Лабораторна робота 2.

Алгоритм самонавчання.

Спостерігається система, яка генерує послідовність незалежних нормально розподілених випадкових величин x_1, \ldots, x_n з дисперсією 1. Система може перебувати в одному з чотирьох станів $k \in \{0,1,2,3\}$. Математичне сподівання кожної величини залежить від поточного стану системи і дорівнює $a_k = k$ коли система знаходиться в в стані $k, k \in \{0,1,2,3\}$. Ймовірність того, що система перебуває в стані k дорівнює $\frac{k+1}{10}$, $k \in \{0,1,2,3\}$.

Завдання.

- 1. Згенерувати послідовність n незалежних нормально розподілених випадкових величин з дисперсією 1 і математичним сподіванням, яке з ймовірністю $\frac{k+1}{10}$ дорівнює $k, k \in \{0, 1, 2, 3\}$.
- **2.** За допомогою алгоритму самонавчання отримати оцінки ймовірностей $p_K(k)$ і параметрів a_k , $k \in \{0,1,2,3\}$. Умовою зупинки алгоритму вважати наступну: оцінки параметрів не змінились, а оцінки ймовірностей змінились менше ніж на 0.001. Алгоритм має працювати для довільного n.
- **3.** Проаналізувати поведінку алгоритму в залежності від n і початкових оцінок ймовірностей і параметрів.