Lezioni di Ricerca Operativa

Università degli Studi di Salerno

Lezione n° 12

Algoritmo del Simplesso:

- Metodo delle 2 Fasi
- Metodo del Big-M

R. Cerulli – F. Carrabs

Individuazione di una base di partenza per il simplesso

Dato il seguente problema di PL in forma standard:

$$min z = \underline{c}^T \underline{x}$$
$$A\underline{x} = \underline{b}$$
$$\underline{x} \ge \underline{0}$$

dove A è una matrice mxn, con m < n, a rango pieno e $\underline{b} \ge \underline{0}$, supponiamo di voler utilizzare il metodo del simplesso per risolvere il problema.

Occorre individuare una sottomatrice di A che sia una base di \mathbb{R}^m

Individuazione di una base di partenza per il simplesso

Se tra le colonne di A non è presente la **matrice identità**, l'individuazione di una sottomatrice quadrata $m_X m$ di A, con determinante diverso da zero, può essere un'operazione costosa.

Il problema viene risolto modificando **artificialmente** il sistema dei vincoli come segue:

$$A\underline{x} = \underline{b}$$

$$\underline{x} \ge \underline{0}$$

$$\underline{x} \ge \underline{0}, \underline{y} \ge \underline{0}$$

Si aggiunge una variabile artificiale y_i ad ogni vincolo del sistema affinché nel nuovo sistema sia presente una matrice identità (associata alle variabili y).

Individuazione di una base di partenza per il simplesso

Lemma

Data una soluzione ammissibile $(\underline{x}', \underline{y}')$ del poliedro $X' = \{A\underline{x} + I\underline{y} = \underline{b}, \underline{x} \ge \underline{0}, \underline{y} \ge \underline{0}\}$, il vettore \underline{x}' sarà soluzione ammissibile del poliedro $X = \{A\underline{x} = \underline{b}, \underline{x} \ge \underline{0}\}$ se e solo se $\underline{y}' = \underline{0}$.

DIM.

 \Longrightarrow

Poiché per ipotesi \underline{x}' e $(\underline{x}', \underline{y}')$ sono soluzioni ammissibili dei rispettivi poliedri, si ha che:

$$A\underline{x}' = \underline{b}$$
 e $A\underline{x}' + I\underline{y}' = \underline{b}$

Sostituendo $A\underline{x}'$ con \underline{b} nella seconda equazione otteniamo:

$$\underline{b} + I\underline{y}' = \underline{b} \implies \underline{y}' = \underline{0}$$

 \Leftarrow

Poiché (\underline{x}', y') è una soluzione ammissibile di X' e $y' = \underline{0}$ si ha che $\underline{x}' \ge \underline{0}$ e:

$$A\underline{x}' + I\underline{0} = \underline{b} \implies A\underline{x}' = \underline{b}$$

Metodo Delle Due Fasi

Per ottenere la soluzione $(\underline{x}', \underline{0})$ (se esiste) risolviamo il seguente problema di PL a cui ci riferiremo come problema di PL della 1° fase.

$$min g = \sum_{i=1}^{m} y_i$$

$$A\underline{x} + I\underline{y} = \underline{b}$$

$$\underline{x} \ge \underline{0}, \underline{y} \ge \underline{0}$$

Per risolvere il nuovo problema possiamo utilizzare il simplesso a partire dalla matrice identità generata dalle colonne associate alle variabili artificiali y.

Quindi all'inizio della procedura tutte le variabili artificiali \underline{y} sono in base mentre tutte le variabili \underline{x} del problema originale sono fuori base.

Metodo Delle Due Fasi

Alla fine della prima fase possono verificarsi due casi:

1) $g^* > 0 \implies A\underline{x} = \underline{b}$ non ammette soluzione. Il problema di partenza è inammissibile e non si passa alla seconda fase.

2) $g^* = 0 \implies A\underline{x} = \underline{b}$ ammette soluzione. Si passa alla seconda fase risolvendo il problema iniziale utilizzando la base ottima della prima fase come base di partenza per il simplesso.

Metodo Delle Due Fasi

$$min g = \sum_{i=1}^{m} y_i$$
$$A\underline{x} + I\underline{y} = \underline{b}$$

$$\underline{x} \ge \underline{0}, \underline{y} \ge \underline{0}$$

- Perché il problema di PL della prima fase ammette sempre una soluzione ammissibile?
- Perché il problema di PL della prima fase non avrà mai un ottimo illimitato?
- Se al termine della prima fase $g^* = 0$, quale sarà stato il minimo numero di iterazioni necessarie al simplesso per azzerare le variabili artificiali? (è sempre necessario aggiungere m variabili artificiali al sistema di partenza?)

Metodo Delle Due Fasi: Esempio

$$min z = -x_1 - 2x_2$$

$$x_1 + x_2 \ge 1$$

$$x_1 + 2x_2 \le 4$$

$$\underline{x} \ge \underline{0}$$

Forma standard

$$min z = -x_1 - 2x_2$$

$$x_1 + x_2 - x_3 = 1$$

$$x_1 + 2x_2 + x_4 = 4$$

$$\underline{x} \geq \underline{0}$$

Problema della prima fase

$$min\ g = x_5^a$$

$$x_1 + x_2 - x_3 + x_5^a = 1$$

$$x_1 + 2x_2 + x_4 = 4$$

$$\underline{x} \ge \underline{0}, x_5^a \ge 0$$

D'ora in poi indicheremo le variabili artificiali con l'apice *a* per poterle distinguere dalle variabili del problema di partenza.

$$min g = x_5^a$$

$$x_1 + x_2 - x_3 + x_5^a = 1$$

$$x_1 + 2x_2 + x_4 = 4$$

$$\underline{x} \ge \underline{0}, x_5^a \ge 0$$

$$A = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5^a \\ 1 & 1 & -1 & 0 & 1 \\ 1 & 2 & 0 & 1 & 0 \end{bmatrix} \qquad \mathbf{N} = \{1, 2, 3\}$$

$$A_B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \underline{x}_B = A_B^{-1}\underline{b} \implies \underline{x}_B = I\underline{b} \implies \underline{x}_B = \underline{b}$$

$$\begin{bmatrix} x_5^a \\ x_4 \end{bmatrix} = A_B^{-1}\underline{b} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \longrightarrow x_5^a = 1, \quad x_4 = 4$$

Test di Ottimalità: calcolo di $z_j - c_j$ per $j \in N = \{1,2,3\}$

$$z_1 - c_1 = [1 \ 0] I \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 0 = 1$$

$$z_2 - c_2 = [1 \ 0] I \begin{bmatrix} 1 \\ 2 \end{bmatrix} - 0 = 1$$

$$z_3 - c_3 = \begin{bmatrix} 1 & 0 \end{bmatrix} I \begin{bmatrix} -1 \\ 0 \end{bmatrix} - 0 = -1$$

x₂ entra in base Quale variabile esce dalla base?

Test dei minimi rapporti:

$$\begin{bmatrix} x_5^a \\ x_4 \end{bmatrix} = \overline{\underline{b}} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \qquad \underline{y}_2 = A_B^{-1} \underline{a}_2 = I \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$x_2 = \min_{1 \le i \le m} \left\{ \frac{\overline{b}_i}{y_{ik}} : y_{ik} > 0 \right\} = \min_{1 \le i \le m} \left\{ \frac{1}{1}, \frac{4}{2} \right\} = 1 = \frac{\overline{b}_1}{y_{1k}}$$

 x_5^a esce dalla base; x_2 entra in base con valore 1

Nuova base: $B = \{2,4\}$ $N = \{1,3,5\}$

$$A_B = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \qquad A_B^{-1} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = A_B^{-1}\underline{b} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Test di Ottimalità: calcolo di $z_j - c_j$ per $j \in N = \{1,3,5\}$

$$z_1 - c_1 = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 0 = 0$$

$$z_3 - c_3 = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} - 0 = 0$$

Soluzione ottima

$$z_5 - c_5 = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 1 = -1$$

Soluzione Ottima della Prima fase

$$g^* = \underline{c}_B^T A_B^{-1} \ \underline{b}$$

$$g^* = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = 0$$
 Si può passare alla seconda fase

Si risolve il problema iniziale utilizzando come base di partenza:

$$B = \{2,4\}$$
 $N = \{1,3,5\}$

$$min z = -x_1 - 2x_2$$

$$x_1 + x_2 - x_3 = 1$$

$$x_1 + 2x_2 + x_4 = 4$$

$$\underline{x} \ge \underline{0}$$

$$A_B = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \qquad A_B^{-1} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = A_B^{-1} \underline{b} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Test di Ottimalità: calcolo di $z_j - c_j$ per $j \in N = \{1,3\}$

$$z_1 - c_1 = \begin{bmatrix} -2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - (-1) = -1$$

$$z_3 - c_3 = \begin{bmatrix} -2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} - 0 = 2$$
 x_3 entra in base

x₃ entra in base Quale variabile esce dalla base?

Test dei minimi rapporti:

$$\begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \underline{y}_3 = A_B^{-1} \underline{a}_3 = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

$$x_3 = \min_{1 \le i \le m} \left\{ \frac{\overline{b}_i}{y_{ik}} : y_{ik} > 0 \right\} = \min_{1 \le i \le m} \left\{ \frac{2}{2} \right\} = 1 = \frac{\overline{b}_2}{y_{2k}}$$

x₄ esce dalla base; x₂ entra in base con valore 1

Nuova base: $B = \{2,3\}$ $N = \{1,4\}$

$$A_B = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$$
 $A_B^{-1} = \begin{bmatrix} 0 & 1/2 \\ -1 & 1/2 \end{bmatrix}$

$$\begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = A_B^{-1} \underline{b} = \begin{bmatrix} 0 & \frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Test di Ottimalità: calcolo di $z_i - c_j$ per $j \in N = \{1,4\}$

$$z_{1} - c_{1} = \begin{bmatrix} -2 & 0 \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - (-1) = -1 + 1 = 0$$

$$z_{4} - c_{4} = \begin{bmatrix} -2 & 0 \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} - 0 = -1 \quad \text{Soluzione ottima}$$

Metodo Del Big-M

➤ Nella prima fase del metodo delle due fasi, la funzione obiettivo del problema originale è completamente ignorata.

La prima fase ha, infatti, come obiettivo l'individuazione di una qualsiasi soluzione di base ammissibile del problema originale e quindi non necessariamente una buona soluzione di base ammissibile.

➤ Il Big-M è un metodo alternativo al metodo delle 2 fasi che tiene conto anche della funzione obiettivo originale durante la risoluzione del problema.

Metodo Del Big-M

Il problema di PL viene risolto modificando artificialmente il sistema dei vincoli esattamente come fatto per il Due Fasi aggiungendo le variabili artificiali al sistema.

Ciò che cambia è la funzione obiettivo usata dal metodo del Big-M.

$$P \quad min \ z = \underline{c}^T \underline{x} \qquad P(M) \quad min \ z = \underline{c}^T \underline{x} + M \underline{1}^T \underline{y}$$

$$A\underline{x} = \underline{b} \qquad \qquad A\underline{x} + I\underline{y} = \underline{b}$$

$$\underline{x} \ge \underline{0} \qquad \qquad \underline{x} \ge \underline{0}, \underline{y} \ge \underline{0}$$

Alla funzione obiettivo di P vengono sommate (nel caso di un problema di minimo) le variabili artificiali moltiplicate per un coefficiente M "molto grande".