Interdisciplinary Physics: Modeling Phase Transitions

PHYS 265 Winter 2025

March 9, 2025

Outline

Introduction and Motivation

Mathematical Models and Techniques

Econophysics

Mathematical Modeling in Econophysics

Voter Model and Alternative Transition Rates

Traffic Flow: Detailed Rules and Applications

The Logistic Map

Exercises

Conclusion

What are Phase Transitions?

- ▶ **Definition:** A qualitative change in the macroscopic state of a system as a control parameter (e.g., temperature, density) crosses a critical threshold.
- Examples: Ferromagnetic to paramagnetic (Ising model), liquid-gas transitions.
- Order Parameter: A variable that distinguishes phases. For instance, in the Ising model:

$$m=\frac{1}{N}\sum_{i=1}^{N}s_i,\quad s_i=\pm 1.$$

 $m \approx 0$ indicates disorder, while $m \neq 0$ indicates order.

Landau Theory and Free Energy Expansion

Near a phase transition, the free energy F(m) can be expanded as:

$$F(m) = F_0 + \frac{a}{2} m^2 + \frac{b}{4} m^4 + \cdots$$

▶ The equilibrium state minimizes F(m) by solving:

$$\frac{dF}{dm} = a m + b m^3 = 0.$$

- **▶** Solutions:
 - ightharpoonup m = 0 if a > 0 (disordered phase).
 - $ightharpoonup m = \pm \sqrt{-a/b}$ if a < 0 (ordered phase).

Scaling Laws and Universality

Near criticality, fluctuations scale as

$$\langle (m - \langle m \rangle)^2 \rangle \sim |T - T_c|^{-\gamma},$$

where γ is a critical exponent.

▶ Universality: Different systems can share the same critical exponents despite microscopic differences.

Mathematical Tools in Modeling

- Differential Equations: Model continuous dynamics.
- Cellular Automata: Use discrete update rules (e.g., traffic models).
- ► Agent-Based Models: Capture local interactions that lead to emergent behavior.
- Statistical Mechanics: Provide a framework for understanding collective phenomena.

Econophysics: Market Dynamics

- ► Econophysics applies models and methods from statistical physics to analyze financial markets.
- ► Financial markets exhibit phase transitions analogous to those in physical systems.
- Phenomena such as market crashes or bubbles can be understood as transitions between distinct market phases.

Order Parameter in Markets

▶ Define the market sentiment (order parameter) as:

$$M(t) = \frac{1}{N} \sum_{i=1}^{N} s_i(t),$$

where $s_i(t) = +1$ (buy) or -1 (sell) for each trader i.

- A balanced market has $M(t) \approx 0$; a dominant trend (bullish or bearish) corresponds to |M(t)| > 0.
- A sudden shift in M(t) can signal a phase transition (e.g., a market crash).

Agent-Based Models and Mean Field Approaches

- Agent-Based Models: Each trader (agent) updates their decision based on local interactions.
- ▶ Mean Field Approximation: Replace local interactions by the average behavior:

$$s_i(t+1) = \operatorname{sign}\left(\frac{1}{k}\sum_{j\in\mathcal{N}(i)}s_j(t)\right),$$

where k is the number of neighbors.

Criticality and Scaling in Financial Markets

- As a market approaches a critical point (e.g., near a crash), fluctuations in M(t) increase.
- ▶ The variance of market sentiment may scale as:

$$Var(M) \sim |p - p_c|^{-\gamma}$$
,

where p is an external parameter (e.g., investor confidence) and p_c is the critical threshold.

Such scaling behavior is analogous to critical phenomena in physical systems.

Challenges in Econophysics

- ► **Heterogeneity:** Traders have different strategies, risk profiles, and time horizons.
- ► Feedback Loops: Market sentiment can alter individual behavior, which in turn influences the overall market.
- External Shocks: News, regulations, or macroeconomic events can trigger abrupt transitions.
- ▶ Data Noise and Non-Stationarity: Financial data is often noisy and may not be stationary over long periods.

The Classic Voter Model

- ▶ Each agent *i* holds an opinion $s_i(t) \in \{0,1\}$ (or ± 1).
- ➤ Standard Update Rule: At each time step, a randomly chosen agent adopts the opinion of a randomly selected neighbor:

$$s_i(t+1) = s_j(t)$$
 with $j \in \mathcal{N}(i)$.

Alternative Transition Rates for the Voter Model

A. Biased Voter Model:

$$W(s_i \to s) = (1 - \epsilon) \frac{1}{|\mathcal{N}(i)|} \sum_{i \in \mathcal{N}(i)} \delta_{s_j,s} + \epsilon f(s),$$

where f(s) might be set so that f(+1) = 1 and f(-1) = 0 for a bias toward +1.

B. Nonlinear Voter Model:

$$W(s_i
ightarrow s) = \left[rac{1}{|\mathcal{N}(i)|} \sum_{i \in \mathcal{N}(i)} \delta_{s_j,s}
ight]^{lpha},$$

with $\alpha > 0$. For $\alpha > 1$ the influence of the majority is amplified.

C. Voter Model with Spontaneous Flips:

$$W(s_i o -s_i) = (1-\mu) \left[rac{1}{|\mathcal{N}(i)|} \sum_{i \in \mathcal{N}(i)} \delta_{s_j, -s_i}
ight] + \mu,$$

where μ represents the noise or spontaneous flip rate.

Challenges for the Voter Model

- ► Finite Size Effects: Consensus time scales nontrivially with system size.
- ► Network Topology: The underlying network (lattice, small-world, scale-free) greatly influences the dynamics.
- Noise and Bias: Introducing spontaneous flips or bias can prevent full consensus.
- ► Nonlinearity: Nonlinear response functions may yield multiple or metastable equilibria.

Voter Model Applications

- ▶ Political Opinion Formation: Tracking opinion evolution in social networks during elections.
- ► Cultural Dynamics: Spread of language or cultural norms.
- Consumer Behavior: Analysis of peer influence on product adoption.

Traffic Flow: An Introduction

- Context: Traffic flow is a classic example of a system exhibiting phase transitions—from free flow to congested (jammed) states.
- ► Framework: The Nagel-Schreckenberg model is a well-studied cellular automata model for traffic flow.

Key Variables in the Nagel-Schreckenberg Model

- ▶ Road Length, *L*: Total number of cells representing the road.
- ▶ Car Density, ρ : Fraction of cells occupied by vehicles; $N_{\mathsf{cars}} = \rho L$.
- Maximum Speed, v_{max}: Maximum allowed speed (in cells per time step).
- Random Slowdown Probability, p: Probability of a driver randomly decelerating.
- **Speed**, *v_i*: Current speed of vehicle *i*.
- ▶ Gap, d_i: Number of empty cells in front of vehicle i until the next car.

Update Rules in the Nagel-Schreckenberg Model

The dynamics proceed in four sequential steps applied to all vehicles:

1. Acceleration: If $v_i < v_{\text{max}}$, then

$$v_i \leftarrow \min(v_i + 1, v_{\mathsf{max}}).$$

2. **Deceleration (Safety Rule):** Compute the gap d_i (cells until the next car) and update:

$$v_i \leftarrow \min(v_i, d_i).$$

3. **Randomization:** With probability p, reduce the speed:

$$v_i \leftarrow \max(v_i - 1, 0).$$

4. Movement: Advance the vehicle:

 $x_i \leftarrow x_i + v_i$ (using periodic boundary conditions, if applicable).

Challenges in Traffic Flow

- ▶ Driver Behavior: Capturing realistic acceleration, braking, and reaction times.
- ▶ Heterogeneity: Variation in vehicle types and driver behaviors.
- Network Complexity: Extending the model to multi-lane or urban road networks introduces additional rules (e.g., lane changing).
- ► Stochastic Effects: Random slowdowns are key to reproducing realistic jam formation but add unpredictability.

Traffic Flow Applications

- Highway Traffic: Analyzing the formation and dissolution of traffic jams on freeways.
- ► **Urban Traffic:** Studying congestion patterns in city grids and the effect of traffic signals.
- ► Transportation Planning: Evaluating the impact of policy changes (e.g., speed limits) on overall traffic flow.

What is the Logistic Map?

Definition: A discrete-time dynamical system modeling population growth:

$$x_{t+1} = r x_t (1 - x_t), \quad 0 \le x_t \le 1,$$

where x_t is the normalized population at time t and r is the growth rate.

▶ Origin: Initially introduced to describe populations with limited resources.

Dynamics of the Logistic Map

- ▶ For $0 < r \le 1$: Population dies out $(x_t \to 0)$.
- ▶ For $1 < r \le 3$: Convergence to a stable fixed point,

$$x^* = 1 - \frac{1}{r}.$$

- For 3 < r < 3.57: Period-doubling bifurcations yield cycles of period 2, 4, 8,
- For r > 3.57: Chaotic dynamics emerge with sensitive dependence on initial conditions.

Mathematical Analysis of the Logistic Map

► Fixed Points: Solve

$$x^* = r \, x^* (1 - x^*),$$

yielding $x^* = 0$ and $x^* = 1 - \frac{1}{r}$ (for r > 1).

Stability: Linearize using

$$f'(x) = r(1-2x).$$

For
$$x^* = 1 - \frac{1}{r}$$
,

$$f'(x^*) = 2 - r.$$

The fixed point is stable if |2 - r| < 1, i.e., for 1 < r < 3.

Challenges for the Logistic Map

- ▶ Parameter Sensitivity: Tiny variations in *r* can shift the system from order to chaos.
- ▶ **Data Fitting:** Estimating the appropriate *r* value from empirical data can be nontrivial.
- ➤ **Simplicity vs. Complexity**: Real systems may require additional factors such as spatial structure or stochasticity.

Logistic Map Applications

- ▶ Biological Populations: Modeling bacterial growth or animal populations in confined habitats.
- ► **Epidemiology**: Describing the spread and saturation of an infection.
- ► **Economics**: Capturing saturation effects in technology adoption or market penetration.

Exercises: Overview

- ► In the following exercises, you are encouraged to apply the concepts and mathematical tools we have discussed.
- ► Each exercise provides a specific scenario and asks you to propose model rules or transition rates.

Exercise 1: Voter Model with External Influence

Scenario: Consider a small town where, besides peer influence, a trusted public figure occasionally broadcasts messages that can sway opinions.

- Propose an alternative transition rate that incorporates both local neighbor influence and the effect of a global broadcast.
- Write an expression for the transition rate and discuss how the additional term may affect the speed and nature of consensus formation.

Exercise 2: Extended Traffic Flow Model

Scenario: Imagine a two-lane highway where vehicles can change lanes.

- Propose additional rules (transition rates) for lane changing to complement the standard Nagel–Schreckenberg model.
- Discuss how your lane-changing rules might influence overall traffic flow and the formation of traffic jams.

Exercise 3: Econophysics and Phase Transitions (Part 1)

Consider a simplified market model with N agents. Each agent i has a state

$$s_i(t) \in \{+1, -1\}$$
 (buy/sell),

and the market sentiment (order parameter) is defined as:

$$M(t) = \frac{1}{N} \sum_{i=1}^{N} s_i(t).$$

Update Rule: At each time step, each agent updates its state according to:

- ▶ With probability 1ϵ : adopt the sign of the local average (i.e. sign(M(t))).
- With probability ϵ : follow an external signal $sig_{\rm ext}(t)=\pm 1$.

Exercise: Econophysics and Phase Transitions (Part 2)

Tasks:

- 1. Derive a mean-field equation for M(t+1) in terms of M(t), ϵ , and $sig_{\rm ext}(t)$.
- 2. Determine the fixed points of your mean-field equation and discuss their stability.
- 3. Explain under what conditions the market transitions from a balanced state ($M\approx 0$) to a strongly bullish or bearish state ($M\approx \pm 1$), and discuss how the parameter ϵ influences this transition.

Hint: In the mean-field approximation, you may approximate the local average by M(t) itself.

Exercise 4: Logistic Map with Allee Effect

Scenario: In some biological populations, a minimum population density (Allee effect) is necessary for survival.

- ▶ Modify the logistic map to include an Allee effect.
- Derive the new fixed points and discuss how this modification changes the dynamics of the population.

Bridging the Disciplines

- Despite the apparent differences among markets, social networks, traffic systems, and plasmas, many share common mathematical frameworks.
- Local interactions often lead to emergent global behavior.
- ► Tools such as fixed point analysis and bifurcation theory provide a unifying language to describe these phenomena.