PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-347291

(43)Date of publication of application: 20.12.1994

(51)Int.Cl.

G01D 5/36

G01D 5/38

(21)Application number: 05-166501

(71)Applicant: ONO SOKKI CO LTD

(22)Date of filing:

11.06.1993

(72)Inventor: SAKAI MASAHIKO

(54) ROTARY ENCODER

(57) Abstract:

PURPOSE: To enable the reducing of the weight by facilitating the

assembling with limited production process.

CONSTITUTION: This rotary encoder has parts 22a varied in reflection efficiency at a specified interval and light from a light emitting means 23 is reflected with a rotary reflection plate 22 turning on an input shaft 21 to be received by a photodetecting means 26. The rotary reflection plate 22 is molded integral by a resin. The rotary reflection plate 22 has the input shaft 21 made of metal insert molded integral.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12)公開特許公報 (A) (11)特許出願公開番号

特開平6-347291

(43)公開日 平成6年(1994)12月20日

(51) Int. C1.5

識別記号 庁内整理番号

FI

技術表示箇所

G01D

5/36

C 9208-2 F

5/38

A 9208-2 F

審査請求 未請求 請求項の数2

F D

(全5頁)

(21)出願番号

特願平5-166501

(22)出願日

平成5年(1993)6月11日

(71)出願人 000145806

株式会社小野測器

神奈川県横浜市緑区白山一丁目16番1号

(72)発明者 酒井 正彦

神奈川県横浜市緑区白山1-16-1 株式会

社小野測器テクニカルセンター内

(74)代理人 弁理士 鎌田 久男 (外1名)

(54) 【発明の名称】ロータリエンコーダ

(57)【要約】

【目的】 製造工程が少なく組み立てが容易であって、 軽量化を可能とする。

【構成】 所定間隔により反射効率の異なる部分22a を有し、入力軸を中心に回転する回転反射板22によっ て、発光手段23からの光を反射させて、受光手段26 により受光するロータリエンコーダであって、回転反射 板22は、樹脂により一体成形してある。また、回転反 射板22は、金属製の入力軸21を一体にインサート成 形した。

【特許請求の範囲】

【請求項1】 所定間隔により反射効率の異なる部分を有し、入力軸を中心に回転する回転反射板によって、発 光手段からの光を反射させて、受光手段により受光する ロータリエンコーダであって、

前記回転反射板は、樹脂により一体成形したことを特徴 とするロータリエンコーダ。

【請求項2】 請求項1に記載のロータリエンコーダにおいて、

前記回転反射板は、金属製の入力軸を一体にインサート 10 成形したことを特徴とするロータリエンコーダ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、入力軸の回転角度に比例した数のパルス信号を出力するロータリエンコーダに関し、特に、反射型のロータリエンコーダに関するものである。

[0002]

【従来の技術】図9は、従来のロータリエンコーダの一例を示す図である。従来のロータリエンコーダ10は、入力軸11が軸シール11a及びベアリング11b等により、密封ケースに回転自在に支持されており、この入力軸11には、回転スリット板12が取り付けられている。この回転スリット板12は、ガラス製などの円板に所定数のスリット12aが形成されており、この回転スリット板12には、平行に固定スリット板14が配置されている。両スリット板12,14の両側には、発光ダイオード13及びフォトトランジスタ16が配置されている。

【0003】発光ダイオード13は、パワー回路18に 30 よって駆動され、発光ダイオード13からの光は、レンズ14を介して、両スリット板12,14を通過する。回転スリット板12が回転することにより、2つのスリット板12,14を通過する光には、モアレ縞を生ずる。このモアレ縞は、フォトトランジスタ16によって電気信号に変換されたのち、アンプ17によって増幅して出力される。

【0004】フォトトランジスタ16及びアンプ17は、2つずつ配置されており、2つの出力信号A,Bは、互いに90度位相がずれるように調整され、回転方 40向の反転によって、この位相も反転するので、方向弁別回路をもった可逆カウンタと組み合わせることにより、回転数の加算・減算をすることができる。

【0005】従来、回転スリット板12にスリット12 aを形成するには、ガラス円板にクロムなどの金属薄膜 を形成したのち、フォトレジストを塗布しスリットのパ ターン原版を密着・露光し、さらに、エッチングを行 う、いわゆるフォトリソグラフィ技術が利用されてい た。

[0006]

【発明が解決しようとする課題】しかし、前述した従来のロータリエンコーダ10では、回転スリット板12がガラス円板であり重いので、慣性が大きく応答性が悪かった。また、スリット12aは、前述したフォトリソグラフィ技術を利用して形成されるので、製造工程が多く、コストアップにつながっていた。さらに、入力軸11は、回転スリット板12の中心に正確に取り付けなければならないので、組み立て及び調整に手間がかかっていた。

【0007】本発明の目的は、前述の課題を解決して、 製造工程が少なく、組み立てが容易であって、軽量化を 可能とするロータリエンコーダを提供することである。 【0008】

【課題を解決するための手段】前記課題を解決するために、本発明によるロータリエンコーダの第1の解決手段は、所定間隔により反射効率の異なる部分を有し、入力軸を中心に回転する回転反射板によって、発光手段からの光を反射させて、受光手段により受光するロータリエンコーダであって、前記回転反射板は、樹脂により一体20 成形したことを特徴とする。

【0009】第2の解決手段は、第1の解決手段のロータリエンコーダにおいて、前記回転反射板は、金属製の入力軸を一体にインサート成形したことを特徴とする。 【0010】

【作用】第1の解決手段によれば、回転反射板は、樹脂により一体成形するので、製造工程が少なく、かつ、軽量化が可能となる。第2の解決手段によれば、金属製の入力軸を一体にインサート成形するので、入力軸を精密に一体化でき、組立・調整時間が不要となる。

[0011]

【実施例】以下、図面等を参照して、実施例について、さらに詳しくに説明する。図1は、本発明によるロータリエンコーダの第1の実施例を示す斜視図、図2は、第1の実施例に係るロータリエンコーダの回転スリット板と固定スリット板を示す図、図3及び図4は、第1の実施例の動作を説明するための図である。なお、前述した従来例と同様な機能を果たす部分には、末尾の符号を統一して付し、重複する説明を省略する。

【0012】この実施例のロータリエンコーダ20では、回転反射板22は、ポリカーボネイト等の樹脂を射出成形などにより成形したものであり、成形時に、金属製の入力軸21をインサートして、一体成形してある。このために、回転反射板22の軽量化が図れるとともに、入力軸21と回転反射板22を精密に位置決めした状態で一体化できる。この回転反射板22は、銅板を直接切削することにより図2に示す表面形状の溝型を形成した原版を作製し、この原版を用いて樹脂成形することにより、同形の複製品を精度よく多量かつ安価に製造できる。

50 【0013】回転反射板22は、図2に示すように、頂

角 θ , ピッチャ, 高さhの断面三角形の凹凸部 22aが 規則的に形成されている。回転反射板22の表面には、 金もしくはアルミニウム等のような反射率の高い反射層 22bが形成されている。固定スリット板25は、ピッ チp1,幅wのスリット25aが形成されており、回転 反射板22と間隙cを隔てて、配置されている。通常、 $p_1 = p$ であり、一例として、 $p = 40 \mu m$ のときに、 c=1 mm程度となる。この実施例では、発光ダイオー ド23とフォトトランジスタ26とにより、投受光部が 構成されている。

【0014】発光ダイオード23からの光は、固定スリ ット板25のスリット25aを通り、回転反射板22の 反射層22bで反射されたのち、再び、スリット25a を通り、フォトトランジスタ26によって受光される。 このフォトトランジスタ26は、回転反射板22がp1 /2移動するごとに、同期的な電気信号を得ることがで きる。

【0015】次に、図3、図4を参照して、第1の実施 例の動作をさらに詳しく説明する。図3において、下側 の固定スリット板25は、反射してもう一度固定スリッ 20 ト板25を通ることを展開的に示したものである。固定 スリット板25を通った入射光は、各次数の回折光とな って、回転反射板22に進み、回転反射板22において も、さらにもう一度回転反射板22においても回折を繰 り返す。そして、透過後に干渉しない光は弱め合い、干 渉光のみが強調されて、明暗の変化としてフォトダイオ ード26により検知される。

【0016】ここで、使用する光源は、発光ダイオード 23又は白熱球であり、可干渉距離は、通常10µm程 度であるので、距離cを十分とった場合(例えば、1m 30 m)には、干渉光として強調されるのは、同一次数、同 一波面の光のみとなる。図3において、強度の大きな0 次光と±1次光についてのみ考えると、入射光は、図4 の4つのコースをたどって干渉する。(A), (B), (C), (B') コースのいずれもトータル次数は等し く、同一波面からの光であるので、必ず干渉する。ま た、回転反射板22に対して、(A)と(B)コース、 (C) と(B') コースは±1次の回折を受けているの で、p/2の移動に対して、明暗1周期の変化が得られ

【0017】図5~図8は、本発明によるロータリエン コーダの第2~第5の実施例に用いる回転反射板を示す 図である。第2の実施例の回転反射板22-2は、図5 に示すように、凹凸部 2 2 a - 2 が円筒型の凹面を有し ており、回帰反射をするようにしてある。凹凸部22a -2の表面には、反射層 22b-2が形成されている。 【0018】第3の実施例の回転反射板22-3は、図 6に示すように、矩形断面を有する凹凸部22a-3を 有し、凸部の頂部にのみ反射層22b-3が形成されて いる。反射層 2 2 b - 3 の有無により、反射効率の差を 50 1 1 2 1 入力軸

設けている。

【0019】第4の実施例の回転反射板22−4は、図 7に示すように、矩形断面を有する凹凸部 2 2 a - 4 を 有する点では、第3の実施例と同じであるが、反射層は 設けておらず、凹凸部22a-4の深さを波長んの1/ 4に設定し、凸部の頂部と凹部の谷部との光路差を入/ 2とすることにより、反射効率の差を設けるようにして ある。なお、この場合には、光源として、コヒーレント 光を発振する半導体レーザ素子などを用いることにな 10 る。

4

【0020】第5の実施例の回転反射板22-5は、図 8に示すように、表面に凹凸部を設けることなく、反射 層22b-5と梨地状のマット層22cを交互に形成す るようにしたものである。

【0021】以上説明した実施例に限定されず、種々の 変形や変更が可能であって、それらも本発明に含まれ る。例えば、十分に荒い凹凸部であり、外光の影響も少 ない場合には、固定スリット板を用いなくともよい。 [0022]

【発明の効果】以上詳しく説明したように、請求項1に よれば、回転反射板が樹脂により一体成形されおり、製 造工程が少ないので、製造コストを低く押さえることが 可能となる。また、樹脂成形であり、軽量化ができるの で、慣性が小さく、応答性がよくなる、という効果があ

【0023】請求項2によれば、金属製の入力軸を一体 にインサート成形して、入力軸を精密に一体化できるの で、組立・調整時間が不要となり、製造効率がよくな る、という効果がある。

【図面の簡単な説明】

【図1】本発明によるロータリエンコーダの第1の実施 例を示す斜視図である。

【図2】第1の実施例に係るロータリエンコーダの回転 スリット板と固定スリット板を示す図である。

【図3】第1の実施例の動作を説明するための図であ

【図4】第1の実施例の動作を説明するための図であ る。

【図5】本発明によるロータリエンコーダの第2の実施 40 例に用いる回転反射板を示す図である。

【図6】本発明によるロータリエンコーダの第3の実施 例に用いる回転反射板を示す図である。

【図7】本発明によるロータリエンコーダの第4の実施 例に用いる回転反射板を示す図である。

【図8】本発明によるロータリエンコーダの第5の実施 例に用いる回転反射板を示す図である。

【図9】従来のロータリエンコーダの一例を示す図であ

【符号の説明】

5

12 回転スリット板

22 回転反射板

13,23 発光ダイオード

14 レンズ

15,25 固定スリット板 16A,16B,26 フォトトランジスタ 17A,17B アンプ 18 パワー回路

【図1】

【図2】

【図5】

[図3]

[図4]

回析次数	(A) 3-2	(B) コース	(C) 3-2	(B') 1~2
图定划分板25	+1次	0 <i>8</i> x	-1X	0次
回転反射板22	1次	+1次	+125	-1次
固定スリット板26	0次	- 1次	0 th	+1次
一外次数	0次	O XX	025	0.25

【図8】

【図6】

【図7】

