

Figura 1: Un AFD

Figura 2: Otro AFD

- 1. Queremos escribir una expresión regular que denote a todas las palabras sobre el alfabeto $\{a,b\}$ que tienen al menos una a y al menos una b. ¿Cuál de las siguientes expresiones regulares es correcta?
 - a. $a(a+b)^*b$
 - b. $b(a+b)^*a$
 - c. a(a+b)*b + b(a+b)*a
 - d. Ninguna de las anteriores
- 2. ¿Cuántos estados tiene el autómata mínimo equivalente al AFD de la figura 1?
 - a. Tres
 - b. Cuatro
 - c. Cinco
 - d. Ninguna de las anteriores
- 3. Una expresión regular equivalente al AFD de la figura 2 es
 - a. 0*1(1+0(0+1))*
 - b. 0*1(0+1)*
 - c. $0*1(0+1)^+$
 - d. Ninguna de las anteriores
- 4. Tenemos el AFND dado por la tabla

	a	b
e_0	$\{e_1, e_2\}$	Ø
e_1	$\{e_1\}$	$\{e_2\}$
e_2	$\{e_2\}$	$\{e_1\}$

donde e_0 es el estado inicial y el único estado final es e_2 . Si aplicamos el algoritmo visto en clase para pasar a AFD entonces el autómata resultante

Modelo 0 Página 1

- a. No es equivalente al AFND de partida.
- b. Tiene 4 estados.
- c. Tiene 2 estados.
- d. Ninguna de las anteriores
- 5. Nos dan el autómata de la figura 3. Si eliminanos los λ -movimientos siguiendo el algoritmo visto en clase, entonces siendo δ' la función de transición del autómata resultante:

Figura 3: Un autómata finito no determinístico con λ -movimientos

- a. $\delta'(q_2, a) = \{q_1, q_3\}$
- b. $\delta'(q_2, a) = \{q_1, q_2, q_3, q_4\}$
- c. $\delta'(q_2, a) = \{q_1, q_3, q_4\}$
- d. Ninguna de las anteriores
- 6. Si transformamos la expresión regular $(a+b)^*aa+bb(a+b)^*$ en un λ -AFND según las reglas de desarrollo vistas en clase, entonces el autómata resultante:
 - a. Tiene 8 estados y 4 λ -movimientos
 - b. Tiene 9 estados y 4 λ -movimientos
 - c. Tiene 8 estados y 2 λ -movimientos
 - d. Ninguna de las anteriores
- 7. La expresión regular $r = (a+b)^+(a+b)^*$ denota al lenguaje:
 - a. $L = \{w \in \{a, b\}^* : w \text{ empieza por el mismo símbolo que termina}\}$
 - **b.** $L = \{w \in \{a, b\}^* : w \text{ no es la palabra vacía} \}$
 - $\text{c.}\quad L=\{w\in\{a,b\}^*: w \text{ tiene longitud impar}\}$
 - d. Ninguna de las anteriores

Modelo 0 Página 2

- **8.** En el autómata de la figura 3
 - a. $\lambda cl(\{q_1, q_3\}) = \{q_0, q_1, q_2, q_3, q_4\}$
 - b. $\lambda cl(\{q_1, q_3\}) = \lambda cl(q_3)$
 - c. $\lambda cl(\{q_1, q_3\}) = \lambda cl(q_1)$
 - d. Ninguna de las anteriores.
- **9.** Tenemos un AFND con λ-movimientos y lo transformamos, siguiendo el algoritmo visto en clase, en un AFND sin λ-movimientos equivalente. ¿Qué podemos decir sobre el número de estados finales del AFND resultante?
 - a. A veces es mayor que el número de estados finales del AFND con λ -movimientos original
 - b. Siempre es mayor que el número de estados finales del AFND con λ -movimientos original
 - c. Siempre es igual al número de estados finales del AFND con λ -movimientos original
 - d. Ninguna de las anteriores
- 10. Si tenemos un lenguaje L que es reconocido por un λ -AFND entonces
 - a. No siempre hay una expresión regular que denote al lenguaje L
 - b. Siempre hay un AFD que reconoce L
 - c. Siempre hay un AFND que reconoce L pero no siempre hay un AFD que reconoce L
 - d. Ninguna de las anteriores

Modelo 0 Página 3