Carros Usados

Importando bibliotecas

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from matplotlib import pyplot

In [106]:

Carregando os dados

dados = pd.read_csv('USA_cars_datasets.csv')
dados.head()

In [107]:

Out[107]:

	Unnamed: 0	pr	rice	brand	model	year	title_status	mileage	color	vin	lot	state	country	condition
0	0	63	300	toyota	cruiser	2008	clean vehicle	274117.0	black	jtezu11f88k007763	159348797	new jersey	usa	10 days left
1	1	28	899	ford	se	2011	clean vehicle	190552.0	silver	2fmdk3gc4bbb02217	166951262	tennessee	usa	6 days left
2	2	53	350	dodge	mpv	2018	clean vehicle	39590.0	silver	3c4pdcgg5jt346413	167655728	georgia	usa	2 days left
3	3	25	000	ford	door	2014	clean vehicle	64146.0	blue	1ftfw1et4efc23745	167753855	virginia	usa	22 hours left
4	4	27	700	chevrolet	1500	2018	clean vehicle	6654.0	red	3gcpcrec2jg473991	167763266	florida	usa	22 hours left

Trabalhando os dados

Excluindo colunas

#Tirarndo colunas que não necessarias dados = dados.drop(columns=['Unnamed: 0', 'vin', 'lot', 'condition', 'country']) dados.head()

In	[1	081	l:
	ι.	UU]	١.

	price	brand	model	year	title_status	mileage	color	state	
0	6300	toyota	cruiser	2008	clean vehicle	274117.0	black	new jersey	
1	2899	ford	se	2011	clean vehicle	190552.0	silver	tennessee	
2	5350	dodge	mpv	2018	clean vehicle	39590.0	silver	georgia	
3	25000	ford	door	2014	clean vehicle	64146.0	blue	virginia	
4	27700	chevrolet	1500	2018	clean vehicle	6654.0	red	florida	

Out[108]:

Verificando desconformidades

dados.describe()

In [109]:

	price	year	mileage
count	2499.000000	2499.000000	2.499000e+03
mean	18767.671469	2016.714286	5.229869e+04
std	12116.094936	3.442656	5.970552e+04
min	0.000000	1973.000000	0.000000e+00
25%	10200.000000	2016.000000	2.146650e+04
50%	16900.000000	2018.000000	3.536500e+04
75%	25555.500000	2019.000000	6.347250e+04
max	84900.000000	2020.000000	1.017936e+06

dados.isnull().sum()
#dados.info()

price 0
brand 0
model 0
year 0
title_status 0
mileage 0
color 0
state 0
dtype: int64

Visualizando graficamente

sns.displot(dados['price'])

<seaborn.axisgrid.FacetGrid at 0x184207d0310>

sns.displot(dados['year'])

In [110]:

Out[109]:

Out[110]:

In [111]:

Out[111]:

In [112]:

<seaborn.axisgrid.FacetGrid at 0x184206ae100>

sns.displot(dados['mileage'])

<seaborn.axisgrid.FacetGrid at 0x1841f0c0df0>

Tirando dados discrepantes

Excluindo valores de preços iguais a zero

q = dados['price'].quantile(0.01) dados_ref = dados[dados['price']>q] dados_ref.describe()

	price	year	mileage
count	2456.000000	2456.000000	2.456000e+03
mean	19096.258550	2016.931189	5.011143e+04
std	11962.176006	2.957497	5.460446e+04
min	25.000000	1973.000000	0.000000e+00
25%	10500.000000	2016.000000	2.127675e+04
50%	17050.000000	2018.000000	3.504850e+04
75%	25800.000000	2019.000000	6.005075e+04
max	84900.000000	2020.000000	1.017936e+06

Excluindo milhas iguais a 0 e valores altos muito discrepantes

q2 = dados_ref['mileage'].quantile(0.99) dados_ref2 = dados_ref[dados_ref['mileage']<q2] dados_ref2.describe() In [113]:

Out[112]:

Out[113]:

In [114]:

Out[114]:

In [115]:

	price	year	mileage			
count	2431.000000	2431.000000	2431.000000			
mean	19258.171946	2017.030440	46957.299877			
std	11909.820415	2.759327	38217.983286			
min	25.000000	1973.000000	0.000000			
25%	10800.000000	2016.000000	21125.500000			
50%	17200.000000	2018.000000	34837.000000			
75%	25900.000000	2019.000000	58711.500000			
max	84900.000000	2020.000000	217290.000000			
q3 = dados_ref2['mileage'].quantile(0.01) dados_ref3 = dados_ref2[dados_ref2['mileage']>q3] dados_ref3.describe()						

		price	year	mileage
С	ount	2406.000000	2406.000000	2406.000000
r	nean	19246.721114	2017.029925	47443.313799
	std	11803.660284	2.755138	38115.849785
	min	25.000000	1973.000000	1091.000000
	25%	10900.000000	2016.000000	21677.500000
	50%	17200.000000	2018.000000	35048.500000
	75%	25868.750000	2019.000000	59478.750000
	max	84900.000000	2020.000000	217290.000000

Excluindo datas antigas discrepantes

q4 = dados_ref3['year'].quantile(0.01) dados_ref4 = dados_ref3[dados_ref3['year']>q4] dados_ref4.describe()

price year mileage 2372.000000 2372.000000 2372.000000 count 19462.780776 2017.219646 46262.244941 mean 36683.687010 std 11716.634996 2.102454 min 25.000000 2009.000000 1091.000000 11000.000000 2016.000000 21336.750000 25% 17500.000000 2018.000000 34799.000000 50% 57605.750000 25923.750000 2019.000000 max 84900.000000 2020.000000 217290.000000

Verificando marcas e cores mais populares

dados['color'].value_counts().head()

white 707 516 black gray 395 300 silver red 192

Name: color, dtype: int64

dados['brand'].value_counts().head()

ford 1235 432 dodge 312 nissan chevrolet 297 42 gmc

Name: brand, dtype: int64

In [116]:

Out[115]:

Out[116]:

In [117]:

Out[117]:

In [118]:

Out[118]:

In [119]:

Out[119]:

Tratamento de dados finalizado

dados_limpos = dados_ref4

In [120]:

Graficos ajustados

sns.displot(dados_limpos['mileage'])

<seaborn.axisgrid.FacetGrid at 0x18420c1f880>

sns.displot(dados_limpos['price'])

<seaborn.axisgrid.FacetGrid at 0x18420c55f10>

 $sns.displot(dados_limpos['year'])$

In [121]:

Out[121]:

In [122]:

Out[122]:

In [123]:

Relação preço por milhas

dados_limpos.plot.scatter(x="mileage", y="price")

<AxesSubplot:xlabel='mileage', ylabel='price'>

Relação preço por ano

dados_limpos.plot.scatter(x="year", y="price")

<AxesSubplot:xlabel='year', ylabel='price'>

Relação milhas por ano

dados_limpos.plot.scatter(x="year", y="mileage")

In [124]:

Out[124]:

In [125]:

Out[125]:

In [126]:

Relação preço médio por marca

```
dados_marca = dados[
  (dados['brand'] == 'ford') |
  (dados['brand'] == 'dodge') |
  (dados['brand'] == 'nissan') |
  (dados['brand'] == 'gmc') |
  (dados['brand'] == 'chevrolet')
]
```

 $sns.barplot(x=dados_marca['brand'], \ y=dados_marca['price'])$

<AxesSubplot:xlabel='brand', ylabel='price'>

Relação preço médio por cor

```
dados_cor = dados[
  (dados['color'] == 'white') |
  (dados['color'] == 'black') |
  (dados['color'] == 'gray') |
  (dados['color'] == 'red') |
  (dados['color'] == 'silver')
]
sns.barplot(x=dados_cor['color'], y=dados_cor['price'])
```

<AxesSubplot:xlabel='color', ylabel='price'>

In [130]:

Out[130]:

In [131]:

Out[131]: