Gang Chen chengang@bgitechsolutions.com

October 31, 2015

Outline

- Overview
- Quick Get Started
- Syntax
- Object-Oriented Programming
- Data Visualization

- Overview
 - Data Analysis
 - Data Aanlysis and R
- Quick Get Started
- Syntax
- Object-Oriented Programming
- Data Visualization

- Overview
 - Data Analysis
 - Data Aanlysis and R
- Quick Get Started
 - Hello R!
 - Development Environment
 - References
- Syntax
 - Data Types
 - Programming Structures
 Control Statements
 - Control Statements
 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output

Data Analysis

Wikipedia

Analysis of data is a process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, suggesting conclusions, and supporting decision making.

Data Analysis

Collecting \rightarrow cleaning \rightarrow transforming \rightarrow modeling \rightarrow visualizing

Biological Data Analysis

NGS and Complex Diseases

Sequencing \to QC \to Alignment and Variant Calling \to GWAS, EWAS ... \to Manhattan Plot, Q-Q plot ...

Biological Data Analysis

NGS and Complex Diseases

Sequencing \to QC \to Alignment and Variant Calling \to GWAS, EWAS ... \to Manhattan Plot, Q-Q plot ...

 \rightarrow paper

- Overview
 - Data Analysis
 - Data Aanlysis and R
- Quick Get Started
 - Hello R!
 - Development Environment
 - References
- Syntax
 - Data Types
 - Programming Structures
 Control Statements
 - Control Statemen
 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output
 Object-Oriented Programming

What is R?

R

R is a free software environment for statistical computing and graphics.

----R-project.org

History

- April 1st, 1997, R0.16, 奥克兰大学的Ihaka和Gentleman 发布了第一版本的R
- 1997年4月23日,0.49,CRAN网站发布,提供12个R的扩展包
- 1997年12月5日, 0.60, R成文GNU项目的一部分
- 2000年2月29日, 1.0, 第一个可用于生产环境的版本发布
- 2010年4月22日, 2.11, 支持64位Windows操作系统
- 2011年10月31日,2.14,提供全新的并行计算包
- 2013年4月, 3.0.0
- Now, 3.1.2

R语言在中国

- 2004年,国内专业人员开始翻译R语言官方文档
- 2006年,国内开始出版R语言书籍
- 2008年,在北京中国人民大学召开第一届中国R语言会议
- 2009年-2012年,每年分别在北京和上海举办中国R语言会议,迄今已举办五届
- 2012年,国人开发的Knitr包几乎成为R语言文档自动化的新标准,同时大量R语言畅销书籍被引进到国内翻译出版。
- 2013年,《R语言实战》、《ggplot2》、《R in a nutshell》...

R语言的现状

- 使用领域囊括统计分析、数据挖掘、生命科学、商业智能、 数据可视化、社交网络分析、电子商务、集成电路、金融、 烟草、传媒、咨询等
- 赞助R语言开发工作的机构包括AT&T、默沙东、Google、 新西兰电信,以及诸多大学及科研机构。
- 在商业产品中提供R语言支持的企业包括SAP、甲骨文、 Teredata、IBM、Revolution、Matlab、SAS、SPSS等。
- 2012第五届中国R语言会议(上海会场)获得大量赞助,吸引了400多人注册,到会人员几乎涉及R所有应用领域的国内知名企业。
- 2013年第六届中国R语言会议(北京,5月;上海,1112月)。

Pros and Cons

The best thing about R is that it was developed by statisticians. The worst thing about R is that...it was developed by statisticians.

--- Bo Cowgill

- Overview
- Quick Get Started
 - Hello R!
 - Development Environment
 - References
- Syntax
- Object-Oriented Programming
- Data Visualization

- Overview
 - Data Analysis
 - Data Aanlysis and R
- Quick Get Started
 - Hello R!
 - Development Environment
 - References
- Syntax
 - Data Types
 - Programming Structures
 Control Statements
 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output

Hello R!

```
print("Hello R!")
## [1] "Hello R!"
```

Hello Plot

```
plot(rnorm(100),rnorm(100))
```


Next

R

- Overview
 - Data Analysis
 - Data Aanlysis and R
- Quick Get Started
 - Hello R!
 - Development Environment
 - References
- Syntax
 - Data Types
 - Programming Structures
 Control Statements
 - Control Statement
 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output

Download and Installation

Download

CRAN

Installation

- R: Linux, Mac OS, Windows
- Rtools: Windows
- packages: CRAN, devtools, github, local file

Editors and IDEs

Editors

- R terminal
- Rgui
- VIM + Vim-R-plugin
- Emacs + ESS
- Notepad++ + NppToR
- **.**..

R Terminal and Rgui

R

R

- Ctrl + R: run
- Tab: auto complete
- arrow up and down: history

R and Texteditor

- copy and paste
- source("source.R")

source

```
sourceDir <- function(path, trace = TRUE, ...) {
    for (nm in list.files(path, pattern = "[.][RrSsQq]$")) {
        if(trace) cat(mm,":")
        source(file.path(path, nm), ...)
        if(trace) cat("\n")
    }
}</pre>
```

Hong Kong

VIM + Vim-R-plugin

```
zzz.R RNA-Seq.R
                                                                              g9 0.1416941
               x, Rowv = NULL, Colv = if (symm) "Rowv" else NULL, distfun, hclust
                                                                              g10 0.5772262 0.3061073
                                                                              > as.matrix(c)[1:4,1:4]
 -fmcsR-manual
  -Rdlatex.log
                                                                           All q1 1.0000000 -0.7240061 0.8050921 0.2327069
                                                                              g2 -0.7240061 1.0000000 -0.5586679 -0.7823333
mypackage.Rche
                 matrix(rnorm(50), 10, 5, dimnomes=list(paste("a", 1:10, sep="
 #00_pkg_src/
                                                                              q3 0.8050921 -0.5586679 1.0000000 0.2567203
 +mypackage/
               hr <- hclust(as.dist(1-cor(t(y), method="pearson")), method="compl|q4 0.2327069 -0.7823333 0.2567293 1.0000000
 -00check.log
               hc <- hclust(as.dist(1-cor(v, method="spearman")), method="complet
                                                                                          t1
                                                                                                     t2
  -mypackage-Ex
               ## Plot heatman
                                                                                   -0.2608109 -2.1287458 0.5436205 -0.1962956 0.5136432
               heatmap.2(y, Roww-as.dendrogram(hr), Colv-as.dendrogram(hc), scale a2
                                                                                  -2.0478162 -0.2318061 -2.1907113 -0.9185012 -1.1459074
  -mypackage-Exi ## Return matrix with row/column sorting as in heatmap
                                                                                  -0.1814785 -0.5137189 1.2004188 -0.2185163 0.9562711
mypackage/
               y[rev(hr$labels[hr$order]), hc$labels[hc$order]]
                                                                                   0.2493454 -0.5782053 0.7562372 -0.6441311 -1.0792957
               heat.colors
                                                                                   0.1082261 -1.8310231 -0.3319702 0.5535095 0.0165956
  -colAq.Rd
               heat.colors function grDevices
                                                                                   0.2596634 -0.8048402 -0.3751721 -0.6061271 -1.4533725
                                                                                   0.4497986 -0.6475571 1.1905096 1.2794214 0.1432148
    mypackage-
                          function stats
               fmcs(sdfset[[1]], sdfset[[2]], fast=T)
                                                                                  -1.0501454 -0.3717143 0.2831488 -1.6238084 0.3429913
   -myfct.R
               result <- fmcs(sdfset[[1]], sdfset[[2]])
                                                                                  -0.7831244 0.8490208 1.1253892 -0.4341535 0.6912465
               mcs <- fmcs(sdfset[[1]], sdfset[[2]], au=2, bu=1, matching.mode="a|q10 -1.7273262 0.3621398 2.2920425 -0.9175735 -1.6735589
               ncs
  -Read-and-del|script2.R [+]
 fmcsR_1.0.tar.
-iitter.png
                                                                              heatmap.2
                                                                                                      package:aplots
                                                                                                                                   R Documentatio
matrix.xls
                myfct.R
                ## code chunk number 3: dist2
                mypackage_1.0.
                                                                              Enhanced Heat Map
notes.R
                <- cor(t(y), method="pearson")
overLapper.R
               as.matrix(c)[1:4,1:4]
                                                                              Description:
-rangeoverlappe
RNA-Seq.R
                                                                                   A heat map is a false color image (basically 'image(t(x))') with
script1.R
                         ............
script2.R
                                                                                   dendrogram added to the left side and/or to the top. Typically,
-SDFstreamer.R
                                                                                   reordering of the rows and columns according to some set of valu
test.sdf
               d \leftarrow as.dist(1-c)
test.svq
               as.matrix(d)[1:4,1:4]
                                                                                   (row or column means) within the restrictions imposed by the
tips_and_trick
                                                                                   dendrogram is carried out.
-ZZZ.R
777 Rda
                                                                                   This heatmap provides a number of extensions to the standard R
                                                                                    'heatmap' function.
                      P) Back at original
                                                                                                                                                  of Hong Kong
               1:bash 2:mutt 3:cal 4:screenshell* 5:Rscript 6:latex 7:bibtex 8:tasks-
                                                                                                          "Thomas-Girkes-MacBook-" 08:10 27-Jan-
```

Notepad++ + NppToR

```
*C:\Program Files\Notepad++\test.r - Notepad++
                                                                                 File Edit Search View Encoding Language Settings Macro Run TextFX Plugins Window ?
  est.r
      A=matrix(c(1,2,3,3,4,3,2,1,1),3,3)
      b=c(3,2,1)
      x=solve(A,b)
User Define 57 chars 65 bytes 5 lines
                                Ln:1 Col:1 Sel:0 (0 bytes) in 0 ranges
                                                                Dos\Windows ANSI
                                                                                   INS
```

Emacs + ESS

What is ESS?

ESS: Emacs Speak Statistics

IDEs

R

IDEs

- RStudio: local and cloud-based
- TinnR
- StatET: eclipse for R
- •

RStudio

- Overview
 - Data Analysis
 - Data Aanlysis and R
- **Quick Get Started**
 - Hello R!
 - Development Environment
 - References
- **Syntax**
 - Data Types
 - Programming Structures Control Statements
 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output Object-Oriented Programming

Books

- R in action (also in Chinese)
- Introduction to R (also in Chinese)
- R for beginner (also in Chinese)
- R in a Nutshell (also in Chinese)
- The art of R programming (also in Chinese)
- ggplot2. Elegant Graphics for Data Analysis (also in Chinese)

4 D > 4 B > 4 B > 4 B > 9 Q P

R-project and CRAN

- COS.name (Chinese)
- Quick-R
- http://had.co.nz/, Hadley Wickham
- Twitter, github, RForge
- Google

Websites

- R-project and CRAN
- COS.name (Chinese)
- Quick-R
- http://had.co.nz/, Hadley Wickham
- Twitter, github, RForge
- Google Baidu?

Journals

- The R Journal
- Journal of Statistical Software

- **Syntax**
 - Data Types
 - Programming Structures
 - Control Statements
 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output

- Overview
 - Data Analysis
 - Data Aanlysis and R
- Quick Get Started
 - Hello R!
 - Development Environment
 - References
- Syntax
 - Data Types
 - Programming Structures
 Control Statements
 - Control Statements
 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output

Class, Type and Dimension

Class, Type and Dimension

Everything in R is a object, every object has class, type and dimension.

```
class(obj)
typeof(obj)
dim(obj)
```

Data Types

```
obj <- 1
class(obi)
## [1] "numeric"
obj <- "Gang Chen"
class(obi)
## [1] "character"
obj <- 1:3
class(obj)
## [1] "integer"
ranges <- GRanges(seqnames = c("chr1", "chr2"),
ranges = IRanges(start = c(1013, 4351),
end = c(2314, NA), width = c(NA, 1)),
strand = c("+", "-"))
class(ranges)
## [1] "GRanges"
## attr(,"package")
## [1] "GenomicRanges"
```

```
class(list(a = 1, b = 2))
## [1] "list"
 class(matrix(1:16, ncol=4))
## [1] "matrix"
 class(array(1:64, c(4,4,4)))
## [1] "array"
 obj <- as.data.frame(obj)</pre>
 class(obj)
## [1] "data.frame"
 obj <- as.factor(c("male", "female"))</pre>
 class(obj)
## [1] "factor"
```

ng Kong

Types

```
obj <- 1
  class(obj)
## [1] "numeric"
  obj <- 1:3
  class(obj)
## [1] "integer"
  obj <- 1+2i
  class(obj)
## [1] "complex"</pre>
```

Operations

Operators

- +, -, *, /, ==, =, <-
 - ^
- exp(), log(), log10(), log2()
- sqrt(), abs(), sin(), cos()
- round(), floor(), ceriling()
- factorial()

Character

A character object is used to represent string values in R.

```
fname <- "Gang"
lname <- "Chen"
class(fname)
## [1] "character"</pre>
```

```
myPI <- 3.14
class(myPI)

## [1] "numeric"

myPI <- as.character(myPI)
class(myPI)

## [1] "character"</pre>
```

Character Operators

```
paste(fname, lname)
## [1] "Gang Chen"
substr("I am learning R", start=6, stop=13)
## [1] "learning"
sub("I am", "We are", "I am learning R")
## [1] "We are learning R"
```

Regular Expression

Regular Expressions == Problem

Some people,
when confronted with a problem,
think "I know, I'll use regular
expressions."
Now they have two problems.

Regular Expression in R

Regular Expression Functions

```
help(regex)
grep(), grepl(), regexpr(), gregexpr(), sub(), gsub()
```

Example

```
grep("a.", c("Gang","Chen","aab", "Ag","ga"))
## [1] 1 3
```

Logical

```
u = TRUE; v = FALSE
u & v # u AND v
## [1] FALSE
u I v # u OR v
## [1] TRUE
 !u # negation of u
## [1] FALSE
```

$$4.3 - 0.7 == 3.6$$

$$0.7 + 3.6 == 4.3$$

$$0.7 * 6$$

$$4.2 / 6 == 0.7$$

Vector

A vector is a sequence of data elements of the same basic type.

```
a = c(1,2,3)
b = c(T, F, F, T)
chars = c("Gang", "Chen", "AA", "Aa", "aB")
```

Arithmetic operations of vectors are performed memberwise.

```
All operators are applied to vectors
 a^2
## [1] 1 4 9
 ! b
## [1] FALSE TRUE TRUE FALSE
 grep("a.",chars)
## [1] 1 5
```

of Hong Kong

Vector Arithmetic

```
a = c(1,2,3,4,5)
 b = c(5,4,3,2,1)
 c(a, b)
## [1] 1 2 3 4 5 5 4 3 2 1
 a + b
## [1] 6 6 6 6 6
 a * b
## [1] 5 8 9 8 5
```

Recycling Rule:

$$d = c(1,2)$$

$$a + d$$

Hong Kong

Vector Index

```
a = c("one", "two", "three", "four", "five")
a[3]
## [1] "three"
a[2:4]
## [1] "two" "three" "four"
a[-3]
## [1] "one" "two" "four" "five"
a[8]
```

Hong Kong

Matrix Construction

```
mat = matrix(1:24, ncol=6, nrow=4, byrow=T)
mat
      [,1] [,2] [,3] [,4] [,5] [,6]
##
  [1,]
                 3
##
      7 8 9 10 11 12
##
  [2,]
  [3,]
      13 14 15 16 17 18
##
## [4,]
      19
            20
                21
                    22
                         23
                             24
```

Matrix Index

```
mat[3,3]
## [1] 15
mat [2,]
## [1] 7 8 9 10 11 12
mat[,4]
      4 10 16 22
```

```
mat[2:3, 3:4]
       [,1] [,2]
##
## [1,] 9 10
## [2,] 15 16
dim(mat)
## [1] 4 6
ncol(mat)
## [1] 6
nrow(mat)
```

[2,]

[3,]

[4,]

##

##

##

4

9

16

36

49

64

100

121

144

196

225

256

Matrix Arithmetic

```
Α
                                   В
##
         [,1] [,2] [,3] [,4]
                                  ##
                                           [,1] [,2] [,3] [,4]
   [1,]
                                                    5
##
                  5
                            13
                                  ##
                                     [1,]
                                                              13
                                      [2,]
                                                    6
                                                              14
   [2,]
                  6
                      10
                            14
                                  ##
                                                         10
##
                                     [3,]
##
   [3,]
                      11
                            15
                                  ##
                                                         11
                                                              15
   [4,]
            4
                  8
                      12
                            16
                                     [4,]
                                                    8
                                                         12
                                                               16
##
                                  ##
 Α
   * B
                                   A %*% B
         [,1]
              [,2] [,3]
                                           [,1]
                                                 [,2] [,3] [,4]
##
                         [,4]
                                  ##
##
   [1,]
                25
                      81
                           169
                                      [1,]
                                             90
                                                  202
                                                       314
                                                             426
                                  ##
```

[2,]

[3,]

[4,]

##

##

##

100

110

120

228

254

280

356

398

440

484

542 ng Kong

600 ac

List

A list is a generic vector containing other objects.

```
X
                                ## [[1]]
                                ## [1] 2 3 5
                                ##
n = c(2, 3, 5)
                                   [[2]]
s = c("aa", "bb", "cc", "dd",
                                ## [1] "aa" "bb" "cc" "dd" "ee"
b = c(TRUE, FALSE, TRUE, FALSE: ##
x = list(n, s, b, 3)
                                  [[3]]
                                ##
                                  [1] TRUE FALSE TRUE FALSE FA
                                ##
                                   [[4]]
                                ## [1] 3
```

List Slice

```
x[1]
## [[1]]
## [1] 2 3 5
x[c(2,4)]
   [[1]]
##
   [1] "aa" "bb" "cc" "dd" "ee"
##
  [[2]]
##
## [1] 3
```

List Member

```
x[[3]]
## [1] TRUE FALSE TRUE FALSE FALSE
x[3]
## [[1]]
## [1] TRUE FALSE TRUE FALSE FALSE
```

Data Frame

A data frame is used for storing data tables. It is a list of vectors of equal length.

Data Frame

```
mtcars[1,2]
## [1] 6
mtcars["Mazda RX4", "wt"]
## [1] 2.62
ncol(mtcars)
## [1] 11
nrow(mtcars)
## [1] 32
```

Factor

```
gender <- c("male", "female")
class(gender)

## [1] "character"

gender <- as.factor(gender)
class(gender)

## [1] "factor"</pre>
```

Factor

```
group \leftarrow c(1, 2)
 group[1] < group[2]</pre>
## [1] TRUE
 class(group)
## [1] "numeric"
 group <- as.factor(group)</pre>
 group[1] < group[2]</pre>
## Warning in Ops.factor(group[1], group[2]): '<' not</pre>
meaningful for factors
                                                                  of Hong Kong
```

[1] NA

Next

- Overview
 - Data Analysis
 - Data Aanlysis and R
- **Quick Get Started**
 - Hello R!
 - Development Environment
 - References
- Syntax
 - Data Types
 - Programming Structures
 - Control Statements
 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output

If else

R

```
if(something){
    # do something
}else if(something){
    # do something
}else{
    # do something
}
```

ifelse

```
ifelse(test, yes, no)
```

```
a <- c(2,3,4,2,5,6,7,12)

ifelse(a\%2==0, a+1, 0)

## [1] 3 0 5 3 0 7 0 13
```

Loop

R

```
for (var in seq) expr
while(cond) expr
repeat
break
next
```

Programming Structures

Loop

```
for(i in a){
   if(i %% 2 == 0){
     print(i + 1)
   }else{
     print(0)
   [1] 3
##
   [1] 0
##
## [1] 5
## [1] 3
   [1] 0
##
   [1] 7
##
##
```

apply functions

```
apply()
lapply()
sapply()
tapply()
```

Next

- Overview
 - Data Analysis
 - Data Aanlysis and R
- **Quick Get Started**
 - Hello R!
 - Development Environment
 - References
- **Syntax**
 - Data Types
 - Programming Structures Control Statements
 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output

Function

```
add <- function(a, b){
  a+b
add(1, 2)
## [1] 3
sapply(1:8, add, 3)
## [1] 4 5 6 7 8 9 10 11
```

```
sapply(1:8, function(a, b){a+b}, 3)
## [1] 4 5 6 7 8 9 10 11
```

Next

- Overview
 - Data Analysis
 - Data Aanlysis and R
- **Quick Get Started**
 - Hello R!
 - Development Environment
 - References
- **Syntax**
 - Data Types
 - Programming Structures Control Statements
 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output

Standard I/O

```
scan()
print()
cat()
```

File I/O

```
Input

read.table()
readLines()
readChar()
readBin()
scan()
```

```
Output
write.table()
write()
```

Database I/O

```
library(RMySQL) # for MySQL
library(RPostgreSQL) # for PostgreSQL
library(XLConnect) # for Excel
```

Next

- Overview
- Quick Get Started
- Syntax
- Object-Oriented Programming
 - History
 - S3
 - S4
- Data Visualization

Next

R

- Overview
 - Data Analysis
 - Data Aanlysis and R
- Quick Get Started
 - Hello R!
 - Development Environment
 - References
- Syntax
 - Data Types
 - Programming Structures
 Control Statements
 - Control Statements
 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output

S4 Classes and methods

History

- 1976, Rick Becker and John Chambers, S on Honeywell OS
- Ported to UNIX, S2
- Around 1986, functional programming and object self-description, S3
- 1992, concept of classes and methods, S4
- 2010, Reference Classes (RC), R 2.12

appendix in Software for Data Analysis by Chambers

S4 Classes and methods

OO Systems in R

- S3
- S4
- RC
- Base Types

Best Reference: http://adv-r.had.co.nz/OO-essentials.html

S3

R

S4 Classes and methods

S4 in R

```
library(stats4)
library(pryr)
## Error in library(pryr): there is no package called 'pryr'
y \leftarrow c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
nLL <- function(lambda) -sum(dpois(y, lambda, log = TRUE))</pre>
fit <- mle(nLL, start = list(lambda = 5), nobs = length(y))
isS4(fit)
## [1] TRUE
 otype(fit)
## Error in eval(expr, envir, enclos): "otype"
isS4(nobs)
```

Hong Kong

S4 Classes and methods

Defining classes and creating objects

```
setClass("Person",
 slots = list(name = "character", age = "numeric"))
setClass("Employee",
 slots = list(boss = "Person"),
 contains = "Person")
alice <- new("Person", name = "Alice", age = 40)
john <- new("Employee", name = "John", age = 20, boss = alice)</pre>
```

S4 Classes and methods

access slots of an S4 object

```
alice@age
slot(john, "boss")
```

History

R

Creating new methods and generics

```
setGeneric("union")
setMethod("union",
    c(x = "data.frame", y = "data.frame"),
    function(x, y) {
        unique(rbind(x, y))
    }
)
setGeneric("myGeneric", function(x) {
    standardGeneric("myGeneric")
})
```

- **Data Visualization**
 - Scatter Plot
 - 时间序列
 - 柱状图

- Overview
 - Data Analysis
 - Data Aanlysis and R
- **Quick Get Started**
 - Hello R!
 - Development Environment
 - References
- **Syntax**
 - Data Types
 - Programming Structures Control Statements
 - Function

 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output

plot

plot

```
x = rnorm(100)
y = rnorm(100)
plot(x, y)
```


dotchart

```
x = rnorm(30)
dotchart(x, groups = rep(1:3,10))
```


- Overview
 - Data Analysis
 - Data Aanlysis and R
- **Quick Get Started**
 - Hello R!
 - Development Environment
 - References
- **Syntax**
 - Data Types
 - Programming Structures Control Statements
 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output

- Overview
 - Data Analysis
 - Data Aanlysis and R
- **Quick Get Started**
 - Hello R!
 - Development Environment
 - References
- **Syntax**
 - Data Types
 - Programming Structures Control Statements

 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output

barplot

barplot(x[1:20])

barplot

barplot(x[1:20], width=2, horiz=T, col=rainbow(10))

- Overview
 - Data Analysis
 - Data Aanlysis and R
- **Quick Get Started**
 - Hello R!
 - Development Environment
 - References
- **Syntax**
 - Data Types
 - Programming Structures Control Statements

 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output Object-Oriented Programming

pie

```
pie(c(10,10,10,20,30,20), c("Nature", "Science", "Cell", "NG",
Cancer", "Other"), col=2:7)
```


pie

```
## Error in library(plotrix): there is no package
called 'plotrix'
pie3D(c(10,10,10,20,30,20), labels=c("Nature", "Science", "Ce
Cancer", "Other"), col=2:7)
## Error in eval(expr, envir, enclos): "pie3D"
```

- Overview
 - Data Analysis
 - Data Aanlysis and R
- Quick Get Started
 - Hello R!
 - Development Environment
 - References
- Syntax
 - Data Types
 - Programming Structures
 - Control Statements
 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output

cdplot

cdplot(temperature, fail)

cdplot(temperature, fail, col=c("green", "red"))

mosaicplot

```
require(stats)
mosaicplot(Titanic, main = "Survival on the Titanic",
color = TRUE)
```


- Overview
 - Data Analysis
 - Data Aanlysis and R
- **Quick Get Started**
 - Hello R!
 - Development Environment
 - References
- **Syntax**
 - Data Types
 - Programming Structures
 - Control Statements
 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output Object-Oriented Programming

hist

hist

hist(rnorm(10000), breaks=100)

density + rug

```
x = rnorm(1000)
plot(density(x))
rug(x)
```


Q-Q plot

qqnorm(rnorm(10000))

- Overview
 - Data Analysis
 - Data Aanlysis and R
- **Quick Get Started**
 - Hello R!
 - Development Environment
 - References
- Syntax
 - Data Types
 - Programming Structures Control Statements

 - Function
 - Input and Output
 - Standard Input and Output
 - File Input and Output
 - Database Input and Output Object-Oriented Programming

箱线图

R

boxplot

boxplot(rnorm(1000))

boxplot

boxplot(cbind(rnorm(1000),rnorm(1000)+rnorm(1000)), col=c('

next

- R package
 - R package development
 - devtools
- Bioconductor
- Reproducible Research in R
- Advanced Topics
 - Machine Learning
 - Interactive Report
 - Big Data