Chapitre 1

Quelques éléments de mécanique du point

Objectifs

- Être capable d'isoler un système d'étude
- Énoncer les lois fondamentales de la mécanique d'un point matériel
- Énoncer les théorèmes énergétiques d'un point matériel
- Déterminer les équations du mouvement d'un point matériel

Plan

Le plan sera placé automatiquement... ne rien faire de particulier.

L'idée de ce chapitre est de faire une introduction à la mécanique des solides à partir d'une modélisation des solides comme points matériels. Ainsi, nous présentons quelques éléments essentiels de mécanique du point pour résoudre des problèmes classiques. Pour une description plus complète et approfondie de la mécanique du point, nous invitons le lecteur à se référer par exemple à [1] dans la même collection.

1.1 Système matériel

Encadré
Le système matériel ou physique constitue l'ensemble des objets auxquel
on s'intéresse et dont on veut étudier les propriétés.
Fin Encadré

Cette idée revient à séparer le monde en deux parties : celle qui nous intéresse (interne) de celle qui ne nous intéresse pas (externe). Selon la nature de l'interaction entre ces deux mondes, on peut parler soit de système matériel :

- isolé: système qui n'interagit pas avec l'extérieur (pas d'échange d'énergie, ni de matière);
- pseudo-isolé: système dont les actions extérieures agissant sur lui se compensent (tout se passe comme si il était isolé). Par exemple, un mobile autoporteur sur un plan horizontal est pseudo-isolé: la soufflerie du mobile compense le poids et le mobile se déplace sur le plan horizontal comme si il était isolé.
- fermé : système qui n'échange pas de matière avec l'extérieur mais peut échanger de l'énergie;
- ouvert : système qui échange de la matière avec l'extérieur.

Dans le cadre de ce chapitre, nous nous intéresserons quasiment exclusivement au cas des systèmes matériels isolés ou pseudo-isolé. De plus, nous assimilerons ces systèmes à des points, on parlera ainsi de point matériel.

1.2 Trièdres, bases, repères

Nous appellerons trièdre l'ensemble noté T = (O, x, y, z) défini par trois axes concourants en O de vecteurs unitaires x, y et z non coplanaires. Ce trièdre, supposé fixe (au sens où sa forme ne change pas) constitue un solide indéformable immatériel qui constitue un repère d'espace noté R. Le plus souvent repère d'espace R et trièdre T sont associés (ou se définissent mutuellement). Il ne faut pas pour autant les confondre (ce qui revient à s'imposer de définir un vecteur par ses seules composantes dans T associé à R). On verra que ce n'est que très rarement la meilleure solution. Dans tout ce livre, le repère R = (O, x, y, z) désignera le référentiel d'espace constitué du point O et des axes Ox, Oy et Ox associés à la base constituée des trois vecteurs unitaire de base (x, y, z). Lorsque ce repère sera associé à un solide particulier Si le repère sera noté Ri et s'entendra comme constitué de Ri = (Oi, x_i, y_i, z_i) sauf cas particulier qui sera indiqué.

1.2.1 Repérage d'un point

On repère la position d'un point M dans \mathcal{E} (qui est un espace affine ; il est complètement défini dans le chapitre suivant) par ses coordonnées (figure 1.1). En fait c'est le choix du repère d'espace (O, x, y, z) qui permet de définir ses coordonnées. Comme il y a une infinité de choix possibles, il y a également une infinité de coordonnées pour un même point M à une position donnée. Si on choisit (O, x, y, z) orthonormé direct, alors les coordonnées de M s'obtiennent par projection orthogonale de OM sur les vecteurs de la base :

$$x_{\mathrm{M}} = \mathbf{O}\mathbf{M} \cdot \mathbf{x}$$
 $y_{\mathrm{M}} = \mathbf{O}\mathbf{M} \cdot \mathbf{y}$ $z_{\mathrm{M}} = \mathbf{O}\mathbf{M} \cdot \mathbf{z}$.

Dans cette équation, . désigne le produit scalaire des deux vecteurs (pour plus de détails sur le produit scalaire, reportez vous à l'annexe 1).

Figure 1.1 – Vecteur position pour un repérage cartésien.

1.2.2 Vitesse et accélération d'un point

Notion de temps

La notion de temps ou de durée en mécanique classique est un concept autonome. On parlera donc d'instants t dans un ensemble \mathcal{T} muni d'une chronologie. Ceci signifie que \mathcal{T} est un espace affine de dimension un et qu'il est orienté. L'espace vectoriel associé est simplement l'ensemble des scalaires (de dimension physique, le temps). La différence entre deux instants est appelée durée.

Les horloges - supposées galiléennes, terme qui sera précisé dans le chapitre consacré à la dynamique - sont classiquement fondées sur des mouvements répétitifs : la rotation de la terre est le premier d'entre eux.

FIGURE 1.2 – Temps, durée.

Vecteur vitesse

On choisit (figure 1.2) un référentiel d'espace temps (O, x, y, z) et (O, t) qui, selon les applications, peut être :

- 1. de Copernic : centre de masse du système solaire (assimilé à celui du soleil) et trois étoiles fixes plus une horloge;
- 2. géocentrique : centre de masse de la terre et trois étoiles fixes plus une horloge ;
- 3. terrestre : un point et trois axes du laboratoire ainsi qu'une horloge.

Définition. Soit un point matériel M en mouvement et soit un référentiel R d'espace temps. On note :

$$V(M/R) = \frac{\mathrm{d}\boldsymbol{O}\boldsymbol{M}}{\mathrm{d}t}\Big|_{R}.$$

Le vecteur vitesse est la dérivée par rapport au temps dans le référentiel considéré du vecteur position.

Unité : la vitesse s'exprime en $m \cdot s^{-1}$.

Définition. La suite des points P de \mathcal{E} qui coïncident avec M au cours du temps (courbe décrite par le point) est appelée trajectoire de M dans le référentiel.

Le vecteur vitesse est tangent à la trajectoire au point M à l'instant *t* considéré (figure 1.3).

Accélération d'un point

_____ Encadré _____ Le vecteur accélération du point M par rapport au repère considéré est noté $\Gamma(M/R)$, donné par :

$$\Gamma(M/R) = \frac{dV(M/R)}{dt}\Big|_{R} = \frac{d^2OM}{dt^2}\Big|_{R}.$$
 (1.1)

Figure 1.3 – Vecteur vitesse.

 $\label{eq:Unité} \textbf{Unité}: l'accélération s'exprime en: m . s^{-2}.$

_____ Fin Encadré

1.3 Calcul des vecteurs vitesse

Soit un repère R_1 (O, x_1 , y_1 , z) en rotation autour de l'axe (O, z) par rapport à un repère R (O, x, y, z). L'angle (x, x_1) est noté α (figure 1.4). Le symbole avec les deux cercles imbriqués à côté de z correspond à la flèche du vecteur vue de face. C'est une manière d'indiquer que le vecteur pointe vers nous. Le repère est donc direct.

Figure 1.4 – Changement de repère.

1.3.1 Calcul de la vitesse dans R

Par définition, on a:

$$V(M/R) = \frac{dOM}{dt}\Big|_{R} = \frac{d(xx + yy + zz)}{dt}\Big|_{S} R$$

$$= \frac{dx}{dt}x + x\frac{dx}{dt}\Big|_{R} + \frac{dy}{dt}y + y\frac{dy}{dt}\Big|_{R} + \frac{dz}{dt}z + z\frac{dz}{dt}\Big|_{R}.$$

Par construction du repère R, les vecteurs de base (x, y, z) sont figés dans ce repère et sont alors des fonctions indépendantes du temps. On a ainsi :

$$\frac{\mathrm{d}x}{\mathrm{d}t}\Big|_{\mathrm{R}} = \mathbf{0}$$
 de même que $\frac{\mathrm{d}y}{\mathrm{d}t}\Big|_{\mathrm{R}} = \mathbf{0}$ et $\frac{\mathrm{d}z}{\mathrm{d}t}\Big|_{\mathrm{R}} = \mathbf{0}$.

Interprétation : on s'accroche à un repère ; on ne voit pas évoluer les vecteurs de base qui semblent ainsi fixes par rapport à nous. Donc le vecteur vitesse se résume à :

$$V(M/R) = \frac{\mathrm{d}x}{\mathrm{d}t}x + \frac{\mathrm{d}y}{\mathrm{d}t}y + \frac{\mathrm{d}z}{\mathrm{d}t}z = \dot{x}x + \dot{y}y + \dot{z}z.$$

1.3.2 Calcul de la vitesse dans R_1

On va cette fois utiliser le second repère pour calculer le vecteur vitesse du même point au même instant. On a par définition :

$$V(M/R_1) = \frac{dOM}{dt}\bigg|_{R_1} = \frac{d(x_1x_1 + y_1y_1 + zz)}{dt}\bigg|_{R_1}.$$

Pour la même raison que précédemment, la dérivée par rapport au temps d'un vecteur de base appartenant au repère R_1 , calculée à partir de ce repère, est nulle. Le vecteur vitesse se résume donc à :

$$V(M/R_1) = \frac{dx_1}{dt}x_1 + \frac{dy_1}{dt}y_1 + \frac{dz}{dt}z = \dot{x}_1x_1 + \dot{y}_1y_1 + \dot{z}z.$$

Conclusion : les composantes du vecteur vitesse dans un repère donné sont données par les dérivées par rapport au temps des coordonnées du vecteur position exprimées dans la base liée au repère.

1.3.3 Relation entre les vecteurs vitesse

Nous allons essayer de trouver une relation entre les vecteurs vitesse V(M/R) et $V(M/R_1)$. Puisque l'axe z est fixe aussi bien dans R que dans R_1 , on supposera pour simplifier (et sans perdre en généralité) que le mouvement de

M se fait dans un plan $z = z_0 = \text{Cte.}$

$$V(M/R) = \frac{dOM}{dt}\Big|_{R} = \frac{d(x_1x_1 + y_1y_1 + z_0z)}{dt}\Big|_{R}$$
$$= \frac{dx_1}{dt}x_1 + x_1 \frac{dx_1}{dt}\Big|_{R} + \frac{dy_1}{dt}y_1 + y_1 \frac{dy_1}{dt}\Big|_{R}.$$

Le problème est de savoir calculer les termes $\frac{dx_1}{dt}\Big|_R$ et $\frac{dy_1}{dt}\Big|_R$. On sait que le vecteur x_1 ne dépend que de l'angle α qui lui même est fonction du temps, donc :

$$\frac{\mathrm{d}x_1}{\mathrm{d}t}\Big|_{\mathrm{R}} = \frac{\mathrm{d}x_1}{\mathrm{d}\alpha} \frac{\mathrm{d}\alpha}{\mathrm{d}t}\Big|_{\mathrm{R}} = \frac{\mathrm{d}x_1}{\mathrm{d}\alpha}\Big|_{\mathrm{R}} \frac{\mathrm{d}\alpha}{\mathrm{d}t}.$$

Or nous pouvons exprimer x_1 en fonction des vecteurs de base du repère R et de l'angle α (cf. figure 1.4):

$$x_1 = \cos \alpha x + \sin \alpha y$$
.

dont la dérivation par rapport à α donne :

$$\frac{\mathrm{d}x_1}{\mathrm{d}\alpha}\Big|_{\mathrm{R}} = -\sin\alpha\,x + \cos\alpha\,y.$$

On reconnaît le vecteur y_1 et on peut donc écrire :

$$\frac{\mathrm{d}x_1}{\mathrm{d}t}\Big|_{\mathrm{R}} = \frac{\mathrm{d}x_1}{\mathrm{d}\alpha}\Big|_{\mathrm{R}} \frac{\mathrm{d}\alpha}{\mathrm{d}t} = \dot{\alpha}y_1 = \dot{\alpha}z \wedge x_1.$$

Dans cette équation nous faisons apparaître le produit vectoriel \wedge ; plus de détails sont donnés dans l'annexe 1. Le même travail est fait pour le second terme, $\frac{dy_1}{dt}\Big|_{R} = \dot{\alpha}z \wedge y_1$ et on obtient ainsi :

$$\frac{\mathrm{d}\boldsymbol{O}\boldsymbol{M}}{\mathrm{d}t}\bigg|_{\mathrm{R}} = \frac{\mathrm{d}\boldsymbol{O}\boldsymbol{M}}{\mathrm{d}t}\bigg|_{\mathrm{R}_1} + \dot{\alpha}\,\boldsymbol{z}\,\wedge\boldsymbol{O}\boldsymbol{M}.$$

Remarque : le vecteur $\dot{\alpha}z$ est appelé vecteur vitesse de rotation ; il renseigne à la fois sur l'intensité de la vitesse de rotation angulaire et sur l'axe autour duquel la rotation se produit. On le note $\Omega(R_1/R)$ ce qui permet d'écrire :

$$\frac{d\mathbf{OM}}{dt}\bigg|_{R} = \frac{d\mathbf{OM}}{dt}\bigg|_{R_{1}} + \mathbf{\Omega}(R_{1}/R) \wedge \mathbf{OM}. \tag{1.2}$$

Cette formule est couramment appelée formule de dérivation vectorielle. Elle permet de passer d'un repère à un autre pour exprimer le vecteur vitesse.

Encart

Selon la symétrie du mouvement, certains repères sont plus adaptés pour décrire le mouvement. Nous proposons ici, trois repères classiques permettant de décrire le mouvement en coordonnées polaires planes, en coordonnées cylindriques et en coordonnées sphériques.

Coordonnées polaires planes : $R_1 = (O, u_r, u_\theta)$.

En coordonnées polaires, le point M est repéré par :

$$OM = ru_r$$
 avec $u_r = \cos \theta x + \sin \theta y$.

En dérivant cette expression on obtient la vitesse

$$V(M/R_1) = \frac{dOM}{dt}\Big|_{R_1} = \frac{dr}{dt}u_r + r\frac{d\theta}{dt}u_\theta.$$

Coordonnées cylindriques : $R_1 = (O, u_\rho, u_\theta, z)$.

En coordonnées cylindriques, le point M est repéré par :

$$OM = \rho u_{\rho} + zz$$
 avec $u_{\rho} = \cos \theta x + \sin \theta y$.

En dérivant cette expression on obtient la vitesse

$$V(M/R_1) = \frac{d\mathbf{O}\mathbf{M}}{dt}\Big|_{R_1} = \frac{d\rho}{dt}\mathbf{u}_{\rho} + \rho\frac{d\theta}{dt}\mathbf{u}_{\theta} + \frac{dz}{dt}z.$$

9

Coordonnées sphériques : $R_1 = (O, u_r, u_\theta, u_\varphi)$.

En coordonnées sphériques, le point M est repéré par :

$$OM = ru_r$$
 avec $u_r = \sin\theta\cos\varphi x + \sin\theta\sin\varphi y + r\cos\theta z$.

En dérivant cette expression on obtient la vitesse

$$V(M/R_1) = \frac{dOM}{dt}\bigg|_{R_1} = \frac{dr}{dt}u_r + \rho \frac{d\theta}{dt}u_\theta + r\sin\theta \frac{d\varphi}{dt}u_\varphi.$$

Fin Encart _____

1.4 Les lois fondamentales de la mécanique - interaction

1.4.1 Principe d'inertie - 1^{re} loi de Newton

Encadré
Il existe une classe de référentiels dans lesquels le mouvement d'un corps
isolé (ou pseudo isolé) est soit au repos, soit en mouvement rectiligne uni-
forme. Ces référentiels sont dits galiléen ou d'inertie.
Fin Encadré

Tout référentiel en translation rectiligne uniforme par rapport à un référentiel galiléen est lui-même galiléen. Il existe donc une infinité de référentiels galiléens. On considère bien souvent que le référentiel lié à au laboratoire (et donc à la Terre) est galiléen. Ce référentiel n'est pas rigoureusement galiléen puisque la Terre tourne sur elle-même et n'est donc pas en translation uniforme. Cependant, si l'expérience est très inférieure à 24 h, on pourra

considérer ce référentiel comme galiléen. Il nous est maintenant nécessaire d'introduire ici une quantité caractéristique de la dynamique d'un objet. Elle a l'intérêt de prendre en compte non seulement la vitesse de l'objet (de manière vectorielle), mais aussi sa masse. Elle rend donc compte d'une quantité intrinsèque à un object en mouvement. La quantité de mouvement d'un point matériel s'exprime comme suit :

$$p(M/R) = mV(M/R)$$

où m est la masse du point matériel considérée et V(M/R) est sa vitesse. Lorsqu'un corps isolé est au repos (V(M/R) = 0) ou en mouvement rectiligne uniforme (V(M/R) = cte), sa quantité de mouvement p(M/R) = cte. On dit qu'il y a **conservation de la quantité de mouvement**. De ce fait, on assimile bien souvent le premier principe d'inertie à la conservation de la quantité de mouvement.

1.4.2 Principe fondamental de la dynamique - 2º loi de Newton

Newton
Encadré
Dans un référentiel galiléen, la somme vectorielle des forces extérieures appliquées à un système (ou point matériel M) est égale à la dérivée par rapport au temps du vecteur quantité de mouvement du système (ou point matériel M) : $\sum F_{\rm ext} = \frac{\rm d}{{\rm d}t} p({\rm M/R}) = m \Gamma({\rm M/R}).$
Fin Encadré
En d'autres termes, lorsque l'on a affaire à un système non-isolé, le principe fondamental de la dynamique s'applique. Corollaire : si $F_{\rm ext}=0$ alors $p({\rm M/R})$ est constante, ce qui revient au principe d'inertie.

Le principe fondamental de la dynamique est dû à Isaac Newton (1643-1727), philosophe, mathématicien, physicien et astronome anglais. C'est en 1687 que Newton publie l'ouvrage majeur intitulé *Philosophiae Naturalis Principia Mathematica*, où il expose notamment le Principe d'Inertie. L'énoncé original de la première loi du mouvement, ou Principe d'Inertie, est le suivant : « *Tout corps persévère dans l'état de repos ou de mouvement uniforme en ligne droite dans lequel il se trouve, à moins que quelque force n'agisse sur lui, et ne le contraigne à changer d'état.* ». Cette loi signifie

Encart _

qu'en l'absence de force qui s'exerce sur un corps (le corps est alors dit isolé), ou si la somme des forces s'exerçant sur lui est égale au vecteur nul (corps pseudo-isolé), la direction et la norme de sa vitesse ne changent pas ou, de manière équivalente, son accélération est nulle. Cette première loi met en défaut les lois de la physique énoncées par Aristote, d'après lesquelles on pensait que pour maintenir la vitesse d'un mobile constante, il était nécessaire de lui appliquer une force. La deuxième loi de Newton, ou Principe fondamental de la dynamique en translation, s'énonce ainsi : Soit un corps de masse m constante : l'accélération subie par un corps dans un référentiel galiléen est proportionnelle à la résultante des forces qu'il subit, et inversement proportionnelle à sa masse m. La deuxième loi de Newton énonce ainsi une relation de cause à effet entre les actions mécaniques et le mouvement, caractérisé par l'accélération.

Fin Encart

1.4.3 Actions réciproques - 3^e loi de Newton

Figure 1.5 – Illustration du principe des actions réciproques sur une voiture et une caravane.

Considérons un système isolé de deux points matériels $(M_1$ et $M_2)$ en interaction ayant respectivement les quantités de mouvement $p(M_1/R)$ et

 $p(M_2/R)$. D'après le principe d'inertie, les quantités de mouvement $p(M_1/R)$ et $p(M_2/R)$ sont constantes, ce qui revient à :

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{p}(\mathrm{M}_1/\mathrm{R}) + \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{p}(\mathrm{M}_2/\mathrm{R}) = \mathbf{0}. \tag{1.3}$$

Par ailleurs, d'après le principe fondamental de la dynamique appliqué à M_1 et à M_2 , il vient :

$$\frac{\mathrm{d}}{\mathrm{d}t} p(\mathrm{M}_1/\mathrm{R}) = F_{21} \quad \text{et} \quad \frac{\mathrm{d}}{\mathrm{d}t} p(\mathrm{M}_2/\mathrm{R}) = F_{12},$$

où F_{21} est la force exercée par M_2 sur M_1 et inversement pour la force F_{12} . Pour conclure, on trouve donc que :

$$F_{21} + F_{12} = 0 \Rightarrow F_{21} = -F_{12}.$$

1.5 Énergie cinétique, énergie potentielle, énergie mécanique d'un point matériel

Pour résoudre bien des problèmes, il est utile de décrire le système ou le point matériel considéré en terme d'énergie mécanique. Pour cela, il est commode d'introduire la notion de travail d'une force.

1.5.1 Travail d'une force

Définition

Lorsqu'on applique une force pour déplacer un objet, l'effort qu'il faut fournir est d'autant plus important que la longueur du déplacement est grande et que la force appliquée est intense ; le travail de la force est une grandeur qui va rendre compte de cet effort.

On considère un point matériel M soumis à une force F qui dépend de la position et (également) de la vitesse, l'expression du travail élémentaire s'écrit :

$$\delta W = \mathbf{F}.d\mathbf{O}\mathbf{M}.$$

Remarque : la notation δW (et non pas $\mathrm{d}W$) vient du fait que, dans le cas général, δW n'est pas une différentielle d'une fonction des coordonnées

1.5. ÉNERGIES 13

spatiales. On dit que ce n'est pas une différentielle exacte. Pour obtenir le travail d'une force variable sur un déplacement quelconque, il suffit d'additionner tous les travaux élémentaires entre le point de départ A et le point d'arrivée B:

$$W_{AB}(\mathbf{F}) = \int_{A}^{B} \delta W(\mathbf{F}) = \int_{A}^{B} \mathbf{F}(M).d\mathbf{O}\mathbf{M}.$$

Forces conservatives ou non conservatives

Forces conservatives : ce sont les forces dont le travail ne dépend pas du chemin suivi mais uniquement des positions initiale et finale. Par exemple, le poids, la tension d'un ressort ou encore les forces constantes (en norme et position) sont des forces conservatives. Le travail d'une force conservative le long d'une trajectoire fermée est nul

$$\oint \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{O}\boldsymbol{M} = 0.$$

Le travail pour aller de A à B s'exprime :

$$W_{A \to B}^1 = W_{A \to B}^2 = -W_{B \to A}^2$$

et donc

$$W_{A \to A} = W_{A \to B}^1 + W_{B \to A}^2 = W_{A \to B}^1 - W_{A \to B}^1 = 0$$

 $W_{\mathrm{A}\to\mathrm{A}}=W_{\mathrm{A}\to\mathrm{B}}^1+W_{\mathrm{B}\to\mathrm{A}}^2=W_{\mathrm{A}\to\mathrm{B}}^1-W_{\mathrm{A}\to\mathrm{B}}^1=0.$ Forces non conservatives : Ce sont toutes les autres forces dont le travail dépend du chemin suivi. Par exemple les forces de frottement sont toujours non conservatives.

Puissance d'une force

Un même travail peut être réalisé plus ou moins rapidement. La puissance ${\mathcal P}$ d'une force correspond au travail effectué par cette force par unité de temps et renseigne sur la rapidité avec laquelle le travail (transfert d'énergie) est effectué. La puissance moyenne d'une force est définie par le ratio entre le travail W effectué pendant la durée Δt sur cette durée :

$$<\mathcal{P}>=\frac{W}{\Delta t}.$$

La puissance instantanée d'une force correspond au ratio entre le travail élémentaire δW , travail effectué par une force F pendant une durée élémentaire dt.

$$\mathcal{P} = \frac{\delta W}{\mathrm{d}t} = \frac{F \cdot \mathrm{d}OM}{\mathrm{d}t} = F \cdot \frac{\mathrm{d}OM}{\mathrm{d}t} = F \cdot V(\mathrm{M/R}).$$

On a donc aussi pour le trajet de A à B:

$$W_{AB} = \int_{A}^{B} \delta W = \int_{A}^{B} \mathcal{P} dt = \int_{t_{A}}^{t_{B}} \mathbf{F} \cdot \mathbf{V}(M/R) dt.$$

Cas particulier des forces qui ne travaillent pas

Il existe des forces dont le travail est toujours nul. Dans ce cas, elles sont toujours perpendiculaires au déplacement. Par exemple, les forces de gravitation ou le poids d'un mobile se déplaçant sans frottement sont deux forces qui ne travaillent pas. Dans cet exemple, le poids *P* est perpendiculaire au

FIGURE 1.6 – Illustration d'un mobile se déplaçant sans frottement sur un sol horizontal.

déplacement, d'où $\delta W = 0$. Le vecteur **R** représente la réaction du sol.

1.5.2 Énergie mécanique

Encadré
L'énergie mécanique d'un système est définie comme la somme de l'énergie cinétique (liée au mouvement) et de l'énergie potentielle (liée à la position).
Fin Encadré
Énergie cinétique Encadré
Dans un référentiel galiléen, l'énergie cinétique d'un point matériel M de masse m se déplaçant à la vitesse $V(M/R)$ est définie par :
$E_{\rm c} = \frac{1}{2} mV({\rm M/R})^2.$

_____ Fin Encadré _____

Théorème de l'énergie cinétique

Encadré _____

Dans un référentiel galiléen, la variation d'énergie cinétique d'un point matériel, soumis à un ensemble de forces extérieures, entre une position A et une position B est égale à la somme des travaux de ces forces entre ces deux points :

$$\Delta E_{\rm c} = E_{\rm c}({\rm B}) - E_{\rm c}({\rm A}) = \frac{1}{2} m V({\rm B/R})^2 - \frac{1}{2} m V({\rm A/R})^2 = \sum W_{{\rm A} \to {\rm B}}(F_{\rm ext}).$$

Fin Encadré

En effet, on considère un point matériel M, de masse m se déplaçant dans un référentiel galiléen entre deux positions A et B à la vitesse V(M/R), sous l'action d'un ensemble de forces extérieures $F_{\rm ext}$. Appliquons le principe fondamental de la dynamique à ce système. Il vient :

$$\sum F_{\text{ext}} = \frac{d}{dt} p(M/R) = m \frac{d}{dt} V(M/R)$$

or, la somme des travaux élémentaires dus aux forces extérieures s'expriment de la manière suivante :

$$\sum \delta W = \sum F_{\text{ext}} \cdot dOM = m \frac{d}{dt} V(M/R) \cdot dOM = m dV(M/R) \cdot \frac{dOM}{dt}$$
$$= m dV(M/R) \cdot V(M/R).$$

Entre les postions *A* et *B*, cela devient :

$$\int_{A}^{B} \sum \delta W = \sum \int_{A}^{B} \delta W = \sum W_{AB}(F_{ext}) = m \int_{A}^{B} V(M/R) \cdot dV(M/R)$$
$$= \frac{1}{2} mV(B/R)^{2} - \frac{1}{2} mV(A/R)^{2}.$$

Énergie potentielle

Encadré _____

Le travail W_{AB} d'une force conservative (F^c) ne dépend pas du chemin suivi mais uniquement de l'état initial (A) et final (B). Ce travail peut s'exprimer

à partir d'une fonction d'état E_p (fonction ne dépendant que de l'état du système) appelée énergie potentielle. En d'autres termes :

$$W_{AB}(F^{c}) = E_{p}(A) - E_{p}(B) = -\Delta E_{p}.$$
Fin Encadré

Énergie mécanique

_____ Encadré _____ L'énergie mécanique d'un système ou point matériel est égale à la somme des énergies cinétique et potentielle. _____ Fin Encadré _____

Théorème de l'énergie mécanique La variation d'énergie mécanique entre deux points A et B est égale à la somme des travaux des forces extérieures non conservatives ($F_{\text{ext}}^{\text{nc}}$) appliquées au système ou point matériel entre ces deux points :

$$\Delta E = E(B) - E(A) = \sum W_{A \to B}(F_{\text{ext}}^{\text{nc}}).$$

En effet, on considère un point matériel M, de masse m se déplaçant dans un référentiel galiléen entre deux positions A et B, sous l'action d'un ensemble de forces extérieures $F_{\rm ext}$. Ces forces peuvent se décomposer en forces conservatives ($F_{\rm ext}^{\rm nc}$) et en forces non conservatives ($F_{\rm ext}^{\rm nc}$). Lors du déplacement d'un point A à un point B, il vient d'après le théorème de l'énergie cinétique :

$$\sum W_{\mathrm{A}\to\mathrm{B}}(\boldsymbol{F}_{\mathrm{ext}}) = \sum W_{\mathrm{A}\to\mathrm{B}}(\boldsymbol{F}_{\mathrm{ext}}^{\mathrm{c}}) + \sum W_{\mathrm{A}\to\mathrm{B}}(\boldsymbol{F}_{\mathrm{ext}}^{\mathrm{nc}}) = \Delta E_{\mathrm{c}} = E_{\mathrm{c}}(\mathrm{B}) - E_{\mathrm{c}}(\mathrm{A})$$
 or $\sum W_{\mathrm{A}\to\mathrm{B}}(\boldsymbol{F}_{\mathrm{ext}}^{\mathrm{c}}) = E_{\mathrm{p}}(\mathrm{A}) - E_{\mathrm{p}}(\mathrm{B})$, d'où :

$$(E_{c}(B) + E_{p}(B)) - (E_{c}(A) + E_{p}(B)) = \sum W_{A \to B}(F_{ext}^{nc}).$$

Il apparaît une fonction d'état homogène à une énergie et dont la variation s'exprime en fonction uniquement du travail des forces non conservatives. Cette nouvelle fonction correspond à l'énergie mécanique. Remarque : l'énergie mécanique d'un système ne peut que diminuer au cours du temps car les forces sont non conservatives et sont donc résistantes (F et V(M/R) sont en sens opposé; W < 0). Remarque : pour un système soumis à des forces uniquement conservatives, l'énergie mécanique est constante. Ce type de système est dit mécaniquement isolé.

1.5. ÉNERGIES

17

1.5.3 Exemple d'utilisation de l'énergie pour la résolution d'un problème

Dans le but d'étudier la planète Mars, nous réfléchissons à une solution innovante pour faire amarsir notre sonde en utilisant la gravité de Mars. L'idée est de lâcher notre sonde à une altitude h de la surface de Mars, celle-ci tout en tournant autour de la planète viendrait se poser au bout d'un certain temps grâce au frottement de l'atmosphère. Cette idée est particulièrement ingénieuse car elle est écologique : la sonde n'est pas motorisée, elle n'utilise que les forces de gravitation.

 $\underline{\text{Donn\'ees}}$: Masse de la sonde : m = 20 kg

Masse de Mars : $m_{\rm M} = 6,4185 \times 10^{23} \, {\rm kg}$

Rayon de Mars : R = 3400 kmHauteur de lâcher h = 10 km

Constante de gravitation : $\mathcal{G} = 6,67 \times 10^{-11} \text{ N.m}^2 \text{.kg}^{-2}$ Expression de la force de gravitation : $F_{\mathcal{G}} = -\mathcal{G} \frac{m_{\text{M}} m}{r^2} u_r$.

1. Dans le cas où notre sonde, représentée par un point M, est en orbite circulaire de rayon r (supposée constante) autour de Mars et est sujette uniquement à la force de gravitation, déterminer le module de sa vitesse en fonction de G, de la masse de Mars m_M et du rayon r de l'orbite. En appliquant le principe fondamental de la dynamique à la sonde, il vient :

$$\frac{\mathrm{d}}{\mathrm{d}t} p(\mathrm{M/R}) = F_{\mathcal{G}},$$

$$m \frac{\mathrm{d}}{\mathrm{d}t} V(\mathrm{M/R}) = -\mathcal{G} \frac{m_{\mathrm{M}} m}{r^2} u_r.$$

Or

$$V(M/R) = \frac{d}{dt}(r\boldsymbol{u}_r) = r\frac{d\theta}{dt}\boldsymbol{u}_{\theta},$$

donc

$$\frac{\mathrm{d}}{\mathrm{d}t}V(\mathrm{M/R}) = -r\left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2 u_r = -\frac{V(\mathrm{M/R})^2}{r} u_r,$$

d'où

$$V(M/R) = \sqrt{\frac{\mathcal{G}m_{\rm M}}{r}}.$$

2. Montrer que l'on peut associer l'énergie potentielle $E_{\rm p}=-\mathcal{G}\frac{m_{\rm M}m}{r}$ à la force de gravitation. La force de gravitation est une force conservative, d'où $-\Delta E_{\rm p}=\int_{\rm A}^{\rm B}\mathcal{G}\frac{m_{\rm M}m}{r^2}dr$, ce qui donne :

$$E_{\rm p}({\rm A}) - E_{\rm p}({\rm B}) = -m_{\rm M} m \mathcal{G} \left(\frac{1}{r_{\rm B}} - \frac{1}{r_{\rm A}} \right).$$

En considérant le point B à une altitude r et A à une altitude infinie, il vient :

 $E_{\rm p} = -\mathcal{G} \frac{m_{\rm M} m}{r}.$

3. Exprimer l'énergie mécanique $E_{\rm m}$ de la sonde en fonction de \mathcal{G} , $m_{\rm M}$, m et r. Grâce aux questions précédentes, il vient directement :

$$E_{\rm m} = E_{\rm c} + E_{\rm p} = \frac{1}{2} m V ({\rm M/R})^2 - \mathcal{G} \frac{m_{\rm M} m}{r} = -\frac{1}{2} \mathcal{G} \frac{m_{\rm M} m}{r}.$$

- **4.** Du fait des frottements occasionnés dans l'atmosphère martienne, notre sonde change lentement d'altitude. L'action de ces frottements peut être représentée par une force du type $f = -\alpha V(M/R)$ ($\alpha > 0$). On raisonnera en considérant que le mouvement reste quasi-circulaire, et que, par conséquent, les expressions précédentes restent valables.
 - a. Comment varie l'énergie mécanique de la sonde dans ces conditions ? Justifier grâce à cela que le module de la vitesse du satellite augmente. Nous avons une force dissipative donc $\Delta E_{\rm m} < 0$. Entre les deux instants A et B, $E_{\rm m}(B) E_{\rm m}(A) < 0$, ce qui conduit à $r_{\rm B} < r_{\rm A}$. Comme le rayon de l'orbite diminue au cours du temps, la vitesse augmente.
 - **b.** Exprimer $\frac{\mathrm{d}E_{\mathrm{m}}}{\mathrm{d}t}$ de deux façons différentes, tout d'abord à partir du travail des forces, puis à partir de l'énergie mécanique calculée dans la partie précédente. En déduire r(t). Nous avons $dE_{\mathrm{m}} = \delta W$, ce qui conduit à $\frac{\mathrm{d}E_{\mathrm{m}}}{\mathrm{d}t} = -\alpha V(\mathrm{M/R})r\frac{\mathrm{d}\theta}{\mathrm{d}t} = -\alpha V(\mathrm{M/R})^2 = -\alpha \mathcal{G}\frac{m_M}{r}$. Grâce à la question 3, il vient $\frac{1}{2}\mathcal{G}\frac{m_M m}{r^2}\frac{\mathrm{d}r}{\mathrm{d}t} = -\alpha \frac{\mathcal{G}m_{\mathrm{M}}}{r}$ et donc $\frac{\mathrm{d}r}{r} = -2madt$, ce qui conduit à $r(t) = (h+R)e^{-\alpha 2m(t-t_0)}$ avec t_0 l'instant de lâcher.

Points clefs

- Vecteur position. Si on choisit (O, x, y, z) orthonormé direct, alors les coordonnées de M s'obtiennent par projection orthogonale du vecteur

POINTS CLEFS 19

position OM sur les vecteurs de la base.

$$x_{\mathrm{M}} = \mathbf{O}\mathbf{M} \cdot \mathbf{x}$$
 $y_{\mathrm{M}} = \mathbf{O}\mathbf{M} \cdot \mathbf{y}$ $z_{\mathrm{M}} = \mathbf{O}\mathbf{M} \cdot \mathbf{z}$.

– Le vecteur vitesse V(M/R) est la dérivée dans le repère R du vecteur position.

$$V(M/R) = \frac{d\mathbf{O}\mathbf{M}}{dt}\Big|_{R}$$
.

 Le vecteur accélération Γ(M/R) est la dérivée dans le repère R du vecteur vitesse.

$$\Gamma(M/R) = \frac{dV(M/R)}{dt}\Big|_{R}$$
.

- Expression du vecteur vitesse dans les repères R et R₁

$$V(M/R) = \frac{dx}{dt}x + \frac{dy}{dt}y = \dot{x}x + \dot{y}y$$

$$V(M/R_1) = \frac{dx_1}{dt}x_1 + \frac{dy_1}{dt}y_1 = \dot{x}_1x_1 + \dot{y}_1y_1$$

et dérivation vectorielle

$$V(M/R) = V(M/R_1) + \Omega(R_1/R) \wedge OM.$$

- Principe d'inertie 1^{re}loi de Newton. Lorsqu'un corps isolé est au repos ou en mouvement rectiligne uniforme, sa quantité de mouvement est constante.
- Principe fondamental de la dynamique 2^e loi de Newton. Dans un référentiel galiléen, la somme vectorielle des forces extérieures appliquées à un système ou point matériel M est égale à la dérivée par rapport au temps du vecteur quantité de mouvement du système ou point matériel M:

$$\sum \boldsymbol{F}_{\rm ext} = \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{p}(\mathrm{M/R}).$$

– Actions réciproques - 3^e loi de Newton. Lorsque deux systèmes S_1 et S_2 sont en interaction, quel que soit le référentiel d'étude et quel que soit leur mouvement (ou absence de mouvement), l'action du système S_1 sur le système S_2 est exactement opposée à l'action simultanée du système S_2 sur le système S_1 .

Théorème de l'énergie cinétique. Dans un référentiel galiléen, la variation d'énergie cinétique d'un point matériel, soumis à un ensemble de forces extérieures, entre une position A et une position B est égale à la somme des travaux de ces forces entre ces deux points :

$$\Delta E_{\rm c} = \sum W_{\rm A \to B}(F_{\rm ext}).$$

– Théorème de l'énergie mécanique. La variation d'énergie mécanique entre deux points A et B est égale à la somme des travaux des forces extérieures non conservatives ($F_{\rm ext}^{\rm nc}$) appliquées au système entre ces deux points :

$$\Delta E = \sum W_{\mathrm{A} \to \mathrm{B}}(\boldsymbol{F}_{\mathrm{ext}}^{\mathrm{nc}}).$$

Exercices

Exercice 1.1. Partie de billard

Vous participez à une partie de billard. Pour gagner la partie, il faut rentrer la boule rouge (noire dans la réalité) en la poussant avec la boule blanche, qui elle ne doit pas être rentrée (ce qui entraînerait la perte de la partie). Dans ce problème, nous cherchons les conditions à satisfaire afin d'éviter que la boule rouge ne rentre dans le trou en bas à droite et la boule blanche dans le trou en haut à droite (voir Figure 1.7). On fait l'hypothèse simpli-

Figure 1.7 – Schéma de la partie de billard et notations.

ficatrice que le mouvement de la boule blanche avant le choc se fait selon l'axe (O,x) (de vitesse V_B) et que la boule rouge est immobile. Après le choc, la boule blanche et la boule rouge ont respectivement les vitesses V_B et V_R' , faisant un angle β et α avec l'axe (O,x). Toutes les boules roulent sans glisser. Elles sont, de plus, considérées indéformables et sujettes à des chocs élastiques. Les boules ont toutes la même masse m. La schématisation du problème ainsi que les notations utiles à sa résolution sont présentées dans la Figure 1.7.

- **1-** Définissez le système d'étude, le référentiel approprié ainsi que le repère.
- **2-** Le système est-il pseudo-isolé, isolé, fermé ou ouvert? Pourquoi?
- **3-** Énoncez le principe de conservation de la quantité de mouvement.

- **4-** Exprimez la quantité de mouvement du système avant et après le choc. En déduire deux équations exprimant le lien entre les vitesses avant (V_B) et après le choc (V'_B) et (V'_B) et (V'_B) .
- **5-** En utilisant la propriété de conservation de l'énergie cinétique (les énergies cinétiques du système avant E_c et après le choc E_c' sont égales) des chocs élastiques, déterminez une expression liant la vitesse et la masse des deux boules avant et après le choc.
- **6-** À partir des équations trouvées aux questions **4** et **5**, montrez que la vitesse de la boule rouge s'exprime de la manière suivante :

$$V_{\rm B}' = V_{\rm B} \cos \alpha$$
.

- **7-** Montrez qu'il existe une relation entre les angles α et β qui s'exprime comme suit : $\sin \beta = \cos \alpha$. En déduire la valeur de l'angle β en fonction de l'angle α , vérifiant la physique du problème.
- **8-** Si la boule rouge se trouve sur l'axe central de la table, pour quelle distance *x* séparant la boule rouge du bord de la table (voir Figure 1.7), ne faut-il pas taper directement (sans rebond) dans la boule rouge avec la boule blanche au risque de perdre la partie?

Exercice 1.2. Vitesse du son en chute libre

Le 14 octobre 2012, Felix Baumgartner s'est élevé à près de 39 km audessus de la Terre grâce à un ballon en hélium pour se jeter dans le vide. L'objectif de ce saut est de dépasser le mur du son en chute libre afin d'établir un record. Forts de vos cours en mécanique du point, vous êtes maintenant à même d'établir un modèle plus ou moins élaboré de cette chute afin de comprendre toutes les subtilités de ce saut. Nous donnons, ci-dessous quelques éléments sur le saut de Felix Baumgartner et notamment sa vitesse au cours du temps (voir figure 1.10). Dans la figure 1.8 sont schématisées les différentes étapes du saut en fonction de l'altitude et dans la figure 1.9 l'instant où Felix Baumgartner s'élance de sa capsule sans vitesse initiale dans le vide. En fin d'exercice, quelques formules vous sont données ainsi que la vitesse du son et la densité de l'air en fonction de l'altitude. Dans tout l'exercice, nous considérons l'axe z comme vertical ascendant repérant l'altitude de Felix Baumgartner.

Préambule

1- À partir de la force gravitationnelle d'interaction, donnez le poids de Felix Baumgartner $P_{\rm FB}$ en fonction de sa masse $M_{\rm FB}$, de la constante de gravitation \mathcal{G} , de la masse de la terre $M_{\rm T}$, du rayon de la terre $R_{\rm T}$ et de l'altitude à laquelle il se trouve z.

EXERCICES 23

FIGURE 1.8 – Description schématique du trajet de Felix Baumgartner (source: www.bbc.co.uk).

Figure 1.9 – Image prise à la sortie de la capsule, au moment de s'élancer (source : www.redbullstratos.com).

FIGURE 1.10 – Vitesse de Felix Baumgartner lors de sa chute libre en fonction du temps.

(source: theengineerspulse.blogspot.ca).

2- Sachant que le rayon de la terre est bien plus grand que l'altitude de Felix Baumgartner, justifiez le fait que son poids ne changera pas au cours de sa chute ? **1**^{er} **modèle**

Selon ce premier modèle, nous considérons que Felix Baumgartner ne subit que la force de pesanteur, que nous supposerons dans la suite de l'exercice indépendante de l'altitude.

- **3-** Selon ce modèle, définissez le système d'étude, le référentiel, le bilan des actions mécaniques extérieures appliquées au système.
- **4-** À partir du théorème de l'énergie cinétique, déterminez la vitesse v de Félix Baumgartner à une altitude z.
- **5-** À quelle altitude, Felix Baumgartner atteindra sa vitesse maximale (voir figure 1.10) avec ce modèle?
- **6-** Avec ce modèle, quelle vitesse atteindra Felix Baumgartner à la surface de la Terre ? Trouvez-vous ce modèle réaliste ? **2**^e **modèle**

Pour ce modèle, Felix Baumgartner subit en plus de la force de pesanteur (toujours indépendante de l'altitude), une force de frottement liée à la densité de l'air et à sa vitesse, qui s'appelle « force de traînée » (voir le formulaire).

- **7-** Selon ce 2^e modèle, définissez le système d'étude, le référentiel, le bilan des actions mécaniques extérieures appliquées au système.
- **8-** Énoncez la deuxième loi de Newton (ou le principe fondamental de la dynamique).
- **9-** À partir de la deuxième loi de Newton, trouvez l'équation différentielle vérifiée par la vitesse v_z (composante de la vitesse selon l'axe z) de Felix Baumgartner.
- **10-** Avec ce modèle, quelle est la vitesse maximale (ce qui revient à avoir une accélération verticale nulle) que peut atteindre Felix Baumgartner? Que se passe-t-il physiquement à cette vitesse?
- 11- Felix Baumgartner (avec son scaphandre) fait approximativement 200 kg, a une superficie de 1 m², un coefficient de traînée de 0,2 et chute à une vitesse connue (voir figure 1.10). Quelle est la masse volumique de l'air lorsqu'il atteint sa vitesse maximale? Suivant ce résultat, dans quelle partie de l'atmosphère a-t-il dépassé la vitesse du son? En déduire l'altitude à laquelle Felix Baumgartner a atteint cette vitesse.
- **12-** Que conclure de cette dernière estimation de l'altitude de Felix Baumgartner lorsqu'il atteint sa vitesse maximale avec ce 2^e modèle par rapport au 1^{er} modèle ?
- **13-** À partir de vos résultats et de votre interprétation, expliquez l'allure de la courbe de la vitesse de Felix Baumgartner en fonction du temps (voir

EXERCICES 25

figure 1.10).

14- Expliquez maintenant pourquoi (en justifiant), Felix Baumgartner était obligé de monter jusque dans la stratosphère avec son ballon pour atteindre son objectif.

Formulaire

Interaction gravitationnelle

Un corps 1 de masse m_1 exerce sur un corps 2 de masse m_2 une force centrale :

$$F_{12} = -\mathcal{G}\frac{m_1 m_2}{r^2} u_{12}$$

où r est la distance entre les entres de masse des deux corps, \mathcal{G} est la constante de gravitation ($\mathcal{G} = 6,67.10^{-11} \text{ N.m}^2 \text{.kg}^{-2}$) et u_{12} est le vecteur unitaire de l'axe reliant les deux centres de masse et dirigé de 1 vers 2.

Force de traînée

La force de traînée s'oppose au mouvement d'un corps dans un fluide. Cette force est de sens opposée à la vitesse relative du corps par rapport à l'air. En projection selon l'axe z, la force de traînée s'exprime par :

$$F_z = \frac{1}{2} C_z \rho S v_z^2,$$

où C_z est le coefficient de traînée, ρ la masse volumique du fluide, S la surface de l'obstacle, v_z la vitesse du mobile selon l'axe z.

Vitesse du son et densité de l'air en fonction de l'altitude

Figure 1.11 – Vitesse du son en fonction de l'altitude

Figure 1.12 – Densité de l'air en fonction de l'altitude

Exercice 1.3. Père Noël... Oh Oh Oh

En cette fin d'année, le Père Noël se prépare à livrer les cadeaux aux enfants très sages. Malheureusement, cette année, tous ses rênes sont tombés malades en même temps et il n'est pas sûr qu'ils soient en forme pour faire les livraisons du 24 décembre. Il réfléchit donc à plusieurs solutions pour parer à cette éventualité. Nous allons réfléchir avec lui à deux solutions qui consisteraient soit à glisser avec son traîneau du haut de l'Éverest (8848 m) jusqu'au Kala Patthar (5545 m), soit à faire rouler une boule de glace de l'Éverest et occasionner une collision avec le traîneau au pied du Kala Patthar qui le propulserait. Avec ces deux méthodes, le traîneau du Père Noël s'envole en haut du Kala Patthar. Une vue schématique de cette « piste de lancement » est montrée dans la figure 1.13, avec en A l'Everest et en F le Kala Patthar. Dans tout le problème, le traîneau est de masse $M_{\rm T}$, tous les cadeaux de masse M_c et le Père Noël de masse M_{PN} . Nous prendrons les notations suivantes : l'ordonnée aux points i = A, B, C, D, E ou F sera notée y_i tandis que l'abscisse sera noté x_i . Les vitesses des systèmes étudiés seront quant à elles notées V_i . Méthode 1 : Ouh Ouh

Figure 1.13 – Système de coordonnées.

- 1- Définir le système d'étude, le référentiel approprié ainsi que le repère.
- **2-** Le système est-il isolé, pseudo-isolé, ouvert ou fermé? Pourquoi? Nous considérons, dans un premier temps, que le traîneau glisse sur la neige sans frottement.
- **3-** Faites un bilan des forces exercées sur le système d'étude. Représentez ces forces sur un schéma.
- **4-** Calculez le travail dû à ces forces le long de la trajectoire définie par les points ABCDEF (voir figure 1.13). Pour cela, on pourra se rappeler que nous avons à faire à des forces conservatives.
- 5- À partir du théorème de l'énergie cinétique, que vaut la vitesse du traî-

EXERCICES 27

neau (avec les cadeaux et le Père Noël) en F lors du « décollage » en considérant que le Père Noël quitte l'Everest sans vitesse initiale.

- **6-** Donnez un ordre de grandeur de cette vitesse. Dépasse-t-il la vitesse du son ? Si non, de quelle hauteur faudrait-il que le sommet en F soit pour que la vitesse de « lancement » soit égale à la vitesse du son ?
- **7-** Nous étudions maintenant ce qui se passe lorsque le traîneau du Père Noël a quitté le sommet du Kala Patthar.
- **8-** À partir du principe fondamental de la dynamique (ou 2^e loi de Newton), déterminez l'accélération du système d'étude en fonction des données du problème ?
- **9-** Déduire de la question précédente les équations du mouvement selon les axes x et y, de la vitesse puis du déplacement du traîneau en fonction de la vitesse et des coordonnées en F (sommet du Kala Patthar). On supposera ici que l'orientation de la vitesse en F suit la trajectoire EF et fait donc un angle de 45° avec l'axe des abscisses (voir figure 1.13).
- **10-** Quelle distance va parcourir le Père Noël lorsqu'il atterrira à l'altitude de 0m. Donnez l'ordre de grandeur de cette distance. Nous considérons, dans un second temps, que le traîneau glisse sur la neige sans frottement sauf sur le tronçon entre B et C où la neige est plus molle. Nous supposons que le frottement du traîneau génère une force f opposée au déplacement et proportionnelle à la force normale de réaction du sol d'un coefficient μ .
- **11-** Faites un bilan des forces exercées sur le système d'étude. Représentez ces forces sur un schéma avec leurs orientations.
- **12-** En appliquant le principe fondamental de la dynamique (ou 2^e loi de Newton) entre B et C, déterminez l'expression de la force f en fonction des données du problème.
- **13-** Calculez le travail des forces extérieures le long de la trajectoire définie par les points ABCDEF (voir figure 1.13). Sera-t-il plus grand ou plus petit que celui calculé lorsqu'il n'y a pas de frottement?
- **14-** En déduire si la distance parcourue par le Père Noël après s'être élancé du Kala Pathar sera plus petite ou plus grande que dans le cas sans frottement. Nous considérons, dans un troisième temps, que le traîneau glisse sur la neige sans frottement mais que des cadeaux de masse $m_{\rm C}$ se sont échappés de son traîneau en E.
- **15-** Dans ces conditions, calculez le travail des forces extérieures au système le long de la trajectoire définie par les points ABCDEF (voir figure 1.13). Sera-t-il plus grand ou plus petit que celui calculé avec tous les cadeaux ?
- **16-** En déduire maintenant si la distance parcourue par le Père Noël après s'être élancé du Kala Patthar est plus petite ou plus grande que lorsque tous

les cadeaux sont présents. **Méthode 2 : Ah Ah Ah** Cette deuxième méthode, consiste à faire dévaler de l'Éverest une boule de glace de masse M_g (très petite devant la masse totale du traîneau) et de placer le traîneau du Père Noël en E. Lors du choc (que nous considérons sans déformation), le traîneau (initialement au repos) est propulsé et s'élance du Kala Patthar (en F). Dans cette partie, la boule démarre sans vitesse initiale, roule sans glisser et ne change pas de masse au cours de son trajet. De plus, on considère qu'il n'y a pas de perte de cadeaux en E.

- **17-** Quel système considère-t-on pour connaître la vitesse de la boule de glace en F? Ce système est-il isolé, pseudo-isolé, fermé ou ouvert?
- **18-** Quelle est la vitesse de la boule de glace en E?
- **19-** En appliquant le principe de conservation de la quantité de mouvement (issu du principe d'inertie) au système constitué par la boule de glace et le traîneau rempli de cadeaux avec le Père Noël, quelle est maintenant la vitesse du traîneau en E? (En considérant qu'après le choc, la boule de glace reste immobile en E).
- **20-** Avec cette méthode, le Père Noël ira-t-il plus loin pour distribuer ses cadeaux ? Si non, que faudrait-il modifier pour que cette méthode soit plus intéressante ?
- **21-** Pensez-vous qu'avec toute cette histoire vous aurez des cadeaux à Noël?

Exercice 1.4. Métronome de secours

Tout bon musicien doit avoir un métronome dans son étui d'instrument. Malheureusement, il n'est pas à l'abri d'un quelconque incident (chute, piles défectueuses ...) nécessitant l'utilisation d'un métronome de secours ! L'objet de cet exercice est donc de concevoir un métronome simple et robuste, utilisable en toutes circonstances. Pour cela, nous utiliserons un fil de longueur ajustable ℓ au bout duquel une masse M sera accrochée (voir figure 1.14). Il s'agit de faire osciller cette masse à la pulsation désirée, dépendante de la longueur du fil. Nous nous attacherons donc à étudier le mouvement de la masse au cours du temps. Celle-ci est lâchée sans vitesse initiale à un angle θ de l'axe vertical que nous supposerons faible. Les phénomènes de frottement seront négligés.

- **1-** Définir le système d'étude, le référentiel approprié ainsi que le repère.
- **2-** Faire un bilan des forces extérieures appliquées au système d'étude.
- **3-** Déterminer la position, la vitesse et l'accélération de la masse M.
- **4-** Énoncer le principe fondamental de la dynamique (ou 2^e loi de Newton) et l'appliquer au système d'étude. En projetant l'équation obtenue sur un axe approprié, déterminer l'équation du mouvement.

EXERCICES 29

Figure 1.14 – Métronome constitué d'une masse et d'un fil.

5- D'après la question précédente, donner la pulsation propre de l'oscillateur.

Application : Vous souhaitez avoir 60 pulsations par minute (*Largo*), quelle longueur de fil est nécessaire ? Même question avec une pulsation de 120 pulsations par minute (*Allegro*).

6- Discuter de la pertinence d'un tel système de secours.

Solutions

Solution 1.1.

- 1- Système d'étude = {Boule blanche + Boule rouge}, référentiel terrestre, repère (O, x, y) défini sur le schéma.
- **2-** Le système d'étude est pseudo-isolé car il n'y a pas d'échange d'énergie, ni de matière et les forces se compensent.
- 3- Dans un référentiel galiléen, la quantité de mouvement totale d'un système isolé ou pseudo-isolé ne varie pas au cours du temps.
- **4-** Avant le choc, $V_R = 0$ donc $p = mV_B = mV_B x$.

Après le choc :
$$p = mV'_{B} + mV'_{R} = \begin{cases} m(V'_{B}\cos\beta + V'_{R}\cos\alpha)x \\ m(V'_{B}\sin\beta - V'_{R}\sin\alpha)y \end{cases}$$
.

Par conservation de la quantité de mouvement pour un système isolé (ou

pseudo-isolé) on obtient le système d'équations suivant :

$$\begin{cases} V_{\rm B}' \cos \beta + V_{\rm R}' \cos \alpha &= V_{\rm B} \\ V_{\rm B}' \sin \beta - V_{\rm R}' \sin \alpha &= 0 \end{cases}$$

5-
$$E_{\rm c} = E_{\rm c}' \Rightarrow \frac{1}{2} m V_{\rm B}^2 = \frac{1}{2} m \left(V_{\rm B}' \right)^2 + \frac{1}{2} m \left(V_{\rm R}' \right)^2 \Rightarrow V_{\rm B}^2 = \left(V_{\rm B}' \right)^2 + \left(V_{\rm R}' \right)^2.$$

6- On a

$$\begin{cases} \left(V_{\rm B}'\cos\beta\right)^2 &= \left(V_{\rm B} - V_{\rm R}'\cos\alpha\right)^2 \\ \left(V_{\rm B}'\sin\beta\right)^2 &= \left(V_{\rm R}'\sin\alpha\right)^2 \end{cases}$$

ce qui permet d'avoir : $\left(V_{\rm B}'\right)^2 = \left(V_{\rm B} - V_{\rm R}' \cos \alpha\right)^2 + \left(V_{\rm R}' \sin \alpha\right)^2$.

Comme $\left(V_{\rm B}'\right)^2 = \left(V_{\rm B}\right)^2 - \left(V_{\rm K}'\right)^2$ on en déduit $V_{\rm K}' = V_{\rm B}\cos\alpha$.

7- On a $V_{\rm B}' \sin \beta = V_{\rm R}' \sin \alpha$, d'où $V_{\rm R}' \sin \beta = V_{\rm B} \cos \alpha \sin \alpha$.

Or
$$V'_{\rm B} = \sqrt{V_{\rm B}^2 - (V_{\rm B} \cos \alpha)^2}$$
, on obtient donc $\sin \beta = \cos \alpha$.

On a $\sin \beta = \cos \alpha$ donc $\cos \left(\frac{\pi}{2} - \beta\right) = \cos \alpha$, d'où $\frac{\pi}{2} - \beta + 2k\pi = \pm \alpha$. Par rapport à la physique du système, $\alpha' + \beta = \frac{\pi}{2}$ est la solution possible.

8- On sait que $\alpha + \beta = \frac{\pi}{2}$ et que la boule rouge est sur l'axe central. On en déduit donc que boule rouge se trouve au sommet d'un triangle rectangle isocèle de base $\ell/2$, d'où $x = \ell/2$.

SOLUTIONS 31

Solution 1.2.

1-
$$P_{\rm FB} = -\mathcal{G} \frac{M_{\rm T} M_{\rm FB}}{(R_{\rm T} + z)^2} z$$

2- $P_{\rm FB} = -\mathcal{G} \frac{M_{\rm T} M_{\rm FB}}{(R_{\rm T} + h)^2} z = -\mathcal{G} \frac{M_{\rm T}}{R_{\rm T}^2 (1 + \frac{h}{R_{\rm T}})^2} M_{\rm FB} z \approx -\mathcal{G} \frac{M_{\rm T}}{R_{\rm T}^2} M_{\rm FB} z \text{ car } \frac{h}{R_{\rm T}} << 1 \text{ On retrouve bien } P_{\rm FB} = -g M_{\rm FB} z$, le poids de Félix Baumgartner ne changera pratiquement pas au cours de sa chute libre

3- système : Félix Baumgartner de masse $M_{\rm FB}$ référentiel terrestre galiléen Actions mécaniques extérieures : force de pesanteur ($P_{\rm FB} = M_{\rm FB} g$)

4- Théorème de l'énergie cinétique : la variation d'énergie cinétique du système d'étude entre une position initiale repérée par z_0 (à l'instant où il saute) et l'altitude z, est égale à la somme des travaux de ces forces entre ces deux points :

 $\Delta E_{\rm c} = E_{\rm c}(z) - E_{\rm c}(z_0) = \frac{1}{2} M_{\rm FB} v^2 - \frac{1}{2} M_{\rm FB} v_0^2 = \sum W_{z_0 \to z}(F_{\rm ext})$. Comme Felix Baumgartner s'élance sans vitesse initiale, il vient :

$$\frac{1}{2}M_{\rm FB}v^2 = M_{\rm FB}g(h-z).$$

D'où
$$v = \sqrt{2g(h-z)}$$

5- On a
$$v^2 = 2g(h-z) \Rightarrow z = h - \frac{v^2}{2g}$$

d'où $z(v_{max}) = 39000 - \frac{122500}{20} \approx 39000 - 6125 \approx 33000 \text{ m}.$

6- En z = 0, $v = \sqrt{2gh}$ et donc $v \approx \sqrt{20 \times 39000} \approx \sqrt{80.10^4} \approx 900 \text{ m.s}^{-1}$. Le modèle est peu réaliste, il faut prendre en compte les frottements liés à l'air : la force de traînée.

7- système : Félix Baumgartner de masse $M_{\rm FB}$ référentiel terrestre galiléen Actions mécaniques extérieures :

- force de pesanteur en projection selon $z: P_{FB} = -M_{FB}g$;
- force de traînée en projection selon $z : F_z = \frac{1}{2}C_z \rho S v_z^2$.
- **8-** Dans un référentiel galiléen, la somme vectorielle des forces extérieures appliquée à un système est égale à la dérivée par rapport au temps du vecteur quantité de mouvement du système : $\sum F_{\rm ext} = \frac{{\rm d}p}{{\rm d}t}$

9- En projection selon l'axe z,

$$\sum \mathbf{F}_{\text{ext}} = M_{\text{FB}} \frac{\text{d}v_z}{dt}$$
$$-M_{\text{FB}}g + \frac{1}{2}C_z \rho S v_z^2 = M_{\text{FB}} \frac{\text{d}v_z}{\text{d}t}$$
$$\frac{\text{d}v_z}{\text{d}t} - \frac{1}{2} \frac{C_z \rho S}{M_{\text{FB}}} v_z^2 + g = 0.$$

10- La vitesse maximale est lorsque l'accélération est nulle! Cela revient au fait que les forces de trainée et de pesanteur se compensent, d'où

$$\frac{1}{2} \frac{C_z \rho S}{M_{\rm FB}} v_z^2 = g \quad \Rightarrow \quad v_z = \sqrt{\frac{2 M_{\rm FB} g}{C_z \rho S}}.$$

11- D'après le graphe de la figure 1.10, on sait que la vitesse maximale est de $350~\mathrm{m.s^{-1}}$.

$$\rho = \frac{2M_{\rm FB}g}{C_z S v_z^2} \approx \frac{2 \times 200 \times 10}{0.2 \times 1 \times 350^2} \approx \frac{2 \times 200 \times 10}{0.2 \times 1 \times 122500} \approx \frac{1}{6} \approx 0,16 \text{kg.m}^{-3}.$$

D'après le graphe de la figure 1.12, la densité de l'air est de 0, 16 kg.m⁻³ à environ 15 km d'altitude au début de la troposause. Il a donc dépassé le mur du son dans la stratosphère.

12- Ce résultat semble plus plausible, le 1^{er} modèle est trop simple et n'est donc pas valide.

13-

- à t=0 la densité de l'air est extrêmement faible ($\rho \approx 0$), la force de traînée est donc négligeable devant la force de pesanteur, on retombe donc sur l'équation $\frac{dv_z}{dt} = -g$ obtenu avec le 1^{er} modèle, ce qui donne le coefficient directeur de la courbe ;
- lorsque ρ augmente, la traînée devient importante jusqu'à compenser la force de pesanteur ;
- après, la traînée devient le terme prépondérant, entraînant un ralentissement de Felix Baumgartner.
- **14-** On comprend maintenant que pour atteindre des vitesses importantes il faut limiter l'influence de la traînée et donc monter à des altitudes où la densité de l'air est très faible.

Solution 1.3.

SOLUTIONS 33

- **1-** Système d'étude = $\{\text{traı̂} = \text{Noël+cadeaux}\}$, référentiel terrestre, repère plan (O, x, y).
- **2-** Système pseudo-isolé car pas d'échange d'énergie, ni de matière et les actions extérieures agissant sur lui se compensent.
- **3-** Les actions mécaniques extérieures appliquées au système sont : le poids P et la force de réaction du sol R.
- 4- Pour répondre à cette question, deux méthodes sont possibles :
- 1^{re} solution

$$W_{\text{ABCDEF}} = \int_{A}^{B} P.dOM + \int_{B}^{C} P.dOM + \int_{C}^{D} P.dOM$$
$$+ \int_{D}^{E} P.dOM \int_{E}^{F} P.dOM$$
$$= P.AB + P.BC + P.CD + P.DE + P.EF$$

d'où
$$W_{ABCDEF} = P.AF = W_{AF} = -(M_T + M_{PN} + M_C)g(y_F - y_A).$$

- 2^{e} solution. On a une force conservative, d'où $W_{\text{ABCDEF}} = W_{\text{AF}} = E_{\text{p}}(\text{F}) E_{\text{p}}(\text{A}) = -(M_{\text{T}} + M_{\text{PN}} + M_{\text{C}})g(y_{\text{F}} y_{\text{A}}).$
- **5-** Grâce au théorème de l'énergie cinétique on a

$$\Delta E_{c} = E_{c}(F) - E_{c}(A) = \frac{1}{2}(M_{T} + M_{PN} + M_{C})V_{F}^{2}$$
$$= -(M_{T} + M_{PN} + M_{C})g(y_{F} - y_{A})$$

d'où
$$V_{\rm F} = \sqrt{-2g(y_F - y_{\rm A})}$$
.

- **6-** La vitesse en F est de $V_{\rm F}^2 \approx 20 \times (3303) \Rightarrow V_{\rm F} \approx \sqrt{66060}$, ou $V_{\rm F} \approx \sqrt{6} \times 100 \approx 250~{\rm m.s^{-1}}$, ce qui est une valeur inférieure à la vitesse du son $(340~{\rm m.s^{-1}})$. Pour que la vitesse de « lancement » soit égale à la vitesse du son, il faut que le sommet en F soit à 2848 m.
- **7-** Il n'y a plus de réaction du sol, le système est non isolé car les forces ne se compensent pas.
- **8-** On note a l'accélération du système. À partir du principe fondamental de la dynamique,

$$(M_{\rm T} + M_{\rm PN} + M_{\rm C})a = -(M_{\rm T} + M_{\rm PN} + M_{\rm C})g \Rightarrow a = -g.$$

9- En projetant selon x, $a_x = 0$, $V_x = V_{Fx}$, $X_x = V_{Fx}t + X_F$, selon y, $a_y = -g$, $V_y = -gt + V_{Fy}$, $Y_y = \frac{1}{2}gt^2 + V_{Fy}t + Y_F$.

10- À l'altitude de 0 m, on a :

$$Y_{y}(t_{\text{fin}}) = 0 = -\frac{1}{2}gt_{\text{fin}}^{2} + V_{\text{Fy}}t_{\text{fin}} + Y_{\text{F}}$$

ce qui nous permet d'avoir l'instant où le traîneau va toucher le sol :

$$t_{\rm fin} = \frac{V_{\rm Fy} + \sqrt{V_{\rm Fy}^2 + 2gY_{\rm F}}}{g}.$$

La distance parcourue est donc :

$$X_x - X_{\rm F} = \frac{V_{\rm Fx}^2}{g} \left(1 + \sqrt{1 + \frac{2gY_{\rm F}}{V_{\rm Fy}}} \right).$$

Donc $X_x - X_F \approx 3303 (1 + \sqrt{1100}) \approx 100000 \text{ m} = 100 \text{ km}.$

11- Les actions mécaniques extérieures exercées sur le système d'étude sont le poids P, la force de réaction R et les forces de frottement f.

12- En projection suivant y, $R = (M_T + M_{PN} + M_C)g$ et donc

$$f = \mu (M_{\rm T} + M_{\rm PN} + M_{\rm C})g.$$

13- Maintenant, le travail le long de la trajectoire est le suivant :

$$W_{\text{ABCDEF}}^{\text{avec frottement}} = \int_{A}^{B} P.\text{d}OM + \int_{B}^{C} (P+f).\text{d}OM + \int_{C}^{D} P.\text{d}OM$$
$$+ \int_{D}^{E} P.\text{d}OM + OM \int_{E}^{F} P.\text{d}OM$$
$$= P.(AB + BC + CD + DE + EF) + f.BC$$
$$= P.AF + f.BC$$
$$= -(M_{\text{T}} + M_{\text{PN}} + M_{\text{C}})g(y_{\text{F}} - y_{\text{A}}) - \cdots$$
$$\mu(M_{\text{T}} + M_{\text{PN}} + M_{\text{C}})g(x_{\text{C}} - x_{\text{B}}).$$

Par identification, on peut écrire

$$W_{\rm ABCDEF}^{\rm avec \ frottement} = W_{\rm ABCDEF}^{\rm sans \ frottement} - \mu (M_{\rm T} + M_{\rm PN} + M_{\rm C}) g(x_{\rm C} - x_{\rm B})$$

ce qui permet de conclure que le travail le long de la trajectoire avec frottement est inférieur au travail sans frottement.

14- Grâce au théorème de l'énergie cinétique on peut conclure de la question précédente que la vitesse de lancement sera plus faible avec frottement que sans. Ce qui implique nécessairement que la distance parcourue sera plus petite.

SOLUTIONS 35

15- Dans ces nouvelles conditions, le travail s'exprime par :

$$W_{\text{ABCDEF}}^{\text{avec perte cadeau}} = \int_{A}^{E} \boldsymbol{P}.\text{d}\boldsymbol{O}\boldsymbol{M} + \int_{E}^{F} \boldsymbol{P}_{\text{avec perte cadeau}}.\text{d}\boldsymbol{O}\boldsymbol{M}$$

$$= -(M_{\text{T}} + M_{\text{PN}} + M_{\text{C}})g(y_{\text{F}} - y_{\text{A}}) + m_{\text{C}}g(y_{\text{F}} - y_{\text{E}}))$$

$$= W_{\text{ABCDEF}}^{\text{sans frottement}} + m_{\text{C}}g(y_{\text{F}} - y_{\text{E}}).$$

On a donc un travail des forces supérieur au cas sans frottement.

16- Comme $W_{\mathrm{ABCDEF}}^{\mathrm{avec\ perte\ cadeau}} > W_{\mathrm{ABCDEF}}^{\mathrm{sans\ frottement}}$, grâce au théorème de l'énergie cinétique on conclut que la vitesse de lancement avec une perte de cadeau sera plus importante qu'avec tous les cadeaux. La distance parcourue en sera donc affectée.

17- Système d'étude = {boule de glace}, système pseudo-isolé car les forces se compensent.

18- Application du théorème de l'énergie cinétique à la boule de glace :

$$\frac{1}{2}M_g(V_{\rm E}^{\rm glace})^2 = -M_gg(y_{\rm E} - y_{\rm A})$$

d'où
$$V_{\rm E}^{\rm glace} = \sqrt{2g(y_{\rm E} - y_{\rm A})}$$
.

19- En appliquant le principe de conservation de la quantité de mouvement au système composé de la boule de glace et du traîneau rempli de cadeaux avec le Père Noël pour un système pseudo-isolé :

$$p^{\text{avant choc}} = M_g V_{\text{E}}^{\text{glace}}$$
 $p^{\text{après choc}} = (M_{\text{T}} + M_{\text{PN}} + M_{\text{C}}) V_{E}^{\text{Traineau}}$

d'où
$$V_E^{\text{Traineau}} = \frac{M_g}{M_T + M_{PN} + M_C} \sqrt{2g(y_E - y_A)}$$

20- Avec la méthode 1 consistant à faire glisser le traîneau sur la neige nous avions obtenu : $V_{\rm E}^{\rm Traineau} = \sqrt{2g(y_F-y_{\rm A})}$. Avec la méthode 2 présentée dans cette partie nous avons $V_{\rm E}^{\rm Traineau} = \frac{M_g}{M_{\rm T}+M_{\rm PN}+M_{\rm C}} \sqrt{2g(y_{\rm E}-y_{\rm A})}$ avec $\frac{M_g}{M_{\rm T}+M_{\rm PN}+M_{\rm C}} <<1$, donc la méthode 1 est plus efficace sauf si $\frac{M_g}{M_{\rm T}+M_{\rm PN}+M_{\rm C}}>1$.

21- Si le Père Noël utilise cette méthode, rien n'est gagné!

Solution 1.4.

1- Système d'étude = Masse M, référentiel terrestre galiléen, repère (O, x, y) fixe et repère (O, u_r, u_θ) lié à la masse

2- Force de pesanteur P = -mgy; tension du fil $T = -Tu_r$.

3-
$$OM = \ell u_r$$
, $\frac{dOM}{dt} = \ell \dot{\theta} u_\theta$, $\frac{d^2OM}{dt^2} = \ell \ddot{\theta} u_\theta - \ell \dot{\theta}^2 u_r$.

4- En appliquant le principe fondamental de la dynamique : $\sum F_{\rm ext} = \frac{{\rm d}p}{{\rm d}t} = m \frac{{\rm d}^2 OM}{{\rm d}t^2}$, en projection sur u_θ , il vient :

$$m\ell\ddot{\theta} + mg\sin(\theta) = 0,$$

comme $\sin(\theta) \approx \theta$ car l'angle θ est supposé faible, l'équation du mouvement devient $\ddot{\theta} + \frac{g}{f}\theta = 0$.

5-
$$\omega_0 = \sqrt{\frac{g}{\ell}}$$
; $\ell = \frac{g^2}{f} \times 4 \times \pi^2$ et après approximation $\ell = \frac{1}{4 \times f^2}$. Pour le $Largo$, $\ell = 25$ cm et pour l' $Allegro$, $\ell = 6, 25$ cm.

6- Ce système est limité sur plusieurs aspects :

- problème de l'effet du frottement de l'air, le métronome peut s'arrêter rapidement;
- pas d'angle trop grand ou sinon le mouvement ne sera plus strictement périodique;
- pas pratique pour les musiciens car il faut le tenir;
- pas de bruit ...

Chapitre 2

Cinématique du solide indéformable

Objectifs

- Mettre en place les outils de dérivation vectorielle
- Définir la cinématique d'un solide indéformable
- Utiliser la cinématique graphique

Plan

Le plan sera placé automatiquement... ne rien faire de particulier.

2.1 Définitions

2.1.1 Définition d'un solide indéformable

Un solide indéformable est un ensemble de points matériels qui restent à distance constante les uns des autres. On a donc dist(M, N) = constante, pour tous les points M et N et pour tous les instants t. Pour définir la position d'un tel solide à un instant donné dans un repère, deux choix sont possibles :

- repérer les positions de deux points particuliers (mais quelconques), ce qui correspond à six scalaires;
- repérer la position d'un point (le centre de masse, le centre de rotation
 ...) et positionner ensuite le solide par trois rotations.

Le deuxième choix est le plus efficace car le centre de masse est unique. Nous allons présenter le repérage très classique par les angles d'Euler.

2.1.2 Espace

L'espace dans lequel nous allons travailler est celui qui nous entoure, modélisé grâce à la géométrie par un espace affine réel euclidien de dimension trois. Il sera noté $\mathcal E$. Dans cet espace se trouvent des points qui peuvent constituer des droites ou des plans. Repérer des déplacements est possible mais conduit à la notion de vecteur qui appartient à un espace vectoriel noté E de dimension trois lui aussi. Le point A qui se sera déplacé pour se trouver en un point B de $\mathcal E$ conduit donc au vecteur déplacement noté U = AB.

Remarque: dans ce document, les vecteurs sont notés en italique gras suivant la norme internationale, par exemple x, afin d'alléger l'écriture sachant que l'on trouve aussi comme notation \underline{x} ou \overrightarrow{x} dans les ouvrages. Il n'y aura aucune confusion possible car nous ne manipulerons dans cet ouvrage que des scalaires x, des vecteurs x ou des torseurs constitués de vecteurs. Les solides seront identifiés par S_i où i désigne le numéro du solide. Les repères seront notés R ou R_i avec i le numéro du repère. Enfin, les points seront notés A, B... en lettre normale droite.

L'espace \mathcal{E} n'a aucune raison d'être orienté. Il l'est par commodité et c'est la règle du « petit bonhomme d'Ampère » ou du « tire-bouchon » qui peut fournir une solution. Une distance entre deux points de \mathcal{E} existe et est notée dist(A, B) ce qui conduit à définir dans E un produit scalaire U. U et une norme donnée par $\sqrt{U \cdot U}$.

La notion d'espace est délicate. En effet, un tel objet (un petit drapeau perçu comme un point- en haut d'un mat de bateau) se trouve à un instant donné à la fois au sommet du mât et à x centaines de mètres de la côte. On peut donc considérer qu'au même point de l'espace $\mathcal E$ se superposent trois points : le drapeau, le sommet du mat et le point de l'espace physique. Comme cette situation change pour des instants variables t et t' nous pouvons écrire que l'espace $\mathcal E$ est associé (ou instantané) à t ou t' et il est noté $\mathcal E_t$. Cela devrait nous conduire à distinguer dans une expression du type la vitesse du point M est parallèle a OM, le point M dont on suit le

mouvement et le point M de l'espace à l'instant *t* considéré qui permet de repérer la direction de la vitesse. Nous abandonnerons évidemment l'idée de le préciser par souci de simplification.

2.1.3 Notion de référentiel d'espace

Cette notion est tout à fait intuitive. Prenons un solide - la Terre par exemple - et supposons que l'espace est tout entier entraîné avec ce solide particulier. Nous associons donc un espace affine réel de dimension trois. La différence entre cet espace et les précédents \mathcal{E}_t est que celui-ci est durable mais relatif au solide considéré, alors que \mathcal{E}_t est intrinsèque mais associé à l'instant t. Nous dirons que \mathcal{E} fourni un référentiel (ou repère) d'espace noté R. Le lecteur intéressé peut se reporter au livre de P. Rougée [2].

2.2 Vitesse et accélération des points d'un solide

2.2.1 Angles d'Euler

Nous allons voir que l'écriture de l'équation (1.2), établie pour une rotation simple, demeure valable dans le cas général d'un solide S, attaché à un référentiel R_1 , en mouvement quelconque par rapport à un référentiel R (figure 2.1). Il va s'agir ici d'identifier le vecteur vitesse de rotation à l'aide

Figure 2.1 – Solide en mouvement.

des angles d'Euler. On repère le solide S en mouvement par les coordonnées d'un de ses points (le point O_1 par exemple) et par trois angles appelés angles d'Euler ψ , θ et ϕ (figures 2.2 et 2.3). Soit le vecteur position OM =

FIGURE 2.2 – Représentation des angles d'Euler.

FIGURE 2.3 – Angles d'Euler.

 $x_1x_1 + y_1y_1 + z_1z_1$. On a par définition :

$$\begin{split} V(\mathbf{M} \in \mathbf{S}/\mathbf{R}) &= \left. \frac{\mathrm{d} \boldsymbol{O} \boldsymbol{M}}{\mathrm{d} t} \right|_{\mathbf{R}} = \left. \frac{\mathrm{d} (x_1 x_1 + y_1 y_1 + z_1 z_1)}{\mathrm{d} t} \right|_{\mathbf{R}} \\ &= \left. \dot{x}_1 x_1 + x_1 \left. \frac{\mathrm{d} x_1}{\mathrm{d} t} \right|_{\mathbf{R}} + \dot{y}_1 y_1 + y_1 \left. \frac{\mathrm{d} y_1}{\mathrm{d} t} \right|_{\mathbf{R}} + \dot{z}_1 z_1 + z_1 \left. \frac{\mathrm{d} z_1}{\mathrm{d} t} \right|_{\mathbf{R}}. \end{split}$$

On reconnaît le vecteur $V(M \in S/R_1)$. Que représentent les termes du type $x_1 \frac{dx_1}{dt}\Big|_R$? On sait que le vecteur x_1 est une fonction des angles d'Euler qui sont eux mêmes fonction du temps car le solide est en mouvement. On peut donc écrire :

$$\frac{\mathrm{d}x_1}{\mathrm{d}t}\Big|_{\mathrm{R}} = \frac{\partial x_1}{\partial \psi}\Big|_{\mathrm{R}} \dot{\psi} + \frac{\partial x_1}{\partial \theta}\Big|_{\mathrm{R}} \dot{\theta} + \frac{\partial x_1}{\partial \phi}\Big|_{\mathrm{R}} \dot{\phi}. \tag{2.1}$$

Il faut donc calculer les termes du type $\frac{\partial x_1}{\partial \psi}\Big|_{R}$. Grâce aux angles d'Euler il vient :

$$x_1 = \cos \phi u + \sin \phi w = \cos \phi u + \sin \phi \cos \theta v + \sin \phi \sin \theta z.$$

Donc en dérivant cette expression par rapport à ψ on obtient :

$$\frac{\partial x_1}{\partial \psi}\Big|_{\mathbf{R}} = \cos \phi \, \mathbf{v} - \sin \phi \cos \theta \, \mathbf{u} + \mathbf{0}.$$

Le dernier terme est nul car le vecteur z ne dépend pas de l'angle ψ . On essaie de retrouver une expression du type « • $\wedge x_1$ ». Le symbole • doit être compris comme le vecteur inconnu dont on recherche l'expression. Comme la rotation d'angle ψ s'effectue autour de z on écrit :

$$z \wedge x_1 = z \wedge (\cos \phi \, u + \sin \phi \, w) = \cos \phi \, v - \sin \phi \cos \theta \, u = \left. \frac{\partial x_1}{\partial \psi} \right|_{\mathbb{R}}.$$

En procédant de même pour les deux autres termes de l'équation (2.1), on montre sans difficulté que :

$$\frac{\mathrm{d}x_1}{\mathrm{d}t}\Big|_{\mathrm{R}} = z \wedge x_1 \dot{\psi} + u \wedge x_1 \dot{\theta} + z_1 \wedge x_1 \dot{\phi} = (\dot{\psi} z + \dot{\theta} u + \dot{\phi} z_1) \wedge x_1$$
$$= \Omega(\mathrm{S/R}) \wedge x_1,$$

où $\mathbf{\Omega}(S/R)$ est le vecteur vitesse de rotation instantané du solide S dans son mouvement par rapport au repère R. Il est clair que $\dot{\psi} z + \dot{\theta} u + \dot{\phi} z_1$ généralise bien l'expression établie pour une seule rotation. On peut écrire les mêmes relations pour les autres dérivées des vecteurs \mathbf{y}_1 et z_1 . On a donc la formule générale :

$$\frac{\mathrm{d}}{\mathrm{d}t}x_i\Big|_{\mathrm{R}_j} = \Omega_{ij} \wedge x_i,\tag{2.2}$$

ce qui conduit à l'énoncé suivant :

Encadré ____

Soit un point M quelconque en mouvement à la fois par rapport à un repère R et par rapport à un autre repère R_1 lequel est en rotation (définie par les angles d'Euler par exemple) par rapport à R. On a la relation dite de dérivation vectorielle suivante :

$$\frac{\mathrm{d}OM}{\mathrm{d}t}\bigg|_{\mathrm{R}} = \frac{\mathrm{d}OM}{\mathrm{d}t}\bigg|_{\mathrm{R}_{1}} + \Omega(\mathrm{S/R}) \wedge OM \quad \forall \mathrm{M}$$
 (2.3)

ou:

$$\label{eq:VM} \textit{V}(M \in S/R) = \textit{V}(M \in S/R_1) + \textit{\Omega}(R_1/R) \, \wedge \textit{OM} \quad \, \forall M.$$

Fin Encadré _____

2.2.2 Champ des vitesses dans un solide

Nous allons utiliser la relation de dérivation vectorielle (??) en remplaçant le vecteur OM par le vecteur AB:

$$\frac{\mathrm{d}\boldsymbol{A}\boldsymbol{B}}{\mathrm{d}t}\Big|_{\mathbf{R}} = \frac{\mathrm{d}\boldsymbol{A}\boldsymbol{B}}{\mathrm{d}t}\Big|_{\mathbf{R}_1} + \boldsymbol{\Omega}(\mathbf{R}_1/\mathbf{R}) \wedge \boldsymbol{A}\boldsymbol{B},$$

avec $\Omega(R_1/R) = \Omega(S/R)$ car le solide S est attaché au repère R_1 . Comme les points A et B appartiennent au solide supposé indéformable, le premier terme dans le membre de droite est nul. Il reste :

$$\frac{\mathrm{d}AB}{\mathrm{d}t}\bigg|_{\mathrm{R}} = \mathbf{\Omega}(\mathrm{R}_1/\mathrm{R}) \wedge AB = \frac{\mathrm{d}(AO + OB)}{\mathrm{d}t}\bigg|_{\mathrm{R}}.$$

Donc:

$$\left.\frac{\mathrm{d}\boldsymbol{O}\boldsymbol{B}}{\mathrm{d}t}\right|_{\mathrm{R}} = \left.\frac{\mathrm{d}\boldsymbol{O}\boldsymbol{A}}{\mathrm{d}t}\right|_{\mathrm{R}} + \boldsymbol{\varOmega}(\mathrm{R}_1/\mathrm{R}) \, \wedge \boldsymbol{A}\boldsymbol{B}.$$

On en déduit la relation importante écrite sous deux formes (en permutant le produit vectoriel) :

$$V(B \in S/R) = \begin{cases} V(A \in S/R) + \Omega(S/R) \land AB & \forall A, \forall B \in S \\ V(A \in S/R) + BA \land \Omega(S/R) & \forall A, \forall B \in S. \end{cases}$$
(2.4)

Encadré

Définition. On constate que le champ des vitesses d'un solide indéformable est structuré :

- $-\Omega(S/R)$ représente un invariant (qui ne dépend pas des points A ou B);
- $V(B \in S/R)$ se déduit de la vitesse $V(A \in S/R)$ par une relation dite de torseur (on dira aussi relation de champ de vitesse ou encore relation de moment).

On dit que le champ des vitesses d'un solide indéformable S dans son mouvement par rapport à un repère R est représenté par un torseur appelé torseur cinématique et noté (V comme vitesse):

$$\left\{ \ \mathcal{V}(S/R) \ \right\} = \left\{ \begin{array}{l} \mathbf{\Omega}(S/R) \\ V(A \in S/R) \end{array} \right\}_{A}.$$

Fin Encadré

Dans cet ouvrage, nous indiquons le point en lequel le torseur est exprimé une seule fois par relation (le point A apparaît en indice dans le membre de droite dans la relation ci-dessus).

2.2.3 Équiprojectivité

On considère un solide indéformable S (figure 2.4) pour lequel la relation précédente de champ des vitesses est vérifiée. On projette cette relation sur le vecteur AB. On obtient :

$$AB \cdot V(B \in S/R) = AB \cdot V(A \in S/R) + AB \cdot (\Omega(S/R) \wedge AB)$$

$$\forall A, \forall B \in S.$$

Le dernier terme est nul (le produit vectoriel définit un vecteur orthogonal aux deux termes du produit vectoriel). On a au final :

$$AB \cdot V(B \in S/R) = AB \cdot V(A \in S/R) \quad \forall A, \forall B \in S.$$
 (2.5)

Interprétation: la projection des vecteurs vitesses sur le segment AB définit

Figure 2.4 – Équiprojectivité.

la vitesse suivant cette direction. Que la différence des vitesses de A et de B suivant AB soit nulle exprime que la distance AB reste constante au cours du temps. S'il en était autrement, le solide se déformerait. On peut s'en convaincre avec un élastique que l'on allonge entre ses doigts (les doigts étant les points A et B). Comme nous le verrons plus loin, la propriété d'équiprojectivité est très utilisée pour les calculs de vitesse en cinématique graphique.

2.2.4 Exemple

Soit le système classique bielle-manivelle donné sur la figure 2.5. Il est à la fois simple et intéressant pour le problème posé par le paramétrage. L'objectif est de déterminer la relation entre la vitesse de rotation (du moteur) et la vitesse de translation (des pistons) dans ce cas précis. Le solide S_1 est en rotation (liaison pivot en C) à la vitesse $\Omega(S_1/S_0) = \dot{\alpha} z$, le solide

Figure 2.5 – Système Bielle-Manivelle.

 S_2 est en liaison pivot en A (vitesse de rotation $\Omega(S_2/S_0) = \dot{\beta} z$) et le solide S_3 (un piston par exemple) est en translation le long de l'axe (O, x). Dans le cas général, la liaison entre le piston et le bâti est aussi de type pivot glissant (qui autorise une rotation et une translation) mais nous sommes dans le cas particulier d'un problème plan et par conséquent, il ne reste comme mouvement possible que la translation. Le repérage pour S1 est simple : l'angle α repère x_1 par rapport à x.

Conseils
Nous conseillons fortement - sous peine d'erreurs quasi garanties - de mettre
β dans le sens trigonométrique même si l'intuition nous dit que pour $\dot{\alpha}$ po-
sitif $\dot{\beta}$ sera négatif. Nous le retrouverons automatiquement par la résolution.
Fin Conseils
Encart
À ce stade de ce manuel nous souhaitons faire une remarque importante.
Nous manipulons des objets appelés vecteur position, vecteur vitesse ou

vecteur vitesse de rotation. La notion de vecteur est différente en mathématiques et en mécanique ou en physique. Dans notre cas le vecteur est attaché (lié) au point dont on exprime la vitesse par exemple. Ce n'est pas là la seule différence. Certains vecteurs ne sont vecteurs que parce qu'ils sont constitués de trois quantités scalaires. Un exemple en est donné par le « vecteur vitesse de rotation » . Ce vecteur est en fait un pseudo vecteur (appelé aussi vecteur axial). Il n'obéit pas réellement aux mêmes règles que les « vrais » vecteurs que sont les vecteurs déplacements, vitesse de déplacement. Nous ne faisons que signaler ce point délicat qui fait appel aux notions de *tenseur antisymétrique d'ordre deux*, de *covariance* ou de *contravariance* que nous n'abordons pas dans cet ouvrage (le lecteur peut se référer à l'ouvrage [2] par exemple). Dans la pratique, le respect de la règle du tire-bouchon ou de la main droite suffit pour éviter toute confusion. C'est en raison de ces subtilités que seul le produit scalaire d'une force par une vitesse ou d'un moment par une vitesse de rotation a un sens physique (une puissance). Le produit scalaire d'une force par une vitesse de rotation donne naissance à un être exotique (dénué de signification physique)!

Fin Encart

Pour déterminer la relation d'entrée-sortie, nous déterminons, dans un premier temps la vitesse au point A, qui s'écrit comme suit :

$$V(\mathbf{A} \in \mathbf{S}_1/\mathbf{S}_0) = \left. \frac{\mathrm{d} OA}{\mathrm{d} t} \right|_{\mathbf{R}_0} = \left. \frac{\mathrm{d} (h \, \mathbf{y} + \ell \, \mathbf{x}_1)}{\mathrm{d} t} \right|_{\mathbf{R}_0} = \left. \frac{\mathrm{d} \ell \, \mathbf{x}_1}{\mathrm{d} t} \right|_{\mathbf{R}_0},$$

puisque y est fixe dans R_0 . À ce stade, il suffit d'utiliser la règle de dérivation vectorielle et d'écrire :

$$V(\mathbf{A} \in \mathbf{S}_1/\mathbf{S}_0) = \ell \left. \frac{\mathrm{d} \boldsymbol{x}_1}{\mathrm{d} t} \right|_{\mathbf{R}_1} + \Omega(\mathbf{S}_1/\mathbf{S}_0) \, \wedge \ell \, \boldsymbol{x}_1.$$

On retrouve alors un vecteur du repère R_1 à dériver dans ce même repère (la dérivée est nulle). Il reste donc :

$$V(A \in S_1/S_0) = \dot{\alpha}\ell y_1.$$

On retrouve à nouveau ce qui a été annoncé en début de document : ne jamais s'imposer comme repère celui associé à la quantité cherchée (R_0 car c'est la vitesse dans R_0 qui nous intéresse). On voit bien que c'est plus simple dans R_1 . En effet, il n'y a qu'un seul terme, alors que ce même résultat exprimé dans le repère R_0 ferait apparaître des fonctions cosinus et sinus et conduirait donc à une écriture plus lourde (ce qui augmente les chances d'erreurs!). On a, de même,

$$V(B \in S_1/S_0) = \frac{dOB}{dt}\Big|_{R_0} = \frac{d(OA + AB)}{dt}\Big|_{R_0} = V(A \in S_1/S_0) + \frac{dLx_2}{dt}\Big|_{R_0},$$

ce qui permet de trouver alors :

$$V(B \in S_1/S_0) = \dot{\alpha}\ell y_1 + \dot{\beta}L y_2.$$

On doit prendre en compte, de plus, le fait que la liaison entre le solide S_2 et le bâti S_0 (liaison de type glissière pour ce cas plan) impose que la vitesse de B soit portée par x. On écrit donc :

$$V(B \in S_1/S_0) \wedge x = 0$$

ou encore:

46

$$(\dot{\alpha}\ell y_1 + \dot{\beta}Ly_2) \wedge x = \dot{\alpha}\ell y_1 \wedge x + \dot{\beta}Ly_2 \wedge x = -\dot{\alpha}\ell\cos\alpha z - \dot{\beta}\cos\beta Lz.$$

Il suffit de projeter cette équation sur *z* pour obtenir la relation d'entrée sortie qui confirme l'intuition :

$$\dot{\alpha}\ell\cos\alpha + \dot{\beta}\cos\beta L = 0.$$

Nous pouvons retrouver cette relation d'une autre manière (dans ce cas particulier). En effet, nous pouvons écrire que $HA = (OC + CA) \cdot y = (OB + BA) \cdot y$. On en déduit $h + \ell \sin \alpha = -L \sin \beta$. Si nous dérivons cette égalité par rapport au temps nous retrouvons la relation écrite ci-dessus.

2.2.5 Champ des accélérations

Reprenons le solide S en mouvement par rapport à R. La relation de champ des vitesses (2.4) donne par dérivation :

$$\begin{split} \frac{\mathrm{d}V(\mathrm{B}\in\mathrm{S/R})}{\mathrm{d}t}\bigg|_{\mathrm{R}} &= & \frac{\mathrm{d}V(\mathrm{A}\in\mathrm{S/R})}{\mathrm{d}t}\bigg|_{\mathrm{R}} + \frac{\mathrm{d}\boldsymbol{B}\boldsymbol{A}}{\mathrm{d}t}\bigg|_{\mathrm{R}} \wedge \boldsymbol{\varOmega}(S/\mathrm{R}) \\ &+ & \boldsymbol{B}\boldsymbol{A} \wedge \frac{\mathrm{d}\boldsymbol{\varOmega}(\mathrm{S/R})}{\mathrm{d}t}\bigg|_{\mathrm{R}} \quad \forall \mathrm{A}, \forall \mathrm{B}\in\mathrm{S}. \end{split}$$

On note $\Gamma(B \in S/R)$ le vecteur accélération de B appartenant à S par rapport au repère R.

$$\begin{split} \boldsymbol{\varGamma}(\mathbf{B} \in \mathbf{S}/\mathbf{R}) &= \boldsymbol{\varGamma}(\mathbf{A} \in \mathbf{S}/\mathbf{R}) + \left. \frac{\mathrm{d}\boldsymbol{B}\boldsymbol{A}}{\mathrm{d}t} \right|_{\mathbf{R}} \wedge \boldsymbol{\varOmega}(\mathbf{S}/\mathbf{R}) \\ &+ \boldsymbol{\jmath}_{\mathbf{A}} \wedge \left. \frac{\mathrm{d}\boldsymbol{\varOmega}(\mathbf{S}/\mathbf{R})}{\mathrm{d}t} \right|_{\mathbf{R}} \quad \forall \mathbf{A}, \forall \mathbf{B} \in \mathbf{S}. \end{split}$$

Or, on peut écrire que :

$$\begin{aligned} \frac{\mathrm{d}\boldsymbol{B}\boldsymbol{A}}{\mathrm{d}t}\bigg|_{\mathrm{R}} &= & \frac{\mathrm{d}\boldsymbol{B}\boldsymbol{A}}{\mathrm{d}t}\bigg|_{\mathrm{R}_{1}} + \boldsymbol{\Omega}(\mathrm{S/R}) \wedge \boldsymbol{B}\boldsymbol{A} = \boldsymbol{0} + \boldsymbol{\Omega}(\mathrm{S/R}) \wedge \boldsymbol{B}\boldsymbol{A} \\ &= & \boldsymbol{\Omega}(\mathrm{S/R}) \wedge \boldsymbol{B}\boldsymbol{A}, \end{aligned}$$

car les points A et B appartiennent au solide S attaché au référentiel R_1 par rapport auquel on dérive. On a donc au final :

Encadré ____

$$\begin{split} \boldsymbol{\varGamma}(\mathbf{B} \in \mathbf{S}/\mathbf{R}) &= \boldsymbol{\varGamma}(\mathbf{A} \in \mathbf{S}/\mathbf{R}) + (\boldsymbol{\varOmega}(\mathbf{S}/\mathbf{R}) \wedge \boldsymbol{B}\boldsymbol{A}) \wedge \boldsymbol{\varOmega}(\mathbf{S}/\mathbf{R}) \\ &+ \boldsymbol{B}\boldsymbol{A} \wedge \frac{\mathrm{d}\boldsymbol{\varOmega}(\mathbf{S}/\mathbf{R})}{\mathrm{d}t}\bigg|_{\mathbf{R}} \ \forall \mathbf{A}, \mathbf{B} \in \mathbf{S}. \end{split}$$

Remarque : on ne trouve pas de relation de type torseur pour le champ des accélérations.

Fin Encadré _____

2.3 Composition des mouvements

2.3.1 Composition des vecteurs vitesse

Nous allons étudier dans ce passage la méthode qui permet de passer d'un repère à un autre, ce qui est souvent nécessaire lorsque l'on s'intéresse à des mécanismes qui comportent plusieurs solides en mouvement.

Prenons un solide S en mouvement par rapport à \mathbb{R} et par rapport à \mathbb{R}_1 :

$$\begin{split} V(\mathbf{M} \in \mathbf{S/R}) &= & \left. \frac{\mathrm{d}\boldsymbol{O}\boldsymbol{M}}{\mathrm{d}t} \right|_{\mathbf{R}} = \left. \frac{\mathrm{d}(\boldsymbol{O}\boldsymbol{O}_1 + \boldsymbol{O}_1\boldsymbol{M})}{\mathrm{d}t} \right|_{\mathbf{R}} \\ &= & \left. V(\mathbf{O}_1/\mathbf{R}) + \left. \frac{\mathrm{d}\boldsymbol{O}_1\boldsymbol{M}}{\mathrm{d}t} \right|_{\mathbf{R}}. \end{split}$$

Or, on sait en utilisant la règle de dérivation dans deux repères différents (équation ??) que :

$$\left.\frac{\mathrm{d}\boldsymbol{O}_{1}\boldsymbol{M}}{\mathrm{d}t}\right|_{\mathrm{R}}=\left.\frac{\mathrm{d}\boldsymbol{O}_{1}\boldsymbol{M}}{\mathrm{d}t}\right|_{\mathrm{R}_{1}}+\boldsymbol{\varOmega}(\mathrm{R}_{1}/\mathrm{R})\,\wedge\boldsymbol{O}_{1}\boldsymbol{M},$$

$$V(\mathbf{M} \in \mathbf{S/R}) = V(\mathbf{O}_1/\mathbf{R}) + \left. \frac{\mathrm{d}\boldsymbol{O}_1\boldsymbol{M}}{\mathrm{d}t} \right|_{\mathbf{R}_1} + \boldsymbol{\Omega}(\mathbf{R}_1/\mathbf{R}) \wedge \boldsymbol{O}_1\boldsymbol{M}$$
$$= V(\mathbf{O}_1/\mathbf{R}) + V(\mathbf{M} \in \mathbf{S/R}_1) + \boldsymbol{\Omega}(\mathbf{R}_1/\mathbf{R}) \wedge \boldsymbol{O}_1\boldsymbol{M}. \tag{2.6}$$

Si on suppose que le point M appartient non pas au solide S mais au repère R_1 (ce qui revient à supposer que le solide S est fixe dans R_1), alors la relation de torseur implique :

$$V(M \in R_1/R) = V(O_1/R) + \Omega(R_1/R) \wedge O_1M$$
.

On peut utiliser cette écriture pour obtenir :

$$V(M \in S/R) = V(M \in S/R_1) + V(M \in R_1/R)$$
. numéro enlevé

Le premier terme est appelé vitesse absolue V_a , le deuxième vitesse relative V_r et le troisième vitesse d'entraînement V_e .

2.3.2 Composition des vecteurs rotation

Reprenons le solide en mouvement par rapport aux deux repères R et R_1 et notons $\Omega(S/R)$, $\Omega(S/R_1)$ et $\Omega(R_1/R)$ les vecteurs vitesse de rotation instantanée respectivement du solide S par rapport à R et R_1 ainsi que du repère R_1 par rapport à R. La règle de dérivation vectorielle nous donne (équation $\ref{eq:total_sol}$):

$$\frac{d\mathbf{OM}}{dt}\Big|_{\mathbf{R}} = \frac{d\mathbf{OM}}{dt}\Big|_{\mathbf{R}_1} + \mathbf{\Omega}(\mathbf{R}_1/\mathbf{R}) \wedge \mathbf{OM}.$$
 numéro enlevé

Or on a aussi

48

$$\frac{dOM}{dt}\Big|_{R_1} = \frac{dOM}{dt}\Big|_{S} + \Omega(S/R_1) \wedge OM$$
. numéro enlevé

Les deux équations ci-dessus se combinent pour donner :

$$\left.\frac{\mathrm{d}\boldsymbol{O}\boldsymbol{M}}{\mathrm{d}t}\right|_{\mathrm{R}}=\left.\frac{\mathrm{d}\boldsymbol{O}\boldsymbol{M}}{\mathrm{d}t}\right|_{\mathrm{S}}+\left(\boldsymbol{\varOmega}(\mathrm{S}/\mathrm{R}_{1})+\boldsymbol{\varOmega}(\mathrm{R}_{1}/\mathrm{R})\right)\,\wedge\boldsymbol{O}\boldsymbol{M},$$

ce qui nous permet d'écrire, en considérant le solide S et le repère R,

$$\frac{\mathrm{d}OM}{\mathrm{d}t}\Big|_{\mathrm{R}} = \frac{\mathrm{d}OM}{\mathrm{d}t}\Big|_{\mathrm{S}} + \Omega(\mathrm{S/R}) \wedge OM.$$

En comparant ces deux dernières égalités, on en déduit la règle de composition des vecteurs vitesse de rotation instantanée :

$$\Omega(S/R) = \Omega(S/R_1) + \Omega(R_1/R).$$

2.3.3 Composition des torseurs cinématiques

On peut résumer les compositions du vecteur vitesse et du vecteur vitesse de rotation en écrivant les deux équations :

$$\begin{cases} \boldsymbol{\varOmega}(S/R) &=& \boldsymbol{\varOmega}(S/R_1) &+& \boldsymbol{\varOmega}(R_1/R) \\ \boldsymbol{V}(M \in S/R) &=& \boldsymbol{V}(M \in S/R_1) &+& \boldsymbol{V}(M \in R_1/R) \end{cases}$$

ce qui permet d'écrire la relation suivante de composition des torseurs cinématiques :

$$\left\{ \begin{array}{lll} \mathcal{V}(S/R) \end{array} \right\}_{M} & = & \left\{ \begin{array}{lll} \mathcal{V}(S/R_{1}) \end{array} \right\}_{M} & + & \left\{ \begin{array}{lll} \mathcal{V}(R_{1}/R) \end{array} \right\}_{M} \\ \\ \left\{ \begin{array}{lll} \boldsymbol{\varOmega}(S/R) \\ \boldsymbol{V}(M \in S/R) \end{array} \right\} & = & \left\{ \begin{array}{lll} \boldsymbol{\varOmega}(S/R_{1}) \\ \boldsymbol{V}(M \in S/R_{1}) \end{array} \right\} & + & \left\{ \begin{array}{lll} \boldsymbol{\varOmega}(R_{1}/R) \\ \boldsymbol{V}(M \in R_{1}/R) \end{array} \right\}$$

2.3.4 Vitesse de glissement

On a vu apparaître dans la composition des vitesses un terme $V(M \in R_1/R)$ appelé vitesse d'entraînement. Considérons maintenant que le solide S est fixe dans R_1 et qu'il est en mouvement par rapport à R (sphère qui roule sur un plan, par exemple). Supposons qu'il existe un plan tangent au point de contact noté P (si le contact est ponctuel). Le terme $V(P \in R_1/R)$ est égal à $V(P \in S/R)$.

Encadré
Définition. La vitesse d'entraînement $V(P \in S/R)$ au point de contact le entre le solide S et un solide lié à R représente la vitesse de glissement et P du solide S par rapport à R à l'instant t .
Fin Encadré
Propriété: la vitesse de glissement appartient au plan tangent en P aux deux solides.
Encadré
Définition. Si la vitesse de glissement est nulle on dit que le solide S roul sans glisser par rapport à R.
Fin Encadré

2.3.5 Composition des accélérations

Reprenons le solide S et les deux repères R et R_1 . Nous avons établi que (équation 2.6) :

$$V(M \in S/R) = V(O_1/R) + V(M \in S/R_1) + \Omega(R_1/R) \wedge O_1M.$$

Dérivons cette expression par rapport au temps dans le repère R :

$$\begin{split} \frac{\mathrm{d}V(\mathbf{M} \in \mathbf{S}/\mathbf{R})}{\mathrm{d}t}\bigg|_{\mathbf{R}} &= \frac{\mathrm{d}V(\mathbf{O}_{1}/\mathbf{R})}{\mathrm{d}t}\bigg|_{\mathbf{R}} + \left. \frac{\mathrm{d}V(\mathbf{M}/\mathbf{R}_{1})}{\mathrm{d}t}\right|_{\mathbf{R}} \\ &+ \left. \frac{\mathrm{d}\boldsymbol{\Omega}(\mathbf{R}_{1}/\mathbf{R})}{\mathrm{d}t}\right|_{\mathbf{R}} \wedge \boldsymbol{O}_{1}\boldsymbol{M} + \boldsymbol{\Omega}(\mathbf{S}/\mathbf{R}) \, \wedge \, \frac{\mathrm{d}\boldsymbol{O}_{1}\boldsymbol{M}}{\mathrm{d}t}\bigg|_{\mathbf{R}} \end{split}$$
numéro enlevé

Dans le membre de gauche, on reconnaît (définition 1.1) le vecteur accélération $\Gamma(M \in S/R)$. Dans le membre de droite, on considère les termes dans leur ordre d'apparition :

- Terme $\frac{dV(O_1/R)}{dt}\Big|_R$. Le point O_1 est un point M particulier; c'est donc l'accélération de O_1 par rapport au repère $R: \Gamma(O_1/R)$.
- Terme $\frac{dV(M \in S/R_1)}{dt}\Big|_{R}$. On va le modifier ainsi :

$$\frac{\mathrm{d}V(\mathrm{M} \in \mathrm{S}/\mathrm{R}_1)}{\mathrm{d}t}\bigg|_{\mathrm{R}} = \frac{\mathrm{d}V(\mathrm{M} \in \mathrm{S}/\mathrm{R}_1)}{\mathrm{d}t}\bigg|_{\mathrm{R}_1} + \mathbf{\Omega}(\mathrm{R}_1/\mathrm{R}) \wedge V(\mathrm{M} \in \mathrm{S}/\mathrm{R}_1)$$
$$= \mathbf{\Gamma}(\mathrm{M}/\mathrm{R}_1) + \mathbf{\Omega}(\mathrm{R}_1/\mathrm{R}) \wedge V(\mathrm{M}/\mathrm{R}_1).$$

- Terme $\frac{d\mathbf{\Omega}(R_1/R)}{dt}\Big|_{\mathbf{R}} \wedge \mathbf{O}_1 \mathbf{M}$. On le laisse tel que.
- Terme $\textbf{Q}(R_1/R)\,\wedge\,\frac{\mathrm{d}\textit{O}_1\textit{M}}{\mathrm{d}\textit{t}}\Big|_{R}.$ Il se ré-écrit sous la forme :

En regroupant les expressions obtenues, l'équation initiale peut être écrite sous la forme :

$$\begin{split} \boldsymbol{\varGamma}(\mathbf{M} \in \mathbf{S}/\mathbf{R}) &= \boldsymbol{\varGamma}(\mathbf{O}_1/\mathbf{R}) + \boldsymbol{\varGamma}(\mathbf{M} \in \mathbf{S}/\mathbf{R}_1) + \left. \frac{\mathrm{d}\boldsymbol{\varOmega}(\mathbf{R}_1/\mathbf{R})}{\mathrm{d}t} \right|_{\mathbf{R}} \wedge \boldsymbol{O}_1 \boldsymbol{M} \\ &+ \boldsymbol{\varOmega}(\mathbf{R}_1/\mathbf{R}) \wedge (\boldsymbol{\varOmega}(\mathbf{R}_1/\mathbf{R}) \wedge \boldsymbol{O}_1 \boldsymbol{M}) \\ &+ 2\boldsymbol{\varOmega}(\mathbf{R}_1/\mathbf{R}) \wedge \boldsymbol{V}(\mathbf{M} \in \mathbf{S}/\mathbf{R}_1). \end{split}$$

Si on suppose (comme pour la composition des vitesses) que le point M est lié au repère R_1 (S fixe dans R_1), on peut écrire :

$$\begin{split} \boldsymbol{\varGamma}(\mathbf{M} \in \mathbf{R}_1/\mathbf{R}) &= \boldsymbol{\varGamma}(\mathbf{O}_1/\mathbf{R}) &+ & \frac{\mathrm{d}\boldsymbol{\varOmega}(\mathbf{R}_1/\mathbf{R})}{\mathrm{d}t}\bigg|_{\mathbf{R}} \wedge \boldsymbol{O}_1\boldsymbol{M} \\ &+ & \boldsymbol{\varOmega}(\mathbf{R}_1/\mathbf{R}) \wedge \boldsymbol{\varOmega}(\mathbf{R}_1/\mathbf{R}) \wedge \boldsymbol{O}_1\boldsymbol{M}. \end{split}$$

Finalement:

$$\Gamma(M \in S/R) = \Gamma(M \in S/R_1) + \Gamma(M \in R_1/R) + 2\Omega(R_1/R) \wedge V(M \in S/R_1).$$

Le dernier terme ne peut pas être inclus dans l'accélération d'entraînement car, par définition de celle-ci, elle suppose fixe le solide S dans R_1 . La vitesse relative ne peut pas intervenir. Ce terme a donc un statut différent.

Encadré _____

Définition.

- $-\Gamma(M \in S/R)$ représente l'accélération dite absolue notée Γ_a ;
- Γ (M ∈ S/R₁) représente l'accélération relative notée Γ _r;
- Γ (M ∈ R₁/R) correspond à l'accélération d'entraînement notée Γ _e;
- 2Ω(R₁/R) ∧ V(M ∈ S/R₁) est appelé accélération de Coriolis (Gustave Gaspard Coriolis, mathématicien français, 1792-1843) et elle est notée notée Γ_c.

Fin Encadré _____

Un petit exemple (figure 2.6) peut servir à mieux comprendre ces accélérations relatives, d'entraînement et de Coriolis. Soit un point M fixe dans un repère R et tel que que OM = ax. On considère un plateau situé dans le plan horizontal (O, x, y) lequel tourne autour de (O, z) à la vitesse ω . On associe le repère R_1 à ce plateau. Le point M étant fixe dans R, la vitesse

Figure 2.6 – Plateau tournant et point M fixe dans R.

absolue V(M/R) est nulle. On peut cependant calculer sa vitesse relative dans R_1 qui est :

$$V_{\rm r} = V(M/R_1) = \left. \frac{\mathrm{d}OM}{\mathrm{d}t} \right|_{R_1} = -a\omega(\sin\omega t \, x_1 + \cos\omega t \, y_1),$$

Si on calcule la vitesse d'entraı̂nement $V(M \in R_1/R)$ on trouve par le champ des vitesses :

$$V(M \in R_1/R) = a\omega(\sin \omega t x_1 + \cos \omega t y_1).$$

On constate que ce vecteur est égal à $-V_{\rm r}$ ce qui est logique puisque l'on a la relation :

$$V_a = V_r + V_e$$
 avec $V_a = 0$.

Si on procède de même pour les accélérations on trouve :

$$\Gamma_{\rm r} = \Gamma({\rm M} \in {\rm S/R_1}) = a\omega^2(\cos\omega t x_1 - \sin\omega t y_1),$$

qui peut se transformer de la façon suivante :

$$\Gamma_{\rm r} = a\omega^2(-\cos\omega t\,\mathbf{x}_1 + 2\cos\omega t\,\mathbf{x}_1) + a\omega^2(\sin\omega t\,\mathbf{y}_1 - 2\sin\omega t\,\mathbf{y}_1).$$

L'accélération d'entraînement vaut :

$$\Gamma_{\rm e} = \Gamma({\rm M} \in {\rm R}_1/{\rm R}) = a\omega^2(\cos\omega t \, x_1 - \sin\omega t \, y_1),$$

tandis que l'accélération de Coriolis s'écrit :

$$\Gamma_{\rm c} = 2\Omega(R_1/R) \wedge V(M/R_1) = 2a\omega^2(\cos\omega t x_1 - \sin\omega t y_1).$$

On trouve donc bien en comparant l'accélération relative aux deux accélérations d'entraînement et de Coriolis que :

$$\Gamma_{\rm r} = -\Gamma_{\rm e} - \Gamma_{\rm c}$$
.

Ceci est à nouveau logique puisque $\Gamma_a = 0$. Cet exemple illustre le fait que ces accélérations ne sont que la conséquence du mouvement du repère R_1 dans lequel nous nous sommes mis et qui correspond en pratique à la visée depuis la Terre d'une étoile fixe. Il faut bien, puisque nous tournons avec le repère sur lequel nous sommes (le plateau ou la Terre) qu'il y ait ces accélérations de façon à ce que le point M reste fixe dans R. Lorsque nous arriverons au chapitre dynamique nous pourrons penser à cet exemple qui fera apparaître des forces (fictives) associées à ces accélérations d'entraînement et de Coriolis.

2.4 Mouvement plan sur plan

2.4.1 Définition

_____Encadré ____

On appelle mouvement plan sur plan le mouvement d'un solide S attaché au repère R_1 tel qu'un plan de S, (O_1, x_1, y_1) par exemple, reste confondu avec un plan (O, x, y) du repère de référence R. En pratique on imagine un solide (ou un système de solides) qui reste en permanence en contact avec un plan. Le torseur cinématique se réduit dans ces conditions à :

$$\left\{ \ \mathcal{V}(S/R) \ \right\} \quad = \quad \left\{ \begin{array}{ll} \boldsymbol{\varOmega}(S/R) \\ \boldsymbol{V}(O_1 \in S/R) \end{array} \right\}_{O_1}$$

avec $\mathbf{\Omega}(S/R) = \dot{\theta} z$ et la condition $V(O_1/R) \cdot z = 0$ pour que le point O_1 reste dans le plan de base.

Fin Encadré _____

Propriété : il existe un point I unique appelé centre instantané de rotation du mouvement de S par rapport à R tel que :

$$V(I \in S/R) = 0$$
.

FIGURE 2.7 – Centre Instantané de Rotation (CIR).

Remarque:

- 1. Le point I existe si il y a un vecteur vitesse de rotation $\Omega(S/R)$ non nul.
- 2. La position du point I varie au cours du temps.

Définition.

- On appelle base b du mouvement de S par rapport à R la trajectoire de I dans le repère R.
- 2. On appelle roulante r du mouvement de S par rapport à R la trajectoire de I dans le repère R₁.

Exemple : pour une roue de vélo roulant sans glisser sur une route, la base sera la route et la roulante la roue. Plusieurs exemples seront traités par la suite.

2.4.2 Détermination du point I

Si on connaît au moins la vitesse de deux points, il est aisé de déterminer la position du centre instantané de rotation à un instant *t*. Par définition, on a en effet :

$$V(A \in S/R) = V(I \in S/R) + \Omega(S/R) \wedge IA$$

= $\mathbf{0} + \dot{\theta}z \wedge IA$.

Cette équation montre que le vecteur IA est perpendiculaire au vecteur vitesse connu $V(A \in S/R)$. Le point I se situe donc sur cette perpendiculaire. Si on connaît une autre vitesse pour un second point, l'intersection des droites donne la position à l'instant t du point I (cf. figure 2.7).

2.4.3 Propriétés de la base et de la roulante

Nous savons que la trajectoire de I dans le repère R (resp. R_1) est la base b (resp. la roulante r). Ces deux courbes peuvent servir à définir la vitesse de I par rapport à elles-mêmes. Elles sont telles que la relation de torseur du champ des vitesses s'applique :

$$V(I/b) = V(I/r) + \Omega(r/b) \wedge V(I \in r/b).$$

POINTS CLEFS 55

Mais le vecteur $V(I \in r/b)$ est égal à $V(I \in R_1/R)$ car la roulante est attachée au repère R_1 alors que la base est fixe dans R. Or, par définition du centre instantané de rotation I, $V(I \in R_1/R)$ est nul, donc :

$$V(I/b) = V(I/r).$$

Comme I appartient à la fois à b et à r on en déduit que la base et la roulante sont deux courbes tangentes au point I.

Propriétés

- 1. La base et la roulante sont deux courbes tangentes en I à chaque instant
- Comme la vitesse relative V(I ∈ r/b) est nulle par définition du CIR et que cette vitesse relative représente la vitesse de glissement de r par rapport à b, on peut dire que les deux courbes roulent sans glisser l'une sur l'autre.

Points clefs

 Vecteur position. Si on choisit (O, x, y, z) orthonormé direct, alors les coordonnées de M s'obtiennent par projection orthogonale du vecteur position OM sur les vecteurs de la base.

$$x_{\mathrm{M}} = \mathbf{O}\mathbf{M} \cdot \mathbf{x}$$
 $y_{\mathrm{M}} = \mathbf{O}\mathbf{M} \cdot \mathbf{y}$ $z_{\mathrm{M}} = \mathbf{O}\mathbf{M} \cdot \mathbf{z}$.

– Le vecteur vitesse V(M/R) est la dérivée dans le repère R du vecteur position.

$$V(M/R) = \left. \frac{\mathrm{d} OM}{\mathrm{d} t} \right|_{R}.$$

– Le vecteur accélération $\Gamma(M/R)$ est la dérivée dans le repère R du vecteur vitesse.

$$\Gamma(M/R) = \frac{dV(M/R)}{dt}\Big|_{R}.$$

- Expression du vecteur vitesse dans les repères R et R₁

$$V(M/R) = \frac{dx}{dt}x + \frac{dy}{dt}y = \dot{x}x + \dot{y}y.$$

$$V(M/R_1) = \frac{dx_1}{dt}x_1 + \frac{dy_1}{dt}y_1 = \dot{x}_1x_1 + \dot{y}_1y_1.$$

– Champ des vitesses dans un solide. Soient A et B deux points d'un solide S indéformable et $\Omega(S/R)$ le vecteur vitesse de rotation. On a la relation

$$V(B \in S/R) = V(A \in S/R) + \Omega(S/R) \wedge AB \quad \forall A, \forall B \in S.$$

 Torseur cinématique (ou des vitesses). On dit que le champ des vitesses d'un solide indéformable S dans son mouvement par rapport à un repère R est représenté par un torseur appelé torseur cinématique et noté (V comme vitesse):

$$\left\{ \ \mathcal{V}(S/R) \ \right\} = \left\{ \begin{array}{l} \mathbf{\Omega}(S/R) \\ V(A \in S/R) \end{array} \right\}_{A}.$$

 Équiprojectivité. Il est équivalent de caractériser un solide indéformable par le torseur cinématique ou par la propriété d'équiprojectivité :

$$AB \cdot V(B \in S/R) = AB \cdot V(A \in S/R) \quad \forall A, \forall B \in S.$$

 Le champ des accélérations n'est pas un champ de torseur. Il n'y a aucune relation de type équiprojectivité. Pour deux points A et B appartenant à un solide S en mouvement par rapport à un repère R on a la relation

$$\begin{split} \boldsymbol{\varGamma}(\mathbf{B} \in \mathbf{S/R}) &= \boldsymbol{\varGamma}(\mathbf{A} \in \mathbf{S/R}) + (\boldsymbol{\varOmega}(\mathbf{S/R}) \wedge \boldsymbol{BA}) \wedge \boldsymbol{\varOmega}(\mathbf{S/R}) \\ &+ \boldsymbol{BA} \wedge \frac{\mathrm{d}\boldsymbol{\varOmega}(\mathbf{S/R})}{\mathrm{d}t} \bigg|_{\mathbf{R}} \ \forall \mathbf{A}, \mathbf{B} \in \mathbf{S}. \end{split}$$

- Composition de mouvement. On a les deux relations

$$V(M \in S/R) = V(M \in S/R_1) + V(M \in R_1/R),$$

$$Q(S/R) = Q(S/R_1) + Q(R_1/R).$$

- La vitesse de glissement en P point de contact entre deux solides est par définition la vitesse relative du point P considéré appartenant à un solide par rapport à l'autre.
- Composition des accélérations. L'expression de composition est plus complexe que pour les vitesses et fait apparaître un terme d'accélération dit de Coriolis lié à la vitesse relative du solide dans le repère entraîné.

$$\Gamma(M \in S/R) = \Gamma(M \in S/R_1) + \Gamma(M \in R_1/R) + 2\Omega(R_1/R) \wedge V(M \in S/R_1).$$

 Le centre instantané de rotation noté I pour le mouvement plan sur plan d'un solide S par rapport à un repère R est le point qui, à l'instant t considéré, a une vitesse nulle soit

$$V(I \in S/R) = 0.$$

Exercices

Les exercices qui suivent sont destinés à mettre en application les notions de ce chapitre. Les solutions assez détaillées sont données ensuite. Nous utiliserons souvent pour alléger les écritures $\Omega(S_2/S_3) = \Omega(2/3) = \omega_{23}z$ par exemple.

Exercice 2.1. Centrifugeuse de laboratoire

On s'intéresse à une centrifugeuse de laboratoire présentée ci-dessous (figure 2.8), composée d'un bâti S_0 , d'un bras S_1 et d'une éprouvette S_2 contenant deux liquides de masses volumiques différentes. Sous l'effet centrifuge dû à la rotation du bras S_1 autour de l'axe (O,x), l'éprouvette S_2 s'incline pour se mettre pratiquement dans l'axe du bras. De fait, le liquide dont la masse volumique est la plus grande est rejeté au fond de l'éprouvette. Paramétrage du système :

- R (O, x, y, z) est un repère lié à S₀;
- S_1 est en liaison pivot d'axe (O, x) avec S_0 . Le repère R_1 (O, x_1, y_1, z_1) est un repère lié à S_1 , on note $\alpha = (y, y_1)$ l'angle mesuré autour de x;
- S_2 est en liaison pivot d'axe (A, z_1) avec S_1 ; Le repère R_2 (A, x_2, y_2, z_2) est un repère lié à S_2 , on note $\beta = (x, x_2)$ l'angle mesuré autour de z_1 .
- On donne $OA = ay_1$ et $AG = bx_2$, où a et b sont des constantes positives exprimées en mètres.
- 1) Calculer la vitesse de S_1 dans son mouvement par rapport à S_0 en O et en A.
- **2)** Calculer la vitesse de S_2 dans son mouvement par rapport à S_0 en A et en G, puis dans son mouvement par rapport à S_1 en A et en G.

Exercice 2.2. Manège de chevaux de bois

Un manège de chevaux de bois (figure 2.9) est composé de trois pièces : la plate-forme, le toit et les barres support de chevaux forment la pièce S_1 , le corps du cheval est la pièce S_2 et la tête du cheval la pièce S_3 . Le sol est noté S_0 . Chaque élément S_i du manège est repéré par R_i . Le paramétrage des positions des pièces est donné mais les liaisons ne sont pas représentées sur le schéma.

Figure 2.8 – Centrifugeuse de laboratoire.

Figure 2.9 – Manège de chevaux de bois.

- La pièce S_1 tourne par rapport à S_0 autour de l'axe vertical (O, z_0) .
- Le corps S_2 du cheval est en liaison glissière par rapport à la pièce S_1 suivant l'axe (O, z_0) .

EXERCICES 59

– La tête S_3 s'articule avec le corps S_2 grâce à une liaison pivot d'axe (C, x_1).

On a les notations suivantes : R_0 (O, x_0 , y_0 , z_0), R_1 (A, x_1 , y_1 , z_0), R_2 (B, x_1 , y_1 , z_0) et R_3 (C, x_1 , y_3 , z_3) et $OA = rx_1$, $AB = h(t)z_0$, $BC = \ell y_1$ et $CD = dz_3$

- 1) Quelles sont les vitesses instantanées de rotation de S_1 par rapport à S_0 , de S_2 par rapport à S_0 , et de S_3 par rapport à S_0 ?
- **2)** Exprimer en fonction du paramétrage proposé le vecteur vitesse du point C, élément de S_2 , par rapport au repère R_0 .
- **3)** Faites de même pour le vecteur vitesse du point D, élément de S_3 , par rapport au repère R_0 .

Exercice 2.3. Base roulante d'une échelle

Une échelle S_1 repose sur le sol sur son extrémité A et s'appuie contre un mur S_0 sur son autre extrémité B (figure 2.10). On désigne par R(O, x, y, z) le repère lié au sol et au mur et par $R_1(A, x_1, y_1, z_1)$ un repère lié à l'échelle, tel que $AB = hy_1$. On note α l'angle entre x et x_1 .

- 1) Déterminer le centre instantané de rotation I du mouvement de S_1 par rapport à S_0 de manière analytique puis graphique.
- **2)** Trouver la base et la roulante du mouvement de S_1 par rapport à S_0 .

FIGURE 2.10 – Échelle contre un mur.

Exercice 2.4. Douille à aiguilles

Une douille à aiguilles est souvent utilisée, comme les roulements à billes, pour la réalisation du guidage d'un arbre par rapport à un bâti. Elle permet d'obtenir une liaison pivot avec un frottement très faible. Ce composant est constitué d'un ensemble de rouleaux cylindriques (ou aiguilles) maintenus équidistants par une cage de tôle emboutie S_4 et montés dans une bague cylindrique S_2 liée au bâti (figure 2.11). Cette bague S_2 constitue le chemin de roulement extérieur des rouleaux, tandis que le chemin de roulement intérieur est constitué par l'arbre S_1 que l'on cherche à guider en rotation. On étudie le mouvement d'un de ces rouleaux, noté S_3 . On suppose que le rouleau S_3 roule sans glisser en K sur la bague S_3 en S_3 con suppose que le rouleau S_3 roule sans glisser en S_3 con le suppose que le rouleau S_3 roule sans glisser en S_3 con le suppose que le rouleau S_3 roule sans glisser en S_3 con le suppose que le rouleau S_3 roule sans glisser en S_3 con le suppose que le rouleau S_3 roule sans glisser en S_3 con le suppose que le rouleau S_3 roule sans glisser en S_3 con le suppose que le rouleau S_3 roule sans glisser en S_3 con suppose que le rouleau S_3 roule sans glisser en S_3 con suppose que le rouleau S_3 roule sans glisser en S_3 con suppose que le rouleau S_3 roule sans glisser en S_3 con suppose que le rouleau S_3 roule sans glisser en S_3 con suppose que le rouleau S_3 roule sans glisser en S_3 con suppose que le rouleau S_3 roule sans glisser en S_3 con suppose que le rouleau S_3 roule sans glisser en S_3 con suppose que le rouleau S_3 con suppose que le rouleau S_3 roule sans glisser en S_3 con suppose que le rouleau S_3 roule sans glisser en S_3 con suppose que le rouleau S_3 roule sans glisser en S_3 con suppose que le rouleau S_3 roule sans glisser en S_3 con suppose que le rouleau S_3 roule sans glisser en S_3 con suppose que le rouleau S_3 roule sans glisser en S_3 con suppose que

 S_2 S_3 S_1

Figure 2.11 – Roulement à aiguilles. Vue en coupe avec les chemins de roulement interne et externe, les rouleaux et la cage.

FIGURE 2.12 – Photo d'un roulement à rouleaux coniques avec les chemins de roulement interne et externe, les rouleaux et la cage.

pose : LK = d, OL = r_1 , OK = r_2 .

- 1) Donner la position des différents centres instantanés de rotation pour les mouvements mutuels des différents plans liés à chaque solide. Préciser la base et la roulante pour les mouvements de S_3 par rapport à S_2 et de S_3 par rapport à S_1 .
- **2)** On suppose connu le vecteur vitesse de rotation $\Omega(S_1/S_2)(t)$. Déterminer $\Omega(S_3/S_2)(t)$.
- **3)** De la même manière, déterminer $\Omega(S_4/S_2)(t)$ en fonction de $\Omega(S_1/S_2)(t)$.
- **4)** Déterminer la vitesse $V(G \in S_3/S_2)$ du centre de gravité G du rouleau S_3 dans son mouvement par rapport au bâti S_2 .

EXERCICES 61

5) Déterminer l'accélération de G dans son mouvement par rapport au bâti S_2 dans le cas où $\mathbf{\Omega}(S_1/S_2)$ est constant.

Exercice 2.5. Mécanisme à trois disques

Le système représenté figure 2.13 est constitué de trois disques :

- S_1 de centre O_1 de rayon R, tourne autour de son axe (O_1, z_0) avec une vitesse angulaire ω_1 ;
- S_2 de centre O_2 de rayon R, tourne autour de son axe (O_2, z_0) avec une vitesse angulaire ω_2 ;
- S_3 de centre J de rayon r, d'axe (J, x) est en contact avec S_1 en P_1 et avec S_2 en P_2 .

On note O le milieu du segment (O_1, O_2) tel que $OO_1 = OO_2 = r$.

Figure 2.13 – Mécanisme à trois plateaux.

- **1)** Montrer que la géométrie du dispositif impose que (J, x) passe par O et que $z_0 \cdot x = 0$.
- **2)** Soit $\Omega(S_3/R_0)(t)$ la vitesse instantanée de rotation de S_3 par rapport à R_0 . On pose $\Omega(S_3/R_0)(t)$. $x = \omega(t)$ et on note $\psi(t) = (x_0, x)$ l'angle mesuré autour de z_0 . Exprimer $\Omega(S_3/R_0)(t)$ en fonction de ψ et ω .
- 3) Donner les éléments de réduction du torseur cinématique au point J du disque S_3 dans son mouvement par rapport à R_0 .

- **4)** On suppose que les contacts en P_1 et P_2 sont sans glissement. Former les conditions de non-glissement en P_1 et P_2 et en déduire ω en fonction de ω_1 , ω_2 , R et r.
- **5)** Quel peut être le rôle d'un tel dispositif?

Exercice 2.6. Grue portuaire

La plupart des grues portuaires poursuivent le même but : limiter et éviter le levage des charges. L'objectif, une fois la charge sortie de la cale du navire, est de translater celle-ci, horizontalement, sans levage jusqu'aux quais, ce qui diminue les dépenses énergétiques.

L'étude porte sur le modèle le plus répandu, les grues dites à fléchette (figure 2.14). La grue proposée (capacité 50 kN) se compose d'une tourelle S_0 pivotant sur le bâti S_0 mobile en translation sur des rails.

Le mécanisme de la grue se compose d'une flèche S_1 articulée en E sur la tourelle et en E sur la fléchette E. La biellette E0 articulée en E1 et E2 assure le maintien. La manœuvre de la flèche est assurée par un vérin hydraulique E5 + E6.

Un contrepoids S_{10} assure l'équilibrage de l'ensemble en compensant le poids de la flèche. La charge S_8 de centre de gravité G peut monter ou descendre grâce au câble S_4 manœuvré en F par un treuil situé dans la tourelle. Le câble coulisse librement grâce aux poulies placées en B et C.

Les liaisons en A, B, C, D, E et F sont des liaisons pivots de centre de même nom

Le mécanisme de la grue peut être modélisé par les trois solides (proposé figure 2.15) : flèche S_1 , fléchette S_2 et biellette S_3 . Ces solides sont contenus dans le plan (O, x_0, y_0) d'un repère orthonormé direct R_0 (O, x_0, y_0, z_0) lié à la tourelle S_0 supposée immobile.

- La flèche S_1 est articulée avec S_0 par une liaison pivot d'axe (E, z_0) . On définit le repère R_1 (E, x_1, y_1, z_0) lié à S_1 , tel que $EB = ax_1$ et $(x_0, x_1) = (y_0, y_1) = \theta(t)$ est l'angle mesuré autour de z_0 .
- La fléchette S_2 est articulée avec S_1 par une liaison pivot d'axe (B, z_0) . On définit le repère R_2 (B, x_2, y_2, z_0) lié à S_2 , tel que $BC = bx_2$ et $(x_0, x_2) = (y_0, y_2) = \phi(t)$ est l'angle mesuré autour de z_0 . A est un point de S_2 tel que AB = c et $(AB, BC) = \alpha_0$ est un angle fixe.
- La biellette S_3 est articulée avec S_0 par une liaison pivot d'axe (D, z_0) . On définit le repère (A, x_3, y_3, z_0) lié à S_3 , tel que $DA = dx_3$ et $(x_0, x_3) = (y_0, y_3) = \psi(t)$ est l'angle mesuré autour de z_0 . On rappelle que S_3 est également articulé à S_2 en A par une liaison pivot d'axe (A, z_0) .

EXERCICES 63

Cinématique analytique

- **1)** Exprimer les vecteurs vitesses instantanées de rotation $\Omega(S_i/S_0)$, pour i = 1, 2 et 3, de chacun des solides S_i par rapport à R_0 .
- **2)** Calculer les vecteurs vitesses $V(B \in S_1/R_0)$, $V(A \in S_3/R_0)$ et $V(C \in S_2/R_0)$.
- **3)** Exprimer le fait que A et B appartiennent au même solide S_2 . En déduire une relation entre ϕ , θ et ψ .
- **4)** Calculer le vecteur vitesse $V(C \in S_1/R_0)$. En déduire $V(C \in S_2/S_1)$. Cinématique graphique et CIR (cette partie est à traiter sur le schéma donné)
- **5)** Représenter une autre position du mécanisme .
- **6)** Donner la définition du centre instantané de rotation $I(S_i/S_0)$ du mouvement de S_i par rapport à S_0 et rappeler la propriété géométrique fondamentale de $I(S_i/S_0)$.
- **7)** Déterminer les CIR du mouvement de S_i par rapport à S_0 , pour i = 1, 2 et 3 et les représenter.

Étude du mouvement de la biellette S_3 par rapport à la tourelle S_0

- 8) Tracer la trajectoire du point A par rapport à la tourelle.
- 9) Représenter le support du vecteur vitesse $V(A \in S_3/S_0)$. Étude du mouvement de la flèche S_1 par rapport à la tourelle S_0
- **10)** Représenter le support du vecteur vitesse $V(H \in S_1/S_0)$. On prendra comme échelle des vitesses une longueur de 3 cm pour $V(H \in S_1/S_0)$ en
- **11)** Déterminer graphiquement le vecteur $V(B \in S_1/S_0)$.

Étude du mouvement de la fléchette S2

supposant que $\dot{\theta}$ est négatif.

12 Par rapport à la tourelle S_0 : quel est le support de $V(A \in S_2/S_0)$? de $V(C \in S_2/S_0)$? Construire les vecteurs $V(A \in S_2/S_0)$ et $V(C \in S_2/S_0)$.

FIGURE 2.14 – Schématisation de la grue.

Figure 2.15 – Grue étudiée.

65

Solutions

Solution 2.1.

1) On a $V(O \in S_1/S_0) = 0$ car c'est un point fixe dans le repère R_0 . La relation de champ des vitesse donne $V(A \in S_1/S_0) = V(O \in S_1/S_0) +$ $\mathbf{\Omega}(S_1/S_0) \wedge \mathbf{O}\mathbf{A} = a\dot{\alpha}\,\mathbf{z}_1.$

2) On a $V(A \in S_2/S_0) = V(A \in S_1/S_0)$ car le point A est le centre de la liaison pivot entre ces deux solides. $V(G \in S_2/S_0) = V(A \in S_2/S_0) +$ $\mathbf{\Omega}(S_2/S_0) \wedge AG = a\dot{\alpha}z_1 + (\mathbf{\Omega}(S_2/S_1) + \mathbf{\Omega}(S_1/S_0) \wedge AG = b\dot{\beta}y_2 + \dot{\alpha}(a + a)$ $b \sin \beta z_1$. $V(G \in S_2/S_1) = V(A \in S_2/S_1) + \Omega(S_2/S_1) \wedge AG = b\dot{\beta}y_2$.

Solution 2.2.

Nous conseillons de faire un schéma du dispositif avec les liaisons (en utilisant les éléments donnés dans le chapitre sur les liaisons et leur modélisa-

1) $\Omega(S_1/S_0) = \dot{\theta}z_0$, $\Omega(S_2/S_0) = \Omega(S_2/S_1) + \Omega(S_1/S_0) = \Omega(S_1/S_0)$ et $\mathbf{\Omega}(S_3/S_0) = \mathbf{\Omega}(S_3/S_2) + \mathbf{\Omega}(S_2/S_0) = \dot{\phi}x_1 + \dot{\theta}z_0.$

2) $V(C \in S_2/R_0) = \frac{dOC}{dt}\Big|_{R_0} = \frac{d(OA + AB + BC)}{dt}\Big|_{R_0}$. Nous allons calculer chaque

terme. $\frac{dOA}{dt}\Big|_{R_0} = \frac{d(rx_1)}{dt}\Big|_{R_0} = r\dot{\theta}y_1 \text{ (la dérivée du vecteur } x_1 \text{ est portée par le vecteur directement perpendiculaire soit } y_1).$ $\frac{dAB}{dt}\Big|_{R_0} = \frac{d(h(t)z_0)}{dt}\Big|_{R_0} = \dot{h}(t)z_0 \text{ (la dérivée du vecteur } z_0 \text{ dans } R_0 \text{ est nulle).}$ $\frac{dBC}{dt}\Big|_{R_0} = \frac{d(\ell y_1)}{dt}\Big|_{R_0} = \ell\dot{\theta}(-)x_1 \text{ (la dérivée du vecteur } y_1 \text{ est portée par le parteur directement perpendiculaire soit.}$ vecteur directement perpendiculaire soit $-x_1$).

On a au final $V(C \in S_2/R_0) = \dot{\theta}(ry_1 - \ell x_1) + \dot{h} z_0$.

3) $V(D \in S_3/R_0) = \frac{dOD}{dt}\Big|_{R_0} = \frac{d(OC + CD)}{dt}\Big|_{R_0}$. $\frac{dOC}{dt}\Big|_{R_0} = V(C \in S_2/R_0)$ car le point C est sur l'axe de la liaison.

$$\frac{\mathrm{d}CD}{\mathrm{d}t}\Big|_{\mathrm{R}_{0}} = \frac{\mathrm{d}(d\,z_{3})}{\mathrm{d}t}\Big|_{\mathrm{R}_{0}} = \frac{\mathrm{d}(d\,z_{3})}{\mathrm{d}t}\Big|_{\mathrm{R}_{3}} + \mathbf{\Omega}(\mathrm{S}_{3}/\mathrm{S}_{0}) \wedge z_{3} = -d\dot{\phi}\,y_{3} + d\dot{\theta}\,\sin\phi x_{1}.$$

On a au final $V(D \in S_2/R_0) = \dot{\theta}(d\sin\phi - \ell)x_1 + \dot{\theta}ry_1 - d\dot{\phi}y_3 + \dot{h}z_0$. Cette expression vectorielle montre à nouveau qu'il ne serait pas astucieux d'aller « chercher » le repère R₀.

Solution 2.3.

1) Recherche du CIR du mouvement de S_1 par rapport S_0 .

Analytiquement. Posons $AI = \lambda x + \mu y$; il va s'agir de déterminer λ et μ (qui sont a priori des fonctions du temps). On a $OA = h \sin \alpha x$ et $OB = h \cos \alpha y$. On en déduit que $V(A \in S_1/S_0) = h\dot{\alpha}\cos\alpha x$ et $V(B \in S_1/S_0) = h\dot{\alpha}\sin\alpha x$. Or $V(A \in S_1/S_0) = V(I \in S_1/S_0) + \Omega(S_1/S_0) \wedge IA = -\dot{\alpha}z \wedge (\lambda x + \mu y)$ et donc $V(A \in S_1/S_0) = \dot{\alpha}(\mu x - \lambda y)$. Comme $V(A \in S_1/S_0) = h\dot{\alpha}\cos\alpha x$, il vient, par identification terme à terme, que $\mu = h\cos\alpha$ et $\lambda = 0$, ce qui donne donc $AI = h\cos\alpha y$, ce qui permet de placer I sur la figure 2.16.

Graphiquement. On sait que les points A et B se déplacent le long du sol et du mur donc les vecteurs vitesse sont tangents à ces éléments (sol et mur). Le CIR I est tel que $V(I \in S_1/S_0) = \mathbf{0}$. Le point I est donc sur la perpendiculaire à $V(A \in S_1/S_0)$ issue du point A. On procède ainsi pour B et on localise le point I. On retrouve donc le résultat obtenu par la méthode analytique.

Figure 2.16 – Échelle contre un mur.

2) Base et roulante.

La **base** est la trajectoire du point I(t) dans le repère associé à S_0 . On a $OI = OA + AI = h \sin \alpha x + h \cos \alpha y = x_I x + y_I y$. On en déduit la relation $x_I^2 + y_I^2 = h^2$ qui est l'équation d'un cercle de centre (0, 0) dans R_0 (donc le point O) et de rayon AB (voir figure 2.16). La **roulante** est la trajectoire du point I(t) dans le repère associé à S_1 . On a $AI = h \cos \alpha y = h \cos \alpha (\sin \alpha x_1 + \cos \alpha y_1)$ ou encore, par une relation de trigonométrie classique, $AI = \frac{h \sin 2\alpha}{2} x_1 + \frac{h(\cos 2\alpha + 1)}{2} y_1 = u_I x_1 + v_I y_1$. On en déduit ainsi la

EXERCICES 67

relation suivante : $u_I^2 + (v_I - \frac{h}{2})^2 = \frac{h^2}{4} \sin^2 2\alpha + \frac{h^2}{4} \cos^2 2\alpha = \frac{h^2}{4}$. Il s'agit de l'équation d'un cercle de centre (0, h/2) dans R_1 et de diamètre la tige AB. Le centre du cercle est donc au milieu de la tige (point C sur la figure 2.16).

Solution 2.4.

1) Position des différents CIR et détermination de la base et de la roulante. Pour identifier les CIR, on cherche les points de vitesse nulle dans le mouvement relatif. On a I_{32} (CIR du mouvement de S_3 par rapport à S_2) = K car on a non glissement de S_3 sur S_2 en K ce qui correspond à $V(K \in S_3/S_2) = 0$. De même on a $I_{31} = L$ car on a non glissement de S_3 sur S_1 en L ce qui correspond à $V(L \in S_3/S_1) = 0$. $I_{12} = O$ car $V(O \in S_2/S_1) = 0$ car $O \in S_1$ et $O \in S_2$. De la même façon $O \in S_1$ et $O \in S_2$ et $O \in S_3$ et $O \in S_$

2) Soit $V(L \in S_1/S_2) = V(O \in S_1/S_2) + \Omega(S_1/S_2) \wedge OL$. Mais on a $V(O \in S_1/S_2) = 0$ car O appartient au bâti, donc $V(L \in S_1/S_2) = \omega_{12}z_0 \wedge r_1x_4$. Soit $V(L \in S_3/S_2) = V(K \in S_3/S_2) + \Omega(S_3/S_2) \wedge KL$. Mais on a $V(K \in S_3/S_2) = 0$ car il y a non glissement en K, donc $V(L \in S_3/S_2) = \omega_{32}z_0 \wedge (-)dx_4$.

On a non glissement en L de S₃ sur S₁ donc $V(L \in S_3/S_1) = \mathbf{0}$ ce qui peut se ré-écrire par la composition des mouvements $V(L \in S_1/S_2) = V(L \in S_3/S_2)$ soit $r_1\omega_{12} = -d\omega_{32}$. On en déduit au final $\omega_{32} = -\frac{r_1}{d}\omega_{12}$.

3) On va calculer la vitesse de G de deux façons différentes.

D'une part, on a $V(G \in S_4/S_2) = V(O \in S_4/S_2) + \Omega(S_4/S_2) \wedge OG$ par le champ des vitesses. Mais $V(O \in S_4/S_2) = 0$ donc $V(G \in S_4/S_2) = \omega_{42}z_0 \wedge (r_1 + d/2)x_4$.

D'autre part, on a aussi $V(G \in S_3/S_2) = V(K \in S_3/S_2) + \Omega(S_3/S_2) \wedge KG$ par le champ des vitesses. Mais $V(K \in S_3/S_2) = 0$ (non glissement) donc $V(G \in 3/2) = \omega_{32}z_0 \wedge (-)d/2x_4$.

Mais on sait que $V(G \in S_3/S_4) = 0$ car $G \in S_4$ et $G \in S_3$ ce qui peut se ré-écrire par composition des mouvements $V(G \in S_4/S_2) = V(G \in S_3/S_2)$ soit $(r_1 + d/2)\omega_{42} = -d/2\omega_{32}$. On en déduit au final $\omega_{42} = \frac{r_1}{2r_1+d}\omega_{12}$.

4) $V(G \in S_3/S_2) = V(K \in S_3/S_2) + \Omega(S_3/S_2) \wedge KG$. Or $V(K \in S_3/S_2) = 0$. Donc $V(G \in S_3/S_2) = \omega_{32}z_0 \wedge (-)d/2x_4 = r_1\omega_{12}/2y_4$.

5) Par dérivation du vecteur position, on obtient $\Gamma(G \in S_3/S_2) = \frac{dV(G \in S_3/S_2)}{dt}\Big|_{R_2} = \frac{r_1\omega_{12}}{2}\frac{dy_4}{dt}\Big|_{R_3/R_2}$, car ω_{12} est constant. On a $\frac{dy_4}{dt}\Big|_{R_3/R_2} = \Omega(S_3/S_2) \wedge y_4 = \frac{r_1}{t}\omega_{12}x_4$. Dans cette expression on dérive le vecteur y_4 en considérant son mouvement par rapport à S_2 lorsqu'il est attaché à S_3 . Finalement on obtient : $\Gamma(G \in S_3/S_2) = \frac{r_1^2}{2d}\omega_{12}^2x_4$.

Solution 2.5.

1) On sait que S_1 et S_2 ont même rayon donc P_1P_2 est colinéaire à z_0 . On a $x \perp$ disque S_3 et P_1 et $P_2 \in S_3$ donc $x \cdot P_1P_2 = 0$ soit $z_0 \cdot x = 0$. Le point J est au milieu de P_1P_2 et O au milieu de O_1O_2 ; comme P_1P_2 colinéaire à z_0 et O_1O_2 colinéaire à z_0 on a $JO \cdot z_0 = 0$. De même la droite (J, x) passe par J et est perpendiculaire à z_0 donc la doire (J, x) passe par O.

- **2)** On note $R_0 = (O, x_0, y_0, z_0)$ le repère orthonormé direct. On déduit $R = (O, x, y, z_0)$ de R_0 par rotation $\psi(t)$ autour de (O, z_0) et R_{S_3} (lié à S_3) (J, y_{S_3}, z_{S_3}, x) se déduit de R par une rotation $\theta(t)$ autour de l'axe (J, x) avec $\dot{\theta} = \omega$. Par composition des mouvements on a $\Omega(S_3/R_0) = \omega x + \dot{\psi}z_0$.
- **3)** Le torseur cinématique au point J du disque S_3 dans son mouvement par rapport à R_0 est :

$$\left\{ \; \mathcal{V}(S_3/R_0) \; \right\} = \left\{ \; \begin{array}{l} \boldsymbol{\varOmega}(S_3/R_0) \\ \boldsymbol{V}(J \in S_3/R_0) \; \end{array} \right\}_J$$

avec $\mathbf{\Omega}(S_3/R_0) = \omega x + \dot{\psi} z_0$ et $\mathbf{V}(J \in S_3/R_0) = R \left. \frac{dx}{dt} \right|_{R_0} = R \dot{\psi} \mathbf{y}$

4) La condition de roulement sans glissement entre les disques S_1 et S_3 en P_1 impose : $V(P_1 \in S_1/R_0) = V(P_1 \in S_3/R_0)$. On va utiliser la relation de moment dans S_1 puis S_3 :

$$V(P_1 \in S_1/R_0) = V(O_1 \in S_1/R_0) + \Omega(S_1/R_0) \wedge O_1 P_1 = R\omega_1 y.$$

 $V(P_1 \in S_3/R_0) = V(J \in S_3/R_0) + \Omega(S_3/R_0) \wedge J P_1 = R\dot{\psi}y - r\omega y.$

La condition de roulement sans glissement s'écrit donc $R\dot{\psi}y - \omega ry = R\omega_1 y$. La condition de non glissement entre S_2 et S_3 en P_2 impose : $V(P_2 \in S_2/R_0) = V(P_2 \in S_3/R_0)$. On va à nouveau utiliser la relation de moment, mais cette fois dans S_2 puis S_3 :

$$V(P_2 \in S_2/R_0) = V(O_2 \in S_2/R_0) + \Omega(S_2/R_0) \wedge O_2P_2 = R\omega_2y.$$

 $V(P_2 \in S_3/R_0) = V(J \in S_3/R_0) + \Omega(S_3/R_0) \wedge JP_2 = R\dot{\psi}y + r\omega y.$

EXERCICES 69

La condition de roulement sans glissement s'écrit donc $R\dot{\psi}y + \omega ry = R\omega_2 y$. Les deux conditions permettent d'écrire finalement $\omega = \frac{R}{2r}(\omega_2 - \omega_1)$.

5) Si on imagine que la vitesse d'entrée est donnée par le solide S_3 , on constate que l'on impose des vitesses différentes aux disques S_1 et S_2 ce qui correspond à une fonction de type différentiel dans un véhicule (les roues d'une voiture dans un virage ne tournent pas à la même vitesse, la roue extérieure doit tourner plus vite que la roue intérieure).

Solution 2.6.

Cinématique analytique

- **1)** $\Omega(S_1/S_0) = \dot{\theta} z_0$, $\Omega(S_2/S_0) = \dot{\phi} z_0$, $\Omega(S_3/S_0) = \dot{\psi} z_0$
- **2)** $V(B \in S_1/R_0) = V(E \in S_1/R_0) + \Omega(S_1/S_0) \wedge EB = 0 + \dot{\theta} z_0 \wedge a x_1 = a\dot{\theta} y_1$ $V(A \in S_3/R_0) = V(D \in S_3/R_0) + \Omega(S_3/S_0) \wedge DA = 0 + \dot{\psi} z_0 \wedge d x_3 = d\dot{\psi} y_3$ $V(C \in S_2/R_0) = V(B \in S_2/R_0) + \Omega(S_2/S_0) \wedge BC = V(B \in S_1/R_0) + \Omega(S_2/S_0) \wedge BC = a\dot{\theta} y_1 + b\dot{\phi} y_2$
- **3)** $V(B \in S_2/R_0) = V(A \in S_2/R_0) + \Omega(S_2/S_0) \wedge AB$.

Mais $V(B \in S_2/R_0) = V(B \in S_1/R_0)$ et $V(A \in S_2/R_0) = V(A \in S_3/R_0)$ qui ont été calculés à la question précédente (l'expression de $\Omega(S_2/R_0)$ a été obtenue à la question 1). De plus $AB = c(\cos\alpha_0x_2 - \sin\alpha_0y_2)$. On en déduit : $a\dot{\theta}y_1 = d\dot{\psi}y_3 + c\dot{\phi}(\cos\alpha_0y_2 + \sin\alpha_0x_2)$. Cette égalité vectorielle peut-être projetée sur x_0 et y_0 , ce qui donne après calculs (et utilisation des formules de trigonométrie) :

$$\left\{ \begin{array}{lll} -a\dot{\theta}\sin\theta + d\dot{\psi}\sin\psi & = & -c\dot{\phi}\sin(\phi - \alpha_0) \\ a\dot{\theta}\cos\theta - d\dot{\psi}\cos\psi & = & c\dot{\phi}\cos(\phi - \alpha_0). \end{array} \right.$$

4) $V(C \in S_1/R_0) = V(B \in S_1/R_0) + \Omega(S_1S_0) \wedge BC = a\dot{\theta}y_1 + b\dot{\theta}y_2$. On en déduit par composition des vitesses $V(C \in S_2/S_1) = V(C \in S_2/R_0) - V(C \in S_1/R_0) = b(\dot{\phi} - \dot{\theta})y_2$. On constate que $V(C \in S_2/S_1)$ est perpendiculaire à BC, ce qui est logique car B est le CIR I_{21} ($V(B \in S_2/S_1) = 0$ car B appartient à la fois à S_2 et à S_1).

Cinématique graphique et CIR

- **5)** On laisse le lecteur le soin de représenter une autre position du mécanisme.
- **6)** La propriété géométrique fondamentale du CIR $I(S_i/S_0)$ est qu'il se situe sur une droite perpendiculaire au vecteur vitesse en tout point du solide S_i par rapport au solide S_0 ; cette droite perpendiculaire passe par le point considéré. Il vient donc que pour trouver le CIR, il suffit de connaître deux

vecteurs vitesse du solide, puisque l'intersection de leur perpendiculaire donnera le point $I(S_i/S_0)$.

- **7)** CIR du mouvement de S_1 par rapport à S_0 : $I(S_1/S_0) = E$. CIR du mouvement de S_2 par rapport à S_0 : $I(S_2/S_0) = 1$ 'intersection entre DA et EB. CIR du mouvement de S_3 par rapport à S_0 : $I(S_3/S_0) = D$.
- **8)** La trajectoire de A est un cercle de centre D passant par A.
- **9)** Le support de $V(A \in S_3/S_0)$ est donné sur la figure. C'est la ligne tiretée perpendiculaire à DA issue de A.
- **10)** Le support de $V(H \in S_1/S_0)$ est donné par la perpendiculaire à EH issue de H car ce solide est en rotation autour d'un axe passant par E.
- **11)** On procède de la même façon pour le support de $V(B \in S_1/S_0)$ en traçant un ligne (représentée en tiretée) perpendiculaire à EB issue de B.
- **12)** Les points A et B appartiennent aussi à la fléchette. Le CIR de S_2 par rapport à S_0 peut donc être identifié en cherchant le point I intersection des droites perpendiculaires aux deux vecteurs vitesse $V(A \in S_2/S_0)$ et $V(B \in S_2/S_0)$, et issues respectivement de A et B. Connaissant ce point I, il est aisé de trouver la direction de la vitesse du point C appartenant à S_2 par rapport à S_0 . Pour l'intensité, il faut utiliser la propriété d'équiprojectivité des vitesses.

Figure 2.17 – Grue étudiée.

Chapitre 3

Actions, liaisons

Objectifs

- Définir mathématiquement les actions mécaniques agissant sur un solide.
- Analyser systématiquement des liaisons.
- Étudier les mobilités d'un mécanisme en vue de localiser les inconnues de liaison qui ne peuvent pas être déterminées uniquement par application du principe fondamental de la statique.

Plan

Le plan sera placé automatiquement... ne rien faire de particulier.

La statique traite de l'équilibre des corps. Elle est la partie de la mécanique rationnelle qui a pour principal objet l'étude des actions mécaniques s'exerçant sur les solides indéformables indépendamment de leur mouvement. Les origines de la statique remontent au Moyen-Âge, mais on peut également trouver des notions de statique datant de l'Antiquité dans les travaux d'Archimède, d'Aristote et d'Euclide. En effet, Archimède (287-212 av. J.-C.) est le premier à énoncer le principe du levier, lequel consiste en ce que si un levier droit est chargé de deux masses quelconques placées de part et d'autre du point d'appui à des distances de ce point réciproquement proportionnelles à ces mêmes masses, ce levier sera en équilibre, et son

point d'appui sera chargé de la somme des deux poids correspondants [?]. Les premières études concernent bien évidemment des relations entre les masses, les forces et les actions de levier, puis vinrent les études des systèmes de poulies ou de machines plus complexes. C'est au XIIIe siècle que Jordanus de Nemore, géomètre, démontra la loi du levier en partant de ce postulat : « Il faut même puissance pour élever des poids, différents, lorsque les poids sont en raison inverse des hauteurs qu'ils franchissent. »

L'idée dont le premier germe se trouvait dans le traité de Jordanus a grandi, suivant un développement continu, au travers des écrits de Léonard de Vinci, de Cardan, de Roberval, de Descartes, de Wallis, pour atteindre sa forme achevée dans la lettre de Jean Bernoulli à Varignon, dans la Mécanique Analytique de Lagrange, dans l'œuvre de Willard Gibbs [?]. Le principe fondamental de la statique que nous verrons dans ce chapitre est issu de ces travaux.

Nous débuterons par la notion élémentaire d'action mécanique; nous poursuivrons par la modélisation des actions mécaniques s'exerçant entre des solides indéformables par le torseur statique (dit torseur des actions mécaniques ou encore torseur des efforts transmissibles) et le cas particulier des actions mécaniques de liaisons.

3.1 Action mécanique

3.1.1 Définitions

A -4: --- --- --- ----

Interaction

Deux solides S_1 et S_2 sont dits en interaction si une modification de position de l'un entraîne une modification de position de l'autre.

Action mecanique
Encadré
On dit que S_2 exerce une action mécanique sur S_1 si, relativement à u
référentiel donné, les mouvements (ou déformations) de S_1 par rapport à c
référentiel dépendent de la présence de S ₂ .
Fin Encadré

D'une façon générale, on appelle action mécanique, toute cause physique susceptible de maintenir ou de modifier les mouvements d'un corps ou de déformer un corps. On peut par exemple recenser : le pied d'un footballeur qui frappe un ballon, les champs électriques et magnétiques qui dévient

l'électron, le rotor qui entraîne l'axe d'une turbine. Ces quelques exemples illustrent les deux grandes catégories d'actions mécaniques :

- les actions à distance liées à des champs de force (exemple : champ d'accélération de la pesanteur ou champ électromagnétique);
- les actions de contact (exemple : action de la main sur la poignée d'une porte, pression de l'eau sur un plongeur).

Ces actions s'exercent soit sur une surface (exemple : contact entre deux solides), soit sur un volume (exemple : la pesanteur).

Une notion importante est celle d'actions mécaniques externes ou internes. Cette notion dépend du système considéré. Pour cela, on isole le système : on identifie le solide ou l'ensemble de solides constituant l'objet de l'étude, ce qui définit un domaine intérieur (ce qui se passe à l'intérieur du système) et un domaine extérieur (l'ensemble des actions mécaniques exercées à distance ou par des solides ne faisant pas partie du système).

Exemple : soient trois solides S_1 , S_2 et S_3 comme présentés figure 3.1. Soit Σ l'ensemble constitué par les solides S_1 et S_2 : $\Sigma = \{S_1, S_2\}$. Les actions mécaniques extérieures s'exerçant sur le système Σ sont :

- le poids de Σ = poids de S_1 + poids de S_2 ;
- les actions mécaniques de contact exercées par S₃ sur Σ aux points A, C et D. L'action de contact en B entre S₁ et S₂ est une action mécanique intérieure au système Σ.

Figure 3.1 – Actions intérieures / actions extérieures.

3.1.2 Modélisation des actions mécaniques

Si on considère un solide matériel S comme un ensemble de points matériels (c'est-à-dire de points M auxquels on attache une petite quantité de matière dm), on peut alors écrire que toute action (à distance ou de contact)

se résume à un effort représenté par un vecteur. On notera d $F(\text{Ext} \to \text{M}(\text{d}m))$ cet effort élémentaire appliqué au point M dont la masse élémentaire est dm.

Force et Moment
Un vecteur lié est un vecteur attaché à un point M de l'espace.
Encadré
On appelle force la grandeur vectorielle décrivant une interaction capable de produire un mouvement ou de créer une déformation. Une force se représente par un vecteur lié, le point M étant le point d'application de la force. Fin Encadré
Encadré
On appelle $moment$ d'une force F appliquée en A par rapport à un point
M, la grandeur vectorielle $M(M, F) = F \wedge AM$. Un moment se représente
par un vecteur lié au point M, point d'expression du moment.
Fin Encadré
Exemple: une application pratique de ce concept est le desserrage d'un écrou à l'aide d'une clé à pipe (voir l'exercice clé à pipe). Pour un même effort appliqué suivant la même direction, le moment exercé sur l'écrou sera d'autant plus grand que le point d'application de la force sera éloigné de l'axe de rotation. La distance entre cet axe et le point d'application de la force est appelée bras de levier. On constate donc que nous avons besoin de deux informations indépendantes, l'une relative à la force et l'autre au produit force par bras de levier (appelé moment). Encadré
Remarque : du point de vue de la modélisation des actions mécaniques,
 une force est généralement associée à une action susceptible de créer un mouvement de translation;
 un moment est généralement associé à une action susceptible de créer un mouvement de rotation.
Fin Encadré

Torseur des actions mécaniques

Comme nous l'avons vu au chapitre précédent, un torseur est composé de deux quantités vectorielles : la résultante et le moment. Pour le torseur statique (également appelé torseur des actions mécaniques ou torseur des efforts transmissibles) :

Encadré _____

- la résultante est la somme de toutes les forces élémentaires d $F(\operatorname{Ext} \to \operatorname{M})$

$$F(\text{Ext} \to \text{S}) = \int_{\forall M \in \text{S}} dF(\text{Ext} \to \text{M})$$

– le moment en un point A quelconque est la somme de tous les moments élémentaires engendrés par d $F(\text{Ext} \to \text{M})$

$$M(A, F(Ext \to S)) = \int_{\forall M \in S} AM \wedge dF(Ext \to M) \quad \forall A. (3.1)$$

Fin Encadré

Démonstration. Si on admet que $F(\text{Ext} \to S)$ représente bien la résultante des actions élémentaires extérieures exercées sur les points M du solide S, $dF(\text{Ext} \to M)$, alors :

$$\begin{split} \textbf{\textit{M}}(B, \ \textbf{\textit{F}}(Ext \to M)) &= \int_{\forall M \in S} \textbf{\textit{B}} \textbf{\textit{M}} \wedge d \textbf{\textit{F}}(Ext \to M) \\ &= \int_{\forall M \in S} (\textbf{\textit{B}} \textbf{\textit{A}} + \textbf{\textit{A}} \textbf{\textit{M}}) \wedge d \textbf{\textit{F}}(Ext \to M) \\ &= \int_{\forall M \in S} \textbf{\textit{B}} \textbf{\textit{A}} \wedge d \textbf{\textit{F}}(Ext \to M) \\ &+ \int_{\forall M \in S} \textbf{\textit{A}} \textbf{\textit{M}} \wedge d \textbf{\textit{F}}(Ext \to M) \\ &= \textbf{\textit{B}} \textbf{\textit{A}} \wedge \textbf{\textit{F}}(Ext \to M) + \textbf{\textit{M}}(A, \ \textbf{\textit{F}}(Ext \to M)). \end{split}$$

On obtient ainsi la relation caractéristique d'un champ de torseur.

3.1.3 Action mécanique de contact

Le deuxième type d'action mécanique est l'action de contact entre deux solides qui se touchent. La modélisation de ces actions est complexe car elles dépendent de la structure microscopique des surfaces en contact. La répartition de ces actions de contact peut être ponctuelle, linéique ou surfacique et nécessite souvent le recours à des méthodes statistiques pour représenter l'effet global des actions locales. Nous allons cependant évoquer ici deux cas particuliers pour lesquels des lois expérimentales ont pu être établies :

- contact parfait (sans frottement);
- loi de frottement de glissement (loi d'Amontons-Coulomb).

Le contact entre deux solides S_1 et S_2 s'effectue selon une surface élémentaire notée dS (cette surface peut être réduite à une ligne ou un point). On sait que les efforts élémentaires exercés par S_2 sur S_1 appliqués en un point M sont représentés par un vecteur d $F(S_2 \to M)$ attaché au point M. Le rapport entre l'effort élémentaire et l'élément de surface est une densité surfacique d'effort (homogène à une pression exprimée en $N.m^{-2} = Pa$). Cependant, dans la plupart des cas, il est impossible de connaître la valeur de ces actions en tout point M de la surface de contact dS. On doit alors faire des hypothèses.

Cas du contact dit parfait (sans frottement)

On assimile dans ce cas le contact entre les deux solides S_1 et S_2 à celui exercé par un fluide parfait sur un solide : dans ce cas les forces de contact sont dirigées selon la normale n en M à la surface de contact dS.

Remarque : dans le cas d'un contact ponctuel entre les solides S_1 et S_2 , la force de contact est dirigée selon la normale au plan tangent aux surfaces en contact.

Exemple:

- Soit un solide S₂ qui exerce sur S₁ une charge linéique P (N.m⁻¹) constante le long d'une ligne de contact (P = d||F||/dℓ), dirigée selon z. La résultante F du torseur des actions mécaniques de S₂ sur S₁ s'écrit : F = ∫₀¹ dF = ∫₀² Pd(ℓz) = PLz.
 On suppose à présent que la charge P varie linéairement le long de la
- On suppose à présent que la charge P varie linéairement le long de la ligne de contact $(P(\ell) = \alpha \ell + P_0)$ dirigée selon z. La force de contact F s'exprime alors : $F = \int_0^L dF = \int_0^L P(\ell) d(\ell z) = (\alpha L^2 + P_0 L) z$.

Remarque : on constate que dès que les actions locales de contact sont connues avec précision, on peut déterminer le torseur des actions de contact.

Cas du contact avec frottement

Dans ce cas nous allons supposer que la force $dF(S_2 \to M)$ est constituée de deux composantes : l'une dirigée suivant la normale n en M à la surface de contact dS et une composante appartenant au plan tangent en M à cette surface de contact. On note dF_n la force normale exercée par S_2 en M et $p_n = dF_n/dS$ la pression correspondante où $dF_n = \|dF_n\|$. On note dF_t la force tangentielle exercée par S_2 en M et $\tau = dF_t/dS$ la pression (dite de cisaillement) correspondante où $dF_t = \|dF_t\|$.

		Encart	

Le frottement sec et les lois d'Amontons.

Léonard de Vinci (1452-1519) peut être considéré comme le père de la tribologie moderne. 150 ans avant que les lois de frottement d'Amontons fussent introduites, il les avait déjà répertoriées dans ses manuscrits. Dissimulés ou égarés pendant des siècles, les manuscrits de Léonard de Vinci furent lus en Espagne 250 ans plus tard. En statique, les lois d'Amontons (1663-1705), physicien français, furent publiées au XVII^e siècle. Ces lois expriment une relation entre les actions normales et tangentielles dues à l'interaction de deux solides en contact :

- 1^{re} loi d'Amontons : la force de frottement F = ||F|| est directement proportionnelle au chargement appliqué P = ||P||;
- 2^e loi d'Amontons : la force de frottement F ne dépend pas de l'étendue des surfaces de contact, mais seulement de la nature de ces surfaces.

Ces deux lois peuvent être exprimées par la formule : F/P = f une constante dépendant de la nature des deux matériaux en contact et de leur état de surface. Cette constante f sera appelée plus tard coefficient de frottement statique. Sa valeur est de l'ordre de 0,5 pour du bois sur du bois, de 1 pour une semelle de chausson d'escalade en caoutchouc sur un rocher. Ces deux lois seront rendues célèbres par Charles de Coulomb (1726-1805) à la suite d'une série d'expériences « réelles et faites en (vraie) grandeur ». Pendant des mois, il étudie le comportement des cordes dans les poulies, les grues et les cabestans ; il compare cordes neuves et usagées, sèches ou imbibées d'eau salée; enfin, il fait frotter des plateaux de bois sec ou huilé, de métal et autres substances les uns contre les autres. Ces résultats expérimentaux seront regroupés dans sa Théorie des machines simples. Coulomb souligne en préambule de son ouvrage que ces lois avaient déjà été exprimées par Guillaume Amontons dans son mémoire De la résistance causée dans les machines en 1699. Mais ces lois d'Amontons avaient été contestées par la suite. Coulomb fait plus que les confirmer. Il en étend le domaine de validité, en particulier pour de très fortes charges. La diversité des paramètres dont il étudie l'influence, son utilisation systématique de l'analyse mathématique sont sans précédent au XVIII^e siècle .

Fin Encart

Coefficient de frottement statique et cône de frottement statique

Considérons un solide S_1 en contact plan sur plan avec un solide S_2 et soumis à une force F dirigée selon y (figure 3.2). L'action de contact, noté R, du solide S_2 sur le solide S_1 est une action de contact avec frottement et est supposée être dans le plan (y, z). N et T représentent sa projection respectivement sur z, qui est la normale au point P représentant le contact, et sur y. Il existe alors une relation reliant α et les composante de la réaction :

$$\tan \alpha = \frac{||N||}{||T||}.$$

On dit que R délimite un cône de frottement d'angle α autour de la normale z au point de contact P. Si l'intensité de la force F varie, l'intensité de la réaction varie aussi. L'angle α varie donc en fonction de la force F appliquée.

Le frottement présent entre les deux solides est appelé frottement statique et est représenté par un coefficient noté f. Ce coefficient représente la constante à partir de laquelle l'équilibre entre les solides S_1 et S_2 est rompu. En effet, à la limite de l'équilibre, on peut écrire :

$$f = \tan \phi = \frac{\|N_{\ell}\|}{\|T_{\ell}\|},$$

où N_ℓ et T_ℓ représentent les composantes, sur les axes de projection, de la réaction limite $R = R_\ell$ avec $\phi = \alpha_\ell$. Le cône défini par l'angle au sommet ϕ est appelé cône de frottement statique. Il est lié au coefficient de frottement f et dépend notamment du poids de l'objet et de la nature des surfaces en contact.

À partir de la connaissance du cône de frottement, l'équilibre ou le glissement du solide S_1 par rapport au solide S_2 peuvent être définis.

Pour que l'équilibre statique soit réalisable, il faut que la réaction de S_2 sur S_1 projetée sur la direction de la force soit supérieur à la force appliquée. Autrement dit, la réaction de S_2 sur S_1 doit être située à l'extérieur du cône de frottement statique ($\mathbf{R} = \mathbf{R}_e$), ce qui revient à écrire :

$$||T|| > f||N||.$$

Inversement, si la norme de la force appliquée est supérieure à la projection sur son axe de la réaction de S_2 sur S_1 , le solide est animé d'un mouvement

Figure 3.2 – Représentation du cône de frottement, délimité par l'angle ϕ issu du sommet P, pour le contact entre deux solides S_1 et S_2 . $\textbf{\textit{R}}_e$ représente une réaction de S_2 sur S_1 garantissant l'équilibre de S_1 . R_ℓ représente la d'équilibre limite de S_1 .

de translation. Il y a donc glissement de S_1 sur S_2 , \mathbf{R} est à l'intérieur du cône de frottement statique. Cette condition s'écrit :

$$||T|| < f||N||$$
.

L'équilibre limite est atteint pour ||T|| = f||N||, c'est-à-dire pour $\alpha = \phi$.

3.1.4 Action mécanique à distance

Comme nous l'avons évoqué précédemment, l'action mécanique exercée par la gravité sur le solide S est une action à distance s'appliquant sur le volume de S. Soit M_S la masse de S et g=-gz le vecteur accélération de la pesanteur, on peut écrire le torseur des actions mécaniques dues à la gravité sous la forme suivante :

$$F(\text{Ext} \to \text{S}) = \int_{\text{S}} dF(\text{Ext} \to \text{S}) = \int_{\text{S}} g \, dm = -M_{\text{S}} g \, z,$$

en considérant le vecteur z vertical ascendant et g vertical descendant avec g constant sur le domaine d'intégration.

$$\begin{split} \textbf{\textit{M}}(A,\, \textbf{\textit{F}}(Ext \to S)) &= \int_{M \in S} \textbf{\textit{A}} \textbf{\textit{M}} \wedge d \textbf{\textit{F}}(Ext \to S), \\ &= \int_{M \in S} \textbf{\textit{A}} \textbf{\textit{M}} \wedge \textbf{\textit{g}} dm \\ &= -g \int_{M \in S} \textbf{\textit{A}} \textbf{\textit{M}} dm \wedge \textbf{\textit{z}}. \end{split}$$

On définit le centre de masse (ou d'inertie) C de S comme le point tel que :

$$M_{\rm S} AC = \int_{\rm M \in S} AM \, dm \quad \forall A.$$

On peut donc reprendre l'expression du moment $M(A, F(Ext \rightarrow S))$ et écrire :

$$M(A, F(Ext \rightarrow S)) = -gM_S AC \wedge z.$$

Propriété: le moment des actions de gravité au point C, centre de masse du système, est nul et le torseur des actions de la gravité se réduit donc en ce point à un glisseur. Il nous faut donc savoir calculer les centres de masse de différents solides rencontrés couramment en mécanique. Nous reviendrons sur ce point dans le chapitre cinétique.

Remarque:

- centre d'inertie / centre de masse : on admettra l'équivalence entre centre de masse et centre d'inertie;
- centre de masse (ou d'inertie) / centre de gravité : le centre de gravité d'un objet est par définition le point d'application de son poids. Si les dimensions de l'objet sont telles que l'hypothèse « g constant sur le domaine d'intégration » est fausse alors on constate que le centre de masse C n'est pas forcément confondu avec le centre de gravité G (on doit laisser g dans l'intégration). Si par contre le champ d'accélération de la pesanteur est constant sur le domaine d'intégration (en direction et en intensité) alors il y a aussi équivalence entre le centre de masse et le centre de gravité.

Tous les exemples traités dans cet ouvrage correspondent à des objets mécaniques de petites dimensions; en conséquence les points C et G seront confondus.

Remarque: en l'état de nos connaissances, il existe quatre interactions fondamentales en physique: interaction gravitationnelle, interaction électromagnétique et les interaction nucléaires forte et faible. Aux échelles microscopiques, la gravitation est la plus faible de ces quatre interactions fondamentales; elle devient dominante au fur et à mesure que les échelles de grandeur augmentent. Avec la force électromagnétique, elle est la seule à agir au-delà de la dimension du noyau atomique. De plus, comme elle est toujours attractive, elle a une action prépondérante par rapport aux forces électromagnétiques qui tendent à se compenser, étant tantôt attractives, tantôt répulsives. Dans ce livre nous ne nous intéresserons donc qu'aux actions mécaniques à distance exercées par la gravité.

3.2 Liaisons

Encadré Un mécanisme est un ensemble de solides reliés entre eux par des liaisons en vue d'obtenir un mouvement déterminé.
Fin Encadré

L'objectif de ce paragraphe est de les recenser et de les décrire mécaniquement. À partir d'un ensemble de liaisons simples, tous les mouvements seront alors possibles et les actions mutuelles entre solides pourront être totalement caractérisées.

3.2.1 Définitions

Liaisons parfaites

Une liaison est parfaite si le jeu de fonctionnement est nul et si le contact se fait sans frottement.

Encadré
Une liaison est parfaite si et seulement si la puissance dissipée par la liai-
son est nulle.
Fin Encadré

La puissance mécanique développée par les inter-efforts de liaison entre un solide S_1 et un solide S_2 , par rapport à un repère R, est égale au comoment du torseur cinématique de S_2 sur S_1 et du torseur des actions mécaniques de S_1 sur S_2 . Les torseurs cinématiques des liaisons, en un point de contact P, sont de la forme :

$$\left\{ \begin{array}{l} \mathcal{V}(S_2/S_1) \end{array} \right\} = \left\{ \begin{array}{l} \Omega_x \, \boldsymbol{x} + \Omega_y \, \boldsymbol{y} + \Omega_z \, \boldsymbol{z} \\ V_x \, \boldsymbol{x} + V_y \, \boldsymbol{y} + V_z \, \boldsymbol{z} \end{array} \right\}_{P} = \left\{ \begin{array}{l} \boldsymbol{\varOmega}(S_2/S_1) \\ \boldsymbol{V}(P \in S_2/S_1) \end{array} \right\}_{P}.$$

Les torseurs des actions mécaniques, ou torseurs statiques, définis en un point P s'écrivent quant à eux :

$$\left\{ \begin{array}{l} \mathcal{A}(S_1 \rightarrow S_2) \end{array} \right\} = \left\{ \begin{array}{l} Xx + Yy + Zz \\ Lx + My + Nz \end{array} \right\}_{P} = \left\{ \begin{array}{l} \mathbf{R}(S_1 \rightarrow S_2) \\ \mathbf{M}(P, S_1 \rightarrow S_2) \end{array} \right\}_{P}.$$

avec X, Y et Z les composantes de la force d'interaction (ou la résultante du torseur) et L, M, N les composantes du moment d'interaction (ou le moment du torseur).

La puissance des actions mutuelles de liaison entre un solide S_1 et un solide S_2 en P se définit ainsi comme suit :

$$\mathcal{P}(S_1 \leftrightarrow S_2) = \left\{ \mathcal{R}(S_1 \to S_2) \right\}_{P} \cdot \left\{ \mathcal{V}(S_2/S_1) \right\}_{P}, \tag{3.2}$$

où «·» représente le *comoment* entre les torseurs cinématique et statique. Une étude plus approfondie de la puissance des inter-efforts et des actions mutuelles est proposée dans le chapitre Dynamique (page 224). S'il s'agit d'une liaison parfaite la dissipation de l'énergie est nulle :

$$\mathcal{P}(S_1 \leftrightarrow S_2) = \left\{ \left. \mathcal{A}(S_1 {\rightarrow} S_2) \right. \right\}_P \cdot \left\{ \left. \mathcal{V}(S_2/S_1) \right. \right\}_P = 0, \forall P \in S_1 \cap S_2.$$

En remplaçant les différents torseurs par leur expression ci-dessus définie, cette dernière équation se réécrit sous la forme :

$$\left\{ \begin{array}{l} \mathbf{R}(S_{1} \to S_{2}) \\ \mathbf{M}(P, S_{1} \to S_{2}) \end{array} \right\}_{P} \cdot \left\{ \begin{array}{l} \mathbf{\Omega}(S_{2}/S_{1}) \\ \mathbf{V}(P \in S_{2}/S_{1}) \end{array} \right\}_{P} = \mathbf{R}(S_{1} \to S_{2}) \cdot \mathbf{V}(P \in S_{2}/S_{1}) \\ + \mathbf{M}(P, S_{1} \to S_{2}) \cdot \mathbf{\Omega}(S_{2}/S_{1}) \\ = 0. \tag{3.3}$$

Encadré

L'équation 3.3 montre une dualité entre **cinématique** et **statique**. À partir de cette expression et de la connaissance du torseur statique de la liaison considérée, l'expression du torseur cinématique peut-être déduite. Il en va de même pour l'obtention du torseur statique à partir du torseur cinématique.

____ Fin Encadré __

Exemple : soit un solide S_1 quelconque en liaison parfaite avec un solide S_2 , le torseur d'action de liaison étant défini de la façon suivante :

$$\left\{ \mathcal{A}(S_1 \to S_2) \right\}_{P} = \left\{ \begin{array}{l} Xx + 0y + Zz \\ 0x + My + 0z \end{array} \right\}_{P},$$

il est alors possible d'obtenir le torseur cinématique de cette liaison inconnue à partir de la puissance. En effet, en développant l'expression de la puissance dissipée et en écrivant que celle-ci est nulle :

$$\mathcal{P}(S_1 \leftrightarrow S_2) = \left\{ \mathcal{R}(S_1 \to S_2) \right\}_{P} \cdot \left\{ \mathcal{V}(S_2/S_1) \right\}_{P}$$

$$= \left\{ \begin{array}{c} Xx + 0y + Zz \\ 0x + My + 0z \end{array} \right\}_{P} \cdot \left\{ \begin{array}{c} \Omega_x x + \Omega_y y + \Omega_z z \\ V_x x + V_y y + V_z z \end{array} \right\}_{P} (3.4)$$

$$= 0.$$

L'objectif est de déterminer complètement le torseur cinématique. En annulant le comoment de l'expression 3.4, il vient :

$$\mathcal{P}(S_1 \leftrightarrow S_2) = (X \boldsymbol{x} \cdot V_{\boldsymbol{x}} \boldsymbol{x} + 0 \boldsymbol{y} \cdot V_{\boldsymbol{y}} \boldsymbol{y} + Z \boldsymbol{z} \cdot V_{\boldsymbol{z}} \boldsymbol{z})$$
$$+ (0 \boldsymbol{x} \cdot \Omega_{\boldsymbol{x}} \boldsymbol{x} + M \boldsymbol{y} \cdot \Omega_{\boldsymbol{y}} \boldsymbol{y} + 0 \boldsymbol{z} \cdot \Omega_{\boldsymbol{z}} \boldsymbol{z}) = 0.$$

Puisque la puissance doit être nulle quelles que soient les composantes des torseurs, il est possible de déduire les composantes du torseur cinématique :

$$\begin{cases} X x \cdot V_x x &= 0 & \forall (X, V_x) \Rightarrow V_x = 0 \\ 0 y \cdot V_y y &= 0 & \forall (V_y) \Rightarrow V_y \neq 0 \\ Z z \cdot V_z z &= 0 & \forall (Z, V_z) \Rightarrow V_z = 0 \end{cases}$$

$$\begin{cases} 0 x \cdot \Omega_x x &= 0 & \forall (\Omega_x) \Rightarrow \Omega_x \neq 0 \\ M y \cdot \Omega_y y &= 0 & \forall (M, \Omega_y) \Rightarrow \Omega_y = 0 \\ 0 z \cdot \Omega_z z &= 0 & \forall (\Omega_z) \Rightarrow \Omega_z \neq 0. \end{cases}$$

Le torseur cinématique de la liaison inconnue s'écrit alors :

$$\left\{ \mathcal{V}(S_2/S_1) \right\} = \left\{ \begin{array}{l} \Omega_x x + 0 y + \Omega_z z \\ 0 x + V_y y + 0 z \end{array} \right\}_{P}. \tag{3.5}$$

Les termes nuls et non nuls sont complémentaires dans les deux torseurs. En pratique, si le torseur statique présente une composante de force ou de moment nulle selon un axe, le torseur cinématique aura une composante de rotation ou de vitesse non nulle selon ce même axe :

$$\left\{ \mathcal{A}(S_1 \rightarrow S_2) \right\} = \left\{ \begin{array}{l} Xx + 0y + Zz \\ 0x + My + 0z \end{array} \right\}_{P}$$

$$\left\{ \mathcal{V}(S_2/S_1) \right\} = \left\{ \begin{array}{l} \Omega_x x + 0y + \Omega_z z \\ 0x + V_y y + 0z \end{array} \right\}_{P}.$$

Toutes les liaisons de référence considérées par la suite sont parfaites, la dissipation de l'énergie est donc nulle. Il sera donc toujours possible, à partir d'un torseur statique ou cinématique d'une liaison parfaite, d'obtenir respectivement le torseur cinématique ou statique.

Degré de mobilité d'une liaison

On dit qu'une liaison a un degré de mobilité m si elle autorise m mouvements indépendants.

Encadré
Le degré de mobilité représente le nombre de mouvements indépendants
possibles d'un solide par rapport à un autre. Plus généralement, il désigne
le nombre de paramètres scalaires cinématiques utiles pour paramétrer la
position d'un solide par rapport au repère de référence et que l'on peu
faire varier indépendamment les uns des autres.
Fin Encadré

Les degrés de mobilité seront explicités pour chaqu'une des liaisons décrites dans la suite du paragraphe.

3.2.2 Liaison ponctuelle

Figure 3.3 – Liaison ponctuelle représentée par le contact d'une sphère ou d'un cône sur un plan.

FIGURE 3.4 – Exemple de liaison ponctuelle : une roulette sphérique rigide sur le sol.

Encadré

La liaison ponctuelle entre deux solides S_1 et S_2 est représentée par un point. Elle suppose dans la pratique des solides indéformables du type cône sur un plan (figure 3.3), ou toute surface de forme quelconque en appui sur une autre surface en un point, comme une sphère en appui sur un plan (figure 3.4).

Fin Encadré _____

Le contact est supposé permanent en O, la vitesse ne peut donc pas avoir de composante selon l'axe (O, z).

Mouvements possibles

Dans la configuration de la figure 3.3, c'est-à-dire avec un repère R(O, x, y, z)

où O est le point de contact et z la normale au plan P_1 , le mouvement de S_2 par rapport à S_1 se décompose comme suit :

- rotations autour de (O, x), (O, y), (O, z);
- translations suivant (O, x), (O, y).

Torseur statique

- 1. Composantes de la résultante :
 - S₁ n'oppose pas de réaction à la translation de S₂ suivant (O, x),
 la composante selon x de la résultante du torseur statique est donc nulle;
 - S₁ n'oppose pas de réaction à la translation de S₂ suivant (O, y),
 la composante selon y de la résultante du torseur statique est donc nulle;
 - S_1 s'oppose à la translation de S_2 suivant (O, z), la composante selon z de la résultante du torseur statique n'est donc pas nulle.
- 2. Composantes du moment :
 - S_1 n'oppose pas de réaction à la rotation de S_2 suivant (O, x), la composante selon x du moment du torseur statique est donc nulle;
 - S₁ n'oppose pas de réaction à la rotation de S₂ suivant (O, y), la composante selon y du moment du torseur statique est donc nulle;
 - S₁ n'oppose pas de réaction à la rotation de S₂ suivant (O, z), la composante selon z du moment du torseur statique est donc nulle.

Le torseur statique s'écrit ainsi :

$$\left\{ \mathcal{A}(S_1 \rightarrow S_2) \right\} = \left\{ \begin{array}{l} 0x + 0y + Zz \\ 0x + 0y + 0z \end{array} \right\}_0.$$

Torseur cinématique

Le torseur cinématique de cette liaison s'écrit en fonction des mouvements possibles du solide S_2 par rapport à S_1 :

$$\left\{ \mathcal{V}(S_2/S_1) \right\} = \left\{ \begin{array}{l} \Omega_x x + \Omega_y y + \Omega_z z \\ V_x x + V_y y + 0 z \end{array} \right\}_{O}.$$

Degrés de mobilité

En étudiant le torseur cinématique, il apparaît que cinq mouvements sont possibles. Ils sont indépendants les uns des autres, c'est-à-dire qu'une translation ou une rotation selon un axe peut être effectuée sans influer sur les mouvements des autres axes. Le degré de mobilité m de cette liaison vaut donc cinq.

FIGURE 3.5 – Liaison linéaire rectiligne. Le contact entre les deux solides est une droite.

Figure 3.6 – Exemple de liaison rectiligne : un roulement à rouleaux.

3.2.3 Liaison linéaire rectiligne

La liaison linéaire rectiligne entre S_1 et S_2 est du type cylindre en appui sur un plan. Le contact entre les deux solides est une droite (figure 3.5). Un exemple pratique de cette liaison est le roulement à rouleaux (figure 3.6).

Fin Encadré

Mouvements possibles

Dans la configuration de la figure 3.5, c'est-à-dire avec un repère R(O,x,y,z) où la droite (O,x) est confondue avec la ligne de contact entre S_2 et S_1 et où z est la normale au plan P_1 , le mouvement de S_2 par rapport à S_1 se décompose comme suit :

- rotations autour de (O, x), (O, z);
- translations suivant (O, x), (O, y).

Torseur statique

- 1. Composantes de la résultante :
 - S₁ n'oppose pas de réaction à la translation de S₂ suivant (O, x),
 la composante selon x de la résultante du torseur statique est donc
 nulle :
 - S₁ n'oppose pas de réaction à la translation de S₂ suivant (O, y),
 la composante selon y de la résultante du torseur statique est donc
 nulle;
 - S₁ s'oppose à la translation de S₂ suivant (O, z), la composante selon z de la résultante du torseur statique n'est donc pas nulle.

2. Composantes du moment :

- S_1 n'oppose pas de réaction à la rotation de S_2 suivant (O, x), la composante selon x du moment du torseur statique est donc nulle;
- S₁ s'oppose à la rotation de S₂ suivant (O, y), la composante selon
 y du moment du torseur statique n'est donc pas nulle;
- S₁ n'oppose pas de réaction à la rotation de S₂ suivant (O, z), la composante selon z du moment du torseur statique est donc nulle.

Le torseur statique s'écrit alors :

$$\left\{ \, \mathcal{A}(\mathbf{S}_1 {\to} \mathbf{S}_2) \, \right\} = \left\{ \begin{array}{l} 0\, x + 0\, y + Z\, z \\ 0\, x + M\, y + 0\, z \end{array} \right\}_{\mathrm{O}}.$$

Torseur cinématique

Le torseur cinématique de cette liaison s'écrit en fonction des mouvements possibles du solide S_2 par rapport à S_1 :

$$\left\{ \mathcal{V}(\mathbf{S}_1/\mathbf{S}_2) \right\} = \left\{ \begin{array}{l} \Omega_x \, \mathbf{x} + 0 \, \mathbf{y} + \Omega_z \, \mathbf{z} \\ V_x \, \mathbf{x} + V_y \, \mathbf{y} + 0 \, \mathbf{z} \end{array} \right\}_{\Omega}.$$

Degrés de mobilité

En étudiant le torseur cinématique, il apparaît que quatre mouvements indépendants sont possibles. Le degré de mobilité m de cette liaison vaut donc quatre.

3.2.4 Liaison linéaire annulaire

FIGURE 3.7 – Liaison linéaire annulaire. Le contact entre les deux solides est un cercle.

Figure 3.8 – Exemple de liaison annulaire : un roulement à billes.

Encadré

La liaison linéaire annulaire entre S₁ et S₂ est du type sphère dans un cylindre creux de même diamètre (figure 3.7). La ligne de contact entre les deux solides est un cercle. Un exemple pratique ce cette liaison est le roulement à billes (figure 3.8).

Fin Encadré

Mouvements possibles

Dans la configuration de la figure 3.7, c'est-à-dire avec un repère R (O, x, y, z) au centre de S_2 , le mouvement de S_2 par rapport à S_1 se décompose comme suit :

- rotations autour de (O, x), (O, y), (O, z);
- translation suivant (O, x).

Torseur statique

- 1. Composantes de la résultante :
 - S₁ n'oppose pas de réaction à la translation de S₂ suivant (O, x),
 la composante selon x de la résultante du torseur statique est donc nulle;
 - S₁ s'oppose à la translation de S₂ suivant (O, y), la composante selon y de la résultante du torseur statique n'est donc pas nulle;
 - S₁ s'oppose à la translation de S₂ suivant (O, z), la composante selon z de la résultante du torseur statique n'est donc pas nulle.
- 2. Composantes du moment :
 - S₁ n'oppose pas de réaction à la rotation de S₂ suivant (O, x), la composante selon x du moment du torseur statique est donc nulle;
 - S₁ n'oppose pas de réaction à la rotation de S₂ suivant (O, y), la composante selon y du moment du torseur statique est donc nulle;
 - S₁ n'oppose pas de réaction à la rotation de S₂ suivant (O, z), la composante selon z du moment du torseur statique est donc nulle.

L'expression du torseur statique est donc :

$$\left\{ \mathcal{A}(S_1 \rightarrow S_2) \right\} = \left\{ \begin{array}{l} 0 x + Y y + Z z \\ 0 x + 0 y + 0 z \end{array} \right\}_{O}.$$

Torseur cinématique

Le torseur cinématique de cette liaison s'écrit en fonction des mouvements possibles du solide S_2 par rapport à S_1 :

$$\left\{ \left. \mathcal{V}(S_2/S_1) \right. \right\} = \left\{ \begin{array}{l} \left. \mathcal{Q}_x \, x + \mathcal{Q}_y \, y + \mathcal{Q}_z \, z \\ \left. V_x \, x + 0 \, y + 0 \, z \end{array} \right. \right\}_{O}.$$

Degrés de mobilité

L'étude du torseur cinématique fait apparaître quatre mouvements indépendants. Le degré de mobilité de cette liaison vaut donc quatre.

3.2.5 Liaison rotule

FIGURE 3.9 – Liaison rotule. Le contact entre les deux solides est une sphère.

FIGURE 3.10 – Exemple de liaison rotule : la liaison châssis/roue d'une voiture.

Encadré
La liaison rotule est du type sphère dans une sphère creuse de même dia-
mètre (figure 3.9). La surface de contact entre les deux solides est la surface
de la sphère intérieure. Un exemple de cette liaison est celle entre le châssis
et la roue d'une voiture (figure 3.10).

Fin Encadré

Mouvements possibles

Dans la configuration de la figure 3.9, c'est-à-dire avec un repère R(O, x, y, z) au centre de S_2 , le mouvement de S_2 par rapport à S_1 se décompose suivant les trois rotations autour de (O, x), (O, y), (O, z).

Torseur statique

- 1. Composantes de la résultante :
 - S_1 s'oppose à la translation de S_2 suivant (O, x), la composante selon x de la résultante du torseur statique n'est donc pas nulle;
 - S₁ s'oppose à la translation de S₂ suivant (O, y), la composante selon y de la résultante du torseur statique n'est donc pas nulle;

- S₁ s'oppose à la translation de S₂ suivant (O, z), la composante selon z de la résultante du torseur statique n'est donc pas nulle;
- 2. Composantes du moment :
 - S_1 n'oppose pas de réaction à la rotation de S_2 suivant (O, x), la composante selon x du moment du torseur statique est donc nulle;
 - S₁ n'oppose pas de réaction à la rotation de S₂ suivant (O, y), la composante selon y du moment du torseur statique est donc nulle;
 - S₁ n'oppose pas de réaction à la rotation de S₂ suivant (O, z), la composante selon z du moment du torseur statique est donc nulle.

D'où l'expression du torseur statique :

$$\left\{ \mathcal{A}(S_1 \to S_2) \right\} = \left\{ \begin{array}{c} X x + Y y + Z z \\ 0 x + 0 y + 0 z \end{array} \right\}_0.$$

Torseur cinématique

Le torseur cinématique de cette liaison s'écrit en fonction des mouvements possibles du solide S_2 par rapport à S_1 :

$$\left\{ \mathcal{V}(S_2/S_1) \right\} = \left\{ \begin{array}{c} \Omega_x x + \Omega_y y + \Omega_z z \\ 0 x + 0 y + 0 z \end{array} \right\}_{\Omega}.$$

Degrés de mobilité

Le torseur cinématique fait apparaître trois mouvements indépendants. Le degré de mobilité vaut donc trois.

3.2.6 Liaison appui plan

Encadré
La liaison appui plan est du type plan sur plan (figure 3.11). La surface de
contact entre les deux solides est un plan. Un exemple de cette liaison est
celle entre les plaquettes de frein d'une voiture et le disque lié à la roue
(figure 3.12).
Fin Encadré

Mouvements possibles

Dans la configuration de la figure 3.11, c'est-à-dire avec un repère R(O,x,y,z) au centre de S_2 en contact avec le plan S_1 , le mouvement de S_2 par rapport à S_1 se décompose comme suit :

- rotation autour de (O, z);
- translations suivant (O, x), (O, y).

FIGURE 3.11 – Liaison plan sur plan. Le contact entre les deux solides est un plan.

FIGURE 3.12 – Exemple de liaison plan sur plan : les plaquettes de frein d'une voiture sur le disque lié à la roue.

Torseur statique

- 1. Composantes de la résultante :
 - S₁ n'oppose pas de réaction à la translation de S₂ suivant (O, x),
 la composante selon x de la résultante du torseur statique est donc
 nulle:
 - S₁ n'oppose pas de réaction à la translation de S₂ suivant (O, y),
 la composante selon y de la résultante du torseur statique est donc
 nulle:
 - S_1 s'oppose à la translation de S_2 suivant (O, z), la composante selon z de la résultante du torseur statique n'est donc pas nulle.
- 2. Composantes du moment :
 - S₁ s'oppose à la rotation de S₂ suivant (O, x), la composante selon
 x du moment du torseur statique n'est donc pas nulle;
 - S₁ s'oppose à la rotation de S₂ suivant (O, y), la composante selon y du moment du torseur statique n'est donc pas nulle;
 - S₁ n'oppose pas de réaction à la rotation de S₂ suivant (O, z), la composante selon z du moment du torseur statique est donc nulle;

Le torseur statique s'écrit donc :

$$\left\{ \begin{array}{l} \mathcal{A}(S_1 {\rightarrow} S_2) \end{array} \right\} = \left\{ \begin{array}{l} 0\,x + 0\,y + Z\,z \\ L\,x + M\,y + 0\,z \end{array} \right\}_{O}.$$

Torseur cinématique

Le torseur cinématique de cette liaison s'écrit en fonction des mouvements

possibles du solide S_2 par rapport à S_1 :

$$\left\{ \mathcal{V}(S_2/S_1) \right\} = \left\{ \begin{array}{l} 0x + 0y + \Omega_z z \\ V_x x + V_y y + 0z \end{array} \right\}_{\Omega}.$$

Degrés de mobilité

Trois mouvements indépendants sont identifiables à partir du torseur cinématique. Le degré de mobilité m de cette liaison vaut donc trois.

3.2.7 Liaison pivot glissant

FIGURE 3.13 – Liaison pivot glissant. Le contact entre les deux solides est un cylindre à base circulaire.

FIGURE 3.14 – Exemple de liaison pivot glissant : un amortisseur dont la partie supérieure coulisse dans la partie inférieure.

Encadré

La liaison pivot glissant est du type cylindre à base circulaire dans un cylindre creux à base circulaire de même rayon (figure 3.13). La surface de contact entre les deux solides est donc un cylindre. Un exemple de cette liaison est celle du système coulissant entre la partie supérieure et inférieure d'un amortisseur de voiture (figure 3.14).

_____ Fin Encadré _

Mouvements possibles

Dans la configuration de la figure 3.13, c'est-à-dire avec un repère R(O,x,y,z) au centre de S_2 , le mouvement de S_2 par rapport à S_1 se décompose comme suit :

- rotation autour de (0, x);
- translation suivant (0, x).

Torseur statique

- 1. Composantes de la résultante :
 - S₁ n'oppose pas de réaction à la translation de S₂ suivant (O, x),
 la composante selon x de la résultante du torseur statique est donc nulle;
 - S₁ s'oppose à la translation de S₂ suivant (O, y), la composante selon y de la résultante du torseur statique n'est donc pas nulle;
 - S₁ s'oppose à la translation de S₂ suivant (O, z), la composante selon z de la résultante du torseur statique n'est donc pas nulle.
- 2. Composantes du moment :
 - S₁ n'oppose pas de réaction à la rotation de S₂ suivant (O, x), la composante selon x du moment du torseur statique est donc nulle;
 - S₁ s'oppose à la rotation de S₂ suivant (O, y), la composante selon y du moment du torseur statique n'est donc pas nulle;
 - S₁ s'oppose à la rotation de S₂ suivant (O, z), la composante selon
 z du moment du torseur statique n'est donc pas nulle.

Le torseur statique s'écrit donc :

$$\left\{ \mathcal{A}(S_1 \to S_2) \right\} = \left\{ \begin{array}{c} 0 x + Y y + Z z \\ 0 x + M y + N z \end{array} \right\}_0.$$

Torseur cinématique

Le torseur cinématique de cette liaison s'écrit en fonction des mouvements possibles du solide S_2 par rapport à S_1 :

$$\left\{ \mathcal{V}(S_2/S_1) \right\} = \left\{ \begin{array}{l} \Omega_x x + 0 y + 0 z \\ V_x x + 0 y + 0 z \end{array} \right\}_0.$$

Degrés de mobilité

Le torseur cinématique montre que deux mouvements sont possibles et sont indépendants. Le degré de mobilité de cette liaison vaut donc deux.

3.2.8 Liaison pivot

Encadré
La liaison pivot est du type forme de révolution non cylindrique dans une
forme identique (figure 3.15). La surface de contact entre les deux solides
est la surface de cette forme. Un exemple pratique de cette liaison est une
charnière de porte (figure 3.16).
Fin Encadré

Figure 3.15 – Liaison pivot. Le contact entre les deux solides est un cylindre auquel s'ajoutent les surfaces latérales

Figure 3.16 – Exemple de liaison pivot : une charnière de porte.

Dans le cas de la figure 3.15, le cylindre S_2 est bloqué en translation par les anneaux. Il ne peut qu'effectuer des rotations selon l'axe (O, x).

Mouvements possibles

Dans la configuration de la figure 3.15, c'est-à-dire avec un repère R (O, x, y, z) au centre de S_2 , le mouvement de S_2 par rapport à S_1 se décompose en une rotation autour de (O, x).

Torseur statique

- 1. Composantes de la résultante :
 - S_1 s'oppose à la translation de S_2 suivant (O, x), la composante selon x de la résultante du torseur statique n'est donc pas nulle;
 - S₁ s'oppose à la translation de S₂ suivant (O, y), la composante selon y de la résultante du torseur statique n'est donc pas nulle;
 - S_1 s'oppose à la translation de S_2 suivant (O, z), la composante selon z de la résultante du torseur statique n'est donc pas nulle.

2. Composantes du moment :

- S_1 n'oppose pas de réaction à la rotation de S_2 suivant (O, x), la composante selon x du moment du torseur statique est donc nulle;
- S₁ s'oppose à la rotation de S₂ suivant (O, y), la composante selon
 y du moment du torseur statique n'est donc pas nulle;
- S₁ s'oppose à la rotation de S₂ suivant (O, z), la composante selon
 z du moment du torseur statique n'est donc pas nulle.

D'où l'expression du torseur statique :

$$\left\{ \mathcal{A}(S_1 \to S_2) \right\} = \left\{ \begin{array}{l} Xx + Yy + Zz \\ 0x + My + Nz \end{array} \right\}_{\Omega}.$$

Torseur cinématique

Le torseur cinématique de cette liaison s'écrit en fonction des mouvements possibles du solide S_2 par rapport à S_1 :

$$\left\{ \mathcal{V}(S_2/S_1) \right\} = \left\{ \begin{array}{l} \Omega_x x + 0 y + 0 z \\ 0 x + 0 y + 0 z \end{array} \right\}_0.$$

Degrés de mobilité

Un seul mouvement est possible pour ce type de liaison, c'est une rotation unique. Le degré de mobilité de cette liaison vaut donc un.

_____ Encart _____ De l'utilité d'exprimer les torseurs statiques en un point particulier (le centre

Cas de la liaison pivot parfaite

de la liaison, un point de l'axe ...).

Plaçons nous dans un plan. L'objectif est d'établir le torseur statique de la liaison à partir d'une répartition d'effort quelconque. Pour cela, il faut repartir de la formulation générale de la résultante et du moment du torseur statique. Dans le cas de la liaison pivot parfaite (figure 3.17), toutes les forces élémentaires dF agissant sur le solide S_2 sont radiales et toutes les directions des forces sont concourantes au point O, centre de la liaison. On définit le trièdre direct (M, u, v, w) tel que u est normal à tout point M de la surface de S_2 .

1. Résultante

La résultante du torseur statique s'écrit pour tout point M de la surface de contact :

$$F(S_1 \to S_2) = \int_{\forall M \in S_2} dF(S_1 \to M).$$

Toutes les forces élémentaires agissant sur S_2 ne sont pas forcément identiques en norme. Ainsi, $\|dF_A\| \neq \|dF_B\|$. Bien que les deux forces soient opposées, leur norme est différente. Lors de l'intégration des forces sur la surface de S_2 , le résultat ne sera donc pas nul. La résultante du torseur statique de la liaison pivot possède donc des composantes selon u et v dans notre cas.

Figure 3.17 – Deux solides S_1 et S_2 en liaison pivot parfaite d'axe (O, w).

2. Moment résultant

Nous allons calculer ce moment en O, centre de la liaison pivot, puis en un point décalé du centre, O'.

Moment résultant en O :

Le moment des forces élémentaires agissant de S₁ sur S₂ s'écrit :

$$\textbf{\textit{M}}(O,\,\textbf{\textit{F}}(S_1 \to S_2)) = \int_{\forall M \in S_2} \textbf{\textit{OM}} \, \wedge \mathrm{d}\textbf{\textit{F}}(S_1 \to M).$$

Or le vecteur OM et toutes les forces élémentaires sont dirigées selon u. Le produit vectoriel est donc nul. Le moment du torseur statique de la liaison pivot est nul s'il est calculé au centre de la liaison.

Moment résultant en O' :

Plaçons nous dans le cas particulier de d $F_{\rm A}$ et calculons son moment en O':

$$M(O', dF(S_1 \to A)) = O'A \wedge dF(S_1 \to A)$$

= $(\bullet u + \bullet v) \wedge dF(S_1 \to A) u$
 $\neq 0$

Le moment résultant n'est pas nul s'il est calculé en un point qui n'est pas le centre de la liaison. Pour une même action, une rotation de S_2 autour de (O, w), plusieurs moments peuvent être choisis pour décrire la liaison. Dans un souci de simplicité, il conviendra de choisir une description de liaison en son centre pour éviter la surabondance de paramètres.

Finalement, au centre de la liaison, le torseur statique de la liaison pivot s'exprime :

$$\left\{ \mathcal{A}(S_1 \to S_2) \right\} = \left\{ \begin{array}{c} Uu + Vv \\ 0w \end{array} \right\}_0.$$

Cas particulier de la liaison pivot non parfaite

Si la liaison n'est pas parfaite, c'est-à-dire qu'il existe du frottement entre S_1 et S_2 , les directions des forces exercées par S_2 sur S_1 ne sont plus radiales et concourantes en O (figure 3.18).

Figure 3.18 – Deux solides S_1 et S_2 en liaison pivot d'axe (O, w) avec du frottement.

1. Résultante

Pour calculer la résultante du torseur statique, nous procédons de même que précédemment. Nous pouvons en conclure que la résultante n'est pas nulle.

2. Moment résultant

Il s'agit de calculer le moment résultant des forces élémentaires en O. En reprenant l'expression précédente et dans le cas particulier de $\mathrm{d}F_\mathrm{A}$, il vient :

$$\begin{split} \textbf{\textit{M}}(O,\,\mathrm{d}\textbf{\textit{F}}(S_1\to A)) &= \textbf{\textit{O}}\textbf{\textit{A}}\,\wedge\mathrm{d}\textbf{\textit{F}}(S_1\to A) \\ &= \textbf{\textit{\bullet}}\textbf{\textit{u}}\,\wedge(\,\mathrm{d}F(S_1\to A)\,\textbf{\textit{u}}+\mathrm{d}F(S_1\to A)\,\textbf{\textit{v}}\,) \\ &\neq \textbf{\textit{0}}. \end{split}$$

Le moment résultant n'est pas nul car la force d F_A n'est pas dans la direction d'un rayon de la liaison pivot. Il convient ensuite de généraliser l'expression à toutes les forces élémentaires en calculant l'intégrale sur la surface de S_2 .

Finalement, dans le cas d'une liaison avec frottement, le torseur statique s'écrit :

 $\left\{ \mathcal{A}(S_1 \rightarrow S_2) \right\} = \left\{ \begin{array}{c} Uu + Vv \\ Ww \end{array} \right\}_{O}.$

Fin Encart ___

3.2.9 Liaison glissière

Figure 3.19 – Liaison glissière. Le contact entre les deux solides est un parallélépipède.

FIGURE 3.20 – Exemple de liaison glissière : un téléphone portable dont la partie supérieure coulisse sur la partie inférieure.

Encadré
La liaison glissière est du type cylindre à base non circulaire dans un cy-
lindre présentant un creux de forme identique (figure 3.19). La surface
de contact entre les deux solides est la surface du cylindre intérieur. Un
exemple pratique est l'ouverture d'un téléphone portable par coulissement
de l'écran sur le clavier (figure 3.20).
Fin Encadré

Mouvements possibles

Dans la configuration de la figure 3.19, c'est-à-dire avec un repère R (O, x, y, z) au centre de S_2 , le mouvement de S_2 par rapport à S_1 se décompose selon une translation suivant (O, x).

Torseur statique

- 1. Composantes de la résultante :
 - S_1 ne s'oppose pas à la translation de S_2 suivant (O, x), la composante selon x de la résultante du torseur statique est donc nulle;
 - S₁ s'oppose à la translation de S₂ suivant (O, y), la composante selon y de la résultante du torseur statique n'est donc pas nulle;
 - S₁ s'oppose à la translation de S₂ suivant (O, z), la composante selon z de la résultante du torseur statique n'est donc pas nulle.
- 2. Composantes du moment :
 - S₁ s'oppose à la rotation de S₂ suivant (O, x), la composante selon
 x du moment du torseur statique n'est donc pas nulle;
 - S₁ s'oppose à la rotation de S₂ suivant (O, y), la composante selon
 y du moment du torseur statique n'est donc pas nulle;
 - S₁ s'oppose à la rotation de S₂ suivant (O, z), la composante selon
 z du moment du torseur statique n'est donc pas nulle.

D'où l'expression du torseur statique :

$$\left\{ \mathcal{A}(S_1 \to S_2) \right\} = \left\{ \begin{array}{c} 0 x + Y y + Z z \\ L x + M y + N z \end{array} \right\}_0.$$

Torseur cinématique

Le torseur cinématique de cette liaison s'écrit en fonction des mouvements possibles du solide S_2 par rapport à S_1 :

$$\left\{ \mathcal{V}(S_2/S_1) \right\} = \left\{ \begin{array}{c} 0x + 0y + 0z \\ V_x x + 0y + 0z \end{array} \right\}_0.$$

Degrés de mobilité

Un seul mouvement est possible pour ce type de liaison, c'est une translation unique. Le degré de mobilité de cette liaison vaut donc un.

3.2.10 Liaison hélicoïdale

Encadre
La liaison hélicoïdale est caractérisée par l'existence d'un mouvement com-
biné qui rend possible la rotation uniquement s'il y a une translation simul-
tanée (figure 3.21). La surface de contact entre les deux solides est une
surface hélicoïdale définie par le pas p de l'hélice. Un exemple pratique de
cette liaison est le système de vis d'un serre-joint (figure 3.22).
Fin Encadré

FIGURE 3.22 – Exemple de liaison hélicoïdale : la vis d'un serrejoint.

Mouvements possibles

Dans la configuration de la figure 3.21, c'est-à-dire avec un repère R(O, x, y, z) au centre de S_2 , le mouvement de S_2 par rapport à S_1 se décompose comme suit :

- rotation autour de (0, x);
- translation suivant (O, x).

Torseur statique

- 1. Composantes de la résultante :
 - S₁ s'oppose à la translation de S₂ suivant (O, x) s'il n'y a pas de rotation simultanée, la composante selon x de la résultante du torseur statique n'est donc pas nulle;
 - S₁ s'oppose à la translation de S₂ suivant (O, y), la composante selon y de la résultante du torseur statique n'est donc pas nulle;
 - S₁ s'oppose à la translation de S₂ suivant (O, z), la composante selon z de la résultante du torseur statique n'est donc pas nulle.

2. Composantes du moment :

- S₁ s'oppose à la rotation de S₂ suivant (O, x) s'il n'y a pas de translation simultanée, la composante selon x du moment du torseur statique n'est donc pas nulle;
- S₁ s'oppose à la rotation de S₂ suivant (O, y), la composante selon y du moment du torseur statique n'est donc pas nulle;
- S₁ s'oppose à la rotation de S₂ suivant (O, z), la composante selon

z du moment du torseur statique n'est donc pas nulle.

Le torseur statique s'écrit alors :

$$\left\{ \mathcal{A}(S_1 \to S_2) \right\} = \left\{ \begin{array}{c} Xx + Yy + Zz \\ Lx + My + Nz \end{array} \right\}_0.$$

Torseur cinématique

Le torseur cinématique de cette liaison s'écrit en fonction des mouvements possibles du solide S_2 par rapport à S_1 :

$$\left\{ \mathcal{V}(S_2/S_1) \right\} = \left\{ \begin{array}{l} \Omega_x x + 0 y + 0 z \\ V_x x + 0 y + 0 z \end{array} \right\}_0.$$

Relation entre les composantes des torseurs cinématique et statique

Il est possible d'écrire le torseur cinématique pour tout point P de l'axe (O, x) comme suit :

$$\left\{ \mathcal{V}(S_2/S_1) \right\} = \left\{ \begin{array}{c} \Omega x \\ \Omega p x \end{array} \right\}_{P},$$

où Ω est la vitesse de rotation de S_1 par rapport à S_2 . Le cas étudié fait avancer le solide S_1 selon (O, +x). Dans le cas contraire, la composante du moment du torseur cinématique est négative $(V_x = -\Omega p)$. On parle alors d'hélice à droite pour le cas étudié ici, sinon d'hélice à gauche.

En développant l'expression de la puissance qui est nulle dans les liaisons parfaites, il vient que :

$$p\Omega X + L\Omega = 0.$$

La relation entre les deux composantes non indépendantes s'écrit alors :

$$L = -pX$$
.

Degrés de mobilité

Le torseur cinématique de la liaison hélicoïdale fait apparaître deux mouvements possibles qui sont une translation et une rotation suivant le même axe. Cependant, nous venons de montrer qu'il existe une relation entre la translation et la rotation de S_2 par rapport à S_1 . Les deux mouvements sont donc liés, ils ne sont par conséquent pas indépendants. La connaissance d'un de ces mouvements permet d'obtenir l'autre grâce à la relation cidessus définie. Le degré de mobilité de cette liaison vaut donc un.

3.2.11 Liaison encastrement

Figure 3.23 – Liaison encastrement.

FIGURE 3.24 – Exemple de liaison encastrement : au freinage maximum (sans ABS), les plaquettes bloquent le disque par une liaison équivalente à un encastrement.

_ Encadré _____

La *liaison encastrement* interdit tout mouvement relatif entre les solides suite à l'existence de multiples contacts entre eux (figure 3.23). Une application pratique de cette liaison est le système de freinage par blocage du disque lié à la roue (figure 3.24).

____ Fin Encadré _____

Mouvements possibles

Aucun mouvement n'est possible avec une liaison encastrement.

Torseur statique

- Composantes de la résultante :
 - S₁ s'oppose à la translation de S₂ suivant (O, x), la composante selon
 x de la résultante du torseur statique n'est donc pas nulle.
 - S₁ s'oppose à la translation de S₂ suivant (O, y), la composante selon y de la résultante du torseur statique n'est donc pas nulle.
 - S₁ s'oppose à la translation de S₂ suivant (O, z), la composante selon
 z de la résultante du torseur statique n'est donc pas nulle.
- Composantes du moment :
 - S_1 s'oppose à la rotation de S_2 suivant (O, x), la composante selon x du moment du torseur statique n'est donc pas nulle.
 - S₁ s'oppose à la rotation de S₂ suivant (O, y), la composante selon y du moment du torseur statique n'est donc pas nulle.
 - S_1 s'oppose à la rotation de S_2 suivant (O, z), la composante selon z du moment du torseur statique n'est donc pas nulle.

Le torseur statique s'écrit donc :

$$\left\{ \mathcal{A}(S_1 \to S_2) \right\} = \left\{ \begin{array}{l} Xx + Yy + Zz \\ Lx + My + Nz \end{array} \right\}_0.$$

Torseur cinématique

Le torseur cinématique de cette liaison s'écrit en fonction des mouvements possibles du solide S_2 par rapport à S_1 :

$$\left\{ \mathcal{V}(S_2/S_1) \right\} = \left\{ \begin{array}{l} 0 x + 0 y + 0 z \\ 0 x + 0 y + 0 z \end{array} \right\}_{\Omega}.$$

Degrés de mobilité

Le torseur cinématique ne fait pas apparaître de mouvement possible. Le degré de mobilité de cette liaison est nul : m = 0.

3.3 Schématisation des systèmes mécaniques

Dans le but d'analyser et de comprendre le fonctionnement d'un système mécanique, il est souvent plus facile d'en faire une représentation schématique. Il existe deux formes complémentaires de schématisation : le graphe des actions mécaniques et le schéma cinématique.

3.3.1 Graphe des actions mécaniques

Le graphe des liaisons permet de représenter l'organisation des liaisons entre les solides d'un système mécanique. Bien souvent, on complète ce graphique par l'ajout des forces extérieurs au mécanisme, il porte alors le nom de graphe des actions mécaniques. Ce type de graphique permet d'analyser rapidement le mécanisme aussi bien pour une étude statique que dynamique. En pratique, dans le graphe des liaisons d'un mécanisme, les solides sont schématisés par des cercles et les liaisons par des arcs de courbe joignant ces cercles. Une spécification précise des liaisons et des efforts peut y être ajoutée. Un exemple de graphe des liaisons (ou plutôt graphe des actions mécaniques) est proposé sur la figure 3.25 de la pompe manuelle proposée en exercice (voir figure 4.11).

3.3.2 Schéma cinématique

Le schéma cinématique permet de modéliser les interactions cinématiques entre les solides d'un même mécanisme. Ce type de représentation permet de décomposer de manière détaillée une liaison entre deux solides.

FIGURE 3.25 – Exemple d'un graphe des actions mécaniques de la pompe manuelle proposée en exercice.

Par exemple, une liaison pivot réalisée par deux roulements à billes assurant respectivement une liaison rotule et une liaison linéaire annulaire sera schématisée par ces deux liaisons. Par ces aspects, le schéma cinématique permet, d'une part, d'aider à la conception d'un mécanisme en lui donnant le principe de fonctionnement cinématique et, d'autre part, d'aider à la compréhension du système à analyser.

Liaison	Schématisation plane	Liaison	Schématisation plane
Ponctuelle	+ 4	Linéaire rectiligne	
Linéaire annulaire	4	Rotule	Ø
Plan sur plan	/	Pivot glissant	₹ 6
Hélicoïdale à droite	4	Hélicoïdale à gauche	-2
Glissière		Pivot	
Encastrement			

En pratique, la réalisation d'un schéma cinématique d'un système consiste simplement à lier des schémas élémentaires de liaison entre eux. Ceux-ci représentent chacun une cinématique établie, telle que la liaison pivot, pivot glissant etc. Une description schématique de ces éléments est proposée dans les deux tableaux suivants en deux dimensions ou trois dimensions, permettant de proposer le schéma cinématique de la pompe manuelle sur la figure 3.26.

Figure 3.26 – Schéma cinématique de la pompe manuelle.

106

Points clefs

Torseur statique d'un solide S₁ sur un solide S₂
Il s'agit d'un torseur composé d'une résultante (de composantes X, Y, Z)
et d'un moment (de composantes L, M, N) dans un repère R (x, y, z),
qui représentent la force et le moment produit par la force en un point P,
contact entre les solides :

$$\left\{ \mathcal{A}(S_1 \to S_2) \right\} = \left\{ \begin{array}{c} Xx + Yy + Zz \\ Lx + My + Nz \end{array} \right\}_{P}.$$

 Caractérisation des liaisons (le lecteur peut se référer à la normalisation ISO 3952 (elle évolue) ou à un ouvrage classique [10]. POINTS CLEFS 107

Liaison	Modélisation	Torseur statique	Torseur cinématique
Repère (O, x, y, z)	z o y	$\left\{ \left. \mathcal{A}(S_1 \rightarrow S_2) \right. \right\}_{O}$	$\left\{ \left. \mathcal{V}(S_2/S_1) \right. \right\}_{O}$
Ponctuelle de normale (O, z) $m = 5$	\$	$\left\{\begin{array}{l} 0x + 0y + Zz \\ 0x + 0y + 0z \end{array}\right\}_{O}$	$ \left\{ \begin{array}{l} \Omega_x x + \Omega_y y + \Omega_z z \\ V_x x + V_y y + 0 z \end{array} \right\}_{O} $
Linéaire rectiligne d'axe (O, x) , de normale (O, z) $m = 4$		$\left\{ \begin{array}{l} 0x + 0y + Zz \\ 0x + My + 0z \end{array} \right\}_{O}$	$\left\{ \begin{array}{l} \Omega_x \boldsymbol{x} + 0 \boldsymbol{y} + \Omega_z \boldsymbol{z} \\ V_x \boldsymbol{x} + V_y \boldsymbol{y} + 0 \boldsymbol{z} \end{array} \right\}_{\mathcal{O}}$
Linéaire annulaire d'axe (O, x) $m = 4$	**	$\left\{ \begin{array}{l} 0x + Yy + Zz \\ 0x + 0y + 0z \end{array} \right\}_{\mathcal{O}}$	$\left\{ \begin{array}{l} \Omega_x x + \Omega_y y + \Omega_z z \\ V_x x + 0 y + 0 z \end{array} \right\}_{\mathcal{O}}$
Rotule de centre O m = 3	\(\phi \)	$\left\{ \begin{array}{l} Xx + Yy + Zz \\ 0x + 0y + 0z \end{array} \right\}_{\mathcal{O}}$	$\left\{ \begin{array}{c} \Omega_x x + \Omega_y y + \Omega_z z \\ 0 x + 0 y + 0 z \end{array} \right\}_{\mathcal{O}}$
Appui plan de normale (O, z) $m = 3$		$\left\{ \begin{array}{l} 0x + 0y + Zz \\ Lx + My + 0z \end{array} \right\}_{O}$	$\left\{ \begin{array}{l} 0 x + 0 y + \Omega_z z \\ V_x x + V_y y + 0 z \end{array} \right\}_{\mathcal{O}}$
Pivot glissant d'axe (O, z) $m = 2$		$\left\{ \begin{array}{l} Xx + Yy + 0z \\ Lx + My + 0z \end{array} \right\}_{O}$	$\left\{ \begin{array}{l} 0x + 0y + \Omega_z z \\ 0x + 0y + V_z z \end{array} \right\}_{\mathcal{O}}$

Liaison	Modélisation	Torseur statique	Torseur cinématique
Glissière hélicoïdale d'axe (O, z) m = 1	7	$\begin{cases} Xx + Yy + Zz \\ Lx + My + Nz \end{cases}_{O}$ $N = -pZ$	$\begin{cases} 0x + 0y + \Omega_z z \\ 0x + 0y + V_z z \end{cases}_{O}$ $V_z = p\Omega_z$
Glissière d'axe (O, z) $m = 1$		$\left\{ \begin{array}{l} Xx + Yy + 0z \\ Lx + My + Nz \end{array} \right\}_{O}$	$\left\{\begin{array}{l} 0x + 0y + 0z \\ 0x + 0y + V_z z \end{array}\right\}_{\mathcal{O}}$
Pivot d'axe (O, z) $m = 1$	1	$\left\{ \begin{array}{l} Xx + Yy + Zz \\ Lx + My + 0z \end{array} \right\}_{O}$	$\left\{ \begin{array}{l} 0x + 0y + \Omega_z z \\ 0x + 0y + 0z \end{array} \right\}_{\mathcal{O}}$
Encastrement $m = 0$		$\left\{ \begin{array}{l} Xx + Yy + Zz \\ Lx + My + Nz \end{array} \right\}_{O}$	$\left\{\begin{array}{l} 0x + 0y + 0z \\ 0x + 0y + 0z \end{array}\right\}_{\mathcal{O}}$

Exercices

Exercice 3.1. Coupe-coupe

On étudie ici le système mécanique que constitue une paire de ciseaux. On considère que le système est formé de trois solides indéformables. Les deux ciseaux sont notés S_1 et S_2 et la vis les reliant est notée S_3 . On suppose que le ciseau S_1 est en liaison pivot avec la vis S_3 laquelle est encastrée dans le ciseau S_2 . Le schéma d'une paire de ciseaux n'est pas rappelé ici.

- 1- Donner le schéma cinématique du système.
- **2-** Déterminer le degré de mobilité du système.

Exercice 3.2. Bielle-manivelle

Reprenons ici le système de bielle-manivelle étudié dans le chapitre 1 (figure 2.5).

- 1- Donner le schéma cinématique du système.
- **2-** Déterminer le degré de mobilité du système.

Exercice 3.3. La petite reine

On étudie ici le système constitué par un vélo soumis au poids de son utilisateur. Ce système est décrit sur la figure 4.10.

- **1-** Donner le schéma cinématique du système et tracer le graphe des actions mécaniques du système.
- 2- Déterminer le degré de mobilité du système.

Exercice 3.4. Tournez manège

Nous reprenons le manège de chevaux de bois (voir la figure 2.9).

- 1- Donner le schéma cinématique du système.
- 2- Déterminer le degré de mobilité du système.

Exercice 3.5. Ventilateur

On étudie une machine tournante de type ventilateur, constituée d'un stator fixe (par rapport au repère du laboratoire R_0), d'un rotor et de n pales. Ce système est décrit sur la figure 6.7 dans le chapitre consacré à la dynamique.

- **1-** Donner le schéma cinématique du système et tracer le graphe des actions mécaniques du système.
- **2-** Déterminer le degré de mobilité du système.

SOLUTIONS 111

Solutions

Solution 3.1.

1- Le schéma cinématique est donné sur la figure 3.27.

FIGURE 3.27 – Schéma cinématique d'une paire de ciseaux.

2- Le degré de mobilité est m = 1.

Solution 3.2.

1- Le schéma cinématique est donné sur la figure 3.28.

Figure 3.28 – Schéma cinématique d'un système bielle-manivelle.

2- Le degré de mobilité est m = 1.

Solution 3.3.

1- Le schéma cinématique et le graphe des efforts sont donnés sur la figure 3.29. Nous avons les définitions des liaisons suivantes

FIGURE 3.29 – Schéma cinématique du vélo et graphe des actions mécaniques.

 L_{01} : ponctuelle (I, y_0); L_{41} : pivot (A, z_0); L_{16} : pivot (D, y); L_{56} : pivot (F, z_0); L_{05} : ponctuelle (J, y_0).

2- Le degré de mobilité vaut m = 1.

Solution 3.4.

- 1- Le schéma cinématique est donné sur la figure 3.30.
- **2-** Le degré de mobilité vaut m = 3.

Solution 3.5.

1- Le schéma cinématique et le graphe des efforts sont donnés sur la figure 3.31 Nous avons :

 L_{0r} : ponctuelle de normale z_0 ; L_{r1} : ponctuelle de normale z_0 ; L_{R1} et L_{R2} : il ne s'agit pas réellement d'une liaison puisque les ressorts sont simplement positionnés. Ils ne servent qu'à appliquer des actions (efforts, couple) entre les solides concernés. L_{12} : pivot (A, x_1) ; L_{01} : pivot glissant $(0, z_0)$.

2- Le degré de mobilité vaut m = 3.

SOLUTIONS 113

Figure 3.30 – Schéma cinématique du manège.

 $\label{eq:figure 3.31} \textbf{-} \textbf{Sch\'ema} \ cin\'ematique \ de \ la \ machine tournante \ et \ graphe \ des \ actions \ m\'ecaniques.$

Chapitre 4

Statique des solides

Objectifs

- Principe fondamental de la statique.
- Théorème des actions réciproques.
- Analyser des liaisons (série, parallèle).
- Définir les degrés d'hyperstatisme, de mobilité.

Plan

Le plan sera placé automatiquement... ne rien faire de particulier.

4.1 Principe fondamental de la statique

4.1.1 Équilibre

Encadré
Un solide ou un ensemble de solides est en équilibre par rapport à un repère
R si le vecteur position de chaque point du ou des solides est indépendant
du temps (la vitesse de chaque point est donc nulle).
Fin Encadré

4.1.2 Énoncé du principe

Encadré Il existe un repère galiléen R_g tel que pour tout sous système s de l'ensemble de solides S_i en équilibre par rapport à ce repère, le torseur des actions extérieures appliqué à ce sous système est nul :

$$\left\{ \mathcal{A}(\mathsf{Ext} \to \mathsf{s}) \right\} = \{O\} \quad \forall \mathsf{s} \in \mathsf{S}_i, \tag{4.1}$$

avec {O} le torseur nul.

Fin Encadré _____

La notion de repère galiléen dépend de l'objet d'étude. En effet, un mécanisme étudié sur Terre se fait grâce à un repère local attaché à la Terre, supposé galiléen. Par contre, si l'on souhaite étudier une fusée allant vers la Lune, il faudra considérer, cette fois ci, comme galiléen un autre repère.

Remarque: il faut faire très attention à la formulation de ce principe. En effet, un système de solides soumis à un torseur d'actions extérieures nul n'est pas nécessairement en équilibre par rapport au repère de travail. Prenons le cas simple d'une paire de ciseaux soumise à l'action de deux forces opposées F. Le système n'est pas à l'équilibre, puisque chaque ciseau s'ouvre, malgré le fait que le torseur des actions extérieurs est nul (on néglige l'effet de la pesanteur). Lorsque, par contre, la paire de ciseaux est telle que tous les solides (les deux ciseaux et l'axe) sont en équilibre alors on peut dire que la paire de ciseaux (dans son ensemble) est en équilibre.

4.1.3 Théorème de la résultante et théorème du moment résultant

Du principe fondamental de la statique, on déduit deux théorèmes :

1. Théorème de la résultante.

La résultante générale des actions mécaniques extérieures de tout sous système s de l'ensemble de solides S_i en équilibre par rapport à un repère galiléen est nulle :

Encadré $F(\text{Ext} \to \text{s}) = \mathbf{0} \quad \forall \text{s} \in \text{S}_i.$ Fin Encadré

2. Théorème du moment résultant.

Le moment résultant des actions mécaniques extérieures en tout point d'un sous système s de l'ensemble de solides S_i en équilibre par rapport à un repère galiléen est nul :

Encadré $M(A, F(Ext \rightarrow s)) = 0 \quad \forall s \in S_i \quad \forall A.$ Fin Encadré

4.1.4 Théorème des actions réciproques

Considérons deux parties S_1 et S_2 en interaction d'un même système matériel S en équilibre par rapport à un repère galiléen (voir figure 4.1), le torseur des actions mécaniques exercées par S_1 sur S_2 est opposé au torseur des actions exercées par S_2 sur S_1 :

$$\left\{ \mathcal{A}(S_1 \rightarrow S_2) \right\}_M = -\left\{ \mathcal{A}(S_2 \rightarrow S_1) \right\}_M, \forall M.$$

En effet, si nous appliquons le principe fondamental de la statique à S_1 , nous avons

$$\left\{ \mathcal{A}(\bar{S}_1 \rightarrow S_1) \right\}_{M} = \{O\}, \forall M.$$

Ce qui est extérieur à S_1 (noté \overline{S}_1) est extérieur à S plus S_2 , nous avons donc :

$$\left\{ \left. \mathcal{A}(\overline{S} \rightarrow S_1) \right. \right\}_{M} + \left\{ \left. \mathcal{A}(S_2 \rightarrow S_1) \right. \right\}_{M} = \left. \{O\} \right., \forall M. \tag{4.2}$$

En considérant le système S2, il vient :

$$\left\{ \left. \mathcal{A}(\bar{S} {\rightarrow} S_2) \right. \right\}_{M} + \left\{ \left. \mathcal{A}(S_1 {\rightarrow} S_2) \right. \right\}_{M} = \left. \{O\} \right., \forall M. \tag{4.3} \right.$$

En ajoutant les équations (4.2) et (4.3), on obtient :

$$\begin{split} \left\{ \left. \mathcal{A}(\overline{S} {\to} S_1) \right. \right\}_M + \left\{ \left. \mathcal{A}(S_2 {\to} S_1) \right. \right\}_M \\ + \left. \left. \left\{ \left. \mathcal{A}(\overline{S} {\to} S_2) \right. \right\}_M + \left\{ \left. \mathcal{A}(S_1 {\to} S_2) \right. \right\}_M = \left\{ \textit{O} \right\}, \forall M. \end{split} \right. \end{split}$$

Figure 4.1 – Description du système matériel S constitué de deux parties S_1 et S_2 .

ou encore puisque $S = S_1 \cup S_2$,

$$\left\{\left.\mathcal{A}(\overline{S}{\rightarrow}S)\right.\right\}_{M} + \left\{\left.\mathcal{A}(S_{2}{\rightarrow}S_{1})\right.\right\}_{M} + \left\{\left.\mathcal{A}(S_{1}{\rightarrow}S_{2})\right.\right\}_{M} = \left\{\mathcal{O}\right\}, \forall M.$$

En appliquant le principe fondamental de la statique au système matériel S, il vient immédiatement le théorème des actions réciproques :

$$\left\{ \left. \mathcal{A}(S_1 {\rightarrow} S_2) \right. \right\}_M = - \left\{ \left. \mathcal{A}(S_2 {\rightarrow} S_1) \right. \right\}_M, \forall M. \tag{4.4} \right.$$

____Encart _

Cas du problème plan

Un problème statique est dit plan si le système d'étude possède un plan de symétrie et si les forces qui lui sont appliquées sont situées dans ce plan de symétrie ou si elles sont symétriques par rapport à ce plan. En d'autres termes, le système peut être complètement décrit dans un plan. Cela signifie que la composante des forces perpendiculaire au plan est considérée comme nulle (soit parce qu'elle est effectivement nulle, soit parce qu'elle possède un symétrique par rapport au plan et que la composante de la force résultante perpendiculaire au plan sera nulle). De même pour les moments, les composantes selon les axes contenus dans le plan de symétrie seront nulles (soit parce qu'elles sont effectivement nulles, soit parce qu'elles possèdent un symétrique par rapport au plan et que les composante du moment résultant contenues dans le plan seront nulles).

Statique graphique

La statique graphique est une méthode de résolution rapide et sans calcul applicable aux problèmes plans.

- 1. Un solide est en équilibre sous l'action de **deux** forces extérieures si ces deux forces ont même support, même intensité et sont de sens opposé. Si les deux forces vérifient $F_1 = F_2$, alors que les deux forces n'ont pas même support, le solide subit un moment et n'est pas en équilibre, comme décrit dans la figure 4.2. En d'autres termes, un solide soumis à deux forces est en équilibre si
 - les deux forces sont opposées (équation vectorielle des forces);
 - les deux forces ont même droite d'action (équation du moment).

Figure 4.2 – Problème plan : Solide soumis à deux forces.

2. Un solide est en équilibre sous l'action de **trois** forces extérieures si ces trois forces sont coplanaires, concourantes ou parallèles et que leur somme géométrique est nulle. Cette dernière implication peut permettre de résoudre graphiquement les problèmes.

Exemple : prenons l'exemple d'un solide isolé soumis à trois forces : F_A , F_B et F_C appliquées respectivement aux points A, B et C, dont nous ne connaissons que F_A (direction et intensité) et la direction de F_B . Nous proposons ci-dessous les étapes de résolution d'un tel problème :

1-Une représentation graphique du problème peut être effectuée. Il faut à ce stade faire le bilan des données sur le solide isolé. Nous ne pouvons résoudre un problème graphiquement que si nous avons au plus trois inconnues (ici c'est le cas, nos inconnues sont une direction et deux intensités).

2-Grâce aux deux directions connues, on détermine le point de concours I des trois forces. On en déduit donc la direction de la force inconnue $F_{\rm C}$ (représentée par la ligne (IC)).

3-Puisque nous savons que la somme géométrique des trois forces est nulle, nous pouvons représenter un triangle regroupant les trois forces, souvent nommé triangle des forces. Pour cela on trace la force connue F_A à une échelle choisie. Ensuite, à l'extrémité de cette force, on vient représenter les directions de F_B et F_C par des lignes parallèles à (IB) et (IC) respectivement. Enfin, on trace les vecteurs F_B et F_C en faisant attention à ce que l'extrémité de chaque force rencontre l'origine de la suivante.

4-La dernière étape consiste à mesurer les intensités des forces jusque là inconnues (F_B et F_C) à l'échelle choisie précédemment. On reporte les résultats obtenus sur le solide isolé.

Réduction du domaine d'étude

Grâce au principe fondamental de la statique, nous pouvons obtenir aisément six équations scalaires dans l'espace. Lorsque le problème est plan, seulement trois équations algébriques peuvent être obtenues permettant de le résoudre (deux suivant la force résultante et une suivant le moment résultant).

Les forces étant décrites dans le plan et tous les points matériels appartenant à ce même plan, les moments induits seront perpendiculaires au plan. De plus tout moment d'axe contenu dans le plan possède un symétrique par rapport au plan, le moment résultant est donc nul selon les axes contenus dans le plan. En résumé, les seules composantes non nulles des vecteurs forces sont contenues dans le plan et la seule composante non nulle du vecteur moment est selon la normale au plan.

Par exemple, si l'on considère un système parfaitement défini dans le plan

(x, y), les torseurs statiques s'écriront sous la forme :

$$\left\{ \, \mathcal{A}(S_1 {\to} S_2) \, \right\} = \left\{ \begin{array}{c} X \, x + Y \, y \\ N \, z \end{array} \right\}_O.$$

Nous verrons en exercice l'application pratique de cette remarque.

_____ Fin Encart _

4.2 Analyse des mécanismes

Nous allons nous intéresser à des systèmes de solides en liaison les uns avec les autres par des liaisons sans frottement (liaisons parfaites), les solides sont indéformables et nous négligerons assez souvent les actions de la pesanteur devant les autres actions mécaniques. Le principe fondamental de la statique (PFS) s'applique donc à chaque solide du mécanisme étudié. L'objectif est à la fois d'étudier la cinématique d'un mécanisme (relation entrée sortie) et les actions mécaniques entre les solides du système étudié. Chaque solide étant en contact avec un ou plusieurs autres, chaque liaison entre deux solides sera décrite par une des liaisons élémentaires présentées dans le tableau page 108. On pourra donc tracer le graphe des liaisons.

4.2.1 Liaison équivalente (Liaison en parallèle et liaison en série)

Définition

Supposons qu'il existe entre deux pièces S_1 et S_2 plusieurs liaisons réalisées avec ou sans pièces intermédiaires.

Encadré

La liaison équivalente à l'ensemble des liaisons situées entre les pièces S_1 et S_2 est la liaison théorique de référence L_{12} qui a le même comportement que cette association de liaisons, c'est-à-dire qui transmet la même action mécanique et qui autorise le même mouvement.

Fin Encadré

Une illustration en terme de graphe des liaisons est donnée sur la figure 4.3, où les liaisons L_1, L_2, L_3 et L_4 ainsi que le système matériel S_3 sont équivalents cinématiquement et mécaniquement à la liaison L_{12} . Les liaisons qui peuvent exister entre les solides reliés sont soit en parallèle, soit en série. Voyons maintenant ce que cela implique comme condition sur les torseurs cinématiques et des actions mécaniques.

Figure 4.3 – Exemple de liaison équivalente L_{12} .

Liaison en parallèle

Encadré
On dit que n liaisons $L_1, L_2, ..., L_i, ..., L_n$ sont disposées en parallèle entre deux solides S_1 et S_2 si chaque liaison relie directement ces deux solides.

Fin Encadré

Figure 4.4 - n liaisons en parallèle.

Une illustration en terme de graphe des liaisons est donnée sur la figure 4.4. Les composantes d'actions mécaniques transmissibles entre S_1 et S_2 sont l'ensemble des actions transmissibles par les liaisons L_i . En effet, par l'application du principe fondamental de la statique au solide S_2 par exemple, il vient immédiatement la relation suivante pour tout point M:

$$\left\{ \left. \mathcal{A}(S_1 {\rightarrow} S_2) \right. \right\}_M = \sum_{i=1}^n \left\{ \left. \mathcal{A}(S_1 {\rightarrow} S_2) \right. \right\}_M^{(i)},$$

où i représente la liaison L_i . Par conséquent, pour qu'une composante du torseur statique de la liaison équivalente ne soit pas nulle, il suffit qu'une

123

seule composante correspondante d'une liaison L_i ne soit pas nulle. Pour obtenir le torseur cinématique de la liaison équivalente, il suffit d'écrire que le torseur cinématique de la liaison équivalente doit être compatible avec tous les torseurs cinématiques des liaisons L_i pour $i \in [1; n]$, c'est-à-dire :

$$\left\{ \left. \mathcal{V}(S_1/S_2) \right. \right\} = \left\{ \left. \mathcal{V}(S_1/S_2) \right. \right\}_1 = \dots = \left\{ \left. \left. \mathcal{V}(S_1/S_2) \right. \right\}_i = \dots = \left\{ \left. \left. \mathcal{V}(S_1/S_2) \right. \right\}_n \right.$$

Liaison en série

Les n liaisons $L_1, L_2, ..., L_i, ..., L_n$ sont disposées en série entre deux solides S_1 et S_n si elles sont disposées à la suite les unes des autres par l'intermédiaire de (n-1) solides (voir figure 4.5).

Fin Encadré

On dit également que les (n+1) solides assemblés par les n liaisons en série constituent une chaîne continue ouverte.

FIGURE 4.5 - n liaisons en série.

Les composantes d'actions mécaniques transmissibles entre S_1 et S_n sont donc celles qui sont transmissibles simultanément par les liaisons L_i . En effet, si l'on applique le principe fondamental de la statique au système constitué du solide $\{S_1\}$, puis à celui constitué de $\{S_1, S_2\}$, puis à $\{S_1, S_2, S_3\}$, et ainsi de suite, puis en appliquant le principe fondamental de la statique à S_1 ayant une liaison équivalente avec S_n , il vient immédiatement :

$$\begin{array}{lll} \left\{ \begin{array}{lll} \mathcal{A}(S_1 {\rightarrow} S_2) \end{array} \right\}_M & = & \left\{ \begin{array}{lll} \mathcal{A}(S_2 {\rightarrow} S_3) \end{array} \right\}_M \\ & \vdots \\ & = & \left\{ \left. \mathcal{A}(S_{i-1} {\rightarrow} S_i) \right. \right\}_M, \forall M \\ & \vdots \\ & = & \left\{ \left. \mathcal{A}(S_{n-1} {\rightarrow} S_n) \right. \right\}_M. \end{array}$$

Par conséquent, si une composante d'un torseur statique d'une liaison (L_i) est nulle, la composante correspondante du torseur statique de la liaison

équivalente est nulle. Le torseur cinématique de la liaison équivalente peut être, quant à lui, obtenu en écrivant la relation de composition des torseurs cinématiques entre les différents solides en présence :

$$\left\{ \begin{array}{ll} \mathcal{V}(S_n/S_1) \, \right\}_M & = & \left\{ \left. \mathcal{V}(S_n/S_{n-1}) \, \right\}_M + \dots + \left\{ \left. \mathcal{V}(S_2/S_1) \, \right\}_M \right. \\ & = & \sum_{i=2}^n \left\{ \left. \mathcal{V}(S_i/S_{i-1}) \, \right\}_M, \forall M. \end{array}$$

4.2.2 Hyperstatisme et mobilité

Degré d'hyperstatisme

On définit alors le degré d'hyperstatisme h d'un mécanisme comme la surabondance des liaisons constituant ce mécanisme. Ainsi, h est égal au nombre total $N_{\rm s}$ d'inconnues statiques introduit par les liaisons moins le nombre $r_{\rm s}$ de relations indépendantes entre ces inconnues :

$$h = N_s - r_s$$
.

Dans le cas d'un nombre d'inconnues statiques égal au nombre d'équations indépendantes (h = 0), le système est **isostatique**. Par exemple, un tabouret constitué de trois pieds non alignés est isostatique alors qu'une chaise ayant quatre pieds est hyperstatique.

Degré de mobilité

Le degré de mobilité m d'un mécanisme ou d'une liaison caractérise le nombre de mouvements indépendants possibles. Ce degré correspond donc au nombre de paramètres indépendants du torseur cinématique. Lorsque m est nul le mécanisme est immobile, lorsque m est supérieur à zéro le mécanisme est mobile de mobilité m.

On peut définir aussi la **mobilité utile** $m_{\rm u}$ comme la ou les mobilités souhaitées du mécanisme ou toute mobilité qui entraîne la mouvement de plusieurs pièces. Pour caractériser la mobilité d'une pièce indépendamment des autres on définit la **mobilité interne** $m_{\rm i}$ (par exemple, une bielle tournant sur elle-même entre deux rotules).

125

4.2.3 Étude des chaînes de solides parfaits (chaîne fermée, chaine ouverte)

Suivant la manière dont sont agencés les solides à l'intérieur d'un mécanisme, on parle de chaîne ouverte, chaîne fermée ou complexe :

FIGURE 4.6 – Différentes chaînes de solides.

Chaîne ouverte

Dans le cas d'une chaîne dite ouverte on a n + 1 solides en liaison les uns par rapport aux autres, chaque solide S_i étant en contact avec les solides i - 1 et i + 1. Il y a donc n liaisons entre les solides.

1. Analyse cinématique

Par composition des mouvements, il vient immédiatement :

$$\left\{ \ \mathcal{V}(S_n/S_0) \ \right\} = \sum_{i=1}^n \left\{ \ \mathcal{V}(S_i/S_{i-1}) \ \right\} \forall M.$$

Nous aurons donc six équations scalaires pour un nombre N_c d'inconnues cinématiques indépendantes (la somme des inconnues de chaque torseur cinématique). Le degré de mobilité est donc égal à N_c . Il est à noter que si, pour une position donnée du solide S_n , des mouvements internes sont possibles, il y a alors un ou plusieurs degrés de mobilité interne qu'il convient généralement de minimiser ou d'éliminer (usure, vibrations).

2. Analyse statique

Par application successive du principe fondamental de la statique à l'ensemble des solides (de S_1 à S_n), il vient :

$$\left\{ \left. \mathcal{A}(\mathbf{S}_{i} {\rightarrow} \mathbf{S}_{i-1}) \right. \right\}_{\mathbf{M}} = \left\{ \left. \mathcal{A}(\mathbf{E}\mathbf{x}\mathbf{t} {\rightarrow} \mathbf{S}_{n}) \right. \right\}_{\mathbf{M}} \quad \forall \mathbf{M} \, \mathrm{et} \, \forall i \in [2; \, n],$$

où $\left\{ \mathcal{A}(\operatorname{Ext} \to \operatorname{S}_n) \right\}_{\operatorname{M}}$ représente le torseur - au point M - des actions mécaniques extérieures appliquées au solide S_n . Ce système d'équations fournit 6n équations. La position d'équilibre peut toujours être trouvée et les inconnues de chaque torseur de liaison également. Le système est donc toujours **isostatique**.

Chaîne fermée

Il s'agit d'un cas très courant de mécanisme dont les solides sont reliés les uns aux autres par l'intermédiaire d'une seule liaison, excepté pour le bâti qui est en liaison avec le solide S_1 et le solide S_n .

1. Analyse cinématique

Par composition des mouvements, on peut écrire une relation entre les torseurs cinématiques :

$$\left\{ \left. \mathcal{V}(S_0/S_1) \right. \right\}_M + \left\{ \left. \mathcal{V}(S_1/S_2) \right. \right\}_M + \dots + \left\{ \left. \left. \mathcal{V}(S_n/S_0) \right. \right\}_M = \left\{ \textit{O} \right\} \quad \forall M. \tag{4.5} \right.$$

Cette relation nous donne un système à six équations au plus indépendantes pour $N_{\rm c}$ inconnues cinématiques caractérisant les n+1 liaisons entre les solides. Le degré de mobilité m de la chaîne fermée s'exprime donc de la manière suivante :

$$m = N_{\rm c} - r_{\rm c}$$

avec r_c le nombre de relations indépendantes entre les inconnues cinématiques (correspondant au rang du système linéaire obtenu par l'équation 4.5). La quantité r_c est inférieure à N_c car il existe au moins un mouvement possible pour le système. Il est à noter que l'on peut avoir une mobilité interne supplémentaire telle que $m=m_{\rm u}+m_{\rm i}$.

2. Analyse statique

Par application successive du principe fondamental de la statique sur chacun des solides S_i de la chaîne fermée, il vient pour tout point M:

$$\left\{ \mathcal{A}(S_0 \to S_1) \right\}_{M} + \left\{ \mathcal{A}(S_2 \to S_1) \right\}_{M} = \{O\}$$

$$\vdots$$

$$\left\{ \mathcal{A}(S_{i-1} \to S_i) \right\}_{M} + \left\{ \mathcal{A}(S_{i+1} \to S_i) \right\}_{M} = \{O\}$$

$$\vdots$$

$$\left\{ \mathcal{A}(Ext \to S_n) \right\}_{M} + \left\{ \mathcal{A}(S_{n-1} \to S_n) \right\}_{M} + \left\{ \mathcal{A}(S_0 \to S_n) \right\}_{M} = \{O\},$$

$$(4.6)$$

où $\left\{ \mathcal{A}(\text{Ext} \rightarrow S_n) \right\}_M$ représente le torseur des actions mécaniques extérieures appliqué au solide S_n au point M. Ce système d'équations

fournit 6n équations pour N_s inconnues statiques (correspondant à la somme des inconnues associées à chaque torseur de liaison). Le degré d'hyperstatisme s'obtient donc par

$$h = N_{\rm s} - r_{\rm s},\tag{4.7}$$

avec $r_{\rm s}$ le nombre de relations indépendantes entre les inconnues statiques (correspondant au rang du système linéaire obtenu par les équations 4.6). Les $6n-r_{\rm s}$ équations dites non principales du système d'équations correspondent en fait au nombre de relations cinématiques imposées. C'est donc la mobilité cinématique que l'on retrouve :

$$m = 6n - r_{\rm s}.\tag{4.8}$$

Comme il est souvent fastidieux d'écrire toutes les équations de la statique, on peut analyser l'hyperstaticité du système par une simple approche cinématique. Comme le nombre total d'inconnues statiques et cinématiques est

$$N_{\rm c} + N_{\rm s} = 6(n+1),$$

puisqu'il y a n + 1 liaisons entre les n solides et le bâti, il vient grâce aux relations 4.7 et 4.8:

$$h = 6 + m - N_{c}. (4.9)$$

Remarque : dans le cas d'un problème plan, nous avons 3n équations provenant du système (4.6), ainsi que 3(n+1) inconnues statiques et cinématiques. La relation (4.9) devient donc $h = 3 + m - N_c$.

Exemple

Nous proposons dans cet exemple de reprendre le système bielle-manivelle étudié dans le chapitre cinématique du solide (figure 2.5). Nous supposons que ce système est soumis à un couple (C = Cz) en C et à un effort (F = Fx) en B. Le graphe des actions mécaniques de ce système est représenté sur la figure 4.7. Nous sommes donc en présence d'une chaîne fermée dont on peut déterminer simplement le degré d'hyperstatisme. En effet, nous avons quatre inconnues cinématiques ($\Omega(S_0/S_1)$, $\Omega(S_1/S_2)$, $\Omega(S_2/S_3)$, $V(B \in S_3/S_0)$) et trois relations indépendantes entre ces inconnues cinématiques, il vient donc que, comme le problème est plan, le système est isostatique (h = 3 + 1 - 4 = 0).

On peut vérifier le résultat en effectuant une analyse statique du système. Pour cela, nous appliquons le PFS aux trois solides constituant le système : S_1 , S_2 et S_3 , à l'équilibre. Nous avons donc :

FIGURE 4.7 – Graphe des actions mécaniques (liaisons+efforts) de la bielle manivelle décrite au chapitre 1 (figure 2.5).

- équilibre de S₁

$$\left\{ \begin{array}{lll} \mathcal{A}(C \! \to \! S_1) \right\}_{\mathcal{C}} & + & \left\{ \begin{array}{lll} \mathcal{A}(S_0 \! \to \! S_1) \right\}_{\mathcal{C}} & + & \left\{ \begin{array}{lll} \mathcal{A}(S_2 \! \to \! S_1) \right\}_{\mathcal{C}} & = & \{O\} \\ \left\{ \begin{array}{lll} \boldsymbol{0} \\ \boldsymbol{C} \, \boldsymbol{z} \end{array} \right\}_{\mathcal{C}} & + & \left\{ \begin{array}{lll} \mathcal{A}(S_1 \! \to \! S_1) \right\}_{\mathcal{C}} & + & \left\{ \begin{array}{lll} \mathcal{A}(S_2 \! \to \! S_1) \right\}_{\mathcal{C}} & = & \{O\} \\ \left\{ \begin{array}{lll} \mathcal{A}(S_1 \! \to \! S_1) & \boldsymbol{0} & \boldsymbol{0} \end{array} \right\}_{\mathcal{C}} & + & \left\{ \begin{array}{lll} \mathcal{A}(S_2 \! \to \! S_1) & \boldsymbol{0} \\ \mathcal{A}(S_1 \! \to \! S_1) & \boldsymbol{0} \end{array} \right\}_{\mathcal{C}} & = & \{O\} \end{array} \right\}$$

équilibre de S₂

$$\begin{cases}
\mathcal{A}(S_1 \to S_2) \Big\}_{A} + \Big\{ \mathcal{A}(S_3 \to S_2) \Big\}_{A} = \{O\} \\
\Big\{ X_{12} x + Y_{12} y \Big\}_{A} + \Big\{ X_{32} x + Y_{32} y \\
L(\cos \beta Y_{32} + \sin \beta X_{32}) z \Big\}_{A} = \{O\};$$

- équilibre de S₃

$$\left\{ \begin{array}{llll} \mathcal{A}(F \! \to \! S_3) \, \right\}_{\rm B} & + & \left\{ \begin{array}{llll} \mathcal{A}(S_0 \! \to \! S_3) \, \right\}_{\rm B} & + & \left\{ \begin{array}{llll} \mathcal{A}(S_2 \! \to \! S_3) \, \right\}_{\rm B} & = & \{O\} \\ \left\{ \begin{array}{llll} F \, x \\ \textbf{0} \end{array} \right\}_{\rm B} & + & \left\{ \begin{array}{llll} \mathcal{A}(S_1 \! \to \! S_3) \, \right\}_{\rm B} & = & \{O\} \\ N_{03} \, z \end{array} \right\}_{\rm B} & + & \left\{ \begin{array}{llll} \mathcal{A}(S_2 \! \to \! S_3) \, \right\}_{\rm B} & = & \{O\} \, . \end{array}$$

Nous obtenons donc neuf équations pour huit inconnues statiques $(X_{01}, Y_{01}, X_{21}, Y_{21}, X_{32}, Y_{32}, Y_{03})$, une équation est donc une combinaison linéaire des autres. Le rang r_s du système est donc de huit. On en déduit donc que le système est isostatique h = 8 - 8, retrouvant ainsi le résultat précédemment établi.

Points clefs

- Principe fondamental de la statique

Il existe un repère galiléen R_g tel que pour tout sous-système matériel s de l'ensemble de solides S_i en équilibre par rapport à ce repère, le torseur des actions extérieures appliqué à ce sous-système est nul :

$$\left\{ \mathcal{A}(\operatorname{Ext} \to s) \right\}_{M} = \{O\} \quad \forall s \in S_i \quad \text{et} \quad \forall M,$$

avec {O} le torseur nul.

- Théorème des actions réciproques

Considérons deux solides S_1 et S_2 en interaction à l'équilibre par rapport à un repère galiléen. Le torseur des actions exercées par S_1 sur S_2 est égal et opposé au torseur des actions de S_2 sur S_1 :

$$\left\{ \left. \mathcal{A}(S_1 {\to} S_2) \right. \right\}_M = - \left\{ \left. \mathcal{A}(S_2 {\to} S_1) \right. \right\}_M \quad \forall M.$$

Liaison en parallèle

Le torseur des actions mécaniques transmissibles de la liaison équivalente entre deux solides S₁ et S₂ est tel que :

$$\left\{ \left. \mathcal{A}(S_1 {\rightarrow} S_2) \right. \right\}_M = \sum_i = 1^n \left\{ \left. \mathcal{A}(S_1 {\rightarrow} S_2) \right. \right\}_M^{(i)},$$

avec i, la i^e liaison en parallèle, et n le nombre total de liaisons.

- Liaison en série

Le torseur cinématique de la liaison équivalente est tel que :

$$\left\{ \, \mathcal{V}(\mathbf{S}_i/\mathbf{S}_1) \, \right\} = \sum_i = 2^n \left\{ \, \mathcal{V}(\mathbf{S}_i/\mathbf{S}_{i-1}) \, \right\},$$

où n est le nombre total de liaisons en série.

- Degré d'hyperstatisme d'un mécanisme

$$h = N_{\rm s} - r_{\rm s}$$
.

h : degré d'hyperstatisme.

 $N_{\rm s}$: nombre d'inconnues de liaison indépendantes introduit par les liaisons du mécanisme.

 $r_{\rm s}$: nombre de relations indépendantes entre les inconnues.

- Degré de mobilité d'un mécanisme

$$m = N_{\rm c} - r_{\rm c}$$
.

m : degré de mobilité.

 $N_{\rm c}$: nombre d'inconnues cinématiques indépendantes introduit par l'ensemble des liaisons du mécanisme.

 $r_{\rm c}$: nombre de relations indépendantes entre les inconnues cinématiques.

Exercices

section*

Exercice 4.1. Clé à pipe

Pour serrer un écrou, on utilise parfois une clé à pipe (solide S_1) auquel on exerce à son extrémité B une force F = Fx. Données : AB = Ly et AO = -hz.

- **1-** Exprimer le torseur de l'action mécanique F en O.
- **2-** Que représente la composante selon z du moment $M(O, F \rightarrow S_1)$?
- **3-** Que représente la composante selon *y* ? Comment la réduire ?

Figure 4.8 – Clé à pipe.

Exercice 4.2. Diable

Le diable est un système qui permet le transport de charges (P = -Mgy) importantes et ceci à moindre effort F de la part du manutentionnaire. Un diable constitué d'un support de charge et d'une roue de rayon r est schématisé en vue de côté sur la figure 4.9. Deux repères lui sont associés. Un premier repère R (x, y, z) est lié à la base. Un second, R_1 (x_1, y_1, z) lié au diable, repère son orientation par rapport à R tel que $\alpha = (x, y_1)$. On note $AB = ay_1$ et $BC = by_1$. Dans la suite du problème, le poids du diable est négligé devant celui de la charge transportée.

FIGURE 4.9 – Paramétrisation du diable.

- **1-** Dans un repère que vous choisirez, calculez le torseur résultant des efforts extérieurs appliqués au diable.
- **2-** Pourquoi met-on en pratique le pied pour bloquer les roues ?
- **3-** Calculez l'effort ${\it F}$ et la réaction au sol en fonction des données géométriques.

Exercice 4.3. Cadre de VTT.

La qualité d'un vélo tout terrain est liée à la rigidité de son cadre. Afin d'alléger la structure, le constructeur réduit au minimum la triangulation classique. Elle comprend ici trois barres ABCD, BE et CE, notées respectivement S_1 , S_2 et S_3 . L'ensemble de ces trois barres forme un solide rigide. On se propose d'étudier l'état de sollicitation de la barre principale S_1 . On suppose que l'action mécanique exercée par l'utilisateur sur le cadre se réduit à un glisseur (torseur statique de moment nul) de résultante verticale P = 500 N. On considère deux contacts ponctuels parfaits en I et J entre les roues S_4 , S_5 et le sol S_0 , deux liaisons pivots parfaites d'axe (A, z_0) (entre la roue S_4 et la barre S_1) et (F, z_0) (entre la roue S_5 et la barre-guidon S_6) et une liaison pivot parfaite d'axe (D, y) (entre la barre S_1 et la barre-guidon S_6).

- **1-** Étudier le torseur de chacune des cinq liaisons.
- **2-** Appliquer le principe fondamental de la statique au VTT pour déterminer les réactions en I et J.
- **3-** Déterminer les efforts des liaisons pivots en A et F.

FIGURE 4.10 – Schéma du VTT.

4- Appliquer le principe fondamental de la statique au solide S_6 pour déterminer le torseur d'actions de S_6 sur S_1 en D (torseur de la liaison pivot en D) exprimé dans le repère (x, y, z_0) .

Exercice 4.4. Pompe manuelle

On se propose d'étudier dans cet exercice une pompe manuelle composée de trois pièces S_1 , S_2 et S_3 reliées à un bâti S_0 . Le schéma cinématique de cette pompe est proposé figure 4.11. La pièce S_1 du dispositif est une tige de longueur R fixée qui s'articule au bâti S_0 grâce à une liaison pivot d'axe (O, z). Sur cette pièce coulisse la pièce S_3 suivant une liaison glissière d'axe (D, u). La pièce S_3 est articulée en D par une liaison rotule à une pièce S_2 liée au bâti par une liaison glissière d'axe (B, y). Une force P = Py est appliquée à l'extrémité E de la pièce E0. L'objet du problème est de déterminer la charge E1 en E2 appliquée en E3 pour une valeur fixée de l'angle E3 E4 E5 E6 est fixée et E7 E8 E9 est fixée et E9 est fixé

- **1-** Après avoir isolé la pièce S_3 , faire l'inventaire des actions extérieures qui lui sont exercées. En appliquant le principe fondamental de la statique à cette pièce, déterminez les composantes suivant y de la résultante (Y_{13}) et suivant z du moment de S_1 sur S_3 (N_{13}).
- **2-** En appliquant la même méthode à la pièce S_2 , montrez que $Y_{13} = -\frac{P}{\cos\phi}v$
- **3-** En appliquant la même méthode à la pièce S_3 , montrer que $Q = -\frac{\ell Y_{13}}{R\cos\phi} v$
- **4-** En déduire la valeur de Q en fonction de P, R, ℓ et ϕ

FIGURE 4.11 – Pompe manuelle.

Exercice 4.5. Gouvernail d'un voilier

Lors d'une navigation en ligne droite, le maintien de la trajectoire suppose, de la part du barreur, un effort constant sur le bras de manipulation du gouvernail. On désire connaître la valeur de cet effort dans une configuration simple : un gouvernail, constitué du safran et du bras de manipulation est relié au bateau par une liaison pivot d'axe (G, z). On supposera que le bateau se déplace en translation rectiligne à vitesse constante, on pourra ainsi appliquer le principe fondamental de la statique. On supposera de plus que le poids du gouvernail est faible vis-à-vis des efforts qui lui sont appliqués. L'action de l'eau sur le safran est modélisée par une force ponctuelle $F_{\rm eau}$, appliqué en son milieu $E: F_{\rm eau} = -F_{\rm ex}x - F_{\rm ey}y$ avec $F_{\rm ex}$ et $F_{\rm ey}$ valeurs positives. L'action du barreur en $F_{\rm ex}$ et $F_{\rm ex}$ et $F_{\rm ex}$ on donne : $F_{\rm ex}$ et $F_{\rm ex}$ et

- 1- Que vaut l'action du barreur en fonction de celle de l'eau?
- **2-** Déterminer les efforts dans la liaison pivot en fonction de l'action de l'eau.
- **3-** Application numérique pour : D=3d=0,6 m, $\ell=3L=1,05$ m, $F_{\rm ex}=40$ N et $F_{\rm ey}=10$ N.

Exercice 4.6. Systèmes de freinage pour Vélo Tout Terrain (VTT)

On se propose d'étudier et de comparer les performances de deux systèmes de freinage pour VTT.

Figure 4.12 – Détail du gouvernail et les notations adoptées.

1- Couple de freinage

Chacun des deux patins de frein exerce sur la jante de la roue un effort normal noté F_n . On suppose que le mécanisme est symétrique : $F_{n_1} = -F_{n_2}$. On note $||F_{n_1}|| = ||F_{n_2}|| = F_n$. On admettra que l'effort tangentiel induit est égal à $F_t = f \cdot F_n$ où f représente le coefficient de frottement caractéristique des deux matériaux (polymère à l'extrémité du patin et métallique de la jante en contact). De même on sait que la direction de F_t s'oppose à celle de la vitesse.

Établir l'expression du couple de freinage C_f sur le moyeu de la roue en fonction des efforts F_n , du rayon R de la jante, du coefficient de frottement f et du sens du mouvement.

2- Effort de freinage pour le frein Cantilever

FIGURE 4.13 – Frein Cantilever.

Les patins de frein sont supposés soumis à un effort de compression simple entre d'une part la jante et d'autre part une biellette ou « étrier » de frein (ou « corps cantilever »!).

L'extrémité inférieure de la biellette B_1 est fixée en G sur la fourche du vélo par une liaison pivot supposée parfaite (sans frottement). Le premier système de freinage étudié est tel que l'extrémité supérieure de la biellette B_1 est soumise en F à l'action d'un fil de liaison.

Les fils de liaison f_1 et f_2 fixés sur chacune des deux biellettes B_1 et B_2 sont fixés à leur autre extrémité à un anneau lui-même relié au câble de frein

dont l'autre extrémité est fixée à la poignée de frein.

2.1- Établir l'expression de l'effort $F_c = \|F_c\|$ dans le câble de frein en fonction de l'effort F_f dans les fils de liaison et de l'angle α en faisant l'hypothèse que le montage est parfaitement symétrique c'est-à-dire $\|F_{f_1}\| = \|F_{f_2}\| = F_f$.

2.2- Établir l'expression de l'effort F_f dans les fils de liaison en fonction de l'effort normal $F_n = ||F_n||$ appliqué par le patin et des dimensions H_1 , H_2 et H_3 .

3- Câble de frein et poignée

Le câble de frein est fixé en A à la poignée de frein. La poignée de frein est fixée en B sur le guidon du vélo par une liaison pivot supposée parfaite (sans frottement).

FIGURE 4.14 – Poignée de frein.

Établir l'expression de l'effort $F_{\rm m} = ||F_{\rm m}||$ exercé par la main sur la poignée en fonction de l'effort $F_{\rm c} = ||F_{\rm cp}||$ dans le câble de frein (l'intensité de l'effort est conservée le long du câble de frein), des dimensions L_1 , L_2 , L_3 ainsi que de l'angle β .

4- Relation entre C_f et F_m pour le frein Cantilever

À partir des relations établies en 1, 2 et 3, établir l'expression du couple de freinage $C_{\rm f}$ en fonction de l'effort $F_{\rm m}$ exercé par la main sur la poignée de frein.

5- Effort de freinage pour le frein Shimano

Le deuxième système de freinage étudié est tel que l'extrémité supérieure de chaque biellette est soumise directement à l'effort $F_{\rm c}^*$ (avec $F_{\rm c}^* = F_{\rm f_1}$) dans le câble de frein (l'extrémité inférieure de chaque biellette étant toujours fixée sur la fourche du vélo par une liaison pivot supposée parfaite et les patins de frein étant toujours supposés soumis à un effort de compression simple entre la jante et la biellette.)

FIGURE 4.15 – Principe du frein Shimano.

Établir l'expression de l'effort $F_c^* = \|F_c^*\|$ dans le câble de frein en fonction de l'effort normal $F_n = \|F_n\|$ appliqué par le patin et des dimensions H_1^* et H_2^* .

6- Relation entre $C_{\mathbf{f}}^*$ et $F_{\mathbf{m}}$ pour le frein Shimano

À partir des relations établies en 1, 3 et 5, établir l'expression du couple de freinage $C_{\rm f}^*$ en fonction de l'effort $F_{\rm m}$ exercé par la main sur la poignée de frein.

7- Comparaison des deux systèmes de frein

Comparer l'efficacité des deux systèmes de freinage (résultats établis en 4 et 6). Dans un premier temps, on supposera que $\alpha=\frac{\pi}{4}$ et que $H_1^*=H_1$. Dans un deuxième temps, on supposera que $H_2=85$ mm, $H_3=20$ mm et que $H_2^*=120$ mm.

Le graphe 4.16 donne la relation expérimentalement mesurée entre l'effort exercé sur la poignée $F_{\rm m}$ et l'effort de serrage $F_{\rm n}$.

8- Conclusion

Comparer et commenter les résultats des modélisations avec les résultats expérimentaux.

Exercice 4.7. Étude statique d'un mouflage (exercice proposé par R. Billardon)

On se propose d'étudier une technique de démultiplication d'effort, dite de

Figure 4.16 – Comparaison des deux systèmes de freinage.

mouflage, utilisable dans de multiples contextes, par exemple lors d'opérations de sauvetage ou d'assistance en montagne.

La figure 4.17 schématise la situation d'un chef de cordée qui doit hisser à son relais et à la seule force de ses bras, son second accidenté qui ne peut plus escalader. La technique du mouflage, mise en œuvre ici dans sa version dite « triple », permet de démultiplier la force du sauveteur tout en ne nécessitant que des mousquetons et des cordes.

Il s'agit par la suite d'étudier la situation statique de la figure 4.18. Trois brins de corde supposés complètement indépendants sont étudiés : K_1 , K_2 et K_3 .

Les ancrages A et A' sont des points fixes que le sauveteur a mis en place. Le brin K_1 est fixé à l'accidenté M et à un double mousqueton (autrement appelé dégaine) B dans lequel coulisse le brin K_2 . Cette dégaine est supposée se comporter comme une poulie dont l'axe est relié à la corde K_1 et sur laquelle le brin K_2 roule sans frottement. Le brin K_2 est fixé à l'ancrage en A et à une deuxième dégaine C dans laquelle coulisse le brin K_3 . Cette dégaine est supposée se comporter comme une poulie dont l'axe est relié à la corde K_2 et sur laquelle le brin K_3 roule sans frottement. Le brin K_3 est fixé à l'ancrage en A' (proche de A) et tiré par le sauveteur H qui exerce une force de module F. On note P le module de la force exercée sur le brin K_1 par l'accidenté M.

- **1-** Que peut-on dire de la tension dans les parties [AB] et [BC] du brin de corde K_2 ? Que peut-on dire de la tension dans les parties [A'C] et [CH] du brin de corde K_3 ?
- **2-** Isoler la poulie B, exprimer son équilibre et, dans un repère judicieux, calculer la tension F_2 dans la corde K_2 en fonction de la force P et de l'angle α .

Figure 4.18 – Détail du système de mouflage triple.

- **3-** Isoler la poulie C, exprimer son équilibre et, dans un repère judicieux, calculer la tension F_2 dans la corde K_2 en fonction de la force F et de l'angle β .
- **4-** Donner alors la relation simple entre P, F et les deux angles α et β .
- **5-** En déduire les valeurs idéales des deux angles qui équilibrent P avec une force F d'amplitude minimale. Donner l'expression de cette force minimale F en fonction de la valeur de P.

Croyant aider le sauveteur, l'accidenté cherche à s'écarter de la paroi en s'appuyant sur ses jambes (figure 4.19).

L'accidenté est supposé de masse m et la force qu'il exerce sur la paroi de manière à s'en écarter est notée R, avec R = Rx, x horizontal et z vertical ascendant. Par cette manœuvre, la corde prend un angle γ avec la surface du mur supposé vertical. L'accidenté est donc soumis à la réaction du mur, à son propre poids M et à la tension de module P dans le brin de corde K_1 .

6- Isoler l'accidenté, exprimer son équilibre et calculer l'effort P en fonction de la masse m et de l'angle γ . En déduire la valeur de la norme F de la force exercée par le sauveteur en fonction de la masse m et de l'angle γ . L'accidenté aide-t-il vraiment son premier de cordée ?

FIGURE 4.19 – Le second s'appuie sur le mur.

Exercice 4.8. Étude d'un détendeur de plongée sous-marine

En plongée sous-marine, afin de pouvoir respirer sous l'eau et suffisamment longtemps, une bouteille est généralement gonflée à l'air à une pression avoisinant 200 bar (le bar est une unité couramment utilisée en plongée et correspond à 1 atmosphère, soit 10⁵ hPa dans le système international). Le plongeur ne pouvant pas respirer une telle pression sans risque de lésion, un détendeur est vissé sur la robinetterie de la bouteille (figure 4.20). Comme

Figure 4.20 – Utilisation d'un détendeur de plongée sous-marine.

son nom l'indique, il détend l'air pour le délivrer à la pression à laquelle se trouve le plongeur (la pression dépendant de la profondeur). Généralement constitué de deux étages, le premier détend l'air de la haute pression HP (200 bar) à une moyenne pression $M_{\rm P}$ (entre 6 et 12 bar), le deuxième détend l'air de la moyenne pression à la pression ambiante $P_{\rm A}$ à laquelle se trouve le plongeur. Lorsque le plongeur inspire, la membrane M s'abaisse

à cause d'une rupture de l'équilibre des pressions (figure 4.21). Elle appuie sur le pointeau P qui modifie la direction du mouvement grâce à la liaison pivot en O et tire sur le clapet C en comprimant le ressort dont la force vaut $F_{\rm r}$. Le clapet est en liaison pivot glissant avec le détendeur en D. L'air emplit alors la chambre et le plongeur peut respirer à sa guise. Lorsque le plongeur n'inspire plus, la membrane remonte et le ressort de rappel referme le clapet (figure 4.22). Lorsqu'il expire, une soupape d'expiration située vers le bas du détendeur s'écarte pour laisser échapper l'air vers l'extérieur.

L'objectif de cet exercice est de déterminer en fonction des données du constructeur la sensibilité du deuxième étage d'un détendeur à clapet « aval » dont le principe de fonctionnement est exposé sur les figures 4.21 et 4.22. La moyenne pression M_P s'applique sur le clapet suivant une surface S_c de

FIGURE 4.21 – Deuxième étage d'un détendeur lors de l'inspiration d'un plongeur.

FIGURE 4.22 – Deuxième étage d'un détendeur à l'équilibre.

centre E. La surface des rebords est négligeable devant S_c . La pression ambiante P_A (résultant de l'action de l'eau à la profondeur considérée) s'applique sur la membrane suivant une surface S_m . Le pointeau P est en liaison pivot de centre O avec le détendeur. Il est en contact ponctuel avec le boulon du clapet en B. On note $OA = ay_1$ dans le repère R_1 (x_1, y_1, z_1) lié au pointeau et OB = -by, dans le cas particulier étudié, R (x, y, z) étant lié au détendeur. Un ressort de force de rappel F_r tend à fermer le clapet sur le siège de la chambre M_P .

- 1- Calculer la force due à l'action de l'eau sur la membrane.
- **2-** Calculer la force due à la dépression de la chambre d'inspiration sur la membrane.

3- En isolant le pointeau, calculer la force exercée en B par l'action de l'eau et de la dépression interne sur la membrane. On supposera le clapet fermé.

- **4-** Dans le cas de la figure 4.21, et en considérant que le clapet est fermé, calculer la sensibilité du détendeur, c'est-à-dire ΔP , en fonction des pressions en présence. On négligera $S_{\rm c}$ devant $S_{\rm m}$.
- **5-** Où le plongeur devra t-il fournir le plus d'effort inspiratoire : au fond ou à la surface ?

Solutions

Solution 4.1.

1- Torseur de l'action mécanique en B :

$$\left\{ \begin{array}{l} \mathcal{A}(\mathbf{F} \rightarrow \mathbf{S}_1) \end{array} \right\} = \left\{ \begin{array}{l} F \mathbf{x} \\ 0 \mathbf{x} + 0 \mathbf{y} + 0 \mathbf{z} \end{array} \right\}_{\mathbf{B}} \text{ devient donc en O} :$$

$$\left\{ \begin{array}{l} \mathcal{A}(\mathbf{F} \rightarrow \mathbf{S}_1) \end{array} \right\} = \left\{ \begin{array}{l} F \mathbf{x} \\ 0 \mathbf{x} + F h \mathbf{y} + -F L \mathbf{z} \end{array} \right\}_{\mathbf{O}}.$$

- **2-** La composante suivant z du moment $M(O, F \rightarrow S_1)$ est donc -FL correspondant au moment de serrage (bras de levier).
- **3-** La composante suivant y du moment $M(O, F \rightarrow S_1)$ est donc Fh correspondant au moment de basculement. Pour réduire ce moment on peut utiliser une clé plate (où h=0) ou une clé « en T » , que l'on emploie parfois pour dévisser les écrous de roues et qui sont systématiquement utilisées par les agents (gaz, eau) pour ouvrir les vannes dans les rues (on applique alors uniquement un couple et la composante suivant y est annulée.)

Solution 4.2.

1- Il s'agit d'un système plan. Le système considéré est le diable. Il s'agit de recenser les torseurs qui lui sont extérieurs :

$$\left\{ \begin{array}{l} \mathcal{A}(\mathsf{Charge} \! \to \! \mathsf{Diable}) \, \right\} = \left\{ \begin{array}{l} \boldsymbol{P} \\ \boldsymbol{0} \end{array} \right\}_{\mathsf{G}}, \, \left\{ \begin{array}{l} \mathcal{A}(\mathsf{Sol} \! \to \! \mathsf{Diable}) \, \right\} = \left\{ \begin{array}{l} \boldsymbol{R} \\ \boldsymbol{0} \end{array} \right\}_{\mathsf{B}}, \\ \left\{ \begin{array}{l} \mathcal{A}(\mathsf{Main} \! \to \! \mathsf{Diable}) \, \right\} = \left\{ \begin{array}{l} \boldsymbol{F} \\ \boldsymbol{0} \end{array} \right\}_{\mathsf{C}}. \end{array}$$

Le torseur résultant noté $\{ \mathcal{A}(Résultant \rightarrow Diable) \}$ peut être obtenu par la somme des autres torseurs au même point par exemple B :

- torseur de la charge sur le diable exprimé en B

$$\left\{ \begin{array}{ll} \mathcal{A}(\operatorname{Charge} \to \operatorname{Diable}) \right\} & = & \left\{ \begin{array}{l} \boldsymbol{P} \\ \boldsymbol{0} \end{array} \right\}_{\operatorname{G}} = \left\{ \begin{array}{l} -Mg\boldsymbol{y} \\ -Mg\boldsymbol{y} \wedge \boldsymbol{G}\boldsymbol{B} \end{array} \right\}_{\operatorname{B}} \\ & = & \left\{ \begin{array}{l} -Mg\boldsymbol{y} \\ Mg(\frac{h}{2}\sin\alpha - \frac{L}{2}\cos\alpha + a\cos\alpha)\boldsymbol{z} \end{array} \right\}_{\operatorname{B}} \end{aligned}$$

puisque $GB = GA + AB = \frac{h}{2}x_1 - \frac{L}{2}y_1 + ay_1$ avec $x_1 = \sin \alpha x - \cos \alpha y$ et $y_1 = \cos \alpha x + \sin \alpha y$;

- torseur de l'action de la main exprimé en B :

$$\left\{ \mathcal{A}(\text{Main} \to \text{Diable}) \right\} = \left\{ \begin{array}{c} F \\ \mathbf{0} \end{array} \right\}_{C} = \left\{ \begin{array}{c} -Fy \\ -Fy \land CB \end{array} \right\}_{R} = \left\{ \begin{array}{c} -Fy \\ -Fb \cos \alpha z \end{array} \right\}_{R}$$

comme $CB = -by_1$;

- torseur de l'action du sol sur la roue en B

$$\left\{ \begin{array}{l} \mathcal{A}(\text{Roue} \rightarrow \text{Diable}) \end{array} \right\} = \left\{ \begin{array}{l} \boldsymbol{R} \\ \boldsymbol{0} \end{array} \right\}_{S} = \left\{ \begin{array}{l} R_{y} \mathcal{Y} \\ 0 \end{array} \right\}_{B}$$

comme SB = ry.

Le torseur résultant en B est donc donné par :

$$\left\{ \begin{array}{ll} \mathcal{A}(\text{R\'esultant} \rightarrow \text{Diable}) \, \right\} &=& \left\{ \begin{array}{ll} \mathcal{A}(\text{Charge} \rightarrow \text{Diable}) \, \right\}_{\text{B}} \\ \\ &+& \left\{ \begin{array}{ll} \mathcal{A}(\text{Main} \rightarrow \text{Diable}) \, \right\}_{\text{B}} \\ \\ &+& \left\{ \begin{array}{ll} \mathcal{A}(\text{Sol} \rightarrow \text{Diable}) \, \right\}_{\text{B}} \, . \end{array} \right. \end{aligned}$$

En projection sur les 3 axes du repère de base, le torseur résultant s'écrit :

$$\begin{cases} /x:0\\ /y:-Mg+R_y-F\\ /z:Mg(\frac{h}{2}\sin\alpha-\frac{L}{2}\cos\alpha+a\cos\alpha)-Fb\cos\alpha \end{cases}$$

- **2-** Il existe un moment B qui n'est pas nul qui a donc tendance à faire tourner la roue et à faire avancer le diable.
- ${\bf 3}\text{-}\, En$ considérant le diable comme le système, le PFS appliqué en B s'écrit :

$$\left\{ \mathcal{A}(\text{Sol} \rightarrow \text{Diable}) \right\}_{\text{B}} + \left\{ \mathcal{A}(\text{Charge} \rightarrow \text{Diable}) \right\}_{\text{B}} + \left\{ \mathcal{A}(\text{Main} \rightarrow \text{Diable}) \right\}_{\text{B}} = \{ O \}$$
 soit en projection sur les axes de la base, la résultante du PFS s'écrit au point B:

point B:

 $\begin{cases} /x:0\\ /y:-Mg+R_y-F=0\\ /z:Mg(\frac{h}{2}\sin\alpha-\frac{L}{2}\cos\alpha+a\cos\alpha)-Fb\cos\alpha=0 \end{cases}$

soit:

$$F = Mg\left(\frac{h}{2b}\tan\alpha - \frac{L}{2b} + \frac{a}{b}\right)$$

et:

$$R_y = P + Mg\left(\frac{h}{2b}\tan\alpha - \frac{L}{2b} + \frac{a}{b}\right).$$

Solution 4.3.

Il s'agit d'un problème plan, défini dans le plan (A, x_0, y_0) . Par conséquent la composante de la résultante selon z_0 et les composantes du moment selon x_0 et y_0 sont nulles.

1- Torseur de l'action mécanique en I de S_0 sur S_4 :

$$\left\{ \mathcal{A}(S_0 \to S_4) \right\} = \left\{ \begin{array}{c} Y_{04} \mathbf{y} \\ 0 \mathbf{x} + 0 \mathbf{y} + 0 \mathbf{z} \end{array} \right\}_{\mathsf{I}};$$

Torseur de l'action mécanique en J de S₀ sur S₅ :

$$\left\{ \mathcal{A}(S_0 \to S_5) \right\} = \left\{ \begin{array}{c} Y_{05} \mathbf{y} \\ 0 \mathbf{x} + 0 \mathbf{y} + 0 \mathbf{z} \end{array} \right\}_{\mathsf{I}};$$

Torseur de l'action mécanique en A de S₄ sur S₁ :

$$\left\{ \mathcal{A}(S_4 \rightarrow S_1) \right\} = \left\{ \begin{array}{c} X_{41} x + Y_{41} y \\ 0 x + 0 y + 0 z \end{array} \right\}_{\Lambda};$$

Torseur de l'action mécanique en F de S₆ sur S₅ :

$$\left\{ \mathcal{A}(S_6 \rightarrow S_5) \right\} = \left\{ \begin{array}{c} X_{65} x + Y_{65} y \\ 0 x + 0 y + 0 z \end{array} \right\}_{F};$$

Torseur de l'action mécanique en D de S₁ sur S₆ :

$$\left\{ \mathcal{A}(S_1 \to S_6) \right\} = \left\{ \begin{array}{c} X_{61} x + Y_{61} y \\ 0 x + 0 y + N_{61} z \end{array} \right\}_{D}.$$

- **2-** On isole le VTT = $S_1 + S_2 + S_3 + S_4 + S_5 + S_6$. Le bilan des actions mécaniques extérieures nous donne :
- action du cycliste en E;
- actions de S₀ sur S₄ par la liaison ponctuelle en I;
- actions de S₀ sur S₅ par la liaison ponctuelle en J.

Après avoir exprimé tous les torseurs en E, on peut appliquer le PFS au VTT en E. La projection de la résultante selon y_0 devient : $-P + Y_{04} + Y_{05} = 0$. et la projection du moment en E selon z_0 est : $-d_{AE}Y_{04} + d_{FE}Y_{05} = 0$.

En utilisant le théorème de Thalès pour exprimer les rapports de longueur, on obtient :

$$Y_{04} = \frac{d_{\rm BD}}{d_{\rm AD}}P$$
 et $Y_{05} = \frac{d_{\rm AB}}{d_{\rm AD}}P$.

- **3-** On isole la roue S_4 . Le bilan des actions mécaniques extérieures nous donne :
- $-\,$ action de S_0 sur S_4 par la liaison ponctuelle en I ;

EXERCICES 147

- action de S₁ sur S₄ par la liaison pivot en A.

Après avoir exprimé tous les torseurs en A, on peut appliquer le PFS à S_4 en A. La projection de la résultante selon x_0 est : $X_{14} = 0$ et la projection de la résultante selon y_0 devient : $Y_{04} = -Y_{14} = -\frac{d_{\rm BD}}{d_{\rm AD}}P$. Par analogie, en $\frac{d_{\rm AB}}{d_{\rm AD}}$

isolant la roue S₅: $X_{65} = 0$ et $Y_{65} = -Y_{05} = -\frac{d_{AB}}{d_{AD}}P$.

- **4-** On isole la barre-guidon S_6 . Le bilan des actions mécaniques extérieures nous donne :
- action de S_1 sur S_6 par la liaison pivot en D;
- action de S₅ sur S₆ par la liaison pivot en F (utiliser le principe des actions mutuelles).

Après avoir exprimé tous les torseurs en D, on peut appliquer le PFS à S_6 en D. La projection de la résultante selon $\mathbf{x_0}$ est : $X_{16} = 0$, la projection de la résultante selon $\mathbf{y_0}$: $Y_{16} = -Y_{56} = Y_{65} = -\frac{d_{AB}}{d_{AD}}P$ et la projection du moment en D selon $\mathbf{z_0}$: $N_{16} = d_{FD'}Y_{65} = d_{FD'}\left(-\frac{d_{AB}}{d_{AD}}P\right)$, où D' est la projection de D sur $(A, \mathbf{x_0})$.

Solution 4.4.

Cet exercice est un problème plan. Nous ne considérerons par la suite que les deux composantes de la résultante des efforts dans le plan (x,y) et la composante du moment suivant l'axe z.

1- Sur la pièce S_3 s'exerçent les actions extérieures de S_2 par une liaison rotule et de S_1 par une liaison glissière, le poids étant considéré négligeable. Nous avons donc :

$$\left\{ \begin{array}{ll} \mathcal{A}(S_1 \rightarrow S_3) \right\} &=& \left\{ \begin{array}{ll} 0 \, \boldsymbol{u} + Y_{13} \, \boldsymbol{v} \\ N_{13} \, \boldsymbol{z} \end{array} \right\}_{\mathrm{D}} \\
\left\{ \begin{array}{ll} \mathcal{A}(S_2 \rightarrow S_3) \right\} &=& \left\{ \begin{array}{ll} X_{23} \, \boldsymbol{u} + Y_{23} \, \boldsymbol{v} \\ 0 \, \boldsymbol{z} \end{array} \right\}_{\mathrm{D}}.$$

Le principe fondamental de la statique appliqué à la pièce S_3 en D s'exprime par :

$$\left\{ \left. \mathcal{A}(\overline{S}_3 \to S_3) \right. \right\}_D = \left\{ \left. \mathcal{A}(S_1 \to S_3) \right. \right\}_D + \left\{ \left. \mathcal{A}(S_2 \to S_3) \right. \right\}_D = \left\{ O \right\},$$

il vient immédiatement en projection suivant les axes x, y et z:

$$\begin{cases} X_{23} &= 0 \\ Y_{13} &= -Y_{23} \\ N_{13} &= 0. \end{cases}$$

2- Sur la pièce S_2 s'exerçent les actions extérieures de S_3 par une liaison rotule, de S_0 par une liaison glissière d'axe (B, y) et la force P à l'extrémité E. Nous avons donc :

$$\left\{ \begin{array}{ll} \mathcal{A}(S_3 \to S_2) \right\} &=& \left\{ \begin{array}{ll} 0 \, \boldsymbol{u} + Y_{32} \, \boldsymbol{v} \\ 0 \, \boldsymbol{z} \end{array} \right\}_{\mathrm{D}} \\
\left\{ \begin{array}{ll} \mathcal{A}(S_0 \to S_2) \right\} &=& \left\{ \begin{array}{ll} X_{02} \, \boldsymbol{x} + 0 \, \boldsymbol{y} \\ N_{02} \, \boldsymbol{z} \end{array} \right\}_{\mathrm{B}} \\
\left\{ \begin{array}{ll} \mathcal{A}(\boldsymbol{P} \to S_2) \right\} &=& \left\{ \begin{array}{ll} 0 \, \boldsymbol{x} + P \, \boldsymbol{y} \\ 0 \, \boldsymbol{z} \end{array} \right\}_{\mathrm{E}}.$$

En appliquant le principe fondamental de la statique à la pièce S_2 en D (ne pas oublier de se placer dans le même repère), il vient :

$$\left\{ \mathcal{A}(\overline{S}_2 \to S_2) \right\}_{D} = \{O\},$$

et donc

$$\left\{ \begin{array}{ll} \mathcal{A}(S_3 \to S_2) \right\}_D + \left\{ \left. \mathcal{A}(S_0 \to S_2) \right\}_D + \left\{ \left. \mathcal{A}(P \to S_2) \right\}_D &= \{O\} \\ \left\{ \begin{array}{ll} 0 \, \boldsymbol{u} + Y_{32} \, \boldsymbol{v} \\ 0 \, \boldsymbol{z} \end{array} \right\}_D + \left\{ \begin{array}{ll} X_{02} \, \boldsymbol{x} + 0 \, \boldsymbol{y} \\ N_{02} - \ell \tan \phi X_{02} \, \boldsymbol{z} \end{array} \right\}_D + \left\{ \begin{array}{ll} 0 \, \boldsymbol{x} + P \, \boldsymbol{y} \\ 0 \, \boldsymbol{z} \end{array} \right\}_D &= \{O\}$$

il vient immédiatement en projection suivant les axes x, y et z:

$$\begin{cases}
-Y_{32}\sin\phi + X_{02} &= 0 \\
Y_{32}\cos\phi + P &= 0 \\
N_{02} - \ell\tan\phi X_{02} &= 0.
\end{cases}$$

En utilisant les résultats issus de la question précédente, nous obtenons :

$$\begin{cases} X_{02} &= -P\tan\phi \\ Y_{32} &= -\frac{P}{\cos\phi} \\ N_{02} &= -P\ell\tan^2\phi. \end{cases}$$

3- Sur la pièce S_1 s'exerçent les actions extérieures de S_0 par une liaison pivot, de S_3 par une liaison glissière d'axe (D, u) et la force Q en C. Nous avons donc :

$$\left\{ \mathcal{A}(S_0 \to S_1) \right\} = \left\{ \begin{array}{c} X_{01} \mathbf{u} + Y_{01} \mathbf{v} \\ 0 \mathbf{z} \end{array} \right\}_{O} \\
\left\{ \mathcal{A}(S_3 \to S_1) \right\} = \left\{ \begin{array}{c} 0 \mathbf{u} + Y_{31} \mathbf{v} \\ N_{31} \mathbf{z} \end{array} \right\}_{D} \\
\left\{ \mathcal{A}(\mathbf{Q} \to S_1) \right\} = \left\{ \begin{array}{c} 0 \mathbf{u} + (-) \mathbf{Q} \mathbf{v} \\ 0 \mathbf{z} \end{array} \right\}_{C}$$

149 **EXERCICES**

En appliquant le principe fondamental de la statique à la pièce S₁ en D, il vient:

$$\left\{ \mathcal{A}(\overline{S}_1 \rightarrow S_1) \right\}_D = \{O\},$$

et donc

$$\left\{ \begin{array}{ll} \mathcal{A}(S_0 {\rightarrow} S_1) \right\}_D + \left\{ \begin{array}{ll} \mathcal{A}(S_3 {\rightarrow} S_1) \right\}_D + \left\{ \begin{array}{ll} \mathcal{A}(\boldsymbol{Q} {\rightarrow} S_1) \right\}_D &=& \{O\} \\ \\ \left\{ \begin{array}{ll} X_{01} \, \boldsymbol{u} + Y_{01} \, \boldsymbol{v} \\ -\frac{\ell Y_{01}}{\cos \phi} \, \boldsymbol{z} \end{array} \right\}_D + \left\{ \begin{array}{ll} \boldsymbol{0} \, \boldsymbol{u} + Y_{31} \, \boldsymbol{v} \\ N_{31} \, \boldsymbol{z} \end{array} \right\}_D + \left\{ \begin{array}{ll} \boldsymbol{0} \, \boldsymbol{u} + Q \, \boldsymbol{v} \\ -Q \left(R - \frac{\ell}{\cos \phi} \right) \, \boldsymbol{z} \end{array} \right\}_D &=& \{O\} \,,$$

il vient immédiatement en projection suivant les axes u, v et z:

$$\begin{cases} X_{01} &= 0 \\ Y_{01} + Y_{31} - Q &= 0 \\ -\frac{\ell Y_{01}}{\cos \phi} + N_{31} - Q \left(R - \frac{\ell}{\cos \phi} \right) &= 0. \end{cases}$$

Nous savons, de plus, d'après la question 1, que $N_{13} = 0$. Il vient donc :

$$-\frac{\ell}{\cos\phi}(Q-Y_{31})-Q\left(R-\frac{\ell}{\cos\phi}\right)=0,$$

ou encore

$$Q = \frac{\ell Y_{31}}{R\cos\phi} v,$$

puisque la force Q est portée par l'axe v.

4- D'après les résultats de la question 2 et 3, il vient immédiatement :

$$Q = \frac{\ell P}{R\cos^2\phi}.$$

Solution 4.5.

1- Isolons le gouvernail S et faisons un bilan des actions mécaniques extérieures appliquées à celui-ci :

- action du barreur sur S :
$$\left\{ \mathcal{A}(F_b \rightarrow S) \right\} = \left\{ \begin{array}{c} F_b x + 0 y + 0 z \\ 0 x + 0 y + 0 z \end{array} \right\}_H;$$

- action de l'eau sur S : $\left\{ \mathcal{A}(F_e \rightarrow S) \right\} = \left\{ \begin{array}{c} (-)F_{ex} x + (-)F_{ey} y + 0 z \\ 0 x + 0 y + 0 z \end{array} \right\}_E;$

- action de l'eau sur S :
$$\left\{ \mathcal{A}(\mathbf{F}_e \to S) \right\} = \left\{ \begin{array}{c} (-)F_{ex} \mathbf{x} + (-)F_{ey} \mathbf{y} + 0\mathbf{z} \\ 0\mathbf{x} + 0\mathbf{y} + 0\mathbf{z} \end{array} \right\}_E;$$

 $- \text{ effort de liaison en } G: \left\{ \begin{array}{l} \mathcal{A}(S_0 {\to} S) \end{array} \right\} = \left\{ \begin{array}{l} X_{01} \ x + Y_{01} \ y + Z_{01} \ z \\ L_{01} \ x + M_{01} \ y + 0 \ z \end{array} \right\}_G.$ Appliquons maintenant le principe fondamental de la statique en G:

$$\left\{ \begin{array}{ll} \mathcal{A}(\overline{S} \to S) \, \right\} &=& \{O\} \\ \left\{ \begin{array}{ll} \mathcal{A}(\overline{S} \to S) \, \right\} &=& \left\{ \begin{array}{ll} \mathcal{A}(F_b \to S) \, \right\}_G + \left\{ \begin{array}{ll} \mathcal{A}(F_e \to S) \, \right\}_G + \left\{ \begin{array}{ll} \mathcal{A}(S_0 \to S) \, \right\}_G \\ \end{array} \\ &=& \left\{ \begin{array}{ll} F_b \, x + 0 \, y + 0 \, z \\ 0 \, x + F_b d \, y + (-) F_b \ell \, z \end{array} \right\}_G + \left\{ \begin{array}{ll} (-) F_{\text{ex}} \, x + (-) F_{\text{ey}} \, y + 0 \, z \\ (-) F_{\text{ey}} D \, x + F_{\text{ex}} D \, y + (-) L F_{\text{ex}} \, z \end{array} \right\}_E \\ &+ \left\{ \begin{array}{ll} X_{01} \, x + Y_{01} \, y + Z_{01} \, z \\ L_{01} \, x + M_{01} \, y + 0 \, z \end{array} \right\}_G$$

En projection sur le repère (x, y, z), il vient :

$$\begin{cases} F_b - F_{\text{ex}} + X_{01} &= 0 \\ -F_{\text{ey}} + Y_{01} &= 0 \\ Z_{01} &= 0 \\ -F_{\text{ey}}D + L_{01} &= 0 \\ F_b d + F_{\text{ex}}D + M_{01} &= 0 \\ -F_b \ell - LF_{ex} &= 0. \end{cases}$$

Nous obtenons donc maintenant l'action du barreur en fonction de celle de l'eau :

$$F_{\rm b} = -\frac{L}{\ell} F_{\rm ex}.$$

2- En remplacant l'expression de la force du barreur F_b dans le système d'équations, nous obtenons les composantes du torseur de la liaison pivot :

$$\begin{cases} X_{01} &= \left(\frac{L}{\ell} + 1\right) F_{\text{ex}} \\ Y_{01} &= F_{\text{ey}} \\ Z_{01} &= 0 \\ L_{01} &= F_{\text{ey}} D \\ M_{01} &= \left(\frac{L}{\ell} d - D\right) F_{\text{ex}}. \end{cases}$$

3- avec les applications numériques :

$$\begin{cases} X_{01} &= 66,7 \text{ N} \\ Y_{01} &= 10 \text{ N} \\ Z_{01} &= 0 \\ L_{01} &= 6 \text{ N.m} \\ M_{01} &= -26,7 \text{ N.m} \end{cases}$$

EXERCICES 151

Solution 4.6.

1- Un couple est un torseur d'effort de résultante F nulle et de moment M non nul. Le couple de freinage calculé au point O est créé par l'action des deux patins P_1 et P_2 sur la jante de la roue. L'action des patins F_{P_1} et F_{P_2} est régie par la loi de Coulomb qui lie la composante normale F_n à la composante tangentielle (ou force de frottement) F_t .

$$F_{P_1} = F_n x - F_t z$$
; $F_{P_2} = -F_n x - F_t z$.

FIGURE 4.23 – Couple de freinage.

Chaque patin exerce un force tangentielle et une force normale à la jante. Les composantes normales des deux patins sont opposées et s'appliquent au même point A elles ne participent donc pas au couple de freinage. Les composantes tangentielles des deux patins en revanche sont dirigées à l'opposé de la vitesse et s'additionnent. La force de frottement résultante est donc de $2F_t$ et le moment engendré par cette force au point O est égal à : $M(O, 2F_t) = -2F_t z \wedge (-R)y = -2RF_t x$. Or, la loi de Coulomb dans la phase de glissement nous donne $F_t = fF_n$. Le couple de freinage s'exprime donc : $C_f = 2fRF_n$.

- **2.1-** On isole l'anneau. On effectue le bilan des actions mécaniques extérieures exercées sur l'anneau :
- force exercée par le câble de frein : F_c ;
- force exercée par le fil de liaison $f_1 : \mathbf{F}_{f_1}$;
- force exercée par le fil de liaison f_2 : \boldsymbol{F}_{f_2} ,

avec $||F_{f_1}|| = ||F_{f_2}|| = F_f$. Le Principe Fondamental de la Statique appliqué à la résultante des efforts donne : $F_c + F_{f_1} + F_{f_2} = \mathbf{0}$. En projection sur (O, y), il vient : $F_c = 2F_f \cos \alpha$.

- **2.2-** On isole à présent la biellette B_1 . On effectue le bilan des actions mécaniques extérieures qui s'exercent sur la biellette B_1 :
- force exercée par la roue sur la biellette par l'intermédiaire du patin en $P: -F_{p_1}$, torseur associé :

$$\left\{ \mathcal{A}(\text{Roue} \rightarrow B_1) \right\} = \left\{ \begin{array}{c} -F_n x + F_t z \\ \mathbf{0} \end{array} \right\}_{P};$$

– efforts transmis par la liaison pivot d'axe (G, z) en G, torseur associé :

$$\left\{ \begin{array}{l} \mathcal{A}(\text{Fourche}{\to}B_1) \end{array} \right\} = \left\{ \begin{array}{l} X_{\text{G}}\,x + Y_{\text{G}}\,y + Y_{\text{G}}\,z \\ L_{\text{G}}\,x + M_{\text{G}}\,y \end{array} \right\}_{\text{G}} \; ;$$

- force exercée par le fil de liaison f₁ en F, torseur associé

$$\left\{ \mathcal{A}(\mathbf{f}_1 \to \mathbf{B}_1) \right\} = \left\{ \begin{array}{c} F_f \sin \alpha \, \boldsymbol{x} + F_f \cos \alpha \, \boldsymbol{y} \\ \boldsymbol{0} \end{array} \right\}_{\mathrm{F}}.$$

On applique le principe fondamental de la statique sur les moments au point G que l'on projettera sur (O, z). Pour cela il nous faut exprimer tous les moments des différentes actions extérieures au point G.

– Moment en G de F_{f_1} :

$$\begin{array}{lcl} \textit{M}(G, \textit{F}_{f_{1}}) & = & \textit{F}_{f_{1}} \wedge \textit{FG} \\ \textit{M}(G, \textit{F}_{f_{1}}) & = & (\textit{F}_{f} \sin \alpha \, \textit{x} + \textit{F}_{f} \cos \alpha \, \textit{y}) \wedge (\textit{H}_{3} \, \textit{x} + (-\textit{H}_{2}) \, \textit{y}) \\ \textit{M}(G, \textit{F}_{f_{1}}) & = & (-\textit{F}_{f} \sin \alpha \, \textit{H}_{2} - \textit{F}_{f} \cos \alpha \, \textit{H}_{3}) \, \textit{z}. \end{array}$$

– Moment en G de $-\mathbf{F}_{P_1}$:

$$M(G, -F_{P_1}) = -F_p \wedge PG$$

$$M(G, -F_{P_1}) = (-F_n x + F_1 z) \wedge (\bullet x + (-H_1)y)$$

$$M(G, -F_{P_1}) = \bullet x + \bullet y + F_{nH_1} z,$$

avec les • correspondant aux composantes qui n'ont pas besoin d'être calculées. On applique le principe fondamental de la statique sur les moments au point G en les projetant sur l'axe (0, z):

$$F_{\rm n}H_1 - F_{\rm f}\sin\alpha H_2 - F_{\rm f}\cos\alpha H_3 = 0$$
, d'où $F_{\rm f} = \frac{F_{\rm n}H_1}{H_2\sin\alpha + H_3\cos\alpha}$.

- **3-** On suit toujours la même méthodologie : après avoir isolé la poignée, on effectue un bilan des actions mécaniques extérieures s'exerçant sur celleci :
- action du guidon sur la poignée par la liaison pivot en B, torseur associé :

$$\left\{ \mathcal{A}(\text{Guidon} \rightarrow \text{Poign\'ee}) \right\} = \left\{ \begin{array}{c} X_{\text{B}} u + Y_{\text{B}} v + Z_{\text{B}} z \\ L_{\text{B}} u + M_{\text{B}} v \end{array} \right\}_{\text{B}};$$

EXERCICES 153

FIGURE 4.24 – Poignée de frein.

- action de l'utilisateur sur la poignée en M : $F_{\rm m} = -F_{\rm m} v$, torseur associé :

$$\left\{ \mathcal{A}(\text{Utilisateur} \rightarrow \text{Poign\'ee}) \right\} = \left\{ \begin{array}{c} -F_{\text{m}} \mathbf{v} \\ \mathbf{0} \end{array} \right\}_{\text{M}};$$

– action du câble sur la poignée en A : $F_{\rm cp} = -F_{\rm c}\cos\beta u - F_{\rm c}\sin\beta v$, torseur associé :

$$\left\{ \begin{array}{l} \mathcal{A}(\text{Câble} \rightarrow \text{Poign\'ee}) \end{array} \right\} = \left\{ \begin{array}{c} -F_{\text{c}} \cos \beta \, \boldsymbol{u} - F_{\text{c}} \sin \beta \, \boldsymbol{v} \\ \boldsymbol{0} \\ 0 \end{array} \right\}_{\text{A}}.$$

Principe fondamental de la statique appliqué en B :

$$\sum \left\{ \mathcal{A}(\text{Ext} \rightarrow \text{Poign\'ee}) \right\}_{\text{B}} = \{O\}.$$

On exprime tous les moments en B:

- moment en B de $F_{\rm m}$:

$$M(B, F_m) = (-F_m)v \wedge MB,$$

 $M(B, F_m) = -F_mL_2z.$

 $-\,$ moment en B de ${\pmb F}_{
m cp}$:

$$M(B, F_{cp}) = (-F_c cos \beta u - F_c sin \beta v) \wedge AB,$$

 $M(B, F_{cp}) = F_c cos \beta L_1 z.$

Le PFS appliqué aux moments en B en projection sur (O, z) nous donne la relation suivante : $F_{\rm m} = \frac{L_1}{L_2} F_{\rm c} \cos \beta$.

4- À l'aide des questions 1, 2 et 3 :

$$\begin{cases} C_{\rm f} &= 2fF_{\rm n}R, \\ F_{\rm c} &= 2F_{\rm f}\cos\alpha, \\ F_{\rm f} &= \frac{F_{\rm n}H_1}{H_2\sin\alpha + H_3\cos\alpha}, \\ F_{\rm m} &= \frac{L_1}{L_2}F_{\rm c}\cos\beta, \end{cases}$$

d'où $C_{\rm f} = \frac{fRL_2F_{\rm m}(H_2\sin\alpha + H_3\cos\alpha)}{H_1L_1\cos\alpha\cos\beta}$

- **5-** On suit toujours la même démarche : après avoir isolé la biellette B_1 , on effectue le bilan des actions mécaniques extérieures s'exerçant sur la biellette B_1 :
- efforts transmis par la liaison pivot d'axe (G*, z) en G*, torseur associé

$$\left\{ \begin{array}{l} \mathcal{A}(\mathsf{Fourche} {\to} \mathsf{B}_1) \end{array} \right\} = \left\{ \begin{array}{l} X_{\mathsf{G}^*} \ x + Y_{\mathsf{G}^*} \ y + Y_{\mathsf{G}^*} \ z \\ L_{\mathsf{G}^*} \ x + M_{\mathsf{G}^*} \ y \end{array} \right\}_{\mathsf{G}^*}.$$

– force exercée par le fil de liaison f_1 en F^* . Le système est également considéré comme symétrique ($||F_{f_1^*}|| = ||F_{f_2^*}|| = F_c^*$), torseur associé :

$$\left\{ \mathcal{A}(\text{Fil} \rightarrow \text{B}_1) \right\} = \left\{ \begin{array}{c} F_c^* \mathbf{x} \\ \mathbf{0} \end{array} \right\}_{F^*};$$

– force exercée par la roue sur la biellette B_1 par l'intermédiaire du patin en $P: -\mathbf{F}_{P_1}$, torseur associé :

$$\left\{ \mathcal{A}(\text{Roue} \rightarrow \text{B}_1) \right\} = \left\{ \begin{array}{c} -F_{\text{n}} x + F_{\text{t}} z \\ \mathbf{0} \end{array} \right\}_{\text{p}}.$$

Principe fondamental de la statique appliqué en G^* sur la composante des moments :

$$\sum \left\{ \, \mathcal{A}(\mathsf{Ext} {\rightarrow} \mathsf{B}_1) \, \right\}_{\mathsf{G}^*} = \left\{ O \right\}.$$

On exprime tous les moments en G*:

– Moment en G^* de F_c^* :

$$M(G^*, F_c^*) = F_c^* x \wedge F^* G^*$$

 $M(G^*, F_c^*) = -F_c^* H_2^* z;$

– Moment en G^* de - \mathbf{F}_{P_1} :

$$M(G^*, -F_{P_1}) = -F_{P_1} \wedge PG^*$$

 $M(G^*, -F_{P_1}) = \bullet x + \bullet y + F_n H_1^* z;$

EXERCICES 155

En projection sur l'axe (O, z), on obtient : $F_c^* = F_n \frac{H_1^*}{H_2^*}$.

6- À partir des relations établies en 1, 3 et 5, on obtient :

$$\begin{cases} C_{\rm f}^* &= 2fF_nR \\ F_{\rm n} &= \frac{H_2^*}{H_1^*}F_{\rm c}^* \\ F_{\rm c}^* &= \frac{L_2F_{\rm m}}{L_1\cos\beta}, \end{cases}$$

d'où
$$C_{\mathrm{f}}^*=2fR\frac{H_2^*L_2}{H_1^*L_1\cos\beta}F_m$$
.

7- On supposera que $\alpha = \frac{\pi}{4}$ et que $H_1^* = H_1$.

$$\left\{ \begin{array}{ll} C_{\rm f} & = & \frac{H_2 + H_3}{H_1} \frac{fRL_2 F_m}{L_1 \cos \beta} \\ C_{\rm f}^* & = & \frac{2H_2^*}{H_1^*} \frac{fRL_2 F_m}{L_1 \cos \beta}, \end{array} \right.$$

d'où $C_{\rm f}^*=\frac{2H_2^*}{H_2+H_3}C_{\rm f}$. Application Numérique : $H_2=85$ mm, $H_3=20$ mm, $H_2^*=120$ mm et $C_{\rm f}^*>2C_{\rm f}$.

8- Conclusion

Les résultats expérimentaux ne correspondent pas aux résultats issus de la modélisation : les dimensions sont approximatives et l'hypothèse par rapport au câble « Le deuxième système de freinage étudié est tel que l'extrémité supérieure de chaque biellette est soumise directement à l'effort $F_{\rm c}^*$ dans le câble de frein » est à revoir. Il est important de toujours conserver un esprit critique vis à vis des modèles étudiés en les confrontant à des données réelles (expérimentales).

Solution 4.7.

1- Étudions l'équilibre statique de la première poulie B de rayon r. Les torseurs statiques s'écrivent :

$$\left\{ \begin{array}{l} \mathcal{A}(\mathsf{Poids} \rightarrow \mathsf{Poulie}) \end{array} \right\} = \left\{ \begin{array}{l} \boldsymbol{P} \\ \boldsymbol{0} \end{array} \right\}_{\mathsf{B}} \; ; \; \left\{ \begin{array}{l} \mathcal{A}(\mathsf{BC} \rightarrow \mathsf{Poulie}) \end{array} \right\} = \left\{ \begin{array}{l} \boldsymbol{F}_{\mathsf{BC}} \\ \boldsymbol{0} \end{array} \right\}_{\mathsf{K}} \\ \left\{ \begin{array}{l} \mathcal{A}(\mathsf{AB} \rightarrow \mathsf{Poulie}) \end{array} \right\} = \left\{ \begin{array}{l} \boldsymbol{F}_{\mathsf{AB}} \\ \boldsymbol{0} \end{array} \right\}_{\mathsf{L}} \; .$$

En utilisant la figure 4.25, l'équation des moments en B s'écrit :

$$F_{\rm BC} \wedge KB + F_{\rm AB} \wedge LB = 0.$$

Figure 4.25 – Système considéré avec **P** quelconque.

En projetant sur la droite (BC) appelée ici x (y lui est orthogonal):

$$F_{BC}x \wedge ry + F_{AB}(\cos \alpha x + \sin \alpha y) \wedge r(\sin \alpha x - \cos \alpha y) = \mathbf{0}$$

soit en projection sur z:

$$F_{\rm BC}r - F_{\rm AB}r\cos^2\alpha - F_{\rm AB}r\sin^2\alpha = 0.$$

De l'équation précédente, on peut conclure que $F_{\rm BC} = F_{\rm AB}$. La tension dans les deux brins [BC] et [AB] est donc identique. En procédant de même, il est possible de montrer que $F_{\rm A'C} = F_{\rm CH}$. La tension dans les deux brins [A'C] et [CH] est donc identique.

2- Le repère de projection peut être celui constitué de la direction de P et de sa perpendiculaire (figure 4.26). En projetant la résultante du PFS sur x et y, et en posant $\gamma + \gamma' = \alpha$ il vient :

$$\left\{ \begin{array}{l} -P + F_{\rm BC}\cos\gamma + F_{\rm AB}\cos\gamma' = 0 \\ -F_{\rm BC}\sin\gamma + F_{\rm AB}\sin\gamma' = 0 \end{array} \right.$$

soit, en sachant que $F_{AB} = F_{BC} = F_2$:

$$\begin{cases} P = 2F_2 \cos \frac{\alpha}{2} \\ \gamma = \gamma' \Rightarrow \gamma = \frac{\alpha}{2}. \end{cases}$$

3- D'après la question 1, $F_{\rm CH} = F_{\rm CA'} = F$, où F est la force exercée par le sauveteur. D'après la question 2, il vient directement en identifiant P à F_2 , F_2 à F et β à α :

$$F_2 = 2F\cos\frac{\beta}{2}.$$

EXERCICES 157

Figure 4.26 – Système considéré.

4- En injectant le résultat de la question 2 dans celui de la question 1 :

$$P = 2\left(2F\cos\frac{\beta}{2}\right)\cos\frac{\alpha}{2} = 4F\cos\frac{\alpha}{2}\cos\frac{\beta}{2}.$$

5- D'après la question précédente :

$$F = \frac{P}{4\cos\frac{\alpha}{2}\cos\frac{\beta}{2}}.$$

Donc F est minimum si $4\cos\frac{\alpha}{2}\cos\frac{\beta}{2}$ est maximum soit si simultanément $\frac{\alpha}{2}=\frac{\beta}{2}=0$. Ce qui revient à dire que tous les brins sont alignés. Dans ce $\cos:F=\frac{P}{4}$.

6- Utilisons la figure 4.27.

Figure 4.27 – Système considéré.

158

PFS en G projeté sur x et z:

$$\begin{cases} R - P\sin\gamma = 0\\ -M + P\cos\gamma = 0 \end{cases}$$

soit:

$$P = \frac{M}{\cos \gamma} = \frac{mg}{\cos \gamma}$$

d'où:

$$F = \frac{mg}{4\cos\gamma}.$$

Aide t-il le premier de cordée ? $R = mg \tan \gamma$. Si R augmente, γ augmente, $\cos \gamma \to 0$ et donc F augmente. Il n'aide donc pas son sauveteur en s'écartant du mur.

Solution 4.8.

1- La pression de l'eau vaut P_A et s'exerce sur toute la membrane de surface S_m . Le torseur résultant s'écrit donc en A:

$$\left\{ \mathcal{A}(\text{Eau} \rightarrow \text{Membrane}) \right\}_{=} \left\{ \begin{array}{c} -P_{A}S_{m}y \\ \mathbf{0} \end{array} \right\}_{A}.$$

2- De même, le torseur résultant de la dépression sur la membrane s'écrit en A :

$$\left\{ \mathcal{A}(\text{Dépression} \rightarrow \text{Membrane}) \right\}_{=} \left\{ \begin{array}{c} (P_{A} - \Delta P)S_{m} \mathbf{y} \\ \mathbf{0} \end{array} \right\}_{\Delta}.$$

3- Effectuons l'inventaire des efforts qui s'appliquent sur le pointeau :

$$\left\{ \begin{array}{l} \mathcal{A}(\text{Eau} \rightarrow \text{Membrane}) \right\} = \left\{ \begin{array}{l} -P_{\text{A}}S_{\text{m}}\mathbf{y} \\ \mathbf{0} \end{array} \right\}_{\text{A}} \\ \left\{ \begin{array}{l} \mathcal{A}(\text{D\'etendeur} \rightarrow \text{P}) \right\} = \left\{ \begin{array}{l} R_{x}\mathbf{x} + R_{y}\mathbf{y} \\ \mathbf{0} \end{array} \right\}_{\text{O}} \\ \left\{ \begin{array}{l} \mathcal{A}(\text{D\'etendeur} \rightarrow \text{Membrane}) \right\} = \left\{ \begin{array}{l} (P_{\text{A}} - \Delta P)\mathbf{y} \\ \mathbf{0} \end{array} \right\}_{\text{A}}. \end{array}$$

Le clapet C exerce une force ponctuelle sur le pointeau en B. Appelons $F_{\rm c}$ cette force que nous devrons calculer. Le torseur résultant s'écrit alors :

$$\left\{ \mathcal{A}(C \to P) \right\} = \left\{ \begin{array}{c} -F_c x \\ \mathbf{0} \end{array} \right\}_B.$$

EXERCICES 159

Le PFS appliqué au pointeau en O s'écrit :

- Pour la résultante projetée sur les axes de R :

$$\begin{cases} /x : R_x - F_c = 0 \\ /y : -P_A S_m + (P_A - \Delta P) S_m + R_y = 0. \end{cases}$$

- Pour le moment :

$$-F_{c}x \wedge BO - (P_{A}S_{m})y \wedge AO + (P_{A} - \Delta P)S_{m}y \wedge AO = 0.$$

Or $AO = -a\cos\alpha y + a\sin\alpha x$, donc en projection sur z:

$$-F_{c}b + a\Delta PS_{m}\sin\alpha = 0.$$

Finalement, F_c est déterminée :

$$F_{\rm c} = \frac{a}{b} \sin \alpha \Delta PS_{\rm m}.$$

Donc le torseur exercé par le pointeau sur le clapet en B s'écrit :

$$\left\{ \mathcal{A}(P \to C) \right\}_{B} = -\left\{ \mathcal{A}(C \to P) \right\}_{B} = \left\{ \begin{array}{c} \frac{a}{b} \sin \alpha \Delta P S_{m} x \\ \mathbf{0} \end{array} \right\}_{B}.$$

- **4-** Il faut dans un premier temps recenser tous les torseurs qui s'appliquent sur le clapet.
- Torseur de la moyenne pression sur le clapet calculé en E :

$$\left\{ \mathcal{A}(M_{P} \to C) \right\} = \left\{ \begin{array}{c} M_{P} S_{s} c x \\ \mathbf{0} \end{array} \right\}_{E}.$$

- Torseur du ressort agissant sur le clapet en E :

$$\left\{ \mathcal{A}(\mathbf{R} \to \mathbf{C}) \right\} = \left\{ \begin{array}{c} -P_{\mathbf{A}} \mathbf{x} \\ \mathbf{0} \end{array} \right\}_{\mathbf{E}}.$$

- Torseur de la liaison pivot entre le clapet et le détendeur en D :

$$\left\{ \mathcal{A}(\text{D\'etendeur} \rightarrow \text{C}) \right\} = \left\{ \begin{array}{c} R_y \mathbf{y} \\ Nz \end{array} \right\}_{D}.$$

- Torseur du pointeau sur le clapet en B :

$$\left\{ \mathcal{A}(P \to C) \right\} = \left\{ \begin{array}{c} \frac{a}{b} \sin \alpha \Delta P S_{m} x \\ \mathbf{0} \end{array} \right\}_{B}.$$

– Torseur de la dépression sur le clapet en B en négligeant la surface des bords du clapets devant $S_{\rm c}$:

$$\left\{ \begin{array}{c} \mathcal{A}(\text{D\'epression} \rightarrow \text{C}) \end{array} \right\} = \left\{ \begin{array}{c} -(P_{\text{A}} \Delta P) S_{\text{c}} \boldsymbol{x} \\ \boldsymbol{0} \end{array} \right\}_{\text{B}}.$$

Le PFS appliqué au clapet peut être calculé au point B. Dans ce cas, en ne considérant que la projection selon x:

$$\frac{a}{b}\sin\alpha\Delta PS_{\rm m} - P_{\rm A} + M_{\rm P}S_{\rm c} - (P_{\rm A} - \Delta P)S_{\rm c} = 0.$$

Finalement, en négligeant S_c devant S_m , à :

$$\Delta P = \frac{P_{\rm A} - S_{s} c(M_{\rm P} - P_{\rm A})}{\frac{a}{b} \sin \alpha S_{\rm m}}.$$

5- Lorsque P_A augmente, ΔP diminue. Le plongeur fera donc moins d'effort inspiratoire au fond car la dépression nécessaire pour ouvrir le clapet sera moindre.

Chapitre 5

Cinétique du solide indéformable

Objectifs

- Définir le torseur cinétique.
- Définir et calculer les moments d'inertie d'un solide (par rapport à un plan, à un axe ou à un point).
- Définir et calculer l'opérateur d'inertie d'un solide.

Plan

Le plan sera placé automatiquement... ne rien faire de particulier.

5.1 Torseur cinétique

5.1.1 Résultante cinétique

La quantité de mouvement d'un point matériel M de masse m associée au mouvement de ce point par rapport à un repère R est p(M/R) = mV(M/R). Dans le cas d'un système matériel continu, on a la généralisation suivante :

Définition. Si S est un système matériel continu, on définit sa quantité de mouvement par rapport à un repère R (à un instant t quelconque) par : $p(S/R) = \int_{M \in S} V(M/R) \, dm,$ où dm désigne une masse élémentaire situé en M.

Fin Encadré

5.1.2 Moment cinétique

Le moment cinétique d'un point matériel M de masse m au point A est le produit vectoriel $\sigma(A \in M/R) = mAM \wedge V(M/R)$.

Encadré

Définition. On appelle moment cinétique du solide S par rapport à R au point A la quantité : $\sigma(A \in S/R) = \int_{M \in S} AM \wedge V(M/R) \, dm.$

Remarques:

 la quantité de mouvement et le moment cinétique sont calculés à partir du vecteur vitesse. Par conséquent, ils dépendent du repère par rapport auquel on observe le mouvement du solide S;

_____ Fin Encadré _

- le point de calcul du moment noté A est un point quelconque. Rappelons que la notation A ∈ S ne signifie pas nécessairement que A est un point matériel ;
- si le solide est homogène de masse volumique ρ (resp. surfacique ou linéique), on a alors :

$$p(S/R) = \rho \int_{M \in S} V(M/R) dv$$
 et $\sigma(A \in S/R) = \rho \int_{M \in S} AM \wedge V(M/R) dv$

où $\mathrm{d}v=\mathrm{d}m/\rho$ désigne un volume (resp. une surface, une longueur) élémentaire situé(e) en M.

Propriété. Soient A et B deux points quelconques. On peut réécrire le moment cinétique de S en B sous la forme :

$$\sigma(B \in S/R) = \int_{M \in S} \mathbf{B} \mathbf{M} \wedge \mathbf{V}(M/R) dm$$

$$= \int_{M \in S} (\mathbf{B} \mathbf{A} + \mathbf{A} \mathbf{M}) \wedge \mathbf{V}(M/R) dm$$

$$= \mathbf{B} \mathbf{A} \wedge \left(\int_{M \in S} \mathbf{V}(M/R) dm \right) + \int_{M \in S} \mathbf{A} \mathbf{M} \wedge \mathbf{V}(M/R) dm.$$

Dans cette dernière expression, la résultante et le moment cinétique au point A apparaissent clairement. On a donc :

$$\sigma(B \in S/R) = \sigma(A \in S/R) + BA \wedge p(S/R).$$
 (5.1)

Encadré _____

On en déduit qu'il existe un torseur, que l'on appelle torseur cinétique de S par rapport à R noté :

$$\left\{ \; C({\rm S/R}) \; \right\} = \left\{ \begin{array}{c} p({\rm S/R}) \\ \sigma({\rm A} \in {\rm S/R}) \end{array} \right\}_{\rm A}.$$

Comme pour tous les torseurs, son expression varie selon le point où il est calculé. En particulier, on peut décider de le calculer au point C, centre d'inertie du solide S.

_____ Fin Encadré _____

5.1.3 Torseur cinétique au centre de masse

Nous allons utiliser le centre de masse C défini par :

$$M_{\rm S}AC = \int_{M\in S} AM \, \mathrm{d}m \quad \forall A;$$

où M_S est la masse du solide S.

Nous allons choisir un point A particulier : l'origine O du repère R. Dérivons les deux membres de l'égalité par rapport au temps :

$$\frac{\mathrm{d}}{\mathrm{d}t} M_{\mathrm{S}} O C \bigg|_{\mathrm{R}} = \left. \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathrm{M} \in \mathrm{S}} O M \, \mathrm{d}m \right|_{\mathrm{R}}.$$

Principe de conservation de la masse : lorsque l'on s'intéresse à un système de masse constante on peut montrer qu'il est possible de permuter les opérateurs d'intégration et de dérivation. En conséquence :

$$M_{\rm S}V({\rm C/R}) = \int_{\rm M \in S} \frac{\mathrm{d}}{\mathrm{d}t} OM \,\mathrm{d}m \bigg|_{\rm R} = \int_{\rm M \in S} V({\rm M/R}) \,\mathrm{d}m. \tag{5.2}$$

La dernière expression n'est autre que la quantité de mouvement du solide. On retiendra donc que :

$$p(S/R) = M_S V(C/R). \tag{5.3}$$

La résultante cinétique s'obtient donc en considérant que la masse est concentrée au centre de masse de l'objet.

_____ Encadré _____

Ainsi, le torseur cinétique au centre de masse du système étudié peut s'écrire simplement :

$$\left\{ C(S/R) \right\} = \left\{ \begin{array}{c} M_S V(C/R) \\ \int_{M \in S} CM \wedge V(M/R) dm \end{array} \right\}_C.$$
 (5.4)

Fin Encadré

5.1.4 Exemple : torseur cinétique d'une tige

Considérons une tige d'épaisseur négligeable (figure 5.1), de longueur ℓ , homogène de masse m en liaison pivot d'axe (O, z) avec le bâti est contenue dans le plan (O, x, y).

Nous allons exprimer le torseur cinétique au centre de masse C et au point O origine du repère et extrémité de la tige.

$$\left\{ C(S/R) \right\} = \left\{ \begin{array}{c} mV(C/R) \\ \int_{P \in Tige} CP \wedge V(P/R) dm \end{array} \right\}_{C}. \tag{5.5}$$

Le vecteur position OC vaut $\ell/2 x_1$ ce qui donne $V(C/R) = \ell/2\dot{\alpha} y_1$. Pour calculer le moment cinétique, on peut considérer un petit élément de longueur dx_1 situé à une distance x_1 de C. L'élément de masse dm vaut $(m/\ell)dx_1$; m/ℓ représente la masse linéique de la tige. On a alors :

$$\int_{\text{PeTige}} \mathbf{CP} \wedge \mathbf{V}(\text{P/R}) \, dm = \int_0^\ell (x_1 - \ell/2) \, \mathbf{x}_1 \wedge (x_1 \dot{\alpha} \, \mathbf{y}_1) dm$$
$$= \dot{\alpha} \frac{m}{\ell} \, \mathbf{z} \, \int_0^\ell (x_1 - \ell/2) \, x_1 \, dx_1$$
$$= \frac{m\ell^2}{12} \dot{\alpha} \, \mathbf{z}.$$

Figure 5.1 – Tige.

Le torseur cinétique au point C se résume donc à :

$$\left\{ C(S/R) \right\} = \left\{ \begin{array}{l} \frac{m\ell}{2} \dot{\alpha} \, \mathbf{y}_1 \\ \frac{m\ell^2}{12} \dot{\alpha} \, z \end{array} \right\}_{C}.$$

On peut effectuer ce calcul en O et on obtient $m\ell^2\dot{\alpha}/3z$ pour le moment cinétique, soit par intégration, soit en utilisant la relation de moment de torseur.

5.1.5 Moment cinétique par rapport à un axe

Encadré
Définition. On appelle moment cinétique par rapport à un axe Δ dans un référentiel R la quantité scalaire $\sigma_{\Delta} = \sigma(A \in S/R)$. u avec u un vecteur unitaire de Δ et A un point quelconque appartenant à Δ .
Fin Encadré

Remarque : il convient de vérifier que la définition précédente est indépendante du choix du point A.

Soit A' un autre point de Δ . On notera simplement $\sigma_A = \sigma(A \in S/R)$, $\sigma_{A'} = \sigma(A' \in S/R)$ et p = p(S/R). La relation caractéristique (équation 5.1) du torseur cinétique implique que :

$$\sigma_{A} \cdot u = (\sigma_{A'} + AA' \wedge p) \cdot u$$

= $\sigma_{A'} \cdot u + (AA' \wedge p) \cdot u$.

Le produit mixte est nul puisque AA' et u sont colinéaires. Nous avons donc établi que σ_A . $u = \sigma_{A'}$. u quels que soient $A, A' \in \Delta$ et donc que σ_Δ est seulement fonction de l'axe Δ .

5.2 Moments et opérateur d'inertie

5.2.1 Moment d'inertie d'un solide par rapport à un plan

Figure 5.2 – Moment d'inertie par rapport à un plan.

Encadré ____

Définition. Soit un système matériel S. Son moment d'inertie par rapport à un plan P (figure 5.2) est donné par :

$$I_{P}(S) = \int_{M \in S} \boldsymbol{H} \boldsymbol{M}^{2} dm. \tag{5.6}$$

Fin Encadré _____

Dans cette expression le point H correspond à la projection orthogonale de M sur le plan P. Donc HM correspond à la distance entre le point M et le plan P. Lorsque l'on effectue l'intégration, pour M donné le point H l'est aussi mais comme M varie lors de l'intégration, H varie aussi.

Soit O un point du plan P et w un vecteur unitaire normal à P. On se donne le repère cartésien (O, x, y, z), ce qui permet d'écrire OM = xx + yy + zz et $w = \alpha x + \beta y + \gamma z$ avec, w étant unitaire, $\alpha^2 + \beta^2 + \gamma^2 = 1$. Comme H est la projection orthogonale de M sur P, on en déduit que HM et w sont colinéaires. On a alors $HM = \pm ||HM||w$ (le signe est fonction du sens de w). Par ailleurs, comme O et H appartiennent à P, on a $OH \cdot w = 0$. Ainsi, en projetant la relation OM = OH + HM sur w, on déduit que $OM \cdot w = \pm ||HM||$, c'est-à-dire $OM \cdot W = 0$. On peut donc réécrire l'équation (5.6) sous la forme

$$I_{P}(S) = \int_{M \in S} (\boldsymbol{OM} \cdot \boldsymbol{w})^{2} dm = \int_{M \in S} (\alpha x + \beta y + \gamma z)^{2} dm.$$

Si l'on choisit P= (O, y, z), on peut prendre le vecteur normal w = x (autrement dit $\alpha=1, \beta=\gamma=0$), et on a alors $(OM \cdot w)^2 = x^2$. En faisant le même raisonnement pour les plans (O, x, y) et (O, x, z), on obtient :

Encadré $I_{(O,x,y)} = \int_{M \in S} z^2 dm, \quad I_{(O,x,z)} = \int_{M \in S} y^2 dm, \quad I_{(O,y,z)} = \int_{M \in S} x^2 dm. \quad (5.7)$ Fin Encadré

5.2.2 Moment d'inertie d'un solide par rapport à un axe

_____Encadré ____

Définition. Soit un système matériel S. Son moment d'inertie par rapport à une droite Δ (figure 5.3) est donné par :

$$I_{\Delta}(S) = \int_{M \in S} H M^2 dm \tag{5.8}$$

_____ Fin Encadré _____

Ici encore, le point H correspond à la projection orthogonale de M sur la droite Δ . Donc HM représente la distance entre le point M et la droite. -

Remarque : la définition (équation 5.8) ne fait intervenir que la distance entre le point M et l'axe Δ . En particulier, le moment d'inertie par rapport à un axe est indépendant du choix de l'origine du système de coordonnées et de l'orientation de l'axe.

Figure 5.3 – Moment d'inertie par rapport à un axe.

Soit O un point de la droite Δ et \boldsymbol{u} un vecteur directeur unitaire de Δ . H étant le projeté orthogonal de M sur Δ , le triangle OHM est rectangle d'hypothénuse OM. Si l'on introduit l'angle θ comme sur la figure 5.3, on en déduit que HM = OM sin θ ce qui s'écrit aussi HM = $\|\boldsymbol{u} \wedge \boldsymbol{OM}\|$. Par conséquent, on peut réécrire l'équation (5.8) sous la forme :

$$I_{\Delta}(\mathbf{S}) = \int_{\mathbf{M} \in \mathbf{S}} ||\boldsymbol{u}| \wedge \boldsymbol{O}\boldsymbol{M}||^2 dm.$$
 (5.9)

Soit maintenant R = (O, x, y, z) un repère cartésien d'origine O. Si l'on choisit en particulier u = x, y et z, on obtient :

_____ Encadré _____

$$I_{(O,x)} = \int_{M \in S} (y^2 + z^2) \, dm, \quad I_{(O,y)} = \int_{M \in S} (x^2 + z^2) dm, \quad I_{(O,z)} = \int_{M \in S} (x^2 + y^2) \, dm.$$
(5.10)

_____ Fin Encadré _____

Remarque: on constate d'après les équations (5.7) que : $I_{(O,x,y)}(S) = I_{(O,x,z)}(S) + I_{(O,x,y)}(S)$. L'axe (O, x) est l'intersection des deux plans (O, x, y) et (O, x, z).

La propriété précédente peut se généraliser. En effet :

Th'eorème. Le moment d'inertie d'un système par rapport à un axe est égal à la somme des moments d'inertie par rapport à deux plans perpendiculaires se coupant suivant cet axe.

Démonstration. Soient P et P' deux plans perpendiculaires d'intersection Δ . Soit R = (O, x, y, z) un repère dont l'origine O est un point de Δ . On introduit w (resp. w') un vecteur normal unitaire au plan P (resp. P'). Puisque $\Delta = P \cap P'$, le vecteur $u = w \wedge w'$ est un vecteur directeur unitaire de Δ . Par conséquent, en utilisant l'équation (5.9):

$$I_{\Delta} = \int_{\mathsf{M} \in \mathcal{S}} ||\boldsymbol{u}| \wedge \boldsymbol{O}\boldsymbol{M}||^2 \mathrm{d}\boldsymbol{m} = \int_{\mathsf{M} \in \mathcal{S}} \left((\boldsymbol{w} \wedge \boldsymbol{w}') \wedge \boldsymbol{O}\boldsymbol{M} \right)^2 \mathrm{d}\boldsymbol{m}.$$

D'après les formules de double produit vectoriel données au chapitre 1, il vient :

$$\begin{split} I_{\Delta} &= \int_{\mathsf{M} \in \mathsf{S}} \left((\boldsymbol{w} \cdot \boldsymbol{O} \boldsymbol{M}) \boldsymbol{w}' - (\boldsymbol{w}' \cdot \boldsymbol{O} \boldsymbol{M}) \boldsymbol{w} \right)^2 \mathrm{d} \boldsymbol{m} \\ &= \int_{\mathsf{M} \in \mathsf{S}} (\boldsymbol{w} \cdot \boldsymbol{O} \boldsymbol{M})^2 \mathrm{d} \boldsymbol{m} + \int_{\mathsf{M} \in \mathsf{S}} (\boldsymbol{w}' \cdot \boldsymbol{O} \boldsymbol{M})^2 \mathrm{d} \boldsymbol{m} - 2 \int_{\mathsf{M} \in \mathsf{S}} (\boldsymbol{w} \cdot \boldsymbol{O} \boldsymbol{M}) (\boldsymbol{w}' \cdot \boldsymbol{O} \boldsymbol{M}) \boldsymbol{w} \cdot \boldsymbol{w}' \mathrm{d} \boldsymbol{m}. \end{split}$$

Les deux premières intégrales correspondent aux moments cinétiques du système par rapport P et P'. Les plans étant perpendiculaires, on a $w \cdot w' = 0$ et la dernière intégrale est donc nulle. On a ainsi :

$$I_{\Delta} = I_{\mathrm{P}} + I_{\mathrm{P'}}$$

ce qui établit le résultat annoncé.

5.2.3 Additivité

On peut remarquer que la définition du centre masse permet d'écrire que si le système S de masse M_S peut être décomposé en plusieurs parties S_i simples (i.e. dont les centres de masse C_i sont simples à déterminer) de

masse M_i (S = \bigcup_i S_i et $M_S = \sum_i M_i$) alors le centre de masse C de S est tel que :

$$M_{\rm S} \mathbf{OC} = \int_{\rm M \in S} \mathbf{OM} \, \mathrm{d}m = \sum_{i} \int_{\rm M \in S_i} \mathbf{OM} \, \mathrm{d}m = \sum_{i} M_i \mathbf{OC}_i.$$
 (5.11)

De la même façon, si $I_{i,\Delta}$ désigne le moment d'inertie de la partie S_i par rapport à un axe Δ , on aura pour le moment d'inertie total :

$$I_{\Delta} = \int_{\mathsf{M}\in\mathsf{S}} \mathbf{H} \mathbf{M}^2 \, \mathrm{d}m = \sum_{i} \int_{\mathsf{M}\in\mathsf{S}_i} \mathbf{H} \mathbf{M}^2 \, \mathrm{d}m = \sum_{i} I_{i,\Delta}$$
 (5.12)

où l'on a noté H le projeté orthogonal de M sur Δ .

5.2.4	Moment d'inertie d'un solide par rapport à	un point

Définition. Soit un système matériel S. Son moment d'inertie par rapport à un point N est donné par :

$$I_{\rm N}({\rm S}) = \int_{{\rm M}^{-{\rm S}}} NM^2 {\rm d}m.$$

Fin Encadré _____

Encadré _____

Dans cette expression, le point N correspond à la projection de M sur le point N ce qui montre qu'en fait on a le même type de définition que pour le moment d'inertie par rapport à un axe ou à un plan.

Si l'on choisit comme point N l'origine O d'un repère cartésien, l'intégrale précédente devient :

Encadré _____

$$I_{\rm O}({\rm S}) = \int_{{\rm M}\in{\rm S}} (x^2 + y^2 + z^2) \,{\rm d}m.$$

Fin Encadré _____

Remarque: on constate que:

Encadré ____

$$\begin{split} I_{\rm O}({\rm S}) &= I_{({\rm O},x,z)}({\rm S}) + I_{({\rm O},x,y)}({\rm S}) + I_{({\rm O},y,z)}({\rm S}) \\ &= \frac{1}{2} \left(I_{({\rm O},x)}({\rm S}) + I_{({\rm O},y)}({\rm S}) + I_{({\rm O},z)}({\rm S}) \right). \end{split}$$

_____ Fin Encadré _____

Le point O est l'intersection des trois plans (O, x, y), (O, y, z) et (O, x, z).

5.2.5 Opérateur d'inertie d'un solide

Soit O un point et Δ un axe quelconque passant par O et de vecteur unitaire u. D'après l'identité 5.9, le moment d'inertie d'un solide S par rapport à Δ est donné par

$$I_{\Delta} = \int_{\mathsf{M} \in \mathsf{S}} (\mathbf{O}\mathbf{M} \wedge \mathbf{u})^2 \, \mathrm{d}m = \int_{\mathsf{M} \in \mathsf{S}} (\mathbf{O}\mathbf{M} \wedge \mathbf{u}) \cdot (\mathbf{O}\mathbf{M} \wedge \mathbf{u}) \, \mathrm{d}m.$$

Posons $w = OM \land u$. Par permutation circulaire du produit mixte, on obtient l'identité $w \cdot (OM \land u) = u \cdot (w \land OM)$. On trouve alors

$$I_{\Delta} = \int_{M \in S} u \cdot ((OM \wedge u) \wedge OM) \, \mathrm{d}m.$$

Comme le vecteur \boldsymbol{u} ne dépend pas du point M de S ; on peut le sortir de l'intégrale. Il vient :

$$I_{\Delta} = \boldsymbol{u} \cdot \int_{M \in S} ((\boldsymbol{OM} \wedge \boldsymbol{u}) \wedge \boldsymbol{OM}) \, d\boldsymbol{m} = \boldsymbol{u} \cdot \boldsymbol{v}, \tag{5.13}$$

où l'on a posé $v = \int_{M \in S} ((OM \wedge u) \wedge OM) \, dm$. On vérifie aisément que l'application qui à u associe le vecteur v est linéaire.

Encadré _____

Définition. L'opérateur d'inertie d'un système matériel S en un point O est l'application linéaire $\mathcal{J}(O,S)$ définie par :

$$\mathcal{J}(O, S)[u] = \int_{M \in S} ((OM \wedge u) \wedge OM) \, dm.$$
 (5.14)

pour tout vecteur u.

Fin Encadré _____

Remarque : l'opérateur d'inertie est une application à valeurs vectorielles. Ainsi, la notation $\mathcal{J}(O,S)[u]$, un peu lourde, doit rappeler que le résultat de l'opération \mathcal{J} appliquée au vecteur u est un vecteur.

En tant qu'application linéaire, l'opérateur d'inertie peut se représenter dans une base donnée B par une matrice. Cette matrice, notée $[J(O,S)]_B$, est la matrice d'inertie de S par rapport au point O dans la base B.

5.2.6 Calcul de la matrice d'inertie

La formule générale (équation 5.14) ne dépend pas de la base dans laquelle elle est exprimée. Dans ce qui suit, nous déterminons les éléments de la matrice [J(O,S)] pour une base donnée. On se donne un repère cartésien (O,x,y,z) et on suppose que les composantes de u sont (α,β,γ) dans la base associée à ce repère. On considère un point M du système de coordonnées (x,y,z) dans cette base.

Nous pouvons écrire (voir Annexe 2):

$$OM \wedge u = \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}.$$

En composant à nouveau avec l'application $u \mapsto OM \wedge u$, on voit que l'on peut écrire :

$$OM \wedge (OM \wedge u) = \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}^2 \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$
$$= \begin{pmatrix} -z^2 - y^2 & xy & xz \\ xy & -x^2 - z^2 & yz \\ xz & yz & -x^2 - y^2 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}.$$

Donc en intégrant sur le système on trouve :

$$\mathcal{J}(O, S)[u] = \int_{M \in S} -OM \wedge (OM \wedge u) dm$$

$$= \int_{M \in S} \begin{pmatrix} z^2 + y^2 & -xy & -xz \\ -xy & x^2 + z^2 & -yz \\ -xz & -yz & x^2 + y^2 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} dm.$$

L'intégration (qui se calcule élément par élément) est indépendante du vecteur u. En ce qui concerne les éléments diagonaux, on reconnaît les expressions des moments d'inertie par rapport aux axes (O, x), (O, y) et (O, z) (équation 5.10). Les éléments non-diagonaux sont de la forme $I_{uv} = \int_{M \in S} uv \, dm$ avec u, v = x, y, z et $u \neq v$; on les appelle produits d'inertie. On en déduit que la matrice d'inertie se résume finalement à :

$$[J(O,S)]_{(x,y,z)} = \begin{pmatrix} I_{(O,x)} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{(O,y)} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{(O,z)} \end{pmatrix}.$$
 (5.15)

Remarque : on rencontre souvent la notation suivante pour les composantes de la matrice d'inertie :

$$[J(O,S)]_{(x,y,z)} = \begin{pmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{pmatrix}.$$

D'après l'expression 5.13, le calcul de la matrice d'inertie ramène celui du moment d'inertie par rapport à un axe à un simple produit matriciel. Précisément, si l'on reprend le vecteur directeur $\mathbf{u} = (\alpha, \beta, \gamma)$ et l'on conserve les notations précédentes, on a :

$$I_{\Delta} = (\alpha \beta \gamma) \begin{pmatrix} A - F - E \\ -F B - D \\ -E - D C \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$
$$= A\alpha^{2} + B\beta^{2} + C\gamma^{2} - 2\beta\gamma D - 2\gamma\alpha E - 2\alpha\beta F$$

ce qui généralise la définition (5.10) à un axe quelconque.

5.2.7 Exemple: matrice d'inertie d'un cylindre

Considérons un cylindre homogène (figure 5.4), de hauteur h, de rayon R et de masse m. Nous allons déterminer la matrice d'inertie $[J(O,S)]_{(x,y,z)}$ de ce cylindre en O. Tout d'abord, le volume du cylindre étant $\pi R^2 h$, on en déduit que sa masse volumique est donnée par $\rho = m/(\pi R^2 h)$. Par ailleurs, le système de coordonnées approprié est le système cylindrique (r, θ, z) relié au système cartésien par :

$$\begin{cases} x = r\cos\theta; \\ y = r\sin\theta; \\ z = z; \end{cases}$$

Figure 5.4 – Cylindre d'axe (0, z).

et pour lequel l'élément de volume est $dv = rdr d\theta dz$. La matrice à calculer (équation 5.15) devient :

$$\frac{[J_{\rm O}]}{\rho} = \int_0^R {\rm d}r \int_0^{2\pi} {\rm d}\theta \int_0^h r \left(\begin{array}{ccc} z^2 + r^2 \sin^2\theta & -r^2 \cos\theta \sin\theta & -rz \cos\theta \\ -r^2 \cos\theta \sin\theta & r^2 \cos^2\theta + z^2 & -rz \sin\theta \\ -rz \cos\theta & -rz \sin\theta & r^2 \end{array} \right) {\rm d}z.$$

On effectue d'abord les intégrations sur θ (l'ordre n'a pas d'importance ici). Elles font intervenir des intégrales du type :

$$\int_0^{2\pi} \sin\theta \, d\theta = \int_0^{2\pi} \cos\theta \, d\theta = 0$$
$$\int_0^{2\pi} \cos\theta \sin\theta \, d\theta = \frac{1}{2} \int_0^{2\pi} \sin 2\theta \, d\theta = 0$$
$$\int_0^{2\pi} \cos^2\theta \, d\theta = \int_0^{2\pi} \sin^2\theta \, d\theta = \pi.$$

On voit donc que seules les composantes diagonales sont non-nulles. On verra dans ce chapitre que ce résultat peut être établi en utilisant les propriétés de symétrie du système (sans aucun calcul). On trouve donc :

$$[J_{\rm O}] = \rho \pi \int_0^R dr \int_0^h r \begin{pmatrix} 2z^2 + r^2 & 0 & 0\\ 0 & r^2 + 2z^2 & 0\\ 0 & 0 & 2r^2 \end{pmatrix} dz.$$

On constate que $I_{(O,x)} = I_{(O,y)}$ puisque ces axes sont équivalents vis-à-vis du cylindre (la répartition de masse du cylindre est homogène par rapport à l'axe (O,x) et la même que celle par rapport à l'axe (O,y)). En effectuant les intégrations (élémentaires) sur r et sur z et en remplaçant la masse volumique par $m/(\pi R^2 h)$, on arrive finalement à l'expression suivante pour la matrice d'inertie du cylindre en O:

$$[J(O,S)]_{(x,y,z)} = m \begin{pmatrix} R^2/4 + h^2/3 & 0 & 0\\ 0 & R^2/4 + h^2/3 & 0\\ 0 & 0 & R^2/2 \end{pmatrix}.$$
 (5.16)

En considérant qu'un cylindre de hauteur nulle est un disque (ici contenu dans le plan (O, x, y)) et qu'un cylindre de rayon nul est une tige (ici selon (O, z)) on peut exploiter le résultat précédent en prenant la limite $h \to 0$ et $R \to 0$. Il vient alors :

$$[J(O, disque)]_{(x,y,z)} = m \begin{pmatrix} R^2/4 & 0 & 0\\ 0 & R^2/4 & 0\\ 0 & 0 & R^2/2 \end{pmatrix};$$

$$[J(O, tige)]_{(x,y,z)} = m \begin{pmatrix} h^2/3 & 0 & 0\\ 0 & h^2/3 & 0\\ 0 & 0 & 0 \end{pmatrix}.$$
(5.17)

Remarque : il faut faire attention à la signification des limites $h \to 0$ et $R \to 0$ qui ont été prises pour obtenir les relations précédentes (équations 5.18). En effet, si l'on fait tendre « naïvement » R ou h vers 0, on constate, puisque $m = \rho \pi R^2 h$, que la masse de la tige ou du disque est nulle (de même que la matrice d'inertie). Ainsi, il faut bien veiller à prendre la limite en imposant que la masse du cylindre reste constante. Les notions de masse surfacique et de masse linéique découlent précisément de cette façon de procéder :

- cas du disque de rayon R: pour maintenir la masse du disque constante à la limite $h \to 0$, il faut que la masse volumique diverge comme 1/h (d'où le problème lorsque h = 0). Plutôt que de raisonner sur un cylindre de hauteur arbitrairement petite et de masse volumique arbitrairement grande, on va considérer le disque de surface πR^2 et de masse surfacique $\sigma = \rho h$ (qui restent toutes deux finies dans la limite $h \to 0$).
- <u>cas de la tige de longueur h</u>: on introduit la masse linéique $\lambda = \rho \pi R^2$ qui a une valeur finie lorsque $R \to 0$ avec m maintenue constante.

Encadré ____

Plus généralement, on retiendra que dans le cadre d'une description continue de la matière, on modélise un objet (tridimensionnel) dont l'une des

dimensions est petite devant les deux autres par une distribution surfacique (de masse, de charge ...). De même, pour un objet qui présente deux dimensions petites, on utilisera une distribution linéique. Ces objets géométriques (une surface, une courbe) sont munis d'une densité surfacique (resp. linéique) qui traduit simplement le fait que de la masse est concentrée dans un petit volume.

5.3 Symétries matérielles et axes principaux d'inertie

Dans la pratique, les solides étudiés possèdent souvent des symétries qui simplifient grandement les calculs et qu'il faut donc exploiter systématiquement.

5.3.1 Symétries

Définition. On dira qu'un système S possède une symétrie matérielle par rapport à un point, une droite ou un plan si pour tout point A du système S, il existe un point B symétrique de A (par rapport au point, à la droite ou au plan) tel que :

- B appartient à S;
- $-\rho(A) = \rho(B)$ avec ρ la masse volumique locale.

Définition. On dira qu'un système S possède une symétrie de révolution par rapport à un axe Δ si pour tout point A du système on a

- M appartient à S;
- $-\rho(M) = \rho(A),$

quel que soit M obtenu par une rotation de A autour de Δ (d'angle quelconque).

5.3.2 Axes principaux d'inertie

La matrice d'inertie d'un système matériel est symétrique et réelle. Elle possède donc trois valeurs propres réelles et trois directions propres associées.

Remarque : les axes principaux d'inertie correspondent à des directions de symétrie du système (symétrie au sens des moments d'inertie). Dans la base B associée aux axes principaux, la matrice d'inertie de S s'écrit :

$$[J(O,S)]_{B} = \begin{pmatrix} I_{1} & 0 & 0 \\ 0 & I_{2} & 0 \\ 0 & 0 & I_{3} \end{pmatrix},$$

où les valeurs propres $I_{1,2,3}$, que l'on appelle moments d'inertie principaux, sont positives.

_____ Encadré ____

Th'eorème. Si le système possède un plan de symétrie matérielle alors :

- son centre de masse appartient à ce plan;
- tout axe perpendiculaire à ce plan est un axe principal;
- les deux autres axes principaux appartiennent à ce plan.

_____ Fin Encadré _____

Démonstration. Soit O un point du plan de symétrie (noté P), (O, x, y) un repère de P et un axe (O, z) perpendiculaire à P passant par O (le plan P est aussi le plan z = 0). Montrons d'abord que le centre de masse C appartient à P. On a :

$$OC \cdot z = \frac{1}{m} \int_{M \in S} (OM \cdot z) \, dm = \frac{1}{m} \int_{M \in S} z \, dm.$$
 (5.18)

La symétrie de plan P assure qu'à tout point $M \in S$ de masse dm, on peut associer son symétrique M' par rapport à P de masse dm' = dm tel que $z_M = -z_{M'}$ avec $x_M = x_{M'}$ et $y_M = y_{M'}$. Si l'on introduit S^+ (respectivement S^-) l'intersection de S avec le demi-espace z > 0 (resp. avec z < 0), on voit que $\int_{M' \in S^-} z \, dm' = -\int_{M \in S^+} z \, dm$. On en déduit que l'intégrale dans

FIGURE 5.5 – Plan de symétrie.

(5.18) est nulle (et donc que OC . z=0), ce qui établit la première partie du théorème. Par un raisonnement analogue, on peut montrer que :

$$\int_{M \in S} xz \, dm = \int_{M \in S} yz \, dm = 0.$$

Cela étant, la matrice d'inertie dans la base (x, y, z) est de la forme :

$$[J(O,S)]_{(x,y,z)} = \begin{pmatrix} I_{(O,x)} & I_{xy} & 0\\ I_{xy} & I_{(O,y)} & 0\\ 0 & 0 & I_{(O,z)} \end{pmatrix}.$$
 (5.19)

et l'on a donc prouvé que (O, z) est un axe principal d'inertie. Il reste à montrer que les deux derniers axes principaux appartiennent à P. Si $I_{xy} = I_{yx} = 0$ alors x et y sont des vecteurs propres de la matrice d'inertie et il n'y a rien à faire. Dans le cas contraire, on peut toujours diagonaliser la matrice précédente à l'aide d'une rotation dans le plan P (qui laisse z inchangé); les vecteurs propres obtenus forment une base principale d'inertie.

Th'eorème. Si le système possède un axe de symétrie matérielle alors :

- son centre de masse est un point de cet axe;
- cet axe est un axe principal d'inertie.

Démonstration. Appelons Δ l'axe de symétrie. Soient O un point de Δ et (x, y, z) une base orthonormée telle que z soit un vecteur unitaire de Δ . Une masse élémentaire dm située en $M \in S$ a pour symétrique par rapport à l'axe Δ la masse dm' située en M' tel que $x_{M'} = -x_M$, $y_{M'} = -y_M$ et $z_{M'} = z_M$ avec dm' = dm. On voit alors que $\int_{M \in S} x dm = \int_{M \in S} y dm = 0$ de même que $\int_{M \in S} xz dm = \int_{M \in S} yz dm = 0$. On en déduit, d'une part, que $OC \cdot x = OC \cdot y = 0$ et, d'autre part, que $I_{xz} = I_{yz} = 0$. Autrement dit, le centre de masse est un point de Δ et la matrice d'inertie en O est de la forme 5.19, c'est-à-dire que (O, z) est principal d'inertie.

Encadré ____

Th'eorème. Si un système S possède un axe de symétrie de révolution, alors tout trièdre orthogonal incluant cet axe est un trièdre principal d'inertie et sa matrice d'inertie est de la forme :

$$[J(O,S)]_{(x,y,z)} = \left(\begin{array}{ccc} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I' \end{array}\right);$$

et le système est dit cylindrique (à base circulaire).

Fin Encadré _____

Démonstration. Notons Δ l'axe de symétrie. La symétrie de révolution implique que tout plan contenant Δ est un plan de symétrie. Par conséquent, un des axes principaux appartient à l'intersection de ces plans de symétrie, qui n'est autre que l'axe Δ lui-même. Montrons maintenant que tout trièdre incluant Δ est un trièdre principal. Soit z un vecteur unitaire de Δ et (x, y, z) un trièdre orthonormé (contenant z) quelconque. Si l'on considère un plan P contenant Δ et perpendiculaire à x (resp. à y), le théorème de la page 177 peut être invoqué pour montrer que x (resp. y) est un axe principal. Il reste à démontrer que $I_{(O,x)} = I_{(O,y)}$. Pour cela, il suffit de remarquer que y s'obtient par rotation de x autour de (O,z) d'angle $\pi/2$. La symétrie de

révolution autour de Δ implique donc que ces directions sont équivalentes pour le système, ce qui entraı̂ne l'égalité des moments d'inertie par rapport à ces deux axes.

Encadré

Définition. Un système est dit sphérique si sa matrice d'inertie est de la forme : $[J(O,S)]_{(x,y,z)} = \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix}. \tag{5.20}$ Fin Encadré

Encart

Théorèmes de Guldin

Il s'agit de deux énoncés de géométrie euclidienne traditionnellement attribués au mathématicien suisse Paul Guldin (1577, 1643). Il est probable que ces résultats aient déjà été connus de Pappus d'Alexandrie (IVe siècle); c'est pourquoi on rencontre aussi l'appellation de théorèmes de Pappus-Guldin. Ils permmettent d'obtenir les expressions d'une surface et d'un volume de révolution.

- Surface de révolution

Théorème de Guldin 1. La surface d'un solide de révolution engendré par une ligne tournant autour d'un axe Δ de son plan mais ne le traversant pas est égale au produit de la longueur de la ligne qui l'engendre par la longueur de la circonférence décrite par le centre de masse de cette ligne.

Soit L la longueur de la ligne, C son centre de masse et H le projeté orthogonal de C sur l'axe de révolution Δ . L'aire S de la surface du solide de révolution ainsi engendré s'exprime :

$$S = 2\pi L d_{HC}$$

 $d_{\rm HC}$ étant la distance entre H et C.

- Volume de révolution

Théorème de Guldin 2. Le volume d'un solide de révolution engendré par une surface tournant autour d'un axe Δ de son plan mais ne le traversant pas est égal au produit de l'aire de la surface qui l'engendre par la longueur de la circonférence décrite par le centre de masse de cette surface.

Soit S l'aire de la surface, C son centre de masse et H le projeté orthogonal de C sur l'axe de révolution Δ . Le volume V du solide de révolution ainsi engendré s'exprime :

$$V = 2\pi S d_{HC}$$

 $d_{\rm HC}$ étant la distance entre H et C.

FIGURE 5.6 – Théorèmes de Guldin.

Exemple : volume d'un cylindre creux de hauteur h, de rayon intérieur r et de rayon extérieur R (figure 5.7). On applique le théorème de Guldin à une surface rectangulaire de longueur h et de largeur (R-r), l'axe de révolution est à une distance r+(R-r)/2 du centre de masse de la surface. D'après le théorème de Guldin :

$$V = 2\pi (h(R-r))(r + (R-r)/2) = h\pi (R^2 - r^2).$$

Dans la pratique, le théorème de Guldin est souvent utilisé pour localiser le centre de masse d'une surface.

Exemple: Soit un demi-disque dont on cherche le centre de masse. On utilise le fait que le centre de masse appartient à un axe de symétrie. On utilise le théorème de Guldin et on obtient :

$$1/2\pi R^2 \times (2\pi r_{\rm C}) = 4/3\pi R^3 \text{ soit } r_{\rm C} = 4R/3\pi.$$

Fin Encart _

FIGURE 5.7 – Cylindre creux.

5.3.3 Exemples

Culbuto

On se propose de déterminer le centre de masse et le moment d'inertie par rapport à son axe du culbuto de la figure 5.8. On choisit pour origine O le pôle de la demi-sphère et l'axe (O, z) aligné avec l'axe du culbuto. Comme le système présente une symétrie de révolution autour de cet axe, on sait que les centres de masse de S, S₁, S₂ et S₃ se trouvent sur cet axe. On peut montrer, nous l'admettrons ici, que le centre de masse C1 de la demi-sphère (pleine) est tel que $OC_1 = 5/8 R_1 z$ et que son moment d'inertie par rapport à l'axe (O, z) vaut $I_{1,(O,z)} = m_1 R_1^2 / 5$. Le cylindre possède un axe de symétrie de même qu'un plan de symétrie (le plan médian); le centre de masse du cylindre se trouve à l'intersection de ces deux éléments de symétrie, c'està-dire au centre du cylindre. On a donc $OC_2 = (R_1 + h_2/2) z$. De plus, le calcul précédent de la matrice d'inertie d'un cylindre (équation 5.16) montre que le moment d'inertie du cylindre S_2 par rapport à l'axe (O, z) est $I_{2,(O,z)} = m_2 R_2^2 / 2$. En ce qui concerne le cône, le calcul du centre de masse et de la matrice d'inertie est proposé dans l'exercice 5.2. En transposant les résultats au cas étudié ici, on trouve $OC_3 = (R_1 + h_2 + 1/4 h_3)z$ et $I_{3,(O,z)} = (3/10)m_3R_3^2$. Les propriétés d'additivité (équations 5.11 et 5.12) permettent d'obtenir immédiatement le centre de masse C et le moment FIGURE 5.8 – Culbuto à trois pièces constitué :

- d'une base hémisphérique pleine S_1 , de masse m_1 et de rayon R_1 ;
- d'un cylindre (plein) S_2 , de masse m_2 de hauteur h_2 et de rayon R_2 ;
- d'une tête cônique (pleine) S₃,
 de masse m₃ de hauteur h₃ et de rayon maximal R₃.

On suppose que l'axe du culbuto S coïncide exactement avec l'axe de chacune des pièces.

d'inertie du culbuto:

$$\begin{split} OC &= \frac{1}{M} (m_1 OC_1 + m_2 OC_2 + m_3 OC_3) \\ &= \frac{1}{M} \left(\frac{5}{8} m_1 R_1 + \frac{1}{2} m_2 (2R_1 + h_2) + \frac{1}{4} m_3 (4R_1 + 4h_2 + h_3) \right) z \,; \\ I_{(O,z)} &= I_{1,(O,z)} + I_{2,(O,z)} + I_{3,(O,z)} = \frac{1}{5} m_1 R_1^2 + \frac{1}{2} m_2 R_2^2 + \frac{3}{10} m_3 R_3^2. \end{split}$$

où $M = m_1 + m_2 + m_3$ désigne la masse totale du culbuto.

Remarque : un culbuto bien conçu doit avoir son centre de masse le plus bas possible : de cette façon, on favorise le retour vers la position verticale.

Sphère creuse

On s'intéresse à présent au moment d'inertie I_{Δ} d'une sphère S creuse homogène de masse M, de rayon R par rapport à un axe Δ passant par son centre de masse. Le centre de masse appartient aux éléments de symétrie de la sphère. Il est donc confondu avec le centre O de celle-ci. La sphère étant creuse, tous les points sont à la même distance du centre de masse. On peut tirer profit de cette propriété pour obtenir rapidement le moment d'inertie $I_{\rm O}$ du système par rapport à C. Il vient en effet :

$$I_O = \int_{\mathsf{P} \in \mathsf{S}} \mathbf{O} \mathbf{P}^2 \mathrm{d} m = R^2 \int_{\mathsf{P} \in \mathsf{S}} \mathrm{d} m = M R^2.$$

De plus, compte tenu des symétries du problème, la matrice d'inertie du système est de la forme (5.20). Or, on sait que le moment d'inertie par rapport à O s'obtient en calculant la demi-somme de moments d'inertie par rapport aux trois axes (O, x), (O, y) et (O, z). On en déduit donc que $I_{\Delta} = 2/3 I_{O} = 2/3 MR^{2}$.

Demi-sphère creuse

Figure 5.9 – Demi-sphères S_N (Nord) et S_S (Sud) obtenues en coupant la sphère complète au niveau de l'équateur.

On souhaite maintenant déterminer le moment d'inertie d'une demi-sphère S' de masse m=M/2 et de rayon identique R, par rapport à l'axe de révolution. Considérons les demi-sphères S_N et S_S obtenues en séparant la sphère précédente en deux (figure 5.9). Soit Δ l'axe joignant les pôles de la sphère. L'additivité du moment cinétique permet d'écrire :

$$I_{\Delta}(S) = I_{\Delta}(S_{N}) + I_{\Delta}(S_{S}) = \frac{2}{3}MR^{2}.$$

Le fait que S_S soit l'image de S_N par la symétrie de plan (O, x, y) va nous permettre de trouver une relation simple entre $I_{\Delta}(S_N)$ et $I_{\Delta}(S_S)$. En effet, cette dernière transformation est équivalente au retournement de l'axe (O, z). Or, on sait que le moment d'inertie de dépend pas de l'orientation des axes par rapport auxquels on le calcule mais seulement de la distance des points du système à l'axe (définition 5.8). Par conséquent, on a $I_{\Delta}(S_N) = I_{\Delta}(S_S) = 1/3 \, MR^2$ ou encore $I_{\Delta}(S) = 2/3 \, mR^2$.

5.4 Théorèmes des axes parallèles (Huygens)

_____ Encart ____

Christiaan Huygens était un scientifique néerlandais (1629, 1695) né à La Haye et qui s'est intéressé aux chocs des corps (ce qui l'a conduit à remettre en cause les lois de conservation proposées par Descartes), à la chute libre (il conçoit alors le pendule qui porte son nom qu'il utilise en tant qu'horloge), à l'attraction entre corps et au mouvement des planètes (à la suite de Newton) et qui a rédigé des notes sur l'harmonie. La notion de moment d'inertie lui est aussi attribuée, ce qui explique sa paternité dans les théorèmes suivants.

Fin Encart _____

5.4.1 Théorème de Huygens

Figure 5.10 – Théorème de Huygens.

_____ Encadré _____

Théorème de Huygens. Soit un système S de masse m de centre de masse C. Soient Δ un axe et I_{Δ} le moment d'inertie de S par rapport à Δ . Considérons un axe Δ_C parallèle à Δ et passant par C. Soit d la distance entre ces deux axes

$$I_{\Delta} = I_{\Delta_{\mathcal{C}}} + md^2. \tag{5.21}$$

Fin Encadré _____

Démonstration. Soit H la projection orthogonale d'un point M du système sur Δ et H' sa projection orthogonale sur Δ_C (figure 5.10). On peut remarquer que M, H et H' forment un triangle dans un plan perpendiculaire aux deux droites Δ et Δ_C . Donc HH' $\equiv d$ et ceci pour tous les points M du système S. Par définition du moment d'inertie, on a :

$$\begin{split} I_{\Delta} &= \int_{\mathsf{M} \in \mathcal{S}} \boldsymbol{H} \boldsymbol{M}^2 \mathrm{d} \boldsymbol{m} = \int_{\mathsf{M} \in \mathcal{S}} (\boldsymbol{H} \boldsymbol{H}' + \boldsymbol{H}' \boldsymbol{M})^2 \mathrm{d} \boldsymbol{m} \\ &= \int_{\mathsf{M} \in \mathcal{S}} \boldsymbol{H} \boldsymbol{H}'^2 \mathrm{d} \boldsymbol{m} + 2 \int_{\mathsf{M} \in \mathcal{S}} \boldsymbol{H} \boldsymbol{H}' \cdot \boldsymbol{H}' \boldsymbol{M} \, \mathrm{d} \boldsymbol{m} + \int_{\mathsf{M} \in \mathcal{S}} \boldsymbol{H}' \boldsymbol{M}^2 \mathrm{d} \boldsymbol{m}. \end{split}$$

La première intégrale vaut simplement md^2 et la dernière correspond à I_{Δ_C} . Pour conclure, il reste donc à établir que la deuxième intégrale est nulle. Pour cela, on peut remarquer que bien que H et H' dépendent de M, le vecteur HH', tout comme la distance HH', ne dépend que de Δ et Δ_C . Ainsi,

$$\begin{split} \int_{\mathsf{M}\in\mathsf{S}} HH'\cdot H'M\,\mathrm{d}m &= HH'\cdot \int_{\mathsf{M}\in\mathsf{S}} H'M\,\mathrm{d}m \\ &= HH'\cdot \int_{\mathsf{M}\in\mathsf{S}} (H'C+CM)\mathrm{d}m. \end{split}$$

Par définition du centre de masse $\int_{M \in S} CM dm = 0$. De plus, quel que soit $M \in S$, on sait que les points H et H' sont dans un plan perpendiculaire aux deux droites Δ et Δ_C . Autrement dit, on a HH'. H'C = 0 ce qui implique HH'. $\int_{M \in S} H'C dm = 0$. La relation (5.21) est donc démontrée.

Remarque : le théorème de Huygens peut être utilisé dans les deux sens : sachant calculer le moment d'inertie par rapport un axe passant par le centre de masse, on saura le faire pour un axe quelconque parallèle et réciproquement. On constate que le moment d'inertie par rapport à un axe est minimal si cet axe passe par le centre de masse.

5.4.2 Généralisation : Théorème de Huygens-Steiner

La matrice d'inertie dépend du point en lequel elle est calculée. Le théorème suivant fourni une relation simple entre la matrice d'inertie en un point et la même matrice au centre de masse lorsque ces deux matrices sont représentées dans une même base.

Théorème de Huygens-Steiner. Soit un repère R = (O, x, y, z). On note B la base (x, y, z). Soit un système S de masse M et dont le centre de masse

se trouve en C tel que $\mathbf{OC} = x_{\mathbf{C}}\mathbf{x} + y_{\mathbf{C}}\mathbf{y} + z_{\mathbf{C}}\mathbf{z}$. Alors, on a :

$$[J(O,S)]_{B} = [J(C,S)]_{B} + M \begin{pmatrix} y_{C}^{2} + z_{C}^{2} & -x_{C}y_{C} & -x_{C}z_{C} \\ -x_{C}y_{C} & z_{C}^{2} + x_{C}^{2} & -y_{C}z_{C} \\ -x_{C}z_{C} & -y_{C}z_{C} & x_{C}^{2} + y_{C}^{2} \end{pmatrix}.$$
(5.22)

____ Fin Encadré _____

Démonstration. Soit M un point. On note (x, y, z) (resp. (x', y', z')) ses coordonnées dans R (resp. dans R' = (C, x, y, z)). Les formules de changement de repère s'écrivent :

$$\begin{cases} x' = x - x_{\mathrm{C}} \\ y' = y - y_{\mathrm{C}} \\ z' = z - z_{\mathrm{C}}. \end{cases}$$

Commençons par montrer que :

$$I_{(O,x)} = I_{(C,x)} + M(y_C^2 + z_C^2)$$

$$I_{(O,y)} = I_{(C,y)} + M(x_C^2 + z_C^2)$$

$$I_{(O,z)} = I_{(C,z)} + M(x_C^2 + y_C^2).$$

Ces relations ne sont qu'un cas particulier du théorème de Huygens déjà démontré. Il reste donc à établir que les produits d'inertie satisfont (5.22). Un changement de variable suivant les formules de changement de repère montre que :

$$I_{u'v'} = \int_{M \in S} u'v' dm = \int_{M \in S} (u - u_C)(v - v_C) dm$$

où u, v = x, y, z avec $u \neq v$ (ce qui correspond aux éléments non diagonaux). On a donc :

$$I_{u'v'} = \int_{\mathsf{M} \in \mathsf{S}} uv \, \mathrm{d}m - u_\mathsf{C} \int_{\mathsf{M} \in \mathsf{S}} v \, \mathrm{d}m - v_\mathsf{C} \int_{\mathsf{M} \in \mathsf{S}} u \, \mathrm{d}m + u_\mathsf{C} v_\mathsf{C} \int_{\mathsf{M} \in \mathsf{S}} \mathrm{d}m.$$

La première intégrale n'est autre que le produit d'inertie I_{uv} . Par définition du centre de masse, on a de plus $\int u \, dm = Mu_C$ et $\int v \, dm = Mv_C$. Par conséquent, la dernière identité devient simplement :

$$I_{uv} = I_{u'v'} + Mu_{\rm C}v_{\rm C}.$$

En regroupant les différents produits d'inertie dans leur matrice d'inertie respective (équation 5.15), on aboutit bien à la relation cherchée. □

Remarque : le nom donné théorèmes précédents varie selon les références ; ainsi, bien que le nom d'Huygens apparaisse dans la grande majorité des cas, on rencontre aussi le théorème de Steiner tout seul.

5.5 Calcul du moment cinétique d'un solide

Par définition, le moment cinétique s'écrit :

$$\sigma(A \in S/R) = \int_{M \in S} AM \wedge V(M/R) dm.$$
 (5.23)

Si l'on suppose que le point A est lié au solide S alors le champ des vitesses dans le solide permet d'écrire :

$$\sigma(A \in S/R) = \int_{M \in S} AM \wedge (V(A \in S/R) + MA \wedge \Omega(S/R)) dm.$$

Comme $V(A \in S/R)$ ne dépend pas du point M, il vient :

$$\sigma(\mathbf{A} \in \mathbf{S/R}) = \left(\int_{\mathbf{M} \in \mathbf{S}} AM \, \mathrm{d}m\right) \wedge V(\mathbf{A} \in \mathbf{S/R}) + \int_{\mathbf{M} \in \mathbf{S}} AM \, \wedge (MA \, \wedge \Omega(\mathbf{S/R})) \, \mathrm{d}m.$$

D'après la définition du centre de masse, on obtient :

$$\sigma(\mathbf{A} \in \mathbf{S/R}) = M_{\mathbf{S}} \mathbf{A} \mathbf{C} \wedge \mathbf{V}(\mathbf{A} \in \mathbf{S/R}) + \int_{\mathbf{M} \in \mathbf{S}} \mathbf{A} \mathbf{M} \wedge (\mathbf{\Omega}(\mathbf{S/R}) \wedge \mathbf{A} \mathbf{M}) \, d\mathbf{m}.$$
 (5.24)

5.5.1 Mouvement plan sur plan

Soient S un solide et R = (O, x, y, z) un repère fixe tel que le mouvement de S soit plan dans le plan (O, x, y). Dans ce cas, le vecteur vitesse de rotation s'écrit simplement : $\Omega(S/R) = \dot{\theta}z$. On introduit maintenant le repère $R' = (O', x_1, y_1, z)$ attaché au solide S. La formule de décomposition précédente au point O' permet d'écrire :

$$\begin{split} \sigma(\mathrm{O}' \in \mathrm{S/R}) &= M_{\mathrm{S}} O'C \ \land V(\mathrm{O}' \in \mathrm{S/R}) \\ &+ \int_{\mathrm{M} \in \mathrm{S}} (x_1 \boldsymbol{x}_1 + y_1 \boldsymbol{y}_1 + z \boldsymbol{z}) \ \land \left(\dot{\theta} \boldsymbol{z} \ \land (x_1 \boldsymbol{x}_1 + y_1 \boldsymbol{y}_1 + z \boldsymbol{z}) \right) \mathrm{d} \boldsymbol{m}. \end{split}$$

Ce qui donne après calculs :

$$\begin{split} \sigma(\mathrm{O}' \in \mathrm{S/R}) &= M_{\mathrm{S}} \, O'C \, \wedge V(\mathrm{O}' \in \mathrm{S/R}) \\ &- \dot{\theta} \int_{\mathrm{M} \in \mathrm{S}} \big(x_1 z \, \boldsymbol{x}_1 + y_1 z \, \boldsymbol{y}_1 - (x_1^2 + y_1^2) \boldsymbol{z} \big) \mathrm{d} \boldsymbol{m}. \end{split}$$

On reconnaît des éléments de la matrice d'inertie. Si l'on pose donc :

$$E_1 = \int_{M \in S} x_1 z \, dm$$

$$D_1 = \int_{M \in S} y_1 z \, dm$$

$$C = \int_{M \in S} (x_1^2 + y_1^2) \, dm.$$

on peut alors écrire :

$$\sigma(O' \in S/R) = M_S O' C \wedge V(O' \in S/R) - \dot{\theta} E_1 x_1 - \dot{\theta} D_1 y_1 + \dot{\theta} C z.$$

Cas particuliers. On a deux cas importants et courants :

1. Le point O' est fixe dans R:

$$\sigma(O' \in S/R) = -\dot{\theta}E_1x_1 - \dot{\theta}D_1y_1 + \dot{\theta}Cz.$$

Si de plus le plan (O, x, y) est plan de symétrie alors l'expression se simplifie encore :

$$\sigma(O' \in S/R) = \dot{\theta}I_{(O',z)}z. \tag{5.25}$$

2. On choisit de calculer le moment cinétique au point C centre d'inertie :

$$\sigma(C \in S/R) = -\dot{\theta}E_1x_1 - \dot{\theta}D_1y_1 + \dot{\theta}Cz.$$

Il faut bien faire attention que l'expression est la même que précédemment mais pour des raisons différentes. Si de plus le plan est plan de symétrie on retrouve aussi la simplification précédente (équation 5.25).

Remarque : soit Δ l'axe (O', z) et supposons que l'on a une symétrie de plan (O, x, y). On peut projeter (5.25) sur Δ :

$$\sigma_{\Delta} = \dot{\theta} I_{\Delta},$$

où σ_{Δ} est le moment cinétique de S par rapport à Δ (définition 5.1.5). Cette relation scalaire ne dépend pas du point O', mais seulement de l'axe Δ qui est fixe dans le mouvement du solide.

5.5.2 Cas général

Dans ce cas, on reprend l'expression (5.24) :

$$\begin{split} \sigma(\mathbf{A} \in \mathbf{S}/\mathbf{R}) &= M_{\mathbf{S}} \boldsymbol{A} \boldsymbol{C} \, \wedge \boldsymbol{V}(\mathbf{A} \in \mathbf{S}/\mathbf{R}) \\ &+ \int_{\mathbf{M} \in \mathbf{S}} \boldsymbol{A} \boldsymbol{M} \, \wedge (\boldsymbol{\mathcal{Q}}(\mathbf{S}/\mathbf{R}) \, \wedge \boldsymbol{A} \boldsymbol{M}) \, \mathrm{d} \boldsymbol{m}. \end{split}$$

On constate que le second terme correspond à la définition de l'opérateur d'inertie (5.14). On a donc :

_____Encadré ____

$$\sigma(A \in S/R) = M_S A C \wedge V(A \in S/R) + \mathcal{J}(A, S)[\Omega(S/R)].$$

Dans les deux cas particuliers d'un point A fixe dans R ou de A pris en C on a :

1. Le point A est fixe dans R:

$$\sigma(A \in S/R) = \mathcal{J}(A, S)[\Omega(S/R)]. \tag{5.26}$$

2. Le point A est pris comme C:

$$\sigma(C \in S/R) = \mathcal{J}(C, S)[\Omega(S/R)]. \tag{5.27}$$

_____ Fin Encadré _____

5.6 Énergie cinétique d'un solide

_____ Encadré _____

Définition. L'énergie cinétique *T* d'un solide S en mouvement par rapport à un repère R est donnée par :

$$T(S/R) = \frac{1}{2} \int_{M \in S} V^2(M/R) dm.$$
 (5.28)

Fin Encadré _____

Si l'on se donne un point A appartenant au solide S, on peut décomposer la vitesse d'un point $M \in S$ quelconque en $V(M/R) = V(A \in S/R) + MA \land \Omega(S/R)$. En injectant cette expression dans (5.28), on trouve :

$$\begin{split} T(\mathbf{S}/\mathbf{R}) &= \frac{1}{2} \int_{\mathbf{M} \in \mathbf{S}} \left(V(\mathbf{A} \in \mathbf{S}/\mathbf{R}) + \boldsymbol{M} \boldsymbol{A} \wedge \boldsymbol{\varOmega}(\mathbf{S}/\mathbf{R}) \right) . \, V(\mathbf{M}/\mathbf{R}) \, \mathrm{d}\boldsymbol{m} \\ &= \frac{1}{2} \boldsymbol{V}(\mathbf{A} \in \mathbf{S}/\mathbf{R}) . \, \int_{\mathbf{M} \in \mathbf{S}} \boldsymbol{V}(\mathbf{M}/\mathbf{R}) \, \mathrm{d}\boldsymbol{m} \\ &+ \frac{1}{2} \boldsymbol{\varOmega}(\mathbf{S}/\mathbf{R}) . \, \int_{\mathbf{M} \in \mathbf{S}} \boldsymbol{A} \boldsymbol{M} \wedge \boldsymbol{V}(\mathbf{M}/\mathbf{R}) \, \mathrm{d}\boldsymbol{m}. \end{split}$$

On reconnaît dans cette dernière expression les éléments de réduction du torseur cinématique et du torseur cinétique exprimés au point A. Plus précisément, on a :

$$\begin{split} T(S/R) &= \frac{1}{2} \left\{ \begin{array}{l} \boldsymbol{\varOmega}(S/R) \\ \boldsymbol{V}(A \in S/R) \end{array} \right\} \cdot \left\{ \begin{array}{l} \boldsymbol{p}(S/R) \\ \boldsymbol{\sigma}(A \in S/R) \end{array} \right\} \\ &= \frac{1}{2} \left\{ \left. \mathcal{V}(S/R) \right. \right\}_{A} \cdot \left\{ \left. C(S/R) \right. \right\}_{A} \, . \end{split}$$

Ce que l'on vient de montrer peut s'énoncer :

Encad	ré

Th'eorème. L'énergie cinétique d'un solide est le comoment du torseur cinématique et du torseur cinétique (pris au même point).

En considérant un point fixe dans R ou le centre de masse C, on obtient les relations équivalentes à (5.26) et (5.27) en terme d'énergie cinétique :

1. Cas d'un point A fixe dans le repère R:

$$T(S/R) = \frac{1}{2} \Omega(S/R) \cdot \mathcal{J}(A, S)[\Omega(S/R)]. \tag{5.29}$$

2. Cas du point A confondu avec C:

$$T(S/R) = \frac{1}{2}MV(C \in S/R)^2 + \frac{1}{2}\Omega(S/R) \cdot \mathcal{J}(C, S)[\Omega(S/R)]; \quad (5.30)$$

où *M* désigne la masse de S.

Exemple : calculons l'énergie cinétique de la tige de la figure 5.1 en rotation par rapport à (O, z). On écrit :

$$T(\text{Tige/R}) = \frac{1}{2} \int_{\text{P}\in\text{Tige}} V^2(\text{P/R}) \, dm$$
$$= \frac{1}{2} \int_0^\ell (u \dot{\alpha} x_1)^2 (\frac{m}{\ell}) \, du$$
$$= \frac{1}{2} \frac{m\ell^2}{3} \dot{\alpha}^2 = \frac{m\ell^2}{6} \dot{\alpha}^2.$$

On peut aussi l'énergie cinétique en faisant apparaître la vitesse du centre de masse $V(C \in Tige/R) = (\ell/2)\dot{\alpha}\,y_1$. On trouve en effet facilement :

$$T(\text{Tige/R}) = \frac{1}{2} m V(C \in S/R)^2 + \frac{1}{2} I_{(C,z)} \dot{\alpha}^2$$

avec $I_{(C,z)} = m\ell^2/12$. Cette dernière expression, qui est un cas particulier de l'équation (5.30), montre clairement que l'énergie cinétique comporte deux contributions :

- la première correspond au mouvement de translation du centre de masse ;
- la seconde correspond au mouvement de rotation du solide observé dans un repère dont l'origine est liée au centre de masse.

De plus, on voit que la masse m et le moment d'inertie $I_{(C,z)}$ jouent un rôle équivalent vis-à-vis de ces deux contributions.

Points clefs

On désignera par S un système matériel indéformable de masse *M* et de centre de masse C.

 Le torseur cinétique {C} de S par rapport au repère R en un point A est défini par :

$$\left\{ C(S/R) \right\} = \left\{ \begin{array}{l} p(S/R) = \int_{M \in S} V(M/R) \, dm = MV(C \in S/R) \\ \sigma(A \in S/R) = \int_{M \in S} AM \wedge V(M/R) \, dm \end{array} \right\}$$

où p(S/R) est la quantité de mouvement de S par rapport à R et $\sigma(A \in S/R)$ est le moment cinétique de S par rapport à R au point A.

– Le **moment d'inertie** de S par rapport à un plan P, axe Δ ou un point N est donné par :

$$I_{P}(S) = \int_{M \in S} \boldsymbol{H}_{P} \boldsymbol{M}^{2} dm$$

$$I_{\Delta}(S) = \int_{M \in S} \boldsymbol{H}_{\Delta} M^{2} dm$$

$$I_{N}(S) = \int_{M \in S} \boldsymbol{N} \boldsymbol{M}^{2} dm.$$

où H_P (resp. H_Δ) est le projeté orthogonal de M sur P (resp. sur Δ).

POINTS CLEFS 193

− Addivité des centres de masse et des moments d'inertie. Si S peut être décomposé en plusieurs sous-parties S_i de centres de masse C_i et de masses M_i (tels que $S = \bigcup_i S_i$ et $M = \sum_i M_i$), alors :

$$MOC = \sum_{i} M_{i} OC_{i}.$$

De plus, le moment d'inertie total par rapport à un axe Δ , $I_{\Delta}(S)$, peut se calculer comme :

$$I_{\Delta}(S) = \sum_{i} I_{\Delta}(S_i).$$

L'opérateur d'inertie de S en un point O est l'application linéaire (à valeurs vectorielles) J(O, S) définie par :

$$\mathcal{J}(O, S)[u] = \int_{M \in S} ((OM \wedge u) \wedge OM) dm$$

pour tout vecteur u. Cet opérateur se représente dans une base (x, y, z) par la **matrice d'inertie** :

$$[J(O,S)]_{(x,y,z)} = \begin{pmatrix} I_{(O,x)} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{(O,y)} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{(O,z)} \end{pmatrix}$$

où

$$I_{(O,x)} = \int_{M \in S} (y^2 + z^2) \, dm, I_{(O,y)} = \int_{M \in S} (x^2 + z^2) \, dm, I_{(O,z)} = \int_{M \in S} (x^2 + y^2) \, dm.$$

et où les produits d'inertie sont définis par

$$I_{uv} = \int_{M \in S} uv \, dm$$
 avec $u, v = x, y, z$ et $u \neq v$.

- Théorèmes de symétrie :
 - Si S possède un plan de symétrie matérielle alors :
 - C appartient à ce plan;
 - tout axe perpendiculaire à ce plan est un axe principal;
 - les deux autres axes principaux appartiennent à ce plan.
 - Si S possède un axe de symétrie de révolution, alors tout trièdre orthogonal incluant cet axe est un trièdre principal d'inertie et sa matrice d'inertie en un point O est de la forme :

$$[J(O,S)]_{(x,y,z)} = \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I' \end{pmatrix}$$

et le système est dit cylindrique (à base circulaire).

- **Théorème de Huygens-Steiner** Soit un repère R = (O, x, y, z). On note B la base (x, y, z). On désigne par (x_C, y_C, z_C) les coordonnées de C dans R. Alors, on a :

$$[J(O,S)]_{B} = [J(C,S)]_{B} + M \begin{pmatrix} y_{C}^{2} + z_{C}^{2} & -x_{C}y_{C} & -x_{C}z_{C} \\ -x_{C}y_{C} & z_{C}^{2} + x_{C}^{2} & -y_{C}z_{C} \\ -x_{C}z_{C} & -y_{C}z_{C} & x_{C}^{2} + y_{C}^{2} \end{pmatrix}.$$

Calcul du moment cinétique. Le moment cinétique de S dans son mouvement par rapport au repère R au point A est donné par :

$$\sigma(A \in S/R) = MAC \wedge V(A \in S/R) + \mathcal{J}(A, S)[\Omega(S/R)].$$

En particulier, si:

- A est fixe dans le repère R, on a :

$$\sigma(A \in S/R) = \mathcal{J}(A, S)[\Omega(S/R)].$$

- A et C sont confondus :

$$\sigma(C \in S/R) = \mathcal{J}(C, S)[\Omega(S/R)].$$

 L'énergie cinétique T d'un solide S en mouvement par rapport à un repère R est donnée par :

$$T(S/R) = \frac{1}{2} \int_{M \in S} V^2(M/R) dm = \frac{1}{2} \{ \mathcal{V}(S/R) \}_A . \{ C(S/R) \}_A;$$

 $\left\{ \left. \mathcal{V}(S/R) \right. \right\}$ étant le torseur cinématique de S par rapport à R.

- Calcul de l'énergie cinétique. À partir de l'opérateur d'inertie :
 - en un point A fixe dans le repère R :

$$T(S/R) = \frac{1}{2} \Omega(S/R) \cdot \mathcal{J}(A, S) [\Omega(S/R)],$$

- au centre de masse C :

$$T(S/R) = \frac{1}{2}MV(C \in S/R)^2 + \frac{1}{2}\Omega(S/R) \cdot \mathcal{J}(C, S)[\Omega(S/R)].$$

- Matrices d'inerties de quelques solides homogènes simples :

POINTS CLEFS 195

Solide	Schéma	Matrice d'inertie $[J(O, S)]_{(x,y,z)}$
Cylindre		$M\begin{pmatrix} \frac{R^2}{4} + \frac{h^2}{3} & 0 & 0\\ 0 & \frac{R^2}{4} + \frac{h^2}{3} & 0\\ 0 & 0 & \frac{R^2}{2} \end{pmatrix}$
Cône (Ex. 5.2)	h Q y x	$\frac{3}{20}M\begin{pmatrix} R^2 + 4h^2 & 0 & 0\\ 0 & R^2 + 4h^2 & 0\\ 0 & 0 & 2R^2 \end{pmatrix}$
Demi- Sphère creuse	O. R	$\frac{2}{3}M\begin{pmatrix} R^2 & 0 & 0\\ 0 & R^2 & 0\\ 0 & 0 & R^2 \end{pmatrix}$

Exercices

Exercice 5.1. Moment d'inertie d'une tige

On considère une tige mince T=AB, homogène, de longueur 2ℓ de masse m.

- 1) Par intégration, calculer le moment d'inertie de T par rapport à un axe (A, u) passant par une de ses extrémités et perpendiculaire à sa direction.
- **2)** En utilisant le théorème de Huygens, en déduire le moment d'inertie par rapport à un axe passant par le milieu de la tige.
- **3)** Retrouver ce résultat à partir du résultat de la question 1, mais cette fois sans utiliser le théorème de Huygens ni l'intégration.

Exercice 5.2. Centre de masse et matrice d'inertie d'un cône

On considère un cône plein (figure 5.11), homogène, de masse volumique ρ , de hauteur h et de rayon maximal R.

- 1) Calculer la masse m du cône en fonction de ρ , h et R.
- 2) Déterminer la position du centre de masse.
- 3) Calculer la matrice d'inertie du cône à son sommet.

Figure 5.11 – Cône de révolution.

EXERCICES 197

Exercice 5.3. Centre de masse et matrice d'inertie d'une demi-sphère

On considère une demi-sphère S de masse m et de rayon R.

FIGURE 5.12 – Coordonnées sphériques. L'angle θ correspond à la longitude et ϕ à la latitude en repérage terrestre.

- 1) Calculer la matrice d'inertie de la demi-sphère en son centre O.
- 2) Déterminer la position du centre de masse C de S.
- 3) Exprimer la matrice d'inertie en C.

____ Conseils ____

Utiliser les coordonnées sphériques (r, θ, ϕ) . Avec les conventions de la figure 5.12, on les définit comme suit :

$$\begin{cases} x = r \sin \theta \cos \phi; \\ y = r \sin \theta \sin \phi; \\ z = r \cos \theta. \end{cases}$$
 (5.31)

L'élément de surface sur la sphère de rayon R est $dA = R^2 \sin \theta \, d\theta \, d\phi$.

Fin Conseils

Exercice 5.4. Anémomètre à coupelles

Un anémomètre à coupelles est un appareil que l'on utilise pour mesurer la vitesse du vent. Il est constitué de quatre coupelles S_i , de centre respectifs O_i ayant la forme de demi-sphères creuses comme le montre la figure 5.13. Les coupelles sont homogènes, de masse m et de rayon R. Leurs centres sont situés à la distance b de l'axe de rotation (O, z). On néglige l'inertie des tiges assurant la liaison entre les coupelles.

1) Soit R = (O, x, y, z) un repère lié à l'anémomètre S. Calculer le moment d'inertie de S par rapport à (O, z). On pourra commencer par déterminer le moment d'inertie d'une sphère creuse de centre O de rayon R de masse M par rapport à un axe quelconque passant par O.

FIGURE 5.13 – Anémomètre.

2) On suppose que l'anémomètre est en liaison pivot d'axe (O, z) par rapport au bâti 0. On introduit $R_0 = (O, x_0, y_0, z_0)$ un repère lié au bâti avec l'angle $\alpha = (x_0, x) = (y_0, y)$. Calculer le moment cinétique au point O de l'anémomètre dans son mouvement par rapport au bâti.

Solutions

Solution 5.1.

1) et 2) On introduit la masse linéique $m/2\ell$ et on intègre x^2dx entre 0 et 2ℓ . Il suffit ensuite d'appliquer le théorème de Huygens (relation 5.21) pour une distance entre les deux axes égale à ℓ .

3) On peut considérer deux tiges de longueur ℓ et utiliser la question **1**) et l'additivité du moment d'inertie.

Solution 5.2.

1) On pose R(z)=Rz/h. On peut alors paramétrer le cône en coordonnées cylindriques par $0 \le z \le h$ et $0 \le r \le R(z)$. Pour calculer le volume du cône, on peut remarquer qu'une portion de cône comprise entre z et z+dz (très proches) peut-être assimilée à un cylindre de rayon R(z) et de hauteur dz. Le volume de ce cylindre élémentaire est ainsi $\pi R(z)^2 dz$. Par conséquent, on a :

$$V_{\text{cône}} = \int_0^h \pi R(z)^2 dz = \pi \frac{R^2}{h^2} \int_0^h z^2 dz = \frac{\pi R^2 h}{3};$$

d'où l'on tire la masse du cône $m = \frac{\rho}{3}\pi R^2 h$.

2) Le même découpage donne pour le centre de masse :

OC =
$$\frac{1}{m} \int_0^h z \rho \pi R(z)^2 dz = \frac{3}{h^3} \int_0^h z^3 dz = \frac{3h}{4}$$
.

On trouve donc que le centre de masse ne dépend pas du rayon du cône (noter que le centre de masse est plus près de la base que du sommet).

3) Pour des raisons de symétrie, la matrice d'inertie du cône est diagonale dans la base (x, y, z) (voir figure 5.11) et $I_{(O, x)} = I_{(O, y)}$. Nous allons reprendre les formules d'intégrations en coordonnées cylindriques utilisées

dans ce chapitre. Les intégrations par rapport à θ sont identiques à celles du paragraphe 5.2.7 déjà traitées pour le cylindre. On trouve ainsi :

$$[J(O, \hat{cone})]_{(x,y,z)} = \rho \pi \int_0^h dz \int_0^{R(z)} r \begin{pmatrix} 2z^2 + r^2 & 0 & 0\\ 0 & r^2 + 2z^2 & 0\\ 0 & 0 & 2r^2 \end{pmatrix} dr.$$

Attention : l'intégrale sur r doit être calculée en premier puisque R(z) est une fonction de z. Il vient :

$$[J(O, \hat{cone})]_{(x,y,z)} = \rho \pi \int_0^h \begin{pmatrix} z^2 R(z)^2 + R(z)^4/4 & 0 & 0\\ 0 & R(z)^4/4 + z^2 R(z)^2 & 0\\ 0 & 0 & R(z)^4/2 \end{pmatrix} dz.$$

Les intégrations restantes ne posent pas de difficultés :

$$\frac{1}{2} \int_0^h R(z)^4 dz = \frac{R^4}{2h^4} \int_0^h z^4 dz = \frac{R^4h}{10}$$

$$\int_0^h (z^2 R(z)^2 + R(z)^4 / 4) dz = \frac{R^2}{h^2} \int_0^h z^4 dz + \frac{1}{2} \frac{R^4h}{10} = \frac{R^2h^3}{5} + \frac{R^4h}{20}$$

$$= \frac{R^2h}{5} \left(\frac{R^2}{4} + h^2\right).$$

En remplaçant, on obtient finalement:

$$[J(O, \hat{cone})]_{(x,y,z)} = \frac{3}{20} m \begin{pmatrix} R^2 + 4h^2 & 0 & 0\\ 0 & R^2 + 4h^2 & 0\\ 0 & 0 & 2R^2 \end{pmatrix}.$$

Solution 5.3.

1) L'axe (O, z) est un axe de révolution de la demi-sphère. La matrice d'inertie dans la base (x, y, z) s'écrit donc :

$$[J(O,S)]_{(x,y,z)} = \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I' \end{pmatrix}.$$

La masse surfacique de la demi-sphère est $\sigma = m/A(S)$ où $A(S) = 2\pi R^2$ désigne sa surface. En passant en coordonnées sphériques, l'intégrale permettant de calculer I' se met sous la forme :

$$I' = \int_{\mathsf{M} \in \mathsf{S}} (x^2 + y^2) \mathrm{d}m = \sigma R^2 \int_0^{\pi/2} \mathrm{d}\theta \int_0^{2\pi} R^2 \sin^2\theta \sin\theta \, \mathrm{d}\phi.$$

SOLUTIONS 201

Le calcul est laissé au lecteur. On a vu dans le chapitre que le résultat est $I' = 2/3 \, mR^2$. Le calcul de I peut se faire en effectuant l'intégration en coordonnées sphériques. Nous allons contourner ce calcul en utilisant le moment d'inertie par rapport au point O. On obtient sa valeur facilement :

$$I_O = \int_{\mathrm{M} \in \mathcal{S}} \mathrm{OM}^2 \mathrm{d}m = R^2 \int_{\mathrm{M} \in \mathcal{S}} \mathrm{d}m = mR^2.$$

En se rappelant la relation $I_O = (I_{(O,x)} + I_{(O,y)} + I_{(O,z)})/2 = I + I'/2$, on trouve $I = 2/3 \, mR^2$. On a donc :

$$[J(O,S)]_{(x,y,z)} = \left(\begin{array}{ccc} 2/3 \, mR^2 & 0 & 0 \\ 0 & 2/3 \, mR^2 & 0 \\ 0 & 0 & 2/3 \, mR^2 \end{array} \right);$$

ce qui montre que le système est sphérique en O. Remarquons que l'on ne pouvait a priori pas prédire cette propriété par des arguments de symétries.

2) En raison de la symétrie de révolution, le centre de masse se trouve sur l'axe (0, z). Par définition, on a de plus :

$$OC = \frac{z}{m} \int_{M \in S} z \, dm = \frac{z}{2\pi R^2} \int_0^{\pi/2} d\theta \int_0^{2\pi} (R\cos\theta) R^2 \sin\theta \, d\phi.$$

L'intégration sur ϕ est immédiate. Le produit $\sin \theta \cos \theta$ ayant pour primitive $-\cos(2\theta)/4$, on obtient finalement :

$$OC = zR \left[-\frac{\cos 2\theta}{4} \right]_0^{\pi/2} = \frac{R}{2}z.$$

3) Afin d'exprimer la matrice d'inertie au centre de masse, on va utiliser le théorème de Huygens-Steiner. D'après la question précédente, ce dernier permet d'écrire :

$$[J(\mathcal{O},\mathcal{S})]_{(x,y,z)} = [J(\mathcal{C},\mathcal{S})]_{(x,y,z)} + m \left(\begin{array}{ccc} R^2/4 & 0 & 0 \\ 0 & R^2/4 & 0 \\ 0 & 0 & 0 \end{array} \right);$$

on trouve donc:

$$[J(C,S)]_{(x,y,z)} = \frac{2mR^2}{3} \begin{pmatrix} 5/8 & 0 & 0 \\ 0 & 5/8 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Solution 5.4.

1) Nous allons déterminer la matrice d'inertie de l'anémomètre (qui n'est pas demandée dans l'énoncé). Appellons C_i le centre de masse de la coupelle S_i et notons B = (x, y, z). D'après l'exercice précédent, on a :

$$[J(O_{\rm i},S_{\rm i})]_{\rm B} = \left(\begin{array}{ccc} 2/3\,mR^2 & 0 & 0 \\ 0 & 2/3\,mR^2 & 0 \\ 0 & 0 & 2/3\,mR^2 \end{array} \right);$$

et

$$O_1C_1 = (R/2) y,$$
 $O_2C_2 = -(R/2) x;$
 $O_3C_3 = -(R/2) y,$ $O_4C_4 = (R/2) x.$

À l'aide du théorème de Huygens-Steiner, on obtient la matrice d'inertie des S_i calculée en leur centre de masse respectifs :

$$[J(C_1, S_1)]_B = [J(C_3, S_3)]_B = \frac{2mR^2}{3} \begin{pmatrix} 5/8 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 5/8 \end{pmatrix}.$$

de même que :

$$[J(C_2, S_2)]_B = [J(C_4, S_4)]_B = \frac{2mR^2}{3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5/8 & 0 \\ 0 & 0 & 5/8 \end{pmatrix}.$$

Il s'agit maintenant de calculer la matrice d'inertie au centre O de l'anémomètre. Ici encore, c'est le théorème de Huygens-Steiner qu'il convient d'utiliser. Considérons d'abord la coupelle S_1 . On a $OC_1 = bx + R/2y$ (voir figure 5.13). D'où l'on tire :

$$\begin{split} [J(\mathbf{O},\mathbf{S}_1)]_{\mathrm{B}} &= [J(\mathbf{C}_1,\mathbf{S}_1)]_{\mathrm{B}} + m \begin{pmatrix} R^2/4 & -bR/2 & 0 \\ -bR/2 & b^2 & 0 \\ 0 & 0 & b^2 + R^2/4 \end{pmatrix} \\ &= mR^2 \begin{pmatrix} 2/3 & -\beta/2 & 0 \\ -\beta/2 & 2/3 + \beta^2 & 0 \\ 0 & 0 & 2/3 + \beta^2 \end{pmatrix}; \end{split}$$

où l'on a posé $\beta=b/R>1$. Le même raisonnement permet d'obtenir la matrice des coupelles restantes. On trouve :

$$[J(O, S_3)]_B = mR^2 \begin{pmatrix} 2/3 & -\beta/2 & 0 \\ -\beta/2 & 2/3 + \beta^2 & 0 \\ 0 & 0 & 2/3 + \beta^2 \end{pmatrix},$$

SOLUTIONS 203

et

$$[J(O, S_2)]_B = [J(O, S_4)]_B = mR^2 \begin{pmatrix} 2/3 & \beta/2 & 0\\ \beta/2 & 2/3 + \beta^2 & 0\\ 0 & 0 & 2/3 + \beta^2 \end{pmatrix}.$$

Pour conclure, il reste à additionner les contributions de chacune des coupelles :

$$[J(O,S)]_{B} = \sum_{i=1}^{4} [J(O,S_{i})]_{B}$$

$$= 2mR^{2} \begin{pmatrix} 4/3 + \beta^{2} & 0 & 0\\ 0 & 4/3 + \beta^{2} & 0\\ 0 & 0 & 4/3 + 2\beta^{2} \end{pmatrix}.$$

On trouve que donc l'anémomètre est un système cylindrique d'axe (O, z) tel que $I_{(O,z)} > I_{(O,x)}$.

2) D'après l'équation (5.27), on a pour le moment cinétique en O :

$$\sigma(O \in S/R_0) = \mathcal{J}(O, S)[\Omega(S/R_0)].$$

où $\Omega(S/R_0)$ est le vecteur vitesse de rotation de l'anémomètre par rapport au bâti. L'anémomètre étant en liaison pivot avec le bâti en O, on a, avec les notations de l'énoncé, $\Omega(S/R_0) = \dot{\alpha}z$. Par conséquent, on a :

$$\sigma(O \in S/R_0) = m\dot{\alpha}(8/3R^2 + 4b^2)z.$$

Chapitre 6

Dynamique

Objectifs

- Définir le torseur dynamique et le relier au torseur cinétique.
- Énoncer le Principe fondamental de la dynamique, en repères galiléen et non galiléen.
- Énoncer les théorèmes énergétiques.
- Obtenir les équations du mouvement.

Plan

Le plan sera placé automatiquement... ne rien faire de particulier.

6.1 Torseur dynamique

6.1.1 Définition

Encadré Le torseur dynamique $\{\mathcal{D}\}$, ou torseur des quantités d'accélération d'un système matériel S en mouvement par rapport à un repère R, est défini de la

façon suivante, en un point A quelconque :

$$\{\mathcal{D}(S/R)\} = \left\{ \begin{array}{c} \int_{M \in S} \boldsymbol{\Gamma}(M/R) \, dm \\ \boldsymbol{\delta}(A \in S/R) = \int_{M \in S} \boldsymbol{AM} \wedge \boldsymbol{\Gamma}(M/R) \, dm \end{array} \right\}_{A}. \tag{6.1}$$

Dans le torseur dynamique :

- Le vecteur ∫_{M∈S} Γ(M/R) dm représente la résultante des accélérations, et s'obtient par sommation ou intégration sur le solide S du vecteur des quantités d'accélération élémentaires Γ(M ∈ S/R) dm. Unité: Newton (N);
- 2. Le moment dynamique par rapport au point A est la somme ou intégrale des moments, par rapport au point A, des quantités d'accélération de tous les points de S. Unité : Newton mètre (N · m).

Fin Encadré _____

Le moment dynamique défini ci-dessus peut également être décomposé de la façon suivante :

$$\begin{split} \delta(\mathbf{A} \in \mathbf{S}/\mathbf{R}) &= \int_{\mathbf{M} \in \mathbf{S}} (\boldsymbol{A}\boldsymbol{B} + \boldsymbol{B}\boldsymbol{M}) \, \wedge \boldsymbol{\Gamma}(\mathbf{M}/\mathbf{R}) \, \mathrm{d}\boldsymbol{m} \\ &= \int_{\mathbf{M} \in \mathbf{S}} \boldsymbol{A}\boldsymbol{B} \, \wedge \boldsymbol{\Gamma}(\mathbf{M}/\mathbf{R}) \, \mathrm{d}\boldsymbol{m} + \int_{\mathbf{M} \in \mathbf{S}} \boldsymbol{B}\boldsymbol{M} \, \wedge \boldsymbol{\Gamma}(\mathbf{M}/\mathbf{R}) \, \mathrm{d}\boldsymbol{m} \end{split}$$

soit:

$$\delta(\mathbf{A} \in \mathbf{S/R}) = \delta(\mathbf{B} \in \mathbf{S/R}) + \left(\int_{\mathbf{M} \in \mathbf{S}} \mathbf{\Gamma}(\mathbf{M/R}) \, d\mathbf{m}\right) \wedge \mathbf{BA} \quad \forall \mathbf{A}, \forall \mathbf{B} \in \mathbf{S} \quad (6.2)$$

La relation précédente exprime que le champ des moments dynamiques est structuré. Cela justifie le fait que le couple résultante/moment dynamiques forme un torseur.

6.2 Relation entre le torseur cinétique et le torseur dynamique

Les torseurs cinétique et dynamique sont construits selon le même principe, le torseur cinétique à partir des vitesses et le torseur dynamique à partir des accélérations. En conséquence, il paraît logique de rechercher des relations de dérivation entre ces deux torseurs. Lors de l'étude du torseur cinétique

réalisée au chapitre précédent, nous avons défini la résultante cinétique par (5.3) :

$$p(S/R) = mV(C \in S/R) = \int_{M \in S} V(M/R) dm$$
 (6.3)

En dérivant chaque membre de l'égalité précédente par rapport au temps dans le repère R, et en tenant compte de la propriété issue de la conservation de la masse (équation 5.2) on obtient :

$$m\Gamma(C \in S/R) = \int_{M \in S} \Gamma(M/R) dm.$$
 (6.4)

La résultante dynamique apparaît ainsi comme la dérivée par rapport au temps de la résultante cinétique, ce qui conduit à l'expression suivante du torseur dynamique :

Encadré ____

$$\{\mathcal{D}(\mathrm{S}/\mathrm{R})\} \quad = \quad \left\{ \begin{array}{cc} m \boldsymbol{\varGamma}(\mathrm{C} \in \mathrm{S}/\mathrm{R}) \\ \boldsymbol{\delta}(\mathrm{A} \in \mathrm{S}/\mathrm{R}) = \int_{\mathrm{M} \in \mathrm{S}} \boldsymbol{A} \boldsymbol{M} \wedge \boldsymbol{\varGamma}(\mathrm{M}/\mathrm{R}) \, \mathrm{d} \boldsymbol{m} \end{array} \right\}_{\mathrm{A}} \; .$$

_____ Fin Encadré ____

Le moment cinétique s'écrit, en un point A quelconque :

$$\sigma(\mathbf{A} \in \mathbf{S/R}) = \int_{\mathbf{M} \in \mathbf{S}} AM \wedge V(\mathbf{M/R}) \, \mathrm{d}m. \tag{6.5}$$

Dérivons chaque membre de l'égalité précédente par rapport au temps dans le repère R en utilisant la conservation de la masse :

$$\frac{\mathrm{d}\sigma(\mathbf{A} \in \mathbf{S}/\mathbf{R})}{\mathrm{d}t}\bigg|_{\mathbf{R}} = \int_{\mathbf{M} \in \mathbf{S}} \frac{\mathrm{d}\left(AM \wedge V(\mathbf{M}/\mathbf{R})\right)}{\mathrm{d}t}\bigg|_{\mathbf{R}} \mathrm{d}m.$$

Par ailleurs, la dérivée du produit vectoriel s'écrit :

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(AM \wedge V(M \in S/R) \right) \Big|_{R} = \frac{\mathrm{d}AM}{\mathrm{d}t} \Big|_{R} \wedge V(M \in S/R) + AM \wedge \frac{\mathrm{d}V(M \in S/R)}{\mathrm{d}t} \Big|_{R}.$$
(6.6)

De plus, avec O qui représente l'origine (fixe) du repère R, on peut écrire que :

$$\frac{\mathrm{d}AM}{\mathrm{d}t}\Big|_{R} = \frac{\mathrm{d}(AO + OM)}{\mathrm{d}t}\Big|_{R} = V(M \in S/R) - V(A \in S/R)$$

cette dernière relation est substituée dans l'équation (6.6) pour donner :

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(AM \wedge V(M \in S/R) \right) \Big|_{R} = -V(A \in S/R) \wedge V(M \in S/R) + AM \wedge \Gamma(M \in S/R). \tag{6.7}$$

D'après les équations (6.5) et (6.7), la dérivée du moment cinétique peut ainsi s'écrire :

$$\frac{\mathrm{d}\sigma(\mathbf{A} \in \mathbf{S}/\mathbf{R})}{\mathrm{d}t}\bigg|_{\mathbf{R}} = -\int_{\mathbf{M} \in \mathbf{S}} V(\mathbf{A} \in \mathbf{S}/\mathbf{R}) \wedge V(\mathbf{M}/\mathbf{R}) \, \mathrm{d}m + \int_{\mathbf{M} \in \mathbf{S}} AM \wedge \Gamma(\mathbf{M}/\mathbf{R}) \, \mathrm{d}m.$$

Puisque le point A représente un point fixe quelconque, le terme de vitesse $V(A \in S/R)$ peut être sorti de l'intégrale sur le solide S, et en utilisant l'équation (6.3), on déduit :

$$\frac{\mathrm{d}\sigma(\mathbf{A} \in \mathbf{S/R})}{\mathrm{d}t}\bigg|_{\mathbf{R}} = -mV(\mathbf{A} \in \mathbf{S/R}) \wedge V(\mathbf{C} \in \mathbf{S/R}) + \int_{\mathbf{M} \in \mathbf{S}} AM \wedge \Gamma(\mathbf{M/R}) \, \mathrm{d}m.$$

On reconnaît dans le second terme du second membre de l'égalité précédente le moment dynamique, et la relation cherchée s'écrit :

$$\delta(A \in S/R) = \frac{d\sigma(A \in S/R)}{dt} \Big|_{R} + mV(A \in R) \wedge V(C \in S/R).$$
 (6.8)

Encadré _____

Remarques : le moment dynamique peut être calculé en un point arbitraire, mais en pratique le calcul est plus simple en prenant pour point A un point fixe dans le repère R ou le centre de masse C du solide. D'après l'équation (6.8)

1. Si le point A est fixe dans le repère R :

$$\delta(A \in S/R) = \frac{d\sigma(A \in S/R)}{dt} \bigg|_{R}.$$
 (6.9)

2. Si le point A est pris au centre de gravité C du solide S :

$$\delta(C \in S/R) = \frac{d\sigma(C \in S/R)}{dt} \bigg|_{R}.$$
 (6.10)

Dans les deux cas précédents, nous avons montré au chapitre 4 que le moment cinétique s'exprime en fonction de l'opérateur d'inertie. En utilisant les relations (5.26) et (5.27), il est possible d'écrire :

1. Si le point A est fixe dans R:

$$\delta(A \in S/R) = \frac{d}{dt} \mathcal{J}(A, S) [\boldsymbol{\varOmega}(S/R)] \bigg|_{R}.$$

2. Si A est confondu avec le centre de gravité C du solide S :

$$\delta(C \in S/R) = \frac{d}{dt} \mathcal{J}(C, S) [\Omega(S/R)] \bigg|_{R}.$$
 (6.11)

Fin Encadré _____

6.3 Principe fondamental de la dynamique (PFD)

6.3.1 Énoncé

Nous rappelons que nous nous intéressons à des systèmes n'échangeant pas de matière avec l'extérieur. De tels systèmes sont dits **fermés**.

Encadré Il existe au moins un repère R_g appelé repère galiléen et au moins une chronologie galiléenne tels que que pour tout sous-ensemble matériel s d'un ensemble S, le torseur des actions extérieures à s (noté $\{\mathcal{A}(\overline{s} \to s)\}$) est égal au torseur dynamique de s par rapport au repère R_g et ceci à tout instant t.

$$\left\{\mathcal{D}(s/R_g)\right\}_A = \left\{\mathcal{A}(\overline{s} \to s)\right\}_A \quad \forall s \in S \quad \forall A.$$
Fin Encadré

Remarque: les notions de repère et de chronologie galiléens sont des notions locales en temps et en espace: le repère terrestre est galiléen pour des expériences limitées dans le temps (par rapport à la durée de rotation de la Terre) et se déroulant sur de faibles dimensions (par rapport au diamètre de la Terre). Il est hors de question de vouloir prédire des mouvements de marée ou lancer un fusée avec ce repère.

6.3.2 Théorèmes dynamiques

On peut déduire du PFD les deux théorèmes de la résultante dynamique et du moment dynamique.

moins une chronologie galiléenne tels que que pour tout sous ensemble matériel s d'un ensemble S, la résultante dynamique est égale à la somme des résultantes des actions extérieures à s : $m\Gamma(C \in S/R_g) = F(\overline{s} \to s), \forall s \subset S.$ Fin Encadré	Théorème de la résultante dynamique
matériel s d'un ensemble S, la résultante dynamique est égale à la somme des résultantes des actions extérieures à s : $m\Gamma(C\in S/R_g) = F(\overline{s}\to s), \forall s\subset S.$ Fin Encadré	Encadré
Théorème du moment dynamique Encadré Encadré Th'eorème. Il existe au moins un repère R_g appelé repère galiléen et au moins une chronologie galiléenne tels que que pour tout sous-ensemble matériel s d'un ensemble S, le moment dynamique en un point A quelconque de s par rapport au repère R_g est égal à la somme des moments en A des actions extérieures à s: $\delta(A \in s/R_g) = M(A, \overline{s} \to s), \forall s \subset S, \forall A.$ Fin Encadré 6.3.3 Théorème des actions réciproques Pour deux systèmes fermés S_1 et S_2 , nous avons démontré que dans le cas de la statique le torseur des actions exercées par S_2 sur S_1 est opposé au torseur des actions exercées par S_1 sur S_2 . Cette propriété reste vérifiée en dynamique, et s'énonce sous la forme du théorème suivant, dit des actions	moins une chronologie galiléenne tels que que pour tout sous ensemble matériel s d'un ensemble S, la résultante dynamique est égale à la somme
Théorème du moment dynamique Encadré Th'eorème. Il existe au moins un repère R_g appelé repère galiléen et au moins une chronologie galiléenne tels que que pour tout sous-ensemble matériel s d'un ensemble S , le moment dynamique en un point A quelconque de s par rapport au repère R_g est égal à la somme des moments en A des actions extérieures à s: $\delta(A \in s/R_g) = M(A, \overline{s} \to s), \forall s \subset S, \forall A.$ Fin Encadré 6.3.3 Théorème des actions réciproques Pour deux systèmes fermés S_1 et S_2 , nous avons démontré que dans le cas de la statique le torseur des actions exercées par S_2 sur S_1 est opposé au torseur des actions exercées par S_2 . Cette propriété reste vérifiée en dynamique, et s'énonce sous la forme du théorème suivant, dit des actions	$m\Gamma(C \in S/R_g) = F(\overline{s} \to s), \forall s \subset S.$
Th'eorème. Il existe au moins un repère R_g appelé repère galiléen et au moins une chronologie galiléenne tels que que pour tout sous-ensemble matériel s d'un ensemble s , le moment dynamique en un point s quelconque de s par rapport au repère s est égal à la somme des moments en s des actions extérieures à s : $\delta(s) = M(s, \overline{s}) + \delta(s) + \delta(s) + \delta(s)$ Fin Encadré 6.3.3 Théorème des actions réciproques Pour deux systèmes fermés s et s , nous avons démontré que dans le cas de la statique le torseur des actions exercées par s sur s est opposé au torseur des actions exercées par s sur s . Cette propriété reste vérifiée en dynamique, et s énonce sous la forme du théorème suivant, dit des actions	Fin Encadré
Th'eorème. Il existe au moins un repère R_g appelé repère galiléen et au moins une chronologie galiléenne tels que que pour tout sous-ensemble matériel s d'un ensemble S , le moment dynamique en un point A quelconque de s par rapport au repère R_g est égal à la somme des moments en A des actions extérieures à s : $\delta(A \in s/R_g) = \textbf{M}(A, \overline{s} \to s), \forall s \subset S, \ \forall A.$ Fin Encadré 6.3.3 Théorème des actions réciproques Pour deux systèmes fermés S_1 et S_2 , nous avons démontré que dans le cas de la statique le torseur des actions exercées par S_2 sur S_1 est opposé au torseur des actions exercées par S_2 . Cette propriété reste vérifiée en dynamique, et s'énonce sous la forme du théorème suivant, dit des actions	Théorème du moment dynamique
moins une chronologie galiléenne tels que que pour tout sous-ensemble matériel s d'un ensemble S, le moment dynamique en un point A quelconque de s par rapport au repère R_g est égal à la somme des moments en A des actions extérieures à s : $\delta(A \in s/R_g) = \textbf{\textit{M}}(A, \overline{s} \to s), \forall s \subset S, \ \forall A.$ Fin Encadré	Encadré
Fin Encadré 6.3.3 Théorème des actions réciproques Pour deux systèmes fermés S ₁ et S ₂ , nous avons démontré que dans le cas de la statique le torseur des actions exercées par S ₂ sur S ₁ est opposé au torseur des actions exercées par S ₂ . Cette propriété reste vérifiée en dynamique, et s'énonce sous la forme du théorème suivant, dit des actions	moins une chronologie galiléenne tels que que pour tout sous-ensemble matériel s d'un ensemble S, le moment dynamique en un point A quelconque de s par rapport au repère R_g est égal à la somme des moments en A des
6.3.3 Théorème des actions réciproques Pour deux systèmes fermés S_1 et S_2 , nous avons démontré que dans le cas de la statique le torseur des actions exercées par S_2 sur S_1 est opposé au torseur des actions exercées par S_2 . Cette propriété reste vérifiée en dynamique, et s'énonce sous la forme du théorème suivant, dit des actions	$\delta(A \in s/R_g) = M(A, \overline{s} \to s), \forall s \subset S, \ \forall A.$
Pour deux systèmes fermés S_1 et S_2 , nous avons démontré que dans le cas de la statique le torseur des actions exercées par S_2 sur S_1 est opposé au torseur des actions exercées par S_1 sur S_2 . Cette propriété reste vérifiée en dynamique, et s'énonce sous la forme du théorème suivant, dit des actions	Fin Encadré
Pour deux systèmes fermés S_1 et S_2 , nous avons démontré que dans le cas de la statique le torseur des actions exercées par S_2 sur S_1 est opposé au torseur des actions exercées par S_2 . Cette propriété reste vérifiée en dynamique, et s'énonce sous la forme du théorème suivant, dit des actions réciproques :	6.3.3 Théorème des actions réciproques
Encadré	de la statique le torseur des actions exercées par S_2 sur S_1 est opposé au torseur des actions exercées par S_1 sur S_2 . Cette propriété reste vérifiée en dynamique, et s'énonce sous la forme du théorème suivant, dit des actions réciproques :

6.3. PFD 211

Th'eorème. Le torseur des actions extérieures exercées par un système fermé S_1 sur un autre système fermé S_2 est l'opposé du torseur des actions exercées par S_2 sur S_1 .

$$\{\mathcal{A}(S_1 \to S_2)\} = -\{\mathcal{A}(S_2 \to S_1)\}.$$
 (6.12)

____ Fin Encadré _____

Démonstration. Le repère galiléen employé est noté R_g , et le PFD est appliqué dans R_g , séparément à S_1 et à S_2 .

Le PFD appliqué à S₁ s'écrit :

$$\left\{ \mathcal{H}(\overline{S}_1 \to S_1) \right\} = \left\{ \mathcal{D}(S_1/R_g) \right\}.$$

On note S, le système fermé $S_1 \cup S_2$. L'extérieur de S_1 représente à la fois l'extérieur du système S et le système S_2 , ce qui implique :

$$\left\{ \mathcal{A}(\overline{S} \to S_1) \right\} + \left\{ \mathcal{A}(S_2 \to S_1) \right\} = \left\{ \mathcal{D}(S_1/R_g) \right\}. \tag{6.13}$$

De manière similaire, le PFD appliqué à S2 conduit à la relation suivante :

$$\left\{ \mathcal{A}(\overline{S} \to S_2) \right\} + \left\{ \mathcal{A}(S_1 \to S_2) \right\} = \left\{ \mathcal{D}(S_2/R_g) \right\}. \tag{6.14}$$

Par sommation terme à terme des équations (6.13) et (6.14), en tenant compte du fait que S_1 et S_2 forment le système fermé S, on obtient :

$$\begin{split} \sum_{i=1,2} \left\{ \mathcal{A}(\overline{S} \to S_i) \right\} + \left\{ \mathcal{A}(S_1 \to S_2) \right\} + \left\{ \mathcal{A}(S_2 \to S_1) \right\} \\ &= \left\{ \mathcal{D}(S_1/R_g) \right\} + \left\{ \mathcal{D}(S_2/R_g) \right\} \\ &= \left\{ \mathcal{D}(S/R_g) \right\}. \end{split} \tag{6.15}$$

comme $S_1 \cup S_2 = S$, cela implique :

$$\left\{\mathcal{A}(\overline{S} \to S_1)\right\} + \left\{\mathcal{A}(\overline{S} \to S_2)\right\} = \left\{\mathcal{A}(\overline{S} \to S)\right\}$$

et la relation précédente est introduite dans l'équation (6.15) pour donner :

$$\left\{\mathcal{A}(\overline{S} \to S)\right\} + \left\{\mathcal{A}(S_2 \to S_1)\right\} + \left\{\mathcal{A}(S_1 \to S_2)\right\} = \left\{\mathcal{D}(S/R_g)\right\}.$$

L'application du PFD au système S dans son ensemble donne :

$$\left\{ \mathcal{A}(\overline{S} \to S) \right\} = \left\{ \mathcal{D}(S/R_g) \right\}$$

ce qui permet enfin de conclure que :

$$\{\mathcal{A}(S_1 \to S_2)\} = -\{\mathcal{A}(S_2 \to S_1)\}.$$

6.3.4 Exemple: boule sur piste circulaire

Nous nous proposons à présent d'illustrer le PFD sur un exemple simple. On étudie le mouvement d'une boule B homogène, de centre C, de rayon r, de masse m et de moment principal d'inertie I, assujettie à rouler sur une piste circulaire P de centre O et de rayon R (R > r) (figure 6.1). On associe à la piste P le repère orthonormé direct galiléen $R_0 = (O, x_0, y_0, z_0)$, tel que l'axe (O,x_0) soit vertical descendant, et que le plan (O,x_0,y_0) constitue le plan de la piste. On associe à la boule B un repère orthonormé direct $R_2 = (C, x_2, y_2, z_0)$. On définit également un repère orthonormé $R_1 = (O, x_1, y_1, z_1)$ intermédiaire tel que $z_1 = z_0$, et $OC = (R-r)x_1$. Enfin, pour repérer les mouvements respectifs du centre C et de la boule B, on introduit les angles $\theta = (x_0, x_1)$ et $\phi = (x_0, x_2)$. On suppose qu'il y a roulement sans glissement en K, point de contact entre la boule B et la piste circulaire P.

Dans cet exercice, on cherche à déterminer les actions de contact entre la

FIGURE 6.1 – Schéma de la boule B en mouvement sur une piste circulaire.

boule B et la piste P, par l'application du PFD. Pour pouvoir appliquer le PFD, il faut tout d'abord déterminer les torseurs cinétiques et dynamiques qui caractérisent l'inertie et le mouvement de B.

Commençons par la vitesse du point C, que l'on calcule par dérivation directe du vecteur position, en tenant compte de la relation de changement de repère :

$$V(C \in B/R_0) = \left. \frac{\mathrm{d}OC}{\mathrm{d}t} \right|_{R_0} = (R - r) \left. \frac{\mathrm{d}x_1}{\mathrm{d}t} \right|_{R_0} = (R - r)\dot{\theta}y_1.$$

6.3. PFD 213

L'accélération se déduit ensuite par dérivation du vecteur vitesse :

$$\varGamma(\mathbf{C}\in\mathbf{B}/\mathbf{R}_0) = \left.\frac{\mathrm{d}V(\mathbf{C}\in\mathbf{B}/\mathbf{R}_0)}{\mathrm{d}t}\right|_{\mathbf{R}_0} = -(R-r)\dot{\theta}^2\boldsymbol{x}_1 + (R-r)\ddot{\theta}\boldsymbol{y}_1.$$

La condition de roulement sans glissement en K va nous permettre de relier $\dot{\theta}$ et $\dot{\phi}$, en exprimant, pour le point de contact K entre la boule B et la piste P, que la vitesse $V(K \in B/R_0)$ est nulle (cf. chapitre 1). D'après la relation de torseur voir chapitre Cinématique du solide qui relie les vitesses de deux points appartenant à un même solide rigide :

$$V(K \in B/R_0) = V(C \in B/R_0) + \Omega(R_2/R) \wedge CK$$

= $(R - r)\dot{\theta}\mathbf{y}_1 + r\dot{\phi}\mathbf{z}_1 \wedge \mathbf{x}_1 = ((R - r)\dot{\theta} + r\dot{\phi})\mathbf{y}_1 = \mathbf{0}$

qui implique donc, par projection selon y_1 :

$$(R-r)\dot{\theta} + r\dot{\phi} = 0.$$

Ainsi, on constate que les dérivées premières des deux paramètres de mouvement θ et ϕ sont liées, ce qui réduit à un le nombre total de paramètres de mouvement indépendants. On peut aussi noter que la condition de nonglissement impose que θ et ϕ varient en sens inverse (si $\dot{\theta} > 0$, alors $\dot{\phi} < 0$). Pour déterminer le torseur dynamique de la boule B dans son mouvement par rapport à R_0 , il faut également déterminer la matrice d'inertie de la boule B. On se place au centre C, qui constitue le centre de symétrie géométrique et donc matérielle pour la boule homogène B (C est aussi le centre d'inertie de B). Les axes (C, x_1) , (C, y_1) et (C, z_1) étant des axes de symétrie géométrique, constituent donc des axes principaux et la matrice d'inertie est diagonale en C :

$$[J(C, B)] = \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix}.$$

Nous admettrons ici que le moment d'inertie I de la boule par rapport à un axe passant par C quelconque est donné par $I=(2/5)mr^2$. En vue de l'application du PFD, il convient d'expliciter le torseur dynamique en K, en passant d'abord par le centre d'inertie C, car les expressions de $\sigma(C \in B/R_0)$ et $\delta(C \in B/R_0)$ sont plus simples à obtenir. D'après les résultats obtenus au chapitre 4, C étant le centre d'inertie de la boule B, le torseur cinétique s'obtient à partir de la définition de la résultante cinétique et de l'équation (5.27) :

$$\{C(\mathsf{B}/\mathsf{R}_0)\} = \left\{ \begin{array}{l} mV(\mathsf{C} \in \mathsf{B}/\mathsf{R}_0) \\ \mathcal{J}(\mathsf{C},\mathsf{B})[\boldsymbol{\mathcal{Q}}(\mathsf{B}/\mathsf{R}_0)] \end{array} \right\}_{\mathsf{C}} = \left\{ \begin{array}{l} m(R-r)\dot{\theta}\boldsymbol{y}_1 \\ I\dot{\phi}\boldsymbol{z}_1 \end{array} \right\}_{\mathsf{C}}.$$

D'après la définition du torseur dynamique (6.1) et la relation (6.11), on écrit le torseur dynamique en C :

$$\{\mathcal{D}(B/R_0)\} = \left\{ \left. \begin{array}{ll} m\Gamma(C \in B/R_0) \\ \delta(C \in B/R_0) = \left. \frac{\mathrm{d}\sigma(C \in B/R_0)}{\mathrm{d}t} \right|_{R_0} \end{array} \right\}_C$$

et d'après les expressions de ${\it \Gamma}(C\in B/R_0)$ et ${\it \sigma}(C\in B/R_0)$ calculées plus haut :

$$\{\mathcal{D}(\mathsf{B}/\mathsf{R}_0)\} = \left\{ \begin{array}{rl} -m(R-r)\dot{\theta}^2\boldsymbol{x}_1 + m(R-r)\ddot{\theta}\boldsymbol{y}_1 \\ I\ddot{\phi}\boldsymbol{z}_1 = I\ddot{\phi}\boldsymbol{z}_0 \end{array} \right\}_C.$$

Pour déterminer le torseur dynamique de la boule B en K, on utilise la relation de torseur (6.2) entre les moments dynamiques pour les points K et C :

$$\begin{split} \delta(\mathbf{K} \in \mathbf{B}/\mathbf{R}_0) &= \delta(\mathbf{C} \in \mathbf{B}/\mathbf{R}) + m\boldsymbol{\Gamma}(\mathbf{C} \in \mathbf{B}/\mathbf{R}) \wedge \boldsymbol{C}\boldsymbol{K} \\ &= I\ddot{\boldsymbol{\theta}}\boldsymbol{z}_1 + m[-(R-r)\dot{\boldsymbol{\theta}}^2\boldsymbol{x}_1 + (R-r)\ddot{\boldsymbol{\theta}}\boldsymbol{y}_1] \wedge (r\boldsymbol{x}_1) \\ &= [I\ddot{\boldsymbol{\phi}} - m(R-r)r\ddot{\boldsymbol{\theta}}]\boldsymbol{z}_1. \end{split}$$

Et pour le torseur dynamique en K:

$$\{\mathcal{D}(\mathsf{B}/\mathsf{R}_0)\} \quad = \quad \left\{ \begin{array}{rl} -m(R-r)\dot{\theta}^2x_1 + m(R-r)\ddot{\theta}y_1 \\ I\ddot{\phi}z_1 - m(R-r)r\ddot{\theta}z_1 \end{array} \right\}_\mathsf{K}.$$

Après avoir explicité les quantités dynamiques, il reste à effectuer le bilan des efforts extérieurs appliqués à la boule B. Ces efforts consistent en l'action de la pesanteur (connue) et la réaction de la piste P (inconnue), dont les torseurs sont exprimés de la façon suivante :

$$\{\mathcal{A}(\boldsymbol{g}\to\mathbf{B})\}=\left\{\begin{array}{c} mg\boldsymbol{x}_0\\ \boldsymbol{0}\end{array}\right\}_C$$

$$\{\mathcal{A}(P \to B)\} = \left\{ \begin{array}{c} \mathbf{R}(P \to B) \\ \mathbf{0} \end{array} \right\}_{K}.$$

Le torseur des actions extérieures exercées sur la boule B est donc, en K :

$$\left\{ \mathcal{A}(\overline{\mathbf{B}} \to \mathbf{B}) \right\} = \left\{ \begin{array}{c} \mathbf{R}(\mathbf{P} \to \mathbf{B}) + mg\mathbf{x}_0 \\ mg\mathbf{x}_0 \wedge \mathbf{C}\mathbf{K} \end{array} \right\}_{\mathbf{K}}.$$

À ce stade, on peut appliquer le PFD à la boule B dans son mouvement par rapport à R_0 , qui s'écrit :

$$\left\{\mathcal{D}(B/R_0)\right\}_K = \left\{\mathcal{A}(\overline{B} \to B)\right\}_K$$
.

L'égalité précédente peut également se décomposer en le théorème de la résultante dynamique et le théorème du moment dynamique. Les efforts de réaction de la piste P sur la boule B en K seront obtenus par l'écriture du théorème de la résultante dynamique, qui donne ainsi :

$$m\Gamma(C \in B/R_0) = -m(R - r)(\dot{\theta}^2 x_1 - \ddot{\theta} y_1)$$
$$= R(P \to B) + mgx_0$$

soit pour $R(P \rightarrow B)$:

$$\mathbf{R}(\mathrm{P} \to \mathrm{B}) = -m[g\cos\theta + (R-r)\dot{\theta}^2]\mathbf{x}_1 + m[g\sin\theta + (R-r)\ddot{\theta}]\mathbf{y}_1.$$

6.4 Principe Fondamental de la Dynamique en repère non galiléen

Dans la pratique lorsque non devons nous intéresser au mouvement de mécanismes (mouvement de solides par rapport à d'autres solides), il est parfois plus commode de se placer dans un repère non galiléen.

Considérons un repère quelconque R, en mouvement par rapport à un repère galiléen R_g . Le PFD appliqué à un système fermé S (qui peut être un solide unique ou un ensemble de solides), par rapport à R_g , s'écrit :

$$\left\{ \mathcal{D}(S/R_g) \right\} = \left\{ \mathcal{A}(\overline{S} \to S) \right\}.$$

Par définition du torseur dynamique :

$$\left\{ \mathcal{D}(S/R_g) \right\} = \left\{ \begin{array}{c} \int_{M \in S} \boldsymbol{\Gamma}(M/R_g) \, dm \\ \int_{M \in S} \boldsymbol{AM} \wedge \boldsymbol{\Gamma}(M/R_g) \, dm \end{array} \right\}_{A}. \tag{6.16}$$

D'après la relation $(\ref{eq:continuous})$ du chapitre Cinématique du solide, l'accélération absolue $\Gamma(M/R_g)$ peut se décomposer, en faisant intervenir le repère relatif R, de la façon suivante :

$$\Gamma(M/R_{\sigma}) = \Gamma(M/R) + \Gamma(M \in R/R_{\sigma}) + 2\Omega(R/R_{\sigma}) \wedge V(M/R).$$

Les torseurs dynamiques d'inertie d'entraînement \mathcal{D}_e et de Coriolis \mathcal{D}_c peuvent donc être construits à partir des accélérations d'entraînement $\Gamma(M \in R/R_g)$ et de Coriolis $2\Omega(R/R_g) \wedge V(M \in S/R)$, et le PFD est écrit en tenant compte des définitions précédentes. Ceci nous conduit à l'écriture du PFD en repère non galiléen.

Le torseur dynamique du système fermé S par rapport à R est égal à la somme du torseur des actions extérieures à S, du torseur dynamique d'entraînement \mathcal{D}_c et du torseur dynamique de Coriolis \mathcal{D}_c :

$$\{\mathcal{D}(S/R)\} = \left\{\mathcal{A}(\overline{S} \to S)\right\} + \left\{\mathcal{D}_{e}(R/R_{g})\right\} + \left\{\mathcal{D}_{c}(S/R)\right\} \tag{6.17}$$

avec:

Ainsi, le PFD peut être employé en repère non galiléen, mais il ne faut pas oublier d'ajouter au torseur des efforts extérieurs les torseurs qui proviennent des accélérations d'entraînement et de Coriolis. Toutefois, il faut bien comprendre que les « efforts » d'entraînement et de Coriolis ne correspondent pas à des efforts physiques extérieurs au système étudié, mais traduisent seulement le changement de référentiel.

Remarque : dans un mouvement circulaire d'un solide S de masse m à vitesse angulaire constante autour d'un point fixe dans un repère galiléen R_g , nous avons vu au chapitre 1 que l'accélération est centripète, c'est-à-dire dirigée vers le point fixe de R_g . Le signe — dans l'expression du PFD en repère non galiléen exprime le fait que par rapport au repère attaché à S, on peut considérer l'effet de cette rotation comme un effort centrifuge.

6.5 Principe Fondamental de la Dynamique appliqué à un système en rotation

Dans de nombreux cas d'étude de machines tournantes, il est important pour réduire les vibrations d'équilibrer les solides, c'est à dire de rendre indépendantes du mouvement les actions de contact. Nous allons voir dans cette section ce que cela impose en termes de répartition des masses.

Nous nous intéressons à un solide S de masse m, en rotation autour d'un

axe fixe Δ , confondu avec l'axe (O,z), dans un repère $R_g = (O,x,y,z)$. Ce mouvement de rotation est obtenu par l'intermédiaire d'une liaison pivot d'axe (O,z), supposée parfaite. Le solide S possède un centre de masse C de coordonnées (non constantes) notées (a,b,c) dans le repère R_g . L'angle θ permet de repérer la position angulaire du solide S, tandis que l'on note (C,x_1,y_1,z) le repère lié à S (figure ??). Contrairement à ce que laisse supposer la figure, l'axe z est vertical.

Figure 6.2 – Équilibrage d'un solide en rotation.

6.5.1 Calculs préliminaires

Nous allons pour ce solide S écrire les équations de mouvement. Il faut donc calculer le torseur cinétique puis le torseur dynamique.

Résultante cinétique. D'après la relation (6.3) :

$$p(S/R_g) = m\dot{\theta}z \wedge (ax) = ma\dot{\theta}y.$$

Moment cinétique. Le point O est fixe, on peut donc écrire, d'après l'équation (5.26) du chapitre Cinétique :

$$\sigma(O \in S/R_g) = \mathcal{J}(O, S)[\Omega(S/R_g)],$$

avec $\Omega(S/R_g) = \dot{\theta}z$.

En utilisant l'expression générale de l'opérateur d'inertie dans le repère R_g

(équation 5.15 du chapitre Cinétique) :

$$\sigma(O \in S/R_g) = \begin{pmatrix} I_{(O,x)} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{(O,y)} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{(O,z)} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \dot{\theta} \end{pmatrix}$$
$$= -\dot{\theta}(I_{xz}\mathbf{x} + I_{yz}\mathbf{y} - I_{(O,z)}\mathbf{z}).$$

Afin d'appliquer le PFD, il faut calculer le torseur dynamique. La résultante dynamique est obtenue par dérivation de la résultante cinétique par rapport au temps :

$$m\Gamma(C \in S/R_g) = m \left. \frac{\mathrm{d}V(C \in S/R_g)}{\mathrm{d}t} \right|_{R_g} = -ma(\dot{\theta}^2 x + \ddot{\theta} y).$$

Le moment dynamique est obtenu par dérivation directe de l'expression du moment cinétique, puisque O constitue un point fixe dans $R_{\rm g}$ (équation 6.9) :

$$\delta(\mathrm{O} \in \mathrm{S}/\mathrm{R}_{\mathrm{g}}) = -I_{xz}(\ddot{\theta}\boldsymbol{x} + \dot{\theta}^2\boldsymbol{y}) - I_{yz}(\ddot{\theta}\boldsymbol{y} - \dot{\theta}^2\boldsymbol{x}) + I_{(\mathrm{O},z)}\ddot{\theta}\boldsymbol{z}.$$

6.5.2 Application du PFD

Nous allons supposer la liaison pivot parfaite située en un point A sur l'axe (O, z). Ceci signifie que la projection du moment selon l'axe (O, z) est nulle si l'on se place au point A, mais le transfert du moment au point O conduit à un torseur d'actions de liaison dont toutes les composantes sont a priori non nulles. En notant R la résultante et M le moment en O, nous avons :

$$\{\mathcal{A}(\overline{S} \to S)\} = \left\{ \begin{array}{c} \mathbf{R} \\ \mathbf{M} \end{array} \right\}_{\Omega} = \left\{ \begin{array}{c} Xx + Yy + Zz \\ Lx + My + Nz \end{array} \right\}_{\Omega}.$$

On suppose que les autres actions extérieures exercées sur le solide S sont l'action de la gravité, de résultante notée m g, et l'action d'un moteur entraînant ce solide. On réduit cette action à un couple moteur noté Cz.

Théorème de la résultante dynamique. D'après les développements précédents :

$$m\Gamma(C \in R_g) = R + mg$$
.

Les trois équations scalaires sont obtenues par projection suivant les trois axes du repère orthonormé $R_{\rm g}$:

$$X = -ma\dot{\theta}^{2}$$

$$Y = ma\ddot{\theta}$$

$$Z = mg.$$
(6.19)

Théorème du moment dynamique. D'après les développements précédents :

$$\delta(O \in S/R_g) = -I_{xz}(\ddot{\theta}x + \dot{\theta}^2y) - I_{yz}(\ddot{\theta}y - \dot{\theta}^2x) + I_{(O,z)}\ddot{\theta}z.$$

= $\mathcal{M} + Cz + M(O, mg)$,

où M (O, mg) désigne le moment en O de la résultante mg (qui s'applique en C). Par projection suivant les trois axes du repère orthonormé R_g , trois équations supplémentaires sont obtenues :

$$-I_{xz}\ddot{\theta} + I_{yz}\dot{\theta}^{2} = L + M(O, mg).x$$

$$-I_{xz}\dot{\theta}^{2} - I_{yz}\ddot{\theta} = M + M(O, mg).y$$

$$I_{(O,z)}\ddot{\theta} = N + C$$
(6.20)

Ces six équations scalaires (6.19 et 6.20) permettent de déterminer les six composantes du torseur d'actions mécaniques de la liaison pivot en A, en fonction du couple moteur C, du torseur de l'action de la gravité et des données géométriques ou mécaniques pour le problème.

6.5.3 Retour sur l'exercice : métronome de secours

Nous allons reprendre l'exercice traité au premier chapitre (Exercice du métronome de secours) en considérant le cas d'une liaison entre le fil et le support parfaite et le cas où celle-ci est non parfaite (avec frottement par exemple). Pour ce dernier cas, les lois de conservations ne sont plus valables.

Ensuite nous allons montrer que dans le cas de liaisons non parfaites (frottement par exemple) les lois de conservation indiquées son inopérantes (on pourrait les rendre efficaces mais ce n'est pas aussi simple que cela) alors que le formalisme présenté dans cet ouvrage permet la résolution.

On considère un pendule simple constitué d'une masse m (supposée ponctuelle) et d'une tige inextensible de longueur 2ℓ , de masse et d'inertie négligeables dont l'une des extrémités est fixée par une liaison pivot en O à un bâti (0) et l'autre est fixée à la masse. L'axe de la liaison est (O, z) et la tige (de même que la masse) est astreinte à se déplacer dans le plan (x, y).

On choisit comme système la masse m. Le bilan des forces exercées sur la masse est simple : nous avons le poids mg et la tension T dans la tige.

1^{re} Approche. On applique le PFD à la masse ce qui permet d'écrire :

$$m\frac{\mathrm{d}\boldsymbol{V}}{\mathrm{d}t} = m\boldsymbol{g} + \boldsymbol{T}$$

$$V = 2\ell \dot{\theta} u_{\theta}$$
 et $T = -m(\mathbf{g} \cdot u_{r})u_{r}$.

soit

$$2m\ell\ddot{\theta} = m(\mathbf{g} \cdot \mathbf{u}_{\theta}) = -mg\sin\theta \qquad \Rightarrow \qquad \ddot{\theta} + \frac{g}{2\ell}\sin\theta = 0.$$

 2^e **Approche.** On considère le système suivant noté S: masse \cup tige (la tension dans la tige est alors un effort interne). Pour obtenir l'équation du mouvement, on peut appliquer le théorème du moment dynamique en O:

$$\delta(O \in S/0) = \frac{d}{dt}\sigma(O \in S/0) = \mathcal{M}_O(\text{poids} \to S) + \mathcal{M}_O(\text{liaison} \to S).$$

Le moment cinétique en O est simplement $\sigma(O \in S/0) = 2\ell u_r \wedge (mV) = 4m\ell^2\dot{\theta}u_z$. La liaison étant supposée pivot parfaite, $\mathcal{M}_O(\text{liaison} \to S) = \mathbf{0}$ et pour le moment du poids, on a

$$\mathcal{M}_{\mathbf{O}}(\text{poids} \to \mathbf{S}) = m\mathbf{g} \wedge (-2\ell \mathbf{u}_r) = -2mg\ell \sin \theta \mathbf{u}_z.$$

On retrouve alors facilement la relation $\ddot{\theta} + \frac{g}{2\ell} \sin \theta = 0$ établie ci-dessus. On peut maintenant introduire un frottement de type visqueux modélisé par l'effort supplémentaire :

$$\{\mathcal{A}\}_{O} = \left\{ \begin{array}{c} \mathbf{0} \\ -\mu \dot{\theta} \mathbf{u}_{z} \end{array} \right\}, \qquad \text{avec} \qquad \mu > 0.$$

Le théorème du moment dynamique s'exprime alors sous la forme :

$$4m\ell^2 \frac{\mathrm{d}\dot{\theta}}{\mathrm{d}t} \boldsymbol{u}_z = -2mg\ell \sin\theta \boldsymbol{u}_z - \mu \dot{\theta} \boldsymbol{u}_z$$

d'où l'équation amortie :

$$\ddot{\theta} + \frac{\mu}{4m\ell^2}\dot{\theta} + \frac{g}{2\ell}\sin\theta = 0.$$

Remarque : Dans les ouvrages de physique, le moment cinétique est souvent noté ${\bf L}$ et le théorème du moment dynamique est parfois appelé « Théorème de la variation du moment cinétique ». Nous n'employons pas cette terminologie qui conduit à des difficultés, en particulier lorsque l'axe de la rotation n'est pas fixe.

6.5.4 Équilibrage statique

Pour réaliser un équilibrage statique, nous considérons des mouvements avec une accélération nulle (ou suffisamment faible pour être négligée). On cherche à obtenir dans ce cas des actions de liaison qui ne dépendent pas du mouvement (ou de la position du solide). Ceci peut être vérifié dans la pratique en faisant tourner lentement le solide et en mesurant l'intensité des actions de liaison dans différentes configurations du système.

En considérant une accélération nulle, les équations de la résultante (6.19) conduisent à $\mathbf{R} = -m\mathbf{g}$, ce qui correspond bien à un vecteur constant.

Encadré
Les équations de moment (6.20) imposent pour être satisfaites que le moment des actions de la gravité soit nul, donc le centre de gravité G (confondu avec le centre de masse C) doit être situé sur l'axe de rotation. De cette manière, le vecteur \mathcal{M} des actions de liaison est constant : il est tel que $\mathcal{M} = -Cz$.
Fin Encadré
6.5.5 Équilibrage dynamique
Nous allons considérer que le solide S est équilibré statiquement, ce qui mplique que le centre de masse soit situé sur l'axe de rotation : $a=0$. Cherchons les conditions pour lequelles le solide est équilibré dynamiquement, c'est-à-dire que les actions de liaisons doivent être indépendantes du mouvement. Les équations de la résultante (6.19) ne donnent aucune information supplémentaire, puisque $a=0$. Les équations du moment (6.20) imposent que les moments d'inertie I_{xz} et I_{yz} soient nuls ce qui signifie que l'axe de rotation doit coïncider avec l'un des axes principaux d'inertie du système.
Encadré
On retiendra donc que l'équilibrage dynamique correspond aux conditions suivantes :
1. Le centre de gravité G est situé sur l'axe de rotation (équilibrage statique).
2. L'axe de rotation est confondu avec un axe principal d'inertie du solide

Fin Encadré _

Théorèmes énergétiques 6.6

6.6.1 Généralités

Encadré **Définition.** La puissance instantanée $\mathcal{P}(t)$ du système de forces de résultante F associée à la densité massique f s'exerçant sur un système S (actions de contact d'un solide sur S, action de la gravité sur S) est donnée par: $\mathcal{P}(\overline{S} \to S/R) = \int_{M \in S} V(M/R) \cdot f(M) dm.$ (6.21)Fin Encadré _ Remarque : Cette quantité dépend du référentiel utilisé car elle fait inter-

venir le vecteur vitesse.

Une densité massique de forces est homogène à une accélération (pensez au cas de l'accélération de la pesanteur).

____ Encadré ___

Th'eorème. La puissance des forces de pesanteur exercées sur un système quelconque S est, par rapport au repère R:

$$\mathcal{P}(\mathbf{g} \to S/R) = \mathbf{g} \cdot \mathbf{p}(S/R). \tag{6.22}$$

De façon générale, la puissance de tout système de forces de densité massique constante consiste simplement en le produit scalaire de cette densité par la quantité de mouvement du système.

_____ Fin Encadré __

Démonstration. Soit f = g =cste. D'après l'équation (6.21), la puissance s'écrit $\mathcal{P}(g/R) = \int_{M \in S} g \cdot V(M/R) dm = g \int_{M \in S} V(M/R) dm = g \cdot p(S/R).$

Th'eorème. La puissance des forces de Coriolis est toujours nulle.

Démonstration. D'après l'écriture du PFD en repère non galiléen, les forces de Coriolis s'expriment par : $f_{\rm C} = -\gamma_{\rm C} = -2\Omega({\rm R_1/R}) \wedge V({\rm M} \in {\rm S/R_1})$, où R₁ représente le repère non galiléen. En conséquence, la puissance de Coriolis ${\cal P}_{\rm C}$ s'exprime par :

$$\mathcal{P}_{\mathcal{C}} = \int_{\mathcal{M} \in \mathcal{S}} f_{\mathcal{C}} \cdot V(\mathcal{M}/\mathcal{R}_1) \, dm$$
$$= -\int_{\mathcal{M} \in \mathcal{S}} (2\boldsymbol{\Omega}(\mathcal{R}_1/\mathcal{R}) \wedge V(\mathcal{M}/\mathcal{R}_1)) \cdot V(\mathcal{M}/\mathcal{R}_1) \, dm.$$

Le produit mixte est nul car deux vecteurs sont identiques.

Unité : dans le système SI (Système International), l'unité est le Watt (W). $1W = 1 \text{kg m}^2 \text{s}^{-3}$.

6.6.2 Puissance des actions mécaniques exercées sur un solide

Reprenons l'expression (6.21) de la puissance \mathcal{P} en introduisant pour $V(M \in S/R)$ la relation de champ de torseur dans un solide rigide :

$$\mathcal{P}(S/R) = \int_{M \in S} f(M) \cdot V(M/R_1) dm$$
$$= \int_{M \in S} f(M) \cdot (V(A \in S/R) + \mathbf{\Omega}(S/R) \wedge AM) dm.$$

On peut transformer cette intégrale en remarquant que les vecteurs constants $V(A \in S/R)$ et $\Omega(S/R)$ peuvent être sortis de l'intégration. Ainsi :

$$\mathcal{P}(\mathrm{S}/\mathrm{R}) = V(\mathrm{A} \in \mathrm{S}/\mathrm{R}) \, . \, \int_{\mathrm{M} \in \mathrm{S}} f(\mathrm{M}) \, \mathrm{d}m + \boldsymbol{\varOmega}(\mathrm{S}/\mathrm{R}) \, . \, \int_{\mathrm{M} \in \mathrm{S}} A \boldsymbol{M} \, \wedge f(\mathrm{M}) \, \mathrm{d}m.$$

On obtient, en notant respectivement F et M la résultante et le moment des actions exercées par l'extérieur sur le solide S:

$$\mathcal{P}(S/R) = V(A \in S/R) \cdot F + \Omega(S/R) \cdot M$$

qui représente le co-moment du torseur cinématique et du torseur des actions mécaniques, introduit au chapitre 2. D'après ce résultat, on peut énoncer le théorème suivant :

Th'eorème. La puissance des actions mécaniques exercées sur un solide indéformable S en mouvement par rapport à un repère R est égale au comoment du torseur cinématique et du torseur des actions mécaniques.

$$\mathcal{P}(\overline{S} \to S/R) = \{\mathcal{V}(S/R)\} \cdot \{\mathcal{A}(\overline{S} \to S)\}.$$
 (6.23)

Fin Encadré _____

6.6.3 Puissance des actions mutuelles entre deux solides

Considérons deux solides S_1 et S_2 en interaction, et en mouvement l'un par rapport à l'autre (et par rapport à un repère R). S_1 et S_2 sont soumis à des actions mécaniques caractérisées par un des torseurs de liaisons présentés au chapitre 2. Compte tenu de la définition de la puissance des actions mécaniques, nous pouvons écrire, pour le solide S_1 :

$$\mathcal{P}(S_2 \to S_1/R) = \{\mathcal{V}(S_1/R)\} . \{\mathcal{H}(S_2 \to S_1)\}.$$

Pour le solide S_2 , en tenant compte également de la composition des torseurs cinématiques :

$$\begin{split} \mathcal{P}(S_1 \to S_2/R) &= \{ \mathcal{V}(S_2/R) \} \; . \; \{ \mathcal{A}(S_1 \to S_2) \\ &= (\{ \mathcal{V}(S_2/S_1) \} + \{ \mathcal{V}(S_1/R) \}) \; . \; \{ \mathcal{A}(S_1 \to S_2) \} \; . \end{split}$$

Si nous ajoutons terme à terme les deux relations précédentes nous obtenons, en tenant compte du théorème des actions réciproques (relation 6.12) :

$$\mathcal{P}(S_1 \to S_2/R) + \mathcal{P}(S_2 \to S_1/R) = \{\mathcal{V}(S_2/S_1)\} \cdot \{\mathcal{R}(S_1 \to S_2)\}.$$

Nous venons de montrer le résultat suivant :

Encadré

Th'eorème. La somme de la puissance des actions développées par S2 sur

 S_1 et par S_1 sur S_2 , qui définit la puissance des actions mutuelles entre ces deux solides, est indépendante du repère choisi pour la calculer, et vaut :

$$\mathcal{P}(S_1 \leftrightarrow S_2) = \{\mathcal{V}(S_2/S_1)\} . \{\mathcal{R}(S_1 \to S_2)\}.$$

_____ Fin Encadré _____

Remarque : cas particulier d'une liaison parfaite. Une liaison entre deux solides est parfaite si la puissance développée par les actions de liaison est nulle. Pour ce type de liaisons, nous renvoyons le lecteur au chapitre 2.

6.6.4 Travail

Encadré

Le travail élémentaire δW s'obtient comme le produit de la puissance instantanée élémentaire $\mathcal{P}(t)$ par la durée élémentaire $\mathrm{d}t$, il est noté $\delta W = \mathcal{P}(t)$ dt. Le travail s'obtient par intégration par rapport au temps. Il dépend a priori du référentiel dans lequel on le calcule ainsi que de la trajectoire de tous les points matériels du système.

Unité: dans le système SI, l'unité du travail est le Joule (J). $\mathrm{1J} = \mathrm{1kg}\,\mathrm{m}^2\mathrm{s}^{-2}$.

Fin Encadré

6.6.5 Énergie potentielle

Énergie potentielle et densité massique d'énergie potentielle

Dans de nombreux cas, la densité massique de forces f(M, t) peut s'exprimer sous la forme du gradient (dérivée spatiale) d'une fonction scalaire.

_____Encadré ____

Définition. Soit f(M, t) une densité massique de forces. S'il existe une fonction e(M, t) telle que :

$$f(\mathbf{M}, t) = -\mathbf{grad}\,e(\mathbf{M}, t),\tag{6.24}$$

on dit alors que f(M, t) dérive de la densité d'énergie potentielle e(M, t).

_____ Fin Encadré _____

Remarques:

1. Une condition nécessaire et suffisante pour que la densité d'énergie potentielle existe est que la densité de forces vérifie les relations :

$$\frac{\partial (f \cdot x)}{\partial y} = \frac{\partial (f \cdot y)}{\partial x}, \quad \frac{\partial (f \cdot z)}{\partial y} = \frac{\partial (f \cdot y)}{\partial z} \text{ et } \frac{\partial (f \cdot z)}{\partial x} = \frac{\partial (f \cdot x)}{\partial z}.$$

2. Le signe négatif dans l'équation (6.24) est introduit purement par convention (par ce choix, on impose que la densité de forces soit dirigée vers les densités d'énergie potentielle décroissantes).

3. Le gradient de la fonction scalaire e(x, y, z, t), noté **grad** e, correspond au vecteur constitué (en coordonnées cartésiennes) par les dérivées partielles par rapport aux trois coordonnées d'espace :

$$\mathbf{grad}\,e(\mathbf{M},t) = \frac{\partial e}{\partial x}(\mathbf{M},t)\,\mathbf{x} + \frac{\partial e}{\partial y}(\mathbf{M},t)\,\mathbf{y} + \frac{\partial e}{\partial z}(\mathbf{M},t)\,\mathbf{z}.$$

4. La variation élémentaire de *e* entre les points M et M' (infiniment proches) à l'instant *t*, notée d*e*(M, *t*), est reliée au gradient par la relation :

$$de(M, t) = \mathbf{grad} \, e(M, t) \, . \, d\mathbf{OM}$$

où dOM = OM' - OM est le vecteur déplacement élémentaire.

 Dans le cas général, f et e dépendent du temps. Dans le cas contraire, le champ de forces est dit stationnaire.

Dans ce dernier cas d'un champ de forces stationnaire, on peut calculer le travail élémentaire δW associé aux forces f:

$$\delta W = \left(\int_{M} f(M) \cdot V(M) dm \right) dt = -\left(\int (\mathbf{grad} \, e) \cdot V(M) dm \right) dt.$$

Sous réserve de pouvoir permuter les intégrations spatiale et temporelle, on obtient :

$$\begin{split} \delta W &= -\int \left(\mathbf{grad}\,e(\mathbf{M})\,.\,V(\mathbf{M})\mathrm{d}t\right)\,\mathrm{d}m = -\int \left(\mathbf{grad}\,e(\mathbf{M})\,.\,\mathrm{d}\boldsymbol{O}\boldsymbol{M}\right)\mathrm{d}m \\ &= -\int \mathrm{d}e(\mathbf{M})\mathrm{d}m. \end{split}$$

On en déduit donc que :

$$\delta W = -dE_{\rm p}.\tag{6.25}$$

Dans l'équation précédente, E_p désigne **l'énergie potentielle du système** associée aux forces de densité massique f. E_p ne dépend pas explicitement du temps. Elle reste dépendante de la position moyenne du système, c'est à dire de la position de son centre de masse.

Remarque : on note δW pour signifier que dans le cas général il n'existe pas d'énergie potentielle satisfaisant (6.25). Si, au contraire, il existe une telle énergie potentielle, alors δW est une différentielle totale de la fonction $-E_p$, et W ne dépend pas de toute l'histoire du mouvement, mais seulement de l'état du système aux instants initial et final.

Comme exemple illustratif, nous présentons l'énergie potentielle de la pesanteur et l'énergie potentielle des forces d'inertie d'entraînement.

Exemple : énergie potentielle de la pesanteur

On considère le champ de pesanteur g (constant sur le domaine d'intégration) et un repère R centré à la surface de la Terre (pour lequel le vecteur unitaire z est vertical ascendant). On cherche à calculer l'énergie potentielle des actions de la pesanteur exercées sur un solide S dont le centre de masse est situé à l'altitude z_g .

Pour la puissance des forces de pesanteur, nous savons que (équation 6.22) :

$$\mathcal{P}(g \to S/R) = g \cdot p(S/R) = -mgz \cdot V(C \in S/R).$$

Par définition du vecteur vitesse, et le vecteur z étant constant, on obtient :

$$\mathcal{P}(\mathbf{g} \to S/R) = -mgz \cdot \frac{d\mathbf{OC}}{dt}\Big|_{R} = -mg\frac{d(\mathbf{OC} \cdot z)}{dt}\Big|_{R} = -mg\frac{dz_{g}}{dt}.$$

Par définition du travail élémentaire $\delta W = \mathcal{P}(t) \, \mathrm{d}t$ et en intégrant, on obtient :

$$E_{pg} = -W(g \rightarrow S/R) = mgz_g + K,$$

 $mgz_g + K$ représente l'énergie potentielle de la pesanteur E_{pg} , qui est définie à une constante additive près.

Énergie potentielle des forces d'inertie d'entraînement

Système en translation Pour un système de masse m en mouvement de translation quelconque (ni rectiligne ni uniforme), le vecteur rotation instantanée $\Omega(S/R)$ est nul. R représente le référentiel absolu (d'origine O, tandis que le référentiel relatif R' (d'origine O) est associé à S. D'après l'écriture du PFD en repère non galiléen, les efforts qui correspondent à l'accélération d'entraînement sont donnés par $F_e = -m\Gamma(C \in S/R)$ (équations 6.4 et 6.18). La densité massique f_e associée s'écrit :

$$f_{\rm e} = -\Gamma(C \in S/R).$$

Par conséquent, le travail élémentaire $\delta W_{\rm e}$ associé à la densité massique $f_{\rm e}$ s'écrit :

$$\delta W_{e} = \left(-\int_{M \in S} \Gamma(C \in S/R) \cdot V(M/R) dm\right) dt$$
$$= -\Gamma(C \in S/R) \cdot \left(\int_{M \in S} V(M/R) dt\right) dm.$$

Dans l'écriture précédente, on remarque que le terme $-\Gamma(C \in S/R)$ joue le même rôle que g dans le cas de l'action de la pesanteur. Le travail élémentaire peut encore s'écrire, en suivant le même développement que celui effectué dans la section précédente pour l'énergie potentielle de la pesanteur,

$$\delta W_{\rm e} = -m \boldsymbol{\varGamma}(\mathbf{C} \in \mathbf{S}/\mathbf{R}) \cdot \frac{\mathrm{d}\boldsymbol{O}\boldsymbol{C}}{\mathrm{d}t} \bigg|_{\mathbf{R}} \mathrm{d}t = -\mathrm{d}(m \boldsymbol{\varGamma}(\mathbf{C} \in \mathbf{S}/\mathbf{R}) \cdot \boldsymbol{O}\boldsymbol{C}).$$

On en déduit, d'après l'équation (6.25) :

$$E_{\rm e}(S/R) = -W_{\rm e}(S/R) = m\Gamma(C \in S/R) \cdot OC + K$$

qui désigne l'énergie potentielle associée aux forces d'inertie d'entraînement pour un système en translation, définie à une constante arbitraire près notée K.

Système en rotation autour d'un axe fixe. Pour un solide S en rotation autour d'un axe fixe $\Delta = (O', z)$, l'accélération d'entraînement s'écrit, en supposant que le vecteur rotation instantané est constant :

$$\Gamma_{e}(M \in S/R) = \Omega(R'/R) \wedge (\Omega(R'/R) \wedge O'M).$$

En introduisant la vitesse de rotation telle que $\Omega(R'/R) = \omega_e z$, cela peut encore s'écrire :

$$\Gamma_{\rm e} = -\omega_{\rm e}^2 H M$$

où H désigne la projection orthogonale de M sur l'axe de rotation ($\omega_e z \wedge O'H = 0$).

Alors, le travail élémentaire associé à la densité massique $f_{\rm e}$ s'exprime par :

$$\delta W_{e} = \left(-\int_{M \in S} \omega_{e}^{2} \boldsymbol{H} \boldsymbol{M} \cdot \boldsymbol{V}(M/R) \, d\boldsymbol{m}\right) dt$$
$$= -\omega_{e}^{2} \left(\int_{M \in S} \boldsymbol{H} \boldsymbol{M} \cdot \boldsymbol{V}(M/R) dt\right) d\boldsymbol{m}.$$

Compte tenu de l'absence de translation, $V(H/R) = \mathbf{0}$ pour H situé sur l'axe Δ , et donc :

$$\frac{\mathrm{d}HM}{\mathrm{d}t}\Big|_{\mathrm{R}} = V(\mathrm{M/R}) - V(\mathrm{H/R}) = V(\mathrm{M/R}).$$

La relation précédente est reportée dans l'expression du travail élémentaire pour trouver :

$$\begin{split} \delta W_{\rm e}({\rm S/R}) &= -\omega_{\rm e}^2 \int_{\rm M \in S} (\boldsymbol{H}\boldsymbol{M} \, . \, \mathrm{d}\boldsymbol{H}\boldsymbol{M}) \mathrm{d}\boldsymbol{m} = \mathrm{d} \left(-\frac{\omega_{\rm e}^2}{2} \int_{\rm M \in S} \boldsymbol{H}\boldsymbol{M}^2 \, \mathrm{d}\boldsymbol{m} \right) \\ &= \mathrm{d} \left(-\frac{\omega_{\rm e}^2}{2} I_\Delta \right) \end{split}$$

où I_{Δ} désigne le moment d'intertie du solide S par rapport à l'axe Δ . D'après l'équation (6.25) :

$$E_{\rm e}({\rm S/R}) = -W_{\rm e}({\rm S/R}) = \frac{1}{2}I_{\Delta}\omega_{\rm e}^2 + C$$

qui désigne l'énergie potentielle associée aux forces d'inertie d'entraînement pour un système en rotation autour d'un axe fixe, définie à une constante arbitraire près notée \mathcal{C} .

6.6.6 Théorème de l'énergie cinétique

Ce théorème constitue l'interprétation énergétique du PFD.

Application à un solide

Rappelons que le PFD appliqué à un solide S de masse m dans son mouvement par rapport à un référentiel galiléen R_g s'écrit :

$$\left\{\mathcal{D}(S/R_g)\right\}_A = \left\{\mathcal{H}(\overline{S} \to S)\right\}_A \ \forall A.$$

Nous pouvons multiplier (co-moment) chaque membre de l'égalité précédente par le torseur cinématique $\{\mathcal{V}\}$ de S par rapport à R_g .

$$\left\{\mathcal{V}(S/R_g)\right\}_{\Delta} \, . \, \left\{\mathcal{D}(S/R_g)\right\}_{\Delta} = \left\{\mathcal{V}(S/R_g)\right\}_{\Delta} \, . \, \left\{\mathcal{A}(\overline{S} \to S)\right\}_{\Delta} \, .$$

Le membre de droite de l'équation ci-dessus représente la puissance galiléenne des actions mécaniques extérieures exercées sur le solide S, notée $\mathcal{P}(\overline{S} \to S/R_\circ)$.

Regardons plus en détail ce que représente le membre de gauche, noté G. D'après la définition des torseurs dynamique et cinématique :

$$G = \left\{ \begin{array}{c} \int_{\mathsf{M} \in \mathsf{S}} \boldsymbol{\Gamma}(\mathsf{M}/\mathsf{R}_{\mathsf{g}}) \, \mathrm{d}m \\ \int_{\mathsf{M} \in \mathsf{S}} \boldsymbol{A} \boldsymbol{M} \wedge \boldsymbol{\Gamma}(\mathsf{M}/\mathsf{R}_{\mathsf{g}}) \, \mathrm{d}m \end{array} \right\}_{\mathsf{A}} \cdot \left\{ \begin{array}{c} \boldsymbol{\Omega}(\mathsf{S}/\mathsf{R}_{\mathsf{g}}) \\ \boldsymbol{V}(\mathsf{A} \in \mathsf{S}/\mathsf{R}_{\mathsf{g}}) \end{array} \right\}_{\mathsf{A}}.$$

Par application de la définition du co-moment de deux torseurs, on trouve :

$$G = V(A \in S/R_g) \cdot \int_{M \in S} \Gamma(M/R_g) dm$$
$$+ \Omega(S/R_g) \cdot \int_{M \in S} AM \wedge \Gamma(M/R_g) dm$$

 $V(A \in S/R_g)$ et $\Omega(S/R_g)$, peuvent être placés sous le signe d'intégration :

$$G = \int_{M \in S} V(A \in S/R_g) \cdot \Gamma(M/R_g) dm$$
$$+ \int_{M \in S} \Omega(S/R_g) \cdot \left(AM \wedge \Gamma(M/R_g)\right) dm.$$

À ce stade, la relation de torseur pour le torseur cinématique :

$$V(A \in S/R_g) = V(M \in S/R_g) + AM \wedge \Omega(S/R_g)$$

est introduite dans l'expression de G:

$$G = \int_{M \in S} \left(V(M/R_g) + AM \wedge \Omega(S/R_g) \right) . \Gamma(M/R_g) dm$$
$$+ \int_{M \in S} \Omega(S/R_g) . \left(AM \wedge \Gamma(M/R_g) \right) dm.$$

Après développement et simplification (les deux produits mixtes, égaux et opposés, s'annulent) :

$$G = \int_{M \in S} V(M/R_g) \cdot \Gamma(M/R_g) dm.$$

Or, par définition de l'accélération :

$$\Gamma(M \in S/R_g) = \frac{dV(M \in S/R_g)}{dt}\Big|_{R_g}$$

On reconnaît ainsi dans l'expression de G la dérivée temporelle de l'énergie cinétique définie au chapitre Cinétique, et calculée ici par rapport au repère galiléen $R_{\rm g}$. On parle dans ce cas d'énergie cinétique galiléenne :

$$\frac{\mathrm{d}}{\mathrm{d}t}T(\mathrm{S}/\mathrm{R}_{\mathrm{g}}) = \mathcal{P}(\overline{\mathrm{S}} \to \mathrm{S}/\mathrm{R}_{\mathrm{g}}).$$

Nous venons d'établir le théorème de l'énergie cinétique, qui s'énonce de la façon suivante :

Encadré ____

Th'eorème. La dérivée par rapport au temps de l'énergie cinétique galiléenne d'un solide S dans son mouvement par rapport à un repère galiléen R_g , est égale à la puissance galiléenne des actions extérieures exercées sur S:

$$\frac{\mathrm{d}}{\mathrm{d}t}T(\mathrm{S}/\mathrm{R}_{\mathrm{g}}) = \mathcal{P}(\overline{\mathrm{S}} \to \mathrm{S}/\mathrm{R}_{\mathrm{g}}).$$

Fin Encadré ____

Application à un ensemble de solides

Considèrons un ensemble S de n solides S_i en mouvement par rapport à un repère galiléen R_g . Le théorème de l'énergie cinétique s'écrit pour chacun des solides (i=1,n):

$$\frac{\mathrm{d}}{\mathrm{d}t}T(\mathrm{S}_i/\mathrm{R}_\mathrm{g}) = \mathcal{P}(\overline{\mathrm{S}_i} \to \mathrm{S}_i/\mathrm{R}_\mathrm{g}).$$

On ajoute membre à membre les équations obtenues pour trouver :

$$\frac{\mathrm{d}}{\mathrm{d}t}T(\mathrm{S}/\mathrm{R}_{\mathrm{g}}) = \sum_{i=1}^{n} \mathcal{P}(\overline{\mathrm{S}_{i}} \to \mathrm{S}_{i}/\mathrm{R}_{\mathrm{g}}).$$

Le terme de gauche exprime l'énergie cinétique galiléenne de l'ensemble des solides S_i , tandis que le terme de droite exprime la somme des puissances galiléennes des efforts extérieurs appliqués à chaque solide. L'écriture détaillée du dernier terme montre qu'il se décompose en deux parties : la puissance galiléenne des efforts extérieurs à S appliqués sur S, et la puissance des inter-efforts entre solides. Ceci s'écrit :

$$\frac{\mathrm{d}}{\mathrm{d}t}T(\mathrm{S}/\mathrm{R_g}) = \mathcal{P}(\overline{\mathrm{S}} \to \mathrm{S}/\mathrm{R_g}) + \mathcal{P}(\mathrm{S}_i \leftrightarrow \mathrm{S}_j)$$

et conduit à l'énoncé du théorème suivant :

Encadré ____

Th'eorème. La dérivée par rapport au temps de l'énergie cinétique galiléenne d'un ensemble S de solides S_i dans son mouvement par rapport au repère galiléen R_g est égale à la somme de la puissance galiléenne des actions extérieures exercées sur lui (notée \mathcal{P}_{ext}) et de la puissance des interefforts entre les solides S_i (notée \mathcal{P}_{int}):

$$\frac{\mathrm{d}}{\mathrm{d}t}T(\mathrm{S}/\mathrm{R}_{\mathrm{g}}) = \mathcal{P}_{\mathrm{ext}} + \mathcal{P}_{\mathrm{int}}.$$

Fin Encadré _____

Remarques:

- 1. À la différence du PFD, les actions intérieures interviennent ici par leur puissance.
- Dans le cas de liaisons parfaites, la puissance des inter-efforts de liaison est nulle.
- 3. Le théorème de l'énergie cinétique ne fournit pas d'équation indépendante de celles obtenues par le PFD. Par contre il conduit souvent aux équations du mouvement de manière plus immédiate.

6.6.7 Intégrale première de l'énergie cinétique

Énergie mécanique d'un système de solides

Encadré _____

Supposons dans cette partie que certains des efforts extérieurs (tels que l'action de la gravité) dérivent d'un potentiel $E_{\rm p}$ ext et que les autres n'en dérivent pas. Ceci s'écrit :

$$\mathcal{P}_{\text{ext}} = -\frac{d}{dt}E_{\text{p}} \operatorname{ext} + \mathcal{P}'_{\text{ext}}.$$

Dans la relation ci-dessus, E_p ext représente l'énergie potentielle des efforts extérieurs, tandis que $\mathcal{P}'_{\text{ext}}$ représente la puissance dissipée par les actions extérieures. Le théorème de l'énergie cinétique fait apparaître la puissance des efforts intérieurs \mathcal{P}_{int} (qui, dans le cas de solides indéformables, se limite à la puissance des inter-efforts). Supposons de la même manière la décomposition suivante pour \mathcal{P}_{int} :

$$\mathcal{P}_{\text{int}} = -\frac{\mathrm{d}}{\mathrm{d}t} E_{\text{p}} \operatorname{int} + \mathcal{P}'_{\text{int}}.$$

Dans la relation ci-dessus, E_p int représente l'énergie potentielle des efforts intérieurs, tandis que \mathcal{P}'_{int} représente la puissance dissipée par les actions intérieures.

_____ Fin Encadré _____

Remarque : la notion d'énergie potentielle E_p est associée à une grandeur ne dépendant que des coordonnées d'espace mais pas explicitement du temps. S'il en était autrement, le travail sur une trajectoire fermée ne serait pas nul, puisque on ne peut revenir au même point au même instant.

Compte tenu des deux équations précédentes et de l'énoncé du théorème de l'énergie cinétique, on a :

$$\frac{\mathrm{d}}{\mathrm{d}t}T(\mathrm{S}/\mathrm{R_g}) = -\frac{\mathrm{d}}{\mathrm{d}t}E_\mathrm{p}\,\mathrm{ext} + \mathcal{P}'_\mathrm{ext} - \frac{\mathrm{d}}{\mathrm{d}t}E_\mathrm{p}\,\mathrm{int} + \mathcal{P}'_\mathrm{int}$$

soit encore:

_____ Encadré _____

$$\frac{\mathrm{d}}{\mathrm{d}t}T(\mathrm{S}/\mathrm{R_g}) + \frac{\mathrm{d}}{\mathrm{d}t}E_\mathrm{p} \operatorname{ext} + \frac{\mathrm{d}}{\mathrm{d}t}E_\mathrm{p} \operatorname{int} = \mathcal{P}'_{\mathrm{ext}} + \mathcal{P}'_{\mathrm{int}}.$$

La quantité $T(S/R_g) + E_p$ ext + E_p int représente l'énergie mécanique E_m du système S.

Fin Encadré _____

Remarque : dans le cas particulier de forces conservatives (dérivant d'un potentiel : liaisons parfaites, actions de la pesanteur), les termes $\mathcal{P}'_{\text{ext}}$ et $\mathcal{P}'_{\text{int}}$ sont nuls, et on peut donc écrire que l'énergie mécanique du système se conserve. Cette notion est à rapprocher de la notion d'énergie interne employée en thermodynamique.

Intégrale première

_____ Encadré ____

Définition. Pour un système matériel dont la configuration est caractérisée par un certain nombre de paramètres $(q_1, q_2 \dots q_n)$, on appelle **équation du mouvement** toute relation entre les paramètres de position et leurs dérivées par rapport au temps.

Fin Encadré _____

Remarque: l'équation du mouvement ne contient en particulier aucune inconnue de liaison, mais peut par contre faire intervenir l'expression de forces connues. Les forces connues désignent ici les forces dont on connaît l'expression en fonction des données du problème, des paramètres de position, de leurs dérivées par rapport au temps et du temps. C'est le cas par exemple de l'action de la pesanteur.

Définition. Si on note \dot{q}_i la dérivée première par rapport au temps du paramètre de position q_i ($i=1,2,\ldots n$) et t le temps, on appelle **intégrale première du mouvement** d'un système matériel, une fonction des q_i , \dot{q}_i et

type:

$$f(q_1, q_2, \dots, \dot{q}_1, \dot{q}_2, \dots, t) = C$$

t qui reste constante au cours du mouvement. La relation obtenue est du

(C désigne une constante) pour tout mouvement du système étudié.

__ Fin Encadré __

Remarque : en particulier, si on connaît les valeurs q_{i0} et \dot{q}_{i0} des paramètres et de leurs dérivées premières à un instant t_0 , on peut expliciter l'équation du mouvement relative à l'intégrale première :

$$f(q_1, q_2, \dots, \dot{q}_1, \dot{q}_2, \dots, t) = f(q_{10}, q_{20}, \dots, \dot{q}_{10}, \dot{q}_{20}, \dots, t_0).$$

Encart ____

Reprise de l'exemple : boule sur piste circulaire

On considère à nouveau la boule B en mouvement sur la piste circulaire P (cf. paragraphe 5.3 et figure 6.1), et on cherche à présent à obtenir l'équation du mouvement de B dans le repère galiléen R_0 . D'après les calculs effectués plus haut, le mouvement peut être caractérisé par un seul paramètre à choisir parmi θ ou ϕ , ce qui signifie qu'il y a une seule équation indépendante pour décrire la dynamique du système. Nous allons déterminer cette équation du mouvement de deux manières, d'abord par application du Théorème du moment dynamique, puis par application du Théorème de l'énergie cinétique.

Application du Théorème du moment dynamique

Le théorème du moment dynamique s'écrit pour B par rapport à R_0 :

$$\delta(K \in B/R_0) = mgx_0 \wedge CK$$

soit

$$[I\ddot{\phi} - m(R - r)r\ddot{\theta}]z_1 = mgx_0 \wedge (rx_1) = mgr\sin\theta z_1. \tag{6.26}$$

La relation $(R - r)\dot{\theta} + r\dot{\phi} = 0$ qui traduit le roulement sans glissement en K permet d'exprimer $\ddot{\phi}$ en fonction de $\ddot{\theta}$:

$$\ddot{\phi} = -\ddot{\theta} \frac{R - r}{r}.\tag{6.27}$$

En remplaçant dans (6.26), on obtient l'équation du mouvement de B dans R_0 à partir de l'équation ci-dessus :

$$[I + mr^2]\ddot{\theta} = -\frac{r^2}{R - r} mg \sin \theta.$$

Application du Théorème de l'énergie cinétique.

D'après le chapitre Cinétique, l'énergie cinétique galiléenne de la boule B dans R_0 s'exprime comme le co-moment du torseur cinétique et du torseur cinématique, considérés ici au même point C:

$$\begin{split} 2T(\mathbf{B}/\mathbf{R}_0) &= \{\mathcal{V}(\mathbf{B}/\mathbf{R}_0)\}_{\mathbf{C}} \cdot \{C(\mathbf{B}/\mathbf{R})\}_{\mathbf{C}} \\ &= \left\{ \begin{array}{c} \mathbf{\Omega}(\mathbf{B}/\mathbf{R}_0) \\ \mathbf{V}(\mathbf{C} \in \mathbf{B}/\mathbf{R}_0) \end{array} \right\} \cdot \left\{ \begin{array}{c} mV(\mathbf{C} \in \mathbf{B}/\mathbf{R}_0) \\ \sigma(\mathbf{C} \in \mathbf{B}/\mathbf{R}_0) \end{array} \right\}. \end{split}$$

Puisque le point C constitue le centre de gravité du solide B, on a :

$$2T(B/R_0) = m(V(C \in B/R)^2 + \mathbf{\Omega}(B/R) \cdot \mathcal{J}_g(B/R)[\mathbf{\Omega}(B/R)]$$
$$= I\dot{\phi}^2 + m(R - r)^2\dot{\theta}^2.$$

Il reste à calculer la puissance galiléenne des efforts extérieurs exercés sur B, par rapport à R₀. D'après la relation (6.23),

$$\mathcal{P}(\overline{\mathrm{B}} \to \mathrm{B}/\mathrm{R}_0) = \left\{ \mathcal{V}(\mathrm{B}/\mathrm{R}_0) \right\} \, . \, \left\{ \mathcal{A}(\overline{\mathrm{B}} \to \mathrm{B}) \right\}.$$

Nous utilisons les résultats obtenus plus haut pour calculer cette puissance au point K :

$$\mathcal{P}(\overline{\mathbf{B}} \to \mathbf{B}/\mathbf{R}_0) = \left\{ \begin{array}{c} \mathbf{\Omega}(\mathbf{B}/\mathbf{R}_0) \\ V(\mathbf{K} \in \mathbf{B}/\mathbf{R}_0) = \mathbf{0} \end{array} \right\}_{\mathbf{K}} \cdot \left\{ \begin{array}{c} \mathbf{R}(\mathbf{P} \to \mathbf{B}) + mg\mathbf{x}_0 \\ mg\mathbf{x}_0 \wedge \mathbf{C}\mathbf{K} \end{array} \right\}_{\mathbf{K}}$$

soit:

$$\mathcal{P}(\overline{B} \to B/R_0) = \dot{\phi} mg(\mathbf{x}_0 \wedge C\mathbf{K}) \cdot \mathbf{z}_1 = mgr\dot{\phi}\sin\theta.$$

Le théorème de l'énergie cinétique appliqué à B dans le repère galiléen R_0 s'exprime ainsi :

$$\frac{\mathrm{d}}{\mathrm{d}t}T(\mathrm{B}/\mathrm{R}_0) = \mathcal{P}(\overline{\mathrm{B}} \to \mathrm{B}/\mathrm{R}_0) = \frac{\mathrm{d}}{\mathrm{d}t}\left[\frac{1}{2}I\dot{\phi}^2 + \frac{1}{2}m(R-r)^2\dot{\theta}^2\right]$$
$$= I\dot{\phi}\ddot{\phi} + m(R-r)^2\dot{\theta}\ddot{\theta} = mgr\dot{\phi}\sin\theta.$$

En insérant la relation (6.27) dans l'équation ci-dessus, on trouve finalement (en supposant $\dot{\phi} \neq 0$ et donc $\dot{\theta} \neq 0$):

$$[I + mr^2]\ddot{\theta} = -\frac{r^2}{R - r} mg \sin \theta.$$

On retrouve bien l'équation du mouvement obtenue par l'application du théorème du moment dynamique en K.

Fin Encart _____

Points clefs

– Torseur dynamique $\mathcal D$ d'un système matériel S en mouvement par rapport à un repère R

$$\{\mathcal{D}(S/R)\} = \left\{ \begin{array}{c} \int_{M \in S} \boldsymbol{\Gamma}(M/R) \, \mathrm{d}m \\ \\ \boldsymbol{\delta}(A \in S/R) = \int_{M \in S} \boldsymbol{A}\boldsymbol{M} \wedge \boldsymbol{\Gamma}(M/R) \, \mathrm{d}m \end{array} \right\}_{A}.$$

 Relation entre le torseur cinétique et le torseur dynamique Résultante dynamique :

$$m\Gamma(C \in S/R) = \frac{\mathrm{d}p(S/R)}{\mathrm{d}t}\Big|_{P}$$

Moment dynamique en A par rapport au repère R : Cas général :

1. Cas général : le point A est quelconque

$$\delta(A \in S/R) = \frac{d\sigma(A \in S/R)}{dt} \bigg|_{R} + mV(A \in R) \wedge V(C \in S/R).$$

2. Si le point A est fixe dans le repère R :

$$\delta(A \in S/R) = \frac{d\sigma(A \in S/R)}{dt} \bigg|_{R}.$$

3. Si le point A est pris au centre de gravité C du solide S :

$$\delta(C \in S/R) = \frac{d\sigma(C \in S/R)}{dt} \bigg|_{R}.$$

– Principe fondamental de la dynamique. Il existe au moins un repère R_g appelé repère galiléen et au moins une chronologie galiléenne tels que que pour tout sous-ensemble matériel s d'un ensemble S, le torseur dynamique des actions extérieures à s (noté $\{\mathcal{A}(\overline{s}\to s)\}$) est égal au torseur dynamique de s par rapport au repère R_g et ceci à tout instant t.

$$\left\{ \mathcal{D}(s/R_g) \right\}_{\Delta} = \left\{ \mathcal{A}(\overline{s} \to s) \right\}_{A} \quad \forall s \subset S, \forall A.$$

Théorème de la résultante dynamique. Il existe au moins un repère Rg appelé repère galiléen et au moins une chronologie galiléenne tels que que pour tout sous-ensemble matériel s d'un ensemble S, la résultante dynamique est égale à la somme des résultantes des actions extérieures à s :

$$m\mathbf{\Gamma}(C \in s/R_g) = \mathbf{F}(\overline{s} \to s) \quad \forall s.$$

– Théorème du moment dynamique. Il existe au moins un repère R_g appelé repère galiléen et au moins une chronologie galiléenne tels que que pour tout sous-ensemble matériel s d'un ensemble S, le moment dynamique en un point A quelconque de s par rapport au repère R_g est égal à la somme des moments en A des actions extérieures à s :

$$\delta(A \in s/R_g) = M_A(\overline{s} \to s) \quad \forall s, \forall A.$$

– Théorème des actions réciproques. Le torseur des actions extérieures exercées par un système fermé S_1 sur un autre système fermé S_2 est l'opposé du torseur des actions exercées par S_2 sur S_1 .

$$\{\mathcal{A}(S_1 \to S_2)\} = -\{\mathcal{A}(S_1 \to S_2)\}.$$

- Principe fondamental de la dynamique en repère non galiléen. Considérons un repère quelconque R, en mouvement par rapport à un repère galiléen R_g. Le PFD peut être appliqué dans le repère R, en écrivant que le torseur dynamique de système fermé S par rapport à R est égal à la somme du torseur des actions extérieures à S, du torseur dynamique d'entraînement et du torseur dynamique de Coriolis :

$$\left\{\mathcal{D}(S/R)\right\}_A = \left\{\mathcal{A}(\overline{S} \to S)\right\}_A + \left\{\mathcal{D}_e(R/R_g)\right\}_A + \left\{\mathcal{D}_c(S/R)\right\}_A$$

avec:

$$\{\mathcal{D}_{\mathrm{e}}(\mathrm{S}/\mathrm{R})\} = \left\{ \begin{array}{c} -\int_{\mathrm{M} \in \mathrm{S}} \boldsymbol{\Gamma}(\mathrm{M} \in \mathrm{R}/\mathrm{R}_{\mathrm{g}}) \, \mathrm{d}\boldsymbol{m} \\ \\ -\int_{\mathrm{M} \in \mathrm{S}} \boldsymbol{A} \boldsymbol{M} \, \wedge \boldsymbol{\Gamma}(\mathrm{M} \in \mathrm{R}/\mathrm{R}_{\mathrm{g}}) \, \mathrm{d}\boldsymbol{m} \end{array} \right\}_{\mathrm{A}}$$

$$\{\mathcal{D}_{\rm c}({\rm A}\in{\rm S/R})\} = \left\{ \begin{array}{c} -\int_{{\rm M}\in{\rm S}} 2\boldsymbol{\varOmega}({\rm R}/{\rm R_g}) \ \wedge \ \boldsymbol{V}({\rm M/R}) \ {\rm d}\boldsymbol{m} \\ \\ -\int_{{\rm M}\in{\rm S}} \boldsymbol{A}\boldsymbol{M} \ \wedge \left(2\boldsymbol{\varOmega}({\rm R}/{\rm R_g}) \ \wedge \ \boldsymbol{V}({\rm M/R})\right) {\rm d}\boldsymbol{m} \end{array} \right\}_{\rm A}.$$

– Puissance instantanée. Considérons un système de forces de résultante F associée à la densité f s'exerçant sur un système S, la puissance instantanée $\mathcal{P}(t)$ s'exprime :

$$\mathcal{P}(\overline{S} \to S/R)(t) = \int_{M \in S} f(M) \cdot V(MR) dm.$$

La puissance instantanée $\mathcal{P}(t)$ dépend du repère choisi pour effectuer le calcul.

Puissance des actions mutuelles entre deux solides. La somme de la puissance des actions développées par S₂ sur S₁ et par S₁ sur S₂, qui définit la puissance des actions mutuelles entre ces deux solides, est indépendante du repère choisi pour la calculer, et vaut :

$$\mathcal{P}(S_1 \leftrightarrow S_2) = \{\mathcal{V}(S_2/S_1)\} . \{\mathcal{H}(S_1 \to S_2)\}.$$

- Théorème de l'énergie cinétique appliqué à un solide. La dérivée par rapport au temps de l'énergie cinétique galiléenne d'un solide S dans son mouvement par rapport à un repère galiléen $R_{\rm g},$ est égale à la puissance galiléenne des actions extérieures exercées sur S :

$$\frac{\mathrm{d}}{\mathrm{d}t}T(\mathrm{S}/\mathrm{R}_{\mathrm{g}}) = \mathcal{P}(\overline{\mathrm{S}} \to \mathrm{S}/\mathrm{R}_{\mathrm{g}}).$$

– Théorème de l'énergie cinétique appliqué à un ensemble de solides. La dérivée par rapport au temps de l'énergie cinétique galiléenne d'un ensemble S de solides S_i dans son mouvement par rapport au repère galiléen R_g est égale à la somme de la puissance galiléenne des actions extérieures exercées sur lui (notée \mathcal{P}_{ext}) et de la puissance des interefforts entre les solides S_i (notée \mathcal{P}_{int}):

$$\frac{\mathrm{d}}{\mathrm{d}t}T(\mathrm{S}/\mathrm{R}_{\mathrm{g}}) = \mathcal{P}(\overline{\mathrm{S}} \to \mathrm{S}/\mathrm{R}_{\mathrm{g}}) + \mathcal{P}(\mathrm{S}_{i} \leftrightarrow \mathrm{S}_{j}) = \mathcal{P}_{\mathrm{ext}} + \mathcal{P}_{\mathrm{int}}.$$

– Énergie mécanique d'un système. On admet les décompositions suivantes pour la puissance des actions extérieures \mathcal{P}_{ext} et la puissance des actions intérieures \mathcal{P}_{int} :

$$\mathcal{P}_{\text{ext}} = -\frac{\mathrm{d}}{\mathrm{d}t} E_{\text{pext}} + \mathcal{P}'_{\text{ext}}$$

$$\mathcal{P}_{\text{int}} = -\frac{\mathrm{d}}{\mathrm{d}t}E_{\text{pint}} + \mathcal{P}'_{\text{int}}.$$

L'énergie mécanique du système S est la somme de l'énergie cinétique $T(S/R_g)$, de l'énergie potentielle des actions extérieures $E_{p\,{\rm ext}}$, et de l'énergie potentielle des actions intérieures $E_{p\,{\rm int}}$:

$$E_{\rm m} = T(S/R_{\rm g}) + E_{\rm pext} + E_{\rm pint}.$$

- Théorème de l'énergie mécanique. La dérivée par rapport au temps de l'énergie mécanique du système S par rapport au repère galiléen $R_{\rm g}$ est la somme de la puissance des actions extérieures et intérieures dissipées par le système :

$$\frac{\mathrm{d}}{\mathrm{d}t}E_{\mathrm{m}} = \mathcal{P}'_{\mathrm{ext}} + \mathcal{P}'_{\mathrm{int}}.$$

- Équation du mouvement. Pour un système matériel dont la configuration est caractérisée par un certain nombre de paramètres (q1, q2...qn), on appelle équation du mouvement toute relation entre les paramètres de position et leurs dérivées par rapport au temps.
- Intégrale première du mouvement. Si on note \dot{q}_i la dérivée première par rapport au temps du paramètre de position q_i ($i=1,2,\ldots n$) et t le temps, on appelle intégrale première du mouvement d'un système matériel, une fonction des q_i , \dot{q}_i et t qui reste constante au cours du mouvement. La relation obtenue est du type :

$$f(q_1, q_2, \dots, \dot{q}_1, \dot{q}_2, \dots, t) = C$$

(C désigne une constante) pour tout mouvement du système étudié.

Exercices

Nous présentons à présent trois problèmes complets destinés à mettre en application les notions vues dans ce chapitre, ainsi que dans les chapitres précédents, car l'application du PFD et des théorèmes énergétiques fait nécessairement appel aux torseurs cinématique, cinétique et d'actions mécaniques.

Exercice 6.1. Métronome

La Figure 6.3 représente un métronome, qui est schématisé sur la Figure 6.4 en vue d'une étude mécanique. D'après la schématisation proposée, le

BestNetronome.com, Copyright @ 2009 Marcin Sepak. All rights reserved.

Figure 6.3 – Métronome mécanique.

système est modélisé par (figure 6.4) :

1. Un socle S_0 auquel est attaché le repère orthonormé direct $R_0=(O,x_0,y_0,z_0)$, supposé galiléen, l'axe (O,z_0) étant vertical ascendant.

EXERCICES 241

Figure 6.4 – Schéma d'un métronome mécanique.

- 2. Un solide S_1 auquel est attaché le repère orthonormé direct $R_1 = (O, x_0, y_1, z_1)$. On introduit l'angle $\theta(t) = (y_0, y_1) = (z_0, z_1)$. Ce solide est constitué par :
 - une tige (AB) de longueur L, de masse négligeable, en liaison pivot parfait d'axe (O, x_0) avec le socle S_0 ;
 - un disque D homogène, de rayon R, de masse M, de centre d'inertie A, fixé rigidement à la tige en A;
 - un curseur Cr schématisé par une plaque rectangulaire homogène, située dans le plan (O, y_0, z_0) , de masse m, de centre d'inertie P et lié à la tige pendant le fonctionnement du métronome.

On pose $AB = Lz_1$, $OA = -dz_1$, $OP = \lambda z_1$. On admet que les matrices d'inertie du curseur Cr et du disque D, exprimées dans le repère R_1 , s'écrivent respectivement :

$$[J(P, Cr)] = \begin{pmatrix} A_{Cr} & 0 & 0 \\ 0 & B_{Cr} & 0 \\ 0 & 0 & B_{Cr} \end{pmatrix}$$

$$[J(A,D)] = \begin{pmatrix} A_D & 0 & 0 \\ 0 & C_D & 0 \\ 0 & 0 & C_D \end{pmatrix}.$$

Analyse cinématique

- 1) Déterminer le torseur cinématique au point P de S_1 dans son mouvement par rapport à S_0 .
- **2)** Déterminer le torseur cinématique au point A de S_1 dans son mouvement par rapport à S_0 .

Analyse cinétique

- **3)** Écrire le torseur cinétique du curseur Cr dans son mouvement par rapport à S_0 au point P.
- **4)** Écrire le torseur cinétique du disque D dans son mouvement par rapport à S_0 au point A.

Analyse dynamique

- **5)** Déduire des questions précédentes le torseur dynamique du solide S_1 dans son mouvement par rapport à S_0 .
- **6)** Effectuer le bilan des actions extérieures appliquées au solide S₁.
- **7)** Par application du PFD, déterminer les inconnues de liaison et l'équation de mouvement.

Théorème de l'énergie cinétique

Nous nous proposons à présent d'appliquer le théorème de l'énergie cinétique au système S_1 afin de retrouver directement l'équation du mouvement.

- **8)** Déterminer l'énergie cinétique du solide S_1 dans son mouvement par rapport à S_0 .
- **9)** Déterminer la puissance des efforts extérieurs appliqués au solide S_1 .
- **10)** Par application du théorème de l'énergie cinétique au solide S_1 dans son mouvement par rapport à S_0 , retrouver l'équation du mouvement.

Exercice 6.2. Régulateur de Watt

Dans cet exercice, on étudie le système représenté sur la figure 6.6. Il est constitué d'une barre verticale OA, en mouvement de rotation uniforme autour de son axe propre (O, z), de vitesse angulaire constante notée Ω . La barre OA entraîne une seconde barre AC, les deux barres étant reliées en A par une liaison pivot horizontale, supposée parfaite. La barre AC se termine par une sphère pleine S, de centre C qui représente également le centre de

EXERCICES 243

gravité de l'ensemble constitué de la barre AC et de S. AC = Lu, u désignant le vecteur unitaire de la barre orthonormée R_1 (A, u, v, w), w étant perpendiculaire au plan contenant AC. La position de l'ensemble AC + S est repérée par l'angle ϕ que forme la barre u par rapport à la verticale descendante -z. R (O, x, y, z) représente le repère orthonormé de réference, supposé galiléen, et note g l'accélération de la pesanteur. Le système étudié s'appele régulateur de Watt, et il sert à la régulation de la vitesse de rotation de systèmes variés (moteurs, moulins à vent ...), une illustration est donnée sur la figure 6.5. Le but est d'assurer une vitesse de rotation constante sur l'arbre central, et ce quel que soit le travail demandé au système. Le principe de fonctionnement est le suivant : pour le pendule conique utilisé dans le régulateur de Watt, la position de la sphère est uniquement liée à la vitesse de rotation qui lui est imposée. Aussi, si la vitesse de rotation tend à augmenter, les deux sphères (à l'image des bras des patineurs) tendent à s'écarter, ce qui provoque une augmentation de l'inertie du système. L'inertie augmentant, la vitesse de rotation diminue de façon à revenir à sa valeur initiale, car l'énergie fournie au système étant fixée, l'énergie cinétique reste constante.

 $\label{eq:figure} \textit{Figure } 6.5 - \textit{R\'egulateur de Watt dans un moulin \`a vent. } \textit{http://moulin.frouville.free.fr}$

Figure 6.6 – Schéma du régulateur de Watt.

Analyse cinétique

1) Justifier que la matrice d'inertie de l'ensemble constitué de la barre AC et de la sphère S (noté S_1 par la suite) a pour expression :

$$[J(S_1/R_1)] = \begin{pmatrix} I & 0 & 0 \\ 0 & J & 0 \\ 0 & 0 & J \end{pmatrix}$$

dans la base R_1 , avec I < J.

2) Calculer le vecteur $\Omega(S_1/R)$ vitesse instantanée de rotation de S_1 . Ce vecteur sera exprimé dans la base R_1 en fonction de Ω , ϕ et $\dot{\phi}$. En déduire que le moment cinétique de S_1 en A par rapport à R a pour expression :

$$\sigma(A \in S_1/R) = -I\Omega\cos\phi u + J\Omega\sin\phi v + J\dot{\phi}w.$$

Analyse dynamique

3) Calculer le moment dynamique en A de S_1 par rapport à R. Le résultat sera exprimé dans la base R_1 . La masse de S_1 est notée M.

EXERCICES 245

4) Calculer le moment du poids de S_1 par rapport à A, et exprimer le résultat obtenu dans R_1 . Par application du théorème du moment dynamique à S_1 , puis projection sur une direction appropriée, en déduire que l'équation différentielle du mouvement s'écrit :

$$J\ddot{\phi} + (I - J)\Omega^2 \sin\phi\cos\phi = -MgL\sin\phi.$$

Etude de l'équilibre du système

On s'intéresse à présent aux positions d'équilibre du système S_1 , pour lesquelles $\dot{\phi}$ et $\ddot{\phi}$ sont nuls, la vitesse de rotation Ω étant imposée et non nulle.

- **5)** Montrer que les positions $\phi = 0$ et $\phi = \pi$ sont toujours d'équilibre, quelle que soit la valeur de Ω .
- **6)** Montrer que si Ω est assez grand (en valeur absolue), il existe une troisième position d'équilibre correspondant à une valeur de ϕ que l'on explicitera.

Exercice 6.3. Machine tournante

On étudie une machine tournante de type ventilateur, constituée d'un stator fixe (par rapport au repère du laboratoire R_0), d'un rotor et de n pales. Dans un souci de simplification du problème, l'étude est limitée au système composé du stator fixe noté S_0 , du rotor mobile noté S_1 et d'une pale **unique** notée S_2 . L'étude est réalisée dans le repère galiléen $R_0 = (O, x_0, y_0, z_0)$ lié au stator S_0 . L'axe $(0,z_0)$ est vertical ascendant et on note $g=-gz_0$ l'accélération de la pesanteur. Le système étudié est représenté sur la figure 6.7. Le mouvement axial du rotor S_1 est paramétré par la position de son centre de masse $C_1: z(t)z_0$. S_1 est un solide indéformable de révolution autour de l'axe (C_1,z_0) , de rayon R, de masse m_1 et de moment d'inertie I_1 par rapport à l'axe $(0,z_0)$. Un ressort r_1 , de masse négligeable et de raideur k, est placé entre le rotor et le stator afin de permettre le déplacement de C_1 autour d'une position moyenne correspondant au point H ($OH = z_0z_0$). On donne le torseur d'action du ressort r_1 sur S_1 en C_1 :

$$\{\mathcal{A}(\mathbf{r}_1 \to \mathbf{S}_1)\} = \left\{ \begin{array}{c} -k(z-z_0)z_0 \\ \mathbf{0} \end{array} \right\}_{C_1}.$$

Le mouvement de rotation de S_1 autour de l'axe $(0,z_0)$ est paramétré par l'angle $\theta=(x_0,x_1)=(y_0,y_1)$. La liaison entre le rotor S_1 et le stator S_0 constitue une liaison pivot glissant d'axe $(0,z_0)$, supposée parfaite. Un moteur M exerce sur le rotor S_0 un couple noté $C(t)=C(t)z_0$, et ce afin de conserver une vitesse de rotation $\frac{d\theta}{dt}$ constante, notée ω . Le mouvement de

 $\label{eq:Figure 6.7-Schéma du système tournant comprenant le rotor, le disque, la pale et les deux ressorts.$

la pale S_2 , de masse m_2 , est repéré par la position de son centre de masse C_2 , tel que $AC_2 = \ell y_2$. S_2 est en liaison pivot d'axe (A,x_1) avec le rotor S_1 au point A, tel que $C_1A = Ry_1$. On définit le repère $R_2 = (A,x_1,y_2,z_2)$ lié à S_2 , tel que $z_2 = x_1 \wedge y_2$. On suppose que la matrice d'inertie de S_2 en C_2 présente la forme suivante dans la base (x_1,y_2,z_2) :

$$[J(C_2, S_2)] = \begin{pmatrix} I_2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & I_2 \end{pmatrix}$$

La rotation de la pale S_2 autour de (A, x_1) est définie par l'angle $\alpha = (y_1, y_2)$. Un ressort de torsion r_2 est placé entre le rotor S_1 et la pale S_2 ,

EXERCICES 247

et son action sur S_2 est définie de la manière suivante :

$$\{\mathcal{A}(\mathbf{r}_2 \to \mathbf{S}_2)\} = \left\{ \begin{array}{c} \mathbf{0} \\ c\alpha \mathbf{x}_1 \end{array} \right\}_{\mathbf{A}}.$$

Il s'agit d'un couple qui permet de ramener la pale S_2 vers une position d'équilibre telle que $\alpha=0$. Enfin, l'action du fluide sur la pale S_2 est représentée par un torseur qui en C_2 , se réduit à :

$$\{\mathcal{A}(\text{fluide} \to S_2)\} = \left\{ \begin{array}{c} -bV(C_2 \in S_2/R_0) \\ \mathbf{0} \end{array} \right\}_{C_2}.$$

Les quantités z_0 , l, R, I_2 , b, définies plus haut, sont des constantes positives.

Analyse cinématique

- 1) Déterminer le torseur cinématique au point C_1 du rotor S_1 dans son mouvement par rapport à R_0 .
- **2)** Déterminer le torseur cinématique au point A de la pale S_2 dans son mouvement par rapport à R_0 .

Analyse cinétique

- **3)** En supposant que le solide S_1 est un solide de révolution autour de l'axe (O,z_0) , donner laforme de sa matrice d'inertie.
- **4)** Donner l'expression du torseur cinétique au point O de S_1 dans son mouvement par rapport à R_0 .
- **5)** Donner l'expression du torseur cinétique au point A de S_2 dans son mouvement par rapport à R_0 .

Analyse dynamique

On cherche à déterminer les deux équations de mouvement du système portant sur $\alpha(t)$ et z(t).

- **6)** Effectuer le bilan des actions mécaniques qui s'appliquent aux solides S_1 et S_2 , sous la forme de torseurs à définir en des points appropriés.
- **7)** Donner l'expression du moment dynamique $\delta(O \in S_1 \cup S_2/R_0)$.
- 8) Justifier le fait que :
- l'équation du moment dynamique, appliquée au système S_2 et projetée sur l'axe (A,x_1) ;

- l'équation de la résultante dynamique, appliquée au système $S_1 \cup S_2$ et projetée sur l'axe (O,z_0) ,

permettent d'obtenir directement ces équations de mouvement.

9) Pour cette question, on considère un régime stationnaire pour le système, caractérisé par $\alpha=0$ et z(t)=0, et ceci $\forall t$. Appliquer le théorème du moment dynamique au système $S_1 \cup S_2$ en O en projection selon z_0 . En déduire l'expression du couple moteur C(t) en fonction de b, ω et des données géométriques. Que se passe-t-il lorsque b=0? Proposer une interprétation physique.

Théorème de l'énergie cinétique

Nous nous proposons à présent d'appliquer le théorème de l'énergie cinétique au système $S_1 \cup S_2$ par rapport à R_0 , afin de retrouver directement une des deux équations du mouvement.

- **10)** Calculer l'énergie cinétique de l'ensemble $S_1 \cup S_2$ par rapport à R_0 .
- 11) Calculer les diverses puissances qui interviennent dans l'étude du système $S_1 \cup S_2.$
- **12)** Quelles sont les actions qui dérivent d'un potentiel?

EXERCICES

Solutions

249

Solution 6.1.

Analyse cinématique

1) et 2) On doit exprimer le torseur $\{V(S_1/R_0)\}$ en deux points différents :

$$\{\mathcal{V}(S_1/R_0)\} = \left\{ \begin{array}{c} \boldsymbol{\varOmega}(S_1/R_0) \\ \boldsymbol{V}(P \in S_1/R_0) \end{array} \right\}_P = \left\{ \begin{array}{c} \boldsymbol{\varOmega}(S_1/R_0) \\ \boldsymbol{V}(A \in S_1/R_0) \end{array} \right\}_A.$$

Le vecteur vitesse de rotation ne dépend pas du point : $\mathbf{\Omega}(S_1/R_0) = \dot{\theta}x_0$. On va calculer les vecteurs vitesses par dérivation directe :

$$V(P \in S_1/R_0) = \left. \frac{\mathrm{d}OP}{\mathrm{d}t} \right|_{R_0} = -\lambda \dot{\theta} y_1 \text{ et } V(A \in S_1/R_0) = \left. \frac{\mathrm{d}OA}{\mathrm{d}t} \right|_{R_0} = d\dot{\theta} y_1.$$

Noter au passage que nous n'avons pas utilisé la relation de torseur pour passer du point P au point A.

Analyse cinétique

3) P étant le centre de masse du curseur C, la question 1 permet de déduire l'expression de la résultante cinétique; pour le moment cinétique, on utilise l'équation (5.27):

$$\{C(\operatorname{Cr}/\operatorname{R}_0)\} = \left\{ \begin{array}{ll} mV(\operatorname{P} \in \operatorname{S}_1/\operatorname{R}_0) = -m\lambda \dot{\theta} \boldsymbol{y}_1 \\ \mathcal{J}(\operatorname{P},\operatorname{C})[\boldsymbol{\varOmega}(\operatorname{S}_1/\operatorname{R}_0)] = A_{\operatorname{C}} \dot{\theta} \boldsymbol{x}_0 \end{array} \right\}_{\operatorname{P}} .$$

4) De la même façon, A étant le centre de masse du disque D, on obtient à l'aide de la question 2 :

$$\{C(D/R_0)\} = \begin{cases} MV(A \in S_1/R_0) = Md\dot{\theta}y_1 \\ \mathcal{J}(A,D)[\Omega(S_1/R_0)] = A_D\dot{\theta}x_0 \end{cases}.$$

Analyse dynamique

5) La tige (AB) étant de masse négligeable, le torseur dynamique de S_1 est la somme des torseurs dynamiques du curseur Cr et du disque D. Les

résultantes dynamiques sont obtenues à partir des résultantes cinétiques par dérivation directe par rapport à R_0 :

$$m\Gamma(P \in Cr/R_0) = m \left. \frac{dV(P \in S_1/R_0)}{dt} \right|_{R_0} = -m\lambda(\ddot{\theta}y_1 + \dot{\theta}^2 z_1)$$

$$M\Gamma(\mathbf{A} \in \mathbf{D}/\mathbf{R}_0) = M \left. \frac{\mathrm{d}V(\mathbf{A} \in \mathbf{S}_1/\mathbf{R}_0)}{\mathrm{d}t} \right|_{\mathbf{R}_0} = Md(\ddot{\theta}\mathbf{y}_1 + \dot{\theta}^2\mathbf{z}_1).$$

Les moments dynamiques de C et D sont obtenus par dérivation directe des moments cinétiques calculés en P et A respectivement (équation 6.10). On utilise ensuite la relation de torseur (équation 6.2) pour exprimer le moment dynamique résultant en O. Pour le curseur Cr :

$$\delta(P \in Cr/R_0) = \left. \frac{d\sigma(P \in Cr/R_0)}{dt} \right|_{R_0} = A_C \ddot{\theta} x_0$$

puis:

$$\delta(O \in Cr/R_0) = \delta(P \in Cr/R_0) + m\Gamma(P \in Cr/R_0) \wedge PO = (A_C + m\lambda^2)\ddot{\theta}x_0.$$

Pour le disque D:

$$\delta(\mathbf{A} \in \mathbf{D}/\mathbf{R}_0) = \left. \frac{\mathrm{d}\sigma(\mathbf{A} \in \mathbf{D}/\mathbf{R}_0)}{\mathrm{d}t} \right|_{\mathbf{R}_0} = A_{\mathbf{D}}\ddot{\theta}\mathbf{x}_0$$

puis:

$$\delta(O \in D/R_0) = \delta(A \in D/R_0) + M\Gamma(A \in D/R_0) \wedge AO = (A_D + Md^2)\ddot{\theta}x_0.$$

Soit pour le torseur dynamique du solide S₁:

$$\{\mathcal{D}(S_1/R_0)\} = \left\{ \begin{array}{ll} (Md-m\lambda)\ddot{\theta} y_1 + (Md-m\lambda)\dot{\theta}^2 z_1 \\ \delta(O \in S_1/R_0) = (A_C + A_D + m\lambda^2 + Md^2)\ddot{\theta} x_0 \end{array} \right\}_O.$$

6) Les actions extérieures sur S_1 comprennent l'action de la pesanteur et de la liaison pivot :

$$\{\mathcal{A}(\boldsymbol{g}\to \operatorname{Cr})\} = \left\{ \begin{array}{c} -mgz_0 \\ \boldsymbol{0} \end{array} \right\}_{\operatorname{P}}$$

$$\{\mathcal{A}(\boldsymbol{g}\to \mathrm{D})\} = \left\{ \begin{array}{c} -Mgz_0 \\ \boldsymbol{0} \end{array} \right\}_{\mathrm{A}}$$

EXERCICES 251

$$\{\mathcal{A}(S_0 \to S_1)\} = \left\{ \begin{array}{c} X_{01}x_0 + Y_{01}y_0 + Z_{01}z_0 \\ M_{01}y_0 + N_{01}z_0 \end{array} \right\}_{\mathcal{O}}.$$

7) Le torseur dynamique ayant été déterminé dans la question 5, le PFD s'écrit pour le système S_1 , par rapport au référentiel galiléen R_0 :

$$\{\mathcal{D}(S_1/R_0)\}_{O} = \{\mathcal{A}(\overline{S}_1 \to S_1)\}_{O}.$$

L'équation précédente se décompose en le théorème de la résultante dynamique et le théorème du moment dynamique. Le théorème de la résultante dynamique s'écrit :

$$m\Gamma(P \in Cr/R_0) + M\Gamma(A \in D/R_0) = X_{01}x_0 + Y_{01}y_0 + (Z_{01} - (m+M)g)z_0$$

que l'on projette ensuite selon les axes du repère orthonormé $R_0 = (O, x_0, y_0, z_0)$ pour identifier les composantes de la résultante de la liaison pivot :

$$X_{01} = 0$$

$$Y_{01} = (Md - m\lambda)(\ddot{\theta}\cos\theta - \dot{\theta}^2\sin\theta)$$

$$Z_{01} = (m+M)g + (Md - m\lambda)(\ddot{\theta}\sin\theta - \dot{\theta}^2\cos\theta).$$

Le théorème du moment dynamique est écrit en O :

$$\delta(O \in S_1/R_0) = -mgz_0 \wedge PO - Mgz_0 \wedge AO + M_{01}y_0 + N_{01}z_0$$

que l'on projette ensuite selon les axes du repère orthonormé $R_0 = (O, x_0, y_0, z_0)$, pour identifier l'équation du mouvement :

$$(A_{\rm C} + A_{\rm D} + m\lambda^2 + Md^2)\ddot{\theta} = (m\lambda - Md)g\sin\theta$$

et les composantes du moment de la liaison pivot :

$$M_{01} = 0$$

 $N_{01} = 0$.

Théorème de l'énergie cinétique

8) L'énergie cinétique de l'ensemble S_1 par rapport à R_0 est obtenue en calculant le co-moment des torseurs cinématique et cinétique. Pour le curseur Cr, d'après les questions 1 et 3 :

$$\begin{split} 2T(\mathrm{Cr}/\mathrm{R}_0) &= \{\mathcal{V}(\mathrm{Cr}/\mathrm{R}_0)\}_{\mathrm{P}} \cdot \{C(\mathrm{Cr}/\mathrm{R}_0)\}_{\mathrm{P}} \\ &= \left\{ \begin{array}{c} \boldsymbol{\varOmega}(\mathrm{S}_1/\mathrm{R}_0) &= \dot{\boldsymbol{\vartheta}} \boldsymbol{x}_0 \\ \boldsymbol{V}(\mathrm{P} \in \mathrm{Cr}/\mathrm{R}_0) &= -\lambda \dot{\boldsymbol{\theta}} \boldsymbol{y}_1 \end{array} \right\} \cdot \left\{ \begin{array}{c} -m\lambda \dot{\boldsymbol{\theta}} \boldsymbol{y}_1 \\ A_{\mathrm{C}} \dot{\boldsymbol{\theta}} \boldsymbol{x}_0 \end{array} \right\} = (A_{\mathrm{C}} + m\lambda^2) \dot{\boldsymbol{\theta}}^2. \end{split}$$

Pour le disque D, d'après les questions 2 et 4 :

$$\begin{split} 2T(\mathsf{D}/\mathsf{R}_0) &= \{\mathcal{V}(\mathsf{D}/\mathsf{R}_0)\}_\mathsf{A} \cdot \{C(\mathsf{D}/\mathsf{R}_0)\}_\mathsf{A} \\ &= \left\{ \begin{array}{c} \boldsymbol{\varOmega}(\mathsf{S}_1/\mathsf{R}_0) &= \dot{\theta}\boldsymbol{x}_0 \\ \boldsymbol{V}(\mathsf{A} \in \mathsf{D}/\mathsf{R}_0) &= d\dot{\theta}\boldsymbol{y}_1 \end{array} \right\} \cdot \left\{ \begin{array}{c} Md\dot{\theta}\boldsymbol{y}_1 \\ A_\mathsf{D}\dot{\theta}\boldsymbol{x}_0 \end{array} \right\} = (A_\mathsf{D} + Md^2)\dot{\theta}^2 \end{split}$$

et l'on obtient pour S₁:

$$2T(S_1/R_0) = 2T(Cr/R_0) + 2T(D/R_0) = (A_C + A_D + m\lambda^2 + Md^2)\dot{\theta}^2$$

9) Les puissances des actions extérieures exerçées sur le système S_1 se calculent en effectuant le co-moment du torseur des efforts et du torseur cinématique, tous deux pris en un même point. On utilise les résultats des questions 1, 2, et 6.

$$\mathcal{P}(\mathbf{g} \to \operatorname{Cr/R}_0) = \left\{ \begin{array}{l} \mathbf{\Omega}(S_1/R_0) = \dot{\theta} \mathbf{x}_0 \\ \mathbf{V}(P \in \operatorname{Cr/R}_0) = -\lambda \dot{\theta} \mathbf{y}_1 \end{array} \right\}_{P} \cdot \left\{ \begin{array}{l} -mg z_0 \\ \mathbf{0} \end{array} \right\}_{P}$$
$$= mg \lambda \dot{\theta} \sin \theta$$

$$\mathcal{P}(\mathbf{g} \to \mathrm{D/R_0}) = \left\{ \begin{array}{l} \mathbf{\Omega}(\mathrm{S_1/R_0}) = \dot{\theta} \mathbf{x}_0 \\ \mathbf{V}(\mathrm{A} \in \mathrm{D/R_0}) = d\dot{\theta} \mathbf{y}_1 \end{array} \right\}_{\mathrm{A}} \cdot \left\{ \begin{array}{l} -Mgz_0 \\ \mathbf{0} \end{array} \right\}_{\mathrm{A}}$$
$$= -Mgd\dot{\theta}\sin\theta$$

$$\mathcal{P}(S_0 \to S_1/R_0) = \left\{ \begin{array}{c} \boldsymbol{\varOmega}(S_1/R_0) = \dot{\boldsymbol{\vartheta}}\boldsymbol{x}_0 \\ \boldsymbol{V}(O \in S_1/R_0) = \boldsymbol{0} \end{array} \right\}_O \cdot \left\{ \begin{array}{c} X_{01}\boldsymbol{x}_0 + Y_{01}\boldsymbol{y}_0 + Z_{01}\boldsymbol{z}_0 \\ M_{01}\boldsymbol{y}_0 + N_{01}\boldsymbol{z}_0 \end{array} \right\}_O = 0.$$

Ce dernier résultat est en accord avec l'hypothèse de liaison parfaite entre S_0 et S_1 .

10) Le théorème de l'énergie cinétique s'écrit, pour le solide S_1 dans son mouvement par rapport au repère galiléen R_0 :

$$\frac{\mathrm{d}T(\mathrm{S}_1/\mathrm{R}_0)}{\mathrm{d}t}\bigg|_{\mathrm{R}_0} = \mathcal{P}(\overline{\mathrm{S}}_1 \to \mathrm{S}_1/\mathrm{R}_0).$$

D'après les résultats des questions 8 et 9, on obtient :

$$\frac{1}{2} \left. \frac{\mathrm{d}(A_{\mathrm{C}} + A_{\mathrm{D}} + m\lambda^2 + Md^2)\dot{\theta}^2}{\mathrm{d}t} \right|_{R_0} = (m\lambda - Md)g\dot{\theta}\sin\theta.$$

Soit après dérivation et en supposant $\dot{\theta} \neq 0$:

$$(A_{\rm C} + A_{\rm D} + m\lambda^2 + Md^2)\ddot{\theta} = (m\lambda - Md)g\sin\theta.$$

On retrouve l'équation du mouvement obtenue en 7 par l'écriture du théorème du moment dynamique en projection selon x_0 .

EXERCICES 253

Solution 6.2.

Analyse cinétique

1) L'ensemble constitué de la barre AC et de la sphère S présente une symétrie de révolution autour de l'axe (A, u). D'après les résultats du chapitre Cinétique, ceci implique que dans tout repère orthonormé contenant (A, u), en particulier dans le repère $R_1 = (A, u, w, z)$, la matrice d'inertie est diagonale et s'écrit :

$$[J(A, S_1)] = \begin{pmatrix} I & 0 & 0 \\ 0 & J & 0 \\ 0 & 0 & J \end{pmatrix}$$

avec $I \leq J$ car (A, \mathbf{u}) constitue l'axe de symétrie matérielle pour S_1 .

2) D'après la composition des rotations :

$$\Omega(S_1/R) = \Omega(S_1/OA) + \Omega(OA/R),$$

$$\Omega(S_1/OA) = \dot{\phi}w$$

correspond à la liaison pivot d'axe (A, w) de S_1 par rapport à OA, et

$$\Omega(OA \in R) = \Omega z = \Omega(-\cos\phi u + \sin\phi v).$$

Le point A étant fixe, on utilise la relation (5.26) pour exprimer le moment cinétique en A :

$$\sigma(A \in S_1/R) = \mathcal{J}(A, S_1)[\Omega(S_1/R)]$$

= $-I\Omega\cos\phi u + J\Omega\sin\phi v + J\dot{\phi}w$.

Analyse dynamique

3) Le point A étant fixe, le moment dynamique s'obtient directement par dérivation par rapport au temps de l'expression du moment cinétique (relation 6.9) :

$$\delta(\mathbf{A} \in \mathbf{S}/\mathbf{R}) = \left. \frac{\mathrm{d}\sigma(\mathbf{A} \in \mathbf{S}/\mathbf{R})}{\mathrm{d}t} \right|_{\mathbf{R}}.$$

Pour le calcul de $\delta(A \in S/R)$, il convient donc de dériver les vecteurs de la base R_1 , on utilise la relation du repère mobile :

$$\frac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}t}\Big|_{\mathbf{R}} = \boldsymbol{\Omega}(\mathbf{S}_1/\mathbf{R}) \wedge \boldsymbol{u} = (\dot{\phi}\boldsymbol{w} + \Omega\boldsymbol{z}) \wedge \boldsymbol{u} = \dot{\phi}\boldsymbol{v} - \Omega\sin\phi\boldsymbol{w}.$$

De la même manière:

$$\frac{\mathrm{d}v}{\mathrm{d}t}\Big|_{R} = \mathbf{\Omega}(S_{1}/R) \wedge v = (\dot{\phi}w + \Omega z) \wedge v = -\dot{\phi}u - \Omega\cos\phi w$$

$$\frac{\mathrm{d}w}{\mathrm{d}t}\Big|_{R} = \mathbf{\Omega}(S_{1}/R) \wedge w = (\dot{\phi}w + \Omega z) \wedge w = \Omega\cos\phi v + \Omega\sin\phi u.$$

Et par dérivation terme à terme de l'expression obtenue pour $\sigma(A \in S/R)$, tenant comptedes relations ci-dessus, nous obtenons :

$$\delta(A \in S/R) = I\Omega\dot{\phi}\sin\phi u + \Omega\dot{\phi}\cos\phi(-I + 2J)v + ((I - J)\Omega^2\cos\phi\sin\phi + J\ddot{\phi})w.$$

4) La résultante du poids de S_1 , appliquée en C, vaut -Mgz. En conséquence, le moment en A du poids de S_1 s'exprime par le vecteur suivant :

$$M(A, poids \rightarrow S_1) = AC \wedge (-Mg z) = -MgL \sin \phi w.$$

Le théorème du moment dynamique pour S_1 , appliqué en A par rapport à R, s'écrit :

$$\delta(A \in S_1/R) = M(A, poids \rightarrow S_1) + M(A, pivot \rightarrow S_1).$$

Par ailleurs, la liaison pivot d'axe horizontal (A, w), est supposée parfaite, celle-ci ne transmet donc pas de moment selon w. En conséquence, l'équation du mouvement est obtenue par la projection du théorème du moment dynamique selon w:

$$\delta(A \in S_1/R)$$
. $w = M(A, poids \rightarrow S_1)$. $w + M(A, pivot \rightarrow S_1)$. w

avec $M(A, pivot \rightarrow S_1)$. w = 0, ce qui conduit à l'équation différentielle du mouvement :

$$(I - J)\Omega^2 \cos\phi \sin\phi + J\ddot{\phi} = -MgL \sin\phi. \tag{6.28}$$

Étude de l'équilibre du système

5) En introduisant la relation $\ddot{\phi}=0$ dans l'équation (6.28), on obtient l'équation d'équilibre suivante :

$$(I - J) \Omega^2 \cos \phi \sin \phi = -MgL \sin \phi$$

et il apparaît que les positions $\phi=0$ et $\phi=\pi$ constituent des positions d'équilibre; ces deux positions d'équilibre sont stables.

EXERCICES 255

6) En réécrivant l'équation d'équilibre sous la forme suivante :

$$\cos\phi\sin\phi = \frac{MgL}{(J-I)\Omega^2}\sin\phi$$

on s'aperçoit que le second membre de l'équation ci-dessus tend vers 0 dès lors que $|\Omega|$ est grand devant $\sqrt{\frac{MgL}{J-I}}$ (se rappeler que I < J), ce qui implique :

$$\cos \phi \sin \phi = 0.$$

À la relation précédente est associée une nouvelle position d'équilibre possible : $\phi = \pi/2$. Cette position d'équilibre est associée à la situation où, le bras OA tournant suffisamment vite, les sphères sont en équilibre en position horizontale. Cette dernière position d'équilibre est instable.

Solution 6.3.

Analyse cinématique

1)

$$\{\mathcal{V}(S_1/R_0)\} = \left\{ \begin{array}{c} \boldsymbol{\varOmega}(S_1/S_0) = \dot{\theta} z_0 \\ V(C_1 \in S_1/R_0) = \left. \frac{\mathrm{d} \boldsymbol{\varOmega} \boldsymbol{C}}{\mathrm{d} t} \right|_{R_0} = \dot{z} z_0 \end{array} \right\}_{C_1}.$$

2) A est le centre de la liaison pivot entre S_1 et S_2 , ce qui implique : $V(A \in S_2/R_0) = V(A \in S_1/R_0)$, et en utilisant la relation de torseur entre les vitesses de C_1 et A :

$$V(A \in S_1/R_0) = V(C_1 \in S_1/R_0) + \Omega(S_1/S_0) \wedge C_1A = \dot{z}z_0 - R\dot{\theta}x_1.$$

D'après la composition des rotations :

$$\mathbf{\Omega}(S_2/S_0) = \mathbf{\Omega}(S_2/S_1) + \mathbf{\Omega}(S_1/S_0) = \dot{\alpha}x_1 + \dot{\theta}z_0.$$

Et pour le torseur cinématique $\{V(S_2/R_0)\}_A$:

$$\{ \mathcal{V}(S_2/R_0) \} \quad = \quad \left\{ \begin{array}{ll} \boldsymbol{\varOmega}(S_2/S_0) = \dot{\alpha}\boldsymbol{x}_1 + \dot{\theta}\boldsymbol{z}_0 \\ \boldsymbol{V}(A \in S_2/R_0) = \dot{z}\boldsymbol{z}_0 - R\dot{\theta}\boldsymbol{x}_1 \end{array} \right\}_A \ .$$

Analyse cinétique:

3) Le solide S_1 présentant une symétrie de révolution autour de z_0 , le repère R_0 constitue un repère principal d'inertie, et la matrice d'inertie est diagonale. Du fait de la symétrie de révolution, les axes du plan du disque jouent

tous le même rôle. Dans toute base orthornormée contenant le vecteur z_0 (et en particulier dans R_0), la matrice d'inertie a la forme suivante :

$$[J(C,B)] = \left(\begin{array}{ccc} I' & 0 & 0 \\ 0 & I' & 0 \\ 0 & 0 & I \end{array} \right).$$

4) On a la relation:

$$\{C(S_1/R_0)\} = \begin{cases} m_1 V(C_1 \in S_1/R_0) = m_1 \dot{z} z_0 \\ \mathcal{J}(O, S_1)[\mathbf{\Omega}(S_1/R_0)] \end{cases}$$

car O est fixe dans R_0 . Par ailleurs, $\mathcal{J}(O, S_1)[\Omega(S_1/R_0)] = I_{(O,z_0)}\dot{\theta}z_0$. Et d'après le théorème de Huyghens, puisque les axes (O,z_0) et (C_1,z_0) sont confondus, $I_{(O,z_0)} = I_{(C_1,z_0)} = I$, aussi

$$\{C(S_1/R_0)\} = \left\{ \begin{array}{c} m_1 \dot{z} z_0 \\ I \dot{\theta} z_0 = I \omega z_0 \end{array} \right\}_O.$$

5) Pour la résultante cinétique de S_2/R_0 , d'après la relation de torseur entre les vitesses de A et C_2 :

$$V(C_2 \in S_2/R_0) = V(A \in S_2/R_0) + \mathbf{\Omega}(S_2/R_0) \wedge AC_2$$

= $-\dot{\theta}(R + \ell\cos\alpha)x_1 + \dot{z}z_0 + \ell\dot{\alpha}z_2$.

Pour le moment cinétique en A de S_2/R_0 , on utilise la relation de torseur avec le point C_2 :

$$\sigma(A \in S_2/R_0) = \sigma(C_2 \in S_2/R_0) + mV(C_2 \in S_2/R_0) \wedge C_2A$$

C₂ étant le centre de masse de S₂,

$$\sigma(C_2 \in S_2/R_0) = \mathcal{J}(C_2, S_2)[\Omega(S_2/R_0)] = I_2 \dot{\alpha} x_1 + I_2 \dot{\theta} \cos \alpha z_2$$

dans le repère (x_1, y_2, z_2) . On en déduit :

$$\{C(\mathbf{S}_2/\mathbf{R}_0)\} = \left\{ \begin{array}{c} m_2(-\dot{\theta}(R+\ell\cos\alpha)\boldsymbol{x}_1 + \dot{z}\boldsymbol{z}_0 + \ell\dot{\alpha}\boldsymbol{z}_2) \\ [(I_2+m_2\ell^2)\dot{\alpha} + m_2\ell\dot{z}\cos\alpha]\boldsymbol{x}_1 + [(I_2\cos\alpha + m_2\ell(R+\ell\cos\alpha)]\dot{\theta}\boldsymbol{z}_2 \end{array} \right\}_{\Delta}.$$

Analyse dynamique

6) Pour le rotor S_1 , les actions extérieures comprennent l'action de la pesanteur, du ressort r_1 , de la liaison pivot glissant entre S_0 et S_1 (supposée

EXERCICES 257

parfaite), du moteur, et de la liaison pivot en A entre S_2 et S_1 . Les torseurs d'actions extérieurs correspondant sont donnés par :

$$\{\mathcal{A}(\mathbf{g} \to \mathbf{S}_{1})\} = \left\{ \begin{array}{c} -m_{1}gz_{0} \\ \mathbf{0} \end{array} \right\}_{\mathbf{C}_{1}}$$

$$\{\mathcal{A}(\mathbf{r}_{1} \to \mathbf{S}_{1})\} = \left\{ \begin{array}{c} -k(z-z_{0})z_{0} \\ \mathbf{0} \end{array} \right\}_{\mathbf{C}_{1}}$$

$$\{\mathcal{A}(\mathbf{S}_{0} \to \mathbf{S}_{1})\} = \left\{ \begin{array}{c} X_{01}x_{0} + Y_{01}y_{0} \\ L_{01}x_{0} + M_{01}y_{0} \end{array} \right\}_{\mathbf{O}}$$

$$\{\mathcal{A}(\text{moteur} \to \mathbf{S}_{1})\} = \left\{ \begin{array}{c} \mathbf{0} \\ Cz_{0} \end{array} \right\}_{\mathbf{O}}$$

$$\{\mathcal{A}(\mathbf{S}_{2} \to \mathbf{S}_{1})\} = \left\{ \begin{array}{c} X_{21}x_{1} + Y_{21}y_{1} + Z_{21}z_{0} \\ M_{21}y_{1} + N_{21}z_{0} \end{array} \right\}_{\mathbf{A}}.$$

Pour la pale S_2 , les actions extérieures comportent la pesanteur, la liaison pivot avec le rotor S_1 , l'action du ressort r_2 , ainsi que l'action du fluide. Les torseurs d'actions extérieurs correspondant sont donnés par :

$$\{\mathcal{A}(\mathbf{g} \to \mathbf{S}_2)\} = \left\{ \begin{array}{c} -m_2 g z_0 \\ \mathbf{0} \end{array} \right\}_{\mathbf{C}_2}$$
$$\{\mathcal{A}(\mathbf{S}_1 \to \mathbf{S}_2)\} = \left\{ \begin{array}{c} -X_{21} x_1 - Y_{21} y_1 - Z_{21} z_0 \\ -M_{21} y_1 - N_{21} z_0 \end{array} \right\}_{\mathbf{A}}$$

d'après le principe des actions mutuelles entre S₂ et S₁.

$$\{\mathcal{A}(\mathbf{r}_2\to\mathbf{S}_2)\} = \left\{ \begin{array}{c} \boldsymbol{0} \\ c\alpha\boldsymbol{x}_1 \end{array} \right\}_A$$

$$\{\mathcal{A}(\text{fluide}\to\mathbf{S}_2)\} = \left\{ \begin{array}{c} b\dot{\theta}(R+\ell\cos\alpha)\boldsymbol{x}_1 + b\ell\dot{\alpha}\sin\alpha\boldsymbol{y}_1 - b(\dot{z}+\ell\dot{\alpha}\cos\alpha)\boldsymbol{z}_0 \\ \boldsymbol{0} \end{array} \right\}_{C_2}.$$

$$\boldsymbol{7}\boldsymbol{)}$$

$$\boldsymbol{\delta}(\mathbf{O}\in\mathbf{S}_1\cup\mathbf{S}_2/\mathbf{R}_0) = \boldsymbol{\delta}(\mathbf{O}\in\mathbf{S}_1/\mathbf{R}_0) + \boldsymbol{\delta}(\mathbf{O}\in\mathbf{S}_2/\mathbf{R}_0)$$

O étant fixe dans R_0 :

$$\delta(O \in S_1/R_0) = \left. \frac{d\sigma(O \in S_1/R_0)}{dt} \right|_{R_0} = \left. \frac{dI\omega z_0}{dt} \right|_{R_0} = \mathbf{0}.$$

Pour $\delta(O \in S_2/R_0)$, on utilise la relation de torseur suivante :

$$\delta(O \in S_2/R_0) = \delta(C_2 \in S_2/R_0) + m_2 \Gamma(C_2/R_0) \wedge C_2 O.$$

On utilise ensuite les résultats de la question 5 pour écrire :

$$\begin{split} m_2 \varGamma(C_2 \in S_2/R_0) &= m_2 \left. \frac{\mathrm{d} V(C_2 \in S_2/R_0)}{\mathrm{d} t} \right|_{R_0} \\ \delta(C_2 \in S_2/R_0) &= \left. \frac{\mathrm{d} \sigma(C_2, S_2/R_0)}{\mathrm{d} t} \right|_{R_0}. \end{split}$$

8) D'après la question 6, l'équation du moment dynamique, appliquée au système S_2 et projetée sur l'axe (A,x_1) , s'écrit :

$$\delta(A \in S_2/R_0) \cdot x_1 = -(m_2gz_0 \wedge C_2A) \cdot x_1 + c\alpha + b\dot{\theta}(R + \ell\cos\alpha).$$

Dans l'équation ci-dessus ne figurent que les paramètres du mouvement (et leurs dérivées par rapport au temps) et des données du problème, on ne voit pas apparaître d'inconnues de liaison, ceci est dû au fait que la liaison pivot entre S_1 et S_2 a été supposée parfaite. L'équation ci-dessus constitue donc une équation du mouvement. D'après la question 6, l'équation de la résultante dynamique, appliquée au système $S_1 \cup S_2$ et projetée sur l'axe (O,z_0) , s'écrit :

$$(m_1 \Gamma(C_1 \in S_1/R_0) + m_2 \Gamma(C_2 \in S_2/R_0)) \cdot z_0$$

= $-(m_1 + m_2)g - k(z - z_0) - b(\dot{z} + \ell \dot{\alpha} \cos \alpha)$.

Dans l'équation ci-dessus, les inter-efforts de liaison entre S_1 et S_2 n'interviennent pas car on étudie le système $S_1 \cup S_2$, tandis que la liaison pivot glissant entre S_0 et S_1 , supposée parfaite, n'apporte aucune contribution selon z_0 . Ceci explique que l'équation obtenue ne fasse intervenir que les paramètres du mouvement et leurs dérivées, ainsi que des données du problème. On obtient là la seconde équation du mouvement.

9) D'après la question 7, le théorème du moment dynamique appliqué au système $S_1 \cup S_2$ en O, en projection selon z_0 , conduit à l'équation suivante :

$$\delta(O \in S_1 \cup S_2/R_0) \cdot z_0 = -I_2 \dot{\theta} \dot{\alpha} \sin 2\alpha - m_2 (R + \ell \cos \alpha) 2\ell \dot{\theta} \dot{\alpha} \sin \alpha$$

$$= C - (m_2 g z_0 \wedge C_2 O) \cdot z_0$$

$$- (bV(C_2 \in S_2/R_0) \wedge C_2 O) \cdot z_0.$$

Pour le cas du régime stationnaire, en développant la relation ci-dessus et en posant $\alpha = 0$, z(t) = 0, on obtient :

$$C = b\omega(R + \ell)^2.$$

Lorsque b = 0, c'est-à-dire si l'action du fluide est négligeable, on trouve C = 0. Ce dernier résultat exprime le fait qu'en l'absence de toute action résistante (les liaisons ayant été supposées parfaites), il est inutile d'excercer un couple moteur.

EXERCICES 259

10) L'énergie cinétique de l'ensemble $S_1 \cup S_2$ par rapport à R_0 est obtenue en calculant le co-moment des torseurs cinématique et cinétique. Pour le solide S_1 :

$$\begin{split} 2T(S_1/R_0) &= \{\mathcal{V}(S_1/R_0)\}_{\mathcal{O}} \cdot \{C(S_1/R_0)\}_{\mathcal{O}} \\ &= \left\{ \begin{array}{c} \mathbf{\Omega}(S_1/R_0) \\ V(O \in S_1/R_0) \end{array} \right\} \cdot \left\{ \begin{array}{c} m_1 V(C_1 \in S_1/R_0) \\ \sigma(O \in S_1/R_0) \end{array} \right\} \end{split}$$

et d'après les questions 1 et 4 :

$$2T(\mathbf{S}_1/\mathbf{R}_0) = \left\{ \begin{array}{c} \omega z_0 \\ \dot{z} z_0 \end{array} \right\} \, \cdot \, \left\{ \begin{array}{c} m_1 \dot{z} z_0 \\ I \omega z_0 \end{array} \right\} \, .$$

Pour le solide S₂:

$$\begin{split} 2T(S_2/R_0) &= \left\{ \mathcal{V}(S_2/R_0) \right\}_A \cdot \left\{ C(S_2/R_0) \right\}_A \\ &= \left\{ \begin{array}{c} \mathbf{\Omega}(S_2/R_0) \\ \mathbf{V}(A \in S_2/R_0) \end{array} \right\} \cdot \left\{ \begin{array}{c} m_2 \mathbf{V}(C_2 \in S_2/R_0) \\ \sigma(A \in S_2/R_0) \end{array} \right\} \end{split}$$

et d'après les résultats des questions 2 et 5 :

$$2T(S_2/R_0) = I_2(\dot{\alpha}^2 + \omega^2 \cos^2 \alpha) + m_2\omega^2 (R + \ell \cos \alpha)^2 + m_2(\dot{z}^2 + \ell^2 \dot{\alpha}^2 + 2\ell \dot{\alpha}\dot{z} \cos \alpha).$$

- **11)** Les diverses puissances qui interviennent dans l'étude du système $S_1 \cup S_2$ se calculent en effectuant le co-moment du torseur des efforts et du torseur cinématique, tous deux pris en un même point. On utilise les résultats des questions 1, 2, et 6.
- Puissance des actions du fluide, calculée en C₂ :

$$\begin{split} \mathcal{P}(\text{fluide} \rightarrow S_2/R_0) &= \left\{ \begin{array}{c} \boldsymbol{\varOmega}(S_2/R_0) \\ \boldsymbol{V}(C_2 \in S_2/R_0) \end{array} \right\}_{C_2} \cdot \left\{ \begin{array}{c} -b\boldsymbol{V}(C_2 \in S_2/R_0) \\ \boldsymbol{0} \end{array} \right\}_{C_2} \\ &= -b(\boldsymbol{V}(C_2 \in S_2/R_0))^2 \end{split}$$

après calcul, on obtient :

$$\mathcal{P}(\text{fluide} \to S_2/R_0) = -b[\omega^2(R + \ell\cos\alpha)^2 + \ell^2\dot{\alpha}^2 + \dot{z}^2 + 2\ell\dot{z}\dot{\alpha}\cos\alpha].$$

- Puissance des inter-efforts de liaison pivot d'axe (A,x_1) entre S_1 et S_2 , calculée en A :

$$\mathcal{P}(S_1 \leftrightarrow S_2) = \left\{ \begin{array}{l} \mathbf{\Omega}(S_2/S_1) = \dot{\alpha} \mathbf{x}_1 \\ \mathbf{V}(A \in S_2/S_1) = \mathbf{0} \end{array} \right\}_A \cdot \left\{ \begin{array}{l} X_{12} \mathbf{x}_1 + Y_{12} \mathbf{y}_1 + Z_{12} \mathbf{z}_1 \\ M_{12} \mathbf{y}_1 + N_{12} \mathbf{z}_0 \end{array} \right\}_A = 0.$$

La puissance développée est nulle, ce qui traduit le fait que la liaison entre S_1 et S_2 a été supposée parfaite.

- Puissance de la liaison pivot glissant d'axe (O,z_0) entre S_0 et S_1 , calculée en O :

$$\mathcal{P}(S_0 \to S_1/R_0) = \left\{ \begin{array}{c} \mathbf{\Omega}(S_1/R_0) = \omega z_0 \\ \mathbf{V}(O \in S_1/R_0) = \dot{z}z_0 \end{array} \right\}_O \cdot \left\{ \begin{array}{c} X_{01}\mathbf{x}_0 + Y_{01}\mathbf{y}_0 \\ L_{01}\mathbf{x}_0 + M_{01}\mathbf{y}_0 \end{array} \right\}_O = 0,$$

ce qui est en accord avec le fait que la liaison entre S_0 et S_1 a été supposée parfaite.

- Puissance développée par le moteur, calculée en O :

$$\mathcal{P}(\text{Moteur} \to S_1/R_0) = \left\{ \begin{array}{l} \mathbf{\Omega}(S_1/R_0) = \omega z_0 \\ \mathbf{V}(O \in S_1/R_0) = \dot{z}z_0 \end{array} \right\}_O \cdot \left\{ \begin{array}{l} \mathbf{0} \\ Cz_0 \end{array} \right\}_O$$

- Puissance développée par le ressort r₁, calculée en C₁ :

$$\begin{split} \mathcal{P}(\mathbf{r}_1 \to \mathbf{S}_1/\mathbf{R}_0) &= \left\{ \begin{array}{l} \boldsymbol{\varOmega}(\mathbf{S}_1/\mathbf{R}_0) = \omega \boldsymbol{z}_0 \\ \boldsymbol{V}(\mathbf{C}_1 \in \mathbf{S}_1/\mathbf{R}_0) &= \dot{\boldsymbol{z}}\boldsymbol{z}_0 \end{array} \right\}_{\mathbf{C}_1} \cdot \left\{ \begin{array}{l} -k(z-z_0)\boldsymbol{z}_0 \\ \boldsymbol{0} \end{array} \right\}_{\mathbf{C}_1} \\ &= -k(z-z_0)\dot{\boldsymbol{z}}. \end{split}$$

- Puissance développée par le ressort r₂, calculée en A :

$$\begin{split} \mathcal{P}(\mathbf{r}_2 \to \mathbf{S}_1 \cup \mathbf{S}_2/\mathbf{R}_0) &= \left\{ \begin{array}{l} \boldsymbol{\Omega}(\mathbf{S}_2/\mathbf{S}_1) = \dot{\alpha}\boldsymbol{x}_1 \\ \boldsymbol{V}(\mathbf{A} \in \mathbf{S}_2/\mathbf{S}_1) = \boldsymbol{\theta} \end{array} \right\}_{\mathbf{A}} \cdot \left\{ \begin{array}{l} \boldsymbol{\theta} \\ \boldsymbol{c}\alpha\boldsymbol{x}_1 \end{array} \right\}_{\mathbf{A}} \\ &= c\alpha\dot{\alpha}. \end{split}$$

- Puissance des actions de la pesanteur, calculée en C_1 (pour S_1) et C_2 (pour S_2) :

$$\mathcal{P}(\mathbf{g} \to \mathbf{S}_1/\mathbf{R}_0) = \left\{ \begin{array}{l} \mathbf{\Omega}(\mathbf{S}_1/\mathbf{R}_0) = \omega z_0 \\ \mathbf{V}(\mathbf{C}_1 \in \mathbf{S}_1/\mathbf{R}_0) = \dot{z}z_0 \end{array} \right\}_{\mathbf{C}_1} \cdot \left\{ \begin{array}{l} -m_1 g z_0 \\ \mathbf{0} \end{array} \right\}_{\mathbf{C}_1}$$
$$= -m_1 g \dot{z}$$

$$\mathcal{P}(\mathbf{g} \to S_2/R_0) = \left\{ \begin{array}{c} \mathbf{\Omega}(S_2/R_0) \\ \mathbf{V}(C_2 \in S_2/R_0) \end{array} \right\}_{C_2} \cdot \left\{ \begin{array}{c} -m_2 g \mathbf{z}_0 \\ \mathbf{0} \end{array} \right\}_{C_2}$$
$$= -m_2 g(\dot{z} + \ell \dot{\alpha} \cos \alpha).$$

EXERCICES 261

12) D'après les résultats de la question précédente, les actions qui dérivent d'un potentiel sont les actions des ressorts r_1 et r_2 et de la pesanteur :

$$\begin{split} \mathcal{P}(\mathbf{r}_{1} \to \mathbf{S}_{1}/\mathbf{R}_{0}) &= -k(z - z_{0})\dot{z} = -\frac{d}{dt}(\frac{1}{2}k(z - z_{0})^{2} + A) \\ \mathcal{P}(\mathbf{r}_{2} \to \mathbf{S}_{1} \cup \mathbf{S}_{2}/\mathbf{R}_{0}) &= c\alpha\dot{\alpha} = \frac{d}{dt}(\frac{c\alpha^{2}}{2} + B) \\ \mathcal{P}(\mathbf{g} \to \mathbf{S}_{1}/\mathbf{R}_{0}) &= -m_{1}g\dot{z} = -\frac{d}{dt}(m_{1}gz + C) \\ \mathcal{P}(\mathbf{g} \to \mathbf{S}_{2}/\mathbf{R}_{0}) &= -m_{2}g(\dot{z} + \ell\dot{\alpha}\cos\alpha) = -\frac{d}{dt}(m_{2}gz_{0} \cdot \mathbf{OC}_{2} + D) \end{split}$$

A, B, C, et D désignent ici des constantes d'intégration arbitraires.

Annexe A

Produit scalaire et produit vectoriel

Nous donnons quelques informations opérationnelles sur les outils indispensables que sont les produits scalaire, vectoriel et mixte. Le lecteur est invité à se reporter à des ouvrages plus complets pour plus de renseignements. Nous travaillerons dans tout ce document avec des bases orthonormées directes. Il est donc très important de savoir les construire rapidement. Nous utiliserons la méthode suivante : un premier vecteur unitaire \boldsymbol{u} est tracé. Le deuxième \boldsymbol{v} doit être directement perpendiculaire (avec un angle droit dans le sens trigonométrique). Le troisième en est déduit (par produit vectoriel) en utilisant la règle simple qui consiste à positionner le pouce (de la main droite) sur \boldsymbol{u} , l'index sur \boldsymbol{v} ; le majeur replié pointe alors dans la troisième direction et permet de tracer \boldsymbol{w} . Le produit scalaire de deux vecteurs \boldsymbol{u} et \boldsymbol{v}

FIGURE A.1 – Règle de la main pour le produit vectoriel.

est noté $\boldsymbol{u} \cdot \boldsymbol{v}$. Si ces vecteurs ont des composantes (x_u, y_u, z_u) et (x_v, y_v, z_v)

dans une base orthonormée on a :

$$\boldsymbol{u}\cdot\boldsymbol{v}=x_{u}x_{v}+y_{u}y_{v}+z_{u}z_{v}.$$

Si les vecteurs \boldsymbol{u} et \boldsymbol{v} font un angle θ (figure A.2), on a :

$$u \cdot v = ||u|| ||v|| \cos \theta.$$

Dans le cas où les deux vecteurs ont une norme unité, on a alors :

$$u \cdot v = \cos \theta$$
.

Les principales propriétés du produit scalaire sont :

- qu'il est symétrique;
- qu'il est distributif sur l'addition des vecteurs ;
- que deux vecteurs non nuls sont orthogonaux si et seulement si leur produit scalaire est nul.

Le produit vectoriel de deux vecteurs \boldsymbol{u} et \boldsymbol{v} est noté $\boldsymbol{u} \wedge \boldsymbol{v}$. Il s'agit d'un vecteur perpendiculaire au plan contenant les deux vecteurs \boldsymbol{u} et \boldsymbol{v} . Si ces vecteurs ont des composantes (x_u, y_u, z_u) et (x_v, y_v, z_v) dans une base orthonormée, on a :

$$\boldsymbol{u} \wedge \boldsymbol{v} = (y_u z_v - z_u y_v) \boldsymbol{x} + (z_u x_v - x_u z_v) \boldsymbol{y} + (x_u y_v - y_u x_v) \boldsymbol{z}.$$

Si les vecteurs u et v font un angle θ , on a :

$$||\mathbf{u}| \wedge \mathbf{v}|| = ||\mathbf{u}|| \, ||\mathbf{v}|| \sin \theta$$

- . Les principales propriétés du produit vectoriel sont :
- qu'il est antisymétrique;
- qu'il est distributif sur l'addition des vecteurs ;
- que deux vecteurs non nuls sont colinéaires si et seulement si leur produit vectoriel est nul.

Figure A.2 – Produit scalaire et vectoriel.

Le produit mixte de trois vecteurs u, v et w est noté (u, v, w). C'est par définition $(u \land v) \cdot w$. On peut montrer que le produit mixte est inchangé par permutation circulaire :

$$(u, v, w) = (w, u, v) = (v, w, u).$$

On a de la même manière les relations :

$$(u, v, w) = -(v, u, w).$$

ce qui signifie que pour toute permutation de deux termes du produit mixte, celui-ci change de signe. On aura aussi besoin du double produit vectoriel $u \wedge (v \wedge w)$. On montre les relations suivantes :

$$u \wedge (v \wedge w) = (u \cdot w) v - (u \cdot v) w$$

$$(u \wedge v) \wedge w = (u \cdot w) v - (v \cdot w) u.$$

Annexe B

Propriétés des torseurs

L'objectif est ici de mettre en place la structure des torseurs avec leurs propriétés. Cette partie est inspirée d'un cours de DEUG de M. Devel (Université de Franche Comté) [3].

B.1 Champ de vecteurs antisymétriques

Soit un espace vectoriel euclidien E^n de dimension n (nous utilisons cette notation classique dans cette annexe). Une application f de E^n dans E^n est symétrique si :

$$\forall u \in E^n$$
, $\forall v \in E^n$, $u.f(v) = v.f(u)$.

Elle est antisymétrique si :

$$\forall u \in E^n, \quad \forall v \in E^n, \quad u.f(v) = -v.f(u).$$

Propriété :

1. Toute application f (anti)symétrique de E^n dans E^n est linéaire.

$$\forall u \in E^n$$
, $\forall v \in E^n$, $f(\alpha u + \beta v) = (-)(\alpha f(u) + \beta f(v))$.

2. La matrice dans une base orthonormée d'une application (anti)symétrique est (anti)symétrique.

$$\forall i=1,...,n \quad \forall j=1,...,n \quad a_{ij}=(-)a_{ji}.$$

Théorème 2.1 Si f est une application antisymétrique de E^3 , il existe un vecteur \mathbf{R} unique de E^3 appelé vecteur caractéristique de f tel que :

$$\forall u \in E^3 \quad f(u) = \mathbf{R} \wedge \mathbf{u}.$$

Si les coordonnées de \mathbf{R} dans une base orthonormée de E^3 sont r_x , r_y , r_z alors la matrice de \mathbf{f} dans cette base est donnée ci-dessous. Réciproquement toute application dont la matrice est de cette forme a un vecteur caractéristique \mathbf{R} de coordonnées r_x , r_y , r_z .

$$\begin{pmatrix}
0 & -r_z & r_y \\
r_z & 0 & -r_x \\
-r_y & r_x & 0
\end{pmatrix}.$$

Démonstration. L'application est clairement antisymétrique si la matrice est de la forme indiquée ci-dessus.

Montrons que \mathbf{R} est unique. Soit \mathbf{R}_1 et \mathbf{R}_2 , deux vecteurs caractéristiques. On a alors $(\mathbf{R}_1 - \mathbf{R}_2) \wedge \mathbf{u} = \mathbf{0}0 \quad \forall \mathbf{u} \in E^3$. On en déduit donc que \mathbf{R} est unique.

Comment trouver R?

Soit une matrice de la forme :

$$\begin{pmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{pmatrix}.$$

Soit un vecteur de composantes (a, b, c) dans la base de travail. L'image de ce vecteur par f est donc un vecteur $(-a_x a - a_y c, a_x a - a_z c, a_y a + a_z b)$ qui est à comparer à $\mathbf{R} \wedge \mathbf{u}$ égal à $(-r_x a - r_y c, r_x a - r_z c, r_y a + r_z b)$. Les composantes de \mathbf{R} sont donc : $(-a_x, a_y, a_z)$.

Théorème 2.2 Si e_1 , e_2 et e_3 sont les vecteurs unitaires d'une base orthonormée de E^3 alors le vecteur $\mathbf{R} = \frac{1}{2} \sum_{i=1}^{3} e_i \wedge f(e_i)$ est le vecteur caractéristique de l'application \mathbf{f} .

Démonstration.
$$\sum_{i=1}^{3} e_i \wedge f(e_i) = \sum_{i=1}^{3} e_i \wedge (R \wedge e_i) = \sum_{i=1}^{3} (e_i \cdot e_i)R - (e_i \cdot R)e_i = 2R.$$

B.2 Vecteurs liés, libres

Définition. On appelle vecteur lié, ou pointeur, un vecteur tracé à partir d'un point (vecteur vitesse par exemple). On note (A, u) le vecteur lié d'origine A et de vecteur libre u. On appelle vecteur glissant un ensemble de vecteurs liés dont l'origine A appartient à une droite parallèle au vecteur lié.

B.3 Champ de moment

On définit le champ de moment d'un vecteur glissant (A, u) par :

$$M(A, u) = MA \wedge u = -AM \wedge u \quad \forall M.$$

Théorème 2.3 Tous les vecteurs liés d'un même vecteur glissant ont le même champ de moment.

Définition. Un champ de vecteur M(A) (application de l'espace affine sur l'espace vectoriel) qui associe un vecteur à un point est antisymétrique si il existe un point O et une application antisymétrique f tels que :

$$M(P) = M(O) + f(OP) = M(O) + R \wedge OP \quad \forall P.$$

Théorème 2.4 Pour qu'un champ M soit antisymétrique, il faut et il suffit qu'il soit équiprojectif.

Démonstration. Commençons par démontrer qu'un champ antisymétrique est équiprojectif. Puisque M est un champ équiprojectif, on sait qu'une fonction f antisymétrique existe; elle est telle que :

$$M(P) = M(O) + f(OP) \quad \forall P \in \mathcal{E}^n$$

$$M(Q) = M(O + f(OQ) \quad \forall Q \in \mathcal{E}^n.$$

On en déduit par soustraction des deux égalités :

$$M(P) - M(Q) = f(QP) - f(QQ) = f(QP).$$

Ceci correspond bien à la relation de champ de moment. Comme f est antisymétrique on a :

$$PQ \cdot f(PQ) = -PQ \cdot f(PQ).$$

On en déduit immédiatement que :

$$PQ \cdot M(P) = PQ \cdot M(Q) \quad \forall P \text{ et } Q \in \mathcal{E}^n$$

ce qui correspond à la propriété recherchée qui peut, en dimension trois, se traiter directement avec le produit vectoriel.

Il faut maintenant démontrer la réciproque, à savoir que l'équiprojectivité implique l'antisymétrie. Soit la propriété :

$$PQ \cdot M(P) = PQ \cdot M(Q) \quad \forall P \text{ et } Q \in \mathcal{E}^n.$$

On prend un point O et on écrit :

$$(\mathbf{OP} - \mathbf{OQ}) \cdot \mathbf{M}(P) = (\mathbf{OQ} - \mathbf{OP}) \cdot \mathbf{M}(Q).$$

On a aussi OP . M(P) = OP . M(O) et OQ . M(Q) = OQ . M(O), ce qui permet d'écrire :

$$QQ \cdot (M(O) - M(P)) = QP \cdot (M(Q) - M(O)).$$

À ce stade, nous définissons une application f telle que f(OM = M(M) - M(O)). On peut alors ré-écrire l'égalité ci-dessus :

$$OQ.(-f(OP)) = OP.f(OP) = -OQ.f(OP).$$

On vient de montrer que l'application f en question est antisymétrique et telle que M(M) = M(O) + f(OM).

B.3.1 Opérations sur les torseurs

Égalité : deux torseurs sont égaux si les éléments de réduction en un même point sont égaux.

Somme : la somme (en un même point) de deux torseurs est un torseur.

Produit : on appelle produit (comoment) de deux torseurs la grandeur scalaire :

$$\{\mathcal{T}_1\} . \{\mathcal{T}_2\} = \mathbf{R}_1 . \mathbf{M}_2(A) + \mathbf{R}_2 . \mathbf{M}_1(A) \quad \forall A.$$

Cette grandeur scalaire ne dépend pas du point A utilisé pour le calcul. La démonstration est aisée en prenant un point B et la relation de torseur.

La quantité \mathbf{R} . \mathbf{M} qui est l'auto moment du torseur est un invariant (qui ne dépend pas du point).

B.3.2 Glisseur

Définition. On appelle glisseur, un torseur $\{\mathcal{T}\}$, s'il existe au moins un point A tel que M(A) = 0.

Ceci correspond en cinématique à un mouvement de rotation autour d'un axe fixe. En effet, pour tout point A situé sur l'axe, V(A) = 0.

B.3.3 Couple

Définition. On appelle couple, un torseur $\{\mathcal{T}\}$, si la résultante R est nulle.

Ceci correspond en cinématique à un mouvement de translation pour lequel on ne peut pas trouver de point à vitesse nulle.

B.3.4 Décomposition d'un torseur

Th'eorème. Tout torseur $\{\mathcal{T}\}$ constitué d'une résultante \mathbf{R} et d'un moment $\mathbf{M}(\mathbf{M})$ peut se décomposer en la somme d'un glisseur et d'un couple. On peut toujours écrire (avec $R^2 = \mathbf{R} \cdot \mathbf{R}$):

$$M(\mathbf{M}) = \frac{M(\mathbf{M}) \cdot \mathbf{R}}{R^2} \mathbf{R} + M(\mathbf{M}) - \frac{M(\mathbf{M}) \cdot \mathbf{R}}{R^2} \mathbf{R}.$$

La décomposition est unique si l'on impose l'axe du glisseur.

Le premier terme définit le champ d'un couple, le second celui d'un glisseur.

Démonstration. Si on prend le premier terme, il faut montrer que le moment est indépendant du point. Soient M et N deux points. On a alors :

$$M(\mathbf{M}) = \frac{(M(\mathbf{N}) + MN \wedge R) \cdot R}{R^2} R = \frac{M(\mathbf{N}) \cdot R}{R^2} R = M(\mathbf{M}).$$

On montre de la même façon que le second terme est associé à un glisseur. En effet :

$$\left\{ \mathbf{M}(\mathbf{M}) - \frac{\mathbf{M}(\mathbf{M}) \cdot \mathbf{R}}{R^2} \mathbf{R} \right\} \cdot \mathbf{R} = 0$$

ce qui définit un glisseur.

B.4 Axe d'un torseur

On appelle axe d'un torseur, l'ensemble des points A tels que R est colinéaire à M(A), c'est-à-dire tels que $R \land M(A) = 0$. L'axe d'un torseur de résultante R est un axe parallèle à R.

Annexe C

Unités

Nous donnons ci-dessous quelques informations relatives aux unités et aux mesures associées. En effet, durant un calcul, il est très important d'en vérifier l'homogénéité. Les grandeurs physiques utilisées dans cet ouvrage y sont donc répertoriées.

Unités du Système International

Le système international des unités, autrement appelé SI, regroupe les unités de base. De ce système, toutes les grandeurs physiques peuvent être décrites. Soit elles sont exprimées directement à partir des unités SI (comme le volume V exprimé en m^3), soit elles ont des noms et des symboles spéciaux qui peuvent être exprimés dans le système SI (comme une fréquence f qui est exprimée en hertz et qui est ensuite exprimée en s^{-1}).

Grandeur physique : symbole, unité. Description.

Longueur : ℓ , m. Le mètre est la longueur du trajet parcouru dans le vide par la lumière pendant une durée de 1/299792458 seconde.

Masse: *m*, kg. Le kilogramme est la masse du prototype international du kilogramme. Ce dernier, composé d'un alliage de platine et d'iridium (90 %-10 %), est conservé au Bureau international des poids et mesures à Sèvres, en France. C'est la seule quantité tributaire d'un objet matériel. C'est un problème pris très au sérieux car la masse du prototype diminue avec le temps à cause de son oxydation.

Temps: t, s. La seconde est la durée de 9 192 631 770 périodes de la

radiation correspondant à la transition entre les deux niveaux hyperfins de l'état fondamental de l'atome de césium 133 à la température de 0 kelvin.

Courant électrique : I, A. L'ampère est l'intensité d'un courant constant qui, maintenu dans deux conducteurs parallèles, rectilignes, de longueur infinie, de section circulaire négligeable et placés à une distance de un mètre l'un de l'autre dans le vide produirait entre ces conducteurs une force égale à 2.10^{-7} newton par mètre de longueur.

Température : *T*, K. Le kelvin, unité de température thermodynamique, est la fraction 1/273,16 de la température thermodynamique du point triple de l'eau.

Mole : *n*, mol. La mole est la quantité de matière d'un système contenant autant d'entités élémentaires qu'il y a d'atomes dans 0,012 kg de carbone 12. Ce nombre d'entités élémentaires est appelé nombre d'Avogadro.

Intensité lumineuse : I, cd. La candela est l'intensité lumineuse, dans une direction donnée, d'une source qui émet un rayonnement monochromatique de fréquence 540.10^{12} hertz et dont l'intensité énergétique dans cette direction est de 1/683 watt par stéradian.

Unités dérivées du système international

Les notations utilisées ici font référence à l'ouvrage. Ainsi, par exemple, une force peut avoir une autre notation que \mathbf{F} dans un autre ouvrage. Il en va de même pour les autres notations.

Force : F, N. Le Newton est homogène à une masse par une accélération ($F = m\Gamma$). Son unité SI est donc : kg.m.s⁻².

Remarque: l'étalon primaire de force utilise la relation de la statique F = mg appliquée à des masses marquées et étalonnées. La difficulté vient de ce que l'étalon fonctionne dans l'air et non dans le vide et qu'il faut prendre en compte la poussée d'Archimède (A) due à l'air. La relation s'écrit alors F = mg + A. La connaissance de cette poussée d'Archimède est conditionnée par la connaissance de la masse volumique de l'air, laquelle dépend de la pression, de la température, de l'humidite humidité ... C'est pourquoi il n'est pas possible, à l'heure actuelle, de connaître de façon absolue un effort avec une précision supérieur à $0, 5.10^{-4}$. C'est une des quantités la plus difficile à mesurer.

Moment d'une force : M, N.m. Le moment d'une force s'écrit comme le produit vectoriel de la force par la distance qui la sépare d'un point d'application. Il est donc exprimé en kg.m².s⁻².

Vitesse: V, m.s⁻¹. La vitesse s'exprime comme une distance parcourue pendant un certain temps. En une dimension, V = d/t où d est la distance et t le temps. D'où sont expression dans les dimensions SI.

Accélération : Γ , m.s⁻². L'accélération est définie comme la dérivée de la vitesse par rapport au temps. D'où son unité SI.

Quantité de mouvement : p, kg.m.s⁻¹. La quantité de mouvement, résultante du torseur cinétique, s'écrit pour un système matériel S en mouvement par rapport à un repère R : $p(S/R) = \int_{M \in S} V(M/R) \, dm$, où dm désigne une masse élémentaire située en M. Pour un point matériel M de masse m, la quantité de mouvement s'écrirait : $p(M \in S/R) = mV(M \in S/R)$. Il est donc facile d'en déduire son unité SI.

Moment cinétique : σ , kg.m².s⁻¹. Le moment cinétique du solide S par rapport à R, calculé au point A, pour un point M quelconque, s'écrit : $\sigma(A, M \in S/R) = \int_{M \in S} AM \wedge V(M/R) \, dm$. Dans le cas d'un point ponctuel M, le moment cinétique en A s'écrit : $\sigma(A, M \in S/R) = AM \wedge p(M \in S/R)$. Son unité SI est donc aisément déductible.

Moment d'inertie : I, kg.m². Le moment d'inertie s'exprime pour un système matériel S par rapport à un plan P par $I_P = \int_{M \in S} HM^2 dm$, où H correspond à la projection orthogonale de M sur le plan P. HM représente la distance entre le point M et le plan P, son unité SI est donc le mètre. L'unité du moment d'inertie est alors complètement déterminée.

Quantité d'accélération: -, kg.m.s⁻². La quantité d'accélération, résultante du torseur dynamique, s'exprime pour un solide S en mouvement dans un repère R par : $\int_{\forall M \in S} \Gamma(M/R) \, dm$. L'unité de l'accélération étant déjà définie, il suffit de lui ajouter l'unité de la masse pour obtenir celle de la quantité d'accélération. Cette quantité est donc homogène à l'unité de la force qui est le Newton. En effet, le principe fondamental de la dynamique égalise la quantité d'accélération d'un solide aux forces extérieurs agissant dessus.

Moment dynamique : δ , kg.m².s⁻². Le moment dynamique d'un solide S en mouvement dans un repère R, calculé au point A s'écrit : δ (A \in S/R) =

 $\int_{\forall M \in S} AM \wedge \Gamma(M/R) dm$ où dm désigne une masse élémentaire située en M. Il en résulte que le moment dynamique est homogène à l'unité du moment d'une force : N.m. En effet, le principe fondamentale de la dynamique égalise le moment dynamique d'un solide à l'ensemble de moments extérieurs qui agissent dessus.

Angle : α , rad. Le radian est le rapport entre l'arc de cercle faisant l'angle et le rayon du cercle considéré. Il s'exprime donc en unité SI par m.m⁻¹ soit aucune unité.

Vitesse angulaire : Ω , rad.s⁻¹. La vitesse angulaire est homogène à un angle qui varie au cours du temps. Elle s'exprime donc en unité SI par s⁻¹.

Masse volumique : ρ , kg.m⁻³. La masse volumique s'exprime comme le rapport de la masse m sur le volume V considéré : $\rho = \frac{m}{V}$. D'où son expression SI.

Puissance: \mathcal{P} , W. Le Watt est l'unité de la puissance qui est un scalaire. La puissance s'exprime par le comoment du torseur statique d'un solide par son torseur cinématique. Soit pour un solide S en mouvement dans un repère $R: \mathcal{P} = F \cdot V + M \cdot \Omega$. Soit en terme d'unité: $[\mathcal{P}] = [N][m.s^{-1}] + [N.m][rad.s^{-1}] = kg.m^2.s^{-3}$.

Travail: W, J. Le Joule est l'unité du travail qui est un scalaire. Il se définit comme l'énergie fournit par une force au cours d'un déplacement donné u et s'écrit : W = F.u. L'unité de u est le mètre, le Joule a donc pour unité $SI : kg.m^2.s^{-2}$.

Énergie cinétique: E_c, J. D'après le théorème de l'énergie cinétique, dans un référentiel galiléen la variation de l'énergie cinétique d'un solide entre deux positions est égale à la somme algébrique des travaux de toutes les forces appliquées au solide. L'unité du travail étant le Joule, celle de l'énergie cinétique est donc le Joule, soit : kg.m².s⁻².

Conseils
À la fin d'un exercice, il est impératif de vérifier les unités obtenues. Ainsi,
peaucoup d'erreurs pourront être évitées.
Fin Conseils

Bibliographie

- [1] M. Henry et N. Delorme, Mini manuel de Mécanique du point, Dunod, 2008, 231 p.
- [2] P. Rougée, Mécanique générale, Vuibert (Vuibert université), ISSN: 0290-4403, 1982, 336 p.
- [3] M. Devel, Cours de mécanique du solide, http://www.infotheque.info/ressource/6586.html (page non maintenue)
- [4] P. Agati, Y. Brémont et G. Delville, Mécanique du solide applications industrielles, 2e édition, Dunod, 2003, 302 p.
- [5] Y. Granjon, Mécanique du solide, Dunod.
- [6] Site du bureau international des Poids et Mesures http://www.bipm.org/fr/home/
- [7] Mesure de force et de couple Capteurs de force (partie 1), Dossier Techniques de l'ingénieur : R1820, 06/2008 et Capteurs de couple (parie 2) Dossier : R1821, 12/2008, Mesures mécaniques et dimensionnelles, articles rédigé par le Groupement pour l'avancement des méthodes d'analyse des contraintes.
- [8] J.-L. Lagrange, Mécanique analytique, Tome 1 (1853), Ed. Mallet Bachelier
- [9] P. Duhem, Les Origines de la Statique, Tome 1 (1905), Ed. Jacques Gabay
- [10] A. Chevalier, Guide du dessinateur industriel, pour maîtriser la communication technique, Hachette Technique, 1996.

Index

Accélération absolue, 51	fermée, 126
champ dans un solide, 46	ouverte, 125
•	Champ de forces
composition, 49 d'entraînement, 51	densité, 222
*	stationnaire, 226
d'un point, 4, 19 définition, 4	Champ de moment, 269
ŕ	Comoment, 81, 82
de Coriolis, 51 relative, 51	Composition
, , , , , , , , , , , , , , , , , , ,	des mouvements, 56
unité, 275	des torseurs cinématiques, 48
Action mécanique	Cône de frottement, 78
à distance, 79	Contact
définition, 72	avec frottement, 77
de contact, 75	parfait, 76
de contact avec frottement, 76	Coordonnées
de contact parfait, 76	cartésiennes, 3
torseur, 75	cylindriques, 8
Actions réciproques, 11, 19	polaires planes, 8
Angles	sphériques, 9
d'Euler, 39	
Axes	Degré
principaux d'inertie, 176	d'hyperstatisme, 124
Page 2 2 6 7 10	de mobilité, 83, 85, 87, 89, 90,
Base, 2, 3, 6, 7, 19	92, 93, 95, 99, 101, 103,
Base d'un mouvement, 54	124
Centre	Densité massique
d'inertie, 80	de forces, 226
de gravité, 80	,
de masse, 80, 163	Énergie cinétique
Centre instantané de rotation	d'un point matériel, 14, 16
définition, 53	d'un solide, 194
Chaîne	définition, 190
Citatile	deminion, 170

théorème de (point matériel), 15, 20	cône, 78 coefficient, 77, 78
unité, 276 Énergie mécanique	Glissement, 76, 79
d'un point matériel, 14, 16	Glisseur
définition, 232	couple, 271
efforts extérieurs, 232	torseur, 271
efforts intérieurs, 232	Graphe
théorème de (point matériel), 20	de liaison, 103
Énergie potentielle	des actions mécaniques, 103
d'inertie d'entraînement, 227	Gravitation (constante de), 17
d'un point matériel, 15, 16	TT
définition, 225	Hyperstatique
de la pesanteur, 227	Système, 124
densité, 225	Intégrale première du mouvement, 234
Équation du mouvement, 233	Interaction
Équilibrage	électromagnétique, 80
dynamique, 221	définition, 11, 19, 72
statique, 221	fondamentale, 80
Équilibre d'un solide ou d'un ensemble	gravitationnelle, 25, 80
de solides, 115	nucléaire faible, 80
des corps, 71	nucléaire forte, 80
Équiprojectivité	T 1.1.
définition, 43	Liaison
démonstration, 269	pivot, 93 équivalente, 121
, ,	appui plan, 90
Force	définition, 81
conservative, 13, 16, 18	encastrement, 101
définition, 74	glissière, 98
de gravitation, 14, 17	hélicoïdale, 99
de traînée, 25	linéaire annulaire, 87
non conservative, 13, 16, 20	lineaire rectiligne, 86
résistante, 16	parallèle, 122
unité, 274	parfaite, 81
Formule de dérivation vectorielle, 7	pivot glissant, 92
Frottement	pivot non parfaite, 97
force de, 13, 77	pivot parfaite, 95
frottement, 14, 76	ponctuelle, 84
loi de, 76, 77 Frottement statique	rotule, 89 série, 123
1 Toucinem statique	SCIIC, 123

Loi de Newton	Principe
1 ^{re} , 9, 19	conservation quantité de mou-
2 ^e , 10, 11, 19	vement, 10
3 ^e , 11, 19	d'inertie, 9, 10, 12, 19
	fondamental de la statique, 115
Matrice d'inertie	Principe fondamental de la dynamique
d'un cône, 196	définition, 10, 19, 209
d'un cylindre, 173	repère non galiléen, 215
d'un système avec axe de sy-	système en rotation, 216
métrie, 179	Problème plan
d'un système avec plan de sy-	définition, 53
métrie, 177	Produit
d'une demi-sphère, 182	mixte, 265
d'une sphère creuse, 198	scalaire, 3, 264
définition, 172	vectoriel, 7, 264
Mécanisme, 81, 121	Produit d'inertie, 173
Mobilité	Puissance
interne, 124	d'une force, 13
utile, 124	d'une liaison, 81
Moment	d'une liaison parfaite, 224
d'une force, 74	des actions mécaniques, 81, 223
d'une force (unité), 275	des actions mutuelles, 82, 224
Moment cinétique	instantanée, 222
en un point, 162	instantanée d'une force, 14
par rapport à un axe, 165	moyenne d'une force, 13
unité, 275	unité, 276
Moment d'inertie	
par rapport à un axe, 167	Quantité de mouvement
par rapport à un plan, 166	conservation, 10
par rapport à un point, 170	définition, 10, 19, 162
unité, 275	Quantité de mouvement
Moment dynamique	unité, 275
cas général, 208	
centre de gravité, 209	Référentiel
point fixe, 209	galiléen ou d'inertie, 10
unité, 276	Référentiel
Mouvement plan sur plan	d'espace, 2, 4
centre instantané de rotation, 53	définition, 2
définition, 53	de Copernic, 4
0 () 111 11 11 11	géocentrique, 4
Opérateur d'inertie d'un solide	galiléen ou d'inertie, 9, 15, 16,
définition, 171	19, 20

terrestre, 4	pour système de solides, 231
Référentiel	pour un solide, 229
non galiléen, 215	Torseur
Repère	égalité, 270
orthonormé direct, 3, 19	action mécanique, 75
Repère, 2	axe, 272
repère, 3, 5–8	d'action mécanique, 81
Résultante dynamique, 206	-
Résultante dynamique	des actions mécaniques, 72
unité, 275	des efforts transmissibles, 72, 75
Roulante d'un mouvement, 54	produit, 270
Roulante d'un mouvement, 54	propriétés, 267
Schéma cinématique, 103	somme, 270
Solide indéformable, 2	statique, 72, 75, 81
Statique, 71	Torseur cinématique
Symétries matérielles	liaison appui plan, 92, 107
définition, 176	liaison encastrement, 103, 108
Système	liaison glissière, 99, 108
en rotation, 216	liaison hélicoïdale, 101, 108
fermé, 2	liaison linéaire annulaire, 89, 107
isolé, 2, 9–12, 16, 19	liaison linéaire rectiligne, 87, 107
matériel, 2	liaison pivot, 95, 108
non isolé, 10	liaison pivot glissant, 93, 107
ouvert, 2	liaison ponctuelle, 85, 107
pseudo-isolé, 2, 9–11	liaison rotule, 90, 107
	Torseur cinétique
Temps, 3	d'une tige, 164
Théorème	définition, 163
de Guldin, 180	Torseur dynamique
de Huygens, 185	d'entraînement, 215
de Huygens-Steiner, 186	définition, 205
de l'énergie mécanique d'un poir	
matériel, 16	Torseur statique
de la résultante, 116	liaison appui plan, 91, 107
de la résultante dynamique, 210	liaison encastrement, 103, 108
des actions réciproques, 117	liaison glissière, 99, 108
des actions réciproques (dyna-	liaison hélicoïdale, 101, 108
mique), 210	liaison linéaire annulaire, 88, 107
des axes parallèles, 184	liaison linéaire rectiligne, 87, 107
du moment dynamique, 210	liaison pivot, 95, 108
du moment résultant, 117	liaison pivot glissant, 93, 107
Théorème de l'énergie cinétique	liaison ponctuelle, 85, 107

```
liaison rotule, 90, 107
Trajectoire, 4, 13
Travail
     élémentaire, 225
     élémentaire d'une force, 12, 14
     d'une force, 12–14, 16, 18
     unité, 276
Trièdre, 2
Unités, 273
Vecteur
     définition, notations, 2
     lié, 269
     libre, 269
     rotation, composition, 48
     rotation, définition, 41
Vitesse
     absolue, 48
     champ dans un solide), 42
     composition des, 47
     d'entraînement, 48
     définition, 4, 19
     de glissement, 49
     de rotation, 7
     en coordonnées cylindriques, 9
     en coordonnées polaires planes,
     en coordonnées sphériques, 9
     relative, 48
     unité, 275
```