

Robot Operation System (ROS)

O ROS é um framework para desenvolvimento de softwares robóticos, que visa facilitar a criação de complexos e robustos comportamento de máquinas, provido de bibliotecas, ferramentas, simuladores, entre outros.

Permite a execução de vários programas e estabelece comunicações entre eles.

O núcleo do ROS é chamado de roscore, e é o primeiro programa que deve ser executado

Grafo Esquemático

Nós e Tópicos

A representação do funcionamento da relação entre os Nós e Tópicos do software pode ser representada por meio de um grafo.

Cada nó é um programa que pode receber ou enviar dados para outros programas, sendo os dados enviados chamados de tópicos.

Um mesmo Nó pode receber e enviar vários tópicos, e um mesmo Tópico pode receber e enviar mensagens para vários Nós, sem restrição.

Existem dois tipos de Tópicos. Os Publisher (publicar) e os Subscriber (subscrever).

Exemplo prático

Seu funcionamento é baseado em uma arquitetura de controle distribuída, onde cada objeto/modelo pode ser controlado separadamente via um script, plugin, algum API remoto entre outros.

Isto torna o V-rep ideal para aplicações com vários robôs e diferentes linguagens de controle: C/C++, Python, Java, Lua, Matlab e Octave.

O V-rep pode ser utilizado em diversas plataformas e tem a vantagem de

Isso é permitido por meio de uma API (Application Programming Interface) elaborada.

Seis abordagens diferentes de programação ou codificação são suportadas, onde todas as seis são mutuamente compatíveis.

A entidade de controle de um modelo, cena ou o próprio simulador pode estar localizada em:

- Script
- add-on or the sandbox script
- Plugin
- API remoto
- ROS
- BlueZero

o módulo de dinâmica do V-REP suporta quatro mecanismos de física diferentes:

- Biblioteca de física Bullet
- Open Dynamics Engine
- Vortex Studio engine
- Newton Dynamics engine

V-REP não é um simulador de dinâmica pura. Pode ser visto como um simulador híbrido que combina cinemática e dinâmica para obter o melhor desempenho para vários cenários de simulação.

COPPELIA O ROBOTICS

Collision Detection

Fast interference checking between any meshe, octree, point cloud, or collection of those.

Minimum Distance Calculation

Fast and exact minimum distance calculation between any meshe (convex, concave, open, closed), octree, point cloud, or collection of those.

Dynamic Particles

V-REP supports customizable particles that can be used to simulate air or water jets, jet engines, propellers, etc.

Proximity Sensor Simulation

Powerful, realistic and exact volumetric proximity sensor simulation: performs an exact minimum distance calculation within a customizable detection volume. Operates on meshes, octrees and

Vision Sensor Simulation

Simulation of vision sensors with many image processing options, fully customizable and extendable (e.g. via plugin).

Building Block Concept

Anything - from sensors or actuators, to whole robotic systems - can be built within V-REP by combining basic objects and linking various functionality via embedded scripts. Every scene object can have

