Многогранные углы

Определение. Пусть $\Phi = A_1 A_2 \dots A_n - n$ лоский n-угольник, а точка $S \notin (A_1 A_2 \dots A_n)$. Тогда объединение лучей, имеющих общее начало в точке S и пересекающих многоугольник Φ в точках A_i соответственно, называют многогранным (n-гранным) углом. Обозначают $SA_1 A_2 \dots A_n$, специальные значки отсутствуют. Точку S называют вершиной многогранного угла, прямые (лучи, отрезки) SA_i — его ребрами, плоскости (треугольники) $SA_i A_{i+1}$ (а также $SA_n A_1$) — гранями.

Определение. Плоским углом многогранного угла называют угол между двумя его соседними ребрами, **двугранным углом** многогранного угла называют угол между двумя его соседними гранями.

Трехгранный угол имеет специальное название — $mpu \ni dp$. Плоские углы триэдра обозначают α , β , γ соответственно букве противоположной вершины, двугранные — $\angle A$, $\angle B$, $\angle C$; или SA, SB, SC; или просто A, B, C соответственно букве вершины, находящейся на пересечении граней.

Очевидно, не для любой комбинации линейных углов существует соответствующий трехгранный. Можно попробовать доказать теорему о единственности (в принципе, она довольно очевидна). Достаточное условие будет сформулировано далее.

Приведу некоторые необходимые условия существования триэдра с заданными элементами.

Многогранный угол $SA_1A_2...A_n$

Теорема 1. (*Неравенство треугольника в триэдре*) Величина каждого плоского угла триэдра меньше суммы величин двух других углов.

Пусть $\alpha \leqslant \beta \leqslant \gamma$. Докажем тогда, что $\gamma < \alpha + \beta$. Отметим на ребре AB такую точку M, что $\angle ASM = \beta$ (см. рис, так как $\angle ASB = \gamma > \beta$, то точка M лежит внутри отрезка AB). Отметим на луче SC такую точку D, что SD = SM. Тогда $\triangle ASM = \triangle ASD$ по двум сторонам и углу между ними (AS общая, SM = SD и $\angle ASM = \angle ASD$ по построению). Из равенства этих треугольников следует, что AD = AM.

Из неравенства треугольника в $\triangle ABD$ получим AB < AD + BD. Но так как AD = AM и AB = AM + MB, то неравенство можно преобразовать к виду AM + MB < AM + BD, т.е. MB < BD.

Рассмотрим $\triangle BSM$ и $\triangle BSD$. В них SB — общая, SM = SD и BM < BD. Тогда $\angle MSB < \angle BSD$ (это легко видеть, например, из теоремы косинусов). Но угол MSB как раз и равен $\gamma - \beta$, а $\angle BSD = \alpha$. Отсюда получаем $\gamma < \alpha + \beta$, ч.т.д.

Триэдр SABC. На рисунке α, γ — плоские углы триэдра; SA — двугранный угол при ребре a

Теорема 2. Сумма плоских углов триэдра не превышает 2π .

 \square Отметим на продолжении отрезка AS точку A_1 (см. рис). Рассмотрим триэдр SA_1BC . В нем плоские углы равны α , $\pi - \beta$ и $\pi - \gamma$ соответственно. Тогда по теореме 1 для этого триэдра $\alpha < (\pi - \beta) + (\pi - \gamma)$, откуда $\alpha + \beta + \gamma < 2\pi$, ч.т.д.

Определение. Отметим точку S_1 внутри триэдра. Спроектируем ее на грани триэдра и отметим ее проекции A_1 , B_1 и C_1 . Тогда триэдр $S_1A_1B_1C_1$ называют **полярным** данному триэдру.

К теоремам 1, 2 и 3 соответственно

Обозначения элементов полярного триэдра соответствуют обозначениям элементов в исходном триэдре, к которым приписывают индексы или штрихи (например, $\angle B_1$, γ').

Нетрудно доказать, что если триэдр T_1 полярен триэдру T_2 , то и T_2 полярен T_1 . Действительно, так как $S_1B_1 \perp (ASC)$ и $S_1C_1 \perp (ASB)$, то $S_1B_1 \perp AS$ и $S_1C_1 \perp AS$. А так как прямые S_1B_1 и S_1C_1 не параллельны, то по признаку перпендикулярности прямой и плоскости получим $AS \perp (B_1S_1C_1)$. Аналогично доказывается и перпендикулярность других двух пар прямых и плоскостей. Таким образом, можно говорить о *взаимной полярности*.

Также вполне очевидно, что все полярные триэдры одинаковы независимо от положения выбранной точки S_1 , ведь все соответствующие стороны и грани таких триэдров будут попарно параллельны.

Теорема 3. Сумма плоского угла триэдра и соответствующего ему двугранного угла полярного триэдра равна π .

 \square Отметим точку H пересечения прямой AS и плоскости $B_1S_1C_1$ (см. рис). Тогда, так как $AS \perp (B_1S_1C_1)$, то $B_1H \perp AS$ и $C_1H \perp AS$. А это как раз означает, что $\angle B_1HC_1$ — это и есть угол между гранями ASB и ASC, т.е. $\angle B_1HC_1 = \angle A$. Также, из определения полярного триэдра следует, что $B_1S_1 \perp B_1H$ и $C_1S_1 \perp C_1H$. Рассмотрим 4-угольник $B_1S_1C_1H$. В нем $\angle B_1S_1C_1 = \alpha_1$, $\angle B_1HC_1 = \angle A$, а $\angle HB_1S_1 = \angle HC_1S_1 = \pi/2$. Тогда из теоремы о сумме углов в 4-угольнике незамедлительно получаем $\alpha_1 + \angle A = \pi$, ч.т.д.

При помощи этой теоремы можно получить также соотношения между плоскими углами триэдра.

Теорема 4. Сумма двугранных углов триэдра принадлежит интервалу $(\pi, 3\pi)$.

 \square Из предыдущей теоремы следует, что $\angle A=\pi-\alpha_1$, $\angle B=\pi-\beta_1$ и $\angle C=\pi-\gamma_1$. Просуммировав эти уравнения, получим $\angle A+\angle B+\angle C=3\pi-(\alpha_1+\beta_1+\gamma_1)$. А так как в силу теоремы $2\ 0<\alpha_1+\beta_1+\gamma_1<2\pi$, то $\pi<\angle A+\angle B+\angle C<3\pi$, ч.т.д.

Докажем еще одно интересное утверждение.

Утверждение. Для плоских углов α , β , γ триэдра выполнено неравенство

$$\cos\alpha + \cos\beta + \cos\gamma \geqslant -\frac{3}{2}.$$

Доказательство. Рассмотрим единичные векторы $\overrightarrow{e_1} = \overrightarrow{SA}/SA$, $\overrightarrow{e_2} = \overrightarrow{SB}/SB$, $\overrightarrow{e_3} = \overrightarrow{SC}/SC$, направленные вдоль сторон триэдра. Тогда, т.к. $\overrightarrow{e_1} + \overrightarrow{e_2} + \overrightarrow{e_3} \neq 0$ (ведь эти векторы не лежат в одной плоскости), то $(\overrightarrow{e_1} + \overrightarrow{e_2} + \overrightarrow{e_3})^2 > 0$. Но $\overrightarrow{e_1} \cdot \overrightarrow{e_2} = \cos \gamma$, $\overrightarrow{e_2} \cdot \overrightarrow{e_3} = \cos \alpha$, $\overrightarrow{e_3} \cdot \overrightarrow{e_1} = \cos \beta$ и $\overrightarrow{e_1}^2 = \overrightarrow{e_2}^2 = \overrightarrow{e_3}^2 = 1$. Значит, при раскрытии скобок получим $3 + 2\cos \alpha + 2\cos \beta + 2\cos \gamma > 0$, откуда $\cos \alpha + \cos \beta + \cos \gamma > -3/2$, ч.т.д.

Для триэдра, так же как и для треугольника, существуют метрические теоремы. Рассмотрим некоторые из них.

Теорема 5. (Косинусов в триэдре) Для плоских углов триэдра α , β , γ и соответствующих двугранных углов A, B, C выполнены соотношения

$$\cos \alpha = \cos \beta \cos \gamma + \sin \beta \sin \gamma \cos A,\tag{1}$$

$$\cos A = -\cos B \cos C + \sin B \sin C \cos \alpha. \tag{2}$$

 \square Докажем вначале формулу 1. Отметим на ребрах триэдра такие точки A, B и C, что SA = SB = SC = 1 (см. рис). Опустим перпендикуляры BD и CE на прямую AS ($D, E \in AS$). Из прямоугольных $\triangle SBD$ и $\triangle SCE$ соответственно получим $BD = \sin \gamma$, $CE = \sin \beta$, а также $\overrightarrow{SD} = \overrightarrow{SA} \cdot \cos \gamma$ и $\overrightarrow{SE} = \overrightarrow{SA} \cdot \cos \beta$.

Запишем скалярное произведение векторов $p = \overrightarrow{SB} \cdot \overrightarrow{SC}$. С одной стороны, $p = \left|\overrightarrow{SB}\right| \cdot \left|\overrightarrow{SC}\right| \cdot \cos \angle \left(\overrightarrow{SB}, \overrightarrow{SC}\right) = \cos \alpha$. С другой стороны, $\overrightarrow{SB} = \overrightarrow{SD} + \overrightarrow{DB}$, $\overrightarrow{SC} = \overrightarrow{SE} + \overrightarrow{EC}$. Тогда $p = \left(\overrightarrow{DB} + \overrightarrow{SA} \cdot \cos \gamma\right) \left(\overrightarrow{EC} + \overrightarrow{SA} \cdot \cos \beta\right)$. Так как $SA \perp DB$ и $SA \perp LBC$, то $\overrightarrow{SA} \cdot \overrightarrow{DB} = \overrightarrow{SA} \cdot \overrightarrow{EC} = 0$.

Заметим также, что $\angle(BD, CE) = \angle A$, так как $BD \perp AS$ и $CE \perp AS$, откуда $\angle(DB, EC) = \angle A$. Значит, величина $p = \overrightarrow{DB} \cdot \overrightarrow{EC} + \overrightarrow{SA}^2 \cos \beta \cos \gamma = \cos \beta \cos \gamma + \sin \beta \sin \gamma \cos A$. Сравнивая полученные уравнения, получим уравнение 1.

Формулу же 2 легко получить, пользуясь формулой 1. Рассмотрим триэдр, полярный данному. В нем $\angle A_1 = \pi - \alpha$, $\angle B_1 = \pi - \beta$, $\angle C_1 = \pi - \gamma$ и $\alpha_1 = \pi - \angle A$ по теореме 3. Тогда $\cos \alpha = -\cos A_1$, $\cos \beta = -\cos B_1$, $\cos \gamma = -\cos C_1$, $\sin \beta = \sin B_1$, $\sin \gamma = \sin C_1$ и $\cos A = -\cos \alpha_1$. Подставив в уравнение 1, получим $-\cos A_1 = -\cos \alpha_1$.

К теореме 5

 $=\cos B_1\cos C_1-\sin B_1\sin C_1\cos \alpha_1$. Переходя к старым переменным (без индексов), получим уравнение 2.

Частным случаем этой теоремы является следующая.

Теорема 6. (Пифагора в триэдре)

- (1) Если в триэдре $\angle A = \pi/2$, то $\cos \alpha = \cos \beta + \cos \gamma$.
- (2) Если в триэдре $\alpha = \pi/2$, то $\cos A = -\cos B \cos C$.
- \square Необходимые уравнения следуют из теоремы 5 при подстановке $\cos A=0$ и $\cos \alpha=0$ соответственно. \blacksquare

Кроме теоремы косинусов, существуют другие известные метрические соотношения в триэдре.

Теорема 7. (*Синусов в триэдре*) Для плоских углов триэдра α , β , γ и соответствующих двугранных углов A, B, C выполнены соотношения

$$\frac{\sin A}{\sin \alpha} = \frac{\sin B}{\sin \beta} = \frac{\sin C}{\sin \gamma}.$$

□ Из теоремы 5 (косинусов) следует, что

$$\cos A = \frac{\cos \alpha - \cos \beta \cos \gamma}{\sin \beta \sin \gamma}.$$

Тогда

$$\frac{\sin^2 A}{\sin^2 \alpha} = \frac{1 - \cos^2 A}{\sin^2 \alpha} = \frac{\sin^2 \beta \sin^2 \gamma - (\cos \alpha - \cos \beta \cos \gamma)^2}{\sin^2 \alpha \sin^2 \beta \sin^2 \gamma} = \frac{\left(1 - \cos^2 \beta\right) \left(1 - \cos^2 \gamma\right) - (\cos \alpha - \cos \beta \cos \gamma)^2}{\sin^2 \alpha \sin^2 \beta \sin^2 \gamma} = \frac{1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2\cos \alpha \cos \beta \cos \gamma}{\sin^2 \alpha \sin^2 \beta \sin^2 \gamma}.$$

Полученное выражение симметрично относительно углов α , β , γ . Значит, проделывая такую же процедуру для других пар углов, получим то же выражение, т.е.

$$\frac{\sin^2 A}{\sin^2 \alpha} = \frac{\sin^2 B}{\sin^2 \beta} = \frac{\sin^2 C}{\sin^2 \gamma} \Leftrightarrow \left| \frac{\sin A}{\sin \alpha} \right| = \left| \frac{\sin B}{\sin \beta} \right| = \left| \frac{\sin C}{\sin \gamma} \right|.$$

А так как все рассматриваемые углы лежат в интервале $(0,\pi)$, то все их синусы положительны. Тогда во всех случаях модуль раскрывается с одним и тем же знаком, и выражение принимает искомый вид.

Из этой теоремы легко получить, что $\sin A \sin \beta \sin \gamma = \sin \alpha \sin B \sin \gamma = \sin \alpha \sin \beta \sin C$, а также $\sin \alpha \sin B \sin C = \sin A \sin \beta \sin C = \sin A \sin B \sin \gamma$. Тогда логично ввести соответствующие определения.

Определение. Синусом первого рода $mpu \ni dpa$ назовем величину $\sin A \sin \beta \sin \gamma$.

Синусом второго рода триэдра назовем величину $\sin \alpha \sin B \sin C$.

Теоремы 1, 2 и 4 выражают необходимые условия существования триэдра, теоремы 5 и 7 определяют соотношения между элементами триэдра. При помощи приведенных выше теорем можно доказать и достаточное условие.

Теорема 8. (Достаточное условие существования триэдра) Триэдр с плоскими углами α , β , γ существует при выполнении условий теорем 1 и 2.

- \square Запишем соответствующие условия в виде $|\beta-\gamma|<\alpha<\beta+\gamma;\ \alpha+\beta+\gamma<2\pi.$ Рассмотрим 2 случая:
- 1) $\beta + \gamma \leqslant \pi$. Тогда тем более $\alpha < \beta + \gamma < \pi$. Пользуясь убыванием функции косинуса на промежутке $(0,\pi)$, можно получить:

$$\cos(\beta + \gamma) < \cos \alpha < \cos(\beta - \gamma).$$

Раскрыв скобки, получим:

$$\cos \beta \cos \gamma - \sin \beta \sin \gamma < \cos \alpha < \cos \beta \cos \gamma + \sin \beta \sin \gamma.$$

Так как все углы лежат в интервале $(0,\pi)$, то $\sin\beta>0$ и $\sin\gamma>0$. Разделив тогда на $\sin\beta\sin\gamma$, нетрудно получить:

$$-1 < \frac{\cos \alpha - \cos \beta \cos \gamma}{\sin \beta \sin \gamma} < 1.$$

Тогда существует такой $\angle A$, что $\cos A$ равен выражению в последней формуле. Построим двугранный $\angle A$, отметим точку S на его ребре и отложим в разных плоскостях его граней углы β и γ с его ребром (см. рис). Тогда в полученном триэдре Sabc два плоских угла равны β и γ , а двугранный угол между ними равен $\angle A$. Тогда из теоремы 5 и выражения для $\cos A$ нетрудно получить, что для угла α' в построенном триэдре выполнено соотношение $\cos \alpha' = \cos \alpha$. Но так как $\alpha' < \pi$ (ибо плоский угол), а функция косинуса монотонна на $(0,\pi)$, то $\alpha' = \alpha$. Тогда построенный триэдр и является искомым.

К теореме 8

2) $\beta + \gamma > \pi$. Тогда в этом случае угол $\tilde{\alpha} = 2\pi - \beta - \gamma < \pi$, а

также из теоремы 2 следует, что $\tilde{\alpha} > \alpha$. Значит, углы $|\beta - \gamma|$, α и $\tilde{\alpha}$ принадлежат промежутку $(0, \pi)$. Как и в первом случае, запишем неравенства с косинусами:

$$\cos \tilde{\alpha} = \cos(\beta + \gamma) < \cos \alpha < \cos(\beta - \gamma).$$

Дальнейшее доказательство дословно повторяет первый случай.

Аналогичным образом можно доказать и единственность вышеуказанного построения, однако этот факт настолько очевиден, что полное доказательство приводить не буду.

Введем важное определение:

Определение. Рассмотрим двугранный угол с ребром а. Проведем произвольную плоскость α , перпендикулярную прямой а. Очевидно, что эта плоскость пересечет стороны двугранного угла по двум лучам а и b. Проведем биссектрису l угла, образованного этими двумя лучами, и назовем **биссектором** геометрическое место таких прямых l.

Докажем, что полученное ГМТ является (полу)плоскостью. Так как все такие плоскости α попарно параллельны (ведь прямая a перпендикулярна любой из них), то все соответствующие лучи a и b также попарно параллельны. А значит, что и все соответствующие биссектрисы l попарно параллельны, т.е. лежат в одной плоскости. Доказать же, что любая точка этой плоскости принадлежит одной из прямых l можно, например, проводя соответствующую плоскость α через эту точку.

Докажем, что биссектор двугранного угла является геометрическим местом точек, равноудаленных от граней угла. Опустим высоты DB и DC из точки D биссектора двугранного угла к его граням, и отметим точку A пересечения его ребра с плоскостью α . Тогда $DB \perp AB$ и $DC \perp AC$ по построению, а $DB \perp a$ и $DC \perp a$ в силу перпендикулярности прямой a и плоскости α . Но

К теореме 11

так как $AB \not \mid a$ и $AC \not \mid a$, то тогда по признаку перпендикулярности прямой и плоскости получим $DB \perp \beta$ и $DC \perp \gamma$, где β и γ — соответственные стороны двугранного угла. А значит, длины отрезков DB и DC равны расстояниям между точкой D и сторонами угла (и они же — расстояния между точкой D и прямыми a,b соответственно). Осталось добавить, что точка D лежит на биссектрисе угла, образованного прямыми a и b, а значит, равноудалена от них. Утверждение доказано.

Обратное также верно: если точка равноудалена от сторон двугранного угла, то она лежит на его биссекторе. Доказать это легко, проводя соответствующую плоскость α через эту точку, как показано выше.

Теорема 9. Биссекторы двугранных углов триэдра пересекаются по прямой.

Пусть α и β — биссекторы двугранных углов углов A и B триэдра SABC соответственно. Так как, очевидно, $\alpha \not \models \beta$, то α и β пересекаются по прямой, назовем ее l. Отметим произвольную точку $M \in l$. Тогда, т.к. $M \in \alpha$, то по доказанному выше $\rho(M,(ASB)) = \rho(M,(ASC))$. Аналогично, т.к. $M \in \beta$, то $\rho(M,(BSA)) = \rho(M,(BSC))$. Значит, точка M равноудалена от всех трех граней триэдра, а значит, лежит и на биссекторе γ угла C. Так как все это доказательство верно для любой точки $M \in l$, то и вся прямая $l \subset \gamma$, ч.т.д.

Теорема 10. Биссекторы двугранных углов тетраэдра пересекаются в одной точке.

 \square По теореме 9 биссекторы двугранных углов при ребрах SA, SB и SC пересекаются по прямой, назовем ее l. Пусть δ — биссектор двугранного угла при ребре AB. Очевидно, что $l \not \mid \delta$, тогда отметим точку I их пересечения. Тогда точка I равноудалена от scex четырех граней тетраэдра, а значит, лежит на биссекторах scex шести ребер тетраэдра, ч.т.д.

Можно доказать, что точка I является $uent{mpom}$ вписанной в тетраэдр SABC сферы. Прямая l же является осью вписанного в триэдр конуса, ее можно назвать биссекториальной осью или просто биссекторисой триэдра.

Введем еще несколько определений по аналогии с треугольником, и докажем далее, что для них справедливы теоремы, аналогичные соответствующим в треугольнике.

Определение. Плоскость, содержащую ребро триэдра и биссектрису противоположного плоского угла, называют **медианной**.

Теорема 11. Три медианные плоскости триэдра пересекаются по прямой.

 \square Отметим на ребрах триэдра Sabc точки A, B и C такие, что SA=SB=SC=1. Проведем медианные плоскости SAA_1 , SBB_1 и SCC_1 (см. рис). Так как $\triangle ASB$ — равнобедренный, и в нем SC_1 — биссектриса (по определению медианной плоскости), то $AC_1=C_1B$. При помощи аналогичных рассуждений можно получить, что $BA_1=A_1C$ и $AB_1=B_1C$. Тогда прямые AA_1 , BB_1 и CC_1 пересекаются в одной точке — центроиде G треугольника ABC. А так как каждая из этих прямых принадлежит соответствующей медианной плоскости, то точка G принадлежит всем трем медианным плоскостям. Учитывая то, что и точка S является общей для всех трех медианных плоскостей, то эти плоскости пересекаются по прямой SG, ч.т.д.

Следует заметить, что эта прямая в общем случае не является медианой тетраэдра SABC (если длины его ребер не равны), и такие прямые в тетраэдре, вообще говоря, не пересекаются в одной точке.

Определение. Плоскость, проходящую через биссектрису грани триэдра перпендикулярно самой грани, назовем **серединной**.

Важно понимать, что серединная плоскость грани является геометрическим местом точек, равноудаленных от ее ребер. Действительно, пусть грань образована лучами a и b, и l— ее биссектриса. Отметим произвольную точку S серединной плоскости и опустим перпендикуляр SH к плоскости грани. Из определения серединной плоскости следует, что точка $H \in l$. Опустим также перпендикуляры SA и SB к прямым a и b соответственно. Тогда из теоремы о трех перпендикулярах $AH \perp a$ и $BH \perp b$. Но поскольку точка H равноудалена от прямых a и b (ведь лежит на биссектрисе угла, образованного ими), то AH = BH. Осталось добавить, что прямая SH перпендикулярна плоскости грани, а значит, треугольники $\triangle ASH$ и $\triangle BSH$ прямоугольны и равны. Следовательно, AS = BS— точка S равноудалена от прямых a и b. Нетрудно понять, что и обратное утверждение верно: точка, равноудаленная от ребер угла, лежит на этой плоскости.

Теорема 12. Три серединные плоскости триэдра пересекаются по прямой.

 \square Очевидно, серединные плоскости граней триэдра не параллельны. Пусть l — прямая пересечения двух из них. Тогда по описанному выше свойству любая точка этой прямой равноудалена от всех трех ребер триэдра, а значит, лежит и на третьей серединной плоскости. \blacksquare

Теорема 13. Серединные плоскости тетраэдра пересекаются в одной точке.

 \square Этот факт не является содержательным, поскольку, очевидно, серединная плоскость основания тетраэдра (последняя оставшаяся) не параллельна прямой l (см. доказательство предыдущей теоремы).

Можно доказать, что прямая l является осью описанного вокруг триэдра конуса.

Определение. Плоскость, проходящую через ребро триэдра перпендикулярно противоположной грани, называют высотной.

Теорема 14. Три высотные плоскости триэдра пересекаются по прямой.

Отметим на прямой AB точку N такую, что $(SCN) \perp (SAB)$ — еще одна высотная плоскость. Тогда, т.к. $SA \perp (ABC)$, то $(SAB) \perp (ABC)$. Так как $(SCN) \perp (SAB)$ и $(ABC) \perp (SAB)$, то и их линия пересечения $CN \perp (SAB)$. А тогда прямая CN перпендикулярна любой прямой в плоскости (SAB), например, прямой AB.

По доказанному выше прямые AM и CN являются высотами в $\triangle ABC$, а следовательно, пересекаются в ортоцентре H треугольника. Отметим точку K на прямой AC аналогично точке N. Прямая BK — также вы-

К теореме 14

сота в $\triangle ABC$ (доказательство дословно повторяет предыдущий абзац при замене соответствующих названий вершин), тогда BK проходит через точку H.

Так как каждая из прямых AM, BK, CN принадлежит соответствующей высотной плоскости, то точка H является общей для всех высотных плоскостей. Очевидно, точка S также является общей точкой этих трех плоскостей, а значит, они пересекаются по прямой SH, ч.т.д.

Прямую SH называют высотной осью или ортоосью триэдра.

С высотными плоскостями связано еще одно интересное метрическое соотношение.

Утверждение. Рассмотрим триэдр OABC. Опустим высотную плоскость $(OCC_1) \perp (OAB)$ и обозначим $\gamma_1 = \angle OCC_1$, углы α_1 и β_1 определим аналогично. Тогда $\sin \alpha \sin \alpha_1 = \sin \beta \sin \beta_1 = \sin \gamma \sin \gamma_1$.

Доказательство. Опустим перпендикуляр CC_1 на плоскость (OAB), $C_1 \in (OAB)$ (см. рис). Тогда $\angle COC_1 = \gamma_1$ по определению угла между прямой и плоскостью. Рассмотрим триэдр $OACC_1$. В нем плоские углы равны β , γ_1 и $\angle BOC_1$, а соответствующие двугранные углы $\angle (OC_1) = \pi/2$ (ведь $(OCC_1) \perp (OAC_1)$), $\angle A$ и $\angle (OC)$. Тогда по теореме 7 (синусов)

$$\frac{\sin A}{\sin \gamma_1} = \frac{\sin \pi/2}{\sin \beta},$$

откуда $\sin \gamma_1 = \sin A \sin \beta$. Значит, $\sin \gamma \sin \gamma_1 = \sin A \sin \beta \sin \gamma$ — синус первого рода. Полученное выражение симметрично относительно углов триэдра (как в доказательстве теоремы синусов), а значит, все такие выражения равны. Доказано.

Теорема 15. Пусть Sh — ортоось триэдра Sabc. Тогда Sa — ортоось триэдра Sbch.

 \square Так как Sh — ортоось триэдра Sabc, то $Sbh \perp Sac$ и $Sch \perp Sab$. Тогда Sab и Sac — высотные плоскости триэдра Sbch, а следовательно они пересекаются по ортооси — прямой Sa, ч.т.д.

Теорема 16. Пусть плоскости φ и ψ пересекаются по прямой a. Проведем прямую l в плоскости φ . Обозначим $\alpha = \angle(\varphi, \psi), \ \beta = \angle(l, a), \ \gamma = \angle(l, \psi)$. Тогда $\sin \gamma = \sin \alpha \sin \beta$.

Пусть l_1 — проекция прямой l на плоскость ψ . Отметим точку D пересечения прямых l и a. Возьмем произвольную точку A на прямой l и опустим перпендикуляр AC на плоскость ψ . Опустим также перпендикуляр $AB \perp a$ (см. рис). Тогда $\angle ABC = \alpha$, $\angle ADB = \beta$, $\angle ADC = \gamma$ по определению. Из теоремы о трех перпендикулярах $BC \perp a$.

Из прямоугольного $\triangle ACD$ получим $AC=AD\sin\gamma$. Из прямоугольного $\triangle ABD$ получим $AB=AD\sin\beta$. Наконец, из прямоугольного $\triangle ABC$ получим $AC=AB\sin\alpha$. Комбинируя эти равенства, получим $AC=AD\sin\gamma=AB\sin\alpha=AD\sin\beta\sin\gamma$, откуда после сокращения на AD получаем требуемое выражение.

