	Date 27/04/22
EXI	Page No. 9
	Linear Toransformation
0	Theorem 1: Let $V \& U$ be two vector space over field F . A function $T: V \to U$ is linear if and only if $T(\lambda \cdot V_1 + V_2) = \lambda \cdot T(V_1) + T(V_2)$ $\forall \lambda \in F \& V_1, V_2 \in V$
0	Theorem 2: If T: V > w is a linear map them T (0, V) = 0 w.
1	Poubleus:
1/2	Vorify whether the given townsformation are linear T: R2 -> R2 defined by T(X0, X1) = (X0, 2X0+X1) + (X0, X1) E R2.
Soln	Let $\lambda \in \mathbb{R}$, $(\chi_0, \chi_1), (y_0, y_1) \in \mathbb{R}^2$ Consider g $T(\lambda(\chi_0, \chi_1) + (y_0, y_1) = T(\lambda(\chi_0, \lambda\chi_1) + (y_0, y_1))$ $= T(\lambda(\chi_0, \chi_1) + (\chi_0, y_1) = T(\lambda(\chi_0, \chi_1) + (\chi_0, \chi_1))$ $= (\lambda(\chi_0, \chi_0, \chi_0, \chi_0, \chi_0) + (\chi_0, \chi_1) + (\chi_0, \chi_1)$ $= (\lambda(\chi_0, \chi_0, \chi_0, \chi_0) + (\chi_0, \chi_1) + (\chi_0, \chi_1)$ $= (\lambda(\chi_0, \chi_0, \chi_0) + (\chi_0, \chi_1) + (\chi_0, \chi_1)$ $= (\lambda(\chi_0, \chi_0, \chi_0) + (\chi_0, \chi_1) + (\chi_0, \chi_1)$ $= (\lambda(\chi_0, \chi_0, \chi_0) + (\chi_0, \chi_1) + (\chi_0, \chi_0)$ $= (\lambda(\chi_0, \chi_0, \chi_0) + (\chi_0, \chi_1) + (\chi_0, \chi_0)$ $= (\lambda(\chi_0, \chi_0, \chi_0) + (\chi_0, \chi_0) + (\chi_0, \chi_0) + (\chi_0, \chi_0)$ $= (\lambda(\chi_0, \chi_0, \chi_0) + (\chi_0, \chi_0) + (\chi_0, \chi_0) + (\chi_0, \chi_0)$ $= (\lambda(\chi_0, \chi_0, \chi_0) + (\chi_0, \chi_0) + (\chi_0, \chi_0) + (\chi_0, \chi_0)$ $= (\lambda(\chi_0, \chi_0, \chi_0) + (\chi_0, \chi_0) + (\chi_0, \chi_0) + (\chi_0, \chi_0)$ $= (\lambda(\chi_0, \chi_0, \chi_0) + (\chi_0, \chi_0) + (\chi_0, \chi_0) + (\chi_0, \chi_0)$ $= (\lambda(\chi_0, \chi_0, \chi_0) + (\chi_0, \chi_0) + (\chi_0, \chi_0) + (\chi_0, \chi_0)$
	Consider 1. $T(20, \chi_1) + T(y_0, y_1) = \lambda(20, 2\chi_0 + \chi_1) + (y_0, 2y_0 + y_1)$ $= (\lambda \chi_0 + y_0, \lambda(2\chi_0 + \chi_1)) + (2y_0 + y_1)$ $= (\lambda \chi_0 + y_0, \lambda(2\chi_0 + \chi_1)) + (2y_0 + y_1)$ $= (\lambda \chi_0 + y_0, \lambda(2\chi_0 + \chi_1)) + (2y_0 + y_1)$ Teacher's Signature

	Date
EXF	Page No
	Forom (20, we have T (\(\) (\(\) (\) (\) (\(\) (\) (\) (\(\) (\) (\) (\(\) (\) (\) (\(\) (\) (\) (\(\) (\) \) (\(\) (\) (\(\) (\) (\(\) (\) \) (\(\) (\(\) (\) \) (\(\) (\(\) (\) \) (\(\) (\(\) (\) \) (\(\) (\(\) (\) \) (\(\) (\(\) \) \) (\(\) (\(\) \) (\
2) sdu	To $\mathbb{R}^3 \longrightarrow \mathbb{R}^3$ defined by $T(20, 21, 2) = (20-21, 22, 1)$ Hore $T(0, 0, 0) = (0-0, 2.0, 1)$ = (0, 0, t)
	By Theorem 2, Tris mot linear
0	Theorem 3:1: Let To V > w he a linear map Then R(T) is a subspace of we N(T) is a subspace of v.
()	The Rank - Nullity Theorem Definition - Let veew be two vertor space over a field F and
	i) The Trang space of To Clenokally RCT) is defined to be the set. (Tax) [VEV] (RCT) SW)
	The nullspace of To denoted by NCT), is defined to be the set 4 v EV (TCV) = 5 with the set
	(N(I) C W
	Teacher's Signature

	Date
	pt. No Page No
	Definition- Let T: v > w he a linear map. If RCT) & (NOD) are finite divensional then the dim (RCT) is salled the trank (T) and the dim (NOT) is scalled the muldy (T).
0	Theorem 4: Let VS W be vertor stare over a field FS. T: V > w he a linear map. If vis finite dim ensional, then
	Stank (T) + mility (T) = din (V) i.e. dim (RCT)) + dim (NCT)) = dim (V)
	PROBLEMS:
	Find the Transformation The linear Toransformation T: R3 -> R3 definited by T(C1) = (1: -1: a) T(C2) = (2: 0: 1) T(C3) = (1: 1) There C1 = (1: 0; 0) C2 = (0: 1: 0) C3 = (0: 2: 0: 1)
	And hence voriby Rank - Nullity Theorem Also: worte a python porogram to voriby the answers obtained
	Teacher's Signature

	Date
EX	Page No. 14
	Porgram:
_	They are.
1	brown Sumber into the a DR and
1	import much of the
	brom sympy import symbols, expand import numby as up def T(x):
	$\chi_0 = \chi_0$
	21=251]
	Ichom up. aroun (5x0, 2xx0, 127)
	alf check linear (T. un Co and in too input):
	2= up. agoray Camboh Cf 12: 9 no Go ordinaty super I
_	g=up- wrong Symbols (f'g: (wo a-ordinalli Juput) 11
	C= Symbols (6C2)
	Ths=T(C+xty)
_	ths= c* T(x) + T(y)
	ths= Ecapand (i) for i in the
	point (T (Caty) M: 1, lls)
	Sus = [capand (i) for i in ths]
	if the=the
	pount ("And, T (x fy) = CTCx) +TCy). So, the given
	Tus lucar?)
	els:-
	point (And, T (x+y) is not equal to CT(2) +T(y). So, the given T is not linear?)
)	chek-linoul (T,2)
	def T(x):
	No = x[0]
	21 = 2020
	2(2 = 2[2]
	Teacher's Signature

Page No. 15 Tetrous up arony ([20-x1,2*x2,1])

check-linear (7,3) from Sympy import Matorix Druid (6 Range space of Tis spanned by first; r Grows of: V; B(e))

A Nullspace = A. Tiranspose (). millspace () pound ("Nullspace of A is generated by the column & Ths = & + len (A Nullspace (Rank of T: 1, 92 bound ('Nullity of T:', len (A-Nullspace))
bound ('Dimension of the domain of T:', du lho= = orhs; else pount Co Rank and Nullity Teacher's Signature ___