Al final project

Emoji recommendation

Team 15

0813356

0813304

109550126

109550168

Introduction

Our purpose is to train the agent to find the best emoji choice for a sentence, which may be applied on communication application.

This agent could not be very necessary, but we consider it practicable because it could help people who are not familiar with internet to choose a better emoji when they are sending messages to others.

Literature Review

Emotion Classification in Short Messages

1 Traditional Machine Learning

naive bayes, random forest, logistic regression, SVM

2 Neural Network

LSTM + w2v_wiki, biLSTM + w2v_wiki, CNN + w2v_wiki

3 Transfer learning with BERT

finetuned BERT

Kaggle:

- 1. Emotions dataset for NLP
- 2. Emotion classification dataset(Baseline)

1 Size

#Train: 16000

#Validation: 2000

#Test: 2000

2 Distribution of classes

df_train =		df_test =		df_val =	
joy	5362	joy	695	joy	704
sadness	4666	sadness	581	sadness	550
anger	2159	anger	275	anger	275
fear	1937	fear	224	fear	212
love	1304	1ove	159	1ove	178
surprise	572	surprise	66	surprise	81

3 Preprocessing

remove redundant punctuation like; ,and fill into a csv having columns "sentence" and "label"

Baseline

- 1. rule-based method

 use "if" expression

 if see token in our

 keyword database, then

 output corresponding emoji.
- 2. random method randomly pick any one emoji.

1 Keyword Database

basically, use a database from Kaggle, and we also do some modification and additional labeling.

fee1.txt =	
sadness	147
love	61
joy	55
fear	29
anger	21
surprise	15

#data: 329

2 Implementation

- 1. count the number of keyword tokens for six emotions appearing in the sentence.
- 2. choose the emotion corresponding to the highest count.

(if tie, just use random.choices().)

Main Approach

- multi-class NLP model
 Classify 6 emotions: 'anger', 'fear', 'joy', 'love', 'sadness', 'surprise'
- BERT: bert-base-uncased
 Levels: use the score from BERT model to classify its level

Evaluation Metric

- Accuracy
- Micro-F/Macro-F

$$\begin{split} P_{macro} &= \frac{1}{n} \sum_{i=1}^{n} P_{i} \\ R_{macro} &= \frac{1}{n} \sum_{i=1}^{n} P_{i} \\ R_{macro} &= \frac{1}{n} \sum_{i=1}^{n} R_{i} \\ R_{macro} &= \frac{T\bar{P}}{T\bar{P} + F\bar{N}} = \frac{\sum_{i=1}^{n} TP_{i}}{\sum_{i=1}^{n} TP_{i}} \\ F_{macro} &= \frac{2 \times P_{macro} \times R_{macro}}{P_{macro} + R_{macro}} \\ \end{split} \qquad F_{micro} &= \frac{2 \times P_{micro} \times R_{micro}}{P_{micro} + R_{micro}} \end{split}$$

Results & Analysis

截斷至小數點後第4位

	Micro-F	Macro-F	Accuracy
Baseline (rule-based)	Train (0.3235, 0.3235, 0.3235) Valid (0.3225, 0.3225, 0.3225) Test (0.3145, 0.3145, 0.3145)	Train (0.3235, 0.3235, 0.3235) Valid (0.2940, 0.3232, 0.3079) Test (0.2974, 0.3268, 0.3114)	Train 0.3235 Valid 0.3225 Test 0.3145
Baseline (random)	Train (0.1647, 0.1647, 0.1647) Valid (0.1700, 0.1700, 0.1700) Test (0.1575, 0.1575, 0.1575)	Train (0.1633, 0.1571, 0.1602) Valid (0.1557, 0.1595, 0.1576) Test (0.1670, 0.1532, 0.1598)	Train 0.1646 Valid 0.1700 Test 0.1575
Model	Train (0.9705, 0.9705, 0.9705) Valid (0.9670, 0.9670, 0.9670) Test (0.9650, 0.9650, 0.9650)	Train (0.9536, 0.9528, 0.9532) Valid (0.9479, 0.9519, 0.9499) Test (0.9387, 0.9400, 0.9394)	Train 0.9705 Valid 0.9670 Test 0.9650

Results & Analysis

chart of Accuracy

Error Analysis

Type	Description	Example
1	Laugh相關句子被分類為anger	I laugh out loud. → anger
2	否定句分類錯誤	I am not happy. \rightarrow joy (X) I am unhappy. \rightarrow sadness (O)
3	簡寫分類錯誤	LMAO → anger
4	不同對象不同情緒 無法分辨何者為自己的情緒	He is mad because I am happy. → anger
5	其他	He has a crush on the girl. \rightarrow anger Rest in peace. \rightarrow joy I am on vacation. \rightarrow sadness

Future Work

1 Better way to differentiate levels in specific emotion?

Directly use emojis as the tool for classification of database?

