# Author collaboration networks on arXiv

Morgan Klutzke

## What's an author collaboration network?

- Social network of co-authors for scholarly journal articles
  - Each node is an author
  - Each edge is a collaboration
  - Edges can be weighted by # of co-authored papers
- Collaboration networks tend to be scale-free
  - Growth
  - Preferential attachment
  - Power-law distribution of degrees



## What's an author collaboration network?

- Social network of co-authors for scholarly journal articles
  - Each node is an author
  - Each edge is a collaboration
  - Edges can be weighted by # of co-authored papers
- Collaboration networks tend to be scale-free
  - Growth
  - Preferential attachment
  - Power-law distribution of degrees



## Data source: arXiv

- Open-access repository for preprints
- Download the dataset yourself at kaggle.com/Cornell-University/arxiv
- Includes metadata for 1.8 million scholarly articles





#### Fields represented:

- Physics
- Mathematics
- Computer science
- Quantitative biology
- Quantitative finance
- Statistics
- Electrical engineering & systems science

# Process for data manipulation

#### Original data format

| authors                                                | categories       |  |
|--------------------------------------------------------|------------------|--|
| "C. Balazs, E. L. Berger, P. M.<br>Nadolsky, CP. Yuan" | "hep-ph"         |  |
| "Ileana Streinu & Louis Theran"                        | "math.CO cs.CG"  |  |
| "Hongjun Pan"                                          | "physics.gen-ph" |  |
|                                                        |                  |  |

... +1.7 million more rows

#### Desired edgelist format

| author1          | author2          | weight | categories      |
|------------------|------------------|--------|-----------------|
| "C. Balazs"      | "E. L. Berger"   | 1      | "hep-ph"        |
| "C. Balazs"      | "P. M. Nadolsky" | 1      | "hep-ph"        |
| "C. Balazs"      | "CP. Yuan"       | 1      | "hep-ph"        |
| "E. L. Berger"   | "P. M. Nadolsky" | 1      | "hep-ph"        |
| "E. L. Berger"   | "CP. Yuan"       | 1      | "hep-ph"        |
| "P. M. Nadolsky" | "CP. Yuan"       | 1      | "hep-ph"        |
| "Ileana Streinu" | "Louis Theran"   | 1      | "math.CO cs.CG" |
|                  |                  |        |                 |

# Process for data manipulation

#### Original data format

|                                                        |                  | 1 |
|--------------------------------------------------------|------------------|---|
| authors                                                | categories       |   |
| "C. Balazs, E. L. Berger, P. M.<br>Nadolsky, CP. Yuan" | "hep-ph"         |   |
| "Ileana Streinu & Louis Theran"                        | "math.CO cs.CG"  |   |
| "Hongjun Pan"                                          | "physics.gen-ph" |   |
|                                                        |                  |   |

... +1.7 million more rows

#### Desired edgelist format

| author1          | author2                   | weight | categories      |
|------------------|---------------------------|--------|-----------------|
| "C. Balazs"      | "E. L. Berger"            | 1      | "hep-ph"        |
| "C. Balazs"      | "P. M. Nadolsky"          | 1      | "hep-ph"        |
| "C. Balazs"      | " <mark>CP. Yuan</mark> " | 1      | "hep-ph"        |
| "E. L. Berger"   | "P. M. Nadolsky"          | 1      | "hep-ph"        |
| "E. L. Berger"   | " <mark>CP. Yuan</mark> " | 1      | "hep-ph"        |
| "P. M. Nadolsky" | " <mark>CP. Yuan</mark> " | 1      | "hep-ph"        |
| "Ileana Streinu" | "Louis Theran"            | 1      | "math.CO cs.CG" |
|                  |                           |        |                 |

## Distribution of author list lengths



- Average is 4 authors per paper
- Maximum is 2,829 authors
- Decided to truncate after 10 authors
  - Less than 4% of papers have more than 10 authors
  - Still not optimal, especially for physics papers

# Network properties by category



# Degree distribution



- Average degree is 13
- Connectivity (sort of) follows power-law distribution
- P(x) ~ x⁻⁻⁻

## Degree distribution



- Average degree is 13
- Connectivity (sort of) follows power-law distribution
- P(x) ~ x⁻⁻⁻
- Fitted  $\alpha = 1.78$

## Collaboration strength distribution



- Average edge weight is 1.58
- Number of co-authored papers per collaboration follows the power-law distribution better

## Collaboration strength distribution



- Average edge weight is 1.58
- Number of co-authored papers per collaboration follows the power-law distribution better
- Fitted  $\alpha = 2.64$



## Clustering coefficients



 Measures likelihood that two nodes connected to the same node are connected themselves



## In an ideal world I would...

- Look at evolution of the network over time
  - Confirm/refute preferential attachment
- Link more datasets to get more author information
  - Could use Scopus API
- Use a supercomputer
  - Wouldn't need the arbitrary 10 author cutoff
  - Would be able to calculate shortest path lengths, diameter of giant component
  - Could maybe make visuals without the software crashing

| Field                                    | Total edges | Mean authors<br>per paper | Mean<br>collaborators<br>per author<br>(degree) | Mean<br>co-authored<br>papers per<br>collaboration<br>(edge weight) | Size of giant component | Giant<br>component as<br>percentage of<br>authors | Clustering coefficient |
|------------------------------------------|-------------|---------------------------|-------------------------------------------------|---------------------------------------------------------------------|-------------------------|---------------------------------------------------|------------------------|
| Total                                    | 11,184,997  | 4.167                     | 13.02                                           | 1.578                                                               | 1,001,727               | 81.6%                                             | 0.128                  |
| Physics                                  | 8,523,195   | 5.161                     | 13.16                                           | 1.613                                                               | 638,182                 | 93.5%                                             | 0.136                  |
| Computer<br>Science                      | 1,533,660   | 3.422                     | 12.55                                           | 1.402                                                               | 220,711                 | 82.0%                                             | 0.172                  |
| Mathematics                              | 703,100     | 1.970                     | 13.21                                           | 1.932                                                               | 117,968                 | 80.9%                                             | 0.180                  |
| Quantitative<br>Biology                  | 132,670     | 3.561                     | 13.39                                           | 1.153                                                               | 18,533                  | 45.4%                                             | 0.602                  |
| Electrical Engineering & Systems Science | 138,726     | 4.112                     | 12.64                                           | 1.273                                                               | 20,417                  | 54.1%                                             | 0.499                  |
| Statistics                               | 128,605     | 2.991                     | 12.85                                           | 1.244                                                               | 27,886                  | 70.1%                                             | 0.343                  |
| Quantitative<br>Finance                  | 25,041      | 2.366                     | 12.88                                           | 1.254                                                               | 4,215                   | 37.2%                                             | 0.423                  |