Deep Learning Bootcamp

2026

Agenda

- 1. Introduction to Python
- 2. Basic numerical libraries for ML

Break 15:30

- 1. Linear Regression
- 2. Exploratory data analysis
- 3. Linear regression with PyTorch (deep learning library)

Schedule

Event No.	Details				
Event 1	Deep Learning Essentials				
24 th Oct 2025	Covers the basics of Python and necessary packages required for Deep Learning such as numpy, scipy, pandas etc.				
Event 2	Deep Learning for Regression and Classification				
10 th Nov 2025	Will cover the basics of PyTorch, as well as how to use PyTorch for performing regression and classification tasks.				
Event 3	Deep Learning for Images				
17 th Nov 2025	In this event, we will extend the classification using deep learning, specifically focusing on datasets involving images.				
Event 4	Deep Learning for Sequence Data (text and time series)				
TBD – Sem 2 – 2026	In this event, we will focus on using Deep Learning models for datasets involving sequences or temporal relations. We plan to cover examples from both text and time-series datasets.				
Event 5	Reinforcement Learning				
TBD – Sem 2 – 2026	This session will introduce Deep Reinforcement Learning techniques with some practical applications.				
	NTU DI hootsamp				

What is Deep Learning?

- Machine learning: learn from examples or data
- Deep Learning: use artificial neural networks: weight * variable + some non-linear layer

$$y = \sigma \left(W_L \dots \sigma \left(W_2 \sigma (W_1 x) \right) \right)$$

Deep Learning is powered by deep neural networks

https://cdn-images-1.medium.com/max/2400/1*1mpE6fsq5LNxH31xeTWi5w.jpeg

Why Deep Learning?

- Find hidden patterns in a lot of data (high-dimensional, complex, etc.)
- Many applications, open models
 - Material properties prediction
 - Protein folding: see AlphaFold
 - Text generation/Natural Language Processing: ChatGPT
 - Image generation: DALLE, MidJourney, etc.
 - Computer Vision: ImageNet, image segmentation, detect face in phone, etc.

• ...

Deep Fakes...

Your interest

Examples

You

suggest a simple dataset to use to predict material property using deep

ChatGPT

For predicting material properties using deep learning, you might conside Materials Project database, which provides extensive information on var Let's formulate this as a regression problem, where we aim to predict a number property (e.g., band gap) based on certain features.

Dataset:

Materials Project Database - Band gap prediction.

Mathematical Formulation:

Given a dataset with N samples, where each sample is represented by a X_i and the corresponding material property (band gap) y_i , the goal is to mapping function f such that $f(X_i) \approx y_i$.

Python Code (using PyTorch):

python

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset

ML 101

- Approximate a function $y = f(x; \theta)$
 - x: image pixels; y: classes (dog, cat)
 - *x*: house size; *y*: house price
 - θ are the parameters

- Classification: discrete categories
- Regression: continuous categories

Regression

- Univariate regression problem (one output, real value)
- Fully connected network

Classification

- Multiclass classification problem (discrete classes, >2 possible classes)
- Convolutional network

ML workflow

https://www.coursera.org/learn/ml-foundations?specialization=machine-learning

Feature Extraction 101

Machine learning needs numerical data as input:

$$x \in \mathbb{R}^n$$

• Data normalization: assumption of data with mean 0, stddev 1

$$x' = \frac{x - \mu}{\sigma}$$

\$ x_std = StandardScaler().fit_transform(x)

Typical representations

Data Type	Common Representation
Images	Pixel intensity arrays
Text	Word embeddings (Word2Vec, GloVe, BERT)
Audio	Spectrogram or MFCC features

Model Selection 101

Many ML models to choose from:

- Linear models: simple, interpretable, good baseline
- Decision Trees / XGBoost: handle complex patterns, less linear assumptions
- Neural Networks: powerful but need large data and tuning

- NNs can overfit on small datasets
- Many hyperparameters, hard to tune
- Require more computation and time

Model selection = experimentation

- Try multiple models
- Tune hyperparameters
- Compare results using validation metrics (e.g., accuracy, RMSE, F1)
- Pick the model that's accurate, simple, and practical

ChatGPT for everything XGBoost

Pro & Cons of DL

Pro	Cons
 Can learn features & representations easily Ability to process a lot of data Flexible framework Maps well into parallel hardware (GPU and others) 	 Hard to understand and build intuition of why the model works: explainability and interpretability Requires a lot of data and expensive hardware.

Work session 1.0

Google Colab: Our tool for today

Handling numbers & data: numpy

Numpy is library for handling array, vector & matrices

- Provide all keys operations in arrays
 - Creation : a = np.array([[1, 2, 3], [4, 5, 6]])
 - Add/subtract/multiply: a + b, a b, a * b, ...
 - Dot product and matrix multiplication: a @ b
 - Slicing: *a*[1]=> [4,5,6]

Plotting: matplotlib

 Matplotlib is the Python library used to plot data

 You can create easily different types of plots (scatter plot, histogram, X-Y plot), add legend and different details.

Python 101: Why Python?

• A lot of libraries for ML/DL: PyTorch, scikit-learn, pandas, numpy

• Easy to learn, simple syntax

• Interactive notebooks: Jupyter Notebook, Kaggle, Google Collab

• Free & open-source

Python 101: Basic features

```
Data
          Train:
Data
         Function
                         def vowel_count(word):
                             vowels = ["a", "e", "i", "o", "u"]
                Data
                             count = 0
       count
                             for char in word: # loops
                                 if char in vowels: # conditions
                                     count += 1
                             return count
                        vowel_count("hello")
```

```
MyModel: Class
```

my_model: Data1 params: Data2

...

Train: Function1
Test: Function2

••

Linear Regression

Linear regression makes predictions about the linear relationship between the input variable x (contrast) and the output variable y (neural response).

We are not considering the intercept for simplicity, resulting in a one-parameter model.

Linear Regression: MSE

$$\min_{ heta} rac{1}{N} \sum_{i=1}^{N} (y_i - heta x_i)^2$$

Mean Squared Error (MSE)

MSE computes the average error between the model prediction $\,\hat{y}\,$ and the true $\,y.$

24

Work session 2

How to Evaluate a Machine Learning Model (and Why It Matters)

Learning Objectives

- Preparing data (inspection, visualization, train/test splits)
- Building a machine learning model (Decision Tree)
- Choosing metrics to assess model performance
- Using the concept of bias-variance trade-off to tune hyperparameters
- o **BONUS.** Reducing variance using ensembling

Link to Colab: https://tinyurl.com/dlbs1p2

Preparing Data

California Housing Dataset

	Preview of the dataset:							
	MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	Longitude
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25

Activity 1

Q1. Which features are most correlated with the target?

Q2. Which features might be redundant or overlapping?

Transforming Data – One-Hot Encoding

0r	igin	al data:
	id	species
0	1	cat
1	2	dog
2	3	snake
3	4	cat
4	5	dog
5	6	turtle
6	7	dog

On	One-hot encoded with pandas.get_dummies:					
	id	is_cat	is_dog	is_snake	is_turtle	
0	1	1	0	0	0	
1	2	9	1	0	9	
2	3	9	0	1	9	
3	4	1	0	0	9	
4	5	9	1	0	0	
5	6	9	9	0	1	
6	7	9	1	9	0	

Transforming Data – Feature Scaling

```
Original (unscaled) data:
   temp K
         humidity day of year
   272.0
              0.15
                            12
   289.5
              0.80
                           150
   301.2 0.40
                           230
   295.0
              0.60
                           320
   280.3
              0.05
                            45
```

```
Standardized data (≈ mean 0, std 1):
  temp_K
         humidity day_of_year
  -1.501 -0.901
                      -1.219
   0.183
        1.441
                       -0.012
        0.000
   1.309
                       0.687
   0.712
        0.721
                       1.475
   -0.702
           -1.261
                       -0.931
```

```
Min-Max scaled data (range ~[0, 1]):
  temp_K humidity day_of_year
   0.000
             0.133
                        0.000
   0.599
            1.000
                        0.448
   1.000
            0.467
                        0.708
   0.788
             0.733
                        1.000
   0.284
                        0.107
             0.000
```

Splitting Data for Training and Testing

DATASET

TRAIN

Choosing a Machine Learning Model – Decision Tree

https://developers.google.com/machine-learning/decision-forests/decision-trees

Model Evaluation Metrics – *Regression*

RMSE
$$(y_{\text{true}}, y_{\text{pred}}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

$$R^{2}(y_{\text{true}}, y_{\text{pred}}) = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Activity 2. Write a function to compute RMSE for train and test splits

Model Evaluation Metrics – Classification

		Predicted condition				
	Total 8 + 4 = 12	Cancer 7	Non-cancer 5			
Actual condition	Cancer 8	6	2			
Actual c	Non-cancer 4	1	3			

Hyperparameter Tuning

- **Hyperparameter.** A setting you choose before training that controls how the model learns. It's not *learned* from the data.
- Decision tree hyperparameters:
 - max_depth → limits how many "levels" the tree can grow
 - min_samples_split → minimum samples required to split a node
 - min_samples_leaf → minimum samples required in any leaf criterion

Activity 3. Which max depth is the best?

Splitting Data – Enter Validation Split

DATASET

TRAIN

TRAIN VAL. TEST

Bias-Variance Tradeoff

https://scikit-learn.org/stable/modules/learning_curve.html

Validation Curves

Activity 4. Which max_depth is the best?

Summary

Blueprint of a Machine Learning Project

- 1. Define your prediction goal (classification/regression)
- 2. Explore and understand your dataset
- 3. Split the data into train/test/validation
- 4. Pick a model, train it, and measure its performance
- 5. Tune hyperparameters and optimize model through the lens of bias—variance trade-off.

We'd love to hear your feedback

Help us make the next session even better!

3rd DL Bootcamp (2025-26) -Session 1 - Post Session Feedback

References / Reading

- Python introduction: https://swcarpentry.github.io/python-novice-inflammation/
- More on scientific python: https://lectures.scientific-python.org/
- https://deeplearning.neuromatch.io/
- NeuroMatch Academy: <u>https://deeplearning.neuromatch.io/tutorials/W1D1_BasicsAndPytorch/chapter_title.html</u>
- Exploratory computing w/ Python: https://mbakker7.github.io/exploratory computing with python/
- https://udlbook.github.io/udlbook/
 - Reuse slides from there

See you in the next session

THE ARC TR+30

BRING YOUR LAPTOP !!!!

Upcoming Sessions	Date	Speakers	
Deep Learning for Images	17 Nov 2025	Micheal Yuhas θ Amashi Niwarthana	
Natural Language Processing (NLP)	To be decided	To be decided	

