

4주 2강

요구 분석 절차와 표현방법

중실사이버대학교의 강의콘텐츠는 저작권법에 의하여 보호를 받는바, 무단 전재, 배포, 전송, 대여 등을 금합니다. *사용서체 : 나눔글꼴

이번 주차에는…

소프트웨어 요구 분석

- 요구 분석 절차와 요구 사항 종류
- 요구 사항의 표현

1. 요구 분석 절차와 요구 사항 종류

■ 요구 분석 절차

- ① 자료 수집: 현행 시스템 파악, 실무 담당자와 인터뷰, 현재 사용하는 서류 검토
- ② 요구 사항 도출: 수집한 자료 정리 및 분류 개발에 반영할 요구 사항 도출
- ③ 문서화:요구분석 명세서 작성
- ④ 검증: 요구 분석 명세서 검토 모순 사항, 빠뜨린 사항 등 점검

2. 요구 사항 분류

3. 비기능적 요구 사항

- 비기능적 요구 사항
 - 수행가능한 환경, 품질, 제약사항
- 제약사항의예
 - ① 자바 언어를 사용해 개발하고, CBD 개발 방법론을 적용해야 한다.
 - ② 레드햇 리눅스 엔터프라이즈 버전에서 실행해야 한다.
 - ③ 웹로직 서버WebLogic Server를 미들웨어로 사용해야 한다.
 - ④ 윈도우즈 운영체제와 리눅스 운영체제에서 모두 실행할 수 있어야 한다.
- 품질
 - 신뢰성, 성능, 보안성, 안전성, 사용성

4. 품질(1)

- 신뢰성^{reliability}
 - 신뢰: 소프트웨어를 믿고 사용할 수 있는 것
 - 사용자가 주어진 시간과 환경에서 고장 없이 사용할 수 있어야 한다는 것
 - 신뢰도: 장애 없이 동작하는 시간의 비율
 - (예) 신뢰도 98%(0.98): 100번 수행했을 때 오류 없이 동작하는 회수가 98번
- 신뢰도 측정
 - 고장 간 평균 시간(MTBF)과 이용 가능성(가용성)을 척도로 사용
 - MTBF = MTTF + MTTR
 - MTBF^{고장간평균시간, Mean Time Between Failure}: 고장에서 다음 고장까지의 평균 시간
 - MTTF^{평균실패시간, Mean Time To Failure}: 수리한 후 다음 고장까지의 평균 시간
 - MTTR^{평균수리시간, Mean Time To Repair}: 고장 발생 시점에서 수리 시까지의 평균 시간
 - 이용가능성availability = MTTF/(MTTF+MTTR)X100%
 - 이용 가능성(가용성): 주어진 시점에서 프로그램이 요구에 따라 작동되고 있을 가능성

5. 품질(2)

- 성능performance
 - 사용자가 시스템에 어떤 요구를 했을 때 해당 기능을 정상적으로 수행하는 것은 물론, 사용자가 원하는 조건(응답 시간, 데이터의 처리량 등)을 만족시키는 것

(예1) 대학 종합정보시스템은 수강 신청 시 동시 접속자 수 10,000명은 가능해야 한다.

(예2) 도서 관리 시스템에서 사용자가 책을 검색한 결과를 2초 이내로 보여주어야 한다.

- 보아성security
 - 인증을 받지 않은 사람이 시스템에 접근하는 것을 처음부터 막아 시스템과 데이터를 보호
- 안전성safety
 - 작동하는 모든 시스템이 소프트웨어 오류로 인해 인명 피해가 발생하지 않도록
 - (예1) 공장의 생산 라인에 사람 손이나 물체가 인식되면 절단 작업이 중단되어야 한다.
 - (예2) 전동차 출발 시 문에 가방 같은 물체가 끼면 출발을 멈춰야 한다.

6. 품질(3)

- 사용성usability
 - ▶ 소프트웨어를 사용할 때 혼란스러워하거나 사용하는 순간에 고민하지 않게 하는 편의성
 - ▶ 의미가 같은 단어 두 개를 혼용하여 사용자를 혼란스럽게 하는 경우
 - ▶ 주민번호를 입력할 때 ''를 넣어야 할지 말아야 할지 명확하게 제시해주지 못하는 경우

7. 사용자 요구 사항과 시스템 요구 사항

- 사용자를 위한 도면
 - ▶ 건축주와 일반인에게 설계 의도를 정확히 전달할 목적으로 작성된 도면
 - 사용자가 알고 싶어하는 내용을 중심으로 작성
 - ▶ 사용자 요구 분석 명세서 또는 요구 사항 정의서

- 시공자를 위한 도면
 - 전기 배선 기술자가 전기선을 포설하기 위해 필요한 도면
 - 각 분야의 기술자가 작업하는 데 필요한 도면
 - ▶ 실시 설계도: 사용자용 기본 설계도를 바탕으로 실제로 집을 짓는 데 필요해 작성한 도면
 - 시스템 요구 분석 명세서에 해당

8. 사용자 요구 사항

- 사용자 요구 분석 명세서
 - 사용자 요구 사항을 정리하여 작성한 문서
 - 건축의 사용자를 위한 도면과 유사
 - 목적: 사용자와 대화 시 거부감을 줄이고 충분히 이해할 수 있도록 쉽게 작성
 - 방법: 사용자가 이해할 수 있도록 전문 용어보다는 쉬운 용어 사용
 - 도구:다이어그램사용
 - 사용자와 분석가가 서로 충분한 대화를 나누며 함께 작성
- 사용자 요구 분석 명세서 작성 방법
 - 유사한 프로젝트 경험을 가진 분석가 선정
 - 표준양식사용
 - 수집한 요구 사항에 대한 근거(출처) 마련

9. 시스템 요구 사항

- 시스템 분석 명세서
 - ▶ 시스템 요구 사항을 설계하는데 도움이 되도록 기술적 용어나 전문적 표현 사용하여 작성
 - ▶ 건축에서 시공자를 위한 도면과 유사
 - 설계를 위해 사용되므로 완전하고 일관성 있게 작성

- 사용도구
 - 구조적 방법론의 구조적 언어
 - 객체지향 방법론의 유스케이스 다이어그램
 - ➢ 검증에 강한 Z 명세와 같은 정형화된 수학적 명세 언어

10. 요구 사항의 표현

- 표현
 - 음악(작곡, 작사, 노래), 미술(그림, 조각), 아이들의 그림, 수학
- 모델
 - 정의: 어떤 복잡한 대상의 핵심 특징만 선별하여 일정한 관점으로 단순화시켜 기호나 그림 등을 사용해 체계적으로 표현한 것
 - 악보, 수학 공식, 모델 하우스, 플라스틱 자동차나 로봇, DNA분자 모델 등
- 모델의 필요성
 - 모델을 통해 실제 모습을 생각하고 확인해볼 수 있기 때문
 - (예) 모델하우스, 장난감 자동차, DNA 분자 모델

11. 모델

- 건축의 모델
 - 하나의 사물을 여러 관점에서 바라보는 건축의 도면
 - 조감도: 건물 위에서 바라본 모습
 - 평면도: 건물을 수평으로 절단했을 때 바라본 모습
 - 배치도: 건물과 부지의 위치 관계를 나타낸 모습
 - 배선도: 전기 공사를 위해 전기선의 연결 관계를 나타낸 모습
- 소프트웨어 개발에서의 모델
 - 여러 설계 도면을 보고 건물을 시공하는 것처럼 SW 개발 시에도 여러 관점의 모델 사용
 - UML의 다양한 다이어그램을 통해 소프트웨어의 범위나 개략적인 구조와 기능을 이해

12. SW에서 모델 사용의 장단점

- 장점
 - 개발될 소프트웨어에 대한 이해도 향상, 이해 당사자 간의 의사소통 향상
 - 유지보수용이

- 단점
 - 과도한 문서 작업으로 인한 일정 지연 가능성
 - 형식적인 산출물로 전락할 가능성

1. 모델링

- 모델링
 - 모델을 제작하는 과정 또는 작업
 - 현실 세계를 단순화하여 표현하는 기법
 - (예1) 연필로 종이에 간단한 콘티를 작성하는 것
 - (예2) 스토리보드같이 자기가 표현하고 싶은 것을 문장으로 서술하는 것
 - (예3) 오선지에 음표를 그리는 것
- 소프트웨어 개발에서의 모델링
 - UML 다이어그램을 이용하여 표현
 - (예 1) 요구 사항 표현 시 UML의 유스케이스 다이어그램 사용
 - (예2) 자연어사용
 - (예3) 형식 언어의 형식적 표기법 사용

13. 모델링 언어

- 모델링 언어
 - 애매모호한 표현 등의 문제점 해결하기 위해 모델링을 할 때 사용하는 기호, 표기법, 도구 (예) 악보기호, 수학기호, UML 다이어그램, Z 언어

- 개발 방법론에 따른 모델링 언어
 - 구조적 방법론: DFD^{Data Flow Diagram}, DD^{Data Dictionary}, 프로세스 명세
 - 정보공학 방법론: DB 설계 시 표현은 ERD^{Entity-Relationship Diagram}
 - 객체지향 방법론: UML 표기법

14. DFD

- ➤ Terminator: 출원지, 목적지를 나타냄(학생, 교수)
- ▶ data flow: 자료의 흐름을 나타냄(화살표)
- ▶ data store: 자료가 저장되는 곳을 나타냄(데이터베이스(테이블)
- ➤ Process: 자료를 입력 받아 처리하는 알고리즘(성적 계산)

15. ERD

- ER 다이어그램
 - 데이터베이스에 저장할 데이터를 개체entity와 관계relationship를 중심으로 작성

16. 유스케이스 다이어그램(1)

17. 유스케이스 다이어그램(2)

- 유스케이스
 - 사용자의 요구를 나타내는 기능
 - 실제로 코딩할 수 있을 만큼의 가장 작은 단위의 기능

18. 유스케이스 다이어그램(3)

- 사용자 액터
 - ▶ 시스템을 사용하는 사람(역할)

- 시스템 액터
 - ▶ 본 시스템과 데이터를 주고받는 등 서로 연동되는 또 다른 시스템
 - 해당 프로젝트의 개발 범위에 속하지 않고 이미 다른 프로젝트에서 개발된 시스템

(예) 대학 종합정보시스템에서 등록납부 현황 자료를 받아오는 은행 시스템

(예) 입학생들의 기초 자료를 교육부로부터 받아오는 교육부시스템

다음 시간

요구사항의 문서화

중실사이버대학교

숭실사이버대학교의 강의콘텐츠는 저작권법에 의하여 보호를 받는바, 무단 전재, 배포, 전송, 대여 등을 금합니다.

*사용서체 : 나눔글꼴