

SoundPort® * Controller

AD1817A

FEATURES

Compatible with Microsoft PC 97 Logo Requirements Supports Applications Written for Windows® 95, Windows 3.1, Windows NT, SoundBlaster® Pro, AdLib®/OPL3®

Stereo Audio 16-Bit ∑∆ Codec

MPC Level-3 Mixer
ISA Plug and Play Compatible
16-Bit Address Decode

Dual Type F FIFO DMA Support

MPU-401 Compatible MIDI Port

Supports Wavetable Synthesizers

Integrated Enhanced Digital Game Port
Integrated OPL3 Compatible Music Synthesizer
Software & Hardware Volume Control
Full-Duplex Capture and Playback Operation at
Different Sample Rates
1 Hz Resolution Programmable Sample Rates from
5.7 kHz to 55.2 kHz
ACPI Power Management Modes
Operation from +5 V Supply
Built-In 24 mA Bus Drivers
100-Lead PQFP Package

PRODUCT OVERVIEW

The AD 1817A SoundPort® Controller is a single chip Plug and Play multimedia audio subsystem for concurrently processing

*SoundPort is a registered trademark of Analog Devices, Inc. All trademarks are the property of their respective holders.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

multiple digital streams of 16-bit stereo audio in personal computers. The AD 1817A maintains full legacy compatibility with applications written for SoundBlaster Pro and AdLib, while servicing Microsoft PC 97 application requirements. The AD 1817A includes an internal OPL 3 compatible music synthesizer, an MPU-401 UART and a joystick interface with a

built-in timer. The AD 1817A on-chip Plug and Play routine provides configuration services for all integrated logical devices. Using an external E^2PROM allows the AD 1817A to decode up to three additional external user-defined logical devices such as modem and CD-ROM .

TABLE OF CONTENTS

FEATURES	1
PRODUCT OVERVIEW	1
SPECIFICATIONS	3
PIN CONFIGURATION	9
PIN FUNCTION DESCRIPTION	10
HOST INTERFACE	L 4
REFERENCES	15
ISA INTERFACE 1	16
AD 1817A Chip Registers	16
AD 1817A Plug and Play Device Configuration Registers 1	
Sound System Direct Registers	18
Sound System Indirect Registers	
SB Pro; Adlib Registers	
MIDI and MPU-401 Registers	
Game Port Register	
APPENDIX A.	
PLUG AND PLAY INTERNAL ROM	35
PLUG AND PLAY KEY and "ALTERNATE KEY"	. "
SEQUENCES	36
USING AN EEPROM WITH THE AD 1817A 3	37
AD 1817A FLAG BYTES	37
USING THE AD1817A WITHOUT AN EEPROM 3	39
PIN MUXING IN THE AD1817A	39
PROGRAMMING EXTERNAL EEPROMS	11
REFERENCE DESIGNS AND DEVICE DRIVERS 4	11
OUTLINE DIMENSIONS	14

Figures	
Functional Block Diagram	1
Figure 1. PIO Read Cycle	6
Figure 2. PIO Write Cycle	6
Figure 3. DM A Read Cycle	
Figure 4. DMA Write Cycle	
Figure 5. Codec Transfers	
Figure 6. Reset Pulse Width	
Figure 7. Codec Transfers	
Figure 8. Typical Application Circuit 4	
Figure 9. AD 1817A Frequency Response Plots 4.	3
Tables	
Table I. Chip Register Diagram	6
Table II. Logical Devices and Compatible Plug and	
Play D evice D rivers	7
Table III. Logical Device Configuration	7
Table IV. Sound System Direct Registers	8
Table V. Codec Transfers 2	2
Table VI. Indirect Register M ap and Reset/D efault States . 2	
Table VII. Sound System Indirect Registers 2	
Table VIII. SoundBlaster Pro ISA Bus Registers	
Table IX. AdLib ISA Bus Registers	
Table X. MIDIISA Bus Registers	
Table XI. Game Port ISA Bus Registers 3	4
Table XIII. AD1817A Pin Muxing	9

-2- REV. 0

SPECIFICATIONS

STANDARD TEST CONDITION OTHERWISE NOTED	NS UNLESS		DAC Test Conditions 0 dB Attenuation
T emperature	25	°C	Input Full Scale
Digital Supply (V _{DD})	5.0	V	16-Bit Linear M ode
Analog Supply (V _{CC})	5.0	V	100 kΩ Output Load
Sample Rate (F _S)	48	kH z	M ute Off
Input Signal Frequency	1008	Ηz	M easured at Line Output
Audio Output Passband	20 H z to 2	20 kH z	ADC Test Conditions
V _{IH}	5.0	V	0 dB Gain
V _{IL}	0	V	Input –3 dB Relative to Full Scale Line Input Selected 16-Bit Linear Mode

ANALOG INPUT

Parameter	Min	Тур	Max	Units
Full-Scale Input Voltage (RM S Values Assume Sine Wave Input) PHONE_IN, LINE, SYNTH, CD	6	1 2.83		V rms V p-p
MIC with $+20$ dB Gain (MGE = 1)	100	0.1 0.283		V rms V p-p
MIC with 0 dB Gain (MGE $= 0$)	10	1 2.83		V rms V p-p
Input Impedance* Input Capacitance*	WC P	17 15		kΩ pF

PROGRAMMABLE GAIN AMPLIFIER—ADC

Parameter	Min	Тур	Max	Units
Step Size (0 dB to 22.5 dB)	N SOLVE	1.5		-ID
(All Steps Tested)		1.5		dB
PGA Gain Range Span		22.5		dB

CD, SYNTH, MICROPHONE, INPUT ANALOG GAIN/ATTENUATORS/MUTE

Parameter	Min	Тур	Max	Units
CD, SYNTH, MIC				
Step Size: (All Steps T ested)				
+12 dB to -34.5 dB		1.5		dB
Input Gain/Attenuation Range		46.5		dB
PHONE IN				
Step Size 0 dB to -45 dB: (All Steps Tested)		3.0		dB
Input Gain/Attenuation Range		45		dB

REV. 0 -3-

DIGITAL DECIMATION AND INTERPOLATION FILTERS*

Parameter	Min Ty	p Max Units
Audio Passband	0	0.4×F _S Hz
Audio Passband Ripple		±0.09 dB
Audio Transition Band	$0.4 \times F_S$	$0.6 \times F_S$ Hz
Audio Stopband	$0.6 \times F_{S}$	∞ Hz
Audio Stopband Rejection	82	dB
Audio Group Delay		12/F _S sec
Group Delay Variation Over Passband		0.0 μs

ANALOG-TO-DIGITAL CONVERTERS

Parameter	Min	Тур	Max	Units
Resolution		16		Bits
Signal-to-Noise Ratio (SNR) (A-Weighted, Referenced to Full Scale)		-82	-80	dB
Total Harmonic Distortion (THD) (Referenced to Full Scale)		0.011	0.015	%
		-79	-76.5	dB
Audio D ynamic Range (-60 dB Input T H D +N Referenced to				
Full Scale, A-Weighted)	79	82		dB
Audio T H D +N (Referenced to Full-Scale)			0.019	%
		-76	-74.5	dB
Signal-to-Intermodulation Distortion* (CCIF M ethod)		82		dB
ADC Crosstalk*	20.0			
Line Inputs (Input L, Ground R, Read R; Input R, Ground L Read L)		-95	-80	dB
Line to MIC (Input LINE, Ground and Select MIC, Read ADC)	C. 1255	-95	-80	dB
Line to SYNTH		-95	-80	dB
Line to CD		-95	-80	dB
Gain Error (Full-Scale Span Relative to Nominal Input Voltage)			± 10	%
Interchannel Gain Mismatch (Difference of Gain Errors)			± 1	dB
ADC Offset Error	-22		+15	mV

DIGITAL-TO-ANALOG CONVERTERS

Parameter	Min	Тур	Max	Units
Resolution		16		Bits
Signal-to-Noise Ratio (SNR) (A-Weighted)		-83	-79	dB
Total Harmonic Distortion (THD)		0.006	0.009	%
		-85	-80.5	dB
Audio Dynamic Range (-60 dB Input THD+N Referenced to				
Full Scale, A-Weighted)	79	82		dB
Audio T H D +N (Referenced to Full Scale)		0.013	0.017	%
· ·		-78	-75.5	dB
Signal-to-Intermodulation Distortion* (CCIF M ethod)		95		dB
Gain Error (Full-Scale Span Relative to Nominal Input Voltage)			± 10	%
Interchannel Gain Mismatch (Difference of Gain Errors)			± 0.5	dB
DAC Crosstalk* (Input L, Zero R, M easure R OUT;				
Input R, Zero L, M easure L OUT)			-80	dB
Total Out-of-Band Energy (M easured from $0.6 \times F_5$ to 100 kH z				
at L OUT and R OUT)*			-45	dB
Audible Out-of-Band Energy (M easured from $0.6 \times F_S$ to 20 kHz				
at L OUT and R OUT)*			-75	dB

MASTER VOLUME ATTENUATORS (L_OUT AND R_OUT, PHONE_OUT)

Parameter	Min	Тур	Max	Units
M aster Volume Step Size (0 dB to -43.5 dB)		1.5		dB
M aster Volume Step Size (-43.5 dB to -46.5 dB)		1.5		dB
M aster Volume Output Attenuation Range Span		46.5		dB
M ute Attenuation of 0 dB Fundamental*	80			dB

-4- REV. 0

DIGITAL MIX ATTENUATORS*

Parameter	Min	Тур	Max	Units
Step Size: M usic, ISA		1.505		dB
Digital Mix Attenuation Range Span		94.8		dB

ANALOG OUTPUT

Parameter	Min	Тур	Max	Units
Full-Scale Output Voltage (at L OUT, R OUT, PHONE OUT)		2.8		V p-p
Output Impedance*			570	Ω
External Load Impedance*	10			kΩ
Output Capacitance*		15		pF
External Load Capacitance			100	pF
V _{REFX} *	2.10	2.25	2.40	V
V _{REFX} Current Drive*		100		μΑ
V _{REFX} Output Impedance*		6.5		kΩ
M ute Click (M uted Analog M ixers), M uted O utput M inus				
Unmuted Output at 0 dB		±5		mV

SYSTEM SPECIFICATIONS*

Parameter	Min	Тур	Max	Units
System F requency Response Ripple (Line In to Line Out) Differential Nonlinearity	1000	12	1.0 ±1	dB LSB
Phase Linearity Deviation	2 100	-	5	D egrees

STATIC DIGITAL SPECIFICATIONS

Parameter	Min	Тур	Max	Units
High Level Input Voltage (V _{IH})	2			V
XTALI	2.4			V
Low Level Input Voltage (V _{II})	7		0.8	V
High L evel Output Voltage (V_{OH}) , $I_{OH} = 8 \text{ mA} \uparrow$	2.4			V
Low Level Output Voltage (V_{OL}) , $I_{OL} = 8 \text{ mA}$			0.4	V
Input L eakage C urrent	-10		+10	μΑ
Output Leakage Current	-10		+10	μA

POWER SUPPLY

Parameter	Min	Тур	Max	Units
Power Supply Range—Analog	4.75		5.25	V
Power Supply Range—Digital	4.75		5.25	V
Power Supply Current			221	mA
Power Dissipation			1105	mW
Analog Supply Current			51	mA
Digital Supply Current			170	mA
ACPI Power-Down Modes				
D 0 Analog Supply Current		47		mA
D 0 Digital Supply Current		120		mA
D1 Analog Supply Current		20		mA
D1 Digital Supply Current		20		mA
D 2 Analog Supply Current		10		mA
D 2 Digital Supply Current		18		mA
D 3 Analog Supply Current		0		mA
D 3 Digital Supply Current		6		mA
Digital Power Supply Current—Power-Down			24	mA
Analog Power Supply Current—RESET			0.2	mA
Digital Power Supply Current—RESET			10	mA
Power Supply Rejection (100 mV p-p Signal @ 1 kHz)* (At Both Analog				
and Digital Supply Pins, Both ADCs and DACs)		40		dB

REV. 0

CLOCK SPECIFICATIONS*

Parameter	Min	Тур	Max	Units
Input Clock Frequency Recommended Clock Duty Cycle Power-Up Initialization Time	25	14.31818 50	75 500	MHz % ms

TIMING PARAMETERS (Guaranteed Over Operating Temperature Range)

Parameter	Symbol	Min	Тур	Max	Units
IOW/IOR Strobe Width	t _{st w}	100			ns
IOW/IOR Rising to IOW/IOR Falling	t _{BWDN}	80			ns
Write Data Setup to $\overline{\mathrm{IOW}}$ Rising	t _{wosu}	10			ns
IOW Falling to Valid Read Data	t _{RDDV}			40	ns
AEN Setup to IOW/IOR Falling	t _{AESU}	10			ns
AEN Hold from IOW/IOR Rising	t _{AEHD}	0			ns
Adr Setup to IOW/IOR Falling	t _{ADSU}	10			ns
Adr Hold from IOW/IOR Rising	t _{ADHD}	0			ns
DACK Rising to IOW/IOR Falling	t _{DKSU}	20			ns
Data Hold from $\overline{\text{IOR}}$ Rising	t _{DHD1}			2	ns
D ata Hold from $\overline{\text{IOW}}$ Rising	t _{DHD2}	15			ns
DRQ Hold from IOW/IOR Falling	t _{DRHD}	1000		25	ns
DACK Hold from IOW/IOR Rising	t _{DKHD}	10			ns
Data [SDI] Input Setup Time to SCLK*	t _S	15			ns
Data [SDI] Input Hold Time from SCLK*	t _H	10			ns
Frame Sync [SD FS] H I Pulse Width*	t _{FSW}	100	80		ns
Clock [SCLK] to Frame Sync [SDFS]	1.25	100			
Propagation Delay*	t _{PD}			15	ns
Clock [SCLK] to Output Data [SDO] Valid*	t_{DV}	- 5%		15	ns
RESET Pulse Width	t _{RPWL}	100			ns
BCLK HI Pulse Width	t _{DBH}	25			ns
BCLK LO Pulse Width	t _{DBL}	25			ns
BCLK Period	t _{DBP}	50			ns
LRCLK Setup	t _{DLS}	5			ns
SDATA Setup	t _{DDS}	5			ns
SDATA Hold	t _{DDH}	5			ns

${\tt NOTES}$

 \dagger (All ISA pins MIDI_OUT IOL = 24 mA. Refer to pin description for individual output drive levels.

Specifications subject to change without notice.

Figure 1. PIO Read Cycle

Figure 2. PIO Write Cycle

 $^{{}^{*}\}text{G}$ uaranteed, not tested.

Figure 3. DMA Read Cycle

Figure 5. DMA Write Cycle

Figure 4. Codec Transfers

Figure 6. Reset Pulse Width

REV. 0 -7-

ABSOLUTE MAXIMUM RATINGS*

Parameter	Min	Max	Units
Power Supplies			
Digital (V _{DD})	-0.3	6.0	V
Analog (V _{CC})	-0.3	6.0	V
Input Current (Except Supply Pins)		± 10.0	mA
Analog Input Voltage (Signal Pins)	-0.3	$V_{CC} + 0.3$	V
Digital Input Voltage (Signal Pins)	-0.3	$V_{DD} + 0.3$	V
Ambient Temperature (Operating)	0	+70	°C
Storage T emperature	-65	+150	°C

^{*}Stresses greater than those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ENVIRONMENTAL CONDITIONS

Ambient Temperature Rating:

 $T_{AMB} = T_{CASE} - (PD \times \theta_{CA})$ $T_{CASE} = C$ ase T emperature in °C PD = P ower D issipation in W

 $\begin{array}{ll} \theta_{\text{CA}} & = \text{T hermal Resistance (C ase-to-A mbient)} \\ \theta_{\text{JA}} & = \text{T hermal Resistance (Junction-to-A mbient)} \\ \theta_{\text{IC}} & = \text{T hermal Resistance (Junction-to-C ase)} \end{array}$

Package	θ_{JA}	θ _{JC}	θ_{CA}	
PQFP	77°C/W	7°C /W	70°C/W	

ORDERING GUIDE

Model	Temperature	Package	Package	
	Range	Description	Option*	
AD 1817AJS	0°C to +70°C	100-Lead PQFP	S-100	

^{*}S = Plastic Quad Flatpack.

CAUTION.

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 1817A features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

The AD 1817A latchup immunity has been demonstrated at \geq +100 mA/-80 mA on all pins when tested to Industry Standard/JEDEC methods.

-8- REV. 0

PIN CONFIGURATION 100-Lead PQFP (S-100)

NC = NO CONNECT

REV. 0 _9_

PIN FUNCTION DESCRIPTIONS

Analog Signals

Pin Name	PQFP	I/O	Description
MIC	44	I	Microphone Input. The MIC input may be either line-level or -20 dB from line-level (the difference being made up through a software controlled 20 dB gain block). The mono MIC input may be sent to the left and right channel of the ADC for conversion, or gained/attenuated from +12 dB to -34.5 dB in 1.5 dB steps and then summed with left and right line OUT before the Master Volume stage.
L_LINE	42	1	Left Line-Level Input. The left line-level input may be: sent to the left channel of the ADC; gained/attenuated from +12 dB to -34.5 dB in 1.5 dB steps and then summed with left line OUT.
R_LINE	41	I	Right Line-Level Input. The right line-level input may be: sent to the right channel of the ADC; gained/attenuated from +12 dB to -34.5 dB in 1.5 dB steps and then summed with right line OUT.
L_SYNTH	46	1	L eft Synthesizer Input. The left MIDI upgrade line-level input may be: sent to the left channel of the ADC; gained/attenuated from +12 dB to -34.5 dB in 1.5 dB steps and then summed with left line OUT.
R_SYNTH	45	1	Right Synthesizer Input. The right MIDI upgrade line-level input may be: sent to the right channel of the ADC; gained/attenuated from +12 dB to -34.5 dB in 1.5 dB steps and then summed with right line OUT.
L_CD	48	1	Left CD Line-Level Input. The left CD line-level input may be: sent to the left channel of the ADC; gained/attenuated from +12 dB to -34.5 dB in 1.5 dB steps and then summed with left line OUT.
R_CD	47	I	Right CD Line-Level Input. The right CD line-level input may be: sent to the right channel of the ADC; gained/attenuated from +12 dB to -34.5 dB in 1.5 dB steps and then summed with right line OUT.
L_OUT	30	0	Left Output. Left channel line-level post-mixed output. The final stage passes through the M aster Volume block and may be attenuated 0 dB to -45 dB in 1.5 dB steps.
R_OUT	29	0	Right Output. Right channel line-level post-mixed output. The final stage passes through the M aster Volume block and may be attenuated 0 dB to -45 dB in 1.5 dB steps.
PHONE_IN	43	1	Phone Input. Line-level input from a DAA/modem chipset.
PHONE_OUT	28	0	Phone Output. Line-level output from a DAA/modem chipset.

-10- REV. 0

Parallel Interface (All Outputs are 24 mA Drivers)

Pin Name	PQFP	I/O	Description
PC_D[7:0]	85-88, 91-94	I/O	Bidirectional ISA Bus PC Data, 24 mA drive. Connects the AD 1817A to the low byte data on the bus.
IRQ(x)*	75–81, 83	0	Host Interrupt Request, 24 mA drive. IRQ (3)/IRQ (9), IRQ(5), IRQ(7), IRQ(9)/IRQ (14), IRQ(10)/IRQ(4), IRQ(11)/IRQ (9)/IRQ (4), IRQ(12)/IRQ(13), IRQ(15)/IRQ (11). Active HI signals indicating a pending interrupt.
DRQ(x)	72-74	0	DMA Request, 24 mA drive. DRQ(0), DRQ(1), DRQ(3). Active HI signals indicating a request for DMA bus operation.
PC_A[15:0]	4-19	1	ISA Bus PC Address. Connects the AD 1817A to the ISA bus address lines.
AEN	20	1	Address Enable. Low signal indicates a PIO transfer.
DACK (x)	59-61	I	DMA Acknowledge. DACK(0), DACK(1), DACK(3). Active LO signal indicating that a DMA operation can begin.
ĪOR	22	ı	I/O Read. Active LO signal indicates a read operation.
$\overline{\text{IOW}}$	21	ı	I/O Write. Active H I signal indicates a write operation.
RESET	25	I	Reset. Active HI.

Game Port

Pin Name	PQFP	I/O	Description	
A_1	50		Game Port A, Button #1.	
A_2	49	L	Game Port A, Button #2.	
A_X	54	1 -2	G ame Port A, X-Axis.	
A_Y	53	100	Game Port A, Y-Axis.	
B_1	52	OF	Game Port B, Button #1.	
B_2	51	1	Game Port B, Button #2.	
B_X	56	1 7	G ame Port B, X-Axis.	
B_Y	55	1	Game Port B, Y-Axis.	

MIDI Interface Signal (24 mA Drivers)

Pin Name	PQFP	I/O	Description
MIDI_IN	66	I	RXD MIDI Input. This pin is typically connected to Pin 15 of the game port connector.
MIDI_OUT	67	0	TXD MIDI Output. This pin is typically connected to Pin 12 of the game port connector.

REV. 0 -11-

Miscellaneous Analog Pins

Pin Name	PQFP	I/O	Description				
V _{REF_X}	36	0	Voltage Reference. Nominal 2.25 volt reference available for dc-coupling and level-shifting. V_{REF_X} should not be used to sink or source signal current.				
V_{REF}	35	I	Voltage Reference Filter. Voltage reference filter point for external by passing only.				
L_FILT	38	I	Left C hannel Filter. Requires a 1.0 μF to analog ground for proper operation.				
R_FILT	37	1	Right C hannel Filter. Requires a 1.0 μF to analog ground for proper operation.				
L_AAFILT	40	1	Left Channel Antialias Filter. This pin requires a 270 pF NPO capacitor to analog ground for proper operation.				
R_AAFILT	39	I	Right Channel Antialias Filter. This pin requires a 270 pF NPO capacitor to analog ground for proper operation.				

Crystal Pin

Pin Name	PQFP	I/O	Description
XTALO	64	0	14.31818 M H z C rystal O utput. If no C rystal is present leave X T A L O unconnected.
XTALI	63	EL	14.31818 M H z C lock. When using a crystal as a clock source, the crystal should be connected between the XTALI and XTALO pins. C lock input may be driven into XTALI in place of a crystal. When using an external clock, $V_{\rm IH}$ must be 2.4 V rather than the $V_{\rm IH}$ of 2.0 V specified for all other digital inputs.

External Logical Devices

Pin Name	PQFP	I/O	Description
LD_IRQ*	100		Logical Device IRQ.
LD_DACK*	99	0	Logical Device DACK.
LD_DRQ*	98		Logical Device DRQ.
LD_SEL*	97	0	Logical Device Select.
MDM_SEL*	83	0	M odem Chip Set Select.
MDM_IRQ*	82	I	M odem Chip Set IRQ.
LD_SEL1*	69	0	Logical Device (1) Select.
PN PR ST *	68	0	Plug and Play Reset.

-12- REV. 0

Hardware Volume Pins

Pin Name	PQFP	I/O	Description
VOL_DN*	2, 99, 100	I	M aster Volume D own. M odifies output level on pins L_OUT and R_OUT. C ontains a 10 k Ω internal pull-up resistor. When asserted LO, decreases M aster Volume by 1.5 dB/sec. M ust be asserted at least 25 ms to be recognized. When asserted simultaneously with VOL_UP, output is muted. Output level modification reflected in indirect register 0 \times 29.
VOL_UP* 1, 98 I		1	M aster Volume U p. M odifies output level on pins L_OUT and R_OUT. Contains a 10 k Ω internal pull-up resistor. When asserted L O, increases M aster Volume by 1.5 dB/sec. M ust be asserted at least 25 ms to be recognized. When asserted simultaneously with VOL_UP, output is muted. Output level modification reflected in indirect register 0 \times 29.
A_VOL	31	I	Analog Volume Control Input.

Control Pins

Pin Name	PQFP	I/O	Description
XCTL0*	68	0	External Control 0. The state of this pin (TTL HI or LO) is reflected in codec indexed register. This pin is an open drain driver.
XCTL1*	69	0	External Control 1. The state of this pin (TTL HI or LO) is reflected in codec indexed register. Open drain, 8 mA active 0.5 mA pull-up resistor.
RING*	69	I	Ring Indicator. U sed to accept the ring indicator flag from the DAA.

Power Supplies

Pin Name	PQFP	I/O	Description			
$\overline{V_{cc}}$	33	2100A	Analog Supply Voltage (+5 V).			
GNDA	34	36.5	Analog Ground.			
V_{DD}	23, 62, 71, 89, 95	F	Digital Supply Voltage (+5 V).			
GND	3*, 24, 65, 70, 84, 90, 96, 99*, 100*	I	D igital Ground.			
NC	26, 27, 32		N o Connect.			

Optional EEPROM Pins

Pin Name	PQFP	I/O	Description
EE_CLK	58	0	EEPROM Clock.
EE_DATA	57	1	EEPROM Data.

^{*}T he position of this pin location/function is dependent on the ${\tt EEPROM}\,$ data.

REV. 0 -13-

HOST INTERFACE

The AD1817A contains all necessary ISA bus interface logic on chip. This logic includes address decoding for all onboard resources, control and signal interpretation, DMA selection and control logic, IRQ selection and control logic, and all interface configuration logic.

The AD1817A supports a Type "F" DMA request/grant architecture for transferring data with the ISA bus through the 8-bit interface. The AD1817A also supports DACK preemption. Programmed I/O (PIO) mode is also supported for control register accesses and for applications lacking DMA control. The AD1817A includes dual DMA count registers for full-duplex operation enabling simultaneous capture and playback on separate DMA channels.

Codec Functional Description

The AD 1817A's full-duplex stereo codec supports business audio and multimedia applications. The codec includes stereo audio converters, complete on-chip filtering, MPC Level-2 and Level-3 compliant analog mixing, programmable gain and attenuation, a variable sample rate converter, extensive digital mixing and FIFOs buffering the Plug and Play ISA bus interface.

Analog Inputs

The codec contains a stereo pair of $\Sigma\Delta$ analog-to-digital converters (ADC). Inputs to the ADC can be selected from the following analog signals: mono (PHONE_IN), mono microphone (MIC), stereo line (LINE), external stereo synthesizer (SYNTH), stereo CD ROM (CD), and post-mixed stereo or mono line output (OUT).

Analog Mixing

M IC, SYNTH and CD can be mixed in the analog domain with the stereo line OUT from the $\Sigma\Delta$ digital-to-analog converters (DAC). Each channel of the stereo analog inputs can be independently gained or attenuated from +12 dB to -34.5 dB in 1.5 dB steps. The summing path for the mono inputs (M IC, and PHONE_IN to line OUT) duplicates mono channel data on both the left and right line OUT, which can also be gained or attenuated from +12 dB to -34.5 dB in 1.5 dB steps for M IC. The left and right mono summing signals are always identical being gained or attenuated equally.

Analog-to-Digital Datapath

The selector sends left and right channel information to the programmable gain amplifier (PGA). The PGA following the selector allows independent gain for each channel entering the ADC from 0 dB to 22.5 dB in 1.5 dB steps.

For supporting time correlated I/O echo cancellation, the ADC is capable of sampling microphone data on the left channel and the mono summation of left and right OUT on the right channel.

The codec can operate in either a global stereo mode or a global mono mode with left channel inputs appearing at both channels of the 16-bit $\Sigma\Delta$ converters. Data can be sampled at the programmed sampling frequency (from 4 kHz to 55.2 kHz with 1 Hz resolution).

Digital Mixing and Sample Rates

The audio ADC sample rate and the audio DAC sample rates are completely independent. The AD 1817A includes a variable sample rate converter that lets the codec instantaneously change and process sample rates from 4 kHz to 55.2 kHz with a resolution of 1 Hz. The in-band integrated noise and distortion artifacts introduced by rate conversions are below -90 dB.

Up to four channels of digital data can be summed together and presented to the stereo DAC for conversion. Each digital channel pair can contain information encoded at a different sample rate.

Digital-to-Analog Datapath

The internally generated music synthesizer data, and PCM data received from the ISA interface, passes through an attenuation mute stage. The attenuator allows independent control over each digital channel, which can be attenuated from 0 dB to -94.5 dB in 1.5 dB steps before being summed together and passed to the DAC, or the channel may be muted entirely.

Analog Outputs

The analog output of the DAC can be summed with any of the analog input signals. The summed analog signal enters the M aster Volume stage where each channel L_OUT, R_OUT and PHONE_OUT may be attenuated from 0 dB to -46.5 dB in 1.5 dB steps or muted.

Digital Data Types

The codec can process 16-bit twos-complement PCM linear digital data, 8-bit unsigned magnitude PCM linear data and 8-bit μ -law or A-law companded digital data as specified in the control registers. The AD 1817A also supports AD PCM encoded in the C reative SoundBlaster AD PCM formats.

ACPI Power-Down Modes

The AD 1817A complies with the four device power states defined in the ACPI Audio D evice Class Specification. The device power states support the On N ow Architecture, which works in conjunction with future operating systems from M icrosoft.

In the D 0 state, the A D 1817A is fully running. D 1 powers down the digital codec converters, and the OPL 3-compatible music synthesizer, lowering power consumption. The D 2 state powers down the analog and digital codec converters, and the OPL 3-compatible music synthesizer. The D 2 state keeps the analog mixer alive. D 3 places the AD 1817A into the lowest power state in which all device context is lost.

Host-Based Echo Cancellation Support

The AD 1817A supports time correlated I/O data format by presenting MIC data on the left channel of the ADC and the mono summation of left and right OUT on the right channel. The ADC sample rates are independent of the DAC sample rate allowing the AD 1817A to support ADC time correlated I/O data at 8 kHz and DAC data at any other sample rate in the range of 4 kHz to 55.2 kHz simultaneously.

Telephony Support

The AD 1817A contains a PHONE_IN input and a PHONE_OUT output. These pins are supplied so the AD 1817A may be connected to a modem chip set, a telephone handset or down-line phone.

WSS and SoundBlaster Compatibility

Windows Sound System software audio compatibility is built into the AD 1817A.

SoundBlaster emulation is provided through the SoundBlaster register set and the internal music synthesizer. SoundBlaster Proversion 2.01 functions are supported, including record and Creative SoundBlaster ADPCM.

Virtually all applications developed for SoundBlaster, Windows Sound System, AdLib and MIDI MPU-401 platforms run on the AD 1817A SoundPort® Controller. Follow the same development process for the controller as you would for these other devices.

-14- REV. 0

The AD 1817A contains SoundBlaster (compatible) and Sound System logical devices. You may find the following related development kits useful when developing AD 1817A applications.

D eveloper K it for SoundB laster Series, 2nd ed. © 1993, C reative L abs, Inc., 1901 M cC arthy Blvd., M ilpitas, CA 95035 M icrosoft W indows Sound System D river D evelopment K it (CD), V ersion 2.0, © 1993, M icrosoft C orp., O ne M icrosoft W ay, R edmond, WA 98052

The following reference texts can serve as additional sources of information on developing applications that run on the AD 1817A.

- S. De Furia & J. Scacciaferro, The MIDI Implementation Book, (© 1986, Third Earth, Pompton Lake)
- C. Petzold, Programming Windows: the Microsoft guide to writing applications for Windows 3.1, 3rd. ed., (© 1992, Microsoft Press, Redmond)
- K. Pohlmann, Principles of Digital Audio, (© 1989, Sams, Indianapolis)
- A. Stolz, The SoundBlaster Book, (\bigcirc 1993, Abacaus, Grand Rapids)
- J. Strawn, Digital Audio Engineering, An Anthology, (© 1985, K aufmann, Los Altos)

Y amamoto, MIDI Guidebook, 4th. ed., (© 1987, 1989, Roland Corp.)

Multimedia PC Capabilities

The AD 1817A is M PC-2 and M PC-3 compliant. This compliance is achieved through the AD 1817A's flexible mixer and the embedded chip resources.

Music Synthesis

The AD1817A includes an embedded music synthesizer that emulates industry standard OPL3 FM synthesizer chips and delivers 20 voice polyphony. The internal synthesizer generates digital music data at 22.05 kHz and is summed into the DACs digital data stream prior to conversion. To sum synthesizer data with the ADC output, the ADC must be programmed for a 22.05 kHz sample rate.

The synthesizer is a hardware implementation of Eusynth-1+ code that was developed by Euphonics, a research and development company that specializes in audio processing and electronic music synthesis.

MID

The primary interface for communicating M IDI data to and from the host PC is the compatible M PU-401 interface that operates in U ART mode. The M PU-401 interface has two built-in FIFOs: a 64 byte receive FIFO and a 16 byte transmit FIFO.

Game Port

An IBM -compatible game port interface is provided on chip. The game port supports up to two joysticks via a 15-pin D-sub connector. Joystick registers supporting the Microsoft

Direct Input standard are included as part of the register map. The AD1817A may be programmed to automatically sample the game port and save the value in the Joystick Position Data Register. When enabled, this feature saves up to 10% CPU MIPS by off-loading the host from constantly polling the joystick port.

Volume Control

The registers that control the M aster Volume output stage are accessible through the parallel port. M aster Volume output can also be controlled through a 2-pin hardware interface. One pin is used to increase the gain, the other pin attenuates the output and both pins together entirely mute the output. Once muted, any further activity of these pins will unmute the AD 1817A's output. The AD 1817A also contains an analog input for connecting to PCs with front panel potentiometers used to control the volume. The digital volume control, analog volume control and the software volume control may all be used in the same system.

Plug and Play Configuration

The AD 1817A is fully Plug and Play configurable. For mother-board applications, the built-in Plug and Play protocol can be disabled with a software key providing a back door for the BIOS to configure the AD 1817A's logical devices. For information on the Plug and Play mode configuration process, see the Plug and Play ISA Specification Version 1.0a (May 5, 1994). All the AD 1817A's logical devices comply with Plug and Play resource definitions described in the specification.

The AD 1817A may alternatively be configured using an optional Plug and Play Resource ROM . When the EEPROM is present, some additional AD 1817A muxed-pin features become available. For example, pins that control an external modem logical device are muxed with the DSP serial port. Some of these pin option combinations are mutually exclusive (see Appendix A for more information).

REFERENCES

The AD 1817A also complies with the following related specifications; they can be used as an additional reference to AD 1817A operations beyond the material in this data sheet.

Plug and Play ISA Specification, Version 1.0a, © 1993, 1994, Intel Corp. & Microsoft Corp., One Microsoft Way, Redmond, WA 98052

M ultimedia PC L evel 2 Specification, © 1993, M ultimedia PC M arketing C ouncil, 1730 M St. NW, Suite 707, W ashington, DC 20036

MIDI 1.0 Detailed Specification & Standard MIDI Files 1.0, © 1994, MIDI M anufacturers Association, PO Box 3173 La Habra, CA 90632-3173

R ecommendation G.711-Pulse Code M odulation (PCM) Of Voice F requencies (μ -Law & A-Law Companding), The International T elegraph and T elephone Consultative Committee IX Plenary Assembly Blue Book, Volume III - Fascicle III.4, General Aspects Of Digital T ransmission Systems; T erminal Equipment's, Recommendations G.700 - G.795, (Geneva, 1988), ISBN 92-61-03341-5

IM A Digital Audio Doc-Pac (IM A-ADPCM), © 1992, Interactive M ultimedia Association, 48 M aryland Avenue, Suite 202, Annapolis, M D 21401-8011

REV. 0 -15-

ISA INTERFACE AD 1817A Chip Registers

Table I, Chip Register Diagram, details the AD 1817A direct register set available from the ISA Bus. Prior to any accesses by the host, the PC I/O addressable ports must be configured using the Plug and Play Resources.

Table I. Chip Register Diagram

Register Type-Register Name	Register PC I/O Address
Plug and Play ADDRESS WRITE_DATA READ_DATA	0x279 0xA79 Relocatable in Range 0x203 – 0x3FF
Sound System Codec CODEC REGISTERS	0x(SS Base+0 - SS Base+15) Relocatable in Range 0x100 - 0x3FF See Table V
SoundB laster Pro M usic0: Address (w), Status (r) M usic0: D ata (w) M usic1: Address (w) M usic1: D ata (w) M ixer Address (w) M ixer D ata (w) R eset (w) M usic0: Address (w) M usic0: D ata (w) Input D ata (r) Status (r), O utput D ata (w) Status (r) M usic0: Address (w), Status (r) M usic0: D ata (w) M usic1: Address (w) M usic1: D ata (w)	0x(SB Base) Relocatable in Range 0x010 - 0x3F0 0x(SB Base+1) 0x(SB Base+2) 0x(SB Base+3) 0x(SB Base+4) 0x(SB Base+5) 0x(SB Base+6 or 7) 0x(SB Base+8) 0x(SB Base+8) 0x(SB Base+9) 0x(SB Base+A or +B) 0x(SB Base+C or +D) 0x(SB Base+E or +F) 0x(AdLib Base) Relocatable in Range 0x100 - 0x3F8 0x(AdLib Base+1) 0x(AdLib Base+2) 0x(AdLib Base+3)
M IDI M PU-401 M IDI D ata (r/w) M IDI Status (r), C ommand (w)	0x(MIDI Base) Relocatable in Range 0x100 - 0x3F8 0x(MIDI Base+1)
G ame Port G ame Port I/O	0x(G ame Base +0 to G ame Base +7) Relocatable in Range 0x100 - 0x3F 8

AD 1817A Plug and Play Device Configuration Registers

The AD 1817A may be configured according to the Intel/Microsoft Plug and Play Specification using the internal ROM. Alternatively, the PnP configuration sequence may be bypassed using the "Alternate K ey Sequence" described in Appendix A.

The operating system configures/reconfigures AD 1817A Plug and Play Logical Devices after system boot. There are no "boot-devices" among the Plug and Play Logical Devices in the AD 1817A. Non-Plug and Play BIOS systems configure the AD 1817A's Logical Devices after boot using drivers. Depending on BIOS implementations, Plug and Play BIOS systems may configure the AD 1817A's Logical Devices before POST or after Boot. See the Plug and Play ISA Specification Version 1.0a for more information on configuration control. To complete this configuration, the system reads resource data from the AD 1817A's on-chip resource ROM and from any other Plug and Play cards in the system, and then arbitrates the configuration of system resources with a heuristic algorithm. The algorithm maximizes the number of active devices and the acceptability of their configurations.

The system considers all Plug and Play logical device resource data at the same time and makes a conflict-free assignment of resources to the devices. If the system cannot assign a conflict-free resource to a device, the system does not configure or activate the device. All configured devices are activated.

The system's Plug and Play support selects all necessary drivers, starts them and maintains a list of system resources allocated to each logical device. As an option, system resources can be reassigned at runtime with a Plug and Play Resource M anager. The custom setup created using the manager can be saved and used automatically on subsequent system boots.

-16- REV. 0

Plug and Play Device IDs (embedded in the logical device's resource data) provide the system with the information required to find and load the correct device drivers. One custom driver, the AD 1817A Sound System driver from Analog Devices, is required for correct operation. In the other cases (MIDI, Game Port), the system can use generic drivers. Table II lists the AD 1817A's Logical Devices and compatible Plug and Play device drivers.

Table II. Logical Devices and Compatible Plug and Play Device Drivers

Logical Device Number	E mulated D evice	Compatible (Device ID)	Device ID	
0	Sound System		AD S7180	
1	M I D I M P U 401 Compatible	PN PB 006	AD S7181	
2	G ame/Joystick Port	PN PB 02F	AD S7182	

The configuration process for the logical devices on the AD 1817A is described in the Plug and Play ISA Specification Version 1.0a (M ay 5, 1994). The specification describes how to transfer the logical devices from their start-up Wait For K ey state to the Config state and how to assign I/O ranges, interrupt channels and DMA channels. See Appendix A for an example setup program and specific Plug and Play resource data.

Table III describes in detail the I/O Port Address Descriptors, DMA Channels, Interrupts for the functions required for the AD1817A Logical Device groups.

Table III. Logical Device Configuration

LDN	PnP Function	Description
0	I/O Port Address D escriptor (0x60-0x61)	The SoundBlaster Pro address range is from 0x100 to 0x3F0. The typical address is 0x220. The range is 16-bytes long and must be aligned to a 16-byte memory boundary.
0	I/O Port Address D escriptor (0x62-0x63)	The AdLib address range is from 0x100 to 0x3F8. The typical address is 0x388. The range is 4-bytes long and must be aligned to an 8-byte memory boundary.
0	I/O Port Address D escriptor (0x64-0x65)	The Codec address range is from 0x100 to 0x3F 8. The range is 16-bytes long and must be aligned to a 16-byte memory boundary.
0	Interrupt Request Level Select (0x70-0x71)	This IRQ is shared between the SB Pro device and the Codec. These devices require one of the following IRQ channels: 5, 7, 9, 11, 12 or 15. Typically, the IRQ is set to 5 or 7 for this device.
0	DMA Playback Channel Select (0x74)	T his 8-bit channel is shared between the SB Pro device and the C odec for playback. T hese devices require one of the following D M A channels: 0, 1, 3. T ypically, D M A channel 1 is set.
0	DMA Capture Channel Select (0x75)	This the DMA channel used for capturing Codec data. The Codec operates in single-channel mode if a separate DMA channel for capture and playback is not assigned. The following DMA channels may be programmed: 0, 1, 3. DMA Channel 4 indicates single-channel mode.
1	I/O Port Address D escriptor (0x60-0x61)	The MPU-401 compatible device address range is 0x100 to 0x3FE. Typical configurations use 0x330. The range is 2-bytes long and must be aligned to a 2-byte memory boundary.
1	Interrupt Request Level Select (0x70-0x71)	The MIDI device requires one of the following IRQ channels: 5, 7, 9, 11, 12 or 15.
2	I/O Port Address D escriptor (0x60-0x61)	The Game Port address range is from 0x100 to 0x3F8. The typical address is 0x200. The range is 8-bytes long and must be aligned to an 8-byte memory boundary.

NOTE

DMA channel 4 indicates single-channel mode.

REV. 0 -17-

Sound System Direct Registers

The AD 1817A has a set of 16 programmable Sound System Direct Registers and 36 Indirect Registers. This section describes all the AD 1817A registers and gives their address, name and initialization state/reset value. Following each register table is a list (in ascending order) of the full register name, its usage and its type: (RO) Read Only, (WO) Write Only, (STKY) Sticky, (RW) Read Write and Reserved (res). Table IV is a map of the AD 1817A direct registers.

Table IV. Sound System Direct Registers

Direct									
Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SSBASE + 0	CRDY	VBL			INA	DR[5:0]	_	•	
SSBASE + 1	PI	CI	TI	VI	RES	RI	RES	SI	
SSBASE + 2				Indirect SS	Data [7:0]				
SSBASE + 3				Indirect SS	D ata [15:8]				
SSBASE + 4	RI	ES	PUR	COR	ORR	[1:0]		ORL [1:0]	
SSBASE + 5	PFH	PDR	PLR	PUL	CFH	CDR	CLR	CUL	
SSBASE + 6			_	PIO Playbac	k/Capture [7	[:0]	_	-	
SSBASE + 7				RESEI	RVED				
SSBASE + 8	TRD	DAZ	PFMT	[1:0]	PC/L	PST	PIO	PEN	
SSBASE +9	F	ES	CFMT	[1:0]	PC/L	CST	CIO	CEN	
SSBASE + 10		RI	ES		ADPN	DPDN	SU SP	RD_MODE	
SSBASE + 11				RESE	RVED				
SSBASE + 12		RESERVED							
SSBASE + 13	RESERVED								
SSBASE + 14			10.00	RESE	RVED		•		
SSBASE + 15			~ IN1	RESE	RVED			·	

[Base+0] Chip Status/Indirect Address

7	6	5	4	3	2	1	0	
CRDY	VBL	300	- E	NADR[5:0				RESET = [0x00]

IN AD R [5:0] (RW) Indirect Address for Sound System (SS). These bits are used to access the Indirect Registers shown in Table VIII.

All registers data must be written in pairs, low byte followed by high byte, by loading the Indirect SS D ata

Registers, (Base +2) and (Base +3).

VBL Volume Button Location. When using an EEPROM to configure the PnP state of the AD 1817A, this bit determines whether PQFP Pins 1 and 2 are used for VOL_UP and VOL_DN.

0 No Function

1 VOL UP and VOL DN

CRDY (RO) AD 1817A Ready. The AD 1817A asserts this bit when AD 1817A can accept data.

0 AD 1817A not ready

1 AD 1817A ready

[Base+1] Interrupt Status

TΙ

7	6	5	4	3	2	1	0	_
PI	CI	TI	VI	RES	RI	RES	SI	RESET = [0x00]

SI (RO) SoundBlaster generated Interrupt.

0 No interrupt

1 SoundBlaster interrupt pending

RI (RW) Ring Interrupt (Sticky, Write "0" to Clear).

0 No interrupt

1 An interrupt is pending due to a Hardware Ring pin being asserted

VI (RW) Volume Interrupt (Sticky, Write "0" to Clear).

0 No interrupt

1 An interrupt is pending due to Hardware Volume Button being pressed

(RW) Timer Interrupt. This bit indicates there is an interrupt pending from the timer count registers. (Sticky, Write "0" to Clear).

0 No interrupt

1 Interrupt is pending from the timer count register

-18- REV. 0

Δ	D1	21	74

CI (RW) Capture Interrupt. This bit indicates that there is an interrupt pending from the capture DMA count register. (Sticky, Write "0" to Clear). No interrupt 1 Interrupt is pending from the capture D M A count register РΙ (RW) Playback Interrupt. This bit indicates that there is an interrupt pending from the playback DMA count register. (Sticky, Write "0" to Clear). No interrupt 1 Interrupt is pending from the playback DMA count register [Base+2]Indirect SS Data Low Byte Indirect SS Data [7:0] RESET = [0xXX][Base+3] Indirect SS Data High Byte Indirect SS Data [15:8] RESET = [0xXX]Indirect Sound System Data. Data in this register is written to the Sound System Indirect Register specified by the Indirect SS address contained in INDAR [5:0], Sound System Direct Register [Base +0]. Data is written when the Indirect SS D ata [15:0] Data High Byte value is loaded. [Base+4] PIO Debug Λ RES PUR COR ORR[1:0] RESET = [0x00]All bits in this register are sticky until any write that clears all bits to 0. Overrange Left/Right detect. These bits record the largest output magnitude on the ADC right and left ORL/ORR (RO) [1:0] channels and are cleared to 00 after any write to this register. The peak amplitude as recorded by these bits is "sticky," i.e., the largest output magnitude recorded by these bits will persist until these bits are explicitly cleared. They are also cleared by powering down the chip. ORL/ORR Over/Under Range Detection 00 Less than -1 dB Underrange 01 Between -1 dB and 0 dB Underrange 10 Between 0 dB and 1 dB Overrange 11 Greater than 1 dB Overrange COR Capture Over Run. The codec sets (1) this bit when capture data is not read within one sample period after (RO) the capture FIFO fills. When COR is set, the FIFO is full and the codec discards any new data generated. codec clears this bit immediately after a 4 byte capture sample is read. PUR (RO) Playback Under Run. The codec sets (1) this bit when playback data is not written within one sample period after the playback FIFO empties. The codec clears (0) this bit immediately after a 4 byte playback sample is written. When PUR is set, the playback channel has "run out" of data and either plays back a mid-scale value or repeats the last sample. [Base+5] **PIO Status** RESET = [0x00]PUL CFH PFH PDR PLR CDR CLR CUL CUL (RO) Capture Upper/Lower Sample. This bit indicates whether the PIO capture data ready is for the upper or lower byte of the channel. 0 Lower byte ready Upper byte ready or any 8-bit mode 1 CLR (RO) Capture Left/Right Sample. This bit indicates whether the PIO capture data waiting is for the left channel ADC or the right channel ADC. Right channel 0

REV. 0 -19-

1

Left channel or mono

-20- REV. 0

PC/L	(RW)	Playback Companded/Linear Select. This bit selects between a linear digital representation of the audio signal or a nonlinear companded format for all output data. The type of linear PCM or the type of companded format is defined by PFMT [1:0]. 0 Linear PCM 1 Companded
PFMT [1:0]	(RW)	Playback Format. Use these bits to select the playback data format for output data according to Table VI and Figure 15.
DAZ	(RW)	DAC zero. This bit forces the DAC to zero. Repeat last sample Force DAC to Zero
TRD	(RW)	Transfer Request Disable. This bit enables or disables Codec DMA transfers during a Codec interrupt (indicated by the SS Codec Status register's INT bit being set [1]). This assumes Codec DMA transfers were enabled and the PEN or CEN bits are set. O Transfer Request Enable Transfer Request Disable

After setting format bits, sample data into the AD 1817A must be ordered according to Figure 7, T able V.

REV. 0 -21-

Figure 7. Codec Transfers

Table V. Codec Transfers

ST	FMT1FMT0C/L	Format	Byte 3 MSB LSB	Byte 2 MSB LSB	Byte 1 MSB LSB	Byte 0 MSB LSB
0	000	M ono L inear, 8-Bit U nsigned	Sample 3 8 Bits Left Channel	Sample 2 8 Bits Left Channel	Sample 1 8 Bits Left Channel	Sample 0 8 Bits L eft C hannel
1	000	Stereo Linear, 8-Bit Unsigned	Sample 1 8 Bits Right Channel	Sample 1 8 Bits Left Channel	Sample 0 8 Bits Right Channel	Sample 0 8 Bits Left Channel
0	001	M ono μ-L aw, 8-Bit C ompanded	Sample 3 8 Bits L eft Channel	Sample 2 8 Bits Left Channel	Sample 1 8 Bits Left Channel	Sample 0 8 Bits Left Channel
1	001	Stereo μ-L aw, 8-Bit C ompanded	Sample 1 8 Bits Right Channel	Sample 1 8 Bits L eft C hannel	Sample 0 8 Bits Right Channel	Sample 0 8 Bits Left Channel
0	010	M ono Linear 16-Bit Little Endian	Sample 1 Upper 8 Bits Left Channel	Sample 1 Lower 8 Bits Left Channel	Sample 0 U pper 8 Bits L eft C hannel	Sample 0 L ower 8 Bits L eft C hannel
1	010	Stereo Linear 16-Bit Little Endian	Sample 0 Upper 8 Bits Right Channel	Sample 0 Lower 8 Bits Right Channel	Sample 0 U pper 8 Bits L eft C hannel	Sample 0 L ower 8 Bits L eft C hannel
0	011	M ono A-L aw, 8-Bit C ompanded	Sample 3 8 Bits Left Channel	Sample 2 8 Bits Left Channel	Sample 1 8 Bits Left Channel	Sample 0 8 Bits Left Channel
1	011	Stereo A-L aw, 8-Bit C ompanded	Sample 1 8 Bits Right Channel	Sample 1 8 Bits Left Channel	Sample 0 8 Bits Right Channel	Sample 0 8 Bits L eft C hannel
0	100	R eserved				
1	100	R eserved				
0	101	R eserved				
1	101	R eserved				
0	110	M ono Linear, 16-Bit Big Endian	Sample 1 Lower 8 Bits Left Channel	Sample 1 U pper 8 Bits L eft C hannel	Sample 0 L ower 8 Bits L eft C hannel	Sample 0 U pper 8 Bits L eft C hannel
0	110	Stereo Linear, 16-Bit Big Endian	Sample 0 Lower 8 Bits Right+ Channel	Sample 0 U pper 8 Bits L eft C hannel	Sample 0 L ower 8 Bits L eft C hannel	Sample 0 U pper 8 Bits L eft C hannel
0	111	R eserved				
1	111	R eserved				

[Base+9]	C aptu	re Configura	ation						
	7	6	5	4	3	2	1	0	
	K	ES	CFMT	[1:0]	CC/L	CST	CIO	CEN	RESET = [0x00]
CEN	(RW)	C apture Er 0 D isab 1 E nab		enables or	disables data	capture.			
CIO	(RW)	C apture Pr 0 D M A 1 PIO). This bit d	etermines wh	ether the capt	ure data is tra	ansferred vi	ia DMA or PIO.
CST	(RW)	In stereo, t	he Codec alter Codec capture o	nates sampl	les between c	hannels to pro			dio data streams. nel input. For
CC/L	(RW)	nal or a not companded 0 Linea	ompanded/L in nlinear, compa d format is def ar PCM panded	anded forma	at for all outp				on of the audio sig- e type of
CFMT [1:0]	(RW)	C apture Fo Figure 7.	ormat. U se the	se bits to se	lect the form	at for capture	data accordin	g to the fol	lowing T able V and
[Base+10]	ACPI	Power-Dow	n Control		AND .	J. W			
	7	6	5	4	3	2	1	0	
		F	RES	8800	ADDN	DPDN	SUSP	RD_MOD	\overline{DE} RESET = $[0xXX]$
RD_M ODE	R ead 1	M ode. Enabl	es readback of	Sound Bla	ster and OPL	music synthe	sizer registers		
SUSP	Suspe	nd. Setting tl 0 Disab 1 Enab		ls Sound Bl	aster DMA tr	ansfer.			
DPDN		l Power-Dov nactive.	vn. Powers-do	wn digital ir	nterface funct	ions and inter	nal OPL mus	ic synthesiz	zer. Analog mixers
APDN	Analo	g Power-Dov	vn. Powers-do	wn all anald	g function. [igital interfac	e remains acti	ve.	
[Base+11]	Reser	ved							
	7	6	5	1	3	2	1	0	
	<i>'</i>		<u>J</u>	RES	ERVED				RESET = [0xXX]
[Base+13]	Reser	ved							
	7	6	5	4	3	2	1	0	
	,		<u> </u>	RES	ERVED				RESET = [0xF0]
[Base+14]	Reserv	ved .							
	7	6	5	4	3	2	1	0	
	,			RES	ERVED		-		RESET = [0xFF]
JAXIS [7:0]	(RO)	Iovstick Ax	is Low Byte.						
			-	cted by the J	SEL bits in t	he control reg	ister. A write	to this regi	ster starts a sam-
[Base+15]	Reserv	red							
_	7	6	5	4	3	2	1	0	
		·		RES	ERVED				\square RESET = [0xFF]

REV. 0 -23-

Sound System Indirect Registers Writing Indirect Registers

All Indirect Registers "M U ST" be written in pairs: low byte followed by high byte. The Indirect Address Register [SSBASE+0] holds the address for a register pair, the Indirect Low D ata Byte [SSBASE+2] is used to write low data byte and the Indirect High D ata Byte [SSBASE+3] is used to write the high data byte. The low data byte is held in the temporary register until the upper byte is written.

Programming Example

"Write Sample Rate for Voice Playback at 11,000 Hz (0x2AF8)"

1) Write [SSBASE +0] with 0x02 ; indirect register for voice playback sample rate

2) Write [SSBASE+2] with 0xF 8 ; low byte of 16-bit sample rate register 3) Write [SSBASE+3] with 0x2A ; high byte of 16-bit sample rate register

Reading Indirect Registers

All indirect registers can be individually read. The Sound System Indirect Address Register [SSBASE+0] holds the address for a register pair, the Indirect Low Data Byte [SSBASE+2] is used to read low data byte and Indirect High Data Byte [SSBASE+3] is used to read the High data byte.

Programming Example

"Read Sample Rate for Voice Playback set to 11,000 Hz (0x2AF8)"

1) Write [SSBASE+0] with 0x02 ; indirect register for voice playback sample rate 2) Read [SSBASE+2] ; low byte of 16-bit sample rate register set to 0xF8 3) Read [SSBASE+3] ; high byte of 16-bit sample rate register set to 0x2A

ISR Saves and Restores

For Interrupt Service Routines, ISRs, it is necessary to save and restore the Indirect Address and the Low Byte Temporary Data holding registers inside the ISR.

Programming Example

"Save/Restore during an ISR"

Beginning of ISR:

1) Read [SSBASE+0] ; save Indirect Address register to TMP_IA
2) Write [SSBASE+0] with 0x00; ; indirect Register for Low Byte Temporary Data
3) Read [SSBASE+2] ; save Low Byte Temporary data to TMP_LBT
4) ISR Code ; ISR routine

5) Write [SSBASE +2] with TMP_LBT ; restore Low Byte Temporary data TMP_LBT 6) Write [SSBASE +0] with TMP_IA ; restore Indirect Address Register to TMP_IA

7) Return from Interrupt ; return from ISR

-24- REV. 0

Table VI. Indirect Register Map and Reset/Default States

Address	Register Name	Reset/ Default State
00	Low Byte T M P	0xX X
01	Interrupt Enable and External Control	0x0102
02	Voice Playback Sample Rate	0x1F40
03	Voice Capture Sample Rate	0x1F40
04	Voice Attenuation	0x8080
05	FM Attenuation	0xXXXX
06	R eserved	0xXXXX
07	R eserved	0x8080
08	Playback Base Count	0x0000
09	Playback Current Count	0x0000
10	Capture Base Count	0x0000
11	Capture Current Count	0x0000
12	Timer Base Count	0x0000
13	Timer Current Count	0x0000
14	M aster Volume Attenuation	0x8888
15	CD Gain/Attenuation	0x8888
16	Synth Gain/Attenuation	0x8888
17	R eserved	0xXXXX
18	R eserved	0x8888
19	M ic Gain/Attenuation	0xC 888
20	ADC Source Select and ADC PGA	0x0000
32	Chip Configuration	0x00F0
33	R eserved	0xXXXX
34	R eserved	0xXXXX
35	R eserved	0xXXXX
36	R eserved	0xXXXX
37	R eserved	0x0000
38	R eserved	0xA C 44
39	PHONE OUT Gain Attenuation	0x8000
40	R eserved	0x0000
41	Hardware Volume Button Modifier	0xX X 1B
42	R eserved	0x0000
43	R eserved	0x0000
44	Power Down and Timer Control	0x0000
45	Version ID	0x0000
46	R eserved	0x0000

REV. 0 -25-

Table VII. Sound System Indirect Registers

			(High	Byte)								(Low	i Byte)				
ADDRESS	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	
00 (0x00)				R	ES							LBT	D [7:0]				
01 (0x01)	PIE	CIE	TIE	VIE	RES	RIE	RES	S1E			RE	S			XC1	XC0	
02 (0x02)				VPSR	[15.8]			•				VPSF	R [7:0]				
03 (0x03)				VC SR	[15:8]							VC SI	R [7:0]				
04 (0x04)	LVM	RES			LVA	[5:0]			RVM	RES			RVA [5:0] RFMA [5:0]				
05 (0x05)	LFMM	RES			LFM.	A [5:0]			RFMM	RES			RFM	1 A [5:0]			
06 (0x06)				R	ES							R	ES				
07 (0x07)	LS0M	RES			L SOA	A [5:0]			RES RSOM [5:0]								
08 (0x08)			•	PBC	[15:8]						•	PBC	[7:0]				
09 (0x09)				PCC	[15:8]							PC C	[7:0]				
10 (0x0A)				CBC	[15:8]							CBC	[7:0]				
11 (0x0B)				CCC	[15:8]							CCC	[7:0]				
12 (0x0C)				TBC	[15:8]							TBC	[7:0]				
13 (0x0D)				TCC	[15:8]							TCC	[7:0]				
14 (0x0E)	LMVM	RE	ES			LM VA [4:0]		RMVM	R	ES			RMVA [4	:0]		
15 (0x0F)	LCDM	RE	ES			LCDA [4:0]		RCDM	RI	ES			RCDA [4	:0]		
16 (0x10)	LSYM	RI	ES			LSYA [4:0]			RSYM	R	ES			RSYA [4:	:0]		
17 (0x11)	LVDM	RE	ES			LVDA [4:0]		RVDM	R	ES			RVDA [4	:0]		
18 (0x12)				R	ES					4		R	ES				
19 (0x13)	MCM	M 20	RES			M C A [4:0]			PIM	RI	ES			PIA [3:0)]	RES	
20 (0x14)	LAGC		LAS [2:0]			LAG	[3:0]		RAGC		RAS [2:0]			RA	G [3:0]		
32 (0x20)	WSE	CDE	RES	CNP		R	ES	-	0.40	7		R	ES				
33 (0x21)				R	ES			~ X%	0.0			R	ES				
34 (0x22)					ES			1/1/					ES				
35 (0x23)				R	ES		- N.YO	CA. 37				R	ES				
36 (0x24)				R	ES		2.3.3	77	MA. T	N			ES				
37 (0x25)				R	ES	-100			70.70	85.		R	ES				
38 (0x26)				R	ES	ACC		0.00	100			R	ES				
39 (0x27)	RES								POM	RI	ES			POA [4:0	0]		
40 (0x28)	RES											R	ES				
41 (0x29)	HVM INSEL HVMAS HVATN [4:0]								VMU VUP VDN BM [4:0]								
42 (0x2A)					ES	- 44	1727		RES								
43 (0x2B)			- 3	R	ES	(K. 1.)			RES								
44 (0x2C)	CPD	RES	PIW	PIR	PAA	¬ PDA	PDP	PTB	3D	PD 3D	GPSP			RES			
45 (0x2D)									VER [7:0]								
46 (0x2E)				RES	3.7			1				R	ES				

[00] I	NDIRE	CT LO	W BYTI	E TMP									DEFA	JLT =	[0xXX]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		RI	ES								LBTC	7:0]			

LBTD [7:0] Low Byte Temporary D ata holding latch for register pair writes; Written on any write to [SSBase + 2], Read from [SSBase + 2] when the indirect address is 0x00.

[01] I	NTERF	RUPT E	NABLE	AND	EXTER	NAL C	ONTRO	L					DEF	1 ULT =	[0x0102]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
PIE	CIE	TIE	VIE	RES	RIE	RES	SIE				RES			XC1	XC0
XC0	F	RW									e X C T L (e disabled			also mux	ed with
XC1	F	RW		rnal Coi _I -In Inte		T he stat	e of this	bit is re	eflected	on th	e X C T L :	l pin. X	CTL1 m	ay also be	e used for
SIE	F	RW	Sour 0 1		r Interru oundBla oundBla	ster Inte	rrupt di								
RIE	F	RW	Ring 0 1		pt Enab ing Intei ing Intei	rrupt dis									
VIE	F	RW		rupt rou V		l pushin nterrupt	g button disabled	s only s						M O D I F I change t	ER via he volume.

-26- REV. 0

AD1817A TIE RW Timer Interrupt Enable; Timer Interrupt disabled 0 Timer Interrupt enabled 1 Capture Interrupt Enable; CIE RW Capture Interrupt disabled Capture Interrupt enabled 1 PIE RW Playback Interrupt Enable; Playback Interrupt disabled 1 Playback Interrupt enabled [02] VOICE PLAYBACK SAMPLE RATE DEFAULT = [0x1F40]0 7 5 3 3 1 VPSR [15:8] VPSR [7:0] VPSR [15:0] Voice Playback Sample Rate. The sample rate can be programmed from 4 kH z to 55.2 kH z in 1 hertz increments. The default playback sample rate is 8 kH z. [03] VOICE CAPTURE SAMPLE RATE DEFAULT = [0x1F40]5 3 0 VCSR [15:8] VCSR [7:0] VCSR [15:0] Voice Capture Sample Rate. The sample rate can be programmed from 4 kHz to 55.2 kHz in 1 hertz increments. Iqnored if CNP bit in SS [32] = 0 in which case VPSR [15:0] controls capture rate. The default capture sample rate is 8 kHz. DEFAULT = [0x8080][04] VOICE ATTENUATION 5 5 6 3 2 RVM LVM RES LVA [5:0] RES RVA [5:0] Right Voice Attenuation for Playback channel. The LSB represents -1.5 dB, 000000 = 0 dB and the RVA [5:0] range is 0 dB to -94.5 dB. **RVM** Right Voice M ute. 0 = U nmuted. 1 = M uted. LVA [5:0] Left Voice Attenuation for Playback channel. The LSB represents -1.5 dB, 000000 = 0 dB and the range is 0 dB to -94.5 dB LVM Left Voice M ute. 0 = U nmuted, 1 = M uted. DEFAULT = [0x8080][05] FM ATTENUATION 0 7 LFMA [5:0] RFMM LFMM RES RES RFMA [5:0] Right F M usic Attenuation for the internal M usic Synthesizer. The LSB represents -1.5 dB, 000000 = 0 dB and RFMA [5:0] the range is 0 dB to -94.5 dB. Right F M usic M ute. 0 = U nmuted, 1 = M uted. RFMM LFM A [5:0] Left F M usic Attenuation for the internal M usic Synthesizer. The LSB represents -1.5 dB, 000000 = 0 dB and the range is 0 dB to -94.5 dB. LFMM Left F M usic M ute. 0 = U nmuted, 1 = M uted. DEFAULT = [0xXXXX][06] RESERVED 7 6 5 6 3 1

7

6

RES

RES

3

DEFAULT = [0xXXXX]

0

REV. 0 -27-

RES

RES

[07] RESERVED7 6 5

[OO] I	PLAY	васк в	ASE CO	UNT									DEFAU	LT = [0]	KOOOOJ
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
			PBC	[15.8]							PBC	[7:0]			
PBC [1	5:0]	loads th (PEN) transfer ate an in Base Co	e same on the same of the same	data into rted. Wh DMA o and relo uld alway	the Play ien PEN cycle. Th ad the Pl ys be pro	back C is asse e next layback gramm	urrent C rted, the transfer, C urren ned to N	ount reg Playbac , after zen t Count	gister. Yok Curre to is readwith the with the ytes div	ou must nt Cour ched in value i ided by	t load that decreathe Play the Play n the Play four, m	nis regis ments c /back C ayback inus on	value to t ter when once for e urrent Co Base Cou e ((Numb	Playbaci very fou ount, wi int. T he	k Enal r byte: II gene Playb
[09] I	PLAY	васк с	URREN	T COU	TI								DEFAUL	.T = [0	x0000
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
			PCC	[15:8]							PCC	[7:0]			
CC [1 [10]			EN is de	asserted.		C onta	ins the o	current P 7	layback 6	DM A (Count. I	Reads a	nd Writes DEFAU 2		
			CBC					- 67	0	J	CBC	[7:0]			
[11] 4	· A DT		software	e DMA b	ouffer mu			by four t				on.	umber By		
7	6 6	5 5	4	3	2	1	0	7	6	5	4	3	2	1	0
			CCC	[15:8]			- 11				CCC	[7:0]			
CC [:	15:0]			t Count easserted		C ontai	ns the c	urrent C	apture I	DMAC	ount. R	eading	and Writi	ing mus	t be d
[12]		R BASE	COUNT										DEFAU	LT = [0	x0000
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
			TBC	[15:8]							LBC	[7:0]			
TBC [15:0]	into the is assert (10 µs o ments o	Timer (ed, the T r 100 ms nce every	Current (Timer Cu s) is progr time per	Count re urrent Co rammed riod. The	gister. I ount re via the I e next c	Loading gister de PTB bit ount, aft	must be ecrement in SS [44 er zero is	done w s once fo l]. When reached	hen Tir or every TEisa in the T	ner Ena specifie sserted, imer C	ble (TE ed time the Tin urrent (er also loa i) is deass period. T ner Curre count regi ent Count	serted. Whe time he time nt Counster, will	hen - perio t decre gener
		into the is assert (10 µs o ments o	Timer (ed, the T r 100 ms nce every rupt and	Current (imer Cus) is progr time per reload th	Count re urrent Co rammed riod. The	gister. I ount re via the I e next c	Loading gister de PTB bit ount, aft	must be ecrement in SS [44 er zero is	done w s once fo l]. When reached	hen Tir or every TEisa in the T	ner Ena specifie sserted, imer C	ble (TE ed time the Tin urrent (i) is deass period. T ner Curre Count regi	erted. Whe time nt Counster, will t register	hen Terion perion t decre gener
		into the is assert (10 µs o ments o an inter	e Timer (red, the T r 100 ms nce every rupt and ENT CO 4	Current (imer Cu is) is progr time per reload th CUNT 3	Count re urrent Co rammed riod. The	gister. I ount re via the I e next c	Loading gister de PTB bit ount, aft	must be ecrement in SS [44 er zero is	done w s once fo l]. When reached	hen Tir or every TEisa in the T	ner Ena specificasserted, imer C the Tim	ble (TE ed time the Tin urrent C er Curr	i) is deass period. T ner Curre Count regi rent Count	erted. Whe time nt Counster, will t register	hen f perio t decre gener
[13]	TIME	into the is assert (10 µs o ments o an inter	Timer (ed, the T r 100 ms nce every rupt and	Current (imer Cu is) is progr time per reload th CUNT 3	Count re urrent Co rammed r riod. The e Timer	gister. I ount re via the I e next c Curren	L oading gister de PT B bit ount, aft t C ount	must be ecrement in SS [44 er zero is register v	done w s once for l]. When reached with the	hen Tir or every TE is a in the T value in	ner Ena specificasserted, imer C the Tim	ble (TE ed time the Tin urrent (ier Curr	is deass period. T ner Curre Count regi rent Count DEFAU	erted. Whe time ont Counster, will tregister	hen perio t decre gener
[13] 7	TIME 6	into the is assert (10 µs o ments o an inter R CURR 5	e Timer (ced, the Tr 100 ms nce every rupt and ENT CC	Current (Timer Cus) is prograve time per reload the Cunt 3 [15:8]	Count re urrent Co rammed riod. The e Timer	gister. I ount re via the I e next c C urren	L oading gister de PT B bit ount, aft t C ount	must be ecrement in SS [44 er zero is register v	done w s once for all. When reached with the w	hen Tir or every TE is a in the T value in	ner Ena specific asserted, imer C the Tim	ble (T Eed time the T in urrent C er C urr 3 [7:0]	is deass period. T ner Curre Count regi rent Count DEFAU	serted. Whe time of Counster, will tregister tregister 1	hen period decrease gene 0
[13] 7	TIME 6 15:0]	into the is assert (10 µs o ments o an inter R CURR 5	e Timer (ced, the Timer 100 ms nce every rupt and ENT CC ATCC) OMACueasserted	Current (Current (Cur	Count reurrent Courrent Courre	gister. I gount re via the le next con Curren	L oading gister de PT B bit ount, aft t C ount	must be ecrement in SS [44 er zero is register v	done w s once for all. When reached with the w	hen Tir or every TE is a in the T value in	ner Ena specific asserted, imer C the Tim	ble (T Eed time the T in urrent C er C urr 3 [7:0]	i) is deass period. T ner Curre Count regi rent Count DEFAU 2	serted. Whe time ont Counster, will tregister LT = [0] ust be do	/ hen period to decrep gene of the control of the c
7 TCC [:	TIME 6 15:0] MAST 6	into the is assert (10 µs o ments o an inter R CURR 5	e Timer (ced, the Timer 100 ms nce every rupt and ENT CC ATCC) OMACueasserted	Current (Current (C) imer Cus) is programme per reload the Cunt 3 [15:8]	Count reurrent Courrent Courre	gister. I gount re via the le next con C urren	L oading gister de PT B bit ount, aft t C ount	must be ecrement in SS [44 er zero is register v	done w s once for all. When reached with the w	hen T ir or every of T E is a in the T value in 5 count.	ner Ena specific asserted, imer C the Tim	ble (T Eed time ethe T in urrent C er C urr 3 [7:0]	i) is deass period. T ner Curre Count regi ent Count DEFAU 2	serted. Whe time ont Counster, will tregister LT = [0] ust be do LT = [1]	/ hen period to decide generate of the control of t

RM VA [4:0] Right M aster Volume Attenuation. The LSB represents -1.5 dB, 00000 = 0 dB and the range is 0 dB to -46.5 dB. This register is added with the Hardware Volume Button Modifier value to produce the final DAC Master Volume attenuation level. See Hardware Volume Button Modifier Register description for more details. **RMVM** Right M aster Volume M ute. 0 = U nmuted, 1 = M uted. LM VA [4:0] Left M aster Volume Attenuation. The LSB represents -1.5 dB, 00000 = 0 dB and the range is 0 dB to -46.5 dB. T his register is added with the H ardware Volume Button M odifier value to produce the final DAC M aster Volume attenuation level. See Hardware Volume Button Modifier Register description for more details. LMVM Left M aster Volume M ute. 0 = U nmuted, 1 = M uted. DEFAULT = [0x8888][15] CD GAIN/ATTENUATION LCDM LCDA [4:0] RCDM RES RCDA [4:0] RES RCDA [4:0] Right CD Attenuation. The LSB represents -1.5 dB, 00000 = +12 dB and the range is +12 dB to -34.5 dB. Right CD M ute. 0 = U nmuted, 1 = M uted. **RCDM** LCDA [4:0] Left CD Attenuation. The LSB represents -1.5 dB, 00000 = +12 dB and the range is +12 dB to -34.5 dB. LCDM Left CD M ute. 0 = U nmuted, 1 = M uted. DEFAULT = [0x8888][16] SYNTH GAIN/ATTENUATION 7 0 7 6 LSYM RES LSYA [4:0] **RSYM** RES RSYA [4:0] Right SYNTH Attenuation. The LSB represents -1.5 dB, 00000 = +12 dB and the range is +12 dB to -34.5 dB. RSYA [4:0] Right SYNTH M ute. 0 = U nmuted, 1 = M uted. RSYM LSYA [4:0] Left SYNTH Attenuation. The LSB represents -1.5 dB, 00000 = +12 dB and the range is +12 dB to -34.5 dB. LSYM Left SYNTH M ute. 0 = U nmuted, 1 = M uted. DEFAULT = [0xXXXX][17] RESERVED 7 6 5 1 0 6 5 4 3 2 1 0 RESERVED RESERVED DEFAULT = [0x8888][18] RESERVED 0 5 3 6 3 1 7 6 RES RES DEFAULT = [0xC888][19] MIC/PHONE IN GAIN/ATTENUATION 6 5 3 2 0 7 6 5 4 3 2 1 0 мсм M 20 RES M C A [4:0] PIM RES PIA [3:0] RES PHONE IN Attenuation. The LSB represents -3 dB, 0000 = 0 dB and the range is 0 dB to -45 dB. PIA [3:0] PIM PHONE IN Mute. M icrophone Attenuation. The LSB represents -1.5 dB, 00000 = +12 dB and the range is ± 12 dB to -34.5 dB. M C A [4:0] M 20 Microphone 20 dB Gain. The M 20-bit enables the Microphone +20 dB gain stage. Microphone Mute. MCMDEFAULT = [0x0000][20] ADC SOURCE SELECT AND ADC PGA 0 7 6 5 2 7 3 2 3 1 RAG [3:0] LAGC LAS [2:0] RAGC RAS [2:0] LAG [3:0] Right ADC Gain Control ADC source select and Gain. For Gain, LSB represents +1.5 dB, 0000 = 0 dB RAG [3:0] and the range is 0 dB to +22.5 dB. RAGC Right Automatic Gain Control (AGC) Enable, 0 = Enabled, 1 = Disabled. LAG [3:0] Left ADC Gain Control ADC source select and Gain. For Gain, LSB represents +1.5 dB, 0000 = 0 dB and the range is 0 dB to +22.5 dB.

REV. 0 -29-

	Left Au	tomatic (Gain C	ontrol (AGC) E	nable, 0) = E nabl	ed, 1 = D	isable	d.				
RAS [2:0] 000	R_LINE		ıt Sour	ce			00	AS [2:0]	L_I	C Left Ir	nput S	Source		
001	R_OUT							01		TUC				
010	R_C D							10	L_(
011	R_SYN							11		SYNTH				
101	M ono N							01	ΜI					
110	Reserve							10		ONE_IN				
111	R eserve	ea					1.	11	Res	served				
[32] CHIP C	ONFIGU 5	JRATIO	N 3	2	1	0	7	6	5	4	3	DEFAUL 2	T = [0x	0 0F
WSE CDE	RES	CNP	<u>, </u>	RI				0	,	RES			1	
CNP	Capture	e not equ	al to Pl	lavback.										
	0 = Cap	oture equ oture not	als Pla	yback. T	he capt	ure sam	ple rate i	s determi	ned by	the play	oack s	ample rate	in SS [02].
WSE	•	System E	•	iajb										
II JL		ındBlaste		e										
		ind Syste			Windo	WS	- 4. 70	200						
	N ote: W	-	oundB				: ADC an	d DAC c	:hannel	s will be	used :	solely for c	onvertin	g
[33] RESER'				53	1		31	C۲				DEFAUL	T = [0:	<000
7 6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		RE:	5	226		5.20		de		RES	5			
[34] RESER		4	,		댇				_	4		EFAULT		
[34] RESER 7 6	VED 5	4 RES	3	2	1	0	7 -	6	5	4 RES	3	EFAULT	= [0 xX)	(XX
7 6 [35] RESER	5 VED	RE:	S	-		4				RES	3 5	2 DEFAULT	1 = [0x)	0 (XX
7 6	5	RES	3	2	1	0	7 -	6	5	RES	3 5 1	2	1	0
7 6 [35] RESER	5 VED	RE:	3	-		4				RES	3 5 1	2 DEFAULT	1 = [0x)	0 (XX
7 6 [35] RESER 7 6	5 VED 5	RES	3	-		4				RES	3 3 3 5	2 DEFAULT 2	1 = [0x)	0 < X X 0
7 6 [35] RESER 7 6	5 VED 5	RE:	3	2	1	0	7	6	5	RES 4 RES	3 5 3	DEFAULT 2 DEFAULT	1 = [0x) 1 = [0xX	0 (XX 0
7 6 35] RESER 7 6	5 VED 5	4 RE:	3 3 3	-		4				4 RES	3 3 3	2 DEFAULT 2	1 = [0x)	0 (XX 0
7 6 (35) RESER 7 6 (36) RESER	5 VED 5	RE:	3 3 3	2	1	0	7	6	5	RES 4 RES	3 3 3	DEFAULT 2 DEFAULT	1 = [0x) 1 = [0xX	0 (XX 0
7 6 [35] RESER' 7 6 [36] RESER' 7 6	5 VED 5 VED 5	4 RE:	3 3 3	2	1	0	7	6	5	4 RES	3 3 3	DEFAULT 2 DEFAULT	1 = [0x) 1 = [0xX	0 (XXX 0
7 6 [35] RESER' 7 6 [36] RESER' 7 6	5 VED 5 VED 5	4 RE:	3 3 3	2	1	0	7	6	5	4 RES	3 3 3 3	DEFAULT 2 DEFAULT 2	1 = [0x) 1 = [0xX	0 (XXX 0
7 6 [35] RESER 7 6 [36] RESER 7 6	5 VED 5 VED	4 RES	3 5 3 5	2	1	0	7	6	5	4 RES	3 3 3 3	DEFAULT 2 DEFAULT 2 DEFAULT	1 = [0x) 1 = [0xX 1	0 (XX) 0 XX) 0
7 6 [35] RESER 7 6 [36] RESER 7 6 [37] RESER 7 6	5 VED 5 VED 5	4 RE:	3 5 3 5	2	1	0	7	6	5	4 RES	3 3 3 5 3	DEFAULT 2 DEFAULT 2 DEFAU 2	1	0 (XX 0 XX) 0 0
7 6 [35] RESER' 7 6 [36] RESER' 7 6 [37] RESER' 7 6	5 VED 5 VED 5	4 RE:	3 3 5 3 5 5	2 2	1 1	0 0	7 7	6	5 5	4 RES	3 3 3 3 3	DEFAULT 2 DEFAULT 2 DEFAULT 2	1 = [0x) 1 = [0xX 1	0 (XXX 0 XXX) 0 0 AC4
7 6 [35] RESER 7 6 [36] RESER 7 6 [37] RESER 7 6	5 VED 5 VED 5	4 RE:	3 3 5 3 5 3 3	2	1	0	7	6	5	4 RES	3 3 3 3 3 3	DEFAULT 2 DEFAULT 2 DEFAU 2	1	0 (XX 0 XX) 0 0
7 6 [35] RESER' 7 6 [36] RESER' 7 6 [37] RESER' 7 6	5 VED 5 VED 5	4 RE:	3 3 5 3 5 3 3	2 2	1 1	0 0	7 7	6	5 5	4 RES	3 3 3 3 3 3	DEFAULT 2 DEFAULT 2 DEFAULT 2	1 = [0x) 1 = [0xX 1	0 (XXX 0 0 0 0 0 0
7 6 [35] RESER' 7 6 [36] RESER' 7 6 [37] RESER' 7 6 [38] RESER' 7 6	5 VED 5 VED 5 VED 5	4 RE: 4 RE: 4 RE: 4 RE:	3 5 3 5 3 5	2 2 2	1 1 1	0 0	7 7 7	6 6	5 5 5	4 RES	3 3 3 3 3 3	DEFAULT 2 DEFAULT 2 DEFAULT 2 DEFAULT 2	1 = [0x) 1 = [0xX 1	0 (XXX) 0 XXX) 0 0 AC4
7 6 [35] RESERY 7 6 [36] RESERY 7 6 [37] RESERY 7 6	5 VED 5 VED 5	4 RE:	3 5 3 5 3 5	2 2	1 1	0 0	7 7	6	5 5 5	4 RES	3 3 3 3 3 3	DEFAULT 2 DEFAULT 2 DEFAULT 2	1	0 (XXX 0 XXX) 0 0 AC4

-30-REV. 0

	[40] RI	ESERV	ED											DEFA	ULT =	0x0000
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Γ			RES									RES				

[41] HARDWARE VOLUME BUTTON MODIFIER DEFAULT = [0xXX1B] 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 HVM HVSEL HVMAS HVATN [4:0] VMU VUP VDN BM [4:0]

BM [4:0] Button Modifier

VDM Volume D own VUP Volume U p VM U Volume M ute

H VAT N [4:0] H ardware Volume Attenuation
H VM AS H ardware Volume M aster M ode
H VSEL H ardware Volume Select

H V SEL H ardware Volume Select H V M H ardware Volume M ute

This register contains a M aster Volume attenuation offset, which can be incremented or decremented via the H ardware Volume Pins. This register is summed with the M aster Volume attenuation to produce the actual M aster Volume DAC attenuation. A momentary grounding of greater than 50 ms on the VOL_UP pin will cause a decrement (decrease in Attenuation) in this register. H olding the pin LO for greater than 200 ms will cause an auto-decrement every 200 ms. This is also true for a momentary grounding of the VOL_DN pin. A momentary grounding of both the VOL_UP and VOL_DN causes a mute and no increment or decrement to occur.

When M uted, an unmute is possible by a momentary grounding of both the VOL_UP and VOL_DN pins together, a momentary grounding of VOL_UP (this also causes a volume increase), a momentary grounding of VOL_DN (this also causes a volume decrease) or a write of "0" to the VI bit in SS [BASE+1].

[42] F	RESERV	/ED	- €			C^{3}							DEFAU	LT = [0	x0000]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
RES						~ "			RE	ES					
[43] RESERVED													DEFAU	LT = [0x0000]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
			R	ES							R	ES			
[44] F	POWER	-Dowl	N AND	TIMER	CONT	ROL							DEFAU	ILT = [0x0000]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
CPD	RES	PIW	PIR	PAA	PDA	RES	PTB		GPSP				RES		

The AD 1817A supports a timeout mechanism used in conjunction with the Timer Base Count and Timer Current Count registers to generate a power-down interrupt. This interrupt allows software to power down the entire chip by setting the CPD bit. This power-down control feature lets users program a time interval from 1 ms to approximately 1.8 hours in 1 ms increments. Five power-down count reload enable bits are used to reload the Timer Current Count from the Timer Base Count when activity is seen on that particular channel.

Programming Example: Generate Interrupt if No ISA Reads or Writes occur within 15 M inutes.

- 1) Write [SSBASE+0] with 0x0C; Write Indirect address for TIMER BASE COUNT "register 12"
- 2) Write [SSBASE +2] with 0x28 : Write TIM ER BASE COUNT with (15 min \times 60 sec/min \times 10) = 0x2328 mili-Seconds
- 3) Write [SSBASE+3] with 0x23; Write High byte of TIMER BASE COUNT
- 4) Write [SSBASE+0] with 0x2C; Write Indirect address for POWER-DOWN and TIMER CONTROL register
- 5) Write [SSBASE+2] with 0x00; Write Low byte of POWER-DOWN and TIMER CONTROL register
- 6) Write [SSBASE+3] with 0x30; Set Enable bits for PIW & PIR
- 7) Write [SSBASE+0] with 0x01; Write Indirect address for INTERRUPT CONFIG register
- 8) Write [SSBASE+2] with 0x82; Set the TE (Timer Enable) bit
- 9) Write [SSBASE +3] with 0x20; Set the TIE (Timer Interrupt Enable) bit

GPSP Game Port Speed Select. Selects the operating speed of the game port.

- 0 Slow Game Port
- 1 Fast Game Port

REV. 0 -31-

- PTB Power-Down Time Base. $1 = \text{timer set to } 100 \text{ ms}, 0 = \text{timer set to } 10 \mu \text{s}.$
- PDA Power-down count reload on Digital Activity; "1" = Reload count on Digital Activity. Digital Activity is defined as any activity on FM or PLAYBACK).
- PAA Power-down count reload on Analog Activity; "1" = Reload count on Analog Activity. Analog Activity is defined as any analog input unmuted (LINE, CD, SYNTH, MIC, PHONE IN) or MASTER VOLUME unmuting.
- PIR Power-down count reload on ISA Read; "1" = Reload count on ISA read. ISA Read is defined as a read from any active logical device inside the AD 1817A.
- PIW Power-down count reload on ISA Write; "1" = Reload count on ISA write. ISA Write defined as a write to any active logical device inside the AD 1817A.
- CPD Chip Power-down
 - 1 Power-Down;
 - 0 Power-Up

For Power-up, software should poll the [SSBASE+0] CRY bit for "1" before writing or reading any logical device.

[45] \	/ERSIO	NID											DEFAU	LT = [0])x0000]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		V	ER [15:8	3]						1	/ER [7:0)]			
	[46] RESERVED									~			DEEALL	I T _ [O	.00001
[46] F	RESERV	/ED											DEFAU	եւ = լա	KUUUUJ
[46] F 7	RESERV 6	/ED 5	4	3	2	1	0	7	6	5	4	3	2	1	xuuuu j

Test register. Should never be written or read under normal operation.

SB Pro; AdLib Registers

The AD 1817A contains sets of ISA Bus registers (ports) that correspond to those used by the SoundBlaster Pro audio card from C reative L abs and the AdLib audio card from AdLib M ultimedia. Table IX lists the ISA Bus SoundBlaster Pro registers. Table X lists the ISA Bus AdLib registers. Because the AdLib registers are a subset of those in the SoundBlaster card, you can find complete information on using both of these registers in the D eveloper K it for SoundBlaster Series, 2nd ed. © 1993, C reative L abs, Inc., 1901 M cC arthy Blvd., M ilpitas, CA 95035.

Table VIII. SoundBlaster Pro ISA Bus Registers

Register Name	ISA Bus Address
M usic0: Address (w), Status (r)	0x(SB Base) Relocatable in range 0x010 - 0x3F0
M usic0: D ata (w)	0x(SB Base+1)
M usic1: Address (w)	0x(SB Base+2)
M usic1: D ata (w)	0x(SB Base+3)
Mixer Address (w)	0x(SB Base+4)
M ixer D ata (w)	0x(SB Base+5)
Reset (w)	0x(SB Base+6)
M usic0: Address (w)	0x(SB Base+8)
M usic0: D ata (w)	0x(SB Base+9)
Input Data (r)	0x(SB Base+A)
Status (r), Output Data (w)	0x(SB Base+C)
Status (r)	0x(SB Base+E)

Table IX. AdLib ISA Bus Registers

Register Name	ISA Bus Address
M usic0: Address (w), Status (r) M usic0: D ata (w) M usic1: Address (w) M usic1: D ata (w)	0x(AdLib Base) Relocatable in range 0x008 - 0x3F8 0x(AdLib Base+1) 0x(AdLib Base+2) 0x(AdLib Base+3)

-32- REV. 0

MIDI and MPU-401 Registers

The AD1817A contains a set of ISA Bus registers (ports) that correspond to those used by the ISA bus MIDI audio interface cards. Table XI lists the ISA Bus MIDI registers. These registers support commands and data transfers described in MIDI 1.0 Detailed Specification and Standard MIDI Files 1.0, © 1994, MIDI M anufacturers Association, PO Box 3173 La Habra, CA 90632-3173.

Table X. MIDI ISA Bus Registers

Register Name	Address
MIDI Data (r/w)	0x(MIDI Base) Relocatable in range 0x008 to 0x3F8
MIDI Status (r), Command (w)	0x(MIDI Base+1)

0x(MIDI Base+1)

BIT	7	6	5	4	3	2	1	0		
STAT	1	0	0	0	0	0	0	0		
NAMI	DRR	DSR	RESERVED							

DSR (R) Data Send Ready. When read, this bit indicates that you can (0) or cannot (1) write to the

MIDI D at a register. (Full = 1, Empty = 0)

DRR (R) Data Receive Ready. When read, this bit indicates that you can (0) or cannot (1) read from the

MIDID at a register. (Unreadable = 1, Readable = 0)

CMD [7:0] (W) MIDI Command. Write MPU-401 commands to bits [7:0] of this register.

NOTES

The AD1817A supports only the MIDI 0xFF (reset) and 0x3F (pass-through mode) commands. The controller powers setup for intelligent MIDI mode, but must be put in pass-through mode. To start MIDI operations, send a reset command (0xFF) and then send a pass-through mode command (0x3F). The MIDI data register contains an acknowledge byte (0xFE) after each command transfer.

All commands return an ACK byte in "smart" mode.

Status commands (0xAx) return ACK and a data byte; all other commands return ACK.

All commands except reset (0xFF) are ignored in UART mode. No ACK bytes are returned.

Game Port Registers

The AD1817A contains a Game Port ISA Bus Register that corresponds to the game port described in the PnP specification.

Table XI. Game Port ISA Bus Registers

Register Name	Address					
Game Port I/O	0x(G ame Port Base+0 to G ame Port Base+7 Relocatable in the range 0x100 to 0x3F8					

REV. 0 -33-

[&]quot;Smart" mode data transfers are not supported.

APPENDIX A

PLUG AND PLAY INTERNAL ROM Vendor ID: ADS7181 Serial Number: FFFFFFF Checksum: 2F PNP Version: 1.0, vendor version: 20 ASCII string: "Analog Devices AD 1817A" Logical Device ID: ADS7180 not a boot device, implements PNP register(s) 31 Start dependent function, best config IRQ: channel(s) 5 7 type(s) active-high, edge-triggered DMA: channel(s) 1 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only I/O: 16-bit decode, range [0220,0240] mod 20, length 10 I/O: 16-bit decode, range [0388,0388] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10 Start dependent function, acceptable config IRQ: channel(s) 5 7 10 type(s) active-high, edge-triggered DMA: channel(s) 013 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only I/O: 16-bit decode, range [0220,0240] mod 20, length 10 I/O: 16-bit decode, range [0388,0388] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10 Start dependent function, acceptable config IRO: channel(s) 5 7 9 10 11 15 type(s) active-high, edge-triggered DMA: channel(s) 0 1 3

Type F, count-by-byte, nonbus-mastering, 8-bit only

Type F, count-by-byte, nonbus-mastering, 8-bit only I/O: 16-bit decode, range [0220,02E0] mod 20, length 10 I/O: 16-bit decode, range [0388,03B8] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10

DMA: channel(s) 0 1 3

Start dependent function, suboptimal config IRQ: channel(s) 5 7 9 10 11 15 type(s) active-high, edge-triggered DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: NULL I/O: 16-bit decode, range [0220,02E0] mod 20, length 10 I/O: 16-bit decode, range [0388,03B8] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10 End all dependent functions Logical Device ID: ADS7181 not a boot device, implements PNP register(s) 31 Compatible Device ID: PN PB 006 Start dependent function, best config IRQ: channel(s) 5 7 9 11 type(s) active-high, edge-triggered I/O: 16-bit decode, range [0300,0330] mod 30, length 02 Start dependent function, acceptable config IRO: channel(s) 5 7 9 10 11 15 type(s) active-high, edge-triggered I/O: 16-bit decode, range [0300,0420] mod 30, length 02 End all dependent functions Logical Device ID: ADS7182 not a boot device, implements PNP register(s) 31 Compatible Device ID: PNPB02F Start dependent function, best config I/O: 16-bit decode, range [0200,0200] mod 08, length 08 Start dependent function, acceptable config I/O: 16-bit decode, range [0200,0208] mod 08, length 08 End all dependent functions End:

-34- REV. 0

PLUG AND PLAY KEY AND "ALTERNATE KEY" SEQUENCES

One additional feature of the AD 1817A is an alternate programming method used, for example, if a BIOS wants to assume control of the AD 1817A and present DEVNODES to the OS (rather than having the device participate in Plug and Play enumeration). The following technique may be used.

Instead of the normal 32 byte Plug and Play key sequence, an alternate 126 byte key is used. After the 126 byte key, the AD 1817A device will transition to the Plug and Play "config" state. It can then be programmed as usual using the standard Plug and Play ports. After programming, the AD 1817A should be sent to the Plug and Play "WFK" (wait for key) state. Once the AD 1817A has seen the alternate key, it will no longer parse for the Plug and Play key (and therefore never participate in Plug and Play enumeration). It can be reprogrammed by reissuing the alternate key again.

Both the Plug and Play key and the alternate key are sequences of writes to the Plug and Play address register, 0x279. Below are the ISA data values of both keys.

This is the standard Plug and Play sequence:

6a b0	b5 58	da 2c	ed 16	f6 8b	fb 45	7d a2	be d1	df e8	6f 74	37 3a	1b 9d	0d ce	86 e7	c3 73	61 39
	T his is the longer, 126-byte alternate key. It is generated by the function: $f[n+1] = (f[n] >> 1) (((f[n] \land (f[n] >> 1)) \& 0x01) << 6) f[0] = 0x01$														
01	40	20 1	10	08	04	02	41	60	30	18	0c	06	43	21	50
28	14	0a	45	62	71	78	3c	1e	4f	27	13	09	44	22	51
68	34	1a	4d	66	73	39	5c	2e	57	2b	15	4a	65	72	79
7c	3e	5f	2f	17	0b	05	42	61	70	38	1c	0e	47	23	11
48	24	12	49	64	32	59	6c	36	5b	2d	56	6b	35	5a	6d
76	7b	3d	5e	6f	37	1b	0d	46	63	31	58	2c	16	4b	25
52	69	74	3a	5d	6e	77	3b	1d	4e	67	33	19	4c	26	53
29	54	2a	55	6a	75	7a	7d	7e	7f	3f	1f	0f	07		

PECHNIA

REV. 0 -35-

USING AN EEPROM WITH THE AD 1817A

The AD1817A supports an optional Plug and Play resource ROM. If present, the ROM must be a two-wire serial device (e.g., Xicor X 24C 02) and the clock and data lines should be wired to EE_CLK and EE_DATA pins; pull-up resistors are required on both signals. The EEPROM's A2 and A1 pins (also A0 for 256-byte EEPROMs) must all be tied to ground. The write control pin (WC*) must be tied to power if you wish to program the EEPROM in place; otherwise, we recommend tying it to ground to prevent accidental writes.

The EEPROM interface logic examines the state of the EE_CLK pin shortly after RESET is deasserted and whenever the Plug and Play reset register (02h) is written with a value X such that ((X & 4) \neq 0). If EE_CLK is pulled high, the EEPROM logic attempts to read the first ROM byte (page 0, byte 0). If EE_CLK is tied low, the internal ROM is used; in this case EE_DATA is used to set the state of VOL_EN, and should also be tied high or low. EE_CLK is not used as an input at any other time.

The initial part of the ROM is not part of the Plug and Play resource data. It consists of a number of flags that enable optional functionality. The number of flag bytes and the purpose of each bit depend on whether an AD 1817 or an AD 1817A is being used.

AD 1817A FLAG BYTES

The AD 1817A has four flag bytes that are used as shown below: (*) AD 1817-compatible setting.

Byte 0

7	6	5	4	3	2	1	0
1	0	0	XTRA_HV	RES	SUPER_EN	XTRA_EN	M OD EM_EN

MODEM_EN Program to one to enable the modem logical device. This logical device has an I/O range and an IRQ.

The I/O range has the following requirements:

- Length of 8 bytes
- Alignment of 8 bytes
- 16-bit address decode

Program to zero to enable I²S Port 1 (SUPER_EN and IRQ_EN must also be zero).

YTRA_EN Program to one to enable the XTRA logical device. This logical device has an I/O range, an optional IRQ, and an optional DMA. The I/O range has the following requirements:

- Length of 1 to 16 bytes, selectable by XTRASZ0[3:0]
- Alignment of 1 to 16 bytes, matches length
- 16-bit address decode

A second I/O range is available, (see XTRA_CS). Program to zero to enable the DSP serial port (XTRA_HV must also be zero).

SUPER_EN

Program to one to merge the XTRA and modem logical devices. If this bit is set to one, XTRA_EN and IRQ_EN must be set to one and MODEM_EN must be set to zero. The combined device has up to two I/O ranges, two IRQs and one DMA. The two I/O ranges are both taken from the XTRA device; the modem I/O range is disabled. The first IRQ is the XTRA device IRQ, the second is the modem IRQ. Program to zero to separate the modem and XTRA devices. (*)

 $XTRA_HV$

Program to one to enable hardware volume inputs on the DSP serial port pins. Only disables DSP port if I^2SO is set to one. Program to zero to enable the XTRA device DMA or the DSP serial port.

The three M SBs in the first byte of the AD 1817A EEPROM are used to verify that the EEPROM data is valid. The bits are compared to the values shown; if a mismatch is found, the EEPROM will be disabled until it is rewritten. The internal ROM will be used to perform PnP enumeration, and the MODEM and XTRA logical devices will not be available. Hardware volume will be enabled on the I^2SO port.

Byte 1

7	6	5	4	3	2	1	0
1	0	0	0	0	RSTB_EN	IRQSEL3_9	IRQSEL12_13

IRQSEL12 13 Program to one to enable IRQ 13.

Program to zero to enable IRQ 12.

IRQ EN must be one and MODEM EN must be zero, or this bit has no effect.

-36- REV. 0

IRQSEL3 9 Program to one to enable IRQ 9.

Program to zero to enable IRQ 3. (*)

MODEM_EN or IRQ_EN must be one, or this bit has no effect.

RST B_EN Program to one to enable an active-low RESET output.

Program to zero to enable XCTRL0. (*)

Byte 2 7

TRQSEL4_9_11 | TRQSEL9_14 | TRQSEL11_15 | TRQSEL4_10 | XTRASZ0[3:0]

XTRASZ0[3:0] Sets the XTRA device I/O range 0 length. These bits are AND ed with the four LSBs of the address comparator result when generating LD_SEL. The XTRASZ0 bits set the length of one for the XTRA device I/O ranges as follows:

XTRASZ0	I/O Range Length
0000	16
1000	8
1100	4
1110	2
1111	1

All other combinations cause aliasing, and should be avoided.

IRQSEL4_10 Program to one to enable IRQ 10. (*, if MODEM_EN is zero)

Program to zero to enable IRQ 4. (*, if MODEM EN is one)

IRQSEL11_15 Program to one to enable IRQ 15. (*)

Program to zero to enable IRQ 11.

IRQSEL9_14 Program to one to enable IRQ 14.

Program to zero to enable IRQ 9. (*)

IRQSEL4_9_11 Program to one to enable IRQ 11. (*)

Program to zero to enable IRQ 4 (if M O D E M E N is one) or IRQ 9 (if M O D E M E N is zero).

Byte 3

7	6	5	4	3	2	1	0
	XTRAS	Z1[3:0]		XTRA_CS	IRQ_EN	MIRQINV	XIRQINV

XIRQINV Program to one to make L D_IRQ active-low.

Program to zero to make LD IRQ active-high. (*)

MIRQINV Program to one to make MDM IRQ active-low.

Program to zero to make M D M IRQ active-high. (*)

IRQ_EN Program to one to enable additional IRQ channels. If MODEM_EN is zero, then two IRQs are added;

if MODEM EN is one, this bit is ignored. Program to zero to enable I2S port 1 (SUPER EN and

MODEM EN must also be zero).

XTRA CS Program to one to enable a second I/O range for the XTRA or SUPER logical devices. It is identical to

the first I/O range, except its size is controlled by XTRASZ1[3:0]. Program to zero to enable the XCTR1/

RING IN pin. (*) Always considered to be zero if XTRA EN is zero.

XTRASZ1[3:0] Sets the XTRA device I/O range one length. These bits are AND ed with the four LSBs of the address comparator result when generating LD_SEL1. The XTRASZ1 bits set the length of one for the XTRA device I/O ranges as follows:

XTRASZ1	I/O Range Length
0000	16
1000	8
1100	4
1110	2
1111	1

All other combinations cause aliasing, and should be avoided.

REV. 0

USING THE AD1817A WITHOUT AN EEPROM

If the EEPROM is absent (EE_CLK pin = GND), then the flags are set as shown below:

MODEM_EN = XTRA_EN = SUPER_EN = XTRA_HV = RSTB_EN = IRQ_EN = 0

 $IRQSEL9_14 = MIRQINV = XIRQINV = 0$

 $IRQSEL4_10 = IRQSEL11_15 = IRQSEL4_9_11 = 1$

 $I^2SO_HV = EE_DATA pin$

PIN MUXING IN THE AD 1817A

Some AD 1817A options are mutually exclusive because there are a limited number of pins on the device to support them all. The tables below map functions to pin, and show how the flags must be set to assign functions to pins. For each pin, the first function listed is the default; that function is used if the EEPROM is absent or invalid.

Table XII. AD 1817A Pin Muxing

PQFP	Pin Function	I/O	Flags Required	
1	VOL_UP	I	1250_HV	
2	$\overline{ ext{VOL_DN}}$	1	12S0_HV	
3	GND	1	12S0_HV	
68	XCTL0/PCLKO PNPRST	0	!RSTB_EN RSTB_EN	
69	XCTL1/RING LED_SEL1	O(1) O	!XTRA_EN + !XTRA_CS RSTB_EN	
75	IRQ(15) IRQ(11)	O (2) O (2)	IRQSEL 15_11 !!RQSEL 15_11	
76	IRQ(11) IRQ(9) IRQ(4)	0 (2) 0 (2) 0 (2)	IRQSEL4_9_11 !IRQSEL4_9_11* !M ODEM_EN !IRQSEL4_9_11* M ODEM_EN	
77 78	IRQ(10) IRQ(4) IRQ(9)	O (2) O (2) O (2)	IRQSEL4_10 !IRQSEL4_10 !IRQSEL9_14	
81	IRQ(14) IRQ(3)	O (2) O (2)	IRQSEL9_14 (MODEM_EN * SUPER_EN * IRQ_EN) * !IRQSEL3_9	
82	IRQ(9) M DM _IRQ	O (2)	(MODEM_EN * SUPER_EN * IRQ_EN) * IRQSEL3_9 MODEM_EN	
83	MDM_SEL IRQ(12)	O O (2)	M O D E M _ E N * !SU P E R _ E N (!M O D E M _ E N + SU P E R _ E N) * I R Q _ E N * !I R Q S E L 12_13	
	IRQ(13)	O (2)	(!MODEM_EN + SUPER_EN) * IRQ_EN * IRQSEL12_13	
97	LD_SEL	0	XTRA_EN	
98	N o C onnect 96	O LD_DRQ VOL_UP	!XTRA_EN * XTRA_HV I XTRA_EN * !XTRA_HV I XTRA_HV	

-38- REV. 0

Table XII.	AD 1817A	Pin Muxing	(Continued)
------------	----------	------------	-------------

PQFP	Pin Function	I/O	Flags Required
99	LD_DACK VOL_DN GND	O (3)	XTRA_EN * !XTRA_HV (XTRA_EN + XTRA_CS) * XTRA_HV !XTRA_EN * XTRA_HV * !XTRA_CS
100	LD_IRQ VOL_DN GND		XTRA_EN !XTRA_EN * XTRA_HV * !XTRA_CS !XTRA_EN * XTRA_HV * XTRA_CS

- (1) Open-drain driver with internal weak pull-up.
- (2) PC IRQ pins are three-stated if not assigned to a logical device.
- (3) A pull-up or pull-down resistor may be required if EEPROM is used, because this pin is three-stated while EEPROM is read.

NOTE

The direction of some pins (input vs. output) depends on the flags. In order to prevent conflicts on pins that may be both inputs and outputs, the AD 1817 and AD 1817A disable the output drivers for those pins while the flags are being read from the EEPROM, and keeps them disabled if the EEPROM data is invalid.

PROGRAMMING EXTERNAL EEPROMS

The PnP EEPROM can be written only in the "Alternate Key State"; this prevents accidental EEPROM erasure when using standard PnP setup. The procedure for writing an EEPROM is:

- 1) Enter PnP configuration state and fully reset the part by writing 0x07 to PnP register 0x02. This step can be eliminated if the part has not been accessed since power-up, a previous full PnP reset or assertion of the ISA bus RESET signal.
- 2) Send the alternate initiation key to the PnP address port. EEPROM writes are disabled if the standard PnP key is used.
- 3) Enter isolation state and write a CSN to enter configuration state. Do not perform any isolation reads.
- 4) Poll PnP register 0x05 until it equals 0x01 and wait at least 336 microseconds (ensures that EEPROM is idle).
- 5) Write the second byte of your serial identifier to PnP register 0x20.
- 6) Read PnP register 0x04.
- 7) Wait for at least 464 microseconds, plus the EEPROM's write cycle time (up to 10 ms for a Xicor X24C02).
- 8) Repeat Steps 4 through 7 for each byte in your PnP ROM, starting with the third byte of the serial identifier and ending with the final checksum byte. You must then continue to write filler bytes until 512 bytes, minus one more than the number of flag bytes, have been written. Finally, write the flag byte(s) (described above) and the first byte of the serial identifier.
- 9) Fully reset the part by writing 0x07 to PnP register 0x02.

The AD 1817 or AD 1817A will now act according to the contents of the EEPROM.

NOTES

Programming will not work if more than one part uses the same alternate initiation key in the system. Parts that use this alternate initiation key are the AD 1815, AD 1817, and AD 1817A.

If a 256-byte EEPROM is used, it is not necessary to wait 10 ms after writing bytes 255 to 511, because the EEPROM will ignore them anyway.

You can skip over bytes that you don't care to write by just performing a ROM read instead of a ROM write followed by a ROM read.

REFERENCE DESIGNS AND DEVICE DRIVERS

Reference designs and device drivers for the AD1817A are available via the Analog D evices Home Page on the World Wide Web at http://www.analog.com. Reference designs may also be obtained by contacting your local Analog D evices Sales representative or authorized distributor.

A typical application circuit is shown in Figure 8.

REV. 0 -39-

Figure 8. Typical Application Circuit

-40- REV. 0

Figure 9. AD1817A Frequency Response Plots (Full-Scale Line-Level Input, 0 dB Gain). The Plots Do Not Reflect the Additional Benefits of the AD1815 Analog Filters. Out-of-Band Images Will Be Attenuated by an Additional 31.4 dB at 100 kHz.

REV. 0 -41-

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

100-Lead Plastic Quad Flatpack (S-100)

-42- REV. 0