Algoritmo de Bernstein

1. Dada $oldsymbol{u}$ (relación universal)

$$u = [{a_i}, {df_k}]$$

En el ejemplo $\mathcal{U} = [\{l, n, e, s\}, \{l \rightarrow n, e, s\}]$

2. Lado Derecho Simple (Reglas de Armstrong)

$$a \rightarrow b,c \Rightarrow a \rightarrow b$$
, $a \rightarrow c$ (r. descomposición)

Tomar toda DF que tenga más de un atributo dependiente y aplicar la descomposición

En el ejemplo partiendo de $\{l\rightarrow n,e,s e\rightarrow s\}$ nos queda

$$l \rightarrow n$$
 $l \rightarrow e$ $l \rightarrow s$ por descomp. $y e \rightarrow s$

3. Encontrar Mínima Cobertura No Redundante MCNR.

Aplicar Algoritmo de Cerradura. (x-Closure). Conjunto de atributos que son determinados luego de dar un atributo inicial.

Ver funcionamiento de algoritmo

4. Lado Izquierdo mínimo

$$a,x \rightarrow y \quad a \rightarrow x \quad \Rightarrow \quad a \rightarrow y \quad a \rightarrow x$$

En el ejemplo no se hace nada.

- 5. Encontrar Claves de $oldsymbol{u}$ (Candidatas)
- 6. Reunir DFs con mismo lado izquierdo

$$a \rightarrow b \quad a \rightarrow c \quad \Rightarrow \quad a \rightarrow b,c \quad (r.aditividad)$$

- 7. Crear Tablas con cada DF (aguí se definen las PK)
 - a → b,c TABLA(a, b, c) estas tablas están en 3FN
- 8. Si alguna clave candidata obtenida en 5. NO aparece en las Tablas obtenidas en 7. se debe agregar una tabla para dicha clave.

Algoritmo de Clausura (Cerradura) x-Closure

Parámetros de entrada ($\{DF_k\}$, CAtrib)

$$i \leftarrow 0; t \leftarrow TRUE; X[0] \leftarrow CAtrib;$$

Mientras t = TRUE Hacer:

```
\begin{split} \mathsf{T} &\leftarrow \mathsf{FALSE}; \mathsf{j} \leftarrow 0; \\ \mathsf{Para} \ \mathsf{toda} \ \mathsf{DF} \in \{\mathsf{DF}_k\} \ \mathsf{Hacer}; \\ & | \quad \mathsf{Si} \ \mathsf{toda} \ (\ \mathsf{LI}(\mathsf{DF}) \in \mathsf{X[i]} \ \ \mathsf{Y} \\ & \quad \mathsf{LD}(\mathsf{DF}) \not\in \mathsf{X[i]} \ ) \\ & \quad \mathsf{Entonces} \\ & \quad \mathsf{j} \leftarrow \mathsf{i} + \mathsf{1}; \\ & \quad \mathsf{X[j]} \leftarrow \mathsf{X[i]} \ \mathsf{U} \ \mathsf{LD}(\mathsf{DF}); \\ & \quad \mathsf{t} \leftarrow \mathsf{TRUE}; \ \mathsf{i} \leftarrow \mathsf{i} + \mathsf{1}; \\ \mathsf{Next} \end{split}
```

Fin

Retornar (X[i]);

FIN

Funcionamiento del x-closure

Tomamos un determinante. Por ejemplo legajo (I)

X[0] = I paso inicial 2da línea

X[1] = I, n analiza 1°DF $I \rightarrow n$

X[2] = I, n, e analiza 2°DF $I \rightarrow e$

X[3] = I, n, e, s analiza 3°DF $l \rightarrow s$ queda igual analiza 4°DF $e \rightarrow s$

luego sigue tomando el siguiente atributo, y así hasta el último el resultado (cerradura) final es X[3] = I, n, e, s

Ejemplo 1

En la siguiente tabla la edad determina el sueldo.

EMPLEADOS

21111 227 (200			
<u>Legajo</u>	nombre	edad	sueldo
8	José	50	5000
9	Ana	20	3000
10	Carlos	50	5000

Cumple 1FN y 2FN. No así la 3FN.

EMPLEADO

<u>Legajo</u>	nombre	edad
8	José	50
9	Ana	20
10	Carlos	50

3FN

<u>edad</u>	Sueldo
20	3000

5000

SUELDO-E

50

Cómo lograr que un algoritmo logre esto:

Dependencias Funcionales

legajo \rightarrow nombre, edad, sueldo \longrightarrow edad \rightarrow sueldo e \rightarrow s

El AB toma como entrada el conjunto de atributos $\{a_j\}$ y las DF $\{a_j \rightarrow b_j\}$ Esto se denomina Relación Universal: $\boldsymbol{\mathcal{U}} = [\{a_i\}, \{a_i \rightarrow b_j\}]$