Proposition: Concerning the Fibonacci sequence,

$$S_n: \sum_{i=1}^n F_i^2 = F_n F_{n+1}.$$

Proof. (Induction).

Basis step. Suppose n = 1.

Observe that $\sum_{i=1}^{n} F_i^2 = F_1^2 = 1^2 = 1 * 1 = F_1 F_2 = F_1 F_{n+1}$. Thus S_1 .

Inductive step. Suppose S_k for $k \in \mathbb{N}$.

We now show S_k implies S_{k+1} . Observe that

$$\sum_{i=1}^{k+1} F_i^2 = \sum_{i=1}^k F_i^2 + F_{k+1}^2 \tag{1}$$

$$= F_k F_{k+1} + F_{k+1}^2 \tag{2}$$

$$= F_k F_{k+1} + (F_k + F_{k-1})^2 \tag{3}$$

$$= F_k F_{k+1} + F_k^2 + F_k F_{k-1} + F_k F_{k-1} + F_{k-1}^2$$

$$\tag{4}$$

$$= F_k F_{k+1} + F_k^2 + F_k F_{k-1} + F_{k-1} (F_k + F_{k-1})$$

$$\tag{5}$$

$$= F_k F_{k+1} + F_k^2 + F_k F_{k-1} + F_{k-1} F_{k+1}$$

$$\tag{6}$$

$$= F_k(F_{k+1} + F_k) + F_{k-1}(F_{k+1} + F_k)$$
(7)

$$= (F_k + F_{k-1})(F_{k+1} + F_k) \tag{8}$$

$$= F_{k+1} F_{k+2} \tag{9}$$

$$=F_{k+1}F_{(k+1)+1}. (10)$$

Thus S_{k+1} .

It follows by mathematical induction that S_n for all $n \in \mathbb{N}$.