

Ingeniørhøjskolen Aarhus Universitet

Elektro-, IKT-, Elektrisk Energiteknologi- og Sundhedsteknologi-Ingeniørstudiet

Eksamenstermin: Q4 reeksamen – sommer 2017

Prøve i: ETSMP – Stokastisk modellering og behandling

Dato: 15. august 2017

Varighed: 3 timer, kl. 9.30 – 12.30

Underviser: Lars Mandrup

Ingeniørhøjskolen udleverer:

2 omslag samt papir til kladde og renskrift. Der skal udfyldes og afleveres **2** omslag. Du bedes krydse af på omslaget, om du har afleveret håndskrevet, i digital eksamen eller begge dele.

Digital eksamen

Denne eksamen er en del af "Digital Eksamen". Det betyder, at opgaven udleveres og afleveres gennem den digitale eksamensportal. Håndskrevne dele af opgavebesvarelsen afleveres dog i de udleverede omslag.

Hvis du afleverer alt håndskrevet, **SKAL** du uploade og aflevere, et dokument i Digital eksamen, hvor der står, at du har afleveret i hånden.

Du vil modtage en elektronisk afleveringskvittering, straks du har afleveret. Husk at aflevere til tiden, da der ellers skal indsendes en dispensationsansøgning.

I Digital eksamen skal opgaven afleveres i PDF-format. Husk angivelse af navn og studienummer på <u>alle</u> sider, samt i dokumenttitel/filnavn.

Hjælpemidler:

Alle hjælpemidler må benyttes, herunder internettet som opslagsværktøj, men det er **IKKE** tilladt at kommunikere med andre digitalt.

Særlige bemærkninger:

Alle spørgsmålene i opgaverne vægtes ens.

<u>Alle</u> elektroniske besvarelser skal afleveres i <u>pdf-format</u>. Hvis besvarelsen er lavet i Mathcad Prime, skal du <u>desuden</u> aflevere den som <u>bilag</u> som <u>Mathcad Prime</u>-dokument.

Ingeniørhøjskolen Aarhus Universitet - Elektro-, IKT- og Elektrisk Energiteknologi- og Sundhedsteknologi-Ingeniørstudiet

Eksamenstermin: Q4 reeksamen – Sommer 2017

Prøve i: ETSMP – Stokastisk modellering og behandling

Dato: 15. august 2017

Opgave 1

En kontinuert stokastisk variabel X har følgende fordelingsfunktion (cdf) $F_X(x)$:

$$F_X(x) = \begin{cases} 0 & for \ x < 0 \\ a \cdot x^2 & for \ 0 \le x \le 2 \\ 1 & for \ x > 2 \end{cases}$$

- a) Bestem a, så $F_X(x)$ er en gyldig fordelingsfunktion.
- b) Bestem og tegn tæthedsfunktionen (pdf) $f_X(x)$ for X.
- c) Bestem sandsynligheden for $1 \le X \le 2$.
- d) Bestem middelværdien og variansen af X.

Opgave 2

En leverance af modstande indeholder:

Modstandene leveres både som 5% modstande og 1% modstande. 1% modstandene udgør ¼ af 1 k Ω , ½ af 10 k Ω og ¾ af 100 k Ω modstandene. Modstandene er desværre blevet blandet sammen og leveres i én blandet pose.

En modstand udtages tilfældigt fra leverancen.

- a) Hvad er sandsynligheden for, at den udtagne modstand er hhv. en 1 k Ω , 10 k Ω eller 100 k Ω modstand?
- b) Hvad er sandsynligheden for, at modstanden er en 10 k Ω 1% modstand?
- c) Hvad er sandsynligheden for, at det er en 1% modstand uanset størrelse?
- d) Hvis den udtagne modstand er en 5% modstand, hvad er så sandsynligheden for at den er på 100 k Ω ?

Ingeniørhøjskolen Aarhus Universitet - Elektro-, IKT- og Elektrisk Energiteknologi- og Sundhedsteknologi-Ingeniørstudiet

Eksamenstermin: Q4 reeksamen – Sommer 2017

Prøve i: ETSMP – Stokastisk modellering og behandling

Dato: 15. august 2017

Opgave 3

En diskret stokastisk proces X(n) er givet ved:

$$X(n) = 2 \cdot W(n) - 1$$

hvor W(n) er i.i.d. fordelte efter:

w(n)	0	1	2	3	
$f_{w(n)}(w(n))$	1/4	1/4	1/4	1/4	

- a) Skitser 10 samples af én realisation af processen X(n). Dvs. for n=1, 2,...,10.
- b) Bestem middelværdien og variansen af én realisation af X(n).
- c) Bestem ensemble middelværdien og variansen for processen X(n).
- d) Angiv om processen er WSS (stationær i den brede forstand), og om den er ergodisk. Svarene skal begrundes.

Ingeniørhøjskolen Aarhus Universitet - Elektro-, IKT- og Elektrisk Energiteknologi- og Sundhedsteknologi-Ingeniørstudiet

Eksamenstermin: Q4 reeksamen – Sommer 2017

Prøve i: ETSMP – Stokastisk modellering og behandling

Dato: 15. august 2017

Opgave 4

For en bestemt type batterier angives i specifikationen fra leverandøren, at levetiden T for batterierne er normalfordelt med en middellevetid på 3000 timer med en standard afvigelse på 100 timer: T ~ \mathcal{N} (3000 timer; (100 timer)²).

Der udtages tilfældigt 12 batterier af pågældende type. Ved en test måles levetiden af disse til:

Batteri nr.	1	2	3	4	5	6	7	8	9	10	11	12
Levetid T (timer)	3148	2956	2803	2933	2869	3111	2789	2995	2909	2929	3148	2867

- a) Opstil en hypotese test for at bestemme om middellevetiden for batteritypen stemmer med leverandørens specifikation.
- b) Bestem den estimerede middellevetid for batteritypen.
- c) Anvend en z-test til test af din hypotese. Kan NULL-hypotesen afvises med et signifikantniveau på 0,05? Svaret skal begrundes.
- d) Bestem 95% konfidens intervallet for batterilevetiden T.