Imperial College London Department of Computing

Automatic Cell Tracking in Noisy Images for Microscopic Image Analysis

by

Pedro Damian Kostelec

September 2014

Supervised by Ben Glocker

Submitted in part fulfilment of the requirements for the MSc degree in Computer Science (Artificial Intelligence) of Imperial College London

Contents

1	Intr	roduction DRAFT I	7
	1.1	Motivation DRAFT I	7
	1.2	Objectives DRAFT I	8
	1.3	Contributions DRAFT I	8
	1.4	Report structure DRAFT I	9
2	\mathbf{Rel}	ated work DRAFT I	10
	2.1	Cell detection DRAFT I	10
		2.1.1 Cell segmentation using the Watershed technique DRAFT I	10
		2.1.2 Cell segmentation using level sets DRAFT I	11
		2.1.3 Cell detection by model learning DRAFT I	11
		2.1.4 Cell detection by image restoration DRAFT I	12
	2.2	Cell tracking DRAFT I	12
		2.2.1 Tracking by model evolution DRAFT I	13
		2.2.2 Tracking by frame-by-frame data association DRAFT I	13
		2.2.3 Tracking with a dynamics filter DRAFT I	14
		2.2.4 Cell tracking by global data association DRAFT I	14
	2.3	Conclusion DRAFT I	15
3			
3	Det	section of cells DRAFT I	17
3	Det 3.1	$egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccccc} egin{array}{cccccc} egin{array}{cccccc} egin{array}{cccccc} egin{array}{cccccc} egin{array}{ccccccccc} egin{array}{ccccccccc} egin{array}{ccccccccc} egin{array}{ccccccccc} egin{array}{ccccccccc} egin{array}{cccccccccc} egin{array}{cccccccccc} egin{array}{cccccccccc} egin{array}{cccccccccccccccccccccccccccccccccccc$	17 17
3			
3	3.1	Method overview DRAFT I	17
3	3.1 3.2	Method overview DRAFT I	17 18
3	3.1 3.2 3.3	Method overview DRAFT I	17 18 19
3	3.1 3.2 3.3 3.4	Method overview DRAFT I	17 18 19 20
3 4	3.1 3.2 3.3 3.4 3.5 3.6	Method overview DRAFT I	17 18 19 20 20
	3.1 3.2 3.3 3.4 3.5 3.6	Method overview DRAFT I Detection of candidate regions DRAFT I Inference under the non-overlap constraint DRAFT I Learning the classifier DRAFT I Feature selection DRAFT I Performance improvements DRAFT I	17 18 19 20 20 21
	3.1 3.2 3.3 3.4 3.5 3.6	Method overview DRAFT I Detection of candidate regions DRAFT I Inference under the non-overlap constraint DRAFT I Learning the classifier DRAFT I Feature selection DRAFT I Performance improvements DRAFT I cking of cells DRAFT I	177 188 199 200 200 211
	3.1 3.2 3.3 3.4 3.5 3.6 Tra 4.1	Method overview DRAFT I Detection of candidate regions DRAFT I Inference under the non-overlap constraint DRAFT I Learning the classifier DRAFT I Feature selection DRAFT I Performance improvements DRAFT I cking of cells DRAFT I Method overview DRAFT I	177 188 199 200 210 244 244
	3.1 3.2 3.3 3.4 3.5 3.6 Tra 4.1 4.2	Method overview DRAFT I Detection of candidate regions DRAFT I Inference under the non-overlap constraint DRAFT I Learning the classifier DRAFT I Feature selection DRAFT I Performance improvements DRAFT I cking of cells DRAFT I Method overview DRAFT I Joining cell detections into robust tracklets DRAFT I	177 188 199 200 200 211 244 246
	3.1 3.2 3.3 3.4 3.5 3.6 Tra 4.1 4.2 4.3	Method overview DRAFT I Detection of candidate regions DRAFT I Inference under the non-overlap constraint DRAFT I Learning the classifier DRAFT I Feature selection DRAFT I Performance improvements DRAFT I cking of cells DRAFT I Method overview DRAFT I Joining cell detections into robust tracklets DRAFT I Global data association DRAFT I	177 188 199 200 211 244 246 277
	3.1 3.2 3.3 3.4 3.5 3.6 Tra 4.1 4.2 4.3 4.4	Method overview DRAFT I Detection of candidate regions DRAFT I Inference under the non-overlap constraint DRAFT I Learning the classifier DRAFT I Feature selection DRAFT I Performance improvements DRAFT I cking of cells DRAFT I Method overview DRAFT I Joining cell detections into robust tracklets DRAFT I Global data association DRAFT I Implementation using linear programming DRAFT I	177 188 199 200 210 244 244 266 277 299
	3.1 3.2 3.3 3.4 3.5 3.6 Tra 4.1 4.2 4.3 4.4	Method overview DRAFT I Detection of candidate regions DRAFT I. Inference under the non-overlap constraint DRAFT I Learning the classifier DRAFT I Feature selection DRAFT I Performance improvements DRAFT I cking of cells DRAFT I Method overview DRAFT I Joining cell detections into robust tracklets DRAFT I Global data association DRAFT I Implementation using linear programming DRAFT I Hypotheses likelihood definitions DRAFT I	177 188 199 200 210 244 244 266 277 299 300
	3.1 3.2 3.3 3.4 3.5 3.6 Tra 4.1 4.2 4.3 4.4 4.5	Method overview DRAFT I Detection of candidate regions DRAFT I Inference under the non-overlap constraint DRAFT I Learning the classifier DRAFT I Feature selection DRAFT I Performance improvements DRAFT I cking of cells DRAFT I Method overview DRAFT I Joining cell detections into robust tracklets DRAFT I Global data association DRAFT I Implementation using linear programming DRAFT I Hypotheses likelihood definitions DRAFT I Computing the likelihoods DRAFT I	177 188 199 200 211 244 246 277 299 300 311

		4.7.3 Best feature selection NEW	35		
	4.8	Implementation details NEW	35		
5	Dat	a acquisition and annotation DRAFT I	36		
	5.1	Data acquisition and example datasets DRAFT II	36		
		5.1.1 Datasets DRAFT II	37		
		5.1.2 Imaging analysis challenges DRAFT II	40		
	5.2	The annotation tool DRAFT I	42		
6	Exp	perimental results IN PROGRESS	45		
	6.1	Cell detector IN PROGRESS	45		
		6.1.1 Performance metrics NEW	46		
		6.1.2 Detection accuracy NEW	46		
		6.1.3 Computations time NEW	46		
	6.2	Cell tracker NEW	46		
		6.2.1 Performance metrics NEW	48		
		6.2.2 Computation time NEW	48		
		6.2.3 Tracking accuracy NEW	48		
	6.3	Limitations and areas of improvement NEW	48		
	6.4	Summary NEW	48		
7	Conclusions and future work DRAFT I				
	7.1	Conclusion DRAFT I	48		
	7.2	Future work DRAFT I	49		
Aj	Appendices				
\mathbf{A}	Use	er Guide for the Annotation Tool	52		
В	Use	er Guide for the Interactive Annotation Viewer	53		
\mathbf{C}	Use	er Guide for the Cell Detector and Tracker	54		
Bi	Bibliography				

6 Experimental results IN PROGRESS

In this chapter we quantitatively and qualitatively analyse the performance of the automatic cell detector and tracker. Although some evaluation of the performance of the detection method is performed by the original authors in [4] it is useful to see how the method performs on the studied datasets in order to understand how much of the tracking accuracy is lost due to cells missed by detection module. First, in section 6.1 we evaluate the performance and computation time of the cell detector and in section 6.2 those of the cell tracker. Finally, in section 6.3, we explore the limitations of the methods and in section 6.4 summarize the results.

See the cell population tracking and linear construction with spation temporal ocntet by Kang et al for a good results section

6.1 Cell detector IN PROGRESS

In this section we evaluated the performance of the automatic cell detection module. First, we introduce the performance metrics used to evaluate the accuracy of the cell detector. Then we present detection accuracy results. To evaluate the accuracy and generalizability of the detection module we perform two sets of experiments. First, we train the cell detector on a number of frames from each individual dataset, and measure the accuracy on the same dataset. Second, we train the detector on combinations of datasets in order to judge the performance degradation due to the learning on the wider types of cells. Because of the varying size of the cells in the datasets, and the varying brightness of the cells, we expect that such a trained detector will detect a larger number of cells than are actually present, sometimes mistakenly detecting small artefacts in the background as cells. Finally, we compute the average detection time per frame for each dataset.

The aim of this research was to develop an automatic cell detection and tracking pipeline that would require as little manual work as possible. This implies that a balance between accuracy and amount of manual work had to be established. There is also an direct relationship between accuracy and computation time. In order to reduce the amount of manual work we decided that the cell detection module should perform well on all the tested datasets without any manual adjustment of parameters. This consequences of this decision are twofold:

1. The features computed on the candidate cell regions are the same for all datasets and have been presented in section 3.5. Although some datasets could be analysed faster or more accurately with a specific subset of features, using the same features for all dataset eliminates the complicated feature selection process for the user and makes the system generalizable to a

large number of different cell types.

2. The parameters of the MSER detector should be adequately set to perform well on all datasets. This means that the MSER detector should be able to detect cells of varying size and contrast in the different datasets. The consequence of this limitation for datasets with bigger cells and some background noise is that a potentially much larger number of candidate regions will be detected than necessary. Since each candidate region has to be evaluated this results in an increased computation time.

We were able to identify features that compute in an acceptable time for all these datasets (see section 3.5). However, it should be noted that in the case of testing the detector on a very large datasets with thousands of frames, some adjustments of the parameters could result in a significant reduction in computation time and increased accuracy.

6.1.1 Performance metrics NEW

precision, recall, time per image (not multicore)

Figure 6.1 displays a temporal view of the detected cells. The vertical axis represents the frame of the sequence. The figure clearly shows that "cell tracks" are clearly discernible, even if the number of outliers is significant. For the tracking module it is better to have a higher recall than precision, as outliers can be much more easily discarded than segmented tracks linked.

6.1.2 Detection accuracy NEW

- trained on single dataset
 - trained on combined dataset

6.1.3 Computations time NEW

explain hardware, software

Measure the speed of detection in images of different sizes, and different number of cells

6.2 Cell tracker NEW

Define the different measures of accuracy

Time plot of detected cell locations on kidney-red dataset

Figure 6.1: Cells detected over 60 consecutive frames are visualized as a time series. The vertical axis corresponds to the frames. Even in this raw detection data, it is possible to see the tracks of some of these cells.

6.2.1 Performance metrics NEW

great Metrics: Research Article, Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics

- Explain how the testing data was generation. from annotation to mapped detection to genreated tracklets

6.2.2 Computation time NEW

Meause the speed of generating tracks, as a measure of per 1, 100, 1000 frames, depending on the number of tracks

6.2.3 Tracking accuracy NEW

- trained on single dataset
 - for each dataset explain how the parameters were setup
 - trained on combined dataset

6.3 Limitations and areas of improvement NEW

Answer: what, why, how to improve in future

- display examples where the tracker did not perform well, and anlyse why. Suggest possible improvement. - detection training: only first few frames of datasets, not random – expect to detect later frames worse - testing on only long datasets: no data on short datasets. diffucult to train (what to link?), difficult to annotate - speed of detector. Reduce number of hypothesis

6.4 Summary NEW

Brief review of accuracy... whether it is comparable to other methods in literuature review Whether is could be improved in the future... how much

Appendices

Bibliography

- [1] P. K. Elzbieta Kolaczkowska, "Neutrophil recruitment and function in health and inflammation," 2013. 7
- [2] J. Pillay, I. den Braber, N. Vrisekoop, L. M. Kwast, R. J. de Boer, J. A. M. Borghans, K. Tesselaar, and L. Koenderman, "In vivo labeling with 2h2o reveals a human neutrophil lifespan of 5.4 days," *Blood*, vol. 116, no. 4, pp. 625–627, 2010.
- [3] P. S. Tofts, T. Chevassut, M. Cutajar, N. G. Dowell, and A. M. Peters, "Doubts concerning the recently reported human neutrophil lifespan of 5.4 days," *Blood*, vol. 117, no. 22, pp. 6050–6052, 2011. 7
- [4] C. Arteta, V. Lempitsky, J. A. Noble, and A. Zisserman, "Learning to detect cells using non-extremal regions," in *Proceedings of the 15th International Conference on Medical Im*age Computing and Computer-Assisted Intervention - Volume Part I, MICCAI'12, (Berlin, Heidelberg), pp. 348–356, Springer-Verlag, 2012. 8, 9, 11, 17, 18, 19, 20, 21, 22, 45, 48
- [5] Y. Chen, K. Biddell, A. Sun, P. Relue, and J. Johnson, "An automatic cell counting method for optical images," in [Engineering in Medicine and Biology, 1999. 21st Annual Conference and the 1999 Annual Fall Meetring of the Biomedical Engineering Society] BMES/EMBS Conference, 1999. Proceedings of the First Joint, vol. 2, pp. 819 vol.2-, Oct 1999. 10
- [6] X. Chen, X. Zhou, and S.-C. Wong, "Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy," *Biomedical Engineering*, *IEEE Transactions on*, vol. 53, pp. 762–766, April 2006. 10, 13
- [7] L. Vincent, "Morphological grayscale reconstruction in image analysis: applications and efficient algorithms," *Image Processing, IEEE Transactions on*, vol. 2, pp. 176–201, Apr 1993. 10
- [8] J. Serra, Image Analysis and Mathematical Morphology. Orlando, FL, USA: Academic Press, Inc., 1983. 10
- [9] D. Mukherjee, N. Ray, and S. Acton, "Level set analysis for leukocyte detection and tracking," Image Processing, IEEE Transactions on, vol. 13, pp. 562–572, April 2004. 11, 13
- [10] C. Tang, Y. Wang, and Y. Cui, "Tracking of active cells based on kalman filter in time lapse of image sequences of neuron stem cells." 11, 14
- [11] D. Xu and L. Ma., "Segmentation of image sequences of neuron stem cells based on level-set

56 Bibliography

algorithm combined with local gray threshold.," Master's thesis, Harbin Engineering University, 2010. 11

- [12] C. Arteta, V. S. Lempitsky, J. A. Noble, and A. Zisserman, "Learning to detect partially overlapping instances.," in *CVPR*, pp. 3230–3237, IEEE, 2013. 11, 12, 19
- [13] J. Matas, O. Chum, M. Urban, and T. Pajdla, "Robust wide baseline stereo from maximally stable extremal regions," in *Proceedings of the British Machine Vision Conference*, pp. 36.1–36.10, BMVA Press, 2002. doi:10.5244/C.16.36. 11
- [14] T. Joachims, T. Finley, and C.-N. J. Yu, "Cutting-plane training of structural syms," Mach. Learn., vol. 77, pp. 27–59, Oct. 2009. 11
- [15] R. Bise, T. Kanade, Z. Yin, and S. il Huh, "Automatic cell tracking applied to analysis of cell migration in wound healing assay," in *Engineering in Medicine and Biology Society, EMBC*, 2011 Annual International Conference of the IEEE, pp. 6174–6179, Aug 2011. 12, 25
- [16] S. Huh, Toward an Automated System for the Analysis of Cell Behavior: Cellular Event Detection and Cell Tracking in Time-lapse Live Cell Microscopy. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, March 2013. 12, 13
- [17] D. House, M. Walker, Z. Wu, J. Wong, and M. Betke, "Tracking of cell populations to understand their spatio-temporal behavior in response to physical stimuli," in *Computer Vision and Pattern Recognition Workshops*, 2009. CVPR Workshops 2009. IEEE Computer Society Conference on, pp. 186–193, June 2009. 13
- [18] B. Xu, M. Lu, P. Zhu, Q. Chen, and X. Wang, "Multiple cell tracking using ant estimator," in Control, Automation and Information Sciences (ICCAIS), 2012 International Conference on, pp. 13–17, Nov 2012. 14
- [19] K. Li and T. Kanade, "Cell population tracking and lineage construction using multiple-model dynamics filters and spatiotemporal optimization," in *Proceedings of the 2nd International Workshop on Microscopic Image Analysis with Applications in Biology (MIAAB)*, September 2007. 14
- [20] A. Massoudi, D. Semenovich, and A. Sowmya, "Cell tracking and mitosis detection using splitting flow networks in phase-contrast imaging," in *Engineering in Medicine and Biology* Society (EMBC), 2012 Annual International Conference of the IEEE, pp. 5310–5313, Aug 2012.
- [21] L. Zhang, Y. Li, and R. Nevatia, "Global data association for multi-object tracking using network flows," in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pp. 1–8, June 2008. 15, 27
- [22] C. Huang, B. Wu, and R. Nevatia, "Robust object tracking by hierarchical association of detection responses," in *Computer Vision ECCV 2008* (D. Forsyth, P. Torr, and A. Zisserman,

Bibliography 57

- eds.), vol. 5303 of *Lecture Notes in Computer Science*, pp. 788–801, Springer Berlin Heidelberg, 2008. 15, 27
- [23] R. Bise, Z. Yin, and T. Kanade, "Reliable cell tracking by global data association.," in ISBI, pp. 1004–1010, IEEE, 2011. 15, 25, 27, 30, 48
- [24] H. Kuhn, "The hungarian method for the assignment problem," Naval Research Logistics Quarterly, vol. 2, pp. 83–97, 1955. 15
- [25] J. Matas, O. Chum, M. Urban, and T. Pajdla, "Robust wide-baseline stereo from maximally stable extremal regions," *Image and Vision Computing*, vol. 22, no. 10, pp. 761 767, 2004. British Machine Vision Computing 2002. 18
- [26] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, "Support vector machine learning for interdependent and structured output spaces," in *Proceedings of the Twenty-first International* Conference on Machine Learning, ICML '04, (New York, NY, USA), pp. 104–, ACM, 2004. 20
- [27] K. Li, E. D. Miller, M. Chen, T. Kanade, L. E. Weiss, and P. G. Campbell, "Cell population tracking and lineage construction with spatiotemporal context," *Medical Image Analysis*, vol. 12, no. 5, pp. 546 566, 2008. Special issue on the 10th international conference on medical imaging and computer assisted intervention {MICCAI} 2007. 25, 50
- [28] M. Looney, E. Thornton, D. Sen, W. Lamm, R. Glenny, and M. Krummel, "Stabilized imaging of immune surveillance in the mouse lung.," *Nature Methods*, vol. 8, no. 5, pp. 91–6, 2011-01-01 00:00:00.0. 36