Diabetes Prediction using classification method

Import Libraries

```
In [84]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.metrics import classification_report
   from sklearn.metrics import confusion_matrix
```

Load Datasets

```
In [85]: data = pd.read_csv("diabetes.csv")
```

Shape of Data

```
In [86]: data.shape
Out[86]: (768, 9)
```

First 8 Rows of Data

```
In [87]: data.head(8)
```

Out[87]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.627
1	1	85	66	29	0	26.6	0.351
2	8	183	64	0	0	23.3	0.672
3	1	89	66	23	94	28.1	0.167
4	0	137	40	35	168	43.1	2.288
5	5	116	74	0	0	25.6	0.201
6	3	78	50	32	88	31.0	0.248
7	10	115	0	0	0	35.3	0.134
4							•

Last 7 Rows of Data

In [88]: data.tail(7)

Out[88]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFuncti
761	9	170	74	31	0	44.0	0.4
762	9	89	62	0	0	22.5	0.1
763	10	101	76	48	180	32.9	0.1
764	2	122	70	27	0	36.8	0.3
765	5	121	72	23	112	26.2	0.2
766	1	126	60	0	0	30.1	0.3
767	1	93	70	31	0	30.4	3.0
4)

In [89]: data.describe()

Out[89]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabete
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							•

```
In [90]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

In [91]: data.value_counts()

Out[91]:			Glucose ion Age	BloodPressure Outcome	SkinThickness	Insulin	BMI	DiabetesP
	0		57	60	0	0	21.7	0.735
	67	0	1 67	76	0	0	45.3	0.194
	46	0	1					
	5		103	108	37	0	39.2	0.305
	65	0	1					
			104	74	0	0	28.8	0.153
	48	0	1					
		_	105	72	29	325	36.9	0.159
	28	0	1					
	2		84	FQ.	22	76	20. 4	0.069
	2 21	0	84 1	50	23	76	30.4	0.968
	21	Ø	85	65	0	0	39 6	0.930
	27	0	1	05	0	U	33.0	0.550
	2,	O	87	0	23	0	28.9	0.773
	25	0	1		23	Ū	20.5	0.773
				58	16	52	32.7	0.166
	25	0	1					
	17		163	72	41	114	40.9	0.817
	47	1	1					
	Mama		م ما طبعہ میں م	700 dtumos int	C 1			

```
Name: count, Length: 768, dtype: int64
```

In [92]: data.columns

Checking Null Values

In [93]:	<pre>data.isnull().sum()</pre>	
Out[93]:	Pregnancies	0
	Glucose	0
	BloodPressure	0
	SkinThickness	0
	Insulin	0
	BMI	0
	DiabetesPedigreeFunction	0
	Age	0
	Outcome	0
	dtype: int64	

Diabetes Distribution

```
In [94]: #Finding Class Distribution Percentage
print(data['Outcome'].value_counts(ascending=True))
print(data['Outcome'].value_counts(1,ascending=True).apply(lambda x: format(x print())
# Plot the bar chart
data['Outcome'].value_counts(normalize=True).plot(kind='barh',figsize=(10, 2))
plt.title('Diabetes Distribution (%)', fontsize=18)
plt.yticks(ticks=[0,1], labels=['Non-Diabetic', 'Diabetic'])
plt.show()
```

Outcome 1 268 0 500

Name: count, dtype: int64

Outcome

34.895833%65.104167%

Name: proportion, dtype: object

Exploratory Data Analysis

In [95]: data.corr()

Out[95]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.01
Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.22
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.28
SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.39
Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.19
ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.00
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.14
Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.03
Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.29
4						•

Correlation Matrix

In [96]: plt.figure(figsize = (12,10))
sns.heatmap(data.corr(), annot =True)

Out[96]: <Axes: >

In [97]: data.hist(figsize=(18,12))
plt.show()


```
In [98]: features = ['Glucose', 'BloodPressure', 'Insulin', 'BMI', 'Age', 'SkinThickness
plt.figure(figsize=(14, 10))

for i, feature in enumerate(features, start=1):
    plt.subplot(2, 3, i)
    sns.boxplot(x=feature, data=data)

plt.tight_layout()
plt.show()
```



```
In [99]: import seaborn as sns
   import matplotlib.pyplot as plt
   mean_col = ['Glucose', 'BloodPressure', 'Insulin', 'Age', 'Outcome', 'BMI']
   sns.pairplot(data[mean_col])
   plt.show()
```

C:\Users\Dell\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarni
ng: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)


```
In [100]: sns.boxplot(x='Outcome',y='Insulin',data=data)
```

Out[100]: <Axes: xlabel='Outcome', ylabel='Insulin'>


```
In [101]: sns.regplot(x='BMI', y= 'Glucose', data=data)
```

Out[101]: <Axes: xlabel='BMI', ylabel='Glucose'>

In [102]: sns.relplot(x='BMI', y= 'Glucose', data=data)

C:\Users\Dell\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarni
ng: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[102]: <seaborn.axisgrid.FacetGrid at 0x1b7c8ad2050>


```
In [103]: sns.scatterplot(x='Glucose', y= 'Insulin', data=data)
```

Out[103]: <Axes: xlabel='Glucose', ylabel='Insulin'>

In [104]: sns.jointplot(x='SkinThickness', y= 'Insulin', data=data)

Out[104]: <seaborn.axisgrid.JointGrid at 0x1b7ca5450d0>

In [105]: sns.pairplot(data,hue='Outcome')

C:\Users\Dell\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarni
ng: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[105]: <seaborn.axisgrid.PairGrid at 0x1b7c6f9bc10>


```
In [106]: sns.lineplot(x='Glucose', y= 'Insulin', data=data)
```

Out[106]: <Axes: xlabel='Glucose', ylabel='Insulin'>


```
In [107]: sns.stripplot(x='Glucose', y='Insulin', data=data, jitter=True, size=3)
```

Out[107]: <Axes: xlabel='Glucose', ylabel='Insulin'>


```
In [108]: sns.barplot(x="SkinThickness", y="Insulin", data=data[150:180])
    plt.title("SkinThickness vs Insulin", fontsize=15)
    plt.xlabel("SkinThickness")
    plt.ylabel("Insulin")
    plt.show()
    plt.style.use("ggplot")
```


12 15 18 19 21 23 24 25 28 34 38 40 41 42 44 46 50 SkinThickness

```
In [109]: plt.figure(figsize=(5,5))
    sns.barplot(x="Glucose", y="Insulin", data=data[120:130])
    plt.title("Glucose vs Insulin",fontsize=15)
    plt.xlabel("Glucose")
    plt.ylabel("Insulin")
    plt.show()
```

Glucose vs Insulin

Pre-process, Training and Testing Data

```
In [123]: x = data.drop(columns = 'Outcome')

y = data['Outcome']

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_stare)
```

Train the Neural Network model

MODELS

1. Logistic Regression

```
In [125]: from sklearn.linear_model import LogisticRegression
    model = LogisticRegression()
    model.fit(X_train, y_train)

y_pred = model.predict(X_test)

print(classification_report(y_test, y_pred))

print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
    LRAcc = accuracy_score(y_pred,y_test)
    print('Logistic Regression accuracy is: {:.2f}%'.format(LRAcc*100))
```

	precision	recall	f1-score	support
0	0.80	0.80	0.80	151
1	0.62	0.62	0.62	80
accuracy			0.74	231
macro avg	0.71	0.71	0.71	231
weighted avg	0.74	0.74	0.74	231

```
[[121 30]
[ 30 50]]
```

Logistic Regression accuracy is: 74.03%

C:\Users\Dell\anaconda3\Lib\site-packages\sklearn\linear_model_logistic.py:
460: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/preprocessing.html)

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regre
ssion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-re
gression)

```
n_iter_i = _check_optimize_result(
```

2. SVM

```
In [126]: from sklearn.svm import SVC # Correct import statement
    from sklearn.metrics import classification_report, confusion_matrix, accuracy

model = SVC()
    model.fit(X_train, y_train)

y_pred = model.predict(X_test)

print(classification_report(y_test, y_pred))

print(confusion_matrix(y_test, y_pred))

SVMAcc = accuracy_score(y_test, y_pred)

print('SVM accuracy is: {:.2f}%'.format(SVMAcc * 100))
```

	precision	recall	f1-score	support
0	0.76 0.66	0.87 0.49	0.81 0.56	151 80
1	0.00	0.45		00
accuracy			0.74	231
macro avg	0.71	0.68	0.69	231
weighted avg	0.73	0.74	0.72	231

[[131 20] [41 39]] SVM accuracy is: 73.59%

3. Decison Tree

```
In [127]: from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import classification_report, confusion_matrix, accuracy

model = DecisionTreeClassifier()
    model.fit(X_train, y_train)

y_pred = model.predict(X_test)

print(classification_report(y_test, y_pred))

print(confusion_matrix(y_test, y_pred))

DTAcc = accuracy_score(y_test, y_pred)
    print('Decision Tree accuracy is: {:.2f}%'.format(DTAcc * 100))
```

	precision	recall	f1-score	support	
0 1	0.79 0.54	0.71 0.64	0.75 0.58	151 80	
accuracy macro avg weighted avg	0.66 0.70	0.67 0.68	0.68 0.66 0.69	231 231 231	
[[107 44] [29 51]] Decision Tree accuracy is: 68.40%					

Compare Models

Out[128]:

	Models Trained	Accuracy
0	Logistic Regression	74.025974
1	SVM	73.593074
2	Decision Tree	68.398268

Plotting Model Comparison

```
In [130]: compare.plot(x='Models Trained', y='Accuracy', kind='bar', color=['blue', 'green')
```

Out[130]: <Axes: xlabel='Models Trained'>

From the comparison plot, among the 3 Machine Learning Models, Logistic Regression had achieved the highest accuracy of 74.025974%.