Name _____

REAL ANALYSIS QUALIFYING EXAM

Fall 1999

(Saeki & Moore)

Answer all eight questions. Throughout, (X, \mathcal{M}, μ) denotes a measure space, μ denotes a positive measure unless otherwise specified, and all functions are assumed to be measurable.

- 1. Suppose $1 \leq p \leq \infty$. Show that the closed unit ball of $\ell_p(\mathbb{N})$ is not compact.
- **2.** Let $1 \le p \le 2$ and $f \in L^p([0,\infty])$. For $x \ge 0$ set $g(x) = \int_x^{x^2} f(t)dt$. Show that $\lim_{x \to \infty} \frac{g(x)}{x} = 0$.
- **3.** Suppose $\{f_n\}$ is a sequence of nonnegative measurable functions on X such that $\lim_{n\to\infty} f_n(x) = f(x)$ exists a.e. and

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu < \infty.$$

Prove that $\lim_{n\to\infty}\int_E f_n d\mu = \int_E f d\mu$ for every measurable set $E\subseteq X$.

- **4.** Prove that if A and B are Borel sets in topological spaces X and Y respectively, then $A \times B$ is a Borel set in $X \times Y$.
- **5.** Let $f \in L^1(\mu)$. Prove that given $\varepsilon > 0$ there exists $\delta > 0$ such that $\left| \int_E f \, d\mu \right| < \varepsilon$ whenever $\mu(E) < \delta$.
- **6.** Prove that $L^p(\mu)$ is complete for $1 \le p \le \infty$.
- 7. Assume now that (X, \mathcal{M}, μ) is a α finite measure space. Let $f: x \to [0, \infty)$, $0 . Show <math>\int_X f^p d\mu = \int^i nft y_0 pt^{p-1} \mu(\{x \in X | f(x) > t\}) dt$.
- **8.** Suppose f is defined on $X \times (0,1)$ and that for each fixed $t \in (0,1)$, $f(0,t) \in L^1(\mu)$. Suppose also that $\frac{\partial f}{\partial t}(x,t)$ exists for every $(x,t) \in X \times (0,1)$ and $\frac{\partial}{\partial t}$ is bounded on $X \times (0,1)$. Show that

$$\frac{d}{dt} \int_X f(x,t) d\mu(x) = \int_X \frac{\partial f}{\partial t}(x,t) d\mu(x).$$