

ESCOLA
SUPERIOR
DE TECNOLOGIA
E GESTÃO
POLITÉCNICO
DO PORTO

LICENCIATURA ÁREA DE ESPECIALIZAÇÃO

Análise Comparativa de Algoritmos de Aprendizagem com Base em Séries Temporais

Luís Marques

10/2020

ESCOLA
SUPERIOR
DE TECNOLOGIA
E GESTÃO
POLITÉCNICO
DO PORTO

LICENCIATURA ENGENHARIA INFORMÁTICA

Análise Comparativa de Algorítmos de Aprendizagem com Base em Séries Temporais

Luís Marques

Prof. Fábio Silva

Biografia do Autor

Luís Marques é um estudante de Engenharia Informática na Escola Superior de Tecnologia e Gestão do Politécnico do Porto, sendo o ano atual o seu terceiro ano da Licenciatura. Nascido a 8 de junho de 1999 em Vila Nova de Famalicão, o autor nutre bastante interesse em tecnologia e gosta particularmente de desenvolvimento de software backend. Também demonstra bastante interesse na área de Inteligência Artificial e de *Machine Learning*.

Resumo

De modo a fazer uma análise comparativa entre diferentes algoritmos de aprendizagem, é necessário fazer um estudo sobre eles, em primeiro lugar. Para isto foram utilizadas séries temporais.

Este projeto representa o estudo realizado em torno de alguns modelos, mais exatamente as variantes do modelo *ARIMA*. O algoritmo para cada modelo estudado foi feito utilizando alguns recursos disponibilizados pelo Professor Fábio Silva e com a ajuda de algumas bibliotecas de *Python*.

Palavras Chave: ARIMA, Inteligência Artificial, Machine Learning, Python

Conteúdo

Giossario										
Αŀ	orevi	aturas	xiii							
1	Contextualização e Motivação									
	1.1	Introdução	1							
		1.1.1 Contextualização	1							
		1.1.2 Objetivos	1							
		1.1.3 Resultados	2							
		1.1.4 Estrutura	2							
	1.2	Fundamentação Teórica	2							
		1.2.1 Série Temporal	2							
		1.2.2 Grid Search	3							
		1.2.3 Modelo ARIMA	3							
2	Concetualização do Problema									
	2.1	Requisitos	4							
		2.1.1 Estudo do Modelo	4							
		2.1.2 Construção do Serviço de Testes	5							
		2.1.3 Teste dos Datasets	5							
		2.1.4 Integração com Google Colab	5							
	2.2	Arquitetura Concetual	5							
3	Met	odologia de Operacionalização do Trabalho	6							
	3.1	Processo e Metodologia de Trabalho	6							
	3.2	Desenvolvimento da Solução	6							
4	Disc	Discussão dos Resultados 7								
	4.1	Apresentação e Discussão dos Resultados	7							
	4.2	Apresentação dos Impedimentos e/ou Constrangimentos	7							
5	Con	nclusão	8							
	5.1	Reflexão Crítica dos Resultados	8							
	52	Conclusão e Trabalho Euturo	8							

Referências 10

Lista de Figuras

Glossário

- Autoregressive Integrated Moving Average with Exogenous Variable é um modelo de aprendizagem de média móvel integrado autoregressivo com variáveis exógenas. xiii
- **Autoregressive Integrated Moving Average** é um modelo de aprendizagem de média móvel integrado autoregressivo. xiii, 3
- dataset (Conjunto de dados) é uma coleção de dados normalmente tabulados. Por cada elemento destacam-se várias características. Cada coluna representa uma variável particular. Cada linha corresponde a um determinado membro do conjunto de dados em questão. Cada valor é conhecido como um dado. 1, 4
- Google é uma empresa multinacional de serviços online e software dos Estados Unidos. x
- **Google Colab** é um ambiente de desenvolvimento com a linguagem Python que não requer configuração e é executado utilizando a Google Cloud. 4, 5
- Google Cloud é uma suíte de computação em nuvem oferecida pelo Google. x
- **grid search** é o processo de coleção de dados para configurar os parâmetros ideais para um determinado modelo. 5
- **Inteligência Artificial** é a inteligência similar à humana exibida por mecanismos ou software, para além de também ser um campo de estudo académico. i, iii, x, xiii
- **Machine Learning** é um subcampo da Engenharia e da ciência da computação que evoluiu do estudo de reconhecimento de padrões e da teoria da aprendizagem computacional em Inteligência Artificial. i, iii, xiii, 4
- **Python** é uma linguagem de programação de alto nível, interpretada, de script, imperativa, orientada a objetos, funcional, de tipagem dinâmica e forte. iii, x, 4, 5
- roadmap é um recurso visual de alto nível que mapeia a evolução do produto/projeto ao longo do tempo. 6
- script é um programa de computador, normalmente executado com um interpretador. 5
- Seasonal Autoregressive Integrated Moving Average with Exogenous Variable é um modelo de aprendizagem de média móvel integrado autoregressivo sazonal com variáveis exógenas. xiii

Seasonal Autoregressive Integrated Moving Average é um modelo de aprendizagem de média móvel integrado autoregressivo sazonal. xiii

Variáveis Exógenas são variáveis cujos valores são determinados fora do modelo e são impostas ao modelo (no caso do ARIMA serão utilizadas para ajudar a fazer as previsões). 5

Abreviaturas

ARIMA Autoregressive Integrated Moving Average. iii, xi, 1, 3, 4, 5

ARIMAX Autoregressive Integrated Moving Average with Exogenous Variable. 5

IA Inteligência Artificial. i, iii

ML Machine Learning. i, iii, 4

SARIMA Seasonal Autoregressive Integrated Moving Average. 5

SARIMAX Seasonal Autoregressive Integrated Moving Average with Exogenous Variable. 5

Contextualização e Motivação

1.1	Introd	ução	1
	1.1.1	Contextualização	1
	1.1.2	Objetivos	1
	1.1.3	Resultados	2
	1.1.4	Estrutura	2
1.2	Funda	mentação Teórica	2
	1.2.1	Série Temporal	2
	1.2.2	Grid Search	3
	1.2.3	Modelo ARIMA	3

1.1 Introdução

1.1.1 Contextualização

O presente documento descreve o trabalho realizado na análise comparativa de algoritmos de aprendizagem com base em séries temporais. O trabalho foi proposto pelo Professor Fábio Silva cuja motivação é desenvolver uma plataforma de seleção dos melhores algoritmos para um determinado conjunto de dados em determinadas condições. O trabalho realizado pelo autor decorre do desenvolvimento do projeto final da Licenciatura em Engenharia Informática da Escola Superior de Tecnologia e Gestão do Politécnico do Porto.

1.1.2 Objetivos

Este projeto foi focado no estudo de um modelo de aprendizagem (ARIMA) e as suas variantes, com o objetivo de testar vários *datasets* e desenvolver uma plataforma que informe quais os melhores modelos e as melhores configurações dos mesmo para cada *dataset*. Posto isto, cada modelo teve de ser estudado e compreendido de forma parametrizada para que a integração com qualquer conjunto de dados não cause nenhum problema.

1.1.3 Resultados

«Resultados obtidos»

1.1.4 Estrutura

O presente documento está dividido em 5 capítulo principais:

- Contextualização e Motivação este capítulo pretende apresentar de forma sucinta e objetiva as circunstâncias a que surgiu o projeto, contendo o contexto, objetivos e resultados do mesmo. Neste capítulo está contida ainda uma parte destinada à fundamentação teórica do projeto, dando a conhecer, de uma forma um pouco abrangente, os principais tópicos.
- Concetualização do Problema nesta secção estão detalhados os aspetos mais técnicos do problema, visto que contém a definição dos requisitos e a definição de uma arquitetura concetual.
- 3. Metodologia de Operacionalização do Trabalho neste capítulo é explorada e a metodologia de trabalho utilizada. Contém também, no final, uma descrição sobre aspetos mais técnicos do projeto.
- 4. Discussão dos Resultados é nesta secção que serão discutidos os resultados obtidos e a explicação de possíveis controversias.
- 5. Conclusão este capítulo visa realizar uma conclusão global do projeto e, por fim, uma descrição de possíveis melhoramentos futuros no trabalho desenvolvido.

1.2 Fundamentação Teórica

1.2.1 Série Temporal

Tal como é abordado em temas como a estatística, economia e matemática aplicada, uma série temporal é uma coleção de observações feitas sequencialmente ao longo do tempo. Em modelos de regressão linear a ordem das observações é irrelevante, mas em séries temporais a ordem dos dados é fundamental.

A análise de séries temporais compreende métodos para analisar os dados, a fim de extrair estatísticas significativas e outras características. Para fazer uma previsão com uma série temporal é utilizado um modelo para prever valores futuros com base em valores observados anteriormente.

Existem 4 componentes que uma série temporal pode ter: i) Nível: valor base da série se fosse uma linha reta; ii) Tendência (opcional): comportamento, normalmente linear, crescente ou decrescente ao longo do tempo; iii) Sazonalidade (opcional): padrões repetitivos ou ciclos de comportamento ao longo do tempo; iv) Ruído (opcional): variações nas observações que não podem ser explicadas pelo modelo.

Para concluir, todas as séries temporais têm nível e a maior parte também tem ruído. No entanto, a tendência e a sazonalidade são ocasionais.

1.2.2 Grid Search

Grid search (ou pesquisa em grelha) é o processo de coleção de dados para configurar os parâmetros ideais para um determinado modelo. Dependendo do tipo de modelo utilizado, alguns parâmetros são necessários. Esta pesquisa não se aplica apenas a um tipo de modelo, ela pode ser aplicada ao modelo de aprendizagem para calcular os melhores parâmetros a serem usados para qualquer modelo.

Um ponto importante a sublinhar é que esta pesquisa pode ser extremamente cara em termos computacionais e pode levar muito tempo até obter resultados. O *grid search* construirá um modelo em cada combinação de parâmetros possível. Ele itera por meio de cada combinação de parâmetros e armazena um modelo para cada combinação.

1.2.3 Modelo ARIMA

O modelo de Média Móvel Integrada Autoregressiva - *Autoregressive Integrated Moving Average (ARIMA)* - foi o modelo utilizado para realizar este trabalho, sendo que, todo o projeto foi abordado em torno deste modelo e variações do mesmo. *ARIMA* significa:

- AR: "Autoregression" (Autoregressão) Um modelo que usa a relação entre uma observação e um número de observações atrasadas.
- I: "Integrated" (Integrado) O uso de diferenciação de observações (por exemplo, retirar uma observação de uma observação, no passo anterior) de forma a manter a série temporal estacionária.
- MA: "Moving Average" (Média Móvel) Um modelo que usa a dependência entre uma observação e o erro residual de um modelo de média móvel aplicado a observações atrasadas.

Cada um destes componentes está especificado no modelo como um parâmetro. A notação utilizada é *ARIMA*(p, d, q):

- p: Ordem de atraso número de observações atrasadas incluídas no modelo.
- d: Grau de diferenciação número de vezes que observações brutas são diferenciadas.
- q: Ordem da média móvel tamanho da janela de media móvel

Concetualização do Problema

2.1	Requis	sitos	
	2.1.1	Estudo do Modelo	
	2.1.2	Construção do Serviço de Testes	
	2.1.3	Teste dos Datasets	
	2.1.4	Integração com Google Colab	
2.2	Arquite	etura Concetual	

2.1 Requisitos

Ao longo da realização do projeto, foram sendo definidos os requisitos para o desenvolvimento do mesmo, sendo eles:

- Estudar modelo ARIMA e variantes;
- Construir um serviço de testes de datasets com os modelos estudados anteriormente;
- Testar varios datasets e guardar melhores modelos e configurações dos mesmos;
- Integrar projeto com Google Colab.

Destas necessidades definidas em cima, podemos retirar algumas tarefas e subtarefas implícitas em cada uma.

2.1.1 Estudo do Modelo

- Estudo de algumas bibliotecas de *Python* utilzadas ao longo do trabalho;
- Realização de alguns exercícios de *Machine Learning* com *Python* (e.g., abrir e manusear um *dataset*, formatar as datas, imprimir ou exportar os dados, mostrar ou exportar um gráfico);
- Estudo do modelo ARIMA (e.g., propriedades, funcionamento, características)

 Estudo das variantes do modelo ARIMA que são: ARIMAX (Média Móvel Integrada Autoregressiva com Variáveis Exógenas), SARIMA (Média Móvel Integrada Autoregressiva Sazonal) e SARIMAX (Média Móvel Integrada Autoregressiva Sazonal com Variáveis Exógenas).

2.1.2 Construção do Serviço de Testes

- Estruturação dos scripts;
- Realização dos scripts na linguagem Python;
- Testar a veracidade e qualidade do programa desenvolvido.

2.1.3 Teste dos Datasets

- Executar uma grid search para encontrar melhores modelos e melhores configurações;
- Executar os melhores modelos com as melhores configurações e guardar resultados.

2.1.4 Integração com Google Colab

- Estudo da plataforma *Google Colab* (e.g., funcionalidades, compatiblidade);
- Colocar scripts na plataforma;
- · Correr alguns testes.

2.2 Arquitetura Concetual

«Arquitetura concetual - Nesta arquitetura deverá ser claro o que foi efetivamente desenvolvido pelo Estudante e aquilo que foi desenvolvido por terceiros. A arquitetura deverá realçar aspetos relacionadas com integração, protocolos, entre outros, e que o estudante deverá clarificar.»

Metodologia de Operacionalização do Trabalho

3.1	Processo e Metodologia de Trabalho	6
3.2	Desenvolvimento da Solução	6

3.1 Processo e Metodologia de Trabalho

Foi adotada uma abordagem iterativa incremental, com algumas reuniões de acompanhamento ao longo do projeto. No decorrer de 15 semanas, houve a necessidade de criar 4 iterações principais pelas quais foram divididas as tarefas em cima descritas.

O *roadmap* do projeto, que se encontra representado na forma de um diagrama de Gantt, apresenta, mais detalhadamente, a atribuição das tarefas nas diferentes iterações e a duração das mesmas.

4 sprints principais: - realização de exercicios de ML com Python - estudo do modelo ARIMA - estudo de variantes do modelo ARIMA - construção do serviço de testes, teste dos datasets e integração com google colab

Roadmap do projeto (Excel)

3.2 Desenvolvimento da Solução

Discussão dos Resultados

4.1	Apresentação e Discussão dos Resultados	7
4.2	Apresentação dos Impedimentos e/ou Constrangimentos	7

- 4.1 Apresentação e Discussão dos Resultados
- 4.2 Apresentação dos Impedimentos e/ou Constrangimentos

Conclusão

5.1	Reflexão Crítica dos Resultados	8
5.2	Conclusão e Trabalho Futuro	8

- 5.1 Reflexão Crítica dos Resultados
- 5.2 Conclusão e Trabalho Futuro

Referências

- [1] www.newthinktank.com/2019/01/latex-tutorial
- [2] pt.overleaf.com
- [3] www.dickimaw-books.com/gallery/glossaries-styles
- [4] www.wikipedia.org
- [5] en.wikipedia.org/wiki/Time_series
- [6] www.ime.unicamp.br/ hlachos/MaterialSeries.pdf