TERM: M1-RAIA

SEMESTER: 1

AY: 2022-2023

Abdelbacet Mhamdi

Dr.-Ing. in Electrical Engineering

Senior Lecturer at ISET Bizerte

abdelbacet.mhamdi@bizerte.r-iset.tn

ARTIFICIAL INTELLIGENCE - PART 1

LAB MANUAL

Higher Institute of Technological Studies of Bizerte

Available at https://github.com/a-mhamdi/isetbz/

 HONOR CODE	

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

Department of Physics and Astronomy

http://physics.unc.edu/undergraduate-program/labs/general-info/

"During this course, you will be working with one or more partners with whom you may discuss any points concerning laboratory work. However, you must write your lab report, in your own words.

Lab reports that contain identical language are not acceptable, so do not copy your lab partner's writing.

If there is a problem with your data, include an explanation in your report. Recognition of a mistake and a well-reasoned explanation is more important than having high-quality data, and will be rewarded accordingly by your instructor. A lab report containing data that is inconsistent with the original data sheet will be considered a violation of the Honor Code.

Falsification of data or plagiarism of a report will result in prosecution of the offender(s) under the University Honor Code.

On your first lab report you must write out the entire honor pledge:

The work presented in this report is my own, and the data was obtained by my lab partner and me during the lab period.

On future reports, you may simply write <u>"Laboratory Honor Pledge"</u> and sign your name."

Contents

1	Julia Onramp	1
2	Tipping Problem	2
3	Selection Process - Case of RAIA	1
4	Fuzzy Control of an Articulated System	12
5	Binary Classifier using ANN	13

In order to activate the virtual environment and launch **Jupyter Notebook**, we recommend you to proceed as follow

- ① Press simultaneously the keys 🎜 & 📳 on the keyboard. This will open the dialog box Run;
- ② Then enter cmd in the command line and confirm with [key on the keyboard;
- ③ Type the instruction <code>jlai.bat</code> in the console prompt line;

Finally press the key.

LEAVE THE SYSTEM CONSOLE ACTIVE.

1 Julia Onramp

Student's name				
Score /20				
Detailed Credits				
Anticipation (4 points)				
Management (2 points)				
Testing (7 points)				
Data Logging (3 points)				
Interpretation (4 points)				

Goals

★ Learn the essentials of Julia on commonly used features & workflows.

The notebook is available at $https://github.com/a-mhamdi/cosnip/ \rightarrow Julia \rightarrow julia-onramp.ipynb$

Student's name					
Score /20					
Detailed Credits					
Anticipation (4 points)					
Management (2 points)					
Testing (7 points)					
Data Logging (3 points)					
Interpretation (4 points)					

Goals

★ Construct algorithms to help decide in given ambiguous situation.

The code is available at https://github.com/a-mhamdi/isetbz/ \rightarrow Artificial Intelligence \rightarrow Codes \rightarrow Matlab \rightarrow Tipper.*

Matlab is an interesting tool for engineers. All you need in Matlab is the basics pieces of information needed to solve the problem. There is no need to configure your environment to adopt your algorithm, just know a little bit about the syntax. It is an interactive matrix calculator, with a full-fledged programming environment. Matlab allows to handle with general tasks and very delicate purpose. The main focus with is what you need to program not how to program it.

Matlab is an easy to use environment, it is a fourth-generation programming language¹ (4GL). It is a very high level language.

 $^{{}^{1}}http://en.wikipedia.org/wiki/Fourth-generation_programming_language$

Desktop layout

Like any other environment, *Matlab* has a menubar and a toolbar where user can find the major commands needed to configure his/her preferences, this means how to let *Matlab* appear or behave. Then, the main interface is split into four majors areas as shown in Fig. ??.

Area 1

it is the Command Window, where user can strike the Matlab commands and see results displayed on the same screen.

Area 2

It is the Workspace. All variables are saved in this area. If you need to know more about saved variables, just try this command on area 1:

>> whos

The results are the names of variables, the min and max values for every variables, class and the number of bytes needed to save it.

Area 3

It is the Current Folder, the path indicated by Matlab to execute a particular code. If you need to execute an algorithm which is not on the path shown by are 4, you have then to change the folder. Otherwise, an error message will pop-up on command window if it is not the absolute path.

$\mathsf{Area}\, 4$

It is the Command History, where all instructions are saved in a panel from the date of installing Matlab on your machine until current time.

How to personalize the desktop layout

In the menu bar, click on <u>Desktop</u>, <u>Desktop Layout</u> then load your preferences. For example, here the customized layout was saved under the name <u>MyLayout</u>. You just click on it, and your layout appears like the display shown on the following image.

Matlab is not just an environment for technical computing, where we can solve equations. It is also an environment of graphical interfaces development. This integrated software is called "GUIDE", Graphical User Interface Development Environment.

Try, at the command window, the instruction:

>> guide

or simply move your mouse on the toolbar, you will have a shortcut like the icon it, you will then launch the environment of graphics. You will get on your screen, the dialog shown here. You can access the templates or simply click next.

Now, the environment is ready to be used.

Save your work, you will notice the creation of two files on you directory with the same name, with two different extensions, one has this termination *fig an the second one is an m-file.

The Fig-file contains the graphical declaration or the instantiation of the all used graphical objects in your interface. The main GUI that appears to user in order to customize his interface contains a palette where you can easily access the preconfigured objects like "pushbutton", "toggle button" and "slider". You can even add some external objects via the activeX control which is not in our current scope. Try to place and organize the required objects.

Notice that you have for any object an Object Browser which, when pointed on an object, list all properties relative to this one and even the set of methods called when evoking it. You may also need to know that there exist an uipanel, use it in case of you need to regroup elements by similarities.

Now, you can launch your application. Your conceived interface may look like this one indicated below.

It is preferable to load the fuzzy inference system, denoted hereafter by fis, in the opening function of the gui.

```
% --- Executes just before Tipper is made visible.
function Tipper_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Tipper (see VARARGIN)
fis =readfis('Tipper.fis');
handles.fis = fis;
```

Before, quitting the function, you have to update the GUI and save all variable in the general structure with handles and user data².

```
% Choose default command line output for Tipper
handles.output = hObject;

% Update handles structure
```

 $^{^2} Visit: \verb|http://www.mathworks.com/help/matlab/gui-building-basics.html|$

```
guidata(hObject, handles);
5
6
    % UIWAIT makes Tipper wait for user response (see UIRESUME)
7
   % uiwait(handles.figure1);
   % --- Executes on button press in compute.
   function compute_Callback(hObject, eventdata, handles)
    % hObject
                handle to compute (see GCBO)
3
   % eventdata reserved - to be defined in a future version of MATLAB
4
    % handles
                 structure with handles and user data (see GUIDATA)
5
   foodVal = str2num(get(handles.food, 'String'));
6
    serviceVal = str2num(get(handles.service, 'String'));
   fis = handles.fis;
9
   tip = evalfis([foodVal, serviceVal], fis);
10
11
    set(handles.tip, 'String', num2str(tip));
12
```

The ultimate application will behave like the example displayed on the following figures. Enter your desired values and then just click "Compute". The result will be displayed on right half of the interface.

The code is available at https://github.com/a-mhamdi/isetbz/ \rightarrow Artificial Intelligence \rightarrow Codes \rightarrow Julia \rightarrow tipper.jl

```
using Fuzzy
1
    using Plots
2
3
    score = range(0, 10, length=100)
4
    food = Dict(
6
       "Rancid" => TrapezoidalMF(0, 0, 2, 4),
       "Delicious" => TrapezoidalMF(6, 8, 10, 10)
8
9
    food_chart = chart_prepare(food, score)
10
11
    service = Dict(
12
       "Poor" => TrapezoidalMF(0, 0, 2, 4),
13
       "Good" => TrapezoidalMF(3, 4, 6, 7),
14
       "Excellent" => TrapezoidalMF(6, 8, 10, 10)
15
16
    service_chart = chart_prepare(service, score)
17
18
    tip = Dict(
19
       "Cheap" => TrapezoidalMF(0, 0, 1, 3),
20
       "Average" => TrapezoidalMF(2, 4, 6, 8),
21
       "Generous" => TrapezoidalMF(7, 9, 10, 10)
23
    tip_chart = chart_prepare(tip, score)
24
25
    rule_1 = Rule(["Rancid", "Poor"], "Cheap", "MAX")
26
    rule_2 = Rule(["", "Good"], "Average", "MAX")
27
    rule_3 = Rule(["Delicious", "Excellent"], "Generous", "MAX")
28
29
    rules = [rule_1, rule_2, rule_3]
30
31
    #= GRAPHS =#
32
    p1 = plot(score, food_chart["values"], ylabel="Food", label=food_chart[
33
     →"names"], legend=:bottomright)
34
    p2 = plot(score, service_chart["values"], ylabel="Service", _
     →label=service_chart["names"], legend=:bottomright)
    p3 = plot(score, tip_chart["values"], xlabel="Score", ylabel="Tip", __
     →label=tip_chart["names"], legend=:bottomright)
```

```
graphs = plot(p1, p2, p3, layout=(3, 1), lw=2)
savefig(graphs, "mf-graphs.pdf")

# FUZZY INFERENCE SYSTEM: MAMDANI
fis = FISMamdani([food, service], tip, rules)
eval_fis(fis, [9., 8.])
```

3 Selection Process - Case of RAIA

Student's name					
Score /20					
Detailed Credits					
Anticipation (4 points)					
Management (2 points)					
Testing (7 points)					
Data Logging (3 points)					
Interpretation (4 points)					

Goals

★ Design a fuzzy system to pick the most adequate candidates out of the applicants to the master program **RAIA**.

The notebook is available at https://github.com/a-mhamdi/cosnip/ \rightarrow Julia \rightarrow fuzzy \rightarrow selection-process.jl

Fuzzy Control of an Articulated System

Student's name				
Score /20				
Detailed Credits				
Anticipation (4 points)				
Management (2 points)				
Testing (7 points)				

Goals

Data Logging (3 points)
Interpretation (4 points)

 \star Design and implement a fuzzy regulator to control the position of a disk.

The repository is available at $\verb|https://github.com/a-mhamdi/ball_and_beam/|$

5 Binary Classifier using ANN

Student's name					
Score /20					
Detailed Credits					
Anticipation (4 points)					
Management (2 points)					
Testing (7 points)					
Data Logging (3 points)					
Interpretation (4 points)					

Goals

★ Train an artificial neural network to predict and classify categorical outcomes.

The overall scope of this manual is to introduce **Artificial Intelligence (AI)**, through some numeric simulations, to the students enrolled at the master's program **RAIA**.

The topics discussed in this manuscript are as follow:

① Getting started with Julia

Get familiar with Pluto Notebook.

② Fuzzification, inference system & defuzzification

Membership functions; COG.

- ③ System control using fuzzy logic
- 4 How to build an ANN

Julia; REPL; Pluto; Fuzzy; Flux; CUDA; Matlab; artificial intelligence; system control; fuzzy; inference; ann.