Section 1.4 – Lines and Curves in Space

Lines and Line Segments in Space

The expanded form of the equation $\overrightarrow{P_0P} = t\vec{v}$ is

$$(x - x_0)\hat{i} + (y - y_0)\hat{j} + (z - z_0)\hat{k} = t(v_1\hat{i} + v_2\hat{j} + v_3\hat{k})$$

Vector Equation for a Line

A **vector equation for the line** \boldsymbol{L} through $P_0\left(x_0, y_0, z_0\right)$ parallel to \boldsymbol{v} is

$$\vec{r}(t) = \vec{r}_0 + t\vec{v}, \quad -\infty < t < \infty$$

Where r is the position vector of a point P(x, y, z) on L and r_0 is the position vector of $P_0(x_0, y_0, z_0)$.

Parametric Equations for a Line

A **standard parametrization** of the line through $P_0(x_0, y_0, z_0)$ parallel to $\vec{v} = v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}$ is

$$x = x_0 + tv_1$$
, $y = y_0 + tv_2$, $z = z_0 + tv_3$, $-\infty < t < \infty$

Example

Find the parametric equations for the line through (-2, 0, 4) parallel to $\vec{v} = 2\hat{i} + 4\hat{j} - 2\hat{k}$

Solution

$$x = -2 + 2t$$
, $y = 4t$, $z = 4 - 2t$

Example

Parametrize the line segment joining the points P(-3, 2, -3) and Q(1, -1, 4)

Solution

$$x = -3 + 4t$$
, $y = 2 - 3t$, $z = -3 + 7t$

The point
$$(x, y, z) = (-3 + 4t, 2 - 3t, -3 + 7t)$$

On the line passes through P at t = 0 and Q at t = 1.

That implies the restriction $0 \le t \le 1$ to parameterize the segment

$$x = -3 + 4t$$
, $y = 2 - 3t$, $z = -3 + 7t$, $0 \le t \le 1$

The position of a particle at time *t* is written:

$$r(t) = r_0 + tv$$

$$= r_0 + t|v|\frac{v}{|v|}$$
Initial position Speed Direction

Example

A helicopter is to fly directly from a helipad at the origin in the direction of the point (1, 1, 1) at a speed of 60 *ft/sec*. What is the position of the helicopter after 10 *sec*.?

Solution

Therefore; the position of the helicopter at any time *t* is

$$\vec{r}(t) = r_0 + t\vec{u}$$

$$= 0 + t(60) \left(\frac{1}{\sqrt{3}} \hat{i} + \frac{1}{\sqrt{3}} \hat{j} + \frac{1}{\sqrt{3}} \hat{k} \right)$$

$$= 20\sqrt{3} t(\hat{i} + \hat{j} + \hat{k})$$

The position after 10 sec:

$$r(10) = 20\sqrt{3} (10)(\hat{i} + \hat{j} + \hat{k})$$
$$= 200\sqrt{3}(\hat{i} + \hat{j} + \hat{k})$$

The distance is traveled:

$$|r(10)| = 200\sqrt{3}\sqrt{1^2 + 1^2 + 1^2}$$

= 600 ft

Distance from a Point S to a Line through P parallel to v

Example

Find the distance from the point S(1, 1, 5) to the line L: x = 1 + t, y = 3 - t, z = 2t

Solution

At t = 0, the equations for L passes through P(1, 3, 0) parallel to $\vec{v} = \hat{i} - \hat{j} + 2\hat{k}$

$$\overrightarrow{PS} = (1-1)\hat{i} + (1-3)\hat{j} + (5-0)\hat{k}$$
$$= -2\hat{j} + 5\hat{k}$$

$$\overrightarrow{PS} \times \overrightarrow{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & -2 & 5 \\ 1 & -1 & 2 \end{vmatrix}$$
$$= \hat{i} + 5\hat{j} + 2\hat{k}$$

$$d = \frac{\left| \overrightarrow{PS} \times \overrightarrow{v} \right|}{\left| \overrightarrow{v} \right|}$$
$$= \frac{\sqrt{1 + 25 + 4}}{\sqrt{1 + 1 + 4}}$$
$$= \frac{\sqrt{30}}{\sqrt{6}}$$
$$= \sqrt{5} \mid$$

An Equation for a Plane in Space

A plane in space is determined by knowing a point on the plane and its "tilt" or orientation. This "tilt" is defined by specifying a vector that is perpendicular or normal to the plane.

The dot product $\vec{n} \cdot \overrightarrow{P_0P} = 0$, since $\overrightarrow{P_0P}$ is orthogonal to $\vec{n} = A\hat{i} + B\hat{j} + C\hat{k}$.

$$\vec{n} \cdot \overrightarrow{P_0 P} = 0 \iff \left(A\hat{i} + B\hat{j} + C\hat{k} \right) \cdot \left(\left(x - x_0 \right) \hat{i} + \left(y - y_0 \right) \hat{j} + \left(z - z_0 \right) \hat{k} \right) = 0$$

$$A\left(x - x_0 \right) + B\left(y - y_0 \right) + C\left(z - z_0 \right) = 0$$

Equation for a Plane

The plane through $P_0(x_0, y_0, z_0)$ normal to $\vec{n} = A\hat{i} + B\hat{j} + C\hat{k}$ has

Vector equation:
$$\vec{n} \cdot \overrightarrow{P_0P} = 0$$

Component equation:
$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$$

Component equation simplified:
$$Ax + By + Cz = D$$
 where $D = Ax_0 + By_0 + Cz_0$

Example

Find an equation for the plane through $P_0(-3, 0, 7)$ perpendicular to $\vec{n} = 5\hat{i} + 2\hat{j} - \hat{k}$

Solution

The component equation is

$$5(x-(-3))+2(y-0)+(-1)(z-7)=0$$

$$5(x+3)+2y-z+7=0$$

$$5x+15+2y-z+7=0$$

$$5x + 2y - z = -22$$

Example

Find an equation for the plane through A(0, 0, 1), B(2, 0, 0), C(0, 3, 0).

Solution

The cross product

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & -1 \\ 0 & 3 & -1 \end{vmatrix}$$
$$= 3\hat{i} + 2\hat{j} + 6\hat{k}$$

Normal to the plane.

We substitute the components of this vector and the coordinates of A(0, 0, 1) into the component form of the equation to obtain

$$3(x-0)+2(y-0)+6(z-1)=0$$

 $3x+2y+6z-6=0$ or $3x+2y+6z=6$

Curves

The coordinates for a particle moving through space during a time interval I, are defined as function on I: $x = f(t), \quad y = g(t), \quad z = h(t), \quad t \in I$.

The points (x, y, z) = (f(t), g(t), h(t)), $t \in I$, make up the curve in space that we call the particle's path.

$$\vec{r}(t) = (\sin 3t)(\cos t)\hat{i} + (\sin 3t)(\sin t)\hat{j} + t\hat{k}$$

 $\vec{r}(t) = (4 + \sin 20t)(\cos t)\hat{i} + (4 + \sin 20t)(\sin t)\hat{j} + (\cos 20t)\hat{k}$

Example

Graph the vector function $\vec{r}(t) = (\cos t)\hat{i} + (\sin t)\hat{j} + t\hat{k}$

Solution

$$x^2 + y^2 = (\cos t)^2 + (\sin t)^2 = 1$$

The curves traced by $\vec{r}(t)$ winds around a circular cylinder, satisfies the equation.

The curve rises as the k-components z = t increases. Each time t increases by 2π , the curve completes one turn around the cylinder. The curve is called a helix (from an old Greek word for "spiral"). The equations

Limits and Continuity

Definition

Let $\vec{r}(t) = f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k}$ be a vector function with domain D, and L a vector. We say that r has limit L as t approaches t_0 and write

$$\lim_{t \to t_0} \vec{r}(t) = L$$

If, for every number $\varepsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all $t \in D$

$$\left| \vec{r}(t) - L \right| < \varepsilon$$
 whenever $0 < \left| t - t_0 \right| < \delta$

Example

Find the limit of $\vec{r}(t) = (\cos t)\hat{i} + (\sin t)\hat{j} + t\hat{k}$ as t approaches $\frac{\pi}{4}$

Solution

$$\lim_{t \to \pi/4} \vec{r}(t) = \left(\lim_{t \to \pi/4} \cos t\right) \hat{i} + \left(\lim_{t \to \pi/4} \sin t\right) \hat{j} + \left(\lim_{t \to \pi/4} t\right) \hat{k}$$

$$= \frac{\sqrt{2}}{2} \hat{i} + \frac{\sqrt{2}}{2} \hat{j} + \frac{\pi}{4} \hat{k}$$

Definition

A vector function $\vec{r}(t)$ is *continuous at a point* $t = t_0$ in its domain if $\lim_{t \to t_0} \vec{r}(t) = \vec{r}(t_0)$. The function is continuous if it is continuous at every point in its domain.

Lines of Intersection

Example

Find a vector parallel to the line of intersection of the planes 3x - 6y - 2z = 15 and 2x + y - 2z = 5

Solution

The line of intersection of two planes is perpendicular to both planes' normal vectors \vec{n}_1 and \vec{n}_2 and therefore parallel to $\vec{n}_1 \times \vec{n}_2$.

$$\vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -6 & -2 \\ 2 & 1 & -2 \end{vmatrix}$$
$$= 14\hat{i} + 2\hat{j} + 15\hat{k}$$

Example

Find the point where the line $x = \frac{8}{3} + 2t$, y = -2t, z = 1 + t intersects the plane 3x + 2y + 6z = 6.

51

Solution

The point:
$$\left(\frac{8}{3} + 2t, -2t, 1+t\right)$$

lies in the plane if its coordinates satisfy the equation of the plane, that is, if

$$3\left(\frac{8}{3} + 2t\right) + 2\left(-2t\right) + 6\left(1 + t\right) = 6$$

$$8 + 6t - 4t + 6 + 6t = 6$$

$$8t = -8$$

$$t = -1$$

The point of intersection is:
$$\left(\frac{8}{3} + 2t, -2t, 1+t\right)\Big|_{t=-1} = \left(\frac{2}{3}, 2, 0\right)$$

The distance from a Point to a Plane

$$d = \left| \overrightarrow{PS} \cdot \frac{\overrightarrow{n}}{|\overrightarrow{n}|} \right|$$

Example

Find the distance from S(1, 1, 3) to the plane 3x + 2y + 6z = 6

Solution

The coefficients in the equation 3x + 2y + 6z = 6 give $\vec{n} = 3\hat{i} + 2\hat{j} + 6\hat{k}$

$$\overrightarrow{PS} = \hat{i} - 2\hat{j} + 3\hat{k}$$
$$\left| \overrightarrow{n} \right| = \sqrt{3^2 + 2^2 + 6^2}$$
$$= 7$$

The distance from S to the plane is

$$d = \left| \overline{PS} \cdot \frac{\vec{n}}{|\vec{n}|} \right|$$

$$= \left| (\hat{i} - 2\hat{j} + 3\hat{k}) \cdot \left(\frac{3}{7}\hat{i} + \frac{2}{7}\hat{j} + \frac{6}{7}\hat{k} \right) \right|$$

$$= \left| \frac{3}{7} - \frac{4}{7} + \frac{18}{7} \right|$$

$$= \frac{17}{7}$$

Angles Between Planes

Example

Find the angle between the planes 3x - 6y - 2z = 15 and 2x + y - 2z = 5

Solution

The vectors: $\vec{n}_1 = 3\hat{i} - 6\hat{j} - 2\hat{k}$, $\vec{n}_2 = 2\hat{i} + \hat{j} - 2\hat{k}$ are normal to the planes.

The angle between them is:

$$\theta = \cos^{-1} \left(\frac{\vec{n}_1 \cdot \vec{n}_2}{\left| \vec{n}_1 \right| \left| \vec{n}_2 \right|} \right)$$

$$= \cos^{-1} \left(\frac{6 - 6 + 4}{\sqrt{9 + 36 + 4} \sqrt{4 + 1 + 4}} \right)$$

$$= \cos^{-1} \left(\frac{4}{21} \right)$$

$$\approx 1.38 \ rad$$

Exercises Section 1.4 – Lines and Curves in Space

- 1. Find the parametric equation for the line through the point P(3, -4, -1) parallel to the vector $\hat{i} + \hat{j} + \hat{k}$
- 2. Find the parametric equation for the line through the points P(1, 2, -1) and Q(-1, 0, 1)
- 3. Find the parametric equation for the line through the points P(-2, 0, 3) and Q(3, 5, -2)
- **4.** Find the parametric equation for the line through the origin parallel to the vector $2\hat{j} + \hat{k}$
- 5. Find the parametric equation for the line through the point P(3, -2, 1) parallel to the line x = 1 + 2t, y = 2 t, z = 3t
- 6. Find the parametric equation for the line through (2, 4, 5) perpendicular to the plane 3x + 7y 5z = 21
- 7. Find the parametric equation for the line through (2, 3, 0) perpendicular to the vectors $\vec{u} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{v} = 3\hat{i} + 4\hat{j} + 5\hat{k}$
- **8.** Find the parameterization for the line segment joining the points (0, 0, 0), $(1, 1, \frac{3}{2})$. Draw coordinate axes and sketch the segment, indicate the direction on increasing t for the parametrization.
- **9.** Find the parameterization for the line segment joining the points (1, 0, -1), (0, 3, 0). Draw coordinate axes and sketch the segment, indicate the direction on increasing t for the parametrization.
- **10.** Find equation for the plane through $P_0(0, 2, -1)$ normal to $\vec{n} = 3\hat{i} 2\hat{j} \hat{k}$
- 11. Find equation for the plane through (1, -1, 3) parallel to the plane 3x + y + z = 7
- 12. Find equation for the plane through (1, 1, -1), (2, 0, 2) and (0, -2, 1)
- 13. Find equation for the plane through $P_0(2, 4, 5)$ perpendicular to the line x = 5 + t, y = 1 + 3t, z = 4t
- **14.** Find equation for the plane through A(1, -2, 1) perpendicular to the vector from the origin to A.
- 15. Find the point of intersection of the lines x = 2t + 1, y = 3t + 2, z = 4t + 3 and x = s + 2, y = 2s + 4, z = -4s 1, and find the plane determined by these lines.

16. Find the plane determined by the intersecting lines:

$$\begin{split} L_1 : & \ x = -1 + t, \quad y = 2 + t, \quad z = 1 - t; \quad -\infty < t < \infty \\ L_2 : & \ x = 1 - 4s, \quad y = 1 + 2s, \quad z = 2 - 2s; \quad -\infty < s < \infty \end{split}$$

17. Find a plane through $P_0(2,1,-1)$ and perpendicular to the line of intersection of the planes 2x + y - z = 3, x + 2y + z = 2

(18-25) Find the distance from the point to the plane

18.
$$(0, 0, 12), x = 4t, y = -2t, z = 2t$$

19.
$$(2, 1, -1), x = 2t, y = 1 + 2t, z = 2t$$

20.
$$(3, -1, 4), x = 4 - t, y = 3 + 2t, z = -5 + 3t$$

21.
$$(2, -3, 4), x+2y+2z=13$$

22.
$$(0, 0, 0), 3x + 2y + 6z = 6$$

23.
$$(0, 1, 1), 4y + 3z = -12$$

24.
$$(6, 0, -6), x-y=4$$

25.
$$(3, 0, 10), 2x + 3y + z = 2$$

(26-27) Find the distance from the point to the line

26.
$$(2, 2, 0)$$
; $x = -t$, $y = t$, $z = -1 + t$

27.
$$(0, 4, 1); x = 2 + t, y = 2 + t, z = t$$

28. Find the distance from the plane x + 2y + 6z = 1 to the plane x + 2y + 6z = 10

(29-32) Find the angle between the planes

29.
$$x + y = 1$$
, $2x + y - 2z = 2$

30.
$$5x + y - z = 10$$
, $x - 2y + 3z = -1$

31.
$$x = 7$$
, $x + y + \sqrt{2}z = -3$

32.
$$x + y = 1$$
, $y + z = 1$

33. Find the point in which the line meets the plane x = 1 - t, y = 3t, z = 1 + t; 2x - y + 3z = 6

34. Find the point in which the line meets the plane x = 2, y = 3 + 2t, z = -2 - 2t; 6x + 3y - 4z = -12

35. Find an equation of the line through the point (0, 1, 1) and parallel to the line

$$\overrightarrow{R(t)} = \langle 1 + 2t, 3 - 5t, 7 + 6t \rangle$$

- **36.** Find an equation of the line through the point (0, 1, 1) that is orthogonal to both $\langle 0, -1, 3 \rangle$ and $\langle 2, -1, 2 \rangle$
- **37.** Find an equation of the line through the point (0, 1, 1) that is orthogonal to the vector $\langle -2, 1, 7 \rangle$ and the *y-axis*
- **38.** Suppose that \vec{n} is normal to a plane and that \vec{v} is parallel to the plane. Describe how you would find a vector \vec{n} that is both perpendicular to \vec{v} and parallel to the plane.
- **39.** Given a point $(x_0, y_0, 0)$ and a vector $\mathbf{v} = \langle a, b, 0 \rangle$ in \mathbb{R}^3 , describe the set of points that satisfy the equation $\langle a, b, 0 \rangle \times \langle x x_0, y y_0, 0 \rangle = \mathbf{0}$. Use this result to determine an equation of a line in \mathbb{R}^2 passing through (x_0, y_0) parallel to the vector $\langle a, b \rangle$.
- **40.** The parallelogram has vertices at A(2, -1, 4), B(1, 0, -1), C(1, 2, 3) and D. Find

- a) The coordinates of D,
- b) The cosine of the interior angle of B
- c) The vector projection of \overrightarrow{BA} onto \overrightarrow{BC} ,
- d) The area of the parallelogram,
- e) An equation for the plane of the parallelogram,
- f) The areas of the orthogonal projection of the parallelogram on the three coordinate planes.

41. a) Find the distance from the point $P_0(x_0, y_0, z_0)$ to the plane P having equation

$$Ax + By + Cz = D$$

b) What is the distance from (2, -1, 3) to the plane 2x - 2y - z = 9?