Random Osborne Algorithm for Matrix Balancing

Optimal transport report

ALEXI CANESSE^{1,2}

Optimal transport course Part of the MVA program at ENS Paris-Saclay.

Computer Science and Mathematics École Normale Supérieur Paris-Saclay Orsay, France 7th January 2024

¹ alexi.canesse@ens-lyon.fr, ENS de Lyon, France

² alexi.canesse@ens-paris-saclay.fr, ENS Paris-Saclay, France

Table of content

1	Intr	roduction (3 pages)	1
	1.1	Presentation of the problem	1
	1.2	Related work	1
	1.3	Contributions of the paper	2
	1.4	Our contributions	2
2	Ma	in body (10 pages)	2
	2.1	Notations	2
	2.2	Presentation of the method	2
	2.3	Theoretical guarantees	3
	2.4	Numerics	3
		2.4.1 Sparsity	3
3	Cor	aclusion and perspective	3
4	Cor	nnexion with the course	3
\mathbf{R}	efere	nces	3

Abstract (½ page): What problems is studied? Why is it relevant? What solutions is proposed? Which contributions (theory, numerics, etc)?

1 Introduction (3 pages)

[AP23]

1.1 Presentation of the problem

Introduce the reasons to do this alg

Notation 1.1 Let c and r respectively be the column-wise sum and the row-wise sum of matrices ie.

$$c: \left\{ \begin{array}{ccc} \mathcal{M}_{n,m}(\mathbb{K}) & \to & \mathbb{K} \\ A & \mapsto & A^{\top}\mathbf{1} \end{array} \right. \quad and \quad r: \left\{ \begin{array}{ccc} \mathcal{M}_{n,m}(\mathbb{K}) & \to & \mathbb{K} \\ A & \mapsto & A\mathbf{1}. \end{array} \right.$$

Definition 1.1 Let $A \in \mathcal{M}_n(\mathbb{R}_+)$ be a non negative square matrix, $\varepsilon \geq 0$ and $k \in \mathbb{N}^*$. The matrix A is $(\varepsilon, k$ -balanced if

$$\frac{||c(A) - r(A)||_k}{\sum_{i,j} a_{i,j}} \le 0.$$

Furthermore, if A is (0,k)-balanced, we say that A is balanced.

Definition 1.2 The ε , k-approximate matrix balancing problem is: given a square non-negative matrix $K \in \mathcal{M}_n(\mathbb{R}_+)$, $\varepsilon \geq 0$ and $k \in \mathbb{N}^*$, find a positive diagonal matrix $D \in \mathcal{D}_n(\mathbb{R}_+^*)$ such that DKD^{-1} is (ε, k) -balanced.

1.2 Related work

Previous works (at least a few citations). If relevant, include things that you have seen during the MVA course (or possibly other courses).

Osborn algorithm introduced in [Osb60; PR71] and defaut in Scipy.

[CD00; Che01] improve accuracy of computation of eigen vectors, eigen values.

there are corner cases where balancing can actually worsen the conditioning. [Wat06] also [JLL14] in which they explain it and explain how to modify LAPACK to avoid it.

The standard matrix balancing algorithm is the Sinkhorn-Knopp algorithm [SK67], a special case of Bregman's balancing method [LS81] that iterates rescaling of each row and column until convergence. However, the algorithm converges linearly [Sou91], which is prohibitively slow for recently emerging large and sparse matrices.

Use 2.3 to explain it using convex opti

Use real formal definition from 2.1

[PR71] -> approximately balance matrices with a diagonal with only powers of 2. Advantage: no floating point error in computing the balanced matrix on base two computers. approximately "good enough"

[SNT17] -> matrix balancing on tensors

1.3 Contributions of the paper

Their main contribution is theorem 1.1. It exhibits a variant of OSBORN's algorithm with near-linear runtime in the input sparsity. It also shows that improving the runtime dependence in ε can be improve from ε^{-2} to ε^{-1} without an additional factor n.

Theorem 1.1 Let $K \in \mathcal{M}_n(\mathbb{R}_+)$ be a balanceable non negative square matrix and $\varepsilon \geq 0$. Random OSBORN solves $(\varepsilon, 1)$ -approximate matrix balancing problem in T operations where there exists c > 0, $\delta > 0$ such that

$$\mathbb{E}(T) = \mathcal{O}\left(\frac{m}{\varepsilon}\min\left\{\frac{1}{\varepsilon};d\right\}\log\kappa\right) \quad and \quad \mathbb{P}\left(T \le c\frac{m}{\varepsilon}\min\left\{\frac{1}{\varepsilon};d\right\}\log\kappa\log\frac{1}{\delta}\right) \ge 1 - \delta$$

where m is the number of nonzero entries in K, d is the diameter of the graph associated to K and $\kappa = \sum_{i,j} K_{i,j} / \min_{i,j} K_{i,j}$.

1.4 Our contributions

numerics? limits?

2 Main body (10 pages)

2.1 Notations

2.2 Presentation of the method

```
osborn(K, \varepsilon):
\mathbf{x} = 0 \in \mathbb{R}^{n}
while not(is_balanced(\mathbb{D}(e^{x})K\mathbb{D}(e^{-x}), \varepsilon)):
\mathbf{Choose} \ \mathbf{k} \in [\mathbf{n}] \ \# \ This \ is \ where \ variants \ differ
\mathbf{x} += (\log(\mathbf{c}_{\mathbf{k}}(\mathbb{D}(e^{x})K\mathbb{D}(e^{-x}))) - \log(\mathbf{r}_{\mathbf{k}}(\mathbb{D}(e^{x})K\mathbb{D}(e^{-x}))))/2
return \mathbf{x}
```

There are *many* way to choose the next coordinate to update and hence many variants of the algorithm. The article focuses on four of them:

- Cyclic Osborn Cycle through the coordinates. (eg. 1, 2, 3, 1, 2, 3, 1, ...).
- Random-Reshuffle Cyclic Osborn Cycle through the coordinates using a new random permutation for each cycle. (eg. 2, 1, 3, 1, 2, 3, 1, 3, 2, ...).
- Greedy Osborn Choose k where the imbalance is maximal eg.

$$k = \operatorname{argmax}_k \left| \sqrt{r_k(\mathbb{D}(e^x)K\mathbb{D}(e^{-x}))} - \sqrt{c_k(\mathbb{D}(e^x)K\mathbb{D}(e^{-x}))} \right|.$$

• Random Osborn Uniformly sample k independently between each call.

Talk about the implementation

2.3 Theoretical guarantees

2.4 Numerics

it indeed converges even with high sparsity (cf theorem)

2.4.1 Sparsity

We conducted numerical experiments to investigate the behavior of Osborn's algorithm in the presence of varying numbers of zero entries within randomly generated matrices. Each matrix has a size of (10, 10) with uniformly distributed values in the range [0, 1]. The number of zero entries in the matrices was systematically varied. Our objective was to assess the algorithm's ability to find solutions even with a small number of non-zero inputs, as proven in [ref].

The experiment involved measuring the execution time of Osborn's algorithm for each matrix, with the time recorded as a function of the number of zero entries. This exploration aimed to provide insights into the near-linear convergence time of the algorithm, shedding light on its performance characteristics under different sparsity levels. These results contribute valuable empirical evidence to support the theoretical findings presented in [ref]."

Use obeservation 2.5 to compare with other convex optim algorithms.

Look at per iteration runtime (5.2)

3 Conclusion and perspective

Summary of the result obtained: pros and cons (limitation, problems, error in the articles, etc.) Possible improvement/extension

4 Connexion with the course

MANDATORY SECTION:. What are the notions/results/algorithms presented in the course that are used or related to the one presented in this paper?

Todo list

Abstract
Introduce the reasons to do this alg
Use 2.3 to explain it using convex opti
Use real formal definition from 2.1
code availibility
Link with convex opti
Per iteration

References

[AP23] Jason M Altschuler and Pablo A Parrilo. "Near-linear convergence of the Random Osborne algorithm for Matrix Balancing". In: *Mathematical Programming* 198.1 (2023), pp. 363–397.

[CD00] Tzu-Yi Chen and James W Demmel. "Balancing sparse matrices for computing eigenvalues". In: *Linear algebra and its applications* 309.1-3 (2000), pp. 261–287.

[Che01] Tzu-Yi Chen. Preconditioning sparse matrices for computing eigenvalues and solving linear systems of equations. University of California, Berkeley, 2001.

[JLL14] Rodney James, Julien Langou and Bradley R Lowery. "On matrix balancing and eigenvector computation". In: arXiv preprint arXiv:1401.5766 (2014).

[LS81] B Lamond and Neil F Stewart. "Bregman's balancing method". In: *Transportation Research Part B: Methodological* 15.4 (1981), pp. 239–248.

[Osb60] EE Osborne. "On pre-conditioning of matrices". In: Journal of the ACM (JACM) 7.4 (1960), pp. 338–345.

[PR71] Beresford N Parlett and Christian Reinsch. "Balancing a matrix for calculation of eigenvalues and eigenvectors". In: *Handbook for Automatic Computation* 2 (1971), pp. 315–326.

[SK67] Richard Sinkhorn and Paul Knopp. "Concerning nonnegative matrices and doubly stochastic matrices". In: *Pacific Journal of Mathematics* 21.2 (1967), pp. 343–348.

[SNT17] Mahito Sugiyama, Hiroyuki Nakahara and Koji Tsuda. "Tensor balancing on statistical manifold". In: *International Conference on Machine Learning*. PMLR. 2017, pp. 3270–3279.

[Sou91] George W Soules. "The rate of convergence of Sinkhorn balancing". In: *Linear algebra and its applications* 150 (1991), pp. 3–40.

[Wat06] David S Watkins. "A case where balancing is harmful". In: *Electron. Trans. Numer. Anal* 23 (2006), pp. 1–4.