PCMI 2021: Supersingular isogeny graphs in cryptography Exercises Lecture 3: Quaternion algebras, Endomorphism rings

TA: Jana Sotáková

version July 28, 2021

- 1. (Quaternion algebras and orders) For small primes p, define the quaternion algebra $B := B_{p,\infty} = \mathbb{Q}\langle 1, i, j, k \rangle$ with $i^2 = -r$ and $j^2 = -p$ and ij = -ji = k:
 - (a) Use QuaternionAlgebra< RationalField() | -r, -p >;
 - (b) For $p \equiv 3 \mod 4$, use -r = -1;
 - (c) For $p \equiv 5 \mod 8$, use -r = -2;
 - (d) Otherwise, find r as a prime $r \equiv 3 \mod 4$ such that $\left(\frac{r}{p}\right) = -1$.

Verify that B is only ramified at p and infinity. Verify that $i^2 = -r$ and $j^2 = -p$. Find the norm, trace and the minimal polynomial of the element w = 2 + i - 3j + 4k.

- 2. (Maximal orders) Write down a maximal order in each of the quaternion algebras.
 - (a) Using the Magma command MaximalOrder;
 - (b) Using a basis and QuaternionOrder;

Find the discriminant and the norm form of the maximal order.

- 3. For p = 67, take any maximal order $\mathcal{O} \subset B_{p,\infty}$. Then:
 - (a) Enumerate all the left-ideal classes in \mathcal{O} ;
 - (b) For every ideal class, pick a representative and find the right order of the ideal;
 - (c) Compute the norm of all these ideals;
 - (d) Figure out which of these maximal orders correspond to elliptic curves defined over \mathbb{F}_p . Show that the following suffices:
 - i. Compute the norm form of these maximal orders;
 - ii. Find out whether they represent p;

Check the count by looking at how many supersingular j-invariants there are in \mathbb{F}_p .

- 4. (Matching endomorphism rings to supersingular elliptic curves) For p=67, determine the endomorphism rings of all supersingular elliptic curves defined over \mathbb{F}_{p^2} :
 - (a) List all the maximal orders in $B_{p,\infty}$;
 - (b) List all the supersingular j-invariants;
 - (c) Start from an elliptic curve with 'known' endomorphism ring, e.g. $E: y^2 = x^3 x$;
 - (d) For small ℓ , compare the ℓ -isogenies between the elliptic curves and ideals of norm ℓ . Use (4d) to narrow down the orders for elliptic curves defined over \mathbb{F}_p .