Spring 2022

CSE 317: Design and Analysis of Algorithms, Quiz - 3 [Section 3]

Wednesday, March 30, 2022. Total marks: 10 point, Duration: 15 minutes.

Name: _______, Student ID: ______

Name:, Student ID:	
1.	(10 points) Given a positive integer n , count all n -digit numbers without any consecutive 1's using dynamic programming algorithm. What is the time complexity of your algorithm?
	For example, for $n = 5$, there are 13 binary numbers that satisfy the given constraints:
	00000,00001,00010,00100,00101,01000,01001,01010,10000,10001,10010,10010,10100,and10101.
	Solution: Let a_i be the number of binary strings of length i which do not contain any two consecutive 1's and which end in a 0. Similarly, let b_i be the number of such strings which end in a 1. We can append either a 0 or a 1 to a string ending in 0, but we can only append 0 to a string ending in 1. This yields the recurrence relation:
	$a_i = a_{i-1} + b_{i-1}$
	$b_i = a_{i-1}$
	The base cases of above recurrences are $a_1 = b_1 = 1$.
	The total number of strings of length i is thus just $a_i + b_i$.
	Time complexity: $O(n)$
	· · · · · ·