

BUSINESS REASON: FAKE NEWS DETECTION TOOL: RAPID MINER

- ➤ In today's world of Social Media, one of the major problem we face is misinformation.
- Millions of articles are being published every minute-the scope of human manual detection of a real or fake news is not feasible.
- The model created will test the unseen data, and accordingly detect fake articles and can be used and integrated with any system for future use.

DATA STRUCTURE

- The data I have collected is from Kaggle.com. This data consists of the following information:
- title: title of the article 21724 Unique Values (Sampled it down to 5000)
- news_url: URL of the article
- source domain: web domain where article was posted.
- tweet_num: number of retweets for this article.
- real: label column, where 1 is 'real' and 0 is 'fake'.

TEXT PREPARATION

Loading the data

- Set Role Label "Real"
- Select Attributes- Remove irrelevant attribute "URL"
- Numerical to Binomial Label
- Filter Examples Missing values
- Sample 5000 random values
- Normalize number of tweets ranging from (from '0' to '29060')
- Nominal to Text

	Name	• •	Туре	Missing	Statistics		Filter (4 / 4 attributes): Search for Attributes ▼ ▼
>	Label real		Binominal	0	Negative false	Positive true	Values true (3750), false (1225)
>	title		Text	0	Least Lily [] Feel' (0)	Most Connecti [] News (7)	Values Connecti [] ough News (7), A Comple [] ations
>	source_domain		Text	0	Least zimbabwe-today.com (0)	Most people.com (379)	Values people.com (379), www.dailymail.co.uk (217),[
~	tweet_num		Real	0	Min -0.380	Max 19.164	Average -0

PROCESS DOCUMENT FROM DATA

- Tokenization
- Transform Cases
- Filter Stopwords
- Filter Token by length
- Stemming-Porter

SPLIT DATA: 70% Training set

30% Test set

ALGORITHMS USED

- Naïve Bayes
- Decision Tree
- Random forest
- Deep Learning
- SVM

ANALYSIS OF THE DATA

Operators	Attribute count
Tokenization	12282
Transform cases	10079
Filter Stopwords	9804
Filter tokens by length	9171
Stem	7538

Accuracy for different Algorithms

Model	Split Data 70%-30%
Decision Tree	78.19%
Random Forest	75.38%
Sequential Minimal Optimization (SVM)	81.51%
Naïve Bayes	72.28%
Deep Learning	81.57%

PERFORMANCE BASED ON WEIGHTS

Binary Term Occurrences	77.39%	
Term Occurrences	79.2%	
Term-Frequency	75.88%	
TF-IDF	81.57%	

DATA SOURCE:

I found the dataset used to build this model on Kaggle.com

https://www.kaggle.com/datasets/algord/fakenews?select=FakeNewsNet.csv

3 W'S

1) What went well?

Topics taught in class could be easily related to the business problem I was solving. Video lectures helped me simultaneously work on RapidMiner as we kept learning new features.

2) What did not go well?

Initially I started the project with 20000+ documents, but text mining operator did run because of space constraints on the laptop due to which I had to reduce the data to 5000 examples by using random sampling

3) What would you use Differently Next Time?

Since the local host does not have enough memory to run Text Mining on a large data set, I would explore cloud services like AWS to scale my algorithms on a better computive and memory intensive host.