16 Sept 2022 A recursive formula is a Bimula that smaller instances of itself. Uses $T: N \rightarrow \mathbb{R}$ recursive $T(n) = \begin{cases} 1, & n = 1 \\ T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + 11, & n > 1 \end{cases}$ $T(n) = \begin{cases} 0 & n = 0 \\ T(n/2) & n \end{cases}$ IFT:RBR goes on torever! (e.g.) T(5)=T(2.5) =T(1.25) if T:N-TR not well-defined. SORTING asymptotic form

This is This is what we what we want. asymptotic recursive form T:N-R $T(n) = \begin{cases} \Theta(1), n=1 \\ 2T(P) + \Theta(n), n>1 \end{cases}$ I note: often we drop floor/ceil. here Closed Form:

T(n) = nlogn - 1 (exact # of steps)

We've seen this before!

$$\sum_{k=1}^{n} k = \sum_{k=1}^{n-1} k + \sum_{k=n}^{n} k$$

$$= \sum_{k=1}^{n-1} k + n$$

$$=$$

I have a recurrence relation. Now what? How do I solve it? M 1.

Recursion Tree

"too down"

Ith 1 T(n)=2T(2)+1 n/2 $T(\frac{n}{2})$ $T(\frac{n}{2})$ $T(\frac{n}{2})$ $T(\frac{n}{2})$ $T(\frac{n}{4})$ $T(\frac{n}{4})$ $T(\frac{n}{4})$ $T(\frac{n}{4})$ $T(\frac{n}{4})$ $T(\frac{n}{4})$ $T(\frac{n}{4})$ TOTAL: logn layers, each of which costs n

3

(2) "bottom up"
$$T(1) = 1$$

$$T(2) = 2 \cdot T(1) + 2 = 21 + 2 = 4$$

$$T(3) = 2 \cdot T(2) + 3 = 2 \cdot 4 + 3 = 11$$

$$= 2 \cdot (2 \cdot 12) + 3$$

- 3) Guess / Check (via induction)
 - (4) Master's Method

Merge Sort: T(n) = ZT(2)+0(n) Binary Search: T(n) = 1. T(2) + 0(1)

the cost of

potting track

In-Class Exercise 03

CSCI 432

September 16, 2022

logba = c

Name:

Who did you work with today?

Master's Theorem

Master's theorem allows us to quickly solve recurrence relations of the form:

$$T(n) = aT(n/b) + f(n),$$

where $a, b \in \mathbb{N}$ such that $a \ge 1$ and b > 0 and f(n) is asymptotically positive. Then, we can determine the closed-form of T(n) as follows:

- 1. If there exists $\varepsilon \in \mathbb{R}_+$ such that $f(n) \in O(n^{\log_b a \varepsilon})$, THEN $T(n) \in \Theta(n^{\log_b a})$.
- 2. IF there exists $\varepsilon \in \mathbb{R}_+$ such that $f(n) \in \Theta(n^{\log_b a})$, THEN $T(n) \in \Theta(n^{\log_b a} \log n)$.
- 3. IF (1) there exists $\varepsilon \in \mathbb{R}_+$ such that $f(n) \in \mathcal{Q}(n^{\log_b a + \varepsilon})$ and (2) there exists $c \in (0, 1)$ and $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, $af(n/b) \leq cf(n)$, THEN $T(n) \in \Theta(f(n))$.

	a	b	$\log_b a$	$n^{\log_b a}$	f(n)	Potential Case?	ε , if Case 1 or 3	Closed Form
T(n) = T(n/2) + 1								
$T(n) = 2T(n/4) + \sqrt{n}$								
T(n) = 2T(n/4) + n								
$T(n) = 2T(n/4) + n^2$								
$T(n) = 3T(n/3) + \Theta(1)$								

Remember, Case 3 has an additional condition to check! Do that in the space provided below, or on the back of this page.

