BM20BTECH11001-Lab1

September 26, 2021

0.0.1 Reading a file:

```
[1]: def read_data(filename):
    with open(filename,'r') as f:
        text = f.readlines()
        print(text)
    read_data('welcome.txt')
```

['Hello everyone!\n', 'Welcome to the course BM2033-Probability and Random Processes. This course requires a background in libraries like Pandas,matplotlib,numpy etc.\n', 'First class is on Thursday, 23rd Sept 2021 at $2.30 \ pm.\n'$]

```
[2]: #Printing line by line
     file = open('welcome.txt')
     store_line = []
     vowel_counts = {
         'a':0,
         'e':0,
         'i':0,
         'o':0,
         'u':0
     }
     for line in file:
        print(line)
     file.close()
     #Counting number of vowels
     with open('welcome.txt') as f:
       while True:
         c = f.read(1)
         c = c.lower()
         if c == 'a':
             vowel_counts['a'] = vowel_counts['a'] + 1
         if c == 'e':
```

```
vowel_counts['e'] = vowel_counts['e'] + 1
    if c == 'i':
        vowel_counts['i'] = vowel_counts['i'] + 1
        vowel_counts['o'] = vowel_counts['o'] + 1
    if c == 'u':
        vowel_counts['u'] = vowel_counts['u'] + 1
    if not c:
      break
display_vowels = "The number of vowels is {}.\n"
print(display_vowels.
 →format(vowel_counts['a']+vowel_counts['e']+vowel_counts['i']+vowel_counts['o']+vowel_counts
#Find frequency of each word
words = []
word_frequency = {}
words_distinct = []
with open('welcome.txt') as f:
    for line in f:
        for word in line.split():
            words.append(word)
    for word in words:
        if word not in words_distinct:
            words_distinct.append(word)
    for word in words_distinct:
        word_frequency[word] = words.count(word)
    print(word_frequency,"\n")
#Writing file from last to first
with open('welcome.txt') as file:
    for line in file:
        store_line.append(line)
    for line in range(len(store_line)-1,-1,-1):
        print(store_line[line])
```

Hello everyone!

Welcome to the course BM2033-Probability and Random Processes. This course requires a background in libraries like Pandas, matplotlib, numpy etc.

First class is on Thursday, 23rd Sept 2021 at 2.30 pm.

The number of vowels is 58.

```
{'Hello': 1, 'everyone!': 1, 'Welcome': 1, 'to': 1, 'the': 1, 'course': 2,
'BM2033-Probability': 1, 'and': 1, 'Random': 1, 'Processes.': 1, 'This': 1,
'requires': 1, 'a': 1, 'background': 1, 'in': 1, 'libraries': 1, 'like': 1,
```

```
'Pandas,matplotlib,numpy': 1, 'etc.': 1, 'First': 1, 'class': 1, 'is': 1, 'on': 1, 'Thursday,': 1, '23rd': 1, 'Sept': 1, '2021': 1, 'at': 1, '2.30': 1, 'pm.': 1}
```

First class is on Thursday, 23rd Sept 2021 at 2.30 pm.

Welcome to the course BM2033-Probability and Random Processes. This course requires a background in libraries like Pandas, matplotlib, numpy etc.

Hello everyone!

0.0.2 Some exercises that you can do:

- print each line separately
- counting the number of vowels
- find frequency of each word
- write the file from last to first
- etc!!

0.0.3 Reading and parsing Tabular data:

```
[3]: import pandas as pd data=pd.read_csv('iris.csv') print(data)
```

	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa
	•••	•••	•••		
145	6.7	3.0	5.2	2.3	Virginica
146	6.3	2.5	5.0	1.9	Virginica
147	6.5	3.0	5.2	2.0	Virginica
148	6.2	3.4	5.4	2.3	Virginica
149	5.9	3.0	5.1	1.8	Virginica

[150 rows x 5 columns]

Read the sepal.length and sepal.width columns

```
[4]: #read the sepal length column
sepal_info = data[['sepal.length','sepal.width']]
sepal_info
```

[4]:		sepal.length	sepal.width
	0	5.1	3.5
	1	4.9	3.0
	2	4.7	3.2
	3	4.6	3.1
	4	5.0	3.6
		•••	•••
	145	6.7	3.0
	146	6.3	2.5
	147	6.5	3.0
	148	6.2	3.4
	149	5.9	3.0

[150 rows x 2 columns]

Selecting columns based on conditions

[5]: data[data['sepal.length']>=5.0]

[5]:	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa
5	5.4	3.9	1.7	0.4	Setosa
7	5.0	3.4	1.5	0.2	Setosa
10	5.4	3.7	1.5	0.2	Setosa
	•••	•••	•••		
145	6.7	3.0	5.2	2.3	Virginica
146	6.3	2.5	5.0	1.9	Virginica
147	6.5	3.0	5.2	2.0	Virginica
148	6.2	3.4	5.4	2.3	Virginica
149	5.9	3.0	5.1	1.8	Virginica

[128 rows x 5 columns]

0.0.4 Some exercises that you can do:

- slice rows and columns based indices
- find statistical information from data (Ex. Mean, Median, Std. Deviation etc)
- group data based on conditions
- sort data
- try loading other datasets and perform calculations based on column values etc
- write your results to a file
- etc!

```
[6]: #Slice rows and columns based indices
data_df = pd.DataFrame(data)
data_df.iloc[1:51, :4]
```

[6]:	sepal.length	sepal.width	petal.length	petal.width
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
5	5.4	3.9	1.7	0.4
6	4.6	3.4	1.4	0.3
7	5.0	3.4	1.5	0.2
8	4.4	2.9	1.4	0.2
9	4.9	3.1	1.5	0.1
10	5.4	3.7	1.5	0.2
11	4.8	3.4	1.6	0.2
12	4.8	3.0	1.4	0.1
13	4.3	3.0	1.1	0.1
14	5.8	4.0	1.2	0.2
15 16	5.7	4.4	1.5	0.4
16 17	5.4	3.9	1.3 1.4	0.4
18	5.1 5.7	3.5 3.8	1.7	0.3
19	5.1	3.8	1.5	0.3
20	5.4	3.4	1.7	0.2
21	5.1	3.7	1.5	0.4
22	4.6	3.6	1.0	0.2
23	5.1	3.3	1.7	0.5
24	4.8	3.4	1.9	0.2
25	5.0	3.0	1.6	0.2
26	5.0	3.4	1.6	0.4
27	5.2	3.5	1.5	0.2
28	5.2	3.4	1.4	0.2
29	4.7	3.2	1.6	0.2
30	4.8	3.1	1.6	0.2
31	5.4	3.4	1.5	0.4
32	5.2	4.1	1.5	0.1
33	5.5	4.2	1.4	0.2
34	4.9	3.1	1.5	0.2
35	5.0	3.2	1.2	0.2
36	5.5	3.5	1.3	0.2
37	4.9	3.6	1.4	0.1
38	4.4	3.0	1.3	0.2
39	5.1	3.4	1.5	0.2
40	5.0	3.5	1.3	0.3
41	4.5	2.3	1.3	0.3
42	4.4	3.2	1.3	0.2
43	5.0	3.5	1.6	0.6
44 45	5.1	3.8	1.9	0.4
	4.8	3.0	1.4	0.3
46	5.1	3.8	1.6	0.2

```
48
                   5.3
                                3.7
                                              1.5
                                                            0.2
                   5.0
      49
                                3.3
                                              1.4
                                                            0.2
      50
                   7.0
                                3.2
                                              4.7
                                                            1.4
 [7]: #Statistics of data
      data_df.describe()
 [7]:
             sepal.length
                           sepal.width
                                        petal.length petal.width
               150.000000
      count
                            150.000000
                                          150.000000
                                                        150.000000
                 5.843333
                              3.057333
                                            3.758000
                                                          1.199333
      mean
      std
                 0.828066
                              0.435866
                                            1.765298
                                                          0.762238
      min
                 4.300000
                              2.000000
                                            1.000000
                                                          0.100000
      25%
                 5.100000
                              2.800000
                                                          0.300000
                                            1.600000
      50%
                 5.800000
                              3.000000
                                            4.350000
                                                          1.300000
      75%
                 6.400000
                              3.300000
                                            5.100000
                                                          1.800000
                 7.900000
     max
                              4.400000
                                            6.900000
                                                          2.500000
 [8]: #Grouping data based on conditions
      flower_large = pd.DataFrame(data_df[(data_df['sepal.length']>6) &_
       flower_large.describe()
 [8]:
             sepal.length
                           sepal.width petal.length petal.width
                60.000000
                             60.000000
                                           60.000000
                                                         60.000000
      count
      mean
                 6.680000
                              2.991667
                                            5.345000
                                                          1.856667
                              0.304370
      std
                 0.475787
                                            0.666746
                                                          0.377488
     min
                 6.100000
                              2.200000
                                            4.300000
                                                          1.200000
      25%
                 6.300000
                              2.800000
                                            4.775000
                                                          1.500000
      50%
                              3.000000
                                            5.350000
                                                          1.800000
                 6.550000
      75%
                 6.900000
                              3.200000
                                            5.800000
                                                          2.200000
                 7.900000
                              3.800000
                                            6.900000
                                                          2.500000
      max
 [9]: #Grouping data based on variety of flowers(mean)
      data_df.groupby(data_df['variety']).median()
 [9]:
                  sepal.length sepal.width petal.length petal.width
      variety
                           5.0
                                        3.4
                                                      1.50
                                                                    0.2
      Setosa
                                                      4.35
      Versicolor
                           5.9
                                        2.8
                                                                    1.3
      Virginica
                           6.5
                                        3.0
                                                      5.55
                                                                    2.0
[10]: #Sort the data
      data_df.sort_values(by=['sepal.length','sepal.width','petal.length','petal.
       →width'])
```

0.2

1.4

47

4.6

3.2

```
[10]:
           sepal.length sepal.width petal.length petal.width
                                                                     variety
      13
                    4.3
                                  3.0
                                                              0.1
                                                                      Setosa
                                                1.1
                    4.4
                                  2.9
                                                              0.2
                                                                      Setosa
      8
                                                1.4
      38
                    4.4
                                  3.0
                                                1.3
                                                              0.2
                                                                      Setosa
                    4.4
                                  3.2
                                                1.3
                                                              0.2
      42
                                                                      Setosa
      41
                    4.5
                                  2.3
                                                1.3
                                                              0.3
                                                                      Setosa
      . .
                    7.7
                                  2.6
                                                6.9
                                                              2.3 Virginica
      118
      122
                    7.7
                                  2.8
                                                6.7
                                                              2.0 Virginica
      135
                                  3.0
                    7.7
                                                6.1
                                                              2.3 Virginica
      117
                    7.7
                                  3.8
                                                6.7
                                                              2.2 Virginica
      131
                    7.9
                                  3.8
                                                6.4
                                                              2.0 Virginica
```

[150 rows x 5 columns]

```
[11]: #Using external datasets(covid-19 India stats)
    covid = pd.DataFrame(pd.read_csv('india_covid19.csv'))
    covid = covid.sort_values(by=['Active','Total Cases'])
    stats = covid['Total Cases'].describe()
    f = open('covid_stats_india.txt','w')
    f.writelines(str(stats))
    f.close()
```

0.0.5 Plots and visualizations


```
[13]: t = sb.histplot(data=data, x="petal.length")
t.set_title('Histogram');
```


0.0.6 Some exercises that you can do:

- explore matplotlib, seaborn and other plotting libraries
- Try different kinds of plots like : line plots, scatterplots, bargraphs, pie charts, histograms, heatmaps etc
- plot 2D, 3D plots
- etc!


```
[15]: #Plotting bargraph and histogram on covid19 data of India
fig, axs = plt.subplots(2, figsize=(30,25))
axs[0].set_title('Bargraph analysis of covid data of India')
axs[0].set_xlabel('State')
axs[0].set_ylabel('Total Cases')
sb.barplot(x=covid['State/UTs'], y=covid['Total Cases'], ax=axs[0]);
```

```
fig.tight_layout()
axs[1].set_title('Histogram plot of covid data of India')
sb.histplot(x=covid['Total Cases'], y=covid['Deaths'], ax=axs[1]);
```



```
[17]: #Plotting a heatmap
import numpy as np
normal_data = np.random.randn(10, 12)
normal_data
ax = sb.heatmap(normal_data, center=0)
```



```
[18]: #Plotting 3D graphs
from mpl_toolkits import mplot3d
fig = plt.figure()
ax = plt.axes(projection ='3d')
z = np.linspace(0,1,100)
x = np.sin(25*z)
y = np.cos(25*z)
c = x+y
ax.scatter(x,y,z,c=c)
ax.set_title("3d Scatter Plot")
plt.show()
```

3d Scatter Plot

0.0.7 Read Image

0.1 References:

- Python Installation
- Miniconda Installation

[43, 43, 50, ..., 104, 100, 98], [44, 44, 55, ..., 104, 105, 108],

[44, 44, 55, ..., 104, 105, 108]], dtype=uint8)

- Basic Python
- Pandas
- Matplotlib Seaborn
- Numpy