1. RFP_기반조성

과제명	상용차산업 혁신성장 플랫폼 구축사업
	o (개요) 상용차산업의 성장을 견인하기 위한 공동연구 및 생산거점 조성과 공동활용 장비 구축을 통한 혁신성장 기반 마련
개요 및	o (필요성) 상용차산업의 친환경, 고연비, 고안전 기술의 요구에 대응하기 위한 인프라, 연구기반 및 기업육성 등의 종합적인 지원 플랫폼 구축 필요
필요성	- 상용차 및 부품 특성과 기술변화, 사용자의 니즈에 따른 기술개발과 연계하여 신뢰성, 성능평가, 인증 등을 지원하기 위한 인프라 구축
	- 기업 및 연구소 유치를 통한 기업의 집적화 및 연구환경 제공을 통한 상용차산업의 성장 견인을 위한 거점으로서의 공간구축
	- 상용차산업 및 기술의 패러다임 변화에 따른 기술개발 지원요구에 대응하기 위한 솔루션 지원 및 전문인력 양성 등의 기업지원
	o (최종목표) 상용차 핵심부품 기술개발 지원 및 전문기업 육성을 위한 장비 구축과 공동 연구·생산 거점 조성
	* Co-LAB 및 테크비즈 프라자, 장비 구축 - (사업수행기간) 2020~2024 (5년)
과제목표	· 국내 상용차 산업의 경쟁력 강화 및 국가적 육성을 통한 지속가능한 미래성장 동력, 일자리 창출 기반 마련
	- (성과활용기간) 2025~2029 (5년) · 국내 상용차 산업 핵심부품 개발 지원의 기반조성 강화를 통한 상용차
	부품기업의 미래차 경쟁력의 지속적인 확보 추진 '성과활용기간: 과제의 수행결과 활용현황, 파급효과 등에 대한 조사·분석 및 평가 실시 기간
	o Co-LAB 기반조성
	- 상용차 전기·전자 핵심부품 등 개발 지원을 위한 Co-LAB 공간 구축 · (목적) 상용차 전기·전자 핵심부품 등 개발지원을 위한 기반 구축
	· (공간) 연면적 : 2,000㎡ 이상
과제내용	· (역할) 전기·전자 핵심부품 등 개발지원을 위한 기술 및 엔지니어링 솔루션 지원 등
	- 상용부품고도화 및 선제적 기술개발 대응 Co-LAB 장비 구축 · 복합환경 진동내구 평가 등 내구 신뢰성 및 감성 평가 장비
	· 상용차용 파워트레인 다이나모미터 등 성능평가 장비
	· 모터 다이나모미터 등 전기동력화 및 전기·전자화 평가 장비

	· 기타 시설 부대장비 등							
	○ 테크비즈 프라자 조성 - 상용차산업 미래형 생태계 구축을 위한 테크비즈 프라자 조성 · (목적) 상용차산업 미래형 생태계 구축을 위한 연구/생산 공간 구축 · (공간) 연면적 9,800㎡ 이상 · (역할) 지역 혁신성장, 산업생태계 활성화, 종합지원(입주공간 활용 기업 유치 등) 등 거점 구축							
	o 기업육성 지원 - 상용차산업의 경쟁력 확보를 위한 기업육성 추진 · (목적) 기업 성장의 전주기적 지원을 통한 전문기업 육성 · (내용) 기업 육성 및 지원(기술개발/마케팅 등 통합솔루션 지원 등), 전문인력 역량강화 등							
주요 구축	o (장비구축) 상용차 전기·전자 핵심부품 솔루션 지원 기반구축(Co-LAB)을 위한 상용부품고도화 대응장비 및 선제적 기술개발 대응장비 등 * 내구 신뢰성 및 감성평가, 성능평가, 전기동력화 및 전기·전자화 평가, 부대설비 등							
인프라	o (건축) Co-LAB (연면적 2,000m² 이상), 테크비즈 프라자 (연면적 9,800m² 이상) - 건축위치 : 새만금산업단지 내							
활용방안	o 상용차산업 혁신성장 플랫폼 구축을 통한 연구·생산 거점 및 전문기업 육성의 메카로 활용 - (장비구축) 상용차 핵심부품 기술개발을 위한 시험·평가 기반으로 활용 - (Co-LAB) 기술개발의 성과 극대화를 위해 산학연의 융복합 협업의 공동 연구 시험시설 활용 - (테크비즈 프라자) 기업연구 및 생산활동을 지원하는 연구·생산 거점							
	공간 및 기업유치 입주공간으로 활용							
총수행기간	2020년 ~ 2024년 (5년) 총 정부출연금* 13,434백만원 이내 (1차년도 수행기간 : 9개월) ('20년 정부출연금) (3,535백만원 이내)							
주관기관	□산업체 ■대학 ■연구소 ■비영리법인 □제한없음							
참여기관	□산업체 ■대학 ■연구소 ■비영리법인 □제한없음							
사기이 저브	출연금은 예산 현황 및 평가결과에 따라 변동 될 수 있음							

^{*} 상기의 정부출연금은 예산 현황 및 평가결과에 따라 변동 될 수 있음

2. RFP_기술개발

관리번호	미 작성		관리번호 미 즈		사업구분		미 작성	
산업기술분류1	대분류	기계·소재	중분류	자동차/철도차량	소분류	전및전쟁		
산업기술분류2	대분류	대분류 기계·소재		자동차/철도차량	소분류	술양채공자		
과제 명	산용투장용	고 ㅎ육 저	공해 다채넉	전기구동 동	려이축 파위	입모듐 개박		

1. 개요 및 필요성

- 특수작업용 특장차에 장착된 유압장비는 엔진에서 발생하는 주동력의 일부를 분기하는 동력인출장치(PTO, Power Take Off)를 통하여 발생하는 유압을 사용함에 따라, 유압장비 작동 시 엔진 상시구동 필요에 따른 대기오염 및 소음 문제가 발생
- 대기오염과 소음 문제 해결을 위해 전기구동 방식의 동력인출 파워모듈이 개발되고 있으나 단채널(1ch) 모듈에 그치고 있어, 다목적 특장차용 다채널(최소 3채널) 전기구 동 동력인출장치와 주변장치 개발 필요
 - * 차량에서의 다채널 파워모듈 요구사례 : ① Boom 인입·인출, ② 윈치작동, ③ 아우트리거 작동
- 본 과제는 고효율 저공해·저소음을 구현하기 위한 전기구동 파워모듈(e-파워모듈) 개 발과제로 주요 개발대상은 다채널 전기구동 모터 및 유압펌프, 에너지 저장장치, 충 전시스템(외부충전 및 엔진동력 활용 자체충전시스템), 통합제어기 등임

2. 연구목표

- 최종목표 : 다채널 유압동력인출이 기능한 상용특장용 고효율 저공해 전기구동 파워모듈 개발 (TRL : [시작] 4단계 ~ [종료] 7단계)
- 전기구동 파워모듈(e-파워모듈) 부품 및 모듈화 기술개발
 - ·다채널(최소 3채널) 동력인출장치 부품구성에 따른 모듈 최적화 기술개발
 - · 다채널(최소 3채널) 전기구동 유압발생 파워모듈 핵심부품 개발
 - * 채널별(최소 3채널) 유량 개별제어가 가능한 e-PTO(전기동력 유압발생 모터 및 펌프) 개발
 - * 유압펌프의 고토크화에 따른 내구성 확보 기술 개발
 - * 개발 부품 최적화 장착을 위한 통합 하우징 개발 등
- •작업시간 대응을 위한 에너지 저장장치 및 냉각 최적화 기술
- 엔진동력을 활용한 자체충전 및 외부충전 병행기술 개발
- * 긴급 상황 시 배터리 충전을 위한 엔진동력기반의 제너레이터 등
- · 파워모듈 모니터링, 유저 인터페이스 기술
- 전기구동 파워모듈(e-파워모듈) 장착 특장차량 및 평가기술 개발
- · 개발된 e-파워모듈 적용 특장차 장착 기술개발
- 개발 모듈 및 차량에 대한 성능 및 내구신뢰성 평가/검증 기술 개발

ㅇ 개발목표

	성능지표	단위	달성목표	국내 최고수준	세계최고수준 (보유국, 기업/기관명)
1	유량개별제어 e-PTO 채널수	개	3 이상	_	_
2	e-PTO 발생 유량	L/Min	각 54 이상	_	54
3	배터리사용 연속작업시간	hr	4 이상	-	-
4	파워모듈 작동 소음	dB	65 이하	65	65
5	e-PTO 내구수명	hr	1,000 이상	_	1,000

3. 지원기간/예산/추진체계

○ 기간 : 3년 이내 ○ 정부출연금 : '20년 11.35억원 이내(총 정부출연금 38억원 이내)

ㅇ 주관기관 : 중소·중견기업

관리번호	미 작성		사업구분	미 작성		
산업기술분류1	대분류	기계·소재	중분류	자동차/철도차량	소분류	엔진및동력전달장치
산업기술분류2	대분류	기계·소재	중분류	자동차/철도차량	소분류	안전도 항상기술
과제 명	조향추	력 3.500kg	f급 전동복학	합형 조향시	스템(MDPS) 개발

1. 개요 및 필요성

- 상용차의 연비개선 및 ADAS 구현을 위한 기술로 전동식 조향시스템(Motor Driven Power Steering) 도입 필요성 대두
- 기 개발된 MDPS(Rack 또는 Column Type 등)기술을 단독으로 적용할 경우 상용차에서 요구되는 조향추력을 만족하기 어려워, 전동복합형 조향시스템* 등 상용차에 최적화된 기술개발이 필요
 - * 전동복합형 조향시스템 : Rack 또는 Column Type 등의 두 가지 이상 전동조향시스템 기술을 조합하여 상용차에 요구되는 3.500kgf 이상의 전동추력을 구현하는 시스템

2. 연구목표

- 최종목표 : 조향추력 최대 3,500kgf인 상용차용 전동복합형 조향시스템(MDPS) 기술 개발
 (TRL : [시작] 4단계 ~ [종료] 7단계)
- 조향축 최대추력 3,500kef급 전동복합형 조향 모듈 개발
 - · 상용차량의 고하중 조향추력을 고려한 최적 설계
 - · 전동조향 구현을 위한 동력발생(모터, 인버터 등) 및 전달 부품(Rack, Column 등) 개발
 - 전동복합형 조향시스템의 동기화 제어 기술 개발
- 운전자 및 주행상황에 따른 제어시스템 개발
 - ·운전자 성향에 따른 가변(Normal, Sports 등) 제어로직 개발
 - · 통합제어기 기술 개발(Fail-Safety 등)
- 상용차용 전동복합형 MDPS 성능 및 신뢰성 평가
 - · Test Bench와 HILS 기반 MDPS 성능 및 Fail-Safety 기능 검증
 - · 상용차용 가속내구 기반 MDPS 내구신뢰성 평가절차 개발
 - ·시제품 신뢰성(내구, 내환경, 전자파) 평가, 실차 장착 기술 및 성능 평가

ㅇ 개발목표

	성능지표	단위	달성목표	국내 최고수준	세계최고수준 (보유국, 기업/기관명)
1	조향축 최대추력	kgf	3,500 이상	-	2,000 (ZF/독일)
2	정지시 조작력	Nm	12 이하	_	12 (Volvo/스웨덴)
3	주행시 조작력	Nm	5 이하	-	5 (Volvo/스웨덴)
4	제어기 내환경성	$^{\circ}\mathbb{C}$	-40 / 105		-40 / 105(Benz/독일)
5	전동복합형 조향시스템 반복내구	호	150,000	_	150,000
6	연비개선* ^{주)}	%	1.5	-	_
7	전자파 방출/내성		(전자파 방출) Class3/Level3 (전자파 내성) ISO11452/Level3	-	Class3 / Level3

* 주) 본 시스템을 순수 전기구동차량에 적용하여 개발 시 연비개선 항목은 불요

3. 지원기간/예산/추진체계

- o 기간 : 3년 이내 o 정부출연금 : '20년 14.2억원 이내(총 정부출연금 47억원 이내)
- 주관기관 : 중소·중견기업

관리번호	미 작성		사업구분	미 작성		
산업기술분류1	대분류	기계·소재	중분류	자동차/철도차량	소분류	엔진및동략전달장치
산업기술분류2	대분류	기계·소재	중분류	자동차/철도차량	소분류	안전도항가술

과제명 보조축 조향 축하중 10톤급 전동유압식 동기형 조향시스템 개발

1. 개요 및 필요성

- 상용차의 축하중 규제대응과 적재하중 증대를 위해 추가로 장착하고 있는 보조축에 별도의 조향시스템을 적용하여 차량회전 반경 감소 및 조향조작력 향상 요구 증가
- 본 과제는 최근 보조축 조향시스템을 장착한 상용차의 개발요구 증대에 대응하기 위 한 전류조향 동기형 고하중용 전동유압식 보조축 전자조향 시스템 개발 과제임

2. 연구목표

- 최종목표 : 보조축 조향 축하중 10톤급 전동유압식 동기형 조향시스템 개발
 (TRL : [시작] 4단계 ~ [종료] 7단계)
- 축하중 10톤급 전동유압식 보조축 조향시스템 요소부품개발
- ·실차 주행환경 및 차량 특성을 고려한 보조축 조향시스템 최적화 설계
- 양방향 축조향을 위한 모터, 유압펌프, 오일탱크 일체형 유압 파워팩 개발
- ·조향센서 및 유압밸브 일체형 조향실린더(double circuit steering cylinder) 개발
- ·개발 요소부품의 패키징화 기술 개발 (유압밸브, 유압라인 등)
- 전륜 동기형 보조축 조향시스템 통합제어 기술개발
- ·축조향각 센싱 및 보조축 제어 기술개발
- · 차종, 장착위치별 보조축 최적 제어알고리즘 및 제어기 개발
- ·조향제어 시스템 fail-safety 로직 및 통합 인터페이스 기술 개발
- 전동유압식 동기형 보조축 조향시스템 성능 및 신뢰성 평가 기술 개발
 - ·핵심부품 및 모듈 내환경/성능/내구 신뢰성 평가 기술 개발
- ·HILS 기반 조향성능 평가, fail-safety 로직 검증 기술 개발
- · 실차 장착 기술 및 성능 평가 기술 개발

ㅇ 개발목표

성능지표		단위	달성목표	국내 최고수준	세계최고수준 (보유국, 기업/기관명)
1	최대조향각	0	15 이상	_	15 (Bosch/독일)
2	보조축 조향가능 축하중	ton	10	-	10 (Bosch/독일)
3	회전반경(25톤 대형카고)	m	11 이하	-	11 (Bosch/독일)
4	조향핸들조작력	N	50	-	50 (Bosch/독일)
5	시스템정상작동온도	$^{\circ}\mathbb{C}$	-40~105	_	- 32~80 (Bosch/독일)
6	보조축 조향시스템 반복내구	호	150,000	-	150,000

3. 지원기간/예산/추진체계

o 기간 : 3년 이내 o 정부출연금 : '20년 14.2억원 이내(총 정부출연금 42억원 이내)

o 주관기관 : 중소·중견기업

관리번호	미 작성		사업구분	미 작성		
산업기술분류1	대분류	기계·소재	중분류	자동차/철도차량	소분류	대체사자랑술
산업기술분류2	대분류	기계·소재	중분류	자동차/철도차량	소분류	林県を勢か
과제 명	친환경 I	_NG 트럭용	· 600L급 경	량 연료저정	및 공급 정	기 개발

1. 개요 및 필요성

- o LNG 트럭은 디젤트럭 대비 온실가스 배출 등 환경오염을 저감할 수 있는 운송수단 으로 대두되고 있어. 유럽을 중심으로 기술개발과 차량보급이 활발히 진행
- 최근 관심이 집중되고 있는 LNG 엔진형 상용차량에 적용되는 LNG 연료 저장 및 공 급을 위한 핵심 요소부품*과 시스템에 대한 기술개발 추진이 필요
 - * LNX탱크 내재형 액중 유압펌프, 밸브류(이코노마이저, 레귤레이터, 안전밸브 등, 레벨게이지 및 인디게이터, 내외조탱크 등
- 특히 장거리 운행이 많은 트럭의 주행특성을 반영하여 주행거리 연장을 위한 고용량 LNG 연료저장탱크 개발 필요

2. 연구목표

최종목표: LNG 트럭용 600L급 대용량 경량 저장장치 및 요소부품 기술개발
 (TRL: [시작] 4단계 ~ [종료] 8단계)

- LNG 공급장치 핵심요소부품 개발

- ·LNG 저장장치(탱크)에 내재되는 초저온 구동형 액중 유압펌프 개발
- · 초저온 환경 동작성능 확보를 위한 이코노마이저(Economizer), 레귤레이터(Regulator), 안전밸브(Relief Valve) 등 개발
- * 이코노마이저 : 부하변동에 따라 유량조정을 하는 기기, 설정된 압력에서 LNG를 개방 및 차단
- ** 레귤레이터 : 조정기기로 설정된 일정한 압력으로 LNG를 공급해주는 유량 조정 장치

- 대용량 600L급 대용량 LNG 저장장치 개발

- ·LNG 내외조 저장장치(탱크)에 공급장치 핵심요소부품 L/OUT 최적화 설계
- ·LNG 저장 탱크의 경량화 및 인증, 실링 확보 기술 개발
- ·탱크 내조와 외조 진공(0.001 torr) 및 보냉기간(14일) 유지 기술개발
- · LNG 연료량 정밀 검출을 위한 레벨게이지 및 인디게이터 기술개발

- 개발 요소부품/저장장치 및 적용 차량에 대한 평가기술 개발

- ·개발된 핵심요소부품 및 저장장치의 실차 적용 기술 개발
- ·핵심요소부품 및 LNG 저장장치에 대한 신뢰성 및 성능 평가 기술
- 적용차량 평가를 통한 시스템의 성능 및 내구신뢰성 평가 기술

ㅇ 개발목표

		•						
	성능지표		성능지표		단위	달성목표	국내	세계최고수준
No.	항목	지표	면까	필앙국포	최고수준	(보유국, 기업/기관명)		
1		액중펌프 및 밸브류 저온연속작동 내구	hr	100	-	100		
2	ING 공급 장치	액중펌프 토출 유량	L/min	2 이상	-	2		
3	장치	레벨게이지 정밀도	mm	± 5 이내	± 20	± 10		
4		인전밸브 내압 (직동압력 1.6Mpa)	Мра	2.4	2.4	2.4		
5	LNG	LNG탱크 단열성능	J/h⋅°C ⋅ m²	100	100	90 (CHART/미국)		
6	저장 장치	LNG탱크 기밀시험	Мра	1.76	1.76	1.76 (CHART/미국)		
7	공급/ 저장 모듈	LNG탱크 내구성 (수직/세로/기로축)	G	1.04 / 0.204 / 0.74	1.04 / 0.204 / 0.74	1.04 (CHART/미국)		
8	차량	1회 충전 주행거리	km	600	350	600		

* 1회 충전 주행거리(대상 기준 차량 : 6x4 카고 이상)

3. 지원기간/예산/추진체계

- o 기간 : 3년 이내 o 정부출연금 : '20년 9.49억원 이내(총 정부출연금 34억원 이내)
- 주관기관 : 중소·중견기업

관리번호	미 작성		사업구분		미 작성	
산업기술분류1	대분류	기계·소재	중분류	자동차/철도차량	소분류	광 27술
산업기술분류2	대분류	기계·소재	중분류	자동차/철도차량	소분류	전및전쟁
과제 명		대형 상용치	·량용 전자	시 APU 모듈	: 기술 개빌	•

1. 개요 및 필요성

- APU(Air Processing Unit)는 상용차량에 사용되는 Air내에 포함된 유분과 수분을 분리 배출하고, 차량 운행 조건 별 공압 공급을 최적화함으로써 차량의 연비 향상 및 Air 상태를 최적화 시키는 역할을 하는 장치로 최근 전자식 기술 개발이 급속히 진행
- 본 과제는 전자식 APU 모듈과 AIR 내 유분/수분 분리 배출 및 차량 운행 조건 별 공압 공급 최적화를 위한 제어기술* 개발을 추진
 - * Overrun 모드(내리막길 타행 주행 시 에어 충진), 엔진 시동시 에어컴프레서 작동 차단, 시동 OFF시 자동 제습 작동. 엔진 전출력 사용시 에어컴프레서 OFF 등

2. 연구목표

- 최종목표 : 전자식 APU 시스템 HW 및 통합 제어 시스템 개발 (TRL: [시작] 4단계 ~ [종료] 7단계)
- 전자식 APU 적용 멀티포트 및 카트리지 등 핵심요소부품 개발
 - 전자제어 밸브 기반 최적 유로 멀티포트 기술 개발
 - ·수분/유분 동시 분리용 필터 소재 및 카트리지 기술 개발
- 전자식 APU 통합모듈 및 제어시스템 기술 개발
- · APU 시스템의 공압 최적 제어 기술 개발
- * 스마트 재생(전자적으로 필요시 적정량만 재생) 기술 등
- · APU 시스템의 멀티포트/카트리지 결빙 방지 제어기술 개발
- · APU와 차량 간 협조제어 및 Fail-safety 로직 기술 개발
- * Overrun 모드(내리막길 타행 주행 시 에어 충진), 엔진 시동시 에어컴프레서 작동 차단, 시동 OFF시 자동 제습 작동, 엔진 전출력 사용시 에어컴프레서 OFF 등
- 개발된 APU 시스템 및 적용 차량에 대한 성능/신뢰성 평가기술 개발
- ·개발된 APU 시스템에 대한 실차 적용 기술 개발
- •개발 제어시스템 검증을 위한 테스트벤치 및 평가 환경 구축
- ·벤치/실차평가 시나리오 개발 및 내환경/성능/내구 신뢰성 평가

ㅇ 개발목표

	성능지표			달성목표	국내	세계최고수준
No.	항목	지표	단위	2071	최고수준	(보유국, 기업/기관명)
1	핵심	멀티포트 최대작동압력	bar	15	ı	14 (Knorr/독일)
2	요소 부품	카트리지 재생시간 (제습성능 복원)	sec	30 이하	-	30 (Knorr/독일)
3		카트리지 제유성능	g/h	0.12 이상	ı	0.12 (Knorr/독일)
4	통합모듈 및 제어시스템	제어기 전자파 평가	-	(전자파 방출) Class3/ Level3 (전자파 내성) ISO11452/Level3	-	Class3 / Level3
5		통합모듈 누기성능	psi/min	5미만	-	5미만
6		통합모듈 내구	hr	1,000 이상	_	1,000
7	차량	제동능력 시험	-	국토부 인전 기준 민족	-	국토부 인전 기준 민족

3. 지원기간/예산/추진체계

o 기간 : 3년 이내 o 정부출연금 : '20년 14.2억원 이내(총 정부출연금 48억원 이내)

o 주관기관 : 중소·중견기업

관리번호	미 작성		사업구분	미 작성		
산업기술분류1	대분류	기계·소재	중분류	자동차/철도차량	소분류	전및전쟁
산업기술분류2	대분류	기계·소재	중분류	자동차/철도차량	소분류	안전도항상기술

과제 명 저속(30km/h 미만)운행 전기구동 항만 아드트랙터용 지동조향기반 시고회피시스템 개발

1. 개요 및 필요성

- 최근 선진국 상용차에서는 자동긴급제동장치(AEB) 뿐 아니라 전방에 사물이 있을 경우이를 감지하여 충돌을 회피하는 시스템인 자동조향기반 사고회피시스템(AES)을 복합적으로 적용하는 차량의 개발이 늘어가는 추세
- 본 과제는 항만 등 제한된 구역에서 30km/h 이하로 운영되는 저속주행 특수차량을 대상으로 자동조향기반 사고회피시스템을 적용하여 안전성 향상을 도모하기 위한 기술개발을 추진

2. 연구목표

- 최종목표 : 저속(30km/h미만) 운행 전기구동 항만 야드트랙터용 자동조향기반 사고회피시스템 개발 (TRL: [시작] 3단계 ~ [종료] 7단계)
- 항만 내 저속 주행상태에서 장애물 및 상황 인식 기술
 - ·카메라, 라이더, 레이더 등 센서 기술 및 융합을 통한 장애물* 인식 기술 개발
 - 항만 내 정밀 측위 맵핑 및 장애물 인식 기반의 상황 추적 기술개발
 - * 장애물 최소인식 사이즈 : 50cm × 50cm × 50cm (낙하물 기준)
 - * 차량 전방 정체·서행 등 주변 상황 인식기술 개발 등
- 사고 위험 판단/제어 및 야드 트랙터 탑재 기술 개발
 - · 상황 객관화를 위한 장애물 상태 및 사고 위험 판단 기술
 - ·종방향 자동긴급제동 및 횡방향 사고회피조향을 위한 통합제어기술 개발
 - ·항만 내 운행 형태 분석 및 이를 통한 사고회피운영 시나리오(ODD*) 개발
 - * 차량운행조건(Operational Design Domain)
- 차량 적용 및 실차 검증 평가 기술 개발
- 항만에 적용 가능한 전기구동 야드트랙터 개발
- · 전기구동 야드트랙터 기반 사고회피시스템 실차 장착 기술 개발
- ·개발 차량 대상 자동긴급조향 및 사고회피시스템 신뢰성 평가기술개발

ㅇ 개발목표

				국내	세계최고수준	
성능지표		단위	단위 달성목표		(보유국, 기업/기관명)	
1	지동조향기반 전기구동 아트트랙터 속도	km/hr	최소 30 km/h	-	30 km/h	
2	정지/이동 목표장애물 경고시점 ^{주1)}	Sec	충돌전 0.8 Sec 이내	_	충돌전 0.8 Sec 이내	
3	전방 차량인식거리/인식율 ^{주2)}	m, %	100m / 100%	-	100m / 100%	
4	사고회피운영 시나리오	개	3건	-	_	
5	회피조향 횡가속도	m/s ²	≤ 0.3	-	≤ 0.3	
6 7			(전자파 방출)			
	고기의 비호/비사		Class3/ Level3		Class3 / Level3	
	전자파 방출/내성		(전자파 내성)	_		
			ISO11452/Level3			

^{추1)} 정지/이동 장애물과의 상대속도에 따른 충돌 예상시간으로 긴급제동 브레이크가 작동되는 시간을 의미

3. 지원기간/예산/추진체계

o 기간 : 3년 이내 o 정부출연금 : '20년 11.1억원 이내(총 정부출연금 52억원 이내)

○ 주관기관 : 중소·중견기업

^{주2)} 저속(30km/h) 운행상태에서 3초 이상의 연속적 상황시 전방 차량인식 거리(100m) 및 차량인식 시험횟수 대비 인식 성공횟수(성공횟수/시험횟수)