

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190901903

FCC REPORT

Applicant: General Procurement, Inc

Address of Applicant: 800 E Dyer Road Santa Ana, CA 92705 United States

Equipment Under Test (EUT)

Product Name: 5.0 inch smartphone

Model No.: Eternity G50

Trade mark: Hyundai

FCC ID: 2AIOHHT1G50K

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 06 Aug., 2019

Date of Test: 07 Aug., to 29 Sep., 2019

Date of report issued: 30 Sep., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	30 Sep., 2019	Original

Tanet Wei Date:

Test Engineer

Winner Thang Date: Tested by: 30 Sep., 2019

Reviewed by: 30 Sep., 2019

Project Engineer

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	7
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1	00	
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	54
Ω	FIIT	CONSTRUCTIONAL DETAILS	55

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

All measurement data were performed in accordance with ANSI C63.10: 2013 and KDB 558074 D01 15.247 Meas Guidance v05r02 of test method.

Remark

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	General Procurement, Inc	
Address:	800 E Dyer Road Santa Ana, CA 92705 United States	
Manufacturer/ Factory:	Shen Zhen Cheng Fong Digital-Tech Limited	
Address:	Building A, ChengFong Industrial Area, Huaxing road, Dalang, Longhua, Shen Zhen, China	

5.2 General Description of E.U.T.

Product Name:	5.0 inch smartphonec
Model No.:	Eternity G50
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.1dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	Model: K-T50501000U1 Input: AC100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 5 of 55

^{1.} For 802.11n-HT40 mode, the channel number is from 3 to 9;

^{2.} Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Transmitting mode

Report No: CCISE190901903

5.3 Test environment and test mode

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010 mbar	
Test mode:		

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Keep the EUT in continuous transmitting with modulation

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode	Data rate			
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(H20)	6.5Mbps			
802.11n(H40)	13.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	Version: 6.110919b		b	
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020	
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020	
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0			

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020	
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020	
LION	Dahda 9 Cahusara	F0110.75	0.4200204/04.0	07-21-2018	07-20-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2019	07-20-2020	
Cable	HP	10503A	N/A	03-18-2019	03-17-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.1 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207			
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz			
Limit:	Frequency range	Limit (c	dBuV)		
	(MHz)				
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the log	arithm of the frequency.			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 				
Test setup:	LISN	E.U.T EMI Receiver	Iter — AC power		
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Product name:	5.0 inch smartphone	Product model:	Eternity G50
Test by:	Janet	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫BuV	<u>d</u> B	₫B	dBu₹	₫₿u₹	<u>d</u> B	
1	0.166	39.41	-0.44	10.77	49.74	65.16	-15.42	QP
2	0.174	25.62	-0.43	10.77	35.96	54.77	-18.81	Average
3	0.385	36.07	-0.37	10.72	46.42	58.17	-11.75	QP
1 2 3 4 5 6 7 8 9	0.385	26.80	-0.37	10.72	37.15	48.17	-11.02	Average
5	0.447	26.34	-0.38	10.74	36.70			Average
6	0.449	36.46	-0.38	10.74	46.82	56.89	-10.07	QP
7	0.486	35.61	-0.39	10.76	45.98	56.23	-10.25	QP
8	3.720	36.32	-0.46	10.90	46.76	56.00	-9.24	QP
9	3.720	24.09	-0.46	10.90	34.53	46.00	-11.47	Average
10	4.549	23.02	-0.47	10.87	33.42	46.00	-12.58	Average
11	12.449	33.03	-0.65	10.92	43.30		-16.70	

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	5.0 inch smartphone	Product model:	Eternity G50
Test by:	Janet	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
-	MHz	₫Bu∇	<u>dB</u>	dB	dBu₹	dBu₹	<u>ab</u>		
1	0.174	40.22	-0.69	10.77	50.30	64.77	-14.47	QP	
2	0.369	37.72	-0.64	10.73	47.81	58.52	-10.71	QP	
3	0.373	26.13	-0.64	10.73	36.22	48.43	-12.21	Average	
4	0.447	29.68	-0.64	10.74	39.78	46.93	-7.15	Average	
5	0.449	40.85	-0.65	10.74	50.94	56.89	-5.95	QP	
1 2 3 4 5 6 7 8	0.608	25.84	-0.64	10.77	35.97	46.00	-10.03	Average	
7	0.899	35.00	-0.63	10.84	45.21	56.00	-10.79	QP	
8	1.464	23.73	-0.65	10.92	34.00	46.00	-12.00	Average	
9	3.720	39.85	-0.69	10.90	50.06	56.00	-5.94	QP	
10	3.720	24.88	-0.69	10.90	35.09	46.00	-10.91	Average	
11	10.620	36.44	-0.79	10.93	46.58	60.00	-13.42	QP	
12	11.317	23.89	-0.80	10.93	34.02	50.00	-15.98	Average	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Measurement Data:

Test CH	Max	Maximum Conducted Output Power (dBm) Limit(dBm) Re					
Test CH	802.11b	802.11g	802.11n(H20)	Limit(ubin)	Result		
Lowest	15.37	14.22	13.36	12.23			
Middle	15.62	14.39	13.52	12.38	30.00	Pass	
Highest	15.87	14.66	13.70	12.54			

Test plot as follows:

6.4 Occupy Bandwidth

Measurement Data:

Test CH		6dB Emission B	andwidth (MHz)		Limit/IrLl=)	Result	
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result	
Lowest	10.24	15.84	16.40	35.52			
Middle	10.00	15.68	16.32	35.68	>500	Pass	
Highest	9.20	15.84	16.40	36.00			
Test CH		99% Occupy Ba	andwidth (MHz)		Limit/kU=)	Result	
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result	
Lowest	12.32	16.80	17.76	36.48			
Middle	12.32	16.88	17.76	36.48	N/A	N/A	
Highest	12.32	16.88	17.76	36.48			

Test plot as follows:

6.5 Power Spectral Density

Measurement Data:

Toot CH		Limit(dBm) Result				
Test CH	802.11b	802.11g	802.11g 802.11n(H20) 802.11n(H40)		Limit(dBm)	Result
Lowest	6.34	2.13	1.26	-3.19		
Middle	6.36	2.49	1.40	-2.74	8.00	Pass
Highest	6.63	2.01	1.53	-2.71		

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

0.0.1 Ooliddoted Elillosion			
Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

6.6.2 Radiated Emission Method

0.0.2	Radiated Emission Me							
Т	est Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Т	est Frequency Range:	2.3GHz to 2.5G	Hz					
Т	est Distance:	3m						
R	Receiver setup:	Frequency	Detector		VBW	Remark		
		Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	tue te.	Frequenc	RMS	1MHz _imit (dBuV/m @	3MHz	Average Value Remark		
L	.imit:	-		54.00		Average Value		
		Above 1GH	lz 🗀	74.00	•	Peak Value		
	est Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antennathe ground Both horizon make the make the maters and to find the meters and to find the maters and to find the material Both the mater	at a 3 meters of the position as set 3 meters of the position as set 3 meters of the position as set 3 meters of the position and ventual	er camber. The son of the highes of the highes eters away from ounted on the to varied from one the maximum etical polarizationt. The mission, the EUT enna was turned from was turned from the was turned from the EUT in peal in testing could be ported. Otherwice	table was rotate tradiation. The interference of a variable meter to four value of the ans of the anterest of the arrange to heights from 0 degrees and Detect Fund Mode. It is mode was a stopped and is the emissione by one university of the control of the contr	le-height antenna or meters above field strength. enna are set to ed to its worst om 1 meter to 4 es to 360 degrees unction and 10dB lower than of the peak values ions that did not sing peak, quasi-		
	est setup:	150cm	AE EUT (Turntable)	Ground Reference Plane Test Receiver	orn Antenna Antenna T	Tower		
Т	est Instruments:	Refer to section	5.8 for deta	ails				
	est mode:	Refer to section						
Т	est results:	Passed						

802.11b mode:

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					
	MHz	—dBu∜		 <u>d</u> B	$\overline{dB} \overline{u} \overline{V} / \overline{m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000							

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor					
	MHz	dBu∜	dB/π	 <u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50		
Test By:	Janet	Test mode:	802.11b Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz				

			Antenna Factor						Remark
		dBu₹		dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50		
Test By:	Janet	802.11b Tx mode			
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						
	MHz	dBu₹	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Product Name:	5.0 inch smartphone	Eternity G50			
Test By:	Janet	Test mode:	802.11g Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq		Antenna Factor					
	MHz	dBu₹	—dB/m	 dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000							

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Product Name: 5.0 inch smartphone Product Model:				
Test By:	Janet	Test mode:	802.11g Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq		Antenna Factor						
	MHz	dBu₹	$\overline{-dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	oduct Name: 5.0 inch smartphone Product Model:				
Test By:	Janet	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						
	MHz	dBu₹	dB/m	<u>dB</u>	dB	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Product Name: 5.0 inch smartphone Product Model:				
Test By:	Janet	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq	ReadAntenna Cable Pr q Level Factor Loss Fa							
	MHz	dBu₹	$-\overline{dB}/\overline{m}$	<u>d</u> B	dB	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1 2	2483,500 2483,500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50		
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq	ReadAntenn Level Facto					Limit Line		
	MHz	—dBu∇		<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>ab</u>	
1 2	2390,000 2390,000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50		
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor					
	MHz	dBu₹	dB/m	<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	
1 2	2390.000 2390.000							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu√	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	
1 2	2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50
Test By:	Janet	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

			ReadAntenna Cabi Freq Level Factor Lo						
	MHz	dBu∇		<u>ab</u>	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1 2	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50
Test By:	Janet	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor			Limit Line	Remark
	MHz	−dBuV		 <u>ab</u>	$\overline{dB}\overline{uV/m}$	dBuV/m	
1 2	2390,000 2390,000						

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50
Test By:	Janet	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	ReadAnten Freq Level Fact							Remark
	MHz	MHz dBuV dB	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50
Test By:	Janet	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					Remark
	MHz	−dBuV	'dB/π	<u>d</u> B	 $\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

0.7.1 Conducted Linission	motriou							
Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the sp spectrum intentional radiator is operating, the radio frequency power to is produced by the intentional radiator shall be at least 20 dB below the 100 kHz bandwidth within the band that contains the highest level the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limbased on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under the paragraph shall be 30 dB instead of 20 dB.							
Test setup:								
	Spectrum Analyzer							
	E.U.T							
	Non-Conducted Table							
	Ground Reference Plane							
Test Instruments:	Refer to section 5.8 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission N	2 Radiated Emission Method									
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205									
Test Frequency Range:	9kHz to 25GHz	9kHz to 25GHz								
Test Distance:	3m									
Receiver setup:	Frequency	Detector	RBW	VB	3W	Remark				
·	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3M	1Hz	Peak Value				
	Above 10112	RMS	1MHz	3M	1Hz	Average Value				
Limit:	Frequency		mit (dBuV/m @3	m)		Remark				
	30MHz-88MH		40.0			uasi-peak Value				
	88MHz-216MH		43.5			uasi-peak Value				
	216MHz-960M		46.0			uasi-peak Value				
	960MHz-1GH	12	54.0 54.0			uasi-peak Value Average Value				
	Above 1GHz	<u>-</u>	74.0			Peak Value				
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 									
Test setup:	Sheet. Below 1GHz FUT Turm Table Ground I	e v.am	lm A		_					

Measurement Data (worst case):

Below 1GHz:

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50
Test By:	Janet	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq			ReadAntenna Cable Preamp eq Level Factor Loss Factor Level					Limit Line		Remark
-	MHz	dBu₹	dB/m	₫B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>			
1	151.597	41.28	8.97	2.53	29.21	23.57	43.50	-19.93	QP		
2	211.527	37.73	11.12	2.86	28.76	22.95	43.50	-20.55	QP		
3	336.035	41.61	14.33	3.05	28.53	30.46	46.00	-15.54	QP		
4	360.448					28.95					
1 2 3 4 5	383.932	42.88	15.08	3.09	28.71	32.34	46.00	-13.66	QP		
6	480.528		17.52			28.90					

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50
Test By:	Janet	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Freq								
MHz	dBu∜			<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
226.894	45.07	11.79	2.84	28.67	31.03	46.00	-14.97	QP
270.375	42.37	13.10	2.86	28.50	29.83	46.00	-16.17	QP
336.035	47.40	14.33	3.05	28.53	36.25	46.00	-9.75	QP
360.448	42.76	14.75	3.10	28.61	32.00	46.00	-14.00	QP
383.932	46.02	15.08	3.09	28.71	35.48	46.00	-10.52	QP
408.946	45.29	15.51	3.10	28.80	35.10	46.00	-10.90	QP
	MHz 226. 894 270. 375 336. 035 360. 448 383. 932	Freq Level MHz dBuV 226.894 45.07 270.375 42.37 336.035 47.40 360.448 42.76 383.932 46.02	Freq Level Factor MHz dBuV dB/m 226.894 45.07 11.79 270.375 42.37 13.10 336.035 47.40 14.33 360.448 42.76 14.75 383.932 46.02 15.08	Freq Level Factor Loss MHz dBuV dB/m dB 226.894 45.07 11.79 2.84 270.375 42.37 13.10 2.86 336.035 47.40 14.33 3.05 360.448 42.76 14.75 3.10 383.932 46.02 15.08 3.09	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 226.894 45.07 11.79 2.84 28.67 270.375 42.37 13.10 2.86 28.50 336.035 47.40 14.33 3.05 28.53 360.448 42.76 14.75 3.10 28.61 383.932 46.02 15.08 3.09 28.71	Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 226.894 45.07 11.79 2.84 28.67 31.03 270.375 42.37 13.10 2.86 28.50 29.83 336.035 47.40 14.33 3.05 28.53 36.25 360.448 42.76 14.75 3.10 28.61 32.00 383.932 46.02 15.08 3.09 28.71 35.48	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 226.894 45.07 11.79 2.84 28.67 31.03 46.00 270.375 42.37 13.10 2.86 28.50 29.83 46.00 336.035 47.40 14.33 3.05 28.53 36.25 46.00 360.448 42.76 14.75 3.10 28.61 32.00 46.00 383.932 46.02 15.08 3.09 28.71 35.48 46.00	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz												
				802.11b								
			Test ch	nannel: Low	est channel							
			De	tector: Peal	v Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	51.13	30.94	6.81	41.82	47.06	74.00	-26.94	Vertical				
4824.00	51.66	30.94	6.81	41.82	47.59	74.00	-26.41	Horizontal				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	38.64	30.94	6.81	41.82	34.57	54.00	-19.43	Vertical				
4824.00	38.44	30.94	6.81	41.82	34.37	54.00	-19.63	Horizontal				
	Test channel: Middle channel Detector: Peak Value											
	Dood	Antonno			T value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	52.06	31.20	6.85	41.84	48.27	74.00	-25.73	Vertical				
4874.00	51.92	31.20	6.85	41.84	48.13	74.00	-25.87	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	39.45	31.20	6.85	41.84	35.66	54.00	-18.34	Vertical				
4874.00	38.81	31.20	6.85	41.84	35.02	54.00	-18.98	Horizontal				
				annel: High								
		T T		tector: Peal	k Value		T					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	51.83	31.46	6.89	41.86	48.32	74.00	-25.68	Vertical				
4924.00	51.80	31.46	6.89	41.86	48.29	74.00	-25.71	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	39.78	31.46	6.89	41.86	36.27	54.00	-17.73	Vertical				
4924.00	39.10	31.46	6.89	41.86	35.59	54.00	-18.41	Horizontal				

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g																
Test channel: Lowest channel																
Detector: Peak Value																
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization								
4824.00	51.62	30.94	6.81	41.82	47.55	74.00	-26.45	Vertical								
4824.00	51.36	30.94	6.81	41.82	47.29	74.00	-26.71	Horizontal								
Detector: Average Value																
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization								
4824.00	38.88	30.94	6.81	41.82	34.81	54.00	-19.19	Vertical								
4824.00	39.13	30.94	6.81	41.82	35.06	54.00	-18.94	Horizontal								
	Test channel: Middle channel															
				tector: Peak												
	Read	Antenna	Cable	Preamp	value											
Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization								
4874.00	51.39	31.20	6.85	41.84	47.60	74.00	-26.40	Vertical								
4874.00	51.65	31.20	6.85	41.84	47.86	74.00	-26.14	Horizontal								
			Dete	ector: Avera	ge Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization								
4874.00	40.06	31.20	6.85	41.84	36.27	54.00	-17.73	Vertical								
4874.00	39.58	31.20	6.85	41.84	35.79	54.00	-18.21	Horizontal								
				annel: High												
				tector: Peal	k Value		I									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization								
4924.00	52.67	31.46	6.89	41.86	49.16	74.00	-24.84	Vertical								
4924.00	51.96	31.46	6.89	41.86	48.45	74.00	-25.55	Horizontal								
			Dete	ector: Avera	ge Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization								
4924.00	40.13	31.46	6.89	41.86	36.62	54.00	-17.38	Vertical								
4924.00	40.08	31.46	6.89	41.86	36.57	54.00	-17.43	Horizontal								
Remark:	vel – Receive	or Read level a	- Δntenna Fa	octor + Cable	l oss – Pream	nlifier Factor										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20)												
Test channel: Lowest channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	51.43	36.06	6.81	41.82	52.48	74.00	-21.52	Vertical				
4824.00	51.19	36.06	6.81	41.82	52.24	74.00	-21.76	Horizontal				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	38.67	36.06	6.81	41.82	39.72	54.00	-14.28	Vertical				
4824.00	38.22	36.06	6.81	41.82	39.27	54.00	-14.73	Horizontal				
	Test channel: Middle channel											
				tector: Peal								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	51.09	36.32	6.85	41.84	52.42	74.00	-21.58	Vertical				
4874.00	50.89	36.32	6.85	41.84	52.22	74.00	-21.78	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	39.45	36.32	6.85	41.84	40.78	54.00	-13.22	Vertical				
4874.00	39.30	36.32	6.85	41.84	40.63	54.00	-13.37	Horizontal				
			Tost ch	annel: High	ost channol							
				tector: Peal								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	51.38	36.58	6.89	41.86	52.99	74.00	-21.01	Vertical				
4924.00	50.64	36.58	6.89	41.86	52.25	74.00	-21.75	Horizontal				
				ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	39.42	36.58	6.89	41.86	41.03	54.00	-12.97	Vertical				
4924.00	39.11	36.58	6.89	41.86	40.72	54.00	-13.28	Horizontal				
Remark:		5										

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40)											
Test channel: Lowest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4844.00	50.93	36.06	6.81	41.82	51.98	74.00	-22.02	Vertical			
4844.00	50.34	36.06	6.81	41.82	51.39	74.00	-22.61	Horizontal			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4844.00	39.16	36.06	6.81	41.82	40.21	54.00	-13.79	Vertical			
4844.00	39.51	36.06	6.81	41.82	40.56	54.00	-13.44	Horizontal			
			Test ch	nannel: Midd	dle channel						
			De	tector: Peak	k Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	51.34	36.32	6.85	41.84	52.67	74.00	-21.33	Vertical			
4874.00	51.25	36.32	6.85	41.84	52.58	74.00	-21.42	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	40.25	36.32	6.85	41.84	41.58	54.00	-12.42	Vertical			
4874.00	39.88	36.32	6.85	41.84	41.21	54.00	-12.79	Horizontal			
			Test ch	annel: High	est channel						
				tector: Peal							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4904.00	51.76	36.45	6.87	41.85	53.23	74.00	-20.77	Vertical			
4904.00	51.33	36.45	6.87	41.85	52.80	74.00	-21.20	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4904.00	39.45	36.45	6.87	41.85	40.92	54.00	-13.08	Vertical			
4904.00	39.08	36.45	6.87	41.85	40.55	54.00	-13.45	Horizontal			
Remark:	int. Donné	" Dood love !	Antonno [-	atom . Calif	Lana Duccio	onlifica Foots :					

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366