Worksheet 1

Please go to https://www.kaggle.com/fedesoriano/heart-failure-prediction) and download the data set. Your task is to perform EDA on the dataset. Use "book1.ipynb" as a resource; remember, Google is your friend. Produce a Jupyter Notebook in which you complete the following tasks.

Assign the data to a dataframe.

- (a) use .head() to see the first few rows. Did you need to use index_col = 0?
- (b) What variable types are present in the dataframe? (Hint, use .dtypes) Are there any missing values?

```
In [1]: import pandas as pd
    df = pd.read_csv('./heart.csv')
    df.head()
    # I did not have to use index_col = 0
    df.dtypes
    # we have objects, int64, float64
    df.info()
    # we have no missing values
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 918 entries, 0 to 917
Data columns (total 12 columns):

Duca	co camino (co ca c	12 CO Callil 13 / 1	
#	Column	Non-Null Count	Dtype
0	Age	918 non-null	int64
1	Sex	918 non-null	object
2	ChestPainType	918 non-null	object
3	RestingBP	918 non-null	int64
4	Cholesterol	918 non-null	int64
5	FastingBS	918 non-null	int64
6	RestingECG	918 non-null	object
7	MaxHR	918 non-null	int64
8	ExerciseAngina	918 non-null	object
9	Oldpeak	918 non-null	float64
10	ST_Slope	918 non-null	object
11	HeartDisease	918 non-null	int64
dtype	es: float64(1),	int64(6), object	(5)
memoi	ry usage: 86.2+	KB	

Plot a histogram of the ages of the patients.

```
In [2]: import seaborn as sns
sns.histplot(df['Age'], bins = 20)
```

Out[2]: <Axes: xlabel='Age', ylabel='Count'>

Patient gender:

- (a) Use .value_counts() to determine number of males and females.
- (b) Calculate percentages of males and females

```
In [3]: print(df['Sex'].value_counts())
# 725M, 193F, thus 918 total
male_p = (725/918) * 100
female_p = (193/918) * 100
print (male_p)
print (female_p)
```

```
Sex
M 725
F 193
Name: count, dtype: int64
78.9760348583878
21.0239651416122
```

Use .describe() to get a summary of the dataframe.

In [4]: df.describe()

Out [4]:

	Age	RestingBP	Cholesterol	FastingBS	MaxHR	Oldpeak	HeartDisease
count	918.000000	918.000000	918.000000	918.000000	918.000000	918.000000	918.000000
mean	53.510893	132.396514	198.799564	0.233115	136.809368	0.887364	0.553377
std	9.432617	18.514154	109.384145	0.423046	25.460334	1.066570	0.497414
min	28.000000	0.000000	0.000000	0.000000	60.000000	-2.600000	0.000000
25%	47.000000	120.000000	173.250000	0.000000	120.000000	0.000000	0.000000
50%	54.000000	130.000000	223.000000	0.000000	138.000000	0.600000	1.000000
75%	60.000000	140.000000	267.000000	0.000000	156.000000	1.500000	1.000000
max	77.000000	200.000000	603.000000	1.000000	202.000000	6.200000	1.000000

Count the number of patients for each ChestPainType

```
In [5]: df.groupby('ChestPainType').ChestPainType.count()
```

Out[5]: ChestPainType

ASY 496 ATA 173 NAP 203 TA 46

Name: ChestPainType, dtype: int64

How many patients have exercise induced angina?

```
In [6]: df['ExerciseAngina'].value_counts()
# thus, 371 have exercise induced angina
```

Out[6]: ExerciseAngina

N 547 Y 371

Name: count, dtype: int64

Get a scatter plot of cholesterol vs. resting blood pressure.

```
In [7]: import matplotlib.pyplot as plt
sns.scatterplot(x='Cholesterol', y='RestingBP', data=df)
plt.xlabel('Cholesterol')
plt.ylabel('RestingBP')
plt.title('Scatter Plot of Cholesterol vs. RestingBP')
plt.show()
```


Get a scatter plot of age vs. MaxHR. Give a red dot for female, a blue dot for male, and an 'o' (hollow circle) if no age is given in that row.

```
In [8]: sns.scatterplot(x='Age', y='MaxHR', hue='Sex', style='Sex', data=df, mark
sns.scatterplot(x='Age', y='MaxHR', data=df[df['Age'].isna()], marker='o
plt.xlabel('Age')
plt.ylabel('MaxHR')
plt.title('Scatter Plot of Age vs. MaxHR')
plt.show()
```


What is the average age of male patients? What is the average age of female patients?

```
In [9]: df.groupby('Sex').Age.mean()
# average male age is roughly 54
# average female age is rougly 52.5
```

Out[9]: Sex

F 52.492228 M 53.782069

Name: Age, dtype: float64

For each age:

- (a) Count the number of males.
- (b) Count the number of females.

In [10]: df.groupby(['Age', 'Sex']).size().unstack(fill_value=0)
above line counts both males and females in same df

Out[10]:

Sex	F	М
Age		
28	0	1
29	0	3
30	1	0
31	1	1
32	1	4
33	1	1
34	2	5
35	3	8
36	0	6
37	4	7
38	3	13
39	3	12
40	1	12
41	7	17
42	3	15
43	9	15
44	3	16
45	6	12
46	4	20
47	4	15
48	9	22
49	6	15
50	7	18
51	11	24
52	5	31
53	6	27
54	15	36
55	7	34
56	5	33
57	6	32
58	7	35
59	3	32
60	5	27

Sex	F	М
Age		
61	4	27
62	10	25
63	6	24
64	6	16
65	4	17
66	4	9
67	3	12
68	1	9
69	1	12
70	0	7
71	3	2
72	0	4
73	1	0
74	1	6
75	0	3
76	1	1
77	0	2

Get a waterfall graph of ChestPainType (like the last figure in W1-L3.ipynb.ipynb).

```
In [11]: chest_pain_counts = df['ChestPainType'].value_counts()
    cum = chest_pain_counts.cumsum()
    cum_shift = cum.shift(fill_value=0)
    fig, ax = plt.subplots(figsize=(10, 6))
    ax.bar(chest_pain_counts.index, chest_pain_counts, bottom=cum_shift)
    ax.set_xlabel('Chest Pain Type')
    ax.set_ylabel('Count')
    ax.set_title('Waterfall Chart of Chest Pain Types')
    plt.show()
```


Extra credit: Produce an informative visualization of Age and ChestPainType, distinguishing between male and female patients.