FUNDAMENTALS OF INFORMATION TRANSMISSION

→ applies to both wired and wireless networks

→ additional features unique to wireless discussed later

Bits, information, and signals

Motivation: hosts A and B are connected by point-to-point link

A wants to send bits 011001 to B

Physical medium: wired (fiber/copper) or wireless (space)

→ signals: electromagnetic waves

Electromagnetic wave: oscillating sine curve

Direction of vibration: perpendicular to direction of travel

- \rightarrow called transverse wave
- \rightarrow sound wave: longitudinal vibration in same direction as travel

Electromagnetic wave: two key features

- \rightarrow period: T
- \rightarrow amplitude (or magnitude)
- \rightarrow third key feature?

Frequency f: how much vibration—i.e., how many periods—occur within a 1-second time window

$$\rightarrow f$$
: $1/T$

 \rightarrow unit: Hz

Ex.: 1 GHz sine wave has period 1 nanosecond

Travel speed of EM waves

- \rightarrow speed of light (in vacuum)
- \rightarrow slower in copper, optical fiber, atmosphere

Electromagnetic spectrum:

- \rightarrow some of its use today
- \rightarrow logarithmic scale

 \rightarrow crowded near the 1 GHz neighborhood

Back to original problem: A wants to send B six bits 011001

 \rightarrow how do sine waves help?

Utilize amplitude (signal strength) to encode 1's and 0's

 \rightarrow large amplitude: 1

 \rightarrow small amplitude: 0

Called amplitude modulation (AM)

 \rightarrow same concept as AM radio

Throughput (bps):

- \rightarrow if frequency is 1 Hz then 1 bps
- \rightarrow if frequency is 1 MHz then 1 Mbps
- \rightarrow if frequency is 1 GHz then 1 Gbps
- \rightarrow if frequency is 1 THz then 1 Tbps

Networking problem solved!

(or not \dots)

Issues with just increasing frequency:

Increasing frequency requires increase in processing speed

 $\rightarrow \cos t$

Wireless: above 10 GHz requires line-of-sight (LOS)

For a given frequency band (say 2.4–2.5 GHz) want to pack as many bits as possible

- \rightarrow utilize the band as much as possible
- \rightarrow also called "bandwidth"
- \rightarrow multiple lanes, i.e., broadband
- \rightarrow if one lane per user: multi-user communication

Issues with just increasing frequency (cont.):

Wireless: simultaneous uplink (to base station) transmission by multiple clients (from mobiles)

- \rightarrow problem of multi-user communication
- \rightarrow also referred to as multiplexing

Simple solution to multi-user communication:

- \rightarrow share a single lane by time reservation
- \rightarrow time division multiplexing (TDM)

Ex.: 4 users sharing a single lane, i.e., frequency

- \rightarrow divide time into blocks
- \rightarrow reserve blocks to 4 users: 1, 2, 3, 4, 1, 2, 3, 4, ...

- \rightarrow each block can carry multiple bits: block size
- \rightarrow 1, 2, 3, 4: frame or packet

Real-world example: T1 carrier (1.544 Mbps)

- 24 simultaneous users
- 8-bit block size
- squeeze 8000 frames into 1 second
 - \rightarrow frame duration: 125 μ sec
- bandwidth: $8000 \times 193 = 1.544$ Mbps
- drawbacks of using TDM for multi-user communication?

TDM allows sharing of single lane—called carrier frequency—by multiple users

- \rightarrow baseband communication
- \rightarrow users alternate in time: not truly simultaneous
- \rightarrow what we want is broadband: multiple lanes
- \rightarrow increase the "size of the pie"
- \rightarrow truly simultaneous

Key problem of broadband or high-speed networks:

Given a frequency band (wired or wireless), how to create as many parallel lanes as possible

- → frequency band or "bandwidth" (Hz): scarce resource
- \rightarrow especially wireless
- \rightarrow utilize multiple frequencies for parallel transmission
- \rightarrow frequency division multiplexing (FDM)
- \rightarrow how many lanes are possible?

State-of-the-art: OFDM (orthogonal FDM)

- \rightarrow ubiquitous in wireless networks
- \rightarrow IEEE 802.11g/n WLANs (not 802.11b)
- \rightarrow WiMAX, cellular, etc.

Practical dilemma:

- three wireless hosts are sending bits to base station
- each host uses its own carrier frequency
 - $\rightarrow f_1, f_2, f_3$
 - \rightarrow e.g., 2.42 GHz, 2.44 GHz, 2.46 GHz
- base station receives

 \rightarrow what bits did the 3 hosts send?

CS 422 Park

The signal received is the sum of

A receiver only sees the combined signal

 \rightarrow to recover the bits sent requires recovering the shape of the individual carrier waves

→ with hundreds, thousands of carrier frequencies, how to do that?

Note: same problem applies to wireline broadband communication

Ex.: point-to-point link from A to B

- $\rightarrow A$ transmits bits to B over 3 parallel lanes
- \rightarrow faster file exchange