Module 03: Groundwater Hydraulics

Unit 05: Unsteady Flow in Unconfined Aquifer using FVM

Anirban Dhar

Department of Civil Engineering Indian Institute of Technology Kharagpur, Kharagpur

National Programme for Technology Enhanced Learning (NPTEL)

Dr. Anirban Dhar NPTEL Computational Hydraulics 1 /

Learning Objective

 To solve unsteady two dimensional groundwater flow in unconfined aquifer using Finite Volume Method.

Dr. Anirban Dhar NPTEL Computational Hydraulics

Problem Definition to Solution

Dr. Anirban Dhar NPTEL Computational Hydraulics 3 /

Problem Definition

Figure: Homogeneous Isotropic System (Unconfined Aquifer)

Problem Definition

Governing equation

A two-dimensional (in space) IBVP can be written as,

$$\Omega: \quad S_y \frac{\partial h}{\partial t} = \frac{\partial}{\partial x} \left(K_x h \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_y h \frac{\partial h}{\partial y} \right) + W$$

$$S_y = 0.25$$

$$K = 20 \ m/day$$

Problem Definition

subject to

Initial Condition

$$h(x, y, 0) = h_0(x, y)$$

and

Boundary Condition

$$\Gamma_D^1: \quad h(0,y,t) = h_1(y)$$

$$\Gamma_D^2: \quad h(L_x, y, t) = h_2(y)$$

$$\Gamma_N^3: \quad \frac{\partial h}{\partial y}\Big|_{(x,0,t)} = 0$$

$$\begin{split} & \Gamma_N^3: \quad \frac{\partial h}{\partial y}\Big|_{(x,0,t)} = 0 \\ & \Gamma_N^4: \quad \frac{\partial h}{\partial y}\Big|_{(x,L_y,t)} = 0 \end{split}$$

Domain Discretization

In Finite Volume Method, the governing equation is integrated over the element volume (in space) and time interval to form the discretized equation at node Point P.

$$\int\limits_t^{t+\Delta t} \left[\int\limits_{\Omega_P} S_y \frac{\partial h}{\partial t} d\Omega \right] dt = \int\limits_t^{t+\Delta t} \left[\int\limits_{\Omega_P} \nabla \cdot \mathbf{F} d\Omega \right] dt + \int\limits_t^{t+\Delta t} \left[\int\limits_{\Omega_P} W d\Omega \right] dt$$

with

$$\mathbf{F} = [f_x \quad f_y]$$

$$f_x = K_x h \frac{\partial h}{\partial x}$$

$$f_y = K_y h \frac{\partial h}{\partial y}$$

$$\int\limits_{t}^{t+\Delta t} \left[\int\limits_{\Omega_{P}} S_{y} \frac{\partial h}{\partial t} d\Omega \right] dt$$

$$\int_{t}^{t+\Delta t} \left[\int_{\Omega_{P}} S_{y} \frac{\partial h}{\partial t} d\Omega \right] dt$$

$$= S_{y} \int_{t}^{t+\Delta t} \frac{\partial}{\partial t} \left(\int_{\Omega_{P}} h d\Omega \right) dt$$

$$\begin{split} &\int\limits_{t}^{t+\Delta t} \left[\int\limits_{\Omega_{P}} S_{y} \frac{\partial h}{\partial t} d\Omega \right] dt \\ = &S_{y} \int\limits_{t}^{t+\Delta t} \frac{\partial}{\partial t} \left(\int\limits_{\Omega_{P}} h d\Omega \right) dt \\ = &S_{y} \int\limits_{t}^{t+\Delta t} \frac{\partial}{\partial t} \left(h_{P} \Delta \Omega_{P} \right) dt \end{split}$$

$$\int_{t}^{t+\Delta t} \left[\int_{\Omega_{P}} S_{y} \frac{\partial h}{\partial t} d\Omega \right] dt$$

$$= S_{y} \int_{t}^{t+\Delta t} \frac{\partial}{\partial t} \left(\int_{\Omega_{P}} h d\Omega \right) dt$$

$$= S_{y} \int_{t}^{t+\Delta t} \frac{\partial}{\partial t} \left(h_{P} \Delta \Omega_{P} \right) dt$$

$$= S_{y} (h_{P}^{l+1} - h_{P}^{l}) \Delta \Omega_{P}$$

$$\begin{split} &\int\limits_{t}^{t+\Delta t} \left[\int\limits_{\Omega_{P}} S_{y} \frac{\partial h}{\partial t} d\Omega \right] dt \\ = &S_{y} \int\limits_{t}^{t+\Delta t} \frac{\partial}{\partial t} \left(\int\limits_{\Omega_{P}} h d\Omega \right) dt \\ = &S_{y} \int\limits_{t}^{t+\Delta t} \frac{\partial}{\partial t} \left(h_{P} \Delta \Omega_{P} \right) dt \\ = &S_{y} (h_{P}^{l+1} - h_{P}^{l}) \Delta \Omega_{P} \\ = &S_{y} (h_{P}^{l+1} - h_{P}^{l}) \Delta x \Delta y \end{split}$$

Governing Equation: Spatial Term

$$\int_{t}^{t+\Delta t} \int_{\Omega^{P}} \nabla \cdot \mathbf{F} d\Omega \ dt = \int_{t}^{t+\Delta t} \int_{\Omega^{P}} \nabla \cdot \left(f_{x} \hat{i} + f_{y} \hat{j} \right) d\Omega \ dt$$

$$= \left[(f_{x})_{e}^{l+1} A_{xe} - (f_{x})_{w}^{l+1} A_{xw} + (f_{y})_{n}^{l+1} A_{yn} - (f_{y})_{s}^{l+1} A_{ys} \right] \Delta t$$

$$= \left[\left(K_{x} h \frac{\partial h}{\partial x} \right)_{e}^{l+1} A_{xe} - \left(K_{x} h \frac{\partial h}{\partial x} \right)_{w}^{l+1} A_{xw} + \left(K_{y} h \frac{\partial h}{\partial y} \right)_{n}^{l+1} A_{yn} - \left(K_{y} h \frac{\partial h}{\partial y} \right)_{s}^{l+1} A_{ys} \right] \Delta t$$

In a uniform grid system,

$$A_{xe} = A_{xw} = \Delta y$$

$$A_{yn} = A_{ys} = \Delta x$$
(1)

In a uniform grid system,

$$A_{xe} = A_{xw} = \Delta y$$

$$A_{yn} = A_{ys} = \Delta x$$
(1)

Source Term:

$$\int_{t}^{t+\Delta t} \int_{\Omega P} W(x,y) d\Omega \ dt = W(x_P, y_P) \Delta x \Delta y \Delta t$$
 (2)

Compact Form of the equation can be written as,

$$\begin{split} S_{y}(h_{P}^{l+1} - h_{P}^{l}) \Delta x \Delta y \\ &= \left[\left(K_{x} h \frac{\partial h}{\partial x} \right)_{e}^{l+1} \Delta y - \left(K_{x} h \frac{\partial h}{\partial x} \right)_{w}^{l+1} \Delta y \right] \Delta t \\ &+ \left[\left(K_{y} h \frac{\partial h}{\partial y} \right)_{n}^{l+1} \Delta x - \left(K_{y} h \frac{\partial h}{\partial y} \right)_{s}^{l+1} \Delta x \right] \Delta t \\ &+ W(x_{P}, y_{P}) \Delta x \Delta y \Delta t \end{split}$$

Governing Equation: Interior Cells

\perp				L
	•	$\stackrel{N}{\bullet}$	•	
		n		
	W∙ w	● <i>P</i>	e •E	
		S		T
	•	Š	•	
				T

In a uniform grid system for interior cells, East Face:

$$\left(K_x h \frac{\partial h}{\partial x}\right)_e^{l+1} = K_{xe} h_e \frac{h_E^{l+1} - h_P^{l+1}}{\Delta x} = K_{xe} \frac{h_E^{l+1} + h_P^{l+1}}{2} \frac{h_E^{l+1} - h_P^{l+1}}{\Delta x}$$

Governing Equation: Interior Cells

In a uniform grid system for interior cells, Fast Face:

$$\left(K_x h \frac{\partial h}{\partial x}\right)_e^{l+1} = K_{xe} h_e \frac{h_E^{l+1} - h_P^{l+1}}{\Delta x} = K_{xe} \frac{h_E^{l+1} + h_P^{l+1}}{2} \frac{h_E^{l+1} - h_P^{l+1}}{\Delta x}$$

West Face:

$$\left(K_x h \frac{\partial h}{\partial x}\right)_{w}^{l+1} = K_{xw} h_w \frac{h_P^{l+1} - h_W^{l+1}}{\Delta x} = K_{xw} \frac{h_P^{l+1} + h_W^{l+1}}{2} \frac{h_P^{l+1} - h_W^{l+1}}{\Delta x}$$

Governing Equation: Interior Cells

North Face:

$$\left(K_{y}h\frac{\partial h}{\partial y}\right)_{n}^{l+1} = K_{yn}h_{n}\frac{h_{N}^{l+1} - h_{P}^{l+1}}{\Delta y} = K_{yn}\frac{h_{N}^{l+1} + h_{P}^{l+1}}{2}\frac{h_{N}^{l+1} - h_{P}^{l+1}}{\Delta y}$$

Governing Equation: Interior Cells

North Face:

$$\left(K_{y}h\frac{\partial h}{\partial y}\right)_{n}^{l+1} = K_{yn}h_{n}\frac{h_{N}^{l+1} - h_{P}^{l+1}}{\Delta y} = K_{yn}\frac{h_{N}^{l+1} + h_{P}^{l+1}}{2}\frac{h_{N}^{l+1} - h_{P}^{l+1}}{\Delta y}$$

South Face:

$$\left(K_{y}h\frac{\partial h}{\partial y}\right)_{s}^{l+1} = K_{ys}h_{s}\frac{h_{P}^{l+1} - h_{S}^{l+1}}{\Delta y} = K_{ys}\frac{h_{P}^{l+1} + h_{S}^{l+1}}{2}\frac{h_{P}^{l+1} - h_{S}^{l+1}}{\Delta y}$$

Governing Equation: Interior Cells

North Face:

$$\left(K_{y}h\frac{\partial h}{\partial y}\right)_{n}^{l+1} = K_{yn}h_{n}\frac{h_{N}^{l+1} - h_{P}^{l+1}}{\Delta y} = K_{yn}\frac{h_{N}^{l+1} + h_{P}^{l+1}}{2}\frac{h_{N}^{l+1} - h_{P}^{l+1}}{\Delta y}$$

South Face:

$$\left(K_{y}h\frac{\partial h}{\partial y}\right)_{s}^{l+1} = K_{ys}h_{s}\frac{h_{P}^{l+1} - h_{S}^{l+1}}{\Delta y} = K_{ys}\frac{h_{P}^{l+1} + h_{S}^{l+1}}{2}\frac{h_{P}^{l+1} - h_{S}^{l+1}}{\Delta y}$$

Compact Form of the equation can be written as,

$$\begin{split} S_{y}(h_{P}^{l+1} - h_{P}^{l}) \Delta x \Delta y \\ &= \left[\frac{K_{xe}}{2} \frac{(h_{E}^{l+1})^{2} - (h_{P}^{l+1})^{2}}{\Delta x} \Delta y - \frac{K_{xw}}{2} \frac{(h_{P}^{l+1})^{2} - (h_{W}^{l+1})^{2}}{\Delta x} \Delta y \right] \Delta t \\ &+ \left[\frac{K_{yn}}{2} \frac{(h_{N}^{l+1})^{2} - (h_{P}^{l+1})^{2}}{\Delta y} \Delta x - \frac{K_{ys}}{2} \frac{(h_{P}^{l+1})^{2} - (h_{S}^{l+1})^{2}}{\Delta y} \Delta x \right] \Delta t \\ &+ W(x_{P}, y_{P}) \Delta x \Delta y \Delta t \end{split}$$

Governing Equation: Interior Cells

Compact Form of the equation can be written as,

$$\begin{split} & h_P^{l+1} - h_P^l \\ &= \frac{K_x \Delta t}{2S_y} \frac{(h_E^{l+1})^2 - (h_P^{l+1})^2}{\Delta x^2} - \frac{K_x \Delta t}{2S_y} \frac{(h_P^{l+1})^2 - (h_W^{l+1})^2}{\Delta x^2} \\ &+ \frac{K_y \Delta t}{2S_y} \frac{(h_N^{l+1})^2 - (h_P^{l+1})^2}{\Delta y^2} - \frac{K_y \Delta t}{2S_y} \frac{(h_P^{l+1})^2 - (h_S^{l+1})^2}{\Delta y^2} \\ &+ \frac{W(x_P, y_P)}{S_y} \Delta t \end{split}$$

In simplified form, this can be written as,

$$\begin{split} \alpha_y(h_S^{l+1})^2 + \alpha_x(h_W^{l+1})^2 - \left[2(\alpha_x + \alpha_y)\right](h_P^{l+1})^2 - h_P^{l+1} + \alpha_x(h_E^{l+1})^2 + \alpha_y(h_N^{l+1})^2 = \\ - h_P^l - \frac{W(x_P, y_P)\Delta t}{S_y} \end{split}$$

with

$$\alpha_x = \frac{K_x \Delta t}{2S_y \Delta x^2} \quad \alpha_y = \frac{K_y \Delta t}{2S_y \Delta y^2}$$

Function and Jacobian

In the form of function discretized form can be written as,

$$\begin{split} F_m\left(\mathbf{h^{l+1}}\right) &= \alpha_y (h_S^{l+1})^2 + \alpha_x (h_W^{l+1})^2 - \left[2(\alpha_x + \alpha_y)\right] (h_P^{l+1})^2 - h_P^{l+1} \\ &+ \alpha_x (h_E^{l+1})^2 + \alpha_y (h_N^{l+1})^2 - \left[-h_P^l - \frac{W(x_P, y_P) \Delta t}{S_y}\right] = 0 \end{split}$$

Elements of Jacobian matrix can be calculated as

$$\begin{split} J_S^m &= \frac{\partial F_m}{\partial h_S^{l+1}} = 2\alpha_y h_S^{l+1} \\ J_W^m &= \frac{\partial F_m}{\partial h_W^{l+1}} = 2\alpha_x h_W^{l+1} \\ J_P^m &= \frac{\partial F_m}{\partial h_P^{l+1}} = -1 - 4(\alpha_x + \alpha_y) h_P^{l+1} \\ J_E^m &= \frac{\partial F_m}{\partial h_E^{l+1}} = 2\alpha_x h_E^{l+1} \\ J_N^m &= \frac{\partial F_m}{\partial h_N^{l+1}} = 2\alpha_y h_N^{l+1} \end{split}$$

Boundary Conditions Left Boundary

$$\begin{split} \left(\frac{\partial h}{\partial x}\right)_e^{l+1} &= \frac{h_E^{l+1} - h_P^{l+1}}{\Delta x} \quad \left(\frac{\partial h}{\partial x}\right)_w^{l+1} = \frac{-8h_{BW}^{l+1} + 9h_P^{l+1} - h_E^{l+1}}{3\Delta x} \\ \left(\frac{\partial h}{\partial y}\right)_x^{l+1} &= \frac{h_N^{l+1} - h_P^{l+1}}{\Delta y} \quad \left(\frac{\partial h}{\partial y}\right)_s^{l+1} = \frac{h_P^{l+1} - h_S^{l+1}}{\Delta y} \end{split}$$

Dr. Anirban Dhar

NPTEL

18 / 43

Implicit Scheme

$$\begin{split} S_{\mathcal{Y}} \frac{h_{P}^{l+1} - h_{P}^{l}}{\Delta t} = & \frac{1}{\Delta x} \left[\left(K_{x} h \frac{\partial h}{\partial x} \right)_{e}^{l+1} - \left(K_{x} h \frac{\partial h}{\partial x} \right)_{w}^{l+1} \right] \\ & + \frac{1}{\Delta y} \left[\left(K_{y} h \frac{\partial h}{\partial y} \right)_{n}^{l+1} - \left(K_{y} h \frac{\partial h}{\partial y} \right)_{s}^{l+1} \right] \end{split}$$

$$\begin{split} S_{\mathcal{Y}} \frac{h_{P}^{l+1} - h_{P}^{l}}{\Delta t} &= \left[K_{x} \frac{\left(h_{E}^{l+1}\right)^{2} - \left(h_{P}^{l+1}\right)^{2}}{2\Delta x^{2}} - K_{x} h_{BW}^{l+1} \frac{-8h_{BW}^{l+1} + 9h_{P}^{l+1} - h_{E}^{l+1}}{3\Delta x^{2}} \right] \\ &+ \left[K_{\mathcal{Y}} \frac{\left(h_{N}^{l+1}\right)^{2} - \left(h_{P}^{l+1}\right)^{2}}{2\Delta y^{2}} - K_{\mathcal{Y}} \frac{\left(h_{P}^{l+1}\right)^{2} - \left(h_{S}^{l+1}\right)^{2}}{2\Delta y^{2}} \right] \end{split}$$

In simplified form, this can be written as

$$\begin{split} \alpha_{\mathcal{Y}}(h_{S}^{l+1})^{2} - \left[\alpha_{x} + 2\alpha_{y}\right](h_{P}^{l+1})^{2} - \left[1 + 6\alpha_{x}h_{BW}^{l+1}\right]h_{P}^{l+1} + \frac{2}{3}\alpha_{x}h_{BW}^{l+1}h_{E}^{l+1} \\ + \alpha_{x}(h_{E}^{l+1})^{2} + \alpha_{y}(h_{N}^{l+1})^{2} = -h_{P}^{l} - \frac{16}{3}\alpha_{x}(h_{BW}^{l+1})^{2} \end{split}$$

Dr. Anirban Dhar NPTEL Computational Hydraulics

Function and Jacobian

In the form of function discretized form can be written as,

$$\begin{split} F_m\left(\mathbf{h^{l+1}}\right) &= \alpha_y (h_S^{l+1})^2 - \left[\alpha_x + 2\alpha_y\right] (h_P^{l+1})^2 - \left[1 + 6\alpha_x h_{BW}^{l+1}\right] h_P^{l+1} \\ &\quad + \frac{2}{3}\alpha_x h_{BW}^{l+1} h_E^{l+1} + \alpha_x (h_E^{l+1})^2 + \alpha_y (h_N^{l+1})^2 - \left[-h_P^l - \frac{16}{3}\alpha_x (h_{BW}^{l+1})^2\right] = 0 \end{split}$$

Elements of Jacobian matrix can be calculated as

$$\begin{split} J_S^m &= \frac{\partial F_m}{\partial h_S^{l+1}} = 2\alpha_y h_S^{l+1} \\ J_P^m &= \frac{\partial F_m}{\partial h_P^{l+1}} = -\left[1 + 6\alpha_x h_{BW}^{l+1}\right] - 2\left[\alpha_x + 2\alpha_y\right] h_P^{l+1} \\ J_E^m &= \frac{\partial F_m}{\partial h_E^{l+1}} = \frac{2}{3}\alpha_x h_{BW}^{l+1} + 2\alpha_x h_E^{l+1} \\ J_N^m &= \frac{\partial F_m}{\partial h_N^{l+1}} = 2\alpha_y h_N^{l+1} \end{split}$$

Boundary ConditionsRight Boundary

$$\begin{split} \left(\frac{\partial h}{\partial x}\right)_e^{l+1} &= \frac{8h_{BE}^{l+1} - 9h_P^{l+1} + h_W^{l+1}}{3\Delta x} \quad \left(\frac{\partial h}{\partial x}\right)_w^{l+1} &= \frac{h_P^{l+1} - h_W^{l+1}}{\Delta x} \\ &\left(\frac{\partial h}{\partial y}\right)_n^{l+1} &= \frac{h_N^{l+1} - h_P^{l+1}}{\Delta y} \quad \left(\frac{\partial h}{\partial y}\right)_s^{l+1} &= \frac{h_P^{l+1} - h_S^{l+1}}{\Delta y} \end{split}$$

21 / 43

Implicit Scheme

$$\begin{split} S_{\mathcal{Y}} \frac{h_{P}^{l+1} - h_{P}^{l}}{\Delta t} &= \frac{1}{\Delta x} \left[\left(K_{x} h \frac{\partial h}{\partial x} \right)_{e}^{l+1} - \left(K_{x} h \frac{\partial h}{\partial x} \right)_{w}^{l+1} \right] \\ &+ \frac{1}{\Delta y} \left[\left(K_{y} h \frac{\partial h}{\partial y} \right)_{n}^{l+1} - \left(K_{y} h \frac{\partial h}{\partial y} \right)_{s}^{l+1} \right] \end{split}$$

$$\begin{split} S_{y} \frac{h_{P}^{l+1} - h_{P}^{l}}{\Delta t} &= \left[K_{x} h_{BE}^{l+1} \frac{8 h_{BE}^{l+1} - 9 h_{P}^{l+1} + h_{W}^{l+1}}{3 \Delta x^{2}} - K_{x} \frac{\left(h_{P}^{l+1}\right)^{2} - \left(h_{W}^{l+1}\right)^{2}}{2 \Delta x^{2}} \right] \\ &+ \left[K_{y} \frac{\left(h_{N}^{l+1}\right)^{2} - \left(h_{P}^{l+1}\right)^{2}}{2 \Delta y^{2}} - K_{y} \frac{\left(h_{P}^{l+1}\right)^{2} - \left(h_{S}^{l+1}\right)^{2}}{2 \Delta y^{2}} \right] \end{split}$$

In simplified form, this can be written as

$$\begin{split} \alpha_{\mathcal{Y}}(h_{S}^{l+1})^{2} + \alpha_{x}(h_{W}^{l+1})^{2} + \frac{2}{3}\alpha_{x}h_{BE}^{l+1}h_{W}^{l+1} - \left[\alpha_{x} + 2\alpha_{y}\right](h_{P}^{l+1})^{2} \\ - \left[1 + 6\alpha_{x}h_{BE}^{l+1}\right]h_{P}^{l+1} + \alpha_{y}(h_{N}^{l+1})^{2} = -h_{P}^{l} - \frac{16}{3}\alpha_{x}(h_{BE}^{l+1})^{2} \end{split}$$

Dr. Anirban Dhar NPTEL Computational Hydraulics

Function and Jacobian

In the form of function discretized form can be written as,

$$F_m\left(\mathbf{h}^{l+1}\right) = \alpha_y (h_S^{l+1})^2 + \alpha_x (h_W^{l+1})^2 + \frac{2}{3} \alpha_x h_{BE}^{l+1} h_W^{l+1} - \left[\alpha_x + 2\alpha_y\right] (h_P^{l+1})^2 - \left[1 + 6\alpha_x h_{BE}^{l+1}\right] h_P^{l+1} + \alpha_y (h_N^{l+1})^2 - \left[-h_P^l - \frac{16}{3} \alpha_x (h_{BE}^{l+1})^2\right] = 0$$

Elements of Jacobian matrix can be calculated as

$$\begin{split} J_S^m &= \frac{\partial F_m}{\partial h_S^{l+1}} = 2\alpha_y h_S^{l+1} \\ J_W^m &= \frac{\partial F_m}{\partial h_W^{l+1}} = 2\alpha_x h_W^{l+1} + \frac{2}{3}\alpha_x h_{BE}^{l+1} \\ J_P^m &= \frac{\partial F_m}{\partial h_P^{l+1}} = -\left[1 + 6\alpha_x h_{BE}^{l+1}\right] - 2\left[\alpha_x + 2\alpha_y\right] h_P^{l+1} \\ J_N^m &= \frac{\partial F_m}{\partial h_N^{l+1}} = 2\alpha_y h_N^{l+1} \end{split}$$

Boundary Conditions Top Boundary

$$\left(\frac{\partial h}{\partial x}\right)_e^{l+1} = \frac{h_E^{l+1} - h_P^{l+1}}{\Delta x} \quad \left(\frac{\partial h}{\partial x}\right)_w^{l+1} = \frac{h_P^{l+1} - h_W^{l+1}}{\Delta x}$$

$$\left(\frac{\partial h}{\partial y}\right)_n^{l+1} = \frac{8h_{BN}^{l+1} - 9h_P^{l+1} + h_S^{l+1}}{3\Delta y} = 0 \quad \left(\frac{\partial h}{\partial y}\right)_s^{l+1} = \frac{h_P^{l+1} - h_S^{l+1}}{\Delta y}$$

Dr. Anirban Dhar

NPTEL

Implicit Scheme

$$\begin{split} S_{y} \frac{h_{P}^{l+1} - h_{P}^{l}}{\Delta t} = & \frac{1}{\Delta x} \left[\left(K_{x} h \frac{\partial h}{\partial x} \right)_{e}^{l+1} - \left(K_{x} h \frac{\partial h}{\partial x} \right)_{w}^{l+1} \right] \\ & + \frac{1}{\Delta y} \left[\left(K_{y} h \frac{\partial h}{\partial y} \right)_{n}^{l+1} - \left(K_{y} h \frac{\partial h}{\partial y} \right)_{s}^{l+1} \right] \end{split}$$

$$\begin{split} S_{\mathcal{Y}} \frac{h_{P}^{l+1} - h_{P}^{l}}{\Delta t} &= \left[K_{x} \frac{\left(h_{E}^{l+1}\right)^{2} - \left(h_{P}^{l+1}\right)^{2}}{2\Delta x^{2}} - K_{x} \frac{\left(h_{P}^{l+1}\right)^{2} - \left(h_{W}^{l+1}\right)^{2}}{2\Delta x^{2}} \right] \\ &+ \left[0 - K_{\mathcal{Y}} \frac{\left(h_{P}^{l+1}\right)^{2} - \left(h_{S}^{l+1}\right)^{2}}{2\Delta y^{2}} \right] \end{split}$$

In simplified form, this can be written as

$$\alpha_y(h_S^{l+1})^2 + \alpha_x(h_W^{l+1})^2 - \left[2\alpha_x + \alpha_y\right](h_P^{l+1})^2 - h_P^{l+1} + \alpha_x(h_E^{l+1})^2 = -h_P^{l+1}$$

Dr. Anirban Dhar

NPTEL

Computational Hydraulics

Function and Jacobian

In the form of function discretized form can be written as,

$$F_m\left(\mathbf{h}^{l+1}\right) = \alpha_y (h_S^{l+1})^2 + \alpha_x (h_W^{l+1})^2 - \left[2\alpha_x + \alpha_y\right] (h_P^{l+1})^2 - h_P^{l+1} + \alpha_x (h_E^{l+1})^2 - \left[-h_P^l\right] = 0$$

Elements of Jacobian matrix can be calculated as

$$\begin{split} J_S^m &= \frac{\partial F_m}{\partial h_S^{l+1}} = 2\alpha_y h_S^{l+1} \\ J_W^m &= \frac{\partial F_m}{\partial h_W^{l+1}} = 2\alpha_x h_W^{l+1} \\ J_P^m &= \frac{\partial F_m}{\partial h_P^{l+1}} = -1 - 2\left[2\alpha_x + \alpha_y\right] h_P^{l+1} \\ J_E^m &= \frac{\partial F_m}{\partial h_E^{l+1}} = 2\alpha_x h_E^{l+1} \end{split}$$

Boundary Conditions Bottom Boundary

$$\begin{split} & \left(\frac{\partial h}{\partial x}\right)_e^{l+1} = \frac{h_E^{l+1} - h_P^{l+1}}{\Delta x} \quad \left(\frac{\partial h}{\partial x}\right)_w^{l+1} = \frac{h_P^{l+1} - h_W^{l+1}}{\Delta x} \\ & \left(\frac{\partial h}{\partial y}\right)_x^{l+1} = \frac{h_N^{l+1} - h_P^{l+1}}{\Delta y} \quad \left(\frac{\partial h}{\partial y}\right)_s^{l+1} = \frac{-8h_{BS}^{l+1} + 9h_P^{l+1} - h_N^{l+1}}{3\Delta y} = 0 \end{split}$$

Implicit Scheme

$$\begin{split} S_{y} \frac{h_{P}^{l+1} - h_{P}^{l}}{\Delta t} &= \frac{1}{\Delta x} \left[\left(K_{x} h \frac{\partial h}{\partial x} \right)_{e}^{l+1} - \left(K_{x} h \frac{\partial h}{\partial x} \right)_{w}^{l+1} \right] \\ &+ \frac{1}{\Delta y} \left[\left(K_{y} h \frac{\partial h}{\partial y} \right)_{n}^{l+1} - \left(K_{y} h \frac{\partial h}{\partial y} \right)_{s}^{l+1} \right] \end{split}$$

$$\begin{split} S_{\mathcal{Y}} \frac{h_{P}^{l+1} - h_{P}^{l}}{\Delta t} &= \left[K_{x} \frac{\left(h_{E}^{l+1}\right)^{2} - \left(h_{P}^{l+1}\right)^{2}}{2\Delta x^{2}} - K_{x} \frac{\left(h_{P}^{l+1}\right)^{2} - \left(h_{W}^{l+1}\right)^{2}}{2\Delta x^{2}} \right] \\ &+ \left[K_{\mathcal{Y}} \frac{\left(h_{N}^{l+1}\right)^{2} - \left(h_{P}^{l+1}\right)^{2}}{2\Delta y^{2}} - 0 \right] \end{split}$$

In simplified form, this can be written as

$$\alpha_x(h_W^{l+1})^2 - \left[2\alpha_x + \alpha_y\right](h_P^{l+1})^2 - h_P^{l+1} + \alpha_x(h_E^{l+1})^2 + \alpha_y(h_N^{l+1})^2 = -h_P^{l+1}$$

Dr. Anirban Dhar

NPTEL

Computational Hydraulics

Function and Jacobian

In the form of function discretized form can be written as,

$$F_m\left(\mathbf{h}^{l+1}\right) = \alpha_x (h_W^{l+1})^2 - \left[2\alpha_x + \alpha_y\right] (h_P^{l+1})^2 - h_P^{l+1} + \alpha_x (h_E^{l+1})^2 + \alpha_y (h_N^{l+1})^2 - \left[-h_P^l\right] = 0$$

Elements of Jacobian matrix can be calculated as

$$\begin{split} J_W^m &= \frac{\partial F_m}{\partial h_W^{l+1}} = 2\alpha_x h_W^{l+1} \\ J_P^m &= \frac{\partial F_m}{\partial h_P^{l+1}} = -1 - 2\left[2\alpha_x + \alpha_y\right] h_P^{l+1} \\ J_E^m &= \frac{\partial F_m}{\partial h_E^{l+1}} = 2\alpha_x h_E^{l+1} \\ J_N^m &= \frac{\partial F_m}{\partial h_N^{l+1}} = 2\alpha_y h_N^{l+1} \end{split}$$

Boundary Conditions N-W Corner

$$\left(\frac{\partial h}{\partial x}\right)_e^{l+1} = \frac{h_E^{l+1} - h_P^{l+1}}{\Delta x} \quad \left(\frac{\partial h}{\partial x}\right)_w^{l+1} = \frac{-8h_{BW}^{l+1} + 9h_P^{l+1} - h_E^{l+1}}{3\Delta x}$$

$$\left(\frac{\partial h}{\partial y}\right)_n^{l+1} = \frac{8h_{BN}^{l+1} - 9h_P^{l+1} + h_S^{l+1}}{3\Delta y} = 0 \quad \left(\frac{\partial h}{\partial y}\right)_s^{l+1} = \frac{h_P^{l+1} - h_S^{l+1}}{\Delta y}$$

Dr. Anirban Dhar

NPTEL

Implicit Scheme

$$\begin{split} S_{\mathcal{Y}} \frac{h_{P}^{l+1} - h_{P}^{l}}{\Delta t} &= \frac{1}{\Delta x} \left[\left(K_{x} h \frac{\partial h}{\partial x} \right)_{e}^{l+1} - \left(K_{x} h \frac{\partial h}{\partial x} \right)_{w}^{l+1} \right] \\ &+ \frac{1}{\Delta y} \left[\left(K_{y} h \frac{\partial h}{\partial y} \right)_{n}^{l+1} - \left(K_{y} h \frac{\partial h}{\partial y} \right)_{s}^{l+1} \right] \end{split}$$

$$\begin{split} S_{y} \frac{h_{P}^{l+1} - h_{P}^{l}}{\Delta t} &= \left[K_{x} \frac{\left(h_{E}^{l+1}\right)^{2} - \left(h_{P}^{l+1}\right)^{2}}{2\Delta x^{2}} - K_{x} h_{BW}^{l+1} \frac{-8 h_{BW}^{l+1} + 9 h_{P}^{l+1} - h_{E}^{l+1}}{3\Delta x^{2}} \right] \\ &+ \left[0 - K_{y} \frac{\left(h_{P}^{l+1}\right)^{2} - \left(h_{S}^{l+1}\right)^{2}}{2\Delta y^{2}} \right] \end{split}$$

In simplified form, this can be written as

$$\begin{split} \alpha_{y}(h_{S}^{l+1})^{2} - \left[\alpha_{x} + \alpha_{y}\right](h_{P}^{l+1})^{2} - \left[1 + 6\alpha_{x}h_{BW}^{l+1}\right]h_{P}^{l+1} + \frac{2}{3}\alpha_{x}h_{BW}^{l+1}h_{E}^{l+1} \\ + \alpha_{x}(h_{E}^{l+1})^{2} = -h_{P}^{l} - \frac{16}{3}\alpha_{x}(h_{BW}^{l+1})^{2} \end{split}$$

Dr. Anirban Dhar NPTEL

In the form of function discretized form can be written as,

$$F_m\left(\mathbf{h}^{l+1}\right) = \alpha_y (h_S^{l+1})^2 - \left[\alpha_x + \alpha_y\right] (h_P^{l+1})^2 - \left[1 + 6\alpha_x h_{BW}^{l+1}\right] h_P^{l+1} + \frac{2}{3}\alpha_x h_{BW}^{l+1} h_E^{l+1} + \alpha_x (h_E^{l+1})^2 - \left[-h_P^l - \frac{16}{3}\alpha_x (h_{BW}^{l+1})^2\right] = 0$$

$$\begin{split} J_S^m &= \frac{\partial F_m}{\partial h_S^{l+1}} = 2\alpha_y h_S^{l+1} \\ J_P^m &= \frac{\partial F_m}{\partial h_P^{l+1}} = -\left[1 + 6\alpha_x h_{BW}^{l+1}\right] - 2\left[\alpha_x + \alpha_y\right] h_P^{l+1} \\ J_E^m &= \frac{\partial F_m}{\partial h_E^{l+1}} = \frac{2}{3}\alpha_x h_{BW}^{l+1} + 2\alpha_x h_E^{l+1} \end{split}$$

Boundary Conditions N-E Corner

		n	
•	W∙ w	P●	e
		S	
•	•	Š	
•	•	•	

$$\begin{split} \left(\frac{\partial h}{\partial x}\right)_{e}^{l+1} &= \frac{8h_{BE}^{l+1} - 9h_{P}^{l+1} + h_{W}^{l+1}}{3\Delta x} \quad \left(\frac{\partial h}{\partial x}\right)_{w}^{l+1} = \frac{h_{P}^{l+1} - h_{W}^{l+1}}{\Delta x} \\ \left(\frac{\partial h}{\partial y}\right)_{n}^{l+1} &= \frac{8h_{BN}^{l+1} - 9h_{P}^{l+1} + h_{S}^{l+1}}{3\Delta y} = 0 \quad \left(\frac{\partial h}{\partial y}\right)_{s}^{l+1} = \frac{h_{P}^{l+1} - h_{S}^{l+1}}{\Delta y} \end{split}$$

Dr. Anirban Dhar

NPTEL

Implicit Scheme

$$\begin{split} S_{\mathcal{Y}} \frac{h_{P}^{l+1} - h_{P}^{l}}{\Delta t} = & \frac{1}{\Delta x} \left[\left(K_{x} h \frac{\partial h}{\partial x} \right)_{e}^{l+1} - \left(K_{x} h \frac{\partial h}{\partial x} \right)_{w}^{l+1} \right] \\ & + \frac{1}{\Delta y} \left[\left(K_{y} h \frac{\partial h}{\partial y} \right)_{n}^{l+1} - \left(K_{y} h \frac{\partial h}{\partial y} \right)_{s}^{l+1} \right] \end{split}$$

$$S_{y} \frac{h_{P}^{l+1} - h_{P}^{l}}{\Delta t} = \left[K_{x} h_{BE}^{l+1} \frac{8h_{BE}^{l+1} - 9h_{P}^{l+1} + h_{W}^{l+1}}{3\Delta x^{2}} - K_{x} \frac{\left(h_{P}^{l+1}\right)^{2} - \left(h_{W}^{l+1}\right)^{2}}{2\Delta x^{2}} \right] + \left[0 - K_{y} \frac{\left(h_{P}^{l+1}\right)^{2} - \left(h_{S}^{l+1}\right)^{2}}{2\Delta y^{2}} \right]$$

In simplified form, this can be written as

$$\begin{split} \alpha_{\mathcal{Y}}(h_{S}^{l+1})^{2} + \alpha_{x}(h_{W}^{l+1})^{2} + \frac{2}{3}\alpha_{x}h_{BE}^{l+1}h_{W}^{l+1} - \left[\alpha_{x} + \alpha_{y}\right](h_{P}^{l+1})^{2} \\ - \left[1 + 6\alpha_{x}h_{BE}^{l+1}\right]h_{P}^{l+1} = -h_{P}^{l} - \frac{16}{3}\alpha_{x}(h_{BE}^{l+1})^{2} \end{split}$$

Dr. Anirban Dhar NPTEL Computational Hydraulics

In the form of function discretized form can be written as,

$$\begin{split} F_m\left(\mathbf{h^{l+1}}\right) &= \alpha_y (h_S^{l+1})^2 + \alpha_x (h_W^{l+1})^2 + \frac{2}{3}\alpha_x h_{BE}^{l+1} h_W^{l+1} - \left[\alpha_x + \alpha_y\right] (h_P^{l+1})^2 \\ &- \left[1 + 6\alpha_x h_{BE}^{l+1}\right] h_P^{l+1} - \left[-h_P^l - \frac{16}{3}\alpha_x (h_{BE}^{l+1})^2\right] = 0 \end{split}$$

$$\begin{split} J_S^m &= \frac{\partial F_m}{\partial h_S^{l+1}} = 2\alpha_y h_S^{l+1} \\ J_W^m &= \frac{\partial F_m}{\partial h_W^{l+1}} = 2\alpha_x h_W^{l+1} + \frac{2}{3}\alpha_x h_{BE}^{l+1} \\ J_P^m &= \frac{\partial F_m}{\partial h_P^{l+1}} = -\left[1 + 6\alpha_x h_{BE}^{l+1}\right] - 2\left[\alpha_x + \alpha_y\right] h_P^{l+1} \end{split}$$

Boundary Conditions S-E Corner

$$\begin{split} \left(\frac{\partial h}{\partial x}\right)_{e}^{l+1} &= \frac{8h_{BE}^{l+1} - 9h_{P}^{l+1} + h_{W}^{l+1}}{3\Delta x} \quad \left(\frac{\partial h}{\partial x}\right)_{w}^{l+1} = \frac{h_{P}^{l+1} - h_{W}^{l+1}}{\Delta x} \\ &\left(\frac{\partial h}{\partial y}\right)_{n}^{l+1} = \frac{h_{N}^{l+1} - h_{P}^{l+1}}{\Delta y} \quad \left(\frac{\partial h}{\partial y}\right)_{s}^{l+1} = \frac{-8h_{BS}^{l+1} + 9h_{P}^{l+1} - h_{N}^{l+1}}{3\Delta y} = 0 \end{split}$$

Dr. Anirban Dhar

NPTEL

36 / 43

Implicit Scheme

$$\begin{split} S_{\mathcal{Y}} \frac{h_{P}^{l+1} - h_{P}^{l}}{\Delta t} = & \frac{1}{\Delta x} \left[\left(K_{x} h \frac{\partial h}{\partial x} \right)_{e}^{l+1} - \left(K_{x} h \frac{\partial h}{\partial x} \right)_{w}^{l+1} \right] \\ & + \frac{1}{\Delta y} \left[\left(K_{y} h \frac{\partial h}{\partial y} \right)_{n}^{l+1} - \left(K_{y} h \frac{\partial h}{\partial y} \right)_{s}^{l+1} \right] \end{split}$$

$$\begin{split} S_{y} \frac{h_{P}^{l+1} - h_{P}^{l}}{\Delta t} &= \left[K_{x} h_{BE}^{l+1} \frac{8h_{BE}^{l+1} - 9h_{P}^{l+1} + h_{W}^{l+1}}{3\Delta x^{2}} - K_{x} \frac{\left(h_{P}^{l+1}\right)^{2} - \left(h_{W}^{l+1}\right)^{2}}{2\Delta x^{2}} \right] \\ &+ \left[K_{y} \frac{\left(h_{N}^{l+1}\right)^{2} - \left(h_{P}^{l+1}\right)^{2}}{2\Delta y^{2}} - 0 \right] \end{split}$$

In simplified form, this can be written as

$$\begin{split} \alpha_x (h_W^{l+1})^2 + \frac{2}{3} \alpha_x h_{BE}^{l+1} h_W^{l+1} - \left[\alpha_x + \alpha_y \right] (h_P^{l+1})^2 \\ - \left[1 + 6 \alpha_x h_{BE}^{l+1} \right] h_P^{l+1} + \alpha_y (h_N^{l+1})^2 = - h_P^l - \frac{16}{3} \alpha_x (h_{BE}^{l+1})^2 \end{split}$$

Dr. Anirban Dhar NPTEL Computational Hydraulics

In the form of function discretized form can be written as,

$$\begin{split} F_m \left(\mathbf{h^{l+1}} \right) &= \alpha_x (h_W^{l+1})^2 + \frac{2}{3} \alpha_x h_{BE}^{l+1} h_W^{l+1} - \left[\alpha_x + \alpha_y \right] (h_P^{l+1})^2 \\ &- \left[1 + 6 \alpha_x h_{BE}^{l+1} \right] h_P^{l+1} + \alpha_y (h_N^{l+1})^2 - \left[- h_P^l - \frac{16}{3} \alpha_x (h_{BE}^{l+1})^2 \right] = 0 \end{split}$$

$$\begin{split} J_W^m &= \frac{\partial F_m}{\partial h_W^{l+1}} = 2\alpha_x h_W^{l+1} + \frac{2}{3}\alpha_x h_{BE}^{l+1} \\ J_P^m &= \frac{\partial F_m}{\partial h_P^{l+1}} = -\left[1 + 6\alpha_x h_{BE}^{l+1}\right] - 2\left[\alpha_x + \alpha_y\right] h_P^{l+1} \\ J_N^m &= \frac{\partial F_m}{\partial h_N^{l+1}} = 2\alpha_y h_N^{l+1} \end{split}$$

Boundary Conditions S-W Corner

$$\left(\frac{\partial h}{\partial x} \right)_{e}^{l+1} = \frac{h_{E}^{l+1} - h_{P}^{l+1}}{\Delta x} \quad \left(\frac{\partial h}{\partial x} \right)_{w}^{l+1} = \frac{-8h_{BW}^{l+1} + 9h_{P}^{l+1} - h_{E}^{l+1}}{3\Delta x}$$

$$\left(\frac{\partial h}{\partial y} \right)_{x}^{l+1} = \frac{h_{N}^{l+1} - h_{P}^{l+1}}{\Delta y} \quad \left(\frac{\partial h}{\partial y} \right)_{s}^{l+1} = \frac{-8h_{BS}^{l+1} + 9h_{P}^{l+1} - h_{N}^{l+1}}{3\Delta y} = 0$$

Implicit Scheme

$$\begin{split} S_{y} \, \frac{h_{P}^{l+1} - h_{P}^{l}}{\Delta t} &= \frac{1}{\Delta x} \left[\left(K_{x} h \frac{\partial h}{\partial x} \right)_{e}^{l+1} - \left(K_{x} h \frac{\partial h}{\partial x} \right)_{w}^{l+1} \right] \\ &+ \frac{1}{\Delta y} \left[\left(K_{y} h \frac{\partial h}{\partial y} \right)_{n}^{l+1} - \left(K_{y} h \frac{\partial h}{\partial y} \right)_{s}^{l+1} \right] \end{split}$$

$$\begin{split} S_{y} \frac{h_{P}^{l+1} - h_{P}^{l}}{\Delta t} &= \left[K_{x} \frac{\left(h_{E}^{l+1}\right)^{2} - \left(h_{P}^{l+1}\right)^{2}}{2\Delta x^{2}} - K_{x} h_{BW}^{l+1} \frac{-8h_{BW}^{l+1} + 9h_{P}^{l+1} - h_{E}^{l+1}}{3\Delta x^{2}} \right] \\ &+ \left[K_{y} \frac{\left(h_{N}^{l+1}\right)^{2} - \left(h_{P}^{l+1}\right)^{2}}{2\Delta y^{2}} - 0 \right] \end{split}$$

In simplified form, this can be written as

$$\begin{split} -\left[\alpha_{x}+\alpha_{y}\right]\left(h_{P}^{l+1}\right)^{2}-\left[1+6\alpha_{x}h_{BW}^{l+1}\right]h_{P}^{l+1}+\frac{2}{3}\alpha_{x}h_{BW}^{l+1}h_{E}^{l+1}\\ +\alpha_{x}(h_{E}^{l+1})^{2}+\alpha_{y}(h_{N}^{l+1})^{2}=-h_{P}^{l}-\frac{16}{3}\alpha_{x}(h_{BW}^{l+1})^{2} \end{split}$$

Dr. Anirban Dhar

NPTEL

Computational Hydraulics

In the form of function discretized form can be written as,

$$\begin{split} F_m \left(\mathbf{h^{l+1}} \right) &= - \left[\alpha_x + \alpha_y \right] (h_P^{l+1})^2 - \left[1 + 6 \alpha_x h_{BW}^{l+1} \right] h_P^{l+1} + \frac{2}{3} \alpha_x h_{BW}^{l+1} h_E^{l+1} \\ &+ \alpha_x (h_E^{l+1})^2 + \alpha_y (h_N^{l+1})^2 - \left[- h_P^l - \frac{16}{3} \alpha_x (h_{BW}^{l+1})^2 \right] = 0 \end{split}$$

$$\begin{split} J_P^m &= \frac{\partial F_m}{\partial h_P^{l+1}} = -\left[1 + 6\alpha_x h_{BW}^{l+1}\right] - 2\left[\alpha_x + \alpha_y\right] h_P^{l+1} \\ J_E^m &= \frac{\partial F_m}{\partial h_E^{l+1}} = \frac{2}{3}\alpha_x h_{BW}^{l+1} + 2\alpha_x h_E^{l+1} \\ J_N^m &= \frac{\partial F_m}{\partial h_N^{l+1}} = 2\alpha_y h_N^{l+1} \end{split}$$

General Form

In general form, the governing equation including boundary conditions can be written as,

$$J_{S}^{m}\Delta h_{S}^{l+1} + J_{W}^{m}\Delta h_{W}^{l+1} + J_{P}^{m}\Delta h_{P}^{l+1} + J_{E}^{m}\Delta h_{E}^{l+1} + J_{N}^{m}\Delta h_{N}^{l+1} = -F_{m}\left(\mathbf{h}^{l+1}\right)$$

General Form

In general form, the governing equation including boundary conditions can be written as,

$$J_{S}^{m} \Delta h_{S}^{l+1} + J_{W}^{m} \Delta h_{W}^{l+1} + J_{P}^{m} \Delta h_{P}^{l+1} + J_{E}^{m} \Delta h_{E}^{l+1} + J_{N}^{m} \Delta h_{N}^{l+1} = -F_{m} \left(\mathbf{h}^{1+1}\right)$$

Iterative form can be written as

$$\begin{split} &J_{S}^{m}\left[h_{S}^{l+1}\left|^{(p)}-h_{S}^{l+1}\right|^{(p-1)}\right]+J_{W}^{m}\left[h_{W}^{l+1}\left|^{(p)}-h_{W}^{l+1}\right|^{(p-1)}\right]+J_{P}^{m}\left[h_{P}^{l+1}\left|^{(p)}-h_{P}^{l+1}\right|^{(p-1)}\right]\\ &+J_{E}^{m}\left[h_{E}^{l+1}\left|^{(p)}-h_{E}^{l+1}\right|^{(p-1)}\right]+J_{N}^{m}\left[h_{N}^{l+1}\left|^{(p)}-h_{N}^{l+1}\right|^{(p-1)}\right]\\ &=-F_{m}\left(h_{S}^{l+1}\left|^{(p)},h_{W}^{l+1}\right|^{(p)},h_{P}^{l+1}\left|^{(p-1)},h_{E}^{l+1}\right|^{(p-1)},h_{N}^{l+1}\left|^{(p-1)}\right.\right) \end{split}$$

General Form

In general form, the governing equation including boundary conditions can be written as,

$$J_{S}^{m} \Delta h_{S}^{l+1} + J_{W}^{m} \Delta h_{W}^{l+1} + J_{P}^{m} \Delta h_{P}^{l+1} + J_{E}^{m} \Delta h_{E}^{l+1} + J_{N}^{m} \Delta h_{N}^{l+1} = -F_{m} \left(\mathbf{h}^{1+1} \right)$$

Iterative form can be written as

$$\begin{split} &J_{S}^{m}\left[h_{S}^{l+1}\left|^{(p)}-h_{S}^{l+1}\right|^{(p-1)}\right]+J_{W}^{m}\left[h_{W}^{l+1}\left|^{(p)}-h_{W}^{l+1}\right|^{(p-1)}\right]+J_{P}^{m}\left[h_{P}^{l+1}\left|^{(p)}-h_{P}^{l+1}\right|^{(p-1)}\right]\\ &+J_{E}^{m}\left[h_{E}^{l+1}\left|^{(p)}-h_{E}^{l+1}\right|^{(p-1)}\right]+J_{N}^{m}\left[h_{N}^{l+1}\left|^{(p)}-h_{N}^{l+1}\right|^{(p-1)}\right]\\ &=-F_{m}\left(h_{S}^{l+1}\left|^{(p)},h_{W}^{l+1}\right|^{(p)},h_{P}^{l+1}\left|^{(p-1)},h_{E}^{l+1}\right|^{(p-1)},h_{N}^{l+1}\left|^{(p-1)}\right.\right) \end{split}$$

Final iterative form can be written as

$$\left.h_P^{l+1}\right|^{(p)} = h_P^{l+1}\Big|^{(p-1)} + \frac{Res}{J_P^m}$$

with

$$Res = -F_m - \left[J_S^m \Delta h_S^{l+1} \Big|^{(p)} + J_W^m \Delta h_W^{l+1} \Big|^{(p)} + J_E^m \Delta h_E^{l+1} \Big|^{(p-1)} + J_N^m \Delta h_N^{l+1} \Big|^{(p-1)} \right]$$

Dr. Anirban Dhar

NPTEL

Computational Hydraulics

Source Code

Unsteady Two Dimensional Unconfined Groundwater Flow with Finite Volume Method

- Without coefficient matrix using Gauss Seidel
 - unsteady_2D_fvm_unconf_implicit_iterative.sci

Dr. Anirban Dhar

Thank You

Dr. Anirban Dhar NPTEL Computational Hydraulics