

MATLAB Workshop

12/03/21

- High-level language dedicated to mathematical and technical computing
- Matrix Laboratory
- Allows for
 - Matrix manipulations
 - Plotting functions and data
 - Implementing algorithms
 - Creation user interfaces,
 - Interfacing with programs written in other languages

	Python	MATLAB	
Definition	High level general purpose programming language	High performance language for technical computing	
Primary usage	Developing websites and software, task automation, data analysis, and data visualization	Signal processing & communications, image processing, control systems, computational biology	
Advantages	Free and openGeneral purposeIntrospectionPortablePopular	 Matrices Lots of functions Simulink Easy to install Widespread in academia 	

multidimensional array

Operation	Operator	Example
Addition	+	3 + 2
Subtraction	_	3 - 2
Multiplication	*	3 * 2
Right division	/	3 / 2
Left division	\	3 \ 2 = 2 / 3
Exponentiation	^	3 ^ 2

Vectors & matrices

-

5 10 56

row vector 1 x 3

column vector 3 x 1

2D matrix 3 x 3

5	10	56	
6	4	6	
7	78	87	

3D matrix 3 x 5 x 2

3D matrix 3 x 5 x 3

From a known list of numbers

$$x = [vector elements], A = [matrix elements]$$

With constant spacing by specifying first term (m), last term (n), & spacing (q)

$$x = m:q:n$$
, $A = reshape(m:q:n, d1, d2)$

row vector

$$x = [1, 2, 3]$$

$$x = 1:1:3$$

 $x = 1:3$

column vector

$$x = [2; 4; 6]$$

$$x = [2:2:6]$$

2D matrix

$$A = [1, 4, 7;$$

2, 5, 8;
3, 6, 9]

$$x = [2:2:6]'$$
 A = reshape(1:9, 3, 3)

Array & matrix operators

	Operation	Operator	Description
Array	Addition	+	A+B adds A and B
	Subtraction	_	A-B subtracts B from A
	Element-wise multiplication	. *	A.*B is element-by-element product of A and B
	Right array division	./	A./B is matrix with elements A(i,j)/B(i,j)
	Element-wise power	• ^	A.^B is matrix with elements A(i,j) to the B(i,j) power
Matrix	Matrix multiplication	*	C = A*B is linear algebraic product of A and B
	Matrix left division	/	$x = A \setminus B$ is solution to the equation $Ax = B$
	Matrix right division	\	x = B/A is solution to the equation $xA = B$
	Matrix transpose	,	A' is linear algebraic transpose of A

- Head to <u>github.com/daniellegruber/IEEE-MATLAB-Tutorial</u> and clone the repo
- Read the README file and think about which tutorial(s) you want to try according to your interests and level of experience
- Feel free to work alone or in groups, and we'll be around to answer any questions you have!
- For anyone from EENG 200, feel free to check out the code I wrote for the class: https://github.com/daniellegruber/EENG200