Comparative Analysis of Drug Compound Representation and Perceived Reactivity: Chemception Embedding vs.Chemical Fingerprinting

CogSys students: Swapnil Jha Milena Voskanyan Module: Project Module

Goal of the Project

Problem Statement:

We aim to determine which method is more accurate for predicting cancer cell sensitivity to a given chemical and why.

Methods:

- 1. Fingerprint Approach:
 - Use chemical fingerprints (Morgan & MACCS)
 - Apply a numerical input-output model with machine learning techniques.
- 2. Chemception Approach:
 - Represent chemicals as images using Chemception embeddings.
 - Train a CNN to predict sensitivity.

Dataset

Dataset Composition:

- 981 genetically characterized human cancer cell lines.
- Screened with a wide range of anti-cancer drugs.

Objective:

• To correlate drug sensitivity patterns of cancer cell lines with extensive genomic and expression data.

Impact:

• Captures the genomic heterogeneity of human cancers, helping explain why patients have variable responses to the same treatment.

Availability:

Freely accessible data for the academic and medical communities through the GDSC website.

Dataset

Version 1.0.0 - 21 September 2017 https://docs.google.com/a/sanger.ac.uk/document/d/1YKK1BE5FNITaMVYfhEQ_QD6juzBZU_ZybKXGuN8epKM

GDSC fitted dose response description

Possible columns in GDSC fitted data results file. Not every listed column is present in every file.

Column	Description	Notes	
DATASET_VERSION	Each dataset is processed (curve fitted and ANOVA		
	analysis) as a whole.		
IC50_RESULTS_ID	Identifier for the fitted dose response		
COSMIC_ID	Cell identifier from the COSMIC database		
CELL_LINE_NAME	Primary name for the cell line		
DRUG_ID	Unique identifier for a drug. Used for internal lab trackin	9	
DRUG_NAME	Primary name for the drug		
PUTATIVE_TARGET	Putative drug target		

Version 1.0.0 - 21 September 2017 https://docs.google.com/a/sanger.ac.uk/document/d/1YKK1BE5FNITaMVYfhEQ_QD6juzBZU_ZybKXGuN8epKM

MAX_CONC_MICROMOLAR	Maximum micromolar screening concentration of the drug	
MIN_CONC_MICROMOLAR	Minimum micromolar screening concentration of the drug	
LN_IC50	Natural log of the fitted IC50	To convert to micromolar take the exponent of this value, i.e. exp(IC50_nat_log)
AUC	Area Under the Curve for the fitted model. Presented as a fraction of the total area between the highest and lowest screening concentration.	
RMSE	Root Mean Squared Error, a measurement of how well the modelled curve fits the data points.	Curves with RMSE > 0.3 are excluded prior to release as part of quality contro
Z_SCORE	Z score of the LN_IC50 (x) comparing it to the mean (μ) and standard deviation (σ^2) of the LN_IC50 values for the drug in question over all cell lines treated.	$Z = \frac{x - \mu}{\sigma^2}$

Dataset

```
for col in data.columns[:7]:
    print(col, data[col].nunique())
    print(col, data[col].unique()[:10])
    print()
DATASET 1
DATASET ['GDSC2']
NLME_RESULT_ID 1
NLME RESULT ID [343]
NLME CURVE ID 242036
NLME CURVE ID [15946310 15946548 15946830 15947087 15947369 15947651 15947932 15948212
 15948491 15948772]
COSMIC ID 969
COSMIC ID [683667 684052 684057 684059 684062 684072 687448 687452 687455 687457]
CELL LINE NAME 969
CELL LINE NAME ['PFSK-1' 'A673' 'ES5' 'ES7' 'EW-11' 'SK-ES-1' 'COLO-829' '5637' 'RT4'
 'SW780']
SANGER_MODEL_ID 969
SANGER MODEL ID ['SIDM01132' 'SIDM00848' 'SIDM00263' 'SIDM00269' 'SIDM00203' 'SIDM01111'
 'SIDM00909' 'SIDM00807' 'SIDM01085' 'SIDM01160']
TCGA DESC 32
TCGA DESC ['MB' 'UNCLASSIFIED' 'SKCM' 'BLCA' 'CESC' 'GBM' 'LUAD' 'LUSC' 'SCLC'
 'MESO']
```

- Columns 'DATASET' and 'NLME_RESULT_ID' have only one value 'GDSC2' and '343' respectively
- No information found on 'NLME_CURVE_ID' column.
 Assumption: R package (https://cran.r-project.org/web/packages/nlme/nlme.pdf)

- COSMIC_ID: Cell identifier from the COSMIC database.
- We could not find any information on how to incorporate the column in model training process by exploring official COSMIC educational videos and materials (https://youtu.be/bvY7wt9djG4)
- We failed to find the given
 COSMIC IDs on the official
 COSMIC dataset website


```
for col in data.columns[:7]:
    print(col, data[col].nunique())
    print(col, data[col].unique()[:10])
    print()

COSMIC_ID 969
COSMIC_ID [683667 684052 684057 684059 684062 684072 687448 687452 687455 687457]

CELL_LINE_NAME 969
CELL_LINE_NAME ['PFSK-1' 'A673' 'ES5' 'ES7' 'EW-11' 'SK-ES-1' 'COLO-829' '5637' 'RT4' 'SW780']

SANGER_MODEL_ID 969
SANGER_MODEL_ID ['SIDM01132' 'SIDM00848' 'SIDM00263' 'SIDM00269' 'SIDM00203' 'SIDM01111' 'SIDM00909' 'SIDM00807' 'SIDM0185' 'SIDM0160']
```

data[['COSMIC_ID', 'CELL_LINE_NAME', 'SANGER_MODEL_ID']].drop_duplicates()

	COSMIC_ID	CELL_LINE_NAME	${\bf SANGER_MODEL_ID}$
0	683667	PFSK-1	SIDM01132
1	684052	A673	SIDM00848
2	684057	ES5	SIDM00263
3	684059	ES7	SIDM00269
4	684062	EW-11	SIDM00203
964	1660035	SNU-61	SIDM00194
965	1660036	SNU-81	SIDM00193
966	1674021	SNU-C5	SIDM00498
967	1789883	DiFi	SIDM00049
2360	1290906	HCC202	SIDM00870

969 rows × 3 columns

Columns with Minimal Information Contribution

Removing the columns 'TCGA_DESC',
'PUTATIVE_TARGET', and 'PATHWAY_NAME'
results in less than 1% information loss

```
print(data.shape)
data2 = data[[
    'CELL LINE NAME',
   # 'TCGA DESC',
    'DRUG_NAME',
    # 'PUTATIVE TARGET',
    # 'PATHWAY NAME',
    'MIN CONC',
    'MAX CONC',
    'LN IC50']].drop duplicates()
print(data2.shape)
data3 = data2[[
    'CELL LINE NAME',
    # 'TCGA DESC',
    'DRUG NAME',
    # 'PUTATIVE_TARGET',
   # 'PATHWAY_NAME',
    'MIN CONC',
    'MAX CONC'
   ]].drop duplicates()
print(data3.shape)
print("Data Loss:", round((data2.shape[0]-data3.shape[0])*100/data2.shape[0], 2), "%")
(242036, 19)
(242036, 5)
(239995, 4)
Data Loss : 0.84 %
```

Columns with Minimal Information Contribution

	PUTATIVE_TARGET	count
0	NaN	27155
1	PARP1, PARP2	4714
2	MEK1, MEK2	4547
3	TOP1	4325
4	EGFR	3836
181	Induces reactive oxygen species	225
182	RSK, AURKB, PIM1, PIM3	225
183	EGLN1	225
184	TBK1, PDK1 (PDPK1), IKK, AURKB, AURKC	225
185	AR	225

186 rows × 2 columns

	PATHWAY_NAME	count
0	Unclassified	24979
1	PI3K/MTOR signaling	22724
2	Other	21402
3	DNA replication	17650
4	Other, kinases	17277
5	ERK MAPK signaling	13350
6	Genome integrity	12221
7	Cell cycle	11620
8	Apoptosis regulation	10828
9	Chromatin histone methylation	10612

	DRUG_ID	DRUG_NAME
0	1803	Acetalax
1	1804	Acetalax
2	1811	Dactinomycin
3	1911	Dactinomycin
4	1007	Docetaxel
5	1819	Docetaxel
6	1200	Fulvestrant
7	1816	Fulvestrant
8	1627	GSK343
9	2037	GSK343

Chosen Columns from the Dataset

	CELL_LINE_NAME	DRUG_NAME	MIN_CONC	MAX_CONC	LN_IC50
0	PFSK-1	Camptothecin	0.000100	0.1	-1.463887
1	A673	Camptothecin	0.000100	0.1	-4.869455
2	ES5	Camptothecin	0.000100	0.1	-3.360586
3	ES7	Camptothecin	0.000100	0.1	-5.0449 <mark>4</mark> 0
4	EW-11	Camptothecin	0.000100	0.1	-3.741991
•••		***			***
242031	SNU-175	N-acetyl cysteine	2.001054	2000.0	10.127082
242032	SNU-407	N-acetyl cysteine	2.001054	2000.0	8.576377
242033	SNU-61	N-acetyl cysteine	2.001054	2000.0	10.519636
242034	SNU-C5	N-acetyl cysteine	2.001054	2000.0	10.694579
242035	DiFi	N-acetyl cysteine	2.001054	2000.0	10.034825

242036 rows × 5 columns

Data Preprocessing Chemception

 $XAV939 \Rightarrow C1CSCC2=C1N=C(NC2=O)C3=CC=C(C=C3)C(F)(F)F \Rightarrow < rdkit.Chem.rdchem.Mol object at 0x7d610a1e8dd0> \Rightarrow [[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], ...]]$

molimage

Input: Takes a molecular object (mol).

Grid Creation: It creates a 2D grid based on the molecule's dimensions, which helps in organizing data.

Coordinates: Calculates the positions of atoms and bonds in the molecule.

Bonds: For each bond, it records:

Bond Order: Indicates the strength/type of the bond.

Atoms: For each atom, it captures:

- Atomic Number: Identifies the type of element.
- Gasteiger Charges: Represents the charge on the atom.
- **Hybridization**: Describes the bonding characteristics of the atom.

Image Augmentation

Rotation: Randomly rotates images up to 180 degrees.

Width/Height Shift: Shifts images horizontally and vertically by 10% of the total size.

Fill Mode: Fills any empty pixels (due to transformations) with a constant value (0, black).

Flipping: Randomly flips images horizontally and vertically.

Input Input Input **Inception Layer** MaxPooling2D

Evaluation Metrics

Root Mean Squared Error

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n(\hat{y}_i - y_i)^2}$$

Mean Absolute Error

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Mean absolute percentage error

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right| \times 100$$

$$R^2$$

$$R^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2}$$

Results

Results

Model	R-Squared	RMSE	MAE	MAPE
Chemception (128)	0.58	1.81	1.43	2.27%
Chemception (64)	0.56	1.96	1.42	2.45%

Data Preprocessing Fingerprints

Morgan vs. MACCS Fingerprints

Morgan Fingerprints

- **Type**: Circular, data-driven (e.g., ECFP).
- Generated from: Local atom environments (up to a defined radius).
- Length: Varies, commonly 1024 or 2048 bits.
- Key Features:
 - Captures detailed atom connectivity and environment.
 - Customizable (adjust radius and bit size).
 - Commonly used in virtual screening and machine learning.
- Advantages: Highly flexible and scalable for large datasets.

MACCS Fingerprints

- **Type**: Predefined substructure-based.
- Generated from: 166 predefined chemical substructures.
- Length: Fixed at 166 bits.
- Key Features:
 - Simple, easy-to-interpret (each bit maps to a known substructure).
 - Good for substructure searching.
- Advantages: Fast, standardized, and intuitive.

Morgan and MACCS capture two distinct kinds of information, which reduces redundancy.

Fingerprint

Results

Results

Model	R-Squared	RMSE	MAE	MAPE	
Fingerprint (128)	0.88	0.99	0.74	0.80%	
Fingerprint (64)	0.87	1.01	0.78	0.81%	

Significance Testing

- T-statistics determines whether to reject the null hypothesis, which typically states that there is no effect or no difference between groups.
- P-value indicates the likelihood that the observed difference between the true and predicted values could have occurred by random chance under the null hypothesis

Model	T-statistic	P-value
Chemception(128)	-18.66	0.00
Fingerprint(128)	1.60	0.11

Conclusion

- 1. **Superior Performance**: The Morgan and MACCS fingerprints-based model outperforms the Chemception model across all validation metrics.
- 2. **Variance Capture**: The fingerprint model explains a significant portion of the variance in drug reactivity, whereas the Chemception model struggles in this regard.
- 3. **Predictive Accuracy**: The fingerprint model demonstrates better predictive accuracy and lower error rates compared to the Chemception approach.
- 4. **Effectiveness of Traditional Methods**: Traditional chemical fingerprinting methods are more effective for modeling drug sensitivity in cancer cells than the more complex Chemception method.
- 5. **Chemception Limitations**: Chemception has difficulty capturing detailed molecular relationships, especially for molecules with polar covalent bonds.

Github for further readinghttps://github.com/swapniljha001/PrecisionMedicine/