Undergraduate Thesis 2021

Title

Supervisor Nakajima Tatsuo Area of Study Computer Science

Waseda University School of Fundamental Science and Engineering Department of Computer Science

1W17BG08--2 Hu Yong-Hao

submitted on 2022.01.31

Abstract

This is my abstract...

Acknowledgements

This is my acknowledgements...

Contents

List of Figures

List of Tables

Chapter 0 Notations

Sample notations ??

	Table 1: Mathematical notations
Symbol	Meaning
α	learning rate
γ	discount factor
S, s	state
A, a	action
R, r	reward
au	a trajectory / an episode
G	return
t	a discrete time step
G_t	return at time step t
T	final time step of an episode
π	policy
$\pi_{ heta}$	parametrized policy with parameter θ
$\pi(s)$	the action distribution given state s under policy π
$\pi(a s)$	probability of action a given state s under policy π
$\mathbb E$	expectation
\mathbb{E}_{π}	expectation under policy π
v(s)	state value of state S
$v_{\pi}(s)$	state value of state S under policy π
q(s, a)	action value of action a on state s
$q_p i(s, a)$	action value of action a on state s under policy π
σ	activation function

Introduction

- 1.1 Motivations
- 1.2 Objectives and importance
- 1.3 Overview of this paper
- 1.4 Sample section

Sample template alphago

Figure 1.1: Screenshot of the Grand Finals of the Pokemon Video Game Championships 2019 held in Washinton D.C.

Backgrounds

- 2.1 Pandemic's impact
- 2.2 Local transformation
- 2.3 Location-based Augmented Reality
- 2.4 Co-creation

Related Works

- 3.1 Location-based AR's effect on users' image of a place
- 3.2 Location-based AR's effect on users' motivation of a place
- 3.3 Co-creation's effect on users' motivation to access a service
- 3.4 User-user interaction's effect on users' engagement of a service
- 3.5 Local transformation by graffiti
- 3.6 More examples of location-based service with co-creation

Chapter 4
Methodology

Experiments and Results

5.1 Overview

Discussions

APPENDIX A - Machine Specs

Table 6.1: Machine specs

Item	Value
CPU	Intel Xeon E5-2690
Memory	188G
OS	$18.04.5~\mathrm{LTS}~\mathrm{(GNU/Linux~4.15.0-121-generic~x86_64)}$

APPENDIX B - Derivation of the simplest form of policy gradient

Derivation of the simplest form of policy gradient is provided below.

$$\nabla_{\theta} J(\pi_{\theta}) = \nabla_{\theta} \mathbb{E}_{\tau \sim \pi} [R(\tau)]$$

$$= \nabla_{\theta} \int_{\tau} P(\tau | \theta) R(\tau)$$

$$= \int_{\tau} \nabla_{\theta} P(\tau | \theta) R(\tau)$$

$$= \int_{\tau} P(\tau | \theta) \nabla_{\theta} log P(\tau | \theta) R(\tau)$$

$$= \mathbb{E}_{\tau \sim \pi} [\nabla_{\theta} log P(\tau | \theta) R(\tau)]$$

$$= \mathbb{E}_{\tau \sim \pi} [\nabla_{\theta} log \pi_{\theta} (a_{t} | s_{t}) R(\tau)]$$

This is a expectation, which can be estimated with a sample mean. Denote the estimated policy gradient as \hat{g} :

$$\hat{g} = \frac{1}{D} \sum_{\tau \in D} \sum_{t=0}^{T} \nabla_{\theta} log \pi_{\theta}(a_t | s_t) R(\tau)$$