$$\int_{-3}^{3} \int_{1}^{6} \int_{1}^{e} \frac{xz^{2}}{y} \, dy \, dx \, dz$$

J-3, S, X Z ² y-1 dy dx dz
$=\int_{-3}^{3}\int_{1}^{6}X \geq^{2}\left(\left N(y)\right \right)^{\frac{1}{2}}dxdy$
$= \int_{-3}^{3} \int_{1}^{1} x 2^{2} (1 - 0) dx d2$
$= \int_{-3}^{3} Z^{2} \int_{1}^{4} X dx dz$
$=\int_{-3}^{3} z^{2} \left(\frac{1}{2} x^{2}\right) \left \frac{6}{6} dz \right $
$= \int_{-3}^{3} 2^{2} \frac{1}{2} (34 - 1) d2$
$= \frac{1}{2} \int_{-3}^{3} \frac{3}{3} 6 \frac{3}{2}^{2} - \frac{2}{2} \frac{3}{2}$
$=\frac{1}{2}\left(\frac{34}{3}z^3-\frac{1}{3}z^3\right)\Big _{-3}^{3}$
$= \frac{1}{2} \left(\left 2 + \frac{3}{3} - \frac{1}{3} + \frac{3}{3} \right \right) - \frac{3}{3}$
$=\frac{1}{2}(12-\frac{1}{3})(2^{3}) _{-3}^{3}$
$=\frac{1}{2}\left(12-\frac{1}{3}\right)\left(3^{3}+3^{3}\right)$

$$\int_0^3 \int_0^2 \int_0^{\sqrt{4-x^2}} \frac{x}{z+1} \, dy \, dx \, dz$$

$\int_{0}^{3} \int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} X(\overline{z}+1)^{-1} dy dx d\overline{z}$
$= \int_{0}^{3} \int_{0}^{2} X(z+1)^{-1} \sqrt{4-x^{2}} dx dz$
$= \int_{0}^{3} (2+1)^{-1} \int_{0}^{2} \chi (4-\chi^{2})^{\frac{1}{2}} d\chi d2$
$U = 4 - x^2$ Bounds
$\frac{4x}{2} = -2x$ $2 \Rightarrow 4 - 2^2$ $0 \Rightarrow 4$
$-\frac{1}{2}dv = \times dx$
$= \int_0^3 (2+1)^{-1} \int_4^0 U^{\frac{1}{2}} - \frac{1}{2} du d2$
$= -\frac{1}{2} \int_{0}^{3} (2+1)^{-1} \left(\frac{2}{3} U^{\frac{3}{2}}\right) \Big _{4}^{0} d2$
$= -\frac{1}{2} \int_{0}^{3} (2+1)^{-1} \cdot -\frac{2}{3} \cdot 4^{\frac{3}{2}} d2$
$=\frac{3}{3}\int_{0}^{3}(z+1)^{-1}dz$
$U = 2 + 1$ $\frac{dU}{d2} = 1$ $3 \Rightarrow 4$ $0 \Rightarrow 1$
d 2

Evaluate the triple integra

$$\iiint_{F} 1 \ dV \text{ where } F = \{(x, y, z) \mid 0 \le x \le 2, 0 \le y \le \sqrt{4 - x^2}, 0 \le z \le \sqrt{4 - x^2}\}$$

$$\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int$$

Evaluate the triple integral

$$\iiint_{F} 2y^{2} \cos(z) \ dV \text{ where } F = \left\{ (x, y, z) \mid 0 \le y \le \sqrt{\frac{\pi}{2}}, \ 0 \le x \le y, \ 0 \le z \le xy \right\}$$

$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{y} \int_{0}^{xy} 2y^{2} \cos(2) dz dx dy$$

$$= 2 \int_{0}^{\frac{\pi}{2}} y^{2} \int_{0}^{y} \int_{0}^{xy} \cos(2) dz dx dy$$

$$= 2 \int_{0}^{\frac{\pi}{2}} y^{2} \int_{0}^{y} \sin(2) \int_{0}^{xy} dx dy$$

=
$$2\int_{0}^{\frac{\pi}{2}} y^{2} \int_{0}^{y} \sin(xy) - \sin(0) dx dy$$

= $2\int_{0}^{\frac{\pi}{2}} y^{2} \int_{0}^{y} \sin(xy) dx dy$
= $2\int_{0}^{\frac{\pi}{2}} y^{2} \left(-\cos(xy)\frac{1}{y}\right) \int_{0}^{y} dy$
= $2\int_{0}^{\frac{\pi}{2}} y \left(\cos(y^{2}) - \cos(0)\right) dy$
= $-2\int_{0}^{\frac{\pi}{2}} y \left(\cos(y^{2}) - y\right) dy$
= $-2\int_{0}^{\frac{\pi}{2}} y \cos(y^{2}) dy + 2\int_{0}^{\frac{\pi}{2}} y dy$
= $-2\int_{0}^{\frac{\pi}{2}} y \cos(y^{2}) dy + 2\int_{0}^{\frac{\pi}{2}} y dy$
 $y \cos(y^{2}) dy + 2\int_{0}^{\frac{\pi}{2}} y dy$
= $\frac{1}{2}\int_{0}^{\frac{\pi}{2}} \cos(u) dy$
= $\frac{1}{2}\int_{0}^{\frac{\pi}{2}} \cos(u) dy$
= $\frac{1}{2}\int_{0}^{\frac{\pi}{2}} \sin(y^{2})$
= $-\left(\sin(y^{2})\right)\int_{0}^{\frac{\pi}{2}} + 2\left(\frac{1}{2}y^{2}\right)\int_{0}^{\frac{\pi}{2}}$

$$= -\left(\operatorname{Sin}\left(\frac{\pi}{2}\right) - \operatorname{Sin}(c)\right) + \frac{\pi}{2}$$

$$= \frac{\pi}{2} - 1$$

Rewrite the following iterated integral using five different orders of integration.

$$\int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{x^2+y^2}^{9} g(x, y, z) \, dz \, dy \, dx$$

$$\int_{-3}^{3} \int_{x^2 + y^2}^{9} g(x, y, z) \, dz \, dx \, dy$$

$$\int_{-3}^{3} \int_{\chi^2}^{9} \int_{-3}^{3} g(x, y, z) \, dy \, dz \, dx$$

$$\int_{-3}^{3} \int_{y^2}^{9} \int_{-2}^{2} \int_{y^2}^{2} \int_{-2}^{2} g(x, y, z) dx dz dy$$

$$\int_{-\sqrt{z}}^{\sqrt{z}} \int_{-\sqrt{z}-x^2}^{\sqrt{z}-x^2} g(x, y, z) \, dy \, dx \, dz$$

$$\int_{-\sqrt{z}}^{\sqrt{z}} \int_{-\sqrt{z}-y^2}^{\sqrt{z}-y^2} g(x, y, z) dx dy dz$$

$$X^2+y^2\leq 2\leq 9$$

1

Bonded by

$$\chi^2 + \gamma^2 = 9$$

22+ X2 = 7 22+12=7 Bends

0 ≤ y = CEXEY $x^{2} + y^{1} + z^{2} = 7$

 $7^2 = 7 - x^2 - \gamma^2$

Z=+17-x2-42

Place bur d

Culy care about positive he of xy

Find the total mass M and the three moments of inertia I_x , I_y , and I_z of the solid with mass density $\sigma(x, y, z) = x^2 + 8 \text{ kg/m}^3$ that occupies the unit cube in the first octant given by $F = \{(x, y, z) \mid 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}.$

$$I_{\chi} =$$
 kg-m²

$$I_y = kg-m^2$$

$$I_z = \frac{1}{2}$$
 kg-m²

Part One
$$M = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{2} + 8 \, dx \, dy \, dz$$

$$= \int_{0}^{1} \int_{0}^{1} \left(\frac{1}{3} x^{3} + 8 x \right) \Big|_{0}^{1} \, dy \, dz$$

$$= \int_{0}^{1} \int_{0}^{1} \frac{1}{3} + 8 \, dy \, dz$$

$$= \frac{1}{3} + 8 \, kg$$

Part Two
$M = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (x^{2} + 8)(y^{2} + 2^{2}) dx dy d2$
Evalvated with calculater
= 50
Part Three
$M = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (x^{2} + 8)(x^{2} + 2^{2}) dx dy dz$
Evalvated with calculater
= <u>254</u> 45
Part Far
$M = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (x^{2} + 8)(x^{2} + y^{2}) dx dy dz$
Evalvated with calculater
= 259

Find the total mass M and the center of mass of the solid with mass density $\sigma(x, y, z) = kxy^3(6-z)$ g/cm³, where $k = 7 \times 10^6$, that occupies the region bounded by the planes x = 0, y = 0, z = 0, z = 1, and z + y = 1.

$$(\bar{x}, \bar{y}, \bar{z}) = \left(\begin{array}{c} \\ \end{array}\right)$$

Evaluated with catalogy
$$\begin{array}{l}
\overline{x} = \frac{11}{840} k \\
\overline{x} = \frac{2}{7} \\
M_{y}^{\epsilon} \int_{0}^{1} \int_{0}^{1} \int_{0}^{-x_{1}} \chi(k x y^{3} (6-2)) dy dz dx \\
\overline{y} = \frac{1}{7} \\
M_{z}^{\epsilon} \int_{0}^{1} \int_{0}^{1} \int_{0}^{-x_{1}} \chi(k x y^{3} (6-2)) dy dz dx \\
\overline{y} = \frac{1}{7} \\
M_{z}^{\epsilon} \int_{0}^{1} \int_{0}^{1} \int_{0}^{-x_{1}} \chi(k x y^{3} (6-2)) dy dz dx \\
\overline{y} = \frac{1}{7} \\
\underline{y} = \frac{1}{7} \\$$

Let F be the solid sphere $0 \le x^2 + y^2 + z^2 \le 1$ of radius 1 centered on the origin and let F_1 be the portion of F that lies in the first octant. Assume that f(x, y, z) is a continuous function that is symmetric with respect to reflections through the coordinate planes. That is:

 $f(-x,\,y,\,z)=f(x,\,y,\,z),\,f(x,\,-y,\,z)=f(x,\,y,\,z),\,f(x,\,y,\,-z)=f(x,\,y,\,z).$

				May to Say		
3111.8	1	Most c	cmplican	ed wa	ay to	Salle
2,11		MULTIPLY	by 8'	1		