NN Synthesis Project

吳育丞 吳冠緯

Outline

- 1. Model Training
 - Data Augmentation
 - ReLU Upper Bound
 - Hyper Parameter (lr, batch size, optimizer ...)
 - Knowledge Distillation
- 2. Circuit Generation
 - Generate Matrix
 - Find Sharing
 - Construct Graph & MaxWeightMatching
- 3. FPGA Implementation (Bonus)
 - Simulation
 - Synthesis
 - Implementation

1. Model Training

Data Augmentation

transforms.ToTensor(),

transforms.RandomRotation(5),

transforms.RandomResizedCrop(28),

transforms.Normalized((0.5,), (0.5,))

ReLU Upper Bound

torch.nn.functional.relu6() \rightarrow limit upper bound to 6

[ReLU6(x) = min(max(0, x), 6)]

torch.nn.functional.relu() + min(x, 7) \rightarrow limit upper bound to 7

4 bits are used on both upper bounds

Hyper Parameter

```
Default:
bit = 4
Ir = 0.0005 (0.005, 0.00005 ...)
dropout = 0.35 (0.5 ...)
batch size = 256 (128 ...)
epoch = 100 (150 ...)
optimizer = Adam (RAdam, SGD ...)
```

Large Model Example

c1 (1, 3, k=3, s=2, p=0)

f1 (3*13*13, 64)

f2 (64, 32)

f3 (32, 10)

Testing accuracy of the quantized model: 0.9701

```
--- Number of parameter ---
34958
epoch:5, train acc:0.9141, valid acc:0.9061
epoch:10, train acc:0.94134, valid acc:0.9355
epoch:15, train acc:0.95994, valid acc:0.9555
epoch: 20, train acc: 0.96434, valid acc: 0.9565
epoch: 25, train acc: 0.96898, valid acc: 0.9603
epoch:30, train acc:0.97014, valid acc:0.964
epoch:35, train acc:0.9699, valid acc:0.9617
epoch:40, train acc:0.97166, valid acc:0.9626
epoch:45, train acc:0.97664, valid acc:0.9679
epoch:50, train acc:0.97474, valid acc:0.9666
epoch:55, train acc:0.97512, valid acc:0.9682
epoch:60, train acc:0.97536, valid acc:0.9666
epoch:65, train acc:0.97206, valid acc:0.9648
epoch:70, train acc:0.9756, valid acc:0.9683
epoch: 75, train acc: 0.97658, valid acc: 0.9676
epoch:80, train acc:0.97002, valid acc:0.9627
epoch:85, train acc:0.97458, valid acc:0.965
epoch:90, train acc:0.97388, valid acc:0.966
epoch:95, train acc:0.97612, valid acc:0.9686
epoch:100, train acc:0.9746, valid acc:0.9652
best valid acc: 0.9686
```

Small Model Example

c1 (1, 3, k=11, s=3, p=0) f1 (3*6*6, 10)

Testing accuracy of the quantized model: 0.953

```
--- Number of parameter ---
1462
epoch:5, train acc:0.90762, valid acc:0.9062
epoch:10, train acc:0.92722, valid acc:0.9291
epoch:15, train acc:0.9338, valid acc:0.9311
epoch: 20, train acc: 0.94408, valid acc: 0.9421
epoch: 25, train acc: 0.94722, valid acc: 0.9465
epoch:30, train acc:0.94766, valid acc:0.9452
epoch:35, train acc:0.94636, valid acc:0.9446
epoch:40, train acc:0.95076, valid acc:0.9447
epoch:45, train acc:0.9503, valid acc:0.95
epoch:50, train acc:0.93756, valid acc:0.9405
epoch:55, train acc:0.94084, valid acc:0.9386
epoch:60, train acc:0.94088, valid acc:0.9404
epoch:65, train acc:0.93826, valid acc:0.9335
epoch:70, train acc:0.93, valid acc:0.9316
epoch: 75, train acc: 0.94516, valid acc: 0.9457
epoch:80, train acc:0.94968, valid acc:0.9442
epoch:85, train acc:0.94236, valid acc:0.9394
epoch:90, train acc:0.92982, valid acc:0.9312
epoch:95, train acc:0.94402, valid acc:0.9409
epoch:100, train acc:0.9434, valid acc:0.9421
best valid acc: 0.95
```

Different Modification: Model Architecture

fully connected NN model (4 layers):

256 / 128 / 64 / 10: 98%

128 / 64 / 32 / 10: 97%

64 / 48 / 16 / 10 : 97%

48 / 32 / 16 / 10 : 95%

Note that for 2 layers 256 / 10 can obtain 97% acc as well.

Different Modification: Ir

change the learning rate of Adam optimizer:

batch size = 256

bit = 4

	Ir = 0.005	Ir = 0.0005	Ir = 0.00005
best valid	0.9356	0.9566	0.9529
test accuracy	0.9347	0.9547	0.9538

Different Modification: bit

change the learning rate of Adam optimizer:

batch size = 256

Ir = 0.0005

	bit = 4	bit = 6	bit = 8
best valid	0.9566	0.9776	0.9777
test accuracy	0.9547	0.9764	0.9764

Different Modification: batch size

change the learning rate of Adam optimizer:

bit = 4

Ir = 0.0005

	size = 256	size = 128	size = 64
best valid	0.9566	0.9488	0.953
test accuracy	0.9574	0.9512	0.9593

Different Modification: ReLU upper bound

change the learning rate of Adam optimizer:

bit = 4

Ir = 0.0005

batch size = 256

	limit = 5	limit = 6 (relu6) limit = 7				
best valid	0.9575	0.9628 (0.9566)	0.9536			
test accuracy	0.9618	0.9634 (0.9574)	0.9535			

Different Modification: bit quantization

Quantizing activations (a) and weights (w) to 4-bit and 3-bit

default (case I): conv (1, 3, 3, 2) / fc (3*13*13, 32, 32, 10)

case II: fc (3*13*13, 80, 32, 10) / case III: conv (1, 5, 3, 2)

	a4 w4 (I)	a4 w3 (I)	a3 w3 (I)	a3 w3 (II)	a3 w3 (III)
best valid	95.99%	96.22%	93.86%	94.92%	95.68%
test accu.	96.21%	96.21%	93.61%	95.42%	95.32%
AIG accu.	95.73%	86.93%	84.8%	95.1%	93.77%
AND gates #	516492	309698	245716	323941	325484

Different Modification: Knowledge Distillation

Ir = 0.002

batch size = 256

teacher model: conv (1, 8, 3, 2, 0) / fc (512, 128, 10)

use learning rate schedule: ExponentialLR with gamma = 0.95

without KD (with KD)	4-bit teacher	4-bit student	3-bit teacher	3-bit student (a =0.9)	3-bit student (a =0.9-0.1)
best valid	98.56	96.24(95.66)	98	95.15(93.86)	94.08(93.86)
test accu.	98.36	96.12(95.47)	97.91	95.06(93.61)	94.49(93.61)

2. Circuit Generation

Y.-S. Huang, J.-H. R. Jiang, and A. Mishchenko,

"Quantized neural network synthesis for direct logic circuit implementation", Proc. IWLS'21.

Generate Matrix

$$O_1 = -I_1 - 6I_2 + 3I_3$$

 $O_2 = 7I_1 - 6I_2 - 6I_3$
 $O_3 = 2I_1 + 3I_2 + I_3$
 $O_4 = 6I_1 - 3I_2 - 6I_3$

Generate Matrix

$$O_{1} = -(I_{1} \ll 3) + (I_{1} \ll 2) + (I_{1} \ll 1) + I_{1} - (I_{2} \ll 3) + (I_{2} \ll 1) + (I_{3} \ll 1) + I_{3}$$

$$O_{2} = (I_{1} \ll 2) + (I_{1} \ll 1) + I_{1} - (I_{2} \ll 3) + (I_{2} \ll 1) - (I_{3} \ll 3) + (I_{3} \ll 1)$$

$$O_{3} = (I_{1} \ll 1) + (I_{2} \ll 1) + I_{2} + I_{3}$$

$$O_{4} = (I_{1} \ll 2) + (I_{1} \ll 1) - (I_{2} \ll 3) + (I_{2} \ll 2) + I_{2} - (I_{3} \ll 3) + (I_{3} \ll 1)$$

Booth Matrix

$$O_1 = -I_1 - (I_2 \ll 3) + (I_2 \ll 1) + (I_3 \ll 2) - I_3$$

$$O_2 = (I_1 \ll 3) - I_1 - (I_2 \ll 3) + (I_2 \ll 1) - (I_3 \ll 3) + (I_3 \ll 1)$$

$$O_3 = (I_1 \ll 1) + (I_2 \ll 2) - I_2 + I_3$$

$$O_4 = (I_1 \ll 3) - (I_1 \ll 1) - (I_2 \ll 2) + I_2 - (I_3 \ll 3) + (I_3 \ll 1)$$

Find Sharing

0	0	0						0	1	0	-1
1	0	0			0		0	-1	0	1	0
0	0	1	0		1		-1	0	0	0	1
1	0	-1	0	0	-1	0	1	-1	0	1	0

$$\begin{aligned} O_1 &= -I_1 - (I_2 \ll 3) + (I_2 \ll 1) + (I_3 \ll 2) - I_3 \\ O_2 &= (I_1 \ll 3) - I_1 - (I_2 \ll 3) + (I_2 \ll 1) - (I_3 \ll 3) + (I_3 \ll 1) \\ O_3 &= (I_1 \ll 1) + (I_2 \ll 2) - I_2 + I_3 \\ O_4 &= (I_1 \ll 3) - (I_1 \ll 1) - (I_2 \ll 2) + I_2 - (I_3 \ll 3) + (I_3 \ll 1) \end{aligned}$$

Find Sharing

$$O_{1} = \overline{-I_{1} - (I_{2} \ll 3) + (I_{2} \ll 1)} + (I_{3} \ll 2) - I_{3}$$

$$O_{2} = (I_{1} \ll 3) \overline{-I_{1} - (I_{2} \ll 3) + (I_{2} \ll 1)} \overline{-(I_{3} \ll 3) + (I_{3} \ll 1)}$$

$$O_{3} = \overline{(I_{1} \ll 1) + (I_{2} \ll 2) - I_{2}} + I_{3}$$

$$O_{4} = \overline{(I_{1} \ll 3)} \overline{-(I_{1} \ll 1) - (I_{2} \ll 2) + I_{2}} \overline{-(I_{3} \ll 3) + (I_{3} \ll 1)}$$

Find Sharing

```
Algorithm FindMaxPairing (W_B, unSharedCols)
  G(V, E) = ConstructGraph (W_B, unSharedCols)
  pairs = MaxWeightMatching(V,E)
  result = []
  foreach pair in pairs:
     S^{same}, S^{diff} = PairRows (pair)
     if gain (S^{same}) > 0:
       append S<sup>same</sup> to result
     if gain (S^{diff}) > 0:
       append S^{diff} to result
return result
```

Construct Graph

MaxWeightMatching

Z. Galil, "Efficient algorithms for finding maximum matching in graphs," ACM Comput. Surv., vol. 18, no. 1, pp. 23–38, 1986.

Overall Algorithm

Algorithm 1 FindSharing **Input:** An $m \times nb$ Booth matrix W_B Output: A list of shared terms 1: $C := \{0, \ldots, nb - 1\};$ 2: unSharedCols := an empty hash table; 3: **for** r = 0 to m - 1 **do** unSharedCols[r] = C;5: result := [];6: $sharings := FindMaxPairing(W_B, unSharedCols);$ 7: **while** size(sharings) > 0 **do** append elements in sharings to result; 8: unSharedCols := refine(unSharedCols, sharings);10: $sharings := FindMaxPairing(W_B, unSharedCols);$ 11: **return** result;

3. FPGA Implementation (Bonus)

Example Result

c1 (1, 2, k=3, s=2, p=0) f1 (2*13*13, 10)

New Project Summary

- A new RTL project named 'Presentation_Example' will be created.
- 15 source files will be added.
- 1 constraints file will be added.
- 1 The default part and product family for the new project:

Default Board: Nexys Video Default Part: xc7a200tsbg484-1

Product: Artix-7 Family: Artix-7 Package: sbg484 Speed Grade: -1

Simulation

Synthesis: Time

√ ✓ synth_1 (active)	constrs_1	synth_design Complete!	69184	6716	0.0
⊳ impl_1	constrs_1	Not started			
∨ □ Out-of-Context Module Runs					
✓ blk_mem_gen_0_synth_1	blk_mem_gen_0	synth_design Complete!	0	0	174.5

tup		Hold		Pulse Width	
Worst Negative Slack (WNS):	3.377 ns	Worst Hold Slack (WHS):	0.139 ns	Worst Pulse Width Slack (WPWS):	9.500
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	15368	Total Number of Endpoints:	15368	Total Number of Endpoints:	7067

Synthesis: Power

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.998 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 28.3°C

Thermal Margin: 56.7°C (16.7 W)

Effective 3JA: 3.3°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Medium

Launch Power Constraint Advisor to find and fix

invalid switching activity

Implementation: Time

Name	Constraints	Status	WNS	TNS	WHS	THS	TPWS	Total Power	Failed Routes	LUT	FF
√ ✓ synth_1 (active)	constrs_1	synth_design Complete!								69184	6716
✓ impl_1	constrs_1	route_design Complete!	0.471	0.000	0.066	0.000	0.000	0.659	0	57876	6717
Use Out-of-Context Module Runs	Out-of-Context Module Runs										
✓ blk_mem_gen_0_synth_1	blk_mem_gen_0	synth_design Complete!								0	0

BRAM	URAM	DSP	Start	Elapsed	Run Strategy	Report Strategy
0.0	0	0	6/16/22, 11:27 PM	00:14:51	Flow_AlternateRoutability (Vivado Synthesis 2021)	Vivado Synthesis Default Reports (Vivado Synthesis 202
174.5	0	0	6/16/22, 11:44 PM	00:29:06	Congestion_SpreadLogic_medium (Vivado Implementation 2021)	Vivado Implementation Default Reports (Vivado Implementat
174.5	0	0	6/16/22, 11:19 PM	00:05:32	Vivado Synthesis Defaults (Vivado Synthesis 2021)	Vivado Synthesis Default Reports (Vivado Synthesis 2021)

S	etup		Hold		Pulse Width	
	Worst Negative Slack (WNS):	0.471 ns	Worst Hold Slack (WHS):	0.066 ns	Worst Pulse Width Slack (WPWS):	9.500 ns
	Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
	Total Number of Endpoints:	15719	Total Number of Endpoints:	15719	Total Number of Endpoints:	7068
Α	Il user specified timing constra	aints are m	et.			

Implementation: Power

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.659 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 27.2°C

Thermal Margin: 57.8°C (17.1 W)

Effective JA: 3.3°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Medium

<u>Launch Power Constraint Advisor</u> to find and fix

invalid switching activity

Q&A