Analisi C for Dummies

 $bug \ report: \ mario.piccinelli@gmail.com$

28 febbraio 2008

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 2.5 Italy License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/it/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Indice

1	Serie numeriche 3				
	1.1	Th di linearitá			
	1.2	Corollario al Th di linearitá			
	1.3	Serie a termini reali non negativi			
	1.4	Criterio del confronto			
	1.5	Criterio del confronto asintotico			
	1.6	Criterio del rapporto			
	1.7	Criterio della radice			
	1.8	Nel caso complesso			
	1.9	Criterio di Leibnitz			
2	Successioni di funzioni 4				
	2.1	Convergenze			
	2.2	Continuitá			
	2.3	Integrazione			
	2.4	Derivazione			
3	Serie di Funzioni				
	3.1	Convergenza puntuale			
	3.2	Convergenza uniforme			
	3.3	Continuitá			
	3.4	Integrazione per serie			
	3.5	Derivazione per serie			
	3.6	Convergenza Totale			
	3.7	Teorema di Weierstrass			
4	Serie di Potenze				
	4.1	Raggio di Convergenza			
	4.2	Integrazione per serie di potenze			
	4.3	Derivazione per serie di potenze			
	4.4	Taylor			
	4.5	Teorema di Weiestrass			
5	Fourier (agitarsi prima dell'uso)				
	5.1	Teorema di Dirichlet			
	5.2	Serie di Fourier			
	5.3	Uguaglianza di Parseval			
	5.4	Convergenza puntuale			
	5.5	Teorema di Dirichlet (un altro!?)			
	5.6	Derivabilitá della serie di Fuorier			
	5.7				

6	Inte	egrali Indefiniti	11		
	6.1	Definizione: localmente integrabile	12		
	6.2	Definizione: integrabile in senso improprio	12		
	6.3	Funzioni ≥ 0	12		
	6.4	Criterio del Confronto	12		
	6.5	Criterio del Confronto Asintotico			
	6.6	Criterio di McLaurin			
	6.7	In valore assoluto			
7	Trasformata di Laplace				
•	7.1	Definizione			
	7.2	Linearitá			
	7.3	Formula del ritardo			
	7.3	Derivazione			
	7.4 - 7.5				
	7.3	Integrazione	19		
8	Trasformata di Fourier 1				
	8.1	Definizione	14		
	8.2	Linearitá	14		
	8.3	Formula del Ritardo	14		
	8.4	Inversione della Trasformata			
	8.5	Corrispondenze tra trasformata e antitrasformata			
	8.6	Derivazione			
	0.0	Delivazione			
9	Equazioni Differenziali 1				
	9.1	Esistenza della soluzione	15		
	9.2	Estensione della soluzione	15		
10) Eau	azioni differenziali di ordine n	15		
	-	Esistenza della soluzione	15		
		Operatore differenziale			
		Soluzioni			
		Determinante Wronskiano			

1 Serie numeriche

La serie é la generalizzazione della somma ad un numero infinito di addendi. A partire da una successione numerica

$${a_n}_{n \in N} \subseteq C$$
 $N = {0, 1, 2, ...}$

Si costruisce un'altra successione definita come:

$$S_0 = a_0$$
$$S_1 = a_0 + a_1$$

•••

$$S_N = S_{N-1} + a_n = \sum_{n=0}^{\infty} a_n$$

 $\{S_N\}_{n\in\mathbb{N}}$ é detta serie numerica di elementi $\{a_n\}_{n\in\mathbb{N}}$

- La serie converge se esiste $\lim_{n\to\infty} S_N \leq \infty$
- La serie diverge se esiste $\lim_{n\to\infty} S_N = \infty$
- La serie $oscilla/\acute{e}$ indeterminata se NON esiste $\lim_{n\to\infty} S_N$

1.1 Th di linearitá

Suppongo di avere $\{a_n\}, \{b_n\} \subset C, c \in C$

- se $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} b_n$ convergono, allora $\sum_{n=0}^{\infty} (a_n + b_n)$ converge a $(\sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n)$
- se $\sum_{n=0}^{\infty}a_n$ converge allora $\sum_{n=0}^{\infty}c.a_n$ converge a $c.\sum_{n=0}^{\infty}a_n$

1.2 Corollario al Th di linearitá

Se $\sum_{n=0}^{\infty} a_n$ converge, allora $\lim_{n\to\infty} a_n = 0$

1.3 Serie a termini reali non negativi

 $a_n \in R \quad a_n \ge 0 \quad \forall n$

$$S_N = S_{N-1} + a_N \Rightarrow S_N - S_{N-1} = a_n \ge 0 \Rightarrow S_N \ge S_{N-1} \quad \forall N$$

3

Quindi esiste sicuramente il limite, quindi la serie non puó oscillare.

1.4 Criterio del confronto

Ci sono due serie: $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} b_n$ $a_n e b_n \in R$, $a_n \ge 0$, $b_n \ge 0$

Se $a_n \leq b_n \quad \forall n \geq m$

Allora se $\sum_{n=0}^{\infty} b_n$ converge $\Rightarrow \sum_{n=0}^{\infty} a_n$ converge.

Corollario:

Se $0 \le a_n \le b_n \quad \forall n \ge m$

Allora se $\sum_{n=0}^{\infty} a_n$ diverge $\Rightarrow \sum_{n=0}^{\infty} b_n$ diverge.

1.5 Criterio del confronto asintotico

Supponiamo $a_n \ge 0$ $b_n \ge 0$ $\forall n$

supponiamo $\exists \lim_{n\to\infty} \frac{a_n}{b_n} = L \in [0, +\infty]$

- $L \in]0, +\infty[$ \Rightarrow le due serie hanno lo stesso carattere
- L=0 \Rightarrow se $\sum_{n=0}^{\infty} b_n$ converge allora $\sum_{n=0}^{\infty} a_n$ converge
- $L = +\infty$ \Rightarrow se $\sum_{n=0}^{\infty} a_n$ converge allora $\sum_{n=0}^{\infty} b_n$ converge

1.6 Criterio del rapporto

Supponiamo $a_n > 0 \quad \forall n \in \mathbb{N}$

supponiamo $\exists \quad \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L \quad \in [0, +\infty]$

- $\bullet \ \mbox{se} \ L < 1$ la serie converge
- se L > 1 la serie diverge
- se L = 1 caso indeterminato

1.7 Criterio della radice

Supponiamo $a_n > 0 \quad \forall n \in \mathbb{N}$

supponiamo $\exists \lim_{n\to\infty} \sqrt[n]{a_n} = L \in [0,+\infty]$

- se L < 1 la serie converge
- $\bullet \ \mbox{se} \ L>1$ la serie diverge
- se L = 1 caso indeterminato

1.8 Nel caso complesso..

Se $\sum_{n=0}^{\infty} \mid a_n \mid$ converge allora converge anche $\sum_{n=0}^{\infty} a_n$

Se $\sum_{n=0}^{\infty} |a_n|$ converge, si dice che $\sum_{n=0}^{\infty} a_n$ converge assolutamente.

Se $\sum_{n=0}^{\infty} a_n$ converge ma $\sum_{n=0}^{\infty} |a_n|$ non converge, allora si dice *convergenza semplice*.

4

La convergenza assoluta implica la convergenza ordinaria.

1.9 Criterio di Leibnitz

Se ho una serie a segni alterni $\sum_{n=0}^{\infty} (-1)^n a_n \quad a_n \in R \quad a_n \geq 0$

Se $\{a_n\}$ é monotona non crescente infinitesima

Allora la serie di partenza é convergente.

E inoltre $|S - S_n| = |S - \sum_{k=0}^{\infty} (-1)^k a_k| \le a_{n+1}$

2 Successioni di funzioni

 $\{f_n\}_{n\in\mathbb{N}} \quad f_n:I\to C\subseteq R \quad \text{ I interval$ $lo limitato o illimitato}$

2.1 Convergenze

Convergenza puntuale:

$$\lim_{n \to \infty} f_n(x) = f(x) \quad \forall x \in I \quad \Leftrightarrow \quad \lim_{n \to \infty} |f_n(x) - f(x)| = 0 \quad \forall x \in I$$

Convergenza uniforme:

$$\lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0 \quad \forall x \in I$$

2.2 Continuitá

 $\{f_n\}_{n\in N}$ successione di funzioni $f_n:I\to C$

 f_n continue $\forall n \in \mathbb{N}, f_N \to f$ uniformemente in I (dove $f: I \to C$)

Allora f é continua in I

2.3 Integrazione

 $f_n:[a,b]\to R$ integrabili $\forall n$

 $f_n \to f$ uniformemente in [a,b]

Allora:

- f integrabile in [a,b]
- $\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$

2.4 Derivazione

 $f_n:[a,b]\to R$ derivabili $\forall n$

 $f_n \to f$ in [a,b] (solo puntualmente)

 $f'_n \to g(x)$ uniformemente in [a,b]

Allora:

- f é derivabile
- $f_n \to f$ uniformemente in [a,b]
- f' = g

3 Serie di Funzioni

$$\{f_n(x)\}_{n\in N}\quad f_n:I\to C$$

$$S_0(x)=f_0(x)$$

$$S_1(x)=f_0(x)+f_1(x)$$
 ...
$$S_n(x)=S_{n-1}(x)+f_n(x)$$
 somma parziale o ridotta della serie

Fissato un determinato $x \in I$, si ha:

- $\{f_n(x)\}$ successione numerica
- $\{S_n(x)\}\$ successione numerica $\sum_{n=0}^{\infty} f_n(x)$

3.1 Convergenza puntuale

La serie converge, diverge o é indeterminata

se la serie (numerica) $\sum_{n=0}^{\infty} f_n(x)$ converge, diverge o é indeterminata $\forall x \in I$

3.2 Convergenza uniforme

La serie $\sum_{n=0}^{\infty} f_n(x)$ é convergente uniformemente a S(x) in I

se la successione $\{S_k(x)\}$ converge uniformemente a S(x) in I, ovvero:

$$\lim_{k \to \infty} \sup_{x \in I} |S_k(x) - S(x)| = \lim_{k \to \infty} \sup_{x \in I} |\sum_{n=0}^k f_n(x) - \sum_{n=0}^\infty f_n(x)| = 0$$

3.3 Continuitá

Date $f_n:I\to C$ continue in I $\forall n\in N$ (ovvero $f_n\in C^0(I)$)

se la serie $\sum_{n=0}^{\infty} f_n(x)$ converge uniformemente in I a S(x)

allora S(x) é continua in I (ovvero $S \in C^0(I)$) (condizione sufficiente, non necessaria)

3.4 Integrazione per serie

 $f_n:[a,b]\to R$ integrabile $\forall n\in N$

 $\sum_{n=0}^{\infty} f_n(x)$ converge uniform emente in [a,b] a S(x)

Allora:

- S é integrabile in [a,b]
- $\bullet \int_a^b S(x) dx = \int_a^b \sum_{n=0}^\infty f_n(x) dx = \sum_{n=0}^\infty \int_a^b f_n(x) dx$

3.5 Derivazione per serie

 $f_n: [a,b] \to R$ derivabile $\forall n \in N$

 $\sum_{n=0}^{\infty} f_n(x)$ converge puntualmente in I a S(x)

 $\sum_{n=0}^{\infty} f'_n(x)$ converge uniformemente in I a g(x)

Allora:

- S é derivabile
- $\sum_{n=0}^{\infty} f_n$ converge uniformemente a S in I
- $S'(x) = g(x) = \sum_{n=0}^{\infty} f'n(x)$

3.6 Convergenza Totale

La serie $\sum_{n=0}^{\infty} f_n : I \to C$ ($I \in C$ intervallo) converge totalmente in I se:

 $\exists \{a_n\}, \text{ con } a_n \in R, a_n \geq 0 \text{ tale che:}$

- $|f_n(x)| \le a_n, \forall x \in I, \forall n \in N$
- $\sum_{n=0}^{\infty} a_n$ é convergente

3.7 Teorema di Weierstrass

Se la serie $\sum_{n=0}^{\infty} f_n(x)$ converge totalmente in I

allora converge uniformemente in I (non sempre vale il viceversa).

4 Serie di Potenze

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + a_3 (x - x_0)^3 + \dots$$

 x_0 é il centro della serie. É sempre possibile ricondurre il centro della serie a 0 con un cambio di variabili.

4.1 Raggio di Convergenza

Supponiamo che la serie converga in $x_0 \in C$, con $x_0 \neq 0$.

Allora la serie converge assolutamente $\forall x \in C$ tali che $|x| < |x_o|$

Si definisce Raggio di Convergenza della serie:

$$R = \sup\{|x| \text{ con } x \in C \text{ tale che: } \sum_{n=0}^{\infty} a_n x^n \text{ converge}\}$$

In tal caso:

- $\forall r$, tale che 0 < r < R, la serie converge uniformemente nella palla chiusa centrata in 0 con raggio R.
- la somma della serie é una funzione continua in $B_R(o)$

Supponiamo che $\exists \lim_{n\to\infty} \sqrt[n]{|a_n|} = l$, con $l \in [0, +\infty]$

Allora:

$$R := \begin{cases} \frac{1}{l} & \text{se } l \in]0, +\infty[\\ +\infty & \text{se } l = 0\\ 0 & \text{se } l = +\infty \end{cases}$$

R é il raggio di convergenza della serie.

Vale anche la formula $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = l$ (se esiste il limite, ovviamente)

Osservazione: se \exists il limite del rapporto $\Rightarrow \exists$ il limite della radice, quindi se non esiste il limite della radice é inutile cercare il limite del rapporto.

7

4.2 Integrazione per serie di potenze

Dunque, ho $\sum_{n=0}^{\infty} a_n x^n$, e so che converge uniformemente in $\overline{B_r(0)}$ con 0 < r < R.

So anche che $\forall n$ succede che $x \to a_n x^n$ é una funzione continua \Rightarrow integrabile.

Quindi, suppondendo di avere -r < a < b < r:

$$\int_{a}^{b} \left(\sum_{n=0}^{\infty} a_n x^n \right) dx = \sum_{n=0}^{\infty} \left(\int_{a}^{b} a_n x^n dx \right) = \dots = \sum_{n=0}^{\infty} a_n \frac{b^{n+1} - a^{n+1}}{n+1}$$

Prendo un x tale che |x| < R, quindi, se per esempio x > 0, prendo a = 0, b = x (altrimenti viceversa).

$$\int_0^x \left(\sum_{n=0}^\infty a_n t^n dt\right) = \sum_{n=0}^\infty a_n \int_0^x t^n dt = \dots = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1} = x \sum_{n=0}^\infty b_n x^n$$

Quindi integrando una serie di potenze ottengo un'altra serie di potenze.

La serie cosí ottenuta ha lo stesso raggio di convergenza della serie di partenza.

$$\lim_{n \to \infty} \sqrt[n]{|b_n|} = \lim_{n \to \infty} \sqrt[n]{|\frac{a_n}{n+1}|} = \frac{\lim_{n \to \infty} \sqrt[n]{|a_n|}}{\lim_{n \to \infty} \sqrt[n]{n+1}} = \frac{1}{R}$$

4.3 Derivazione per serie di potenze

Dunque, ho $\sum_{n=0}^{\infty} a_n x^n$, e so che converge uniformemente in $\overline{B_r(0)}$ con 0 < r < R.

So anche che $\forall n$ succede che $x \to a_n x^n$ é una funzione continua \Rightarrow derivabile.

Se ho la convergenza uniforme di $\sum_{n=0}^{\infty} n a_n x^{n-1}$ allora:

$$\sum_{n=0}^{\infty} a_n x^n \quad \text{\'e derivabile e} \quad \left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=0}^{\infty} n a_n x^{n-1}$$

La convergenza uniforme si vede semplicemente:

$$\sum_{n=0}^{\infty} n a_n x^{n-1} = x^{-1} \sum_{n=0}^{\infty} n a_n x^n$$

Inoltre, la derivata di una serie ha lo stesso raggio di convergenza della serie di partenza:

$$\lim_{x \to \infty} \sqrt[n]{|na_n|} = \lim_{n \to \infty} \sqrt[n]{n} \sqrt[n]{|a_n|} = \frac{1}{R}$$

Ripetendo quanto visto prima, si puó facilmente vedere che una serie di potenze ammette infinite derivate in $\mid x \mid < R$.

4.4 Taylor

Dunque, si é detto che una serie di potenze é derivabile ∞ volte in |x| < R. Finora abbiamo sempre visto come partendo da una successione $\{f_n\}$ si arrivi a convergere a una certa f. Supponiamo ora di voler fare il contrario: a partire da una f vogliamo ricavare la successione che coverga ad essa. Il procedimento é il

seguente:

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 + \dots$$

$$\Rightarrow f(x_0) = a_0$$

$$f'(x) = a_1 + 2a_2(x - x_0) + 3a_3(x - x_0)^2 + \dots$$

$$\Rightarrow f'(x_0) = a_1$$

$$f''(x) = 2a_2 + 3 \cdot 2a_3(x - x_0) + \dots$$

$$\Rightarrow f''(x_0) = a_2$$

$$f'''(x) = 3 \cdot 2a_3(x - x_0) + \dots$$

$$\Rightarrow f'''(x_0) = 3 \cdot 2a_3$$

$$\dots$$

$$\Rightarrow f^{(n)}(x_0) = n! \cdot a_n$$

Di conseguenza,

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
 Serie di Taylor

O, come afferma il Teorema di Taylor

$$f(x) = \sum_{n=0}^{m} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

$$+ \frac{f^{(m+1)}(\xi)}{(m+1)!} (x - x_0)^{m+1}$$

$$P_m(x) \text{ Polinomio di Taylor}$$

$$R_m(x) \text{ Resto di Lagrange}$$

Con ξ compreso tra $x \in 0$.

 $f \in C^{\infty}(I)$ di dice sviluppabile in serie di potenze in I se:

- $\forall x_0 \in I \quad \exists r > 0 \quad : \quad]x_0 r, x_0 + r[\subset I]$
- $\exists \{a_n\} \subset R$: $f(x) = \sum_{n=0}^{\infty} a_n (x x_0)^n \quad \forall x \text{ tale che } |x x_0| < r$

Se f é sviluppabile in serie di potenze (attorno a x_0) allora la serie é la serie di Taylor (centrata in x_0)

 $f \in C^{\infty}(I)$ di dice sviluppabile in serie di Taylor in I se:

- $\forall x_0 \in I \quad \exists r > 0 \quad : \quad]x_0 r, x_0 + r[\subset I]$
- $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x x_0)^n$ $\forall x$ tale che $\mid x x_0 \mid < r$

Per finire, f si dice analitica in I se é sviluppabile in serie di potenze. f analitica $\Rightarrow f \in C^0$ e la serie é la serie di Taylor

 $f \in C^0$ é sviluppabile in serie di Taylor se $\exists C, M > 0$ tale che:

$$\mid f^{(n)}(x) \mid \leq C \cdot M^n \quad \forall x \in I, \quad \forall n$$

4.5 Teorema di Weiestrass

 $f:[a,b]\to\Re$ continua.

allora $\exists \{P_m(x)\}\$ di polinomi convergente uniformemente a f in [a,b], ovvero:

$$\lim_{n \to \infty} \sup_{x \in [a,b]} |f(x) - P_m(x)| = 0$$

Queso ci porta a concludere che: se $f \in C^{\infty}$, allora si puó esprimere come un polinomio di Taylor ad essa convergente uniformemente. Ma se anche la serie é solo C^0 , comunque esiste un polinomio che converga ad essa uniformemente. Ma se la serie non é nemmeno continua?

5 Fourier (agitarsi prima dell'uso)

Serie trigonometrica:

$$\sum_{n=0}^{\infty} \left[\alpha_n \cos(nx) + \beta_n \sin(nx) \right]$$

Ha periodo $T=2\pi$ e media nulla.

5.1 Teorema di Dirichlet

Data la serie trigonometrica $\sum_{k=0}^{\infty} \left[\alpha_k \cos(kx) + \beta_k \sin(kx) \right]$, se:

- se $\{\alpha_k\}$ e $\{\beta_k\}$ sono serie a termini positivi e
- se $\{\alpha_k\}$ e $\{\beta_k\}$ sono decrescenti e infinitesime

Allora la serie converge puntualmente $\forall x$ eccetto al piú $x=0,\,x=\pm 2\pi,\,x=\pm 4\pi,\,\dots$

5.2 Serie di Fourier

Si dimostra che il Polinomio di Fourier

$$P_n(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(kx) + b_k \sin(kx) \right]$$

Con i coefficienti:

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx$$
 $a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cdot \cos(kx) dx$ $b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cdot \sin(kx) dx$

é la migliore approssimazione ai minimi quadrati della funzione f(x), quando f(x) é 2π -periodica e integrabile secondo Riemann sul periodo:

$$\lim_{n \to \infty} \int_{0}^{2\pi} |f(x) - P_n(x)|^2 dx = 0$$

5.3 Uguaglianza di Parseval

$$\frac{1}{\pi} \int_0^{2\pi} |f(x)|^2 dx = \frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2)$$

5.4 Convergenza puntuale

La serie di Fuorier rappresenta la migliore approssimazione ai minimi quadrati, ma non si puó comunque parlare di convergenza.

Peró se f é C^0 a tratti (ovvero se é continua sul periodo eccetto al piú un numero finito di punti di discontinuitá di cui peró esistono finite entrambe le derivate destra e sinistra)

allora per ogni x_0 fissato, la serie di Fourier di f converge in x_0 a $S(x_0)$ e:

$$S(x_0) = \frac{f_{x_0^+} + f_{x_0^-}}{2}$$

se f é continua in x_0 allora $S(x_0) = f(x_0)$

5.5 Teorema di Dirichlet (un altro!?)

 $f: \Re \to \Re$ T-periodica

se f é monotona a tratti in [0,T], ovvero é decomponibile in un numero finito di sottointervalli sui quali la funzione é monotona

allora la serie di Fuorier converge a

$$S(x_0) = \frac{f_{x_0^+} + f_{x_0^-}}{2}$$

se f é continua in x_0 allora $S(x_0) = f(x_0)$

(Praticamente la monotonia a tratti sopperisce alla presenza di infiniti punti di discontinuitá o limiti infiniti)

5.6 Derivabilitá della serie di Fuorier

 $f: \Re \to \Re$ T-periodica, derivabile eccetto al piú in un numero finito di punti in [0,T]

con f' derivabile su [0,T] (secondo Riemann)

Allora la serie di Fourier di f' é ottenibile derivando termine a termine la serie di Fourier di f.

Altro teorema:

 $f:[0,T]\to\Re$ continua con f(0)=f(T) (senza salti)

f derivabile con f' di classe C^1 a tratti (continua e derivabile eccetto al piú un numero finito di punti x_i , nei quali esiste comunque $f''_{\pm}(x_i)$)

Allora f' é ottenibile derivando la serie di Fourier di f
 termine a termine in ogni intervallo chiuso $[a,b]\subset]0,T[$

$$f'(x) = \sum_{n=0}^{\infty} (n \cdot b_n \cdot \cos(nx) + n \cdot a_n \sin(nx)) \quad \forall x \in [a, b]$$

Se inoltre f'(0) = f'(T) allora la formula sopra vale in [0,T] (anche per gli estremi)

5.7 Convergenza Uniforme

Nelle condizioni sopra elencate, ovvero:

 $f: \Re \to \Re$ T-periodica, derivabile eccetto al piú in un numero finito di punti in [0,T]

con f' derivabile su [0,T] (secondo Riemann)

allora la serie di Fourier di f converge uniformemente in \Re .

6 Integrali Indefiniti

Conosciamo l'integrale di Riemann per $f:[a,b]\to\Re$ limitata. Vogliamo estendere a questi casi:

- Intervallo illimitato
- Funzione non limitata nell'intervallo

6.1 Definizione: localmente integrabile

$$f:[a,b[\to\Re\quad b\in]a,+\infty]$$

f é localmente integrabile in [a,b[se

 $\forall c \in]a, b[$ f é integrabile (secondo Riemann) su [a,c]

6.2 Definizione: integrabile in senso improprio

f:[a,b[é integrabile in senso improprio su [a,b[se:

- f é localmente integrabile su [a,b[
- $\exists \lim_{c \to b^-} \int_a^c f(x) dx < +\infty$

6.3 Funzioni > 0

 $f: [1, +\infty[\to \Re, f(x) \ge 0, f \text{ localmente integrabile.}]$

Allora $\int_{1}^{\infty} f(x) dx$ non oscilla,

ovvero
$$\exists \lim_{x \to \infty} f(t) dt = \sup_{x \in [1,\infty[} \int_1^{\infty} f(x) dx \le +\infty$$

6.4 Criterio del Confronto

 $f,g:[1,+\infty[\to \Re, \text{ localmente integrabili}, \ 0 \le f(x) \le g(x) \quad \forall x$

allora se g é integrabile in senso improprio anche f lo é.

6.5 Criterio del Confronto Asintotico

 $f,g:[1,+\infty[\to \Re, \text{ localmente integrabili}, f(x) \ge 0 \quad g(x) \ge 0 \quad \forall x$

suppongo che esista:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L \quad L \in [0, +\infty]$$

Allora:

- $L \in]0, +\infty[$ \Rightarrow f é integrabile in senso improprio \Leftrightarrow lo é anche g
- L=0 \Rightarrow se g é integrabile in senso improprio \Rightarrow anche f lo é.
- $L = +\infty$ \Rightarrow se f é integrabile in senso improprio \Rightarrow anche g lo é.

6.6 Criterio di McLaurin

 $f:[1,+\infty[\to\Re, localmente integrabile, monotona. Allora:$

$$\int_{1}^{\infty} f(x) dx \quad \text{converge} \quad \Longleftrightarrow \quad \sum_{n=1}^{\infty} f(x) \quad \text{converge}$$

6.7 In valore assoluto...

 $f:[1,+\infty[o\Re,\, {
m localmente}$ integrabile.

Se $\int_{1}^{\infty} |f(x)| dx$ converge (ovviamente | f | integrabile in senso improprio)

allora $\int_1^\infty f(x)$ converge e

$$\left| \int_{1}^{\infty} f(x) dx \right| \le \int_{1}^{\infty} \left| f(x) \right| dx$$

in tal caso si dice che f(x) é assolutamente integrabile

7 Trasformata di Laplace

 $f: \Re \to \Re$ (ma anche C), $f(x) = 0 \forall x < 0$

$$L[f](s) = \int_{\Re} f(x)e^{-sx} dx = \int_{-\infty}^{+\infty} f(x)e^{-sx} dx$$

7.1 Definizione

Allora la Trasformata di Laplace é ben definita $\forall s \in \Re$ con $\Re\{s\} > \alpha$ se:

$$|f(x)| \le M \cdot e^{\alpha x} \quad \forall x \quad M, \alpha \in \Re \quad M > 0$$

e inoltre

$$\lim_{\Re\{s\}\to\infty} L[f](s) = 0$$

Altra possibilitá:

suppongo $\exists \lambda \in \Re$ tale che $e^{-\lambda x} f(x)$ sia assolutamente integrabile.

Allora L[f](s) é definita per $\Re\{s\} \ge \lambda$

7.2 Linearitá

$$L[\lambda f + \mu g] = \lambda L[f] + \mu L[g]$$

7.3 Formula del ritardo

$$L[f(x-a)] = e^{-sa}L[f(x)]$$

7.4 Derivazione

Suppongo $f \in C^1$ a tratti, con f' trasformabile secondo Laplace in $\Re\{s\} > \alpha$ allora f é trasformabile secondo Laplace per $\Re\{s\} > \max\{0, \alpha\}$, e vale:

$$L[f'](s) = s \cdot L[f](s) - f(0^+)$$

Corollario:

$$\lim_{\Re\{s\}\to\infty} s \cdot L[f] = f(0)$$

7.5 Integrazione

$$F(x) = \int_0^x f(t) dt$$
 $f \in C^0 \implies L[F] = \frac{1}{s} F[f]$

8 Trasformata di Fourier

 $f:\Re\to\Re$

$$\hat{f}(\xi) = F[f](\xi) = \int_{-\infty}^{\infty} f(x)e^{-i\xi x} dx \qquad \xi \in \Re$$

 $\hat{f}: \Re \to C$ é definita Trasformata di Fourier

8.1 Definizione

f assolutamente integrabile su \Re

allora la trasformata di Fourier \hat{f} é ben definita $\forall \xi \in \Re$ e:

- \hat{f} é una funzione limitata in \Re
- \hat{f} é una funzione continua in \Re
- $\lim_{|\xi| \to \infty} \hat{f} = 0$

8.2 Linearitá

$$F[\lambda f + \mu g] = \lambda F[f] + \mu F[g]$$

8.3 Formula del Ritardo

$$F[f(ax-b)] = \frac{1}{\mid a \mid} \cdot e^{-i\xi \frac{b}{a}} \cdot F[f] \left(\frac{\xi}{a}\right)$$

8.4 Inversione della Trasformata

 $u:\Re\to\Re$ limitata, C^1 a tratti, con ue \hat{u} assolutamente integrabili

$$F^{-1}[\hat{u}](x) \quad = \quad \frac{1}{2\pi} \int_{\Re} \hat{u}(\xi) \cdot e^{i\xi x} \, d\xi \quad = \quad \frac{u(x^+) + u(x^-)}{2}$$

se u é continua in x, allora succede che

$$F^{-1}[\hat{u}](x) = u(x)$$

Nelle condizioni sopracitate, inoltre accade che

$$F^{-1}F[u](x) = u(x)$$

$$\Rightarrow F^{-1} \circ F = \mathrm{identit\acute{a}}$$

8.5 Corrispondenze tra trasformata e antitrasformata

$$\begin{array}{ccc} F: u & \to & \hat{u} = F[u] \\ F^{-1}: v & \to & \check{v} = F^{-1}[v] \\ \Longrightarrow & \end{array}$$

$$u \leftrightarrow \hat{u}$$

$$x \leftrightarrow \xi$$

$$i \quad \leftrightarrow \quad -i$$

8.6 Derivazione

ue u^\prime assolutamente integrabili, u^\prime C^1 a tratti

$$F[u'](\xi) = i \cdot \xi \cdot \hat{u}$$

9 Equazioni Differenziali

$$f(t, y, y', y'', y'', ..., y^{(n)}) = 0$$

t é una variabile indipendente

y = y(t) é un variabile dipendente (incognita)

n: ordine dell'equazione

y=y(t) derivabile almeno n volte é soluzione se

$$f(t, y(t), y''(t), ..., y^{(n)}(t)) = 0$$
 $\forall t$

Peró se y'(t) = g allora $y(t) = \int g(s) ds + C$. Quindi ho infinite soluzioni e per definirne una devo conoscere le condizioni iniziali.

9.1 Esistenza della soluzione

$$\begin{array}{ccc} f: & A =]a, b[\times]c, d[& \rightarrow & \Re \\ & (t, y) & \rightarrow & f(t, y) \end{array}$$

f continua $\forall (t_0,y_0) \in A,$ e inoltre $\exists \frac{\delta f}{\delta y}$ continua in $(t,y) \in A$

allora $\forall (t_0, y_0) \in A \quad \exists \delta > 0 \text{ tale che } [t_0 - \delta, t_0 + \delta] \in]a, b[$

e il problema di Cauchy ammette un'unica soluzione y = y(t)

$$y(t) = [t_0 - \delta, t_0 + \delta] \longrightarrow \Re$$

9.2 Estensione della soluzione

Supponiamo inoltre (oltre alle condizioni di esistenza) che esistano $K_1, K_2 > 0$ tali che:

$$| f(t,y) | \le K_1 + K_2 | y |$$
 $\forall t \in]a,b[, \forall y \in \Re$

allora la soluzione del problema di Cauchy $\forall (t_0, y_0) \in A$ é definita su tutto [a,b].

10 Equazioni differenziali di ordine n

$$y^{(n)} + a_1(t)y^{(n-1)} + \dots + a_{n-1}(t)y' + a_n(t)y = f(t) \qquad t \in I$$

$$a_i(t), f(t) \in C^0(I)$$

10.1 Esistenza della soluzione

$$a_i, f \in C^0(I) \quad \forall i = 1, 2, ..., n$$

allora
$$\forall (t_0, y_0, ..., y_{n-1}) \in I \times \mathbb{R}^n$$

 $\exists !$ soluzione y(t) definita su I, $y \in C^n(I)$

10.2 Operatore differenziale

$$L(t)y = y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y$$

$$L(t) : y \to L(t)y$$

$$C^n(I) \to C^0(y)$$

L(t)y: Operatore differenziale di ordine n

$$L(t)$$
 é un operatore lineare

$$L(t)(\lambda y_1 + \mu y_2) = \lambda \cdot L(t)(y_1) + \mu \cdot L(t)(y_2)$$

10.3 Soluzioni

a partire da L(t)y = t \longrightarrow equazione Non Omogenea (NO) associo la L(t)y = 0 \longrightarrow equazione Omogenea (O)

se y_1 é soluzione della NO e y_0 é soluzione della O allora y_1+y_0 é soluzione della NO.

se y_1 e y_2 sono soluzioni della NO allora y_1-y_2 é soluzione della O.

L'insieme S delle soluzioni di O é uno spazio vettoriale La dimensione di E é dunque uguale a n.

10.4 Determinante Wronskiano

Esempio per n=3, con funzioni y_1,y_2,y_3

$$\mathbf{T} = \begin{vmatrix} y_1(t) & y_2(t) & y_3(t) \\ y_1'(t) & y_2'(t) & y_3'(t) \\ y_1''(t) & y_2''(t) & y_3''(t) \end{vmatrix}$$

Le funzioni $y_1(t), y_2(t), y_3(t)$ sono linearmente indipendenti in I \Leftrightarrow $W(t) = 0 \quad \forall t \in I$