Chemistry Data Booklet Higher and Advanced Higher

For use in National Qualification Courses

Publication date: 2016 Publication code: BB6753 ISBN: 978 1 910180 00 6

Published by the Scottish Qualifications Authority The Optima Building, 58 Robertson Street, Glasgow G2 8DQ Lowden, 24 Wester Shawfair, Dalkeith, Midlothian EH22 1FD

www.sqa.org.uk

The information in this publication may be reproduced in support of SQA qualifications. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, then written permission must be obtained from SQA. It must not be reproduced for trade or commercial purposes.

Contents

Relationships for Higher and Advanced Higher Chemistry	4
Names, Symbols, Relative Atomic Masses and Densities	5
Melting and Boiling Points of Selected Elements	6
Covalent Radii of Selected Elements	7
Electron Arrangements of Elements	8
Melting and Boiling Points of Selected Oxides	9
Melting and Boiling Points of Selected Chlorides	9
Melting and Boiling Points of Selected Organic Compounds	9
Enthalpies of Formation and Combustion of Selected Substances	10
Selected Bond and Mean Bond Enthalpies	10
Enthalpy of Sublimation of Carbon	10
Ionisation Energies and Electronegativities of Selected Elements	11
Electrochemical Series: Standard Reduction Potentials	12
Electrolysis of Water	12
Dissociation Constants of Selected Species	13
Infra-red Correlation Table	14
Spectral Lines and Flame Colours	15
Proton NMR Spectra Correlation Chart	16
Ionic Radii of Selected Ions	17
Standard Entropy Values for Selected Substances	17
Standard Molar Enthalpies of Atomisation of Selected Elements	18
Lattice Enthalpies of Selected Compounds	18
Electron Affinities of Selected Elements	19
Hydration Enthalpies of Selected Ions	19
Colour Wheel	20
Acid-base Indicators	20
Formulae of Selected Ions containing more than one kind of Atom	21
Solubilities of Selected Compounds in Water	21
Systeme Internationale Units	22
Physical Constants	
Properties of Water	22
SI Prefixes and Multiplication Factors	22
Conversion Factors	22

Relationships for Higher and Advanced Higher Chemistry

$$E_h = cm\Delta T$$

$$\%$$
 yield = $\frac{\text{Actual yield}}{\text{Theoretical yield}} \times 100$

% atom economy =
$$\frac{Mass of desired product(s)}{Total mass of reactants} \times 100$$

$$n = cV$$

$$\frac{c_1 V_1}{n_1} = \frac{c_2 V_2}{n_2}$$

$$n = \frac{m}{GFM}$$

$$rate = \frac{\Delta quantity}{\Delta t}$$

$$reaction \ rate = \frac{1}{t}$$

% by mass =
$$\frac{m}{GFM} \times 100$$

$$c = f\lambda$$

$$E = Lhf$$

$$K = \frac{\left[C\right]^{c} \left[D\right]^{d}}{\left[A\right]^{a} \left[B\right]^{b}} \quad \text{for} \quad aA + bB \Longrightarrow cC + dD$$

$$pH = -\log_{10} \left[H^+ \right]$$

$$pK_a = -\log_{10} K_a$$

$$pH = \frac{1}{2}pK_a - \frac{1}{2}\log_{10}c$$

$$pH = pK_a - \log_{10} \frac{[acid]}{[salt]}$$

$$K_{\text{W}} = \left[H^{+} \right] \left[OH^{-} \right]$$

$$pOH = -log_{10}[OH^{-}]$$

$$pH + pOH = 14$$

$$K_{\rm In} = \frac{\left[{\rm H_3O}^+\right]\left[{\rm In}^-\right]}{\left[{\rm HIn}\right]}$$

$$pH = pK_{In} \pm 1$$

$$\Delta H^{\circ} = \sum \Delta H_{f}^{\circ} (products) - \sum \Delta H_{f}^{\circ} (reactants)$$

$$\Delta S^{\circ} = \sum S^{\circ}(\text{products}) - \sum S^{\circ}(\text{reactants})$$

$$\Delta G = \Delta H - T\Delta S$$

$$\Delta G^{\circ} = \sum \Delta G_{\rm f}^{\circ} (\text{products}) - \sum \Delta G_{\rm f}^{\circ} (\text{reactants})$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

Names, Symbols, Relative Atomic Masses and Densities

(Relative atomic masses, also known as average atomic masses, have been rounded to the nearest 0·1)

Element	Symbol	Relative atomic mass	Density (g cm ⁻³)		
Actinium	Ac	227-0	10.1		
Aluminium	Al	27.0	2.70		
Americium	Am	243·1	13.7		
Antimony	Sb	121.8	6.68		
Argon	Ar	39.9	0.0018		
Arsenic	As	74.9	5.78		
Astatine	At	210.0	unknown		
Barium	Ba	137-3	3.62		
Berkelium	Bk	247·1	14.8		
Beryllium	Be	9.0	1.85		
Bismuth	Bi	209.0	9.79		
Boron	В	10.8	2.47		
Bromine	Br	79.9	3.12		
Cadmium	Cd	112·4	8.69		
Calcium	Ca	40·1	1.54		
Californium	Cf	251·1	unknown		
Carbon	С	12.0	*		
Cerium	Ce	140·1	6.77		
Caesium	Cs	132-9	1.93		
Chlorine	Cl	35.5	0.0032		
Chromium	Cr	52.0	7.15		
Cobalt	Co	58.9	8.86		
Copper	Cu	63.5	8.96		
Curium	Cm	247·1	13.3		
Dysprosium	Dy	162.5	8.55		
Einsteinium	Es	252·1	unknown		
Erbium	Er	167-3	9.07		
Europium	Eu	152.0	5.24		
Fluorine	F	19.0	0.0017		
Francium	Fr	223.0	unknown		
Gadolinium	Gd	157·3	7.90		
Gallium	Ga	69.7	5.91		
Germanium	Ge	72.6	5.32		
Gold	Au	197.0	19.3		
Hafnium	Hf	178.5	13.3		
Helium	He	4.0	0.0002		
Holmium	Но	164.9	8.80		
Hydrogen	Н	1.0	0.00009		
Indium	In	114.8	7.31		
lodine	1	126.9	4.95		
Iridium	lr .	192.2	22.5		
Iron	Fe	55.8	7.87		
Krypton	Kr	83.8	0.0037		
Lanthanum	La	138.9	6.15		
Lead	Pb	207.2	11.3		
Lithium	Li	6.9	0.53		
Lutetium	Lu	175.0	9.84		
Magnesium	Mg	24.3	1.74		

Element	Symbol	Relative atomic mass	Density (g cm ⁻³)
Manganese	Mn	54.9	7.47
Mercury	Hg	200-6	13.5
Molybdenum	Мо	96.0	10.2
Neodymium	Nd	144-2	7.01
Neon	Ne	20-2	0.0009
Neptunium	Np	237.0	20-2
Nickel	Ni	58.7	8.90
Niobium	Nb	92.9	8.57
Nitrogen	N	14.0	0.0013
Osmium	Os	190-2	22.6
Oxygen	0	16.0	0.0014
Palladium	Pd	106·4	12.0
Phosphorus	Р	31.0	1.82
Platinum	Pt	195·1	21.5
Plutonium	Pu	244·1	19.7
Polonium	Po	209-0	9-20
Potassium	K	39·1	0.89
Praseodymium	Pr	140.9	6.77
Promethium	Pm	144-9	7.26
Protactinium	Pa	231.0	15.4
Radium	Ra	226.0	5.00
Radon	Rn	222.0	0.0097
Rhenium	Re	186-2	20.8
Rhodium	Rh	102.9	12.4
Rubidium	Rb	85.5	1.53
Ruthenium	Ru	101·1	12·1
Samarium	Sm	150-4	7.52
Scandium	Sc	45.0	2.99
Selenium	Se	79.0	4.81
Silicon	Si	28·1	2.33
Silver	Ag	107-9	10.5
Sodium	Na	23.0	0.97
Strontium	Sr	87-6	2.64
Sulfur	S	32·1	2.09
Tantalum	Ta	180-9	16·4
Technetium	Tc	97.9	11
Tellurium	Te	127-6	6.25
Terbium	Tb	158.9	8-23
Thallium	Tl	204·4	11.8
Thorium	Th	232.0	11.7
Thulium	Tm	168-9	9.32
Tin	Sn	118.7	7.26
Titanium	Ti	47.9	4.51
Tungsten	W	183·8	19·3
Uranium	U	238.0	19·1
Vanadium	٧	50.9	6.00
Xenon	Xe	131.3	0.0059
Ytterbium	Yb	173.0	6.90
Yttrium	Υ	88.9	4.47
Zinc	Zn	65·4	7.14
Zirconium	Zr	91.2	6.52

^{*}The density of carbon as graphite is $2 \cdot 27 \, \mathrm{g \, cm^{-3}}$ The density of carbon as diamond is $3 \cdot 51 \, \mathrm{g \, cm^{-3}}$

Melting and Boiling Points of Selected Elements

Group 1	Group 2											Group 3	Group 4	Group 5	Group 6	Group 7	Group 0
1 Hydrogen -259 -253				Key		mic numb											2 Helium -272 -269
3 Lithium 181 1342	4 Beryllium 1287 2471*					ing point/						5 Boron 2075 <i>4000</i>	6 Carbon †3825	7 Nitrogen -210 -196	8 Oxygen -219 -183	9 Fluorine -220 -188	10 Neon -249 -246
11 Sodium 98 883	12 Magnesium 650 1090											13 Aluminium 660 2519	14 Silicon 1414 3265	15 Phosphorus 44 280	16 Sulfur 115 <i>44</i> 5	17 Chlorine -101 -34	18 Argon -189 -186
19 Potassium 63 759	20 Calcium 842 1484	21 Scandium 1541 2836	22 Titanium 1668 3287	23 Vanadium 1910 <i>3407</i>	24 Chromium 1907 2672	25 Manganese 1246 2061	26 Iron 1538 2861	27 Cobalt 1495 2927	28 Nickel 1455 2913	29 Copper 1085 2562	30 Zinc 420 907	31 Gallium 30 2204	32 Germanium 938 2833	33 Arsenic *817 †616	34 Selenium 221 <i>685</i>	35 Bromine -7 59	36 Krypton -157 -153
37 Rubidium 39 688	38 Strontium 777 1382	39 Yttrium 1522 3345	40 Zirconium 1855 4409	41 Niobium 2477 <i>4744</i>	42 Molybdenum 2623 4639	43 Technetium 2157 4265	44 Ruthenium 2333 4150	45 Rhodium 1964 <i>3695</i>	46 Palladium 1555 2963	47 Silver 962 2162	48 Cadmium 321 767	49 Indium 157 2072	50 Tin 232 2602	51 Antimony 631 1587	52 Tellurium 449 988	53 lodine 114 184	54 Xenon -112 -108
55 Caesium 28 671	56 Barium 727 1897	57 Lanthanum 920 3464	72 Hafnium 2223 4602	73 Tantalum 3017 <i>5458</i>	74 Tungsten 3422 5555	75 Rhenium 3185 5596	76 Osmium 3033 5012	77 Iridium 2446 <i>44</i> 28	78 Platinum 1768 3825	79 Gold 1064 2856	80 Mercury -39 357	81 Thallium 304 <i>1473</i>	82 Lead 328 1749	83 Bismuth 271 1564	84 Polonium 254 962	85 Astatine 302	86 Radon -71 -62

^{*} at 28 atmospheres † sublimes

Group	Group
1	2

1	
Hydrogen	
37	
3	4
Lithium	Beryllium
134	129
11	12
Sodium	Magnesium
154	145
19	20
Potassium	Calcium
196	174
37	38
Rubidium	Strontium
216	191
55	56
Caesium	Barium
235	198

Key

Atomic number

Name of element

Covalent radius/pm

21	22	23	24	25	26	27	28	29	30
Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc
141	132	122	119	116	114	114	113	118	120
39	40	41	42	43	44	45	46	47	48
Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium
162	147	133	127	_	122	122	126	136	140
57	72	73	74	75	76	77	78	79	80
Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury
169	142	133	131	128	126	124	127	130	141

Group	Group	Group	Group	Group
3	4	5	6	7

5	6	7	8	9
Boron	Carbon	Nitrogen	Oxygen	Fluorine
90	77	75	73	71
13	14	15	16	17
Aluminium	Silicon	Phosphorus	Sulfur	Chlorine
130	117	110	102	99
31	32	33	34	35
Gallium	Germanium	Arsenic	Selenium	Bromine
120	122	121	117	114
49	50	51	52	53
Indium	Tin	Antimony	Tellurium	lodine
150	140	143	135	133
81	82	83	84	85
Thallium	Lead	Bismuth	Polonium	Astatine
157	155	151	_	140

Electron Arrangements of Elements

Actinium

Thorium Protactinium

Group 1	Group 2											Group	3 Group	4 Group	5 Group	6 Group	7 Group ()
(1)																	(18)	
1	7		Key														2	
Н				Ato	omic num	ber											Не	
1	(2)				Symbol							(13)	(14)	(15)	(16)	(17)	2	
Hydrogen	(2)			Electr	on arrang	ement											Helium	
3	4				Name							5	6	7	8	9	10	
Li	Be 2,2				Name							В	C	N	0	F	Ne	
2,1 Lithium	Beryllium											2,3 Boron	2,4 Carbon	2,5 Nitroge	2,6 on Oxygei	2,7 n Fluoring	2,8 Neon	
11	12											13	14	15	16	17	18	_
Na	Mg				7	ransition	Flement	·c				Al	Si	P	S	CI	Ar	
2,8,1	2,8,2				'	Tansicion	Liemeni	.3				2,8,3	2,8,4	2,8,5			2,8,8	
Sodium	Magnesium	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	Aluminiu		Phospho		Chlorin	1 ' '	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
2,8,8,1	2,8,8,2	2,8,9,2	2,8,10,2	2,8,11,2	2,8,13,1	2,8,13,2	2,8,14,2	2,8,15,2	2,8,16,2	2,8,18,1	2,8,18,2	2,8,18,	3 2,8,18,	4 2,8,18	,5 2,8,18	6 2,8,18,	7 2,8,18,8	3
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Galliun	Germaniu	m Arseni	c Seleniu	m Bromine	e Krypton	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
Rb	Sr	Y	Zr 2,8,18,	Nb 2,8,18,	Mo	Tc 2,8,18,13,	Ru	Rh	Pd 2,8,18,	Ag	Cd	In 2,8,18	Sn , 2,8,18	Sb 2,8,18	Te 2,8,18	, 2,8,18	Xe , 2,8,18,	
	2,8,18,8,2	2,8,18,9	10,2	12,1	1	2	1	1	18,0	2,8,18, 18,1	2,8,18, 18,2	18,3	18,4	18,5	18,6	18,7	18,8	
Rubidium	Strontium	Yttrium	Zirconium	Niobium	1	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium		Antimo			Xenon	_
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn	
	, 2,8,18,18,		3, 2,8,18,32	2.8.18.		2,8,18,32,	2,8,18,32,	2,8,18,32,		2,8,18,	Hg 2,8,18,	2,8,18	, 2,8,18	2,8,18	3, 2,8,18	, 2,8,18		
8,1 Caesium	8,2 Barium	9,2 Lanthanui	10,2	32,11,2 Tantalum	12,2 Tungsten	13,2 Rhenium	14,2 Osmium	15,2 Iridium	17,1 Platinum	32,18,1 Gold	32,18,2 Mercury	32,18, Thalliur	3 32,18,4	32,18, Bismut	5 32,18,	6 32,18,	7 32,18,8	į
87	88	89	104	105	106	107	108	109	110	111	112	mattiui	ii Leau	Distriut	II FOIOIIIU	III ASCACIIII	Radon	_
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn							
2,8,18,32	, 2,8,18,32,	2,8,18,32	2, 2,8,18,32	2,8,18,32,	2,8,18,32,	2,8,18,32,	2,8,18,32,	2,8,18,32,	2,8,18,32,	2,8,18,32,	2,8,18,32,							
18,8,1 Francium	18,8,2 Radium	18,9,2 Actinium	32,10,2 Rutherfordiur	32,11,2 n Dubnium	32,12,2 Seaborgium	32,13,2 Bohrium	32,14,2 Hassium	32,15,2 Meitnerium	32,17,1 Darmstadtium	32,18,1 Roentgenium	32,18,2 Copernicium							
												J						
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
	Lan	thanide	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			2,8,18, 18,9,2	2,8,18, 20,8,2	8,2	8,2	8,2	8,2	8,2	9,2	8,2	2,8,18,28, 8,2	8,2	2,8,18,30, 8,2	8,2	8,2	2,8,18,32,	
			Lanthanum	+	-	Neodymium			Europium	Gadolinium		Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium	
			89	90 T b	91	92	93 N=	94	95	96	97 DI:	98	99 5 a	100	101	102	103	
		Actinide	Ac 2.8.18.32	Th	Pa 2,8,18,32,	U 2.8.18.32.	Np	Pu 2.8.18.32.	Am 2.8.18.32.	Cm 2.8.18.32.	Bk 2.8.18.32.	Cf	Es 2.8.18.32.	Fm 2.8.18.32.	Md 2.8.18.32.	No 2.8.18.32.	Lr 2.8.18.32.	
			18,9,2	18,10,2	20,9,2	21,9,2	22,9,2 Neptunium	24,8,2	25,8,2 Americium	25,9,2	27,8,2	28,8,2	29,8,2	30,8,2	31,8,2	32,8,2 Nobelium	32,9,2	

Uranium Neptunium Plutonium Americium

Curium

Berkelium | Californium | Einsteinium | Fermium | Mendelevium | Nobelium | Lawrencium |

Melting and Boiling Points of Selected Oxides

Melting and Boiling Points of Selected Chlorides

Element	Formula of oxide	mp/°C	bp/°C
hydrogen	H ₂ O	0	100
lithium	Li ₂ O	1438	
beryllium	BeO	2578	3900
boron	B_2O_3	450	1860
carbon	CO ₂	sublimes at -78·5	
nitrogen	N ₂ O ₄	_9	21
fluorine	F ₂ O	-224	-144
sodium	Na ₂ O	sublimes at 1134	
magnesium	MgO	2825	3600
aluminium	Al_2O_3	2054	2977
silicon	SiO ₂	1713	2950
phosphorus	P ₄ O ₁₀	sublimes at 300	
sulfur	SO ₂	-75	-10
chlorine	Cl ₂ O	-121	2
potassium	K ₂ O	740	
calcium	CaO	2614	2850

Element	Formula of chloride	mp/°C	bp/°C
lithium	LiCl	610	1383
beryllium	BeCl ₂	405	482
boron	BCl ₃	-107	
carbon	CCl ₄	-23	
nitrogen	NCl ₃	-40	
fluorine	FCl	–155	-100
sodium	NaCl	801	1465
magnesium	MgCl ₂	714	1412
aluminium	Al ₂ Cl ₆	Sublimes at 180	
silicon	SiCl ₄	-70	57.6
phosphorus	PCl ₃	-93	75.5
sulfur	SCl ₂	-78	decomposes at 59
potassium	KCl	770	1680
calcium	CaCl ₂	775	1935

Melting and Boiling Points of Selected Organic Compounds

Name of compound	mp/°C	bp/°C
methane	−182·5	-162
ethane	-183	-89
propane	-188	-42
butane	-138	-1
pentane	-130	36
hexane	-95	69
heptane	-91	98
octane	-57	126
cyclobutane	-91	13
cyclopentane	-93	49
cyclohexane	6.5	81
ethene	-169	-104
propene	-185	-48
but-1-ene	-185	-6
pent-1-ene	-165	30
hex-1-ene	-140	63
benzene	5.5	80

Name of compound	mp/°C	bp/°C
methanol	−97·5	65
ethanol	-114	78
propan-1-ol	-124	97
propan-2-ol	-88	82
butan-1-ol	-84	118
butan-2-ol	-89	100
methanal	-92	-19
ethanal	-123	20
propanal	-81	49
butanal	-97	75
propanone	-95	56
butanone	-86.5	79.5
methanoic acid	8	101
ethanoic acid	17	118
propanoic acid	-21	141
butanoic acid	-5	164
methoxyethane	-139	7.5
ethoxyethane	-116	34.5

Enthalpies of Formation and Combustion of Selected Substances

Substance	Standard enthalpy of formation /kJ mol ⁻¹	Standard enthalpy of combustion/kJ mol ⁻¹
hydrogen	-	-286
carbon (graphite)	-	-394
sulfur (rhombic)	_	-297
methane	-75	-891
ethane	-84	-1561
propane	-104	-2219
butane	-126	-2878
benzene	49	-3268
ethene	52	-1411
ethyne	227	-1301
methanol	-239	-726
ethanol	-278	-1367
propan-1-ol	-303	-2021
methanoic acid	-425	-255
ethanoic acid	-484	-874

Selected Bond and Mean Bond Enthalpies

Bond Enthalpies

Bond	Enthalpy/kJ mol ⁻¹
H-H	436
O = O	498
$N \equiv N$	945
F-F	159
Cl – Cl	243
Br – Br	194
1-1	151
H-F	570
H – Cl	432
H – Br	366
H-I	298

Mean Bond Enthalpies

Bond	Mean Enthalpy/ kJ mol ⁻¹
Si – Si	226
C – C	348
C = C	612
C≡C	838
C = C (aromatic)	518
H-0	463
H – N	388
C – H	412
C – O	360
C = 0	743
C – F	484
C – Cl	338
C – Br	276
C – I	238

Enthalpy of Sublimation of Carbon

The energy required to convert 1 mole solid carbon into 1 mole gaseous carbon atoms is 716 kJ at 298 K (25 °C). The equation is $C(s) \rightarrow C(g) \Delta H = 716 \, kJ$

Ionisation Energies and Electronegativities of Selected Elements

Notes: The first ionisation energy for an element E refers to the reaction $E(g) \to E^+(g) + e^-$; the second ionisation energy refers to $E^+(g) \to E^{2+}(g) + e^-$; etc.

Element	Symbol	Ionisation Energies/kJ mol ⁻¹		Electro- negativity		
Etement	Syllibot	First	Second	Third	Fourth	(Pauling scale)
hydrogen	Н	1312	_	_	_	2.2
helium	Не	2372	5251	_	_	_
lithium	Li	520	7298	11815	_	1.0
beryllium	Be	900	1757	14849	21007	1.5
boron	В	801	2427	3660	25026	2.0
carbon	С	1086	2353	4620	6223	2.5
nitrogen	N	1402	2856	4578	7475	3.0
oxygen	0	1314	3389	5300	7469	3.5
fluorine	F	1681	3374	6050	8408	4.0
neon	Ne	2081	3952	6122	9371	_
sodium	Na	496	4562	6910	9543	0.9
magnesium	Mg	738	1451	7733	10543	1.2
aluminium	Al	578	1817	2745	11577	1.5
silicon	Si	787	1577	3232	4356	1.9
phosphorus	Р	1012	1907	2914	4964	2.2
sulfur	S	1000	2252	3357	4556	2.5
chlorine	Cl	1251	2298	3822	5159	3.0
argon	Ar	1521	2666	3931	5771	_
potassium	K	419	3052	4420	5877	0.8
calcium	Ca	590	1145	4912	6491	1.0
scandium	Sc	633	1235	2389	7091	1.3
titanium	Ti	659	1310	2653	4175	1.5
vanadium	V	651	1410	2828	4507	1.6
chromium	Cr	653	1591	2987	4743	1.6
manganese	Mn	717	1509	3248	4940	1.5
iron	Fe	762	1562	2957	5287	1.8
cobalt	Со	760	1648	3232	4950	1.8
nickel	Ni	737	1753	3395	5297	1.9
copper	Cu	745	1958	3555	5536	1.9
zinc	Zn	906	1733	3833	5731	1.6
gallium	Ga	579	1979	2965	6102	1.8
germanium	Ge	762	1537	3302	4411	2.0
arsenic	As	944	1794	2735	4837	2.2
bromine	Br	1140	2083	3473	4564	2.8
rubidium	Rb	403	2633	3859	5075	0.8
strontium	Sr	549	1064	4138	5500	1.0
silver	Ag	731	2072	3361	_	1.9
tin	Sn	709	1412	2943	3930	1.8
antimony	Sb	831	1605	2441	4260	2.1
iodine	I	1008	1846	3184		2.6
caesium	Cs	376	2234	_	_	0.8
barium	Ba	503	965	_	_	0.9
gold	Au	890	1949	_	_	2.4
lead	Pb	716	1450	3081	4083	1.8

Electrochemical Series: Standard Reduction Potentials

Note: The data given below are reduction potentials applicable to standard state conditions.

Reaction			E°/V
Li ⁺ (aq) + e ⁻	\rightleftharpoons	Li(s)	-3.04
Cs ⁺ (aq) + e ⁻	\rightleftharpoons	Cs(s)	-3.03
Rb⁺(aq) + e⁻	\rightleftharpoons	Rb(s)	-2.98
K ⁺ (aq) + e ⁻	\rightleftharpoons	K(s)	-2.93
Sr ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Sr(s)	-2.90
Ca ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Ca(s)	-2.87
Na ⁺ (aq) + e ⁻	\rightleftharpoons	Na(s)	-2.71
Mg ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Mg(s)	-2.37
Al ³⁺ (aq) + 3e ⁻	\rightleftharpoons	Al(s)	-1.66
2H ₂ O(ℓ) + 2e ⁻	\rightleftharpoons	H ₂ (g) + 20H ⁻ (aq)	-0.83
Zn ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Zn(s)	-0.76
Cr ³⁺ (aq) + 3e ⁻	\rightleftharpoons	Cr(s)	-0.74
Fe ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Fe(s)	-0.45
Ni ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Ni(s)	-0.26
Sn ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Sn(s)	-0.14
Pb ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Pb(s)	-0.13
Fe ³⁺ (aq) + 3e ⁻	\rightleftharpoons	Fe(s)	-0.04
2H ⁺ (aq) + 2e ⁻	\rightleftharpoons	H ₂ (g)	0.00
Sn ⁴⁺ (aq) + 2e ⁻	\rightleftharpoons	Sn ²⁺ (aq)	0.15
Cu ²⁺ (aq) + e ⁻	\rightleftharpoons	Cu ⁺ (aq)	0.15
SO ₄ ²⁻ (aq) + 2H ⁺ (aq) + 2e ⁻	\rightleftharpoons	$SO_3^{2-}(aq) + H_2O(\ell)$	0.17
Cu ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Cu(s)	0.34
$O_2(g) + 2H_2O(\ell) + 4e^-$	\rightleftharpoons	40H ⁻ (aq)	0.40
l ₂ (s) + 2e ⁻	\rightleftharpoons	2l ⁻ (aq)	0.54
Fe ³⁺ (aq) + e ⁻	\rightleftharpoons	Fe ²⁺ (aq)	0.77
Ag ⁺ (aq) + e ⁻	\rightleftharpoons	Ag(s)	0.80
Hg ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Hg(ℓ)	0.85
Br ₂ (ℓ) + 2e ⁻	\rightleftharpoons	2Br ⁻ (aq)	1.07
O ₂ (g) + 4H ⁺ (aq) + 4e ⁻	\rightleftharpoons	2H ₂ O(<i>ℓ</i>)	1.23
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^-$	\rightleftharpoons	$2Cr^{3+}(aq) + 7H_2O(\ell)$	1.36
Cl ₂ (g) + 2e ⁻	\rightleftharpoons	2Cl ⁻ (aq)	1.36
MnO ₄ ⁻ (aq) + 8H ⁺ (aq) + 5e ⁻	\rightleftharpoons	$Mn^{2+}(aq) + 4H_2O(\ell)$	1.51
F ₂ (g) + 2e ⁻	\rightleftharpoons	2F ⁻ (aq)	2.87

Electrolysis of Water

Reduction reactions at the negative electrode $2H_2O(\ell) + 2e^- \longrightarrow H_2(g) + 2OH^-(aq) \\ 2H^+(aq) + 2e^- \longrightarrow H_2(g)$ Oxidation reactions at the positive electrode $2H_2O(\ell) \longrightarrow O_2(g) + 4H^+(aq) + 4e^- \\ 4OH^-(aq) \longrightarrow 2H_2O(\ell) + O_2(g) + 4e^-$

Dissociation Constants of Selected Species

Equilibrium in aqueous so	ution		K _a	р <i>К</i> _а
methanoic acid	НСООН	\Rightarrow H ⁺ + HCOO ⁻	1·8 × 10 ⁻⁴	3.75
ethanoic acid	CH₃COOH	\Rightarrow H ⁺ + CH ₃ COO ⁻	1.7×10^{-5}	4.76
propanoic acid	CH ₃ CH ₂ COOH	\Rightarrow H ⁺ + CH ₃ CH ₂ COO ⁻	1.3×10^{-5}	4.87
butanoic acid	CH ₃ (CH ₂) ₂ COOH	\Rightarrow H ⁺ + CH ₃ (CH ₂) ₂ COO ⁻	1·5 × 10 ⁻⁵	4.83
benzoic acid	C ₆ H ₅ COOH	\Rightarrow H ⁺ + C ₆ H ₅ COO ⁻	6·3 × 10 ⁻⁵	4.20
phenol	C ₆ H ₅ OH	\Rightarrow H ⁺ + C ₆ H ₅ O ⁻	1.0×10^{-10}	9.99
hydrofluoric acid	HF		6·8 × 10 ⁻⁴	3.17
boric acid	H ₃ BO ₃	\Rightarrow H ⁺ + H ₂ BO ₃ ⁻	5.4×10^{-10}	9.27
hydrocyanic acid	HCN	\Rightarrow H ⁺ + CN ⁻	6.2×10^{-10}	9.21
carbonic acid	$H_2O + CO_2$	\Rightarrow H ⁺ + HCO ₃ ⁻	4·5 × 10 ⁻⁷	6.35
hydrogencarbonate ion	HCO ₃ ⁻	\Rightarrow H ⁺ + CO ₃ ²⁻	4.7×10^{-11}	10.33
sulfurous acid	H_2SO_3	\Rightarrow H ⁺ + HSO ₃ ⁻	1.4×10^{-2}	1.85
hydrogensulfite ion	HSO ₃ ⁻	\Rightarrow H ⁺ + SO ₃ ²⁻	6·3 × 10 ⁻⁸	7∙19
hydrogen sulfide	H ₂ S	≓ H⁺ + HS⁻	8·9 × 10 ⁻⁸	7.05
hydrogensulfide ion	HS ⁻	\Rightarrow H ⁺ + S ²⁻	2.73×10^{-20}	19.00
phosphoric acid	H ₃ PO ₄	\Rightarrow H ⁺ + H ₂ PO ₄ ⁻	6·9 × 10 ⁻³	2.16
dihydrogenphosphate ion	$H_2PO_4^-$	\Rightarrow H ⁺ + HPO ₄ ²⁻	6·2 × 10 ⁻⁸	7.21
hydrogenphosphate ion	HPO ₄ ²⁻	\Rightarrow H ⁺ + PO ₄ ³⁻	4·8 × 10 ⁻¹³	12.32
ammonium ion	NH ₄ ⁺	⇒ H ⁺ + NH ₃	5·8 × 10 ⁻¹⁰	9.24
methylammonium ion	CH ₃ NH ₃ ⁺	\Rightarrow H ⁺ + CH ₃ NH ₂	2·2 × 10 ⁻¹¹	10-66
phenylammonium ion	$C_6H_5NH_3^+$	\Rightarrow H ⁺ + C ₆ H ₅ NH ₂	1·3 × 10 ⁻⁵	4.87

Infra-red Correlation Table

Wave number range/cm ⁻¹	Type of compound	Infra-red absorption due to
3570-3200	alcohols and phenols	hydrogen bonded O - H stretch
3650-3590	alcohols and phenols	not hydrogen bonded O - H stretch
3500-3300	amine, not hydrogen bonded	N – H stretch
3300	alkyne	C – H stretch in C ≡ C – H
3095-3010	alkene	C – H stretch in C = C – H
3100-3000	benzene ring	C – H stretch
2962-2853	alkane	C – H stretch
2900-2820	aldehyde	C – H stretch in –CHO
2775-2700	aldehyde	C – H stretch in –CHO
3500-2500	carboxylic acid	hydrogen bonded O – H stretch in –COOH
2260-2215	nitriles	C ≡ N stretch
2260-2100	alkynes	C ≡ C stretch
1750-1735	ester	C = O stretch
1740-1720	aldehyde	C = O stretch
1730-1717	aromatic ester	C = O stretch
1725-1700	caboxylic acid	C = O stretch
1700-1680	aromatic and alkyl ketones aromatic carboxylic acid	C = O stretch
1680-1620	alkene	C = C stretch
1600,1580,1500 and 1450	benzene ring	C = C (aromatic) stretch
1485-1340	alkane	C - H bend
1275-1200	aromatic ether	C – O stretch
1150-1070	alkyl ether	C – O stretch

Spectral Lines and Flame Colours

Gas Discharge Lamps

Element	Wavelength/nm	Colour
hydrogen	656	red
(Balmer series)	486	blue-green
	434	blue-green
	410	violet
	397	ultra-violet
	389	ultra-violet
helium	706	red
	667	red
	588	orange-yellow

Metal Vapour Lamps

Element	Wavelength/nm	Colour
cadmium	644	red
	509	green
	480	blue
mercury	579 } 577 }	yellow doublet
	546	green
	436	blue-violet
	405	violet
	310	ultra-violet
sodium	589·0 } 589·6 }	orange-yellow doublet

Flame Colours

Note: The data refers to prominent spectral lines.

Element	Wavelength/nm	Colour
barium	554	green
calcium	620	orange-red
copper	522	blue-green
lithium	671	crimson
potassium	405	lilac
sodium	589	orange-yellow
strontium	650	red

Page sixteen

R = alkyl group

Ar = aryl (aromatic) group

X = halogen

lon	Radius/pm
H ⁻	208
Li ⁺	76
Be ²⁺	27
N ³⁻	132
O ²⁻	140
F ⁻	133
Na⁺	102
Mg ²⁺	72
Al ³⁺	54
P ³⁻	198
S ²⁻	184
Cl-	181
K ⁺	138
Ca ²⁺	100
Ti ³⁺	67
V ³⁺	64
Cr ²⁺	73
Cr ³⁺	62
Mn ²⁺	83
Fe ²⁺	61
Fe ³⁺	55
Co ²⁺	65
Co ³⁺	55
Ni ²⁺	69
Cu⁺	60
Cu ²⁺	73
Zn ²⁺	74
Br⁻	196
Rb⁺	152
Sr ²⁺	126
Ag⁺	115
Sn ²⁺	112
I-	220
Cs ⁺	174
Ba ²⁺	135
Hg ²⁺	102
Pb ²⁺	120

Substance	Standard Entropy /J K ⁻¹ mol ⁻¹		
H ₂ (g)	131		
He(g)	126		
Li(s)	29		
B(s)	5.9		
C(s) (graphite)	5.7		
C(s) (diamond)	2.4		
N ₂ (g)	192		
$O_2(g)$	205		
$F_2(g)$	203		
Na(s)	51		
Mg(s)	33		
Al(s)	28		
Si(s)	19		
$Cl_2(g)$	223		
K(s)	65		
Ca(s)	42		
Fe(s)	27		
Ni(s)	30		
Cu(s)	33		
$Br_{2}(\ell)$	152		
Ag(s)	43		
l ₂ (s)	116		
Cs(s)	85		
Ba(s)	63		
Au(s)	47		
$Hg(\ell)$	76		
$H_2O(\ell)$	70		
H ₂ O(g)	189		
CO ₂ (g)	214		
MgO(s)	27		
$Al_2O_3(s)$	51		
SO ₂ (g)	248		
CaO(s)	38		
BaO(s)	72		
NaCl(s)	72		
CaCl ₂ (s)	108		
CsCl(s)	99		

Standard Molar Enthalpies of Atomisation of Selected Elements

Element	∆H°/kJ mol ⁻¹		
Н	218		
Li	159		
Ве	326		
В	565		
С	716		
N	472		
0	249		
F	79		
Na	107		
Mg	147		
Al	330		
Si	450		
Р	317		
S	277		
Cl	121		
K	88		
Ca	178		
Sc	378		
Ti	473		
V	515		
Cr	397		
Mn	283		
Fe	414		
Co	427		
Ni	430		
Cu	337		
Zn	130		
Br	112		
Rb	81		
Sr	163		
Ag	285		
Sn	301		
1	107		
Cs	77		
Ba	178		

Lattice Enthalpies of Selected Compounds

Compound	Lattice Enthalay/k Lmol-1
Compound	Lattice Enthalpy/kJ mol ⁻¹ -2799
Li ₂ O	-2799 -4514
BeO	- 4514 -2481
Na ₂ O	-2461 -3795
MgO	
Al ₂ O ₃	-15916
K ₂ O	-2238
CaO	-3414
Fe0	-3795
CoO	-3837
NiO	-3908 44.3F
CuO	-4135 -4142
ZnO	
SrO	-3217
Ag ₂ O BaO	-3002 -3029
LiCl	-3029 -834
NaCl	-769
	-76 9 -2477
MgCl ₂ KCl	-2477 -701
	-2268
CaCl ₂	-2707
NiCl ₂	-2753
CuCl	-2733 -992
CuCl ₂	-2774
SrCl ₂	-2142
AgCl	
BaCl ₂	-2046
LiF	-1030
NaF	-910
MgF ₂	-2926
KF	-808
CaF ₂	-2640
NiF ₂	-3098
SrF ₂	-2476
AgF	-953
BaF ₂	-2347
MgS	-3406
CaS	-3002
BaS	-2713
NiS	-3528
ZnS	-3692
LiBr	-730
NaBr	-732
KBr	-671
NiBr ₂	-2729
CuBr ₂	-2715
AgBr	-897
-	

Electron Affinities of Selected Elements

Element	Electron Affinity/ kJ mol ⁻¹
Н	-72
0	-141
(O ⁻)	+844
F	-328
S	-201
(S ⁻)	+456
Cl	-349
Br	-324
I	-295

The electron affinity for an element E refers to the reaction $E(g) + e^- \rightarrow E^-(g)$. The second electron affinity refers to the reaction $E^-(g) + e^- \rightarrow E^{2-}(g)$.

Hydration Enthalpies of Selected Ions

lon	Hydration Enthalpy/kJ mol ⁻¹
Li ⁺	-520
Na⁺	-405
K ⁺	-321
Mg ²⁺	-1920
Al ³⁺	-4690
Ca ²⁺	-1650
Fe ²⁺	-1950
Fe ³⁺	-4430
Cu ²⁺	-2100
Zn ²⁺	-2050
Rb⁺	-300
Sr ²⁺	-1480
Ag⁺	-446
Cs⁺	-277
Ba ²⁺	-1360
OH⁻	-460
F ⁻	-506
Cl⁻	-364
Br⁻	-337
I-	-296

The hydration enthalpy for the ion of an element E refers to the changes represented by $E^{n+}(g) \to E^{n+}(aq)$ and $E^{n-}(g) \to E^{n-}(aq)$.

Colour Wheel

Acid-base Indicators

Acid-base indicator	pH range
bromophenol blue	3.0-4.6
methyl orange	3.2-4.4
methyl red	4.8-6.0
phenolphthalein	8-2-10-0
bromocresol green	3.8-5.4
bromocresol purple	5.2-6.8
bromothymol blue	6.0-7.6
cresol red	0.0-1.0; 7.0-8.8
<i>p</i> -nitrophenol	5.4-6.6
phenol red	6.6-8.0
thymol blue	1.2-2.8; 8.0-9.6
thymolphthalein	9·4–10·6
screened methyl orange	2.9-4.4
azolitmin (litmus)	4.5-8.3

Formulae of Selected lons containing more than one kind of Atom

one posit	one positive one negative		two negative		three negative		
lon	Formula	lon	Formula	lon	Formula	lon	Formula
ammonium	NH ₄ ⁺	ethanoate hydrogencarbonate hydrogensulfate hydrogensulfite hydroxide nitrate permanganate	CH ₃ COO ⁻ HCO ₃ ⁻ HSO ₄ ⁻ HSO ₃ ⁻ OH ⁻ NO ₃ ⁻ MnO ₄ ⁻	carbonate chromate dichromate sulfate sulfite thiosulfate	CO ₃ ²⁻ CrO ₄ ²⁻ Cr ₂ O ₇ ²⁻ SO ₄ ²⁻ SO ₃ ²⁻ S ₂ O ₃ ²⁻	phosphate	PO ₄ 3-

Solubilities of Selected Compounds in Water

The table shows how some compounds behave in cold water

vs means very soluble (a solubility greater than 10 g l^{-1})

s means soluble (a solubility of between 1 and 10 g l^{-1})

i means insoluble (a solubility of less than $1 g l^{-1}$)

no data

	bromide	carbonate	chloride	iodide	nitrate	phosphate	sulfate
aluminium	VS	_	VS	VS	VS	i	VS
ammonium	VS	VS	VS	VS	VS	VS	VS
barium	VS	i	VS	VS	VS	i	i
calcium	VS	i	VS	VS	VS	i	S
copper(II)	VS	i	VS	_	VS	i	VS
iron(II)	VS	i	VS	VS	VS	i	VS
iron(III)	VS	_	VS	_	VS	i	VS
lead(II)	S	i	S	i	VS	i	i
lithium	VS	VS	VS	VS	VS	i	VS
magnesium	VS	i	VS	VS	VS	i	VS
nickel	VS	i	VS	VS	VS	i	VS
potassium	VS	VS	VS	VS	VS	VS	VS
silver	i	i	i	i	VS	i	S
sodium	VS	VS	VS	VS	VS	VS	VS
tin(II)	VS	i	VS	S	_	i	VS
zinc	VS	i	VS	VS	VS	i	VS

oxide	hydroxide
i	i
_	_
VS	VS
S	S
i	i
i	i
i	i
i	i
VS	VS
i	i
i	i
VS	VS
i	_
VS	VS
i	i
i	i

Note: Some of the compounds in the table hydrolyse significantly in water.

Systeme Internationale (SI) Units

Quantity	Name of Unit	Symbol
length	metre	m
mass	kilogram	kg
time	second	S
electric current	ampere	Α
temperature	degree celsius	°C
energy	joule	J
electric charge	coulomb	С
electric potential difference	volt	٧
amount of substance	mole	mol

Physical Constants

Quantity	Symbol	Value
charge on electron	e ⁻	1.60 × 10 ⁻¹⁹ C
Avogadro constant	L	6·02 × 10 ²³ mol ⁻¹
Faraday constant	F	9·65 × 10 ⁴ C mol ⁻¹
Planck constant	h	$6.63 \times 10^{-34} \mathrm{Js}$
speed of light in vacuum	С	$3.00 \times 10^8 \mathrm{ms^{-1}}$

Properties of Water

Quantity	Value
specific heat capacity of liquid water	4·18 kJ kg ⁻¹ °C ⁻¹
ionic product of water	10 ⁻¹⁴ at 24 °C

SI Prefixes and Multiplication Factors

SI Prefix	Symbol	Multiplication
tera	Т	10 ¹²
giga	G	10 ⁹
mega	M	10 ⁶
kilo	k	10 ³
deci	d	10 ⁻¹
centi	С	10 ⁻²
milli	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹
pico	р	10 ⁻¹²

Conversion Factors

For Volume	For Thermodynamic Temperature
1 litre = 1 dm ³ = 1000 cm ³ 1000 litres = 1000 dm ³ = 1 m ³	0 °C = 273 K

Published: September 2016

Change since last published:

Correction to standard enthalpy of combustion for benzene on page 10; correction to wavelength for copper in flame colours table on page 15; updated colour wheel on page 20.