Quantum Computing

A brief introduction

John Manferdelli JohnManferdelli@hotmail.com

© 2021-2025, John L. Manferdelli.

This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for instructional use only.

Beam splitters and QM

I can safely say that no one understands Quantum Mechanics - Feynman

Photon source emits stream of photons.

P(photon arrives at Detector 1)= .5

P(photon arrives at Detector 2)= .5

So far, so good

Beam splitters and QM

Mach-Zender Interferometer

Photon source emits stream of photons.

P(photon arrives at Detector 1)= 0

P(photon arrives at Detector 2)= 1

According to QM

Analysis

Beam splitter causes the photon to go into superposition:

$$\alpha_1|0>+\alpha_2|1>$$
, $|\alpha_1|^2=\frac{1}{2}$, $|\alpha_2|^2=\frac{1}{2}$. $|0>$ state is right, $|1>$ is up. $|0>=\binom{1}{0}$, $|1>=\binom{0}{1}$.

Beam splitter acts on incoming state via the matrix $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$.

In experiment 1, if all photons leave source in state $\binom{1}{0}$, after the splitter they are in state $\frac{1}{\sqrt{2}}\binom{1}{i}$. So, they arrive at detector 1 with probability $\frac{1}{2}$ and detector 2 with probability $\frac{1}{2}$.

However, going through another beam splitter, in experiment 2, yields the output state:

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ i \end{pmatrix}.$$

So, they always arrive at detector 2.

Postulates

- 1. State of a system is a unit vector over $\mathbb C$ in Hilbert space $(\mathcal H)$ of dimension 2^n
 - A qubit is a quantum system, with n=1. A one qubit system is in general state $|\psi>=a|0>+b|1>$, $a\bar{a}+b\bar{b}=1$
- 2. A system, with state, $|\psi(t)>$, evolves according to a unitary operator, namely, $U(|\psi(0)>)$
 - U is unitary if (x, y) = (Ux, Uy). Note $U\overline{U^T} = I$
 - Example is a Hamiltonian: $H(t)|\psi(t)>=\mathrm{i}\hbar\frac{d|\psi(t)>|}{dt}$
 - $|\varphi(t_2)\rangle = e^{-i\hbar H(t_2 t_1)} |\varphi(t_1)\rangle$
- 3. Two physical systems \mathcal{H}_1 and \mathcal{H}_2 can be treated as a single system, $\mathcal{H}_1 \otimes \mathcal{H}_2$. If \mathcal{H}_1 is in state, $|\psi_1>$ and \mathcal{H}_2 is in state, $|\psi_2>$, the joint state is $|\psi_1>$ $\otimes |\psi_2>$
- 4. Given an orthonormal basis $\mathcal{B} = \{\varphi_i\}$, one can perform a von-Neuman measurement \mathcal{H}_A on $|\psi>=\sum_i \alpha_i |\varphi_i>$ that outputs i with probability $|\alpha_i|^2$. It is projective. Further, if $|\psi>=\sum_i \alpha_i |\varphi_i>|\gamma_i>\mathcal{H}_A\otimes\mathcal{H}_B$ measurement yields i with probability $|\alpha_i|^2$ and leaves state in $|\varphi_i>|\gamma_i>$. $M=\sum m_i P_i=\sum m_i \ |i>< i|$

Linear Algebra

- <u>Dirac Notation</u>: Element in Hilbert space of dimension 2^n is represented by n-entry symbol. $|000 \dots 00> \leftrightarrow (1,0,\dots,0)^T, |000 \dots 01> \leftrightarrow (0,1,\dots,0)^T, \dots, |111 \dots 1> \leftrightarrow (0,0,\dots,1)^T$ where column vectors have 2^n coordinates.
- Notation: $|0\rangle \otimes |0\rangle \otimes ... \otimes |0\rangle = |000...0\rangle$
- A is normal if $A\bar{A}^T = \bar{A}^T A$
- <u>Spectral Theorem:</u> If T is a normal operator in the Hilbert space \mathcal{H} , there is an orthonormal basis v_i ; each is an eigenvector of T. For every such , there is a unitary matrix, P, $T = P\Lambda P^*$, and Λ is diagonal.
- Dual basis
- Inner product: $(v_1, v_2, ..., v_n) \cdot (w_1, w_2, ..., w_n) = \sum_{i=0}^n \overline{v_i} w_i$
- Outer product: $(|\psi\rangle\langle\phi|)|\gamma\rangle = |\psi\rangle\langle\langle\phi|\gamma\rangle$
- Theorem: Every linear operator can be written as $T = T_{m,n} |b_m> < b_n|$,
- $T_{m,n} = \langle b_m | T | b_n \rangle$

Linear Algebra (continued)

$$\begin{array}{l} \underline{\text{Tensor product}} \colon \text{If } |\varphi_i> = \binom{\alpha_0}{\alpha_1} \text{ is a basis for } \mathcal{H}_1 \text{ and } |\phi_i> = \binom{\beta_0}{\beta_1} \text{ is a basis for } \mathcal{H}_2 \text{ ,} \\ |\varphi_i> \otimes |\phi_i> \text{ is a basis for } \mathcal{H}_1 \otimes \mathcal{H}_2 \text{ .} \binom{\alpha_0}{\alpha_1} \otimes \binom{\beta_0}{\beta_1} = (\alpha_0\beta_0,\alpha_0\beta_1,\alpha_1\beta_0,\alpha_1\beta_1)^T \text{ .} \\ \alpha_{11}B \quad \dots \quad \alpha_{1n}B \\ A \otimes B = \quad \dots \quad \dots \quad \dots \\ \alpha_{n1}B \quad \dots \quad \alpha_{nn}B \\ \underline{\text{Schmidt decomposition}} \colon \text{If } |\psi> \in \mathcal{H}_1 \otimes \mathcal{H}_2 \text{ , there is an orthonormal basis } |\varphi_i> \\ \text{for } \mathcal{H}_1 \text{ and an orthonormal basis } |\phi_i> \text{ for } \mathcal{H}_2 \text{ and } p_i \geq 0 \text{ such that } |\psi> = \\ \sum_i \sqrt{p_i} \, |\varphi_i> |\phi_i> \end{array}$$

Eigenvector: $T|\psi\rangle = c|\psi\rangle$

 $Tr(A) = \langle b_n | A | b_n \rangle$

More notation

$$A \otimes B = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{pmatrix}, x \otimes y = (x_1y_1, x_1y_2, \dots, x_ny_n)^T$$

$$|v> = (v_1, v_2, \dots, v_n)^T, < w| = (w_1, w_2, \dots, w_n) \text{ then }$$

$$|v>< w| = \begin{array}{cccc} v_1\overline{w_1} & v_1\overline{w_2} & \dots & v_1\overline{w_n} \\ \dots & \dots & \dots & \dots \\ v_n\overline{w_1} & v_n\overline{w_2} & \dots & v_n\overline{w_n} \end{array} \text{, so } I = \sum |\mathrm{i}>< i| \text{ and } M = \sum M_{ij}|\mathrm{i}>< j|$$

Pauli matricies

$$-\sigma_0 = I, \sigma_1 = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \sigma_2 = Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \sigma_3 = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$-[X,Y] = iZ, [Y,Z] = iX, [Z,X] = iY$$

•
$$|+> = \frac{1}{\sqrt{2}}(|0>+|1>), |-> = \frac{1}{\sqrt{2}}(|0>-|1>), |i> = \frac{1}{\sqrt{2}}(|0>+i|1>), |-i> = \frac{1}{\sqrt{2}}(|0>-i|1>)$$

Mixed states and density

- For pure states, $|\psi>$, density is $\rho=|\psi><\psi|$
- Mixed states: $\{(p_1, |\psi_1>), (p_2, |\psi_2>), ..., (p_n, |\psi_n>)\}$, where the probability that the system is in pure state $|\psi_i>$ is p_i and $\sum p_i=1$
- Density operator for mixed state is $\sum p_i |\psi_i><\psi_i|$
- Bloch Sphere
 - Pure state in general position is $|\psi\rangle = \cos\left(\frac{\theta}{2}\right) \left|0\rangle\right| + e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \left|1\rangle$.
 - For mixed state $|\psi_i> = p_i(\alpha_{X,i},\alpha_{Y,i},\alpha_{Z,i})$ on interior of Block sphere
 - $\rho = \sum p_i |\psi_i> <\psi_i|$ evolves as $\rho = \sum p_i |U|\psi_i> <\psi_i|U^{\dagger}$
 - $\rho = \frac{1}{2}I + \alpha_X X + \alpha_Y Y + \alpha_Z Z$
- $P(|0\rangle) = \langle 0|\psi\rangle \langle \psi|0\rangle = Tr\langle 0|\psi\rangle \langle \psi|0\rangle = Tr(|0\rangle \langle 0||\psi\rangle \langle \psi|$

Mixed states and density

- Partial trace: Consider composite system *AB*.
 - $\rho^A = Tr_B(\rho^{AB})$
 - $Tr_B(|a_1> < a_2| \otimes < b_1|) < b_2|) = |a_1> < a_2| Tr(|b_1> < b_2|) = |a_1> < a_2| < b_2|b_1>$
 - Example

•
$$\rho = \frac{1}{2}(|00><00|+|00><11|+|11><00|+|11><11|)$$

$$= \frac{1}{2}Tr(|0><0|\otimes|0>$$

$$<0|+|0><1|\otimes|0><1|+|1><0|\otimes|1><0|+|1><1|\otimes|1><1|)$$

$$= \frac{1}{2}(|0><0|+|1><1|)$$

Circuits and gates

- <u>Universal gate set</u>: A gate set is universal if $\forall n>0$, any n-bit unitary operator can be approximated to arbitrary accuracy by a quantum circuit from this set
- An entangling gate is on that for an input product state $|\alpha > |\beta >$, the output state is not a product state (e.g.-CNOT).
 - Example: $|\psi>=\frac{1}{\sqrt{2}}(|00>+|11>)$
- <u>Theorem:</u> A set of states with an entangling 2-qubit gate together with all 1-qubit gates is universal.
- Theorem: If U is a 1-qubit gate, $U = e^{ix}R_z(\beta)R_y(\gamma)R_z(\delta)$

Gates and states

- General position on Bloch sphere: $|\psi\rangle = \cos\left(\frac{\theta}{2}\right) \left|0\rangle + e^{i\varphi}\sin\left(\frac{\theta}{2}\right)\right|1\rangle$
- Measurement: $I = \sum |i> < i|$, $M = \sum m_i P_i$, M is Hermitian, $P_i = |i> < i|$.
- Controlled gates:
 - $-c U|0 > |\psi > = |0 > |\psi >$
 - $-c-U|1>|\psi>=|1>U|\psi>$

Common gates

Pauli gates

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Note: $X^2 = Y^2 = Z^2 = I$

Rotation

$$R_X(\theta) = \begin{pmatrix} 1 & 0 \\ 0 & e^{iX\theta} \end{pmatrix} = \begin{pmatrix} e^{-iX^{\theta}/2} & 0 \\ 0 & e^{iX^{\theta}/2} \end{pmatrix}$$

• 2 qubit gate

$$CNOT(|xy>) = |x, x \oplus y>$$

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{pmatrix}$$

• If
$$A^2 = 1$$
, $e^{i\theta X} = I\cos(\theta) + iX\sin(\theta)$

Hadamard

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

$$H^{\otimes n}(|0000\dots 0>) = \frac{1}{\sqrt{2}}(|0>+|1>) \otimes \frac{1}{\sqrt{2}}(|0>+|1>) \otimes \dots \otimes \frac{1}{\sqrt{2}}(|0>+|1>)$$

Measurement in alternate basis

- Computational basis is |i>. $U|\varphi_i>=|j>$
- Suppose we want to measure $|\psi\rangle$ with respect to basis $B=\{|\varphi_i\rangle\}$
- $|\psi\rangle = \sum \alpha_i |\varphi_i\rangle$
- To measure wrt $B = \{|\varphi_j>\}$, Project $|\psi>$ onto $|\varphi_j><\varphi_j|$
- $(Tr(|\psi\rangle < \psi||\varphi_i\rangle < \varphi_i|) = Tr(<\varphi_i|\psi\rangle < \psi|\varphi_i\rangle) = \alpha_i^2$
- $\rho = |\psi > < \psi|$ is density operator for the pure state $|\psi >$.
- $\rho = \sum p_i |\psi_i> <\psi_i|$ is the density operator for mixed states $\{(p_i,|\psi_i>)\}$

Converting to Bell Basis

- Computational basis is |i>, $U|\varphi_j>=|j>$
- $|\beta_{00}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), |\beta_{01}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$
- $|\beta_{10}\rangle = \frac{1}{\sqrt{2}}(|00\rangle |11\rangle), |\beta_{11}\rangle = \frac{1}{\sqrt{2}}(|01\rangle |10\rangle)$

- $|\varphi_1> = |00>$
- $|\varphi_2\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)|$
- $|\varphi_3>=|\bar{\beta}_{00}>$

Changing Measurement Basis

• Suppose $|\varphi_i>$ is a basis and our measurement basis is |i>, $U|\varphi_i>=|i>$

Superoperator and mixed states

$$|
ho_{in}>$$
 U $\sum A_i
ho_{in} \overline{A_i}^T$ Garbage

- $\rho = |\psi> <\psi|$, $U|\psi>$ has density $\rho = U|\psi> <\psi|\overline{U}^T> = U\rho U^{\dagger}$
- $<0|\psi><\psi|0>=<0|\rho|0>=P(|0>)$
- $\rho = \sum_i p_i |\psi_i > < \psi_i|$
- $Tr(A) = \langle b_n | A | b_n \rangle$
- $\rho_{in} \to \rho_{out} = Tr_b(U(\rho_{in} \otimes |000 ... > < 000 ... 0 | U^{\dagger})$
- $\rho_{in} \rightarrow \sum A_i \rho_{in} A_i^{\dagger}$, where A_i are Kraus operators with $\sum A_i^{\dagger} A_i = I$

No Cloning Theorem

- Qubits can't be copied
- Proof

Suppose they can be. Then there is an operator, U, such that for any state $|\varphi>$, $U(|\varphi>|0>)=|\varphi>|\varphi>$. Now let $|\psi>$ and $|\phi>$ be non-orthogonal, different pure states.

$$(|\psi > |0 >, |\phi > |0 >) = \langle \psi | \phi > \langle 0 | 0 > = \langle \psi | \phi >.$$

Since U is unitary,

$$<\psi|\phi> = (|\psi>|0>, |\phi>|0>) = (U|\psi>|0>, U|\phi>|0>) = (|\psi>|\psi>, |\phi>|0>) = (|\psi>|\psi>, |\phi>|\phi>) = (|\psi>|\phi>^2)$$
. So, $<\psi|\phi> = 1$. This is a contradiction.

No checkpointing

Parity Circuit

Superdense coding

- Alice and Bob share $|\beta_{00}\rangle$, Alice has first bit, Bob second bit
- Alice performs one of I, X, Y, Z producing $I \otimes I$ (to send 00), $X \otimes I$ (to send 01), $Y \otimes I$ (to send 10) or $Z \otimes I$ (to send 11).
- Bob measures joint state qubit measurement
- Can be used to teleport $|\psi>$:

-
$$I \otimes I := \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \rightarrow \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

-
$$I \otimes I := \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \rightarrow \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

- $X \otimes I := \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \rightarrow \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$
- $Z \otimes I := \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \rightarrow \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle)$

$$-Z \otimes I := \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \rightarrow \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$

-
$$ZX \otimes I := \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \rightarrow \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$$

Deutch

- Problem: Determine f(0) + f(1) in one measurement
- $U_f|x>|y>=|x>|y\oplus f(x)>$
- If f(0) + f(1) = 1, $|\psi_3\rangle = (-1)^{f(0)} |1\rangle \frac{|0\rangle |1\rangle}{\sqrt{2}}$
- If f(0) + f(1) = 0, $|\psi_3\rangle = (-1)^{f(0)} |0\rangle \frac{|0\rangle |1\rangle}{\sqrt{2}}$

Deutch-Josza

- Problem: $f: \{0,1\}^n \to \{0,1\}$, which is either constant or balanced.
- Which is it?
- Put $U_f|x>|y>=|x>|y\oplus f(x)>$, x is an n-bit quantity

DJ

•
$$|\varphi_0> = |0>^{\otimes n} \frac{|0>-|1>}{\sqrt{2}}$$

•
$$|\varphi_1\rangle = \frac{1}{\sqrt{2^n}} \sum_{x} |x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

•
$$|\varphi_2\rangle = \frac{1}{\sqrt{2^n}} \sum_{x} (-1)^{f(x)} |x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

•
$$|\varphi_3\rangle = \frac{1}{2^n} \sum_{x} \sum_{z} |(-1)^{f(x)+x \cdot z} z\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

Simon

- $f: \{0,1\}^n \to X, \exists \ \vec{s} = s_1, s_2, ..., s_n: f(x) = f(y) \ \text{iff} \ x = y \ \text{or} \ x = y + \vec{s}$
- U_f : $|x>|b>=|x>|b \oplus f(x)>$
- $H^{\otimes n}(|x\rangle) = \frac{1}{\sqrt{2^n}} \sum_{z} (-1)^{x \cdot z} |z\rangle$
 - 1. i = 1
 - 2. Prepare $\frac{1}{\sqrt{2^n}}\sum_x |x>|0>$
 - 3. Apply U_f to get $\frac{1}{\sqrt{2^n}}\sum_{x}|x>|f(x)>$
 - 4. Measure second bit
 - 5. Apply $H^{\otimes n}$ to first register
 - 6. Measure first register to get w_i
 - 7. If $din(w_i) \neq n-1$, go to 2
 - 8. Output s: $w^t s^t = 0$

Phase kick back

•
$$CNOT\left(\frac{|0>+|1>}{\sqrt{2}}\frac{|0>-|1>}{\sqrt{2}}\right) = \frac{|0>-|1>}{\sqrt{2}}\frac{|0>-|1>}{\sqrt{2}}$$

Phase Estimation

- Phase estimation problem: Given $|\psi>=rac{1}{\sqrt{2^n}}\sum_y e^{2\pi i\omega y}|y>$, estimate ω
- Theorem: $\frac{x}{2^n} \le \omega \le \frac{x+1}{2^n}$ with probability $\ge \frac{8}{\pi^2}$
- $e^{2\pi i 2^k \cdot x_1 x_2 \cdot \cdot \cdot} = e^{2\pi i (x_{k+1} x_{k+2} \cdot \cdot \cdot)}$
- Suppose $\omega=x_1$, $|\psi>=\frac{1}{\sqrt{2}}\sum_{|y>}e^{2\pi i\omega|y>}=\frac{1}{\sqrt{2}}(|0>+(-1)^{x_1}|1>$ and $H(|\psi>)=|x_1>$
- In general, $H^{\otimes n}(|x>) = \frac{1}{\sqrt{2^n}} \sum_{y} (-1)^{x \cdot y} |y>$ and $H^{\otimes n}(H^{\otimes n}(|x>)) = |x>$
- So, $|\psi\rangle = \frac{1}{\sqrt{2^n}} \sum_{|y\rangle} e^{2\pi i \omega y} |y\rangle = \frac{1}{\sqrt{2}} (\left|0\rangle + e^{2\pi i 2^{n-1} \omega}\right| 1\rangle) \otimes \frac{1}{\sqrt{2}} (\left|0\rangle + e^{2\pi i 2^{n-2} \omega}\right| 1\rangle) \otimes \cdots \otimes \frac{1}{\sqrt{2}} (\left|0\rangle + e^{2\pi i \omega}\right| 1\rangle)$
- Denote $R_n = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i 2^{-n}} \end{pmatrix}$

Quantum Fourier Transform

•
$$H^{\otimes n}(|\mathbf{x}\rangle) = \frac{1}{\sqrt{2^n}} \sum_{\mathbf{y}} (-1)^{\mathbf{x}\cdot\mathbf{y}} |\mathbf{y}\rangle$$

- $H^{\otimes n}(H^{\otimes n}(|x>)) = |x>$
- $QFT_m(|x>) = \frac{1}{\sqrt{m}} \sum_{y=0}^{m-1} e^{2\pi i^x/m^y} |y>$
- $QFT_m^{-1}(|x>) = \frac{1}{\sqrt{m}} \sum_{y=0}^{m-1} e^{-2\pi i^x/m^y} |y>$

Quantum Fourier Circuit

Eigenvalue Estimation

• Suppose $|\psi>$ is an eigenstate of a unitary operator, U, so U $|\psi>=\exp(2\pi i\phi)|\psi>$. $|\phi\phi>=.x_1x_2...x_n$ (a binary expansion)

Eigenvalue Estimation

- Applying QFT to $|0>^{\otimes n}$ produces $\frac{1}{\sqrt{2^n}}\sum_{y=0}^{2^n-1}\exp(2\pi i(\frac{y}{2^n}))|y>$ (same output as previous slide)
- $U|\psi> = \exp(2\pi i\phi) |\psi>$, so $U^{2^j}|\psi> = \exp(2\pi i\phi 2^j) |\psi>$.
- Applying QFT_n^{-1} to ξ , gives $< x_1, x_2, ..., x_n >$, where $|\phi> = x_1x_2...x_n|$
- Measure χ to get ϕ
- $\frac{y}{2^n}$ is a good estimate for $\phi = \frac{j}{r}$

30

Factorization using order finding (Shor)

- Suppose N = pq and $a^r = 1 \pmod{N}$ then $r = 0 \pmod{\varphi(pq)}$
- If r is even, say, r = 2s, $(a^s + 1)(a^s 1) = 0 \pmod{pq}$.
- There is a good chance $p|(a^s-1)$ but $(q,(a^s-1))=1$.
- Then $((a^s 1), N) = p$. Voila!
- Note that $|v_t>=\frac{1}{r}\sum_{k=0}^{r-1}\exp(-\frac{2\pi ikt}{r})|k(mod\ N)>$ is an eigenvalue of $U_{\chi}(k)=|\chi k\ (mod\ N)>$.
- In Shor, $|1\rangle = \frac{1}{\sqrt{r}}\sum |v_t\rangle$.
- Applying QFT^{-1} to control gives phase of eigenvalues
- Measurement of target gives $|\frac{s}{r}>$ with $\Pr(|y>)=\frac{1}{2^{2n}}|\frac{1-r^{2^n}}{1-r}|^2$, where $r=\exp(-2\pi i(\frac{y}{2^n}-\phi))$

Order Finding

<u>Problem</u>: Given $a, N \in \mathbb{Z}$ with (a, N) = 1, find $r: a^r \pmod{N} = 1$

- 1. Choose $n: 2^n \ge 2r^2$
- 2. Initialize control register $|000...0\rangle = |0\rangle^{\otimes 2n}$
- 3. Initialize target register to = $|000 \dots 01\rangle = |000 \dots 0\rangle = |0\rangle \otimes |1\rangle$
- 4. Apply *QFT* to control register
- 5. Apply $c U_a^x$ to control and target register
- 6. Apply QFT^{-1} to control register
- 7. Measure CR to get estimate of $\frac{x_1}{2^n}$ of multiple of $\frac{1}{r}$
- 8. Use continued fraction to get c_1 , r_1 : $\left|\frac{x_1}{2^n} \frac{c_1}{r_1}\right| \le 2^{-(n-1)/2}$
- 9. Repeat 1-8 to get c_2 , 2: $\left|\frac{x_2}{2^n} \frac{c_2}{r_2}\right| \le 2^{-(n-1)/2}$, if none, FAIL
- 10. Compute $r = LCM(r_1, r_2)$ and $a^r \pmod{N}$
- 11. If $a^r \pmod{N} = 1$, output r, otherwise FAIL

Order Finding

- Order finding has quantum complexity $O(\lg(N)^2 \lg(\lg(N))) \lg(\lg(\lg(N)))$
- Classical complexity is $\exp(O(\sqrt{\lg(N)} \lg(\lg(N))))$

Discrete log

- Suppose $a = b^x \pmod{p}$, b has known order. We want $r: b^r = 1 \pmod{p}$
- Put $U_a(|x>) = |ax \pmod{p} > \text{ and } U_b(|x>) = |bx \pmod{p} >$.
- Consider the circuit below. $|1>=\frac{1}{\sqrt{r}}\sum |v_t>$. Below, $t=xy^{-1}$

Discrete log

- Measuring first control register gives $|\frac{k}{r}>$
- Measuring first control register gives $|\frac{kt}{r}>$

- Quantum complexity is $O(\lg(p)^2 \lg(\lg(p)) \lg(\lg(\lg(p)))$
- Best known classical requires $\exp(O(\sqrt{\lg(p)\lg(\lg(p))}))$

Hidden subgroup

• $S \le G$, f(x) = f(y) iff x + S = y + S

Error Correction

- Unlike classical error correction, the no cloning theorem restricts codes
- $|0>|E>\rightarrow \beta_1|0>|E_1> +\beta_2|1>|E_2>$
- $|1>|E>\rightarrow \beta_3|0>|E_3>+\beta_4|1>|E_4>$
- $|\psi>=\alpha_0|0>+\alpha_1|1>\to \alpha_0\beta_1|0>|E_1>+\alpha_0\beta_2|1>|E_2>+\alpha_1\beta_3|0>|E_3>+\alpha_1\beta_4|1>|E_4>$
- $|\psi\rangle = \frac{1}{2} |\psi\rangle (\beta_1|E_1\rangle + \beta_3|E_3\rangle) + \frac{1}{2} \langle Z|\psi\rangle (\beta_1|E_1\rangle \beta_3|E_3\rangle) + \frac{1}{2} \langle X|\psi\rangle (\beta_2|E_2\rangle + \beta_4|E_4\rangle) + \frac{1}{2} \langle XZ|\psi\rangle (\beta_2|E_2\rangle + \beta_4|E_4\rangle)$

Error Correction

- $\rho = U_{err} | \psi \rangle \langle E | \overline{U_{err}}^T$
- $|\psi_{enc}\rangle = U_{enc}|\psi\rangle |000...\rangle$
- $\mathcal{E}_0 = I \otimes I \otimes I, \mathcal{E}_1 = X \otimes I \otimes I$
- $\mathcal{E}_2 = I \otimes X \otimes I, \mathcal{E}_3 = I \otimes I \otimes X$
- $\rho: |\psi> <\psi| \to (1-p)|\psi> <\psi| + pX|\psi> <\psi|X>$
- $\frac{1}{\sqrt{2}}(|000>+|100>) \rightarrow \frac{1}{\sqrt{2}}(|000>+|111>) \neq \frac{1}{\sqrt{2}}(|0>+|1>) \otimes^3$
- 3-bit code, Shor 9-bit code

Amplitude Amplification

• X

Grover

Search

Input:
$$U_f$$
: $f: \{0,1\}^n \to \{0,1\}$

$$f(a) = 1, f(x) = 0, x \neq a$$

$$|\psi_{good} > = w$$

$$|\psi_{bad} > = \frac{1}{\sqrt{N-1}} \sum_{x \neq w} |x>$$

Grover

- 1. Initialize n-qubits |0000...0>.
- 2. Apply $H^{\otimes n}$ to get $\frac{1}{\sqrt{N}}\sum_{x=0}^{N-1}|x|$
- 3. Apply Grover $G \frac{\pi}{4\sqrt{n}}$ times
- 4. Measure output

Search

Input:
$$U_f$$
: $f: \{0,1\}^n \rightarrow \{0,1\}$
 $f(a) = 1, f(x) = 0, x \neq a$

$$|\psi_{good}\rangle = \mathbf{w}$$

$$|\psi_{bad}\rangle = \frac{1}{\sqrt{N-1}} \sum_{x \neq w} |x\rangle$$

Algorithm G

- 1. Apply U_f
- 2. Apply $H^{\otimes n}$
- 3. Apply $U_{0^{\perp}}$
- 4. Apply $H^{\otimes n}$

Algorithm $U_{0^{\perp}}$

$$\begin{array}{l} U_{0^{\perp}} \colon |\mathbf{x}> \longrightarrow -|x>, x \neq 0 \\ U_{0^{\perp}} \colon |0> \longrightarrow 0|x> \end{array}$$

End