## Dynamics of complex systems

## Lecture 3: Basic time series analysis

Dr. Maarten Wijnants & dr. Fred Hasselman

Research Master Behavioural Sciences

Faculty of Social Sciences Nijmegen

change perspective



## **Traditional statistics**

Word-item properties → RT
e.g., Word length:
short words → faster responses
long words → slower responses



## Learn more from variability?

If sequential order is not important Trial-by-trial variability is random noise

$$X = T + e$$

Assumption = each response is independent from one other

→ No systematic relation over time

Shuffling the data does not change:

- > Mean
- > SD
- > Treatment effect



## Learn more from reading variability?

## **Assumptions of ANOVA** Probability Density Homogeneity of variances F-test is robust against heterogeneity of variances Mean $\overline{X_1}$ $\overline{X_2}$ bbability Density Normal Distributions F-test is robust against non-normal data Mean dy X Time

## **Alternative: Dynamical analysis**

Collect RT's of many trial over time

Keep the order of the data points intact

Observe temporal structure of variability

How does the process change over time?



Random variability



Structured variability

## **Alternative: How to investigate?**

- Fractal dimension
- Relative Roughness
- Sample entropy

## **Fractal dimension**

What is the dimension of a line?
What is the dimension of a rectangle?
What is the dimension of random noise?



## Temporal properties of variability: Fractal Dimension



## Temporal properties of variability

#### Next week:

More about fractals

#### Now:

- Intuitive measures
  - Relative roughness
  - Sample entropy

## But first:

- A get-to-know-your-data quiz
- THM: plot your data!



## Respiration



Q2: Which data do you think are displayed?

11 reacties









#### Q3: Which data do you think are displayed?

12 reacties

## Response times





Electroencephalogram)

Minute)

naming)

## Data quiz: goo.gl/VB5Ltz

#### Q4: Which data do you think are displayed?

12 reacties



200

400

600

800

1000

1200

1400

1600



Electroencephalogram)ECG (Electrocardiogram)BPM (-heart-Beats-Per-

Response times (word-

Movement times (pointi...

Heart-Beat-Intervals

EEG (

Minute)

RespirationNone of the above

## Data quiz: goo.gl/VB5Ltz











- ECG (Electrocardiogram) BPM (-heart-Beats-Per-
- Response times (wordnaming)
- Movement times (pointi...
- Heart-Beat-Intervals
- Respiration
- None of the above





Electroencephalogram)ECG (Electrocardiogram)BPM (-heart-Beats-Per-

Response times (word-

Movement times (pointi...Heart-Beat-Intervals

● EEG (

Minute)

naming)

Respiration

None of the above

## Data quiz: goo.gl/VB5Ltz







## Shuffled EEG





Relative roughness of a time series is:

Local variance: Fast changes



Global variance: Slow changes



Relative roughness of a time series is:

$$RR = 2 \left[ 1 - \frac{\gamma_1(x_i)}{Var(x_i)} \right]$$
Overall variance

## Local variance: Fast changes



## Global variance: slow changes

Lag 1 auto-(co)variance







## **Data quiz: Relative roughness**

| # | Data Type       | Relative Roughness |           |
|---|-----------------|--------------------|-----------|
| 1 | Respiration     | 0.0002             | smoothest |
| 2 | BPM             | 0.06               | •••       |
| 3 | ECG             | 0.31               | •••       |
| 4 | EEG             | 0.77               | •••       |
| 5 | MT pointing     | 1.94               | •••       |
| 6 | RT Word-naming  | 1.94               | •••       |
| 7 | HBI             | 2.01               | •••       |
| 8 | NA (random EEG) | 2.07               | roughest  |



## **Data quiz: Relative roughness**



## **Entropy** as a complexity measure

## No obvious link with Roughness

- Different way to tap into dynamics

## Entropy is a probabilistic measure

- Measure of uncertainty
- Measure of irregularity



## Temporal properties of variability: Sample entropy



## **Entropy in time series data**

### Sample entropy

- The negative natural logarithm of the conditional probability that a dataset of length N, having repeated itself within a tolerance r for m points, will also repeat itself for m+1 points.
- P = A(k)/B(k)
  - A: # of data segment of length m+1 are within distance < r</li>
  - B: # of data segment of length m are within distance < r</li>
- SampEn  $(m, r, N) = -\ln P$

• SampEn: the negative natural log (-ln) of the conditional probability that the pattern of m+1 points ( $\blacksquare - \blacksquare - \blacksquare - \blacksquare$ ) will match if a pattern of m points ( $\blacksquare - \blacksquare - \blacksquare - \blacksquare$ ) did match



## Sample entropy

## Determine *m*

- the length of compared runs of data
- E.g., 3 data points

## Determine *r*

- Tolerance range
- E.g., 1 standard deviation



## Sample entropy

A small value (e.g., 0.05)

- sequence is regular and predictable
- a high probability of repeated template sequences in the data

A large value (e.g., 1.5)

- sequence is irregular and unpredictable
- a low probability of repeated template sequences in the data

NOTE: absolute values will change in function of your parameter choices for m and r

- the number of matches can be increased by choosing small m (short templates) and large r(wide tolerance).



## **Data quiz: Relative roughness**

| # | Data Type       | Sample entropy |              |
|---|-----------------|----------------|--------------|
| 1 | Respiration     | 0.006          | Low entropy  |
| 2 | BPM             | 0.06           | •••          |
| 3 | ECG             | 0.08           | •••          |
| 7 | HBI             | 0.25           | •••          |
| 5 | MT pointing     | 0.43           | •••          |
| 4 | EEG             | 0.44           | •••          |
| 8 | NA (random EEG) | 0.63           | •••          |
| 6 | RT Word-naming  | 0.65           | High entropy |



## **Data quiz: Sample entropy**



## Time series analysis: sum up



- Flexible
- Disorganized
- No slow time scales
- Unconstrained
- Many degrees-offreedom







- Rigid
- Order
- Predominantly slow time scales
- Constrained
- Few degrees-offreedom

Linear Statistics

Complexity measures



## Learning disabilities and dynamics: lexical decision

- 128 existing words (HF or LF)
- 128 non-existing words:
  - INW
  - LNW
  - PSH
- Yes or no responses
- Fast + accurate
- 11 to 12 years old
- RT, accuracy, Sample entropy
- Eén-minuut test 'one-minute-test'
- Klepel





## Lexical-decision task with high and low frequency words

| HF and LF words | Illegal nonwords | Legal nonwords | pseudohomophones |
|-----------------|------------------|----------------|------------------|
| early           | mruab            | ambun          | ambur            |
| later           | rbuht            | dranz          | burth            |
| pearl           | rneag            | sleam          | surve            |
| think           | tnkio            | topit          | knyfe            |
| cobra           | xodye            | wheeb          | shair            |
| apron           | wlteo            | brate          | sneez            |
| large           | hsutr            | relin          | kurse            |
| ruler           | iwirth           | veest          | shurt            |

# Words and PSH



## **↑** High entropy

## Words and LNW

# 0 100 200 300 400 500 600 700 800 900 1000

# Decision ambiguity

# Words and INW



Low entropy



|                   |                        | INW        |   | LNW        |   | PSH        |          | INW        |   | LNW          |    | PSH        |          |
|-------------------|------------------------|------------|---|------------|---|------------|----------|------------|---|--------------|----|------------|----------|
|                   |                        |            |   | M(SD)      |   |            | E(2,116) |            | % | Accuracy (S. | D) |            | E(2,116) |
| Word<br>trials    |                        |            |   |            |   |            |          |            |   |              |    |            |          |
|                   | High<br>frequency      | 802(230)   | = | 919(268)   | = | 886(244)   | 2.21     | 88.9(11.6) | = | 85.6(16.6)   | =  | 91.7(7.9)  | 2.47     |
|                   | Low<br>frequency       | 841(231)   | < | 1044(290)  | = | 1023(276)  | 6.39**   | 85.4(10.8) | > | 75.5(14.4)   | =  | 81.5(8.0)  | 7.34**   |
|                   | Frequency<br>advantage | 39(103)    | < | 125(102)   | = | 137(117)   | 9.14***  | 3.5(5.4)   | < | 10.1(6.8)    | =  | 10.2(5.5)  | 15.18*** |
| Nonword<br>Trials |                        |            |   |            |   |            |          |            |   |              |    |            |          |
|                   |                        | 771(182)   | < | 1194(289)  | = | 1129(299)  | 27.24*** | 90.9(12.0) | > | 82.2(15.5)   | >  | 73.6(12.7) | 15.48*** |
|                   | Lexicality advantage   | -50(118)   | < | 217(187)   | = | 179(140)   | 33.18*** | -3.8(11.5) | = | -1.7(18.0)   | <  | 13.0(13.3) | 15.54*** |
| All<br>Trials     |                        |            |   |            |   |            |          | 89.5(10.0) | > | 81.8(12.5)   | =  | 80.4(8.0)  | 8.11**   |
|                   | Sample<br>Entropy      | .341(.107) | < | .446(.089) | = | .441(.084) | 15.12*** |            |   |              |    |            |          |

<sup>\*</sup> p < .05, \*\* p < .01, \*\*\*p <.001

Correlations are Shown Between Sample Entropy (<u>SampEn</u>) and Response Times (RT) on High-Frequency (HF), Low-Frequency(LF), Word (W) and <u>NonWord</u> (NW) <u>Stimlui</u>, and Standardized Reading tests (EMT and <u>Klepel</u>).

|         |     |        | HF    | LF    | W     | NW    | EMT  | KLEPEL |
|---------|-----|--------|-------|-------|-------|-------|------|--------|
|         | INW | N = 35 | .26   | .30   | .29   | .22   | .06  | .32    |
| SampEn. | LNW | N = 42 | .35*  | .30   | .33*  | .22   | 14   | 19     |
|         | PSH | N = 42 | .46** | .56** | .52** | .58** | 44** | 40**   |





Fig. 4. Different values of m (x-axis), different values of r (y-axis), correlation between word RTs and SampEn (z-axis).





Fig. 5. a) boxplot from the ANOVA. b) Bonferroni outcomes