5.1.1 Gaußelimination und LR-Zerlegung

Bei der Gaußelimination wird mittels Elimination von Zeilen und Spalten das LGS auf Dreiccksform gebracht:

$$A\vec{x} = \vec{b} \longrightarrow R\vec{x} = \vec{c}$$

×o	×	X ₂	×3	$\frac{1}{\alpha_{10}} \cdot \frac{\alpha_{20}}{\alpha_{20}} \cdot \frac{\alpha_{30}}{\alpha_{30}}$
doo	don	doz	α_{os}	bo doo doo
ano	dn	α_{12}	913	6, (
azo	a 21	azz	azs	b ₂
930	031	932	a ₃₃	b ₃ <

Xo	X	Xz	× ₃	1
900	901	002	003	bo
0	$a_{11}^{(1)}$	a 12	$a_{13}^{(1)}$	64
0	$a_{ZJ}^{(A)}$	a (1)	a(1)	b2 (1)
0	a31	a (1)	932	b3(1)

×o	$\times_{\scriptscriptstyle{A}}$	× ₂	×3	1
aco	aos	902	a03	ь.
0	a(1)	$a_{ni}^{(n)}$	$a_{13}^{(1)}$	b, (1)
0	0	a (2)	$a_{23}^{(2)}$	b ₂ (2)
0	0	a ₃₂	$a_{33}^{(2)}$	b ⁽¹⁾

×o	\times_{Λ}	×z	×3	1
aco	aos	902	a03	ь.
0	$a_{n}^{(n)}$	$\alpha_{ni}^{(1)}$	$\alpha_{\Lambda}^{(\Lambda)}$	b, (1)
0	0	$a_{22}^{(2)}$	a(2)	b ₂ (2)
O	0	0	$a_{33}^{(3)}$	b ⁽³⁾

Können alle Matrizenmultiplikationen vorgenommen werden? Was passiert, wenn det (A) = 0?

Diese Fragen lassen sich durch Betrachten des Pivotelements a (k) beantworten. Der (k+1)-te Schrift

kann nur durchgeführt werden, wenn $a_{kk}^{(k)} \neq 0$.

Falls $a_{kk}^{(k)} = 0$, so tausche man die Zeile k mit der Zeile l > k, für die $a_{ek} \neq 0$ gilt.

Sind alle aek=0 für l=k, so ist das LGS singulär.

Pivotisierung

Zur Vermeidung schlechter Konditionierung tauscht man in jedem Schritt die Zeile ℓ nach oben, für die $|a_{\ell k}^{(k)}| > |a_{kk}^{(k)}|$, $\ell \neq k$ gilt und benutz sie als Pivotzelle.

Da jede Zeile mit einem Faktor reskaliert werden kann, vergleicht man nicht die Befräge, sondern sucht

$$\ell = ind \left\{ \max_{\tilde{i}=k,\dots,n-1} \frac{a_{ik}}{\frac{2^{-1}|a_{ij}^{(k)}|}{\tilde{j}_{i}=k}} \right\}$$
 (**)

Genauere Untersuchung von

$$A\vec{x} = \vec{b} \rightarrow R\vec{x} = \vec{b}' = \vec{c}$$

Definition en

$$r_{ik} = \alpha_{ik}^{(k)}$$
, $k = i, i + 1, ..., n - 1$
 $\alpha_{ik}^{(0)} = \alpha_{ik}$, $i, k = 0, ..., n - 1$
 $b_{i}^{0} = b_{i}$, $i = 0, ..., n - 1$
 $c_{i} = b_{i}^{(i)}$

Die Matrix A hat n² Elemente. Es ist dabei sinnvoll die Elemente

$$e_{ik} = \frac{\alpha_{ik}^{(k)}}{\alpha_{kk}^{(k)}}$$

in der unteren Dreiecksmatrix zu speichern, da

$$\int_{ik} = a_{ik}^{(i)} = a_{ik} - l_{i0} a_{0k}^{(0)} - l_{i1} a_{1k} - ... - l_{i,i-1} a_{i-1,k}^{(i-1)}$$

$$= a_{ik} - l_{i0} c_{0k} - l_{i1} c_{1k} - ... - l_{i,i-1} c_{i-1,k}$$

Darans folgt:

$$a_{ik} = \sum_{j=0}^{i-1} l_{ij} r_{jk} \qquad k \ge i \ge 0$$

was nun auch für i=0 gültig ist, da die Summe dann leer ist.

Für lik gilt mit
$$k \ge 1$$
 und $i > k$ im $k-fen$ Schrift
$$lik = \frac{\alpha_{ik}}{\alpha_{ik}} = \frac{1}{\alpha_{ik}} \left[\alpha_{ik} - l_{io} \alpha_{ok} - \dots - l_{i,k-1} \alpha_{k-1,k} \right]$$

was nach aik aufgelößt werden kann:

$$a_{ik} = \sum_{j=0}^{k} e_{ij} v_{jk} \qquad i > k \ge 0$$

Dies erinnent an eine Matrixmultiplikation. Definiere:

dann of offensichtisch $A = L \cdot R$. Damit ist die Gauß-Elimination äquivalent zu einer LR-Zerlegung der Matrix A.

Es blobt die Wete ci zu diskutieren. Für i≥1 gilt:

$$c_i = b_i^{(i)} = b_i - l_{i0}b_0 - l_{in}b_n^{(i)} - ... - l_{i,i-1}b_{i-1}^{(i-1)}$$

also
$$b_{i} = \sum_{j=0}^{i-1} \ell_{ij} + C_{i}$$
 $i = 0, ..., n-1$, also $\ell t = \vec{b}$

Die Gaußelimination kann also in die folgenden Schriffe zelegt werden:

Bemerkung

- Die beiden Matrizen Lund R konnen im urspringlichen Speicher für A abgelegt werden. Schrift für Schrift werden die Elemente von A überschrieben.
- Die Pivotisierung geschieht im b-ten Schriff durch Auswahl der k'-ten Zeile nach Gleichung (*)

Die Vertauschung geschieht natäulich nicht explizit, sondern es wird ein Permutationsoperator Perzeugt, bzw. eine Indexliste 6(k), die am Anfang 6(k) = k, k = 0,...,n-1 (refert. Pro Vertauschung wird in dieser liste vertauscht.

Algorithmus: LR-Zerlegung

Input A

for i=0,...,n-1

berechne l nach (k)

speichere l & i in o

for j=1,...,n-1

for k=0,...,i-1

ajj=ajj-ajkaki

ajj=ajj-ajkaki

ajj=ajj-ajkaki

ajj=ajj-ajkaki

5.12 Cholesky-Zerlegung

Jede symmetrische, positiv definite Nation $A \in \mathbb{R}^n \times \mathbb{R}^n$ bann eindentig in die form $A = LL^T$ gebracht werden. Durch Vorwärts- und Rachwärtssubstitution kann so das LGS, $A\hat{x} = \hat{b}$, effizient gelöst werden. Wird $A = LL^T$ in Komponenten geschnieben $a = \frac{1}{2} liklik$ i = i

aij = Z liklik i = j
folgt sofort:

$$\mathcal{C}_{ij} = \begin{cases}
0 & \text{fin } j > i \\
\sqrt{\alpha_{ii} - \frac{1}{Z_{i}}} \ell_{ik}^{2} & \text{fin } j > i \\
\frac{1}{\ell_{ij}} (\alpha_{ij} - \frac{1}{Z_{i+1}} \ell_{ik} \ell_{jk}) & \text{fin } j < i
\end{cases}$$

Algorithmus Cholesky-Zerlegung

for
$$i=0,...,n-1$$

for $j=0,...,n-1$
 $s=a_{ij}$

for $k=0,...,j-2$
 $s=s-a_{ik}a_{jk}$

if $i>j$
 $a_{ii}=s/a_{ij}$

else if $s>0$
 $a_{ii}=\sqrt{s}$

else

 $s+op!$

output $A=C$

Bemerkungen

- Die Choleskyzerlegung ist eine velativ einfache Methode um zu prüfen, ob die Matrix A positiv definit ist.
- Die Determinante von 4 kann nach der Zerlegung Leicht berechnet werden:

- Die Cholesleyzedegung ist nav etwa halb so tener wie die LR-Zerlegung nach Gauß wegen der Symmetrie von A.