

法律声明

本课件包括演示文稿、示例、代码、题库、视频和声音等内容,深度之眼和讲师 拥有完全知识产权;只限于善意学习者在本课程使用,不得在课程范围外向任何 第三方散播。任何其他人或者机构不得盗版、复制、仿造其中的创意和内容,我 们保留一切通过法律手段追究违反者的权利。

课程详情请咨询

■ 微信公众号: 深度之眼

■ 客服微信号: deepshare0920

微信

图像分割一瞥

导师: 余老师

- **1**/图像分割是什么?
- **2**/模型是如何将图像分割的?

- 3/ 深度学习图像分割模型简介
- 4/ 训练Unet完成人像抠图

deepshare.net 深度之眼

Image Segmentation

图像分割:将图像每一个像素分类

关注公众号深度之眼,后台回复论文, 获取60篇AI必读经典前沿论区

Image Segmentation

图像分割分类:

1.超像素分割:少量超像素代替大量

像素,常用于图像预处理

2. 语义分割: 逐像素分类,无法区分

个体

3. 实例分割: 对个体目标进行分割,

像素级目标检测

4. 全景分割: 语义分割结合实例分割

Superpixels (超像素分割)

Instance Segmentation (实例分割)

deepshare.net

深度之眼

Semantic Segmentation (语义分割)

Panoptic Segmentation (全景分割)

Image Segmentation

模型如何完成图像分割?

模型

deepshare.net 深度之眼

计算机: 3-d 张量 3-d 张量 (3, 224, 224)

·····计算机: 3-d 张量 3-d 张量 <mark>(</mark>21, 224, 224)

deepshare.net 深度之眼

Image Segmentation

模型如何完成图像分割?

答: 图像分割由模型与人类配合完成

模型:将数据映射到特征

人类: 定义特征的物理意义, 解决实际问题

21 20 ... 2 1

图像分类输出向量(特征图)

Image Segmentation

PyTorch-Hub——PyTorch模型库,有大量模型供开发者调用

1. torch.hub.load('pytorch/vision', 'deeplabv3_resnet101',pretrained=True)

model = torch.hub.load(github, model, *args, **kwargs)

功能: 加载模型

主要参数:

- github: str, 项目名,eg: pytorch/vision,<repo_owner/repo_name[:tag_name]>
- model: str, 模型名
- 2. torch.hub.list(github, force_reload=False)
- 3. torch.hub.help(github, model, force_reload=False)

deepshare.net 深度之眼

Image Segmentation

图像分割的思考

Ps: 蓝色为小猫 绿色为小狗

deepshare.net 深度之眼

Image Segmentation

深度学习中的图像分割模型

最主要贡献:

利用全卷积完成pixelwise prediction

Figure 1. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like semantic segmentation.

Image Segmentation

深度学习中的图像分割模型

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

《U-Net: Convolutional Networks for Biomedical Image Segmentation**》**

Image Segmentation

深度学习中的图像分割模型

DeepLab系列——V1

主要特点:

1.孔洞卷积:借助孔洞卷积,增大感受野

2. CRF: 采用CRF进行mask后处理

Figure 1: Illustration of the hole algorithm in 1-D, when $kernel_size = 3$, $input_stride = 2$, and $output_stride = 1$.

《DeepLabv1 Semantic image segmentation with deep convolutional nets and fully connected CRFs》

Image Segmentation

深度学习中的图像分割模型

DeepLab系列——V2

主要特点:

1. ASPP (Atrous spatial pyramid pooling):解决多尺度问题

Image Segmentation

深度学习中的图像分割模型

DeepLab系列——V3

主要特点: 1. 孔洞卷积的串行 2. ASPP的并行

《DeepLabv3- Rethinking Atrous Convolution for Semantic Image Segmentation》60篇AI必读经典前沿论文

Image Segmentation

深度学习中的图像分割模型

DeepLab系列——V3

(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when $output_stride = 16$. Figure 3. Cascaded modules without and with atrous convolution.

主要特点: 1. 孔洞卷积的串行 2. ASPP的并行

《DeepLabv3- Rethinking Atrous Convolution for Semantic Image Segmentation》50篇AI必读经典前沿论文

Image Segmentation

深度学习中的图像分割模型

DeepLab系列——V3

主要特点: 1. 孔洞卷积的串行 2. ASPP的并行

《DeepLabv3- Rethinking Atrous Convolution for Semantic Image Segmentation》60篇AI必读经典前沿论文

Image Segmentation

深度学习中的图像分割模型

DeepLab系列——V3+

主要特点: deeplabv3基础上加上Encoder-Decoder思想

《DeepLabv3- Rethinking Atrous Convolution for Semantic Image Segmentation》60篇AI必读经典前沿论文

Image Segmentation

深度学习中的图像分割模型

《Deep Semantic Segmentation of Natural and Medical Images: A Review》 2019

图像分割资源:

https://github.com/shawnbit/unet-family

https://github.com/yassouali/pytorch_segmentation

Table 1: A summary of papers for semantic segmentation of natural images applied to PASCAL VOC 2012 dataset.

Paper	Type of Improvement	Dataset(s) evaluated on	PASCAL VOC 2012 mean IoU
SegNet (2015) [103]	Architecture	PASCAL VOC, CamVid, SUN RGB-D	59.1%
FCN (2014) [86]	Architecture	PASCAL VOC, NYUDv2, SIFT Flow	62.2%
Luc at al. (2016) [87]	Adversarial Segmentation	PASCAL VOC, Stanford Background	73.3%
Lovász-Softmax Loss (2017) [11]	Loss	PASCAL VOC, Cityscapes	76.44%
Large Kernel Matters (2017) [107]	Architecture	PASCAL VOC, Cityscapes	82.2%
Deep Layer Cascade (2017) [78]	Architecture	PASCAL VOC, Cityscapes	82.7%
TuSimple (2017) [147]	Architecture	PASCAL VOC, KITTI Road Estimation	83.1%
RefineNet (2016) [82]	Architecture	PASCAL VOC, PASCAL Context, Person-Part, NYUDv2, SUN RGB-D, Cityscapes, ADE20K	84.2%
ResNet-38 (2016) [157]	Architecture	PASCAL VOC, PASCAL Context, Cityscapes	84.9%
PSPNet (2016) [171]	Architecture	PASCAL VOC, Cityscapes	85.4%
Auto-DeepLab (2019) [85]	Architecture Search	PASCAL VOC, ADE20K, Cityscapes	85.6%
IDW-CNN (2017) [146]	Architecture	PASCAL VOC	86.3%
SDN+ (2019) [32]	Architecture	PASCAL VOC, CamVid, Gatech	86.6%
DIS (2017) [88]	Architecture	PASCAL VOC	86.8%
DeepLabV3 (2017) [21]	Architecture	PASCAL VOC	86.9%
MSCI (2018) [81]	Architecture	PASCAL VOC, PASCAL Context, NYUDv2, SUN RGB-D	88.0%
DeepLabV3+ (2018) [23]	Architecture	PASCAL VOC, Cityscapes	89.0%

deepshare.net 深度之眼

Image Segmentation

Unet实现人像抠图(Portrait Matting)

结语-

在这次课程中,学习了PyTorch中图像分割模型的使用

在下次课程中, 我们将会学习

图像目标检测一瞥

deepshare.net

深度之眼

联系我们:

电话: 18001992849

邮箱: service@deepshare.net

Q Q: 2677693114

公众号

客服微信