# Housing Affordability Data

Gautham Gowda

## Contents

Problem statement- why is it useful to answer the question

Clients and intended audience

Dataset used for the investigation

Data cleaning and wrangling

Data visualization

Exploratory data analysis (EDA)

Machine learning algorithms

Conclusions

# Motivation for the study

Housing dataset is rich with consumer information and housing information.

Contains many important features about housing costs, income and burden of homeowners.

The data is used to predict the housing affordability of consumers based on location, income, burden, home size etc.

Aim is to build a model to use minimum features while keeping the prediction accuracy at the highest level.

# Clients/ Intended audience

The model can be used by individual home buyers wanting to know the house they can afford based on their income, costs, housing locations.

It can be used by the lenders to screen loan applicants as well.

The clientele could be banks, mortgage lending institutions, government agencies determining housing affordability such as census bureau.

# Dataset – prudential life data

The dataset used for this analysis is from HADS database from the huduser.gov website and the data source is listed below:

https://www.huduser.gov/portal/datasets/hads/hads.html

The database contains many features such as income, burden, average housing cost, poverty income that are relevant for the analysis. The following table summarizes all the features available

# Data cleaning and wrangling

Duplicate features removed

Original dataset has 99 features with some formatted duplicate features 25 duplicate features removed with the following method:

df = df.drop(df.filter(regex='FMT').columns, axis=1)

Highly correlated independent variables are reduced Used correlation matrix to reduce the features

## Data cleaning and wrangling

Outliers and Missing values removed with following snippet

```
# Remove missing values and negative values for AGE and home
value
#Use fillna method for ZINC2
df.loc[df.VALUE < 25000] =np.nan
df.loc[df.VALUE > 600000] = np.nan
df.loc[df.AGE1 <5]=np.nan
df.loc[df.ZINC2 < 1000] = np.nan
df.ZINC2 = df.ZINC2.fillna(method='ffill').fillna(method = bfill')
df=df[df['VALUE'].notnull()]
df=df[df['AGE1'].notnull()]
```

home values above 25K and below 600K are used for the analysis to remove outliers Head of house Age < 5 are removed (Outliers have values -1, 0, and 4) Household Income <1000 are also removed

## Data visualization- independent variables

#### Home value distribution



| Summary Stats |         |  |  |  |
|---------------|---------|--|--|--|
| mean          | 206,751 |  |  |  |
| std           | 131,450 |  |  |  |
| 25%           | 100,000 |  |  |  |
| 50%           | 180,000 |  |  |  |
| 75%           | 280,000 |  |  |  |

#### Age- head of household



| Summary Stats |    |  |  |  |
|---------------|----|--|--|--|
| mean          | 56 |  |  |  |
| std           | 16 |  |  |  |
| 25%           | 44 |  |  |  |
| 50%           | 55 |  |  |  |
| 75%           | 67 |  |  |  |

#### Income-house hold



| Summary Stats |         |  |  |  |  |
|---------------|---------|--|--|--|--|
| mean          | 82,134  |  |  |  |  |
| std           | 74,060  |  |  |  |  |
| 25%           | 33,650  |  |  |  |  |
| 50%           | 63,987  |  |  |  |  |
| 75%           | 104,987 |  |  |  |  |

## EDA - Home prices based on metro



Box plot of home values for each metro region (1= central city, 2-5 = suburban zones)

## EDA - Home prices based on census zones



East and West US has higher median home prices

#### EDA – correlation matrix of independent variables



### EDA – top 10 significant features



#### Features considered for model

VALUE = Value of Unit (dependent feature)

ZSMHC = Monthly Housing Costs

FMR = Fair Market Rent

OTHERCOST = Insurance, HOA, land rent

ZINC2 = Household Income

STRUCTURE TYPE = Single Family/ Multi

AGE1 = Age of Head of Household

ROOMS = Total Rooms in the house

UTILITY = Monthly Utility Cost

BUILT = Year unit built

BURDEN = Housing Cost as fraction of Income

REGION = Census Region

METRO3 = City Center or Suburb

COSTMED = Housing cost at Median Interest

Final list after feature reduction from 100 to 14 features

### EDA – correlation matrix of features with target variable



Age of the head of household is dropped from the model based on correlation matrix

### Machine learning – models comparison

Three different regressor techniques are used

| model                                 | Training Accuracy | Test set accuracy | Delta RSME (Test-Train) * |
|---------------------------------------|-------------------|-------------------|---------------------------|
| Linear Regression (8 features)        | 0.47              | 0.45              | 2566                      |
| Linear Regression ( 4 features)       | 0.45              | 0.45              | 117                       |
| K-nearest neighbor (KNN)              | 0.54              | 0.36              | 16824                     |
| KNN hyper tuned with Random Search CV | 0.50              | 0.38              | 11021                     |
| Random Forest                         | 0.67              | 0.54              | 14809                     |

<sup>\*</sup> Higher Delta RSME and R2 indicate overfitting

Linear Regression has the least overfitting between train and test data Nearest neighbors (KNN) model has high overfitting Random Forest model is selected based on higher R2 score

#### Random Forest -- Hyper parameter tuning

#### Randomized Search CV

**Tuned Decision Tree** 

Parameters: max\_depth: 9

max\_features: 4

min\_samples\_leaf: 6

n\_estimators: 100

Best score: 0.56



Randomized search CV is faster and also gives comparable results to Grid Search CV

### Hyper parameter tuning–Random Forest

Cross- Validation of training set to minimize overfitting

Hyper parameter tuning using GridSearchCV

Hyper parameter tuning RandomizedSearchCV

| model                        | Training<br>Accuracy | Test set accuracy | Delta R2<br>(Test-Train) | Delta RSME<br>(Test-Train) |
|------------------------------|----------------------|-------------------|--------------------------|----------------------------|
| Random Forest Default        | 0.67                 | 0.54              | 0.13                     | 14809                      |
| Random Forest Randomized CV  | 0.62                 | 0.54              | 0.08                     | 9103                       |
| Random Forest Grid Search CV | 0.58                 | 0.53              | 0.05                     | 5954                       |

Model overfitting is reduced with cross validation & parameter tuning Grid Search CV has the best performance in terms of minimizing oversetting

#### Conclusion

The dataset has 100 features. Using dimension reduction, only 10 most important features are selected for decision making.

ML algorithms considered: Linear Regression, KNN, Random Forest

Based on the accuracy scores obtained, Random Forest model is chosen to train the data

Hyper parameter tuning is done to minimize overfitting using Randomized Search CV and Grid Search CV