Cvičení 11: Integrál

Základní integrály

Doplňte následující tabulku základních integrálů pro $\alpha \in \mathbb{R} \setminus \{-1\}$

f'(x)	f(x)	f'(x)	f(x)	f'(x)	f(x)
5		$\sin(x)$		$\cos(x)$	
x^{α}		$\frac{1}{\cos^2(x)}$		$\frac{1}{1+x^2}$	
e^x		$\frac{1}{x}$		5+5x	

Snadné integrály

Spočtšte následující integrály

(a)
$$\int x^3 + 2x^2 + \frac{x}{3} dx$$
,

(d)
$$\int \frac{(1-x)^2}{x\sqrt{x}} \, \mathrm{d}x,$$

(b)
$$\int 5e^x + 5e^{5x} + \frac{5}{x} - 5\cos(5x) \, dx$$
,

(e)
$$\int \sqrt{1-x} \, \mathrm{d}x$$
,

(c)
$$\int |x| dx$$
,

(f)
$$\int \sqrt{x^6} \, \mathrm{d}x$$
.

Per partes

Spočtšte následující integrály

(a)
$$\int x \sin(x) dx$$
,

(b)
$$\int \ln(x) dx$$
.

Substituce

Spočtšte následující integrály

(a)
$$\int \frac{e^{2x}}{1+e^{2x}} \, \mathrm{d}x,$$

(b)
$$\int xe^{-x^2} dx$$
.

Parciální zlomky

Spočtšte následující integrály

(a)
$$\int \frac{1}{1-x^2} dx$$
,

(b)
$$\int \frac{2x}{x^2 + 3x + 2} \, \mathrm{d}x.$$

Obtížnější integrály

Spočtšte následující integrály

(a)
$$\int x^2 \ln(x) dx$$
,

(e)
$$\int \tan(x) dx$$
,

(i)
$$\int \frac{e^x}{1+e^{2x}} dx$$
,

(b)
$$\int e^x \sin(x) dx$$
,

(f)
$$\int \frac{2x^2}{\cos(x^3)} \, \mathrm{d}x,$$

(j)
$$\int \frac{x+2}{x^2+4x+5} \, \mathrm{d}x$$
,

(c)
$$\int \arctan(x) dx$$
,

(g)
$$\int \frac{1}{x \ln(x)} dx$$
,

(J)
$$\int \frac{1}{x^2+4x+5} \, dx$$

(d)
$$\int \cot(x) dx$$
,

(h)
$$\int \sin^5(x) \cos(x) dx$$
,

(k)
$$\int \frac{x}{1+x^4} dx$$
.

Užitečné vztahy

Věta o substituci (alias "inverzní derivace složené fce")

Mějme $\phi:(a,b)\to(\alpha,\beta)$ a $f:(\alpha,\beta)\to\mathbb{R}$, kde ϕ má vlastní první derivaci všude na (a,b). Pak

$$F(\phi(x)) + c = \int f(\phi(x))\phi'(x) \, dx,$$

kde $F:(\alpha,\beta)\to\mathbb{R}$ je primitivní funkce f.

Integrace per partes (alias "inverzní derivace součinu")

Nechť $f,g:(\alpha,\beta)\to\mathbb{R}$ jsou spojité na (α,β) a $F,G:(\alpha,\beta)\to\mathbb{R}$ jsou k nim primitivní funkce. Pak

$$F(x)G(x) + c = \int f(x)G(x) dx + \int F(x)g(x) dx.$$

Linearita (alias linearita)

Nechť $f,g:(\alpha,\beta)\to\mathbb{R}$ jsou spojité a $\alpha,\beta\in\mathbb{R}$. Pak

$$\int \alpha f + \beta g \, dx = \alpha \int f \, dx + \beta \int g \, dx$$