МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе № 6 по дисциплине «Машинное обучение» Тема: Кластеризация (DBSCAN, OPTICS)

Студент гр. 8304	Сергеев А.Д.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург 2021

Цель работы

Ознакомиться с методами кластеризации модуля Sklearn.

Ход работы

Загрузка данных

Данные загружены в датафрейм.

<pre>data = pd.read_csv('CC GENERAL.csv').iloc[:,1:].dropna() data</pre>						
	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHASES	СА
0	40.900749	0.818182	95.40	0.00	95.40	0.0
1	3202.467416	0.909091	0.00	0.00	0.00	644
2	2495.148862	1.000000	773.17	773.17	0.00	0.0
4	817.714335	1.000000	16.00	16.00	0.00	0.0
5	1809.828751	1.000000	1333.28	0.00	1333.28	0.0
8943	5.871712	0.500000	20.90	20.90	0.00	0.0
8945	28.493517	1.000000	291.12	0.00	291.12	0.0
8947	23.398673	0.833333	144.40	0.00	144.40	0.0
8948	13.457564	0.833333	0.00	0.00	0.00	36.
8949	372.708075	0.666667	1093.25	1093.25	0.00	127

Рисунок 1 – Исходные данные

DBSCAN

1. Проведена кластеризация методом k-средних. Данные стандартизированы, т.к. лежат в разных шкалах.

Рисунок 2 – Данные после стандартизации

2. Проведена кластеризация методом DBSCAN при параметрах по умолчанию.

```
clustering = DBSCAN().fit(scaled_data)
print(set(clustering.labels_))
print(len(set(clustering.labels_)) - 1)
print(list(clustering.labels_).count(-1) / len(list(clustering.labels_)))
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
36
0.7512737378415933
```

Рисунок 3 — Метко кластеров, их количество и процент нераспределенных элементов

Параметр	Описание
eps: float, default=0.5	Максимальное расстояние между двумя наблюдениями, чтобы один считался соседним с другим (радиус окрестности наблюдения).
min_samples: int, default=5	Минимальное количество наблюдений в окрестности точки, чтобы считать ее базовой (включая саму точку).
metric: string or callable, default='euclidean'	Метрика для вычисления расстояния между экземплярами в массиве признаков.
metric_params: dict, default=None	Дополнительные аргументы ключевых слов для функции метрики.
algorithm: {'auto', 'ball_tree', 'kd_tree', 'brute'}, default = 'auto'	Алгоритм, который будет использоваться для вычисления точечных расстояний и поиска ближайших соседей.
leaf_size: int, default=30	Размер листа. Это может повлиять на скорость построения и запроса, а также на память, необходимую для хранения дерева. Оптимальное значение зависит от задачи.
P: float, default=None	Мощность метрики, используемой для вычисления расстояния между точками. Если <i>None</i> , то эквивалентно евклидову расстоянию.
n_jobs: int, default=None	Количество параллельных процессов для выполнения.

3. Построен график зависимости количества кластеров и процента не кластеризованных наблюдений от максимальной рассматриваемой дистанции.

Рисунок 4 – Зависимост количества кластеров и процента выпавших наблюдений от eps

С увеличением eps все больше точек попадают в какой-либо кластер, в конце все точки будут находится в одном кластере.

4. Построен график зависимости количества кластеров и процента не кластеризованных наблюдений от минимального значения количества точек, образующих кластер.

Рисунок 5 — Зависимост количества кластеров и процента выпавших наблюдений от min_samples

Увеличение min_samples приводит к увеличению количества выпавших наблюдений и к уменьшению количества кластеров.

5. Определены значения параметров, при которых количество кластеров получается от 5 до 7, и процент не кластеризованных наблюдений не

превышает 12%.

```
clustering = DBSCAN(eps=5.6, min_samples=2).fit(scaled_data)
print(f"Unclustered percent: {list(clustering.labels_).count(-1) / len(list(clustering.labels_))}")
print(f"Clusters number: {len(set(clustering.labels_)) - 1}")
Unclustered percent: 0.002779064381658175
Clusters number: 6
```

Рисунок 6 — значения eps и min_samples, при которых достигается требуемый процент не кластеризованных измерений и количество кластеров.

6. Размерность данных понижена до 2 с помощью метода главных компонент.

Рисунок 7 – Кластеризация данных пониженной размерности

OPTICS

Параметр	Описание
max_eps: float, default=inf	Максимальное расстояние между двумя наблюдениями, чтобы
	одно считалось соседним с другим (радиус окрестности
	наблюдения).
min_samples: int>1 or	Количество наблюдений в окрестности точки, чтобы считать ее
float in [0, 1], default=5	базовой.
metric: string or	Метрика для вычисления расстояния.
callable,	
default='minkowski'	
p: int, default = 2	Параметр для метрики Минковского.
cluster_method: string,	Метод извлечения кластеров. Также можно поставить 'dbscan'.
default = 'xi'	

eps	Максимальное расстояние между двумя наблюдениями, чтобы один считался соседним с другим (радиус окрестности наблюдения). Нужен только при cluster_method=dbscan.
xi: float in [0,1], default=0.05	Определяет минимальную крутизну на графике достижимости, который составляет границу кластера.
predecessor_correction: bool, default=True	Коррекция кластеров в соответствии с предшественниками, рассчитанными OPTICS. Этот параметр оказывает минимальное влияние на большинство наборов данных. Используется только когда cluster_method = 'xi'.
min_cluster_size: int>1 or float in [0, 1], default=None	Минимальное количество выборок в кластере OPTICS, выраженное в виде абсолютного числа или доли от количества выборок (округленное до не менее 2). Если None, вместо этого используется значение min_samples. Используется только когда cluster_method = 'xi'.
algorithm: {'auto', 'ball_tree', 'kd_tree', 'brute'}, default = 'auto'	Алгоритм, который будет использоваться для вычисления точечных расстояний и поиска ближайших соседей.
leaf_size: int, default=30	Размер листа. Это может повлиять на скорость построения и запроса, а также на память, необходимую для хранения дерева. Оптимальное значение зависит от задачи.
Memory: str or object with the joblib.Memory interface, default=None	Путь к каталогу кэширования. Используется для кэширования выходных данных вычисления дерева. По умолчанию кэширование не выполняется.
n_jobs: int, default=None	Количество параллельных заданий, выполняемых для поиска соседей.

1. Результаты кластеризации методом OPTICS близки к результатам DBSCAN при cluster_method=dbscan, max_eps=2, min_samples=3.

```
clustering = OPTICS(cluster_method='dbscan', max_eps=2, min_samples=3).fit(scaled_data)
print(f"Unclustered percent: {list(clustering.labels_).count(-1) / len(list(clustering.labels_))}")
print(f"Clusters number: {len(set(clustering.labels_)) - 1}")
Unclustered percent: 0.06310792033348772
Clusters number: 6
```

Рисунок 7 – значения eps и min_samples, при которых достигается требуемый процент не кластеризованных измерений и количество кластеров.

Процесс определения базовых точек в OPTICS идентичен DBSCAN, однако в OPTICS для точек вычисляются и сохраняются расстояния достижимости, на основе которых наблюдения выстраиваются в кластере, сохраняя при этом иерархическую структуру.

2. Построен график достижимости

Рисунок 4 – График достижимости

3. Метод OPTICS исследован с использованием различных метрик

Метрика	Количество кластеров	Процент выпавших наблюдений
canberra	106	0.88722
chebyshev	143	0.86869
manhattan	99	0.90840
euclidean	111	0.89961
sqeuclidean	146	0.86962

Выводы

В ходе лабораторной работы изучены такие методы кластеризации модуля *Sklearn*, как DBSCAN и OPTICS. При cluster_method="xi" OPTICS разделяет данные на большое число кластеров, малое количество кластеров достигается только при большом количестве выпавших наблюдений.