Appendix 1

PROPERTY TABLES AND CHARTS (SI UNITS)

Table A-1	Molar mass, gas constant, and critical-point properties	Table A-20	Ideal-gas properties of carbon dioxide, CO ₂
Table A-2	Ideal-gas specific heats of various common gases	Table A-21	Ideal-gas properties of carbon monoxide, CO
Table A-3	Properties of common liquids, solids, and foods	Table A-22 Table A-23	Ideal-gas properties of hydrogen, H ₂ Ideal-gas properties of water vapor, H ₂ O
Table A-4 Table A-5	Saturated water—Temperature table Saturated water—Pressure table	Table A-24	Ideal-gas properties of monatomic oxygen, O
Table A-6	Superheated water	Table A-25	Ideal-gas properties of hydroxyl, OH
Table A-7	Compressed liquid water	Table A-26	Enthalpy of formation, Gibbs function
Table A–8	Saturated ice-water vapor		of formation, and absolute entropy at
Figure A–9	T-s diagram for water	Table A 07	25°C, 1 atm
Figure A-10	Mollier diagram for water	Table A-27	Properties of some common fuels and hydrocarbons
Table A-11	Saturated refrigerant-134a— Temperature table	Table A-28	Natural logarithms of the equilibrium constant K_p
Table A-12	Saturated refrigerant-134a— Pressure table	Figure A-29	Generalized enthalpy departure chart
Table A-13	Superheated refrigerant-134a	Figure A–30	Generalized entropy departure chart
Figure A-14	P-h diagram for refrigerant-134a	Figure A–31	Psychrometric chart at 1 atm total pressure
Figure A-15	Nelson–Obert generalized compressibility chart	Table A-32	One-dimensional isentropic compressible-flow functions
Table A-16	Properties of the atmosphere at high altitude		for an ideal gas with $k = 1.4$
Table A-17	Ideal-gas properties of air	Table A-33	One-dimensional normal-shock functions for an ideal gas with $k = 1.4$
Table A-18	Ideal-gas properties of nitrogen, N ₂	Table A-34	Rayleigh flow functions for an ideal
Table A-19	Ideal-gas properties of oxygen, O ₂		gas with $k = 1.4$

TABLE A – 1

Molar mass, gas constant, and critical-point properties

		3100011100	Gas	Critical-p	point properties	5
Substance	Formula	Molar mass, <i>M</i> kg/kmol	constant, R kJ/kg · K*	Temperature, K	Pressure, MPa	Volume, m³/kmol
Air	_	28.97	0.2870	132.5	3.77	0.0883
Ammonia	NH_3	17.03	0.4882	405.5	11.28	0.0724
Argon	Ar	39.948	0.2081	151	4.86	0.0749
Benzene	C_6H_6	78.115	0.1064	562	4.92	0.2603
Bromine	Br ₂	159.808	0.0520	584	10.34	0.1355
<i>n</i> -Butane	C_4H_{10}	58.124	0.1430	425.2	3.80	0.2547
Carbon dioxide	CO_2	44.01	0.1889	304.2	7.39	0.0943
Carbon monoxide	CO	28.011	0.2968	133	3.50	0.0930
Carbon tetrachloride	CCI₄	153.82	0.05405	556.4	4.56	0.2759
Chlorine	Cl ₂	70.906	0.1173	417	7.71	0.1242
Chloroform	CHCl₃	119.38	0.06964	536.6	5.47	0.2403
Dichlorodifluoromethane (R-12)	CCI ₂ F ₂	120.91	0.06876	384.7	4.01	0.2179
Dichlorofluoromethane (R-21)	CHČI ₂ F	102.92	0.08078	451.7	5.17	0.1973
Ethane	C_2H_6	30.070	0.2765	305.5	4.48	0.1480
Ethyl alcohol	C ₂ H ₅ OH	46.07	0.1805	516	6.38	0.1673
Ethylene	C_2H_4	28.054	0.2964	282.4	5.12	0.1242
Helium	He	4.003	2.0769	5.3	0.23	0.0578
<i>n</i> -Hexane	C_6H_{14}	86.179	0.09647	507.9	3.03	0.3677
Hydrogen (normal)	H_2	2.016	4.1240	33.3	1.30	0.0649
Krypton	Kr	83.80	0.09921	209.4	5.50	0.0924
Methane	CH₄	16.043	0.5182	191.1	4.64	0.0993
Methyl alcohol	CH ₃ OH	32.042	0.2595	513.2	7.95	0.1180
Methyl chloride	CH ₃ CI	50.488	0.1647	416.3	6.68	0.1430
Neon	Ne	20.183	0.4119	44.5	2.73	0.0417
Nitrogen	N_2	28.013	0.2968	126.2	3.39	0.0899
Nitrous oxide	N_2^- 0	44.013	0.1889	309.7	7.27	0.0961
Oxygen	O_2	31.999	0.2598	154.8	5.08	0.0780
Propane	C_3H_8	44.097	0.1885	370	4.26	0.1998
Propylene	C_3H_6	42.081	0.1976	365	4.62	0.1810
Sulfur dioxide	SO_2	64.063	0.1298	430.7	7.88	0.1217
Tetrafluoroethane (R-134a)	CF ₃ CH ₂ F	102.03	0.08149	374.2	4.059	0.1993
Trichlorofluoromethane (R-11)	CCĬ ₃ F	137.37	0.06052	471.2	4.38	0.2478
Water	H_2O	18.015	0.4615	647.1	22.06	0.0560
Xenon	Xe	131.30	0.06332	289.8	5.88	0.1186

^{*}The unit kJ/kg \cdot K is equivalent to kPa \cdot m³/kg \cdot K. The gas constant is calculated from $R = R_u/M$, where $R_u = 8.31447$ kJ/kmol \cdot K and M is the molar mass.

Source: K. A. Kobe and R. E. Lynn, Jr., Chemical Review 52 (1953), pp. 117–236; and ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), pp. 16.4 and 36.1.

Appendix 1

911

TABLE A-2

Ideal-gas specific heats of various common gases

(a) At 300 K

		Gas constant, R	c_p	$c_{_{\scriptscriptstyle m V}}$	
Gas	Formula	kJ/kg ⋅ K	kJ/kg · K	kJ/kg ⋅ K	k
Air	_	0.2870	1.005	0.718	1.400
Argon	Ar	0.2081	0.5203	0.3122	1.667
Butane	C_4H_{10}	0.1433	1.7164	1.5734	1.091
Carbon dioxide	CO_2	0.1889	0.846	0.657	1.289
Carbon monoxide	CO	0.2968	1.040	0.744	1.400
Ethane	C_2H_6	0.2765	1.7662	1.4897	1.186
Ethylene	C_2H_4	0.2964	1.5482	1.2518	1.237
Helium	He	2.0769	5.1926	3.1156	1.667
Hydrogen	H_2	4.1240	14.307	10.183	1.405
Methane	CH₄	0.5182	2.2537	1.7354	1.299
Neon	Ne	0.4119	1.0299	0.6179	1.667
Nitrogen	N_2	0.2968	1.039	0.743	1.400
Octane	C ₈ H ₁₈	0.0729	1.7113	1.6385	1.044
Oxygen	02	0.2598	0.918	0.658	1.395
Propane	C_3H_8	0.1885	1.6794	1.4909	1.126
Steam	H_2° 0	0.4615	1.8723	1.4108	1.327

Note: The unit kJ/kg \cdot K is equivalent to kJ/kg \cdot °C.

Source: Chemical and Process Thermodynamics 3/E by Kyle, B. G., © 2000. Adapted by permission of Pearson Education, Inc., Upper Saddle River, NJ.

912 | Thermodynamics

TABLE A-2

Ideal-gas specific heats of various common gases (Continued)

(b) At various temperatures

Temperature,	$c_p \ ext{kJ/kg} \cdot ext{K}$	<i>c₀</i> kJ/kg · K	k	c_p kJ/kg · K	$c_{_{\scriptscriptstyle ee}}$ kJ/kg \cdot K	k	<i>c_p</i> kJ/kg ⋅ K	$c_{_{ee}}$ kJ/kg \cdot K	k	
K K		Air		Carb	oon dioxide, C	02	Carbon	Carbon monoxide, CO		
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039	0.743	1.400	
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040	0.744	1.399	
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043	0.746	1.398	
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047	0.751	1.395	
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054	0.757	1.392	
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063	0.767	1.387	
550	1.040	0.753	1.381	1.046	0.857	1.220	1.075	0.778	1.382	
600	1.051	0.764	1.376	1.075	0.886	1.213	1.087	0.790	1.376	
650	1.063	0.776	1.370	1.102	0.913	1.207	1.100	0.803	1.370	
700	1.075	0.788	1.364	1.126	0.937	1.202	1.113	0.816	1.364	
750	1.087	0.800	1.359	1.148	0.959	1.197	1.126	0.829	1.358	
800	1.099	0.812	1.354	1.169	0.980	1.193	1.139	0.842	1.353	
900	1.121	0.834	1.344	1.204	1.015	1.186	1.163	0.866	1.343	
1000	1.142	0.855	1.336	1.234	1.045	1.181	1.185	0.888	1.335	
		Hydrogen,	H_2		Nitrogen, N	V_2	Ox	ygen, O ₂		
250	14.051	9.927	1.416	1.039	0.742	1.400	0.913	0.653	1.398	
300	14.307	10.183	1.405	1.039	0.743	1.400	0.918	0.658	1.395	
350	14.427	10.302	1.400	1.041	0.744	1.399	0.928	0.668	1.389	
400	14.476	10.352	1.398	1.044	0.747	1.397	0.941	0.681	1.382	
450	14.501	10.377	1.398	1.049	0.752	1.395	0.956	0.696	1.373	
500	14.513	10.389	1.397	1.056	0.759	1.391	0.972	0.712	1.365	
550	14.530	10.405	1.396	1.065	0.768	1.387	0.988	0.728	1.358	
600	14.546	10.422	1.396	1.075	0.778	1.382	1.003	0.743	1.350	
650	14.571	10.447	1.395	1.086	0.789	1.376	1.017	0.758	1.343	
700	14.604	10.480	1.394	1.098	0.801	1.371	1.031	0.771	1.337	
750	14.645	10.521	1.392	1.110	0.813	1.365	1.043	0.783	1.332	
800	14.695	10.570	1.390	1.121	0.825	1.360	1.054	0.794	1.327	
900	14.822	10.698	1.385	1.145	0.849	1.349	1.074	0.814	1.319	
1000	14.983	10.859	1.380	1.167	0.870	1.341	1.090	0.830	1.313	

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), p. 783, Table A-4M. Originally published in Tables of Thermal Properties of Gases, NBS Circular 564, 1955.

TABLE A-2

Ideal-gas specific heats of various common gases (Concluded)

(c) As a function of temperature

$$\overline{c}_p = a + bT + cT^2 + dT^3$$
 (T in K, c_p in kJ/kmol · K)

						Temperature	<u> % e</u>	rror
Substance	Formula	а	b	С	d	range, K	Max.	Avg.
Nitrogen	N_2	28.90	-0.1571×10^{-2}	0.8081×10^{-5}	-2.873×10^{-9}	273-1800	0.59	0.34
Oxygen	02	25.48	1.520×10^{-2}	-0.7155×10^{-5}	1.312×10^{-9}	273-1800	1.19	0.28
Air	_	28.11	0.1967×10^{-2}	0.4802×10^{-5}	-1.966×10^{-9}	273-1800	0.72	0.33
Hydrogen Carbon	H ₂	29.11	-0.1916×10^{-2}	0.4003×10^{-5}	-0.8704×10^{-9}	273–1800	1.01	0.26
monoxide Carbon	CO	28.16	0.1675×10^{-2}	0.5372×10^{-5}	-2.222×10^{-9}	273–1800	0.89	0.37
dioxide	CO_2	22.26	5.981×10^{-2}	-3.501×10^{-5}	7.469×10^{-9}	273-1800	0.67	0.22
Water vapor	$H_2\bar{O}$	32.24	0.1923×10^{-2}	1.055×10^{-5}	-3.595×10^{-9}	273-1800	0.53	0.24
Nitric oxide	NO	29.34	-0.09395×10^{-2}	0.9747×10^{-5}	-4.187×10^{-9}	273-1500	0.97	0.36
Nitrous oxide Nitrogen	N_2O	24.11	5.8632×10^{-2}	-3.562×10^{-5}	10.58×10^{-9}	273–1500	0.59	0.26
dioxide	NO_2	22.9	5.715×10^{-2}	-3.52×10^{-5}	7.87×10^{-9}	273-1500	0.46	0.18
Ammonia	NH_3	27.568	2.5630×10^{-2}	0.99072×10^{-5}	-6.6909×10^{-9}	273-1500	0.91	0.36
Sulfur Sulfur	S_2	27.21	2.218×10^{-2}	-1.628×10^{-5}	3.986×10^{-9}	273–1800	0.99	0.38
dioxide Sulfur	SO_2	25.78	5.795×10^{-2}	-3.812×10^{-5}	8.612×10^{-9}	273–1800	0.45	0.24
trioxide	SO_3	16.40	14.58×10^{-2}	-11.20×10^{-5}	32.42×10^{-9}	273-1300	0.29	0.13
Acetylene	C_2H_2	21.8	9.2143×10^{-2}	-6.527×10^{-5}	18.21×10^{-9}	273–1500	1.46	0.59
Benzene		-36.22	48.475×10^{-2}	-31.57×10^{-5}	77.62×10^{-9}	273–1500	0.34	0.20
Methanol	CH₄O	19.0	9.152×10^{-2}	-1.22×10^{-5}	-8.039×10^{-9}	273–1000	0.18	0.08
Ethanol Hydrogen	C_2H_6O	19.9	20.96×10^{-2}	-10.38×10^{-5}	20.05×10^{-9}	273–1500	0.40	0.22
chloride	HCI	30.33	-0.7620×10^{-2}	1.327×10^{-5}	-4.338×10^{-9}	273-1500	0.22	0.08
Methane	CH₄	19.89	5.024×10^{-2}	1.269×10^{-5}	-11.01×10^{-9}	273-1500	1.33	0.57
Ethane	C_2H_6	6.900	17.27×10^{-2}	-6.406×10^{-5}	7.285×10^{-9}	273-1500	0.83	0.28
Propane	C_3H_8	-4.04	30.48×10^{-2}	-15.72×10^{-5}	31.74×10^{-9}	273-1500	0.40	0.12
<i>n</i> -Butane	C_4H_{10}	3.96	37.15×10^{-2}	-18.34×10^{-5}	35.00×10^{-9}	273-1500	0.54	0.24
<i>i</i> -Butane	C ₄ H ₁₀	-7.913	41.60×10^{-2}	-23.01×10^{-5}	49.91×10^{-9}	273-1500	0.25	0.13
<i>n</i> -Pentane	C ₅ H ₁₂	6.774	45.43×10^{-2}	-22.46×10^{-5}	42.29×10^{-9}	273-1500	0.56	0.21
<i>n</i> -Hexane	C ₆ H ₁₄	6.938	55.22×10^{-2}	-28.65×10^{-5}	57.69×10^{-9}	273-1500	0.72	0.20
Ethylene	C_2H_4	3.95	15.64×10^{-2}	-8.344×10^{-5}	17.67×10^{-9}	273-1500	0.54	0.13
Propylene	$C_3^2H_6^4$	3.15	23.83×10^{-2}	-12.18×10^{-5}	24.62×10^{-9}	273–1500	0.73	0.17

Source: B. G. Kyle, Chemical and Process Thermodynamics (Englewood Cliffs, NJ: Prentice-Hall, 1984). Used with permission.

914 | Thermodynamics

TABLE A-3

Properties of common liquids, solids, and foods

(a) Liquids

	Boiling	data at 1 atm	Freez	zing data	L	iquid propert	ies
Substance	Normal boiling point, °C	Latent heat of vaporization $h_{\rm fg}$, kJ/kg	Freezing point, °C	Latent heat of fusion h_{if} , kJ/kg	Temperature, °C	Density $ ho$, kg/m ³	Specific heat c_p , kJ/kg \cdot K
Ammonia	-33.3	1357	-77.7	322.4	-33.3	682	4.43
					-20	665	4.52
					0	639	4.60
					25	602	4.80
Argon	-185.9	161.6	-189.3	28	-185.6	1394	1.14
Benzene Brine (20% sodium	80.2	394	5.5	126	20	879	1.72
chloride by mass)	103.9	_	-17.4	_	20	1150	3.11
<i>n</i> -Butane	-0.5	385.2	-138.5	80.3	-0.5	601	2.31
Carbon dioxide	-78.4*	230.5 (at 0°C)	-56.6		0	298	0.59
Ethanol	78.2	838.3	-114.2	109	25	783	2.46
Ethyl alcohol	78.6	855	-156	108	20	789	2.84
Ethylene glycol	198.1	800.1	-10.8	181.1	20	1109	2.84
Glycerine	179.9	974	18.9	200.6	20	1261	2.32
Helium	-268.9	22.8	_	_	-268.9	146.2	22.8
Hydrogen	-252.8	445.7	-259.2	59.5	-252.8	70.7	10.0
Isobutane	-11.7	367.1	-160	105.7	-11.7	593.8	2.28
Kerosene	204-293	251	-24.9	_	20	820	2.00
Mercury	356.7	294.7	-38.9	11.4	25	13,560	0.139
Methane	-161.5	510.4	-182.2	58.4	-161.5	423	3.49
					-100	301	5.79
Methanol	64.5	1100	-97.7	99.2	25	787	2.55
Nitrogen	-195.8	198.6	-210	25.3	-195.8	809	2.06
J					-160	596	2.97
Octane	124.8	306.3	-57.5	180.7	20	703	2.10
Oil (light)					25	910	1.80
Oxygen	-183	212.7	-218.8	13.7	-183	1141	1.71
Petroleum	_	230-384			20	640	2.0
Propane	-42.1	427.8	-187.7	80.0	-42.1	581	2.25
					0	529	2.53
					50	449	3.13
Refrigerant-134a	-26.1	217.0	-96.6	_	-50	1443	1.23
J					-26.1	1374	1.27
					0	1295	1.34
					25	1207	1.43
Water	100	2257	0.0	333.7	0	1000	4.22
					25	997	4.18
					50	988	4.18
					75	975	4.19
					100	958	4.22

^{*} Sublimation temperature. (At pressures below the triple-point pressure of 518 kPa, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature of carbon dioxide is the triple-point temperature of -56.5° C.)

915

Appendix 1

TABLE A-3

Properties of common liquids, solids, and foods (Concluded)

(b) Solids (values are for room temperature unless indicated otherwise)

Substance	Density, $ ho$ kg/m 3	Specific heat, $c_p \ \mathrm{kJ/kg} \cdot \mathrm{K}$	Substance	Density, $ ho$ kg/m 3	Specific heat, c_{ρ} kJ/kg \cdot K
Metals			Nonmetals		
Aluminum			Asphalt	2110	0.920
200 K		0.797	Brick, common	1922	0.79
250 K		0.859	Brick, fireclay (500°C)	2300	0.960
300 K	2,700	0.902	Concrete	2300	0.653
350 K		0.929	Clay	1000	0.920
400 K		0.949	Diamond	2420	0.616
450 K		0.973	Glass, window	2700	0.800
500 K		0.997	Glass, pyrex	2230	0.840
Bronze (76% Cu, 2% Zn,	8,280	0.400	Graphite	2500	0.711
2% AI)			Granite	2700	1.017
Brass, yellow (65% Cu,	8,310	0.400	Gypsum or plaster board	800	1.09
35% Zn)			Ice		
Copper			200 K		1.56
-173°C		0.254	220 K		1.71
-100°C		0.342	240 K		1.86
−50°C		0.367	260 K		2.01
0°C		0.381	273 K	921	2.11
27°C	8,900	0.386	Limestone	1650	0.909
100°C		0.393	Marble	2600	0.880
200°C		0.403	Plywood (Douglas Fir)	545	1.21
Iron	7,840	0.45	Rubber (soft)	1100	1.840
Lead	11,310	0.128	Rubber (hard)	1150	2.009
Magnesium	1,730	1.000	Sand	1520	0.800
Nickel	8,890	0.440	Stone	1500	0.800
Silver	10,470	0.235	Woods, hard (maple, oak, etc.)	721	1.26
Steel, mild	7,830	0.500	Woods, soft (fir, pine, etc.)	513	1.38
Tungsten	19,400	0.130			

(c) Foods

	Water			ic heat, g · K	Latent heat of		Water		Specific kJ/kg		Latent heat of
	content,	Freezing	Above	Below	fusion,		content,	Freezing	Above	Below	fusion,
Food	% (mass)	point, °C	freezing	freezing	kJ/kg	Food	% (mass)	point, °C	freezing	freezing	kJ/kg
Apples	84	-1.1	3.65	1.90	281	Lettuce	95	-0.2	4.02	2.04	317
Bananas	75	-0.8	3.35	1.78	251	Milk, whole	88	-0.6	3.79	1.95	294
Beef round	67	_	3.08	1.68	224	Oranges	87	-0.8	3.75	1.94	291
Broccoli	90	-0.6	3.86	1.97	301	Potatoes	78	-0.6	3.45	1.82	261
Butter	16	_	_	1.04	53	Salmon fish	64	-2.2	2.98	1.65	214
Cheese, swiss	39	-10.0	2.15	1.33	130	Shrimp	83	-2.2	3.62	1.89	277
Cherries	80	-1.8	3.52	1.85	267	Spinach	93	-0.3	3.96	2.01	311
Chicken	74	-2.8	3.32	1.77	247	Strawberries	90	-0.8	3.86	1.97	301
Corn, sweet	74	-0.6	3.32	1.77	247	Tomatoes, ripe	94	-0.5	3.99	2.02	314
Eggs, whole	74	-0.6	3.32	1.77	247	Turkey	64	_	2.98	1.65	214
Ice cream	63	-5.6	2.95	1.63	210	Watermelon	93	-0.4	3.96	2.01	311

Source: Values are obtained from various handbooks and other sources or are calculated. Water content and freezing-point data of foods are from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), Chapter 30, Table 1. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.

Satura	ted water—	Temperatur	e table									
		,	fic volume, m³/kg		<i>nternal e</i> kJ/kg	0,		Enthalp kJ/kg	у,		Entropy, kJ/kg · k	
Temp., <i>T</i> °C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	8.7488 8.5559	9.1556 9.0249 8.8999 8.7803 8.6661
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.0152 7.8466 7.6832	8.5567 8.4520 8.3517 8.2556 8.1633
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.5355 6.4089 6.2853	7.6812 7.6111 7.5435 7.4782 7.4151
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	5.9319 5.8193 5.7092	7.3542 7.2952 7.2382 7.1829 7.1292
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.3919 5.2901 5.1901	7.0771 7.0265 6.9773 6.9294 6.8827
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9002 4.8066 4.7143	6.8371 6.7927 6.7492 6.7067 6.6650
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.4448 4.3572 4.2705 4.1847	6.6242 6.5841 6.5447 6.5059 6.4678 6.4302

TABLE A-4

Saturated water—Temperature table (Continued)

			c volume, ³ /kg	In	<i>ternal en</i> kJ/kg	ergy,		<i>Enthalp</i> kJ/kg	ру,		<i>Entropy,</i> kJ/kg · K	
Temp., T°C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., <i>h_{fg}</i>	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
205 210 215 220 225	1724.3 1907.7 2105.9 2319.6 2549.7	0.001164 0.001173 0.001181 0.001190 0.001199	0.11508 0.10429 0.094680 0.086094 0.078405	872.86 895.38 918.02 940.79 963.70	1723.5 1702.9 1681.9 1660.5 1638.6	2596.4 2598.3 2599.9 2601.3 2602.3	897.61 920.50 943.55	1920.0 1899.7 1878.8 1857.4 1835.4	2794.8 2797.3 2799.3 2801.0 2802.2	2.3776 2.4245 2.4712 2.5176 2.5639	3.9318 3.8489 3.7664	6.3930 6.3563 6.3200 6.2840 6.2483
230 235 240 245 250	2797.1 3062.6 3347.0 3651.2 3976.2	0.001209 0.001219 0.001229 0.001240 0.001252	0.071505 0.065300 0.059707 0.054656 0.050085	986.76 1010.0 1033.4 1056.9 1080.7	1616.1 1593.2 1569.8 1545.7 1521.1	2602.9 2603.2 2603.1 2602.7 2601.8	990.14 1013.7 1037.5 1061.5 1085.7	1812.8 1789.5 1765.5 1740.8 1715.3	2802.9 2803.2 2803.0 2802.2 2801.0	2.6100 2.6560 2.7018 2.7476 2.7933	3.5216 3.4405 3.3596	6.2128 6.1775 6.1424 6.1072 6.0721
255 260 265 270 275	4322.9 4692.3 5085.3 5503.0 5946.4	0.001263 0.001276 0.001289 0.001303 0.001317	0.045941 0.042175 0.038748 0.035622 0.032767	1104.7 1128.8 1153.3 1177.9 1202.9	1495.8 1469.9 1443.2 1415.7 1387.4	2600.5 2598.7 2596.5 2593.7 2590.3	1110.1 1134.8 1159.8 1185.1 1210.7	1689.0 1661.8 1633.7 1604.6 1574.5	2799.1 2796.6 2793.5 2789.7 2785.2	2.8390 2.8847 2.9304 2.9762 3.0221	3.1169 3.0358 2.9542	6.0369 6.0017 5.9662 5.9305 5.8944
280 285 290 295 300	6416.6 6914.6 7441.8 7999.0 8587.9	0.001333 0.001349 0.001366 0.001384 0.001404	0.030153 0.027756 0.025554 0.023528 0.021659	1228.2 1253.7 1279.7 1306.0 1332.7	1358.2 1328.1 1296.9 1264.5 1230.9	2586.4 2581.8 2576.5 2570.5 2563.6	1236.7 1263.1 1289.8 1317.1 1344.8	1543.2 1510.7 1476.9 1441.6 1404.8	2779.9 2773.7 2766.7 2758.7 2749.6	3.0681 3.1144 3.1608 3.2076 3.2548	2.7066 2.6225 2.5374	5.8579 5.8210 5.7834 5.7450 5.7059
305 310 315 320 325	9209.4 9865.0 10,556 11,284 12,051	0.001425 0.001447 0.001472 0.001499 0.001528	0.019932 0.018333 0.016849 0.015470 0.014183	1360.0 1387.7 1416.1 1445.1 1475.0	1195.9 1159.3 1121.1 1080.9 1038.5	2555.8 2547.1 2537.2 2526.0 2513.4	1373.1 1402.0 1431.6 1462.0 1493.4	1366.3 1325.9 1283.4 1238.5 1191.0	2739.4 2727.9 2715.0 2700.6 2684.3	3.3024 3.3506 3.3994 3.4491 3.4998	2.2737 2.1821 2.0881	5.6657 5.6243 5.5816 5.5372 5.4908
330 335 340 345 350	12,858 13,707 14,601 15,541 16,529	0.001560 0.001597 0.001638 0.001685 0.001741	0.012979 0.011848 0.010783 0.009772 0.008806	1505.7 1537.5 1570.7 1605.5 1642.4	993.5 945.5 893.8 837.7 775.9	2499.2 2483.0 2464.5 2443.2 2418.3	1525.8 1559.4 1594.6 1631.7 1671.2	1140.3 1086.0 1027.4 963.4 892.7	2666.0 2645.4 2622.0 2595.1 2563.9	3.5516 3.6050 3.6602 3.7179 3.7788	1.7857 1.6756 1.5585	5.4422 5.3907 5.3358 5.2765 5.2114
355 360 365 370 373.95	17,570 18,666 19,822 21,044 5 22,064	0.001808 0.001895 0.002015 0.002217 0.003106	0.007872 0.006950 0.006009 0.004953 0.003106	1682.2 1726.2 1777.2 1844.5 2015.7	706.4 625.7 526.4 385.6 0	2388.6 2351.9 2303.6 2230.1 2015.7	1714.0 1761.5 1817.2 1891.2 2084.3	812.9 720.1 605.5 443.1 0	2526.9 2481.6 2422.7 2334.3 2084.3	3.8442 3.9165 4.0004 4.1119 4.4070	1.1373 0.9489	5.1384 5.0537 4.9493 4.8009 4.4070

Source: Tables A–4 through A–8 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K to 473.15 K," ASHRAE Trans., Part 2A, Paper 2793, 1983.

918 | Thermodynamics

Saturate	ed water-	-Pressure t	able									
		,	fic volume, m³/kg		<i>Internal ei</i> kJ/kg			Enthalpy kJ/kg	′,		<i>Entropy,</i> kJ/kg · K	
Press., P kPa	Sat. temp., $T_{\rm sat}$ °C	Sat. Iiquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s _g
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.7227
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	0.2606	8.4621	
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302	
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	
4.0 5.0 7.5 10 15	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	34.791 28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 2372.3	2553.7 2560.7 2574.0 2583.9 2598.3	0.4224 0.4762 0.5763 0.6492 0.7549	8.0510 7.9176 7.6738 7.4996 7.2522	8.3938 8.2501 8.1488
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2636.1	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5		0.8932	6.9370	7.8302
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3		0.9441	6.8234	7.7675
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4		1.0261	6.6430	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7		1.0912	6.5019	7.5931
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.3589
101.325	5 99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0525
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207
300	133.52	0.001073	0.60582	594.32	1982.1	2543.2	561.43	2163.5	2724.9	1.6717	5.3200	6.9917
325	136.27	0.001076	0.56199		1973.1	2545.9	573.19	2155.4	2728.6	1.7005	5.2645	6.9650
350	138.86	0.001079	0.52422		1964.6	2548.5	584.26	2147.7	2732.0	1.7274	5.2128	6.9402
375	141.30	0.001081	0.49133		1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.9171
400	143.61	0.001084	0.46242		1948.9	2553.1	604.66	2133.4	2738.1	1.7765	5.1191	6.8955
450	147.90	0.001088	0.41392	639.54	1934.5	2557.1	623.14	2120.3	2743.4	1.8205	5.0356	6.8561
500	151.83	0.001093	0.37483		1921.2	2560.7	640.09	2108.0	2748.1	1.8604	4.9603	6.8207
550	155.46	0.001097	0.34261		1908.8	2563.9	655.77	2096.6	2752.4	1.8970	4.8916	6.7886
600	158.83	0.001101	0.31560		1897.1	2566.8	670.38	2085.8	2756.2	1.9308	4.8285	6.7593
650	161.98	0.001104	0.29260		1886.1	2569.4	684.08	2075.5	2759.6	1.9623	4.7699	6.7322
700	164.95	0.001108	0.27278	696.23	1875.6	2571.8	697.00	2065.8	2762.8	1.9918	4.7153	6.7071
750	167.75	0.001111	0.25552	708.40	1865.6	2574.0	709.24	2056.4	2765.7	2.0195	4.6642	6.6837

TABLE A	_ე											
Saturate	d water—	-Pressure ta	ble (<i>Continu</i>	ued)								
			volume, ³ /kg	In	<i>ternal en</i> kJ/kg	ergy,		Enthalpy kJ/kg			Entropy, kJ/kg · K	
Press., <i>P</i> kPa	Sat. temp., T_{sat} °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor,	Sat. liquid, s _f	Evap.,	Sat. vapor, s_g
800 850 900 950 1000	170.41 172.94 175.35 177.66 179.88	0.001115 0.001118 0.001121 0.001124 0.001127	0.24035 0.22690 0.21489 0.20411 0.19436	731.00 741.55 751.67	1856.1 1846.9 1838.1 1829.6 1821.4	2576.0 2577.9 2579.6 2581.3 2582.8	720.87 731.95 742.56 752.74 762.51	2047.5 2038.8 2030.5 2022.4 2014.6	2773.0	2.0457 2.0705 2.0941 2.1166 2.1381	4.6160 4.5705 4.5273 4.4862 4.4470	6.6616 6.6409 6.6213 6.6027 6.5850
1100 1200 1300 1400 1500	184.06 187.96 191.60 195.04 198.29	0.001133 0.001138 0.001144 0.001149 0.001154	0.17745 0.16326 0.15119 0.14078 0.13171	796.96 813.10 828.35	1805.7 1790.9 1776.8 1763.4 1750.6	2585.5 2587.8 2589.9 2591.8 2593.4	781.03 798.33 814.59 829.96 844.55	1999.6 1985.4 1971.9 1958.9 1946.4	2780.7 2783.8 2786.5 2788.9 2791.0	2.1785 2.2159 2.2508 2.2835 2.3143	4.3735 4.3058 4.2428 4.1840 4.1287	6.5520 6.5217 6.4936 6.4675 6.4430
1750 2000 2250 2500 3000	205.72 212.38 218.41 223.95 233.85	0.001166 0.001177 0.001187 0.001197 0.001217	0.11344 0.099587 0.088717 0.079952 0.066667	906.12	1720.6 1693.0 1667.3 1643.2 1598.5	2596.7 2599.1 2600.9 2602.1 2603.2	878.16 908.47 936.21 961.87 1008.3	1917.1 1889.8 1864.3 1840.1 1794.9	2801.9	2.3844 2.4467 2.5029 2.5542 2.6454	4.0033 3.8923 3.7926 3.7016 3.5402	6.3877 6.3390 6.2954 6.2558 6.1856
3500 4000 5000 6000 7000	242.56 250.35 263.94 275.59 285.83	0.001235 0.001252 0.001286 0.001319 0.001352	0.057061 0.049779 0.039448 0.032449 0.027378	1045.4 1082.4 1148.1 1205.8 1258.0	1557.6 1519.3 1448.9 1384.1 1323.0	2603.0 2601.7 2597.0 2589.9 2581.0	1087.4 1154.5 1213.8	1753.0 1713.5 1639.7 1570.9 1505.2	2784.6	2.7253 2.7966 2.9207 3.0275 3.1220	3.3991 3.2731 3.0530 2.8627 2.6927	6.1244 6.0696 5.9737 5.8902 5.8148
8000 9000 10,000 11,000 12,000	295.01 303.35 311.00 318.08 324.68	0.001384 0.001418 0.001452 0.001488 0.001526	0.023525 0.020489 0.018028 0.015988 0.014264	1306.0 1350.9 1393.3 1433.9 1473.0	1264.5 1207.6 1151.8 1096.6 1041.3	2570.5 2558.5 2545.2 2530.4 2514.3	1363.7 1407.8 1450.2	1441.6 1379.3 1317.6 1256.1 1194.1	2758.7 2742.9 2725.5 2706.3 2685.4		2.5373 2.3925 2.2556 2.1245 1.9975	5.7450 5.6791 5.6159 5.5544 5.4939
13,000 14,000 15,000 16,000 17,000	330.85 336.67 342.16 347.36 352.29	0.001566 0.001610 0.001657 0.001710 0.001770	0.012781 0.011487 0.010341 0.009312 0.008374	1511.0 1548.4 1585.5 1622.6 1660.2	985.5 928.7 870.3 809.4 745.1	2496.6 2477.1 2455.7 2432.0 2405.4	1571.0 1610.3 1649.9	1131.3 1067.0 1000.5 931.1 857.4	2581.0	3.5606 3.6232 3.6848 3.7461 3.8082	1.8730 1.7497 1.6261 1.5005 1.3709	5.4336 5.3728 5.3108 5.2466 5.1791
18,000 19,000 20,000 21,000 22,000 22,064	356.99 361.47 365.75 369.83 373.71 373.95	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.007504 0.006677 0.005862 0.004994 0.003644 0.003106	1699.1 1740.3 1785.8 1841.6 1951.7 2015.7	675.9 598.9 509.0 391.9 140.8	2375.0 2339.2 2294.8 2233.5 2092.4 2015.7	1776.8 1826.6 1888.0 2011.1	777.8 689.2 585.5 450.4 161.5	2510.0 2466.0 2412.1 2338.4 2172.6 2084.3	3.8720 3.9396 4.0146 4.1071 4.2942 4.4070	1.2343 1.0860 0.9164 0.7005 0.2496	5.1064 5.0256 4.9310 4.8076 4.5439 4.4070

TABLE	A6											
Superh	eated wate	r										
Т	V	и	h	S	V	и	h	S	V	и	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m³/kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K
	P =	0.01 MF	Pa (45.81°	°C)*	P =	0.05 MP	a (81.32°	C)	P =	0.10 MP	a (99.61)	°C)
Sat.†	14.670		2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.3589
50	14.867		2592.0	8.1741	2 4107	0511.5	0000.4	7.0052	1 (050	2506.2	0075.0	7 2611
100 150	17.196 19.513		2687.5 2783.0	8.4489 8.6893	3.4187 3.8897	2511.5 2585.7	2682.4 2780.2	7.6953 7.9413	1.6959	2506.2 2582.9	2675.8 2776.6	7.3611 7.6148
200	21.826		2879.6	8.9049	4.3562	2660.0	2877.8	8.1592		2658.2	2875.5	7.8356
250	24.136		2977.5	9.1015	4.8206	2735.1	2976.2	8.3568		2733.9	2974.5	
300	26.446		3076.7	9.2827	5.2841	2811.6	3075.8	8.5387		2810.7	3074.5	
400	31.063		3280.0	9.6094	6.2094	2968.9	3279.3	8.8659		2968.3	3278.6	
500	35.680		3489.7	9.8998	7.1338	3132.6	3489.3			3132.2	3488.7	
600	40.296			10.1631	8.0577	3303.1	3706.0	9.4201		3302.8	3705.6	9.0999
700 800	44.911 49.527			10.4056 10.6312	8.9813 9.9047	3480.6 3665.2	3929.7 4160.4	9.6626 9.8883		3480.4 3665.0	3929.4 4160.2	
900	54.143			10.8312	10.8280	3856.8		10.1000	5.4137		4398.0	
1000	58.758			11.0429	11.7513	4055.2		10.3000		4055.0	4642.6	
1100	63.373			11.2326	12.6745	4259.9		10.4897		4259.8		
1200	67.989			11.4132	13.5977	4470.8		10.6704	6.7988	4470.7	5150.6	10.3504
1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10.5229
	P =	0.20 MP	a (120.2)	1°C)	<i>P</i> =	0.30 MPa	(133.52	°C)	<i>P</i> =	0.40 MPa	a (143.61	°C)
Sat.	0.88578	2529.1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	2553.1	2738.1	6.8955
150	0.95986	2577.1	2769.1	7.2810	0.63402	2571.0	2761.2	7.0792	0.47088	3 2564.4	2752.8	6.9306
200	1.08049			7.5081	0.71643		2865.9	7.3132		2647.2		7.1723
250	1.19890			7.7100	0.79645		2967.9	7.5180		2726.4	2964.5	7.3804
300	1.31623			7.8941	0.87535		3069.6	7.7037		2805.1	3067.1	7.5677
400 500	1.54934 1.78142			8.2236 8.5153	1.03155 1.18672		3275.5 3486.6	8.0347 8.3271		2964.9 3129.8	3273.9 3485.5	7.9003 8.1933
600	2.01302			8.7793	1.34139		3704.0	8.5915		3301.0		
700	2.24434			9.0221	1.49580		3928.2	8.8345		3479.0	3927.6	
800	2.47550			9.2479	1.65004		4159.3	9.0605		3663.9	4158.9	
900		3856.3		9.4598	1.80417		4397.3	9.2725			4396.9	9.1394
1000	2.93755			9.6599	1.95824	4054.5	4642.0	9.4726	1.46859	4054.3	4641.7	9.3396
1100	3.16848			9.8497	2.11226		4893.1	9.6624			4892.9	
1200	3.39938			10.0304	2.26624		5150.2	9.8431		4470.2		
1300	3.63026	4687.1	5413.1	10.2029	2.42019	4686.9	5413.0	10.0157	1.81516	4686.7	5412.8	9.8828
			a (151.83		<i>P</i> =			-		0.80 MPa		
Sat.	0.37483	2560.7	2748.1	6.8207	0.31560	2566.8	2756.2	6.7593	0.24035	2576.0	2768.3	6.6616
200	0.42503			7.0610	0.35212			6.9683		3 2631.1		
250	0.47443			7.2725	0.39390		2957.6	7.1833		2715.9		
300	0.52261			7.4614	0.43442		3062.0			2797.5		
350	0.57015 0.61731			7.6346	0.47428		3166.1			2878.6	3162.2	
400 500	0.61731			7.7956 8.0893	0.51374 0.59200		3270.8 3483.4			3126.6		7.5735 7.8692
600	0.80409			8.3544	0.66976		3701.7			3120.0		8.1354
700	0.89696			8.5978	0.74725		3926.4			3477.2	3925.3	
800	0.98966			8.8240	0.82457		4157.9					8.6061
900	1.08227	3855.4	4396.6	9.0362	0.90179	3855.1	4396.2			3854.5	4395.5	
1000	1.17480			9.2364	0.97893		4641.1			4053.3	4640.5	
1100	1.26728			9.4263	1.05603			9.3420		4258.3		
1200	1.35972			9.6071	1.13309			9.5229		4469.4		
1300	1.45214	4686.6	5412.6	9.7797	1.21012	4686.4	5412.5	9.6955	0.90/61	4686.1	5412.2	9.5625

 $^{{}^{\}star}\mathsf{The}$ temperature in parentheses is the saturation temperature at the specified pressure.

 $^{^{\}scriptscriptstyle\dagger}$ Properties of saturated vapor at the specified pressure.

^	•	4
ч	_	-

TABLE	A-6											
Superh	neated wat	er (<i>Contii</i>	nued)									
T	V	И	h	S	V	И	h	S	V	И	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg \cdot K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg \cdot K
	P	= 1.00 MI	Pa (179.8	8°C)	Р	= 1.20 [MPa (187	.96°C)	P =	1.40 MP	a (195.0	4°C)
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326	2587.8	2783.8	6.5217	0.14078	2591.8	2788.9	6.4675
200	0.20602	2622.3	2828.3	6.6956	0.16934				0.14303	2602.7		6.4975
250	0.23275	2710.4	2943.1	6.9265	0.19241			6.8313	0.16356	2698.9	2927.9	
300	0.25799	2793.7	3051.6	7.1246	0.21386			7.0335	0.18233	2785.7	3040.9	6.9553
350	0.28250	2875.7	3158.2	7.3029	0.23455			7.2139	0.20029	2869.7	3150.1	7.1379
400	0.30661	2957.9	3264.5	7.4670	0.25482				0.21782	2953.1		7.3046
500 600	0.35411 0.40111	3125.0 3297.5	3479.1 3698.6	7.7642 8.0311	0.29464 0.33395			7.6779 7.9456	0.25216 0.28597	3121.8 3295.1		7.6047 7.8730
700	0.40111	3476.3	3924.1	8.2755	0.33393				0.28597	3474.4		8.1183
800	0.44783	3661.7	4156.1	8.5024	0.37297				0.35288	3660.3	4154.3	
900	0.43438	3853.9	4394.8	8.7150	0.45059			8.6303	0.38614	3852.7		8.5587
1000	0.54721	4052.7	4640.0	8.9155	0.48928				0.41933	4051.7		8.7595
1100	0.63354	4257.9	4891.4	9.1057	0.52792			9.0212	0.45247	4257.0		8.9497
1200	0.67983	4469.0	5148.9	9.2866	0.56652			9.2022	0.48558	4468.3	5148.1	9.1308
1300	0.72610	4685.8	5411.9	9.4593	0.60509				0.51866	4685.1	5411.3	9.3036
		= 1.60 MI	Pa (201.3	7°C)	Р	= 1.80 [MPa (207	.11°C)	P =	2.00 MP	a (212.3	8°C)
Sat.	0.12374	2594.8	2792.8	6.4200	0.11037	2597.3	2795	.9 6.3775	0.09959	2599.1	2798 3	6.3390
225	0.13293	2645.1	2857.8	6.5537	0.11678	2637.0			0.10381	2628.5		6.4160
250	0.14190	2692.9	2919.9	6.6753	0.12502	2686.7			0.11150	2680.3		6.5475
300	0.15866	2781.6	3035.4	6.8864	0.14025	2777.4			0.12551	2773.2		6.7684
350	0.17459	2866.6	3146.0	7.0713	0.15460	2863.6			0.13860	2860.5		6.9583
400	0.19007	2950.8	3254.9	7.2394	0.16849	2948.3			0.15122	2945.9		7.1292
500	0.22029	3120.1	3472.6	7.5410	0.19551	3118.5	3470.	4 7.4845	0.17568	3116.9	3468.3	7.4337
600	0.24999	3293.9	3693.9	7.8101	0.22200	3292.7	3692.	3 7.7543	0.19962	3291.5	3690.7	7.7043
700	0.27941	3473.5	3920.5	8.0558	0.24822	3472.6			0.22326	3471.7		7.9509
800	0.30865	3659.5	4153.4	8.2834	0.27426	3658.8			0.24674	3658.0		8.1791
900	0.33780	3852.1	4392.6	8.4965	0.30020	3851.5			0.27012	3850.9		8.3925
1000	0.36687	4051.2	4638.2	8.6974	0.32606	4050.7			0.29342	4050.2		8.5936
1100	0.39589	4256.6	4890.0	8.8878	0.35188	4256.2			0.31667	4255.7		8.7842
1200	0.42488	4467.9	5147.7	9.0689	0.37766	4467.6			0.33989	4467.2		8.9654
1300	0.45383	4684.8	5410.9	9.2418	0.40341	4684.5			0.36308	4684.2		9.1384
		= 2.50 MI					MPa (233			3.50 MP		
Sat. 225	0.07995 0.08026	2602.1 2604.8	2801.9 2805.5	6.2558 6.2629	0.06667	2603.2	2803.	2 6.1856	0.05706	2603.0	2802.7	6.1244
250	0.08705	2663.3	2880.9	6.4107	0.07063	2644.7	2856.	5 6.2893	0.05876	2624.0	2829.7	6.1764
300	0.09894	2762.2	3009.6	6.6459	0.08118	2750.8	3 2994.	3 6.5412	0.06845	2738.8	2978.4	6.4484
350	0.10979	2852.5	3127.0	6.8424	0.09056	2844.4	3116.	1 6.7450	0.07680	2836.0	3104.9	6.6601
400	0.12012	2939.8	3240.1	7.0170	0.09938	2933.6	3231.	7 6.9235	0.08456	2927.2	3223.2	6.8428
450	0.13015	3026.2	3351.6	7.1768	0.10789	3021.2			0.09198	3016.1		7.0074
500	0.13999	3112.8	3462.8	7.3254	0.11620	3108.6			0.09919	3104.5		7.1593
600	0.15931	3288.5	3686.8	7.5979	0.13245	3285.5			0.11325	3282.5		7.4357
700	0.17835	3469.3	3915.2	7.8455	0.14841	3467.0			0.12702	3464.7		7.6855
800	0.19722	3656.2	4149.2	8.0744	0.16420	3654.3			0.14061	3652.5		7.9156
900	0.21597	3849.4	4389.3	8.2882	0.17988	3847.9			0.15410	3846.4		8.1304
1000 1100	0.23466 0.25330	4049.0 4254.7	4635.6 4887.9	8.4897 8.6804	0.19549 0.21105	4047.7			0.16751	4046.4 4252.5		8.3324 8.5236
1200	0.25330		4887.9 5146.0	8.8618	0.21105	4253.6 4465.3			0.18087 0.19420	4464.4		8.7053
1300	0.27190		5409.5	9.0349	0.22638	4682.6			0.19420	4681.8		8.8786
1000	0.23040	1000.7	5-05.5	J.007J	J.2-7207	7002.0	, 5400.	0.3302	0.20730	-501.0	J-00.0	0.0700

TABLE	A6											
Superh	neated wat	er (<i>Conti</i>	nued)									
T	V	И	h	S	V	И	h	S	V	И	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K
	<i>P</i>	= 4.0 MF	Pa (250.35	5°C)	Р	= 4.5 MP	a (257.44°	°C)	<i>P</i> =	5.0 MPa	(263.94	°C)
Sat.	0.04978	2601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794.2	5.9737
275	0.05461		2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3		6.0571
300	0.05887	2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0	2925.7	6.2111
350	0.06647	2827.4	3093.3	6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5		6.4516
400	0.07343	2920.8	3214.5	6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5		6.6483
450	0.08004	3011.0	3331.2	6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6		6.8210
500	0.08644	3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8		6.9781
600	0.09886	3279.4	3674.9	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	3273.3		7.2605
700	0.11098		3906.3	7.6214	0.09850	3460.0	3903.3	7.5647	0.08852	3457.7		7.5136
800	0.12292 0.13476	3650.6	4142.3 4383.9	7.8523 8.0675	0.10916 0.11972	3648.8 3843.3	4140.0 4382.1	7.7962 8.0118	0.09816 0.10769	3646.9 3841.8		7.7458
900 1000	0.13476		4565.9	8.2698	0.11972	4043.9	4562.1	8.2144	0.10769	4042.6		7.9619 8.1648
1100	0.14033		4884.4	8.4612	0.13020	4250.4	4883.2	8.4060	0.11713	4249.3		8.3566
1200	0.16992		5143.2	8.6430	0.14004	4462.6	5142.2	8.5880	0.12033	4461.6		8.5388
1300	0.18157		5407.2	8.8164	0.16140	4680.1	5406.5	8.7616	0.14527	4679.3		8.7124
1000			Pa (275.59				a (285.83°			8.0 MPa		
				-								
Sat.	0.03245		2784.6	5.8902	0.027378		2772.6	5.8148	0.023525			5.7450
300	0.03619	2668.4	2885.6	6.0703	0.029492		2839.9	5.9337	0.024279			5.7937
350	0.04225 0.04742		3043.9	6.3357	0.035262		3016.9	6.2305	0.029975			6.1321
400 450	0.04742		3178.3 3302.9	6.5432 6.7219	0.039958 0.044187		3159.2 3288.3	6.4502 6.6353	0.034344 0.038194			6.3658 6.5579
500	0.05667	3083.1	3423.1	6.8826	0.044187		3411.4	6.8000	0.038194			6.7266
550	0.06102	3175.2	3541.3	7.0308	0.051966		3531.6	6.9507	0.041707			6.8800
600	0.06527		3658.8	7.1693	0.055665		3650.6	7.0910	0.048463			7.0221
700		3453.0	3894.3	7.4247	0.062850		3888.3	7.3487	0.054829			7.2822
800	0.08165		4133.1	7.6582	0.069856	3639.5	4128.5	7.5836	0.061011			7.5185
900	0.08964	3838.8	4376.6	7.8751	0.076750	3835.7	4373.0	7.8014	0.067082	3832.7	4369.3	7.7372
1000	0.09756	4040.1	4625.4	8.0786	0.083571	4037.5	4622.5	8.0055	0.073079	4035.0	4619.6	7.9419
1100	0.10543	4247.1	4879.7	8.2709	0.090341	4245.0	4877.4	8.1982	0.079025	4242.8	4875.0	8.1350
1200	0.11326		5139.4	8.4534	0.097075		5137.4	8.3810	0.084934			8.3181
1300	0.12107	4677.7	5404.1	8.6273	0.103781	4676.1	5402.6	8.5551	0.090817	4674.5	5401.0	8.4925
	Р	= 9.0 MF	Pa (303.35	5°C)	<i>P</i> :	= 10.0 MF	Pa (311.00)°C)	<i>P</i> =	12.5 MPa	ı (327.81	L°C)
Sat.	0.020489	2558.5	2742.9	5.6791	0.018028	2545.2	2725.5	5.6159	0.013496	2505.6	2674.3	5.4638
325	0.023284		2857.1	5.8738	0.019877		2810.3	5.7596	0.010.00		207	0000
350	0.025816			6.0380	0.022440			5.9460	0.016138	2624.9	2826.6	5.7130
400	0.029960	2849.2	3118.8	6.2876	0.026436	2833.1	3097.5	6.2141	0.020030	2789.6	3040.0	6.0433
450	0.033524	2956.3	3258.0	6.4872	0.029782		3242.4	6.4219	0.023019	2913.7	3201.5	6.2749
500	0.036793	3056.3	3387.4	6.6603	0.032811	3047.0	3375.1	6.5995	0.025630	3023.2	3343.6	6.4651
550	0.039885	3153.0	3512.0	6.8164	0.035655	3145.4	3502.0	6.7585	0.028033	3126.1	3476.5	6.6317
600	0.042861	3248.4	3634.1	6.9605	0.038378		3625.8	6.9045	0.030306			6.7828
650	0.045755		3755.2	7.0954	0.041018		3748.1	7.0408	0.032491			6.9227
700	0.048589		3876.1	7.2229	0.043597		3870.0	7.1693	0.034612			7.0540
800	0.054132		4119.2	7.4606	0.048629		4114.5	7.4085	0.038724			7.2967
900	0.059562		4365.7	7.6802	0.053547		4362.0	7.6290	0.042720			7.5195
1000	0.064919		4616.7	7.8855	0.058391		4613.8	7.8349	0.046641			7.7269
1100	0.070224		4872.7	8.0791	0.063183		4870.3	8.0289	0.050510			7.9220
1200	0.075492		5133.6	8.2625	0.067938		5131.7	8.2126	0.054342			8.1065
1300	0.080733	40/2.9	5399.5	8.4371	0.072667	40/1.3	5398.0	8.3874	0.058147	4007.3	0094.1	8.2819

0	^	•
y	Z	វ

TABLE	A-6											
Superl	heated wate	er (<i>Conclu</i>	ıded)									
T	V	и	h	S	V	И	h	S	v	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	P =	= 15.0 MP	a (342.16	S°C)	P = 1	17.5 MPa	(354.67	°C)	P =	20.0 MP	a (365.75	5°C)
Sat.	0.010341	2455.7	2610.8		0.007932	2390.7	2529.5	5.1435	0.005862	2294.8	2412.1	4.9310
350 400	0.011481 0.015671	2520.9 2740.6	2693.1 2975.7	5.4438 5.8819	0.012463	2684.3	2902.4	5 7211	0.009950	2617 9	2816.9	5.5526
450	0.013671	2880.8	3157.9	6.1434	0.015204		3111.4		0.012721		3061.7	5.9043
500	0.020828	2998.4	3310.8	6.3480	0.017385				0.014793		3241.2	6.1446
550	0.022945	3106.2	3450.4		0.019305				0.016571			
600 650	0.024921	3209.3	3583.1 3712.1		0.021073				0.018185			
700	0.026804 0.028621	3310.1 3409.8	3839.1	6.8233 6.9573	0.022742				0.019695			6.6593 6.7991
800	0.020021	3609.3	4091.1	7.2037	0.027405				0.021134			7.0531
900	0.035503	3811.2		7.4288	0.030348				0.026484			7.2829
1000	0.038808	4017.1		7.6378	0.033215	4010.7	4592.0	7.5616	0.029020	4004.3	4584.7	7.4950
1100	0.042062	4227.7		7.8339	0.036029				0.031504			7.6933
1200	0.045279	4443.1	5122.3	8.0192	0.038806				0.033952			7.8802
1300	0.048469	4663.3	5390.3	8.1952	0.041556	4659.2	5386.5	8.1215	0.036371	4655.2	5382.7	8.0574
		P = 25	.0 MPa			P = 30.0	Э МРа			P = 35	.0 MPa	
375	0.001978		1849.4		0.001792				0.001701			
400	0.006005	2428.5	2578.7		0.002798				0.002105			4.2144
425	0.007886	2607.8	2805.0	5.4708	0.005299				0.003434			4.7751
450 500	0.009176 0.011143	2721.2 2887.3	2950.6 3165.9	5.6759 5.9643	0.006737		3084.8		0.004957			5.1946 5.6331
550	0.011143	3020.8	3339.2	6.1816	0.008691				0.006933			5.9093
600	0.012730	3140.0	3493.5	6.3637	0.010175				0.009523		3399.0	
650	0.015430	3251.9	3637.7		0.012590				0.010565			
700	0.016643	3359.9	3776.0	6.6702	0.013654	3334.3	3743.9	6.5599	0.011523	3308.3	3711.6	6.4623
800	0.018922	3570.7	4043.8		0.015628				0.013278			
900	0.021075	3780.2	4307.1		0.017473				0.014904			
1000	0.023150	3991.5		7.3821	0.019240				0.016450			7.2069
1100 1200	0.025172 0.027157	4206.1 4424.6		7.5825 7.7710	0.020954 0.022630				0.017942 0.019398			7.4118 7.6034
1300	0.027137	4647.2	5375.1	7.7710	0.022630				0.019398			7.7841
1000	0.023110			7.0.0	0.02.27			7.0002	0.020027			717011
		P = 40				P = 50.0				P = 60		
375	0.001641		1742.6	3.8290	0.001560				0.001503			
400	0.001911 0.002538		1931.4		0.001731				0.001633			
450	0.002538		2511.8		0.002009				0.001818			
500	0.005623	2681.6		5.4744	0.002407				0.002000			
550	0.006985	2875.1	3154.4		0.005118				0.003955			
600	0.008089	3026.8	3350.4		0.006108				0.004833			
650	0.009053	3159.5	3521.6	6.2078	0.006957				0.005591			5.8867
700	0.009930	3282.0		6.3740	0.007717				0.006265			
800	0.011521	3511.8		6.6613	0.009073				0.007456			
900 1000	0.012980 0.014360	3733.3 3952.9	4252.5 4527.3		0.010296 0.011441				0.008519			
1100	0.014360	4173.7		7.1333 7.3425	0.011441				0.009304			
1200	0.015000	4396.9	5075.9		0.012554				0.010433			
1300	0.018239				0.014620				0.012213			
					l				I			

TABLE	A-7											
Compr	ressed liqui	d water										
T	V	И	h	S	V	и	h	S	V	и	h	s
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	P =	= 5 MPa ((263.94°C	:)	P =	: 10 MPa	(311.00°C			15 MPa	(342.16°	
Sat.	0.0012862		1154.5	2.9207	0.0014522		1407.9	3.3603	0.0016572		1610.3	3.6848
0	0.0012802	0.04	5.03	0.0001	0.0014322	0.12	10.07	0.0003	0.0010372	0.18	15.07	
20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951	83.01	97.93	
40	0.0010057	166.92		0.5705	0.0010035	166.33	176.37	0.5685	0.0010013	165.75	180.77	
60	0.0010007	250.29		0.8287	0.0010127	249.43	259.55	0.8260	0.0010010	248.58	263.74	
80	0.0010113	333.82		1.0723	0.0010127	332.69	342.94	1.0691	0.0010100	331.59	346.92	
100	0.0010410	417.65		1.3034	0.0010385	416.23	426.62	1.2996	0.0010361	414.85	430.39	
120	0.0010576	501.91	507.19	1.5236	0.0010549	500.18	510.73	1.5191	0.0010522	498.50	514.28	
140	0.0010769	586.80	592.18	1.7344	0.0010738	584.72	595.45	1.7293	0.0010708	582.69	598.75	
160	0.0010988	672.55	678.04	1.9374	0.0010954	670.06	681.01	1.9316	0.0010920	667.63	684.01	1.9259
180	0.0011240	759.47	765.09	2.1338	0.0011200	756.48	767.68	2.1271	0.0011160	753.58	770.32	2.1206
200	0.0011531	847.92	853.68	2.3251	0.0011482	844.32	855.80	2.3174	0.0011435	840.84	858.00	
220	0.0011868	938.39	944.32	2.5127	0.0011809	934.01	945.82	2.5037	0.0011752	929.81	947.43	
240	0.0012268	1031.6	1037.7	2.6983	0.0012192	1026.2	1038.3	2.6876	0.0012121	1021.0	1039.2	2.6774
260	0.0012755	1128.5	1134.9	2.8841	0.0012653	1121.6	1134.3	2.8710	0.0012560	1115.1	1134.0	2.8586
280					0.0013226	1221.8	1235.0	3.0565	0.0013096	1213.4	1233.0	3.0410
300					0.0013980	1329.4	1343.3	3.2488	0.0013783	1317.6	1338.3	3.2279
320									0.0014733	1431.9	1454.0	3.4263
340									0.0016311	1567.9	1592.4	3.6555
	<i>P</i> =	20 MPa	(365.75°C	C)		P = 30	MPa			P = 50	MPa	
Sat.	0.0020378	1785.8	1826.6	4.0146								
0	0.0009904	0.23	20.03	0.0005	0.0009857	0.29	29.86	0.0003	0.0009767	0.29	49.13	-0.0010
20	0.0009929	82.71	102.57	0.2921	0.0009886	82.11	111.77	0.2897	0.0009805	80.93	129.95	
40	0.0009992	165.17	185.16	0.5646	0.0009951	164.05	193.90	0.5607	0.0009872	161.90	211.25	0.5528
60	0.0010084	247.75	267.92	0.8208	0.0010042	246.14	276.26	0.8156	0.0009962	243.08	292.88	0.8055
80	0.0010199	330.50	350.90	1.0627	0.0010155	328.40	358.86	1.0564	0.0010072	324.42	374.78	1.0442
100	0.0010337	413.50	434.17	1.2920	0.0010290	410.87	441.74	1.2847	0.0010201	405.94	456.94	1.2705
120	0.0010496	496.85	517.84	1.5105	0.0010445	493.66	525.00	1.5020	0.0010349	487.69	539.43	1.4859
140	0.0010679	580.71	602.07	1.7194	0.0010623	576.90	608.76	1.7098	0.0010517	569.77	622.36	1.6916
160	0.0010886	665.28	687.05	1.9203	0.0010823	660.74	693.21	1.9094	0.0010704	652.33	705.85	1.8889
180	0.0011122	750.78	773.02	2.1143	0.0011049	745.40	778.55	2.1020	0.0010914	735.49	790.06	2.0790
200	0.0011390	837.49	860.27	2.3027	0.0011304	831.11	865.02	2.2888	0.0011149	819.45	875.19	2.2628
220	0.0011697	925.77	949.16	2.4867	0.0011595	918.15	952.93	2.4707	0.0011412	904.39	961.45	2.4414
240	0.0012053	1016.1	1040.2	2.6676	0.0011927	1006.9	1042.7	2.6491	0.0011708	990.55	1049.1	2.6156
260	0.0012472	1109.0	1134.0	2.8469	0.0012314		1134.7	2.8250	0.0012044		1138.4	2.7864
280	0.0012978		1231.5	3.0265	0.0012770		1229.8	3.0001	0.0012430		1229.9	2.9547
300	0.0013611		1334.4	3.2091	0.0013322		1328.9	3.1761	0.0012879		1324.0	3.1218
320	0.0014450		1445.5	3.3996	0.0014014		1433.7	3.3558	0.0013409		1421.4	3.2888
340	0.0015693		1571.6	3.6086	0.0014932		1547.1	3.5438	0.0014049		1523.1	3.4575
360	0.0018248	1703.6	1740.1	3.8787	0.0016276		1675.6	3.7499	0.0014848		1630.7	3.6301
380					0.0018729	1782.0	1838.2	4.0026	0.0015884	1667.1	1746.5	3.8102

Saturated	ico water	vanor
Samraied	ice-water	vanor

			<i>c volume,</i> ³ /kg	In	<i>ternal er</i> kJ/kg			<i>Enthalpy</i> kJ/kg	;	<i>Entropy,</i> kJ/kg · K		
Temp.,	Sat. press.,	Sat. ice,	Sat. vapor,	Sat. ice,	Subl.,	Sat. vapor,	Sat. ice,	Subl.,	Sat. vapor,	Sat. ice,	Subl.,	Sat. vapor,
T °C	$P_{\rm sat}$ kPa	V_i	V_g	u _i	U_{ig}	U_g	h _i	h _{ig}	h _g	S _i	S_{ig}	S_g
0.01	0.61169	0.001091	205.99	-333.40	2707.9	2374.5	-333.40	2833.9	2500.5	-1.2202	10.374	9.154
0	0.61115	0.001091	206.17	-333.43	2707.9	2374.5	-333.43	2833.9	2500.5	-1.2204	10.375	9.154
-2	0.51772	0.001091	241.62	-337.63	2709.4	2371.8	-337.63	2834.5	2496.8	-1.2358	10.453	9.218
-4	0.43748	0.001090	283.84	-341.80	2710.8	2369.0	-341.80	2835.0	2493.2	-1.2513	10.533	9.282
-6	0.36873	0.001090	334.27	-345.94	2712.2	2366.2	-345.93	2835.4	2489.5	-1.2667	10.613	9.347
-8	0.30998	0.001090	394.66	-350.04	2713.5	2363.5	-350.04	2835.8	2485.8	-1.2821	10.695	9.413
-10	0.25990	0.001089	467.17	-354.12	2714.8	2360.7	-354.12	2836.2	2482.1	-1.2976	10.778	9.480
-12	0.21732	0.001089	554.47	-358.17	2716.1	2357.9	-358.17	2836.6	2478.4	-1.3130	10.862	9.549
-14	0.18121	0.001088	659.88	-362.18	2717.3	2355.2	-362.18	2836.9	2474.7	-1.3284	10.947	9.618
-16	0.15068	0.001088	787.51	-366.17	2718.6	2352.4	-366.17	2837.2	2471.0	-1.3439	11.033	9.689
-18	0.12492	0.001088	942.51	-370.13	2719.7	2349.6	-370.13	2837.5	2467.3	-1.3593	11.121	9.761
-20	0.10326	0.001087	1131.3	-374.06	2720.9	2346.8	-374.06	2837.7	2463.6	-1.3748	11.209	9.835
-22	0.08510	0.001087	1362.0	-377.95	2722.0	2344.1	-377.95	2837.9	2459.9	-1.3903	11.300	9.909
-24	0.06991	0.001087	1644.7	-381.82	2723.1	2341.3	-381.82	2838.1	2456.2	-1.4057	11.391	9.985
-26	0.05725	0.001087	1992.2	-385.66	2724.2	2338.5	-385.66	2838.2	2452.5	-1.4212	11.484	10.063
-28	0.04673	0.001086	2421.0	-389.47	2725.2	2335.7	-389.47	2838.3	2448.8	-1.4367	11.578	10.141
-30	0.03802	0.001086	2951.7	-393.25	2726.2	2332.9	-393.25	2838.4	2445.1	-1.4521	11.673	10.221
-32	0.03082	0.001086	3610.9	-397.00	2727.2	2330.2	-397.00	2838.4	2441.4	-1.4676	11.770	10.303
-34	0.02490	0.001085	4432.4	-400.72	2728.1	2327.4	-400.72	2838.5	2437.7	-1.4831	11.869	10.386
-36	0.02004	0.001085	5460.1	-404.40	2729.0	2324.6	-404.40	2838.4	2434.0	-1.4986	11.969	10.470
-38	0.01608	0.001085	6750.5	-408.07	2729.9	2321.8	-408.07	2838.4	2430.3	-1.5141	12.071	10.557
-40	0.01285	0.001084	8376.7	-411.70	2730.7	2319.0	-411.70	2838.3	2426.6	-1.5296	12.174	10.644

FIGURE A-9

T-s diagram for water.

Copyright © 1984. From NBS/NRC Steam Tables/1 by Lester Haar, John S. Gallagher, and George S. Kell. Reproduced by permission of Routledge/Taylor & Francis Books, Inc.

Appendix 1 927

FIGURE A-10

Mollier diagram for water.

 $Copyright @ 1984. \ From \ NBS/NRC \ Steam \ Tables/1 \ by \ Lester \ Haar, \ John \ S. \ Gallagher, \ and \ George \ S. \ Kell. \ Reproduced \ by \ permission \ of \ Routledge/Taylor \ \& Francis \ Books, \ Inc.$

TABLE A-11

INDL	TABLE A-11											
Satur	ated refrig	erant-134a—	-Temperatı	ıre table								
		Specific v m³/k		Inte	ernal ener kJ/kg	rgy,		Enthalpy kJ/kg	; 		Entropy, kJ/kg · K	
Temp T °C	Sat. , press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
-40 -38 -36 -34 -32	51.25 56.86 62.95 69.56 76.71	0.0007054 0.0007083 0.0007112 0.0007142 0.0007172	0.36081 0.32732 0.29751 0.27090 0.24711	-0.036 2.475 4.992 7.517 10.05	207.40 206.04 204.67 203.29 201.91	207.37 208.51 209.66 210.81 211.96		225.86 224.61 223.35 222.09 220.81	225.86 227.12 228.39 229.65 230.91	0.00000 0.01072 0.02138 0.03199 0.04253	0.96866 0.95511 0.94176 0.92859 0.91560	0.96866 0.96584 0.96315 0.96058 0.95813
-30 -28 -26 -24 -22	84.43 92.76 101.73 111.37 121.72	0.0007203 0.0007234 0.0007265 0.0007297 0.0007329	0.22580 0.20666 0.18946 0.17395 0.15995	12.59 15.13 17.69 20.25 22.82	200.52 199.12 197.72 196.30 194.88	213.11 214.25 215.40 216.55 217.70	12.65 15.20 17.76 20.33 22.91	219.52 218.22 216.92 215.59 214.26	232.17 233.43 234.68 235.92 s237.17	0.05301 0.06344 0.07382 0.08414 0.09441	0.90278 0.89012 0.87762 0.86527 0.85307	0.95579 0.95356 0.95144 0.94941 0.94748
-20 -18 -16 -14 -12	132.82 144.69 157.38 170.93 185.37	0.0007362 0.0007396 0.0007430 0.0007464 0.0007499	0.14729 0.13583 0.12542 0.11597 0.10736	25.39 27.98 30.57 33.17 35.78	193.45 192.01 190.56 189.09 187.62	218.84 219.98 221.13 222.27 223.40	25.49 28.09 30.69 33.30 35.92	212.91 211.55 210.18 208.79 207.38	238.41 239.64 240.87 242.09 243.30	0.10463 0.11481 0.12493 0.13501 0.14504	0.84101 0.82908 0.81729 0.80561 0.79406	0.94564 0.94389 0.94222 0.94063 0.93911
-10 -8 -6 -4 -2	200.74 217.08 234.44 252.85 272.36	0.0007535 0.0007571 0.0007608 0.0007646 0.0007684	0.099516 0.092352 0.085802 0.079804 0.074304	43.66 46.31	186.14 184.64 183.13 181.61 180.08	224.54 225.67 226.80 227.92 229.04	38.55 41.19 43.84 46.50 49.17	205.96 204.52 203.07 201.60 200.11	244.51 245.72 246.91 248.10 249.28	0.15504 0.16498 0.17489 0.18476 0.19459	0.78263 0.77130 0.76008 0.74896 0.73794	0.93766 0.93629 0.93497 0.93372 0.93253
0 2 4 6 8	293.01 314.84 337.90 362.23 387.88	0.0007723 0.0007763 0.0007804 0.0007845 0.0007887	0.069255 0.064612 0.060338 0.056398 0.052762	51.63 54.30 56.99 59.68 62.39	178.53 176.97 175.39 173.80 172.19	230.16 231.27 232.38 233.48 234.58	51.86 54.55 57.25 59.97 62.69	198.60 197.07 195.51 193.94 192.35	250.45 251.61 252.77 253.91 255.04	0.20439 0.21415 0.22387 0.23356 0.24323	0.72701 0.71616 0.70540 0.69471 0.68410	0.93139 0.93031 0.92927 0.92828 0.92733
10 12 14 16 18	414.89 443.31 473.19 504.58 537.52	0.0007930 0.0007975 0.0008020 0.0008066 0.0008113	0.049403 0.046295 0.043417 0.040748 0.038271	67.83 70.57 73.32	170.56 168.92 167.26 165.58 163.88	235.67 236.75 237.83 238.90 239.96	65.43 68.18 70.95 73.73 76.52	190.73 189.09 187.42 185.73 184.01	256.16 257.27 258.37 259.46 260.53	0.25286 0.26246 0.27204 0.28159 0.29112	0.67356 0.66308 0.65266 0.64230 0.63198	0.92641 0.92554 0.92470 0.92389 0.92310

929

TABLE A-11

Saturated refrigerant-134a—Temperature table (Continued)

		Specific m ³ /		Inte	e <i>rnal ene</i> kJ/kg	rgy,		<i>Enthalpy</i> kJ/kg	;		<i>Entropy,</i> kJ/kg · K	
Temp.	Sat. , press., P _{sat} kPa	Sat. liquid, v_f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
20 22 24 26 28	572.07 608.27 646.18 685.84 727.31	0.0008161 0.0008210 0.0008261 0.0008313 0.0008366	0.035969 0.033828 0.031834 0.029976 0.028242	78.86 81.64 84.44 87.26 90.09	162.16 160.42 158.65 156.87 155.05	241.02 242.06 243.10 244.12 245.14	79.32 82.14 84.98 87.83 90.69	182.27 180.49 178.69 176.85 174.99	261.59 262.64 263.67 264.68 265.68	0.30063 0.31011 0.31958 0.32903 0.33846	0.62172 0.61149 0.60130 0.59115 0.58102	0.92234 0.92160 0.92088 0.92018 0.91948
30 32 34 36 38	770.64 815.89 863.11 912.35 963.68	0.0008421 0.0008478 0.0008536 0.0008595 0.0008657	0.026622 0.025108 0.023691 0.022364 0.021119	92.93 95.79 98.66 101.55 104.45	153.22 151.35 149.46 147.54 145.58	246.14 247.14 248.12 249.08 250.04	93.58 96.48 99.40 102.33 105.29	173.08 171.14 169.17 167.16 165.10	266.66 267.62 268.57 269.49 270.39	0.34789 0.35730 0.36670 0.37609 0.38548	0.57091 0.56082 0.55074 0.54066 0.53058	0.91879 0.91811 0.91743 0.91675 0.91606
42 44 46	1017.1 1072.8 1130.7 1191.0 1253.6	0.0008720 0.0008786 0.0008854 0.0008924 0.0008996	0.019952 0.018855 0.017824 0.016853 0.015939	107.38 110.32 113.28 116.26 119.26	143.60 141.58 139.52 137.42 135.29	250.97 251.89 252.80 253.68 254.55	108.26 111.26 114.28 117.32 120.39	163.00 160.86 158.67 156.43 154.14	271.27 272.12 272.95 273.75 274.53	0.39486 0.40425 0.41363 0.42302 0.43242	0.52049 0.51039 0.50027 0.49012 0.47993	0.91536 0.91464 0.91391 0.91315 0.91236
56 60 65 70	1386.2 1529.1 1682.8 1891.0 2118.2 2365.8	0.0009150 0.0009317 0.0009498 0.0009750 0.0010037 0.0010372	0.014265 0.012771 0.011434 0.009950 0.008642 0.007480	125.33 131.49 137.76 145.77 154.01 162.53	130.88 126.28 121.46 115.05 108.14 100.60	256.21 257.77 259.22 260.82 262.15 263.13	126.59 132.91 139.36 147.62 156.13 164.98	149.39 144.38 139.10 132.02 124.32 115.85	275.98 277.30 278.46 279.64 280.46 280.82	0.45126 0.47018 0.48920 0.51320 0.53755 0.56241	0.45941 0.43863 0.41749 0.39039 0.36227 0.33272	0.91067 0.90880 0.90669 0.90359 0.89982 0.89512
85 90 95	2635.3 2928.2 3246.9 3594.1 3975.1	0.0010772 0.0011270 0.0011932 0.0012933 0.0015269	0.006436 0.005486 0.004599 0.003726 0.002630	171.40 180.77 190.89 202.40 218.72	92.23 82.67 71.29 56.47 29.19	263.63 263.44 262.18 258.87 247.91	174.24 184.07 194.76 207.05 224.79	106.35 95.44 82.35 65.21 33.58	280.59 279.51 277.11 272.26 258.37	0.58800 0.61473 0.64336 0.67578 0.72217	0.30111 0.26644 0.22674 0.17711 0.08999	0.88912 0.88117 0.87010 0.85289 0.81215

Source: Tables A–11 through A–13 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner-Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and Pressures up to 70 MPa," *J. Phys. Chem, Ref. Data*, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at –40°C (and –40°F).

Satura	aturated refrigerant-134a—Pressure table											
		,	volume, /kg	Inte	rnal enei kJ/kg	rgy,	E	Enthalpy, kJ/kg			Entropy, kJ/kg · K	
Press., P kPa	Sat. temp., T _{sat} °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s_g
60 70 80 90 100	-36.95 -33.87 -31.13 -28.65 -26.37	0.0007098 0.0007144 0.0007185 0.0007223 0.0007259	0.31121 0.26929 0.23753 0.21263 0.19254		205.32 203.20 201.30 199.57 197.98	209.12 210.88 212.46 213.88 215.19			229.73 231.46 233.02	0.01634 0.03267 0.04711 0.06008 0.07188	0.94807 0.92775 0.90999 0.89419 0.87995	0.96441 0.96042 0.95710 0.95427 0.95183
120 140 160 180 200	-22.32 -18.77 -15.60 -12.73 -10.09	0.0007324 0.0007383 0.0007437 0.0007487 0.0007533	0.16212 0.14014 0.12348 0.11041 0.099867	22.40 26.98 31.09 34.83 38.28	195.11 192.57 190.27 188.16 186.21	217.51 219.54 221.35 222.99 224.48	22.49 27.08 31.21 34.97 38.43		239.16	0.09275 0.11087 0.12693 0.14139 0.15457	0.85503 0.83368 0.81496 0.79826 0.78316	0.94779 0.94456 0.94190 0.93965 0.93773
240 280 320 360 400	-5.38 -1.25 2.46 5.82 8.91	0.0007620 0.0007699 0.0007772 0.0007841 0.0007907	0.083897 0.072352 0.063604 0.056738 0.051201	44.48 49.97 54.92 59.44 63.62	182.67 179.50 176.61 173.94 171.45	227.14 229.46 231.52 233.38 235.07	44.66 50.18 55.16 59.72 63.94	199.54 196.71 194.08	247.28 249.72 251.88 253.81 255.55	0.17794 0.19829 0.21637 0.23270 0.24761	0.71369	0.93458 0.93210 0.93006 0.92836 0.92691
450 500 550 600 650	12.46 15.71 18.73 21.55 24.20	0.0007985 0.0008059 0.0008130 0.0008199 0.0008266	0.045619 0.041118 0.037408 0.034295 0.031646	68.45 72.93 77.10 81.02 84.72	168.54 165.82 163.25 160.81 158.48	237.00 238.75 240.35 241.83 243.20	68.81 73.33 77.54 81.51 85.26	185.98 183.38 180.90	257.53 259.30 260.92 262.40 263.77	0.26465 0.28023 0.29461 0.30799 0.32051	0.66069 0.64377 0.62821 0.61378 0.60030	0.92282 0.92177
700 750 800 850	26.69 29.06 31.31 33.45	0.0008331 0.0008395 0.0008458 0.0008520	0.029361 0.027371 0.025621 0.024069	88.24 91.59 94.79 97.87	156.24 154.08 152.00 149.98	244.48 245.67 246.79 247.85	88.82 92.22 95.47 98.60	173.98 171.82	265.03 266.20 267.29 268.31	0.33230 0.34345 0.35404 0.36413	0.58763 0.57567 0.56431 0.55349	0.91994 0.91912 0.91835 0.91762
900 950 1000 1200 1400	35.51 37.48 39.37 46.29 52.40	0.0008580 0.0008641 0.0008700 0.0008934 0.0009166	0.022683 0.021438 0.020313 0.016715 0.014107	100.83 103.69 106.45 116.70 125.94	148.01 146.10 144.23 137.11 130.43	248.85 249.79 250.68 253.81 256.37	101.61 104.51 107.32 117.77 127.22	165.64 163.67 156.10	269.26 270.15 270.99 273.87 276.12	0.37377 0.38301 0.39189 0.42441 0.45315	0.54315 0.53323 0.52368 0.48863 0.45734	0.91303
1600 1800 2000 2500 3000	57.88 62.87 67.45 77.54 86.16	0.0009400 0.0009639 0.0009886 0.0010566 0.0011406	0.012123 0.010559 0.009288 0.006936 0.005275	134.43 142.33 149.78 166.99 183.04	124.04 117.83 111.73 96.47 80.22	258.47 260.17 261.51 263.45 263.26		135.11 128.33 111.16	277.86 279.17 280.09 280.79 279.09	0.47911 0.50294 0.52509 0.57531 0.62118	0.42873 0.40204 0.37675 0.31695 0.25776	0.90784 0.90498 0.90184 0.89226 0.87894

TABLE	A-13											
Super	heated ref	frigerant-	134a									
T	V	и	h	S	V	и	h	S	V	И	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
		06 MPa (7		_			$T_{\text{sat}} = -26$	_			$T_{\rm sat} = -18$	
C-4												0.9446
Sat. -20	0.31121 0.33608	209.12 220.60	227.79 240.76	1.0174	0.19254 0.19841	215.19 219.66	234.44 239.50	0.9518 0.9721	0.14014	219.54	239.16	0.9446
-10	0.35048	227.55			0.19041	226.75	247.49	1.0030	0.14605	225.91	246.36	0.9724
0	0.36476	234.66		1.0774	0.21630	233.95	255.58	1.0332	0.15263	233.23	254.60	
10	0.37893	241.92		1.1066	0.22506	241.30	263.81	1.0628	0.15908	240.66	262.93	
20	0.39302	249.35	272.94		0.23373	248.79	272.17	1.0918	0.16544	248.22	271.38	
30	0.40705	256.95		1.1636	0.24233	256.44	280.68	1.1203	0.17172	255.93	279.97	1.0912
40	0.42102	264.71	289.97	1.1915	0.25088	264.25	289.34	1.1484	0.17794	263.79	288.70	1.1195
50	0.43495	272.64	298.74	1.2191	0.25937	272.22	298.16	1.1762	0.18412	271.79	297.57	1.1474
60	0.44883	280.73	307.66	1.2463	0.26783	280.35	307.13	1.2035	0.19025	279.96	306.59	1.1749
70	0.46269	288.99	316.75	1.2732	0.27626	288.64	316.26	1.2305	0.19635	288.28	315.77	1.2020
80	0.47651	297.41		1.2997	0.28465	297.08	325.55	1.2572	0.20242	296.75	325.09	
90	0.49032	306.00		1.3260	0.29303	305.69	334.99	1.2836	0.20847	305.38	334.57	
100	0.50410	314.74	344.99	1.3520	0.30138	314.46	344.60	1.3096	0.21449	314.17	344.20	1.2814
	P = 0.1	18 MPa (7	$T_{\text{sat}} = -12.$.73°C)	P = 0	.20 MPa ($T_{\rm sat} = -10$.09°C)	P = 0	.24 MPa ($T_{\text{sat}} = -5.$	38°C)
Sat.	0.11041	222.99	242.86	0.9397	0.09987	224.48	244.46	0.9377	0.08390	227.14	247.28	0.9346
-10	0.11189	225.02	245.16	0.9484	0.09991	224.55	244.54	0.9380				
0	0.11722	232.48	253.58	0.9798	0.10481	232.09	253.05	0.9698	0.08617	231.29	251.97	0.9519
10	0.12240	240.00	262.04		0.10955	239.67	261.58	1.0004	0.09026	238.98	260.65	0.9831
20	0.12748	247.64		1.0399	0.11418	247.35	270.18	1.0303	0.09423	246.74	269.36	
30	0.13248	255.41	279.25	1.0690	0.11874	255.14	278.89	1.0595	0.09812	254.61	278.16	
40	0.13741	263.31	288.05	1.0975	0.12322	263.08	287.72	1.0882	0.10193	262.59	287.06	
50	0.14230	271.36		1.1256	0.12766	271.15	296.68	1.1163	0.10570	270.71	296.08	
60	0.14715	279.56		1.1532	0.13206	279.37	305.78	1.1441	0.10942	278.97	305.23	
70	0.15196	287.91	315.27		0.13641	287.73	315.01	1.1714	0.11310	287.36	314.51	
80	0.15673	296.42		1.2074	0.14074	296.25	324.40	1.1983	0.11675	295.91	323.93	
90 100	0.16149 0.16622	305.07 313.88	334.14	1.2339 1.2602	0.14504 0.14933	304.92 313.74	333.93 343.60	1.2249 1.2512	0.12038 0.12398	304.60 313.44	333.49 343.20	1.2092 1.2356
100	0.10022	313.00	343.60	1.2002	0.14933	313.74	343.00	1.2312	0.12390	313.44	343.20	1.2330
	P = 0.	.28 MPa ($T_{\rm sat} = -1.3$	25°C)			$(T_{\rm sat} = 2.4)$	16°C)			$(T_{\rm sat} = 8.9)$	
Sat.	0.07235	229.46	249.72		0.06360	231.52	251.88	0.9301	0.051201	235.07	255.55	0.9269
0	0.07282	230.44	250.83									
10	0.07646	238.27	259.68		0.06609	237.54	258.69	0.9544	0.051506	235.97		0.9305
20	0.07997	246.13		0.9987	0.06925	245.50	267.66	0.9856	0.054213	244.18		0.9628
30	0.08338	254.06		1.0285	0.07231	253.50	276.65	1.0157	0.056796	252.36		0.9937
40	0.08672	262.10		1.0576	0.07530	261.60	285.70	1.0451	0.059292	260.58		1.0236
50	0.09000	270.27		1.0862	0.07823		294.85	1.0739	0.061724	268.90		1.0528
60 70	0.09324 0.09644	278.56 286.99		1.1142 1.1418	0.08111 0.08395	278.15 286.62	304.11 313.48	1.1021 1.1298	0.064104	277.32 285.86		1.0814 1.1094
80	0.09644	295.57		1.1416	0.08595	295.22	322.98	1.1298	0.066443 0.068747			1.1369
90	0.10275	304.29		1.1958	0.08953	303.97	332.62	1.1371	0.068747	303.32		1.1640
100	0.10275	313.15			0.08953	303.97	342.39	1.1840	0.071023	312.26		1.1640
110	0.10387	322.16		1.2483	0.09229	321.89	352.30	1.2367	0.075504	321.33		1.1907
120		331.32		1.2742	0.09303	331.07	362.35	1.2626	0.073304	330.55		1.2431
130	0.11203			1.2997	0.10045	340.39	372.54	1.2882	0.077717	339.90		1.2688
140	0.11818	350.09		1.3250	0.10314	349.86	382.87	1.3135	0.082096	349.41		1.2942
			· · ·				-					· · · · · · · · · · · · · · · · · · ·

TABLE	A-13											
Super	heated refr	igerant-1	134a (<i>C</i>	ontinued)								
T	V	и	h	s	V	и	h	s	V	и		s
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	P = 0.	50 MPa ($T_{\rm sat} = 15.$	71°C)	P = 0	.60 MPa ($T_{\rm sat} = 21.5$	55°C)	P = 0	70 MPa (<i>T</i>	$s_{sat} = 26.69$	9°C)
Sat.	0.041118	238.75	259.30	0.9240	0.034295	241.83	262.40	0.9218	0.029361	244.48	265.03	0.9199
20	0.042115											
30	0.044338				0.035984	249.22		0.9499	0.029966	247.48		0.9313
40 50	0.046456 0.048499				0.037865 0.039659	257.86 266.48	280.58 290.28	0.9816 1.0121	0.031696 0.033322	256.39 265.20	288.53	0.9641 0.9954
60	0.048499				0.039039	275.15	299.98	1.0121	0.033322	274.01		1.0256
70	0.052427				0.041369		309.73	1.0705	0.034373	282.87		1.0549
80	0.054331				0.044710	292.73	319.55	1.0987	0.037829	291.80		1.0835
90	0.056205				0.046318	301.67		1.1264	0.039250	300.82		1.1114
100	0.058053	311.50	340.53	1.1705	0.047900	310.73	339.47	1.1536	0.040642	309.95	338.40	1.1389
110	0.059880				0.049458	319.91	349.59	1.1803	0.042010	319.19	348.60	1.1658
120	0.061687				0.050997	329.23	359.82	1.2067	0.043358	328.55		1.1924
130	0.063479				0.052519	338.67	370.18	1.2327	0.044688	338.04		1.2186
140	0.065256				0.054027	348.25	380.66	1.2584	0.046004	347.66		1.2444
150	0.067021				0.055522 0.057006	357.96	391.27	1.2838	0.047306	357.41		1.2699
160	0.068775						402.01	1.3088	0.048597	367.29		1.2951
		80 MPa (P = 0				P = 1			
Sat.	0.025621				0.022683		269.26	0.9169	0.020313	250.68		0.9156
40	0.027035				0.023375		274.17	0.9327	0.020406	251.30		0.9179
50 60	0.028547 0.029973				0.024809 0.026146		284.77 295.13	0.9660 0.9976	0.021796 0.023068	260.94 270.32		0.9525 0.9850
70	0.029973				0.020140	280.72	305.39	1.0280	0.023068	279.59		1.0160
80	0.031540				0.027413	289.86	315.63	1.0574	0.025398	288.86		1.0458
90	0.033941				0.029806	299.06	325.89	1.0860	0.026492	298.15		1.0748
100	0.035193				0.030951	308.34	336.19	1.1140	0.027552	307.51		1.1031
110	0.036420	318.45	347.59	1.1530	0.032068	317.70	346.56	1.1414	0.028584	316.94	345.53	1.1308
120	0.037625				0.033164	327.18	357.02	1.1684	0.029592	326.47	356.06	1.1580
130	0.038813				0.034241	336.76	367.58	1.1949	0.030581	336.11		1.1846
140	0.039985				0.035302	346.46	378.23	1.2210	0.031554	345.85		1.2109
150	0.041143				0.036349	356.28	389.00	1.2467	0.032512	355.71		1.2368
160	0.042290				0.037384 0.038408	366.23	399.88	1.2721 1.2972	0.033457 0.034392	365.70		1.2623 1.2875
170 180	0.043427 0.044554				0.038408	376.31	410.88 422.00	1.2972	0.034392	375.81 386.04		1.2875
100												
0.1		20 MPa (P=1				P=1			
Sat.					0.014107	256.37	2/6.12	0.9105	0.012123	258.47	277.86	0.9078
50	0.017201		2/8.27 289.64		0.015005	264.46	285.47	0.0360	0.012272	260.90	280.69	0.9163
60 70	0.018404 0.019502				0.015005 0.016060	274.62	297.10	0.9389 0.9733	0.012372 0.013430	260.89 271.76	293.25	0.9163
80	0.019302			1.0248	0.017023	284.51	308.34	1.0056	0.013430	282.09	305.07	0.9333
90	0.020525				0.017923	294.28	319.37	1.0364	0.015215	292.17	316.52	1.0194
100	0.022442				0.01778	304.01	330.30	1.0661	0.016014	302.14	327.76	1.0500
110	0.023348				0.019597	313.76	341.19	1.0949	0.016773	312.07	338.91	1.0795
120				1.1394	0.020388	323.55	352.09	1.1230	0.017500	322.02	350.02	1.1081
130	0.025086	334.77	364.88	1.1664	0.021155	333.41	363.02	1.1504	0.018201	332.00	361.12	1.1360
140	0.025927			1.1930	0.021904	343.34	374.01	1.1773	0.018882	342.05	372.26	1.1632
150	0.026753			1.2192	0.022636	353.37	385.07	1.2038	0.019545	352.17	383.44	1.1900
160	0.027566				0.023355	363.51	396.20	1.2298	0.020194	362.38	394.69	1.2163
170	0.028367				0.024061	373.75	407.43	1.2554	0.020830	372.69	406.02	1.2421
180	0.029158	385.08	420.07	1.2954	0.024757	384.10	418.76	1.2807	0.021456	383.11	417.44	1.2676

FIGURE A-14

P-h diagram for refrigerant-134a.

Note: The reference point used for the chart is different than that used in the R-134a tables. Therefore, problems should be solved using all property data either from the tables or from the chart, but not from both.

Reprinted by permission of American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA.

FIGURE A-15

Nelson-Obert generalized compressibility chart.

Used with permission of Dr. Edward E. Obert, University of Wisconsin.

TABLE A-16

Properties of the atmosphere at high altitude

Altitude, m	Temperature, °C	Pressure, kPa	Gravity g, m/s ²	Speed of Sound, m/s	Density, kg/m³	Viscosity μ , kg/m \cdot s	Thermal Conductivity, W/m · K
0	15.00	101.33	9.807	340.3	1.225	1.789×10^{-5} 1.783×10^{-5} 1.777×10^{-5} 1.771×10^{-5}	0.0253
200	13.70	98.95	9.806	339.5	1.202		0.0252
400	12.40	96.61	9.805	338.8	1.179		0.0252
600	11.10	94.32	9.805	338.0	1.156		0.0251
800	9.80	92.08	9.804	337.2	1.134	1.764×10^{-5} 1.758×10^{-5} 1.752×10^{-5} 1.745×10^{-5} 1.739×10^{-5} 1.732×10^{-5}	0.0250
1000	8.50	89.88	9.804	336.4	1.112		0.0249
1200	7.20	87.72	9.803	335.7	1.090		0.0248
1400	5.90	85.60	9.802	334.9	1.069		0.0247
1600	4.60	83.53	9.802	334.1	1.048		0.0245
1800	3.30	81.49	9.801	333.3	1.027		0.0244
2000 2200 2400 2600 2800 3000	2.00 0.70 -0.59 -1.89 -3.19	79.50 77.55 75.63 73.76 71.92 70.12	9.800 9.800 9.799 9.799 9.798 9.797	332.5 331.7 331.0 330.2 329.4 328.6	1.007 0.987 0.967 0.947 0.928 0.909	1.726×10^{-5} 1.720×10^{-5} 1.713×10^{-5} 1.707×10^{-5} 1.700×10^{-5} 1.694×10^{-5}	0.0243 0.0242 0.0241 0.0240 0.0239 0.0238
3000 3200 3400 3600 3800 4000	-4.49 -5.79 -7.09 -8.39 -9.69	68.36 66.63 64.94 63.28 61.66	9.797 9.796 9.796 9.795 9.794	328.6 327.8 327.0 326.2 325.4 324.6	0.909 0.891 0.872 0.854 0.837	1.694×10^{-5} 1.687×10^{-5} 1.681×10^{-5} 1.674×10^{-5} 1.668×10^{-5} 1.661×10^{-5}	0.0238 0.0237 0.0236 0.0235 0.0234 0.0233
4200	-12.3	60.07	9.794	323.8	0.802	1.655×10^{-5} 1.648×10^{-5} 1.642×10^{-5} 1.635×10^{-5} 1.628×10^{-5}	0.0232
4400	-13.6	58.52	9.793	323.0	0.785		0.0231
4600	-14.9	57.00	9.793	322.2	0.769		0.0230
4800	-16.2	55.51	9.792	321.4	0.752		0.0229
5000	-17.5	54.05	9.791	320.5	0.736		0.0228
5200	-18.8	52.62	9.791	319.7	0.721	1.622×10^{-5} 1.615×10^{-5} 1.608×10^{-5} 1.602×10^{-5} 1.595×10^{-5}	0.0227
5400	-20.1	51.23	9.790	318.9	0.705		0.0226
5600	-21.4	49.86	9.789	318.1	0.690		0.0224
5800	-22.7	48.52	9.785	317.3	0.675		0.0223
6000	-24.0	47.22	9.788	316.5	0.660		0.0222
6200	-25.3	45.94	9.788	315.6	0.646	1.588×10^{-5} 1.582×10^{-5} 1.575×10^{-5} 1.568×10^{-5} 1.561×10^{-5}	0.0221
6400	-26.6	44.69	9.787	314.8	0.631		0.0220
6600	-27.9	43.47	9.786	314.0	0.617		0.0219
6800	-29.2	42.27	9.785	313.1	0.604		0.0218
7000	-30.5	41.11	9.785	312.3	0.590		0.0217
8000	-36.9	35.65	9.782	308.1	0.526	1.527×10^{-5} 1.493×10^{-5} 1.458×10^{-5} 1.422×10^{-5} 1.422×10^{-5}	0.0212
9000	-43.4	30.80	9.779	303.8	0.467		0.0206
10,000	-49.9	26.50	9.776	299.5	0.414		0.0201
12,000	-56.5	19.40	9.770	295.1	0.312		0.0195
14,000	-56.5	14.17	9.764	295.1	0.228		0.0195
16,000	-56.5	10.53	9.758	295.1	0.166	1.422×10^{-5} 1.422×10^{-5}	0.0195
18,000	-56.5	7.57	9.751	295.1	0.122		0.0195

Source: U.S. Standard Atmosphere Supplements, U.S. Government Printing Office, 1966. Based on year-round mean conditions at 45° latitude and varies with the time of the year and the weather patterns. The conditions at sea level (z=0) are taken to be P=101.325 kPa, T=15°C, $\rho=1.2250$ kg/m³, g=9.80665 m²/s.

936 | Thermodynamics

TABL	E A-17										
Ideal	-gas prope	erties of air									
<i>T</i> K	<i>h</i> kJ/kg	P_r	и kJ/kg	V_r	<i>s</i> ° kJ/kg ⋅ K	T K	<i>h</i> kJ/kg	P_r	и kJ/kg	V _r	<i>s</i> ° kJ/kg ⋅ K
200	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
210	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230	230.02	0.5477	164.00	1205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42644
240	240.02	0.6355	171.13	1084.0	1.47824	620	628.07	18.36	450.09	96.92	2.44356
250	250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.46048
260	260.09	0.8405	185.45	887.8	1.55848	640	649.22	20.64	465.50	88.99	2.47716
270	270.11	0.9590	192.60	808.0	1.59634	650	659.84	21.86	473.25	85.34	2.49364
280	280.13	1.0889	199.75	738.0	1.63279	660	670.47	23.13	481.01	81.89	2.50985
285	285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81	78.61	2.52589
290	290.16	1.2311	206.91	676.1	1.66802	680	691.82	25.85	496.62	75.50	2.54175
295	295.17	1.3068	210.49	647.9	1.68515	690	702.52	27.29	504.45	72.56	2.55731
298	298.18	1.3543	212.64	631.9	1.69528	700	713.27	28.80	512.33	69.76	2.57277
300	300.19	1.3860	214.07	621.2	1.70203	710	724.04	30.38	520.23	67.07	2.58810
305	305.22	1.4686	217.67	596.0	1.71865	720	734.82	32.02	528.14	64.53	2.60319
310	310.24	1.5546	221.25	572.3	1.73498	730	745.62	33.72	536.07	62.13	2.61803
315	315.27	1.6442	224.85	549.8	1.75106	740	756.44	35.50	544.02	59.82	2.63280
320	320.29	1.7375	228.42	528.6	1.76690	750	767.29	37.35	551.99	57.63	2.64737
325	325.31	1.8345	232.02	508.4	1.78249	760	778.18	39.27	560.01	55.54	2.66176
330	330.34	1.9352	235.61	489.4	1.79783	780	800.03	43.35	576.12	51.64	2.69013
340	340.42	2.149	242.82	454.1	1.82790	800	821.95	47.75	592.30	48.08	2.71787
350	350.49	2.379	250.02	422.2	1.85708	820	843.98	52.59	608.59	44.84	2.74504
360	360.58	2.626	257.24	393.4	1.88543	840	866.08	57.60	624.95	41.85	2.77170
370	370.67	2.892	264.46	367.2	1.91313	860	888.27	63.09	641.40	39.12	2.79783
380	380.77	3.176	271.69	343.4	1.94001	880	910.56	68.98	657.95	36.61	2.82344
390	390.88	3.481	278.93	321.5	1.96633	900	932.93	75.29	674.58	34.31	2.84856
400	400.98	3.806	286.16	301.6	1.99194	920	955.38	82.05	691.28	32.18	2.87324
410	411.12	4.153	293.43	283.3	2.01699	940	977.92	89.28	708.08	30.22	2.89748
420	421.26	4.522	300.69	266.6	2.04142	960	1000.55	97.00	725.02	28.40	2.92128
430	431.43	4.915	307.99	251.1	2.06533	980	1023.25	105.2	741.98	26.73	2.94468
440 450 460 470 480	441.61 451.80 462.02 472.24 482.49	5.332 5.775 6.245 6.742 7.268	315.30 322.62 329.97 337.32 344.70	189.5	2.08870 2.11161 2.13407 2.15604 2.17760	1000 1020 1040 1060 1080	1137.89	114.0 123.4 133.3 143.9 155.2	758.94 776.10 793.36 810.62 827.88	25.17 23.72 23.29 21.14 19.98	2.96770 2.99034 3.01260 3.03449 3.05608
490	492.74	7.824	352.08	179.7	2.19876	1100	1161.07	167.1	845.33	18.896	3.07732
500	503.02	8.411	359.49	170.6	2.21952	1120	1184.28	179.7	862.79	17.886	3.09825
510	513.32	9.031	366.92	162.1	2.23993	1140	1207.57	193.1	880.35	16.946	3.11883
520	523.63	9.684	374.36	154.1	2.25997	1160	1230.92	207.2	897.91	16.064	3.13916
530	533.98	10.37	381.84	146.7	2.27967	1180	1254.34	222.2	915.57	15.241	3.15916
540 550 560 570	544.35 555.74 565.17 575.59	11.10 11.86 12.66 13.50	389.34 396.86 404.42 411.97	139.7 133.1 127.0 121.2	2.29906 2.31809 2.33685 2.35531	1200 1220 1240	1277.79 1301.31 1324.93	238.0 254.7 272.3	933.33 951.09 968.95	14.470 13.747 13.069	3.17888 3.19834 3.21751

1580

1733.17

750.0

1279.65

TABLE A-17 Ideal-gas properties of air (Concluded) s° s° Τ h Κ kJ/kg kJ/kg kJ/kg · K Κ kJ/kg kJ/kg kJ/kg · K V_r 1260 1348.55 290.8 986.90 12.435 3.23638 1600 1757.57 791.2 1298.30 5.804 3.52364 1280 1372.24 310.4 1004.76 11.835 3.25510 1620 1782.00 834.1 1316.96 5.574 3.53879 1300 1395.97 330.9 1022.82 11.275 3.27345 1640 1806.46 878.9 1335.72 5.355 3.55381 1320 1419.76 352.5 1040.88 10.747 3.29160 1660 1830.96 925.6 1354.48 5.147 3.56867 1340 1443.60 375.3 1058.94 10.247 3.30959 1680 1855.50 974.2 1373.24 4.949 3.58335 1360 1467.49 399.1 1077.10 9.780 3.32724 1700 1880.1 1025 1392.7 4.761 3.5979 1380 1491.44 424.2 1095.26 9.337 3.34474 1750 1941.6 1161 1439.8 4.328 3.6336 1400 1515.42 450.5 1113.52 8.919 3.36200 1800 2003.3 1310 1487.2 3.994 3.6684 1420 1539.44 478.0 1131.77 8.526 3.37901 1850 2065.3 1475 1534.9 3.601 3.7023 1440 1563.51 506.9 1150.13 8.153 3.39586 1900 2127.4 1655 1582.6 3.295 3.7354 537.1 1460 1587.63 1168.49 7.801 3.41247 1950 2189.7 1630.6 1852 3.022 3.7677 2000 2252.1 1480 1611.79 568.8 1186.95 7.468 3.42892 2068 1678.7 2.776 3.7994 1500 1635.97 601.9 1205.41 7.152 3.44516 2050 2314.6 2303 1726.8 2.555 3.8303 1520 1660.23 636.5 1223.87 6.854 3.46120 2100 2377.7 2559 1775.3 2.356 3.8605 1540 1684.51 672.8 1242.43 6.569 3.47712 2150 2440.3 2837 1823.8 2.175 3.8901 1560 1708.82 710.5 1260.99 6.301 3.49276 2200 2503.2 3138 1872.4 2.012 3.9191

Note: The properties P_r (relative pressure) and v_r (relative specific volume) are dimensionless quantities used in the analysis of isentropic processes, and should not be confused with the properties pressure and specific volume.

2250 2566.4

3464

1921.3

1.864

3.9474

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 785–86, table A–5. Originally published in J. H. Keenan and J. Kaye, Gas Tables (New York: John Wiley & Sons, 1948).

6.046 3.50829

938 | Thermodynamics

TABLE A-	-18						
Ideal-gas	properties of nit	trogen, N ₂					
Т	Ī	\overline{u}	ō°	T	h	ū	ō°
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
0 220 230 240 250 260 270 280	0 6,391 6,683 6,975 7,266 7,558 7,849	0 4,562 4,770 4,979 5,188 5,396 5,604	0 182.639 183.938 185.180 186.370 187.514 188.614	600 610 620 630 640 650 660 670	17,563 17,864 18,166 18,468 18,772 19,075 19,380	12,574 12,792 13,011 13,230 13,450 13,671 13,892	212.066 212.564 213.055 213.541 214.018 214.489 214.954
290 298	8,141 8,432 8,669	5,813 6,021 6,190	189.673 190.695 191.502	680 690	19,685 19,991 20,297	14,114 14,337 14,560	215.413 215.866 216.314
300	8,723	6,229	191.682	700	20,604	14,784	216.756
310	9,014	6,437	192.638	710	20,912	15,008	217.192
320	9,306	6,645	193.562	720	21,220	15,234	217.624
330	9,597	6,853	194.459	730	21,529	15,460	218.059
340	9,888	7,061	195.328	740	21,839	15,686	218.472
350	10,180	7,270	196.173	750	22,149	15,913	218.889
360	10,471	7,478	196.995	760	22,460	16,141	219.301
370	10,763	7,687	197.794	770	22,772	16,370	219.709
380	11,055	7,895	198.572	780	23,085	16,599	220.113
390	11,347	8,104	199.331	790	23,398	16,830	220.512
400	11,640	8,314	200.071	800	23,714	17,061	220.907
410	11,932	8,523	200.794	810	24,027	17,292	221.298
420	12,225	8,733	201.499	820	24,342	17,524	221.684
430	12,518	8,943	202.189	830	24,658	17,757	222.067
440	12,811	9,153	202.863	840	24,974	17,990	222.447
450	13,105	9,363	203.523	850	25,292	18,224	222.822
460	13,399	9,574	204.170	860	25,610	18,459	223.194
470	13,693	9,786	204.803	870	25,928	18,695	223.562
480	13,988	9,997	205.424	880	26,248	18,931	223.927
490	14,285	10,210	206.033	890	26,568	19,168	224.288
500	14,581	10,423	206.630	900	26,890	19,407	224.647
510	14,876	10,635	207.216	910	27,210	19,644	225.002
520	15,172	10,848	207.792	920	27,532	19,883	225.353
530	15,469	11,062	208.358	930	27,854	20,122	225.701
540	15,766	11,277	208.914	940	28,178	20,362	226.047
550	16,064	11,492	209.461	950	28,501	20,603	226.389
560	16,363	11,707	209.999	960	28,826	20,844	226.728
570	16,662	11,923	210.528	970	29,151	21,086	227.064
580	16,962	12,139	211.049	980	29,476	21,328	227.398
590	17,262	12,356	211.562	990	29,803	21,571	227.728

Appendix 1 939

TABLE A	-18						
Ideal-gas	properties of n	itrogen, N ₂ (<i>Cond</i>	cluded)				
T	ħ	\overline{u}	√S°	T	ħ	\overline{u}	S °
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
1000	30,129	21,815	228.057	1760	56,227	41,594	247.396
1020	30,784	22,304	228.706	1780	56,938	42,139	247.798
1040	31,442	22,795	229.344	1800	57,651	42,685	248.195
1060	32,101	23,288	229.973	1820	58,363	43,231	248.589
1080	32,762	23,782	230.591	1840	59,075	43,777	248.979
1100	33,426	24,280	231.199	1860	59,790	44,324	249.365
1120	34,092	24,780	231.799	1880	60,504	44,873	249.748
1140	34,760	25,282	232.391	1900	61,220	45,423	250.128
1160	35,430	25,786	232.973	1920	61,936	45,973	250.502
1180	36,104	26,291	233.549	1940	62,654	46,524	250.874
1200	36,777	26,799	234.115	1960	63,381	47,075	251.242
1220	37,452	27,308	234.673	1980	64,090	47,627	251.607
1240	38,129	27,819	235.223	2000	64,810	48,181	251.969
1260	38,807	28,331	235.766	2050	66,612	49,567	252.858
1280	39,488	28,845	236.302	2100	68,417	50,957	253.726
1300	40,170	29,361	236.831	2150	70,226	52,351	254.578
1320	40,853	29,378	237.353	2200	72,040	53,749	255.412
1340	41,539	30,398	237.867	2250	73,856	55,149	256.227
1360	42,227	30,919	238.376	2300	75,676	56,553	257.027
1380	42,915	31,441	238.878	2350	77,496	57,958	257.810
1400	43,605	31,964	239.375	2400	79,320	59,366	258.580
1420	44,295	32,489	239.865	2450	81,149	60,779	259.332
1440	44,988	33,014	240.350	2500	82,981	62,195	260.073
1460	45,682	33,543	240.827	2550	84,814	63,613	260.799
1480	46,377	34,071	241.301	2600	86,650	65,033	261.512
1500	47,073	34,601	241.768	2650	88,488	66,455	262.213
1520	47,771	35,133	242.228	2700	90,328	67,880	262.902
1540	48,470	35,665	242.685	2750	92,171	69,306	263.577
1560	49,168	36,197	243.137	2800	94,014	70,734	264.241
1580	49,869	36,732	243.585	2850	95,859	72,163	264.895
1600	50,571	37,268	244.028	2900	97,705	73,593	265.538
1620	51,275	37,806	244.464	2950	99,556	75,028	266.170
1640	51,980	38,344	244.896	3000	101,407	76,464	266.793
1660	52,686	38,884	245.324	3050	103,260	77,902	267.404
1680	53,393	39,424	245.747	3100	105,115	79,341	268.007
1700	54,099	39,965	246.166	3150	106,972	80,782	268.601
1700 1720 1740	54,099 54,807 55,516	40,507 41,049	246.166 246.580 246.990	3200 3250	106,972 108,830 110,690	80,782 82,224 83,668	269.186 269.763

Source: Tables A–18 through A–25 are adapted from Kenneth Wark, *Thermodynamics*, 4th ed. (New York: McGraw-Hill, 1983), pp. 787–98. Originally published in JANAF, *Thermochemical Tables*, NSRDS-NBS-37, 1971.

940 | Thermodynamics

TABLE A-	-19						
Ideal-gas	properties of ox	ygen, O ₂					
T	\overline{h}	\overline{u}	<u></u> \overline{S} °	T	Ī	\overline{u}	<u></u> $ \overline{S} $
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	600	17,929	12,940	226.346
220	6,404	4,575	196.171	610	18,250	13,178	226.877
230	6,694	4,782	197.461	620	18,572	13,417	227.400
240	6,984	4,989	198.696	630	18,895	13,657	227.918
250	7,275	5,197	199.885	640	19,219	13,898	228.429
260	7,566	5,405	201.027	650	19,544	14,140	228.932
270	7,858	5,613	202.128	660	19,870	14,383	229.430
280	8,150	5,822	203.191	670	20,197	14,626	229.920
290	8,443	6,032	204.218	680	20,524	14,871	230.405
298	8,682	6,203	205.033	690	20,854	15,116	230.885
300	8,736	6,242	205.213	700	21,184	15,364	231.358
310	9,030	6,453	206.177	710	21,514	15,611	231.827
320	9,325	6,664	207.112	720	21,845	15,859	232.291
330	9,620	6,877	208.020	730	22,177	16,107	232.748
340	9,916	7,090	208.904	740	22,510	16,357	233.201
350	10,213	7,303	209.765	750	22,844	16,607	233.649
360	10,511	7,518	210.604	760	23,178	16,859	234.091
370	10,809	7,733	211.423	770	23,513	17,111	234.528
380	11,109	7,949	212.222	780	23,850	17,364	234.960
390	11,409	8,166	213.002	790	24,186	17,618	235.387
400	11,711	8,384	213.765	800	24,523	17,872	235.810
410	12,012	8,603	214.510	810	24,861	18,126	236.230
420	12,314	8,822	215.241	820	25,199	18,382	236.644
430	12,618	9,043	215.955	830	25,537	18,637	237.055
440	12,923	9,264	216.656	840	25,877	18,893	237.462
450	13,228	9,487	217.342	850	26,218	19,150	237.864
460	13,525	9,710	218.016	860	26,559	19,408	238.264
470	13,842	9,935	218.676	870	26,899	19,666	238.660
480	14,151	10,160	219.326	880	27,242	19,925	239.051
490	14,460	10,386	219.963	890	27,584	20,185	239.439
500	14,770	10,614	220.589	900	27,928	20,445	239.823
510	15,082	10,842	221.206	910	28,272	20,706	240.203
520	15,395	11,071	221.812	920	28,616	20,967	240.580
530	15,708	11,301	222.409	930	28,960	21,228	240.953
540	16,022	11,533	222.997	940	29,306	21,491	241.323
550	16,338	11,765	223.576	950	29,652	21,754	241.689
560	16,654	11,998	224.146	960	29,999	22,017	242.052
570	16,971	12,232	224.708	970	30,345	22,280	242.411
580	17,290	12,467	225.262	980	30,692	22,544	242.768
590	17,609	12,703	225.808	990	31,041	22,809	242.120

TABLE A	-19						
Ideal-gas	properties of o	xygen, O ₂ (<i>Conclu</i>	uded)				
T	ħ	\overline{u}	<u>s</u> °	T	Ī	\overline{u}	¯S°
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
1000	31,389	23,075	243.471	1760	58,880	44,247	263.861
1020	32,088	23,607	244.164	1780	59,624	44,825	264.283
1040	32,789	24,142	244.844	1800	60,371	45,405	264.701
1060	33,490	24,677	245.513	1820	61,118	45,986	265.113
1080	34,194	25,214	246.171	1840	61,866	46,568	265.521
1100	34,899	25,753	246.818	1860	62,616	47,151	265.925
1120	35,606	26,294	247.454	1880	63,365	47,734	266.326
1140	36,314	26,836	248.081	1900	64,116	48,319	266.722
1160	37,023	27,379	248.698	1920	64,868	48,904	267.115
1180	37,734	27,923	249.307	1940	65,620	49,490	267.505
1200	38,447	28,469	249.906	1960	66,374	50,078	267.891
1220	39,162	29,018	250.497	1980	67,127	50,665	268.275
1240	39,877	29,568	251.079	2000	67,881	51,253	268.655
1260	40,594	30,118	251.653	2050	69,772	52,727	269.588
1280	41,312	30,670	252.219	2100	71,668	54,208	270.504
1300	42,033	31,224	252.776	2150	73,573	55,697	271.399
1320	42,753	31,778	253.325	2200	75,484	57,192	272.278
1340	43,475	32,334	253.868	2250	77,397	58,690	273.136
1360	44,198	32,891	254.404	2300	79,316	60,193	273.891
1380	44,923	33,449	254.932	2350	81,243	61,704	274.809
1400	45,648	34,008	255.454	2400	83,174	63,219	275.625
1420	46,374	34,567	255.968	2450	85,112	64,742	276.424
1440	47,102	35,129	256.475	2500	87,057	66,271	277.207
1460	47,831	35,692	256.978	2550	89,004	67,802	277.979
1480	48,561	36,256	257.474	2600	90,956	69,339	278.738
1500	49,292	36,821	257.965	2650	92,916	70,883	279.485
1520	50,024	37,387	258.450	2700	94,881	72,433	280.219
1540	50,756	37,952	258.928	2750	96,852	73,987	280.942
1560	51,490	38,520	259.402	2800	98,826	75,546	281.654
1580	52,224	39,088	259.870	2850	100,808	77,112	282.357
1600	52,961	39,658	260.333	2900	102,793	78,682	283.048
1620	53,696	40,227	260.791	2950	104,785	80,258	283.728
1640	54,434	40,799	261.242	3000	106,780	81,837	284.399
1660	55,172	41,370	261.690	3050	108,778	83,419	285.060
1680	55,912	41,944	262.132	3100	110,784	85,009	285.713
1700	56,652	42,517	262.571	3150	112,795	86,601	286.355
1720	57,394	43,093	263.005	3200	114,809	88,203	286.989
1740	58,136	43,669	263.435	3250	116,827	89,804	287.614

942 | Thermodynamics

TABLE A-20							
Ideal-gas properties of carbon dioxide, CO ₂							
T	\overline{h}	ū	¯s°	T	h	\overline{u}	ō°
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	600	22,280	17,291	243.199
220	6,601	4,772	202.966	610	22,754	17,683	243.983
230	6,938	5,026	204.464	620	23,231	18,076	244.758
240	7,280	5,285	205.920	630	23,709	18,471	245.524
250	7,627	5,548	207.337	640	24,190	18,869	246.282
260	7,979	5,817	208.717	650	24,674	19,270	247.032
270	8,335	6,091	210.062	660	25,160	19,672	247.773
280	8,697	6,369	211.376	670	25,648	20,078	248.507
290	9,063	6,651	212.660	680	26,138	20,484	249.233
298	9,364	6,885	213.685	690	26,631	20,894	249.952
300	9,431	6,939	213.915	700	27,125	21,305	250.663
310	9,807	7,230	215.146	710	27,622	21,719	251.368
320	10,186	7,526	216.351	720	28,121	22,134	252.065
330	10,570	7,826	217.534	730	28,622	22,522	252.755
340	10,959	8,131	218.694	740	29,124	22,972	253.439
350	11,351	8,439	219.831	750	29,629	23,393	254.117
360	11,748	8,752	220.948	760	30,135	23,817	254.787
370	12,148	9,068	222.044	770	30,644	24,242	255.452
380	12,552	9,392	223.122	780	31,154	24,669	256.110
390	12,960	9,718	224.182	790	31,665	25,097	256.762
400	13,372	10,046	225.225	800	32,179	25,527	257.408
410	13,787	10,378	226.250	810	32,694	25,959	258.048
420	14,206	10,714	227.258	820	33,212	26,394	258.682
430	14,628	11,053	228.252	830	33,730	26,829	259.311
440	15,054	11,393	229.230	840	34,251	27,267	259.934
450	15,483	11,742	230.194	850	34,773	27,706	260.551
460	15,916	12,091	231.144	860	35,296	28,125	261.164
470	16,351	12,444	232.080	870	35,821	28,588	261.770
480	16,791	12,800	233.004	880	36,347	29,031	262.371
490	17,232	13,158	233.916	890	36,876	29,476	262.968
500	17,678	13,521	234.814	900	37,405	29,922	263.559
510	18,126	13,885	235.700	910	37,935	30,369	264.146
520	18,576	14,253	236.575	920	38,467	30,818	264.728
530	19,029	14,622	237.439	930	39,000	31,268	265.304
540	19,485	14,996	238.292	940	39,535	31,719	265.877
550	19,945	15,372	239.135	950	40,070	32,171	266.444
560	20,407	15,751	239.962	960	40,607	32,625	267.007
570	20,870	16,131	240.789	970	41,145	33,081	267.566
580	21,337	16,515	241.602	980	41,685	33,537	268.119
590	21,807	16,902	242.405	990	42,226	33,995	268.670

n	A	1
ч	4	.1

TABLE A-20							
Ideal-gas properties of carbon dioxide, CO ₂ (Concluded)							
T	<u></u>	\overline{u}	<u></u> s °	T	<u></u>	ū	<u></u> s °
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
1000	42,769	34,455	269.215	1760	86,420	71,787	301.543
1020	43,859	35,378	270.293	1780	87,612	72,812	302.217
1040	44,953	36,306	271.354	1800	88,806	73,840	302.884
1060	46,051	37,238	272.400	1820	90,000	74,868	303.544
1080	47,153	38,174	273.430	1840	91,196	75,897	304.198
1100	48,258	39,112	274.445	1860	92,394	76,929	304.845
1120	49,369	40,057	275.444	1880	93,593	77,962	305.487
1140	50,484	41,006	276.430	1900	94,793	78,996	306.122
1160	51,602	41,957	277.403	1920	95,995	80,031	306.751
1180	52,724	42,913	278.361	1940	97,197	81,067	307.374
1200	53,848	43,871	297.307	1960	98,401	82,105	307.992
1220	54,977	44,834	280.238	1980	99,606	83,144	308.604
1240	56,108	45,799	281.158	2000	100,804	84,185	309.210
1260	57,244	46,768	282.066	2050	103,835	86,791	310.701
1280	58,381	47,739	282.962	2100	106,864	89,404	312.160
1300	59,522	48,713	283.847	2150	109,898	92,023	313.589
1320	60,666	49,691	284.722	2200	112,939	94,648	314.988
1340	61,813	50,672	285.586	2250	115,984	97,277	316.356
1360	62,963	51,656	286.439	2300	119,035	99,912	317.695
1380	64,116	52,643	287.283	2350	122,091	102,552	319.011
1400	65,271	53,631	288.106	2400	125,152	105,197	320.302
1420	66,427	54,621	288.934	2450	128,219	107,849	321.566
1440	67,586	55,614	289.743	2500	131,290	110,504	322.808
1460	68,748	56,609	290.542	2550	134,368	113,166	324.026
1480	66,911	57,606	291.333	2600	137,449	115,832	325.222
1500	71,078	58,606	292.114	2650	140,533	118,500	326.396
1520	72,246	59,609	292.888	2700	143,620	121,172	327.549
1540	73,417	60,613	292.654	2750	146,713	123,849	328.684
1560	74,590	61,620	294.411	2800	149,808	126,528	329.800
1580	76,767	62,630	295.161	2850	152,908	129,212	330.896
1600	76,944	63,741	295.901	2900	156,009	131,898	331.975
1620	78,123	64,653	296.632	2950	159,117	134,589	333.037
1640	79,303	65,668	297.356	3000	162,226	137,283	334.084
1660	80,486	66,592	298.072	3050	165,341	139,982	335.114
1680	81,670	67,702	298.781	3100	168,456	142,681	336.126
1700	82,856	68,721	299.482	3150	171,576	145,385	337.124
1720	84,043	69,742	300.177	3200	174,695	148,089	338.109
1740	85,231	70,764	300.863	3250	177,822	150,801	339.069

944 | Thermodynamics

TABLE A — 21							
Ideal-gas properties of carbon monoxide, CO							
T	h	ū	¯ s°	T	h	ū	¯s°
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	600	17,611	12,622	218.204
220	6,391	4,562	188.683	610	17,915	12,843	218.708
230	6,683	4,771	189.980	620	18,221	13,066	219.205
240	6,975	4,979	191.221	630	18,527	13,289	219.695
250	7,266	5,188	192.411	640	18,833	13,512	220.179
260	7,558	5,396	193.554	650	19,141	13,736	220.656
270	7,849	5,604	194.654	660	19,449	13,962	221.127
280	8,140	5,812	195.713	670	19,758	14,187	221.592
290	8,432	6,020	196.735	680	20,068	14,414	222.052
298	8,669	6,190	197.543	690	20,378	14,641	222.505
300	8,723	6,229	197.723	700	20,690	14,870	222.953
310	9,014	6,437	198.678	710	21,002	15,099	223.396
320	9,306	6,645	199.603	720	21,315	15,328	223.833
330	9,597	6,854	200.500	730	21,628	15,558	224.265
340	9,889	7,062	201.371	740	21,943	15,789	224.692
350	10,181	7,271	202.217	750	22,258	16,022	225.115
360	10,473	7,480	203.040	760	22,573	16,255	225.533
370	10,765	7,689	203.842	770	22,890	16,488	225.947
380	11,058	7,899	204.622	780	23,208	16,723	226.357
390	11,351	8,108	205.383	790	23,526	16,957	226.762
400	11,644	8,319	206.125	800	23,844	17,193	227.162
410	11,938	8,529	206.850	810	24,164	17,429	227.559
420	12,232	8,740	207.549	820	24,483	17,665	227.952
430	12,526	8,951	208.252	830	24,803	17,902	228.339
440	12,821	9,163	208.929	840	25,124	18,140	228.724
450	13,116	9,375	209.593	850	25,446	18,379	229.106
460	13,412	9,587	210.243	860	25,768	18,617	229.482
470	13,708	9,800	210.880	870	26,091	18,858	229.856
480	14,005	10,014	211.504	880	26,415	19,099	230.227
490	14,302	10,228	212.117	890	26,740	19,341	230.593
500	14,600	10,443	212.719	900	27,066	19,583	230.957
510	14,898	10,658	213.310	910	27,392	19,826	231.317
520	15,197	10,874	213.890	920	27,719	20,070	231.674
530	15,497	11,090	214.460	930	28,046	20,314	232.028
540	15,797	11,307	215.020	940	28,375	20,559	232.379
550	16,097	11,524	215.572	950	28,703	20,805	232.727
560	16,399	11,743	216.115	960	29,033	21,051	233.072
570	16,701	11,961	216.649	970	29,362	21,298	233.413
580	17,003	12,181	217.175	980	29,693	21,545	233.752
590	17,307	12,401	217.693	990	30,024	21,793	234.088

TABLE A	TABLE A-21								
Ideal-gas	properties of ca	arbon monoxide,	CO (<i>Concluded</i>)						
T	ħ	\overline{u}	<u></u> s °	T	\overline{h}	ū	¯s°		
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K		
1000	30,355	22,041	234.421	1760	56,756	42,123	253.991		
1020	31,020	22,540	235.079	1780	57,473	42,673	254.398		
1040	31,688	23,041	235.728	1800	58,191	43,225	254.797		
1060	32,357	23,544	236.364	1820	58,910	43,778	255.194		
1080	33,029	24,049	236.992	1840	59,629	44,331	255.587		
1100	33,702	24,557	237.609	1860	60,351	44,886	255.976		
1120	34,377	25,065	238.217	1880	61,072	45,441	256.361		
1140	35,054	25,575	238.817	1900	61,794	45,997	256.743		
1160	35,733	26,088	239.407	1920	62,516	46,552	257.122		
1180	36,406	26,602	239.989	1940	63,238	47,108	257.497		
1200	37,095	27,118	240.663	1960	63,961	47,665	257.868		
1220	37,780	27,637	241.128	1980	64,684	48,221	258.236		
1240	38,466	28,426	241.686	2000	65,408	48,780	258.600		
1260	39,154	28,678	242.236	2050	67,224	50,179	259.494		
1280	39,844	29,201	242.780	2100	69,044	51,584	260.370		
1300	40,534	29,725	243.316	2150	70,864	52,988	261.226		
1320	41,226	30,251	243.844	2200	72,688	54,396	262.065		
1340	41,919	30,778	244.366	2250	74,516	55,809	262.887		
1360	42,613	31,306	244.880	2300	76,345	57,222	263.692		
1380	43,309	31,836	245.388	2350	78,178	58,640	264.480		
1400	44,007	32,367	245.889	2400	80,015	60,060	265.253		
1420	44,707	32,900	246.385	2450	81,852	61,482	266.012		
1440	45,408	33,434	246.876	2500	83,692	62,906	266.755		
1460	46,110	33,971	247.360	2550	85,537	64,335	267.485		
1480	46,813	34,508	247.839	2600	87,383	65,766	268.202		
1500	47,517	35,046	248.312	2650	89,230	67,197	268.905		
1520	48,222	35,584	248.778	2700	91,077	68,628	269.596		
1540	48,928	36,124	249.240	2750	92,930	70,066	270.285		
1560	49,635	36,665	249.695	2800	94,784	71,504	270.943		
1580	50,344	37,207	250.147	2850	96,639	72,945	271.602		
1600	51,053	37,750	250.592	2900	98,495	74,383	272.249		
1620	51,763	38,293	251.033	2950	100,352	75,825	272.884		
1640	52,472	38,837	251.470	3000	102,210	77,267	273.508		
1660	53,184	39,382	251.901	3050	104,073	78,715	274.123		
1680	53,895	39,927	252.329	3100	105,939	80,164	274.730		
1700	54,609	40,474	252.751	3150	107,802	81,612	275.326		
1720	55,323	41,023	253.169	3200	109,667	83,061	275.914		
1740	56,039	41,572	253.582	3250	111,534	84,513	276.494		

946 | Thermodynamics

TABLE A	TABLE A-22							
Ideal-gas	properties of h	ydrogen, H ₂						
T	Ī	\overline{u}	<u></u> s°	T	\overline{h}	\overline{u}	<u></u> s°	
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K	
0 260 270 280 290	0 7,370 7,657 7,945 8,233 8,468	0 5,209 5,412 5,617 5,822 5,989	0 126.636 127.719 128.765 129.775	1440 1480 1520 1560 1600	42,808 44,091 45,384 46,683 47,990 49,303	30,835 31,786 32,746 33,713 34,687 35,668	177.410 178.291 179.153 179.995 180.820 181.632	
300	8,522	6,027	130.754	1680	50,622	36,654	182.428	
320	9,100	6,440	132.621	1720	51,947	37,646	183.208	
340	9,680	6,853	134.378	1760	53,279	38,645	183.973	
360	10,262	7,268	136.039	1800	54,618	39,652	184.724	
380	10,843	7,684	137.612	1840	55,962	40,663	185.463	
400	11,426	8,100	139.106	1880	57,311	41,680	186.190	
420	12,010	8,518	140.529	1920	58,668	42,705	186.904	
440	12,594	8,936	141.888	1960	60,031	43,735	187.607	
460	13,179	9,355	143.187	2000	61,400	44,771	188.297	
480	13,764	9,773	144.432	2050	63,119	46,074	189.148	
500	14,350	10,193	145.628	2100	64,847	47,386	189.979	
520	14,935	10,611	146.775	2150	66,584	48,708	190.796	
560	16,107	11,451	148.945	2200	68,328	50,037	191.598	
600	17,280	12,291	150.968	2250	70,080	51,373	192.385	
640	18,453	13,133	152.863	2300	71,839	52,716	193.159	
680	19,630	13,976	154.645	2350	73,608	54,069	193.921	
720	20,807	14,821	156.328	2400	75,383	55,429	194.669	
760	21,988	15,669	157.923	2450	77,168	56,798	195.403	
800	23,171	16,520	159.440	2500	78,960	58,175	196.125	
840	24,359	17,375	160.891	2550	80,755	59,554	196.837	
880	25,551	18,235	162.277	2600	82,558	60,941	197.539	
920	26,747	19,098	163.607	2650	84,368	62,335	198.229	
960	27,948	19,966	164.884	2700	86,186	63,737	198.907	
1000	29,154	20,839	166.114	2750	88,008	65,144	199.575	
1040	30,364	21,717	167.300	2800	89,838	66,558	200.234	
1080	31,580	22,601	168.449	2850	91,671	67,976	200.885	
1120	32,802	23,490	169.560	2900	93,512	69,401	201.527	
1160	34,028	24,384	170.636	2950	95,358	70,831	202.157	
1200	35,262	25,284	171.682	3000	97,211	72,268	202.778	
1240	36,502	26,192	172.698	3050	99,065	73,707	203.391	
1280	37,749	27,106	173.687	3100	100,926	75,152	203.995	
1320	39,002	28,027	174.652	3150	102,793	76,604	204.592	
1360	40,263	28,955	175.593	3200	104,667	78,061	205.181	
1400	41,530	29,889	176.510	3250	106,545	79,523	205.765	

TABLE A	TABLE A-23								
Ideal-gas	s properties of w	ater vapor, H ₂ 0							
T	h	\overline{u}	¯ s°	T	h	\overline{u}	¯s°		
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K		
0	0	0	0	600	20,402	15,413	212.920		
220	7,295	5,466	178.576	610	20,765	15,693	213.529		
230	7,628	5,715	180.054	620	21,130	15,975	214.122		
240	7,961	5,965	181.471	630	21,495	16,257	214.707		
250	8,294	6,215	182.831	640	21,862	16,541	215.285		
260	8,627	6,466	184.139	650	22,230	16,826	215.856		
270	8,961	6,716	185.399	660	22,600	17,112	216.419		
280	9,296	6,968	186.616	670	22,970	17,399	216.976		
290	9,631	7,219	187.791	680	23,342	17,688	217.527		
298	9,904	7,425	188.720	690	23,714	17,978	218.071		
300	9,966	7,472	188.928	700	24,088	18,268	218.610		
310	10,302	7,725	190.030	710	24,464	18,561	219.142		
320	10,639	7,978	191.098	720	24,840	18,854	219.668		
330	10,976	8,232	192.136	730	25,218	19,148	220.189		
340	11,314	8,487	193.144	740	25,597	19,444	220.707		
350	11,652	8,742	194.125	750	25,977	19,741	221.215		
360	11,992	8,998	195.081	760	26,358	20,039	221.720		
370	12,331	9,255	196.012	770	26,741	20,339	222.221		
380	12,672	9,513	196.920	780	27,125	20,639	222.717		
390	13,014	9,771	197.807	790	27,510	20,941	223.207		
400	13,356	10,030	198.673	800	27,896	21,245	223.693		
410	13,699	10,290	199.521	810	28,284	21,549	224.174		
420	14,043	10,551	200.350	820	28,672	21,855	224.651		
430	14,388	10,813	201.160	830	29,062	22,162	225.123		
440	14,734	11,075	201.955	840	29,454	22,470	225.592		
450	15,080	11,339	202.734	850	29,846	22,779	226.057		
460	15,428	11,603	203.497	860	30,240	23,090	226.517		
470	15,777	11,869	204.247	870	30,635	23,402	226.973		
480	16,126	12,135	204.982	880	31,032	23,715	227.426		
490	16,477	12,403	205.705	890	31,429	24,029	227.875		
500	16,828	12,671	206.413	900	31,828	24,345	228.321		
510	17,181	12,940	207.112	910	32,228	24,662	228.763		
520	17,534	13,211	207.799	920	32,629	24,980	229.202		
530	17,889	13,482	208.475	930	33,032	25,300	229.637		
540	18,245	13,755	209.139	940	33,436	25,621	230.070		
550	18,601	14,028	209.795	950	33,841	25,943	230.499		
560	18,959	14,303	210.440	960	34,247	26,265	230.924		
570	19,318	14,579	211.075	970	34,653	26,588	231.347		
580	19,678	14,856	211.702	980	35,061	26,913	231.767		
590	20,039	15,134	212.320	990	35,472	27,240	232.184		

948 | Thermodynamics

TABLE A-	TABLE A-23								
Ideal-gas	properties of w	ater vapor, H ₂ O ((Concluded)						
T	<u></u>	ū	 s°	T	ħ	\overline{u}	<u></u> s°		
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K		
1000	35,882	27,568	232.597	1760	70,535	55,902	258.151		
1020	36,709	28,228	233.415	1780	71,523	56,723	258.708		
1040	37,542	28,895	234.223	1800	72,513	57,547	259.262		
1060	38,380	29,567	235.020	1820	73,507	58,375	259.811		
1080	39,223	30,243	235.806	1840	74,506	59,207	260.357		
1100	40,071	30,925	236.584	1860	75,506	60,042	260.898		
1120	40,923	31,611	237.352	1880	76,511	60,880	261.436		
1140	41,780	32,301	238.110	1900	77,517	61,720	261.969		
1160	42,642	32,997	238.859	1920	78,527	62,564	262.497		
1180	43,509	33,698	239.600	1940	79,540	63,411	263.022		
1200	44,380	34,403	240.333	1960	80,555	64,259	263.542		
1220	45,256	35,112	241.057	1980	81,573	65,111	264.059		
1240	46,137	35,827	241.773	2000	82,593	65,965	264.571		
1260	47,022	36,546	242.482	2050	85,156	68,111	265.838		
1280	47,912	37,270	243.183	2100	87,735	70,275	267.081		
1300	48,807	38,000	243.877	2150	90,330	72,454	268.301		
1320	49,707	38,732	244.564	2200	92,940	74,649	269.500		
1340	50,612	39,470	245.243	2250	95,562	76,855	270.679		
1360	51,521	40,213	245.915	2300	98,199	79,076	271.839		
1380	52,434	40,960	246.582	2350	100,846	81,308	272.978		
1400	53,351	41,711	247.241	2400	103,508	83,553	274.098		
1420	54,273	42,466	247.895	2450	106,183	85,811	275.201		
1440	55,198	43,226	248.543	2500	108,868	88,082	276.286		
1460	56,128	43,989	249.185	2550	111,565	90,364	277.354		
1480	57,062	44,756	249.820	2600	114,273	92,656	278.407		
1500	57,999	45,528	250.450	2650	116,991	94,958	279.441		
1520	58,942	46,304	251.074	2700	119,717	97,269	280.462		
1540	59,888	47,084	251.693	2750	122,453	99,588	281.464		
1560	60,838	47,868	252.305	2800	125,198	101,917	282.453		
1580	61,792	48,655	252.912	2850	127,952	104,256	283.429		
1600	62,748	49,445	253.513	2900	130,717	106,605	284.390		
1620	63,709	50,240	254.111	2950	133,486	108,959	285.338		
1640	64,675	51,039	254.703	3000	136,264	111,321	286.273		
1660	65,643	51,841	255.290	3050	139,051	113,692	287.194		
1680	66,614	52,646	255.873	3100	141,846	116,072	288.102		
1700	67,589	53,455	256.450	3150	144,648	118,458	288.999		
1720	68,567	54,267	257.022	3200	147,457	120,851	289.884		
1740	69,550	55,083	257.589	3250	150,272	123,250	290.756		

949

Appendix 1

TABLE A-	TABLE A-24									
Ideal-gas	properties of m	onatomic oxyger	ı, O							
T	h	ū	₹°	T	h	\overline{u}	<u></u> \overline{s}°			
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K			
0	0	0	0	2400	50,894	30,940	204.932			
298	6,852	4,373	160.944	2450	51,936	31,566	205.362			
300	6,892	4,398	161.079	2500	52,979	32,193	205.783			
500	11,197	7,040	172.088	2550	54,021	32,820	206.196			
1000	21,713	13,398	186.678	2600	55,064	33,447	206.601			
1500	32,150	19,679	195.143	2650	56,108	34,075	206.999			
1600	34,234	20,931	196.488	2700	57,152	34,703	207.389			
1700	36,317	22,183	197.751	2750	58,196	35,332	207.772			
1800	38,400	23,434	198.941	2800	59,241	35,961	208.148			
1900	40,482	24,685	200.067	2850	60,286	36,590	208.518			
2000	42,564	25,935	201.135	2900	61,332	37,220	208.882			
2050	43,605	26,560	201.649	2950	62,378	37,851	209.240			
2100	44,646	27,186	202.151	3000	63,425	38,482	209.592			
2150	45,687	27,811	202.641	3100	65,520	39,746	210.279			
2200	46,728	28,436	203.119	3200	67,619	41,013	210.945			
2250	47,769	29,062	203.588	3300	69,720	42,283	211.592			
2300	48,811	29,688	204.045	3400	71,824	43,556	212.220			
2350	49,852	30,314	204.493	3500	73,932	44,832	212.831			

TABLE A-	-25						
ldeal-gas	properties of hy	ydroxyl, OH					
Т	Ī	\overline{u}	₹°	T	Ī	\overline{u}	₹°
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	2400	77,015	57,061	248.628
298	9,188	6,709	183.594	2450	78,801	58,431	249.364
300	9,244	6,749	183.779	2500	80,592	59,806	250.088
500	15,181	11,024	198.955	2550	82,388	61,186	250.799
1000	30,123	21,809	219.624	2600	84,189	62,572	251.499
1500	46,046	33,575	232.506	2650	85,995	63,962	252.187
1600	49,358	36,055	234.642	2700	87,806	65,358	252.864
1700	52,706	38,571	236.672	2750	89,622	66,757	253.530
1800	56,089	41,123	238.606	2800	91,442	68,162	254.186
1900	59,505	43,708	240.453	2850	93,266	69,570	254.832
2000	62,952	46,323	242.221	2900	95,095	70,983	255.468
2050	64,687	47,642	243.077	2950	96,927	72,400	256.094
2100	66,428	48,968	243.917	3000	98,763	73,820	256.712
2150	68,177	50,301	244.740	3100	102,447	76,673	257.919
2200	69,932	51,641	245.547	3200	106,145	79,539	259.093
2250	71,694	52,987	246.338	3300	109,855	82,418	260.235
2300	73,462	54,339	247.116	3400	113,578	85,309	261.347
2350	75,236	55,697	247.879	3500	117,312	88,212	262.429

TABLE A-26

Enthalpy of formation, Gibbs function of formation, and absolute entropy at 25°C, 1 atm

		\overline{h}_f°	_ g°	<u></u> s °
Substance	Formula	kJ/kmol	kJ/kmol	kJ/kmol · K
Carbon	C(s)	0	0	5.74
Hydrogen	$H_2(g)$	0	0	130.68
Nitrogen	$N_2(g)$	0	0	191.61
Oxygen	$0_{2}(g)$	0	0	205.04
Carbon monoxide	CO(<i>g</i>)	-110,530	-137,150	197.65
Carbon dioxide	$CO_2(g)$	-393,520	-394,360	213.80
Water vapor	$H_2\bar{O}(g)$	-241,820	-228,590	188.83
Water	$H_2^-O(\ell)$	-285,830	-237,180	69.92
Hydrogen peroxide	$H_2^- O_2(g)$	-136,310	-105,600	232.63
Ammonia	$NH_3(g)$	-46,190	-16,590	192.33
Methane	$CH_4(g)$	-74,850	-50,790	186.16
Acetylene	$C_2H_2(g)$	+226,730	+209,170	200.85
Ethylene	$C_2H_4(g)$	+52,280	+68,120	219.83
Ethane	$C_2H_6(g)$	-84,680	-32,890	229.49
Propylene	$C_3H_6(g)$	+20,410	+62,720	266.94
Propane	$C_3H_8(g)$	-103,850	-23,490	269.91
<i>n</i> -Butane	$C_4H_{10}(g)$	-126,150	-15,710	310.12
<i>n</i> -Octane	$C_8H_{18}(g)$	-208,450	+16,530	466.73
<i>n</i> -Octane	$C_8H_{18}(\ell)$	-249,950	+6,610	360.79
<i>n</i> -Dodecane	$C_{12}H_{26}(g)$	-291,010	+50,150	622.83
Benzene	$C_6H_6(g)$	+82,930	+129,660	269.20
Methyl alcohol	$CH_3OH(g)$	-200,670	-162,000	239.70
Methyl alcohol	CH ₃ OH(ℓ)	-238,660	-166,360	126.80
Ethyl alcohol	$C_2H_5OH(g)$	-235,310	-168,570	282.59
Ethyl alcohol	$C_2H_5OH(\ell)$	-277,690	-174,890	160.70
Oxygen	O(<i>g</i>)	+249,190	+231,770	161.06
Hydrogen	H(<i>g</i>)	+218,000	+203,290	114.72
Nitrogen	N(<i>g</i>)	+472,650	+455,510	153.30
Hydroxyl	OH(<i>g</i>)	+39,460	+34,280	183.70

Source: From JANAF, Thermochemical Tables (Midland, MI: Dow Chemical Co., 1971); Selected Values of Chemical Thermodynamic Properties, NBS Technical Note 270-3, 1968; and API Research Project 44 (Carnegie Press, 1953).

951

Properties of some common fuels and hydrocarbons

Fuel (phase)	Formula	Molar mass, kg/kmol	Density, ¹ kg/L	Enthalpy of vaporization, ² kJ/kg	Specific heat, 1 c_p kJ/kg · K	Higher heating value, ³ kJ/kg	Lower heating value, ³ kJ/kg
Carbon (s)	С	12.011	2	_	0.708	32,800	32,800
Hydrogen (g)	H_2	2.016	_	_	14.4	141,800	120,000
Carbon monoxide (g)	CÔ	28.013	_	_	1.05	10,100	10,100
Methane (g)	CH₄	16.043	_	509	2.20	55,530	50,050
Methanol (ℓ)	CH₄O	32.042	0.790	1168	2.53	22,660	19,920
Acetylene (g)	$C_2 \vec{H}_2$	26.038	_	_	1.69	49,970	48,280
Ethane (g)	C_2H_6	30.070	_	172	1.75	51,900	47,520
Ethanol (ℓ)	C_2H_6O	46.069	0.790	919	2.44	29,670	26,810
Propane (ℓ)	C_3H_8	44.097	0.500	335	2.77	50,330	46,340
Butane (ℓ)	C_4H_{10}	58.123	0.579	362	2.42	49,150	45,370
1-Pentene (ℓ)	C_5H_{10}	70.134	0.641	363	2.20	47,760	44,630
Isopentane (ℓ)	C_5H_{12}	72.150	0.626	_	2.32	48,570	44,910
Benzene (ℓ)	C_6H_6	78.114	0.877	433	1.72	41,800	40,100
Hexene (ℓ)	C_6H_{12}	84.161	0.673	392	1.84	47,500	44,400
Hexane (ℓ)	C_6H_{14}	86.177	0.660	366	2.27	48,310	44,740
Toluene (ℓ)	C ₇ H ₈	92.141	0.867	412	1.71	42,400	40,500
Heptane (ℓ)	C_7H_{16}	100.204	0.684	365	2.24	48,100	44,600
Octane (ℓ)	C_8H_{18}	114.231	0.703	363	2.23	47,890	44,430
Decane (ℓ)	$C_{10}H_{22}$	142.285	0.730	361	2.21	47,640	44,240
Gasoline (ℓ)	$C_n H_{1.87n}$	100–110	0.72-0.78	350	2.4	47,300	44,000
Light diesel (ℓ)	$C_nH_{1.8n}$	170	0.78–0.84	270	2.2	46,100	43,200
Heavy diesel (ℓ)	$C_nH_{1.7n}$	200	0.82–0.88	230	1.9	45,500	42,800
Natural gas (g)	$C_n H_{3.8n} N_{0.1n}$	18	<u> </u>	_	2	50,000	45,000

¹At 1 atm and 20°C.

 $^{^2\}mbox{At }25\mbox{°C}$ for liquid fuels, and 1 atm and normal boiling temperature for gaseous fuels.

 $^{^3\}mbox{At}$ 25°C. Multiply by molar mass to obtain heating values in kJ/kmol.

TABLE A-28

Natural logarithms of the equilibrium constant K_p

The equilibrium constant K_p for the reaction $\nu_A A + \nu_B B \Longrightarrow \nu_C C + \nu_D D$ is defined as $K_p \equiv \frac{P_C^{\nu_C} P_D^{\nu_D}}{P_A^{\nu_A} P_B^{\nu_B}}$

Temp.	,						
K	$H_2 \rightleftharpoons 2H$	$O_2 \rightleftharpoons 20$	$N_2 \rightleftharpoons 2N$	$H_2O \rightleftharpoons H_2 + \frac{1}{2}O_2$	$H_2O \rightleftharpoons {}^1/_2H_2 + OH$	$CO_2 \rightleftharpoons CO + \frac{1}{2}O_2$	$^{1}/_{2}N_{2} + ^{1}/_{2}O_{2} \rightleftharpoons NO$
298	-164.005	-186.975	-367.480	-92.208	-106.208	-103.762	-35.052
500	-92.827	-105.630	-213.372	-52.691	-60.281	-57.616	-20.295
1000	-39.803	-45.150	-99.127	-23.163	-26.034	-23.529	-9.388
1200	-30.874	-35.005	-80.011	-18.182	-20.283	-17.871	-7.569
1400	-24.463	-27.742	-66.329	-14.609	-16.099	-13.842	-6.270
1600	-19.637	-22.285	-56.055	-11.921	-13.066	-10.830	-5.294
1800	-15.866	-18.030	-48.051	-9.826	-10.657	-8.497	-4.536
2000	-12.840	-14.622	-41.645	-8.145	-8.728	-6.635	-3.931
2200	-10.353	-11.827	-36.391	-6.768	-7.148	-5.120	-3.433
2400	-8.276	-9.497	-32.011	-5.619	-5.832	-3.860	-3.019
2600	-6.517	-7.521	-28.304	-4.648	-4.719	-2.801	-2.671
2800	-5.002	-5.826	-25.117	-3.812	-3.763	-1.894	-2.372
3000	-3.685	-4.357	-22.359	-3.086	-2.937	-1.111	-2.114
3200	-2.534	-3.072	-19.937	-2.451	-2.212	-0.429	-1.888
3400	-1.516	-1.935	-17.800	-1.891	-1.576	0.169	-1.690
3600	-0.609	-0.926	-15.898	-1.392	-1.088	0.701	-1.513
3800	0.202	-0.019	-14.199	-0.945	-0.501	1.176	-1.356
4000	0.934	0.796	-12.660	-0.542	-0.044	1.599	-1.216
4500	2.486	2.513	-9.414	0.312	0.920	2.490	-0.921
5000	3.725	3.895	-6.807	0.996	1.689	3.197	-0.686
5500	4.743	5.023	-4.666	1.560	2.318	3.771	-0.497
6000	5.590	5.963	-2.865	2.032	2.843	4.245	-0.341

Source: Gordon J. Van Wylen and Richard E. Sonntag, Fundamentals of Classical Thermodynamics, English/SI Version, 3rd ed. (New York: John Wiley & Sons, 1986), p. 723, table A.14. Based on thermodynamic data given in JANAF, Thermochemical Tables (Midland, MI: Thermal Research Laboratory, The Dow Chemical Company, 1971).

FIGURE A-29

Generalized enthalpy departure chart.

Source: John R. Howell and Richard O. Buckius, Fundamentals of Engineering Thermodynamics, SI Version (New York: McGraw-Hill, 1987), p. 558, fig. C.2, and p. 561, fig. C.5.

FIGURE A-30

Generalized entropy departure chart.

Source: John R. Howell and Richard O. Buckius, Fundamentals of Engineering Thermodynamics, SI Version (New York: McGraw-Hill, 1987), p. 559, fig. C.3, and p. 561, fig. C.5.

Appendix 1

©1992 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

ASHRAE Psychrometric Chart No. 1 Normal Temperature Barometric Pressure: 101.325 kPa

Prepared by Center for Applied Thermodynamic Studies, University of Idaho.

FIGURE A-31

Psychrometric chart at 1 atm total pressure.

Reprinted by permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA; used with permission.

$$\begin{aligned} \mathbf{M}\mathbf{a}^* &= \mathbf{M}\mathbf{a}\sqrt{\frac{k+1}{2+(k-1)\mathbf{M}\mathbf{a}^2}} \\ \frac{A}{A^*} &= \frac{1}{\mathbf{M}\mathbf{a}} \bigg[\bigg(\frac{2}{k+1} \bigg) \bigg(1 + \frac{k-1}{2} \, \mathbf{M}\mathbf{a}^2 \bigg) \bigg]^{0.5(k+1)/(k-1)} \\ \frac{P}{P_0} &= \bigg(1 + \frac{k-1}{2} \, \mathbf{M}\mathbf{a}^2 \bigg)^{-k/(k-1)} \\ \frac{\rho}{\rho_0} &= \bigg(1 + \frac{k-1}{2} \, \mathbf{M}\mathbf{a}^2 \bigg)^{-1/(k-1)} \\ \frac{T}{T_0} &= \bigg(1 + \frac{k-1}{2} \, \mathbf{M}\mathbf{a}^2 \bigg)^{-1} \end{aligned}$$

TABLE A-32

One-dimensional isentropic compressible flow functions for an ideal gas with k=1.4

Ма	Ma*	A/A*	P/P_0	ρ/ρ_0	T/T ₀
0	0	∞	1.0000	1.0000	1.0000
0.1	0.1094	5.8218	0.9930	0.9950	0.9980
0.2	0.2182	2.9635	0.9725	0.9803	0.9921
0.3	0.3257	2.0351	0.9395	0.9564	0.9823
0.4	0.4313	1.5901	0.8956	0.9243	0.9690
0.5	0.5345	1.3398	0.8430	0.8852	0.9524
0.6	0.6348	1.1882	0.7840	0.8405	0.9328
0.7	0.7318	1.0944	0.7209	0.7916	0.9107
8.0	0.8251	1.0382	0.6560	0.7400	0.8865
0.9	0.9146	1.0089	0.5913	0.6870	0.8606
1.0	1.0000	1.0000	0.5283	0.6339	0.8333
1.2	1.1583	1.0304	0.4124	0.5311	0.7764
1.4	1.2999	1.1149	0.3142	0.4374	0.7184
1.6	1.4254	1.2502	0.2353	0.3557	0.6614
1.8	1.5360	1.4390	0.1740	0.2868	0.6068
2.0	1.6330	1.6875	0.1278	0.2300	0.5556
2.2	1.7179	2.0050	0.0935	0.1841	0.5081
2.4	1.7922	2.4031	0.0684	0.1472	0.4647
2.6	1.8571	2.8960	0.0501	0.1179	0.4252
2.8	1.9140	3.5001	0.0368	0.0946	0.3894
3.0	1.9640	4.2346	0.0272	0.0760	0.3571
5.0	2.2361	25.000	0.0019	0.0113	0.1667
\propto	2.2495	oc	0	0	0

957

$$\begin{split} &T_{01} = T_{02} \\ &\mathbf{Ma}_2 = \sqrt{\frac{(k-1)\mathbf{Ma}_1^2 + 2}{2k\mathbf{Ma}_1^2 - k + 1}} \\ &\frac{P_2}{P_1} = \frac{1 + k\mathbf{Ma}_1^2}{1 + k\mathbf{Ma}_2^2} = \frac{2k\mathbf{Ma}_1^2 - k + 1}{k + 1} \\ &\frac{\rho_2}{\rho_1} = \frac{P_2/P_1}{T_2/T_1} = \frac{(k+1)\mathbf{Ma}_1^2}{2 + (k-1)\mathbf{Ma}_1^2} = \frac{V_1}{V_2} \\ &\frac{T_2}{T_1} = \frac{2 + \mathbf{Ma}_1^2(k-1)}{2 + \mathbf{Ma}_2^2(k-1)} \\ &\frac{P_{02}}{P_{01}} = \frac{\mathbf{Ma}_1}{\mathbf{Ma}_2} \bigg[\frac{1 + \mathbf{Ma}_2^2(k-1)/2}{1 + \mathbf{Ma}_1^2(k-1)/2} \bigg]^{(k+1)/[2(k-1)]} \\ &\frac{P_{02}}{P_1} = \frac{(1 + k\mathbf{Ma}_1^2)[1 + \mathbf{Ma}_2^2(k-1)/2]^{k/(k-1)}}{1 + k\mathbf{Ma}_2^2} \end{split}$$

TABLE A-33

One-dimensional normal shock functions for an ideal gas with k = 1.4

Ma_1	Ma ₂	P_2/P_1	$ ho_2/ ho_1$	T_2/T_1	P_{02}/P_{01}	P_{02}/P_1
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.8929
1.1	0.9118	1.2450	1.1691	1.0649	0.9989	2.1328
1.2	0.8422	1.5133	1.3416	1.1280	0.9928	2.4075
1.3	0.7860	1.8050	1.5157	1.1909	0.9794	2.7136
1.4	0.7397	2.1200	1.6897	1.2547	0.9582	3.0492
1.5	0.7011	2.4583	1.8621	1.3202	0.9298	3.4133
1.6	0.6684	2.8200	2.0317	1.3880	0.8952	3.8050
1.7	0.6405	3.2050	2.1977	1.4583	0.8557	4.2238
1.8	0.6165	3.6133	2.3592	1.5316	0.8127	4.6695
1.9	0.5956	4.0450	2.5157	1.6079	0.7674	5.1418
2.0	0.5774	4.5000	2.6667	1.6875	0.7209	5.6404
2.1	0.5613	4.9783	2.8119	1.7705	0.6742	6.1654
2.2	0.5471	5.4800	2.9512	1.8569	0.6281	6.7165
2.3	0.5344	6.0050	3.0845	1.9468	0.5833	7.2937
2.4	0.5231	6.5533	3.2119	2.0403	0.5401	7.8969
2.5	0.5130	7.1250	3.3333	2.1375	0.4990	8.5261
2.6	0.5039	7.7200	3.4490	2.2383	0.4601	9.1813
2.7	0.4956	8.3383	3.5590	2.3429	0.4236	9.8624
2.8	0.4882	8.9800	3.6636	2.4512	0.3895	10.5694
2.9	0.4814	9.6450	3.7629	2.5632	0.3577	11.3022
3.0	0.4752	10.3333	3.8571	2.6790	0.3283	12.0610
4.0	0.4350	18.5000	4.5714	4.0469	0.1388	21.0681
5.0	0.4152	29.000	5.0000	5.8000	0.0617	32.6335
∞	0.3780	∞	6.0000	∞	0	∞

$$\begin{split} \frac{T_0}{T_0^*} &= \frac{(k+1) \mathrm{Ma}^2 [2 + (k-1) \mathrm{Ma}^2]}{(1+k \mathrm{Ma}^2)^2} \\ \frac{P_0}{P_0^*} &= \frac{k+1}{1+k \mathrm{Ma}^2} \left(\frac{2+(k-1) \mathrm{Ma}^2}{k+1} \right)^{k/(k-1)} \\ \frac{T}{T^*} &= \left(\frac{\mathrm{Ma}(1+k)}{1+k \mathrm{Ma}^2} \right)^2 \\ \frac{P}{P^*} &= \frac{1+k}{1+k \mathrm{Ma}^2} \\ \frac{V}{V^*} &= \frac{\rho^*}{\rho} = \frac{(1+k) \mathrm{Ma}^2}{1+k \mathrm{Ma}^2} \end{split}$$

TABLE A-34

Rayleigh flow functions for an ideal gas with k = 1.4

Ма	T_0/T_0^*	P_0/P_0^*	T/ T*	P/P*	V/V*
0.0	0.0000	1.2679	0.0000	2.4000	0.0000
0.1	0.0468	1.2591	0.0560	2.3669	0.0237
0.2	0.1736	1.2346	0.2066	2.2727	0.0909
0.3	0.3469	1.1985	0.4089	2.1314	0.1918
0.4	0.5290	1.1566	0.6151	1.9608	0.3137
0.5	0.6914	1.1141	0.7901	1.7778	0.4444
0.6	0.8189	1.0753	0.9167	1.5957	0.5745
0.7	0.9085	1.0431	0.9929	1.4235	0.6975
0.8	0.9639	1.0193	1.0255	1.2658	0.8101
0.9	0.9921	1.0049	1.0245	1.1246	0.9110
1.0	1.0000	1.0000	1.0000	1.0000	1.0000
1.2	0.9787	1.0194	0.9118	0.7958	1.1459
1.4	0.9343	1.0777	0.8054	0.6410	1.2564
1.6	0.8842	1.1756	0.7017	0.5236	1.3403
1.8	0.8363	1.3159	0.6089	0.4335	1.4046
2.0	0.7934	1.5031	0.5289	0.3636	1.4545
2.2	0.7561	1.7434	0.4611	0.3086	1.4938
2.4	0.7242	2.0451	0.4038	0.2648	1.5252
2.6	0.6970	2.4177	0.3556	0.2294	1.5505
2.8	0.6738	2.8731	0.3149	0.2004	1.5711
3.0	0.6540	3.4245	0.2803	0.1765	1.5882

Appendix 2

PROPERTY TABLES AND CHARTS (ENGLISH UNITS)

Table A-1E	Molar mass, gas constant, and critical-point properties	Table A-16E	Properties of the atmosphere at high altitude
Table A-2E	Ideal-gas specific heats of various		Ideal-gas properties of air
	common gases	Table A-18E	Ideal-gas properties of nitrogen, N ₂
Table A-3E	Properties of common liquids, solids, and foods	Table A-19E	Ideal-gas properties of oxygen, O_2
Table A-4E	Saturated water—Temperature table	Table A-20E	Ideal-gas properties of carbon dioxide CO ₂
Table A-5E	Saturated water—Pressure table	Table A-21E	Ideal-gas properties of carbon
Table A-6E	Superheated water		monoxide, CO
Table A-7E	Compressed liquid water	Table A-22E	Ideal-gas properties of hydrogen, H ₂
Table A-8E	Saturated ice-water vapor	Table A-23E	Ideal-gas properties of water vapor,
Figure A-9E	T-s diagram for water		H_2O
Figure A-10E	Mollier diagram for water	Table A-26E	1 5
Table A-11E	Saturated refrigerant-134a— Temperature table		of formation, and absolute entropy at 77°C, 1 atm
Table A-12E	Saturated refrigerant-134a—Pressure table	Table A-27E	Properties of some common fuels and hydrocarbons
Table A-13E	Superheated refrigerant-134a	Figure A-31E	Psychrometric chart at 1 atm total pressure
Figure A-14E	P-h diagram for refrigerant-134a		pressure

960 | Thermodynamics

TABLE A-1E

Molar mass, gas constant, and critical-point properties

		Molar	Gas co	nstant, R	Critica	l-point prope	erties
Substance	Formula	mass, <i>M</i> Ibm/Ibmol	Btu/ lbm · R*	psia · ft³/ lbm · R*	Temperature, R	Pressure, psia	Volume, ft ³ /Ibmol
Air	_	28.97	0.06855	0.3704	238.5	547	1.41
Ammonia	NH_3	17.03	0.1166	0.6301	729.8	1636	1.16
Argon	Ar	39.948	0.04971	0.2686	272	705	1.20
Benzene	C_6H_6	78.115	0.02542	0.1374	1012	714	4.17
Bromine	Br_2	159.808	0.01243	0.06714	1052	1500	2.17
<i>n</i> -Butane	$C_{4}H_{10}$	58.124	0.03417	0.1846	765.2	551	4.08
Carbon dioxide	CO_2	44.01	0.04513	0.2438	547.5	1071	1.51
Carbon monoxide	CO	28.011	0.07090	0.3831	240	507	1.49
Carbon tetrachloride	CCI_4	153.82	0.01291	0.06976	1001.5	661	4.42
Chlorine	Cl ₂	70.906	0.02801	0.1517	751	1120	1.99
Chloroform	CHCI₃	119.38	0.01664	0.08988	965.8	794	3.85
Dichlorodifluoromethane (R-12)	CCI ₂ F ₂	120.91	0.01643	0.08874	692.4	582	3.49
Dichlorofluoromethane (R-21)	CHCI ₂ F	102.92	0.01930	0.1043	813.0	749	3.16
Ethane	C_2H_6	30.020	0.06616	0.3574	549.8	708	2.37
Ethyl alcohol	C_2H_5OH	46.07	0.04311	0.2329	929.0	926	2.68
Ethylene	C_2H_4	28.054	0.07079	0.3825	508.3	742	1.99
Helium	He	4.003	0.4961	2.6809	9.5	33.2	0.926
<i>n</i> -Hexane	C_6H_{14}	86.178	0.02305	0.1245	914.2	439	5.89
Hydrogen (normal)	H_2	2.016	0.9851	5.3224	59.9	188.1	1.04
Krypton	Kr	83.80	0.02370	0.1280	376.9	798	1.48
Methane	CH_4	16.043	0.1238	0.6688	343.9	673	1.59
Methyl alcohol	CH ₃ OH	32.042	0.06198	0.3349	923.7	1154	1.89
Methyl chloride	CH ₃ CI	50.488	0.03934	0.2125	749.3	968	2.29
Neon	Ne	20.183	0.09840	0.5316	80.1	395	0.668
Nitrogen	N_2	28.013	0.07090	0.3830	227.1	492	1.44
Nitrous oxide	N_2O	44.013	0.04512	0.2438	557.4	1054	1.54
Oxygen	O_2	31.999	0.06206	0.3353	278.6	736	1.25
Propane	C_3H_8	44.097	0.04504	0.2433	665.9	617	3.20
Propylene	C_3H_6	42.081	0.04719	0.2550	656.9	670	2.90
Sulfur dioxide	SO_2	64.063	0.03100	1.1675	775.2	1143	1.95
Tetrafluoroethane (R-134a)	CF ₃ CH ₂ F	102.03	0.01946	0.1052	673.6	588.7	3.19
Trichlorofluoromethane (R-11)	CCĬ ₃ F	137.37	0.01446	0.07811	848.1	635	3.97
Water	H_2O	18.015	0.1102	0.5956	1164.8	3200	0.90
Xenon	Xe	131.30	0.01513	0.08172	521.55	852	1.90

^{*}Calculated from $R=R_u/M$, where $R_u=1.98588$ Btu/lbmol \cdot R = 10.7316 psia \cdot ft³/lbmol \cdot R and M is the molar mass.

Source: K. A. Kobe and R. E. Lynn, Jr., Chemical Review 52 (1953), pp. 117–236, and ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1993), pp. 16.4 and 36.1.

TABLE A-2E

Ideal-gas specific heats of various common gases (a) At $80^{\circ}\mathrm{F}$

Gas	Formula	Gas constant, <i>R</i> Btu/lbm · R	c_p Btu/lbm \cdot R	<i>c</i> √ Btu/lbm · R	k
Air	_	0.06855	0.240	0.171	1.400
Argon	Ar	0.04971	0.1253	0.0756	1.667
Butane	C_4H_{10}	0.03424	0.415	0.381	1.09
Carbon dioxide	$\vec{CO_2}$	0.04513	0.203	0.158	1.285
Carbon monoxide	CO	0.07090	0.249	0.178	1.399
Ethane	C_2H_6	0.06616	0.427	0.361	1.183
Ethylene	C_2H_4	0.07079	0.411	0.340	1.208
Helium	He	0.4961	1.25	0.753	1.667
Hydrogen	H_2	0.9851	3.43	2.44	1.404
Methane	CH₄	0.1238	0.532	0.403	1.32
Neon	Ne	0.09840	0.246	0.1477	1.667
Nitrogen	N_2	0.07090	0.248	0.177	1.400
Octane	$C_8^{-}H_{18}$	0.01742	0.409	0.392	1.044
Oxygen	02	0.06206	0.219	0.157	1.395
Propane	$C_3^2H_8$	0.04504	0.407	0.362	1.124
Steam	$H_2^{\circ}O^{\circ}$	0.1102	0.445	0.335	1.329

Source: Gordon J. Van Wylen and Richard E. Sonntag, Fundamentals of Classical Thermodynamics, English/SI Version, 3rd ed. (New York: John Wiley & Sons, 1986), p. 687, Table A–8E.

962 | Thermodynamics

TABLE A-2E

Ideal-gas specific heats of various common gases (*Continued*) (*b*) At various temperatures

Temp., °F	c_p Btu/lbm \cdot R	$c_{\scriptscriptstyle m v}$ Btu/Ibm \cdot R	k	c_p Btu/Ibm \cdot R	$c_{\scriptscriptstyle m \it v}$ Btu/lbm \cdot R	k	c_p Btu/lbm \cdot R	$c_{\scriptscriptstyle m V}$ Btu/Ibm \cdot	R <i>k</i>
		Air		Cart	oon dioxide, C	02	Carboi	n monoxide	e, CO
40	0.240	0.171	1.401	0.195	0.150	1.300	0.248	0.177	1.400
100	0.240	0.172	1.400	0.205	0.160	1.283	0.249	0.178	1.399
200	0.241	0.173	1.397	0.217	0.172	1.262	0.249	0.179	1.397
300	0.243	0.174	1.394	0.229	0.184	1.246	0.251	0.180	1.394
400	0.245	0.176	1.389	0.239	0.193	1.233	0.253	0.182	1.389
500	0.248	0.179	1.383	0.247	0.202	1.223	0.256	0.185	1.384
600	0.250	0.182	1.377	0.255	0.210	1.215	0.259	0.188	1.377
700	0.254	0.185	1.371	0.262	0.217	1.208	0.262	0.191	1.371
800	0.257	0.188	1.365	0.269	0.224	1.202	0.266	0.195	1.364
900	0.259	0.191	1.358	0.275	0.230	1.197	0.269	0.198	1.357
1000	0.263	0.195	1.353	0.280	0.235	1.192	0.273	0.202	1.351
1500	0.276	0.208	1.330	0.298	0.253	1.178	0.287	0.216	1.328
2000	0.286	0.217	1.312	0.312	0.267	1.169	0.297	0.226	1.314
		Hydrogen, H ₂			Nitrogen, N ₂		(Oxygen, O_2	
40	3.397	2.412	1.409	0.248	0.177	1.400	0.219	0.156	1.397
100	3.426	2.441	1.404	0.248	0.178	1.399	0.220	0.158	1.394
200	3.451	2.466	1.399	0.249	0.178	1.398	0.223	0.161	1.387
300	3.461	2.476	1.398	0.250	0.179	1.396	0.226	0.164	1.378
400	3.466	2.480	1.397	0.251	0.180	1.393	0.230	0.168	1.368
500	3.469	2.484	1.397	0.254	0.183	1.388	0.235	0.173	1.360
600	3.473	2.488	1.396	0.256	0.185	1.383	0.239	0.177	1.352
700	3.477	2.492	1.395	0.260	0.189	1.377	0.242	0.181	1.344
800	3.494	2.509	1.393	0.262	0.191	1.371	0.246	0.184	1.337
900	3.502	2.519	1.392	0.265	0.194	1.364	0.249	0.187	1.331
1000	3.513	2.528	1.390	0.269	0.198	1.359	0.252	0.190	1.326
1500	3.618	2.633	1.374	0.283	0.212	1.334	0.263	0.201	1.309
2000	3.758	2.773	1.355	0.293	0.222	1.319	0.270	0.208	1.298

Note: The unit Btu/lbm \cdot R is equivalent to Btu/lbm \cdot °F.

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), p. 830, Table A–4. Originally published in Tables of Properties of Gases, NBS Circular 564, 1955.

TABLE A-2E

Ideal-gas specific heats of various common gases (Concluded) (c) As a function of temperature

$$\overline{c}_p = a + bT + cT^2 + dT^3$$

(*T* in R, c_p in Btu/lbmol · R)

						Temperature	% е	rror
Substance	Formula	а	Ь	С	d	range, R	Max.	Avg.
Nitrogen	N_2	6.903	-0.02085×10^{-2}	0.05957×10^{-5}	-0.1176×10^{-9}	491-3240	0.59	0.34
Oxygen	02	6.085	0.2017×10^{-2}	-0.05275×10^{-5}	0.05372×10^{-9}	491-3240	1.19	0.28
Air	_	6.713	0.02609×10^{-2}	0.03540×10^{-5}	-0.08052×10^{-9}	491-3240	0.72	0.33
Hydrogen	H_2	6.952	-0.02542×10^{-2}	0.02952×10^{-5}	-0.03565×10^{-9}	491-3240	1.02	0.26
Carbon monoxide	CO	6.726	0.02222×10^{-2}	0.03960×10^{-5}	-0.09100×10^{-9}	491-3240	0.89	0.37
Carbon dioxide	CO ₂	5.316	0.79361×10^{-2}	-0.2581×10^{-5}	0.3059×10^{-9}	491-3240	0.67	0.22
Water vapor	H_2O	7.700	0.02552×10^{-2}	0.07781×10^{-5}	-0.1472×10^{-9}	491-3240	0.53	0.24
Nitric oxide	NO	7.008	-0.01247×10^{-2}	0.07185×10^{-5}	-0.1715×10^{-9}	491-2700	0.97	0.36
Nitrous oxide	N_2O	5.758	0.7780×10^{-2}	-0.2596×10^{-5}	0.4331×10^{-9}	491-2700	0.59	0.26
Nitrogen dioxide	NO_2	5.48	0.7583×10^{-2}	-0.260×10^{-5}	0.322×10^{-9}	491-2700	0.46	0.18
Ammonia	NH_3	6.5846	0.34028×10^{-2}	0.073034×10^{-5}	-0.27402×10^{-9}	491-2700	0.91	0.36
Sulfur	S_2	6.499	0.2943×10^{-2}	-0.1200×10^{-5}	0.1632×10^{-9}	491-3240	0.99	0.38
Sulfur dioxide	SO_2	6.157	0.7689×10^{-2}	-0.2810×10^{-5}	0.3527×10^{-9}	491-3240	0.45	0.24
Sulfur trioxide	SO_3	3.918	1.935×10^{-2}	-0.8256×10^{-5}	1.328×10^{-9}	491-2340	0.29	0.13
Acetylene	C_2H_2	5.21	1.2227×10^{-2}	-0.4812×10^{-5}	0.7457×10^{-9}	491-2700	1.46	0.59
Benzene	C_6H_6	-8.650	6.4322×10^{-2}	-2.327×10^{-5}	3.179×10^{-9}	491-2700	0.34	0.20
Methanol	CH ₄ O	4.55	1.214×10^{-2}	-0.0898×10^{-5}	-0.329×10^{-9}	491-1800	0.18	0.08
Ethanol	$C_{2}H_{6}O$	4.75	2.781×10^{-2}	-0.7651×10^{-5}	0.821×10^{-9}	491-2700	0.40	0.22
Hydrogen chloride	HCI	7.244	-0.1011×10^{-2}	0.09783×10^{-5}	-0.1776×10^{-9}	491-2740	0.22	0.08
Methane	CH_4	4.750	0.6666×10^{-2}	0.09352×10^{-5}	-0.4510×10^{-9}	491-2740	1.33	0.57
Ethane	C_2H_6	1.648	2.291×10^{-2}	-0.4722×10^{-5}	0.2984×10^{-9}	491-2740	0.83	0.28
Propane	C_3H_8	-0.966	4.044×10^{-2}	-1.159×10^{-5}	1.300×10^{-9}	491-2740	0.40	0.12
<i>n</i> -Butane	C_4H_{10}	0.945	4.929×10^{-2}	-1.352×10^{-5}	1.433×10^{-9}	491-2740	0.54	0.24
<i>i</i> -Butane	C_4H_{10}	-1.890	5.520×10^{-2}	-1.696×10^{-5}	2.044×10^{-9}	491-2740	0.25	0.13
<i>n</i> -Pentane	C ₅ H ₁₂	1.618	6.028×10^{-2}	-1.656×10^{-5}	1.732×10^{-9}	491-2740	0.56	0.21
<i>n</i> -Hexane	C ₆ H ₁₄	1.657	7.328×10^{-2}	-2.112×10^{-5}	2.363×10^{-9}	491-2740	0.72	0.20
Ethylene	C_2H_4	0.944	2.075×10^{-2}	-0.6151×10^{-5}	0.7326×10^{-9}	491-2740	0.54	0.13
Propylene	C ₃ H ₆	0.753	3.162×10^{-2}	-0.8981×10^{-5}	1.008×10^{-9}	491-2740	0.73	0.17

Source: Chemical and Process Thermodynamics 3/E by Kyle, B. G., © 2000. Adapted by permission of Pearson Education, Inc., Upper Saddle River, NJ.

964 | Thermodynamics

TABLE A-3E

Properties of common liquids, solids, and foods (a) Liquids

	Boiling	data at 1 atm	Free.	zing data	Lic	quid propert	ies
Substance	Normal boiling point, °F	Latent heat of vaporization, $h_{\rm fg}$ Btu/Ibm	Freezing point, °F	Latent heat of fusion, h_{if} Btu/Ibm	Temperature, °F	Density, $ ho$ Ibm/ft ³	Specific heat, c_p Btu/lbm \cdot F
Ammonia	-27.9	24.54	-107.9	138.6	-27.9 0 40 80	42.6 41.3 39.5 37.5	1.06 1.083 1.103 1.135
Argon Benzene Brine (20% sodium chloride	-302.6 176.4	69.5 169.4	-308.7 41.9	12.0 54.2	-302.6 68	87.0 54.9	0.272 0.411
by mass) <i>n</i> -Butane Carbon dioxide	219.0 31.1 -109.2*	— 165.6 99.6 (at 32°F)	0.7 -217.3 -69.8	 34.5 	68 31.1 32	71.8 37.5 57.8	0.743 0.552 0.583
Ethanol Ethyl alcohol Ethylene glycol Glycerine Helium	172.8 173.5 388.6 355.8 -452.1	360.5 368 344.0 419 9.80	-173.6 -248.8 12.6 66.0	46.9 46.4 77.9 86.3	77 68 68 68 -452.1	48.9 49.3 69.2 78.7 9.13	0.588 0.678 0.678 0.554 5.45
Hydrogen Isobutane Kerosene Mercury	-423.0 10.9 399-559 674.1	191.7 157.8 108 126.7	-434.5 -255.5 -12.8 -38.0	25.6 45.5 — 4.90	-423.0 10.9 68 77	4.41 37.1 51.2 847	2.39 0.545 0.478 0.033
Methane Methanol	-258.7 148.1	219.6 473	296.0 -143.9	25.1 42.7	-258.7 -160 77	26.4 20.0 49.1	0.834 1.074 0.609
Nitrogen Octane	-320.4 256.6	85.4 131.7	-346.0 -71.5	10.9 77.9	-320.4 -260 68	50.5 38.2 43.9	0.492 0.643 0.502
Oil (light) Oxygen Petroleum	 -297.3 	— 91.5 99–165	-361.8	5.9	77 -297.3 68	56.8 71.2 40.0	0.430 0.408 0.478
Propane	-43.7	184.0	-305.8	34.4	-43.7 32 100	36.3 33.0 29.4	0.538 0.604 0.673
Refrigerant-134a	-15.0	93.3	-141.9	_	-40 -15 32 90	88.5 86.0 80.9 73.6	0.283 0.294 0.318 0.348
Water	212	970.1	32	143.5	32 90 150 212	62.4 62.1 61.2 59.8	1.01 1.00 1.00 1.01

^{*}Sublimation temperature. (At pressures below the triple-point pressure of 75.1 psia, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature of carbon dioxide is the triple-point temperature of $-69.8^{\circ}F$.)

TABLE A-3E

Properties of common liquids, solids, and foods (*Continued*) (b) Solids (values are for room temperature unless indicated otherwise)

Substance	Density, $ ho$ lbm/ft 3	Specific heat, c_p Btu/Ibm \cdot R	Substance	Density, $ ho$ Ibm/ft 3	Specific heat, c_p Btu/lbm \cdot R
Metals			Nonmetals		
Aluminum			Asphalt	132	0.220
-100°F		0.192	Brick, common	120	0.189
32°F		0.212	Brick, fireclay (500°C)	144	0.229
100°F	170	0.218	Concrete	144	0.156
200°F		0.224	Clay	62.4	0.220
300°F		0.229	Diamond	151	0.147
400°F		0.235	Glass, window	169	0.191
500°F		0.240	Glass, pyrex	139	0.200
Bronze (76% Cu, 2% Zn,	517	0.0955	Graphite	156	0.170
2% AI)			Granite	169	0.243
Brass, yellow (65% Cu,	519	0.0955	Gypsum or plaster board	50	0.260
35% Zn)			Ice		
Copper			−50°F		0.424
-60°F		0.0862	0°F		0.471
0°F		0.0893	20°F		0.491
100°F	555	0.0925	32°F	57.5	0.502
200°F		0.0938	Limestone	103	0.217
390°F		0.0963	Marble	162	0.210
Iron	490	0.107	Plywood (Douglas fir)	34.0	
Lead	705	0.030	Rubber (soft)	68.7	
Magnesium	108	0.239	Rubber (hard)	71.8	
Nickel	555	0.105	Sand	94.9	
Silver	655	0.056	Stone	93.6	
Steel, mild	489	0.119	Woods, hard (maple, oak, etc.)	45.0	
Tungsten	1211	0.031	Woods, soft (fir, pine, etc.)	32.0	

(c) Foods

	Water	Freezing	Specific Btu/lb		Latent heat of		Water content,			ic heat, om · R	Latent heat of
	content,	point,	Above	Below	fusion,		%	point,	Above	Below	fusion,
Food	% (mass)	°F	freezing	freezing	Btu/Ibm	Food	(mass)	°F	freezing	freezing	Btu/Ibm
Apples	84	30	0.873	0.453	121	Lettuce	95	32	0.961	0.487	136
Bananas	75	31	0.801	0.426	108	Milk, whole	88	31	0.905	0.465	126
Beef round	67	_	0.737	0.402	96	Oranges	87	31	0.897	0.462	125
Broccoli	90	31	0.921	0.471	129	Potatoes	78	31	0.825	0.435	112
Butter	16	_	_	0.249	23	Salmon fish	64	28	0.713	0.393	92
Cheese, Swiss	39	14	0.513	0.318	56	Shrimp	83	28	0.865	0.450	119
Cherries	80	29	0.841	0.441	115	Spinach	93	31	0.945	0.481	134
Chicken	74	27	0.793	0.423	106	Strawberries	90	31	0.921	0.471	129
Corn, sweet	74	31	0.793	0.423	106	Tomatoes, ripe	94	31	0.953	0.484	135
Eggs, whole	74	31	0.793	0.423	106	Turkey	64	_	0.713	0.393	92
Ice cream	63	22	0.705	0.390	90	Watermelon	93	31	0.945	0.481	134

Source: Values are obtained from various handbooks and other sources or are calculated. Water content and freezing-point data of foods are from ASHRAE, Handbook of Fundamentals, I-P version (Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1993), Chap. 30, Table 1. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.

966 | Thermodynamics

TABLE A-4E

Saturated water—Temperature table

		Specific volume, ft³/lbm		In	ternal energ Btu/Ibm	у,		<i>Enthalpy,</i> Btu/lbm		Entropy, Btu/lbm · R			
Temp., <i>T</i> °F	Sat. press., P _{sat} psia	Sat. liquid, v_f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g	
35 40	0.08871 0.09998 0.12173	0.01602 0.01602 0.01602	3299.9 2945.7 2443.6	0.000 3.004 8.032	1021.0 1019.0 1015.6	1021.0 1022.0 1023.7	3.004 8.032	1075.2 1073.5 1070.7	1075.2 1076.5 1078.7	0.00000 0.00609 0.01620	2.18672 2.17011 2.14271	2.1867 2.1762 2.1589	
45 50	0.14756 0.17812	0.01602 0.01602	2035.8 1703.1	13.05 18.07	1012.2 1008.9	1025.3 1026.9	13.05 18.07	1067.8 1065.0	1080.9 1083.1	0.02620 0.03609	2.11587 2.08956	2.1421 2.1256	
55 60 65 70 75	0.21413 0.25638 0.30578 0.36334 0.43016	0.01603 0.01604 0.01604 0.01605 0.01606	1430.4 1206.1 1020.8 867.18 739.27	23.07 28.08 33.08 38.08 43.07	1005.5 1002.1 998.76 995.39 992.02	1028.6 1030.2 1031.8 1033.5 1035.1	23.07 28.08 33.08 38.08 43.07	1062.2 1059.4 1056.5 1053.7 1050.9	1085.3 1087.4 1089.6 1091.8 1093.9	0.04586 0.05554 0.06511 0.07459 0.08398	2.06377 2.03847 2.01366 1.98931 1.96541	2.1096 2.0940 2.0788 2.0639 2.0494	
80 85 90 95 100	0.50745 0.59659 0.69904 0.81643 0.95052	0.01607 0.01609 0.01610 0.01612 0.01613	632.41 542.80 467.40 403.74 349.83	48.06 53.06 58.05 63.04 68.03	988.65 985.28 981.90 978.52 975.14	1036.7 1038.3 1040.0 1041.6 1043.2	48.07 53.06 58.05 63.04 68.03	1048.0 1045.2 1042.4 1039.5 1036.7	1096.1 1098.3 1100.4 1102.6 1104.7	0.09328 0.10248 0.11161 0.12065 0.12961	1.94196 1.91892 1.89630 1.87408 1.85225		
110 120 130 140 150	1.2767 1.6951 2.2260 2.8931 3.7234	0.01617 0.01620 0.01625 0.01629 0.01634	264.96 202.94 157.09 122.81 96.929	78.01 88.00 97.99 107.98 117.98	968.36 961.56 954.73 947.87 940.98	1046.4 1049.6 1052.7 1055.9 1059.0	78.02 88.00 97.99 107.99 117.99	1031.0 1025.2 1019.4 1013.6 1007.8	1109.0 1113.2 1117.4 1121.6 1125.7	0.14728 0.16466 0.18174 0.19855 0.21508	1.80970 1.76856 1.72877 1.69024 1.65291	1.9570 1.9332 1.9105 1.8888 1.8680	
160 170 180 190 200	4.7474 5.9999 7.5197 9.3497 11.538	0.01639 0.01645 0.01651 0.01657 0.01663	77.185 61.982 50.172 40.920 33.613	127.98 138.00 148.02 158.05 168.10	934.05 927.08 920.06 912.99 905.87	1062.0 1065.1 1068.1 1071.0 1074.0	128.00 138.02 148.04 158.08 168.13	989.85 983.76	1129.8 1133.9 1137.9 1141.8 1145.7	0.23136 0.24739 0.26318 0.27874 0.29409	1.61670 1.58155 1.54741 1.51421 1.48191	1.8481 1.8289 1.8106 1.7930 1.7760	
210 212 220 230 240	14.136 14.709 17.201 20.795 24.985	0.01670 0.01671 0.01677 0.01684 0.01692	27.798 26.782 23.136 19.374 16.316	178.15 180.16 188.22 198.31 208.41	898.68 897.24 891.43 884.10 876.70	1076.8 1077.4 1079.6 1082.4 1085.1	178.20 180.21 188.28 198.37 208.49	970.09 965.02 958.59	1149.5 1150.3 1153.3 1157.0 1160.5	0.30922 0.31222 0.32414 0.33887 0.35342	1.45046 1.44427 1.41980 1.38989 1.36069	1.7597 1.7565 1.7439 1.7288 1.7141	
250 260 270 280 290	29.844 35.447 41.877 49.222 57.573	0.01700 0.01708 0.01717 0.01726 0.01735	13.816 11.760 10.059 8.6439 7.4607	218.54 228.68 238.85 249.04 259.26	869.21 861.62 853.94 846.16 838.27	1087.7 1090.3 1092.8 1095.2 1097.5	218.63 228.79 238.98 249.20 259.45	938.65 931.76 924.74	1164.0 1167.4 1170.7 1173.9 1177.0	0.36779 0.38198 0.39601 0.40989 0.42361	1.33216 1.30425 1.27694 1.25018 1.22393	1.6999 1.6862 1.6730 1.6601 1.6475	
300 310 320 330 340	67.028 77.691 89.667 103.07 118.02	0.01745 0.01755 0.01765 0.01776 0.01787	6.4663 5.6266 4.9144 4.3076 3.7885	269.51 279.79 290.11 300.46 310.85	830.25 822.11 813.84 805.43 796.87	1099.8 1101.9 1104.0 1105.9 1107.7	269.73 280.05 290.40 300.80 311.24	902.75 895.09 887.25	1180.0 1182.8 1185.5 1188.1 1190.5	0.43720 0.45065 0.46396 0.47716 0.49024	1.19818 1.17289 1.14802 1.12355 1.09945	1.6235 1.6120 1.6007	
350 360 370 380 390	134.63 153.03 173.36 195.74 220.33	0.01799 0.01811 0.01823 0.01836 0.01850	3.3425 2.9580 2.6252 2.3361 2.0842	321.29 331.76 342.29 352.87 363.50	788.16 779.28 770.23 761.00 751.58	1109.4 1111.0 1112.5 1113.9 1115.1	321.73 332.28 342.88 353.53 364.25	862.53 853.86 844.96	1192.7 1194.8 1196.7 1198.5 1200.1	0.50321 0.51607 0.52884 0.54152 0.55411	1.07570 1.05227 1.02914 1.00628 0.98366	1.5683 1.5580 1.5478	

TABLE A-4E

Saturated water—Temperature table (Concluded)

		Specific volume, ft³/lbm		In	ternal energ Btu/lbm	gy,		Enthalpy, Btu/lbm		Entropy, Btu/lbm · R		
Temp., T°F	Sat. press., P _{sat} psia	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s _{fg}	Sat. vapor, s_g
400 410 420 430 440	247.26 276.69 308.76 343.64 381.49	0.01864 0.01878 0.01894 0.01910 0.01926	1.8639 1.6706 1.5006 1.3505 1.2178	374.19 384.94 395.76 406.65 417.61	741.97 732.14 722.08 711.80 701.26	1116.2 1117.1 1117.8 1118.4 1118.9	375.04 385.90 396.84 407.86 418.97	826.39 816.71 806.74	1201.4 1202.6 1203.6 1204.3 1204.8	0.56663 0.57907 0.59145 0.60377 0.61603	0.96127 0.93908 0.91707 0.89522 0.87349	1.5279 1.5182 1.5085 1.4990 1.4895
450 460 470 480 490	422.47 466.75 514.52 565.96 621.24	0.01944 0.01962 0.01981 0.02001 0.02022	1.0999 0.99510 0.90158 0.81794 0.74296	451.01 462.34	690.47 679.39 668.02 656.34 644.32	1119.1 1119.2 1119.0 1118.7 1118.1	430.18 441.48 452.90 464.43 476.09	763.65 751.98 739.91	1205.1 1205.1 1204.9 1204.3 1203.5	0.62826 0.64044 0.65260 0.66474 0.67686	0.85187 0.83033 0.80885 0.78739 0.76594	1.4801 1.4708 1.4615 1.4521 1.4428
500 510 520 530 540	680.56 744.11 812.11 884.74 962.24	0.02044 0.02067 0.02092 0.02118 0.02146	0.67558 0.61489 0.56009 0.51051 0.46553	496.99 508.80 520.76	631.94 619.17 605.99 592.35 578.23	1117.3 1116.2 1114.8 1113.1 1111.1	487.89 499.84 511.94 524.23 536.70		1202.3 1200.8 1199.0 1196.7 1194.0	0.68899 0.70112 0.71327 0.72546 0.73770	0.74445 0.72290 0.70126 0.67947 0.65751	1.4334 1.4240 1.4145 1.4049 1.3952
550 560 570 580 590	1044.8 1132.7 1226.2 1325.5 1430.8	0.02176 0.02207 0.02242 0.02279 0.02319	0.42465 0.38740 0.35339 0.32225 0.29367	557.68 570.40 583.37	563.58 548.33 532.45 515.84 498.43	1108.8 1106.0 1102.8 1099.2 1095.0	549.39 562.31 575.49 588.95 602.75	607.55 589.29	1190.9 1187.2 1183.0 1178.2 1172.8	0.75000 0.76238 0.77486 0.78748 0.80026	0.63532 0.61284 0.59003 0.56679 0.54306	1.3853 1.3752 1.3649 1.3543 1.3433
600 610 620 630 640	1542.5 1660.9 1786.2 1918.9 2059.3	0.02362 0.02411 0.02464 0.02524 0.02593	0.26737 0.24309 0.22061 0.19972 0.18019	624.11 638.47 653.35	480.10 460.73 440.14 418.12 394.36	1090.3 1084.8 1078.6 1071.5 1063.2	616.92 631.52 646.62 662.32 678.74	528.03 504.92 480.07	1166.6 1159.5 1151.5 1142.4 1131.9	0.81323 0.82645 0.83998 0.85389 0.86828	0.51871 0.49363 0.46765 0.44056 0.41206	1.3319 1.3201 1.3076 1.2944 1.2803
650 660 670 680 690	2207.8 2364.9 2531.2 2707.3 2894.1	0.02673 0.02767 0.02884 0.03035 0.03255	0.16184 0.14444 0.12774 0.11134 0.09451	702.48 721.23 742.11	368.44 339.74 307.22 269.00 220.77	1053.6 1042.2 1028.5 1011.1 987.6	696.08 714.59 734.74 757.32 784.24	423.65 390.84 353.54 309.57 253.96	1119.7 1105.4 1088.3 1066.9 1038.2	0.88332 0.89922 0.91636 0.93541 0.95797	0.38177 0.34906 0.31296 0.27163 0.22089	1.2651 1.2483 1.2293 1.2070 1.1789
700 705.10	3093.0 3200.1	0.03670 0.04975	0.07482 0.04975		146.50 0	948.3 866.6	822.76 896.07	168.32 0	991.1 896.1	0.99023 1.05257	0.14514 0	1.1354 1.0526

Source: Tables A-4E through A-8E are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K to 473.15 K," ASHRAE Trans., Part 2A, Paper 2793, 1983.

968 | Thermodynamics

TABLE A-5E

Saturated water—Pressure table

			volume, Ibm	Int	ternal energ Btu/lbm	gy,		Enthalpy, Btu/lbm		E	<i>Entropy,</i> Btu/lbm · R	
Press., P psia	Sat. temp., T _{sat} °F	Sat. liquid, v_f	Sat. vapor, v _g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. Iiquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s_g
1	101.69	0.01614	333.49	69.72	973.99	1043.7	69.72	1035.7	1105.4	0.13262	1.84495	1.9776
2	126.02	0.01623	173.71	94.02	957.45	1051.5	94.02	1021.7	1115.8	0.17499	1.74444	1.9194
3	141.41	0.01630	118.70	109.39	946.90	1056.3	109.40	1012.8	1122.2	0.20090	1.68489	1.8858
4	152.91	0.01636	90.629	120.89	938.97	1059.9	120.90	1006.0	1126.9	0.21985	1.64225	1.8621
5	162.18	0.01641	73.525	130.17	932.53	1062.7	130.18	1000.5	1130.7	0.23488	1.60894	1.8438
6	170.00	0.01645	61.982	138.00	927.08	1065.1	138.02	995.88	1133.9	0.24739	1.58155	1.8289
8	182.81	0.01652	47.347	150.83	918.08	1068.9	150.86	988.15	1139.0	0.26757	1.53800	1.8056
10	193.16	0.01659	38.425	161.22	910.75	1072.0	161.25	981.82	1143.1	0.28362	1.50391	1.7875
14.696	211.95	0.01671	26.805	180.12	897.27	1077.4	180.16	970.12	1150.3	0.31215	1.44441	1.7566
15	212.99	0.01672	26.297	181.16	896.52	1077.7	181.21	969.47	1150.7	0.31370	1.44441	1.7549
20	227.92	0.01683	20.093	196.21	885.63	1081.8	196.27	959.93	1156.2	0.33582	1.39606	1.7319
25	240.03	0.01692	16.307	208.45	876.67	1085.1	208.52	952.03	1160.6	0.35347	1.36060	1.7141
30	250.30	0.01700	13.749	218.84	868.98	1087.8	218.93	945.21	1164.1	0.36821	1.33132	1.6995
35	259.25	0.01708	11.901	227.92	862.19	1090.1	228.03	939.16	1167.2	0.38093	1.30632	1.6872
40	267.22	0.01715	10.501	236.02	856.09	1092.1	236.14	933.69	1169.8	0.39213	1.28448	1.6766
45	274.41	0.01721	9.4028	243.34	850.52	1093.9	243.49	928.68	1172.2	0.40216	1.26506	1.6672
50	280.99	0.01727	8.5175	250.05	845.39	1095.4	250.21	924.03	1174.2	0.41125	1.24756	1.6588
55	287.05	0.01732	7.7882	256.25	840.61	1096.9	256.42	919.70	1176.1	0.41958	1.23162	1.6512
60	292.69	0.01738	7.1766	262.01	836.13	1098.1	262.20	915.61	1177.8	0.42728	1.21697	1.6442
65	297.95	0.01743	6.6560	267.41	831.90	1099.3	267.62	911.75	1179.4	0.43443	1.20341	1.6378
70	302.91	0.01748	6.2075	272.50	827.90	1100.4	272.72	908.08	1180.8	0.44112	1.19078	1.6319
75	307.59	0.01752	5.8167	277.31	824.09	1101.4	277.55	904.58	1182.1	0.44741	1.17895	1.6264
80	312.02	0.01757	5.4733	281.87	820.45	1102.3	282.13	901.22	1183.4	0.45335	1.16783	1.6212
85	316.24	0.01761	5.1689	286.22	816.97	1103.2	286.50	898.00	1184.5	0.45897	1.15732	1.6163
90	320.26	0.01765	4.8972	290.38	813.62	1104.0	290.67	894.89	1185.6	0.46431	1.14737	1.6117
95	324.11	0.01770	4.6532	294.36	810.40	1104.8	294.67	891.89	1186.6	0.46941	1.13791	1.6073
100	327.81	0.01774	4.4327	298.19	807.29	1105.5	298.51	888.99	1187.5	0.47427	1.12888	1.6032
110	334.77	0.01781	4.0410	305.41	801.37	1106.8	305.78	883.44	1189.2	0.48341	1.11201	1.5954
120	341.25	0.01789	3.7289	312.16	795.79	1107.9	312.55	878.20	1190.8	0.49187	1.09646	1.5883
130	347.32	0.01796	3.4557	318.48	790.51	1109.0	318.92	873.21	1192.1	0.49974	1.08204	1.5818
140	353.03	0.01802	3.2202	324.45	785.49	1109.9	324.92	868.45	1193.4	0.50711	1.06858	1.5757
150	358.42	0.01809	3.0150	330.11	780.69	1110.8	330.61	863.88	1194.5	0.51405	1.05595	1.5700
160	363.54	0.01815	2.8347	335.49	776.10	1111.6	336.02	859.49	1195.5	0.52061	1.04405	1.5647
170	368.41	0.01821	2.6749	340.62	771.68	1112.3	341.19	855.25	1196.4	0.52682	1.03279	1.5596
180	373.07	0.01827	2.5322	345.53	767.42	1113.0	346.14	851.16	1197.3	0.53274	1.02210	1.5548
190 200 250 300 350	377.52 381.80 400.97 417.35 431.74	0.01833 0.01839 0.01865 0.01890 0.01912	2.4040 2.2882 1.8440 1.5435 1.3263	350.24 354.78 375.23 392.89 408.55	763.31 759.32 741.02 724.77 709.98	1113.6 1114.1 1116.3 1117.7 1118.5	350.89 355.46 376.09 393.94 409.79	847.19 843.33 825.47 809.41 794.65	1198.1 1198.8 1201.6 1203.3 1204.4	0.53839 0.54379 0.56784 0.58818 0.60590	1.01191 1.00219 0.95912 0.92289 0.89143	1.5460 1.5270 1.5111
400 450 500 550 600	444.62 456.31 467.04 476.97 486.24	0.01934 0.01955 0.01975 0.01995 0.02014	1.1617 1.0324 0.92819 0.84228 0.77020	458.90	696.31 683.52 671.42 659.91 648.88	1119.0 1119.2 1119.1 1118.8 1118.3	424.13 437.30 449.51 460.93 471.70	780.87 767.86 755.48 743.60 732.15	1205.0 1205.2 1205.0 1204.5 1203.9	0.62168 0.63595 0.64900 0.66107 0.67231	0.86350 0.83828 0.81521 0.79388 0.77400	1.4642 1.4550

TABLE A-5E

Saturated water—Pressure table (Concluded)

			<i>volume,</i> Ibm	e, Internal energy, Btu/lbm		Enthalpy, Btu/lbm			Entropy, Btu/lbm · R			
Press., P psia	Sat. temp., $T_{\rm sat}$ °F	Sat. liquid, v_f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u_{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
700	503.13	0.02051	0.65589	488.96	627.98	1116.9	491.62	710.29	1201.9	0.69279	0.73771	1.4305
800	518.27	0.02087	0.56920	506.74	608.30	1115.0	509.83	689.48	1199.3	0.71117	0.70502	1.4162
900	532.02	0.02124	0.50107	523.19	589.54	1112.7	526.73	669.46	1196.2	0.72793	0.67505	1.4030
1000	544.65	0.02159	0.44604	538.58	571.49	1110.1	542.57	650.03	1192.6	0.74341	0.64722	1.3906
1200	567.26	0.02232	0.36241	566.89	536.87	1103.8	571.85	612.39	1184.2	0.77143	0.59632	1.3677
1400	587.14	0.02307	0.30161	592.79	503.50	1096.3	598.76	575.66	1174.4	0.79658	0.54991	1.3465
1600	604.93	0.02386	0.25516	616.99	470.69	1087.7	624.06	539.18	1163.2	0.81972	0.50645	1.3262
1800	621.07	0.02470	0.21831	640.03	437.86	1077.9	648.26	502.35	1150.6	0.84144	0.46482	1.3063
2000	635.85	0.02563	0.18815	662.33	404.46	1066.8	671.82	464.60	1136.4	0.86224	0.42409	1.2863
2500	668.17	0.02860	0.13076	717.67	313.53	1031.2	730.90	360.79	1091.7	0.91311	0.31988	1.2330
3000	695.41	0.03433	0.08460	783.39	186.41	969.8	802.45	214.32	1016.8	0.97321	0.18554	1.1587
3200.1	705.10	0.04975	0.04975	866.61	0	866.6	896.07	0	896.1	1.05257	0	1.0526

970 | Thermodynamics

TABLE	A-6E											
Super	heated wat	er										
<i>T</i> °F	<i>v</i> ft ³ /lbm	<i>u</i> Btu/Ibm	<i>h</i> Btu/lbm	s Btu/ Ibm · R	v ft³/lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	s Btu/ Ibm · R	v ft³/lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	s Btu/ Ibm · R
	P =	= 1.0 psia	(101.69°F	7)*	P =	= 5.0 psia	(162.18°	F)	P =	= 10 psia	(193.16°l	F)
Sat.†	333.49	1043.7	1105.4	1.9776	73.525		1130.7	1.8438	38.425	1072.0	1143.1	1.7875
200	392.53	1077.5	1150.1	2.0509	78.153	1076.2	1148.5	1.8716	38.849	1074.5	1146.4	1.7926
240	416.44	1091.2	1168.3	2.0777	83.009	1090.3	1167.1	1.8989	41.326	1089.1	1165.5	1.8207
280	440.33	1105.0	1186.5	2.1030	87.838	1104.3	1185.6	1.9246	43.774	1103.4	1184.4	1.8469
320	464.20	1118.9	1204.8	2.1271	92.650	1118.4	1204.1	1.9490	46.205	1117.6	1203.1	1.8716
360	488.07	1132.9	1223.3	2.1502	97.452	1132.5	1222.6	1.9722	48.624	1131.9	1221.8	1.8950
400	511.92	1147.1	1241.8	2.1722	102.25	1146.7	1241.3	1.9944	51.035	1146.2	1240.6	1.9174
440	535.77	1161.3	1260.4	2.1934	107.03	1160.9	1260.0	2.0156	53.441	1160.5	1259.4	1.9388
500 600	571.54 631.14	1182.8 1219.4	1288.6 1336.2	2.2237 2.2709	114.21 126.15	1182.6 1219.2	1288.2 1335.9	2.0461	57.041 63.029	1182.2 1219.0	1287.8 1335.6	1.9693 2.0167
700	690.73	1219.4	1384.6	2.2709	138.09	1219.2	1335.9	2.0933 2.1371	69.007	1219.0	1384.2	2.0107
800	750.31	1295.1	1433.9	2.3553	150.02	1294.9	1433.7	2.1371	74.980	1294.8	1433.5	2.1013
1000	869.47	1374.2	1535.1	2.4299	173.86	1374.2	1535.0	2.2524	86.913	1374.1	1534.9	2.1760
1200	988.62	1457.1	1640.0	2.4972	197.70	1457.0	1640.0	2.3198	98.840	1457.0	1639.9	2.2433
	1107.8	1543.7	1748.7	2.5590	221.54	1543.7	1748.7	2.3816	110.762	1543.6	1748.6	2.3052
	<i>P</i>	= 15 psia	(212.99°F	-)	P =	= 20 psia	(227.92°	F)	P =	= 40 psia	(267.22°l	F)
Sat.	26.297	1077.7	1150.7	1.7549	20.093	1081.8	1156.2	1.7319	10.501	1092.1	1169.8	1.6766
240	27.429	1087.8	1163.9	1.7742	20.478	1086.5	1162.3	1.7406				
280	29.085	1102.4	1183.2	1.8010	21.739	1101.4	1181.9	1.7679	10.713	1097.3	1176.6	1.6858
320	30.722	1116.9	1202.2	1.8260	22.980	1116.1	1201.2	1.7933	11.363	1112.9	1197.1	1.7128
360	32.348	1131.3	1221.1	1.8496	24.209	1130.7	1220.2	1.8171	11.999	1128.1	1216.9	1.7376
400	33.965	1145.7	1239.9	1.8721	25.429	1145.1	1239.3	1.8398	12.625	1143.1	1236.5	1.7610
440	35.576	1160.1	1258.8	1.8936	26.644	1159.7	1258.3	1.8614	13.244	1157.9	1256.0	1.7831
500	37.986	1181.9	1287.3	1.9243	28.458	1181.6	1286.9	1.8922	14.165	1180.2	1285.0	1.8143
600	41.988	1218.7	1335.3	1.9718	31.467	1218.5	1334.9	1.9398	15.686	1217.5	1333.6	1.8625
700 800	45.981 49.967	1256.3 1294.6	1383.9 1433.3	2.0156 2.0565	34.467 37.461	1256.1 1294.5	1383.7 1433.1	1.9837 2.0247	17.197 18.702	1255.3 1293.9	1382.6 1432.3	1.9067 1.9478
1000	57.930	1374.0	1534.8	2.0363	43.438	1373.8	1534.6	2.0247	21.700	1373.4	1534.1	2.0227
1200	65.885	1456.9	1639.8	2.1312	49.407	1456.8	1639.7	2.0994	24.691	1456.5	1639.3	2.0227
1400	73.836	1543.6	1748.5	2.2604	55.373	1543.5	1748.4	2.2287	27.678	1543.3	1748.1	2.1522
1600	81.784	1634.0	1861.0	2.3178	61.335	1633.9	1860.9	2.2861	30.662	1633.7	1860.7	2.2096
	<i>P</i>	= 60 psia	(292.69°F	F)	P =	= 80 psia	(312.02°	F)	P =	100 psia	(327.81°	'F)
Sat. 320		1098.1	1177.8 1192.7	1.6442 1.6636			1183.4 1187.9		4.4327	1105.5	1187.5	1.6032
360		1109.6	1213.5	1.6897			1209.9		1 6620	1119.8	1206 1	1.6263
400		1140.9	1213.3	1.7138	I .	1138.7		1.6794		11136.4		1.6521
440		1156.1	1253.7	1.71364		1156.7		1.7026		1150.4		1.6759
500			1283.1	1.7682	I .	1177.3		1.7350	1	1175.9		1.7088
600			1332.2	1.8168	I .	1215.4		1.7841		1214.4		1.7586
700			1381.6	1.8613		1253.8		1.8289		1253.0		1.8037
800		1293.3	1431.5	1.9026	1	3 1292.6		1.8704		1292.0		1.8453
1000		1373.0	1533.5	1.9777	I .	3 1372.6		1.9457		1372.2		1.9208
1200		1456.2	1638.9	2.0454		1455.9		2.0135			1638.1	1.9887
1400		1543.0	1747.8	2.1073			1747.5		11.0612	1542.6	1747.2	
1600	20.438	1633.5	1860.5	2.1648	15.3257	1633.3	1860.2	2.1330	12.2584	1633.2	1860.0	2.1083
1800	22.428	1727.6	1976.6	2.2187	16.8192	2 1727.5	1976.5	2.1869	13.4541	1727.3	1976.3	2.1622
2000	24.417	1825.2	2096.3	2.2694	18.3117	1825.0	2096.1	2.2376	14.6487	1824.9	2096.0	2.2130

 $^{{}^{\}star}\mathsf{The}$ temperature in parentheses is the saturation temperature at the specified pressure.

 $^{^{\}dagger}$ Properties of saturated vapor at the specified pressure.

TABLE	A-6E											
Superl	neated wat	er (<i>Contil</i>	nued)									
_				S				S				S
<i>T</i> °F	v ft ³ /lbm	<i>u</i> Btu/Ibm	<i>h</i> Btu/Ibm	Btu/ Ibm ⋅ R	v ft ³ /lbm	<i>u</i> Btu/Ibm	<i>h</i> Btu/lbm	Btu/ Ibm · R	v ft ³ /lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	Btu/ Ibm ⋅ R
·				-						160 psia		
Sat.	3.7289	= 120 psia 1107.9	1190.8	1.5883	3.2202	140 psia 1109.9	1193.4	1.5757	2.8347	1111.6	1195.5	1.5647
360	3.8446	1116.7	1202.1	1.6023	3.2584	1113.4	1193.4	1.5811	2.0347	1111.0	1195.5	1.5047
400	4.0799	1134.0	1224.6	1.6292	3.4676	1131.5	1221.4	1.6092	3.0076	1129.0	1218.0	1.5914
450	4.3613	1154.5	1251.4	1.6594	3.7147	1152.6	1248.9	1.6403	3.2293	1150.7	1246.3	1.6234
500	4.6340	1174.4	1277.3	1.6872	3.9525	1172.9	1275.3	1.6686	3.4412	1171.4	1273.2	1.6522
550	4.9010	1193.9	1302.8	1.7131	4.1845	1192.7	1301.1	1.6948	3.6469	1191.4	1299.4	1.6788
600	5.1642	1213.4	1328.0	1.7375	4.4124	1212.3	1326.6	1.7195	3.8484	1211.3	1325.2	1.7037
700	5.6829	1252.2	1378.4	1.7829	4.8604	1251.4	1377.3	1.7652	4.2434	1250.6	1376.3	1.7498
800	6.1950	1291.4	1429.0	1.8247	5.3017	1290.8	1428.1	1.8072	4.6316	1290.2	1427.3	1.7920
1000	7.2083	1371.7	1531.8	1.9005	6.1732	1371.3	1531.3	1.8832	5.3968	1370.9	1530.7	1.8682
1200	8.2137	1455.3	1637.7	1.9684	7.0367	1455.0	1637.3	1.9512	6.1540	1454.7	1636.9	1.9363
1400	9.2149	1542.3	1746.9	2.0305	7.8961	1542.1	1746.6	2.0134	6.9070	1541.8	1746.3	1.9986
1600	10.2135	1633.0	1859.8	2.0881	8.7529	1632.8	1859.5	2.0711	7.6574	1632.6	1859.3	2.0563
1800	11.2106	1727.2	1976.1	2.1420	9.6082	1727.0	1975.9	2.1250	8.4063	1726.9	1975.7	2.1102
2000	12.2067	1824.8	2095.8	2.1928	10.4624	1824.6	2095.7	2.1758	9.1542	1824.5	2095.5	2.1610
		= 180 psia				200 psia				225 psia		
Sat.	2.5322	1113.0	1197.3	1.5548	2.2882	1114.1	1198.8	1.5460	2.0423	1115.3	1200.3	1.5360
400	2.6490	1126.3	1214.5	1.5752	2.3615	1123.5	1210.9	1.5602	2.0728	1119.7	1206.0	1.5427
450	2.8514	1148.7	1243.7	1.6082	2.5488	1146.7	1241.0	1.5943	2.2457	1144.1	1237.6	1.5783
500 550	3.0433 3.2286	1169.8 1190.2	1271.2 1297.7	1.6376 1.6646	2.7247 2.8939	1168.2 1188.9	1269.0 1296.0	1.6243 1.6516	2.4059 2.5590	1166.2 1187.2	1266.3 1293.8	1.6091 1.6370
600	3.4097	1210.2	1323.8	1.6897	3.0586	1209.1	1322.3	1.6771	2.7075	1207.7	1320.5	1.6628
700	3.7635	1249.8	1375.2	1.7361	3.3796	1249.0	1374.1	1.7238	2.7073	1248.0	1372.7	1.7099
800	4.1104	1289.5	1426.5	1.7785	3.6934	1288.9	1425.6	1.7664	3.2765	1288.1	1424.5	1.7528
900	4.4531	1329.7	1478.0	1.8179	4.0031	1329.2	1477.3	1.8059	3.5530	1328.5	1476.5	1.7925
1000	4.7929	1370.5	1530.1	1.8549	4.3099	1370.1	1529.6	1.8430	3.8268	1369.5	1528.9	1.8296
1200	5.4674	1454.3	1636.5	1.9231	4.9182	1454.0	1636.1	1.9113	4.3689	1453.6	1635.6	1.8981
1400	6.1377	1541.6	1746.0	1.9855	5.5222	1541.4	1745.7	1.9737	4.9068	1541.1	1745.4	1.9606
1600	6.8054	1632.4	1859.1	2.0432	6.1238	1632.2	1858.8	2.0315	5.4422	1632.0	1858.6	2.0184
1800	7.4716	1726.7	1975.6	2.0971	6.7238	1726.5	1975.4	2.0855	5.9760	1726.4	1975.2	2.0724
2000	8.1367	1824.4	2095.4	2.1479	7.3227	1824.3	2095.3	2.1363	6.5087	1824.1	2095.1	2.1232
	P =	= 250 psia	a (400.97°	°F)	P =	275 psia	(409.45°	F)	P =	300 psia	(417.35°I	F)
Sat.	1.8440	1116.3	1201.6	1.5270	1.6806	1117.0	1202.6	1.5187	1.5435	1117.7	1203.3	1.5111
450	2.0027	1141.3	1234.0	1.5636	1.8034	1138.5	1230.3	1.5499	1.6369	1135.6	1226.4	1.5369
500	2.1506	1164.1	1263.6	1.5953	1.9415	1162.0	1260.8	1.5825	1.7670	1159.8	1257.9	1.5706
550	2.2910	1185.6	1291.5	1.6237	2.0715	1183.9	1289.3	1.6115	1.8885	1182.1	1287.0	1.6001
600	2.4264	1206.3	1318.6	1.6499	2.1964	1204.9	1316.7	1.6380	2.0046	1203.5	1314.8	1.6270
650	2.5586	1226.8	1345.1	1.6743	2.3179	1225.6	1343.5	1.6627	2.1172	1224.4	1341.9	1.6520
700	2.6883	1247.0	1371.4	1.6974	2.4369	1246.0	1370.0	1.6860	2.2273	1244.9	1368.6	1.6755
800	2.9429	1287.3	1423.5	1.7406	2.6699	1286.5	1422.4	1.7294	2.4424	1285.7	1421.3	1.7192
900	3.1930	1327.9	1475.6	1.7804	2.8984	1327.3	1474.8	1.7694	2.6529	1326.6	1473.9	1.7593
1000	3.4403	1369.0	1528.2	1.8177	3.1241	1368.5	1527.4	1.8068	2.8605	1367.9	1526.7	1.7968
1200	3.9295	1453.3	1635.0	1.8863	3.5700	1452.9	1634.5	1.8755	3.2704	1452.5	1634.0	1.8657
1400	4.4144	1540.8	1745.0	1.9488	4.0116	1540.5	1744.6	1.9381	3.6759	1540.2	1744.2	1.9284
1600	4.8969	1631.7	1858.3	2.0066	4.4507	1631.5	1858.0	1.9960	4.0789	1631.3	1857.7	1.9863
1800	5.3777	1726.2	1974.9	2.0607	4.8882	1726.0	1974.7	2.0501	4.4803	1725.8	1974.5	2.0404
2000	5.8575	1823.9	2094.9	2.1116	5.3247	1823.8	2094.7	2.1010	4.8807	1823.6	2094.6	2.0913

			•	
1 //	КI	۸	h	ь.
11.7	,,,,	п-	u	ь.

TABLE	A-6E											
Superl	neated wat	ter (<i>Conti</i>	inued)									
T			6	s Btu/			6	s Btu/	l		6	s Btu/
<i>T</i> °F	v ft ³ /lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm		v ft ³ /lbm	и Btu/Ibm	<i>h</i> Btu/lbm		v ft ³ /lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	
		= 350 psia					(444.62°				(456.31°l	
Sat.	1.3263	1118.5	1204.4		1.1617	1119.0	1205.0	1.4852	1.0324		1205.2	
450	1.3739	1129.3	1218.3	1.5128	1.1747	1122.5	1209.4	1.4901	1.0024	1115.2	1200.2	1.7772
500	1.4921	1155.2	1251.9	1.5487	1.2851	1150.4	1245.6	1.5288	1.1233	1145.4	1238.9	1.5103
550	1.6004	1178.6	1282.2	1.5795	1.3840	1174.9	1277.3	1.5610	1.2152	1171.1	1272.3	1.5441
600	1.7030	1200.6	1310.9	1.6073	1.4765	1197.6	1306.9	1.5897	1.3001	1194.6	1302.8	1.5737
650	1.8018	1221.9	1338.6	1.6328	1.5650	1219.4	1335.3	1.6158	1.3807	1216.9	1331.9	1.6005
700 800	1.8979 2.0848	1242.8 1284.1	1365.8 1419.1	1.6567 1.7009	1.6507 1.8166	1240.7 1282.5	1362.9 1417.0	1.6401 1.6849	1.4584	1238.5 1280.8	1360.0 1414.7	1.6253 1.6706
900	2.2671	1325.3	1419.1	1.7414	1.9777	1324.0	1417.0	1.7257	1.6080 1.7526	1322.7	1414.7	1.7117
1000	2.4464	1366.9	1525.3	1.7791	2.1358	1365.8	1523.9	1.7636	1.8942	1364.7	1522.4	1.7499
1200	2.7996	1451.7	1633.0	1.8483	2.4465	1450.9	1632.0	1.8331	2.1718	1450.1	1631.0	1.8196
1400	3.1484	1539.6	1743.5	1.9111	2.7527	1539.0	1742.7	1.8960	2.4450	1538.4	1742.0	1.8827
1600	3.4947	1630.8	1857.1	1.9691	3.0565	1630.3	1856.5	1.9541	2.7157	1629.8	1856.0	1.9409
1800	3.8394	1725.4	1974.0	2.0233	3.3586	1725.0	1973.6	2.0084	2.9847	1724.6	1973.2	1.9952
2000	4.1830	1823.3	2094.2	2.0742	3.6597	1823.0	2093.9	2.0594	3.2527	1822.6	2093.5	2.0462
	P =	= 500 psia	a (467.04	°F)	P =	600 psia	(486.24°	F)	P =	700 psia	(503.13°l	F)
Sat.	0.92815	1119.1	1205.0	1.4642	0.77020	1118.3	1203.9	1.4463	0.65589	1116.9	1201.9	1.4305
500	0.99304	1140.1	1231.9	1.4928	0.79526	1128.2	1216.5	1.4596				
550	1.07974	1167.1	1267.0	1.5284	0.87542	1158.7	1255.9	1.4996	0.72799	1149.5	1243.8	1.4730
600 650	1.15876 1.23312	1191.4 1214.3	1298.6 1328.4	1.5590 1.5865	0.94605 1.01133	1184.9 1209.0	1289.9 1321.3	1.5325 1.5614	0.79332 0.85242	1177.9 1203.4	1280.7 1313.8	1.5087 1.5393
700	1.23312	1214.3	1357.0	1.6117	1.01133	1209.0	1351.0	1.5814	0.83242	1203.4	1313.6	1.5666
800	1.44097	1279.2	1412.5	1.6576	1.19038	1275.8	1408.0	1.6348	1.01125	1272.4	1403.4	1.6150
900	1.57252	1321.4	1466.9	1.6992	1.30230	1318.7	1463.3	1.6771	1.10921	1316.0	1459.7	1.6581
1000	1.70094	1363.6	1521.0	1.7376	1.41097	1361.4	1518.1	1.7160	1.20381	1359.2	1515.2	1.6974
1100	1.82726	1406.2	1575.3	1.7735	1.51749	1404.4	1572.9	1.7522	1.29621	1402.5	1570.4	1.7341
1200	1.95211	1449.4	1630.0	1.8075	1.62252	1447.8	1627.9	1.7865	1.38709	1446.2	1625.9	1.7685
1400	2.1988	1537.8	1741.2	1.8708	1.82957	1536.6	1739.7	1.8501	1.56580	1535.4	1738.2	1.8324
1600	2.4430	1629.4	1855.4	1.9291	2.0340	1628.4	1854.2	1.9085	1.74192	1627.5	1853.1	1.8911
1800	2.6856	1724.2	1972.7	1.9834	2.2369	1723.4	1971.8	1.9630	1.91643	1722.7	1970.9	1.9457
2000	2.9271	1822.3	2093.1	2.0345	2.4387	1821.7	2092.4	2.0141	2.08987	1821.0	2091.7	1.9969
		= 800 psia					(544.65°				(572.45°	
Sat.	0.56920		1199.3	1.4162	0.44604		1192.6	1.3906	0.34549	1102.0	1181.9	1.3623
550 600	0.61586 0.67799		1230.5	1.4476	0.45375 0.51431	1115.2	1199.2	1.3972	0.37894	1120 5	1017.0	1 2061
650	0.07799		1306.0			1185.1		1.4437	0.37694		1217.2	
700	0.78330				0.60844		1325.0		0.46735	1198.7		
750	0.83102			1.5735	0.64944				0.50344		1342.9	
800					0.68821		1389.0		0.53687			
900	0.96434	1313.3	1456.0	1.6413	0.76136				0.59876	1300.5	1439.0	1.5826
1000	1.04841	1357.0	1512.2		0.83078	1352.5	1506.2		0.65656	1346.7		1.6249
1100		1400.7	1568.0	1.7181	0.89783		1563.1		0.71184	1392.2		1.6635
1200				1.7528	0.96327		1619.7		0.76545			1.6993
1400	1.36797				1.09101		1733.7		0.86944		1729.8	
1600	1.52283				1.21610		1849.6		0.97072		1846.7	
1800 2000	1.67606 1.82823				1.33956 1.46194				1.07036 1.16892			1.8799

TABLE	A-6E											
Superl	heated wa	ter (<i>Conc</i>	luded)									
				S			_	S			_	S
<i>T</i> °F	ν ft ³ /lbm	<i>u</i> Btu/Ibm	<i>h</i> Btu/Ibm	Btu/ Ibm⋅R	v ft ³ /lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/Ibm	Btu/ Ibm⋅R	v ft ³ /lbm	<i>u</i> Btu/lbm	<i>h</i> Btu/lbm	Btu/
												Ibm · R
		1500 ps	ia (596.26			1750 psia				2000 psia		
Sat.	0.27695	1092.1	1169.0	1.3362	0.22681	1080.5	1153.9	1.3112	0.18815	1066.8	1136.4	1.2863
600 650	0.28189 0.33310	1097.2 1147.2	1175.4 1239.7	1.3423 1.4016	0.26292	1122.8	1207.9	1.3607	0.20586	1091.4	1167.6	1.3146
700	0.33310	1183.6	1286.9	1.4433	0.30252	1166.8	1264.7	1.4108	0.24894	1147.6	1239.8	1.3783
750	0.40535	1214.4	1326.9	1.4771	0.33455	1201.5	1309.8	1.4489	0.28074	1187.4	1291.3	1.4218
800	0.43550	1242.2	1363.1	1.5064	0.36266	1231.7	1349.1	1.4807	0.30763	1220.5	1334.3	1.4567
850	0.46356	1268.2	1396.9	1.5328	0.38835	1259.3	1385.1	1.5088	0.33169	1250.0	1372.8	1.4867
900	0.49015	1293.1	1429.2	1.5569	0.41238	1285.4	1419.0	1.5341	0.35390	1277.5	1408.5	1.5134
1000	0.54031	1340.9	1490.8	1.6007	0.45719	1334.9	1482.9	1.5796	0.39479	1328.7	1474.9	1.5606
1100	0.58781	1387.3	1550.5	1.6402	0.49917	1382.4	1544.1	1.6201	0.43266	1377.5	1537.6	1.6021
1200 1400	0.63355 0.72172	1433.3 1525.7	1609.2 1726.0	1.6767 1.7432	0.53932 0.61621	1429.2 1522.6	1603.9 1722.1	1.6572 1.7245	0.46864 0.53708	1425.1 1519.5	1598.5 1718.3	1.6400 1.7081
1600	0.72172	1619.8	1843.8	1.8033	0.61021	1617.4	1840.9	1.7243	0.60269	1615.0	1838.0	1.7693
1800	0.89090	1716.4	1963.7	1.8589	0.76273	1714.5	1961.5	1.8410	0.66660	1712.5	1959.2	1.8255
2000	0.97358	1815.9	2086.1	1.9108	0.83406	1814.2	2084.3	1.8931	0.72942	1812.6	2082.6	1.8778
	P =	= 2500 psi	ia (668.17	7°F)	P = .	3000 psia	(695.41°	°F)		P = 350	O psia	
Sat.	0.13076	1031.2	1091.7	1.2330	0.08460	969.8	1016.8	1.1587				
650									0.02492	663.7	679.9	0.8632
700	0.16849	1098.4	1176.3	1.3072	0.09838	1005.3	1059.9	1.1960	0.03065	760.0	779.9	0.9511
750	0.20327	1154.9	1249.0	1.3686	0.14840	1114.1	1196.5	1.3118	0.10460	1057.6	1125.4	1.2434
800	0.22949	1195.9	1302.0	1.4116	0.17601	1167.5	1265.3	1.3676	0.13639	1134.3	1222.6	1.3224
850	0.25174	1230.1	1346.6	1.4463	0.19771	1208.2	1317.9	1.4086	0.15847	1183.8	1286.5	1.3721
900	0.27165	1260.7	1386.4	1.4761	0.21640	1242.8	1362.9	1.4423	0.17659	1223.4	1337.8	1.4106
950	0.29001 0.30726	1289.1	1423.3 1458.2	1.5028	0.23321 0.24876	1273.9 1302.8	1403.3 1440.9	1.4716	0.19245 0.20687	1257.8	1382.4 1423.0	1.4428 1.4711
1000 1100	0.30726	1316.1 1367.3	1524.4	1.5271 1.5710	0.24676	1356.8	1510.8	1.4978 1.5441	0.20687	1289.0 1346.1	1423.0	1.4711
1200	0.36966	1416.6	1524.4	1.6103	0.27732	1408.0	1576.6	1.5850	0.25654	1340.1	1565.4	1.5627
1400	0.42631	1513.3	1710.5	1.6802	0.35249	1507.0	1702.7	1.6567	0.29978	1500.7	1694.8	1.6364
1600	0.48004	1610.1	1832.2	1.7424	0.39830	1605.3	1826.4	1.7199	0.33994	1600.4	1820.5	1.7006
1800	0.53205	1708.6	1954.8	1.7991	0.44237	1704.7	1950.3	1.7773	0.37833	1700.8	1945.8	1.7586
2000	0.58295	1809.4	2079.1	1.8518	0.48532	1806.1	2075.6	1.8304	0.41561	1802.9	2072.1	1.8121
		P = 40	00 psia			P = 500	0 psia			P = 600	0 psia	
650	0.02448	657.9	676.1	0.8577	0.02379	648.3	670.3	0.8485	0.02325	640.3	666.1	0.8408
700	0.02871	742.3	763.6	0.9347	0.02678	721.8	746.6	0.9156	0.02564	708.1	736.5	0.9028
750	0.06370	962.1	1009.2	1.1410	0.03373	821.8	853.0	1.0054	0.02981	788.7	821.8	0.9747
800	0.10520	1094.2	1172.1	1.2734	0.05937	986.9	1041.8	1.1581	0.03949	897.1	941.0	1.0711
850	0.12848	1156.7	1251.8	1.3355	0.08551	1092.4	1171.5	1.2593	0.05815	1018.6	1083.1	1.1819
900	0.14647	1202.5	1310.9	1.3799	0.10390	1155.9	1252.1	1.3198	0.07584	1103.5	1187.7	1.2603
950	0.16176	1240.7	1360.5	1.4157	0.11863	1203.9	1313.6	1.3643	0.09010	1163.7	1263.7	1.3153
1000	0.17538	1274.6	1404.4	1.4463	0.13128	1244.0	1365.5	1.4004	0.10208	1211.4	1324.7	1.3578
1100	0.19957	1335.1	1482.8	1.4983	0.15298		1453.8	1.4590	0.12211	1288.4	1424.0	1.4237
1200 1300	0.22121 0.24128	1390.3 1443.0	1554.1 1621.6	1.5426 1.5821	0.17185 0.18902	1372.1 1427.8	1531.1 1602.7	1.5070 1.5490	0.13911 0.15434	1353.4 1412.5	1507.8 1583.8	1.4758 1.5203
1400	0.24128	1443.0	1621.6	1.6182	0.18902	1427.6	1602.7	1.5490	0.15454	1412.5		1.5598
1600	0.29620	1595.5	1814.7	1.6835	0.23505	1585.6	1803.1	1.6542	0.10041	1575.7	1791.5	1.6294
1800	0.33033		1941.4	1.7422	0.26320	1689.0		1.7142	0.13458		1923.7	1.6907
2000	0.36335	1799.7		1.7961	0.29023		2061.7	1.7689	0.24155	1786.7		1.7463

600 0.023317 605.77 614.40 0.80898

640

680

700

974 | Thermodynamics

TABL	.E A-7E											
Com	pressed lic	quid wate	er									
Т	V	и	h	S	v	и	h	S	V	и	h	s
°F	ft ³ /lbm	Btu/Ibm	Btu/Ibm	Btu/lbm⋅R	ft ³ /lbm	Btu/Ibm	Btu/Ibm	Btu/lbm⋅R	ft ³ /lbm	Btu/Ibm	Btu/Ibm	Btu/lbm · R
	P =	= 500 psi	a (467.04	ŀ°F)	P =	1000 psi	a (544.6	ō°F)	<i>P</i> =	1500 psi	a (596.26	S°F)
Sat.	0.019750	447.68	449.51	0.64900	0.021595	538.58	542.57	0.74341	0.023456	605.07	611.58	0.80836
32	0.015994	0.01	1.49	0.00001	0.015966	0.03	2.99	0.00005	0.015939	0.05	4.48	0.00008
50	0.015998	18.03	19.51	0.03601	0.015972	17.99	20.95	0.03593	0.015946	17.95	22.38	0.03584
100	0.016107	67.86	69.35	0.12930	0.016083	67.69	70.67	0.12899	0.016059	67.53	71.98	0.12869
				0.21462	0.016292		120.43	0.21416	0.016267	117.14		0.21369
200	0.016607			0.29349	0.016580	167.31		0.29289	0.016553		171.52	0.29229
250	0.016972		219.61	0.36708	0.016941		220.65	0.36634	0.016911	217.00		0.36560
300	0.017417			0.43641	0.017380		271.46	0.43551	0.017345	267.57	272.39	0.43463
350	0.017954		322.30	0.50240	0.017910		323.08	0.50132	0.017866	318.91	323.87	0.50025
400	0.018609		375.33	0.56595	0.018552			0.56463	0.018496	371.37	376.51	0.56333
450	0.019425	428.44	430.24	0.62802	0.019347	426.93		0.62635	0.019271	425.47	430.82	0.62472
500					0.020368	484.03	487.80	0.68764	0.020258	482.01	487.63	0.68550
550									0.021595	542.50	548.50	0.74731
	P =	2000 ps	ia (635.8	5°F)	P =	3000 psi	a (695.4)	1°F)		P = 500	00 psia	
Sat.	0.025634	662.33	671.82	0.86224	0.034335	783.39	802.45	0.97321				
32	0.015912	0.07	5.96	0.00010	0.015859	0.10	8.90	0.00011	0.015756	0.13	14.71	0.00002
50	0.015921	17.91	23.80	0.03574	0.015870	17.83	26.64	0.03554	0.015773	17.65	32.25	0.03505
100	0.016035	67.36	73.30	0.12838	0.015988	67.04	75.91	0.12776	0.015897	66.41	81.12	0.12652
200	0.016527	166.54	172.66	0.29170	0.016475	165.79	174.94	0.29053	0.016375	164.36	179.51	0.28824
300	0.017310	266.92	273.33	0.43376	0.017242	265.65	275.22	0.43204	0.017112	263.24	279.07	0.42874
400	0.018442	370.30	377.12	0.56205	0.018338	368.22	378.41	0.55959	0.018145	364.35	381.14	0.55492
450	0.019199		431.16	0.62314	0.019062		431.94	0.62010	0.018812	416.40	433.80	0.61445
500	0.020154		487.54	0.68346	0.019960		487.53	0.67958	0.019620	469.94	488.10	0.67254
	0.021739			0.75692	0.021405			0.75126	0.020862		556.38	0.74154
	0 000017			0 0000	0 000750			0 0000	0 001040		664 76	0 70000

0.022759 597.42 610.06 0.80086

0.024765 654.52 668.27 0.85476

0.028821 728.63 744.64 0.92288

0.021943 584.42 604.72 0.78803

0.023358 634.95 656.56 0.83603

0.025366 690.67 714.14 0.88745

0.026777 721.78 746.56 0.91564

TABLE A-8E

Saturated ice—water vapor

	Sat.		volume, Ibm	Int	ernal ener Btu/lbm	gy,		<i>Enthalpy,</i> Btu/Ibm			<i>Entropy,</i> u/lbm · F	?
Temp., T°F	press., P _{sat} psia	Sat. ice, <i>v_i</i>	Sat. vapor, v_g	Sat. ice, <i>u_i</i>	Subl., u _{ig}	Sat. vapor, u_g	Sat. ice, <i>h_i</i>	Subl., h _{ig}	Sat. vapor, h_g	Sat. ice, s_i	Subl., s _{ig}	Sat. vapor, s _g
32.018	0.08871	0.01747	3299.6	-143.34	1164.2	1020.9	-143.34	1218.3	1075.0	-0.29146	2.4779	2.1864
32	0.08864	0.01747	3302.6	-143.35	1164.2	1020.9	-143.35	1218.4	1075.0	-0.29148	2.4779	2.1865
30	0.08086	0.01747	3605.8	-144.35	1164.6	1020.2	-144.35	1218.5	1074.2	-0.29353	2.4883	2.1948
25	0.06405	0.01746	4505.8	-146.85	1165.4	1018.6	-146.85	1218.8	1072.0	-0.29865	2.5146	2.2160
20 15	0.05049	0.01746	5657.6 7138.9	-149.32 -151.76	1166.2 1167.0	1016.9 1015.2	-149.32 -151.76	1219.1 1219.3	1069.8 1067.6	-0.30377 -0.30889	2.5414 2.5687	2.2376 2.2598
10	0.03089	0.01744	9054.0	-154.18	1167.8	1013.6	-154.18	1219.5	1065.4	-0.31401	2.5965	2.28252.30572.3295
5	0.02397	0.01743	11,543	-156.57	1168.5	1011.9	-156.57	1219.7	1063.1	-0.31913	2.6248	
0	0.01850	0.01743	14.797	-158.94	1169.2	1010.3	-158.94	1219.9	1060.9	-0.32426	2.6537	
-5	0.01420	0.01742	19,075	-161.28	1169.9	1008.6	-161.28	1220.0	1058.7	-0.32938	2.6832	2.3538
-10	0.01083	0.01741	24,731	-163.60	1170.6	1007.0	-163.60	1220.1	1056.5	-0.33451	2.7133	2.3788
-15	0.00821	0.01740	32,257	-165.90	1171.2	1005.3	-165.90	1220.2	1054.3	-0.33964	2.7440	2.4044
-20	0.00619	0.01740	42,335	-168.16	1171.8	1003.6	-168.16	1220.3	1052.1	-0.34478	2.7754	2.4306
-25	0.00463	0.01739	55,917	-170.41	1172.4	1002.0	-170.41 -172.63	1220.3	1049.9	-0.34991	2.8074	2.4575
-30	0.00344	0.01738	74,345	-172.63	1173.0	1000.3		1220.3	1047.7	-0.35505	2.8401	2.4850
-35	0.00254	0.01738	99,526	-174.83	1173.5	998.7	-174.83	1220.3	1045.5	-0.36019	2.8735	2.5133
-40	0.00186	0.01737	134,182	-177.00	1174.0	997.0	-177.00	1220.3	1043.3	-0.36534	2.9076	2.5423

FIGURE A-9E

T-s diagram for water.

Source: Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, and Joan G. Moore, Steam Tables (New York: John Wiley & Sons, 1969).

Appendix 2 | 977

FIGURE A-10E

Mollier diagram for water.

Source: Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, and Joan G. Moore, Steam Tables (New York: John Wiley & Sons, 1969).

978 | Thermodynamics

TABLE A-11E

Saturated refrigerant-134a—Temperature table

		Specific ft ³ /l		<i>Internal</i> Btu/			Entha Btu/				<i>Entropy,</i> Btu/lbm · R	
Temp., <i>T</i> °F	Sat. press., P _{sat} psia	Sat. liquid, v_f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
-40 -35 -30 -25 -20 -15 -10	7.432 8.581 9.869 11.306 12.906 14.680 16.642	0.01130 0.01136 0.01143 0.01150 0.01156 0.01163 0.01171	5.7796 5.0509 4.4300 3.8988 3.4426 3.0494 2.7091	-0.016 1.484 2.990 4.502 6.019 7.543 9.073	89.167 88.352 87.532 86.706 85.874 85.036 84.191	89.15 89.84 90.52 91.21 91.89 92.58 93.26	0.000 1.502 3.011 4.526 6.047 7.574 9.109		97.10 97.86 98.61 99.36 100.12 100.86 101.61	0.00000 0.00355 0.00708 0.01058 0.01405 0.01749 0.02092	0.23135 0.22687 0.22248 0.21817 0.21394 0.20978 0.20569	0.23135 0.23043 0.22956 0.22875 0.22798 0.22727 0.22660
-5 0 5 10 15	18.806 21.185 23.793 26.646 29.759	0.01178 0.01185 0.01193 0.01201 0.01209	2.4137 2.1564 1.9316 1.7345 1.5612	10.609 12.152 13.702 15.259 16.823	83.339 82.479 81.610 80.733 79.846	93.95 94.63 95.31 95.99 96.67	10.650 12.199 13.755 15.318 16.889	90.886 90.062 89.226	102.35 103.08 103.82 104.54 105.27	0.02431 0.02769 0.03104 0.03438 0.03769	0.20166 0.19770 0.19380 0.18996 0.18617	0.22598 0.22539 0.22485 0.22434 0.22386
20 25 30 35 40 45 50 55	33.147 36.826 40.813 45.124 49.776 54.787 60.175 65.957	0.01217 0.01225 0.01234 0.01242 0.01251 0.01261 0.01270 0.01280	1.4084 1.2732 1.1534 1.0470 0.95205 0.86727 0.79136 0.72323	18.394 19.973 21.560 23.154 24.757 26.369 27.990 29.619	78.950 78.043 77.124 76.195 75.253 74.298 73.329 72.346	97.34 98.02 98.68 99.35 100.01 100.67 101.32 101.97	18.469 20.056 21.653 23.258 24.873 26.497 28.131 29.775	86.636 85.742 84.833 83.907 82.963 82.000	105.98 106.69 107.40 108.09 108.78 109.46 110.13 110.79	0.04098 0.04426 0.04752 0.05076 0.05398 0.05720 0.06039 0.06358	0.18243 0.17874 0.17509 0.17148 0.16791 0.16437 0.16087 0.15740	0.22341 0.22300 0.22260 0.22224 0.22189 0.22157 0.22127 0.22098
60 65 70 75 80 85 90	72.152 78.780 85.858 93.408 101.45 110.00 119.08	0.01290 0.01301 0.01312 0.01323 0.01334 0.01347 0.01359	0.66195 0.60671 0.55681 0.51165 0.47069 0.43348 0.39959	31.258 32.908 34.567 36.237 37.919 39.612 41.317	71.347 70.333 69.301 68.251 67.181 66.091 64.979	102.61 103.24 103.87 104.49 105.10 105.70 106.30	31.431 33.097 34.776 36.466 38.169 39.886 41.617	78.988 77.939 76.866 75.767 74.641	111.44 112.09 112.71 113.33 113.94 114.53 115.10	0.06675 0.06991 0.07306 0.07620 0.07934 0.08246 0.08559	0.15396 0.15053 0.14713 0.14375 0.14038 0.13703 0.13368	0.22070 0.22044 0.22019 0.21995 0.21972 0.21949 0.21926
95 100 105 110 115	128.72 138.93 149.73 161.16 173.23	0.01372 0.01386 0.01400 0.01415 0.01430	0.36869 0.34045 0.31460 0.29090 0.26913	43.036 44.768 46.514 48.276 50.054	63.844 62.683 61.496 60.279 59.031	106.88 107.45 108.01 108.56 109.08	43.363 45.124 46.902 48.698 50.512	71.080 69.825	115.66 116.20 116.73 117.23 117.71	0.08870 0.09182 0.09493 0.09804 0.10116	0.13033 0.12699 0.12365 0.12029 0.11693	0.21904 0.21881 0.21858 0.21834 0.21809
120 130 140 150 160 170 180 190 200 210	185.96 213.53 244.06 277.79 314.94 355.80 400.66 449.90 504.00 563.76	0.01446 0.01482 0.01521 0.01567 0.01619 0.01681 0.01759 0.01860 0.02009 0.02309	0.24909 0.21356 0.18315 0.15692 0.13410 0.11405 0.09618 0.07990 0.06441 0.04722	51.849 55.495 59.226 63.059 67.014 71.126 75.448 80.082 85.267 91.986	57.749 55.071 52.216 49.144 45.799 42.097 37.899 32.950 26.651 16.498	109.60 110.57 111.44 112.20 112.81 113.22 113.35 113.03 111.92 108.48	52.346 56.080 59.913 63.864 67.958 72.233 76.752 81.631 87.140 94.395	62.924 59.801 56.405 52.671 48.499 43.726 38.053	118.17 119.00 119.71 120.27 120.63 120.73 120.48 119.68 117.93 113.41	0.10428 0.11054 0.11684 0.12321 0.12970 0.13634 0.14323 0.15055 0.15867 0.16922	0.11354 0.10670 0.09971 0.09251 0.08499 0.07701 0.06835 0.05857 0.04666 0.02839	0.21782 0.21724 0.21655 0.21572 0.21469 0.21335 0.21158 0.20911 0.20533 0.19761

Source: Tables A-11E through A-13E are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner-Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa," *J. Phys. Chem, Ref. Data*, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at -40°C (and -40°F).

Appendix 2 | 979

TABLE A-12E

Saturated refrigerant-134a—Pressure table

		Specific ft ³ /	<i>volume,</i> Ibm	In	ternal ener Btu/Ibm	gy,		<i>Enthalpy,</i> Btu/lbm			<i>Entropy,</i> Btu/lbm · R	
Press., P psia	Sat. temp., <i>T</i> °F	Sat. liquid, v_f	Sat. vapor, v_g	Sat. Iiquid, u _f	Evap., u _{fg}	Sat. vapor, u _g	Sat. Iiquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., S _{fg}	Sat. vapor, s_g
5	-53.09	0.01113	8.3785	-3.918	91.280	87.36	-3.907	99.022	95.11	-0.00945	0.24353	0.23408
10	-29.52	0.01144	4.3753	3.135	87.453	90.59	3.156	95.528	98.68	0.00742	0.22206	0.22948
15	-14.15	0.01165	2.9880	7.803	84.893	92.70	7.835	93.155	100.99	0.01808	0.20908	0.22715
20	-2.43	0.01182	2.2772	11.401	82.898	94.30	11.445	91.282	102.73	0.02605	0.19962	0.22567
25	7.17	0.01196	1.8429	14.377	81.231	95.61	14.432	89.701	104.13	0.03249	0.19213	0.22462
30	29.01	0.01209	1.5492	16.939	79.780	96.72	17.006	88.313	105.32	0.03793	0.18589	0.22383
35		0.01221	1.3369	19.205	78.485	97.69	19.284	87.064	106.35	0.04267	0.18053	0.22319
40		0.01232	1.1760	21.246	77.307	98.55	21.337	85.920	107.26	0.04688	0.17580	0.22268
45		0.01242	1.0497	23.110	76.221	99.33	23.214	84.858	108.07	0.05067	0.17158	0.22225
50		0.01252	0.94791	24.832	75.209	100.04	24.948	83.863	108.81	0.05413	0.16774	0.22188
55	45.20	0.01261	0.86400	26.435	74.258	100.69	26.564	82.924	109.49	0.05733	0.16423	0.22156
60	49.84	0.01270	0.79361	27.939	73.360	101.30	28.080	82.030	110.11	0.06029	0.16098	0.22127
65	54.20	0.01279	0.73370	29.357	72.505	101.86	29.510	81.176	110.69	0.06307	0.15796	0.22102
70	58.30	0.01287	0.68205	30.700	71.688	102.39	30.867	80.357	111.22	0.06567	0.15512	0.22080
75	62.19	0.01295	0.63706	31.979	70.905	102.88	32.159	79.567	111.73	0.06813	0.15245	0.22059
80 85 90 95 100	72.78 76.02	0.01303 0.01310 0.01318 0.01325 0.01332	0.59750 0.56244 0.53113 0.50301 0.47760	33.201 34.371 35.495 36.578 37.623	70.151 69.424 68.719 68.035 67.371	103.35 103.79 104.21 104.61 104.99	33.394 34.577 35.715 36.811 37.869	78.804 78.064 77.345 76.645 75.962	112.20 112.64 113.06 113.46 113.83	0.07047 0.07269 0.07481 0.07684 0.07879	0.14993 0.14753 0.14525 0.14307 0.14097	0.22040 0.22022 0.22006 0.21991 0.21976
110		0.01347	0.43347	39.612	66.091	105.70	39.886	74.641	114.53	0.08246	0.13703	0.21949
120		0.01360	0.39644	41.485	64.869	106.35	41.787	73.371	115.16	0.08589	0.13335	0.21924
130		0.01374	0.36491	43.258	63.696	106.95	43.589	72.144	115.73	0.08911	0.12990	0.21901
140		0.01387	0.33771	44.945	62.564	107.51	45.304	70.954	116.26	0.09214	0.12665	0.21879
150		0.01400	0.31401	46.556	61.467	108.02	46.945	69.795	116.74	0.09501	0.12357	0.21857
160 170 180 190 200	109.50 113.69 117.69 121.53	0.01413 0.01426 0.01439	0.29316 0.27466 0.25813 0.24327 0.22983	48.101 49.586 51.018 52.402 53.743	60.401 59.362 58.345 57.349 56.371	108.50 108.95 109.36 109.75 110.11	48.519 50.035 51.497 52.912 54.285	68.662 67.553 66.464 65.392 64.335	117.18 117.59 117.96 118.30 118.62	0.09774 0.10034 0.10284 0.10524 0.10754	0.12062 0.11781 0.11511 0.11250 0.10998	0.21836 0.21815 0.21795 0.21774 0.21753
220 240 260 280 300	132.21 138.73 144.85	0.01490 0.01516 0.01543 0.01570 0.01598	0.20645 0.18677 0.16996 0.15541 0.14266	56.310 58.746 61.071 63.301 65.452	54.458 52.591 50.757 48.945 47.143	110.77 111.34 111.83 112.25 112.60	56.917 59.419 61.813 64.115 66.339	62.256 60.213 58.192 56.184 54.176	119.17 119.63 120.00 120.30 120.52	0.11192 0.11603 0.11992 0.12362 0.12715	0.10517 0.10061 0.09625 0.09205 0.08797	0.21710 0.21665 0.21617 0.21567 0.21512
350	190.02	0.01672	0.11664	70.554	42.627	113.18	71.638	49.099	120.74	0.13542	0.07814	0.21356
400		0.01757	0.09642	75.385	37.963	113.35	76.686	43.798	120.48	0.14314	0.06848	0.21161
450		0.01860	0.07987	80.092	32.939	113.03	81.641	38.041	119.68	0.15056	0.05854	0.20911
500		0.01995	0.06551	84.871	27.168	112.04	86.718	31.382	118.10	0.15805	0.04762	0.20566

980 | Thermodynamics

IABLE	A-13E											
Superl	neated re	frigerant	-134a									
				S				S				S
T	V	И	h	Btu/	V	и	h	Btu/	V	и	h	Btu/
°F	ft ³ /lbm	Btu/Ibm	Btu/Ibm	lbm ⋅ R	ft ³ /lbm	Btu/Ibm	Btu/Ibm	lbm ⋅ R	ft ³ /lbm	Btu/Ibm	Btu/lbm	lbm⋅R
	P = 1	10 psia (T	$t_{\text{sat}} = -29$	9.52°F)	P =	15 psia (T	$t_{sat} = -14$.15°F)	<i>P</i> =	20 psia (T	$s_{\text{sat}} = -2.$	43°F)
Sat.	4.3753	90.59	98.68	0.22948	2.9880	92.70	100.99	0.22715	2.2772	94.30	102.73	0.22567
-20	4.4856	92.13		0.23350								
0	4.7135	95.41	104.14	0.24174	3.1001	95.08	103.68	0.23310	2.2922	94.72		0.22671
20	4.9380	98.77	107.91	0.24976	3.2551	98.48	107.52	0.24127	2.4130	98.19	107.12	0.23504
40	5.1600	102.20	111.75	0.25761	3.4074	101.95	111.41	0.24922	2.5306	101.70	111.07	
60	5.3802	105.72	115.67	0.26531	3.5577	105.50	115.38	0.25700	2.6461			0.25097
80	5.5989	109.32	119.68	0.27288	3.7064	109.13		0.26463	2.7600		119.15	0.25866
100	5.8165	113.01		0.28033	3.8540	112.84	123.54	0.27212	2.8726		123.29	
120	6.0331	116.79	127.96	0.28767	4.0006	116.63	127.74	0.27950	2.9842		127.52	
140	6.2490	120.66	132.22	0.29490	4.1464	120.51	132.02	0.28677	3.0950	120.37	131.82	
160	6.4642	124.61	136.57	0.30203	4.2915	124.48	136.39	0.29393	3.2051		136.21	0.28812
180	6.6789	128.65	141.01	0.30908	4.4361	128.53	140.84	0.30100	3.3146			0.29521
200	6.8930	132.77	145.53	0.31604	4.5802	132.66	145.37 149.99	0.30798	3.4237	132.55	145.22	0.30221 0.30912
220	7.1068	136.98	150.13	0.32292		136.88		0.31487	3.5324			
		30 psia (40 psia (50 psia (1		
Sat.	1.5492			0.22383	1.1760	98.55	107.26	0.22268	0.9479	100.04	108.81	0.22188
20	1.5691	97.56	106.27	0.22581	1 0100	100.61	100 50	0.00720				
40	1.6528	101.17	110.35	0.23414	1.2126	100.61 104.34		0.22738	1 0010	102.04	11011	0 02021
60 80	1.7338	104.82 108.53		0.24219 0.25002	1.2768	104.34	113.79	0.23565	1.0019		113.11 117.43	
80 100	1.8130 1.8908	112.30	118.59 122.80	0.25002	1.3389 1.3995	111.93	122.29	0.24363 0.25140	1.0540 1.1043	107.68 111.55	121.77	0.23847 0.24637
120	1.9675	116.15	127.07	0.25707	1.4588	111.93	126.62	0.25140	1.1534		126.16	0.25406
140	2.0434	120.08	131.42	0.27254	1.5173	119.78	131.01	0.26644	1.2015		130.59	0.26159
160	2.1185	124.08	135.84	0.27234	1.5750	123.81	135.47	0.27375	1.2488		135.09	0.26896
180	2.1931	128.16	140.34	0.28693	1.6321	127.91	140.00	0.28095	1.2955		139.65	
200	2.2671	132.32	144.91	0.29398	1.6887	132.10	144.60	0.28803	1.3416		144.28	0.28333
220	2.3408	136.57	149.56	0.30092	1.7449	136.36	149.27	0.29501	1.3873	136.15	148.98	0.29036
240	2.4141	140.89	154.29	0.30778	1.8007	140.70	154.03	0.30190	1.4326		153.76	0.29728
260	2.4871	145.30	159.10	0.31456	1.8562	145.12	158.86	0.30871	1.4776			0.30411
280	2.5598	149.78	163.99	0.32126	1.9114	149.61	163.76	0.31543	1.5223	149.44	163.53	0.31086
	P =	60 psia ($T_{sat} = 49.$	84°F)	P =	70 psia ($T_{sat} = 58.$	30°F)	P =	80 psia (1	$s_{sat} = 65.3$	89°F)
Sat.				0.22127	0.6821			0.22080				0.22040
60		103.31		0.22570	0.6857	102.73		0.22155	0.007.00	100.00	112.20	0.220.0
80				0.23407	0.7271			0.23016	0.62430	106.26	115.51	0.22661
100				0.24211				0.23836				0.23499
120				0.24991				0.24628	0.69415			0.24304
140	0.9908	119.16		0.25751	0.8401	118.85	129.73	0.25398	0.72698	118.52	129.29	0.25083
160	1.0312	123.25	134.70	0.26496	0.8756	122.97	134.31	0.26149	0.75888	122.68	133.91	0.25841
180	1.0709	127.41	139.30	0.27226	0.9105	127.15	138.94	0.26885	0.79003	126.89	138.58	0.26583
200	1.1101	131.63	143.96	0.27943	0.9447	131.40	143.63	0.27607	0.82059	131.16	143.31	0.27310
220	1.1489	135.93	148.69	0.28649	0.9785	135.71	148.39	0.28317	0.85065	135.49	148.09	0.28024
240	1.1872	140.30		0.29344	1.0118	140.10	153.21	0.29015	0.88030	139.90	152.93	0.28726
260	1.2252	144.75	158.35	0.30030	1.0449	144.56	158.10	0.29704	0.90961	144.37	157.84	0.29418
280	1.2629	149.27		0.30707	1.0776	149.10	163.06	0.30384	0.93861	148.92	162.82	
300	1.3004	153.87		0.31376	1.1101	153.71		0.31055	0.96737			0.30773
320	1.3377	158.54	173.39	0.32037	1.1424	158.39	173.19	0.31718	0.99590	158.24	172.98	0.31438
					1				l			

220

240

260

280

300

320

340

360

0.31212

0.32658

0.34054

0.36733

0.40552

0.35410 146.72

0.38029 156.33

0.39300 161.22

132.64

137.30

141.99

151.50

166.17

144.19

149.38

154.59

159.82

165.09

170.40

175.77

181.18

981

0.25812

0.26565

0.27298

0.28015

0.28718

0.29408

0.30087

0.19044 129.85

0.20211 134.83

0.21306 139.77

0.30756 | 0.26159 | 164.70 | 179.22

0.22347 144.70 157.11

0.23346 149.65 162.61

0.24310 154.63 168.12

0.25246 159.64 173.66

140.42

146.05

151.59

0.24594 0.12746 126.44

0.25410 0.13853 131.95

0.26192 0.14844 137.26

0.26947 0.15756 142.48

0.27681 0.16611 147.65

0.28398 | 0.17423 | 152.80

0.29098 | 0.18201 | 157.97

0.29786 0.18951 163.15

135.88 0.23500

142.20 0.24418

148.25 0.25270

154.14 0.26077

159.94 0.26851

165.70 0.27599

171.44 0.28326

177.18 0.29035

982 | Thermodynamics

FIGURE A-14E

P-h diagram for refrigerant-134a.

Reprinted by permission of American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA.

TABLE A-16E

Properties of the atmosphere at high altitude

Altitude, ft	Temperature, °F	Pressure, psia	Gravity, g, ft/s ²	Speed of sound, ft/s	Density, Ibm/ft ³	Viscosity μ , Ibm/ft · s	Thermal conductivity, Btu/h · ft · R
0	59.00	14.7	32.174	1116	0.07647	1.202×10^{-5}	0.0146
500	57.22	14.4	32.173	1115	0.07536	1.199×10^{-5}	0.0146
1000	55.43	14.2	32.171	1113	0.07426	1.196×10^{-5}	0.0146
1500	53.65	13.9	32.169	1111	0.07317	1.193×10^{-5}	0.0145
2000	51.87	13.7	32.168	1109	0.07210	1.190×10^{-5}	0.0145
2500	50.09	13.4	32.166	1107	0.07104	1.186×10^{-5}	0.0144
3000	48.30	13.2	32.165	1105	0.06998	1.183×10^{-5}	0.0144
3500	46.52	12.9	32.163	1103	0.06985	1.180×10^{-5}	0.0143
4000	44.74	12.7	32.162	1101	0.06792	1.177×10^{-5}	0.0143
4500	42.96	12.5	32.160	1099	0.06690	1.173×10^{-5}	0.0142
5000	41.17	12.2	32.159	1097	0.06590	1.170×10^{-5}	0.0142
5500	39.39	12.0	32.157	1095	0.06491	1.167×10^{-5}	0.0141
6000	37.61	11.8	32.156	1093	0.06393	1.164×10^{-5}	0.0141
6500	35.83	11.6	32.154	1091	0.06296	1.160×10^{-5}	0.0141
7000	34.05	11.3	32.152	1089	0.06200	1.157×10^{-5}	0.0140
7500	32.26	11.1	32.151	1087	0.06105	1.154×10^{-5}	0.0140
8000	30.48	10.9	32.149	1085	0.06012	1.150×10^{-5}	0.0139
8500	28.70	10.7	32.148	1083	0.05919	1.147×10^{-5}	0.0139
9000	26.92	10.5	32.146	1081	0.05828	1.144×10^{-5}	0.0138
9500	25.14	10.3	32.145	1079	0.05738	1.140×10^{-5}	0.0138
10,000	23.36	10.1	32.145	1077	0.05648	1.137×10^{-5}	0.0137
11,000	19.79	9.72	32.140	1073	0.05473	1.130×10^{-5}	0.0136
12,000	16.23	9.34	32.137	1069	0.05302	1.124×10^{-5}	0.0136
13,000	12.67	8.99	32.134	1065	0.05135	1.117×10^{-5}	0.0135
14,000	9.12	8.63	32.131	1061	0.04973	1.110×10^{-5}	0.0134
15,000	5.55	8.29	32.128	1057	0.04814	1.104×10^{-5}	0.0133
16,000	+1.99	7.97	32.125	1053	0.04659	1.097×10^{-5}	0.0132
17,000	-1.58	7.65	32.122	1049	0.04508	1.090×10^{-5}	0.0132
18,000	-5.14	7.34	32.119	1045	0.04361	1.083×10^{-5}	0.0130
19,000	-8.70	7.05	32.115	1041	0.04217	1.076×10^{-5}	0.0129
20,000	-12.2	6.76	32.112	1037	0.04077	1.070×10^{-5}	0.0128
22,000	-19.4	6.21	32.106	1029	0.03808	1.056×10^{-5}	0.0126
24,000	-26.5	5.70	32.100	1020	0.03553	1.042×10^{-5}	0.0124
26,000	-33.6	5.22	32.094	1012	0.03311	1.028×10^{-5}	0.0122
28,000	-40.7	4.78	32.088	1003	0.03082	1.014×10^{-5}	0.0121
30,000	-47.8	4.37	32.082	995	0.02866	1.000×10^{-5}	0.0119
32,000	-54.9	3.99	32.08	987	0.02661	0.986×10^{-5}	0.0117
34,000	-62.0	3.63	32.07	978	0.02468	0.971×10^{-5}	0.0115
36,000	-69.2	3.30	32.06	969	0.02285	0.956×10^{-5}	0.0113
38,000	-69.7	3.05	32.06	968	0.02079	0.955×10^{-5}	0.0113
40,000	-69.7	2.73	32.05	968	0.01890	0.955×10^{-5}	0.0113
45,000	-69.7	2.148	32.04	968	0.01487	0.955×10^{-5}	0.0113
50,000	-69.7	1.691	32.02	968	0.01437	0.955×10^{-5}	0.0113
55,000	-69.7	1.332	32.00	968	0.00922	0.955×10^{-5}	0.0113
60,000	-69.7	1.048	31.99	968	0.00726	0.955×10^{-5}	0.0113

Source: U.S. Standard Atmosphere Supplements, U.S. Government Printing Office, 1966. Based on year-round mean conditions at 45° latitude and varies with the time of the year and the weather patterns. The conditions at sea level (z=0) are taken to be P=14.696 psia, T=59°F, $\rho=0.076474$ lbm/ft³, g=32.1741 ft²/s.

Thermodynamics 984

J0 4	1 111	ermouynan	IIIC2								
TABLE	A-17E										
ldeal-g	gas proper	ties of air									
<i>T</i> R	<i>h</i> Btu/lbm	P_r	<i>u</i> Btu/Ibm	V _r	<i>s</i> ° Btu/Ibm ∙ R	<i>T</i> R	<i>h</i> Btu/Ibm	P_r	<i>u</i> Btu/lbm		° Btu/Ibm ∙ R
360 380 400 420 440	85.97 90.75 95.53 100.32 105.11	0.3363 0.4061 0.4858 0.5760 0.6776	61.29 64.70 68.11 71.52 74.93	396.6 346.6 305.0 270.1 240.6	0.50369 0.51663 0.52890 0.54058 0.55172	1600 1650 1700 1750 1800	395.74 409.13 422.59 436.12 449.71	71.13 80.89 90.95 101.98 114.0	286.06 296.03 306.06 316.16 326.32	8.263 7.556 6.924 6.357 5.847	0.87130 0.87954 0.88758 0.89542 0.90308
460 480 500 520 537 540	109.90 114.69 119.48 124.27 128.10 129.06	0.7913 0.9182 1.0590 1.2147 1.3593 1.3860	78.36 81.77 85.20 88.62 91.53 92.04	215.33 193.65 174.90 158.58 146.34 144.32	0.56235 0.57255 0.58233 0.59173 0.59945 0.60078	1850 1900 1950 2000 2050 2100	463.37 477.09 490.88 504.71 518.71 532.55	127.2 141.5 157.1 174.0 192.3 212.1	336.55 346.85 357.20 367.61 378.08 388.60	5.388 4.974 4.598 4.258 3.949 3.667	0.91056 0.91788 0.92504 0.93205 0.93891 0.94564
560 580 600 620 640	133.86 138.66 143.47 148.28 153.09	1.5742 1.7800 2.005 2.249 2.514	95.47 98.90 102.34 105.78 109.21	131.78 120.70 110.88 102.12 94.30	0.60950 0.61793 0.62607 0.63395 0.64159	2150 2200 2250 2300 2350	546.54 560.59 574.69 588.82 603.00	223.5 256.6 281.4 308.1 336.8	399.17 409.78 420.46 431.16 441.91	3.410 3.176 2.961 2.765 2.585	0.95222 0.95919 0.96501 0.97123 0.97732
660 680 700 720 740	157.92 162.73 167.56 172.39 177.23	2.801 3.111 3.446 3.806 4.193	112.67 116.12 119.58 123.04 126.51	87.27 80.96 75.25 70.07 65.38	0.64902 0.65621 0.66321 0.67002 0.67665	2400 2450 2500 2550 2600	617.22 631.48 645.78 660.12 674.49	367.6 400.5 435.7 473.3 513.5	452.70 463.54 474.40 485.31 496.26	2.419 2.266 2.125 1.996 1.876	0.98331 0.98919 0.99497 1.00064 1.00623
760 780 800 820 840	182.08 186.94 191.81 196.69 201.56	4.607 5.051 5.526 6.033 6.573	129.99 133.47 136.97 140.47 143.98	61.10 57.20 53.63 50.35 47.34	0.68312 0.68942 0.69558 0.70160 0.70747	2650 2700 2750 2800 2850	688.90 703.35 717.83 732.33 746.88	556.3 601.9 650.4 702.0 756.7	507.25 518.26 529.31 540.40 551.52	1.765 1.662 1.566 1.478 1.395	1.01172 1.01712 1.02244 1.02767 1.03282
860 880 900 920 940	206.46 211.35 216.26 221.18 226.11	7.149 7.761 8.411 9.102 9.834	147.50 151.02 154.57 158.12 161.68	44.57 42.01 39.64 37.44 35.41	0.71323 0.71886 0.72438 0.72979 0.73509	2900 2950 3000 3050 3100	761.45 776.05 790.68 805.34 820.03	814.8 876.4 941.4 1011 1083	562.66 573.84 585.04 596.28 607.53	1.318 1.247 1.180 1.118 1.060	1.03788 1.04288 1.04779 1.05264 1.05741
1080	231.06 236.02 240.98 250.95 260.97	10.61 11.43 12.30 14.18 16.28	165.26 168.83 172.43 179.66 186.93	33.52 31.76 30.12 27.17 24.58	0.74030 0.74540 0.75042 0.76019 0.76964	3150 3200 3250 3300 3350	834.75 849.48 864.24 879.02 893.83	1161 1242 1328 1418 1513	618.82 630.12 641.46 652.81 664.20	0.8202	1.06212 1.06676 1.07134 1.07585 1.08031
1160 1200 1240 1280	271.03 281.14 291.30 301.52 311.79	18.60 21.18 24.01 27.13 30.55	194.25 201.63 209.05 216.53 224.05	22.30 20.29 18.51 16.93 15.52	0.77880 0.78767 0.79628 0.80466 0.81280	3400 3450 3500 3550 3600	908.66 923.52 938.40 953.30 968.21	1613 1719 1829 1946 2068	675.60 687.04 698.48 709.95 721.44	0.7436 0.7087 0.6759 0.6449	1.08470 1.08904 1.09332 1.09755 1.10172
1360 1400 1440 1480	322.11 332.48 342.90 353.37 363.89	34.31 38.41 42.88 47.75 53.04	231.63 239.25 246.93 254.66 262.44	14.25 13.12 12.10 11.17 10.34	0.82075 0.82848 0.83604 0.84341 0.85062	3800 3850	983.15 998.11 1013.1 1028.1 1043.1	2196 2330 2471 2618 2773	732.95 744.48 756.04 767.60 779.19	0.5882 0.5621 0.5376 0.5143	1.10584 1.10991 1.11393 1.11791 1.12183
	374.47 385.08	58.78 65.00	270.26 278.13	9.578 8.890	0.85767 0.86456		1058.1 1073.2	2934 3103	790.80 802.43		1.12571 1.12955

Ideal-gas properties of air (Concluded)

<i>T</i> R	<i>h</i> Btu/Ibm	P_r	<i>u</i> Btu/lbm	V_r	<i>s</i> ° Btu/lbm ⋅ R	<i>T</i> R	<i>h</i> Btu/Ibm	P_r	<i>u</i> Btu/lbm		<i>s</i> ° Btu/lbm ⋅ R
4000	1088.3	3280	814.06	0.4518	1.13334	4600	1270.4	6089	955.04	0.2799	1.17575
4100 4150 4200	1118.5 1133.6 1148.7	3656 3858 4067	837.40 849.09 860.81	0.4154 0.3985 0.3826	1.13709 1.14079 1.14446 1.14809 1.15522	4800 4900 5000	1300.9 1331.5 1362.2 1392.9 1423.6	8073 8837	1002.5 1026.3 1050.1	0.2415 0.2248 0.2096	1.18232 1.18876 1.19508 1.20129 1.20738
4400 4500	1209.4 1239.9	4997 5521	907.81 931.39		1.16221 1.16905	5200 5300	1454.4 1485.3	10,539 11,481		0.1828 0.1710	1.21336 1.21923

Note: The properties P_r (relative pressure) and v_r (relative specific volume) are dimensionless quantities used in the analysis of isentropic processes, and should not be confused with the properties pressure and specific volume.

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 832–33, Table A–5. Originally published in J. H. Keenan and J. Kaye, Gas Tables (New York: John Wiley & Sons, 1948).

986 | Thermodynamics

TABLE A-18E								
Ideal-gas	properties of n	itrogen, N ₂						
T	h	ū	₹°	T	ħ	ū	₹°	
R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol·R	R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	
300	2,082.0	1,486.2	41.695	1080	7,551.0	5,406.2	50.651	
320	2,221.0	1,585.5	42.143	1100	7,695.0	5,510.5	50.783	
340	2,360.0	1,684.4	42.564	1120	7,839.3	5,615.2	50.912	
360	2,498.9	1,784.0	42.962	1140	7,984.0	5,720.1	51.040	
380	2,638.0	1,883.4	43.337	1160	8,129.0	5,825.4	51.167	
400	2,777.0	1,982.6	43.694	1180	8,274.4	5,931.0	51.291	
420	2,916.1	2,082.0	44.034	1200	8,420.0	6,037.0	51.143	
440	3,055.1	2,181.3	44.357	1220	8,566.1	6,143.4	51.534	
460	3,194.1	2,280.6	44.665	1240	8,712.6	6,250.1	51.653	
480	3,333.1	2,379.9	44.962	1260	8,859.3	6,357.2	51.771	
500	3,472.2	2,479.3	45.246	1280	9,006.4	6,464.5	51.887	
520	3,611.3	2,578.6	45.519	1300	9,153.9	6,572.3	51.001	
537	3,729.5	2,663.1	45.743	1320	9,301.8	6,680.4	52.114	
540	3,750.3	2,678.0	45.781	1340	9,450.0	6,788.9	52.225	
560	3,889.5	2,777.4	46.034	1360	9,598.6	6,897.8	52.335	
580	4,028.7	2,876.9	46.278	1380	9,747.5	7,007.0	52.444	
600	4,167.9	2,976.4	46.514	1400	9,896.9	7,116.7	52.551	
620	4,307.1	3,075.9	46.742	1420	10,046.6	7,226.7	52.658	
640	4,446.4	3,175.5	46.964	1440	10,196.6	7,337.0	52.763	
660	4,585.8	3,275.2	47.178	1460	10,347.0	7,447.6	52.867	
680	4,725.3	3,374.9	47.386	1480	10,497.8	7,558.7	52.969	
700	4,864.9	3,474.8	47.588	1500	10,648.0	7,670.1	53.071	
720	5,004.5	3,574.7	47.785	1520	10,800.4	7,781.9	53.171	
740	5,144.3	3,674.7	47.977	1540	10,952.2	7,893.9	53.271	
760	5,284.1	3,774.9	48.164	1560	11,104.3	8,006.4	53.369	
780	5,424.2	3,875.2	48.345	1580	11,256.9	8,119.2	53.465	
800	5,564.4	3,975.7	48.522	1600	11,409.7	8,232.3	53.561	
820	5,704.7	4,076.3	48.696	1620	11,562.8	8,345.7	53.656	
840	5,845.3	4,177.1	48.865	1640	11,716.4	8,459.6	53.751	
860	5,985.9	4,278.1	49.031	1660	11,870.2	8,573.6	53.844	
880	6,126.9	4,379.4	49.193	1680	12,024.3	8,688.1	53.936	
900	6,268.1	4,480.8	49.352	1700	12,178.9	8,802.9	54.028	
920	6,409.6	4,582.6	49.507	1720	12,333.7	8,918.0	54.118	
940	6,551.2	4,684.5	49.659	1740	12,488.8	9,033.4	54.208	
960	6,693.1	4,786.7	49.808	1760	12,644.3	9,149.2	54.297	
980	6,835.4	4,889.3	49.955	1780	12,800.2	9,265.3	54.385	
1000	6,977.9	4,992.0	50.099	1800	12,956.3	9,381.7	54.472	
1020	7,120.7	5,095.1	50.241	1820	13,112.7	9,498.4	54.559	
1040	7,263.8	5,198.5	50.380	1840	13,269.5	9,615.5	54.645	
1060	7,407.2	5,302.2	50.516	1860	13,426.5	9,732.8	54.729	

Appendix 2

TABLE A	–18E						
Ideal-ga	s properties of	nitrogen, N ₂ (C	Concluded)				
<i>T</i>	<i>h</i>	<i>ū</i>	ਤ°	<i>T</i>	<i>h</i>	<i>ū</i>	ਤ°
R	Btu∕lbmol	Btu∕lbmol	Btu/Ibmol⋅R	R	Btu∕lbmol	Btu∕lbmol	Btu/Ibmol⋅R
1900	13,742	9,968	54.896	3500	27,016	20,065	59.944
1940	14,058	10,205	55.061	3540	27,359	20,329	60.041
1980	14,375	10,443	55.223	3580	27,703	20,593	60.138
2020	14,694	10,682	55.383	3620	28,046	20,858	60.234
2060	15,013	10,923	55.540	3660	28,391	21,122	60.328
2100	15,334	11,164	55.694	3700	28,735	21,387	60.422
2140	15,656	11,406	55.846	3740	29,080	21,653	60.515
2180	15,978	11,649	55.995	3780	29,425	21,919	60.607
2220	16,302	11,893	56.141	3820	29,771	22,185	60.698
2260	16,626	12,138	56.286	3860	30,117	22,451	60.788
2300	16,951	12,384	56.429	3900	30,463	22,718	60.877
2340	17,277	12,630	56.570	3940	30,809	22,985	60.966
2380	17,604	12,878	56.708	3980	31,156	23,252	61.053
2420	17,392	13,126	56.845	4020	31,503	23,520	61.139
2460	18,260	13,375	56.980	4060	31,850	23,788	61.225
2500	18,590	13,625	57.112	4100	32,198	24,056	61.310
2540	18,919	13,875	57.243	4140	32,546	24,324	61.395
2580	19,250	14,127	57.372	4180	32,894	24,593	61.479
2620	19,582	14,379	57.499	4220	33,242	24,862	61.562
2660	19,914	14,631	57.625	4260	33,591	25,131	61.644
2700	20,246	14,885	57.750	4300	33,940	25,401	61.726
2740	20,580	15,139	57.872	4340	34,289	25,670	61.806
2780	20,914	15,393	57.993	4380	34,638	25,940	61.887
2820	21,248	15,648	58.113	4420	34,988	26,210	61.966
2860	21,584	15,905	58.231	4460	35,338	26,481	62.045
2900	21,920	16,161	58.348	4500	35,688	26,751	62.123
2940	22,256	16,417	58.463	4540	36,038	27,022	62.201
2980	22,593	16,675	58.576	4580	36,389	27,293	62.278
3020	22,930	16,933	58.688	4620	36,739	27,565	62.354
3060	23,268	17,192	58.800	4660	37,090	27,836	62.429
3100	23,607	17,451	58.910	4700	37,441	28,108	62.504
3140	23,946	17,710	59.019	4740	37,792	28,379	62.578
3180	24,285	17,970	59.126	4780	38,144	28,651	62.652
3220	24,625	18,231	59.232	4820	38,495	28,924	62.725
3260	24,965	18,491	59.338	4860	38,847	29,196	62.798
3300	25,306	18,753	59.442	4900	39,199	29,468	62.870
3340	25,647	19,014	59.544	5000	40,080	30,151	63.049
3380	25,989	19,277	59.646	5100	40,962	30,834	63.223
3420	26,331	19,539	59.747	5200	41,844	31,518	63.395
3460	26,673	19,802	59.846	5300	42,728	32,203	63.563

Source: Tables A–18E through A–23E are adapted from Kenneth Wark, *Thermodynamics*, 4th ed. (New York: McGraw-Hill, 1983), pp. 834–44. Originally published in J. H. Keenan and J. Kaye, *Gas Tables* (New York: John Wiley & Sons, 1945).

988 | Thermodynamics

TABLE A-19E									
Ideal-ga	s properties of o	xygen, O ₂							
Т	h	ū	<u></u> s °	Т	h	ū	<u>s</u> °		
R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R		
300	2,073.5	1,477.8	44.927	1080	7,696.8	5,552.1	54.064		
320	2,212.6	1,577.1	45.375	1100	7,850.4	5,665.9	54.204		
340	2,351.7	1,676.5	45.797	1120	8,004.5	5,780.3	54.343		
360	2,490.8	1,775.9	46.195	1140	8,159.1	5,895.2	54.480		
380	2,630.0	1,875.3	46.571	1160	8,314.2	6,010.6	54.614		
400	2,769.1	1,974.8	46.927	1180	8,469.8	6,126.5	54.748		
420	2,908.3	2,074.3	47.267	1200	8,625.8	6,242.8	54.879		
440	3,047.5	2,173.8	47.591	1220	8,782.4	6,359.6	55.008		
460	3,186.9	2,273.4	47.900	1240	8,939.4	6,476.9	55.136		
480	3,326.5	2,373.3	48.198	1260	9,096.7	6,594.5	55.262		
500	3,466.2	2,473.2	48.483	1280	9,254.6	6,712.7	55.386		
520	3,606.1	2,573.4	48.757	1300	9,412.9	6,831.3	55.508		
537	3,725.1	2,658.7	48.982	1320	9,571.9	6,950.2	55.630		
540	3,746.2	2,673.8	49.021	1340	9,730.7	7,069.6	55.750		
560	3,886.6	2,774.5	49.276	1360	9,890.2	7,189.4	55.867		
580	4,027.3	2,875.5	49.522	1380	10,050.1	7,309.6	55.984		
600	4,168.3	2,976.8	49.762	1400	10,210.4	7,430.1	56.099		
620	4,309.7	3,078.4	49.993	1420	10,371.0	7,551.1	56.213		
640	4,451.4	3,180.4	50.218	1440	10,532.0	7,672.4	56.326		
660	4,593.5	3,282.9	50.437	1460	10,693.3	7,793.9	56.437		
680	4,736.2	3,385.8	50.650	1480	10,855.1	7,916.0	56.547		
700	4,879.3	3,489.2	50.858	1500	11,017.1	8,038.3	56.656		
720	5,022.9	3,593.1	51.059	1520	11,179.6	8,161.1	56.763		
740	5,167.0	3,697.4	51.257	1540	11,342.4	8,284.2	56.869		
760	5,311.4	3,802.4	51.450	1560	11,505.4	8,407.4	56.975		
780	5,456.4	3,907.5	51.638	1580	11,668.8	8,531.1	57.079		
800	5,602.0	4,013.3	51.821	1600	11,832.5	8,655.1	57.182		
820	5,748.1	4,119.7	52.002	1620	11,996.6	8,779.5	57.284		
840	5,894.8	4,226.6	52.179	1640	12,160.9	8,904.1	57.385		
860	6,041.9	4,334.1	52.352	1660	12,325.5	9,029.0	57.484		
880	6,189.6	4,442.0	52.522	1680	12,490.4	9,154.1	57.582		
900	6,337.9	4,550.6	52.688	1700	12,655.6	9,279.6	57.680		
920	6,486.7	4,659.7	52.852	1720	12,821.1	9,405.4	57.777		
940	6,636.1	4,769.4	53.012	1740	12,986.9	9,531.5	57.873		
960	6,786.0	4,879.5	53.170	1760	13,153.0	9,657.9	57.968		
980	6,936.4	4,990.3	53.326	1780	13,319.2	9,784.4	58.062		
1000	7,087.5	5,101.6	53.477	1800	13,485.8	9,911.2	58.155		
1020	7,238.9	5,213.3	53.628	1820	13,652.5	10,038.2	58.247		
1040	7,391.0	5,325.7	53.775	1840	13,819.6	10,165.6	58.339		
1060	7,543.6	5,438.6	53.921	1860	13,986.8	10,293.1	58.428		

TABLE A-19E									
Ideal-ga	s properties of c	oxygen, O ₂ (<i>Cond</i>	cluded)						
<i>T</i>	<i>h</i>	\overline{u} Btu/Ibmol	ਤ∘	<i>T</i>	<i>h</i>	<i>ū</i>	ਤ°		
R	Btu∕lbmol		Btu/lbmol⋅R	R	Btu∕lbmol	Btu∕lbmol	Btu/Ibmol⋅R		
1900	14,322	10,549	58.607	3500	28,273	21,323	63.914		
1940	14,658	10,806	58.782	3540	28,633	21,603	64.016		
1980	14,995	11,063	58.954	3580	28,994	21,884	64.114		
2020	15,333	11,321	59.123	3620	29,354	22,165	64.217		
2060	15,672	11,581	59.289	3660	29,716	22,447	64.316		
2100	16,011	11,841	59.451	3700	30,078	22,730	64.415		
2140	16,351	12,101	59.612	3740	30,440	23,013	64.512		
2180	16,692	12,363	59.770	3780	30,803	23,296	64.609		
2220	17,036	12,625	59.926	3820	31,166	23,580	64.704		
2260	17,376	12,888	60.077	3860	31,529	23,864	64.800		
2300	17,719	13,151	60.228	3900	31,894	24,149	64.893		
2340	18,062	13,416	60.376	3940	32,258	24,434	64.986		
2380	18,407	13,680	60.522	3980	32,623	24,720	65.078		
2420	18,572	13,946	60.666	4020	32,989	25,006	65.169		
2460	19,097	14,212	60.808	4060	33,355	25,292	65.260		
2500	19,443	14,479	60.946	4100	33,722	25,580	65.350		
2540	19,790	14,746	61.084	4140	34,089	25,867	64.439		
2580	20,138	15,014	61.220	4180	34,456	26,155	65.527		
2620	20,485	15,282	61.354	4220	34,824	26,144	65.615		
2660	20,834	15,551	61.486	4260	35,192	26,733	65.702		
2700	21,183	15,821	61.616	4300	35,561	27,022	65.788		
2740	21,533	16,091	61.744	4340	35,930	27,312	65.873		
2780	21,883	16,362	61.871	4380	36,300	27,602	65.958		
2820	22,232	16,633	61.996	4420	36,670	27,823	66.042		
2860	22,584	16,905	62.120	4460	37,041	28,184	66.125		
2900	22,936	17,177	62.242	4500	37,412	28,475	66.208		
2940	23,288	17,450	62.363	4540	37,783	28,768	66.290		
2980	23,641	17,723	62.483	4580	38,155	29,060	66.372		
3020	23,994	17,997	62.599	4620	38,528	29,353	66.453		
3060	24,348	18,271	62.716	4660	38,900	29,646	66.533		
3100	24,703	18,546	62.831	4700	39,274	29,940	66.613		
3140	25,057	18,822	62.945	4740	39,647	30,234	66.691		
3180	25,413	19,098	63.057	4780	40,021	30,529	66.770		
3220	25,769	19,374	63.169	4820	40,396	30,824	66.848		
3260	26,175	19,651	63.279	4860	40,771	31,120	66.925		
3300	26,412	19,928	63.386	4900	41,146	31,415	67.003		
3340	26,839	20,206	63.494	5000	42,086	32,157	67.193		
3380	27,197	20,485	63.601	5100	43,021	32,901	67.380		
3420	27,555	20,763	63.706	5200	43,974	33,648	67.562		
3460	27,914	21,043	63.811	5300	44,922	34,397	67.743		

990 | Thermodynamics

TABLE A	TABLE A-20E									
Ideal-ga	s properties of c	arbon dioxide,	CO ₂							
Т	h	ū	<u></u> s°	T	h	ū	<u></u> \overline{S} °			
R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R			
300	2,108.2	1,512.4	46.353	1080	9,575.8	7,431.1	58.072			
320	2,256.6	1,621.1	46.832	1100	9,802.6	7,618.1	58.281			
340	2,407.3	1,732.1	47.289	1120	10,030.6	7,806.4	58.485			
360	2,560.5	1,845.6	47.728	1140	10,260.1	7,996.2	58.689			
380	2,716.4	1,961.8	48.148	1160	10,490.6	8,187.0	58.889			
400	2,874.7	2,080.4	48.555	1180	10,722.3	8,379.0	59.088			
420	3,035.7	2,201.7	48.947	1200	10,955.3	8,572.3	59.283			
440	3,199.4	2,325.6	49.329	1220	11,189.4	8,766.6	59.477			
460	3,365.7	2,452.2	49.698	1240	11,424.6	8,962.1	59.668			
480	3,534.7	2,581.5	50.058	1260	11,661.0	9,158.8	59.858			
500	3,706.2	2,713.3	50.408	1280	11,898.4	9,356.5	60.044			
520	3,880.3	2,847.7	50.750	1300	12,136.9	9,555.3	60.229			
537	4,027.5	2,963.8	51.032	1320	12,376.4	9,755.0	60.412			
540	4,056.8	2,984.4	51.082	1340	12,617.0	9,955.9	60.593			
560	4,235.8	3,123.7	51.408	1360	12,858.5	10,157.7	60.772			
580	4,417.2	3,265.4	51.726	1380	13,101.0	10,360.5	60.949			
600	4,600.9	3,409.4	52.038	1400	13,344.7	10,564.5	61.124			
620	4,786.6	3,555.6	52.343	1420	13,589.1	10,769.2	61.298			
640	4,974.9	3,704.0	52.641	1440	13,834.5	10,974.8	61.469			
660	5,165.2	3,854.6	52.934	1460	14,080.8	11,181.4	61.639			
680	5,357.6	4,007.2	53.225	1480	14,328.0	11,388.9	61.800			
700	5,552.0	4,161.9	53.503	1500	14,576.0	11,597.2	61.974			
720	5,748.4	4,318.6	53.780	1520	14,824.9	11,806.4	62.138			
740	5,946.8	4,477.3	54.051	1540	15,074.7	12,016.5	62.302			
760	6,147.0	4,637.9	54.319	1560	15,325.3	12,227.3	62.464			
780	6,349.1	4,800.1	54.582	1580	15,576.7	12,439.0	62.624			
800	6,552.9	4,964.2	54.839	1600	15,829.0	12,651.6	62.783			
820	6,758.3	5,129.9	55.093	1620	16,081.9	12,864.8	62.939			
840	6,965.7	5,297.6	55.343	1640	16,335.7	13,078.9	63.095			
860	7,174.7	5,466.9	55.589	1660	16,590.2	13,293.7	63.250			
880	7,385.3	5,637.7	55.831	1680	16,845.5	13,509.2	63.403			
900	7,597.6	5,810.3	56.070	1700	17,101.4	13,725.4	63.555			
920	7,811.4	5,984.4	56.305	1720	17,358.1	13,942.4	63.704			
940	8,026.8	6,160.1	56.536	1740	17,615.5	14,160.1	63.853			
960	8,243.8	6,337.4	56.765	1760	17,873.5	14,378.4	64.001			
980	8,462.2	6,516.1	56.990	1780	18,132.2	14,597.4	64.147			
1000	8,682.1	6,696.2	57.212	1800	18,391.5	14,816.9	64.292			
1020	8,903.4	6,877.8	57.432	1820	18,651.5	15,037.2	64.435			
1040	9,126.2	7,060.9	57.647	1840	18,912.2	15,258.2	64.578			
1060	9,350.3	7,245.3	57.861	1860	19,173.4	15,479.7	64.719			

TABLE A-	TABLE A-20E									
Ideal-gas	properties of o	carbon dioxide, (CO ₂ (Concluded)							
T	h	ū	<u>s</u> °	T	h	ū	<u>s</u> °			
R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R			
1900 1940	19,698 20,224	15,925 16,372	64.999 65.272	3500 3540	41,965 42,543	35,015 35,513	73.462 73.627			
1940	20,224	16,821	65.543	3580	43,121	36,012	73.789			
2020	21,284	17,273	65.809	3620	43,701	36,512	73.951			
2060	21,818	17,727	66.069	3660	44,280	37,012	74.110			
2100	22,353	18,182	66.327	3700	44,861	37,513	74.267			
2140 2180	22,890 23,429	18,640 19,101	66.581 66.830	3740 3780	45,442 46,023	38,014 38,517	74.423 74.578			
2220	23,429	19,561	67.076	3820	46,605	39,019	74.732			
2260	24,512	20,024	67.319	3860	47,188	39,522	74.884			
2300	25,056	20,489	67.557	3900	47,771	40,026	75.033			
2340	25,602	20,955	67.792	3940	48,355	40,531	75.182			
2380 2420	26,150 26,699	21,423 21,893	68.025 68.253	3980 4020	48,939 49,524	41,035 41,541	75.330 75.477			
2460	27,249	22,364	68.479	4060	50,109	42,047	75.622			
2500	27,801	22,837	68.702	4100	50,695	42,553	75.765			
2540	28,355	23,310	68.921	4140	51,282	43,060	75.907			
2580 2620	28,910 29,465	23,786 24,262	69.138 69.352	4180 4220	51,868 52,456	43,568 44,075	76.048 76.188			
2660	30,023	24,740	69.563	4260	53,044	44,584	76.327			
2700	30,581	25,220	69.771	4300	53,632	45,093	76.464			
2740	31,141	25,701	69.977	4340	54,221	45,602	76.601			
2780 2820	31,702 32,264	26,181 26,664	70.181 70.382	4380 4420	54,810 55,400	46,112 46,622	76.736 76.870			
2860	32,827	27,148	70.582	4460	55,990	47,133	77.003			
2900	33,392	27,633	70.776	4500	56,581	47,645	77.135			
2940	33,957	28,118	70.970	4540	57,172	48,156	77.266			
2980	34,523	28,605	71.160	4580	57,764	48,668	77.395			
3020 3060	35,090 35,659	29,093 29,582	71.350 71.537	4620 4660	58,356 58,948	49,181 49,694	77.581 77.652			
3100	36,228	30,072	71.722	4700	59,541	50,208	77.779			
3140	36,798	30,562	71.904	4740	60,134	50,721	77.905			
3180	37,369	31,054	72.085	4780	60,728	51,236	78.029			
3220	37,941	31,546	72.264	4820	61,322	51,750	78.153			
3260	38,513	32,039	72.441	4860	61,916	52,265	78.276			
3300 3340	39,087 39,661	32,533 33,028	72.616 72.788	4900 5000	62,511 64,000	52,781 54,071	78.398 78.698			
3380	40,236	33,524	72.760	5100	65,491	55,363	78.994			
3420	40,812	34,020	73.129	5200	66,984	56,658	79.284			
3460	41,388	34,517	73.297	5300	68,471	57,954	79.569			

992 | Thermodynamics

TABLE A	TABLE A-21E									
Ideal-ga	s properties of c	arbon monoxide	e, CO							
T	h	u	<u>s</u> °	T	h .	u	¯s°			
R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R			
300	2,081.9	1,486.1	43.223	1080	7,571.1	5,426.4	52.203			
320	2,220.9	1,585.4	43.672	1100	7,716.8	5,532.3	52.337			
340	2,359.9	1,684.7	44.093	1120	7,862.9	5,638.7	52.468			
360	2,498.8	1,783.9	44.490	1140	8,009.2	5,745.4	52.598			
380	2,637.9	1,883.3	44.866	1160	8,156.1	5,851.5	52.726			
400	2,776.9	1,982.6	45.223	1180	8,303.3	5,960.0	52.852			
420	2,916.0	2,081.9	45.563	1200	8,450.8	6,067.8	52.976			
440	3,055.0	2,181.2	45.886	1220	8,598.8	6,176.0	53.098			
460	3,194.0	2,280.5	46.194	1240	8,747.2	6,284.7	53.218			
480	3,333.0	2,379.8	46.491	1260	8,896.0	6,393.8	53.337			
500	3,472.1	2,479.2	46.775	1280	9,045.0	6,503.1	53.455			
520	3,611.2	2,578.6	47.048	1300	9,194.6	6,613.0	53.571			
537	3,725.1	2,663.1	47.272	1320	9,344.6	6,723.2	53.685			
540	3,750.3	2,677.9	47.310	1340	9,494.8	6,833.7	53.799			
560	3,889.5	2,777.4	47.563	1360	9,645.5	6,944.7	53.910			
580	4,028.7	2,876.9	47.807	1380	9,796.6	7,056.1	54.021			
600	4,168.0	2,976.5	48.044	1400	9,948.1	7,167.9	54.129			
620	4,307.4	3,076.2	48.272	1420	10,100.0	7,280.1	54.237			
640	4,446.9	3,175.9	48.494	1440	10,252.2	7,392.6	54.344			
660	4,586.6	3,275.8	48.709	1460	10,404.8	7,505.4	54.448			
680	4,726.2	3,375.8	48.917	1480	10,557.8	7,618.7	54.522			
700	4,886.0	3,475.9	49.120	1500	10,711.1	7,732.3	54.665			
720	5,006.1	3,576.3	49.317	1520	10,864.9	7,846.4	54.757			
740	5,146.4	3,676.9	49.509	1540	11,019.0	7,960.8	54.858			
760	5,286.8	3,777.5	49.697	1560	11,173.4	8,075.4	54.958			
780	5,427.4	3,878.4	49.880	1580	11,328.2	8,190.5	55.056			
800	5,568.2	3,979.5	50.058	1600	11,483.4	8,306.0	55.154			
820	5,709.4	4,081.0	50.232	1620	11,638.9	8,421.8	55.251			
840	5,850.7	4,182.6	50.402	1640	11,794.7	8,537.9	55.347			
860	5,992.3	4,284.5	50.569	1660	11,950.9	8,654.4	55.411			
880	6,134.2	4,386.6	50.732	1680	12,107.5	8,771.2	55.535			
900	6,276.4	4,489.1	50.892	1700	12,264.3	8,888.3	55.628			
920	6,419.0	4,592.0	51.048	1720	12,421.4	9,005.7	55.720			
940	6,561.7	4,695.0	51.202	1740	12,579.0	9,123.6	55.811			
960	6,704.9	4,798.5	51.353	1760	12,736.7	9,241.6	55.900			
980	6,848.4	4,902.3	51.501	1780	12,894.9	9,360.0	55.990			
1000	6,992.2	5,006.3	51.646	1800	13,053.2	9,478.6	56.078			
1020	7,136.4	5,110.8	51.788	1820	13,212.0	9,597.7	56.166			
1040	7,281.0	5,215.7	51.929	1840	13,371.0	9,717.0	56.253			
1060	7,425.9	5,320.9	52.067	1860	13,530.2	9,836.5	56.339			

TABLE A	TABLE A-21E									
Ideal-gas	s properties of c	arbon monoxide	e, CO (Concluded)							
T	<u> </u>	u	<u>s</u> °	T	h	u	S °			
R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R			
1900 1940	13,850 14,170	10,077 10,318	56.509 56.677	3500 3540	27,262 27,608	20,311 20,576	61.612 61.710			
1980	14,492	10,560	56.841	3580	27,954	20,844	61.807			
2020	14,815	10,803	57.007	3620	28,300	21,111	61.903			
2060	15,139	11,048	57.161	3660	28,647	21,378	61.998			
2100 2140	15,463 15,789	11,293 11,539	57.317 57.470	3700 3740	28,994 29,341	21,646 21,914	62.093 62.186			
2180	16,116	11,787	57.621	3780	29,688	22,182	62.279			
2220	16,443	12,035	57.770	3820	30,036	22,450	62.370			
2260	16,722	12,284	57.917	3860	30,384	22,719	62.461			
2300 2340	17,101 17,431	12,534 12,784	58.062 58.204	3900 3940	30,733 31,082	22,988 23,257	62.511 62.640			
2380	17,762	13,035	58.344	3980	31,431	23,527	62.728			
2420 2460	18,093 18,426	13,287 13,541	58.482 58.619	4020 4060	31,780 32,129	23,797 24,067	62.816 62.902			
					32,129	,				
2500 2540	18,759 19,093	13,794 14,048	58.754 58.885	4100 4140	32,479 32,829	24,337 24,608	62.988 63.072			
2580	19,427	14,303	59.016	4180	33,179	24,878	63.156			
2620 2660	19,762 20,098	14,559 14,815	59.145 59.272	4220 4260	33,530 33,880	25,149 25,421	63.240 63.323			
2700	20,434	15,072	59.398	4300	34,231	25,692	63.405			
2740	20,771	15,330	59.521	4340	34,582	25,934	63.486			
2780	21,108	15,588	59.644	4380	34,934	26,235	63.567			
2820 2860	21,446 21,785	15,846 16,105	59.765 59.884	4420 4460	35,285 35,637	26,508 26,780	63.647 63.726			
2900	22,124	16,365	60.002	4500	35,989	27,052	63.805			
2940	22,463	16,225	60.118	4540	36,341	27,325	63.883			
2980 3020	22,803 23,144	16,885 17,146	60.232 60.346	4580 4620	36,693 37,046	27,598 27,871	63.960 64.036			
3060	23,144	17,140	60.458	4660	37,046	28,144	64.113			
3100	23,826	17,670	60.569	4700	37,751	28,417	64.188			
3140	24,168	17,932	60.679	4740	38,104	28,691	64.263			
3180 3220	24,510 24,853	18,195 18,458	60.787 60.894	4780 4820	38,457 38,811	28,965 29,239	64.337 64.411			
3260	25,196	18,722	61.000	4860	39,164	29,513	64.484			
3300	25,539	18,986	61.105	4900	39,518	29,787	64.556			
3340	25,883	19,250	61.209	5000	40,403	30,473	64.735			
3380 3420	26,227 26,572	19,515 19,780	61.311 61.412	5100 5200	41,289 42,176	31,161 31,849	64.910 65.082			
3460	26,917	20,045	61.513	5300	43,063	32,538	65.252			

994 | Thermodynamics

TABLE A-	-22E							
Ideal-gas	Ideal-gas properties of hydrogen, H ₂							
T	\overline{h}	\overline{u}	<u></u> s°	T	\overline{h}	\overline{u}	<u></u> s°	
R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	
300	2,063.5	1,467.7	27.337	1400	9,673.8	6,893.6	37.883	
320 340	2,189.4 2,317.2	1,553.9 1,642.0	27.742 28.130	1500 1600	10,381.5 11,092.5	7,402.7 7,915.1	38.372 38.830	
360	2,446.8	1,731.9	28.501	1700	11,807.4	8,431.4	39.264	
380	2,577.8	1,823.2	28.856	1800	12,526.8	8,952.2	39.675	
400	2,710.2	1,915.8	29.195	1900	13,250.9	9,477.8	40.067	
420	2,843.7	2,009.6	29.520	2000	13,980.1	10,008.4	40.441	
440 460	2,978.1 3,113.5	2,104.3 2,200.0	29.833 30.133	2100 2200	14,714.5 15,454.4	10,544.2 11,085.5	40.799 41.143	
480	3,249.4	2,296.2	20.424	2300	16,199.8	11,632.3	41.475	
500	3,386.1	2,393.2	30.703	2400	16,950.6	12,184.5	41.794	
520	3,523.2	2,490.6	30.972	2500	17,707.3	12,742.6	42.104	
537 540	3,640.3 3,660.9	2,573.9 2,588.5	31.194 31.232	2600 2700	18,469.7 19,237.8	13,306.4 13,876.0	42.403 42.692	
560	3,798.8	2,686.7	31.482	2800	20,011.8	14,451.4	42.973	
580	3,937.1	2,785.3	31.724	2900	20,791.5	15,032.5	43.247	
600	4,075.6	2,884.1	31.959	3000	21,576.9	15,619.3	43.514	
620 640	4,214.3 4,353.1	2,983.1 3,082.1	32.187 32.407	3100 3200	22,367.7 23,164.1	16,211.5 16,809.3	43.773 44.026	
660	4,492.1	3,181.4	32.621	3300	23,965.5	17,412.1	44.273	
680	4,631.1	3,280.7	32.829	3400	24,771.9	18,019.9	44.513	
700	4,770.2	3,380.1	33.031	3500	25,582.9	18,632.4	44.748	
720 740	4,909.5 5,048.8	3,479.6 3,579.2	33.226 33.417	3600 3700	26,398.5 27,218.5	19,249.4 19,870.8	44.978 45.203	
760	5,188.1	3,678.8	33.603	3800	28,042.8	20,496.5	45.423	
780	5,327.6	3,778.6	33.784	3900	28,871.1	21,126.2	45.638	
800 820	5,467.1 5,606.7	3,878.4 3,978.3	33.961 34.134	4000 4100	29,703.5 30,539.8	21,760.0 22,397.7	45.849 46.056	
840	5,746.3	4,078.2	34.302	4200	30,339.8	23,039.2	46.257	
860	5,885.9	4,178.0	34.466	4300	32,223.5	23,684.3	46.456	
880	6,025.6	4,278.0	34.627	4400	33,070.9	24,333.1	46.651	
900	6,165.3	4,378.0	34.784	4500	33,921.6	24,985.2	46.842	
920 940	6,305.1 6,444.9	4,478.1 4,578.1	34.938 35.087	4600 4700	34,775.7 35,633.0	25,640.7 26,299.4	47.030 47.215	
960	6,584.7	4,678.3	35.235	4800	36,493.4	26,961.2	47.396	
980	6,724.6	4,778.4	35.379	4900	35,356.9	27,626.1	47.574	
1000	6,864.5 7,564.6	4,878.6 5.380.1	35.520 36.188	5000	38,223.3 39,092.8	28,294.0	47.749 47.021	
1100 1200	8,265.8	5,380.1 5,882.8	36.188 36.798	5100 5200	39,092.8	28,964.9 29,638.6	47.921 48.090	
1300	8,968.7	6,387.1	37.360	5300	40,840.2	30,315.1	48.257	

TABLE A-	-23E						
Ideal-gas	s properties of v	vater vapor, H ₂ C)				
T	Ī	\overline{u}	S °	T	Ī	ū	<u>s</u> °
R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R
300	2,367.6	1,771.8	40.439	1080	8,768.2	6,623.5	50.854
320	2,526.8	1,891.3	40.952	1100	8,942.0	6,757.5	51.013
340 360	2,686.0 2,845.1	2,010.8 2,130.2	41.435 41.889	1120 1140	9,116.4 9,291.4	6,892.2 7,027.5	51.171 51.325
380	3,004.4	2,130.2	42.320	1160	9,467.1	7,027.5	51.478
400	3,163.8	2,369.4	42.728	1180	9,643.4	7,300.1	51.360
420	3,323.2	2,489.1	43.117	1200	9,820.4	7,437.4	51.777
440	3,482.7	2,608.9	43.487	1220	9,998.0	7,575.2	51.925
460	3,642.3	2,728.8	43.841	1240	10,176.1	7,713.6	52.070
480	3,802.0	2,848.8	44.182	1260	10,354.9	7,852.7	52.212
500	3,962.0	2,969.1	44.508	1280	10,534.4	7,992.5	52.354
520	4,122.0	3,089.4	44.821	1300	10,714.5	8,132.9	52.494
537 540	4,258.0 4,282.4	3,191.9 3,210.0	45.079 45.124	1320 1340	10,895.3 11,076.6	8,274.0 8,415.5	52.631 52.768
560	4,442.8	3,330.7	45.415	1360	11,258.7	8,557.9	52.903
580	4,603.7	3,451.9	45.696	1380	11,441.4	8,700.9	53.037
600	4,764.7	3,573.2	45.970	1400	11,624.8	8,844.6	53.168
620	4,926.1	3,694.9	46.235	1420	11,808.8	8,988.9	53.299
640	5,087.8	3,816.8	46.492	1440	11,993.4	9,133.8	53.428
660	5,250.0	3,939.3	46.741	1460	12,178.8	9,279.4	53.556
680	5,412.5	4,062.1	46.984	1480	12,364.8	9,425.7	53.682
700 720	5,575.4 5,738.8	4,185.3 4,309.0	47.219 47.450	1500 1520	12,551.4 12,738.8	9,572.7 9,720.3	53.808 53.932
720 740	5,736.6 5,902.6	4,309.0	47.450	1540	12,736.8	9,720.3	54.055
760	6,066.9	4,557.6	47.893	1560	13,115.6	10,017.6	54.117
780	6,231.7	4,682.7	48.106	1580	13,305.0	10,167.3	54.298
800	6,396.9	4,808.2	48.316	1600	13,494.4	10,317.6	54.418
820	6,562.6	4,934.2	48.520	1620	13,685.7	10,468.6	54.535
840	6,728.9	5,060.8	48.721	1640	13,877.0	10,620.2	54.653
860	6,895.6	5,187.8	48.916	1660	14,069.2	10,772.7	54.770
880	7,062.9	5,315.3	49.109	1680	14,261.9	10,925.6	54.886
900 920	7,230.9 7,399.4	5,443.6 5,572.4	49.298 49.483	1700 1720	14,455.4 14,649.5	11,079.4 11,233.8	54.999 55.113
940	7,568.4	5,701.7	49.665	1740	14,844.3	11,388.9	55.226
960	7,738.0	5,831.6	49.843	1760	15,039.8	11,544.7	55.339
980	7,908.2	5,962.0	50.019	1780	15,236.1	11,701.2	55.449
1000	8,078.2	6,093.0	50.191	1800	15,433.0	11,858.4	55.559
1020	8,250.4	6,224.8	50.360	1820	15,630.6	12,016.3	55.668
1040 1060	8,422.4 8 505.0	6,357.1 6,490.0	50.528	1840 1860	15,828.7	12,174.7	55.777
1000	8,595.0	0,490.0	50.693	1 1000	16,027.6	12,333.9	55.884

996 | Thermodynamics

TABLE A	–23E						
Ideal-ga	s properties of v	vater vapor, H ₂ C) (Concluded)				
Т	h	ū	<u></u> s°	Т	h	ū	<u></u> s°
R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R
1900	16,428	12,654	56.097	3500	34,324	27,373	62.876
1940	16,830	12,977	56.307	3540	34,809	27,779	63.015
1980	17,235	13,303	56.514	3580	35,296	28,187	63.153
2020	17,643	13,632	56.719	3620	35,785	28,596	63.288
2060	18,054	13,963	56.920	3660	36,274	29,006	63.423
2100	18,467	14,297	57.119	3700	36,765	29,418	63.557
2140	18,883	14,633	57.315	3740	37,258	29,831	63.690
2180	19,301	14,972	57.509	3780	37,752	30,245	63.821
2220	19,722	15,313	57.701	3820	38,247	30,661	63.952
2260	20,145	15,657	57.889	3860	38,743	31,077	64.082
2300	20,571	16,003	58.077	3900	39,240	31,495	64.210
2340	20,999	16,352	58.261	3940	39,739	31,915	64.338
2380	21,429	16,703	58.445	3980	40,239	32,335	64.465
2420	21,862	17,057	58.625	4020	40,740	32,757	64.591
2460	22,298	17,413	58.803	4060	41,242	33,179	64.715
2500	22,735	17,771	58.980	4100	41,745	33,603	64.839
2540	23,175	18,131	59.155	4140	42,250	34,028	64.962
2580	23,618	18,494	59.328	4180	42,755	34,454	65.084
2620	24,062	18,859	59.500	4220	43,267	34,881	65.204
2660	24,508	19,226	59.669	4260	43,769	35,310	65.325
2700	24,957	19,595	59.837	4300	44,278	35,739	65.444
2740	25,408	19,967	60.003	4340	44,788	36,169	65.563
2780	25,861	20,340	60.167	4380	45,298	36,600	65.680
2820	26,316	20,715	60.330	4420	45,810	37,032	65.797
2860	26,773	21,093	60.490	4460	46,322	37,465	65.913
2900	27,231	21,472	60.650	4500	46,836	37,900	66.028
2940	27,692	21,853	60.809	4540	47,350	38,334	66.142
2980	28,154	22,237	60.965	4580	47,866	38,770	66.255
3020	28,619	22,621	61.120	4620	48,382	39,207	66.368
3060	29,085	23,085	61.274	4660	48,899	39,645	66.480
3100	29,553	23,397	61.426	4700	49,417	40,083	66.591
3140	30,023	23,787	61.577	4740	49,936	40,523	66.701
3180	30,494	24,179	61.727	4780	50,455	40,963	66.811
3220	30,967	24,572	61.874	4820	50,976	41,404	66.920
3260	31,442	24,968	62.022	4860	51,497	41,856	67.028
3300	31,918	25,365	62.167	4900	52,019	42,288	67.135
3340	32,396	25,763	62.312	5000	53,327	43,398	67.401
3380	32,876	26,164	62.454	5100	54,640	44,512	67.662
3420	33,357	26,565	62.597	5200	55,957	45,631	67.918
3460	33,839	26,968	62.738	5300	57,279	46,754	68.172

TABLE A-26E

Enthalpy of formation, Gibbs function of formation, and absolute entropy at 77°F, 1 atm

		\bar{h}_f°	\bar{g}_f^o	<u></u> s°
Substance	Formula	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R
Carbon	C(s)	0	0	1.36
Hydrogen	$H_2(g)$	0	0	31.21
Nitrogen	$N_2(g)$	0	0	45.77
Oxygen	$O_2(g)$	0	0	49.00
Carbon monoxide	CO(<i>g</i>)	-47,540	-59,010	47.21
Carbon dioxide	$CO_2(g)$	-169,300	-169,680	51.07
Water vapor	$H_2O(g)$	-104,040	-98,350	45.11
Water	$H_2^-O(\ell)$	-122,970	-102,040	16.71
Hydrogen peroxide	$H_{2}^{-}O_{2}(g)$	-58,640	-45,430	55.60
Ammonia	$NH_3(g)$	-19,750	-7,140	45.97
Methane	$CH_4(g)$	-32,210	-21,860	44.49
Acetylene	$C_2H_2(g)$	+97,540	+87,990	48.00
Ethylene	$C_2H_4(g)$	+22,490	+29,306	52.54
Ethane	$C_2H_6(g)$	-36,420	-14,150	54.85
Propylene	$C_3H_6(g)$	+8,790	+26,980	63.80
Propane	$C_3H_8(g)$	-44,680	-10,105	64.51
<i>n</i> -Butane	$C_4H_{10}(g)$	-54,270	-6,760	74.11
<i>n</i> -Octane	$C_8H_{18}(g)$	-89,680	+7,110	111.55
<i>n</i> -Octane	$C_8H_{18}(\ell)$	-107,530	+2,840	86.23
<i>n</i> -Dodecane	$C_{12}H_{26}(g)$	-125,190	+21,570	148.86
Benzene	$C_6H_6(g)$	+35,680	+55,780	64.34
Methyl alcohol	$CH_3OH(g)$	-86,540	-69,700	57.29
Methyl alcohol	$CH_3OH(\ell)$	-102,670	-71,570	30.30
Ethyl alcohol	$C_2H_5OH(g)$	-101,230	-72,520	67.54
Ethyl alcohol	$C_2H_5OH(\ell)$	-119,470	-75,240	38.40
Oxygen	O(<i>g</i>)	+107,210	+99,710	38.47
Hydrogen	H(<i>g</i>)	+93,780	+87,460	27.39
Nitrogen	N(<i>g</i>)	+203,340	+195,970	36.61
Hydroxyl	OH(<i>g</i>)	+16,790	+14,750	43.92

Source: From JANAF, Thermochemical Tables (Midland, MI: Dow Chemical Co., 1971), Selected Values of Chemical Thermodynamic Properties, NBS Technical Note 270-3, 1968; and API Research Project 44 (Carnegie Press, 1953).

998 | Thermodynamics

TABLE A-27E

Properties of some common fuels and hydrocarbons

Fuel (phase)	Formula	Molar mass, Ibm/Ibmol	Density, ¹ Ibm/ft ³	Enthalpy of vaporization, ² Btu/Ibm	Specific heat, ¹ c _p Btu/ Ibm · °F	Higher heating value, ³ Btu/lbm	Lower heating value, ³ Btu/lbm
Carbon (s)	С	12.011	125	_	0.169	14,100	14,100
Hydrogen (g)	H_2	2.016	_	_	3.44	60,970	51,600
Carbon monoxide (g)	CO	28.013	_	_	0.251	4,340	4,340
Methane (g)	CH₄	16.043	_	219	0.525	23,880	21,520
Methanol (ℓ)	CH₄O	32.042	49.3	502	0.604	9,740	8,570
Acetylene (g)	C_2H_2	26.038	_	_	0.404	21,490	20,760
Ethane (g)	C_2H_6	30.070		74	0.418	22,320	20,430
Ethanol (ℓ)	C ₂ H ₆ O	46.069	49.3	395	0.583	12,760	11,530
Propane (ℓ)	C ₃ H ₈	44.097	31.2	144	0.662	21,640	19,930
Butane (ℓ)	C_4H_{10}	58.123	36.1	156	0.578	21,130	19,510
1-Pentene (ℓ)	C_5H_{10}	70.134	40.0	156	0.525	20,540	19,190
Isopentane (ℓ)	C ₅ H ₁₂	72.150	39.1	_	0.554	20,890	19,310
Benzene (ℓ)	C_6H_6	78.114	54.7	186	0.411	17,970	17,240
Hexene (ℓ)	C_6H_{12}	84.161	42.0	169	0.439	20,430	19,090
Hexane (ℓ)	C ₆ H ₁₄	86.177	41.2	157	0.542	20,770	19,240
Toluene (ℓ)	C ₇ H ₈	92.141	54.1	177	0.408	18,230	17,420
Heptane (ℓ)	C ₇ H ₁₆	100.204	42.7	157	0.535	20,680	19,180
Octane (ℓ)	C ₈ H ₁₈	114.231	43.9	156	0.533	20,590	19,100
Decane (ℓ)	$C_{10}H_{22}$	142.285	45.6	155	0.528	20,490	19,020
Gasoline (ℓ)	$C_n H_{1.87n}$	100-110	45-49	151	0.57	20,300	18,900
Light diesel (ℓ)	$C_n H_{1.8n}$	170	49-52	116	0.53	19,800	18,600
Heavy diesel (ℓ)	$C_n H_{1.7n}$	200	51-55	99	0.45	19,600	18,400
Natural gas (g)	$C_n H_{3.8n} N_{0.1n}$	18	_	_	0.48	21,500	19,400

 $^{^1\}mbox{At}\ 1$ atm and $68\mbox{°F}.$

 $^{^2\}mbox{At }77\mbox{°F}$ for liquid fuels, and 1 atm and normal boiling temperature for gaseous fuels.

 $^{^3\}mbox{At}$ 77°F. Multiply by molar mass to obtain heating values in Btu/lbmol.

F.024 .020 SII 011 09 501 é 1001 \$6 10% Relative humidity 06 20 \$8 08 SL 800 04 59 The Ago Political Sec. 65 / ,09 SS 2.0 4.0 1000 -1000 ©1992 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Normal Temperature

Barometric Pressure: 29.921 inches of mercury 05 ASHRAE Psychrometric Chart No. 1 St _0.2 1000 $\frac{\text{Enthalpy}}{\text{Humidity ratio}} = \frac{\Delta h}{\Delta \omega}$ Sensible heat Total heat $\frac{Q_s}{Q_T}$ -0.1 Sea Level 1.0 -

5000 3000

Prepared by Center for Applied Thermodynamic Studies, University of Idaho.

Dry bulb temperature, °F

FIGURE A-31E

Psychrometric chart at 1 atm total pressure.

From the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA: used with permission.