EA614 – Análise de Sinais

2º Semestre de 2009 – 1ª Prova – Prof. Renato Lopes

Questão 1 (1.0 PONTO):

Seja x(t) um sinal tal que x(t) = 0 para t < 2. Seja y(t) = x(4-t)x(2t). Para quais valores de t podemos afirmar que y(t) = 0?

Questão 2 (1.5 Pontos):

Se a entrada de um sistema linear e invariante no tempo for $x[n] = e^{j\omega n}$, então sua saída é dada por $y[n] = H(\omega)e^{j\omega n}$, onde $H(\omega)$ é a resposta em freqüência do sistema. Considere um sistema linear e invariante no tempo cuja saída se relaciona à entrada de acordo com

$$y[n] + 2y[n-1] = x[n]$$

Determine $H(\omega)$ para esse sistema. **Dica**: substitua $x[n] = e^{j\omega n}$ e $y[n] = H(\omega)e^{j\omega n}$ na equação que define o sistema.

Questão 3 (1.5 Pontos):

A figura 1 mostra a associação em cascata de dois sistemas lineares e invariantes no tempo (LIT), com resposta ao impulso dadas por $h_1(t) = h_2(t) = u(t)$, onde u(t) é a função degrau unitário. Determine a resposta ao impulso da cascata.

Figura 1: Associação em cascata de sistemas LITs referentes à questão 3.

Questão 4 (1.5 Pontos):

A resposta de um sistema linear e invariante no tempo a uma entrada x(t) é dada por

$$y(t) = \int_{-\infty}^{t} x(\tau) e^{\tau - t} d\tau$$

Determine sua resposta ao impulso.

Questão 5 (1.5 Pontos):

Considere um sinal periódico e ímpar. Calcule o coeficiente a_0 de sua série de Fourier.

Questão 6 (1.5 Pontos):

Considere um sinal periódico com período T=2. Em um período, esse sinal é definido como

$$x(t) = \begin{cases} \cos(2\pi t); & |t| \le 0.5\\ 0; & 0.5 < |t| \le 1 \end{cases}$$

Determine o coeficiente a_k de sua série de Fourier. **Dica**: O sinal

$$y(t) = \begin{cases} 1; & |t| \le 0.5 \\ 0; & 0.5 < |t| \le 1 \end{cases}$$

possui série de Fourier com coeficientes $b_k = \sin(\pi k/2)/k\pi$.

Tabela 1: Propriedades da Série de Fourier

Tabela 1: Propriedades da Série de Fourier	
Variáveis	$x(t)$ com período $T_0=2\pi/\omega_0$ e série a_k
	$y(t)$ com período $T_0=2\pi/\omega_0$ e série b_k
Definição	$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$
Coeficientes	$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$ $a_k = \frac{1}{T_0} \int_{t_0}^{t_0+T_0} x(t) e^{-jk\omega_0 t} d\omega$
Linearidade	$Ax(t) + By(t) \Leftrightarrow Aa_k + Bb_k$
Deslocamento Temporal	$x(t-t_o) \Leftrightarrow a_k \mathrm{e}^{-jk\omega_0 t_0}$
Deslocamento em Freqüência	$e^{jM\omega_0 t}x(t) \Leftrightarrow a_{k-M}$
Conjugação	$x^*(t) \Leftrightarrow a_{-k}^*$
Inversão Temporal	$x(-t) \Leftrightarrow a_{-k}$
Escalonamento Temporal	$x(\alpha t) \Leftrightarrow a_k$
	$x(\alpha t)$ é periódico com período T_0/α .
Convolução periódica	$\int_{t_0}^{t_0+T_0} x(\tau)y(t-\tau) d\tau \Leftrightarrow T_0 a_k b_k$
Produto	$x(n)y(n) \Leftrightarrow a_k * b_k$
Diferenciação	$\frac{\mathrm{d}}{\mathrm{d}t}x(t) \Leftrightarrow jk\omega_0 a_k$
Integração	$\int_{-\infty}^{t} x(\tau) \mathrm{d}\tau \Leftrightarrow \frac{a_k}{jk\omega_0}$
	Para integral ser periódica, $a_0 = 0$.
	Nível DC da integral é determinado pela definição.
Simetria, sinal real	$a_k = a_{-k}^*$
Simetria, sinal real e par	a_k é real e par
Simetria, sinal real e ímpar	a_k é imaginário puro e ímpar
Parte par, sinal real	$\operatorname{Ev}\{x(t)\} \triangleq \frac{1}{2}(x(t) + x(-t)) \Leftrightarrow \Re\{a_k\} \triangleq \frac{1}{2}(a_k + a_k^*)$
Parte ímpar, sinal real	$\mathrm{Od}\{x(t)\} \triangleq \frac{1}{2}(x(t) - x(-t)) \Leftrightarrow \Im\{a_k\} \triangleq \frac{1}{2}(a_k - a_k^*)$
Parseval	$\int_{t_0}^{t_0+T_0} x(t)y^*(t) dt = T_0 \sum_{k=-\infty}^{\infty} a_k b_k^*$ $\int_{t_0}^{t_0+T_0} x(t) ^2 dt = T_0 \sum_{k=-\infty}^{\infty} a_k ^2$
Parseval (Energia)	$\int_{t_0}^{t_0+T_0} x(t) ^2 dt = T_0 \sum_{k=-\infty}^{\infty} a_k ^2$

Questão 7 (1.5 PONTOS):

Seja x(t) um sinal periódico com período T=1 cuja série de Fourier possui coeficientes

$$a_k = \begin{cases} 1, & |k| \le 5 \\ 0, & \text{caso contrário} \end{cases}.$$

Este sinal é colocado na entrada de um filtro linear invariante no tempo com

$$H(\omega) = \begin{cases} 1, & |\omega| > 7\pi \\ 0, & \text{caso contrário} \end{cases}.$$

- a) Determine o sinal na saída do filtro.
- b) Calcule a energia em um período da saída do filtro.