RNN情感分析

原创 深度学习科研平台 深度学习科研平台 2020-05-08

回顾

上一节节课中,我们介绍了卷积神经网络的最经典模型——`LeNet`

- 1.首先那我们分析了卷积给神经网络带来的变化。
- 2.我们介绍了LeNet的基本结构。
- 3. 然后分析了`LeNet`在TensorFlow中的显示以及两个常用的scope.
- 4.最后介绍了如何使用第一部分介绍的基本逻辑,训练一个`LeNet`网络

IMDB

IMDB电影评论情绪分类

数据集来自IMDB的2.5万部电影评论,以情绪(正面/负面)标记。每条样本是一个txt文件。 包括训练集,测试集,和没有标签的数据。

训练集: 25000条, 正负各12500条 测试集: 25000条, 正负各12500条

数据格式:

Train、test两个文件夹,分别代表训练集和测试集

Train下面有neg、pos两个文件夹,代表负面评论和正面评论,test同理

test train	2011/4/13 1:22 2018/7/29 11:31	^{文件表} 微信号: xiaoqizixun 文件夹
neg pos	2011/4/12 17:48 2011/4/12 17:48	文件夹
labeledBow.feat	2011/4/13 1:25	FEAT 文件 19,732 KB
urls_neg.txt urls_pos.txt	2011/4/12 17:48 2011/4/12 17:48	文本文档 文本文档 微信号: xiaoqizixu n _B

有一个叫做imdb.vocab的文件, 代表单词表

Model

☼ 微信号: xiaoqizixun

BuildTFRecord

方案1: 直接将整个序列存起来

如: I am me -> "lam me"

问题: 变长

浪费存储空间

解决方案:

每个单词在单词表的位置是一个整数,单词表的大小是89527 最长的句子拥有的单词数为每个句子的单词数(变长转定长) 多余位置用endchar (89528)填充

可以运行一下dp.py看看效果?

	10	18	6	89528	89528	89528]	0
Ī	45761	23438	7460	89528	89528	89528]	1
	9	63	199	89528	89528	89528]	1
	1	27897	111	89528	89528	89528]	0
	10	16	12	89528	89528	89528]	0
	211	19	46	89528	89528	89528]	0
	3	370	18	89528	89528	89528]	1
	12	10	1	89528	89528	89528]	0
	10	16	6	89528	89528	89528]	1
	1	0	1034	89528	89528	89528]	1
	9	138	5	89528	89528	89528]	0
	4616	287	10	89528	89528	89528]	1
	9	12	111	89528	89528	89528]	0
	2216	946	122	89528	89528	89528]	1
	9	25	5	89528	89528	89528]	0
	1361	2096	6	89528	89528	89528]	1
	216	1	$425 \dots$	89528	89528	89528]	1
	41	2076	1174	89528	89528	89528]	0
	8	3	17836	89528	89528	89528]	0
	9	498	10	89528	89528	89528]	0
П	832	13	3	89528	89528	長 Xiaogizi	C''

89528 89528 89528 U Embedding

$$\begin{pmatrix} the \\ cat \\ sat \\ on \\ the \\ mat \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Û

anarchism	0.5	0.1	-0.1
originated	-0.5	0.3	0.9
as	0.3	-0.5	-0.3
a	0.7	0.2	-0.3
term	0.8	0.1	-0.1
of	0.4	-0.6	-0.1
abuse	0.7	0.1	-0.4

one-hot表示方式很直观, 但是有两个缺点:

- 1. 第一,矩阵的每一维长度都是字典的长度,比如字典包含 10000个单词,那么每个单词对应的one-hot向量就是1X10000 的向量,而这个向量只有一个位置为1,其余都是0,浪费空间, 不利于计算。
- 2. one-hot矩阵相当于简单的给每个单词编了个号,但是单词和单词之间的关系则完全体现不出来。比如"cat"和"mouse"的关联性要高于"cat"和"cellphone",这种关系在one-hot表示法中就没有体现出来。

② 微信号: xiaoqizixun

举个例子:

```
import tensorflow as tf
import numpy as np

vocab_size = 5
emb_size = 6
embedding = np.random.random([10, 6])
inputs = np.array([[2, 3], [1, 4], [1, 2], [1, 3]], dtype=np.int32)
embedding_layer = tf.nn.embedding_lookup(embedding, inputs)
sess = tf.Session()
print(sess.run([embedding_layer]))
```

向量是随机生成的

但是相同的单词编号会输出相同的变量

(全) 微信号: xiaoqizixun

进一步:

💭 微信号: xiaoqizixun

这个单词~向量矩阵不是一成不变的

可以看成一个"全连接层"

这个矩阵的每一行都是一个共享的参数

可以利用神经网络的方法进行训练操作

```
# 第一个卷积层,卷积为1维卷积。
2
   net = end_points['conv1'] = tf.layers.conv1d(embedding_layer, hide_dim, 3,
3
                  kernel_regularizer=tf.contrib.layers.12_regularizer(weight_decay),
4
                  kernel_initializer=tf.truncated_normal_initializer(stddev=0.1),
 5
                  activation=tf.nn.relu,
6
                  padding='same', name='conv1')
7
   # Maxpooling
8
   net = end_points['pool1'] = tf.reduce_max(net, [1], name='pool1')
   # 旁路分支卷积层,卷积为1维卷积。
9
10
   net = end_points['conv2'] = tf.layers.conv1d(embedding_layer, hide_dim, 2,
11
                  kernel_regularizer=tf.contrib.layers.12_regularizer(weight_decay),
12
                  kernel_initializer=tf.truncated_normal_initializer(stddev=0.1),
13
                  activation=tf.nn.relu,
14
                  padding='same', name='conv2')
   15
   # Maxpooling
16
  # 将两路卷积的分支进行拼接,构成一个完整的特征向里。
17
18
   net = tf.concat([end_points['pool1'], end_points['pool2']], axis=1, name='concat')
```


yi= f(Uxi+Wxi+b)

hi= f(Uxi+Whi-1+b)

当W<1时可能出现梯度消失 当W>1时可能出现梯度爆炸

Tanh

Relu?

LSTM - Long Short-Term Memory

Allow each time step to modify

- Input gate (current cell matters) $i_t = \sigma\left(W^{(i)}x_t + U^{(i)}h_{t-1}\right)$
- Forget (gate 0, forget past) $f_t = \sigma \left(W^{(f)} x_t + U^{(f)} h_{t-1} \right)$
- Output (how much cell is exposed) $o_t = \sigma \left(W^{(o)} x_t + U^{(o)} h_{t-1} \right)$
- New memory cell $ilde{c}_t = anh\left(W^{(c)}x_t + U^{(c)}h_{t-1}
 ight)$

Final memory cell: $c_t = f_t \circ c_{t-1} + i_t \circ \tilde{c}_t$

Final hidden state: $h_t = o_t \circ \tanh(c_t)$

🏖 微信号: xiaoqizixun

RNN -- GRU

$$z_t = \sigma \left(W^{(z)} x_t + U^{(z)} h_{t-1} \right)$$

$$r_t = \sigma \left(W^{(r)} x_t + U^{(r)} h_{t-1} \right)$$

$$\tilde{h}_t = \tanh \left(W x_t + r_t \circ U h_{t-1} \right)$$

$$h_t = z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t$$

② 微信号: xiaoqizixun

RNNModel

```
# LSTM作为最基本的RNN单元。
2
   rnn_cell_basic = tf.contrib.rnn.LSTMCell(hide_dim, use_peepholes=True,
3
                                            initializer=tf.truncated_normal_initializer(stddev=0.1))
4
   # 如果需要多层的RNN可以设置这个参数。
5
   # rnn_cell_basic = tf.contrib.rnn.MultiRNNCell([rnn_cell_basic] * num_rnn_layers)
   # 这里需要将输入的数据,在每一个step上进行拆分,每次作为一个输入。
6
   steps_features = [tf.squeeze(input_, [1]) for input_ in tf.split(embedding_layer, max_seq_length, 1)] # 放入到RNN网络,輸出为每个step的特征以及对应的最后的状态特征。
8
                                                                             · 微信表:Wilesgizixun
9
   outputs_rnn, _ = tf.contrib.rnn.static_rnn(rnn_cell_basic, steps_features,
   net = tf.concat(outputs_rnn, axis=1, name='concat')
```

总结

在这节课中,我们一IMDB数据集为例,介绍了文本情感分析的一个具体实例。

- 1.首先我们简单的介绍了一下IMDB数据集的构成。
- 2.我们介绍了处理文本的整体思路。
- 1.WordEmbedding
- 2.CNNor RNN
- 3. 然后介绍了一下Embedding的具体实现.
- 4.最后我们分别以CNN以及RNN为例,构建了一个可以训练的情感分析模型。

喜欢此内容的人还喜欢

迁移学习概念、分类及应用

深度学习科研平台