1D:18 DC5007

NAME : RUDRA BARAD

SUB : ML

UNIT TEST I 27/02/2021

04.	SUPERVISED LEARNING	UNSUPERVISED LEARNING	
\rightarrow	supervised learning algorithm one trained using labled data	uppupervised learning algo. ore trained using unlabled data.	
	It takes direct feedback to check if it is predicting correct output on not.	Feedbacks 3000 al	
7777	In this input data is provided	In this only input data is	
→	It includes algo such as linear negression, logistic negression, etc.		
#	It is a graphical representation of different probabilistic relationships among random variable in a particular set.		
	It is a classifier with no dependency on attributes i.e. it is condition independents		
	Due to its feature of point in bayesian belief network condition -P(attribute percent)	is derived based on	

- In figure, we have an alarm'A' a node, say installed in house of person 'Rudna' which signs upon 2 probabilities i.e. burglary 'B' & fine 'F' which wre parent nodes of the alarm node. The alarm is parent mode of 2 probability. P. alls 'P.' & 'P2' (alls 'P2' prson nodes.
 - → Upon the instance of burglary 8 fine 'P1' & 'P2' (all person 'Rudra'. But those are few drawbacks
 - → As sometimes 'Pi' may forget to call person 'Rudra' even after having the alarm.
 - Similarly 'P2' sometimes fails to call the person 'Rudra' as he is only able to hear the alarm, from a certain distance,

eludictio na partings on dissertion independents

philippodoria sal phidodoria anno la studiosa eti at sussi

(Insura & Studie Ho) 9th mailibras

83 (a) sigmoid function
$$\sigma(x) = 1$$

The derivative of sigmoid is

$$dx \qquad dx \qquad dx \qquad 1 + e^{-x}$$

$$\frac{d}{dx}\left(\frac{1+e^{-x}}{1+e^{-x}}\right)^{-1}$$

The merchanist and the state of the state of the state of

$$dx = -(1+e^{-x})^{-2}(-e^{-x})$$
= e^{-x}

$$= \frac{1}{1+e^{-x}} \frac{(1+e^{-x})-1}{1+e^{-x}}$$

$$= 1 \frac{(1+e^{-x})^{-1}}{1+e^{-x}}$$

$$= 1 \frac{(1+e^{-x})^{-1}}{1+e^{-x}}$$

$$= 1 \frac{(1+e^{-x})^{-1}}{1+e^{-x}}$$

$$= 1 \frac{(1+e^{-x})^{-1}}{1+e^{-x}}$$

$$= \frac{1}{1+e^{-x}} \left(\frac{1-1}{1+e^{-x}} \right)$$

$$= \sigma(x) \cdot (1 - \sigma(x))$$

GIVEN
$$\sigma(x) = 0.5 \rightarrow 0.5 = 1$$

1+e-x

$$\rightarrow 1 + e^{-x} = 2$$

$$\rightarrow e^{-x} = 1$$

$$\rightarrow (-x) = \log_e 1$$

$$\rightarrow |x = -logel|$$

$$x = 0$$

(b) A decision tree has many analysis in real life and turns out, it has influencial a wide area of machine learning, covering both (classification and regression

As the name goes, it uses thee-like model of decisions. They can be used either to drive informal discussions on to map out an algorithm that predicts the best chance mathematically.

A decision three typically starts with a single node, which branches into possible outcomes. Each of those outcomes leads to additional nodes, which branch off into other possibilities, this gives it a three-like shape.

(18/2-1) (DO) -

74-Y-7

do sale in so were

1D:180CS007

NAME: RUDRA BARAD

(5)

- No.	ASSMA	2
Date	Lille	manere last
Page		

01	×	Y x = unit test monks	
	72	84 Y= final exam monks	
	50	63 7027 - 4 1275 = 0	
	81	77	
	74	18	
	94	90 H Land mort fout Bath heart to Call	
	86	15 Jan Hard ing ni 28 Jan	
	59	ч9	
		14x) = 22.47 1 0.695 x	
\rightarrow	We know	that linear negression hypothesis is:	
	$h_0(x) = \theta_0 + \theta_1 x$		
		2.13 = 2.13 ±	
	let's suppose it is y=a+bx		
		\$ 7 = (38) = 82	
		사람들은 보고 있는데 가는 사람들이 있다면 하는데 보고 있는데 보고 있는데 보고 있는데 가장 사람들이 되었다. 그 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	

Using the method of least sequence:

 $\frac{\Sigma y = a\Sigma_1 + b\Sigma_2 - 0}{\Sigma_{xy} = a\Sigma_x + b\Sigma_x^2 - 0}$ multiply 1 by x

(alculating the parameters:

Σx2= 39434 $\Sigma \propto = 516$

Σy = 516 Σxy = 39008

:. 7a+ S16b = 516

516a+39434b = 39008

(we get this by substituting parameters in above eq")

10:180(SOO7 NAME: RUDRA BARAD

(a) On solving equations, we get

6

(b) Predicted final exam manks of the student who scored 85 in unit test can be calculated as:-

至3月13年13日

15x = 514

2012 316

-: ereland or og and fonitalpital

$$y(x) = 22.47 + 0.695 x$$
[6/0]

Sala in more frail ex

Find SOLER + PEXS - (5) mathiply 313

y(85) = 82

MENDE - BANSH

Soors = profile