

D-REPR: A Language For Describing And Mapping Diversely-Structured Data Sources To RDF

Binh Vu, Jay Pujara, and Craig Knoblock

Motivating example

Motivating example

Heterogeneous datasets

• Multiple formats: CSV, JSON, XLSX, NetCDF4, ...

		2016	
Indicator	Age Group	Male	Female
LIFE_0035	<1 year	57.7	59.6
LIFE_0035	1-4 years	60.6	62.1

```
,,2016,
Indicator,Age Group,Male,Female
LIFE_0035,<1 year,57.7,59.6
LIFE_0035,1-4 years,60.6,62.1</pre>
```

```
"indicator": "LIFE_0035",
    "age group": "< 1 year",
    "gender": "male",
    "year": "2016",
    "value": 57.7
},
    "indicator": "LIFE 0035",
    "age group": "< 1 year",</pre>
    "gender": "female",
    "year": "2016",
    "value": 59.6
```

```
<obs>
   <0b>
       <indicator>LIFE_0035
       <age_group>&lt;1 year</age_group>
       <gender>male</gender>
       <year>2016
       <value>57.7</value>
   </ ob>
   <ob>
       <indicator>LIFE_0035
       <age_group>&lt;1 year</age_group>
       <gender>female</gender>
       <year>2016
       <value>59.6
   </ob>
</obs>
```

Heterogeneous datasets

• Same format, multiple layouts

Indicator	Age Group	Gender	Year	Value
LIFE_0035	< 1 year	Male	2016	57.7
LIFE_0035	< 1 year	Female	2016	59.6
LIFE_0035	1-4 years	Male	2016	60.6
LIFE_0035	1-4 years	Female	2016	62.1

LIFE_0035					
Age Group	Gender	Observation			
2016					
< 1 year	Male	59.6			
1-4 years	Female	62.1			

		2016		
Indicator	Age Group	Male	Female	
LIFE_0035	< 1 year	57.7	59.6	
LIFE_0035	1-4 years	60.6	62.1	

	2016			
Age Group	Male	Male Female		
< 1 year	57.7		4 7	9.6
1-4 years		60.6		52.1
↓ ▶ LII	FE_0035	LII	FE_0029	+

Related work

- Mapping nested relational datasets:
 - RML (Dimou et al, 2014), KR2RML (Slepicka et al 2015), xR2RML (Michel et al, 2015), etc.
 - Can handle multiple formats but only work for nested relational model layout
- Mapping tabular datasets:
 - XLWrap (Langegger et al, 2009), M2 (O'Connor et al, 2010), T2WML (Szekely et al, 2019)
 - Can handle multiple layouts, but support only tabular formats

Contributions

- A generic language to easily for describing and mapping heterogeneous datasets to RDF
 - It's capable of mapping wide variety of data sources and goes beyond the set of sources that existing languages support.

- The language is extensible to new formats and layouts
- An efficient engine to convert datasets to RDF

LIFE_0035

LIFE_0029

LIFE_0035

LIFE_0035

male

female

57.7

59.6

60.6

Our approach

http://...?iid=35

http://...?iid=29

Step 1: Resources

- A resource can be a physical file, SQL table, etc.
- Syntax:

• Example:

```
resources:
    life_tbl:
        type: csv
    indicators:
        type: json
```

life_table.csv

		2016	
Indicator	Age Group	Male	Female
LIFE_0035	<1 year	57.7	59.6
LIFE_0035	1-4 years	60.6	62.1

indicators.json

```
{
    "indicator": "LIFE_0035",
    "url": "http://apps.who/int/.../indicator.aspx?iid=35"
},
{
    "indicator": "LIFE_0029",
    "url": "http://apps.who/int/.../indicator.aspx?iid=29"
},
```

Step 2: Attributes

- Containing values that belong to a group
- Syntax

life table.csv

		2016	
Indicator	Age Group	Male	Female
LIFE_0035	<1 year	57.7	59.6
LIFE_0035	1-4 years	60.6	62.1

```
attributes:
    year:
        resource_id: life_tbl
        path: $[0][2:]
    gender:
        resource_id: life_tbl
        path: $[1][2:]
    indicator_col:
        resource_id: life_tbl
        path: $[2:][0]
    age group:
        resource_id: life_tbl
        path: $[2:][1]
    observation:
        resource_id: life_tbl
        path: $[2:][2:]
    indicator: --
    url: …
```

Step 2: Attributes

indicators.json

```
{
    "indicator": "LIFE_0035",
    "url": "http://apps.who/int/.../indicator.aspx?iid=35"
},
{
    "indicator": "LIFE_0029",
    "url": "http://apps.who/int/.../indicator.aspx?iid=29"
},
```

```
attributes:
    year: ...
    gender: --
    indicator_col: --
    age_group: --
    observation: --
    indicator:
        resource_id: indicators
        path: $[:].indicator
        unique: true
    url:
        resource_id: indicators
        path: $[:].url
        unique: true
```


Explicitly specifying the layout through alignments

Indicator	male	female	gender	observation indicator col	gender	observation	indicator_col
			male	57.7 LIFE 0035	male	57.7	LIFE_0035
LIFE_0035	57.7	59.6	female	59.6 LIFE_0035	female	59.6	LIFE_0035
LIFE_0035	60.6	62.1	Telliate	60.6	male	60.6	LIFE_0035
				62.1	female	62.1	LIFE_0035

For linking across resources

Join by value (equi-join)

```
"indicator": "LIFE_0035",
   "url": "http://apps.who/int/.../indicator.aspx?iid=35"
},
{
   "indicator": "LIFE_0029",
   "url": "http://apps.who/int/.../indicator.aspx?iid=29"
},
```

		2016	
Indicator	Age Group	Male	Female
LIFE_0035	<1 year	57.7	59.6
LIFE_0035	1-4 years	60.6	62.1

Syntax

```
alignments:
    - type: value
    source: indicator_col
```

target: indicator

Join by positions in the dataset


```
alignments:
> - type: value...
- type: dimension
source: observation
target: gender
aligned_dims:
- source: 1
target: 1
```


Join by positions in the dataset

aligned_dims:

- source: 0

target: 0

target: indicator_col

Join by positions in the dataset

```
[{
    "departments": {
      "people": [{
          "name": "Peter",
          "phone": "213-266-2777"
          "name": "John",
          "phone": "222-222-2222"
          /* more */]
    /* more */]
```

Sample data

```
Name: $.*.departments.people *.name
Phone: $.*.departments.people *.phone

Aligned in dimensions 0 and 3
```


Easy to incorporate new alignment function

• Users only need to define the minimum number of joins (N-1) because the engine can infer the rest via composition.

Step 4: Semantic Model

Using ontologies to describe your data (classes and predicates)

Syntax

```
semantic_model:
    data_nodes:
        observation: qb:Observation:1--sdmx-m:obsValue
        year: qb:Observation:1--sdmx-d:refPeriod
        indicator: eg:Indicator:1--eg:code
        url: eg:Indicator:1--drepr:uri
    relations:
        - qb:Observation:1--eg:indicator--eg:Indicator:1
```

Step 4: Semantic Model

• Users can create arbitrary semantic model, even when using attributes across multiple resources

Data cleaning (optional)

Users can write python function to clean or transform the data

	0	1	2	3
0			2016	
1	Indicator	Age Group	male	index = (0,3) value = ""
2	LIFE_0035	<1 year	57.7	59.6
3	LIFE_0035	1-4 years	60.6	62.1

Can re-use functions or existing libraries

Evaluation

- Coverage of D-REPR
 - Randomly sampling 700 datasets from data.gov
 - Modeling datasets of different formats and layouts

a. Children and Family Health

```
"columns": [
 {"name": "teenbir10"; "description": "Teen Birth Rate ... (2010)"},
 {"name": "teenbir11"; description": "Teen Birth Rate ... (2011)"},
       "Allendale/Irvington/S. Hilton", "55.0", "58.1", ....],
       "Beechfield/Ten Hills/West Hills", "42.8", "21.4", ...],
                                       Cannot be modeled with Nested
                                       Relational Models!
```

b. Sugar production by sugar beet and sugarcane processors

FY 2008	JAN	FEB	MAR	APR	MAY	JUN
From domestic sugar beets	661,586	485,126	423,775	337,473	216,526	82,987
From imported sugar beets	0	37,160	0	0	0	0
Subtotal	661,586	522,287	423,775	337,473	216,526	82,987
Cane production:						
Florida	321,414	253,438	242,560	92,302	47,237	0

Subtotal	378,919	283,190	289,237	108,826	68,504	30,903
Total	1,040,505	805,476	713,012	446,298	285,030	113,889

Evaluation

- Runtime of D-REPR engine (ms)
 - Mapping large CSV files (row-based table) containing (name, phone, address)
 - Generating 1.3m triples / second (15 times faster than KR2RML)

	Number of records					
Tools	5,000	10,000	20,000	40,000	80,000	
D-REPR	33.44	69.84	132.00	267.50	551.24	
KR2RML	1368.00	1776.33	3276.66	4990.33	8305.33	
Morph	4812.00	14949.66	65961.33	-	-	

Discussion and Future work

- A novel generic data representation language: D-REPR
 - Uses a declarative approach
 - Works for heterogeneous datasets of different formats and layouts
- Open source: https://github.com/usc-isi-i2/d-repr
- Future work:
 - (Semi-)automatically generating D-REPR models
 - UI for annotating datasets
 - Improving efficiency of D-REPR's engine by doing parallel processing

References

- [1] RML: Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Erik Mannens, and Rik Van de Walle. 2014. RML: A Generic Language for Integrated RDF Mappings of Heterogeneous Data
- [2] KR2RML: Jason Slepicka, Chengye Yin, Pedro Szekely, and Craig A. Knoblock. 2015. KR2RML: An Alternative Interpretation of R2RML for Heterogenous Sources
- [3] xR2RML: Franck Michel, Loïc Djimenou, Catherine Faron Zucker, and Johan Montagnat. 2015. Translation of relational and non-relational databases into RDF with xR2RML
- [4] XLWrap: Andreas Langegger and Wolfram Wöß. 2009. XLWrap Querying and Inte-grating Arbitrary Spreadsheets with SPARQL
- [5] Martin J O'Connor, Christian Halaschek-Wiener, and Mark A Musen. 2010. M2: A Language for Mapping Spreadsheets to OWL

