Shusen Wang

Compute Fibonacci Numbers by Recursion

Definition

- F(n): the n-th Fibonacci number.
- F(1) = 1.
- F(2) = 1.
- F(n) = F(n-1) + F(n-2), for $n \ge 3$.

C/C++ Implementation

```
long F(int n) {
    if (n <= 2)
        return 1;
    else
        return F(n-1) + F(n-2);
}</pre>
```

- Recursion is slow.
- Time complexity:

$$T(n) = a^n$$
, where $a = \frac{1+\sqrt{5}}{2}$.

Trace of the recursive calculation of Fibonacci numbers:

Trace of the recursive calculation of Fibonacci numbers:

2 separate calls to compute F(n-2).

3 separate calls to compute F(n-3).

5 separate calls to compute F(n-4).

8 separate calls to compute F(n-5).

Repeatedly computing the same function is a waste of computation.

Dynamic Programming

Dynamic Programming (DP)

• Basic idea of DP: Using a table instead of recursion.

k	1	2	3	4	5	6	7	8	9	10
f(k)										

Dynamic Programming (DP)

- Basic idea of DP: Using a table instead of recursion.
- DP for Fibonacci numbers:
 - Compute F(k) only once, for $k=1,2,\cdots,n-1$.
 - Record it in a table.
 - Use F(k-2) and F(k-1) for computing F(k).

k	1	2	3	4	5	6	7	8	9	10
F(k)										

Dynamic Programming (DP)

- Basic idea of DP: Using a table instead of recursion.
- DP for Fibonacci numbers:
 - Compute F(k) only once, for $k=1,2,\cdots,n-1$.
 - Record it in a table.
 - Use F(k-2) and F(k-1) for computing F(k).

k	1	2	3	4	5	6	7	8	9	10
F(k)	1	1	2	3	5	?				

```
long fib(int n) {
     if (n == 1 || n == 2) return 1;
     long F[n + 1];
     F[1] = 1;
     F[2] = 1;
     for (int k=3; k<=n; k++)</pre>
           F[k] = F[k-1] + F[k-2];
     return F[n];
```

```
long fib(int n) {
      <u>if</u> (n == 1 || n == 2) return 1;
     long F[n + 1];
     F[2] = 1;
      for (int k=3; k<=n; k++)</pre>
            F[k] = F[k-1] + F[k-2];
      return F[n];
```

k	1	2	3	4	5	6	7	8	9	• • •
F(k)	1	1								

```
long fib(int n) {
     if (n == 1 || n == 2) return 1;
     long F[n + 1];
     F[1] = 1;
     F[2] = 1;
     for (int k=3; k<=n; k++)</pre>
           F[k] = F[k-1] + F[k-2];
     return F[n];
```

k	1	2	3	4	5	6	7	8	9	• • •
F(k)	1	1								

```
long fib(int n) {
     if (n == 1 || n == 2) return 1;
     long F[n + 1];
     F[1] = 1;
     F[2] = 1;
     for (int k=3; k<=n; k++)</pre>
           F[k] = F[k-1] + F[k-2];
     return F[n];
```

k	1	2	3	4	5	6	7	8	9	• • •
F(k)	1	1	2							

```
long fib(int n) {
     if (n == 1 || n == 2) return 1;
     long F[n + 1];
     F[1] = 1;
     F[2] = 1;
     for (int k=3; k<=n; k++)</pre>
           F[k] = F[k-1] + F[k-2];
     return F[n];
```

k	1	2	3	4	5	6	7	8	9	• • •
F(k)	1	1	2	3						

```
long fib(int n) {
     if (n == 1 || n == 2) return 1;
     long F[n + 1];
     F[1] = 1;
     F[2] = 1;
     for (int k=3; k<=n; k++)</pre>
           F[k] = F[k-1] + F[k-2];
     return F[n];
```

k	1	2	3	4	5	6	7	8	9	• • •
F(k)	1	1	2	3	5					

```
long fib(int n) {
     if (n == 1 || n == 2) return 1;
     long F[n + 1];
     F[1] = 1;
     F[2] = 1;
     for (int k=3; k<=n; k++)</pre>
           F[k] = F[k-1] + F[k-2];
     return F[n];
```

k	1	2	3	4	5	6	7	8	9	• • •
F(k)	1	1	2	3	5	8				

```
long fib(int n) {
     if (n == 1 || n == 2) return 1;
     long F[n + 1];
     F[1] = 1;
     F[2] = 1;
     for (int k=3; k<=n; k++)</pre>
           F[k] = F[k-1] + F[k-2];
     return F[n];
```

k	1	2	3	4	5	6	7	8	9	• • •
F(k)	1	1	2	3	5	8	13			

```
long fib(int n) {
     if (n == 1 || n == 2) return 1;
     long F[n + 1];
     F[1] = 1;
     F[2] = 1;
     for (int k=3; k<=n; k++)</pre>
           F[k] = F[k-1] + F[k-2];
     return F[n];
```

k	1	2	3	4	5	6	7	8	9	• • •
F(k)	1	1	2	3	5	8	13	21		

```
long fib(int n) {
     if (n == 1 || n == 2) return 1;
     long F[n + 1];
     F[1] = 1;
     F[2] = 1;
     for (int k=3; k<=n; k++)</pre>
           F[k] = F[k-1] + F[k-2];
     return F[n];
```

k	1	2	3	4	5	6	7	8	9	• • •
F(k)	1	1	2	3	5	8	13	21	34	

```
long fib(int n) {
   if (n == 1 || n == 2) return 1;
   long F[n + 1];
   F[1] = 1;
```

Time complexity: O(n)

```
F[k] = F[k-1] + F[k-2];
return F[n];
}
```

k	1	2	3	4	5	6	7	8	9	• • •
F(k)	1	1	2	3	5	8	13	21	34	• • •

Dynamic Programming

Step 1: Break a big problem into smaller sub-problems.

- Write down the recursive formula.
- E.g., F(k) = F(k-2) + F(k-1).

Step 2: Use a table instead of recursion.

- Record the solutions of the small sub-problems.
- Use the recorded solutions for solving bigger sub-problems.

Time Complexity

Input Size

Input size: the number of bits for encoding the inputs.

- Find the *n*-th Fibonacci number.
- Input size: $b = \log_2 n$ bits.

Input Size

Input size: the number of bits for encoding the inputs.

- Find the *n*-th Fibonacci number.
- Input size: $b = \log_2 n$ bits.
- Example 1: b = 13 bits for encoding n = 5678.

Input Size

Input size: the number of bits for encoding the inputs.

- Find the *n*-th Fibonacci number.
- Input size: $b = \log_2 n$ bits.
- Example 1: b = 13 bits for encoding n = 5678.
- Example 2: b = 20 bits for encoding n = 1 million.
- Example 3: b = 30 bits for encoding n = 1 billion.

Time Complexities

Input size: the number of bits for encoding the inputs.

- Find the *n*-th Fibonacci number.
- Input size: $b = \log_2 n$ bits.

Time complexity of dynamic programming is exponential:

$$O(n) = O(2^b).$$

Time Complexities

Input size: the number of bits for encoding the inputs.

- Find the *n*-th Fibonacci number.
- Input size: $b = \log_2 n$ bits.

Time complexity of recursion is double exponential:

$$O(a^n) = O\left(a^{2^b}\right).$$

Thank You!

Time Complexity of Recursion

- Time complexity: $T(n) = a^n$, where $a = \frac{1+\sqrt{5}}{2}$.
- Proof by induction:
 - Recursion: T(n) = T(n-1) + T(n-2).
 - Assume $T(n-2) = a^{n-2}$.
 - Assume $T(n-1) = a^{n-1} = a \cdot a^{n-2}$.
 - Then T(n)=T(n-1)+T(n-2) $=a^{n-2}\cdot(a+1).$ $=a^{n-2}\cdot a^2$ Why? Since $a=\frac{1+\sqrt{5}}{2}$, we have $a^2=a+1$. $=a^n.$