MATH 250	Name:
Exam I	Row:

Exam I has questions 1 through 8 with a total of 100 points. This exam is printed on both sides of the paper.

- 1. **Show all of your work.** Do not expect to earn full credit for a correct answer without the needed work.
- 2. Divine intervention is *not* a substitute for showing your work.
- 3. If your answer is wrong, but your work shows me that you know the major steps in solving a problem, you will likely earn some partial credit.
- 4. Your work should convince me that not only could you correctly solve the given problem, but you could also solve any related problem.
- 5. If a question asks for a sentence, write your answer as an English sentence.
- 6. No talking, no sharing calculators, and no scratch paper.
- 7. Turn your phone off and put it out of sight.
- 8. Clear your desk of everything, except a pencil, eraser, and a calculator.
- 9. If you never make a mistake, you may use ink; otherwise use a pencil.
- 10. Do not unstaple the pages of your exam.
- 11. We'll all start at the same time–it's the polite thing to do.
- 12. Write your answers in the space provided.
- 13. If you do not want something graded, erase it or clearly cross it out.
- 14. You may stare at your feet, your paper, or the ceiling, but nowhere else.
- 15. If you wear a baseball cap, wear it backwards so I can see your eyes.
- 16. Work each problem correctly.
- 17. When you are finished, collect your things, place your exam paper in the folder on the front desk, and quietly leave the room.
- 18. After you turn in your paper, I will not answer questions about the test until after it is graded.
- 19. Read all directions and problems carefully.

- 1. True or False:
- 5
- (a) $\emptyset = \{\emptyset\}.$
- 5
- (b) $\varnothing \subset \{\varnothing\}$.
- 10 2. Write the *contrapositive* of the statement *If an integer n is even, then* 2n + 2 *is even.*

3. Write the *converse* of the statement *If an integer n is even, then* 2n + 2 *is even.*

4. Give an example of a *conditional statement that is true*, but whose converse is false.

- 5. Enumerate the members of each set:
- 10 (a) $\{1, 2, \sqrt{5}\} \cap \{1, 2, \sqrt{2023}\}$

10 (b) $\{1, 2, \sqrt{5}\} \cup \{1, 2, \sqrt{2023}\}$

10 (c) $\{1, 2, \sqrt{5}\} \setminus \{1, 2, \sqrt{2023}\}$

10 6. Using a truth table, show that $P \Longrightarrow Q$ is logically equivalent to $\neg Q \Longrightarrow \neg P$.

7. Let *A* and *B* be sets. Write the *contrapositive* of the statement $A \setminus B = A \Longrightarrow A \cap B = \emptyset$.

8. Let *A* and *B* be sets. Show that $(A \subseteq B) \land (B \subseteq C) \implies A \cap C$. I've started the proof for you

Proof Suppose $x \in A$; we'll show that $x \in C$.

Greek characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
delta	δ	limit definition
epsilon	ϵ or ϵ	limit definition
theta	θ or ϑ	angle
pi	π or π	circular constant
phi	ϕ or φ	angle, constant

Named sets

empty set	Ø
real numbers	\mathbf{R}
ordered pairs	\mathbb{R}^2

integers	\mathbf{Z}
positive integers	$\mathbf{Z}_{>0}$
positive reals	$\mathbf{R}_{>0}$

Set symbols

Meaning	Symbol
is a member	€
subset	
intersection	Λ

Meaning	Symbol
union	U
complement	superscript ^C
set minus	\

Logic symbols

Meaning	Symbol
negation	Г
and	Λ
or	V
implies	\Longrightarrow

Meaning	Symbol
equivalent	≡
iff	\iff
for all	A
there exists	3

Truth Tables

P	Q	$P \wedge Q$	$P \lor Q$	$P \Longrightarrow Q$	$P \equiv Q$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	F	T	T	F
F	F	F	F	T	T

Tautologies

$$\neg\neg P \equiv P
 (P \lor P) \equiv P
 (P \land P) \equiv P
 (P \equiv Q) \equiv (Q \equiv P)
 (P \implies Q) \equiv (P \lor \neg Q)
 (P \implies Q) \equiv (\neg P \land Q)
 \neg (P \land Q) \equiv (\neg P \lor \neg Q)
 (P \implies Q) \equiv (\neg P \lor \neg Q)
 (P \implies Q) \equiv (\neg Q \implies \neg P)
 (P \implies Q) \equiv (P \land \neg Q)
 (P \iff Q) \equiv ((P \implies Q) \land (Q \implies P))
 \neg(\forall x \in A)(P(x)) \equiv (\exists x \in A)(\neg P(x))
 \neg(\exists x \in A)(P(x)) \equiv (\forall x \in A)(\neg P(x))$$

Vacuous Truth

$$\begin{array}{l} (\forall\,x\in\varnothing)(P(x))\equiv {\rm True}\\ (\exists\,x\in\varnothing)(P(x))\equiv {\rm False} \end{array}$$

Arithmetic properties

$$\begin{split} (\forall a,b \in \mathbf{R})(a+b=b+a) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a+(b+c)=(a+b)+c) & \text{commutivity} \\ (\forall a,b \in \mathbf{R})(ab=ba) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a(bc)=(ab)c) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a(b+c)=ab+ac) & \text{distrutity} \end{split}$$

Function notation

dom(F)	domain of function F
range(F)	range of function F
C_A C_A^1	set of continuous functions on set A
C_A^1	set of differentiable functions on set A
$A \rightarrow B$	set of functions from A to B

Set operators

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

$$A \setminus B = \{x \mid x \in A \land x \notin B\}$$

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Generalized set operators

Each member of a set $\mathcal C$ is a set:

$$\bigcup_{A \in \mathcal{C}} A = \{z \mid (\exists \, B \in \mathcal{C})(z \in B)\}$$

$$\bigcap_{A \in \mathcal{C}} A = \{z \mid (\forall \, B \in \mathcal{C})(z \in B)\}$$

Theorem:
$$\bigcup_{A \in \mathcal{C}} A^{\mathbf{C}} = \left(\bigcap_{A \in \mathcal{C}} A\right)^{\mathbf{C}}$$

Functions applied to sets

Let $A \subset \text{dom}(F)$ and $B \subset \text{range}(F)$:

$$F(A) = \{ F(x) \mid x \in A \}$$
$$F^{-1}(B) = \{ x \in \text{dom}(F) \mid F(x) \in B \}$$

Triangle inequalities

For all $x, y \in \mathbf{R}$, we have

$$|x+y| \le |x| + |y|$$
$$||x| - |y|| \le |x-y|$$

Floor and ceiling

Definitions:

Properties:

$$(\forall x \in \mathbf{R}, n \in \mathbf{Z}) (x < n \iff \lfloor x \rfloor < n)$$

$$(\forall x \in \mathbf{R}, n \in \mathbf{Z}) (n < x \iff n < \lceil x \rceil)$$