Sucab	ni Machine Leasuing
20162	71 Assignment 2. Date
V.	775397777
(1)	
	(Bonus)
	The ref kernel or the Gaussian kernel has the
	form:
	$K(x, x') = \exp\left(-\frac{ x - x' ^2}{2\pi^2}\right)$ or more generally gamma
	2 - 2
	or more generally
) gamma (112)
	$\frac{xp}{-(r/ x-x' ^2)}$
	scaling factor
	$\frac{\exp(-x) x-x' ^2}{\text{scaling factor}}$
	The rof kernel has the capability to map the
	data to a nigher dimensional space by mapping
	each data pount 10 16 own dimension. As number
,	of training samples increase, the dimension also increase
	Overfitting however is determined not by the size of
	Overfitting however is determined not by the size of dataset or the dimension but inclead by the parameter
	Y. Y determines how complex the decision boundary
	will be. S. A higher of can lead to overfitting while
	a lower Y can even lead to underfitting. The
	optimum i ie nearly Ynumfealius.
	- Duesfitting can be prevented by choosing a juitable
	:. Overfitting can be prevented by choosing a unitable I value and hence, simply the keenel or dataset size earnot cause overfitting.
	t cause over ditting.
	carnot cuise or six

	Date
.0.2	A vonvex function of : D -> R satisfies the
03,	A convex function of
	inequality:
	f((1-d)x0+dn,) < (1-d) f(x0)+df(x1)
	Ville alle:
	(1-4)6(x0) + d6(4) (f(X1)
	f(xo)
	70 (1-A) 10+AX) X,
	X 6 C 7 X X
	A esume g and h are 2 convex functions.
	i. we have:
	g((1-21) no + 21 ng) < (1-21) f(no) + 21 f(n)
	h((1-da)no'+ 2 xi') < (1-da) h(xo') + 4 h(xi')
	Let j= g+h. to show: j is a convex fn:
	j((1-41) no + 424) = g((1-41) no + 42 n1)
	+ h((1-d1) no + d1 21)
	$\leq (1-d_1)g(x_0)+d_1g(x_1)$
	+ (1-d1) h(x0) + d1 h(x1)
	= (1-d1)(g(n0)+h(n0))
	+ 21 (g(n) + h(n))
	(1-4) (g(x0)+h(x0))
	* g'((1-4) no + 2/ ni) (1-4) (g(no)+h(no)) +h((1-4) no + 4 ni) + 4 (g(ni) + h(ni))
	2. sum y 2 convex fins is also convex

	Date
	LON Junction for LI Regularized Linear Regression
þ	$L = \sum (yi - f(xi, w))^2 + \sum wj $ and all samples. with w
~	au all samples. wj. in w
	L is convex if I and 2 are convex sence sum of
	convex is convex.
	1 is a summation of equalle.
	1 is a summation of equations are convex:
	1
	and at solute junction
	or mod function us
	convex:
	: seem of mod functions, and sum of quadratic
	functions and hence sum y there is also convex.
	:. L is convex