PSQF 4143: Section 3

Brandon LeBeau

Statistics vs Parameters

- Statistics A number that describes the sample; hopefully a representative number for the population
 - Notation: An English letter (i.e. X, \bar{X})
- Parameter A number to describe the population (i.e. the true value)
 - Notation: A Greek letter (i.e. μ , σ)

Notation

- An observed data point is represented with a capital letter, commonly X. This would represent the value for a single individual.
 - Example: X = 25
- Little x is used for a deviation score.
- The number of subjects in the population is denoted with a capital N. The number in the sample is denoted with a small n.
- If there are multiple observations or groups a subcript is used.
 - Example: A sample of 3 observations (n = 3): $X_1 = 12$, $X_2 = 23$, $X_3 = 8$.

Notation 2

- The greek captial letter, Σ , is used to indicate summation.
 - More formally: $\sum_{i=1}^{n} X_i = X_1 + X_2 + \dots + X_n$
 - This means sum the value of X from 1 to n.
- Example: $X_1 = 12, X_2 = 23, X_3 = 8.$

$$\sum_{i=1}^{n} X_i = 12 + 23 + 8 = 43$$

1

Single number Descriptive Statistics

- Central Tendency a set of descriptive statistics that describes a data set in a single number; also known as measures of central tendency as they describe where the center of the distribution lies
 - Mode
 - Median
 - Mean (Average)

Measure of Central Tendency

- Mode:
 - Indicates the most frequent value/category in the distribution.
- Calculating the mode:
 - Discrete Data: Value with the greatest frequency.
 - Categorized Continuous Data (i.e. Frequency Table): Midpoint of the interval with the greatest frequency.
 - Continuous Data: The highest point of the frequency distribution.

Mode Calculations

Figure 1: Practice Central Tendency

Measure of Central Tendency 2

- Median:
 - Is the value where half of the data fall above and half fall below.
- Calculating the median:
 - Nominal Data: Cannot be done meaningfully
 - Discrete Data:

- 1. Order values from highest to lowest, find the middle value.
- 2. Alternatively: find the value:

$$L = \frac{n+1}{2}$$

- * If L is a whole number, the median is the Lth value
- * If L is a decimal, the median is the average between the two values around L (i.e. the value rounded up and down from L)

Measure of Central Tendency 2

- Calculating the median:
 - Continuous Data:
 - \ast determine where in the interval the median falls as a fraction, then go that fraction from the interval's lower limit to its upper limit

*

$$Median = L + \frac{\frac{n}{2} - f_{below}}{f_{at}} * w$$

Where L is the lower limit of the of the interval containing the median n is total frequency f_{below} is the frequency below the interval f_{at} is the frequency at the interval w is the bin width

Median Calculations

2	10
3	11
4	11
4	11
5	11
7	12
	13
	19

26
27
28
28
32

Interval	Percent
\$0-\$10000	12%
\$10000-\$20000	32%
\$20000-\$30000	27%
\$30000-\$40000	15%
\$40000-\$50000	8%
\$50000 and up	6%

Interval	Percent
0 - 9	0
10 - 14	20
15 - 19	40
20 - 24	15
25 - 29	10
30 - 34	5

Measures of Central Tendency 3

- Mean:
 - Is the average of the data, also known as the "balance point" or the place where the distribution would balance on a fulcrum.
 - The mean is used for interval or ratio data and the value is interpretted in the same metric as the raw data.
- Notation:

— Sample: \bar{X} - called "X-bar"

– Population: μ - Greek letter "mu"

Measures of Central Tendency 3

• Calculating the Mean

- Sample:

$$\bar{X} = \frac{\sum X}{n} = \frac{X_1 + X_2 + \dots}{n}$$

- Population:

$$\mu = \frac{\sum X}{N} = \frac{X_1 + X_2 + \dots}{N}$$

Mean Calculations 1

2

3

4

4 5

Mean Comic

"Bob and Ruth! Come on in. ... Have you met Russell and Bill, our 1.5 children?"

Figure 2: Comic

Measures of Central Tendency 3

- Calculating the Mean
 - Categorized Data (Frequency Table):

$$\bar{X} = \frac{\sum f * X_{midpoint}}{\sum f}$$

where f and $X_{midpoint}$ are the frequency and midpoint of each bin/class.

Mean Calculations 2

Interval	Percent
0 - 9	0
10 - 14	20
15 - 19	40
20 - 24	15
25 - 29	10
30 - 34	5

Interval	Percent
\$0-\$10000	12%
\$10000-\$20000	32%
\$20000-\$30000	27%
\$30000-\$40000	15%
\$40000-\$50000	8%
\$50000 and up	6%

Mean is Mathematically Tractable

- This is fancy math lingo meaning that the mean is able to be manipulated algebraicly.
- Proof:

$$\frac{\sum X}{n} = \bar{X}$$

$$n\frac{\sum X}{n} = n\bar{X}$$

$$\sum X = n\bar{X}$$

Weighted Mean

• Used when groups are different sizes.

$$\bar{X} = \frac{n_a \bar{X}_a + n_b \bar{X}_b + n_c \bar{X}_c}{n_a + n_b + n_c}$$

• More generally:

$$\bar{X} = \frac{\sum n_j \bar{X}_j}{\sum n_j}$$

Weighted Mean Example

Boys: 5, 8, 3, 7, 7

Girls: 10, 12, 16, 8, 4, 8

Weighted Mean Example 2

District 1: n = 3347; Mean = 78.4

District 2: n = 200; Mean = 52.8

District 3: n = 334; Mean = 55.2

Puzzler - Simpson's Paradox

- The boys at Elm have a higher mean than the boys at Oak.
- The girls at Elm have a higher mean than the girls at Oak.
- The combined mean at Elm is lower than the combined mean at Oak.

Choosing a Statistic

- What statistic would you choose if the distribution was normally distributed? Why?
- What if the distribution was skewed?

What to use for skewed distributions?

Suppose we have the following distribution:

Strengths/Weaknesses of the Mode

- Strengths:
 - The mode is simple, easy to compute, and can be used with qualitative variables.
- Weaknesses:
 - However, it can change easily or be undefined for multimodal data.
 - * This is often called sampling stability.
 - Not mathematically tractable.

Strengths/Weaknesses of the Median

• Strengths:

- The median is the most typical number in the distribution.
 - * The median minimizes $\sum |X Mdn| \le \sum |X c|$ where c is any other value.
 - * As such, the median is commonly used with income or prices.
- The median is not affected by outliers
 - * This is due to the median is not based on the value of the scores, but rather the ranking of scores.
 - * The median would only be affected if the ranking of scores would change.
- Easy to compute and computed for open-ended groups.
- Is the 50th percentile

• Weaknesses:

- Poor sampling stability compared to the mean (better than the mode).
- Not as mathematically tractable compared to the mean.
- Does not use all data in the calculation.
- Can not be calculated for qualitative data

Strengths/Weaknesses of the Mean

• Strengths:

- Mathematically tractable
 - * Sum of deviation scores equals 0 $(\sum (X \bar{X}) = 0)$
 - * Minimizes the sum of squared deviations scores $(\sum (X \bar{X})^2)$
- The mathematic properties make the mean the balance point of the distribution.
- Takes into account value of all numbers in the distribution.
- Used in many advanced statistical techniques.

• Weaknesses:

- Sensitive to outliers
- Unable to calculate for open-ended groups.
- Can not be calculated for qualitative data