Used Car Price Predictions on eBay

Team 6

Our Team

Chris Chang

U98764222

cchang72@bu.edu

XX DRIVER LICENSE XX

Ting-Hsuan Chen

U51060396

aliciac@bu.edu

XX DRIVER LICENSE XX

Haiyuan Zhang U68804194

haz155@bu.edu

XX DRIVER LICENSE XX

Mekhal Raj R U31160630

mekhal@bu.edu

XX DRIVER LICENSE XX

Yifang (Harry) He

U94086175

yifanghe@bu.edu

XX DRIVER LICENSE XX

Mohammed Al Qenae U04709532

alqenae@bu.edu

XX DRIVER LICENSE XX

Table of Contents

O1 Intro to Problem

Describing problem, the bigger picture, and dataset

03 ML Models

Comparing ML models to see which one(s) performed best

02 EDA

Exploring features and correlation among variables

O4 Conclusion

Summarizing results, challenges, and lessons we learned that can be put to practice

01

Intro to Problem

Objective / Bigger Picture

- To predict listing price of used cars on eBay based on predictors such as vehicle type, gearbox, fuel type, and kilometers on car.
- To provide insight/guidance for future buyers and sellers on the prices they should list or bid on eBay for used cars.

Our Dataset

Data Source

https://towardsdatas cience.com/predictin g-the-price-of-used-c ars-891d13faf3fc

Columns

19

Rows

50000

Variable Types

Character, Integer, Other

The features of our dataset

Vehicle Year of Price Gearbox Power PS Type Registration Not Repaired Model **Fuel Type** Brand Kilometer Damage

02

Exploratory Data Analysis

Gearbox

Price vs. Gearbox

Year of Registration

Counts of cars registered for each year

Relationship between price and registration year

Fuel Type

Count of Fuel Type

Price vs. Fuel Type

Vehicle Type

Vehicle Type vs. Price

PowerPS

PowerPS vs. Price

Kilometers

KM vs. Price

Ridge and Lasso

Test RMSE for OLS: 11938.486

Test RMSE for Ridge: 7155.59

Test RMSE for Lasso: 7195.74

Regression Tree

Regression Tree

Random Forest

Random Forest

Train RMSE: 2091.875

Test RMSE: 4913.075

Boosting

Min Test RMSE: 8379.893

MSE Comparisons

OLS

RMSE Train: 9609.137

RMSE Test: 11938.49

Ridge

RMSE Train: 11442.35

RMSE Test: 7155.59

Lasso

RMSE Train: 11426.85

RMSE Test: 7195.74

Regression Tree

RMSE Train: 6521.98

RMSE Test: 11622.47

Random Forests

RMSE Train: 2091.875

RMSE Test: 4913.075

GBM Boosting

RMSE Train: 12395.44

RMSE Test: 8379.893

04

Conclusion

Our biggest challenge

THANKS

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** and illustrations by **Stories**

