

$$f''(x) \mid h = C_{t}$$

 e_{mr} $\sim \int \mathcal{E}_{t}$ (x-h, L(x-h))

f'(x) = 4f(x+h) - 1f(x) $f'(x) = \frac{1}{h} (x+h) - \frac{1}{h} (x+h) - \frac{1}{h} (x-h)$ $f'(x) = \frac{1}{h} (x+h) - \frac{1}{h} (x-h)$

Contral F-D

Forward Finite Differeign

Backword Finite n. Herere

Errer CFD

$$f(x+h) = f(x) + f'(x) h + \frac{1}{2} f''(x) h^{2} + \frac{1}{3 \cdot 2} f'''(x) h^{3} + O(h^{4}) - \cdots + O(h^{4})$$

$$f(x-h) = f(x) - f'(x) h + \frac{1}{2} f''(x) h^2 - \frac{1}{3 \cdot 2} f'''(x) h^3 + O(h^4) - -- (b)$$

Nostr (a)-(b)

$$\frac{f(x+h) - f(x-h)}{zh} = f'(x) + \frac{1}{z-3} f''(x) h^{2} + O(h^{4})$$

$$\frac{e_{h} - |f(x)|}{z} e_{h}$$

$$e_{ner} = \frac{|f(x)|}{h} \frac{\xi_{f}}{\xi_{f}} + \frac{|f''(x)|}{h^{2}} \rightarrow \frac{|f(x)|}{dt} = 0 = \frac{|f(x)|}{h^{2}} \frac{\xi_{f}}{\xi_{f}} + \frac{|f''(x)|}{h^{2}} = 0$$

$$= \frac{|f(x)|}{|f''(x)|} \frac{\xi_{f}}{\xi_{f}} + \frac{|f''(x)|}{|f'''(x)|} = 0 = \frac{|f(x)|}{|f''(x)|} \frac{\xi_{f}}{\xi_{f}} + \frac{|f''(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}}$$

$$= \frac{|f(x)|}{|f(x)|} \frac{|f''(x)|}{|f(x)|} + \frac{|f''(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}} = 0 = \frac{|f(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}}$$

$$= \frac{|f(x)|}{|f(x)|} \frac{|f''(x)|}{|f'''(x)|} = 0 = \frac{|f(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}}$$

$$= \frac{|f(x)|}{|f(x)|} \frac{|f'''(x)|}{|f'''(x)|} = 0 = \frac{|f(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}}$$

$$= \frac{|f(x)|}{|f'''(x)|} \frac{|f'''(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}} = 0 = \frac{|f(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}}$$

$$= \frac{|f(x)|}{|f'''(x)|} \frac{|f'''(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}} = 0 = \frac{|f(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}}$$

$$= \frac{|f(x)|}{|f'''(x)|} \frac{|f'''(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}} = 0 = \frac{|f(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}}$$

$$= \frac{|f(x)|}{|f'''(x)|} \frac{|f'''(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}} = 0 = \frac{|f(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}}$$

$$= \frac{|f(x)|}{|f'''(x)|} \frac{|f'''(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}} = 0 = \frac{|f(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}}$$

$$= \frac{|f(x)|}{|f'''(x)|} \frac{|f'''(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}} = 0 = \frac{|f(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}}$$

$$= \frac{|f(x)|}{|f'''(x)|} \frac{|f'''(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}} = 0 = \frac{|f(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}}$$

$$= \frac{|f(x)|}{|f'''(x)|} \frac{|f'''(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}} = 0 = \frac{|f(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}}$$

$$= \frac{|f(x)|}{|f'''(x)|} \frac{\xi_{f}}{\xi_{f}} = 0 = \frac{|f(x)|$$

En geral deluns aftrobly, y plus calabr les divades

noneras como sique

CFD

	Derivative	Accuracy	-5	-4	-3	-2	-1	0	1	2	3	4	5	ع سے	າ,
n }	1	(3)					-1/2	0	1/2					24n	•
		4				1/12	-2/3	0	2/3	-1/12					
		6			-1/60	3/20	-3/4	0	3/4	-3/20	1/60			۲ '۱	
		8		1/280	-4/105	1/5	-4/5	0	4/5	-1/5	4/105	-1/280		/	
	2	2					1	-2	1				_	5	>
		4				-1/12	4/3	-5/2	4/3	-1/12				89 n	
		6			1/90	-3/20	3/2	-49/18	3/2	-3/20	1/90			1.	
		8		-1/560	8/315	-1/5	8/5	-205/72	8/5	-1/5	8/315	-1/560		J	

<u>u -</u>	f: L(x	-m1-fex
		1
f"(1)=	lin F'(x-h)	- 1'(x)
f (V) =	lim f (x-h)	<u>- </u>

Forward finite difference [edit source]

This table contains the coefficients of the **forward** differences, for several orders of accuracy and with uniform grid spacing:^[1]

	Derivative	Accuracy	0	1	2	3	4	5	6	7	8	-> bn
	1	(1)	-1	1								
		2	-3/2	2	-1/2							/
		3	-11/6	3	-3/2	1/3						490
۸		4	-25/12	4	-3	4/3	-1/4					\ \
		5	-137/60	5	-5	10/3	-5/4	1/5				
		6	-49/20	6	-15/2	20/3	-15/4	6/5	-1/6			1