TEMA 2a: Sucesiones de números reales

Fernando Soria

Departamento de Matemáticas Universidad Autónoma de Madrid (UAM)

Sucesiones de números reales

Definición

Una sucesión de números reales es una colección ordenada de números (en general, una lista de números indexados por los naturales n = 1, 2, 3, ...).

$$a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

- a_1 es el primer término de la sucesión, a_2 el segundo, etc.
- a_n se llama el n-ésimo término de la sucesión, y a menudo es todo lo que nos dan ya que a partir de él se puede reconstruir toda la sucesión.

A veces las sucesiones se definen *recursivamente*, i.e, a_n se define a partir de los términos anteriores de la sucesión. Por ejemplo,

$$a_1 = 1$$
, $a_2 = 1$, ..., $a_n = a_{n-1} + a_{n-2}$

permite reproducir la sucesión de Fibonacci

$$1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$$

Notación

Las sucesiones se denotan en la forma $\{a_n\}_{n\in\mathbb{N}}$ o $\{a_n\}_{n=1}^{\infty}$, pero incluso por $\{a_n\}_n$, $\{a_n\}$ o simplemente a_n , si no hay posibilidad de confusión.

Límite de una sucesión I

El interés principal de una sucesión es conocer si su comportamiento es estable o no para valores grandes de los índices.

Definición

La sucesión $\{a_n\}$ tiene límite L si para todo $\epsilon > 0$, existe un natural $N = N(\epsilon)$ tal que para todo $n \geq N$, se cumple que $|a_n - L| < \epsilon$. Se escribe $\lim_{n \to \infty} a_n = L$.

La expresión $N(\epsilon)$ indica que N depende de ϵ y solo de ϵ De forma heurística podemos decir que la sucesión se estabiliza en torno al punto L.

Lema (una definición geométrica de convergencia)

La sucesión $\{a_n\}$ tiene límite L si y solo si todo intervalo abierto no vacío centrado en L contiene a TODOS los elementos de la sucesión salvo un número finito de ellos.

Dem.: Haremos la demostración de forma directa usando equivalencias:

- Por la definición, sabemos que $\{a_n\}$ tiene límite $L \iff \forall \epsilon > 0, \; \exists N \in \mathbb{N}$ tal que $|a_n L| < \epsilon, \; \forall n \geq N$. Pero esto es equivalente a decir
- $\forall \, \epsilon > 0$, el intervalo $(L \epsilon, L + \epsilon)$ contiene a todos los a_n salvo quizás a los N 1 primeros, $a_1, a_2, \ldots, a_{N-1}$ para cierto $N \in \mathbb{N}$.

Como los intervalos $(L - \epsilon, L + \epsilon)$ son arbitrarios, hemos terminado

F. Soria (UAM) Cálculo I 5 / 2

Límite de una sucesión II

Corolario (consecuencia)

Si una sucesión tiene límite, es único.

Dem.: Lo demostraremos por reducción al absurdo. Supongamos que la sucesión $\{a_n\}$ tiene límites L_1 y L_2 y que, por ejemplo, $L_1 < L_2$. Sea a el punto medio entre ellos, es decir, $a = \frac{L_1 + L_2}{2}$. Definimos $\epsilon = L_2 - a$ (o, también, $\epsilon = a - L_1$). De esta forma los intervalos $l_1 = (L_1 - \epsilon, L_1 + \epsilon)$ e $l_2 = (L_2 - \epsilon, L_2 + \epsilon)$ son disjuntos. Por la definición de límite, todos los elementos de la sucesión, salvo un número finito, deben estar a la vez en l_1 y en l_2 , lo cual es absurdo. Luego $L_1 = L_2$.

F. Soria (UAM) Cálculo I 6 / 28

Definición

Si a_n tiene límite, se dice que la sucesión es convergente. Si no, se dice que es divergente.

De entre todas las formas que hay de diverger, hay dos que aparecen a menudo y que indicamos a continuación:

- $\lim_{n\to\infty} a_n = \infty$ si para todo número positivo R, existe un natural N tal que para todo $n \ge N$ tenemos que $a_n > R$.
- $\lim_{n\to\infty} a_n = -\infty$ si para todo número negativo R, existe un natural N tal que para todo $n \ge N$ tenemos que $a_n < R$.

Cuidado: $\lim_{n\to\infty} a_n = \infty$ ó $\lim_{n\to\infty} a_n = -\infty$ quiere decir que la sucesión a_n **diverge**, pero de la manera indicada (de hecho decimos que **diverge a infinito**).

F. Soria (UAM) Cálculo I 7 / 28

Cálculo operativo de límites I

Lema

- **1** $\{a_n\}$ es convergente a $0 \iff \{|a_n|\}$ es convergente a 0
- **2** $\{a_n\}$ es convergente a $L \iff \{|a_n L|\}$ es convergente a 0
- 3 $Si \{a_n\}$ es convergente, entonces está acotada. El recíproco no es cierto.
- **③** Si $\{b_n\}$ es convergente a $b \neq 0$, existe $N \in \mathbb{N}$ de forma que $|b_n| \geq |b|/2$, $\forall n \geq N$.

Dem. de 4: Elegimos $\epsilon = |b|/2$. Por definición de límite, existe $N \in \mathbb{N}$ de forma que $|b-b_n| \leq |b|/2$, $\forall n \geq N$. Ahora bien, por la desigualdad triangular al revés, $|b-b_n| \geq |b| - |b_n|$. Despejando queda, $|b_n| \geq |b| - |b|/2 = |b|/2$, $\forall n \geq N$, como queríamos.

F. Soria (UAM) Cálculo I 8 / 28

Teorema (del sandwich, o de las tres sucesiones)

Consideramos tres sucesiones a_n , b_n , c_n donde

- $a_n \le b_n \le c_n$ para todo n, y
- $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$.

Entonces la sucesión b_n es convergente, y $\lim_{n\to\infty} b_n = L$.

Dem.: Se tiene $|b_n - L| \le \max\{|a_n - L|; |c_n - L|\}$. Por otro lado, dado $\epsilon, \exists N_1, N_2 \in \mathbb{N}$ tales que $|a_n - L| < \epsilon, \forall n \ge N_1$ y $|c_n - L| < \epsilon, \forall n \ge N_2$. Si elegimos $N = \max\{N_1, N_2\}$ entonces $\forall n \ge N$,

$$|b_n - L| \leq \epsilon$$
,

luego
$$\lim_{n\to\infty} b_n = L$$
.

F. Soria (UAM) Cálculo I 9 / 28

Cálculo operativo de límites II

Teorema

Sean a_n y b_n sucesiones convergentes (con límites a y b, respectivamente) y $c \in \mathbb{R}$. Entonces

- ① $\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$ Dem.: $|(a_n + b_n) - (a + b)| \le |a_n - a| + |b_n - b| \dots$, etc.
- 3 $\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$ Dem.: $|c \cdot a_n - c \cdot a| = |c||a_n - a| \le \dots$, etc.
- ① $\lim_{n\to\infty} a_n b_n = (\lim_{n\to\infty} a_n) \cdot (\lim_{n\to\infty} b_n)$ $\underbrace{\operatorname{Dem.:}}_{|a_n b_n - ab| \leq |a_n| |(b_n - b)| + |b| |a_n - a| \leq \dots, y \text{ se usa el apartado}$ $\underbrace{\operatorname{3} \operatorname{del} \operatorname{lema anterior.}}$
- ③ lím_{n→∞} $\frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$ siempre que lím_{n→∞} b_n no sea cero.

 Dem.: Basta probar lím_{n→∞} $\frac{1}{b_n} = \frac{1}{b}$; se usa $\left|\frac{1}{b_n} \frac{1}{b}\right| = \frac{|b-b_n|}{|b||b_n|} \le \dots$, y se usa el apartado 4 del lema anterior.

"Aritmética de infinito"

En los casos en que algunos de los límites son de la forma $\pm \infty$, hay también un cálculo operativo de límites. Esquemáticamente, se tiene para $L \in \mathbb{R}$

$$\infty \pm L = \infty$$
,

y, siempre que L > 0,

$$\infty \cdot L = \infty, \qquad \frac{L}{\infty} = 0, \qquad \frac{L}{0} = \infty,$$

donde en la última igualdad la sucesión que se acerca a 0 en el denominador debe estar formada por términos positivos. Si está formada por términos negativos, entonces el límite es $-\infty$, y si tiene tanto términos positivos como negativos entonces hay que examinar la sucesión en más detalle. Formalmente se tiene el siguiente

F. Soria (UAM) Cálculo I 11 / 28

Lema

Sea a_n una sucesión convergente.

- $si \ a_n > 0, \forall n, \ entonces \ \lim_{n \to \infty} a_n = \infty \iff \lim_{n \to \infty} \frac{1}{a_n} = 0.$
- $\circled{si} \ a_n < 0, \forall n, \ entonces \ \lim_{n \to \infty} a_n = -\infty \iff \lim_{n \to \infty} \frac{1}{a_n} = 0.$
- ullet si $a_n \leq b_n, \forall n, \ y \ \lim_{n \to \infty} a_n = \infty \ \ entonces \ \lim_{n \to \infty} b_n = \infty$

Hay varias indeterminaciones que deben ser tratadas de otra forma. Son

$$\infty - \infty, \qquad 0 \cdot \infty, \qquad \frac{\infty}{\infty}, \qquad \frac{0}{0}, \qquad 1^{\infty}, \qquad 0^{0}, \qquad \infty^{0}$$

F. Soria (UAM) Cálculo I

Dem. de 1: (=>) Si $\lim_{n\to\infty} a_n = \infty$, entonces dado M>0, existe N=N(M), tal que $\forall n\geq N$, $a_n\geq M$. Por tanto, dado ϵ , si llamamos $M=\frac{1}{\epsilon}, \exists N$, tal que $\forall n\geq N$, $0<\frac{1}{a_n}\leq \frac{1}{M}=\epsilon$. Luego $\lim_{n\to\infty} \frac{1}{a_n}=0$.

(<=) Recíprocamente, Si $\lim_{n\to\infty} b_n = 0$ (con $b_n > 0$), entonces dado $\epsilon > 0$, existe $N = N(\epsilon)$, tal que $\forall n \geq N$, $b_n \leq \epsilon$. Por tanto, dado M, si llamamos $\epsilon = \frac{1}{M}, \exists N$, tal que $\forall n \geq N$, $\frac{1}{h_n} \geq \frac{1}{\epsilon} = M$. Luego $\lim_{n\to\infty} \frac{1}{h_n} = \infty$.

F. Soria (UAM) Cálculo I 13 / 28

Un ejemplo

Sean $P(x) = a_n x^p + a_{n-1} x^{p-1} + \cdots + a_1 x + a_0$ un polinomio de grado p (es decir, $a_p \neq 0$) y $Q(x) = b_a x^q + b_{a-1} x^{q-1} + \cdots + b_1 x + b_0$ un polinomio de grado q (es decir, $b_a \neq 0$). Entonces,

$$\lim_{n \to \infty} \frac{P(n)}{Q(n)} = \begin{cases} \frac{a_p}{b_p} & , \text{ si } p = q \\ 0 & , \text{ si } p < q \\ \pm \infty & , \text{ si } p > q \end{cases}$$

DEM.: caso p = q

$$\frac{a_{p}n^{p} + a_{p-1}n^{p-1} + \dots + a_{0}}{b_{q}n^{q} + b_{q-1}n^{q-1} + \dots + b_{0}} \stackrel{\stackrel{!}{\stackrel{!}{=}}{=}}{=} \frac{a_{p} + \frac{a_{p-1}}{n} + \dots + \frac{a_{0}}{n^{p}}}{b_{p} + \frac{b_{p-1}}{n} + \dots + \frac{b_{0}}{n^{p}}} \stackrel{n \to \infty}{\to} \frac{a_{p}}{b_{p}}$$

F. Soria (UAM) Cálculo I 14 / 28

Sucesiones monótonas

Definición

- Una sucesión se llama monótona creciente cuando $a_1 < a_2 < \cdots < a_n < a_{n+1} < \cdots$
- Se llama monótona decreciente cuando $a_1 \ge a_2 \ge \cdots \ge a_n \ge a_{n+1} \ge \cdots$
- Y se llama monótona a secas cuando estamos en uno de los dos casos anteriores.
- No toda sucesión acotada converge: por ejemplo $(-1)^n$ no es convergente, pero es acotada, ya que $-1 \le (-1)^n \le 1$ para todo n.

F. Soria (UAM) Cálculo I 15 / 28

Teorema

Toda sucesión $\{a_n\}_n$ monótona y acotada tiene límite. De hecho

- $Si \{a_n\}_n$ es monótona creciente, entonces $\lim_{n\to\infty} a_n = \sup\{a_1, a_2, \dots, a_n \dots\}$
- $Si \{a_n\}_n$ es monótona decreciente, entonces $\lim_{n\to\infty} a_n = \inf\{a_1, a_2, \dots, a_n \dots\}$

Dem.: Probamos el primer caso. Sea $S = \sup\{a_1, a_2, \ldots, a_n \ldots\}$. Dado $\epsilon > 0$, buscamos un N de forma que $|S - a_n| < \epsilon$, $\forall n \geq N$. Para ello, nos fijamos en que $S - \epsilon$ no es una cota superior del conjunto y, por tanto, debe existir un elemento a_N tal que $S - \epsilon < a_N$. Ahora bien, como la sucesión es creciente, resulta que

$$S - \epsilon < a_N \le a_n, \quad \forall n \ge N.$$

Despejando queda $S-a_n<\epsilon, \forall n\geq N$ y, como $S-a_n$ es positivo, hemos terminado.

F. Soria (UAM) Cálculo I 16 / 28

Sucesiones en progresión geométrica

La sucesión r^n , $n=1,2,\ldots$ suele aparecer frecuentemente, y es útil conocer si tiene límite o no. Esto depende del valor que tenga r:

- Si |r| < 1, el límite de r^n existe y vale cero;
- si r > 1, se tiene que $\lim_{n \to \infty} r^n = \infty$;
- si r < -1, el límite no existe;
- si r = 1, el límite es 1;
- si r = (-1), la sucesión $(-1)^n$ no tiene límite.

Dem. (del segundo apartado) Si r < 1 entonces r - 1 > 0 por la desigualdad de Bernoulli (hoja 1, ej.5) se tiene

$$r^n = (1 + (r-1))^n \ge 1 + n(r-1),$$

y, como lím $_{n\to\infty}$ $n(r-1)=\infty$, lo mismo le ocurre a r^n por ser mayor.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□P

17 / 28

De lo anterior se deduce que si $S_n = 1 + r + r^2 + \cdots + r^n$, con |r| < 1, entonces

$$\bullet \lim_{n\to\infty} S_n = \sum_{k=0}^{\infty} r^k = \frac{1}{1-r}.$$

(Basta recordar que $S_n = \frac{1-r^{n+1}}{1-r}$ y que, por lo anterior, se tiene en este caso $\lim_{n\to\infty} r^{n+1} = 0$.)

◆ロト ◆個ト ◆差ト ◆差ト 差 りゅう

F. Soria (UAM) Cálculo I 18 / 28

Ejemplos de Límites I

Algunos límite útiles que conviene conocer:

- $\lim_{n\to\infty} a^{1/n} = 1$, $\forall a>0$: $\operatorname{dem.}: \operatorname{si} a>1 \text{ y } \delta=a^{1/n}-1$, entonces $a=(1+\delta)^n\geq 1+n\delta$. Luego $0<\delta\leq \frac{a-1}{n}\stackrel{n\to\infty}{\longrightarrow} 0$. (Hemos usado Bernoulli)
- $\lim_{n\to\infty} n^{1/n} = 1$, dem.: si $\delta = n^{1/n} 1$, entonces $n = (1+\delta)^n \ge 1 + \frac{n(n+1)}{2}\delta^2$. Luego $0 < \delta \le \sqrt{\frac{2(n-1)}{n(n+1)}} \stackrel{n\to\infty}{\longrightarrow} 0$. (Hemos usado Newton)
- $\lim_{n\to\infty}\frac{\log n}{n}=0$. Se sigue de que $\log n\leq n\ (\forall n\geq 1)$ y, por tanto,

$$\log n \le \frac{1}{\alpha} n^{\alpha}, \quad \forall \alpha > 0.$$

Basta tomar ahora $0 < \alpha < 1$ $(\frac{\log n}{n} \le \frac{2n^{1/2}}{n} \to 0$ para $n \to \infty)$.

F. Soria (UAM) Cálculo I 19 / 28

Ejemplos de Límites II

• $\lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!} = \sum_{k=0}^{\infty} \frac{1}{k!} = e$ (el mismo valor del siguiente límite).

dem.: $b_n = \sum_{k=0}^n \frac{1}{k!}$ es creciente y acotada(visto en clase); por tanto tiene límite que denotamos inicialmente por E.

F. Soria (UAM) Cálculo I 20 / 28

Ejemplos de Límites III

•
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$
,

dem.: Veamos primero que $a_n = \left(1 + \frac{1}{n}\right)^n$ es creciente y acotada. Por el

binomio de Newton:
$$a_n = \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} \frac{1}{n^k} = \sum_{k=0}^n A_{n,k} \frac{1}{k!},$$

donde $A_{n,k} = \frac{n!}{(n-k)!n^k} = \frac{n(n-1)\cdots(n-(k-1))}{n^k} = 1\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{k-1}{n}\right)$,

observamos que

(1)
$$0 < A_{n,k} \le 1$$
, (2) $A_{n,k} \le A_{n+1,k}$, (3) $\lim_{n \to \infty} A_{n,k} = 1$.

- -Por el aparatado (2) vemos que $\{a_n\}$ es creciente $(a_n \leq a_{n+1})$.
- -Por (1) se tiene que $a_n \leq b_n, \forall n$. En particular $\{a_n\}$ está acotada $(a_n \leq E)$ y, por tanto, tiene límite, denotado por e. Se sigue que $e \leq E$.
- -Por último, dados $m \le n$, $\sum_{k=0}^{m} A_{m,k} \frac{1}{k!} \le \sum_{k=0}^{m} A_{n,k} \frac{1}{k!} \le a_n \le e$. Tomando

límite en n y usando (3), deducimos $b_m = \lim_{n \to \infty} \sum_{k=0}^{m} A_{n,k} \frac{1}{k!} \le e$. Al ser e

una cota de la sucesión $\{b_m\}$, se tiene $E \leq e$ y, por tanto E = e.

F. Soria (UAM) Cálculo I 21 / 28

Teorema de Bolzano-Weierstrass

Definición (Subsucesiones)

Dada una sucesión $\{a_n\}$, se dice que $\{b_n\}$ es una **subsucesión** de la anterior si existe una colección creciente de índices,

$$k_1 < k_2 < \cdots < k_n < k_{n+1} < \ldots$$
, de forma que $b_1 = a_{k_1}$; $b_2 = a_{k_2}$; $b_3 = a_{k_3}$; \ldots $b_n = a_{k_n}$; \ldots

Proposición

Si una sucesión $\{a_n\}$ es convergente con límite L, entonces toda subsucesión suya es también convergente al mismo límite L.

F. Soria (UAM) Cálculo I 22 / 28

Teorema (de Bolzano-Weierstrass)

Toda sucesión acotada de números reales $\{x_n\}$ posee una subsucesión convergente.

Dem.: Se demuestra por sucesivas particiones usando el principio del "palomar".

- Por estar acotada, existen a_0 y b_0 tales que $a_0 \le x_n \le b_0, \forall n$. Llamamos $J_0 = [a_0, b_0]$.
- Al menos una de las dos mitades en que se divide J_0 contiene infinitos elementos de la sucesión (principio del palomar). Llamamos a esta mitad J_1 .
- De forma recursiva, elegimos intervalos $J_0, J_1, \ldots, J_n, J_{n+1}, \ldots$ encajados, donde cada uno, a partir de n=1, es una de las dos mitades del anterior y contiene infinitos elementos de la sucesión.
- Ahora, para cada n, elegimos índices k_n de forma que $x_{k_n} \in J_n$. Como tenemos infinitos para elegir en cada paso, nos aseguramos de que $k_2 > k_1$ y, en general, $k_{n+1} > k_n$. De esta manera, $\{x_{k_n}\}$ es una subsucesión de $\{x_n\}$. Nos falta ver que es convergente

- Si $J_n = [a_n, b_n]$, se tiene $a_0 \le a_1 \cdots \le a_n \le \cdots \le b_n \le \cdots \le b_1 \le b_0$. Luego $\{a_n\}$ es una sucesión creciente y acotada y $\{b_n\}$ una decreciente y acotada. Luego tienen límite. Como además $0 < b_n - a_n = \frac{b_0 - a_0}{2^n} \stackrel{n \to \infty}{\longrightarrow} 0$, deducimos que $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.
- Finalmente, como, por construcción, $a_n \le x_{k_n} \le b_n$, $\forall n$, el lema del sandwich nos dice que $\{x_{k_n}\}$ es convergente también a dicho límite.

Definición

El mayor de los valores que es límite de una subsucesión de $\{x_n\}$ se denomina **límite superior** y se denota por lím $\sup_{n\to\infty} x_n$; el menor se denomina **límite inferior** y se denota por lím $\inf_{n\to\infty} x_n$.

⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ □ ⟨○⟩

F. Soria (UAM) Cálculo I 24 / 28

Sucesiones de Cauchy

Definición (Sucesiones de Cauchy)

Se dice que $\{a_n\}$ es una sucesión de Cauchy si dado $\epsilon > 0, \exists N \in \mathbb{N}$ tal que $|a_m - a_n| < \epsilon, \forall n, m \ge N$.

En una sucesión de Cauchy los elementos son estables entre sí, aunque no se pueda determinar su límite *a priori*.

Proposición

Toda sucesión convergente es de Cauchy.

Dem.: Sea $\{a_n\}$ una sucesión convergente y sea L su límite. Entonces, dado ϵ , existe $N \in \mathbb{N}$ tal que $|a_n - L| < \epsilon/2, \forall n \geq N$. Por tanto, si $n, m \geq N$ se tiene

$$|a_n-a_m|=|(a_n-L)+(L-a_m)|\leq |a_n-L|+|L-a_m|<\epsilon/2+\epsilon/2=\epsilon,$$

y esto nos dice que $\{a_n\}$ es de Cauchy.

F. Soria (UAM) Cálculo I 25 / 2

Teorema

En R, toda sucesión de Cauchy tiene límite.

dem.: Primero se prueba que toda sucesión de Cauchy está acotada. Por tanto, por el Teorema de Bolzano-Weierstrass, tiene una subsucesión convergente. A continuación se demuestra el siguiente lema

Lema

Si $\{a_n\}$ es una sucesión de Cauchy y $\{a_{k_n}\}$ es una subsucesión convergente de ella con límite L, entonces $\{a_n\}$ es convergente y su límite es L.

Dem. del lema: Fijamos $\epsilon>0$. Por ser $\{a_n\}$ de Cauchy, $\exists N$ tal que $|a_m-a_n|<\epsilon/2$, $\forall n,m\geq N$ y, por ser $\{a_{k_n}\}$ convergente a L, $\exists p$ con $k_p\geq N$ de forma que $|a_{k_p}-L|<\epsilon/2$. Juntando ambos resultados y usando la desigualdad triangular, queda

$$|a_n - L| \le |a_n - a_{k_p}| + |a_{k_p} - L| < \epsilon/2 + \epsilon/2 = \epsilon, \quad \forall n \ge N.$$

Luego $\{a_n\}$ converge a L.

Teorema de completitud por sucesiones

Teorema

En un cuerpo totalmente ordenado y arquimediano (como es \mathbb{R}), son equivalentes:

- A) Todo conjunto no vacío y acotado posee supremo e ínfimo.
- B) Toda sucesión acotada y monótona tiene límite.
- C) Toda sucesión de Cauchy tiene límite.

• De hecho, si $\{a_n\}$ es una sucesión monótona creciente, entonces $\lim_{n\to\infty} a_n$ será el supremo de $\{a_n\}$, y si es una sucesión monótona decreciente, entonces $\lim_{n\to\infty} a_n$ será el ínfimo de $\{a_n\}$.

F. Soria (UAM) Cálculo I 27 / 2

Aplicación: cómo definir exponenciales

Aunque la hayamos usado ya en repetidas ocasiones, conviene saber cómo se define formalmente la **función exponencial** a^{\times} para un cierto a (la base) y todo $x \in \mathbb{R}$. (E.g., 2^{π} , $e^{\sqrt{2}}$, π^{π} , etc.)

- Si $x = p \in \mathbb{N}$, $a^p = a \stackrel{(p \text{ veces})}{\cdots} a$.
- Si x = 1/q, $q \in \mathbb{N}$, $a^{1/q} = \sup\{y > 0 : y^q \le a\}$.
- Si x = p/q, $p, q \in \mathbb{N}$, $a^{p/q} = \left(a^{1/q}\right)^p$ y $a^{-p/q} = \frac{1}{a^{p/q}}$.

De esta forma la hemos definido para todos los racionales.

• Si x es un número real arbitrario, se elige una sucesión de racionales $\{x_n\}$ que converja a x, se comprueba que la sucesión de exponenciales $\{a^{x_n}\}$ es de Cauchy y se define

$$a^{x} = \lim_{n \to \infty} a^{x_n}$$
.

Sus principales propiedades son:

$$\forall x, y \in \mathbb{R}, \quad a^{x+y} = a^x a^y, \quad a^{x\cdot y} = (a^x)^y, \quad a^{-x} = \frac{1}{a^x}.$$

F. Soria (UAM) Cálculo I 28 / 28