Colles sem. 3 : relations de comparaison, séries

Relations de comparaisons o (négligeable devant) et \sim (équivalent à)

- ▶ **Négligeabilité** Notation $u_n = o(v_n)$ si $\frac{u_n}{v_n} \longrightarrow 0$.
- Croissances comparées pour 0 < q < r, on a $q^n = o(r^n)$, pour a < b, on a $n^a = o(n^b)$. Comparaison de : suites géométriques (q^n) , puissances (n^a) et logarithme $(\ln(n))$.
- **Équivalence** Notation $u_n \sim (v_n)$ si $\frac{u_n}{v_n} \longrightarrow 1$. Équivalence et terme prépondérant.

Sommes finies

- **Généralités** nombre de termes, indice de sommation, valeur moyenne
- ▶ **Propriétés** Linéarité, croissance (majorer, minorer une somme), relation de Chasles
- **Sommation télescopique** Formule $\sum_{k=m}^{n} (u_{k+1} u_k) = u_{n+1} u_m$ et variantes
 - (ou directement : on développe $\sum = ... + ... + ...$, on simplifie) Pratique du changement d'indice.
 - ► Télescopage et décomposition en éléments simples. L'exemple $\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 \frac{1}{n+1}$.

Vocabulaire des séries

- ► Convergence La série $\sum_{n \ge 0} a_n$ converge si la suite des sommes partielles $\left(S_N = \sum_{n=0}^N a_n\right)$ converge. ► Somme de la série Notation $\sum_{n=0}^{+\infty} a_n = \lim_{N \to \infty} S_N$. Exemple de $\sum_{k=1}^{+\infty} \frac{1}{k(k+1)} = 1$. (télescopage $\frac{1}{k} \frac{1}{k+1}$)
- ▶ **Divergence grossière** Pour que la série $\sum_{n\geqslant 0}a_n$ converge, il **faut** que $a_n \xrightarrow[\infty]{} 0$.

(condition **pas suffisante**, contre-exemple de $\sum_{k=1}^{\infty} \frac{1}{k}$)

Sommes, séries de référence

- ► Sommes finies $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$, $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$, $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$. (pour $n \in \mathbb{N}, q \neq 1$)
- Séries géométriques et dérivées

La série
$$\sum_{n\geq 0}^{+\infty} q^n$$
 converge $ssi |q| < 1$. Alors : $\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$ $\sum_{n=1}^{+\infty} nq^{n-1} = \frac{1}{(1-q)^2}$ $\sum_{n=2}^{+\infty} n(n-1)q^{n-1} = \frac{2}{(1-q)^3}$

(Les cas particuliers : $\alpha = 1$, $\alpha = 2$) ▶ **Séries de Riemann** La série $\sum_{n \ge 1} \frac{1}{n^{\alpha}}$ converge *ssi* $\alpha > 1$.

Critères de convergence

- ► **Séries à termes** ≥ 0 : convergence ⇔ les sommes partielles sont majorées (conv. monotone)
- si $\sum v_n$ converge, et $\left\{ \begin{array}{l} u_n \leq v_n \text{ ou} \\ u_n \sim v_n \text{ ou} \\ u_n = o(v_n) \end{array} \right\}$ alors $\sum u_n$ converge. ► Comparaison pour (u_n) , $(v_n) \ge 0$
- Critère de Riemann Comparaison avec une série de Riemann $\frac{1}{n^a}$.
- Convergence absolue
 - [convergence **absolue** de $\sum a_n$] \iff [la série des v.a. $\sum |a_n|$ est convergente]
 - $\blacktriangleright [\sum a_n \text{ cv. abs.}] \Longrightarrow [\sum a_n \text{ cv.}]$ (Toute série absolument convergente est convergente.) (La réciproque est fausse : contre exemple de $\sum \frac{(-1)^n}{n+1}$)
 - Application des critères de convergence à $|a_n|$ par convergence absolue.

Les questions de cours

1. Une formule (ou un exemple) de la sommation télescopique

2. Les relations de comparaisons $u_n \equiv v_n$ et $u_n = o(v_n)$. Croissances comparées entre (n^a) et (q^n) .

3. Convergence des séries de Riemann. Convergence par comparaison

4. Les séries géométriques-et-dérivées

5. Le cours sur la notion de série absolument convergente

