Project Development Phase Model Performance Test

Date	9 November 2023
Team ID	Team-592312
Project Name	Car Purchase Prediction using ML

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No	Parameter	Values	Screensho	ot					
1.	CLASSIFICATION								
	REPORT		print(c	lassif	ication_repo	rt(y_test,	pred))		
			∃		precision	recall	f1-score	support	
	a)LOGISTIC			0 1	0.91 1.00		0.95	58	
	REGRESSION				1.00	0.73	0.84	22	
			macr	uracy o avg		0.86	0.93 0.90	80 80	
			weighte	d avg	0.93	0.93	0.92	80	
			print(c	:lassif	fication_rep	ort(y_tes	t,y_pred))	
	h) K noarast		⋺		precision	recall	f1-scor	e support	
	b) K_nearest			0	0.98				
	neighbors[KNN]			1	0.88	0.95	0.9	1 22	
				uracy o avg		0.95	0.9		
			weighte	d avg	0.95	0.95	0.9	5 80	
			[print(c	:lassif	ication_repo	ort(y_test	,pred_cv))		
			글		precision	recall	f1-score	support	
	c) Decision tree			0	0.96 0.87	0.95 0.91	0.96 0.89	58 22	
	classification			uracy o avg	0.92	0.93	0.94 0.92	80 80	
			weighte		0.94	0.94	0.94	80	
			• prin	ıt(cla	ssificatio	n_report(y_test,p	red3))	
	d)random forest		글		precis	ion re	call f1	-score su	рро
	classification						0.93 0.95	0.96 0.89	2
				ccura				0.94	
				cro a			0.94 0.94	0.92 0.94	8

				print(classi	fication_	_report(y	_test,pr	ed5))		
			\Rightarrow		precisi	on re	call f1	-score	suppor	t
	e) Support Vector Machine (SVM)			0 1			0.97 0.91	0.97 0.91		8
	classification			accuracy macro avg weighted avg	0.		0.94 0.95	0.95 0.94 0.95	8	0 0 0
	f) Naïve Bayes		0	print(clas	sificat	ion_repo	ort(y_te	st,pre	d6))	
			글		pre	cision	recal	1 f1-s	score	support
					0 1	0.93 0.90	0.9		0.95 0.86	58 22
				accura macro a weighted a	vg	0.92 0.92	0.8 0.9		0.93 0.90 0.92	80 80 80
2.	Accuracy a)LOGISTIC REGRESSION	Accuracy =92.5	C	score1		racy_s	core(y_tes	t,pre	ed)
			\rightarrow	0.925						
	b) K_nearest neighbors[KNN]	Accuracy =95	0	score=aco	curacy_	_score	(y_pred	d,y_te	est)	
	neignbors[kikiv]		글	0.95						
	c) Decision tree classification	Accuracy =93.75	[0]	score_cv=a	accurac	y_score	(y_test	t,pred	_cv)	
			→	0.9375						
	d)random forest classification	Accuracy =93.75	0	score4		racy_	score	(y_te	est,p	red3)
			글	0.9375						
	d) Support Vector	Accuracy =95								

	Machine (SVM) classification		<pre>[91] score5=accuracy_score(y_test,pred5) score5</pre>
	e)Naïve bayes	Accuracy =92.5	0.95
			score7 score(y_test,pred6)
			→ 0.925
	I a a l	T	T
3.	Confidence Score (Only Yolo Projects)	Class Detected - NA	Not Applicable
		Confidence Score -	

Screenshot:

CLASSIFICATION REPORT

a)LOGISTIC REGRESSION

	<pre>print(classification_report(y_test,pred))</pre>								
\supseteq		precision	support						
	0	0.91	1.00	0.95	58				
	1	1.00	0.73	0.84	22				
	accuracy macro avg weighted avg	0.95 0.93	0.86 0.93	0.93 0.90 0.92	80 80 80				

NA

b) K_nearest neighbors[KNN]

c) Decision tree classification

d)random forest classification

e) Support Vector Machine (SVM) classification

f) Naïve Bayes

Accuracy

a)LOGISTIC REGRESSION

→ 0.925

Accuracy =92.5

b) K_nearest neighbors[KNN]

Accuracy =95

c) Decision tree classification

d)random forest classification

② 0.9375

Accuracy =93.75

d) Support Vector Machine (SVM) classification

Accuracy =95

e)Naïve bayes

→ 0.925

Accuracy =92.5