Санкт-Петербургский государственный политехнический университет Петра Великого

Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Лабораторная работа №3

Апериодические сигналы

Выполнил студент 3-го курса группа 3530901/80201 Матвеец Андрей Вадимович

Преподаватель: Богач Наталья Владимировна

Санкт-Петербург

Содержание

1	Часть №1: Запуск примеров из chap03.ipynb	7
2	Часть №2: Создание SawtoothChirp	12
3	Часть №3: Создание меняющегося пилообразного сигнала	15
4	Часть №4: Глиссандро	17
5	Часть №5: Создание TromboneFliss	19
6	Часть №6: Анализ букв	22
7	Выводы	28

Список иллюстраций

1	Проверка работоспособности	7
2	Замена на окно Бартлетта	8
3	Замена на окно blackman	Ć
4	Замена на окно hanning	E
5	Замена на окно kaiser	10
6	Совмещение всех графиков	11
7	Начальный сегмент	13
8	Сегмент в аудио	13
9	Конечный сегмент	14
10	Спектограмма сигнала	14
11	Сегмент сигнала	15
12	Сигнал в аудио	15
13	Спектр сигнала	16
14	Полученный сегмент	17
15	Файл в аудио	17
16	Полученный спектр	18
17	Полученная спектограмма	18
18	Сигнал ир в аудио	19
19	Полученный сегмент up	19
20	Сигнал down в аудио	20
21	Полученный сегмент down	20
22	Объединение up и down в аудио	20

23	Полученный спектр up и down	21
24	Полученная спектограмма up и down	21
25	Полученный сегмент	22
26	Представление сигнала в аудио	22
27	Полученная спектограмма для сегмента	23
28	Сегмент с буквой А	23
29	Представление сегмента с буквой А в аудио	24
30	Сегмент с буквой В	24
31	Представление сегмента с буквой В в аудио	24
32	Сегмент с буквой С	25
33	Представление сегмента с буквой С в аудио	25
34	Сегмент с буквой D	26
35	Представление сегмента с буквой D в аудио	26
36	Сегмент с буквой Е	27
37	Представление сегмента с буквой Е в аудио	27

Листинги

1	Окно Бартлетта	7
2	Oкно blackman	8
3	Oкно hanning	9
4	Oкно kaiser	9
5	Совмещение всех графиков	10
6	Импорт библиотек	12
7	Kласс SawtoothChirp	12
8	Получение начального сегмента	12
9	Получение конечного сегмента	13
10	Спектограмма сигнала	14
11	Создание сигнала согласно заданию	15
12	Сегмент сигнала	15
13	Спектр сигнала	16
14	Получение сегмена из аудиофайла	17
15	Получение спектра из сегмента	17
16	Получение спектограммы	18
17	Kласс TromboneFliss	19
18	Сегмент сигнала ир	19
19	Сегмент сигнала down	20
20	Спектр сигнала up и down	21
21	Спектограмма сигнала up и down	21
22	Вывод сегмента	22

23	Спектограмма для нашего сегмента	22
24	Сегмент с буквой А	23
25	Сегмент с буквой В	24
26	Сегмент с буквой С	25
27	Сегмент с буквой D	25
28	Сегмент с буквой Е	26

1 Часть №1: Запуск примеров из сһар03. ірупь

В первом пункте лабораторной работы нам необходимо запустить все файлы из chap03.ipynb, а также в примере с утечкой заменить окно Хэмминга одним из окон, представляемых NumPy. Начнем с запуска всех программ.

Рис. 1: Проверка работоспособности

Теперь перейдем к написанию разных окон в примерах с утечкой. Начем с окна Бартлетта:

```
wave = signal.make_wave(duration)
```

```
wave.window(np.bartlett(len(wave)))
spectrum = wave.make_spectrum()
spectrum.plot(high=880)
decorate(xlabel='Frequency (Hz)')
```

Листинг 1: Окно Бартлетта

Рис. 2: Замена на окно Бартлетта

После этого напишем окно blackman:

```
wave = signal.make_wave(duration)
wave.window(np.blackman(len(wave)))
spectrum = wave.make_spectrum()
spectrum.plot(high=880)
decorate(xlabel = 'Frequency (Hz)')
```

Листинг 2: Окно blackman

Рис. 3: Замена на окно blackman

Теперь напишем окно hanning:

```
wave = signal.make_wave(duration)
wave.window(np.hanning(len(wave)))
spectrum = wave.make_spectrum()
spectrum.plot(high =880)
decorate(xlabel ='Frequency (Hz)')
```

Листинг 3: Окно hanning

Рис. 4: Замена на окно hanning

```
И, наконец, создадим окно kaiser wave = signal.make_wave(duration)
```

```
wave.window(np.hanning(len(wave)))
spectrum = wave.make_spectrum()
spectrum.plot(high =880)
decorate(xlabel ='Frequency (Hz)')
```

Листинг 4: Окно kaiser

Рис. 5: Замена на окно kaiser

Для большей наглядности совместим все графики в одном:

```
wave = signal.make_wave(duration)
      wave.window(np.bartlett(len(wave)))
      spectrum = wave.make_spectrum()
      spectrum.plot(high=880)
      decorate(xlabel='Frequency (Hz)')
      wave = signal.make_wave(duration)
      wave.window(np.kaiser(len(wave), 10))
      spectrum = wave.make_spectrum()
      spectrum.plot(high =880, color ='green')
      decorate(xlabel = 'Frequency (Hz)')
11
      wave = signal.make_wave(duration)
      wave.window(np.hanning(len(wave)))
14
      spectrum = wave.make_spectrum()
      spectrum.plot(high =880, color ='orange')
16
      decorate(xlabel = 'Frequency (Hz)')
18
      wave = signal.make_wave(duration)
19
      wave.window(np.blackman(len(wave)))
20
      spectrum = wave.make_spectrum()
      spectrum.plot( high=880, color ='black')
22
      decorate(xlabel = 'Frequency (Hz)')
23
```

Листинг 5: Совмещение всех графиков

Рис. 6: Совмещение всех графиков

2 Часть №2: Создание SawtoothChirp

Bo втором пункте лабораторной работы нам необходимо создать класс SawtoothChirp, который бы расширял Chirp и переопределял evaluate для генерации пилообразного сигнала с линейно увеличивающейся частотой.

Для начала импортируем все необходимые нам для выполнения библиотеки:

```
from thinkdsp import Signal, Sinusoid, SquareSignal, TriangleSignal, SawtoothSignal, ParabolicSignal
from thinkdsp import normalize, unbias, PI2, decorate
from thinkdsp import Chirp
import numpy as np
```

Листинг 6: Импорт библиотек

После чего создадим сам класс:

```
class MySawtoothChirp(Chirp):
def evaluate(self, ts):
    freqs = np.linspace(self.start, self.end, len(ts) - 1)

dts = np.diff(ts)
dphis = PI2 * freqs * dts

phases = np.cumsum(dphis)

cycles = phases / PI2
frac, _ = np.modf(cycles)

ys = normalize(unbias(frac), self.amp)
return ys
```

Листинг 7: Класс SawtoothChirp

Теперь выведем начальный сегмент полученного сигнала:

```
signal = MySawtoothChirp(start=220, end=440)
wave = signal.make_wave(duration=1, framerate=4025)
wave.segment(start=0, duration=0.02).plot()
decorate(xlabel='Time (s)')
```

Листинг 8: Получение начального сегмента

Рис. 7: Начальный сегмент

После чего переведём изначальный сигнал в аудио:

```
B [3]: wave.apodize()
wave.make_audio()

Out[3]:

• 0:00/0:00 • • • • •
```

Рис. 8: Сегмент в аудио

Затем выведем конечный участок сегмента:

```
wave.segment(start=1-0.02, duration=0.02).plot()
decorate(xlabel='Time (s)')
```

Листинг 9: Получение конечного сегмента

Рис. 9: Конечный сегмент

Наконец, выведем на экран спектрограмму для нашего сигнала:

```
sp = wave.make_spectrogram(256)
sp.plot()
decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
```

Листинг 10: Спектограмма сигнала

Рис. 10: Спектограмма сигнала

3 Часть №3: Создание меняющегося пилообразного сигнала

В третьей части лабораторной работы там необходимо создать пилообразный чирп, меняющийся от 2500 до 3000 Γ ц и на его основе сгенерировать сигнал длительность. 1с и частотой кадорв в 20к Γ ц. Нарисовать Spectrum.

Для начала создадим сигнал согласно заданию:

```
signal = MySawtoothChirp(start=2500, end=3000)
wave = signal.make_wave(duration=1, framerate=20_000)
```

Листинг 11: Создание сигнала согласно заданию

После этого посмотрим на сегмент этого сигнала:

```
wave.segment(start=0.9, duration=0.02).plot()
decorate(xlabel='Time')
```

Листинг 12: Сегмент сигнала

Рис. 11: Сегмент сигнала

Затем представим сигнал в виде аудио:

```
B [7]: wave.make_audio()
Out[7]:

• 0:00/0:00 •• •• ••
```

Рис. 12: Сигнал в аудио

И, наконец, построим и выведем на экран спект нашего сигнала:

```
spectrum = wave.make_spectrum()
spectrum.plot()
decorate(xlabel='Frequency')
```

Листинг 13: Спектр сигнала

Рис. 13: Спектр сигнала

В заключение можно сказать, что полученный сигнал очень сильно режет слух, а проанализировав спектр можно сделать вывод, что он содержит большое количество частотных компонент.

4 Часть №4: Глиссандро

В четвертом пунтке лабораторной работы нам необходимо сначала скачать звук глиссандо и распечатать спектограмму первых секунд.

В качестве аудиодорожки я выбрал «Rhapsody in Blue» (George Gershwin), как посоветовали в ThinkDSP.

```
from thinkdsp import read_wave

wave = read_wave('rhapblue11924.wav')
segment = wave.segment(start=1.35, duration=1.8-1.35)
segment.plot()
```

Листинг 14: Получение сегмена из аудиофайла

Рис. 14: Полученный сегмент

Затем для проверки выведем наш файл в аудио:

Рис. 15: Файл в аудио

После этого получим спект из нашего сегмента:

```
spectrum = segment.make_spectrum()
spectrum.plot()
```

Листинг 15: Получение спектра из сегмента

Рис. 16: Полученный спектр

И, наконец, получим спектограмму для нашего сигнала:

```
wave.make_spectrogram(512).plot(high=5000)
decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
```

Листинг 16: Получение спектограммы

Рис. 17: Полученная спектограмма

5 Часть №5: Создание TromboneFliss

В пятом пункте лабораторной работы нам необходимо написать класс TromboneFliss, расширяющий Chirp и предоставляющий evaluate. Создать сигнал, имитирующий глиссандо на тромбоне от C3 до F3 и обратно.

Для начала напишем класс TromboneFliss:

```
spectrum = segment.make_spectrum()
spectrum.plot()
```

Листинг 17: Класс TromboneFliss

Теперь получим сигнал от 262 до 349 Гц и представим его в аудио формате:

Рис. 18: Сигнал ир в аудио

После этого посмотрим на сегмент этого сигнала: wave1.segment(start=0, duration=0.04).plot()

Листинг 18: Сегмент сигнала ир

Рис. 19: Полученный сегмент ир

Теперь получим обратный сигнал, от 349 до 262 Гц и так же представим его в виде аудио:

Рис. 20: Сигнал down в аудио

И затем так же посмотрим на сегмент этого сигнала: wave2.segment(start=0, duration=0.04).plot()

Листинг 19: Сегмент сигнала down

Рис. 21: Полученный сегмент down

После всего этого объедими эти два сигнала в один и получим аудиофайл:

Рис. 22: Объединение **up** и **down** в аудио

Затем получим спектр полученного сигнала:

Листинг 20: Спектр сигнала ир и down

Рис. 23: Полученный спектр ир и down

M, наконец, получим спектограмму полученного сигнала: wave.make_spectrogram(1024).plot(high=600) decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')

Листинг 21: Спектограмма сигнала ир и down

Рис. 24: Полученная спектограмма ир и down

6 Часть №6: Анализ букв

В шестой части лабораторной работы нам необходимо найти запись серии звуков букв алфавита. Необходимо построить спектограммы для этих звуков.

В качестве аудиодорожки я взял запись с сайта FreeSounds, в которой проговариваются все буквы латинского алфавита, взял первый фрагмент с буквами а-е и после чего вывел данный сегмент:

```
wave = read_wave('67703__acclivity__alphabet-male.wav')
segment = wave.segment(start=1, duration=7)
segment.plot()
```

Листинг 22: Вывод сегмента

Рис. 25: Полученный сегмент

После этого проверим, что сигнал не поврежден, выведя его в видео аудио:

```
B [22]: wave.make_audio()
Out[22]:

• 0:00/0:43 •• •• ••
```

Рис. 26: Представление сигнала в аудио

Затем получим спектограмму для нашего сегмента:

```
segment.make_spectrogram(1024).plot(high=1000)
decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
```

Листинг 23: Спектограмма для нашего сегмента

Рис. 27: Полученная спектограмма для сегмента

Теперь пройдемся по всем буквам из нашего сегмента, выводя сегменты на экран и представляя их в виде аудио. Начнем с первой буквы:

```
high = 1000
segment = wave.segment(start=1, duration=1)
segment.make_spectrum().plot(high=high)
decorate(xlabel='Frequency (Hz)')
```

Листинг 24: Сегмент с буквой А

Рис. 28: Сегмент с буквой А

Представим сегмент с буквой А в виде аудиодорожки:

Рис. 29: Представление сегмента с буквой А в аудио

Перейдем к сегменту с буквой В:

```
segment = wave.segment(start=2, duration=1)
segment.make_spectrum().plot(high=high)
decorate(xlabel='Frequency (Hz)')
```

Листинг 25: Сегмент с буквой В

Рис. 30: Сегмент с буквой В

Представим сегмент с буквой В в виде аудиодорожки:

Рис. 31: Представление сегмента с буквой В в аудио

Перейдем к сегменту с буквой С:

```
segment = wave.segment(start=3.5, duration=1)
segment.make_spectrum().plot(high=high)
decorate(xlabel='Frequency (Hz)')
```

Листинг 26: Сегмент с буквой С

Рис. 32: Сегмент с буквой С

Представим сегмент с буквой С в виде аудиодорожки:

Рис. 33: Представление сегмента с буквой С в аудио

Перейдем к сегменту с буквой D:

```
segment = wave.segment(start=5, duration=1)
segment.make_spectrum().plot(high=high)
decorate(xlabel='Frequency (Hz)')
```

Листинг 27: Сегмент с буквой D

Рис. 34: Сегмент с буквой D

Представим сегмент с буквой D в виде аудиодорожки:

```
B [31]: segment.make_audio()
Out[31]:

• 0:01/0:01 •• •• ••
```

Рис. 35: Представление сегмента с буквой D в аудио

Перейдем к сегменту с буквой Е:

```
segment = wave.segment(start=6.5, duration=1)
segment.make_spectrum().plot(high=high)
decorate(xlabel='Frequency (Hz)')
```

Листинг 28: Сегмент с буквой Е

Рис. 36: Сегмент с буквой Е

Представим сегмент с буквой Е в виде аудиодорожки:

Рис. 37: Представление сегмента с буквой Е в аудио

В результате выполнения данного пункта можно сделать вывод о том, что гласные звуки при представлении их в виде сегмента имеют более выраженный пик и большую частоту, чем согласные звуки.

7 Выводы

В результате выполнения лабораторной работы мы изучили методы работы с апериодическими сигналами, понятие чирпа, каков его спектр. Также научились строить спектограммы чирпов, работать с утечками. Кроме того были реализованы и проверены классы для реализации чирпа, и для создания имитации глиссандо на тромбоне.