Air Quality Prediction Using Artificial Neural Networks

Kartik Singh, Shivam Ruhil, Aditya Kumar Singh

Supervisor: Dr. Gaurav Kaushal

ABV-IIITM, Gwalior

November 14, 2022

Table of Contents

- Introduction
- Objective
- Setup
 Experimental Setup
- 4 Experimental Results
- Performance Estimates
- 6 Utilisation Estimates
- Interface
- 8 Conclusion

Introduction

- Predicting air quality is a complex task due to the dynamic nature, volatility, and high variability in time and space of pollutants and particulates
- Air quality index (AQI) is an indicator created to report air quality, measuring how clean or unhealthy the air is and what associated health effects might be a concern, especially for risk groups.
- Air quality is being monitored for about two decades. This has allowed
 a better understanding of the changes in air pollution in response to
 particular activities and government regulations

Objective

- To train an ANN (Artificial Neural Network) model for prediction of AQI of a place.
- Defining the required harware configuration for the same in the industry.

Figure 2: Artificial Neural Network

Experimental setup

Dataset: MISCA(Self Made)

- Dataset contains the data of 8 Features which are Average Temperature, Max Temprature, Min Temprature, Atmospheric Pressure, Humidity, Wind Speed, Wind Direction and Average wind speed.
- Input Layer have 128 units, 3 Hidden Layer with 256 units each and Output Layer layer having 1 units.
- The 3 Densely connected layers performing computation and push the output forward with activation function set as 'ReLU' for all the layers..
- Output layer contains **1 neuron**, and is wrapped with 'linear' activition function.

Model Function

Figure 3: Technical Flowchart

Experimental Setup

Figure 4: Pairplot of features

Experimental Setup

Figure 5: Coorelation Heatmap

Experimental Setup

Figure 6: Graph of feature importances

Experimental result

Figure 7: Distribution of Output Feature (PM2.5)

Experimental result

Figure 8: Distribution of Error

```
In [35]: from sklearn import metrics
print('MAE:', metrics.mean_absolute_error(y_test, prediction))
print('MSE:', metrics.mean_squared_error(y_test, prediction))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, prediction)))

MAE: 17.256978376003808
MSE: 652.3202964224939
RMSE: 25.34061787527185
```

Figure 9: Model Evalution Results

Experimental result

Figure 10: Output in Vivado HLS

Perfromance Estimates

Timings

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	7.796	1.25

Table 1

Latency

Latency		Interval		Туре	
min	max	min	max	Type	
2160157	2160157	2160157	2160157	none	

Table 2

Utilisation Estimates

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	-	-	-
Expression	-	-	0	546
FIFO	-	-	-	-
Instance	4	15	1709	3638
Memory	1285	-	0	0
Multiplexer	-	-	-	590
Register	-	-	558	-
Total	1289	15	2267	4774
Available	40	40	16000	8000
Utilization (%)	3222	37	14	59

Table 3

Interface

RTL Ports	Dir	Rife	Protocol	Source Object	С Туре
s axi CRTL BUS AWVALID	in	1	s axi		scalar
s_axi_CRTL_BUS_AWVALID		1		CRIL_BUS	scalar
	out		s_axi		
s_axi_CRTL_BUS_AWADDR	in	5	s_axi		scalar
s_axi_CRTL_BUS_WVALID	in	1	s_axi		scalar
s_axi_CRTL_BUS_WREADY	out	1	s_axi		
s_axi_CRTL_BUS_WDATA	in	32	s_axi		scalar
s_axi_CRTL_BUS_WSTRB	in	4	s_axi		
s_axi_CRTL_BUS_ARVALID	in	1	s_axi		scalar
s_axi_CRTL_BUS_ARREADY	out	1	s_axi	CRTL_BUS	scalar
s_axi_CRTL_BUS_ARADDR	in	5	s_axi	CRTL_BUS	scalar
s_axi_CRTL_BUS_RVALID	out	1	s_axi	CRTL_BUS	scalar
s_axi_CRTL_BUS_RREADY	in	1	s_axi	CRTL_BUS	scalar
s axi CRTL BUS RDATA	out	32	s axi	CRTL BUS	scalar
s_axi_CRTL_BUS_RRESP	out	2	s_axi	CRTL_BUS	scalar
s_axi_CRTL_BUS_BVALID	out	1	s_axi	CRTL_BUS	scalar
s_axi_CRTL_BUS_BREADY	in	- 1	s_axi	CRTL_BUS	scalar
s axi CRTL BUS BRESP	out	2	s_axi	CRTL BUS	scalar
ap_clk	in	1	ap_ctrl_hs	aqi_prediction_nn	return value
ap rst n	in	1	ap ctrl hs	aqi prediction nn	return value
interrupt	out	1	ap_ctrl_hs	aqi_prediction_nn	return value
X_Addr_A	out	32	bram	X	array
X_EN_A	out	- 1	bram	X	array
X_WEN_A	out	4	bram	X	array
X_Din_A	out	32	bram	X	array
X_Dout_A	in	32	bram	X	array
X_Clk_A	out	1	bram	X	array
X Rst A	out	1	bram	X	arrav

Table 4

Experimental conclusion

Following are the conclusions drawn from the experiments:

- 1) From making of the dataset to training and testing in real time , the model have performed reasonably well.
- 2) We have also defined for the necessary hardware configurations, its utilisation and the interface it provides.

Thank You