

TrailerMate

Team Jason

Abdessamad Amadar

Malaurie Bernard

Sarah Bobillot

Emilie Fraumar

Killian Gonet

Réda Kharoubi

Antonin Laborde-Tastet

■ Table of content

Reminder of the project

Schedule control & organization

Demonstrations

Next sprint goals

Next sprint organisation

Next sprint acceptance tests

Suggestion & Questions?

Reverse gear library

Schedule control & organization

?

Schedule control & organization

Sprint tasks

Understand existing code

Move forward/backward

Emergency button

Understand ROS2 structure

SoA reverse control loops

Get values from sensor

Closed loop to forward

Car model in Matlab

Wired car connection

Organization

3 working teams

Xprogramming approach

Good sprint organization with Trello

Work evenly splitted

Lack of communication

Difficulty to start the project

Example of data:

Demonstrations

LIDAR

```
jetson@geicar:~$ ros2 topic echo /scan
   sec: 1663252954
    nanosec: 116424035
 frame id: laser
angle min: -3.1241393089294434
angle max: 3.1415927410125732
angle increment: 0.008714509196579456
time increment: 0.00010080377978738397
scan time: 0.07247791439294815
range min: 0.15000000596046448
range max: 16.0
ranges: [0.40700000524520874, 0.40700000524520874, 0.4099999964237213, 0
1999990940094, 0.42500001192092896, 0.42800000309944153, 0.43099999427795
 .inf, .inf, 1.5679999589920044, 1.5679999589920044, .inf, .inf, 1.598000
32983, 1.6460000276565552, 1.6519999504089355, 1.6619999408721924, 1.6619
000095367432, 1.7400000095367432, 1.75, 1.75, 1.7580000162124634, 1.76800
162124634, 1.7280000448226929, 1.7280000448226929, 1.7280000448226929, 1.
842, 1.5540000200271606, .inf, .inf, 1.559999942779541, 1.559999942779542
40000200271606, 1.5579999685287476, 1.5779999494552612, 1.572000026702880
, 0.7459999918937683, 0.7400000095367432, 0.7319999933242798, 0.72799998
7, 0.7080000042915344, 0.7080000042915344, 0.7099999785423279, 0.7120000
intensities: [47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0,
0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0
.0, 47.0, 47.0, 47.0, 0.0, 0.0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 47.0,
47.0, 47.0, 47.0, 47.0, 47.0, 47.0, 0.0, 0.0, '...']
```

Camera

```
jetson@geicar:~$ ros2 topic echo /image raw
header:
  stamp:
    sec: 1663252816
    nanosec: 400617523
 frame id: default cam
height: 480
width: 640
encoding: rgb8
is bigendian: 0
step: 1920
data: [67, 74, 85, 65, 72, 83, 65, 72, 81, 67, 74, 83, 71,
66, 72, 58, 67, 66, 59, 68, 67, 61, 67, 65, 62, 68, 66, 6
1, 24, 23, 21, 24, 23, 21, 24, 23, 21, 24, '...']
```

GPS

pi@geicar:~\$ ros2 topic echo /gnss data

latitude: 43.57053633333332

longitude: 1.4666725 altitude: 208.9

quality: 1 hacc: 35120.0 vacc: 25364.0

latitude: 43.57054233333333 longitude: 1.46668783333333

altitude: 208.9

quality: 1 hacc: 35120.0 vacc: 25364.0

Demonstrations

?

Obstacles detection:

Demonstrations


```
stop_car_rear: false
stop_car_front: true
```

```
stop_car_rear: true
stop car front: false
```


Story: The car moves forward and maintains a set speed in automatic mode

Example:

I want my car's wheels to round 50 RPM (Revolution Per Minute)

Thanks to my automatic mode, I will be able to maintain this velocity!

?

Demonstration sequence

Let's see the demonstration!

Next sprint goals

?

SCRUM Master: Emilie Fraumar

3 Goals

Trailer angle

Car automation

Obstacles detection

Next sprint organisation

?

Next sprint acceptance test

?

Trailer angle

Initial state: The car is stopped.

Action: Turn the trailer manually.

Result: The sensor post the right

angle of the trailer.

Car automation

Initial state: The car is stopped.

Action: Run automatic mode.

Result: The car go backward

with fixed speed.

Obstacles detection

Initial state: The trailer is moving.

Action: Put an obstacle in its path.

Result: The trailer stops before

hitting the obstacle.

Fixed speed

