SISTEMAS ROBÓTICOS AUTÔNOMOS

Pablo Javier Alsina

O que é um robô autônomo?

O que não é um robô autônomo?

O que não é um robô autônomo?

O que é um robô autônomo?

- Um robô autônomo é uma máquina programável de propósito geral, que existe no mundo físico, percebe o mundo através de sensores, processa a informação sensorial de acordo com um modelo do mundo e atua no mundo através de movimentos.
- Um robô autônomo estabelece uma conexão "inteligente" entre percepção e ação.
- Quanto menos um operador humano interfere nas suas ações, mais autônomo é o robô.

O que é um robô autônomo?

O que é um robô autônomo?

PARADIGMAS DE ARQUITETURAS DE CONTROLE

De acordo com Arkin [Ronald C. Arkin. Behavior-Based Robotics (Intelligent Robotics and Autonomous Agents), volume I. MIT Press, 1998.], as arquiteturas de controle de robôs podem ser classificadas em três grandes paradigmas:

- Paradigma Deliberativo.
- Paradigma Reativo.
- Paradigma Híbrido Deliberativo/Reativo

De fato, as diversas arquiteturas de controle encontradas na literatura podem ser classificadas dentro de uma gama, que vai de arquiteturas totalmente deliberativas a arquiteturas puramente reativas. As arquiteturas híbridas buscam explorar as vantagens dos paradigmas reativos e deliberativos.

Arquiteturas Deliberativas	Arquiteturas Reativas	
Dependem de uma	Independem de uma	
representação simbólica interna	representação do mundo. O	
do mundo	mundo é o seu próprio modelo	
Processos de decisão	Processos de decisão	
puramente simbólicos	puramente reflexos	
Tempos de resposta lentos	Resposta em tempo real	
Custo computacional alto	Baixo custo computacional	
(planejar é custoso)		

• Primitivas Robóticas:

Primitiva	Entrada	Saída
Percepção	Dados sensoriais	Informação
		percebida
Planejamento	Informação percebida	Diretivas
Ação	Informação percebida ou	Comandos para
	Diretivas	atuadores

• Paradigma Deliberativo:

Primitiva	Entrada		Saída
Percepção	Dados sensoriais		Informação
			percebida
Planejamento	Informação percebida	\	Diretivas
Ação	Informação percebida		Comandos
	Diretivas		para atuadores

• Paradigma Reativo:

Primitiva	Entrada	Saída
Percepção	Dados sensoriais —	Informação
	/	percebida
Planejamento	Informação percebida	Diretivas
Ação	Informação percebida 🗸	Comandos
	Diretivas	para atuadores

• Paradigma Híbrido:

Primitiva	Entrada	Saída
Percepção		Informação
		percebida
Planejamento	Informação percebida	Diretivas
Ação	Informação percebida ou	Comandos
	Diretivas	para atuadores

Primitiva	Entrada	Saída
Planejamento	Informação →	Diretivas
	percebida	
Percepção-Ação ←	Dados sensoriais	Comandos
(Comportamentos)		para atuadores

NAVEGAÇÃO

Níveis hierárquicos típicos de um Sistema de Navegação de Robô.

PERCEPÇÃO
DELIBERAÇÃO E TOMADA DE DECISÃO
PLANEJAMENTO DE CAMINHO
ADEQUAÇÃO DE CAMINHO E GERAÇÃO DE
TRAJETÓRIA
SISTEMA DE CONTROLE
ATUAÇÃO

• Navegação em um ambiente conhecido:

- Dispõe-se previamente de uma representação do ambiente (por exemplo, um mapa).
- Localização: onde estou?
- Busca: aonde vou? O problema de cobertura.
- Planejamento de caminhos, geração de trajetória: como eu chego lá?
- Execução de plano: seguir o caminho planejado. Como eu vou daqui a acolá?
- Movimentação: como vou daqui para ali?

• Navegação em um ambiente desconhecido:

- Não se dispõe previamente de uma representação do ambiente.
- Localização: onde estou?
- Mapeamento: o que há por aqui? Como representar?
- Exploração: como construir um mapa garantindo cobertura.
- Localização e Mapeamento Simultâneos (SLAM): o que veio primeiro, o ovo ou a galinha?

MAPEAMENTO

- Mapa: representação do ambiente no qual o robô atua.
- Mapa Métrico: representa as dimensões físicas dos objetos presentes no ambiente
- **Mapa Topológico:** representa as relações de conectividade das regiões navegáveis do ambiente.
- Mapa Híbrido Métrico/Topológico: incorpora informações métricas e de conectividade do ambiente.
- <u>Mapeamento por Grade de Ocupação</u>: representação do ambiente como uma grade de configurações igualmente espaçadas, às quais se associa uma probabilidade de ocupação por obstáculo.
- O mapa é gerado a partir de dados de medição ruidosos e incertos proveniente dos sensores embarcados.
- Assume-se que a localização do robô é conhecida a cada instante.
- À medida que o robô se movimenta, novas informações sensoriais são incorporadas à grade, melhorando a sua precisão.

PERCEPÇÃO

- Medições obtidas a partir de Sensores embarcados permitem obter informações do ambiente e do próprio estado do robô, para fins de mapeamento, localização, navegação e manipulação.
- Medições sensoriais incorporam incertezas e ruídos inerentes.
- **Sensores Proprioceptivos:** capturam informações relativas ao próprio robô.
- Sensores Externoceptivos: capturam informações relativas ao ambiente.

LOCALIZAÇÃO

- A Localização do robô no ambiente pode ser feita a partir de medições sensoriais.
- Localização Relativa (Dead Reckoning):
- Assume-se uma localização inicial conhecida.
- Mede-se deslocamentos incrementais (*encoders*, unidades de medida inercial).
- Os deslocamentos incrementais são integrados no tempo, determinando a localização em relação à localização inicial.
- Erros de medição se acumulam.
- Localização Absoluta:
- A cada instante mede-se a localização em relação a um referencial global.
- Erros de medição não se acumulam.

• Localização baseada em Balizas Ativas:

- A localização absoluta de um conjunto de balizas é conhecida.
- Mede-se a distância ou o azimute das balizas no referencial do robô.
- A localização do robô é obtida por trilateração ou triangulação.
- Exemplo: GPS, Radio faróis.

• Localização baseada em Marcos:

- A localização absoluta de um conjunto de Marcos é conhecida.
- As características dos Marcos são conhecidas.
- Marcos artificiais: marcos são projetados para otimizar o processo de localização.
- Marcos Naturais: escolhidos no ambiente de modo a serem fáceis de detectar.
- Geralmente, um único marco detectado nas vizinhanças do robô pode ser utilizado para determinar a localização absoluta.

• Localização baseada em Mapas:

- O mapa é o marco.
- Sensores de alcance são usados para determinar a localização dos objetos na vizinhança do robô.
- Um mapa local é construído.
- Busca-se a correspondência do mapa local com o mapa global disponível.

Localização e Mapeamento Simultâneos (SLAM)

- O que veio primeiro, o ovo ou a galinha?
- Em ambiente desconhecido, o robô deve construir o mapa e se localizar em relação a ele, simultaneamente.
- Problema: se a localização é imprecisa, o mapa é impreciso.
- Solução: SLAM (*Self Localization and Map*) Se suficientes novas informações sensoriais forem incorporadas quando o robô navega, superando as perdas de informação devido ao aumento das incertezas, tanto a localização do robô como o mapa vão se tornando mais precisos.

PLANEJAMENTO DE CAMINHOS

• O Problema do Carregador de Piano:

- Como levar um piano no interior de um edifício, através de corredores povoados de obstáculos, até a sua localização final dentro do prédio?
 - Piano = corpo rígido móvel.
 - Obstáculos = corpos rígidos fixos.
 - Localização = posição e orientação = configuração.
- O Problema é formulado em Espaço de Trabalho.

ESPAÇO DE TRABALHO

- Robô A: corpo rígido que pode movimentar-se dentro de um Espaço de Trabalho.
- Espaço de Trabalho W: é o espaço físico no qual o robô se movimenta.
- <u>Obstáculo no Espaço de Trabalho B</u>: região conexa de W na qual é impossível posicionar qualquer ponto do Robô.

• Problema: Planejamento em Espaço de Trabalho requer teste de colisão dos infinitos pontos que compõem o robô com os infinitos pontos que compõem os obstáculos.

Planejamento de Caminhos - Solução:

- Movimento de um robô A no Espaço de Trabalho W povoado de obstáculos Bi's. ⇒
- Movimento de um ponto no Espaço de Configuração C povoado de C-obstáculos CBi's.

ESPAÇO DE CONFIGURAÇÃO

• Configuração q:

- Especificação da Posição e Orientação do robô.
- Exemplo: $q = [x \ y \ \theta]^T$.

- Espaço de Configuração C: é o conjunto de todas as possíveis configurações do robô.
- Espaço de Configuração Livre C_L: é o conjunto de todas as possíveis configurações em que o robô não colide com os obstáculos Bi's.

• Obstáculo em Espaço de Configuração CB:

- Um obstáculo **B** no espaço de trabalho **W** pode ser representado de forma equivalente por um C-obstáculo **CB** no espaço de configuração **C**.
- C-Obstáculo é o conjunto de todas as configurações em que o robô se superpõe parcial ou totalmente ao obstáculo.
- \Rightarrow Solução para o problema de planejamento: Mapear $\mathbf{W} \Rightarrow \mathbf{C}$

• Métodos de Planejamento:

- Métodos Combinacionais (1980's): baseados na construção de estruturas no espaço de configuração C que capturam completamente as informações para efetuar o planejamento.
- Métodos baseados em Amostragem (1990's): usam algoritmos de detecção de colisão para explorar o espaço de configuração C e buscar incrementalmente uma solução, ao invés de caracterizar completamente a estrutura do espaço livre.

• Mapa de Rotas:

- Extração da conectividade do Espaço de Configuração Livre na forma de uma rede de curvas (Mapa de Rotas).
- Construção de um grafo de conectividade do Mapa de Rotas.
- Busca de um caminho no grafo de conectividade.

• Decomposição em Células Convexas:

- Decomposição do Espaço de Configuração Livre em células convexas.
 - <u>Decomposição Exata</u>: a união das células é exatamente igual ao Espaço de Configuração Livre.
 - <u>Decomposição Aproximada</u>: a união das células é uma aproximação conservadora do Espaço de Configuração Livre.
- Construção de um grafo de conectividade de acordo com as relações de adjacência entre as células.
- Busca de um <u>canal</u> no grafo de conectividade.
- Extração de um caminho a partir do canal.

• Campo de Potencial:

- Robô considerado como uma partícula imersa em um campo de potencial artificial.
- Obstáculos = potencial repulsivo; Alvo = potencial atrativo.
- Planejamento de caminho realizado incrementalmente, seguindo a direção de força artificial induzida na direção do negativo do gradiente da função de potencial.

• Rapidly-exploring Random Trees (RRTs):

- Sondagem e exploração agressiva do espaço de configuração, expandindo a busca incrementalmente a partir da configuração inicial.
- O território explorado é demarcado por uma árvore com raiz na configuração inicial.
- A cada iteração, a árvore é expandida adicionando novas configurações escolhidas aleatoriamente no espaço de configuração e tentando conectá-las ao ponto mais próximo da árvore por uma aresta contida no espaço livre. Continua-se até achar a configuração final.

• Mapa de Rotas Probabilístico:

- Seleciona-se aleatoriamente um conjunto grande de configurações aleatórias no espaço livre e são consideradas vértices do mapa de rotas.
- Arestas do mapa de rotas são construídas tentando conectar cada vértice a um conjunto de vizinhos próximos.
- Se é possível construir um mapa de rotas que preserva acessibilidade e conectividade do espaço livre, pode ser utilizado para busca de pares (q_{ini}, q_{fin}) múltiplos.

CONTROLE DE TRAJETÓRIA

• Adequação de um Caminho:

 Transformação do caminho planejado (curva geométrica), através de pequenas deformações, em um novo caminho (nova curva) que satisfaz as restrições cinemáticas do robô (exemplo: raio de giro mínimo, restrições não holonômicas, etc.).

• Geração de Trajetória:

 Associação de restrições temporais (exemplo: velocidades máximas, tempo de percurso, etc.) e restrições dinâmicas (exemplo: forças de atrito, acelerações máximas, etc.) ao caminho gerado.

• Execução de Trajetória:

- Aplicação de leis de controle cinemático e dinâmico para que o robô siga a trajetória planejada.
- Leis de controle podem requerer o conhecimento do modelo cinemático e dinâmico do robô.
- Restrições cinemáticas e dinâmicas devem ser levadas em conta (restrições não holonômicas, raio de giro mínimo, etc.).

• Controladores:

- <u>Seguidores de Caminho</u> projetados para seguir um caminho.
- <u>Seguidores de Trajetória</u> projetados para seguir uma trajetória contínua.
- <u>Controladores Estabilizadores</u> Projetados para atingir uma configuração final.

Seguidor de Caminho.

Seguidor de Trajetória.

Controlador Estabilizante.