Lecture 3: Strong Induction Notes

Good Proofs are

- correct
- -complete: All of the key steps have to be there
- Clear: so we can understand what's going on.
- brief: You don't want to crush somebody with all the details
- "elegant": Clever
- Well-organized: Use Lemmos Like subroutines in programming. This helps to make your proof clear.
- -in order: Steps must be in correct order.

Fermat's Last Thm.

Vn>2 73x,y,zEN+: x^+y^= 2^

Problem: Find a sequence of moves to go from

1 saversson Legal more: stiele a letter into adjacent blank square,

You think that's a easy thing to do 2.2,2 Actually it's impassible but this is a course about proofs right? So kets proof that this is impossible

Thm: There is no sequence of legal moves to sovert G&H and return all other letters to their former position.

Actual order

Row Move

 $\begin{array}{c|c}
\hline
EX: & O & G \\
\hline
& F & F & H
\end{array}$

-	1	2	3
,	4	5	6
	7	8	9

Lenna 7: A row move obesn't change the order of the stems

Proof. In a row move, we move an item from cell i into a adjacent cell i-1 or i+1. Nothing else moves, Hence the order of Items preserved.

	A	B	C		A	B	C
Exi	D	F		=)	0	F	6
	H	E	6		H	E	

D 6 =) D B C	CSF	1
--------------	-----	---

LenMa. 2; A column move changes the relative order of precisely 2 pairs of itens.

Proof: In a column move, we move an item in cell I to a blank spot in cell i-3 or it3. When an Item moves 3 positions, it changes order with 2 items. (i-1,i-2 or it1,i+2)

Defi A pair of letters La and Lz is an inversion (d.k.a. Inverted pair) if L1 precedes L2 in alphabet but L1 is after L2 in puzzle.

1	A	B	C
1	F	0	6
	E	H	

(0,F),(E,F),(E,G) 3 inversions

Lemana 3: During a move, the # of inversions can only increase by 2, decrease by 2 or stay the same.

Proof: Row move; no changes (by Lemma 1)

Column move; 2 porrs change order (by Lenma 2)

Case A; both pairs were inorder =) # inversions 12

Cose B; " 11 11 inverted = H inversions + 2

Case Cione pairs inverted =) # inversions stay same

Corollary 1: During a move, the party (exerness or oddness) of # inversions does not change.

Proof; Adding or subtracting 2 doesn't change party Lemma 4: In every state reachable from DEF, the parity of # inversions is odd. P(n):= After any sequence of a moves from ABC, the parity of # inversions is odd. Proof: By Induction of # inversions is odd. Bose Lasei N=0. # inversions = 1 =) Parity is odd. Inductive step: For n=0, show P(n)=) P(n+1) Consider any sequence of n+1 moves Majorer, Ma+1 By inductive hypothesis (P(n)), we know that parity after n moves By corollary 1, we know parity of # inversions does not change Ma..., Ma is odd. during Mn+1 =) the pority ofter Mn, Mn, Mn, Mn+1 is odd =) P(n+1) [Proof of Theorem: The parity of # inversions in desired state is even

(O inversion). By Lemma 4, the desired state connot be reached from

,		_	
A	B	2	
		F	П
H	6	1	

* The idea is you're Looking for a property that holds at the beginning is preserved by every stee, but is not present in the target state.

Strong Induction Axiom

Let P(n) be any predicate. If P(0) is true and Yn (P(O) NP(1) A..... NP(N)) =) P(N+1) is true, then In P(N) is true. Unstacking Game

Thm: All strategies for the n-block game produce the same score, S(n)

EX) S(8) = 28.

Proof: By strong induction

P(n) -

Bose Cose; n=1 S(1)=0 $\frac{1,(1-1)}{2}=0$

inductive step; Assume P(1), P(2),, P(n) to prove P(n+1)

Look at n+1 blocks

15KEN

Score = k*(n+1-k) + P(k) + P(n+1-k)

We've stuck in here. Let's change inductive hypothesis,

 $S(n) = \frac{n(n-1)}{2} \longrightarrow S(1) = 0$

Score = $K \times (.n+1-K) + \frac{K(K-1)}{2} + \frac{(n+1-K)(n-K)}{2}$

 $= \frac{2K_{\Lambda} + 2K - 2K^{2} + K^{2} - K + (n+1)\Lambda - K_{\Lambda} - K - K_{\Lambda} + K}{2}$

= (n+1).1 which equals S(n+1)

- WET 89.