| (a) A 90% (I. Is
$$\mu t t_{1}^{\infty}$$
, $C \sim N(0)$)

= 2059 ± 1645 $\frac{C}{N_{1}}$

= [2008, 21.10]

(b) We want a 90% (I. I with width 0.1)

1 bes $\frac{12}{3\pi} \le 0$ |

 $\sqrt{197}$
 $\sqrt{197}$

= 14839-12 409 ± 2 206 $\frac{9}{\sqrt{9}}$

= 1-3 94 8.81]

Since we are 95% confidence that the true value of the difference lies in this interval we conclude that the two diets do not have much difference

3. Ho: Marke the two diets do not have much difference

3. Ho: μ_{1}
 μ_{2}
 μ_{3}
 μ_{1}
 μ_{2}
 μ_{3}
 μ_{3}
 μ_{3}
 μ_{4}
 μ_{5}
 μ_{5

= 1- P(D< 1.413)

There is evidence reject Ho

4.(a) Let
$$w = \sum_{i,j} V_{i,j}^2 + \lambda CT_i + T_2$$
)
 $= \sum_{i,j} (y_{i,j} - \mu - T_i)^2 + \lambda (T_i + T_2)$
 $= \sum_{i,j} (y_{i,j} - \mu - T_i)^2 + \sum_{i,j} (y_{i,j} - \mu - T_2)^2 + \lambda (T_i + T_2)$

$$\frac{\partial w}{\partial \mu} = 2\sum_{ij} (y_{ij} - \mu - \tau_i)$$

$$\frac{\partial w}{\partial \tau} = -2 \sum_{j} (y_{ij} - \mu - \tau_{ij}) + \lambda$$

$$\frac{\partial n}{\partial t_i} = -2 \sum_j (y_{2j} - \mu - \tau_i) + \lambda$$

$$\frac{\partial u}{\partial \lambda} = \mathcal{F}_1 + \mathcal{T}_2$$

(b)
$$E(\widetilde{\tau}_{t}) = E(\overline{\gamma}_{t} - \overline{\gamma}_{t+})$$

$$= E(\sum_{j=1}^{5} \frac{Y_{ij}}{5} - \sum_{ij} \frac{Y_{ij}}{10})$$

$$=\frac{1}{5}\left(\sum_{i=1}^{5}\mathcal{U}^{+}T_{i}\right)-\frac{1}{5}\left(\sum_{i=1}^{5}\mathcal{U}^{+}T_{i}+\sum_{i=1}^{5}\mathcal{U}^{+}T_{i}\right)$$
 Since $E(\mathcal{L}_{i})=0$ \forall i,j

=
$$\frac{1}{5}(5\mu+5\tau_1)-\frac{1}{6}lo\mu$$
 Since $\tau_1+\tau_2=0$

Since E(?,)=Ti, ?; is unbiased.

=
$$Var(\overline{Y}_{1t}) + Var(\overline{Y}_{2t})$$
 Since independent

$$=\frac{1}{25} Var\left(\sum_{j=1}^{5} R_{(j)}\right) + \frac{1}{25} Var\left(\sum_{j=1}^{5} R_{2j}\right)$$

