UNIVERSITY OF PIRAEUS

NATURAL LANGUAGE PROCESSING

21/06/2025

Exams June Project

6TH Semester

Full Name and AM:
Marina Ioannou π22211
Ilia Vatti π22208

Table of Contents

- 1. Introduction
 - 1.1 Semantic Reconstruction in NLP
 - 1.2 Goal of the Project
- 2. Methodology
 - 2.1 Part A Manual Sentence Reconstruction
 - 2.2 Part B Full Text Reconstruction using Pipelines
 - 2.3 Part C Evaluation with Similarity Metrics and Embeddings
- 3. Experiments & Results
 - 3.1 Before/After Examples
 - 3.2 Cosine Similarity Scores
 - 3.3 Embedding Visualizations
- 4. Discussion
 - 4.1 Embedding Performance
 - 4.2 Reconstruction Challenges
 - 4.3 Automation with NLP Models
 - 4.4 Comparative Analysis of Pipelines
- 5. Conclusion
 - **5.1 Summary of Findings**
 - **5.2 Future Work**
- 6. References
- 7. GitHub Link

NLP Project

Introduction

Semantic reconstruction plays a vital role in the field of Natural Language Processing (NLP), especially when transforming ambiguous, grammatically incorrect, or poorly structured texts into semantically accurate, fluent, and well-structured language. Such tasks are critical in machine translation, automated editing, intelligent tutoring systems, and human-computer communication.

In this study, we explore multiple approaches to semantic reconstruction using both rule-based methods and modern transformer-based models. We further apply embedding-based similarity analysis to evaluate the preservation of meaning between the original and rewritten texts.

- Methodology

We divide the methodology into three parts (A, B, C), each addressing a different level of reconstruction and evaluation.

• Part A: Sentence-Level Manual Reconstruction (Custom Model)

Two original, grammatically incorrect sentences were selected from the original texts. A rule-based reconstruction was manually designed, applying syntactic correction and fluency enhancement using:

- Subject–Verb agreement
- Lexical substitutions
- Verb tenses and active voice
- Removal of redundancy or ambiguity

Example:

- Original: `I am very appreciated the full support of the professor.`
- Rewritten: `I really appreciate the full support of the professor.`

Part B: Full Text Reconstruction via 3 Pipelines

We applied three different automatic reconstruction methods on the full original texts.

- 1. Custom Rule-Based Rewriter: Implements hard-coded grammar correction and phrasing logic using `spaCy` and simple string rewriting.
- 2. HuggingFace T5 Pipeline: Uses the `t5-base` model for paraphrasing via HuggingFace Transformers.
- 3. TextAttack Paraphraser: Applies transformer-based paraphrasers (e.g., BART, T5) using the TextAttack API.

Each version of the text was evaluated for semantic accuracy and fluency.

• Part C: Evaluation Using Similarity Metrics

For evaluation, we used:

- Cosine Similarity: Calculates semantic closeness between vector representations.
- Word Embeddings:
 - Word2Vec
 - o GloVe
 - FastText
 - BERT (SentenceTransformer)
- Dimensionality Reduction: PCA and t-SNE for visual analysis.

All techniques were implemented in **Python** with `scikit-learn`, `gensim`, `sentence-transformers` and `matplotlib`.

Experiments & Results

Examples (Before/After)

Sentence A:

- Before: `I got this message to see the approved message.`
- After (T5): `I received the approved message.`

Sentence B:

- Before: `Hope you too, to enjoy it as my deepest wishes.`
- After (Rule-based): `I hope you also enjoy the festival my best wishes.`

Cosine Similarity Results

Method	Text	1 Similarity	Text 2 Simil	arity
Custom Rule	-Based	0.9977	1.0	1
HuggingFace	e T5	0.9912	0.9944	
TextAttack Paraphraser 0.9074			0.948	

Text1:

Cosine Similarity (token-level avg.): 0.9986

Text2:

Cosine Similarity (token-level avg.): 0.9992

Visualizations

- PCA and t-SNE showed that embeddings of the rewritten texts clustered closely with the original texts, especially for T5-based paraphrasing.
- BERT-based embeddings maintained semantic alignment more accurately than GloVe or Word2Vec.

- Discussion

Embedding Performance

- BERT embeddings captured contextual semantics better than static embeddings like GloVe or Word2Vec.
- Cosine similarity aligned well with perceived semantic quality.

Challenges

- Handling vague or grammatically broken inputs was especially difficult for rule-based approaches.
- Maintaining tone and nuance in paraphrasing without distortion is non-trivial.
- Some transformer outputs introduced overly simplified or altered meanings.

Automation with NLP Models

- Transformers like T5 can effectively automate semantic reconstruction.
- Rule-based methods are useful for predictable structures but do not generalize.

Comparative Analysis

- HuggingFace's T5 yielded the best fluency and coherence.
- TextAttack offered similar performance but slightly less control.
- Rule-based methods were interpretable but limited in flexibility.

- Conclusion

This study demonstrates that semantic reconstruction of unstructured texts is achievable using modern NLP models. While rule-based methods offer simplicity and control, transformer models provide high-quality paraphrasing at scale. Evaluation using embeddings and cosine similarity supports that meaning can be preserved effectively in many automated approaches.

References

- TextAttack https://github.com/QData/TextAttack
- Sentence-Transformers https://www.sbert.net/
- Preprocess https://github.com/dimitris1pana/nlp_lab_unipi/blob/6eee9d138a952fd06d7a4029b2 2611de62e1d651/lab2/textPreprocessing.ipynb
- Embeddings visualization –

 https://github.com/dimitris1pana/nlp_lab_unipi/blob/6eee9d138a952fd06d7a4029b2
 2611de62e1d651/Neuron2transformer/1.linearSimple.ipynb

Link for GitHub:

https://github.com/Mar1na04/fysiki_glossa