Departamento de Ciência de Computadores FCUP Desenho e Análise de Algoritmos (CC2001) 2017/18

2°Teste (13.12.2017)	duração: 3	3h
	3	

N.º	Nome	

1. Considere a rede de fluxo seguinte, onde c/f são pares capacidade/fluxo, e s e t são a origem e destino.

$$c_f(q,m)$$
 $c_f(m,q)$ $c_f(z,x)$

$$c_f(x,z)$$
 $c_f(p,t)$ $c_f(t,p)$

b) [1.4] Partindo de f, aplique o algoritmo de Edmonds-Karp para obter um fluxo máximo (desenhe a rede residual **em cada iteração**, represente o fluxo final na rede, e explique sucintamente).

c) [0.4] A partir das estruturas de dados calculadas, como se pode identificar um corte $\{S, T\}$ de capacidade mínima? Indique-o e a sua capacidade.

d) [0.4] Sabendo que, para uma rede com n nós e m ramos, o algoritmo não efetua mais do que mn/2 iterações, justifique a complexidade $O(m^2n)$.

capacidade mínima? Indique-o e a sua capacidade.

2. Considere o problema de formar uma certa quantia 5, 10, 20 e 50 cêntimos, 1 e 2 euros, e ainda notas de 5, de notas e moedas. Admita que pode dispor de um núr	10 e 20 euros. Pretendemos usar o número mínimo
a) [1.0] Usando pseudocódigo, apresente uma função QUANTIA (v,n,q,c,s) que determine no $array\ s$ a solução obtida pelo algoritmo $greedy$. O $array\ v$ define o valor das moedas/notas e n o número de tipos.	e) [0.4] Justifique que QUANTIA (v,n,q,c,s) determina a solução ótima, estendendo a prova de que a estratégia $greedy$ produz a solução ótima se se usar apenas moedas (dada nas aulas).
b) [0.4] A complexidade (para v e n quaisquer) é:	
c) [0.1] Na chamada, o estado de v e n é:	
d) [0.3] Se $q = 217$ e $c = 79$, o estado final de s é:	
f) [0.5] Prove que se o número de moedas/notas for lir	nitado, a estratégia <i>greedy</i> (adaptada) não é correta.
3. [1.4] Aplique o algoritmo de Kruskal para obter um	na árvore geradora $\mathcal T$ de peso máximo do grafo indi-
cado. Em cada iteração, apresente os ramos em \mathcal{T} e o c	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

(Continua, v.p.f.)

_		
[
N.º	Nome	
- ' '	1 (01110	

4. [1.8] Usando **a definição** das classes prove que $200n + 1000 \in O(n^2 \log_2 n)$ e $200n + 1000 \notin \Omega(n^2)$ e diga, justificando, se se pode concluir que $200n + 1000 \notin \Theta(n^2)$.

5. [3.0] Seja G=(V,E,c) um grafo não dirigido, com $c:E\to\mathbb{Z}^+$ constante. Queremos um percurso γ de um nó s para um nó t, com $\sum_{e\in\gamma}c(e)\leq cmax$, para $cmax\in\mathbb{Z}^+$ dado. Apresente em pseudocódigo uma função CAMINHO(G,s,t,cmax), com complexidade O(|V|+|E|), para obter um tal percurso, se existir, e o imprimir. Pode usar funções auxiliares. Justifique sucintamente a correção e complexidade.

6. [0.5] Admita que a árvore representa um dos conjuntos de uma partição de $V=\{1,2,\ldots,50\}$. Desenhe a árvore após a operação FINDSET(18), supondo que usa a heurística *path compression*.

tem exatamente quatro componentes fort e nó v_1 é acessível de v_5 e de v_9 , mas nem v_5 ne	om $V = \{v_1, v_2, v_3, \dots, v_{10}\}$, $ V = 10$, $ E = 15$ e tal que G emente conexas, duas com dois nós e duas com três nós. O em v_9 são acessíveis de v_1 , o nó v_5 não é acessível de v_9 nem v_9 acessível de v_3 , e o nó v_7 é acessível de v_3 e de v_9 .
	ções indicadas e identifique as componentes.
- ·	ra num passo da pesquisa, explora primeiramente o nó de índice nentes são obtidas no algoritmo de Kosaraju-Sharir. Justifique.
8. [2.0] Considere uma heap binária de míni	imo com 10 elementos, dada por $[-8, -5, 1, -4, 3, 8, 6, 2, 10, 7]$
a) Indique os valores de: PARENT(5)	LEFT(5) RIGHT(5)
b) Represente-a por uma árvore. c) Deser	hhe-a após ExtractMin. d) Desenhe-a após a operação DECREASEKEY reduzir 7 para -7.
e) Na definição dada nas aulas para uma foram usados dois <i>arrays</i> (a e pos_a). Con	fila de prioridade suportada por uma <i>heap binária de mínimo</i> m que objetivo?

N.º	Nome		
9. [1.0] Complete: "I	Dados n pontos no pla	ano, o algoritmo Graham-scan cal	cula
	1 1	. Tem complexidade	se se usar um algoritmo
de ordenação com co	mplexidade	no pior caso , como	
ou	· · · · · · · · · · · · · · · · · · ·		

- 10. Recorde o problema "Caixotes de morangos", em que é necessário determinar como distribuir c caixas de morangos por l lojas de forma a maximizar o valor total obtido. Seja R_{kn} o valor que a loja k oferece por n caixas e seja T_{kn} o valor máximo que se pode obter se se distribuir n caixas pelas lojas $1, 2, \ldots, k$. Seja S_{kn} uma solução com valor T_{kn} , dada por uma lista de pares (q, i), em que q é o número de caixas que envia à loja i, com $q \neq 0$ (omite o par se q = 0). Seja N_{kn} o número total de soluções com valor T_{kn} . Assuma que os valores R_{kn} são inteiros positivos.
- a) [0.5] Indique T_{kn} , S_{kn} e N_{kn} , para $0 \le n \le 5$ e $1 \le k \le 3$, sendo R dada por:

15 35 45 60 65 25 50 55 55 55 20 30 55 60 60

b) [1.0] Apresente a recorrência que define T_{kn} , S_{kn} e N_{kn} , para $k \ge 1$ e $n \ge 0$.

c) [1.5] Adaptando a função dada nas aulas, escreva (em pseudocódigo) a função CAIXOTES (R, c, l, T, S, N) para obter os valores T_{ln} , S_{ln} e N_{ln} , **usando programação dinâmica**, para $0 \le n \le c$, sendo T e N arrays de inteiros, com c+1 posições e S um array de c+1 listas de pares de inteiros. Admita que R é uma matriz de inteiros com l linhas e l 1 colunas.