Contents

```
1 ubuntu
                1
1.1 run . .
2 Basic
2.1 ascii . . . . . . . . . . . . . . . . . .
3 字串
3.1 最長迴文子字串 . . . . . . . . . . . . . . . .
3.2 stringstream . . . . . . . . . . . . . . . . .
4 STI
4.5 unordered_map
sort
   5.1 大數排序
math
6.1 質數與因數
   6.4 atan
7 algorithm
7.3 三分搜
7.4 prefix sum
geometry
8.1 intersection . . . . . . . . . . . . . . . .
動能規劃
9.1 LCS 和 LIS . . . . . . . . . . . . . . .
               15
10 Section2
                16
10.1 thm . . . . . . . . . . . . . . . . . .
11 dp 表格
               16
11.1 DPlist
               16
12 slogan
               26
 ubuntu
```

1.2 cp.sh

```
1 #!/bin/bash
2
  clear
  g++ $1.cpp -DDBG -o $1
3
  if [[ "$?" == "0" ]]; then
          echo Running
          ./$1 < $1.in > $1.out
6
          echo END
8 fi
```

Basic

ascii 2.1

1	int	char	int	char	int	char
2	32		64	@	96	•
3	33	!	65	Α	97	а
4	34	"	66	В	98	b
5	35	#	67	С	99	С
6	36	\$	68	D	100	d
7	37	%	69	E	101	e
8	38	&	70	F	102	f
9	39	•	71	G	103	g
10	40	(72	Н	104	h
11	41)	73	I	105	i
12	42	*	74	J	106	j
13	43	+	75	K	107	k
14	44	,	76	L	108	1
15	45	-	77	М	109	m
16	46		78	N	110	n
17	47	/	79	0	111	0
18	48	0	80	P	112	p
19	49	1	81	Q	113	q
20	50	2	82	R	114	r
21	51	3	83	S	115	S
22	52	4	84	T	116	t
23	53	5	85	U	117	и
24	54	6	86	V	118	V
25	<i>55</i>	7	87	W	119	W
26	56	8	88	Χ	120	X
27	57	9	89	Υ	121	y
28	58	:	90	Z	122	Z
29	59	;	91	Γ	123	{
30	60	<	92	\	124	1
31	61	=	93	J	125	}
32	62	>	94	٨	126	~
33	63	?	95	-		

2.2 limits

```
[size]
1 [Type]
                                   [range]
2
  char
                       1
                                 127 to -128
  signed char
                                 127 to -128
                        1
  unsigned char
                       1
                                 0 to 255
                       2
                                 32767 to -32768
5
  short
  int
                                 2147483647 to -2147483648
  unsigned int
                                 0 to 4294967295
                                 2147483647 to -2147483648
8
  long
  unsigned long
                        4
                                 0 to 18446744073709551615
                       8
  long long
10
11
              9223372036854775807 to -9223372036854775808
                       8
                             1.79769e+308 to 2.22507e-308
12
  double
13
  long double
                        16
                             1.18973e+4932 to 3.3621e-4932
14
  float
                        4
                                3.40282e+38 to 1.17549e-38
15 unsigned long long
                        8
                                 0 to 18446744073709551615
16 string
                        32
```

run

1.1

3 字串

3.1 最長迴文子字串

```
1 | #include < bits / stdc++.h>
  #define T(x) ((x)%2 ? s[(x)/2] : '.')
3 using namespace std;
5 string s;
6 int n;
8 int ex(int 1, int r){
    int i=0:
     while (1-i)=0&&r+i<0&T(1-i)==T(r+i) i++;
10
11
     return i;
12 }
13
14 int main(){
     cin>>s;
15
     n=2*s.size()+1;
16
17
     int mx = 0;
     int center=0;
18
19
     vector<int> r(n);
     int ans=1;
20
     r[0]=1;
21
     for(int i=1;i<n;i++){</pre>
22
       int ii=center-(i-center);
23
24
       int len=mx-i+1;
25
       if(i>mx){
         r[i]=ex(i,i);
26
27
         center=i:
         mx=i+r[i]-1;
28
29
       else if(r[ii]==len){
30
31
          r[i]=len+ex(i-len,i+len);
          center=i:
32
33
         mx=i+r[i]-1;
34
35
       else r[i]=min(r[ii],len);
       ans=max(ans,r[i]);
36
37
     cout << ans -1 << "\n";
38
39
     return 0;
40 }
```

3.2 stringstream

```
1 string s,word;
2 stringstream ss;
3 getline(cin,s);
4 ss<<s;
bwhile(ss>>word) cout<<word<<endl;</pre>
```

4 STL

4.1 BIT

```
1 template <class T> class BIT {
2
  private:
    int size:
3
    vector<T> bit;
    vector<T> arr;
5
6
7
    BIT(int sz=0): size(sz), bit(sz+1), arr(sz) {}
10
    /** Sets the value at index idx to val. */
    void set(int idx, T val) {
11
          add(idx, val - arr[idx]);
12
13
```

```
14
15
     /** Adds val to the element at index idx. */
16
     void add(int idx, T val) {
17
       arr[idx] += val;
       for (++idx; idx<=size; idx+=(idx&-idx))</pre>
18
               bit[idx] += val;
19
20
21
     /** @return The sum of all values in [0, idx]. */
22
    T pre_sum(int idx) {
23
24
       T total = 0;
       for (++idx; idx>0; idx-=(idx & -idx))
25
26
               total += bit[idx];
27
       return total:
28
    }
29 };
```

4.2 priority_queue

```
1 priority_queue: 優先隊列,資料預設由大到小排序。
  讀取優先權最高的值:
3
4
     x = pq.top();
                            //讀取後刪除
5
     pq.pop();
  判斷是否為空的priority_queue:
6
                            //回傳 true
7
     pq.empty()
     pq.size()
                            //回傳@
8
  如需改變priority_queue的優先權定義:
9
                            //預設由大到小
     priority_queue<T> pq;
10
     priority_queue<T, vector<T>, greater<T> > pq;
11
                            //改成由小到大
12
13
     priority_queue<T, vector<T>, cmp> pq;
```

4.3 deque

```
1 deque 是 C++ 標準模板函式庫
     (Standard Template Library, STL)
2
     中的雙向佇列容器 (Double-ended Queue),
3
     跟 vector 相似,不過在 vector
4
        中若是要添加新元素至開端,
     其時間複雜度為 O(N), 但在 deque 中則是 O(1)。
5
     同樣也能在我們需要儲存更多元素的時候自動擴展空間,
6
     讓我們不必煩惱佇列長度的問題。
7
 dq.push_back() //在 deque 的最尾端新增元素
8
 dq.push_front() //在 deque 的開頭新增元素
9
              //移除 deque 最尾端的元素
10 dq.pop_back()
11 dq.pop_front() //移除 deque 最開頭的元素
              //取出 deque 最尾端的元素
12 dq.back()
              //回傳 deque 最開頭的元素
13 dq.front()
 dq.insert()
14
 dq.insert(position, n, val)
     position: 插入元素的 index 值
16
     n: 元素插入次數
17
    val: 插入的元素值
19 dq.erase()
     //刪除元素,需要使用迭代器指定刪除的元素或位置,
              //同時也會返回指向刪除元素下一元素的迭代器。
20
21 dq.clear()
              //清空整個 deque 佇列。
              //檢查 deque 的尺寸
22 dq.size()
              //如果 deque 佇列為空返回 1;
23 dq.empty()
              //若是存在任何元素,則返回0
24
              //返回一個指向 deque 開頭的迭代器
25 dq.begin()
26 dq.end()
              //指向 deque 結尾,
27
              //不是最後一個元素,
              //而是最後一個元素的下一個位置
28
```

4.4 map

```
1 map:存放 key-value pairs 的映射資料結構,
       會按 key 由小到大排序。
3 元素存取
  operator[]:存取指定的[i]元素的資料
4
6| 迭代器
7| begin():回傳指向map頭部元素的迭代器
8 end():回傳指向map末尾的迭代器
9 rbegin():回傳一個指向map尾部的反向迭代器
10 rend():回傳一個指向map頭部的反向迭代器
11
12 遍歷整個map時,利用iterator操作:
13 取key:it->first 或 (*it).first
14 取value:it->second 或 (*it).second
15
16 容量
17 empty():檢查容器是否為空,空則回傳true
18 size():回傳元素數量
19 | max_size():回傳可以容納的最大元素個數
20
21 修改器
22 clear():刪除所有元素
23 insert():插入元素
24 erase():刪除一個元素
25 swap(): 交換兩個map
26
28 count():回傳指定元素出現的次數
29 find(): 查找一個元素
30
31 //實作範例
32 #include <bits/stdc++.h>
33 using namespace std;
34
  int main(){
      //declaration container and iterator
35
36
      map<string, string> mp;
37
      map<string, string>::iterator iter;
38
      map<string, string>::reverse_iterator iter_r;
39
40
      //insert element
      mp.insert(pair<string, string>
41
              ("r000", "student_zero"));
42
      mp["r123"] = "student_first";
43
      mp["r456"] = "student_second";
44
45
46
      //traversal
      for(iter=mp.begin();iter!=mp.end();iter++)
47
          cout << iter -> first << " "
48
49
                     <<iter->second<<endl;
      for(iter_r=mp.rbegin();iter_r!=mp.rend();iter_r++)
50
51
          cout << iter_r -> first << "
              "<<iter_r->second<<endl;
52
      //find and erase the element
53
      iter=mp.find("r123");
54
      mp.erase(iter);
55
56
      iter=mp.find("r123");
57
      if(iter!=mp.end())
         cout << "Find, the value is "
58
59
                 <<iter->second<<endl;
      else cout<<"Do not Find"<<endl;</pre>
60
61
      return 0;
62 }
```

4.5 unordered_map

```
1 unordered_map: 存放 key-value pairs
2 的「無序」映射資料結構。
3 用法與map相同
```

4.6 set

```
set: 集合,去除重複的元素,資料由小到大排序。
2
  取值: 使用iterator
3
4
     x = *st.begin();
             // set中的第一個元素(最小的元素)。
5
      x = *st.rbegin();
6
             // set中的最後一個元素(最大的元素)。
7
8
  判斷是否為空的set:
9
     st.empty() 回傳true
10
     st.size() 回傳零
11
12
  常用來搭配的member function:
13
14
     st.count(x):
15
     auto it = st.find(x);
16
         // binary search, O(log(N))
      auto it = st.lower_bound(x);
17
18
         // binary search, O(log(N))
19
      auto it = st.upper_bound(x);
         // binary search, O(log(N))
20
```

4.7 multiset

```
1與 set 用法雷同,但會保留重複的元素。2資料由小到大排序。3宣告:4multiset < int > st;5刪除資料:6st.erase(val);7//會刪除所有值為 val 的元素。8st.erase(st.find(val));9//只刪除第一個值為 val 的元素。
```

4.8 unordered_set

```
unordered_set 的實作方式通常是用雜湊表(hash table),
資料插入和查詢的時間複雜度很低,為常數級別0(1),
相對的代價是消耗較多的記憶體,空間複雜度較高,
無自動排序功能。
unordered_set 判斷元素是否存在
unordered_set <int> myunordered_set;
myunordered_set.insert(2);
myunordered_set.insert(4);
myunordered_set.insert(6);
cout << myunordered_set.count(4) << "\n"; // 1
cout << myunordered_set.count(8) << "\n"; // 0
```

4.9 單調隊列

```
1 // 單調隊列
 "如果一個選手比你小還比你強,你就可以退役了。"--單調隊列
2
3
 example
5
 給出一個長度為 n 的數組,
  輸出每 k 個連續的數中的最大值和最小值。
 #include <bits/stdc++.h>
10 #define maxn 1000100
11 using namespace std;
12 int q[maxn], a[maxn];
13 int n, k;
15 void getmin() {
     // 得到這個隊列裡的最小值,直接找到最後的就行了
16
```

```
17
        int head=0,tail=0;
       for(int i=1;i<k;i++) {</pre>
18
19
            while(head<=tail&&a[q[tail]]>=a[i]) tail--;
20
            q[++tail]=i;
21
        for(int i=k; i<=n;i++) {</pre>
22
23
            while(head<=tail&&a[q[tail]]>=a[i]) tail--;
24
            α[++tail]=i:
25
            while(q[head]<=i-k) head++;</pre>
26
            cout << a[q[head]] << " ";
27
28
       cout << endl;
29 }
30
   void getmax() { // 和上面同理
31
       int head=0,tail=0;
32
33
        for(int i=1;i<k;i++) {</pre>
            while(head<=tail&&a[q[tail]]<=a[i])tail--;</pre>
34
35
            q[++tail]=i;
36
       for(int i=k;i<=n;i++) {</pre>
37
38
            while(head<=tail&&a[q[tail]]<=a[i])tail--;</pre>
39
            q[++tail]=i;
40
            while(q[head]<=i-k) head++;</pre>
41
            cout << a[q[head]] << " ";
       }
42
       cout << endl;</pre>
43
44
  }
45
46
   int main(){
       cin>>n>>k; //每k個連續的數
47
       for(int i=1;i<=n;i++) cin>>a[i];
48
49
        getmin();
50
        getmax();
51
        return 0;
52 }
```

5 sort

5.1 大數排序

```
1 | #python 大數排序
  while True:
4
    try:
                              # 有幾筆數字需要排序
     n = int(input())
5
                               # 建立空串列
6
     arr = []
7
     for i in range(n):
       arr.append(int(input())) # 依序將數字存入串列
8
                               # 串列排序
9
     arr.sort()
10
     for i in arr:
                            # 依序印出串列中每個項目
11
       print(i)
12
    except:
13
     break
```

6 math

6.1 質數與因數

```
1 埃氏篩法
2 int n;
3 vector<int> isprime(n+1,1);
4 isprime[0]=isprime[1]=0;
5 for(int i=2;i*i<=n;i++){
        if(isprime[i])
        for(int j=i*i;j<=n;j+=i) isprime[j]=0;
8 }
9
10 歐拉篩O(n)
11 #define MAXN 47000 //sqrt(2^31)=46,340...
```

```
12 bool isPrime[MAXN];
  int prime[MAXN];
13
  int primeSize=0;
  void getPrimes(){
15
16
       memset(isPrime, true, sizeof(isPrime));
17
       isPrime[0]=isPrime[1]=false;
       for(int i=2;i<MAXN;i++){</pre>
18
19
           if(isPrime[i]) prime[primeSize++]=i;
           for(int
20
                j=0;j<primeSize&&i*prime[j]<=MAXN;++j){</pre>
21
                isPrime[i*prime[j]]=false;
                if(i%prime[j]==0) break;
22
23
           }
       }
24
25
  }
26
  最大公因數 O(log(min(a,b)))
27
28
  int GCD(int a, int b){
29
       if(b==0) return a;
30
       return GCD(b,a%b);
31
  }
32
  質因數分解
33
  void primeFactorization(int n){
35
       for(int i=0;i<(int)p.size();++i){</pre>
36
           if(p[i]*p[i]>n) break;
37
           if(n%p[i]) continue;
           cout << p[i] << ' ';
38
39
           while(n%p[i]==0) n/=p[i];
40
       }
41
       if(n!=1) cout << n << ' ';
42
       cout << '\n';
43 }
44
  擴展歐幾里得算法
45
  //ax+by=GCD(a,b)
46
  #include <bits/stdc++.h>
48
  using namespace std;
49
50
  int ext_euc(int a, int b, int &x, int &y){
51
       if(b==0){
52
           x=1, y=0;
53
           return a;
54
55
       int d=ext_euc(b,a%b,y,x);
56
       y -= a/b * x;
57
       return d;
58 }
59
60
  int main(){
61
       int a,b,x,y;
       cin>>a>>b;
62
63
       ext_euc(a,b,x,y);
       cout << x << ' '<< y << end1;
65
       return 0;
66
67
68
69
  歌德巴赫猜想
70
  solution : 把偶數 N (6≤N≤10^6) 寫成兩個質數的和。
  #include <iostream>
72
  using namespace std;
74
  #define N 2000000
75
  int ox[N],p[N],pr;
  void PrimeTable(){
76
77
       ox[0]=ox[1]=1;
78
79
       for(int i=2;i<N;i++){</pre>
80
           if(!ox[i]) p[pr++]=i;
81
           for(int j=0;i*p[j]<N&&j<pr;j++)</pre>
82
                ox[i*p[j]]=1;
83
  }
84
85
86 int main(){
       PrimeTable();
```

```
88
       int n;
       while(cin>>n,n){
89
90
           int x;
91
           for(x=1;;x+=2)
92
               if(!ox[x]&&!ox[n-x]) break;
93
           printf("%d = %d + %d \setminus n", n, x, n-x);
94
95 }
  |problem : 給定整數 N,
           求 N 最少可以拆成多少個質數的和。
98 如果 N 是質數,則答案為 1。
   如果 N 是偶數(不包含2),則答案為 2 (強歌德巴赫猜想)。
100 如果 N 是奇數且 N-2 是質數,則答案為 2 (2+質數)。
101 其他狀況答案為 3 (弱歌德巴赫猜想)。
  #include < bits/stdc++.h>
102
103
   using namespace std;
104
   bool isPrime(int n){
105
106
       for(int i=2;i<n;++i){</pre>
           if(i*i>n) return true;
107
108
           if(n%i==0) return false;
       }
109
110
       return true;
111 }
112
113
   int main(){
       int n:
114
115
       cin>>n:
       if(isPrime(n)) cout << "1\n";</pre>
116
117
       else if(n\%2==0||isPrime(n-2)) cout<<"2\n";
118
       else cout << "3\n";</pre>
119 }
```

6.2 快速冪

```
1|計算a^b
  #include < iostream >
  #define ll long long
4 using namespace std;
6 const 11 MOD=1000000007;
  11 fp(ll a, ll b) {
7
8
       int ans=1;
       while(b>0){
10
            if(b&1) ans=ans*a%MOD;
11
            a=a*a%MOD;
            b>>=1;
12
13
14
       return ans;
15 }
16
17 int main() {
18
     int a,b;
     cin>>a>>b:
19
     cout << fp(a,b);</pre>
20
21 | }
```

6.3 歐拉函數

```
1 //計算閉區間 [1,n] 中的正整數與 n 互質的個數
2
  int phi(){
3
      int ans=n;
5
      for(int i=2;i*i<=n;i++)</pre>
6
          if(n%i==0){
7
               ans=ans-ans/i;
8
               while(n%i==0) n/=i;
9
      if(n>1) ans=ans-ans/n;
10
11
      return ans;
12 }
```

6.4 atan

```
1| 說明
    atan() 和 atan2() 函數分別計算 x 和 y/x的反正切。
2
3
  回覆值
4
    atan()函數會傳回介於範圍 - /2 到 /2 弧度之間的值。
    atan2() 函數會傳回介於 - 至
                                 弧度之間的值。
7
    如果 atan2() 函數的兩個引數都是零,
    則函數會將 errno 設為 EDOM,並傳回值 0。
9
10
  範例
  #include <math.h>
  #include <stdio.h>
12
13
  int main(void){
14
      double a,b,c,d;
15
16
17
      c = 0.45:
18
      d=0.23;
19
20
      a=atan(c):
21
      b=atan2(c,d);
22
23
      printf("atan(%1f)=%1f/n",c,a);
      printf("atan2(%1f,%1f)=%1f/n",c,d,b);
24
25
26
  }
27
  atan(0.450000)=0.422854
30
  atan2(0.450000,0.230000)=1.098299
31
```

6.5 大步小步

LL fpow(LL a, LL b, LL c){

LL res=1;

33

```
給定 B,N,P,求出 L 滿足 B^L N(mod P)。
2
3
4
   題解
  餘數的循環節長度必定為 P 的因數,因此
5
     B^0 B^P, B^1 B^(P+1), ...,
  也就是說如果有解則 L<N,枚舉0,1,2,L-1
6
     能得到結果,但會超時。
8
  將 L 拆成 mx+y, 只要分別枚舉 x,y 就能得到答案,
9
  設 m=√P 能保證最多枚舉 2√P 次 。
10
  B^(mx+y) N(mod P)
12 B^(mx)B^y N(mod P)
13
  B^y N(B^(-m))^x \pmod{P}
14
15
  先求出 B^0,B^1,B^2,...,B^(m-1),
16 再枚舉 N(B^(-m)),N(B^(-m))^2,… 查看是否有對應的 B^y。
17
  這種算法稱為大步小步演算法,
  大步指的是枚舉 x (一次跨 m 步),
18
  小步指的是枚舉 y (一次跨 1 步)。
19
20
21
   複雜度分析
22 利用 map/unorder_map 存放 B^0,B^1,B^2,...,B^(m-1),
23 枚舉 x 查詢 map/unorder_map 是否有對應的 B^y,
  存放和查詢最多 2√P 次,時間複雜度為 0(√Plog√P)/0(√P)。
24
25
26
27
28 #include <bits/stdc++.h>
29 using namespace std:
30 using LL = long long;
31 LL B, N, P;
```

```
35
        for(;b;b >>=1){
            if(b&1)
36
37
                 res=(res*a)%c;
38
            a=(a*a)%c;
39
40
        return res;
41 }
42
  LL BSGS(LL a, LL b, LL p){
43
44
       a%=p,b%=p;
       if(a==0)
45
            return b==0?1:-1;
46
47
       if(b==1)
48
            return 0;
49
       map<LL, LL> tb;
       LL sq=ceil(sqrt(p-1));
50
51
       LL inv=fpow(a,p-sq-1,p);
52
       tb[1]=sq;
       for(LL i=1, tmp=1; i < sq; ++i){</pre>
53
54
            tmp=(tmp*a)%p;
55
            if(!tb.count(tmp))
56
                 tb[tmp]=i;
57
       for(LL i=0;i<sq;++i){</pre>
58
59
            if(tb.count(b)){
60
                 LL res=tb[b]:
                 return i*sq+(res==sq?0:res);
61
            }
62
63
            b=(b*inv)%p;
64
65
       return -1;
66 }
67
68 int main(){
69
       ios::sync_with_stdio(false);
70
       cin.tie(0),cout.tie(0);
71
        while(cin>>P>>B>>N){
            LL ans=BSGS(B,N,P);
72
            if(ans==-1)
73
                 cout << "no solution\n";</pre>
74
75
76
                 cout << ans << '\n';
77
       }
78 }
```

7 algorithm

7.1 basic

```
1 min_element:找尋最小元素
2 min_element(first, last)
3 max_element:找尋最大元素
4 max_element(first, last)
5 sort:排序,預設由小排到大。
6 sort(first, last)
7 sort(first, last, cmp):可自行定義比較運算子 cmp 。
8 | find: 尋找元素。
9 find(first, last, val)
10 lower_bound:尋找第一個小於 x 的元素位置,
            如果不存在,則回傳 last 。
11
12 lower_bound(first, last, val)
13 upper_bound:尋找第一個大於 x 的元素位置,
            如果不存在,則回傳 last 。
14
15 upper_bound(first, last, val)
16 next_permutation:將序列順序轉換成下一個字典序,
                 如果存在回傳 true,反之回傳 false。
17
18 next_permutation(first, last)
19 prev_permutation:將序列順序轉換成上一個字典序,
20
                 如果存在回傳 true,反之回傳 false。
21 prev_permutation(first, last)
```

7.2 二分搜

```
1 int binary_search(int target) {
  // For range [ok, ng) or (ng, ok], "ok" is for the
  // index that target value exists, with "ng" doesn't.
      int ok = maxn, ng = -1;
  // For first lower_bound, ok=maxn and ng=-1,
  // for last lower_bound, ok = -1 and ng = maxn
  // (the "check" funtion
7
8
  // should be changed depending on it.)
      while(abs(ok - ng) > 1) {
9
          int mid = (ok + ng) >> 1;
10
          if(check(mid)) ok = mid;
11
  else ng = mid;
// Be careful, "arr[mid]>=target" for first
12
13
14 // lower_bound and "arr[mid]<=target" for
15 // last lower_bound. For range (ng, ok],
16 // convert it into (ng, mid] and (mid, ok] than
17 // choose the first one, or convert [ok, ng) into
  // [ok, mid) and [mid, ng) and than choose
  // the second one.
19
20
21
      return ok;
22 }
23
24 lower_bound(arr, arr + n, k);
                                    //最左邊 ≥ k 的位置
25 upper_bound(arr, arr + n, k);
                                   //最左邊 > k 的位置
26 upper_bound(arr, arr + n, k) - 1; //最右邊 ≤ k 的位置
27 lower_bound(arr, arr + n, k) - 1; //最右邊 < k 的位置
28 (lower_bound, upper_bound)
                                   //等於 k 的範圍
29 equal_range(arr, arr+n, k);
```

7.3 三分搜

```
題意
  給定兩射線方向和速度,問兩射線最近距離。
2
3
    題解
4
  假設 F(t) 為兩射線在時間 t 的距離, F(t) 為二次函數,
5
  可用三分搜找二次函數最小值。
8
  #include <bits/stdc++.h>
9
  using namespace std;
10
  struct Point{
11
12
      double x, y, z;
      Point() {}
13
14
      Point(double _x, double _y, double _z):
15
          x(_x),y(_y),z(_z){}
      friend istream& operator>>(istream& is, Point& p)
16
          is >> p.x >> p.y >> p.z;
17
18
          return is:
19
20
      Point operator+(const Point &rhs) const{
21
          return Point(x+rhs.x,y+rhs.y,z+rhs.z);
22
23
      Point operator - (const Point &rhs) const{
24
          return Point(x-rhs.x,y-rhs.y,z-rhs.z);
25
26
      Point operator*(const double &d) const{
27
          return Point(x*d,y*d,z*d);
28
      Point operator/(const double &d) const{
29
30
          return Point(x/d,y/d,z/d);
      }
31
32
      double dist(const Point &rhs) const{
33
          double res = 0;
          res+=(x-rhs.x)*(x-rhs.x);
34
35
          res+=(y-rhs.y)*(y-rhs.y);
          res+=(z-rhs.z)*(z-rhs.z);
36
37
          return res;
38
      }
39 };
```

```
40
41
   int main(){
       ios::sync_with_stdio(false);
42
       cin.tie(0),cout.tie(0);
43
44
       int T;
45
       cin>>T;
       for(int ti=1;ti<=T;++ti){</pre>
46
47
            double time:
            Point x1, y1, d1, x2, y2, d2;
48
49
            cin>>time>>x1>>y1>>x2>>y2;
50
            d1=(y1-x1)/time;
            d2=(y2-x2)/time;
51
            double L=0,R=1e8,m1,m2,f1,f2;
52
            double ans = x1.dist(x2);
53
54
            while(abs(L-R)>1e-10){
55
                 m1 = (L+R)/2;
                m2=(m1+R)/2;
56
57
                f1=((d1*m1)+x1).dist((d2*m1)+x2);
                 f2=((d1*m2)+x1).dist((d2*m2)+x2);
58
59
                 ans = min(ans, min(f1, f2));
                if(f1<f2) R=m2;
60
                 else L=m1;
61
            }
62
            cout << "Case "<<ti << ": ";
63
            cout << fixed << setprecision(4) << sqrt(ans) << '\n';</pre>
64
65
66 }
```

7.4 prefix sum

```
1 // 前綴和
2 陣列前n項的和。
3 b[i]=a[0]+a[1]+a[2]+ \cdots +a[i]
  區間和 [l, r]:b[r]-b[l-1] (要保留b[l]所以-1)
6 #include <bits/stdc++.h>
  using namespace std;
8 int main(){
      int n;
       cin>>n;
10
11
       int a[n],b[n];
       for(int i=0;i<n;i++) cin>>a[i];
12
13
       for(int i=1;i<n;i++) b[i]=b[i-1]+a[i];</pre>
14
15
       for(int i=0;i<n;i++) cout<<b[i]<< ' ';</pre>
16
       cout << '\n';
17
       int 1,r;
       cin>>l>>r:
18
19
       cout <<b[r]-b[1-1]; //區間和
20 }
```

7.5 差分

```
1 // 差分
2|用途:在區間 [1, r] 加上一個數字v。
3 b[1] += v; (b[0~1] 加上v)
4 b[r+1] -= v; (b[r+1~n] 減去v (b[r] 仍保留v))
5|給的 a[] 是前綴和數列,建構 b[],
6 因為 a[i] = b[0] + b[1] + b[2] + ··· + b[i],
7 所以 b[i] = a[i] - a[i-1]。
8 在 b[1] 加上 v,b[r+1] 減去 v,
9 最後再從 0 跑到 n 使 b[i] += b[i-1]。
10 這樣一來,b[] 是一個在某區間加上v的前綴和。
11
12 #include <bits/stdc++.h>
13 using namespace std;
14 int a[1000], b[1000];
15 // a: 前綴和數列, b: 差分數列
16 int main(){
17
     int n, 1, r, v;
18
     cin >> n;
     for(int i=1; i<=n; i++){</pre>
19
```

```
20
           cin >> a[i];
           b[i] = a[i] - a[i-1]; //建構差分數列
21
22
       cin >> 1 >> r >> v;
23
       b[1] += v;
24
25
       b[r+1] -= v;
26
       for(int i=1; i<=n; i++){</pre>
27
           b[i] += b[i-1];
28
           cout << b[i] << ' ';
29
30
31 }
```

```
7.6 greedy
1 // 貪心
2| 貪心演算法的核心為,
  採取在目前狀態下最好或最佳(即最有利)的選擇。
  貪心演算法雖然能獲得當前最佳解,
  但不保證能獲得最後(全域)最佳解,
  提出想法後可以先試圖尋找有沒有能推翻原本的想法的反例,
6
  確認無誤再實作。
10 刪數字問題
12 給定一個數字 N(≤10<sup>1</sup>00),需要刪除 K 個數字,
13 請問刪除 K 個數字後最小的數字為何?
14
15
  刪除滿足第 i 位數大於第 i+1 位數的最左邊第 i 位數,
16
  扣除高位數的影響較扣除低位數的大。
17
18
  //code
19
  int main(){
20
21
     string s;
22
     int k;
23
     cin>>s>>k;
     for(int i=0;i<k;++i){</pre>
24
25
        if((int)s.size()==0) break;
        int pos =(int)s.size()-1;
26
        for(int j=0;j<(int)s.size()-1;++j){</pre>
28
           if(s[j]>s[j+1]){
              pos=j;
29
           }
31
        }
32
        s.erase(pos,1);
33
34
35
     while((int)s.size()>0&&s[0]=='0')
        s.erase(0,1);
36
37
     if((int)s.size()) cout<<s<'\n';</pre>
     else cout << 0 << '\n';
38
39
40
42 最小區間覆蓋長度
43
44 給定 n 條線段區間為 [Li,Ri],
45 請問最少要選幾個區間才能完全覆蓋 [0,S]?
46
47
  //solution
49 對於當前區間 [Li,Ri],要從左界 >Ri 的所有區間中,
50 | 找到有著最大的右界的區間,連接當前區間。
51
52
  //problem
  長度 n 的直線中有數個加熱器,
  在 x 的加熱器可以讓 [x-r,x+r] 內的物品加熱,
```

問最少要幾個加熱器可以把 [0,n] 的範圍加熱。

58| 對於最左邊沒加熱的點a,選擇最遠可以加熱a的加熱器,

57

//solution

```
59 更新已加熱範圍,重複上述動作繼續尋找加熱器。
                                                           135
                                                              //code
60
                                                           136
                                                              struct Work{
61
   //code
                                                           137
  int main(){
62
                                                           138
                                                                   int t, d;
       int n, r;
63
                                                           139
                                                                   bool operator<(const Work &rhs)const{</pre>
64
       int a[1005];
                                                           140
                                                                       return d<rhs.d;</pre>
       cin>>n>>r;
65
                                                           141
66
       for(int i=1;i<=n;++i) cin>>a[i];
                                                           142
                                                              }:
       int i=1, ans=0;
67
                                                           143
       while(i<=n){
68
                                                           144
                                                              int main(){
69
           int R=min(i+r-1,n),L=max(i-r+1,0)
                                                           145
                                                                   int n;
           int nextR=-1;
                                                                   Work a[10000];
70
                                                           146
71
           for(int j=R;j>=L;--j){
                                                           147
                                                                   cin>>n;
               if(a[j]){
                                                                   for(int i=0:i<n:++i)</pre>
72
                                                           148
73
                   nextR=i:
                                                           149
                                                                       cin>>a[i].t>>a[i].d;
74
                   break;
                                                           150
                                                                   sort(a,a+n);
75
               }
                                                           151
                                                                   int maxL=0, sumT=0;
76
           }
                                                           152
                                                                   for(int i=0;i<n;++i){</pre>
77
           if(nextR==-1){
                                                                       sumT+=a[i].t;
                                                           153
78
               ans=-1;
                                                           154
                                                                       maxL=max(maxL,sumT-a[i].d);
                                                           155
79
               break;
80
           }
                                                           156
                                                                   cout << maxL << '\n';</pre>
81
           ++ans;
                                                           157
                                                              }
           i=nextR+r;
                                                           158
82
83
                                                           159
84
       cout << ans << '\n':
                                                              最少延遲數量問題
                                                           160
85
  }
                                                           161
                                                              //problem
86
                                                           162| 給定 N 個工作,每個工作的需要處理時長為 Ti,
87
                                                              期限是 Di,求一種工作排序使得逾期工作數量最小。
                                                           163
88 最多不重疊區間
                                                           164
89
   //problem
                                                           165
                                                              //solution
90 給你 n 條線段區間為 [Li,Ri],
                                                              期限越早到期的工作越先做。將工作依照到期時間從早到晚排序,
                                                           166
   請問最多可以選擇幾條不重疊的線段(頭尾可相連)?
91
                                                              依序放入工作列表中,如果發現有工作預期,
                                                           167
92
                                                              就從目前選擇的工作中,移除耗時最長的工作。
                                                           168
93 //solution
                                                           169
94 依照右界由小到大排序,
                                                           170
                                                              上述方法為 Moore-Hodgson s Algorithm。
95 每次取到一個不重疊的線段,答案 +1。
                                                           171
96
                                                              //problem
                                                           172
97
                                                              給定烏龜的重量和可承受重量,問最多可以疊幾隻烏龜?
                                                           173
98
   struct Line{
                                                           174
       int L,R;
99
                                                           175
                                                              //solution
100
       bool operator < (const Line &rhs)const{</pre>
                                                           176 和最少延遲數量問題是相同的問題,只要將題敘做轉換。
101
            return R<rhs.R;</pre>
                                                              工作處裡時長 → 烏龜重量
                                                           177
102
                                                              工作期限 → 烏龜可承受重量
                                                           178
103
  };
                                                              多少工作不延期 → 可以疊幾隻烏龜
                                                           179
104
                                                           180
105
   int main(){
                                                           181
                                                               //code
106
       int t;
                                                              struct Work{
                                                           182
       cin>>t;
107
                                                           183
                                                                   int t, d;
108
       Line a[30]:
                                                                   bool operator < (const Work &rhs)const{</pre>
                                                           184
109
       while(t--){
                                                           185
                                                                       return d<rhs.d;</pre>
110
           int n=0;
                                                           186
           while(cin>>a[n].L>>a[n].R,a[n].L||a[n].R)
111
                                                           187
                                                              };
112
                                                           188
           sort(a.a+n):
113
                                                              int main(){
                                                           189
114
           int ans=1,R=a[0].R;
                                                           190
                                                                   int n=0:
115
           for(int i=1;i<n;i++){</pre>
                                                                   Work a[10000];
116
               if(a[i].L>=R){
                                                           191
                                                           192
                                                                   priority_queue<int> pq;
117
                   ++ans;
                                                                   while(cin>>a[n].t>>a[n].d)
                                                           193
                   R=a[i].R;
118
                                                           194
                                                                       ++n;
119
               }
                                                           195
                                                                   sort(a,a+n);
120
           }
                                                                   int sumT=0,ans=n;
                                                           196
121
           cout << ans << '\n';
                                                                   for(int i=0;i<n;++i){</pre>
       }
                                                           197
122
                                                                       pq.push(a[i].t);
                                                           198
123
  }
                                                           199
                                                                       sumT+=a[i].t;
124
                                                           200
                                                                       if(a[i].d<sumT){</pre>
125
                                                                           int x=pq.top();
                                                           201
126 最小化最大延遲問題
                                                           202
                                                                           pq.pop();
   //problem
                                                                           sumT -=x;
                                                           203
   給定 N 項工作,每項工作的需要處理時長為 Ti,
                                                           204
                                                                           --ans;
   期限是 Di, 第 i 項工作延遲的時間為 Li=max(0,Fi-Di),
129
                                                                       }
                                                           205
   原本Fi 為第 i 項工作的完成時間,
130
                                                           206
   求一種工作排序使 maxLi 最小。
131
                                                           207
                                                                   cout << ans << '\n';
132
                                                              }
                                                           208
133 //solution
```

210 任務調度問題

134 按照到期時間從早到晚處理。

```
212 給定 N 項工作,每項工作的需要處理時長為 Ti,
  期限是 Di,如果第 i 項工作延遲需要受到 pi 單位懲罰,
   請問最少會受到多少單位懲罰。
214
215
216 //solution
217 依照懲罰由大到小排序,
218 每項工作依序嘗試可不可以放在 Di-Ti+1, Di-Ti,...,1,0,
219 如果有空閒就放進去,否則延後執行。
220
  //problem
221
222 給定 N 項工作,每項工作的需要處理時長為 Ti,
   期限是 Di,如果第 i 項工作在期限內完成會獲得 ai
       單位獎勵,
224
   請問最多會獲得多少單位獎勵。
225
   //solution
226
227 和上題相似,這題變成依照獎勵由大到小排序。
228
229
  //code
230
  struct Work{
231
      int d,p;
      bool operator<(const Work &rhs)const{</pre>
232
233
          return p>rhs.p;
234
235
  };
236
237
   int main(){
238
      int n;
      Work a[100005];
239
      bitset<100005> ok;
240
      while(cin>>n){
241
          ok.reset();
242
243
          for(int i=0;i<n;++i)</pre>
              cin>>a[i].d>>a[i].p;
244
245
          sort(a,a+n);
          int ans=0:
246
          for(int i=0;i<n;++i){</pre>
247
248
              int j=a[i].d;
249
              while(j--)
250
                  if(!ok[j]){
                      ans+=a[i].p;
251
                      ok[j]=true;
252
253
                      break:
254
255
          3
256
          cout << ans << '\n';</pre>
257
258 }
```

7.7 floyd warshall

211 //problem

```
1 int w[n][n];
2 int d[n][n];
3 int p[n][n];
4// 由i點到j點的路徑,其中繼點為 p[i][j]。
6
  void floyd_warshall(){
                                1/0(V^3)
7
    for(int i=0;i<n;i++)</pre>
8
       for(int j=0;j<n;j++){</pre>
         d[i][j]=w[i][j];
9
                          // 預設為沒有中繼點
10
         p[i][j]=-1;
11
12
    for(int i=0;i<n;i++) d[i][i]=0;</pre>
13
     for(int k=0;k<n;k++)</pre>
14
       for(int i=0;i<n;i++)</pre>
         for(int j=0;j<n;j++)</pre>
15
16
           if(d[i][k]+d[k][j]<d[i][j]){</pre>
17
             d[i][j]=d[i][k]+d[k][j];
18
             p[i][j]=k; // 由 i 點 走 到 j 點 經 過 了 k 點
19
20 }
21
22 // 這支函式並不會印出起點和終點,必須另行印出。
```

9

7.8 dinic

```
const int maxn = 1e5 + 10;
2
  const int inf = 0x3f3f3f3f;
  struct Edge {
5
       int s, t, cap, flow;
6
  };
  int n, m, S, T;
8
  int level[maxn], dfs_idx[maxn];
  vector < Edge > E;
10
11
  vector<vector<int>> G;
12
13
  void init() {
14
       S = 0;
       T = n + m;
15
16
       E.clear();
17
       G.assign(maxn, vector<int>());
18 }
19
  void addEdge(int s, int t, int cap) {
20
       E.push_back({s, t, cap, 0});
21
       E.push_back({t, s, 0, 0});
22
23
       G[s].push_back(E.size()-2);
24
       G[t].push_back(E.size()-1);
25 }
26
  bool bfs() {
27
28
       queue<int> q({S});
29
30
       memset(level, -1, sizeof(level));
31
       level[S] = 0;
32
33
       while(!q.empty()) {
34
           int cur = q.front();
35
           q.pop();
36
37
           for(int i : G[cur]) {
38
                Edge e = E[i];
                if(level[e.t]==-1 && e.cap>e.flow) {
39
40
                    level[e.t] = level[e.s] + 1;
41
                    q.push(e.t);
42
               }
43
           }
44
45
       return ~level[T];
  }
46
47
48
  int dfs(int cur, int lim) {
       if(cur==T || lim==0) return lim;
49
50
       int result = 0;
51
52
       for(int& i=dfs_idx[cur]; i<G[cur].size() && lim;</pre>
           i++) {
           Edge& e = E[G[cur][i]];
53
54
           if(level[e.s]+1 != level[e.t]) continue;
55
           int flow = dfs(e.t, min(lim, e.cap-e.flow));
           if(flow <= 0) continue;</pre>
57
58
59
           e.flow += flow;
           result += flow;
60
61
           E[G[cur][i]^1].flow -= flow;
62
           lim -= flow;
63
64
       return result;
```

```
66
                                                                62
                                                                       if (ql <= mid) update(ql, qr, l, mid, i * 2, c);</pre>
  int dinic() {
                        // O((V^2)E)
                                                                       if (qr > mid) update(ql, qr, mid+1, r, i*2+1, c);
67
                                                                63
       int result = 0;
                                                                       st[i] = pull(i * 2, i * 2 + 1);
68
                                                                64
       while(bfs()) {
                                                                65 }
69
70
           memset(dfs_idx, 0, sizeof(dfs_idx));
71
           result += dfs(S, inf);
                                                                67 // 改值從 += 改成 =
72
       }
73
       return result;
74 }
```

SegmentTree

```
1 #define MAXN 1000
2 int data[MAXN]; //原數據
3 int st[4 * MAXN]; //線段樹
4 int tag[4 * MAXN]; //懶標
6 inline int pull(int 1, int r) {
7 // 隨題目改變 sum 、 max 、 min
8 // 1、r是左右樹的 index
9
      return st[l] + st[r];
10 }
11
12 void build(int 1, int r, int i) {
13 // 在[1, r]區間建樹, 目前根的 index為 i
      if (1 == r) {
14
15
          st[i] = data[l];
16
          return:
17
      int mid = 1 + ((r - 1) >> 1);
18
      build(1, mid, i * 2);
19
20
      build(mid + 1, r, i * 2 + 1);
      st[i] = pull(i * 2, i * 2 + 1);
21
22 }
23
24 int query(int ql, int qr, int l, int r, int i) {
  | // [q1, qr]是查詢區間,[1, r]是當前節點包含的區間
      if (ql <= 1 && r <= qr)</pre>
26
27
          return st[i];
      int mid = 1 + ((r - 1) >> 1);
28
29
      if (tag[i]) {
          //如果當前懶標有值則更新左右節點
30
          st[i * 2] += tag[i] * (mid - 1 + 1);
31
          st[i * 2 + 1] += tag[i] * (r - mid);
32
          tag[i * 2] += tag[i];//下傳懶標至左節點
33
          tag[i*2+1] += tag[i]; //下傳懶標至右節點
34
35
          tag[i] = 0;
36
37
      int sum = 0;
38
      if (ql <= mid)</pre>
          sum += query(q1, qr, 1, mid, i * 2);
39
40
      if (ar > mid)
          sum += query(ql, qr, mid + 1, r, i*2+1);
41
42
      return sum;
43 }
44
45 void update(int ql,int qr,int l,int r,int i,int c) {
46 // [q1, qr]是查詢區間,[1, r]是當前節點包含的區間
  // c是變化量
47
      if (ql <= 1 && r <= qr) {</pre>
48
          st[i] += (r - l + 1) * c;
49
               //求和,此需乘上區間長度
50
          tag[i] += c;
51
          return:
52
      int mid = 1 + ((r - 1) >> 1);
53
      if (tag[i] && l != r) {
54
55
          //如果當前懶標有值則更新左右節點
          st[i * 2] += tag[i] * (mid - 1 + 1);
56
57
          st[i * 2 + 1] += tag[i] * (r - mid);
          tag[i * 2] += tag[i]; //下傳懶標至左節點
58
59
          tag[i*2+1] += tag[i]; //下傳懶標至右節點
60
          tag[i] = 0;
      }
61
```

```
66 //如果是直接改值而不是加值,query與update中的tag與st的
```

7.10 Nim Game

```
1 1 // 兩人輪流取銅板,每人每次需在某堆取一枚以上的銅板,
 2 //但不能同時在兩堆取銅板,直到最後,
 3 //將銅板拿光的人贏得此遊戲。
 5
  #include <bits/stdc++.h>
 6
  #define maxn 23+5
  using namespace std;
  int SG[maxn];
  int visited[1000+5];
10
11
  int pile[maxn],ans;
12
13
  void calculateSG(){
14
       SG[0]=0;
       for(int i=1;i<=maxn;i++){</pre>
15
16
            int cur=0;
17
            for(int j=0;j<i;j++)</pre>
                for(int k=0; k<=j; k++)</pre>
18
19
                    visited[SG[j]^SG[k]]=i;
20
            while(visited[cur]==i) cur++;
21
            SG[i]=cur;
       }
22
23
  }
24
25
  int main(){
26
       calculateSG():
27
       int Case=0.n:
28
       while(cin>>n,n){
29
         ans=0;
         for(int i=1;i<=n;i++) cin>>pile[i];
30
31
         for(int i=1;i<=n;i++)</pre>
           if(pile[i]&1) ans^=SG[n-i];
32
         cout << "Game "<<++Case << ": ";
33
34
         if(!ans) cout<<"-1 -1 -1\n";
35
         else{
36
            bool flag=0;
37
            for(int i=1;i<=n;i++){</pre>
38
              if(pile[i]){
                for(int j=i+1; j<=n; j++){</pre>
39
40
                  for(int k=j;k<=n;k++){</pre>
                    if((SG[n-i]^SG[n-j]^SG[n-k])==ans){
41
                      cout << i - 1 << " " << j - 1 << " " << k - 1 << endl;
42
43
                       flag=1;
44
                      break;
45
                    }
46
47
                  if(flag) break;
48
                if(flag) break;
49
50
           }
51
52
         }
53
54
       return 0;
55
  }
56
58
   input
59
  4 1 0 1 100
     1 0 5
60
  2 2 1
61
62 0
63
   output
  Game 1: 0 2 3
  Game 2: 0 1 1
65
66 Game 3: -1 -1 -1
```

74 75

76 */

```
7.11 Trie
```

67 */

```
1| #include <bits/stdc++.h>
2 using namespace std;
4 const int maxn = 300000 + 10:
5 const int mod = 20071027;
  int dp[maxn];
7
8 int mp[4000*100 + 10][26];
9 char str[maxn];
10
11 struct Trie {
12
       int sea:
13
       int val[maxn];
14
15
       Trie() {
           seq = 0;
16
17
           memset(val, 0, sizeof(val));
           memset(mp, 0, sizeof(mp));
18
19
20
21
       void insert(char* s, int len) {
22
            int r = 0;
           for(int i=0; i<len; i++) {</pre>
23
                int c = s[i] - 'a';
24
25
                if(!mp[r][c]) mp[r][c] = ++seq;
26
                r = mp[r][c];
27
           }
           val[r] = len;
28
29
           return;
30
31
       int find(int idx, int len) {
32
           int result = 0:
33
            for(int r=0; idx<len; idx++) {</pre>
34
                int c = str[idx] - 'a';
35
                if(!(r = mp[r][c])) return result;
36
37
                if(val[r])
                    result = (result + dp[idx + 1]) % mod;
38
39
           }
40
           return result;
41
42 };
43
44 int main() {
       int n, tc = 1;
45
46
       while(~scanf("%s%d", str, &n)) {
47
           Trie tr;
48
49
           int len = strlen(str);
           char word[100+10];
50
51
           memset(dp, 0, sizeof(dp));
52
           dp[len] = 1;
53
54
           while(n--) {
55
                scanf("%s", word);
56
57
                tr.insert(word, strlen(word));
58
59
           for(int i=len-1; i>=0; i--)
60
61
                dp[i] = tr.find(i, len);
           printf("Case %d: %d\n", tc++, dp[0]);
62
63
       return 0;
64
65 }
66
67 /********
   ****Input****
   * abcd
69
   * 4
70
71
   * a b cd ab
    *****
```

7.12 SPFA

****Output***

* Case 1: 2

```
1 struct Edge
 2
  {
3
       int t;
 4
       long long w;
5
       Edge(){};
       Edge(\textbf{int } \_t , \textbf{ long long } \_w) \ : \ t(\_t), \ w(\_w) \ \{\}
 6
 7
   };
8
9 bool SPFA(int st) // 平均O(V + E) 最糟O(VE)
10
       vector<int> cnt(n, 0);
11
12
       bitset < MXV > inq(0);
13
       queue < int > q;
       q.push(st);
14
15
       dis[st] = 0;
       inq[st] = true;
16
17
       while (!q.empty())
18
       {
19
            int cur = q.front();
20
            q.pop();
            inq[cur] = false;
21
22
            for (auto &e : G[cur])
23
24
                 if (dis[e.t] <= dis[cur] + e.w)</pre>
25
                 dis[e.t] = dis[cur] + e.w;
26
27
                 if (inq[e.t])
28
                     continue;
29
                 ++cnt[e.t];
30
                 if (cnt[e.t] > n)
                     return false; // negtive cycle
31
32
                 inq[e.t] = true;
33
                 q.push(e.t);
34
       }
35
36
       return true;
37 }
```

7.13 dijkstra

```
1 #include < bits / stdc ++ . h>
2 #define maxn 50000+5
  #define INF 0x3f3f3f3f
  using namespace std;
6
  struct edge{
7
       int v,w;
  };
8
10
  struct Item{
11
       int u, dis;
12
       bool operator < (const Item &rhs)const{</pre>
13
           return dis>rhs.dis;
       }
14
15
  };
16
  vector<edge> G[maxn];
18 int dist[maxn];
19
  void dijkstra(int s){ // O((V + E)log(E))
20
       memset(dist,INF,sizeof(dist));
21
22
       dist[s]=0;
23
       priority_queue < Item > pq;
24
       pq.push({s,0});
25
       while(!pq.empty()){
           Item now=pq.top();
26
```

```
27
            if(now.dis>dist[now.u]) continue;
28
29
            for(edge e:G[now.u]){
                 if(dist[e.v]>dist[now.u]+e.w){
30
31
                     dist[e.v]=dist[now.u]+e.w;
32
                     pq.push({e.v,dist[e.v]});
                }
33
34
            }
35
       }
36
37
  int main(){
38
       int t, cas=1;
39
40
       cin>>t;
41
       while(t--){
42
            int n,m,s,t;
            cin>>n>>m>>s>>t;
43
44
            for(int i=0;i<=n;i++) G[i].clear();</pre>
45
            int u,v,w;
46
            for(int i=0;i<m;i++){</pre>
                 cin>>u>>v>>w:
47
48
                 G[u].push_back({v,w});
49
                G[v].push_back({u,w});
50
51
            dijkstra(s);
            cout << "Case #"<<cas++<<": ";
52
            if(dist[t]==INF) cout<<"unreachable\n";</pre>
53
54
            else cout<<dist[t]<<endl;</pre>
55
       }
56 }
```

7.14 SCC Tarjan

```
1 //Strongly Connected Components
2 //Tarjan O(V + E)
3 int dfn[N], low[N], dfncnt, sk[N], in_stack[N], tp;
4 //dfn[u]: dfs時u被visited的順序
5 //low[u]: 在u的dfs子樹中能回到最早已在stack中的節點
6| int scc[N], sc;//節點 u 所在 SCC 的編號
7 int sz[N]; //強連通 u 的大小
8
9
  void tarjan(int u) {
      low[u] = dfn[u] = ++dfncnt, s[++tp] = u,
10
           in_stack[u] = 1;
      for (int i = h[u]; i; i = e[i].nex) {
11
           const int &v = e[i].t;
12
13
           if (!dfn[v]) {
14
               tarjan(v);
15
              low[u] = min(low[u], low[v]);
16
          } else if (in_stack[v]) {
               low[u] = min(low[u], dfn[v]);
17
18
          }
19
20
      if (dfn[u] == low[u]) {
          ++sc;
21
22
          while (s[tp] != u) {
23
               scc[s[tp]] = sc;
24
               sz[sc]++:
               in_stack[s[tp]] = 0;
25
26
               --tp;
27
          }
28
           scc[s[tp]] = sc;
29
          sz[sc]++:
           in_stack[s[tp]] = 0;
30
31
           --tp;
32
      }
33 }
```

7.15 SCC Kosaraju

```
1 //做兩次dfs, O(V + E)
2 //g 是原圖, g2 是反圖
3 //s是dfs離開的節點
```

```
void dfs1(int u) {
       vis[u] = true;
 5
       for (int v : g[u])
7
           if (!vis[v]) dfs1(v);
8
       s.push_back(u);
  }
9
10
11
  void dfs2(int u) {
       group[u] = sccCnt;
12
13
       for (int v : g2[u])
14
            if (!group[v]) dfs2(v);
15 }
16
  void kosaraju() {
17
18
       sccCnt = 0;
       for (int i = 1; i <= n; ++i)</pre>
19
20
            if (!vis[i]) dfs1(i);
21
       for (int i = n; i >= 1; --i)
22
           if (!group[s[i]]) {
23
                ++sccCnt;
24
                dfs2(s[i]);
25
           }
26 }
```

7.16 ArticulationPoints Tarjan

```
1 #include <bits/stdc++.h>
  using namespace std;
4
  vector<vector<int>> G;
5
  int N;
  int timer;
  bool visited[105];
  int visTime[105]; // 第一次visit的時間
9 int low[105];
10 // 最小能回到的父節點(不能是自己的parent)的visTime
11 int res;
12
  //求割點數量
  void tarjan(int u, int parent) {
13
      int child = 0;
14
15
      bool isCut = false;
16
      visited[u] = true;
17
       visTime[u] = low[u] = ++timer;
18
       for (int v: G[u]) {
           if (!visited[v]) {
19
20
               ++child:
21
               tarjan(v, u);
22
               low[u] = min(low[u], low[v]);
               if (parent != -1 && low[v] >= visTime[u])
23
24
                   isCut = true;
25
           else if (v != parent)
26
27
               low[u] = min(low[u], visTime[v]);
28
       //If u is root of DFS tree->有兩個以上的children
29
       if (parent == -1 && child >= 2)
30
31
           isCut = true;
       if (isCut)
32
33
           ++res;
34 }
35
36
  int main()
37
  {
38
       char input[105];
      char* token;
39
40
      while (scanf("%d", &N) != EOF && N)
      {
41
42
          G.assign(105, vector<int>());
43
           memset(visited, false, sizeof(visited));
          memset(low, 0, sizeof(low));
44
45
           memset(visTime, 0, sizeof(visited));
           timer = 0;
46
47
           res = 0;
           getchar(); // for \n
48
49
          while (fgets(input, 105, stdin))
```

} 53

root = id[root];

```
50
            {
                if (input[0] == '0')
51
52
                     break:
                 int size = strlen(input);
53
54
                 input[size - 1] = ' \setminus 0';
55
                 --size;
                 token = strtok(input, " ");
56
57
                int u = atoi(token);
                int v;
58
                 while (token = strtok(NULL, " "))
59
60
                     v = atoi(token);
61
                     G[u].emplace_back(v);
62
                     G[v].emplace_back(u);
63
64
                }
            }
65
            tarjan(1, -1);
66
67
            printf("%d\n", res);
68
       }
69
       return 0;
70 }
```

7.17 最小樹狀圖

```
定 義
2| 有向圖上的最小生成樹 (Directed Minimum Spanning Tree)
3 稱為最小樹形圖。
4 常用的演算法是朱劉演算法(也稱為Edmonds 演算法),
5 可以在0(nm)時間內解決最小樹形圖問題。
6
7
8 1. 對於每個點,選擇它入度最小的那條邊
9 2. 如果沒有環,演算法終止;
     否則進行縮環並更新其他點到環的距離。
10
11
12 bool solve() {
13
    ans = 0;
14
    int u, v, root = 0;
    for (;;) {
15
16
      f(i, 0, n) in[i] = 1e100;
      f(i, 0, m) {
17
        u = e[i].s;
18
19
        v = e[i].t;
20
        if (u != v && e[i].w < in[v]) {</pre>
          in[v] = e[i].w;
21
          pre[v] = u;
22
23
        }
      }
24
25
      f(i, 0, m) if(i!=root && in[i]>1e50) return 0;
      int tn = 0;
26
      memset(id, -1, sizeof id);
27
      memset(vis, -1, sizeof vis);
28
      in[root] = 0;
29
      f(i, 0, n) {
30
        ans += in[i];
31
        v = i;
32
        while(vis[v]!=i&&id[v]==-1&&v!=root){
33
          vis[v] = i;
34
35
          v = pre[v];
36
37
        if (v != root && id[v] == -1) {
38
          for(int u=pre[v];u!=v;u=pre[u]) id[u]=tn;
          id[v] = tn++;
39
40
41
42
      if (tn == 0) break;
      f(i, 0, n) if (id[i] == -1) id[i] = tn++;
43
44
      f(i, 0, m) {
45
        u = e[i].s;
        v = e[i].t;
46
47
        e[i].s = id[u];
        e[i].t = id[v];
48
        if (e[i].s != e[i].t) e[i].w -= in[v];
49
50
      n = tn;
51
```

```
54
   return ans;
55 }
56
57
58
59
   Tarjan 的DMST 演算法
60 Tarjan 提出了一種能夠在
61 0 (m+nlog n) 時間內解決最小樹形圖問題的演算法。
62
   流 程
63
64 Tarjan 的演算法分為收縮與伸展兩個過程。
65 接下來先介紹收縮的過程。
66 我們要假設輸入的圖是滿足強連通的,
67 如果不滿足那就加入 O(n) 條邊使其滿足,
  並且這些邊的邊權是無窮大的。
68
69
70 我們需要一個堆存儲結點的入邊編號,入邊權值,
71 結點總代價等相關信息,由於後續過程中會有堆的合併操作,
72 這裡採用左偏樹 與並查集實現。
  演算法的每一步都選擇一個任意結點v,
73
  需要保證v不是根節點,並且在堆中沒有它的入邊。
75
  再將v的最小入邊加入到堆中,
  如果新加入的這條邊使堆中的邊形成了環,
76
  那麼將構成環的那些結點收縮,
77
  我們不妨將這些已經收縮的結點命名為超級結點,
78
79
  再繼續這個過程,如果所有的頂點都縮成了超級結點,
80
  那麼收縮過程就結束了。
  整個收縮過程結束後會得到一棵收縮樹,
  之後就會對它進行伸展操作。
82
83
  堆中的邊總是會形成一條路徑v0 <- v1<- ... <- vk,
84
  由於圖是強連通的,這個路徑必然存在,
85
  並且其中的 vi 可能是最初的單一結點,
86
  也可能是壓縮後的超級結點。
87
88
89 最初有 v0=a,其中 a 是圖中任意的一個結點,
90 每次都選擇一條最小入邊 vk <- u,
91 如果 u 不是v0,v1,...,vk中的一個結點,
92 那麼就將結點擴展到 v k+1=u。
93 如果 u 是他們其中的一個結點 vi,
94
  那麼就找到了一個關於 vi <- ... <- vk <- vi的環,
  再將他們收縮為一個超級結點c。
95
97 向隊列 P 中放入所有的結點或超級結點,
  並初始選擇任一節點 a,只要佇列不為空,就進行以下步驟:
99
100 選擇 a 的最小入邊,保證不存在自環,
101 並找到另一頭的結點 b。
102 如果結點b沒有被記錄過說明未形成環,
  令 a <- b,繼續目前操作尋找環。
103
104
105
  如果 b 被記錄過了,就表示出現了環。
  總結點數加一,並將環上的所有結點重新編號,對堆進行合併,
106
  以及結點/超級結點的總權值的更新。
  更新權值操作就是將環上所有結點的入邊都收集起來,
108
  並減去環上入邊的邊權。
109
110
111
112 #include <bits/stdc++.h>
113 using namespace std;
114
  typedef long long 11;
115
  #define maxn 102
116 #define INF 0x3f3f3f3f
117
  struct UnionFind {
118
119
   int fa[maxn << 1];</pre>
   UnionFind() { memset(fa, 0, sizeof(fa)); }
120
121
   void clear(int n) {
122
     memset(fa + 1, 0, sizeof(int) * n);
123
```

```
124
     int find(int x) {
       return fa[x] ? fa[x] = find(fa[x]) : x;
125
126
127
     int operator[](int x) { return find(x); }
128 };
129
130 struct Edge {
     int u, v, w, w0;
132 \ \ \ ;
133
134
   struct Heap {
     Edge *e;
135
     int rk, constant;
136
     Heap *lch, *rch;
137
138
     Heap(Edge *_e):
139
       e(_e), rk(1), constant(0), lch(NULL), rch(NULL){}
140
141
     void push() {
142
143
       if (lch) lch->constant += constant;
       if (rch) rch->constant += constant;
144
145
       e->w += constant;
146
       constant = 0;
147
     }
148 };
149
150
   Heap *merge(Heap *x, Heap *y) {
151
     if (!x) return y;
152
     if (!v) return x:
153
     if(x->e->w + x->constant > y->e->w + y->constant)
       swap(x, y);
154
155
     x->push();
156
     x - rch = merge(x - rch, y);
157
     if (!x->lch || x->lch->rk < x->rch->rk)
158
        swap(x->lch, x->rch);
159
     if (x->rch)
160
       x->rk = x->rch->rk + 1;
161
     else
162
       x - rk = 1;
163
      return x;
164 }
165
166 Edge *extract(Heap *&x) {
167
     Edge *r = x->e;
168
     x->push();
     x = merge(x->lch, x->rch);
169
170
     return r;
171 }
172
173 vector < Edge > in [maxn];
174 int n, m, fa[maxn << 1], nxt[maxn << 1];
175 Edge *ed[maxn << 1];
176 Heap *Q[maxn << 1];
177 UnionFind id;
178
   void contract() {
179
     bool mark[maxn << 1];</pre>
180
     //將圖上的每一個節點與其相連的那些節點進行記錄
181
182
     for (int i = 1; i <= n; i++) {
183
        queue<Heap *> q;
       for (int j = 0; j < in[i].size(); j++)</pre>
184
185
          q.push(new Heap(&in[i][j]));
186
       while (q.size() > 1) {
187
         Heap *u = q.front();
188
          q.pop();
         Heap *v = q.front();
189
          q.pop();
190
          q.push(merge(u, v));
191
192
193
       Q[i] = q.front();
194
195
     mark[1] = true;
     for(int a=1,b=1,p;Q[a];b=a,mark[b]=true){
196
       //尋找最小入邊以及其端點,保證無環
197
198
          ed[a] = extract(Q[a]);
199
200
          a = id[ed[a]->u];
```

```
201
       } while (a == b && Q[a]);
       if (a == b) break;
202
        if (!mark[a]) continue;
203
        //對發現的環進行收縮,以及環內的節點重新編號,
204
        //總權值更新
205
206
       for (a = b, n++; a != n; a = p) {
207
         id.fa[a] = fa[a] = n;
208
         if (Q[a]) Q[a]->constant -= ed[a]->w;
         Q[n] = merge(Q[n], Q[a]);
209
         p = id[ed[a]->u];
210
         nxt[p == n ? b : p] = a;
211
212
213
     }
214 }
215
216 ll expand(int x, int r);
   ll expand_iter(int x) {
217
     11 r = 0;
218
     for(int u=nxt[x];u!=x;u=nxt[u]){
219
220
       if (ed[u]->w0 >= INF)
221
         return INF;
222
        else
223
          r += expand(ed[u]->v,u)+ed[u]->w0;
     }
224
225
     return r;
226 }
227
228 11 expand(int x, int t) {
229
     11 r = 0;
230
     for (; x != t; x = fa[x]) {
231
       r += expand_iter(x);
232
        if (r >= INF) return INF;
233
     }
234
     return r;
235 }
236
   void link(int u, int v, int w) {
237
238
     in[v].push_back({u, v, w, w});
239 }
240
   int main() {
241
242
     int rt;
     scanf("%d %d %d", &n, &m, &rt);
243
244
     for (int i = 0; i < m; i++) {
245
       int u, v, w;
        scanf("%d %d %d", &u, &v, &w);
246
247
       link(u, v, w);
248
     }
249
     //保證強連誦
250
     for (int i = 1; i <= n; i++)
       link(i > 1 ? i - 1 : n, i, INF);
251
252
     contract();
253
     11 ans = expand(rt, n);
     if (ans >= INF)
255
       puts("-1");
256
     else
257
       printf("%11d\n", ans);
258
     return 0;
259 }
```

7.18 凸包

```
1 /* *******************************
2 * Q:平面上給定多個區域,由多個座標點所形成,再給定
  * 多點 (x, y), 判斷有落點的區域 (destroyed)的面積總和。
3
  #include <bits/stdc++.h>
5
6
  using namespace std:
  const int maxn = 500 + 10;
8
  const int maxCoordinate = 500 + 10;
9
10
11
  struct Point {
12
     int x, y;
13 };
```

```
14
15 int n:
16 bool destroyed[maxn];
17 Point arr[maxn];
18 vector < Point > polygons[maxn];
19
  void scanAndSortPoints() {
20
21
       int minX = maxCoordinate, minY = maxCoordinate;
       for(int i=0; i<n; i++) {</pre>
22
           int x, y;
scanf("%d%d", &x, &y);
23
24
           arr[i] = (Point)\{x, y\};
25
26
           if(y < minY || (y == minY && x < minX)) {</pre>
           If there are floating points, use:
27
28
       // if(y<minY || (fabs(y-minY)<eps && x<minX)) {</pre>
                minX = x, minY = y;
29
           }
30
31
       }
       sort(arr, arr+n, [minX, minY](Point& a, Point& b){
32
33
           double theta1 = atan2(a.y - minY, a.x - minX);
           double theta2 = atan2(b.y - minY, b.x - minX);
34
35
            return theta1 < theta2;</pre>
36
       });
37
       return:
38 }
39
      returns cross product of u(AB) x v(AC)
40 //
41 int cross(Point& A, Point& B, Point& C) {
       int u[2] = {B.x - A.x, B.y - A.y};
int v[2] = {C.x - A.x, C.y - A.y};
42
43
       return (u[0] * v[1]) - (u[1] * v[0]);
44
45 }
46
47 // size of arr = n >= 3
|48| // st = the stack using vector, m = index of the top
49 vector < Point > convex_hull() {
50
       vector<Point> st(arr, arr+3);
       for(int i=3, m=2; i<n; i++, m++) {</pre>
51
           while(m >= 2) {
52
53
                if(cross(st[m], st[m-1], arr[i]) < 0)</pre>
                    break;
54
55
                st.pop_back();
56
                m - -;
57
           }
58
           st.push_back(arr[i]);
59
       }
60
       return st;
61 }
62
63 bool inPolygon(vector<Point>& vec, Point p) {
64
       vec.push_back(vec[0]);
65
       for(int i=1; i<vec.size(); i++) {</pre>
66
           if(cross(vec[i-1], vec[i], p) < 0) {</pre>
67
                vec.pop_back();
                return false;
68
           }
69
       }
70
71
       vec.pop_back();
72
       return true;
73 }
74
                        x3
          1 | x1 x2
75
                              x 4
                                     x 5
                                                 xn I
76
          - | x x
                                  Х
          2 | y1 y2 y3 y4 y5
77
                                                  yn |
78
  double calculateArea(vector<Point>& v) {
79
       v.push_back(v[0]);
                                      // make v[n] = v[0]
       double result = 0.0;
80
       for(int i=1; i<v.size(); i++)</pre>
81
           result += v[i-1].x*v[i].y - v[i-1].y*v[i].x;
82
83
       v.pop_back();
84
       return result / 2.0;
85 }
86
87 int main() {
       int p = 0;
88
89
       while(~scanf("%d", &n) && (n != -1)) {
           scanAndSortPoints();
90
```

```
91
            polygons[p++] = convex_hull();
92
93
        int x, y;
94
95
        double result = 0.0;
        while(~scanf("%d%d", &x, &y)) {
96
97
            for(int i=0; i<p; i++) {</pre>
98
                 if(inPolygon(polygons[i], (Point){x, y}))
                     destroyed[i] = true;
99
100
101
        for(int i=0; i<p; i++) {</pre>
102
            if(destroyed[i])
103
                 result += calculateArea(polygons[i]);
104
105
        printf("%.21f\n", result);
106
107
        return 0;
108 }
```

8 geometry

8.1 intersection

```
1 using LL = long long;
  struct Point2D {
3
      LL x, y;
  }:
5
7
  struct Line2D {
      Point2D s, e;
8
9
      LL a, b, c;
                               // L: ax + by = c
      Line2D(Point2D s, Point2D e): s(s), e(e) {
10
11
           a = e.y - s.y;
           b = s.x - e.x;
12
13
           c = a * s.x + b * s.y;
14
15 };
16
17
  // 用克拉馬公式求二元一次解
  Point2D intersection2D(Line2D 11, Line2D 12) {
18
19
      LL D = 11.a * 12.b - 12.a * 11.b;
      LL Dx = 11.c * 12.b - 12.c * 11.b;
20
21
      LL Dy = 11.a * 12.c - 12.a * 11.c;
22
      if(D) {
                        // intersection
23
           double x = 1.0 * Dx / D;
24
25
           double y = 1.0 * Dy / D;
26
      } else {
27
           if(Dx || Dy) // Parallel lines
                        // Same line
28
           else
      }
29
30 }
```

9 動態規劃

9.1 LCS 和 LIS

	1.00	轉成	LTC
131	I CS	料 加	118

14

15

16

17

18

19

20

- 1. A, B 為原本的兩序列
 - 2. 最 A 序列作編號轉換,將轉換規則套用在 B
 - 3. 對 B 做 LIS
 - 4. 重複的數字在編號轉換時後要變成不同的數字, 越早出現的數字要越小
 - 5. 如果有數字在 B 裡面而不在 A 裡面, 直接忽略這個數字不做轉換即可

10 Section2

10.1 thm

- 中文測試
- $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
- $\binom{x}{y} = \frac{x!}{y!(x-y)!}$
- $\int_0^\infty e^{-x} dx$
- $\cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

11 dp 表格

11.1 DPlist

1						
2	I	l I		l	l	l I
3	1	l I		l	l	l I
4						
5	1	 		l	l	
6	1	l I		l	l	l I
7						
8	1	l I		l	l	l l
9	1	I I		l	l	l I
10						
11	1	1		I	I	1 1
12	i	i	i	I	I	i i
13		:				
14	1	1		I	I	1 1
15	i	i	i	I	I	i i
16			:			
17	1	1		I	I	1 1
18		i i		i I	i I	i i
19						
20	1	1	1	I	I	1 1
21	i	i		i I	i I	i i
22			' 	' 	' 	
23	1	1		ı	ı	
24		i		! 	! 	i i
25				, 	' 	
26	1	1		I	I	1 1
27	i	i	i	I	I	i i
28	·	:	:			
29	1	1				l I
30	İ	İ		l	l	l İ
31						
32	1	I		I	I	1 1
33	İ	İ		l	l	l İ
34						
35	1	I		I	I	1 1
36	1	1		I	I	1 1
37						
38	1					
39	i	İ				i i
40						
41	1	1		l	l	
42	i					i i
43						
- 1						

44	1	I	1 1	I	1
45	i i	i	i i	i	Ĺ
46	·				
47	1 1	1	1 1	- 1	1
48	i i	i	-	i	- 1
	1 1	1	1 1	'	'
49					
50	1		1 1	ı	ı
51		1	1 1	I	- 1
52					
53	1 1	1	1 1	1	1
54	i i	i	-	i	- ;
	1 1	1	1 1	'	'
55					
56	1		1 1	ı	I
57	1			I	- 1
58					
59	1 1	1	1 1	1	1
60	i i	i	-	i	- ;
	1 1	ı	1 1	ı	ı
61					
62				I	I
63		1	1 1	I	1
64					
65	1 1	1	1 1	1	1
66		1	-		- :
	1 1	ı	ı l	ı	- 1
67					
68	1 1	I	1 1	- 1	- 1
69	1	I	I I	- 1	- 1
70					
71	1 1	1	1 1	1	1
72	1 1	1	-		- :
	1 1	1	1 1	ı	1
73					
74	1		1 1	I	I
75	1	1		I	- 1
76					
77	1 1	1	1 1	- 1	1
70	1 1	1	1 1	- :	-
78	1 1	ı	1 1	ı	ı
79					
80				I	- 1
81	1 1	1	1 1	- 1	- 1
82					
83	1 1	1	1 1		1
03	! !	!	1 1		!
84	1 1	ı	1 1	ı	ı
85					
86				I	- 1
87	1 1	1	1 1	- 1	- 1
88					
89	1 1	1	1 1		
	! !	!			
90	1 1	ı	1 1	ı	ı
91					
92	1 1	I	1 1	- 1	I
93	1 1	1	1 1	- 1	- 1
94					
95	1 1	1	1 1	1	1
96		- 1	-		- !
	1 1	1	1 1	ı	1
97					
98	1	1	- I - I	I	- 1
99	1	I	1 1	- 1	- 1
100					
101	1 1	1	1 1	1	1
102		- 1	-		- !
	1 1	1	1 1	ı	1
103					
104	1	1	- I - I	I	I
105	1	I	I I	- 1	- 1
106			·		<u>·</u>
107	1 1	1	1	1	1
		1	-	!	
108	1 1	1	1 1	ı	- 1
109					
110	1	I	I I	- 1	- 1
111	i i	I	i i	i	i
112					
	1 1	1	1 .		
113	1 !	1	!!!!	!	Į.
114	1 1	I	1 1	I	I
115					
116	1 1	ı	1 1	1	1
117	i i	i	i i	i	i
118					
		,			
119	<u> </u>	1	1 1	I	I
120	1	I	1 1	- 1	- 1
'					

	-													_
275	1	1	1	1	1	ı	352							_
276	1	i	<u> </u>	<u> </u>	<u> </u>		353	1	1	ı		1		
	·		' 	' 	' 	' 			-			1	: :	
277							- 354	ı	1	ı	ı	1	1 1	i
278	!	!	!	!	!	!	355							
279	I	ı	ı	I	I	I	356	!	1	1	l	1		1
280							- 357	I	I	I	l		1 1	ı
281		I	I	I	I	I	358							-
282		I	1	I	I	I	359	1	I	I	I	1	I I	ı
283							- 360	1	1	I	I	1	1 1	ı
284	1	1	1	I	I	I	361	·	· 	· 		· 	· 	-
285	i	i	i	i	i	i	362	1	I.	ı	ı	1		ı
286	'		' 	'	'	' 	- 363	1		! !		1	: :	i
								'	1	1	ı	1	1 1	i
287	!	!	!	!	!	!	364							
288		ı	I	I	I	I	365	I	I	I	l	I	1 1	i
289							- 366	1	I	1	l		1 1	ı
290		I	1	1	1		367							-
291	1	1	1	1	1	I	368	1	1	I	I	1	1 1	ı
292				· 	· 	· 	- 369	i	i	i	İ	i	i i	ĺ
293	1	1	1	I	1	I	370	· 					· 	_
294	i	i	i	i	i	i	371	1	1	ı	1	1		ı
	1	'	1	'	1	1				!		1	: !	
295							- 372	1	ı	ı	I	I	1 1	i
296	!	!	!	!	!	<u> </u>	373							
297		ı	1	I	I	I	374	I	I	I	l		1 1	ı
298							- 375	1	I	1	l		1 1	ı
299		I	1	I	I	I	376							-
300	1	1	1	1	1	I	377	1	1	I	I	1	1 1	ı
301						· 	- 378	i	i	i	i	i	i i	ĺ
302	1	1	1	ı	ı	ı	379	' 					· 	_
303	1	<u> </u>	<u> </u>		<u> </u>	! !	380	1		ı		1		
	1	'	1	1	1	1			!	!	!	1	!!!	
304							- 381	1	1	ı	I	I	1 1	i
305	1	!	!	1	!	1	382							•
306		ı	I	I	I	I	383	I	I	I	l	1	1 1	ı
307							- 384	1	I	I	I	1	I I	ı
308	1	1	1	1	1	I	385							-
309	i	i	İ	ĺ	İ	Ì	386	1	I	I	I	1	1 1	ı
310				· 			- 387	i	i	i	i	i	i i	i
311	1	1	1	1	1	ı	388	' 				' 	·	-
	1	-	!	!	!	!								
312	I	ı	ı	1	1	I	389	!	!	!	!	!	!!!	!
313							- 390	I	I	I	I	I	1 1	i
314		ı	I	I	I	I	391							-
315		I	1	I	1	I	392	1	I		l		1 1	1
316							- 393	1	I	I	I	1	1 1	ı
317	1	1	1	I	I	I	394							-
318	i	i	i	i	i	i	395	1	I	I	ı	1	1 1	ı
319			·	· 	· 		- 396	i	i	i	i	i	i i	i
320	1	1	1	1	1	ı	397	' 	' 			' 	·	-
	1	- !	!	!	!	!				1		1		
321	I	ı	1	1	1	ı	398	!	!	!	!	!	!!!	1
322							- 399	ı	ı	I	I	I	1 1	i
323		ı	I	I	I	I	400							-
324		I	I	I	I	I	401	1	I	I	I	1	1 1	1
325							- 402	1	1		l			1
326		I	1	I	I	I	403							-
327	1	1	1	I	I	I	404	1	I	I	I	I		ı
328							- 405	li	I	I	I	I	ı i	1
329	1	1	1	ı	ı	I	406	-		· 				_
330	1	i	i	i	i	i	407	1	ı	ı	ı	ı	, ,	ı
	1			I 	I 	I 		1	1	1	! 	1	, !	ı
331							- 408	1	I	1	I	I	1 1	i
332	1	!	!	!	!	I.	409							
333	I	1		1	1	1	410	1	1	1	l	I	1 1	i
334							- 411	1			l	1	1 1	ĺ
335	1	1	I		I		412							-
336	1	1		I	I		413	1	I	1	I	I		ı
337			· 	· 	· 	· 	- 414	li	i I	· I	I		; ;	ĺ
338	1	1	1	ı	1	ı	415	'						_
	-		1	1	1	1		1	1	1		1		
339	I	1	I	1	1	I	416	1	1	1	I	I	. !	1
340							- 417	I	I	I	l	I	ı l	i
341	I	I	I	1	I		418							-
342	1	1					419	1			l	1	I I	ĺ
343							- 420	1	1		l	1	Į į	ı
344	1	1	1	I	I		421							-
345	i	i	i	I	i	·	422	1	ı	I	ı	ı		ı
346		'	' 	' 	' 	' 	- 423	li	i	i	I	i	. !	ĺ
	1		1	1		_			I 	I	I 	I 	ı	1
347	1	1	1	1	1	I I	424							
348	I	1	1	I	I	I	425	!	1	!	!	1	. !	
349							- 426	1	I	I	l	I	ı l	i
350	1	I		1	1		427							-
351	1	1		1			428	1	1		l	1		1

1	1
1	
1	1
435	- 1
436	1
433	- 1
444	1
444	i
444	
444	i
446	
440	
449	
449	
452	
452	-
454	
455	Į.
456	
SS	- 1
1	
461	1
462	
463	1
466	- 1
466	1
469	i
A69	
471	i
472	
474	i
475	
477	l I
478	
1	-
481	
482	I
484	
485	-
487	
488	-
489 <	
491 <	!
492 <	
494 571	- 1
495 572	
	1
497 574 498 575	1
499 576	i
500	 I
502 579	í
503 580 504 581	 I
505 582	i

83							- 660	1 1	ı	ı	ı	ı
84	ı	1	I	1	1	1	J 661		 ' 			'
5	I	1	I	I	1	1	662] !	<u> </u>			!
6 7	1	· · · · · · · · · · · · · · · · · · ·				1	- 663 664		 	 	 	
3	i	i	i	i	i	i	665	1 1	I			I
9							- 666	1	I			l
9		!	l				667	1	 I	· I	· I	 I
1 2	 						668 - 669	1 1	 	 	 	
3	Ι	1	I	1	1	1	J 670		 			
4	I	1	I	1	I	1	J 671	1 !	I	<u> </u>	<u> </u>	l
5	 I		1		1	1	- 672 673		 	 	 	
7	i	i	i	i	<u> </u>	i	674	1	I	l	1	ı
8		· ·					- 675	i i	İ	İ	İ	İ
9	!	į.	ļ.	!	!	!	676		 	·		
0 1	 			 	 		677 - 678		 	 	 	
2	ı	1	ı	1	1	1	I 679		 		 	
3	İ	i	i	i	İ	İ	l 680	1	I			I
4							- 681	1	I	l	l	l
5		1	l	1		1	682 683	1	 I			 I
7							- 684		! 	! 	! 	'
3	I	1	1	1	1	1	l 685		 			
9	I	1	I	1	I	1	l 686	1 !	I	<u> </u>	<u> </u>	l
9							- 687		 	 	 	
1 2	ı	i	l I	i i	i	1	688 689	1		l	1	
3		· ·					- 690	i i	i	ĺ	ĺ	I
4	1	Į.	l	!	1	1	691		 	·		
5							692					
7	1	l	1	1	1	1	- 693 I 694		 	 	 	
В	i	i	i	i	i	i	695	1 1	I			I
9							- 696	1	I			l
0		ļ	ļ				697		 I	· ·	· ·	 ı
1 2	 		 	 	 	 	698 - 699	1 1	 	 	 	
3	I	1	1	1	1	1	700		 			'
4	I	1	I	1	I	1	J 701		I	l	l	l
5						1	- 702 703		 	 	 	l
7		i		i	<u> </u>	1	703	1	I	1	1	ı
8					·		- 705	i i	İ	İ	İ	I
9	1	ļ.	ļ.	!	!	!	706		 	·		
0	 			 	 		707 - 708		 	 	 	
2	ı	1		1	1	1	700		 	 	 	I
3	i	i	i	i	i	i	710	1 1	I			I
4							- 711	1	I			l
5		ļ					712		 	·		 '
6 7	I 		l 		 	I	713 - 714		! 	! 	! 	ı I
8	I	1	1	1	1	1	715		 			
9	I	1	1	1	1	1	J 716	1 !	I	!	!	l
0							- 717		 			
1 2	I I	 	I I	I I	1	1	718 719		 			 I
3			·	.	·	· 	- 720	i	i İ			I
4	1	Į.	I	1	1	1	721		 	·	·	
5	1						722		 	 	 	
7	1	l		1	 	1	- 723 724		 I 	 	 	
3	i	i	i	i	i	i	725	1 1	I	l	l	I
1							- 726	1	I	I	I	I
		ļ	I	1		1	727	1	 ·	· ·	· ·	 ı
2	I 		l 	 	 	1	728 729	1 1	I I	l 	l 	I I
3	ı	1	ı	1	I	1	729		 			
ı	Ī	ĺ	I	1	1	1	J 731	1	I	I	I	I
5							- 732		 l 	l 	l 	1
6 7	l I	l I	I I	I	I I	I	733 734	1	 I	· I	· I	 I
8							- 735			! 	! 	'
9	Ι	1	I	1	I	1	736		 			

737	ı		I	I	I	I	I	814							-
738	i			i		i İ	i İ	815	1	I	I		I	I	ı
739	-							- 816	Ì	ĺ	ĺ		l	ĺ	ĺ
740	1	1				I	I	817							-
741	1					1	1	J 818	1		l		l	1	l
742								- 819	1	I	l		l	I	I
743			<u> </u>	!	<u> </u>	<u> </u>	<u> </u>	820							-
744	ı			I		l	I	821	!	!	!		!	!	!
745								- 822	I	I	l		l	I	I
746 747			 	1	 	 	 	823 824	1		 I			· ·	-
748	 	ا . ـ ـ ـ ـ ـ ـ ـ ـ	l 	I 	l 	 	I 	- 825	1	 	 	l I	 	I I	
749	ı		I	ı	I	ı	ı	826			 	 		 	-
750	i		! 	i	! 	i I	i I	827	1	I	I	I	I	I	ı
751	٠.			· 				- 828	i	i	I		I	i I	i
752	Ι			1		I	I	829							-
753	Ì	ĺ		İ			1	830	1	I	l		I	I	I
754	-							- 831	1	1			l	1	I
755	1	1				I	I	832							-
756	1	I				I	I	833	1	1	l		l	I	
757								- 834	1	1	l		l	l	I
758						1	1	J 835							-
759	I					l	I	836	I	1				1	
760								- 837	I						I
761				!		<u> </u>	<u> </u>	838							-
762	ı			I		l	I	839	!	!	!		!	!	ļ
763								- 840	1	1	l		l	I	I
764			 	1	 	1	 	841							-
765 766	I 	ا . ـ ـ ـ ـ ـ ـ ـ ـ	 	l 	 	 	l 	842 - 843	1	 	 	 	 	 	
767	ı		I	ı	I	ı	ı	844			 	 		 	-
768	i		I 	i i	I 	! 	! 	845	1	ı	ı	I	ı	ı	ı
769	٠.		' 	' 	' 	' 		- 846	i	i i	' 	! 	' 	i I	i
770	ı		l	I	l	I	I	847			' 	' 	' 	' 	-
771	i			i		i I	I	848	1	I	I		I	I	ı
772				· 				- 849	i	i	I		I	İ	i
773	I			I		I	I	J 850							-
774	1					I	I	851	1	1	l		l	I	I
775								- 852	1	1			l	I	
776	1					1	l	J 853							-
777		l				l	l	854	1	1			l	l	l
778								- 855	I		l		l		ı
779	!			!		!	!	856							-
780	ı			I		I	I	857	!						!
781 782	-							- 858 859	I	 	 	 	 	 	 -
783			l I	 	l I	 	 	860	1	ı	ı	I	ı	ı	ı
784						 		- 861	1	! 	! 	I I	! 	! !	! !
785	ı		I	ı	I	ı	ı	862							_
786	i			i		I	I	863	1	I	I	I	I	I	ı
787	-							- 864	İ	İ					ĺ
788	I	1	l	I	l	I	I	J 865							-
789	1	ĺ	l	I	l	I	I	J 866	1	I	I	l	I	I	I
790								- 867	1	1	l	l	l	I	I
791	I	I	l	1	l	I	I	868				· ·			-
792	I	ı		I		I	I	869	!	Į.	ļ		ļ	Į	ļ
793								- 870	I	I	I	l	I	I	1
794			l	1	l	I	I	871			·				-
795	1		l 	I	l 	I 	I 	872	1	I I] 	 	[1
796	1		 I			 I		- 873 I 874	I	I 	l 	 	l 	 	1
797 798	I		I I	1 1	I I	I I	I I	874 875	1	I	I	I	I	I	ı
799	1	ا	ı 	I 	ı 			- 876	1	I I	I I	1 	I I	i I	i I
800	ı	1	I	1	I	1	1	877		ı 	I 	 	ı 		-
801	ï			i		I	I	878	1	ı	ı	I	ı	ı	ı
802				· 				- 879	i	i	I		I	I	í
803	ı	1	I	I	I	I	I	880							-
804	i	i		i		İ	İ	881	1	I	I	I	I	I	ı
805								- 882	İ	İ				Ī	ĺ
806	I	1	l	I	l	I	I	883							-
807	Ī	i	l	I	l	I	I	884	I	I	I	l	I	I	I
808								- 885	1	I	l		l	I	I
809	1		l	I	l	I	I	J 886							-
810	I	I	l	I	l	I	I	887	I	I	l	l	l	I	I
811								- 888	1	I	l	l	l	I	I
812		ı		!		ļ	Į	889				·			-
813	1			I		I	I	l 890	1				I	I	

891	1				ı		ı	968	Li	ı			ı		
892					I 		! 	- 969		!	1	!	l I		
										ı	1	ı	ı	1 1	
893	1	!			l	!	 -	970							
894	ı	ı			l	ı	l	971		!	!	!	<u> </u>	!!!	
895								- 972		I	1	I	l	1 1	
896	!	!			l	!	l	973							
897	ı	I				l I	l	974		I	I	l	l	1 1	
898								- 975		I	1	I	l	l I	
899	1	I			l	l I	l	976							•
900	1	- 1			l	 	l	977	1	I	1	l	l	l I	J
901								- 978	1	I	1	l	l	l I	J
902	1	- 1			l	l I	l	979							-
903	1	- 1			l	1	l	980		I	I	I	l	1 1	
904								- 981		Ì	İ	İ	l	i i	
905	1	- 1			I	1	I	982		· 	· 				
906	i	i			I	i i	I	983		I	I	ı	I	1 1	
907								- 984		i	i	i	I	i i	
908	1	- 1			ı		ı	985							_
909	1	- 1			I I		I I	986		ı	1		ı		
910								- 987			1	! !	I I	, , , ,	
										1	1	1	1	' '	
911	!	!			 -	!	 -	988							
912	ı	ı			l	ı	l	989		!	!	!	<u> </u>	!!!	
913								- 990		I	I	I	l	1 1	
914	1				<u> </u>		<u> </u>	991				·			
915	1	ı			l	l	l	992		I		l	l	1 1	
916								- 993		I	1	I	l	l I	
917	1	I			l	l I	l	994							
918	1	- 1			l	l I	l	995		I	1	I	l	I I	ı
919								- 996	1	I	1	I	l	l I	
920	1	- 1			l	l I	l	997							-
921	1	- 1			l	l I	l	998	1	I	I	I	l	I I	
922								- 999		I	I	I	l	1 1	
923	1	- 1			I	1	I	1000		· 	· 			· 	
924	i	i			I	i i	I	1001	l i	I	I	ı	I	1 1	
925					' 			- 1002	l i	i	i	i	i I	i i	
926	1	- 1			ı	1	ı	1003		' 	' 	' 	' 	' '	_
927	i .	i			ı I		ı I	1003		ı	1	1	ı		
928	'	'			' 		' 	- 1005	1 '	1	1	! !	! !	, , , ,	
	1				ı		ı	1005		' 		! 	! 		
929	1	- !			l	!	l		!						
930	I	ı			I	1	l	1007		1	!	!		!!!	
931								- 1008	1 '	ı	I	I	l	1 1	
932	!	!			! :	!	! :	1009							
933	ı	ı			l	l I	l	1010	!	<u> </u>	1	!	l	!!!	
934					·			- 1011	1	I	I	I	l	1 1	
935		ļ.						1012				·			
936	1	ı			l	l	l	1013	1	I		l	l	1 1	
937								- 1014		I	1	I	l	l I	
938	1	I			l	l I	l	1015							•
939	1	I			l	l I	l	1016		I	1	l	l	l I	
940								- 1017	1	I	1	l	l	l I	J
941	1	- 1	- 1					1018							
942	1	- 1			l	I	l	1019	1	I	1	I	l	I I	
943								- 1020		I	1	l		ı İ	ı
944	I	I	1		l		l	1021							-
945	I	Ĺ	i	ĺ	l	l i	l	1022	1	I	I	I	l		1
946								- 1023		I	I	I		ı i	
947	1	- 1						1024	1 '						-
948	í	i	i					1025		I	I	I	l		
949		'-		· 				- 1026		i İ	I	I	I	. ' 	
950	1	1			I	1	I	1027							
951	i				I	I	I	1027		ı	ı	ı	I	1	
952					' 		' 	- 1029		i I	1	! 	ı I	, I '	
	1				ı ·		I	1029		I 		I 	 	ı l	_
953	1	!			l I	I I	l I			1					
954	I	ı			I	I	I	1031		1	I	l ·	 	. l	
955								- 1032		I	I	I	I	ı 1	
956	I	Į.			l	!	l	1033	1						
957	I	ı			l	I	l	1034		!	Į.	!	l	! I	
958								- 1035		1	I			I I	
959	1	- 1						1036	!						
960	1	I	- 1					1037		I	1	l			
961								- 1038	1		1	l			J
962	I	- 1	1		l		l	1039							-
963	1	İ	i	ı İ		l i		1040		I	I	l			ı
964								- 1041		I	I	I		ı i	
965	I	- 1	1		l		l	1042	1 '						
966	i	i	i					1043		I	I	I	l		
967								- 1044		i I	I	I	I	; ;	
									1.		•		•		

1045							- 1122	1	1	I	I	I	l I	
1046	1	1	1	l	l	l	1123				· ·			
1047 1048				I 	I 	 	1124 - 1125		1	 	 	I 	1 I	ı
1049	1	1	1	l	l	l	1126				· ·			
1050 1051							1127 - 1128				 	! 	' ' 	
1052	1	!	1			ļ	1129				· ·			
1053 1054				I 	I 	 	1130 - 1131		1	 	 	I 	 	
1055	1	1				<u> </u>	1132				·			
1056 1057		I 	 	l 	 	 	1133 - 1134		 	 	 	I 	1 I	ı
1058	1	1		<u> </u>	<u> </u>	<u> </u>	1135							
1059 1060			I 	I 	I 	 	1136 - 1137		 	 	 	I 	 	ı
1061	1	1		<u> </u>	<u> </u>	<u> </u>	1138							
1062 1063		I 	 	l 	 	 	1139 - 1140		 	 	 	I 	1 I	ı
1064	!	!	!	<u> </u>	<u> </u>	l	1141				·			
1065 1066			I 	 	 	 	1142 - 1143		l l	 	 	I 	1 I	ı
1067	Į.	ļ.	ļ.	l	l	<u> </u>	1144							
1068 1069				 	 	 	1145 - 1146		1	 	 	I 	 	ı
1070	1	1		<u> </u>	<u> </u>	<u> </u>	1147							
1071 1072		I 	 	l 	 	 	1148 - 1149		 	 	 	I 	1 I	ı
1073	!	!	!	<u> </u>	<u> </u>	l	1150							
1074 1075		I 	 	l 	 	 	1151 - 1152		 	 	 	I 	1 I	ı
1076	1	1	!	!	!	!	1153				·			
1077 1078	I 	l 	l 	l 	 	 	1154 - 1155		l l	 	 	I I	1 I	ı
1079	Į.	ļ.	ļ.	l	l	<u> </u>	1156							
1080 1081	I 	l 	l 	l 	 	 	1157 - 1158		l l	 	 	I I	1 I	ı
1082	Į.	ļ.	ļ.	l	<u> </u>	<u> </u>	1159							
1083 1084		I 	 	l 	 	 	1160 - 1161		 	 	 	I 	1 I	ı
1085	1	1	!	!	!	!	1162				·			
1086 1087		I 	I 	I 	I 	 	1163 - 1164		 	 	 	I 	1 I	
1088	1	1		<u> </u>	<u> </u>	<u> </u>	1165							
1089 1090				I 	I 	 	1166 - 1167		1	 	 	I 	1 I	
1091 1092	1	1					1168 1169				· I		 I I	
1093							- 1170				! 	! 	' ' 	
1094 1095	1	1		 	 	 	1171 1172		 I		· I		 I I	
1095							- 1173	1			 	! 	' ' 	
1097 1098	I	1		 	 	 	1174 1175		 I		· I		 ı '	
1099							- 1176	1			! 	l I	, l 	
1100 1101	1	 	 	 	 	 	1177 1178		 I	 I	· I	 I	 	
1102				' 	' 		- 1179	1	i	İ		I	. ' 	
1103 1104	1	1	 	 	 	 	1180 1181		 I	 I	· I		 '	
1105					' 		- 1182	1		İ	i I	i I	. ! 	
1106 1107	1						1183 1184				· I		 I I	
1108							- 1185	1		İ	! 	! 	 ! !	
1109 1110	1	I I	 	 	 	 	1186 1187		 I	 I	· I	 I	 	
1111				' 	' 	' 	- 1188	1	i	İ			. ' 	
1112 1113	1	1	 	 	 	 	1189 1190		 I	 I	· I		 '	
1114					' 		- 1191			İ	i I	i I	. ! 	
1115 1116	[]	 	 	 	 	 	1192 1193		 I		· I		 '	
1117				' 			- 1194	1	i	İ	i I	i İ	; ;	
1118 1119	1	 	[[1195 1196		 I		· I	 I	 	
1120				' 	' 		- 1197	1	i			i I	. ! 	
1121	I	I	I	I	I	I	1198							

													_
1199	1	1	ı	ı	ı	ı	1276				 		_
1200	1	<u> </u>	! !	! !	! !	! !	1277	1 1			ı		
	·	' 	! 	! 	 	! 				:			1
1201							1278	1 1	١	'			1
1202	!	!	!	!	!	!	1279				 		
1203	I	I	I	I	I	l	1280						1
1204							1281	1	١	ı			l
1205		l	I	I	I	l	1282				 		•
1206	1	1	I	I	I	I	1283	1 1	I	I			l
1207							1284	1 1	- 1	I			ı
1208	1	I	I	I	I	I	1285				 		-
1209	1	1	I	I	I	I	1286	1 1	ı	ı	l	l I	ı
1210							1287	i i	i	i	i	i i	ı
1211	ı	ı	ı	ı	ı	ı	1288				 ' 		-
1212	i	i	i	i	i	i	1289	1 1			ı		ı
1213	'		' 	' 		' 			'	- 1	l I		i
							1290	1 1	١	'			1
1214	1	1	I	I	I		1291				 		
1215		l	I	I	I	l	1292	1	I	ı			l
1216							1293	1 1	l	I			1
1217	1	1	I	I	I	l	1294				 		-
1218	1	1	I	I	I	I	1295	1 1	I	I			ı
1219							1296	1 1	ı	ı		l I	ĺ
1220	1	I	I	I	I	I	1297				 		-
1221	i	i	i	i	i	i	1298	1 1			ı		ı
1222							1299	i	· ·	i			i
								'	'	'		' '	1
1223	1	1	1	1	1	I	1300				 		
1224	1	I	I	I	I	I	1301	ļ.	!	!	l	ı	J
1225							1302	T I	I	I	l	ı 1	1
1226		1	1	1	1		1303				 		-
1227			I	I	I	l	1304	I I	I	I		l I	l
1228							1305	1 1	- 1	ı		l I	ı
1229	1	1	I	I	I	I	1306				 		-
1230	i	i	i	i	i	i i	1307	1 1	ı		ı		1
1231						' 	1308	li i	i	i			ı
1232	1	1	1	1	1		1309			ا 	 		_
	1	-	1	1	1	!							
1233	I	1	ı	ı	ı	ı	1310		!	!			
1234							- 1311	1 1	١	'			J
1235	!	!	!	!	!	!	1312				 ·		
1236		I	I	I	I	l	1313	1	I	ı			l
1237							- 1314	1 1	١	I		l I	1
1238	I	I	I	I	I	l	1315				 		•
1239	1	1	I	I	I	I	1316	1 1	I	I			l
1240							- 1317	1 1		I			ı
1241		I	I	I	I	I	1318				 		-
1242		1	I	I	I	I	1319	1 1	ı	ı		l I	ı
1243							1320	1 1	ı	ı	l	l I	ı
1244	1	I	I	I	I	I	1321				 		-
1245	i	i	i	i	i	i	1322	1 1	ı		ı		ı
1246							1323	i i	i	i		i i	ı
1247	1	1	1	1	1		1324			ا 	 		_
	1	-											
1248	I	1	ı	ı	ı	ı	1325	!		!		. !	
1249						·	1326	1 1	١]
1250	1	!	!	!	!	!	1327				 		
1251	1	I	I	I	I	l	1328	I	I	١	l		1
1252							1329	I I	I	١			l
1253			I	I	I	l	1330				 		-
1254	1	I					1331	1 1	ı	ı		l I	ı
1255							1332	i i	i	i		ĺ	ı
1256	1	I	I	I	I	I	1333				 		-
1257	i	i	I	I	I	I	1334	1 1			l		ı
1258	'					' 	- 1335				I	, ! '	ı
	1	1	1	1	1						 . 	ı 	
1259	1	1	1	1	1	I	1336				 		
1260	1	1	I	I	I	I	1337	I	I	l	l	ı l	J
1261							1338	T I	I	I	l	ı 1	1
1262			l	1	l	l	1339				 		-
1263	1		1	1	1		1340	1	ı	ı			ı
1264							- 1341	i i	i	i		ı i	ı
1265	1	I	I	I	I	I	1342				 		-
1266	i	i	I	I	I	I	1342	1			ı	, ,	ı
1266	1	I 	I 	I 	I 	 			!	!	! !	ı !	i
	1	1			ı	ı	- 1344 I 1345		. 		 	ı 	1
1268	1	1	1	1	1	l ·	1345				 		
1269	1	I	I	I	I	I	1346	ļ.	!	!	l	ı	J
1270							1347	l L	I	l	l	ı İ	J
1271	1	1	I	I	I	l	1348				 - -		•
1272		1	1	1	1		1349	I I	I	I			l
1273							1350	I I	I	I		l I	l
1274	1		I	I	I	l	1351				 		-
1275	1	I	I	I	I	l	1352	1	ı	ı			ı

							130							
1353	1	1	1	1	I	ı	1430	Li	I	ı	ı	I	ı	ı
1354			.		·		- 1431	i i	i İ	i	i	İ	i	İ
1355 1356					 	1	1432 1433		 I	 I	 I	 I		- I
1357							- 1434	li	İ	i I	i I	İ	i	
1358 1359		I	I			1	1435							-
1360					 		1436 - 1437	li	I 	! 	! 	! 		l I
1361	!	!	Į.	Į.	ļ	ļ.	1438							-
1362 1363		 	 		 	 	1439 - 1440		 	 	 	 	 	l I
1364	I	1	1	1	I	1	1441							-
1365 1366		 			 	I	1442 - 1443		 -				1	
1367	I	1	I	1	I	I	1443							-
1368	1	1	I	1	I	I	1445	!	l ·	Į.	Į.	Į.	!	l
1369 1370	I			1	 I	I	- 1446 1447		 	l 	l 	 	 	 -
1371	i	i	i	i	i	i	1448	1	I	I	I	I	I	I
1372 1373	 I			1			- 1449 1450		 	 	 	 	 	 -
1374		i	i				1450	1	I	I	I	I	I	I
1375							- 1452 1 1453	1	I	I	I	I	1	1
1376 1377	1		i		 	 	1453 1454	1	 I		 I	 I	1	- I
1378		:				<u>-</u>	- 1455	i	İ	İ	İ	İ	İ	İ
1379 1380			l I		 	 	1456 1457	 	 I	 I	 I	 I		- I
1381							- 1458	l i	I	i I	i I	I	i	İ
1382 1383			I		1	1	1459 1460		 I	 I	 I	 I		- I
1384							- 1461		! 	! 	! 	! 		l
1385	!	!	Ţ	1	1	Į.	1462							-
1386 1387		 	 		 	I 	1463 - 1464		I I	 	 	 	 	l I
1388	!	1	Ţ	1	Į.	!	1465	-					<u>-</u>	-
1389 1390		 	 		 	 	1466 - 1467		 	 	 	 	 	l I
1391	1	1	1	1	I	I	1468							-
1392 1393		 	 		 	l 	1469 - 1470		 -			 	1	
1394	I	1	1	1	I	I	1471		' 			' 		-
1395		l	l	I	I	1	1472		<u> </u>	1	1		1	1
1396 1397	I	I	1	1	I	I	- 1473 1474		I 			 		-
1398	1	1	1	1	I	I	1475	İ	ļ ·	Į.	Į.	l	ļ.	ļ
1399 1400	I			1	 	1	- 1476 1477		 	 	 	 	 	 -
1401	i	i	i	i	i	İ	1478	1	l	I	I	I	I	I
1402 1403				1	 I	 I	- 1479 1480		l 	l 	 	 	 	 -
1404	i	i	i	i	i	i	1481	1	I	I	I	I	1	I
1405	 I						- 1482		l 	l 	l 	l 	I	1
1406 1407							1483 1484	1	 	1	I	I	1	I
1408	 I						- 1485		l 		l	l 	l	1
1409 1410	1		i		 	 	1486 1487	1	 I		 I	 I	1	-
1411							- 1488	ļ i	I	I	I	I	I	I
1412 1413	 		l I		 	 	1489 1490	 	 I	 I	 I	 I	I	- I
1414							- 1491	l i	i	i	i	i I	i	İ
1415 1416			I		1	1	1492 1493		 I	 I	 I	 I		- I
1417							- 1494		! 	! 	! 	! 		l
1418	1	!	Į.	1	1	ļ.	1495							-
1419 1420	I 	 	 		I 	I 	1496 - 1497		I I	I 	I 	 	I I	l I
1421	Į.	Ţ	Ţ	Ţ	!	ļ.	1498	:						-
1422 1423	l 	 	 		 	l 	1499 - 1500		 -	[[l
1424	I	1	1	1	I	I	1501		' 	' 	' 	' 		-
1425					 	 	1502		 -	1	1	 	1	
1426 1427							- 1503 1504		ı 	ı 	ı 	I 	I 	-
1428	I	1	1	1	I	I	1505	ļ <u>!</u>	!	Į.	Į.	ļ	Į.	l
1429							- 1506		I	I	I	I	I	l

1507					
1508		1			1
1509	li i i	i	i	ĺ	Ĺ
1510					
1511		1			1
1512		- 1			1
1513					
1514		- 1			1
1515		1			1
1516					
1517		1			1
1518		1			1
1519					
1520		- 1			1
1521		- 1			1
1522					
1523		- 1			1
1524		- 1			I
1525	1				
1526		- 1			I
1527		- 1			I
1528	1				
1529		- 1			I
1530		I			- 1
1531	1				
1532		- 1			1
1533		- 1			I
1534					

12 slogan

12.1 slogan

