Ring Oscillator Power and Frequency Vs Voltage

ELEC 6270

Low power design of Electronic Circuits

Advisor: Dr. Vishwani Agrawal

Student: Chaitanya Bandi

Index

- Ring Oscillator Operation
- Tools Used
- Schematic
- Power and Frequency Versus Voltage (Expected and Observed) for different values of N (where N is the number of gates).
- References

Ring Oscillator

- A ring oscillator is a device composed of an odd number of NOT gates whose output oscillates between two voltage levels, representing 1 and 0.
- The NOT gates, or inverters, are attached in a chain;
 the output of the last inverter is fed back into the first

Tools Used

• **Design Architect**: To create and Edit the Schematic

• **Eldo:** To find the Frequency of oscillations and Average Power consumed

Schematic from Design Architect

Ringin: input pin to initialize the oscillations

Ringout: output pin from at which oscillations are observed

Simulation results of the Ring oscillator from ELDO for N=11

Vdd = 5 v

Vdd = 3 v

Vdd = 1 v

Vdd= .85v

Rise time & Fall Time Vs Voltage

Vdd (volts)	Rise time	fall time
5	0.08ns	0.07ns
4	0.10ns	0.07ns
3	0.11ns	0.1ns
2	0.2ns	0.1ns
1	0.8ns	0.34ns
0.9	1.73n	0.76ns
0.85	3.2ns	0.82ns
0.815	5.21ns	1.83ns

N=11

The rise times and fall times of the oscillator increases with a decrease in supply voltage which indicates that the delay of the gates increases with a decrease in the supply voltage.

For N=11, Power & Freq Vs Voltage

Vdd (Volts)	Frequency	Power
5	826MHz	3.382mW
4	698MHz	1.7mW
4	098101112	1.711100
3	562MHz	702uW
2	367MHz	187uW
4	CA ONALI-	C.JA/
1	64.9MHz	6uW
0.85	19MHz	1.18uW

For N=19, Power & Freq Vs Voltage

Vdd (Volts)	Frequency	Power
5	826MHz	6.61mW
4	698MHz	2.93mW
3	562MHz	1.212mW
2	367MHz	323uW
1	64.9MHz	10.36uW
0.85	19MHz	2.038uW

For N=5, Power & Freq Vs Voltage

Vdd(Volts)	Frequency	Power
5	2.1GHz	1.57mW
4	1.818GHz	0.788mW
3	1.43GHz	330uW
2	.952GHz	87uw
1	168MHz	2.89uW
0.85	50MHz	.54uW

N=19,11,5 Power Vs Voltage

X-Axis: Voltage(Volts)

Y-Axis: Power(uW)

N=19,11,5 Frequency Vs Voltage

X-Axis: Voltage(Volts)

Y-Axis: Frequency(MHz)

Power Vs number of gates(N)

Average power for V=5V

X-axis: Number of

gates

Y-axis: Average

Power

As the number of gates increases the Average power increases proportionally.

Expected Power and Frequency

1) Power α f* (Vdd) 2 ; where f is the observed frequency

2) Delay of Each gate α (Vdd)/(Vdd-Vth)

Vth = 0.54v for tsmco35 technology

Average power & Expected Power N=11

Vdd(volts)	average power	Expected Power
5	3.414mW	
4	1.718mW	1.845mW
3	.711mW	0.846mW
2	.191mW	0.246.5mW
1	6.33uW	10.67uW
0.85	1.173uW	2.322uW
0.6	5.2nW	11.5nW

Average power & Expected Power N=19

Vdd(volts)	Average Power	Expected Power
5	6.61mW	
4	2.93mW	3.600mW
3	1.212mW	1.571mW
2	323uW	466.52uW
1	10.36uW	20.43uW
0.85	2.038uW	4.37uW

Average power & Expected Power N=5

Vdd(volts)	Average Power	Expected Power
5	1.57mW	
4	0.788mW	1.087mW
3	330uW	645.54uW
2	87uw	284.69uW
1	2.89uW	25.12uW
0.85	.54uW	6.33uw

Observed & Expected Frequency N=11

VDD		
(Volts)	frequency	Expected Frequency
5	1.389GHz	-
4	1.176GHz	1.34Ghz
3	0.956GHz	1.277Ghz
2	.627GHz	1.136Ghz
1	.109GHz	.716GHz
0.85	.0327GHz	.568GHz
0.6	0.326MHz	.155GHz

Observed & Expected Frequency N=19

Vdd(Volts)	Freq	Expected Freq
5	826MHz	
4	698MHz	800.9MHz
3	562MHz	759.3MHz
2	367MHz	675.8MHz
1	64.9MHz	425.9MHz
0.85	19MHz	337.7MHz

Observed & Expected Frequency N=5

VDD(volts)	Freq	Expected Freq
5	2.1GHz	
4	1.818GHz	2.036GHz
3	1.43GHz	1.93GHz
2	.952Ghz	1.718GHz
1	168MHz	1.08GHz
0.85	50MHz	858MHz

Observations

- If the Vdd is changed from 5v to 0.85V there is a power reduction of about 99.9%, but the frequency of oscillations is decreased by 76%.
- •The Frequency of oscillations decreases as the number of gates in the oscillator increases.
- •The Power consumption increases in proportion to the number of gates in the oscillator.
- •The Observed frequencies are lesser than the expected frequencies due to large delays in the gates at low operating voltages.

References:

- Fall 2007: ELEC6270 Low Power Design Electronics Class Slides from Dr. Agrawal
- 2. Fall 2007: ELEC6250 Computer Aided Design of Digital Logic Circuits Lectures 4,23 from Dr. Nelson's Class slides.
- 3. http://www.iue.tuwien.ac.at/phd/martins/node46.html