PLANIFICACION ESTUDIO. Punto de vista: 25/11

1 Tema 1

Tiempo de retardo

$$T_t = \frac{L(\text{bits})}{V_t(\text{bps})}$$

- T_t : Tiempo de retardo (se expresa en segundos, s).
- L: Longitud o tamaño de los datos (en bits).
- V_t : Velocidad de transmisión (en bits por segundo, bps).

Retardo de propagación

$$T_p = \frac{D(\mathbf{m})}{V_p(\mathbf{m/s})}$$

- T_p : Retardo de propagación (se expresa en segundos, s).
- D: Distancia recorrida por la señal (en metros, m).
- V_p : Velocidad de propagación (en metros por segundo, m/s).

Fracción de ancho de banda

$$F = \frac{n \times h}{n \times h + M}$$

- F: Fracción (proporción) del ancho de banda ocupado por las cabeceras (adimensional, es decir, no tiene unidades).
- ullet n: Número de capas del protocolo.
- $\bullet\,$ h: Tamaño (en bytes) de la cabecera añadida por cada capa.
- \bullet M: Tamaño (en bytes) de los datos.

Velocidad real de envío de datos

$$v_{\text{real_datos}} = \left(1 - \frac{n \times h}{n \times h + M}\right) \times v_{\text{nominal}} = (1 - F) \times v_{\text{nominal}}$$

- $v_{\text{real_datos}}$: Velocidad real de envío de datos (en bits por segundo, bps).
- $\bullet \ n$: Número de capas del protocolo.
- h: Tamaño (en bytes) de la cabecera añadida por cada capa.
- M: Tamaño (en bytes) de los datos.
- $F = \frac{n \times h}{n \times h + M}$: Fracción de ancho de banda ocupada por las cabeceras (adimensional).
- v_{nominal} : Velocidad nominal o teórica de transmisión (en bits por segundo, bps).

2 Tema 2

Tiempo total de transmisión del mensaje

$$t_{\text{dat_mensaje}} = t_{\text{PAQ1}} + (n-1) t_{\text{transm}}$$

- $\bullet~t_{\rm dat_mensaje}$: Tiempo total de transmisión del mensaje cuando se emplean datagramas.
- \bullet n: Número total de paquetes que componen el mensaje.
- $\bullet \ t_{\rm PAQ1}$: Tiempo total que invierte el primer paquete en alcanzar su destino.
- t_{transm} : Tiempo de transmisión de *cada* paquete (en segundos).

Tiempo total para el primer paquete

$$t_{\text{PAQ1}} = t_{E \rightarrow N1}^{\text{prop}} + t_{E \rightarrow N1}^{\text{transm}} + t_{N1}^{\text{proc}} + t_{N1 \rightarrow R}^{\text{prop}} + t_{N1 \rightarrow R}^{\text{transm}}$$

- $t_{E \to N1}^{\text{prop}}$ y $t_{N1 \to R}^{\text{prop}}$: Tiempos de propagación en los enlaces $E \to N1$ y $N1 \to R$, en segundos.
- $t_{E \to N1}^{\text{transm}}$ y $t_{N1 \to R}^{\text{transm}}$: Tiempos de transmisión de un paquete en dichos enlaces, en segundos.
- t_{N1}^{proc} : Retardo de procesamiento (en segundos) en el nodo intermedio N1.

Número de paquetes

$$n = \left\lceil \frac{M}{L_{\text{carga}}} \right\rceil$$

- n: Número total de paquetes.
- M: Tamaño total del mensaje (en bytes).
- L_{carga} : Tamaño de la carga útil (en bytes) que puede llevar cada paquete.
- [x]: Función techo, redondea x al entero superior inmediato.

Longitud de los datos en un paquete

$$L = t \times R$$

- L: Longitud total (en bits) de los datos del paquete.
- t: Duración de cada intervalo (en segundos) a partir del cual se forma el paquete.
- R: Velocidad de transmisión (en bits por segundo, bps).

Porcentaje de bits suplementarios

$$\%_{\rm sup} = \frac{H \times 8}{L + (H \times 8)} \times 100$$

- %_{sup}: Porcentaje de bits suplementarios (en %).
- H: Tamaño de la cabecera (en octetos o bytes).
- L: Longitud total de los datos (en bits) antes de añadir la cabecera.
- 8: Factor de conversión de octetos/bytes a bits.

Tiempo total de propagación a lo largo de varios enlaces

$$t_{\text{prop}}^{\text{TOTAL}} = \sum_{i=1}^{N} t_{\text{prop}}^{(i)} = \sum_{i=1}^{N} \frac{d_{\text{enlace}_i}}{v_{\text{prop}}}$$

- $\bullet~t_{\rm prop}^{\rm TOTAL}:$ Suma del tiempo de propagación en cada uno de los N enlaces (en segundos).
- $t_{\text{prop}}^{(i)}$: Tiempo de propagación en el enlace i (en segundos).
- d_{enlace_i} : Longitud del enlace i (en metros).
- v_{prop} : Velocidad de propagación de la señal (en metros por segundo, m/s).

Tamaño del i-ésimo fragmento (IP)

$$F_i = \left[\left(M - H_{\rm IP} \right) - \left(i - 1 \right) \left(MTU - H_{\rm IP} \right) \right] + H_{\rm IP}$$

- $\bullet \ F_i$: Tamaño del fragmento i (en bytes).
- \bullet M: Tamaño total del datagrama original (en bytes).
- H_{IP} : Tamaño de la cabecera IP (en bytes).
- MTU: Unidad Máxima de Transferencia del enlace (en bytes).
- i: Índice del fragmento, con $i = 1, 2, ..., N_f$.

Cálculo del desplazamiento (offset) para el fragmento i

offset_i =
$$\frac{(i-1)\left(\text{MTU} - H_{\text{IP}}\right)}{8}$$

- offset $_i$: Desplazamiento del fragmento i en unidades de 8 bytes (como exige IP).
- \bullet (i-1): Indica cuántos "trozos" completos de datos se han enviado en los fragmentos anteriores.
- MTU: Unidad Máxima de Transferencia (en bytes).
- H_{IP} : Tamaño de la cabecera IP (en bytes).
- 8: Factor de conversión, porque el "offset" IP se expresa en múltiplos de 8 bytes.

3 Tema 3

Estimación de RTT (Round Trip Time)

$$RTT_{n+1} = (1 - \alpha) RTT_n + \alpha \times M_n$$

- RTT_{n+1} : Estimación del RTT tras la llegada del (n+1)-ésimo ACK (en ms).
- RTT_n : Estimación previa del RTT (en ms).
- α : Factor de ponderación (típicamente $\alpha = 0.125$).
- M_n : Medida actual del RTT (en ms) a partir del (n+1)-ésimo ACK.

Estimación de la desviación (Desv)

$$\operatorname{Desv}_{n+1} = (1 - \beta) \operatorname{Desv}_n + \beta \times |RTT_{n+1} - M_n|$$

- Des v_{n+1} : Nueva estimación de la desviación (en ms).
- Des v_n : Estimación anterior de la desviación (en ms).
- β : Factor de ponderación (típicamente $\beta = 0.25$).
- $|RTT_{n+1} M_n|$: Diferencia absoluta entre la nueva estimación de RTT y la última medida.

Cálculo del timeout

$$t_{\text{out}} = RTT_{n+1} + 4 \times \text{Desv}_{n+1}$$

- t_{out} : Valor del temporizador de retransmisión (en ms).
- RTT_{n+1} : Estimación reciente del RTT (en ms).
- Desv_{n+1} : Estimación reciente de la desviación (en ms).
- El factor "4" es el multiplicador definido en la heurística de TCP para cubrir variaciones de RTT.

4 Tema 5

Tiempo total de resolución DNS

$$r_{\text{resolución}} = r_{\text{LAN}} + r_{\text{Internet}}$$

- r_{resolución}: Tiempo total para resolver un nombre de dominio (en milisegundos, ms).
- r_{LAN} : Tiempo total debido a las comunicaciones en la LAN y el retardo de procesamiento en el servidor DNS local (en ms).
- r_{Internet} : Tiempo total debido a las consultas que viajan por Internet (en ms).

Tiempo en la LAN

$$r_{\rm LAN} = 2 \times r_{\rm LAN_enlace} + r_{\rm servidor}$$

- r_{LAN} : Tiempo en la LAN, que suele contemplar:
 - $-r_{\text{LAN_enlace}}$: Retardo (o tiempo) de ida/vuelta dentro de la LAN (μs o ms).
 - r_{servidor} : Retardo de procesamiento en el servidor (en μs o ms).
- El factor "2" indica que hay 2 viajes en la LAN: Uno entre el host que solicita y el DNS local. Otro de vuelta desde el DNS local hacia el host (respuesta).

Tiempo en Internet (versión 1, del ejemplo)

$$r_{\text{Internet}} = 6 \times r_{\text{España-EEUU}} + 3 \times r_{\text{servidor}}$$

- r_{Internet} : Suma de los retardos en las consultas DNS que viajan a través de enlaces internacionales y de los retardos de procesamiento en servidores (Root DNS, TLD, etc.).
- $r_{\rm Espa\~{n}a-EEUU}$: Retardo de ida/vuelta entre Espa\~{n}a y EEUU (en ms).
- r_{servidor} : Retardo de procesamiento adicional en cada servidor DNS (en ms).
- El factor "6" en $r_{\rm España-EEUU}$ y el factor "3" en $r_{\rm servidor}$ dependen del número de pasos (saltos) indicados en el esquema (3 consultas/respuestas que cruzan el Atlántico, más 3 servidores procesando).

Tiempo en Internet (versión 2, más rápida)

$$r_{\text{Internet}} = 2 \times r_{\text{España-EEUU}} + 4 \times r_{\text{EEUU-EEUU}} + 3 \times r_{\text{servidor}}$$

- En esta versión de la política (iterativa/recursiva mixta), se reduce el número de cruces de España-EEUU y se añaden saltos dentro de EEUU ($r_{\text{EEUU-EEUU}}$).
- $r_{\rm EEUU-EEUU}$: Retardo de ida/vuelta entre servidores dentro de EEUU (en ms).
- El factor "2" en $r_{\rm Espa\tilde{n}a-EEUU}$ y "4" en $r_{\rm EEUU-EEUU}$ se corresponden a cuántos mensajes DNS cruzan esos enlaces (2 cruces atlánticos, 4 viajes internos en EEUU).

Tiempo de descarga con HTTP no persistente

$$r_{\rm descarga}^{\rm np} = (N_{\rm objetos} + 1) \ \times \ \left(t_{\rm estab} + t_{\rm solic} + t_{\rm resp} + t_{\rm cierre}\right)$$

- $r_{\text{descarga}}^{\text{np}}$: Tiempo total de descarga con HTTP no persistente (en ms).
- N_{objetos} : Número de objetos embebidos en la página. $(N_{\text{objetos}} + 1)$ representa la página HTML + cada uno de los objetos.
- t_{estab} : Tiempo de establecimiento de la conexión TCP (en ms).
- t_{solic} : Tiempo de enviar la petición HTTP (en ms).
- t_{resp} : Tiempo de recibir la respuesta HTTP (en ms).
- t_{cierre} : Tiempo para cerrar la conexión TCP (en ms).

Tiempo de descarga con HTTP persistente

$$r_{\text{descarga}}^{\text{p}} = t_{\text{estab}} + (N_{\text{objetos}} + 1) (t_{\text{solic}} + t_{\text{resp}}) + t_{\text{cierred}}$$

- \bullet $r_{\rm descarga}^{\rm p}$: Tiempo total de descarga con HTTP persistente (en ms).
- N_{objetos} : Número de objetos embebidos en la página (idéntico al caso anterior).
- t_{estab}: Se realiza una sola vez al inicio de la conexión TCP.
- t_{solic} : Tiempo de enviar cada petición HTTP.
- t_{resp} : Tiempo de recibir cada respuesta HTTP.
- t_{cierre} : Se realiza una sola vez al finalizar toda la transferencia.

Velocidad de descarga promedio

$$v_{\rm download} = 10 \, {\rm KB_{sol}} \, \times \, \left(8 \times 1024\right) \frac{\rm bits}{\rm KB} \, \times \, 2000 \, \frac{\rm sol}{\rm emp \cdot hora} \, \times \, 50 \, \frac{\rm emp}{\rm sol} \, \times \, \frac{1}{3600} \, \frac{\rm hora}{\rm sol} \, \times \, \frac{1}{36000} \, \frac{\rm hora}{\rm sol} \, \times \, \frac{1}{36$$

- v_{download} : Velocidad promedio de descarga (en bits/s).
- 10 KB_{sol}: Tamaño promedio de respuesta a cada solicitud (en kiloBytes).
- $8 \times 1024 \frac{\text{bits}}{\text{KB}}$: Conversión de kilo Bytes a bits.
- $2000 \frac{\text{sol}}{\text{emp-hora}}$: Cantidad de solicitudes por empleado y por hora.
- $50 \frac{\text{emp}}{\text{emp}}$: Número de empleados.
- $\frac{1}{3600} \frac{\text{hora}}{\text{s}}$: Conversión de horas a segundos.
- **Resultado** En el ejemplo, evaluando la expresión numéricamente se obtiene:

$$v_{\text{download}} = 2.28 \times 10^6 \,\text{bps} = 2.28 \,\text{Mbps}.$$

Velocidad de subida promedio

$$v_{\rm upload} = 10\,{\rm KB_{act}} \; \times \; \left(8\times1024\right) \frac{\rm bits}{\rm KB} \; \times \; 100\, \frac{\rm act}{\rm emp\cdot hora} \; \times \; 50\, \frac{\rm emp}{} \; \times \; \frac{1}{3600}\, \frac{\rm hora}{\rm s}$$

- v_{upload} : Velocidad promedio de subida (en bits/s).
- 10 KB_{act}: Tamaño promedio de cada actualización (en kiloBytes).
- $100 \frac{\text{act}}{\text{emp-hora}}$: Número de actualizaciones por empleado y por hora.
- \bullet El resto de factores (conversión KB \to bits, número de empleados, horas a segundos) son equivalentes al caso de descarga.
- **Resultado** En el ejemplo, se obtiene aproximadamente:

$$v_{\text{upload}} = 1.1 \times 10^5 \,\text{bps} = 0.11 \,\text{Mbps}.$$

^{**}Observación final** - Se compara la velocidad requerida ($v_{\text{download}} \approx 2,28\,\text{Mbps}$) con el acceso ADSL disponible (1,5 Mbps en bajada). El ejercicio concluye que la **velocidad de la línea** no es suficiente para cubrir la demanda de descarga en promedio.