ANSWERS TO SELECTED **PROBLEMS**

Chapter 1

1. a)
$$\mathbf{a} + \mathbf{h}$$

b)
$$\mathbf{a} - \mathbf{h}$$
.

c)
$$a + \frac{1}{2}h$$
,

d)
$$\frac{3}{4}$$
 a,

1. a)
$$\mathbf{a} + \mathbf{h}$$
, b) $\mathbf{a} - \mathbf{h}$, c) $\mathbf{a} + \frac{1}{2}\mathbf{h}$, d) $\frac{3}{4}\mathbf{a}$, e) $\frac{3}{4}\mathbf{a} - \frac{1}{2}\mathbf{h}$.

$$2. \quad \text{a)} \quad \mathbf{0}, \qquad \quad \text{b)} \quad 2\overrightarrow{CA}.$$

3. a)
$$-4a + 5b$$

3. a)
$$-4\mathbf{a} + 5\mathbf{b}$$
, b) $(2p+3r)\mathbf{a} + (2q-3s)\mathbf{b}$.

4. a)
$$\frac{1}{2}(\mathbf{b} + \mathbf{a}), \frac{1}{2}(\mathbf{b} + \mathbf{c})$$

6. a)
$$\approx 14 \text{ cm N } 75^{\circ} \text{ E}.$$

b) $\approx 104 \text{ cm S } 23^{\circ} \text{ E}.$

- c) $\approx 18 \text{ km/h N } 36^{\circ} \text{ E}.$
- d) The rower must row 30° upstream.

7. Approximately 28.0 km N 51° 9' E from A.

8. a)
$$\frac{1}{2}\mathbf{b} + \frac{1}{2}\mathbf{c}$$
, $\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{c}$, $\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$. b) $\frac{1}{7}\mathbf{a} + \frac{3}{7}\mathbf{b} + \frac{3}{7}\mathbf{c}$.

b)
$$\frac{1}{7}\mathbf{a} + \frac{3}{7}\mathbf{b} + \frac{3}{7}\mathbf{c}$$

9. a)
$$\begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
, b) $\begin{pmatrix} 16 \\ 15 \\ -5 \end{pmatrix}$, c) $\begin{pmatrix} -7 \\ 2 \\ -6 \\ -1 \end{pmatrix}$, d) Not possible, e) $7\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}$.

- 10. 7.43, N 28° E.
- a) not parallel, b) parallel, c) parallel. Only in b) is ABCD a parallelogram.
- 21. (4,5,0), (-6,-1,2), (4,7,6)
- 22. $\mathbf{d} + \mathbf{e} \mathbf{f}$, $\mathbf{d} + \mathbf{f} \mathbf{e}$, $\mathbf{e} + \mathbf{f} \mathbf{d}$.
- 23. The midpoint is (3, -1, 3). The point Q is (10, -29, 31).

24.
$$\mathbf{t} = \frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$$

$$25. \quad \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}.$$

26.
$$6, \frac{1}{6} \begin{pmatrix} 4 \\ -4 \\ 2 \end{pmatrix}; \sqrt{14}, \frac{1}{\sqrt{14}} \begin{pmatrix} 2 \\ 1 \\ 0 \\ 3 \end{pmatrix}; \sqrt{21}, \frac{1}{\sqrt{21}} \begin{pmatrix} 4 \\ 0 \\ 1 \\ -2 \\ 0 \end{pmatrix}.$$

- 27. a) 15, b) 12, c) $\sqrt{62}$.
- 28. $\sqrt{35}$, $\sqrt{6}$, $\sqrt{41}$.
- 29. A 4-cube has 16 vertices, say, $V = \{(a, b, c, d) \mid a, b, c, d = 0, 1\}.$
- 30. $(5,0^9)^T$, $(0,5,0^8)^T$..., $(0^9,5)^T$. Yes, $(\alpha,\alpha,\ldots,\alpha)^T$ where $(5-\alpha)^2+9\alpha^2=50$.

31. a)
$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 5 \end{pmatrix}, \ \lambda \in \mathbb{R};$$
 b) $\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ -3 \\ 6 \end{pmatrix}, \ \lambda \in \mathbb{R};$

ANSWERS 217

c)
$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ 0 \\ 2 \end{pmatrix}, \ \lambda \in \mathbb{R};$$
 d) $\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 1 \\ 2 \\ -2 \end{pmatrix}, \ \lambda \in \mathbb{R}.$

32. Yes, it corresponds to $\lambda = 1$.

33. a)
$$\mathbf{x} = \begin{pmatrix} 0 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \lambda \in \mathbb{R};$$
 b) $\mathbf{x} = \begin{pmatrix} 0 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -3 \end{pmatrix}, \lambda \in \mathbb{R};$ c) $\mathbf{x} = \lambda \begin{pmatrix} 1 \\ -7 \end{pmatrix}, \lambda \in \mathbb{R};$ d) $\mathbf{x} = \begin{pmatrix} 0 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \lambda \in \mathbb{R};$ e) $\mathbf{x} = \begin{pmatrix} -2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \lambda \in \mathbb{R}.$

34. a)
$$\mathbf{x} = \begin{pmatrix} -4\\1\\3 \end{pmatrix} + \lambda \begin{pmatrix} 6\\1\\0 \end{pmatrix}$$
 or $\frac{x_1 + 4}{6} = x_2 - 1$, $x_3 = 3$.
b) $\mathbf{x} = \begin{pmatrix} 1\\2\\-3 \end{pmatrix} + \lambda \begin{pmatrix} 4\\-5\\6 \end{pmatrix}$ or $\frac{x_1 - 1}{4} = \frac{x_2 - 2}{-5} = \frac{x_3 + 3}{6}$.
c) $\mathbf{x} = \begin{pmatrix} 1\\-1\\1 \end{pmatrix} + \lambda \begin{pmatrix} 5\\-1\\2 \end{pmatrix}$ or $\frac{x_1 - 1}{5} = \frac{x_2 + 1}{-1} = \frac{x_3 - 1}{2}$.
d) $\mathbf{x} = \begin{pmatrix} 1\\0\\0 \end{pmatrix} + \lambda \begin{pmatrix} 0\\3\\3 \end{pmatrix}$ or $x_1 = 1$, $x_2 = x_3$.

35.
$$\begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$$
. a) $\mathbf{x} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix}, \quad \lambda \in \mathbb{R}.$

- 36. a) true, b) false, c) true, d) true
- 37. a) $\mathbf{x} = \mathbf{a} + \lambda(\mathbf{b} \mathbf{a}), \quad 0 \le \lambda \le 1;$ b) $\mathbf{x} = \mathbf{b} + \lambda(\mathbf{a} \mathbf{b}), \quad \lambda \ge 0;$ c) $\mathbf{x} = \mathbf{b} + \lambda(\mathbf{a} \mathbf{b}), \quad \lambda \ge 1;$ d) $\mathbf{x} = \mathbf{a} + \lambda(\mathbf{b} \mathbf{a}), \quad \lambda \ge \frac{1}{2}.$
- 38. a) Line segment joining (1,3,6) and (-2,4,13).
 - b) Line segment joining (3, -3, -5, -3, -13) and (-9, 27, 49, 15, 23).
 - c) Line segment joining (0,4,8,3,-5,4) and (6,-2,7,2,-1,5).
 - d) Ray from point (1, 4, -6, 2) parallel to (3, 0, -1, 5).
 - e) Line through (3, 1, -4) parallel to $\begin{pmatrix} 6 \\ -2 \\ 7 \end{pmatrix}$ with segment from (-9, 5, -18) to (15, -3, 10) removed.

39. a)
$$\mathbf{x} = \lambda \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 4 \\ -6 \end{pmatrix}; \quad \lambda, \mu \in \mathbb{R}.$$

b)
$$\mathbf{x} = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ -14 \\ 5 \end{pmatrix}; \quad \lambda, \mu \in \mathbb{R}.$$

- 40. a) Plane through the origin parallel to $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ 3 \\ 4 \end{pmatrix}$.
 - b) Line through (3, 1, 2, 4) parallel to $\begin{pmatrix} -2\\1\\3\\2 \end{pmatrix}$.
 - c) Line through origin parallel to $\begin{pmatrix} 3\\2\\1\\2 \end{pmatrix}$.
 - d) Plane through (1,2,3) parallel to $\begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 8 \\ 2 \\ 4 \end{pmatrix}$.

41. a)
$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda_1 \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + \lambda_2 \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix}$$
 for $\lambda_1, \lambda_2 \in \mathbb{R}$;

b)
$$\mathbf{x} = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} + \lambda_1 \begin{pmatrix} -4 \\ 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3 \\ 6 \\ -6 \end{pmatrix}$$
 for $\lambda_1, \lambda_2 \in \mathbb{R}$;

c)
$$\mathbf{x} = \begin{pmatrix} -2\\4\\1\\6 \end{pmatrix} + \lambda_1 \begin{pmatrix} 5\\-2\\5\\-7 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3\\0\\-1\\-6 \end{pmatrix}$$
 for $\lambda_1, \lambda_2 \in \mathbb{R}$;

d)
$$\mathbf{x} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} + \lambda_1 \begin{pmatrix} -3 \\ 0 \\ 2 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} \text{ for } \lambda_1, \lambda_2 \in \mathbb{R};$$

e)
$$\mathbf{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ \frac{6}{5} \\ 1 \end{pmatrix}$$
 for $\lambda_1, \lambda_2 \in \mathbb{R}$;

f)
$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} + \lambda_1 \begin{pmatrix} 4 \\ 0 \\ -4 \\ 5 \end{pmatrix} + \lambda_2 \begin{pmatrix} 7 \\ 2 \\ -3 \\ -5 \end{pmatrix}$$
 for $\lambda_1, \lambda_2 \in \mathbb{R}$.

ANSWERS 219

42. a)
$$\mathbf{x} = \lambda_1 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}; \ \lambda_1, \lambda_2 \in \mathbb{R}.$$

b)
$$\mathbf{x} = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} -4 \\ 0 \\ 3 \end{pmatrix}; \ \lambda_1, \lambda_2 \in \mathbb{R}.$$

c)
$$\mathbf{x} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ -6 \\ 1 \end{pmatrix}; \ \lambda_1, \lambda_2 \in \mathbb{R}.$$

d)
$$\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; \ \lambda_1, \lambda_2 \in \mathbb{R}.$$

44. a)
$$(3,2,4)$$
,

b)
$$(3, -4, 11)$$
.

45. a)
$$6x - 3y + 2z = -12$$
, b) $6x - 12y + 13z = 100$.

b)
$$6x - 12y + 13z = 100$$
.

46. a)
$$\mathbf{x} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$$
 for $\lambda \in \mathbb{R}$. b) $(-13, 22, 9)$.

47. a)
$$\mathbf{x} = \begin{pmatrix} 6 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 5 \\ 2 \\ -2 \end{pmatrix}$$
 for $\lambda \in \mathbb{R}$. b) $(1, 2, 3)$.

- a) Parallelogram with vertices (0,1), (1,3), (2,4), (3,6). 48.
 - Triangle with vertices (0,1), (1,3), (3,6).
 - Parallelogram with vertices (0,0,0), (12,6,-12), (32,-16,24), (44,-10,12).
 - Triangle with vertices (0,0,0), (12,6,-12), (36,-6,6).
 - e) An unbounded region with vertices O and P and two of the three sides parallel to

$$\begin{pmatrix} 4 \\ -2 \\ 3 \\ -1 \end{pmatrix}. \text{ At } P, \lambda_1 = \lambda_2 = 6 \text{ and so } \overrightarrow{OP} = \begin{pmatrix} 30 \\ -6 \\ 6 \\ 6 \end{pmatrix}.$$

49. a) See c). 220 CHAPTER 2

b)
$$\mathbf{x} = \begin{pmatrix} 1 \\ 3 \\ 4 \\ 2 \end{pmatrix} + \lambda_1 \begin{pmatrix} -3 \\ -2 \\ -4 \\ 3 \end{pmatrix} + \lambda_2 \begin{pmatrix} -2 \\ -1 \\ 6 \\ 3 \end{pmatrix}$$
 for $0 \le \lambda_1 \le 1, \ 0 \le \lambda_2 \le \lambda_1$.

c) The three parallelograms are:

The algebraic definitions are:

$$\mathbf{x} = \begin{pmatrix} 1 \\ 3 \\ 4 \\ 2 \end{pmatrix} + \lambda_1 \begin{pmatrix} -3 \\ -2 \\ -4 \\ 3 \end{pmatrix} + \lambda_2 \begin{pmatrix} -5 \\ -3 \\ 2 \\ 6 \end{pmatrix} \text{ for } 0 \leqslant \lambda_1 \leqslant 1, \ 0 \leqslant \lambda_2 \leqslant 1.$$

$$\mathbf{x} = \begin{pmatrix} 1 \\ 3 \\ 4 \\ 2 \end{pmatrix} + \lambda_1 \begin{pmatrix} -3 \\ -2 \\ -4 \\ 3 \end{pmatrix} + \lambda_2 \begin{pmatrix} -2 \\ -1 \\ 6 \\ 3 \end{pmatrix} \text{ for } 0 \leqslant \lambda_1 \leqslant 1, \ 0 \leqslant \lambda_2 \leqslant 1.$$

$$\mathbf{x} = \begin{pmatrix} 1 \\ 3 \\ 4 \\ 2 \end{pmatrix} + \lambda_1 \begin{pmatrix} 2 \\ 1 \\ -6 \\ -3 \end{pmatrix} + \lambda_2 \begin{pmatrix} -5 \\ -3 \\ 2 \\ 6 \end{pmatrix} \text{ for } 0 \leqslant \lambda_1 \leqslant 1, \ 0 \leqslant \lambda_2 \leqslant 1.$$

Chapter 2

1. a)
$$\frac{\pi}{4}$$
 b) $\cos^{-1}\left(\frac{1}{10\sqrt{3}}\right) \approx 86^{\circ}41'$, c) $\frac{\pi}{2}$, d) $\cos^{-1}\left(\frac{7}{10\sqrt{13}}\right) \approx 78^{\circ}48'$.

2. a)
$$0, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{3}};$$
 b) $\frac{4}{3\sqrt{2}}, -\frac{5}{\sqrt{33}}, \frac{8}{\sqrt{66}};$ c) $\frac{7}{3\sqrt{10}}, -\frac{1}{\sqrt{42}}, \frac{8}{\sqrt{105}}.$

3.
$$\cos^{-1}\left(\frac{1}{3}\right) \approx 70^{\circ}32'$$
.

7.
$$\lambda_1 = \mathbf{a} \cdot \mathbf{u}_1 = \frac{1}{\sqrt{2}}, \quad \lambda_2 = \mathbf{a} \cdot \mathbf{u}_2 = -3, \quad \lambda_3 = \mathbf{a} \cdot \mathbf{u}_3 = \frac{3}{\sqrt{2}}.$$

8. a)
$$\begin{pmatrix} 5 \\ \frac{5}{2} \\ 1 \end{pmatrix}$$
. b) $\frac{\pi}{2}$. c) $\frac{\sqrt{66}}{2}$. d) $\frac{1}{17} \begin{pmatrix} 80 \\ 50 \\ 22 \end{pmatrix}$.

c)
$$\frac{\sqrt{66}}{2}$$

$$d) \quad \frac{1}{17} \begin{pmatrix} 80\\50\\22 \end{pmatrix}$$

9. a)
$$\frac{1}{3} \begin{pmatrix} 2 \\ -4 \\ 2 \end{pmatrix}$$
, b) $\frac{3}{14} \begin{pmatrix} -1 \\ 3 \\ 0 \\ 2 \end{pmatrix}$, c) $\begin{pmatrix} -3 \\ 3 \\ 6 \end{pmatrix}$.

b)
$$\frac{3}{14} \begin{pmatrix} -1\\3\\0\\2 \end{pmatrix}$$
,

c)
$$\begin{pmatrix} -3\\3\\6 \end{pmatrix}$$
.

a) 7, b) 3, c)
$$\sqrt{6}$$
.

11.
$$\mathbf{q} = -\mathbf{p} + 2\mathbf{a} + 2\operatorname{proj}_{\mathbf{d}}(\mathbf{p} - \mathbf{a}).$$

12. b)
$$q(\lambda_0) = \mathbf{a} \cdot \mathbf{a} - \frac{(\mathbf{a} \cdot \mathbf{b})^2}{\mathbf{b} \cdot \mathbf{b}}$$

14. a)
$$\begin{pmatrix} 16 \\ -4 \\ -2 \end{pmatrix}$$
, b) $\begin{pmatrix} -23 \\ -11 \\ 20 \end{pmatrix}$, c) $\begin{pmatrix} -45 \\ 9 \\ -18 \end{pmatrix}$.

$$b) \quad \begin{pmatrix} -23 \\ -11 \\ 20 \end{pmatrix}$$

c)
$$\begin{pmatrix} -45\\9\\-18 \end{pmatrix}$$
.

15.
$$\begin{pmatrix} 12 \\ -8 \\ 6 \end{pmatrix}$$
.

17. a)
$$2\sqrt{21}$$
, $\begin{pmatrix} 8 \\ -4 \\ 2 \end{pmatrix}$; b) $2\sqrt{2}$, $\begin{pmatrix} 0 \\ -2 \\ -2 \end{pmatrix}$.

b)
$$2\sqrt{2}$$
, $\begin{pmatrix} 0 \\ -2 \\ -2 \end{pmatrix}$

18. a)
$$\sqrt{2}$$
; b) $\frac{15}{2}$

b)
$$\frac{15}{2}$$
.

19. a)
$$-\frac{4}{3\sqrt{2}}$$
. b) $\frac{1}{\sqrt{2}}$.

b)
$$\frac{1}{\sqrt{2}}$$

20. a) 2, b)
$$\frac{1}{\sqrt{2}}$$
, c) 7.

b)
$$\frac{1}{\sqrt{2}}$$
,

a) Line through A and B is $\mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \lambda_1 \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix}, \ \lambda_1 \in \mathbb{R}.$ 23. Line through C and D is $\mathbf{x} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}, \ \lambda_2 \in \mathbb{R}.$

b) Shortest distance is
$$\frac{3}{\sqrt{17}}$$

c) Point P is
$$\left(-\frac{21}{17}, \frac{38}{17}, \frac{53}{17}\right)$$
 and Q is $\left(-\frac{30}{17}, \frac{32}{17}, \frac{47}{17}\right)$.

- 25. a) 14, b) 53.
- 27. As usual, the answers for equations of planes are not unique.

a)
$$\mathbf{x} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}; \quad \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x} - \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} \end{pmatrix} = 0;$$

$$x_1 - x_2 - 2x_3 = 3.$$

b)
$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} + \lambda_1 \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}; \qquad \begin{pmatrix} -5 \\ 5 \\ -5 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x} - \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} \end{pmatrix} = 0;$$

$$x_1 - x_2 + x_3 = -3.$$

c)
$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} + \lambda_1 \begin{pmatrix} -2 \\ -1 \\ 4 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}, \quad \begin{pmatrix} -7 \\ 10 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x} - \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} \end{pmatrix} = 0;$$

$$7x_1 - 10x_2 + x_3 = -15.$$

d)
$$\mathbf{x} = \begin{pmatrix} -1\\0\\0 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1/2\\1\\0 \end{pmatrix} + \lambda_2 \begin{pmatrix} -1/4\\0\\1 \end{pmatrix}, \qquad \begin{pmatrix} -4\\2\\-1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x} - \begin{pmatrix} -1\\0\\0 \end{pmatrix} \end{pmatrix} = 0;$$

$$4x_1 - 2x_2 + x_3 = -4.$$

e)
$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} + \lambda_1 \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} + \lambda_2 \begin{pmatrix} 14 \\ 2 \\ -6 \end{pmatrix}, \qquad \begin{pmatrix} 4 \\ 17 \\ 15 \end{pmatrix} \cdot \left(\mathbf{x} - \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} \right) = 0;$$

$$4x_1 + 17x_2 + 15x_3 = 8.$$

28. a)
$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$$
, for $\lambda, \mu \in \mathbb{R}$.

b)
$$\begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$
. c) $x_1 + x_2 + x_3 = 7$.

29. a)
$$\begin{pmatrix} 4 \\ 4 \\ 2 \end{pmatrix}$$
, b) $\frac{1}{2} \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix}$.

30. a) 3, b)
$$\sqrt{6}$$
, c) $\frac{13}{7}$, d) $\frac{25}{7}$.

31. a)
$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}, \quad \lambda, \ \mu \in \mathbb{R}.$$

b)
$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
. c) $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x} - \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \end{pmatrix} = 0$. d) $\frac{8}{\sqrt{3}}$.

32. a)
$$\mathbf{c} = \operatorname{proj}_{\mathbf{a}} \mathbf{v}, \ \mathbf{d} = \mathbf{v} - \mathbf{c}.$$
 b) $\mathbf{c} = \begin{pmatrix} \frac{3}{11} \\ -\frac{1}{11} \\ -\frac{1}{11} \end{pmatrix}, \ \mathbf{d} = \begin{pmatrix} \frac{8}{11} \\ \frac{12}{11} \\ \frac{12}{11} \end{pmatrix}.$

Chapter 3

1.

	$x \in \mathbb{N}$	$x \in \mathbb{Z}$	$x \in \mathbb{Q}$	$x \in \mathbb{R}$
a)	-	-25	-25	-25
	3	3	3	3
	-	-3	-3	-3
	-	-	$-\frac{10}{3}$	$-\frac{10}{3}$
b)	1	1,-5	1,-5	1,-5
	5	5	$5, \frac{3}{2}$	$5, \frac{3}{2}$
	-	-	-	$\frac{1\pm\sqrt{5}}{2}$
	-	-	-	-
c)	$3j,j \in \mathbb{N}$	$3j,j\in\mathbb{Z}$	$3j,j\in\mathbb{Z}$	$3j,j \in \mathbb{Z}$
	0	0	0	$3k\pi,k\in\mathbb{Z}$

- 2. No.
- 3. Yes. The set $\{0\}$ and the empty set $\emptyset = \{\ \}$.
- 4. Yes.

5.
$$3z = 6 + 9i$$
, $z^2 = -5 + 12i$, $z + 2w = 7i$, $z(w+3) = -2 + 10i$, $\frac{z}{w} = \frac{1}{5}(4-7i)$, $\frac{w}{z} = \frac{1}{13}(4+7i)$.

6. a)
$$\frac{1}{5}(3-i)$$
, b) $-\frac{1}{2}(1-i)$.

7. a)
$$a^2 - b^2 + 2abi$$
, b) $\frac{a}{a^2 + b^2} - i\frac{b}{a^2 + b^2}$, c) $\frac{1}{(a-1)^2 + b^2} ((a^2 - 1 + b^2) - 2ib)$.

- 8. a) $\frac{1}{2}(-1 \pm \sqrt{3}i)$, b) $-1 \pm \sqrt{2}i$, c) $3 \pm i$, d) $\frac{1}{2}(3 \pm \sqrt{3})i$, e) $\pm i$, $\pm 2i$.
- 10. 16

11.
$$\frac{8abi(a^2 - b^2)}{(a^2 + b^2)^2}$$

12.

z	$\operatorname{Re}(z)$	$\operatorname{Im}(z)$	\overline{z}
-1+i	-1	1	-1-i
2+3i	2	3	2-3i
2-3i	2	-3	2+3i
$\frac{2-i}{1+i}$	$\frac{1}{2}$	$-\frac{3}{2}$	$\frac{1+3i}{2}$
$\frac{1}{(1+i)^2}$	0	$-\frac{1}{2}$	$\frac{1}{2}$

13.
$$-3+4i$$
, $\frac{11}{25}-\frac{2}{25}i$.

14.
$$z = 2 + 3i$$
, $w = -1 + 2i$.

17. b)
$$z^2 - 6z + 13$$

18.

z	z	Arg(z)	Polar Form
6+6i	$6\sqrt{2}$	$\frac{\pi}{4}$	$6\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$
-4	4	π	$4(\cos\pi + i\sin\pi)$
$\sqrt{3}-i$	2	$\frac{-\pi}{6}$	$2\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)$
$\frac{-1}{\sqrt{2}} - \frac{i}{\sqrt{2}}$	1	$\frac{-3\pi}{4}$	$\cos\frac{3\pi}{4} - i\sin\frac{3\pi}{4}$
-7 + 3i	$\sqrt{58}$	α	$\sqrt{58}(\cos\alpha + i\sin\alpha)$

Here $\alpha = \pi - \tan^{-1} \frac{3}{7}$.

19.
$$\sqrt{234}$$
, -1

20.
$$n = 4$$

21. a)
$$\frac{3}{2}(1+\sqrt{3}i)$$
, b) $\frac{3}{2}(-\sqrt{3}+i)$, c) $-\frac{3}{2}(1+\sqrt{3}i)$, d) $\frac{3}{2}(\sqrt{3}-i)$,

e)
$$\frac{3}{2} \left(\sqrt{2 + \sqrt{2}} + i\sqrt{2 - \sqrt{2}} \right)$$
 (Double angle formula used).

27. 64,
$$-(1+\sqrt{3})i$$
, $\frac{1+\sqrt{3}}{2} + \frac{\sqrt{3}-1}{2}i$.

28.
$$\frac{7}{2}$$
.

29. π .

ANSWERS 225

30.
$$\operatorname{Arg}(-1+i) = \frac{3\pi}{4}$$
; $\operatorname{Arg}(-\sqrt{3}+i) = \frac{5\pi}{6}$; $\operatorname{Arg}((-1+i)(-\sqrt{3}+i)) = -\frac{5\pi}{12}$; $\operatorname{Arg}(\frac{-1+i}{-\sqrt{3}+i}) = -\frac{\pi}{12}$.

31.
$$\sin \frac{7\pi}{12} = \frac{1+\sqrt{3}}{2\sqrt{2}}$$
.

32.
$$zw = 2\sqrt{2}e^{i\pi/12} = 2\sqrt{2}\left[\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right]; z^9 = -512; \left(\frac{z}{\overline{w}}\right)^{12} = 64e^{i\pi} = -64.$$

33. a)
$$16(-\sqrt{3}+i)$$
, b) $-i$, c) $-\frac{1}{2}-i\frac{\sqrt{3}}{2}$.

34. a)
$$\pm (5-2i)$$
, b) $\pm (3+5i)$, c) $\pm (7+5i)$.

35. b)
$$\sqrt{2}e^{\frac{5\pi i}{12}} = \frac{1}{2}\left(\left(\sqrt{3}-1\right)+i\left(\sqrt{3}+1\right)\right)$$
, c) $\frac{1}{\sqrt{2}}(1+13i)$.

37. a)
$$2+i$$
, $1-i$; b) $4+i$, $3-2i$; c) $1-2i$, $-5+3i$.

38.
$$e^{i\pi/7}$$
, $e^{3i\pi/7}$, $e^{5i\pi/7}$, $e^{i\pi}$, $e^{-i\pi/7}$, $e^{-3i\pi/7}$, $e^{-5i\pi/7}$.

39.
$$e^{in\pi/12}$$
 for $n = -11, -7, -3, 1, 5, 9$.

40.
$$2e^{in\pi/15}$$
 for $n = -13, -7, -1, 5, 11$.

41.
$$\frac{15}{2} + i \left(\frac{3\sqrt{3}}{2} - 1 \right), \quad 3 - i, \quad \frac{15}{2} - i \left(\frac{3\sqrt{3}}{2} + 1 \right).$$

48. a) Real part =
$$cos(2\theta)$$
. Imaginary part = $sin(2\theta)$.

51. a)
$$\cos 6\theta = \cos^6 \theta - 15\cos^4 \theta \sin^2 \theta + 15\cos^2 \theta \sin^4 \theta - \sin^6 \theta \sin 6\theta = 6\cos^5 \theta \sin \theta - 20\cos^3 \theta \sin^3 \theta + 6\cos \theta \sin^5 \theta$$

b)
$$\cos 6\theta = 32\cos^6\theta - 48\cos^4\theta + 18\cos^2\theta - 1$$

52.
$$\sin 7\theta = 7\cos^6\theta \sin\theta - 35\cos^4\theta \sin^3\theta + 21\cos^2\theta \sin^5\theta - \sin^7\theta$$
$$\cos 7\theta = \cos^7\theta - 21\cos^5\theta \sin^2\theta + 35\cos^3\theta \sin^4\theta - 7\cos\theta \sin^6\theta.$$

53. a)
$$\cos \theta = \frac{1}{2} (e^{i\theta} + e^{-i\theta}).$$

b) $\cos^6 \theta = \frac{1}{32} (\cos 6\theta + 6 \cos 4\theta + 15 \cos 2\theta + 10).$

54.
$$\sin^5 \theta = \frac{1}{16} \left(\sin 5\theta - 5\sin 3\theta + 10\sin \theta \right)$$
$$\int \sin^5 \theta d\theta = \frac{1}{16} \left(-\frac{1}{5}\cos 5\theta + \frac{5}{3}\cos 3\theta - 10\cos \theta \right) + C,$$

$$\cos^4 \theta = \frac{1}{8} \left[3 + 4\cos(2\theta) + \cos(4\theta) \right]$$
$$\int \cos^4 \theta d\theta = \frac{1}{8} \left[3\theta + 2\sin(2\theta) + \frac{1}{4}\sin(4\theta) \right] + C.$$

55. a)
$$\cos 5\theta = 16x^5 - 20x^3 + 5x$$

d)
$$-1$$
, $\cos \frac{\pi}{5}$, $\cos \frac{3\pi}{5}$, $\cos \frac{7\pi}{5}$, $\cos \frac{9\pi}{5}$.

56. The sum is n when k is an integer multiple of n and 0 otherwise.

58.
$$\frac{\sin\left(\frac{1}{2}(n+1)\theta\right)\sin\left(\frac{1}{2}n\theta\right)}{\sin\frac{1}{2}\theta}.$$

59. a)
$$\frac{9e^{i\theta}}{9 + e^{i2\theta}}.$$

60. a)
$$|z - i| \le 2$$

c)
$$|z| \ge 2$$
 and $|\text{Im}(z)| \le 3$

b)
$$|z - i| \le 2$$
 or $-\frac{\pi}{3} \le \operatorname{Arg}(z - i) \le \frac{2\pi}{3}$

 $d) \quad y \leqslant x$

e) The real axis

f) $|z-1-i| < 1 \& -\frac{\pi}{4} < \text{Arg}(z-1-i) \leqslant \frac{\pi}{2}$

- g) Circle: $x^2 + \left(y + \frac{5}{3}\right)^2 = \left(\frac{4}{3}\right)^2$ h) Ellipse: $\left(\frac{x}{2\sqrt{2}}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$

a) $\operatorname{Re}(z) \geqslant 3 \operatorname{Im}(z)$ and |z - (3+i)| > 261.

b)
$$|z - i| < |z + i| \text{ and } -\frac{\pi}{6} \le \text{Arg}(z - i) \le \frac{\pi}{6}$$

62. a)
$$\operatorname{Im}(z) > -4$$
 and $|z - 1 - i| \geqslant 3$

63.
$$|z-x| \ge |z-\operatorname{Re}(z)|$$

64. a)
$$w = e^{i\alpha}, -\pi < \alpha \leqslant \pi$$

c)
$$|z - e^{i\alpha}| \ge |z - e^{i\theta}|, \theta = \operatorname{Arg}(z)$$

- 65. a) 742,
- b) 129,
- c) 1 + 9i.

66.
$$p(z) = (z-2)(2z-5)(z+3)$$
.

67.
$$p(z) = (z-1)(z+1)(z+2)(z+4)$$
.

68. a)
$$\left(z - e^{-\frac{i\pi}{10}}\right) \left(z - e^{\frac{3\pi i}{10}}\right) \left(z - e^{\frac{7\pi i}{10}}\right) \left(z - e^{-\frac{i\pi}{2}}\right) \left(z - e^{-\frac{9\pi i}{10}}\right).$$

b) $\left(z - \sqrt{2}e^{\frac{i\pi}{6}}\right) \left(z - \sqrt{2}e^{\frac{i\pi}{2}}\right) \left(z - \sqrt{2}e^{\frac{5\pi i}{6}}\right) \left(z - \sqrt{2}e^{-\frac{i\pi}{6}}\right) \left(z - \sqrt{2}e^{-\frac{i\pi}{6}}\right).$

- 69. a) $(x-1)(x+1)(x^2+1)(x^2+\sqrt{2}x+1)(x^2-\sqrt{2}x+1)$.
 - b) $(x^2+2)(x^2+\sqrt{6}x+2)(x^2-\sqrt{6}x+2)$.

70.
$$(z^2 + 2z + 2)(z^2 - 2z + 2)$$

71.
$$(z - e^{-i\pi/8})(z - e^{i3\pi/8})(z - e^{i7\pi/8})(z - e^{-i5\pi/8})$$

72. a)
$$e^{-\frac{5\pi i}{6}}$$
, $e^{-\frac{\pi i}{2}}$, $e^{-\frac{\pi i}{6}}$, $e^{\frac{\pi i}{6}}$, $e^{\frac{\pi i}{2}}$, $e^{\frac{5\pi i}{6}}$.

b) Note that the solutions are evenly spaced around the unit circle centred on 0.

c)
$$\left(z - e^{-\frac{5\pi i}{6}}\right) \left(z - e^{-\frac{\pi i}{2}}\right) \left(z - e^{-\frac{\pi i}{6}}\right) \left(z - e^{\frac{\pi i}{6}}\right) \left(z - e^{\frac{\pi i}{2}}\right) \left(z - e^{\frac{5\pi i}{6}}\right)$$
.

d)
$$(z^2+1)(z^2+\sqrt{3}z+1)(z^2-\sqrt{3}z+1)$$
.

230 CHAPTER 4

73. a)
$$e^{i\pi/4}$$
, $e^{i\pi/2}$, $e^{i3\pi/4}$, $e^{-i\pi/4}$, $e^{-i\pi/2}$, $e^{-3\pi/4}$.

b)
$$(z - e^{i\pi/4}) (z - e^{-i\pi/4}) (z - e^{i3\pi/4}) (z - e^{-i3\pi/4}) (z - e^{i\pi/2}) (z - e^{-i\pi/2})$$

c)
$$(z^2 - \sqrt{2}z + 1)(z^2 + \sqrt{2}z + 1)(z^2 + 1)$$
.

74. a)
$$(z - e^{2i\pi/5})(z - e^{-2i\pi/5})(z - e^{4i\pi/5})(z - e^{-4i\pi/5})$$

b)
$$\left(z^2 - 2z\cos\left(\frac{2\pi}{5}\right) + 1\right)\left(z^2 - 2z\cos\left(\frac{4\pi}{5}\right) + 1\right)$$

75. a)
$$(t+1-i)(t+1+i)(t-2)(t+1)(t+i)(t-i)$$
,

b)
$$(t^2 + 2t + 2) (t - 2) (t + 1) (t^2 + 1)$$

76.
$$1+i$$
, $1-i$, $\sqrt[3]{5}$, $\frac{\sqrt[3]{5}}{2} \left(-1+i\sqrt{3}\right)$, $\frac{\sqrt[3]{5}}{2} \left(-1-i\sqrt{3}\right)$.

77. a)
$$(z^2 + z + 1)(z^6 + z^3 + 1)$$
. b) $e^{\pm 2i\pi/9}, e^{\pm 4i\pi/9}, e^{\pm 8i\pi/9}$.

79. a) One of the roots is
$$(-2+2i)^{1/3} + (-2-2i)^{1/3}$$
.

80. d)
$$-2$$
, $2\sqrt{2}\cos\frac{\pi}{12}$, $2\sqrt{2}\cos\frac{7\pi}{12}$.

81. a) 1; b)
$$-1, \frac{5}{7}, \frac{1}{4};$$
 c) $4, \pm \frac{1}{5}$

90. evalc((sqrt(2)+7*I)^13);

Chapter 4

1. a)
$$\left\{\frac{5}{2}\right\}$$
, $\left\{\left(\frac{5}{2}\right): \lambda \in \mathbb{R}\right\}$, $\left\{\left(\frac{5}{2}\right): \lambda, \mu \in \mathbb{R}\right\}$

b)
$$\left\{ \begin{pmatrix} 4-2\lambda \\ \lambda \end{pmatrix} : \lambda \in \mathbb{R} \right\}, \quad \left\{ \begin{pmatrix} 4-2\lambda \\ \lambda \\ \mu \end{pmatrix} : \lambda, \mu \in \mathbb{R} \right\}$$

c)
$$\left\{ \begin{pmatrix} \lambda \\ \mu \\ 2 - 2\lambda + 3\mu \end{pmatrix} : \lambda, \mu \in \mathbb{R} \right\}$$

2. a) No solution. b) Unique solution
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 8 \\ -9 \end{pmatrix}$$
.

c) Infinite number of solutions on the line
$$\mathbf{x} = \begin{pmatrix} 5 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 5 \\ 1 \end{pmatrix}, \ \lambda \in \mathbb{R}.$$

- 3. For $a_{11} \neq 0$ the conditions are as follows.
 - a) If $a_{11}a_{22} a_{12}a_{21} \neq 0$, then solution is unique.
 - b) If $a_{11}a_{22} a_{12}a_{21} = 0$ and $a_{11}b_2 a_{21}b_1 \neq 0$, then there is no solution.
 - c) If $a_{11}a_{22} a_{12}a_{21} = 0$ and $a_{11}b_2 a_{21}b_1 = 0$, then there are an infinite number of solutions.
- 4. The general conditions are as follows.
 - a) If $a_{11}a_{22} a_{12}a_{21} \neq 0$, then solution is unique.
 - b) There is no solution if $a_{11}a_{22} a_{12}a_{21} = 0$ and either
 - i) $a_{11}b_2 a_{21}b_1 \neq 0$, or
 - ii) $a_{12}b_2 a_{22}b_1 \neq 0$, or
 - iii) $a_{11} = a_{12} = a_{21} = a_{22} = 0$ and b_1 , b_2 are not both zero.
 - c) There are an infinite number of solutions otherwise.
- 5. a) Solution set $= \left\{ \begin{pmatrix} 1+\lambda\\2-2\lambda\\\lambda \end{pmatrix} : \lambda \in \mathbb{R} \right\}$.

 Planes intersect in line $\mathbf{x} = \begin{pmatrix} 1\\2\\0 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-2\\1 \end{pmatrix}, \ \lambda \in \mathbb{R}$.
 - b) No solution. Planes are parallel.
 - c) Solution set = $\left\{ \begin{pmatrix} 4 \frac{5}{4}\lambda + \frac{1}{2}\mu \\ \lambda \\ \mu \end{pmatrix} : \lambda, \ \mu \in \mathbb{R} \right\}$. Equations represent the same plane.
- 8. a) In vector form,

$$x_1 \begin{pmatrix} 3 \\ 5 \\ -1 \end{pmatrix} + x_2 \begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix} + x_3 \begin{pmatrix} 4 \\ -3 \\ 6 \end{pmatrix} = \begin{pmatrix} 6 \\ 7 \\ 8 \end{pmatrix}.$$

As a matrix equation and augmented matrix,

$$\begin{pmatrix} 3 & -3 & 4 \\ 5 & 2 & -3 \\ -1 & -1 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 7 \\ 8 \end{pmatrix}; \qquad (A|\mathbf{b}) = \begin{pmatrix} 3 & -3 & 4 & 6 \\ 5 & 2 & -3 & 7 \\ -1 & -1 & 6 & 8 \end{pmatrix}.$$

b) In vector form,

$$x_1 \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} + x_3 \begin{pmatrix} 7 \\ -5 \\ 6 \end{pmatrix} + x_4 \begin{pmatrix} 8 \\ -1 \\ -6 \end{pmatrix} = \begin{pmatrix} -2 \\ 7 \\ 5 \end{pmatrix}.$$

As a matrix equation and augmented matrix,

$$\begin{pmatrix} 1 & 3 & 7 & 8 \\ 3 & 2 & -5 & -1 \\ 0 & 3 & 6 & -6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -2 \\ 7 \\ 5 \end{pmatrix}; \qquad (A|\mathbf{b}) = \begin{pmatrix} 1 & 3 & 7 & 8 & -2 \\ 3 & 2 & -5 & -1 & 7 \\ 0 & 3 & 6 & -6 & 5 \end{pmatrix}.$$

The system of equation is

The augmented matrix form is

$$A = \left(\begin{array}{ccc|c} 1 & -3 & 0 & 10 \\ 0 & 6 & 6 & -2 \\ -6 & -1 & -4 & 0 \\ 7 & 9 & 11 & 5 \end{array}\right).$$

10. a)
$$R_2 = R_2 - 2R_1$$
, $R_3 = R_3 - 4R_1$;

b)
$$R_1 = R_1 - R_2$$
, $R_2 = \frac{1}{2}R_2$.

11.
$$\left(\begin{array}{ccc|c} 2 & 4 & 1 & 2 \\ 9 & 14 & 7 & 7 \\ 1 & 3 & 1 & 3 \end{array} \right).$$

12. All but c) and h) are in row-echelon form.

13. a)
$$\mathbf{x} = \begin{pmatrix} 2 \\ 3 \\ -2 \end{pmatrix}$$
. Point of intersection of 3 planes.

b)
$$\mathbf{x} = \begin{pmatrix} 2\\3\\-2\\0 \end{pmatrix} + \lambda \begin{pmatrix} -1\\0\\2\\1 \end{pmatrix}, \lambda \in \mathbb{R}.$$

A line in \mathbb{R}^4 through the point (2,3,-2,0) and parallel to $\begin{pmatrix} -1\\0\\2 \end{pmatrix}$.

14. a)
$$\mathbf{x} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
.

14. a)
$$\mathbf{x} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
. b) $\mathbf{x} = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$, $\lambda \in \mathbb{R}$. c) $\mathbf{x} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$.

c)
$$\mathbf{x} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$

d) No solution. e)
$$\mathbf{x} = \begin{pmatrix} 0 \\ 5 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$
, $\lambda \in \mathbb{R}$. f) No solution.

$$\mathbf{g}) \quad \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 2 \end{pmatrix}.$$

g)
$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 2 \end{pmatrix}$$
. h) $\mathbf{x} = \begin{pmatrix} -3 \\ 6 \\ 5 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -2 \\ -1 \\ 1 \end{pmatrix}$, $\lambda \in \mathbb{R}$.

15. a)
$$\begin{pmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & -2 \end{pmatrix}$$
.

Solution: $\mathbf{x} = \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$, which is the position vector of a point in \mathbb{R}^3 .

b)
$$\begin{pmatrix} 1 & 0 & 0 & -75 & -34 \\ 0 & 1 & 0 & 29 & 13 \\ 0 & 0 & 1 & 7 & 3 \end{pmatrix}.$$

Solution: $\mathbf{x} = \begin{pmatrix} -34 \\ 13 \\ 3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 75 \\ -29 \\ -7 \\ 1 \end{pmatrix}$, $\lambda \in \mathbb{R}$, which is a line in \mathbb{R}^4 .

- a) Unique solution, 16.
- b) no solution,
- c) infinitely many solutions,
- d) infinitely many solutions, e) unique solution.

- 17.
- a) $k \neq 3$, b) no such value of k, c) k = 3.

- 18.
- a) $\lambda = \pm 2$, b) $\lambda = 1$, c) all other values of λ .

19. a)
$$a \neq 0$$
, b) $a = 0, b \neq 0$, c) $a = b = 0$, d) $\mathbf{x} = \begin{pmatrix} 5 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ \frac{5}{2} \\ -1 \\ 3 \end{pmatrix} \lambda \in \mathbb{R}$.

- 20. Perhaps, if the costs are negative or very large then you can be sure that someone is cheating.
- 21. No.

22. a)
$$x_1 = 7b_1 + 5b_2 + 3b_3$$

 $x_2 = 6b_1 + 4b_2 + 3b_3$
 $x_3 = 2b_1 + b_2 + b_3$

a)
$$x_1 = 7b_1 + 5b_2 + 3b_3$$
 b) $x_1 = \frac{3}{2}b_1 - 2b_2 - 2b_3$
 $x_2 = 6b_1 + 4b_2 + 3b_3$ $x_3 = 2b_1 + b_2 + b_3$ $x_3 = \frac{1}{2}b_1 - b_2 - b_3$

24. a)
$$b_3 - \frac{1}{2}b_1 + b_2 = 0$$
.

- a) $b_3 \frac{1}{2}b_1 + b_2 = 0$. b) $b_1 b_2 + b_3 = 0$ and $-2b_1 + b_2 + b_4 = 0$.
- 26. Yes.
- 27. No.

28. Yes, since
$$\begin{pmatrix} 1\\1\\4\\12 \end{pmatrix} = 3 \begin{pmatrix} 3\\-1\\4\\6 \end{pmatrix} - 2 \begin{pmatrix} 4\\-2\\4\\3 \end{pmatrix}$$
.

29. No.

- 30. Yes, at (6, 13, 11).
- 31. Yes, since $\begin{pmatrix} 5 \\ 7 \\ -1 \end{pmatrix} = 3 \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix} 4 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$.
- 33. Meet at (6, 9, 4).
- 34. The planes intersect at the line $\mathbf{x} = \begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 4 \\ 8 \end{pmatrix} \lambda \in \mathbb{R}$.
- 35. Planes are not parallel as $\lambda_1 \begin{pmatrix} 2\\1\\-2\\7 \end{pmatrix} + \lambda_2 \begin{pmatrix} -3\\1\\5\\2 \end{pmatrix} = \mu_1 \begin{pmatrix} 3\\-1\\2\\4 \end{pmatrix} + \mu_2 \begin{pmatrix} -1\\4\\2\\6 \end{pmatrix}$ only when $\lambda_1 = \lambda_2 = \mu_1 = \mu_2 = 0$.
- 37. a) $\mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \\ 1 \end{pmatrix}$, $\lambda \in \mathbb{R}$. b) The planes intersect in a line.
- 38. $p(x) = 2x^2 4x + 7$
- 39. I am 42, my brother is 46 and my sister is 52.
- 40. 6 days in Bangkok, 4 each in Singapore and Kuala Lumpur.
- $41. \quad 3, 1, 2.$
- 42. a) Letting x_1 be the number of hectares of wheat, x_2 be the number of hectares of oats and x_3 be the number of hectares of barley gives the equations

$$x_1 + x_2 + x_3 = 12$$

 $6x_1 + 6x_2 + 2x_3 = 48$
 $150x_1 + 100x_2 + 70x_3 = 700$
 $72x_1 + 48x_2 + 36x_3 = 612$

- b) There is no solution.
- c) The inequalities are

and with slack variables s_1 , s_2 , s_3 , s_4 the equations are

- d) Some sensible solutions are to either plant $4\frac{2}{3}$ hectares wheat and no oats and barley, or 7 hectares oats and no wheat and barley, or 10 hectares barley and no wheat and oats. There are also an infinite number of other reasonable solutions. In each case it is the fertiliser which is restricting the planting.
- 44. a) Π_1 is x + 2y z = 2, Π_2 is 3x + 6y z = 12, Π_3 is 2x + 4y z = 7.

b)
$$\mathbf{x} = \begin{pmatrix} 5 - 2t_2 \\ t_2 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 3 \end{pmatrix} + t_2 \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}, \quad t_2 \in \mathbb{R}$$

The intersection is a line through (5,0,3) and parallel to $\begin{pmatrix} -2\\1\\0 \end{pmatrix}$.

- c) x = -2y + 5 and z = 3.
- 45. a) $\begin{cases} x 2y + z = a \\ 3x + 6y + 8z = b \\ 4x + 2y + 7z = c \\ 7x 8y + 6z = d \end{cases}$ b) d a + 2b 3c = 0. c) $\left(\frac{4}{7}, -\frac{1}{7}, \frac{1}{7}\right)$.

Chapter 5

b) $-2B = \begin{pmatrix} 4 & -2 \\ -6 & -8 \\ 2 & -10 \end{pmatrix}$.

 $d) \quad B+C=\begin{pmatrix} -5 & 3\\ 4 & 0\\ 5 & 7 \end{pmatrix}.$

f) B + 3I is not defined.

h) BA is not defined.

l) B^2 is not defined.

j) $CD = \begin{pmatrix} -4 & -13 & -9 \\ -2 & 11 & 13 \\ 14 & 14 & 0 \end{pmatrix}$.

1. a)
$$3A = \begin{pmatrix} 6 & -9 & 12 \\ 9 & 6 & -6 \\ 3 & -3 & 9 \end{pmatrix}$$
.

c)
$$A + B$$
 is not defined.

e)
$$A + 3I = \begin{pmatrix} 5 & -3 & 4 \\ 3 & 5 & -2 \\ 1 & -1 & 6 \end{pmatrix}$$
.

g)
$$AB = \begin{pmatrix} -17 & 10 \\ 2 & 1 \\ -8 & 12 \end{pmatrix}$$
.

i) BC is not defined.

k)
$$A^2 = \begin{pmatrix} -1 & -16 & 26 \\ 10 & -3 & 2 \\ 2 & -8 & 15 \end{pmatrix}$$
.

m)
$$(BD)^2 = \begin{pmatrix} -86 & 81 & 167 \\ -47 & 38 & 85 \\ -187 & 171 & 358 \end{pmatrix}$$
.

7. 96A + 205I.

8.
$$N^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad N^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

11. a)
$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
, b) $\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$, c) $\begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$, d) $\begin{pmatrix} 1 & -2 & 3 \end{pmatrix}$.

13.
$$A^T = \begin{pmatrix} 1 & -3 & 4 \\ -2 & 0 & 5 \end{pmatrix}$$
, $B^T = \begin{pmatrix} 2 & -4 & 5 \\ -5 & 6 & 0 \\ 4 & 5 & 8 \\ 3 & 5 & 6 \end{pmatrix}$, $C^T = \begin{pmatrix} 1 & 4 & 2 \\ 4 & -3 & 6 \\ 2 & 6 & 7 \end{pmatrix} = C$.

14.
$$\mathbf{a}^T \mathbf{b} = \mathbf{b}^T \mathbf{a} = 8$$
, $\mathbf{a} \mathbf{b}^T = \begin{pmatrix} 0 & 4 & 2 \\ 0 & 12 & 6 \\ 0 & -8 & -4 \end{pmatrix}$, $\mathbf{b} \mathbf{a}^T = \begin{pmatrix} 0 & 0 & 0 \\ 4 & 12 & -8 \\ 2 & 6 & -4 \end{pmatrix}$, $\mathbf{a} \mathbf{b}$ and $\mathbf{a}^T \mathbf{b}^T$ are not defined.

17. A possible
$$G = \begin{pmatrix} 3 & 6 \\ -4 & 2 \end{pmatrix}$$
.

ANSWERS 237

19. a)
$$\begin{pmatrix} 4 & -7 \\ -1 & 2 \end{pmatrix}$$
, b) $\begin{pmatrix} 5 & 7 \\ 3 & 4 \end{pmatrix}$, c) no inverse, d) $\frac{1}{5}\begin{pmatrix} 4 & -9 \\ -3 & 8 \end{pmatrix}$, e) $\begin{pmatrix} -7 & 1 \\ 1 & 0 \end{pmatrix}$.

20.
$$A^{-1} = \begin{pmatrix} 1 & 3 & -4 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \quad B^{-1} = \begin{pmatrix} 8 & -2 & -3 \\ \frac{1}{2} & 0 & 0 \\ -3 & 1 & 1 \end{pmatrix}, \quad C \text{ is not invertible,}$$

$$D^{-1} = \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 \\ 5 & -3 & 1 \\ -17 & 11 & -5 \end{pmatrix}.$$

21. a)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{5} & 0 \\ 0 & 0 & \frac{1}{6} \end{pmatrix}$$
 b) $\begin{pmatrix} 0 & 0 & -\frac{1}{2} \\ 1 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \end{pmatrix}$

22.
$$A^{-1} = \begin{pmatrix} 4 & -3 & -2 & 0 \\ -1 & 1 & 1 & 0 \\ 1 & -2 & -2 & 1 \\ 0 & 1 & 2 & -1 \end{pmatrix}; \qquad B^{-1} = \begin{pmatrix} 6 & -2 & 1 & 0 \\ 9 & -4 & 3 & -1 \\ 25 & -11 & 8 & -2 \\ -14 & 6 & -4 & 1 \end{pmatrix};$$

 C^{-1} does not exist.

23. a)
$$(B^{-1})^2$$
, b) AB^6A^{-1} , c) $(A+A^{-1})^2$, d) $I-(I-A)^{m+1}$

24. a)
$$A^{-1}B$$
. b) $\begin{pmatrix} 2 & 4 & 4 \\ 1 & -2 & 3 \\ 1 & 0 & 3 \end{pmatrix}$.

25. b) i)
$$B^T B$$
, ii) $C^{-1} C^T$.

26. a)
$$\begin{pmatrix} -2 & 0 & 1 \\ 2 & 1 & -1 \\ 5 & 1 & -2 \end{pmatrix}$$
. b) $\begin{pmatrix} -2c_1 + c_3 \\ 2c_1 + c_2 - c_3 \\ 5c_1 + c_2 - 2c_3 \end{pmatrix}$.

$$27. \quad \mathbf{x} = Q^T \mathbf{b}.$$

29. e.g.
$$\begin{pmatrix} \frac{1}{\sqrt{2}}i & -\frac{1}{\sqrt{2}}i \\ \frac{1}{\sqrt{2}}i & \frac{1}{\sqrt{2}}i \end{pmatrix}$$
.

33. From Question 29, Q is invertible, and hence $Q\mathbf{x} = \mathbf{b}$ has the solution $\mathbf{x} = Q^{-1}\mathbf{b} = \overline{Q}^T\mathbf{b}$.

34. a)
$$\frac{1}{ab} \begin{pmatrix} b & 0 \\ -c & a \end{pmatrix}$$
. b) $\begin{pmatrix} A^{-1} & 0 \\ -B^{-1}CA^{-1} & B^{-1} \end{pmatrix}$.

35. a) 1, b)
$$-1$$
, c) 0, d) 5, e) -2 . All are invertible except $\begin{pmatrix} 5 & 2 \\ 10 & 4 \end{pmatrix}$.

238 CHAPTER 5

- 36. a) -9, b) 0, c) 56.
- 37. -126.
- 38. a) -30, b) 5, c) 5, d) $5 \times 7^3 = 1715$.
- 39. a) -2, b) $-\frac{1}{2}$, c) -32.
- 40. -83, -108, 8964.
- 41. $a \neq 1$.
- 42. a) $\begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -1 \\ 5 & 1 & -3 \end{pmatrix}$. b) $\begin{pmatrix} -2 & -1 & 1 \\ 1 & 2 & -1 \\ -3 & -1 & 1 \end{pmatrix}$. c) 1.
- 45. a) $(\alpha 3) (\alpha + 1) (\alpha + 2)$. b) -1, -2, 3.
- 46. For example, $A = B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- 47. For example, $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\lambda = -1$.
- 54. $2(x+y+z)^3$.
- 55. $(z-1)(z^2+2z-4), x=-1, y=1\pm\sqrt{5}, z=-1\pm\sqrt{5}.$

PAST CLASS TESTS

In the years up to 2007 there were 3 algebra class tests per session. From semester 1 2008 there will be only 2 algebra class tests per semester so the pre-2008 tests included here do not have the same coverage of material as the class tests for 2008 and onwards. The Information booklet for MATH1131/1141 lists the material available for examination in the current schedule of class tests, as does page (240) of these notes. Also there have been some changes to the syllabus for 2008 and onwards and some parts of the questions in the following pre-2008 class tests are no longer examinable. Thus the following pre-2008 tests should only be taken as a guide to the level of difficulty to be expected in class test questions for 2008 and onwards.

Sample class tests from 2008 and onwards are included after all the pre-2008 class tests and these tests correspond to the current syllabus and class test schedule. However, the content of the class tests is specified in the Information booklet for MATH1131/1141.

The following selection of past class tests can be used as a guide to the degree of difficulty of algebra class tests. Due to variations in the timing of the mid-semester breaks the material examined in each class test can vary from semester to semester and from year to year. Thus students must consult the Information booklet for MATH1131/1141, or page (240) of these notes, to ascertain the precise topics that may be examined in each algebra class test.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 1 VERSION 1a

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	е	Initials	Stu	dent Number
Tutorial Code	Tute	or's Name	_	Mark
Note: The use of a ca	alculator is NOT po	ermitted in this t	est	
Show all your working				
All answers should be gi	ven in the appropriate	ely SIMPLIFIED for	rm.	
QUESTIONS (Time	$allowed:\ 25\ minutes)$			
1. (2 marks)				
(i) Find a param	(4,2,3), $B(5,-7,-2)$ a etric vector equation ith reasons, whether of	of the straight line		ine AB .
2. (2 marks)				
,	vector equation of the	e plane in \mathbb{R}^3 with C	artesian equation	L
	$2x_1$	$-5x_2 + x_3 = 7.$		
Hence give two no	n–parallel non–zero ve	ectors which are para	allel to the plane.	
3. (3 marks)				
For the points A (1) $\overrightarrow{AB} \times \overrightarrow{AC}$.	1,2,3), B(3,4,1), C(3,4,1)	(3,3,4) calculate		
(ii) Area of $\triangle AB$	BC.			
4. (3 marks)				
	ght line in \mathbb{R}^3 through	the point $P(1,2,3)$	and parallel to	the vector ${f v}$ =
$\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$. Let Q be the	e point with co-ordina	ates $(1, 4, 4)$.		
(i) Find $\operatorname{proj}_{\mathbf{v}}\left(\overline{I}\right)$	\overrightarrow{PQ}).			
(ii) Find the shor	test distance d between	en the line ℓ and Q .		
Please write	your answers on lined	A4 paper and stapl	e to this cover sh	eet.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 1 VERSION 1b

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calculator	r is NOT permitted in this test	
Show all your working		
All answers should be given in th	ne appropriately SIMPLIFIED form.	
QUESTIONS (Time allowed:	25 minutes)	
1. (2 marks)		
Determine, with reasons, whare collinear (i.e. all in a st	nether or not the 3 points $A(3, 5, 7)$, B raight line).	(5, -4, 3) and $C(-5, 41, 22)$
2. (2 marks)		
Find a parametric vector eq	uation for the plane through the points	A(1,2,1), B(3,4,2), C(5,2,1)
3. (3 marks)		
,	S(5,6,4) and $C(2,1,3)$ calculate; between A and B .	
(ii) the projection $\operatorname{proj}_{\overrightarrow{AC}}$	$\left(\overrightarrow{AB}\right)$.	
4. (3 marks)		
A triangle has vertices at the	he origin O , at $A(4, -4, 8)$ and at $B(0, -4, 8)$	(0, -3, -6).
Let X be a point on the side	the OA such that $OX = \frac{3}{4}OA$, and Y a	a point on the side OB such

that $OY = \frac{2}{3}OB$.

Find parametric vector equations for the lines AY and BX and show that they intersect at the point P(2, -3, 2).

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 1 VERSION 2b

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calculat	or is NOT permitted in this t	est
Show all your working		
All answers should be given in	the appropriately SIMPLIFIED fo	orm.
QUESTIONS (Time allowe	d: 25 minutes)	
1. (3 marks)		
Consider the line ℓ and p	lane Π in \mathbb{R}^3 with Cartesian equat	ions:
	$\ell: \frac{x-2}{3} = \frac{y+1}{4} = \frac{z+3}{1}$	3
	$\Pi: \ 3x - 2y - 4z = 11 \ .$	
(i) Find a parametric ed	quation of the line ℓ .	
(ii) Find the co-ordinate	es of the point P where ℓ meets Π .	
2. (3 marks)		
For the points $A(1, 2, 1)$, (i) Calculate $\overrightarrow{AB} \times \overrightarrow{AC}$	B(3,1,-1) and $C(2,4,1)$;	
(ii) Find the area of par	allelogram with two adjacent sides	AB and AC .
3. (4 marks)		
	in \mathbb{R}^3 through the point $P(1,2,3)$	(\mathbf{s}) and parallel to the vector $\mathbf{v} =$
$\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$. Let Q be the point	t with co-ordinates $(2,4,4)$.	
(i) Find $\operatorname{proj}_{\mathbf{v}}\left(\overrightarrow{PQ}\right)$;		
	stance d between the line ℓ and Q ;	
(iii) Find the co-ordinate	es m of the point M on ℓ which is	closest to Q .

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 1 VERSION 3a

This sheet must be filled in and stapled to the front of your answers

This sheet mus	t be fined in and stapled to the front of	your answers
Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calcula	tor is NOT permitted in this test	
Show all your working		
All answers should be given in	the appropriately SIMPLIFIED form.	
QUESTIONS (Time allow	ed: 25 minutes)	
1. (2 marks)		
For the points $A(3, 2, 1)$	and $B(6, 3, -2)$	
(i) Find a parametric	vector equation for the line AB .	
(ii) Find Cartesian equ	ations for the line AB .	
2. (2 marks)		
Find a parametric vector	r equation for the plane in \mathbb{R}^3 with carte	esian equation
	$7x_1 + 2x_2 - x_3 = 1 .$	
Hence give two non-para	dlel, non-zero vectors which are parallel	to the plane.
3. (2 marks)		
	, $B(3,5,-2)$ and $C(5,1,2)$,	
(i) Find $\cos(\angle BAC)$.		
(ii) Find $\operatorname{proj}_{\overrightarrow{AC}}\left(\overrightarrow{AB}\right)$		
4. (4 marks)		
In the plane with a cart origin and $\overrightarrow{OA} = \mathbf{a}$, \overrightarrow{OB}	esian co-ordinate system, let $OACB$ be a $= \mathbf{b}$, where $\mathbf{a} \not\parallel \mathbf{b}$.	a parallelogram, with O the
(i) Write down (and la terms of a and b .	bel as such), parametric vector equations	s of the lines OC and AB in
and \mathbf{b} .	ses of the point P of intersection of lines	SOC and AB in terms of SOC
(iii) Show that $ \overrightarrow{OP} = $	\overrightarrow{PC} and $ \overrightarrow{PA} = \overrightarrow{PB} $.	

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 1 VERSION 4a

This sheet must be filled in and stapled to the front of your answers

			Ū.
Stu	ident's Family Name	Initials	Student Number
Tut	orial Code	Tutor's Name	Mark
Not	e: The use of a calcula	tor is NOT permitted in this te	est
Show	v all your working		
All a	nswers should be given in	the appropriately SIMPLIFIED for	rm.
QUI	ESTIONS (Time allowed)	ed: 25 minutes)	
1.	(2 marks)For the points A (1,2,3).(i) Find the co-ordinat	$B(5,7,-2)$ and $C(8,-3,2)$ in \mathbb{R}^3 ; es t of the point T on AB such that	$a\overrightarrow{AT} = 2\overrightarrow{TB}.$
		es \mathbf{d} of the point D such that the	
2.	(2 marks) Find a parametric vector	equation for the plane in \mathbb{R}^3 with α	cartesian equation
		$3x_1 - x_2 + 2x_3 = 8.$	
	Hence give two non-para	llel non–zero vectors which are para	allel to the plane.
3.	(2 marks)		
	For $\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$	$\left(\mathbf{a} \right)$, calculate $\mathbf{a} \times \mathbf{b}$.	
4.	(4 marks)		
	(2)	e in \mathbb{R}^3 through the point $P(1,2,3)$	and parallel to the vector $\mathbf{v} =$
	(-)	t with co-ordinates $(1, 4, 4)$.	
	(i) Find $\operatorname{proj}_{\mathbf{v}}\left(\overrightarrow{PQ}\right)$.		
	(ii) Find the shortest d	stance d between the line ℓ and Q .	
	(iii) Find the co-ordinat	es m of the point M on ℓ which is c	losest to Q .

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 2 VERSION 1a

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calcula	tor is NOT permitted in this test	
Show all your working		
All answers should be given in	the appropriately SIMPLIFIED form.	
QUESTIONS (Time allowed)	ed: 25 minutes)	
1. (2 marks)		
For the complex numbers	s $z = 1 + 5i$, $w = 3 - 2i$ calculate	
	$\operatorname{Im}(z+3iw)$, z/\overline{w} , $\operatorname{Arg}(1-4i-w)$	
in simplified cartesian for	rm.	
2. (4 marks)		
Determine what condition	ons on b_1, b_2, b_3, b_4 are needed to ensure that	$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$ belongs to the
span of the vectors $\begin{pmatrix} 1 \\ -2 \\ -2 \\ 6 \end{pmatrix}$	$ \begin{pmatrix} 3 \\ -5 \\ -4 \\ 3 \end{pmatrix}, \begin{pmatrix} -3 \\ 4 \\ 2 \\ 12 \end{pmatrix}. $	(-1)
3. (4 marks)		

Please write your answers on lined A4 paper and staple to this cover sheet.

to write $\sin^5 \theta$ in terms of $\sin \theta$, $\sin 2\theta$, $\sin 3\theta$,

 $\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$

Use the identity

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 2 VERSION 1b

This sheet must be filled in and stapled to the front of your answers

Stu	dent's Family Name	Initials	Student Number
Tut	orial Code	Tutor's Name	Mark
Note	e: The use of a calculat	tor is NOT permitted in this test	
Show	v all your working		
All a	nswers should be given in	the appropriately SIMPLIFIED form.	
QUI	ESTIONS (Time allowe	d: 25 minutes)	
1.	(3 marks)		
	For the complex numbers	z = -2 - 3i, $w = 1 - i$ calculate	
		$\operatorname{Re}((1+3i)z)$, $ z^2 $, $\frac{z+1}{w}$	
	in simplified cartesian for	m.	
2.	(4 marks)		
		ns on b_1, b_2, b_3, b_4 are needed to ensure that	$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$ belongs to the
	span of the vectors $\begin{pmatrix} 1\\2\\4\\1 \end{pmatrix}$	$, \begin{pmatrix} 0 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ -3 \\ -7 \end{pmatrix}.$	(*4)
3.	(3 marks)		
	Use the identity	$0.1(i\theta - i\theta)$	
		$\cos \theta = \frac{1}{2} (e^{i\theta} + e^{-i\theta})$	

Please write your answers on lined A4 paper and staple to this cover sheet.

to write $\cos^5 \theta$ in terms of $\cos \theta$, $\cos 2\theta$, $\cos 3\theta$,

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 2 VERSION 2a

This sheet must be filled in and stapled to the front of your answers

Student's Family Name			Initials	
Tut	sorial Code	Tutor	's Name	Mark
Not	e: The use of a calcula	or is NOT per	mitted in this te	est
Shov	v all your working			
All a	nswers should be given in	the appropriately	SIMPLIFIED for	m.
QUI	ESTIONS (Time allowed	d: 25 minutes)		
1.	(3 marks)			
	Find the complex square	roots of $-24 - 70$	Oi by solving $(x +$	$(iy)^2 = -24 - 70i$ for x, y real.
2.	(3 marks)			
	Determine, with reasons,	whether or not t	he lines	
		$\ell_1: {f x} =$	$\begin{pmatrix} -1\\1\\3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\2\\-5 \end{pmatrix}$	
	and	$\ell_2: {f x} =$	$\begin{pmatrix} 0 \\ -1 \\ 5 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ -1 \\ 6 \end{pmatrix}$	
	intersect.		, , , , ,	
3.	(4 marks)			
	(i) Find the complex ro (ii) Hence factorise $p(z)$			irreducible quadratic factors.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 2 VERSION 2b

This sheet must be filled in and stapled to the front of your answers

Stu	dent's Family Name	Initials	Student Number
Tute	orial Code	Tutor's Name	Mark
Show	all your working	tor is NOT permitted in this test the appropriately SIMPLIFIED form.	
	ESTIONS (Time allowed)		
-	(3 marks)	roots of $16 - 30i$ by solving $(x + iy)^2 =$	16 - 30i for x, y real.
2.	(3 marks) Determine, with reasons,	whether or not the lines	
		$\ell_1: \mathbf{x} = \begin{pmatrix} -1\\3\\0 \end{pmatrix} + \lambda \begin{pmatrix} 2\\1\\4 \end{pmatrix} , \lambda \in \mathbb{R}$	
	and	$\ell_2: \mathbf{x} = \begin{pmatrix} 1\\2\\2 \end{pmatrix} + \mu \begin{pmatrix} 2\\2\\5 \end{pmatrix} , \mu \in \mathbb{R}$	
	intersect.	· · · · · · · · · · · · · · · · · · ·	
3.	(4 marks)		
	(i) Find the complex re(ii) Hence factorise p(z)	pots of $z^5 - 32 = 0$. = $z^5 - 32$ into real linear and real irred	ucible quadratic factors.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 2 VERSION 3a

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark

Note: The use of a calculator is NOT permitted in this test

Show all your working

All answers should be given in the appropriately SIMPLIFIED form.

QUESTIONS (Time allowed: 25 minutes)

1. (3 marks)

For the complex numbers z = -1 - i, w = -11 + 7i find

$$(-5-i)\overline{z} + 2w$$
, $\frac{w}{1+3i}$, $\operatorname{Arg}(2z)$.

2. (3 marks)

Let $z = -\sqrt{3} + 3i$. Find a polar form for z and the principal argument and "a + ib" form of z^{19}

Powers of real numbers may be left unsimplified.

3. (4 marks)

Find the general solution for the following linear system of equations by setting up an augmented matrix, performing Gaussian Elimination and solving by back substitution.

$$x_1 + 3x_2 - 2x_3 + 4x_4 = 2$$

$$-2x_1 - 4x_2 + 5x_3 - 9x_4 = 0$$

$$-x_1 + x_2 + 4x_3 - 6x_4 = 6$$