PHY6938 E & M Spring 2000

- 1. A non-uniform, non-conducting disk of mass M, radius R, and total charge Q has a surface charge density $\sigma = \sigma_0 r/R$, where r is the distance from the center of the disk, and a mass per unit area $\sigma_m = M\sigma/Q$. The disk rotates with angular velocity ω about its axis.
- a) Calculate the magnetic moment μ of the disk.
- b) Show that the magnetic moment μ and the angular momentum \mathbf{L} are related by $\mu = Q\mathbf{L}/2M$, where $\mathbf{L} = I\boldsymbol{\omega}$ and I is the moment of inertia.
- 2. A series LCR circuit is driven by an emf with angular frequency ω , so that the voltage across the resistor is

$$V_R(t) = V_0 \sin(\omega t)$$

In answering the following questions, express everything in terms of the given quantities: L, C, R, ω , V_0 , and ε_0 .

- a) Draw a phasor diagram for V_R , V_L , and V_C , and specify the angles between the phasors.
- b) What is the current $I_L(t)$ through the inductance?
- c) Find the voltage $V_L(t)$ across the inductance.
- d) Find the voltage $V_C(t)$ across the capacitance.
- e) Determine the angular frequency, ω_0 , for which the voltage $V_R(t)$ across the resistance is the same as that across the emf source, i.e. $V_R(t) = \varepsilon(t)$.
- f) If the emf source is suddenly short-circuited, what will be the frequency of the current $I_L(t)$? What is $I_L(t)$ long after the emf is short-circuited?
- 3. A positive charge is uniformly distributed throughout a very long cylindrical volume of radius R. The charge per unit volume is ρ .
- a) Find the electric field \vec{E} everywhere as a function of the distance r from the axis of the cylinder.
- b) Find the electric potential V everywhere as a function of r. Define V = 0 at the surface of the cylinder.
- c) Sketch E and V as functions of r, from r = 0 to r = 3R, showing the values of each at r = 0, R, and 3R.