BSS applied on EEG signal

SISEA - Problèmes Inverses

February 14, 2018

1 Prerequisites

We aime to reconstruct the unknown source vector \boldsymbol{s} given its observation :

$$x = As + \epsilon, \tag{1}$$

where **A** is the known $M \times N$ mixing matrix $(M \ll N)$, \boldsymbol{x} the observation column vector $(M \times 1)$, and ϵ the white Gaussian noise of unknown variances σ_{ϵ}^2 .

To impose sparsity in the solution, it is further supposed that s follows a Bernoulli-Gaussian (BG) model, an independent, identically distributed (iid) process defined in two stages. Firstly, the sparse nature is governed by the Bernoulli law:

$$P(q) = \lambda^{L} (1 - \lambda)^{N - L} \tag{2}$$

with $\mathbf{q} = [q_1, \dots, q_N]^{\mathrm{t}}$ a binary sequence and $L = \sum_{n=1}^N q_n$, the number of non-zero entries of \mathbf{q} . Secondly, amplitudes $\mathbf{s} = [s_1, \dots, s_N]^{\mathrm{t}}$ are assumed iid zero-mean Gaussian conditionally to \mathbf{q} :

$$s \mid q \sim \mathcal{N}(\mathbf{0}, \sigma_s^2 \operatorname{diag}(q)),$$
 (3)

where diag(q) denotes a diagonal matrix whose diagonal is q.

The problem becomes the estimation of $\Theta = \{s, q, \lambda, \sigma_{\epsilon}^2, \sigma_s^2\}$ given \boldsymbol{x} , for which the joint posterior distribution writes:

$$P(\Theta \mid \boldsymbol{x}) \propto g(\boldsymbol{x} - \mathbf{A}\boldsymbol{s}; \sigma_{\epsilon}^{2} \mathbf{I}_{M}) P(\boldsymbol{q}; \lambda) g(\boldsymbol{s}; \sigma_{s}^{2} \operatorname{diag}(\boldsymbol{q})) P(\sigma_{\epsilon}^{2}) P(\sigma_{s}^{2}) P(\lambda)$$
 (4)

where $g(\cdot; \mathbf{R})$ denotes the centered Gaussian density of covariance \mathbf{R} . Conjugate prior laws are adopted for λ , σ_{ϵ}^2 and σ_s^2 :

$$\lambda \sim Be(1,1)?, \sigma_{\epsilon}^2 \sim IG(1,1)? \quad \sigma_{\epsilon}^2 \sim IG(1,1e-4)?$$

where IG and Be represents respectively the inverse Gamma and Beta distributions.

2 Gibbs Sampler

According to the Monte Carlo principle, a posterior mean estimator of the unknown random variables can be approximated by:

$$\widehat{\Theta} = \frac{1}{I - J} \sum_{k=J+1}^{I} \Theta^{(k)},\tag{5}$$

where the sum extends over the last I-J samples. In the MCMC framework, the samples are generated iteratively, so that asymptotically converges in distribution to the joint posterior probability in eq. (4).

Metropolis-Hastings algorithm

- ① current configuration $\Theta^{(k)}$
- ② draw Θ' with a proposition law $Q(\Theta' \mid \Theta^{(k)})$
- accept $\Theta^{(k+1)} = \Theta'$ with probability $\min \left\{ 1, \frac{P(\Theta')Q(\Theta^{(k)} \mid \Theta')}{P(\Theta^{(k)})Q(\Theta' \mid \Theta^{(k)})} \right\}$
- (4) repeat from (1)

Gibbs algorithm

- \bigcirc current configuration $\Theta^{(k)}$
- \bigcirc choose (cyclically or randomly) i
- \odot draw $\Theta_i^{(k+1)} \sim \Theta_i \mid \Theta^{(k)} \setminus \Theta_i^{(k)}, \boldsymbol{z}$
- (4) repeat from (1)

Exercise 2.1 Show that the Gibbs algorithm

- 1. is a special case of the **Metropolis-Hastings** algorithm for which Θ' is always accepted;
- 2. satisfies the equilibrium condition and thus $\Theta^{(k)}$ converges to $P(\Theta \mid \mathbf{z})$ in distribution.

Exercise 2.2 write the following conditional probabilities from the joint probability in Eq (4):

- 1. $q_n \mid \Theta \setminus \{q_n, s_n\}, \boldsymbol{x},$
- 2. $s_n \mid \Theta \setminus \{s_n\}, \boldsymbol{x},$
- 3. $\sigma_{\epsilon}^2 \mid \Theta \setminus \sigma_{\epsilon}^2, \boldsymbol{x}$,
- 4. $\sigma_e^2 \mid \Theta \setminus \sigma_e^2, \boldsymbol{x}$,
- 5. $\lambda \mid \Theta \setminus \lambda, \boldsymbol{x}$,

N.B. the Beta distribution writes $Beta(x;\alpha,\beta) = \frac{1}{B(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}$, and the inverse Gamma $IG(x;\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{-(\alpha+1)}\exp(-\beta/x)$.

Conditional laws:

We first detail the joint probability in Eq (4) by :

$$P(\Theta \mid \boldsymbol{x}) \propto (2\pi\sigma_{\epsilon}^{2})^{-M/2} \exp\left\{-\frac{1}{2\sigma_{\epsilon}^{2}} \|\boldsymbol{x} - \mathbf{A}\boldsymbol{s}\|^{2}\right\} \cdot \lambda^{\sum q_{n}} (1-\lambda)^{N-\sum q_{n}} \cdot \left((2\pi)^{N} \det(\sigma_{s}^{2} \operatorname{diag}(\boldsymbol{q}))\right)^{-1/2} \exp\left\{-\frac{1}{2}\boldsymbol{s}^{t}(\sigma_{s}^{2} \operatorname{diag}(\boldsymbol{q}))^{-1}\boldsymbol{s}\right\} \cdot P(\sigma_{s}^{2}) \cdot P(\sigma_{\epsilon}^{2}).$$

Notice that $\det(\sigma_s^2 \operatorname{diag}(\boldsymbol{q})) = (\sigma_s^2)^N \prod q_n$ due to its diagonal structure, while a zero-variance normal distribution can be considered a Dirac distribution. Notice also that for each binary variable q_n , we should have the normalization constraint

$$P(q_n = 0 \mid \Theta \setminus \{q_n, s_n\}, \boldsymbol{x}) + P(q_n = 1 \mid \Theta \setminus \{q_n, s_n\}, \boldsymbol{x}) = 1.$$
(6)

Its conditional probability can thus be derived by calculating respectively the two terms up to a normalization factor:

• for $P(q_n = 0 \mid \Theta \setminus \{q_n, s_n\}, \boldsymbol{x})$, according to the B-G model, $s_n = 0$, thus

$$P(q_n = 0, s_n \mid \Theta \setminus \{q_n, s_n\}, \boldsymbol{x}) \propto \exp\left\{-\frac{1}{2\sigma_{\epsilon}^2} \|\boldsymbol{x} - \mathbf{A}_{-n} \boldsymbol{s}_{-n} - \mathbf{A}_n s_n\|^2\right\} \cdot (1 - \lambda) \cdot \delta_0(s_n);$$

for which the \mathbf{A}_{-n} and \mathbf{s}_{-n} represents the matrix \mathbf{A} without the *n*-th column and the vector \mathbf{s} without its *n*-th element respectively; we can easily integrate out \mathbf{s}_n and have the marginal form:

$$P(q_n = 0 \mid \Theta \setminus \{q_n, s_n\}, \boldsymbol{x}) \propto \exp\left\{-\frac{1}{2\sigma_{\epsilon}^2} \|\boldsymbol{x} - \mathbf{A}_{-n} \boldsymbol{s}_{-n}\|^2\right\} \cdot (1 - \lambda); \tag{7}$$

• likewise for $P(q_n = 1, s_n \mid \Theta \setminus \{q_n, s_n\}, \boldsymbol{x})$:

$$P(q_n = 1, s_n \mid \Theta \setminus \{q_n, s_n\}, \boldsymbol{x}) \propto \exp\left\{-\frac{1}{2\sigma_{\epsilon}^2} \|\boldsymbol{x} - \mathbf{A}_{-n} \boldsymbol{s}_{-n} - \mathbf{A}_n s_n\|^2\right\} \cdot \lambda \cdot \frac{1}{\sqrt{2\pi\sigma_s^2}} \exp\left(-\frac{s_n^2}{2\sigma_s^2}\right)$$

the quadratic form inside the exponential terms suggests that s_n follows a normal distribution $(\mathcal{N}(\mu_n, \sigma_n^2))$ and can be integrated out analytically to yield:

$$P(q_n = 1 \mid \Theta \setminus \{q_n, s_n\}, \boldsymbol{x}) \propto \exp\left\{-\frac{1}{2\sigma_{\epsilon}^2} \|\boldsymbol{x} - \mathbf{A}_{-n} \boldsymbol{s}_{-n}\|^2\right\} \cdot \frac{\lambda \sigma_n}{\sigma_s} \cdot \exp\left\{\frac{\mu_n^2}{2\sigma_n^2}\right\}, \quad (8)$$

where
$$\sigma_n^2 = \frac{\sigma_e^2 \sigma_s^2}{\sigma_r^2 + \sigma_n^2 ||\mathbf{A}_n||^2}$$
 and $\mu_n = \frac{\sigma_n^2}{\sigma_r^2} \mathbf{A}_n^{\mathrm{t}} (\boldsymbol{x} - \mathbf{A}_{-n} \boldsymbol{s}_{-n}).$

By combining eqs. (6)(7)(8), we conclude that $q_n \mid \Theta \setminus \{q_n, s_n\}, \boldsymbol{x} \sim \operatorname{Bi}(\frac{\nu_n}{\nu_n + 1 - \lambda})$ for which $\nu_n = \frac{\lambda \sigma_n}{\sigma_s} \exp\left\{\frac{\mu_n^2}{2\sigma_n^2}\right\}$.

The conditional probability of $s_n \mid \Theta \setminus \{s_n\}, \boldsymbol{x}$ is straight forward : if $q_n = 0$, then $s_n = 0$, else $s_n \sim \mathcal{N}(\mu_n, \sigma_n^2)$ as derived previously. The conditional probabilities of the rest three parameters are obvious thanks to the conjugate prior laws.

Exercise 2.3 From the Gibbs sampling scheme, derive the pseudocode in Tab. 1

Table 1: Pseudocode for the Gibbs sampler

```
1: % Initialization
  2: q \leftarrow 0; s \leftarrow 0
 3: Sample \sigma_{\epsilon}^2, \sigma_{s}^2, \lambda using prior laws
            % ----- Step 1: Sample (q_i, s_i) -----
  5:
  6:
            e \leftarrow x - \mathrm{A}s
  7:
            for i = 1 to N do
                 oldsymbol{e}_i \leftarrow oldsymbol{e} + \mathbf{A}_i s_i \, 	ext{	iny A}_i is the i	ext{-th column of } \mathbf{A}
  8:
                \sigma_i^2 \leftarrow \sigma_\epsilon^2 \sigma_s^2 / (\sigma_\epsilon^2 + \sigma_s^2 \|\mathbf{A}_i\|^2)
  9:
                 \mu_i \leftarrow (\sigma_i^2/\sigma_\epsilon^2) \mathbf{A}_i^{\mathrm{t}} \mathbf{e}_i
10:
                 \nu_i \leftarrow \lambda(\sigma_i/\sigma_s) \exp(\mu_i^2/(2\sigma_i^2))
11:
                 \lambda_i \leftarrow \nu_i/(\nu_i + 1 - \lambda)
12:
                 Sample q_i \sim Bi(\lambda_i)
13:
                Sample s_i \sim \mathcal{N}(\mu_i, \sigma_i^2) if q_i = 1, s_i = 0 otherwise
14:
                 oldsymbol{e} \leftarrow oldsymbol{e}_i - \mathbf{A}_i s_i % Update oldsymbol{e}
15:
            end for
16:
           % ------ Step 2: Sample \sigma_{\epsilon}^2 ----- Sample \sigma_{\epsilon}^2 \sim \mathrm{IG}(M/2+?, \|\boldsymbol{x} - \mathbf{A}\boldsymbol{s}\|^2/2+?)
17:
18:
            \% ----- Step 3: Sample \lambda ----
19:
           Sample \lambda \sim \text{Be}(1+L,1+N-L), with L = \sum_n q_n % ------ Step 4: Sample \sigma_s^2 ------ Sample \sigma_s^2 \sim \text{IG}(L/2+?,\|\boldsymbol{s}\|^2/2+?)
20:
21:
23: until Convergence
```

3 Matlab Experiment :

- 1. launch the $TP_inverse_problem.m$ file in matlab and visualize the source distribution;
- 2. understand the direct problem process (code given) of linear source mixture and noise addition;
- 3. use the Gibbs sampler to perform the "deconvolution" and compare the results.