AT4 wireless, S.A.U.
Parque Tecnológico de Andalucía,
c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España
www.at4wireless.com · C.I.F. A29 507 456

Appendix E – Calibration data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

AT4 Wireless

Certificate No: DAE4-669_Jul15

Object	DAE4 - SD 000 D	004 BM - SN: 669	
Calibration procedure(s)	QA CAL-06.v29 Calibration proceed	dure for the data acquisition electr	ronics (DAE)
Calibration date:	July 13, 2015		
The measurements and the unce	ertainties with confidence proceed in the closed laboratory	onal standards, which realize the physical units obability are given on the following pages and y facility: environment temperature (22 \pm 3)°C (are part of the certificate.
Calibration Equipment used (M&)	i in critical for calibration)		
	1	0-10-1-10-17-1-11-1	
Primary Standards	ID # SN: 0810278	Cal Date (Certificate No.) 03-Oct-14 (No:15573)	Scheduled Calibration
Primary Standards Keithley Multimeter Type 2001	ID # SN: 0810278	03-Oct-14 (No:15573)	Scheduled Calibration Oct-15
Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ID # SN: 0810278	03-Oct-14 (No:15573) Check Date (in house)	Oct-15 Scheduled Check
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278	03-Oct-14 (No:15573) Check Date (in house) 06-Jan-15 (in house check)	Oct-15
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	03-Oct-14 (No:15573) Check Date (in house) 06-Jan-15 (in house check)	Oct-15 Scheduled Check In house check: Jan-16
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	03-Oct-14 (No:15573) Check Date (in house) 06-Jan-15 (in house check)	Oct-15 Scheduled Check In house check: Jan-16 In house check: Jan-16
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	03-Oct-14 (No:15573) Check Date (in house) 06-Jan-15 (in house check) 06-Jan-15 (in house check)	Oct-15 Scheduled Check In house check: Jan-16
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	03-Oct-14 (No:15573) Check Date (in house) 06-Jan-15 (in house check) 06-Jan-15 (in house check)	Oct-15 Scheduled Check In house check: Jan-16 In house check: Jan-16

Certificate No: DAE4-669_Jul15

Page 1 of 5

Report No: (NIE) 47275RAN.001A1

Page 55 of 94

2016-02-11

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Page 2 of 5

Report No: (NIE) 47275RAN.001A1 2016-02-11 Page 56 of 94

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	х	Y	Z
High Range	403.316 ± 0.02% (k=2)	403.856 ± 0.02% (k=2)	404.236 ± 0.02% (k=2)
Low Range	3.95586 ± 1.50% (k=2)	3.97459 ± 1.50% (k=2)	3.97433 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	192.5 ° ± 1 °
---	---------------

Certificate No: DAE4-669_Jul15

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	200039.20	0.36	0.00
Channel X + Input	20009.81	5.49	0.03
Channel X - Input	-20001.49	3.94	-0.02
Channel Y + Input	200034.48	-4.78	-0.00
Channel Y + Input	20009.04	4.84	0.02
Channel Y - Input	-20002.50	3.09	-0.02
Channel Z + Input	200039.88	4.95	0.00
Channel Z + Input	20008.37	4.22	0.02
Channel Z - Input	-20004.02	1.52	-0.01

Low Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	2000.99	0.18	0.01
Channel X + Input	201.17	0.42	0.21
Channel X - Input	-198.81	0.15	-0.08
Channel Y + Input	2000.78	-0.00	-0.00
Channel Y + Input	200.28	-0.43	-0.22
Channel Y - Input	-199.96	-0.88	0.44
Channel Z + Input	2000.74	0.05	0.00
Channel Z + Input	199.41	-1.31	-0.65
Channel Z - Input	-200.05	-0.90	0.45
	1		

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	2.14	0.76
	- 200	-0.53	-1.17
Channel Y	200	11.12	11.00
	- 200	-12.56	-12.76
Channel Z	200	-9.30	-9.86
	- 200	7.61	7.45

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	-	-1.77	-3.34
Channel Y	200	9.21	-	-1.30
Channel Z	200	4.15	6.67	-

Certificate No: DAE4-669_Jul15

Page 4 of 5

Report No: (NIE) 47275RAN.001A1

Page 58 of 94 2016-02-11

AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16075	15845
Channel Y	15795	15291
Channel Z	15997	15303

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.38	-1.20	1.34	0.45
Channel Y	0.48	-0.62	1.36	0.40
Channel Z	0.10	-1.36	1.40	0.47

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC) +7.9	
Supply (+ Vcc)		
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-669_Jul15

Page 5 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

AT4 Wireless

Certificate No: ES3-3052_Jul15

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3052

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

July 20, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%,

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Name Function Calibrated by: Israe Elnaouq Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: July 21, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3052_Jul15

Page 1 of 16

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3052_Jul15 Page 2 of 16

Report No: (NIE)
47275RAN.001A1 Page 61 of 94 2016-02-11

July 20, 2015

Probe ES3DV3

SN:3052

Manufactured:

September 30, 2003

Calibrated:

July 20, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3052_Jul15

Page 3 of 16

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3052

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.13	0.42	1.10	± 10.1 %
DCP (mV) ⁸	105.6	103.0	104.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	196.8	±3.5 %
		Y	0.0	0.0	1.0		195.5	
		Z	0.0	0.0	1.0		190.9	
10011- CAB	UMTS-FDD (WCDMA)	Х	3.28	67.5	19.0	2.91	134.3	±0.5 %
		Y	3.02	65.2	17.2		132.7	
		Z	3.21	66.9	18.4		131.4	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	×	3.20	71.2	20.2	1.87	135.6	±0.7 %
		Y	2.41	65.5	16.8		132.2	
		Z	2.69	67.7	18.2		133.4	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	×	10.80	70.2	23.2	9.46	129.4	±3.0 %
		Υ	10.48	68.4	21.5		127.3	
10001	2011 500 (70111 011010	Z	10.64	69.8	22.9		126.0	
10021- DAB	GSM-FDD (TDMA, GMSK)	Х	8.94	85.5	23.0	9.39	128.9	±2.2 %
		Y	1.93	64.2	13.0		81.7	
		Z	8.27	84.0	22.0		147.6	
10023- DAB	GPRS-FDD (TDMA, GMSK, TN 0)	Х	11.80	90.3	24.8	9.57	145.8	±2.2 %
		Y	1.85	63.9	13.3		77.7	
		Z	8.69	85.2	22.7		141.4	
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	30.54	99.9	24.9	6.56	134.0	±1.9 %
		Y	2.66	70.1	14.2		131.9	
		Z	8.78	82.5	19.3		131.5	
10025- DAB	EDGE-FDD (TDMA, 8PSK, TN 0)	Х	13.11	100.0	39.2	12.62	137.2	±3.0 %
		Υ	4.64	68.8	23.6		54.0	
		Z	12.46	98.9	38.8		133.8	
10026- DAB	EDGE-FDD (TDMA, 8PSK, TN 0-1)	×	11.91	94.5	33.8	9.55	133.4	±2.2 %
		Y	4.88	72.4	23.4		112.2	
		Z	9.35	88.0	30.9		130.6	
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	Х	36.19	99.9	23.5	4.80	125.9	±2.2 %
		Y	7.11	80.8	16.5		138.0	
10000	ODDO FDD (TDM) OHOW THE CO	Z	44.98	99.6	22.5		126.0	
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	47.58	100.0	22.2	3.55	138.3	±2.5 %
		Y	1.96	68.0	11.0		130.2	
10000	EDGE EDG (TDL) L GDG/L TU C L C	Z	68.44	99.7	20.9		136.7	
10029- DAB	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	9.15	87.4	29.4	7.78	128.1	±1.9 %
		Y	4.67	72.7	22.5		135.1	
		Z	10.25	90.6	30.6		126.8	

Certificate No: ES3-3052_Jul15

Page 4 of 16

10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	12.49	99.0	22.5	1.16	132.4	±1.9 %
		Y	0.19	57.1	3.6		128.4	
		Z	99.74	91.8	15.1		132.7	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	4.62	73.2	21.7	3.83	145.0	±0.7 %
		Y	3.53	67.5	18.5		140.4	
		Z	4.35	71.9	20.9		145.0	
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Х	4.62	72.1	21.5	4.10	145.3	±0.9 %
		Υ	3.67	67.0	18.5		142.5	
		Z	4.37	70.9	20.7		145.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	6.02	80.0	24.4	13.80	81.1	±1.4 %
		Υ	1.92	61.0	14.1		30.0	
10010		Z	5.26	77.4	23.1		79.5	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	×	12.05	90.8	25.8	10.79	127.7	±1.7 %
		Υ	2.25	65.9	14.9		60.7	
10050	EDGE EDD (TDIAL SEGUE TILLS & S. C.	Z	12.63	91.6	25.7		148.9	
10058- DAB	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	Х	7.97	84.6	27.5	6.52	135.1	±1.9 %
		Υ	4.16	71.4	21.3		128.6	
10097-	LIMITO FOR GIODRAS	Z	7.97	84.8	27.3		135.0	
CAB	UMTS-FDD (HSDPA)	Х	4.59	67.1	19.0	3.98	139.7	±0.7 %
		Υ	4.40	65.5	17.6		141.5	
10098-	LILITO COD WIGHTS & C. L	Z	4.49	66.6	18.5		140.0	
CAB	UMTS-FDD (HSUPA, Subtest 2)	×	4.59	67.0	18.9	3.98	140.4	±0.7 %
		Υ	4.44	65.7	17.7		142.1	
10100-	LTE-FDD (SC-FDMA, 100% RB, 20	Z	4.51	66.6	18.5		140.7	
CAB	MHz, QPSK)	Х	6.53	68.2	20.3	5.67	148.2	±1.4 %
		Y	6.32	66.8	19.0		147.7	
10102-	LTE-FDD (SC-FDMA, 100% RB, 20	Z X	6.43 7.58	67.8 67.7	19.9	6.60	148.2 134.6	±1.4 %
CAB	MHz, 64-QAM)	Y	7.48	66.7	19.2		135.0	
		z	7.51	67.5	20.0		135.0	
10101- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	Х	7.58	67.7	20.2	6.42	134.6	±12.2 %
		Y	7.48	66.7	19.2		135.0	
		Z	7.51	67.5	20.0		135.0	
10108- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	6.38	67.8	20.2	5.80	146.1	±1.7 %
		Υ	6.21	66.3	18.8		145.5	
		Z	6.28	67.4	19.8		145.6	
10110- CAC	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	6.01	67.1	19.8	5.75	141.5	±1.2 %
		Y	5.86	65.7	18.6		141.5	
		Z	5.95	66.8	19.6		141.4	
10154- CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	6.01	67.1	19.8	5.75	141.5	±12.2 %
		Υ	5.86	65.7	18.6		141.5	
		Z	5.95	66.8	19.6		141.4	
10112- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	7.27	67.3	20.1	6.59	130.6	±1.4 %
		Υ	7.21	66.4	19.1		130.3	
		Z	7.19	67.0	19.8		130.8	

Certificate No: ES3-3052_Jul15

Page 5 of 16

10109- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	Х	7.27	67.3	20.1	6.43	130.6	±12.2 %
		Υ	7.21	66.4	19.1		130.3	
		Z	7.19	67.0	19.8		130.8	
10150- CAB	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	Х	7.27	67.3	20.1	6.60	130.6	±12.2 %
		Y	7.21	66.4	19.1		130.3	
		Z	7.19	67.0	19.8		130.8	
10149- CAB	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	Х	7.27	67.3	20.1	6.42	130.6	±12.2 %
		Y	7.21	66.4	19.1		130.3	
10117	1555 000 11 000 11	Z	7.19	67.0	19.8		130.8	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	10.22	69.2	21.6	8.07	136.5	±2.2 %
		Y	10.07	68.1	20.5		135.4	
10140-	LTE-FDD (SC-FDMA, 100% RB, 15	Z	10.17	69.1	21.5	0.40	136.3	.4.4.00
CAB	MHz, 16-QAM)	X	7.51	67.7	20.2	6.49	135.6	±1.4 %
		Y	7.45	66.8	19.3		136.7	
10141-	LTE-FDD (SC-FDMA, 100% RB, 15	Z	7.43	67.4	20.0	6.53	135.6	±40 0 W
CAB	MHz, 64-QAM)		7.51	67.7	20.2	0.00		±12.2 %
		Y	7.45	66.8	19.3		136.7	
10158-	LTE-FDD (SC-FDMA, 50% RB, 10 MHz,	Z	7.43	67.4	20.0	0.00	135.7	11 4 0/
CAC	64-QAM)	X	7.03	67.1	20.1	6.62	127.5	±1.4 %
		Y	6.93	66.1	19.1		127.0	
10111-	LTE-FDD (SC-FDMA, 100% RB, 5 MHz,	Z	6.98	67.0	19.9	C 44	127.5	+40.0.0/
CAC	16-QAM)	X	7.03	67.1	20.1	6.44		±12.2 %
		Y	6.93	66.1	19.1		127.0	
10113-	LTE-FDD (SC-FDMA, 100% RB, 5 MHz,	Z	6.98	67.0	19.9	6.62	127.5	±12.2 %
CAC	64-QAM)	X	7.03	67.1	20.1	0.02	127.0	±12.2 %
		Z	6.93	66.1 67.0	19.1		127.0	
10155- CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	7.03	67.1	20.1	6.43	127.5	±12.2 %
		Υ	6.93	66.1	19.1		127.0	
		Z	6.98	67.0	19.9		127.3	
10161- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	Х	7.03	67.1	20.1	6.43	127.5	±12.2 %
		Υ	6.93	66.1	19.1		127.0	
		Z	6.98	67.0	19.9		127.3	
10162- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	Х	7.03	67.1	20.1	6.58	127.5	±12.2 %
		Y	6.93	66.1	19.1		127.0	
		Z	6.98	67.0	19.9		127.3	
10173- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	Х	8.13	78.1	28.1	9.48	136.8	±2.5 %
		Y	6.23	70.5	23.4		146.9	
		Z	7.81	77.0	27.5		135.6	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	Х	8.13	78.1	28.1	9.49	136.8	±12.2 %
		Y	6.23	70.5	23.4		146.9	-
		Z	7.81	77.0	27.5		135.6	
10235- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	Х	8.13	78.1	28.1	9.48	136.8	±12.2 %
		Y	6.23	70.5	23.4		146.9	
		Z	7.81	77.0	27.5		135.6	

Certificate No: ES3-3052_Jul15

Page 6 of 16

10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	8.13	78.1	28.1	9.48	136.8	±12.2 %
		Y	6.23	70.5	23.4		146.9	
		Z	7.81	77.0	27.5		135.6	
10232- CAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	Х	8.13	78.1	28.1	9.48	136.8	±12.2 %
		Y	6.23	70.5	23.4		146.9	
		Z	7.81	77.0	27.5		135.6	
10238- CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	8.13	78.1	28.1	9.48	136.8	±12.2 %
		Υ	6.23	70.5	23.4		146.9	
		Z	7.81	77.0	27.5		135.6	
10179- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	Х	5.69	68.4	21.0	6.50	143.1	±1.7 %
		Υ	5.23	66.3	19.4		138.0	
10170		Z	5.63	68.2	20.8		143.0	
10170- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	Х	5.69	68.4	21.0	6.52	143.1	±12.2 %
		Y	5.23	66.3	19.4		138.0	
10170	LTE EDD (CO EDM 4 CD 4015)	Z	5.63	68.2	20.8	0.70	143.0	
10176- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	Х	5.69	68.4	21.0	6.52	143.1	±12.2 %
		Y	5.23	66.3	19.4		138.0	
10100	LTE EDD (DO EDMA 4 DD 4 4 MILE	Z	5.63	68.2	20.8		143.0	
10188- CAC	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	Х	5.69	68.4	21.0	6.52	143.1	±12.2 %
		Υ	5.23	66.3	19.4		138.0	
10180-	LTE EDD (OG EDLIA A DD ELIII - OA	Z	5.63	68.2	20.8		143.0	
CAC	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	5.69	68.4	21.0	6.50	143.1	±12.2 %
		Υ	5.23	66.3	19.4		138.0	
10178-	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-	Z	5.63	68.2	20.8	0.50	143.0	. 40 0 0
CAC	QAM)	X	5.69	68.4	21.0	6.52	143.1	±12.2 %
		Y Z	5.23	66.3	19.4		143.0	
10182- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	5.63 5.69	68.2 68.4	20.8	6.52	143.1	±12.2 %
0.10	70 00 1117	Y	5.23	66.3	19.4		138.0	
		z	5.63	68.2	20.8		143.0	
10185- CAC	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	х	5.69	68.4	21.0	6.51	143.1	±12.2 %
		Y	5.23	66.3	19.4		138.0	
		Z	5.63	68.2	20.8		143.0	
10187- CAC	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	х	5.01	67.6	20.3	5.73	144.7	±1.2 %
		Y	4.57	65.2	18.5		137.4	
		Z	4.93	67.1	19.9		144.3	
10166- CAC	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	Х	5.01	67.6	20.3	5.46	144.7	±12.2 %
		Y	4.57	65.2	18.5		137.4	
		Z	4.93	67.1	19.9		144.3	
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	5.01	67.6	20.3	5.72	144.7	±12.2 %
		Υ	4.57	65.2	18.5		137.4	
		Z	4.93	67.1	19.9		144.3	
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	5.01	67.6	20.3	5.73	144.7	±12.2 %
		Υ	4.57	65.2	18.5		137.4	
		Z	4.93	67.1	19.9		144.3	

Certificate No: ES3-3052_Jul15

Page 7 of 16

July 20, 2015

10175- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	5.01	67.6	20.3	5.72	144.7	±12.2 %
		Y	4.57	65.2	18.5		137.4	
		Z	4.93	67.1	19.9		144.3	
10177- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	Х	5.01	67.6	20.3	5.73	144.7	±12.2 %
		Y	4.57	65.2	18.5		137.4	
		Z	4.93	67.1	19.9		144.3	
10184- CAC	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	5.01	67.6	20.3	5.73	144.7	±12.2 %
		Y	4.57	65.2	18.5		137.4	
		Z	4.93	67.1	19.9		144.3	
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	9.79	68.8	21.5	8.10	129.9	±2.5 %
		Υ	9.69	67.7	20.3		128.7	
10005	LIMITO EDD WIODA	Z	9.73	68.7	21.3		128.8	
10225- CAB	UMTS-FDD (HSPA+)	X	6.84	66.9	19.5	5.97	132.7	±1.2 %
		Y	6.84	66.2	18.7		132.9	
10228-	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	Z	6.81	66.8	19.4		132.4	
CAA	QPSK)	X	7.79	77.2	27.7	9.22	140.4	±2.2 %
		Y	6.01	69.8	23.0		149.6	
10237-	LTE TOO (OO FOMA A DO ASAUL	Z	7.63	76.7	27.4		138.3	
CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	7.79	77.2	27.7	9.21	140.4	±12.2 %
		Y	6.01	69.8	23.0		149.6	
10170	LTE TOD (OO FOLK) A DD OO MIL	Z	7.63	76.7	27.4		138.3	
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	7.79	77.2	27.7	9.21	140.4	±12.2 %
		Y	6.01	69.8	23.0		149.6	
10231-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz.	Z	7.63	76.7	27.4	0.40	138.3	.40.0.0/
CAB	QPSK)	X	7.79	77.2	27.7	9.19	140.4	±12.2 %
		Z	6.01	69.8	23.0		149.6 138.3	
10234- CAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	7.63 7.79	76.7 77.2	27.4 27.7	9.21	140.4	±12.2 %
		Y	6.01	69.8	23.0		149.6	
		z	7.63	76.7	27.4		138.3	
10240- CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	7.79	77.2	27.7	9.21	140.4	±12.2 %
		Y	6.01	69.8	23.0		149.6	
		Z	7.63	76.7	27.4		138.3	
10246- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	Х	8.17	74.0	26.0	9.30	133.6	±2.2 %
		Y	6.81	68.0	22.0		146.0	
		Z	7.98	73.4	25.6		132.0	
10249- CAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	Х	8.17	74.0	26.0	9.29	133.6	±12.2 %
		Y	6.81	68.0	22.0		146.0	
		Z	7.98	73.4	25.6		132.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	Х	8.17	74.0	26.0	9.34	133.6	±12.2 %
		Y	6.81	68.0	22.0		146.0	
		Z	7.98	73.4	25.6	1	132.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	8.92	74.4	26.6	9.96	136.3	±3.0 %
		Y	7.58	68.8	22.7		149.4	
		Z	8.78	74.1	26.3		135.0	

Certificate No: ES3-3052_Jul15

Page 8 of 16

Page 67 of 94

July 20, 2015

10247- CAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	Х	8.92	74.4	26.6	9.91	136.3	±12.2 %
		Y	7.58	68.8	22.7		149.4	
		Z	8.78	74.1	26.3		135.0	
10244- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	Х	8.92	74.4	26.6	10.06	136.3	±12.2 %
		Y	7.58	68.8	22.7		149.4	
		Z	8.78	74.1	26.3		135.0	
10262- CAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	Х	9.03	72.4	25.3	9.83	126.8	±2.7 %
		Υ	8.01	67.9	22.0		140.4	
		Z	8.89	72.0	25.0		125.3	
10250- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	Х	9.03	72.4	25.3	9.81	126.8	±12.2 %
		Y	8.01	67.9	22.0		140.4	
		Z	8.89	72.0	25.0		125.3	
10259- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	Х	9.03	72.4	25.3	9.98	126.8	±12.2 %
		Y	8.01	67.9	22.0		140.4	
		Z	8.89	72.0	25.0		125.3	
10264- CAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	Х	8.92	75.0	26.5	9.23	144.6	±3.0 %
		Y	7.07	67.4	21.5		134.5	
		Z	8.67	74.3	26.0		142.4	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	8.92	75.0	26.5	9.24	144.6	±12.2 %
		Y	7.07	67.4	21.5		134.5	
		Z	8.67	74.3	26.0		142.4	
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	Х	8.92	75.0	26.5	9.24	144.6	±12.2 %
		Y	7.07	67.4	21.5		134.5	
		Z	8.67	74.3	26.0		142.4	
10265- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	9.70	73.1	25.7	9.92	134.7	±3.5 %
		Y	8.48	68.1	22.1		148.2	
		Z	9.57	72.8	25.5		133.2	
10152- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	×	9.70	73.1	25.7	9.92	134.7	±12.2 %
		Y	8.48	68.1	22.1		148.2	
		Z	9.57	72.8	25.5		133.2	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	8.79	73.2	25.3	9.30	125.7	±2.7 %
		Υ	7.51	67.9	21.6		140.6	
		Z	8.63	72.7	24.9		124.7	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	8.79	73.2	25.3	9.28	125.7	±12.2 %
		Y	7.51	67.9	21.6		140.6	
		Z	8.63	72.7	24.9		124.7	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	6.41	67.8	20.2	5.81	147.2	±1.4 %
		Y	6.21	66.3	18.8		145.7	
		Z	6.29	67.4	19.8		146.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3052_Jul15

Page 9 of 16

The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 10 and 11).
 Numerical linearization parameter: uncertainty not required.
 Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

July 20, 2015

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3052

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	6.91	6.91	6.91	0.20	2.33	± 13.3 %
750	41.9	0.89	6.47	6.47	6.47	0.28	2.08	± 12.0 %
835	41.5	0.90	6.34	6.34	6.34	0.33	1.87	± 12.0 %
900	41.5	0.97	6.23	6.23	6.23	0.45	1.53	± 12.0 %
1750	40.1	1.37	5.17	5.17	5.17	0.52	1.37	± 12.0 %
1900	40.0	1.40	4.97	4.97	4.97	0.68	1.27	± 12.0 %
2000	40.0	1.40	4.95	4.95	4.95	0.80	1.16	± 12.0 %
2450	39.2	1.80	4.40	4.40	4.40	0.77	1.25	± 12.0 %
2600	39.0	1.96	4.23	4.23	4.23	0.80	1.22	± 12.0 %

c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the CornF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for CornF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the CornF uncertainty for indicated target tissue parameters.

Certificate No: ES3-3052_Jul15

Page 10 of 16

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3052

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	7.11	7.11	7.11	0.15	1.78	± 13.3 %
750	55.5	0.96	6.15	6.15	6.15	0.53	1.43	± 12.0 %
835	55.2	0.97	6.06	6.06	6.06	0.53	1.41	± 12.0 %
900	55.0	1.05	6.03	6.03	6.03	0.33	1.64	± 12.0 %
1750	53.4	1.49	4.85	4.85	4.85	0.60	1.34	± 12.0 %
1900	53.3	1.52	4.67	4.67	4.67	0.55	1.49	± 12.0 %
2000	53.3	1.52	4.77	4.77	4.77	0.62	1.46	± 12.0 %
2450	52.7	1.95	4.31	4.31	4.31	0.80	1.20	± 12.0 %
2600	52.5	2.16	4.11	4.11	4.11	0.80	1.24	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

**Fat frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

**Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: ES3-3052_Jul15

Page 11 of 16

July 20, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3052_Jul15

Page 12 of 16

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3052_Jul15

Page 13 of 16

July 20, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3052_Jul15

Page 14 of 16

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3052_Jul15

Page 15 of 16

July 20, 2015

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3052

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	127.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3052_Jul15

Page 16 of 16

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

CALIBRATION (CERTIFICATE		o: D450V3-1092_Jul15
Object	D450V3 - SN:109	92	
Calibration procedure(s)	QA CAL-15.v8 Calibration proce	dure for dipole validation kits bel	ow 700 MHz
Calibration date:	July 07, 2015		
The measurements and the unce	ertainties with confidence p	onal standards, which realize the physical un robability are given on the following pages ar ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
Primary Standards Power meter E4419B	TE critical for calibration) ID # GB41293874 MY41498087	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128)	Scheduled Calibration Mar-16 Mar-16
Primary Standards Power meter E4419B Power sensor E4412A	ID # GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	ID N GB41293874 MY41498087	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128)	Mar-16 Mar-16
Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.2 / 06327	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Mar-16 Mar-16 Mar-16 Mar-16 Mar-16
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.2 / 06327 SN: 1507	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ET3-1507_Dec14)	Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.2 / 06327	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Mar-16 Mar-16 Mar-16 Mar-16 Mar-16
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.2 / 06327 SN: 1507	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ET3-1507_Dec14)	Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Mar-16
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 789	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ET3-1507_Dec14) 16-Mar-15 (No. DAE4-789_Mar15)	Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 789	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ET3-1507_Dec14) 16-Mar-15 (No. DAE4-789_Mar15) Check Date (in house)	Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Mar-16 Scheduled Check
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 789 ID # US3642U01700	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 30-Dec-14 (No. ET3-1507_Dec14) 16-Mar-15 (No. DAE4-789_Mar15) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-14)	Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Mar-16 Scheduled Check In house check: Apr-16 In house check: Oct-15
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 789 ID # US3642U01700 US37390585 S4206	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ET3-1507_Dec14) 16-Mar-15 (No. DAE4-789_Mar15) Check Date (in house) 04-Aug-99 (in house check Apr-13)	Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Mar-16 Scheduled Check In house check: Apr-16
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 789 ID # US3642U01700 US37390585 S4206 Name	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 30-Dec-14 (No. ET3-1507_Dec14) 16-Mar-15 (No. DAE4-789_Mar15) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-14)	Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Mar-16 Scheduled Check In house check: Apr-16 In house check: Oct-15
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 789 ID # US3642U01700 US37390585 S4206 Name	01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 30-Dec-14 (No. ET3-1507_Dec14) 16-Mar-15 (No. DAE4-789_Mar15) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-14)	Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-15 Mar-16 Scheduled Check In house check: Apr-16 In house check: Oct-15

Certificate No: D450V3-1092_Jul15

Page 1 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D450V3-1092_Jul15

Page 2 of 8

Report No: (NIE) 47275RAN.001A1

Page 77 of 94

2016-02-11

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.7 ± 6 %	0.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.46 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	0.746 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	2.98 W/kg ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.0 ± 6 %	0.95 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.45 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	0.740 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	2.92 W/kg ± 17.6 % (k=2)

Certificate No: D450V3-1092_Jul15

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	58.0 Ω - 1.6 jΩ	
Return Loss	- 22.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	53.8 Ω - 6.9 jΩ	
Return Loss	- 22.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.352 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	February 25, 2013

Certificate No: D450V3-1092_Jul15

Page 4 of 8

2016-02-11

DASY5 Validation Report for Head TSL

Date: 06.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1092

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.87$ S/m; $\epsilon_r = 42.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ET3DV6 SN1507; ConvF(6.58, 6.58, 6.58); Calibrated: 30.12.2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn789; Calibrated: 16.03.2015
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.29 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.61 W/kg

SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.746 W/kg

Maximum value of SAR (measured) = 1.20 W/kg

0 dB = 1.20 W/kg = 0.79 dBW/kg

Certificate No: D450V3-1092_Jul15

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D450V3-1092_Jul15

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 07.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1092

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.95$ S/m; $\varepsilon_r = 55$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ET3DV6 - SN1507; ConvF(7.05, 7.05, 7.05); Calibrated: 30.12.2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn789; Calibrated: 16.03.2015

Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 36.57 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.83 W/kg SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.740 W/kg

Maximum value of SAR (measured) = 1.20 W/kg

0 dB = 1.20 W/kg = 0.79 dBW/kg

Certificate No: D450V3-1092_Jul15

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D450V3-1092_Jul15

Page 8 of 8