Flatland

Ryan Kepler Murphy October 12, 2023

${\bf Contents}$

1	$\mathbf{W}\mathbf{h}$	at is this problem?	
	1.1	What is Flatland?	
	1.2	What work is similar to Flatland?	
		What is multi-agent pathfinding?	
2	How can this problem be addressed?		
	2.1	Which methods have been used?	
	2.2	What is answer set programming?	
3	What does the problem workflow comprise?		
	3.1	Overview of the fundamental pieces	
	3.2	Environment	
	3.3	Agents	
	3.4	In this paper	
		Technical details	

1 What is this problem?

1.1 What is Flatland?

The Flatland competition seeks to address the problem of automated train scheduling and rescheduling, a major challenge for modern railway systems. It does so by providing a simplified two-dimensional grid world environment to allow for fast experimentation of new approaches to this problem [?].

1.2 What work is similar to Flatland?

In essence, the Flatland problem is a vehicle scheduling or vehicle rescheduling problem. The vehicle scheduling problem (VSP) is [definition].

The vehicle rescheduling problem (VSRP) arises when a previously-scheduled trip is disrupted due to interruptions such as a traffic collision, a medical emergency, or a vehicle breakdown [?]. Trips in the Flatland environment may be disrupted by randomly-assigned vehicle breakdowns, each of which stops a train in its current location for an unforeseen duration. Ideally, scheduled trips that are affected by a breakdown should be rescheduled in such a way that there are minimal impacts to the original plan.

1.3 What is multi-agent pathfinding?

Multi-agent pathfinding (MAPF) is a planning problem in which agents in a shared environment must find routes to their respective destinations without incurring collisions [?].

- Explanation
- Differences four-connected, eight-connected, graphs
- Hypergraphs

2 How can this problem be addressed?

2.1 Which methods have been used?

- Reinforcement learning
- Deep learning
- Previous winners

2.2 What is answer set programming?

- Definition
- How can it help in this case?

3 What does the problem workflow comprise?

3.1 Overview of the fundamental pieces

- Environment
- Agents
- Breakdowns
- Observation types

3.2 Environment

Explain fundamentally what they are, but also how we define them.

- Track types
- Cities and stations
- Transitions

3.3 Agents

Explain fundamentally what they are, but also how we define them.

3.4 In this paper

We start by looking at the simplest of workflows: a single agent in a small environment with only straight tracks and dead ends.

3.5 Technical details

- How does Flatland represent environments?
- How does Flatland generate random environments?
- How do we provide a connection between Flatland output and clingo?