Politechnika Poznańska Wydział Informatyki i Telekomunikacji

1. Wstęp do cyfrowego przetwarzania sygnałów – laboratorium						
2. Temat:	2. Temat: Efekt Gibbsa					
3. Imię i na	3. Imię i nazwisko: Marcel Garczyk					
4. Data	4. Data ćwiczenia: 5. Data oddania sprawozdania: 7. Ocena:					
10.03.20	22	6. 10.03.2022				

8. Ćwiczenie

$$\omega_0 = 2\pi/T_0$$
 $T_0 = ? \rightarrow \omega_0 = ?$

- 1. Określić maksymalną wartość zafalowania (przerzutu) Δ dla dwóch różnych wartości A, $A \in [2,9]$
 - przy różnych wartościach N (wówczas ω_0 = const); N ≥ 4
 - przy różnych wartościach ω_0 (wówczas N = const)

A?_w?_N?

TABELE DO APROKSYMACJI TRYGONOMETRYCZNEJ

A= 3	Liczba wyrazów w szeregu							
A- 3	N=5		N=55		N=555		$T_0 = ?$	$f_0 = ?$
	Δ	P=(Δ/A)* 100%	Δ	P=(Δ/A)*10 0%	Δ	P=(Δ/A)*10 0%	-	
$\omega_0 = 0.4\pi$	0.2825	9.4178	0.2686	8.9543	0.2684	8.9477	5	1/5
$\omega_0 = \pi$	0.2825	9.4178	0.2686	8.9543	0.2685	8.9490	2	1/2
$\omega_0 = 4\pi$	0.2825	9.4178	0.2686	8.9543	0.2678	8.9257	1/2	2

Liczba wyrazów w szeregu							
N=5 N=55 N=555		=555	T ₀ = ?	f ₀ = ?			
Δ	Ρ=(Δ/Α)*100%	Δ	P=(Δ/A)*1 00%	Δ	P=(Δ/A)*10 0%	10 1	
0.4709	9.4178	0.4477	8.9543	0.4474	8.9477	5	1/5
0.4709	9.4178	0.4477	8.9543	0.4475	8.9490	2	1/2
0.4709	9.4178	0.4477	8.9543	0.4463	8.9257	1/2	2
	0.4709 0.4709	N=5 Δ P=(Δ/A)*100% 0.4709 9.4178 0.4709 9.4178	N=5 N= Δ P=(Δ/A)*100% Δ 0.4709 9.4178 0.4477 0.4709 9.4178 0.4477	N=5 N=55 Δ P=(Δ/A)*100% Δ P=(Δ/A)*1 00% 0.4709 9.4178 0.4477 8.9543 0.4709 9.4178 0.4477 8.9543	N=5 $N=55$ $N=5$ $N=$	N=5N=55N=555Δ $P=(\Delta/A)*100\%$ Δ $P=(\Delta/A)*1$ 00%Δ $P=(\Delta/A)*10$ 0%0.47099.41780.44778.95430.44748.94770.47099.41780.44778.95430.44758.9490	N=5 N=55 N=555 N=6Δ/A)*100% Δ $P=(\Delta/A)*1$ $00%$ Δ $P=(\Delta/A)*10$ $0%$ $D=(\Delta/A)*10$ $0%$

TABELE DLA APROKSYMACJI SZEREGIEM ZESPOLONYM

A= 3	Liczba wyrazów w szeregu							
A- 3	N=5	5	N=55		N=555		$T_0 = ?$	$f_0 = ?$
	Δ	P=(Δ/A)* 100%	Δ	P=(Δ/A)*10 0%	Δ	P=(Δ/A)*10 0%		
$\omega_0 = 0.4\pi$	0.2825	9.4178	0.2686	8.9543	0.2684	8.9477	5	1/5
$\omega_0 = \pi$	0.2825	9.4178	0.2686	8.9543	0.2685	8.9490	2	1/2
$\omega_0 = 4\pi$	0.2825	9.4178	0.2686	8.9543	0.2678	8.9257	1/2	2

Liczba wyrazów w szeregu							
N=5		N=55		N=555		$T_0 = ?$	$f_0 = ?$
Δ	P=(Δ/A)*100%	Δ	P=(Δ/A)*1 00%	Δ	P=(Δ/A)*10 0%	Ü	Ü
0.4709	9.4178	0.4477	8.9543	0.4474	8.9477	5	1/5
0.4709	9.4178	0.4477	8.9543	0.4475	8.9490	2	1/2
0.4709	9.4178	0.4477	8.9543	0.4463	8.9257	1/2	2
	0.4709 0.4709	N=5 Δ P=(Δ/A)*100% 0.4709 9.4178 0.4709 9.4178	N=5 N= Δ P=(Δ/A)*100% Δ 0.4709 9.4178 0.4477 0.4709 9.4178 0.4477	N=5N=55Δ $P=(\Delta/A)*100%$ Δ $P=(\Delta/A)*1$ 00%0.47099.41780.44778.95430.47099.41780.44778.9543	N=5 $N=55$ $N=5$ $N=$	N=5N=55N=555Δ $P=(\Delta/A)*100\%$ Δ $P=(\Delta/A)*1$ 00% $D=(\Delta/A)*10$ 0%0.47099.41780.44778.95430.44748.94770.47099.41780.44778.95430.44758.9490	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

2. Obliczyć wartości T₀, f₀

Wyniki umieszczono w tabelach.

3. Ustalić jak zależy wartość **P** od N oraz **P** od ω_0

 $P=f_1(N)$ i $\omega_0=const.$

 $P=f_2(\omega_0)$ i N=const.

Na podstawie tabel możemy stwierdzić, że P, zmniejsza się wraz ze zwiększaniem N (ilości harmonicznych użytych do aproksymacji sygnału), zauważamy też że zmiana w0 w zasadzie nie wpływa na zmianę P, jedynie gdy, N=XXX to P zmniejsza się dla większych w0, lecz w zasadzie jest to pomijalna różnica, rzędu dziesięciotysięcznych.

4. Ustalić czym różnią się wartości Δ i P w zależności od wartości A (porównanie dwóch tabel dla dwóch wartości A)

Na podstawie tabel, zarówno dla aproksymacji szeregiem trygonometrycznym jak i zepsolonym zauważamy, że zwiększenie **A (amplitudy)**, zwiększa Δ (błąd wynikajacy z aproksymacji), ale nie zmienia **P.**

5. Jak zmienia się **postać** sygnału aproksymującego sygnał prostokątny, w zależności od N.

Różnicę zobrazują poniższe zrzuty ekranu. Użyta pulsacja: w0 = pi, A=3

TRYGONOMETRYCZNY

ZESPOLONY

N=5

SZEREG TRYGONOMETRYCZNY

N=5

A jokis opi de tepo co Pan pokozar?

Jak zauważamy, powyżej pewnej ilości składowych użytych do przybliżenia sygnału w naszym przypadku 55, zwiększenie ich ilości nie jest w stanie już obniżyć błędu wnikającego z efektu Gibbsa

-Zmiana pulsacji nie wpływa na na wielkość błędu generowanego przez efekt Gibbsa.

-Efekt Gibbsa będzie zawsze nieco <u>zakłamywał n</u>asze przybliżenie jeżeli będziemy korzystać z szeregów Fouriera, zarówno zespolonego, jak i trygonometrycznego.

restangues ?

80/100

2. Wzór sprawozdania

Wstęp do cyfrowego przetwarzania sygnałów – laboratorium						
Temat:						
Imię i nazwisko:						
Data ćwiczenia: Data oddania sprawozdania: Ocena:						

Sprawozdanie powinno zawierać:

- 9. Wykresy otrzymanych przebiegów,
- 10. Odpowiedzi na pytania,
- 11. Wnioski!

<u>Trygonometryczny szereg Fouriera</u>

% Aproksymacja ciągu impulsów prostokątnych trygonometrycznym szeregiem Fouriera o skończonej liczbie składników

```
clear; clc;
t = -3:6/100000:3;
A = 1;
                         % A=... A=...
                         % w0=pi, w0=0.4*pi, w0=4*pi
w0 = pi;
                    % N liczba składowych harmonicznych użytych do aproksymacji N=X, N=X0, N=X00
N=4;
a0 = A/2;
                        % składowa stała
xN = a0*ones(1,length(t));
for k=1:N
  xN = xN + A*2/k/pi*sin(k*pi/2)*cos(k*w0*t);
end
DELTA=max(xN)-A
                  % maksymalna wartość zafalowania
P=(DELTA/A)*100
plot(t,xN); grid;
title(['N=',num2str(N)])
xlabel('Time (sec)')
ylabel(['x',num2str(N),'(t)'])
```

% Aproksymacja ciągu impulsów prostokątnych wykładniczym szeregiem Fouriera o skończonej liczbie składników

```
clear; clc;
t = -3:6/100000:3;
A=1;
                       % A= ... A=...
w0 = pi;
                         % w0=pi, w0=0.4*pi, w0=4*pi
N=4;
                         % N liczba składowych harmonicznych użytych do aproksymacji N=X, N=X0, N=X00
c0 = A/2;
                         % składowa stała
xN = c0*ones(1,length(t));
for k=1:N
ck = A/k/pi*sin(k*pi/2);
c_k = ck;
xN = xN + ck*exp(1i*k*w0*t) + c_k*exp(-1i*k*w0*t);
end
DELTA=max(xN)-A
                         % maksymalna wartość zafalowania
P=(DELTA/A)*100
plot(t,xN); grid;
title(['N = ',num2str(N)])
xlabel('Time (sec)')
ylabel(['x',num2str(N),'(t)'])
```