1. First note that $[k(x,y):k(x^p,y^p)]=p^2$. It is obvious that $[k(x,y^p):k(x^p,y^p)]=p$, then I claim that $\min(y;k(x,y^p))=f(T):=T^p-y^p$ in $k(x,y^p)[T]$. Proof being, firstly that f(y)=0, and appealing to Gauss' lemma, and eisenstein's Criterion (for y^p prime) f is irreducible.

Define u(n) as $y + x^{np+1}$, then the following extensions satisfy the criteria.

$$k(x^p, y^p) \subseteq k(x^p, y^p, u(n)) \subseteq k(x, y), \quad \forall n \in \mathbb{N}$$

Furthermore, if $n \neq m$, then $k(x^p, y^p, u(n)) \neq k(x^p, y^p, u(m))$. The first inequality is obvious, since if $f \in k[x^p, y^p]$, then $p|\deg_y f$. As for the second inequality, $[k(x^p, y^p, u(n)) : k(x^p, y^p)] = p$, since $p|[k(x^p, y^p, u(n)) : k(x^p, y^p)]$, and u(n) satisfies the polynomial $T^p - y^p - x^{p^{np+1}}$.

Now suppose $n \neq m$, then

$$k(x^{p}, y^{p}, u(n), u(m)) = k(x^{p}, y^{p}, u(n) - u(m), u(n))$$
$$= k(x^{p}, y^{p}, x(x^{np} - x^{mp}), u(n))$$
$$= k(x, y^{p}, u(n)) = k(x, y)$$

And hence $k(x^p, y^p, u(n))k(x^p, y^p, u(m)) \supseteq k(x^p, y^p, u(n))$ and $k(x^p, y^p, u(m))$, implying that the extensions are not equal.

2. We first show that $\min(a^{1/p}:\mathbb{Q})=X^p-a$, proof being we can factor $X^p-a=\prod_{k=1}^p(X-a^{1/p}\zeta_p^k)$ in $\mathbb{C}[X]$. If this polynomial were reducible in \mathbb{Q} , then if g were a factor, the last coefficient of g must be of the form $\pm a^{k/p}$. This is impossible since $a^{k/p}\in\mathbb{Q},\ k< p$, then by bezouts identity, there exist u,v such that uk+vp=1, implying that $a^{1/p}=a^{uk/p}a^{vp/p}\in\mathbb{Q}$.

This gives the desired result for both L and F extensions, since by multiplicativity of degree,

$$\begin{aligned} p|[F(a^{1/p}):\mathbb{Q}] \text{ and } [F:\mathbb{Q}] &\leq p-1 \\ p|[L(a^{1/p}):\mathbb{Q}] \text{ and } [L:\mathbb{Q}] &\leq p-1 \end{aligned}$$

implying that $p|[F(a^{1/p}):F], [L(a^{1/p}):L]$. Then since $F \supset \cos(2\pi/p), -\sin^2(2\pi/p)$ (proven below), we get that $L = F(\sqrt{-\sin^2(2\pi/p)})$, i.e. [L:F] = 2, also note that $N = L(a^{1/p})$. So that $[L(a^{1/p}):F] = [L(a^{1/p}):L][L:F] = 2p$, implies $\#\mathrm{Gal}(N/F) = 2p$. Finally, we have that $\mathrm{Gal}(N/F) \supset \langle \tau, \sigma \rangle \simeq D_p$, where τ is complex conjugation and σ is a generator of the cyclic group $\mathrm{Gal}(\mathbb{Q}(\zeta_p):\mathbb{Q})$. The isomorphism follows from $\sigma\tau = \tau\sigma^{-1}, \tau^2 = 1, \sigma^p = 1$, meaning the multiplication rules of D_p are satisfied. Then since $\#\mathrm{Gal}(N/F) = 2p = \#\langle \tau, \sigma \rangle$ we have equality.

To show that $F \supset \cos(2\pi/p)$, $\sin^2(2\pi/p)$, we have $\zeta_p, \zeta_p^{-1} \in F$, hence we have $\frac{1}{2}(\zeta_p + \zeta_p^{-1}) = \cos(2\pi/p) \in F$. This implies we also have $(\zeta_p - \cos(2\pi/p))^2 = -\sin^2(2\pi/p)$.

3.

$$[F:\mathbb{Q}]=2^9$$

First note that $F = \mathbb{Q}(\sqrt{p}|p)$ prime and $p \leq 28$, since the other radicals are simply products of these radicals, furthermore there are 9 primes less than or equal to 28.

First we prove a lemma, namely: if K has characteristic $0, a, b \in K$ then $[K(\sqrt{a}, \sqrt{b}) : K] = 4$ when $\sqrt{a}, \sqrt{b}, \sqrt{ab} \notin K$. Proof being: since $\sqrt{a} \notin K$ we have $[K(\sqrt{a}) : K] = 2$, so we need to show that $\sqrt{b} \notin K(\sqrt{a})$, so that $[K(\sqrt{a}, \sqrt{b}) : K(\sqrt{a})] = 2$, allowing us to conclude by

multiplicativity of degree. So suppose for contradiction that $\sqrt{b} = s\sqrt{a} + t$ for $s, t \in K$. This implies that:

$$b = as^2 + 2ts\sqrt{a} + t^2$$

it follows that one of t or s must be zero (if both are zero we get b=0 an immediate contradiction), else this contradicts $\sqrt{a} \notin K$. Suppose first s=0, then $b=t^2 \Longrightarrow t=\sqrt{b} \in K$ a contradiction. Then it must be the case that t=0, implying that $b=as^2$, so that $\sqrt{ab}=(\sqrt{a})(\sqrt{a}s)=as\in K$ also a contradiction, hence proving the lemma.

Now we finish the proof using the lemma, we have $[\mathbb{Q}(\sqrt{p_1}):\mathbb{Q}]=2$ by irrationality. Now assume that $[\mathbb{Q}(P):\mathbb{Q}]=2^{\#P}$, for P a collection of at most n square roots of elements of \mathbb{Q} , such that none of the 2^n products of elements of the collection lie in \mathbb{Q} , define $K=\mathbb{Q}(\sqrt{p_1},\sqrt{p_2},\ldots\sqrt{p_{n-1}})$, then by induction we have

$$[K(\sqrt{p_n}):K] = [K(\sqrt{p_{n+1}}):K] = [K(\sqrt{p_n p_{n+1}}):K] = 2$$

So that none of these elements lie in K. We may apply the lemma that

$$[K(\sqrt{p_n}, \sqrt{p_{n+1}}) : K] = 4 \implies [\mathbb{Q}(\sqrt{p_1}, \dots, \sqrt{p_{n+1}}) : \mathbb{Q}] = 2^{n+1}$$

The result is proven, given that

$$F = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}, \sqrt{13}, \sqrt{17}, \sqrt{19}, \sqrt{23})$$

where clearly none of the products of square roots adjoined lie in \mathbb{Q} .

4. Suppose that $\#F = p^m = q$, and that $\#K = q^n$, note that $N_{K/F} : K \to F$, as it sends any element to the constant term of its minimum polynomial raised to some exponent. We know that $\operatorname{Gal}(K/F)$ is cyclic, with generator $\Phi : a \mapsto a^q$. Let $a \in K$, then

$$N_{K/F}(a) = \prod_{\sigma \in \operatorname{Gal}(K/F)} \sigma(a) = \prod_{k=0}^{n-1} \Phi^k(a) = \prod_{k=0}^{n-1} a^{kq} = a^{\sum_{k=0}^{n-1} kq} = a^{\frac{q^n - 1}{q - 1}}$$

It is immediate that $N_{K/F}(0) = 0$, since K is a field, and an element cannot be conjugate to 0 any other element must be sent to F^* having order q-1. Now since K is finite, we have shown K^* is cyclic, hence it has a generator α with order q^n-1 , this implies that each of $N(\alpha^i)$ are distinct for $i \in \{1, \ldots, q-1\}$ by the formula above and hence $\#\{N_{K/F}(\alpha^i)\}_{i=1}^{q-1} = q-1 = \#F^*$, so that N maps onto both 0 and F^* .

5. We can define the map $\varphi : \mathbb{Z}/2\mathbb{Z} \xrightarrow{\varphi} (\mathbb{Z}/4\mathbb{Z})$ as $\varphi(1) : x \mapsto -x$, this is a well defined automorphism, since $\varphi(1)^2 = \mathbf{1}_{\mathbb{Z}/4\mathbb{Z}} = \varphi(0) = \varphi(1+1)$. Any element $x \in D_4$ can be written in the form of $\sigma^i \tau^j$ using the relation $\sigma \tau = \tau \sigma^{-1}$. So define the map

$$\psi: D_4 \to \mathbb{Z}/4\mathbb{Z} \underset{\varphi}{\rtimes} \mathbb{Z}/2\mathbb{Z}$$
$$\sigma^i \tau^j \mapsto (i,j)$$

is an isomorphism. $\mathbf{1} \mapsto (0,0)$ is immediate. And (here I deal with both possible cases j=1,0 separately)

$$\psi(\sigma^{i}\tau\sigma^{k}\tau^{\ell}) = \psi(\sigma^{i-k}\tau^{1+\ell}) = (i-k,1+\ell) = (i+\varphi(1)(k),1+\ell) = (i,1)(k,\ell) = \psi(\sigma^{i}\tau)\psi(\sigma^{k}\tau^{\ell})$$
$$\psi(\sigma^{i}\tau^{0}\sigma^{k}\tau^{\ell}) = \psi(\sigma^{i+k}\tau^{\ell}) = (i+k,\ell) = (i+\varphi(0)(k),0+\ell) = (i,0)(k,\ell) = \psi(\sigma^{i}\tau^{0})\psi(\sigma^{k}\tau^{\ell})$$

This proves that ψ is a homomorphism, and

$$\psi(\sigma^i\tau^j) = (0,0) \iff i \equiv 0 \mod 4 \text{ and } j \equiv 0 \mod 2 \iff \sigma^i\tau^j = \mathbf{1}$$

proving that $\ker \psi = \mathbf{1}$. Then since $\#D_4 = \#\mathbb{Z}/4\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ and the map is injective, it must also be surjective.

6. (a) It is immediate that \mathbb{Q} satisfies the conditions of containing ± 1 . The degree being at most 2^r is immediate since K is a tower of r extensions of degree at most 2. An example of when the degree is equal to 2^r is when each of the a_i are primes, as shown in the solution to exercise 3. An example of the degree less than 2^r is when $a_r = a_1 a_2$, since this is contained in the previous extension having degree at most 2^{r-1} . Explicit examples would be $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ having degree 4, and $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{6})$ having degree 4 < 8. It remains to show that K/\mathbb{Q} is a 2-Kummer extension, the extension is clearly normal and seperable hence Galois, since it is the splitting field of a family of degree 2 polynomials algebraic over a characteristic 0 field. Suppose that $K/\mathbb{Q} = 2^r$, else we can simply remove dependent $\sqrt{a_i}$ until it does. Then each of $\sigma_1, \ldots, \sigma_r$ are in $\mathrm{Gal}(K/\mathbb{Q})$ where $\sigma_i|_{\mathbb{Q}(\sqrt{a_1},\ldots,\sqrt{a_{i-1}},\sqrt{a_{i+1}}\ldots,\sqrt{a_r})} = 1, \sigma(\sqrt{a_i} = -a_i)$. It follows that each of the 2^r combinations of these permutations are unique, hence $\mathrm{Gal}(K/\mathbb{Q}) = \langle \sigma_1, \ldots, \sigma_r \rangle$. Since the group is generated by order 2 elements, all of its elements have order 2 and groups with exponent 2 are abelian, hence K/\mathbb{Q} is 2-Kummer

Proof That Groups of Exponent 2 Are Abelian: $a, b \in G$, then $ab = (ab)^{-1} = b^{-1}a^{-1} = ba$

(b) It is immediate that both are less than or equal to n.

First suppose that $a^k \in K^{*^n}$, then $a^{k/n} \in K^*$, so that $\min(a^{1/n}; K) | x^k - a^{k/n}$, implying that $[K(\sqrt[n]{a}) : K] \leq k$, so that $[K(\sqrt[n]{a}) : K] \leq o(aK^{*^n})$

Conversely, supppose that $[K(\sqrt[n]{a}):K]=k$, then $a^{1/n}$ has minimum polynomial g of degree k, furthermore $g|x^n-a=\prod_0^{n-1}(x-a^{1/n}\zeta_n^j)$, so that the constant term of g must be $a^{k/n}\zeta_n^r$ for some r, then since $\zeta_n \in K$, this implies that $a^{k/n} \in K^*$, so that $a^k \in K^{*^n}$ this implies that $[K(\sqrt[n]{a}):K] \geq o(aK^{*^n})$. Both inequalities taken together implies equality.