Lösungen zu Übungsblatt 10.

Aufgabe 1 (10 Punkte). Bestimmen Sie alle Nullstellen in $\mathbb{Z}/7\mathbb{Z}$ von

(i)
$$f(x) = x^4 + \overline{6}x^3 + \overline{6}x^2 + 4x + \overline{4}$$
,

(ii)
$$q(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + \bar{1}$$
.

Lösung zu Aufgabe 1. Da in $\mathbb{Z}/7\mathbb{Z}$ nur $\bar{0}, \ldots, \bar{6}$ als Nullstelle in Frage kommen, können wir diese alle einfach durchprobieren. Es ergibt sich dadurch, dass $\bar{1}$ und $\bar{4}$ die beiden Nullstellen von f(x) in $\mathbb{Z}/7\mathbb{Z}$ sind und $\bar{1}$ die beiden Nullstellen von g(x) in $\mathbb{Z}/7\mathbb{Z}$.

Aufgabe 2 (10 Punkte). Sei $K = \mathbb{Z}/5\mathbb{Z}$. Berechnen Sie jeweils $q(x), r(x) \in K[X]$ mit

$$f(x) = q(x) \cdot g(x) + r(x)$$

und grad(g) > grad(r) für die Polynome

$$f(x) = \overline{2}x^5 + \overline{3}x^4 + \overline{4}x^3 + \overline{2}$$
 und $g(x) = x^3 + \overline{2}x^2 + \overline{3}x + \overline{4}$.

Lösung zu Aufgabe 2. Mit der Polynomdivision erhalten wir $q(x), r(x) \in K[X]$ mit

$$f(x) = q(x) \cdot g(x) + r(x)$$

und grad(g) > grad(r).

- $q(x) = \bar{2}x^2 + \bar{4}x$,
- $r(x) = \bar{4}x + \bar{2}$.

Aufgabe 3 (10 Punkte). Sei $K = \mathbb{Z}/5\mathbb{Z}$. Berechnen Sie jeweils $q(x), r(x) \in K[X]$ mit

$$f(x) = q(x) \cdot q(x) + r(x)$$

und grad(g) > grad(r) für die Polynome

$$f(x) = \bar{3}x^5 + \bar{2}x^4 + \bar{2}x^2 + \bar{4}x + \bar{1}$$
 und $g(x) = \bar{2}x^2 + \bar{2}x + \bar{3}$.

Lösung zu Aufgabe 3. Mit der Polynomdivision erhalten wir $q(x), r(x) \in K[X]$ mit

$$f(x) = q(x) \cdot g(x) + r(x)$$

und grad(g) > grad(r).

- $q(x) = \bar{4}x^3 + \bar{2}x^2 + \bar{2}x + \bar{1}$.
- $r(x) = x + \bar{3}$.

Aufgabe 4 (10 Punkte). Bestimmen Sie das kleinste $k \in \mathbb{N}$ mit $7|(10^k - 1)$.

Lösung zu Aufgabe 4. Das ist gleichbedeutend mit geben die Ordnung von 10 in $\mathbb{Z}/7\mathbb{Z}$. Wir haben $\bar{a}^6 \equiv 1 \mod 7$ (Aufgabe 1, Übungsblatt 8) und $10 \equiv 3 \mod 7$, $10^2 \equiv 2 \mod 7$, $10^3 \equiv 6 \mod 7$, $10^4 \equiv 4 \mod 7$, $10^5 \equiv 5 \mod 7$. Daher ist k = 6 die kleinste Zahl mit dieser Eigenschaft und liegt in der Ordnung von 10.

Zusatzaufgabe 5. Sei G eine endliche Gruppe. Zeigen Sie, dass für jedes $g \in G$ die Gleichung ord(g) = ord(g⁻¹) gilt.