Fact-Tools Documentation Fact-Tools Dokumentation mit JavaDocs

Christian Bockermann

Kai Bruegge

June 25, 2013

\mathbf{C}	lass I	Hierarchy	2
1	Pac	kage fact.image.monitors	4
	1.1	Class AverageBarPlotter	5
		1.1.1 Declaration	5
		1.1.2 Constructors	5
		1.1.3 Methods	5
	1.2	Class BarPlotPanel	6
		1.2.1 Declaration	6
		1.2.2 Constructors	6
		1.2.3 Methods	6
	1.3	Class CameraPlotter	6
		1.3.1 Declaration	6
		1.3.2 Constructors	6
		1.3.3 Methods	6
	1.4	Class CustomBarRender	7
		1.4.1 Declaration	7
		1.4.2 Constructors	7
		1.4.3 Methods	7
	1.5	Class CustomStatisticalBarRender	7
		1.5.1 Declaration	8
		1.5.2 Constructors	8
		1.5.3 Methods	8
	1.6	Class HistogramPlotter	8
		1.6.1 Declaration	8
		1.6.2 Constructors	8
		1.6.3 Methods	8
	1.7	Class LiveCameraPlotter	9
		1.7.1 Declaration	9
		1.7.2 Constructors	9
		1.7.3 Methods	9
	1.8	Class ScatterPlotPanel	10
		1.8.1 Declaration	10
		1.8.2 Constructors	10
		1.8.3 Methods	10
	1.0	Class Scatter Plotter	10

		1.9.1	Declaration .		 	 			 	 		 			10
		1.9.2	Constructors		 	 			 	 		 			10
		1.9.3	Methods		 	 			 	 		 			11
	1.10	Class S	howerCameraP	lotter	 	 			 	 		 			11
		1.10.1	Declaration .		 	 			 	 		 			11
		1.10.2	Constructors		 	 			 	 		 			11
		1.10.3	Methods		 	 			 	 		 			12
	1.11	Class S	tatus Window		 	 			 	 		 			12
		1.11.1	Declaration .		 	 			 	 		 			12
		1.11.2	Constructors		 	 			 	 		 			12
		1.11.3	Methods		 	 			 	 		 			13
9	D1	C -	-4 : -												14
2	2.1	class P	inaryFactWrite												14 15
	2.1		maryractwine Declaration .												$\frac{15}{15}$
			Constructors												$\frac{15}{15}$
															$\frac{15}{15}$
	2.2		$egin{aligned} ext{Methods} & . & . & . \\ ext{yteChunkStrea} \end{aligned}$												16 16
	2.2		yteChunkstrea Declaration .												16
			All known sub												16
			Fields												16
			Constructors												16
			Methods												16
	2.3		${ m reate Animated}$												17
	2.3		${f Declaration}$.												$\frac{17}{17}$
			Constructors												$\frac{17}{17}$
			Methods												$\frac{17}{17}$
	2.4		${ m itsEventSplitte}$												18
	2.4		Declaration .												18
			Constructors												18
			Methods												18
	2.5		itsStream												18
	2.3														18
		~ ~ ~	Declaration .												18
	2.6		$egin{aligned} ext{Methods} & . & . & . \\ ext{itsStream.FitsI} \end{aligned}$												18 19
	2.0		Declaration .												19 19
			Constructors Mothods												19 19
	27		Methods												
	2.7		eadMCcsv												19
			Declaration .												19
			Fields												19
			Constructors Methods		 	 			 	 	 -	 		-	19
	20		Methods												20
	2.8		${ m cootASCIIWrite}$	er	 • •	 • •	• •	• •	 	 	 •	 	•	•	20 21
		4 O I	Declaration												7.1

		2.8.2 Constructors	21
		2.8.3 Methods	21
	2.9	Class SerializedEventStream	21
		2.9.1 Declaration	21
		2.9.2 Constructors	22
			22
	2.10	Class WeatherStream	22
			22
			23
		2.10.3 Constructors	23
		2.10.4 Methods	23
	2.11		23
			23
			24
			24
	2.12		24
			24
		2.12.2 Fields	
		2.12.3 Constructors	
3	Pack	kage fact.processors	25
	3.1	Interface FactEvent	26
		3.1.1 Declaration	27
		3.1.2 Fields	27
	3.2		27
		3.2.1 Declaration	27
		3.2.2 Constructors	27
		3.2.3 Methods	27
	3.3	Class CutSlices	28
		3.3.1 Declaration	28
		3.3.2 Constructors	28
		3.3.3 Methods	28
	3.4	Class CutValues	29
		3.4.1 Declaration	29
		3.4.2 Constructors	29
		3.4.3 Methods	29
	3.5	Class Diff	30
		3.5.1 Declaration	30
		3.5.2 Constructors	30
		3.5.3 Methods	30
	3.6	Class DrsCalibration	30
		3.6.1 Declaration	31
			31
		3.6.3 Methods	31
	3.7	Class ExFit	32
			32

	3.7.2	onstructors		 	 	 	 					32
	3.7.3 N	Iethods		 	 	 	 					32
3.8	Class Ex	ponentialSm	oothing	 	 	 	 					32
	3.8.1 D	eclaration .		 	 	 	 					32
	3.8.2 C	onstructors		 	 	 	 					32
	3.8.3 N	Iethods		 	 	 	 					32
3.9	Class Fin	Filter		 	 	 	 					33
	3.9.1 D	eclaration .		 	 	 	 					33
	3.9.2 C	onstructors		 	 	 	 					33
	3.9.3 N	Iethods		 	 	 	 					33
3.10	Class Int	erpolateBad	Pixel .	 	 	 	 					33
	3.10.1 D	eclaration .		 	 	 	 					33
		onstructors										34
		Iethods										34
3.11		xAmplitude										34
		eclaration .										34
		onstructors										34
		Iethods										34
3.12		$\mathbf{x}\mathbf{Amplitude}$										35
J.12		eclaration .										35
		onstructors										35
		Iethods										35
3 13		$\operatorname{tionDiff}$										35
0.10		eclaration .										35
		onstructors										35
		Iethods										36
3 14		$\operatorname{pvingAverage}$										36
0.11		eclaration .										36
		onstructors										36
		$ \frac{1}{1} $										36
2 15		ıltiplyValues										36
5.15		eclaration .										36
		onstructors										36
		$ \frac{1}{1} $										37
9 16		kelAverage .										37
3.10		eclaration .										37
		onstructors										37
2.17		Iethods										37
3.17	•	iantiles										38
		eclaration .										38
		onstructors										38
0.10		Iethods										38
3.18		moveJumps										38
		eclaration .										38
		onstructors		 	 	 	 	 •		 •		38
	3 18 3 N	lethods										38

3.19	Class Short2Float	39
	3.19.1 Declaration	39
	3.19.2 Constructors	39
	3.19.3 Methods	39
3.20	Class SimpleFactEventProcessor	39
	3.20.1 Declaration	39
	3.20.2 All known subclasses	39
	3.20.3 Constructors	40
	3.20.4 Methods	40
3.21	Class SimpleFactPixelProcessor	40
	3.21.1 Declaration	40
	3.21.2 All known subclasses	41
	3.21.3 Constructors	41
	3.21.4 Methods	41
3.22	Class SliceNormalization	41
	3.22.1 Declaration	41
	3.22.2 Constructors	41
	3.22.3 Methods	41
3.23	Class SliceQuantileDiscretization	42
	3.23.1 Declaration	42
	3.23.2 Constructors	42
	3.23.3 Methods	42
3.24	Class StdClean	43
	3.24.1 Declaration	43
		43
	3.24.3 Methods	43
3.25	Class StdDeviation	44
	3.25.1 Declaration	44
	3.25.2 Constructors	44
		44
3.26	July 12 to 15	45
		45
		45
		45
3.27		45
		45
		45
		45
3.28		46
		46
		46
	3.28.3 Methods	46

4	Pac	ekage fact.processors.parfact 47
	4.1	Class CalcSourcePosition
		4.1.1 Declaration
		4.1.2 Constructors
		4.1.3 Methods
	4.2	Class CalculatePhotonCharge
		4.2.1 Declaration
		4.2.2 Constructors
		4.2.3 Methods
	4.3	Class CoreNeighborClean
		4.3.1 Declaration
		4.3.2 Constructors
		4.3.3 Methods
	4.4	Class HillasParameter
		4.4.1 Declaration
		4.4.2 Constructors
		4.4.3 Methods
	4.5	Class MonteCarloCalibration
		4.5.1 Declaration
		4.5.2 Constructors
		4.5.3 Methods
	4.6	Class RemoveSpikesMars
		4.6.1 Declaration
		4.6.2 Constructors
		4.6.3 Methods
	4.7	Class RisingEdge
		4.7.1 Declaration
		4.7.2 Constructors
		4.7.3 Methods
	4.8	Class ShowerEllipse
	-	4.8.1 Declaration
		4.8.2 Fields
		4.8.3 Constructors
		4.8.4 Methods 56

Class Hierarchy

Classes

- java.lang.Object
 - AbstractLineStream
 - fact.io.ReadMCcsv (in 2.7, page 19)
 - AbstractProcessor
 - fact.processors.SliceNormalization (in 3.22, page 41)
 - AbstractStream
 - fact.io.ByteChunkStream (in 2.2, page 16)
 - fact.io.WStream (in 2.12, page 24)
 - fact.io.WeatherStream (in 2.10, page 22)
 - fact.io.FitsStream (in 2.5, page 18)
 - ullet fact.io.SerializedEventStream (in 2.9, page 21)
 - BarRenderer
 - fact.image.monitors.CustomBarRender (in 1.4, page 7)
 - CsvWriter
 - fact.io.BinaryFactWriter (in 2.1, page 15)
 - fact.io.RootASCIIWriter (in 2.8, page 20)
 - DataVisualizer
 - fact.image.monitors.AverageBarPlotter (in 1.1, page 5)
 - fact.image.monitors.CameraPlotter (in 1.3, page 6)
 - fact.image.monitors.HistogramPlotter (in 1.6, page 8)
 - fact.image.monitors.LiveCameraPlotter (in 1.7, page 9)
 - fact.image.monitors.ScatterPlotter (in 1.9, page 10)
 - fact.image.monitors.ShowerCameraPlotter (in 1.10, page 11)
 - ullet fact.image.monitors.StatusWindow (in 1.11, page 12)
 - ullet StatisticalBarRenderer
 - fact.image.monitors.CustomStatisticalBarRender (in 1.5, page 7)
 - fact.io.CreateAnimatedGif (in 2.3, page 17)
 - fact.io.FitsEventSplitter (in 2.4, page 18)
 - fact.io.FitsStream.FitsHeader (in 2.6, page 19)
 - fact.processors.CutSlices (in 3.3, page 28)
 - fact.processors.CutValues (in 3.4, page 29)
 - fact.processors.Diff (in 3.5, page 30)
 - fact.processors.DrsCalibration (in 3.6, page 30)
 - fact.processors.PixelAverage (in 3.16, page 37)

Class Hierarchy 8

```
• fact.processors.Quantiles (in 3.17, page 38)
• fact.processors.RemoveJumps (in 3.18, page 38)
• fact.processors.Short2Float (in 3.19, page 39)
• fact.processors.SimpleFactEventProcessor (in 3.20, page 39)
      • fact.processors.CreateHistogram (in 3.2, page 27)
      • fact.processors.ExFit (in 3.7, page 32)
      • fact.processors.ExponentialSmoothing (in 3.8, page 32)
      • fact.processors.FirFilter (in 3.9, page 33)
      ullet fact.processors.InterpolateBadPixel (in 3.10, page 33)
      • fact.processors.MaxAmplitudePosition (in 3.12, page 35)
      • fact.processors.MotionDiff (in 3.13, page 35)
      • fact.processors.MovingAverage (in 3.14, page 36)
      • fact.processors.MultiplyValues (in 3.15, page 36)
      \bullet fact.processors.SimpleFactPixelProcessor (in 3.21, page 40)
             • fact.processors.MaxAmplitude (in 3.11, page 34)
      • fact.processors.SumKey (in 3.26, page 45)
      • fact.processors.ThresholdEventCounter (in 3.27, page 45)
      • fact.processors.ThresholdPixelCounter (in 3.28, page 46)
      • fact.processors.parfact.RemoveSpikesMars (in 4.6, page 53)
• fact.processors.SliceQuantileDiscretization (in 3.23, page 42)
• fact.processors.StdClean (in 3.24, page 43)
• fact.processors.StdDeviation (in 3.25, page 44)
• fact.processors.parfact.CalcSourcePosition (in 4.1, page 47)
• fact.processors.parfact.CalculatePhotonCharge (in 4.2, page 48)
• fact.processors.parfact.CoreNeighborClean (in 4.3, page 49)
• fact.processors.parfact.HillasParameter (in 4.4, page 50)
• fact.processors.parfact.MonteCarloCalibration (in 4.5, page 52)
• fact.processors.parfact.RisingEdge (in 4.7, page 53)
• fact.processors.parfact.ShowerEllipse (in 4.8, page 55)
• java.awt.Component
      • java.awt.Container
             • javax.swing.JComponent
                    • javax.swing.JPanel
                          • fact.image.monitors.BarPlotPanel (in 1.2, page 6)
```

• fact.io.Weird8ByteChunkStream (in 2.11, page 23)

• fact.image.monitors.ScatterPlotPanel (in 1.8, page 10)

Interfaces

• fact.processors.FactEvent (in 3.1, page 26)

• java.io.InputStream

Chapter 1

Package fact.image.monitors

Package Contents	Page
Classes	
AverageBarPlotter	5
This class can plot a bar graph with errorBars by calculating the mean standarddeviation for a each key and event.	
BarPlotPanel	6
Common Pl. 11	C
CameraPlotter	0
CustomBarRender	
CustomStatisticalBarRender	
HistogramPlotter	8
LiveCameraPlotter	9
ScatterPlotPanel	10
ScatterPlotter	10
ShowerCameraPlotter	11
StatusWindow	
This opens up a small window containing some information about the cur rently running stream like number of items per second or the names of the keys in the item	

This package contains a number of classes which are supposed to display some (visual) information about the current state of the stream. The **StatusWindow** for example opens up a small window displaying the number of analyzed items per second and a list of keys

the items contain. The plotters in this package provide a convenient way to quickly analyze the semantics of the ongoing stream. These classes should make it possible to quickly get a meaningful overview of the streamed and processed data. However these classes are *not* meant to provide the same feature set as a real scientific plotting application like GNUPLot.

Most plotters in this package extend the **DataVisualizer** class from the Streams-Framework and rely on the **JFreeChart** library for graphical output.

1.1 Class AverageBarPlotter

This class can plot a bar graph with errorBars by calculating the mean and standarddeviation for a each key and event. If one of the keys refer to an array. The same calculation will be done for every item in the array.

1.1.1 Declaration

public class AverageBarPlotter **extends** DataVisualizer

1.1.2 Constructors

• AverageBarPlotter public AverageBarPlotter()

1.1.3 Methods

• finish

public void finish() throws java.lang.Exception

getKeys

public java.lang.String[] getKeys()

• init

public void init(ProcessContext ctx) throws java.lang.Exception

• isDrawErrors

public boolean isDrawErrors()

• isKeepOpen

public boolean isKeepOpen()

• processMatchingData

public Data processMatchingData(Data data)

• setDrawErrors

public void setDrawErrors(boolean drawErrors)

• setKeepOpen

public void setKeepOpen(boolean keepOpen)

• setKeys

public void setKeys(java.lang.String[] keys)

1.2 Class BarPlotPanel

1.2.1 Declaration

public class BarPlotPanel **extends** javax.swing.JPanel

1.2.2 Constructors

• BarPlotPanel public BarPlotPanel(boolean drawError)

1.2.3 Methods

- getDataset public DefaultStatisticalCategoryDataset getDataset()
- setDataset public void setDataset(DefaultStatisticalCategoryDataset dataset)

1.3 Class CameraPlotter

1.3.1 Declaration

public class CameraPlotter **extends** DataVisualizer

1.3.2 Constructors

• CameraPlotter public CameraPlotter()

1.3.3 Methods

- getKeys

 public java.lang.String[] getKeys()
- getPanelSize public java.lang.Double getPanelSize()
- init public void init(ProcessContext ctx) throws java.lang.Exception
- isDrawErrors

 public boolean isDrawErrors()

• isKeepOpen

public boolean isKeepOpen()

• isShowAverage

public boolean isShowAverage()

• processMatchingData

public Data processMatchingData(Data data)

• setDrawErrors

public void setDrawErrors(boolean drawErrors)

• setKeepOpen

public void setKeepOpen(boolean keepOpen)

• setKeys

public void setKeys(java.lang.String[] keys)

• setPanelSize

public void setPanelSize(java.lang.Double panelSize)

• setShowAverage

public void setShowAverage(boolean showAverage)

1.4 Class CustomBarRender

shamelessly stolen from http://javabeanz.wordpress.com/2007/07/04/creating-barcharts-with-custom-colours-using-jfreechart/

1.4.1 Declaration

public class CustomBarRender **extends** BarRenderer

1.4.2 Constructors

• CustomBarRender public CustomBarRender()

1.4.3 Methods

• getItemPaint

public java.awt.Paint getItemPaint(int row, int column)

1.5 Class CustomStatisticalBarRender

shamelessly stolen from http://javabeanz.wordpress.com/2007/07/04/creating-barcharts-with-custom-colours-using-jfreechart/

1.5.1 Declaration

public class CustomStatisticalBarRender **extends** StatisticalBarRenderer

1.5.2 Constructors

• CustomStatisticalBarRender public CustomStatisticalBarRender()

1.5.3 Methods

• getItemPaint public java.awt.Paint getItemPaint(int row, int column)

1.6 Class HistogramPlotter

1.6.1 Declaration

public class HistogramPlotter **extends** DataVisualizer

1.6.2 Constructors

• HistogramPlotter public HistogramPlotter()

1.6.3 Methods

• finish public void finish() throws java.lang.Exception

• getKey public java.lang.String getKey()

• getMaxBin public float getMaxBin()

• getMinBin public float getMinBin()

• init public void init(ProcessContext ctx) throws java.lang.Exception

• isDrawErrors

public boolean isDrawErrors()

• isKeepOpen public boolean isKeepOpen()

- isLogAxis public boolean isLogAxis()
- processMatchingData
 public Data processMatchingData(Data data)
- setDrawErrors public void setDrawErrors(boolean drawErrors)
- setKeepOpen
 public void setKeepOpen(boolean keepOpen)
- setKey public void setKey(java.lang.String key)
- setLogAxis public void setLogAxis(boolean logAxis)
- setMaxBin public void setMaxBin(float maxBin)
- setMinBin public void setMinBin(float minBin)

1.7 Class LiveCameraPlotter

1.7.1 Declaration

public class LiveCameraPlotter **extends** DataVisualizer

1.7.2 Constructors

• LiveCameraPlotter public LiveCameraPlotter()

1.7.3 Methods

- getKey public java.lang.String getKey()
- getPanelSize public java.lang.Double getPanelSize()
- init public void init(ProcessContext ctx) throws java.lang.Exception
- isKeepOpen public boolean isKeepOpen()

- processMatchingData
 public Data processMatchingData(Data data)
- setKeepOpen
 public void setKeepOpen(boolean keepOpen)
- setKey
 public void setKey(java.lang.String key)
- setPanelSize public void setPanelSize(java.lang.Double panelSize)

1.8 Class ScatterPlotPanel

1.8.1 Declaration

public class ScatterPlotPanel **extends** javax.swing.JPanel

1.8.2 Constructors

• ScatterPlotPanel public ScatterPlotPanel(java.lang.String key)

1.8.3 Methods

- getDataset public XYDataset getDataset()
- setDataset public void setDataset(XYDataset dataset)

1.9 Class ScatterPlotter

1.9.1 Declaration

public class ScatterPlotter **extends** DataVisualizer

1.9.2 Constructors

• ScatterPlotter public ScatterPlotter()

1.9.3 Methods

• finish

public void finish() throws java.lang.Exception

• getCompValue

public java.lang.String getCompValue()

• getKeys

public java.lang.String[] getKeys()

init

public void init(ProcessContext ctx) throws java.lang.Exception

• isDrawErrors

public boolean isDrawErrors()

• isKeepOpen

public boolean isKeepOpen()

• processMatchingData

public Data processMatchingData(Data data)

• setCompValue

public void setCompValue(java.lang.String compValue)

• setDrawErrors

public void setDrawErrors(boolean drawErrors)

• setKeepOpen

public void setKeepOpen(boolean keepOpen)

• setKeys

public void setKeys(java.lang.String[] keys)

1.10 Class ShowerCameraPlotter

1.10.1 Declaration

public class ShowerCameraPlotter **extends** DataVisualizer

1.10.2 Constructors

• ShowerCameraPlotter

public ShowerCameraPlotter()

1.10.3 Methods

- getKey public java.lang.String getKey()
- getPanelSize public java.lang.Double getPanelSize()
- getShowerKey public java.lang.String getShowerKey()
- init public void init(ProcessContext ctx) throws java.lang.Exception
- isKeepOpen public boolean isKeepOpen()
- processMatchingData
 public Data processMatchingData(Data data)
- setKeepOpen
 public void setKeepOpen(boolean keepOpen)
- setKey public void setKey(java.lang.String key)
- setPanelSize public void setPanelSize(java.lang.Double panelSize)
- setShowerKey public void setShowerKey(java.lang.String showerKey)

1.11 Class StatusWindow

This opens up a small window containing some information about the currently running stream like number of items per second or the names of the keys in the item. (image file not found) (image file not found)

1.11.1 Declaration

public class StatusWindow **extends** DataVisualizer

1.11.2 Constructors

• StatusWindow public StatusWindow()

1.11.3 Methods

- finish public void finish() throws java.lang.Exception
- getEvery public int getEvery()
- init public void init(ProcessContext ctx) throws java.lang.Exception
- processMatchingData
 public Data processMatchingData(Data data)
- setEvery public void setEvery(int every)

Chapter 2

Package fact.io

Раскаде Соптеть	Page
Classes	
BinaryFactWriter	15
This class writes out FACT events in binary format.	
ByteChunkStream	16
This class implements a fast byte-oriented stream of byte chunks.	
CreateAnimatedGif	17
FitsEventSplitter	10
r its Event spitter	10
FitsStream	18
FitsStream.FitsHeader	19
ReadMCcsv	19
RootASCIIWriter	20
	20
This class writes out FACT events in CSV format. SerializedEventStream	91
Serialized DventStream	21
WeatherStream	22
Weird8ByteChunkStream	23
WStream	<u>2</u> 4

This package contains classes which provide IO functionality Usually they take some sort of Data provided by the FACT-Telescope and put out a Stream of **Data items**. These data items can then be analyzed by any class extending the **Processor** interface of the Streams-Framework

2.1 Class BinaryFactWriter

This class writes out FACT events in binary format. The format for each event is exactly 1440 * ROI double values. By default the data is expected to be contained in the "Data" property of the input.

2.1.1 Declaration

public class BinaryFactWriter
extends CsvWriter

2.1.2 Constructors

• BinaryFactWriter public BinaryFactWriter()

2.1.3 Methods

- finish
 - public void finish() throws java.lang.Exception
 - See also
 - * stream.io.CsvWriter#close()
- getFile

public java.lang.String getFile()

- **Returns** the file
- getKey

public java.lang.String getKey()

- Returns the key
- init

public void init(ProcessContext ctx) throws java.lang.Exception

- See also
 - * stream.io.CsvWriter#init(stream.ProcessContext)
- process

public Data process(Data data)

- See also
 - * stream.DataProcessor#process(stream.Data)
- setFile

public void setFile(java.lang.String file)

- Parameters

```
* file - the file to set
```

• setKey

public void setKey(java.lang.String key)

- Parameters
 - * key the key to set

2.2 Class ByteChunkStream

This class implements a fast byte-oriented stream of byte chunks. The chunks are found by checking for a start-signature (i.e. byte array). The stream returns a sequence of data items, each holding a chunk of bytes.

2.2.1 Declaration

public abstract class ByteChunkStream **extends** AbstractStream

2.2.2 All known subclasses

WStream (in 2.12, page 24), WeatherStream (in 2.10, page 22)

2.2.3 Fields

- public static final byte GIF_SIGNATURE
- public static final byte JPG_SIGNATURE
- public static final int **DEFAULT_BUFFER_SIZE**

2.2.4 Constructors

• ByteChunkStream

public ByteChunkStream(SourceURL url, byte[] signature) throws
java.lang.Exception

2.2.5 Methods

- close
 - public void close() throws java.lang.Exception
 - See also
 - * stream.io.DataStream#close()
- getBufferSize

public int getBufferSize()

- **Returns** - the bufferSize

• init

public void init() throws java.lang.Exception

- See also
 - * stream.io.AbstractDataStream#init()
- readNext

public synchronized Data readNext() throws java.lang.Exception

- See also
 - * stream.io.AbstractDataStream#readItem(stream.data.Data)
- setBufferSize

public void setBufferSize(ByteSize bufferSize)

- Parameters
 - * bufferSize the bufferSize to set

2.3 Class CreateAnimatedGif

2.3.1 Declaration

public class CreateAnimatedGif **extends** java.lang.Object

2.3.2 Constructors

• CreateAnimatedGif public CreateAnimatedGif()

2.3.3 Methods

• createAnimatedGif

public static java.io.File createAnimatedGif(java.io.File out, java.util.Date date, java.lang.Integer run, Data event, int start, int end, int step)

• main

public static void main(java.lang.String[] args) throws java.lang.Exception

- Parameters
 - * args -

2.4 Class FitsEventSplitter

2.4.1 Declaration

public class FitsEventSplitter
extends java.lang.Object

2.4.2 Constructors

• FitsEventSplitter public FitsEventSplitter()

2.4.3 Methods

• main

public static void main(java.lang.String[] args) throws java.lang.Exception

- Parameters

```
* args -
```

• store

public static void store(Data item, java.io.File file) throws java.lang.Exception

2.5 Class FitsStream

2.5.1 Declaration

public class FitsStream **extends** AbstractStream

2.5.2 Constructors

• FitsStream
public FitsStream(SourceURL url)

2.5.3 Methods

• init

public void init() throws java.lang.Exception

- Description

This consists of 3 steps 1. Get the size of the fits header. A header contains 2 subheaders. We ingnore the first one and read the second one until we reach "END" From the line read we get the header size since we know its a multiple of the blocksize (2880) 2. Then we parse the headers for the number of fields the fits file contains. 3. Each file has a name, datatype and a number of elements. The header is parsed again

• readHeader

public FitsStream. FitsHeader $readHeader(java.io.InputStream\ in)$ throws java.io.IOException

• readNext

public Data readNext() throws java.lang.Exception

Description

this parses an event from the datastream and the bytebuffer in case we read alot of shorts(more than 128) We use a NIO buffer to load a complete bunch of bytes and interpret them as a short array

2.6 Class FitsStream.FitsHeader

2.6.1 Declaration

public class FitsStream.FitsHeader **extends** java.lang.Object

2.6.2 Constructors

• FitsStream.FitsHeader
public FitsStream.FitsHeader(byte[] data)

2.6.3 Methods

- getLines
 public java.lang.String[] getLines()
- toString public java.lang.String toString()

2.7 Class ReadMCcsv

2.7.1 Declaration

 $\begin{array}{l} public \ class \ ReadMCcsv \\ \textbf{extends} \ AbstractLineStream \end{array}$

2.7.2 Fields

• public static java.lang.String newline

2.7.3 Constructors

• ReadMCcsv public ReadMCcsv(SourceURL url)

2.7.4 Methods

• getCommentString

public java.lang.String getCommentString()

• getDelimiter

public java.lang.String getDelimiter()

• getFileUrl

public java.lang.String getFileUrl()

• getKeys

public java.lang.String[] getKeys()

• getPreprocessors

public java.util.List getPreprocessors()

• getTemplate

public java.lang.String getTemplate()

init

public void init() throws java.lang.Exception

• readNext

public Data readNext() throws java.lang.Exception

• readNext

public Data readNext(Data datum) throws java.lang.Exception

• setCommentString

public void setCommentString(java.lang.String commentString)

• setDelimiter

public void setDelimiter(java.lang.String delimiter)

• setFileUrl

public void setFileUrl(java.lang.String gnuPlotPath)

• setKeys

public void setKeys(java.lang.String[] keys)

• setTemplate

public void setTemplate(java.lang.String template)

2.8 Class RootASCIIWriter

This class writes out FACT events in CSV format. The format for each event is exactly 1440 * ROI double values. By default the data is expected to be contained in the "Data" property of the input.

2.8.1 Declaration

public class RootASCIIWriter **extends** CsvWriter

2.8.2 Constructors

• RootASCIIWriter public RootASCIIWriter()

2.8.3 Methods

• finish

public void finish() throws java.lang.Exception

- See also
 - * stream.io.CsvWriter#close()
- getKeys

public java.lang.String[] getKeys()

- Returns the key
- init

public void init(ProcessContext ctx) throws java.lang.Exception

• isWriteTreeDescriptor

public boolean isWriteTreeDescriptor()

• process

public Data process(Data data)

- See also
 - * stream.DataProcessor#process(stream.Data)
- setKeys

public void setKeys(java.lang.String[] keys)

- Parameters
 - * key the key to set
- setWriteTreeDescriptor

public void setWriteTreeDescriptor(boolean writeTreeDescriptor)

2.9 Class SerializedEventStream

2.9.1 Declaration

public class SerializedEventStream **extends** AbstractStream

2.9.2 Constructors

- SerializedEventStream

 public SerializedEventStream(java.io.File file) throws java.lang.Exception
 - Parameters
 - * url -
 - Throws
 - * java.lang.Exception -
- SerializedEventStream
 public SerializedEventStream(SourceURL sUrl) throws java.lang.Exception

2.9.3 Methods

- close
 - public void close()
 - See also
 - * stream.io.DataStream#getPreprocessors()
- getId

```
public java.lang.String getId()
```

• init

public void init() throws java.lang.Exception

- readNext
 - $\verb"public Data" \ \mathbf{read} \mathbf{Next} (\texttt{)} \ \texttt{throws java.lang.Exception}$
 - See also
 - * stream.io.DataStream#readNext()
- readNext

public Data readNext(Data datum) throws java.lang.Exception

- See also
 - $*\ stream.io.DataStream\#readNext(stream.Data)\\$
- setId

 $\verb"public void setId" (java.lang.String id")$

2.10 Class WeatherStream

2.10.1 Declaration

```
public class WeatherStream extends fact.io.ByteChunkStream (in 2.2, page 16)
```

2.10.2 Fields

• public static final int MAX_MESSAGE_LENGTH

2.10.3 Constructors

• WeatherStream
public WeatherStream(SourceURL url) throws java.lang.Exception

2.10.4 Methods

- checksum

 public void checksum(byte[] msg)
- getHex public static java.lang.String getHex(byte[] bytes, int len)
- getHex public static java.lang.String getHex(byte[] bytes, int off, int len)
- init public void init() throws java.lang.Exception
 - See also
 - * stream.io.AbstractStream#init()
- isDebug public boolean isDebug()
 - **Returns** the debug
- read
 - - * stream.io.AbstractStream#readNext()
- readMessage public byte[] readMessage() throws java.lang.Exception
- setDebug
 public void setDebug(boolean debug)
 - Parameters* debug the debug to set

2.11 Class Weird8ByteChunkStream

2.11.1 Declaration

public class Weird8ByteChunkStream ${f extends}$ java.io.InputStream

2.11.2 Constructors

• Weird8ByteChunkStream
public Weird8ByteChunkStream(java.io.InputStream in)

2.11.3 Methods

• read

```
public int read() throws java.io.IOException
```

- See also
 - * java.io.InputStream.read()
- sleep public void sleep(int ms)

2.12 Class WStream

2.12.1 Declaration

```
public class WStream extends fact.io.ByteChunkStream (in 2.2, page 16)
```

2.12.2 Fields

• public static final byte SIG

2.12.3 Constructors

• WStream

public WStream(SourceURL url) throws java.lang.Exception

Chapter 3

Package fact.processors

Package Contents	Page
Interfaces FactEvent	
Classes	
CreateHistogram	27
CutSlices	28
CutValues	29
This operator simply cuts all values below and above the min and maxValue.	
Diff	30
DrsCalibration	30
This processor handles the DRS calibration.	
ExFit	32
ExponentialSmoothing	32
Calculates first Order exponential Smoothing Let y be the original Series and s be the smoothed one.	
FirFilter	33
This class implements a simple Fir-Filter.	
InterpolateBadPixel	33
MaxAmplitude	34
This processor simply calculates the maximum value for all time slices in each Pixel.	or.
MaxAmplitudePosition	$\dots 35$

This processor simply calculates the position of the maximum value for all time slices in each Pixel.
MotionDiff
This operator calculates between data[i] and data[i+offset] for each pixel in
each event and stores the result as a float array named outputKey.
MovingAverage
MultiplyValues
This operator simply multiplies all values by the given factor.
PixelAverage
This operator calculates the average of all the slices in each Pixel and stores
the result as a double array.
Quantiles
RemoveJumps38
Short2Float39
SimpleFactEventProcessor
Circula Foot Divisi Duo saggan
SimpleFactPixelProcessor
processor that operates on a single pixel and returns a single value for each
one.
SliceNormalization41
SliceQuantileDiscretization
StdClean
This processor identifies showerPixel in the image array by comparing the
data in a pixel with some other time series.
StdDeviation
This Processor calculates the Standarddeviation of the slices in each pixel.
SumKey
This operator simply sums up all values with the given key.
ThresholdEventCounter45
ThresholdPixelCounter
This processor counts the number of Pixels in each event that have a value
>maxValue.

3.1 Interface FactEvent

This is an implementation of the Data item interface that provides easy access to all pixels of an event by their SoftID.

3.1.1 Declaration

public interface FactEvent

3.1.2 Fields

- java.lang.String **DATA_KEY**
- java.lang.String **EVENT_ID_KEY**
- java.lang.String TRIGGER_NUM_KEY
- java.lang.String TRIGGER_TYPE_KEY
- \bullet int NUM_OF_PIXELS
- fact.viewer.ui.DefaultPixelMapping PIXEL_MAPPING

3.2 Class CreateHistogram

3.2.1 Declaration

public class CreateHistogram extends fact.processors.SimpleFactEventProcessor (in 3.20, page 39)

3.2.2 Constructors

• CreateHistogram public CreateHistogram()

3.2.3 Methods

- getMax public float getMax()
- getMin public float getMin()
- getNumberOfBins public int getNumberOfBins()
- init public void init(ProcessContext context)
- processSeries

 public int[] processSeries(float[] data)
- setMax public void setMax(float maxBin)
- setMin public void setMin(float minbin)

• setNumberOfBins public void setNumberOfBins(int numberOfBins)

3.3 Class CutSlices

3.3.1 Declaration

public class CutSlices **extends** java.lang.Object

3.3.2 Constructors

• CutSlices public CutSlices()

3.3.3 Methods

• getEnd

public java.lang.Integer getEnd()

- Returns the end
- \bullet getKeys

public java.lang.String[] getKeys()

- **Returns** the keys
- getStart

public java.lang.Integer getStart()

- Returns the start
- main

public static void main(java.lang.String[] args)

• process

public Data process(Data data)

- See also
 - * stream.DataProcessor#process(stream.Data)
- setEnd

public void setEnd(java.lang.Integer end)

- Parameters
 - * end the end to set
- setKeys

public void setKeys(java.lang.String[] keys)

- Parameters

```
* keys - the keys to set
```

• setStart

```
public void setStart(java.lang.Integer start)
```

- Parameters
 - * start the start to set

3.4 Class CutValues

This operator simply cuts all values below and above the min and maxValue.

3.4.1 Declaration

public class CutValues **extends** java.lang.Object

3.4.2 Constructors

• CutValues public CutValues()

3.4.3 Methods

- getKeys

 public java.lang.String[] getKeys()
- getMaxValue public java.lang.Float getMaxValue()
- getMinValue public java.lang.Float getMinValue()
- process
 public Data process(Data event)
 - See also
 - * stream.DataProcessor#process(stream.Data)
- setKeys

 public void setKeys(java.lang.String[] keys)
- setMaxValue public void setMaxValue(java.lang.Float maxValue)
- setMinValue public void setMinValue(java.lang.Float minValue)

3.5 Class Diff

This operator calculates the difference of all the slices in each Pixel between two arrays given by the keys keyA and keyB and stores the result as a float array named outputKey.

3.5.1 Declaration

public class Diff **extends** java.lang.Object

3.5.2 Constructors

• Diff public Diff()

3.5.3 Methods

- getKeyA public java.lang.String getKeyA()
- getKeyB public java.lang.String getKeyB()
- getOutputKey public java.lang.String getOutputKey()
- process

 public Data process(Data input)
 - See also
 - * stream.DataProcessor#process(stream.Data)
- setKeyA public void setKeyA(java.lang.String keyA)
- setKeyB

 public void setKeyB(java.lang.String keyB)
- setOutputKey public void setOutputKey(java.lang.String output)

3.6 Class DrsCalibration

This processor handles the DRS calibration. It requires a DRS data source either as File or URL and will read the DRS data from that. This data is then applied to all FactEvents processed by this class.

3.6.1 Declaration

public class DrsCalibration **extends** java.lang.Object

3.6.2 Constructors

• DrsCalibration public DrsCalibration()

3.6.3 Methods

ullet applyDrsCalibration

public float[] applyDrsCalibration(float[] data, float[] destination,
short[] StartCellVector)

• getColor

public java.lang.String getColor()

• getOutputKey

public java.lang.String getOutputKey()

• getPathToAuxfiles

public java.lang.String getPathToAuxfiles()

• process

public Data process(Data data)

- See also
 - * fact.data.FactProcessor#process(stream.Data)
- setColor

public void setColor(java.lang.String color)

• setOutputKey

 $\verb"public void setOutputKey" (java.lang.String outputKey")$

• setPathToAuxfiles

public void setPathToAuxfiles(java.lang.String pathToAuxfiles)

• setUrl

public void setUrl(java.lang.String urlString)

• setUrl

public void setUrl(java.net.URL url)

3.7 Class ExFit

This operator does a very simple fit of an exp-function to the data in each pixel. The function is simple section-wise defined curve based on the load and unload cycles of a traditional capacity. The peak postion and amplitude will be set according to the values the MaxAmplitude Processor. This is not supposed to generate a good fit. Its intention is to identify showerpixel via the StdClean Processor.

3.7.1 Declaration

```
public class ExFit extends fact.processors.SimpleFactEventProcessor (in 3.20, page 39)
```

3.7.2 Constructors

• ExFit public ExFit()

3.7.3 Methods

• processSeries

public float[] processSeries(float[] value)

3.8 Class Exponential Smoothing

Calculates first Order exponential Smoothing Let y be the original Series and s be the smoothed one. $s_0 = y_0 + s_i = alpha^*y_i + (1-alpha)^* + s_i + (1-alpha)^*$ see http://en.wikipedia.org/wiki/Exponential_smoothing

3.8.1 Declaration

```
public class ExponentialSmoothing extends fact.processors.SimpleFactEventProcessor (in 3.20, page 39)
```

3.8.2 Constructors

• ExponentialSmoothing public ExponentialSmoothing()

3.8.3 Methods

- getAlpha
 public float getAlpha()
- processSeries public float[] processSeries(float[] data)

• setAlpha
public void setAlpha(float alpha)

3.9 Class FirFilter

This class implements a simple Fir-Filter. See http://en.wikipedia.org/wiki/Fir_filter for Details. The coefficients of the are stored in an array {n, n-1, n-2, ..}. Values outside of the data domain are treated as zeroes.

3.9.1 Declaration

public class FirFilter extends fact.processors.SimpleFactEventProcessor (in 3.20, page 39)

3.9.2 Constructors

• FirFilter public FirFilter()

3.9.3 Methods

- getCoefficents public double[] getCoefficents()
- getTemplate public java.lang.String getTemplate()
- processSeries

 public float[] processSeries(float[] data)
- setCoefficents
 public void setCoefficents(double[] coefficents)
- setTemplate public void setTemplate(java.lang.String templateString)

3.10 Class InterpolateBadPixel

This Processor interpolates all values for a broken Pixel by the average values of its neighboring Pixels.

3.10.1 Declaration

public class InterpolateBadPixel extends fact.processors.SimpleFactEventProcessor (in 3.20, page 39)

3.10.2 Constructors

• InterpolateBadPixel public InterpolateBadPixel()

3.10.3 Methods

- getBadChidIds public int[] getBadChidIds()
- processSeries public float[] processSeries(float[] series)
- setBadChidIds public void setBadChidIds(java.lang.String[] badChIdStrings)

3.11 Class MaxAmplitude

This processor simply calculates the maximum value for all time slices in each Pixel. The output is a float array

3.11.1 Declaration

public class MaxAmplitude **extends** fact.processors.SimpleFactPixelProcessor (in 3.21, page 40)

3.11.2 Constructors

• MaxAmplitude public MaxAmplitude()

3.11.3 Methods

- getMaxValue public float getMaxValue()
- getMinValue public float getMinValue()
- processPixel
 public abstract float processPixel(float[] pixelData)
- setMaxValue public void setMaxValue(float maxValue)
- setMinValue public void setMinValue(float minValue)

3.12 Class MaxAmplitudePosition

This processor simply calculates the position of the maximum value for all time slices in each Pixel. outputs an int array

3.12.1 Declaration

public class MaxAmplitudePosition **extends** fact.processors.SimpleFactEventProcessor (in 3.20, page 39)

3.12.2 Constructors

• MaxAmplitudePosition public MaxAmplitudePosition()

3.12.3 Methods

- getMaxValue public float getMaxValue()
- getMinValue public float getMinValue()
- processSeries

 public int[] processSeries(float[] data)
- setMaxValue
 public void setMaxValue(float maxValue)
- setMinValue
 public void setMinValue(float minValue)

3.13 Class MotionDiff

This operator calculates between data[i] and data[i+offset] for each pixel in each event and stores the result as a float array named outputKey. "br>if i+offset is greater or smaller the current window the first respectively the last value will be continued.

3.13.1 Declaration

public class MotionDiff extends fact.processors.SimpleFactEventProcessor (in 3.20, page 39)

3.13.2 Constructors

• MotionDiff public MotionDiff()

3.13.3 Methods

- getOffset public int getOffset()
- processSeries

 public float[] processSeries(float[] data)
- setOffset
 public void setOffset(int offset)

3.14 Class MovingAverage

3.14.1 Declaration

public class MovingAverage **extends** fact.processors.SimpleFactEventProcessor (in 3.20, page 39)

3.14.2 Constructors

• MovingAverage public MovingAverage()

3.14.3 Methods

- getLength public int getLength()
- processSeries public float[] processSeries(float[] data)
- setLength public void setLength(int length)

3.15 Class MultiplyValues

This operator simply multiplies all values by the given factor.

3.15.1 Declaration

public class MultiplyValues **extends** fact.processors.SimpleFactEventProcessor (in 3.20, page 39)

3.15.2 Constructors

• MultiplyValues public MultiplyValues()

3.15.3 Methods

- getFactor public float getFactor()
- processSeries public float[] processSeries(float[] data)
- setFactor public void setFactor(float threshold)

3.16 Class PixelAverage

This operator calculates the average of all the slices in each Pixel and stores the result as a double array.

3.16.1 Declaration

public class PixelAverage **extends** java.lang.Object

3.16.2 Constructors

- PixelAverage public PixelAverage()
- PixelAverage public PixelAverage(java.lang.String key)

3.16.3 Methods

- getKey public java.lang.String getKey()
- getOutput public java.lang.String getOutput()
- process

 public Data process(Data input)
 - See also
 - * stream.DataProcessor#process(stream.Data)
- processEvent

 public double[] processEvent(Data input, java.lang.String key)
- processSeries

 public double[] processSeries(float[] series)

- setKey public void setKey(java.lang.String key)
- setOutput
 public void setOutput(java.lang.String output)

3.17 Class Quantiles

3.17.1 Declaration

public class Quantiles **extends** java.lang.Object

3.17.2 Constructors

• Quantiles public Quantiles(int slice, float[] image)

3.17.3 Methods

- getQuantile public float getQuantile(double phi)
- print public void print(java.lang.Double[] phis)

3.18 Class RemoveJumps

3.18.1 Declaration

public class RemoveJumps **extends** java.lang.Object

3.18.2 Constructors

• RemoveJumps public RemoveJumps()

3.18.3 Methods

- getColor public java.lang.String getColor()
- getKey public java.lang.String getKey()
- getOutputKey public java.lang.String getOutputKey()

• process

public Data process(Data input)

- Description

Each event contains the StartCellData array which contains the current starcell for each pixel. We save the previous 50 events in the previousStartCells previousStartCells. Which is a linked list containing 50 startcelldata arrays

• setColor

public void setColor(java.lang.String color)

\bullet setKey

public void setKey(java.lang.String key)

• setOutputKey

public void setOutputKey(java.lang.String outputKey)

3.19 Class Short2Float

3.19.1 Declaration

public class Short2Float **extends** java.lang.Object

3.19.2 Constructors

• Short2Float public Short2Float()

3.19.3 Methods

• process
public Data process(Data item)

3.20 Class SimpleFactEventProcessor

3.20.1 Declaration

public abstract class SimpleFactEventProcessor **extends** java.lang.Object

3.20.2 All known subclasses

MovingAverage (in 3.14, page 36), InterpolateBadPixel (in 3.10, page 33), FirFilter (in 3.9, page 33), MotionDiff (in 3.13, page 35), MaxAmplitude (in 3.11, page 34), ThresholdEventCounter (in 3.27, page 45), ExponentialSmoothing (in 3.8, page 32), MultiplyValues (in 3.15, page 36), ThresholdPixelCounter (in 3.28, page 46), SumKey (in 3.26, page 45), CreateHistogram (in 3.2, page 27), SimpleFactPixel-Processor (in 3.21, page 40), ExFit (in 3.7, page 32), MaxAmplitudePosition (in 3.12, page 35), RemoveSpikesMars (in 4.6, page 53)

3.20.3 Constructors

• SimpleFactEventProcessor public SimpleFactEventProcessor()

3.20.4 Methods

- finish public void finish()
- getColor public java.lang.String getColor()
- getKey public java.lang.String getKey()
- getOutputKey
 public java.lang.String getOutputKey()
- init public void init(ProcessContext context)
- process

 public Data process(Data input)
- processSeries

 public abstract java.io.Serializable processSeries(java.io.Serializable data)
- resetState public void resetState()
- setColor public void setColor(java.lang.String color)
- setKey public void setKey(java.lang.String key)
- setOutputKey public void setOutputKey(java.lang.String outputKey)

${\bf 3.21}\quad {\bf Class~Simple Fact Pixel Processor}$

This class provides a simple Interface for someone who wants to build a processor that operates on a single pixel and returns a single value for each one.

3.21.1 Declaration

public abstract class SimpleFactPixelProcessor **extends** fact.processors.SimpleFactEventProcessor (in 3.20, page 39)

3.21.2 All known subclasses

MaxAmplitude (in 3.11, page 34)

3.21.3 Constructors

• SimpleFactPixelProcessor public SimpleFactPixelProcessor()

3.21.4 Methods

- processPixel

 public abstract float processPixel(float[] pixelData)
- processSeries

 public float[] processSeries(float[] data)

3.22 Class SliceNormalization

3.22.1 Declaration

public class SliceNormalization **extends** AbstractProcessor

3.22.2 Constructors

- SliceNormalization public SliceNormalization()
- SliceNormalization
 public SliceNormalization(java.lang.String[] keys)

3.22.3 Methods

• getKeys

```
public java.lang.String[] getKeys()
```

- **Returns** the keys
- isOverwrite

public boolean isOverwrite()

• process

public Data process(Data input)

- See also
 - * stream.Processor#process(stream.Data)
- processEvent

```
public float[] processEvent(Data input, java.lang.String key)
```

- processSeries

 public float[] processSeries(float[] value)
- setKeys

 public void setKeys(java.lang.String[] keys)
 - Parameters
 - * keys the keys to set
- setOverwrite

 public void setOverwrite(boolean overwrite)

3.23 Class SliceQuantileDiscretization

3.23.1 Declaration

public class SliceQuantileDiscretization **extends** java.lang.Object

3.23.2 Constructors

• SliceQuantileDiscretization public SliceQuantileDiscretization()

3.23.3 Methods

• getBins

public java.lang.Integer getBins()

- **Returns** the bins
- getKey

public java.lang.String getKey()

- **Returns** the key
- process

public Data process(Data input)

- See also
 - * stream.Processor#process(stream.Data)
- setBins

public void setBins(java.lang.Integer bins)

- Parameters
 - * bins the bins to set
- setKey

public void setKey(java.lang.String key)

- Parameters

* key - the key to set

3.24 Class StdClean

This processor identifies showerPixel in the image array by comparing the data in a pixel with some other time series. To compare two series the squared absolute difference between the two series is calculated. If the difference is less than the given showerthreshold the pixel will be added to the showerpixel list. The operator also calculates the number unconnected subsets in the showerPixel set.

3.24.1 Declaration

public class StdClean **extends** java.lang.Object

3.24.2 Constructors

• StdClean public StdClean()

3.24.3 Methods

- getInKey public java.lang.String getInKey()
- getKey public java.lang.String getKey()
- getOutput public java.lang.String getOutput()
- getShowerThreshold
 public double getShowerThreshold()
- process
 public Data process(Data input)
 - See also
 - * stream.DataProcessor#process(stream.Data)
- processEvent

 $\verb|public java.util.ArrayList processEvent(Data input, java.lang.String key)|\\$

• processSeries

```
public java.util.ArrayList processSeries(float[] data)
```

• processSeries

public java.util.ArrayList processSeries(float[] series, double t)

• setInKey

public void setInKey(java.lang.String inKey)

• setKey

public void setKey(java.lang.String key)

• setOutput

public void setOutput(java.lang.String output)

• setShowerThreshold

public void setShowerThreshold(double showerThreshold)

3.25 Class StdDeviation

This Processor calculates the Standarddeviation of the slices in each pixel. It uses the Average Processor to calculate the average value in apixel.

3.25.1 Declaration

public class StdDeviation **extends** java.lang.Object

3.25.2 Constructors

• StdDeviation

public StdDeviation()

• StdDeviation

public StdDeviation(java.lang.String[] keys)

3.25.3 Methods

• getKeys

public java.lang.String[] getKeys()

- **Returns** - the keys

• process

public Data process(Data input)

- See also
 - * stream.DataProcessor#process(stream.Data)

• processEvent

public double[] processEvent(Data input, java.lang.String key)

- processSeries

 public double[] processSeries(float[] data)
- setKeys

 public void setKeys(java.lang.String[] keys)
 - Parameters
 - * keys the keys to set

3.26 Class SumKey

This operator simply sums up all values with the given key.

3.26.1 Declaration

```
public class SumKey extends fact.processors.SimpleFactEventProcessor (in 3.20, page 39)
```

3.26.2 Constructors

• SumKey public SumKey()

3.26.3 Methods

• processSeries

public java.lang.Double processSeries(float[] data)

3.27 Class ThresholdEventCounter

3.27.1 Declaration

```
public class ThresholdEventCounter extends fact.processors.SimpleFactEventProcessor (in 3.20, page 39)
```

3.27.2 Constructors

• ThresholdEventCounter public ThresholdEventCounter()

3.27.3 Methods

• processSeries public java.lang.Long processSeries(float[] data)

3.28 Class ThresholdPixelCounter

This processor counts the number of Pixels in each event that have a value >maxValue.

3.28.1 Declaration

public class Threshold PixelCounter ${\bf extends}$ fact.processors. SimpleFactEventProcessor (in 3.20, page 39)

3.28.2 Constructors

• ThresholdPixelCounter public ThresholdPixelCounter()

3.28.3 Methods

- getMaxValue public float getMaxValue()
- processSeries public java.lang.Long processSeries(float[] data)
- setMaxValue public void setMaxValue(float maxValue)

Chapter 4

Package fact.processors.parfact

Package Contents	Page
Classes	
CalcSourcePosition	47
This is supposed to calculate the position of the source in the camera.	
CalculatePhotonCharge	48
This processor Calculates PhotonCharge by doing the following: 1.	
CoreNeighborClean	49
CoreNeighborClean.	
HillasParameter	50
Calculates the Hillas Parameter from the Ellipse.	
MonteCarloCalibration	52
This operator simply multiplies all values by the given factor.	
RemoveSpikesMars	53
Supposedly removes all spikes in the data.	
RisingEdge	53
TODO: this needs to be redone.	
ShowerEllipse	55

4.1 Class CalcSourcePosition

This is supposed to calculate the position of the source in the camera. Original C++ Code by F.Temme

4.1.1 Declaration

public class CalcSourcePosition **extends** java.lang.Object

4.1.2 Constructors

• CalcSourcePosition public CalcSourcePosition()

4.1.3 Methods

- getOutputKey public java.lang.String getOutputKey()
- getSourceDeclination public double getSourceDeclination()
- getSourceRightAscension public double getSourceRightAscension()
- process
 public Data process(Data data)
 - See also
 - * fact.data.FactProcessor#process(stream.Data)
- setOutputKey
 public void setOutputKey(java.lang.String outputKey)
- setSourceDeclination public void setSourceDeclination(double sourceDeclination)
- setSourceRightAscension
 public void setSourceRightAscension(double sourceRightAscension)
- setUrl public void setUrl(java.lang.String urlString)
- setUrl public void setUrl(java.net.URL url)

4.2 Class CalculatePhotonCharge

This processor Calculates PhotonCharge by doing the following: 1. Use the MaxAmplitude Processor to find the maximum Value in the slices. 2. In the area between amplitudePosition...amplitudePosition-25 search for the position having 0.5 of the original maxAmplitude. 3. Now for some reason sum up all slices between half_max_pos and half_max_pos + 30. 4. Divide the sum by the integralGain and save the result. Treatment of edge Cases is currently very arbitrary since Pixels with these values should not be considered as showerPixels anyways.

4.2.1 Declaration

public class CalculatePhotonCharge **extends** java.lang.Object

4.2.2 Constructors

• CalculatePhotonCharge public CalculatePhotonCharge()

4.2.3 Methods

- getIntegralGain
 public float getIntegralGain()
- getKey public java.lang.String getKey()
- getOutputKey public java.lang.String getOutputKey()
- process

 public Data process(Data input)
- setIntegralGain public void setIntegralGain(float integralGain)
- setKey public void setKey(java.lang.String key)
- setOutputKey public void setOutputKey(java.lang.String outputKey)
- setPositions public void setPositions(java.lang.String positions)

4.3 Class CoreNeighborClean

CoreNeighborClean. Identifies showerPixel in the image array. Cleaning in three Steps: 1) Identify all Core Pixel (Photoncharge higher than corePixelThreshold) 2) Remove all Single Core Pixel 3) Add all Neighbor Pixel, whose Photoncharge is higher than neighborPixelThreshold

4.3.1 Declaration

public class CoreNeighborClean **extends** java.lang.Object

4.3.2 Constructors

• CoreNeighborClean public CoreNeighborClean()

4.3.3 Methods

- getCorePixelThreshold public float getCorePixelThreshold()
- getKey public java.lang.String getKey()
- getMinSize public int getMinSize()
- getNeighborPixelThreshold public float getNeighborPixelThreshold()
- getOutputKey public java.lang.String getOutputKey()
- process

 public Data process(Data input)
- setCorePixelThreshold public void setCorePixelThreshold(float corePixelThreshold)
- setKey public void setKey(java.lang.String key)
- setMinSize public void setMinSize(int minSize)
- setNeighborPixelThreshold public void setNeighborPixelThreshold(float neighborPixelThreshold)
- setOutputKey public void setOutputKey(java.lang.String output)

4.4 Class HillasParameter

Calculates the Hillas Parameter from the Ellipse. Some processor to identify showerpixels has to be run before. void HillasParameter::CalculateParameter() { if (mVerbosityLevel >9) { cout "HillasParameter::CalculateParameter() called" endl; } SetAllParameterToZero(); CalculateNumberOfIslands(); CalculateSize(); CalculateLeakage(); CalculateConcentration(); CalculateCenterOfGravity(); CalculateEllipse(); CalculateSourceParameter(); CalculateAsymmetry(); }

4.4.1 Declaration

public class HillasParameter **extends** java.lang.Object

4.4.2 Constructors

• HillasParameter public HillasParameter()

4.4.3 Methods

• calculateSize

public float calculateSize(int[] showerPixelArray, float[] photon-Charges)

Description

calculates the sum of all photoncharges for all showerPixel

 $\bullet \ getCorePixelThreshold \\$

public float getCorePixelThreshold()

• getKey

public java.lang.String getKey()

• getMinSize

public int getMinSize()

• getNeighborPixelThreshold

public float getNeighborPixelThreshold()

• getOutputKey

public java.lang.String getOutputKey()

• getPhotonEquivalent

public java.lang.String getPhotonEquivalent()

• getPixels

public java.lang.String getPixels()

• getShowerThreshold

public double getShowerThreshold()

• getSourcePosition

public java.lang.String getSourcePosition()

• process

public Data process(Data input)

- See also
 - * stream.DataProcessor#process(stream.Data)
- processEvent

public void processEvent(Data input, java.lang.String key)

• processSeries

public void processSeries(float[] value)

- setCorePixelThreshold public void setCorePixelThreshold(float corePixelThreshold)
- setKey public void setKey(java.lang.String key)
- setMinSize public void setMinSize(int minSize)
- setNeighborPixelThreshold public void setNeighborPixelThreshold(float neighborPixelThreshold)
- setOutputKey
 public void setOutputKey(java.lang.String outputKey)
- setPhotonEquivalent public void setPhotonEquivalent(java.lang.String photonEquivalent)
- setPixels

 public void setPixels(java.lang.String pixels)
- setShowerThreshold
 public void setShowerThreshold(double showerThreshold)
- setSourcePosition public void setSourcePosition(java.lang.String sourcePosition)

4.5 Class MonteCarloCalibration

This operator simply multiplies all values by the given factor.

4.5.1 Declaration

public class MonteCarloCalibration **extends** java.lang.Object

4.5.2 Constructors

• MonteCarloCalibration public MonteCarloCalibration()

4.5.3 Methods

- getFactor public float getFactor()
- getKeys
 public java.lang.String[] getKeys()

- getOffset public float getOffset()
- isOverWrite public boolean isOverWrite()
- process

 public Data process(Data event)
 - See also
 - * stream.DataProcessor#process(stream.Data)
- setFactor public void setFactor(float threshold)
- setKeys

 public void setKeys(java.lang.String[] keys)
- setOffset public void setOffset(float offset)
- setOverWrite public void setOverWrite(boolean overWrite)

4.6 Class RemoveSpikesMars

Supposedly removes all spikes in the data. Original algorithm by F.Temme. Takes a float array and creates a float array as output

4.6.1 Declaration

public class RemoveSpikesMars **extends** fact.processors.SimpleFactEventProcessor (in 3.20, page 39)

4.6.2 Constructors

• RemoveSpikesMars public RemoveSpikesMars()

4.6.3 Methods

• processSeries

public float[] processSeries(float[] data)

4.7 Class RisingEdge

TODO: this needs to be redone. the original code is a joke. talk to fabian about outofbounds errors. Also CFD is better here

4.7.1 Declaration

public class RisingEdge **extends** java.lang.Object

4.7.2 Constructors

- RisingEdge public RisingEdge()
- RisingEdge public RisingEdge(java.lang.String[] keys)

4.7.3 Methods

• getKeys

public java.lang.String[] getKeys()

- **Returns** the keys
- getSearchWindowLeft public int getSearchWindowLeft()
- getSearchWindowRight public int getSearchWindowRight()
- isOverwrite public boolean isOverwrite()
- process
 public Data process(Data input)
 - See also
 - * stream.DataProcessor#process(stream.Data)
- processEvent

public int[] processEvent(Data input, java.lang.String key)

• processSeries

public int[] processSeries(float[] input)

• setKeys

public void setKeys(java.lang.String[] keys)

- Parameters
 - * keys the keys to set
- setOverwrite

public void setOverwrite(boolean overwrite)

 $\bullet \ set Search Window Left \\$

public void setSearchWindowLeft(int searchWindowLeft)

• setSearchWindowRight public void setSearchWindowRight(int searchWindowRight)

4.8 Class ShowerEllipse

4.8.1 Declaration

public class ShowerEllipse **extends** java.lang.Object

4.8.2 Fields

- public double centerX
- public double centerY
- public float mCenterOfGravityX
- public float mCenterOfGravityY
- public double length
- public double width
- public double area
- \bullet public double **mDelta**
- public double mAsymmetryLong
- public double mAsymmetryTrans
- public double mDistance
- public float **alpha**
- public float alphaOff1
- public float alphaOff2
- public float alphaOff3

4.8.3 Constructors

• ShowerEllipse public ShowerEllipse(int[] showerPixel, float[] photonCharge, float source, float source2)

4.8.4 Methods

- calculateAlpha public float calculateAlpha(double source_x, double source_y)
- calculateAsymmetry public void calculateAsymmetry()
- calculateCenterOfGravity public void calculateCenterOfGravity(int[] showerPixel)
- calculateEllipseMars public void calculateEllipseMars()
 - Description
 original code copied from F. Temme's DoFact program.
- calculateSourceParameter public void calculateSourceParameter()