STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2019 LECTURE 6

1. PROJECTIONS

- the solution \mathbf{x} of the least-squares problem minimizes $||A\mathbf{x} \mathbf{b}||_2$, and therefore is the vector that solves the system $A\mathbf{x} = \mathbf{b}$ as closely as possible
- \bullet we can use the SVD to show that \mathbf{x} is the exact solution to a related system of equations
- write $\mathbf{b} = \mathbf{b}_0 + \mathbf{b}_1$, where

$$\mathbf{b}_1 = AA^{\dagger}\mathbf{b}, \quad \mathbf{b}_0 = (I - AA^{\dagger})\mathbf{b}$$

• the matrix AA^{\dagger} has the form

$$AA^{\dagger} = U\Sigma V^*V\Sigma^{\dagger}U^* = U\Sigma\Sigma^{\dagger}U^* = U\begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}U^*$$

- it follows that \mathbf{b}_1 is a linear combination of $\mathbf{u}_1, \dots, \mathbf{u}_r$, the columns of U that form an orthogonal basis for the range of A
- from $\mathbf{x} = A^{\dagger} \mathbf{b}$ we obtain

$$A\mathbf{x} = AA^{\dagger}\mathbf{b} = P_1\mathbf{b} = \mathbf{b}_1$$

where $P_1 = AA^{\dagger} \in \mathbb{C}^{m \times m}$

• therefore, the solution to the least squares problem, is also the exact solution to the system

$$A\mathbf{x} = P_1\mathbf{b}$$

- it can be shown that the matrix P_1 is an orthogonal projection
- in general a matrix $P \in \mathbb{C}^{m \times m}$ is called a *projection* if $P^2 = P$ (this condition is also called idempotent in ring theory)
- a projection is called an orthogonal projection if it is also Hermitian, i.e. an orthogonal projection is a matrix $P \in \mathbb{C}^{m \times m}$ satisfying
 - (i) $P = P^*$
 - (ii) $P^2 = P$
- caveat: an orthogonal projection is in general not an orthogonal/unitary matrix (i.e., $P^* \neq P^{-1}$) in fact, projections are usually non-invertible
- example: $\begin{bmatrix} 1 & \alpha \\ 0 & 0 \end{bmatrix}$ is a projection for any $\alpha \in \mathbb{C}$, it is an orthogonal projection if and only if $\alpha = 0$
- if $P \in \mathbb{C}^{m \times m}$ is a projection and $\operatorname{im}(P) = W$, we say that P is a projection onto the subspace W
- if $P \in \mathbb{C}^{m \times m}$ is a projection matrix, then I P is also a projection
- furthermore if im(P) = W and im(I P) = W', then

$$\mathbb{C}^m = W \oplus W'$$

- if P is an orthogonal projection and $\operatorname{im}(P) = W$, then $\operatorname{im}(I P) = W^{\perp}$
- we sometimes write P_W if we know the subspace P that projects onto
- in particular, $P_1 = AA^{\dagger}$ is a projection onto the space spanned by the columns of A, i.e., $\operatorname{im}(A)$, so $P_1 = P_{\operatorname{im}(A)}$

2. Computing projections onto fundamental subspaces

• we can write down the orthogonal projections onto all four fundamental subspaces in terms of the pseudoinverse

$$P_{\text{im}(A)} = AA^{\dagger}, \quad P_{\text{ker}(A^*)} = I - AA^{\dagger}, \quad P_{\text{im}(A^*)} = A^{\dagger}A, \quad P_{\text{ker}(A)} = I - A^{\dagger}A$$

- note that $P_{\text{im}(A)}, P_{\text{ker}(A^*)} \in \mathbb{C}^{m \times m}$ and $P_{\text{im}(A^*)}, P_{\text{ker}(A)} \in \mathbb{C}^{n \times n}$
- with the SVD, we can write down the projections in terms of unitary matrices

$$\begin{split} P_{\text{im}(A)} &= U \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} U^* = U_r U_r^*, \quad P_{\text{ker}(A^*)} = U \begin{bmatrix} 0 & 0 \\ 0 & I_{m-r} \end{bmatrix} U^* = U_{m-r} U_{m-r}^*, \\ P_{\text{im}(A^*)} &= V \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} V^* = V_r V_r^*, \quad P_{\text{ker}(A)} = V \begin{bmatrix} 0 & 0 \\ 0 & I_{n-r} \end{bmatrix} V^* = V_{n-r} V_{n-r}^* \end{split}$$

where $U = [U_r, U_{m-r}]$ and $V = [V_r, V_{n-r}]$

- we will often have to project vectors onto subspaces spanned by singular vectors, it is important to note that we will *not* actually compute the projection matrix and then multiply them to the vectors to achieve this
- we will see in Homework 2 how one can compute $P_W \mathbf{v}$ without forming P_W for a subspace W spanned by singular vectors
- in general, one *never* explicitly forms $P = AA^{\dagger}$ nor even A^{\dagger} doing so is a waste of computing time and gives inaccurate results

3. Least squares with quadratic constraints

- let $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, and α be some given positive number
- we wish to solve the problem

minimize
$$\|\mathbf{b} - A\mathbf{x}\|_2$$

subject to $\|\mathbf{x}\|_2 \le \alpha$ (3.1)

- this problem is known as *least squares with quadratic constraints*
- arises in many situations:
 - ridge regression
 - Tychonov regularization
 - generalized cross-validation (GCV)
- note that if $\alpha \ge \|A^{\dagger}\mathbf{b}\|_2$, the unconstrained minimum norm solution $A^{\dagger}\mathbf{b}$ would already be a solution
- so for a non-trivial solution, we assume that $\alpha < \|A^{\dagger}\mathbf{b}\|_2$ and in which case the solution \mathbf{x} to (3.1) must sit on the boundary of the ball of radius α , i.e., $\|\mathbf{x}\|_2 = \alpha$
- to solve this problem, we define the Lagrangian

$$L(\mathbf{x}, \mu) = \|\mathbf{b} - A\mathbf{x}\|_{2}^{2} + \mu(\|\mathbf{x}\|^{2} - \alpha^{2})$$

where μ is called the Lagrange multiplier

• first-order condition for minimality: set derivative to zero

$$\mathbf{0} = \nabla_{\mathbf{x}} L(\mathbf{x}, \mu) = -2A^{\mathsf{T}} \mathbf{b} + 2A^{\mathsf{T}} A \mathbf{x} + 2\mu \mathbf{x}$$

• we obtain

$$(A^{\mathsf{T}}A + \mu I)\mathbf{x} = A^{\mathsf{T}}\mathbf{b} \tag{3.2}$$

• if we denote the eigenvalues of $A^{\mathsf{T}}A$ by

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$$

• then eigenvalues of $A^{\mathsf{T}}A + \mu I$ are

$$\lambda_1 + \mu, \cdots, \lambda_n + \mu$$

• if $\mu \geq 0$, then $\kappa_2(A^{\mathsf{T}}A + \mu I) \leq \kappa_2(A^{\mathsf{T}}A)$, because

$$\frac{\lambda_1 + \mu}{\lambda_n + \mu} \le \frac{\lambda_1}{\lambda_n}$$

- so $A^{\mathsf{T}}A + \mu I$ is better conditioned
- to solve (3.2), we see that we need to compute

$$\mathbf{x} = (A^{\mathsf{T}}A + \mu I)^{-1}A^{\mathsf{T}}\mathbf{b} \tag{3.3}$$

where

$$\mathbf{x}^\mathsf{T}\mathbf{x} = \mathbf{b}^\mathsf{T}A(A^\mathsf{T}A + \mu I)^{-2}A^\mathsf{T}\mathbf{b} = \alpha^2$$

• if $A = U\Sigma V^{\mathsf{T}}$ is the full SVD of A, we let $\mathbf{c} = U^{\mathsf{T}}\mathbf{b}$, then we have

$$\begin{split} &\alpha^2 = \mathbf{b}^\mathsf{T} U \Sigma V^\mathsf{T} (V \Sigma^\mathsf{T} \Sigma V^\mathsf{T} + \mu I)^{-2} V \Sigma^\mathsf{T} U^\mathsf{T} \mathbf{b} \\ &= \mathbf{c}^\mathsf{T} \Sigma [(V \Sigma^\mathsf{T} \Sigma V^\mathsf{T} + \mu I) V]^{-1} [V^\mathsf{T} (V \Sigma^\mathsf{T} \Sigma V^\mathsf{T} + \mu I)]^{-1} \Sigma^\mathsf{T} \mathbf{c} \\ &= \mathbf{c}^\mathsf{T} \Sigma (V \Sigma^\mathsf{T} \Sigma + \mu V)^{-1} (\Sigma^\mathsf{T} \Sigma V^\mathsf{T} + \mu V^\mathsf{T})^{-1} \Sigma^\mathsf{T} \mathbf{c} \\ &= \mathbf{c}^\mathsf{T} \Sigma [(\Sigma^\mathsf{T} \Sigma V^\mathsf{T} + \mu V^\mathsf{T}) (V \Sigma^\mathsf{T} \Sigma + \mu V)]^{-1} \Sigma^\mathsf{T} \mathbf{c} \\ &= \mathbf{c}^\mathsf{T} \Sigma (\Sigma^\mathsf{T} \Sigma + \mu I)^{-2} \Sigma^\mathsf{T} \mathbf{c} \\ &= \sum_{i=1}^r \frac{c_i^2 \sigma_i^2}{(\sigma_i^2 + \mu)^2} \\ &=: f(\mu) \end{split}$$

where $\mathbf{c} = (c_1, \dots, c_m)^\mathsf{T}$

- the function $f(\mu)$ has poles at $-\sigma_i^2$ for $i=1,\ldots,r$
- furthermore, $\lim_{\mu \to \infty} f(\mu) = 0$
- algorithm for solving this problem, given A, b, and α^2 :
 - step 1: compute SVD of A to obtain $A = U\Sigma V^{\mathsf{T}}$
 - step 2: compute $\mathbf{c} = U^{\mathsf{T}}\mathbf{b}$
 - step 3: solve $f(\mu_*) = \alpha^2$ with Newton-Raphson method
 - step 4: use the SVD to compute

$$\mathbf{x} = (A^{\mathsf{T}}A + \mu I)^{-1}A^{\mathsf{T}}\mathbf{b} = V(\Sigma^{\mathsf{T}}\Sigma + \mu I)^{-1}\Sigma^{\mathsf{T}}U^{\mathsf{T}}\mathbf{b}$$

- don't use Newton-Raphson method on this equation directly; solving $1/f(\mu) = 1/\alpha^2$ is much better
- this is an example of an 'almost closed form' solution: we have an analytic expression for x that depends on just one unknown parameter μ_* , which is the root of a univariate nonlinear equation

4. Solving total least squares problems

- assume $A \in \mathbb{C}^{m \times n}$ has full column rank, i.e., $\operatorname{rank}(A) = n \leq m$
- in ordinary least squares problem, we solve

$$A\mathbf{x} = \mathbf{b} + \mathbf{r}, \quad \|\mathbf{r}\|_2 = \min$$

• in total least squares problem, we wish to solve

$$(A + E)\mathbf{x} = \mathbf{b} + \mathbf{r}, \quad ||E||_F^2 + \lambda^2 ||\mathbf{r}||_2^2 = \min$$

- note that if $\mathbf{b} \in \text{im}(A)$, then the solution is given by setting E = O, $\mathbf{r} = \mathbf{0}$ and choosing \mathbf{x} to be any solution of $A\mathbf{x} = \mathbf{b}$
- so assume $\mathbf{b} \not\in \operatorname{im}(A)$ and therefore

$$rank([A, \mathbf{b}]) = n + 1$$

• from $A\mathbf{x} - \mathbf{b} + E\mathbf{x} - \mathbf{r} = \mathbf{0}$ we obtain the system

$$\begin{bmatrix} A & \mathbf{b} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ -1 \end{bmatrix} + \begin{bmatrix} E & \mathbf{r} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ -1 \end{bmatrix} = \mathbf{0}$$

or

$$(C+F)\mathbf{z} = \mathbf{0} \tag{4.1}$$

• since

$$\mathbf{z} = \begin{bmatrix} \mathbf{x} \\ -1 \end{bmatrix} \neq \mathbf{0} \tag{4.2}$$

we must have $\operatorname{nullity}(C+F) \geq 1$

• and since $\operatorname{rank}(C) = n + 1$, we must have

$$\operatorname{rank}(C+F) \le n$$

- we need the matrix C + F to have $\operatorname{rank}(C + F) \leq n$, and we want to minimize $||F||_F$
- to solve this problem, we compute the SVD of $C \in \mathbb{C}^{m \times (n+1)}$

$$C = \begin{bmatrix} A & \mathbf{b} \end{bmatrix} = U\Sigma V^* = U \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & \\ & & \sigma_n & & \\ & & & \sigma_{n+1} \\ 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 \end{bmatrix} V^*$$

- note that $\sigma_{n+1} > 0$ since rank(C) = n+1
- we want F so that rank $(C+F) \leq n$ so need to zero out σ_{n+1} , i.e., we want

$$C + F = U \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_n & & \\ & & & 0 \\ 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 \end{bmatrix} V^*$$

$$(4.3)$$

or to be more precise, we want

$$\min_{\text{rank}(C+F) \le n} ||F||_F = \min_{\text{rank}(C+F) \le n} ||C - (C+F)||_F = \min_{\text{rank}(X) \le n} ||C - X||_F$$

and Eckhart-Young theorem tells us that X := C + F must take the form in (4.3)

• so pick

$$F = U \begin{bmatrix} 0 & & & & & \\ & \ddots & & & & \\ & & 0 & & & \\ 0 & \cdots & \cdots & 0 & \\ \vdots & & & \vdots & \\ 0 & \cdots & \cdots & 0 \end{bmatrix} V^*$$

and note that this F would produce the effect needed for (4.3)

• let $V = [\mathbf{v}_1, \dots, \mathbf{v}_{n+1}] \in \mathbb{C}^{(n+1)\times(n+1)}$ where $\mathbf{v}_i \in \mathbb{C}^{n+1}$ is the *i*th column of V note that $\mathbf{v}_i^* \mathbf{v}_{n+1} = 0$ for all $i = 1, \dots, n$

• we have

$$(C+F)\mathbf{v}_{n+1} = U \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_n & & \\ & & & 0 \\ 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 \end{bmatrix} V^*\mathbf{v}_{n+1} = U \begin{bmatrix} \sigma_1 \mathbf{v}_1^* \\ \vdots \\ \sigma_n \mathbf{v}_n^* \\ \mathbf{0}^\mathsf{T} \\ \mathbf{0}^\mathsf{T} \\ \vdots \\ \mathbf{0}^\mathsf{T} \end{bmatrix} \mathbf{v}_{n+1} = U \begin{bmatrix} \sigma_1 \mathbf{v}_1^* \mathbf{v}_{n+1} \\ \vdots \\ \sigma_n \mathbf{v}_n^* \mathbf{v}_{n+1} \\ \mathbf{0}^\mathsf{T} \mathbf{v}_{n+1} \\ \vdots \\ \vdots \\ \mathbf{0}^\mathsf{T} \mathbf{v}_{n+1} \end{bmatrix} = U \begin{bmatrix} 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 0 \end{bmatrix} = \mathbf{0}$$

- so the vector \mathbf{v}_{n+1} ought to be a candidate for the solution \mathbf{z} in (4.1) but there is one caveat the last coordinate of \mathbf{z} must be -1 by (4.2)
- how do we achieve that? we divide \mathbf{v}_{n+1} by the negative of its last coordinate, so

$$\begin{bmatrix} \mathbf{x} \\ -1 \end{bmatrix} = \mathbf{z} = -\frac{1}{v_{n+1,n+1}} \mathbf{v}_{n+1}$$

provided that $v_{n+1,n+1} \neq 0$

• this gives the solution

$$\mathbf{x} = -\begin{bmatrix} v_{1,n+1}/v_{n+1,n+1} \\ \vdots \\ v_{n,n+1}/v_{n+1,n+1} \end{bmatrix}$$

where the v_{ij} refers to the entries of $V = [v_{ij}]_{i,j=1}^{n+1}$

5. FINDING CLOSEST UNITARY/ORTHOGONAL MATRIX

- let U(n) be the set of all $n \times n$ unitary matrices
- given $A \in \mathbb{C}^{n \times n}$, we wish to find the matrix $X \in U(n)$ that satisfies

$$\min_{X \in U(n)} \|A - X\|_F$$

- let $A = U\Sigma V^*$ be the SVD of A
- \bullet if we set

$$X = UV^*$$
,

then

$$||A - X||_F^2 = ||U(\Sigma - I)V^*||_F^2 = ||\Sigma - I||_F^2 = (\sigma_1 - 1)^2 + \dots + (\sigma_n - 1)^2$$

- it can be shown that this is in fact the minimum (see Homework 2)
- for real matrices A, one could also ask for

$$\min_{X \in O(n)} ||A - X||_F$$

which is just a special case

6. Procrustes Problem

• a more general problem is to find $X \in U(n)$ such that

$$\min_{X \in U(n)} ||A - BX||_F$$

for given matrices $A, B \in \mathbb{C}^{m \times n}$

- let $B^*A = U\Sigma V^*$ be the SVD of B^*A
- the solution is given by

$$X = UV^*$$

• you will be asked to prove this in Homework 2

7. ASIDE: CLOSEST HERMITIAN/SYMMETRIC MATRIX

- this one doesn't require SVD but is interesting nonetheless
- given $A \in \mathbb{C}^{n \times n}$, find its closest Hermitian matrix

$$\min_{X^* = X} ||A - X||_F \tag{7.1}$$

or its closest skew-Hermitian matrix

$$\min_{X^* = -X} ||A - X||_F \tag{7.2}$$

• note that any square matrix can be written as a sum of a Hermitian matrix and a skew-Hermitian matrix

$$A = \frac{1}{2}(A + A^*) + \frac{1}{2}(A - A^*)$$

- the solutions to (7.1) and (7.2) are given by $X = \frac{1}{2}(A + A^*)$ and $X = \frac{1}{2}(A A^*)$ respectively (why?)
- for $A \in \mathbb{R}^{n \times n}$ these yield the closest symmetric and skew-symmetric matrices to A

8. OTHER APPLICATIONS

- in the homework you see yet other uses of SVD
- here are some other uses of SVD that we didn't have time to consider:
 - least squares with linear constraints (we will discuss this under QR though)
 - least squares with quadratic constraints
 - finding angles between subspaces
 - orthonormal basis for intersection of subspaces
 - subset selection
- all these should convince you that SVD truly is a swiss army knife of matrix computations