01/02/2023

contact: cwo@mci.sdu.dk

Computational Physics: Problem Set 1

Discussion: 01/02/2023

1 Matrix algebra

Consider the 2 × 2-matrices $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $D = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

- a) Compute the matrices $E = \frac{1}{2}(5A 3B + 5C D)$, F = (B + C)E
- b) Find the eigenvalues of A, B, C and F. Show that D has no real eigenvalues. Which matrices have degenerate eigenvalues?

 hint: not every case requires a calculation, some are trivial.
- c) Find all eigenvectors of A, B, C and F.

 hint: not every case requires a calculation, some are trivial.
- d) Matrix multiplication is not commutative (i.e. the order of the factors can matter). The commutator of two matrices is defined as $[M_1, M_2] = M_1 M_2 M_2 M_1$. Calculate the commutators [A, B], [A, C], [C, D], and [E, F]. Which of these pairs of matrices do commute?

2 Hilbert space of complex column vectors

Let \mathbb{C}^N be the space of complex column vectors

$$\mathbb{C}^N = \{ \mathbf{a} : \mathbf{a} = (a_1, \dots, a_N)^T \text{ with } a_n \in \mathbb{C} \},$$

defined over the field of complex numbers $\mathbb C$ with the usual scaling and addition:

$$\alpha \mathbf{a} + \beta \mathbf{b} = (\alpha a_1 + \beta b_1, \dots, \alpha a_N + \beta b_N), \text{ with } \mathbf{a}, \mathbf{b} \in \mathbb{C}^N, \quad \alpha, \beta \in \mathbb{C}.$$

- a) Show that \mathbb{C}^N is complete by assuming that \mathbb{C} is complete.
- b) Show that the scalar product

$$\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{i=1}^{N} a_i^* b_i$$

is Hermitian, positive definite, and linear in the second parameter.

c) Show that the matrix $M_{ij}^{(\Phi)}$ associated with a Hermitian automorphism Φ acting on \mathbb{C}^N , i.e. the matrix representing Φ with

$$\langle \Phi(\mathbf{a}), \mathbf{b} \rangle = \langle \mathbf{a}, \Phi(\mathbf{b}) \rangle \text{ for } \mathbf{a}, \mathbf{b} \in \mathbb{C}^N$$

satisfies the condition

$$M_{ji}^{(\Phi)} = [M_{ij}^{(\Phi)}]^*.$$

3 Hilbert space of polynomials of degree N

A polynomial of degree N takes the form $p(x) = a_0 + a_1x + a_2x^2 + \dots a_Nx^N = \sum_{n=0}^N a_nx^n$ and is completely definied via its coefficients $a_n \in \mathbb{R}$. All polynomials of degree N form a function space \mathbb{P} . We now define the space \mathbb{R}^{N+1} of column vectors $(a_0, a_1, \dots a_N)^T$ and write $\mathbf{V}[p(x)]$ for the column vector that consists of the coefficients of the polynomial p(x).

a) Show that the spaces \mathbb{P} and \mathbb{R}^{N+1} follow the same calculation rules for addition and scaling:

$$\mathbf{V}[\lambda p(x) + \mu q(x)] = \lambda \mathbf{V}[p(x)] + \mu \mathbf{V}[q(x)] \quad \text{for} \quad p, q \in \mathbb{P}, \quad \lambda, \mu \in \mathbb{R}.$$

- **b)** Show that the derivative $\frac{d}{dx}$ of an element of \mathbb{P} always produces another element from \mathbb{P} , i.e. that the derivative $\frac{d}{dx}$ constitutes an automorphism. Show that the action of the derivative $\frac{d}{dx}$ on the polynomials from \mathbb{P} can be represented as a matrix within the space \mathbb{R}^{N+1} and find this matrix.
- c) Show that the action of the integral $\int_0^x dx' \, p(x')$ (i.e. the inverse operation of the derivative) on the polynomials p(x) from \mathbb{P} cannot be represented as a matrix within the space \mathbb{R}^{N+1} .
- d) Show that the evaluation of any polynomial $p(x) \in \mathbb{P}$ at a given position x_0 can be found by multiplying $\mathbf{V}[p(x)]$ with an appropriate vector of length N+1.
- e) Show that the form

$$\langle p(x), q(x) \rangle = \int_0^1 \mathrm{d}x \ p(x)q(x) \quad \text{for} \quad p, q \in \mathbb{P},$$

is Hermitian, positive definite, and linear in the second parameter. Note that the Hermiticity condition simplifies to $\langle p, q \rangle = \langle q, p \rangle$, because the functions are purely real.

f) Show that the space \mathbb{P} of polynomials of degree N is complete.

Students are encouraged to solve these problems in groups. They should be able to informally present their solution in the problem class on 01/02/2023 at the white board (no PowerPoint slides to be prepared).