

الامتحان الوطني الموحد للبكالوريا

الدورة العادية 2016 ـ الموضوع ـ

4°XNV₹4 | NEAO₹Θ 🤴 وزارة التربية الولمنية كالمائة المائاة والتكوين الممنس كالكالم المالالله ٢١١٤٥٥ ٨

المملكة المغربية

المركز الوطنى للتقويم والامتحانات والتوجيه

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب)	الشعبة أو المسلك

NS 24

- مدة إنجاز الموضوع هي أربع ساعات.
- يتكون الموضوع من خمسة تمارين مستقلة فيما بينها .
- يمكن إنجاز التمارين حسب الترتيب الذي يرغب فيه المترشح.
- التمرين الأول يتعلق بالبنيات الجبرية - التمرين الثاني يتعلق بالحسابيات - التمرين الثالث يتعلق بالأعداد العقدية - التمرين الخامس يتعلق بالتحليل

لا يسمح باستعمال الآلة الحاسبة كيفما كان نوعها لا يسمح باستعمال اللون الأحمر بورقة التحرير

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2016 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب)

التمرين الأول : (3.5 نقط)

نذکر أن
$$(\pm,+,,')$$
 حلقة واحدية وحدتها $= \frac{1}{2} \quad 0 \quad 0$ و أن $= (\pm,+,,')$ جسم تبادلي. $= (\pm,+,,')$ علقة واحدية وحدتها $= (\pm,+,,')$ و أن $= (\pm,+,,')$ المحتوان أن المحتوان

$$E = \{M(x,y); (x,y)$$
 و $\{x,y\}$ و $\{x,y\}$ و $\{x,y\}$ و $\{x,y\}$ و $\{x,y\}$ و $\{x,y\}$ د $\{x,y\}$ من $\{x$

$$(M_3(`),+)$$
 اـ- بين أن E زمرة جزئية للزمرة E

0.5 | 2 تحقق أن:

$$("(x,y)\dot{z}^{(2)})("(x',y')\dot{z}^{(2)}): M(x,y)'M(x',y')=M(xx'-yy',xy'+yx')$$

ونعتبر التطبيق:
$$j: \pm^* a$$
 ونعتبر التطبيق: $E^* = E - \{M(0,0)\}$ الذي يربط العدد العقدي $E^* = E - \{M(0,0)\}$ عن $E^* = E - \{M(0,0)\}$ من $E^* = E - \{M(0,0)\}$

$$(E,')$$
 نحو $(\pounds^*,')$ نحو ($(E,')$) نحو ($(E,')$

$$M\left(1,0\right)$$
 ب) استنتج أن $\left(E^{*},^{\prime}\right)$ زمرة تبادلية و أن عنصرها المحايد هو $\left(0.75\right)$

جسم تبادلي.
$$(E,+,')$$
 جسم تبادلي.

$$A = \begin{array}{cccc} 0 & 0 & 0_{\frac{1}{2}} \\ 0 & 1 & 0_{\frac{1}{2}} \\ 0 & 0 & 0_{\frac{1}{2}} \end{array}$$
5-5

$$E$$
 عنصر من $M(x,y)$ عنصر من A' $M(x,y)$ عنصر من 0.5

$$(M_3(`),`)$$
 باستنتج أن كل عنصر من عناصر E لا يقبل مماثلا في

التمرين الثاني:(3 نقط)

0.5

$$a^3+b^3$$
 يقسم يعنصرا من $^* imes\square^*$ بحيث المعدد الأولى: ليكن (a,b) عنصرا من $^* imes\square^*$

$$(171 = 3 \times 57)$$
 : لاحظ أن $a^{171} \equiv -b^{171}$ [173] : بين أن $a^{171} \equiv -b^{171}$.

$$b$$
 يقسم a إذا و فقط إذا كان 173 يقسم a يقسم a إذا و فقط إذا كان a .

$$a+b$$
 يقسم يين أن 173 يقسم $a+b$ يقسم 3 . بين أن 3 . و . و . يقسم $a+b$

a لا يقسم 4- نفترض أن 173 لا يقسم

$$a^{172} \equiv b^{172} \quad [173]$$
 : أ) باستعمال مبر هنة فير ما بين أن (أ

$$a^{171}(a+b) \equiv 0$$
 [173] بين أن: 0.5

$$a+b$$
 يقسم يقسم (ح.5 يقسم $a+b$ يقسم ع.5 عند استنتج أن

$$(E)$$
 $x^3 + y^3 = 173(xy+1)$ المعادلة التالية: (E) المعادلة التالية: (E)

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2016 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب)

$$k\in\square$$
 * محيث، $x+y=173k$: نضع: (E) عنصرا من $x+y=173k$ عنصرا من $x+y=173k$ عنصرا من $x+y=173k$

$$k(x-y)^2 + (k-1)xy = 1$$
 :تحقق أن -1 0.25

.
$$(E)$$
 ثم حل المعادلة $k=1$.ن أن: $k=1$

التمرين الثالث: (3.5 نقط)

المستوى العقدي منسوب إلى معلم متعامد و ممنظم و موجه $(O, \overrightarrow{u}, \overrightarrow{v})$.

نعتبر نقطتین M_1 و M_2 من المستوی العقدی بحیث النقط O و M_1 و و M_2 مختلفة مثنی مثنی و غیر مستقیمیة.

 $z=rac{2z_1z_2}{z_1+z_2}$: يكن z_1 يحقق العلاقة z_2 على التوالي و لتكن z_2 النقطة التي لحقها z_2 يحقق العلاقة التي العلاقة ي

$$\frac{z_1 - z}{z_2 - z} \times \frac{z_2}{z_1} = -1$$
 بين أن: 0.5

$$OM_1M_2$$
 باستنتج أن النقطة M تنتمى إلى الدائرة المحيطة بالمثلث OM_1M_2

عبين أنه إذا كانت
$$\overline{z_2} = \overline{z_1}$$
 فإن M تنتمي إلى المحور الحقيقي.

 $]0,\pi[$ هي صورة M_1 بالدوران r الذي مركزه O و قياس زاويته α حيث α ينتمي إلى M_1 عند α

$$lpha$$
 احسب z_2 بدلالة رأ z_1 و 0.5

0.5

0.5

0.5

$$\left[M_{1}M_{2}
ight]$$
 باستنتج أن النقطة M تنتمي إلى واسط القطعة

$$0,\pi$$
لیکن $heta$ عددا حقیقیا معلوما من $heta$

$$6t^2 - \left(e^{i\theta} + 1\right)t + \left(e^{i\theta} - 1\right) = 0$$
 : فقرض أن z_2 و z_1 هما حلا المعادلة

$$z=2rac{e^{i heta}-1}{e^{i heta}+1}$$
 : يون حساب z_2 و z_1 بدون حساب (أ

التمرين الرابع: (7 نقط) الجزء الأول:

1- بتطبيق مبر هنة التزايدات المنتهية على الدالة e^{-t} ، بين أنه لكل عدد حقيقي موجب قطعا χ يوجد عدد حقيقي -1

$$e^{\theta} = \frac{x}{1 - e^{-x}}$$
 : محصور بین θ و x بحیث θ

2- استنتج أن:

("
$$x > 0$$
) ; 1- $x < e^{-x}$ (1 0.25)

$$("x>0)$$
 ; $x+1 < e^x$ (φ 0.25

$$(\forall x > 0)$$
 ; $0 < \ln\left(\frac{xe^x}{e^x - 1}\right) < x$ (ε 0.25

الجزء الثاني:

$$x>0$$
 نعتبر الدالة العددية $f(x)=\frac{xe^x}{e^x-1}$ و $f(0)=1$ بما يلي: $f(x)=f(x)=\frac{xe^x}{e^x-1}$ و المعرفة على المجال $f(x)=\frac{xe^x}{e^x-1}$

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2016 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب)

و ليكن C المنحنى الممثل للدالة f في المستوى المنسوب إلى معلم متعامد ممنظم f المنحنى الممثل الدالة و ليكن

$$0$$
 متصلة على اليمين في f الدالة f متصلة على اليمين في 0.5

بين أن:
$$\lim_{x\to +\infty} (f(x)-x)=0$$
 ثم أول مبيانيا النتيجة المحصل عليها.

(یمکنك استعمال نتیجة السؤال 2- أ) من الجزء الأول)
$$("x^3 \ 0)$$
 $x - \frac{x^2}{2} \pounds - e^{-x} + 1$ ابین أن: 0.25

$$("x^3 \ 0)$$
 $\frac{x^2}{2} - \frac{x^3}{6} \pounds e^{-x} + x - 1 \pounds \frac{x^2}{2}$: (0.5)

$$("x>0)$$
 $\frac{f(x)-1}{x} = \frac{e^{-x}+x-1}{x^2}f(x)$:0.5

ب) استنتج أن:
$$\frac{f(x)-1}{x} = \frac{1}{x}$$
 ثم أول النتيجة المحصل عليها.

$$("x>0)$$
 $f'(x) = \frac{e^x(e^x-1-x)}{(e^x-1)^2}$ و أن $f'(x) = \frac{e^x(e^x-1-x)}{(e^x-1)^2}$

(يمكنك استعمال نتيجة السؤال 2- ب) من الجزء الأول)
$$[0,+\infty[$$
 على f تزايدية قطعا على f تزايدية قطعا على f الجزء الثالث:

$$n$$
 نعتبر المتتالية العددية $u_{n+1} = \ln \left(f\left(u_n
ight)
ight)$ و $u_0 > 0$ المعرفة بما يلي: $u_0 > 0$

$$u_n > 0$$
 ادینا: n مدد صحیح طبیعی ادینا: n دینا: n

و.5 المتتالية
$$(u_n)_{n\geq 0}$$
 تناقصية قطعا ثم استنتج أنها متقاربة. (يمكنك استعمال نتيجة السؤال 2- ج) من الجزء الأول) 0.5

$$(u_n)_{n\geq 0}$$
 هو الحل الوحيد للمعادلة : $\ln(f(x))=x$ ثم حدد نهاية المتتالية 0.5

التمرين الخامس: (3 نقط

0.5

$$F(x) = \int_{\ln 2}^{x} \frac{1}{\sqrt{e^t - 1}} dt$$
 : نعتبر الدالة العددية F المعرفة على المجال $I =]0, +\infty[$

$$I$$
 من X من $F(x)$ من الدرس إشارة

$$I$$
 من I كل X من I اكل X من I و احسب I لكل X من I من I من I من I اكل X من I الكل X من I الكل X من X

$$I$$
 بين أن الدالة F تزايدية قطعا على المجال $O.25$

الدينا:
$$u=\sqrt{e^t-1}$$
 : الدينا $u=\sqrt{e^t-1}$: الدينا المتغير و ذلك بوضع عنير و ذلك بوضع المتغير و ذلك بوضع المتغير و ذلك بوضع المتغير و ذلك بوضع المتغير و ذلك بوضع

$$\int_{\ln 2}^{x} \frac{1}{\sqrt{e^{t}-1}} dt = 2 \arctan \sqrt{e^{x}-1} - \frac{\pi}{2}$$

$$\lim_{x \to +\infty} F(x) \quad \lim_{x \to 0^+} F(x) \quad : \qquad (0.5)$$

بين أن الدالة
$$F$$
 تقابل من المجال I نحو مجال J يتم تحديده.

.
$$F$$
 للتقابل F^{-1} للتقابل العكسي 0.5

انتهى

الامتمان الوطني الموحد للبكالوريا

المملكة المفريية وزارة التربية الولمنية في 6\$0730 1 €\$\XNX، وزارة التربية الولمنية في 6\$0730 1 €\$\XNX، ₹\\\$08 \

الدورة العادية 2016 - عناصر الإجابة -

- عناصر الإجابة -NR 24 المركز الوطني للتقويم والامتحانات والتوجيه

3.5 نقط	<u>التمرين الأول</u>		
0.5	تطبيق الخاصية المميزة لزمرة جزئية		-1
0.5	التحقق		-2
0.25	تعریف تشاکل	(1)	-3
0.25	الإشارة إلى أن: $(t,^*,j)$ زمرة تبادلية و t تشاكل	ب)	
0.25	$j\left(\operatorname{\pounds}^{*} ight) = E^{*}$ الإشارة إلى أن:		
0.25	$\mathrm{j}\;\left(\mathrm{l}\right)\!\!=M\left(\mathrm{l},0 ight)$ و $\left(\mathrm{\pounds}^{*},^{'} ight)$ و مو العنصر المحايد في 1		
0.25	رمرة تبادلية عنصرها المحايد $O=M\left(0,0 ight)$ حسب السؤال 1- $(E,+)$		-4
	و $\left(E^{*},^{'} ight)$ زمرة تبادلية حسب السؤال 3-ب)		
0.25	E القانون " ´ " توزيعي بالنسبة للقانون " +" في		
0.5	A' M(x,y) = O = M(0,0)	(1	-5
0.5	برهان بالخلف أو أية طريقة صحيحة أخرى	ب)	

3 نقط	التمرين الثاني		
		الجزء الأول	
0.25	الانطلاق من $[173]$ b^3 - b^3 و ملاحظة أن 57 عدد فردي	-1	
0.25	و بما أن a^3 و يقسم a^3 إذن يقسم a^3 إذن يقسم a^3 إذن يقسم a^3 و الما أن a^3	-2	

الصفحة	
<u>2</u>	NR 24

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2016 - عناصر الإجابة - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب)

	عدد أولي فإنه يقسم b و العكس صحيح لأن a و b لهما نفس الدور	
-3	a+b يقسم a إذن حسب السؤال 2- يقسم أيضا b و منه 173 يقسم a	0.25
(1 -4	a عدد أولي و لا يقسم a إذن أولي مع a	0.25
	b حسب السؤال 2- فإن 173 أولي أيضا مع	
		0.25
ب)	استعمال نتيجتي السؤالين 1- و 4-أ)	0.5
(ट	تطبيق مبرهنة كوص أو أية طريقة صحيحة أخرى	0.5
الجزء الثاني		
-1	التحقق	0.25
-2	k=1 مجموع عددین صحیحین یساوي $lpha$ نستنتج أن	0.25
	حلي المعادلة (E) في * ¥ * ′ \$: (86,87) و (87,86)	0.25

3.5 نقط	التمرين الثالث		
0.5	اثبات المتساوية	(1)	-1
0.5	شرط تداور أربع نقط	ب)	
0.5	$z=rac{\leftert z_{1} ightert ^{2}}{\operatorname{Re}(z_{1})}$ في هذه الحالة لدينا : ، خ		-2
0.5	$z_2 = e^{ia} z_1$	(1	-3
0.5	حسب السؤالين 1- و 3-أ) فإن: $1=\frac{ z_1-z }{ z_2-z }$ أو أية طريقة صحيحة أخرى	ب)	
0.5	$z=rac{2z_1z_2}{z_1+z_2}$ و $z_1z_2=rac{e^{i\mathbf{q}}-1}{6}$ و $z_1+z_2=rac{e^{i\mathbf{q}}+1}{6}$ و الإنطلاق من :	(1	-4
0.5	$0 < \frac{q}{2} < \frac{p}{2}$ مع $z = 2\frac{e^{iq} - 1}{e^{iq} + 1} = 2i\tan\frac{q}{2} = 2\tan\frac{q}{2}e^{i\frac{p}{2}} = \dots$	ب)	

الصفحة	NDO
3	NR 24

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2016 - عناصر الإجابة - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب)

7 نقط	التمرين الرابع		
	الجزء الأول:		
0.25	مبرهنة التزايدات المنتهية	- تطبيق	-1
0.25	$e^{ m q} = rac{x}{1-\;e^{-\;x}}$ ول على على	- الحص	
0.25	$1 < e^{q} = \frac{x}{1 - e^{-x}}$ و $0 < q < x$ البينا:	([†]	-2
0.25	$e^{q} = \frac{x}{1 - e^{-x}} < e^{x}$ و $0 < q < x$ البينا	ب)	
0.25	$ ho = \ln \frac{c}{c} \frac{xe^x}{e^x - 1^{\frac{1}{2}}}$ و $0 < q < x$ الدينا:	(ਣ	
	الجزء الثاني		
0.5	اتصال الدالة على اليمين في 0	(1	-1
0.25	اثبات النهاية	ب)	
0.25	التأويل المبياني		
0.25	x=0 اثبات المتفاوتة :اعتبار الجواب صحيح و لو لم يتطرق المترشح للحالة:	(1	-2
0.5	اثبات المتفاوتة المزدوجة	ب)	
0.5	التحقق	(1	-3
0.5	استنتاج النهاية	ب)	
0.25	الدالة قابلة للاشتقاق على اليمين في 0		
0.25	قابلية اشتقاق الدالة على المجال] ¥+,D	(1)	-4
0.5	f'(x) حساب		
0.5	الاستنتاج	ب)	
	الجزء الثالث		
0.5	بالترجع	البرهان	-1
0.25	تتاقصية باستعمال نتيجة السؤال 2-ج) من الجزء الأول أو أية طريقة أخرى	المتتالية	-2

الصفحة	NID 04
4	NR 24

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2016 - عناصر الإجابة - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب)

0.25	المتتالية متقاربة	
0.25	0 هو الحل الوحيد باستعمال نتيجة السؤال 2 -ج) من الجزء الأول و $\ln(f(0)) = 0$ أو أية طريقة أخرى	-3
0.25	نهاية المتتالية	

3 نقط	التمرين الخامس		
0.5	$x^3 \ln 2$ الدالة $x \pm 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	(1	-1
0.25	x متصلة على المجال a إذن x متصلة a متصلة على المجال a الدالة	Ų,	
0.25	حساب الدالمة المشتقة الأولى.		
0.25	I الدالة F تز ايدية قطعا على المجال I	ج)	
0.5	حساب التكامل بتقنية تغيير المتغير و لا تقبل أية طريقة أخرى	(1)	-2
0.25	حساب النهاية الأولى	ب)	
0.25	حساب النهاية الثانية		
0.25	الدالة تقابل من I نحو $(J-1, \frac{\dot{v}}{2}, \frac{\dot{v}}{2}, \frac{\dot{v}}{2})$ الدالة تقابل من $(J-1, \frac{\dot{v}}{2}, \frac{\dot{v}}{2}, \frac{\dot{v}}{2})$	(1	-3
0.5	الاكتفاء بتحديد الصيغة أخرى صحيحة $F^{-1}(x) = \ln \frac{\xi}{\xi} \frac{1}{1}$ أو أية صيغة أخرى صحيحة $\cos^2 \frac{x}{\xi} + \frac{p}{4}$	(J	