КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. А.Н.ТУПОЛЕВА

М.А.Дараган, С.И.Дорофеева, Е.В. Стрежнева,

В.В.Соловьев

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

ЧАСТЬ1 (ПРАКТИКУМ) НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ Настоящий практикум (часть 1, часть2) охватывает учебный материал практических занятий второго семестра по разделу «Интегральное исчисление функций одной переменной». Часть 1 — «Неопределенный интеграл» и часть 2 — «Определенный интеграл». По каждой теме проводятся основные теоретические сведения (определения, теоремы, формулы), необходимые для решения задач, рассматриваются типовые задачи с подробными решениями.

В качестве образцов приводятся варианты контрольной работы по теме: «Неопределенный интеграл», один из них – с подробными решениями задач.

Основное внимание уделено задачам, способствующим уяснению фундаментальных понятий и методов высшей математики.

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Занятие первое

Тема: «ПЕРВООБРАЗНАЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. НЕПОСРЕДСТВЕННОЕ ИНТЕГРИРОВАНИЕ»

Основные теоретические сведения

<u>Определение 1.1. (Первообразная).</u> Функция F(x), $x \in X_1 \subset R$ называется первообразной для функции f(x), $x \in X \subset R$ на промежутке $X \subset X_1$, если:

- 1) функция F(x) непрерывна на этом промежутке X;
- 2) в каждой внутренней точке x промежутка X функция F(x) имеет производную, причем F'(x) = f(x).

Иллюстрирующие примеры

1. Пусть $F'(x) = f(x) = \cos x$, $x \in R$. Тогда $F(x) = \sin x$, $x \in R$ является первообразной для функции $f(x) = \cos x$, $x \in R$, т.к. оба условия определения первообразной выполняются: $\sin x$ является дифференцируемой (следовательно, непрерывной) в бесконечном интервале $(-\infty, +\infty)$, причем $(\sin x)' = \cos x$, $x \in R$.

2. Пусть

$$F'(x) = f(x) = \begin{cases} 2x \text{ при } 0 \le x < 1 \\ 0 \text{ при } x = 1. \end{cases}$$

Тогда функция $F(x) = x^2$, $-\infty < x < +\infty$, является первообразной для f(x) на $0 \le x \le 1$, т.к. оба условия определения первообразной, очевидно, выполняются. Отметим, что функция $F(x) = x^2$, $-\infty < x < +\infty$ является первообразной для функции f(x) = 2x, $0 \le x \le 1$ на отрезке $0 \le x \le 1$.

Теорема 1.1. О структуре первообразных для функции.

Если функция f(x), $x \in X$ имеет одну какую-либо первообразную F(x) на промежутке X, то она имеет и бесконечно много первообразных на этом промежутке X, причем любая из них $\Phi(x)$, $x \in X$ представима в виде $\Phi(x) = F(x) + C$, $x \in X$, $C \in R$ (C – произвольная постоянная).

Определение 1.2. Неопределенный интеграл.

Совокупность всех первообразных функций f(x), $x \in X$, определенных на промежутке X, называется неопределенным интегралом от этой функции f(x) на этом промежутке X и обозначается через $\int f(x) dx$.

Символ \int называется знаком интеграла, f(x) подынтегральной функцией f(x)dx - подынтегральным выражением, x – переменной интегрирования.

Если F(x) - какая-либо первообразная функции f(x), $x \in X$ на промежутке X, то пишут

$$\int f(x)dx = \left\{ F(x) + C, \ C \in R \right\} \tag{1.1}$$

или

$$\int f(x)dx = F(x) + C, \quad C \in \mathbb{R}, \tag{1.2}$$

если скобки, обозначающие множество, условиться не писать.

Мы, как принято, будем употреблять запись (1.2). Тем самым один и тот же символ $\int f(x)dx$ будет обозначать как всю совокупность первообразных функции f(x), так и любую первообразную функции f(x).

Основные свойства неопределенного интеграла

$$1. \left(\int f(x) dx \right)' = f(x).$$

2.
$$d(\int f(x)dx) = f(x)dx$$
.

3.
$$\int df(x) = \int f'(x)dx = f(x) + C, \quad C \in \mathbb{R}.$$

4. Если существует первообразная для функции f(x), $x \in X$, а C – любое вещественное число, то существует первообразная и для функции Cf(x), причем

$$\int Cf(x)dx = C\int f(x)dx. \tag{1.3}$$

5. Если существуют первообразные для функций $f_1(x)$ и $f_2(x)$, $x \in X$, то существует первообразная и для функции $f_1(x) \pm f_2(x)$, $x \in X$, причем

$$\int \left[f_1(x) \pm f_2(x) \right] dx = \int f_1(x) dx \pm \int f_2(x) dx. \tag{1.4}$$

6. Свойство инвариантности формул интегрирования. Если $\int f(x)dx = F(x) + C$, то $\int f(u)du = F(u) + C$, где $u = \varphi(x)$ – любая дифференцируемая функция от x.

Подчеркнем, что равенство в формулах (1.3) и (1.4) имеет условный характер: его следует понимать как равенство левой и правой частей с точностью до произвольного постоянного слагаемого, поскольку каждый из интегралов, фигурирующих в этих формулах, определен с точностью до произвольно постоянного слагаемого.

Найти неопределенный интеграл функции — это значит найти всю совокупность первообразных этой функции, для чего достаточно найти одну из них, при этом не указывается, какую именно из первообразных имеют в виду.

Отыскание первообразных называют интегрированием. Интегрирование есть действие обратное дифференцированию.

Правильность интегрирования всегда можно проверить дифференцированием результата. На этом собственно основано так называемое непосредственное интегрирование.

Непосредственное интегрирование

Непосредственным интегрированием обычно называют нахождение неопределенного интеграла с помощью таблицы основных интегралов. Если искомый неопределенный интеграл не является табличным, то его сводят к табличному (или к нескольким табличным) путем тождественного преобразования подынтегрального выражения и использования свойств неопределенного интеграла.

Основные неопределенные интегралы

No	<u>Основные неопреоеленные интегралы</u> Первообразные
п/п	Tiepbooopustible
1	$\int 0 dx = C$
2	$\int 1 dx = x + C$
3	$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1, x^{\alpha} - \text{ имеет смысл}$
4	$\int \frac{dx}{x} = \ln x + C, x \neq 0$
5	$\int a^{x} dx = \frac{a^{x}}{\ln a} + C, 0 < a \neq 1, \int e^{x} dx = e^{x} + C$
6	$\int \cos x dx = \sin x + C$
7	$\int \sin x dx = -\cos x + C$
8	$\int \frac{dx}{\cos^2 x} = tgx + C, x \neq \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$
9	$\int \frac{dx}{\sin^2 x} = -ctgx + C, x \neq \pi n, n \in \mathbb{Z}$
10	$\int chxdx = shx + C$
11	$\int shxdx = chx + C$
12	$\int \frac{dx}{ch^2 x} = tgx + C$
13	$\int \frac{dx}{sh^2x} = -cthx + C, (x \neq 0)$
14	$\int \frac{dx}{\sqrt{1-x^2}} = \begin{cases} \arcsin x + C, & x < 1, \\ -\arccos x + C, & x < 1 \end{cases}$
15	$\int \frac{dx}{\sqrt{x^2 \pm 1}} = \ln \left x + \sqrt{x^2 \pm 1} \right + C, \text{ (в случае знака «-» } x > 1)$
16	$\int \frac{dx}{1+x^2} = \begin{cases} arctgx + C, \\ -arcctgx + C \end{cases}$
	$\int \frac{1}{1+x^2} = \left(-arcctgx + C\right)$

$$\int \frac{dx}{x^2 - 1} = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C, \quad |x| \neq 1$$

Примеры решения задач

Следующие интегралы находятся непосредственным интегрированием:

Пример 1.1.

$$\int \left(5x^6 + \frac{3}{x^2} + \frac{6}{x} + \frac{2}{\sqrt{x}} + 7\sin 2x\right) dx = 5\int x^6 dx + 3\int x^{-2} dx + 6\int \frac{dx}{x} + 4\int \frac{dx}{2\sqrt{x}} + 4\int \sin x d\sin x = \frac{5}{7}x^7 - \frac{3}{x} + 6\ln|x| + 4\sqrt{x} + 7\sin^2 x + C.$$

Пример 1.2.

$$\int \frac{\left(+\sqrt{x}\right)^{3}}{\sqrt[3]{x}} dx = \int \frac{1+3\sqrt{x}+3x+\sqrt{x^{3}}}{\sqrt[3]{x}} dx = \int x^{-1/3} dx + 3\int x^{1/6} dx + 3\int x^{2/3} dx + 4\int x^{7/6} dx = \frac{3}{2}x^{2/3} + \frac{18}{7}x^{7/6} + \frac{9}{5}x^{5/3} + \frac{6}{13}x^{13/6} + C.$$

Пример 1.3.

$$\int (2x+3)^{26} dx = \frac{1}{2} \int (2x+3)^{26} d(2x+3) = \frac{(2x+3)^{27}}{54} + C.$$

<u>Пример 1.4.</u>

$$\int \frac{dx}{x^4 + x^2} = \int \frac{dx}{x^2 (x^2 + 1)} = \int \frac{x^2 + 1 - x^2}{x^2 (x^2 + 1)} dx = \int \frac{dx}{x^2} - \int \frac{dx}{x^2 + 1} = -\frac{1}{x} - arctgx + C.$$

Пример 1.5.

$$\int \frac{1}{\sqrt{x+1} - \sqrt{x}} dx = \int \frac{\sqrt{x+1} + \sqrt{x}}{\left(\sqrt{x+1} - \sqrt{x}\right)\left(\sqrt{x+1} + \sqrt{x}\right)} dx = \int \left(\sqrt{x+1} + \sqrt{x}\right) dx = \int \sqrt{x+1} dx + \int \sqrt{x} dx = \int (x+1)^{1/2} dx + \int x^{1/2} dx = \frac{2}{3} (x+1)^{3/2} + \frac{2}{3} x^{3/2} + C.$$

<u>Пример 1.6.</u>

$$\int a^{x}e^{x}dx = \int (ae)^{x} dx = \frac{(ae)^{x}}{\ln(ae)} + C = \frac{a^{x}e^{x}}{\ln a + 1} + C, \quad a > 0.$$

<u>Пример 1.7.</u>

$$\int \frac{5 - \ln x}{x} dx = -\int (5 - \ln x) d(5 - \ln x) = -\frac{1}{2} (5 - \ln x)^2 + C.$$

Пример 1.8.

$$\int tg^{2}xdx = \int (1 + tg^{2}x - 1)dx = \int \left(\frac{1}{\cos^{2}x} - 1\right)dx = tgx - x + C.$$

<u>Пример 1.9.</u>

$$\int \frac{dx}{x^2 + 4x + 11} = \int \frac{dx}{x^2 + 4x + 4 + 7} = \int \frac{d(x+2)}{(x+2)^2 + 7} = \frac{1}{\sqrt{7}} \int \frac{d(x+2)/\sqrt{7}}{1 + (x+2)/\sqrt{7}} = \frac{1}{\sqrt{7}} \int \frac{d(x+2)}{1 + (x+2)/\sqrt{7}} = \frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7}} = \frac{1}{\sqrt$$

$$=\frac{1}{\sqrt{7}}arctg\,\frac{x+2}{\sqrt{7}}+C.$$

Пример 1.10.

$$\int \frac{dx}{4 - x^2 - 4x} = \int \frac{d(x+2)}{8 - (x+2)^2} = \frac{1}{\sqrt{8}} \int \frac{d[(x+2)\sqrt{8}]}{1 - [(x+2)/\sqrt{8}]^2} = \frac{1}{2\sqrt{8}} \ln \left| \frac{1 + (x+2)/\sqrt{8}}{1 - (x+2)/\sqrt{8}} \right| + C = \frac{1}{4\sqrt{2}} \ln \left| \frac{2\sqrt{2} + (x+2)}{2\sqrt{2} - (x+2)} \right| + C.$$

Пример 1.11.

$$\int 7\sin^2\frac{x}{2}dx = 7\int \sin^2\frac{x}{2}dx = 7\int \frac{1-\cos x}{2}dx = \frac{7}{2}\int dx - \frac{7}{2}\int \cos x dx = \frac{7}{2}x - \frac{7}{2}\sin x + C.$$

<u>Пример. 1.12.</u>

$$\int \frac{x^2}{4 - x^2} dx = \int \frac{x^2 - 4 + 4}{4 - x^2} dx = \int \left(-1 + \frac{4}{4 - x^2} \right) dx =$$

$$= -\int dx + 4 \int \frac{dx}{4 - x^2} = -x - 4 \frac{1}{2 \cdot 2} \ln \left| \frac{x - 2}{x + 2} \right| + C = -x - \ln \left| \frac{x - 2}{x + 2} \right| + C.$$

Занятие второе

Тема: «ИНТЕГРИРОВАНИЕ ПОДСТАНОВКОЙ (ЗАМЕНОЙ ПЕРЕМЕН-НОЙ). ИНТЕГРИРОВАНИЕ ПО ЧАСТЯМ»

Основные теоретические сведения

В основе интегрирования подстановкой (заменой переменной) лежит свойство инвариантности формул интегрирования, определяемое теоремой:

<u>Следствие.</u> Имеет место равенство:

$$\int g(t)dx = \int f\left[\varphi(t)\right]d\varphi(t) = \int f(x)dx\Big|_{x=\varphi(t)} = \left[F(x) + C\right]\Big|_{x=\varphi(t)}, \qquad (2.1)$$

которое называется формулой интегрирования подстановкой, она применяется, если последний интеграл проще (в смысле отыскания) исходного;

$$\int f(x)dx = \int f\left[\varphi(t)\right]d\varphi(t)\Big|_{t=\varphi^{-1}(x)} = \left[F\left(\varphi(t)\right) + C\right]\Big|_{t=\varphi^{-1}(x)}; \tag{2.2}$$

это равенство называется формулой интегрирования заменой переменной (здесь $\varphi^{-1}(x)$ – функция, обратная строго монотонной функции $\varphi(t)$), она применяется, если последний интеграл проще (в смысле отыскания) исходного.

В основе интегрирования по частям лежит формула интегрирования по частям, определяемая теоремой:

Теорема 2.2. Пусть функции u(x) и v(x) непрерывны на промежутке X, дифференцируемы в его внутренних точках и на этом промежутке существует интеграл $\int v(x)u'(x)dx$ (т.е. функция v(x)u'(x) имеет первообразную на X).

Тогда на X существует интеграл $\int u(x)v'(x)dx$, причем

$$\int u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx.$$

Это равенство называется формулой интегрирования по частям.

Обычно эту формулу записывают в виде

$$\int u dv = uv - \int v du . \tag{2.3}$$

Применение формулы (2.3) целесообразно в тех случаях, когда подынтегральное выражение f(x)dx удается представить в виде произведения двух множителей u и dv таким образом, чтобы интегрирование выражений dv и vdu явилось задачей более простой, чем интегрирование исходного выражения.

При этом в качестве u берется функция, которая при дифференцировании упрощается, а в качестве dv берется та часть подынтегрального выражения, в которую входит dx и интеграл от которой известен или может быть найден. Так, при нахождении интегралов вида $\int P(x)e^{\alpha x}dx$, $\int P(x)\sin axdx$, $\int P(x)\cos axdx$ за u следует принять P(x) – целый относительно x многочлен, а за dv – соответственно выражения $e^{\alpha x}dx$, $\sin axdx$, $\cos axdx$; при отыскании интегралов вида $\int P(x)e^{\alpha x}dx$, $\int P(x)\arcsin xdx$, $\int P(x)\arccos xdx$ за u принимаются соответственно функции $\ln x$, $\arcsin x$, $\arccos x$, a за dv выражение P(x)dx.

$$u(x), v(x) : \exists u'(x), v'(x) \Rightarrow \int u dv = uv - \int v du$$

$$\int P_n(x) \begin{bmatrix} \text{показательн. } \phi. \\ \text{тригонометр. } \phi. \end{bmatrix} dx \Rightarrow P_n(x) = u(x)$$

$$\int P_n(x) \begin{bmatrix} \text{логарифмические } \phi. \\ \text{обратные тригоном. } \phi. \end{bmatrix} dx \Rightarrow P_n(x) dx = dv(x)$$

$$I = \int e^{dx} \begin{bmatrix} \sin \beta x \\ \cos \beta x \end{bmatrix} dx \Rightarrow \text{решаем уравнение}$$
относительно I
(3)

Иногда для нахождения интеграла формулу интегрирования по частям применяют несколько раз.

Примеры решения задач

Пример 2.1.

$$\int \frac{x dx}{\left(x-1\right)^5}, \ x \neq 1.$$

<u>Решение.</u> Положим x-1=t, тогда x=t+1, dx=dt. Следовательно,

$$\int \frac{xdx}{(x-1)^5} = \int \frac{(x-1+1)d(x-1)}{(x-1)^5} = \int \frac{d(x-1)}{(x-1)^4} + \int \frac{d(x-1)}{(x-1)^5} = \int \frac{dt}{t^4} + \int \frac{dt}{t^5} = \int t^{-4}dt + \int t^{-5}dt = -\frac{1}{3t^3} - \frac{1}{4t^4} + C.$$

Теперь остается перейти к переменной х. Окончательно получаем

$$\int \frac{xdx}{(x-1)^5} = -\frac{1}{3(x-1)^3} - \frac{1}{4(x-1)^4} + C.$$

Пример 2.2.

$$\int \frac{dx}{x\sqrt{1-x^3}}.$$

Решение.

Положим
$$1-x^3=t^2$$
, тогда $x=\left(1-t^2\right)^{1/3}$, $dx=-\frac{2}{3}\frac{tdt}{\sqrt[3]{\left(1-t^2\right)^2}};$
$$\int \frac{dx}{x\sqrt{1-x^3}}=-\frac{2}{3}\int \frac{tdt}{\left(1-t^2\right)^{1/3}t\left(1-t^2\right)^{2/3}}=\frac{2}{3}\int \frac{dt}{t^2-1}=\frac{1}{3}\ln\left|\frac{t-1}{t+1}\right|+C\;,$$

где $t = \sqrt{1-x^3}$.

Пример 2.3.

$$\int \frac{\sin x + \cos x}{\sqrt[5]{\sin x - \cos x}} dx.$$

Решение.

$$\int \frac{\sin x + \cos x}{\sqrt[5]{\sin x - \cos x}} dx = \int (\sin x - \cos x)^{-1/5} d(\sin x - \cos x) = \frac{5}{4} (\sin x - \cos x)^{4/5} + C.$$

<u>Пример 2.4.</u>

$$\int xe^{2x}dx.$$

Решение. Применим формулу (2.3) интегрирования по частям. Положим

$$u = x$$
, $dv = e^{2x}dx = d\left(\frac{e^{2x}}{2}\right)$,

тогда

$$du = dx, \quad v = \frac{1}{2}e^{2x}.$$

Следовательно,

$$\int xe^{2x}dx = \int sd\left(\frac{1}{2}e^{2x}\right) = x \cdot \frac{1}{2}e^{2x} - \int \frac{1}{2}e^{2x}dx = \frac{xe^{2x}}{2} - \frac{e^{2x}}{4} + C.$$

Пример 2.5.

$$\int x^6 \ln x dx .$$

Решение. Применим формулу (2.3) интегрирования по частям. Положим

$$u = \ln x$$
, $dv = x^6 dx = d\left(\frac{x^7}{7}\right)$,

тогда

$$du = \frac{dx}{x}, \quad v = \frac{x^7}{7}.$$

Следовательно,

$$\int x^{6} \ln x dx = \int \ln x d \left(\frac{x^{7}}{7} \right) = (\ln x) \cdot \frac{x^{7}}{7} - \int \frac{x^{7}}{7} \cdot \frac{dx}{x} =$$

$$= \frac{x^{7}}{7} \ln x - \frac{1}{7} \int x^{6} dx = \frac{x^{7}}{7} \ln x - \frac{1}{7} \cdot \frac{1}{7} x^{7} + C = \frac{x^{7}}{7} \left(\ln x - \frac{1}{7} \right) + C.$$

<u>Пример 2.6.</u>

$$\int e^{ax} \cos bx dx, \int e^{ax} \sin bx dx.$$

<u>Решение.</u> Применим формулу (2.3) интегрирования по частям к первому интегралу. Положим

$$u = e^{ax}, dv = \cos bx dx = d\left(\frac{1}{b}\sin bx\right),$$

тогда

$$du = ae^{ax}, \quad v = \frac{1}{h}\sin bx.$$

Следовательно,

$$\int e^{ax} \cos bx dx = \int e^{ax} d\left(\frac{1}{b}\sin bx\right) = e^{ax} \frac{1}{b}\sin bx - \frac{a}{b} \int e^{ax} \sin bx dx. \tag{2.4}$$

К последнему интегралу в (2.4) вновь применим формулу интегрирования по частям:

$$u = e^{ax}, dv = \sin bx dx = d\left(-\frac{1}{b}\cos bx\right), du = ae^{ax}, v = -\frac{1}{b}\cos bx,$$
$$\int e^{ax}\sin bx = -\frac{1}{b}e^{ax}\cos bx + \frac{a}{b}\int e^{ax}\cos bx dx.$$

Подставляя полученное для $\int e^{ax} \sin bx dx$ выражение в равенство (2.4), получим

$$\int e^{ax} \cos bx dx = \frac{1}{b} e^{ax} \sin bx + \frac{a}{b^2} e^{ax} \cos bx - \frac{a^2}{b^2} \int e^{ax} \cos bx dx.$$

Из этого равенства найдем

$$\left(1 + \frac{a^2}{b^2}\right) \int e^{ax} \cos bx dx = e^{ax} \left(\frac{1}{b} \sin bx + \frac{a^2}{b^2} \cos bx\right),$$

откуда

$$\int e^{ax} \cos bx dx = \frac{e^{ax} \left(b \sin bx + a \cos bx \right)}{a^2 + b^2} + C.$$

Аналогично находим

$$\int e^{ax} \sin bx dx = \frac{e^{ax} \left(a \sin bx - b \cos bx \right)}{a^2 + b^2} + C.$$

<u>Пример 2.7.</u>

$$J = \int \sqrt{a^2 + x^2} dx.$$

Решение.

$$u = \sqrt{a^2 + x^2}, \quad dv = dx \Rightarrow du = \frac{xdx}{\sqrt{a^2 + x^2}}, \quad v = x,$$

$$J = x\sqrt{a^2 + x^2} - \int \frac{x^2dx}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2 + a^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 +$$

Занятие третье

Тема: «ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ АЛГЕБРАИЧЕСКИХ ФУНКЦИЙ»

Основные теоретические сведения

3.1. Интегрирование целых рациональных функций

Интегрирование целой рациональной функции производится непосредственно

$$\int P_m(x)dx = \int (a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0) dx =$$

$$= \frac{a_m}{m+1} x^{m+1} + \frac{a_{m-1}}{m} x^m + \dots + a_0 x + C.$$

3.2. Интегрирование рациональных дробей

Интегрирование произвольной рациональной дроби

$$\frac{P_{m(x)}}{Q_n(x)} = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0}$$

с произвольными действительными коэффициентами производится следующим образом:

Если $m \ge n$, т.е. исходная дробь $P_m(x)/Q_n(x)$ — неправильная, то делением $P_m(x)$ на $Q_n(x)$ «уголком» из нее можно выделить целую часть, т.е.

$$\frac{P_{m(x)}}{Q_n(x)} = M_{m-n}(x) + \frac{P_{k(x)}}{Q_n(x)},$$

где $M_{m-n}(x)$ и $P_k(x)$ — многочлены степеней $m-n \ge 0$ и k соответственно, причем k < n , т.е. дробь $P_k(x)/Q_n(x)$ — правильная.

В результате интегрирование неправильной рациональной дроби сводится к интегрированию целой рациональной функции (см. п. 3.1) и правильной рациональной дроби $P_k(x)/Q_n(x)$.

В свою очередь, любая правильная рациональная дробь $\frac{P_{m(x)}}{Q_n(x)}$, m < n может быть единым образом представлена в виде суммы простейших рациональных дро-

бей согласно следующей теореме.

Теорема 3.1. Пусть $P_m(x)/Q_n(x)$ – правильная рациональная дробь (m < n), а разложение многочлена $Q_n(x)$ на произведение вещественных неприводимых множителей имеет вид

$$Q_{n}(x) = (x - a_{1})^{k_{1}} \cdot (x - a_{2})^{k_{2}} \dots (x - a_{s})^{k_{s}} \times (x^{2} + p_{1}x + q_{1})^{\ell_{1}} \cdot (x^{2} + p_{2}x + q_{2})^{\ell_{2}} \dots (x^{2} + p_{\nu}x + q_{\nu})^{\ell_{\nu}},$$

где $a_1,a_2,...a_s$ — вещественные корни; $k_1,k_2,...k_s$ — их кратности, $\left(x^2+p_1x+q_1\right)^{\ell_1},\left(x^2+p_2x+q_2\right)^{\ell_2},...,\left(x^2+p_vx+q_v\right)^{\ell_v}$ — квадратные трехчлены, не разложимые на вещественные множители,

$$p_{1} = -(c_{1} + \overline{c}_{1}) = -2\alpha_{1}, \quad q_{1} = c_{1}\overline{c}_{1} = \alpha_{1}^{2} + \beta_{1}^{2}, ...,$$

$$p_{v} = -(c_{v} + \overline{c}_{v}) = -2\alpha_{v}, \quad q_{v} = c_{v}\overline{c}_{v} = \alpha_{v}^{2} + \beta_{v}^{2}, ...;$$

$$\begin{split} \frac{P_m(x)}{Q_n(x)} &= \frac{A_{k_1}^{(1)}}{\left(x - a_1\right)^{k_1}} + \frac{A_{k_1 - 1}^{(1)}}{\left(x - a_1\right)^{k_1 - 1}} + \dots + \frac{A_1^{(1)}}{\left(x - a_1\right)} + \dots + \\ &\quad + \frac{A_{k_s}^{(s)}}{\left(x - a_s\right)^{k_s}} + \frac{A_{k_s - 1}^{(s)}}{\left(x - a_s\right)^{k_s - 1}} + \dots + \frac{A_1^{(s)}}{\left(x - a_s\right)} + \\ &\quad + \frac{M_{\ell_1}^{(1)} x + N_{\ell_1}^{(1)}}{\left(x^2 + p_1 x + q_1\right)^{\ell_1}} + \frac{M_{\ell_1 - 1}^{(1)} x + N_{\ell_1 - 1}^{(1)}}{\left(x^2 + p_1 x + q_1\right)^{\ell_1 - 1}} + \dots + \frac{M_1^{(1)} x + N_1^{(1)}}{\left(x^2 + p_1 x + q_1\right)} + \\ &\quad + \dots + \frac{M_{\ell_v}^{(v)} x + N_{\ell_v}^{(v)}}{\left(x^2 + p_v x + q_v\right)^{\ell_v}} + \frac{M_{\ell_v - 1}^{(v)} x + N_{\ell_v - 1}^{(v)}}{\left(x^2 + p_v x + q_v\right)^{\ell_v - 1}} + \dots + \frac{M_1^{(v)} x + N_1^{(v)}}{\left(x^2 + p_v x + q_v\right)}. \end{split}$$

Само тождество (3.1) называется формулой разложения правильной рациональной дроби $P_m(x)/Q_n(x)$ на сумму простейших дробей с вещественными коэффициентами.

Коэффициенты $A_{k_1}^{(1)},...,N_1^{(\nu)}$ разложения (3.1) определяются путем приравнивая коэффициентов при одинаковых степенях x у многочлена $P_m(x)$ и многочлена, ко-

торый получается в числителе правой части (3.1) после приведения ее к общему знаменателю (метод неопределенных коэффициентов). Можно так же определять эти коэффициенты, полагая в (3.1) (или ему эквивалентном) x равным подходяще подобранным числам (в первую очередь, значениям действительных корней знаменателя $P_n(x)$).

Формула разложения (3.1) показывает, что интегрирование произвольной правильной рациональной дроби сводится к интегрированию простейших дробей следующих четырех типов:

I.
$$\frac{A}{x-a}$$
.

II.
$$\frac{A}{(x-a)^n}$$
, где n – целое число, $n > 1$.

III. $\frac{Mx+N}{x^2+px+q}$, где $\frac{p^2}{4}-q<0$, т.е. квадратный трехчлен не имеет действительных корней.

IV.
$$\frac{Mx + N}{\left(x^2 + px + q\right)^n}$$
, где n – целое число, $\frac{p^2}{4} - q < 0$.

Интегрирование простейших дробей производится следующим образом:

I.
$$\int \frac{Adx}{x-a} = A \ln |x-a| + C.$$

II.
$$\int \frac{Adx}{(x-a)^n} = -\frac{A}{(n-1)(x-a)^{n-1}} + C, \quad n \neq 1.$$

III.
$$\int \frac{Mx+N}{x^2+px+q} dx = \frac{M}{2} \int \frac{2x+p}{x^2+px+q} dx + \left(N - \frac{Mp}{2}\right) \int \frac{dx}{x^2+px+q} =$$
$$= \frac{M}{2} \ln\left|x^2+px+q\right| + \left(N - \frac{Mp}{2}\right) \int \frac{dx}{\left(x+p/2\right)^2+q-p^2/4} =$$

$$= \frac{M}{2} \ln \left| x^2 + px + q \right| + \frac{N - (Mp)/2}{\sqrt{q - p^2/4}} \operatorname{arctg} \frac{x + p/2}{\sqrt{q - p^2/4}} + C.$$

IV.
$$\int \frac{Mx + N}{(x^2 + px + q)^n} dx = \frac{M}{2} \int \frac{(x + p)dx}{(x^2 + px + q)^n} + \left(N - \frac{Mp}{2}\right) \int \frac{dx}{(x^2 + px + q)^n} = \frac{Mp}{2} \int \frac{dx}{(x^2 + px + q)^n} dx$$

$$= \frac{M}{2} \frac{\left(x^2 + px + q\right)^{1-n}}{1-n} + \left(N - \frac{Mp}{2}\right) \int \frac{dx}{\left[\left(x + p/2\right)^2 + q - p^2/4\right]^n}, \ n > 1.$$

Последний интеграл подстановкой

$$x + \frac{p}{2} = t$$
, $q - \frac{p^2}{4} = a^2$

сводится к интегралу

$$J_n = \int \frac{dt}{\left(t^2 + a^2\right)^n} \,.$$

С помощью формулы интегрирования по частям (положив $u = \frac{1}{\left(x^2 + a^2\right)^n}$,

 $dv=dx,\; a\neq 0\,)$ для $J_{\scriptscriptstyle n}$ может быть получена рекуррентная формула

$$J_{n+1} = \frac{1}{2na^2} \left[\frac{x}{\left(x^2 + a^2\right)^n} + \left(2n - 1\right) J_n \right]. \tag{3.2}$$

Так как

$$J_1 = \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C,$$

то, положив в полученной формуле n=1, можно найти \boldsymbol{J}_2 . Зная \boldsymbol{J}_2 , можно найти \boldsymbol{J}_3 и т.д.

Метод Остроградского.

Если знаменатель правильной рациональной дроби P(x)/Q(x) имеет кратные корни, особенно комплексные, то интегрирование такой дроби обычно связано с громоздкими выкладками. В этом случае целесообразно пользоваться следующей формулой Остроградского:

$$\int \frac{P(x)}{Q(x)} dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} dx.$$
 (3.3)

В этой формуле $Q_2(x)$ – многочлен, имеющий те же корни, что и многочлен Q(x), но все корни многочлена $Q_2(x)$ – простые (однократные). Многочлен $Q_1(x)$ есть частное от деления многочлена Q(x) на многочлен $Q_2(x)$, т.е. $Q_1(x) = Q(x)/Q_2(x)$, а $P_1(x)$ и $P_2(x)$ – это некоторые многочлены, степени которых соответственно меньше степеней многочленов $Q_1(x)$ и $Q_2(x)$. Если корни многочлена Q(x) известны, то тем самым известны многочлены $Q_1(x)$ и $Q_2(x)$. Для отыскания многочленов $P_1(x)$ и $P_2(x)$ их записывают с неопределенными коэффициентами, которые находят после дифференцирования обеих частей формулы (3.3). Если $P_2(x) \not\equiv 0$, то, т.к. корни многочлена $Q_2(x)$ простые, интеграл $\int P_2(x)/Q_2(x) dx$ есть функция трансцендентная. В связи с этим второе слагаемое в формуле Остроградского называют трансцендентной частью интеграла $\int P(x)/Q(x) dx$, а первое слагаемое — его рациональной частью.

Примеры решения задач

Пример 3.1.

$$J = \int \frac{x^4 - 3x^2 - 3x - 2}{x^3 - x^2 - 2x} dx.$$

<u>Решение.</u> Подынтегральная функция вида $\frac{P_4(x)}{Q_3(x)}$ – неправильная дробь. Выделим целую часть

$$\frac{x^4 - 3x^2 - 3x - 2}{x^3 - x^2 - 2x} = \frac{x(x^3 - x^2 - 2x) + (x^3 - x^2 - 2x) - x - 2}{x^3 - x - 2x} =$$

$$= x + 1 - \frac{x + 2}{x^3 - x^2 - 2x}.$$

$$J = \int (x + 1) dx - \int \frac{x + 2}{x(x - 2)(x + 1)} dx *$$

$$\frac{x + 2}{x(x - 2)(x + 1)} = \frac{A}{x} + \frac{B}{x - 2} + \frac{D}{x + 1} = \frac{A(x - 2)(x + 1) + Bx(x + 1) + Dx(x - 2)}{x(x - 2)(x + 1)}.$$

Приравнивая числители левой и правой дробей

$$x+2=A(x-2)(x+1)+Bx(x+1)+Dx(x-2)$$
,

методом частных значений находим коэффициенты A, B, D:

$$x = 0$$
 $\begin{vmatrix} 2 = -2A, \\ x = -1 \\ x = 2 \end{vmatrix}$ $\begin{vmatrix} 1 = 3D, \\ 4 = 6B. \end{vmatrix}$ $A = -1, B = 2/3, D = 1/3,$

$$J = \int (x+1)dx + \int \frac{dx}{x} - \frac{2}{3} \int \frac{dx}{x-2} - \frac{1}{3} \int \frac{dx}{x+1} = \frac{(x+1)^2}{2} + \ln|x| - \frac{2}{3} \ln|x-2| - \frac{1}{3} \ln|x+1| + C = \frac{(x+1)^2}{2} + \ln\left|\frac{x}{\sqrt[3]{(x-2)^2(x+1)}}\right| + C.$$

Пример 3.2.

$$\int \frac{dx}{x^4 - 1}.$$

Решение.

$$\frac{1}{x^4 - 1} = \frac{1}{(x^2 + 1)(x - 1)(x + 1)}, \quad \frac{1}{x^4 - 1} = \frac{Ax + B}{x^2 + 1} + \frac{D}{x - 1} + \frac{E}{x + 1} =$$

$$= \frac{(Ax + B)(x^2 - 1) + D(x + 1) + E(x - 1)(x^2 + 1)}{x^4 - 1},$$

$$x = 1 \begin{vmatrix} 1 = 4D, \\ x = -1 \end{vmatrix} = -4E,$$

$$x = i \begin{vmatrix} 1 = -4E, \\ 1 = (Ai + B)(-2) = -2B - 2Ai \Rightarrow 1 = -2B, \quad 0 = -2A.$$

$$A = 0, \quad B = -\frac{1}{2}, \quad C = \frac{1}{4}, \quad D = -\frac{1}{4}.$$

$$\int \frac{dx}{x^4 - 1} = -\frac{1}{2} \int \frac{dx}{x^2 + 1} + \frac{1}{4} \int \frac{dx}{x - 1} - \frac{1}{4} \int \frac{dx}{x + 1} = -\frac{1}{2} \operatorname{arctg} x + \frac{1}{4} \ln \left| \frac{x - 1}{x + 1} \right| + C.$$

$$\Pi pumep 3.3.$$

$$\int \frac{3x+2}{x(x+1)^3} dx.$$

<u>Решение.</u> Корни знаменателя $x_1 = 0$ и $x_2 = -1$, второй корень имеет кратность 3:

$$\frac{3x+2}{x(x+1)^3} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{(x+1)^2} + \frac{D}{(x+1)^3} =$$

$$= \frac{A(x+1)^3 + Bx(x+1)^2 + Cx(x+1) + Dx}{x(x+1)^3}.$$

$$x = 0 x = -1 x^{3} x^{2} 0 = A + B x^{2} 0 = 3A + 2B + C, \int \frac{3x + 2}{x(x+1)^{3}} dx = 2\int \frac{dx}{x} - 2\int \frac{dx}{x+1} - 2\int \frac{dx}{(x+1)^{2}} + \int \frac{dx}{(x+1)^{3}} = 2\ln|x| - 2\ln|x + 1| + \frac{2}{x+1} - \frac{1}{2(x+1)^{2}} + C.$$

Пример 3.4.

$$\int \frac{x^3+3}{(x+1)(x^2+1)^2} dx.$$

Решение.

$$\frac{x^3+3}{(x+1)(x^2+1)^2} = \frac{A}{x+1} + \frac{Bx+C}{x^2+1} + \frac{Dx+E}{(x^2+1)^2} =$$

$$= \frac{A(x^2+1)^2 + (Bx+C)(x+1)(x^2+1) + (Dx+E)(x+1)}{(x+1)(x^2+1)^2}.$$

Найдем коэффициенты, комбинируя метод частных значений и метод сравнения коэффициентов:

Для вычисления $\int dx/(x^2+1)^2$ применим формулу (3.2)

$$J = \frac{1}{2} \ln |x+1| - \frac{1}{4} \ln (x^2+1) + \frac{1}{x^2+1} + \frac{x}{2(x^2+1)} + \frac{1}{2} \arctan x + C.$$

<u>Пример 3.5.</u>

$$\int \frac{x^2 + x + 1}{x^5 - 2x^4 + x^3} dx.$$

Решение. Применим формулу Остроградского (3.3):

$$\int \frac{x^2 + x + 1}{x^5 - 2x^4 + x^3} dx = \int \frac{x^2 + x + 1}{x^3 (x - 1)^2} dx = \frac{Ax^2 + Bx + C}{x^2 (x - 1)} + \int \frac{Dx + E}{x (x - 1)} dx.$$

Дифференцируем последнее равенство:

$$\frac{x^2+x+1}{x^3(x-1)^2} = \frac{(2Ax+B)x(x-1)-(Ax^2+Bx+C)(3x-2)}{x^3(x-1)^2} + \frac{Dx+E}{x(x-1)}dx,$$

приводя выражение в правой части дроби к общему знаменателю и, приравнивая числители дробей левой и правой частей, получим тождество

$$x^{2} + x + 1 = Dx^{4} + (-A + E - D)x^{3} - (2B + E)x^{2} + (B - 3C)x + 2C$$

которое справедливо при

$$A = -6, \ B = \frac{5}{2}, \ C = \frac{1}{2}, \ D = 0, \ E = -6;$$

$$-6\int \frac{dx}{x(x-1)} = -6\int \left(-\frac{1}{x} + \frac{1}{x-1}\right) dx = -6\left(-\ln|x| + \ln|x-1|\right) + C;$$

$$\int \frac{x^2 + x + 1}{x^5 - 2x^4 + x^3} dx = -\frac{12x^2 - 5x + 1}{2x^2(x-1)} - 6\ln\left|\frac{x-1}{x}\right| + C.$$

Занятие четвертое

Тема: «ИНТЕГРИРОВАНИЕ ВЫРАЖЕНИЙ, СОДЕРЖАЩИХ ИРРАЦИОНАЛЬНЫЕ ФУНКЦИИ (РАДИКАЛЫ)»

Основные теоретические сведения

4.1. Интегралы вида $\int R(x,x^{p_1},x^{p_2},...,x^{p_n})$, где R — рациональная функция, $n\in N,\ p_1,p_2,...,p_n\in Q$, т.е. $p_1=m_1/n_1,\ p_2=m_2/n_2,...,\ p_1=m_\ell/n_\ell$ — дробные рациональные числа, сводятся к интегралам от рациональной алгебраической функции вида $\int R_1(t)dt$ с помощью подстановки $x=t^s$, где s — общий знаменатель дробей $p_1,p_2,...,p_n$.

4.2. Интегралы более общего вида

$$\int R \left[x, \left(\frac{\alpha x + \beta}{\gamma x + \delta} \right)^{p_1}, \left(\frac{\alpha x + \beta}{\gamma x + \delta} \right)^{p_2}, \dots, \left(\frac{\alpha x + \beta}{\gamma x + \delta} \right)^{p_n} \right] dx,$$

где $n \in N, p_1, p_2, ..., p_n \in Q, \alpha, \beta, \gamma, \delta \in R, \alpha\delta - \gamma\beta \neq 0$ сводятся к интегралам от рациональной алгебраической функции вида $\int R_1(t)dt$ с помощью подстановки

 $\frac{\alpha x + \beta}{\gamma x + \delta} = t^s$, (здесь s – общий знаменатель дробей $p_1, p_2, ..., p_n$).

4.3. Интегралы вида $\int R(x, \sqrt{ax^2 + bx + c}) dx$, $a \neq 0$, $b^2 - 4ac \neq 0$, сводятся к интегралам от рациональных алгебраических функций вида $\int R_1(t) dt$ подстановками Эйлера (L.Euler):

$$\sqrt{ax^2 + bx + c} = \pm \sqrt{ax} \pm t$$
, если $a > 0$ (первая подстановка);

$$\sqrt{ax^2 + bx + c} = \pm xt \pm \sqrt{c}$$
, если $c > 0$ (вторая подстановка).

В случае же, когда корни квадратного трехчлена $ax^2 + bx + c$ вещественны и различны, имеет место третья подстановка:

$$\sqrt{ax^2 + bx + c} = \pm (x - x_1)t$$
 или $\sqrt{ax^2 + bx + c} = \pm (x - x_2)t$,

где x_1 и x_2 — указанные корни квадратного трехчлена.

Знаки в правых частях равенств можно брать в любых комбинациях.

Отметим, что для нахождения любого интеграла вида п. 4.3. достаточно первой и третьей подстановок.

Подстановки Эйлера часто приводят к громоздким выкладкам. Укажем поэтому другой способ нахождения интегралов вида п. 4.3. Подынтегральную функцию $\int R\left(x,\sqrt{ax^2+bx+c}\right)$ алгебраическими преобразованиями всегда можно представить в виде суммы

$$\frac{R_1(x)}{\sqrt{ax^2+bx+c}}+R_2(x),$$

где $R_1(x)$ и $R_2(x)$ – рациональные дроби. Тем самым интеграл вида п. 4.3. можно свести к интегралу от рациональной дроби $R_2(x)$ и к интегралу вида

$$\int \frac{R_1(x)dx}{\sqrt{ax^2+bx+c}}.$$

Представив рациональную дробь $R_1(x)$ в виде суммы многочлена $P_n(x)$ и элементарных дробей, приходим к интегралам следующих трех видов:

$$\int \frac{P_n(x)dx}{\sqrt{ax^2 + bx + c}},\tag{4.1}$$

$$\int \frac{dx}{\left(x-\alpha\right)^k \sqrt{ax^2 + bx + c}} \tag{4.2}$$

$$\int \frac{(Mx+N)dx}{(x^2+px+q)^{\ell}\sqrt{ax^2+bx+c}}, \ p^2-4q<0$$
 (4.3)

Для вычисления интеграла (4.1) удобно пользоваться формулой

$$\int \frac{P_n(x)dx}{\sqrt{ax^2 + bx + c}} = Q(x)\sqrt{ax^2 + bx + c} + \lambda \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$
(4.4)

где Q(x) – многочлен степени не выше, чем n-1, а λ - некоторое число.

Дифференцируя тождество (4.4) и умножая на $\sqrt{ax^2 + bx + c}$, получаем равенство многочленов, из которого находим λ и коэффициенты многочлена Q(x).

Интеграл в правой части тождества (4.4) линейной подстановкой

$$\sqrt{\frac{a}{c-b^2/(4a)}} \cdot \left(x + \frac{b}{2a}\right) = t$$

сводится к табличным (№ 14, 15 — таблицы основных неопределенных интегралов). Отметим, что предварительно в трехчлене $ax^2 + bx + c$ выделяют полный квадрат, т.е. приводят его в виду $a(x+b/(2a))^2 + c - b^2/(4a)$. Таким образом, полученный интеграл является трансцендентной функцией.

Формула (4.4) позволяет чисто алгебраическим путем найти алгебраическую часть $Q(x)\sqrt{ax^2+bx+c}$ интеграла (4.1).

Интеграл (4.2) подстановкой $1/(x-\alpha)=t$ сводится к интегралу (4.1).

Интеграл (4.3) в случае, когда квадратные трехчлены $ax^2 + bx + c$, $x^2 + px + q$ совпадают или отличаются только множителем, следует представить в виде линейной комбинации двух интегралов

$$\int \frac{(2x+p)dx}{(x^2+px+q)^{\frac{2\ell+1}{2}}} \ \text{M} \int \frac{dx}{(x^2+px+q)^{\frac{2\ell+1}{2}}}.$$

Первый из этих интегралов берется подстановкой $x^2 + px + q = t$, второй подстановкой Абеля

$$\left(\sqrt{x^2 + px + q}\right)' = \frac{2x + p}{2\sqrt{x^2 + px + q}} = u$$

сводится к интегралу от многочлена.

В общем случае, если $p \neq b/a$, применяется подстановка $x = \frac{\mu t + \nu}{t+1}$, где μ и ν подбираются так, чтобы в квадратных трехчленах $x^2 + px + q$ и $ax^2 + bx + c$ исчезли члены, содержащие t в первой степени. При таком выборе чисел μ и ν интеграл (4.3) сведется к интегралу вида

$$\int \frac{p(t)dt}{\left(t^2+\lambda\right)^{\ell}\sqrt{\alpha t^2+\beta}},$$

где p(t) — многочлен степени $2\ell-1$ и число $\lambda>0$. (Если p=b/a, то уничтожение членов первой степени достигается проще: линейной заменой переменной x=p/2). Разложив произвольную рациональную дробь $p(t)/(t^2+\lambda)^\ell$ на элементарные дро-

би, придем к интегралам

$$\int \frac{tdt}{\left(t^2+\lambda\right)^k \sqrt{\alpha t^2+\beta}}, \int \frac{dt}{\left(t^2+\lambda\right)^k \sqrt{\alpha t^2+\beta}}.$$

Первый интеграл находится подстановкой $u^2 = \alpha t^2 + \beta$, второй подстановкой Абеля

$$\left(\sqrt{\alpha t^2 + \beta}\right)' = \frac{\alpha t}{\sqrt{\alpha t + \beta}} = v.$$
4.4. Интегралы вида
$$\int R\left(x, \sqrt{a^2 - x^2}\right) dx, \qquad \int R\left(x, \sqrt{x^2 + a^2}\right) dx,$$

 $\int R(x,\sqrt{x^2-a^2})dx$, можно свести к интегралам от рациональных функций с помощью тригонометрических или гиперболических подстановок. К первому интегралу применяются подстановки $x = a \sin t$, $x = a \cos t$, x = a th t; ко второму — подстановки $x = a/\cos t$, x = a ch t; и к третьему — подстановки x = a th t.

Отметим, что к интегралам вида п 4.4 можно привести интегралы вида п 4.3. Для этого, выделяют полный квадрат в трехчлене $ax^2 + bx + c$, т.е. приводят его к виду $a(x+b/(2a))^2 + c - b^2/(4a)$, и делают линейную подстановку $\sqrt{|x|}(x+b/(2a)) = t$, что целесообразно, т.к. подстановки Эйлера на практике приводят обычно к громоздким выкладкам.

4.5. Интегралы вида $\int x^m (a+bx^n)^p dx$, где $a,b \in R,m,n,p \in Q$ причем $a \neq 0, b \neq 0, n \neq 0, p \neq 0$, называют интегралами от биноминального дифференциала (дифференциала бинома).

Эти интегралы сводятся к интегралам от рациональных алгебраических функций в следующих трех случаях:

- 1) p целое число. В этом случае применяется подстановка $x = t^s$, где s общий знаменатель дробей m и n;
- 2) (m+1)/n целое число. В этом случае применяется подстановка $a+bx^n=t^s$, где s знаменатель дроби p;
- 3) (m+1)/n+p- целое число. В этом случае применяется подстановка $(a+bx^n)/x^n=t^s$, где s- знаменатель дроби p.

Отметим, что во всех других случаях интегралы от биноминального дифференциала не могут быть выражены через элементарные функции (теорема П.Л. Чебышева).

Примеры решения задач

Пример 4.1.

$$J = \frac{1}{\left(1 - x\right)^2} \sqrt{\frac{1 - x}{1 + x}} dx.$$

Решение.

$$\frac{1-x}{1+x} = t^2 \Rightarrow x = \frac{1-t^2}{1+t^2}, \quad dx = \frac{4tdt}{\left(1+t^2\right)^2}, \quad 1-x = 1 - \frac{1-t^2}{1+t^2} = \frac{2t^2}{1+t^2}.$$

$$J = -\int \frac{\left(1+t^2\right)^2}{4t^4} \cdot t \cdot \frac{4t}{\left(1+t^2\right)^2} dt = -\int \frac{dt}{t^2} = \frac{1}{t} + C = \sqrt{\frac{1+x}{1-x}} + C.$$

Пример 4.2.

$$J = \int \frac{x + \sqrt[3]{x^2} + \sqrt[6]{x}}{x(1 + \sqrt[3]{x})}.$$

<u>Решение.</u> Наименьшее общее кратное показателей радикалов равно 6, поэтому применим подстановку $x = t^6$, $dx = 6t^5 dt$:

$$J = 6 \int \frac{t^6 + t^4 + t}{t^6 (1 + t^2)} t^5 dt = 6 \int \frac{t^5 + t^3 + 1}{1 + t^2} dt = 6 \int \frac{t^3 (t^2 + 1)}{(t^2 + 1)} dt + 6 \int \frac{dt}{t^2 + 1} = \frac{3}{2} t^4 + 6 \operatorname{arct} g t + C = \frac{3}{2} \sqrt[3]{x^2} + 6 \operatorname{arct} g \sqrt[6]{x} + C.$$

<u>Пример 4.3.</u>

$$J = \int \frac{dx}{\left(x^2 + 16\right)\sqrt{9 - x^2}}.$$

Решение.

$$x = 3\sin t, \ dx = 3\cos t dt, \ \sqrt{9 - x^2} = 3\sqrt{1 - \sin^2 t} = 3\cos t, \ \frac{1}{\cos^2 t} = 1 + tg^2 t.$$

$$J = \int \frac{3\cos t dt}{\left(9\sin^2 t + 16\right)3\cos t} = \int \frac{dt}{\cos^2 t} \left(9tg^2 t + 16\frac{1}{\cos^2 t}\right) = \int \frac{dtgt}{25tg^2 t + 16} =$$

$$= \frac{1}{5} \int \frac{d(5tgt)}{5tg^2 t + 16} = \frac{1}{20} arctg\left(\frac{5}{4}tgt\right) + C; \ tgt = \frac{\sin t}{\cos t} = \frac{\sin t}{\sqrt{1 - \sin^2 t}} = \frac{x}{\sqrt{9 - x^2}}$$

$$J = \frac{1}{20} arctg\left(\frac{5x}{4\sqrt{9 - x^2}}\right) + C.$$

Пример 4.4.

$$J = \int \frac{dx}{\left(x^2 + 2\right)\left(\sqrt{x^2 - 1}\right)}.$$

Решение.

1. Применим подстановку $x = 1/\cos t$, $\Rightarrow dx = (\sin t/\cos^2 t)dt$:

$$J = \int \frac{\cos t dt}{1 + 2\cos^2 t} = \int \frac{d\sin t}{3 - 2\sin^2 t} = \frac{1}{2} \int \frac{d\sin t}{\left(\sqrt{\frac{3}{2}}\right)^2 - \sin^2 t} =$$

$$= \frac{\sqrt{2}}{4\sqrt{3}} \ln \left| \frac{\sqrt{3} + \sqrt{2}\sin t}{\sqrt{3} - \sqrt{2}\sin t} \right| + C, \text{ где } \sin t = \sqrt{1 - \cos^2 t} = \frac{\sqrt{x^2 - 1}}{x}.$$

$$J = \frac{\sqrt{6}}{12} \ln \left| \frac{x\sqrt{3} + \sqrt{2(x^2 - 1)}}{x\sqrt{3} - \sqrt{2(x^2 - 1)}} \right| + C.$$

2. Интеграл можно найти с помощью другой подстановки. Положим x = cht, тогда $\sqrt{x^2 - 1} = \sqrt{ch^2t - 1} = sht$, dx = shtdt. Следовательно,

$$J = \int \frac{\sinh tdt}{\left(\cosh^{2}t + 2\right)\sinh t} = \int \frac{dt}{\cosh^{2}t + 2} = \int \frac{dt}{\cosh^{2}t\left(1 + 2 - 2\sinh^{2}t\right)} = \frac{1}{\sqrt{2}} \int \frac{d\left(\sqrt{2}\sinh t\right)}{3 - \left(\sqrt{2}\sinh t\right)^{2}} = \frac{1}{2\sqrt{6}} \ln \left| \frac{\sqrt{3} + \sqrt{2} \sinh}{\sqrt{3} - \sqrt{2} \sinh} \right| + C = \frac{1}{2\sqrt{6}} \ln \left| \frac{\sqrt{3}\cosh t + \sqrt{2}\sinh}{\sqrt{3}\cosh t - \sqrt{2}\sinh} \right| + C,$$

где cht = x, $sht = signt \sqrt{ch^2t - 2} \Rightarrow$

$$\Rightarrow J = \frac{\sqrt{6}}{12} \ln \left| \frac{x\sqrt{3} + \sqrt{2}\sqrt{x^2 - 1}}{x\sqrt{3} - \sqrt{2}\sqrt{x^2 - 1}} \right| + C.$$

Пример 4.5.

$$J = \frac{dx}{\sqrt{x} \left(\sqrt[3]{x} + 1\right)^2}.$$

<u>Решение.</u> $J = \int x^{-\frac{1}{2}} \left(\sqrt[3]{x} + 1\right)^{-2} dx$ — интеграл вида $\int x^m \left(a + bx^n\right)^p dx$, где m = -1/2, n = 1/3, p = -2. Применим подстановку $x = t^6$, $dx = 6t^5 dt$. Следовательно

$$J = \int \frac{6t^5 dt}{t^3 (t^2 + 1)^2} = 6 \int \frac{t^2 + 1 - 1}{(t^2 + 1)^2} dt = 6 \int \frac{dt}{t^2 + 1} - 6 \int \frac{dt}{(t^2 + 1)^2}.$$

Первый интеграл табличный, второй берется по рекуррентной формуле (3.2)

$$J = 6 \arctan t - 6 \left(\frac{1}{2} \cdot \frac{t}{t^2 + 1} + \frac{1}{2} \arctan t \right) + C = 3 \arctan \left(\sqrt[6]{x} - \frac{3\sqrt[6]{x}}{\sqrt[3]{x} + 1} + C \right).$$

<u>Пример 4.6.</u>

$$J = \int x\sqrt{1 + x^4} dx.$$

Для удобства замены переменной преобразуем подынтегральное выражение

$$-\frac{1}{4}\int\sqrt{\frac{1+x^4}{x^4}}\cdot x^2\cdot x\cdot\frac{\left(-4x^{-5}\right)dx}{x^{-5}} = -\frac{1}{4}\int\sqrt{\frac{1+x^4}{x^4}}\frac{1}{\left(x^{-4}\right)^2} = \left(-4x^{-5}\right)dx,$$

где
$$\sqrt{\frac{1+x^4}{x^4}} = t$$
, $\frac{1}{\left(x^{-4}\right)^2} = \frac{1}{\left(t^2-1\right)^2}$, $-4x^{-5}dx = 2tdt$.
$$J = -\frac{1}{2} \int \frac{t^2 dt}{\left(t^2-1\right)^2} = \left\{ u = t, \ d\upsilon = \frac{tdt}{\left(t^2-1\right)^2} \Rightarrow du - d\upsilon, \ \upsilon = -\frac{1}{2\left(t^2-1\right)} \right\} =$$

$$= -\frac{1}{2} \left(-\frac{t}{2\left(t^2-1\right)} + \frac{1}{2} \int \frac{dt}{t^2-1} \right) = \frac{t}{4\left(t^2-1\right)} - \frac{1}{8} \ln\left|\frac{t-1}{t+1}\right| + C =$$

$$= x^2 \sqrt{1+x^4} - \frac{1}{8} \ln\left|\frac{\sqrt{1+x^4}-x^2}{\sqrt{1+x^4}+x^2}\right| + C.$$

Пример 4.7.

$$J = \int \frac{\sin^3 x}{\sqrt[3]{\cos^2 x} dx}.$$

<u>Решение.</u> Применим подстановку $\cos x = t$, $\sin x dx = -d \cos x$

$$J = -\int \frac{\sin^3 x d \cos x}{\sqrt[3]{\cos^2 x}} = -\int (1 - t^2) t^{-2/3} dt = -3t^{1/3} + \frac{3}{7} t^{7/3} + C =$$
$$= 3\sqrt[3]{\cos x} \left(\frac{1}{7} \cos^2 x - 1\right) + C.$$

Пример 4.8.

$$J = \int \frac{dx}{x\sqrt{x^2 - x + 5}}.$$

<u>Решение.</u> Применим подстановку Эйлера $\sqrt{x^2 - x + 5} = t - x$. Тогда $x^2 - x + 5 = t^2 - 2tx + x^2$. Следовательно,

$$x = \frac{5 - t^2}{1 - 2t}, \quad dx = \frac{2(t^2 - t + 5)}{(1 - 2t)^2} dt, \quad t - x = \frac{t^2 - t + 5}{2t - 1}.$$

$$J = \int \frac{1 - 2t}{5 - t^2} \cdot \frac{2t - 1}{t^2 - t + 5} \cdot \frac{2(t^2 - t + 5)}{(1 - 2t)^2} = 2\int \frac{dt}{t^2 - 5} =$$

$$= \frac{1}{\sqrt{5}} \ln \left| \frac{t - \sqrt{5}}{t + \sqrt{5}} \right| + C = \frac{1}{\sqrt{5}} \ln \left| \frac{\sqrt{x^2 - x + 5} + x - \sqrt{5}}{\sqrt{x^2 - x + 5} + x + \sqrt{5}} \right| + C.$$

Данный интеграл можно найти проще, применив подстановку x = 1/t:

$$J = \int \frac{dx}{x\sqrt{x^2 - x + 5}} = \left\{ x = \frac{1}{t}, \ dx = -\frac{dt}{t^2} \right\} = -\int \frac{dt}{\sqrt{1 - t + 5t^2}} =$$

$$= -\frac{1}{\sqrt{5}} \int \frac{dt}{\sqrt{t^2 - 2 \cdot \frac{1}{10} \cdot t + \frac{1}{100} + \frac{19}{100}}} = -\frac{1}{\sqrt{5}} \int \frac{d(t - 1/10)}{\sqrt{(t - 1/10)^2 + 19/100}} =$$

$$= -\frac{1}{\sqrt{5}} \ln \left| t - \frac{1}{10} + \sqrt{t^2 - \frac{t}{5} + \frac{1}{5}} \right| + C = -\frac{1}{\sqrt{5}} \ln \left| \frac{10 - x}{10x} + \frac{\sqrt{5 - x + x^2}}{\sqrt{5}x} \right| + C.$$

Занятие пятое

Тема: «ИНТЕГРИРОВАНИЕ ВЫРАЖЕНИЙ, СОДЕРЖАЩИХ ТРАНСЦЕНДЕНТНЫЕ ФУНКЦИИ (ТРИГОНОМЕТРИЧЕСКИЕ, ГИПЕРБОЛИЧЕСКИЕ И ПОКАЗАТЕЛЬНЫЕ ФУНКЦИИ)»

Основные теоретические сведения

5.1. Интегралы вида $\int R(\sin x,\cos x)dx$, где R(u,v) - рациональная функция.

Интегралы указанного вида приводятся к интегралам от рациональных алгебраических функций с помощью так называемой универсальной тригонометрической подстановки

$$t = tg\frac{x}{2}, \quad x \in \left(-\pi, \pi\right),\tag{5.1}$$

так как при этом

$$\sin x = \frac{2tg(x/2)}{1+tg^2(x/2)} = \frac{2t}{1+t^2}, \quad \cos x = \frac{1-tg^2(x/2)}{1+tg^2(x/2)} = \frac{1-t^2}{1+t^2},$$
$$x = 2arctgt, \quad dx = \frac{2dt}{1+t^2},$$

и, следовательно,

$$\int R(\sin x, \cos x) dx = \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2dt}{1+t^2} = \int R_1(t) dt.$$

На практике универсальная тригонометрическая подстановка приводит часто к громоздким выкладкам. В ряде случаев более удобны другие подстановки:

1)
$$t = \cos x$$
, $x \in (-\pi/2, \pi/2)$, если $R(-\sin x, \cos x) = -R(\sin x, \cos x)$;

2)
$$t = \sin x$$
, $x \in (0,\pi)$, если $R(\sin x, -\cos x) = -R(\sin x, \cos x)$; (5.2)

3)
$$t = tgx$$
, $x \in (-\pi/2, \pi/2)$, если $R(-\sin x, -\cos x) = R(\sin x, \cos x)$.

Отметим, что какова бы ни была рациональная функция R(u,v), ее всегда можно представить в виде трех выражений, рассмотренных частных случаев (5.2).

Например,
$$R(u,v) = R_1(u,v) + R_2(u,v) + R_3(u,v)$$
,

где
$$R_1(u,v) = \frac{R(u,v) - R(-u,v)}{2}$$
, $R_2(u,v) = \frac{R(-u,v) - R(-u,-v)}{2}$,
$$R_3(u,v) = \frac{R(-u,-v) + R(u,v)}{2}$$
,

при этом

$$R_1(-u,v) = -R_1(u,v), R_2(u,-v) = -R_2(u,v), R_3(-u,-v) = R_3(u,v).$$

5.2. Интегралы вида $\int \sin \alpha x \cos \beta x dx$, $\int \cos \alpha x \cos \beta x dx$, $\int \sin \alpha x \sin \beta x dx$.

Для нахождения интегралов указанного вида применяются тригонометрические формулы

$$\sin \alpha x \cos \beta x = \frac{1}{2} \Big[\sin (\alpha - \beta) x + \sin (\alpha + \beta) x \Big];$$

$$\cos \alpha x \cos \beta x = \frac{1}{2} \Big[\cos (\alpha - \beta) x + \cos (\alpha + \beta) x \Big];$$

$$\sin \alpha x \sin \beta x = \frac{1}{2} \Big[\cos (\alpha - \beta) x - \cos (\alpha + \beta) x \Big].$$

5.3. Интегралы вида $\int \sin^m x \cos^n x dx$, m и n – целые числа.

Отметим сначала частные случаи интегралов указанного вида:

- 1. Один из показателей m или n нечетное положительное число. В этом случае применяется подстановка $\cos x = t$, если m нечетное, или $\sin x = t$, если n нечетное (предварительно от нечетной степени отделяется один сомножитель и оставшаяся четная степень выражается с помощью формулы $\sin^2 x + \cos^2 x = 1$ через дополнительную функцию).
- 2. Оба показателя m и n четные неотрицательные числа. В этом случае подынтегральную функцию следует преобразовать с помощью тригонометрических формул

$$\sin^2 x = \frac{1 + \cos 2x}{2}$$
, $\sin^2 x = \frac{1 - \cos 2x}{2}$, $\sin x \cos x = \frac{1}{2} \sin 2x$.

- 3. Показатель m и n числа, оба нечетные либо оба четные, причем хотя бы один из них является отрицательным. В этом случае применяется подстановка tgx = t или ctgx = t (следует иметь в виду, что если один из показателей нечетное число, то удобно использовать подстановку $\sin x = t$ или $\cos x = t$, так как при этом получается интеграл, рассмотренный в п. 1).
- 4. Сумма показателей m+n является целым четным отрицательным числом . В этом случае целесообразно использовать подстановку tgx = t или ctgx = t .

В общем случае интегралы вида $\int \sin^m x \cos^n x dx$, где показатели m и n — целые числа, находятся с помощью рекуррентных формул, которые получаются путем интегрирования по частям.

5.4. Интегралы вида $\int \sin^p x \cos^q x dx$, где p и q –рациональные числа, $x \in (0,\pi/2)$. Инте6гралы указанного вида подстановкой $t = \sin^2 x$, $dt = 2\sin x \cos x dx$ всегда можно свести к интегралам от биноминальных дифференциалов п. 4.5.

$$\int \sin^p x \cos^q x dx \frac{1}{2} \int t^{(p-1)/2} (1-t)^{(q-1/2)} dt.$$
 (5.3)

5.5. Интегралы вида $\int tg^n x dx$, $\int ctg^n x dx$, где m = 2, 3, ...

Для нахождения указанных интегралов используются тригонометрические формулы:

$$tg^2x = \frac{1}{\cos^2 x} - 1$$
, $ctg^2x = \frac{1}{\sin^2 x} - 1$.

5.6. Интегралы вида $\int R(shx,chx)dx$, где R(u,v) - рациональная функция переменных u u v, аналогично п. 5.1. с помощью подстановки t = th(x/2) (иногда удобнее с помощью подстановок t = shx, t = chx, t = thx) всегда можно свести к интегралам от рациональных алгебраических функций

$$\int R\left(\frac{2t}{1-t^2}, \frac{1+t^2}{1-t^2}\right) \frac{2dt}{1-t^2} = \int R_1(t) dt.$$

Вообще, интегрирование гиперболических функций производится аналогично интегрированию тригонометрических функций п. 5.1.- п. 5.5., при этом используются формулы:

$$ch^2x - sh^2x = 1$$
, $shxchx = 1/2ch2x$, $ch^2x = 1/2(ch2x+1)$, $sh^2x = 1/2(ch2x-1)$, $1-th^2x = 1/ch^2x$, $cth^2x - 1 = 1/sh^2x$.

5.7. Интегралы вида $\int P_n(x) f(x) dx$, где $P_n(x)$ - многочлен степени n, а f(x)- одна из функций: e^{ax} , $\sin ax$, $\cos ax$, $\ln ax$, $\arcsin ax$, $\arccos ax$, $\arctan ax$, $\u ax$,

Интегралы указанного вида находятся с помощью, вообще говоря, многократного интегрирования по частям.

5.8. Интегралы вида $\int R(e^{p_1x}, e^{p_2x}, ..., e^{p_nx}) dx$ подстановкой $e^x = t$, $dx = dt/e^x = dt/t$ сводятся к интегралам вида п. 4.1.

Примеры решения задач

<u>Пример 5.1.</u>

$$J = \int \sin 2x \cos 5x dx.$$

Решение.

$$\sin 2x \cos 5x = \frac{1}{2} \left(\sin(-3x) + \sin 7x \right);$$

$$J = \frac{1}{2} \int (-\sin 3x) dx + \frac{1}{2} \int \sin 7x dx = \frac{1}{6} \cos 3x - \frac{1}{14} \cos 7x + C.$$

<u>Пример 5.2.</u>

$$J = \int \frac{dx}{4\sin x + 3\cos x}.$$

<u>Решение.</u> Пусть tgx/2 = t, тогда

$$\sin x = \frac{2t}{1+t^2}, \cos x = \frac{1-t^2}{1+t^2}, \ x = arctgt, \ dx = \frac{2dt}{1+t^2}, \ dx = \frac{2dt}{1+t^2};$$

$$J = \int \frac{1}{\frac{8t}{1+t^2} + 3\frac{1-t^2}{1+t^2}} \cdot \frac{2dt}{1+t^2} = -2\int \frac{dt}{3t^3 - 8t - 3} = -2\int \frac{dt}{(t-3)(3t+2)} =$$

$$= \frac{2}{10} \int \frac{3(t-3) - (3t+1)}{(t-3)(3t+1)} dt = \frac{1}{5} \int \frac{d(3t+1)}{3t+1} - \frac{1}{5} \int \frac{dt}{t-3} = \frac{1}{5} \ln \left| \frac{3t+1}{t-3} \right| + C =$$

$$\ln \sqrt[5]{\frac{3tgx/2+1}{tgx/2-3}+C}.$$

Пример 5.3.

$$J = \int \frac{dx}{\sin^2 x - 4\sin\cos x + 5\cos^2 x}.$$

<u>Решение.</u> Подынтегральная функция четна относительно $\sin x$ и $\cos x$ одновременно. Поэтому можно применить подстановку tgx = t. Однако данный интеграл проще найти следующим образом:

$$J = \int \frac{dx}{\cos^2 x \left(tg^2 x - 4tgx + 5\right)} = \int \frac{dt}{\left(tgx - 2\right)^2 + 1} = arctg\left(tgx - 2\right) + C.$$

<u>Пример 5.4.</u>

$$J = \int \sin^2 x \cos^5 x dx.$$

Решение.

$$J = \int \sin^2 x \cos^4 x \cos x dx = \int \sin^2 x \left(1 - \sin^2 x\right)^2 d \sin x =$$

$$\int \left(\sin^2 - 2\sin^4 + \sin^6\right) d \sin x = \frac{1}{3}\sin^3 x - \frac{2}{5}\sin^5 x + \frac{1}{7}\sin^7 x + C.$$

Пример 5.5.

$$J = \int \sqrt[3]{\frac{\sin x}{\cos^7 x}} dx.$$

<u>Решение.</u> $\int \sin^{1/3} x \cos^{-7/3} x dx$ — интеграл вида $\int \sin^m x \cos^n x dx$, гд m+n=1/3-7/3=-2. Применим подстановку tgx=t, $dtgx=dx/\cos^2 x=dt$:

$$J = \int \sqrt[3]{\frac{\sin x}{\cos x}} \frac{dx}{\cos^2 x} = \int \sqrt[3]{tgx} dtgx = \frac{3}{4} \sqrt[3]{th^4 x} + C.$$

Пример 5.6.

$$J = \int ch^2 3x dx.$$

Решение.

$$J = \frac{1}{2} \int (ch6x + 1) dx = \frac{1}{2} sh6x + \frac{x}{2} + C.$$

Занятие шестое

Контрольная работа по теме: «НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ» Образец задания на выполнение контрольной работы (с решением).

Найти интегралы:

1.
$$\int \frac{xdx}{ch^2(x^2+1)}$$
2.
$$\int x3^x dx$$
4.
$$\int \frac{dx}{(x^2+1)(x+\sqrt{x^2+1})}$$
5.
$$\int \frac{dx}{x\sqrt{4-x^2}}$$

$$3. \int \frac{dx}{\sin^3 x \cos^5 x}.$$

$$6. \int \sqrt[3]{x} \sqrt{5x\sqrt[3]{x} + 3} dx.$$

Решение.

1.
$$\int \frac{xdx}{ch^2(x^2+1)} = \frac{1}{2} \int \frac{2xdx}{ch^2(x^2+1)} = \frac{1}{2} \int \frac{d(x^2+1)}{ch^2(x^2+1)} = \frac{1}{2} th(x^2+1) + C.$$

2.
$$\int x3^{x} dx = \begin{cases} u = x & \Rightarrow du = dx \\ dv = 3^{x} dx & \Rightarrow v = \frac{3^{x}}{\ln 3} \end{cases} = \frac{x3^{x}}{\ln 3} - \frac{3^{x}}{\ln^{2} 3} + C.$$

3. Имеем интеграл вида $\int \sin^m x \cos^n x dx$, m+n<0, целое, нечетное. Подстановка tgx=t:

$$\int \frac{dx}{\frac{\sin^3 x}{\cos^3 x}} = \int \frac{1}{tg^3 x} \cdot \left(\frac{1}{\cos^2 x}\right)^3 \frac{dx}{\cos^2 x} =$$

$$= \int \frac{1}{tg^3 x} (1 + tg^2 x)^3 dt gx = \int \frac{dt gx}{tg^2 x} + 3 \int \frac{dt gx}{tgx} +$$

$$+ 3 \int tgx dt gx + \int tg^3 x dt gx = -\frac{1}{2tg^2 x} + 3 \ln|tgx| +$$

$$+ \frac{3}{2}tg^2 x + \frac{1}{4}tg^4 x + C.$$
4.
$$\int \frac{dx}{(x^2 + 1)(x + \sqrt{x^2 + 1})} = \int \frac{(x - \sqrt{x^2 + 1})}{(x^2 + 1)(x + \sqrt{x^2 + 1})(x - \sqrt{x^2 + 1})} dx =$$

$$= -\int \frac{xdx}{x^2 + 1} + \int \frac{dx}{\sqrt{x^2 + 1}} = -\frac{1}{2}\ln(x^2 + 1) + \ln|x + \sqrt{x^2 + 1}| + C.$$
5.
$$\int \frac{dx}{x\sqrt{4 - x^2}} = \left\{x = \frac{2}{t}, dx = -\frac{2dt}{t^2}\right\} = -\frac{1}{2}\int \frac{dt}{\sqrt{t^2 - 1}} =$$

$$= -\frac{1}{2}\ln|t - \sqrt{t^2 - 1}| + C = -\frac{1}{2}\ln\left|\frac{2}{x} - \frac{\sqrt{4 - x^2}}{x}\right| + C = \frac{1}{2}\ln\left|\frac{x}{2 - \sqrt{4 - x^2}}\right| + C.$$
6.
$$\int \frac{3\sqrt{x^2 - x^2}}{x} dx = \int \frac{x}{2} dx = \int \frac{x}{2}$$

6.
$$\int \sqrt[3]{x} \sqrt{5x\sqrt[3]{x}+3} dx$$
. Имеем интеграл вида $\int x^m \left(a+bx^n\right)^p dx$, но поскольку в данном случае $\left(5x\sqrt[3]{x}+3\right)'=5\cdot\frac{4}{3}\sqrt[3]{x}$, то интеграл находится проще следующим образом
$$\int \sqrt[3]{x} \sqrt{5x\sqrt[3]{x}+3} dx = \frac{3}{20} \int \left(5x^{4/3}+3\right)^{1/2} d\left(5x^{4/3}+3\right) = \frac{1}{10} \left(5x\sqrt[3]{x}+3\right)^{3/2} + C.$$

Образцы вариантов контрольных работ

Вариант 1.

$$1. \int x 5^{-x^2} dx.$$

$$4. \int \frac{dx}{\cos x/3\sin^3 x/3}.$$

$$2. \int e^{\arccos x} dx.$$

$$5. \int \frac{dx}{(x-1)\sqrt{6x-x^2-5}}.$$

$$3. \int \frac{x^2 dx}{\sqrt{\left(x^2+1\right)^5}}.$$

6.
$$\int \frac{dx}{\sqrt{x^3}\sqrt[3]{1+\sqrt[4]{x^3}}} dx$$
.

Ответы: 1.
$$-\frac{5^{-x^2}}{\ln 5} + C$$
;

$$2. \quad \frac{x - \sqrt{1 - x^2}}{2} e^{\arccos x} + C$$

Ответы: 1.
$$-\frac{5^{-x^2}}{\ln 5} + C$$
; 2. $\frac{x - \sqrt{1 - x^2}}{2} e^{\arccos x} + C$; 3. $\frac{x^3}{3\sqrt{(1 + x^2)^3}} + C$; 4.

$$3\ln\left|tg\frac{x}{3}\right| - \frac{3}{2\sin^2 x/3} + C; \ 5. \ -\frac{1}{2}\sqrt{\frac{5-x}{x-1}} + C; \ 6. \ -2\sqrt[3]{\left(x^{-3/4}+1\right)^2} + C.$$

Вариант 2.

$$1. \int x^2 e^{-2x} dx.$$

$$4. \int \cos^3 x \sin^2 x dx.$$

$$2. \int \frac{x^2 dx}{\sqrt{4 - x^2}} dx.$$

$$5. \int \frac{dx}{5+4\sin x}.$$

$$3. \int \frac{dx}{x\sqrt[3]{x^2+1}}.$$

$$6. \int \frac{x^2 dx}{\left(x^2 + 1\right)^2}.$$

Ответы: 1. $-\left(\frac{x^2}{2} + \frac{x}{2} + \frac{1}{4}\right)e^{-2x} + C$; 2. $2\arcsin\frac{x}{2} - \frac{x}{2}\sqrt{4 - x^2} + C$;

3.
$$\frac{1}{4} \ln \frac{(t-1)^2}{|t^2+t+1|} + \frac{\sqrt{3}}{2} \arctan \frac{2t+1}{\sqrt{3}} + C$$
, $t = \sqrt[3]{x^2+1}$; 4. $\frac{\sin 3x}{3} - \frac{\sin 5x}{5} + C$;

5.
$$\frac{2}{5} arctg \frac{5t+4}{3} + C$$
, $t = tg \frac{t}{2}$; 6. $-\frac{x}{2(x^2+1)} + \frac{1}{2} arctgx + C$.

ОГЛАВЛЕНИЕ

Занятие первое

Тема: "Первообразная и неопределенный интеграл. Непосредственное интегрирование"

Занятие второе Тема: "Интегрирование подстановкой (заменой переменной). Интегрирование по частям"

Занятие третье

Тема: "Интегрирование рациональных алгебраических функций"

Занятие четвертое Тема: "Интегрирование выражений, содержащих иррациональные функции (радикалы)"

Занятие пятое Тема: "Интегрирование выражений, содержащих трансцендентные функции (тригонометрические, гиперболические и показательные функции)"

Занятие шестое контрольная работа по теме: "Неопределенный интеграл"