Toward Lattice Gauge Theory on Quantum Computers

Arata Yamamoto (University of Tokyo)

Self-Introduction

affiliation: Hongo campus, The University of Tokyo

field: hadron theory

research: lattice gauge theory / lattice QCD

Introduction

Introduction

open problems in lattice gauge theory

non-equilibrium

fermionic matter

quantum computer

Introduction

open problems in lattice gauge theory

non-equilibrium

fermionic matter

quantum computer

Contents

1. Introduction

2. Quantum computer

3. Lattice gauge theory

4. Examples

classical computer

$$c$$
-bit = 0 or 1

operation =
$$\{+, -, \times, \cdots\}$$

$$N$$
 bits = N c-numbers

quantum computer

q-bit =
$$a|0\rangle + b|1\rangle$$

operation =
$$\begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix}$$

N bits = superposition of 2^N states

noisy intermediate-scale quantum (NISQ)

noisy intermediate-scale quantum (NISQ)

→ limited number of qubits

100 qubits = 8 bytes(complex) \times 2¹⁰⁰ \sim 10¹⁶ Pbytes \Rightarrow classical memory

100 qubits = 8 bytes(complex)
$$\times$$
 2¹⁰⁰ \sim 10¹⁶ Pbytes \Rightarrow classical memory

device error

we need "error mitigation"

quantum device roadmap

error mitigation

error correction

quantum simulation roadmap

2024

2029 ~

20XX ∼

✓ NISQ or emulator

✓ small-scale QC

✓ large-scale QC

✓ benchmark test

✓ toy model

✓ realistic theory

✓ usage & algorithm

path integral formalism

Hamiltonian formalism

$$Z = \int d\Psi e^{-S}$$
c-number classical action

$$E = \langle \Psi | H | \Psi \rangle$$

The Hamiltonian operator quantum state

for classical computing

for quantum computing

fermion (electron, quark, etc.)

$$|\psi\rangle = a|0\rangle + b|1\rangle \qquad \leftrightarrow \qquad 1 \text{ qubit}$$
 "empty" "occupied"

fermion (electron, quark, etc.)

$$|\psi\rangle = a|0\rangle + b|1\rangle \qquad \leftrightarrow \qquad 1 \text{ qubit}$$
 "empty" "occupied"

total state vector
$$|\Psi\rangle = \prod_{x=1}^{N} |\psi(x)\rangle$$
 \leftrightarrow N qubit total dimension $D = 2^N$

gauge field (photon, gluon, etc.)

$$Z_2$$
 gauge theory $|g\rangle = c_0|+1\rangle + c_1|-1\rangle$

total state vector
$$|\Psi\rangle = \prod_{x=1}^{N-1} |g(x)\rangle$$
 \leftrightarrow $N-1$ qubit total dimension $D=2^{N-1}$

gauge field (photon, gluon, etc.)

 $n \to \infty$

$$Z_{2} |g\rangle = c_{0}|+1\rangle + c_{1}|-1\rangle \qquad \Rightarrow \qquad 1 \text{ qubit}$$

$$Z_{4} |g\rangle = c_{0}|e^{i0}\rangle + c_{1}|e^{i\pi/2}\rangle + c_{2}|e^{i\pi}\rangle + c_{3}|e^{i3\pi/2}\rangle \qquad \Rightarrow \qquad 2 \text{ qubits}$$

$$\vdots$$

$$Z_{n} |g\rangle = c_{0}|e^{i0}\rangle + c_{1}|e^{i2\pi/n}\rangle + \dots + c_{n-1}|e^{i2\pi(n-1)/n}\rangle \qquad \Rightarrow \qquad \log_{2} n \text{ qubits}$$

$$\Rightarrow \qquad U(1) \qquad \Rightarrow \qquad \otimes \text{ qubits}$$

time evolution

$$|\Psi'\rangle = U|\Psi\rangle = e^{-iHt}|\Psi\rangle$$

classical simulation

$$\begin{pmatrix} c'_1 \\ \vdots \\ c'_D \end{pmatrix} = \begin{pmatrix} U_{11} & \cdots & U_{1D} \\ \vdots & \ddots & \vdots \\ U_{D1} & \cdots & U_{DD} \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_D \end{pmatrix}$$

$$D = O(2^N) \text{ complex numbers}$$

simulation cost $D^2 = O(4^N)$

time evolution

$$|\Psi'\rangle = U|\Psi\rangle = e^{-iHt}|\Psi\rangle$$

quantum simulation

Gauss law constraint

$$\nabla \cdot \vec{E}(x) = \rho(x)$$

$$\uparrow \qquad \uparrow$$
electric field charge density

Gauss law constraint

$$\nabla \cdot \vec{E}(x) = \rho(x)$$

$$\uparrow \qquad \uparrow$$
electric field charge density

gauge invariant state:
$$\nabla \cdot \vec{E}(x) |\Psi\rangle = \rho(x) |\Psi\rangle$$

gauge variant state:
$$\nabla \cdot \vec{E}(x) |\Psi\rangle \neq \rho(x) |\Psi\rangle$$

$$\begin{array}{ccc}
\rho - 1 \\
E = 0 & E = 1
\end{array}$$

$$\begin{array}{ccc}
\rho = 0 \\
E = 0 & E = 1
\end{array}$$

total Hilbert space

gauge variant subspace

gauge invariant subspace

4. Examples

what to do:

- ✓ error robust algorithm
- ✓ resource efficient algorithm

✓ qubit encoding of SU(3)

✓ continuum limit

toy models:

- $\checkmark Z_n$ gauge theory
- ✓ 1-dim. gauge theory

specific problems in lattice gauge theory (skipped in this talk)

what to do:

✓ error robust algorithm

✓ resource efficient algorithm

✓ qubit encoding of SU(3)

✓ continuum limit

toy models:

✓ Z_n gauge theory

✓ 1-dim. gauge theory

specific problems in lattice gauge theory (skipped in this talk)

explained here

 $2D Z_2$ pure gauge theory

$$H = -\sum_{\substack{\text{link} \\ \uparrow}} \sigma_1 - \sum_{\substack{\text{plaq} \\ \uparrow}} \sigma_3 \sigma_3 \sigma_3 \sigma_3$$
electric field magnetic field

$2D Z_2$ pure gauge theory

$$H = -\sum_{\substack{\text{link} \\ \uparrow}} \sigma_1 - \sum_{\substack{\text{plaq} \\ \uparrow}} \sigma_3 \sigma_3 \sigma_3 \sigma_3$$
electric field magnetic field

Gauss law

$$\sigma_1 \sigma_1 \sigma_1 \sigma_1 = (-1)^{\rho(x)}$$

Wegner duality Wegner (1971)

original lattice

Wegner duality Wegner (1971)

original lattice

$$Z_2$$
 gauge theory $H = -\sum_{\text{link}} \sigma_1 - \sum_{\text{plaq}} \sigma_3 \sigma_3 \sigma_3 \sigma_3$

$$Z_2$$
 spin theory $H = -\sum_{\text{lin}} \sigma_3 \sigma_3 - \sum_{\text{plaq}} \sigma_1$

Wegner duality Wegner (1971)

 $\rho = 0$

 $\rho \doteq 1$

time evolution

time evolution

two static charges

time evolution

two static charges

$$\rho = 1$$

time evolution

two static charges

what to do:

✓ error robust algorithm

✓ resource efficient algorithm

✓ qubit encoding of SU(3)

✓ continuum limit

toy models:

 $\checkmark Z_n$ gauge theory

✓ 1-dim. gauge theory

specific problems in lattice gauge theory (skipped in this talk)

explained by Sakamoto san & Hayata san

1D gauge + fermion theory (open boundary)

1D gauge + fermion theory (open boundary)

1. simulation w/ gauge fields

more qubits

$$|\Psi\rangle = \prod |\psi\rangle \prod |g\rangle$$

local gauge interaction

2. simulation w/o gauge fields

less qubits

$$|\Psi\rangle = \prod |\psi\rangle \prod |g\rangle$$

non-local Coulomb interaction

Summary

✓ quantum simulation of lattice gauge theory has been outlined

✓ overlap with condensed matter physics & tensor network

✓ interdisciplinary study is welcome !!