Tarea 5

Fecha de entrega: Marzo 3 de 2024

- 1. Sea \langle , \rangle un producto interno en \mathbb{R}^n y $\| \cdot \|$ su norma inducida. Sea S un subespacio y \bar{x} arbitrario. Muestre que $x^* = \arg\min_{x \in S} \|x \bar{x}\|$ si y solo si $x^* \bar{x}$ es ortogonal, con respecto al producto interno, a S y $x^* \in S$.
- 2. Dado n, genere una matriz de $n \times n$ con entradas distribuidas uniforme (-1,1). Convierta la matriz a una con diagonal estríctamente dominante modificando la diagonal. Llame a esta matriz A. Resuelva el sistema Ax = b con b el vector de unos para $n = 2^k$ con $k = 2, \ldots, 15$ usando los siguientes métodos y haga una gráfica loglog del tiempo requerido contra el tamaño de la matriz A:
 - a) Método del gradiente: Pare cuando $||r^k|| < 10^{-6}$, $x^0 = 0$.
 - b) Método del gradiente conjugado: Pare cuando $||r^k|| < 10^{-6}, x^0 = 0.$
 - c) Método del gradiente conjugado precondicionado con la diagonal: Pare cuando $||r^k|| < 10^{-6}$, $x^0 = 0$.
 - d) Método del gradiente conjugado precondicionado con el precondicionador SOR con w = 1: Pare cuando $||y^k y^{k-1}|| < 10^{-6}$, $x^0 = 0$.

Nota: Convierta el sistema en uno con matriz definida positiva. Compare con los métodos de la tarea 3.

3. Escriba una fórmula que involucre a, b y ε para calcular el número de iteraciones necesarias para garantizar que el método de la bisección tenga un error menor a ε .

Mauricio Junca