Announcements

- O Homework 1: Search
 - O Due yesterday
 - o "Show Answer"
- Project 1: Search
 - 0 due Friday 5pm
- Contest 1: Search optional but fun
 - O due Sunday
- O State space practice on piazza coming up
- O Homework 2: CSPs
 - O due Monday

CS 188: Artificial Intelligence

Today

• Efficient Solution of CSPs

O Local Search

Constraint Satisfaction Problems

N variables domain D constraints

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - O Initial state: the empty assignment, {}
 - O Successor function: assign a value to an unassigned variable
 - O Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering -> better branching factor!
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - O I.e. consider only values which do not conflict previous assignments
 - O Might have to do some computation to check the constraints
 - O "Incremental goal test"
- Open Depth-first search with these two improvements is called *backtracking search* (not the best name)
- Can solve n-queens for $n \approx 25$

```
function Backtracking-Search(csp) returns solution/failure
  return Recursive-Backtracking (\{\}, asp\}
function Recursive-Backtracking (assignment, csp) returns soln/failure
   <u>if assignment</u> is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
   for each value in Order-Domain-Values (var, assignment, csp) do
       if value is consistent with assignment given Constraints [csp] then
            add \{var = value\} to assignment
            result \leftarrow \text{Recursive-Backtracking}(assignment, csp)
            if result \neq failure then return result
            remove \{var = value\} from assignment
  return failure
```

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?

Improving Backtracking

O General-purpose ideas give huge gains in speed

- Ordering:
 - O Which variable should be assigned next?
 - O In what order should its values be tried?

• Filtering: Can we detect inevitable failure early?

Filtering

Keep track of domains for unassigned variables and cross off bad options

Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

Video of Demo Coloring – Backtracking with Forward Checking

Filtering: Constraint Propagation

O Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

O An arc $X \rightarrow Y$ is consistent iff for *every* x in the tail there is *some* y in the head which could be assigned without violating a constraint

Forward checking?

Delete from the tail!

Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

• A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- O Arc consistency detects failure earlier than forward checking
- O Can be run as a preprocessor or after each assignment
- What's the downside of enforcing arc consistency?

Remember: Delete from the tail!

Enforcing Arc Consistency in a CSP

```
function AC-3( csp) returns the CSP, possibly with reduced domains
  inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_i) \leftarrow \text{REMOVE-FIRST}(queue)
      if Remove-Inconsistent-Values (X_i, X_i) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_i) returns true iff succeeds
   removed \leftarrow false
  for each x in Domain[X_i] do
      if no value y in DOMAIN[X<sub>i</sub>] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_i
         then delete x from Domain[X_i]; removed \leftarrow true
   return removed
```

- O Runtime: $O(n^2d^3)$, can be reduced to $O(n^2d^2)$
- ... but detecting all possible future problems is NP-hard why?

Limitations of Arc Consistency

- O After enforcing arc consistency:
 - O Can have one solution left
 - O Can have multiple solutions left
 - O Can have no solutions left (and not know it)

O Arc consistency still runs inside a backtracking search!

[Demo: coloring -- forward checking]

[Demo: coloring -- arc consistency]

Video of Demo Coloring – Backtracking with Forward Checking – Complex Graph

Video of Demo Coloring – Backtracking with Arc Consistency – Complex Graph

Ordering

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
 - O Choose the variable with the fewest legal left values in its domain

- O Why min rather than max?
- O Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
 - O Given a choice of variable, choose the *least* constraining value
 - I.e., the one that rules out the fewest values in the remaining variables
 - O Note that it may take some computation to determine this! (E.g., rerunning filtering)

- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible

Demo: Coloring -- Backtracking + Forward Checking + Ordering

Iterative Improvement

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators reassign variable values
 - O No fringe! Live on the edge.
- Algorithm: While not solved,
 - O Variable selection: randomly select any conflicted variable
 - O Value selection: min-conflicts heuristic:
 - O Choose a value that violates the fewest constraints
 - I.e., hill climb with h(x) = total number of violated constraints.

Example: 4-Queens

- States: 4 queens in 4 columns $(4^4 = 256)$ states)
- Operators: move queen in column
- O Goal test: no attacks
- Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]

[Demo: coloring – iterative improvement]

Video of Demo Iterative Improvement – n

Video of Demo Iterative Improvement –

Performance of Min-Conflicts

- O Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

Summary: CSPs

- CSPs are a special kind of search problem:
 - O States are partial assignments
 - O Goal test defined by constrain
- Basic solution: backtracking sear
- O Speed-ups:
 - Ordering
 - O Filtering
 - O Structure turns out trees are easy!

Local Search

Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can't make it better (no fringe!)
- New successor function: local changes

 Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

Hill Climbing Diagram

Hill Climbing Quiz

Starting from X, where do you end up?

Starting from Y, where do you end up?

Starting from Z, where do you end up?

Simulated Annealing

- O Idea: Escape local maxima by allowing downhill move
 - O But make them rarer as time goes on

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
   inputs: problem, a problem
             schedule, a mapping from time to "temperature"
   local variables: current, a node
                        next, a node
                        T, a "temperature" controlling prob. of downward steps
   current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
   for t \leftarrow 1 to \infty do
        T \leftarrow schedule[t]
        if T = 0 then return current
        next \leftarrow a randomly selected successor of current
        \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
        if \Delta E > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta E/T}
```


Simulated Annealing

- O Theoretical guarantee: o Stationary distribution: $p(x) \propto e^{\frac{E(x)}{kT}}$

 - If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
 - O The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - O People think hard about *ridge operators* which let you jump around the space in better ways

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
 - O Keep best N hypotheses at each step (selection) based on a fitness function
 - O Also have pairwise crossover operators, with optional mutation to give variety
- Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?

Next Time: Adversarial Search!