Question 1

Consider the following collections of polynomials in \mathbb{P}_2 :

(a)
$$p_1(x) = 1$$
, $p_2(x) = x + 1$, $p_3(x) = x^2$.

(b)
$$p_1(x) = x - 1$$
, $p_2(x) = x + 1$, $p_3(x) = x^2 - 1$.

(c)
$$p_1(x) = x^2 - 1$$
, $p_2(x) = x^2 + 1$, $p_3(x) = x^2$.

Decide in each case if these vectors are linearly independent. Write the dimension of the subspace $S := span\{p_1, p_2, p_3\}$ in each case. In which case(s) would we have that $S = \mathbb{P}_2$? Explain your answer.

Answer: To check for linear independence, we can use the Wronskian determinant

(a)

$$W(p_1, p_2, p_3) = \begin{vmatrix} 1 & x+1 & x^2 \\ 0 & 1 & 2x \\ 0 & 0 & 2 \end{vmatrix} = 2 \begin{vmatrix} 1 & x+1 \\ 0 & 1 \end{vmatrix} = 2$$

Since $W(p_1, p_2, p_3) \neq 0$, the vectors are linearly independent. The dimension of the subspace $S := span\{p_1, p_2, p_3\}$ is 3, since there are 3 linearly independent vectors in its basis.

In this case, we have that $S = \mathbb{P}_2$.

Proof. To show that $S = \mathbb{P}_2$, we need to show that $span\{p_1, p_2, p_3\} = \mathbb{P}_2$. Let $p(x) = ax^2 + bx + c$ be an arbitrary polynomial in \mathbb{P}_2 . Our goal is to show that p(x) can be shown as a linear combination of p_1, p_2, p_3 . That means we must find α, β, γ such that:

$$\alpha p_1(x) + \beta p_2(x) + \gamma p_3(x) = ax^2 + bx + c$$

Substituting in p_1, p_2, p_3 , we have:

$$\alpha + \beta(x+1) + \gamma x^2 = ax^2 + bx + c$$
$$\alpha + \beta x + \beta + \gamma x^2 = ax^2 + bx + c$$
$$\gamma x^2 + \beta x + (\alpha + \beta) = ax^2 + bx + c$$

Equating coefficients, we have:

$$\gamma = a, \quad \beta = b, \quad \alpha + \beta = c$$

Since $\beta = b$, we have that $\alpha = c - b$. Substituting everyting back into the original equation, we have:

$$(c-b) + b(x+1) + ax^2 = ax^2 + bx + c$$

Now we can see that p(x) can be written as a linear combination of p_1, p_2, p_3 . Therefore, $span\{p_1, p_2, p_3\} = \mathbb{P}_2$, and $S = \mathbb{P}_2$. (b)

$$W(p_1, p_2, p_3) = \begin{vmatrix} x - 1 & x + 1 & x^2 - 1 \\ 1 & 1 & 2x \\ 0 & 0 & 2x \end{vmatrix} = 2x \begin{vmatrix} x - 1 & x + 1 \\ 1 & 1 \end{vmatrix}$$
$$= 2x(x - 1 - x - 1) = -4x$$

Since $W(p_1, p_2, p_3) \neq 0$, the vectors are linearly independent. The dimension of the subspace $S := span\{p_1, p_2, p_3\}$ is 3, since there are 3 linearly independent vectors in its basis.

In this case, we have that $S = \mathbb{P}_2$.

Proof. To show that $S = \mathbb{P}_2$, we need to show that $span\{p_1, p_2, p_3\} = \mathbb{P}_2$. Let $p(x) = ax^2 + bx + c$ be an arbitrary polynomial in \mathbb{P}_2 . Our goal is to show that p(x) can be shown as a linear combination of p_1, p_2, p_3 . That means we must find α, β, γ such that:

$$\alpha p_1(x) + \beta p_2(x) + \gamma p_3(x) = ax^2 + bx + c$$

Substituting in p_1, p_2, p_3 , we have:

$$\alpha(x-1) + \beta(x+1) + \gamma(x^2 - 1) = ax^2 + bx + c$$
$$\alpha x - \alpha + \beta x + \beta + \gamma x^2 - \gamma = ax^2 + bx + c$$
$$\gamma x^2 + (\alpha + \beta)x + (\beta - \alpha - \gamma) = ax^2 + bx + c$$

Equating coefficients, we have:

$$\gamma = a, \quad \alpha + \beta = b, \quad \beta - \alpha - \gamma = c$$

Now we have arbitrary elements a, b, c in terms of α, β, γ . To solve for α, β, γ in terms of a, b, c, we can use the augmented matrix:

$$\begin{bmatrix}
0 & 0 & \gamma & a & 0 & 0 \\
\alpha & \beta & 0 & 0 & b & 0 \\
-\alpha & \beta & -\gamma & 0 & 0 & c
\end{bmatrix}$$

Using row operations, we have the following equivalent matricies:

(c)

$$W(p_1, p_2, p_3) = \begin{vmatrix} x^2 - 1 & x^2 + 1 & x^2 \\ 2x & 2x & 2x \\ 2 & 2 & 0 \end{vmatrix} = 2 \begin{vmatrix} x^2 - 1 & x^2 + 1 \\ 2x & 2x \end{vmatrix}$$
$$= 2(2x^3 - 2x - 2x^3 - 2x) = -8x$$

Since $W(p_1, p_2, p_3) \neq 0$, the vectors are linearly independent. The dimension of the subspace $S := span\{p_1, p_2, p_3\}$ is 3, since there are 3 linearly independent vectors in its basis.

In this case, $S \neq \mathbb{P}_2$, since none of the polynomials in S have a term of degree 1. Therefore, there is no way to represent a polynomial of degree 1 as a linear combination of p_1, p_2, p_3 .

Question 2

Consider the following collections of smooth functions [0,1]:

1.
$$f_1(x) = x^2$$
, $f_2(x) = \frac{1}{x^2}$

2.
$$f_1(x) = \cos(x), f_2(x) = \sin(x)$$

3.
$$f_1(x) = 1$$
, $f_2(x) = \frac{e^x + e^{-x}}{2}$, $f_3(x) = \frac{e^x - e^{-x}}{2}$

Decide in each case if these vectors (functions) are linearly independent.

Question 3

Find the dimension of the space spanned by the functions

$$1, \cos(2x), \cos^2(x)$$

Question 4

For each of the following find the transition matrix corresponding to the change of basis from $\{u_1, u_2\}$ to the standard one $\{e_1, e_2\}$:

(a)
$$u_1 = (1,1)^T$$
, $u_2 = (-1,1)^T$

(b)
$$u_1 = (1,2)^T$$
, $u_2 = (2,5)^T$

(c)
$$u_1 = (0,1)^T$$
, $u_2 = (1,0)^T$

Let

$$v_1 = (3, 2)^T, \quad v_2 = (4, 3)^T$$

For each of the basis above find the transition matrix from $[v_1, v_2]$ to $[u_1, u_2]$. Let

$$x = (2,4)^T$$
, $y = (1,1)^T$, $z = (0,10)$

Find the coordinates of x, y, z with respect to each of the basis mentioned above.