Calculus and its Applications (Limits and Continuity - Riemann Sums)

KRISHNASAMY R

email: rky.amcs@psgtech.ac.in Mobile No.: 9843245352 **LIMITS AND CONTINUITY:** Standard functions – Graphs - Limit - continuity - piecewise continuity - periodic - differentiable functions - Riemann sum - integrable functions - fundamental theorem of calculus

TEXT BOOKS:

 Thomas G B Jr., Joel Hass, Christopher Heil, Maurice D Wier, Thomas' Calculus, Pearson Education, 2018.

$$\int_{0}^{1} (1-n^{2}) dn = \frac{2}{3} = 0.667$$

TABLE 5.1 Finite approximations for the area of R

Number of			
subintervals	Lower sum	Midpoint sum	Upper sum
2	0.375	0.6875	0.875
4	0.53125	0.671875	0.78125
16	0.634765625	0.6669921875	0.697265625
50	0.6566	0.6667	0.6766
100	0.66165	0.666675	0.67165
1000	0.6661665	0.66666675	0.6671665

Finite sums

Strong
$$\sum_{k=1}^{n} a_k = a_1 + a_2 + \dots + a_n$$
.

Strong $\sum_{k=1}^{n} a_k = a_1 + a_2 + \dots + a_n$.

Index backs at $k = i$

$$1+2+\dots+n = n(n+i)$$

$$1^2+2^2+3^2+\dots+n^2 = n(n+i)$$

$$1^2+2^3+3^3+\dots+n^3 = n(n+i)$$

$$1^3+3^3+\dots+n^3 = n(n+i)$$

$$1+3+\dots+n = n(n+i$$

Algebra rules for finite sums

- sum rule : $\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$
- difference rule : $\sum_{k=1}^{n} (a_k b_k) = \sum_{k=1}^{n} a_k \sum_{k=1}^{n} b_k$
- constant multiple rule : $\sum_{k=1}^{n} ca_k = c \cdot \sum_{k=1}^{n} a_k$

The theory of limits of finite approximations was made precise by the German Mathematician Bernhard Riemann. The notion of a Riemann sum underlies the theory of the definite integral.

- Begin with an arbitrary bounded function f defined on a closed interval [a, b].
- f may have negative as well as positive values.
- Subdivide the interval [a, b] into subintervals, not necessarily of equal widths (or lengths), and form sums in the same way as for the finite approximations.

- Choose n-1 points x_1, x_2, \dots, x_{n-1} between a and b that are in increasing order, so that $a < x_1 < x_2 < \cdots < x_{n-1} < b$.
- Set $x_0 = a$ and $x_n = b$, so that

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b.$$
 $\begin{bmatrix} c & 1 \end{bmatrix}$

The set of all of these points,

$$P = \{x_0, x_1, x_2, \cdots, x_{n-1}, x_n\},$$

is called a partition of [a, b].

• The partition P divides [a, b] into the n closed subintervals

$$[x_0,x_1],[x_1,x_2],\cdots[x_{n-1},x_n].$$

• The first of these subintervals is $[x_0, x_1]$, the second is $[x_1, x_2]$, and the k^{th} subinterval is $[x_{k-1}, x_k]$ (where k is an integer between 1 and n).

The width of the first subinterval $[x_0, x_1]$ is denoted Δx_1 , the width of the second $[x_1, x_2]$ is denoted Δx_2 , and the width of the k^{th} subinterval is $\Delta x_k = x_k - x_{k-1}$.

- If all *n* subintervals have equal width, then $\Delta x = (b a)/n$.
- In each subinterval we select some point.
 - The point chosen in the k^{th} subinterval $[x_{k-1}, x_k]$ is called c_k .
 - Then on each subinterval we stand a vertical rectangle that stretches from the x-axis to touch the curve at $(c_k, f(c_k))$.
 - These rectangles can be above or below the x-axis, depending on whether $f(c_k)$ is positive or negative, or on the x-axis if $f(c_k) = 0$.

- On each subinterval, form the product $f(c_k) \cdot \Delta x_k$ which is positive, negative, or zero, depending on the sign of $f(c_k)$.
- When $f(c_k) > 0$, the product $f(c_k) \cdot \Delta x_k$ is the area of a rectangle with height $f(c_k)$ and width Δx_k .
- When $f(c_k) < 0$, the product $f(c_k) \cdot \Delta x_k$ is a negative number, the negative of the area of a rectangle of width Δx_k that drops from the x-axis to the negative number $f(c_k)$.

Next, sum all these products to get

$$\underline{\underline{S_P}} = \sum_{k=1}^n f(c_k) \Delta x_k.$$

- S_P is called a Riemann sum for f on the interval [a, b].
- There are many such sums, depending on the partition P we choose, and the choices of the points c_k in the subintervals.
- For instance, we could choose n subintervals all having equal width $\Delta x = (b-a)/n$ to partition [a,b], and then choose the point c_k to be the right-hand endpoint of each subinterval when forming the Riemann sum.
- This choice leads to the Riemann sum formula

$$S_n = \sum_{k=1}^n f\left(a + k \frac{(b-a)}{n}\right) \cdot \left(\frac{b-a}{n}\right).$$

- Similar formulas can be obtained if instead we choose $\underline{c_k}$ to be the left-hand endpoint, or the midpoint, of each subinterval.
- If all subintervals have equal width $\Delta x = \frac{(b-a)}{n}$, we can make them thinner by increasing their number n.
- When a partition has subintervals of <u>varying widths</u>, we can ensure they
 are all thin by controlling the width of a widest (longest) subinterval.
- We define the norm of a partition P, written $\|\underline{P}\|$, to be the largest of all the subinterval widths.
- If ||P|| is a small number, then all of the subintervals in the partition P have a small width.

Finer partitions create collections of rectangles with thinner bases that approximate the region between the graph of *f* and the x-axis with increasing accuracy.

Problem

- The set $P = \{0, 0.2, 0.6, 1, 1.5, 2\}$ is a partition of [0, 2].
- There are five subintervals of P: [0,0.2], [0.2,0.6], [0.6,1], [1,1.5], and [1.5,2]
- The lengths of the subintervals are $\Delta x_1=0.2$, $\Delta x_2=0.4$, $\Delta x_3=0.4$, $\Delta x_4=0.5$, and $\Delta x_5=0.5$.
- The longest subinterval length is 0.5, so the norm of the partition is ||P|| = 0.5.

Remark

- Any Riemann sum associated with a partition of a closed interval [a, b] defines rectangles that approximate the region between the graph of a continuous function f and the x-axis.
- Partitions with norm approaching zero lead to collections of rectangles that approximate this region with increasing accuracy.
- If the function f is continuous over the closed interval [a,b], then no matter how we choose the partition P and the points c_k in its subintervals, the Riemann sums corresponding to these choices will approach a single limiting value as the subinterval widths (which are controlled by the norm of the partition) approach zero.

THANK YOU