Skin Lesion Analysis Towards Melanoma Detection using Transfer Learning

Supervised by:

Dr. David Yin Yang Assistant Professor ICT Division, HBKU

Presented by:

Md Shafiqul Islam

PhD Student(CSE), HBKU

ID: 210006054

Outline

1. Background

- Motivation and Challenges
- Project Objective

2. Related Work

- Current State of Art
- Scope of Work

3. Proposed Approach

- Data
- Experimental Setup

4. Preliminary Result

- Result Analysis
- Future Work

Motivation and Challenges

- -- > Skin cancer is a major public health problem, 5M newly diagnosed US each year.
- -- > Melanoma is the deadliest form of skin cancer, about 9,000 deaths each year
- -- > Early detection of melanoma significantly increases the survival rate
- -- > However, accurate recognition of melanoma is extremely challenging due to:
 - 1. Low contrast between lesions and skin
 - 2. Visual similarity between melanoma and non-melanoma lesions
 - 3. Variation of skin conditions, e.g., skin color, natural hairs or veins

Project Objective

-- > Build a model for automated diagnosis of melanoma from dermoscopic images

Problem Description

- ➤ Malignant Skin Lesions
 - -- Malignant Melanoma(MEL)

- Pre-Malignant Skin Lesions
- -- Actinic keratosis (AK)

- Benign Skin Lesions
- -- Seborrheic Keratosis (SK)
- -- Melanocytic nevus/mole (ML)

Melanoma

Nevus

Seborrheic Keratosis

State of Art: ISIC 2017

Resnet50¹

- -- Geometrically transformed images
- -- Adopted 50-layer ResNet Keras
- -- AUC Score: 0.957

Resnet101,InceptionV3²

- -- Trained two model
- -- Switch to 3-class
- -- Use external data
- -- AUC Score: 0.908

VGG16³

- -- Data Augmented
- -- Simple CNN: 18 layers
- -- VGG16
- -- AUC Score: 0.816

Scope of Work

-- We aimed to apply Resnet, Inception, VGG and Xception Transfer model

- 1 Matsunaga, Kazuhisa, Akira Hamada, Akane Minagawa, and Hiroshi Koga. "Image classification of melanoma, nevus and seborrheic keratosis by deep neural network ensemble." arXiv preprint arXiv:1703.03108 (2017).
- 2. Menegola, Afonso, Julia Tavares, Michel Fornaciali, Lin Tzy Li, Sandra Avila, and Eduardo Valle. "RECOD titans at ISIC challenge 2017." arXiv preprint arXiv:1703.04819 (2017).
- 3. Quang, Nguyen Hong. "Automatic skin lesion analysis towards melanoma detection." In Intelligent and Evolutionary Systems (IES), 2017 21st Asia Pacific Symposium on, pp. 106-111. IEEE, 2017.

Proposed Approach

Training Image Data

- -- 2000 images
- -- 374(M), 254(SK), 1372(N)

Validation Image Data

- -- **150** images
- -- 30(M), 42(SK), 78(N)

Test Image Data

- -- 600 images
- -- 117(M), 90(SK), 393(N)

Task-2: Seborrheic Keratosis Vs. Nevus and Melanoma

Task-1: Melanoma Vs. Nevus and Seborrheic Keratosis

Image Augmentation

- -- horizontal and vertical shifts: 10%, Zoom up to: 20%, Rotation up to: 270°
- -- Images were first resized to 224X224, 299X299

Model Summary

Inception V3

- -- 94 (Conv 2D) layers
- -- Total params: 22,327,842
- -- Trainable params: 22,293,410
- -- Non-trainable params: 34,432

Resnet-50

- -- 50 (Conv 2D) layeers
- -- Total params: 23,589,761
- -- Trainable params: 5,523,457
- -- Non-trainable params: 18,066,304

Xception

- -- 14 blocks
- -- Total params: 20,863,529
- -- Trainable params: 6,790,433
- -- Non-trainable params: 14,073,096

VGG-16

- -- 16 weights layers
- -- Total params: 16,320,514
- -- Trainable params: 1,605,826
- -- Non-trainable params: 14,714,688

Result

Preliminary Result Cont.

Result Cont.

-- > Task1: **Melanoma** Vs. Nevus and Seborrheic Keratosis

Model	Training Accuracy	Validation Accuracy	Test Accuracy
Xception	99.65%	82.67%	89.19%
Inception-v3	99.34%	85.59%	81.25%
Resnet-50	99.40%	82.09%	82.53%
VGG-16	91.48%	85.33%	81.08%

-- > Task2: **Seborrheic Keratosis** Vs. Melanoma and Nevus

Model	Training Accuracy	Validation Accuracy	Test Accuracy
Xception	99.80%	94.59%	88.67%
Inception-v3	87.30%	85.14%	82.26%
Resnet-50	92.40%	85.62%	79.24%
VGG-16	85.16%	83.10%	80.78%

Result Cont.

-- After presenting preliminary result in the project presentation. I got some suggestions from our TA to generate AUC score. I could not able to get AUC score for transfer model, I included. Latter, I created a new simple CNN model and generated AUC score accordingly. The result and model summary is given bellow.

Layer (type)	Output	Shape	a)		Param #
conv2d_1 (Conv2D)	(None,	64,	199	32)	968
activation_1 (Activation)	(None,	64,	179	32)	0
batch_normalization_1 (Batch	(None,	179	179	32)	128
conv2d_2 (Conv2D)	(None,	199	64,	32)	9248
activation_2 (Activation)	(None,	199	64,	32)	0
batch normalization 2 (Batch	(None,	64,	1,59	32)	128
max_pooling2d_1 (MaxPooling2	(None,	32,	32,	32)	0
dropout_1 (Dropout)	(None,	32,	32,	32)	0
conv2d_3 (Conv2D)	(None,	32,	32,	(19	18496
activation_3 (Activation)	(None,	32,	32,	(19	0
batch_normalization_3 (Batch	(None,	32,	32,	(4)	256
conv2d_4 (Conv2D)	(None,	32,	32,	(19	36928
activation_4 (Activation)	(None,	32,	32,	(19	0
batch normalization 4 (Batch	(None,	32,	32,	(19	256
max_pooling2d_2 (MaxPooling2	(None,	16,	16,	(19	0
dropout_2 (Dropout)	(None,	16,	16,	(19	0
conv2d_5 (Conv2D)	(None,	16,	16,	128)	73856
activation_5 (Activation)	(None,	16,	16,	128)	0
batch_normalization_5 (Batch	(None,	16,	191	128)	512
conv2d_6 (Conv2D)	(None,	16,	16,	128)	147584
activation_6 (Activation)	(None,	16,	16,	128)	0
batch_normalization_6 (Batch	(None,	16,	16,	128)	512
max_pooling2d_3 (MaxPooling2	(None,	8, 8	, 12	128)	0
flatten_1 (Flatten)	(None,	8192)			0
dense_1 (Dense)	(None,	128)			1048704
dense_2 (Dense)	(None,	2)			258
activation_7 (Activation)	(None,	2)			0
Total params: 1,337,762 Trainable params: 1,336,866 Non-trainable params: 896					

Conclusion

- -- > Transfer Learning Model Implemented
- -- > VGG-16, Inception-v3, Resnet-50 and Xception
- -- > Best Accuracy on Test Data: 89.19% (Xception Model)

Future Work

- -- > Reduce over fitting: Dropout -- > Use of External Data
- -- > Use Inception-Resnet Model -- > Aggressive Data Augmentation