第十四次作业答案

补充材料P109 5(2)、用单纯性方法求解以下线性规划问题:

$$\max z = 3x_1 - 2x_2 + 5x_3$$

$$s.t.\begin{cases} 3x_1 + 2x_3 \le 13 \\ x_2 + 3x_3 \le 17 \\ 2x_1 + x_2 + x_3 \le 13 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

解: 先将线性规划问题转化为标准形式:

$$\max z = 3x_1 - 2x_2 + 5x_3 + 0x_4 - 0x_5 + 0x_6$$

$$s.t.\begin{cases} 3x_1 + 2x_3 + x_4 = 13\\ x_2 + 3x_3 + x_5 = 17\\ 2x_1 + x_2 + x_3 + x_6 = 13\\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

构造初始基可行解为:

$$x^0 = (0,0,0,13,17,13)^T$$

以此建立初始的单纯形表,如下:

$c_j ightarrow$			3	-2	5	0	0	0
c_b	x_b	b	x_1	x_2	x_3	x_4	x_5	x_6
0	x_4	13	3	0	2	1	0	0
0	x_5	17	0	1	3	0	1	0
0	x_6	13	2	1	1	0	0	1
σ_{j}			3	-2	5	0	0	0

由于上表中有大于零的检验指标,故表中的基可行解不是最优解。又因为 $\sigma_1 \prec \sigma_3$,故确定 x_3 为换入变量,将 b 除以 p_3 的同行系数得

$$\lambda = \min\left\{\frac{13}{2}, \frac{17}{3}, \frac{13}{1}\right\} = \frac{17}{3}$$

用变量 x_3 替换出变量 x_5 ,按基可行解转换方法可以找到一个新的基可行解, 并以此建立新的单纯形表:

$c_j ightarrow$			3	-2	5	0	0	0
c_b	x_b	b	x_1	x_2	x_3	x_4	x_5	x_6
0	x_4	5/3	3	$-\frac{2}{3}$	0	1	$-\frac{2}{3}$	0
5	x_3	17/3	0	1/3	1	0	1/3	0
0	x_6	22/3	2	2/3	0	0	-1/3	1
	σ_{j}			_11/3	0	0	-5/3	0

同样地,上表中有大于零的检验指标,故表中的基可行解不是最优解。此时, x_1 为换入变量,将 b 除以 p_1 的同行系数得

$$\lambda = \min\left\{\frac{5}{9}, \frac{11}{3}\right\} = \frac{5}{9}$$

用变量 x_1 替换出变量 x_4 ,按基可行解转换方法可以找到一个新的基可行解, 并以此建立新的单纯形表:

$c_j ightarrow$			3	-2	5	0	0	0
c_b	x_b	b	x_1	x_2	x_3	x_4	x_5	x_6
3	x_1	5/9	1	-2/9	0	1/3	-2/9	0
5	x_3	17/3	0	1/3	1	0	1/3	0
0	x_6	56/9	0	10/9	0	-2/3	1/9	1
	σ_j			-3	0	-1	-1	0

上表中所有检验指标 $\sigma_j \le 0$,故表中得基可行解 $x = \left(\frac{5}{9}, 0, \frac{17}{3}, 0, 0, \frac{56}{9}\right)$ 是最优解。带入目标函数得 $\max z = 3x_1 - 2x_2 + 5x_3 = 30$