Course Introduction and Overview

Internet Analytics (COM-308)

Prof. Matthias Grossglauser School of Computer and Communication Sciences

Team

- Instructor:
 - Matthias Grossglauser
- Assistants:
 - Victor Kristof
 - William Trouleau
- Team of student-assistants:
 - Ahmad: homework sessions
 - Olivier, Orcun, Alexis: labs

Logistics

- URL:
 - Moodle module "Internet Analytics": slides, labs, Q&A
- Labs:
 - BC07-08
 - Wed morning 8:15-10:00
 - Groups of 3 self-organize & register in moodle (DL: end of next week)
 - Spark account setup: please register for the class by Tuesday 17:00h
- Homeworks
 - Wednesday after lab (BC01)
- Midterm exam: TBD by next week
- Final exam: Wed May 30, 08:15-11:00

Grading

- Midterm exam: 30%
- Final exam: 50%
- Homeworks: not graded
 - But strongly recommended to do them regularly
- Labs: 20%
 - Lab-0 not graded
 - Hand-ins (code, plots, interpretations,...)
 - Deadline for lab n (usually) at the start of lab n+1
 - Mini-interviews to check your understanding

Limited prediction horizons

"This 'telephone' has too many shortcomings to be seriously considered as a means of communication." – Western Union

1850 1900 1950 20

Exponential technology evolution

Impossible

100x

Feasible

100x

Trivial

It is very hard to anticipate tomorrow's technology marketplace

- Technology fundamentals
 - Several surprising exponential scaling laws
 - Stable and predictable over decades
 - What applications in 10-20 years: no idea
 - Clear trend: measuring, storing, analyzing everything!

Evolution of interfaces & user data

2015

What is this class about?

- Web and mobile services
 - Explosive growth: social networking and social media; messaging; blogs; location & navigation; ...
- Pre-cloud engineering challenges:
 - Networking: connectivity, routing, traffic engineering, intrusion detection,...
 - Data-center design: databases, server farms, traffic monitoring, energy, hosting,...
- Post-cloud engineering challenges:
 - Cloud: outsourcing of many "lower-layer functions": connectivity, storage, computing, security,...
 - Data science: drives user functionality & user experience; monetization (ads, etc.); management (capacity, etc.),...

What is this class about?

- Social web, online social networks, mobile:
 - Explosion of user data
 - Increasing correlation of user data: more than sum of its parts
 - Demand for "information engineers" or "data scientists"
- Data: a huge variety
 - What are the main user data types?
 - What underlying models describe them?
- Function/application-oriented
 - How is data turned into decisions, actions, insights?
- Working with real data

What is this class about?

What this class is not about?

- Little on business models, policy & legal issues
- Little coverage of systems issues
 - Cloud architectures, energy,...
- Not an exhaustive ML class
 - E.g., no self-contained treatment of "classical" topics like regression, SVM, deep learning - but introduced as needed
- Criterion in choice of topics: real-world relevance of...
 - Data & models
 - Functions & applications

Matrix of data and functions

	Networks	Ratings	Document	Corpus	Streams
Characterize Model	Small worlds, scale-free			Topic models	Counts, moments
Predict Infer	Link prediction				
Rank	PageRank	Collaborative filtering	Content- based recommend		
Filter			Spam filtering		
Search Retrieve				Keyword search, similar docs	
Associate Summarize	Community detection			Clustering	Random projections

Overview: social and info networks

- Social and information networks
 - How are people connected?
 - How is information connected?

Networks: structure

- Structure:
 - Single snapshot in time
 - Generic properties?
- 1: Giant Component
 - Almost all pairs of nodes are reachable
- 2: Clustering
 - Many triangles
- 3: Strong and weak ties
 - Interconnected sub-communities
 - Your acquaintances are more important than your friends (for finding a job;-)
- 4: Short distances
 - Six degrees of separation

Networks: evolution

- Evolution:
 - How does the network change over time?
- Herding behavior:
 - We tend to copy behavior of those around us
 - Benefitting from each others' decisions
- 1: Information cascades
 - Sequences of wrong decisions
- 2: Preferential attachment
 - Skewed degree distribution
 - The rich get richer
- 3: Friendship paradox
 - Your friends have more friends than you

Networks: processes

- Processes:
 - Nodes have state and influence each other
 - How does net structure influence processes?
- 1: Epidemics
 - How does a rumor spread through a social network?
 - How does a disease progress, and who should be vaccinated?
- 2: Sampling
 - Very large network: how to estimate properties without visiting all the nodes?

Overview: relevance and filtering

PageRank:

A hyperlink "endorses" the target

An endorsement depends on the "relevance" of the originator

Overview: dimensionality reduction

- Raw data:
 - Often high-dimensional
 - But has "structure" = low-dimensional signal + noise
- Challenge:
 - How to find low-dimensional structure?
- Applications:
 - Visualizing
 - Explaining
 - Modeling
- Example:
 - SmartVote dataset on political candidates

Overview: recommender systems

Overview: recommender systems

Content-based recommenders

item 1: "Plane hijacked..."

item 2:

"soccer game..."

item 3:

"swiss skiers win..."

item 4:

"50.3% vote yes..."

(user, content)

Overview: recommender systems

Collaborative filtering-based recommenders

Model for (user, item)

Overview: search and retrieval

Given a query, how to find best matches?

• Without a query, how to describe a corpus?

Overview: clusters, groups, communities

Overview: clusters, groups, communities

- Another type of structure
- Cluster:
 - Set of points close to each other, and far from other points
- Community:
 - A set of nodes with more links among them than to other parts of network

Overview: streams

- Internet backbone router
- Order of magnitude:
 - 100s of interfaces at 10s of Gbps
 - = several billion pkts/sec!
- Traffic analysis app to detect DDoS attack:
 - How many *different* (unique) source IP addresses in a minute?
 - If too large -> suspicious (fake addresses)!

Overview: streams

- Computing statistics with sub-linear memory
- Example:
 - n numbers: how many unique values k?

$$k = 4$$

- How to solve with $\theta(n)$ memory?
 - Keep every value in some efficient data structure; compare & count
- How to solve with o(n) memory?
 - Cannot solve exactly
- Streaming algorithms: ∞ data, finite memory
 - Approximation
 - (Pseudo-)randomization

Overview: ad auctions

For each search, this table of "sponsored search results" is the result of an online auction

Online advertising - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Online advertising

Online advertising, also known as **online advertisement**, internet marketing, online marketing or e-marketing, is the marketing and promotion of products or ...

History of online advertising - Competitive advantage over ... - Online advertisement

Online Advertising: How to Do It Right | Small Business Trends

smallbiztrends.com/2010/11/online-advertising-how-to-do.html

Nov 4, 2010 - Helpful tips on using online advertising for small businesses.

Images for online advertisement - Report images

Internet advertising: The ultimate marketing machine | The Economist

www.economist.com/node//138905

Overview: ad auctions

- Online advertisement:
 - Key business model for the (consumer) internet & mobile
- Keyword auctions:
 - Each request to google -> auction
 - Advertiser bid for (keyword, bid)
- Generalized Second Price (GSP) auction

Class Schedule (1)

1	Introduction and Overview	- class overview - logistics
2	Social and Information Networks 1: Structure	 intro: social networks, web, social web social networks, key properties, effects & metrics giant component, relation to tree percolation strong/weak ties, clustering "everything is close": distances; random graphs
3	Social and Information Networks 2: Evolution	 - "the rich get richer": power laws, cumulative advantage, pref attachment - my friends have more friends than i-phenomenon - link prediction
4	Social and Information Networks 3: Processes	 processes: epidemics, cascades sampling a network: undirected vs directed random walks on networks, mixing times, spectral properties

Class Schedule (2)

5	Ranking	 Intro web structure PageRank algorithm Large-scale computation HITS variant: hubs and authorities
6	Dimensionality Reduction	 intro: "finding hidden structure", visualization PCA and derivatives singular-value decomposition manifold unwrapping
7	Recommender Systems 1	 Collaborative filtering graph-based, item-item vs user-user spectral/matrix completion case study: netflix
8	Recommender Systems 2	 Intro: "the long tail" Applications, models TF-IDF kNN classifier Naïve Bayes classifier

Class Schedule (3)

9	Clusters and Communities	 Gaussian Mixture Model (GMM) EM algorithm Communities and modularity measures Louvains clustering algorithm
10	Text Search and Retrieval 1	Latent Semantic Indexing (LSI)Intro: Bayesian networksGibbs sampling
11	Text Search and Retrieval 2	- Probabilistic LSI (pLSI) - Latent Dirichlet Allocation (LDA)
12	Streams	Intromotivating appsstreaming model
13	Internet Ad Economy & Online Auctions	 intro: sponsored search, keyword auctions VCG and Generalized Second Price (GSP) incentive compatibility

32

Caveats (1)

Breadth

- Intersection of data mining, machine learning, network science, statistics, algorithms
- No textbook
 - Combination of several textbooks & other sources
 - The slides + your notes are the course support
- Focus on real applications & data
 - Details often unknown: trade secrets
 - E.g., google practice vs original PageRank
- Lecture/lab overlap
 - Lectures+homeworks: models, theory, background
 - Labs: try it out on real data
 - Overlap is deliberately partial: you learn something new in labs

Caveats (2)

	A	

Previously	2017, 2018
Hadoop	Spark
Labs focused on map-reduce model	Lab focus more general, map- reduce "under the hood"
Custom cluster built and maintained in my lab	Uses IC cloud infrastructure
Labs in Java	Labs in Python
~30 students	~60 students

Implications:

- Labs had to be redesigned from scratch
- From tightly scripted labs to more open-ended labs
- We cannot help you (too much) with low-level Python programming issues
- Fewer but bigger labs
- Groups of 3 rather than 2

Summary

- Problems & data from the real world...
- But enough theory, models to understand the foundations
- Required background:
 - Python & eclipse
 - Linear algebra
 - Probability & statistics
 - Algorithms
- Next:
 - Wed 08:15h: Tutorial on Spark and using infrastructure
 - No HW session this week yet
- Reminder: sign up for class in ISA by tomorrow!