六西格玛黑带考试公式整理 (收藏版)

第一章: 六西格玛管理概论

	六西格玛水平	对应的不良率
短期(理想状况)	均值=规格中心 , 公差限内包含±6σ	十亿分之二
长期	均值偏离规格中心±1.5σ,公差限内包含±6σ	3.4ppm
	6σ	3.4ppm
	5σ	233ppm
西格玛水平	4σ	6210ppm
	3σ	6.7%
	2σ	31%

第二章: 六西格玛与过程管理

DPU	单位缺陷数	缺陷数/抽取的产品数		
DPO	机会缺陷率	缺陷数/(产品数*单位产品平均缺陷机会)		
DPMO	百万机会缺陷数	DPO*106	DPO*106	
PFY	最终合格率	包含返修后的产品, PFY≥RTY		
FTY	一次合格率	本工序的输出合格率=e-DPU		
RTY	流通合格率	FTY ₁ *FTY ₂ FTY _n		
FV	终值	FV=PVx (1+i) ⁿ i: 利率		
NPV	净现值	$\sum_{i=0}^{n} (CI_t - CO_t)(1 + i_0)^{-t}$	CI _t : 第 t 年现金流入 CO _t : 第 t 年现金流出 i _o : 项目收益率	
ROI	投资收益率	ROI=项目预计收益/项目预计成本		

第三章:六西格玛项目管理

PPI	帕累托优先级指数	(项目节约费用*项目成功概率)/ (项目投入成本*项目完成时间)	
E	项目期望时间	E= (O+4M+P) /6	O:乐观估计时间 M:正常估计时间 P:悲观估计时间

第四章: 界定

	缺陷率	DPMO 百万机会缺陷数
		RTY 流通合格率
口仁的帝县		西格玛水平
目标的度量		C _P , C _{PK} , P _P , P _{PK}
	周期时间	周期时间
	费用成本	COPQ 劣质成本

第五章:测量

基础概念	名称	计算式
组合	С	$C_{n}^{x} = \frac{n!}{x!(n-x)!}$
自然底数	e	e=2.72

1.均值与方差的性质

期望	E(ax+b)=aE(X)+b	X为随机变量
方差	var(aX+b)=a ² var(X)	a、b 为任意实数
期望	$E(X_1+X_2)=E(X_1)+E(X_2)$	X ₁ 、X ₂ 为随机变量
方差	$var(X_1\pm X_2)=var(X_1)+var(X_2)$	X ₁ 、X ₂ 为随机独立变量

2.常用的离散分布

分布	概率函数	均值 E(x)	标准差σ	备注说明
0-1 分布	$P(x) = p_i$	р	$\sqrt{p(1-p)}$	
二项分布	$P(x) = C_n^x p^x (1-p)^{n-x}$	np	$\sqrt{np(1-p)}$	试验之间必须 相互独立
泊松分布	$P(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	λ	$\sqrt{\lambda}$	λ:单位产品 平均缺陷数
超几何分布	视题目情况计算 (无需记公 式)	/	1	适用于产品无 放回的情况

3.常用的连续分布

分布	概率函数	均值 E(x)	标准差σ	备注说明
正态分布	/	х	σ	
均匀分布	$p(x) = \frac{1}{b-a}$	$\frac{a+b}{2}$	$\sqrt{\frac{(b-a)^2}{12}}$	
指数分布	$p(x) = 1 - e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda}$	产品首次发生故障的 时间或故障维修时间
对数正态 分布	/	/	/	右偏分布:岩石化学 成分、化学反应时间
威布尔分 布	/	/	/	寿命试验和可靠性理 论的基础

4.中心极限定理

三大特性		说明	备注
特点1	分布	无论原来的数据属于何种分布,其取 样均值的分布都近似服从正态分布	原来的分布属于对称分布,样本容量 n ≥5 原来的分布属于非对称分布,样本容量 n≥30
特点2	均值	μ	μ=原来分布的均值
特点3	标准差	σ/\sqrt{n}	σ=原分布的标准差或总体标准差 n=样本容量

5.常用统计量

. [27 [37 [37]]]				
	均值	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$		
中心位置	中位数	一组数据按从小到大排序,中间的数据	当 n 为偶数时,取中间两个值的均值	
	众数	一组数据中出现次数最多的数		
	极差	一组数据中最大值-最小值		
	样本方差	$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$		
波动	样本标准差	$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$		
	变异系数	$CV = \frac{s}{\bar{x}}$		

6.箱线图

下限	$Q_1 - 1.5(Q_3 - Q_1)$	(不免办4分为人) 上云山花光岩河河(古光) 上
上限	$Q_3+1.5(Q_3-Q_1)$	须触线的终点到极端观测值为止

7.测量系统分析

数据类型	名称	计算公式	说明
	分辨力	$\langle\!\!\langle \min \left(\frac{T}{10} , \frac{6\sigma}{10} \right) \right\rangle$	T: 公差 σ: 波动
	偏倚	$ar{X} - \mu$	X̄: 测量均值μ: 真值
	线性度	斜率 b ×过程总波动	越小越好
计量型	重复性与再现性	$\sigma_t = \sigma_p + \sigma_{ms} = \sigma_p + \sigma_{ev} + \sigma_{av}$	σ _p : 产品波动 σ _{ms} : 测量系统波动 σ _{ev} : 重复性波动 σ _{av} : 再现性波动
	%R&R	σ_{ms}/σ_{t}	σt:总变异
	%P/T	$6\sigma_{ms}/T$	T:公差
	NDC	$\operatorname{int}(\frac{\sigma_p}{\sigma_{ms}} \times \sqrt{2})$	Int 表示取整函数 (舍去小数)
	一致性比例	一致的次数/测量总次数	》90%
计数型	Карра 值	$\frac{p_0-p_e}{1-p_e}$	Po: 实际一致的比例 Pe: 期望一致的比例

8.过程能力分析 (计量型数据)

- (C 1100) (<u> </u>				
	Cp	$\frac{\mathit{USL} - \mathit{LSL}}{6\sigma}$	$\hat{\sigma}_{ST} = \frac{\overline{R}}{d2}$	
	C _{pu}	$\frac{USL - \bar{X}}{3\sigma}$		
短期能力	C _{pl}	$\frac{\bar{X} - LSL}{3\sigma}$	$\widehat{\sigma}_{ST} = \frac{\overline{S}}{c4}$	
	C _{pk}	Min (C _{pu} , C _{pl})	$\widehat{\sigma}_{ST} = \frac{S_p}{c4}$	
长期能力	Pp	$\frac{USL - LSL}{6\sigma}$		
	P _{pu}	$\frac{\mathit{USL} - \bar{\mathit{X}}}{3\sigma}$	$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$	
	P _{pl}	$\frac{\bar{X} - LSL}{3\sigma}$	n-1	
	P _{pk}	Min (C _{pu} , C _{pl})		
目标能力	C _{pm}	$\frac{USL - LSL}{6\sqrt{\sigma^2 + (\mu - m)}^2}$	ma ,序号口+=价/标//-	
	C _{pmk}	$\frac{C_{pk}}{\sqrt{1+\left(\frac{\mu-m}{\sigma}\right)^2}}$	m:质量目标的特性值	

8.过程能力分析(计数型数据)

7	$Z_{bench} = rac{USL - \mu}{\sigma}$	仅有单侧上规格线
Z _{bench}	$Z_{bench} = rac{\mu - LSL}{\sigma}$	仅有单侧下规格线
西格玛水平	$Z_{bench} + 1.5$	

第六章:分析

1.分布类型统计量及置信区间

The Sub-Class China Age of Billion (1995)		r .	
分布类型	统计量	置信区间	备注
Z	$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	$\bar{x} \pm Z_{1-2/\alpha} \frac{\sigma}{\sqrt{n}}$	总体标准差已知
t	$Z = \frac{\bar{X} - \mu}{s / \sqrt{n}}$	$\bar{x} \pm t_{1-\frac{2}{\alpha}} (n-1) \frac{s}{\sqrt{n}}$	总体标准差未知
F	$F = \frac{S_1^2}{S_2^2}$		
卡方	$\chi^2 = \frac{(n-1) s^2}{\sigma^2}$		卡方统计量

2.方差分析表

要因 (factor)	平方 (Sum of Squares)	自由度 (Degree of Freedom)	均方差 (Mean ofSquare)	F值
Factor	$SS_F = \sum_{i=1}^m n \left(\overline{y_i} - \overline{y} \right)^2$	$\phi_F = m - 1$	$MS_F = \frac{S_F}{\phi_F}$	$F = \frac{MS_F}{MS_E}$
Error	$SS_E = \sum_{i=1}^{m} \sum_{j=1}^{n} (y_{ij} - \overline{y_i})^2$	$\phi_E = m(n-1)$	$MS_E = \frac{S_E}{\phi_E}$	
Total	$SS_T = \sum_{i=1}^{l} \sum_{j=1}^{m} (x_{ij} - \overline{\overline{x}})^2$	$\phi_T = mn - 1$		

第七章:改善

DOE

真实值与代码值换算	真实值=M+D*代码值	M:实际中心值 D:半间距
	$R^2 = \frac{SS_{Model}}{SS_{Total}} = 1 - \frac{SS_{Error}}{SS_{Total}}$	越大越好
决定系数	$R_{\text{iji}}^2 = 1 - \frac{SS_{Error}/(n-p)}{SS_{Total}/(n-1)}$	越大越好
	$R_{\overline{m}}^2 = 1 - \frac{PRESS}{SS_{Total}}$	越大越好
标准残差	$S = \sqrt{MS_E}$	越小越好

角点个数	轴点个数	α值	说明
2 ^k	2k	(2 ^k) ^{0.25}	K: 因子个数

第八章:控制

控制图

控制图种类 控制限计算公式		要求	
不合格品数图 np chart	$CL_{np} = n\overline{P} \pm 3\sqrt{n\overline{P}(1-\overline{P})}$	 样本量 n 固定 np≥5&n(1-p)≥5 P=不合格品总数/组数 	
不合格品率图 p chart	$CL_{p} = \overline{P} \pm 3\sqrt{\frac{\overline{P}(1-\overline{P})}{n}}$	 样本量 n 不一定固定 np≥5&n(1-p)≥5 控制限随 n 变化而变化 	
缺陷数图 C chart	$CL_c = \overline{c} \pm 3\sqrt{\overline{c}}$	 1. 样本量 n 固定 2. c≥5 3. C=缺陷总数/组数 	
单位缺陷数图 u chart	$CL_{u} = \overline{u} \pm 3\sqrt{\frac{u}{n}}$	 样本量 n 不一定固定 nu≥5 控制限随 n 变化而变化 	

第九章:精益生产

	OEE=时间开动率*性能开动率*合格品率		
设备综合效率	时间开动率=	计划工作时间=	实际工作时间=
	实际工作时间/计划工作时间	可用时间-计划停机时间	计划工作时间-非计划停机时间
	性能开动率=	净开动率=	速度运转率=
	净开动率*速度运转率	(产量*实际节拍)/实际工作时间	理论节拍/实际节拍
节拍	т/т	T/T=实际工作时间/产品需求	
时间	Т/Т	数量	
看板	看板数量=(每班最大生产量*(生产间隔期+生产提前期+回收提前期+安全库存))		
数量	/单位容器数量		

第十章:六西格玛设计

容差设计

安全系数	$\Phi = \sqrt{\frac{A_0}{A}}$	A ₀ :超出功能界限的损失(金钱) A:超出公差界限的损失(金钱)
容差	$\Delta = rac{\Delta_{_0}}{\Phi}$	Δο: 功能界限