ILLINOIS INSTITUTE OF TECHNOLOGY - PHYS 221 L03

Lab Report - Lab 09: Biot-Savart Law with Helmholtz Coil

November 5, 2020

Daniel Ayabe

Daniel Ayabe Phys 221-L03 Lab 09

TA: Alex Brueske

Lab 05: Biot-Savart Law with Helmholtz Coil

Questions

- 1. Answer the following questions using the data you acquired from Part 1 of this lab:
 - a. Add to your data table(s) a column consisting the value of $1/(R^2 + z^2)^{3/2}$. Because we had data for a negative magnetic field as well as positive, I took the absolute values of the negative values and graphed them along with the positive values to gain better data onto one graph.

z (m)	B (T)	$1/(R^2+z^2)^{3/2}$
0	0.00338	2278.028867
0.03	0.002593333333	1833.266101
0.06	0.00157	1101.472356
0.09	0.0009	611.7916754
0.12	0.0005633333333	348.9372999
0.15	0.0001266666667	210.3163522
0.3	0.0001533333333	33.73766
0	0.003206666667	2278.028867
0.03	0.002383333333	1833.266101
0.06	0.001353333333	1101.472356
0.09	0.0007066666667	611.7916754
0.12	0.0003633333333	348.9372999
0.15	0.0001766666667	210.3163522
0.3	0.00006	33.73766

b. Plot a graph of B(z) versus $1/(R^2 + z^2)^{3/2}$.

- c. What is the field value at the center of the loop? Compare this value with Equation 3.
 - i. The measured magnetic field at the center of the loop z = 0 was 0.00338 T. Using equation 3 on the lab manual and using the given current value of 1.0A, we get a value of 8.2673 x 10^{-6} T. These values are very inaccurate from each other, leading me to believe that the equipment for measuring the magnetic field was faulty or not working properly.
- d. Find the slope of the best-fit line from your graph. From Equation 2, this slope should correspond theoretically to $\mu_0 IR^2 N/2$ (try proving this). Compare the two values.
 - i. The slope of the best-fit line from the above graph was 1.43×10^{-6} . Using the equation given in 1d, the value is calculated to be 1.4517×10^{-6} , which contains a 1.4926% error, which shows that the calculated value is accurate.
- 2. Answer the following questions using the data you acquired from Part 2 of this lab:
 - a. Plot of a graph of B(0) versus I.

- b. Find the slope of the best-fit line.
 - i. As seen in the graph above, the slope of the best-fit line is 6.61×10^{-3} , or 0.00661.
- c. From Equation 2, the slope of this line should correspond to the value of $(8/5\sqrt{5})$ $(\mu_0 N/R)$ (5) Show how to derive equation 5. Compare the slope of your graph with the value obtained from this expression.
 - i. Using equation 5, the slope comes out to be 0.0047. The percent error between this value and the value of the graph is 40.638%.

ii.