# Module 5: Group Homomorphisms & The Fundamental Theorem of Finite Abelian Groups

## § Group Homomorphisms

**Definition 5.1.** A homomorphism  $\phi$  from a group (G,\*) to a group  $(\overline{G},\star)$  is a mapping from G to  $\overline{G}$  that preserves the group operation, that is,  $\phi(a*b) = \phi(a) \star \phi(b)$  for all  $a,b \in G$ .

**Definition 5.2.** The kernel of a homomorphism  $\phi$  from a group G to a group  $\overline{G}$  with identity  $\overline{e}$  is the set

$$\ker(\phi) = \{ x \in G \mid \phi(x) = \overline{e} \}.$$

Remark 5.3. Group homomorphisms, get the picture.

♦ Exercise 5.4. Determine which of the following maps are homomorphisms.

1. 
$$\phi \colon \mathbb{R}^* \to \mathbb{R}^*, x \mapsto x^2$$

2. 
$$\phi \colon (\mathbb{R}, +) \to (\mathbb{R}, +), x \mapsto x^2$$

3. 
$$\phi \colon (\mathbb{R}, +) \to \mathbb{R}^*, x \mapsto 2^x$$

4. 
$$\phi: (\mathbb{Z}, +) \to \mathbb{Z}_n, x \mapsto x \pmod{n}$$
 for any  $n \in \mathbb{Z}^+$ 

**Remark 5.5.** Reference Theorem 3.9 from Module 3 to compare the properties of isomorphisms to the properties of homomorphisms.

**Proposition 5.6** (Properties of Elements Under Homomorphisms). Let  $\phi$  be a group homomorphism from G to  $\overline{G}$ . Let  $a \in G$ .

- 1.  $\phi(e) = \overline{e}$
- 2.  $\phi(a^n) = \phi(a)^n$  for every  $n \in \mathbb{Z}$
- 3. If |a| is finite, then  $|\phi(a)|$  divides |a|.

Proof. (1) and (2) follow the same argument as in the proof of Theorem 3.9.

**Proposition 5.7** (Properties of Kernels). Let  $\phi$  be a group homomorphism from G to  $\overline{G}$ . Let  $a, b \in G$ .

- 1.  $\phi(a) = \phi(b)$  if and only if  $a \ker(\phi) = b \ker(\phi)$ .
- 2. If  $\phi(a) = \overline{a}$ , then  $\phi^{-1}(\overline{a}) = a \ker(\phi)$ .
- 3. If  $|\ker(\phi)| = n$ , then  $\phi$  is an n-to-one map from G onto  $\phi(G)$ .
- 4. If  $\phi$  is onto and  $\ker(\phi) = \{e\}$ , then  $\phi$  is an isomorphism from G to  $\overline{G}$ .

Proof.

- **♦ Exercise 5.8.** Let  $\phi \colon \mathbb{Z}_{24} \to \mathbb{Z}_8$  be defined by  $\phi(x) = 2x \pmod{8}$ .
  - 1. Show that  $\phi$  is a homomorphism.
  - 2. Find  $ker(\phi)$ .
  - 3. Show that |10| and  $|\phi(10)|$  satisfies property 3 of Proposition 5.6



- 4. Show that  $\phi^{-1}(4)$  satisfies property 2 of Proposition 5.7.
- 5. Find  $\phi(\langle 6 \rangle)$ . How is this related to  $\mathbb{Z}_8$ ?
- 6. Find  $\phi^{-1}(\langle 4 \rangle)$ . How is this related to  $\mathbb{Z}_{24}$ ?

**Proposition 5.9** (Push Forward Properties). Let  $\phi$  be a group homomorphism from G to  $\overline{G}$ . Let  $H \leq G$ .

- 1.  $\phi(H)$  is a subgroup of  $\overline{G}$ .
- 2. If H is cyclic, then  $\phi(H)$  is cyclic.
- 3. If H is abelian, then  $\phi(H)$  is abelian.
- 4. If  $H \triangleleft G$ , then  $\phi(H) \triangleleft \phi(G)$ .
- 5. If |H| = n, then  $|\phi(H)|$  divides n.

Proof. (1)-(3) follow the same argument as in the proof of Theorem 3.9.

**Proposition 5.10** (Pull Back Properties). Let  $\phi$  be a group homomorphism from G to  $\overline{G}$ .

- 1. If  $\overline{K} \leq \overline{G}$ , then  $\phi^{-1}(\overline{K}) \leq G$ .
- 2. If  $\overline{K} \triangleleft \overline{G}$ , then  $\phi^{-1}(\overline{K}) \triangleleft G$ .

Proof.

Corollary 5.11. Let  $\phi$  be a group homomorphism from G to  $\overline{G}$ . Then  $\ker(\phi)$  is a normal subgroup of G. *Proof.* 

### § The First Isomorphism Theorem

**Theorem 5.12** (First Isomorphism Theorem). Let  $\phi$  be a group homomorphism from G to  $\overline{G}$ . Then the following map

$$\psi \colon G/\ker(\phi) \to \overline{G}$$

$$g \ker(\phi) \mapsto \phi(g)$$

is an isomorphism. Hence  $G/\ker(\phi) \cong \phi(G)$ .

Proof.

**Example 5.13.** Apply the First Isomorphism Theorem to the homomorphism from Exercise 5.4 defined by  $\phi: \mathbb{Z}_{24} \to \mathbb{Z}_8, \ \phi(x) = 2x \pmod{8}$ .

Corollary 5.14. If  $\phi$  is a group homomorphism from G to  $\overline{G}$ , then  $|G|/|\ker(\phi)| = |\phi(G)|$ .

Corollary 5.15. If  $\phi$  is a group homomorphism from G to  $\overline{G}$ , then  $|\phi(G)|$  divides |G| and  $|\overline{G}|$ .

- ♦ Exercise 5.16. Use the First Isomorphism Theorem to show the following.
  - 1.  $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$

2. Let n = dk. Then  $\mathbb{Z}_n/\langle k \rangle \cong \mathbb{Z}_k$ .

**Theorem 5.17.** Every normal subgroup of a group G is the kernel of some homomorphism of G. In particular, a normal subgroup N is the kernel of the mapping from G to G/N defined by  $g \mapsto gN$ .

Proof.

## § The Fundamental Theorem of Finite Abelian Groups

**Theorem 5.18** (The Fundamental Theorem of Finite Abelian Groups). Every finite abelian group G is isomorphic to a group of the form

$$\mathbb{Z}_{p_1^{n_1}} \oplus \mathbb{Z}_{p_2^{n_2}} \oplus \cdots \oplus \mathbb{Z}_{p_k^{n_k}}$$

where the  $p_i$ 's are not necessarily distinct primes and the prime powers  $p_1^{n_1}, p_2^{n_2}, \dots, p_k^{n_k}$  are uniquely determined by G.

Remark 5.19. It is often convenient to combine the cyclic factors of relatively prime order and to list the factors from smallest to largest.

**Example 5.20.** There are 2 isomorphism classes for an abelian group of order 12.

#### ♦ Exercise 5.21.

1. List the 3 isomorphism classes for an abelian group of order 24.

2. List the 4 isomorphism classes for an abelian group of order 36.

 $\blacklozenge$  Exercise 5.22. Let G be an abelian group of order 24. Suppose that G has exactly three elements of order 2. Determine the isomorphism class of G.

Corollary 5.23. If m divides the order of a finite abelian group G, then G has a subgroup of order m. Proof.**Example 5.24.** Let G be an abelian group of order 72. Produce a subgroup of order 12. ♦ Exercise 5.25. Show that there are two abelian groups of order 108 that have exactly one subgroup of order 3.