Quicksort (2)

Friday, January 31, 2025 9:47 AM

Last Time:

Master Theorem

Quicksort

Today

- Quicksort
- Selection
- HW2 due

• HW3 assigned! — (due Friday)

Choose a pivot index P r < partition (A[...n], p) Qsort (A [...r-1]) Qsort (A[r+1...n])

worst - case -> O(n2)

Observations

- O Partition does most of the work.
- (2) we add up the "contribution" of partition.
- 3 Partition is (un at most (n-1) times

red part contribute at most TO(n) to the running time purple part -> (ontribute equal to

the number of comparison)

 $Q_{n'(k),n+1}, \quad O(n+X)$

For analysis, let $A = 2_1, 2_2, \dots 2_n$ Let Z_{1j} be $dZ_{1}, Z_{1+1} \dots Z_{j}$ (all Hens doom Z_{1} through Z_{2j}). Let X_{1j} be a random variable: $X_{1j} = d$ if also compares Z_{1} vis. Z_{2j} $X_{1j} = d$ if also compares Z_{1} vis. Z_{2j}

. Each Z; v., Z; con only be compare one time.

$$= \sum_{\substack{\alpha | l | i,j \\ i \neq j}} X_{ij} = \sum_{\substack{n-1 \\ 1 = 1 \ j=i+1}}^{n} X_{ij}$$

$$E[X] = E[\sum_{j=1}^{n-1} \frac{1}{j} \times_{ij}] = \sum_{j=i+1}^{n-1} \frac{1}{j} E[X_{ij}]$$

$$= \sum_{j=1}^{n-1} \frac{1}{j} Pr[Z_{ij} \times_{ij} Z_{ij}] + \sum_{j=i+1}^{n-1} \frac{1}{j} Pr[Z_$$

Probability of conparing 2, v, Z;

$$\frac{2n}{2} = \left\{ \frac{2n}{2n}, \frac{2n}{2n}, \frac{2n}{2n}, \frac{2n}{2n} \right\}$$

$$\frac{2n}{2n} = \left\{ \frac{2n}{2n}, \frac{2n}{2n}, \frac{2n}{2n}, \frac{2n}{2n} \right\}$$

$$\frac{2n}{2n} = \left\{ \frac{2n}{2n}, \frac{2n}{2n}, \frac{2n}{2n}, \frac{2n}{2n} \right\}$$

OIF a pivot in $\sqrt{2_{i+1}} \cdot \cdot \cdot \cdot 2_{j-1}$ i) chosen, then, 2_i will never be compared to 2_j .

(2) It Zi or Zi i) Chosen, then a comparison will happen between Zi, Zi.

So: Pr[2i v.s. 2j happens] = Pr[2i i, (hourn a) proof or 2j i, (hourn a) proof] = Pr[2i (hourn) + Pr[2j (hourn)] $= \frac{1}{j-j+1} + \frac{2}{j-j+1} = \frac{2}{j-j+1}$

r = 1 $\frac{r-1}{r}$ $\frac{r}{r}$

$$E[x] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{2^{i-j+1}}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k!}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k!} = 2 \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{1}{k!}$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$= 2 \sum_{i=1}^{n-1} \ln n = 2 n \cdot \ln n$$

$$=$$

If you want o(nlogn) with case for quicksoff,
then, choose proof of rank 1/2!

Select Input: A[1....n]

Input: A[1.....n] (-) target rank Ontpot: The Hen of rock

(1) It 1=1, then, find the min. - , O(n)

(D) It (=2 -) 20

 $\frac{1}{2}$ $(=\frac{n}{2})$ $\frac{n}{2}$ (n-1) $\frac{n^2}{2}$ \times

Quickselect

subjentine

O Partition.

Qvichselect (A[1...n], r)

- D Pick a pivot, p. -> ALP)
- @ partition (A[1...n, p).)

ALP) | >ALP)

(3) It $r < \hat{p}$, then (Quickselect(A[... \hat{p} -1], r) otherwise rop, then Qnickselect (Alpti,n), r-p) or r=p, done!

Efficiency:

$$T(n) = \theta(n) + \max_{x} dT(n-\hat{p}), T(\hat{p}-1)$$

worst-case:
$$T(n) = \Theta(n) + T(n-1)$$

$$\frac{1}{\Theta(n^2)}$$

$$T(n) = \Theta(n) + \left(T(n/2)\right) \longrightarrow 0(n)$$

109.1 -) 0

			109.1	<i>—</i>)	O
(7/2 de	cleesing	n°	<i>ر</i> . ر	9()
V	7/4	-	, ,	0.7	0 (n)
	h/8				