Лекция 09 от 07.11.2016 Предел по базе

Все пределы, которые раньше возникали в нашем курсе — это частные случаи предела по базе.

Что это такое?

Пусть X — произвольное непустое множество.

Определение 1. Система подмножеств \mathcal{B} множества X называется базой, если

- 1. $\varnothing \notin \mathcal{B}$;
- 2. $\forall B_1, B_2 \in \mathcal{B} \exists B_3 \in \mathcal{B} : B_3 \subset B_1 \cap B_2$.

Замечание 1. В классическом понимании символ \subset означает строгое включение, однако в современной математике это также может означать равенство множеств, и мы будем пользоваться именно этим значением. Если хотят подчеркнуть, что множества не равны, то пишут \subsetneq .

Пусть функция f определена на X или части X и принимает действительные значения (впрочем, действительность не принципиальна).

Определение 2. Число A называют пределом функции f по базе \mathcal{B} , если

- $0. \exists B \in \mathcal{B} : f \text{ определена на } B;$
- 1. $\forall \varepsilon > 0 \ \exists B \in \mathcal{B} : \forall x \in B \ |f(x) A| < \varepsilon$.

Вообще говоря, нулевое условие можно опустить, так как оно следует из первого, но исторически сложилось, что его все-таки пишут — на практике гораздо удобней сначала проверить, определена ли функция хоть где-то.

Пример 1.

- $X = \mathbb{N}$, $\mathcal{B} = \{B_n\}_{n=1}^{\infty}$, $B_n = \{n, n+1, n+2, \ldots\}$. Тогда $B_n \cap B_m = B_{\max(n,m)}$. Такая база задает предел числовой последовательности.
- $X = \mathbb{R}$, $\mathcal{B} = \{B_{\delta}\}_{\delta>0}$, $B_{\delta} = (-\delta, \delta) \setminus \{0\}$. Такая база задает двусторонний предел функции при $x \to 0$. Аналогично можно задать односторонние пределы.
- Пусть зафиксирован отрезок [a,b] u $f:[a,b] \to \mathbb{R}$.

Пусть X — множество всех отмеченных разбиений [a,b] (то есть это разбиения c зафиксированной точкой на каждом отрезке). Тогда базой Римана называется база $\mathcal{B} = \{B_\delta\}_{\delta>0}$, где B_δ это совокупность всех отмеченных разбиений c диаметром меньше δ . Соответственно, интеграл Риман является пределом по этой базе интегральных сумм Римана, рассматриваемых как функция от отмеченных разбиений при фиксированной функции f:

$$\sigma(f,(\tau,\xi)) = \sum_{j=1}^{n} f(\xi_j) |\Delta_j|.$$

Ключевые свойства

Пусть \mathcal{B} — база X.

Утверждение 1. $Ec \wedge u \lim_{\mathcal{B}} f = A_1 \ u \lim_{\mathcal{B}} f = A_2, \ mo \ A_1 = A_2.$

 \mathcal{A} оказательство. Пусть $A_1 \neq A_2$. Положим $\varepsilon = \frac{|A_1 - A_2|}{2}$. Тогда:

$$\exists B_1 \in \mathcal{B} : \forall x \in B_1 |f(x) - A_1| < \varepsilon;$$

$$\exists B_2 \in \mathcal{B} : \forall x \in B_2 |f(x) - A_2| < \varepsilon.$$

Тогда существует $B_3 \in \mathcal{B}$ такой, что $B_3 \subset B_1 \cap B_2$. Для него будет верно, что

$$\forall x \in B_3: |A_1 - A_2| = |A_1 - f(x) + f(x) - A_2| \leq |A_1 - f(x)| + |A_2 - f(x)| < 2\varepsilon = |A_1 - A_2|.$$

При этом важно понимать, что $B_3 \neq \emptyset$, просто по определению.

Получили противоречие.

Давно знакомое всем доказательство, но зато оно показывает, почему база определена именно так.

Утверждение 2. Пусть $\lim_{\mathcal{B}} f(x) = A$, $\lim_{\mathcal{B}} g(x) = B$ и $\alpha \in \mathbb{R}$. Тогда:

- 1. $\lim_{\mathcal{B}} (f+g) = A + B;$
- 2. $\lim_{\mathcal{B}} (fg) = AB;$
- 3. $\lim_{\mathcal{B}} (\alpha f) = \alpha A;$
- 4. $\lim_{\mathcal{B}} \frac{f}{g} = \frac{A}{B}$, echu $B \neq 0$.

Доказательство. Это тоже почти школьный материал, так что докажем только один пункт. Пусть это будет последний.

Немного преобразуем:

$$\frac{f}{g} - \frac{A}{B} = \frac{Bf - Ag}{gB} = \frac{Bf - BA + BA - Ag}{gB} = \frac{B(f - A) + A(B - g)}{gB}.$$

Возьмем произвольное $\varepsilon>0$. Положим $\varepsilon_1=\min\left(\frac{\varepsilon B^2}{100(|A|+|B|)+1};\frac{|B|}{2}\right)$. Найдем такие $B_1,\,B_2\in\mathcal{B},\,$ что:

$$\forall x \in B_1 : |f(x) - A| < \varepsilon_1;$$

$$\forall x \in B_2 : |g(x) - B| < \varepsilon_1.$$

Найдем такое $B_3 \in \mathcal{B}$, что $B_3 \subset B_1 \cap B_2$. Тогда для всех $x \in B_3$ верно, что:

$$\left|\frac{f(x)}{g(x)} - \frac{A}{B}\right| \leqslant \frac{|B|\varepsilon_1 + |A|\varepsilon_1}{B^2/2} = \varepsilon_1 \frac{2(|A| + |B|)}{B^2} < \varepsilon.$$

Утверждение 3. Если существует предел $\lim_{\mathcal{B}} f$ и функция f неотрицательна хотя бы на одном элементе B базы \mathcal{B} , то $\lim_{\mathcal{B}} f \geqslant 0$.

 \mathcal{A} оказательство. Пусть $\lim_{\mathcal{B}} f = A < 0$. Тогда для $\varepsilon = \frac{|A|}{2}$ существует такой $\widetilde{B} \in \mathcal{B}$, что $\forall x \in \widetilde{B}: |f(x) - A| < \varepsilon$.

Но существует $x \in B \cap B$, и тогда для него одновременно будет верно, что $f(x) \geqslant 0$ и $f(x) \leqslant \frac{A}{2} < 0$. Противоречие.

Следствие 1. Пусть $f\geqslant g$ на некотором элементе $B\in\mathcal{B}$ и существуют пределы $\lim_{\mathcal{B}}f=A$ $u\lim_{\mathcal{B}}g=\widetilde{A}$. Тогда $A\geqslant\widetilde{A}$.

$$\mathcal{A}$$
оказательство. $\lim_{\mathcal{B}} (f-g) = A - \widetilde{A}$ и одновременно, $(f-g) \geqslant 0$ на B .

Пусть \mathcal{B} и $\widetilde{\mathcal{B}}$ — базы на X.

Утверждение 4. Пусть $\lim_{\mathcal{B}} f = A$ и для кажедого элемента $B \in \mathcal{B}$ существует элемент $\widetilde{B} \in \widetilde{\mathcal{B}}$ такой, что $\widetilde{B} \subset B$. Тогда $\lim_{\widetilde{\mathcal{B}}} f = A$.

$$\mathcal{A}$$
оказательство. Зафиксируем произвольное $\varepsilon > 0$. Найдем $B \in \mathcal{B}$ такое, что $\forall x \in B: |f(x) - A| < \varepsilon$. Теперь найдем $\widetilde{B} \in \widetilde{\mathcal{B}}$ такое, что $\widetilde{B} \subset B$. Тогда $\forall x \in \widetilde{B}: |f(x) - A| < \varepsilon$. Получили по определению предела, что $\lim_{\widetilde{\mathcal{B}}} f = A$.

Фактически это обобщение утверждения, что любая подпоследовательность сходится туда же, куда и вся последовательность, и что если есть предел, то есть и оба односторонних предела, и они все равны.

Ну а где есть предел, там есть и критерий Коши!

Критерий Коши

Определение 3. Функция f удовлетворяет условию Коши по базе \mathcal{B} , если:

- 0. $\exists B_0 \in \mathcal{B} : f$ определена на B_0 ;
- 1. $\forall \varepsilon > 0 : \exists B \in \mathcal{B} : \forall x, \widetilde{x} \in B | f(x) f(\widetilde{x}) | < \varepsilon$.

Теорема 1 (Критерий Коши). Следующие условия эквивалентны:

- 1. существует предел $\lim_{\mathcal{B}} f$;
- 2. функция f удовлетворяет условию Коши по базе \mathcal{B} .

Доказательство. Напоминаем, что мы пока определили только конечные пределы по базе. $(1) \Rightarrow (2)$. Доказываем как обычно, через $\varepsilon/2$ и прочее.

 $(2) \Rightarrow (1)$. Построим последовательность $B_1 \supset B_2 \supset B_3 \supset \ldots$:

для
$$\varepsilon=1,\ \exists B_1\in\mathcal{B}: \forall x,\widetilde{x}\in B_1\ |f(x)-f(\widetilde{x})|<1;$$

для $\varepsilon=1/2,\ \exists \widetilde{B_2}\in\mathcal{B}: \forall x,\widetilde{x}\in\widetilde{B_2}\ |f(x)-f(\widetilde{x})|<1/2,$
 $\exists B_2\subset B_1\cap\widetilde{B_2}:\ \text{тогда}\ \forall x,\widetilde{x}\in B_2\ |f(x)-f(\widetilde{x})|<1/2;$
для $\varepsilon=1/3,\ \exists \widetilde{B_3}\in\mathcal{B}: \forall x,\widetilde{x}\in\widetilde{B_3}\ |f(x)-f(\widetilde{x})|<1/3,$
 $\exists B_3\subset B_2\cap\widetilde{B_3}:\ \text{тогда}\ \forall x,\widetilde{x}\in B_3\ |f(x)-f(\widetilde{x})|<1/3;$

Для каждого элемента B_n выберем точку $x_n \in B_n$. Заметим, что $\{f(x_n)\}_{n=1}^{\infty}$ — фундаментальная последовательность, так как

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N}, : \ \frac{1}{N} < \varepsilon \Rightarrow \forall n, m > N \ |f(x_n) - f(x_m)| < \frac{1}{N} < \varepsilon.$$

Это верно, так как $x_n \in B_n \subset B_N$ и аналогично для x_m .

Значит, существует предел $\lim_{n\to\infty} f(x_n) = A$. Покажем, что $\lim_{\mathcal{B}} f = A$.

Зафиксируем произвольное $\varepsilon > 0$. Тогда

$$\exists N \in \mathbb{N} : \forall n > N | f(x_n) - A | < \varepsilon/2.$$

При этом, существует такое n>N, что $\frac{1}{n}<\frac{\varepsilon}{2}.$ Значит,

$$\forall x \in B_n \in \mathcal{B} : |f(x) - A| \leq |f(x) - f(x_n)| + |f(x_n) - A| < \frac{1}{n} + \frac{\varepsilon}{2} < \varepsilon.$$