A. Elouni A. Khaldi C. Samir A. Wohrer

TD1 – Dénombrement

Exercice 1.

Une brasserie propose à ses clients de choisir leur menus en se basant sur une carte qui contient 4 entrées, 3 plats et 5 desserts.

- 1. Combien de possibilités pour former un menu entrée suivie d'un plat?
- 2. Combien de possibilités pour former un menu plat suivi d'un dessert?
- 3. Combien de possibilités pour former un menu entrée suivie d'un plat suivi d'un dessert?
- 4. Victime de son succès, il n'y a plus qu'un seul choix de dessert possible. Répondez à nouveau aux questions 1 à 3 dans cette nouvelle situation.

Exercice 2.

Un fournisseur d'internet a décidé de proposer un service de streaming (vidéo à la demande) en utilisant des codes à six chiffres. Un code par abonné, composé des chiffres de 0 à 9.

- 1. Donner le nombre d'abonnés potentiels.
- 2. Donner le nombre d'abonnés qui ont un code composé de chiffres différents deux à deux.
- 3. Soit un code donné. Donner le nombre d'abonnés qui partagent les mêmes chiffres dans leur code, mais dans un ordre différent :
 - (a) si le code est composé de 6 chiffres différents.
 - (b) si le code est composé de 5 chiffres différents.
- 4. Si le fournisseur décide, comme pour le téléphone, de fixer les deux premiers chiffres à 04, combien restera-t'il d'abonnés potentiels?
- 5. Dans ce dernier cas, combien d'abonnés posséderont-ils des numéros composés d'au moins 3 chiffres distincts?

Exercice 3.

Un club de 30 membres, 12 filles et 18 garçons, doit élire un comité de représentants composé d'un président, un secrétaire et un trésorier.

- 1. Combien de comités sont possibles?
- 2. Tout le monde s'est mis d'accord que le poste secrétaire sera occupé par une fille. Combien de comités sont possibles?
- 3. Cédric se propose pour participer au comité, combien de comités avec Cédric sont possibles?
- 4. Combien de comités composés de deux filles et un garçon?
- 5. Combien de comités composés de Cédric comme président et une seule fille?

Exercice 4.

Un éditeur de logiciel décide d'opter pour une période d'essai gratuite. Pour vérifier le statut des utilisateurs, il utilise des codes à huit chiffres générés aléatoirement et distribués lors de l'achat.

- 1. Calculer le nombre de codes composés de 2 chiffres différents, dans lesquel un chiffre est présent 7 fois et l'autre chiffre une seule fois.
- 2. Même question avec 3 chiffres différents, dont l'un est présent 6 fois et les deux autres 1 fois.

Exercice 5.

- 1. Un prof de math doit s'habiller avec un pantalon (parmi 3 possibles), une chemise (parmi 5 possibles), et une veste en velours (parmi 2 possibles). Écrivez une boucle en pseudo-code lui permettant de tester toutes les possibilités.
- 2. Un dictionnaire en ligne propose une fonction de requête <code>existe(mot)</code>, qui renvoie 1 si la chaîne de caractères <code>mot</code> existe dans la langue française, et 0 sinon. Écrivez une boucle en pseudo-code permettant d'énumérer tous les mots français constitués d'exactement 3 lettres.
- 3. Même question si on se restreint aux mots constitués de 3 lettres différentes.
- 4. Un fabricant doit ajouter 2 produits durcissants dans sa peinture, à choisir parmi les 15 durcissants disponibles dans ses étagères. Écrivez une boucle en pseudo-code permettant de tester toutes les possibilités.
- 5. Même question si le fabricant décide plutôt d'utiliser 3 produits durcissants.

Exercice 6.

- 1. Dénombrer les anagrammes des mots suivants : MATHS, RIRE, ANANAS.
- 2. Combien y-a-t-il de façons de répartir les 52 cartes d'un jeu entre 4 joueurs N, S, E, O, chacun possédant 13 cartes?
- 3. Une table ronde comporte cinq places, numérotées de 1 à 5. On veut répartir Adélie, Birgit, Chedli, Denis et Emilie autour de la table. Combien y a t'il de dispositions possibles?
- 4. En réalité, Denis et Émilie ne s'entendent pas du tout, et il ne faut pas les placer côte à côte! Combien reste-t-il de dispositions possibles?

Exercice 7.

Dans un jeu virtuel on doit choisir 3 numéros jokers en début de partie, deux-à-deux distincts, parmi les nombres de 1 à 7.

- 1. Combien de tirages sont possibles?
- 2. Combien de tirages possibles dont le plus grand numéro est 3?
- 3. Soit k un entier vérifiant $3 \le k \le 7$. Combien y a-t-il de tirages dont le plus grand numéro est k?
- 4. Un joueur a remarqué qu'il perd à chaque fois qu'il a choisi des numéros dont la somme est supérieure ou égale à 15. Il décide d'éviter ce cas, combien de possibilités lui restet-il?