Transferencia de masa

OCTAVIO MANERO BRITO

9 de febrero de 2025

Índice general

1.	Cap	itulo 1
	1.1.	Lo de los chavalos XD
	1.2.	Tarea 1
	1.3.	Apéndice A
	1.4.	Apéndice B
	1.5.	Apéndice C

Prefacio

 $2 \hspace{3.1cm} \textit{ÍNDICE GENERAL}$

1

Capitulo 1

1.1. Lo de los chavalos XD

AQUÍ va todo lo anterior

1.2. Tarea 1

Bird et all 17.A

- 1.- Predicción binaria a baja densidad. Estimar D_{AB} para el sistema metanoetano a 293°K y 1 atm por medio de los siguientes métodos.
 - a)- Ecuación 1.53
 - b)- Ecuación 1.53 y gráfica Fig 1.51 utilizando las T
 y P reducidas $T_r=\frac{T}{\sqrt{T_{CA}T_{CB}}}$, $P_r=\frac{P}{\sqrt{P_{CA}P_{CB}}}$
 - c)- Ecuación 1.46, 1.48 y 1.49, y los parámetros de Lennard-Joues del Apéndice C.
 - d)- Ecuación 1.46 en los parámetros de Lennard-Jones estimados a partir de las propiedades críticas siguientes:

$$\frac{\epsilon}{k_{13}} = 0.77\sqrt{T_{CA}T_{CB}}, T = \frac{2.44}{2} \left[\left(\frac{T_{CA}}{P_{CA}} \right)^{1/5} + \left(\frac{T_{CB}}{P_{CB}} \right)^{1/3} \right]$$

Respuestas (cm^2/s) : a)- 0.152; b)- 0.138; c)- 0.146; d)- 0.138

2.- Autodifusión de mercurio líquido Bird et all 17 A3. La difusividad del Hg^{203} en mercurio líquido normal se ha medido con datos de viscosidad y volumen másico. Comparar los datos experimentales con aquellos obtenidos por la ec. 160.

4 1. CAPITULO 1

T(K)	$D_{AB} \ cm^2/s$	$\mu \ \mathbf{cP}$	$\hat{V} cm^3/s$
275.7	1.52×10^{-5}	1.68	0.0736
289.6	1.68×10^{-5}	1.56	0.0737
364.2	2.57×10^{-5}	1.27	0.0748

Bird et all 17.A.5

- 3.- Cálculo de la difusividad de una muestra binaria a alta densidad. Predecir pD_{AB} para una mezcla equimolar de N_2 y C_2H_6 a 288.2 K y 40 atm.
 - a)
- Usar el valor de D_{AB} a 1 atm de 0.148
 cm^2/s a T=298.2 Ky la gráfica de la Fig.1.51
 - b)- Usar la ecuación 1.55 y la Fig 1.51

Respuesta a).- $5.8 * 10^{-6}$ gmol/cms; b).- $5.3 * 10^{-6}$ gmol/cms

- 4.- Prob. 17.A.6 Bird Difusividad y número de Schmidit para mezclas cloro-aire.
 - a)- Predecir D_{AB} para mezclas cloro-aire a 75°F y 1 atm. Utilizar los parámetros del Apéndice C.
 - b)- Calcular (a) utilizando la ec. 1.53
 - c)- Utilizar los resultados de (a) para estimar los valores del número de Schmidit para mezclas cloro-aire a 297 K y 1 atm para las siguientes fracciones mol y viscosidades: $0, 1.83*10^{-4}poises; 0.25, 1.64*10^{-4}poises; 0.5, 1.5*10^{-4}poises; 0.75, 1.39x10^{-4}poises; 1, 1.31*10^{-4}poises$

$$pD_{AB} = \frac{\rho}{RT}D_{AB}; Sc = \frac{\mu}{M_C D_{AB}} = \frac{\mu}{(x_A M_A + x_B M_B)pD_{AB}}$$

Respuestas: a).- 0.121 cm/s; b).- 0.124 cm/s; c).- Sc=1.27, 0.832, 0.602, 0.463, 0.372

5.- Probl. 17.A.8 Bird. Corrección para la difusividad a altas densidades. El valor medido para pD_{AB} de una mezcla de 80 % mol de CH_4 Y 20 % mol de C_2H_6 a 313 K y 136 atm es $6x10^-6$ gmol/cms. Calcular pD_{AB} para esa mezcla a 136 atm y 351 K usando la Fig 1.51.

Respuesta $6.3*10^{-6} gmol/cms$. Observado $6.33*10^{-6} gmol/cms$

- 6.- Probl 17 A.10 Bird Cálculo de difusividad de líquidos
 - a)- Calcular la difusividad de una solución diluida de ácido acético a 12.5°C utilizando la ec. 1.62. La densidad del ácido acético es 0.937 g/cm^3 en el punto de ebullición.

1.2. TAREA 1 5

b)- La difusividad de una solución diluida de metanol a 15°C es 1.28 * $10^{-5}cm^2/s$. Calcular la difusividad de esa solución a 100°C. Las viscosidades a 15°C y 100°C son 1.14 cp y 0.28cp. La viscosidad de la solución diluida es 1.22 cp.

Respuesta (b).- $6.7 * 10^{-5} cm^2/s$.

6 1. CAPITULO 1

1.3. Apéndice A

Ecuaciones de continuidad en varios sistemas de coordenadas

Coordenadas rectangulares:

$$\frac{\partial c_A}{\partial t} + \left(\frac{\partial N_{Az}}{\partial x} + \frac{\partial N_{Ay}}{\partial y} + \frac{\partial N_{Az}}{\partial z}\right) = R_A \tag{A}$$

Coordenadas cilíndricas:

$$\frac{\partial c_A}{\partial t} + \left(\frac{1}{r}\frac{\partial}{\partial r}(rN_{Ar}) + \frac{1}{r}\frac{\partial N_{A\theta}}{\partial \theta} + \frac{\partial N_{Az}}{\partial z}\right) = R_A \tag{B}$$

Coordenadas esféricas:

$$\frac{\partial c_A}{\partial t} + \left(\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 N_{Ar}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (N_{A\theta} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial N_{A\phi}}{\partial \phi}\right) = R_A \qquad (C)$$

1.4. APÉNDICE B 7

1.4. Apéndice B

Ecuación de continuidad de A con ρ y \mathcal{D}_{AB} constantes

Coordenadas rectangulares:

$$\frac{\partial c_A}{\partial t} + \left(v_x \frac{\partial c_A}{\partial x} + v_y \frac{\partial c_A}{\partial y} + v_z \frac{\partial c_A}{\partial z}\right) = \mathcal{D}_{AB} \left(\frac{\partial^2 c_A}{\partial x^2} + \frac{\partial^2 c_A}{\partial y^2} + \frac{\partial^2 c_A}{\partial z^2}\right) + R_A \quad (A)$$

Coordenadas cilíndricas:

$$\frac{\partial c_A}{\partial t} + \left(v_r \frac{\partial c_A}{\partial r} + v_0 \frac{1}{r} \frac{\partial c_A}{\partial \theta} + v_z \frac{\partial c_A}{\partial z} \right)
= \mathcal{D}_{AB} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial c_A}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 c_A}{\partial \theta^2} + \frac{\partial^2 c_A}{\partial z^2} \right) + R_A$$
(B)

Coordenadas esféricas:

$$\frac{\partial c_A}{\partial t} + \left(v_r \frac{\partial c_A}{\partial r} + v_\theta \frac{1}{r} \frac{\partial c_A}{\partial \theta} + v_\phi \frac{1}{r \sin \theta} \frac{\partial c_A}{\partial \phi} \right)
= \mathcal{D}_{AB} \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial c_A}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial c_A}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 c_A}{\partial \phi^2} \right) + R_A$$
(C)

1.5. Apéndice C

Tablas de Lennard-Jones y gases de baja densidad

Cuadro 1.1: Parámetros Potenciales de Lennard-Jones y Propiedades Críticas

		Parámet	Parámetros Lennard-Jones	Jones			Propieda	Propiedades Críticas g,h	
Susustancia	$\begin{array}{c} {\rm Masa} \\ {\rm Molar} \\ M \end{array}$	σ (Å)	ϵ/K (K) Ref. T_c (K)	Ref.	T_c (K)	p_c (atm)	\tilde{V}_c (cm ³ /g-mole)	$ \left \frac{\mu_c}{(g/cm.s \times 10^6)} \right $	$\frac{\mu_c}{(\mathrm{g/cm\cdot s}\times 10^6)}$ (cal/cm·s·K×10 ⁵)
Elementos ligeros:	eros:								
H_2	2.016	2.915	38.0	ಡ	33.3	12.80	0.50	34.7	
Не	4.003	2.576	10.2	ದ	5.26	2.26	57.8	25.4	
Gases nobles:									
m Ne	20.180	2.789	35.7		44.5	26.9	41.7	156.	79.2
Ar	39.948	3.432	122.4	q	150.7	48.0	75.2	264.	71.0
Kr	83.80	3.675	170.0	q	209.4	54.3	92.2	396.	49.4
Xe	131.29	4.009	234.7	q	289.8	58.0	118.8	490.	40.2
Gases poliatómicos simp	micos sim	ples:							
Aire	28.964	3.617	97.0	ದ	132.4	37.0	86.7	193.	8.06
$ m N_2$	28.013	3.667	8.66	q	126.2	33.5	90.1	180.	86.8
O_2	31.999	3.433	113.	ದ	154.4	49.7	74.4	250.	106.3
CO	28.010	3.590	110.	ದ	132.9	34.5	93.1	190.	86.5
CO_2	44.010	3.996	190.	ದ	304.2	72.8	94.1	343.	122.
NO	30.006	3.470	119.		180.	64.	57.	258.	118.2
		-]		-				_	

Continúa en la siguiente página

•	מטוטפוועון	UTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
ζ	1	
7		
	2	

		Parámet	Parámetros Lennard-Jones	Jones			Propieda	Propiedades Críticas g,h	
Susustancia	Masa Molar M	σ (Å)	ϵ/K (K)	Ref.	T_c (K)	$p_c~(\mathrm{atm})$	$\tilde{V_c}$ (cm ³ /g-mole)	$\frac{\mu_c}{(\mathrm{g/cm\cdot s}\times 10^6)}$	μ_c k_c (g/cm·s×10 ⁶) (cal/cm·s·K×10 ⁵)
N_2O	44.012	3.879	220.	ಡ	309.7	71.7	96.3	332.	131.
SO_2	64.065	4.026	363.	ပ	430.7	77.8	122.	411.	9.86
F_2	37.997	3.653	112.	ಡ					
Cl_2	70.905	4.115	357.	ಹ	417.	76.1	124.	420.	97.0
Br_2	159.808	4.268	520.	ಡ	584.	102.	144.		
I_2	253.809	4.362	550.	ಡ	800.			1	
Hidrocarburos	::								
CH_4	16.04	3.780	154.	q	191.1	45.8	7.86	159.	158.
$CH \equiv CH$	26.04	4.114	212.	р	308.7	61.6	112.9	237.	
$\mathrm{CH}_2 = \mathrm{CH}_2$	28.05	4.228	212.	q	282.4	50.0	124.	215.	
$\mathrm{C}_2\mathrm{H}_6$		4.388	232.	q	305.4	48.2	148.	210.	203.
$\mathrm{CH_3C} \equiv \mathrm{CH}$		4.742	261	р	394.8				
$\mathrm{CH_3CH} = \mathrm{CH_2}$	42.08	4.766	275.	q	365.0	45.5	181.	233.	
$ ext{n-C}_4 ext{H}_{10}$		5.604	304.	q	425.2	37.5	295.	239.	
$\mathrm{i\text{-}C_4H_{10}}$		5.393	295.	q	408.1	36.0	263.	239.	
$ ext{n-C}_5 ext{H}_{12}$	72.15	5.850	326.	q	469.5	33.2	311.	238.	
$i\text{-}C_5H_{12}$		5.812	327.	q	460.4	33.7	306.		
$\mathrm{C}(\mathrm{CH}_3)_4$		5.759	312.	q	433.8	31.6	303.		
$ m n\text{-}C_6H_{14}$	86.18	6.264	342.	q	507.3	29.7	370.	248.	
$ m n\text{-}C_7H_{16}$	100.20	6.663	352.	q	540.1	27.0	432.	254.	
$\mathrm{n\text{-}C}_8\mathrm{H}_{18}$	114.23	7.035	361.	<u></u> р	268.7	24.5	492.	259.	

Continúa en la siguiente página

	iniiación	
	7	
•	Ć	,
•	7	
	·	
	a	
	-	į
	Ξ	
	Σ	
•	-	
•	٠	
	į	
_	٠.	•
(_	1
١	_	,
	ì	
	1	
,	I	
1		
,		
,		
1		
,		
1		
,	1	
,	1	
,	1	
,		
,	1	
•	1	

		Parámet	Parámetros Lennard-Jones	Jones			Propieda	Propiedades Críticas ^{g,h}	
Susustancia	$\begin{array}{c} {\rm Masa} \\ {\rm Molar} \\ {M} \end{array}$	σ (Å)	ϵ/K (K) Ref. T_c (K)	Ref.	T_c (K)	p_c (atm)	\tilde{V}_c (cm ³ /g-mole)	$\frac{\mu_c}{(\mathrm{g/cm\cdot s}\times 10^6)}$	μ_c k_c (g/cm·s×10 ⁶) (cal/cm·s·K×10 ⁵)
$ m n\text{-}C_9H_{20}$	128.26	7.463	351.	p q	594.6	22.6	548.	265.	
Ciclohexano	84.16	6.143	313.	р	553.	40.0	308.	284.	
Benceno	78.11	5.443	387.	q	562.6	48.6	260.	312.	
Otros compuestos orgánicos:	estos orgá	nicos:							
CH_4	16.04	3.780	154.	— q	191.1	45.8	7.86	159.	158.
$ m CH_3Cl$	50.49	4.151	355.	ပ	416.3	65.9	143.	338.	
$ m CH_2Cl_2$	84.93	4.748	398.	၁	510.	.09			
CHCl_3	119.38	5.389	340.	е	536.6	54.	240.	410.	
CCI_4	153.82	5.947	323.	е	556.4	45.0	276.	413.	
$\mathrm{C_2N_2}$	52.034	4.361	349.	е	400.	59.			
COS	920.09	4.130	336.	е	378.	61.			
CS_2	76.143	4.483	467.	е	552.	78.	170.	404.	
$ m CCl_2F_2$	120.91	5.116	280.	p q	384.7	39.6	218.		

- ¹a) J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, corrected printing with notes added, Wiley,
- ²b) L. S. Tee, S. Gotoh, and W. E. Stewart, Ind. Eng. Chem. Fundamentals, 5, 356–363 (1966). The values for benzene are from viscosity data on that substance. The values for other substances are computed from Correlation (iii) of the paper.
- ³c) L. Monchick and E. A. Mason, J. Chem. Phys., **35**, 1676–1697 (1961); parameters obtained from viscosity.
 - ⁴d) L. W. Flynn and G. Thodos, AIChE Journal, 8, 362–365 (1962); parameters obtained from viscosity.
- ⁵e) R. A. Svehla, NASA Tech. Report R-132 (1962); parameters obtained from viscosity. This report provides extensive tables of Lennard-Jones parameters, heat capacities, and calculated transport properties.
 - ⁶f) Values of the critical constants for the pure substances are selected from K. A. Kobe and R. E. Lynn, Jr., Chem. Rev., 52, 117–236 1962); Amer. Petroleum Inst. Research Proj. 44, Thermodynamics Research Center, Texas A&M University, College Station, Texas (1966); and Thermodynamic Functions of Gases, F. Din (editor), Vols. 1-3, Butterworths, London (1956, 1961, 1962)
 - ⁷g) Values of the critical viscosity are from O. A. Hougen and K. M. Watson, Chemical Process Principles, Vol. 3, Wiley, New York (1947),
- ⁸h) Values of the critical thermal conductivity are from E. J. Owens and G. Thodos, AIChE Journal, 3, 454-461 (1957)
- 9 i) For air, the molecular weight M and the pseudocritical properties have been computed from the average composition of dry air as given in COESA, U.S. Standard Atmosphere 1976, U.S. Government Printing Office, Washington, D.C. (1976)

Cuadro 1.2: Integrales de Colisión para su uso con los potenciales de Lennard-Jones para la predicción de propiedades de transporte de Gases de baja Densidad. ^{a,b,c}

$\overline{\mathrm{KT}/e}$	$\Omega_{\mu} = \Omega_{k}$	$\Omega_{D_{AB}}$ (por	kT/e o	$\Omega_b = \Omega_k$	$\Omega_{D_{AB}}$ (por
111/6	$ \begin{array}{ccc} $	difusividad	$\mathrm{KT}/\varepsilon_{AB}$	(por vis-	difusividad)
	cosidad y	difusividad)	IXI/cAB	cosidad y	difusividad)
	conduc-			conduc-	
	tividad			tividad	
	térmica)			térmica)	
0.30	2.840	2.649	2.7	1.0691	0.9782
0.35	2.676	2.468	$\begin{vmatrix} 2.7 \\ 2.8 \end{vmatrix}$	1.0583	0.9682
0.30 0.40	2.531	2.314	$\begin{vmatrix} 2.0 \\ 2.9 \end{vmatrix}$	1.0383	0.9588
0.40 0.45	2.401	2.182	$\begin{vmatrix} 2.9 \\ 3.0 \end{vmatrix}$	1.0482	0.9500
$0.45 \\ 0.50$	2.284	2.162	$\begin{array}{c c} 3.0 \\ 3.1 \end{array}$	1.0300	0.9418
0.50 0.55	2.264	1.965	$\begin{vmatrix} 3.1 \\ 3.2 \end{vmatrix}$	1.0300 1.0217	0.9418 0.9340
0.60	2.084	1.877	3.3	1.0139	0.9267
0.65	1.999	1.799	3.4	1.0066	0.9197
0.70	1.922	1.729	3.5	0.9996	0.9131
0.75	1.853	1.667	3.6	0.9931	0.9068
0.80	1.790	1.612	3.7	0.9868	0.9008
0.85	1.734	1.562	3.8	0.9809	0.8952
0.90	1.682	1.517	3.9	0.9753	0.8897
0.95	1.636	1.477	4.0	0.9699	0.8845
1.00	1.593	1.440	4.1	0.9647	0.8796
1.05	1.554	1.406	4.2	0.9598	0.8748
1.10	1.518	1.375	4.3	0.9551	0.8703
1.15	1.485	1.347	4.4	0.9506	0.8659
1.20	1.455	1.320	4.5	0.9462	0.8617
1.25	1.427	1.296	4.6	0.9420	0.8576
1.30	1.401	1.274	4.7	0.9380	0.8577
1.35	1.377	1.253	4.8	0.9341	0.8499
1.40	1.355	1.234	4.9	0.9304	0.8463
1.45	1.334	1.216	5.0	0.9268	0.8428
1.50	1.315	1.199	6.0	0.8962	0.8129
1.55	1.297	1.183	7.0	0.8727	0.7898
1.60	1.280	1.168	8.0	0.8538	0.7711
1.65	1.264	1.184	9.0	0.8380	0.7555
1.70	1.249	1.141	10.0	0.8244	0.7422
1.75	1.235	1.128	12.0	0.8018	0.7202
			Conti	núa en la sig	uiente página

Cuadro 1.2 - Continuación

KT/e	$\Omega_{\mu} = \Omega_{k}$	$\Omega_{D_{AB}}$ (por	kT/e o	$\Omega_b = \Omega_k$	$\Omega_{D_{AB}}$ (por
	(por vis-	difusividad)	$\mathrm{KT}/\varepsilon_{AB}$	(por vis-	difusividad)
	cosidad y			cosidad y	
	conduc-			conduc-	
	tividad			tividad	
	térmica)			térmica)	
1.80	1.222	1.117	14.0	0.7836	0.7025
1.85	1.209	1.105	16.0	0.7683	0.6878
1.90	1.198	1.095	18.0	0.7552	0.6781
1.95	1.186	1.085	20.0	0.7436	0.6640
2.00	1.176	1.075	25.0	0.7198	0.6414
2.10	1.156	1.058	30.0	0.7000	0.6235
2.20	1.138	1.042	35.0	0.6854	0.6088
2.30	1.122	1.027	40.0	0.6723	0.5964
2.40	1.107	1.013	50.0	0.6510	0.5763
2.50	1.0933	1.0006	75.0	0.6140	0.5415
2.60	1.0807	0.9890	100.0	0.5887	0.5180

$$\Omega_{\mu} = \Omega_{k} = \frac{1.16145}{T^{*0.14574}} + \frac{0.52487}{\exp(0.77320T^{*})} + \frac{2.16178}{\exp(2.43787T^{*})}$$
 (E.2-1)

$$\Omega_{D_{AB}} = \frac{1.06036}{T^{0.15610}} + \frac{0.19300}{\exp(0.47635T^*)} + \frac{1.03587}{\exp(1.52996T^*)} + \frac{1.76474}{\exp(3.89411T^*)}$$
 (E.2-2) donde $T^* = \kappa T/\varepsilon$.

¹a) Los valores en esta tabla, aplicables para el potencial de Lennard-Jones, se han interpolado a partir de los resultados de L. Monchick y E. A. Mason, J. Chem. Phys., 35, 1676–1697 (1961). Se cree que la tabla de Monchick–Mason es ligeramente mejor que la tabla anterior de J. O. Hirschfelder, R. B. Bird y E. L. Spotz, J. Chem. Phys., 16, 968–981 (1948).

²b) Esta tabla ha sido extendida a temperaturas más bajas por C. F. Curtiss, J. Chem. Phys., 97, 7679–7686 (1992). Curtiss demostró que a bajas temperaturas, la ecuación de Boltzmann necesita ser modificada para tener en cuenta los "pares orbitantes" de moléculas. Solo haciendo esta modificación es posible obtener una transición suave del comportamiento cuántico al clásico. Las desviaciones son apreciables por debajo de temperaturas adimensionales de 0.30.

³c) Las integrales de colisión han sido ajustadas mediante curvas por P. D. Neufeld, A. R. Jansen y R. A. Aziz, J. Chem. Phys., 57, 1100–1102 (1972), de la siguiente manera: