Algebra Qualifying Exam Spring 1996

Note: All rings in this exam are associative and with 1 and all integral domains are commutative. \mathbb{O} and \mathbb{C} are the fields of rational and complex numbers respectively.

- 1. Show that for any group G, the quotient group G/Z(G) is never a nontrivial cyclic group. Here Z(G) is the center of the group G.
- **2.** Let G be a finite group and p a prime number dividing |G|. If P is a p-Sylow subgroup of G, show that $N_G(N_G(P)) = N_G(P)$. Here $N_G(H)$ is the normalizer of a subgroup H in the group G.
- **3.** Let R be a commutative ring with 1 and $x \in R$. Suppose that x lies in every maximal ideal of R. Show that 1-x is a unit of R.
- 4. This problem conisits of two parts:
 - (i) Give a definition to what a unique factorization domain (UFD) means.
 - (ii) Give an example of an integral domain that is not a UFD.
- **5.** Let R be a ring with 1. Suppose that an R-module $M = M_1 \oplus M_2$ is a direct sum of two non-isomorphic irreducible submodules M_1 and M_2 . Show that M_1 and M_2 are the only two proper submodules of M.
- **6.** This problem consists of two parts:
 - (i) State the definition of what an indecomposable module over a ring means.
 - (ii) Give an example of a ring R and an indecomposable module M over R.
- 7. Let $T: V \to V$ be a linear transformation on a finite dimensional vector spaces over a field F. Suppose T has the following invariant factors:

$$1+x$$
, $x(1+x)$, $x(1+x)^2$.

Answer the following questions:

- (i) What is $\dim_F V$?
- (ii) Is T onto?
- (iii) Does T have a Jordan form over the field F with respect to an appropriate basis of V? If yes, write down such a matrix.
- (iv) Is V indecomposable as an F[T]- module?
- (v) What is the minimal polynomial of T?
- **8.** Let V be the 4-dimensional vector space of all 2×2 matrices over a field F. We define the function $f(\cdot,\cdot): V \times V \to F$ by $f(A,B) = \operatorname{trace}(AB)$ for all $A,B \in V$.
 - (i) Show that F is a symmetric bilinear form;
 - (ii) Let $\{E_{11}, E_{12}, E_{21}, E_{22}\}$ be the standard basis of V. Compute the matrix of the bilinear form f with respect to the standard basis.

- (iii) Describe the radical of the bilinear form f. Here the radical of a bilinear form f is defined to be the set $\{v \in V | f(v, V) = 0\}$.
- 9. This problem consists of two parts:
 - (i) Define what it means for a field extension E over F to be separable.
 - (ii) Is the splitting field of the polynomial $p(x) = x^9 x^3 + 1$ over \mathbb{F}_3 separable?
- 10. Show that, if $F \nleq K \leq F(x)$ is tower of fields, where x is an indeterminate and F(x) is the field of rational functions (i.e., x is transcendental over F), then K cannot be an algebraic extension over F.