Introduction to Sampling & Hypothesis Testing

John Pinney October 2019

Graduate School, Imperial College London

Outline

Random Variables

Distribution functions

Discrete vs continuous

Expectation &

variance

Sampling

Sampling

distributions

Sampling methods

Parameter Estimation

Confidence intervals

Hypothesis Testing

The testing process
Parametric tests

Parametric tests

Type I / type II errors

Random Variables | Definitions

In statistics, a random variable is any variable whose value depends on some random phenomenon.

Examples

coin toss, dice roll, choosing a card from a deck, time of a radioactive decay, ...

The set of all possible outcomes of a random variable is called the sample space, Ω , for that variable.

A probability distribution describes the probability of each possible outcome in the sample space.

Random Variables | Discrete vs continuous

A discrete random variable can take only a finite set of values:

Example

rolling 2 dice: $\Omega = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

A continuous random variable can take an infinite number of values within a given interval (or set of intervals).

Example

angle of a spinner, in degrees: $\Omega = \left[0, 360\right)$

Random Variables | pmf

The probability distribution, p(x), for a discrete random variable X is called a probability mass function, pmf.

Example

rolling 2 fair dice

The pmf gives the probability of a particular outcome:

$$\mathbb{P}(X=x) = p(x)$$

Random Variables | pdf

The probability distribution, f(x), for a continuous random variable X is called a probability density function, pdf.

Example

angle of a spinner

Integrating the pdf between two values gives the probability of an outcome within that interval:

$$\mathbb{P}(x_1 < X < x_2) = \int_{x_1}^{x_2} f(x) dx$$

Random Variables | cdf

For convenience in calculating probabilities over intervals, we define the cumulative distribution function, cdf, as

$$F(x) = \mathbb{P}(X \le x)$$

Examples

Random Variables | Expectation

The expected value, $\mathbb{E}X$, of a random variable X is the probability-weighted average of all its possible values, also known as its mean, μ .

$$\mu = \mathbb{E} X = \begin{cases} \sum_{x} x p(x), & X \text{ discrete.} \\ \int x f(x) \mathrm{d}x, & X \text{ continuous.} \end{cases}$$

Examples

rolling 2 fair dice:
$$\mathbb{E}(X) = 7$$
 spinner: $\mathbb{E}(X) = 180$

Random Variables | Variance

We can also describe the degree to which the values taken by X are spread out from the mean.

The variance, Var X of a random variable X is defined as

$$Var X = \mathbb{E}(X - \mu)^2$$

The standard deviation, σ is the square root of the variance.

Together, the mean and standard deviation of a random variable give us a simple summary of its distribution.

Random Variables | Examples

See the python notebook random_variables.ipynb for some examples of commonly encountered discrete and continuous random variables.

Sampling | Sample statistics

When we take a finite sample of size n from a random variable, the distribution of the sample is *not* the same as the underlying theoretical distribution.

We use \bar{x} and s^2 to represent the sample mean and variance:

$$\bar{x} = \frac{\sum x}{n}$$

$$s^2 = \frac{\sum (x - \bar{x})^2}{n}$$

Sampling | Sample statistics

ExampleNumber of sixes with 10 dice

theoretical distribution

$$\mu = 1.6667$$
 $\sigma^2 = 1.3889$

sampling n = 10 trials

$$\bar{x} = 1.200$$

$$s^2 = 0.960$$

Sampling | Law of large numbers

The law of large numbers states that as we take larger and larger samples of a random variable, the sample mean gets closer to the the theoretical (or *population*) mean, μ .

This also implies that the sample variance s^2 approaches the population variance σ^2 as n increases.

Sampling | Law of large numbers

ExampleNumber of sixes with 10 dice

sampling n = 100 trials

$$\bar{x} = 1.610$$

$$s^2 = 1.238$$

sampling n = 1000 trials

$$\bar{x} = 1.681$$

$$s^2 = 1.391$$

Sampling | Sampling distribution of the mean

When we only have access to a finite sample of size n, it is helpful to know how precise our estimate of the population mean will be.

The observed sample mean, \bar{x} behaves as if it is drawn from a continuous random variable \bar{X} with mean μ and a variance that decreases as n increases.

 $ar{X}$ is called the sampling distribution of the mean.

Sampling | Sampling distribution of the mean

 \bar{x} becomes a more precise estimate of μ as we gather more data.

We can see this by repeating the sampling process many times and plotting histograms of \bar{x} .

Example

Number of sixes with 10 dice | 1000 replicates

sample mean: n = 10 trials

sample mean: n = 100 trials

Sampling | Central limit theorem

For a sample of size n, the central limit theorem states that \bar{X} converges to a normal distribution:

$$\bar{X} \approx N(\mu, \frac{\sigma^2}{n})$$
 for large n

Note that this is true *regardless* of the distribution of *X* itself.

The central limit theorem is the theoretical justification for many statistical procedures.

Sampling | Central limit theorem

Example Number of sixes with 10 dice $\mid n = 1000$ trials

theoretical distribution, X

$$\mu = 1.6667$$
 $\sigma^2 = 1.3889$

sample mean, \bar{X}

mean =
$$1.6680 \approx \mu$$

variance = $0.0014 \approx \frac{\sigma^2}{n}$

Sampling | Standard deviation vs. standard error

The population standard deviation: σ (unknown)

The sample standard deviation: s (calculated from observed data)

The standard error of the mean: $\frac{\sigma}{\sqrt{n}} \approx \frac{s}{\sqrt{n}}$ for large n

Sampling | Unbiased estimator for population variance

When n is small (say n < 75), the sample variance s^2 is not a good approximation for the population variance.

In fact, it is a *biased estimator*, which tends to consistently under-predict the value of σ^2 .

We can improve our estimate by using the unbiased sample variance:

$$s^{2} = \frac{1}{n-1} \sum (x - \bar{x})^{2}$$

Sampling | Sampling methods

In many practical applications, the population of interest is not infinite, just very large (e.g. the population of the UK).

There are a variety of ways to try to obtain a representative sample of a finite population, so that the conclusions from the sample are generalisable to the population as a whole.

Sampling | Random sampling

Simple random: Each individual is chosen randomly and entirely by chance.

Systematic: Every kth individual is sampled from an ordered list.

Stratified: Partition population into heterogenous subpopulations and draw a sample from each one.

Cluster: Total population is split into homogenous clusters, and a subset of clusters is sampled.

Sampling | Non-random sampling

Quota: Interviewers told to sample a certain number of a targeted population.

Convenience: The sample is drawn from the most accessible part of the population.

Snowball: Existing study subjects recruit future subjects from their acquaintances.

Voluntary: Study subjects are self-selected.

Parameter Estimation

Parameter Estimation | Point estimates

We have seen how to derive an estimated mean and variance for a population, based on a sample.

$$\hat{\mu} = \bar{x} = \frac{\sum x}{n}$$

$$\hat{\sigma}^2 = s^2 = \frac{1}{n-1} \sum (x - \bar{x})^2$$

These are examples of point estimates, where we quote a single value for a population parameter without an associated uncertainty.

Parameter Estimation | Confidence intervals

However, it is often more helpful to be able to give a plausible range of values for a parameter, based on the data collected. This is known as a confidence interval.

The python notebook

confidence_intervals.ipynb

shows how the central limit theorem can be used to derive

confidence intervals for the mean of a population.

Hypothesis Testing | Terminology

The null hypothesis H_0 and alternative hypothesis H_1 are always two *rival* hypothesis, e.g.

 H_0 : $\mu = 0$;

 $H_1: \mu \neq 0$

Test statistic: A quantity derived from the sample, used in hypothesis testing.

Hypothesis Testing | Terminology

P-value: The probability of obtaining an observation as extreme or more extreme than the test statistic, assuming that the null hypothesis is true.

e.g.
$$p = 0.03$$

The smaller the p-value is, the more unlikely the observation would be to occur if H_0 were true.

Hypothesis Testing | Terminology

The significance level α is how we assess the p-value, and it must be selected in advance of the hypothesis test. We will reject H_0 when $p < \alpha$. From the definition of the p-value, α is the probability of incorrectly rejecting H_0 if it is true. By choosing a smaller α , we can specify a more conservative test.

e.g. If
$$\alpha = 0.05$$
, $p = 0.03 < \alpha$, reject H_0

Hypothesis Testing | Procedure

- 1 Propose a research question
- 2 Formulate the null hypothesis \mathcal{H}_0 and alternative hypothesis \mathcal{H}_1
- 3 Choose an appropriate statistical test
- 4 Choose an appropriate significance level, α
- 5 Calculate the test statistic
- 6 Calculate the p-value
- 7 Reject H_0 if $p < \alpha$

Hypothesis Testing | One-tailed vs two-tailed

- \square Two-tailed test: H_0 : $\mu = 0$, H_1 : $\mu \neq 0$
 - For z-test with a given significance level $\alpha=0.05$, H_0 is rejected when $P(|X|>z_{\alpha/2})<\alpha/2$, where $z_{\alpha/2}=1.96$
- \Box One-tailed test: H_0 : $\mu=0$, H_1 : $\mu>0$
 - For z-test with a given significance level $\alpha=0.05$, H_0 is rejected when $P(X>z_{\alpha})<\alpha$, where $z_{\alpha}=1.65$

Hypothesis Testing | Parametric tests

Parametric tests rely on a probability distribution of known form as a model for the null hypothesis.

The python notebook hypothesis_testing.ipynb
contains some worked examples of commonly encountered parametric tests.

Hypothesis Testing | Type I & type II errors

Rejection Table		
	H_0 True	H_0 False
Reject H_0	Type I Error $(lpha)$	Correct Decision $(1 - \beta)$
Fail to Reject ${\it H}_{ m 0}$	Correct Decision	Type II Error (<mark>β</mark>)

Two possible errors can be made when using p-values to make a decision

- Type I error: reject the null hypothesis when it is true
- Type II error: not reject the null hypothesis when it is false

Hypothesis Testing | Type I & type II errors

Probability of Type I and Type II errors:

- α : the significance level α is the probability of Type I error.
- β : the probability of Type II error relative to the H_1 is called β

The statistical power of a test is given by $1 - \beta$, i.e. the probability that H_0 is rejected when H_1 is true.

Methods to reduce errors:

- $-\alpha \downarrow \longrightarrow \beta \uparrow$
- $-\beta \downarrow \longrightarrow \alpha \uparrow$
- Increase the sample size, n

References

- William Mendenhall, Terry Sincich. Statistics for Engineering and the Sciences. Pearson/Prentice Hall, Upper Saddle River, New Jersey, 2007.
- Douglas G. Altman. *Practical Statistics for Medical Research*. CRC press, 1990.

Acknowledgments

Many thanks to Yuan Qin, who developed the original version of this course.