10-725 Convex Optimization Homework 1

Shashank Singh*

Due September 19, 2013

^{*}sss1@andrew.cmu.edu

1 Mastery set [25 points] (Aaditya)

A1 [2] $\forall k \in 1, ..., n$, define $S_k := \sum_{i=1}^k \theta_i$ and $y_k := \sum_{i=1}^k \frac{\theta_i x_i}{S_k} \in C$. Suppose that, for some $k \in 1, ..., n-1, y_k \in C$. Then,

$$y_{k+1} := \sum_{i=1}^{k+1} \frac{\theta_i x_i}{S_{k+1}} = \frac{\theta_{k+1} x_{k+1}}{S_{k+1}} + \sum_{i=1}^k \frac{\theta_i x_i}{S_{k+1}} = \frac{\theta_{k+1} x_{k+1}}{S_{k+1}} + \frac{S_k}{S_{k+1}} \sum_{i=1}^k \frac{\theta_i x_i}{S_k}$$
$$= \frac{\theta_{k+1} x_{k+1}}{S_{k+1}} + \left(1 - \frac{\theta_{k+1}}{S_{k+1}}\right) \sum_{i=1}^k \frac{\theta_i x_i}{S_k} \in C,$$

since C is convex. Since $y_1 = x_1 \in C$, by induction on $k, y = y_n \in C$.

A2 [3] We showed in class that $conv_2(M)$ is convex. Since each point in M is a convex combination of points in M, $M \subseteq conv_2(M)$, so $conv_1(M) \subseteq conv_2(M)$. If $C \supseteq M$ is convex, then, by part A1, any convex combination of points in M is in C. Thus, $conv_2(M) \subseteq conv_1(M)$.

B1 [2+2] HP(a,b) is convex. If $\theta \in [0,1]$ and $x_1, x_2 \in HP(a,b)$, then

$$a^{T}(\theta x_{1} + (1 - \theta)x_{2}) = \theta a^{T}x_{1} + (1 - \theta)a^{T}x_{2} = \theta b + (1 - \theta)b = b.$$

If $x_1 \in HP(a, b_1)$ and $x_2 \in HP(a, b_2)$, then, by Cauchy-Schwarz,

$$||x_1 - x_2|| \ge \left| \frac{a}{||a||} (x_1 - x_2) \right| = \left| \frac{|b_1 - b_2|}{||a||},$$

and it is easily checked that $x_1 = \frac{b_1}{\|a\|^2}a$ and $x_2 = \frac{b_2}{\|a\|^2}a$ achieve this bound.

B2 [2+2] HS(a,b) is convex. If $\theta \in [0,1]$ and $x_1, x_2 \in HS(a,b)$, then

$$a^{T}(\theta x_{1} + (1 - \theta)x_{2}) = \theta a^{T}x_{1} + (1 - \theta)a^{T}x_{2} \le \theta b + (1 - \theta)b = b.$$

 $HS(a_1,b_1) \subseteq HS(a_2,b_2)$ if and only if $\exists c \in \mathbb{R}$ with $a_1 = ca_2$ and $b_1 \leq cb_2$.

B3 [2] $\forall x \in \mathbb{R}^d$,

$$||u - x||_2^2 \le ||v - x||_2^2$$

$$\Leftrightarrow ||u||_2 - 2u^T x + ||x||_2 \le ||v||_2 - 2v^T x + ||x||_2$$

$$\Leftrightarrow ||u|| - ||v|| \le 2(u - v)^T x.$$

Thus, $\{x \in \mathbb{R}^d \mid ||u - x|| \le ||v - x||\} = HS(2(u - v), ||u|| - ||v||)$, and is thus convex.

C [2+3] $\forall \theta \in [0,1], x, y \in \mathbb{R}_+,$

$$f(s(\theta x + (1 - \theta)y)) = f(\theta sx + (1 - \theta)sy) \le \theta f(sx) + (1 - \theta)f(sy). \quad \blacksquare$$

Note that, via the change of variables u = t/x,

$$F(x) = \frac{1}{x} \int_0^x f(t) dt = \frac{1}{x} \int_0^1 f(xu) x du = \int_0^1 f(xu) du.$$

Thus, $\forall \theta \in [0,1], x,y \in \mathbb{R}_+$, by convexity of the function $u \mapsto f(xu)$,

$$F(\theta x + (1 - \theta)y) = \int_0^1 f((\theta x + (1 - \theta)y)u) du$$

$$\leq \int_0^1 \theta f(xu) + (1 - \theta)f(yu) du = \theta F(x) + (1 - \theta)F(y). \quad \blacksquare$$

D [3+2] The LP can be written in standard form as an LP over 6 variables:

$$0 \le u = \begin{bmatrix} x_2 \\ y_2 \\ z_1 \\ z_2 \\ s_1 \\ s_2 \end{bmatrix}, \quad c = \begin{bmatrix} 3 \\ -1 \\ 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} A = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & -1 & 0 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$$

The optimum occurs at (x, y, z) = (1, -1, 1), when 3x - y + z = 5.

2 LPs and gradient descent in Stats/ML [25 points] (Sashank)

A [4+4+5]

(a) Suppose β optimizes (1). Define

$$\beta_i^+ := \left\{ \begin{array}{ll} \beta_i : & \beta_i \ge 0 \\ 0 : & \text{else} \end{array} \right.,$$

 $\beta^- := \beta^+ - \beta$. Then, $y = X\beta = X(\beta^+ - \beta^-)$ and $\beta^+, \beta^- \ge 0$, so (β^+, β^-) is feasible for (2). Since $1^T(\beta^+ + \beta^-) = \sum_{i=1}^p |\beta_i| = \|\beta\|_1$, the optimum for (2) is at most $\|\beta_1\|$.

(b) Suppose (β^+, β^-) optimizes (2). Define $\beta := \beta^+ - \beta^-$. Then, $y = X(\beta^+ - \beta^-) = X\beta$, so β is feasible for (1). Since $\|\beta\|_1 = \sum_{i=1}^p |\beta_i| = 1^T(\beta^+ + \beta^-)$, the optimum for (1) is at most, and therefore equal to, the optimum for (1).

(c)

B [6+6]

(a) Rewriting in vector notation (where $h_j(x) = x_j \in \mathbb{R}^n$ is the j^{th} feature vector), we have

$$\hat{\alpha}_j = \underset{\alpha_j \in \mathbb{R}}{\operatorname{argmin}} \|\alpha_j h_j(x) + \hat{y} - y\|_2^2 = \underset{\alpha_j \in \mathbb{R}}{\operatorname{argmin}} \|\alpha_j x_j + \hat{y} - y\|_2^2 = \underset{\alpha_j \in \mathbb{R}}{\operatorname{argmin}} \|\alpha_j x_j - (y - \hat{y})\|_2^2,$$

from which it is apparent that $\hat{\alpha}_i$ is the length of the projection of $y - \hat{y}$ onto x_i ,

$$\hat{\alpha}_j = \left\langle \frac{x_j}{\|x_j\|}, y - \hat{y} \right\rangle = \left[\langle x_j, y - \hat{y} \rangle. \right]$$
(1)

Note that, rewriting terms as vectors, g is a gradient of the 2-norm recentered at y:

$$g = \frac{\partial L(y, \hat{y})}{\partial \hat{y}} = \frac{\partial \|y - \hat{y}\|_2^2}{\partial \hat{y}} = 2(\hat{y} - y).$$

Thus, rewriting again in vector notation, we have

$$j = \underset{\ell \in \{1, \dots, M\}}{\operatorname{argmin}} \| - g - \hat{\alpha}_{\ell} h_{\ell}(x) \|_{2}^{2} = \underset{\ell \in \{1, \dots, M\}}{\operatorname{argmin}} \| \hat{\alpha}_{\ell} x_{\ell} - (y - \hat{y}) \|_{2}^{2}.$$

From (1), it is clear that this term is just the error of approximating $(y - \hat{y})$ by its projection onto x_j . This error is minimized by maximizing the inner product of x_j and $y - \hat{y}$, and hence

$$j = \underset{\ell \in \{1, \dots, M\}}{\operatorname{argmax}} |\langle x_j, y - \hat{y} \rangle|.$$
(2)

We could make this derivation a bit more rigorous (find roots of the derivative to compute $\hat{\alpha}_j$, and then obtain (2) via some algebra), but these arguments give much better intuition.

¹sss1@andrew.cmu.edu

(b)
$$\hat{\alpha}_j = \operatorname*{argmin}_{\alpha_j \in \mathbb{R}} \sum_{i=1}^n \log \left(1 + \exp(-2y_i(\hat{y}_i + \alpha_j h_j(x_i)))\right).$$

I don't see a good way of minimizing this analytically. A simple way to approximately minimize this in practice would be to find the α_j values that minimize each term of the sum, and then try values of α_j (perhaps uniformly) in the interval surrounded by those values.

3 Programming gradient descent [25 points] (Yifei)

(a) (5 pts) Based on the plots, f_Q , f_{LL} , and f_R appear convex, whereas f_H appears to have minima that are local but not global.

Figure 1: Surface and contour plots of the four objective functions.

- (b) (8 pts) In each figure below, the row indicates the step size (0.3 or 0.8) and the column indicates the initialization $((2,3)^T$ or random).
- (c) (6 pts)
- (d) (4 pts)
- (e) (2 pts)

 $^{^1} sss1@andrew.cmu.edu$

Figure 2: Gradient descent path and contour plots of f_Q at each step size and initialization.

Figure 3: Gradient descent path and contour plots of f_{LL} at each step size and initialization.

Figure 4: Gradient descent path and contour plots of f_H at each step size and initialization.

Figure 5: Gradient descent path and contour plots of f_R at each step size and initialization.

4 Convergence rate of subgradient method [25 points] (Adona)

(a) (4 pts) Since the 2-norm is induced by an inner product $\langle \cdot, \cdot \rangle$,

$$\begin{aligned} \|x^{(k)} - x^{\star}\|_{2}^{2} &= \|x^{(k-1)} - x^{\star} - t_{k}g^{(k-1)}\|_{2}^{2} & \text{(def. of } x^{(k)}) \\ &= \langle x^{(k-1)} - x^{\star} - t_{k}g^{(k-1)}, x^{(k-1)} - x^{\star} - t_{k}g^{(k-1)} \rangle \\ &= \|x^{(k-1)} - x^{\star}\|_{2}^{2} - 2t_{k}\langle x^{(k-1)} - x^{\star}, g^{(k-1)} \rangle + t_{k}^{2}\|g^{(k-1)}\|_{2}^{2} & \text{(bilinearity of } \langle \cdot, \cdot \rangle) \\ &\leq \|x^{(k-1)} - x^{\star}\|_{2}^{2} - 2t_{k}\left(f(x^{(k-1)}) - f(x^{\star})\right) + t_{k}^{2}\|g^{(k-1)}\|_{2}^{2}, \end{aligned}$$

where the inequality follows from the definition of a subgradient.

(b) (5 pts) If g is a subgradient of f at x, then by the Lipschitz condition on f,

$$||g||_2^2 = g^T(x+g-x) \le f(x+g) - f(x) \le G||x+g-x||_2 = G||g||_2,$$
 (3)

and so $||g|| \leq G$. Thus, applying the recursive bound from (a) k times then gives

$$0 \le \|x^{(k)} - x^*\|_2^2 \le \|x^{(0)} - x^*\|_2^2 + \sum_{i=1}^k (-2t_i) \left(f(x^{(i-1)}) - f(x^*) \right) + t_i^2 \|g^{(i-1)}\|_2^2$$
$$\le R^2 - 2\sum_{i=1}^k t_i \left(f(x^{(i-1)}) - f(x^*) \right) + G^2 \sum_{i=1}^k t_i^2. \quad \blacksquare$$

(c) (4 pts) Since $x_{\text{best}}^{(k)}$ is chosen so as to minimize $f(x_{\text{best}}^{(k)})$ over $\{x^{(0)}, \dots, x^{(k)}\}$,

$$2\sum_{i=1}^{k} t_i \left(f(x_{\text{best}}^{(k)}) - f(x^*) \right) \le 2\sum_{i=1}^{k} t_i \left(f(x^{(i-1)}) - f(x^*) \right) \le R^2 + G^2 \sum_{i=1}^{k} t_i^2,$$

using a rearrangement of the result of part (b). Thus, further rearranging, we have

$$f(x_{\text{best}}^{(k)}) - f(x^*) \le \frac{R^2 + G^2 \sum_{i=1}^k t_i^2}{2 \sum_{i=1}^k t_i}. \quad \blacksquare$$
 (4)

(d) (4 pts) Plugging $t_1 = \cdots = t_k = t$ into (4) and taking the desired limit gives

$$\lim_{k \to \infty} f(x_{\text{best}}^{(k)}) - f(x^*) \le \lim_{k \to \infty} \frac{R^2 + G^2 k t^2}{2kt} = \left| \frac{G^2 t}{2} \right|.$$

Thus, the subgradient method with a constant step size t converges to a point at which the objective function exceeds its minimum by no more than $G^2t/2$.

¹sss1@andrew.cmu.edu

(e) (4 pts) Taking the desired limit in (4) gives

$$\lim_{k \to \infty} f(x_{\text{best}}^{(k)}) - f(x^*) \le \lim_{k \to \infty} \frac{R^2 + G^2 \sum_{i=1}^k t_i^2}{2 \sum_{i=1}^k t_i} \le \frac{R^2 + G^2 \lim_{k \to \infty} \sum_{i=1}^k t_i^2}{2 \lim_{k \to \infty} \sum_{i=1}^k t_i} = \boxed{0}.$$

Thus the subgradient method with step sizes as specified converges to a minimum of f.

(f) (4 pts) Plugging $t_i = R/(G\sqrt{k})$ into (4) gives

$$f(x_{\text{best}}^{(k)}) - f(x^*) \le \frac{R^2 + R^2 k/k}{2k(R/G)\sqrt{k}} = RGk^{-3/2}.$$
 (5)

Since the t_i was chosen to minimize (4), this is the best bound we can derive from (4).