Searching PAJ 1/1 ページ

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 2002-062656 (43)Date of publication of application: 28.02.2002

(51)Int.Cl.

G03F 7/039
C08F212/14
C08K 5/00
C08K 5/09
C08K 5/17
C08K 5/5333
C08L 25/18
G03F 7/004
H01L 21/027
//(C08F212/14
C08F212:08
C08F220:18

(21)Application number : 2000–250175 (71)Applicant : TOKYO OHKA KOGYO CO LTD

(22)Date of filing: 21.08.2000 (72)Inventor: OMORI KATSUMI

KINOSHITA YOHEI YAMADA TOMOTAKA TAKAYAMA JUICHI

(54) CROSS LINKAGE FORMING POSITIVE TYPE PHOTORESIST COMPOSITION (57)Abstract:

PROBLEM TO BE SOLVED: To provide a chemical amplification type cross linkage forming positive type photoresist composition having high resolution, excellent in etching resistance and capable of forming a resist pattern adaptable to a recent tendency to form a thinner film. SOLUTION: In the cross linkage forming positive type photoresist composition containing (A) a resin having alkali solubility increased by the action of an acid and (B) a compound which generates the acid when irradiated with radiation, the component (A) is a copolymer containing a constitutional unit of formula (a1) (where R is H or methyl), a constitutional unit of formula (a2) (where R is H or methyl), a constitutional unit of formula (a3) (where R1 is H or methyl, one of R2-R4 is a polycyclic saturated hydrocarbon group or two of R2-R4 form a polycyclic saturated hydrocarbon ring and the others are each lower alkyl) and a crosslinking type constitutional unit of formula (a4) (where R1 is H or methyl; R5 and R6 are each lower alkyli (n) is an integer of 1-3; and A is a single bond or a (n+1)-valent organic group).

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-62656 (P2002-62656A)

(43)公開日 平成14年2月28日(2002.2.28)

(51) Int.Cl.7		識別記号		FΙ			รั	·-マコード(参考)
G03F	7/039	601		G 0 3	F 7/039		601	$2\mathrm{H}025$
C08F	212/14			C 0 8	F 212/14			4 J O O 2
C 0 8 K	5/00			C 0 8	K 5/00			$4\ J\ 1\ 0\ 0$
	5/09				5/09			
	5/17				5/17			
			審查請求	未請求	請求項の数11	OL	(全 9 頁)	最終頁に続く

(21)出願番号 特願2000-250175(P2000-250175)

(22)出願日 平成12年8月21日(2000.8.21)

(71)出願人 000220239

東京応化工業株式会社

神奈川県川崎市中原区中丸子150番地

(72)発明者 大森 克実

神奈川県川崎市中原区中丸子150番地 東

京応化工業株式会社内

(72)発明者 木下 洋平

神奈川県川崎市中原区中丸子150番地 東

京応化工業株式会社内

(74)代理人 100071825

弁理士 阿形 明 (外1名)

最終頁に続く

(54) 【発明の名称】 架橋形成ポジ型ホトレジスト組成物

(57) 【要約】

【課題】 高解像性で耐エッチング性に優れ、しかも最近の薄膜化に対応しうるレジストパターンの形成が可能な化学増幅型の架橋形成ポジ型ホトレジスト組成物を提供する。

【解決手段】 (A) 酸の作用によりアルカリに対する 溶解性が増大する樹脂及び(B) 放射線の照射により酸 を発生する化合物を含有してなるレジスト組成物におい て、(A) 成分が、(a1) 一般式

【化1】

(Rは水素原子又はメチル基)で表わされる構成単位、(a2)一般式

【化2】

(Rは前記と同じ)で表わされる構成単位、(a3) 一

般式

【化3】

 $(R^1$ は水素原子又はメチル基、 R^2 、 R^3 及び R^4 の中の 1 個は多環式飽和炭化水素基であるか又はその中の 2 個で多環式飽和炭化水素環を形成しており、他は低級アルキル基)で表わされる構成単位及び (a_4) 一般式

【化4】

(R^1 は前記と同じ、 R^5 及び R^6 は低級アルキル基、nは $1\sim3$ の整数、Aは単結合又は n+1 価の有機基)で表わされる架橋型構成単位を含む共重合体である架橋形成ポジ型ホトレジスト組成物とする。

【特許請求の範囲】

【請求項1】 (A) 酸の作用によりアルカリに対する 溶解性が増大する樹脂及び(B) 放射線の照射により酸 を発生する化合物を含有してなるレジスト組成物におい て、(A) 成分が、(a1) 一般式

【化1】

(式中のRは水素原子又はメチル基である)で表わされる構成単位、(a2)一般式

【化2】

(式中のRは前記と同じ意味をもつ)で表わされる構成 20 単位、(a3)一般式

【化3】

$$\begin{array}{c}
R^{1} \\
-C - C H_{2} - \\
C = O \\
0 \\
R^{3}
\end{array}$$

(式中のR¹は水素原子又はメチル基、R²、R³及びR⁴の中の1個は多環式飽和炭化水素基であるか又はその中の2個で多環式飽和炭化水素環を形成しており、他は低級アルキル基である)で表わされる構成単位及び

(a4) 一般式

(式中の R^1 は前記と同じ意味をもち、 R^6 及び R^6 は低級アルキル基、nは $1\sim3$ の整数、Aは単結合又はn+1価の有機基である)で表わされる架橋型構成単位を含む共重合体であることを特徴とする架橋形成ポジ型ホトレジスト組成物。

【請求項2】 構成単位(a3)中のR²及びR³がそれ ぞれ低級アルキル基であり、R⁴が多環式飽和炭化水素 基である請求項1記載の架橋形成ポジ型ホトレジスト組 50 成物。

【請求項3】 構成単位 (a3) 中のR²が低級アルキル 基であり、R³及びR⁴とで多環式飽和炭化水素環を形成 している請求項1記載の架橋形成ポジ型ホトレジスト組 成物。

2

【請求項4】 多環式飽和炭化水素基がアダマンチル基である請求項2記載の架橋形成ポジ型ホトレジスト組成物。

【請求項5】 多環式飽和炭化水素環がアダマンチル環である請求項3記載の架橋形成ポジ型ホトレジスト組成物。

【請求項6】 構成単位 (a_4) 中のnが1であり、A が炭素数1~20の直鎖状、若しくは枝分れ状アルキレン基又は部分的若しくは全体的に環化されたアルキレン 基である請求項1ないし5のいずれかに記載の架橋形成ポジ型ホトレジスト組成物。

【請求項7】 構成単位 (a_4) 中のnが1であり、Aが炭素数2~10の直鎖状アルキレン基、 R^5 及び R^6 がメチル基である請求項1ないし5のいずれかに記載の架橋形成ポジ型ホトレジスト組成物。

【請求項8】 (A) 成分が、構成単位 (a₁) 50~80モル%、構成単位 (a₂) 1~25モル%、構成単位 (a₃) 3~25モル%及び構成単位 (a₄) 1~15モル%からなる共重合体である請求項1ないし7のいずれかに記載の架橋形成ポジ型ホトレジスト組成物。

【請求項9】 (A) 成分が、2.38質量%濃度のテトラメチルアンモニウムヒドロキシド水溶液に対する膜減量 $5\sim500$ n m/秒を示すものである請求項1ないし8のいずれかに記載の架橋形成ポジ型ホトレジスト組成物。

【請求項10】 さらに、(C) 第三級脂肪族アミン又は(D) 有機カルボン酸又はリンのオキソ酸若しくはその誘導体あるいはこれらの(C) 成分と(D) 成分の両方を、それぞれ(A) 成分100質量部当り0.01~1.0質量部の範囲で含有する請求項1ないし9のいずれかに記載の架橋形成ポジ型ホトレジスト組成物。

【請求項11】 (D) 成分がサリチル酸又はフェニルホスホン酸である請求項10記載の架橋形成ポジ型ホトレジスト組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高解像性で耐エッチング性に優れるレジストパターンを形成可能な化学増幅型の架橋形成ポジ型ホトレジスト組成物に関するものである。

[0002]

【従来の技術】最近、化学増幅型ポジ型レジストを有機 又は無機の下層反射防止膜と併用することにより、0. $15\sim0$. 22μ m付近の解像性が達成され、このよう な微細なレジストパターンを必要とするリソグラフィー

【化5】

3

プロセスが実用化され、すでに一部量産されている。

【0003】一方、半導体素子の微細化のニーズはます ます高まり、KrFエキシマレーザーを用いた0.12 ~ 0 . 15 μ mの微細パターンを必要とする次世代プロ セスの開発が進められている。このような高解像性を目 的とするリソグラフィープロセスにおいては、レジスト 膜厚の薄膜化(0.6μm以下)が求められるが、薄膜 化により形成されたレジストパターンは耐エッチング性 が劣るという問題が新たに生じてくる。

【0004】従来、ヒドロキシスチレン単位を含む重合 10 体又は共重合体をベース樹脂成分として用い、その水酸 基をジビニルエーテルなどによりベース樹脂間で架橋さ せた、いわゆるクロスリンクタイプの化学増幅型ポジ型 レジストが知られている(特開平6-148889号公 報、特開平8-305025号公報)。しかし、このよ うなクロスリンクタイプの化学増幅型ポジ型レジスト は、一般的には従来のレジストより耐エッチング性は向 上するが、レジスト膜を薄膜化した場合の解像性や耐工 ッチング性の点では十分に対応できないのが現状であ る。

[0005]

【発明が解決しようとする課題】本発明は、このような 事情のもとで、高解像性で耐エッチング性に優れ、しか も最近の薄膜化に対応しうるレジストパターンの形成が 可能な化学増幅型の架橋形成ポジ型ホトレジスト組成物 を提供することを目的としてなされたものである。

[0006]

【課題を解決するための手段】本発明者らは、化学増幅 型の架橋形成ポジ型ホトレジスト組成物について鋭意研 究を重ねた結果、特定の構成単位を含む共重合体からな 30 る樹脂を用いることにより、高解像性で耐エッチング性 に優れ、しかも薄膜化のニーズにこたえられるパターン を与えるものが得られることを見出し、この知見に基づ いて本発明をなすに至った。

(式中のR¹は前記と同じ意味をもち、R⁵及びR⁶は低 級アルキル基、nは1~3の整数、Aは単結合又はn+ 1価の有機基である)で表わされる架橋型構成単位を含 む共重合体であることを特徴とする架橋形成ポジ型ホト レジスト組成物及び、さらに場合により(C)第三級脂 肪族アミン又は(D) 有機カルボン酸又はリンのオキソ 酸若しくはその誘導体あるいはこれらの(C)成分と

(D) 成分の両方を含有してなる架橋形成ポジ型ホトレ ジスト組成物を提供するものである。

【0007】すなわち、本発明は、(A)酸の作用によ りアルカリに対する溶解性が増大する樹脂及び(B)放 射線の照射により酸を発生する化合物を含有してなるレ ジスト組成物において、(A)成分が、(a1)一般式

> R - C - C H 2 -(I)

(式中のRは水素原子又はメチル基である)で表わされ る構成単位、(a2) 一般式

【化6】 R C - C H 2-(II)

(式中のRは前記と同じ意味をもつ)で表わされる構成 20 単位、(a3)一般式

【化7】 R^{-1} $- C - C H_2 -$ C = O(III)

(式中のR1は水素原子又はメチル基、R2、R3及びR4 の中の1個は多環式飽和炭化水素基であるか又はその中 の2個で多環式飽和炭化水素環を形成しており、他は低 級アルキル基である) で表わされる構成単位及び

(a4) 一般式

【化8】 (IV)

[0008]

【発明の実施の形態】本発明の架橋形成ポジ型ホトレジ スト組成物においては、(A)成分である酸の作用によ りアルカリに対する溶解性が増大する樹脂として、(a 1) 一般式

【化9】

5

(式中の R は前記と同じ意味をもつ) で表わされる構成 単位、(a2)一般式

(式中のRは前記と同じ意味をもつ)で表わされる構成 単位、(a3)一般式

(式中のR1は前記と同じ意味をもち、R5及びR6は低 級アルキル基、nは1~3の整数、Aは単結合又はn+ 1価の有機基である)で表される架橋型構成単位からな る共重合体を用いることが必要である。

【0009】この(A)成分の樹脂は、構成単位

(a1) によりアルカリ可溶性及び耐エッチング性、構 成単位(a2)によりアルカリ不溶性及び耐エッチング 性が付与されている。また構成単位(a3)は、酸解離 性溶解抑制基を有する単位で、露光により発生する酸の 作用で第三級アルキル基が脱離し、エステル部がカルボ キシル基に変化する。したがって、露光前は(A)成分 の樹脂はアルカリ不溶性であったのが、露光後はアルカ リ可溶性に変化する役割を果たしている。このものの未 露光部は、多環式飽和炭化水素基を含む第三級アルキル 基を有するので、従来のtert‐ブチルアクリレート のような鎖状のアルキル基よりも耐エッチング性に優 れ、コントラストの差も大きく、高解像性、焦点深度幅 特性が優れたものとなる。この多環式飽和炭化水素基を 40 含む第三級アルキル基の残りの低級アルキル基として は、炭素数1~5のメチル基、イソプロピル基、n-プ ロピル基、n-ブチル基、イソブチル基、ペンチル基な どが挙げられる。

【0010】また、この第三級アルキル基の多環式飽和 炭化水素基は、R⁴で示される第三級炭素原子に結合し た1個の多環式飽和炭化水素基、あるいはR3及びR4と で多環式飽和炭化水素環を形成している。これらの多環 式飽和炭化水素基又は多環式飽和炭化水素環は、これま でArFレジストに提案されているものから任意に選択 50 【化11】

(式中のR¹は水素原子又はメチル基、R²、R³及びR⁴ 10 の中の1個は多環式飽和炭化水素基であるか、又はその 中の2個で多環式飽和炭化水素環を形成しており、他は 低級アルキル基である)で表わされる構成単位及び(a 4) 一般式

【化12】

$$\begin{pmatrix} & & & \\ &$$

できる。

【0011】このような多環式飽和炭化水素基又は多環 式飽和炭化水素環の例としては、構造式

【化13】

で表わされる多環式飽和炭化水素から環形成炭素原子に 結合している水素原子1個を除いた残基を挙げることが できる。そして、アダマンチル基を含む構成単位

(a4)、例えば

【化14】

(式中の R¹ は前記と同じ意味をもつ)で表わされる構成単位が容易に入手可能であり、かつコントラストが大きく、解像性や耐ドライエッチング性が優れているとい 10 う点で特に好ましい。

【0012】次に、構成単位(a4)は、少なくとも2個のアクリル酸又はメタクリル酸第三級アルキルエステルが、それぞれの第三級炭素原子に結合している1個のアルキル基において、有機基を介して連結した架橋型単位であって、露光により発生する酸の作用により、構成単位(a3)の場合と同様、エステル基がカルボキシル基に変化し、露光部の共重合体をアルカリ可溶性に変える。一方、未露光部においては、架橋基のまま残るので、共重合体はアルカリ不溶性を維持する。このため、アルカリ現像液に形成されるレジストパターンはコントラストの差が大きく、耐エッチング性に優れたものとなる。

【0013】この構成単位(a4)におけるR⁵及びR⁶ の低級アルキル基の例としては、メチル基、エチル基、 n - プロピル基、イソプロピル基、n - ブチル基、イソ ブチル基、tert‐ブチル基、n‐ペンチル基などを 挙げることができる。また、A は単結合又は (n+1) 個の結合手を有する有機基、好ましくは炭素数1~20 の炭化水素基である。 n が 1 の場合の炭化水素基の例と しては、直鎖状若しくは枝分れ状アルキレン基、シクロ アルキレン基又はアリーレン基などがあり、nが2の場 合の炭化水素基の例としては、上記のアルキレン基、シ クロアルキレン基又はアリーレン基の中の水素原子の1 個が脱離した三価の基を、またnが3の場合の炭化水素 基の例としては、上記のアルキレン基、シクロアルキレ ン基又はアリーレン基の中の水素原子の2個が脱離した 四価の基をそれぞれ挙げることができる。特に好ましい 構成単位(a4)はAが2~10の直鎖状アルキレン基 で、R³及びR⁴がメチル基のものである。

【0014】このような架橋型構成単位(a4)は、例えばアクリル酸若しくはメタクリル酸又はそれらの反応性官能的誘導体、例えば酸ハライド2ないし4分子を各末端に水酸基を結合した第三級炭素原子をもつジオール類、トリオール類又はテトロール類のような水酸基2ないし4個を有するアルコール類1分子と結合させて得られる2ないし4個のエチレン性不飽和結合をもつジエステル、トリエステル又はテトラエステルから誘導される。

8

【0015】上記のジオール類としては、例えば、2. 3 - ジメチル - 2. 3 - ブタンジオール、2. 3 - ジエ チル-2, 3-ブタンジオール、2, 3-ジ-n-プロ ピル-2, 3-ブタンジオール、2, 4-ジメチル-2, 4-ペンタンジオール、2, 4-ジエチル-2, 4 - ペンタンジオール、2, 4 - ジ - n - プロピル - 2, 4 - ペンタンジオール、2,5 - ジメチル - 2,5 - へ キサンジオール、2,5-ジエチル-2,5-ヘキサン ジオール、2, 5 - ジ - n - プロピル - 2, 5 - ヘキサ ンジオール、2,6-ジメチル-2,6-ヘプタンジオ ール、2, 6 - ジエチル - 2, 6 - ヘプタンジオール、 2, 6 - ジ - n - プロピル - 2, 6 - ヘプタンジオール のようなグリコール類を、トリオール類としては、例え ば2, 4-ジメチル-2, 4-ジヒドロキシ-3-(2 - ヒドロキシプロピル) ペンタン、2,4 - ジエチル -2, 4 - ジヒドロキシ - 3 - (2 - ヒドロキシプロピ ル) ペンタン、2,5-ジメチル-2,5-ジヒドロキ シ-3-(2-ヒドロキシプロピル)へキサン、2,5 - ジエチル - 2、5 - ジヒドロキシ - 3 - (2 - ヒドロ キシプロピル)ヘキサンのようなトリオール類、テトロ ール類としては、エリトリット、ペンタエリトリット、 2、3、4、5 - ヘキサンテトロールのようなテトロー ル類をそれぞれ挙げることができる。

【0016】これらのジエステル又はトリエステルの中で特に好ましいのは、一般式

$$\begin{array}{c|cccc}
(\text{K} 1 5) & & & & & & \\
H_2C & & & & & & \\
O & & \\$$

(式中のR¹は前記と同じ意味をもち、pは0、1又は2である)で表わされるジエステル及び一般式

[他 16]
$$H_{2}C = 0$$

$$C H_{3} H_{3}C$$

$$C H_{2}$$

$$C H_{2}$$

$$C H_{2}$$

$$C H_{3}$$

$$C H_{2}$$

$$C H_{3}$$

$$C H_{2}$$

$$C H_{3}$$

$$C H_{2}$$

$$C H_{2}$$

$$C H_{3}$$

$$C H_{2}$$

$$C H_{3}$$

$$C H_{2}$$

$$C H_{3}$$

又は一般式 【化17】

(式中のR¹は前記と同じ意味をもつ)で表わされるト リエステルである。

【0017】なお、本発明における(A)成分において は、アルカリに対する溶解量がレジストパターンの解像 性、レジストパターン形状などの主なレジスト特性を決 定するファクターであるため、2.38質量%テトラメ チルアンモニウムヒドロキシド水溶液に対する23℃に おける膜減量が5~500nm/秒、特に10~300 nm/秒の範囲になるように調製することが好ましい。

【0018】 この(A) 成分として用いられる各構成単 20 位の含有割合については、特に制限はないが、構成単位 (a₁) が50~80モル%、好ましくは65~80モ ル%、構成単位(a2)が1~25モル%、好ましくは 5~20モル%、構成単位(a3)が3~25モル%、 好ましくは5~20モル%、及び構成単位(a4)が1 ~15モル%、好ましくは3~10モル%の範囲で選ば れる。なお、構成単位(a1)ないし(a4)以外にも、 所望に応じ本発明の効果をそこなわない範囲において、 これまでKrF用やArF用のポジ型レジストのアクリ ル酸誘導体単位又はメタクリル酸誘導体単位として提案 30 されている種々の構成単位を含ませることができる。

【0019】また、本発明の架橋化ポジ型レジスト組成 物においては、(B)成分である放射線の照射により酸 を発生する化合物(以下、酸発生剤と称する)として は、従来、化学増幅型ホトレジストにおいて使用される 公知の酸発生剤の中から適宜選択して用いることができ るが、特に好ましいのは炭素数1~10のフルオロアル キルスルホン酸イオンのオニウム塩である。

【0020】このようなオニウム塩の例としては、ジフ ェニルヨードニウムのトリフルオロメタンスルホネート 又はノナフルオロブタンスルホネート、ビス(4 - t e rt-ブチルフェニル) ヨードニウムのトリフルオロメ タンスルホネート又はノナフルオロブタンスルホネー ト、トリフェニルスルホニウムのトリフルオロメタンス ルホネート又はノナフルオロブタンスルホネート、トリ (4-メチルフェニル) スルホニウムのトリフルオロメ タンスルホネート又はノナフルオロブタンスルホンネー トなどを挙げることができるが、特に、ジフェニルヨー ドニウム又はビス(4-tert-ブチルフェニル) ヨ ードニウムのトリフルオロメタンスルホネート又はノナ 50

フルオロブタンスルホネートが好ましい。

【0021】本発明においては、この(B)成分の酸発 生剤は単独で用いてもよいし、2種以上を組み合わせて 用いてもよい。その配合量は、前記(A)成分100質 量部に対し、通常1~10質量部の範囲で選ばれる。こ の酸発生剤が1質量部未満では像形成ができにくいし、 10質量部を超えると均一な溶液とならず、保存安定性 が低下する。

10

【0022】本発明組成物においては、露光から露光後 の加熱処理までの引き置き経時安定性、レジストパター ン形状、解像度の向上のため、必要に応じ、(C)成分 として第三級脂肪族アミンを含有させることができる。 この第三級脂肪族アミンの例としては、トリメチルアミ ン、トリエチルアミン、トリ・n - プロピルアミン、ト リイソプロピルアミン、トリ - n - ブチルアミン、トリ - イソブチルアミン、トリ・tert-ブチルアミン、 トリペンチルアミン、トリエタノールアミン、トリブタ ノールアミンなどが挙げられる。これらの中で、特にト リエタノールアミンが好適である。

【0023】これらの第三級脂肪族アミンは単独で用い てもよいし、2種以上を組み合わせて用いてもよい。ま た、その配合量は、露光から露光後の加熱処理までの引 き置き経時安定性、レジストパターン形状、解像度など の点から、前記(A)成分100質量部に対し、通常 0.01~1.0質量部の範囲で選ばれる。

【0024】さらに、本発明組成物においては、(C) 成分の添加による感度劣化を防止し、各種基板に対して 依存性をなくし良好なレジストパターンを得るために、 必要に応じ(D)成分として、有機カルボン酸又はリン のオキソ酸若しくはその誘導体あるいはこれらの(C) 成分と(D)成分の両方を含有させることができる。

【0025】この有機カルボン酸としては、飽和又は不 飽和脂肪族カルボン酸、脂環式カルボン酸、オキシカル ボン酸、アルコキシカルボン酸、ケトカルボン酸、芳香 族カルボン酸、例えば p - ヒドロキシ安息香酸、 o - ヒ ドロキシ安息香酸、2,5-ジヒドロキシ安息香酸、 2, 6 - ジヒドロキシ安息香酸、3, 4 - ジヒドロキシ 安息香酸、3,5-ジヒドロキシ安息香酸、2-ビニル 安息香酸、4 - ビニル安息香酸、フタル酸、テレフタル 酸、イソフタル酸などが挙げられる。これらの中で、特 にサリチル酸が好ましい。

【0026】また、リンのオキソ酸若しくはその誘導体の例としては、リン酸、リン酸ジ・n-ブチルエステル、リン酸ジフェニルエステルなどのリン酸あるいはそれらのエステルのような誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステルなどのホスホン酸及びそれらのエステルのような誘導体、ホスフィン酸、フェニルホスフィン酸などのホスフィン酸及びそれらのエステルのような誘導体が挙げられる。これらの中で、特にフェニルホスホン酸が好ましい。

【0027】この(D)成分の配合量は、前記(A)成分100質量部に対し、通常0.01~1.0質量部の範囲で選ばれる。この量が0.01質量部未満では、裾引きやテーパー形状を防止する効果が十分に発揮されないし、1.0質量部を超えるとレジストパターンの膜減りを生じる。裾引き、テーパー形状及びレジストパターンの膜減りなどを効果的に防止する点から、この(D)成分の好ましい配合量は0.1~0.5質量部の範囲で20ある。

【0028】本発明の架橋化ポジ型レジスト組成物は、 その使用に当って、上記各成分を溶剤に溶解した溶液の 形で用いるのが好ましい。この際用いる溶剤の例として は、アセトン、メチルエチルケトン、シクロヘキサノ ン、メチルイソアミルケトン、2-ヘプタノンなどのケ トン類や、エチレングリコール、エチレングリコールモ ノアセテート、ジエチレングリコール、ジエチレングリ コールモノアセテート、プロピレングリコール、プロピ レングリコールモノアセテート、ジプロピレングリコー ル、又はジプロピレングリコールモノアセテートのモノ メチルエーテル、モノエチルエーテル、モノプロピルエ ーテル、モノブチルエーテル又はモノフェニルエーテル などの多価アルコール類及びその誘導体や、ジオキサン などの環式エーテル類や、乳酸メチル、乳酸エチル、酢 酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチ ル、ピルビン酸エチル、メトキシプロピオン酸メチル、 エトキシプロピオン酸エチルなどのエステル類を挙げる ことができる。これらは単独で用いてもよいし、2種以 上混合して用いてもよい。

【0029】本発明組成物には、さらに所望により混和性のある添加物、例えばレジスト膜の性能を改良するための付加的樹脂、可塑剤、安定剤、着色剤、界面活性剤などの慣用されているものを添加含有させることができる。

【0030】本発明組成物の使用方法としては、従来のホトレジスト技術のレジストパターン形成方法が用いられるが、好適に行うには、まずシリコンウエーハのような支持体上に、又は必要に応じ有機系又は無機系反射防止膜を設けた支持体上に、該レジスト組成物の溶液をス 50

12

ピンナーなどで塗布し、プレベークして感光層を形成させ、これに例えばKr F露光装置などにより、Kr Fエキシマレーザー光を所望のマスクパターンを介して照射して像形成露光したのち、加熱処理する。なお、本発明で用いる(A)成分中の多環式飽和炭化水素基は、アセタール基やter t- ブトキシカルボニルオキシ基に比べると、酸により脱離しにくい保護基であるため、上記プレベークと露光後の加熱処理の温度は、それぞれ130℃以上、特に140℃以上が好ましい。

【0031】次に、これを現像液、例えば0.1~10 質量%テトラメチルアンモニウムヒドロキシド水溶液のようなアルカリ性水溶液などを用いて現像処理する。この形成方法でマスクパターンに忠実なパターンを得ることができる。本発明の架橋形成ポジ型ホトレジスト組成物は電子線用ポジ型レジストとしても好適である。

[0032]

【発明の効果】本発明によると、高解像性で耐エッチング性に優れるレジストパターンを形成可能な化学増幅型の架橋形成ポジ型ホトレジスト組成物が提供される。

[0033]

【実施例】次に、本発明を実施例により、さらに詳細に 説明するが、本発明は、これらの例によってなんら限定 されるものではない。

【0034】実施例1

(A) ヒドロキシスチレン単位 6 6. 5 モル%とスチレン単位 1 5. 0 モル%と 2 - メチルアダマンチルメタクリレート 1 5. 0 モル%と 2, 5 - ジメチル - 2, 5 - ヘキサンジオールのジアクリレート 3. 5 モル%とからなる質量平均分子量 2 5 0 0 0 の共重合体(2. 3 8質量%テトラメチルアンモニウムヒドロキシド水溶液に対する 2 3 ℃における溶解量 6 0 Å / 秒) 1 0 0 質量部、(B) ジフェニルヨードニウムトリフルオロメタンスルホネート 3 質量部、(C) トリエタノールアミン 0. 1 6 質量部及び(D) フェニルホスホン酸 0. 1 6 質量部を、乳酸エチル 5 0 0 質量部に溶解し、さらにフッ素・シリコーン系界面活性剤[商品名「R - 0 8 」(大日本インキ社製)]を全量に対して 0. 1 質量部を添加したのち、孔径 0. 2 μ mのメンブレンフィルターを通して 3 過し、ポジ型レジスト溶液を得た。

【0035】一方、反射防止膜形成剤 「商品名「AR3」(シップレー社製)」により、膜厚60nmの反射防止膜を形成したシリコンウエーハ上に上記ポジ型レジスト溶液をスピンコートし、ホットプレート上で140 \mathbb{C} で90秒間プレベークすることにより、膜厚0.45 μ mのレジスト層を形成した。

【0036】次いで、ハーフトーンマスクを介して縮小 投影露光装置NSRS-203B(ニコン社製、NA= 0.68)により、KrFエキシマレーザーを選択的に 照射したのち、140で90秒間熱処理し、次いで 2.38質量%濃度のテトラメチルアンモニウムヒドロ

14

キシド水溶液により 23 ℃において 60 秒間パドル現像 し、最後に 100 ℃で 60 秒間ポストベークすることによりポジ型のレジストパターンを得た。

【0037】このようにして、良好な形状の 0.15μ mホールパターンを得た。また、 0.15μ mのホールパターンが得られる焦点深度幅は 0.5μ mであった。さらに、エッチングガスに CF_4 と CHF_3 とヘリウムの混合ガスを用い、エッチングしたときの単位時間当りの膜減量は5.5nm/秒であった。

【0038】実施例2

実施例 1 において、(A)成分をヒドロキシスチレン単位 6 5. 0モル%とスチレン単位 1 5. 0モル%とイソアダマンチルメタクリレート 1 5. 0モル%と 2, 5 - ジメチル - 2, 5 - ジヒドロキシ - 3 - (2 - ヒドロキシプロピル)へキサンのトリアクリレート 5. 0モル%とからなる質量平均分子量 2 5 0 0 0の共重合体(2. 3 8 質量%テトラメチルアンモニウムヒドロキシド水溶液に対する 2 3 $^{\circ}$ でにおける溶解量 8 0 $^{\circ}$ A/か) 1 0 0 質量部に変えた以外は、実施例 1 と同様にして、ポジ型レジスト溶液を調製し、次いで実施例 1 と同様なレジスト20パターニングを行った。このようにして、良好な形状の0. 1 5 $^{\circ}$ μ m であった。さらに、実施例 1 と同様にして単位時間当りの膜減量を求めたところ、6. 0 n m/秒であった。

【0039】実施例3

実施例1において、(B)成分をジフェニルヨードニウムノナフルオロメタンスルホネート 4.5質量部に代えた以外は、実施例1と同様にしてポジ型レジスト溶液を調製し、次いで実施例1と同様なレジストパターニングを行った。このようにして、良好な形状の 0.15μ mホールパターンを得た。また、 0.15μ mのホールパターンが得られる焦点深度幅は 0.4μ mであった。さらに、実施例1と同様にして単位時間当りの膜減量を求めたところ、5.5nm

【0040】比較例1

実施例1において、(A) 成分をヒドロキシスチレン単位 65.0モル%とスチレン単位 20.0モル%と1-エチルシクロヘキシルアクリレート 15.0モル%とからなる質量平均分子量 12000の共重合体(2.38

質量%テトラメチルアンモニウムヒドロキシド水溶液に対する 23 $^{\circ}$ における溶解量 80 $^{\circ}$ $^{\circ}$

【0041】比較例2

実施例1において、(A)成分をヒドロキシスチレン単位70.0モル%とスチレン単位15.0モル%とtert-ブチルアクリレート10モル%と2,5-ジメチル-2,5-ペキサンジオールのジアクリレート5.0モル%とからなる質量平均分子量25000の共重合体(2.38質量%テトラメチルアンモニウムヒドロキシド水溶液に対する23℃における溶解量80Å/秒)100質量部に代えた以外は、実施例1と同様にして、ポジ型レジスト溶液を調製し、次いで実施例1と同様なレジストパターニングを行った。このようにして、良好な形状の0.15 μ mホールパターンを得たが、限界であった。また、0.15 μ mのホールパターンが得られる焦点深度幅は0.4 μ mであった。さらに、実施例1と同様にして単位時間当りの膜減量を求めたところ、12.0 μ mのボールパターンが得られる

【0042】比較例3

実施例1において、(A)成分をヒドロキシスチレン単位65.0モル%とスチレン単位20.0モル%と2-メチルアダマンチルメタクリレート15.0モル%とからなる質量平均分子量12000の共重合体(2.38質量%テトラメチルアンモニウムヒドロキシド水溶液に対する23℃における溶解量80Å/秒)100質量部に代えた以外は、実施例1と同様にして、ポジ型レジスト溶液を調製し、次いで実施例1と同様なレジストパターニングを行った。このようにして、ややテーパー形状の0.16 μ mのホールパターンを得た。また、0.16 μ mのホールパターンが得られる焦点深度幅は0.3 μ mであった。さらに、実施例1と同様にして単位時間当りの膜減量を求めたところ、6.0 π m/秒であった。

フロントページの続き

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコード(参考)
C O 8 K	5/5333		C O 8 K	5/5333		
C O 8 L	25/18		C 0 8 L	25/18		
G O 3 F	7/004	5 0 1	G O 3 F	7/004	501	
H O 1 L	21/027		(CO8F	212/14		
//(CO8F 2	212/14			212:08		

212:08 220:18)

220:18) HO1L 21/30 502R

(72)発明者 山田 知孝

神奈川県川崎市中原区中丸子150番地 東

京応化工業株式会社内

(72)発明者 高山 寿一

神奈川県川崎市中原区中丸子150番地 東

京応化工業株式会社内

F ターム(参考) 2HO25 AAO2 AAO9 AB16 ACO8 ADO3

BEOO BE10 BG00 CB14 CB16

CB17 CB41 CB51 CC20 DA34

FA17

4J002 BC121 DH029 EF098 EF118

EN027 EN107 EV296 EW049

EW129 FD156 GP03

4J100 AB02R AB07P AL08Q AL62S

AL63S BA03P BA03Q BA16Q

BCO7Q BCO9Q BC12Q CA06

JA38