4주차 스터디

+

딥러닝 CNN 완벽 가이드 - 세션 9,10

세션9 - Advanced CNN 모델 파헤치기 - AlexNet, VGGNet, GoogLeNet

세션10 - Advanced CNN 모델 파헤치기 - ResNet 상세와 EfficientNet 개요

발표자 : 이현진, 임수진

ImageNet 대회 역대 우승 알고리즘과 Top-5 에러율

CNN 아키텍처의 특징

- Feature Extractor 와 Classification Layer 영역으로 구성
- 연속적인 CNN 연산을 순차적으로 수행하면서 일련의 Feature Map을 생성
- 순차적으로 생성된 Feature Map의 크기(높이x너비)는 줄어들지만 채널(깊이)은 증가
- 더 깊은 영역에 있는 네트워크가 더 복잡한 feature 정보를 반영하면서 CNN 깊이를 증가시키는 방향으로 아키텍처를 발전시킴

1. AlexNet

- 11x11, 5x5 사이즈의 큰 사이즈의 커널을 적용, 이후 3x3커널을 3번 이어서 적용
- Receptive field가 큰 사이즈를 초기 feature map에 적용하는 것이 보다 많은 feature 정보를 만드는데 효율적이라고 판단
 - 많은 파라미터 개수로 인하여 연산량이 크게 증가. 이를 극복하기 위해 병렬 GPU를 활용할 수 있도록 CNN모델 병렬화

2. VGGNet

ConvNet Configuration					
A	A-LRN	В	С	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
input (224×224 RGB imag e)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
maxpool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

* Inception Module

Naive Inception module

Conv Ops:

[1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x192x3x3x256 [5x5 conv, 96] 28x28x96x5x5x256

Total: 854M ops

Very expensive compute

Inception module with dimension reduction

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256

[1x1 conv, 64] 28x28x64x1x1x256

[1x1 conv, 128] 28x28x128x1x1x256

[3x3 conv, 192] 28x28x192x3x3x64

[5x5 conv, 96] 28x28x96x5x5x64

[1x1 conv, 64] 28x28x64x1x1x256

Total: 358M ops

* 1 X 1 convolutions

필요한 연산 횟수

 $(14 \times 14 \times 48) \times (5 \times 5 \times 480) = 9$ 112.9M $(14 \times 14 \times 16)$ * $(1 \times 1 \times 480) + (14 \times 14 \times 48)$ * $(5 \times 5 \times 16) = 9$ 5.3M

* Auxiliary classifier

네트워크의 깊이가 깊어질수록 그래디언트 소실 문제를 피하기 어려워짐 가중치를 훈련하는 과정에 역전파를 주로 활용 -> 역전파 과정에서 가중치를 업데이트하는데 사용되는 그래디언트가 점점 작아져서 0이 되어버리는 것 -> 따라서 네트워크 내의 가중치들이 제대로 훈련되지 않음

→ 해결방법 : 보조 분류기(auxiliary classifier)

* Global average pooling

AlexNet, VGGNet 등 -> Fully Connected (FC) 층들이 후반부에 연결 GoogLeNet -> FC 방식 대신에 global average pooling 방식 사용

- * Global average pooling: 전 층에서 산출된 특성맵들을 각각 평균낸 것을 이어서 1차원 벡터를 만들어 주는 방식
- ** 1차원 벡터로 만들어주는 이유: 최종적으로 이미지 분류를 위한 softmax층을 연결해주기 위해
- ** 장점: 가중치의 개수를 상당히 많이 없애줄 수 있음
 - FC) 7x7x1024x1024=51.3M / Global average pooling) 가중치 필요없음

감사합니다