IN THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently amended) A method of controlling a continuously variable ratio transmission of the type comprising a continuously variable ratio unit ("variator") which has rotary input and output members through which the variator is coupled between an engine and a driven component, the variator receiving a primary control signal and being constructed and arranged to exert upon its input and output members torques which, for a given variator drive ratio, correspond directly to the control signal, the method comprising:

determining a target engine speed on the basis of an input provided by a driver;

determining a difference between an actual engine speed and the target engine speed;

determining from the difference between an actual engine speed and the target engine speed a target engine acceleration[[,]];

determining settings values of the variator's primary control signal and of an engine torque demand control for providing the target engine acceleration and a wheel torque which is based on the input provided by the driver[[,]];

setting adjusting the variator's primary control signal or and the engine torque control based on the determined values these settings,;

predicting a consequent engine speed change resulting from the adjusting setting of the variator's primary control signal or and the engine torque control[[,]]; comparing the actual engine speed with the predicted engine speed; and

Inventor(s): Matthew Gibson Field Examiner: Mawari, Redhwan K. Application No.: 10/550,905 - 2/25- Art Unit: 3663

correcting adjusting the settings of the variator's primary control signal and or of the engine torque control based on [[a]] the comparison of the actual and predicted engine speeds to bring the actual engine speed toward the predicted engine speed.

- 2. (Currently amended) [[A]] The method as claimed in claim 1 wherein engine characteristics are included in predicting engine speed change.
- 3. (Currently amended) [[A]] The method as claimed in claim 1 comprising calculating the instantaneous torque expected to be created by the engine and using the calculated torque value in predicting the engine speed change.
- 4. (Currently amended) [[A]] The method as claimed in claim 1 wherein transmission characteristics are included in predicting the engine speed change.
- 5. (Withdrawn) A method as claimed in claim 1 wherein the construction and arrangement of the variator is such that torques exerted by the variator upon its input and output members are proportional to magnitude of the primary control signal, for a given variator drive ratio.
- 6. (Currently amended) [[A]] The method as claimed in claim 1 wherein the construction and arrangement of the variator is such that the sum of the torques exerted by the variator upon its rotary input and output members is always proportional to magnitude of the primary control signal.

Inventor(s): Matthew Gibson Field Examiner: Mawari, Redhwan K. Application No.: 10/550,905 - 3/25-Art Unit: 3663

- 7. (Currently amended) [[A]] The method as claimed in claim 1 wherein the control signal takes the form of a difference between two hydraulic pressures.
- 8. (Currently amended) [[A]] The method as claimed in claim 1 wherein the target engine acceleration is calculated based on a difference between current and target engine speeds.
- 9. (Currently amended) [[A]] The method as claimed in claim 1 wherein target engine speed is set in dependence upon a user input.
- 10. (Currently amended) [[A]] The method as claimed in claim 9 wherein the user input is interpreted as a demand for a transmission output torque and engine speed.
- 11. (Currently amended) [[A]] The method as claimed in claim 10 wherein the driver's demands for transmission output torque and engine speed are modified based on engine efficiency considerations.
- 12. (Currently amended) [[A]] The method as claimed in claim 1 wherein the demanded transmission output torque is converted to a target engine torque using a model of the transmission characteristics.
- 13. (Currently amended) [[A]] The method as claimed in claim 1 wherein, subject to limitations of the engine, a torque request to the engine torque controller is set to the sum of the target engine torque and the excess torque TrqAcc required to

Inventor(s): Matthew Gibson Field Examiner: Mawari, Redhwan K. - 4/25-Art Unit: 3663 accelerate power train inertia.

14. (Currently amended) [[A]] The method as claimed in claim 1 wherein the

engine's response to the torque controller is modelled to provide an estimate of

instantaneous engine torque.

15. (Currently amended) [[A]] The method as claimed in claim 14 wherein the

excess torque TrqAcc required to accelerate the engine is subtracted from the

estimated instantaneous engine torque to obtain a required loading torque to be

applied by the transmission to the engine, the variator control signal being adjusted

to provide the required loading torque.

16. (Currently amended) [[A]] The method as claimed in claim 1 wherein

instantaneous values of engine torque and of loading torque applied to the engine

by the transmission are estimated and used to calculate engine acceleration, the

engine acceleration being integrated with respect to time to provide a prediction of

engine speed, and closed loop control being applied to engine speed to correct it

toward the predicted value.

17. (Withdrawn) A method of controlling a continuously variable ratio

transmission of the type comprising a continuously variable ratio unit ("variator")

which has rotary input and output members through which the variator is coupled

between an engine and a driven component, the variator receiving a primary control

signal and being constructed and arranged such as to exert upon its input and

Examiner: Mawari, Redhwan K.

output members torques which, for a given variator drive ratio, correspond directly to the control signal, the method comprising:

determining a target engine acceleration,

determining an excess torque TrqAcc required to accelerate power train inertia to achieve the target engine acceleration, and

adjusting the control signal to the variator and/or adjusting a torque controller of the engine such that engine torque is equal to loading torque applied by the transmission to the engine plus the excess torque TrqAcc, such that the excess torque acts upon the relevant power train inertia and causes engine acceleration.

- 18. (Withdrawn) A method as claimed in claim 17 wherein the construction and arrangement of the variator is such that torques exerted by the variator upon its input and output members is always proportional to magnitude of the primary control signal, for a given variator drive ratio.
- 19. (Withdrawn) A method as claimed in claim 17 wherein the construction and arrangement of the variator is such that the sum of the torques exerted by the variator upon its rotary input and output members is always proportional to magnitude of the primary signal control.
- 20. (Withdrawn) A method as claimed in claim 17 wherein the control signal takes the form of a difference between two hydraulic pressures.
- 21. (Withdrawn) A method as claimed in claim 17 wherein the target engine

Inventor(s): Matthew Gibson Field Examiner: Mawari, Redhwan K. Application No.: 10/550,905 - 6/25- Art Unit: 3663

acceleration is calculated based on a difference between current and target engine speeds.

- 22. (Withdrawn) A method as claimed in claim 17 wherein target engine speed is set in dependence upon a user input.
- 23. (Withdrawn) A method as claimed in claim 22 wherein the user input is interpreted as a demand for a transmission output torque and for an engine speed.
- 24. (Withdrawn) A method as claimed in claim 23 wherein the driver's demands for transmission output torque and engine speed are modified based on engine efficiency considerations.
- 25. (Withdrawn) A method as claimed in claim 17 wherein the demanded transmission output torque is converted to a target engine torque using a model of the transmission characteristics.
- 26. (Withdrawn) A method as claimed in claim 17 wherein the engine's response to the torque controller is modelled to provide an estimate of instantaneous engine torque.
- 27. (Withdrawn) A method as claimed in claim 26 wherein the excess torque TrqAcc required to accelerate the engine is subtracted from the estimated instantaneous engine torque to obtain a required loading torque to be applied by the

Inventor(s): Matthew Gibson Field Examiner: Mawari, Redhwan K. Application No.: 10/550,905 Art Unit: 3663 transmission to the engine, the variator control signal being adjusted to correspond to the required loading torque.

28. (Withdrawn) A method as claimed in claim 17 wherein instantaneous values of engine torque and of loading torque applied to the engine by the transmission are

estimated using engine and transmission models and used to calculate engine

acceleration, the engine acceleration being integrated with respect to time to provide

a prediction of engine speed and closed loop control being applied to the engine

speed to correct it toward the predicted value.

29. (Withdrawn) A method of controlling engine speed error in a motor vehicle

powertrain comprising an engine which drives at least one vehicle wheel through a

transmission which provides a continuously variable ratio, the transmission being

constructed and arranged to exert upon the engine a controlled loading torque and

to permit the transmission ratio to vary in accordance with resultant changes in

engine speed, so that engine acceleration results from application of a net torque,

which is the sum of the loading torque and an engine torque created by the engine,

to the inertias referred to the engine, the method comprising, in a feedback loop:

determining the engine speed error,

supplying the engine speed error to a closed loop controller which establishes

a control effort, which is a correction to the net torque required to reduce the engine

speed error,

establishing, taking account of the control effort, an allocation of the control

effort between (i) adjustment of the engine torque and (ii) adjustment of the loading

torque, and

effecting the adjustment(s).

A method as claimed in claim 29 wherein the control effort is 30. (Withdrawn)

preferentially allocated to the loading torque adjustment.

31. (Withdrawn) A method as claimed in claim 29 wherein the implementation of

the control effort involves adjustment of the engine torque only when the control

effort exceeds a threshold, the control effort being otherwise implemented by

adjustment to the loading torque alone.

32. (Withdrawn) A method as claimed in claim 29 further comprising limiting the

adjustment to the loading torque on the basis of the deviation in torque at the driven

wheel ("wheel torque") which it creates.

(Withdrawn) A method as claimed in claim 32 wherein a maximum

acceptable deviation of wheel torque is set as a function of any one or more of:

driver's accelerator control position, vehicle speed and target wheel torque.

34. (Withdrawn) A method as claimed in claim 32 comprising the further step of

calculating a maximum loading torque adjustment from a maximum acceptable

wheel torque deviation.

35. (Withdrawn) A method as claimed in claim 29, wherein the adjustment of the

Inventor(s): Matthew Gibson Field Examiner: Mawari, Redhwan K. Application No.: 10/550,905 Art Unit: 3663 engine torque is established by subtracting the loading torque adjustment from the control effort.

36. (Withdrawn) A method as claimed in claim 29, wherein the engine speed error is determined using a predicted engine speed.

37. (Withdrawn) A method as claimed in claim 29, wherein engine speed error is established by comparison of current engine speed with a predicted engine speed established by calculating engine acceleration on the basis of engine and transmission settings and integrating engine acceleration over time.

- 38. (Withdrawn) A method of controlling engine speed comprising establishing base requirements for engine and transmission settings taking account of driver input, predicting engine speed based upon actual engine and transmission settings, and modifying the base requirements for the engine and transmission settings by a method as claimed in claim 29, wherein the engine speed error is obtained by comparison of current and predicted engine speed values.
- 39. (Withdrawn) A method of engine speed control wherein base requirements for engine and transmission settings are established by a feed forward method and are adjusted by a feedback method as claimed in claim 29.
- 40. (Withdrawn) A method as claimed in claim 39 wherein the feed forward method preferentially controls engine speed using the engine and the feedback method preferentially controls engine speed error using the transmission.
- 41. (Withdrawn) A method as claimed in claim 39 wherein the feed forward

Inventor(s): Matthew Gibson Field Examiner: Mawari, Redhwan K. Application No.: 10/550,905 - 10/25- Art Unit: 3663

method preferentially selects base transmission settings to provide a wheel torque demanded by the driver and selects base engine settings to achieve a desired engine speed.

- 42. (Withdrawn) A device adapted to implement the method claimed in claim 29.
- 43. (Currently amended) [[A]] The method as claimed in claim 13 wherein the feedback method involves preferentially adjusting the transmission settings to control engine speed error.

Inventor(s): Matthew Gibson Field Examiner: Mawari, Redhwan K. Application No.: 10/550,905 - 11/25-Art Unit: 3663