HISTORICKÉ POČÁTKY TEORIE HER

VZNIK POČTU PRAVDĚPODOBNOSTI

Pierre de Fermat (1607-1665) a Blaise Pascal (1623-1662)

Korespondence z roku 1654

Pierre de Fermat (1607 – 1665)

Blaise Pascal (1623 – 1662)

LE HER - PRVNÍ VÝSKYT SMÍŠENÝCH STRATEGIÍ

Petr drží obvyklý balíček 52 karet s hodnotami A, 2, 3, ...,10, J, Q, K a náhodně rozdá jednu kartu Pavlovi a jednu sobě.

Cíl: mít vyšší kartu než protivník

Pravidla:

Pavel nespokojen ⇒ smí přimět Petra k výměně (nemá-li Petr krále)
Petr nespokojen ⇒ smí si vyměnit náhodně z balíčku (není-li nová karta král)
Karty stejné hodnoty ⇒ vyhrává Petr

Korespondence:

Nicholas Bernoulli (1687-1759) a Pierre Rémond de Montmort (1678-1719)

- Pavel má měnit každou kartu < 7, držet > 7
- Petr má měnit každou kartu < 8, držet > 8

Ve sporných případech:

N. Bernoulli: oba mají měnit

P. de Montmort: nemůže být určen žádný předpis

James Waldegrave (1684 – 1741)

1713 dopis de Montmortovi: hledá strategii, která maximalizuje pravděpodobnost hráčova vítězství bez ohledu na to, jakou strategii zvolí oponent.

- Petr má zvolit strategii
 drž 8 a vyšší s pravděpodobností 5/8
 měň 8 a nižší s pravděpodobností 3/8;
- Pavel má zvolit strategii
 drž 7 a vyšší s pravděpodobností 3/8
 měň 7 a nižší s pravděpodobností 5/8

de Montmort, 1713: Essai d'Analyse sur les Jeux d'Hasard

(appendix: korrespondence: de Montmort + Jean a Nicholas Bernoulli)

James Waldegrave (1684-1741)

POČÁTKY TEORIE UŽITKU

Daniel Bernoulli (1700 – 1782)

Výklad nové teorie ohodnocení risku (Petrohrad 1725 – 1733, publ. 1838)

Risk by neměl být hodnocen podle střední hodnoty finančního zisku, ale spíše podle **střední hodnoty užitku**, který tento zisk přinese.

Ilustrační příklad:

Velmi chudý člověk nějakým způsobem získá los, který se stejnou pravděpodobností přinese výhru dvaceti tisíc dukátů nebo nic. Ocení tento muž svou šanci na vítězství na deset tisíc dukátů? Neprodá neuváženě tento los za devět tisíc dukátů? Mně osobně se zdá, že odpověď je záporná. Na druhou stranu mám sklon věřit, že bohatý muž koupi tohoto losu za devět tisíc dukátů neuváženě odmítne. Pokud se nemýlým, pak je jasné, že při hodnocení hry nemohou všichni lidé používat stejné pravidlo. . . . Není pochyb, že zisk tisíce dukátů je mnohem významnější pro žebráka než pro bohatého člověka, i když oba získají stejnou částku.

Funkce užitku u(x) ... počet jednotek užitku z vlastnictví peněžní částky x

Předpoklad:

při zvětšení částky x na x+dx je přírůstek užitku du(x) přímo úměrný přírůstku dx a nepřímo úměrný částce x :

$$du(x)=rac{bdx}{x}$$
 $b>0$ (konstanta úměrnosti) $u(x)=b\ln x+c$ $c\in\mathbb{R}$ $=b\ln x-b\ln \alpha$ $\alpha\in(0,+\infty)$ $u(x)=b\lnrac{x}{\alpha}$ $\alpha-$ hodnota počátečního majetku

Využití: objasnění Petrohradského paradoxu

Petrohradský paradox

Petr hází mincí a pokračuje v tom tak dlouho, dokud nepadne "hlava". Souhlasí s tím, že dá Pavlovi jeden dukát, padne-li hlava v prvním hodu, dva dukáty, padne-li v druhém, čtyři, padne-li ve třetím, osm, padne-li ve čtvrtém, a tak dále, takže s každým dalším hodem se počet dukátů, které musí zaplatit, zdvojnásobí. Předpokládejme, že se snažíme určit hodnotu Pavlova očekávání . . . Rozumný člověk by s velkým potěšením prodal svou účast ve hře za dvacet dukátů.

Střední hodnota výhry:

$$\frac{1}{2} + 2 \cdot \left(\frac{1}{2}\right)^2 + \dots + 2^{n-1} \cdot \left(\frac{1}{2}\right)^n + \dots = \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} + \dots = \infty$$

Paradox:

očekávaná hodnota výhry je nekonečná, člověk dá přednost poměrně skromné částce

Bernoulli: střední hodnota užitku, který výhra přinese:

$$\sum_{n=1}^{\infty} \frac{1}{2^n} b \ln \frac{\alpha + 2^{n-1}}{\alpha} = b \ln[(\alpha + 1)^{\frac{1}{2}} (\alpha + 2)^{\frac{1}{4}} \cdots (\alpha + 2^{n-1})^{\frac{1}{2^n}} \cdots] - b \ln \alpha$$

Částka D, jejíž přidání k počátečnímu majetku přinese stejný užitek:

$$b \ln \frac{\alpha + D}{\alpha} = b \ln[(\alpha + 1)^{\frac{1}{2}}(\alpha + 2)^{\frac{1}{4}} \cdots (\alpha + 2^{n-1})^{\frac{1}{2^n}} \cdots] - b \ln \alpha$$
$$D = [(\alpha + 1)^{\frac{1}{2}}(\alpha + 2)^{\frac{1}{4}} \cdots (\alpha + 2^{n-1})^{\frac{1}{2^n}} \cdots] - \alpha$$

Pro nulové počáteční jmění:

$$D = \sqrt[2]{1} \cdot \sqrt[4]{2} \cdot \sqrt[8]{4} \cdot \sqrt[16]{8} \cdots = 2$$

Nedostatky Bernoulliho funkce užitku:

- ullet Je definována jen pro kladné hodnoty částky x, zatímco ve skutečnosti se často jedná i o ztráty
- U různých lidí je funkce užitku z peněžních částech různá a neodvíjí se jen z majetkových poměrů

Důležitý podnět, od něhož se mohl odrazit další vývoj

Podobné – avšak nezávislé – úvahy (Bernoulli cituje v závěru svého pojednání):

Gabriel Cramer (1704 – 1752)

Dopis Mikuláši Bernoullimu z roku 1728

Myšlenka: lidé hodnotí finanční částky podle užitku, který jim přinesou

Předpoklad: jakákoli částka převyšující 2^{24} dukátů člověku připadá stejná jako 2^{24} .

Očekávaná hodnota zisku:

$$\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 4 + \dots + \frac{1}{2^{24}} \cdot 2^{24} + \frac{1}{2^{25}} \cdot 2^{24} + \frac{1}{2^{26}} \cdot 2^{24} + \dots =
= \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 12 + 1 = 13.$$
(1.1)

Mé morální očekávání je proto redukováno na hodnotu 13 dukátů a ekvivalentní částka, která mi má být vyplacena, je redukována podobně – to je výsledek, který se zdá být mnohem rozumnější než uvažování této částky rovné nekonečnu.

Daniel Bernoulli (1700 – 1782)

HLEDÁNÍ ROVNOVÁHY – COURNOTŮV DUOPOL

Antoine Augustin Cournot (1801 – 1877)

1838 Recherches sur les principes mathématiques de la théorie des richesses

- S matematickou přesností zde Cournot popsal většinu dnešní teorie ekonomické soutěže, monopolu a oligopolu
- Podrobná analýza monopolu pojem nákladová funkce, aj.
- Množství produkce, jaké má výrobce zvolit, aby maximalizoval svůj zisk (matematické odvození)
- Vliv různých forem daní a dalších poplatků, jejich vliv na příjem výrobce a zákazníků
- Model duopolu řešení odpovídající Nashovu rovnovážnému bodu zavedenému o více 7než sto let později
- Model oligopolu

Cournotův model monopolu

Daný produkt vyrábí jediný výrobce - monopolista

Celková produkce: q výrobků

Nejvyšší cena, za kterou může prodávat jeden kus, aby celou produkci prodal:

$$p = M - q$$
.

Protože nikdo jiný celkové vyrobené množství neovlivní, stojí monopolista před úlohou pouhé maximalizace zisku, tj. nalezení maxima funkce

$$u(q) = p \cdot q - c \cdot q = Mq - q^2 - cq = (M - q - c)q.$$

Pomocí první derivace:

$$u'(q) = M - c - 2q = 0$$

$$q_{mon}^* = \frac{1}{2}(M - c)$$

Maximální zisk při výrobě $q^*_{mon} = \frac{1}{2}(M-c)$ kusů:

$$u_{mon}^* = u(q_{mon}^*) = \left(M - \frac{1}{2}(M - c) - c\right) \frac{1}{2}(M - c) = \frac{\left[\frac{1}{2}(M - c)\right]^2}{2}$$

Odpovídající cena:

$$p_{mon}^* = \underline{\frac{1}{2}(M+c)}$$

Cournotův model duopolu

Daný produkt vyrábějí dva výrobci, z nichž každý přispívá nezanedbatelnou částí k celkovému množství výrobků na trhu.

Problém: každý z duopolistů ovlivňuje jen část celkového množství; cena, kterou za své výrobky utrží, závisí nejen na jeho vlastním rozhodnutí, ale také na rozhodnutí soupeře. Duopolisté se rozhodují současně a nezávisle jeden na druhém.

 q_1, q_2 ... množství vyráběná prvním a druhým duopolistou

Maximální cena, za kterou se výrobky prodají:

$$p = M - q_1 - q_2$$

Model pomocí hry v normálním tvaru:

hráči . . . duopolisté, z nichž každý volí číslo z intervalu $\langle 0, M \rangle$;

prostory strategií ...
$$S_1 = S_2 = \langle 0, M \rangle$$
;

výplatní funkce . . . zisky duopolistů:

$$u_1(q_1, q_2) = (p - c)q_1 = (M - c - q_1 - q_2)q_1$$

$$u_2(q_1, q_2) = (p - c)q_2 = (M - c - q_1 - q_2)q_2$$

První duopolista:

Pro každou strategii soupeře q_2 hledá takové množství $q_1=R_1(q_2),$ aby hodnota

$$u_1(q_1, q_2) = (M - c - q_1 - q_2)q_1$$

byla maximální (nejlepší odpověď na q_2).

Jinými slovy: pro každé pevné $q_2\in S_2$ hledá první duopolista maximum funkce $u_1(q_1,q_2),$ která je funkcí jediné proměnné q_1 :

$$\frac{\partial u_1}{\partial q_1} = M - c - q_2 - 2q_1 = 0$$

$$R_1(q_2) = q_1 = \frac{1}{2}(M - c - q_2)$$

Druhý duopolista:

Pro každou strategii q_1 hledá *nejlepší odpověď* $q_2=R_2(q_1),$ tj. takové množství, které pro dané q_1 maximalizuje zisk $u_2(q_1,q_2)=(M-c-q_1-q_2)q_2$:

$$\frac{\partial u_2}{\partial q_2} = M - c - q_1 - 2q_2 = 0$$

$$R_2(q_1) = q_2 = \frac{1}{2}(M - c - q_1)$$

Funkce $R_1(q_2)$ a $R_2(q_1)$ se nazývají **reakční křivky**

Reakční křivky pro Cournotův duopol

Z definice: (q_1^*,q_2^*) je rovnovážný bod, právě když $R_1(q_2^*)=R_2(q_1^*)$.

Rovnovážný bod je tedy průsečíkem reakčních křivek:

$$(q_1^*, q_2^*) = (\frac{1}{3}(M-c), \frac{1}{3}(M-c))$$

Cena, za kterou budou duopolisté prodávat:

$$p_D^* = M - \frac{2}{3}(M - c) = \frac{1}{3}M + \frac{2}{3}c$$

Příslušný zisk pro každého z duopolistů:

$$u_1(q_1^*, q_2^*) = u_2(q_1^*, q_2^*) = \left[\frac{1}{3}(M-c)\right]^2$$

Celkový zisk:

$$u_1(q_1^*, q_2^*) + u_2(q_1^*, q_2^*) = \frac{2}{9}[(M - c)]^2 < \frac{1}{4}[(M - c)]^2 = u_{mon}^*$$

Celkové vyrobené množství:

$$q_1^* + q_2^* = \frac{2}{3}(M - c) > \frac{1}{2}(M - c) = q_{mon}^*$$

Duopolisté prodávají větší množství výrobků za nižší cenu než monopolista

Srovnání výsledků pro monopol a duopol \implies pro duopolisty by bylo nejlepší uzavřít tajnou dohodu o tom, že budou vyrábět dohromady pouze

$$q_1 + q_2 = q_{mon}^* = \frac{1}{2}(M - c)$$

a vzniklý zisk si rozdělí – v symetrických situacích rovným dílem:

$$\left(\frac{1}{2}q_{mon}^*, \frac{1}{2}q_{mon}^*\right) = \left(\frac{1}{4}(M-c), \frac{1}{4}(M-c)\right).$$

Tento výstup je **nestabilní**: pro každého je výhodné se jednostranně odchýlit ke své nejlepší odpovědi na soupeřovu volbu a získat pro sebe více.

Problém: podobné dohody jsou tajné, vzhledem k antimonopolním opatřením zpravidla protizákonné – tajná dohoda uzavřená v "zakouřené místnosti" je laciná a legálními prostředky nevymahatelná.

Jediná dohoda, při níž ani jeden z duopolistů nemá nutkání se jednostranně odchýlit: rovnovážný bod

$$(q_1^*, q_2^*) = (\frac{2}{3}q_{mon}^*, \frac{2}{3}q_{mon}^*) = (\frac{1}{3}(M-c), \frac{1}{3}(M-c)).$$

Situace se radikálně změní při **opakování**, kdy se titíž dva duopolisté budou ve stejné situaci ocitat opakovaně: je-li v každém "kole" velká pravděpodobnost, že nastane ještě kolo následující, může být pro každého ze zúčastněných výhodnější tajnou dohodu dodržet.

Zisky v Cournotově duopolu

Cournotův model oligopolu

Uvažujme n výrobců téhož produktu, z nichž každý přispívá nezanedbatelnou částí k celkovému množství výrobků na trhu. Nyní se jedná o hru n hráčů, z nichž každý hledá optimální množství q_i , které má vyrábět.

Zisky jednotlivých oligopolistů:

$$u_1(q_1, \dots, q_2) = (p - c)q_1 = (M - c - q_1 - q_2)q_1$$

$$u_2(q_1, \dots, q_2) = (p - c)q_2 = (M - c - q_1 - q_2)q_2$$

$$\dots$$

$$u_n(q_1, \dots, q_2) = (p - c)q_n = (M - c - q_1 - q_2)q_n$$

Podmínky pro rovnovážný bod

$$\frac{\partial u_1}{\partial q_1} = M - c - 2q_1 - q_2 - \dots - q_n = 0$$

$$\frac{\partial u_2}{\partial q_2} = M - c - q_1 - 2q_2 - \dots - q_n = 0$$

$$\frac{\partial u_n}{\partial q_n} = M - c - q_1 - q_2 - \dots - nq_n = 0$$

Soustava rovnic:

$$2q_1 + q_2 + \cdots + q_n = M - c$$
 $q_1 + 2q_2 + \cdots + q_n = M - c$
.....

$$q_1 + q_2 + \cdots + nq_n = M - c$$

Řešení:

$$q_1^* = q_2^* = \dots = q_n^* = \frac{M - c}{n + 1}$$

Celkové vyrobené množství:

$$q^* = q_1^* + q_2^* + \dots + q_n^* = n \frac{M - c}{n+1} = \frac{n}{n+1} (M - c)$$

S rostoucím počet výrobců roste množství výrobků a klesá cena i celkový zisk firem:

$$p^* = \frac{1}{n+1}M + \frac{n}{n+1}c$$

$$u^* = \frac{n}{(n+1)^2}(M-c)^2$$

Dokonalá soutěž: limitní případ oligopolu, kde $n \to \infty$

Na celkové produkci se podílí velké množství malých firem, které samy o sobě neovlivní celkové množství výrobků na trhu

Celkové vyrobené množství:

$$q^* = \lim_{n \to \infty} \frac{n}{n+1}(M-c) = M-c$$

Cena:

$$p^* = M - (M - c) = c$$

Zisk jednotlivých firem:

$$u^* = 0$$

	Celkové množství q^*	Cena za kus p^st	Celkový zisk $oldsymbol{u}^*$
Monopol	$\frac{1}{2}(M-c)$	$\frac{1}{2}M + \frac{1}{2}c$	$\frac{1}{4}(M-c)^2$
Duopol	$\frac{2}{3}(M-c)$	$\frac{1}{3}M + \frac{2}{3}c$	$\frac{2}{9}(M-c)^2$
Oligopol	$\frac{n}{n+1}(M-c)$	$\frac{1}{n+1}M + \frac{n}{n+1}c$	$\frac{\frac{n}{(n+1)^2}(M-c)^2}{}$
Dokonalá soutěž	(M-c)	c	0

Tajná dohoda v opakovaném Cournotově duopolu

Monopol:
$$q^*_{mon}=\frac{1}{2}(M-c)$$
 Duopol: $q^*_1=q^*_2=\frac{1}{3}(M-c)$ $p^*_{mon}=\frac{1}{2}(M+c)$ $p^*_D=\frac{1}{3}M+\frac{2}{3}c$ $u^*_{mon}=\frac{1}{4}(M-c)^2$ $u^*_1=u^*_2=\frac{1}{9}(M-c)^2$

Tajná dohoda:
$$\widetilde{q_1}=\widetilde{q_2}=\frac{1}{4}(M-c)=\frac{1}{2}q_{mon}^*$$
 $\widetilde{p}=\frac{1}{2}(M+c)=p_{mon}^*$ $\widetilde{u_1}=\widetilde{u_2}=\frac{1}{8}(M-c)^2=\frac{1}{2}u_{mon}^*$

Profit:

$$\widetilde{u}_1 - u_1^* = \widetilde{u}_2 - u_2^* = (\frac{1}{8} - \frac{1}{9})(M - c)^2 = \frac{1}{72}(M - c)^2$$

Jednostranné porušení dohody: první duopolista vyrobí $q_1^*,$ druhý dodrží \widetilde{q}_2 :

$$\begin{array}{lll} q & = & q_1^* + \widetilde{q}_2 = \frac{1}{3}(M-c) + \frac{1}{4}(M-c) = \frac{7}{12}(M-c) & q_{mon}^* < q \\ \\ p & = & M - q_1^* - \widetilde{q}_2 = M - \frac{7}{12}(M-c) = \frac{5}{12}M + \frac{7}{12}c & p_D^* < p < p_{mon}^* \\ \\ u_1 & = & u_Z = (p-c)q_1^* = (\frac{5}{12}M - \frac{5}{12}c)\frac{1}{3}(M-c) = \frac{5}{36}(M-c)^2 & u_1^* < \widetilde{u}_1 < u_2 \\ \\ u_2 & = & u_O = (p-c)\widetilde{q}_2 = (\frac{5}{12}M - \frac{5}{12}c)\frac{1}{4}(M-c) = \frac{5}{48}(M-c)^2 = u_O & u_O < u_2^* < \widetilde{u}_2 \end{array}$$

Přehled zisků duopolisty $\qquad \dots \qquad u_O < u_1^* < \widetilde{u}_1 < u_Z$

V rovnovážném bodě:
$$u_1^* = \frac{1}{9}(M-c)^2$$

Při oboustranném dodržení dohody:
$$\widetilde{u}_1 \ = \ \tfrac{1}{8} (M-c)^2$$

Při jednostranném porušení dohody:
$$u_Z = \frac{5}{36}(M-c)^2$$

Při dodržení dohody, kterou konkurent poruší:
$$u_O = \frac{5}{48}(M-c)^2$$

Duopolista 2

		Dodržet	Zradit
olista 1	Dodržet	$\left(\frac{1}{8}(M-c)^2, \frac{1}{8}(M-c)^2\right)$	$\left(\frac{5}{48}(M-c)^2, \frac{5}{36}(M-c)^2\right)$
Duopol	Zradit	$\left(\frac{5}{36}(M-c)^2, \frac{4}{48}(M-c)^2\right)$	$\left[\left(\frac{1}{9}(M-c)^2, \frac{1}{9}(M-c)^2\right)\right]$

Složené úročení

Hodnota kapitálu K_0 uloženého na n let při roční úrokové míře i:

$$K_n = K_0(1+i)^n$$

Počet let	Hodnota kapitálu
0	K_0
1	$K_1 = K_0 + iK_0 = K_0(1+i)$
2	$K_2 = K_1 + iK_1 = K_1(1+i) = K_0(1+i)^2$
3	$K_3 = K_2 + iK_2 = K_2(1+i) = K_0(1+i)^3$
:	
n	$K_n = K_{n-1} + iK_{n-1} = K_{n-1}(1+i) = K_0(1+i)^n$

Současná hodnota kapitálu K_n , který máme získat za n let:

$$K_0 = \frac{K_n}{(1+i)^n} = K_n \, \delta \,, \qquad 0 < \delta < 1$$

 δ se nazývá **diskontní faktor**

Opakování Cournotova duopolu

Diskontní faktor: $0 < \delta < 1$

Dohoda: pokud jeden z duopolistů zradí, druhý navždy zůstane u rovnovážné strategie

Současná hodnota zisku při oboustranném dodržení tajné dohody:

$$u_D = \widetilde{u}_1 + \delta \widetilde{u}_1 + \delta^2 \widetilde{u}_1 + \dots + \delta^{N-2} \widetilde{u}_1 + \delta^{N-1} \widetilde{u}_1 + \delta^N \widetilde{u}_1 + \delta^{N+1} \widetilde{u}_1 + \delta^{N+2} \widetilde{u}_1 + \dots$$

Ten, kdo by se poprvé v N-tém kole odchýlil, by získal

$$u_{P} = \widetilde{u}_{1} + \delta \widetilde{u}_{1} + \delta^{2} \widetilde{u}_{1} + \dots + \delta^{N-2} \widetilde{u}_{1} + \delta^{N-1} u_{Z} + \delta^{N} u_{1}^{*} + \delta^{N+1} u_{1}^{*} + \delta^{N+2} u_{1}^{*} + \dots$$

$$u_D - u_P = \delta^{N-1}(\widetilde{u}_1 - u_Z) + \delta^N(\widetilde{u}_1 - u_1^*) + \delta^{N+1}(\widetilde{u}_1 - u_1^*) + \delta^{N+2}(\widetilde{u}_1 - u_1^*) + \cdots =$$

$$= \delta^{N-1} \left((\widetilde{u}_1 - u_Z) + (\widetilde{u}_1 - u_1^*) \frac{\delta}{1 - \delta} \right) ; \qquad u_1^* < \widetilde{u}_1 < u_Z$$

$$\frac{(\widetilde{u_1}-u_Z)(1-\delta)+(\widetilde{u_1}-u_1^*)\delta}{1-\delta} > 0 \qquad \text{pro} \qquad (\widetilde{u_1}-u_Z)(1-\delta) > -(\widetilde{u_1}-u_1^*)\delta$$

$$\widetilde{u_1}-u_Z-\widetilde{u_1}\delta+u_Z\delta > -\widetilde{u_1}\delta+u_1^*\delta$$

$$(u_Z-u_1^*)\delta > u_Z-\widetilde{u_1}$$

$$\delta > \frac{u_Z-\widetilde{u_1}}{u_Z-u_1^*}$$

Je-li diskontní faktor dostatečně vysoký, je výhodnější dohodu dodržet:

$$\delta > \frac{u_Z - \widetilde{u_1}}{u_Z - u_1^*} \qquad \Longrightarrow \qquad u_D > u_P$$

→ tajné dohody mohou být dosažitelné a udržitelné

Joseph Louis Francois Bertrand (1822 – 1900)

1883 Theorie Mathematique de la Richesse Sociale

Odmítavá recenze Cournotovy práce

Bertrandův model duopolu

Duopolisté si současně určují **ceny**, za které budou své výrobky prodávat.

Výrobky jsou nerozlišitelné, o prodeji rozhoduje pouze cena: pokud jeden výrobce prodává za nižší cenu, získá všechny zákazníky.

Problém: v případě Cournotova rovnovážného bodu, kde $p^* = \frac{1}{3}M + \frac{2}{3}c$, by mohl jeden duopolista nepatrně snížit cenu, získat všechny zákazníky a zdvojnásobit zisk

Rovnovážný bod v Bertrandově modelu duopolu:

```
p_1>p_2>c pro prvního duopolistu by bylo výhodnější zvolit p_1'< p_2 p_2>p_1>c podobně pro druhého duopolistu p_1=p_2>c pro libovolného duopolistu by bylo výhodnější zvolit nepatrně nižší hodnotu p_1>p_2=c pro druhého duopolistu by bylo výhodnější zvolit c< p_2< p_1 p_2>p_1=c podobně pro prvního p_2=p_1=c oba duopolisté mají nulový zisk, žádný si jednostranným odchýlením nepolepší \Longrightarrow rovnovážný bod
```

Heinrich von Stackelberg (1905 – 1946)

1934 Marktform und Gleichgewicht

Stackelbergův model duopolu: vůdce – následovník

Jeden duopolista, se rozhoduje jako první o množství výrobků, druhý, pozoruje rozhodnutí prvního a teprve pak se sám rozhodne.

Strategie vůdce hodnota $q_1 \in \langle 0, M \rangle$

Strategie následovníka funkce $f:\langle 0,M\rangle \to \langle 0,M\rangle$

Optimální strategie následovníka – nejlepší odpověď $R_2(q_1)=\frac{1}{2}(M-c-q_1)$

Optimální strategie vůdce hodnota q_1^{\heartsuit} maximalizující zisk $u_1(q_1, R_2(q_1))$

$$u_1(q_1, R_2(q_1)) = (M - c - q_1 - R_2(q_1))q_1 = \frac{1}{2}(M - c - q_1)q_1 = \frac{1}{2}u_{mon}(q_1)$$

$$ightarrow$$
 jako monopolista: $q_1^{\heartsuit}=q_{mon}^*=\frac{1}{2}(M-c)$

Nejlepší odpověď následovníka \dots $q_2^{\heartsuit}=R_2(q_1^{\heartsuit})=\frac{1}{4}(M-c)$

Celková produkce $q_1^{\heartsuit} + q_2^{\heartsuit} = \frac{3}{4}(M-c)$

Cena $p^{\heartsuit} = M - \frac{3}{4}(M-c) = \frac{1}{4}M + \frac{3}{4}c$

Pro zákazníka výhodnější než Cournotův duopol

ÉMILE BOREL (1871 – 1956)

1921 La théorie du jeu et les équations, intégrales à novau symétrique gauche Comptes Rendus 173, 1304–1308

- První pokus o matematizaci pojmu strategická hra
- Metoda hry . . . ryzí strategie
- Symetrické konečné hry dvou hráčů s nulovým součtem

$$(\{1,2\}; S_1 = S = \{s_1, \dots, s_n\}, S_2 = S; u_1, u_2)$$

$$u_1(s_i, s_i) = -u_2(s_i, s_i) = u_2(s_i, s_i)$$

• Pravděpodobnost výhry:

$$\pi_1(s_i, s_j) = \frac{1}{2} + \alpha_{ij}; \quad \pi_2(s_i, s_j) = \frac{1}{2} + \alpha_{ji}$$

$$\alpha_{ij} + \alpha_{ji} = 0; \quad \alpha_{ii} = 0; \quad \alpha_{ij}, \alpha_{ji} \in \left[-\frac{1}{2}, \frac{1}{2} \right]$$

každý hráč se snaží maximalizovat π_i

špatná strategie
$$s_i \dots \exists s_k : \forall s_j : \alpha_{ij} \leq \alpha_{kj}$$

nejlepší strategie $s_i \dots \forall s_k : \forall s_j : \alpha_{ij} \leq 0$

Smíšené strategie:
$$\boldsymbol{p}=(p_1,\ldots,p_n),\; \boldsymbol{q}=(q_1,\ldots,q_n)$$

$$\pi_1(\boldsymbol{p}, \boldsymbol{q}) = \frac{1}{2} + \alpha; \quad \alpha = \sum_{i=1}^n \sum_{j=1}^n \alpha_{ji} p_i q_j$$

Řešení $p \dots \forall q : \alpha = 0$ (minimaxní řešení)

Existence: $n=3, \ n=5$ (později) ... důkaz n=7 ... hypotéza: ano n>7 ... hypotéza: obecně ne

1924 Théorie of Probabilités (204–224)

 $\alpha_{ik} =$ finanční částka, kterou musí hráč II zaplatit hráči I

Je možné, aby hráč I zvolil takovou smíšenou strategii, že jeho výplata bude rovna 0 pro jakoukoli strategii hráče II? Tj. existuje smíšená strategie hráče I, která jej ochrání od záporné výplaty?

Stále věří: pro n>7 to NENÍ možné hledá protipříklad

1927 Sur les systèmes de formes linéaires à déterminant symétrique gauche et la théorie générale du jeu Comptes Rendus 184, 52–53

Pozitivní forumulace problému: *Určete smíšené strategie, . . .* ale žádný obecný důkaz

1938 Traité du calcul des probabilités et ses applications

spojité hry (množiny strategií: kružnice, apod.)

Jean Ville: první elementární důkaz von Neumannovy věty o minimaxu (9 stran)

MATEMATIZACE TEORIE HER

JOHN VON NEUMANN (1903 – 1957)

- 1926 důkaz věty o minimaxu (Göttingenská matematická společnost)
- 1928 Sur la théorie des jeux (Comptes Rendus)

Zur Theorie der Gesellschaftsspiele, (Mathematische Annalen)

- Matematizace pojmu strategická hra
- Důkaz "věty o minimaxu"

Formulace: konečná hra n hráčů s nulovým součtem

Více výsledků:
$$n=2$$

$$(\{1,2\};\{s_1,\ldots,s_k\},\{t_1,\ldots,t_l\};u_1,u_2)$$

$$u_1(s_i, t_i) + u_2(s_i, t_i) = 0$$

Hráč 2

$$\begin{array}{c} s_1 \\ s_1 \\ \\ \text{Hráč 1} \\ s_2 \\ \vdots \\ s_k \end{array} \left(\begin{array}{ccccc} u_1(s_1,t_1) & u_1(s_1,t_2) & \dots & u_1(s_1,t_l) \\ u_1(s_2,t_1) & u_1(s_2,t_2) & \dots & u_1(s_2,t_l) \\ \dots & \dots & \dots & \dots \\ u_1(s_k,t_1) & u_1(s_k,t_2) & \dots & u_1(s_k,t_l) \end{array} \right)$$

Hráč 1: $\min_{t_j} u_1(s_i, t_j) \rightsquigarrow \mathbf{MAX}$

Hráč 2: $\max_{s_i} u_1(s_i, t_j) \rightsquigarrow MIN$

$$\max_{s_i} \min_{t_i} u_1(s_i, t_j) \le \min_{t_i} \max_{s_i} u_1(s_i, t_j)$$

→ Smíšené strategie – očekávaná výplata pro hráče 1:

$$\pi_1(oldsymbol{p},oldsymbol{q}) = \sum_{i=1}^k \sum_{j=1}^l u_1(s_i,t_j) p_i q_j$$

Věta. Vždy existují smíšené strategie (p^*, q^*) , pro které

$$\pi_1(\boldsymbol{p}^*, \boldsymbol{q}^*) = \max_{\boldsymbol{p}} \min_{\boldsymbol{q}} \pi_1(s_i, t_j) = \min_{\boldsymbol{q}} \max_{\boldsymbol{p}} \pi_1(s_i, t_j)$$

Hráč 2

Hráč 1
$$\begin{pmatrix} t_1 & t_2 & t_3 & t_4 \\ s_1 & 5 & 4 & 4 & 5 \\ s_2 & -4 & 5 & 3 & 9 \\ s_k & 7 & 8 & -1 & 8 \end{pmatrix} \begin{bmatrix} 4 \\ -4 \\ -1 \end{bmatrix}$$
 min

max: 7 8 **4** 9

 $\max_{s} \min_{t} u_1(s_i, t_j) = 4 = \min_{t} \max_{s} u_1(s_i, t_j)$

Hráč 2

Hráč 1
$$s_1 \begin{pmatrix} s_1 & t_2 & t_3 \\ 0 & 1 & -1 \\ s_2 & -1 & 0 & 1 \\ s_k & 1 & -1 & 0 \end{pmatrix} -1$$
 min s_k

max: 1 1 1

 $\max_{s} \min_{t} u_1(s_i, t_j) = -1 < \min_{t} \max_{s} u_1(s_i, t_j) = 1$

TEORIE HER = MATEMATICKÁ DISCIPLÍNA

John von Neumann (1903 – 1957) a Oskar Morgenstern (1902 – 1976)

1944 Theory of Games and Economic Behavior

- Detailní formulace ekonomického problému:
 - Aplikační možnosti teorie her
- Axiomatická teorie užitku
- Obený popis strategické hry
- Konečné antagonistické hry dvou hráčů
- Kooperativní hry n hráčů (přenosná výhra)
 - → von Neumann-Morgensternovo řešení

(není jednoznačné, nemusí existovat)

. . .

→ Masivní rozvoj teorie her a jejích aplikací

Další krok: Hry s nekonstantním součtem

Nekooperativní hry více hráčů, kooperativní hry s nepřenostnou výhrou

$$\begin{pmatrix}
(3,-3) & \mathbf{(2,-2)} \\
(0,0) & (1,-1)
\end{pmatrix}$$

$$\begin{pmatrix}
(3,3) & \rightarrow \mathbf{(2,4)} \\
\uparrow & \downarrow \\
(0,6) & (1,5)
\end{pmatrix}$$

$$\overset{\leftarrow}{}$$

$$\begin{pmatrix}
(3,3) & \rightarrow \mathbf{(2,4)} \\
\uparrow & \downarrow \\
(0,2) & \rightarrow \mathbf{(4,5)}
\end{pmatrix}$$

(4,5) ... vzájemně nejlepší odpovědi – rovnovážný bod