§1-5 斜坐標的介紹與應用

(1)坐標的意義:

一維的情形:

給定一直線L,取其上一點O,再取不同於O點的E,設 $\overrightarrow{e} = \overrightarrow{OE}$,則對於L上任意點P, \overrightarrow{OP} 均與 \overrightarrow{OE} 平行,即存在一個實數x,使得 $\overrightarrow{OP} = x \cdot \overrightarrow{e}$ 。

我們稱 $S = \{O; e\}$ 爲L上的一個坐標系,而x稱爲P點相關於S的坐標。簡記爲S- 坐標,其中O點稱爲這個座標的基準點(原點),而e 稱爲S的基底。

二維的情形:

給定平面上一個定點O與兩個不平行的向量 $\overline{e_1}$ 、 $\overline{e_2}$,平面上任意點P,可以找到實數x,y滿足 $\overline{OP}=x$ $\overline{e_1}+y$ $\overline{e_2}$,我們稱 $S=\{O;\overline{e_1},\overline{e_2}\}$ 為平面上的一個坐標系,而(x,y)稱爲P點相關於S的坐標。簡記爲S—坐標,其中O點稱爲這個座標的基準點(原點),而 $\overline{e_1}$, $\overline{e_2}$ 稱爲S的基底。

[討論]:點P對於S坐標系的坐標(x,y)是否唯一?

[討論]:

根據坐標系的定義,我們熟悉的座標系 e_1 、 e_2 應該如何取? 我們熟悉的直角坐標,座標系 e_1 、 e_2 可取爲兩個長度爲 1,且互相平行的兩個向量。例如: e_1 可取成(1,0), e_2 可取成(0,1) 例如:設 $\overrightarrow{e_1}$ =(2,1), $\overrightarrow{e_2}$ =(1,2),O(0,0),若 \overrightarrow{OP} =2 $\overrightarrow{e_1}$ +3 $\overrightarrow{e_2}$, 則我們稱P點相關於S的坐標爲(2,3)。

例如:直角坐標系:

在平面上選定一個基準點O及一組互相垂直且長度等於1的向量 \vec{i} 、 \vec{j} ,當作基底,這樣構成的坐標系稱爲**直角坐標系**。

通過O點且包含 \vec{i} 的直線定爲x軸,通過O點且包含 \vec{j} 的直線定爲y軸。

[問題]:設 \overrightarrow{i} = \overrightarrow{OA} , \overrightarrow{j} = \overrightarrow{OB} ,

請問A、B的坐標如何表示?

[問題]:在此直角坐標系下,

 \overrightarrow{OP} 、 \overrightarrow{i} 、 \overrightarrow{j} 如何用坐標來表示?

[**例題**1] 在 ΔABC 中,D、E、F分別在 \overline{BC} 、 \overline{AC} 、 \overline{AB} 上,且BD: DC=2:1,

AE : EC=1 : 1 , AF : FB=1 : 4 \circ

若取基準點爲B, $\overrightarrow{e_1} = \overrightarrow{BA}$, $\overrightarrow{e_2} = \overrightarrow{BC}$,

請問: $A \cdot B \cdot C \cdot D \cdot E \cdot F$ 在坐標系 $\{B; e_1, e_2\}$ 的坐標爲何?

Ans : A(0,1),B(0,0),C(1,0),D($\frac{2}{3}$,0),E($\frac{1}{2}$, $\frac{1}{2}$),F(0, $\frac{4}{5}$)

[解法]:根據坐標的意義,

可得A(0,1),B(0,0),C(1,0),D($\frac{2}{3}$,0),E($\frac{1}{2}$, $\frac{1}{2}$),F(0, $\frac{4}{5}$)

[**例題2**] 設P點落在直線AB上,O點在直線AB外,現在以O為原點, \overrightarrow{OA} 、 \overrightarrow{OB} 為基底,
設P點相關於坐標 $\{O; \overrightarrow{OA}, \overrightarrow{OB}\}$ 的坐標為 $\{x,y\}$,請求出直線AB的方程式。

Ans: x+y=1

[解法]:因爲 $\overrightarrow{OP} = x \cdot \overrightarrow{OA} + y \cdot \overrightarrow{OC}$,

且P點在直線AB上 $\Leftrightarrow x+y=1$ 所以直線AB的方程式爲x+y=1

[**例題3**] 設P點落在線段AB上,且 \overline{AP} : $\overline{PB}=m:n$,O點在直線AB外,現在以O為原點, \overline{OA} 、 \overline{OB} 為基底,在坐標 $\{O; \overline{OA}, \overline{OB}\}$ 上,設P點的坐標為 $\{x,y\}$,請問 $\{x,y\}=?$

Ans :
$$(\frac{n}{m+n}, \frac{m}{m+n})$$

[解法]:

根據分點公式,可得 $\overrightarrow{OP} = \frac{n}{m+n}\overrightarrow{OA} + \frac{m}{m+n}\overrightarrow{OB}$

所以P點在關於坐標系 $\{O; \overrightarrow{OA}, \overrightarrow{OB}\}$ 下的坐標為 $(\frac{n}{m+n}, \frac{m}{m+n})$ 。

[**例題4**] 在坐標 $\{O; \overrightarrow{OA}, \overrightarrow{OB}\}$ 上,C、D兩點的坐標為(-1,2)、(3,4),請問直線CD的方程式為何?

[解法]:

設P(x,y)為直線CD上的任一點

依坐標的意義:

$$\overrightarrow{OC} = (-1)\overrightarrow{OA} + 2\overrightarrow{OB}$$
, $\overrightarrow{OD} = 3\overrightarrow{OA} + 4\overrightarrow{OB}$, $\overrightarrow{OP} = x\overrightarrow{OA} + y\overrightarrow{OB}$

因爲P點在直線CD上,所以CP//CD

 $\overrightarrow{\text{TD}} = (x+1)\overrightarrow{\text{OA}} + (y-2)\overrightarrow{\text{OB}}$, $\overrightarrow{\text{CD}} = 4\overrightarrow{\text{OA}} + 2\overrightarrow{\text{OB}}$

$$\Leftrightarrow \frac{x+1}{4} = \frac{y-2}{2} \Leftrightarrow y-2 = \left[\frac{4-2}{3-(-1)}\right](x+1)$$

 \Leftrightarrow y-2= $\frac{1}{2}(x+1)$ °

這樣的做法跟直坐標系的結果完全一致。 只是 $\frac{1}{2}$ 不能解釋成直線CD的斜率。

[例題5] $\triangle ABC$ 中,D是 \overline{AB} 中點,E點在 \overline{AC} 上,且 \overline{AE} : \overline{EC} =2:1, \overline{CD} 與 \overline{BE} 交於 \overline{P} ,

設 $\overrightarrow{AP} = x \cdot \overrightarrow{AB} + y \cdot \overrightarrow{AC}$, 求數對(x,y) = ? Ans : $(\frac{1}{4}, \frac{1}{2})$

[解答]:

考慮坐標系{A; AB, AC},

因爲 $\overrightarrow{AP} = x \cdot \overrightarrow{AB} + y \cdot \overrightarrow{AC}$,所以P點坐標爲(x,y)

所以A(0,0)、B(1,0)、C(0,1)、D($\frac{1}{2}$,0)、E(0, $\frac{2}{3}$)

算出直線BE、CD的方程式:

BE: 2x+3y=2, CD: 2x+y=2

因此P點的坐標為 $(\frac{1}{4},\frac{1}{2})$ 。

[**例題6**] 設P點落在 \triangle ABC所在的平面中,且滿足 $\overrightarrow{AP} = s \cdot \overrightarrow{AB} + t \cdot \overrightarrow{AC}$, 請依下列s,t的條件,求出P點所形成的圖形。

(1)t=0, $-1 \le s \le 2$ (2)s+t=2 $(3)0 \le s \le 1$, $0 \le t \le 1$ (4)-1 < s+t < 2

[解法]:

[向量的觀點]:

 $(1)t=0 \Rightarrow \overrightarrow{AP} = s \cdot \overrightarrow{AB}$

$$s=-1$$
, $\overrightarrow{AP} = -\overrightarrow{AB} = \overrightarrow{AD}$, $s=2$, $\overrightarrow{AP} = 2\overrightarrow{AB} = \overrightarrow{AE}$

因為 $-1 \le s \le 2$,所以P點形成的圖形是 \overline{DE} 。

(2)因爲
$$s+t=2\Rightarrow \frac{s}{2}+\frac{t}{2}=1$$

$$\overrightarrow{AP}=s\cdot\overrightarrow{AB}+t\cdot\overrightarrow{AC}\Rightarrow\overrightarrow{AP}=\frac{s}{2}\cdot(2\overrightarrow{AB})+\frac{t}{2}\cdot(2\overrightarrow{AC})$$
令 $2\overrightarrow{AB}=\overrightarrow{AD}$, $2\overrightarrow{AC}=\overrightarrow{AE}\Rightarrow\overrightarrow{AP}=\frac{s}{2}\cdot(\overrightarrow{AD})+\frac{t}{2}\cdot(\overrightarrow{AE})$ 且 $\frac{s}{2}+\frac{t}{2}=1$
根據三點共線的條件可知P點會在直線DE上。
因此P點所形成的圖形爲DE直線。

- (3)設s=k, $\overrightarrow{AP}=k\cdot\overrightarrow{AB}+t\cdot\overrightarrow{AC}$ $\Rightarrow k\cdot\overrightarrow{AB}=\overrightarrow{AD}=\overrightarrow{CE}$,此時因為 $0 \le t \le 1$ 所以 $P \ne \overrightarrow{DE}$ 上移動,而另一方面, $k \ne 0$ 與 1 之間變動,那麼D會在 \overrightarrow{AB} 間移動, 因此P點會形成的圖形爲平行四邊形與其內部。
- (4)
- $(a) \stackrel{\triangle}{\vdash} k = s + t(k \neq 0, -1 < k < 2)$

$$\overrightarrow{AP} = \frac{s}{k} \cdot (k\overrightarrow{AB}) + \frac{t}{k} (k\overrightarrow{AC})$$
,令 $k\overrightarrow{AB} = \overrightarrow{AD}$, $k\overrightarrow{AC} = \overrightarrow{AE}$, $s' = \frac{s}{k}$, $t' = \frac{t}{k}$
 $\Rightarrow \overrightarrow{AP} = s' \cdot \overrightarrow{AD} + t' \cdot \overrightarrow{AE}$, $s' + t' = 1$
 因此P點會在直線DE上移動,

(b)當k=0 時, $\overrightarrow{AP}=s \cdot \overrightarrow{AB}-s \cdot \overrightarrow{AC}=s \cdot \overrightarrow{CB}$,

P點形成的圖形爲過A點與 \overrightarrow{BC} 平行的直線。

(c)設-ĀB=ĀF, -ĀC=ĀG, 2ĀB=ĀH, 2ĀC=ĀĪ 當k在-1到2之間變化(k≠0)時,那麼D由F變化到H, E由G變化到I 目保持 DĒ // BC。因此P點形成一個帶狀區域。

[斜坐標的觀點]:

考慮坐標系 $\{A; \overline{AB}, \overline{AC}\}$

因爲 $\overrightarrow{AP}=s\cdot\overrightarrow{AB}+t\cdot\overrightarrow{AC}$,所以P點坐標爲(s,t),因此 $(1)\sim(4)$ 各題可以視爲P點坐標滿足(1)t=0, $-1\leq s\leq 2$ (2)s+t=2 $(3)0\leq s\leq 1$, $0\leq t\leq 1$ (4)-1< s+t<2

所形成的圖形。因此各題的圖形如下:

$$(1) (2)$$

$$(3) (4)$$

(練習1) 在ΔABC中,考慮坐標系 $\{A; \overline{AB}, \overline{AC}\}$ 設 $\overline{AB}=c, \overline{BC}=a, \overline{AC}=b$ 請問重心G與內心I的坐標爲何?

Ans: $G(\frac{1}{3},\frac{1}{3})$ 、 $I(\frac{b}{a+b+c},\frac{c}{a+b+c})$ [提示:考慮G與I向量的性質]

- (練習2) 設O,A,B三點不共線,若 $\overrightarrow{OC}=4\overrightarrow{OA}$, $\overrightarrow{OD}=5\overrightarrow{OB}$, 令AD與BC交於一點E,若 $\overrightarrow{OE}=x\cdot\overrightarrow{OA}+y\cdot\overrightarrow{OB}$,求x,y。 Ans: $x=\frac{16}{19},y=\frac{15}{19}$
- (練習3) 坐標平面上有一 ΔABC 與一點D,若 $7\overrightarrow{AD}=8\overrightarrow{AB}+6\overrightarrow{AC}$, 請求出 $\frac{\Delta ABD$ 面積 ΔABC 面積 = ? ΔABC Δ

(練習4) 設 Δ ABC為平面上的一個三角形,P為平面上一點且 $\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB} + t\overrightarrow{AC}$,其中t為一實數。試問下列哪一個選項為t的最大範圍,使得P落在 $\triangle ABC$ 的內部?(A) $0 < t < \frac{1}{4}$ (B) $0 < t < \frac{1}{3}$ (C) $0 < t < \frac{2}{3}$ (D) $0 < t < \frac{3}{4}$ (93 學科能力測驗) (D)

(練習5) 在ΔABC的三邊 \overline{BC} 、 \overline{CA} 、 \overline{AB} 上分別取D、E、F三點,使得 \overline{DC} =4 \overline{BD} , \overline{EC} =2 \overline{AE} , \overline{FB} =2 \overline{AF} 。 \overline{BG} \overline{ADE} \overline{BD} \overline{AG} \overline{AG} \overline{AG} \overline{AG} \overline{AB} \overline{AG} \overline

- (練習6) 平行四邊形ABCD中,E爲 \overline{AD} 上一點,且 $\overline{AE} = 2\overline{ED}$,F爲 \overline{AB} 上一點且 $\overline{AF} = 3\overline{FB}$,若 \overline{BE} 與 \overline{DF} 交於點P,且 $\overline{AP} = x\overline{AB} + y\overline{AD}$,則(a)(x,y)=? (b)DP:PF=?Ans: (a) $(\frac{1}{2},\frac{1}{3})$ (b)2:1
- (練習7) 設P點落在 Δ ABC所在的平面中,且滿足 $\overrightarrow{AP}=s\cdot\overrightarrow{AB}+t\cdot\overrightarrow{AC}$, 請依下列s,t的條件,求出P點所形成的圖形。 (1)s+2t=3 (2) $1\leq s+t\leq 2$, $s\geq 0$, $t\geq 0$
- (練習8) 平面上三點A(3,-2)、B(-1,1)、C(5,4)
 - (1)若點P滿足 $\overrightarrow{AP}=s \cdot \overrightarrow{AB}+t \cdot \overrightarrow{AC}$,且 $-1 \le r \le 2$, $0 \le s \le 2$,則求點P所成區域之面積。
 - (2)若點Q滿足 $\overrightarrow{AQ}=s\cdot\overrightarrow{AB}+t\cdot\overrightarrow{AC}$,且 $r\geq -1$, $s\geq 1$, $r+s\leq 2$ 則求點Q所成區域之面積。Ans:(1)15 (2)60