1 Gradfolge

- jedem einfachen Grad laesst sich eine Gradfolge zuordnen
 - $\rightarrow (deg(v_1), ..., deg(v_k))$ fuer $V = \{v_1, ..., v_k\}$
- ein Graph heisst k-regulaer $\Leftrightarrow \forall v \in V : deg(v) = k$
- der vollstaendige Graph K_n ist (n-1)-regulaer
- der Kreisgraph C_n mit $n \geq 3$ ist 2-regulaer
- der Hyperwuerfel Q_n ist n-regulaer
- wichtig: 2 nicht isomorphe Graphen koennen dieselbe Gradfolge besitzen
 - \rightarrow Gradfolge kein Beweis fuer Isomorphie

1.1 Handschlaglemma

$$2|E| = \sum_{i \in [n]} deg(v_i)$$

- \rightarrow ein einfacher Graph existiert \Leftrightarrow die Summe gerade ist
- \rightarrow ein einfacher Graph muss eine gerade Anzahl an Knoten ungeraden Grades haben
- \to ein einfacher Graph mit $|V|>\frac{1}{2}\sum_{i\in[n]}d_i+1\Rightarrow |V|>|E|+1$ kann nicht zshg. sein

1.2 Realisierbarkeit von Gradfolgen - Havel Hakimi

1.2.1 1. Phase

Rekursive Reduktion der Gradfolge bis man eine Abbruchbedingung erreicht

- \rightarrow es werden immer so viele Grafolgen reduziert wie gross die Gradfolge des zu entfernenden Knoten ist
- \rightarrow nach jedem Schritt neu aufsteigend die uebrig gebliebende Gradfolge sotieren

Bsp.:
$$(1,1,2,3,4,4,5) \to (0,1,1,2,3,3) \to (0,0,1,1,2) \to (0,0,0,0)$$

Falls wird nicht bei einem Tupel aus nur 0 enden ist die Gradfolge nicht realisierbar.

1.2.2 2. Phase

Bottom-up Konstruktion einer Gradfolge beginnend bei 0 um die Existenz eines Graphens und seiner zugehoerigen folge zu beweisen.

2 Baume

- ein einfacher Graph welcher zshg. und kreisfrei ist, ist ein Baum \to ein Graph ist ein Baum \Leftrightarrow |E|=|V|-1
- ein Knoten mit deg(u) = 1 wird als Blatt bezeichnet, sonst als innerer Knoten
- zu einem Baum mit $n \geq 4$ Knoten gibt es n-1 Isomorphe Baeume
- ein Graph dessen maximale Zshgkomponenten Baeume sind nennt man Wald
- jeder Graph hat mindestens einen Spannbaum