generate the responses
y=X%*%beta.star + sigma.star * rnorm(n)
```

QR Decomposition

Slowest: closed-form solution

```
qr.solve(t(X)%*%X) %*% t(X)%*%y

##    [,1]
##    1.0343738

## v2 -0.7203269
##    -0.7991497
##    -0.1613902
##    0.3673047
```

QR Decomposition

■ Slightly faster to use the crossprod function:

```
qr.solve(crossprod(X)) %*% crossprod(X,y)

## [,1]
## 1.0343738
## v2 -0.7203269
## -0.7991497
## -0.1613902
## 0.3673047
```

QR Decomposition

■ Faster to bypass the computation of $(X^TX)^{-1}$ and solve the linear system of equations $X^TX\beta = X^TY$ directly:

```
qr.solve(crossprod(X), crossprod(X,y))
            [,1]
##
       1.0343738
##
## v2 -0.7203269
## -0.7991497
## -0.1613902
       0.3673047
##
# equivalently
# qr.coef(qr(x=X), y=y) or lm.fit(x=X,y=y)$coef
 backsolve(qr.R(out), crossprod(qr.Q(out), y))
```

Cholesky Decomposition

- Suppose that $A \in \mathbb{S}_+^p$.
- \blacksquare A can be factored as $A = LL^T$,
 - $L \in \mathbb{R}^{p \times p}$ is lower-triangular: $l_{ij} = 0$ when i < j, with positive diagonal entries. Cholesky decomposition of A.
- Since L is lower-triangular, $|L| = \prod_{j=1}^{p} l_{jj} > 0$ so L is invertible.
- Cost: $(1/3)p^3$ flops

 $X \in \mathbb{R}^{n \times p}$ with rank $p \Longrightarrow X^T X \in \mathbb{S}_+^p$:

For any $u \in \mathbb{R}^p$ for which $u \neq 0$, we have that $u^T X^T X u = (Xu)^T (Xu) = \|Xu\|^2 > 0$ because X has rank p.

Cholesky Decomposition

To solve $X^T X \beta = X^T Y$,

1 Cholesky factorization: $(1/3)p^3$ flops

$$X^TX = LL^T$$

2 Forward substitution : p^2 flops

$$Lz = X^T Y$$
,

3 Backward substitution: p^2 flops

$$L^T \beta = z$$

Cholesky Decomposition

```
U=chol(crossprod(X))
z=forwardsolve(t(U), crossprod(X,y))
beta.hat.chol=backsolve(U, z)
```

- Let $A \in \mathbb{S}^p$ be a square matrix
- we can write

$$A = Q\Lambda Q^{-1}$$

where $Q \in \mathbb{R}^{p \times p}$ is the matrix for **eigenvectors** and $\Lambda \in \mathbb{R}^{p \times p}$ is diagonal. The diagonal elements of Λ are the **eigenvalues** and are ordered $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_p$.

As a special case, for every $p \times p$ real symmetric matrix, the eigenvalues are **real** and the eigenvectors can be chosen to be **orthogonal** (hence $Q^TQ = I_p$ to each other:

$$A = Q\Lambda Q^T$$

Cost: $O(p^3)$ flops

- Eigen-decomposition allows for much easier computation of power series of matrices.
- Suppose that $A \in \mathbb{S}_0^p$ with eigen-decomposition $A = Q\Lambda Q^T$, then $\lambda_1, \ldots, \lambda_p \geq 0$. We have

$$A^{x} = Q\Lambda^{x}Q^{T}$$

where $\Lambda^x = \operatorname{diag}(\lambda_1^x, \dots, \lambda_p^x)$ is a diagonal matrix with (j, j)-th entry λ_j^x and x is any real number.

lacksquare For example, $A^{1/2}=Q\mathrm{diag}(\lambda_1^{1/2},\ldots,\lambda_p^{1/2})Q^T$ so

$$A^{1/2}A^{1/2} = Q \operatorname{diag}(\lambda_1^{1/2}, \dots, \lambda_p^{1/2})Q^T Q \operatorname{diag}(\lambda_1^{1/2}, \dots, \lambda_p^{1/2})Q^T$$

$$= Q \operatorname{diag}(\lambda_1^{1/2}, \dots, \lambda_p^{1/2}) \operatorname{diag}(\lambda_1^{1/2}, \dots, \lambda_p^{1/2})Q^T$$

$$= Q \operatorname{diag}(\lambda_1, \dots, \lambda_p)Q^T$$

$$= A.$$

If matrix A can be eigen-decomposed and if none of its eigenvalues are zero, then A is non-singular and its inverse is given by

$$A^{-1} = Q\Lambda^{-1}Q^{T}.$$

Generating an iid sample of size n from $N_p(\mu, \Sigma)$

- Suppose that $\Sigma \in \mathbb{S}_0^p$. Z is an $n \times p$ random matrix, with all entries i.i.d N(0,1). Then $X = 1_n \mu^T + Z \Sigma^{1/2}$ has rows that are i.i.d $N_{\nu}(\mu, \Sigma)$.
 - The *i*th row vector of *X* is $X_i = \mu + \Sigma^{1/2}Z_i$
 - $E(X_i) = \mu + \Sigma^{1/2}E(Z_i) = \mu$
 - $var(X_i) = \Sigma^{1/2} var(Z_i) \Sigma^{1/2} = \Sigma^{1/2} I_n \Sigma^{1/2} = \Sigma$
- **2** Suppose that $\Sigma \in \mathbb{S}^p_+$ with Cholesky decomposition $\Sigma = LL^T$. Z is an $n \times p$ random matrix, with all entries i.i.d N(0,1). Then $X = 1_n \mu^T + ZL^T$ has rows that are i.i.d $N_n(\mu, \Sigma)$.
 - The *i*th row vector of X is $X_i = \mu + LZ_i$
 - $E(X_i) = u + LE(Z_i) = u$
 - $var(X_i) = Lvar(Z_i)L^T = LI_nL^T = \Sigma$

Full SVD

Singular Value Decomposition:

- Let A be an $n \times p$ real matrix (n > p)
- A can be factored as

$$A = UDV^T$$

- $lacksquare U \in \mathbb{R}^{n \times n}$ has orthogonal columns $U^T U = I_n$
- $lacksquare V \in \mathbb{R}^{p imes p}$ has orthogonal columns $V^T V = I_p$
- $D \in \mathbb{R}^{n \times p}$ has **positive singular values** only along the diagonal.
- \blacksquare The number of positive diagonal entries in D is the rank of A

Full SVD

Full SVD

Calculating SVD of X (rank(X) = q) is related to finding the eigenvalues and eigenvectors of XX^T and X^TX .

- The eigenvectors of X^TX make up the columns of V
 - $X = UDV^T, X^TX = VD^TU^TUDV^T = VD^TDV^T$
- The eigenvectors of XX^T make up the columns of U
- $d_1, ..., d_q$ in D are square roots of eigenvalues from XX^T or X^TX .

Reduced SVD

A real matrix $A \in \mathbb{R}^{n \times p}$ with $q = \operatorname{rank}(A) = \min(n, p)$

$$A = UDV^T$$

where $U \in \mathbb{R}^{n \times q}$ and $V \in \mathbb{R}^{p \times q}$ has **orthogonal** columns.

 $D \in \mathbb{R}^{q imes q}$ diagonal square matrix with **positive** entries d_{11}, \dots, d_{qq}

• if $n \geq p$, then q = p. Extend U to $\hat{U} = \left[U, \tilde{U} \right] \in \mathbb{R}^{n \times n}$.

$$A = UDV^{T} = \underbrace{\left[U_{n \times q}, \tilde{U}_{n \times (n-q)}\right]}_{\hat{U}_{n \times n}} \underbrace{\left[\begin{array}{c}D_{q \times q}\\0_{(n-q) \times q}\end{array}\right]}_{\hat{D}_{n \times a}} V_{q \times p}^{T} = \hat{U}\hat{D}V^{T}$$

• if n < p, then q = n. Extend V to $\hat{V} = \lceil V, \tilde{V} \rceil \in \mathbb{R}^{p \times p}$.

$$A = UDV^{T} = U_{n \times q} \underbrace{\left[\begin{array}{cc} D_{q \times q} & 0_{q \times (p-q)} \end{array}\right]}_{\hat{D}_{n \times p}} \underbrace{\left[\begin{array}{cc} V_{p \times q} & \tilde{V}_{p \times (p-q)} \end{array}\right]^{T}}_{\hat{V}_{n \times p}^{T}} = U\hat{D}\hat{V}^{T}$$

■ This forces $D \in \mathbb{R}^{q \times q}$ to be extended to an $\mathbb{R}^{n \times p}$ matrix \hat{D} .

Ridge Regression

The ridge penalized least squares estimator of $\hat{\beta}^{(\lambda)}$ is defined by

$$\hat{\beta}^{(\lambda)} = \underset{\beta \in \mathbb{R}^p}{\text{arg min}} \left\{ \|Y - X\beta\|^2 + \lambda \sum_{j=1}^p \beta_j^2 \right\}$$
 (2)

$$= \underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} \|Y - X\beta\|^2 + \lambda \|\beta\|_2^2, \tag{3}$$

we solve $\nabla f(\beta^{(\lambda)}) = 0$ for $\beta^{(\lambda)}$, which is

$$-2X^{T}Y + 2X^{T}X\beta^{(\lambda)} + 2\lambda\beta^{(\lambda)} = 0$$
$$(X^{T}X + \lambda I_{p})\beta^{(\lambda)} = X^{T}Y$$
(4)

$$\beta^{(\lambda)} = (X^T X + \lambda I_p)^{-1} X^T Y, \quad (5)$$

Ridge Regression

- Recomputing $\beta^{(\lambda)}$ for a different value of λ is **computationally expensive** when p is large and inefficient when compute $\beta^{(\lambda)}$ for multiple values of λ .
- We derive **a fast way** to compute $\beta^{(\lambda)}$.
- Suppose $\operatorname{rank}(X) = q = \min(n-1,p)$). By $X = UDV^T$, where $U = \mathbb{R}^{n \times n}$, $V \in \mathbb{R}^{p \times p}$ and $D = \mathbb{R}^{n \times p}$

$$X^TX = VD^TU^TUDV^T = VD^TDV^T$$

and

$$X^T = VD^TU^T$$
.

Ridae

Ridge Regression

So write (4) as

$$(VD^TDV^T + \lambda I_p)\beta^{(\lambda)} = VD^TU^TY$$

and replacing I_{ν} with VV^{T} gives

$$V(D^TD + \lambda I_p)V^T\beta^{(\lambda)} = VD^TU^TY.$$

 $V(D^TD + \lambda I_n)V^T$ is the eigen decomposition of $X^TX + \lambda I_n$, which is in \mathbb{S}^p_+ if $\lambda > 0$ or $X^TX \in \mathbb{S}^p_+$ (so it's **invertible**)

$$\beta^{(\lambda)} = V(D^T D + \lambda I_p)^{-1} V^T V D^T U^T Y$$

$$= V(D^T D + \lambda I_p)^{-1} D^T U^T Y$$

$$= VMU^T Y$$

where the matrix $M = (D^TD + \lambda I_p)^{-1}D^T \in \mathbb{R}^{p \times n}$ is diagonal where $m_j = d_j/(d_i^2 + \lambda)$ for j = 1, ..., q.

Ridge Regression

- We can avoid multiplication by zero using the reduced SVD.
- Suppose rank(X) = q = min(n 1, p).
- Decompose $X = UDV^T$, where $U \in \mathbb{R}^{n \times q}$, $V \in \mathbb{R}^{p \times q}$ and $D \in \mathbb{R}^{q \times q}$. One can prove that

$$\beta^{(\lambda)} = VMU^TY$$

where the square matrix $M \in \mathbb{R}^{q \times q}$ is diagonal with the entries $m_j = d_j/(d_j^2 + \lambda)$, for $j = 1, \dots, q$. We see that

$$\lim_{\lambda \to 0^+} \beta^{(\lambda)} = VD^{-1}U^TY = X^-Y = \hat{\beta}^{OLS}.$$

Ridae

Relationship between Ridge and PCA

OLS: Write the least squares fitted vector as

$$X\hat{\beta}^{OLS} = X(X^TX)^{-1}X^TY$$

= $UDV^T(VDU^TUDV^T)^{-1}VDU^TY$
= UU^TY

 U^TY are the coordinates of Y wrt the basis U.

Ridge: greater shrinkage is applied to the coordinates of basis vectors with smaller d_i^2 .

$$X\hat{\beta}^{ridge} = X(X^TX + \lambda I)^{-1}X^TY$$

$$= UD(D^2 + \lambda I)^{-1}DU^TY$$

$$= \sum_{j=1}^{p} \mathbf{u}_j \frac{d_j^2}{d_j^2 + \lambda} \mathbf{u}_j^TY$$

$$= UHU^TY$$

where $H = D(D^2 + \lambda I)^{-1}D$ is diagonal with $h_j = d_j^2 / (d_j^2 + \lambda)$, for j = 1, ..., q.

Now let's understand d_j^2

■ For example, the ξ_1 is the **first principal component** (PC) of X,

$$XV = DU$$

$$\xi_1 = X\mathbf{v}_1 = d_{11}\mathbf{u}_1$$

■ Hence u₁ is the **normalized first PC**

$$Var(\xi_1) = Var(X\mathbf{v}_1) = \mathbf{v}_1^T Var(X)\mathbf{v}_1$$

$$= \mathbf{v}_1^T X^T X \mathbf{v}_1 / n$$

$$= \mathbf{v}_1 V D^T U^T U D V^T \mathbf{v}_1 / n$$

$$= \mathbf{v}_1^T V D^T D V^T \mathbf{v}_1 / n$$

$$= \frac{d_1^2}{n}$$

Ridge shrinks the normalized PCs u_j of these directions with smallest variance the most.