

FIG. 1

	C 200			
GEN	ERATE GRAPH			
202	Output graph := empty			
204	T_i := trace of messages with source i , for every i			
206	Add a new vertex $x_{initial_node}$ labeled initial_node to output graph			
208	For each destination node j in $T_{initial_node}$ with destination j			
210	$V := \text{messages in } T_{\text{initial_node}} \text{ with destination } j$			
212	Create vertex x_j labeled j and edge $(x_{initial_node}, x_j)$ labeled 0 to output graph			
214	Process_Node (j, x _j , V)			

FIG. 4

250

Process_Node (j, x_j, V) 252 $O_1, ..., O_m := Find_Caused_Messages (V, T_j)$ 254 For i := 1 to m do

256 $k := O_i$ node; $W := O_i$ messages; $d := O_i$ delay

Add a new vertex x_k labeled k and edge (x_j, x_k) labeled k to output graph

Process_Node (k, x_k, W)

FIG. 5

300 Find_Caused_Messages (V, Z) i := 0302 C := Find Correlation (V, Z)304 Find positions of spikes of C(t)306 For each spike position d found do 308 Z_0 :=messages in Z having timestamps equal to timestamps in V shifted by d 310 For each destination node j in Z_0 do 312 i := i + 1314 O_i node := j; O_i delay := d; O_i messages := messages in Z_0 with 316 destination j Return $O_1, O_2, ..., O_i$ 318

		<u></u>	
Find_	Correlation (V, Z)		
352	$s_1(t) := indicator function for V$		
354	$s_2(t) := \text{indicator function for } Z$		
356	$C := \text{Correlation}(s_2, s_1)$		
358	Return C		

FIG. 7

	<u> </u>			
Find_	Caused_Messages (V, Z)			
402	i := 0 '			
404	Nodes := Find_Related_Nodes (V, Z)			
406	For each node j in Nodes do			
408	Z_0 := messages in Z with destination j			
410	$C := Find_Correlation (V, Z_0)$			
412	Find positions of spikes of <i>C</i> (<i>t</i>)			
414	For each spike position <i>d</i> found do			
416	Z_1 := messages in Z_0 having timestamps equal to timestamps in V			
418	shifted by d			
420	$i := i + 1$; O_i node $:= j$; O_i delay $:= d$; O_i messages $:= Z_1$			
422	Return O ₁ , O ₂ ,, O _i			

FIG. 9

	C 450		
Relat	ed_Nodes (V, Z)		
Nod	es := empty set		
$C := Find_{Correlation}(V, Z)$			
Find	Find positions of spikes of <i>C</i> (<i>t</i>)		
For each spike position d found do			
	Z_0 :=messages in Z having timestamps equal to timestamps in V shifted by d		
	Nodes := union (Nodes, {nodes that appear as destinations in Z_0 })		
Return Nodes			

FIG. 10

500 Find Caused Messages (V, Z) i := 0502 Nodes := Find_Related_Nodes (V, Z) 504 For each node j in Nodes do 506 $Z_0 :=$ messages in Z with destination j508 $V_0 := V$ 510 While true do 512 If min $\{|V_0|, |Z_0|\} \le MinSize$ then exit while loop 514 $C := Find_Correlation (V_0, Z_0)$ 516 If maximum of C(t) is not prominent then exit while loop 518 d := position of the maximum of <math>C(t)520 Z_1 := messages in Z_0 having timestamps equal to timestamps in V_0 522 shifted by d V_1 := messages in V_0 having timestamps equal to timestamp in Z_1 524 shifted by -d $\overline{i := i + 1}$; O_i node := j; O_j delay := d; O_j messages := Z_1 526 $V_0 := V_0 - V_1, Z_0 := Z_0 - Z_1$ 528 Return O_1 , O_2 , ..., O_i 530

FIG. 11

- 550 Find Caused Messages (V, Z) i := 0552 Nodes := Find_Related_Nodes (V, Z) 554 For each node *j* in Nodes do 556 Z_0 := messages in Z with destination j 558 $V_o := V$ 560 W := empty set 562 Delay_set := empty set 564 While true do 566 If min $\{|V_0|, |Z_0|\}$ <= MinSize then exit while loop 568 $C := Find_Correlation (V_0, Z_0)$ 570 If maximum of C(t) is not prominent then exit while loop 572 d := position of the maximum of <math>C(t)574 Z_1 := messages in Z_0 having timestamps equal to timestamps in V_0 576 shifted by d V_1 := messages in V_0 having timestamps equal to timestamps in 578 Z₁shifted by -d $W := union (W, Z_1)^{\vee}$ 580 Delay_set := union (Delay_set, {d}) 582 $V_0 := V_0 - V_1$; $Z_0 := Z_0 - Z_1$ 584 i := i + 1; O_i node := j; O_i delay := Delay_set; O_i messages := W586 Return $O_1, O_2, ..., O_i$ 588

FIG. 12

600 Find Related Nodes (V, Z) Nodes := empty set 602 $V_0 := V; Z_0 := Z$ 604 While true do 606 If min $\{|V_0|, |Z_0|\} \le MinSize$ then exit while loop 608 $C := Find_Correlation (V_0, Z_0)$ 610 If maximum of C(t) is not prominent then exit while loop 612 d := position of the maximum of <math>C(t)614 Z_1 := messages in Z_0 having timestamps equal to timestamps in V_0 shifted 616 by d i :=node that is the most frequent destination in Z_1 618 Nodes := union (Nodes, $\{i\}$) 620 Z_2 := messages in Z_1 with destination i622 V_2 := messages in V_0 having timestamps equal to timestamps in Z_2 shifted by 624 $V_0 := V_0 - V_2; Z_0 := Z_0 - Z_2$ 626 **Return Nodes** 628

FIG. 13