Trajectory estimation and step detection

Filippova Anastasia Vladislavovna

Moscow Institute of Physics and Technology (National Research University)

Consultant: Gadaev T. Expert: Strijov V.

April 30, 2020

Trajectory estimation and step detection

Purpose

Propose a new pipeline for indoor navigation with Inertial Measurement Unit (IMU) sensors.

Motivation

- Indoor trajectory estimation
- Measure activity level

Method

- Combine step detection and trajectory estimation
- Use instant velocities
- Use attention mechanism for instant velocities

Problem statement

Find the superposition of functions $F_{\rm tr}$, which transforms sensors data to trajectory estimation and $F_{\rm st}$ - to step labels.

Data

- $\mathbf{0} \ \mathcal{A} \in \mathbb{R}^{3 \times T}$ accelerometer readings
- $\mathcal{W} \in \mathbb{R}^{3 \times T}$ gyroscope readings
- $\mathfrak{S} \in \{0,1\}^2$ steps labels

Minimization of loss function

$$\underset{F_{\text{tr}}, F_{\text{st}}}{\operatorname{arg\,min}} \mathcal{L}\left(\left(F_{\text{tr}}\left(\mathcal{A}, \mathcal{W}\right), \mathcal{T}\right), \left(F_{\text{st}}\left(\mathcal{A}, \mathcal{W}\right), \mathcal{S}\right)\right) \tag{1}$$

Combined loss function:

Loss function

$$\mathcal{L}(\hat{\mathbf{y}_t}, \mathbf{y}_t) = \|\hat{\mathbf{v}_x} - \mathbf{v}_t\|_2^2 - w(s_r \log p_r + s_l \log p_l), y_t = (v_x^t, v_y^t, s_r^t, s_l^t)$$

- \bullet s_r^t, s_l^t steps labels for right and left legs at timestamp t.
- v_x^t, v_y^t velocities on timestamp t.
- 3 p_r^t, p_l^t predicted probability of step.

Metrics

RMSE

Absolute trajectory error (\mathbf{RMSE}) defined as the root mean square error between predicted and ground truth trajectories:

$$\mathcal{L}_{tr}(\hat{\mathcal{T}}, \mathcal{T}) = \left(\frac{1}{N} \sum_{i=1}^{N} ((\hat{t}_{xi} - t_{xi})^2 + (\hat{t}_{yi} - t_{yi})^2)\right)^{1/2}$$
 (2)

MIE

Mean integral distance (MIE) between predicted and ground truth trajectories:

$$\mathcal{D}_{tr}(\hat{\mathcal{T}}, \mathcal{T}) = \frac{\sum_{i=1}^{N} ((\hat{t}_{xi} - t_{xi})^2 + (\hat{t}_{yi} - t_{yi})^2)^{1/2} ((t_{xi} - t_{xi-1})^2 + (t_{yi} - t_{yi-1})^2)^{1/2}}{\sum_{i=1}^{N} ((t_{xi} - t_{xi-1})^2 + (t_{yi} - t_{yi-1})^2)^{1/2}}$$
(3)

Metrics

GAP

Distance between the first and the last points (GAP):

$$\mathcal{G}_{\text{tr}}\left(\hat{\mathcal{T}}\right) = \left(\left(\hat{t}_{x1} - \hat{t}_{xN}\right)^2 + \left(\hat{t}_{y1} - \hat{t}_{yN}\right)^2\right)^{1/2} \tag{4}$$

RTE

Relative trajectory error defined as the average RMSE over a fixed time interval — w, if the sequence is shorter than w we compute the positional error and scale it proportionally:

$$\mathcal{R}_{\text{tr}}(w, \hat{\mathcal{T}}, \mathcal{T}) \approx \frac{1}{\lfloor N/w \rfloor} \sum_{i=1}^{\lfloor N/w \rfloor} \left(\frac{1}{w} \sum_{i=1}^{w} \left((\hat{t}_{xkw+i} - t_{xkw+i})^2 + (\hat{t}_{ykw+i} - t_{ykw+i})^2 \right) \right)^{1/2}$$
(5)

ResNet-18 without the last layer stacked with two LSTM layers

ResNetLSTM with step detection

Results ResNetLSTM with step detection

\mathbf{Model}	GAP	MIE	RMSE		RTE	
	$\mathcal{G}_{\mathbf{tr}}$	$\mathcal{D}_{\mathbf{tr}}$	$\mathcal{L}_{\mathbf{tr}}$	$\mathcal{R}_{\mathbf{tr}, w=10}$	$\mathcal{R}_{\mathbf{tr},\;w=30}$	$\mathcal{R}_{\mathbf{tr},\;w=60}$
RL	11.69	6.57	8.03	6.56	6.83	7.26
RL_step_bce_0.01	13.52	5.72	7.56	5.96	6.26	6.75
$RL_step_bce_0.1$	14.13	6.17	8.10	6.38	6.70	7.18
$RL_step_mse_0.01$	13.08	6.27	8.01	6.42	6.23	7.15

\mathbf{Model}	PREC	ISION	REC	\mathbf{ALL}	$\mathbf{F1}$	
	Right	Left	Right	Left	Right	Left
RL_step_bce_0.01	0.60	0.63	0.55	0.60	0.60	0.60
$RL_step_bce_0.1$	0.67	0.68	0.65	0.64	0.66	0.65
$RL_step_mse_0.01$	0.65	0.67	0.64	0.63	0.64	0.64

ResNetLSTM and step detection results

Instant velocities

Architecture and comparison

Results ResNetLSTM with instant velocities

Model	GAP	MIE	RMSE	RTE		
	$\mathcal{G}_{ exttt{tr}}$	$\mathcal{D}_{\mathbf{tr}}$	$\mathcal{L}_{ ext{tr}}$	$\mathcal{R}_{\mathbf{tr}, w=10}$	$\mathcal{R}_{\mathbf{tr},\;w=30}$	$\mathcal{R}_{\mathbf{tr},\;w=60}$
RLI_step_bce_0.1	13.95	6.73	8.38	6.89	7.21	7.67
$RLI_step_mse_0.005$	12.85	5.98	7.79	6.18	6.47	6.91
$RLI_step_mse_0.01$	12.97	6.21	7.99	6.36	6.66	7.09

Model	PRECISION	RECALL	F1	AVERAGE RELATIVE ERROR
RLI_step_bce_0.1	0.89	0.81	0.84	0.20
$RLI_step_mse_0.005$	0.80	0.68	0.74	0.27
$_RLI_step_mse_0.01$	0.81	0.73	0.77	0.25

 ${\it ResNetLSTM}$ Instant velocity and step detection results

Attention

Attention layer

Attention maps

Results attention

\mathbf{Model}	GAP	MIE	RMSE	RTE		
	$\mathcal{G}_{\mathbf{tr}}$	$\mathcal{D}_{\mathbf{tr}}$	$\mathcal{L}_{\mathbf{tr}}$	$\mathcal{R}_{\mathbf{tr}, w=10}$	$\mathcal{R}_{\mathbf{tr},\;w=30}$	$\mathcal{R}_{\mathbf{tr}, w=60}$
RLIA_step_bce_0.1	13.97	6.09	8.07	6.34	6.64	7.14
$RLIA_step_mse_0.01$	13.46	5.85	7.75	6.10	6.40	6.88

Model	PRECISION	RECALL	F1	AVERAGE RELATIVE ERROR
RLIA_step_bce_0.01	0.87	0.77	0.81	0.21
$RLIA_step_mse_0.01$	0.82	0.74	0.78	0.24

ResNetLSTM with self-attention and step detection results

Conclusion and future work

- The quality of the proposed models is much better than quality of baseline approach.
- **②** The average relative error for step detection is less then 0.27.
- 3 Attention gives good quality and can be test on other datasets.