Modelos Matemáticos

Trabajo Práctico 1

Entrega: semana del 22 de octubre de 2025

BUENAS PRÁCTICAS

- Este trabajo incluye instancias de investigación. Deberá citar las fuentes debidamente en caso de que corresponda.
- Para aprobar el trabajo deberá tener completado de forma correcta al menos el 70% del mismo. Obs: Ud no sabe cuánto *pesa* cada parte.
- Para entregar el trabajo deberá completar el formulario de entrega y seguir sus instrucciones.

A. BACKGROUND

- 1) Use el solucionador numérico solve_ivp de la librería scipy para graficar la solución del problema de valor inicial y' = -2xy + 1, y(0) = 0. A partir de ello haga un gráfico. Explique cómo interpretó la documentación respecto del uso que le dió atendiendo a los siguientes **requisitos de entendimiento:**
 - i) Qué hace el solucionador.
 - ii) Qué método utiliza en su implementación.
 - iii) Qué devuelve el solucionador y cómo lo utiliza Ud. para graficar.

A partir de la salida, averigue y(1).

- 2) Resuelva el problema de forma analítica con alguna técnica hallada en la bibliografía respecto de ecuaciones diferenciales lineales. Explique el razonamiento fundacional de la técnica.
- 3) Use el solucionador algebraico dsolve del módulo sympy para hallar la misma soluciónd del ítem anterior.

B. UN POCO DE TEORÍA

La suseción de Euler se define como

$$y_{n+1} = y_n + hf(t_n, y_n), \quad y' = f(t, y).$$
 (1)

En la secuencia de valores $y_1,\,y_2,\,y_3,\,\dots$ generada a partir de (1), usualmente el valor de y_1 no concuerda con la solución real en x_1 porque el algoritmo solo proporciona una aproximación lineal a la solución. Este error se denomina **error de truncamiento local**. Se produce en cada paso; es decir, si asumimos que y_n es preciso, entonces y_{n+1} contendrá un error de truncamiento local.

- 1) Desmostrar que el error de truncamiento local es orden h^2 , denotado $O(h^2)$, y dar una cota para el mismo. Demostrar además que si h es reducido a la mitad, el error se reduce en 1/4. Explique con palabras simples y precisas la idea esencial detrás de la notación O grande.
- 2) Identifique algún método trabajado en la materia *Computación Científica* suceptible de ser analizado bajo la notación *O* grande en en análisis de su error y desarrolle el mismo demostrando su orden. ¿Hay alguna relación matemática con el concepto de *orden de convergencia* visto en la materia? Justifique.
- 3) En el ítem anterior, asumimos que el valor de y_n era exacto en el cálculo de y_{n+1} , pero no lo es porque contiene errores de truncamiento locales de pasos anteriores. El error total en y_{n+1} es una acumulación de los errores de cada paso anterior. Este error total se denomina **error de truncamiento global**. La demostración excede a los contenidos del curso, pero **sí es posible intuir su orden** mediante una observación sencilla entre cantidad de pasos y proporcionalidad. A partir de dicho razonamiento, indique cuál debería ser el orden.

C. UN POCO DE PRÁCTICA

El método numérico definido por la fórmula

$$y_{n+1} = y_n + h \frac{f(x_n, y_n) + f(x_{n+1}, y_{n+1}^*)}{2}$$
 (1)

$$y_{n+1}^* = y_n + hf(x_n, y_n) (2)$$

Es comunmente llamado método de Euler mejorado.

- 1) Hacer una interpretación gráfica del método considerando qué sucede de x_0 a x_1 .
- 2) Demostrar que el método de Euler mejorado tiene error de truncamiento local $O(h^3)$. ¿Cómo sería el error de truncamiento global?
- 3) Implementar este método en la ecuación diferencial del ejercicio A.1) con una función que controle el paso h, el intervalo de aplicación y el punto incial. Superponer ambos gráficos.
- 4) Determine si es posible verificar las cotas de truncamiento local de ambos métodos. Construya una función de Data Frame apropiada con columnas apropiadas para tal fin y exhiba una conclusión.