03. Public Key Encryption

이형태

2019학년도 2학기

Overview of Public Key Encryption

Public Key Encryption

• A key for encryption is different from a key for decryption

- RSA, ElGamal, NTRU
- Pros: Easy for key sharing, small number of keys
- Cons: Slower than symmetric (private key) encryption

Picture from [SB15]

Definition of Public Key Encryption

Definition

A public key encryption **PKE** consists of the following (polynomial-time) algorithms:

- KeyGen(λ): It takes a security parameter λ as an input and returns a public key pk and a secret key sk.
- Enc(pk, M): It takes a public key pk and a plaintext M as inputs and returns a ciphertext C.
- Dec(sk, C): It takes a secret key sk and a ciphertext C as inputs and returns a plaintext M.

Correctness

A public key encryption **PKE** is *correct* if the following holds: For any security parameter λ and any plaintext M,

$$Dec(sk, Enc(pk, M)) = M$$

where (pk, sk) is an output of KeyGen (λ) .

Security Model for Public Key Encryption

- ullet Consider the following game between the challenger ${\mathcal C}$ and the adversary ${\mathcal A}$:
 - **§** Setup: C runs KeyGen(λ) to obtain (pk, sk) and passes a public key pk to A.
 - **Q** Phase 1: \mathcal{A} asks decryption queries on C_i 's to a decryption oracle \mathcal{D}_1 and receives corresponded plaintexts.
 - **3** Challenge: \mathcal{A} submits two plaintexts M_0, M_1 to \mathcal{C} . \mathcal{C} tosses a coin $b \in \{0, 1\}$, runs $\operatorname{Enc}(pk, M_b) \to C_b^*$, and passes C_b^* to \mathcal{A} as the challenge ciphertext.
 - **9 Phase 2**: \mathcal{A} asks decryption queries on C_i 's to a decryption oracle \mathcal{D}_2 and receives corresponded plaintexts. The constraint is that C_b^* cannot be queried.
 - **6 Guess**: A outputs b'.

 ${\mathcal A}$ wins the game if b=b'. The advantage of ${\mathcal A}$ is defined as

$$\mathsf{Adv}_\mathcal{A}(\lambda) := \left| \mathsf{Pr}[b = b'] - \frac{1}{2} \right|.$$

Security Model for Public Key Encryption (Cont.)

Definition

A public key encryption scheme is IND-XXX secure if there is no adversary whose advantage is non-negligible in the security parameter.

- XXX is determined by decryption oracles allowed to the adversary
 - ightharpoonup XXX = CPA (chosen plaintext attacks): Neither \mathcal{D}_1 nor \mathcal{D}_2 are allowed.
 - ightharpoonup XXX = CCA (non-adaptive chosen ciphertext attacks): Only \mathcal{D}_1 is allowed.
 - ▶ XXX = CCA2 (adaptive chosen ciphertext attacks): Both \mathcal{D}_1 and \mathcal{D}_2 are allowed.
- Consider "computational security" and reduction from security of public key encryption schemes to cryptographic hard problems:
 - e.g.) If a factoring problem is hard, RSA encryption is secure.
 - \iff If RSA encryption is broken, then we can factor a hard-to-factor integer.

Essential Number Theory

RSA: Key Generation

Key Generation

- Select two large primes p and q
- ② Compute N = pq
- **3** Compute $\phi(N) = (p-1)(q-1)$
- **③** Select the public exponent $e \in \mathbb{Z}_{\phi(N)}^*$. (Note that $\gcd(e,\phi(N))=1$.)
- Ompute the private key d such that

$$d \cdot e \equiv 1 \pmod{\phi(N)}$$

(Use Extended Euclidean Algorithm!)

Output a pair of the public key and private key

$$pk = (N, e), \quad sk = d$$

RSA: Encryption & Decryption

Encryption

Given the public key pk = (N, e) and a plaintext $M \in \mathbb{Z}_N$, compute

$$C := \mathsf{RSA}.\mathsf{Enc}(pk, M) = M^e \pmod{N}$$

and output C.

Decryption

Given the private key sk=d and a ciphertext $C\in\mathbb{Z}_N$, compute

$$M' := \mathsf{RSA}.\mathsf{Dec}(sk,C) = C^d \pmod{N}$$

and output M'.

Modular Exponentiation

• $g^a \pmod{p}$: a remainder when g^a is divided by p

$$5^4 \pmod{31}$$
 $3^9 \pmod{31}$ $= 5 \cdot 5 \cdot 5 \cdot 5 \pmod{31}$ $= 3 \cdot 3 \cdot \cdot \cdot 3 \pmod{31}$ $= 25 \cdot 25 \pmod{31}$ $= 9^4 \cdot 3 \pmod{31}$ $= 625 \pmod{31}$ $= 19,683 \pmod{31}$ $= 19,683 \pmod{31}$ $= 5 \pmod{31}$ $= 29 \pmod{31}$ $= 29 \pmod{31}$ $= 29 \pmod{31}$

• Naive way to compute $g^a \pmod{p}$: Need (a-1) modular multiplications

Left-to-Right Algorithm for Exponentiation

Algorithm 1 Left-to-Right Algorithm for Modular Exponentiation

```
Input: three positive integers g, a = (a_{\ell-1}, a_{\ell-2}, \dots, a_1, a_0)_2 and p
Output: g^a \pmod{p}

1: R \leftarrow 1
2: for i from \ell - 1 to 0 do
3: R \leftarrow R \cdot R \pmod{p}
4: if a_i = 1 then
5: R \leftarrow R \cdot g \pmod{p}
6: end if
7: end for
8: return R
```

• Need $\lfloor \log_2 a \rfloor + \mathsf{HW}(a) - 1$ multiplications where $\mathsf{HW}(a)$ is the number of ones in a_i 's for $0 < i < \ell - 1$

Right-to-Left Algorithm for Modular Exponentiation

Algorithm 2 Right-to-Left Algorithm

```
Input: three positive integers g, a = (a_{\ell-1}, a_{\ell-2}, \dots, a_1, a_0)_2 and p
Output: g^a \pmod{p}

1: R \leftarrow 1, T \leftarrow g
2: for i from 0 to \ell-1 do
3: if a_i = 1 then
4: R \leftarrow R \cdot T \pmod{p}
5: end if
6: T \leftarrow T \cdot T \pmod{p}
7: end for
8: return R
```

• As the left-to-right algorithm, need $\lfloor \log_2 a \rfloor + \mathsf{HW}(a) - 1$ multiplications where $\mathsf{HW}(a)$ is the number of ones in a_i 's for $0 \le i \le \ell - 1$

Euclidean Algorithm over the Integers

Fact

If a and b are positive integers with a > b, then $gcd(a, b) = gcd(b, a \mod b)$.

Algorithm 3 Euclidean Algorithm over the Integers

Input: two non-negative integers a and b, with $a \ge b$

Output: gcd(a, b)

- 1: $r \leftarrow a, r' \leftarrow b$
- 2: while $r' \neq 0$ do
- 3: $r'' \leftarrow r \mod r'$
- 4: $(r,r') \leftarrow (r',r'')$
- 5: end while
- 6: $d \leftarrow r$
- 7: **return** *d*

Extended Euclidean Algorithm over the Integers

Theorem

Let a, b, r be integers and $d = \gcd(a, b)$. Then, there exist $s, t \in \mathbb{Z}$ such that as + bt = r if and only if d|r.

Algorithm 4 Extended Euclidean Algorithm over the Integers

Input: two non-negative integers a and b, with $a \ge b$

Output: d, s, t such that $d = \gcd(a, b)$ and as + bt = d

1:
$$r \leftarrow a, r' \leftarrow b$$

2:
$$s \leftarrow 1$$
, $s' \leftarrow 0$

3:
$$t \leftarrow 0$$
, $t' \leftarrow 1$

4: while
$$r' \neq 0$$
 do

5:
$$q \leftarrow \lfloor r/r' \rfloor, r'' \leftarrow r \mod r'$$

6:
$$(r, s, t, r', s', t') \leftarrow (r', s', t', r'', s - s'q, t - t'q)$$

8:
$$d \leftarrow r$$

Euler Phi Function: ϕ

Definition (Euler Phi Function)

$$\phi(m)$$
 = the number of integers in \mathbb{Z}_m relatively prime to m = $|\mathbb{Z}_m^* := \{a \in \mathbb{Z}_m | \gcd(a, m) = 1\}|$

Theorem

Let $m = p_1^{e_1} p_2^{e_2} \cdots p_n^{e_n}$ where p_i 's are distinct primes and e_i 's are positive integers. Then,

$$\phi(n) = \prod_{i=1}^n (p_i^{e_i} - p_i^{e_i-1})$$

Example

- 2 Let $m = 240 = 2^4 \cdot 3 \cdot 5$. Then

$$\phi(240) = (2^4 - 2^3)(3^1 - 3^0)(5^1 - 5^0) = (16 - 8)(3 - 1)(5 - 1) = 64.$$

Fermat Little Theorem

Theorem (Fermat Little Theorem)

Let a be an integer and p be a prime. Then,

$$a^p \equiv a \pmod{p}$$
.

Example

Let p = 7 and a = 2. Then,

$$2^7 = 128 = (18 \cdot 7 + 2) \pmod{7}.$$

Corollary

Let a be an integer and p be a prime with gcd(a, p) = 1. Then,

- $a^{-1} = a^{p-2} \pmod{p}$.

$$2^5 = 32 = (4 \cdot 7 + 4) = 4 \pmod{7} \implies 2 \cdot 4 = 8 = (1 \cdot 7 + 1) = 1 \pmod{7}$$

Euler Theorem

Theorem (Euler Theorem)

Let a and m be integers with gcd(a, m) = 1. Then,

$$a^{\phi(m)} = 1 \pmod{m}$$

Example

Let a = 5 and m = 12. Then

$$\phi(12) = \phi(2^2 \cdot 3) = (2^2 - 2^1)(3^1 - 3^0) = (4 - 2)(3 - 1) = 4$$

(: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

Thus,

$$5^{\phi(12)} = 5^4 = 625 = (52 \cdot 12 + 1) = 1 \pmod{12}.$$

Chinese Remainder Theorem

Theorem ((Simplified) Chinese Remainder Theorem)

Suppose p and q are relatively prime. Then, the system of equations

$$x \equiv a \pmod{p}$$
$$x \equiv b \pmod{q}$$

has a unique solution for x modulo pq.

Proof.

Existence:

$$x = a \cdot q \cdot M_q + b \cdot p \cdot M_p \pmod{pq}$$

where
$$M_q=q^{-1} \pmod p$$
 and $M_p=p^{-1} \pmod q$.

② Uniqueness: If $x = y \pmod{p}$ and $x = y \pmod{q}$, then x - y is a multiple of both p and q. Thus, x - y is a multiple of pq and $x = y \pmod{pq}$.

Example of Chinese Remainder Theorem

Example

Find x in \mathbb{Z}_{105} such that $x \equiv 3 \pmod{7}$ and $x \equiv 5 \pmod{15}$.

- $105 = 15 \cdot 7$, gcd(7, 15) = 1
- Let p = 7 and q = 15.
- $M_q = q^{-1} \pmod{p} = 15^{-1} \pmod{7} = 1 \pmod{7} = 1 \& 1 \cdot 1 = 1$
- $M_p = p^{-1} \pmod{q} = 7^{-1} \pmod{15} = 13 \ (\because 7 \cdot 13 = 91 = 1 \pmod{15})$
- $x = a \cdot q \cdot M_q + b \cdot p \cdot M_p = 3 \cdot 15 \cdot 1 + 5 \cdot 7 \cdot 13 = 500 = 80 \pmod{105}$

(Probabilistic) Primality Test I: Fermat Test

Theorem (Fermat Little Theorem)

Let a be an integer and p be a prime. Then,

$$a^p \equiv a \pmod{p} \iff a^{p-1} \equiv 1 \pmod{p}$$

Algorithm 5 Fermat Primality Test

```
Input: candidate \overline{p} and security parameter \lambda
Output: "\overline{p} is prime" or "\overline{p} is composite"

1: for i from 1 to \lambda do

2: select a random element a from \{2,3,\ldots,\overline{p}-2\}

3: if a^{\overline{p}-1} \neq 1 \pmod{\overline{p}} then

4: return ("\overline{p} is composite")

5: end if

6: end for

7: return ("\overline{p} is prime")
```

Counterexample: Carmichael Number

Definition (Carmichael Number)

A composite integer C that holds

$$a^{C-1} \equiv 1 \pmod{C}$$

for all integers a such that gcd(a, C) = 1.

Example

- $N = 561 = 3 \cdot 11 \cdot 17$
- For all a such that gcd(a, 561) = 1,

$$a^{560} \equiv 1 \pmod{561}$$

- Fermat Test says that Camichael numbers are prime.
- There are approximately only 10⁶ Camichael numbers below 10¹⁵.

(Probabilistic) Primality Test II: Miller-Rabin Test - Idea

Theorem

Let $\overline{p} - 1 = 2^r \cdot s$ where s is odd. If there exists an integer a such that

$$a^s \neq 1 \pmod{\overline{p}}$$
 and $a^{s \cdot 2^j} \neq \overline{p} - 1 \pmod{\overline{p}}$

for all $j \in \{0, 1, \dots, r-1\}$, then \overline{p} is composite. Otherwise, it is probably a prime.

Example

- $\overline{p} = 561 = 3 \cdot 11 \cdot 17$
- $\overline{p} 1 = 560 = 2^4 \cdot 35$

$$5^{35} = 23 \pmod{561}$$

 $5^{35 \cdot 2} = 529 \pmod{561}$
 $5^{35 \cdot 2^2} = 529^2 = 463 \pmod{561}$
 $5^{35 \cdot 2^3} = 463^2 = 67 \pmod{561}$

 \Rightarrow 561 is composite!

Description of Miller-Rabin Primality Test

Algorithm 6 Miller-Rabin Primality Test

```
Input: candidate \overline{p} with \overline{p} - 1 = 2^r s for odd s and security parameter \lambda
Output: "\overline{p} is prime" or "\overline{p} is composite"
  1: for i from 1 to \lambda do
  2:
           select a random element a from \{2, 3, \dots, \overline{p} - 2\}
  3:
           z \leftarrow a^s \pmod{\overline{p}}
 4:
           if z \neq 1 and z \neq \overline{p} - 1 then
 5:
                for j = 1 to r - 1 do
 6:
                    z \leftarrow z^2 \pmod{\overline{p}}
 7:
                    if z = 1 then
 8:
                          return ("\overline{p} is composite")
 9:
                     end if
10:
                end for
11:
                if z \neq \overline{p} - 1 then
12:
                          return ("\overline{p} is composite")
13
                end if
14.
           end if
15: end for
16: return ("\overline{p} is prime")
```

RSA Encryption

Overview of RSA Encryption

- Designed by Rivest, Shamir and Adleman in 1978
- The most popular and widely utilized public key encryption scheme
- Based on the hardness of factoring problems
- Encryption and decryption algorithms consist of modular exponentiations
- Deterministic encryption ⇒ CANNOT achieve IND-XXX security
- Use variants of RSA encryption (e.g., RSA-OAEP) in practice
- Insecure against quantum attacks

RSA: Key Generation

Key Generation

- Select two large primes p and q
- ② Compute N = pq
- **o** Compute $\phi(N) = (p-1)(q-1)$
- **③** Select the public exponent $e \in \mathbb{Z}_{\phi(N)}^*$. (Note that $\gcd(e,\phi(N))=1$.)
- Compute the private key d such that

$$d \cdot e \equiv 1 \pmod{\phi(N)}$$

(Use Extended Euclidean Algorithm!)

Output a pair of the public key and private key

$$pk = (N, e), \quad sk = d$$

RSA: Encryption & Decryption

Encryption

Given the public key pk = (N, e) and a plaintext $M \in \mathbb{Z}_N$, compute

$$C := \mathsf{RSA}.\mathsf{Enc}(pk, M) = M^e \pmod{N}$$

and output C.

Decryption

Given the private key sk=d and a ciphertext $C\in\mathbb{Z}_N$, compute

$$M' := \mathsf{RSA}.\mathsf{Dec}(sk,C) = C^d \pmod{N}$$

and output M'.

RSA: Correctness

Recall: Correctness of Public Key Encryption

A public key encryption **PKE** is *correct* if the following holds: For any security parameter λ and any plaintext M,

$$Dec(sk, Enc(pk, M)) = M$$

where (pk, sk) is an output of KeyGen (λ) .

Correctness of RSA

$$M'$$
 = RSA.Dec(sk , RSA.Enc(pk , M))
= $C^d = (M^e)^d = M^{ed}$
= $M^{s\phi(N)+1} \pmod{N}$ ($\because ed = s\phi(N) + 1$ for some s)
= $(M^{\phi(N)})^s \cdot M = M$ (\because Euler Theorem)

RSA: Example

Key Generation

- **1** p = 13, q = 17
- $0 N = 13 \cdot 17 = 221$
- e = 5

Encryption

•
$$M = 3$$

$$\Rightarrow C = M^e = 3^5$$
$$= 243 \equiv 22 \pmod{221}$$

Decryption

•
$$C = 22$$

$$\Rightarrow M' = C^d = 22^{77}$$

$$= (22^7)^{11} = 61^{11}$$

$$= 3 \pmod{221}$$

RSA: Speed Up - Fast Encryption

Encryption

$$C := \mathsf{RSA}.\mathsf{Enc}(pk, M) = M^e \pmod{N}$$

- Generally, the public key exponent e is approximately $(\log_2 N)$ -bit. $\Rightarrow 1.5(\log_2 N)$ multiplications are required on average.
- ullet Choose a very small e that has low Hamming weight, e.g., $e=3,17,2^{16}+1$

e	e as binary string	Num of Mul
3	112	2
17	100012	5
$2^{16} + 1$	10000000000000001_2	17

 The private exponent d has almost full bit length, though e is (extremely) small.

RSA: Speed Up - Fast Decryption

- The private exponent d should be larger than $N^{0.292}$ by Coppersmith attack \Rightarrow We cannot use a very small exponent d
- Use Chinese Remainder Theorem
 - Compute

$$d_p = d \pmod{p-1}$$

 $d_q = d \pmod{q-1}$

Compute

$$C_{d_p} = C^{d_p} \pmod{p}$$

$$C_{d_q} = C^{d_q} \pmod{q}$$

Compute

$$C = C_{d_p} \cdot q \cdot M_q + C_{d_q} \cdot p \cdot M_p$$

using Chinese Remainder Theorem.

RSA: Example of Decryption using CRT

Decryption in the Previous Example

•
$$N = 221$$
, $p = 13$, $q = 17$, $d = 77$, $C = 22$

$$\Rightarrow M' = C^d = 22^{77} = (22^7)^{11} = 61^{11} = 3 \pmod{221}$$

$$\begin{cases}
d_p = d \pmod{p-1} \\
d_q = d \pmod{q-1}
\end{cases} \Rightarrow \begin{cases}
77 \pmod{12} = 5 \\
77 \pmod{16} = 13
\end{cases}$$

Using Chinese Remainder Theorem,

$$C = C_{d_p} \cdot q \cdot M_q + C_{d_q} \cdot p \cdot M_p$$

$$= 3 \cdot 13 \cdot 5 + 3 \cdot 17 \cdot 10 = 666$$

$$= 3 \pmod{221}$$

$$(:M_p = 17^{-1} = 10 \pmod{13}, M_p = 13^{-1} = 4 \pmod{17})$$

RSA: Security I

• Hard to recover the private key if factoring N is hard

Table: Main Results of RSA Factoring Challenge

RSA Number	Decimal Digits	Binary Digits	Digit	Factored by
RSA-100	100	330	April 1991	A. K. Lenstra
RSA-576	174	576	December 2003	J. Franke et al.
RSA-640	193	640	November 2005	J. Franke et al.
RSA-704	212	704	July 2012	S. Bai et al.
RSA-768	232	768	December 2009	T. Kleinjung et al.

The RSA Factoring Challenge is no longer active.

NIST Recommendation

Security (bits)	Bit Length of RSA Modulus		
80	1024		
112	2048		
128	3072		
192	7680		
256	15360		

RSA: Security II

- The textbook RSA is deterministic encryption
 - ⇒ CANNOT achieve IND-CPA security
- The textbook RSA is homomorphic

$$C \cdot C' = M^e \cdot M'^e = (MM')^e$$

⇒ CANNOT achieve IND-CCA2 security

Optimal Asymmetric Encryption Padding (OAEP)

- **1** Generate a string PS of length k |M| 2|H| 2
- Concatenate

$$DB = \mathsf{Hash}(L) \|\mathsf{PS}\| 0 \times 01 \| M$$

- **3** Generate a random byte string Seed of length |H|
- Ompute dbMask = MGF(Seed, k |H| 1)
- $\textbf{ 0} \textbf{ Compute } \textit{maskedDB} = \textit{DB} \oplus \textit{dbMask}$
- **1** Compute SeedMask = MGF(maskedDB, |H|)
- **1** Compute $maskedSeed = Seed \oplus SeedMask$
- Concatenate

$$EM = 0 \times 00 \| maskedSeed \| maskedDB$$

 $Picture\ from\ https://commons.wikimedia.org/wiki/File:EME-OAEP.jpg$

Discrete Logarithm Problem

Group I

Definition (Group)

A set \mathbb{G} with a binary operator \circ is a *group* if it satisfies the following conditions:

- **●** The operation \circ is *closed*, i.e., for any $a, b \in \mathbb{G}$, $a \circ b \in \mathbb{G}$.
- **②** The operation \circ is associative, i.e., for any $a,b,c\in\mathbb{G}$, $(a\circ b)\circ c=a\circ (b\circ c)$.
- **3** There exists an element $id \in \mathbb{G}$ such that $a \circ id = id \circ a = a$ for all $a \in \mathbb{G}$.
- For any element $a \in \mathbb{G}$, there exists an element $a^{-1} \in \mathbb{G}$ such that $a \circ a^{-1} = a^{-1} \circ a = id$.

We say that a group $\mathbb G$ with a binary operator \circ is abelian (commutative) if it additionally holds that

$$a \circ b = b \circ a$$

for any $a, b \in \mathbb{G}$.

Definition (Subgroup)

A group (\mathbb{H}, \circ) is a *subgroup* of (\mathbb{G}, \circ) if \mathbb{H} is a subset of \mathbb{G} and a group itself.

Group II

Example

- $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$: abelian groups \Rightarrow $(\mathbb{Z},+)$ is a subgroup of $(\mathbb{Q},+)$
- (Q \ {0}, ×), (R \ {0}, ×), (C \ {0}, ×): abelian groups
- $(\mathbb{Z}\setminus\{0\},\times)$: not a group $(:: 3^{-1}?)$
- (The set of invertible 2×2 matrices, \times): a group, but not an abelian group ($:: AB \neq BA$)

Definition (Finite Group)

A group (\mathbb{G}, \circ) is *finite* if it has a finite number of elements. ($|\mathbb{G}|$ denotes the cardinality of \mathbb{G} .)

Example

- ullet $(\mathbb{Z}_n,+)$: an abelian group for positive integer n $(|\mathbb{Z}_n|=n)$
- (\mathbb{Z}_n^*, \times) : an abelian group for positive integer n $(|\mathbb{Z}_n^*| = \phi(n))$

Order of an Element

Definition (Order of an Element)

The order of an element a of a group (\mathbb{G}, \circ) , denoted by ord(a), is the smallest positive integer k such that

$$\underbrace{a \circ a \circ \cdots \circ a}_{k \text{ times}} = 1$$

where 1 is the identity element of $\ensuremath{\mathbb{G}}.$

Example

- The order of 3 in $(\mathbb{Z}_{11}^*, \times)$
 - $ightharpoonup 3^1 = 3$
 - $ightharpoonup 3^2 = 9$
 - $ightharpoonup 3^3 = 27 = 5 \pmod{11}$
 - $ightharpoonup 3^4 = 5 \cdot 3 = 4 \pmod{11}$
 - $ightharpoonup 3^5 = 4 \cdot 3 = 1 \pmod{11}$
 - \Rightarrow ord(3) = 5 in $(\mathbb{Z}_{11}^*, \times)$

Cyclic Group

Definition (Cyclic Group)

A group $\mathbb G$ which contains an element g with the maximum order $ord(g) = |\mathbb G|$ is said to be *cyclic*. We call g a *generator* or a *primitive element*.

Example

•
$$\mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

• For
$$a=2$$
,

$$a=2$$
 $a^2=4$ $a^4=16 \text{ mod } 11=5$ $a^5=5\cdot 2=10 \text{ mod } 11$ $a^6=10\cdot 2=9 \text{ mod } 11$ $a^6=10\cdot 2=9 \text{ mod } 11$ $a^8=7\cdot 2=3 \text{ mod } 11$ $a^9=3\cdot 2=6 \text{ mod } 11$ $a^{10}=6\cdot 2=1 \text{ mod } 11$ $\Rightarrow ord(2)=10=|\mathbb{Z}_{11}^*| \& \mathbb{Z}_{11}^* \text{ is a cyclic group.}$

- 3 is not a generator in \mathbb{Z}_{11}^* .
- $\langle 3 \rangle = \{3, 9, 5, 4, 1\}$ is a subgroup of \mathbb{Z}_{11}^* and 3 is a generator \mathbb{G} of $\langle 3 \rangle$.

Discrete Logarithm Problem

Discrete Logarithm Problem (DLP)

Given a group (\mathbb{G}, \times) , a generator g of \mathbb{G} , and an element $A \in \mathbb{G}$, find a such that $A = g^a$ in (\mathbb{G}, \times) .

- Easy over the real numbers (Compute $log_g A$)
- Difficult over the discrete world
 - Five \mathbb{Z}_{31}^* , g=3 and A=20, $\Rightarrow 3 \mod 31=31, \ 3^2 \mod 31=9, \dots, \ 3^7 \mod 31=17, \ 3^8 \mod 31=20$
 - If a prime p is sufficiently large, the DLP over \mathbb{Z}_p^* is hard to solve.

Algorithms for solving DLPs

- ullet Solving DLPs defined over a subgroup $\Bbb G$ of $\Bbb Z_p^*$ where q is the order of $\Bbb G$
 - ▶ If *p* is not large, the best attack is (General/Special) Number Field Sieve.
 - ▶ If *q* is not large, the best attack is Pollard rho algorithm.
- Parameter sizes: NIST recommendation (2016)

Security	Discrete Logarithm	
	Key Size (q)	Modulus Size (p)
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	512	15360

(Unit: bits)

Diffie-Hellman Key Exchange

Key Exchange

 Alice and Bob want to generate a shared secret key using data exchange through a public channel.

 Except Alice and Bob, NO one should get any information about the generated secret key.

Diffie-Hellman Key Exchange

- Proposed by W. Diffie and M. Hellman in 1976
 - ► First public key cryptosystem (W. Diffie and M. Hellman, "New directions in cryptography," IEEE Transactions on Information Theory, 22(6): pp.644-654)
 - ▶ 2015 Turing Award (a.k.a. Nobel Prize of Computing)
- ullet Pre-shared parameters: a prime p, a primitive element g in \mathbb{Z}_p^*

Alice

- Generate a private key a
- ② Compute $A = g^a \pmod{p}$
- Send A to Bob

Bob

- Generate a private key b
- ② Compute $B = g^b \pmod{p}$
- Send B to Alice
- Compute $K_{BA} = A^b \pmod{p}$

$$K_{AB} = B^a = (g^b)^a = g^{ba} = g^{ab} = (g^a)^b = A^b = K_{BA}$$

Example: p = 31, g = 3

Alice

- Generate a private key a = 6
- ② Compute $A = g^a \mod p$

$$A = 3^6 \mod 31$$

= 729 mod 31 = 16

- \odot Send A = 16 to Bob

$$K_{AB} = 20^6 \mod 31$$

= 64,000,000 mod 31

Bob

- Generate a private key b = 8
- **2** Compute $B = g^b \mod p$

$$B = 3^8 \mod 31$$

= 6,561 mod 31 = 20

- **3** Send B = 20 to Alice
- Compute $K_{BA} = A^b \mod p$

$$K_{BA} = 16^8 \mod 31$$

= 4, 294, 967, 296 mod 31

$$K_{AB} = 64,000,000 \text{ mod } 31 = 4 = 4,294,967,296 \text{ mod } 31 = K_{AB}$$

Security of Diffie-Hellman Key Exchange

- ullet Eve wants to know the private key between Alice and Bob, $K_{AB}=K_{BA}$
- Eve has (p,g), $(A = g^a \mod p, B = g^b \mod p)$
- If Eve has Alice's private key a or Bob's private key b
 - \Rightarrow She can compute $K_{AB} = B^a = A^b = K_{BA}$, as Alice and Bob
 - ⇒ DLP should be infeasible

Computational Diffie-Hellman (CDH) Problem

Given (g, g^a, g^b) , compute g^{ab} .

 Informally, the hardness of the CDH problem is equivalent to the hardness of DLP if the order of the underlying group is prime.

Man-in-the-Middle Attack: Attack Scenario

• If Eve intercepts Alice and Bob's public data and acts like Bob and Alice to Alice and Bob, respectively,...?

Man-in-the-Middle Attack: Description & Prevention

- Description
 - Eve generates a private key e and computes $E = g^e \mod p$.
 - ② When Alice and Bob transmit A and B to each other, respectively, Eve intercepts and sends E to both.
 - 3 Then, Alice and Bob finally have

$$K_{AE} = E^a = g^{ea} \mod p$$
 and
 $K_{BE} = E^b = g^{eb} \mod p$,

respectively.

- Later, once Alice sends $C = \text{Enc}(K_{AE}, M)$ to Bob, Bob cannot decrypt it whereas Eve can obtain M by decrypting it using $K_{EA} = A^e = (g^a)^e \mod p$.
- Prevention: Use authentication
 - e.g., send public keys together with signatures when Alice and Bob send their public keys to each other.

ElGamal Encryption

Overview of ElGamal Encryption

- Proposed by T. El Gamal in 1985 (T. ElGamal, "A public key cryptosystem and a signature scheme based on discrete logarithms", IEEE Transactions on Information Theory, 31(4): pp.469-472)
- Probabilistic encryption
- IND-CPA secure if the decisional Diffie-Hellman problem is infeasible

Decisional Diffie-Hellman (DDH) Problem

Given (g, g^a, g^b) and X, distinguish if $X = g^{ab}$ or g^c for a randomly chosen c.

- Believe that the DDH problem is hard if the CDH problem with the same instance is hard.
- The original ElGamal encryption is multiplicative homomorphic
 - $\Rightarrow \operatorname{Enc}(M) \cdot \operatorname{Enc}(M') = \operatorname{Enc}(M \cdot M')$
- Can achieve IND-CCA2 security using the generic transformation

Description of ElGamal Encryption

Key Generation

- Generate a prime p
- **②** Choose a generator g of a subgroup \mathbb{G} of \mathbb{Z}_p^* whose order is q
- **③** Select a random element x in \mathbb{Z}_q and compute $X = g^x$
- Output a public key pk = (p, q, g, X) and a secret key sk = x

Encryption

To encrypt a message M with a public key pk = (p, q, g, X)

- Select a random element $r \in \mathbb{Z}_q$
- ② Compute $C_1 = g^r$ and $C_2 = M \cdot X^r$ and output $CT = (C_1, C_2)$

Decryption

Given the secret key sk = x and a ciphertext $CT = (C_1, C_2)$, compute and output

$$C_2/(C_1)^x (= M \cdot X^r/(g^r)^x = M).$$

References

- OV96 A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996. (Chapter 2)
- PP10 C. Paar and J. Pelzl, Understanding Cryptography, Springer, 2010
- SB15 W. Stallings and L. Brown, Computer Security: Principles and Practice, 3rd edition, Pearson Prentice Hall, 2015
- Sho08 V. Shoup, A Computational Introduction to Number Theory and Algebra, 2nd ed., Cambridge University Press, 2008. (Chapter 4)