© Andrzej M. Borzyszkowski

Bazy Danych

Bazy Danych

Andrzej M. Borzyszkowski

Instytut Informatyki Uniwersytetu Gdańskiego

materiały dostępne elektronicznie http://inf.ug.edu.pl/~amb

Model relacyjny

2/23

© Andrzej M. Borzyszkowski

Bazy Danych

Dane w jednej tabeli

I Oddział	Sopot	Anna	Drygas	referent	4200
I Oddział	Sopot	Kazimierz	Moskal	asystent	4750
					4200 4200
I Oddział	Gdynia	Mariusz	Rumak	referent	4200
					6000
I Oddział	Gdynia	Anna	Nehrebecka	dyrektor	9500

Nadmiarowość danych

- powtarzalna pełna nazwa oddziału
- pensja zależna tylko od stanowiska
- Wady
 - niespójność danych (różne pensje dla różnych referentów)
 - nie ma gdzie wpisać pensji prezesa (aktualny brak w/w)

nie ma gdzie wpisać danych nowego oddziału (jeszcze bez pracowników)

Dane w strukturze hierarchicznej

I Oddział	Sopot		
Anna	Drygas	referent	4200
Patrycja	Songin	referent	4200

I Oddział	Gdynia		
Mariusz	Rumak	referent	4200
Anna	Nehrebec ka	dyrektor	9500

Nadmiarowość danych

 pensja zależna tylko od stanowiska

Wady

- niespójność danych
- nie ma gdzie wpisać pensji prezesa
- wyszukiwanie wg stanowiska wymaga przeczesania całości

II Oddział Gdynia

- Relacyjna baza danych: tabele + operacje na tabelach
- Pojedyncza tabela, np. arkusz Excela:

0	bazy-klient - OpenOffice.org Calc								
<u>P</u> lik <u>E</u>	Edycja	<u>W</u> idok	W <u>s</u> taw <u>F</u> ormat <u>N</u> arzę	dzia <u>D</u> ane <u>O</u> k	no Pomo <u>c</u>				
6	Ari	al	▼ 14	- A A			.000 000 FE	F + E + 5	
G1 ▼ fω Σ = ulica_dom									
	Α	В	С	D	E	F	G	H I	
1	nr	tytul	nazwisko	imie	kod_poo	miasto	ulica_dom	telefon	
2	1	Pani	Kuśmierek	Małgorzata	81-124	Gdynia	NULL	058 6252840	
3	2	Pan	Chodkiewicz	Jan	81-737	Gdynia	Chwarznieńska 33/5	058 6240860	
4	3	Pani	Szczęsna	Jadwiga	81-444	Gdynia	Bema 41a/12	058 6243741	
5	4	Pan	Łukowski	Bernard	81-620	Gdynia	Górnicza 29	058 6230799	
6	5	Pan	Soroczyński	Jan	80-230	Gdańsk	Al. Hallera	058 3090788	
7	6	Pani	Niezabitowska-Na	Marzena	80-619	Gdańsk	Focha 39-41 m.66	058 3099102	
8	7	Pani	Kołak	Agnieszka	80-832	Gdańsk	Wawóz 4	NULL	
9	8	NULL	Hałasa	Ewa	80-511	Gdańsk	Dywizionu 303/303	058 3483240	

- wiersz jest rekordem, dane jednej osoby
- każda kolumna jest przeznaczona na pewną cechę
- numer służy głównie do identyfikacji osoby (jest kluczem)
- Terminologia matematyczna: tabela ≈ relacja

Relacyjne bazy danych

- Dane przechowywane są w tabelach dla każdego rodzaju encji
 - wyszukiwanie wg kluczy głównych (indeksy)
 - powiązanie za pomocą kluczy obcych
- Zalety
 - brak redundancji każda informacja jest w jednej kopii
 - wyszukiwanie wg różnych kryteriów tak samo łatwe

			I Oddz	iał	Sop	ot	1	
			I Oddz	iał	Gdy	nia	2	
			II Odd	ział	Gdy	nia	3	vski
15	5	Anna		Dry	gas		1	szkov
12	2	Kazimierz		Мо	skal		1	orzy
1	5	Patrycja		Sor	ngin		1	∑ 8
1	5	Mariusz		Rumak		2	drzej	
1	1	Bartosz		Ostrowski		2	© Andrzej M. Borzyszkowski	
13	3	Anna		Nel	hreb	ecka	2	
		11	kierownik			6	000	ych
		12	asystent			4	750	Bazy Danych
		13	dyrektor			9	500	Bazy
		14	prezes			25	000	
		15	referent			4	200	23

Arkusz kalkulacyjny, ograniczenia

- Problem ze współbieżnością:
 - wielu użytkowników korzysta z tych samych danych
 - jeden plik nie może być równocześnie edytowany przez kilku użytkowników
- Problem z wydajnością:
 - proste operacje wyszukiwania, sortowania i inne stają się zbyt złożone jeśli danych jest bardzo dużo
- Problem z nadmiarem danych:
 - niektóre dane powtarzają się, zajmują miejsce, kopie mogą być niedokładne
- Problem z powtarzalnością pól:

7/23

- struktura tabeli nie przewiduje powtórzeń, np. wiele imion
- albo zaliczonych przedmiotów

© Andrzej M. Borzyszkowski

Bazy Danych

8/23

Podstawy teoretyczne

- Matematyka: relacja *r* to podzbiór iloczynu kartezjańskiego
 - czyli zbiór "krotek" (tuple)
 - czyli zbiór rekordów mających (nazwane) pola o wartościach w pewnych zbiorach możliwych wartości
 - uwaga: dopuszczamy również wartość ,,NULL"
 - r ⊂ D1 × D2 × D3 × × Dn
 - pola mają (różne) nazwy: np. A1, A2, ..., An, gdzie A1:D1,
 A2:D2, ..., An:Dn, kolejność jest nieważna,

 $D1 \times D2 \times \dots \times Dn =$ $\{x \mid x.A1 \in D1, x.A2 \in D2, \dots, x.An \in Dn\} =$ $\{\{\langle A1, x1 \rangle, \langle A2, x2 \rangle, \dots, \langle An, xn \rangle\} \mid x1 \in D1, x2 \in D2, \dots, xn \in Dn\}$

zbiór nie ma powtórzeń

- kolejność elementów w zbiorze jest nieokreślona

10/23

Relacje a tabele

- Matematyczne własności relacji:
 - nie ma podwójnych krotek
 - krotki są nieuporządkowane
 - atrybuty są nieuporządkowane
- Zawartość tabeli jest uporządkowana, i wiersze i kolumny
 - może zawierać powtórzenia wierszy
 - formalnie nie jest relacją
 - ale można ją uważać za przedstawienie relacji

Relacje a schematy relacji

- Schematem relacji (schema) jest jej ,,typ"
 - R(A1,A2,..,An)
 - każdy atrybut A ma przypisaną dziedzinę dom(A)
 - dziedziny można wymienić w schemacie relacji (w praktyce typ dziedziny)
 - Klient(nr:integer, tytul:string, nazwisko:string, imie:string, kod_poczt:integer, miasto:string)
 - inna nazwa: R zmienna relacyjna, intensja relacji
- Relacja to konkretny zbiór krotek
 - r(R) \subset dom(A1) × dom(A2) × dom(A3) ×× dom(An)
 - inna nazwa: r stan relacji, bieżący stan relacji, ekstensja relacji
- Podobnie nagłówek tabeli vs treść tabeli

Bazy Danych

Andrzej M. Borzyszkowski

🗇 Andrzej M. Borzyszkowski

11/23

12/23

Ograniczenia modelu relacyjnego a schematy

- Ograniczenia wynikające z modelu
 - wartości atrybutów są atomowe
 - nie ma powtórzeń wierszy (dwóch krotek o identycznych atrybutach)
- Ograniczenie wyrażane explicite w schemacie
 - wartości atrybutów muszą należeć do dziedzin
 - pewne atrybuty nie mogą przyjmować NULL
 - wartości kluczowe: nie dwóch krotek o identycznych wartościach pewnych atrybutów
 - inne ograniczenia
- Ograniczenia wymuszane przez aplikacje zewnętrzne
 - niektóre mogą być alternatywnie wyrażalne w schemacie, 13/23 ale nie muszą

Więzy integralności (t.j. spójności)

- Warunki, które musi spełniać każdy stan bazy danych
 - SZBD sprawdza więzy integralności przy każdej operacji na bazie danych
 - w przypadku niespełnienia warunków następuje odrzucenie operacii
 - albo inne rozwiązanie
- Rodzaje warunków:
 - wartości w odpowiedniej dziedzinie
 - w tym różne od NULL
 - jednoznaczność (klucz kandydujący)
 - istnienie (integralność referencyjna)
 - inne warunki określone w schemacie

Relacyjne bazy danych i ich schematy

- Schemat relacyjnej bazy danych
 - zbiór schematów relacji
 - oraz zbiór więzów integralności
- Stan relacyjnej bazy danych
 - zbiór stanów (relacji) dla każdego ze schematów relacji bazy danych
 - spełniających więzy integralności
- Zbiór stanów nie spełniających więzów integralności nazywamy stanem niespójnym bazy danych
 - rozważamy tylko teoretycznie, nie powinien istnieć
- Język definiowania danych: Data Definition Language, służy do definiowania schematów baz danych

Klucze kandydujące

- Klucz kandydujący schematu relacji R jest zbiorem K atrybutów relacji takim, że
 - jednoznaczność: żadne dwie różne krotki relacji r(R) nie maja tej samej wartości dla K
 - nieredukowalność: żaden podzbiór właściwy K nie posiada powyższej własności
- Przykłady:
 - tabela Pierwiastki chemiczne dla układu okresowego pierwiastków posiada pola nazwa, symbol, liczba atomowa - każde pole jednoznacznie identyfikuje pierwiastek, każde pole jest kluczem kandydującym
 - tabela Pozycja ma klucz kandydujący złożony z dwu atrybutów, numer zamówienia i numer towaru, żaden pojedynczy atrybut nie jest kluczem kandydującym

14/23

Bazy Danych

16/23

Andrzej M. Borzyszkowski

Bazy Danych

Andrzej M. Borzyszkowski

 Kluczem obcym schematu relacji R2 odwołującym się do schematu relacji R1 (być może = R2) nazywamy zbiór atrybutów FK taki, że

- wartości atrybutów FK należą do tej samej dziedziny co wartości wskazywane CK
- CK jest kluczem kandydującym w R1
- dla każdej krotki w R2 wartość klucza FK jest równa wartości klucza CK pewnej krotki w R1
- tzn. klucz obcy R2 "wskazuje" krotkę w R1, krotka jest jednoznaczna, skoro CK jest kluczem kandydującym
- najczęściej klucze obce składają się z jednego atrybutu dopuszcza się, by klucz obcy miał wartość NULL (wówczas niczego nie musi wskazywać) 18/23

Klucz obcy

 pozostałe klucze kandydujące nazywamy kluczami alternatywnymi

klucz kandydujący

Integralność encji – wartość klucza głównego nie może być NULL

Klucz główny, klucze alternatywne

Kluczem głównym schematu relacji nazywamy jeden wybrany

- Pojęcia klucza można stosować do schematu relacji ale również do relacji (tj. bieżącego stanu)
 - np. numer indeksu jest kluczem głównym dla schematu relacji Student w bazie danych Szkoła Wyższa
 - imię i nazwisko nie jest kluczem kandydującym
 - jest (prawdopodobnie) kluczem dla bieżącej wartości relacji student na wydziale MFI

17/23

© Andrzej M. Borzyszkowski

Klucz obcy, przykłady

- W schemacie zamówienie będzie klucz obcy wskazujący na klienta
 - pozycja zamówienia wskazuje na zamówienie oraz na towar (dwa klucze obce)
 - schematy zapas i kod kreskowy również zawierają klucze wskazujące na towar
- W schemacie szkoły wyższej będzie klucz obcy w tabeli przedmiotów wskazujący na prowadzącego
 - będzie NULL przed dokonaniem obsady zajęć
- Klucz obcy może wskazywać na klucz kandydujący we własnej tabeli
 - np. w bazie danych pracowników można zapisywać bezpośredniego przełożonego
 - wówczas, oczywiście, co najmniej jedna krotka musi mieć 19/23 wartość NULL tego klucza

Klucz obcy, wymagania

- Wartość klucza obcego występująca w relacji musi pojawić się jako wartość odpowiadającego klucza kandydującego
 - ale odwrotna zależność nie jest wymagana
 - np. istnieją towary niezamawiane, klienci, którzy nie złożyli żadnego zamówienia, a nawet zamówienia bez pozycji
- Wartość klucza obcego stanowi odwołanie (reference) do krotki zawierającej wartość odpowiadającego mu klucza kandydującego (adresat odwołania)
- Integralność referencyjna: warunek by baza danych w żadnym stanie nie zawierała wartości klucza obcego nieobecnych we wskazywanej tabeli (dangling references)

🔊 Andrzej M. Borzyszkowski

20/23

Operacje na bazie danych – obsługa naruszenia więzów integralności

- · Operacje na relacjach
 - wstawianie krotki
 - usuwanie krotki
 - modyfikacja krotki (zmiana wartości atrybutów danej krotki)
- Wstawianie
 - niewłaściwa wartość atrybutu lub niedozwolona wartość
 NULL → odrzucenie operacji
 - powtórzona wartość klucza kandydującego → odrzucenie operacji
 - klucz obcy odwołujący się do nieistniejącej krotki → odrzucenie operacji

21/23

Obsługa naruszenia więzów integralności 3

- Modyfikacja
 - niewłaściwa wartość atrybutu lub niedozwolona wartość
 NULL → odrzucenie operacji
 - powtórzona wartość klucza kandydującego → odrzucenie operacji
 - modyfikowany klucz obcy odwołujący się do nieistniejącej krotki → odrzucenie operacji
 - modyfikowany klucz kandydujący będący adresatem odwołania pewnego klucza obcego → odrzucenie operacji,
 - albo modyfikacja klucza obcego tak by wskazywał na tę samą krotkę
- PostgreSQL, domyślne zachowanie: nie wolno modyfikować adresata istniejącego odwołania
 - specialna opcia do modyfikacii kaskadowei

© Andrzej M. Borzyszkowski

Bazy Danych

23/23

Obsługa naruszenia więzów integralności 2

- Usuwanie
 - może naruszyć tylko integralność referencyjną (usuwanie adresata odwołania klucza obcego)
 - opcja 1: → odrzucenie operacji
 - opcja 2: operacja usuwania jest propagowana (cascade) do powiązanych krotek
 - opcja 3: wartości klucza obcego ustawiane są na NULL (o ile schemat to dopuszcza)
- PostgreSQL, domyślne zachowanie: nie wolno usuwać adresata istniejącego odwołania: ON DELETE NO ACTION
 - opcja usuwania kaskadowego: ON DELETE CASCADE
 - lub ustawiania wartości NULL: ON DELETE SET NULL

22/23

Danych