Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа № 3.4.4

по курсу общей физики на тему: «Петля гистерезиса (статический метод)»

> Работу выполнил: Баринов Леонид (группа Б02-827)

1 Аннотация

В работе будет проведено исследование кривых намагничивания ферромагнетиков с помощью баллистического гальванометра.

2 Теоретические сведения

Магнитная индукция \vec{B} и напряжённость магнитного поля \vec{H} в ферромагнитном материале неоднозначно связаны между собой: индукция зависит но только от напряжённости, но и от предыстории образца. Связь между индукцией и напряжённостью поля типичного ферромагнетика иллюстрирует рис. 1. Если к размагниченному образцу начинают прикладывать магнитное поле, то его намагничивание следует кривой OACD, выходящей из начала координат. Эту кривую называют основной кривой намагничивания.

Индукция \vec{B} в образце состоит из индукции, связанной с намагничивающим полем \vec{H} , и индукции, создаваемой самим намагниченным образцом. В системе СИ эта связь имеет вид

$$\vec{B} = \mu_0(\vec{H} + \vec{M}),\tag{1}$$

где \vec{M} — намагниченность — магнитный момент единичного объёма образца, а μ_0 — магнитная постоянная. Кривая OACD, изображающая зависимость B(H), практически совпадает с зависимостью M(H), поскольку второй член в выражении (1) — в малых полях — существенно превосходит первый. В точке C намагниченность M достигает

Рис. 1. Петля гистерезиса ферромагнетика

насыщения, и дальнейшее медленное увеличение индукции происходит в основном вследствие роста ${\cal H}.$

Намагнитим образец до насыщения — до точки D. Соответствующее значение индукции B_s называют индукцией насыщения. При уменьшении поля H до нуля зависимость B(H) имеет вид кривой DCE, и при нулевом поле индукция имеет конечное — ненулевое — значение. Это остаточная индукция B_r . Чтобы размагнитить образец, то есть перевести его в состояние F, необходимо приложить «обратное» магнитное поле H_c , которое называют коэрцитивной силой.

Замкнутая кривая DEFD'E'F'D, возникающая при циклическом перемагничивании образца, намагниченного до насыщения, называется предельной петлёй гистерезиса.

В работе исследуются ферромагнитные образцы тороидальной формы.

Рис. 2. Схема для измерения индукционного тока (или заряда)

Рис. 3. Схема для калибровки гальванометра

Изложим суть метода. На тороидальный сердечник (рис. 2) равномерно намотана намагничивающая обмотка с числом витков N_{T0} , а поверх неё — измерительная обмотка с числом витков N_{T1} .

Если быстро изменить ток в намагничивающей обмотке, то в измерительной обмотке возникает ЭДС индукции. Ток, вызванный этой ЭДС, течёт через гальванометр Γ , который работает в баллистическом (импульсном) режиме, то есть реагирует на полный заряд, протекший через катушку гальванометра.

Напряжённость поля H в сердечнике пропорциональна току I в первичной обмотке N_{T0} , а изменение магнитной индукции B — заряду, протекшему через гальванометр при изменении тока намагничивания. Таким образом, измеряя токи, текущие через обмотку N_{T0} , и суммируя отклонения гальванометра, подключённого к обмотке N_{T1} , можно рассчитать зависимость B(H) для материала сердечника.

Рассмотрим подробнее, как выразить B и H через параметры, измеряемые в эксперименте. Напряжённость магнитного поля H в тороиде зависит от тока, текущего в намагничивающей обмотке:

$$H = \frac{N_{T0}}{\pi D}I,\tag{2}$$

где D – средний диаметр тора.

Пусть в намагничивающей обмотке ток скачкообразно изменился на величину ΔI . При этом меняется поле H в тороиде: $\Delta H \sim \Delta I$.

Изменение поля ΔH приводит к изменению потока магнитной индукции Φ в сердечнике, и в измерительной обмотке сечения S_T с числом витков N_{T1} возникает ЭДС индукции:

$$\mathscr{E} = -\frac{d\Phi}{dt} = -S_T N_{T1} \frac{dB}{dt}$$

Через гальванометр Γ протекает импульс тока; первый отброс зайчика гальванометра, работающего в баллистическом режиме, пропорционален величине прошедшего через гальванометр заряда q:

$$\varphi = \frac{q}{b}$$

Коэффициент пропорциональности b называют баллистической постоянной гальванометра.

Свяжем отклонение зайчика φ с изменением магнитной индукции ΔB :

$$|\varphi| = \frac{q}{b} = \frac{1}{b} \int I dt = \frac{1}{bR} \int \mathscr{E} dt = \frac{S_T N_{T1}}{bR} \Delta B \tag{3}$$

3 Оборудование

где R — полное сопротивление измерительной цепи тороида, S_T — площадь поперечного сечения сердечника: $S_T = \pi d_T^2/4$.

Баллистическую постоянную b можно определить, если провести аналогичные измерения, взяв вместо тороида с сердечником пустотелый соленоид с числом витков N_{C0} на который намотана короткая измерительная катушка с числом витков N_{C1} (рис. 3). В длинном соленоиде (практически достаточно, чтобы его длина превышала 6 диаметров: $l_c > 6d_c$) поле H можно рассчитать так же, как для тороида (см. (2)); B и H в соленоиде связаны линейно, поэтому связь между изменением тока ΔI_1 в обмотке N_{C0} и изменением магнитной индукции ΔB_C имеет простой вид:

$$\Delta B_C = \frac{\mu_0 N_{C0}}{l_C} \Delta I_1 \tag{4}$$

Изменение магнитной индукции в соленоиде связано с отклонением φ_1 зайчика гальванометра формулой, аналогичной формуле (3):

$$\varphi_1 = \frac{S_C N_{C1}}{bR_1} \Delta B_C \tag{5}$$

Здесь R_1 — полное сопротивление измерительной цепи соленоида, S_C — площадь поперечного сечения соленоида: $S_C = \pi d_C^2/4$.

Таким образом, выражения (3), (4) и (5) позволяют, исключив баллистическую постоянную b, установить связь между отклонением зайчика в делениях Δx ($\Delta x \sim \varphi$) и изменением магнитной индукции $\Delta x \sim B$ в сердечнике тороида:

$$\Delta B[T] = \mu_0 \left(\frac{d_C}{d_T}\right)^2 \frac{R}{R_1} \frac{N_{C0}}{N_{T1}} \frac{N_{C1}}{l_C} \Delta I_1 \frac{\Delta x}{\Delta x_1}$$

$$\tag{6}$$

Строго говоря, величина b — это не константа. Она зависит не только от параметров гальванометра, но и от сопротивления цепи, к которой подключён гальванометр, поэтому формула (6) справедлива, если полные сопротивления измерительных цепей тороида и соленоида одинаковы: $R = R_1$.

3 Оборудование

В работе используются: генератор тока с блоком питания, торо- ид, соленоид, баллистический гальванометр с осветителем и шкалой, амперметры, магазин сопротивлений, лабораторный автотрансформатор (ЛАТР), разделительный трансформатор.d

Экспериментальная установка

Схема для исследования петли гистерезиса представлена на рис. 4. К блоку питания (источнику постоянного напряжения) подключён специальный генератор, позволяющий скачками менять токи в намагничивающей обмотке. Одинаковые скачки $\Delta I(\sim \Delta H)$ вызовут разные отклонения $\Delta x~(\sim \Delta B)$ на участках FD' и D'E': рис. 1 скачок ΔH_1 может дать и ΔB_1 и ΔB_2 . Поэтому генератор меняет ток неравномерно: большими скачками вблизи насыщения и малыми вблизи нуля.

4 Оборудование

Рис. 4. Схема установки для исследования петли гистерезиса

Ток в намагничивающей обмотке измеряется амперметром A_1 с пределом 0.75 A при малых токах или амперметром A_2 с пределом 3 A в области насыщения. При токах больше 0.75 A амперметр A_1 должен быть закорочен: ключ K_1 замкнут. (Сопротивление амперметра мало и сравнимо с сопротивлением ключа, поэтому показания амперметра A_1 не падают до нуля даже при замкнутом ключе.) Переключатель Π_1 позволяет менять направление тока в первичной обмотке.

Чувствительность гальванометра Γ во вторичной цепи можно менять с помощью магазина сопротивлений R_M . Ключ K_2 предохраняет гальванометр от перегрузок и замыкается только на время измерения отклонений зайчика. Ключ K_0 служит для мгновенной остановки зайчика (короткое замыкание гальванометра). Переключателем Π_2 можно изменять направление тока через гальванометр.

Схема на рис. 5 отличается от схемы на рис. 4 только тем, что вместо тороида подключён калибровочный соленоид.

Сопротивления измерительных цепей тороида $(R = R_T + R_M + R_0)$ и соленоида $(R_1 = R_C + R'_M + R_0)$ должны быть одинаковы [см. замечание после формулы (6)].

Рис. 5. Схема установки для калибровки гальванометра

Сопротивление тороида $R_T \ll R_0$ — сопротивления гальванометра, поэтому сопротивления магазина в схеме с тороидом и соленоидом отличаются на величину сопротивления соленоида $R_C: R_M = R_C + R_M'$

Чтобы снять начальную кривую намагничивания, нужно размагнитить сердечник. Для этого тороид подключается к цепи переменного тока

Рис. 6. Схема установки для размагничивания образца

(рис. 6). При уменьшении амплитуды тока через намагничивающую обмотку от тока насыщения до нуля характеристики сердечника B и H «пробегают» за секунду 50 петель всё меньшей площади и в итоге приходят в нулевую точку.

4 Результаты измерений и обработка результатов

Измерим предельной петлю гистерезиса. Снимаем зависимость отклонения зайчика Δx от величины тока I.

E'F	C'CD	D	CE	EF	C'D'	D'C	C'E'
I, мА	Δx , mm	I, MA	Δx , мА	I, мА	Δx , mm	I, мА	x, MM
0	_	1460	134	0	-26	-1460	-136
15	54	510	-138	-15	-51	-510	136
28	63	251	-118	-28	-69	-250	128
39	116	157	-80	-39	-166	-157	79
45	116	95	-66	-45	-116	-95	74
56	179	67	-43	-56	-186	-67	24
67	95	56	-16	-67	-96	-56	9
95	162	45	-17	-95	-172	-45	7
157	166	39	-7	-157	-176	-39	4
251	119	28	-10	-251	-120	-28	7
500	146	15	-13	-520	-154	-15	8
1460	134	0	-26	-1460	-136	0	26

Таблица 1. Зависимость отклонения зайчика Δx от величины тока I.

Используя формулы (2) и (6) получим зависимость магнитной индукции B от напряженности магнитного поля H.

E'F'CD		DCE		EFC'D'		D'C'E'	
H, A/M	В, мТл	H, A/M	В, мТл	H, A/M	В, мТл	H, A/M	В, мТл
0,00	-512,21	8132,80	1247,30	0,00	551,31	-8132,80	-1328,11
85,78	-441,83	2840,91	1067,44	-85,78	484,84	-2840,91	-1150,85
156,53	-359,72	1398,17	913,64	-156,64	394,91	-1392,60	-984,03
218,14	-208,54	874,55	809,38	-218,14	178,56	-874,55	-881,06
247,88	-57,35	529,19	723,36	-247,88	27,37	-529,19	-784,61
311,94	175,95	371,55	667,31	-311,94	-215,05	-371,55	-753,33
371,55	299,77	311,94	646,46	-371,55	-340,17	-311,94	-741,60
528,63	510,91	247,88	624,30	-528,07	-564,35	-247,88	-732,48
876,23	727,27	218,36	615,18	-876,78	-793,74	-218,36	-727,27
1395,94	882,36	156,53	602,15	-1396,50	-950,14	-156,53	-718,14
2785,20	1072,65	85,78	585,20	-2896,61	-1150,85	-85,78	-707,72
8132,80	1247,30	0,00	551,31	-8132,80	-1328,11	0,00	-673,83

Таблица 2. Зависимость магнитной индукции B от напряженности магнитного поля H

Построим петлю гистерезиса B=f(H) с начальной кривой намагничивания.

I, мА	dx, MM	H, A/M	В, мТл
0	_	0	0
15	20	85,78	26,07
28	34	156,53	70,38
39	68	218,08	159,01
45	38	247,88	208,54
56	78	311,94	310,20
67	58	371,55	385,79
95	120	529,19	542,19
157	120	874,55	698,59
251	123	1398,17	858,90
514	155	2863,19	1060,92
1457	142	8116,09	1246,00

Таблица 3. Начальная кривая намагничивания

Рис. 7. Петля гистерезиса B = f(H) с начальной кривой намагничивания

Определим по графику коэрцитивную силу H_c и индукцию насыщения B_s

$$H_c = 270 \pm 40 \ \mathrm{A/m}$$

$$B_s = 1, 3 \pm 0, 2 \ \mathrm{T\pi}$$

Определим максимальное значение дифференциальной магнитной проницаемости $\mu_{\text{дифф}}$ для начальной кривой намагничивания:

$$\begin{split} \mu_{\text{дифф}} &= \frac{1}{\mu_0} \frac{dB}{dH} \\ \mu_{\text{дифф}}^{\text{\tiny MAKC}} &= 1280 \pm 120 \end{split}$$

5 Обсуждение результатов и выводы

Результаты занесены в таблицу.

	Эксперим.	Справочн.
H_c , A/M	270 ± 40	80
B_s , Тл	$1, 3 \pm 0, 2$	2,15
$\mu_{\text{диф}}$	1280 ± 120	5000

Таблица 4. Результаты измерений коэрцитивной силы H_c , индукции насыщения B_s и дифференциальной магнитной проницаемости $\mu_{\text{дифф}}$ для начальной кривой намагничивания