INF3430 - Laboppgave 4

Magnus Andersen

1 Posisjonsregulator med SRAM og debouncer

Generelt: Alle simuleringsskjermbilder ligger vedlagt som jpg-filer i innleveringen. Refererer til de når jeg forteller om resultatene.

1.1 Debouncer

Lagde en teller som inkrementeres hver gang bounced er høy. Telleren reagerer kun på stigende klokkeflanke. Dersom telleren når en predefinert maksverdi (som er en funksjon av cwidth-generic'en) slippes debounced ut som høy (dvs. at bounced har vært høy lenge nok til at man anser det som stabilt). I alle andre tilfeller er debounced lav.

Lagde også en testbenk av debouncer-modulen. Som vi ser av skjermbildet av simuleringen er det kun når bounced har vært høyt i $2^{cwidth-1} = 2^{2-1} = 2$ klokkeperioder at debounced går høyt. Ser at det synkroniserte signalet er aktivt i kun én klokkeperiode etter 30ns; dette er ikke lenge nok og debounced forblir lav. I alle andre tilfeller i denne testbenken er det synkroniserte signalet aktivt lenge nok når det først er aktivt, i.e. ≥ 2 klokkeperioder = 40ns.

1.2 Testbenk for SRAM

Endret generic map(26) til generic map(2) slik at simulasjonen ble mindre krevende (i.e. cwidth = 2). I testbenken er først $load_sp_mode$ '1', og med tilstrekkelig puls på $load_run_sp$ ser vi at den lagrer sp_in -stimulien (hhv. x"01" og x"40") suksessivt. Senere endrer vi $load_sp_mode$ til '0', samtidig som vi husker på å resette, og vi ser at med ny og tilstrekkelig stimuli på $load_run_sp$ hentes de lagrede verdiene ut på sp_out i den rekkefølgen de ble lagret i.

1.3 ram pos ctr

La CRU i toppnivået, og endret pos_seg7_ctrl til å ta inn de fire output-signalene fra CRU i stedet for de to input-signalene som tidligere.

Lot d_in ta verdien til dq når det SRAM er i lesemodus, og når SRAM er i skrivemodus flyttes d_inut ut på da_i

Lagde en testbenk hvor SRAM først er i skrivemodus; to verdier legges inn i inkrementerende adresser, SRAM settes til lesemodus og husker på å resette, og vi ser at motoren reagerer som den skal.

$2 \quad (\text{og 3 og 4})$

Oppgave 2 gikk greit. Jeg fikk noen temmelig kryptiske feilmeldinger når jeg brukte 12.4, og prøvde så å gå over til 14.2. Kjørte "Peripheral Tests"-programmet (regner med at dette er ekvivalenten til "TestApp_Peripherals" i 12.4) og dette fungerte fint. Lagde så et nytt program med test.c og xgpio tapp example.c og dette fungerte også flott, med led-sekvens og tekst-output til konsollen.

Når jeg skulle gi meg i kast med 3 og 4 fikk jeg nok en gang feilmeldinger (i SDK); spesifikt java-feilmeldinger a la noe sånt som "java was started but returned with exit code=1" samt en "wall

of text" assosiert med disse (i.e. http://forums.xilinx.com/t5/Installation-and-Licensing/Unable-to-run-Xilinx-SDK/td-p/174100). Maktet ikke å debugge dette i tide, og ting ble bare rot. Håper jeg får en ny sjanse til å ferdigstille 3 og 4.

Og sist men ikke minst, beklager at jeg ikke leverte til kl. 21. Glemte at fristen ikke var 23.59 som den har brukt å være.