Optimization methods Lecture 1: Introduction. Convex sets. Convex functions

Alexandr Katrutsa

Modern State of Artificial Intelligence Masters Program Moscow Institute of Physics and Technology

What is this course about?

Basic theory

- Convex sets and convex functions
- Optimality conditions
- Introduction to duality

Numerical methods

- First order methods and their accelerated versions
- Quasi-Newton methods
- Introduction to stochastic gradient methods

The place of this course in the program

- When you train some neural network, you solve some optimization problem
- ▶ Possible issues in this process will be discussed in the course
- ▶ How to solve these issues we will also discuss

► Lectures and webinars are once a week

- ► Lectures and webinars are once a week
- ▶ Home assignments are after every lecture

- Lectures and webinars are once a week
- ► Home assignments are after every lecture
- Grading policy will be announced during webinar

- ▶ Lectures and webinars are once a week
- ► Home assignments are after every lecture
- Grading policy will be announced during webinar
- ► Lecture slides are here: https://github.com/girafe-ai/msai-optimization

References

- ► S. Boyd and L. Vandenberghe *Convex Optimization* https://web.stanford.edu/~boyd/cvxbook/
- ▶ J. Nocedal, S. J. Wright Numerical Optimization
- ▶ I. Goodfellow et al *Deep learning book*

Main steps for exploiting optimization methods in solving real-world problems:

1. Define objective function

- 1. Define objective function
- 2. Define feasible set

- 1. Define objective function
- 2. Define feasible set
- 3. Optimization problem statement and its analysis

- 1. Define objective function
- 2. Define feasible set
- 3. Optimization problem statement and its analysis
- 4. Selection of the best algorithm for the stated problem

- 1. Define objective function
- 2. Define feasible set
- 3. Optimization problem statement and its analysis
- 4. Selection of the best algorithm for the stated problem
- 5. Algorithm implementation and verification its correctness

$$\begin{aligned} \min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x}) \\ \text{s.t.} \ f_i(\mathbf{x}) &= 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) &\leq 0, \ j = p+1, \dots, m, \end{aligned}$$

$$\begin{aligned} \min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x}) \\ \text{s.t.} \ f_i(\mathbf{x}) &= 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) &\leq 0, \ j = p+1, \dots, m, \end{aligned}$$

 $\mathbf{x} \in \mathbb{R}^n$ — target vector

$$\begin{aligned} \min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x}) \\ \text{s.t.} \ f_i(\mathbf{x}) &= 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) &\leq 0, \ j = p+1, \dots, m, \end{aligned}$$

- $\mathbf{x} \in \mathbb{R}^n$ target vector
- $f_0(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ objective function

$$\begin{aligned} \min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x}) \\ \text{s.t. } f_i(\mathbf{x}) &= 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) &\leq 0, \ j = p+1, \dots, m, \end{aligned}$$

- $\mathbf{x} \in \mathbb{R}^n$ target vector
- $f_0(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$ objective function
- $f_k(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ constraint functions

▶ Given dataset: (\mathbf{x}_i, y_i) , $\mathbf{x}_i \in \mathbb{R}^n$, $y_i = \{+1, -1\}$, $i = 1, \dots, m$

▶ Given dataset: (\mathbf{x}_i, y_i) , $\mathbf{x}_i \in \mathbb{R}^n$, $y_i = \{+1, -1\}$, $i = 1, \dots, m$

► Linear classifier $\hat{y} = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$

▶ Given dataset: (\mathbf{x}_i, y_i) , $\mathbf{x}_i \in \mathbb{R}^n$, $y_i = \{+1, -1\}$, i = 1, ..., m

- Linear classifier $\hat{y} = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$
- $\begin{cases} \mathbf{w}^{\top} \mathbf{x}_i + b > 1, & y_i = +1 \\ \mathbf{w}^{\top} \mathbf{x}_i + b < -1, & y_i = -1 \end{cases}$

▶ Given dataset: (\mathbf{x}_i, y_i) , $\mathbf{x}_i \in \mathbb{R}^n$, $y_i = \{+1, -1\}$, i = 1, ..., m

• Linear classifier
$$\hat{y} = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$$

$$\begin{cases} \mathbf{w}^{\top} \mathbf{x}_i + b > 1, & y_i = +1 \\ \mathbf{w}^{\top} \mathbf{x}_i + b < -1, & y_i = -1 \end{cases}$$

$$y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) > 1$$

Q: How to define the separating hyperplane uniquely?

▶ For the support samples of every class the following holds

$$\begin{cases} \mathbf{w}^{\top} \mathbf{x}_k + b = 1, & y_k = +1 \\ \mathbf{w}^{\top} \mathbf{x}_j + b = -1, & y_j = -1 \end{cases}$$

▶ For the support samples of every class the following holds

$$\begin{cases} \mathbf{w}^{\top} \mathbf{x}_k + b = 1, & y_k = +1 \\ \mathbf{w}^{\top} \mathbf{x}_j + b = -1, & y_j = -1 \end{cases}$$

▶ Distance between parallel hyperplanes $\mathbf{w}^{\top}\mathbf{x} + b = c_1$ and $\mathbf{w}^{\top}\mathbf{x} + b = c_2$:

$$d = \frac{|c_1 - c_2|}{\|\mathbf{w}\|_2} = \frac{2}{\|\mathbf{w}\|_2}$$

▶ For the support samples of every class the following holds

$$\begin{cases} \mathbf{w}^{\top} \mathbf{x}_k + b = 1, & y_k = +1 \\ \mathbf{w}^{\top} \mathbf{x}_j + b = -1, & y_j = -1 \end{cases}$$

▶ Distance between parallel hyperplanes $\mathbf{w}^{\top}\mathbf{x} + b = c_1$ and $\mathbf{w}^{\top}\mathbf{x} + b = c_2$:

$$d = \frac{|c_1 - c_2|}{\|\mathbf{w}\|_2} = \frac{2}{\|\mathbf{w}\|_2}$$

 We want to maximize this distance or margin between two classes

▶ For the support samples of every class the following holds

$$\begin{cases} \mathbf{w}^{\top} \mathbf{x}_k + b = 1, & y_k = +1 \\ \mathbf{w}^{\top} \mathbf{x}_j + b = -1, & y_j = -1 \end{cases}$$

▶ Distance between parallel hyperplanes $\mathbf{w}^{\top}\mathbf{x} + b = c_1$ and $\mathbf{w}^{\top}\mathbf{x} + b = c_2$:

$$d = \frac{|c_1 - c_2|}{\|\mathbf{w}\|_2} = \frac{2}{\|\mathbf{w}\|_2}$$

► We want to maximize this distance or margin between two classes

The final optimization problem

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|_2^2$$

s.t.
$$y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) > 1, i = 1, ..., m$$

Optimal separating hyperplane

Definition

A point \mathbf{x}^* is called a point of **global** minimum, if $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ for all \mathbf{x} from the feasible set.

Definition

A point x^* is called a point of **global** minimum, if $f(x) \ge f(x^*)$ for all x from the feasible set.

Definition

A point \mathbf{x}^* is called a point of **local** minimum, if $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ for all \mathbf{x} from some neighborhood of point \mathbf{x}^* and from feasible set.

Definition

A point \mathbf{x}^* is called a point of **global** minimum, if $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ for all \mathbf{x} from the feasible set.

Definition

A point \mathbf{x}^* is called a point of **local** minimum, if $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ for all \mathbf{x} from some neighborhood of point \mathbf{x}^* and from feasible set.

Another form of problem statement

$$\mathbf{x}^* = \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$
 $f_j(\mathbf{x}) \leq 0, \ j = p+1, \dots, m,$

How to solve such problems?

In general case:

- Very hard to solve
- randomized algorithms give a trade-off between running time and robustness of approximate solution

How to solve such problems?

In general case:

- Very hard to solve
- randomized algorithms give a trade-off between running time and robustness of approximate solution

However, some classes of optimization problems can be solved very efficiently

How to solve such problems?

In general case:

- Very hard to solve
- randomized algorithms give a trade-off between running time and robustness of approximate solution

However, some classes of optimization problems can be solved very efficiently

- Linear programming
- Linear least-squares problems
- Low-rank approximation problem
- Convex optimization

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \ & ext{s.t.} \ f_i(\mathbf{x}) \leq 0, \ i=1,\ldots,m \ & \mathbf{A}\mathbf{x} = \mathbf{b} \end{aligned}$$

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \ & ext{s.t.} \ f_i(\mathbf{x}) \leq 0, \ i=1,\ldots,m \ & \mathbf{A}\mathbf{x} = \mathbf{b} \end{aligned}$$

 $ightharpoonup f_0, f_i$ — convex functions:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

where $\alpha, \beta \geq 0$ and $\alpha + \beta = 1$.

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \ & ext{s.t.} \ f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m \ & \mathbf{A}\mathbf{x} = \mathbf{b} \end{aligned}$$

▶ f_0, f_i — convex functions:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

where $\alpha, \beta \geq 0$ and $\alpha + \beta = 1$.

no analytical solution

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \ & ext{s.t.} \ f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m \ & \mathbf{A}\mathbf{x} = \mathbf{b} \end{aligned}$$

▶ f_0, f_i — convex functions:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

where $\alpha, \beta \geq 0$ and $\alpha + \beta = 1$.

- no analytical solution
- efficient algorithms

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \ & ext{s.t.} \ f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m \ & \mathbf{A}\mathbf{x} = \mathbf{b} \end{aligned}$$

• f_0, f_i — convex functions:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

where $\alpha, \beta \geq 0$ and $\alpha + \beta = 1$.

- no analytical solution
- efficient algorithms
- special modeling helps to convert such problems to some standard form

Why convexity is so important?

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

Why convexity is so important?

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

Local minimum is also global minimum

Why convexity is so important?

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- ► Local minimum is also global minimum
- Necessary optimality condition is also sufficient

Definition

A set $\mathcal{X} \subseteq \mathbb{R}^n$ is convex if for all $\alpha \in [0,1]$ and for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ the following holds

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}.$$

Definition

A set $\mathcal{X} \subseteq \mathbb{R}^n$ is convex if for all $\alpha \in [0,1]$ and for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ the following holds

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}.$$

Examples

► Polyhedron

Definition

A set $\mathcal{X} \subseteq \mathbb{R}^n$ is convex if for all $\alpha \in [0,1]$ and for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ the following holds

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}.$$

Examples

- Polyhedron
- Hyperplanes

Definition

A set $\mathcal{X} \subseteq \mathbb{R}^n$ is convex if for all $\alpha \in [0,1]$ and for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ the following holds

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}.$$

Examples

- Polyhedron
- Hyperplanes
- ▶ Balls in *any proper* norm and ellipsoids

Definition

A set $\mathcal{X} \subseteq \mathbb{R}^n$ is convex if for all $\alpha \in [0,1]$ and for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ the following holds

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}.$$

Examples

- Polyhedron
- Hyperplanes
- Balls in any proper norm and ellipsoids
- Set of symmetric and non-negative definite matrices

Theorem

Intersection of finite or infinite number of convex sets \mathcal{X}_i is a convex set:

$$\mathcal{X} = \bigcap_{i \in \mathcal{I}} \mathcal{X}_i.$$

Theorem

Intersection of finite or infinite number of convex sets X_i is a convex set:

$$\mathcal{X} = \bigcap_{i \in \mathcal{I}} \mathcal{X}_i.$$

Proof

▶ Consider $\mathbf{x}, \mathbf{y} \in \mathcal{X} \to \mathbf{x}, \mathbf{y} \in \mathcal{X}_i, \forall i \in \mathcal{I}$

Theorem

Intersection of finite or infinite number of convex sets X_i is a convex set:

$$\mathcal{X} = \bigcap_{i \in \mathcal{I}} \mathcal{X}_i.$$

- ▶ Consider $\mathbf{x}, \mathbf{y} \in \mathcal{X} \rightarrow \mathbf{x}, \mathbf{y} \in \mathcal{X}_i, \forall i \in \mathcal{I}$
- ▶ Consider point $\mathbf{z} = \alpha \mathbf{x} + (1 \alpha) \mathbf{y}$, $\alpha \in [0, 1]$

Theorem

Intersection of finite or infinite number of convex sets X_i is a convex set:

$$\mathcal{X} = \bigcap_{i \in \mathcal{I}} \mathcal{X}_i.$$

- ▶ Consider $\mathbf{x}, \mathbf{y} \in \mathcal{X} \to \mathbf{x}, \mathbf{y} \in \mathcal{X}_i, \forall i \in \mathcal{I}$
- ▶ Consider point $\mathbf{z} = \alpha \mathbf{x} + (1 \alpha) \mathbf{y}$, $\alpha \in [0, 1]$
- ▶ Since \mathcal{X}_i is convex for all $i \in \mathcal{I}$, $\mathbf{z} \in \mathcal{X}_i$, $\forall i \in \mathcal{I}$

Theorem

Intersection of finite or infinite number of convex sets \mathcal{X}_i is a convex set:

$$\mathcal{X} = \bigcap_{i \in \mathcal{I}} \mathcal{X}_i.$$

- ▶ Consider $\mathbf{x}, \mathbf{y} \in \mathcal{X} \to \mathbf{x}, \mathbf{y} \in \mathcal{X}_i, \forall i \in \mathcal{I}$
- ▶ Consider point $\mathbf{z} = \alpha \mathbf{x} + (1 \alpha) \mathbf{y}$, $\alpha \in [0, 1]$
- ▶ Since \mathcal{X}_i is convex for all $i \in \mathcal{I}$, $\mathbf{z} \in \mathcal{X}_i$, $\forall i \in \mathcal{I}$
- ▶ Therefore, $z \in \mathcal{X}$ and \mathcal{X} is convex set

Theorem

If the domain of any linear map is convex, then the image of this map is also convex.

Proof

▶ Let \mathcal{X} be a convex set and $\mathbf{x}, \mathbf{y} \in \mathcal{X}$

Theorem

If the domain of any linear map is convex, then the image of this map is also convex.

- ▶ Let \mathcal{X} be a convex set and $\mathbf{x}, \mathbf{y} \in \mathcal{X}$
- ▶ Let f be a linear map: $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$

Theorem

If the domain of any linear map is convex, then the image of this map is also convex.

- ▶ Let \mathcal{X} be a convex set and $\mathbf{x}, \mathbf{y} \in \mathcal{X}$
- ▶ Let f be a linear map: $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$
- ▶ Show that $\alpha f(\mathbf{x}) + (1 \alpha)f(\mathbf{y}) \in f(\mathcal{X})$, where $\alpha \in [0, 1]$

Theorem

If the domain of any linear map is convex, then the image of this map is also convex.

- ▶ Let \mathcal{X} be a convex set and $\mathbf{x}, \mathbf{y} \in \mathcal{X}$
- ▶ Let f be a linear map: $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$
- ▶ Show that $\alpha f(\mathbf{x}) + (1 \alpha)f(\mathbf{y}) \in f(\mathcal{X})$, where $\alpha \in [0, 1]$
- Indeed,

$$\alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) = \alpha(\mathbf{A}\mathbf{x} + \mathbf{b}) + (1 - \alpha)(\mathbf{A}\mathbf{y} + \mathbf{b}) = \mathbf{A}(\alpha\mathbf{x} + (1 - \alpha)\mathbf{y}) + \mathbf{b} = \mathbf{A}\mathbf{z} + \mathbf{b} = f(\mathbf{z}),$$

where
$$\mathbf{z} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}$$

Theorem

Minkowski sum of two convex sets is convex set.

Theorem

Minkowski sum of two convex sets is convex set.

Proof

▶ Let $\mathcal{X}_1, \mathcal{X}_2$ be convex sets. Consider

$$\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in \mathcal{X}_1, \ \mathbf{x}_2 \in \mathcal{X}_2\}$$

Theorem

Minkowski sum of two convex sets is convex set.

- ▶ Let $\mathcal{X}_1, \mathcal{X}_2$ be convex sets. Consider $\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in \mathcal{X}_1, \ \mathbf{x}_2 \in \mathcal{X}_2\}$
- Let $\hat{\mathbf{x}} = \hat{\mathbf{x}}_1 + \hat{\mathbf{x}}_2$ and $\tilde{\mathbf{x}} = \tilde{\mathbf{x}}_1 + \tilde{\mathbf{x}}_2$ belong to \mathcal{X} . Show that
 - Let $\mathbf{x}=\mathbf{x}_1+\mathbf{x}_2$ and $\mathbf{x}=\mathbf{x}_1+\mathbf{x}_2$ belong to $\mathcal X$. Show that $\alpha\hat{\mathbf{x}}+(1-\alpha)\tilde{\mathbf{x}}\in\mathcal X$

Theorem

Minkowski sum of two convex sets is convex set.

- ▶ Let $\mathcal{X}_1, \mathcal{X}_2$ be convex sets. Consider $\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in \mathcal{X}_1, \ \mathbf{x}_2 \in \mathcal{X}_2\}$
- Let $\hat{\mathbf{x}} = \hat{\mathbf{x}}_1 + \hat{\mathbf{x}}_2$ and $\tilde{\mathbf{x}} = \tilde{\mathbf{x}}_1 + \tilde{\mathbf{x}}_2$ belong to \mathcal{X} . Show that $\alpha \hat{\mathbf{x}} + (1 \alpha)\tilde{\mathbf{x}} \in \mathcal{X}$
- Indeed, $\alpha \hat{\mathbf{x}} + (1-\alpha)\tilde{\mathbf{x}} = [\alpha \hat{\mathbf{x}}_1 + (1-\alpha)\tilde{\mathbf{x}}_1] + [\alpha \hat{\mathbf{x}}_2 + (1-\alpha)\tilde{\mathbf{x}}_2] = \mathbf{y}_1 + \mathbf{y}_2,$ where $\mathbf{y}_1 \in C_1$ and $\mathbf{y}_2 \in C_2$ since sets C_1, C_2 are convex.

Theorem

Minkowski sum of two convex sets is convex set.

Proof

- ▶ Let $\mathcal{X}_1, \mathcal{X}_2$ be convex sets. Consider $\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in \mathcal{X}_1, \ \mathbf{x}_2 \in \mathcal{X}_2\}$
- Let $\hat{\mathbf{x}} = \hat{\mathbf{x}}_1 + \hat{\mathbf{x}}_2$ and $\tilde{\mathbf{x}} = \tilde{\mathbf{x}}_1 + \tilde{\mathbf{x}}_2$ belong to \mathcal{X} . Show that $\alpha \hat{\mathbf{x}} + (1 \alpha)\tilde{\mathbf{x}} \in \mathcal{X}$
- Indeed, $\alpha \hat{\mathbf{x}} + (1-\alpha)\tilde{\mathbf{x}} = [\alpha \hat{\mathbf{x}}_1 + (1-\alpha)\tilde{\mathbf{x}}_1] + [\alpha \hat{\mathbf{x}}_2 + (1-\alpha)\tilde{\mathbf{x}}_2] = \mathbf{y}_1 + \mathbf{y}_2,$ where $\mathbf{y}_1 \in C_1$ and $\mathbf{y}_2 \in C_2$ since sets C_1, C_2 are convex.

Corollary

Linear combination of convex sets is convex set

Theorem

Minkowski sum of two convex sets is convex set.

Proof

▶ Let $\mathcal{X}_1, \mathcal{X}_2$ be convex sets. Consider

$$\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in \mathcal{X}_1, \ \mathbf{x}_2 \in \mathcal{X}_2\}$$

- Let $\hat{\mathbf{x}} = \hat{\mathbf{x}}_1 + \hat{\mathbf{x}}_2$ and $\tilde{\mathbf{x}} = \tilde{\mathbf{x}}_1 + \tilde{\mathbf{x}}_2$ belong to \mathcal{X} . Show that $\alpha \hat{\mathbf{x}} + (1 \alpha) \tilde{\mathbf{x}} \in \mathcal{X}$
- ► Indeed.

$$\alpha \hat{\mathbf{x}} + (1 - \alpha) \tilde{\mathbf{x}} = [\alpha \hat{\mathbf{x}}_1 + (1 - \alpha) \tilde{\mathbf{x}}_1] + [\alpha \hat{\mathbf{x}}_2 + (1 - \alpha) \tilde{\mathbf{x}}_2] = \mathbf{y}_1 + \mathbf{y}_2,$$
 where $\mathbf{y}_1 \in C_1$ and $\mathbf{y}_2 \in C_2$ since sets C_1, C_2 are convex.

Corollary

Linear combination of convex sets is convex set

Exercise

Proof that Cartesian product of convex sets is convex

Definition

A set K is a cone if for any $\mathbf{x} \in K$ and arbitrary number $\theta \geq 0$ we have $\theta \mathbf{x} \in K$.

Definition

A set K is called **convex** cone if for any points $\mathbf{x}_1, \mathbf{x}_2 \in K$ and any numbers $\theta_1 \geq 0$, $\theta_2 \geq 0$ we have $\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in K$.

Definition

A set K is a cone if for any $\mathbf{x} \in K$ and arbitrary number $\theta \geq 0$ we have $\theta \mathbf{x} \in K$.

Definition

A set K is called **convex** cone if for any points $\mathbf{x}_1, \mathbf{x}_2 \in K$ and any numbers $\theta_1 \geq 0, \ \theta_2 \geq 0$ we have $\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in K$.

Important cones

Definition

A set K is a cone if for any $\mathbf{x} \in K$ and arbitrary number $\theta \geq 0$ we have $\theta \mathbf{x} \in K$.

Definition

A set K is called **convex** cone if for any points $\mathbf{x}_1, \mathbf{x}_2 \in K$ and any numbers $\theta_1 \geq 0$, $\theta_2 \geq 0$ we have $\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in K$.

Important cones

Nonnegative orthant $\mathbb{R}^n_+ = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \geq 0, \ i = 1, \dots, n \} \rightarrow \text{Linear programming (LP)}$

Definition

A set K is a cone if for any $\mathbf{x} \in K$ and arbitrary number $\theta \geq 0$ we have $\theta \mathbf{x} \in K$.

Definition

A set K is called **convex** cone if for any points $\mathbf{x}_1, \mathbf{x}_2 \in K$ and any numbers $\theta_1 \geq 0$, $\theta_2 \geq 0$ we have $\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in K$.

Important cones

- Nonnegative orthant $\mathbb{R}^n_+ = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \geq 0, \ i = 1, \dots, n \} \rightarrow \text{Linear programming (LP)}$
- ▶ Second-order cone $\{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid ||\mathbf{x}||_2 \leq t\} \rightarrow$ Second-order cone programming (SOCP)

Definition

A set K is a cone if for any $\mathbf{x} \in K$ and arbitrary number $\theta \geq 0$ we have $\theta \mathbf{x} \in K$.

Definition

A set K is called **convex** cone if for any points $\mathbf{x}_1, \mathbf{x}_2 \in K$ and any numbers $\theta_1 \geq 0$, $\theta_2 \geq 0$ we have $\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in K$.

Important cones

- Nonnegative orthant $\mathbb{R}^n_+ = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \geq 0, \ i = 1, \dots, n \} \rightarrow \text{Linear programming (LP)}$
- ▶ Second-order cone $\{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid ||\mathbf{x}||_2 \leq t\} \rightarrow$ Second-order cone programming (SOCP)
- Symmetric positive semi-definite matrices $\mathbf{S}^n_+ \to \mathsf{Semidefinite}$ programming (SDP)

Convex hull

Definition

Convex hull of the set G is called such set conv(G) that

- ▶ it is an intersection of all convex sets containing G
- ▶ it is a set of all convex combinations of points from G

$$conv(\mathcal{G}) = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in \mathcal{G}, \sum_{i=1}^{k} \theta_i = 1, \theta_i \ge 0 \right\}$$

▶ it is a minimal convex set containing G

 Assume that you face with optimization problem with non-convex feasible set

- Assume that you face with optimization problem with non-convex feasible set
- ▶ You can convexify feasible set with its convex hull

- Assume that you face with optimization problem with non-convex feasible set
- You can convexify feasible set with its convex hull
- ► Solve the problem in the new feasible set

- Assume that you face with optimization problem with non-convex feasible set
- You can convexify feasible set with its convex hull
- ▶ Solve the problem in the new feasible set
- Recover approximate solution of the original problem from the solution of the problem with convex feasible set

Convex function

Definition

Function
$$f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$$
 is called convex (strictly convex), if \mathcal{X} is convex set and $\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$ and $\alpha \in [0,1]$ ($\alpha \in (0,1)$) we have:
$$f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq (<) \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2)$$

Convex function

Definition

Function $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ is called convex (strictly convex), if \mathcal{X} is convex set and $\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$ and $\alpha \in [0,1]$ ($\alpha \in (0,1)$) we have: $f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq \ (<) \ \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2)$

Definition

Function f is concave, if function -f is convex.

Convex function

Definition

Function $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ is called convex (strictly convex), if \mathcal{X} is convex set and $\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$ and $\alpha \in [0,1]$ ($\alpha \in (0,1)$) we have: $f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq (<) \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2)$

Definition

Function f is concave, if function -f is convex.

Examples of convex functions

- x^p for x > 0 and p > 1
- $\triangleright x \log x$, where x > 0
- $ightharpoonup \max\{x_1,\ldots,x_n\}$
- **▶** ||x||
- $ightharpoonup \log \left(\sum_{i=1}^n e^{x_i}\right)$
- $-\log \det \mathbf{X} \text{ for } \mathbf{X} \in \mathbf{S}_{++}^n$

Definition

A set $\operatorname{epi} f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Definition

A set $\operatorname{epi} f = \{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Theorem

Function f is convex \Leftrightarrow epi f is convex set.

Definition

A set $\operatorname{epi} f = \{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Theorem

Function f is convex \Leftrightarrow epi f is convex set.

Proof

1. Let f be a convex function

Definition

A set $\operatorname{epi} f = \{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Theorem

Function f is convex \Leftrightarrow epi f is convex set.

- 1. Let f be a convex function
 - ► Consider any two points from epigraph (\mathbf{x}_1, t_1) and (\mathbf{x}_2, t_2) , where $t_1 \geq f(\mathbf{x}_1)$ and $t_2 \geq f(\mathbf{x}_2)$

Definition

A set $\operatorname{epi} f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Theorem

Function f is convex \Leftrightarrow epi f is convex set.

- 1. Let f be a convex function
 - ► Consider any two points from epigraph (\mathbf{x}_1, t_1) and (\mathbf{x}_2, t_2) , where $t_1 \geq f(\mathbf{x}_1)$ and $t_2 \geq f(\mathbf{x}_2)$
 - ► Check that the point $(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2, \alpha t_1 + (1 \alpha)t_2)$ also belongs to epigraph

Definition

A set $\operatorname{epi} f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Theorem

Function f is convex \Leftrightarrow epi f is convex set.

- 1. Let f be a convex function
 - ► Consider any two points from epigraph (\mathbf{x}_1, t_1) and (\mathbf{x}_2, t_2) , where $t_1 \geq f(\mathbf{x}_1)$ and $t_2 \geq f(\mathbf{x}_2)$
 - ► Check that the point $(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2, \alpha t_1 + (1 \alpha)t_2)$ also belongs to epigraph
 - From the convexity of f follows $\alpha t_1 + (1-\alpha)t_2 \ge \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) \ge f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2).$

Definition

A set $\operatorname{epi} f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Theorem

Function f is convex \Leftrightarrow epi f is convex set.

- 1. Let f be a convex function
 - ► Consider any two points from epigraph (\mathbf{x}_1, t_1) and (\mathbf{x}_2, t_2) , where $t_1 \geq f(\mathbf{x}_1)$ and $t_2 \geq f(\mathbf{x}_2)$
 - ► Check that the point $(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2, \alpha t_1 + (1 \alpha)t_2)$ also belongs to epigraph
 - From the convexity of f follows $\alpha t_1 + (1-\alpha)t_2 \ge \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) \ge f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2).$
- 2. Let epigraph epi f is convex set

Definition

A set $\operatorname{epi} f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}$ is called epigraph of f.

Theorem

Function f is convex \Leftrightarrow epi f is convex set.

- 1. Let f be a convex function
 - ► Consider any two points from epigraph (\mathbf{x}_1, t_1) and (\mathbf{x}_2, t_2) , where $t_1 \geq f(\mathbf{x}_1)$ and $t_2 \geq f(\mathbf{x}_2)$
 - ► Check that the point $(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2, \alpha t_1 + (1 \alpha)t_2)$ also belongs to epigraph
 - From the convexity of f follows $\alpha t_1 + (1-\alpha)t_2 \ge \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) \ge f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2).$
- 2. Let epigraph epi f is convex set
 - $\begin{array}{l} \bullet \ \ (\mathbf{x}_1, f(\mathbf{x}_1)) \ \text{and} \ \ (\mathbf{x}_2, f(\mathbf{x}_2)) \in \mathrm{epi} \ f, \ \text{then} \\ \ \ (\alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2, \alpha f(\mathbf{x}_1) + (1 \alpha) f(\mathbf{x}_2)) \in \mathrm{epi} \ f \end{array}$

Definition

A set $\operatorname{epi} f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid t \geq f(\mathbf{x})\}\$ is called epigraph of f.

Theorem

Function f is convex \Leftrightarrow epi f is convex set.

- 1. Let f be a convex function
 - ► Consider any two points from epigraph (\mathbf{x}_1, t_1) and (\mathbf{x}_2, t_2) , where $t_1 \geq f(\mathbf{x}_1)$ and $t_2 \geq f(\mathbf{x}_2)$
 - ► Check that the point $(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2, \alpha t_1 + (1 \alpha)t_2)$ also belongs to epigraph
 - From the convexity of f follows $\alpha t_1 + (1-\alpha)t_2 \ge \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) \ge f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2).$
- 2. Let epigraph epi f is convex set
 - $(\mathbf{x}_1, f(\mathbf{x}_1))$ and $(\mathbf{x}_2, f(\mathbf{x}_2)) \in \text{epi } f$, then $(\alpha \mathbf{x}_1 + (1 \alpha)\mathbf{x}_2, \alpha f(\mathbf{x}_1) + (1 \alpha)f(\mathbf{x}_2)) \in \text{epi } f$
 - From the definition of epigraph follows convexity of f

Strongly convex function

Definition

Function $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ is called **strongly** convex with constant m>0, if \mathcal{X} is convex set and $\forall \mathbf{x}_1,\mathbf{x}_2 \in \mathcal{X}$ u $\alpha \in [0,1]$ we have: $f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) - \frac{m}{2}\alpha(1-\alpha)\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$

Strongly convex function

Definition

Function $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ is called **strongly** convex with constant m>0, if \mathcal{X} is convex set and $\forall \mathbf{x}_1,\mathbf{x}_2 \in \mathcal{X}$ u $\alpha \in [0,1]$ we have: $f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) - \frac{m}{2}\alpha(1-\alpha)\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$

▶ Convexity ⊃ strict convexity ⊃ strong convexity

Strongly convex function

Definition

Function $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ is called **strongly** convex with constant m>0, if \mathcal{X} is convex set and $\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$ u $\alpha \in [0,1]$ we have: $f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) - \frac{m}{2}\alpha(1-\alpha)\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$

- ▶ Convexity ⊃ strict convexity ⊃ strong convexity
- ► Theoretical analysis of methods in the case of strongly convex functions significantly differs from the one for convex functions

Gradient and hessian: preliminaries

Consider $f: \mathbb{R}^n \to \mathbb{R}$

► Directional derivative

$$f'_{\mathbf{d}}(\mathbf{x}) = \lim_{\alpha \to 0} \frac{f(\mathbf{x} + \alpha \mathbf{d}) - f(\mathbf{x})}{\alpha}$$

- ▶ Gradient $f'(\mathbf{x})$ is a vector such that $[f'(\mathbf{x})]_i = \frac{\partial f}{\partial x_i}$
- ▶ Hessian is a square matrix $f''(\mathbf{x})$ such that $[f''(\mathbf{x})]_{ij} = \frac{\partial f}{\partial x_i x_j}$

Differential criteria of convexity

We consider convex function as strongly convex function with $m=0. \label{eq:monopole}$

Differential criteria of convexity

We consider convex function as strongly convex function with $m=0. \label{eq:monopole}$

Theorem (First order criterion)

Let function $f(\mathbf{x})$ is differentiable and its domain is a convex set $\mathcal{X} \subseteq \mathbb{R}^n$. Then $f(\mathbf{x})$ is strongly convex with $m \ge 0$ iff

$$f(\mathbf{x}) - f(\mathbf{x}^*) \ge \langle f'(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle + \frac{m}{2} \|\mathbf{x} - \mathbf{x}^*\|_2^2, \quad \forall \mathbf{x}, \mathbf{x}^* \in X.$$

Differential criteria of convexity

We consider convex function as strongly convex function with $m=0. \label{eq:monopole}$

Theorem (First order criterion)

Let function $f(\mathbf{x})$ is differentiable and its domain is a convex set $\mathcal{X} \subseteq \mathbb{R}^n$. Then $f(\mathbf{x})$ is strongly convex with $m \ge 0$ iff

$$f(\mathbf{x}) - f(\mathbf{x}^*) \ge \langle f'(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle + \frac{m}{2} \|\mathbf{x} - \mathbf{x}^*\|_2^2, \quad \forall \mathbf{x}, \mathbf{x}^* \in X.$$

Illustration for the first order criterion

Theorem (Second order criterion)

Twice continuously differentiable function f is convex \Leftrightarrow $f''(\mathbf{x}) \succeq m\mathbf{I}$

▶ If $f(\mathbf{x})$ is convex, then $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ is convex

- ▶ If $f(\mathbf{x})$ is convex, then $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ is convex
- ▶ If $f(\mathbf{x})$ is convex, then $g(t) = f(\mathbf{x} + t\mathbf{y})$ is convex

- ▶ If $f(\mathbf{x})$ is convex, then $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ is convex
- ▶ If $f(\mathbf{x})$ is convex, then $g(t) = f(\mathbf{x} + t\mathbf{y})$ is convex
- ▶ If $f_i(\mathbf{x})$ are convex, then $f(\mathbf{x}) = \max_{i=1,...m} f_i(\mathbf{x})$ is convex

- ▶ If $f(\mathbf{x})$ is convex, then $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ is convex
- ▶ If $f(\mathbf{x})$ is convex, then $g(t) = f(\mathbf{x} + t\mathbf{y})$ is convex
- ▶ If $f_i(\mathbf{x})$ are convex, then $f(\mathbf{x}) = \max_{i=1,...m} f_i(\mathbf{x})$ is convex
- ► The sum of convex functions with non-negative coefficients is convex function

- ▶ If $f(\mathbf{x})$ is convex, then $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ is convex
- ▶ If $f(\mathbf{x})$ is convex, then $g(t) = f(\mathbf{x} + t\mathbf{y})$ is convex
- ▶ If $f_i(\mathbf{x})$ are convex, then $f(\mathbf{x}) = \max_{i=1,...m} f_i(\mathbf{x})$ is convex
- The sum of convex functions with non-negative coefficients is convex function
- ▶ Scalar composition $h(f(\mathbf{x}))$

Theorem

If f is a convex function and \mathbf{x}^* is a point of local minimum, the \mathbf{x}^* is a point of global minimum.

Theorem

If f is a convex function and \mathbf{x}^* is a point of local minimum, the \mathbf{x}^* is a point of global minimum.

Proof

Assume that there exists a point \mathbf{y}^* such that $\mathbf{y}^* \neq \mathbf{x}^*$ and \mathbf{y}^* is a point of global minimum: $f(\mathbf{y}^*) < f(\mathbf{x}^*)$

Theorem

If f is a convex function and \mathbf{x}^* is a point of local minimum, the \mathbf{x}^* is a point of global minimum.

- Assume that there exists a point \mathbf{y}^* such that $\mathbf{y}^* \neq \mathbf{x}^*$ and \mathbf{y}^* is a point of global minimum: $f(\mathbf{y}^*) < f(\mathbf{x}^*)$
- ▶ By definition of a point of local minimum: $f(\mathbf{x}^*) \leq f(\mathbf{x})$, where $\|\mathbf{x}^* \mathbf{x}\|_2 \leq \delta$

Theorem

If f is a convex function and \mathbf{x}^* is a point of local minimum, the \mathbf{x}^* is a point of global minimum.

- Assume that there exists a point \mathbf{y}^* such that $\mathbf{y}^* \neq \mathbf{x}^*$ and \mathbf{y}^* is a point of global minimum: $f(\mathbf{y}^*) < f(\mathbf{x}^*)$
- ▶ By definition of a point of local minimum: $f(\mathbf{x}^*) \leq f(\mathbf{x})$, where $\|\mathbf{x}^* \mathbf{x}\|_2 \leq \delta$
- ► Choose sufficiently small $\alpha \in (0,1)$ and consider a point $\mathbf{z} = (1 \alpha)\mathbf{x}^* + \alpha\mathbf{y}^*$ such that $\|\mathbf{x}^* \mathbf{z}\|_2 \le \delta$

Theorem

If f is a convex function and \mathbf{x}^* is a point of local minimum, the \mathbf{x}^* is a point of global minimum.

- Assume that there exists a point \mathbf{y}^* such that $\mathbf{y}^* \neq \mathbf{x}^*$ and \mathbf{y}^* is a point of global minimum: $f(\mathbf{y}^*) < f(\mathbf{x}^*)$
- ▶ By definition of a point of local minimum: $f(\mathbf{x}^*) \leq f(\mathbf{x})$, where $\|\mathbf{x}^* \mathbf{x}\|_2 \leq \delta$
- ► Choose sufficiently small $\alpha \in (0,1)$ and consider a point $\mathbf{z} = (1 \alpha)\mathbf{x}^* + \alpha\mathbf{y}^*$ such that $\|\mathbf{x}^* \mathbf{z}\|_2 \le \delta$
- $f(\mathbf{x}^*) \le f(\mathbf{z}) \le \alpha f(\mathbf{y}^*) + (1 \alpha) f(\mathbf{x}^*) < f(\mathbf{x}^*)$

Local minimum of convex function is also a global minimum

Theorem

If f is a convex function and \mathbf{x}^* is a point of local minimum, the \mathbf{x}^* is a point of global minimum.

Proof

- Assume that there exists a point \mathbf{y}^* such that $\mathbf{y}^* \neq \mathbf{x}^*$ and \mathbf{y}^* is a point of global minimum: $f(\mathbf{y}^*) < f(\mathbf{x}^*)$
- ▶ By definition of a point of local minimum: $f(\mathbf{x}^*) \leq f(\mathbf{x})$, where $\|\mathbf{x}^* \mathbf{x}\|_2 < \delta$
- ► Choose sufficiently small $\alpha \in (0,1)$ and consider a point $\mathbf{z} = (1 \alpha)\mathbf{x}^* + \alpha\mathbf{y}^*$ such that $\|\mathbf{x}^* \mathbf{z}\|_2 < \delta$
- $f(\mathbf{x}^*) \le f(\mathbf{z}) \le \alpha f(\mathbf{y}^*) + (1 \alpha) f(\mathbf{x}^*) < f(\mathbf{x}^*)$
- We get a contradiction, therefore assumption is incorrect and x* is a point of global minimum

Theorem

If function
$$f$$
 is convex, then $f\left(\sum_{i=1}^k \alpha_i \mathbf{x}_i\right) \leq \sum_{i=1}^k \alpha_i f(\mathbf{x}_i)$, where

$$\sum_{i=1}^{k} \alpha_i = 1, \ \alpha_i \ge 0.$$

Theorem

If function
$$f$$
 is convex, then $f\left(\sum_{i=1}^k \alpha_i \mathbf{x}_i\right) \leq \sum_{i=1}^k \alpha_i f(\mathbf{x}_i)$, where

$$\sum_{i=1}^{k} \alpha_i = 1, \ \alpha_i \ge 0.$$

Proof by induction

▶ Base k = 2 holds according to the definition

Theorem

If function
$$f$$
 is convex, then $f\left(\sum_{i=1}^k \alpha_i \mathbf{x}_i\right) \leq \sum_{i=1}^k \alpha_i f(\mathbf{x}_i)$, where

$$\sum_{i=1}^{k} \alpha_i = 1, \ \alpha_i \ge 0.$$

Proof by induction

- ▶ Base k = 2 holds according to the definition
- Assume the inequality holds for k = m 1:

$$f\left(\sum_{i=1}^{m-1} \alpha \mathbf{x}_i\right) \leq \sum_{i=1}^{m-1} \alpha_i f(\mathbf{x}_i) \text{ and } \sum_{i=1}^{m-1} \alpha_i = 1, \ \alpha_i \geq 0$$

Theorem

If function
$$f$$
 is convex, then $f\left(\sum_{i=1}^k \alpha_i \mathbf{x}_i\right) \leq \sum_{i=1}^k \alpha_i f(\mathbf{x}_i)$, where

$$\sum_{i=1}^{k} \alpha_i = 1, \ \alpha_i \ge 0.$$

Proof by induction

- ▶ Base k = 2 holds according to the definition
- Assume the inequality holds for k=m-1:

$$f\left(\sum_{i=1}^{m-1} \alpha \mathbf{x}_i\right) \leq \sum_{i=1}^{m-1} \alpha_i f(\mathbf{x}_i) \text{ and } \sum_{i=1}^{m-1} \alpha_i = 1, \ \alpha_i \geq 0$$

► Consider
$$k = m$$
: $f\left(\sum_{i=1}^{m} \hat{\alpha}_{i} \mathbf{x}_{i}\right) = f\left(\sum_{i=1}^{m-1} \hat{\alpha} \mathbf{x}_{i} + \hat{\alpha}_{m} \mathbf{x}_{m}\right) = f\left((1 - \hat{\alpha}_{m})\sum_{i=1}^{m-1} \frac{\hat{\alpha}_{i}}{1 - \hat{\alpha}_{m}} \mathbf{x}_{i} + \hat{\alpha}_{m} \mathbf{x}_{m}\right) \leq (1 - \hat{\alpha}_{m}) f\left(\sum_{i=1}^{m-1} \frac{\hat{\alpha}_{i}}{1 - \hat{\alpha}_{m}} \mathbf{x}_{i}\right) + \hat{\alpha}_{m} f(\mathbf{x}_{m}) \leq \sum_{i=1}^{k} \alpha_{i} f(\mathbf{x}_{i})$

Corollaries and generalizations

▶ If we write Jensen's inequality for the function $-\log x$, we get inequality for geometric and arithmetic means

$$\frac{1}{m} \sum_{i=1}^{m} x_i \ge \sqrt[m]{x_1 \cdot \ldots \cdot x_m}$$

Corollaries and generalizations

▶ If we write Jensen's inequality for the function $-\log x$, we get inequality for geometric and arithmetic means

$$\frac{1}{m} \sum_{i=1}^{m} x_i \ge \sqrt[m]{x_1 \cdot \ldots \cdot x_m}$$

► Hölder's inequality

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}, \quad \frac{1}{p} + \frac{1}{q} = 1$$

Corollaries and generalizations

▶ If we write Jensen's inequality for the function $-\log x$, we get inequality for geometric and arithmetic means

$$\frac{1}{m} \sum_{i=1}^{m} x_i \ge \sqrt[m]{x_1 \cdot \ldots \cdot x_m}$$

Hölder's inequality

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}, \quad \frac{1}{p} + \frac{1}{q} = 1$$

► The generalization of Jensen's inequality gives the inequality for the convex function of the expected value

$$f(\mathbb{E}(\mathbf{x})) \le \mathbb{E}(f(\mathbf{x}))$$

► Convex, strictly convex and strongly convex functions

- Convex, strictly convex and strongly convex functions
- Examples and how to verify convexity of function

- Convex, strictly convex and strongly convex functions
- Examples and how to verify convexity of function
- Operations that preserve convexity

- Convex, strictly convex and strongly convex functions
- Examples and how to verify convexity of function
- Operations that preserve convexity
- Jensen inequality