#Importing required packages.
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
%matplotlib inline

#Loading dataset

wine = pd.read_csv('/content/archive (1).zip')

#Let's check how the data is distributed
wine.head()

⋺		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
	4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

#Information about the data columns
wine.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

Ducu	COTAMINA (COCAT IL COT	umi 13 / •	
#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)
memory usage: 150.0 KB

#Here we see that fixed acidity does not give any specification to classify the quality. fig = plt.figure(figsize = (10,6))

sns.barplot(x = 'quality', y = 'fixed acidity', data = wine)

<Axes: xlabel='quality', ylabel='fixed acidity'>

#Here we see that its quite a downing trend in the volatile acidity as we go higher the quality fig = plt.figure(figsize = (10,6)) sns.barplot(x = 'quality', y = 'volatile acidity', data = wine)

#Composition of citric acid go higher as we go higher in the quality of the wine fig = plt.figure(figsize = (10,6)) sns.barplot(x = 'quality', y = 'citric acid', data = wine)

<Axes: xlabel='quality', ylabel='citric acid'>

fig = plt.figure(figsize = (10,6))
sns.barplot(x = 'quality', y = 'residual sugar', data = wine)


```
#Composition of chloride also go down as we go higher in the quality of the wine fig = plt.figure(figsize = (10,6)) sns.barplot(x = 'quality', y = 'chlorides', data = wine)
```


quality

fig = plt.figure(figsize = (10,6))
sns.barplot(x = 'quality', y = 'free sulfur dioxide', data = wine)

fig = plt.figure(figsize = (10,6))
sns.barplot(x = 'quality', y = 'total sulfur dioxide', data = wine)


```
fig = plt.figure(figsize = (10,6))
sns.barplot(x = 'quality', y = 'sulphates', data = wine)
```

<Axes: xlabel='quality', ylabel='sulphates'>

fig = plt.figure(figsize = (10,6))
sns.barplot(x = 'quality', y = 'alcohol', data = wine)

<Axes: xlabel='quality', ylabel='alcohol'>


```
#Making binary classificaion for the response variable.
#Dividing wine as good and bad by giving the limit for the quality
bins = (2, 6.5, 8)
group_names = ['bad', 'good']
wine['quality'] = pd.cut(wine['quality'], bins = bins, labels = group_names)
#Now lets assign a labels to our quality variable
label_quality = LabelEncoder()
\#Bad becomes 0 and good becomes 1
wine['quality'] = label_quality.fit_transform(wine['quality'])
wine['quality'].value_counts()
     quality
         1382
           217
     1
     Name: count, dtype: int64
sns.countplot(wine['quality'])
```



```
#Now seperate the dataset as response variable and feature variabes
X = wine.drop('quality', axis = 1)
y = wine['quality']
#Train and Test splitting of data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
#Applying Standard scaling to get optimized result
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.fit_transform(X_test)
rfc = RandomForestClassifier(n_estimators=200)
rfc.fit(X_train, y_train)
pred_rfc = rfc.predict(X_test)
#Let's see how our model performed
print(classification_report(y_test, pred_rfc))
                   precision
                                recall f1-score
                                                   support
                0
                        0.90
                                  0.96
                                            0.93
                                                       273
                        0.64
                                  0.38
                                            0.48
                                                        47
         accuracy
                                            0.88
                                                       320
                        0.77
                                            0.71
                                                       320
        macro avg
     weighted avg
                        0.86
                                  0.88
                                            0.86
                                                       320
```

#Confusion matrix for the random forest classification
print(confusion_matrix(y_test, pred_rfc))

[[263 10] [29 18]]

#Stochastic Gradient Decent Classifier
sgd = SGDClassifier(penalty=None)
sgd.fit(X_train, y_train)
pred_sgd = sgd.predict(X_test)

print(classification_report(y_test, pred_sgd))

рі	recision	recall	f1-score	support	
0	0.89	0.97	0.93	273	
1	0.62	0.32	0.42	47	

```
0.87
                                                       320
         accuracy
                        0.76
                                  0.64
                                            0.68
                                                       320
        macro avg
     weighted avg
                        0.85
                                  0.87
                                            0.85
                                                       320
print(confusion_matrix(y_test, pred_sgd))
     [[264 9]
     [ 32 15]]
#Support vector classifier
svc = SVC()
svc.fit(X_train, y_train)
pred_svc = svc.predict(X_test)
print(classification_report(y_test, pred_svc))
                                recall f1-score
                   precision
                                                   support
                0
                        0.88
                                  0.98
                                            0.93
                                                       273
                        0.71
                1
                                  0.26
                                            0.37
                                                        47
         accuracy
                                            0.88
                                                       320
        macro avg
                        0.80
                                  0.62
                                            0.65
                                                       320
     weighted avg
                                                       320
                        0.86
                                  0.88
                                            0.85
#grid search CV
#Finding best parameters for our SVC model
param = {
    'C': [0.1,0.8,0.9,1,1.1,1.2,1.3,1.4],
    'kernel':['linear', 'rbf'],
    'gamma' :[0.1,0.8,0.9,1,1.1,1.2,1.3,1.4]
grid_svc = GridSearchCV(svc, param_grid=param, scoring='accuracy', cv=10)
grid_svc.fit(X_train, y_train)
      ▶ GridSearchCV
      ▶ estimator: SVC
            ▶ SVC
grid_svc.best_params_
     {'C': 1.2, 'gamma': 0.9, 'kernel': 'rbf'}
#Let's run our SVC again with the best parameters.
svc2 = SVC(C = 1.2, gamma = 0.9, kernel= 'rbf')
svc2.fit(X_train, y_train)
pred_svc2 = svc2.predict(X_test)
```