rovnovážnou polohou. tavého pohybu. Je dána perioda 2 s a amplituda výchylky 3 cm. Čas měříme od průchodu Napište rovnice pro velikosť okamžité výchylky, rychlosti a zrychlení harmonického kmi-

chodu rovnovážnou polohou. tavého pohybu. Je dána frekvence 2 Hz a amplituda výchylky 2 cm. Čas měříme od prů-Napište rovnice pro velikost okamžité výchylky, rychlosti a zrychlení jnarmonického kmi-

a čas měříme od průchodu rovnovážnou polohou. Doplňte údaje chybějící v tabulce za předpokladu, že jde o harmonický kmitavý pohyb

iπ nis ² π1•0,0−						
· · · · · · · · · · · · · · · · · · ·	tπ8 sos π80,0					
			£0'0	119		
		1π£ nis 20,0	~			
Zrychlení a (m·s ⁻²)	Kychlost	л (ш) Дасудука	sbuiilqmA yilydəyv (m) _m y	Úhlová (rad·s ⁻¹)	Frekvence f(Hz)	Perioda (s) T

a čas měříme od průchodu rovnovážnou polohou. Doplňte údaje chybějící v tabulce za předpokladu, že jde o harmonický kmitavý pohyb

1π nis ² π20,0—						
	1π3 sos π42,0					
			£0,0	118		
		1π£ nie £0,0				
Zrychlení a (m·s ⁻²)	Rychlost v (m·s ⁻¹)	л (ш) Дасрајка	Amplituda výchylky ym (m)	Úhlová frekvence w (rad·s ⁻¹)	Frekvence	Perioda T (s)

 $m \{1\}\pi \Delta \operatorname{nis} \Delta 0, 0 = \emptyset$ příslušné rovnice pro velikost rychlosti a zrychlení. K dané rovnici pro velikost okamžité výchylky harmonického kmitavého pohybu napište

 $m \{t\}\pi \Delta \operatorname{mis} \mathcal{E}0,0 = \mathcal{V}$ příslušné rovnice pro velikost rychlosti a zrychlení. K dané rovnici pro velikost okamžité výchylky harmonického kmitavého pohybu napište B

vše, co můžete o vlastnostech daného kmitavého pohybu z rovnice určit. Je dána rovnice pro velikost okamžité rychlosti harmonického kmitavého pohybu. Napište

 $^{1}-s \cdot m \{t\}\pi \frac{2}{\xi} \cos \frac{\pi}{\xi} + 0, 0 = v$

ε

vše, co můžete o vlastnostech daného kmitavého pohybu z rovnice určit. Je dána rovnice pro velikost okamžité rychlosti harmonického kmitavého pohybu. Napište

1
- $\mathbf{s} \cdot \mathbf{m} \{i\}\pi \frac{2}{\varepsilon} \cos \frac{\pi}{\varepsilon} \partial 0, 0 = v$