Álgebra - Curso de Verão - UFV

$4^{\underline{a}}$ Lista de Exercícios – 2015

Prof. José Antônio O. Freitas

Exercício 1: Seja G um grupo tal que |G| = p(p+2), onde p e p+2 são primos (chamados **primos gêmeos**). Mostre que G é cíclico.

Exercício 2: Prove que todo grupo de ordem $5 \cdot 7 \cdot 47$ é cíclico.

Exercício 3: Seja G um grupo finito. Mostre que:

- (a) Se |G| = 42, então $n_7 = 1$.
- (b) Se |G| = 48, então G necessariamente contém um sugbrupo normal de ordem 8 ou de ordem 16.
- (c) Se |G| = 36, então G contém um subgrupo normal de ordem 9 ou 3.

Exercício 4: Sejam G um grupo, $|G| = p^m b$, com p número primo e p não divide b, K um p-subgrupo de Sylow de G e $H \subseteq G$ tal que $K \subseteq H$. Mostre que:

$$K \unlhd H \Leftrightarrow K \unlhd G \Leftrightarrow n_p = 1.$$

Exercício 5: Prove que não existem grupos simples de ordem 28 ou 312.

Exercício 6: Sejam G um grupo finito tal que $|G| = p_1 p_2 \cdots p_r$ com $p_1 < p_2 < \cdots < p_r$ e, para cada i, p_i é primo. Sabendo que grupos deste tipo não são simples, mostre que o p_r -subgrupo de Sylow de G é normal.

Exercício 7: Sejam p um número primo e G um grupo não abeliano de ordem p^3 . Mostre que |Z(G)| = p. Mostre que Z(G) = G' e que $G/Z(G) \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

Exercício 8: Seja G um grupo de ordem 11^213^2 . Mostre que G é um grupo abeliano.

Exercício 9: Sejam G um p-grupo finito, isto é, $|G| = p^n$ e $H \leq G$. Mostre que:

- (a) Se $H \neq G$, então existe $x \in G$, $x \notin H$ tal que $x^{-1}Hx = H$. [Sugestão: Faça por indução sobre n usando as possibilidades de Z(G) estar ou não contido em H.]
- (b) Se $|H| = p^{n-1}$, então H é normal em G.
- (c) Existe uma sequência de subgrupos $H_0 \leq H_1 \leq \cdots \leq H_n$ tal que $H_i \leq H_{i+1}$, $i = 0, \ldots, n-1$ e H_{i+1}/H_i é cíclido de ordem p.

Exercício 10: Sejam $x, y, z \in G$, onde G é um grupo. Mostre que:

- (a) $[x, y]^{-1} = [y, x]$.
- (b) $[x, y]^z = [x^z, y^z].$
- (c) $[x, y]z = z[x^z, y^z]$.

(d)
$$[x^y, z] = [x, z]^{[x,y]}[x, y, z].$$

Exercício 11: Um grupo G é chamado de **perfeito** se G = G'. Prove que todo grupo que não é solúvel contém um subgrupo característico $H \neq \{1\}$ que é perfeito.

Exercício 12: Sejam H e K dois subgrupos normais de um grupo G. Prove que se ambos H e K são solúveis, então o grupo HK também é solúvel.

Exercício 13: Prove que todo grupo de ordem 12 é solúvel.

Exercício 14: Sejam $p \neq q$ dois números primos. Prove que todo grupo de ordem pq é solúvel.

Exercício 15: Seja G um grupo finito nilpotente de ordem n. Prove que, para cada divisor d de n, G contém um subgrupo de ordem d.

Exercício 16: Seja H um subgrupo de um grupo finito nilpotente G. Definimos $N_1 = N_G(H)$ e, indutivamente, $N_i = N_G(N_{i-1})$. Prove que existe um inteiro positivo k tal que $N_k = G$.

Exercício 17: Mostre que, se um grupo G é tal que G/Z(G) é nilpotente, então G é nilpotente.

Exercício 18: Sejam G e H grupos abelianos finitamente gerados. Prove que $G \times G \cong H \times H$ se, e somente se, $G \cong H$.

Exercício 19: Sejam G, H e K grupos abelianos finitamente gerados. Prove que $G \times K \cong H \times K$ se, e somente se, $G \cong H$.

Exercício 20: Prove que vale a recíprova do Teorema de Lagrange para grupos abelianos finitos.

Exercício 21: Quantos grupos abelianos G existem, a menos de isomorfismo, de ordem:

- (a) |G| = 2700
- (b) $|G| = 7^2 11^2 13$
- (c) $|G| = p^{10}$, com *p* primo.

Exercício 22: Sejam G e H grupos abelianos de ordem p^n , com p primo. Mostre que:

- (a) Se $pG = \{0\}$, então $G \cong \mathbb{Z}_p^n$.
- (b) $pG \cong pH$ se, e somente se, $G \cong H$.

Exercício 23: Quantos grupos abelianos G existem, a menos de isomorfismo, satisfazendo:

- (a) $|G| = 3^5$, $9G = \{0\}$ e $3G \neq \{0\}$
- (b) $|G| = 5^4$, $25G = \{0\}$ e |5G| = 25
- (c) $|G| = 7^5 11^3 \text{ e } 77G = \{0\}$
- (d) |G| = 32, para todo $x \in G$ tem-se que $|x| \le 8$ e existe $x \in G$ com |x| = 8.

Exercício 24: Quantos grupos abelianos finitamente gerados existem, a menos de isomorfismo, satisfazendo:

- (a) |T(G)| = 27, posto (G) = 3 e para todo $x \in G$ tem-se que |x| = 3 ou $|x| = \infty$.
- (b) |T(G)| = 25, posto (G) = 4 e 5G não é livre.