

Algorithms for Data Science

Unsupervised Learning: K-Means Clustering

K-Means Clustering Overview

K-Means is an iterative algorithm that partitions a dataset into k clusters by minimizing the within-cluster sum of squares (WCSS).

Key Steps

- Assign each data point to the nearest cluster centroid.
- 2. Update centroids to be the mean of assigned points.

Applications

Document Clustering and Market Segmentation

K-Means: Mathematical Formulation

Objective Function:

o Minimize the WCSS*:

$$WCSS = \sum_{i=1}^{N} \min_{j \in \{1, ..., k\}} ||x_i - c_j||^2$$

Where:

- x_i: Data point i
- c_i : Centroid of cluster j
- k: Number of clusters

Centroid Update Formula:

$$c_j = \frac{1}{|S_j|} \sum_{x_i \in S_j} x_i$$

Where:

• *S_i*: Set of points in cluster j

*Minimizing WCSS ensures that points within clusters are as similar as possible.

K-Means Clustering Algorithm Analysis

- 2. Repeat Until Convergence:
 - i. **Assign:** For each data point x_i , _____ assign it to the nearest centroid.
 - ii. Update: For each cluster j, calculate the new centroid c_j as the mean of all points assigned to it.
- **3. Convergence:** Stop when centroids no longer move or cluster assignments stabilize.

For N points, compute distance to k

centroids: $O(k \times d)$ Total: $O(N \times k \times d)$

For k centroids, calculate mean of assigned

points: $O(N \times d)$ Total: $O(k \times N \times d)$

Repeat over I iterations: $O(I \times N \times k \times d)$

K-Means Clustering: Correctness

Theorem: K-Means converges to a local minimum of WCSS.

Proof:

- The assignment step reduces WCSS by assigning points to the nearest centroid.
- Update step recalculates centroids to further minimize WCSS within clusters.
- WCSS decreases monotonically, ensuring convergence.

Advantages and Limitations

Advantages

- **Simplicity:** Easy to implement and understand.
- Scalability: Works efficiently for moderate-sized datasets.
- Flexibility: Applies to diverse data types.

Limitations

- Initialization Sensitivity:
 Results depend on initial centroids.
- Cluster Shape Assumption: Assumes clusters are spherical.
- **Fixed Clusters:** Requires *k* to be predefined.

