

Paper + some CBC results

Mark Blyth

Week's goal

- ✓ Play with in-silico CBC
- Write conference paper

Fourier, Duffing

XPP Fitzhugh-Nagumo

Modified Fitzhugh-Nagumo model

Original New $\dot{v} = v - v^3/3 - w + I \qquad \text{(1)} \qquad \dot{v} = v - v^3/3 - w + I \qquad \text{(3)}$ $\dot{w} = 0.08(v + 0.7 - 0.8w) \qquad \text{(2)} \qquad \dot{w} = 0.8(v + 0.7 - 0.8w) \qquad \text{(4)}$

- Changed timescale separation
- 'Widens out' Canard explosion
- Makes signal less nonlinear, more readily described with Fourier

XPP modified

Modified Fitzhugh-Nagumo CBC

Modified Fitzhugh-Nagumo CBC

DONE:

✓ IO-map method for (harmonically forced) Duffing, Fourier discretisation

DONE:

- IO-map method for (harmonically forced) Duffing, Fourier discretisation
 - No phase constraint; signal period taken from forcing parameter

DONE:

- ✓ IO-map method for (harmonically forced) Duffing, Fourier discretisation
 - No phase constraint; signal period taken from forcing parameter
- IO-map method for modified Fitzhugh-Nagumo model, Fourier discretisation

DONE:

- IO-map method for (harmonically forced) Duffing, Fourier discretisation
 - No phase constraint; signal period taken from forcing parameter
- IO-map method for modified Fitzhugh-Nagumo model, Fourier discretisation
 - Phase constraint; signal period treated as continuation parameter

DONE:

- ✓ IO-map method for (harmonically forced) Duffing, Fourier discretisation
 - No phase constraint; signal period taken from forcing parameter
- IO-map method for modified Fitzhugh-Nagumo model, Fourier discretisation
 - Phase constraint; signal period treated as continuation parameter

TODOs:

CBC with splines discretisation

DONE:

- IO-map method for (harmonically forced) Duffing, Fourier discretisation
 - No phase constraint; signal period taken from forcing parameter
- IO-map method for modified Fitzhugh-Nagumo model, Fourier discretisation
 - Phase constraint; signal period treated as continuation parameter

- CBC with splines discretisation
- ∠ CBC using the 'other' (non-IO-map) method

DONE:

- IO-map method for (harmonically forced) Duffing, Fourier discretisation
 - No phase constraint; signal period taken from forcing parameter
- IO-map method for modified Fitzhugh-Nagumo model, Fourier discretisation
 - Phase constraint; signal period treated as continuation parameter

- CBC with splines discretisation
- CBC using the 'other' (non-IO-map) method
- K CBC on the equilibrium

Conference paper

Currently drafted:

- **K** Intro
- Maths behind CBC, plus motivation of discretisation
- Novel discretisation methods

- Surrogate models as adaptive filters for cleaner Fourier discretisation
- Usage cases of surrogates, novel discretisors
 - Might merge with conclusion or intro
- Conclusion
- **K** Figures
- Proof-reading / editing / re-drafting

Next steps

- 1. Write paper
 - Goal: finish text by Friday
- 2. Generate figs for paper
 - Splines vs. Fourier: goodness-of-fit vs. dimensionality of discretisation
 - ► Splines vs. Fourier: noise-robustness
 - Plus any figs for the surrogates section
- 3. Proof read, re-draft, edit paper
- 4. Implement a splines-based CBC
 - Not essential, but paper would benefit from saying we've done it
 - Best to get a completed paper first, then start on this