M24 Statistik 1: Wintersemester 2024 / 2025

Seminar 05: Regression

MSc Albert Anoschin & Prof. Matthias Guggenmos Health and Medical University Potsdam

Wozu dient eine "Regressionsgerade"?

- Mit der Korrelation können wir die Stärke des linearen Zusammenhangs zweier Variablen quantifizieren.
- Wir können aber auch Werte einer Variable (z.B. Depression) aufgrund von Werten auf einer anderen Variable (z.B. Social Media Nutzung) *vorhersagen*.

Beispiel:

Welchen Wert (Depression) würden Sie für eine Person vorhersagen, über die Sie keine Informationen haben? Sie kennen die Verteilung von Depression in der Bevölkerung.

⇒ Mittelwert

Wie könnten Sie die Vorhersage der Depression einer Person verbessern? Sie wissen, dass Social Media Nutzung positiv mit Depression korreliert.

⇒ Hinzunahme zusätzlicher Information (Stunden Social Media Nutzung als *Prädiktor*)

Lineare Regression

Ziel der Regression:

Vorhersage von Werten auf der abhängigen Variablen (AV) aufgrund von Werten auf der unabhängigen Variable (UV)

Beispiel: Wie gut ist die Persönlichkeitsfunktion (psychosoziale Anpassung) einer Person, die neun Stunden am Tag vor ihrem Smartphone verbringt?

Bestimmung der Regressionsgeraden: Welche Linie passt am besten?

Regressionsgerade: Gerade mit dem kleinsten Abstand zu den beobachteten Werten (Methode kleinster Quadrate).

Residuen

- Ein Regressionsmodell kann in der Praxis nie alle beobachteten Werte perfekt vorhersagen.
- D.h. die beobachteten Werte $(y_A, y_B, y_C, ...)$ weichen fast immer von den vorhergesagten Werten $(\hat{y}_A, \hat{y}_B, \hat{y}_C, ...)$ ab.
- Diese Abweichung nennt man Residuum.
- Die Summe aller Regressionsresiduen ist gleich 0.
- Die Summe aller quadrierten Residuen ist minimal
 - → Methode der kleinsten Quadrate

Regressionsparameter

Modellvorhersagen

■ Marvin hat den Wert 4 auf der X-Variable. Welchen Wert würden wir für ihn auf der Y-Variable erwarten?

$$\hat{Y} = 2.4 + 0.31 \cdot X$$
 $\hat{Y}_{ ext{Marvin}} = 2.4 + 0.31 \cdot 4 = 3.64$

Gleichungen für beobachtete Werte

- $lacktriang{lacktriangle}$ Die Regressionsgleichung für einen beobachteten Werte x_i enthält das Residuum für diesen Wert ϵ_i .
- Sie entspricht also der Gleichung für den vorhergesagten Wert mit Addition bzw.
 Subtraktion des Residuums:

$$y_i = b_0 + b_1 \cdot x_i + \epsilon_i$$

Mathematische Bestimmung der Regressionsparameter

Regressionsgewicht

Achsenabschnitt

Korrelation vs. Regression

- Das Regressionsgewicht b_1 hängt von den Einheiten der Variablen ab. Es beantwortet die Frage "Um wie viel Einheiten erhöht sich die AV, wenn man die UV um 1 erhöht?"
- Der Korrelationskoeffizient r ist ein einheitsloses Maß für die Stärke des linearen Zusammenhangs
- Bei einer univariaten Regression (ein Prädiktor, eine abhängige Variable) lassen sich b_1 und r ineinander überführen:

$$r_{X,Y} = b_1 rac{\sigma_X}{\sigma_Y}$$

■ Die Regression ist ein vielseitiges Verfahren. Sie ermöglicht u.a. die Untersuchung von Zusammenhängen zwischen mehreren Variablen (multivariate Regression) und von nicht-linearen Zusammenhängen.

Nicht-lineare Regressionen

Ausblick auf Statistik II: Multivariate Regression

Wenn wir die Unterschiede zwischen Personen in der Persönlichkeitsfunktion (= Varianz der AV) besser erklären wollen, können wir weitere Prädiktoren in das Regressionsmodell aufnehmen:

Modell mit 1 Prädiktor:

Persönlichkeitsfunktion = $b_0 + b_1 \cdot \text{Smartphonestunden}$

Modell mit 2 Prädiktoren:

Persönlichkeitsfunktion = $b_0 + b_1 \cdot \text{Smartphonestunden} + b_2 \cdot \text{Optimismus}$

Betrachten wir also mehr als einen Prädiktor, können wir (möglicherweise) bessere Vorhersagen treffen (und \mathbb{R}^2 erhöhen).

Lineare Regressionen in JASP

Hypothese: Gewissenhaftere Personen haben weniger Schwierigkeiten beim Stillsitzen.

Koeffizienten

Modell		Unstandardisiert	Standardfehler	Standardisiert	t	р
H _o	(Konstante)	3.647	0.428		8.516	< .001
H ₁	(Konstante)	7.141	1.574		4.537	< .001
	Gewissenhaftigkeit	-1.042	0.455	-0.509	-2.288	0.037

Regressionsgleichung:
$$\hat{Y} = b_0 + b_1 \cdot X$$
 $\hat{Y} = 7.141 + 1.042 \cdot X$

Übung

Sie wollen die Lebenszufriedenheit von Personen mittels Extraversion vorhersagen.

- 1. Formulieren Sie eine gerichtete Zusammenhangshypothese.
- 2. Bestimmen Sie X (Prädiktor) und Y (Kriterium)
- 3. Berechnen Sie von Hand das Regressionsgewicht b1. Lassen Sie sich dafür zunächst in JASP die Deskriptiven Statistiken und den Korrelationskoeffizienten r zwischen X und Y ausgeben.
- 4. Berechnen Sie von Hand den Achsenabschnitt b0
- 5. Überprüfen Sie Ihre Berechnungen, indem Sie sich in JASP das Regressionsmodell ausgeben lassen.
 - Menü: Regression -> Lineare Regression. Metrische Prädiktoren werden im JASP-Menü "Kovariaten" genannt, nominale Prädiktoren (z.B. Gruppen) heißen "Faktoren".
- 6. Lesen Sie die Regressionsparameter ab und notieren Sie die Regressionsgleichung.
- 7. Sagen Sie anhand der Regressionsgleichung den Wert der Lebenszufriedenheit für eine Person vorher, die einen Extraversionswert von 2 aufweist.

Anpassungsgüte: R^2

- lacktriangle Als standardisiertes Maß der Anpassungsgüte eines Regressionsmodells verwendet man den Determinationskoeffizienten \mathbb{R}^2
- R^2 liegt **zwischen 0 und 1**.
- Ist über verschiedene Studien und Modelle hinweg vergleichbar
- Interpretation von \mathbb{R}^2 :
 - Anteil der Gesamtvarianz in der AV (z.B. Schwierigkeiten beim Stillsitzen), der durch systematische Varianz in der UV (z.B. Gewissenhaftigkeit) erklärt wird.

Modell-Zusammenfassung - Stillsitzen

Modell	R	R²	Korrigiertes R ²	RMSE
Н₀	0.000	0.000	0.000	1.766
H ₁	0.509	0.259	0.209	1.570

Bei einer univariaten linearen Regression entspricht $R^2 = r^2$

