Lecture 10

Today

Theorem of alternatives

Farkas lemma I

1) and 2) cannot be true of the same time:

Farkas Cemma II

For given A and b, either

- 1) there exist x, with Ax=b and x>0
- 2) there exists y with ATy >0, bTy <0
 but not both

$$A \times = b \Rightarrow a_1 \times_1 + a_2 \times_2 + \cdots + a_m \times_m = b$$

There exists a hyperplane with normal vector y that strictly separates the a's & b

$$\begin{array}{c}
A \times = b \\
\times > 0
\end{array}$$

$$\begin{array}{c}
A \\
-A \\
-1
\end{array}$$

$$\begin{array}{c}
A \\
-b \\
0
\end{array}$$

M 1 00 10
Mixed inequalities & equalities.
Either
1) there exists x
2) there exist y and z

Examp	ole 1	Let P	bea	matrix a	with elemen
Pij, suc	h that promety:		= 1, I	columns of	f P sam
				m such 71 s:=1	
	19 = 9	, 97,0) i= 1	3; = 1	

Strong	duality	proof
--------	---------	-------

min
$$c^T \times max - \lambda^T b$$

st $A \times \leq b$ st $c + A^T \lambda = 0$
 $\lambda \geqslant 0$

