Logbook - Detetor Geiger-Muller

Trabalho realizado a 30 de maio de 2023

Logbook por João Belas, ist1102455

Objetivos

Com este trabalho experimental pretendemos estudar o detetor Geiger-Muller, um contador de partículas que é muito bom a detetar números de partículas, mas não tem resolução nenhuma em relação à sua energia. Iremos estudar a eficiência do detetor, a relação entre a taxa de partículas detetada e a distância da fonte ao detetor e a atenuação desta taxa na presença de diferentes barreiras materiais.

Estudo do Detetor

- 1- Ligámos o GMX.
- **2-** Ligámos o detetor, e colocámos uma fonte de Tálio, Tl-204, demarcada com L03, na prateleira 3 (4ª prateleira).
- **3-** Começámos a fazer a aquisição de contagens com uma tensão aplicada ao detetor inicial de 100V, e programada para aumentar automaticamente 25V de 2 em 2 segundos, tendo ido até a um máximo de 1200V, definido automaticamente pelo detetor. A partir dos 725V de tensão aplicada, começámos a registar contagens, o que implica que o plateau Geiger-Muller começa a partir dos 725V.
- **4-** Depois de termos esta primeira aproximação grosseira, e agora que sabemos que o detetor só começa a registar contagens a partir de cerca de 700V, decidimos fazer uma aquisição mais extensiva, com um time-step de 30 segundos, a começar nos 600V, para dar alguma margem. Mais uma vez, verificámos que o detetor só começava a registar contagens a partir dos 725V de tensão aplicada.
- **5-** A sugestão da professora, repetimos o passo anterior, mas a começar nos 500V e com um time-step de 20 segundos, tal como indicado na folha do laboratório. Registámos os dados numa pen, sob o nome de ficheiro: belasgm1.asc.
- **6-** Repetimos o passo **5-**, para obter um tempo total de aquisição de 40 segundos e guardámos o ficheiro com o nome belasgm2.asc.

Os dados registados encontram-se nas seguintes tabelas:

1ª aquisição de 20 segundos

Voltagens Aplicadas (V)	Contagens 1ª Aquisição	Contagens 2ª Aquisição
500V	0	0
525V	0	0
550V	0	0
575V	0	0
600V	0	0
625V	0	0
650V	0	0
675V	0	0
700V	0	0
725V	307	272
750V	360	378
775V	392	380
800V	445	430
825V	447	453
850V	457	444
875V	471	450
900V	457	485
925V	440	463
950V	446	455
975V	480	483
1000V	547	500
1025V	489	514
1050V	519	492
1075V	500	516
1100V	501	534
1125V	515	519
1150V	513	502

Voltagens Aplicadas (V)	Contagens 1ª Aquisição	Contagens 2ª Aquisição
1175V	518	522
1200V	539	537

- **7-** Após uma primeira análise destes dados no Excel, vimos que o plateau do detetor se situava desde os 800V, até sensivelmente ao máximo da aquisição, 1200V. Desta forma, decidimos usar para o resto do trabalho experimental 950V, um valor que se situa a 3/8 do patamar.
- **8-** Com a tensão de aquisição escolhida, fizémos 2 aquisições de 5 segundos com a fonte virada para cima, perfazendo um total de 10 segundos, seguidas de 2 aquisições de 5 segundos com a fonte virada para baixo. Nas aquisições com a fonte virada para cima resgistámos respetivamente, 138 e 155 contagens. Com a fonte virada para baixo, registámos 3 e 5 contagens.
- **9-** Com o recurso às fontes em meia-lua, medimos o tempo morto do detetor. As fontes em meia-lua são constituídas por 3 amostras, demarcadas com L13. As amostras 1 e 2 contém Tálio, Tl-204, e a amostra 0 não contém nenhum isótopo radioativo. Fizémos 2 aquisicões de 30 segundos seguidas, para cada uma das configurações das amostras.
- **10-** Primeiramente, pusémos a amostra 1 na região direita do detetor e a amostra 0 na parte esquerda do detetor e registámos 2356 e 2498 contagens em cada uma das aquisições, , respetivamente.
- **11-** Depois, colocámos a amostra 0 na região direita do detetor e a amostra 2 na região esquerda do detetor e registámos 2562 e 2579 contagens, respetivamente.
- **12-** Por fim, colocámos a amostra 1 na região direita e a amostra 2 na região esquerda do detetor e registámos 4911 e 5032 contagens, respetivamente.
- **13-** Para medir a radiação ambiente, fizémos duas aquisições de 30 segundos do detetor sem fonte nenhuma, e registámos 14 e 23 contagens, respetivamente.

Estudo da eficiência do detector

- **1-** Para estudar a eficiência do detetor na leitura de radiações γ , colocámos a fonte de Césio, Cs-137, demarcado com L04, na prateleira 3, virada para cima, e uma chapa metálica de espessura $\phi = (1,250\pm0,025)mm$ na prateleira 0, de forma a bloquear a radiação β , que tem dificuldade em penetrar metal, ao contrário da radiação γ . Fizémos 3 aquisições de 30 segundos, tendo registado 1316, 1085 e 1125 contagens, resptivamente.
- **2-** Reparámos que a placa devia ser usada para o Tálio, por isso repetimos o passo anterior, mas sem a placa metálica, tendo obtido nas aquisições 7238, 7436 e 7792 contagens, resptivamente. Depois,

pusémos uma placa metálica diretamente em cima da fonte, de forma a bloquear a radiação β , e fizémos também 3 aquisições tendo obtido 593, 548 e 554 contagens, respetivamente.

3- Para estudar a eficiência do detetor para a radiação β , pusémos a fonte de Tálio, Tl-204, com uma placa metálica imediatamente em cima da fonte, com o intuito de bloquear a radiação β na totalidade e fizémos 3 aquisições de 30 segundos tendo obtido 24, 25 e 24 contagens, respetivamente. Estes valores estão muito próximos da radiação ambiente,, o que significa que a radiação β foi bloqueada quase na totalidade. Depois, colocámos uma placa colimadora na prateleira 0 com $\phi=10,0mm$ de diâmetro tabelado e retirámos a placa que estava diretamente em cima da fonte de Tálio, de forma a controlar o ângulo sólido pela qual a radiação β consegue passar e fizémos mais 3 aquisições de 30 segundos, tendo obtido 179, 190 e 177 contagens, respetivamente.

Estudo da intensidade da radiação com a distância

1- Para estudar a variação da taxa de contagem da radiação com a distância da fonte ao detetor, medimos as partículas detetadas pela fonte de Césio, Cs-137 nas diferentes prateleiras, e com a placa colimadora usada no ponto acima para controlar o ângulo sólido da passagem da radiação β , fizémos 2 contagens de 30 segundos para cada prateleira, começando na 0 e indo até à 5. Os valores obtidos encontram-se na seguinte tabela:

Prateleira	Contagens 1ª Aquisição	Contagens 2ª Aquisição
0	21049	21231
1	13210	13345
2	5462	5540
3	2841	2809
4	1809	1716
5	1304	1233

2- Como a fonte de Césio tabém emite radiação γ e esta não é bloqueada pela placa metálica, repetimos o passo **1-** com a placa metálica diretamente em cima da fonte de Césio, de forma a que só passe a radiação γ . Assim, na análise subtrairemos um valor ao outro, filtrando o "ruído" (radiação γ), e ficando só com os valores da radiação β , com o ângulo sólido bem definido, em função da distância ao detetor.

Prateleira	Contagens 1ª Aquisição	Contagens 2ª Aquisição
0	2024	1980
1	1258	1224
2	691	648
3	435	396
4	325	343
5	239	248

3- Medimos a distância de cada prateleira ao detetor, tendo obtido os seguintes valores:

Distância ao detetor (m)
0,00635
0,0127
0,019
0,0254
0,0318
0,0381

Estudo da atenuação de partículas na matéria

1- Para estudar a atenuação na matéria da radiação detetada, colocámos a fonte de Césio na prateleira 3, com a placa colimadora usada nos passos anteriores na prateleira 0, colocámos chapas de diferentes materiais diretamente por cima da fonte, e fizémos 2 aquisições de 30 segundos para cada chapa. Os resultados obtidos encontram-se na seguinte tabela:

	Espessura $\pm 0,025$		
Material da Chapa	(mm)	Contagens 1ª Aquisição	Contagens 2ª Aquisição
Ar (sem chapa)	-	2462	2513
Cartão	1,000	811	787
Acrílico	1,750	453	454

	Espessura $\pm 0,025$		
Material da Chapa	(mm)	Contagens 1ª Aquisição	Contagens 2ª Aquisição
Tungsténio	5,000	258	235
Cobre	1,300	416	411
Aço	2,000	406	432
Vidro	1,750	491	439
Chumbo	1,800	434	433
Alumínio	1,650	411	455

2- Tal como no estudo da atenuação da taxa de contagens com a distância, repetimos o processo anterior, mas colocando a chapa de alumínio entre a fonte e a outra chapa que queríamos estudar, de forma a bloquear a radiação β , e ficarmos com a atenuação da radiação γ . Para estudar a atenuação da radiação β , poderemos subtrair o sinal dos γ ao total. Para o ar + alumínio, usámos os valores obtidos anteriormente para a chapa de alumínio e para o alumínio + alumínio usámos duas chapas de alumínio sendo a segunda da caixa das placas usadas na experiência radiação gama, demarcada com o número 7 e 81,2 (mg/cm^2) de espessura mássica, para podermos estudar a atenuação da radiação gama isoladamente no alumínio. Os valores obtidos encontram-se na seguinte tabela:

Material da Chapa +	Espessura $\pm 0,025$		
Chapa de Alumínio	(mm)	Contagens 1ª Aquisição	Contagens 2ª Aquisição
Ar (sem chapa)	-	411	455
Cartão	1,000	427	419
Acrílico	1,750	425	445
Tungsténio	5,000	219	222
Cobre	1,300	444	408
Aço	2,000	388	395
Vidro	1,750	410	394
Chumbo	1,800	387	415
Alumínio	1,650	436	459

³⁻ Por fim, medimos os diâmetros das fontes de Tálio e Césio. O dâmetro da fonte de Tálio é dtá $lio=(25,500\pm0,025)mm$ e dcé $sio=(25,000\pm0,025)mm$