Circuit Theory

MATLAB Assignment

SAMBHAV R JAIN 107108103

Question 1

CIRCUIT DIAGRAM:


```
clear all;
close all;
clc;
\ensuremath{\mbox{\$}}\mbox{The circuit diagram is as shown.}
V=input('Enter the value of voltage source in the figure:\n');
R=zeros(1,6);
```

```
disp('Enter the six resistors R1,R2,R3,R4,R5,R6:');
for i=1:6
                       R(i) = input('');
end
disp('Applying Loop analysis to the given circuit:');
r = [R(1) + R(2) + R(5) - R(2) - R(5); R(2) - R(2) - R(3) - R(4) R(4); R(5) R(4) - R(4) - R(5) - R(5) - R(6) - R
R(6)]
v=[V;0;0]
I=inv(r)*v;
disp('The loop currents are:');
disp('I1=');
disp(I(1));
disp('I2=');
disp(I(2));
disp('I3=');
disp(I(3));
disp('Hence the current through the 2 ohm resistor is:');
disp(I(3)-I(2));
```

OUTPUT:

Enter the value of voltage source in the figure:

10

Enter the six resistors R1,R2,R3,R4,R5,R6:

6

4

6

2

8

15

Applying Loop analysis to the given circuit:

r =

18 -4 -8

4 -12 2

8 2 -25

v =

10

0

0

The loop currents are:

11=

0.7341

12=

0.2877

13=

0.2579

Hence the current through the 2 ohm resistor is:

-0.0298

Question 2

CIRCUIT DIAGRAM:


```
clear all;
close all;
clc;
\mbox{\ensuremath{\mbox{\$}}\xspace} The circuit diagram is as shown.
I=zeros(1,3);
disp('Enter the three current sources I1,I2,I3:');
for i=1:3
    I(i) = input('');
end
R=zeros(1,6);
disp('Enter the six resistors R1,R2,R3,R4,R5,R6:');
for i=1:6
```

```
R(i) = input('');
end
disp('Let the node 5 be grounded.');
disp('Applying KCL to the given circuit:');
r = \begin{bmatrix} 0 & -1/R(1) & 0 & 1/R(1) + 1/R(6) ; -1/R(2) & 1/R(1) + 1/R(2) + 1/R(3) & -1/R(3) & -1/R(1) ; -1/R(1) ; -1/R(1) & -1/R(
1/R(4) - 1/R(3) 1/R(3) + 1/R(4) 0; -1/R(2) - 1/R(4) 1/R(2) 1/R(4) 0;
i=[I(1);I(2);I(3);I(1)];
%This variable v stores from V1 to V4 only.
v=inv(r)*i;
v(5) = 0;
disp('The nodal voltages are:');
disp('V1=');
disp(v(1));
disp('V2=');
disp(v(2));
disp('V3=');
disp(v(3));
disp('V4=');
disp(v(4));
%Since the node 5 was grounded.
disp('V5=');
disp(v(5));
disp('V6=');
disp(-I(3)*R(5));
```

OUTPUT:

The circuit diagram is as shown:

Enter the three current sources I1,I2,I3:

3

4

6

Enter the six resistors R1,R2,R3,R4,R5,R6:
2
5
3
6
8
4
Let the node 5 be grounded.
Applying KCL to the given circuit:
The nodal voltages are:
V1=
50.7857
V2=
54
V3=
64.9286
V4=
40
V5=
0
V6=

-48

	MATLAB Assignment 107108103	
Question 3		
CIRCUIT DIAGRAM:		

1. To calculate Thevenin Voltage:

2. <u>To calculate Thevenin Resistance:</u>

```
clear all;
close all;
clc;
%The circuit diagram is as shown
%To calculate Thevenin Voltage
disp('Enter the value of voltage source S:');
S=input('');
disp('Enter the value of current source I:');
I=input('');
R=zeros(1,3);
disp('Enter the resistances R1,R2,R3:');
for i=1:3
    R(i) = input('');
end
%Let the 5th node be grounded
V5=0;
V2 = V5 + S;
V3=V2-6*I;
V4=V5-I*R(3);
V1 = (V3*(3+1/R(2))+V2/R(1))/(3+1/R(1)+1/R(2));
Vt=V4-V1;
disp('The voltages at the nodes 1,2,3,4,5 are:');
disp(V1);
disp(V2);
disp(V3);
disp(V4);
disp(V5);
disp('The Thevenin voltage is:');
disp(Vt);
%To calculate Thevenin Resistance
%The loop currents are I,i2,i3,i4
r=[-R(1)-R(2) R(1) -6;12 1 1;R(1) -R(1) 2];
v=[6*I;0;-2*I-S];
i=inv(r)*v;
disp('The short circuit current is:');
```

```
disp(i(3));
Rt=Vt/i(3);
disp('Hence the Thevenin resistance is:');
disp(abs(Rt));
disp('This Rth remains constant for different values of load resistances.');
%To calculate the power dissipated by 4 ohms
Il(1) = Vt/(abs(Rt) + 4);
P = (I1(1)^2*4);
disp('The power dissipated by 4 ohm load (in watts) is:');
disp(P);
%Equivalent Norton circuit
disp('The equivalent Norton circuit has:');
disp('In=');
In=Vt/abs(Rt);
disp(In);
disp('Rn=');
disp(abs(Rt));
%To plot the graph1
Rl=4:4:40;
for i=1:10
    Il(i)=Vt/(abs(Rt)+Rl(i));
end
plot(Il, Vt);
xlabel('Load current---->');
ylabel('Thevenin Voltage---->');
title('Thevenin Voltage v\s Load current');
%To plot the graph2
t=0:.001:10;
plot(t,Vt);
xlabel('Time---->');
ylabel('Thevenin Voltage---->');
title('Thevenin Voltage v\s Time');
%To plot the graph3
plot(Il);
xlabel('Time---->');
ylabel('Load current---->');
title('Load current v\s Time');
```

OUTPUT:

Enter the value of voltage source S:
10
Enter the value of current source I:
8
Enter the resistances R1,R2,R3:
2
4
2
The voltages at the nodes 1,2,3,4,5 are:
-31.6000
10
-38
-16
0
The Thevenin voltage is:
15.6000
The short circuit current is:
-5.3182
Hence the Thevenin resistance is:
2.9333

This Rth remains constant for different values of load resistances.

The power dissipated by 4 ohm load (in watts) is:

20.2500

The equivalent Norton circuit has:

In=

5.3182

Rn=

2.9333

GRAPHS:

1. V_{TH} $v \setminus s$ I_L

2. $I_L v s$

3. V_{TH} $v \s$ t

	107108103
Question 4	
CIRCUIT DIAGRAM:	
1. To calculate Thevenin Voltage:	
2. To calculate Thevenin Resistance:	

```
clear all;
close all;
clc;
%The circuit diagram is as shown.
disp('Enter the values of sources S1 and S2:');
S1=input('');
S2=input('');
R=zeros(1,6);
disp('Enter the resistors R1,R2,R3,R4,R5');
for i=1:5
    R(i) = input('');
end
%Let the 1st node be grounded
%To calculate Thevenin Voltage
V1=0;
V4 = S1;
V5=S2;
x=[-1/R(3) 1/R(1)+1/R(2)+1/R(3);1/R(3)+1/R(4) -1/R(3)];
y=[V4/R(1);V5/R(4)];
v=inv(x)*y;
Vt=v(1);
disp('Thus the Vth is:');
disp(Vt);
%To calculate Thevenin Resistance
a=R(1)*R(2)/(R(1)+R(2));
b=a+R(3);
c=b*R(4)/(b+R(4));
d=c+R(5);
Rt=d;
disp('The Rth is:');
disp(Rt);
%Power dissipation by load
i=0;
for r=0:2:12
```

```
i(1,(r/2)+1)=Vt/(Rt+r);
end
r=[0 2 4 6 8 10 12];
disp('Power dissipated varies as:');
P=(i.^2).*r
plot(r,P);
xlabel('Load Resistance');
ylabel('Power dissipated');
disp('Maximum power dissipated is: 9.3750 Watts');
disp('Maximum power is dissipated at 6 ohms load');
```

OUTPUT:

Enter the values of sources S1 and S2:

12

36

Enter the resistors R1,R2,R3,R4,R5

3

6

2

12

3

Thus the Vth is:

15

The Rth is:

6

Power dissipated varies as:

P =

0 7.0313 9.0000 9.3750 9.1837 8.7891 8.3333

Maximum power dissipated is: 9.3750 Watts

Maximum power is dissipated at 6 ohms load

GRAPH:

Question 5

CIRCUIT DIAGRAM:

Wye network

Delta network


```
clear all;
close all;
clc;
n=input('Choose: \n1. delta-wye \n2. wye-delta \n');
d=input('Enter the value of R1, R2, R3 of Delta connected circuit :\n');
s=sum(d);
w(1,1) = d(1,1) * d(1,3) / s;
w(1,2)=d(1,1)*d(1,2)/s;
w(1,3)=d(1,2)*d(1,3)/s;
disp('The Ra, Rb, Rc of Wye connected circuit are :');
disp(w);
elseif n==2
w=input('Enter the value of Ra, Rb, Rc of Wye connected circuit :\n');
s=w(1,1)*w(1,2)+w(1,2)*w(1,3)+w(1,1)*w(1,3);
d(1,1) = s/w(1,3);
d(1,2) = s/w(1,1);
d(1,3) = s/w(1,2);
disp('The R1, R2, R3 of Delta connected circuit are :');
disp(d);
end
```

OUTPUT: Choose: 1. delta-wye 2. wye-delta 1 Enter the value of R1, R2, R3 of Delta connected circuit: [1 2 3] The Ra, Rb, Rc of Wye connected circuit are: 0.5000 0.3333 1.0000 Choose: 1. delta-wye 2. wye-delta 2 Enter the value of Ra, Rb, Rc of Wye connected circuit: [1 2 3] The R1, R2, R3 of Delta connected circuit are:

3.6667 11.0000 5.5000

GRAPH: (Program 4)

GRAPH: (Program 3)

GRAPH: (Program 3)

GRAPH: (Program 3)

