RELATIVIDAD ESPECIAL CON ESPACIO Y TIEMPO ABSOLUTOS

A. Blato

Licencia Creative Commons Atribución 3.0 (2016) Buenos Aires Argentina

En relatividad especial, este artículo presenta magnitudes cinemáticas que son invariantes bajo las transformaciones de Lorentz.

Introducción

A partir de un cuerpo puntual auxiliar (denominado free-point) es posible obtener magnitudes cinemáticas (denominadas absolutas) que son invariantes bajo las transformaciones de Lorentz.

El free-point es un cuerpo puntual (partícula masiva) que está siempre libre de fuerzas externas e internas (o que su fuerza resultante está siempre en equilibrio)

La posición absoluta $(\check{x}_i, \check{y}_i, \check{z}_i)$ y el tiempo absoluto (\check{t}_i) de una partícula i respecto a un sistema de referencia inercial S, están dados por:

$$\breve{x}_i \ \doteq \ \frac{x_i - V_x \, t_i}{\sqrt{1 - \frac{V_x^2}{c^2}}} \qquad , \qquad \breve{y}_i \ \doteq \ y_i \qquad , \qquad \breve{z}_i \ \doteq \ z_i$$

donde (x_i, y_i, z_i, t_i) son la posición y el tiempo de la partícula i respecto al sistema de referencia inercial S, (V_x) es la velocidad (sobre el eje x) del freepoint respecto al sistema de referencia inercial S y (c) es la velocidad de la luz en el vacío.

Observaciones

En este artículo, las magnitudes cinemáticas $(\check{x}, \check{y}, \check{z}, \check{t})$ son invariantes bajo las transformaciones de Lorentz.

A partir de las magnitudes anteriores sería posible obtener la posición absoluta $\check{\mathbf{r}}$, la velocidad absoluta $\check{\mathbf{v}}$ y la aceleración absoluta $\check{\mathbf{a}}$ de una partícula con masa en reposo m_o respecto a un sistema de referencia inercial S.

Luego, el momento lineal **P**, la fuerza **F**, el trabajo W y la energía cinética K, para el sistema de referencia inercial S, estarían dados por:

$$\mathbf{P} \doteq \frac{m_o \, \breve{\mathbf{v}}}{\sqrt{1 - \frac{\breve{v}^2}{c^2}}}$$

$$\mathbf{F} = \frac{d\mathbf{P}}{d\check{t}}$$

$$\mathbf{W} \doteq \int_{1}^{2} \mathbf{F} \cdot d\mathbf{\check{r}} = \Delta \mathbf{K}$$

$$K \doteq m_o c^2 \left(\frac{1}{\sqrt{1 - \frac{\breve{v}^2}{c^2}}} - 1 \right)$$

Según este artículo, las magnitudes ($\breve{\mathbf{r}}$, $\breve{\mathbf{v}}$, $\breve{\mathbf{a}}$, \mathbf{P} , \mathbf{F} , \mathbf{W} , \mathbf{K}) serían invariantes también bajo las transformaciones de Lorentz.

Sin embargo, este artículo considera, por un lado, que sería también posible obtener magnitudes cinemáticas y dinámicas ($\check{\mathbf{r}}$, $\check{\mathbf{v}}$, $\check{\mathbf{a}}$, \mathbf{P} , \mathbf{F} , \mathbf{W} , \mathbf{K}) que serían invariantes bajo transformaciones entre sistemas de referencia inerciales y no inerciales y, por otro lado, que las magnitudes dinámicas (\mathbf{P} , \mathbf{F} , \mathbf{W} , \mathbf{K}) estarían dadas también por las ecuaciones de arriba.