

School of Electronics

Engineering

WS_2023-24 (CAT-II)

Course Name : Electronic Materials

Faculty Name : Kittur Harish Mallikarjun

Slot: B1+TB1 Max. Marks: 50M

Instructions: Answer all the questions

S.		CO	BL	
No	Question			Marks
Q1	Given a rectangular tunnel barrier of height 2 eV and width 2 nm. Consider		3	2+2+3
	electrons of energy 0.75 eV are incident on the barrier. Calculate:			+3
	i. The propagation constant of the electron wave function before			
	and after the barrier			
	ii. The attenuation constant of the electron wave function in the			
	barrier			
	iii. The transmission coefficient of the barrier to the electrons			
	incident on them.			
	iv. Comment on what would happen to each of the above if the			
	height of the barrier is increased to 3 V?			
Q2	Consider a hydrogenic atom with $Z = 3$ (Li ²⁺ ion). Assume $a_0 = 0.08$ nm.	CO2	3	6+4
	i. Write down the wavefunction of the state with the quantum numbers: $n = 2$, $l = 1$ and $m_l = 1$.			
	ii. Calculate the energy difference between the 2s and the 4p states of the atom.			
Q3	Consider electron in a harmonic potential well of depth 7 eV	CO3	3	5+5
	having a force constant of β = 300 Nm ⁻¹ . Calculate the zero-point energy and also the energies of the bound states of the electron in the well.			

Q4	Consider a hypothetical material in which the density of electron			3	2+3+2
	states in the conduction band is given by $g(E) = 4 \times 10^{23}$ (E-E _C)				+3
	cm ⁻³ . Wh				
	that the				
	E _C . At T =				
	i.	the number of electron per unit energy of the band at the			
		band edge E _C			
	ii.	the number of electron per unit energy of the band at the			
		energy $E = 10^{-4}$ eV above the E_C			
	iii.	the number of electron per unit energy of the band at the			
		energy E = 10 ⁻³ eV above E _C			
	iv.	At what E above E_{C} do you expect to find the maximum			
		number of electrons per unit energy of the band, justify.			
Q5	Consider	a chain of $N = 10^3$ atoms of mass $M = 3$ amu, joined end	CO3	3	6+4
	to end. Given that the distance between the atoms is 0.7 angstrom units and the force constant between the atoms is 9.1 $$ Nm ⁻¹ , calculate the group velocity of the q = 2 mode of phonons in				
	the lattic				
	correspo				
	10 ⁻²⁷ kg.				

Bloom's Taxonomy Levels	Category
BL1	Remembering
BL2	Understanding
BL3	Applying
BL4	Analysing
BL5	Evaluating
BL6	Creating