UNCLASSIFIED

AD 255 963

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

MOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

HIGH TEMPERATURE HEAT CAPACITY EQUATIONS AND THERMODYNAMIC PROPERTIES OF COMBUSTION GASES

В

Mary M. Williams Research Department

ABSTRACT. This report contains the standard state heat of formation, reference enthalpy, reference entropy, and heat capacity equations for 200 chemical compounds. These compounds are those experimentally shown to exist and those theorized as existing in high temperature combustion processes. Thermodynamic data are given for compounds consisting of the following chemical elements: hydrogen, oxygen, nitrogen, carbon, lithium, sodium potassium, rubidium, cesium, magnesium, aluminum, fluorine, chlorine, bromine, beryllium, boron, silicon, and calcium.

The temperature range covered in most cases is 500° K to 6000° K, for which two heat capacity equations were derived of the form $C_{\Gamma} = a + bT + cT^{-2}$. One equation is given for the low temperature range, and another for the high temperature range. In the case of different physical states occurring in this range (solid \rightarrow liquid \rightarrow gas), one equation is normally given for each non-gas and two for each gas.

U.S. NAVAL ORDNANCE TEST STATION

China Lake, California 10 February 1961

CATALOGED BY AST AS AD NO.

XEROX

13.60

INTRODUCTION

In the solution of high temperature combustion problems, such as the determination of flame temperature, the consideration of a large number of chemical elements and thus a large number of combustion products, results in the accumulation of large stacks of thermodynamic tables. Besides the large computer storage required, the seemingly endless interpolation of these data for an unlisted temperature or thermodynamic data point instigated a program for the condensation of these data into a more accessible and useful form. A heat capacity equation of the form

$$c_p = a + bT + cT^{-2}$$

was chosen, and a least square fit made of the changes in enthalpy as a function of temperature. For long temperature ranges, two heat capacity equations were derived. The fit error is most cases is quite small, and is sometimes better than the probable error in the original table. The fit is made in such a manner that errors, either typographical or proof-reading, in the original data are detected and corrections or omissions may be made, i.e., we have checked the original data source for continuity. Thermodynamic data of this type should be a smooth continuous function except when phase changes occur. Another advantage of the use of an equation over tabulated data is that the number of entries to be proofread are minimized.

The majority of data presented in this report were completed by January 1960. The references used were restricted to those of an unclassified nature.

METHOD

Let us assume data are available showing enthalpy at various temperature intervals from T_1 to T_2 , for which a heat capacity equation is to be derived $(C_p = (\partial H/\partial T)_p)$. The enthalpy at $(T_1 + T_2)/2 = T_m$ is assumed to be a precise value, and the change in enthalpy with respect to temperature from T_m to all other tabulated data points in the range covered is computed. A least square fit is then made for C_p in the form of

$$C_p = a + bT + cT^{-2}$$

Instead of using the standard reference temperature of 298.15, a standard reference temperature (To) of 30000K was chosen. (This should

not be confused with T_m although they may occasionally coincide). Each heat capacity equation derived was then used to compute an enthalpy (A), and an entropy (B), at 3000° K. The values A and B may be looked upon as integration constants from a standard reference temperature of 3000° K. This curve is assumed to be a continuous function and to pass through T° at A. The value of A, and consequently B, may have no real significance, i.e., certain phases of a species may not exist at that temperature, or A and B may be grossly in error when compared to known enthalpy and entropy values at this temperature. A and B should be considered as working tools which enable one to obtain accurate values of enthalpy and entropy in the interval T_1 to T_2 . It was for this reason that symbols other than H and S were chosen for these references. (For data tables where enthalpy is given at 3000° K, if this value is used instead of the A value, the average error incurred is increased by the amount ΔH_{298} - A). The enthalpy at temperature $T_{\rm x}$ may be computed as

$$\Delta H_{298-15}^{T_X} = A + \int_{3000}^{T_X} c_{p} dT$$

and the entropy at T, as

$$S_{T_X} = B + \int_{3000}^{T_X} (c_p dT)/T$$

By adding the heat of formation AH_{f298.15} to the first equation, one may obtain the total enthalpy

$$H^{T_X} = H_{f298.15} + A + \int_{3000}^{T_X} c_p dT$$

In the case of non-gas constituents the maximum temperature for the heat capacity equation is the melting point, or normal boiling point. The temperature range of a gaseous species is limited only by the data available. The reference enthalpy value, or integration constant A, may be somewhat more ambiguous when phase changes occur for a given species.

The heat of formation was purposely maintained as a separate item since the uncertainty in this number is greater than that for other thermodynamic data, and other corrections will not be necessary if changes are made in $\Delta H_{f298.15}$.

For example, aluminum with a melting point of 900° K and a boiling point of 2710° K may follow the path

$$Al(s) + \Delta H_0^{T_f} + \Delta H_f = Al(1)$$
 at T_f

Al(1) +
$$\Delta H_f^{T_V}$$
 + ΔH_v = Al(g) at T_v

or we could assume aluminum gas at room temperature with a heat of formation:

$$\Delta H_{1298} Al(g) = \Delta H_{1298} Al(g) + \Delta H_{g} + \Delta H_{g}$$

and then heat the gas from room temperature to some temperature $T_{\rm x}$. In one case the transition enthalpies have been used as corrections to the heat of formation, and in the other case they have been used as corrections to the changes in enthalpy. The same heat of formation for the solid and liquid form of a compound is used and the transition enthalpy occurs at the melting point. This enables one to compute split phases at the melting point. With four exceptions the normal heat of formation of the gaseous form is used. These exceptions are Al, Li, Na, and Mg gaseous atoms whose heat of formation are taken as zero.

Table 1 contains the constants A, B, a, b, c, the upper temperature limit (T_{ij}) and the lower temperature limit (T_{ij}) of the temperature interval over which the heat capacity equation was derived.

The accuracy of the fitted equation to the given tabular data is shown in Table 2, as a function of the given enthalpy (H_g) , the given entropy (S_g) , and the computed enthalpy (H_c) , and the computed entropy (S_c) . The error in enthalpy (E_h) and the error in entropy (E_g) are thus computed as

$$E_h = \frac{(H_g - H_c)100}{H_c}$$

$$E_{s} = \frac{(S_{g} - S_{c})100}{S_{c}}$$

The maximum values of E_h and E_9 , and the temperature at which each maximum occurred, are given for each heat capacity equation of Table 2. The fit error in most cases is quite small, and is frequently better than the probable error in the original data.

TABLE 1. Constants For the Computation of the High Temperature Heat Capacity, Enthalpy and Entropy of Combustion Products

4

Note: The constants A, B, a, b, c are given in IBM format. The number is given to 6 digits preceded by the sign of the number and an imaginary decimal point. The number is followed by the sign of the exponent and then the exponent. Thus $\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$ is $\frac{1}{2}\frac{1}{2}\frac{1}{2}$ x $\frac{1}{2}\frac{1}{2}$ and $\frac{1}{2}\frac{1}{2}\frac{1}{2}$ is $\frac{1}{2}\frac{1}{2}$ in $\frac{1}{2}\frac{1}{2}$ and $\frac{1}{2}\frac{1}{2}\frac{1}{2}$ is $\frac{1}{2}\frac{1}{2}$ in $\frac{1}{2}\frac{1}{2}$ and $\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$ in $\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$ in $\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$ in $\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$ in $\frac{1}{2}\frac{1}{$

Species	Phase	A (cal/mole)	a (cel/°-mol)	b (cal/ ⁰ -mol)	A a b cal/mole) (cal/0-mol) (cal/0-mol) (cal/0-mol)	B (cal/0-mol)	(° K)	T _U	Ref.
21	44	+134219+5 +134223+5	+496913+1 +496717+1	-714522-6 +202902-6	-282708+3 -172533+4	+386625+2 +288627+2	500 3000	3000	
≓ ^Q		+21234545 +212474+5	+642855+1 +876781+1	+864830-3 +252545-3	-250591+5 -700794+7	+484762+2 +484814+2	500 300G	3000	ત
O _c H	# #	+302726+5 +302359+5	+918719+1 +196232+2	+154169-2	-692461+6 -366959+8	+684367+2 +684340+2	500	3000	ત્ન
Ħ.		+214857+5 +214589+5	+680978+1 +8583 9+1	+742330-3 +211153-3	-143735+6	+613842+2 +613791+2	500 3000	3000	ત
×	~ ~	+134344+5 +134312+5	+494684+1 +221818+1	+122082-4 +604571-3	+665158+4 +918672+7	+480893+2 +480882+2	400	3100	#
N S		+221820+5 +221610+5	+797126+1 +901527+1	+349537-3 +324151~4	-428312+6 -246855+7	+637631+2 +637532+2	500 3000	3000	н
CN		+227519+5 +227211+5	+801039+1 +873566+1	+377348-3 +96 566-4	-154347+6 -242472+6	+688615+2 +688524+2	500 3000	3000	н
NO ₂	~ ~	+382491+5 +348732+5	+105130+2 +134375+2	+238926-2 +277591-3	-279960+6 -152953+7	+867589+2	500	1100	r-I

0	ب م	Н	4	ω 0.0	о о ч	о о ч	0 0 W	۰ د	о о ч	0 O	60 C
3000 6000	3000	3000	3000	2300	3000	9000	3000	3000	3000	3000	2500
500 3000	500 3000	5000	3000	500 2300	500 3000	3000	500	500 3000	500	3000	500 2500
+609364+2 +609280+2	+587279+2 +587080+2	+623709+2 +623640+2	+654189+2 +654130+2	+676304+2 +675665+2	+500939+2 +500952+2	+679798+2+679813+2	+516206+2 +516228+2	+737624+2 +737621+2	+497905+2 +497903+2	+684627+2 +684639+2	+547646+2 +547724+2
-275581+6 -294026+7	-765521+5 +726549+6	-335299+6 -254887+7	-398194+6 -202848+7	-308424+6 +334420+6	+351743+5 +513186+6	-275743+6 -773465+7	+101290+6 +553423+6	-976482+5 -855418+5	+817115+5 +138242+6	-218745+6 -254764+6	+625294+5 -275377+7
+654812-3 +124445-3	+766502-3	+558871 - 3 +932206-4	+479703-3 +10 34-3	+607342-3 +226927-3	+10 159-4 +127018-3	+485368-3 +457380-4	-101964-3 -34 596-6	+122413-3	-144929-4 +986247-7	+184982 -3 +166914-3	+179940-3
+718216+1 +888636+1	+658280+1 +762444+1	+742795+1 +8963 5+1	+773182+1 +890938+1	+7655 5+1 +835281+1	+495165+1 +455392+1	+812927+1 +102348+2	+528947+1	+893571+1 +893763+1	+501117+1 +496779+1	+888624+1 +893677+1	+471569+1 +566160+1
+217972+5	+211079+5 +210755+5	+218936+5 +218653+5	+222042+5 +221793 ² 5	+227096+5 +225358+5	+135186+5 +135226+5	+234447+5 +234489+5	+140188+5 +140261+5	+244164+5 +244165+5	+136811+5 +136824+5	+242516+5 +242503+5	+136798+5 +137016+5
нн			нн	rt r4		H H		~	44		
Ë	Ή	HCL	HBr	HI	0	oa	ជ	ದ್ದ	ĵ×.	e R	н

+ W 7. 1

(Contd.)
ų
TABLE

Species	Бразе	A (cal/mole)	(cal/o-mol)	b (cal/ ^o -mol)	(cal/mole) (cal/ ^o -mol) (cal/ ^o -mol) (cel/ ^o -mol) (cel/ ^o -mol)	B (cel/o-mol)	(y L	^T u (%)	Ref.
e R	~ ~	+247022+5 +247059+5	+894199+1 +900034+1	+131651-3 +112730-3	-143111+5	+83201742	500	1500	9
Br		+245192+5 +245181+5	+893573+1 +895534+1	+106527-3 +10 647-3	-326941+5	+793851+2 +793852+2	500 2500	2500	гH
H		+248157+5 +248894+5	+882350+1 +657255+1	+275585-3 +117741-2	-800052+5 -152084+7	+770990+2 +771270+2	500 2500	2500	80
CLF	~ ~	+241214+5 +241208+5	+891283+1 +894445+1	+114714-3 +104563-3	-172582+6 -213105+6	+721315+2 +721321+2	500 3000	3000	m
070	~ ~	+241010+5 +241002+5	+889924+1 +893445+1	+134711-3 +121780-3	-202588+6 -223817+6	+727536+2	500 3000	3000	3
ONF		+352626+5 +351792+5	+131499+2 +1391 2+2	+29 224-3	-623046+6 -138930+7	+878433+2 +878134+2	500 2500	2500	~
ບ	N N	+146485+5 +146485+5	+578587+1 +578587+1	+115385-3 +115385-3	-700661+6 -700661+6	+121340+2 +121340+2	500 500	4000	ដ
ပ		+135409+5 +135516+5	+478746+1 +543044+1	+109074-3	+577426+5 -352564+7	+492851+2 +492889+2	500 3000	3000	н
9	~	+223754+5 +223561+5	+813878+1 +887928+1	+302427-3 +548161-4	-441544+6 -133563+7	+653758+2 +653698+2	500 3000	3000	ᆏ
00 80		+365606+5 +365147+5	+136291+2 +121212+2	+504544-3 +58 07-3	-104589+7 +104398+8	+798472+2	500 3000	3000	H

K O D

H	႕	-	~	ㅋ	H	H	н	ત	-	-	H	႕
3000	3000	3000	3000	2100	1900	1800	1000	3000	1000	2500	1800	3000
500 3000	3000	500	3000	500	1100	500 1800	500	500 3000	500	500 2500	500 1800	500 3000
+680077+2 +680131+2	+853969+2 +853917+2	+601197+2 +601100+2	+689043+2 +688830+2	+769866+2 +764519+2	+828268+2 +826259+2	+856382+2	+105480+3	+794276+2 +794155+2	+884835+2 +864711+2	+100637+3	+759397+2	+669730+2 +669779+2
-417122+6 -106257+7	-800596+6 -182563÷7	-216113+6 -266297+7	-102342+7 -531348+7	-127486+7	-496670+7 -113829+8	-223447+6 -603852+7	-111586+7	-869533+6 -449379+7	-404424+6	-129766+7	-448416+6 -428453+7	-127984+6 -209829+8
+183458-3 +228455-3	+246384-3 -241697-5	+687220-3 +117306-3	+104360-2 +938800-5	+328539-2 +387540-4	+199409-2 +117678-3	+435128-2 +11 976-3	+872879-2 +352321-2	+768535 - 3 +795168 - 5	+668099-2	+452705-3 +125534-5	+194341-2 +154825-4	+943966-3
+856212+1 +635866+1	+1416 1+2 +149166+2	+7148 6+1 +890886+1	+105733+2 +138319+2	+115620+2 +195949+2	+199055+2 +251450+2	+1178 1+2 +202440+2	+149798+2 +226738+2	+1143 9+2 +138440+2	+863569+1 +553380+1	+186872÷2 +196598+2	+105440+2 +149715+2	+716072+1 +129640+2
+229752+5 +229790+5	+374188+5	+219918+5 +219527+5	+310321+5	+429528+5 +415443+5	+536247+5 +530962+5	+505104+5 +471220+5	+763725+5 +692813+5	+323673+5 +323206+5	+520408+5 +476391+5	+491852+5 +490556+5	+360111+5 +349109+5	+232350+5 +232551+5
	нн			нн	нн			44	нн	~ ~		
ບູດ	°5°	뚕	E		£	с, н ж, з	$c_{2}^{H_{1}}$	нсо	CH ₂ O	F200	HCN	CS.

TABLE 1. (Contd.)

Species	Phase	A (cal/mole)	a (cal/o-mol)	ь (сај/ ^о -шој)	cel/-mol) (cel/0-mol) (cel/0-mol) (cel/0-mol)	B (cal/°-mol)	Tr (ok)	Tu (x)	Ref.
C 2N2		+513932+5 +511095+5	+185046+2 +2093 +2	+896547-3	-107859+7	+988315+2 +987299+2	500	2500	
Ę	ਜਜ	+234572+5 +234497+5	+875177+1 +885346+1	+145001 - 3 +90 829-4	-340008+6 -591129+5	+701240+2 +701169+2	500 3000	3000	ત
&	44	+351473+5 +351314+5	+135328+2 +123376+2	+128891 -3 +267221-3	-779766+6 +647196+7	+856706+2 +856569+2	500	3000 5500	H
GF 5	~	+498611+5 +498679+5	+193317+2 +188530+2	+183065-3 +18 680-3	-123804+7 +257562+7	+102173 ² 3 +102165+3	500	3000 5500	н
CF ₁		+645760+5 +644938+5	+253890+2 +1777 1+2	+139463-3 +134631-2	-181104+7 +389524+8	+113838+3 +113813+3	500 3000	3000	ri
S S S		+580731+5 +580609+5	+199054+2 +217910+2	+154141-2	-104674+7-694876+7	+106294+3	500 3000	3000 5500	н
CHF ₃	~ ~	+613822+5 +610900+5	+227146+2 +257472+2	+113374-2 +116028-4	-200112+7	+109168+3	500 2500	2500 4500	н
CH ₂ F ₂		+583972+5 +579194+5	+205987+2 +256129+2	+189002-2 +342310-4	-233¢07+7 -782284+7	+102417+3	500 2500	2500	H
CH ₃ F		+558845+5 +552375+5	+186130+2 +255520+2	+259363-2 +419789-4	-252186+, -102832+8	+937897+2 +935617+2	500 2500	2500	н

٦	8	∞ [′]	8	ω	Q	ณ	W	લ	13	13	13	W
2500 5000	1600 5000	1400	2000	1100	1556 2700	3000	3000	2823	2500	3700 6000	2100	3000
500 2500	40¢ 160¢	500	400 400	1100	500 1556	500 3000	500 3000	500 2823	500 2500	500 3700	500	500
+838515+2 +838051+2	+110923+3 +110712+3	+737904+2	+130476+3 +130476+3	+107556+3 +106184+3	+180521+2	+440189+2 +440104+2	+661436+2	+299903+2 +349471+2	+972840+2 +972373+2	÷125141+3 +125149+3	+971703+2 +965817+2	+719242+2 +719246+2
-703130+6 -204248+7	-545130+6 -136626+7	-146616+6 -224338+6	-616229+6 -616229+6	-550313+6 -174799+7	-112854+5 -367640+4	-392597+3 +237650+8	-390569+6 -737726+6	-585171+6	-138382+7 +216126+7	-265956+7 -361810+7	-179813+7 -103576+8	-193600+6 -268438+6
+489249-3 +429504-5	+727195-3 -959135-5	+122476-3 +317184-4	+11 797-3 +11 797-3	+225299-2 +198544-4	+235639-2	+383367 - 6 +138584-2	+161855-3 +681567-4	+198427 - 2 +00	+362734-3 +918709-6	+208389-3 +298456-6	+335439-2 +516234-4	+107614-3
+135899+2 +148746+2	+184063+2 +198723+2	+8788 8+1 +894391+1	+255880+2 +255880+2	+164859+2	+420018+1 +750257+1	+496932+1 -1659 +1	+866229+1 +894243+1	+104899+2 +1600 ÷2	+189779+2 +198663+2	+310978+2 +317919+2	+182763+2 +264542+2	+889776+1 +894767+1
+371737+5 +370409+5	+514379+5 +508688+5	+238841+5 +237840+5	+678391+5 +678391+5	+529967+5 +498599+5	+217284+5 +215499+5	+134242+5 +134226+5	+231901+5 +231829+5	+355146+5 +494900+5	+492953+5 +491623+5	+781225+5 +781388+5	+598557+5 +583242+5	+239972+5 +239957+5
	~ ~	нн			M W		ਜਜ	N W	rd rd	нн	~ ~	нн
FCN	C12C0	CCD	[†] 122	FCLCO	Ве	쫎	BeO	BeO	Be ₂ 0 ₂	Be 303	BeO2H2	Bect.

TABLE 1. (Contd.)

Species	Phase	A (cal/mole)	a (cal/ ^o -mol)	b (cal/ ^o -mol)	(cal/mole) (cal/ ⁰ -mol) (cal/ ⁰ -mol) (cal/ ⁰ -mol)	B (cal/ ⁰ -mol)	(o, K.)	¹ 0 (2k)	Ref.
Bech	m m	+562500+5	+2000 +2 +2000 +2	000+		+688051+2	7007	1000	a
Bec12		+388115+5 +388084+5	+1460 1+2	+31 497-4 +192207-4	-486442+6 +123651+6	+898595+2	500 3000	3000	ณ
Be2CL4		+793486+5 +793543+5	+312181+2 +3180 4+2	+18 619-3	-222754+7 -299949+7	+128648+3 +128345+3	500 3500	3500 6000	13
Berci	H H	+380334+5 +380274+5	+1469 5+2 +149315+2	+731184-4	-745493+6 -113988+7	+866514+2 +866534+2	3000	30 0 0 6000	4
Ber		+234717+5 +234670+5	+877051+1 +894430+1	+135857-3 +771963-4	-333650+6 -546270+6	+684033+2 +684025+2	500 3000	3000 6000	Ю
BeF2	0 m	+761690+5 +566558+5	+839582+1 +210078+2	+12 42-1 -438064-5	+580358+3	÷608186+2 +546604+2	500 820	0820 1500	Q
BeF2		+374219+5 +374583+5	+144654+2	+15 234-3	-896657+6 -297020+8	+822010+2 +822124+2	500 3000	3000	a
Вен	~~	÷229424+5 +229210+5	+821629+1 +895287+1	+385306-3 +139425-3	-435813+6 -139118+7	+607264+2 +607137+2	3000	3000	CU
Be 3 %	0 m	+916757+5 +121876+6	+326471+2 +489054+2	+244364-2-40 116-2	-302742+7 -159661+5	+817701+2 +940774+2	50¢ 247¢	24.70	엄
Be ₂ C	NW	+529278+5 +702540+5	+166211+2 +292089+2	+267002-2	-166180+7	+434200+2 +506886+2	500	2400	검

NAVWEPS	KEP	ORT	7609

a	ત્ય	ω	Q	ω	a	ત્ય	a	a	ณ	a	CU
0800	3600	3500	1190	3400	1300	3000	3000	1081	3000	1285 2300	3000
500 800	1200 3600	500 3500	500	500 3400	600	500	500 3000	500 1081	3000	500 1285	500 3000
+261293+2 +325901+2	+482053+2 +481340+2	+767039+2	+686589+2 +745397+2	+743818+2 +743815+2	+644439+2	+779180+2 +779042+2	+647281+2+647290+2	+533021+2+571704+2	+757263+2 +757255+2	+465510+2 +512574+2	+730154+2 +730209+2
-280371+6 +132054+7	+649205+6 +475342+8	+644089+5 +661883+7	+102899+6 -269295+4	-131593+6 -203878+5	+337805+6	-572650+6 -397347+7	-315541+6 -111828+7	-102272+3	-705863+5 +117308+6	-549750+5 -527268+4	-872266+5 -563877+6
-366974-2 +366803-2	+227685-3 +207671-2	+477366-3 +106556-2	+591992-2 -984430-6	+131128-3 +131144-3	+594817-4 +00	+678813-3 +648489-5	+255744-3 +203250-3	+399941-2	+162970-3	+383186-2	+141056-3 +138463-3
+101529+2 +194810+1	+433987+1	+875773+1 +624287+1	+150938+2 +240027+2	+892748+1 +892339+1	+196656+2 +2000 +2	+116478+2+138328+2	+8853 5+1 +907747+1	+1090 6+2 +1600 +2	+898090+1 +893252+1	+104791+2	+897520+1 +904845+1
+109499+5 +250387+5	+393669+5 +391464+5	+259835+5 +258960+5	+674060+5 +710198+5	+243163+5 +243460+5	+560743+5 +562800+5	+331751+5 +331358+5	+242501+5 +242448+5	+472689+5 +482400+5	+248007+5 +247994+5	+452308+5 +493595+5	+246371+5 +246411+5
<i>ო</i> ო			0 W	44	m m			01 W		0 m	
Ne.	Na	Na ₂	Na ₂ 0	NaO	Naoh	F30H	NaH	Nacl	Nacı	Nef	Ne.F

TABLE 1. (Contd.)

Species	Phase	A (cal/mole)	a (cal/ ^o -mol)	b (cal/ ⁰ -mol)	a b cal/o-mol) (cal/o-mol) (cal/o-mol) (cal/o-mol)	1	(°K)	T _U (o _K)	Ref.
4	m m	+909582+5	+484945+1 -235160+0	+371123-4 +801207-3	-240878+5 +338221+8	+508440+2	2800	4400 6000	2
¥	m m	+213300+5 +213299+5	+7000 +1 +700716+1	+00 -214274-5	-114764+5	+252150+2 +252110+2	1000	1800	N
ALH		+233962+5 +233907+5	+858053+1 +895658+1	+276733 - 3 +16 561-3	-438293+6 -106893+7	+637919+2 +637906+2	500 3000	3000	ณ
A10		+238056+5 +238042+5	+887332+1 +894543+1	+104638-3 +81 514-4	-241789+6 -344072+6	+718594+2 +718590+2	500 3000	3000	ĸ
41,20		+352494+5 +352444+5	+135162+2 +138932+2	+129835-3 +853550-6	-737678+6 -116093+7	+890873+2 +890813+2	500 3000	3000	a
A1202	~~	+536813+5 +536744+5	+2057?6+2 +208573+2	+982899-4 +153325-5	-890923+6 -121348+7	+105431+3 +105428+3	500 3000	3000	4
A1203	N W	+851343+5 +110910+6	.+276426+2 +350063+2	+294620-2	-851733+6 -258244+5	+789515+2 +901698+2	500 2310	2310	ď
Alon	нн	+357485+5 +367335+5	+143427+2 +1491 3+2	+189182-3 -116219-5	-112680+7 -183316+7	+803553+2 +803587+2	500 3000	3000	4
иготи		+480886+5 +480500+5	+177152+2 +197817+2	+66 657-3 +12 515-4	-110173+7 -421171+7	+989874+2 +989811+2	3000	3000	4
Aloci		+392010+5 +391996+5	+148420+2 +148865+2	+215132-4 +308478-5	-358935+6 -353481+6	+920500+2 +920413+2	3000	3000	4

4	n	- ‡	#	a	a	W	ω	4	4	4	Q
3000	3000	3000	1400	3000	0900 1200	3000	2000	3000	3000	3000	1600
500 3000	500 3000	3000	465 465	500 3000	900	3000	500	500 3000	3000	500 5000	500
+876977+2 +876959+2	+750363+2 +750372+2	+994360+2 +994353+2	+109408+3 +109408+3	+120056+3 +120048+3	+207509+3 +211630+3	+713966+2 +713969+2	+930719+2 +930582+2	+117327+3	+114091+3	+919973÷2 +919965+2	+711348+2 +711348+2
-532534+6 -694215+6	-734761+5 -14477b+6	-157908+6	-240863+3 -240863+3	-307158+6 -802343+6	-572391+6 +393857+7	-176629+6 -240054+6	-353435+6 -436271+6	-402868+6 -425035+6	+526895+6 -533023+6	-386650+6 -529361+6	+281358+6 +281358+6
+312106-4	+119075-3	+409607 - 5 +958265 - 7	-703074-6 -703074-6	+209913-6	+849664-4 +796349-2	+103296-3 +892936-4	+589820-4 -152817-6	+161644-4 +453697-6	+26 910-4 +17 923-5	+264519-4 -972893-6	+239838-2 +239838-2
+148129+2 +149094+2	+893787+1 +895621+1	+138985+2	+312010+2 +312010+2	+198615+2	+434866+2 +310581+2	+890348+1 +894413+1	+137837+2 +1391 1+2	+198251+2	+197950+2	+138339+2 +139180+2	+214935+2 +214935+2
+386927+5 +386905+5	+244670+5 +244667+5	+371171+5 +371173+5	+915810+5 +915810+5	+527961+5 +527954+5	+143154+6 +152826+6	+240344+5 +240332+5	+365129+5 +364762+5	+524999+5 +524984+5	+521363+5 +521341+5	+364388+5 +364370+5	+686981+5 +686981+5
нн		~	ოო	~	H H	нн		нн	~ ~		~~
Alof	Alcı	Alcı	Alcı,	Alcı,	Al2Cl6	TT.	Alfa	Alfcl2	AIF	Alf	Alf

TABLE 1. (Contd.)

Species	Phase	A (cal/mole)	a (cal/°-mol)	b (cal/^0-mol)	a b c B (cal/°-mol) (cal/°-mol) (cal/°-mol)	B (cal/o-mol)	f, (3)	(3, d.)	Ref.
AlF3		+520493+5 +520477+5	+197950+2	+234524-4 -103827-4	-550466+6 -905876+6	+109166+3 +109171+3	500	3000	
ALA		+246519+5 +246205+5	+890821+1 +411327+1	+147176-3 +111600-2	-192953+5 +183966+8	+799662+2 +799559+2	500 3300	3300	ø
ALIN		+241481+5 +240668+5	+879450+1 +880225+1	+193065-3 +144811-3	-170209+6 +639544+5	+743302+2 +742974+2	500 1500	1500	ω
ALN	20	+357617+5 +357617+5	+113851+2 +113851+2	+154007-2	-752088+6 -752088+6	+323663+2 +323663+2	500 500	2500 2500	ឌ
ф	NM	+176002+5 +226300+5	+556825+1 +750084+1	+899820-3 -137728-6	-567836+6 -395246+4	+142702+2 +164724+2	500 2300	2300	QJ .
m,	пп	+134172+5 +134162+5	+498488+1 +430283+1	-807026-5 +124782-3	-616292+4 +285897+7	+481161+2 +481199÷2	3000	3000	a
e C		+238216+5 +238194+5	+882855+1	+143565-3 +109181-3	-252719+6 -263298+6	+679072+2 +679015+2	3000	3000	a
BH		+226762+5 +226555+5	+797846+1 +910080+1	+459472-3 +116574-3	-434357+6 -243134+7	+593351+2 +593261+2	500 3000	3000	<i>a</i> t
B203	~~	+631773+5 +631396+5	+242389+2 +255359+2	+52 395-3 +517444-4	-188172+7	+115600+3 +115593+3	500 3000	3000	ณ
B ₂ 03	m m	+838976+5 +838988+5	+305045+2 +305288+2	-251308-5 -948504-5	-193504+4	+817959+2 +817962+2	800 1600	1600	a

a	W	a	N	ณ	Ħ	લ	13	13	a	13	a	13
3000	3000	3000	2700	3000	2700	3000	2600	2700	3000	2700	3000	2700
500 3000	500	500 3000	1400 2700	9000 3000	600 2700	500	200	500 2700	3000	500	500 3000	500 2700
+670414+2+670383+2	+101380+3 +101374+3	+961993+2 +961856+2	+150338+3 +150338+3	+130380+3 +130339+3	+876254+2 +876101+2	+708788+2 +708748+2	+948167+2	+110484+3	+111944+3	+923757+2 +923645+2	+669181+2 +669251+2	+868475+2 +868385+2
-453535+6 -113618+7	-119619+7 -22069:+7	-135429+7 -438479+7	-772314+7 -7723.14+7	-268768+7 -358526+7	-702337+6 -144696+7	-184794+6 -764824+6	-411482+5	-808841+6 -115280+7	-640057+6	-562920+6 -862228+6	-370595+6 -880014+6	-790174+6 -145561+7
+213073-3 +455693-4	+348642-3 +358955-4	+813461-3 +406831-4	-818737-3 -618737-3	+218412-2 +183921-4	+225916-3 +829182-6	+119748-3 +735109-4	+20 69-4	+142784-3	+601003-4	+124882-3 +109000-5	+143556-3 +651148-4	+231734-3 +431824-6
+841876+1 +892046+1	+197318+2 +206687+2	+172219+2 +195040+2	+454036+2 +454036+2	+292556+2 +350320+2	+142668+2 +148972+2	+887453+11+904772+1	+137816+2	+194993+2	+197030+2	+135847+2 +139044+2	+871625+1 +898817+1	+132679+2 +139068+2
+226654+5 +226536+5	+520164+5	+468681+5 +468224+5	+946790+5	+823497+5 +822069+5	+378982+5 +378515+5	+240032+5 +239999+5	+363410+5	+511743+5	+517545+5	+357980+5 +357650+5	+232806+5 +232793+5	+349146+5 +348818+5
	ન ન	44		нн	ન ન		~		⊣	н н	rt rt	m m
ВО	B 02	H302	H2B2O4	H ₃ BO ₃	BOCI	707	BCL2	BFCL2	BCL2	BFC1	BF	BF.

TABLE 1. (Contd.)

pecies	Phased	A (cal/mole)	a (cal/ ⁰ -mol)	b (cal/ ^o -mol)	A a b c B (cal/mole) (cal/o-mol) (cal/o-mol) (cal/o-mol)	B (cal/o-mol)	() K)	² u (⁰ k)	Ref.
BF.3	пп	+497268+5	+192551+2	+209201-3 -18 534-4	-126812+7	+100352+3	500 3000	3000	ત
BF2C1		+504607+5	+192980+2	+217175-3 -217981-6	-101509+7	+106350+3 +106332+3	500	2700	57
BOF	44	+373228+5 +371721+5	+137542+2	+448045-3 +149312-5	-732207+6 -186303+7	+836684+2 +836140+2	500 2500	2500	13
BBr		+241911+5 +241907+5	+891375+1 +897652+1	+109840-3	-136745+6	+739527+2 +739510+2	500 3000	3000	#
NC		+231289+5 +230650+5	+860774+1+627093+1	+182834-3 +475456-3	-391060+6 +151574+8	+691278+2+691064+2	500 3000	3000	a
BN	20	+379808+5 +379808+5	+574763+1 +574763+1	+519103-2 +519103-2	-214188+6 -214188+6	+296772+2 +296772+2	200 1678	1678 3555	5
ផ	m m	+192676+5 +192676+5	+671181+1 +671181+1	+606335-4 +606335-4	+107173+6 +107173+6	+240926+2	500 500	1500	a
13		+519590+5 +514160+5	+309019+1	+612590-3 +261448-2	+265138+7 +700116+8	+446539+2	1700 3800	3800	Q
1 12		+249526+5 +249520+5	+8938 6+1 +894895+1	+206877-3 +203799-3	-400646+5	+680011+2 +680013+2	3000	3000	~
140	44	+231950+5 +231879+5	+869083+1 +902512+1	+146589-3 +491713-4	-387681+6 -109989+7	+655971+2 +656008+2	3000	3000	a

N	Ø	#	≉	'n	#	М	W	4	ณ	ä
1700 3500	3000	2000	2000	3000	3000	1200	3000	3000	9000	2000
500 1700	3000	800	9006	3000	3000	500	3000	500 3000	500	500 000
+581576+2 +636044+2	+816515+2 +816408+2	+594206+2	+525804+2	+711942+2 +711936÷2	+111408+3 +111416+3	+437282+2 +458232+2	+676758+2 +676758+2	+103482+3 +103480+3	+599675+2 +599631+2	+728395+2 +728395+2
-301457+6 -123637+4	-913976+6 -230510+7	-692181+3 -692181+3		-126362+6 -170826+6	-4.02654+6 -4.92650+6	+164552+6 -416022+4	-214228+6 -358321+6	-729622+6 -973175+6	-373187+6	-706890+6 -706890+6
+619611-2	+195712-3	-613881-6 -613881-6	000	+136293-3 +13 793-3	+132515-4 -53 346-6	+56 416-2 -192780-5	+136827-3 +118128-3	+454177-4	+202566-3 +122803-3	+244311-2+244311-2
+147726+2 +2400 6+2	+133253+2 +140418+2	+207413+2 +207413+2	+1600 +2 +1600 +2	+892885+1 +894893+1	+198345+2	+848089+1	+889290+1 +895618+1	+1974 3+2 +198855+2	+871383+1 +896789+1	+243352+2 +243352+2
+665786+5 +737200+5	+346209+5	+603546+5 +603546+5	+459100+5 +459100+5	+243781+5 +243779+5	+524978+5 +524968+5	+482242+5 +460993+5	+240659+5 +240648+5	+515298+5 +515264+5	+235371+5 +235319+5	+744988+5+744988+5
N W	нн	m m	<i>ო</i> ო	нн	нн	26	нн	нн	нн	N N
L120	L120	ET CH	דינו	Lici	ಗ್ಶಾದ್ಶ	Lif	Lif	$\text{Li}_2^{\text{F}}_2$	ги	Liges

TABLE 1. (Contd.)

Species	Phase	A A A (cal/mole)	a (cal/^-mol)	b (cal/ ^o -mol)	cel/-mol) (cel/-mol) (cel/-mol) (cel/-mol)	B (cal/ ^o -mol)	(°K)	^π g (γ, κ)	Ref.
తో		+134866+5 +137490+5	+490769+1 -215150+1	+406131-4 +223467-2	+151838+5 +111486+8	+484354+2 +485879+2	500	2100	ત
CaO		+247863+5 +247650+5	+867842+1 +9762 6+1	+336804-3	-536381+5 -483860+7	+751604+2+751658+2	500 2800	2800 5000	80
CaCL		+245884+5 +245940+5	+887617+1 +592476+1	+152219-3 +908508-3	-237839+5 +695825+7	+784714+2 +784795+2	500 2700	2700 5600	`ω`
Gar	ન ન	+243225+5 +243180+5	+884590+1 +624074+1	+145772-3	-752302+5 +633395+7	+752382+2 +752412+2	500 3000	3000	ω
Call		+238099+5 +239360+5	+858612+1 +845285+1	+328046-3 +501777-3	-281413+6 -395588+7	+677082+2 +677136+2	500 3100	3100	ω
ສ	m ~,	+135681+5 +140250+5	+484829+1	+866756-4 +198086-2	+273435+5 +669612+7	+534671+2 +536502+2	500	1900	α
දි	~ ~	+274592+5 +273340+5	+826463+1 +113854+2	+101626-2 +665275-3	+199116+6	+902988+2 +903165+2	500 2800	2800	ω
CBCL	НН	+250037+5 +250030+5	+894218+1 +893350+1	+199230-3 +20 558-3	-146812+5 +411679+5	+823212+2 +823213+2	500 3400	3400 6000	α
CBF		+252206+5 +252220+5	+894330+1 +891037+1	+254400-3	-252288+5 +181182+6	+797848+2 +797845+2	500 3300	3300	တ
CSH		+245361+5 +245990+5	+887012+1 +800759+1	+264159-3 +46 265-3	-200806+6 +234168+7	+716573+2 +716572+2	500	3100	ω

Si		+138059+5 +140156+5	+479853+1 +567615+1	+151499-3 -168314-4	+642310+5 -158251+7	+519033+2 +519921+2	500 1400	1400	Q
Si	0 m	+187953+5 +289596+5	+543032+1 +700977+1	+974847-3 -166414-5	-582564+5 -418526-5	+192860+2 +255052+2	500 1683	1683	N
St2	- н	+242960+5 +243070+5	+892876+1 +106080+2	+995345-4	-899054+5 -173843+8	+763904+2 +785100+2	500 4500	4500 6000	Φ
810		+236504+5 +233672+5	+841858+1 +894372+1	+341293-3 +484269-4	-233144÷6 -482843÷6	+698614+2 +697372+2	500	1600	O.
S10 ₂		+385010+5 +378136+5	+138399+2 +146972+2	+615396-3 +54 141-6	-607811+6 -115685+7	+848537+2 +845674+2	500 1400	1400	ณ
S102	N W	+474170+5 +482400+5	+146427+2	+182757-2 -565990-6	-126700+6 -656476+4	+475913+2 +482000+2	900	1883	a
S.C1		+244304+5 +346975+5	+893177+1 +800446+1	+974158-4 +273867-3	-449669+5 +392327+7	+774427+2 +774396+2	500 3400	3400	ø
SIF		+239415+5 +339170+5	+890142+1 +801283+1	+932176-4 +259673-3	-173502+6 +367834+7	+739685+2 +739658+2	500 3300	3300	ω.
3101	~ ~	+24%304+5 +243070+5	+893177+1 +800446+1	+974158-4 +273867-3	-449669+5 +392327+7	+774427+2 +774396+2	500 3400	3400	ω
SIF		+239415+5 +240050+5	+890142+1 +801283+1	+932176-4 +259673-3	-173502+6 +367834+7	+739685+2 +739658+2	500 3300	3300	Φ
sici ₂		+369902+5	+139039+2 +175573+2	+169344-5 -464241-3	-193138+6 -330 ⁷ 28+8	+980409+2 +102053+3	500 4500	4500 6000	Φ
Sici	~ ~	+683534+5 +684400+6	+258173+2 +325283+2	+411957-5 -851701-3	-469829+6 -609087+8	+136178+3 +143631+3	500 4500	4500 6000	α
$\mathrm{SiF}_{\boldsymbol{\mu}}$		+658470+5 +663390+6	+2569 1+2 +321424+2	+355945-4 -802334-3	-123222+7 -584600+8	+120637+3 +128227+3	500 4500	4500 6000	80

TABLE 1. (Contd.)

Species	Phase	A (cal/mole)	A a b c (cal/o-mole) (cal/o-mol) (cal/o-mol)	b (cal/ ^o -mol)	c (cal/ ^o -mol)	B (cal/ ⁰ -mol)	7. (°K)	T _U	Ref.
×	~	+134793+5 +136480+5	491875+1	+347325-4 +936751-3	+115351+5 +382657+7	+497875+2 +498571+2	500 2000	2000	ય
ភិព		+265018+5 +264690+5	+8766 3+1 +928416+1	+596758-3 +601548-3	+524595+5 -418527+7	+816678+2 +816746+2	500 2800	2800	ω
KCT		+249247+5 +251490+5	+894096+1 +878695+1	+189809-3 +215288-3	-258281+5 +792608+6	+781210+2 +781201+2	500 3300	3300	တ
ğ		+246681+5 +246730+5	+894019+1 +895082+1	+15 729-3 +148669-3	-524618+5 -100931+6	+749207+2 +749210+2	500 3100	3100	΄ φ
EX.	нн	+243349+5 +244260+5	+8860 +1 +799480+1	+25 700-3 +43 811-3	-238483+6 +278692+7	+673656+2 +673650+2	500	3100	ω
Æ	44	+134962+5 +136980+5	+490290+1 +178455+1	+454100-4 +109620·2	+155836+5 +423401+7	+521243+2 +522067+2	500	2000	Q
Rb2	44	+262571+5 +262160+5	+379610+1	+525822-3 +805667-3	+491953+5 -193177+7	+865854+2 +865910+2	3000	3000	ω
RbCl	~ i ~ 1	+250197+5 +250210+5	+394336+1	+204576-3	-183295+5 +161788+7	+807927+2	3400	3400	ထ
RoF	44	+247362+5 +247040+5	+889251+1 +914558+1	+172425-3 +118323-3	-192707+5 -139075+7	+775902+2 +775887+2	500	2900	΄ α
RbH		+245008+5 +245770+5	+886656+1	+271059-3 +462385-3	-219463+6 +278122+7	+700592+2	3300	3300	ထ

.#	Ø	10	Q	#	તા	. =	a	a	Q	m	1	ង	4
0923 2500	3700 6000	3000	2200 4000	0987 2500	3000	3000	1536 3000	3000	3000	3000	3000	2500 2500	1900
500 923	1400	500 3000	500	500 987	500 3000	500 3000	500 1536	500	500 3000	500	500	1061	200
+280625+2	+469820+2 +469131+2	+709951+2	+339101+2 +339230+2	+677391+2 +789522+2	+948625+2 +948662+2	+924985+2 +924949+2	+583246+2 +674849+2	+882615+2 +882519+2	+653771+2 +653765+2	+729612+2	+763106+2 +763092+2	+867237+2	+116074+3
+255559+5 +898532+3	+836958+6 +432386+8	-17301976	-155484+6 +322159+6	-206581÷6 -114521÷4	-198618+6 +137661+6	-292907+6 -312186+6	-20636646 -892923+4	-399428+6 -783704+6	-391929+6 -854165+6	-148268+6 -180145+6	-658103+5 -643700+5	+508409+5	-978377+6 -978377+6
+346754-2	+19 967-3 +187928-2	+108769-3	+17 715-2 +177911-2	+143082-2-499612-6	+326829-5 +168655-4	+116874-4 +974333-6	+256816-2	-301721-4 -86 266-5	+277050-3 +183462-3	+101667-3	+117792-3 +112447-3	+216731-4 +216731-4	+639913-2 +639913-2
+465644+1 +527323+1	+436613+1 -482896+1	+891246+1 +895668+1	+1023 6+2 +100029+2	+188936+2 +221013+2	+148940+2	+148728+2	+168667+2 +226055+2	+148285+2 +149586+2	+867887+1	+891850+1 +894563+1	+892813+1 +8938 8+1	+294829+2 +294829+2	+368014+2 +368014+2
+293037+5 +291908+5	+490414+5 +488548+5	+240928+5 +240921+5	+347738+5 +348036+5	+600871+5 +712399+5	+396781+5 +396774+5	+393933+5 +393924+5	+563585+5 +701900+5	+390723+5 +390676+5	+237354+5	+241391+5 +241381+5	+244544+5 +244535+5	+789271+5 +789271+5	+128671+6 +128671+6
20	~ ~		77	20	~ ~		01 W		rd rd	44		7 %	77
8	χ	MgO	MEO	MgCl2	Mecl2	MEFCL	Mgzz	MBZ2	MgH	∄ 8 ₩	MgCI	Mayna	Meal ₂ 04

TABLE 2. Maximum Fit Error, Expressed as a Percentage of the Original Tabulated Value

Species	$\mathbf{T}_{\mathbf{c}}\mathbf{K}$	EH	T ^o K	ES	T ^o K	E _H	T^oK	£S
A).	4200	•000	4300	•014	5400	•006	4900	•009
Al ₂ O	0500	•960	0500	. • 060	4300	•014	5100	•008
Al ₂ O ₂	1200	•053	0700	•119	2400	•001	2800	.057
Al ₂ 02	0500	•210	0700	•035	5400	•004	3200	•013
ALCI	2400	•002	1400	•017	4700	•002	5800	•002
Alcl ₃	2200	•002	0500	•002	4900	•008	4900	•00.
Alclá	1200	•005	0500	•003	4600	•001	4900	•006
AlCl3	0800	•000	0600	•001				
ALF	0500	•110	0500	± 0 0 5	5300	•002	4800	•002
AlF3	0800	•046	0800	•020	1100	•020	1400	•016
Alf3	1900	•002	0800	•001	4700	•010	5200	•008
AlF2	0500	•073	0500	•013	4400	•001	5400	•009
AlF ₂ Cl	0500	•062	0500	•013	5900	:004	5900	•00
AlfCl ₂	0500	•034	2000	•090	5600	•004	5800	•00
Alo	0500	•220	0500	•013	5300	•001	5500	•00
Aloh	0500	•600	0500	•099	5200	•002	4100	•049
Alo ₂ H	0500	•730	0500	•013	5900	•004	4400	•009
ALOF	0500	•100	0600	•021	5200	•002	4200	•014
ALOCL	0500	•053	1500	•017	6000	•002	4200	.014
Alh	0500	•056	0700	•008	4100	•017	5300	•009
Al			1000	•030	3700	•000	2000	•03
В	2200	•073	0600	•023	4900	•033	4200	•010
В2	0700	* 026	0600	•018	5900	•011	5400	•01
B202	0500	1.43	0500	•147	4600	•009	4400	•00
B ₂ O ₃	1000	0000	1100	•012	2500	•000	2200	.01
B203	0500	1.73	0500	•173	4600	. 006	5600	•004
BBr	05 00	•022	0600	•003	5000	•001	5600	•00
BCl	2500	•033	0500	•014	4400	•.017	3300	•01
BCl3	0500	•327	0500	•019	5000	•007	5400	•00
Be	2200	•065	1900	•021	5000	•041	4100	•02
BeCl	0500	•140	0500	•009	5500	•001	6000	•00
BeCl ₂	0500	•000	0900	•013				
BeCl2	1500	•052	0700	•016	4100	•009	3500	÷00°
BeF	0500	•500	0500	•034	5400	•001	4100	•00
BeF ₂	0600	•000	0500	•040				
BeF ₂	0700	•350	0500	•053	3700	•189	3600	•03
BeFC1	0500	•220	0500	•051	4400	•002	3100	•026
BeO	0500	•780	0500	•052	4000	•002	6000	•00
Be0	2200	•071	0500	•240	22ŏ0	•000	4100	•01
ВеН	3000	•098	0500	•110	3800	•016	6000	.015
Be	1200	•120	1500	•070	2700	•005	1700	.036

TABLE 2. (Contd.)

Species	т ^о к	EH	T^o K	Es	т ^о к	E _H	TOK	ES
BN	2100	•079	0500	•033	4700	•000	3000	.020
BF	0790	•386	0600	•039	5100	•017	4900	•011
BF3	0506	•982	0500	•094	4600	•009	5700	• 907
BO	0500	1.54	0500	•069	3600	•018	5200	•007
BH	0500	•750	0500	• 140	3000	• 005	6000	•004
В	0600	1.23	0500	•565	2300	•003	2300	•066
Br2	1400	•005	1700	•001	4100	•002	3100	•0009
C	3000	•062	0500	•029 •570	6000	.010 .120	3000	•0004 •082
C	1500 0500	•240 •990	0500 0500	•062	2700 3500	•062	2600 4600	.021
_C 5	2500	•120	2200	•210	3900	•028	4500	.007
C ₂ N ₂	0500	•980	0500	•087	5500	•028	3700	.019
C ₂ F ₂ C ₂ H ₂	1600	•450	1800	•210	2400	•026	3100	.091
C5Hf	0600	•002	0600	•018	1300	•015	1000	•012
	0500	1.2	0500	•097	4700	÷001	4800	.0006
C ₅ C1	0500	•790	0500	•045	5000	•003	5200	•001
Cl ₂	1500	• 209	1600	•003	4700	•002	4300	.002
ClF	0500	•100	0500	•005	6000	.002	4800	.003
C10	0500	•150	0500	•010	4300	•002	5200	•0Ô3
CN	3000	•056	0500	•018	3000	•030	3000	•003
CF	260)	•043	0500	•038	4800	•023	5500	•045
CF ₂	2300	:061	0500	•043	4700	•042	5500	•350
CF3	2200	•160	0500	•093	4200	•017	5500	•031
CF4	0900	1.2	0900	•650	5500	•490	5500	•120
co	0500	1.7	0500	•110	5000	•003	5900	•001
C05	0500	1.9	0500	• 150	5000	•060	5300	.029
CH	0500	4.7	0500	• 170	3000	•003	3900	•000
CH2F2	2500	4150 4•1	0500	•230 •310	2800	•001	2700	•008 •000
CH ₂	0500 0800	•062	0500 0500	•045	5600 1100	•000 •470	3900 1200	•150
CH ₂ O	2500	•210	0500	•330	3400	•001	4500	•007
CH ₃ F	1000	•047	0600	.010	1200	•012	1900	•003
CHT	0500	1.4	0500	•140	3800	•001	3900	•007
CHF ₃	1000	130	0500	• 390	1200	.830	1460	1.60
Li	1900	•016	3400	•018	6000	•026	5700	.016
Li ₂	2300	•004	2800	•002	4700	•001	5300	• 202
Li ₂ 0	1100	•065	0600	•067	3500	•000	1990	.015
L120	0500	•15	0500	•34	5200	• 055	3400	.23
LigFg	0500	•110	0500	•021	5900	•004	3900	•006
Priggi ⁵	0500	•029	2800	•009	5700	•004	4600	• C 2 O
Licl	0500	•057	1400	•003	3600	•002	5100	•002
LiCl	0700	•000	0700	• 0 25	2000	•024	0900	•022
Lif ·	0500	•170	0500	•012	4600	•002	4100	•002
Lip	1000	▲ 069	1000	.410	1200	:001	2200	<u>-150</u>

TABLE 2. (Contd.)

Spec ie s	т ^о к	EH	ток	ES	TOK	EH	T ^o K	Es
LiO	0700	•14	0700	• 29	5300	•081	3300	•18
Lioh	0900	•000	1900	•002				
Lih	0500	.074	0500	• 220	4000	•13	5000	•73
Mg	3700	.022	3100	•036	5100	•013	4700	•01
MgAl ₂ 04	0900	•003	0500	•003				
MgCl	2100	•012	0700	•005	4300	•002	5400	•00
MgCl ₂	0800	•002	0500	•003	1000	€000	1360	•00
MgCl2	1600	•032	1900	•006	4400	•015	6000	•00
MgF -	0500	•074	0500	• 0 0 4	4700	•002	4200	•00
MgF ₂	0800	•046	1500	•013	1600	000ء	1600	•01
MgF2	2506	•022	0500	•022	4600	•013	5400	•00
MgFCl	2100	•009	1700	.013	3300	•003	4100	•01
Mgo	0500	e110	0500	:006	4900	•003	5700	•00
MgO	1800	•029	2100	•022	2800	•021	3800	•02
MgH	1300	•120	0500	•053	4700	•021	4300	• 09
Mg	0800	•006	0860	• 0 2 5	1700	•051	1400	• 04
P.	3800	•045	2100	• 004	6000	•003	4300	•00
Na.	3600	•029	1700	•018	5400	020	5300	.01
Na ₂ 0	0900	•027	0600	•038				
Na C l	0800	•000	1100	•018				
NaCl	1900	•043	2500	•012	4400	•017	5700	•01
Naf	0700	•110	1200	•026				
NaF	1100	•070	2500	.013	5200	.016	6000	•00
Na.OH	1100	•019	€300	•C19				
NaOH	3000	•110	0500	• 150	4300	.017	6000	•00
NaH	0800	•160	0600	•027	4400	•020	4300	•00
Na.	0700	•000	0700	•074				
M ₂ .	0500	1.8	0500	• 120	5100	.017	4700	•01
нō	0600	4.0	0500	• 330	5000	•014	3000	•00
NO ₂	0900	•068	0500	•027	1200	•180	1200	• 05
NH_	3000	•140	0500	• 140	4300	•002	4900	•00
NH3	1300	•140	1500	• 200	3000	•079	1900	•07
F -	0500	•160	0500	•010	4400	•002	5000	• 00
F ₂	0500	•180	0700	•009	4400	•002	5700	•00
₹ <u>2</u> 00	0500	•850	0500	•075	4000	•001	2700	•00
FCN	0500	.870	0500	•075	3760	•601	3400	•00
0	3000	•017	0500	•006	5400	•033	3700	٠ÛÜ
0 ₂	0600	•180	0500	•017	5900	•009	3000	•00
onf	0506	•620	0500	•049	4400	•001	4300	•00
OH	3000	.140	0500	•110	5700	.220	3000	•00
Ħ	2400	.000	1000	•002	4300	.003	5100	• 20
H ₂ H20	3000	•130	0500	•100	3100	•380	3000	• 0 2
Ħ <u>2</u> 0	3000	•240	0500	• 270	5000	•160	5000	• 0 2

TABLE 2. (Contd.)

Species	T ^o K	EH	$\mathtt{T}^{\mathbf{o}}\mathtt{K}$	ES	т ^о к	$\mathbf{E}_{\mathbf{H}}$	Tok	Es
HBO ₂	0500	•206	0500	•170	4000	.010	4700	•008
HBr	0500	2 • 1	0500	•130	4800	•000	4200	.001
	3000	•170	0500	• 344	4700	•007	4200	•007
H3BO3 HCl	0500	2.10	0500	•140	3700	•003	5100	•001
HCN	1500	•100	0500	•032	2300	•028	3000	1.3
HCO	0500	2.7	0500	•190	3400	•002	3000	.010
HF	3000	•140	0500	•086	3000	•017	3000	•002

RESULTS

The constants are given for the computation of thermodynamic properties for combustion gases at high temperatures by use of the following equations.

$$C_{p} = a + bT + cT^{-2} cal/^{o}K$$
 (1)

$$\Delta H_{298.15}^{T_X} = A + \int_{3000}^{T_X} C_p dT$$
 (2).

$$\Delta H_{298.15}^{T_X} = A + a(T_x-3000) + \frac{b}{2}(T_x^2-3000^2) + c \left[\frac{3000-T_x}{3000T_x}\right] cal/mole$$
 (3)

$$H^{T_x} = H_{1298.15} + A + \int_{3000}^{T_x} C_p dT$$

$$s^{T_{X}} = B + \int_{-3000}^{T_{X}} c_{p} \frac{dT}{T}$$

$$= B + a \ln(\frac{T_{X}}{3000}) + b(T_{X} - 3000) - \frac{c}{2} \left[\frac{1}{T_{X}} - \frac{1}{3000^{2}}\right] cal/mol - {}^{0}K$$

The standard heats of formation of the combustion species are given in Table 3. Last minute revisions were made to incorporate those values recommended by the JANAF Thermochemical Panel (Ref. 14).

TABLE 3. Standard Heat of Formation of Combustion Species
(Phase 1 = gas, Phase 2, 3 = solid, liquid)

Species	Phase	Ref	ΔH _{f298.15} Kcal/mol	Species	Phase	Ref	ΔH f298.15 Kcal/mol
Al.	1	14	+78.000*	Al.	2,3	14	
Alf ₂ Cl	1	14	-235.0	Alcl	1.	14	-11.3
Alci ₂	ı	14	-78.0	Aloci	1	14	-55.0
Alcl ₃	1	14	-139.022	Alcl ₃	2,3	14	-168.583
Alf	1	14	-61.300	Alfcia	1.	14	-161.8
Alf ₃	1	14	-285.448	Alf ₃	2,3	14	-35ú . 3
AlF2	1	14	-157.0	AloH	1	14	-3.447
Alh	1	14	+61.700	Aln	2	14	-76.000
H ₂ O1A	1	14	-109.000	Alo	1	14	+17.387
Aln	1	14	+104.5	Hg	2,3	14	-536.000
Al ₂ Cl ₆	1	14	-312.110	11203	2,3	14	-400.400
M ² 0	1	14	-39.400	Alor	1	14	-121.000
Al ₂ 0 ₂	1	14	-105.280	Al ₄ C ₃	2,3	14	-48.600
AlF ₂	1	14	-157.000	В	2,3	1.4	
В	ı	14	+132.618	BFCl	1	14	-76.810
BCl	1	14	+42.5	BOCL	1	14	-84.811
BF ₂ Cl	1	14	-212.393	BFC12	1	14	-154.730
BC12	1	14	-19.620	BF	1 .	14	-45.469
BC13	1	14	-97.100	BF2	1	14	-133.843
BOF	1	14	-142.923	BF ₃	2,3	14	-270.000
вн	1	14	+114.761	H ₃ BO ₃	1	14	-238.600
нво ⁵	1	14	-140.780	во 🧪	1	14	+3.744
H ₂ B ₂ O ₄	1	8	-300.0	PN	2,3	34	-60.3
en	1	14	+151.748	B ₂ 0 ₂	1	14	-110.757
B ₂	1	14	+199.300	B ₂ 0 ₅	2,3	14	-305.344
B ₂ O ₃	1	14	-208.266	Be	2,3	14	
B ₄ C	2,3	14	-12.200	Be ₂	1	8	+138.
Ве	1	14	+77.922	BeFC1	1	14	-124.000

TABLE 3. (Contd.)

Species	Phase	Ref	^{ΔH} f298.15 Kcal/mol	Species	Phase	Ref	ΔH _{f298.15} Kcal/mol
BeCl	1	14	+36.989	BeF	1	14	+4.81.6
BeCl ₂	1	14	-80.380	ВеН	1	14	+77.570
$\mathtt{BeF}_{\underline{c}}$	ı	14	-182.800	Be0	2,3	14	-143.100
BeO2H2	1	14	-156.700	BeO ₂ H ₂	2,3	14	-216.800
BeO _	1	14	+30.440	Be ₂ C1 ₄	1	14	-185.000
Be ₂ C	2,3	14	-22.2	Be ₃ 0 ₃	ı	14	-259.800
Be ₂ 0 ₂	1	14	-102.400	c	2	14	
Be ₃ N ₂	2,3	14	-132.000	co2	1	14	-94.040
c ¯	1	14	-170.890	c ₃	1	14	+189.670
CO	ı	14	-26.416	CHO	1	14	+66.000
c ₂	1	14	+197.028	СН ₄	1	14	-17.889
CH	1.	14	+142.100	с ₂ н ₄	1	14	-12.496
СНЗ	1	14	+32.000	CH ₂ O	1	14	-27.400
с ² н ⁵	1	14	+54.190	ci_co	1	14	-52.400
НСО	1	14	-3.520	HCN	1.	14	+31.200
F ₂ CO	1	14	-150.200	c2N2	1	14	+73.840
FC1C0	1	14	-106.500	CF	1	14	+76.121
CN	1	14	+94.000	c _e 3	1.	<u>1</u> h	-120.500
FCN	1	14	-25,000	CHF ₃	1 .	14	-162.600
CF ₂	1	14	-23.000	сн _э ́г	1	14	-59.000
CF ₄	1	14	-218.000	CC2	1	14	+121.6
CH ₂ F ₂	1	14	-105.500	ccl ₄	1	14	-25.500
c_2F_2	1	14	-51.300	H ₂	1	14	
н	ı	14	+52.102	OH	1	14	+9.330
H20	1	14	-57.798	02	1	14	
0	1	14	+59.559	N ₂	1	14	
N	1	14	+113.054	NO ₂	1	14	+8.060
NO	1	14	+21.652	NH ₃	1	14	-11.997
NH	1	14	+79.200				

TABLE 3. (Contd.)

Species	Phase	Ref	^{AH} f298.15 Kcal/mol	Species	Phase	Ref	ΔH f298.15 Kcal/mol
Cl	1	14	+28.951	cı ²	1	1.4	
ClO	1	14	+24.349	ClF	1	14	-13.500
HCl	1	14	-22.060	HF	1	14	-65.140
F	1	14	+18.860	F ₂	1	14	
ONF	1	14	-15.650	_			
Li	1	14	+38.410*	Li	2,3	14	
ri ² c ⁵	2,3	14	-14.200	ri ⁵	1	14	+50.400
L10	1.	14	+14.000	ri ⁵ 0	2,3	14	-142.600
Li ₂ 0	1	14	-34.100	L10H	1	14	-57.700
Lih	1	14	+32.100	Lioh	2,3	14	-116.600
LiF	1	14	-79.300	Lif	2,3	14	-145.100
Li ₂ F ₂	1	14	-213.500	Licl	1	14	-43.800
ri ^S cj ^S	1	14	-140.700	rici .	2,3	14	-97.400
Mg	1	14	+35.330*	Mg	2,3	14	
MgO	1	14	+4.190	MgO	2,3	1.4	-143.700
MgCl ₂	1	14	-100.700	MgCl ₂	2,3	14	-153.220
MgH	1	14	+40.700	MgCl	1	14	+1.000
MgF ₂	1	14	-177.000	MgF ₂	2,3	14	-262.600
MgFCl	1	14	-138.900	MgF	1.	14	-21.000
na	1	14	+25.755*	Na.	2,3	14	
Na ₂	1	14	+32.870	NaH	1	14	+29.880
NaO	1	14	+13.200	Na ₂ O	3,2	14	-100.717
NaCl.	ı	14	-44.050	NaCl.	3,2	14	-98.230
NaF	1	14	-67.000	naf	2,3	14	-136,300
NaOli	ı	14	-55.440	NaOH	2,3	14	-102.240
Si	1	14	+110.000	·Si	2,3	14	
Si ₂	1	14	+137.000	Sicl	1	14	-37.660
SiCl ₄	1	14	-145.700	SiF	ı	14	-372.900
Sicl	1	14	+48.100	SiF	1	14	+10.300

TABLE 3. (Contd.)

Species	Fhase	Ref	ΔH _{f29} 8.15 Kcal/mol	Species	Phase	Ref	^{ΔH} f298.15 Kcal/mol
S10 ₂	1	14	-73.900	SiO ₂	2,3	14	-209.863
Sio	1	14	-21.411	-			
K	1	6	+21.51	ĸ	1	6	+30.8
KH	1	6	+30.0	KBr	1	15	-42.5
KF	1	15	-79.8	KCl	1	15	-50.1
CsCl	ı	8	-58.200	CsF	1	8	-85.0
CsH	1	6	+29.000	Cs2	1	6	+27.000
Cs	1	6	+18.830	RPCT	1	15	-49.9
RbH	1	6	+33.3	Rb ₂	1	6	+29.6
Rb	1	6	+20.51	RbF	1	8	-87.0
CaO	1	15	-2.0	Сан	1	6	+58.7
Ca.	1	6	+46.04	CaCl	1	8	+6.7
CaF	ı	8	-9.2				

This is included as a part of A in the enthalpy and entropy equations and ΔH_{Γ} should be taken as zero.

REFERENCES

- 1. Wright Air Development Center. Thermodynamics of High Temperature Gas Mixtures and Application to Combustion Problems, by John S. Gordon. Wright Patterson Air Force Base, Ohio, WADC, January 1957. (WADC Technical Report 57-33, ASTIA Pocument No. 110735.)
- Dow Chemical Company. Thermodynamic Properties of Combustion Products, by G. C. Sinke. Midland, Mich., Dow, 1 April 1959-(Report Nr. AR-1S-59.)
- 5. National Bureau of Standards. Preliminary Report on the Thermodynamic Properties of Lithium, Beryllium, Magnesium, Aluminum, and Their Compounds with Oxygen, Hydrogen, Fluorine and Chlorine. Washington, NBS, January 1959. (NBS Report 6297.)
- 4. National Bureau of Standards. Preliminary Report on the Thermodynamic Properties of Lithium, Beryllium, Magnesium, Aluminum, and Their Compounds with Oxygen, Hydrogen, Fluorine and Chlorine. Washington, NBS, July 1959. (NBS Report 6484.)
- 5. Bureau of Mines. Contributions to the Data on Theoretical Metallurgy, by K. K. Kelley Washington, GPO, 1949. (Bulletin 476.)
- National Bureau of Standards. Selected Values of Chemical Thermodynamic Properties, by F. D. Rossini. Washington, NBS, 1952. (NBS Circular 500.)
- 7. Evans, Wm. H., Thos. R. Munson, Donald D. Wagman. "Thermodynamic Properties of Some Gaseous Halogen Compounds," NATL BUR STANDARDS, J RES, Vol. 55, No. 3 (September 1955), p. 147.
- 8. Thickol Chemical Corporation, Thermodynamic Data for Combustion Products, by Reaction Motors Division. Denville, New Jersey, Thickol, January 1960. (Report RMD 210-E3.)
- 9. Cottrell, T. L. The Strengths of Chemical Bonds, 2nd ed. London, Butterworths, 1958.
- Kubaschewski, O. and E. Ll. Evans. Metallurgical Thermochemistry. New York, Pergamon, 1958.

- 11. Marquardt Aircraft Company. High Temperature Thermodynamic Data for Combustion Products. Van Nuys, Calif., Marquardt, 1959.
- 12. National Bureau of Standards. Preliminary Report on the Thermodynamic Properties of Lithium, Beryllium, Magnesium, Aluminum, and Their Compounds with Oxygen, Hydrogen, Fluorine and Chlorine. Washington, NBS, January 1960. (NBS 66/5).
- 13. Aeronutronic. "Study of Metal Additives for Solid Propellants-Tables of Thermodynamics Data for Performance Calculations", by
 D. L. Hildenbrand. Newport Beach, Calif., Aeronutronic,
 30 September 1959. (Publication No. C-623, Document Control No.
 10396-N.) (Contract NOrd 17980.)
- 14. Dow Chemical Company, Thermal Laboratory. JANAF Interim Thermochemical Tables, Vol. I and II. Midland, Mich., Dow, 31 Dec 1950.

ACKNOWLEDGMENT

The author wishes to acknowledge the assistance of Mrs. Jeanne Brunner for key punching a large share of the data for the computer, and Mr. D. R. Cruise for the curve fitting on all the Ca., Mg., Si, K, Rb, Cs, compounds.

INITIAL DISTRIBUTION

```
11 Chief, Bureau of Naval Weapons
DIS-31 (1)
     R (1)
     R-12 (1)
     R-14 (1)
     R-3 (1)
     RM (1)
     RMMP-4 (1)
     RR (1)
     RRRE-6 (1)
     RRRE~8 (1)
     RSSH-32 (1)
2 Special Projects Office
     SP-271 (1)
     SP-2722 (1)
1 Chief, Bureau of Ships
4 Chief of Naval Operations
2 Chief of Naval Research
     Code 425 (1)
     Code 429 (1)
l David W. Taylor Model Basin
1 Maval Air Material Center, Philadelphia
1 Naval Air Test Center, Patuxent River (Aeronautical Publications Library)
1 Naval Ammunition Depot, Crane (Research and Development Department)
1 Naval Avionics Facility, Indianapolis (Library)
2 Naval Missile Center, Point Mugu (Technical Library)
1 Naval Nuclear Ordnance Evaluation Unit, Kirtland Air Force Base (Code 401)
2 Naval Ordnance Laboratory, Corona
     Dr. Bodo Bartocha (1)
3 Naval Ordnance Laboratory, White Oak
     Technical Library (2)
1 Naval Postgraduate School, Monterey
3 Naval Propellant Plant, Indian Head
     Anna Lea Weihrer (1)
2 Naval Research Laboratory
     Chemistry Division, Code 6130, R. R. Miller (1)
     Code 2021 (1)
3 Naval Underwater Ordnance Station, Newport
     H. Peter Hirschler (1)
1 Naval Weapons Laboratory, Dahlgren (Technical Library)
2 Naval Weapons Plant (Code 752)
1 Naval Weapons Station, Yorktown
1 Office of Naval Research Branch Office, Chicago
```

```
1 Operational Test and Evaluation Force
 1 Bureau of Naval Weapons Representative, Azusa, Calif.
 1 Bureau of Naval Weapons Resident Representative, Sacramento
 1 Chief of Ordnance (ORDTU)
 4 Aberdeen Proving Ground
      Ballistic Research Laboratories (2)
      Paul C. Baer (1)
      CRDBG-BLI (1)
 5 Army Rocket and Guided Missile Agency, Redstone Arsenal
      Ralph G. Anderson (1)
 Technical Library, ORDXR-OTL (4)
3 Frankford Arsenal (Pitman-Dunn Laboratory)
 1 Ordnance Ammunition Command, Joliet (ORDLY-R-T)
 4 Picatinny Arsenal
      Library (3)
      Ed Smith (1)
 1 Radford Arsenal
 3 White Sands Proving Ground (Technical Library)
 2 Headquarters, U. S. Air Force
      AFDRD-CC (1)
 1 Air Force Cambridge Research Center, Laurence G. Hanscom Field
 1 Air Force Flight Test Center, Edwards Air Force Base (William A.
 1 Air Force Missile Development Center, Holloman Air Force Base
 2 Air Proving Ground Center, Eglin Air Force Base
      PGTRI, Technical Library (1)
 1 Air Research and Development Command, Andrews Air Force Base (RDLDA,
   Dr. Eugene G. Haas)
 l Air University Library, Maxwell Air Force Base
 1 Tactical Air Command, Langley Air Force Base (TPL-RQD-M)
 2 Wright Air Development Division, Wright-Patterson Air Force Base
      Andrew J. Chadwell (1)
      WWAD (1)
10 Armed Services Technical Information Agency (TIPCR)
 1 Bureau of Mines, Pittsburgh (Reports Librarian)
 1 National Aeronautics and Space Administration (Technical Information
   Division)
 1 Office of Technical Services
4 British Joint Services Mission, Ministry of Supply Staff (Reports
  Officer) via BuWeps (DSC)
4 Defence Research Member, Canadian Joint Staff (W), via BuWeps (DSC)
 3 Aerojet-General Corporation, Azusa, Calif., via BuWepsRep
     C. F. Pohlhammer (1)
      Librarian (2)
2 Aeronutronics, Newport Beach, Calif.
     Dr. Joseph Fugger (1)
     Library (1)
1 Aerospace Corporation, El Segundo, Calif. (Eileen A. Mathias)
3 Allegany Ballistics Laboratory, Cumberland, Md.
     G. A. Orlick (1)
     Librarian (2)
```

1 Office of Naval Research Branch Office, Pasadena

```
l Allied Chemical Corporation, Morristown, N. J. (Shepard Zaff)
1 American Cyanamid Company, Stamford, Conn. (Director, Stamford)
  Laboratories)
1 American Machine and Foundry Company, Mechanics Research Divis: or,
  Niles, Ill. (Classified Document Center)
American Potash and Chemical Company, Whittier, Calif. (R. S. Edler
Amcel Propulsion Inc., Asheville, N. C. (Clayton Huggett)
2 Applied Physics Laboratory, JHU, Silver Spring
L Armour Research Foundation, Chicago (Document Librarian for Departs
 ment M)
3 Arthur D. Little, Inc., Cambridge
    Dr. Alfred Buchler (1)
    G. R. Handrick (1)
    W. A. Sawyer (1)
Astropower, Incorporated, Long Beach, Calif. (Department Head,
  Propellant Chemistry)
2 Atlantic Research Corporation, Alexandria, Va.
    Charles B. Henderson (1)
    Library (1)
2 Bell Aircraft Corporation, Buffalo
     J. Mertens (1)
    Technical Library (1)
1 Boeing Airplane Company, Scattle (Richard W. Carkeek)
1 Boeing Airplane Company, Wichita (F. W. Wairwright)
2 California Institute of Technology, Pasadena
     R. R. Zukoski (1)
1 California Research Corporation, Richmond, Calif. (P. B. Ryason)
1 Chance Vought Aircraft, Inc., Dallas (P. B. Brandt)
1 Combustion and Explosives, Inc., Pittsburgh (S. R. Brinkley, Jr.)
1 CONVAIR, Fort Worth (C. L. R. Barker)
1 CONVAIR, San Diego (Engineering Librarian)
2 CONVAIR Scientific Research Laboratory, San Diego
    A. L. Berlad (1)
    L. V. Feigenbuts (1)
1 Cornell Aeronautical Laboratory, Inc., Buffalo (J. Gordon Hall)
1 Curtiss-Wright Corporation, Wood-Ridge, N. J. (Harold E. Brandmaier)
1 Douglas Aircraft Company, Inc., El Segundo (A. C. Buckingham)
1 Douglas Aircraft Company, Inc., Santa Monica, Calif. (G. W. Bachelder
1 E. I. du Pont de Nemours and Company, Inc., Wilmington
     Assistant Director of Research (1)
     A. W. Hawkins (1)
1 Esso Research and Engineering Company, Special Projects Unit, Linder
  N. J. (ARPA Contractor)
1 Ethyl Corporation, Baton Rouge (Research and Development Department)
1 Ethyl Corporation, Detroit (G. W. Thomson)
1 Franklin Institute, Philadelphia (Technical Report Library)
1 Fresno State College, Fresno, Calif. (Chemistry Department, R. Kell.
1 General Electric Company, Cincinnati (G. G. Kulzko)
i General Electric Company, Philadelphia (V. Di Cristina)
1. General Motors Corporation, Indianapolis (Dr. C. E. Karabell)
```