Simpliecial objects in categories

Definition 1 (simplicial object). A simplicial object X in C consists of:

- $\forall_{n\geq 0} X_n \in \text{Ob } \mathcal{C} n\text{-simplices of } X$,
- $\forall_{n \geq 0} \forall_{0 \leq i \leq n} d_i : X_n \to X_{n-1}$ boundaries (faces),
- $\forall_{n \geq 0} \forall_{0 \leq i \leq n} s_i : X_n \to X_{n+1}$ degeneracies,

such that

- $\bullet \ \forall_{i < j} \ d_i d_j = d_{j-1} d_i,$
- $\bullet \ \forall_{i>j} \ s_i s_j = s_j s_{i-1},$

$$\bullet \ d_i s_j = \begin{cases} s_{j-1} d_i & \forall_{i < j} \\ \text{id} & \forall_{i=j \lor i=j+1} \\ s_i d_{i-1} & \forall_{i > j+1} \end{cases}$$

Definition 2 (simplicial map). A simplicial map between simplicial objects $X \to Y$ consists of the sequence of $f_n: X_n \to Y_n$ which commute with boundaries and degeneracies.

Definition 3 (simplicial category). Denote by sC the category of simplicial objects in C.

Remark 4. Any functor $F: \mathcal{C} \to \mathcal{C}'$ extends to $F: s\mathcal{C} \to s\mathcal{C}'$

Definition 5. Let Δ denote the subcategory of sets $Ob(\Delta) = \{[n]\} = \{\{0, 1, ..., n\} : n \ge 0\}$, $Mor_{\Delta}([n], [m]) = nondecreasing maps [n] \rightarrow [m]$.

Definition 6 (simplicial object again). Any functor $X : \Delta^{op} \to \mathcal{C}$ is called a simplicial object in \mathcal{C} .

Definition 7 (simplicial maps). For X, Y simplicial objects, $\operatorname{Mor}_{s\mathcal{C}}(X, Y) = \operatorname{Mor}_{F(\Delta^{op}, \mathcal{C})}(X, Y)$.

Remark 9. These correspond to d_i, s_i respectively.

Proposition 10. Any morphism $\alpha \in \Delta$ can be uniquely expressed as $\varepsilon \circ \eta$, where ε is a composition of ε^i 's, and η is a composition of η^i 's.

Remark 11. A bunch of examples appear:

- \tilde{K} simplicial set of a geometric simplicial complex K,
- Δ_n topological simplices, and $S: \text{Top} \to s\text{Set}$ singular simplicial set functor,
- $\Delta[n] = \operatorname{Hom}_{\Delta}(\cdot, [n]),$
- nerve of a small category $N(\mathcal{C})$,
- functor $sSet \to sR mod$ induced by a functor $Set \to R mod$ mapping $X \mapsto R[X]$.

Remark 12. If $X, Y \in s$ Set, then there is a simplicial product $(X \times Y)_n = X_n \times Y_n$, $d_i = d_i^X \times d_i^Y$ and $s_i = s_i^X \times s_i^Y$.

Definition 13 (geometric realization). *Define*

$$\sigma_i: \Delta_n \to \Delta_{n-1}, \ \sigma_i(t_0, \dots, t_n) = (t_0, \dots, t_i + t_{i+1}, \dots, t_n) \ and$$

$$\delta_i: \Delta_n \to \Delta_{n+1}, \ \delta_i(t_0, \dots, t_n) = (t_0, \dots, t_{i-1}, 0, t_i, \dots, t_n).$$

Assume $X \in sSet$. We can define a geometric realization of X

$$|X_{\bullet}| = \bigsqcup X_n \times \Delta_n /_{\sim},$$

where
$$(d_i(x), s) \sim (x, \delta_i(s))$$
 for $(x, s) \in X_n \times \Delta_{n-1}$
and $(s_i(x), s) \sim (x, \sigma_i(s))$ for $(x, s) \in X_n \times \Delta_{n+1}$.

Remark 14. If a category \mathcal{C} has a faithful functor to Set, then for $X_{\bullet} \in s\mathcal{C}$ we define its $|X_{\bullet}|$.

Theorem 15 (properties of $| \bullet | : sSet \to Top$). 1. $|X \times Y| \simeq |X| \times |Y|$ homeomorphism (in CW topology),

- 2. K geometric simplicial complex, then $|\tilde{K}_{\bullet}| \simeq K$ homeomorphic,
- 3. C is group G, i.e. $Ob(C) = *, Mor_{C}(*, *) = G$, then |N(C)| = K(G, 1),
- 4. Functors $S: \text{Top} \to s\text{Set}$ and $| \bullet | : s\text{Set} \to \text{Top}$ are adjoint.