- V množine \mathbb{N} vyriešte: $\frac{2x+7}{3} = 4$
- V množine $\mathbb R$ vyriešte: $1 \frac{1}{x} = \frac{1}{x^2 x} \frac{1}{x 1}$
- V množine \mathbb{Z} vyriešte: $\frac{5}{2x+9} = \frac{5}{3}$

O ...

 $\mathcal{D} \, \dots$

 \mathcal{K} ...

Pokúste sa sami vyriešiť nasledujúce rovnice

$x(2x - 3) = 2x^2 + 54$			
$(13 - 2x)^4 = 1$	~ 15-1x =	27	
$(x+3)(2x^2-7) = x+3$	<i></i>		
$\frac{x(x+2)}{x(x+2)} = 2$			
<u>x</u>			
$x + \frac{3}{1} = 4 + \frac{3}{1}$			
x-4 $x-4$			
$\sqrt{x^2 + 3x - 8} = x - 19$			

Najčastejšie používané úpravy

K obom stranám rovnice sa pričíta (odčíta) ten istý výraz.

• ekvivalentná, ak
$$\sqrt{x}$$
 oz \sqrt{x} \sqrt{x}

dôsledková, ak výraz rema vzdy
$$x + \frac{3}{x-4} = 4 + \frac{3}{x-4}$$
 | $-\frac{3}{x-4} \times \pm 4$

Obe strany rovnice **vynásobíme** tým istým výrazom

e strany rovnice **vynásobíme** tým istým výrazom

• ekvivalentná, ak

$$\frac{x^3}{x^2+4} = x / (x^2+4) + x = 0$$
 $\frac{x^3}{x^2-4} = x / (x^2+4) + x = 0$

$$\frac{x^3}{x^2+4} = x / (x^2 + 4) + x e$$

$$\frac{x^2}{x^2+4} = x /.(x^2+4) + x \in \mathbb{R}$$

• dôsledková, ak
$$<$$
 $\frac{x^2-16}{x+4} = x$ $/$ $(x+4)$ $x \neq -4$ • alubo : alubo : alubo : $(x+4) = 2x(x+4)$ $/$ $(x+4) = 2x(x+4)$ $/$ $(x+4) = 2x(x+4)$

$$(x+4)=2x(x+4) / \frac{1}{2(x+4)}$$

$$(x+4) = 2x(x+4) / \frac{1}{4}$$

Obe strany rovnice vydelíme tým istým výrazom

$$(x^{2}+1) = 2x(x^{2}+1) / (x^{2}+1)$$

e strany rovnice **vydelíme** tým istým výrazom

• ekvivalentná, ak
$$(x^2 + 4) = 2x(x^2 + 4) / (x^2 + 4) + 0$$
• dôsledková, ak $(x^2 + 4) = 2x(x^2 + 4) / (x^2 + 4) + 0$
• nepovolená, ak $(x + 4) = 2x(x + 4) / (x + 4)$
• nepovolená, ak $(x + 4) = 2x(x + 4) / (x + 4)$

$$\frac{x^2+1}{2x-1} = 2x \cdot \frac{x^2+1}{2x-1} / \langle \frac{x^2+1}{2x-1} \rangle \neq 0$$

$$(x + 4) = 2x(x + 4) / (x + 4)$$

Obe strany rovnice **umocníme** na tú istú mocninu

$$\sqrt[3]{x} = 1$$
 / $\sqrt[3]{}$ $\times = 1$

$$\sqrt{x} = 4 - x / ()^2$$

Obe strany rovnice, pokiaľ sa dajú, rovnako odmocníme

- ekvivalentná
- pozor na správne odmocnenie

$$\frac{\sqrt{x^2} = |x|}{\sqrt{x^2} = |x|} \rightarrow \sqrt{x} / \frac{1}{-2}$$

$$\sqrt{x^2} = |x| \rightarrow \sqrt{x} / \frac{1}{-2}$$

$$\sqrt{x^2} = |x| \rightarrow \sqrt{x} / \frac{1}{-2}$$

$$\sqrt{x^2} = |x| \rightarrow \sqrt{x} / \frac{1}{-2}$$

Ako je to so skúškou správnosti?

Záver

Ekvivalentné úpravy

Dôsledkové úpravy