2020 北京西城初三一模

数学

1. 本试卷共 8 页, 共三道大题, 28 道小题。满分 100 分。考试时间 120 分钟。

2020.5

	生须	2. 在试卷和草稿约	2. 在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。									
	知	3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。										
		4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。										
		5. 考试结束,将2	本试卷、答题卡和	草稿纸一	并交回。							
一、j	先择题	(本题共 16 分,每	小题 2 分)									
第 1-	8 题均	有四个选项,符合	·题意的选项只有一	一个.								
	1. 北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为											
(A	A) 45 ×	10 ⁶	(B) 4.5×10^7	(($(3)4.5\times10^{8}$	(D) 0.4 5	5×10^8					
2.右图	图是某	个几何体的三视图	,该几何体是									
(A	A) 圆锥			(B) 圆柱								
((ご)长方	体		(D) 正三核	桂							
3. 下瓦	面的图	形中,既是轴对称	图形又是中心对称	尔图形的是	Ê							
	\wedge			2 (\sim							

4. 在数轴上,点A,B表示的数互为相反数,若点A在点B的左侧,且 $AB=2\sqrt{2}$,则点A点B表示的数分别是

(A) $-\sqrt{2}$, $\sqrt{2}$

(A)

(B) $\sqrt{2}, -\sqrt{2}$

(C) 0, $2\sqrt{2}$

(D) $-2\sqrt{2}$, $2\sqrt{2}$

5. 如图,AB是 \odot O的直径,C,D是 \odot O上的两点,若 $\angle CAB = 65°$,则 $\angle ADC$ 的度数为

(C)

(A) 65°

(B) **35°**

(B)

(C) 32.5°

(D) 25°

(D)

6. 甲、乙两名运动员的 10 次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为 \bar{x}_{H} , \bar{x}_{Z} , 射击成绩的方差依次记为 S^2_{H} , S^2_{Z} , 则下列关系中完全正确的是

- (A) $\bar{x}_{\#} = \bar{x}_{\angle}, S_{\#}^2 > S_{\angle}^2$
- (B) $\bar{x}_{\#} = \bar{x}_{Z}$, $S_{\#}^{2} \langle S_{Z}^{2} \rangle$
- (C) $\bar{x}_{\#} > \bar{x}_{Z}$, $S_{\#}^{2} > S_{Z}^{2}$
- (D) $\bar{x}_{\#} \langle \bar{x}_{Z}, S_{\#}^2 \langle S_{Z}^2 \rangle$

7. 如图, 在数学实践活动课上, 小明同学打算通过测量树的影长计算树的高度, 阳光下他测得长1.0m的竹竿落在 地面上的影长为0.9m. 在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙 面上. 他测得这棵树落在地面上的影长BD为2.7m,落在墙面上的影长CD为1.0m,则这棵树的高度是

(A) 6.0m

(B) 5.0m

(C) 4.0m

(D) 3.0m

②
$$m > 1$$
, $M = 1$

③
$$m < \frac{1}{m} < m^2$$
,则 $m < 0$

④
$$m^2 < m < \frac{1}{m}$$
,则 $0 < m < 1$

其中命题成立的序号是

- (A) (1)(3)
- (B) (1)(4)
- (C) (2)(3)
- (D) (3)(4)

二、填空题(本题共16分,每小题2分)

9. 若 $\sqrt{x-1}$ 在实数范围内有意义,则实数x的取值范围是

10. 若多边形的内角和市外角和的 2 倍,则该多边形是 ______边形

11. 已知y是以x为自变量的二次函数,且当x = 0,时,y的最小值为-1,写出一个满足上述 条件的二次函数表达式

12. 如果 $a^2 + a = 1$,那么代数式 $\frac{1}{a} - \frac{a-1}{a^2-1}$ 的值是_____

13. 如图,在正方形ABCD,BE评分 $\angle CBD$, $EF \perp BD$ 于点F,若 $DE = \sqrt{2}$,则BC的长为

14. 如图, \triangle ABC的顶点A,B,C都在边长为1的正方形网格的格点上, $BD \perp AC$ 于点D,则AC的长为______

BD的长为

15. 如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙ M是△ ABC的外接圆,则点M的 坐标为

16. 某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30 天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.

毎日接待游客人数 (単位:万人)	游玩环境 评价
0≤x<5	好
5≤x<10	一般
10≤x<15	拥挤
15≤x<20	严重拥挤

根据以上信息,以下四个判断中,正确的是 (填写所有正确结论的序号).

- ①该景区这个月游玩环境评价为"拥挤或严重拥挤"的天数仅有4天;
- ②该景区这个月每日接待游客人数的中位数在5~10万人之间;
- ③该景区这个月平均每日接待游客人数低于5万人:
- ④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他"这两天游玩环境评价均为好"的可能性为3/10
- 三、解答题(本题共 68 分, 第 17-21 题, 每小题 5 分, 第 22-24 题, 每小题 6 分, 第 25 题 5 分, 第 26 题 6 分, 第 27-28 题, 每小题 7 分)

解答应写出文字说明、演算步骤或证明过程.

17. 计算:
$$(\frac{1}{2})^{-1} + (1 - \sqrt{3})^0 + \left| -\sqrt{3} \right| - 2\sin 60^\circ$$

- 19. 关于x的一元二次方程 $x^2 (2m+1)x + m^2 = 0$ 有两个实数根
 - (1) 求m的取值范围:
 - (2)写出一个满足条件的m的值,并求此时方程的根

- 20. 如图,在 \Box ABCD中,对角线AC,BD交于点O,OA = OB,过点B作BE \bot AC于点E.
 - (1) 求证: □ABCD 是矩形;
 - (2) 若 $AD = 2\sqrt{5}$, $\cos \angle ABE = \frac{2\sqrt{5}}{5}$, 求AC的长

21. 先阅读下列材料,再解答问题.

尺规作图

已知: $\triangle ABC$, D是边AB上一点, 如图 1,

求作:四边形DBCF,使得四边形DBCF是平行四边形

小明的做法如下:

(1)设计方案

先画一个符合题意的草图,如图 2,

再分析实现目标的具体方法,

依据:两组对边分别平行的四边形是平行四边形.

(2) 设计作图步骤,完成作图

作法:如图,

- ①延长BC至点 E:
- ②分别作 ∠ECP = ∠ABE, ∠ADQ = ∠ABE:

- ③DQ与CP交于点F.
- ∴四边形DBCF即为所求.
- (3) 推理论证

证明: :'∠ECP=∠ABE,

∴CP//BA

同理, DQ//BE

:.四边形 DBCF 是平行四边形

请你参考小明的做法,再设计一种尺规作图的方法(与小明的方法不同),使得画出的四边形 DBCF 是平行四边形,并证明

- 22. 运用语音识别输入软件可以提高文字输入的速度。为了解 A、B 两种语音识别输入软件的准确性,小秦同学随机选取了 20 段话,其中每段话都含 100 个文字(不计标点符号)•在保持相同语速的条件下,他用标准普通话 朗读每段话来测试这两种语音识别输入软件的准确性.他的测试和分析过程如下,请补充完整.
 - (1) 收集数据两种软件每次识别正确的字数记录如下:

A	98	98	92	92	92	92	92	89	89	85
	84	84	83	83	79	79	78	78	69	58
В	99	96	96	96	96	96	96	94	92	89
	88	85	80	78	72	72	71	65	58	55

(2)整理、描述数据 根据上面得到的两组样本数据,绘制了频数分布直方图:

(3)分析数据两组样本数据的平均数、众数、中位数、方差如下表所示:

	平均数	众数	中位数	方差
A	84. 7		84. 5	88. 91
В	83. 7	96		184. 01

(4)得出结论根据以上信息,判断______种语音识别输。

个不同的角度说明判断的合理性).

- 23. 如图,四边形*OABC*中. ∠*OAB* = 90°, *OA* = *OC*, *BA* = *BC*.以*O*为圆心,以*OA*为半径作⊙ *O*
 - (1) 求证:BC是⊙ O的切线:
 - (2) 连接BO并延长交 \odot O于点D,延长AO交 \odot O于点E,与BC的延长线交于点F,若 \widehat{AD} = \widehat{AC}
 - ①补全图形:
 - ②求证:OF = OB.

24. 如图,在 \triangle *ABC*中*AB* = 4*cm*, *BC* = 5*cm*. *P*是 \widehat{AB} 上的动点,设*A*, *P*两点间的距离为xcm,*B*, *P*两点间的距离为 y_1cm , *C*, *P*两点间的距离为 y_2cm .

小腾根据学习函数的经验,分别对函数 y_1 , y_2 随自变量 x 的变化而变化的规律进行了探究,下面是小腾的探究过程,请补充完整:

(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了 y_1 , y_2 与x的几组对应值:

x/cm	0	1	2	3	4
y_1/cm	4.00	3. 69		2. 13	0
y_2/cm	3.00	3. 91	5. 71	5. 23	5

(2) 在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点 $(x,y_1)(x,y_2)$,并画出函数 y_1,y_2 的图象;

- (3) 结合函数图象,
- ①当 \triangle *PBC* 为等腰三角形时,*AP* 的长度约为_____*cm*;
- ②记 \widehat{AB} 所在圆的圆心为点O,当直线PC恰好经过点O时,PC的长度约为_____cm.
- 25. 在平面直角坐标系xOy中,直线l: y = kx + 2k(k > 0)与x轴交于点A,与y轴交于点B,与函数 $y = \frac{m}{x}(x > 0)$ 的 图象的交点P位于第一象限。

- (1) 若点P的坐标为(1,6),
 - ①求m的值及点A的坐标;

$$2\frac{PB}{PA} =$$
;

- (2) 直线 l_2 : y = 2kx 2与y轴交于点C,与直线 l_1 交于点Q,若点P的横坐标为 1,
 - ①写出点P的坐标(用含k的式子表示);
 - ②当 $PO \leq PA$ 时,求m的取值范围
- 26. 已知抛物线 $y = ax^2 + bx + a + 2(a \neq 0)$ 与x轴交于点 $A(x_1, 0)$,点 $B(x_2, 0)$ (点A在点B的左侧),抛物线的对称 轴为直线x = -1
 - (1) 若点A的坐标为(-3.0), 求抛物线的表达式及点B的坐标;
 - (2) C是第三象限的点,且点C的横坐标为-2,若抛物线恰好经过点C,直接写出 x_2 的取值范围;
 - (3) 抛物线的对称轴与x轴交于点D,点P在抛物线上,且 $\angle DOP = 45$ °,若抛物线上满足条件的点P恰有 4 各,结合图象,求a的取值范围。
- - (1) 依题意补全图 1;
 - (2) 求证:NM = NF:
 - (3) 若AM = CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.

28. 对于平面直角坐标系xOy中的图形 W_1 和图像 W_2 ,给出如下定义:在图形 W_1 上存在两点A,B(点A与点B可以重合),在图形 W_2 上存在两点M,N(点M与点N可以重合),使得AM=2BN,则称图形 W_1 和图形 W_2 满足限距关系

- (1) 如图 1,点C(1,0),D(-1,0), $E(0,\sqrt{3})$,点P在线段DE上运动(点P可以与点D,E重合),连接OP,CP
 - ①线段OP的最小值为
- ,最大值为
- ;线段CP的取值范围时

②在点**0**,点**C**中,点

与线段DE满足限距关系;

- (2) 如图 2, ① O的半径为 1, 直线 $y = \sqrt{3}x + b(b > 0)$ 与x轴、y轴分别交于点F, G, 若线段FG与① O满足限 距关系,求b的取值范围;
- (3) \bigcirc O的半径为r(r>0),点H,K是 \bigcirc O上的两个点,分别以H,K为圆心,1为半径作圆得到 \bigcirc H和 \bigcirc K,若对于任意点H,K, \bigcirc H和 \bigcirc K都满足限距关系,直接写出r的取值范围.

2020 北京西城初三一模数学

参考答案

一、选择题(本题共16分,每小题2分)

题号	1	2	3	4	5	6	7	8
答案	В	В	С	A	D	A	С	В

二、填空题(本题共16分,每小题2分)

9	10	11	12
x≥1	六	答案不唯一, 如: $y = x^2 - 1$	1
13	14	15	16
$\sqrt{2}+1$	5, 3	(6, 6)	1), 4)

三、解答题(本题共 68 分, 第 17-21 题, 每小题 5 分, 第 22-24 题, 每小题 6 分, 第 25 题 5 分, 第 26 题 6 分, 第 27-28 题, 每小题 7 分)

17.
$$\Re: \left(\frac{1}{2}\right)^{-1} + (1-\sqrt{3})^0 + \left|-\sqrt{3}\right| - 2\sin 60^\circ$$

$$=2+1+\sqrt{3}-2\times\frac{\sqrt{3}}{2}$$

18. 解: 原不等式组为
$$\begin{cases} 3(x-2) < 2x-2, ① \\ \frac{2x+5}{4} < x. & ② \end{cases}$$

解不等式①,得 水4.

解不等式②,得 $x > \frac{5}{2}$.

∴原不等式组的解集为 $\frac{5}{2}$ <x<4.

19. 解: (1) 依题意, 得 $\triangle = [-(2m+1)]^2 - 4 \times 1 \times m^2$.

$$=4m+1 \ge 0$$
.

解得
$$m \ge -\frac{1}{4}$$
.

(2) 答案不唯一, 如: m = 0,

此时方程为 $x^2-x=0$.

- 20. (1) 证明: : 四边形 ABCD 是平行四边形,
 - ∴ OA=OC, OB=OD.
 - ∵ OA=OB,
 - ∴ OA=OC=OB=OD.
 - ∴ AC=BD.
 - ∴ □ABCD 是矩形.
 - (2)解:∵四边形 ABCD 是矩形,
 - ∴∠BAD=∠ADC=90°.
 - $\therefore \angle BAC^{+} \angle CAD^{=}90^{\circ}$.
 - $:BE \perp AC$,
 - ∴∠BAC+∠ABE=90°.
 - ∴∠CAD=∠ABE.

在Rt $\triangle ACD$ 中, $AD=2\sqrt{5}$, $\cos \angle CAD=\cos \angle ABE=\frac{2\sqrt{5}}{5}$,

- ∴ AC=5. 5分
- 21. 答案不唯一,如:
 - (1) 两组对边分别相等的四边形是平行四边形.
 - (2) 如图.
 - (3) 证明: : CF=BD, DF=BC,
 - : 四边形 DBCF 是平行四边形.

•••••

22. 解: (2)

(3)

	平均数	众数	中位数	方差
A		92		
В			88. 5	

(4) 答案不唯一, 理由须支撑推断的结论.

23. (1) 证明: 连接 AC,

- : OC = OA,
- **∴**点 C在⊙0上.
- : OA = OC, BA = BC,
- \therefore $\angle OAC = \angle OCA$, $\angle BAC = \angle BCA$.
- $\therefore \angle OCB = \angle OAB = 90^{\circ}$.
- ∴ OC⊥BC 于点 C.
- ∴ BC是⊙0切线.
- (2) ① 补全图形.

- ∴ BA=BC, ∠DBA=∠DBC.
- : BD是 AC的垂直平分线.
- ∵ *OA*=*OC*,
- ∴ ∠AOB=∠COB.
- \therefore AD = AC, AE 为 \odot 0 的直径,
- $\therefore CE = DE$.
- ∴ ∠ COE=∠ DOE.
- ∵ ∠AOB=∠DOE,
- ∴ ∠*AOB*=∠*BOC*=∠*COE*=60°.
- ∴ BC 是 \odot O 的 切线, 切点为 C,
- \therefore $\angle OCB = \angle OCF = 90^{\circ}$.
- $\therefore \angle OBC = \angle OFC = 30^{\circ}$.
- ∴ OF = OB. 6分

24. 解: (1)

x/cm	0	1	2	3	4
<i>y</i> ₁ /cm			3. 09		
y_2/cm					

(2) 画出函数 刃的图象;

- (3) ①0.83 或 2.49.
- ②5.32.6分
- 25. M: (1) ① $\Leftrightarrow y=0$, M kx + 2k = 0.
 - : k > 0,解得 x=-2.
 - ∴点 A 的坐标为(-2, 0).
 - :: 点 P 的坐标为(1,6),
 - *∴*#=6.
 - $2\frac{1}{3}$.
 - (2) $\bigcirc P(1, 3k)$.

解得
$$x = 2 + \frac{2}{k}$$
.

- ∴点 Q的横坐标为 $2+\frac{2}{k}$,
- $\because 2 + \frac{2}{k} > 1 \quad (k > 0) ,$

∴点 Q在点 P的右侧.

如图,分别过点 P, Q作 $PM \perp x$ 轴于 M, $QN \perp x$ 轴于 N,

则点 M, 点 N的横坐标分别为 1, $2 + \frac{2}{k}$.

若 PQ=PA,则 $\frac{PQ}{PA}=1$.

$$\therefore \frac{PQ}{PA} = \frac{MN}{MA} = 1.$$

- ∴ MN=MA.
- ∴ $2 + \frac{2}{k} 1 = 3$, 解得 k = 1.
- MA = 3,
- ∴ $\stackrel{\underline{}}{=} \frac{PQ}{PA} = \frac{MN}{MA} \leqslant 1$ Ft, $k \geqslant 1$.
- $\therefore m = 3k \geqslant 3.$
- ∴ 当 *PQ*≤*PA* 时,*m*≥3. •••••••••• 5 分
- 26. 解: (1) : 抛物线 $y = ax^2 + bx + a + 2$ 的对称轴为直线 x = -1,

$$\therefore -\frac{b}{2a} = -1.$$

$$\therefore b = 2a$$
.

∴
$$y = ax^2 + 2ax + a + 2$$
 (上为 $y = a(x+1)^2 + 2$.

将点 A (-3, 0) 代入 $y = a(x+1)^2 + 2$ 中,得 $a = -\frac{1}{2}$.

$$\therefore y = -\frac{1}{2}(x+1)^2 + 2 = -\frac{1}{2}x^2 - x + \frac{3}{2}.$$

∴ 抛物线的表达式为
$$y = -\frac{1}{2}x^2 - x + \frac{3}{2}$$
.

点 B的坐标为(1,0).

(2)
$$-1 < x_2 < 0$$
.

- (3): 抛物线的顶点为(-1,2),
- ∴点 *D*的坐标为(-1,0).
- ∵∠DOP=45°,且抛物线上满足条件的

点 P恰有4个,

- : 抛物线与 x 轴的交点都在原点的左侧.
- :满足条件的点 P在 x 轴上方有 2 个,

在 x 轴下方也有 2 个.

 $\therefore a+2<0$.

解得a < -2.

- ∴ a 的取值范围是a < -2. 6分
- 27. (1) 补全图形,如图1.

证明: (2) : CQ=CP, ∠ACB = 90°,

- \therefore AP=AQ.
- \therefore $\angle APQ = \angle Q$.
- ∵ BD⊥AQ,
- $\therefore \angle QBD + \angle Q = \angle QBD + \angle BFC = 90^{\circ}$.
- $\angle Q = \angle BFC$.
- \therefore \angle MFN = \angle BFC,
- $\therefore \angle MFN = \angle Q.$

同理, ∠NMF =∠APQ.

- \therefore $\angle MFN = \angle FMN$.
- \therefore NM =NF.
- (3) 连接 CE, 如图 2.

由(1)可得 ∠PAC =∠FBC,

- \therefore $\angle ACB=90^{\circ}$, AC=BC,
- $\therefore \triangle APC \cong \triangle BFC.$
- \therefore CP = CF.
- ∵ AM=CP,
- \therefore AM = CF.
- \therefore $\angle CAB = \angle CBA = 45^{\circ}$.
- $\angle EAB = \angle EBA.$
- AE = BE.
- 又 :: AC = BC,

- : CE所在直线是 AB的垂直平分线.
- $\angle ECB = \angle ECA = 45^{\circ}$.
- $\angle GAM = \angle ECF = 45^{\circ}$.

由(1)可得 \(\alpha \text{MG} = \alpha \text{CFE}, \)

- $\therefore \triangle AGM \cong \triangle CEF.$
- ∴ GM=EF.
- \therefore BN=BE + EF + FN=AE +GM+ MN.
- ∴ BN=AE+ GN.

•••••• 7 分

28. **A**: (1) ①
$$\frac{\sqrt{3}}{2}$$
, $\sqrt{3}$; $\sqrt{3} \leqslant CP \leqslant 2$;

② *0*.

(2) 直线
$$y = \sqrt{3}x + b$$
 与 x 轴、 y 轴分别交于点 F , $G(0, b)$,

当 0<b<1 时,线段 FG在⊙ θ 0的内部,与⊙ θ 无公共点,

此时 \bigcirc 0上的点到线段 FG的最小距离为1-b,最大距离为1+b.

- ∵ 线段 FG 与 ⊙ O 满足限距关系,
- $\therefore 1+b \ge 2(1-b)$.

解得 $b \ge \frac{1}{3}$.

∴
$$b$$
的取值范围是 $\frac{1}{3} \le b \le 1$.

当 1≤b≤2 时,线段 FG与⊙0有公共点,线段 FG与⊙0满足限距关系.

当 b>2 时,线段 FG在 $\odot 0$ 的外部,与 $\odot 0$ 无公共点,

此时 $\odot 0$ 上的点到线段 FG的最小距离为 $\frac{1}{2}b-1$,最大距离为b+1.

$$\therefore b+1 \geqslant 2(\frac{1}{2}b-1).$$

而
$$b+1>2(\frac{1}{2}b-1)$$
 总成立.

∴ 当 b>2 时,线段 FG与 \odot 0满足限距关系.

综上,b的取值范围是 $b \ge \frac{1}{3}$.

(3) 0<*r*≤3. 7分