

ARMでHPCクラスタ

←ちからこぶ← (サーバ技術部第2課)

塩澤 広基(発表者), 柴﨑 勝憲, 藤高 利文, 田中 重臣, 五味 学, 大谷 和也, 今田 庸介, 青山 政孝, 立古 玲加, 中村 匠, 山田 悠真, 大野 薫

アジェンダ

- 1. HPCとは ~検証のきっかけ~
- 2. 検証環境 ~構築したクラスタシステム~
- 3. クラウドバースティングについて ~AWS & Slurm~
- 4. まとめ

1. HPCとは ~検証のきっかけ~

HPCとは

HPC (ハイ・パフォーマンス・コンピューティング)

たくさんのコンピュータによる並列処理で大規模な計算を行うシステム(大規模なものでは1000台以上)

HPCはどんなことに使われているか

(創薬)

(気象予測)

(車の開発)

ARMアーキテクチャが脚光を浴びている

- ✓ ARMベースの理研と富士通が共同開発した スーパーコンピュータ「富岳(**)」が、再び「TOP500」リスト の第1位に!
- ✓ HPC分野の急速な需要の進化に対する、 ARMテクノロジーの独自の取り組みが浮き彫りに

Armベースチップの出荷実績

本発表の検証テーマ

サーバ技術部第二課が得意とするHPCインフラ構築技術を

ARMを交えたトレンドのリソースにどう生かせるかを検証した

2. 検証環境~構築したクラスタシステム~

使用したハードウェア

ARMデバイスとしてRaspberry Piを使用

> 安価

→冷却用ファン、電源、OS用SDカード、ケース込みで、1台 1万円程度

➤ HPC環境としての汎用OS(Linux)の利用が可能

モデル	Raspberry PI 4 Model B	
CPU	クアッドコア 1.5GHz ARMv8 (64bit)	
Memory	4GB	
Disk	32GB Micro SDカード(OS領域) 128GB USBメモリ (BeeGFSストレージ)	
OS	OpenSUSE Leap 15.2	
アプリケーション /サービス	BeeGFS 7.2(並列ファイルシステム), NFS, NIS, chronyd,コンテナ(Singlarity), slurm(ジョブスケジューラ)	
開発環境	OpenHPC (Gnu v9,OpenMPI v4.0.4)	

インフラの構成

開発環境とアプリケーション

- HPCクラスタ向けに最適化されたOpenHPC開発環境をインストール
 - OpenHPC 2.0 for OpenSUSE Leap 15.2 (aarch64)
 - GNU Compiler 9.3.0
 - OpenMPI 4.0.4

- OpenHPC開発環境を利用して Lammps と OpenFOAMをビルド
 - OpenFOAM v2006
 - Lammps 2020(Nov19)

- OpenSUSE Leap 15.2 サイトから Gromacs ダウンロード&インストール
 - Gromacs 2019.6

Webベースでのジョブ投入システム

- ジョブ投入システムの実装
 - WEBブラウザからジョブ投入する仕組みをRaspberry Pi上に作成
 - クライアントPCからブラウザで https://rapi-1:8000 ヘアクセス

Singularityも採用

Singularityとは

- ✓ HPC 向けのコンテナ型仮想化プラットフォーム
- ✓ Dockerの課題(rootでの実行、MPI,GPUの利用)の改善
- ✓HPC分野で広く利用されている

Singularity稼働確認

■ OpenFOAM の並列処理を実行

ジョブ投入

nakam@rapi-1:~> sbatch openfoam_pitzdaily.sh

実行結果

```
¥¥ / F ield | OpenFOAM: The Open Source CFD Toolbox
  ¥¥ / O peration | Version: v1912
  ¥¥ / A nd | Website: www.openfoam.com
   ¥¥/ M anipulation |
Build: _f3950763fe-20191219 OPENFOAM=1912
Arch: "LSB;label=32;scalar=64"
Exec: /opt/OpenFOAM-8/OpenFOAM-v1912/platforms/linuxARM64GccDPInt32Opt/bin/interFoam
-parallel
Date : Jan 15 2021
Time: 17:39:09
Host: rapi-2
••• (中略) •••
End
Finalising parallel run
```

ベンチマーク比較 (Intel Xeon vs ARM Cortex)

3.クラウドバースティングについて ~AWS & Slurm~

クラウドへのバースティング

16

- モチベーション(目標、やりたいこと)
 - Raspberry Piではやっぱり非力。もっと速く計算を終らせたい。
 - AWSにARMインスタンスがある
- 必要なこと
 - クラウド環境でRaspberry Piのバイナリが動く
 - Raspberry Piからクラウド につながる
 - ARMインスタンスをバース ティングするしくみ

クラウドへのバースティング

• 検証結果

- LAMMPSをAWSのインスタンスで実行したら、3倍弱の性能向上を確認できた。

項目	評価	説明
バイナリが動く	0	Raspberry Piと同等の環境構築を行なって動作することを確認できた。 • Raspberry Pi 1node,1core Total wall time: 0:37:26 1node,2cores Total wall time: 0:24:00 1node,4cores Total wall time: 0:21:10 2nodes,8cores Total wall time: 0:10:25 3nodes,12cores Total wall time: 0:06:47 4nodes,16cores Total wall time: 0:05:02 • AWS 1node,1core Total wall time: 0:23:28 (a1.medium: 0.0321USD/時間) 1node,4core Total wall time: 0:07:52 (a1.xlarge: 0.1284USD/時間)
クラウドにつながる	Δ	検証LANを経由して、インターネット経由のsshアクセスはできたが、VPCとのVPN接続までは至らず。
バースティング動作	Δ	AWSが公開するSlurmを利用したバースティング環境CloudFormationテンプレート (※1)をつかって、VPC内に閉じた環境の構築に成功。 Raspberry Piからバースティングさせるには以下も実現する必要があるが、そこまでは実現できなかった。 Raspberry Pi同等環境であるOpenSUSEによるバースティング環境の実現 Raspberry Piでバースティング環境構築

X1 https://github.com/aws-samples/aws-plugin-for-slurm/tree/plugin-v2

ベンチマーク比較 (Intel Xeon vs ARM Cortex vs AWS ARM)

CPU	価格	性能 (小さいほど性能高い)
ARM Cortex A72	8,900円	2246秒/core
AWS a1 instance	13.48円/h 約9年	1480秒/core) 約3倍
Intel Xeon 6254	110万円	485秒/core

ジョブ投入と並列計算

クラウドバースティング

■ ふりかえり

- ✓ バイナリを動くようにするまでの手順が大変だった
- ✓ クラウドバースティングの仕組みづくりがさらに大変だった
 - Cloudformationのテンプレートファイルを読んでデバッグ
 - AWSの制限事項の理解(使えないAMIがある、など)
- ✓ クラウドでは、再現させるための努力(Infrastructure as Code的な努力)が必要。

■ 今後

ARMでのHPCクラスタ環境を作成するために、今回失敗した以下2点を実現したい

- ✓ Raspberry Pi→AWSへ計算ノードをスケーリングしたい (社内手続き含む)
 (ジョブの再投入ではなくオンプレでリソース足りなくなったら自動でクラウドへ)
- ✓ AWS上でバースティングする仕組みの構築 (オンプレと全く同じ環境作成)

まとめ

- HPC技術のRaspberry Piへの適用
 - ✓ ARM環境を手軽に試すにはコンテナ含めてインフラ面で問題なし
 - ✓ HPCアプリケーションも動作するが、非力だった
- Raspberry Piからクラウドバースティング
 - ✓ AWSを使って、Raspberry Piに似たARM環境を作成することはできた
 - ✓ 自動でオンプレからバースティングする仕組みを構築することは大変
 - ✓ Raspberry Piのリソース不足を補う手段の一つになる
- ベンチマーク比較
 - ✓ 現状はIntelに軍配が上がる
 - ✓ 今後のARMの開発動向に期待!!