微分積分学・同演習 A

演習問題 1

- 1. 次の集合に属する元を具体的にすべて表せ.
 - (1) $X_1 = \{n \in \mathbb{Z}; \ |n| < 5\}$ (2) $X_2 = \{m \in \mathbb{N}; \ m$ は 50 以下の素数 $\}$
 - (3) $X_3=\{x\in\mathbb{Q};\; x=p/q\;(p,q\;$ は互いに素) とするとき 0< p< q<5 となるもの $\}$
- 2. 次の多項式の集合の元を,具体的に表せ*1.
 - (1) $X_1 = \{2$ 次以下の実数係数の多項式全体 $\}$
 - (2) $X_2 = \{2$ 次以下の実数係数の多項式で,係数の和が0となるもの全体 $\}$
 - (3) $X_3=\{3$ 次以下の実数係数多項式で,微分したら多項式 x^2+x になるもの全体 $\}$
- 3. 次の三角不等式が成り立つことを証明せよ.

$$(1) |a+b| \le |a| + |b| \quad (2) ||a| - |b|| \le |a-b| \quad (a, b \in \mathbb{R})$$

4. 二項係数が $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ を満たすことを用いて,次の等式を証明せよ.

$$\binom{n+1}{k} = \binom{n}{j-1} + \binom{n}{j}.$$

5. 二項係数に関して,次の等式を証明せよ.

(1)
$$\sum_{k=0}^{n} {n \choose k} = 2^n$$
 (2) $\sum_{k=0}^{n} (-1)^k {n \choose k} = 0$

- 6^{\dagger} (1) 数列 $\{a_n\}$ がある実数 α に収束することを arepsilon N 論法の言葉で表せ .
 - (2) 数列 $\{a_n\}$ がある実数 α に収束しないことを ε N 論法の言葉で表せ.
- 7^{\dagger} 次の極限を , ε N 論法を用いて証明せよ .

(1)
$$\lim_{n \to +\infty} \frac{3}{n^3} = 0$$
 (2) $\lim_{n \to +\infty} e^{-n} = 0$ (3) $\lim_{n \to +\infty} \left(1 - \frac{1}{2^n}\right) = 1$

8. α を非負の数とし,任意の正の数 ε に対して $\alpha<\varepsilon$ を満たすとする.このとき $\alpha=0$ となることを示せ.

⁴月11日分(凡例:無印は基本問題, †は特に解いてほしい問題,*は応用問題)

講義用 HP: http://www2.math.kyushu-u.ac.jp/~h-nakashima/lecture/2017C.html

 $^{^{*1}}$ 問題が少し曖昧であるが,たとえば(1) なら実数a,b,cを用いて ax^2+bx+c と表せる,など.