1 Let (M, μ) be a measure space, show that $L^p(M, d\mu)$ is a Banach space for any 1 .

Proof. Normed vector space easy; show complete.

By Problem 4, to show $L^p(M, d\mu)$ is complete, it suffices to check that every absolutely summable sequence is summable. Suppose $\{f_n\}$ is an absolutely summable sequence, which means $\sum_{n=1}^{\infty} \|f_n\|_p < \infty$.

For each $m \in \mathbb{N}$, define $g_n = |f_n|^p$ which has L^1 norm

$$||g_n||_1 = \int_M |g_n| d\mu = \int_M |f_n|^p d\mu = ||f_n||_p^p < \infty,$$

so $g_n \in L^1(M, d\mu)$. Moreover, $\{g_n\}$ is absolutely summable since

$$\sum_{n=1}^{\infty} \|g_n\|_1 = \sum_{n=1}^{\infty} \|f_n\|_p^p = \sum_{n=1}^{N-1} \|f_n\|_p^p + \sum_{n=N}^{\infty} \|f_n\|_p^p \le \sum_{n=1}^{N-1} \|f_n\|_p^p + \sum_{n=N}^{\infty} \|f_n\|_p < \infty,$$

where $N \in \mathbb{N}$ is chosen such that $||f_n||_p \leq 1$ for all $n \geq N$. Since $L^1(M, d\mu)$ is complete, Problem 4 implies $\{g_n\}$ is summable, so we can define

$$G = \sum_{n=1}^{\infty} g_n = \sum_{n=1}^{\infty} |f_n|^p \in L^1(M, d\mu).$$

For all $x \in M$ and $m \in \mathbb{N}$, we have

$$\left| \sum_{n=1}^{m} |f_n(x)| \right|^p \le \sum_{n=1}^{m} |f_n(x)|^p \le G(x)$$

SO

$$\sum_{n=1}^{\infty} |f_n(x)| = \lim_{m \to \infty} \sum_{n=1}^{m} |f_n(x)| \le G(x)^{1/p}.$$

Then $\int_M G \, \mathrm{d}\mu < \infty$ implies that G(x) is finite for μ -a.e. $x \in M$; in which case, the sequence $\{f_n(x)\}$ in $\mathbb C$ is absolutely summable. Since $\mathbb C$ is complete, Problem 4 tells us absolutely summable sequences are summable. So for μ -a.e. $x \in M$, we can define

$$F(x) = \sum_{n=1}^{\infty} f_n(x).$$

Moreover, $F \in L^p(M, d\mu)$ since

$$||F||_p^p = \int_M |F|^p d\mu = \int_M \left| \sum_{n=1}^\infty f_n \right|^p d\mu \le \int_M \sum_{n=1}^\infty |f_n|^p d\mu = \int_M G d\mu < \infty.$$

Since $\int_M |G| d\mu < \infty$, then for μ -a.e. $x \in M$ we have

$$\sum_{n=1}^{m} |f_n(x)| \le \lim_{m \to \infty} \sum_{n=1}^{m} |f_n(x)|^p = |G(x)| < \infty.$$

Thus, $\{f_n\}$ is summable with $F = \sum_{n=1}^{\infty} f_n$, so $L^p(M, d\mu)$ is complete.

2 Let M be a subspace of a Hilbert space H, and $f: M \to \mathbb{C}$ a bounded linear functional on M with bound C. Prove that there is a **unique** extension of f to a bounded linear functional on H with the same bound C.

Proof. First, note that f is Lipschitz on M, since for all $x, y \in M$ we have

$$|f(x) - f(y)| = |f(x - y)| \le C||x - y||.$$

In particular, f is uniformly continuous on M, so it uniquely extends to a continuous function on the closure $V = \overline{M} \leq H$ (a subspace of H. Denote the extension by $\tilde{f}: V \to \mathbb{C}$; we check that \tilde{f} is linear. Let $x, y \in V$ and $a \in \mathbb{C}$. Since $V = \overline{M}$, there are sequences $\{x_n\}$ and $\{y_n\}$ in M converging to x and y, respectively. Since f is linear and \tilde{f} is a continuous extension, we have

$$\tilde{f}(ax+y) = \lim_{n \to \infty} f(ax_n + y_n) = a \lim_{n \to \infty} f(x_n) + \lim_{n \to \infty} f(y_n) = a\tilde{f}(x) + \tilde{f}(y).$$

Hence, \tilde{f} is a bounded linear extension of f to V. We now check that $\|\tilde{f}\|_{V^*} = C$. Since $M \subseteq V$, it is clear that $\|\tilde{f}\|_{V^*} \geq C$. Given $x \in V$ nonzero, let $\{x_n\}$ be a nonzero sequence in M converging to x, then

$$\frac{|\tilde{f}(x)|}{\|x\|} = \lim_{n \to \infty} \frac{|f(x_n)|}{\|x_n\|} \le \lim_{n \to \infty} C = C.$$

This implies $\|\tilde{f}\|_{V^*} \leq C$, so we in fact have equality. Thus, we have shown that f extends uniquely to a bounded linear functional \tilde{f} on $V = \overline{M}$, with the same bound C.

Since V is a closed subspace of a Hilbert space, it too is a Hilbert space. By the Riesz representation theorem, there is a unique $y \in V$ such that $\tilde{f} = \langle -, y \rangle$ and ||y|| = C. Naturally, we define $F = \langle -, y \rangle : H \to \mathbb{C}$, which has

$$||F||_{H^*} = ||y|| = C.$$

Hence, F is a bounded linear extension of f with the same bound C. To show that F is unique, suppose $G: H \to \mathbb{C}$ is another bounded linear extension of f with the same bound C. Since H is a Hilbert space, the Riesz representation theorem tells us there is some $z \in H$ such that $G = \langle -, z \rangle$ for all $x \in H$ and $||z|| = ||G||_{H^*} = C$. Since V is a closed subspace of H, we have $H = V \oplus V^{\perp}$; write z = v + w for $v \in V$ and $w \in V^{\perp}$. For all $x \in V$, we have

$$\langle x, v \rangle = \langle x, v + w \rangle = G(x) = F(x) = \langle x, y \rangle.$$

This means $\langle -, v \rangle = \langle -, y \rangle$ as linear functionals on V, so the Riesz representation theorem implies v = y. Lastly, since $v \perp w$, we have

$$||y||^2 = ||z||^2 = ||v + w||^2 = ||v||^2 + ||w||^2 = ||y||^2 + ||w||^2.$$

This implies w = 0 so y = z, hence F = G.

3 Show that the unit ball in an infinite dimensional Hilbert space contains infinitely many **disjoint** ball of radius $\sqrt{2}/4$.

Proof. Let $\{x_{\alpha}\}_{{\alpha}\in A}$ be an orthonormal basis of H. Since H is infinite dimensional, this basis is infinite. Define $y_{\alpha}=(1-\sqrt{2}/4)x_{\alpha}$ and balls

$$B_{\alpha} = B_{\sqrt{2}/4}(y_{\alpha}) \subseteq B_1(0).$$

For $\alpha \neq \beta$, we have $y_{\alpha} \perp y_{\beta}$ so

$$||y_{\alpha} - y_{\beta}||^2 = ||y_{\alpha}||^2 + ||y_{\beta}||^2 = 2(1 - \sqrt{2}/4)^2.$$

Then

$$||y_{\alpha} - y_{\beta}|| = \sqrt{2}(1 - \sqrt{2}/4) > 2 \cdot \sqrt{2}/4,$$

which implies $B_{\alpha} \cap B_{\beta} = \emptyset$.

4 Prove that a normed linear space is complete if and only if every absolutely summable sequence is summable.

Proof. Suppose X is a Banach space and $\{x_n\}$ is an absolutely summable sequence in X, i.e., have $\sum_{n=1}^{\infty} ||x_n|| < \infty$. The sequence in question is summable if and only if the sequence of partial sums $y_m = \sum_{n=1}^m x_n$ converges in X. And for $m \ge k$ we have

$$||y_m - y_k|| = \left\| \sum_{n=k+1}^m x_n \right\| \le \sum_{n=k}^\infty ||x_n||.$$

The tail tends to zero as $k \to \infty$, which implies $\{y_m\}$ is Cauchy. Since X is complete, the sequence converges, hence $\{x_n\}$ is summable.

Suppose X is a normed linear space and every absolutely summable sequence is summable. Let $\{x_n\}$ be a Cauchy sequence in X. As usual, we may assume without loss of generality that $||x_n - x_{n-1}|| < 1/2^n$ (otherwise choose a subsequence which does satisfy this). Define the consecutive difference $y_n = x_n - x_{n+1}$, then

$$\sum_{n=1}^{m} ||y_n|| = \sum_{n=1}^{m} ||x_n - x_{n-1}|| \le \sum_{n=1}^{m} \frac{1}{2^n} \le 1,$$

so the sequence $\{y_n\}$ is absolutely summable. By assumption, this means the sequence is summable so we have

$$y = \sum_{n=1}^{\infty} y_n = \lim_{n \to \infty} \sum_{k=1}^{n} y_k.$$

Note that

$$x_n = x_1 - \sum_{k=1}^{n} (x_k - x_{k+1}) = x_1 - \sum_{k=1}^{n} y_k.$$

Define $x = x_1 - y$, then

$$\lim_{n \to \infty} ||x - x_n|| = \lim_{n \to \infty} \left| |y - \sum_{k=1}^n y_k| \right| = 0.$$

Hence, $x_n \to x$ in X and we conclude that X is complete.

5 Let

$$c_0 := \{ \{a_n\}_{n=1}^{\infty} : \lim_{n \to \infty} a_n = 0 \}.$$

Prove that if $\{c_n\}_{n=1}^{\infty} \in \ell_1$, then the linear function on c_0 defined by

$$T(\{a_n\}_{n=1}^{\infty}) = \sum_{n=1}^{\infty} c_n a_n$$

has the norm $\sum_{n=1}^{\infty} |c_n|$.

Proof. We consider c_0 as a subspace of ℓ_{∞} . Given $a \in c_0$, we have $|a_n| \leq ||a||_{\infty} < \infty$, so

$$|Ta| \le \sum_{n=1}^{\infty} |c_n| |a_n| \le \sum_{n=1}^{\infty} |c_n| ||a||_{\infty} = C ||a||_{\infty},$$

where $c \in \ell_1$ gives us

$$C = \sum_{n=1}^{\infty} ||c_n|| < \infty.$$

Therefore, T is a bounded linear functional on c_0 with bound $||T||_{c_0^*} \leq C$. To show equality, we define sequences $a_k = \{a_{k,n}\} \in c_0$ for $k \in \mathbb{N}$ by

$$a_{k,n} = \begin{cases} \frac{|c_n|}{c_n} & n \le k \text{ and } c_n \ne 0, \\ 0 & \text{otherwise.} \end{cases}$$

If C=0, the overall result is trivial, so we assume C>0. In particular, this implies that some c_N is nonzero, so $||a_k||_{\infty}=1$ for all $k\geq N$. Moreover, given $\varepsilon>0$, $c\in \ell_1$ tells us there is some $M\in\mathbb{N}$ such that

$$\sum_{n=1}^{M} |c_n| \ge C - \varepsilon.$$

Then for $k \ge \max\{N, M\}$, we have

$$||T||_{c_0^*} \ge \frac{|Ta_k|}{||a_k||} = |Ta_k| = \left|\sum_{n=1}^{\infty} c_n a_{k,n}\right| = \left|\sum_{n=1}^{k} |c_n|\right| \ge C - \varepsilon.$$

Letting $\varepsilon \to 0$, we obtain $||T||_{c_0^*} \ge C$ and, therefore, equality.