

DECEMBER 05, 2018

PREDICT BEHAVIOR TO RETAIN CUSTOMERS

Telco Customer Churn

Oleh:

Faiz Naufal Wardhana

Muhammad Savero

Yusuf Rohmatu Rifa'i

Outline Presentasi

What You Can Expect:

Latar Belakang

Tujuan

Metode

Pembahasan

Analisis

Latar Belakang

- Banyaknya customer yang berhenti berlangganan
- Pendapatan perusahaan menurun

Tujuan

- Membantu perusahaan mempertahankan pelanggan
- Meningkatkan kualitas pelayanan
- Memprediksi perilaku pelanggan

Metode

• SVM (Support Vector Machine)

Metode

• Logistic Regression

Pembahasan

- Data Overview
- Data Cleaning
- Data Prepocessing
- Feature Selection (Chi2)
- Applied Machine Learning Model
- Model Performance

DATA OVERVIEW

DATA CLEANING

```
fitur customer ID akan dihilangkan karena tidak berpengaruh terhadap labelling data.

In [6]: data.drop(['customerID'], axis=1, inplace=True)

karena terdapat data null pada kolom TotalCharges, maka akan kita hilangkan

In [7]: #Data Manipulation
data['TotalCharges'] = data["TotalCharges"].replace(" ",np.nan)# mengganti spasi menjadi data null
data=data.dropna() #Menghilangkan nilai null pada data
data["TotalCharges"] = data["TotalCharges"].astype(float) #mengubah data menjadi tipe float
```


DATA PREPOCESSING

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	Phone Service	MultipleLines	Internet Service	Online Security	 DeviceProtection	TechSu
0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No	 No	
1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes	 Yes	
2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes	 No	
3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes	 Yes	
4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No	 No	

FEATURE SELECTION

Regression Linier

SVM (Support Vector Machine)

HASIL FEATURE SELECTION

```
In [305]: selector = SelectKBest(chi2, k = 15)
    #New dataframe with the selected features for later use in the classifier. fit() method works too, if you want only the feature if X_new = selector.fit_transform(X, y)
    names = X.columns.values[selector.get_support()]
    scores = selector.scores_[selector.get_support()]
    names_scores = list(zip(names, scores))
    ns_df = pd.DataFrame(data = names_scores, columns=['Feature_names', 'chi_scores'])
    #Sort the dataframe for better visualization
    ns_df_sorted = ns_df.sort_values(['chi_scores', 'Feature_names'], ascending = [False, True])
    print(ns_df_sorted)
    **

        Feature_names chi_scores
        Contract 555.879527
```

```
13
           Fiber optic 372.082851
                tenure 238.007569
        OnlineSecurity 147.165601
           TechSupport 135.439602
         SeniorCitizen 133.482766
            Dependents 131.271509
         PaymentMethod 127.090985
      PaperlessBilling 104.979224
               Partner 81.857769
   Has_InternetService 78.723191
11
          TotalCharges 73.258486
                  DSL 71.137611
14
        MonthlyCharges
                        50.600233
10
          OnlineBackup 31.209832
```


LOGISTIC REGRESSION

Logistic Regression

Pemilihan nilai parameter sistem Logistic Regression dengan cross validation

```
In [22]: %%time
         from sklearn.linear_model import LogisticRegression
         from sklearn.model selection import GridSearchCV
         # Create regularization penalty space
         penalty = ['l1', 'l2']
         # Create regularization hyperparameter space
         C = np.logspace(0, 4, 10)
         solver=['newton-cg','lbfgs','liblinear','sag','saga']
         logistic = LogisticRegression()
         # Create hyperparameter options
         hyperparameters = dict(C=C, solver=solver)
         clf = GridSearchCV(logistic, hyperparameters, cv=5, verbose=0)
         best_model = clf.fit(X_train, y_train)
         print('Best Solver:', best_model.best_estimator_.get_params()['solver'])
         print('Best C:', best model.best estimator .get params()['C'])
```

Best Solver: newton-cg Best C: 166.81005372000593

SVM (SUPPORT VECTOR MACHINE)

SVM

```
Penentuan Parameter SVM menggunakan Cross Validation
In [28]:
         %%time
         from sklearn import svm
         from sklearn.model selection import GridSearchCV
         # Create regularization penalty space
         # Create regularization hyperparameter space
         C = [0.001, 0.01, 0.1, 1, 10]
         gamma = [0.001, 0.01, 0.1, 1]
         kernel=['linear','poly','rbf','sigmoid']
         # Create hyperparameter options
         hyperparameters = dict(C=C, gamma=gamma, kernel=kernel)
         clf = GridSearchCV(svm.SVC(), hyperparameters, cv=5, verbose=0)
         best_model = clf.fit(X_train, y_train)
         print('Best kernel:', best_model.best_estimator_.get_params()['kernel'])
         print('Best C:', best_model.best_estimator_.get_params()['C'])
         print('Best gamma:', best_model.best_estimator_.get_params()['gamma'])
         Best kernel: rbf
         Best C: 1
         Best gamma: 1
         Wall time: 21min 8s
```

Analisis

Analisis

Kesimpulan

1

LOGISTIC
REGRESSION
LEBIH BAIK

2

DIBUTUHKAN
LEBIH BANYAK
DATA SUPAYA
AKURASI
MEMBAIK

Terima Kasih

