(担当:佐藤 弘康)

固有値と固有ベクトル

n 次正方行列 A に対し,

$$A\vec{p} = \alpha \vec{p}$$

を満たす数 α を A の固有値, \vec{p} (\neq $\vec{0}$) を固有値 α に対する A の固有ベクトルとよぶ.

- 固有ベクトルは連立方程式 $(\alpha E_n A)\vec{x} = \vec{0}$ の $\vec{0}$ でない解 (非自明解) である.
- 固有値は $\det(\alpha E_n A) = 0$ を満たす数である.

・固有値, 固有ベクトルの求め方 -

- (1) 固有多項式 $f_A(t) = \det(tE_n A)$ を計算する.
- (2) $f_A(t) = 0$ の解 $t = \alpha$ を求める(この解 α が A の固有値 である).
- (3) (2) で求めた各 α に対し、連立方程式 $(\alpha E_n A)\vec{x} = \vec{0}$ の非自明解 $\vec{x} = \vec{p}$ を求める(この解 \vec{p} が A の固有値 α に対する固有ベクトル である).

問題 **6.1.** 行列の $A=\begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}$ に対して、以下の間に答えなさい。

- (1) 固有多項式 $f_A(t) = \det(t E_2 A)$ を求めなさい.
- (2) 2次方程式 $f_A(t) = 0$ の解 α を求めなさい.
- (3) 各 α に対し、連立方程式 $(\alpha E_2 A)\vec{x} = \vec{0}$ の解 \vec{p}_{α} を求めなさい.
- (4) 各 α に対し、 $A\vec{p}_{\alpha} = \alpha\vec{p}_{\alpha}$ が成り立つことを確かめなさい。

問題 6.2. 次の行列の固有値と固有ベクトルを求めなさい.