#### CS420

#### Introduction to the Theory of Computation

Lecture 11: Regular expressions & NFAs

Tiago Cogumbreiro

## Today we will learn...



- Define a data type that represents Regular Expressions
- Define inductively acceptance for Regular Expressions
- Define equivalence of Regular Expressions







Sept 13-14, 2019 thestrangeloop.com



www.youtube.com/watch?

#### v=WykSdgtLDD0

Pattern Matching @ Scale Using Finite State Machine, by Ajit Koti and Rashmi Shamprasad

Learn how Netflix engineers use Regular Expressions to explore their data.

## Implementing Regular Expressions



- We identified a set of language-operators
- We want to explore their expressiveness:
   What kind of questions can we pose using that set of operators?
- How do we implement such theory in Coq?

## Regular expressions



#### Inductive definition

```
Inductive regex :=
    | r_void: regex
    | r_nil: regex
    | r_char: Ascii.ascii → regex
    | r_app: regex → regex → regex
    | r_union: regex → regex → regex
    | r_star: regex → regex.
```

#### Informal description

- r\_void: represents the Void language
- r\_nil: the empty string Nil language
- r\_char: the Char language
- r\_union: represents the union of two languages
- r\_app: represents concatenation of languages
- r\_star: represents zero-or-more copies of an expression

## Regular expression Coq notation



#### Informal description

- r\_void: the Void language
- r\_nil: the Nil language
- r\_char: the Char language
- r\_union: the Union operator (notation r1 | | r2)
- r\_app: the Append operator (notation r1;; r2)
- r\_star: the Star operator

#### Exercises

- 1. Strings with a's and b's that end with "aa" aa", "aaa", "baaa", "bbbbbaa"
- 2. Strings that have at an even number of a's "aa", "", "aaaa", "aaaaaa"
- 3. Nonempty strings that only contain any number of a's and b's "a", "b", "abaaa", "bbbbb", "abaaa"
- 4. Strings that interleave one "a" with one "b" "a", "b", "ab", "ba", "bab", "bab", "baba"



Strings with a's and b's that end with "aa" Examples: "aa", "aaa", "baaa", "bbbbbaa"



Strings with a's and b's that end with "aa" Examples: "aa", "aaa", "baaa", "bbbbbaa" Solution

 $(a||b)^\star \cdot aa$ 



Strings that have at an even number of a's Examples: "aa", "", "aaaaa", "aaaaaa"



Strings that have at an even number of a's Examples: "aa", "", "aaaaa", "aaaaaa" Solution

 $(aa)^{\star}$ 



Nonempty strings that only contain any number of a's and b's Examples: "a", "b", "ab", "aaaaa", "bbbbb", "abaaa"



Nonempty strings that only contain any number of a's and b's Examples: "a", "b", "ab", "aaaaa", "bbbbb", "abaaa" Solution

$$(a||b)^{\star}\cdot(a||b)$$



Strings that interleave one "a" with one "b" Examples: "a", "b", "ab", "bab", "bab", "bab", "baba"



Strings that interleave one "a" with one "b" Examples: "a", "b", "ab", "ba", "aba", "bab", "abab", "baba" Solution

 $(ab)^{\star}||(ab)^{\star}a||(ba)^{\star}||(ba)^{\star}b|$ 

## Inductive propositions: acceptance



Rules accept\_nil and accept\_char

$$[c] \in \mathtt{r\_nil}$$
  $[c] \in c$ 

$$[c] \in c$$

Rule accept\_app

$$rac{w_1 \in R_1 \qquad w_2 \in R_2}{w_1 \cdot w_2 \in R_1;; R_2}$$

Rules accept\_union\_l and accept\_union\_r

$$rac{w \in R_1}{w \in R_1 \mid\mid R_2}$$

$$egin{array}{c} w \in R_1 \ w \in R_1 \mid\mid R_2 \end{array} \qquad egin{array}{c} w \in R_2 \ w \in R_1 \mid\mid R_2 \end{array}$$

Rules accept\_star\_nil and accept\_star\_cons\_neg

$$[] \in R^\star$$

$$rac{w_1 
eq [] \qquad w_1 \in R \qquad w_2 \in R^\star}{w_1 \cdot w_2 \in R^\star}$$

## Regex.v

# Nondeterministic Finite Automata (NFA)

## NFA by example



Strings with a's and b's that end with "aa" Examples: "aa", "aaa", "baaa", "bbbbbbaa"

#### State diagram



#### About

- The diagram is a **graph**
- Nodes are called **states**
- Edges are called transition
- Accepting a word: a path in the graph

- Initial state, identified start →
- Accepting state, double edge
- Consume one character per transition
- Comma in transitions means OR

## NFA by example



Strings with a's and b's that end with "aa" Examples: "aa", "aaa", "baaa", "bbbbbbaa"



- 1. In  $q_1$  read as many a's and b's as needed
- 2. Eventually, read one a and move to  $q_2$
- 3. Finally, if we are able to read two a's, then we can accept the string  $(q_3)$

As long as we can find **one** path, we can accept the input. There may exist multiple paths in the same state diagram (nondeterminism).



Strings that have at an even number of a's

Examples: "aa", "", "aaaaa", "aaaaaa"



- 1. State  $q_1$  accepts the empty string
- 2. If we consume an a, then we have read an odd-number of a's. Thus,  $q_2$  is non-accepting
- 3. If we read another a, we have read an even-number of a's Thus, we go back to  $q_1$ , which is an accepting state.



Nonempty strings that only contain any number of a's and b's Examples: "a", "b", "ab", "aaaaa", "bbbbb", "abaaa"



Nonempty strings that only contain any number of a's and b's Examples: "a", "b", "ab", "aaaaa", "bbbbb", "abaaa"



- In state  $q_1$  we can read as many a's as we want
- ullet Eventually, we read at least one a or b and proceed to  $q_2$



Strings that interleave one "a" with one "b" Examples: "a", "b", "ab", "bab", "bab", "bab", "baba"