Final Project - Camila Alvarez

1992 Presedential Election Results

Problem 1

Can we conclude that the results from the 51 samples (50 states + DC) is consistent for the three presedential candidates?

Conclusion

The election results are not consistent between candidates. The mean amount of votes collected varies by candidate when based on the 51 samples.

The election results are not consistent between candidates. The mean amount of votes collected varies by candidate when based on the electoral college.

There are no signigicant reactions between the candidates election results.

Solutions/Work

```
In []: ! pip install pingouin
In []: import pandas as pd
import pingouin as pg
election_data = pd.read_csv('/Project CSV Files/TransformedElectionData.csv')
election_data
Out[]: ID Candidate Votes Received Electoral Votes
```

0 A1 Bush 0.80 9 1 B1 Bush 0.08 3 2 C1 Bush 0.55 8 3 D1 Bush 0.33 6 4 E1 Bush 3.34 54 148 ES1 Perot 0.34 13 149 ET1 Perot 0.47 11 150 EU1 Perot 0.11 5 151 EV1 Perot 0.54 11 152 EW1 Perot 0.05 3			ID	Candidate	Votes Received	Electoral Votes
2 C1 Bush 0.55 8 3 D1 Bush 0.33 6 4 E1 Bush 3.34 54 148 ES1 Perot 0.34 13 149 ET1 Perot 0.47 11 150 EU1 Perot 0.11 5 151 EV1 Perot 0.54 11		0	A1	Bush	0.80	9
3 D1 Bush 0.33 6 4 E1 Bush 3.34 54 148 ES1 Perot 0.34 13 149 ET1 Perot 0.47 11 150 EU1 Perot 0.11 5 151 EV1 Perot 0.54 11		1	В1	Bush	0.08	3
4 E1 Bush 3.34 54 148 ES1 Perot 0.34 13 149 ET1 Perot 0.47 11 150 EU1 Perot 0.11 5 151 EV1 Perot 0.54 11		2	C1	Bush	0.55	8
		3	D1	Bush	0.33	6
148 ES1 Perot 0.34 13 149 ET1 Perot 0.47 11 150 EU1 Perot 0.11 5 151 EV1 Perot 0.54 11		4	E1	Bush	3.34	54
149 ET1 Perot 0.47 11 150 EU1 Perot 0.11 5 151 EV1 Perot 0.54 11		••	•••			
150 EU1 Perot 0.11 5 151 EV1 Perot 0.54 11	14	8	ES1	Perot	0.34	13
151 EV1 Perot 0.54 11	14	9	ET1	Perot	0.47	11
	15	0	EU1	Perot	0.11	5
152 EW1 Perot 0.05 3	15	51	EV1	Perot	0.54	11
	15	2	EW1	Perot	0.05	3

153 rows × 4 columns

	Source	SS	DF	MS	F	p-unc	np2
0	Candidate	6.651021	2.0	3.325510	240.890123	7.338398e-37	0.842597
1	Electoral Votes	65.803470	20.0	3.290173	238.330417	5.130520e-69	0.981469
2	Candidate * Electoral Votes	7.965782	40.0	0.199145	14.425441	4.246204e-25	0.865071
3	Residual	1.242458	90.0	0.013805	NaN	NaN	NaN

County Demographic Data

Problem 2(a):

Out[]:

Are there significant differences in number of counties in the regions?

Conclusion

 H_0 : The mean number of counties does not differ across regions

H_a : At least one of the mean number of counties differs across regions

At an $\alpha=0.05$ significance level we reject the null hypothesis that all the means are the same since the calculated P-value < 0.05.

Solutions/Work

```
In [111...
          # Read the CSV file
          data = pd.read_csv('/Project CSV Files/county_demographics.csv')
           # Define the regional groups
          northeast = ['ME', 'MA', 'RI', 'CT', 'NH', 'VT', 'NY', 'PA', 'NJ', 'DE', 'MD']
southeast = ['WV', 'VA', 'KY', 'TN', 'NC', 'SC', 'GA', 'AL', 'MS', 'AR', 'LA', 'FL']
          midwest = ['OH', 'IN', 'MI', 'IL', 'MO', 'WI', 'MN', 'IA', 'KS', 'NE', 'SD', 'ND']
           southwest = ['TX', 'OK', 'NM', 'AZ']
          west = ['CO', 'WY', 'MT', 'ID', 'WA', 'OR', 'UT', 'NV', 'CA', 'AK', 'HI']
           # Create a new column 'Region' based on the state
           data['Region'] = data['State'].apply(lambda x: 'Northeast' if x in northeast
                                                    else 'Southeast' if x in southeast
                                                    else 'Midwest' if x in midwest
                                                    else 'Southwest' if x in southwest
                                                    else 'West')
           # Group the data by region
           grouped_data = data.groupby('Region')
In [112... county counts = data.groupby(['Region', 'State']).size().reset_index(name='County Count')
```

```
county_counts = data.groupby(['Region', 'State']).size().reset_index(name='County Count')

# Print the number of counties in each state, grouped by region
print("Number of counties in each state, grouped by region:")
county_counts
```

Number of counties in each state, grouped by region:

Out[112]: Region State **County Count** 0 Midwest IΑ 1 Midwest IL 2 Midwest IN 3 Midwest KS 4 Midwest МІ 5 Midwest MN6 Midwest МО 7 Midwest ND 8 Midwest NE 9 Midwest ОН 10 Midwest SD 11 Midwest WI 12 Northeast СТ 13 Northeast DE 14 Northeast MA 15 Northeast MD 16 Northeast ME 17 Northeast NH 18 Northeast NJ 19 Northeast NY 20 Northeast РΑ 21 RINortheast 22 Northeast VT23 Southeast AL 24 Southeast AR 25 FL Southeast 26 Southeast GΑ 27 Southeast $\mathsf{K}\mathsf{Y}$ 28 Southeast LA

29

30

31

32

33

34

35

36

37

38

39

Southeast

Southeast

Southeast

Southeast

Southeast

Southeast

Southwest

Southwest

Southwest

Southwest

West

MS

NC

SC

ΤN

VA

 $\mathsf{W}\mathsf{V}$

ΑZ

NM

OK

ΤX

ΑK

99

102

92

105

83

87

115

53

93

88

65

72

8

3

14

24

16 10

21 62

67 5

14

67

75

67

159

120 64

82

100

46

95

133

55

15

33

77

254

27

	Region	State	County Count
40	West	CA	58
41	West	СО	64
42	West	DC	1
43	West	НІ	5
44	West	ID	44
45	West	МТ	56
46	West	NV	17
47	West	OR	36
48	West	UT	29
49	West	WA	39
50	West	WY	23

In []: # Perform one-way anova to determine if differences in county amounts per region are significant countycount_anova = pg.anova(data=county_counts, dv='County Count', between='Region', detailed=T countycount_anova

Out[]:	Source		SS	DF	MS	F	p-unc	np2
	0	Region	48127.407754	4	12031.851939	9.023611	0.000018	0.43967
	1	Within	61335.219697	46	1333.374341	NaN	NaN	NaN

Problem 2(b):

Are there significant differences in the population distribution in the regions?

Conclusion

 H_0 : The mean population per square mile does not differ across regions.

 ${\it H}_a$: At least one of the population per square mile differs across regions.

At an $\alpha=0.05$ significance level we reject the null hypothesis that all the means are the same since the calculated P-value < 0.05.

Solutions/Work

```
In [ ]: # Group the data by region, county and population per square mile
    region_population_density = data[['Region', 'County','Population.Population per Square Mile']].c

# Print the new DataFrame
    print("County population per square mile grouped by region:")
    region_population_density
```

County population per square mile grouped by region:

:		Region	County	Population.Population per Square Mile
	0	Southeast	Abbeville County	51.8
	1	Southeast	Acadia Parish	94.3
	2	Southeast	Accomack County	73.8
	3	West	Ada County	372.8
	4	Midwest	Adair County	13.5
	•••			
	3134	Southwest	Yuma County	35.5
	3135	West	Yuma County	4.2
	3136	Southwest	Zapata County	14.0
	3137	Southwest	Zavala County	9.0
	3138	Midwest	Ziebach County	1.4

3139 rows × 3 columns

Out[]

```
In []: # Perform one-way anova to determine if differences in population per square mile per region are
population_dist_anova = pg.anova(data=region_population_density, dv='Population.Population per S
population_dist_anova
Out[]: Source SS DF MS F p-unc np2
```

[]:		Source	SS	DF	MS	F	p-unc	np2
	0	Region	3.103577e+08	4	7.758944e+07	26.930542	5.324957e-22	0.03323
	1	Within	9.029350e+09	3134	2.881095e+06	NaN	NaN	NaN

Problem 2(c):

Are there significant differences in family size across the five regions?

Conclusion

 H_0 : The mean family size does not differ across regions.

 H_a : At least one of the family sizes differs across regions.

At an $\alpha=0.05$ significance level we fail to reject the null hypothesis that all the means are the same since the calculated P-value>0.05.

Solutions/Work

```
In []: # Group the data by region, county, and family size
   household_size = data[['Region', 'County','Housing.Persons per Household']].copy()

# Print the new DataFrame
   print("Family size grouped by region:")
   household_size
```

Family size grouped by region:

Out[]:]: Region		County	Housing.Persons per Household
	0	Southeast	Abbeville County	2.46
	1	Southeast	Acadia Parish	2.76
	2	Southeast	Accomack County	2.35
	3	West	Ada County	2.58
	4	Midwest	Adair County	2.17
	•••			
	3134	Southwest	Yuma County	2.79
	3135	West	Yuma County	2.45
	3136	Southwest	Zapata County	3.17
	3137	Southwest	Zavala County	3.33
	3138	Midwest	Ziebach County	3.70

3139 rows × 3 columns

In []: # Perform one-way anova to determine if differences in family size per region are significant household_size_anova = pg.anova(data=household_size, dv='Housing.Persons per Household', between household_size_anova

Out[]:		Source	Source SS DF		MS	F	p-unc	np2	
	0	Region	29.422772	4	7.355693	116.017412	2.156937e-92	0.128977	
	1	Within	198.700711	3134	0.063402	NaN	NaN	NaN	

Problem 2(d):

Does median home owenership differ significantly across the five regions?

Conclusion

 ${\it H}_0$: The mean of the median homeownership rate per region does not differ.

H_a : At least one of the means differs between the regions.

At an $\alpha=0.05$ significance level we reject the null hypothesis that all the means are the same since the calculated P-value < 0.05.

Solutions/Work

```
In []: # Group the data by region and state, and calculate the mean homeownership rate
    region_median_homeownership_rates = data.groupby(['Region', 'State'])['Housing.Homeownership Rat
    region_median_homeownership_rates
```

Out[]:		Region	State	Median Homeownership
	0	Midwest	IA	74.787879
	1	Midwest	IL	74.838235
	2	Midwest	IN	74.459783
	3	Midwest	KS	72.425714
	4	Midwest	МІ	77.921687
	5	Midwest	MN	76.809195
	6	Midwest	МО	71.891304
	7	Midwest	ND	72.807547
	8	Midwest	NE	72.781720
	9	Midwest	ОН	72.106818
	10	Midwest	SD	71.383077
	11	Midwest	WI	73.995833
	12	Northeast	СТ	68.775000
	13	Northeast	DE	72.433333
	14	Northeast	MA	66.014286
	15	Northeast	MD	70.933333
	16	Northeast	ME	74.656250
	17	Northeast	NH	71.900000
	18	Northeast	NJ	67.752381
	19	Northeast	NY	68.641935
	20	Northeast	PA	73.043284
	21	Northeast	RI	66.440000
	22	Northeast	VT	74.350000
	23	Southeast	AL	71.643284
	24	Southeast	AR	69.749333
	25	Southeast	FL	71.828358
	26	Southeast	GA	68.167925
	27	Southeast	KY	71.839167
	28	Southeast	LA	69.659375
	29	Southeast	MS	70.480488
	30	Southeast	NC	69.887000
	31	Southeast	SC	71.236957
	32	Southeast	TN	72.514737
	33	Southeast	VA	69.590977
	34	Southeast	WV	76.329091
	35	Southwest	AZ	68.120000
	36	Southwest	NM	70.369697
	37	Southwest	OK	71.577922
	38	Southwest	TX	71.731102
	39	West	AK	63.544444

	Region	State	Median Homeownership
40	West	CA	62.144828
41	West	СО	70.279687
42	West	DC	41.600000
43	West	НІ	49.420000
44	West	ID	72.800000
45	West	MT	71.598214
46	West	NV	69.023529
47	West	OR	66.238889
48	West	UT	75.186207
49	West	WA	68.420513
50	West	WY	73.130435

In []: # Perform one-way anova to determine if differences in family size per region are significant
 median_homeownership_rates_anova = pg.anova(data=region_median_homeownership_rates, dv='Median H
 median_homeownership_rates_anova

Out[]:	Source		SS DF		MS	F	p-unc	np2
	0	Region	460.296614	4	115.074154	3.990018	0.007332	0.257586
	1	Within	1326.663459	46	28.840510	NaN	NaN	NaN

Problem 2(e):

Does the level of illiteracy (less than high school degree) differ significantly across the five regions?

Conclusion

 H_0 : The mean illiteracy rate per region does not differ.

 H_a : At least on of the mean illiteracy rate differs between the regions.

At an $\alpha=0.05$ significance level we reject the null hypothesis that all the means are the same since the calculated P-value < 0.05.

Solutions/Work

```
In [ ]: data['Less than high school degree'] = 100 - data['Education.High School or Higher']
    region_illiteracy_rates = data[['Region','County','Less than high school degree']].copy()
    region_illiteracy_rates
```

Out[]:	ut[]: Region		County	Less than high school degree
	0	Southeast	Abbeville County	18.3
	1	Southeast	Acadia Parish	21.0
	2	Southeast	Accomack County	18.5
	3	West	Ada County	4.8
	4	Midwest	Adair County	5.8
	•••			
	3134	Southwest	Yuma County	26.7
	3135	West	Yuma County	11.4
	3136	Southwest	Zapata County	38.1
	3137	Southwest	Zavala County	33.1
	3138	Midwest	Ziebach County	15.9

3139 rows × 3 columns

In []: # Perform one-way anova to determine if differences in rates of illiteracy are significant
 region_illiteracy_rates.anova = pg.anova(data=region_illiteracy_rates, dv='Less than high school
 region_illiteracy_rates.anova

Out[]:		Source	SS	DF	MS	F	p-unc	np2
	0	Region	34662.174686	4	8665.543672	307.801161	1.400475e-223	0.28205
	1	Within	88231.681153	3134	28.153057	NaN	NaN	NaN