

Algorithms for Scientific Computing

Hierarchical Methods and Sparse Grids: 1D Hierarchical Basis

Felix Dietrich

Technische Universität München

Department of Informatics 5

Chair of Scientific Computing in Computer Science (SCCS)

Summer 2020

Part I

Hierarchical Basis in 1D: Combining Archimedes' Quadrature and Function Approximation

Archimedes' Quadrature

Compute an approximation of $F_1 := \int_0^1 4 \cdot x \cdot (1-x) dx = \frac{2}{3}$

Archimedes' Quadrature (2)

- Integrating 4x(1-x), we have to consider several quantities
- Ordered by (recursive) level *t*:

Level-depth	1	2	3	4	• • •	t
Mesh-width h	1/2	1/4	1/8	1/16		2^{-t}
# triangles	1	2	4	8		$\frac{1}{2}2^t$
surplus v	1	1/4	1/16	1/64		$4 \cdot 2^{-2t}$
Area of triangle D_1	1/2	1/16	1/128	1/1024	• • •	$4 \cdot 2^{-3t}$
Sum (current t)	1/2	1/8	1/32	1/128	• • •	$2 \cdot 2^{-2t}$
Sum ($\leq t$)	1/2	5/8	21/32	85/128	• • •	$\frac{2}{3}(1-2^{-2t})$
Error	1/6	1/24	1/96	1/384		$\frac{2}{3}2^{-2t}$

Approximation of Functions

- Goal: analyze Archimedes' quadrature rule for more general functions
- We need a representation of the (approximating) function u(x):
- $\rightarrow u$ as linear combination of ansatz functions ϕ_i :

$$u(x) = \sum_{i=1}^{N} \alpha_i \cdot \phi_i(x)$$

Approximation of Functions

- Goal: analyze Archimedes' quadrature rule for more general functions
- We need a representation of the (approximating) function u(x):
- $\rightarrow u$ as linear combination of ansatz functions ϕ_i :

$$u(x) = \sum_{i=1}^{N} \alpha_i \cdot \phi_i(x)$$

• Integrating u(x):

$$\int_a^b u(x) dx = \sum_{i=1}^N \alpha_i \int_a^b \phi_i(x) dx,$$

- \rightarrow Weighted sum of α_i
- Compare to Newton-Cotes: integrate the interpolant (polynomial)
 - ⇒ leads to a weighted sum of function evaluations

Composite Trapezoidal Rule: Function

Interpolant

- Continuous, piecewise linear function
- Represent *u* in nodal point (hat) basis

- Coefficients α_i are function values at grid points
- Basis functions have area h(h/2) at boundaries)

Piecewise Linear Functions

Ansatz space and basis functions

- Only consider $u:[0,1] \to \mathbb{R}$
- Consider discretization level $n \in \mathbb{N}$
- Mesh-width $h_n = 2^{-n}$
- Grid points $x_{n,i} = i \cdot h_n$

Piecewise Linear Functions

Ansatz space and basis functions

- Only consider $u:[0,1] \to \mathbb{R}$
- Consider discretization level $n \in \mathbb{N}$
- Mesh-width $h_n = 2^{-n}$
- Grid points $x_{n,i} = i \cdot h_n$
- Define "mother of all hat functions"

$$\phi(x) := \max\{1 - |x|, 0\}$$

⇒ Basis functions

$$\phi_{n,i}(x) := \phi\left(\frac{x - x_{n,i}}{h_n}\right)$$

• Nodal point basis $\Phi_n := \{\phi_{n,i}, 0 \le i \le 2^n\}$

Piecewise Linear Functions (2)

Towards Function Spaces:

• Space of continuous piecewise linear functions:

$$V_n = \operatorname{span}(\Phi_n)$$

• Interpolants $u_n \in V_n$:

$$u_n(x) = \sum_{i=0}^{2^n} \alpha_{n,i} \phi_{n,i}(x)$$

V_n the space of all such interpolants u_n

Interpolation with Nodal Basis:

- Interpolation conditions: $u_n(x_j) = \sum \alpha_{n,i} \phi_{n,i}(x_j) \stackrel{!}{=} f(x_{n,j})$
- Due to nodal basis: $\phi_{n,i}(x_i) = 0$ if $i \neq j$, and $\phi_{n,i}(x_i) = 1$
- Thus: all $\alpha_{n,j} = f(x_{n,j})$

Composite Simpson's Rule: Function

Interpolant

- Continuous, piecewise quadratic function
- More complicated basis:

- Basis functions: Lagrangian polynomials, glued together
- α_i : function values at grid points
- Basis functions have area h/6 (blue), 4h/6 (red), 2h/6 (green)
- We'll not formally define basis functions here . . .

From Composite Trapezoidal to Archimedes

Piecewise linear functions

- We restrict our functions u to u(0) = u(1) = 0
- Nodal point basis for discretization level *n*:

$$\Phi_n := \{\phi_{n,i}, 1 \le i \le 2^n - 1\}$$

• Wanted: function space

$$V := \bigcup_{I=1}^{\infty} V_I$$

contains all functions which are in V_I for sufficiently large I

• However: generating system of *V* as

$$\Phi := \bigcup_{I=1}^{\infty} \Phi_{I}$$

does not lead to a basis (not linear independent)

Hierarchical Basis

- We are interested in a hierarchical decomposition of V_I
 - \Rightarrow Define hierarchical increment W_l , such that V_l is a *direct sum*:

$$V_l = V_{l-1} \oplus W_l$$

Side-note: direct sum

 \rightarrow Every $u_l \in V_l$ can be uniquely decomposed as $u_l = u_{l-1} + w_l$, with $u_{l-1} \in V_{l-1}$ and $w_l \in W_l$

Hierarchical Basis

- We are interested in a hierarchical decomposition of V_I
 - \Rightarrow Define hierarchical increment W_l , such that V_l is a *direct sum*:

$$V_l = V_{l-1} \oplus W_l$$

Side-note: direct sum

- \rightarrow Every $u_l \in V_l$ can be uniquely decomposed as $u_l = u_{l-1} + w_l$, with $u_{l-1} \in V_{l-1}$ and $w_l \in W_l$
- W_l has to contain 2^{l-1} ansatz functions:

$$\dim V_{l} = 2^{l} - 1 = \dim V_{l-1} + \dim W_{l}$$

• This holds (introducing index sets \mathcal{I}_l) for

$$\mathcal{I}_{I} := \{i : 1 \le i < 2^{I}, i \text{ odd}\}$$

$$W_l := \operatorname{span} \{ \phi_{l,i} : i \in \mathscr{I}_l \}$$

Hierarchical Increments

- Set of hierarchical increments W_I
- For I = 1: $W_1 = V_1$
- Example for I = 1, 2, 3:

Hierarchical Basis (cont.)

Then

$$V_n = \bigoplus_{l=1}^n W_l$$

is a direct sum, too:

• $u \in V_n$ can be decomposed uniquely into $w_l \in W_l$:

$$u = \sum_{l=1}^{n} w_{l} = \sum_{l=1}^{n} \sum_{i \in \mathscr{I}_{l}} v_{l,i} \phi_{l,i}$$

- \rightarrow Coefficients $v_{l,i}$ are hierarchical surplusses
- Corresponding basis of V_n (or, with ∞ instead of n, of V)

$$\Psi_n := \bigcup_{l=1}^n \{ \phi_{l,i} : i \in \mathscr{I}_l \}.$$

Comparison (2)

Part II

Hierarchical Basis in 1D: Integration and Transformations

Numerical Integration with Hierarchical Basis

Key Ingredients:

• Integration of u(x):

$$\int_a^b u(x) dx = \int_a^b \sum_i^N \alpha_i \phi_i(x) dx = \sum_i^N \alpha_i \int_a^b \phi_i(x) dx,$$

Using a hierarchical basis:

$$\int_{a}^{b} u \, dx = \int_{a}^{b} \sum_{l=1}^{n} \sum_{i \in \mathscr{I}_{l}} v_{l,i} \phi_{l,i} \, dx = \sum_{l=1}^{n} \sum_{i \in \mathscr{I}_{l}} v_{l,i} \int_{a}^{b} \phi_{l,i} \, dx = \sum_{l=1}^{n} \sum_{i \in \mathscr{I}_{l}} v_{l,i} h_{l}$$

· Computation of hierarchical surpluses:

$$V_{l,i} = u(x_{l,i}) - \frac{1}{2}(u(x_{l,i-1}) + u(x_{l,i+1}))$$

i.e., difference between function and linear interpolant (on coarser level) at $x_{l,i} \to \text{hierarchical surplus}$

Hierarchical Basis Transformation

• represent "wider" hat function $\phi_{1,1}(x)$ via basis functions $\phi_{2,j}(x)$

$$\phi_{1,1}(x) = \frac{1}{2}\phi_{2,1}(x) + \phi_{2,2}(x) + \frac{1}{2}\phi_{2,3}(x)$$

 consider vector of hierarchical/nodal basis functions and write transformation as matrix-vector product:

$$\begin{pmatrix} \phi_{2,1}(x) \\ \phi_{1,1}(x) \\ \phi_{2,3}(x) \end{pmatrix} = \begin{pmatrix} \phi_{2,1}(x) \\ \frac{1}{2}\phi_{2,1}(x) + \phi_{2,2}(x) + \frac{1}{2}\phi_{2,3}(x) \\ \phi_{2,3}(x) \end{pmatrix}$$

Hierarchical Basis Transformation

• represent "wider" hat function $\phi_{1,1}(x)$ via basis functions $\phi_{2,j}(x)$

$$\phi_{1,1}(x) = \frac{1}{2}\phi_{2,1}(x) + \phi_{2,2}(x) + \frac{1}{2}\phi_{2,3}(x)$$

 consider vector of hierarchical/nodal basis functions and write transformation as matrix-vector product:

$$\begin{pmatrix} \psi_{2,1}(x) \\ \psi_{2,2}(x) \\ \psi_{2,3}(x) \end{pmatrix} := \begin{pmatrix} \phi_{2,1}(x) \\ \phi_{1,1}(x) \\ \phi_{2,3}(x) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \phi_{2,1}(x) \\ \phi_{2,2}(x) \\ \phi_{2,3}(x) \end{pmatrix}$$

Hierarchical Basis Transformation (2)

Consider "semi-hierarchical" transform: (step 1)

Matrices for change of basis are then: $(H_3^{(2)})$ to transform to hierarchical basis)

$$H_3^{(1)} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 1 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \qquad H_3^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$H_3^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 1 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Hierarchical Basis Transformation (2)

Consider "semi-hierarchical" transform: (step 2)

Matrices for change of basis are then: $(H_3^{(2)})$ to transform to hierarchical basis)

$$H_3^{(1)} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 1 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \qquad H_3^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$H_3^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 1 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Hierarchical Basis Transformation (3)

Level-wise hierarchical transform:

- hierarchical basis transformation: $\psi_{n,i}(x) = \sum\limits_{i} H_{i,j} \phi_{n,j}(x)$
- written as matrix-vector product: $\vec{\psi}_n = H_n \vec{\phi}_n$
- $H_n\vec{\phi}_n$ can be performed as a sequence of level-wise transforms:

For
$$k$$
 from 1 to n -1 $\vec{\phi}_n := H_n^{(k)} \vec{\phi}_n$

• matrix H_n for hierarchical basis transformation is thus:

$$H_n = H_n^{(n-1)} H_n^{(n-2)} \dots H_n^{(2)} H_n^{(1)}$$

• where each level-wise transform $H_n^{(k)} \vec{\phi}_n$ has a simple loop implementation:

For
$$j$$
 from 2^k to 2^n step 2^k

$$\phi_{n,j} := \frac{1}{2}\phi_{n,j-2^{k-1}} + \phi_{n,j} + \frac{1}{2}\phi_{n,j+2^{k-1}}$$

Hierarchical Coordinate Transformation

- consider function $f(x) \approx \sum_{i} a_{i} \psi_{n,i}(x)$ represented via hier. basis
- wanted: corresponding representation in nodal basis

$$\sum_{j} b_{j} \phi_{n,j}(x) = \sum_{i} a_{i} \psi_{n,i}(x) \approx f(x)$$

Hierarchical Coordinate Transformation

- consider function $f(x) \approx \sum_{i} a_{i} \psi_{n,i}(x)$ represented via hier. basis
- wanted: corresponding representation in nodal basis

$$\sum_{j} b_{j} \phi_{n,j}(x) = \sum_{i} a_{i} \psi_{n,i}(x) \approx f(x)$$

• with $\psi_{n,i}(x) = \sum_j H_{i,j} \phi_{n,j}(x)$ we obtain

$$\sum_{j} b_{j} \phi_{n,j}(x) = \sum_{i} a_{i} \sum_{j} H_{i,j} \phi_{n,j}(x) = \sum_{j} \sum_{i} a_{i} H_{i,j} \phi_{n,j}(x)$$

compare coordinates and get

$$b_j = \sum_i H_{i,j} a_i = \sum_i (H^T)_{j,i} a_i$$

Hierarchical Coordinate Transformation

- consider function $f(x) \approx \sum_{i} a_{i} \psi_{n,i}(x)$ represented via hier. basis
- wanted: corresponding representation in nodal basis

$$\sum_{j} b_{j} \phi_{n,j}(x) = \sum_{i} a_{i} \psi_{n,i}(x) \approx f(x)$$

• with $\psi_{n,i}(x) = \sum\limits_{j} H_{i,j}\phi_{n,j}(x)$ we obtain

$$\sum_{j} b_{j} \phi_{n,j}(x) = \sum_{i} a_{i} \sum_{j} H_{i,j} \phi_{n,j}(x) = \sum_{j} \sum_{i} a_{i} H_{i,j} \phi_{n,j}(x)$$

compare coordinates and get

$$b_j = \sum_i H_{i,j} a_i = \sum_i (H^T)_{j,i} a_i$$

• written in vector notation: $b = H^T a$

Hierarchical Coordinate Transformation (2)

• transform $b = H^T a$ turns "hierachical" coefficients a into "nodal" coefficients b:

$$\sum_{j} b_{j} \phi_{n,j}(x) = \sum_{i} a_{i} \psi_{n,i}(x) \approx f(x)$$

Hierarchical Coordinate Transformation (2)

• transform $b = H^T a$ turns "hierachical" coefficients a into "nodal" coefficients b:

$$\sum_{j} b_{j} \phi_{n,j}(x) = \sum_{i} a_{i} \psi_{n,i}(x) \approx f(x)$$

• Recall that $H_n = H_n^{(n-1)} H_n^{(n-2)} \dots H_n^{(2)} H_n^{(1)}$ has a level-wise representation, therefore:

$$H_n^T = \left(H_n^{(1)}\right)^T \left(H_n^{(2)}\right)^T \dots \left(H_n^{(n-2)}\right)^T \left(H_n^{(n-1)}\right)^T$$

Hierarchical Coordinate Transformation (2)

• transform $b = H^T a$ turns "hierachical" coefficients a into "nodal" coefficients b:

$$\sum_{j} b_{j} \phi_{n,j}(x) = \sum_{i} a_{i} \psi_{n,i}(x) \approx f(x)$$

• Recall that $H_n = H_n^{(n-1)} H_n^{(n-2)} \dots H_n^{(2)} H_n^{(1)}$ has a level-wise representation, therefore:

$$H_n^T = \left(H_n^{(1)}\right)^T \left(H_n^{(2)}\right)^T \dots \left(H_n^{(n-2)}\right)^T \left(H_n^{(n-1)}\right)^T$$

• use loop-based implementation for $\left(H_n^{(k)}\right)^T a$ to get **fast algorithm**:

For k from n-1 downto 1
For i from
$$2^{k-1}$$
 to 2^n step 2^k
 $a_i := \frac{1}{2}a_{i-2^{k-1}} + a_i + \frac{1}{2}a_{i+2^{k-1}}$ (with $a_0 = a_{2^n} = 0$)

Hierarchical Coordinate Transformation (3)

Now: transform "nodal" coefficients b into "hierachical" coefficients a

- thus: solve $H^T a = b$ for a (for given b), or $b = (H^T)^{-1} a = H^{-T} a$
- again via level-wise representation:

$$H_n^{-T} = \left(H_n^{(n-1)}\right)^{-T} \left(H_n^{(n-2)}\right)^{-T} \dots \left(H_n^{(2)}\right)^{-T} \left(H_n^{(1)}\right)^{-T}$$

- iterate over $b^{\text{new}} = H^{-T}b^{\text{old}}$ (starting with $b^{\text{old}} = a$) or repeatedly solve $H^Tb^{\text{new}} = b^{\text{old}}$
- consider example $(H_3^{(1)})^T b^{\text{new}} = b^{\text{old}}$:

$$\begin{pmatrix} 1 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 1 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} b_1^{\text{new}} \\ \vdots \\ b_7^{\text{new}} \end{pmatrix} = \begin{pmatrix} b_1^{\text{old}} \\ \vdots \\ b_7^{\text{old}} \end{pmatrix}$$

• for row 3 (1, 5 and 7 similar):

$$\tfrac{1}{2}b_2^{\text{new}} + b_3^{\text{new}} + \tfrac{1}{2}b_4^{\text{new}} = b_3^{\text{old}} \quad \Leftrightarrow \quad b_3^{\text{new}} = b_3^{\text{old}} - \tfrac{1}{2}b_2^{\text{new}} - \tfrac{1}{2}b_4^{\text{new}} = b_3^{\text{old}} - \tfrac{1}{2}\left(b_2^{\text{old}} + b_4^{\text{old}}\right)$$

→ computation of hierarchical surplus!