Série 1: Suites réelles

Exercice 1

Étudier la convergence des suites de terme général u_n définies ci-dessous :

1.
$$u_n = \frac{n^2 + 5n - 7}{2n^2 - 3}$$
;

2.
$$u_n = \sqrt{n+2} - \sqrt{n+1}$$
;

3.
$$u_n = n - \sqrt{(n+1)(n+2)}$$
;

4.
$$u_n = \frac{n + (-1)^n}{n - (-1)^n}$$
;

5.
$$u_n = \sqrt[3]{n^3 + n + 1} - \sqrt[3]{n^3}$$
.

Exercice 2

Soient a_n et b_n deux suites définies par :

$$a_n = \frac{1}{n}, \quad b_n = \frac{(-1)^n}{n}.$$

- 1. Étudier la convergence de a_n et b_n .
- 2. Montrer que $a_n + b_n$ converge et déterminer sa limite.
- 3. Montrer que $a_n \cdot b_n$ converge et déterminer sa limite.
- 4. Montrer que $a_n^2 b_n^2$ converge et déterminer sa limite.

Exercice 3

Soit u_n une suite définie par $u_n = \frac{n!}{n^n}$.

- 1. Montrer que $u_n > 0$ pour tout $n \in \mathbb{N}^*$.
- 2. Étudier la limite de u_n lorsque $n \to +\infty$.

Exercice 4

Étudier la convergence de la suite définie par :

$$u_n = \sum_{k=1}^n \frac{1}{k^2}.$$

Exercice 5

Montrer que pour tout $n \in \mathbb{N}^*$, on a :

$$\sum_{k=1}^{n} \frac{1}{k} > \ln(n+1).$$

Exercice 6

Soit la suite u_n définie par :

$$u_n = \left(1 + \frac{1}{n}\right)^n.$$

- 1. Montrer que u_n converge.
- 2. Déterminer sa limite.

Exercice 7

Montrer que pour tout $n \in \mathbb{N}^*$, on a :

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

Exercice 8

Le but de cet exercice est de montrer que pour tout $x \in \mathbb{R}$:

$$\sum_{k=0}^{n-1} E\left(x + \frac{k}{n}\right) = E(nx),$$

où E(y) est la partie entière du réel y.

1. Montrer qu'il existe un unique $p \in \{0, 1, \dots, n-1\}$ tel que :

$$x + \frac{p}{n} < E(x) + 1 \le x + \frac{p+1}{n}.$$

2. En déduire que :

$$nE(x) + n - p - 1 \le nx < nE(x) + n - p.$$

Exprimer E(nx) en fonction de n, E(x) et p.

- 3. Calculer $E\left(x+\frac{k}{n}\right)$ pour tout $k\in\{0,\ldots,p\}$ et $E\left(x+\frac{k}{n}\right)$ pour tout $k\in\{p+1,\ldots,n-1\}$.
- 4. En coupant la somme $\sum_{k=0}^{n-1} E\left(x+\frac{k}{n}\right)$ en deux, montrer l'égalité donnée.

Exercice 9

Le but de l'exercice est de démontrer le théorème des séries alternées : si (a_n) est une suite décroissante de réels positifs qui tend vers 0, alors la suite (S_n) définie pour $n \ge 0$ par :

$$S_n = \sum_{k=0}^{n} (-1)^k a_k$$

est convergente.

On pose pour $n \ge 0$, $u_n = S_{2n}$ et $v_n = S_{2n+1}$.

- 1. Démontrer que les suites (u_n) et (v_n) sont adjacentes.
- 2. En déduire que la suite (S_n) est convergente. On note ℓ sa limite.
- 3. Justifier que, pour tout $n \in \mathbb{N}$, $v_n \leq \ell \leq u_n$.
- 4. On suppose pour toute la suite de l'exercice que $a_n = \frac{1}{n+1}$. Donner un algorithme donnant un encadrement de ℓ d'amplitude inférieur ou égal à 10^{-6} .
- 5. Dans cette question, on va prouver que $\ell = \ln 2$.
 - (a) Pour $n \ge 1$ et $x \in [0, 1]$, justifier l'égalité :

$$\frac{1}{1+x} = 1 - x + \dots + (-1)^n x^n + \frac{(-1)^{n+1} x^{n+1}}{1+x}.$$

(b) On pose, pour $n \ge 1$:

$$I_n = \int_0^1 \frac{x^{n+1}}{1+x} \, dx.$$

Montrer que (I_n) tend vers 0.

(c) Conclure.