Вложения линейными системами

26 февраля 2024 года

Трудность с прошлого занятия

Последним утверждением на прошлом занятии был такой

ПРИМЕР: Пусть $X \subset \mathsf{P}^n$ — кривая, и $L = \mathfrak{O}_{\mathsf{P}^n}(1)|_X$. Тогда всякий эффективный дивизор из класса (L) высекается на X гиперплоскостью.

Это утверждение неверно (в неочевидную сторону).

Трудность с прошлого занятия

Последним утверждением на прошлом занятии был такой

ПРИМЕР: Пусть $X \subset P^n$ — кривая, и $L = \mathfrak{O}_{P^n}(1)|_X$. Тогда всякий эффективный дивизор из класса (L) высекается на X гиперплоскостью.

Это утверждение неверно (в неочевидную сторону).

ПРИМЕР: Рассмотрим **неплоскую** кривую в P^3 . Ее центральная проекция — кривая C той же степени. Рассмотрим расслоение $L = \mathfrak{O}_{\mathsf{P}^2}(1)|_C$, пересечения C с прямыми являются дивизорами в классе L. На кривой в P^3 они высекаются плоскостями, **проходящими через центр** проекции, а другие плоскости высекают другие дивизоры, также лежащие в классе (L), но не получаемые как пересечения C с прямыми в P^2 .

Трудность с прошлого занятия

Последним утверждением на прошлом занятии был такой

ПРИМЕР: Пусть $X \subset P^n$ — кривая, и $L = \mathfrak{O}_{P^n}(1)|_X$. Тогда всякий эффективный дивизор из класса (L) высекается на X гиперплоскостью.

Это утверждение неверно (в неочевидную сторону).

ПРИМЕР: Рассмотрим **неплоскую** кривую в P^3 . Ее центральная проекция — кривая C той же степени. Рассмотрим расслоение $L = \mathfrak{O}_{\mathsf{P}^2}(1)|_C$, пересечения C с прямыми являются дивизорами в классе L. На кривой в P^3 они высекаются плоскостями, **проходящими через центр** проекции, а другие плоскости высекают другие дивизоры, также лежащие в классе (L), но не получаемые как пересечения C с прямыми в P^2 .

ОПРЕДЕЛЕНИЕ: Линейной системой на X называется линейное расслоение $L \to X$ и подпространство $V \subset \Gamma(L,X)$. Вложением линейной системой называется такое отображение $X \to \mathsf{P}^n$, что $L = \mathfrak{O}_{\mathsf{P}^n}(1)|_X$, а $V = \Gamma(\mathfrak{O}_{\mathsf{P}^n}(1),\mathsf{P}^n)|_X$. Линейная система называется полной, если $V = \Gamma(L,X)$.

ЗАМЕЧАНИЕ: Пусть $L \to X$ — линейное расслоение, и $V_x = \{s \in \Gamma(L,X) : s(x) = 0\}$. $V_x \subset \Gamma(L,X)$ имеет коразмерность 0 или 1. Там, где она равна 1, она определяет отображение $X \to P(\Gamma(L,X)^*)$. Это **и есть** вложение полной линейной системой.

ЗАМЕЧАНИЕ: Пусть $L \to X$ — линейное расслоение, и $V_x = \{s \in \Gamma(L,X) : s(x) = 0\}$. $V_x \subset \Gamma(L,X)$ имеет коразмерность 0 или 1. Там, где она равна 1, она определяет отображение $X \to P(\Gamma(L,X)^*)$. Это **и есть** вложение полной линейной системой.

ПРИМЕР: Образ вложения P^1 при помощи O(2) есть гладкая коника.

ЗАМЕЧАНИЕ: Пусть $L \to X$ — линейное расслоение, и $V_x = \{s \in \Gamma(L,X) : s(x) = 0\}$. $V_x \subset \Gamma(L,X)$ имеет коразмерность 0 или 1. Там, где она равна 1, она определяет отображение $X \to P(\Gamma(L,X)^*)$. Это **и есть** вложение полной линейной системой.

ПРИМЕР: Образ вложения P^1 при помощи O(2) есть гладкая коника.

ЛЕММА: Ядро отображения $Sym^k \Gamma(L,X) \to \Gamma(L^{\otimes k},X)$ есть пространство функций степени k на P^n , тождественно обнуляющихся на образе вложения при помощи L.

ЗАМЕЧАНИЕ: Пусть $L \to X$ — линейное расслоение, и $V_x = \{s \in \Gamma(L,X) : s(x) = 0\}$. $V_x \subset \Gamma(L,X)$ имеет коразмерность 0 или 1. Там, где она равна 1, она определяет отображение $X \to P(\Gamma(L,X)^*)$. Это **и есть** вложение полной линейной системой.

ПРИМЕР: Образ вложения P^1 при помощи O(2) есть гладкая коника.

ЛЕММА: Ядро отображения $\operatorname{Sym}^k\Gamma(L,X)\to\Gamma(L^{\otimes k},X)$ есть пространство функций степени k на P^n , тождественно обнуляющихся на образе вложения при помощи L.

ПРИМЕР: $\Gamma(\mathfrak{O}_{P^1}(4))$ имеет размерность пять, $\Gamma(\mathfrak{O}_{P^1}(2))$ — три, а потому dim Sym 2 $\Gamma(\mathfrak{O}_{P^1}(2))=6$. Ядро отображения Sym^2 $\Gamma(\mathfrak{O}_{P^1}(2))\to\Gamma(\mathfrak{O}_{P^1}(4))$ одномерно, и порождающая его функция и дает уравнение коники.

ЗАМЕЧАНИЕ: Пусть $L \to X$ — линейное расслоение, и $V_x = \{s \in \Gamma(L,X) : s(x) = 0\}$. $V_x \subset \Gamma(L,X)$ имеет коразмерность 0 или 1. Там, где она равна 1, она определяет отображение $X \to P(\Gamma(L,X)^*)$. Это **и есть** вложение полной линейной системой.

ПРИМЕР: Образ вложения P^1 при помощи O(2) есть гладкая коника.

ЛЕММА: Ядро отображения $\operatorname{Sym}^k\Gamma(L,X)\to\Gamma(L^{\otimes k},X)$ есть пространство функций степени k на P^n , тождественно обнуляющихся на образе вложения при помощи L.

ПРИМЕР: $\Gamma(\mathfrak{O}_{P^1}(4))$ имеет размерность пять, $\Gamma(\mathfrak{O}_{P^1}(2))$ — три, а потому dim Sym 2 $\Gamma(\mathfrak{O}_{P^1}(2))=6$. Ядро отображения Sym 2 $\Gamma(\mathfrak{O}_{P^1}(2))\to\Gamma(\mathfrak{O}_{P^1}(4))$ одномерно, и порождающая его функция и дает уравнение коники.

ПРИМЕР: Образ вложения P^1 при помощи $\mathcal{O}(n)$ есть **нормальная рациональная кривая,** в аффинной карте имеющая вид $t \mapsto (t, t^2, t^3, \dots, t^n)$. dim Sym 2 $\Gamma(\mathcal{O}(3)) = 10$, dim $\Gamma(\mathcal{O}(6)) = 7$, и через нее проходит 3 квадрики.

ПРИМЕР: Образ вложения **эллиптической кривой** при помощи дивизора $O(p_1 + p_2 + p_3)$ есть **плоская кубика**, а при помощи $O(p_1 + p_2 + p_3 + p_4)$ — пересечение **двух квадрик** в P^3 .

Вложение Сегре

ОПРЕДЕЛЕНИЕ: Пусть $L \to X$, $L' \to X'$ — два линейных расслоения. Тогда на $X \times X'$ имеется линейное расслоение $L \boxtimes L'$, слой которого над точкой (x,x') есть $L_x \otimes L'_{x'}$.

ОПРЕДЕЛЕНИЕ: Вложение $P^n \times P^m$ при помощи $\mathfrak{O}_{P^n}(1) \boxtimes \mathfrak{O}_{P^m}(1)$ называется вложением Сегре.

СЛЕДСТВИЕ: Произведения проективных многообразий проективны.

Вложение Сегре

ОПРЕДЕЛЕНИЕ: Пусть $L \to X$, $L' \to X'$ — два линейных расслоения. Тогда на $X \times X'$ имеется линейное расслоение $L \boxtimes L'$, слой которого над точкой (x,x') есть $L_x \otimes L'_{x'}$.

ОПРЕДЕЛЕНИЕ: Вложение $P^n \times P^m$ при помощи $\mathfrak{O}_{P^n}(1) \boxtimes \mathfrak{O}_{P^m}(1)$ называется вложением Сегре.

СЛЕДСТВИЕ: Произведения проективных многообразий проективны.

ЗАМЕЧАНИЕ: Если $P^n = P(V)$ и $P^m = P(W)$, вложение Сегре можно представить как $\langle v \rangle \times \langle w \rangle \mapsto \langle v \otimes w \rangle \subset P(V \otimes W)$. Иначе говоря, образ вложения Сегре есть локус разложимых тензоров.

Вложение Сегре

ОПРЕДЕЛЕНИЕ: Пусть $L \to X$, $L' \to X'$ — два линейных расслоения. Тогда на $X \times X'$ имеется линейное расслоение $L \boxtimes L'$, слой которого над точкой (x,x') есть $L_x \otimes L'_{x'}$.

ОПРЕДЕЛЕНИЕ: Вложение $P^n \times P^m$ при помощи $\mathfrak{O}_{P^n}(1) \boxtimes \mathfrak{O}_{P^m}(1)$ называется вложением Сегре.

СЛЕДСТВИЕ: Произведения проективных многообразий проективны.

ЗАМЕЧАНИЕ: Если $P^n = P(V)$ и $P^m = P(W)$, вложение Сегре можно представить как $\langle v \rangle \times \langle w \rangle \mapsto \langle v \otimes w \rangle \subset P(V \otimes W)$. Иначе говоря, образ вложения Сегре есть локус разложимых тензоров.

ПРИМЕР: Если n=m=1, образ вложения Сегре есть **квадрика в** P^3 .

ЗАМЕЧАНИЕ: Для двух двумерных пространств V, W рассмотрим отображение $(V \otimes W) \times (V \otimes W) \to \Lambda^4(V \otimes W)$, $(a \otimes b, c \otimes d) = a \wedge b \wedge c \wedge d$. Это симметричная форма с коэффициентами в одномерном пространстве, ее нули и есть образ вложения Сегре $\mathsf{P}^1 \times \mathsf{P}^1 \to \mathsf{P}^3$.

Вложение Плюккера

ОПРЕДЕЛЕНИЕ: Грассмановым многообразием Gr(k,n) называется многообразие k-мерных плоскостей в n-мерном пространстве.

ЗАМЕЧАНИЕ: Проективное пространство есть грассманиан Gr(1, n+1).

Вложение Плюккера

ОПРЕДЕЛЕНИЕ: Грассмановым многообразием Gr(k,n) называется многообразие k-мерных плоскостей в n-мерном пространстве.

ЗАМЕЧАНИЕ: Проективное пространство есть грассманиан Gr(1, n+1).

ЗАМЕЧАНИЕ: Над грассмановым многообразием имеется **тавтологи**-**ческое расслоение** Taut ранга k, аналогичное линейному тавтологическому расслоению над P^n .

ОПРЕДЕЛЕНИЕ: Вложение грассманова многообразия при помощи линейного расслоения Λ^k Taut* называется вложением Плюккера.

Вложение Плюккера

ОПРЕДЕЛЕНИЕ: Грассмановым многообразием Gr(k,n) называется многообразие k-мерных плоскостей в n-мерном пространстве.

ЗАМЕЧАНИЕ: Проективное пространство есть грассманиан Gr(1, n+1).

ЗАМЕЧАНИЕ: Над грассмановым многообразием имеется **тавтологи**-**ческое расслоение** Taut ранга k, аналогичное линейному тавтологическому расслоению над P^n .

ОПРЕДЕЛЕНИЕ: Вложение грассманова многообразия при помощи линейного расслоения Λ^k Taut* называется вложением Плюккера.

ЗАМЕЧАНИЕ: Вложение Плюккера можно представить как $Gr(k,V) \mapsto P \Lambda^k(V)$, $\langle v_1, v_2, \dots v_k \rangle \mapsto v_1 \wedge v_2 \wedge \dots \wedge v_k$. Его образ — локус полностью разложимых мультивекторов.

ПРИМЕР: Пусть dim V=4, k=2. На Λ^2V имеется квадратичная форма: $(\alpha,\beta)=\alpha\wedge\beta\in\Lambda^4V$. Ее нули есть образ вложения Плюккера $Gr(2,4)\to P^5$. Итак, прямые в P^3 параметризуются квадрикой в P^5 . Она называется квадрикой Плюккера либо квадрикой Клейна.

ОПРЕДЕЛЕНИЕ: Образ вложения P^2 при помощи $\mathcal{O}(2)$ есть поверхность Веронезе. Это поверхность $S \subset P^5$.

ЗАМЕЧАНИЕ: По лемме, через нее проходит $\dim \text{Sym}^2\Gamma(0(2), P^2) - \dim\Gamma(0(4), P^2) = \frac{6\cdot7}{2} - 15 = 6$ разных квадрик.

ОПРЕДЕЛЕНИЕ: Образ вложения P^2 при помощи $\mathcal{O}(2)$ есть поверхность Веронезе. Это поверхность $S \subset P^5$.

ЗАМЕЧАНИЕ: По лемме, через нее проходит $\dim \text{Sym}^2\Gamma(0(2), P^2) - \dim\Gamma(0(4), P^2) = \frac{6\cdot7}{2} - 15 = 6$ разных квадрик.

Если $P^2 = P(V^*)$, то $P^5 = P\left(\operatorname{Sym}^2 V^*\right)$, и отображение Веронезе есть $f(ax + by + cz) = (ax + by + cz)^2$. Линейная комбинация **двух квадратов** есть произведение линейных форм, так что точки хорд поверхности Веронезе представляют вырожденные квадратичные формы.

ОПРЕДЕЛЕНИЕ: Образ вложения P^2 при помощи $\mathcal{O}(2)$ есть поверхность Веронезе. Это поверхность $S \subset P^5$.

ЗАМЕЧАНИЕ: По лемме, через нее проходит $\dim \text{Sym}^2\Gamma(0(2), P^2) - \dim\Gamma(0(4), P^2) = \frac{6\cdot7}{2} - 15 = 6$ разных квадрик.

Если $\mathsf{P}^2=\mathsf{P}(V^*)$, то $\mathsf{P}^5=\mathsf{P}\left(\mathsf{Sym}^2V^*\right)$, и отображение Веронезе есть $f(ax+by+cz)=(ax+by+cz)^2$. Линейная комбинация **двух квадратов** есть произведение линейных форм, так что точки хорд поверхности Веронезе представляют вырожденные квадратичные формы. Иначе говоря,

ПРЕДЛОЖЕНИЕ: Многообразие секущих поверхности Веронезе есть детерминантальная гиперповерхность $\det \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} = 0.$

ОПРЕДЕЛЕНИЕ: Образ вложения P^2 при помощи $\mathcal{O}(2)$ есть поверхность Веронезе. Это поверхность $S \subset P^5$.

ЗАМЕЧАНИЕ: По лемме, через нее проходит $\dim \text{Sym}^2\Gamma(0(2), P^2) - \dim\Gamma(0(4), P^2) = \frac{6\cdot7}{2} - 15 = 6$ разных квадрик.

Если $\mathsf{P}^2=\mathsf{P}(V^*)$, то $\mathsf{P}^5=\mathsf{P}\left(\mathsf{Sym}^2V^*\right)$, и отображение Веронезе есть $f(ax+by+cz)=(ax+by+cz)^2$. Линейная комбинация **двух квадратов** есть произведение линейных форм, так что точки хорд поверхности Веронезе представляют вырожденные квадратичные формы. Иначе говоря,

ПРЕДЛОЖЕНИЕ: Многообразие секущих поверхности Веронезе есть детерминантальная гиперповерхность $\det \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} = 0.$

СЛЕДСТВИЕ: Любые две касательные плоскости к поверхности Веронезе пересекаются.

ОПРЕДЕЛЕНИЕ: Образ вложения P^2 при помощи $\mathcal{O}(2)$ есть поверхность Веронезе. Это поверхность $S \subset P^5$.

ЗАМЕЧАНИЕ: По лемме, через нее проходит $\dim \text{Sym}^2\Gamma(0(2), P^2) - \dim\Gamma(0(4), P^2) = \frac{6\cdot7}{2} - 15 = 6$ разных квадрик.

Если $\mathsf{P}^2=\mathsf{P}(V^*)$, то $\mathsf{P}^5=\mathsf{P}\left(\mathsf{Sym}^2V^*\right)$, и отображение Веронезе есть $f(ax+by+cz)=(ax+by+cz)^2$. Линейная комбинация **двух квадратов** есть произведение линейных форм, так что точки хорд поверхности Веронезе представляют вырожденные квадратичные формы. Иначе говоря,

ПРЕДЛОЖЕНИЕ: Многообразие секущих поверхности Веронезе есть детерминантальная гиперповерхность $\det \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} = 0.$

СЛЕДСТВИЕ: Любые две касательные плоскости к поверхности Веронезе пересекаются.

ТЕОРЕМА: (Ф. Севери, 1901) Поверхность Веронезе — единственная поверхность в P^5 , чьи секущие не наполняют собой все пространство.

Кубическая поверхность

ЗАМЕЧАНИЕ: Рассмотрим на P^2 линейную систему **кубик** (то есть $\mathbb{O}_{P^2}(3)$), и в ней — неполную подсистему кубик, проходящих через шесть точек $\{p_i\}_{i=1}^6$ общего положения. Она **четырехмерна**, и задает рациональное отображение $P^2 \longrightarrow P^3$ (не определенное в шести точках p_i). После их раздутия отображение становится регулярным. Плоские сечения его образа суть **кубические кривые.** Иначе говоря, образ такого вложения — **кубическая поверхность.**

Кубическая поверхность

ЗАМЕЧАНИЕ: Рассмотрим на P^2 линейную систему **кубик** (то есть $\mathfrak{O}_{\mathsf{P}^2}(3)$), и в ней — неполную подсистему кубик, проходящих через шесть точек $\{p_i\}_{i=1}^6$ общего положения. Она **четырехмерна**, и задает рациональное отображение $\mathsf{P}^2 \dashrightarrow \mathsf{P}^3$ (не определенное в шести точках p_i). После их раздутия отображение становится регулярным. Плоские сечения его образа суть **кубические кривые.** Иначе говоря, образ такого вложения — **кубическая поверхность.**

ТЕОРЕМА: (А. Клебш, 1866) Всякая кубическая поверхность получается таким образом.

ЗАМЕЧАНИЕ: Способов выбрать шесть точек на P^2 имеется $6 \cdot 2 - 8 = 4$ -хмерное семейство, и выбрать кубику в $P^3 - \frac{4 \cdot 5 \cdot 6}{6} - 16 = 4$ -хмерное. Отсюда видно, что теорема Клебша верна для **общей кубики.**

Кубическая поверхность

ЗАМЕЧАНИЕ: Рассмотрим на P^2 линейную систему **кубик** (то есть $\mathfrak{O}_{\mathsf{P}^2}(3)$), и в ней — неполную подсистему кубик, проходящих через шесть точек $\{p_i\}_{i=1}^6$ общего положения. Она **четырехмерна**, и задает рациональное отображение $\mathsf{P}^2 \dashrightarrow \mathsf{P}^3$ (не определенное в шести точках p_i). После их раздутия отображение становится регулярным. Плоские сечения его образа суть **кубические кривые.** Иначе говоря, образ такого вложения — **кубическая поверхность.**

ТЕОРЕМА: (А. Клебш, 1866) Всякая кубическая поверхность получается таким образом.

ЗАМЕЧАНИЕ: Способов выбрать шесть точек на P^2 имеется $6 \cdot 2 - 8 = 4$ -хмерное семейство, и выбрать кубику в $P^3 - \frac{4 \cdot 5 \cdot 6}{6} - 16 = 4$ -хмерное. Отсюда видно, что теорема Клебша верна для **общей кубики.**

TEOPEMA: (Кэли — Сальмон, 1849) На гладкой кубической поверхности над $\mathbb C$ лежит ровно двадцать семь прямых.

ЗАМЕЧАНИЕ: Они получаются из раздутия следующим образом: 6 прямых добавляется при раздутии, $15 = \binom{6}{2}$ прямых соединяют раздутые точки, и еще 6 прямых возникают из коник, проходящих через пять раздутых точек.