LIME

Mose Park

Department of Statistical Data Science University of Seoul

Selective. Lab

April 9, 2024

Index

1 Introduction

2 LIME

3 SP-LIME

- 4 Experiment
- 5 My Research

Overview

Introduction

Black box vs Interpretable

▶ 블랙박스는 데이터와 예측 결과와의 관계를 규명할 수 없음

Black box model

▶ 해석가능한 모델은 왜 그런 결과가 나왔는지 설명가능

Tree model

Why?

- ▶ black box model은 환자가 독감이라고 결정하는 것에서 끝남
- ▶ LIME은 과거 증상들이 무엇이었는지 해석할 수 있음
- ▶ 의사는 모델의 예측을 신뢰(trust)할지 결정함

LIME

Objective function

$$\xi(x) = \underset{g \in G}{\operatorname{arg\,min}} \mathcal{L}(f, g, \pi_x) + \Omega(g) \tag{1}$$

G: a class of interpretable models ex) 'g'는 각각 선형 모델, 의사결정나무 등이 될 수 있음

 $\Omega(g)$: measure of complexity ex) 0이 아닌 β 의 개수, 트리의 깊이 등

f: model being explained ex) 설명되어야 할 블랙박스 모델

 π_x : proximity measure between an instance z to x

ightharpoonup z가 무엇이고 π 의 역할은?

Sampling

- ▶ 블랙박스 모델의 복잡한 결정 함수 f가 파란색/분홍색 배경으로 나뉨
- ▶+ 기호는 설명되고 있는 인스턴스 'z' 를 의미 ← 이것을 샘플링함
- ▶샘플링된 + 들은 인스턴스와의 거리를 통해 가중치를 부여, 상대적 크기가 근접성(거리)을 의미

Algorithm 1

Require: Classifier f, Number of samples N

Require: Instance x, and its interpretable version x'

Require: Similarity kernel π_x , Length of explanation K

- 1. Initialize Z.
- 2. For i = 1 to N do
 - (a) Sample z'_i around x'.
 - (b) Compute $Z = Z \cup \{(z_i', f(z_i), \pi_x(z_i))\}.$
- 3. End for.
- 4. Compute w = K-Lasso(Z, K) with z'_i as features, $f(z_i)$ as target.
- 5. Return w.

SP-LIME

Why SP-LIME?

- ▶ 단일 예측이기 때문에 모델 전체 해석의 일반화가 어려움
- ▶ 개별 인스턴스를 설명하는 것 대신에 인스턴스들의 집합을 설명하는 것을 목표

Explanation matrix

feature 즉, 변수들

$$W$$
, with $n = d' = 5$

- lacktriangle 회색칸은 instance를 의미, f2가 f3에 비해 importance score가 높기 때문에 $I_2>I_3$
- ▶ 2번째 행은 3번째 행과 유사한 설명을 가진 인스턴스기 때문에 동시에 고르면 안됌 2, 5과 최적

Pick Step

$$c(V, W, I) = \sum_{j=1}^{d'} \mathbf{1}_{\{\exists i \in V : W_{ij} > 0\}} I_j$$
(3)

$$\operatorname{Pick}(W, I) = \arg \max_{V:|V| \le B} c(V, W, I) \tag{4}$$

- ▶ 식 (3)은 주어진 W와 I에 대해 집합 V 내의 적어도 한 인스턴스에 나타나는 특성들의 총 중요도를 계산하는 집합 함수
- ▶ 커버리지를 최대화하는 budget 내에 허락할 수 있는 index set V를 찿아주는 것이 목표

Algorithm 2

Require: Instances X, Budget B

- For all $x_i \in X$ do $W_i \leftarrow \operatorname{explain}(x_i, x_i') \quad // \text{ Using Algorithm 1}$ End for
- For j = 1 to d do

$$I_j \leftarrow \sum_{i=1}^n W_{ij}$$
 // Compute feature importances

End for

- Initialize $V \leftarrow \emptyset$

• While
$$|V| < B$$
 do

$$V \leftarrow V \cup \{\arg\max_{i} c(V \cup \{i\}, W, I)\}$$
 // Greedy optimization of (4)

End while

 \bullet Return V

NP hard 로 인한 수정

→ submodular pick (근사)

Experiment

Are Explanation faithful?

- ▶ 모델에 중요한 feature들을 선정 (gold features)
- ▶ 설명(expalnation)이 위 feature를 얼마나 잘 반영하는지 측정 → Recall

- ▶ Recall은 LR과 DT에서 산출한 10개 feature들을 LIME에서 잘 Cover하는지에 대한 비율을 의미
- ▶LIME이 대부분 세팅에서 우수

Should I trust prediction?

○ :"untrustworthy" 즉, 신뢰할 수 없는 feature가 예측에 중요한 역할을 함 예측 변경 여부 X : "trustworthy" (labeling)

Table 1

	Books				DVDs			
	LR	NN	RF	SVM	LR	NN	RF	SVM
Random	14.6	14.8	14.7	14.7	14.2	14.3	14.5	14.4
Parzen	84.0	87.6	94.3	92.3	87.0	81.7	94.2	87.3
Greedy	53.7	47.4	45.0	53.3	52.4	58.1	46.6	55.1
LIME	96.6	94.5	96.2	96.7	96.6	91.8	96.1	95.6

- ▶ F1은 100회 실험 돌리고 평균값으로 계산
- ▶ Recall과 Precision 모두 LIME이 우수

Can I trust model?

신뢰할 수 없는 것으로 둠

2. 각 모델에 성능에 영향을 줄 수 없는 '인위적 정보' 추가

1. 어떤 모델이 더 믿을만할까요?

- 3. 두 모델의 설명(explanaition)을 검토 후 어떤 모델의 설명이 더 신뢰할 수 있는지 신뢰도 평가
- 4. 신뢰할 수 있는 설명을 바탕으로 모델을 선택 후 test set에서 성능을 확인

Figure 8

- ▶ SP-LIME 을 통해 나온 instance 중 trustworthy한 instance의 비율
- ▶ SP-LIME 이 우수, 여기서 SP-parzen, RP-parzen은 성능이 저조해 생략

My research

- ightharpoonup 실제 리뷰 점수 : y
- ▶ GPT가 왜 그렇게 예측했는지에 대한 인사이트를 얻을 수 있음

- → 문제점은 kernel crash, (high dimension)
 - 메모리를 초과하는 계산량
 - 제 데이터는 약 30,000 * 26, 전처리시 그 이상
 - 논문에서 최대 10,459 * 23 or 20,000 * 9

- 처음에 생각했던 것은 input을 차원축소해서 넣기
- * text를 사용해서 output을 냈으니 text를 어떻게 해석적인 관점에서 볼 수 있을까?
 - → LIME, SHAP, LRP, Rule-based explanations 등

Text with highlighted words

예측에 중요한 역할을 한 features

```
31776.000000
count
             1.093577
mean
std
             1.049124
min
             0.000000
25%
             0.400000
50%
             0.800000
75%
             1.500000
             9.200000
max
Name: y-y hat, dtype: float64
```

예측과 실제 차이가 5점 이상인 데이터 297개

1.5점 이상 차이나는 것이 25%

test set에 포함된 48개 리뷰에 대해 분석하기

```
Explanation for index 20352:
[('client', -1.8862160403186692), ('running', 0.6521353712149914), ('showed', -0.5953649009811807)]
Explanation for index 2176:
[('awful', 0.46181734475113745), ('persons', 0.380101399680751), ('toiletries', -0.28416984564833414)]
Explanation for index 8450:
[('above', -0.4336454689519415), ('As', -0.1995387743091724)]
Explanation for index 2179:
[('cups', -1.9450369385183466), ('tipped', 1.1541211361908437), ('brought', -0.5655133132107166)]
```

키워드를 보면서 대략적인 유추는 가능하나 자세히 들여다볼 필요가 있다.

Funny Example

• 실제 점수: 8점

• GPT 예측 : 2점

Text with highlighted words

I booked the hotel but was unable to go to New York cause my partner visa was denied twice by the US embassy. And the sadness is I am not able to reimburse my booking. Huhuhuhuhuuuuu

• LIME의 판단은 'denied', 'reimburse' 두 키워드가 예측의 괴리를 크게 했을 것이라고 설명

• 실제 점수: 8.4점

• GPT 예측: 3.2점

Text with highlighted words

• 실제 점수: 5점

• GPT 예측: 2.1점

Text with highlighted words

My wifi wasn't working for the 3 days even when I tried to call

- 주관적으로 even이 그렇게 크게 중요하지 않다고 판단
- ▶ keyword 불용어 사전을 적용해봐야겠다고 판단

• 실제 점수: 2.7점

• GPT 예측: 9.0점

Text with highlighted words

Good location, Comfortable, Safety