2025-2 AI 프로젝트IV HCI 시스템 설계

위험소리 감지 알림 UX 서비스 기획

인공지능학과 22619027 지정원

Contents

- 00 문제 인식
 - 문제의 심각성 및 사례
 - 선행 연구
- 01 주제
 - SafeSound Alert UX
 - 선행 연구와 차이점
- 02 FlowChart

- 03 시스템 핵심 기능
 - 실시간 위험소리 감지
 - 이어폰 착용 여부 감지
- 04 데이터셋 소개

05 AI모델설계

00. 문제 인식

디지털타임스

 $a \circ =$

사회 | 일반

[SNS, 그후] 손에 스마트폰, 귀엔 이어폰 낀 채 `휘청휘청`… 거리의 `시한폭탄`

박상길 기자 구독 + 입력 2024-03-06 14:49 수정 2024-03-06 18:59

'듣고 싶은 것만 들어요'… 교통사고 부른 노이 즈캔슬링

습인 2024-09-30 09:

■ 경기일보 사회 시회일반

무선 이어폰 착용 사고 위험↑... 도내 보행 '교통사고' 주의보 최근 3년간 연평균 8천600건... 시민들 '안전의식' 수반 중요 실제 도로교통공단의 교통사고분석시스템에 따르면 2020년부터 2022년까지 발생한 보행자 교통사고는 10만9877건으로 전체 교통사고의 18%를 차지했으며 이로 인한 사망자는 3044명에 달했다. 특히 고령 보행자가 차지하는 비율은 매년 증가했는데 고령 보행사망자의 전체 보행사망자 대비 비율은 2020년부터 2022년까지 2.3%p(포인트) 늘어났다.

이 같은 사망 사고의 가장 큰 원인은 '노이즈 캔슬링' 기능을 활성화한 무선 이어폰을 사용하기 때문이라는 지적이다. 도로교통공단에 따르면 노이즈 캔슬링 기능이 활성화한 이어폰을 끼고 다니는 개인형 이동장치 사고의 경우 2020년 897건에서 2022년 2386건으로 2.6배 급증했다.

00. 문제 인식

00. 문제 인식 (선행연구)

소리 분류 모델을 이용한 골목길에서의 차량-보행자 충돌 위험 방지 시스템 (2024.12)

그림 1. 앱 초기 화면(좌), 차량 인식 화면(우)

그림 2. 앱 동작 구초

■ 1. LSTM, CNN	기반의	소리	분류	모델	성능	비교	

	LSTM	CNN
Accuracy	93.3%	96.2%
Precision	93.5%	96,4%
Recall	93.3	96.2%
F1-score	93.3	96.2%

01. 주제

01. 주제

	선행 연구	진행될 연구
연구 목적/범위	환경음 분류 기반 위험 감 지 앱의 타당성 입증 (정확도 중심)	이어폰 착용 상황 특화 (HCI 중심)
배경 소음/음악 혼합	배경 소음 고려 제한적이 거나 없음	위험음 + 음악/도시 소음 혼합 - > 이어폰 환경 조 성
특징 추출	멜스펙트로그램 중심	멜스펙트로그램 또는 MFCC 병행 비교
모델	CNN 또는 RNN(LSTM 등) 기반 분류기	경량 CNN / CRNN

02. FlowChart

03. 시스템 핵심 기능

위험소리 실시간 감지 (사이렌 / 경적 ...)

사운드 재생 중에도 외부 소리 인식 (음악 혼합 학습)

배너에 알림 띄우기 + 경고음 재생

이어폰 착용 여부 체크

04. 데이터셋 소개

	filename	target	category
0	1-100032-A-0.wav	0	dog
24	1-116765-A-41.wav	1	chainsaw
54	1-17150-A-12.wav	2	crackling_fire
55	1-172649-A-40.wav	3	helicopter
62	1-17367-A-10.wav	4	rain
78	1-187207-A-20.wav	5	crying_baby
110	1-21934-A-38.wav	6	clock_tick
136	1-26143-A-21.wav	7	sneezing
141	1-26806-A-1.wav	8	rooster
148	1-28135-A-11.wav	9	sea waves

[UrbanSound8K]

[Environmental Sound Classification 50]

04. 데이터셋 소개

05. AI 모델 설계

[CRNN (Convolutional Recurrent Neural Network)]

CNN + RNN -> 시각적 및 시간적 특징 동시 학습 신경망 구조

CNN: 시간-주파수 영역에서 중요한 공간적 특징 추출

RNN: 시퀀스 데이터의 시간적 패턴 학습

감사합니다 .