LaTeX to PDF and MathJax: Example 2

Emma Cliffe

2017

Contents

Using this document		1		
1	The	scalar product	2	
	1.1	Vectors in cartesian form	3	
2	Usi	ng Matlab	5	
L	List of Figures			
	1	Two vectors with angle between them	2	
	2	A triangle is formed by two vectors and their difference	4	

LIST OF FIGURES 1

Using this document

This is a second example of a document compiled from LaTEX into multiple formats.

- Standard print PDF
- Clearer print PDF
- Accessible web format
- Accessible Word document

The outputs can be used to test setups and as a second example for students to try out.

1 The scalar product

Consider two vectors a and b drawn so their tails are at the same point.

Figure 1: Two vectors with angle between them.

We define the scalar product of a and b as follows.

Definition 1.1 (Scalar product).

The scalar product of a and b is

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

where

- $|\mathbf{a}|$ is the modulus of \mathbf{a} ,
- \bullet $|\mathbf{b}|$ is the modulus of \mathbf{b} , and
- θ is the angle between a and b.

Remark 1.2.

It is important to use the dot symbol for the scalar product (also called the dot product). You must not use a \times symbol as this denotes the vector product which is defined differently.

3

Example 1.3.

Let

$$\mathbf{a} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$.

The angle between these vectors is $\theta = 45^{\circ}$. Then $|\mathbf{a}| = \sqrt{8}$ and $|\mathbf{b}| = 4$. So,

$$\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \end{pmatrix} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$
$$= \sqrt{8} \times 4 \times \cos 45^{\circ}$$
$$= 4\sqrt{8} \times \frac{1}{\sqrt{2}} = 4\frac{\sqrt{8}}{\sqrt{2}} = 4\sqrt{4} = 8.$$

Note that the result is a scalar, not a vector.

1.1 Vectors in cartesian form

When vectors are given in cartesian form there is an alternative formula for calculating the scalar product.

Proposition 1.4.

If $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j}$ and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j}$ then

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2.$$

Proof. Consider the vector $\mathbf{b} - \mathbf{a} = \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \end{pmatrix}$. The modulus of this is

$$|\mathbf{b} - \mathbf{a}| = \sqrt{(b_1 - a_2)^2 + (b_2 - a_2)^2}.$$

Note from figure 2 that the vectors a, b and b-a form a triangle:

Let θ denote the angle between a and b. Then, the cosine rule yields:

$$|\mathbf{b} - \mathbf{a}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta.$$
 (1)

Substituting the definition of the scalar product of a and b into equation 1 gives:

$$\left|\mathbf{b} - \mathbf{a}\right|^2 = \left|\mathbf{a}\right|^2 + \left|\mathbf{b}\right|^2 - 2\left(\mathbf{a} \cdot \mathbf{b}\right).$$

Figure 2: A triangle is formed by two vectors and their difference.

Rearranging:

$$(\mathbf{a} \cdot \mathbf{b}) = \frac{1}{2} (|\mathbf{a}|^2 + |\mathbf{b}|^2 - |\mathbf{b} - \mathbf{a}|^2).$$

Writing this in terms of components produces:

$$(\mathbf{a} \cdot \mathbf{b}) = \frac{1}{2} \left(a_1^2 + a_2^2 + b_1^2 + b_2^2 - (b_1 - a_1)^2 - (b_2 - a_2)^2 \right)$$

$$= \frac{1}{2} \left(a_1^2 + a_2^2 + b_1^2 + b_2^2 - b_1^2 + 2b_1 a_1 - a_1^2 - b_2^2 + 2b_2 a_2 - a_2^2 \right)$$

$$= \frac{1}{2} \left(2b_1 a_1 + 2b_2 a_2 \right)$$

$$= a_1 b_1 + a_2 b_2$$

as required.

Example 1.5.

Consider again the vectors

$$\mathbf{a} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$.

Calculating the scalar product using the components:

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 = 2 \times 4 + 2 \times 0 = 8.$$

2 USING MATLAB 5

Note that if we are given vectors in this form, the scalar product may be used to calculate the angle between them. Since $\mathbf{a} \cdot \mathbf{b} = 8$ and we have:

$$|{\bf a}| = \sqrt{8}$$

$$|\mathbf{b}| = 4.$$

Hence,

$$8 = \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$
$$= 4\sqrt{8} \cos \theta.$$

Rearranging:

$$\theta = \cos^{-1}\left(\frac{8}{4\sqrt{8}}\right) = 45^{\circ}.$$

2 Using Matlab

Two calculate the scalar product in Matlab the dot function is used.

Create two vectors:

$$> A = [4 -1 2];$$

 $> B = [2 -2 -1];$

Calculate the scalar product:

$$> C = dot(A,B)$$

$$C = 8$$