

Stochastic Processes

Markov Chains

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

07 March 2025

Markov Chains

Markov Chain

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Markov Chain)

A process $\{X_t : t \in \mathcal{T}\}$ is called a Markov chain if for any $t \in \mathcal{T}$,

$$(X_s: s < t) \perp (X_s: s > t) \mid X_t,$$

Markov Chain

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Markov Chain)

A process $\{X_t : t \in \mathcal{T}\}$ is called a Markov chain if for any $t \in \mathcal{T}$,

$$(X_s: s < t) \perp \!\!\! \perp (X_s: s > t) \mid X_t,$$

i.e., for any
$$m, n \in \mathbb{N}$$
, $s_1 < \cdots < s_m < t, \ t < t_1 < \cdots < t_n$, $x_1, \ldots, x_m \in \mathbb{R}$, $y_1, \ldots, y_n \in \mathbb{R}$, and $x \in \mathbb{R}$,

$$\mathbb{P}(\underbrace{X_{s_1} \leq x_1, \dots, X_{s_m} \leq x_m}, \underbrace{X_{t_1} \leq y_1, \dots, X_{t_n} \leq y_n}_{\text{after } t} \mid X_t \leq x)$$

$$= \mathbb{P}(X_{s_1} \leq x_1, \dots, X_{s_m} \leq x_m \mid X_t \leq x) \cdot \mathbb{P}(X_{t_1} \leq y_1, \dots, X_{t_n} \leq y_n \mid X_t \leq x).$$

Markov Chain

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition (Markov Chain)

A process $\{X_t : t \in \mathcal{T}\}$ is called a Markov chain if for any $t \in \mathcal{T}$,

$$(X_s: s < t) \perp \!\!\! \perp (X_s: s > t) \mid X_t,$$

i.e., for any $m, n \in \mathbb{N}$, $s_1 < \cdots < s_m < t, \ t < t_1 < \cdots < t_n$, $x_1, \ldots, x_m \in \mathbb{R}$, $y_1, \ldots, y_n \in \mathbb{R}$, and $x \in \mathbb{R}$,

$$\mathbb{P}(\underbrace{X_{s_1} \leq x_1, \dots, X_{s_m} \leq x_m}, \underbrace{X_{t_1} \leq y_1, \dots, X_{t_n} \leq y_n}_{\text{after } t} \mid X_t \leq x)$$

$$= \mathbb{P}(X_{s_1} \leq x_1, \dots, X_{s_m} \leq x_m \mid X_t \leq x) \cdot \mathbb{P}(X_{t_1} \leq y_1, \dots, X_{t_n} \leq y_n \mid X_t \leq x).$$

In words: given the present value, the past is independent of future.

Discrete-Time Markov Chain Taking Finitely Many Values

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (DTMC taking Finitely Many Values)

Consider a process $\{X_n\}_{n=1}^{\infty}$ taking values in a finite set \mathcal{X} .

Then, $\{X_n\}_{n=1}^{\infty}$ is called a discrete time Markov chain (DTMC) on \mathcal{X} if

$$(X_1,\ldots,X_{n-1})\perp (X_{n+1},X_{n+2},\ldots)\mid X_n$$
 for any $n\in\mathbb{N}$,

Discrete-Time Markov Chain Taking Finitely Many Values

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (DTMC taking Finitely Many Values)

Consider a process $\{X_n\}_{n=1}^{\infty}$ taking values in a finite set \mathcal{X} .

Then, $\{X_n\}_{n=1}^{\infty}$ is called a discrete time Markov chain (DTMC) on \mathcal{X} if

$$(X_1,\ldots,X_{n-1})\perp (X_{n+1},X_{n+2},\ldots)\mid X_n$$
 for any $n\in\mathbb{N},$

i.e., for any
$$n, L \in \mathbb{N}, \ n < t_1 < \cdots < t_L,$$
 $x_1, \ldots, x_{n-1} \in \mathbb{R}, y_1, \ldots, y_L \in \mathbb{R}, \text{ and } x \in \mathbb{R},$

$$\mathbb{P}(\underbrace{X_{1} = x_{1}, \dots, X_{n-1} = x_{n-1}}_{\text{before } n}, \underbrace{X_{t_{1}} = y_{1}, \dots, X_{t_{L}} = y_{L}}_{\text{after } n} \mid X_{n} = x)$$

$$= \mathbb{P}(X_{1} = x_{1}, \dots, X_{n-1} = x_{n-1} \mid X_{n} = x) \cdot \mathbb{P}(X_{t_{1}} = y_{1}, \dots, X_{t_{L}} = y_{L} \mid X_{n} = x).$$

Alternate Viewpoint of DTMC

$$\mathbb{P}(\underbrace{X_{t_1} = \gamma_1, \dots, X_{t_L} = \gamma_L}_{\text{after } n} \mid X_n = x, \underbrace{X_1 = x_1, \dots, X_{n-1} = x_{n-1}}_{\text{before } n})$$

$$= \mathbb{P}(X_{t_1} = \gamma_1, \dots, X_{t_L} = \gamma_L \mid X_n = x).$$

Alternate Viewpoint of DTMC

$$\mathbb{P}(\underbrace{X_{t_1} = \gamma_1, \dots, X_{t_L} = \gamma_L}_{\text{after } n} \mid X_n = x, \underbrace{X_1 = x_1, \dots, X_{n-1} = x_{n-1}}_{\text{before } n})$$

$$= \mathbb{P}(X_{t_1} = \gamma_1, \dots, X_{t_L} = \gamma_L \mid X_n = x).$$

Important

To determine X_{n+1} given the history (X_1, \ldots, X_n) up to time n, it suffices to retain only X_n and discard (X_1, \ldots, X_{n-1}) .

• *X* =

- $\mathcal{X} = \{1, \dots, 100\}$
- Suppose $X_n = 6$ at some time n
- Then, $X_{n+1} \in$

•
$$\mathcal{X} = \{1, \dots, 100\}$$

- Suppose $X_n = 6$ at some time n
- Then, $X_{n+1} \in \{7, 8, 31, 10, 11, 12\}$
- For all $x, x_1, \ldots, x_{n-1} \in \mathcal{X}$, we have

$$\mathbb{P}(X_{n+1}=x|X_n=6,\underbrace{X_{n-1}=x_{n-1},\ldots,X_1=x_1})$$
 trajectory before n

$$=\mathbb{P}(X_{n+1}=x|X_n=6)$$

•
$$\mathcal{X} = \{1, \dots, 100\}$$

- Suppose $X_n = 6$ at some time n
- Then, $X_{n+1} \in \{7, 8, 31, 10, 11, 12\}$
- For all $x, x_1, \ldots, x_{n-1} \in \mathcal{X}$, we have

$$\mathbb{P}(X_{n+1}=x|X_n=6,\underbrace{X_{n-1}=x_{n-1},\ldots,X_1=x_1})$$
 trajectory before n

$$=\mathbb{P}(X_{n+1}=x|X_n=6)$$

Remark

The set \mathcal{X} is called the state space of the Markov chain.

Let $\{X_n\}_{n=1}^{\infty}$ be an \mathbb{N} -valued i.i.d. process. For each $n \in \mathbb{N}$, let $S_n = \sum_{i=1}^n X_i$.

For any
$$\mathbf{s} = (s_1, \dots, s_{n-1})$$
,

$$\mathbb{P}(S_{n+1} = s_{n+1} \mid S_n = s_n, S_{1:n-1} = \mathbf{s}) =$$

Let $\{X_n\}_{n=1}^{\infty}$ be an \mathbb{N} -valued i.i.d. process.

For each $n \in \mathbb{N}$, let $S_n = \sum_{i=1}^n X_i$.

For any $\mathbf{s} = (s_1, \dots, s_{n-1})$,

$$\mathbb{P}(S_{n+1} = s_{n+1} \mid S_n = s_n, \ S_{1:n-1} = \mathbf{s}) = \mathbb{P}(X_{n+1} = s_{n+1} - s_n)$$

Let $\{X_n\}_{n=1}^{\infty}$ be an \mathbb{N} -valued i.i.d. process.

For each $n \in \mathbb{N}$, let $S_n = \sum_{i=1}^n X_i$.

For any $\mathbf{s} = (s_1, \dots, s_{n-1})$,

$$\mathbb{P}(S_{n+1} = s_{n+1} \mid S_n = s_n, \ S_{1:n-1} = \mathbf{s}) = \mathbb{P}(X_{n+1} = s_{n+1} - s_n) = \mathbb{P}(S_{n+1} = s_{n+1} \mid S_n = s_n)$$

Markov Property for Deterministic Sampling Times

Lemma (Markov Property for Deterministic Sampling Times)

 X_{t_2} X_{t_2}

Suppose that $\{X_n\}_{n=1}^{\infty}$ is a DTMC with a finite state space \mathcal{X} .

 X_{t_1}

For all $n \in \mathbb{N}$, deterministic $t_1 < t_2 < \cdots < t_n$, and $x_1, x_2, \ldots, x_n \in \mathbb{R}$,

$$\mathbb{P}(X_{t_n} = x_n \mid X_{t_{n-1}} = x_{n-1}, \dots, X_{t_1} = x_1) = \mathbb{P}(X_{t_n} = x_n \mid X_{t_{n-1}} = x_{n-1}).$$

In words: Suffices to retain the most recent information and discard the history.

Definition (Transition Probability Matrix)

Let $\{X_n\}_{n=1}^{\infty}$ be a DTMC with discrete state space \mathcal{X} .

The transition probability matrix (TPM) of the Markov chain at any time $n \in \mathbb{N}$ is a matrix $P(n) = [P_{i,j}(n)]_{i,j \in \mathcal{X}}$ defined as

$$P_{i,j}(n) = \mathbb{P}(X_{n+1} = j \mid X_n = i), \quad i,j \in \mathcal{X}.$$

ullet For each $i\in\mathcal{X}, \quad \sum_{j\in\mathcal{X}}P_{i,j}(n)=$

ullet For each $i\in\mathcal{X}, \quad \sum_{j\in\mathcal{X}}P_{i,j}(n)=$

• A matrix with non-negative entries and row sums equal to 1 is called a row stochastic matrix

- ullet For each $i\in\mathcal{X}$, $\sum_{j\in\mathcal{X}}P_{i,j}(n)=1.$
- A matrix with non-negative entries and row sums equal to 1 is called a row stochastic matrix
- P(n) is a row stochastic matrix for every n

- ullet For each $i\in\mathcal{X}$, $\sum_{j\in\mathcal{X}}P_{i,j}(n)=1.$
- A matrix with non-negative entries and row sums equal to 1 is called a row stochastic matrix
- P(n) is a row stochastic matrix for every n
- Each row of $P(n) = \mathsf{PMF}$ on \mathcal{X}

- For each $i \in \mathcal{X}$, $\sum_{j \in \mathcal{X}} P_{i,j}(n) = 1$.
- A matrix with non-negative entries and row sums equal to 1 is called a row stochastic matrix
- P(n) is a row stochastic matrix for every n
- Each row of $P(n) = \mathsf{PMF}$ on \mathcal{X}
- For instance,

$$\sum_{j\in\mathcal{X}}j^2 P_{i,j}(n) = \mathbb{E}[X_{n+1}^2 \mid X_n = i],$$

where \mathbb{E} above is w.r.t. row i of P(n)

- For each $i \in \mathcal{X}$, $\sum_{j \in \mathcal{X}} P_{i,j}(n) = 1$.
- A matrix with non-negative entries and row sums equal to 1 is called a row stochastic matrix
- P(n) is a row stochastic matrix for every n
- Each row of $P(n) = \mathsf{PMF}$ on \mathcal{X}
- For instance,

$$\sum_{j\in\mathcal{X}}j^2 P_{i,j}(n) = \mathbb{E}[X_{n+1}^2 \mid X_n = i],$$

where \mathbb{E} above is w.r.t. row *i* of P(n)

• P(n) has a right eigenvector with eigenvalue 1

- For each $i \in \mathcal{X}$, $\sum_{j \in \mathcal{X}} P_{i,j}(n) = 1$.
- A matrix with non-negative entries and row sums equal to 1 is called a row stochastic matrix
- P(n) is a row stochastic matrix for every n
- Each row of $P(n) = \mathsf{PMF}$ on \mathcal{X}
- For instance,

$$\sum_{j\in\mathcal{X}}j^2\,P_{i,j}(n)=\mathbb{E}[X_{n+1}^2\mid X_n=i],$$

where \mathbb{E} above is w.r.t. row *i* of P(n)

- P(n) has a right eigenvector with eigenvalue 1
- $P(n) \cdot \mathbf{1} = \mathbf{1}$, where $\mathbf{1}$ is the all-ones vector

Time Homogeneous DTMC

Definition (Time Homogeneous DTMC

A DTMC with discrete state space $\mathcal X$ and TPMs $\{P(n)\}_{n=1}^\infty$ is called time homogeneous if

$$P(n) = P(n+1) \quad \forall n \in \mathbb{N}.$$

In this case, we simply write *P* to denote the common TPM.

Let X_1, X_2, \ldots be i.i.d. on $\{-1, +1\}$, with $\mathbb{P}(X_1 = 1) = p$. For each $n \in \mathbb{N}$, let $S_n = \sum_{i=1}^n X_i$. What is the TPM of $\{S_n\}_{n=1}^{\infty}$?

Chapman - Kolmogorov Equation

Consider a time-homogeneous DTMc $\{x_n\}_{n=1}^{\infty}$ with discrete state Space X.

For any $n \in \mathbb{N}$, $i, j \in \mathcal{X}$, let

Chapman - Kolmogorov:

Let
$$P^{(n)} = [p_{i,j}^{(n)}]_{i,j \in \mathcal{X}}$$
. Then

$$P^{(n)} = P^n \quad \forall n \in \mathbb{N}$$

Proof: Exercise (induction!)