NTIN071 A&G: Cvičení 5 – Regulární výrazy (bonus: dvousměrné automaty)

Cíle výuky: Po absolvování student umí

- sestrojit regulární výraz pro regulární jazyk daný v množinovém zápisu
- převést regulární výraz na konečný automat
- převést konečný automat na regulární výraz

Příklady na cvičení

Příklad 1 (Konstrukce regulárních výrazů). Najděte regulární výrazy reprezentující jazyky nad abecedou $\Sigma = \{a, b\}$ sestávající ze slov, která:

(a) začínají 'abba',

- (d) neobsahují 'aa' jako podslovo,
- (b) začínají 'ab' a končí 'ba',

- (e) obsahují sudý počet výskytů písmene 'a',
- (c) obsahují 'abba' nebo 'bab',
- (f) začínají a končí stejným písmenem.

Příklad 2 (Převod regulárního výrazu na automat). Zkonstruujte NFA rozpoznávající jazyky popsané následujícími regulárními výrazy:

(a)
$$a^2 + b^2 + ab$$

(b)
$$a + b^*$$

(c)
$$(ab + c)^*$$

Příklad 3 (Převod automatu na regulární výraz). Sestrojte regulární výrazy pro jazyky rozpoznávané následujícími automaty. b

Příklad 4 (Doplněk regulárního výrazu). Mějme následující regulární výraz nad abecedou $\Sigma = \{a, b\}$ a buď L = L(R):

$$R = ((a+b)(a+b))^*ab$$

- (a) Sestrojte (co nejmenší) nedeterministický konečný automat A rozpoznávající L.
- (b) Podmnožinovou konstrukcí převeďte A na deterministický konečný automat B.
- (c) Z automatu Bsestrojte DFA Crozpoznávající $\operatorname{doplněk}$ jazyka L.

K procvičení a k zamyšlení

Příklad 5 (Převod regulárního výrazu na automat). Zkonstruujte NFA rozpoznávající jazyky popsané následujícími regulárními výrazy:

(a)
$$ab + ba$$

(c)
$$((ab+c)^*a(bc)^*+b)^*$$

(b)
$$((ab+c)+a(bc)^*+b)^*$$

(d)
$$(01^* + 101)^*0^*1$$

Příklad 6 (Převod automatu na regulární výraz). Sestrojte regulární výrazy pro jazyky rozpoznávané následujícími automaty.

Příklad 7 (Testování ekvivalence regulárních výrazů). Popište algoritmus na testování ekvivalence regulárních výrazů. Aplikujte ho na $(a + b)(a + b)^*$, $a(a + b)^* + b(a + b)^*$.

Příklad 8 (Jsou regulární výrazy regulární?). Mějme konečnou abecedu Σ . Je jazyk sestávající ze všech regulárních výrazů nad abecedou Σ regulárním jazykem?

Bonus: Dvousměrné automaty

Příklad 9 (Převod dvousměrného automatu). Uvažte následující dvousměrný DFA.

- (a) Určete jakyk rozpoznávaný tímto automatem.
- (b) Určete funkce f_u a kongruenci \sim pro všechna slova délky nejvýše 4.
- (c) Převeďte ho na ekvivalentní jednosměrný konečný automat.

Příklad 10 (Bez dvousměrných automatů to jde těžko). Pro daný DFA A navrhněte NFA rozponávající jazyk $L' = \{\#w\# \mid ww^R \in L(A)\}$. (Bez použití dvousměrných automatů.)

Příklad 11 (Konstrukce dvousměrného automatu). Buď L regulární jazyk nad Σ a $\# \notin \Sigma$. Sestrojte dvousměrný konečný automat rozpoznávající daný jazyk:

- (a) $L' = \{ \#w\# \mid ww^R \in L \}$
- (b) $L' = \{ \#w \# \mid (\exists u \in \Sigma^*) wu \in L \& |w| = |u| \}$