

Mathematics

Data Scientist – Stream Intelligence

Senior Data Analyst – Tokopedia

Farhan Reza Gumay

Quote of The Day

You can have data without information, but you cannot have information without data.

- Daniel Keys Moran

Table of Content What will We Learn Today

- 2. Join Tables
- 3. Sub Query

Date

Functions

Date Functions

Handling Date in Database sometimes need special care, especially when we are multi-national company, have overseas market or working together with partners. Different timezone, time granularity, and updated time are the most common problem. That is why we must have a standardized date recording.

But when it comes to analyze the data, we also need capability to transform date to be something that we need. That is why date functions are important for database.

Getting Current Time

Get Datetime (2021-01-21 01:26:52)

now()
current_timestamp

Get Date (2021-01-21)

current_date

Get Time (01:26:52)

current_time

Changing Timezone

Date usually is recorded at UTC timezone (+00:00). By using standardized date timezone, we can match any date from any source. But when it comes to analytics need, sometimes change it again to our local time would help.

SELECT created_at at time zone 'Asia/Jakarta'

FROM transaction

References for timezones:

Making Date & Time

Make Date

make_date(year int, month int, day int)

make_date(2013, 7, 15)

Make Time

make_time(hour int, min int, sec double precision)

make_time(8, 15, 23.5)

Make Timestamp

make_timestamp(year int, month int, day int, hour int, min int, sec double precision)

Extract Part of Date

Extract Part of Date

date_part(text, timestamp)

date_part('hour', timestamp '2001-02-1620:38:40')

Date Transformation

Transform Date to Character or String

to_char('string', 'format')

to_char('2017-03-31', 'DD/MM/YYYY')

Transform String to Date

to_date('string', 'format')

to_date('20170103','YYYYMMDD')

Transform String to Timestamp

to_timestamp('string', 'format')

to_timestamp('2017-03-31 9:30:20', 'YYYY-MM-DD HH:MI:SS') copyright by Digital Skola 2020

Join Tables

Join Tables

A JOIN clause is used to combine rows from two or more tables, based on related columns between them.

INNER JOIN selects records that have matching values in both tables.

SELECT

column_name(s)

FROM table1

INNER JOIN table 2

ON table1.column_name =table2.column_namINe; NER JOIN Customers

ON Orders.CustomerID =

Customers.CustomerID;

SELECT

Orders.OrderID,

Customers.CustomerName

FROM Orders

Inner Join

Customer	Gender	Age
Adam	male	24
Benjamin	male	32
Jack	male	29
Nick	male	37
Susan	female	31

Inner Join

On: A.Customer = B.Employee

Wage

17 \$/hr

19 \$/hr

21 \$/hr

19 \$/hr

	Customer	Gender	Age		Employee	Title
-	Adam	male	24	_	Jack	Clerk
_	Benjamin	male	32	- [-	John	Clerk
	Jack	male	29	.	Mary	Mgr
_	Nick	male	37	- 7	Susan	Mgr
	Susan	female	31	J		

<u>Inner Join</u>

Customer	Gender	Age	Employee	Title	Wage
Jack	male	29	Jack	Clerk	17 \$/hr
Susan	female	31	Susan	Mgr	19 \$/hr

Left Join /Left Outer Join

LEFT JOIN returns all records from the left table (table1) and the matched records from the right table (table 2).

SELECT

column_name(s)

FROM table1

LEFT JOIN table 2

ON table1.column_name =table2.column_namLeE;FT JOIN Customers

Orders.OrderID,

FROM Orders

Example:

SELECT

ON Orders.CustomerID =

Customers.CustomerName

Customers.CustomerID;

Left Outer Join

Customer	Gender	Age
Adam	male	24
Benjamin	male	32
Jack	male	29
Nick	male	37
Susan	female	31

Left Outer Join

Customer	Gender	Age
Adam	male	24
Benjamin	male	32
Jack	male	29
Nick	male	37
Susan	female	31

Left Outer Join

Customer	Gender	Age	Employee	Title	Wage
Adam	male	24			
Benjamin	male	32			
Jack	male	29	Jack	Clerk	17 \$/hr
Nick	male	37			
Susan	female	31	Susan	Mgr	19 \$/hr

Right Join /Right Outer

Join

RIGHT JOIN returns all records from the right table (table 2) and the

matched records

from the left table (table1).

SELECT

column_name(s)

FROM table1

RIGHT JOIN table 2

ON table1.column_name =table2.column_namReIG; HT JOIN Customers

Example:

SELECT

Orders.OrderID,

Customers.CustomerName

FROM Orders

ON Orders.CustomerID =

Customers.CustomerID;

Right Outer Join

Customer	Gender	Age
Adam	male	24
Benjamin	male	32
Jack	male	29
Nick	male	37
Susan	female	31

	Employee	Title	Wage
7	Jack	Clerk	17 \$/hr
	John	Clerk	19 \$/hr
	Mary	Mgr	21 \$/hr
	Susan	Mgr	19 \$/hr

Right Outer Join

	Customer	Gender	Age	
_	Adam	male	24	-
_	Benjamin	male	32	-
	Jack	male	29	=
_	Nick	male	37	-
	Susan	female	31	_

Employee	Title	Wage
Jack	Clerk	17 \$/hr
John	Clerk	19 \$/hr
Mary	Mgr	21 \$/hr
Susan	Mgr	19 \$/hr

Customer	Gender	Age	Employee	Title	Wage
Jack	male	29	Jack	Clerk	17 \$/hr
			John	Clerk	19 \$/hr
			Mary	Mgr	21 \$/hr
Susan	female	31	Susan	Mgr	19 \$/hr

FULL OUTER JOIN returns all records when there is match in either left

table (table1) or right

table (table2).

SELECT

column_name(s)

FROM table1

FULL OUTER JOIN table 2

ON table1.column_name =table2.column_namFeU; LL OUTER JOIN Customers

Example:

SFI FCT

Orders.OrderID,

Customers.CustomerName

FROM Orders

ON Orders.CustomerID =

Customers.CustomerID;

Full Outer Join

Customer	Gender	Age
Adam	male	24
Benjamin	male	32
Jack	male	29
Nick	male	37
Susan	female	31

Employee	Title	Wage
Jack	Clerk	17 \$/hr
John	Clerk	19 \$/hr
Mary	Mgr	21 \$/hr
Susan	Mgr	19 \$/hr

Customer	Gender	Age	Employee	Title	Wage
Adam	male	24			
Benjamin	male	32			
Jack	male	29	Jack	Clerk	17 \$/hr
Nick	male	37			
Susan	female	31	Susan	Mgr	19 \$/hr
			John	Clerk	19 \$/hr
			Mary	Mgr	21 \$/hr

Sub Query

A subquery is a SQL query nested inside a larger query. Outside query reprocess inside query's table. Note that subquery statements are enclosed between parenthesis.

```
Outside Query

*
FROM (
SELECT

user_id, name, phone, email, address
FROM

all_users
) table1
WHERE
address LIKE ('%Jakarta%')
```


"Behind The Scene" of Sub

Query

SELECT

user_id ,name ,phone ,email ___ ,address FROM

all_users

table1

user_id	name	phone	email	address

SELECT

column_name(s)

FROM

table1

WHERE

address LIKE ('%Jakarta%

Common Table Expression (CTE)

What is CTE?

```
with
cte_1 as(
  select
      column_1
  from table_1
select *
from cte_1
```


Why do you need CTE?

- **1. Readability** CTE's promote readability. Rather than lump all you query logic into one large query, create several CTE's, which are the combined later in the statement.
- 2. Making query more effective

Let's Practice

1. What is the most sold category in Germany?

2. What is the most ship mode for Technology Category order that received in September 2011?

3. Which country and its city has the highest order in July 2011?

4. What is the average of total profit for segment "Home Office"?

These query functions enable us to transform date data and combine different tables.

Please master it carefully since most of the queries use these functions.

