RESILIENCE EVALUATIONS FOR APPROXIMATION STORAGE AT VVC ENCODERS

Yasmin Souza Camargo, Bruno Zatt, Daniel Munari Vilchez Palomino e Felipe Martin Sampaio

Universidade Federal de Pelotas (UFPel) – {yasmin.sc, zatt, dpalomino}@inf.ufpel.edu.br Instituto Federal do Rio Grande do Sul (IFRS) – felipe.sampaio@farroupilha.ifrs.edu.br

CONSUMO DE VÍDEO

CONSUMO DE VÍDEO

O fluxo de vídeo na internet deve ultrapassar

90%

até 2023

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

CODECS DE VÍDEO

Espera-se que o VVC seja utilizado por 20% dos desenvolvedores em 2022

https://bitmovin.com/top-video-technology-trends/

Espera-se que o VVC seja utilizado por 20% dos desenvolvedores em 2022

Economia de 50% na compressão de bits em relação ao seu antecessor (HEVC)

https://bitmovin.com/top-video-technology-trends/

https://www.hhi.fraunhofer.de/en/departments/vca/technologies-and-solutions/h266-vvc/fraunhofer-versatile-video-encoder-vvenc.html

Espera-se que o VVC seja utilizado por 20% dos desenvolvedores em 2022

Economia de 50% na compressão de bits em relação ao seu antecessor (HEVC)

significativamente maior

https://www.hhi.fraunhofer.de/en/departments/vca/technolo gies-and-solutions/h266-vvc/fraunhofer-versatile-videoencoder-vvenc.html

https://bitmovin.com/top-video-technology-trends/

ARMAZENAMENTO APROXIMADO

ARMAZENAMENTO APROXIMADO

Redução do consumo energético

ARMAZENAMENTO APROXIMADO

Redução do consumo energético

Perda de eficiência da codificação

OBJETIVOS

Avaliar o perfil de tolerância a falhas (resiliência) em módulos específicos na codificação de vídeos com o VVC

QPs: 22, 27, 32, 37

Repetições: 5

Parâmetros para o experimento

Sequência de vídeo

Vídeo: RaceHorses

Resolução: 416x240

Taxas de erro Leitura e escrita:

 $10^{-7}, 10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}$

Ferramentas utilizadas

Intel PIN Tool

Injeção de erros: Leitura e escrita

Versatile Video Encoder (VVenC)

Configuração: medium

- implementação baseada em VTM
- aprimorado para ser mais rápido

Estimação de movimento inteira

Módulos da codificação

Estimação de movimento frácionaria

Transformadas

Predição Intra

Scripts em Python

Extração e organização dos dados

QPs: 22, 27, 32, 37

Repetições: 5

Parâmetros para o experimento

Sequência de vídeo

Vídeo: RaceHorses

Resolução: 416x240

 $10^{-7}, 10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}$

Leitura e escrita:

Ferramentas utilizadas

Intel PIN Tool Injeção de erros: Leitura e escrita

Versatile Video Encoder (VVenC)

Configuração: medium

- implementação baseada em VTM
- aprimorado para ser mais rápido

Estimação de movimento inteira

Módulos da codificação

Estimação de movimento frácionaria

Transformadas

Predição Intra

Scripts em Python

Extração e organização dos dados

QPs: 22, 27, 32, 37

Repetições: 5

Parâmetros para o experimento

Vídeo: RaceHorses

Resolução: 416x240

Ferramentas

utilizadas

Taxas de erro **Leitura e escrita:** 10⁻⁷,10⁻⁶, 10⁻⁵, 10⁻⁴, 10⁻³

Intel PIN Tool

Injeção de erros: Leitura e escrita

Versatile Video Encoder (VVenC)

Configuração: medium

- implementação baseada em VTM
- aprimorado para ser mais rápido

Estimação de movimento inteira

Módulos da codificação

Estimação de movimento frácionaria

Transformadas

Predição Intra

Scripts em Python

Extração e organização dos dados

QPs: 22, 27, 32, 37

Repetições: 5

Parâmetros para o experimento

Sequência de vídeo

Vídeo: RaceHorses

Resolução: 416x240

Taxas de erro **Leitura e escrita:** 10⁻⁷,10⁻⁶, 10⁻⁵, 10⁻⁴, 10⁻³ Estimação de movimento inteira

Módulos da codificação

Estimação de movimento frácionaria

Transformadas

Predição Intra

Ferramentas utilizadas

Intel PIN Tool
Injeção de erros: Leitura e escrita

Scripts em Python

Extração e organização dos dados

Versatile Video Encoder (VVenC)

Configuração: medium

- implementação baseada em VTM
- aprimorado para ser mais rápido

QPs: 22, 27, 32, 37

Repetições: 5

Parâmetros para o experimento

Sequência de vídeo

Vídeo: RaceHorses

Resolução: 416x240

 10^{-7} , 10^{-6} , 10^{-5} , 10^{-4} , 10^{-3}

Estimação de movimento inteira

Módulos da codificação

Estimação de movimento frácionaria

Transformadas

Predição Intra

Ferramentas utilizadas

Intel PIN Tool

Injeção de erros: Leitura e escrita

Scripts em Python

Extração e organização dos dados

Versatile Video Encoder (VVenC)

Configuração: medium

- implementação baseada em VTM
- aprimorado para ser mais rápido

Análise dos níveis de resiliência na codificação de vídeos com o VVC

Estimação de movimento inteira

Estimação de movimento frácionaria

Transformadas

Predição Intra

CONCLUSÃO

Análise dos níveis de resiliência na codificação de vídeos com o VVC

Estimação de movimento frácionaria

Transformadas

Predição Intra

Trabalhos Futuros

Expansão das simulações e realização de análises mais profundas

CONCLUSÃO

Análise dos níveis de resiliência na codificação de vídeos com o VVC

Estimação de movimento frácionaria

Transformadas

Predição Intra

Trabalhos Futuros

Expansão das simulações e realização de análises mais profundas

Análise do impacto da redução do consumo de energia

RESILIENCE EVALUATIONS FOR APPROXIMATION STORAGE AT VVC ENCODERS

Obrigada!

Yasmin Souza Camargo, Bruno Zatt, Daniel Munari Vilchez Palomino e Felipe Martin Sampaio

Universidade Federal de Pelotas (UFPel) – {yasmin.sc, zatt, dpalomino}@inf.ufpel.edu.br Instituto Federal do Rio Grande do Sul (IFRS) – felipe.sampaio@farroupilha.ifrs.edu.br

