

Refraction of light	Total internal Reflection	Thin film interference		Atomic physics	
ni sin 0, = n, sin 0, Apparent depth	*Critical angle : θ_c $n_1 \sin \theta_c = n_2 \sin 90^\circ$ $\sin \theta_c = \frac{n_2}{n_1}$ Polarization by reflection	• Phase shift $n_1 > n_2$, the reflected wave does not have a phase change. $n_1 < n_2$, the reflected wave does have a phase change. = $\frac{1}{2}$		Line spectra Balmer series $\frac{1}{1} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right), n = 3, 4, 5$ $\frac{1}{1} = R\left(\frac{1}{n^2} - \frac{1}{n^2}\right)$	
$\frac{d'}{d} = \frac{\tan \theta_2}{\tan \theta_1}$	• can be completely polarized, partially folarized, unpolarized. • Brewster's angle (beam is fully polarized) $\tan \theta_B = \frac{n_z}{n_z}$	Interference 0/2 phase change constructive 2nt = m/2 pestructive 2nt = cm+1/2/2 Diffraction and grating	I phase change 2nt = (m+1/2) A 2nt = mA Offraction grating	$R = 1.097 \times 10^{7} \text{ m}^{-1}$ • Lyman series $\frac{1}{\lambda} = R\left(\frac{1}{1^{2}} - \frac{1}{h^{2}}\right), n = 2,3,4$ • Paschen series	Bohr's model • Ei - Ef = hf [electron jumps from higher level to lower level
	Diverging lens - f cation += real object/image, infront/behind lens - vistual object/image, behind/infront of lens	Single stit diffraction A , fw, b diffraction Width of central maxima = 2x of side maxima. *locating minima nWsin 0 = max m=1,2,3, W: width of slit *small angle approximation = max y = max nW nW nW	ndsin $\theta = mR$ $y = 1 tan \theta$ Circular aperture $\theta_{obj} > \theta_{min} = \frac{1.22 R}{D n}$ $\theta_{obj} > \frac{y}{L}$ $y = \epsilon_{paration}$ between objects L: distance between objects	· Brackett series, + · Pfund series, 5	momentum quantization $mrV = \frac{nh}{2\pi}$ * coulomb attraction as centripetal force. $\frac{ke^2}{r_n^2} = \frac{mV_n^2}{r_n}$ $r_n = \frac{n^2h^2}{\sigma_1 me^2}$. $V_n = \frac{1}{\epsilon_0} \frac{e^2}{2nh}$ * quantization of orbit $a_0 = \epsilon_0 \frac{h^2}{\pi me^2} = 0.0529 \text{ nm}$ $r_n = n^2a_0 = n^2(0.0529 \text{ nm})$
m=\frac{hi}{h_0} = -\frac{di}{d_0} Human eyes Frensed=+22.7mm Near sighted ness \[\frac{1}{fiens} = -\frac{1}{d_1} = \frac{1}{d_1} = \fr	Refractive power of lens $P = \frac{1}{f}$ unit: Diopter/nn-1 • Farsightedness $\frac{1}{f_{lens}} = \frac{1}{25cm} + \frac{1}{-d_{near}}$ $f_{lens} = \frac{(25)(d_{near})}{d_{near} - 25}$ Converging lens) $8 = n d \sin \theta$	Wave - Particle Duality Blackbody radiation • Photon E = hf = hc Photoelectric effect	and aperture * 1 Oobj , VOmin, better resolution de Broglie's Wavelength \[\begin{align*} \begin{align*} \lefter \text{P} \\ P = \text{Mormentum} = \text{Mov} * stopping potential \[\text{eVo} = \text{Kmax} \\ \text{Vo} = \frac{h}{e}(f - f_0) \end{align*}	Nuclear physics Atomic mass unitcu): Bectron: 5.485799x10-4 Proton: 1.007276 Neutron: 1.007655 Itydrogen: 1.007825 U = 931.5 MeV/C2 Rest energy Er = mc2 =1.4924x10-10J • Mass defect & binding energy $\Delta M = Zmp + Nmn - M$ Ee = (\Delta M) C2	Radioactivity & decay law Alpha decay $A \times \rightarrow A^{-4} \times + 4^{-4} +$