Last Time

- Magnetic Field of a Straight Wire
- Magnetic Field of a Current Loop
- Magnetic Dipole Moment
- (Bar Magnet)
- (Electron Spin)

Today

- Electron Spin
- Bar Magnet
- Equilibrium vs. Steady State in a Circuit
- What is "used up" in a circuit?
- Kirchhoff's Current Node Law
- E-field inside a wire

Quantum Magnetism

Magnetic Moment = Orbital Motion + "Spin"

SPIN:

Electron acts like spinning charge - contributes to μ

Electron spin contribution to μ is of the same order as one due to orbital momentum

Neutrons and proton in nucleus also have spin but their μ 's are much smaller than for electron

same angular momentum:
$$\mu \approx \frac{1}{2} \frac{e}{m} \hbar$$

NMR, MRI – use nuclear μ

Refrigerator Magnets

Alignment of atomic dipole moments:

ferromagnetic materials: iron, cobalt, nickel

most materials

Reality Physics - Domains

Hitting or heating can also demagnetize

Why are there Multiple Domains?

Magnetic domains

Key Ideas in Chapter 19: Electric Circuits

- Surface charges make the electric field that drives the current in a circuit.
 - Transient effects precede the steady state.
 - A battery maintains a charge separation and a potential difference.

How to analyze circuits:

- Current-node rule: Current into a node equals current out of the node.
- Voltage-loop rule: The total potential difference around a loop is zero.

Overview of Circuits

Microscopic Questions:

- Are charges used up in a circuit?
- Exactly how does a current-carrying wire create and maintain nonzero E inside?
- What does the battery do?

Equilibrium vs. Steady State

- Are charges used up in a circuit?
- Exactly how does a current-carrying wire create and maintain nonzero E inside?
- What does the battery do?

Conventional Current and Electron Current

Electron Current:

Electrons exit battery at (-) terminal, and enter battery at (+) terminal

Conventional Current:

Positive charges exit battery at (+) terminal, and enter battery at (-) terminal

Equilibrium vs. Steady State

Remember: Electrons flow in opposite direction from conventional current I

Equilibrium:

• No current flows. Average drift velocity of electrons is zero $\, \overline{v} = 0 \,$

Current Flow is not Equilibrium, but it is Steady State.

• Current flows. Average drift velocity of electrons is *constant* $\bar{v} = \mathrm{const.}$

Clicker Poll (Participation grade only)

How would you expect the amount of current at location 1 to compare to the electron current at location 2?

- A) There is no current at 2, since the bulb used it up.
- B) There is less current at 2 than at 1, since some of it gets converted to light and heat given off by the bulb.
- C) The current at 2 is the same as the current at 1.

What IS the bulb using up?

Can the bulb consume current by destroying electrons?

→ No.

Electrons cannot be destroyed.

Can the bulb consume current as electrons accumulate in the bulb?

Otherwise electric field would change

What IS the bulb using up?

Chemical Energy of battery converts to:

Light Energy Heat Energy

Current Node Rule

A.K.A. Kirchhoff's Current Law

Current Node Rule: Current In = Current Out

Electric Field in the Circuit

Electrons can surf through a lattice by finding the right wavelength.

But they do bump into lattice defects/deformations:

Need an Electric Field throughout the wire to re-accelerate the electrons.

Electric Field Inside the Wire

Constant current in the wire -> Constant E in the wire.

$$I = |q| nA\bar{v}$$

Conventional Current

$$\bar{v} = u|\vec{E}|$$

Drift Velocity controlled by |E| Mobility (u) set by the material.

$$I = |q|nAu|\vec{E}|$$

Constant current requires constant |E|

Direction of Electric Field in a Wire

E must be parallel to the wire

E is the same along the wire

Does current fill the wire? Is *E* uniform across the wire?

$$\Delta V_{ABCDA} = -\int_{A}^{B} \vec{E}_{1} \cdot d\vec{l} - \int_{B}^{C} \vec{E}_{3} \cdot d\vec{l} - \int_{C}^{D} \vec{E}_{2} \cdot d\vec{l} - \int_{D}^{A} \vec{E}_{3} \cdot d\vec{l} = 0$$

$$V_{AB} \qquad 0 \qquad V_{CD} \qquad 0$$

$$\vec{E}_{1} = \vec{E}_{2}$$

Electric Field in a Wire

What charges make the electric field in the wires?

Bulb filament and wires are metals — there cannot be excess charges in the interior

Are excess charges on the battery?
ASSUME: E due to dipole field of battery.

This cannot be the source of the E which drives current.

$$I = |q| nAu |\vec{E}|$$

Field due to the Battery

Assume:

1) (CORRECT) Battery has some way to maintain constant charge at its terminals.

2) (WRONG!) E is due only to dipole field of Battery.

In the steady state there must be some other charges somewhere that contribute to the net electric field in such a way that the electric field points upstream everywhere.

Field due to the Battery

Surface charge arranges itself in such a way as to produce a pattern of electric field that follows the direction of the wire and has such a magnitude that current is the same along the wire.

Field due to Battery

Smooth transition from + surface charge to - to provide constant E.

The amount of surface charge is proportional to the voltage.

Today

- Electron Spin
- Bar Magnet
- Equilibrium vs. Steady State
- What is "used up" in a circuit?
 - Nothing -- Energy is converted
- Kirchhoff's Current Node Law
- E-field inside a wire is due to surface charges