Chapter 1

Day 15

Theorem 1.1 Prime Theorem of Divisibility

Let $m \in Integer, m \le 1$. Then: m is prime $\leftrightarrow (m|ab \to m|a \text{ or } m|b)$

Proof of Theorem above (already proved \rightarrow): (Other Direction):

If m is composite then:

$$(m|b \rightarrow m|aorm|b)$$
.

Now, Simplify the statement we want to show further:

$$(m|b \to m|a \lor m|b) =$$

= $m|ab \land (m|a \land m|b)$
= $m|ab \land (m|a \land m|b)$

Overall, we want to show that if m is composite them $(m|ab \land (m \nmid a \land m \nmid b))$

Assume m is composite.

Choose a = x and b = y. Then by D.L 4,

$$|x| < |m|$$

$$|y| < |n|.$$

⊜

Definition 1.1: Divisibility Property

$$a,b,q\in\mathbb{Z}$$

$$a>0,b\geqslant 0$$

$$r\in\mathbb{R}$$

$$\exists q>0,q\in\mathbb{Z},r\in\mathbb{N}$$

$$r<|b|st.a=bq+r.$$

Definition 1.2: Modular Arithmetic

sad

Definition 1.3: Modular Arithmetic

Two integers a and b are **congruent modulo** m, written as $a \equiv b \pmod{m}$ if b = a + km for some $k \in \mathbb{Z}$. (check camera roll for picture of worksheet related to this.)

Proof of Definition above: Suppose $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$

want to show $a \equiv c \pmod{m}$

we know from the definition of congruence mod m:

$$b = a + km$$

$$c = b + lm$$

$$c = a + (l + k)m.$$

Now, repack definition:

$$c = a + (k + l)m$$
$$a \equiv c(mod m)$$

.

Proof of 5 from worksheet: Try n = 6

$$(n-1)! = 5! = 120 = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

.

⊜

☺