Тропическая линейная алгебра

Никита Шапошник, Б05-024 научный руководитель: А. Э. Гутерман

1 Введение

Тропическая математика была придумана бразильским математиком Имре Саймоном (Imre Simon, [1]) в конце XX века (название произошло от его места жительства). Матрицы над тропическим полукольцом имеют приложения в теории графов, отпимизации и биологии. В настоящей работе мы будем рассматривать матрицы над тропическим полукольцом, их связь с графами и некоторые их индексы: экспоненту, скрамблинг индекс, индекс цикличности и границы T.

2 Определения

Определение 2.1. Тропическая алгебра ([2], [3]) — это множество $\mathbb{R}_{\max} = \mathbb{R} \cup \{-\infty\}$ с операциями сложения \oplus и умножения \odot :

$$a \oplus b = \max(a, b)$$
$$a \odot b = a + b$$

или множество $\mathbb{R}_{min} = \mathbb{R} \cup \{\infty\}$ с другой операцией сложения и идентичным умножением:

$$a \oplus b = min(a, b)$$

 $a \odot b = a + b.$

В дальнейшем мы будем работать с \mathbb{R}_{\max} .

Лемма 2.2 (Свойства тропической алгебры, см. [2], [3], [4]). Тропическая алгебра обладает следующими свойствами: для любых $a, b, c \in \mathbb{R}_{max}$ верно:

- Сложение и умножение ассоциативны.
- Сложение и умножение коммутативны.
- Дистрибутивность: $a \odot (b \oplus c) = a \odot b \oplus a \odot c$.
- $-\infty$ нулевой элемент: $a\odot -\infty = a$.
- Результат умножения на тропический ноль это тропический ноль: $a \odot -\infty = -\infty$.
- Несуществование обратного по сложению: если $a \neq -\infty$, то $a \oplus b > a > -\infty$.

Следствие 2.3. Тропическая алгебра является полукольцом.

Определение 2.4. Граф (в рамках данной задачи) $\mathcal{G}(V, E)$ — совокупность двух множеств — непустого множества $V = V(\mathcal{G})$ и множества $E = E(\mathcal{G}) \subseteq V^2$. Множество V называется множеством вершин, множество E называется множеством рёбер.

Если для любого ребра $(u,v) \in E(\mathcal{G})$ верно, что обратное ребро $(v,u) \in E(\mathcal{G})$ — тоже лежит в графе, то граф \mathcal{G} называется неориентированным, в противном случае — ориентированным.

Путем из вершины и в вершину v в графе \mathcal{G} называется последовательность вершин $u, w_1, w_2, \ldots, w_l, v \in V(\mathcal{G})$ и последовательность ребер $(u, w_1), (w_1, w_2), \ldots, (w_l, v) \in E(\mathcal{G})$, где вершины и ребра могут повторяться. Путь называется простым, если вершины в нём не повторяются. Длиной пути называется количество ребер в нем. Обозначим через $\mathcal{W}^t(i \to j)$ множество всех путей из вершины i в вершину j длины t, а через $\mathcal{W}(i \to j)$ — множество всех путей из вершины i в вершину j.

Граф $\mathcal{G}(V,E)$ со введенной функцией $P:E\to\mathbb{R}$ называется взвешенным графом. Весом пути называется тропическое произведение (т.е. вещественная сумма) весов всех ребер в пути. Обозначим вес пути W через p(W).

Ориентированный граф называется сильно связным, если для любых $u, v \in V(\mathcal{G})$ существует путь из u в v u из v в u.

Граф G' называется подграфом графа G, если G' получен из G удалением некоторых ребер u, возможно, вершин. Иначе, $V(G') \subseteq V(G)$ и $E(G') \subseteq E(G)$.

Обхватом графа \mathcal{G} называется наименьшая длина цикла в \mathcal{G} и обозначается как $g(\mathcal{G})$. Через $\hat{g}(\mathcal{G})$ обозначается максимальный обхват среди всех компонент сильной связности графа \mathcal{G} .

Окружностью графа $\mathcal G$ называется наибольшая длина цикла в $\mathcal G$ и обозначается как $cr(\mathcal G)$.

Максимальную длину простого пути в графе \mathcal{G} будем обозначать через $cb(\mathcal{G})$.

Граф $\mathcal{H}(U,F)$ называется индуцированным подграфом графа $\mathcal{G}(V,E)$, порожденным подмножеством вершин $U \subset V$, если ребрами \mathcal{H} являются те и только те ребра множества E, оба конца которых принадлежат U.

3 Примитивность вещественной неотрицательной матрицы

Определение 3.1. Вещественная матрица A называется примитивной, если существует натуральное число m такое, что A^m положительна, то есть все числа в ней положительны. При этом наименьшее такое m называется экспонентой матрицы и обозначается через exp(A).

Теорема 3.2 (Критерий примитивности матрицы, см.[12]). Неотрицательная квадратная матрица порядка n над \mathbb{R} примитивна тогда u только тогда, когда граф смежности этой матрицы сильно связен u НОК всех длин замкнутых путей (циклов) равно 1.

Теорема 3.3 (Виландта, [5]). Если неотрицательная квадратная матрица порядка n над полем вещественных чисел примитивна, то ее экспонента не превосходит число Виландта $Wi(n) = n^2 - 2n + 2$.

4 Примитивность тропических матриц

Замечание 4.1. Примитивность и экспонента тропической матрицы определяется так же, как и в вещественном случае, с отличием лишь в том, что в степени матрицы не должно быть нулей тропического полукольца, т.е. $-\infty$.

4.1 Матрицы 2×2

Утверждение 4.2. Матрица $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ над тропическим полукольцом примитивна тогда и только тогда, когда $b \neq -\infty \land c \neq -\infty \land (a \neq -\infty \lor d \neq -\infty);$ причем ее экспонента равна 2.

Доказательство. Если перемножить матрицы, у которых в правом верхнем углу стоят $-\infty$, то у результата будет стоять $-\infty$ в том же углу:

$$\begin{pmatrix} a & -\infty \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a' & -\infty \\ c' & d' \end{pmatrix} = \begin{pmatrix} \dots & a \odot -\infty \oplus -\infty \odot d' \\ \dots & \dots \end{pmatrix} = \begin{pmatrix} \dots & -\infty \\ \dots & \dots \end{pmatrix}$$

Аналогично с левым нижнем углом. Значит, в правом верхнем и в левом нижним углах не могут стоять $-\infty$.

Перемножим 2 матрицы, у которых на главной диагонали стоят $-\infty$:

$$\begin{pmatrix} -\infty & b \\ c & -\infty \end{pmatrix} \cdot \begin{pmatrix} -\infty & b' \\ c' & -\infty \end{pmatrix} =$$

$$= \begin{pmatrix} \dots & -\infty \odot b' \oplus b \odot -\infty \\ c \odot -\infty \oplus -\infty \odot c' & \dots \end{pmatrix} = \begin{pmatrix} \dots & -\infty \\ -\infty & \dots \end{pmatrix}$$

У результата стоят ∞ на побочной диагонали. Перемножим такую матрицу с матрицей с ∞ на главной диагонали:

$$\begin{pmatrix} a & -\infty \\ -\infty & d \end{pmatrix} \cdot \begin{pmatrix} -\infty & b \\ c & -\infty \end{pmatrix} =$$

$$= \begin{pmatrix} a \odot -\infty \oplus -\infty \odot c & \dots \\ \dots & -\infty \odot b \oplus -\infty \odot d \end{pmatrix} = \begin{pmatrix} -\infty & \dots \\ \dots & -\infty \end{pmatrix}$$

Снова получилась матрица с $-\infty$ на главной диагонали. Значит, в любой степени матрицы $c-\infty$ на главной диагонали будут $-\infty$. Значит, она не может быть примитивной.

Проверим, что матрица с описанными выше ограничениями будет примитивной:

$$A^{\odot 2} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\odot 2} = \begin{pmatrix} a \odot a \oplus b \odot c & a \odot b \oplus b \odot d \\ a \odot c \oplus c \odot d & b \odot c \oplus d \odot d \end{pmatrix} = \begin{pmatrix} \max(2a, b + c) & b + \max(a, d) \\ c + \max(a, d) & \max(b + c, 2d) \end{pmatrix}$$

Равным $-\infty$ в этой матрице может быть или a, или d, или никто из них. В любом случае, в квадрате не будет $-\infty$. Значит, A является примитивной с показателем степени 2. \square

4.2 Обобщение теоремы Виландта на тропические матрицы

Определение 4.3. $\mathbb{B} = \{0,1\}$ — множество с сложением, аналогичным дизънкции, и умножением, аналогичным конъюнкции:

+	0	1	•	0	1
0	0	1	0	0	0
1	1	1	1	0	1

Замечание 4.4. Примитивность и экспонента матрицы над \mathbb{B} определяется так же, как и в вещественном случае.

Теорема 4.5 (Виландта для матриц над \mathbb{B}). Если матрица $A \in M_n(\mathbb{B})$ примитивна, то ее экспонента не превосходит $n^2 - 2n + 2$.

Доказательство. Рассмотрим функцию $\beta': \mathbb{R}_{>0} \to \mathbb{B}$ такую, что

$$\beta'(t) = \begin{cases} \mathbf{1}, t \neq 0 \\ \mathbf{0}, t = 0 \end{cases} \tag{1}$$

и функцию $B': M_n(\mathbb{R}_{\geq 0}) \to M_n(\mathbb{B}),$ действующая функцией β' поэлементно:

$$B': A = (a_{ij}) \mapsto B'(A) = (\beta'(a_{ij}))$$
 (2)

Лемма 4.6. B' — гомоморфизм.

Доказательство леммы. Необходимо доказать, что

$$B'(X) + B'(Y) = B'(X+Y)$$
 и $B'(X) \cdot B'(Y) = B'(X \cdot Y)$ (3)

Первое верно, так как для любых $x, y \in \mathbb{R}_{\geq 0}$ верно, что $\beta'(x) + \beta'(y) = \beta'(x+y)$. Докажем, что B' сохраняет умножение: рассмотрим элемент с индексами i, j:

$$(B'(X) \cdot B'(Y))_{ij} = \sum_{s=1}^{n} B'(X)_{is} \cdot B'(Y)_{sj} = \sum_{s=1}^{n} \beta'(X_{is}) \cdot \beta'(Y_{sj}) =$$

$$= \sum_{s=1}^{n} \beta'(X_{is} \cdot Y_{sj}) = \beta'(\sum_{s=1}^{n} X_{is} \cdot Y_{sj}) = \beta'((X \cdot Y)_{ij}) = (B'(X \cdot Y))_{ij} \quad (4)$$

Значит, B' — гомоморфизм.

Рассмотрим матрицу A', лежащую в прообразе матрицы A при отображении B' (для этого достаточно взять матрицу A как матрицу над $\mathbb{R}_{>0}$).

Заметим, что для любого m положения нулей в матрице $(A')^m$ и нулей в $B'((A')^m) = (B'(A'))^m = A^m$ совпадают, в том числе и для m = exp(A'). Из этого следует, что $exp(A) = exp(A') \le Wi(n)$ по теореме Виландта для матриц над $\mathbb{R}_{\ge 0}$.

Следовательно, теорема Виландта верна и для В-матриц.

Теорема 4.7 (Вилантда для тропических матриц). Если матрица $A \in M_n(\mathbb{R}_{max})$ примитивна, то ее экспонента не превосходит Wi(n).

Доказательство. Рассмотрим функцию $\beta: \mathbb{R}_{max} \to \mathbb{B}$ такую, что

$$\beta(t) = \begin{cases} \mathbf{1}, t \neq -\infty \\ \mathbf{0}, t = -\infty \end{cases}$$
 (5)

и функцию $B: M_n(\mathbb{R}_{max}) \to M_n(\mathbb{B})$, действующая функцией β поэлементно:

$$B: A = (a_{ij}) \mapsto B(A) = (\beta(a_{ij})) \tag{6}$$

Лемма 4.8. $B - гомомор \phi u з м.$

Доказательство леммы. Надо доказать, что

$$B(X) + B(Y) = B(X \oplus Y)$$
 и $B(X) \cdot B(Y) = B(X \odot Y)$ (7)

Доказательство этого утверждения аналогично доказательству леммы 4.6, но с заменой β' на β , B' на B и $\mathbb{R}_{>0}$ на \mathbb{R}_{max} .

Рассмотрим $A \in M_n(\mathbb{R}_{max})$ и её образ при отображении B. Для любого m положения бесконечных элементов в матрице A^m и нулей в $B(A^m) = (B(A))^m$ совпадают, в том числе и для $m = \exp(B(A))$.

Из этого следует, что $exp(A) = exp(B(A)) \le Wi(n)$ по теореме Виландта для матриц над \mathbb{B} , что доказывает теорему Виладнта для тропических матриц.

5 Примитивность тропических матриц и графы

Определение 5.1. Матрица $A \in M_n(\mathbb{R}_{max})$ называется матрицей смежности графа \mathcal{G} , если в \mathcal{G} п вершин и в ячейке с индексами i и j матрицы A cmoum:

- 1) $-\infty$ тогда и только тогда, когда вершины с номерами i и j не соединены ребром;
- 2) число $x \in \mathbb{R}$ тогда и только тогда, когда между вершинами с номерами i и j есть ребро веса x. Если граф не взвешенный, то в матрице стоит x = 0.

Заметим, что есть и обратное соответствие: по матрице смежности можно восстановить граф. Обозначим через $\mathcal{G}(A)$ граф, соответствующий тропической матрице A.

Степени тропических матриц интересны по многим причинам, в том числе по следующей:

Утверждение 5.2. Рассмотрим $A \in M_d(\mathbb{R}_{max}), i, j \in V(\mathcal{G}(A)), t \in \mathbb{N} \cup \{0\}.$ Тогда:

$$a_{ij}^t = \bigoplus \{p(W) : W \in \mathcal{W}^t(i \to j)\}$$

Доказательство. Докажем это по индукции. База, очевидно, верна для t=0: в этом случае $A^t=I$ — единичная тропическая матрица, на главной диагонали которой стоят тропические единицы, т.е. 0, а на остальных местах стоят тропические нули, т.е. $-\infty$.

Докажем переход: пусть утверждение верно для t, докажем для t+1.

$$a_{ij}^{t+1} = \bigoplus_{k=1}^{k} a_{ik}^{t} \odot a_{kj} = \max_{k} a_{ik}^{t} + a_{kj}$$

Заметим, что любой путь из вершины i в вершину j длины t+1 есть конкатенация пути из вершины i в вершину k длины t и ребра из k в j для какой-то вершины k, а вес этого пути — это сумма веса первого пути и веса последнего ребра. Из всех возможных путей оптимальным будет путь с максимальным общим весом, что согласуется с определением тропического перемножения матриц.

5.1 Матрицы 2×2

Утверждение 5.3. Матрица $A \in M_2(\mathbb{R}_{max})$ примитивна тогда и только тогда, когда в графе $\mathcal{G}(A)$ для любых двух вершин между ними есть путь длины ровно 2.

Доказательство. Пусть $A=\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$. Если $a_{12}=-\infty$, то не будет существовать пути из первой вершины во вторую. Если $a_{21}=-\infty$, то не будет существовать пути из второй вершины в первую. Если предыдущие два условия не выполняются, но $a_{11}=a_{22}=-\infty$, то не будет существовать пути из первой вершины во вторую и из второй в первую. В этих случаях матрица A не будет примитивной.

Если все вышеперечисленные условия не выполняются, то матрица будет примитивной, что подтверждает доказанный ранее путем перемножения матриц факт.

5.2 Общий случай

Утверждение 5.4. Матрица $A \in M_n(\mathbb{R}_{max})$ примитивна тогда и только тогда, когда в графе $\mathcal{G}(A)$ между любыми двумя вершинами найдётся путь длины ровно Wi(n).

Доказательство. Рассмотрим матрицу $A \in M_n(\mathbb{R}_{\max})$ и соответствующий ей граф $\mathcal{G}(A)$. Примитивность A равносильна отсутствия в матрице $A^{Wi(n)}$ бесконечных элементов (так как по теореме Виландта $exp(A) \leq Wi(n)$). Последнее утверждение равносильно тому, что в графе $\mathcal{G}(A)$ между любыми двумя вершинами найдётся путь длины ровно exp(A).

6 Индекс цикличности

Определение 6.1. Граф G_1 гомоморфен графу G_2 , если существует сюръективное отображение $f: V(G_1) \to V(G_2)$ такое, что для любого ребра $(u, v) \in E(G_1)$ верно, что $(f(u), f(v)) \in E(G_2)$.

Определение 6.2. Графы \mathcal{G}_1 и \mathcal{G}_2 изоморфны, если существует биекция $\rho: V(\mathcal{G}_1) \to V(\mathcal{G}_2)$ такая, что для любых $u, v \in V(\mathcal{G}_1)$ верно, что $(u, v) \in E(\mathcal{G}_1)$ выполняется тогда и только тогда, когда $(\rho(u), \rho(v)) \in E(\mathcal{G}_2)$.

Определение 6.3. Индекс цикличности (или просто цикличность) ориентированного графа \mathcal{G} обозначается через $\sigma_{\mathcal{G}}$ и определяется следующим образом:

- 1. Если G сильно связен, $u|V(G)| \ge 2$, то цикличность равна НОД всех длин ориентированных циклов в G.
- 2. Если в \mathcal{G} есть только одна вершина (с петлей или без), то $\sigma_{\mathcal{G}}=1$.
- 3. Если \mathcal{G} не сильно связен, то его цикличность равна HOK цикличностей всех максимальных его сильно связных подграфов.

Замечание 6.4 (Переформулировка критерия примитивности, см.[12]). Тропическая матрица $A \in M_n(\mathbb{R}_{max})$ примитивна тогда и только тогда, когда $\mathcal{G}(A)$ сильно связен и его индекс цикличности равен 1.

Замечание 6.5. Цикличность сильно связного графа \mathcal{G} — это наибольшее k такое, что \mathcal{G} гомоморфен ориентированному циклу из k вершин.

Заметим, что в сильно связном графе \mathcal{G} с цикличностью γ любые 2 пути, соединяющий 2 фиксированные вершины, имеют одинаковые длины по модулю γ . Из этого следует, что на множестве $V(\mathcal{G})$ можно ввести отношение эквивалентности: 2 вершины лежат в одном классе эквивалентности тогда и только тогда, когда длина пути от одной к другой кратна γ .

Определение 6.6. Эти классы эквивалентности называются циклическими классами.

Пусть $\mathcal{G} = (V, E)$ — взвешенный ориентированный граф с матрицей смежности $A = (a_{ij}) \in M_n(\mathbb{R}_{\max})$. Пусть C — это ориентированный цикл в \mathcal{G} с весами ребер $a_{i_1}, a_{i_2}, \ldots, a_{i_l}$. Средний вес ребра в C — это тропическое среднее геометрическое весов ребер в C:

$$w_a(C) = \sqrt[\infty]{a_{i_1} \odot a_{i_2} \odot \cdots \odot a_{i_l}} = \frac{1}{l}(a_{i_1} + a_{i_2} + \cdots + a_{i_l})$$

Определение 6.7. Ориентированный цикл называется критическим, если у него максимальный средний вес. Критический подграф \mathcal{G}^c графа \mathcal{G} — это объединение всех критических циклов в \mathcal{G} .

Пусть $A \in M_n(\mathbb{R}_{max})$ — матрица смежности графа $\mathcal{G} = \mathcal{G}(A)$, который содержит хотя бы один ориентированный цикл.

Определение 6.8. Цикличностью A называется цикличность критического подграфа \mathcal{G}^c графа \mathcal{G} , то есть $\sigma(A) := \sigma_{\mathcal{G}^c}$. Если в $\mathcal{G}(A)$ нет ориентированных циклов, то $\sigma(A) = 1$.

7 Скрамблинг индекс

Определение 7.1. Скрамблинг индекс ориентированного графа \mathcal{G} — это наименьшее натуральное число k такое, что для любых $u, v \in V(\mathcal{G})$ существует $w \in V(\mathcal{G})$ такая, что есть путь длины k из u в w u из v в w. Обозначим скрамблинг индекс через $k(\mathcal{G})$. Если не существует таких k, то $k(\mathcal{G}) = 0$.

Определение 7.2. Графом Виландта называется ориентированный граф на $n \ge 2$ вершинах со множеством вершин $V = \{1, 2, ..., n\}$ и множеством ребер

$$E = \{(1,2), (2,3), \dots, (n-1,n)\} \cup \{(n-1,1)\}$$

В этом графе есть два цикла длиной n-1 и n, следовательно, $\sigma_{W_n}=1$, он сильно связен. Следовательно, он примитивен.

Теорема 7.3 ([8]). Пусть \mathcal{G} — примитивный ориентированный граф порядка $n \geq 2$. Тогда

$$exp(\mathcal{G}) \le n^2 - 2n + 1$$

Равенство достигается тогда и только тогда, когда $\mathcal{G} \cong W_n$.

Замечание 7.4 ([8]). Для примитивного ориентированного графа верно неравенство

$$0 < k(\mathcal{G}) \le exp(\mathcal{G})$$

Это следует из определений скрамблинг индекса и экспоненты.

Определение 7.5. Будем называть подграф \mathcal{H} графа \mathcal{G} достижимым, если для любой вершины v из \mathcal{G} существует путь из v в какую-либо вершину из \mathcal{H} .

Теорема 7.6 ([8], критерий положительности скрамблинг-индекса). Рассмотрим произвольный ориентированный граф \mathcal{G} . Его скрамблинг-индекс положителен тогда и только тогда, когда в \mathcal{G} есть примитивный достижимый подграф.

Теорема 7.7 ([8]). Обозначим через $\lceil x \rceil$ наименьшее целое число, большее или равное x. Если \mathcal{G} — примитивный граф c $n \geq 2$ вершинами, то

$$k(\mathcal{G}) \le \left\lceil \frac{Wi(n)}{2} \right\rceil$$

При $n \geq 3$ равенство достигается тогда и только тогда, когда $\mathcal{G} \cong W_n$. При n = 2 равенство достигается тогда и только тогда, когда $\mathcal{G} \cong W_2$ или $\mathcal{G} \cong J_2$, где J_n — полный ориентированный граф на n вершинах, то есть $E(J_n) = V^2$.

8 CSR-декомпозиция и слабое CSR-расширение

8.1 Необходимые определения

Определение 8.1. Назовем тропическую матрицу A (или соответствующий ей граф) неразложимой, если граф $\mathcal{G}(A)$ сильно связен, иначе — разложимой.

Назовем тропическую матрицу A (или соответствующий ей граф) полностью разложимой, если в графе $\mathcal{G}(A)$ нет ребер между различными компонентами сильной связности.

Рассмотрим тропическую матрицу $A \in M_d(\mathbb{R}_{max})$. Обозначим максимальный средний вес цикла в $\mathcal{G}(A)$ через $\lambda(A)$, т.е.

$$\lambda(A) = \bigoplus_{k=1}^{d} \bigoplus_{i_1,\dots,i_k} (a_{i_1i_2} \odot \dots \odot a_{i_{k-1}i_k})^{\odot 1/k} =$$

$$= \max_{k=1}^{d} \max_{i_1,\dots,i_k} \frac{(a_{i_1i_2} + \dots + a_{i_{k-1}i_k})}{k}$$
(8)

Необходимо сказать, что критический подграф $\mathcal{G}^c(A)$ является полностью разложимым и средний вес любого цикла в нём равен $\lambda(A)$.

Определение 8.2. Для $A \in M_d(\mathbb{R}_{max})$ с $\lambda(A) \leq 0$ звездой Клини называется следующая матрица:

$$A^* = \bigoplus_{i=0}^{\infty} A^i = \bigoplus_{i=0}^{d-1} A^i$$

В матрице A^* в ячейке под номером i и j лежит длина оптимального пути от вершины i к вершине j по всему графу, без ограничения на длину пути. Условие $\lambda(A) \leq 0$ необходимо, так как иначе этот ряд расходится: можно идти по циклу с положительным средним весом и улучшать ответ. Так как дважды проходить через одну и ту же вершину не имеет смысла, можно ограничиться первыми d матрицами.

8.2 Матрицы CSR

Рассмотрим неразложимую $A \in M_d(\mathbb{R}_{\max})$ и некоторый подграф \mathcal{G} критического подграфа $\mathcal{G}^c(A)$ без тривиальных компонент сильной связности. Введем обозначения: $\sigma = \sigma(\mathcal{G})$ – индекс цикличности \mathcal{G} , $M = ((\lambda(A)^- \odot A^\sigma)^*$. Здесь и далее для $a \in \mathbb{R}_{\max}$, $a \neq -\infty$ через a^- будем обозначать обратное по умножению к a, т.е. $a^- = -a$.

Определим матрицы $C, S, R \in M_r(\mathbb{R}_{max})$ следующим образом:

$$c_{ij} = \begin{cases} m_{ij}, \text{ если } j \in V(\mathcal{G}) \\ -\infty, \text{ иначе}, \end{cases}$$
 $r_{ij} = \begin{cases} m_{ij}, \text{ если } i \in V(\mathcal{G}) \\ -\infty, \text{ иначе}, \end{cases}$ $s_{ij} = \begin{cases} \lambda(A)^- \odot a_{ij}, \text{ если } (i,j) \in E(\mathcal{G}) \\ -\infty, \text{ иначе}. \end{cases}$

Если матрицы C,S,R определены через матрицу A, будем писать $CS^tR[A]$ для произвольного t.

Теорема 8.3 ([9], [10]). Пусть $A \in M_d(\mathbb{R}_{max})$ неразложима и CSR-матрицы определены через некоторый подграф \mathcal{G} графа $\mathcal{G}(A)$. Тогда существует неотрицательное целое T(A) такое, что для любого $t \geq T(A)$:

$$A^{t} = \lambda(A)^{\odot t} \odot CS^{t}R[A]. \tag{9}$$

Заметим, что если $\lambda(A) = 0$, то (9) записывается в виде:

$$A^t = CS^t R[A]. (10)$$

В добавок к T(A), введем ещё 2 функции: $T_1(A,B)$ и $T_2(A,B)$. Для этого зафиксируем тот же подграф $\mathcal G$ и введем новую матрицу $B\in M_d(\mathbb R_{\mathrm{max}})$:

$$b_{ij} = \begin{cases} -\infty, \text{ если } i \in V(\mathcal{G}) \text{ или } j \in V(\mathcal{G}), \\ a_{ij}, \text{ иначе.} \end{cases}$$

Теорема 8.4 ([9], [10]). Пусть $A \in M_d(\mathbb{R}_{max})$ неразложима и CSR-матрицы определены через некоторый подграф \mathcal{G} графа $\mathcal{G}(A)$.

(Определение $T_1(A, B)$:) существует неотрицательное целое $T_1(A, B)$ такое, что для любого $t \ge T_1(A, B)$ верно следующее:

$$A^{t} = (\lambda(A)^{\odot t} \odot CS^{t}R[A]) \oplus B^{t}. \tag{11}$$

(Определение $T_2(A, B)$:) существует неотрицательное целое $T_2(A, B)$ такое, что для любого $t \ge T_2(A, B)$ верно следующее:

$$\lambda(A)^{\odot t} \odot CS^t R[A] \ge B^t. \tag{12}$$

Заметим, что если $\lambda(A) = 0$, то (11) записывается в виде:

$$A^t = CS^t R[A] \oplus B^t, \tag{13}$$

а 12 записывается в виде

$$CS^t R[A] \ge B^t. \tag{14}$$

Есть несколько способов выбрать подграф \mathcal{G} , но в этой работе мы будем работать со способом Нахтигалля, в котором этот подграф совпадает с критическим подграфом исходного графа: $\mathcal{G} = \mathcal{G}^c(A)$. В дальнейшем, чтобы указать, что матрица была выбрана с помощью способа Нахтигалля, будем писать B_N вместо B и $T_{1,N}(A)$ вместо $T_1(A, B_N)$.

Утверждение 8.5. $T(A) \leq \max(T_1(A, B), T_2(A, B)).$

Доказательство. Возьмем $t \ge \max(T_1(A, B), T_2(A, B))$, для него выполняются условия (11) и (12). Из (12) следует, что операция тропического сложения с B^t в (11) бессмысленна, откуда для данного t следует (9).

Замечание 8.6. Заметим, что если $B = -\infty$, то $T(A) = T_1(A, B)$, а $T_2(A, B) = 0$.

Замечание 8.7 (Инвариантность относительно умножения на скаляр). Если $A' = A \odot \mu$, где $\mu \in \mathbb{R}$, то

- $\lambda(A') = \lambda(A) \odot \mu$, $B_N[A'] = B_N[A]$
- $\bullet \ CSR[A'] = CSR[A]$

Значит, $T_1(A, B)$, $T_2(A, B)$ инвариантны относительно умножения матрицы на скаляр, что позволяет нам без разграничения общности говорить, что $\lambda(A) = 0$.

Утверждение 8.8 (см. [9]). Пусть $\lambda(A) = 0$. Тогда $A^t \geq CS^tR[A]$ тогда и только тогда, когда $t \geq T_{1,N}(A)$.

Это утверждение позволяет искать $T_{1,N}$: достаточно найти наименьшее t, для которого верно $A^t \geq CS^tR[A]$. Тогда $T_{1,N}=t$. Если, вдобавок, $B=-\infty$, то T=t по замечанию 8.6.

Утверждение 8.9 (Периодичность, см. [11]). Для любого $t \geq 0$ верно, что $CS^{t+\sigma}R[A] = CS^tR[A]$, где σ — это цикличность $\mathcal{G}^c(A)$. Иначе говоря, последовательность матриц $\{CS^tR[A]\}_{t>0}$ периодична с периодом σ .

Значит, в силу равенства $A^t = CS^tR$ при $t \geq T(A)$, последовательность матриц A^t при $t \geq T(A)$ является периодической с периодом σ .

Введем несколько новых обозначений:

- 1. Через $\mathcal{W}^{t,l}(i \to j)$ обозначим множество путей от вершины i к вершине j, имеющих длину t по модулю l;
- 2. Через $\mathcal{W}(i \xrightarrow{\mathcal{G}} j)$ обозначим множество путей от вершины i к вершине j, проходящих хотя бы через одну вершину из \mathcal{G} . Аналогично определяются $\mathcal{W}^t(i \xrightarrow{\mathcal{G}} j)$, $\mathcal{W}^{t,l}(i \xrightarrow{\mathcal{G}} j)$ граф над стрелкой добавляет ограничение на пути в множестве.
- 3. Для множества W через p(W) обозначим максимальный вес пути из множества W.

Утверждение 8.10 ([10]). Если $\lambda(A) = 0$, то верно следующее тождество:

$$(CS^{t}R[A])_{ij} = p(\mathcal{W}^{t,\sigma}(i \xrightarrow{\mathcal{G}^{c}(A)} j)), \tag{15}$$

где σ обозначает цикличность $\mathcal{G}^c(A)$.

Теорема 8.11 (Некоторые оценки $T_{1,N}(A)$, см. [10]). Для любой $A \in M_n(\mathbb{R}_{\max})$ имеем:

- 1. $T_{1,N}(A) \leq Wi(n);$
- 2. $T_{1,N}(A) \leq \hat{g}(n-2) + n;$
- 3. $T_{1,N}(A) < (\hat{q}-1)(cr-1) + (\hat{q}+1)cd$

 $r\partial e \ \hat{g} = \hat{g}(\mathcal{G}^c(A)), \ cr = cr(\mathcal{G}(A)), \ a \ cd = cd(\mathcal{G}(A)).$

9 Примеры

Оценим T, T_1 и T_2 для некоторых графов.

9.1 Полный граф

Рассмотрим матрицу $A \in M_n(\mathbb{R}_{max})$, $a_{ij} = 0$ для любых индексов i, j. Граф $\mathcal{G}(A)$ является полным, веса всех ребер в нём равны 0. Значит, критический подграф \mathcal{G}^c совпадает со всем графом \mathcal{G} . Из этого следует, что матрица $B = -\infty$ и $T_2 = 0$.

Найдем матрицы C, S, R. Индекс цикличности полного графа $\sigma = 1$ (т.к. в нём есть циклы длины 1), следовательно $C = R = M = A^*, S = A$.

Так как для любого положительного t верно, что $A^t = A$, то $A^* = A$ и равенство $A^*A^tA^* = A^t$ выполняется для любого положительного t.

Следовательно, $T = T_1 = 1$.

9.2 Односторонний цикл

Рассмотрим матрицу смежности $A \in M_n(\mathbb{R}_{max})$ одностороннего цикла на n вершинах.

В силу инвариантности границ относительно домножения на скаляр из \mathbb{R} (замечание 8.7), можно рассматривать только тот случай, в котором $\lambda(A)=0$. Тогда $\mathcal{G}^c(A)=\mathcal{G}(A)$, $\sigma=n$.

$$M = (A^n)^* = E^* = E = \begin{pmatrix} 0 & -\infty & \dots & -\infty \\ -\infty & 0 & \dots & -\infty \\ \dots & \dots & \dots \\ -\infty & -\infty & \dots & 0 \end{pmatrix} = diag(0, 0, \dots, 0)$$

Значит, $C=R=E,\,S=A,\,B=-\infty,$ и для любого неотрицательного t верно $CS^tR[A]=A^t.$ Следовательно, $T=T_1=T_2=0.$

9.3 Двусторонний цикл

Рассмотрим матрицу смежности $A \in M_n(\mathbb{R}_{\max})$ двустороннего цикла на n вершинах. Пронумеруем вершины так, чтобы первый цикл состоял из вершин $1, 2, \dots n$ (в порядке обхода), а второй — из $n, n-1, \dots, 1$ (в порядке обхода). Чтобы избежать кратных рёбер, будем работать с $n \geq 3$.

Будем считать, что $\lambda(A) = 0$. Рассмотрим случай, в котором циклы по часовой стрелке и против часовой стрелки имеют одинаковый средний вес, равный нулю. Значит, критический подграф $\mathcal{G}^c(A)$ совпадает со всем графом $\mathcal{G}(A)$.

Лемма 9.1. Все циклы в таком графе имеют средний вес θ .

Доказательство. Пусть вес пути по часовой стрелке от вершины i до вершины j равен x, а против часовой стрелки — y. Эти два пути образуют цикл, значит $x+y \leq 0$. Докажем, что x+y=0.

Дополнение к большому циклу по часовой стрелке первого пути весит -x, а дополнение к большому циклу против часовой стрелки весит -y. Так как можно сначала пойти по дополнению к первому пути, а потом — по дополнению ко второму пути, эти два дополнения тоже образуют цикл. Значит, $(-x) + (-y) \le 0$. Значит, $x + y \ge 0$.

Следовательно, x + y = 0.

Следствие 9.2. Для фиксированных вершины i и j все пути от i до j весят одинаково.

Это верно, так как, в терминах леммы, x = -y. Не важно, какой путь выбрать от одной вершины к другой: по или против часовой стрелки — вес будет одинаковый. Если пройти по большому циклу, то вес не изменится, так как суммарный вес большого цикла равен 0.

Необходимо рассмотреть 2 случая: когда n нечётно и когда n чётно.

п нечетно. В этом случае цикличность критического графа $\sigma = 1$.

Следовательно, $C=R=M=A^*$, а S=A. Заметим, что в матрице $CS^tR[A]$ нет $-\infty$ (так как $CS^tR[A]=A^*A^tA^*$, а в A^* нет $-\infty$). Значит, по следствию из леммы, $CS^tR[A]=A^*$.

Значит, условие $CS^tR[A] = A^t$ верно тогда и только тогда, когда $A^t = A^*$. Поэтому $T = exp(\mathcal{G})$.

Утверждение 9.3. Экспонента данного графа равна n-1.

Доказательство. Заметим, что в A^{n-2} на главной диагонали стоят $-\infty$: n-2 нечётно, поэтому, чтобы вернуться в исходную вершину за n-2 шага, надо сменить чётность — пройти весь круг, так как остальные циклы имеют чётную длину. Но цикл имеет длину n, поэтому его пройти не получится. Значит, $exp(\mathcal{G}) \geq n-1$.

Покажем, что $A^{n-1} > -\infty$.

Зафиксируем произвольную вершину v графа. Назовем вершину v если до нее можно дойти из v за чётное число шагов. Заметим, что тогда все вершины графа четные, так как n нечетно и идти можно как по, так и против часовой стрелки. Наибольшая длина такого пути равна n-1. Значит, $A^{n-1} > -\infty$.

Следствие 9.4. $T_2 = 0$, $\max \kappa a \kappa B = -\infty$. $T = T_1 = exp(\mathcal{G}) = n - 1$.

Утверждение 9.5. Скрамблинг-индекс этого графа равен $\frac{n-1}{2}$.

Доказательство. Пусть $k = k(\mathcal{G})$ — скрамблинг-индекс данного графа, т. е. для любых двух вершин u и v существуют вершина w такая, что существуют пути из u в w и из v в w длины k. В силу неориентированности этого графа это условие равносильно следующему: для любых вершин u и v существует путь из u в v длины 2k.

Заметим, что для соседних вершин минимальная четная длина пути, соединяющего их, равна n-1, так как n нечетно. Значит, $k \ge \frac{n-1}{2}$.

Рассмотрим произвольные вершины i и j. Пусть два простых пути между ними имеют длину x и n-x. Так как x+(n-x)=n — нечетное число, то среди этих двух путей найдется ровно один с четной длиной. Его длина не превышает n-1 — наибольшее четное число, не превосходящее n. Значит, $k \leq \frac{n-1}{2}$.

Следовательно,
$$k(\mathcal{G}) = \frac{n-1}{2}$$
.

п четно. В этом случае $\sigma=2$ и граф не примитивен. $C=R=M=(A^2)^*,\, S=A.$

Так как последовательность матриц CS^tR периодична с периодом $\sigma=2$ (см. [10]), то при $t\geq T(A)$

$$A^t = CS^tR = \begin{cases} (A^2)^*, \text{ если } t \text{ четно.} \\ A \odot (A^2)^*, \text{ если } t \text{ нечетно.} \end{cases}$$

В матрице $(A^2)^*$ небесконечные элементы стоят в клетках (i,j), если вершины i и j находятся на четном расстоянии друг от друга. Наибольшее расстояние между вершинами с одинаковой четностью равно $\frac{n}{2}$. Значит, условие при четном t выполняется при $t \geq \frac{n}{2}$, а при прочих t не выполняется.

В матрице $A \odot (A^2)^*$ небесконечные элементы стоят в клетках (i,j), если вершины i и j находятся на нечетном расстоянии друг от друга. Наибольшее расстояние между вершинами с разной четностью равно $\frac{n}{2}-1$. Значит, условие при четном t выполняется при $t \geq \frac{n}{2}-1$, а при прочих t— не выполняется.

Следовательно, $T(A) = \frac{n}{2}$. В силу того, что $B = -\infty$, границы $T_1 = T = \frac{n}{2}$, а $T_2 = 0$, так как $B = -\infty$.

9.4 Два цикла

Определение 9.6. Назовем ромашкой граф, состоящий из нескольких пересекающихся по одной вершине циклов.

Рассмотрим матрицу смежности $A \in M_{2n}(\mathbb{R}_{\max})$ графа-ромашки, состоящего из двух циклов длины n и n+1. Будем называть n-циклом цикл длины n и (n+1)-циклом — цикл длины n+1.

Будем рассматривать те графы, в которых средний вес каждого цикла равен 0. Тогда критический подграф совпадает со всем графом: $\mathcal{G}^c(A) = \mathcal{G}(A) = \mathcal{G}$. Его цикличность $\sigma = 1$, значит, $C = R = M = A^*$, а S = A.

Следовательно, при $t \geq T(A)$ верно $CS^tR[A] = A^*A^tA^* = A^t$. Так как для произвольных фиксированных вершин любые два пути между ними имеют равные веса, то T(A) = exp(A) (так как в равенстве $A^t = CS^tR[A]$ справа стоит матрица без $-\infty$, а значит и слева должна стоять матрица без $-\infty$).

Это приводит нас к более общему утверждению.

Утверждение 9.7. Рассмотрим примитивную матрицу A, у которой $\mathcal{G}(A)$ совпадает со своим критическим подграфом, $\lambda(A) = 0$. Если для двух произвольных фиксированных вершин u u v верно, что все пути из u в v имеют одинаковый вес, то $T(A) = T_{1,N}(A) = \exp(A)$, а $T_{2,N}(A) = 0$.

Доказательство. Доказательство аналогично предыдущему пункту.

По определению, $M = (A^{\sigma})^* = A^*$. Следовательно, $C = R = M = A^*$, а S = A.

Значит, при $t \geq T(A)$ верно $CS^tR[A] = A^*A^tA^* = A^t$. В A^* нет $-\infty$, потому что $\mathcal{G}(A)$ сильно связен. Значит, при домножении A^* на матрицу, у которой в каждом столбце есть небесконечный элемент (т.к. граф связен), в результате получится матрица без бесконечностей.

Значит, в левой части равенства нет $-\infty$, поэтому она совпадает с $A^{exp(A)}$. Значит, при $t \ge exp(A)$ выполняется условие на T(A), и T(A) = exp(A).

Так как
$$B = -\infty$$
, то $T_{2,N}(A) = 0$, и $T_{1,N}(A) = T(A) = exp(A)$.

Заметим, что обратное утверждение неверно. Рассмотрим следующие графы:

В обоих графах экспонента совпадает с T и T_1 , а $T_2 = 0$ (в обоих графах экспонента равна 2), но в графе (а) максимальный средний вес цикла равен -1, а в графе (b) критический подграф не совпадает со всем графом.

Следствие 9.8. Если \mathcal{G} — примитивный граф, все рёбра которого имеют вес 0, и A — его матрица смежности, то $T(A) = T_{1,N}(A) = \exp(A)$, а $T_{2,N}(A) = 0$.

Доказательство. Это утверждение верно, так как \mathcal{G} удовлетворяет всем условиям утверждения 9.7.

Утверждение 9.9. Экспонента ромашки, состоящей из циклов длины n и n+1, равна n(n+1).

Доказательство. Докажем, что в $A^{n(n+1)-1}$ есть бесконечные элементы. Рассмотрим вершины $i=2,\ j=n+1$ и покажем, что в $\mathcal{G}(A)$ не существует пути длины n(n+1)-1 между i и j.

Любой путь из i в j, длина которого больше n-1, состоит из трех частей: первая часть — путь из i в 1 длины n, вторая часть — a циклов длины n, и b циклов длины n+1, идущих в любом порядке. Третья часть — путь из 1 в j длины n. Таким образом, суммарная длина пути равна an+b(n+1)+2n=(a+2)n+b(n+1).

Покажем, что уравнение

$$n(n+1) - 1 = (a+2)n + b(n+1)$$
(16)

не имеет решений в целых неотрицательных числах относительно a и b.

Предположим противное: пусть существуют целые неотрицательные a, b, являющиеся решениями 16. Заметим, что $n(n+1)-1 \equiv -1 \equiv b \pmod{n}$. Значит, $b \geq n-1$, и

$$n(n+1) - 1 = (a+2)n + b(n+1) \ge (a+2)n + n^2 - 1$$

Следовательно, $n \ge (a+2)n$, что невозможно в силу неотрицательности a.

Значит, уравнение не имеет решений, и в $\mathcal{G}(A)$ нет искомого пути. Следовательно, в $A^{n(n+1)-1}$ есть бесконечности и $exp(A) \geq n(n-1)$.

Покажем, что в $A^{n(n+1)}$ нет бесконечностей. Надо доказать, что для любых вершин i, j существует путь из i в j длины n(n-1). Пусть расстояние от i до 1 равно x, а расстояние от 1 до j равно y.

Для доказательства утверждения надо показать, что для любых x,y существует решение уравнения n(n+1)=an+b(n+1)+x+y. Заметим, что $x,y\leq n$. Пусть z=x+y. Рассмотрим

$$(a,b) = \begin{cases} (z,n-z) & \text{при } 0 \le z \le n \\ (z-n-1,2n-z) & \text{при } n+1 \le z \le 2n \end{cases}$$

Легко проверить, что a и b, определенные таким образом, неотрицательны и являются решениями данного уравнения.

Значит, искомый путь всегда найдется, и exp(A) = n(n+1).

Посчитаем скрамблинг-индекс ромашки, состоящей из циклов длины n и n+1. Для этого введём следующее определение:

Определение 9.10. Для $u, v \in V(\mathcal{G})$ введём обозначение:

$$k_{u,v}(\mathcal{G}) = \min\{k \in \mathbb{N} \mid \text{cymecmsyem } w \in V(\mathcal{G}) : \mathcal{W}^k(u \to w) \neq \emptyset$$

$$u \; \mathcal{W}^k(v \to w) \neq \emptyset\}$$

Зная значения $k_{u,v}$ для всех пар вершин u,v, легко можно вычислить скрамблингиндекс всего графа:

Лемма 9.11 ([8]).
$$k(\mathcal{G}) = \max_{u,v \in V(\mathcal{G})} k_{u,v}$$
.

Заметим, что скрамблинг-индекс ромашки положителен тогда и только тогда, когда она примитивна, т.е. когда НОД длин циклов в ней равен 1. Это следует из теоремы 7.6.

Рассмотрим произвольную примитивную ромашку и две её вершины u и v. Тогда существует вершина w, в которую ведут пути из u и из v длины $k_{u,v}$.

Лемма 9.12. Если u = v, то w = u = v и $k_{u,v} = 0$. Иначе w = 1.

Eсли $u \neq v$, то не существует цикла, по которому полностью прошла u вершина u, u вершина v.

Доказательство. Если u=v, то подходят пути длины ноль и w=u=v. Если $u\neq v$ и $w\neq 1$, то у построенных путей есть общий суффикс, и их можно укоротить, что противоречит минимальности $k_{u,v}$.

Если существует цикл, по которому полностью прошла и вершина u, и вершина v, то оба пути можно было укоротить на этот цикл, что противоречит минимальности $k_{u,v}$.

Утверждение 9.13. Скрамблинг-индекс ромашки, состоящей из циклов длины n и n+1, равен:

$$k(\mathcal{G}) = \begin{cases} \frac{n^2 + 2n}{2}, & n \text{ чётно} \\ \frac{n^2 + 2n - 1}{2}, & n \text{ нечётно} \end{cases}$$

Доказательство. Так как граф в данной задаче фиксирован, обозначим $k_{u,v} = k_{u,v}(\mathcal{G})$. Сначала найдем $k_{u,v}$ при u = 1, т.е. $k_{1,v}$. Рассмотрим пути вершин 1 и v: путь вершины 1 состоит из нескольких циклов, а путь вершины v — это дуга длины x от v до 1, а затем — несколько циклов.

В силу леммы 9.12 есть 2 варианта:

- 1. путь вершины 1 содержит (n+1)-циклы, а вершины v-n-циклы;
- 2. путь вершины 1 содержит n-циклы, а вершины v-(n+1)-циклы.

Пусть вершина v прошла a циклов, а вершина 1-b циклов $(a,b \ge 0)$. Решим для каждого случая уравнение, минимизировав длину пути каждой вершины:

1. x + an = b(n+1) — слева стоит длина пути вершины v, а справа — вершины 1. Так как мы ищем минимальную длину пути, то необходимо минимизировать левую и правую части.

Заметим, что $b \equiv x \pmod{n}$. Значит, $b \geq x$. Следовательно, решение a = n - x, b = x дает минимальную длину путей, которая равна x(n+1).

2. x + a(n-1) = bn. Заметим, что $a \equiv -x \pmod{n}$. Значит, решение a = n - x, b = n - x + 1 — оптимальное. Длины путей равны n(n - x + 1).

Таким образом, $k_{1,v} = \min\{x(n+1), n(n-x+1)\}.$

Найдём $k_{u,v}$ в общем случае. Пусть расстояние от u до 1 равно d_u , расстояние от v до 1 равно d_v , без ограничения общности $d_u \leq d_v$, и $x = d_v - d_u$.

Заметим, что первые d_u рёбер в путях вершин определены однозначно, так как в этом графе есть разветвления только в вершине 1. После d_u шагов вершина u придет в вершину 1, и задача сводится к предыдущему случаю.

Значит,
$$k_{u,v} = d_u + \min\{x(n+1), n(n-x+1)\}.$$

Легко видеть, что максимальное значение d_u равно n-x. Оно достигается при $u=((x+1) \mod (n+1))+1,\ v=2$. Нельзя получить больше, так как вершина v должна оказаться в вершине 1 через $x+d_u$ шагов, но не раньше. Значит, $x+d_u \le n$ и $d_u \le n-x$.

Следовательно, по лемме 9.11:

$$k(\mathcal{G}) = \max_{u,v \in V(\mathcal{G})} d_u + \min\{x(n+1), \ n(n-x+1)\} =$$

$$= \max_{0 \le x \le n} n - x + \min\{x(n+1), \ n(n-x+1)\} = \max_{0 \le x \le n} \min\{n(x+1), \ n^2 + 2n - x(n+1)\}$$

Требуется найти максимум минимумов двух линейных по x функций. Графики этих функций пересекаются в точке $\hat{x} = \frac{n}{2} + \frac{1}{4} - \frac{1}{4(2n+1)}$. Значит, максимум достигается в одной из целых точек по обе стороны от \hat{x} .

Рассмотрим два случая:

• n чётно. Тогда две целые точки по обе стороны от \hat{x} — это $x_1 = \frac{n}{2}$ и $x_2 = \frac{n+2}{2}$, при этом в x_1 минимумом будет первая функция, а в x_2 — вторая. Значит,

$$k(\mathcal{G}) = \max\{n(x_1+1), \ n^2 + 2n - x_2(n+1)\} =$$

= $\max\{n(\frac{n}{2}+1), \ n^2 + 2n - \frac{n+2}{2}(n+1)\} = \frac{n^2 + 2n}{2}$

• n нечётно. Тогда две целые точки по обе стороны от \hat{x} — это $x_1 = \frac{n-1}{2}$ и $x_2 = \frac{n+1}{2}$. Значит.

$$k(\mathcal{G}) = \max\{n(x_1+1), \ n^2 + 2n - x_2(n+1)\} =$$

= $\max\{n(\frac{n-1}{2}+1), \ n^2 + 2n - \frac{n+1}{2}(n+1)\} = \frac{n^2 + 2n - 1}{2}$

В итоге имеем

$$k(\mathcal{G}) = \begin{cases} \frac{n^2 + 2n}{2}, & \text{если } n \text{ чётно}, \\ \frac{n^2 + 2n - 1}{2}, & \text{если } n \text{ нечётно}. \end{cases}$$

9.5 Ромашка из p циклов длины k

Рассмотрим матрицу смежности $A \in M_{p(k-1)+1}(\mathbb{R}_{\max})$ графа-ромашки $\mathcal{G}(A)$, состоящего из p > 1 циклов длины k (всего в графе будет p(k-1)+1 вершин). Будем считать, что вершина, по которой пересекаются все циклы, имеет номер 1.

Пусть для простоты все ребра в этом графе имеют нулевой вес. Тогда $\mathcal{G}^c = \mathcal{G}(A)$ и $T_2 = 0$, так как $B = -\infty$.

Утверждение 9.14. Граница T, определенная для такого графа-ромашки, равна k-1.

Доказательство. Индекс цикличности этого графа $\sigma = k$. Следовательно, $C = R = M = (A^k)^*$ и S = A. По утверждению 8.10 в ячейке с индексами i, j матрицы CS^tR стоит 0, если из вершины i можно добраться до вершины j за количество шагов, сравнимое с t по модулю k, и $-\infty$ иначе.

Будем говорить, что вершина v имеет класс i, если минимальная длина пути между вершинами 1 и v дает остаток i при делении на k. Заметим, что т.к. цикличность графа равна k, то длина любого пути из вершины 1 в v дает остаток i при делении на k. Следует упомянуть, что любое ребро ведет из вершины класса i в вершину класса $i+1 \pmod k$.

Покажем, что T > k-2. Рассмотрим вершину v класса 1 и вершину u класса k-1. Тогда элемент матрицы $CS^{k-2}R$ с индексами v,u равен 0. Но в матрице A^{k-2} элемент с теми же индексами равен $-\infty$, т.к. минимальный путь, соединяющий эти вершины, имеет длину 2k-2. Следовательно, $CS^{k-2}R \neq A^{k-2}$ и $T \geq k-1$.

Покажем, что T=k-1. Предположим противное: пусть T>k-1. Рассмотрим $t=T-1\geq k-1$. Заметим, что $CS^{t+k}R=A^{t+k}$, так как $t+k\geq T$.

В матрице A^{t+k} хранится информация о путях длины t+k. Но наибольший простой путь имеет длину 2k-2 < t+k— это путь между вершиной класса 1 и вершиной класса k-1 из другого цикла. Значит, каждый путь длины t+k можно укоротить на k и получить путь длины t с тем же весом. Значит, $A^{t+k} = A^t$.

По утверждению 8.9 выполняется равенство $CS^{t+k}R = CS^tR$. Значит, $CS^tR = CS^{t+k}R = A^{t+k} = A^t$. Таким образом, мы получили противоречие с минимальностью T, т.к. t = T-1 и $CS^tR = A^t$.

Следовательно,
$$T = k - 1$$
.

9.6 Ромашка с отрицательными циклами

Рассмотрим матрицу смежности $A \in M_{2n-1}(\mathbb{R}_{\max})$, графа-ромашки, состоящей из двух циклов: цикла длины n с нулевым средним весом (будем называть его нулевым циклом) и цикла длины n с отрицательным средним весом (будем называть его отрицательным циклом). Будем считать, что вершины первого цикла имеют номера от 1 до n в порядке обхода, а второго -1, n+1, ..., 2n-1 в порядке обхода.

Утверждение 9.15.
$$T(A) = T_{1,N}(A) = T_{2,N}(A) = n - 1.$$

Доказательство. В этом примере матрица B нетривиальна: она получается из A заменой первых n строк и столбцов на $-\infty$ и кодирует пути в отрицательном цикле. Заметим, что вершина n лежит в критическом подграфе, и, следовательно, инцидентные ей ребра не

кодируются матрицей B, т.е. $\mathcal{G}(B)$ — это n-1 последовательная соединенная вершина. Это значит, что B нильпотентна: $B^{n-1} = -\infty$, так как длиннейший путь в $\mathcal{G}(B)$ имеет длину n-2.

Докажем, что $T_2(A, B) = n - 1$.

В силу нильпотентности $CS^{n-1}R \ge B^{n-1} = -\infty$. Значит, $T_2(A, B) \ge n-1$.

Покажем, что неравенство $CS^tR \geq B^t$ не выполняется при t=n-2.

Рассмотрим вершины i = n + 1 и j = 2n - 1. Путь, вес которого кодирует ячейка $[B^t]_{ij}$ — единственная небесконечная ячейка матрицы B^t — это дуга отрицательного цикла из вершины i в вершину j длины n - 2.

Рассмотрим путь, который кодирует ячейка с теми же индексами матрицы CS^tR . Он состоит из трех частей: части C, части S^t , и части R. После прохождения части C мы попадем в вершину номер 1 (так как в матрице C мы делаем произвольное количество шагов длины n и после ее прохождения мы всегда оказываемся в критическом подграфе). Далее в части S^t делаем n-2 шага по критическому подграфу и попадаем в вершину номер n-1. И, наконец, после части R мы оказываемся в вершине 2n-1, пройдя еще n шагов.

Посчитаем вес этого пути. Мы целиком прошли нулевой цикл (что не влияет на вес пути, т.к. средний вес ребра в нем равен 0), целиком прошли отрицательный цикл и еще прошли по простой дуге от n+1-й до 2n-1-й вершины. Значит, $[CS^tR+B^t]_{ij}=(\lambda')^{\odot n}\oplus [B^t]_{ij}$, где $\lambda'=\lambda(B)<0$ — средний вес отрицательного цикла.

Следовательно, $[CS^tR]_{ij} < [B]_{ij}$, и неверно, что $CS^tR \ge B^t$. Значит, $T_2(A,B) = n-1$.

Покажем, что $T_1(A,B) = n-1$. Рассуждения аналогичны доказательству точной оценки для T(A) в утверждении 9.14, но с некоторыми изменениями. Назовем путь подходящим, если его вес минимален среди всех имеющих ту же длину путей с концами в тех же вершинах. Чтобы получить доказательство для графа с отрицательным циклом, надо заменить в доказательстве все слова "путь" на "подходящий путь" (в том графе все пути были подходящими, а в нашем графе — не все).

Для окончания доказательства надо показать, что любой подходящий путь длины m > 2n-2 можно укоротить на n, при этом его вес останется прежним. Действительно, если m > 2n-2, то путь не может быть простым. Значит, в нем есть цикл. Но в подходящем пути не может быть отрицательных циклов, иначе этот цикл можно поменять на нулевой и улучшить ответ. Значит, убрав этот нулевой цикл, можно получить путь между теми же вершинами того же веса, но длины m-n. Это завершает доказательство оценки $T_1(A,B)$ для данного графа. В итоге имеем $T(A) = T_1(A,B) = T_2(A,B) = n-1$.

Утверждение 9.15 верно и для графов-ромашек с большим количеством циклов.

Следствие 9.16. Если A — матрица смежности графа-ромашки, где каждый цикл

имеет длину n и есть хотя бы один нулевой цикл и хотя бы один отрицательный цикл, то $T(A) = T_{1,N}(A) = T_{2,N}(A) = n - 1$.

Доказательство этого утверждения аналогично доказательству утверждения 9.15.

10 Разные ромашки

Здесь и далее будем рассматривать графы-ромашки, состоящие из циклов длины, кратной σ , все рёбра в которых имеют вес 0. Тогда сразу можно сказать, что у каждой такой ромашки $T_2 = 0$ и $T = T_1$. Для разных таких ромашек будем искать границу T.

Определение 10.1. Ромашку, состоящую из циклов длини $a_1\sigma, a_2\sigma, \ldots, a_n\sigma$, где числа a_1, \ldots, a_n взаимно просты в совокупности, $a_1 \leq a_2 \leq \cdots \leq a_n$ назовем $(a_1, \ldots, a_n; \sigma)$ -ромашкой.

Границу T, определенную для такой ромашки, будем обозначать через $T(a_1, \ldots, a_n; \sigma)$.

Заметим, что индекс цикличности такой ромашки равен σ и всего в ней $N=\sum_{i=1}^n a_i\sigma-n+1$ вершин. Пусть вершина, в которой пересекаются все циклы, имеет номер 1. Пронумеруем вершины в порядке следующего обхода: начнем в вершине 1, далее пройдём по первому циклу, затем — по второму, и так далее до цикла с номером n (не изменяя номер у вершины 1).

Во всех примерах матрицу смежности рассматриваемого графа будем обозначать через $A \in M_N(\mathbb{R}_{\max})$, а через C, S, R будем обозначать матрицы C, S, R, построенные по матрице A.

10.1 Подсчет границы T вручную

Теорема 10.2. $T(a_1,\ldots,a_n;\sigma)=(T(a_1,\ldots,a_n;1)+1)\sigma-1.$

Доказательство. Обозначим граф, соответствующий $(a_1, \ldots, a_n; 1)$ -ромашке через \mathcal{G} , а граф, соответствующий $(a_1, \ldots, a_n; \sigma)$ -ромашке — через \mathcal{G}_{σ} . Граф \mathcal{G}_{σ} получается из графа \mathcal{G} разделением каждого ребра на σ более мелких рёбер. Вершины \mathcal{G}_{σ} , лежащие в одном циклическом классе с вершиной 1, будем называть начальными. Для краткости будем обозначать $T(a_1, \ldots, a_n; 1)$ через T(1), а $T(a_1, \ldots, a_n; \sigma)$ — через $T(\sigma)$.

Покажем, что $T(\sigma) > (T(1)+1)\sigma - 2$. В $\mathcal G$ есть 2 вершины, между которыми нет пути длины T(1)-1. Значит, в $\mathcal G_\sigma$ между соответствующими начальными вершинами нет пути длины $(T(1)-1)\sigma$. Обозначим эти вершины через u и v. Но тогда между вершинами $\hat u$ и $\hat v$ не будет пути длины $(T(1)-1)\sigma + 2(\sigma-1) = (T(1)+1)\sigma - 2$, где $\hat u$ получается, если отойти от u на $\sigma-1$ шаг вперёд, а $\hat v$ — от вершины v на $\sigma-1$ шаг назад (обе новые вершины существуют, так как любая вершина в $\mathcal G$ лежит в цикле). Значит, $T(\sigma) \geq (T(1)+1)\sigma-1$.

Покажем, что $T(\sigma) \geq (T(1)+1)\sigma-1$. Для этого нужно доказать, что между любыми двумя вершинами u и v графа \mathcal{G}_{σ} есть путь длины $(T(1)+1)\sigma-1$ от u до v. Путь длины $(T(1)+1)\sigma-1$ от u до v состоит из трех частей: путь от u до ближайшей начальной вершины, путь между начальными вершинами, и путь от ближайшей начальной вершины до v. Суммарная длина первой u третьей частей не превосходит $2\sigma-2$, значит, длина второй части не меньше $(T(1)-1)\sigma+1$. Но длина пути между двумя начальными вершинами должна быть кратна σ , поэтому длина второй части не меньше $T(1)\cdot \sigma$. Но, по определению T(1), между любыми начальными вершинами есть путь длины $T(1)\cdot \sigma$. Значит, $T(\sigma) \geq (T(1)+1)\sigma-1$, u утверждение доказано.

Таким образом, при расчёте границы T для произвольной ромашки достаточно посчитать искомую границу при $\sigma = 1$, а затем получить ответ по формуле из утверждения 10.2.

Замечание 10.3. При $\sigma = 1$ $(a_1, \ldots, a_n; 1)$ -ромашка примитивна. Более того, выполняются условия следствия 9.8, и граница T данной ромашки совпадает с экспонентой.

Введём вспомогательную функцию P:

Определение 10.4. Для взаимно простых в совокупности натуральных чисел $a_1 \leq \cdots \leq a_n$ обозначим через $P(a_1, \ldots, a_n)$ минимальное целое неотрицательное число, удовлетворяющее следующему свойству: любое $p \geq P(a_1, \ldots, a_n)$ выражается в виде линейной комбинации чисел a_1, \ldots, a_n с целыми неотрицательными коэффициентами $\lambda_1, \ldots, \lambda_n$, то есть

$$p = a_1 \lambda_1 + \dots a_n \lambda_n \tag{17}$$

. Число, выражающееся в виде линейной комбинации чисел a_1, \ldots, a_n с целыми неотрицательными коэффициентами, назовём выразимым.

Здесь и далее под линейной комбинацией будем понимать линейную комбинацию с целыми неотрицательными коэффициентами.

Теорема 10.5.
$$T(a_1,\ldots,a_n;1)=P(a_1,\ldots,a_n)+2a_n-2.$$

Доказательство. Предположим, что в $(a_1, \ldots, a_n; 1)$ -ромашке между любыми двумя вершинами существует путь длины t. Рассмотрим две произвольные вершины u и v. Любой путь длины хотя бы $a_n - 1$ проходит через вершину 1, и $t \ge a_n - 1$. Поэтому путь длины t от u до v состоит из трёх частей: пути от u до v (обозначим длину этой части через \hat{u}), λ_i циклов длины a_i для $i = 1 \ldots n$, и пути от v до v (обозначим длину этой части через v). Тогда имеет место равенство:

$$t = \hat{u} + a_1 \lambda_1 + \dots + a_n \lambda_n + \hat{v} \iff t - \hat{u} - \hat{v} = a_1 \lambda_1 + \dots + a_n \lambda_n.$$

Сумма $\hat{u}+\hat{v}$ принимает любые значения от 0 до $2a_n-2$ (так как $0\leq \hat{u},\hat{v}\leq a_n-1$). Следовательно, для любого $t-2a_n+2\leq p\leq t$ должны существовать коэффициенты $\lambda_1,\ldots,\lambda_n$, удовлетворяющие уравнению

$$p = a_1 \lambda_1 + \dots + a_n \lambda_n. \tag{18}$$

При $t < P(a_1, \ldots, a_n) + 2a_n - 2$ минимальное значение p не превосходит $P(a_1, \ldots, a_n) - 1$, и, по определению $P(a_1, \ldots, a_n)$, при наименьшем значении p уравнение 18 решений не имеет — противоречие с наличием пути между u и v.

Напротив, при $t \geq P(a_1, \ldots, a_n) + 2a_n - 2$ наименьшее значение p не меньше $P(a_1, \ldots, a_n)$, и, в силу определения $P(a_1, \ldots, a_n)$, коэффициенты λ_i найдутся для любого возможного значения p.

Значит,
$$T(a_1, \ldots, a_n; 1) = P(a_1, \ldots, a_n) + 2a_n - 2.$$

Следствие 10.6 (Корректность функции P). Функция P определена корректно: её значение существует для любых возможных аргументов.

Доказательство. Рассмотрим $(a_1, \ldots, a_n; 1)$ -ромашку. По замечанию 10.3 этот граф примитивен и, следовательно, имеет экспоненту, которая, в свою очередь, совпадает с границей T для данной ромашки. По формуле из теоремы 10.5 имеем $P(a_1, \ldots, a_n) = T(a_1, \ldots, a_n; 1) - 2a_n + 2$.

Утверждение 10.7 (Свойства функции P).

- 1. Ecau $a_1 = 1$, mo $P(1, ..., a_n) = 0$.
- 2. $P(a_1, \ldots, a_n) \leq P(a_{i_1}, a_{i_2}, \ldots, a_{i_k})$, где $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ возрастающая последовательность индексов.
- 3. $P(a_1, \ldots, a_n) = P(b_1, \ldots, b_m)$, где набор b_1, \ldots, b_m получается из набора a_1, \ldots, a_n удалением повторяющихся элементов.
- 4. Если a_i делится на a_i , то $P(a_1, \ldots, a_n) = P(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n)$.
- 5. Если a_j представляется в виде линейной комбинации меньших элементов, то $P(a_1, \ldots, a_n) = P(a_1, \ldots, a_{j-1}, a_{j+1}, \ldots, a_n).$

Доказательство. 1) Действительно, если $a_1 = 1$, то любое неотрицательное число k выражается как $1 \cdot k$. Следовательно, P = 0.

- 2) Свойство следует из следующего факта: сумма $a_{i_1}\lambda_{i_1}+\cdots+a_{i_k}\lambda_{i_k}$ является частным случаем суммы $a_1\lambda_1+\cdots+a_n\lambda_n$.
- 3) При приведении подобных членов в сумме $a_1\lambda_1 + \cdots + a_n\lambda_n$ получается корректная сумма $b_1\mu_1 + \ldots b_m\mu_m$. С другой стороны, сумма $b_1\mu_1 + \ldots b_m\mu_m$ является корректной суммой вида $a_1\lambda_1 + \cdots + a_n\lambda_n$.
- 4) Очевидно, что любая сумма $a_1\lambda_1+\cdots+a_{j-1}\lambda_{j-1}+a_{j+1}\lambda_{j+1}+\cdots+a_n\lambda_n$ является суммой вида $a_1\lambda_1+\cdots+a_n\lambda_n$, где $\lambda_j=0$. С другой стороны, заменив a_j на $a_i\cdot\frac{a_j}{a_i}$, можно избавиться от слагаемого $a_j\lambda_j$ в сумме $a_1\lambda_1+\cdots+a_n\lambda_n$, что доказывает утверждение.
 - 5) Доказетельство этого свойства аналогично предыдущему.

Утверждение 10.8. P(a,b) = (a-1)(b-1).

Доказательство. Покажем, что $p = ab - a - b \neq ma + nb$ для любых целых неотрицательных m, n.

Предположим противное. Тогда:

$$ab - a - b = am + bn$$
 \iff $ab = (m+1)a + (n+1)b$

В силу взаимной простоты a и b получим, что $n+1 \stackrel{.}{:} a$, и $m+1 \stackrel{.}{:} b$. Тогда, в силу того, что $m,n \geq 0$, имеем 2 случая:

$$\begin{cases} n+1 = a \\ m+1 = 0 \end{cases} \begin{cases} n+1 = 0 \\ m+1 = b. \end{cases}$$

В обоих случаях получаем противоречие. Следовательно, $P(a,b) \ge (a-1)(b-1)$.

Теперь покажем, что $P(a,b) \le ab+b-a-1$. Для любого $p \ge ab-b-a+1$ решим уравнение:

$$am + bn = p$$

Так как a и b взаимно просты, числа из набора $0,b,2b,\ldots,(a-1)b$ дают все a остатков по модулю a. Значит, существует единственное $0 \le n \le a-1$, что $bn \equiv p \pmod a$, причём $p-bn \ge 0$, так как

$$p - bn \ge ab - b - a + 1 - (a - 1)b = -a + 1 > -a \Longrightarrow p - bn \ge 0.$$

Значит, $m = \frac{p-bn}{a} \ge 0$.

Таким образом, нами были найдены целые $m \geq 0, \ n \geq 0.$ Следовательно, P(a,b) = (a-1)(b-1).

Следствие 10.9. $T(a, b; \sigma) = (ab + b - a)\sigma - 1$.

Утверждение 10.10.
$$P(2,a,b)=\begin{cases} P(2,b)=b-1, & \textit{если а чётно}, \\ P(2,a)=a-1, & \textit{иначе}. \end{cases}$$

Доказательство. Первый случай следует из свойства 4 утверждения 10.7.

Разберём второй случай: a нечётно. Неравенство $P(2,a,b) \leq P(2,a)$ следует из свойства 2 утверждения 10.7. Докажем обратное неравенство: необходимо показать, что с помощью слагаемых 2,a,b невозможно получить сумму a-2. Действительно, из трёх слагаемых можно использовать только одно: 2. Но a-2 нечётно — противоречие. Следовательно, P(2,a,b) = P(2,a).

Следствие 10.11.
$$T(2,a,b;\sigma) = \begin{cases} T(2,b;\sigma) = (3b-2)\sigma - 1, & \textit{если а нечётно,} \\ (2b+a-2)\sigma - 1, & \textit{иначе.} \end{cases}$$

Утверждение 10.12.
$$P(3,a,b) = \begin{cases} P(3,b) = 2(b-1), & \textit{если } a \ \vdots \ 3, \\ b-2, & \textit{если } a \not : \ 3, \ a+b \ \vdots \ 3 \ u \ b < P(3,a) = 2a-2, \\ P(3,a) = 2(a-1), & \textit{иначе.} \end{cases}$$

Доказательство. Первый случай следует из свойства 4 утверждения 10.7.

Разберём второй случай. Покажем, что $P(3,a,b) \ge b-2$. Предположим противное. Тогда число b-3 должно выражаться в виде линейной комбинации 2,a и b:

$$b - 3 = 3\lambda_1 + a\lambda_2 + b\lambda_3$$

Тогда $\lambda_3=0$ и $\lambda_2\leq 1$. При $\lambda_2=0$ имеем $b=3\lambda_1+3$ \vdots 3. При $\lambda_2=1$ имеем $b-a=3\lambda_1+3$ \vdots 3. В обоих случаях a \vdots 3, так как a+b \vdots 3, что противоречит условию второго случая. Следовательно, P(3,a,b)>b-2.

Докажем обратное неравенство: для любого $p \ge b - 2$ решим уравнение:

$$p = 3\lambda_1 + a\lambda_2 + b\lambda_3$$

Так как в правой части есть слагаемое $3\lambda_1$, то достаточно решить уравнение для p = b - 2, p = b - 1 и p = b — тогда линейные комбинации для больших p получатся увеличением λ_1 .

- p=b-2. Если $b\equiv 2\pmod 3$, то $\lambda_1=\frac{b-2}{3}, \lambda_2=\lambda_3=0$. Если $b\equiv 1\pmod 3$, то $a\equiv 2\pmod 3$, b-2=(b-a-2)+a и $\lambda_1=\frac{b-a-2}{3}, \lambda_2=1, \lambda_3=0$.
- p=b-1. Если $b\equiv 1\pmod 3$, то $\lambda_1=\frac{b-1}{3}, \lambda_2=\lambda_3=0$. Если $b\equiv 2\pmod 3$, то $a\equiv 1\pmod 3$, b-2=(b-a-1)+a и $\lambda_1=\frac{b-a-1}{3}, \lambda_2=1, \lambda_3=0$.
- p = b. Тогда $\lambda_1 = \lambda_2 = 0, \lambda_3 = 1$.

Таким образом, P(3, a, b) = b - 2.

Перейдём к третьему случаю: если $b \ge P(3,a)$, то наличие слагаемого $b\lambda_3$ не повлияет на значение функции P: если некое p выражается в виде линейной комбинации с участием b, то $p \ge P(3,a)$ и, следовательно, выражается и без участия b. Следовательно, P(3,a,b) = P(a,b).

Рассмотрим последний случай: $a \not \mid 3$, $a+b \not \mid 3$, b < P(3,a). Неравенство $P(3,a,b) \ge P(a,b)$ следует из свойства 2 утверждения 10.7. Докажем обратное неравенство. Для этого покажем, что следующее уравнение не имеет решений:

$$2a - 3 = 3\lambda_1 + a\lambda_2 + b\lambda_3$$

Заметим, что $\lambda_3 = 0$, так как b < 2a - a. Также, $\lambda_2 \le 1$. Тогда $(2 - \lambda_2)a = 3\lambda_1 + 3 \stackrel{.}{:} 3$ — противоречие с $a \not / 3$. Значит, P(3, a, b) = P(a, b).

Следствие 10.13.
$$T(3,a,b;1)= \begin{cases} T(3,b;1)=4b-4, & \textit{если } a \ \vdots \ 3, \\ 3b-4, & \textit{если } a \ \not \vdots \ 3, \ a+b \ \vdots \ 3 \ u \ m < 2a-2, \\ 2a+2b-4, & \textit{иначе.} \end{cases}$$

10.2 Алгоритм вычисления функции P

Рассмотрим массив M длины a_1 , где в M[i] лежит минимальное выразимое число, сравнимое с i по модулю a_1 . Заметим, что M[0] = 0 и что $M[i] \equiv i \pmod{a_1}$.

Утверждение 10.14.
$$P(a_1,\ldots,a_n)=\max_{i=0}^{a_0-1}M[i]-a_1+1.$$

Доказательство. Пусть $\max_{i=0}^{a_0-1} M[i] - a_1 + 1 = M[k] - a_1 + 1$.

Выразимость $M[k]-a_1$ вела бы к противоречию с определением массива M, так как $M[k]-a_1\equiv M[k]\pmod{a_1}$. Значит, $P(a_1,\ldots,a_n)\geq \max_{i=0}^{a_0-1}M[i]-a_1+1$.

Заметим, что если произвольное x выразимо, то и число $x+a_1$ выразимо. Из этого следует, что любое число, сравнимое с i по модулю a_1 и не меньшее M[i] выразимо. Значит, все числа, начиная с $M[k]-a_1+1$ выразимы — иначе M[k] было бы не максимальным числом в массиве M.

Следовательно,
$$P(a_1, \dots, a_n) = \max_{i=0}^{a_0-1} M[i] - a_1 + 1.$$

Используя массив M, можно легко посчитать P(4, a, b). Здесь и далее через x rem y будем обозначать остаток при делении x на y.

Утверждение 10.15 (Формула для P(4, a, b)).

- 1. $a : 4, b \not/ 2$. Torda P(4, a, b) = P(4, b).
- 2. $a \not\!\!/ 2, b \ \vdots \ 4$, или $0 \not\equiv a \equiv b \pmod 4$, или $a \not\!\!/ 2, b \ge P(4,a)$. Тогда P(4,a,b) = P(4,a).
- 3. $a \equiv 2 \pmod{4}, b \not \equiv 2$. $Tor \partial a P(4, a, b) = a + b 3$.
- 4. $a \not\mid 2, b \equiv 2 \pmod{4}$. $Tor \partial a$

$$P(4, a, b) = \begin{cases} a + b - 3, & ecnu \ b < 2a \\ 3a - 3, & uhave. \end{cases}$$

5. $a, b \not \! / 2, a + b : 4, b < P(4, a)$. Тогда

$$P(4, a, b) = \begin{cases} 2a - 3, & ecnu \ b \le 2a \\ b - 3, & uhave. \end{cases}$$

Доказательство. Из свойства 4 утверждения 10.7 можно вывести случай $a
otin 4, b \not\mid 2$ и случай $a \not\mid 2, b
otin 4, a$ из свойства 5 того же утверждения — случай $0 \not\equiv a \equiv b \pmod{4}$.

Во всех остальных случаях посчитаем массив M, и по утверждению 10.14 найдём ответ. Заметим, M[0] всегда равен 0.

Докажем случай $a \not \mid 2, b \geq P(4, a)$. Тогда $M[a \ rem \ 4] = a, M[2] = 2a,$ и $M[4 - a \ rem \ 4] = 3a$ — число b слишком большое, чтобы повлиять на этот массив. Таким образом, максиму этого массива равен 3a, и ответом будет число 3a - 3 = P(4, a).

Разберём случай $a \equiv 2 \pmod{4}, b \not \equiv 2$. Заметим, что $M[2] = a, M[b \ rem \ 4] = b, M[4 - b \ rem \ 4] = a + b$. Максимум этого массива -a + b, поэтому ответ равен a + b - 3.

Разберём случай $a \not = 2, b \equiv 2 \pmod 4$. Тогда $M[a\ rem\ 4] = a$. На место M[2] есть два кандидата: 2a и b. Если b < 2a, то M[2] = b, и иначе -2a. Далее, для $M[4-a\ rem\ 4]$ имеем два варианта: 3a и a+b, и если b < 2a, то $M[4-a\ rem\ 4] = a+b$, и иначе -3a. Таким образом, если b < 2a, то ответ равен a+b-3, а иначе -3a-3=P(4,a).

Разберём последний случай: $a,b \not \mid 2,a+b \in 4,b < 3a-3$. Тогда $M[a\ rem\ 4]=a,$ $M[b\ rem\ 4]=b$ и M[2]=2a. В зависимости от относительного расположения 2a и b имеем 2 различных возможных максимума массива M, откуда, по утверждению 10.17 находим ответ.

Приведём алгоритм, вычисляющий функцию P. На вход ему подаётся число n числа a_1, \ldots, a_n .

Алгоритм вычисляет массив M, а затем, по формуле из леммы 10.14, вычисляет ответ на поставленную задачу. Массив M вычисляется постепенно: изначально в каждой ячейке M[i] значения ∞ из \mathbb{R}_{\min} — это значит, что пока не было найдено ни одного выразимого числа, сравнимого с i по модулю a_1 . Если при последующем переборе было найдено некоторое p, сравнимое с i по модулю a_1 и меньшее M[i], то необходимо перезаписать в ячейку M[i] значение p.

Перебор начинается с рассмотрения всех линейных комбинаций с одним слагаемым (здесь и далее через количество слагаемых будем обозначать количество ненулевых коэффициентов λ_i в линейной комбинации вида 17). Затем будем перебирать линейные комбинации, на каждом шаге увеличивая максимальное количество слагаемых вдвое. Таким образом, необходимо сделать $\lceil log_2 n \rceil$ итераций, где $\lceil x \rceil$ — это округление числа x вверх.

Алгоритм 10.16.

- 1. Создадим массив M длины a_1 содержащий числа из \mathbb{R}_{\min} . Запишем во все ячейки значения ∞ .
- 2. На нулевой итерации переберём все линейные комбинации с одним слагаемым. Для этого для кажсдого a_i и для кажсдого множителя $0 \le k < a_1$ проверим, можем ли мы улучшить ответ: сравним $a_i^{\odot k} = a_i \cdot k$ с $M[a_i \cdot k \ rem \ a_1]$, и если в массиве записано большее число, то улучшим ответ: запишем в ячейку $a_i \cdot k \ rem \ a_1$ значение $a_i^{\odot k} = a_i \cdot k$.
- 3. На каждой следующей итерации будем перебирать все пары ячеек M[i] и M[j] и пытаться улучшить ответ: сравним $M[(i+j) \ rem \ a_1] \ c \ M[i] \odot M[j]$ (т.е. M[i] + M[j], если оба эти числа меньше ∞ , и ∞ иначе), и если в массиве записано большее число, то улучшим ответ: запишем в ячейку $(i+j) \ rem \ a_1$ значение $M[i] \odot M[j]$.
- 4. Всего необходимо сделать $\lceil log_2(n) \rceil + 1$ итераций. После этого ответом будет $\bigoplus_{i=0}^{a_0-1} M[i] a_1 + 1 = \max_{i=0}^{a_0-1} M[i] a_1 + 1$.

Для доказательства корректности докажем следующее утверждение.

Лемма 10.17. После итерации с номером d в ячейке M[i] лежит минимальное число, сравнимое c i по модулю a_1 , которое может быть представлено в виде линейной комбинации c не более чем 2^d слагаемыми, или ∞ , если такого числа не существует.

Доказательство. Докажем утверждение по индукции.

База: d=0. В шаге 1 перебираются все линейные комбинации вида $a_j \cdot k$, где $0 \le k < a_1$. Рассмотрим линейную комбинацию, которую мы не перебрали: $a_i \cdot m$. Так как мы не перебрали эту комбинацию, то $m \ge a_1$. Но тогда $a_i \cdot m \equiv a_i \cdot (m-a_1) \pmod{a_1}$ и $a_i \cdot m > a_i \cdot (m-a_1) \ge 0$ — эта линейная комбинация не может улучшить ответ. Значит, база верна.

Докажем переход. Предположим, утверждение доказано для d-1, докажем его для d. Обозначим массив M в состоянии до итерации с номером d через M'.

Рассмотрим произвольную ячейку M[i], в которой записано число, меньшее ∞ . Тогда существуют два индекса j и k такие, что i=(j+k) rem a_1 и M[i]=M'[j]+M'[k]. По предположению индукции в каждой ячейке массива M' лежит число, которое может быть представлено в виде линейной комбинации с не более чем 2^{d-1} слагаемыми. Значит, в M[i] лежит число, представимое в виде линейной комбинации с не более чем 2^d слагаемыми. По предположению индукции $M[i]=M'[j]+M'[k]\equiv j+k\equiv i\pmod{a_1}$.

Осталось доказать минимальность M[i]. Предположим противное: пусть существует число x < M[i], сравнимое с i по модулю a_1 и представимое в виде линейной комбинации с не более чем 2^d слагаемыми. Тогда эту комбинацию можно разбить на две меньших, в каждой из которых будет не более 2^{d-1} слагаемых. Обозначим суммы этих линейных комбинаций через S_1 и S_2 . Пусть $S_1 \equiv j \pmod{a_1}$, а $S_2 \equiv k \pmod{a_1}$.

Тогда $S_1 + S_2 = x < M[i] \le M'[j] + M'[k]$ и или $S_1 < M'[j]$, или $S_2 < M'[k]$. В обоих случаях имеем противоречие с предположением индукции. Значит, предположение индукции верно и для d, что и требовалось доказать.

Утверждение 10.18. Алгоритм 10.16 корректен. Время его работы $-O(n \cdot a_1 + a_1^2 \cdot \log n)$. Объем затраченной памяти $-O(a_1)$.

Доказательство. Докажем асимптотику. Первый шаг работает за $O(a_1)$, второй — за $O(a_1 \cdot n)$ (надо перебрать все $1 \leq j \leq n$ и все $0 \leq k < a_1$). Третий работает за $O(a_1^2 \cdot \log n)$, так как всего $O(\log n)$ итераций, в каждой из которых надо перебрать пары (i,j), где $0 \leq i,j \leq a_1$. Четвертый — за $O(a_1)$. Итоговая сложность алгоритма: $O(n \cdot a_1 + a_1^2 \cdot \log n)$.

Память тратится только на массив M длины a_1 . Значит, алгоритм требует $O(a_1)$ памяти.

Докажем корректность. По лемме 10.17 после итерации с номером d в ячейках массива M лежит информация об оптимальных линейных комбинациях с не более чем 2^d слагаемыми. Следовательно, после итерации с номером $\lceil log_2(n) \rceil$ в массиве M лежит информация об оптимальных линейных комбинациях из n слагаемых, то есть массив M будет наконец посчитан.

Во время работы алгоритма каждая ячейка массива M изменит своё значение хотя бы раз: это следует из корректности функции P. Значит, после последней итерации в массиве M не останется ∞ .

Далее ответ может быть получен по лемме 10.14.

На моём компьютере при $n=100, a_1=100$ алгоритм ни разу не показывал время, большее 0.2 с. При $n=1000, a_1=1000$ алгоритм работал не дольше 0.3 с. При $n=10000, a_1=10000$ алгоритм работает существенно медленнее: в районе 40 с.

10.3 Верхние оценки функции Р

Оценим сверху значение функции P. Это поможет и в оценке сверху границы T для ромашек, и для уточнения времени работы алгоритма ??.

Утверждение 10.19. Функция $P(a_1, ..., a_n)$ оценивается сверху следующими функциями:

1.
$$Wi(N) - 2a_n + 2$$
,

2.
$$(a_1+1)N-2a_1-2a_n+2$$
,

3.
$$(a_1-1)(a_n-1)+a_1(2a_n-2)$$
,

где
$$N = \sum_{i=1}^{n} a_i - n + 1 - количество вершин в $(a_1, \dots, a_n; 1)$ -ромашке.$$

Доказательство. По замечанию 10.3 граница T данной ромашки совпадает с её экспонентой, которая по теореме 8.11 оценивается сверху числом Виландта от количества вершин Wi(N), функцией $\hat{g}(N-2)+N$ и функцией $(\hat{g}-1)(cr-1)+(\hat{g}+1)cd$.

Обхват (a_1, \ldots, a_n) -ромашки равен a_1 , её окружность равна a_n , а длина наибольшего простого пути не превышает $2a_n - 2$.

Далее достаточно применить теорему 10.5.

Следствие 10.20. Время работы алгоритма ?? можно оценить следующими способами, убрав из асимптотики искомую величину: $O(n \cdot a_1 \cdot a_n)$. Объем затраченной памяти — $O(a_1 \cdot a_n)$.

Доказательство. Так как ответ оценивается сверху функцией $Wi(N)+2a_2-2$, то имеем время работы $O(n\cdot (N^2-2N+2-2a_n+2))=O(n\cdot N^2)$ и объем памяти $O(N^2)$ (так как $N=\sum_{i=1}^n a_i-n+1$).

При подстановке $(a_1+1)N-2a_1-2a_n+2$ вместо функции P имеем время работы $O(n\cdot((a_1+1)N-2a_1-2a_n+2))=O(n\cdot a_1\cdot N)$ и объем памяти $O(a_1\cdot N)$.

При подстановке $(a_1-1)(a_n-1)+a_1(2a_n-2)$ вместо функции P имеем асимптотику $O(n\cdot((a_1-1)(a_n-1)+a_1(2a_n-2)))=O(n\cdot a_1\cdot a_n)$ и объем памяти $O(a_1\cdot a_n)$.

Утверждение следует из неравенства $a_1 \cdot a_n \leq a_1 \cdot N \leq N^2$.

11 Границы T и скрамблинг-индекс

Определение 11.1. Рассмотрим произвольную матрицу $X \in M_{n+m}(\mathbb{R}_{\max})$ размера n+m. Назовем n-m-декомпозицией матрицы X следующие четыре матрицы:

$$X_{11} \in M_{n \times n}(\mathbb{R}_{\text{max}})$$
 $X_{12} \in M_{n \times m}(\mathbb{R}_{\text{max}})$
 $X_{21} \in M_{m \times n}(\mathbb{R}_{\text{max}})$ $X_{22} \in M_{m \times m}(\mathbb{R}_{\text{max}}),$

такие, что

$$X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}.$$

Рассмотрим граф \mathcal{G} на n+m вершинах, матрицей смежности $A \in M_{n+m}(\mathbb{R}_{\max})$ и с положительным скрамблинг-индексом $k(\mathcal{G})$. По критерию положительности скрамблинг-индекса (7.6) в \mathcal{G} существует примитивный достижимый подграф \mathcal{G}_2 . Обозначим через \mathcal{G}_1 индуцированный подграф исходного графа \mathcal{G} , порожденный множеством вершин $V(\mathcal{G})\backslash V(\mathcal{G}_2)$.

Для удобства перенумеруем вершины: пусть в графе \mathcal{G}_1 лежат вершины с номерами от 1 до n, а в \mathcal{G}_2 — от n+1 до n+m. Тогда в n-m-декомпозиции матрицы A в матрице A_{ij} лежит информация о ребрах из \mathcal{G}_i в \mathcal{G}_j .

Будем рассматривать те графы, для которых $\mathcal{G}^c = \mathcal{G}_2$ и $\lambda(A) = 0$. Так как граф \mathcal{G}_2 примитивен, его цикличность равна 1. Значит, $M = A^*$.

Рассмотрим n-m-декомпозицию матрицы M:

$$M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}.$$

Утверждение 11.2. *Матрица* M_{ij} *имеет вид:*

$$M_{ij} = (A^*)_{ij} = \bigoplus_{t=0}^{n+m-1} \bigoplus_{\sigma} \bigoplus_{k=0}^{t-1} A_{\sigma(k),\sigma(k+1)},$$

где $i, j \in \{1, 2\}, \ \sigma \in \{1, 2\}^{t+1}, \ причем \ \sigma(0) = i, \ \sigma(t) = j.$

Доказательство. Матрицы C, R, S, B имеют вид:

$$C = \begin{pmatrix} -\infty & M_{12} \\ -\infty & M_{22} \end{pmatrix}, R = \begin{pmatrix} -\infty & -\infty \\ M_{21} & M_{22} \end{pmatrix}, S = \begin{pmatrix} -\infty & -\infty \\ -\infty & A_{22} \end{pmatrix}, B = \begin{pmatrix} A_{11} & -\infty \\ -\infty & -\infty \end{pmatrix}.$$

Для $t \geq T(A)$ верно следующее равенство:

$$A^{t} = CS^{t}R = \begin{pmatrix} -\infty & M_{12} \\ -\infty & M_{22} \end{pmatrix} \odot \begin{pmatrix} -\infty & -\infty \\ -\infty & A_{22} \end{pmatrix}^{t} \odot \begin{pmatrix} -\infty & -\infty \\ M_{21} & M_{22} \end{pmatrix} = \begin{pmatrix} M_{12}A_{22}^{t}M_{21} & M_{12}A_{22}^{t}M_{22} \\ M_{22}A_{22}^{t}M_{21} & M_{22}A_{22}^{t}M_{22} \end{pmatrix},$$

для $t \ge T_1(A, B)$ — следующее:

$$A^{t} = CS^{t}R \oplus B^{t} = \begin{pmatrix} M_{12}A_{22}^{t}M_{21} \oplus A_{11}^{t} & M_{12}A_{22}^{t}M_{22} \\ M_{22}A_{22}^{t}M_{21} & M_{22}A_{22}^{t}M_{22} \end{pmatrix},$$

и для $t \ge T_2(A, B)$ — следующее неравенство:

$$\begin{pmatrix} M_{12}A_{22}^tM_{21} & M_{12}A_{22}^tM_{22} \\ M_{22}A_{22}^tM_{21} & M_{22}A_{22}^tM_{22} \end{pmatrix} \ge \begin{pmatrix} A_{11}^t & -\infty \\ -\infty & -\infty \end{pmatrix},$$

т.е., что равносильно, $M_{12}A_{22}^tM_{21} \ge A_{11}^t$.

Выразим A^t :

$$(A^t)_{ij} = \bigoplus_{\sigma} \bigodot_{k=0}^{t-1} A_{\sigma(k),\sigma(k+1)},$$

где $i, j \in \{1, 2\}$, $\sigma \in \{1, 2\}^{t+1}$, причем $\sigma(0) = i, \sigma(t) = j$. Здесь и далее считаем, что $\sigma(k)$ — это k-й элемент кортежа σ , нумерация в котором идет с нуля.

Рассмотрим путь из произвольной вершины подграфа \mathcal{G}_i в произвольную вершину подграфа \mathcal{G}_j . Каждое ребро этого пути либо лежит внутри соответствующего подграфа, либо соединяет текущий подграф с другим. Переберем все возможные варианты расположения ребер в пути: если $\sigma(k-1) = \sigma(k)$, то k-е ребро пути лежит в графе $\mathcal{G}_{\sigma(k-1)}$. Иначе — ведёт из $\mathcal{G}_{\sigma(k-1)}$ в $\mathcal{G}_{\sigma(k)}$. По всем таким вариантам возьмем максимум — это и будет оптимальным весом пути.

Зафиксируем $i, j \in \{1, 2\}$. Тогда матрица M_{ij} выражается следующим образом:

$$M_{ij} = (A^*)_{ij} = \bigoplus_{t=0}^{n+m-1} \bigoplus_{\sigma} \bigoplus_{k=0}^{t-1} A_{\sigma(k),\sigma(k+1)},$$

где $\sigma \in \{1,2\}^{t+1}$, причем $\sigma(0) = i, \, \sigma(t) = j.$

12 Конусы

Определение 12.1. Пусть K — некоторе непустое подмножество \mathbb{R}^n . Назовём K правильным конусом, если выполнены следующие условия:

- 1. $\alpha x + \beta y \in K$ для любых $x, y \in K$ и для любых $\alpha, \beta \geq 0$,
- 2. $K \cap -K = \{0\},\$
- 3. $intK \neq \emptyset$ (здесь и далее через intX будем обозначать внутренность множества X) или, что эквивалентно, $K K = \mathbb{R}^n$.

 Π одмножество F конуса K называется подконусом, если само является конусом. Pазмерность конуса K — размерность линейной оболочки всех векторов из K.

Далее мы будем работать только с правильными конусами, и, вследствии этого, будем говорить просто "конус", опуская слово "правильный".

Введём несколько отношений частичного порядка на K:

- $x \ge^K y$ тогда и только тогда, когда $x y \in K$,
- $x >^K y$ тогда и только тогда, когда $x \ge^K y$ и $x y \ne 0$,
- $x \gg^K y$ тогда и только тогда, когда $x y \in intK$.

Определение 12.2. Подконус F конуса K называется лицом конуса K, если для любых $x \in F$, $y \in K$ из $x \geq^K y \geq^K 0$ следует $y \in F$. Обозначим множество всех лиц конуса K через $\mathcal{F}(K)$.

Для любого подмножества $S \subset K$ определим $\Phi(S)$ — наименьшее по включение лицо конуса K, содержащее S:

$$\Phi(S) = \bigcap \{ F \mid F - \text{nuyo } K \text{ } u \text{ } F \supseteq S \}$$
 (19)

Если $S = \{x\}$, то для удобства будем писать $\Phi(x) = \Phi(\{x\})$

Заметим, что $\{0\}$ и K являются лицами конуса K. Назовём эти лица тривиальными, а все остальные — нетривиальными. Обозначим множество всех нетривиальных лиц конуса K через $\mathcal{F}'(K)$.

Иногда для описания некоторого лица F конуса K достаточно взять один вектор из F. Обозначим через riF относительную внутренность множества F. (см. [13]).

Утверждение 12.3 (Добавить ссылку). $F = \Phi(K)$ тогда и только тогда, когда $x \in riF$.

Утверждение 12.4 (Добавить ссылку). $\Phi(x) = \{ y \in K \mid x \geq^K \alpha y \text{ для некоторого } \alpha > 0 \}.$

Определение 12.5. $x \in K$ называется экстремальным вектором, если x = 0 или $x \neq 0$ и $\Phi(x) = \{\lambda x \mid \lambda \geq 0\}$. В последнем случае такое $\Phi(x)$ называется экстремальным лучом. Обозначим множество экстремальных лучей через $\mathcal{E}(K)$.

Если конус содержит конечное число экстремальных лучей, то такой конус называется полиэдральным.

Если размерность конуса совпадает с количеством его экстремальных лучей, то такой конус называется симплициальным.

Mножество n-мерных полиэдральных конусов c m экстремальными лучами будем обозначать через $\mathcal{P}(n,m)$.

Таким образом, экстремальные лучи — это одномерные лица конуса. Простейший пример полиэдрального конуса — это положительный ортант $\mathbb{R}^n_+ = \{(\xi_1, \dots, \xi_n)^R \mid \xi_i \geq 0$ для любого $1 \leq i \leq n\}$. Этот конус является симплициальным. Заметим, что любой симплициальный конус линейно изоморфен \mathbb{R}^n_+ (см. [13]).

Мы будем работать с линейными отображениями, сохраняющими конус. Обозначим это множество через $\Pi(K)$:

Определение 12.6. $\Pi(K) = \{A \in Mat_n(\mathbb{R}) \mid AK \subseteq K\}$. Все матрицы из $\Pi(K)$ назовём K-неотрицательными.

При $K = \mathbb{R}^n_+$ множество K-неотрицательных матриц целиком состоит из неотрицательных матриц.

Определим несколько классов матриц:

Определение 12.7. *Рассмотрим* $A \in \Pi(K)$.

A называется K-неразложимой, если любое нетривиальное лицо конуса K не инвариантно относительно K.

A называется K-положительной, если $A(K \setminus \{0\}) \subseteq int K$.

A называется K-примитивной, если существует целое положительное число p такое, что A^p является K-положительной. B этом случае минимальное такое p называется экспонентой матрицы A и обозначается через $\gamma(A)$.

Добавить утверждение, что если A^p K-положительная, то и для любого $q \geq p$ верно, что $A^q - K$ -положительная.

По конусу K и матрицы A, его сохраняющей, можно определить несколько графов. Рассмотрим два лица F,G конуса K. Будем говорить, что от F до G идёт \mathcal{P} -ребро, если $G \subseteq \Phi(AF)$, и \mathcal{I} -ребро, если $G \subseteq \Phi((I+A)F)$, где I — единичная матрица подходящей размерности. Заметим, что если от F до G идёт \mathcal{P} -ребро, то идёт и \mathcal{I} -ребро (см. [13]).

Определение 12.8. $(\mathcal{E}, \mathcal{P}(A, K)) - \mathit{гра}\phi$, вершинами которого являются его экстремальные лучи, а рёбрами — все \mathcal{P} -рёбра.

Аналогично определяются $(\mathcal{E}, \mathcal{I}(A, K)), (\mathcal{F}, \mathcal{P}(A, K)), (\mathcal{F}, \mathcal{I}(A, K)), (\mathcal{F}', \mathcal{P}(A, K)), (\mathcal{F}', \mathcal{I}(A, K))$: на первом месте стоит множество вершин, а на втором — множесво рёбер.

Далее иногда будем писать просто $(\mathcal{E}, \mathcal{P})$, если по контексту понятно, какой конус K и какая матрица A рассматриваются.

Утверждение 12.9 ([13]). Если $K = \mathbb{R}^n_+$, то $(\mathcal{E}, \mathcal{P}(A, K)) = \mathcal{G}(A^T)$.

Утверждение 12.10 ([13], [15]). *Если* в $(\mathcal{E}, \mathcal{P}(A, K))$ есть путь длины k между вершинами $\Phi(x)$ и $\Phi(y)$, то $\Phi(A^k x) \supseteq \Phi(y)$.

Пусть F, G — лица конуса K. Тогда в графе $(\mathcal{F}, \mathcal{P}(A, K))$ (или $(\mathcal{F}, \mathcal{I}(A, K))$) существует путь длины k между F и G тогда и только тогда, когда $G \subseteq \Phi(A^k F)$ (соответственно, $G \subseteq \Phi((I+A)^k F)$).

Теорема 12.11 ([16]). Если для любой K-неразложимой матрицы A граф $(\mathcal{E}, \mathcal{P}(A, K))$ сильно связен, то K симплициален.

Теорема 12.12 ([15]). A - K-неразложима тогда и только тогда, когда ($\mathcal{F}', \mathcal{I}$) сильно связен.

Теорема 12.13 ([15]). Пусть $A \in \Pi(K)$ и размерность конуса n > 2. Тогда A - K-примитивна тогда и только тогда, когда $(\mathcal{F}', \mathcal{P})$ сильно связен.

Докажем вспомогательную лемму:

Лемма 12.14. Если некоторое лицо F полиэдрального конуса K содержит все нетривиальные лица K, то F = K.

Доказательство. В [16] доказано, что у любого n-мерного несимплициального конуса существуют линейные независимые экстремаьлные вектора x_1, \ldots, x_r , где r < n такие, что $x_1 + \ldots x_r \in int K$.

Заметим, что если конус полиэдральный, то он линейно изоморфен \mathbb{R}^n_+ , а в последнем конусе сумма всех базисных векторов лежит во внутренности \mathbb{R}^n_+ .

Значит, в любом случае существуют экстремальные вектора x_1, \ldots, x_r , сумма которых лежит во внутренности K. Заметим, что $x_i \in \Phi(x_i) \subseteq F$ для любого $1 \le i \le r$. Значит, $x_1 + \ldots x_r \in F$. Но, так как сумма x_i лежит во внутренности $K, K \subseteq F$. Следовательно, F = K.

Теорема 12.15. Пусть A - K-примитивна и размерность конуса n > 2. Тогда $(\mathcal{F}', \mathcal{P})$ примитивен и $\gamma(A) = \exp(\mathcal{F}', \mathcal{P})$.

Доказательство. Пусть $q = \gamma(A)$. Тогда заметим, что для любого нетривиального лица F конуса K верно равенство $\Phi(A^qF) = K$. Это следует из следующего: рассмотрим произвольный ненулевой вектор $x \in F$. Тогда, так как A примитивна, $A^qx \gg 0$. Значит, $\Phi(A^qF) \supseteq \Phi(A^qx) = K$ и, следовательно, $\Phi(A^qF) = K$.

Значит, для любых нетривиальных лиц F, G конуса K в $(\mathcal{F}', \mathcal{P})$ существует путь между F и G длины p — это равносильно $G \subseteq \Phi(A^qF) = K$, а любое лицо конуса в нём содержится. Значит, экспонента графа $(\mathcal{F}', \mathcal{P})$ не превосходит экспоненты матрицы A, то есть $exp(\mathcal{F}', \mathcal{P}) \leq \gamma(A)$.

Докажем обратное неравенство: $exp(\mathcal{F}', \mathcal{P}) \geq \gamma(A)$. Пусть $p = exp(\mathcal{F}', \mathcal{P})$. Необходимо показать, что $A^p - K$ -положительная матрица. Для этого рассмотрим произвольный вектор $x \in K$ и покажем, что $A^p x \in int K$.

Покажем, что $A^px \in intK$ для экстремальных векторов. Тогда в $(\mathcal{F}',\mathcal{P})$ существует путь из $\Phi(x)$ в любую другую вершину. Следовательно, $\Phi(A^p\Phi(x))$ содержит в себе все нетривиальные лица конуса, а значит $\Phi(A^p\Phi(x)) = K$. (по лемме 12.14). Докажем следующую лемму:

Лемма 12.16. Если $x - \mathfrak{p}$ кстремальный вектор, то $\Phi(A^p\Phi(x)) = \Phi(A^px)$.

Доказательство. По определению экстремального вектора $\Phi(x) = \{\lambda x \mid \lambda \geq 0\}$. Тогда $\Phi(A^p \Phi(x)) = \Phi(A^p \{\lambda x \mid \lambda \geq 0\}) = \Phi(\{\lambda A^p x \mid \lambda \geq 0\}) = \Phi(A^p x)$.

Значит, $K = \Phi(A^p \Phi(x)) = \Phi(A^p x)$. Следовательно, $A^p x \in riK = intK$.

Теперь пусть x — произвольный ненулевой вектор из K. Тогда x выражается в виде линейной комбинации экстремальных векторов с положительными коэффициентами (так как среди них можно выбрать n базисных): $x = \sum_{i=1}^{n} \lambda_i x_i$. Без ограничения общности, пусть $\lambda_1 > 0$.

Заметим, что $A^px \in \Phi(A^px)$, а также что $0 \leq^K \lambda_1 A^px_1 \leq^K A^px$.

Значит, $A^p x_1 \in \Phi(A^p x)$ и $\Phi(A^p x_1) \subseteq \Phi(A^p x)$. Но по лемме $\Phi(A^p x_1) = K$. Следовательно, $\Phi(A^p x) = K$. Таким образом, $A^p x \in int K$.

В силу произвольности x экспонента $\gamma(A) \leq p$.

Значит,
$$\gamma(A) = exp(\mathcal{F}', \mathcal{P})$$
.

13 Обозначения

- 1. $\mathbb{R}_{\geq 0}$ множество неотрицательных вещественных чисел.
- 2. $\mathbb{R}_{\max}, \mathbb{R}_{\min}$ тропические полукольца.

- 3. x rem y остаток при делении x на y.
- 4. [x] округление числа x вверх.
- 5. $\mathbb{B} = \{0,1\}$ множество с сложением, аналогичным дизъюнкции, и умножением, аналогичным конъюнкции.
- 6. $M_{n\times m}(\mathbb{F})$ множество матриц $n\times m$ с элементами из \mathbb{F} . $M_n(\mathbb{F})$ множество квадратных матриц $n\times n$ с элементами из \mathbb{F} .
- 7. $[M]_{ij}$ элемент матрицы M с индексами i и j.
- 8. $\mathcal{G}(V, E)$ граф со множеством вершин V и множеством ребер E.
- 9. $Wi(n) = (n-1)^2 + 1$ число Виландта.
- 10. $DM(\hat{g}, n) = \hat{g}(n-2) + n$, где $\hat{g} = \hat{g}(\mathcal{G}^c(A))$ число Далмаджа-Мендельсона.
- 11. σ_G индекс цикличности графа G.
- 12. $k(\mathcal{G})$ скрамблинг индекс графа G.
- 13. $g(\mathcal{G})$ обхват графа \mathcal{G} , т.е. длина наименьшего цикла в \mathcal{G} .
- 14. $\hat{g}(\mathcal{G})$ максимальный обхват среди всех компонент сильной связности графа \mathcal{G} .
- 15. $cr(\mathcal{G})$ окружность графа \mathcal{G} , т.е. длина наибольшего цикла в \mathcal{G} .
- 16. cb(G) максимальная длина простого пути в графе G.
- 17. $exp(\mathcal{G})$ экспонента графа (а значит, и его матрицы смежности).
- 18. $\lambda(A)$ максимальный средний вес цикла в графе $\mathcal{G}(A)$.
- 19. \mathcal{G}^c критический подграф графа \mathcal{G} .
- 20. A^* звезда Клини матрицы A.
- 21. $\mathcal{W}(i \to j)$ множество путей из вершины i в вершину j. $\mathcal{W}^t(i \to j)$ множество путей из вершины i в вершину j длины t. $\mathcal{W}^{t,l}(i \to j)$ множество путей из вершины i в вершину j длины t по модулю l.
- 22. $W(i \xrightarrow{\mathcal{G}} j), W^t(i \xrightarrow{\mathcal{G}} j), W^{t,l}(i \xrightarrow{\mathcal{G}} j)$ аналогично предыдущему пункту, но с дополнительным условием на путь: он должен проходить хотя бы через одну вершину из \mathcal{G} .
- 23. $T(A), T_1(A, B), T_2(A, B)$ границы, определенные в подразделе 8.2.
- 24. $\Pi(K)$ множество матриц, сохраняющих конус K.
- 25. $\gamma(A)$ экспонента K-примитивной матрицы A.
- 26. $\Phi(S)$ лицо конуса, порождённое множеством S. $\Phi(x) = \Phi(\{x\}$ лицо конуса, порождённое одноэлементным множеством.
- 27. P(n,m) множество n-мерных правильных конусов с m экстремальными лучами.
- 28. $(\mathcal{E}, \mathcal{P}(A, K))$ граф с вершинами из множества экстремальных лучей конуса K и с \mathcal{P} -рёбрами.
 - Аналогично $(\mathcal{F}', \mathcal{I}(A, K))$, и т. д.

References

- [1] Imre Simon On semigroups of matrices over the tropical semiring Theoretical Informaties and Applications (Tome 28 (1994) no. 3-4, pp. 277-294)
- [2] Semere Tsehaye Tesfay. A Glance at Tropical Operations and Tropical Linear Algebra Eastern Illinois University, 2015.
- [3] David Speyer, Bernd Sturmfels. *Tropical Mathematics* Mathematics Magazine, vol. 82, №3, June 2009.
- [4] Ю.М. Волченко *Max-plus алгебра и ее применение*, декабрь 2017
- [5] Hans Schneider. Wielandt's proof of the exponent inequality for primitive nonnegative matrices Department of Mathematics, University of Wisconsin at Madison, 2002.
- [6] Ю.А. Альпин, И.В. Башкин. *Неотрицательные цепные матрицы* Казанский федеральный университет, 2020.
- [7] Alexander Guterman, Elena Kreines, and Carsten Thomassen. Linear transformations of tropical matrices preserving the cyclicity index Special Matrices Volume 9, 2021.
- [8] A. E. Guterman, A. M. Maksaev Upper bounds on scrambling index for non-primitive digraphs Linear and Multilinear Algebra, 2019
- [9] Arthur Kennedy-Cochran-Patrick, Glenn Merlet, Thomas Nowak, Sergei Sergeev. New bounds on the periodicity transient of the powers of a tropical matrix: Using cyclicity and factor rank Linear Algebra and its Applications, 2020
- [10] Glenn Merlet, Thomas Nowak, Sergei Sergeev. https://www.sciencedirect.com/science/article/pii/S0024379514004777
- [11] Sergei Sergeev, Hans Schneider. CSR expansions of matrix powers in max algebra Transactions of the American Mathematical Society, December 2009
- [12] Brualdi RA, Ryser HJ. Combinatorial matrix theory. Cambridge: Cambridge University Press; 1991. (Encyclopedia of mathematics and its applications; 39).
- [13] Raphael Loewy, Bit-Shun Tam. Maximal exponents of polyhedral cones (I). Journal of Mathematical Analysis and Applications, 365 (2010) 570–583
- [14] George Phillip Barker. On matrices having an invariant cone. Czechoslovak Mathematical Journal, Vol. 22 (1972), No. 1, 49–68 https://dml.cz/handle/10338.dmlcz/101076
- [15] George Phillip Barker, Bit-Shun Tam. *Graphs for Cone Preserving Maps*. Linear Algebra and its Applications 37:199-204 (1981)
- [16] Bit-Shun Tam, George Phillip Barker. Graphs and irreducible cone preserving maps. Linear and Mukilinear Algebra, 1992, Vol. 31, pp. 19-25 https://doi.org/10.1080/03081089208818118