

ČASOPIS PRO RADIOTECHNIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XIX/1970 ČÍSLO 4

V TOMTO SEŠITĚ

Náš interview 121
Druhý televizní program 122
Čtenáři se ptají 124
Dopis měsice 124
Právo uživatele bytu na zřízení
antény
Jak na to
Součástky na našem trhu 128
Stavebnice mladého radioamaté-
ra (přijímač s přímým směšo- váním) 128
váním)
Zdvojnásobení rozsahů voltmetru 131
Přijímač Diamant 132
Miniaturní elektronický blesk 132
Číslicová elektronika (číslicové
výbojky a jejich použití) 134
Přestavba Dolly na KV 137
Oddělovací obvod
Integrovaná elektronika (číslicové integrované obvody) 143
WAA-WAA – jednotka pro kytaro-
vý zesilovač 145
Náš test: Magnetofon Tesla B5 146
Přijímač RIO 148
Feritová anténa na VKV 149
Lineární tranzistorový PA pro
SSB (dokončeni)
Barevné značení Zenerových diod 153
AWA
Zesilovače třídy C
Soutěže a závody 156
Soutěže a závody
Soutěže a závody
Soutěže a závody
Soutěže a závody . 156 DX . 157 Naše předpověď . 158 Přečteme si . 159 Četli jsme . 159
Soutěže a závody

Na str. 139 a 140 jako vyjímatelná příloha "Programovaný kurs základů radioelektroniky". Na str. 141 a 142 jako vyjímatelná příloha "Malý katalog tranzistorů".

AMATÉRSKÉ RADIO

NMATERSKE MADO

Vydává FV Svazarmu ve vydavatelství MAGNET, Praha 1, Vladislavova 26, telefon 234355-7. Šéfredaktor ing. František Smolik, zástupce Lubomír Bfezina. Redakční rada: K. Bartoš, ing. J. Čermák, CSc., K. Donát, ing. L. Hloušek, A. Hofhans, Z. Hradiský, ing. J. T. Hyan, K. Krbec, K. Novák, ing. O. Petráček, dr. J. Petránek, ing. J. Plzák, M. Procházka, ing. K. Pytner, ing. J. Vackář, CSc., laureát st. ceny KG, J. Ženišek. Redakce Praha 2, Lublaňská 57, tel. 223630. Ročně vyjde 12 čísel. Cena výtisku 5 Kčs, pololetní předplatné 30 Kčs. Rozšířuje PNS, v jednotkách ozbrojených sil vydavatelství MAGNET, administrace Praha 1, Vladislavova 26. Objednávky přijímá každá pošta i doručovatel. Dohlédací pošta Praha 07. Objednávky do zahraničí vyřizuje PNS, vývoz tisku, Jindřišská 14, Praha I. Tiškne Polygrafia 1, n. p., Praha. Inzerci přijímá vydavatelství MAGNET, Vladislavova 26, Praha 1, tel. 234355-7, linka 294. Za původnost přispěvků ručí autor. Redakce rukopis vřátí, bude-li vyžádán a bude-li připojena frankovaná obálka se zpětnou adresou.

Toto číslo vyšlo 7. dubna 1970 Vydává FV Svazarmu ve vydavatelství MAGNET,

© Vydavatelství MAGNET, Praha

s ing. Samuelem Dianiškou, vedoucím konstrukce n. p. Tesla Banská Bystrica, a ing. Jánem Pecníkem, vedoucím skupiny televizních rozvodů ze stejného podniku, o výrobním programu jejich podniku a o plánech Tesly B. Bystrica pro další léta.

Tesla B. Bystrica je mezi podniky n. p. Tesla poměrně neznámá. Zají-malo by nás proto, jaká je historie tohoto podniku, jaký máte výrobní program a čím můžete obohatit trh.

Tesla B. Bystrica se stala samostatným podnikem teprve v roce 1968. Do té doby se u nás v závodě vyráběly různé díly a zařízení k výrobkům jiných závodů Tesla. V současné době se v B. Bystrici staví pro náš závod nový objekt, kde má v budoucnu pracovat asi 4 000 zaměstnanců. Zatím pracujeme ve velmi stísněných podmínkách celkem máme po městě šest různých pracovišť. Z toho vyplývá i náš omezený výrobní program. Nemůžeme zavádět do výroby větší počet novinek, protože po našich standardních výrobcích je stále poptávka a současné výrobní kapacity ji sotva stačí krýt. Až bude závod dokončen (asi v roce 1973), budeme (lépe řečeno chtěli bychom) vyrábět všechny díly a zařízení pro při-jem televizního a rozhlasového signálu od antén až po anténní vstup přijímačů (včetně antén).

Abychom mohli lépe uspokojovat poptávku po našich výrobcích, budeme se samozřejmě snažit zavádět postupně se samozrejine snazit zavadet postupne s budováním závodu výrobu nových zařízení a rozšiřovat výrobu našich standardních výrobků (při zlepšování jejich parametrů).

Jaký je tedy váš výrobní program v současné době?

Jedním z nosných programů je rozvod televizního signálu, a to nejen po stránce výrobní, ale i po stránce vývojové. Jak jsme však již uvedli, kompletně se této otázce budeme moci věnovat až po dobudování našeho závodu. Máme i další zájmové oblasti - přenos dat,

Ing. Ján Pecník

Ing. Samuel Dianiška

telegrafní techniku apod., pro širokou veřejnost však bude asi nejzajímavější náš nosný program.

Naším hlavním zájmem v tomto programu je zabezpečení rozvodu televizních signálů jednak v jednotlivých budovách (tzv. společné televizní antény), jednak rozvod televizního signálu mezi objekty (tzv. kabelový rozvod). Samozřejmě nezapomínáme ani na drobné spotřebitele. Počítáme s tím, že některé díly a součásti antén a kabelového rozvodu, pokud se používají při stavbě společných televizních antén apod. a hodí se i pro individuální stavbu antén, budou v prodeji v maloobchodní síti.

Výhledově počítáme i s výrobou zařízení pro příjem signálů z geostatických družic.

Naše výrobní zaměření je dáno tím, že jsme dříve byli závodem n. p. Tesla Strašnice, od něhož jsme převzali výrobu elektronkové verze společné televizní antény. Protože však odběratelé našich výrobků vyžadují, aby výroba antén, anténního příslušenství a ostatních výrobků pro rozvod a příjem televizních signálů byla soustředěna do jednoho závodu, rozhodly příslušné nadřízené složky, že výhledově budeme vyrábět celý tento sortiment. Zatím děláme jen zesilovače ke společným anténám; antény dodává družstvo Kovoplast z Chlumce n. C. Všeobecně lze říci, že dnes děláme většinou jen tzv. aktívní části rozvodu televizního signálu, tj. zesilovače, konkrétně elektronkovou a tranzistorovou zesilovací soupravu pro společné televizní antény.

> Před časem jsme uveřejnili informaci o anténních televizních zesilovačích. Jsou tyto zesilovače i nadále ve vašem výrobním programu?

Ano, tyto zesilovače patří do vzpomenuté skupiny aktivních prvků rozvodu televizního signálu. Vyrábíme tzv. kanálový jednotranzistorový před-zesilovač k zesilování signálů v prvním a třetím televizním pásmu a v nejbližší době začneme s výrobou dvoutranzistorového kanálového zesilovače pro zesí-lení signálu ve IV., popř. v V. televizním pásmu.

Tento údaj jistě zajímá mnoho našich čtenářů. Můžete přesněji určit, co znamená "v nejbližší době"?

Výroba bude zahájena ve druhém čtvrtletí letošního roku. Čtenáře by jistě zajímala i cena – ta však zatím nebyla stanovena. Mohu vás však

ujistit, že zesilovač byl konstruován tak, aby při zachování dobrých parametrů byla jeho cena únosná pro celou širokou obec předpokládaných spotřebitelů.

V této souvislosti bych ještě chtěl upozornit, že náš jednotranzistorový anténní zesilovač můžeme dodávat i v provedení pro zesílení signálů v amatérském pásmu 145 MHz. K tomu účelu byl zesilovač upraven a vyzkoušen. Můžeme okamžitě dodat určitý počet těchto zesilovačů na trh, pokud by o ně byl zájem. Na trh můžeme také ihned dodat přizpůsobovací členy pro převod impedancí z 300 Ω na 75 $\dot{\Omega}$ jak pro první a třetí, tak i pro IV. a V. televizní pásmo. Symetrizační členy jsou vestavěny do vodotěsné krabičky, takže je lze připojit přímo na výstup antény.

> V současné době je citelný nedostatek baterii. Již před časem jsme uveřejnili informaci o tom, že připravujete síto-vý napáječ k napájení anténních zesi-lovačů – dodnes se však tento sítový napáječ na trhu neobjevil.

Síťový napáječ skutečně ještě není na trhu - dalo by se říci, že z objektivních příčin. Současně jsme vyvinuli a v nej-bližší době uvedeme na trh menší síťový napáječ, který bude mít širší použití - lze z něho např. napájet i některé (nebo lépe řečeno většinu) malých tranzistorových přijímačů, které se prodávají na našem trhu.

> Vratme se ještě k druhému televiznímu programu. Jak zajišťujete příjem signálů ve IV. a V. televizním pásmu především u těch posluchačů, kteří po-užívají rozvod signálu ze společné televizní antény?

Pro tyto případy již vyrábíme zesilovač a konvertor s tranzistory, který se může připojit k elektronkové i tranzistorové verzi zesilovače pro společné tele-vizní antény. Tento konvertor umožňuje převod z určitého kanálu IV. a V. televizního pásma na určitý kanál I. nebo III. televizního pásma. Na výstup konvertoru je však třeba v elektronkové verzi zesilovací soupravy pro společnou anténu použít ještě jednoelektronkový zesilovač.

Bude podle vašeho názoru a podle předběžných kalkulací dostatek těchto konvertorů prozatím alespoň pro zá-jemce v Praze a Bratislavě?

Na tuto otázku je těžké odpovědět. Netýká se totiž jen našeho podniku; jde také o montážní kapacity, vhodné antény, svody atd. Po pravdě řečeno, domnívám se, že ani ze strany našeho podniku nebude plně kryta počáteční poptávka. Výroba je poměrně pracná poptávka. Výroba je poměrně pracná a máme nedostatek přístrojů ke ko-nečnému naladění. Pro tato zařízení používáme tranzistory GF505 a GF507. Ty se však kus od kusu velmi liší, musíme je pracně měřit a vybírat a konečně víte jistě z vlastní zkušenosti, že i když jsou uváděny jako ekvivalenty tranzistorů AF106 a AF139, nedosahují jejich vlastností, především pokud jde o šum a výkonové zesílení na vyšších kmitočtech.

Jistě, to mohu potvrdit z vlastní zku-šenosti – při výměně původního tran-zistoru např. v jednotranzistorovém anténním zesilovači za tranzistor AF139 je i subjektivně obraz na obra-zovce lepší, má méně šumu a lepší kontrast. je tedy jasné, že při příjmu ve IV. a V. pásmu se tyto nežádoucí "vlastnosti" naších tranzistorů proje-vují v ještě větší míře.

Je však třeba říci, že i s našimi tranzistory, pokud jsou vybrány, lze postavit anténní zesilovač dobrých vlastností. Pro nás ovšem věta "pokud jsou vybrá-ny" znamená určitou práci. To však jen na okraj. V každém případě uděláme všechno, abychom uspokojili co největší počet posluchačů televize, kteří chtějí přijímat druhý televizní program na společné televizní antény. Pro ty ostatní, pokud víme, vyrábí konvertor Tesla

Orava; snad se tedy kolektivním úsilím všech podniků, které vyrábějí zařízení pro příjem druhého televizního programu, podaří dosáhnout toho, aby byl uspokojen co největší počet zájemců o jeho příjem.

> Děkují za rozhovor a přeji vám i naším čtenářům, abyste se s plným zdarem zhostili svého podílu na úkolech, které přináší příjem televizních signálů.

> > Rozmlouval L. Kalousek

DRUHÝ TELEVIZNÍ PROGRAM

Uvádíme přehled zařízení k příjmu druhého televizního programu (stav ke konci února 1970).

Pro II. televizní program obchod za-

jistil již v roce 1969 dovozem z MLR a NDR televizní přijímače, které jsou vybaveny tunery pro I. až III. a IV. a V. pásmo. Jsou to tyto typy na 220 V:

Technické údaje	Balaton-Super TA2154	Olympia TA4158	Fortuna T1682	Stassfurt T1009	AT1651 OCU
Úhlopříčka obrazovky:	47 cm	59 cm	59 cm	59 cm	59 cm
Příkon:	max. 170 W	max. 170 W	max. 170 W	asi 180 W	max, 180 W
Reproduktor:	oválný 180 × 120 mm	oválný ′ 180 × 120 mm	oválný 180 × 120 mm	širokopásmový 3 W	oválný 398 × 95 mm
Rozsah příjmu:	I. aż III. TV pásmo 10 kanálů OIRT 2 kanály CCIR IV. a V. TV pásmo	I. až III. TV pásmo 10 kanálů OIRT 2 kanály CCIR IV. a V. TV pásmo	I. až III. TV pásmo 10 kanálů OIRT 2 kanály CCIR IV. a V. TV pásmo	I. až III. TV pásmo IV. a V. TV pásmo	l. až III. TV pásmo IV. a V. TV pásmo
Anténní vstupy:	300 Ω symetr.	300 Ω symetr.	300 Ω symetr.	I. až III. pásmo: 300 Ω symetr. IV. a V. pásmo: 75 Ω nesymetr.	300 Ω symetr.
Výstupní výkon zvuku:	1,2 W při zkresl. 5 %	1,2 W při zkresl. 5 %	2 W při zkresl. 10 %	3 W při zkresl. 10 %	2 W při zkresl. 5 %
Váha:		31 kg	32 kg	asi 35 kg	35 kg
Dodavatel:	MLR	MLR	MLR	NDR	MLR
MC v Kčs:	3 800,	4 600,→	4 700,	4 500,	4 800,—

Pro rok 1970 obchod zajistil a dále zajišťuje dodávky těchto televizních přijímačů:

	-	· · · · · · · · · · · · · · · · · · ·		= -
Technické údaje	Stassfurt T1511	Orava 232	Orava 235	Viktoria AT1459
Úhlopříčka obrazovky:	59 cm	59 cm	59 cm	59 cm
Příkon:	asi 180 W	160 W	160 ₩	max. 170 W
Reproduktor:	širokopásmový	oválný 160 × 100 mm	oválný 160 × 100 mm	oválný 170 × 120 mm
Rozsah příjmu:	I. až III. TV pásmo IV. a V. TV pásmo	I. až III. TV pásmo IV. a V. TV pásmo	I. až III. TV pásmo IV. a V. TV pásmo	I. až III. TV pásmo 12 kanálů OIRT + CCIR IV. a V. TV pásmo kanál 21 až 60
Anténní vstupy:	I. až III. pásmo: 300 Ω symetr. IV. a V. pásmo: 300 Ω nesymetr.	300 Ω symetr.	300 Ω symetr.	300 Ω symetr.
Výstupní výkon zvuku:	3 W při 10% zkresl.	2,2 W při 10% zkresl.	2,2 W při 10% zkresl.	2 W při 5% zkresl.
Váha:	asi 35 kg	asi 29 kg	asi 29 kg	32 kg
Dodavatel:	NDR	Tesla Orava	Tesla Orava	MLR
MC v Kčs	4 600,—	4 900,—	asi 5 000,—	4 800,—

Antény

Širokopásmová anténa typ TVA/21-60 pro příjem druhého TV programu.

9 až 12,5 dB v pásmu 470 až 790 MHz, Technické údaje: zisk: předozadní poměr:

22 až 27 dB, $59 \times 100 \times 11$ cm,

rozměry: váha: vstupní impedance: 300Ω symetr.,

1,7 kg, 330,- Kčs.

Dodavatel: Kovopodnik MPP, Plzeň, ul. B. Smetany č. 2.

Televizní přijímací antény pro IV. a V. televizní pásmo, šesti- a desetiprvkové. Televizní přijímací antény pro IV. a V. televizní pásmo, dvacetiprvkové.

Тур	Pásmo	Kanál	Rozsah [MHz]	. Cena	
0624 GL	IV.	21—25	470510		Zisk = 4,5 dB
0628 GL	IV.	2630	510550		ČZP >19 dB
0635 GL	IV.	3135	550590		ČSV <1,6
0638 GL	IV. a V.	36—40	590630	110,—Kčs	Oe = 65-59°
0643 GL	v.	4145	630670		Oh = 10496°
0648 GL	v. -	4650	670710		$Z = 300 \Omega$
0653 GL	v.	51—55	710750	,	
0658 GL	v.	56—60	750790		
Тур	Pásmo	Kanál	Rozsah	MC Kčs	
1024 GL	IV.	21—25	470510	150,	Zisk = 9 dB
1028 GL	IV.	26—30	510550	140,—	ČZP >17 dB
1033 GL	IV.	31—35	550590	140,—	ČSV = 1,8
1038 GL	IV. a V.	36—40	590630	135,—	Oe = 50-43°
1043 GL	v.	41—45	630670	135,—	Oh = $70-50^{\circ}$
1048 GL	v.	4650	670710	135,	$\mathbf{Z} = 300 \ \Omega$
1053 GL	v.	51—55	710750	135,—	
1058 GL	v.	56—60	750790	135,—	

Televizní přijímací antény pro IV. a V. televizní pásmo, dvacetiprvkové

Тур	Pásmo	Kanál	Rozsah [MHz]	MC Kčs	
2024 GL	īv.	21—25	470—510	305,—	Zisk = 12-13dB
2028 GL	IV.	2630	510550	295,—	ČZP >19 dB
2033 GL	IV.	31—35	550590	290,—	ČSV <1,6
2038 GL	IV. a V.	36-40	590630	290,	Oe = 32-25°
2043 GL	v.	41—45	630-670	280,—	Oh = 35-27°
2048 GL	v.	46—50	670—710	280,—	$Z = 300 \Omega$
2053 GL	V.	51—55	710750	280,—	
2058 GL	v.	5660	750790	280,—	1

Dodavatel: Kovoplast, Chlumec n. Cidi.

Výrobou dalších typů TV antén pro IV. a V. TV pásmo se budou zabývat Tesla Strašnice a Mechanika Praha. S těmito výrobci dosud odbytové řízení neskončilo, takže jejich výrobky prozatím neuvádíme. Rovněž budou dováženy TV antény pro IV. a V. TV pásmo z NDR, a to 11prvkové a 16prvkové.

Konvertor Tesla 4952

Tesla Orava má vyrábět konvertory ve 3 alternativách:

- alternativa: 4952 A-a; přijímaný kanál
 IV. televizního pásma se konvertuje
 na 1. kanál (střed kanálu 53 MHz).
- alternativa: 4952 A-b; přijímaný kanál se konvertuje na 2. kanál (střed kanálu 62 MHz).
- alternativa: 4952 A-c; přijímaný kanál se konvertuje na 3. kanál (střed kanálu 80,5 MHz).

Technické údaje:

Vstupní impedance: 300 Ω symetr.

Výstupní impedance: 300Ω symetr.

Kmitočtový rozsah:

470 až 860 MHz (49 kanálů UKV), (kanály č. 21 až 69).

Napájecí napětí:

220 V \pm 10 %, 50 Hz.

Osazení polovodiči:

2 \times GF507, KY702, 6NZ70.

Příkon:

4 W.

Rozměry:

183×81×146 mm.

Váha:

asi 1 kg.

S dalšími dodavateli obchod jedná a prozatím výrobce ani popis výrobku neuvádíme.

Televizní svod

Pro příjem druhého prográmu se prodává jako anténní svod až pro kmitočty V. televizního pásma vysokofrekvenční symetrický vodič, typové označení VFSV 515, který vyrábí n. p. Kablo Bratislava a dodává n. p. Elektroodbyt Praha.

Jeho výroba není však dostatečně zajištěna (malá kapacita n. p. Kablo Bratislava).

Svod má kapacitu 18,5 pF/m ± 10 %, zkušební efektivní napětí 1 kV, impedanci 300 Ω , +0 -20 %, měrné tlumení max. 0,09 dB/m při 200 MHz. Cena 3 Kčs metr.

Redakční uzávěrka je bohužel příliš dlouhá. Proto tyto informace už nemusí platit v době vyjití tohoto čísla. S dalšími informacemi budeme průběžně pokračovat

Federální výbor Svazarmu zasedal

Plenární zasedání FV Svazarmu zhodnotilo začátkem ledna 1970 vývoj organizace, zejména údobí let 1968 a 1969. Projednalo také plán hlavních úkolů na rok 1970, potvrdilo statuty federálních svazů a sekcí, ustavilo komise pro organizaci a rozvoj, politickovýchovnou, ekonomickou, pro mezinárodní vztahy, pro vrcholový sport a pro tisk a navrhlo zřídit komise právní a pro práci s mládeží.

Předseda organizace ing. J. Škubal v obsáhlé analýze celé problematiky téměř dvacetileté činnosti Svazarmu dokumentoval, že úsilí o nápravu chyb a deformací bylo po lednu 1968 zneužíváno protisocialistickými silami, které zahájily otevřený útok na jednotu a akceschopnost organizace.

"Přibývá nespokojenosti členů" – řekl dále – "začíná se vytvářet organizační platforma jednotlivých skupin, dochází k rozpouštění sekcí, Svazarm se stává víc a víc terčem extrémních sil z řad motoristů, letců, radioamatérů... V důsledku toho, že zdravé jádro organizace, reprezentované obětavými funkcionáři základních organizací a okresních výborů, zůstalo zachováno, došlo postupem času k tomu, že se začaly uplatňovat kladné koncepce, vytvářet jednomá branně technická a sportovní organizace ze zájmových útvarů – svazy."

Radioamatéři se rozhodli začlenit se do Svazarmu v Čechách a na Moravě se svou vlastní organizací ČRA a v okresech ustavovat odbočky. Zatím však nebyly projednány a schváleny stanovy odborného svazu. Na Slovensku si vytvořili Svaz radioamatérů Svazarmu a na okresech rady, které řídí činnost a finanční zajištění zájemců o činnost až do ZO Svazarmu. Protože se radioamatéři v národních organizacích – české a slovenské – nedohodli o vytvoření jednotného Svazu radioamatérů ČSSR, byla zřízena administrativní rada, která má řídit činnost amatérů až do doby, kdy bude ustaven svazový orgán radioamatérů ČSSR.

V současné době je třeba urychlit konsolidační proces, při hodnocení politického vývoje organizace od roku 1968 spravedlivě zhodnotit každého jednotlivce, dokončit organizační přestavbu Svazarmu a víc než dosud pomáhat rozvoji konkrétní výcvikové, sportovní a výchovné činnosti jednotlivých odborností. Plnění těchto úkolu přispěje k uskutečňování záměrů posledních zásedání ÚV KSČ.

-ig-

PRIPRAVUJEME PRO VAS

Regulátor otáček motoru Zvonek s informační tabulí

4 Amatérske! 11 11 123

Gottwaldovští sněmovali

Na únorové konferenci odbočky ČRA zhodnotili gottwaldovští radioamatéři svou činnost za údobí šestnácti měsíců od založení odbočky. Rozbor ukázal klady i nedostatky – dobrou práci a aktivitu ve sportovní i technické práci samostatných koncesionářů, kolektivních stanic, Hi-Fi klubu, i záslužnou činnost výrobny nedostat-kových součástek. Oboustranně prospěšná byla i družba s odbočkou radioamatérů v Brudge v Belgii. Výbor odbočky doporučil konferenci navázat družbu s amatéry některé socialistické země, nějlépe některé z republik SSSR. Jedním ze závažných nedostatků bylo, že se odbočce dosud nepodařilo podchytit evidenci zájemců o radioamatérskou činnost v základních organiza-

cích Svazarmu a v kroužcích na školách, Předseda OV Svazarmu pplk. Háp zdůraznil, že je nutné, aby si každá odbornost vychovávala svůj dorost – dnes je možnost upoutávat zájem již u dětí od šesti nebo sedmi let a v tomto věku získaní zůstávají svému koníčku věrni trvale. Jak je to důležité, je vidět i z toho, že v posledních dvou letech nastal v základních organizacích v gottwaldovském okrese značný úbytek zájemců o radioamatérskou činnost

v kroužcích radia.

V závěru vystoupil člen administrativní rady pplk. Krčmárik, který osvětlil význam a poslání této rady a Federálního radioklubu a stručně ukázal, jak je organizována činnost Zväzu radioamatérov Slovenska, který je jedinou organizací sdružující radioamatéry - vysíľače a zájemce o radiotechniku na Ślovensku. Vyslovil přesvědčení, že dojde po skončení okresních konferencí a národní konference ČRA k založení ústředního radioklubu ČSSR, orgánu, který budé zastupovat oba národní svazy ve FV Svazarmu i v mezinárodní organizaci.

-jg-

Sdělte mi, prosím, kolik stojí tranzistor GF507 a zda se dá z televizního přijimače Anabela vyrobit vysílač pro dálkové řízení modelů. (J. Stiller, Jistebnice). Tranzistor GF507

Tranzistor GF507 stojí Kčs 114,—. Z televizního přijímače Anabela nelze pochopitelně zhotovit vysílač pro dálkové ovládání modelů. Znamenalo by to použít pouze součástky a postavit úplně nové zařízení. Takový návod jsme ovšem neotiskli a zapojení byste si musel navrhnout sám.

V AR č. 12/1969 jste otiskli návod na stavbu přijímače Viro T5. Je tam ladlcí kondenzátor 2 × 380 př. nebo ladicí kondenzátor 2 přijímače Doris? je možné použit do tohoto přijímače mf transformátory z přijímače T58? Mů-žete mi sdělit technické údaje křemí-kového bloku KY296? (F. Römer, Osi-ky).

ky).

Ladicí kondenzátor v přijímačí Viro T5 je malý typ s izolací z plastické hmoty a má kapacitu 2 × 380 pF (je to typ, který se používal např. v přijímačí Zuzana). Jako mí transformátory poslouží i transformátory z přijímače T58, nebot oba přijímače mají stejný mí kmitočet. Usměrňovací blok KY296 není uveden v žádném nám dostupném katalogu Tesla. Buď může jit o KY298, což je dvoucestný usměrňovač střídavého napěti 2 × 600 V, nebo o některý z typů KY287 až 289, popř. KY292 až 295, což jsou křemikové vysokonapětové usměrňovače.

124 (Amatérské! 141) 11 70

Dostali jsme opět značné množství dotazů na možnost koupě mf transformátorů Jískra a výstup-ních a budicích tránsformátorů BT39 a VT39 stejních a budicích tránsformátorů BT39 a VT39 stejného výrobce. Všem zájemcům proto sdělujeme, že mf transformátory MFTR 11 a MFTR 20 a nf transformátory BT39 a VT39 Ize zakoupit nebo objednat na dobirku na adrese: Středisko služeb 05, Švermova ulice, Cyklos – Urbanice, Pardubice. Transformátory poněkud podražily: MFTR 11 stojí Kčs 16,30, MFTR 20 též Kčs 16,30, BT39 stojí Kčs 26,— a VT39 Kčs 20,— (stav ke konci vinora 1970) února 1970).

Dostali isme též dopis od M. Kučery z Brna, v němž nás upozorňuje na některé nedostatky v článku M. Veita: Čtyřkanálová proporcionální souprava RC. Poslali isme dopis autoroví a zde je jeho odpověď: "Připomínka M. Kučery je správná Chyba se stala mou vinou. Proud oscilátoru se nastavuje odporem R₁₅. Je samozřejmé, že se vždy při nastavováni oscilátoru musí doladit obvod L₁. C₁₁. O změně polohy L₂ se v článku nezmiňují proto, že jšem nejvhodnější nastavení vyzkoušel a v návodu uvádím i počty závitů apod.

V článku jsem odhalil i některé drobnější nedostatky. Ve schématu je (obr. 5) koncový stupeň vysilače napájen napětím 6 V. Správně to má být taktor bod +6 V a +12 V je společný a napětí —6 V je stabilizováno Zenerovou diodou; přívod —12 V jde přímo z baterie. Ve schématu to není zakresleno, avšak z popisu by to mělo být jasné. Ve schématu na obr. 10 má být vyznačen spoj mezi emitory T₁, T₂ a T₁, T₁₅.

Dále je vhodné ke zlepšení teplotní stability hustoního dekodéru připojit kolektor tranzistoru T₂ na kladný pôl napájecího napěti přes odpor asi 100 Ω. Takto udělaná můstková stabilizace dobře teplotně stabilizuje dekodér."

Dále nás upozornil čtenář Č. Schwan na chybu v AR č. 11/1969 v článku Sledovač signálu v rubrice Jak na to (str. 407). Na obrázku plošných spoju je chyba v zapojení trimtu R_1 , jehož dolní konec má být připojen až do plošky, v níž je připojen i emitor tranzistoru T_2 (tak, jak je odporový trimr R_3 zapojen podle obr. 4a, je jeho odporová dráha ve zkratu).

Vážená redakce! S velkým zájmem jsme si přečetli dopis Mikuláše Matta ze Spišskej Novej Vsi, který jste otiskli ve Vašem časopise AR č. 1, str. 2. Nikdy bychom nevěřili to-mu, že ještě evistu-

č. 1, str. 2. Nikdy bychom nevřřili tomu, že ještě existují takové potiže se zásobováním, jaké uvádí pisatel dopisu. Je sice pochopitelné, že v současné době zákazník nedostane v jednom obchodě všechno od "A" až do "Z", ale přesto
jsme se rozhodil Vám napsat a tím dát určitý
klič k řešení nejenom pisateli, ale i široké veřejnosti. Před vánočními svátky jsme totiž
v Prešově otevřeli novou prodejnu Tesla, která
může nabidnout naším zákazníkům výběř jak
finálních výrobků, tak i součástek pro radioamatéry. Mezi novinkami součástek pro radioamatéry. Mezi novinkami součástek se můžeme pochlubit dostatkem téměř všech typů
polovodičových prvků Tesla (tyristory, tranzistory MOS, doplňkové dvojice výkonových
tranzistorů typu GD607 až 609 a GD617 až
619, všechny běžné typy křemikových tranzistorů, dále varikapy, Zenerovy diody v celé
řadě) a také rozsáhlou řadou reproduktorů,
mikrofonů a zesilovačů. Přehled finálních výrobků nových typů uvádět nebudeme, za
zmínku však stoiť široký vóhř žárovak všech radě) a také rozsáhlou řadou reproduktorů, mikrofonů a zesilovačů. Přehled finálních výrobků nových typů uvádět nebudeme, za zmínku však stojí široký výběr žárovek všech možných druhů a typů, včetně žárovek pro motorová vozidla. Nechceme v tomto dopise vypisovat, co všechno máme a nemáme, ale našim milým zákazníkům oznámit, že vedeme zásilkový prodej. V případě nedostatku některé součástky na skladě prodejny navštěvujeme naše centrální sklady a snažíme se žádané zboží co nejrychleji zajistit. Jde-li o zboží, které se už nevyrábí, odpovime žadateli a po konzultaci s našími techniky doporučíme vhodnou náhradu. Byli bychom rádi, kdyby zájemci častěji navštěvovali naši novou vzorovou prodejnu Tesla, neboť sortiment zboží se stále rozšířuje a doplňuje. Jediné, co u nás zákazník nekoupí, jsou zahraniční výrobky a součástky. Víme však, že výrobky Tesla jsou mnohdy funkčně a tvarově shodné a v některých sortimentech (polovodiče) často plně nahradí nebo i předčí svými parametry originál.

věříme, že alespoň zčásti pomůžeme našim amatérům ve Východoslovenském kraji, ale i Jinde, a že se tato neutěšená situace obrátí

> S pozdravem orová prodejna Tesla, . S.R.R. č. 5, Prešov, tel. 53202 (Podpis nečítelný)

Co nabízejí zahraniční výrobci?

Zenerovy diody se ztrátovým výko-nem 50 W a Zenerovým napětím 6,8 až 200 V dodává nyní Solitron Devices v diodových pouzdrech DO-5 a tran-zistorových pouzdrech TO-3. Diody v pouzdru DO-4 jsou určeny pro výkon do 10 W. Tento velký sortiment Zenerových diod je vhodný pro všechny druhy proudových zdrojů, kde mohou velmi dobře nahradit elektronkové stabilizátory napětí.

Křemíkové epitaxní mikrovlnné tranzistory n-p-n s velkým ziskem a malým vstupní obvody je určen typ AT-101 s průměrným šymor 4 17 s průměrným šumem 4 dB a zesílením 10,5 dB na kmitočtu 2 GHz. Pro mf zesílovače je určen AT-201 s lineárním výstupním ziskem 10 dB na 2 GHz. Pro koncové stupně je určen AT-301S s lineárním ziskem 17 dB.

Komplementární křemíkové tranzistory MJ4502 (p-n-p) a MJ802 (n-p-n), vhodné pro nf zesilovače s výkonem až do 100 W, uvedla na trh Motorola Semiconductor. Mají proudový zesilovací činitel 25 až 100 při proudu kolektoru 7,5 A a napětí 2 V.

Křemíkové usměrňovače s lavinovitým průrazem série 17S04 až 24S16 firmy Helios Semiconductor mohou dodávát do zátěže výkon až 250 kW. Dodávají se pro proudy od 170 do 240 A, závěrné napětí mají od 400 do 1 600 V a jsou celokovové. Sž

Řadu levných tranzistorů pro použití v telekomunikačních a telemetrických systémech, pracujících v nižším kmitočtovém rozsahu řádu GHz uvádí na trh Motorola Semiconductors. Propoužití jako místní oscilátor jsou určeny tranzistory MM8008, MM8010 a MM8011. První odevzdá výstupní výkon 0,5 W na kmitočtu 1,68 GHz, druhé dva lze používat jako oscilátory a také ví zesilovače v mikrovlnných přijíma-čích. Na kmitočtu 2 GHz odevzdá výstupní výkon v zapojení jako oscilátór MM8008 300 mW, MM8010 výkon 200 mW, MM8011 100 mW. Všechny tři tranzistory jsou vestavěny do plo-chého pouzdra TO-107 s uzemněným kolektorem. Díky tomuto pouzdru mohl výrobce podstatně snížit ceny nových tranzistorů.

Další čtyři tranzistory Motorola jsou určeny jako zesilovače výkonu ve třídě C. Typy MM4430 a MM4429 jsou v pouzdru strip-line s malou indukčností a izodru strip-line s malou indukčnosti a izolovaným upevňovacím šroubem. Při napájecím napětí 28 V odevzdá MM4430 výstupní výkon větší než 2,5 W na kmitočtu 1 GHz při zisku 6 dB, MM4429 výstupní výkon 1 W. Tranzistor 2N5108 v pouzdru TO-39 odevzdá na 1 GHz výkon 1 W při zisku 5 dB a mezním napětí kolektoru 55 V. Tranzistor MM8809 odevzdá při stejném zisku a mezním napětí 50 V výkon 0,9 W.

Nový vysílač

Firma Rohde & Schwarz postavila na vrchu Pfaffenberg u Würzburgu nový televizní vysílač pro vysílání programů v pátém televizním pásmu (59. kanál). Vysílač používá bavorská televize k vysílání prvního programu. Anténa vysílače je na 170 m vysokém stožáru, vyzářený výkon je asi 120 kW. Vysílač je v provozu od konce ledna 1970. -Mi-

Právo uživatele bytu na zřízení amtény

JUDr. Adolf Kocna

Proplést se houštinou našich právních norem je nezřídka obtížné i pro zkušeného právníka; o to obtížnější je to pro "neprávníka", který se navíc často vystavuje nebezpečí postihu, nebot neznalost předpisů nikoho neomlouvá. Tento přehled má čtenáře obeznámit s obsahem a rozsahem práv a povinností a ušetřit je nepříjemností nebo škod.

Stav do roku 1964

Rozsah oprávnění uživatele bytu na zřízení venkovní antény pro rozhlas a televizi nevymezoval ani občanský zákon č. 141/1950 Sb., ani zákon o telekomunikacích č. 72/1950 Sb., ani vládní nařízení č. 73/1950 Sb., ani rozhlasový řád č. 57/1951 Sb. Proto se také sporné otázky řešily v praxi nejednotně. Podstatné ujasnění přineslo plenární usnesení Nejvyššího soudu z 26. května 1956 Plz. 4/56 (uveřejněné pod č. 89 Sbírky rozhodnutí čs. soudů z r. 1956 ve věcech civilních). V tomto usnesení vychází Nejvyšší soud z ustanovení občanského zákoníku, především z ustanovení o právech a povinnostech organizace, popř. správce ne-movitosti a uživatele bytu nebo nebytových prostorů, jak byly obsaženy v par. 388 a par. 389 obč. zák. č. 141/1950 Sb. Tyto směrnice byly až do nové právní úpravy základním vodítkem. Spočívaly na těchto zásadách:

1. Rozsah oprávnění uživatele bytu, popř. nebytových prostorů užívat je přiměřeně povaze a určení věci je třeba vykládat tak, že zásadně je v něm zahrnut i nárok na to, aby si uživatel zřídil venkovní anténu nejen pro rozhlas, ale i pro televizi. 2. Organizace (majitel domu) není

povinna uvést dům do takového stavu, aby si uživatel mohl takovou anténu na domě umístit, ani není povinna jej v takovém stavu udržo-

3. Zřízení a udržování antény se děje na náklady uživatele bytu (nebytových prostorů).

4. Organizaci (majiteli domu) nená-leží zvláštní úhrada za to, že uživatel používá venkovní anténu.

Citované usnesení uvádí, že příslušná ustanovení občanského zákoníku je třeba vykládat s přihlédnutím k těmto zásadám s tím, že všechny tyto zásady platí jen tehdy, nebylo-li ujednáno něco jiného.

Toto plenární usnesení výslovně uvádí, že rozsah nájemníkova oprávnění užívat najaté věci přiměřeně jejich povaze a určení zahrnuje i nárok na zřízení venkovní antény, takže není-li jejímu zřízení objektivně nic na překážku, není ke zřízení antény třeba souhlasu organizace (majitele domu). Toto usnesení tedy neukládá povinnost uza-vřít dohodu. Ze stanoviska, že "lze se důvodně bránit zřízení antény, jsou-li pro to oprávněné důvody, jako např. jestliže stav střechy nebo konstrukce krovů nedovolují z vážných technických důvodů zřízení venkovní antény", lze však usuzovat, že se její uzavření předpokládalo.

Občanskoprávní vztahy

Právo na zřízení rozhlasové a televizní antény k přijímacím rozhlasovým a televizním zařízením občanský zákoník č. 40/1964 Sb. výslovně neřeší. Je však zahrnuto do práva užívat byt a společné prostory způsobem dohodnutým ve smlouvě o odevzdání a převzetí bytu, jak vyplývá zejména z ustanovení domovního řádu; je proto třeba zařadit toto právo do obsahu práva na užívání bytu, jak je uvedeno v ustanovení par. 123, 152 a 153 obč. zák. Obsah práva na užívání bytu je vymezen par. 158 až 167 obč. zák.; par. 158 obč. zák. určuje rozsah oprávnění spojených s právem osobního užívání bytu a výslovně uvádí, že kromě práva užívat byt má uživatel právo užívat společné prostory a zařízení domu, z čehož lze vyvozovat i jeho právo na zřízení venkovní antény. Toto právo je tedy vázáno jen na platné právo k užívání bytu, které je podle par. 154 odst. 1 obč. zák. závislé na uzavření dohody, neboť tato dohoda je podmínkou vzniku právního poměru (viz Adler: "Údržba bytového majetku", Orbis 1966, str. 28, a Plank: "Osobné uživanie bytov", Bratislava 1967, str. 46/47).

Právu uživatele bytu na zřízení antény odpovídá jeho povinnost dohodnout se o jejím zřízení se správou domu, aby nebyly ohroženy životy, zdraví, majetek a bezpečnost. Otázkou společenské únosnosti bude, za jakých podmínek a v jakém rozsahu je správa domu povinna vytvořit podmínky pro to, aby nárok uživatele na zřízení antény

mohl být uspokojen.

Vzhledem k tomu, že par. 158 obč. zákoníku vyhrazuje uživateli bytu právo užívat i společné prostory a zařízení domu - a to, jak uvádí par. 160 cit. zák., řádně a způsobem zajišťujícím všem nerušené užívání bytu, společných prostor a zařízení domu - je sotva myslitelné, aby bez vědomí a souhlasu správce (majitele) domu užíval prostory a zařízení, které nelze považovat za společné, ať již jde o střechu domu, komunikační (přístupová) zařízení na tuto střechu nebo o zařízení na střeše (komínová lávka apod.).

Za společné prostory a zařízení domu nelze považovat střechu ani zařízení na střeše nebo přístupová zařízení na střechu. Za společné prostory lze po-važovat jen podkrovní prostory (viz "Učebnice čs. obč. práva" II-Orbis, Praha 1965, str. 89). Společné prostory domu tvoří samostatný druh místností, práva k jejich užívání jsou však součástí práva k jejich uzívani jsou vsak současu práv k bytům i nebytovým prostorám (Zoulík "Byty a bydlení" Orbis, Praha – 1967, str. 51 a 69). Adler projevuje názor, že do obsahu užívacího práva je třeba zařadit i právo na zřízení rozhlasové a televizní antény k přijímacím rozhlasovým a televizním zařízením. Plank je ještě konkrétnější, neboť uvádí, že s užíváním společných prostor souvisí i možnost zřídit si na střeše domu. popřípadě i na jiném vhodném místě televizní nebo rozhlasovou anténu s tím, že občanský zákoník opravňuje uživatele zřídit si takovouto anténu v rámci jeho práva užívání společných prostor v domě. V této souvislosti správně zdůrazňuje, že je otázkou, potřebuje-li k tomu osobní uživatel výslovný souhlas organizace nebo ne, neboť občanský zákoník tuto otázku přímo neřeší. Dospívá k závěru, že pokud smlouva o odevzdání a převzetí bytu ani domovní

řád neobsahují ustanovení, podle něhož si může osobní uživatel zřídit anténu jen se souhlasem organizace, je osobní uživatel již přímo ze zákona oprávněn zřídit si takovouto anténu. S tímto názorem však nelze souhlasit, neboť střecha, přístupová zařízení na tuto střechu a zařízení na ní nejsou společným prostorem a zařízením domu a nepatří proto do obsahu užívacího práva užívatele bytu. Nelze proto z obč. zákoníku vyvodiť nárok na zřízení antény na střeše domu, na přístupových zařízeních k nim nebo na zařízeních na střeše. Právo na zřízení antény je obsaženo v par. 17, odst. 5 zák. o telekomunikacích, v němž jsou konkretizovány podmínky pro stavbu antén. Mezi nimi je také uvedeno, že ke stavbě antény není třeba souhlasu vlastníka (uživatele) nemovitosti, že však je třeba "vlastníka (správce) nemovitosti o zamýšlené stav-bě antény včas vyrozumět". Vzhledem k tomu vyplývá tedy právo na zřízení antény i na střeše ze souběhu paralelních normativních úprav, obsažených zejména v příslušných ustanoveních obč. zákoníku, zákona o telekomunikacích a v příslušných technických nor-mách. Obě normy, tj. obč. zákoník a zákon o telekomunikacích, který komplexně upravuje všechny zásadní otázky v oborů telekomunikací, upravují společenské vztahy v rámci své oblasti, a tak se mohou v rámci jednotnosti právního řádu v konkrétní problematice prolinat.

Tyto důvody proto nedovolují uživateli, aby nejen bez vědomí, ale bez předchozí dohody se správcem (majitelem) domu zřídil venkovní anténu na střeše, na půdě nebo v jiné části domu, která netvoří součást jeho bytu.

Nové domovní řády vydané na základě zmocnění obsaženého v par. 167 obč. zákoníku určují způsob, jak lze vykonávat užívací právo nejen pokud jde o byty, ale zvláště pokud jde o společné prostory a zařízení domu, a to pod sankcemi vyslovenými v par. 160 ôbč. zákoníku a odpovědností za škodu, kterou by občan způsobil porušením právní povinnosti (par. 420 obč. zák.). Tyto domovní řády proto obsahují i výslovná ustanovení o nutnosti zmíněné dohody, pokud jde o zajištění bezpečného přístupu na střechu a bezpečného pobytu na střeše, popřípadě i odpovědnosti za škody vzniklé při zřizování a údržbě antény neodborným nebo vadným provedením, popř. vlivem nedostatečné údržby, neboť antény je třeba udržovat tak, aby trvale odpovíďaly bezpečnostním požaďavkům a aby zřízení antény nebylo zdrojem rušení.

Za těchto podmínek mohou být venkovní antény umístěny např. i na půdách pod krytinou nebo pod úrovní střechy. Tak např. platný domovní řád hl. m. Prahy v článku 1 v poslední větě odst. 6 výslovně stanoví, že zřizovat rozhlasové a televizní antény na střechách lze jen po projednání se správou domu a postupem s ní dohodnutým; domovní řád města Bratislavy váže zřízení antény na souhlas organizace a ten je podmíněn odborností vykonané práce (článek 10). Podle důvodové zprávy k pražskému domovnímu řádu není citovaným ustanovením domovního řádu dotčeno ustanovení par. 17 odst. 5 zák. č. 110/1964 Sb. o teleko-

munikacích. Ustanovením článku 1, odst. 6 pražského domovního řádu má být zabráněno, aby nedocházelo k poškozování střech, popřípadě zajištěno, aby správa domu mohla zjistit, kdo střechu poškodil.

Právo užívat byt vznikne teprve dohodou o odevzdání a převzetí bytu (par. 155 odst. 1 obč. zák.), takže uzavření této dohody je podmínkou vzniku právního poměru; ustanovení par. 155 odst. 2 obč. zák. stanoví, že o dohodě je třeba sepsat zápis, v němž musí být kromě jiných náležitostí uveden předmět a rozsah práva užívat byt včetně příslušenství; lze proto předpokládat, že předmětem dohody a obsahem zápisu je i projednání a postup při zřízení venkovní antény nejen na střechách, ale i ve společných prostorách domu (např. případné svolení správy domu, aby uživatel bytu použil vodovod na chodbě nebo odpadovou rouru, pokud jsou společné i pro jiné uživatele, k účelům zřízení antény). Bez dohody není uživatel bytu oprávněn použít ke zřízení venkovní antény jakoukoli část domu, která je mimo jeho byt.

Zákon neukládá, že dohoda o užívání bytu musí být uzavřena v písemné formě; stanoví jen, že o dohodě o odevzdání a převzetí bytu musí být sepsán zápis. I výpočet náležitostí, které má tento zápis obsahovat, je uváděn jen jako příklad, a proto lze doporučit, aby při sjednávání této dohody byla do-hodnuta i otázka zřízení antény.

Pokud by stav střechy nebo konstrukce krovu nedovolovaly z vážných technických důvodů zřídit venkovní anténu, nemůže správce (majitel) nemovitosti připustit zřízení antény. Pokud by ke zřízení antény bylo třeba udělat drobné úpravy, nemá uživatel vůči organizaci (majiteli domu) nárok, aby uvedla dům do takového stavu, aby bylo možné zřídit na něm venkovní anténu pro rozhlas nebo televizi a v tomto stavu jej svým nákladem udržovala. Nemůže však uživateli odepřít souhlas k tomu, aby potřebnou úpravu uskutečnil vlastním nákladem.

Poškodí-li zřizovatel antény při těchto úpravách jakoukoli část domu nebo jeho zařízení, stejně jako poškodí-li při instalaci antény např. vadnou střechu nebo komín apod., nestačí ke zbavení jeho zavinění tento vadný stav sám o sobě, neboť k exkulpaci by bylo nutné ještě prokázat, že zřizovatel provedl všechna ochranná opatření, jichž je třeba, aby bylo zamezeno úrazům osob a ohrožení majetku.

Uživatel bytu odpovídá za všechny škody, které vzniknou zřízením, udržováním, opravou, přemístěním nebo odstraněním antény včetně všech zaří-zení antény, pokud by škoda vznikla uživatelovým zaviněním. Dohodnou-li se účastníci jednání, odpovídá i za škody vzniklé neodvratitelnou náhodou.

Aby při zřizování, udržování a jakékoli jinė manipulaci s anténou nedošlo k nehodě, která by měla za následek úraz nebo poškození majetku, je třeba se před zahájením prací odpovědně přesvědčit, jsou-li prostory a přístupové prostředky (např. pomocné schody nebo žebřík z půdy na střechu, komínová lávka apod.) a místo, kdé má být anténa instalována, v řádném stavu.

Pokud by tomu tak nebylo, je třeba vyčkat se zamýšlenými pracemi až do sjednání nápravy. Par. 415 obč. zák. má v této souvislosti velký význam v tom, aby se při zřizování a udržování antény předcházelo hrozícím škodám a aby byla dodržována pravidla socialistického soužití.

V dohodě je také možné uplatnit nárok na závazek, že při zániku práva užívání bytu, popřípadě koncese, je uživatel bytu povinen anténu odstranit a uvést vše do původního stavu na vlastní náklady.

Pokud by mělo dojít k opravě střechy, krovu nebo jiné části domu, lze uživatele antény zavázat dohodou, že je povinen před zahájením prací na vlastní náklad a nebezpečí anténu odstranit a po skončení prací oprávněn ji znovu instalovat.

Práva a povinnosti v oblasti telekomunikační

Zákon o telekomunikacích č.110/1964 Sb. a prováděcí předpisy k němu upravují komplexně všechny zásadní otázky

z oboru telekomunikací.

Neustále vzrůstající úloha a význam rozhlasu i televize vyžaduje i jejich zvýšenou ochranu, zvláště když podle ustanovení par. 7 zák. o telekomunikacích není třeba k používání rozhlaso-vých a televizních přijímačů povolení. Vlastníkům, popřípadě uživatelům těch-

to přijímačů, se jen ukládá povinnost:

1. Ohlásit přijímače k evidenci u organizací spojů k tomu určených.

2. Řídit se podmínkami stanovenými v prováděcích předpisech.

3. Platit stanovené poplatky.

4. Uvést přijímač do stavu vylučujícího jeho další používání, jestliže jej vlastník (uživatel) odhlásí z evidence.

Podle par. 6 vyhl. č. 111/1964 Sb. ohlašují se přijímače k evidenci u pošty, v jejímž obvodu mají vlastníci (uživav jejiniz obvodu maji vlastini (uzva-telé) přijímačů bydliště nebo sídlo. Při odhlášení přijímače z evidence je třeba poště ohlásit, jaká opatření byla učiněna, aby bylo vyloučeno další, neoprávněné používání přijímače, popř. požádat poštu, aby na náklad vlastníka (uživatele) přijímač zapečetila.

Zákon o telekomunikacích √ par. 17 odst. 5 uvádí, že ke stavbě venkovních přijímacích antén - rozhlasových i televizních - není třeba stavební povolení ani souhlas vlastníka (uživatele) ne-

movitosti:

a) pokud jsou dodrženy technické normy, popřípadě jiné technické předpisy.

anténa nekřižuje pozemní komunikace nebo vedení:

c) umístí-li se anténa na téže nemovitosti, kde je rozhlasový nebo televizní přijímač. Není dovoleno zřizovat individuální

venkovní přijímací antény na objektech, kde již byla zřízena společná anténa vhodná pro požadovaný příjem. Stavební úřad při státním stavebním dohledu může nařídit přeložení nebo úpravu antén, které ohrožují stavební stav

nemovitosti nebo bezpečnost okolí, nebo které ruší jeho vzhled.

Vyhláška č. 95/1961 Sb. obsahuje mimo jiné podmínky odborné způsobilosti k provádění a řízení montáže a údržby antén. V par. 3 a 4 stanoví podmínky provádění a řízení montáží a udržovacích prací; v par. 9 uvádí, kdo smí samostatně provádět montáž a údržbu venkovních rozhlasových a televizních antén, v par. 13 stanoví,

které osoby mohou řídit montážní a udržovací práce na anténách; v par. 17 předpisuje, že řídit ucelenou mon-tážní nebo údržbovou činnost na anténách v podnicích (závodech), které provádějí jejich montáž nebo údržbu dodavatelským způsobem, mohou jen osoby, které kromě základní odborné způsobilosti podle par. 9 písm. a) mají ještě další praxi při montáži antén v trvání nejméně 18 měsíců a které svou odbornou způsobilost osvědčily úspěšným složením zkoušky podle par. 21 až 26.

Těmito ustanoveními má být po technické stránce zajištěno, že anténa musí být zřízena odborně se zachováním všech příslušných předpisů a bez poškození domu, popř. kterékoli jeho

části a příslušenství. Je samozřejmé, že zřízení antény i její udržování, přemístění nebo odstranění se děje na náklady uživatele.

Umístění antény

Po technické stránce je rozsah uživatelova oprávnění dostatečně upraven. Závažnější je nejedna otázka "netechnická", která zůstala při řešení dané problematiky nevyřešena. Jedním z těchto problémů je umístění antény na domě, které způsobuje mnoho nedorozumění

Podrobnější předpisy obsahuje ČSN 34 2820 v par. 28—219. Zvláštní pozornost vyžaduje ustanovení pod písm. e),

jímž se ukládá, že:

a) zřízení antény nesmí znesnadňovat

přístup ke kominům,

nesmí překážet při čištění komínů; tím je zajištěno provádění ustano-vení par. 3 odst. 1 lit. a) vyhl. č. 159/1964 Ú. I. o čištění komínů, podle něhož je vlastník (správce) objektu povinen zajistit bezpečné a úspěšné vykonávání kominických prací zejména tím, že umožní pracovníkům kominického podniku a jeho dozorčím orgánům volný a bezpečný přístup ke komínům a jejich čisticím zařízením, jakož i k topeništi;

 c) jakkoli narušovat provoz a údržbu ostatních zařízení; proto např. podle par. 7 odst. 1 rozhlasového řádu (ve znění vyhl. min. spojů č. 85/1964 Ú. l.) antény přijímačů a přípojná ve-dení reprodukčních zařízení musí být od jiných telekomunikačních zařízení vzďáléna a oddělena tak, aby nepůsobila na tato telekomunikační zařízení rušivě, tj. antény nesmějí být ani v doteku, ani v bezprostřední blízkosti s telekomunikačním zařízením umístěným na domě a nesmějí rušit jeho provoz (vedení a podpěry telefonní, rozhlasu po drátě, časové a požární služby). Závažnějších pochybností ani námi-

tek nebývá, zřizuje-li se venkovní anténa před oknem uživatelova bytu, na balkóně nebo na terase při jeho bytu,

pokud jsou jeho součástí.

Společné prostory v domě lze po-užívat jen k účelům, pro které jsou-určeny. Nesmějí se zabírat k osobním účelům, zastavovat apod. Pokud některý ze společných prostorů, jak je uvádějí domovní řády, není určen také k tomu, aby se v něm mohly zřizovat antény, nesmějí se v něm antény zřizovat. Proto se antény převážně zřizují na střechách domů. Střechy však nejsou a nemohou být považovány za tzv. společné prostory. Přístup na šikmou střechu vede pravidelně přes půdu, na terasovitou střechu po různých stoupačkách, a nebývá komunikačně tak vybaven jako společné prostory v domě. Přístup na střechu bývá vyhrazen téměř výhradně osobám pečujícím o údržbu konstrukcí tam umístěných, tj. krytiny, komínů apod., nebo orgánům správy domu a úředním osobám.

Komunikační spoje na půdě, např. schody z půdy na tzv. podstřeší nebo na střechu musí být stále volné, stejně jako prostor kolem nich. Proto smějí uživatelé bytů používat půdu k sušení prádla jen na místě k tomu určeném. Z tohoto prostoru je vyloučen především prostor, něhož vedou komunikační spoje půdy na střechu, popř. podstřeší, přiměřený prostor kolem nich. Společným prostorem na půdě je proto pro uživatele bytů v domě jen půdní prostor, který je přístupný přímo z posledních podlaží, s vyloučením prostoru, na němž je vybudováno spojovací schodiště z pů-dy na střechu. Tyto schody mají charakter pomocného nebo podružného schodištė, aby umožnily přístup na střechu oprávněným osobám při plnění pracovního nebo úředního výkonu.

Par. 17 odst. 5 zák. o telekomunikacích ukládá povinnost, že "vlastníka (správce) nemovitosti je třeba o zamýšlené stavbě antény včas vyrozumět", a to bez jakéhokoli omezení, zejména i pokud jde o umístění antény. Tato bezpodmínečná povinnost je uložena zřejmě proto, aby se vlastník (správce) nemovitosti mohl důvodně bránit zřízení antény buďto vůbec, nebo jejímu umístění, pokud by k tomu byly oprávněné důvody. V této souvislosti je důležité citované ustanovení par. 28—219 ČSN 34 2820, obsahující předpisy pro antény (tato norma je závazná a platí od 1. 8. 1963). Nemalý význam pro všechny druhy antén, tj. i pro přijímací rozhlasové a televizní antény, mají ustanovení uvedená pod body 86 až 90 v ČSN 34 1390 "Předpisy pro hromosvody"

Z hlediska odpovědnosti za škodu je důležité ustanovení par. 28 202 ČSN 2820, podle něhož uživatel (provozo-vatel) antény je povinen pečovat o pravidelnou a včasnou revizi antény podle ustanovení tímto předpisem přede-psaným. Zvláště je třeba upozornit na to, že uživatel (provozovatel) antény je povinen prokázat se záznamem o revizi antény kontrolním orgánům i majiteli nebo správci budovy. Pokud není pro některé antény zvláštní ustanovení, musí být venkovní antény prohlédnuty alespoň jednou za pět let oprávněným závodem.

Předpisy pro omezení rušení radiového příjmu nežádoucí vysokofrekvenční energií obsahuje ČSN 34 2850, která je normou závaznou a platí od 1.6. 1961.

Společné antény

Usnesením vlády ze dne 13. 6. 1962 č. 514 o zajištění společných televizních a rozhlasových antén v bytových domech a ve veřejných budovách a usnesením vlády ze dne 21. 8. 1965 č. 727 byly stanoveny hlavní zásady pro zřizování společných televizních a rozhlasových antén a jejich rozvody. Tato usnesení provádějí Směrnice Ústřední správy spojů o výkonu státního dozoru nad dodržováním technických norem a technických podmínek při výstavbě a provozu společných televizních a rozhlasových antén ze dne 17. 6. 1965. Předpisy pro společné televizní a rozhlasové antény a jejich rozvody obsahuje ČSN 34 2830, platná od 1. 10. 1965.

Vlastnosti a způsoby měření televizních přijímacích antén stanoví závazná norma ČSN 36 7210, která platí od 1. 1. 1961. Článek 16 ČSN 34 2830 stanoví, že v zásadě musí společný rozvod umožňovat všem účastníkům příjem rozhlasových a televizních stanic, které je možné v místě výstavby přijímat na samostatnou (referenční) anténu, a to

v kvalitě odpovidající příjmu na referenční anténů.

Stejně jako právo na zřízení rozhlasové a televizní antény je součástí práva užívat byt a společné prostory, je třeba do tohoto práva zahrnout i nárok na účastnickou zásuvku společné přijímací televizní a rozhlasové antény uživatele

Obraz sa pohybuje

V AR-12/69 na strane 442 som čítal popisovanú poruchu na televízore pod nadpisom "Obraz sa pohybuje". Jedná nadpisom "Obraz sa pomybuje". Jedna sa o taký prípad, kde je pre snímko-vú synchronizáciu použitá elektrónka PCL85. Tam bol popísaný prípad, kedy výmena elektrónky nepomôže a je nutné hľadať chybu v obvode elektrónky, čiže v poškodených súčiastkach v obvode tejto elektrónky. U televízorov našej výroby je táto porucha zriedkavá.

Na televízoroch našej výroby typu Oliver, Miriam, Dajana, Marcela, Blankyt, Oravan 128 až 322 sa vyskytuje veľmi často porucha "utekanie obrazu" práve z dôvodu chybnej elektrónky

PCL85.

Na uvedených prijímačoch sa občas stáva, že po nejakom čase prevádzky začne sa obraz pohybovať, obyčajne smerom dole. Nastavovacím prvkom na zadnej strane televízora (potenciometrom P_{41}) sa pohyb obrazu nedá zastaviť, i keď je tento potenciometer až v krajnej polohe. Niekedy sa utekanie dá zastaviť iba na krátky čas. Poruchu možno odstrániť výmenou elektrónky PCL85 za novú. Po čase však možno znova zbadať aj pri vymenenej elektrónke náchylnosť k utekaniu obrazu. Mám dlhý čas overený pomerne jednoduchý spôsob odstránenia tejto nepríjemnej poruchy.

Aj elektrónku spôsobujúcu utekanie obrazu možno v televízore ďalej používať, keď ju prispôsobíme novým pod-mienkam. Keďže kmitočet snímkového generátora je výslednicou časovej konstanty obvodu RC, je treba v tomto obvode urobiť zmenu. V obvode mriežky sú zapojené C_{323} (22 nF), dvojica odporov R_{333} (0,15 lebo 0,2 M Ω) a potenciometer P_{41} . Chybu by bolo možna né napraviť aj zmenou odporu R_{333} . Jednoduchšie je však urobiť zmenu kapacity kondenzátora C_{333} (22 nF), ku ktorému paralelne pripojíme druhý kondenzátor o rovnakej kapacite. Tým sa zväčší kapacita kondenzátora natoľko, že sa vykompenzuje účinok chybnej elektrónky a obraz sa prestane pohybovať. Možno tiež pôvodný kondenzátor C₃₃₃ vymeniť za jeden kondenzátor o kapacitě do 47 nF. Kondenzátor o kapacite asi 33 nF umožní takú stabilitu, že pri zasunutí novej i starej elek-

trónky sa obraz nepohybuje. Stará elektrónka, ktorá zapríčiňovala "utekanie obrazu", je ďalej použiteľná.

Navrhovaná úprava bola vyskúšaná na uvedených televízoroch a to po dlhú

dobu s naprostou spoľahlivosťou. Ak by sa v nejakom nepredvídanom prípade po zasunutí novej elektrónky pri zväčšenej kapacite javila znova nestabilita obrazu, je možné pridaný kon-denzátor odpojiť a ponechať zapojený len pôvodný kondenzátor C333. Toto sa však vôbec nestalo. Pri pridaní kondenzátora 22 až 33 nF nebolo treba pri novej lebo starej elektrónke viacej robiť žiadné zásahy. Funkcia prijímača sa nezmenila a ani po roku prevádzky s upraveným prijímačom nebolo badať ani sebemenšiu náklonnosť k utekaniu obrazu či k inej poruche. Pevne verim, že táto úprava mnohým poslúži a nebudú mať viacej starosti s elektrónkou PCL85.

Obrázok ukazuje kondenzátor, ktorého kapacitu je treba pozmeniť.

Ján Zuzula

Dozvuk

V AR 11/68 byl popis dobrého, na možnosti mnohých amatérů však těžko

Všech těchto problémů jsem se snadno zbavil použitím feritových jader E (na odrázku).

Obroušení krajních sloupků na brusce nedělá potíže. Střední sloupky jsou sle-peny. Vinout lze před i po slepení. Sní-mač splní většinu požadavků. Vybudi jej stačí i Doris. Sám jej mám vestavěn v elektronických varhanách a budím jej polovinou elektronky ECC82, pracující ve třídě A s výstupním transformátorem. Také magnety nemají v mém případě středový otvor a nejsou přesně válcového tvaru. K jejich výrobě jsem použil různé feritové magnety a tvar upravil broušením. Dodatečně jsem je pomocí nabitého kondenzátoru příčně zmagnetizoval, abych dosáhl zlepšení účinnosti.

Závěs je z pásku bronzové fólie o šířce 0,6 až 0,8 mm. Tímto páskem je magnet podélně opásán a celek je natřen rychlo-schnoucím lakem. Téměř rok provozu dokazuje schopnost celého zařízení. Pružiny a kryt jsem zhotovil podle původ-

ního článku v AR 11/68.

Karel Oulehla

4 (amatérské! VAVI) (H) 127

Informace o nejnovějších mikrofonech z minulého čísla AR doplňujeme dnes údaji některých mikrofonů starší výroby, které jsou běžně k dostání.

Krystalový mikrofon AMK102

Použití. – Vhodný pro přenos hudby a zpěvu. Připojuje se na vstup zesilovače s velkou impedancí. K mikrofonu je nutno použít mezispojku Tesla 510 106—510 109 (rozdílná délka šňůry; není příslušenstvím mikrofonu), čímž se vytvoří spojovací článek mezi mikrofoným stojanem a mikrofonem. krofonním stojanem a mikrofonem.

Mikroson nelze doporučit k použití ve ztížených podmínkách, neboť se při

nich zmenšuje jeho účinnost.

Provedení. – Mikrofon je v kovovém pouzdru s krystalovou mikrofonní vložkou. K upevnění mikrofonu slouží nástavec, řešený jako konektorová zástrčka.

Technické údaje

Mikrofon pracuje spolehlivě v rozmezí teplot od -10 °C do +30 °C; při vyšších teplotách (tj. např. na slunci) se jeho citlivost zmenšuje. Střední citlivost: min. 1,2 mV/μbar.

Kmitočtový rozsah: 100 až 8 000 Hz, 100 až 1 000 Hz ±5 dB; 1 000 až 8 000 Hz s převýšením maximálně 25 dB.

Směrová charakteristika: kulová. Cena: Kčs 80,-...

Stolní dynamický mikrofon AMD101

Použití. - Tento typ lze použít k magnetofonům, popřípadě zesilovacím zařízením se vstupní impedancí maximálně 100 kΩ a minimální citlivostí 3 mV. K mikrofonu nelze použít prodlužovací šňůru.

Provedení. - Mikrofon má vestavěný. transformátor, jenž je řešen tak, aby omezoval vliv vnějších střídavých ma-gnetických poli. Odklopný stojánek je součástí mikrofonu.

Technické údaje -

Střední citlivost: min. 3 mV/µbar. Kmitočtový rozsah: 100 až 12 000 Hz v pásmu 12 dB. Impedance mikrofonu: 100 kΩ. Směrová charakteristika: kulová. Cena: Kčs 200,-.

Dynamický mikrofon AMD102

- Dynamický mikrofon AMD102 a mikrofonní transformátor ATM103 tvoří soupravu vhodnou pro připojení k magnetofonům nebo k zesilovačům. Je vhodný pro přenos řeči i hudby.

Provedení. - Mikrofon AMD102 z plastické hmoty pastelové barvy. Při-pojovací šňůra délky 2 m je ukončena miniaturni zástrčkou. K mikrofonu je pohyblivě upevněn držák se závitem

Mikrofonní transformátor ATM103 je astatický a jeho konstrukce omezuje vliv vnějších střídavých magnetických polí. Kryt transformátoru je z plastické hmoty pastelové barvy. Na výstup transformátoru je připojena 0,5 m dlouhá stíněná šňúra, ukončená miniaturní zástrčkou. Vstup je vyveden na miniaturní zásuvku. Pro připojení mikrofonu k transformátoru lze použit prodlužovací šňůru o maximální délce 100 m.

Technické údaje

Mikrofon

Střední citlivost: 150 µV/µbar.

Kmitočiový rozsah: 100 až 12 000 Hz v pásmu 12 dB.

Impedance mikrofonu: 200 Ω . Směrová charakteristika: kulová.

Transformátor Kmitočtový rozsah: 100 až 10 000 Hz v pásmu 3 dB.

Převod transformátoru: 1:20.

Výstupní impedance k připojení mikrofonu: max. 200 Ω.

Cena: Kčs 250,— (mikrofon s transformátorem).

Stolní dynamický mikrofon AMD902

Použití. - Je určen k přenosu hudby a řeči. Používá se jako příslušenství magnetofonů nebo zesilovačů. Připojuje se buď přímo, nebo přes převodní transformátor. Je možno použít prodlužovací šňůru maximální délky 100 m.

Provedení. - Kryt mikrofonu je z plastické hmoty pastelové barvy. Mikrofon má propojovací šňůru délky 2 m, ukončenou mikrofonní zástrčkou. Je opatřen sklopným stojánkem.

Technické údaje

Střední citlivost: 150 µV/µbar. Kmitočtový rozsah: 100 až 12 000 Hz v pásmu 12 dB.

Impedance mikrofonu: 200 Ω . Směrová charakteristika: kulová.

Cena: Kčs 100,--.

Mikrofonní transformátor ATM101

Použití. - Vhodný jako stavební prvek k vestavění do zesilovačů k přizpůsobení výstupní impedance dynamického mikrofonu ke vstupní impedanci zesilo-

Provedení. - Výstupní transformátor je astatický. Je uložen ve dvojitém stínicím krytu tvaru válce, čímž je omezen vliv vnějších střídavých magnetických polí. Vstup a výstup je vyveden na spojovací trubkový nýt a označen barevně. Konce primárního a sekundárního vinutí jsou spojeny se stínicím krytem a uzemněny.

Technické údaje

Převodní transformátor pracuje spolehlivě v rozmezí teplot od -20 až do +50 °C a při relativní vlhkosti nejvýše 90 %.

Kmitočtový rozsah: 100 až 10 000 Hz

v pásmu 3 dB.

Převod: 1:20. Výstupní impedance mikrofonu: 200 Ω.

Cena: Kčs 66,-

A. Myslik, OKIAMY Přijímač s přímým směšováním

V loňském AR 7/69 bylo uveřejněno schéma jednoduchého přijímače s přímým směšováním, převzaté z amerického časopisu Old man; později je převzaly téměř všechny západoevropské radio-amatérské časopisy. Zapojení se nám tenkrát v redakci velmi líbilo a rozhodli jsme se je vy-zkoušet. Protože se dá postavit z modulů Stavebnice mladého radioamatéra, postavil jsem tento přijímač a s jeho vlastnostmi jsem velmi spokojen. Předkládám proto návod ke stavbě přijímače s přímym směšováním pro pásmo 1,8 MHz; je samozřejmě možná a byla již i vyzkoušena úprava pro ostatní amatérská pásma.

Princip a funkce

Přijímač je svým zapojením něco mezi superhetem a zpětnovazebním audionem. Jak jistě víte, zpětnovazební audion vytváří slyšitelný zázněj přijimaného telegrafního signálu tím, že sám kmitá na kmitočtu shodném s kmitočtem přijímaným. Zpětná vazba, která audion rozkmitává, musí být citlivě udržována na takové velikosti, kdy se stupeň právě rozkmitá; její velikost má totiž také podstatný vliv na zesílení a tím i citlivost audionu. V superhetu se směšuje přijímaný signál se signálem laděného oscilátoru tak, aby jejich rozdíl (součet) byl trvale stejný; na tento rozdíl je pak pevně naladěn tzv. mezifrekvenční zesilovač. Náš přijímač s přímým směšováním má také laděný oscilátor; jeho kmitočet se směšuje s přijímaným signálem v balančním směšovači a rozdílový kmitočet leží v pásmu nízkofrekvenčních kmitočtů. Není proto třeba dalšího laděného zesilovače a stačí obvyklý odporově vázaný nízkofrekvenční zesilovač.

Celkové schéma přijímače je na obr. 1. Ze vstupního laděného obvodu se signál přivádí vazebním vinutím L_4 do balančního směšovače. Tam se smísí

s kmitočtem oscilátoru, který se přivádí vazebním vinutím L_7 přímo z emitoru oscilátoru. Rozdílový nízkofrekvenční signál se odebírá ze středu cívky L6 a přivádí se na vstup nízkofrekvenčního předzesilovače s tranzistorem T₁. Mezi tento předzesilovač a další nízkofrekvenční zesilovač s integrovaným obvodem je zapojen regulátor hlasitosti P_1 . V kolektoru posledního tranzistoru integrovaného obvodu mohou být zapojena sluchátka; volil jsem ještě připojení koncového stupně pro hlasitý poslech na reproduktor, přičemž sluchátka s malou impedancí se zapojují do konektoru K na stejný výstup jako reproduktor. Při jejich připojení se reproduktor automaticky odpojí.

Balanční směšovač má několik výhod. Jednak jej není třeba nastavovat; použíje-li se vybraná čtveřice diod, potlačuje oba vstupní signály, které potom nemohou ovlivňovat pracovní body ná-

sledujících stupňů. Hlavní výhodou je odolnost proti křížové modulaci i proti zahlcení. Jeho charakteristika je lineární v širokém rozsahu. U přijímače s pásmem 3,5 MHz bylo možné poslouchat signály S5 asi 5 kHz vedle silné místní stanice S9 +30 dB.

K získání selektivity by bylo vhodné použít nějaký nízkofrekvenční filtr. Vhodná je jedině dolní propust, protože použití laděného nf filtru by způsobilo, že by se každá stanice objevila při ladění dvakrát – s rozdílem dvojnásobku kmitočtu, na který by byl nf filtr naladěn. Nejjednodušším řešením je připojení kondenzátoru o kapacitě asi 22 až

Obr. 3. Zapojení modulu MCZ3

68 nF paralelně ke sluchátkům. Potlačí se tím vyšší kmitočty, popřípadě lze i doladit vinutí sluchátek do rezonance (a smířit se s dvojím výskytem každé stanice).

Použité moduly a jejich zapojení

Přijímač je sestaven z modulů, které již byly ve Stavebnici mladého radio-amatéra popsány. Pokud jsou některé z nich zapojeny odlišně, bude to zdůrazněno.

Budeme-li postupovat od antény, je první modul MCZ3 (obr. 2). Je postaven na destičce Smaragd C46 a vzhledem k většímu počtu vinutí zapojen poněkud odlišně než MCZ2. Cívka L_2 tvoří spolu s kondenzátory C_1 , C_2 a C_0 laděný obvod pro pásmo 1,8 MHz.. Její indukčnost je asi 40 μ H; znamená to asi 80 závitů vf lanka, navinutých křížově na kostřičce o Ø 5 mm s feritovým jádrem. Vinutí L_1 a L_3 mají po 10 závitech lakovaného vodiče o Ø 0,1 mm (ani počet závitů, ani průměr vodiče nejsou kritické). Vývody cívky jsou do destičky Smaragd C46 připojeny podle obr. 3.

Modul MSM2A se liší od modulu MSM2 (AR 10/69) jen konstrukcí. O cívkách i diodách platí totéž, co bylo řečeno o modulu MSM2. Aby bylo možné modul zmenšit, byly cívky postaveny na výšku; to je jediná změna. Za-

pojení modulu MSM2A na nové destičce Smaragd D103 je na obr. 4.

Smaragd D103 je na obr. 4.

Modul MNF6 je zapojen bez úprav;
totéž platí i o modulech MNF1 a MNF2.

Modul MCO2 s cívkou oscilátoru nese kondenzátor C₁₅ a cívku L₈. Tato cívka má indukčnost 40 μH a je stejná jako cívka L₂ (je to podmínkou pro dosažení dobrého souběhu).

V modulu MVOI jsou některé součástky vynechány. Je to emitorový odpor (v původním zapojení označen R₃)

Obr. 4. Zapojení modulu MSM2A

4 Amatérské! All 119

Obr. 5. Způsob konstrukce přijímače

a kondenzátor C_3 . Naopak je přidán kolektorový odpor (mezi kolektor a kladný pól napájení); změnou jeho velikosti měníme kolektorové napětí tranzistoru T_4 a tím i velikost střídavého napětí, které se přivádí do balančního směšovače.

Modul MZD1 je osazen Zenerovou diodou 1NZ70 pro napětí 6 V; potřebný srážecí odpor je asi 180 Ω a elektrolytický kondenzátor zůstává 100 μ F (na 12 V).

Moduly jsou propojeny podle blokového schématu na obr. 2.

Mechanická konstrukce

Přijímač je opět vestavěn do univerzální skříňky, popsané v AR 7/69. Moduly. jsou upevněny na vyjímatelných rámečcích a jsou rozmístěny stejně jako na obr. 2.

Skříňku i s rámečky vyrábí radioklub Smaragd a můžete si o ni napsat na adresu RK Smaragd, poštovní schránka 10, Praha 10. Cena bude asi Kčs 50, a skříňku obdržíte na dobírku.

V přijímači je použit ladicí kondenzátor 2 × 50 pF, který vyrábí ZO Radio v Gottwaldově. Stojí Kčs 60,— a můžete si o něj napsat na ZO Radio, poštovní schránka 99, Gottwaldov 1.

Ladicí kondenzátor lze upevnit k rámečku různými způsoby. V jednom ze vzorků byl uchycen pásky z pocínovaného plechu, které byly připájeny k rámečku. Lze jej také přišroubovat pomocí úhelníků. Osvědčilo se i přilepení lepidlem Epoxy 1200.

Reproduktor o Ø 50 mm s impedancí 8 Ω je k přednímu panelu upevněn opět pomocí připájeného kousku plechu s otvorem pro kryt kmitací cívky.

Hřídel pro ladicí převod je z poškozeného miniaturního potenciometru a je pomocí malého úhelníku z pocínovaného plechu připájen k prvnímu rámečku tak, aby prošel příslušným otvorem v předním panelu. Na předním panelu je dále upevněn potenciometr k regulaci hlasitosti, ozdobná mřížka přes reproduktor a otvor pro stupnici. Zde se také otvírá pole vlastní fantazii; vyzkoušel jsem několik druhů stupnice a žádná se mi zatím nezdála ideální.

Na zadní stěně je zdířka pro anténu a konektor pro připojení sluchátek; zde je možné použít buďto doporučený konektor pro reproduktory (typ 6AF 28230), nebo malý konektor pro zástrčku typu "Jack".

Celá skříňka je polepena tapetou se vzorem dřeva DC-fix; přední panel světlou a zbytek ořechově hnědou.

Uvádění do chodu

Uvádění do chodu je poměrně jednoduché a nemělo by dělat obtíže ani méně zkušenému radioamatérovi. Začináme od nízkofrekvenčního zesilovače. Na vstup modulu MNF1 připojíme signál z nf generátoru a trimrem R₈ nastavíme maximální hlasitost. Potom připojíme nf signál na vstup modulu MNF6 a vyzkoušíme i jeho funkci.

Maximální hlasitosti (ještě bez zkreslení) bychom měli dosáhnout při vstupním napětí nf signálu asi 0,1 mV.

Nyní připojíme napájecí napětí na oscilátor a ví voltmetrem měříme střídavé vysokofrekvenční napětí na emitoru T_3 . Není-li tam žádné, nastavíme trimrem R_{15} takový pracovní bod, v němž bude tranzistor kmitat. Potom pomocí ocejchovaného přijímače pro pásmo asi 1,5 až 2,5 MHz zjistíme, na jakém kmitočtu oscilátor kmitá, a otáčením jádra v cívce L_8 doladíme oscilátor tak, aby při zavřeném ladicím kondenzátoru kmital asi na 1,800 MHz. Nakonec nastavíme vysokofrekvenční napětí na emitoru trimrem R_{13} asi na 0,2 V.

Na vstup přijímače (anténní zdířku) připojíme signál z vysokofrekvenčního generátoru a generátor naladíme na kmitočet 1 800 kHz. Ladicím kondenzátorem přijímače vyladíme zázněj tohoto signálu a jádro cívky L_2 nastavíme do polohy, kdy má přijímaný signál největší hlasitost.

Tím je přijímač naladěn a po připojení antény bychom měli (ve večerních hodinách) slyšet "ruch na pásmu". Neočekávejte od tohoto přijímače žádné divy. Je asi tak citlivý jako průměrný zpětnovazební audion; je však mnohem stabilnější, nezahlcuje se a jeho stavba je poměrně jednoduchá.

Bude-li větší počet zájemců, bude radioklub Smaragd vyrábět tyto přijímače pro pásma 1,8 nebo 3,5 MHz. Cena by se pohybovala kolem 450 Kčs. Kdo by měl zájem, může napsat na adresu poštovní schránka 10, Praha 10.

Ing. Aleš Novák

Zapojení skutečně jednoduchého expozimetru pro temnou komoru je nu obr. 1. Má celkem tři odpory, dva tranzistory, potenciometr, fotoodpor a indikační žárovku. Napájení obstarávají dvě ploché baterie zapojené v sérii.

Při velkém odporu R (ve tmě) je tranzistor T_1 uzavřen emitorovým předpětím, vytvořeným děličem R_2 , R_3 . Zmenší-li se odpor R tak, že napětí na bázi T_1 bude shodné s napětím na emitoru (přesněji bude asi o 0,3 V větší), otevře se tranzistor T_1 , spolu s ním i T_2 a žárovka Z se rozsvítí. Přibližně platí:

$$\frac{R}{P} = \frac{R_2}{R_3} \,.$$

Nároky na součástky nejsou velké. Fotoodpor vyhoví jakýkoli. Potenciometr P, $50 \,\mathrm{k}\Omega$, použijeme robustnější (nehodí se miniaturní). Odpory mohou být až asi o 30 % větší nebo menší. Žárovka je na 12 V/50 mA, ale může být také

6 V/50 mA. Pak je třeba do série s ní zapojit odpor 120 až 150 $\Omega/0,5$ W (ve schématu čárkovaně). Tranzistor T_1 je typu OC70 až OC77, GC507 až GC509, GC515 až 519 apod., jako T_2 vyhovi 101 až 104NU71, výborné (ale dražší) jsou křemíkové typy KF506 až 508. Použijeme-li typ 101 až 104NU71, bude vhodné připevnit na něj chladicí křidélko. T_1 má mít co nejmenší zbytkový proud. Je-li jeho zbytkový proud příliš velký, může způsobovat částečné otevírání tranzistoru T_2 , což se projeví trvalým žhnutím žárovky. I pak lze měřit, zapojíme-li do emitoru T_2 křemíkovou usměrňovací diodu, nejlépe KA501 nebo KY701 (obr. 2), nebo vytvoříme předpětí zvláštním článkem (obr. 3).

Použití přístroje je podobné jako u jiných expozimetrů. Nejdříve určíme

Obr. 2.

zkouškou nejvhodnější expoziční dobu (při středně hustém negativu a střední cloně), pak nastavíme potenciometrem P okamžik, kdy se právě začne rozsvě-covat žárovička. Tento stav je velmi přesně vymezen, při sebemenší změně clony se žárovička zcela rozsvítí nebo zcela zhasne. Dáme-li do přístroje jiný negativ, stačí clonu nastavit tak, aby se žárovička začala právě rozsvěcovat a tím je velmi přesně určen stejný osvit.

Umístění fotoodporu se nejlépe osvědčilo pod objektivem na odklopném červeném filtru u okraje tak, aby při malém pootočení byl fotoodpor stranou a filtr mohl plnit svoji původní funkci, při dalším pootočení je pak přímo pod objektivem fotoodpor. V této poloze –

vždy stejné – měříme. Odpadá tak zdlouhavé vyhledávání nejtmavších (nejsvětlejších) nebo středně krytých ploch. Intenzita osvětlení je zde poměrně velká, odpor fotoodporu malý (větší přesnost) a setrvačnost zanedba-telná (při malém osvětlení trvá až de-

sítky vteřin, než se hodnota ustálí). Indikace žárovkou je pro temnou komoru ideální; neunavuje, je přesná a velmi levná. I když je žárovka podžhavena, vydrží dlouhou dobu a její jas je i přes barevné krycí sklíčko dostatečný.

Mechanickou konstrukci úmyslně nepopisuji, protože zařízení je tak jednoduché, že si každý jistě navrhne uspořádání podle svých možností (třeba i na kousku kartónového papíru). Na stejném principu lze sestrojit i expozimetr pro exponování filmu, pak ovšem musíme ocejchovat potenciometr P.

Jubilejní 10 000. výkonovou triodu typu BR191B (ekvivalent americké 5762) vyrobila anglická firma English Electric Valve Co. Ltd. Jubilující elek-tronka pracuje v modulátoru americ-kého vysílače RCA typu BTA-10K, který je instalován v kanadské provincií Alberta. Je zajímavé sledovat historii výroby této elektronky. První kus byl vyroben v roce 1955; od té doby pracují v rozhlasových vysílačích ve všech světadílech. Vyznačují se velkou přesností ve výrobě, jsou velmi kvalitní a mají dlouhou životnost. Je to vzduchem chla-zená trioda se ztrátovým výkonem 3 kW, pracující s anodovým napětím 6,2 kV do kmitočtu 30 MHz a 3,2 kV do 220 MHz. Při provozu ve třídě C s uzemněnou mřížkou odevzdá výstupní výkon 5,5 kW na kmitočtu 110 MHz při telegrafním provozu.

Tranzistor s výkonem 85 W, proudem kolektoru max. 7 A, napětím kolektor-báze 500 V (při teplotě 100 °C) a mez-ním kmitočtem 10 MHz dodává MCP Electronics Ltd. Tranzistor je určen pro výkonové spinací obvody. Má dobu za-pnutí 0,5 µs, dobu vypnutí 1 µs, saturační napětí kolektor-emitor 1,75 V.

Sž

Advojnásovení voltmetru

Jan Hájek

Použijeme-li známou metodu ke zjištování vnitřního odporu ručkového mě-řidla [1] až [5] a uvědomíme-li si její podstatu, dojdeme k zajímavým výsledkům.

Zapojení, jímž zjišťujeme vnitřní odpor neznámého měřidla, je na obr. 1. Je to vlastně zdroj proudu takové velikosti, aby ručka měřidla ukazovala právě maximální výchylku.

Metoda je nezávislá na velikosti proudu, takže ani nemusíme vědět, jak je měřidlo citlivé. Stačí jen, aby ukázalo nějakou výchylku (většinou nastavujeme na maximum) a aby mělo lineární stupnici (nebo jinou možnost čtení dostatečně přesného dílu protékajícího

proudu – nejlépe poloviny).
Připojíme-li nyní spínačem S para-lelně k měřidlu proměnný odpor R, zmenší se výchylka ručky, neboť protékající proud se rozdělí do dvou větví v závislosti na jejich odporu. Proměnným odporem R nyní nastavíme poloviční výchylku ručky měřidla, takže měřidlem i odporem bude protékat stejný proud. Z rovnosti napětí na obou paralelně spojených větvích obvodu vyplývá rovnost odporu R a vnitřního odporu neznámého měřidla. Odpor R změříme a máme zjištěn vnitřní odpor měřidla.

Při praktické realizaci se zdroj proudu nahrazuje zdrojem napětí se sériově zananrazuje zurojem napen se senove za-pojeným odporem R_p , jímž se současně nastavuje maximální výchylka ručky měřidla (obr. 2). Čím větší je odpor R_p a čím více se tedy blížíme náhradou ke zdroji proudu, tím bude měření přesněiší.

Budeme-li se blíže zabývat tímto za-pojením, zjistíme, že při polovičním proudu protékajícím měřidlem je na něm také poloviční úbytek napětí, pro-tože vnitřní odpor se samozřejmě nemění. Abychom se opět dostali na původní maximální výchylku ručky měřidla, musíme napětí na něj přiložené zdvojná-sobit. Jinak řečeno: připojením paralelního odporu k systému měřidla zvětšíme napěťový rozsah voltmetru, neboť zapojení je vlastně obyčejným voltmetrem, kde R_p je předřadný odpor příslušného rozsahu (obr. 3).

Můžeme tedy připojením vhodného paralelního odporu zdvojnásobit roz-sahy již hotového i vícerozsahového

voltmetru. Musíme si však při měření uvědomit, že voltmetr bude mít dvoj-násobnou spotřebu a také zjistit, jsou-li předřadné odpory všech rozsahů voltmetru dimenzovány na takový výkon. Při amatérské konstrukci nového volt-

ampérmetru můžeme samozřejmě paralelní odpor využít jako bočník pro proudové rozsahy. Připojujeme jej kontaktem S, vázaným např. na zasunutí

banánku do měřicí zdířky jen při měření na proudových rozsazích, nebo při měření se zdvojnásobenými napěťovými rozsahy. Proti trvale připojenému proudovému bočníku, který zvětšuje spo-třebu, je zde výhodou malá spotřeba samotného voltmetru, daná použítým měřidlem.

Ukázka zapojení jednoduchého kombinovaného voltampérmetru se čtyřmi napěťovými a třemi proudovými rozsahy je na obr. 4. Sepnutím kontaktu S se všechny napěťové rozsahy zdvojnásobí, takže máme vlastně napěťových rozsahů osm. Výpočet předřadných odporů a bočníků při návrhu konkrétního měřicího přístroje najdeme v literatuře [6], [7] a [8].

Zapojení s možností jednoduchého zdvojnásobení napěťových rozsahů platí samozřejmě jen pro stejnosměrné rozsahy a pro vyšší rozsahy střídavé. Při nízkých střídavých rozsazích nastává vlivem nelinearity usměrňovače změna průběhu stupnice, takže ji nelze použít pro více rozsahů a je třeba mít pro každý

rozsah samostatnou stupnici.

Literatura

- AR 12/52, str. 279. AR 5/61, str. 127. AR 8/61, str. 237. AR 10/63, str. 292. RK 4/65, str. 30. RK 2/55, str. 70. RK 8/56.

- [6]
- RK 3/65.

PRIJÍMAČ DIAMANT

Družstvo Mechanika Teplice vyrábí v současné době pro obchodní dům Magnet dětský přijímač Diamant. Protože je řešen poměrně zajímavě a zapojení je jednoduché, přinášíme jeho schéma a stručný popis činnosti.

Technické údaje

Kmitočtový rozsah: střední vlny (525 až 1 605 kHz)

Mezifrekvence: 452 kHz. Citlivost: 1 mV/m. Výstupní nf výkon: 30 mW. Reproduktor: impedance 8 Ω. Napájení: 4,5 V (plochá baterie).

Zapojení

Tranzistor T_1 v obvyklém zapojení pracuje jako oscilátor-směšovač, vstupní obvod je s prvním mf zesilovačem vázán pásmovou propustí MF1. Vazba mf tranzistorů T_2 a T_3 je kapacitní. Zesílený signál po detekci přichází na první stupeň nf zesilovače s můstkovou stabi-

lizací. Koncový tranzistor T_5 pracuje ve třídě A. Kondenzátorem C_{17} je zavedena zpětná vazba, která zabraňuje zakmitávání koncového stupně a současně omezuje přenos vyšších kmitočtů.

Konstrukce

Konstrukce přijímače je co nejjednodušší. Výstupní transformátor a ladicí kondenzátor jsou přilepeny k destičce Alkaprénem. Feritová anténa je uchycena v polyetylenovém držáku, který je k destičce přinýtován. Reproduktor i deska se součástkami jsou ve skříňce přilepeny. Prostor pro baterii je vylepen molitanem.

Kondenzátory jsou keramické na 40 V nebo elektrolytické na 6 (popř. 10) V, ladicí kondenzátor $C_{\rm lad}$ je typu Tesla WN 70407 (150 + 64 pF); dolaďovací kondenzátory $C_{\rm l}$ a $C_{\rm d}$ jsou součástí $C_{\rm lad}$, regulátor hlasitosti je knoflikový potenciometr z NDR. Výstupní transformátor je na feritovém jádře 5×5 mm. Cívka je vinuta samonosně; primární vinutí má asi 550 z, sekundární 100 z. Mezifrekvence jsou vinuty na feritových miniaturních jádrech drátem o \varnothing 0,08 mm CuP. $L_{\rm l}$ má 180 z s odbočkou na 60. z, $L_{\rm 2}$ má 180 z, $L_{\rm 3}$ – 20 z, $L_{\rm 4}$ má 180 z s odbočkou na 60. z, odbočkou na 60. z a $L_{\rm 5}$ má 40 z. Oscilátor je navinut na stejném jádru; oscilační cívka má 130 z s odbočkou na 5. z, vazební vinutí má 15 z. Feritová anténa má \varnothing 8 mm a délku 140 mm. Cívka je vinuta na papírové kostře drátem o \varnothing 0,26 mm CuP, má 130 z a odbočku na 14. závitu.

Přijímač je určen pro děti. Proto je jeho konstrukce z finančních důvodů co nejjednodušší. Citlivost a selektivita jsou však vyhovující. V průměru předčí dříve vyráběné přijímače T60 a Doris, výstupní výkon je však o něco menší. Reproduktory v přijímači Diamant nejsou jakostní; při jejich výměně např. za ARZ081 se reprodukce přijímače zlepaší. V některých případech však výměně není nutná.

Schéma přijímače Diamant

MINIATURNÍ elektronický BUSK

Dr. L. Kellner

Když se mi v roce 1955 podařilo postavit podle návodu J. T. Hyana první elektronický blesk, vážil "pouhých" šest kilogramů a jeho směrné číslo se dalo spočítat na prstech jedné ruky. Od té doby jsem náklonnost k bleskům neztratil a v poslední době, když jsem sledoval v zahraničních prospektech, jak se neustále zmenšuje objem i váha blesků, uzrálo ve mně rozhodnutí zkusit postavit skutečně miniaturní blesk. To jsem ovšem netušil, jak trnitá bude cesta za součástkami, protože tuzemské dostupné součástky jsou s požadavkem miniaturizace ve značném rozporu.

Nebudu podrobně rozvádět, jak jsem kterou součástku získal. Faktem je, že výsledkem úmorné snahy je blesk, jehož rozměry jsou $103 \times 100 \times 45$ mm a váha 320 g bez zdrojů. Nepochybuji o tom, že se mnoha čtenářům bude líbit. Bohužel je však musím zklamat konstatováním, že se jim sotva podaří jej postavit, protože doslova každá součástka pochází z jiného státu. Budiž tedy tato

konstrukce jen podnětem k experimentování, dokladem toho, co by bylo možné, kdyby... a našim výrobním závodům malou výčitkou a důvodem k zamyšlení.

Prvním problémem při stavbě byl zdroj. Protože jsem chtěl dosáhnout krátké nabíjecí doby (10 až 12 vteřin), bylo nutné, aby byl odběr zpočátku až 3 A. Takový "nápor" naše knoflíkové akumulátory NiCd nevydržely; suché články nepřicházely v úvahu pro velký objem. Nakonec jsem použil zapouzdřené miniaturní olověné akumulátory z NDR, které se kdysi prodávaly i u nás.

Mají rozměry $33 \times 41 \times 13$ mm a váhu 40 g. Jejich kapacita je 0,5 Ah, vydrží velký odběr, dají se několikrát i regenerovat nabíjecím proudem 10 až 15 mA a stojí jen 0,90 marky. Napětí čtyř těchto akumulátorů v sérii se při velkém odběru zmenší na 4 až 5 V.

Potíže byly i s volbou tranzistorů. Výkonových tranzistorů máme dost – bohužel ani jeden z těch, které jsem zkoušel, nechtěl kmitat na vyšších kmitočtech jako měnič. Nakonec se mi podařilo získat KU605, který sice nebyl právě první jakosti, zato však ochotně kmital. Transformátorů jsem navinul a vyzkoušel mnoho (na hrníčkových jádrech i jádrech E), ani jedno jádro však nesneslo větší sycení a při zvyšování kmitočtu účinnost měniče klesla na nulu. Až konečně jsem z nějakého rozebra-

Obr. 1. Kmitočet měniče

132 Amatérské! ADI 19 4/70

Obr. 2. Odběr ze zdroje

ného přístroje získal feritové hrníčkové jádro zahraničního původu (pravděpodobně výrobek Telefunken) o průměru 25 mm a po jeho zapojení jsem se ne-stačil divit. Kmitočet měniče dosáhl hned v okamžiku zapojení zdroje 10 kHz a po čtyřech vteřinách se zvýšil na 40 kHz (obr. 1). Dosažením výsokého kmitočtu se zlepšila účinnost měniče, která je 50 až 60 % (obr. 2). Po jedno-duchém usměrnění výstupního napětí z měniče křemíkovou diodou KY705 se získaným stejnosměrným napětím nabije kondenzátor, který je výrobkem firmy ITT Semiconductors (tyto kondenzátory jsou montovány do síťových blesků sovětské výroby). Má 800 µF na 300 až 310 V, Ø 40 mm a výšku 60 mm. Nabíjení kondenzátoru trvá s dobrými akumulátory 9 až 12 vteřin. Energie blesku je

$$U^2 \frac{C}{2} = 0.3^2.400 = 36 \text{ Ws [kW, } \mu\text{F; Ws]}.$$

I když po nabití kondenzátoru se odběr z akumulátorů zmenší asi na 1 A, použil jsem jednoduchou automatiku (obr. 3). Z děliče R_3 , R_4 , R_5 (obr. 3) se odebírá napětí pro zapálení doutnavky Dt, která má mít minimální rozdíl mezi zápalným a zhášecím napětím. Proud 20 až 50 μA, který teče doutnavkou, otevírá T2 a T3, které jsou v Darlingtonově zapojení. Přes T3 dostává báze T1 záporné napětí, výkonový tranzistor přestává kmitat a odběr proudu se zmenší asi na 20 až 30 mA. Odporový trimr R₄ nastavíme tak, aby doutnavka zapálila, popř. svítila tehdy, je-li na kondenzátoru napětí 300 V. Jakmile se toto napětí zmenší o několik voltů, doutnavka sice ještě svítí, nepropouští však již tolik proudu, aby T_2 a T_3 mohly blokovat T_1 , který znovu začíná kmitat a za 2 až 5 vteřin se opět kondenzátor nabije na 300 V. Odběr je v této fázi již velmi malý. Doba zapínání a vypínání automatiky závisí na jakosti kondenzátoru; u použitého typu se napětí zmenší o 10 V asi za 30 vteřin, u našich kondenzátorů to

bývá 5 až 10 vteřin. Velmi důležitý je správný výběr odporu R_1 ; na jeho velikosti závisí nasazení i vysazení kmitů T_1 . Je-li odpor velký, automatika velmi ochotně zastaví kmitání, T_1 však špatně začíná znovu kmitat a opačně. Je vhodné nahradit R_1 trimrem, nastavit optimální odpor a pak jej vyměnit za pevný odpor.

Druhá část blesku nemá žádné zvláštnosti. Oba póly synchronní zástrčky jsou oddělený od napětí na kondenzátoru velkými odpory, protože blesk má i síťové napájení. K tomu slouží miniaturní přepínač Př, který v jedné poloze zapíná baterii a připojí usměrňovač k vinutí transformátoru, ve druhé poloze vypne baterii, odpojí usměrňovač od transformátoru a přes odpor R2 připojí síťový přívod k usměrňovači. Odpor R2 je třeba vyzkoušet tak, aby nabíjení kondenzátoru nebylo kratší než 12 až 15 vteřin a napětí na kondenzátoru nesmí ani po delším čase překročit 300 V. Tady však pozor – pracujeme s napětím ze sítě, a proto nezapomeňme na opatrnost! Kromě toho musíme při síťovém napájení vypínat blesk odpojením sítě, nikoli přepnutím přepínače Př.

Výbojka je výrobkem firmy Pressler (NDR), typ 82-30. Je to trubička o Ø 5 mm a délce 50 mm. Reflektor jsem zhotovil ve tvaru parabolického korýtka, které má oba konce zkosené (rozměry jsou 30 × 50 mm). Vystřihl jsem jeho tvar z tenkého mosazného plechu podle předem zhotovené dřevěné formy, na ní jsem reflektor spájel cínem a nakonec napařil hliníkem ve vakuu. Lepší by bylo pájet tvrdou pájkou, aby před napařením mohl být reflektor nastříkán speciálním podkladovým lakem, který se suší při vyšší teplotě, než jakou cín snese. Před reflektorem je lisovaná destička s rozptylovými ploškami z organického skla o rozměrech 30 × 50 mm je to pozůstatek z poškozeného předního krytu velkého reflektoru od blesku Metz.

Když se mi podařilo uvést blesk do provozu ve "vrabčím hnízdě", nastala neméně těžká práce: rozmístit součástky do co nejmenšího prostoru. Úsilí o získání úhledné a přitom vhodné krabice vyznělo naprázdno, proto jsem si musel krabici zhotovit "na míru" z polystyrénových desek tloušťky 1,5 mm; jsou slepeny lepidlem na organické sklo. Součástky jsou v krabici velmi stěsnány; kondenzátor a dioda jsou izolovány tenkou samolepicí páskou. Výbojková část je na plošných spojích a na tuto desku je přilepen i reflektor. Na přední části

Obr. 3. Celkové schéma blesku. Údaje transformátorů: Tr_1 – hrníčkové feritové jádro o \varnothing 25 mm. L_1 – 10 z drátu o \varnothing 0,8 mm CuP, L_2 – 12 z drátu o \varnothing 0,4 mm CuP, L_3 – 800 z drátu o \varnothing 0,12 mm CuP. Pořadí vinutí: vespod L_1 , pak L_2 a L_3 ; tečka označuje začátek vinutí. Tr_2 – bez jádra, vyvařit v parafínu. L_1 – 20 z drátu o \varnothing 0,3 mm CuP, L_2 – 3 000 z drátu o \varnothing 0,1 mm CuP

Obr. 4. Uspořádání součástek v krabičce

blesku je vyříznut obdélníkový otvor podle reflektoru a do něho je zalepena lisovaná destička. Uzavírací kryt je upevněn dvěma šroubky M2. Čtyři akumulátory jsou ještě zvlášť odděleny od ostatních součástí tím, že jsou v pouzdru z tenkého organického skla, v němž jsou zality pružinové kontakty. Krabice blesku je polepena stříbřitou samolepicí fólií DC-fix, která se u nás prodává. Fólie dodává blesku téměř tovární

Obr. 5. Konečný vzhled miniaturního blesku

vzhled. Celkový vzhled blesku je vidět z fotografií (obr. 4 a 5).

Směrné číslo vyšlo proti očekávání menší, než by mělo být podle výkonu; je asi 16 pro 17 DIN. Je to zaviněno reflektorem, který pravděpodobně nemá dost vyhraněný parabolický tvar. Jiný sítový blesk, který dodával přesně stejnou energii 36 Ws, měl směrné číslo 20 pro 17 DIN.

Podle tohoto popisu a schématu je možné postavit blesk i ze součástek, které jsou u nás k dostání, nedosáhneme ovšem ani účinnosti, ani rozměrů popsané konstrukce.

Novou vysílací triodu, která je uznávána jako obecně nejvýkonnější vysílací elektronka na světě, vyrobila firma International Telephone and Telegraph Corp. Má ztrátový výkon 390 kW, váží 150 kg a její žhavicí příkon je 30 kW! Impulsní výstupní výkon odevzdá 90 MW při době trvání impulsu 1 ms a činiteli plnění 1:1 000.

Nové výkonové tranzistory 2N2580 a DTS430 s mezním napětím kolektor-báze a kolektor-emitor 400 a 500 V dodává na evropský trh Delco Radio. Mají maximální proud kolektoru 5 až 10 A. Jejich výhodou je možnost přímého napájení ze střídavé sítě 220 V.

Sž

Sž

CIGLICOVÁ,

ektronika

ČÍSLICOVÉ VÝBOJKY A JEJICH POUŽITÍ

Ing. Tomáš J. Hyan

Plynem plněné číslicové indikační elektronky patří do skupiny tzv. neonových výbojek, u nichž se k indikaci číslic (popřípadě znaků nebo znamének) používá světelkující výboj (elektronka je

plněna netečným plynem). Systém číslicové elektronky se skládá ze společné anody a deseti (popřípadě jedenácti) za sebou uspořádaných elektrod (obr. 1), které mají tvar číslic 0 až 9 (u novějších typů je ještě jedenáctá elektroda pro desetinné znaměnko). Čitelnost indikované číslice umožňuje výboj v plynové náplni, který se projeví světélkováním obrysu té katody (elek-trody), která právě vede proud. Číslice a znaky jsou z drátu z ušlechtilé oceli o průměru 0,3 mm. Světélkující "obal" elektrody při indikaci má šířku asi 1 až 1,5 mm. Vhodná volba vzdálenosti jednotlivých elektrod zajišťuje, že světél kující elektroda neozařuje sousední elektrodu a volba poměrně tenkého drátu anody, která má tvar mřížky, umožňuje dobrou čitelnost každé číslice, která je až za touto mřížkou.

Číslice mají při světélkování jasně červenou barvu. Jas světla je při maximálním dovoleném proudu 2 000 apostilbů. K prodloužení životnosti a pro zrychlení zhasnutí výboje se do náplně jinak čistého netečného plynu přidává malé množství rtuťových par, které zabarvují světlo výboje poněkud do modra. To však není patrné, neboť většina číslicových elektronek různých světových výrobců bývá pro zlepšení kontrastu při čtení opatřena na povrchu baňky průhledným tmavěčerveným filtračním

nástřikem.

Na obr. 2 je charakteristika číslicové výbojky, z níž je zřejmá závislost mezi jejím anodovým napětim a proudem. Všimněme si dvou zakroužkovaných bodů, které udávají minimální a maxi-mální anodový proud. Podle velikosti proudu výboje se usazují při zhasnutí elektrody nepatrné částečky materiálu

Obr. 1.

na elektrodách vedlejších číslic a tím způsobují zvětšení napětí při hoření. Zvlášť velké naprášení vzniká na křížících se bodech vedlejších číslic. Zapálí-li takto "znečištěná" číslice, prach se v krátkém okamžiku opět samočinně odstraní – ovšem jen tehdy, není-li naprášení tak velké, že k zapálení nemůže dojít.

Dolní hranice proudu při "hoření" výbojky I_{amin} je proto dvoj- až trojnásobkem minimálního anodového proudu (bod A). Kdyby však byl anodový proud příliš velký, došlo by k světélkoyání přívodů a upevňovacích drátků číslice, které by zhoršovalo čitelnost. Aby se tomu zamezilo, nemá anodový proud při trvalém provozu překročit Iam

Obr. 2.

(bod B na obr. 2). Proudy Iamin a Iam jsou závislé na provedení a geometrickém tvaru číslic, vzdálenosti jednotlivých elektrod apod. Budou-li jednotlivé číslice rozsvěcovány v pulsním provozu, je i největší anodový proud dán vrcholovou hodnotou I_a ; ta je však přípustná jen v takovém provozu, kde kmitočet a doba pulsů nebo poměr doby pulsů k součtu doby hoření a doby zhasnutí jsou srovnatelné s údaji v katalogu výrobce. (Vždy se tedy při návrhu musí přihlédnout k doporučeným údajům.)

Počáteční napětí, při němž začne čís-licová výbojka hořet (tj. tzv. zápalné napětí) obvykle odpovídá střednímu napětí při hoření (obr. 2).

Přepínání číslic

Nejjednodušší způsob volby číslice spočívá v použití přepínače (obr. 3) Samozřejmě je třeba – jako u každé doutnavky – omezit anodový proud předřadným odporem na potřebnou velikost. Předřadný odpor může být společný (v anodovém přívodu), nebo může být v přívodu každé katody

Volba žádané číslice přepinačem (obr. 3) předpokládá pro spolehlivou funkci, aby přepnutí z jedné elektrody na druhou proběhlo bez přerušení anodového proudu (sběračem přepínače v mezipoloze). To proto, že po připojení napájecího napětí (většího než je na pětí zápalné) nenastane výboj v elektronce okamžitě, ale teprve po uplynutí určité zapalovací doby. Při přerušení anodového proudu (v mezipoloze přepínače) by tedy došlo ke zhasnutí jedné elektrody a teprve po uplynutí určité časové prodlevy ke světélkování jiné. Přitom by dále mohlo docházet ke světélkování přívodů (v okamžiku po přepnutí) vlivem kapacit spojú a přepínacích kontaktů. K zamezení tohoto jevu se zavádí katodové předpětí U_p (obr. 4). V tomto zapojení jsou všechny vypnuté (na obr. 3 nezapojené) katody připojeny na zdroj kladného předpětí. Pro spolehlivou funkci je ovšem nutné, aby rozdíl mezi napětím zdroje U_z a předpětím U_p byl menší než minimální napětí při ho-

Světélkuje-li jedna číslice, protéká proud I_p i paralelně připojenými elektrodami nesvětélkujících číslic. Jeho velikost závisí na anodovém proudu, katodovém předpětí, tlaku náplně, vzdálenosti jednotlivých katod apod. Proud I_p bývá v literatuře někdy označován jako sondový proud [1] a je dán souritom největší dílčí proud protéká tou katodou, která je nejblíže u světélkující číslice. Na obr. 5 je závislost mezi proud dem I_p a katodovým předpětím U_p při konstantním anodovém proudu $I_a = 2$ mA. Velmi názorně je zde vidět široký rozptyl I_p . Záporná hodnota I_p

vyjadřuje, že paralelně zapojené katody působí částečně nebo zcela jako přídavné anody. Aby nenastal tento jev, nesmí být překročeno největší dovolené předpětí U_{pm} . Naproti tomu při příliš malém předpětí U_p světélkují slabě paradná kotodu, což veda ke zbor. lelně zapojené katody, což vede ke zhoršení čitelnosti, zhoršení kontrastu a také ke zkrácení životnosti číslicové výbojky. Anodový proud výbojky Ia se tedy rovná katodovému proudu světélkující číslice Ik a součtu dílčích sondových proudů ostatních elektrod. Vyjádřeno rovnicí platí:

$$I_{\rm a} = I_{\rm k} + \Sigma I_{\rm p} \tag{1}.$$

Při použití číslicových výbojek zapojených podle schématu na obr. 4 je třeba jenych podec scheinfalt ha obi. Fje teba k přepínání číslic napětí rovné předpětí U_p – tedy asi 60 V, což dovoluje použití tranzistorů ve funkci bezkontaktních spínačů pro přepínání číslic.

Statický provoz

Na obr. 6 je schéma bezkontaktního přepínače číslicové výbojky ZM1100 s deseti křemíkovými tranzistory BFY65, jejichž závěrné napětí je 100 V. Katodové předpětí U_p pro výbojku se přivádí na všechny katody přes odpory R_1 ; je to současně i napětí, které musí každý z tranzistorů snést bez průrazu (přepí-nací napětí). Odpory R_1 je dále stabilizován dílčí sondový proud katod (při velkém proudu se zvětší předpětí o napěťový úbytek na odporu a tím se zmenší proud I_p na menší velikost, než by byl

při provozu bez R_1).

V tomto zapojení musí vždy hořet výboj kolem elektrody jedné z číslic. To znamená, že jeden ze spínacích tranzistorů (T_1 až T_{10}) musí být vodivý (plně otevřen). Anodový proud výbojky protéká pak Zenerovou diodou D_1 (společnou pro všechou prípačí tranzi (společnou pro všechny spínací tranzistory), čímž na ní vzniká předpětí $U_{\rm D}$. Toto předpětí působí přes odpory R_2 na báze ostatních tranzistorů. Protože jeho polarita je proti bázím záporná, způso-

napětí při hoření (mezi anobuje jejich uzavření. dou a katodou výbojky), napětí na Zenerově diodě D_1 a $U_{\mathbf{D}}$ doporučený anodový proud výbojky (podle katalogu). 0

Obr. 8.

Odpor R₃ spolu s odporem dráhy anoda-katoda výbojky tvoří kolektorový pracovní odpor otevřeného tranzistoru, který je při napětí zdroje $U_z = 200 \text{ V}$ asi 24 až 56 k Ω (podle druhu použité výbojky, provozu apod.). Pro zapojení z obr. 6 zjistíme jeho velikost dosazením do vetaby. do vztahu:

$$R_3 = \frac{U_z - (U_h + U_D)}{I_a}$$
[k\O; V, mA] (2)-

kde Uz je napětí zdroje,

Na obr. 7 je desetitranzistorová přepínací jednotka s číslicovou výbojkou typu ZM1080, která má boční projekci číslic na rozdíl od obr. 1, kde je výbojka ZM1020 s čelní projekcí.

Pulsní (dynamický) provoz

K řízení jedné dekadické číslicové výbojky je třeba deseti spínacích tranzistorů. Z toho vyplývá, že indikace vícemístného čísla, např. osmimístného, vyžaduje $8 \times 10 = 80$ spínacích tranzistorů. Uvážíme-li dále, že každou přepínací dekádu tvoří ne právě levné spínací tranzistory s velkým závěrným napětím, je zřejmé, že investiční náklady na vícemístný číselník (display) jsou značné

Použijeme-li však tzv. dynamický provoz číselníku pracujícího v časovém multiplexu (přepínání), lze proti statickému provozu zmenšit počet tranzistorů a tím snížit náklady.

Při trvalém (statickém) provozu více-místné číslicové jednotky světélkují číslice jednotlivých míst indikovaného čísla současně vedle sebe (tj. paralelně). Při pulsním (dynamickém) provozu

4 amatérské! AD 19 135

světélkují číslice jednotlivých míst indikovaného čísla postupně za sebou (tj. sériově). V celé číslicové indikační jednotce světélkuje tedy při dynamickém provozu v určitém okamžiku (tj. po dobu trvání impulsu t_p) jen jedna jediná číslice (v dalším okamžiku číslice násle-

např. doba trvání impulsu $t_p = 200 \ \mu s$, pak v čase $8 \times 0.2 = 1.6$ ms světélkuje každé místo osmičíslicového číselníku jen jednou. Protože však opakovací kmitočet ($f=100\,\text{Hz}$) je vzhledem k setrvačnosti vnímání lidského oka poměř ně vysoký, není pozorovateli tato skutečnost zjevná.

V dynamickém provozu se s výhodou používá jen jedna dekáda spínacích tranzistorů pro celou indikační číslicovou jednotku, a to bez ohledu na to, z kolika míst se skládá. Proto jsou odpovídající katody použitých číslicových výbojek (obr. 8) spojeny, přičemž kato-dové "spínače" (reprezentované obvykle tranzistory) pracují v mnohem rychlejším režimu proti statickému provo-zu. Jinak řečeno, jsou v určité časové jednotce (např. za 1 ms) využívány více-

Protože však katody výbojek (tzn. vždy stejné číslice) jsou vzájemně propojeny, je třeba pulsně spínat jednotlivé anody podle místa (řádu) postupně za sebou, a to jednou za zvolený časový cyklus (n.0,2 μ s; kde n= počet míst číselníku). Koncepce zapojení je tedy taková, že číslice ve výbojce může světélkovat jen tehdy, je-li sepnut odpovídající tranzistor (spínač) jak v katodové větvi, tak i v anodě výbojky příslušného místa.

výstup čítače

Anodové spínače jsou připojeny ke kruhovému čítači, který musí splňovat dvě úlohy:

1. Jednotlivé anody musí být připojovány ke zdroji napájecího napětí postupně a ve vzestupném (nebo sestupném) pořadí.

2. Podle řídicího čítače musí spínání pro každé místo probíhat synchronně s činností spínačů katodové společné. dekády.

V pulsním (dynamickém) provozu si pak osmimístný číselník vyžádá jen

Na obr. 9 je část uspořádání spína-cích katodových a anodových tranzistorů vzhledem k číslicové výbojce. Číslicové spínače jsou osazeny tranzistory BFY65 a jsou zapojeny jako v obr. 6. Anodové spínače (spínače místa) jsou zapojeny v podstatě stejně jako kátodové; jen je třeba použít tranzistory opačné vodivosti s velkým závěrným napětím, např. ACY24 ($U_{CB0} = 70$ Anody číslicových výbojek jsou připojeny přes odpory R_4 na kladné napětí +115 V; podobně katody jsou připojeny přes odpory R₁ na zdroj předpětí $U_{\rm p} = +80 \text{ V.}$ Je-li stabilizované napájecí napětí

2×BZY85 C6V2

n×ACY24

desitky

storky

 $U_z = +200 \text{ V}$ a použijeme-li předepsané prvky zapojení, nepřesahuje anodový proud výbojek I_a maximální připustnou velikost 15 mA. Buzení katodové spínací dekády i anodových pře-

136 Amatérské! A D 10 470

Obr. 10.

pínačů místa se také v tomto příkladu přivádí z dekodéru, který tvoří diodo-

Předpětí pro katody a anody výbojek bylo zvoleno tak, aby při napájení ze stabilizovaného zdroje byly splněny

tyto podmínky:

a) jakákoli číslice může světélkovat jen tehdy, zmenší-li se po sepnutí pří-slušného katodového spínače (tranzistoru) předpětí U_p a po sepnutí anodového spínače (tranzistoru) se anodové napětí zvětší téměř až na napětí zdroje;

b) sepnutí jen jednoho (katodového nebo anodového) spínače (tranzistoru) nesmí vést k doutnavému výboji, a tedy ke světélkování číslice (napětí mezi anodou a katodou výbojky musí být

v tomto případě menší než minimální $U_{\rm h}$, tj. 120 V). Svítivost číslic závisí pochopitelně na proudu při pulsním provozu a na místě číslice. Pracuje-li se se špičkovým proudem 15 mA, nesmí být doba trvání impulsu delší než 200 µs. Při tomto opakovacím kmitočtu a udaném proudu je svítivost jako při statickém provozu při anodovém trvalém proudu $I_a = 1.8 \text{ mA}$.

V ověřovací jednotce zapojené podle schématu z obr. 6 byla použita jako V1 výbojka naší výroby typu ZM1020. Jako spínací tranzistory T_1 až T_{10} vyhověly bez průrazu dokonce tranzistory KC507; třebaže jejich U_{CEM} je jen 45 V. Pro aplikaci však lze doporučit z výrobků Tesla jen dostupný typ KF503, popřípadě lepší spínací KSY34.

Rozdělení součástí této tranzistorové spínací jednotky je na obr. 9, na obr. 10

jsou plošné spoje.

Literatura

- [1] Gasgefüllte Ziffernanzeigeröhren. AEĞ-TELEFUNKEN Röhren- u. Halbleiter Taschenbuch 1969, str. 80 až 89.
- [2] AEG-TELEFUNKEN Röhren- und Halbleitermitteilungen. ,,Grundbausteine der Digital-Technik", č.
- [3] Rechenberg, P.: Grundzüge digitaler Rechenautomaten. TELEFUN-Rechenautomaten. KEN Laborbuch III (Oldenburg--Verlag, München).
- [4] Janssen, D. J. G.; Korteling, A. G.; Vlodrop, P. H. G.: Cold Cathode Numerical Principle, Behaviour and Applications. Philips Application Information č. 327/1968, str. 21 až
- [5] Černý, J.: Číslicová elektronika model číslicového voltmetru. AR 11/69, str. 423.
- [6] Weber, W.: Einführung in die Methoden der Digitaltechnik. AEG--Telefunken-Handbuch, sv. 6, vydání z roku 1968.
- [7] Indikace digitálních veličin u elektronického zařízení ("Display" nebo "Read-out"). Sdělovací technika 3 a 4/69, str. 81.
- [8] Hewlett-Packard Journal 20, č. 1.

Obrazovku M17-18W s úhlopříčkou stínítka 17 cm nabízí pro televizní monitory a přenosné přijímače firma Standard Elektrik Lorenz. Má vychylovací úhel 75°, elektrostatické zaostřování paprsku, užitečnou plochu stínítka 95 × × 125 mm, žhavicí napětí 11 V, žhavicí proud 70 mA, průměr krku 20 mm a celkovou délku jen 205 mm. Hodí se i pro plně tranzistorové přijímače. Sž

Obr. 4.

Prestavba. DLLY MA KV

Vladimír Váňa, OK1FVV

V AR i v jiných časopisech byly uveřejněny různé úpravy tranzistorových přijímačů na stanici Československo I (DV). U přijímače Dolly můžeme tuto stanici poslouchat na rozsahu VKV a dlouhovlnný rozsah přestavět na pásmo 3,5 až 6 MHz. Úsek 4 až 6 MHz použijeme jako mezifrekvenci za konvertorem na 2 m (stejně jako u EK10). Je-li konvertor tranzistorový, dostaneme přenosný přijímač na 2 m, který je pro malou váhu vhodný na BBT, pro hon na lišku a pro méně náročné i na PD nebo k práci ze stálého QTH. Přijímač se hodí i pro příjem rozhlasových stanic v pásmech 49 a 75 m nebo pro fonický hon na lišku v pásmu 80 m.

Nejobtížnější je přestavba oscilátoru. Nejprve povolíme šroubek u páčky pře-pínače pásem a vyšroubujeme dva šroubky, připevňující desku s plošnými spoji ke skřiňce. Opatrně ji vyjmeme (přívody od baterie a sluchátkového konektoru neodpájíme) a odpájíme kostřičku s cívkami L_{13} a L_{13} (obr. 1 a 2). Na obr. 3 jsou plošné spoje s vyznačenými místy pájení. Kostřičku vyjmeme, odpájíme vývody cívek od nožiček, vyšroubujeme dolaďovací šroubek opatrně vylomíme feritovou činku

s cívkou - nebudeme ji již potřebovat (obr. 4). Cívku navineme drátem o Ø 0,15 až 0,2 mm CuP přímo na kostřičku (obr. 5). Cívka L12 má 20 závitů s odbočkou na 6. závitu, L₁₃ má 9 závitů. Zapojení cívek je na obr. 6 (pohled zespodu, jako u elektronek). Začátky cívek jsou označeny 1 a 5. Do kostřičky zašroubujeme doladovací šroúbek a připájíme ji na původní místo. Potom odpájíme kondenzátor C_{24} (150 pF) a nahradíme jej kouskem vodiče nebo propojíme fólií na plošných spojích kouskem

Obr. 7.

cínu (propojení je na obr. 3 vyznačeno čárkovaně). Kondenzátor C_{29} (100 pF) nahradíme kondenzátorem 40 pF. Tím je úprava oscilátoru skončena. Podle přijímače s BFO doladíme jádrem oscilátor na 3 900 až 6 500 kHz. Nekmitá-li, zaměníme navzájem konce cívky L_{13} . Na přijímači uslyšíme určitě silné stanice z pásma 49 m.

silné stanice z pásma 49 m. Nyní ještě převineme cívku L_8 (obr. 7). Nejprve povolíme "gumičky" připevňující feritovou anténu, z tyčinky vysuneme cívku L_8 a odpájíme odbočku od země přijímače. Potom odvineme z kostřičky drát a cívku navineme znovu původním drátem. Cívka L_8 má 14 závitů a L'_8 4 závity. L_8 a L'_8 vineme zvlášť od konců 6 a θ (jsou připájeny). Druhé konce cívek spojime a připájime na místo původní odbočky 7. Vstupní obvod po zapnutí přijímače doladíme posouváním kostřičky s cívkami L_8 a L'_8 na maximum hlasitosti (asi na 5 MHz). Tím je přestavba skončena. Stačí jen přišroubovat desku s plošnými spoji ke skříňce a utáhnout šroubek na páčce přepínače vlnových rozsahů.

Signál z konvertoru přivedeme do přijímače pomocí obvodu *LC*, naladěného na 5 MHz (cívka je navinuta na feritové tyčce – obr. 8), nebo připojením konvertoru na dva závity drátu ovinutého kolem skříňky přijímače (obr. 9).

Přijímač, nejlépe i s konvertorem a jeho napájením, umístíme v kovové skřiňce. V přední stěně vyřízneme dva

Obr. 9.

otvory 20×5 mm pro ovládací prvky a vyvrtáme několik otvorů před reproduktorem. Zadní stěnu spojime vodivě se skříňkou jen jediným vodičem, jinak by skříňka byla závitem nakrátko a zhoršovala by Q cívky L_8 .

Stejně můžeme upravit i přijímače Monika, Mambo a Prior.

Literatura

AR 10/68, str. 372.

ODDÉLOVACI O GOOD

Dr. P. Kuneš

V posledních číslech AR několikráte publikované tranzistorové hudební nástroje přivedly nejednoho čtenáře k tomu, aby se touto problematikou začal zabývat. Hlavní potíž nespočívá ani tak v konstrukčních otázkách, jako spíše ve finančních, vzhledem ke značnému počtu ne právě levných součástek. Je proto pochopitelná snaha volit taková zapojení a součástky, aby konečný náklad nepřevyšoval únosnou míru.

Použití menšího počtu generátorů pro mnohohlasou jednoruční hru, kdy vždy dva sousední půltóny mají společný generátor (prakticky nikdy se nehrají současně), bylo již v AR několikrát uvedeno. Tím lze počet dvanácti generátorů na oktávu zmenšit na šest, protože víc než jednu oktávu nelze jednou rukou obsáhnout. Při šesti generátorech se však již ani oktáva nedá zahrát, protože současným stisknutím kláves např. C a c v tomto zapojení zazní jen c. Proto je vhodné vybavit nástroj sedmi generátory, aby generátor naladěný na c a cis hrál o oktávu níže Ais a H, takže je možné zahrát i oktávový interval. Osazení nástroje menším počtem generátorů než sedmi vede k neúnosnému ochuzení jeho kvality, což není vyváženo relativně malou finanční úsporou.

Ušetřit se však dá na tranzistorech, přihlédneme-li k tomu, že kvalita tranzistorů 101NU70 je podstatně lepší, než by se dalo předpokládat vzhledem k jejich ceně. Postavit multivibrátor, který by byl osazen těmito tranzistory a nefungoval, snad ani není možné. Horší je postavit s tímto tranzistorem oddělovací stupeň. Buďto propouští signál tehdy, kdy nemá, nebo vyrábí kliksy a vůbec je s tím potíž. Když jsem zkoušel různá zapojení oddělovacího stupně (jak byla postupně publikována v AR a RK) s tranzistorem 101NU70, nefungovalo uspokojivě ani jedno. Po delší době jsem došel k zapojení, které funguje spolehlivě i s tímto tranzistorem. Všechny oddělovací stupně v tomto zapojení fungují stejně s běžnými součást-kami, takže reprodukovatelnost je zaručena. Tranzistory jsem nevybíral; při předběžném měření vykazovaly všechny přibližně stejné parametry, ICEO 5 až 12 μA, h_{21E} kolem 25.

Princip činnosti spočívá v uzavření

tranzistoru záporným předpětím báze proti emitoru, odvozeným z děliče napětí R_5 , R_4 . Jde o běžné zapojení zesilovače s můstkovou stabilizací, omezovacím odporem R_1 v bázi a filtračním řetězcem R_2 , C_1 v kolektoru, který je nezbytný, aby nedocházelo k nežádoucímu šíření signálu napájecím obvodem.

Kontakt \overline{KB} je rozpojovací. Je-li sepnut, dochází na děliči napětí R_5 a R_4 k napěťovému spádu, který způsobuje, že je napětí emitoru vůči bázi kladné. Báze má proti emitoru záporné napětí a tranzistor je uzavřen. Po rozpojení kontaktu dochází ke zmenšení kladného napětí emitoru (rychlostí udanou časovou konstantou paralelního spojení R4, C2), k postupnému otevření tranzistoru a pozvolnému nasazení tónu. Po sepnutí kontaktu se napětí emitoru zvětšuje (rychlostí udanou časovou konstantou sériového spojení R_5 , C_2), tranzistor se uzavírá a tón odeznívá. Protože ve druhém případě působí na časovou konstantu R5, C2 několikrát větší napětí než při nasazení tónu, je třeba vyhledat největší sériový odpor R_5 (v sérii s C_2 , který se přes něj nabíjí), při němž je ještě proud tekoucí děličem R_5 , R_4 dostatečně velký, aby vytvořil potřebný napěťový spád na odporu R4. Zvolíme-li R5 menší, je napěťový spád sice větší, časová konstanta R₅, C₂ se však zkracuje a tón odeznívá

úsečně až s kliksem. Zvolíme-li R_5 příliš velký, nestačí napěťový spád tranzistor uzavřít a tón trvá i po sepnutí kontaktu, i když zní slaběji. Tato skutečnost si vynutila zvětšení odporu R_4 z původních 3,3 k Ω na 10 k Ω , protože k uzavření tranzistoru bylo třeba volit R_5 příliš malý. I když nasazení tónu bylo uspokojivé, jeho odeznění stále provázely kliksy, v nejlepším případě bylo tvrdé a úsečné.

κισμέρωπ μτιραυς byto tvrde a úsečné. Stejně bylo nutné zvolit kapacitu kondenzátoru C_2 větší než 1 μF, protože se projevovaly podobné obtíže jako při malých odporech R_4 a R_5 . Při $C_2=5$ μF je nasazení i odeznění tónu zcela přijatelné a jeho zvětšením na 10 μF je již natolik pozvolné, že připomíná nasazení tónu varhanní píšťaly (lze jej zvětšit až na 30 až 50 μF, pokud by bylo žádoucí velmi pozvolné nasazení tónu).

Při uvádění do chodu nastavíme běžec odporového trimru R až k zemnímu konci a při rozpojeném kontaktu KB jím otáčíme směrem vzhůru, až ve sluchátkách připojených na výstup usly-V průběhu otáčení tón postupně sílí a od určitého nastavení se prakticky dále nemění. Nyní zkoušíme, zda se spojením kontaktu KB tón zcela přeruší, nebo dojde-li jen k jeho zeslabení. Pokud jen zeslábne, je třeba po-otočit běžcem trimru poněkud zpět, až při spojeném kontaktu tón zcela ustane a po jeho rozpojení znovu nasadí. V této poloze trimr ponecháme. Je třeba pamatovat na to, že toto nastavení u vysokých tónů nemusí být totožné i pro tóny nízké. Jinak řečenó: nastavení, kdy vysoký tón po spojení kontaktu zcela vysadí, může nízký tón ještě v slabší intenzitě propustit. Proto tam, kde máme generator a oddělovací stupeň pro více různých tónů, je třeba ho nastavo-vat pro nejhlubší tón. Pro vyšší tóny vyhoví automaticky. Také nás nesmí překvapit, že ve sluchátkách je tón za oddělovacím stupněm nápadně slabší než na výstupu multivibrátoru. Pro funkci nástroje to není nijak na závadu.

Komu by vadila regulace zesílení změnou pracovního bodu tranzistoru, může nastavit optimální pracovní bod podle osciloskopu, R nahradit dvěma odpory a nasazení a přerušení tónu regulovat změnou odporu R_1 (zde použít trimr 33 až 47 k Ω). Další postup je podobný. Zvětšení R_1 se projeví stejně jako posunutí běžce R směrem k zemnímu konci a naopak. Konečný výsledek je stejný.

SPRÁVNÉ ODPOVĚDI NA KONTROLNÍ TESTY

Š

Kontrolní test 2-55: A Porovnejte svoji odpověd s vysvětlením na str. 110. Správná odpověd musí smyslově souhlasit s tímto vysvětlením. Kontrolní test 2-56: A 1), B Vychazíme z podmínky, že kapacitní odpor X_{CK} kondenzátoru s nusí být při nejnižším přenášeném kmitočtu fa roven jedné pětině R. R. R. R. odporu R_{k_1} tj. X $_{CK} = \frac{R_k}{5}$. Dosadíme za X_{CK} : $\frac{1}{2nf_dC_K} = \frac{R_k}{5}$. Odtud již přímo vypočteme C_k jako: $C_k = \frac{1}{2\pi f_0 R_k}$, C 3).

cích obvodů stínicích mřížek elektronek 2.14.2.2 Některé základní výpočty nabáje

ích zapojení obvodů pro napájení stínicí mřížky elektronky, tj. zapojení s před-řadným odporem podle obr. 147 a zapojení s děličem podle obr. 148. Nejprve si opět shrneme potřebné vztahy pro výpočet a pak Naznačíme si výpočet prvků nejběžnějsi je přiblížíme početním příkladem.

Pro výpočet předřadného odporu isme si již uvedli vztah:

$$R_{\rm p} = \frac{U_{\rm o} - U_{\rm g2} - U_{\rm k}}{I_{\rm g2}}$$
 [Ω ; V, A],

çde

požadované napětí stínicí mřížky, úbytek napětí na katodovém odporu Rk. ร้

proud stínicí mřížky.

$$R_{g2} = \frac{U_o - U_{g2}}{I_{g2}} \quad [\Omega; V, A].$$

děliče. Tento proud je určován v podstatě odpory R₁ a R₂ děliče; čím menší jsou tyto V praxi se proto uchylujeme zpravidla k určitému kompromisu, často se volí proud s předřadným odporem (obr. 147) naproti "klouže" podle změn proudu více než bočce děliče (obr. 148) je tím lepší, čím větší je v porovnání s odebíraným mřížkovým proudem vlastní, tzv. příčný proud (1) je vlastní proud kolísání odebíraného proudu. V zapojení tomu mřížkové napětí stálé není, mění se, v zapojení s děličem. Stálost napětí na odzdroj. více zatěžujeme napájecí Id. Zvětšováním proudu děliče v rozmezí: odpory, tím ovšem děliče

Uo je napětí napájecího zdroje,

Pokud není v obvodu zapojen katodový odpor $R_{\mathbf{k}}$, nebo je-li úbytek napětí $U_{\mathbf{k}}$ můžeme v poslední rovnici člen U_k zanevznikající na tomto odporu nepatrně malý, dbat, takže se rovnice zjednoduší na:

bázi kladnější; aby byl kolektorový přechod

hoto typu zapojen emitorový přechod v propustném směru, musí být emitor proti

2.14.4. Obvody pro nastavení pracovního bodu

tranzistoru

ã

zapojen v nepropustném směru, musí být

Toho

dosáhneme jednoduše použitím dvou zdrojů Šipkami jsou v obr. 158 označeny vstupní

kolektor proti bázi

pojení potřebných, převážně stejnosměrných napětí na jejich jednotlivé elektrody –

vakuových elektronek i tranzistorů je při

Víme, že základním předpokladem funkce

nastavení vhodných pracovních podmí-

nek, jinak řečeno nastavení vhodného pra-

(1). Nastavit pracovn

covního

zapojených s požadovanou polaritou.

a výstupní svorky pro signál – vstupní signál se přivádí na emitor (obr. 158a) nebo na bázi (obr. 158b), výstupní signál se odebírá V praxi se při nastavování pracovního s jediným zdrojem – nikoli se dvěma jako

3

z kolektorového obvodu.

pojit na jeho elektrody stejnosměrná napětí

tak, aby emitorová dioda tranzistoru, tj

bod tranzistoru v podstatě znamená při-

bodu tranzistoru obvykle snažíme vystačit

v zapojeních na obr. 158. V dalším si názorně naznačíme přechod od zapojení se dvěma zdroji k zapojení s jediným zdrojem,

a tó pro nejpoužívanější zapojení tranzis-

Zapojení pro nastavení pracovního bodu » dušeně na obr. 158 – na obr. 158a pro za-v

lektorová dioda tranzistoru, tj. přechod mezi kolektorem a bází v nepropustném

byla zapojena v propustném směru a ko-

přechod p-n mezi emitorem a ...

tranzistoru, pomocí dvou baterií je zjedno-

pojení tranzistoru se společnou bází, na

obr. 158b pro zapojení se společným –

toru, tj. zapojení se společným

3

(1) bodu, (2) bází, (3) emitorem, (4) zápornější, (5) emitorem.

Odpovědi:

(3). V obou případech platí zapojení

pro tranzistor typu p-n-p. Má-li být u to-

$$I_{\text{g2}} = \frac{U_{\text{o}} - U_{\text{g2}}}{I_{\text{g2}}} \quad [\Omega; \text{ V, A}].$$

Zapojení s děličem napětí podle obr. 148 dává poměrně stálé mřížkové napětí i při

 $I_{\rm d} = (5 \text{ až } 10)I_{\rm g2}.$

Odpory děliče napětí podle zapojéní na obr. 148 určíme ze vztahů pro požadované napětí Ug2 stínicí mřížky:

$$R_2 = \frac{U_{\rm g2}}{I_{
m d}}$$
 [Ω ; V,

 $U_{g2} = R_2 I_d = U_o - R_1 (I_d + I_{g2})$

ako

$$R_1 = \frac{U_0 - U_{g2}}{I_d + I_{g2}}$$
 $[\Omega; V, A]$.

denzátoru C_{s} (obr. 147, 148) je nesnadný (je k němu třeba znát vliv střídavé složky proto se v praxi pro výpočet kondenzátoru Cs používají například tyto přibližné vztahy: Přesný výpočet potřebné velikosti konnapětí stínicí mřížky na anodový proud)

Pro elektronky v nízkofrekvenčních zesilovačích

$$C_{
m s} \geqq rac{1.600}{f_{
m d} R_{
m n}} ~~ [\mu {
m F;~Hz,~k}\Omega],$$

pro elektronky ve vysokofrekvenčních ze-silovačích

$$C_{\rm s} \ge rac{800\ 000}{f_{
m d}R_{
m a}} \quad [\mu {
m F};\ {
m Hz},\ {
m k}\Omega],$$

kde f_a je nejnižší. zpracovávaný kmitočet signálu,

anodový odpor elektronky

Odpovědi: (1) větší.

ze zdroje stejnosměrného napětí $\dot{U}_0=250~\rm V$; její anodový proud je $l_a=3~\rm mA$, napětí stínicí mřížky $\dot{U}_{gz}=140~\rm V$, proud **Příklad.** – Pentoda EF86 je napájena stínicí mřížky $I_{\rm g2}=$ 0,6 mA.

Elektronka pracuje jako nízkofrekvenční zesilovač, nejnižší zesilovaný kmitočet $f_a=50~{\rm Hz}$, anodový odpor $R_a=220~{\rm k}\Omega$.

LHOCHVHOAVAŽ KAHS ZYKTVDĄ KVDIOETEKLKONIK

Obr. 157

G²

ď,

vstup

ڻ

Š

-vystup

vstup

Obr. 156.

ď

0

Obr. 158

Máme určit a) velikosti Rp a Cs při zapojení Potřebnou velikost předřadného odb) velikosti R1, R2 a C3 při zastínicí mřížky podle obr. 148 napájecího obvodu pojení napájecího obvodu mřížky podle obr. 147, stínicí

$$R_{g2} \doteq \frac{U_0 - U_{g2}}{I_{g2}}$$

poru R_p vypočteme ze vztahu:

용

Kapacitu kondenzátoru Cs vypočteme

$$C_{\rm s} = \frac{1600}{f_{\rm d}R_{\rm a}} = \frac{1600}{50.220} \stackrel{...}{=} \frac{1600}{F_{\rm d}R_{\rm a}} = \frac{1600}{50.220}$$

pak vypočteme takto: podle obr. 148 zvolíme vlastní proud děliče $l_{
m d}=5l_{
m g2}=5.0, 6=3$ mA. Odpory děliče Při výpočtu zapojení s děličem napětí

$$R_{3} = \frac{U_{g2}}{I_{d}} = \frac{140}{3.10^{-3}} = 46.5 \text{ k}\Omega,$$

$$= \frac{U_{0} - U_{g3}}{I_{d} + I_{g2}} = \frac{250 - 140}{3.10^{-3} + 0.6.10^{-3}} = \frac{140}{10.00}$$

$$= \frac{U_{0} - U_{g3}}{I_{0} + I_{g2}} = \frac{140}{3.10^{-3}} = \frac{140}{10.00}$$

(obr. 147), ne jako u zapojení s předřadným odporem Kapacitu kondenzátoru $C_{
m s}$ vypočteme stejtj. bude mít kapacitu C_s ±

2.14.2.3 Příklad základního výpočtu žhaviciho obvodu

zapojení žhavicích obvodů elektronek v razpůsob s paralelně zapojenými žhavicími dioelektronických přístrojích; je to jednak Seznámili jsme se se základními způsoby elektronek, jednak způsob se zapojenými žhavicími vlákny

v podstatě ve volbě, popřípadě výpočtu ťový transformátor musí mít vinutí s napříslušného síťového transformátoru. Sí-(obr. 142 a 144). Při paralelně spojených (nejčastěji 6,3 V) a průřez drátu tohoto vipětím pro žhavení použitých elektronek žhavicích vláknech spočívá návrh obvodu

zapojených žhavicích vláken. tj. součtu žhavicích proudů všech paralelně nutí musí odpovídat odebíranému proudu

staršího typu rozhlasového přijímače. na číselném příkladu ke zhavicímu obvodu potřebného předřadného odporu R_p (obr spočívá základní výpočet v určení velikosti 144). Postup při tomto výpočtu si ukážeme Při sériově spojených žhavicích vláknech

a součtem žhavicích napětí elektronek. Žhavicí proud elektronek řady U je elektronkami UCH21 (obr. 153). rozdíl napětí mezi napětím sítě U = 220 V řadného odporu Rp, jehož úkolem je srazit vlákna všech těchto elektronek jsou spo-UY1N, jednou elektronkou UBL21 a dvěma elektronkami řady U: jednou elektronkou U=220 V. Je třeba vypočítat velikost předjena sériově a připojena na sítové napěti Příklad. – Rozhlasový přijímač je osazen **Zhavici**

PROGRAMOVANÝ KURS ZÁKLADŮ RADIOELEKTRONIKY

talogu elektronek; v našem případě je to u elektronky UY1N napětí $U_{21} = 50 \text{ V}$, u elektronky UBL21 $U_{22} = 55 \,\mathrm{Vau}$ elektro-+ 20 + 20 = 145 V.všech žhavicích napětí je tedy 50 + 55 + nek UCH21 $U_{23} = U_{24} = 20$ V. Součet notlivých elektronek lze snadno zjistit v ka-A (2). Zhavicí napětí jed-

ze vztahu: Potřebný předřadný odpor vypočteme

$$R_{p} = \frac{U - (U_{11} + U_{12} + U_{23} + U_{24})}{I_{2}} = \frac{U - \sum U_{2}}{I_{2}},$$

$$R_{p} = \frac{220 - 145}{0.1} = \frac{20 - 145}{0.1} (3) = 750 \Omega.$$

poru vypočteme např. ze vztahu: Výkonovou zatížitelnost předřadného od

$$P_{\rm Rp} = R_{\rm p} I_z^2 = 750.0, 1^2 = 7.5 \,\mathrm{W}.$$

Odpovědí: (1) sériově, (2) 0,1, (3) 75.

2,0

Obr. 154

Obr. 155

Ġ,

Œ,

3 vystup

20

Základní zapojení zesilovacího stup

ně s vakuovou elektronkou

dospějeme k úplnému zapojení jednoho elektronkového stupně – stupně připramili. Shrneme-li všechny obvody potřebné šími způsoby řešení obvodů pro nastavení veného např. k zesílení signálu. pro anodu i všechny mřížky elektronky zajišťujíci vyžhavení katody, správné napěti pro nastavení pracovního bodu, tj. obvody triod, tetrod a pentod – jsme se již seznápracovního bodu vakuových elektronek – ného pracovního bodu. Teprve tehdy, je-l k jeho zesílení. S některými nejpoužívaněj: ka připravena ke zpracování signálu, např spravne nastaven pracovni bod, je elektron: ného pracovního režimu, nastavení správpředpokladem funkce elektronek je vytvoení vhodných pracovních podmínek, správ-Nyní již jistě dobře víte, že základním

triody je vyžhavena – šipky u vývodů žhase společným vodičem, a to přes mřižkový vicích vláken symbolizují, že jsou připojeny kuovou triodou je na obr. 154. Katoda denzátor C_k. Také řídicí mřížka je spojena vodiči (uzemněnému) přes odpor R_k a kon· Katoda triody je připojena ke společnému žhavicímu vinutí síťového dajícímu – rovněž šipkami označenému ke zdroji žhavicího napětí, např. k odpoví-Příklad zapojení zesilovacího stupně s va

220 V todu triody. Zesilený signál se odebírá přes přes kondenzátor C_{v1} mezi mřížku a ka-V našem případě je tento signál připojen žim triody je tedy zajištěn – zbývá přivést na její vstup signál, který chceme zesílit. jen se společným vodičem. Tím je zajištěno kladné anodové napětí triody. Pracovní rezdroje; záporný pól tohoto zdroje je spoje spojena s kladným pólem napájecího záporné mřížkové předpětí. Anoda triod) vstup (2) odpor Rg, čímž je zajištěno Œ,

další vazební kondenzátor Cv2 z anody elektronky. Příklad zapojení zesilovacího stupně

řídicí mřížku pentody, zesílený signál přívádí přes kondenzátor vého transformátoru. Zesilovaný signál ným vodičem. Katoda je vyžhavena na pomřížka je spojena s katodou. Anoda je přimřížka přes předřadný odpor Rp, brzdicí nosměrné kladné napětí získává v obvodu zapojení podle obr. 154, pomocí odporu R, pětí se získává podobně jako v triodovém s pentodou je na obr. 155. Mřížkové předtřebnou teplotu ze žhavicího vinutí síťokatoda je spojena přes R_k a C_k se společpojena ke kladnému polu napajeciho zdroje, odebírá z anody. elektronky. stinici se

Odpovědi: transformátoru,
 katody, (4) C_{V1}. (2) svodový,

KONTROLNI TEST 2-57

- A Pro pentodu požadujeme v určitém radioelektronickém přístroji pokud možno stálé napěti jeji stinicí mřížky i při změnách předpěti řídičí mřížky nebo při změnách proudu stinicí mřížky. Tento požadavek zajistíme lépe použitím napájecího obvodu s 1) předřadným odporem Rp. 2) děličem napětí R_I. R_P.

 B Na obr. 156 je zesílovací stupeň s vakuovou triodou; v zapojení je však závažná chyba –
- odporem). D Nakreslete zapojení zesilovacího stupně s pentodou! Použijte v něm předpětí získané Na obr. 157 je zesilovací stupeň s vakuovou pentodou; zapojení je však neúplné, chybí napálecí obvod stinici mřížky – dokreslete tento obvod (použijte zapojení s předřadným

n

pomocí velkého mřížkového svodového odporu; napětí stínicí mřížky nastavte pomocí děliče napětí. Zakreslete i svorky, na které přívedeme signál při zapojení stupně se spo-ležnou katodou a svorky, z nichž budeme sígnál po zesílení elektronkou odebírat.

								Ptot	_		7	0							Roz	díly		\Box
Тур	Druh	Použití	U _{CE} [V]	I _C [mA]	h ₂₁ E h ₂₁ e*	fr fa* [MHz]	Ta Tc [°C]		UCB max [V]	UCE max [V]	IC max [mA]	T _j max [°C]	Pouzdro	Výrob- ce	Patice	Náhrada TESLA	$P_{\mathbf{C}}$	Uc	$f_{ m T}$	h ₂₁	Spín. v1.	F
BFX68	SPn	VF, Sp	10	150	100300	100 > 70	25	700	75	50		200	TO-5	SGS	2	KFY46	>	_		_		
BFX68A	SPA	VF, Sp	10	150	130 > 100	100 > 70	25	800	80	40		200	TO-5	SGS	2	KFY46	_	<	=	_	Ì	- {
BFX69	SPn	VF. SP	10	150	40—120	80>60	25	800	75	50		200		SGS	2	KFY34	=	=	=			-
BFX69A	SPn	VF	10	150	90 > 40	1			1			200		SGS	2	KFY34	=	_	_	_		
BFX70						84>60	25	800	80	40	500	1		•		KF 134	-	_		_		ŀ
BFX71	SP n	DZ	5	10	50150	100 > 80	25	500	100	60	500	200		SGS	9							
	SPn	DZ	5	10	50—200	100 > 50	25	500	100	60	500	200		SGS	9	_						
BFX72	SPn	DZ	5	10	50-200	100 > 50	25	500	100	1	500	200		SGS	9	_	ļ · .					- 1
BFX73	SPE N		1	3	50 > 20	900 > 600		200	30	15	50	200		SGS	6	_					. 1	[
BFX74	SPp	VF	10	150	3090	90>60	25	600	50	50		200		SGS	2	KFY16	>	=	=	=	1	
BFX74A	SPp	VF	10	150	50 > 30	150 > 100		800	60	60		200	TO-5	SGS	2	KFY16	=	=	<	=	1	- 1
. BFX77	SPEn	VF	10	10	50	300	25	200	50	30		175	TO-72	CSF	.4	KSY21	>	<	>	=		
BFX79	SP n+p	Kompl	5.	150	125 > 60	100 > 60	25	500	80	60		200	TO-5	SGS	48	<u> </u>						
BFX80	Sp n+p	Kompl	5	0,1	210 > 150	>40	25	400	60	60		200	TO-5	sgs	48	_						
BFX81	SP n+p	Kompl	1	30	>40	>350	25	380	25	20		200	TO-5	SGS	48	_						
BFX84	SPEn	Ind ·	10 10	10/500 150	80 > 20 112 > 30	140 > 50	25	800	100	60	1 A	200	TO-5	М	2	_						l
BFX85	SPE n	Ind	10 10	10 500	90 > 50 90 > 30	185 > 50	25	800	100	60	1 A	200	TO-5	М	2	-						
BFX86	SPEn	Ind	10 10	10 500	90 > 50 90 > 30	>50	25	800	40	<u>3</u> 5	1 A	200		M'	2	_						
BFX87	SPE p	VF, Sp	10	10/150	>40	>100	25	600	50	50	600	200	1	RTC,V	2	KFY16	>.	>	<	-		I
BFX88	SPE p	VF, Sp	10	10/150	>40	>100	25	600	40	40	600	200		RTC, V	2	KFY16	>	>	<	= 1		ı
BFX89	SPEn	VF-ant	1	25	20-125	1100	25	200	30	15	25	200	TO-72	V,T,M	6	_						
BFX90	SPEp	. VF-nš	10	1/10	80—300	>40	25	400	180	180		200	TO-18	SGS	2.	-			ĺ			
BFX91 \	SPEp	VF-nš	10	1/10	80300	>40	25	700	180	180		200	TO-39	SGS	2.	_ ·	ŀ					
BFX92	SPn	NF, VF	5	0,5	135 > 60	45 > 30	25	300	50	45	30.	175	TO-18	SGS	2	KF525	<	<	>	=	.	-
BFX92A	SPn	NF, VF -nš	5	0,01	40-120	70 > 60	25	360	60	60	50	200	TO-18	SGS	2	-						
BFX93	SPn	NF, VF	5	0,5	350 > 150	45 > 30	25	300	50	45	30	175	TO-18	SGS	2	KF525	<	<	>	=		- 1
BFX93A	SPn	NF, VF -nš	5	0,01	100500	70>60	25	360	60	60	50	200		SGS	2	_						1
BFX94	SPEn	VF, Sp	10	150	40—120	.>250	25	500	60	30	800	175	TO-18	SGS	2 ·	KSY34	>	=	==	<		- 1
BFX95	SPEn	VF, Sp	10	150	100—300	>250 ·	25	500	60	30	800	175	TO-18	SGS	2	KSY34	>	=	==	<		- 1
BFX96	SPEn	VF, Sp	10	150	40—120	>250	25	800	60	30	800	175	TO-39	SGS	2	KSY34	=	=	=	<		H
BFX97	SPEn	VF, Sp	10	150	100300	>250	25 ·	800	60	30	800	175	TO-39	SGS	2	KSY34	=	=	=	<		
BFX98	SPn	Vi, VF	.10	25	100 > 30	90 > 40	25	800	150	150	100	200	TO-5	SGS	2	KF504	=	=	=	=		
BFX99	SPn	DZ	5	10	50150	60—160	25	500	100	60	500	200	TO-5	SGS	9	_						
BFY10	SMn	VF	5	10	25—50	>60	25	300	45	45	50	175	TO-5	M,V,P	2	KF507	>	<	=	=		
BFYII	SM n	VF	5	10	.40—125	>60	25	300	45	45	50	175	TO-5	M,V,P	2	KF507 KF506	> >	< >	=	=		
BFY12	SM n	VF	10	10	III:20—40 IV:30—60 V:50—100	200 >100	45	550	40	40	100	175	TO-5	S	2	KF507 KF506 KF506	> > >	===	< < <	> > =		
BFY13	SMn	VF, Vš	12	10	>20	>150	45	550	80	80	30	175	TO-5	s	2	KF503	>	>	<	=		- [
BFY14	SMn	VF, Vš	12	10	>12	>80	45	550	110	110	30	175	TO-5	s	2	KF503	>	<	_	>		
BFY15	SPn	Sp, VF	1,6	100	8-40	100 > 50	25c		40	20	500	150		STC	2	KF507	>	=	=	>		
BFY16	SPn	VF, Sp	1,6	100	16—78	200 > 100			40	20	500	150		STC	2 .	KF507	>	=	==	>		
BFY17	SPn	VF	9	10	26-90	>200	25c		40	25	100	175		SEL	2	KSY34	=	>	>	<		1
BFY18	SPn	VF	9	10	2690	>200	25c		40	25	100	175	i	SEL	2	KSY63	_	<	>	=		٠, إ
BFY19	SPn	VF .	9	10	100 > 50	>300	25c		30	20	100	175		SEL	2	KSY62B KSY63	=	\ \ >	<	=		
BFY20	SPn	DZ	0	0,1	>10	245	25	600	40	15	100	175	TO-5	SEL	9	KCZ59	<	>		>		
BFY21	SP n	VF	-		64	>200	25	700	40		200			SEL		KSY34	>	>	>	-		- 1
BFY22	SPEn	VF	0,5	0,2	3090*	20	45c	50	5	5	50	125	ерох	I	S-5 ž	_						.
BFY23	SPEn	VF	0,5	0,2	70—220*	20	45c	50	5	5	50	125	· -	1	S-5 črv	_						
BFY23a	SPEn	VF	0,5	0,2	300 > 200*	20	45c	50	5	5	50	125		I	S-5 zl							
BFY24	SPEn	VF-nš	0,5	0,2	45—130*	20	45c		5	5	50	125	l ⁻	ī	S-5 m							
BFY25	SPn	VF	9	10	26—90	>200	25	2,5 W	60	40	100	175	l -	STC	2	KF506	=	>	<	_		- }
BFY26	SPn	VF	9	10	2690	>200	25	1 W	60	40	100	175	ļ	STC	2	KF506	>	>	<	_		- 1
BFY27	SPn	VF, O	5	10	40—160	>250	45	320	70	50	100	200		T	2	KF508	>	_	<	-		-[
BFY28	SPn	VF, U	9		l	1			Į.	30	100	1 1	l	SEL	2	KF506	>	=	ι	1		- 1
BFY29	! !		l .	10	100 > 50	>300	25c		60			175		İ	S-5 o		1	_	<	=		ı
l	SPEn	VF	0,5	0,2	30-90*	20~	45c	l	45	30	50	125	-	İ	-						0	- 1
BFY30	SPEn	VF	0,5	0,2	70220*	20	45c		45	30	50	125		I	S-5 b	 VE507				1		١
BFY33	SPn	VF, NF	10	150	>35	100	45c		50	30	500	200	Í	S	2	KF507	=	<	=	=		
BFY34	SPn	VF, NF	10	150	40120	100>60	45c	1	75	50	500	200	l	S	2	KF506	=,	=	=	-		
BFY37, i	SPn	VF	10	10	>35	270 > 200	25c	1 W	25	20	100	175	TO-18	SEL	2	KS500	-	=		<		l
	1			<u> </u>	l	<u> </u>	<u> </u>	l .	1 .	<u> </u>		1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>L</u>	1	<u> </u>	ļ	1	

1						fm	T.	P_{tot}	5	5	In	ပ္ပ		1			<u> </u>		Roz	dily		_
Тур	Druh	Použití	U _{CE} [V]	I _C [mA]	h ₂₁ E h ₂₁ e*	fτ fα* [MHz]	Ta Tc [°C]	PC* max [MW]	U _{CB} max [V]	UCE max [V	IC max [mA]	T _j max [°	Pouzdro	Výrob- ce	Patice	Náhrada TESLA	$P_{\mathbf{C}}$	U_{C}	$f_{\mathbf{T}}$	h_{21}	Spin. vt.	F
BFY39, i	SPn	VF	10	10	I: >35 II:100—200 III:180–400	150	25c	1 W	45	25	100	175	TO-18	SEL	2	KSY63	=	=	>	1		
BFY40	SPn	VF	10	50	>50	60	25c	3 W	60	30	800	200	TO-5	SEL	2	KF508	<	>	=	>		
BFY41	SP n	Ind	10	50	>35		25	800	120	120	600	200	ТО-5	SEL	2	KF504	<	>		==		
BFY43	SPn	Vi	10	10	>25	60	25	800	140		100	175	TO-5	SEL	2 .	KF504	=	>	-	=		
BFY44	SPEn	VF-Tx	5	500	20 > 5	210	25c	5 W	80	60	1 A	200	TO-39	V,M,P	2							
BFY45	SPn	Nixie	10	10	60 > 40	130	25c	2,5 W	1	140	30	200	TO-39	s	2	KF504	=	=	<	=		
BFY46	SPn	VF	10	150	100—300	120 > 70	25c	2,5 W	75	50	500	200		S	2	KF508	=	=	=	=		
BFY47	SPn	NF	0,5	0,25	50—250*	50 > 30	45c	75	5	5	50	125		S	S-17	_						
BFY48	SP n SP n	NF NF	0,5 0,5	0,25	50—250*	50 > 30	45c	75	30	20	50	125	_	S	S-17							
BFY49 BFY50	SPEn	VF, Tx	10	0,25 150	50—150* 112>30	50 > 30 140 > 60	45c 25	75 800	45 80	30 35	50 1 A	125 200	epox TO-5	S M,V,I	S-17 2	— KF506	_	<	_		•	
BFY51	SPEn	VF-Tx	10	150	123 > 40	160 > 50	25	800	60	30	1 A	200		M,V,I	2	KF506	_	· H	<	_		
BFY52	SPEn	VF-Tx	10	150	142 > 60	185 > 50	25	800	40	20	1 A	200		M,V,I	2	KF507	_	_	<	-		
BFY53	SPEn	VF	10	150	>30	>50	25	800	30	20	1 A	200		M	2	KF507	_	>	=	=		
BFY55	SPE n	VF	10	150	40—120	>60	40c	4 W	80	35	1 A	200		V, P	2	KF506	<	<	=			
BFY56	SPEn	VF, Sp	1	150	30—150	>40	25	800	80	45		200	TO-5	SGS	2	KF506	=	<	_	=		
BFY57	SPEn	Vi	10	150 30	70 30150	86 >40	25	800	125	125		200	ТО-5	sgs	2	KF504	-	>	=	=		
BFY56A	SPEn	VF	0,52 1	50 150	60 40—200	54 86 > 50	25	800	80	. 55		200	TO-39	SGS	2	KF508	_	<	_	<		
BFY63	SPE n	VFv	5 10	50	20—120 A _G >5dB	>500 250	25	600	30	15		200		sgs	2			_				
BFY64	SPE n	Sp	10	10	200 > 80	250 > 200	25	700	40	40		200	TO-5	sgs	2	_	ŀ					
BFY65	SP n	Nixie	10	2	>30	50	25c	1 350	100	90	50	175	TO-5	T	2	KF503	>	=	>	=		
BFY66	SPE n	Sp	1	3	>20	>600	25c	300	30	15		200	TO-18	Т	6	KSY71	-	>	<			
BFY67	SPn	VF, Sp	10	150	40—120	>60	25c	3 W	75	50	500	200	TO-5	v	2	KF506	=	=	=	=		
BFY67A	SP n	VF, O	10	150	>40	>60	25c	3 W	60	40	500	200	TO-5	v	2	KF506	=	>	=	=		
BFY67C	SP n	VF, Sp	10	150	>30	>60	25c	į.	50	35	500	200	TO-5	v	2	KF506	=	>	=	=		
BFY68	SP.n	VF, Sp	10	150	100—300	>70	100	1,7 W	75	50	500	200	i i	V	2	KFY46	=	=	<	-	1	
BFY68A	SP n	VF, Sp	10	150	>100	>70	100	1,7 W	60	40	500	200		V	2	KFY46	=	>	<	=		
BFY69	SPE n	·VF	1	0,5	(č:40—65 * ½:55—95 * /z:85—140 * (f:130—200 * (b:190—310 *	>50 _.	45	105	25	15			TOM-13		S-4	_						
BFY69A	SPEtn	VF, NF	1	0,5	š:290—520*	>50	45	105	25	15		1	TOM-13		S-4							
BFY69B	SPE n	VF, NF	5	2	>50*	>50	45	50	25	15		125		Т	S-4	-						
BFY70	SPE n SP n	Tx-VF VF	5	500	20 > 5	210	25c	5 W	60	40	1 A	200		V,M,P	2	KSY34	l_		ļ_	<		
BFY72 BFY74	SPn	VF, NF	10 5	150 10	40—150 40—180	350 > 250 360 > 250		800 360	50 60	28 45		200		SGS SGS	2	KSY34	>	>	-	<		
BFY75	SPn	NF, VF	5	10	65—300	360 > 250		360	60	45		200		SGS	2	KSY34	>	_	_	<		
BFY76	SPn	VF-nš	5	0,01	30—200	55 > 40	25	360	45	45	50	200		SGS	2	_						
BFY77	SP n	VF-nš	5	0,01	80—600	60 > 40	25	360	45	45	50	200		SGS	2					ļ		
BFY78	SPn	VF,MF	1	3 .	50 > 20	>500	25	300	25	12	50	200	TO-18	SGS	2	KF173	<	>	<	-=		
BFY79	SPn	MF°-TV	9 10	6 4	$A_{\rm G} = 18 \text{ dB}$ > 30	200 >400	25	300	30	30		200	TO-72	SGS	6	KFY167	<	>	<	=		
DEVEO	CD.	Nivia	10	2	$A_{\rm G} = 30 \text{ dB}$	45	450	965	100	00	50	175	TO-18	T.	2	KF503	>	_	_	_		
BFY81	SP n	Nixie DZ	10 5	0,1	>30 >100	50 60	45c 25	865 400	45	90 45	50	175 200		T SGS	2 9	KCZ58	>	=	=	-		
BFY82	SPn	DZ DZ	5	10	>50	>250	25	400	60	45		200		SGS	9	-						
BFY83	Spn	DZ	10	0,1	75 > 25	>50	25	500	100			200		SGS	9.	_						
BFY84	SPn	DZ	1	3	55 > 20	>600	25	300	30	12		200		SGS	9	l _	-		_			
BFY85	SPE n	DZ	5	0,1	>50	>30	45	130	45	45	100	125	1	Т	9	KCZ58	>	=		>		
BFY86	SPE n	DZ	5	0,1	>50	>30	45	130	45	45	100	125		Т	9	KCZ59	>	=		=		
BFY87	SPE n	VF	1	0,5	(č:4065* 2:5595* 2:85140* (f:130200* (b:190310*	>50	45c	50	25	15	•	125	TOM-23	Т	S-4	_						
BFY87A	SPE n	VF-nš	1	0,5	š:290—520*	>50	45c	50	25	15		125	ТОМ-23	Т	S-4	i –						
BFY88	SPE n	UHF	1	5	>40.	. 850	45	175	40	20	25	175	TO-72	Т	4	 						
BFY90	١ ،	UHF-nš	10	2.	>20	>1 300	45	175	30	15	25	200		V,P,T	6	<u> </u> –	1			ŀ		
BFY91	SPE n	DZ	5	0,01	60—240	60	25	415	45	45		200		I	9	KCZ58	=	=	=	=		
BFY92	SPE n	DZ	5	0,01	60240	60	25	415	45	45		200	!	Ι.	9	KCZ59	=	=	-	<		
BFY99	. 1	VFu-Tx	28	100	$P_0 > 2.5 \text{ W}$	500	25c		65	. 65	1 A	200		S	2	7755		_				
BFZ10	Sip	VF, NF		100	30	3,5	100		15	00	10	150		M	١	KF517	>	>	>	=		
BLY10	SPn	VFv-Tx	1,6	100	12—40	160 > 50	25	10 W	40	20	500	150		SEL	31					1		
BLY11	SPn	VFv-Tx VFv-Tx	2,5 2	20 2A	21 6 0 30100	200 > 100 >60	25 25	10 W 25 W	60	20 30	500 1,5 A	150 150	i	SEL STCB	31	_						
BLY12																						

ČÍSLICOVÉ INTEGROVANÉ OBVODY

Ing. Jiří Zíma

Počátky číslicových integrovaných obvodů spadají do období let 1959 až 1960, kdy byl zahájen u firmy Texas Instruments na zakázku amerického vojenského letectva výzkum vytváření číslicových monolitických obvodů z křemíku technologií mesa. Po dvouletém úsilí se podařilo skupině pracovníků vedené J. Kilbym dosáhnout toho, že firma Texas Instruments mohla nabídnout na trhu malá množství logických obvodů s diodovou vazbou (DTL). Vlivem omezených možností, kleré poskytovala technologie mesa, byly prodejní ceny těchto monolitických obvodů (vlastně jejich vzorkových množství) značné. Např. klopný obvod typu J-K firmy Texas Instruments (T1) stál v roce 1960 450 amerických dolarů.

Přibližně v témže období probíhal u firmy Fairchild výzkum planární technologie na bázi křemíku, jehož výsledky byly koncem roku 1960 využity k zahájení výroby prvních typů planárních křemíkových tranzistorů a číslicových obvodů s odporovou vazbou (RTL). Tyto obvody se dodnes vyrá-bějí ve velkých sériích v typové řadě

Do tohoto počátečního období výroby číslicových integrovaných obvodů se datuje také značně rozsáhlý patentový spor mezi oběma uvedenými firmami, jenž nebyl dosud uzavřen. Koncepci využití funkčních vlastností polovo-dičových materiálů pro řešení celých skupin vhodně propojených prvků do obvodového uspořádání si dal patentovat J. Kilby od firmy TI. Tato koncepce se (v popisu patentu) opírá o využití technologie mesa na křemíku a při propojování jednotlivých prvků se z větší části předpokládá použití drátků. Te-prve po podání tohoto patentu firma Fairchild prostřednictvím svého vedoucího pracovníka R. Noyce přihlásila nárok na udělení patentu na planární technologii na křemíku. Jak potvrdil další vývoj, využívá se pro výrobu monolitických obvodů různých variant planární technologie na křemíku. Vždy se při tom opakuje základní princip maskování křemíku kysličníkem křemičitým při difúzi příměsí. Izolační vrstva kysličníku křemičitého je však zapotřebí nejen pro technologickou realizaci difúze, ale slouží i jako povrchová izolační ochrana funkčních vrstev monolitického obvodu a současně se jí využívá jako podkladové izolační vrstvy k umístění napařených spojovacích hliníkových vodičů. Po udělení obou patentů nastal mezi oběma výrobci spor, jenž vzhledem k velké finanční hodnotě patentů (priorita při udělování licencí) trvá dodnes. Podle posledních zpráv se však očekává, že spor o původnosti a nadřazenosti patentovaného objevu technologie monolitických obvodů vyhraje firma Fairchild.

Dříve, než se začneme zabývat rozborem měření a specifikací funkčních parametrů a principy a možnostmi aplikací různých druhů monolitických číslicových obvodů, je nutné vzhledem ke značné nejednotnosti terminologie v této oblasti osvětlit význam základních

pojmů.

Pro pochopení i k popisu funkce číslicových obvodů se používají para-metry, které z větší části nemají obdobu při specifikaci lineárních obvodů. Proto je jejich význam srozumitelný použe těm pracovníkům, kteří se problemati-kou číslicových obvodů profesionálně zabývají. Současný a zřejmě i budoucí rozvoj výroby číslicových monolitických obvodů a cenová dostupnost těchto, obvodů zpřistupní však použitelnost číslicových obvodů v řadě oborů elektroniky, kde to dosud nebylo především z cenových důvodů možné (tedy nejen u profesionálních výrobků, ale i u přístrojů a jiných zařízení amatérů). Již v současné době se v zahraničních časopisech objevují různé návody ke stavbě více či méně složitých zařízení, v nichž se tyto obvody s výhodou používají jejich použitím lze velmi rozšířit i paletu amatérských konstrukcí, neboť zapojení s nimi jsou i při funkční složitosti konstrukčně poměrně jednoduchá.

Pro velmi rozmanitý sortiment číslicových přístrojů a zařízení se vystačí s poměrně úzkým okruhem funkčně různých číslicových obvodů. Kromě obvodů k realizaci logických operací jsou to ještě různé druhy klopných obvodů, tvarovací obvody a některé

další jednodušší obvody.

Základními funkčními bloky se stávají s rozšiřováním technologických možností stále a stále složitější obvody a soustavy. Mezi základní funkční obvody lze dnes zařadit kromě uvedených obvodů i různé druhy čítačů, převodníky kódu, posuvné registry, komparátory, paměťové soustavy, sčítačky, odčítačky, popř. i další, dnes již méně či více dostupné složitější číslicové obvody

Podle způsobu zapojení obvodů k vytváření logické funkce se číslicové obvody dělí na několik základních skupin. Jsou to např. obvody s diodovou vazbou, obvody s vazbou pomocí tranzistoru s více emitory, obvody s vazbou přes společný emitorový odpor apod. Této problematice věnujeme samostatné pojednání.

Určitý náskok, kterého dosáhly co do rozmanitosti typů i co do objemu výroby logické a paměťové monolitické obvody před lineárními monolitickými obvody, měl řadu příčin a důvodů. Za základní lze považovat: 1. Pro konstrukci přístrojů a zařízení číslicové techniky se vystačí s menším počtem obvodových funkcí s velmi značnou opakovatelností. 2. Možnost aplikovat monolitickou technologii je podstatně schudnější u číslicových obvodů. Např. k posouzení spínacích vlastností tranzistorů se obvykle vystačí s menším počtem parametrů, než je tomu u tranzistorů určených k použití v lineárních obvodech. K zajištění správné činnosti číslicových obvodů lze připustit větší tolerance aktivních i pasivních prvků (to platí především pro ty logické obvody, kde tranzistory ve vo-divém stavu pracují ve stavu nasycení). Rovněž nutný sortiment potřebných aktivních a pasivních prvků je užší (a to jak ve funkčních hodnotách odporů, tak i v sortimentu funkčních struktur tranzistorů a diod).

Pro výklad statických parametrů číslicových obvodů použijeme základní zapojení obvodu s vazbou typu TTL k realizaci čtyřvstupového negovaného součinu podle obr. 1. K vytvoření logického součinu se používá tranzistor T_1 se čtyřmi emitory. Ke kolektoru tohoto tranzistoru je připojen tranzistor T₂, na jehož emitorovém a kolektorovém odporu se získávají napětí opačných polarit ("proti sobě polarizovaná napětí"). Tranzistor T_2 řídí činnost výkonového stupně s tranzistory T3 a T4 a diodou D₁ v tzv. zapojení "totem

Funkci obvodu si vysvětlíme nejprve za situace, kdy jsou vstupy A, B, C, D připojeny na napětí blízké nebo rovnající kladnému napájecímu napětí. Za těchto podmínek mají emitory tranzistoru T_1 kladné napětí a proto tranzistor pracuje v tzv. inverzním režimu, kdy jsou funkce emitoru a kolektoru prohozeny. Uplatněním vlivu stejnosměrného proudového zesilovacího činitele při zapojení tranzistoru se společným emitorem teče v inverzním režimu do každého vstupu vstupní proud asi 40 μA. Kolektor tranzistoru T₁ je připojen k bázi tranzistoru T_2 a proto je na kolektoru napětí $2U_{\rm BE}$, tj. asi +1,4 V. Kolektorová dioda tranzistoru

Obr. 1. Zapojení logického obvodu se čtyřmi vstupy k realizaci negovaného součinu (např. Tesla MHE111) se všemi vstupy s velkou úrovní napětí

Obr. 2. Zapojení logického obvodu se čtyřmi vstupy k realizaci negovaného součinu (např. Tesla MHE111) pro případ výstupního napětí s velkou úrovní.

Obr. 3. Typický průběh a meze převodové charakteristiky u číslicových obvodů p. Tesla řady MH111 a firmy Texas Instruments fady SN74N

 T_1 je polarizována (proudem odporem R_1) v propustném směru – tranzistor T_1 má proto na bázi napětí asi 2,1 V. Tranzistor T_2 je otevřen až do stavu saturace, nasycení. Emitorový proud T_2 teče zčásti přes odpor R_3 a zčásti do báze tranzistoru T4, který se také otevře až do saturace. Napětí na bázi tranzistoru T_3 se rovná součtu napětí $U_{\rm CES}$ tranzistoru T_2 a napětí $U_{\rm BE}$ tranzistoru T_4 (asi 1,1 V). Obdobně emitor tranzistoru T_3 má napětí rovné součtu napětí U_{CES} tranzistoru T_4 a napěťového úbytku na diodě D_1 v propustném směru. Obě tato napětí jsou přibližně stejná, takže tranzistor T_3 nevede. Při uvedených hodnotách prvků a při výstupním proudu 16 mA má saturační napětí na tranzistoru T_4 maximální velikost asi 400 mV. Typické saturační napětí je při uvedené zátěži asi 220 mV. Tyto údaje platí pro číslicové obvody řady SN74N firmy Texas Instruments i pro číslicové obvody řady MH111 n. p. Tesla Rožnov. Typický výstupní odpor pro výstup s malou napěťovou úrovní je asi 12 Ω. Uvedené výstupní napětí malé úrovně (400 mV) se při odběru proudu 16 mA značí Uvýst(0)m a definuje maximální napětí výstupní logické nuly číslicového obvodu. Aby výstupní napětí bylo na napěťové úrovni logické nuly, nesmí se zmenšit pod určitou úroveň napětí na "nejníže položeném" vstupním emitoru. Napěťový práh vstupu I₁ (tj. napětí, při němž dojde ke změně napětí na výstupu) je asi +1,4 V (je-li napětí na bázi tranzistoru +2,1 V, stačí k uvedení tranzistoru do normálního pracovního režimu takové napětí na kterémkoli z emitorů, které je o 0,7 V menší, tj. právě 1,4 V). Zkušební podmínky pro definování napěťové úrovně výstupní logické nuly se volí při vstupním napětí +2 V.

Druhý stav výstupu nastane v obvodu podle obr. 2, je-li na jednom nebo více vstupech napětí v blizkosti "země". Předpokládejme, že jeden ze vstupů má napětí +800 mV. Ostatní vstupy jsou připojeny na kladný pól napájecího napětí. Vstupní proud emitoru připojeného na napětí 800 mV má pak dvě složky. Větší část emitorového proudu jde z kladného pólu napájecího napětí přes odpor R_1 v bázi. Menší část emitorového proudu je výsledkem laterálního tranzistorového mechanismu, jenž vzniká mezi emitory s kladným napětím, rovným napájecímu napětí (pracují ve funkci kolektoru) a emitorem připojeným na napětí blízké napětí "země". Ma-ximální vstupní proud je u jednoho

emitoru 1,6 mA (na napěťové úrovni logické nuly). Je-li pak výstup předchozího logického obvodu na napěťové úrovni logické nuly, je celkový zatěžovací proud při zatížení deseti vstupy dalších obvodů asi 16 mA. Při napětí na vstupu 800 mV má kolektor tranzistoru T_1 napětí o saturační napětí větší, než je napětí vstupní. Toto napětí je však stále menší, než jaké by bylo třeba k otevření tranzistorů T2 a T4. V nejhorším případě se za těchto podmínek může otevřít tranzistor T2, tranzistor T₄ však zůstane uzavřen. Výstupní napětí má velkou úroveň - ta sé označuje jako napěťová úroveň logické jedničky. Tato úroveň se definuje pro zatížení výstupu deseti vstupy ďalších obvodů. Odebírá-li jeden vstup 40 μA, je to tedy celkově 400 μA. Za těchto podmínek je minimální napěťová úroveň výstupní jedničky $U_{ ext{výst(1)min}}$ rovna 2,4 V. Při vstupním napětí menším než +800 mV je typické napětí $U_{\text{vyst(1)}}$ asi 3,3 V. Typický výstupní odpor výstupu na napěťové úrovni výstupní jedničky je $100~\Omega$.

Důležitou pomůckou pro kvantitativní určení napěťových mezí pro napěťovou úroveň logické jedničky, napěťovou úroveň logické nuly a statickou šumovou imunitu (odolnost vůči šumu) při logické jedničce a nule je převodová charakteristika logického obvodu. Typická převodová charakteristika obvodů z řady SN74N i obvodů řady MH111 je na obr. 3.

Jak vyplývá z názvu, udává tato charakteristika závislost výstupního napětí na vstupním napětí. Převodová charakteristika platí při normální teplotě okolí 25 °C a zatížení výstupu logic-kého obvodu deseti vstupy. Měřit je možno např. hradlo k realizaci negovaného součinu se dvěma vstupy, je-li na jeho výstup připojeno pět dalších hradel se dvěma vstupy pro realizaci

Obr. 4. Zapojení hradel k realizaci dvouvstupového negovaného součinu, které se používá k vysvětlení šumové imunity

negovaného součinu v zapojení podle obr. 4. (Symbolice značení číslicových obvodů věnujeme příští článek.)

Na převodové charakteristice lze rozlišit několik úseků s rozdílnou strmostí. Při malých vstupních napětích až asi do 0,8 V se udržuje na výstupu přibližně stálá úroveň napětí - a ta odpovídá typické úrovni napětí logické jedničky. Při zvětšování vstupního napětí se výstupní napětí ustálí na typickém napětí výstupní nuly, tj. na 0,2 V.

Podle specifikace výrobce se při plném zatížení zaručuje u logických obvodů typu TTL minimální napětí výstupní jedničky 2,4 V. Stejně je výrobcem zaručena maximální velikost napětí výstupní nuly 0,4 V.

Obdobně se specifikují i u jiných typů číslicových obvodů typická a minimální napětí výstupní jedničky a maximální napětí výstupní nuly. Pro minimální napětí výstupní jedničky a maximální napětí výstupní nuly zaručuje výrobce také maximální napětí vstupní nuly také maximální napětí vstupní nuly (také tzv. prahové napětí vstupní nuly) a minimální napětí vstupní jedničky (také tzv. prahové napětí vstupní jedničky). Toto tvrzení platí pro převážnou většinu monolitických číslicových obvodů, neboť téměř vždy kromě součinu nebo součtu realizuje obvod také negaci. (Upozorňuji, že výklad se týká obvodů tzv. pozitivní logiky jejiž použití v současné době logiky, jejíž použití v současné době převažuje.)

Pro náš případ převodové charakte-

ristiky jsou prahová napětí vstupu 0,8 a 2 V. K posouzení odolnosti logického obvodu proti poruchám s pomalými časovými změnami specifikuje výrobce jako důležitý parametr tzv. statickou šumovou imunitu. Tato imunita číselně udává, jak dalece se může změnit úroveň napěťových signálů na vstupu obvodu (tzn. u logické jedničky směrem k "zemi" a u logické nuly směrem ke kladnému pólu napájecího napětí), aniž by došlo ke zhoršení typických výstupních parametrů nebo mezních hodnot napětí logické nuly nebo logické

Typickou velikost šumové imunity logické jedničky můžeme přečíst z převodové charakteristiky jako rozdíl mezi typickým napětím výstupní jedničky 3,3 V (z hradla X, obr. 4) a napětím na vstupech (hradla Υ , obr. 4), která jsou u těchto hradel nutná k zajíštění maximální úrovně napětí výstupní nuly, tj. 0,4 V. Odpovídající rozdíl 3,3 V — 1,4 V = 1,9 V je šumová imunita při výstupním napětí velké úrovně.

jedničky.

Šumová imunita při výstupním na-pětí s malou úrovní (nebo logické nuly) se může určit z převodové charakteristiky jako rozdíl mezi typickým napětím výstupní nuly 0,2 V (z hradla X) a vstupním napětím na hradle Y, která jsou potřebná k nastavení výstupů hradel Y na minimální úroveň napětí výstupní logické jedničky, tj. 2,4 V. Z převodové charakteristiky stanovíme šumovou imunitu při výstupu s malou úrovní napětí jako rozdíl napětí $0.2 \, V - 1.2 \, V = -1 \, V$.

Pokud se zjistí a ověří, že všechna používaná hradla nemají takové průběhy převodových charakteristik, které by odpovídaly typickému příkladu (což je běžné, neboť výrobce zaručuje vždy mezní velikosti parametrů a ne typické velikosti), je spolehlivější vycházet pro návrh zařízení z tzv. nejhorších připadů šumových imunit.

Z dříve uvedených mezí logických úrovn ivyplývá, že v nejhorším případě může převodová charakteristika procházet svými vodorovnými úseky body A a B. Potom minimální šumová imunita při velké napětové úrovni je rozdílem mezi minimálním napětím výstupní logické jedničky, tj. 2,4 V, a prahovým napětím logické jedničky, tj. 2 V. Tento rozdíl je 0,4 V. Obdobně je minimální velikost šumové imunity při výstupu s malou úrovní napětí rozdílem mezi prahovým napětím vstupní nuly, tj. 0,8 V, a maximálním napětím výstupní nuly, tj. 0,4 V. Uvedený rozdíl je 0,4 V.

Dalším statickým parametrem je vstupní proud do jednoho ze vstupů číslicového obvodu, je-li tento vstup na definované úrovni nuly (obvykle na maximální velikosti výstupní nuly). Dále se také uvádí vstupní proud do jednoho ze vstupů číslicového obvodu,

je-li tento vstup připojen na definovanou napěťovou úroveň logické jedničky (obvykle minimální zaručovaná úroveň výstupního napětí logické jedničky a maximální přípustná úroveň napětí, kterou vstup snese bez poruchy).

K určení spotřeby (příkonu) udávají výrobci také proudy ze zdroje při velké a malé úrovni napětí na vstupech. Dalším statickým parametrem, občas uváděným, je maximální zkratový proud výstupu.

Všechny uvedené statické parametry se obvykle zaručují v rozsahu teplot, v nichž může obvod pracovat. Rovněž se pro tyto parametry přesně specifikuje napájecí napětí a pokud to má význam, i způsob zatížení výstupu obvodu. Podrobněji se se způsoby měření statických parametrů čislicových obvodů seznámíme v některém z dalších článků.

spička dřevěný klín pata závěs S₂ konektor P₂

Mechanická konstrukce

Ocelová krabice O rozměrech 32×10×7 cm s odnímatelným dnem tvoří schránku pro jednotku WAA s bateriemi. Pedál tvoří prkénko o rozměrech 28 × 9,5 × 1,5 cm. Pruh příčně žebrované pryže (podlahová krytina z auta) je přilepen na horní stranu pedálu (dává lepší vzhled a zabraňuje klouzání). Kousky pryže mohou být přile-peny i na dolní straně při okrajích pedálu (zabraňují nepříjemnému klapání). Pedál je otočně upevněn závěsem k horní straně kovové krabice na dřevěném klínku. Vzdálenost mezi rovnoběžnou linií pedálu a skříňkou je přibližně 2,5 cm. Páka, která převádí pohyb na potenciometr, je z tlustého ocelového drátu (asi 3 mm). V tomto návrhu je použit drátový potenciometr $1 k\Omega/2 W$. Rotační výseč z dráhy potenciometru je 80°. Výsledná změna odporu potenciometru je 0 až 300 Ω . Potenciometr P_1 je upevněn na jedné z bočních stěn krabice, je poněkud zapuštěn dovnitř a nastavuje se šroubovákem. Změna odporu P_1 je nutná při použití jiného zesilovače nebo zařízení. Žárovka osvětlující fotoodpor je zapojena přes P_3 (500 Ω/2 W, drátový).

Osazení

Než začneme nastavovat P_1 , vytočíme P_3 na maximum. Teprve po nastavení P_1 upravíme úroveň P_3 . Potom připojíme přístroj ke kytaře a zesilovači, který budeme používat. Pomalu zmenšujeme odpor P_1 , až uslyšíme z reproduktoru zvuk podobný vytí. Pak pomalu otáčíme běžcem P_1 až k bodu, kdy tento zvuk ustane.

Zvuk WAA – WAA musí být kovový, ale jemný. Nesmí se podobat šumivému jekotu. Odpor P₁ můžeme poněkud zvětšit, slyšíme-li při provozu jednotky při zmenšování odporu nepatrné zkreslení. (To platí jen tehdy, doprovází-li nežádoucí jev přímý harmonický tón nástroje). Přepínač funkcí pracuje s odporem P₂ přibližně 200 Ω.

porem \hat{P}_3 přibližně 200 Ω .

Pozn. – Fotoodpor můžeme měřit jen při nižších úrovních světla žárovky. Neměříme tedy při maximálním světelném toku. Odpor se zmenšuje se stoupající intenzitou světla nelineárně.

dèstička z čiré slídy

Obr. 3.

WAA-WAA pro kytarový zesilovac

V AR 6/69 jsme vyzvali čtenáře, aby redakci poskytli návod na stavbu tzv. kvákadel pro hudební soubory. Kromě článků, které jsme uveřejnili, přišel k této tematice příspěvek až z Austrálie. Naši australští čtenáři přiší v průvodním dopise: "Posíláme Vám plánek a zapojení přístroje, který se v anglickém světě teenagerů nazývá WAA - WAA nebo WOW. Tato koncepce kvákadla by mohla zajímat čtenáře, kteří mají rádi kytarové efekty. Jednotka může být použita i pro jiný hudební nástroj, který však musí produkovat čistě harmonické tóny. Nehodí se např. pro basu, dobře však vyhoví např. ve spojení s varhanami, harmonikou atd."

Technický popis

Přístroj je v podstatě strhávaný oscilátor; zpětná vazba je však zvolena tak velká, aby nestačila vzbudit vlastní kmity. Zapojení se pak chová jako selektivní zesilovač, který reaguje na vybrané pásmo akustických kmitočtů, zatímco ostatní kmitočty potlačuje. Toto vybrané pásmo lze měnit nahoru nebo dolů nožním pedálem spojeným s potenciometrem. Zvětšením řídicího odporu ve smyčce záporné zpětné vazby se vybrané kmitočtové. pásmo posouvá směrem k hornímu okraji akustického pásma, zmenšení odporu posouvá pásmo směrem k dolnímu okraji kmitočtového pásma akustických kmitočtů.

V původním návrhu sloužil jako řídicí proměnný odpor uhlíkový potenciometr a funkce z normální hry na jednotku WAA – WAA se přepínala paralelním tlačítkem (s odporem 220 kΩ) mezi výstupní a vstupní svorkou. Uhlíkový potenciometr však zanáší do reprodukce nežádoucí praskot a šramot, který se opotřebováním dráhy potenciometru zvětšuje. Tlačítko dává navíc nežádoucí rázy nebo klapání. Proto byl v zapojení

použit fotoodpor řízený intenzitou světla žárovky (obr. 1). Fotoodpor je zařazen na místě proměnného odporu i na místě tlačítka. Změna proměnného řídicího odporu z 0 do 50 k Ω je nutná ke vzniku zvukového efektu (kvákání). Je jen třeba upozornit, že zdroj signálu z kytary musí mít impedanci větší než 50 k Ω .

""Světelný" obvod fotoodporu mění jeho odpor změnou polohy šlapky – pohybem přední poloviny pedálu směrem dolů; opačným pohybem pedálu získáváme efekt "kvákání" (obr. 2).

K dobré citlivosti jednotky s fotoodporem je třeba vybrat dobře fotoodpory a použít žárovky s takovým jasem, aby změna odporu byla při různé intenzitě světla žárovek co nejvýraznější. V originále to byly žárovky 6 V/60 mA. Celek musí být pečlivě kryt proti pronikání jakéhokoli světla zvenčí (obr. 3). Kryt žárovky a fotoodporu je kovový a je uzemněn. V původním zapojení byl použit tranzistor 2N2926, lze však použít i BC108 (popř. čs. typ KC508). V zařízení je vhodné používat jakostní kondenzátory (v originále polyesterové) s co nejmenším ztrátovým činitelem.

Součástky

1 ks – plechová skřiňka 32 × 10 × 7 cm (tloušíka plechu asi 1,5 mm) s odnímatelným dnem; 2 ks – souosé konektory; 1 ks – baterie 9 V s patentkovým konektorem; 1 ks – baterie 6 V s patentkovým konektorem; 2 ks – miniaturní žárovky 6 V/60 mA; 2 ks – pouzdra pro fotoodpory; 1 ks – dvoupólový spinač (S_{1a}, S_{1b}); 1 ks – jednopólové tlačítko (S₂) robustnější konstrukce;

strukce; 1 ks – jednopólový spinač (S₂).

Potenciometry

 $1~ks-2~k\Omega$ uhlíkový (pro ovládání šroubovákem); $1~ks-500~\Omega/2~W~(drátový); <math display="inline">1~ks-1~k\Omega/2~W~(drátový).$

Odpory

(Všechny na zatížení 0,5 W s tolerancí 5 %). 4 ks – 47 k Ω ; 3 ks – 56 k Ω ;

Kondenzátory

2 ks $-0.0033 \, \mu F/160 \, V$; (3,3nF); 1 ks $-0.01 \, \mu F/160 \, V$; 1 ks $-0.047 \, \mu F/160 \, V$; 2 ks $-0.1 \, \mu F/160 \, V$ (všechny plastik, polystyrén); 1 ks $-50 \, \mu F/12 \, V$ elektrolytický (tantalový).

1 ks - BC108 nebo 2N3565 (KC508); 2 ks - ORP12 nebo B8-731-03.

Je možné, že čs. fotoodpory mají jinak konstruovány vývody, takže obr. 3 ne-bude vyhovovat. Rozměry konstrukce jednotky s fotoodporem neuvádíme, protože neznáme normalizované rozměry žárovek a fotoodporů. Také nemůžeme doporučit ekvivalenty fotoodporu, protože nemáme dostatečnou dokumentaci výrobků Tesla. Doufáme, že tento nedostatek nebude na závadu.

-VAMI-

magnetoton Tesla B5

Výrobní závod nám zapůjčil k testování monofonní magnetofon B5 výr. č. 408317. Pro srovnání jsme použili přibližně ekvivalentní výrobek firmy Grundig, TK146. Oba magnetofony mají přibližně shodné vlastnosti, TK146 má navíc možnost automatické regulace záznamové úrovně, B5 má však oproti TK146 dvě rychlosti; základní parametry a výbava jsou však téměř shodné.

Technické údaje B5

Rychlost posuvu pásku: 4,76 cm/s a · 9,53 cm/s

Kolisání rychlosti: ±0,35 %, popř. $\pm 0,2$ %.

Doba záznamu při doporučeném pásku a velikosti cívky 15: 4×180 min., popř. 4×90 min.

Kmitočtový rozsah: 60 až 7 000 Hz, popř. 50 až 14 000 Hz.

Dynamika: 45 dB. Klidový odstup: -42 dB. Převíjecí doba oběma směry při velikosti cívky 15: přibližně 4,5 minuty.

Maximální velikost cívky: 18. Technické parametry zaručeny při použití pásku: AGFA PE41.

Jmenovité vstupní napětí:

mikrofon 0,8 mV (impedance 7,5 k Ω), gramofon 300 mV (impedance 1 M Ω), radio 4 mV (impedance 12 k Ω)

Výstupní napětí: asi 1,6 V (impedance $10^{\circ} k\Omega$)

sluchátka así 1,6 V (impedance 500 až $4~000~\Omega$).

Výstupní výkon: 2 W při zkreslení 10 %. Pracouktor: oválný 80 × 180 mm.

Pracount podmínky: +10 °C až +35 °C
při relativní vlhkosti až 70 %.

Napájení: 110/120/220 V ±10 %, 50 Hz.

Spotřeba: 27 W.

Rozměry: $344 \times 285 \times 130$ mm.

Váha: asi 6,5 kg bez příslušenství. Magnetofon umožňuje snímání (reprodukci) stereofonně nahraných pásků, použije-li se snímací zesilovač AZZ941 a reproduktorová kombinace. K magne-

tofonu B5 lze připojit různé reproduktory (kombinace) o impedanci 8 Ω. Reproduktory s menší impedancí, např. 4 Ω, reprodukci zkreslují.

Jako první část testovacího postupu isme zvolili tentokráte laicky spotřebitelský názor. Vystavili jsme oba přístroje v Institutu pro průzkum trhu a zboží a náhodně příchozím jsme předkládali shodnou otázku: Magnetofon č.

(Grundig) stojí na trhu 100 jednotek měny. Kolik byste byli při laickém srovnání ochotni zaplatit za magnetofon č. 2 (Tesla) za předpokladu, že technické parametry obou přístrojů jsou přibližně stejné (zapojení B5 je na obr. 1). Na tuto otázku jsme obdrželi více než 150 odpovědí a jejich průměr se shodoval v tom, že za magnetofon č. 2 (Tesla) by byli zájemci ochotni dát maximálně 60 % ceny magnetofonu 1 (Grundig).

Je to pouze vnější dojem na spotřebitele, který okamžitě deklasuje uvedený přístroj ve srovnání s dokonale provedeným výrobkem stejné třídy o 40 %. Tento fakt se sice na vnitřním trhu prakticky nijak neprojeví, ale pro jakýkoli export do dolarové oblasti představuje zcela zbytečnou a nezdůvodnitelnou devizovou ztrátu.

Tím opět chceme upozornit na zdánlivě neřešitelnou a nejožehavější otázku – na vnější vzhled našich výrobků (pravidelná výtka v našich testech).

A nyní k samotnému testu. K prvnímu překvapení dojde při zapnutí přístroje – magnetofon má velmi hlučný chod. Hlučnost testovaného přístroje byla tak velká, že velmi zřetelně rušíla reprodukci při slabší hlasitosti (v obytné místnosti). Rušivý hluk se skládá z šumění a tlumeného rachocení a nemění se podstatněji ani při přepnutí na nižší rychlost.

Zatímco rychlý chod vzad bylo možno pravou páčkou zařadit velmi lehce, při řazení rychlého chodu vpřed došlo ke zřetelnému drhnutí mechanismu. Ostatní funkce magnetofonu byly bez závad. Vážnou připomínku však máme

k označení horní a dolní stopy. Domníváme se, že označení barvami je zcela nedostatečné, neboť nového majitele nutí nezbytně prostudovat návod a pamatovat si, která barva znamená horní a která dolní stopu. Domníváme se, že značenís top barvami je jednou z oněch přeloučských "specialit za každou cenu". Když na ní z nepochopitelných důvodů výrobce trvá, ať tedy graficky vyznačí polohu barevného pole tak, aby bylo jasné na první pohled, která stopa je nahoře a která dole. V této souvislosti připomínáme, že ani označení stop u ŤK146 není zcela logické.

Další připomínka se týká ovládacích knoflíků na čelní reproduktorové stěně. Knoflíky nejsou vhodně umístěny vzhledem k použitému druhu nosného držáku. Pokud je držák připevněn, překáží v ovládání knoflíku magnetofonu. Nedomníváme se, že je správné nutit zá-kazníka, aby držák vždy před použi-tím odejmul; jsme přesvědčeni, že buď měly být jinak vyřešeny ovládací prvky, anebo jinak vyřešen držák. Jako příklad uvádíme právě typ TK146, u něhož je způsob připevnění držáku zcela dokonalý (stejný způsob používá dnes mnoho zahraničních výroboů). Ohebný držák není totiž pro podobný přístroj vůbec vhodný.

Všeobecný názor na vzhled přístroje jsme uvedli již v úvodu, je snad na místě určit přesněji hlavní nedostatky. Snad by to bylo možné vyjádřit jednou větou, a to tak, že použití plastických hmot je zcela na místě, avšak přístroj nesmí již na dálku upozorňovat, že je z levné plastické hmoty. V zahraničí se povrchy moderních kuchyňských robotů anebo vysavačů diametrálně liší od povrchové úpravy magnetofonu. Magnetofon B5 má však povrch naprosto stejný.

Jsme však upřímně rádi, že nás uspokojilo alespoň vyřešení indikátoru záznamové úrovně, proti němuž jsme vznesli kritiku v minulých testech. Domníváme se, že jeho umístění je nyní jednak dostatečně estetické, jednak i velmi účelné, neboť umožňuje čtení jak zepředu, tak i shora.

Elektrická funkce magnetofonu - jak jsme již ostatně u výrobků přeloučské Tesly zvyklí – byla i v tomto případě bezvadná. Nehodláme zveřejňovat detailně naměřené charakteristiky a odstupy, konstatujeme pouze, že všechny elektrické parametry včetně kolísání od-povídají velmi dobrému světovému standardu (a technickým podmínkám) a nelze mít nejmenší námitky.

Z hlediska opravitelnosti přístroje se nám nezdá právě nejvhodnějším řešením zapuštění šroubů dolního víka přímo do jeho poměrně měkké hmoty a jsme přesvědčeni, že při častějším rozebírání

se tato místa poškodí. Rovněž přilepování kabelových forem naplocho na nosník motoru textilní páskou se nezdá být nejlepším řešením. Odklapění desky plošných spojů není vhodně vyřešeno ani u tohoto typu, v každém případě však proti minulým typům představuje v tomto směru po-

A na závěr naše poslední a možná nejdůraznější připomínka. Papírová krabicc, v níž se přístroj dodává, nese na obou delších stěnách veliké nápisy: Pozor,

146 (amatérské! 11 11) 40

Obr. 1. Zapojení magnetofonu B5. Kontakty přepínače stop jsou označeny A a B a jsou kresleny v poloze A + B. Kontakty přepínače reprodukce-záznam jsou označeny písmenem Z a kresleny v poloze reprodukce. Kontakty přepínače rychlosti jsou označeny 4, popř. 9 (rychlost 4,76 cm/s nebo 9,53 cm/s). Kontakt V je kreslen v klidové poloze (při funkci VPŘED je kontakt otevřen)

nepokládej mě na bok! Na bok se v tomto případě asi rozumí vzhledem k umístění varování – do pracovní polohy naplocho. To je ovšem provozní poloha tak tomu rozumí zákazník - a pojme ho hrůza nad tím, co by se asi mohlo stát. V zasvěcených kruzích se dozví, že v poloze na boku může dojít k deformaci závěsů motoru a poruchám při převíjení. To by ale z konstrukčního hlediska spíše odpovídalo případu, kdy by magnetofon byl postaven na boční krátkou stěnu. Vznikají tedy nejasnosti, dohady a výtečně se posiluje nedůvěra v uvedený přístroj. Nevíme, kdo ve výrobním závodě tyto nálepky vymyslel, nemůže však existovat horší způsob propagace vlast-ního výrobku! A jestliže opravdu nedostatky jsou, pak se přimlouváme za to, aby ony i tyto nálepky zmizely v době co nejkratší, neboť tento přístroj s výbornými elektrickými vlastnostmi si to rozhodně zaslouží.

Zajímavý magnetofon

Něco, co tu ještě nebylo! Budete-li pozorně číst časopis pro spotřebitele a výrobce Standard, dozvíte se o fantastickém magnetofonu firmy Stern-Radio Sonneberg, jehož vlastnosti jsou vynikající – jen je otázka, kdo mohl "stvořit" následující údaje o magnetofonu: ..." reprodukuje záznam nanejvýš s desetiprocentním šumem (!), což má tedy pro srozumitelnost zanedbatelný význam (!); tento maximální stupeň šumu se přitom objevuje až při 0,7 W a 1 000 Hz. Rychlost navíjení pásky kolísá v rozmezí tří procent. Magnetofon má univerzální použití."

Takže z uvedeného vyplývá, že je třeba vyhýbat se kmitočtu 1 000 Hz a výkonu nad 0,7 W, neboť pak šum v reprodukci bude 10% – do té doby a na jiných kmitočtech bude vše v po-

řádku.

Je až neuvěřitelné, že časopis "pro spotřebitele a výrobce" může uveřejnit takový do očí bijící nesmysl.

Standard č. 8/1969, str. 23. -ou-

Dvě křemíkové varaktorové diody s výstupním výkonem do 17 W na kmitočtu 2 GHz vyrobila firma Motorola Semiconductors. Typ MV1809C pracuje s minimální účinností 52 % při vstupním výkonu 20 W, typ MV1809Cl má zaručen minimální účinnost 58 % při vstupním výkonu 25 W. Lze s nimi získat výstupní výkon 10,4 nebo 14,5 W ve zdvojovačích kmitočtu z 1 GHz na 2 GHz. Mají mezní závěrné napětí 75 V, sériový odpor 0,25 Ω, vlastní kapacitu 9,6 až 14,4 pF a 10,8 až 13,2 pF při závěrném napětí 6 V. Diody jsou vhodné pro použití v telemetrických zařízeních a v budicích nebo koncových stupních vysílačů pracujících v pásmu S. Sž

4 Amatérske AD 11 147

Prijimat Rio &

Rio AM je kapesní tranzistorový přijímač s rozsahem středních vln s feritovou anténou. Přijímač je moderní koncepce a využívá všech předností tranzistorové techniky. Svým estetickým vzhledem, dobrou funkcí a reprodukcí se Rio AM řadí mezi lepší přijímače tohoto druhu.

Technické údaje

Napájecí napětí: 9 V.

Osazení tranzistory: T_1 - AF271, T_2 - AF260/R (tran-

zistor označen červe-

nou tečkou),

T₃ - AF260/P (tranzistor označen mod-

rou tečkou), T₄ - AC542/B, T₅ - AC550/B,

T₆ - AC550/B. Detekční dioda: AA120, germaniová.

Vlnový rozsah: SV 520 až 1620 kHz (185 až 576 m).

Mezifrekvence: 452 kHz.

Výstupní výkon: 150 mW pro zkreslení

10 %. Reproduktor: 40 Ω, 0,2 W.

Popis zapojení

Vstupní obvody

Vstupní laděný obvod se ladí otočným kondenzátorem C_2 . Obvod je vázán indukčně cívkou L_2 na bázi prvního tranzistoru, který pracuje jako kmitající aditivní směšovač v zapojení se společným emitorem. Předpětí pro nastavení parcovního bodu se na bázi tranzistoru přivádí přes odpor R_2 .

Oscilátor

Obvod oscilátoru tvoří cívky L_3 , L_4 a vazební kondenzátor C_6 . Oscilátor se ladí změnou kapacity kondenzátoru C_3 . Rozdílné kapacity obou částí ladicího kondenzátoru zajišťují souběh vstup-

ního obvodu a obvodu oscilátoru bez souběhového kondenzátoru. Laděný obvod oscilátoru je vázán k tranzistoru oddělovacím kondenzátorem C_6 z odbočky cívky L_3 , L_4 . Zpětnovazební napětí se indukuje do cívky laděného obvodu vinutím L_5 v obvodu kolektoru. K omezení teplotních změn je pracovní bod tranzistoru stabilizován pracovním odporem R_3 v emitoru.

Mezifrekvenční zesilovač

V obvodu kolektoru tranzistoru kmitajícího směšovače T_1 je zařazen první mf transformátor, naladěný na mezifrekvenční kmitočet. Cívkou L_{10} je obvod indukčně vázán na bázi tranzistoru T_2 , který pracuje jako první (řízený) stupeň mezifrekvenčního zesilovače. Pracovní bod tranzistoru T_2 (určený napětím z děliče z odporů R_5 , R_{22} a R_{10}) se posouvá v závislosti na velikosti přiváděného signálu. Změnou velikosti signálu se mění proud diodou D_1 a odporem R_{22} , čímž se mění i zesílení tohoto stupně.

Emitor tranzistoru T_2 je spojen s kostrou přístroje přes odpor R_8 , blokovaný kondenzátorem G_8 , což zvětšuje stabilitu stupně; kolektor tranzistoru je spojen s druhým mezifrekvenčním transformátorem (cívka L_{11} a kondenzátor G_{19}). Vazba na bázi dalšího tranzistoru je opět indukční, a to cívkou L_{12} . Tranzistor T_8 , který pracuje rovněž jako mezifrekvenční zesilovač, je zapojen podobně jako předchozí stupeň.

Zesilovací stupeň s T_3 je stabilizován odporem R_9 v obvodu emitoru tranzistoru; odpor je navíc blokován kondenzátorem C_{10} . V obvodu kolektoru

 T_3 je zařazen třetí mf transformátor. Vazebním vinutím L_{14} mf transformátoru se přivádí signál do obvodu demodulátoru. Ve druhém zesilovacím stupni je k dosažení maximálního zesílení použit neutralizační kondenzátor $C_{\rm x}$. Ke vhodnému přizpůsobení všech tří mf obvodů impedancím příslušných tranzistorů je záporné napětí přivedeno vždy na odbočku příslušného vinutí mf transformátoru.

Demodulace

Demodulační obvod, v němž se demoduluje mezifrekvenční signál, se skládá z vazebního vinutí L_{14} , germaniové diody D_1 a pracovního odporu R_{22} , přemostěného k potlačení vysokofrekvenčních složek kondenzátorem C_{11} . Detekované napětí se jednak zesiluje v budicím a koncovém nf zesilovači, jednak se zavádí přes odpor R_{10} k řízenému stupni mezifrekvenčního zesilovače.

Budicí zesilovač a nf koncový stupeň

Z běžce regulátoru hlasitosti se přivádí nízkofrekvenční signál přes oddělovací elektrolytický kondenzátor C_{13} na bázi čtvrtého tranzistoru, pracujícího jako budicí zesilovač. Pracovní bod tranzistoru T_4 je nastaven odpory R_{12} a R_{13} . Kondenzátor C_{15} v kolektorovém obvodu potlačuje vyšší kmitočty nízkofrekvenčního signálu.

Souměrný koncový stupeň pracující ve třídě B a osazený tranzistory T_5 a T_6 je vázán s předzesilovačem budicím transformátorem s vinutími L_6 , L_7 a L_8 , který dodává bázím obou koncových tranzistorů signál v protifázi. Zesílený signál se pak vede na reproduktor.

Obr. 2. Rozložení součástek na desce s plošnými

Napětí na tranzistorech

V tabulce jsou uvedena napětí na elektrodách tranzistorů, měřená při jmenovitém napájecím napětí elektronickým stejnosměrným voltmetrem.

	T_1	T ₁	T ₃	T4	T ₅	T ₆
<i>U</i> _C [V]			7,3	5,5		4,5
<i>U</i> B (V)	1,2	0,6	0,6	1	4,5	0,15

Nastavování přijímače

Odběr proudu

Dříve, než přistoupíme k prověřování nf předzesilovacího stupně a dalších obvodů přijímače, je nutné předem prověřit odběr proudu přijímače bez signálu (potenciometr hlasitosti na nej-menší hlasitost). Odběr by se měl pohybovat mezi 4 až 15 mA. Při nf výkonu 50 mW by měl být odběr proudu asi 20 mA. Proud při maximálním výkonu bez zkreslení by měl být asi 35 mA.

Nízkofrekvenční zesilovač

Citlivost nf stupně měříme tak, že z tónového generátoru (přes odpor 3 kΩ) přivádíme signál o kmitočtu 1 000 Hz na běžec potenciometru, přičemž je potenciometr vytočen na maximální hlasitost. Souběžně pozoru-jeme výstupní signál na osciloskopu. Nf zesilovač je v pořádku tehdy, vybudí-li jej vstupní napětí 5 mV na výstupní výkon 50 mW, tj. na $U_{\text{výst}} = 1,45 \text{ V.}$ Užitečný výstupní výkon bez zkreslení nesmí být menší než 130 mW. Kmitočtový rozsah nf zesilovače (vzhledem k 1 000 Hz) je 300 až 5 500 Hz, ±3 dB.

Mf zesilovač

Ukazatel stupnice přijímače nastavíme do takové polohy, která odpovídá uzavřenému ladicímu kondenzátoru. Na bázi tranzistoru T₁, AF271, přivedeme přes kondenzátor 4 700 pF signál o kmitočtu 452 kHz. Signál z generátoru má být v rozmezí 50 až 100 µV. Mí transformátory ladíme na maximální výstupní napětí, přičemž citlivost celého mf zesilovače nesmí být menší než 20 μV. V případě, že je citlivost menší, je nutné seřídit každý obvod mf zesilovače zvlášť, a to přivedením signálu postupně na bázi T_3 , T_2 a T_1 , přičemž je žádoucí, aby se citlivost (pro výstupní výkon 50 mW) pohybovala v následujících hranicích:

signál na bázi AF260 (T_3) ... < 4 mV, na bázi AF260 (T_2) ... < 200 μ V, na bázi AF271 (T_1) ... < 20 μ V.

Vf stupeň

1. Výstup ze signálního generátoru

připojíme na rámovou anténu. Signální generátor nastavíme na kmitočet 520 kHz s napětím na výstupu z generátoru asi 50 μV.

3. Ukazatel stupnice přijímače nastavíme do polohy odpovídající uzavřenému ladicímu kondenzátoru a jádrem cívky oscilátoru (L_3, L_4, L_5) se naladíme na zavedený signál.

Signální generátor nastavíme na 1 620 kHz a výstupní napětí asi na 50 μV.

5. Ukazatel stupnice přijímače nastavíme do polohy odpovídající otevřenému ladicímu kondenzátoru. Změnou kapacity trimru C_5 naladíme oscilátor na zavedený signál.

Seřizování opakujeme alespoň třikrát.

Signální generátor nastavíme na 570 kHz a výstupní napětí z generátoru asi na 50 µV.

8. Otáčením ladicího kondenzátoru se naladíme na zavedený signál a pohybem vstupní cívky L₁ a L₂ na feritové tyčce nastavíme výstupní signál na maximum.

9. Signální generátor nastavíme na 1 400 kHz a výstupní napětí z generátoru asi na 50 µV.

10. Otáčením ladicího kondenzátoru vyhledáme zavedený signál a trimr C4 seřídíme tak, aby byl výstupní signál maximální.

11. Seřizování opakujeme asi třikrát.

12. Citlivost pro střední vlny (signál z rámové antény na vzdálenost 100 mm) pro výstupní výkon 50 mW je asi: při 570 kHz < 160 μV

při 5/0 kHz < 160 μ V, při 1 400 kHz < 120 μ V. Při seřizování mf a ví stupňů pracujeme s co nejslabšími signály. Seřizování ví stupně zakončujeme vždy nastavením trimru C4. Rozsah středních vln je od 520 do 1 620 kHz s povolenými odchylkami od 510 do 1 650 kHz a od 525 do 1615 kHz. Povolená odchylka skutečného příjmu stanic vzhledem ke stupnici je ± 2 mm.

13. Napětí oscilátoru měřené na emitorovém odporu prvního tranzistoru je v mezích 100 až 150 mV.

14. Je-li přijímač v pořádku, je při nastavení potenciometru na minimální hlasitost celková spotřeba 4 až 15 mA. Napětí na bázich, kolektorech a emi-torech tranzistorů jsou uvedena i ve schématu. Povolená odchylka od napětí uvedených ve schématu je \pm 10 %.

anténa -----NA VKV

Juraj Bartok

V odbornej literatúre sa už mnoho napísalo o anténach nového typu. Zvlášť u prenosných radioprijímačov VKV sa naráža na estetickú otázku, pokiaľ ide o vysúvacie prútové antény. Vopred je treba upozorniť na to, že nebudem popisovať žiadnú zázračnú anténu, ale takú, ktorá je dnešnými doslupnými technickými prostriedkami realizovateľná a poslúží svojmu účelu. Izbovú otočnú anténu pre VKV vyvinuli vo výskumnom laboratóriu firmy Philips a dr. ing. G. Schieffer napísal o nej stručnú správu v čísle 11/68 časopisu "Radioschau".

Aj pre tieto antény platia fyzikálne zákony, ktorých si musíme v tejto sú-vislosti povšímnúť. Dôležitý poznatok je ten, že relatívna šírka prenášaného pásma $\frac{\Delta f}{f_0}$ a účinnosť nemôže byť väčšia, ako určujú obmedzujúce podmienky závislé na rozmeroch antény. Tieto závislosti sa dajú vyjadriť vzťahom:

$$\frac{\Delta f}{f_0} \eta \ge 2 \left(\frac{\pi l_{\max}}{\lambda_0}\right)^3$$

kde $\frac{\Delta f}{f_0}$ je relatívna šírka pásma,

účinnosť antény, l_{\max} dľžka antény,

vlnová dĺžka, patriaca k fo. Tento vzťah jednoznáčne ukazuje, ako na sebe závisia relatívna šírka pásma a účinnosť. Doterajšie pokusy ukazujú, že v technike VKV, popri potrebnej relatívnej šírke pásma, zostáva maximálna dosiahnuteľná účinnosť pod

10 %.
Predovšetkým je potrebné k tomuto problému povedať, že u zabudovanej antény VKV sú realizovateľné možnosti veľmi blízko kritických hodnôt, ktoré fyzikálne zákony pripúšťajú. Výsledky môžu byť len vtedy úspešné, keď zabezpečíme tieto podmienky:

70 Amatérské! 1 1 1 149

- 1. Pretože relatívna šírka pásma je malá, je potrebné anténu na požadovanú vysielaciu stanicu vždy naladiť. Týmto samozrejme prijímač získa väčšiu selektivitu, ale ladiaci obvod bude komplikovanejší.
- 2. Zabudovaná miniatúrna anténa VKV má menšie percento účinnosti, čo kompenzujeme tranzistormi s malým šumom a vhodným pracovným kmitočtom. Citlivosť prijímača determinuje hodnota šumu.
- 3. Miniatúrne antény s malou účinnosťou majú byť také, aby mali malú smerovosť. To znamená, že vodorovná charakteristika nemá mať nulové hodnoty-v žiadnom uhle.
- 4. Zabudovaná miniatúrna anténa VKV má byť necitlivá na vplyvy okolitých predmetov (napr. dotek ruky apod.). Táto podmienka je splniteľná jedine u feritového dipólu.

V týchto štvroch bodoch nadhodené úvahy jednoznačne ukazujú, že miniatúrne antény VKV sú realizovateľné najlepšie formou feritových dipólov. Otázka rozmerov miniaturných feritových antén je predmetom skúmania viacerých odborných inštitúcií.

Feritová anténa sa skláda z valcovitého feritu a z "cievky" navinutej na ňom. Na obr. l je smerová charakteristíka a polarizácia. Anténnu cievku je potrebné naladiť paralelným kondenzátorom na požadovaný kmitočet f_0 . Prijímaný signál sa dostane na vstup zariadenia cez väzobnú cievku. Na obr. 2 je náhradná schéma tejto antény VKV. Na obrázku je $L_{\rm a}$ indukčnosť anténnej cievky, C ladiaca kapacita, $R_{\rm v}$ stratový odpor anténneho obvodu. $R_{\rm s}$ vyžarovací odpor antény a $L_{\rm v}$ indukčnosť väzobnej cievky. Odpor $R_{\rm v}$ e možné určiť zo vzťahu

$$R_{\rm v} = \frac{2\pi f_0 L_{\rm a}}{Q}$$

Relatívnu šírku pásma je možné po určení $R_{\rm v}$ vypočítať takto:

$$\frac{\Delta f}{f_0} = 2 \frac{R_s + R_v}{2\pi f_0 L_a}$$

Účinnosť antény je možné určiť zo vzťahu:

$$\eta = rac{R_{
m s}}{R_{
m s} + R_{
m v}} = rac{R_{
m s}}{R_{
m s} + \left(2\pi f_0rac{L_{
m a}}{Q}
ight)} \, .$$

Problém dosiahnutia čo najlepších parametrov spočíva vo veľkom priereze feritu a v jeho veľkej permeabilite. Toto samozrejme môže byť vyriešené len v rámci kompromisu, pretože podľa obr. 3 je možné dosiahnuť veľkú hodnotu μ_{ef} len úzkou feritovou tyčkou. Na obr. 3 je efektívna permeabilita závislá na pomere l/d (μ_r - relatívna permeabilita ako parameter). Podľa praktických pokusov sa dá tvrdiť, že vyhovujúci pomer l/d u feritovej tyčky pre príjem VKV je v rozmedzí 8 až 10.

Na základe predcházajúcich úvah bola odvodená konštrukcia antény na obr. 4.

Na obrázku je A špeciálne vyvinutá feritová tyčka (Ni-Zn-Co), ktorá má pri 100 MHz relatívnu permeabilitu μ_r asi 25 až 30 a stratový činiteľ na tom istom kmitočte je menší ako 1 %.

Tyčka je v prostriedku predelená. V takto vzniknutej časti je na obrázku znázornená väzobná slučka G, ktorá je v náhradnej schéme uvedená ako cievka Lv. Správnymi rozmermi väzobnej slučky a správnym umiestnením možno dosiahnuť optimálne prípustný šum.

Indukčnosť La (obr. 2) zhotovíme z medeného plechu B, ktorý zakryje 80 % povrchu feritovej tyčky. Pre potlačenie, poprípade vykompenzovanie rozptylovej kapacity je ladiaca kapacita zložená z piatich dielčich kondenzá-torov. Tieto kondenzátory sú umiestnené pozdľž feritovej antény symetricky. Z týchto kondenzátorov sú tri kera-mické paralelne pripojené C, dve para-lelne pripojené kapacitné diódy D (typu BB103). K naladeniu diód sú potrebné odporý F.

K obmedzeniu vonkajších vplyvov (tiež citlivosti vôči približeniu ruky), sú pripojovacie body F pozdľž pozdľžnej osi feritu čo do nastavenia kritické.

Dôležité údaje antény

Dĺžka feritovej tyčky: 180 mm. Priemer ferit. tyčky: 18 mm. Šírka závitu: 140 mm. Priemer väzobnej cievky: 6 mm. 86 až 104 MHz. Laditelnosť v pásme: Ladiace napätia kapacitných diód:

3 až 25 V. 3 × 10 pF. Fixné ladiace kapacity: Akosť anténného obvodu: 130.

Účinnosť antény: 4 až 6 %.

Podobnú anténu VKV použili v pri-jímači typu Sagitta firmy Philips. VKV predzosilňovač, oscilátor a zmiešavací obvod sú schematicky znázornené na

Obr. 4.

Kapacitné diódy sa ladia potencio-metrom P. Prijímač je možné pripojiť aj na vonkajšiu anténu. V tomto pri-pade je možné využiť aj vplyv antény VKV na selektivitu prijímača. V tomto prípade je potrebné na vostavané anténe VKV umiestniť ešte ďalšiu väzobnú cievku a na ňu viazať vonkajšiu anténu. So spomínanou anténou VKV je možné dosiahnuť podobné výsledky ako s vonkajším dipólom alebo s dobrou izbovou anténou. Pri spomenutej malej účinnosti tejto antény to hovorí v jej prospech.

S ďalším vylepšovaním takýchto antén je možné počítať vtedy, keď sa objavia ferity s väčšou permeabilitou a kapacitné diódy s menšími stratami.

Literatúra

Rádiótechnika (MLR) 11/69, str. 410.

Obr. 5.

Lineārnī tranzistorový PA pro

Jiří Bandouch, Pavel Šimík

(Dokončení)

Chlazení tranzistorů

Zvolíme-li pro koncový stupeň zapojení podle obr. 6, je třeba použít chladicí blok izolovaný od šasi zařízení, nebo upevnit koncový tranzistor na šasi a odizolovat slídovou destičkou. Zvláštní chladicí blok je nevýhodný, neboť jeho výroba je složitá a blok zabírá velký prostor. Izolační slídová destička zase zvětšuje přechodový tepelný odpor.

Výhodnější je uspořádání podle obr. 9, které dovoluje spojit kolektor galvanicky s šasi a umožňuje tedy připevnit tranzistor přímo na šasi. Zapojení z obr. 6 se pak upraví podle obr. 10

Nebude-li v některých případech (malé h21E koncového tranzistoru) stačit dosažený výstupní výkon budiče, mů-žeme jej zvětšit paralelním zapojením dvou tranzistorů se symetrizačními odpory $R_{\rm E1}$, $R_{\rm E2}$, které zajišťují rovnoměrné rozdělení zatížení mezi oběma tranzistory. Obě základní varianty jsou na obr. 12.

Obr. 9. Původní zapojení, které vyžaduje izolovaný chladicí blok (a), nové zapojení, které umožňuje montáž tranzistoru přímo na šasi (b)

Technické údaje popisovaného vzorku

Pracovní kmitočet: 3,5 až 3,8 MHz. Výkon (CW): 40 W. Příkon: 75 W (maximálně 100 W).

Výstupní impedance: 75 Ω.

Napájeci napětí: 24 V (max. 30 V).

Osazení: KF504 – předzesilovač,

2 × KF508 – budicí stupeň,

KU605 – koncový stupeň, KC508, 3NU72 – regulační stupeň,

2 × KA501 - teplotní stabilizace.

Chlazení: chladicí desku tvoří šasi. Ochrana proti proudovému přetížení: elektronická pojistka.

Popis praktického zapojení

Celkové schéma vyzkoušeného koncového stupně pro pásmo 80 m je na obr. 13. Všechny stupně byly postaveny podle uvedených zásad. Celkové zesílení je navrženo s dostatečnou rezervou, takže stačí budicí výkon dodaný tranzistorovým směšovačem, který směšuje na velmi nízké výkonové úrovni. Tato nízká výkonová úroveň vylučuje strhávání řídicího oscilátoru signálem SSB (kmitočtovou modulaci), což se u tranzistorových směšovačů projevuje dosti často, snažíme-li se dostat již přímo ze směšovače větší výkon (řádově mW).

První stupeň je osazen tranzistorem T₁ (KF504) a má zajištěnu teplotní stabilizaci emitorovým odporem 15 Ω, což vyhovuje z hlediska velmi malého zatížení tohoto tranzistoru. Maximální kolektorový proud se pohybuje kolem 30 mA. Klidový kolektorový proud nastavujeme potenciometrem P₁ asi na 3 mA.

Další stupeň, osazený paralelně zapojenými tranzistory T_2 , T_3 (KF508), má emitorové odpory $10~\Omega$, což je vyhovující kompromis pro únosnou ztrátu budicího výkonu pro tento stupeň a pro ještě dobrou teplotní stabilizaci, která je nutná vzhledem k velké kolektorové ztrátě tranzistorů. Klidový pracovní bod nastavujeme potenciometrem P₂ asi na 12 mA pro oba tranzistory. Pro vybuzení koncového stupně ve třídě B, osazeného tranzistorem KU605, je společný kolektorový proud tranzistorů T_2 a T_3 asi 100 mA (odpovídá výkonu asi 1 W), takže je zde rezerva více než 100 % pro případné vybuzení koncového stupně s automaticky řízeným pracovním bodem.

V koncovém stupni s tranzistorem T4 (KU605) je již v předpěťovém obvodu použit tranzistorový regulátor. Koncový stupeň tedy pracuje ve třídě B, neboť předpětí je v klidovém i ve vybuzeném stavu téměř konstantní (změna max. 50 mV). Pro zlepšení stabilizace předpětí je regulátor trvale zatížen odporem $R_z = 56 \Omega$. K zamezení posuvu pracovního bodu regulačního tranzistoru T₆ vlivem ví napětí je v obvodu jeho báze zapojen vysokofrekvenční filtr z tlumivky a kondenzátoru 470 pF. Teplotní stabilizace koncového tranzistoru toru je zabezpečena dvěma diodami KA501 (D_1, D_2) , které jsou přitmeleny na pouzdro koncového tranzistoru T_4 , takže při zahřátí dojde jak u diody báze-emitor tranzistoru, tak u křemíkových diod k zmenšení úbytku napětí v propustném směru. Zmenšený úbytek na diodách je i na bázi tranzistoru T6 regulačního stupně, který tím zmenší předpětí koncového tranzistoru a tím i jeho klidový kolektorový proud.

Obr. 10. Zapojení zesilovače, které dovoluje spojit kolektor výkonového tranzistoru s šasi. Teplotní stabilizaci obstarává emitorový odpor RE. Toto zapojení je vhodné jen pro malé výkony

Nastavování budicích stupňů

Nejprve nastavime obvod tranzistoru T_1 . Na vazební vinutí L_2 připojíme odpor asi 25 Ω s vf voltmetrem nebo malou žárovku. Přes ochranný odpor asi 500 Ω připojíme napájecí napětí a nastavíme pracovní bod. Pomalu zvětšujeme budicí proud a současně dolaďujeme kolektorový rezonanční obvod. Je-li stupeň sta-bilní, můžeme ochranný odpor zmenšit a potom jej oplně vypustit. Buzení na-stavujeme maximálně tak velké, aby tekl kolektorový proud 30 mA. S vyřazeným ochranným odporem ještě přesně nastavíme pracovní bod a můžeme připojit další stupeň. Vazební vinutí L4 zatížíme odporem asi 12 Ω nebo odpovídající

Obr. 11. Zapojení zesilovače, které dovoluje spojit kolektor výkonového tranzistoru s šasi. Teplotní stabilizaci zajištuje dioda přitmelená na pouzdro tranzistoru. Toto zapojení je vhodné pro střední výkony, pro větší nahradíme R₁ a R₂ tranzistorovým regulátorem

Obr. 12. Paralelní provoz dvou tranzistorů pro dosažení větších výstupních výkonů

Obr. 13. Lineární zesilovač SSB 40 W. Tranzistory T_2 a T_3 jsou v chladicím hliníkovém bloku o rozměřech $20 \times 30 \times 15$ mm, který je připevněn k šasi. Tranzistor T_4 je upevněn přímo na šasi z hliníkového plechu tl. 2 mm (celková plocha 720 cm²). Ūdaje cívek: L_1-20 z drátu o \varnothing 0,35 mm CuP na kostřičce o \varnothing 8 mm s jádrem, L_2-4 z tímítěž drátem na L_1 , L_3-14 z drátu o \varnothing 0,5 mm CuP na kostřičce o \varnothing 8 mm s jádrem, odb. na 9. z, L_4 4 z drátu o \varnothing 0,8 mm CuP na L_3 , L_5-11 až 13 z drátu o \varnothing 1 mm CuAg na \varnothing 20 mm (keramika), dělka vinutí 20 mm, odb. na 5. a 9. z (nastaví podle PSV), T_1 – na tělísku odporu 1/4 W, L_2 — asi 40 L_3 hlytoproventy chyběstymiska 40 L_3 hazi delka kaza L_3 hlytoproventy chybéstymiska 40 L_3 hazi delka kaza L_3 hlytoproventy $L_$

(V obrázku chybř tlumivka 40 μH mezi dolním koncem L₄ a kolektorem T₅)

žárovkou. Zdroj připojíme přes ochranný odpor asi $50~\Omega$ a postupujeme stejně jako u prvního stupně. Změnou velikosti buzení nastavíme kolektorový proud 100 mA a přibližně zjistíme účinnost stupně.

Teprye když se přesvědčíme, že je účinnost dostatečná (alespoň 40 %), můžeme zkusit plný výkon stupně (již bez ochranného odporu), což je při 200 až 250 mA kolektorového proudu. Zvětšovat kolektorový proud nad 250 mA nemá význam, neboť to vede ke značnému přetěžování tranzistorů vlivem rychle klesající účinnosti.

Elektronická pojistka

Nejnáročnější je seřízení koncového stupně s tranzistorem KU605. Chceme-li se vyvarovat zničení tranzistoru KU605, zhotovíme si pro první pokusy, popří-padě i pro běžný provoz elektronickou pojistku, která vypne, překročí-li proud odebíraný ze zdroje předem nastavenou velikost. Autorům se popisovaná po-jistka velmi osvědčila a mohou s určitostí tvrdit, že bez jejího použití se laborování s koncovým stupněm stává velkým rizikem.

Vznikem parazitních oscilací a na-kmitáváním koncového stupně dochází k velkým proudovým špičkám, které mohou snadno zničit koncový tranzistor energií akumulovanou ve filtračních kondenzátorech síťového zdroje (pokud nepoužíváme elektronickou pojistku). K tomuto nakmitávání může docházet při modulačních špičkách, při manipulaci s ovládacími prvky (např. při ladění koncového stupně) atd. Proudové špičky trvající řádově desítky ms nejsou běžným ručkovým měřidlem indikovány, takže si jich při laborování s koncovým stupněm ani nevšimneme a upozorní nás na ně teprve opakované vypínání pojistky. Je třeba mít stále na paměti, že tranzistory (na rozdíl od elektronek)

jsou na krátkodobé přetížení velmi choulostivé. Je tedy při vývoji a uvádění do chodu elektronická pojistka nezbytná. Zapojení pojistky a zdroje pro celý koncový stupeň je na obr. 14. Odpor R_N vypočítáme ze změřeného zesilovacího činitele β tranzistoru T_2 při maximálním vypínaném proudu:

$$R_{\rm N}=0.7\,\frac{\beta_0 U}{I_{\rm vyp}}\,$$

kde U je napájecí napětí pro koncový stupeň (asi 30 V) a I_{vyp} vypínací proud (4 A). Odpor R_{s} nelze s dostatečnou přesností vypočítat. Zhotovíme si proto z měděného izolovaného drátu odpor $1~\Omega$ a po zapojení do pojistky zkontrolujeme vypínací proud. Zkracováním drátu potom nastavíme požadovaný vy-pínací proud 4 A. Máme-li pojistku zapojenu do obvodu koncového stupně, můžeme již bez obav přistoupit k jeho nastavování.

Nastavování koncového stupně

Místo antény připojíme zatěžovací odpor 75 Ω. Stačí dva paralelně zapo-2x6NZ70 2NU72 s chlad.deskou jené půlwattové odporý 150 Ω, pono-100 řené do malého kalíšku s vodou. Takový -24 V 4 x 33NP70 (4 x K:Y708) GC500 KY701 -30 V koncový stupeň transformátor typ 551 Elektrokov M1 M22 2NU74 bez chlad desky 2k2 13G/35 v KY721+25 cm2AI start KY708 bez chlazenl 12k 330

Obr. 14. Zdroj a elektronická pojistka koncového stupně. Zvětšení úbytku napětí na odporu $R_{
m s}$ vyvolá otevření tranzistoru T_1 a tím vypnutí pojistky (asi 4 A). Opětné nastartování způsobí krátkodobé zavření tranzistoru T_1 při stisknutí tlačítka. Elektronická pojistka je velmi rychlá, chrání zdroj i připojený koncový stupeň proti přetížení při chybné manipulaci a proti náhodným zkratům. Proud po vypnutí je asi 15 mA

odpor můžeme krátkodobě zatížit až výkonem 300 W. Po připojení napájecího napětí nastavíme potenciometrem P₃ klidový kolektorový proud 60 mA. Voltmetrem měříme předpětí, které má být asi 0,5 V. Pomalu zvětšujeme buzení a dolaďujeme výstupní obvod. Při vybuzení asi na 1 A kolektorového proudu zkontrolujeme účinnost, která se má pohybovat kolem 50 %. Současně kon-trolujeme předpětí, které má zůstat konstantní, popřípadě se může zmenšit o několik desítek mV. Nesmí se však v žádném případě ani trochu zvětšovat, což by znamenalo, že do regulátoru proniká ví napětí a posouvá pracovní bod. To mohou způsobovat nevhodně vedené spoje, špatně volené uzemňovací body apod. Také se může stát, že při nevhodné konstrukci se vf napětí usměrňuje na diodách D_1 , D_2 , což má stejný důsledek.

Zde je na místě se zmínit o dalším problému tranzistorových koncových stupňů. Velký odebíraný proud ze zdro-je je obtížné zbavit vf složky, neboť pulsy kolektorového proudu dosahují špičkové hodnoty větší než 10 A. Proto věnujeme uzemňovacím bodům velkou pozornost. Blokovací kondenzátory sestavujeme jako baterie.

Je-li koncový stupeň vyzkoušen při kolektorovém proudu l A, můžeme jej vybudit naplno a změřit celé zařízení ještě jednou. Není vhodné překračovat kolektorový proud 3 A, neboť tranzistor kolektorový proud 3 A, neboť tranzistor by byl neúměrně přetěžován. Zkontrolujeme velikost poklesu napětí na emitoru tranzistoru T_5 v regulátoru, kde má být při maximálním vybuzení napětí asi 5 V. Bude-li napětí menší, je třeba zmenšit odpor R_p . Místo tranzistoru 3NU72 v regulátoru můžeme – zvláště bude-li mít tranzistor KU605 velký proudový zesilovací činitel – použít proudový zesilovací činitel – použít i tranzistor s menší dovolenou kolektorovou ztrátou - např. vhodný typ z řady GC. Jak již bylo řečeno, musíme však vhodně volit odpor R_p , aby tranzistor byl zatěžován v dovolených mezích. Ve většině případů vyhoví také velmi dobře jednodušší regulátor podle obr. 8a.

Nakonec můžeme s připojenou anté-nou a měřičem PSV opatrným posouváním odboček na cívce L₅ nastavit je-jich nejvhodnější kombinaci. Ladění výstupního rezonančního obvodu bez měřiče PSV (např. vf voltmetrem) je neprůkazné a neumožňuje správné naladění. Vhodnější než měření napětí je měření anténního proudu (např. malou

žárovkou 2,2 V/0,2 A, zapojenou paralelně k hmotovému bezindukčnímu odporu 1 Ω).

Koncový stupeň bez tranzistorového regulátoru předpětí

Jak vyplývá z grafu na obr. 7, lze popisovaný koncový stupeň zapojit i bez regulátoru předpětí. Přídavné zvětšení budicího výkonu, bude-li vnitřní odpor děliče např. $10~\Omega$ a stejnosměrný proudový zesilovací činitel tranzistoru např. 30, bude 40 %, což nevadí, neboť máme určitou rezervu. Pro tranzistor s větším β_0 (např. 50) budou údaje ještě příznivější a ztráty se zmenší asi na 12 % proti třídě B.

Potíže však nastanou se stabilizací oracovního bodu. Emitorový odpor, který by dostatečně stupeň stabilizoval, by značně zhoršil výkonové zesílení. Vhodné řešení je tedy použít opět křemíkové diody nebo tranzistor. Hodnoty součástek praktického zapojení se však budou lišit podle vlastností koncového tranzistoru, takže obvod s přesnými hodnotami neuvádíme.

Shrnutí zásad pro návrh zesilovače SSB

1. Udržet pokud možno minimální vnitřní odpor předpěťového děliče, po-případě jej nahradit tranzistorovým regulátorem (z hlediska dostatečného výkonového zesílení stupně).

2. Udržet minimální odpory v emitorových obvodech, zvláště u větších

výkonů.

3. Nepřekračovat dovolené časové konstanty obvodů RC v bázi a emitoru (rozsah 2 až 100 µs).
4. U koncového stupně používat

krátké spoje, zemnění do jednoho bodu, blokovací kondenzátory vícenásobné.

5. Při nastavování nebo i za provozu

5. Fri nastavovani nebo i za provozu používat elektronickou pojistku v napájecím obvodu (pro KU605, U = 30 V, vypínací proud 4 A).

Protože zásady 1. a 2. jsou nejdůležitější, uveďme příklad jejich nedodržení. Chceme využít na 60 % maximální kolektorovou ztrátu tranzistory. KU605 kolektorovou ztrátu tranzistoru KU605 a očekáváme účinnost 50 %. Zvolíme však nevhodně velký odpor $R_{\rm B}=$ $= 200 \Omega (R_E = 0).$ Při $U = 30 \text{ V a} P_{\text{C dov}} = 30 \text{ W je}$ Při $\beta_0 = 2$ A. Při $\beta_0 = 40$ je potřebný stejnosměrný proud báze:

$$I_{\rm B} = \frac{I_{\rm Cs}}{\beta_0} = 0.05 \, {\rm A}.$$

Průtokem tohoto proudu vnitřním odporem děliče $R_{\rm B}=200~\Omega$ vznikne úbytek napětí:

$$U_{\rm celk} = R_{\rm B}I_{\rm B} = 10 \, \rm V.$$

Pak by musely mít budicí pulsy amplitudu napětí větší než 10 V při efektivním vf budicím proudu asi 0,5 A ($|h_{21e}| = 4$). Z toho vyplývá, že bychom potřebovali extrémně velký budicí výkon, nehledě na to, že by hrozilo prozásní přechody háze emitor koncového ražení přechodu báze-emitor koncového tranzistoru!

Závěr

Všechny stupně jsou navrženy s dostatečnou rezervou i pro osazení tran-zistory, které mají vlastnosti (zvláště proudový zesilovací činitel) na dolní hranici dovolené tolerance. Bude-li mít konstruktér zájem použít na budicích stupních levnější tranzistory KF506

nebo KF507, zapojení se nezmění, je jen třeba použít pro stupně osazené těmito tranzistory menší napájecí napětí maximálně 16 V. Rezerva ve výkonovém zesílení je dostatečná, takžé i při použití zmenšeného napájecího napětí bude koncový tranzistor dostatečně vybuzen. Při napájení celého zesilovače menším napětím (např. z autobaterie 12 V) bude nutné změnit počty vazebních závitů a upravit odbočky, jimiž jsou připojeny tranzistory k rezonančním obvodům. Na koncovém stupni by také byl vhodnější tranzistor, jehož proudový zesilovací činitel se nezmenšuje při zvětšování kolektorového proudu nad určitou mez (např. KU607 nebo jeho průmyslová verze KUY12), aby bylo možné ztrátu výkonu vlivem zmenšeného napájecího napětí alespoň zčásti "dohnat" zvětšením kolektorového proudu. Dále je třeba upravit dělicí poměr předpěťových děličů a zmenšit odpor R_p .

S tranzistory KU607 lze dosáhnout všeobecně lepších výsledků, což však nesmí vést k přetěžování těchto tranzistorů velkými kolektorovými proudy. Většinou bude stačit ještě menší budicí výkon (1 × KF508 na budicím stupni).

Celý popis neměl být přesným návo-dem na stavbu tranzistorového lineárního zesilovače, ale jen vodítkem, v němž čtenář najde stručné vysvětlení funkce a praktická zapojení, která může použít např. ke stavbě tranzistorového transceiveru nebo vysílače. Proto nejsou ve schématech žádné provozní přepínače

(např. přepínač antény), které si již konstruktér snadno doplní podle povahy svého zařízení. Upozorňujeme na nutnost vypínat napájecí napětí lineárních stupňů při příjmu, neboť svým šumem ruší. Při konečné montáži mohou být také ladicí kondenzátory velké kapacity nahrazeny menšími s paralelními pevnými kondenzátory.

Samozřejmě, že popsaná varianta lineárního zesilovače není jediná, kterou je možné z dostupných součástek postavit. Pro malá zařízení s příkonem do 30 W můžeme použít i tranzistory KU601 nebo KU602, které mají lepší vf vlastnosti než KU605. Celý zesilovač je pak velmi jednoduchý a na budicím stupni stačí jediný tranzistor řady KF. Pro tento malý koncový stupeň již není nutný tranzistorový regulátor předpětí, takže jeho konstrukce se ještě dále zjednoduší.

Zvětšení příkonu nad 75 W (100 W) lze dosáhnout paralelním, popř. souměrným zapojením dvou koncových tran-zistorů při dodržení určitých podmínek.

Chtěli bychom se k těmto problémům vrátit v některém z příštích čísel AR a uvést i další vyzkoušená zapojení.

Tab. 1. Hodnoty naměřené na popisovaném vzorku $(U=30\ V)$

Tř.	Ics	Pvýst	P _{bud}	Avýk
B C	3 A 3 A	i	1,1 W	42 34

Barevné značení Zenerových diod

Zenerovy diody s malým ztrátovým výkonem v celoskleněném nebo epoxidovém pouzdru s axiálními vývody (obdobné provedení jako vrstvové odpory) se často označují pouze barevnými pruhy; pruhy označují i parametry diod, popř. jejich typ. Jak postupovat při určování diody, úkazuje obrázek a další text.

1. proužek (násobitel).

bílý 0,1 černý hnědý 10 (viz pozn. 1)

2. proužek první číslice

3. proužek druhá číslice

Zenerova napětí

hnědý červený oranžový 3 žlutý zelený 6 7 modrý fialový 8 šedý bílý černý

4. proužek udává toleranci Zenerova napětí:

stříbrný 10 %, zlatý 5 %, bez barevného proužku 20 %. Barevný znak, udávající polaritu diody, přesně určuje použitý systém barevného značení:

zelený - viz pozn. 2, bílý - viz pozn. 3, oranžový - viz pozn. 4.

Poznámky:

- Násobitel je vždy použit ve spojení s udávaným Zenerovým napětím a určuje výslednou hodnotu dvou číslic (2. a 3. proužku); např.: bílý, zelený a modrý proužek značí $0,1 \times 56 = 5,6 \text{ V}$, hnědý, červený a černý proužek $10 \times 20 = 200 \text{ V}$.
- 2. Firma International Rectifier označuje výrobky jinak: firemní znak IR (schematický znak diody, který udává současně polaritu) v zelené barvě udává, že barevné proužky označují skutečně Zenerovo napětí diody.
- 3. Znak IR v bílé barvě udává, že barevné proužky označují druh výrobku podle interního značení firmy IR – poslední čtyři číslice pak označují typ diody (např. dioda 69-XXXX).
- 4. Znak IR v oranžové barvě udává, že barevné proužky označují typ diody podle jednotného amerického číselného systému JEDEC a to tří- nebo čtyřmístným číslem (např. INXXX nebo INXXXX).

Vít. Stříž

amatérské! A D HD 153

zesilovače

Petr Novák, OKIWPN

Většina radioamalérů, kteří se zabývají prací na VKV, přišla do styku s elektronkou REE30B. Jde o dvojitou tetrodu, odpovídající anodovou ztrátou podmínkám třídy B i A povolovacích podmínek. Její používání je opravdu velmi rozšířeno, jak jsem se mohl přesvědčit u mnoha koncesionářů i kolektivních stanic. Současně s tímto zjištěním jsem si ovšem položil otázku, do jaké míry je tato elektronka využívána, tj. otázku účinnosti.

Účinnost koncového stupně

Pod pojmem účinnosti zesilovače si

každý představuje souvislost s třídami

zesilovačů a s úhlem otevření. To je

jistě správné a tuto všeobecně známou

otázku nelze opomenout při návrhu

koncového stupně. Podívejme se však na problém účinnosti z hlediska anodo-

vého obvodu. Každý jistě uzná, že má-li

elektronka odevzdávat jakýkoli výkon,

musí pracovat do zátěže, do anodového odporu (impedance). Optimální veli-

kost této zátěže je určena konstrukcí

elektronky a jejími vlastnostmi, popř.

režimem, v němž má elektronka pra-

covat. Tato impedance je u běžných

elektronek řádu jednotek kiloohmů

a transformací ji převádíme na menší (napáječe nebo reproduktoru). Míra

přenosu tohoto transformátoru je zá-

s anténou klesá velmi rychle Q anodo-

vého obvodu až na hoďnotu $\widetilde{Q}_{ ext{ef}}$, která je dána stupněm vazby a tedy i zatíže-

ním anodového obvodu. Prakticky se to projevuje tak, jako kdybychom para-

lelně k anodovému obvodu zapojili odpor tím menší, čím těsnější je vazba

s anténou. Činitel jakosti nezatíženého

obvodu Q se zhorší na hodnotu Q ef.

Vyjádříme-li účinnost anodového obvo-

 $\eta = \frac{Q - Q_{\rm ef}}{Q} \, 100$

vidíme, že účinnost bude největší při minimálním Q_{et} . Se zmenšováním jakosti ovšem souvisí i šířka pásma ano-

[%]

du jako

Většina stanic – a jsou mezi nimi i známí a zkušení amatéři – používá starý, "vyzkoušený" způsob vazby na napáječ, který se skládá z nějaké blíže nedefinovatelné smyčky s jedním nebo dvěma závity a sériového kondenzátoru. Přitom ani není jisté, ladí-li tento obvod skutečně na 145 MHz, neboť dostatečná rezerva výkonu elektronky REE30B svádí k prostému nastavení této vazby ma maximum, popřípadě k neúnosnému zvětšování anodového napětí. Další častou chybou, která je ještě dědictvím po sólooscilátorech s kdysi oblíbenými LD1 a LD2, je snaha o maximální jakost anodového obvodu. Setkáváme se tak s nejrůznějšími typy tzv. "lecheráků", které sice velmi pěkně vypadají, zvláště jsou-li postříb-řené, o nichž však rozhodně nelze říci, že jsou optimálním pracovním odporem pro elektronku, nehledě již na to, že další vazba na napáječ bývá obyčejně málo těsná a tedy neúčinná. K tomuto poznatku již mnoho konstruktérů do-spělo, takže se již častěji setkáváme s cívkami, které – pokud jde o vazbu – dávají lepší možnosti. Zbývá ještě jeden problém: každý je jistě přesvědčen o nutnosti přizpůsobení antény k napáječi, tj. zakončení napáječe impedancí shodnou s charakteristickou impedancí napáječe. Každý drát, tedy i napáječ, má ovšem dva konce. O tom konci, který je blíže k vysílači, opravdu nelze ve většině praktických konstrukcí tvrdit, že je touto impedancí zakončen. Tyto problémy se často odbývají mávnutím ruky, poukazem na obtížné měrení apod., bez snahy hlouběji se tímto problémem zabývat. Je pravda, že na VKV lze obtížněji dosáhnout věcí pro KV samozřejmých, je však třeba snažit se o dosažení optima. Poměrně nejdále je v praktickém řešení této otázky OK1AHO, jak jistě potvrdí všichni, kdo viděli nebo slyšeli jeho vysílač, který často používala i OK1KCU. Jeho poznatky se pokusím doplnit a dále rozvést o nezbytnou teorii s poukazem na praktické řešení. Některé věci uvedu obecně, aby těchto poznatků mohli vy-užít i KV amatéři.

154 amatérses V.V

Obr. 2. Diagram závislosti jednotlivých harmonických složek

kompromis mezi účinností anodového obvodu a nutností potlačení harmonických a určíme $Q_{et} = 15$, což je obvykle používaná hodnota. Potud Amatérská

Podíváme-li se na tento problém z hlediska elektronky REE30B na 145 MHz, můžeme jít se zmenšováním Q_{ef} ještě dále. Symetrické zapojení totiž dostatečně potlačuje druhou harmonickou a běžně používané úzkopásmové antény Yagi přispějí k dalšímu potlačení. Z toho vyplývá, že používání tyčových obvodů je zbytečné, neboť i kdyby se nám podařilo nastavit dostatečnou vazbu (což je u tyčových obvodů obtížné), Q_{ef} se stejně zmenší na minimum, které je z hlediska účinnosti výhodnější.

Jak tedy řešit anodový obvod? Abychom získali dostatečné podklady pro jeho konstrukci, musíme udělat výpočet koncového stupně pro danou elektronku a režim, v němž bude pracovat.

Výpočet koncového stupně

Někdo snad může namítnout, proč se zabývám touto problematikou, známou již z mnoha publikací. Pro ty, jimž jsou již starší ročníky AR nedostupné, uvedu přesto několik základních vzorců pro jednoduchý výpočet. Ty, kteří při konstrukci vycházejí z Amatérské radiotechniky, bude snad zajímat, že právě v této stati je ve zmíněné publikaci několik drobných chyb ve vzorcích, zejména v části o dvojčinných stupzejmena v času o dvojenných stap-ních. Na případné opravy upozorním. Při praktickém návrhu budu vycházet z Konstrukčního katalogu vysílacích elektronek 1966—1967 Tesly Rožnov.

U zvoleného typu elektronky katalogy uvádějí obyčejně tyto hodnoty (pro předem daný režim): anodové napětí U_a , napětí stínicí mřižky U_{g2} , předpětí řídicí mřižky U_{g1} , špičkové střídavé napětí řídicí mřižky u_{g1M} , anodovou ztrátu P_z , výstupní výkon P. Pro výpočet volíme předběžně součinitel využití anodového napětí ξ , úhel otevření Θ . dále musíme znát maximální vření Θ , dále musíme znát maximální proud katody $I_{\rm M}$, který katalogy neuvádějí (nezaměňovat s $I_{\rm aM}$ v mezních hodnotách!). Běžně se však uvádí stejnomodnotalní, požne se však uvadí stejno-směrná složka anodového proudu I_a , z níž I_M snadno určime, jak vyplyne z dalšího. Součinitel využití anodového napětí ξ volíme u triod 0,6, u tetrod a pentod dosahujeme hodnoty 0,8 až 0,9. Úhel otevření Θ je již určen provozními hodnotení uvedenými v kata-

vislá na činiteli vazby z, který se má blížit 1. Tento požadavek lze snadno realizovat v nf výstupních transformátorech, ve ví obvodech však přináší speproblémy. Zvětšováním vazby

U zvoleného typu elektronky kata-

zpětně zjistit, neboť provozní hodnoty zpětně zjistit, neboť provozní hodnoty jej neuvádějí; k tomu musíme znát závěrné předpětí řídicí mřížky U_{gs} (rovněž se neuvádí). U_{gs} určíme nejlépe graficky z mřížkových charakteristik elektronky jako bod, v němž je pro dané U_a anodový proud I_a dostatečně malý (I_a se blíží nule); nemáme-li k dispozici převodní mřížkové charakteristiky elektronky, překreslíme si je z anodových. Nelze-li U_{gs} zjistit ani z katalogu ani graficky, zbývá již jen přímé měření. Uskutečníme je tím nejjednodušším způsobem: elektronku při jednodušším způsobem: elektronku při jmenovitém U_a a $U_{\rm g2}$ zavíráme měni-telným mřížkovým předpětím, až bude I_a prakticky nulový (obr. 1). Záporné předpětí $U_{\rm g1}$, odpovídající bodu zániku anodového proudu, je hledaným závěrným předpětím $U_{\rm gs}$. Pro úhel otevření Θ pak platí vztah

$$\cos\Theta = \frac{U_{g1} - U_{gs}}{U_{g1M}} \qquad (1),$$

kde $U_{\rm g1}$ i $U_{\rm g2}$ dosazujeme v absolutních hodnotách bez záporného znaménka. Tím máme určen úhel otevření Θ , který odpovídá zadaným provozním hodnotám doporučovaným v katalogu a je základním vodítkem pro další výpočet.

Další hodnotou, kterou potřebujeme zjistit, je velikost střídavé složky anodového proudu $I_{\rm B1}$, popřípadě maximálního proudu $I_{\rm M}$. Mezi proudovými veličinami platí vztahy

$$I_{a0} = I_{M}\alpha_{0} \qquad (2),$$

$$I_{a1} = I_{M}\alpha_{1} \cdot (3).$$

Platí tedy

$$I_{a1} = I_{a0} \frac{\alpha_1}{\alpha_0} \tag{4},$$

kde I_{a0} je stejnosměrnou složkou anodového proudu označovanou v katalogu jako I_a . Koeficienty α_1 a α_0 , popř. poměr $\frac{\alpha_1}{\alpha_1}$ vyhledáme v diagramu na obr. 2, který určuje obsah stejnosměrné, zá-kladní i jednotlivých harmonických složek v anodovém proudu v závislosti na úhlu otevření Θ . Z diagramu je zřejmá i závislost koeficientů pro druhou a třetí harmonickou, což se prakticky využívá při konstrukci násobičů, které nejsou ničím jiným než zesitění. lovači třídy C's menším úhlem otevření.

Dále zjistíme velikost střídavého napětí na anodě

$$U_{a\,st} = U_a \xi \qquad (5),$$

což je důležitý údaj i pro napěťové dimenzování anodového obvodu.

Pro budicí napětí řídicí mřížky platí

$$U_{g1\,st} = 1.6 \frac{I_{a0}}{\alpha_0 S} [V; mA, mA/V] (6);$$

toto napětí však udávají provozní hodnoty zvolené v katalogu. Pro mřížkové předpětí $-U_{g1}$ platí pak

$$-U_{g1} = \frac{\frac{U_{g2}}{\mu'} U_{gp} \cos \Theta}{1 - \cos \Theta}$$
 (7),

kde μ' je u pentod zesilovací činitel pro g_1/g_2 , $U_{\rm gp}$ velikost kladného mřížkového impulsu. $-U_{\rm g1}$ je ovšem určujícím činitelem pro úhel obevření a tím i cellenci pro vine doblodobevení a tím i cellenci provine doblodobevení provine doblodobevení a tím i cellenci provine doblodobevení provine do kový režim elektronky, proto je nevy-počítáváme, ale přímo zjistíme v katalogu podle zvolených provozních hod-

Dále se budeme zabývat výkono-vými a účinnostními hodnotami v kon-

covém stupni. Špičkový střídavý výkon

$$P_{\rm M} = U_{\rm a st} I_{\rm a1} \tag{8}.$$

Ve skutečnosti však, abychom jej mohli porovnávat se stejnosměrným příko-nem, nás zajímá jeho střední hodnota

$$P_{\rm AV} = \frac{1}{2} U_{\rm a st} I_{\rm a1}$$
 , (9),

která je udávána provoznímí hodnotami pod označením P_0 .

Stejnosměrný příkon-je určen stejnosměrným proudem a napětím

$$P_{\rm ss} = U_{\rm a}I_{\rm a0} \tag{10}$$

a zjistíme jej prostým vynásobením U_a a I_a uvedených v katalogu. Účinnost zesilovače je pak

$$\eta = \frac{P_{\rm AV}}{P_{\rm rs}} \tag{11}$$

nebo také

$$\eta = \frac{P_0}{U_a I_a} \tag{12}.$$

Chceme-li účinnost vyjádřit v %, násobíme takto získaný poměr stem. Dále vypočítáme skutečnou anodovou ztrátu a kontrolujeme, zda jsme nepřekročili dovolenou anodovou ztrátu

$$P_{\rm z} = P_{\rm ss} - P_{\rm AV} \le P_{\rm zM}$$
 (13);

hodnotu P_{zM} (W_{aM}) zjistíme v mezních hodnotách v katalogu.

Poslední a pro další návrh nejdůležitější veličinou je optimální anodový zatěžovací odpor $R_{\rm a}$, který označíme jako $R_{\rm opt}$. Podle Ohmova zákona

$$R_{\rm opt} = \frac{U_{\rm ast}}{I_{\rm a1}} \tag{14}$$

a jeho velikost je určena opět celkovým režimem, daným provozními hodnotami. Chceme-li však určit $R_{\rm opt}$ přímo, bez zdlouhavého výpočtu proudových složek, použijeme vzorec

$$R_{\rm opt} = \frac{U^2_{\rm a st}}{2P_{\rm AV}} \tag{15}$$

nebo přímo z provozních hodnot

$$R_{\rm opt} = \frac{(U_{\rm a}\xi)^2}{2P_0} \tag{16},$$

přičemž součinitel & volíme podle uvedených zásad. Hodnotě Ropt se tak přiblížíme s dostatečnou přesností. Tím je zásadní návrh zesilovače třídy C skončen. Pro úplnost se zmíním ještě o aplikaci výpočtu pro násobiče kmitočtu, popř. souměrná zapojení.

Zesilovač třídy C jako násobič kmitočtu

Návrh násobiče se od návrhu koncového stupně liší jen v tom, že místo proudové složky I_{a1} používáme složku druhé nebo třetí harmonické I_{a2} , popř. Ia3, pro které součinitel α2 nebo α3 vyhledáme v diagramu na obr. 2. Musíme však vyhledat úhel otevření Ø pro zadané provozní hodnoty $-U_{g1}$, μ_{g1M} , podle vzorce (1) a postupu uvedeného na obr. 1. Úhel otevření bude menší a jemu odpovídající hodnoty nitelů použijeme ve vzorcích

$$I_{a2}=I_{a0}\frac{\alpha_2}{\alpha_0} \qquad (4a),$$

$$I_{a3} = I_{a0} \frac{\alpha_3}{\alpha_0}$$
 (4b).

Střídavý výkon v anodovém obvodu potom budé

$$P_{\rm AV} = P_0 = \frac{1}{2} U_{\rm a st} I_{\rm a2}$$
 (9a)

nebo

$$P_{\rm AV} = P_0 = \frac{1}{2} U_{\rm a st} I_{\rm a3}$$
 (9b),

kde velikost U_{ast} určíme způsobem udaným ve vzorci (5). P_0 katalogy běžně uvádějí. Pro doplnění uvádím, že jde o skutečný střídavý výkon na požadované harmonické. Účinnost pak zjistíme obvyklým způsobem podle vzorce (11) nebo lépe (12). Anodovou ztrátu kontrolujeme podle (13). Pozor – vzhledem k menší účinnosti lze u násobičů kontrolujeme podle (13). Pozor – vzhledem k menší účinnosti lze u násobičů anodovou ztrátu snadněji překročit. Zatěžovací odpor Ropt určíme podle vzorců (14) nebo lépe (16). Protože je však menší účinnost, redukujeme jej na větší hodnotu v noměru. větší hodnotu v poměru

$$R'_{\text{opt}} = 1,2 . R_{\text{opt}}$$
 (17)

Praktickou zátěží pro anodu násobiče však bude nejen vlastní rezonanční odpor R_{rez} anodového obvodu, ale komplexní impedance složená z R_{rez} , X_{Cv} , R_{g1} a C_{g1} následujícího stupně, jak je znázorněno na obr. 3.

Souměrné zapojení

Souměrné zapojení (push-pull) má pro praktické využití, zvláště v amatér-ské praxi, řadu výhod. Spočívají v symetrické montáži, snadné neutralizaci a v neposlední řadě ve skutečnosti, že symetrickým zapojením je již v elektronce potlačována každá sudá harmonická složka anodového proudu, což má zásadní význam pro potlačení nežádoucího vyzařování. Zmenšením obsahu harmonických také poněkud vzrůstá účinnost. Pozor však při použití sou-měrného zapojení v násobičích! Základní přednost, tj. potlačení druhé harmonické, vylučuje možnost použít symetrické zapojení pro zdvojovač, jak se jistě přesvědčil každý, kdo chtěl kmitočet 72 MHz zdvojit na 144 MHz elektronkou QQE03/12. Jde to, ale jinak – v tzv. polosouměrném zapojení (push-push), které naopak potlačuje nejen třetí a další liché harmonické, ale dokonce i první harmonickou, tj. základní kmitočet. V celkovém obsahu

Obr. 4. a) souměrné zapojení; push-pull (liché harmonické), b) polosouměrné zapo-jení, push-push (sudé harmonické)

harmonických pak složka druhé harmonické dominuje a tím je dána velká účinnost polosouměrného zapojení v použití pro zdvojovač. Oba způsoby dvoj-činného zapojení znázorňuje obr. 4. Současně bych chtěl doporučit "znovu-objevení" polosouměrného zdvojovače zvláště s elektronkou QQE03/12, která tomto zapojení skutečně "dělá divy".

Zkušenější čtenáři mi jistě prominou tento malý prolog, který jsem předeslal proto, aby začínající konstruktéři ve své práci zbytečně nebloudili. Vrátíme se opět k návrhu souměrného koncového zesilovače třídy C. Jde v zásadě o několik rozdílů.

Úhel otevření Θ zůstává stejný jako pro jednu elektronku. Platí tedy (1) s tím, že $U_{g1} = u_{g1M}$ dosazujeme jen jednoduše, tedy nikoli v dvojnásobné hodnotě. Např. katalog uvádí budicí napětí $u_{g1M} = 2 \times 100 \text{ V}$. Do vzorce (1)

tedy dosadíme jen $U_{g1} = 100 \text{ V. Tim}$ máme určen úhel otevření ($U_{
m gs}$ zjišťujeme rovněž pro jednu elektronku). Podobně postupujeme při určení stří-Katalog udává $I_a = 2 \times 100$ mA, dosadíme tedy $I_{a0} = 100$ mA. Skutečný stejnosměrný anodový proud I''_{a0} pro oba systémy bude samozřejmě dvojná-sobný, tedy 200 mA.

(Pokračování)

Obr. 2.

Obr. 1.

Na obr. 1 jeden z našich nejznámějších amatérů – OK3MM, který nás již několikrát úspěšně reprezentoval v zahraničí, odkud vysílal, i jako československý reprezentant ve víceboji. Jeho zařízení má vynikající úroveň. Jako přijímač používá FRDX500 a jako vysílač (vpravo) zařízení s 27 tranzistory a dvojicí koncových elektronek 6146, dávajících v pásmech 80 až 10 m při provozu CW a SSB 120 W vf výkonu. Budič je sestaven ze sta-vebnice HS1000, kterou vyvinul DJ3CI. Rozměry kompletního vysílače jsou 16 × 28 × \times 29 cm.

Na obr. 2 je pohled do tohoto budiče; na 'eho provedení je radost se podívat.

Na obr. 3 je starší koncový stupeň 1 kW se dvěma elektronkami 813. Ve spodní části ie usměrňovač 2,2 kV/0,45 A.

Obr. 3.

TEZE A ZAVODY

Výsledky ligových soutěží za leden 1970

OK LIGA

OR LIGA									
Jednotlivci									
1. OK2BIT 1 737 2223. OK3DT 435 2. OK1EG 1 267 3. OK1JKR 1 046 4. OK1AUI 954 5. OK3IR 873 7. OK1AUN 840 8. OK2BOB 869 9. OK2SYS 339 8. OK3YCM 823 9. OK1AAZ 817 10. OK2BEN 676 3233. OK3CFS 320 11. OK2BEN 676 3233. OK3CDN 312 12. OK1HAF 630 13. OK3RC 582 14. OK1KZ 580 14. OK1KZ 580 15. OK1AOK 570 16. OK1BLC 553 17. OK1ANN 510 18. OK1MAS 500 19. OK1DBM 489 10. OK1DBM 489 21. OK2SMO 438 2223. OK1ATP 435									
Kolektivky									
1. OK3KMW 1 664 2. OK2KYI 1 119 7. OK2KMB 375 3. OK3KGQ 638 8. OK3KVL 258 4. OK2KZR 621 9. OK1KTL 179 5. OK2KFP 588 10. OK1KWP 110									
OL LIGA									

1. OL5ALY 2. OL4AMU OL6AMB 4. OL5AMT 5. OL5ANG 326 6. OL6ALT 295 7. OL5AMA 194

RP LIGA

"DX ŽEBŘÍČEK"

Stav k 10. únoru 1970

Vysílači

	•	-	-	-
c	Œ	71	for	

	CW_{l}	fone	
	I		
OK1SV	316(329)	OK1ADM	314(315)
	I	· ·	
OKIADP OKIMP OKIZL OKIFV OKICX OKIMG OK3IR OKIAHZ OKIAHZ OKIAW OKIUS OKIPD OKIBY	296(301) 285(287) 275(275) 271(284) 255(255) 246(250) 236(248) 235(249) 234(247) 233(250) 231(260) 226(244)	OKIVK OK2DB OKING OKICC OK2PO OKIKTL OKIKDC OK3BU OKIBMW OKINH OK2BIX OKITA	218(220) 209(217) 206(248) 201(216) 200(202) 196(216) 168(192) 163(191) 162(182) 157(168) 157(160)
OK2QX	220(227	OK1PT Ú.	156(179)
OK1AOR OK3JV OK1ZW OK1AJM OK1ARN OK1APV OK3BT OK2BEW OK2BBI OK3CCC	147(176) 147(168) 143(143) 141(158) 140(163) 130(176) 127(142) 125(154) 125(135) 123(162)	OK2BMF OK1AKU OK1KYS OK1AKL OK1DH OK2BWI OK2BIQ OK1AFX OK1FAV	118(145) 115(150) 113(145) 113(127) 88(105) 83(107) 76(95) 67(81) 60(83)

Fone OKIADP 294(300) OK1ADM 292(300) n. 149(180) 146(146) 141(185) OK1MP OK1VK OK1AHZ OK2DB 263(267) 199(200) 189(204) 152(170) OK1FV OK3BU OKIBY ш. OKIWGW OKINH OKIZL OKIKDC 125(147) 124(143) 115(115) OKIFBV OKIXN OKIAKL OKIUS 82(123) 82(117) 78(89) 66(114) 112(147) OK2QX

	Posit	icnaci				
I.						
OK2-3868	326(332)					
	I	1.				
OK1-6701	245(276)	OK1-8188	178(234)			
OK1-10896	228(274)	OK2-21118	146(251)			
OK1-12233	181(242)	OK1-15561	144(201)			
	,	OK1-15835	139(170)			
	I	II.				
OK2-9329	86(160)	OK1-17323	69(120)			
OK2-17975	81(178)	OK1-16611	63(119)			
OK2-17762	78(112)	OK1-17728	50(123)			
			. ,			

S DX žebříčkem posluchačů se loučí OK1-8188. Byla mu přidělena značka OK1DKR. Po dvanácti letech "erpíření" se mu podařilo získat všechny naše RP-diplomy s doplňovacími známkami a do P-500 OK mu chybí ještě 28 QSL z OK, přestože jich odeslal 715. Do SWL-CHC potřeboval ještě dva diplomy. Byl jedním z nejpilnějších účastníků posluchačského žebříčku. Druhým loučícím se je OK1-15561, rovněž dlouholetý účastník soutěží RP, nyni OK1JDJ. Oběma blahopřejeme!

Změny v soutěžích od 10. ledna do 10. února 1970

"S65"

V tomto období bylo uděleno 22 diplomů za telegrafická spojení č. 4 020 až 4 041 a 5 diplomů za spojení telefonická č. 911 až 915. V závorce za značkou je uvedeno pásmo doplňovaci známky v MHz. Pořadi CW: SP9ZHQ, PA0UV (14, 21), DJ9QY, OK3KEG (14), SM5DIN, HA7KPO (14), DM2BYD, HG7PQ (28), SM4EBH (14), OK1MDK, OK2PBE (14), LZ1WZ (28), OK3CES (14), SP8CSL (14), OK1EG (14), OKIDN (14), YUINWG, F9KI (14), SM2BWX, YO4KCE (14, 21), YO5AT (28) a 3Z8AQN (14 a 21).

(14, 21), YO5AT (28) a 3Z8AQN (14 a 21).

Pořadí fone: SM2ME, W9DOR (14), CR6ML (21), K3TVE a LA7V (14), všichni 2 x SSB.

Doplňovací známku za telegrafická spojení dostaly tyto stanice: YO4CS za 3,5; 7 a 14 MHz k základnímu diplomu č. 3 369, YO5BQ za 3,5 a 28 MHz k č. 3 913, HASAF za 14 MHz k č. 3 213, DJ9OX k č. 3 858, DM3UDM k č. 3 965, PA0ABM k č. 3 398 a PZIAV k č. 3 871, všichni za 21 MHz a UT5KDP k č. 3 098 za 28 MHz. Za telefonická spojení pak DL1KX k základnímu diplomu č. 710 za 21 MHz.

...100 OK"

"100 OK"

"100 OK"

Dalších 23 stanic, z toho 9 v Československu, získalo základní diplom 100 OK č. 2 336 až 2 358 v tomto pořadi:
LU3DSI, SPPCTW, DL1KX, DM2DJH, HATKPO, OK3CGP (595. diolom v OK), OK1DAH (596.), YU4JHI, OK1DZV (597.), OK3KHE (598.), OL6AME (599.), OE5MIL, OK1MDK (600.), OK3CES (601.), SP9AJT, HA5YAG, HA5YAB, YO6ADW, OK1AHQ (602.), OK1JOE (603.), UA3RH, SP9CDA a G3ESF. Poslední tři stanice získaly diplom 100 OK při závodu "OK DX CONTEST 1969".

,,200 OK"

Doplňovací známku za 200 předložených různých listků z Československa obdržely tyto stanice: č. 227 UISAB k základnímu diolomu č. 1 362, č. 228 UT5HP k č. 1 361, č. 229 UT5HH k č. 906, č. 230 OK3CGP k č. 2 341, č. 231 OE5MIL k č. 204, č. 232 CN3BG k č. 2 201, č. 233 SP9AJT k č. 2 350 a č. 234 OK1BLC k č. 1 973.

"300 OK"

Doplňovací známka za 300 potvrzených spojení různými OK stanicemi byla zaslána těmto stani-

cim: č. 104 UJSAB k základnímu diplomu č. 1 362, č. 105 UT5HP k č. 1 361, č. 106 UT5EH k č. 906, č. 107 OE5MIL k č. 2 347, č. 108 SP9AJT k č. 2 350 a č. 109 CR7IZ k č. 780.

"400 OK"

Doplňovací známků s č. 58 dostala st. UT5HP k č. 1 361 a č. 59 SP9AJT k č. 2 350. stanice

..500 OK"

Doplňovací známku s č. 37 dostane rovněž sta-nice SP9AJT, která tak získala základní diplom 100 OK i se všemi doplňky najednou!

"KV 150 ORA"

"RV 180 QRA"

Další diplomy budou zaslány – jakmile nám je tiskárna dodá – těmto stanicím:

č. 48 OK1AKU, Štěpán Bosák, Chodov u Karl. Varů, č. 49 OK1HAM, Vlastimil Weiss, Pisek, č. 50 OK1JKR, Zdeněk Fryda, Teplice v Č., č. 51 OK1AOR, Jan Dobejval, Praha 1, č. 52 OK1JSE, Jan Sedláček, Teplice v Č., č. 53 OK3YAI, Milan Vráb, Slov. Lupča, č. 54 OK1JOE, Jaromír Mašek, Teplice v Č., č. 55 OK2PCL, Rudolf Huťka, Uherské Hradiště, č. 56 OK3CEX, ing Ivan Guráň, Martin a č. 57 OK3CJB, Theodor Gribus, Prešov.

"KV 250 QRA"

Diplom č. 3 dostane OK3BG, Tibor Polák, Nové Zámky.

"P75P"

3. třída

3. trida

Diplom č. 313 ziskává OK1NL, Milan Šrédl, Praha, č. 314 OK1AOR, Jan Dobejval, Praha, č. 315 K0UXV, R. Harris Russo, Iowa City, č. 316 OK1TA, Karel Herčík, Bakov nad Jiz, č. 317 LU4ECO, Elmer Kaply, San Migu:l, č. 318 UA3FU, Viktor Zacharov, Moskva, č. 319 UW3FD, Vladislav Gavrilov, Moskva a č. 320 G3BDS, K. T. Whithorn, Worcester.

2. třída

Diplom č. 120 připadl stanici UA3FU a č. 121 UW3FD, obě z Moskvy.

1. třída

I v této třídě získaly stanice UA3FU a UW3FD diplom s č. 29 a 30.

"OK SSB AWARD"

Diplom č. 10 obdrží OK1BY, Míra Beran, Staňkov, č. 11 OK2VP, ing. Vladislav Novák, Kroměříž a č. 12 OK1APF, Jiří F. Zeman, Děčin-Ja-

"P-100 OK"

Diplom č. 544 (257. v Československu) bude zaslán stanici OK1-16713, Jaromíru Fafejtovi z Radotina, č. 545(258.) OK2-17686, Milanu Svozilovi z Olomouce, č. 546 (259.) OK1-17728, Petru Douděrovi z Prahy 6 a č. 547 (260.), Janu Štuksovi rovněž z Prahy 6.

"P-200 OK"

Doplňovací známku s č. 24 za 200 odposloucha-ných a potvrzených československých stanic obdrží OK1-16713 k základnímu diplomu č. 544.

"P-500 OK"

OK2-6294, Franta Vaněk, Stařeč, je teprve druhým posluchačem, který dostal od 500 řůzných československých stanic potvrzení o poslechu jejich spojení. Výsledek: diplom č. 2 P-500 OK. Gratulujeme!

"RP OK-DX KROUŽEK"

3. třída

Diplom č. 582 patří stanici OK3-5022, op. Jozef Šopata, Spiš. Nová Ves.

Byly vyřízeny žádosti došlé do 15. února 1970.

"Závod míru"

v sobotu 23. května 1970 od 00.00 do 06.00 hod. SEČ ve dvou tříhodinových etapách: I. etapa od 00.00 od 03.00 a II. etapa od 03.01 do 06.00 hod. SEČ.

Kategorie:

- a) kolektivni stanice,
- jednotlivci OK, jednotlivci OL,
- c) jednotlivci OL,d) registrovaní posluchači.

160 a 80 m pro stanice OK, 160 m pro stanice L. V pásmu 3 500 až 3 540 kHz není dovoleno závodít.

jen telegrafický, v každé části je možné navázat s toutéž stanicí na tomtéž pásmu jen jedno spojení.

Výzva do závodu: "CQ M".

vyměňuje se sedmimistný kód složený z RST a označení čtverce, např. 579HK73.

3 body za úplné spojení, 1 bod za spojení s chybně přijatým kódem. V ostatním platí "Všeobecné pod-mínky".

každý čtverec na každém pásmu v každé části závodu. Vlastní čtverec se jako násobitel nepo-

Konečný výsledek se vypočítá tak, že se součet bodů za spojení z obou pásem a obou etap násobi počtem násobitelů.

Registrovaní posluchačí se řídí podobnými pod-mínkami, zapisují značku poslouchané stanice, pro-

tistanice a kód poslouchané stanice. Bodování, násobitele i konečný výsledek jsou stejné jako u vysi-

Hodnoceni:

- 1. Bude určeno pořadí stanic v jednotlivých ka-
- tegoriich.

 2. Diplom získá deset nejlepších stanic v každé
- Diplom ziska deset hojoppara kategorii.
 Závod se počítá do "Mistrovství republiky radioamatérů na krátkých vlnách" pro rok 1970. V ostaním platí "Všeobecné podminky" (AP 2016 ar 20).

Rubriku vede ing. Vladimír Srdínko, OK1SV

DX-expedice

Expedice VS6DR a dalších na ostrov Spratly se v lednu neuskutečnila pro údajnou poruchu jachty Exodus; museli se vrátit do Singapuru. Přesto VS6DR stále slibuje, že expedici určitě uskuteční a že je jen odsunuta na zatím neurčený termín. Nezbývá, než hlídat značku IS1A.

Frank, DL7FT, znovu potvrzuje, že expedici do Albánie určitě uskuteční. Termín je však posunut na květen a v nepříznivém případě až na září t. r.

T19CF byla expedice T12CMF a několika dalších operatérů na Cocos Island. Expedice neuspokojila očekávání, neboť místo slibených šesti dnů se tam zdržela jen dva, a to ještě většinu času nevysilala. Pracovali na všech pásmech a dali se udělat dokonce i na 3,7 MHz SSB. Potíže spočívaly v tom, že jim promoklo zařízení, takže velký agregát vůbec neuvedli do provozu a pracovali většinou s QRP zařízením. Objevili se i na CW, slýšitelnost však u nás byla jen půl hodiny a řežko jsme sé dovolávali. Zatím je známo, že s nimi spojení navázali jen OK1ADM a OK2RZ, samozřejmě si anténou QUAD. Ostatní vyšli naprázdno.

Novou senzací by mohla být ohlášená expedice ZK1AJ na ostrov Manihiki. Má trvat asi dva týdny. Termín ještě není pevně stanoven, ZK1AJ však dělá přípravy. Přestavěl HW-100 na stejnosměrný proud a KH6GLU mu slíbil poslat potřebný zdroj. Ještě prý chybí nějaká "kapesni" směrovka – Jinak by musel pracovat jen s dipólem a byl by pro nás těžko dosažitelný. Podrobnosti Ize získat přímo od ZK1AJ z Cook Island na kmitočtu 14 250 kHz nebo v pátek vždy od 06.00 GMT. Manažerem bude KH6GLU.

Gus, W4BPD, má vyjet na svou letošní DX-expedici do Ind čekho oceánu již v nejbliřší době Evnedici do Ind čekho oceánu již v nejbliřší době Evnedici do Ind čekho oceánu již v nejbliřší době Evnedici do Ind čekho oceánu již v nejbliřší době Evnedici do Ind čekho oceánu již v nejbliřší době Evnedici do Ind čekho oceánu již v nejbliřší době Evnedici do Ind čekho počenu již v nejbliřší době Evnedici do Ind čekho počenu již v nejbliřší době Evnedici do Ind čekho počenu již v nejbliřší době Evnedici do Ind čekho de počenu ježne do

z Cook Island na kmitočtu 14 250 kHz nebo v pacifické siti na 14 265 kHz v úterý nebo v pacifické siti na 14 265 kHz v úterý nebo v pacifické siti na 14 265 kHz v úterý nebo v pacifické siti na 14 265 kHz v úterý nebo v pacifické vždy od 06.00 GMT. Manažerem bude KH6GLU.

Gus, W4BPD, má vyjet na svou letošní DX-expedici do Ind'ckého oc-ánu iiž v neibližší době. Expedice je rozvržena na dva měsíce a Gus jedná o návštěvě AC3, AC4 a AC5.

Expedici na Fernando Poo Isl. připravuje starý známý Herman, TilQQ. Jeho značka má být 3C1QQ a vysílat měl odtud od 1. 3. 1970.

KV4FZ plánuje expedici na VPZKK a VP2D speciálně pro pásma 40 a 80 m. Kromě toho chce navštívit ještě Anguillu, St. Vincent a dokonce i Haiti. Podmínkou však je, pomohou-li mu finančně kluby a jednotlivci toužíci po 5B-DXCC. Manažera mu dělá W2GHK.

VP2MT byla značka expedice W2GQN a WB2EPG na Monteserratu ve dnech 22. až 29. ledna 1970. Pracovali na všech pásmech, QSL na jejich domovské značky.

Poněkud neuvěřitelná zpráva uveřejněná v DXN tvdl, že skupina amatérů (patrně z W) již ziskala povolení k vysílání z FOS – Clipperton Island. Měla se tam vypravit v únoru 1970; zatím jsem je do uzávěrky rubříky na pásmech nezjistil.

Expedice TU2BB do Dahomeye, kterou jsme ohlásili, byla zrušena pro potíže s opatřením koncese.

Expedice UA1CK na Franz Josef Land, včnovná výhradně SSB, bude používat značku UK1A/(UA1 a má se uskutečnit v dubnu až květnu t. r. 5H3KJ a 5H3LV uvažují o expedici na Zanzibar, popř. na ostrov Pemba, který k němu patří. Expedice má trvat týden a závisí na tom, počká-li ARRL se zrušením značky VQ1 jako země DXCC až do ukončení této expedice. O zrušení země VQ1 pro DXCC bylo již před časem rozhodnuto, zatím se však toto rozhodnutí neuskutečnilo.

. Zprávy ze světa

Operatérem vzácné stanice JD1YAA na ostrově Marcus je JA8KB, na jehož adresu se mají zasílat QSL přímo.

Zprávy o skončení činnosti VK0HM na ostrově Heard, které se vyrojily koncem mi-nulého roku, se ukázaly neodůvodněnými. Měl

jen potíže s anténami a proto nemohl několik týdnů vysílat. Na pásmech se objevil teprve 21. ledna 1970. Používá krystal 14 242 kHz, občas však pracuje s různými clearingmany a vyžaduje předem záznam do listiny čekatelů. Market Reef – OJOMR – nová země DXCC je stále středem pozornosti. Po úspěchu nedávné expedice OJOMR je již ohlášena nová expedice. Má se uskutečnit v květnu nebo červnu t. r. a tentokrát se má zaměřit vice na telegrafii. Název ostrova se bude uvádět v angličtině jako "Mark Island". Expedice OJOMR tam koncem roku 1969 uskutečnila celkem 9 220 spojení, z toho více než 4000 s W a K. QSL se již začinají rozesilat. Podle zprávy těsně před uzávěrkou rubríky je OJOMR – Market Reef – již oficiálně uznán za novou zemi DXCC. Písemné potvrzení o tom má již OH2BH v ruce. ARRL přijímá OJ QSL-listky od 1. 3. 1970 a země platí od 27. 12. 1969. Současně pořadatelé expedice oznamují, že všechny přímo došlé QSL-listky, jíchž je přes 4 000, chtějí vyřídit v rekordní době 2 až 3 týdnů. Pak budou postupně vyřizovat QSL zaslané přes bureau.

Stanice 6W8GE a 6W8XX pracují společně na jednom kmitočtu 21 025 kHz, takže ziskáte současně dvě stanice. 6W8XX je totiž upoután na lůžko a 6W8GE mu zřejmě zpříjemňuje život – přihrává mu vzácné značky.

Další prefixy se množí jako houby po dešti

a 6W8GH mu zrejmě zpřijemňuje život – přihrává mu vzácné značky.

Další prefixy se množí jako houby po dešti a působí nezadržitelnou inflaci v diplomu WPX k jeho velké škodě: kromě IRO, YT1 až YT6, UK1, UK2, 3, 4, 5, 6, 7, 8, 9, 0 se objevil 5C2AA telegraficky na 14 MHz a je-li pravý, je to asi prefix Maroka. Kromě toho vysilá stanice Ol3 z Finska!

stanice Ol3 z Finska!

ST2SA se sice ještě na pásmech neobjevil – je prý příliš zaměstnán, sděluje však již svoji adresu pro zasilání QSL (žádá totiž jen přímo) na P. O. Box 125, Medani Hospital, Sudan.

Změna prefixt v SSSR, t), na UK, se podle dosud stále neúplných informací týká jen kolektivních stanic. Například UM8KAA má mít nyní značku UK8MAA, UB5KAW bude UK3HAW atd. Některé tyto prefixy se liž na pásmech objevily a k dokončení změny u všech kolektivek mělo dojít k 31. březnu 1970.

SVODD je na Krétě a je dosažitelný na kmitočtu 14216 kHz. Manažera mu dělá K3BUR.

BY9FZ je novou stanicí v Číně, která se objevila telegraficky na 14 004 kHz. Byla slyšena

ve spojení s VK, ale mnoho W-stanic ji prý marně volalo.

O uznání ostrova Snares, odkud stále ještě pracuje ZMIBN/A na kmitočtu 14 225 kHz s QRP 30 W, se vede intenzivní jednání s ARRL. Ostrov spadá pod správu souostrovi Campbell, ač je od něho vzdálen asi 400 mil a zeměpisně je pry od N. Zealandu vzdálen vice, než je limit pro uznání země do DXCC. Nezdá se však, že jednání dospěje k uznání tohoto ostrova za samostatnou zemí DXCC.

Z Gambie pracuje stanice ZD3D, obvvkle

uospeje k uznani tohoto ostrova za samostatnou zemi DXCC.

Z Gambie pracuje stanice ZD3D, obvykle SSB na kmitočtu 14 332 kHz kolem 18.00 GMT. Operatérkou je dvanáctiletá YL jménem Authm a QSL žádá na VEZDCY. Dále je tam dosažitelný i ZD3K, který se občas ozve na kmitočtu 14 225 kHz SSB.

Potřebujete-li stanice HV3SJ a 9N1MM, podívejte se po nich na kmitočtu 14 275 kHz, kde mivají skedy vždy v úterý a v pátek od 15.30 GMT. Po skedu se jich lze snadno dovolat.

Z Congo Republic se objevil TN8BK, op. Bernard, na kmitočtu 14 205 kHz (výjimečně i na 14 280 kHz). Někdy pracuje i na kmitočtu 21 175 kHz a poslouchá na 21 355 kHz! Jeho adresa je: Dr. Bernard Denjean, P. O. Box 32, Brazaville.

V Mauretanii pracují t. č. jen dvě stanice: 5TSAD a 5T5YL. Isou těmžě denaž sa kmitočtu 25TSAD a 5T5YL. Isou těmžě denaž sa kmitoč

V Mauretanii pracuji t. č. jen dvě stanice: 575AD a 575YL. Jsou téměř denné na kmitočtu 14 240 až 14 260 kHz SSB a začaly již s pravidelnými skedy s Evropou. V posledních document

V posledních dnech proskočily zprávy, že Maria Theresia Island (FO8M) se již nemá objevit v seznamu zemí DXCCa že prefix M je

objevit v seznamu zemi DXCCa że prenx M je jen polooficiálni.
Podle zpráv o poslechu pracuje prý značka SV0WG z ostrova Rhodos, který byl od konce minulého roku zcela opuštěn.
DX-stanice se objevily začátkem roku 1970 i na pásmu 160 m, kde naší amatéři pracovali nejen s W a VB, ale např. i s VP9GU, KV4FZ, SX5SP, HR2HH a VK5KO.

9X5SP, HR2HH a VK5KO.

Lovce prefixů bude zajimat, že s uvolněním vysílání v HS se objevily neobvyklé prefixy, např.
HS4ABN (QSL na K4WHK) a HS5ABD, který pracuje v současné době i na pásmu 80 m SSB.
QSL žádá na W6DQX.

Ze Seychelles Isl. se vynořila nová velmi aktivní stanice VQ9RK. Má 150 W a anténu
GP; je u nás slyšitelná kolem 05.00 až 06.00
GMT. Manažerem je W9VNG.

AC3PT stále ještě vysílá ze Sikkimu. Jak známo, je to W1FLS, který pracuje pod značkou tamniho prince. Je tam s expedici Brown University, která nahrává folklor horských kmenů. Jeho činnost na pásmech je však omezena značným QRL a předevšim tím, že mistní elektrárna vypiná na noc elektrickou síť. Seznamy zájemců, kteří chtějí navázat spojení, sestavuje jeho clearingman 4S7BP, u něhož je třeba se na pásmu předem ohlásit!

KOFME a jeho XYL, KOFMF, pracují v současné době pod značkami 9M8FME a 9M8FME zejména na kmitočtu 21 355 kHz SSB.

YS1XEE oznamuje, že dostal zásilku QSL-listků, která byla zničena vodou, takže značky jsou nečitelné. Proto žádá všechny, kdo mu zaslali QSL a neobdrželi od něho odpověď, aby mu poslali znovu listek – určitě odpovi!

Piráti zase oživují jinak fádní výběr stanic

znovu listek – určitě odpovi!
Piráti zase oživují jinak fádní výběr stanic
na pásmech: oficiálně byli ohlášení tito výteč-níci: TN8GN/ZD7, TN8GN/ZD8, ZS8GN/ZS3, ZS8GN/ZS1 a KP4TL – poslední jen na pásmu 160 m.

níci: TNSGN/ZD7, TNSGN/ZD8, ZS8GN/ZS3, ZS8GN/ZS1 a KP4TL – poslední jen na pásmu 160 m.

QSL-informace z poslední doby: CP1GN na W9JT, FM7WE-K4CFB, FY7YR-VE3BYN, TR8DG – G. Delas, P. O. Box 356, Libreville, Gabon, KG4DS-VE3BYN, ZF1AN-W2SC C, QLIRP-GW3AX, ZD8AB-W8BMS, VQ8CBF – P. O. Box 467. Port Luis, Mauritius.

Podle dosud nepotvrzené zprávy je prý Východní Pákistán trvale zastoupen na všech pásmech stanicí AP5CP, která se nyní objevuje na kmitočtu 14 015 kHz telegraficky. Pracoval jsem s ním před několika lety, ale QTH ani QSL informace mi tehdy neudal a QSL samozřejmě neposla!!

V brzké době je plánována podstatná změna prefixů v oblasti VQ8: Agalega má mit prefix 3B6, Brandon 3B7, Mauritius 3B8 a Rodriguez 3B9.

Značka SV0WI/JY – pokud jste ji ve dnech 22. až 23. ledna t. r. zaslechli, nebyla expediční, ale SV0WI předváděl amatérské vysílání úředním orgánům v JY. Uskutečnil jen 21 spojení – pokud jste byli mezi nimi, zašlete QSL na WA3HUP.

Z ostrova St. Lucia pracuje nyní VP2LX, který tam prý tvale usazen. QSL žádá na domovskou značku G3FGP.

Rome Centenary Award lze získat za spolení srůznými stanicemi IR0 během roku 1970.

znacku GFGF.

Rome Centenary Award lze získat za spo-jeni s různými stanicemi IR0 během roku 1970. Každé spojení platí jeden bod, jichž je třeba získat 10. Za spojení: IR0 dne 20. září však

Pozvolný pokles sluneční činnosti i roční období způsobí znatelné zhoršování DX-podmínek na nejvyšších krátkovlnných kmitočtech. Proti dřivějším měsícům se totiž nejvyšší použitelné kmitočty pro většinu směrů sniží, takže pásmo 10 m bude až na vzácné výjimky pro DX-provoz nevhodné a také na 21 MHz zaznamenáme zhoršení. Zato se začne, zejména ve druhé polovině měsíce, po dlouhé

době opět uplatňovat mimořádná vrstva E se short-skipovými podmínkami v kmitočtové oblasti 20 až 60 MHz. Proto koncem měsíce určitě zaznamenáme i televizní signály ze vzdálenějších evropských států a podobné podmínky umožní zajímavou práci na pásmu 10 m is nepatrnými výkony vysílačů. V červnu se budou tyto podminky ještě dále výrazně zlepšovat, přičemž budou vykazovat dvě maxima: jedno pozdějí dopoledne a druhé pozdějí odpoledne až navečer. První "náraz" short-skipových podmínek způsobených výskytem mimořádné vrstvy E zaznamenáme asi kolem 25. května.

Protože se den neustále prodlužuje a Slunce

0 2 4 6 8 10 12 14 16 18 2022 24 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24

dlouho svítí na nízkou lonosféru, zvětšuje se denni útlum procházejících vln a to ztěžuje práci na pásmu 80 m kolem poledne i na relativně menší vzdálenosti, ale i na pásmu 20 m v době, kdy většina dráhy vln je osvětlena Sluncem. Zato v noci budou nejvyšší použitelné kmitočty dostatečně vysoké, aby se pásmo 20 m ani v noci neuzavíralo, takže spolu s pásmem 7 MHz bude těžištěm mezikontinentálního provozu. Současně se zhorší (ale nevyloučí) občasné DX-možnosti na pásmu 80 m, kde ovšem musí celá cesta prakticky ležet ve stínu. Bouřkové fronty nad Evropou budou v některých dnech způsobovat zvýšení hladiny QRN. dlouho svítí na nízkou jonosféru, zvětšuje se hladiny QRN.

V KVĚTNU

se konají tyto soutěže a závody (čas v GMT):

Datum, čas	Závod	Pořádá	
2. až 3. 5. 12.00—24.00 10. 5.	OZCCA Contest, CW část	OZCCA (Dánsko)	
00.00-18.00	Světu mír	SSSR	
11. 5. 19.00—20.00	Telegrafní pondělek	URK	
23. 5. 00.00—06.00	Závod míru	ÚRK	
25. 5. 19.00—20.00	Telegrafní pondělek	ÚRK	

platí 3 body! Není třeba zasílat QSL-lístky, stačí jen potvrzený seznam spojení s potřebnými daty. Diplom stojí 8 IRC.

Jak oznámil WZGHK, dělá nyní manažera také pro KV4FZ, 3V8MOL a 4M1A. Všechny QSL pro tyto stanice jsou již v tisku a s rozesiláním začne v nejbližší době.

Na ostrově Antigua Jsou nyní cizincům přidělovány čtyřpísmenové značky, např. VP2ASTL apod.
KS6DH oznámil, že používá tyto kmitočty: 14 005 až 14 020 kHz pro telegrafil a 14 105 kHz pro SSB. Pracuje i na kmitočtu 21 005 kHz CW.

Do dnešní rubriky přispěli OKIADM, OKIADP, OK3BG, OK2QR, OK2BRR, OKIMDK, OK2BMH, OL6AKP, OK1-18197, OK1-17728 a OK1-17358. Jak vidíte, je dopisovatelů čím dál méně. Proto se znovu obracím na všechny bývalé spolupracovníky i nové zájemce: zasílejte své zprávy vždy do osmého v měsíci na adresu: Ing. Vladimír Srdínko, Hlinsko v Čechách, P. O. Box 46.

Kašpar, F. - Schmidtmayer, J.: LOGARIT-MICKÉ PRAVITKO V ELEKTROTECH-NICE. 2. revidované vydání. Praha: SNTL 1969, 132 str., 129 obr., 21 tab. Brož. Kčs 11,-

NICE. 2. revidované vydání. Praha: SNTL 1969, 132 str., 129 obr., 21 tab. Brož. Kčs 11,—

Je pravda, že logaritmické pravitko je zázračný nástroj a že technik bez logaritmického pravitka je jako maliř bez štětce. Není technika, který by nepočítal, a je jem málo těch, kdo nemají logaritmické pravitko. Na otázku, kdo s pravitkem počítá, tedy známe odpověď; nevíme však přesně, co počítá. Zústaňme na Zemi a odhadněme, že většina elektrotechniků na pravitku jen násobí a děli, protože většina elektrotechnických úloh se stejně řeši podle osvědčeného Ohmova zákona, byť i převedeného do nejrůznějších forem. A většina elektrotechniků na pravitku stejně nic jiného neumí. Těm, kterým to nestačí, je určena kniha autorů ing. dr. F. Kašpara, DrSc., a doc. J. Schmidtmayera, CSc. Dílo je pojato vědecky, což je u matematiky vitané. Kniha je velmi užitečná, ba do jisté míry i hodnotná. Jsou v ní podrobně popsány a rozebrány všechny stupnice na obyčejném pravitku, metodické pokyny k základním výpočtům (násobení, dělení, umocňování, odmocňování, úměrnosti, procenta, tabelování) a pak teprve autoři přistupují k popisu speciálních elektrotechnických pravitek (Faber-Castell, Nestler-Electro, Logarex-Elektro) a k metodice speciálních výpočtů (goniometrické funkce, logaritmy, převody jednotek, kruhový průřez a průměr, váha a odpor vodičů, úbytek napětí na vedení, účinnost elektrických strojů, decibely, nepery, komplexní (fila atd.) – zkrátka je to kniha pro velmí chytré čtenáře. Tím je ovšem značně otřesena pravdivost poslední věty v kniže; že je kniha určena pro široký okruh pracovníků v elektrotechnice. Určena jim být může, její použitelnost pro tuto oblast čtenáře. Tím je ovšem značně otřesena praválovst poslední věty v kniže; že je kniha určena pro široký okruh pracovníků v elektrotechnice. Určena jim být může, její použitelnost po tuto oblast čtenáře. Tím je ovšem značně otřesena praválovst poslední věty v kniže; že je kniha určena pro široký okruh pracovníků v elektrotechnice totiž patří i žáci odborných škol, uční, mistí a radioa

příliš vysoko. Pro běžné pracovníky v elektrotechnice je v knize srozumitelná snad jen jedna dvaadvacetiřádková kapitola o údržbě logaritmického pravítka. Nicméně i v ni jsou náměty k diskusi: aby běhoun a šoupátko pravítka lépe běhaly, doporučují autoří namazat držžky voskem ... Jsme-li už u nedostatků knihy, připomeňme ještě několik maličkosti. Ide sice o tzv. revidované vydání, ale asi revidované málo, protože na str. 125 se vyskytla dvě rovnítka vedle sebe. Také na str. 63 až 65 to se zápisy typu k = konst. není po matematické a logické stránce v pořádku. Přesnost vyjadřování trochu kazí nejednotnost názvoslovi: na str. 22 je název "plexisklo", zatímco na str. 73 "organické sklo". Stejně název "umělá hmota" na str. 23, 34, 71, 73 atd. nedělá knize dobrou reklamu. – Neodraďme však ty, kteří se opravdu chtějí naučit všechna kouzla s pravítkem; v knize je těch kouzel dost, jsou doprovázena příklady, takže lze jen opakovat, že jde o užitečnou knihu pro náročné uživatele. – ou-

Oborové encyklopedie SNTL: ELEKTRO-NIKA. Zpracoval kolektiv autorů pod vedením prof. RNDr Jindřicha Forejta. Praha: SNTL 1969. 524 str., 1 230 obr. Váz. Kčs 95,—.

1969. 524 str., 1 230 obr. Váz. Kčs 95,—.

Nakladatelství technické literatury přikročilo k vydávání oborových technických encyklopedii. Do jisté míry tím vlastné navazuje na vydávání Teysslerova-Kotyškova Technického slovníku nauchého (1927 až 1949). Oblast je to zřejmě svízelná, bereme-li v úvahu prudký technický rozvoj a vznik nových technických oborů; vycházela-li rozsáhlá, abecedné řazená encyklopedie v předválečných dobách 10 až 20 let, byla by to v dnešních nakladatelských podmínkách záležitost na světelné roky. Proto se jako optimální řešení ukázalo vydat jeden stručný (pětisvazkový) technický slovník (SNTL 1962 až 1964) a pak vydávat jednotlivé oborové svazky, jeiichž výběr by si uživatel mohl volit podle zájmu a potřeby. Tak se nejdříve dostalo na Elektroniku, dalším svažkem má být Sdělovací technika, přípravují se ještě svazky Aplikovaná matematika Praktická fotografie – další svazky jsou zatím v nedohlednu. v nedohlednu.

v nedohlednu.
Nápad je to vítaný. Léta chybí souhrnné dílo
encyklopedického a příručkového charakteru
z elektroniky a jejích odvětví, nebo lépe řečeno
oborů. Pochvalme tedy přes 40 autorů a přibližně
stejný počet lektorů za námahu, která i přes některé
výhrady přínese užitek. Dílo je zpracováno spíše
z hlediska teoretického než praktického; mezi
autory je nejvýše 5 odborníků-praktiků, ostatní
jsou odborníci-teoretíci.
Lednylitý besla jsou řezena abecedně takže ani

autory je nejvýše 5 odborníků-praktiků, ostatní jsou odborníci-teoretici.

Jednotlivá hesla jsou řazena abecedně, takže ani nelze říci, co je obsahem knihy. Dejme tomu, že je to celá elektronika tak, jak si ji vymezili autoří a pořadatel díla. Protože hranice, kde začíná a končí elektronika v elektrotechnice. jsou mlhavé a sporné, nelze ani říci, oc ohybi; co zde není, může být něký jednou v jiném svazku. Jen při pohledu na rozsah jednotlivých hesel se ukazuje kvantitativní nevýváženost. Za všechny příklady jeden namátkově: je človčku trochu líto, je-li v knize s názvem Elektronika např. heslu "elektron" věnováno necelých čtyři a půl řádku, zatimco heslo "tyratron" zabírá šest a půl strany velkého formátu. Je opravdu těžké hodnotit tento nepoměr jako nevyváženost a chybu, zejména při tolika autorech, ale snad by více péče na tomto poli neškodilo. A jsme-li u žkod, podívejme se kriticky i na obálku a přebal. Co znázorňuje obrazový útvar na přebalu a obálce, to ví asi jen výtvarník. Také typ písma pro oborovou encyklopedii lze označit za nešetrný výběr.

Přes tyto nedostatky lze knihu považovat za užitečnou, zvláště také proto, že jde o průkopnické dílo, první svého druhu u nás v československé odborné literatuře, za což právem patří autorům i pořadateli uznání-a dík.

L. D.

Radioamator (Jug.), č. 2/70

Radioamator (Jug.), č. 2/70

Vf předzesilovač pro 145 MHz – Amatérský osciloskop (2) – Jednoduchý beam pro 14, 21 a 28 MHz – Tři VFO s tranzistory – Tranzistorový stabilizátor napětí – Soustavy barevné televize – Vlastnosti nf zesilovačů (2) – Formování a použití elektrolytických kondenzátorů – Interfon VK-231 – Jednoduchý zkoušeč průrazů kondenzátorů – Transformátor impedance – Pokusný přijimač VKV – Katodová modulace pro přenosné vysílače – Tranzistorový vysílač QRPP – Stabilizátor nizkého napětí bez siťového transformátoru – Oscilátor pro pásmo 145 MHz s tranzistorem FET a krystalem – Prověřte si znalosti.

Funkamateur (NDR), č. 1/70

Návod ke stavbě stereofonního zesilovače – Tranzistorový kapesní přijímač z přijímače Stern-chen – Elektronika v motorovém vozidle – Síťový zdroj pro tranzistorový magnetofon – Vstupní obvozdroj pro tranzistorový magnetofon – Vstupní obvo-dy přijímače s premixerem – Přijímač pro hon na-lišku v pásmu 2 m – Návrh konstrukce amatérských přijímačů – Stereofonní předzesilovač – Základy barevné televize – Jakostní generátor sinusových a pravothlých signálů – Návrh tranzistorových nř zesilovačů – Dálkové ovládání modelů (27,12 MHz) – Některé problémy šíření VKV – Stavebnicové spínací, obvody s tranzistory. spínací obvody s tranzistory.

Radio, Fernsehen, Elektronik (NDR), č. 1/70

Problémy propojování rychlých elektronických počitačů (1) – Převod kódu u děrovačů 3518 – Energetické poměry při parametrickém zesílení – Výroba originálů plošných spojů – Technika příjmu barevné televize (4) – Barevný televizní příjmu barevné televize (4) – Barevný televizní přijmu barevné televize (4) – Barevný televizní přijmač RGT – Color 20 – Rychlý bipolární pulsní generátor – Telemetrie pod vodou – Elektronicky řízené sušení prádla – Ovládání číslicových indíkacních výbojek tranzistory – Přijimač RCX-1002 pro příjem stereofonních signálů.

Radio, Fernsehen, Elektronik (NDR), č. 2/70

Cesta ke stavebnicovému systému s integrova-Cesta ke stavebnicovému systému s integrova-nými obvody pro radioamatéry – Problémy propo-jování rychlých elektronických počítačů (2) – Para-metrické zesilovače – Informace o polovodičích 66, sovětské germaniové tranzistory MGT108 – Tech-nika příjmu barevné televize (5) – Pojmy z oboru barevné televize (4) – Dekadická jednotka s tran-zistory n-p-n k řízení číslicových indikačních vý-bojek – Kapesní tranzistorový přijímač Orljonok – Stereofonní gramofon Ziphona Perfekt-215 s magne-tickou přenoskou – Eliptický reproduktor. 221-SB s extrémním poměrem os.

Rádiótechnika (MLR) č. 2/70

Radiotechnika (MLR) c. 2710

Zajímavá zapojení s elektronkami i tranzistory –
Stabilizátory napětí – Šiření krátkých vln – Zrcadlová selektivita – Spojení Země-Měsic-Země v pásmu 145 MHz – Amatérská měřici technika – Televizní přijímač Orion AT459 – Nf zesilovač Hi-Fi s tranzistory – Stereofonní dekodér s tranzistory – Polovodičové diody – Výpočet prvků obvodů stejnosměrného proudu – Samočinný časový spinač.

Radio i televizija (BLR), č. 11/69

Přepinání dekoračních žárovek – Televizní anténni zesilovače – Použiti pulsně-kódové modulace – Ladění elektronických obvodů vartkapy – Transformátory k posuvu fáze – Stabilizace pracovního bodu tranzistoru – Tranzistory MOSFET.

Funktechnik (NSR), č. 24/69

Obsah ročníku 1969 – Kompenzovaná identifi-kace signálů PAL – Fototyristor BPY78 a jeho použití – Zlepšené sluneční články – Integrovaný napěťový stabilizátor TAA550 – Stereofonni zesi-lovač 2 × 40 W velké jakosti – Širokopásmový anténní zesilovač pro kmitočty 40 až 860 MHz – Nf zesilovač 1,2 W/9 V s křemíkovými tranzistory.

Funktechnik (NSR), č. 1/70

Přinktechnik (NSR), č. 1700
Připojování videomagnetofonů k televizním přijímačům – Stavební prvky k přenosu a zpracování
informací o úhlových změnách – Měniče impedance
– Moderní trazistorový přijímač VKV s integrovanými obvody a s volbou stanic tlačítky – Reproduktorové soupravy pro zesilovač 2 × 40 W –
Nř zesilovač 15 W v integrovaném hybridním
zapojení – Elektronická ochrana motorových vozidel před odcizením – Adaptor k připojení videomagnetofonu k domácímu přijímačí.

Funktechnik (NSR), č. 2/70

Zapojení vstupních obvodů přijímačů, odolná vůči silným signálům – Stavební prvky k přenosu a zpracování informací o úhlových změnách (2) – a zpracování informaci o uhlových zmenaci (2) – Stereofonie na jednu reproduktorovou soustavu – Autoanténa při přijmu VKV – Výpočet a praktický návrh regulátoru hlasitosti pro stereofonní zesilovač – Elektronický přepínač k jednopaprskovému osciloskopu – Adaptor k připojení videomagnetofonu k domácímu přijimači (2) – Elektronické řízení rychlosti stěračů.

- INZERCE

První tučný řádek Kčs 20,40, další Kčs 10,20. Přislušnou částku poukažte na účet č. 300-036 SBČS Praha, správa 611 pro vydavatelství MAG-NET, inzerce, Praha I, Vladislavova 26. Uzávěrka 6 týdnů před uveřejněním, tj. 14. v měsici. Neopo-meňte uvést prodejní cenu.

PRODEI

PRODEJ

XB81-00 Pressler 150 Ws, 380+600 V (100). Evžen Šerber, Okružni 371/28, Most. Mgf. National 401 S (2 400), Uran (1 400). R. Valeš, Kopečná 22, Brno. Nepoužité tranzist. AF139 (100), AF239 (120). Ing. Ludvík Bednář, Přesličkova 2886, Praha 10. Konvertor 1,7 =28 se zdrojem k EZ6 (300), 12 ks RL15A (à 15), 3 ks otočný kondenzátor z ant. dílu RM31 (à 30). J. Pawlas, Okrajová 31, Havířov XIII, okr. Karviná. okr. Karviná.

Tranzist. AF139 (120), AF239 (140), výkonový křemik. 110 W 2N3055 (500), nepouž. J. Petelík, SNP 614, Hradec Král. 3.
Kryštály RM31, soznam zašlem (à 35), ploš. spoje Tranziwatt 100G (50), Transiwatt 100S (60). Ing. M. Čaprda, Nábreži mládeže 1, Nitra.
Pro Hi-Fi zesilovač stereo 2 × 20 W (sin) kompl. destičky ploš. spojů s dokumentaci pro jeden kanál (160), pro dva kanály (240), sitové trafo pro tento zesilovač (240). D. Chlubna, Čapkova 54, Ostrava – Radvanice.

Radvanice. Budič Tesla KB6 2,4 \div 21;6 MHz-30 W + zdroj (950). J. Stehliček, družstvo Sved, Český Dub. Si \div tranzistory BCV58IX (β > 250, P=1 W, f=300 MHz, à 30 Kčs); BSX45 (5 W, 60 MHz, à 50); 2N3055 (115 W; 1 MHz; pár 600 Kćs). J. Pech, Botanická 6, Brno. TX 50 W- $_3$, 5, 7, 14 MHz + elbug. + zdroj (1 200), PA 200 W + zdroj + náhr. el. (800), RX E10L (300), rozest. konv. z T orna (250), RX Emil + náhr. el. (250). J. Kroupa, Jihlavská 31, Bosonohy u Brna.

KOUPĔ

RX Lambda nebo podobný, EZ6, EL10 aj.,

AR 1952—63, RK 1955—57. Zd. Hauser, Kalefova 335, Mladá Boleslav.

Transceiver na 40 nebo 15 m – CW – jen ufb. Zdeněk Kopecký, Habartov 58.

Prijímač Filharmonia bez skrine a reproduktora. I nehrajúci. Ladislav Luksič, Tomašikova 26, Kotica

šice.

Lambda Va, K13 apod. H. Goldstein, Vodičkova 30, Praha 1, tel. 231-906 v 18 hod.

R3 a EZ6, krystal 14,000 MHz. B. Hamrozi, Jablunkov II č. 336.

Prázdnu skriňu Ametyst sektor, horná časť. Semsey, Košice, B. Němcovej 1.

Elektronku MHLD6. Svatopluk Lokšan, Luční 126, Chabařovice, okr. Ústí nad Labem.

Sluchátka 4 kΩ. A. Semančík, Štrbské Pleso, okr. Poprad.

VÝMĚNA

OC26 a 27, 4 a 7NU73, SFT213 a 214, změř. i pár. za DHR, krystaly, KF503÷508, KC507 nebo prodám za 75 % ceny. A. Krejčířík, Solidarita A245,

Převíjení všech druhů

síťových a výstupních transformátorů

provádí

KOVOPODNIK

Plzeň, Dukelská tř. 17, tel. 23911, 24407

STŘEDOČESKÉ

energetické závody, n. p., Praha 1, Na příkopě 15

přijme

2 telefonní mechaniky pro údržbu telefonních ústředen třídičových i hledačových a dispečerských zařízení.

Výhodné platové podmínky, zlevněný elektrický proud, důchodové připojištění, podniková rekreace.

Zájemci z Prahy a okolí, hlaste se na tel. 227383, odbor provozu automatik a spojů STÉ, n. p., Praha.

Moderní

nechtějí být otroky věcí, které jim mají sloužit. Když televizor, tak kvalitní a s bezplatným a rychlým servisem na zavolání telefonem. Tak je tomu po celou dobu pronájmu televizoru z MULTISERVISU TESLA. Takový televizor můžete mít ihned - za přijatelné měsíční poplatky. Žádné papírování: k uzavření smlouvy stačí občanský průkaz. Odvoz a instalace televizoru je zdarma. Čekají vás příjemné večery a bezstarostný požitek z televize. A ještě něco: za 4 roky můžete mít opět úplně nový a nejmodernější televizor. Služba, která je v nejvyspělejších zemích světa běžná, stává se běžnou i u nás.

MULTISERVIS

