Suites f-définies par récurrence

Représentation de $(u_n)_n$, une suite f-définie par récurrence.

Sommaire

I.	Cadrep	. 2
II.	Dessins	. 3
III.	Principe d'étude des suites f -récurrentes	. 4
IV.	Restriction du domaine de vie de $(u_n)_n$ p	. 4
V.	Transferts de monotonie de f à $(u_n)_n$. 7
VI.	Points fixes de f	10
VII.	Position de \mathscr{C}_f par rapport à $(y=x)$ p.	11
VIII.	Bilan	12
IX.	Exercices	12

I. Cadre

Dans tout ce qui suit, on fixe:

- I est un intervalle de \mathbb{R} ;
- $f: I \longrightarrow \mathbb{R}$ une fonction;
- $(u_n)_{n\geqslant 0}\in\mathbb{R}^{\mathbb{N}}$ une suite réelle.

Définition 1

On dit que la suite $(u_n)_n$ est f-définie par récurrence ssi

$$\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n).$$

Exemples et non-exemples

• La suite $(u_n)_n$ définie par

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{1 + u_n} \end{cases}$$

est une suite f-définie par récurrence pour la fonction $f: x \longmapsto \sqrt{1+x}$.

• De même, la suite $(u_n)_n$ définie par

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n^2 + 1 \end{cases}$$

est une suite f-définie par récurrence pour la fonction $f: x \longmapsto 1 + x^2$.

• Attention au piège classique suivant : la suite $(u_n)_n$ définie par

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{n + u_n} \end{cases}$$

n'est pas une suite f-définie par récurrence.

En effet, l'expression donnant u_{n+1} dépend de u_n mais aussi de n.

Dans toute la suite, on suppose que la suite $(u_n)_{n\geqslant 0}$ est f-définie par récurrence.

Remarque

En fait, dans la définition, plus précisément et plus exactement, il faudrait dire

$$\forall n \in \mathbb{N}, (u_n \in I \text{ et } u_{n+1} = f(u_n)).$$

II. Dessins

1. Cas croissant

Il est fondamental de pouvoir représenter \mathscr{C}_f et la suite f-définie par récurrence. Dans le cas croissant, on a un escalier.

2. Cas décroissant

Dans le cas décroissant, on a un escargot.

III. Principe d'étude des suites f-récurrentes

- Pour étudier $(u_n)_n$, on étudie la fonction f.
- Les propriétés de f vont se transférer à la suite $(u_n)_n$.
- Dans les preuves, passer d'une propriété de f à une propriété de $(u_n)_n$ se fera toujours par récurrence facile. C'est métamathématiquement logique puisque la suite $(u_n)_n$ est elle-même définie par récurrence.

Les propriétés de f se transfèrent à $(u_n)_n$.

Se faire une idée rapide et précise de l'allure de \mathscr{C}_f peut être très utile.

On peut ensuite démontrer ce qu'on veut sur $(u_n)_n$ en faisant des petites récurrences.

IV. Restriction du domaine de vie de $(u_n)_n$

1. Bonne définition de la suite

a) Problématique

Si $a \in I$, il n'est pas toujous vrai qu'il existe une suite f-définie par récurrence $(u_n)_{n\geqslant 0}$ telle que $u_0=a$. En effet, il est possible qu'en itérant la fonction f, on sorte du domaine de f. Par exemple, si on considère la fonction

$$f: \left\{ \begin{array}{c} \mathbb{R}_+ & \longrightarrow \mathbb{R} \\ x & \longmapsto \sqrt{x} - 1 \end{array} \right.$$

et qu'on part de $u_0 := 2$, alors on aura :

$$u_1 = f(u_0) = f(2) = \sqrt{2} - 1$$

et $u_2 = f(u_1) = f(\sqrt{2} - 1) = \sqrt{\sqrt{2} - 1} - 1$.

Or, comme $\sqrt{2} - 1 < 1$ (exercice), on a $\sqrt{\sqrt{2} - 1} < 1$ et donc

$$u_2 = \sqrt{\sqrt{2} - 1} - 1 < 0.$$

Ainsi, il est impossible de définir u_3 . On a démontré :

Fait 2

Il n'existe pas de suite $(u_n)_n$, f-définie par récurrence, telle que $u_0 = 2$, où

$$f: \left\{ \begin{array}{c} \mathbb{R}_+ & \longrightarrow \mathbb{R} \\ x & \longmapsto \sqrt{x} - 1. \end{array} \right.$$

b) Une solution possible

Une façon de régler une fois pour toutes cette question serait de supposer que la fonction $f: I \longrightarrow \mathbb{R}$ stabilise son intervalle de définition, ie de supposer que

$$\forall t \in I, \ f(t) \in I;$$

dit autrement, on aurait pu supposer dès le début qu'on considère une fonction $f: I \longrightarrow I$. En effet, dans ce cas, si $u_0 \in I$ alors, on a u_1 , qui est égal à $f(u_0)$, est aussi dans I, etc.

Autrement dit, on a

Proposition 3

Soit I un intervalle de \mathbb{R} , soit $f: I \longrightarrow I$ et soit $a \in I$.

Alors, il existe une unique suite $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ f-définie par récurrence telle que $u_0 = a$.

Remarque

En fait, dans cette proposition, le fait que I est un intervalle ne joue aucune rôle. On peut le remplacer par un ensemble D quelconque. Par exemple, on peut très bien considérer la fonction

$$f: \left\{ \begin{array}{c} \mathbb{R}^* \longrightarrow \mathbb{R}^* \\ x \longmapsto \frac{1}{x}. \end{array} \right.$$

c) Retour au cas général

On choisit de ne pas faire cette hypothèse ici, car, généralement, la fonction f vient plutôt définie sous la forme $f: I \longrightarrow \mathbb{R}$. À la place, on suppose que la suite $(u_n)_n$ est bien définie.

2. Restriction de f à des parties stables

Soit $J \subset I$ un intervalle.

Rappelons qu'on dit que J est stable par f $\stackrel{\Delta}{ssi}$

$$\forall t \in J, \ f(t) \in J.$$

Proposition 4

Alors

$$\left. \begin{array}{l} J \text{ est stable par } f \\ u_0 \in J \end{array} \right\} \quad \Longrightarrow \quad \forall n \in \mathbb{N}, \ u_n \in J.$$

Démonstration. — C'est très simple. On suppose que J est stable par f et que $u_0 \in J$. Montrons le résultat par récurrence.

- On note, pour $k \in \mathbb{N}$, $\mathscr{P}(k) : \langle u_k \in J \rangle$.
- \bullet Déjà, $\mathcal{P}(0),$ par hypothèse, est vraie.
- Montrons que

$$\forall k \in \mathbb{N}, \ \mathscr{P}(k) \implies \mathscr{P}(k+1).$$

Soit $k \in \mathbb{N}$ tel que $\mathscr{P}(k)$ est vraie. Comme $(u_n)_n$ est f-définie par récurrence, on $u_{k+1} = f(u_k)$. Or, $u_k \in J$ et J est stable par f. Donc, on a bien $f(u_k) \in J$. D'où le résultat.

D'après le principe de récurrence, le résultat est démontré.

Remarques

- Comme annoncé, la preuve est très simple. C'est ce qu'on appelle une récurrence immédiate.
- Très important :

Il faudra s'entraı̂ner dans l'étude des suites f-définies par récurrence à éviter d'essayer de prouver les résultats directement sur la suite mais à s'efforcer d'étudier d'abord la fonction f.

En effet, on est beaucoup plus puissant pour étudier la fonction f que pour étudier la suite $(u_n)_n$:

- \triangleright pour étudier f, on peut utiliser toute la puissance du calcul différentiel et dériver f;
- \triangleright en traçant rapidement l'aspect de \mathscr{C}_f , on a beaucoup d'informations;
- \triangleright de même, le tableau des variations de f donne de façon synthétique beaucoup d'informations.

En particulier, on en déduit le résultat suivant.

Corollaire 5

Soit $a \in I$. Alors, on a

$$\Big(\forall t \in I, \quad t \geqslant a \implies f(t) \geqslant a \Big) \quad \Longrightarrow \quad \Big(u_0 \geqslant a \implies \forall n \in \mathbb{N}, \ u_n \geqslant a \Big).$$

On peut décliner et raffiner ce résulat. Par exemple

Corollaire 6

Soient $b \in I$ et $n_0 \in \mathbb{N}$. Alors, on a

Corollaire 7

Soient $a, b \in I$ et $n_0 \in \mathbb{N}$. Alors, on a

$$\forall t \in I, \ a \leqslant t \leqslant b \implies a \leqslant f(t) \leqslant b \\ a \leqslant u_0 \leqslant b$$

$$\Rightarrow \forall n \in \mathbb{N}, \ a \leqslant u_n \leqslant b.$$

On retiendra:

Restreindre f à un intervalle stable permet de restreindre le domaine de vie de $(u_n)_n$.

Exercice 8

Soit $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ la suite définie par

$$\begin{cases} u_0 > 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n^{u_n}. \end{cases}$$

Montrer que $\forall n \in \mathbb{N}^*, \ u_n \geqslant \frac{1}{e^{1/e}}.$

V. Transferts de monotonie de f à $(u_n)_n$

1. Cas croissant

Voici un principe très important :

Quand f est croissante, $(u_n)_n$ est montone.

Plus précisément, grâce au principe précédent de restriction du domaine de vie, on a : « là où f est croissante, $(u_n)_n$ est croissante ». Connaître les variations de f est donc fondamental dans l'étude des suites f-récurrentes.

Théorème 9

On suppose f croissante. Alors, on a

$$u_1 \geqslant u_0 \implies (u_n)_n$$
 croissante
et $u_1 \leqslant u_0 \implies (u_n)_n$ décroissante.

Ce théorème admet également une version « stricte » qu'on laisse au lecteur le soin d'énoncer.

 $D\'{e}monstration.$ —

• On suppose $u_1 \geqslant u_0$.

Comme annoncé, et comme précédemment, la preuve se fera par récurrence immédiate.

- \triangleright On note, pour $n \in \mathbb{N}$, $\mathscr{P}(n) : \langle u_{n+1} \geqslant u_n \rangle$.
- \triangleright Déjà, $\mathcal{P}(0)$ est vraie par hypothèse.
- ightharpoonup Montrons que $\forall n \in \mathbb{N}, \, \mathscr{P}(n) \implies \mathscr{P}(n+1)$. Soit $n \in \mathbb{N}$ tel que $\mathscr{P}(n)$ soit vraie. On a donc $u_n \leqslant u_{n+1}$. Or, f est croissante. Donc, on a

$$f(u_n) \leqslant f(u_{n+1})$$
 ie $u_{n+1} \leqslant u_{n+2}$ ie $\mathscr{P}(n+1)$.

Ainsi, d'après le principe de récurrence, on a $\forall n \in \mathbb{N}, u_n \leqslant u_{n+1}$: la suite $(u_n)_n$ est croissante.

• Si on a $u_0 \geqslant u_1$, on procède de même.

On retiendra:

Si f est croissante, alors :

- la suite $(u_n)_n$ est monotone;
- le sens de variation de $(u_n)_n$ est déterminé par la position relative des deux premiers termes, u_0 et u_1 .

2. Cas décroissant

Remarque

Dans ce paragraphe, on se place dans le cas où $f: I \longrightarrow I$.

a) Une astuce

• La suite des termes pairs $(u_{2n})_{n\in\mathbb{N}}$ vérifie

$$u_{2n+2} = f(u_{2n+1}) = f(f(u_{2n})) = (f \circ f)(u_{2n}) \text{ pour } n \in \mathbb{N}.$$

• De même, la suite des termes impairs $(u_{2n+1})_{n\in\mathbb{N}}$ vérifie

$$u_{2n+3} = f(u_{2n+2}) = f(f(u_{2n+1})) = (f \circ f)(u_{2n+1}) \text{ pour } n \in \mathbb{N}.$$

Autrement dit, on a prouvé:

Proposition 10

Soit $f: I \longrightarrow \mathbb{R}$ et soit $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$. Alors,

$$(u_n)_n$$
 est f -définie par récurrence $\Longrightarrow \begin{cases} (u_{2n})_n \text{ est } (f \circ f)\text{-définie par récurrence} \\ (u_{2n+1})_n \text{ est } (f \circ f)\text{-définie par récurrence}. \end{cases}$

b) Application au cas décroissant

Supposons f décroissante.

Ce cas est plus subtil. En tout état de cause, il faut faire un dessin de \mathscr{C}_f et représenter les premiers termes de $(u_n)_n$ pour comprendre ce qui se passe : c'est le cas de « l'escargot ».

Pour analyser cette situation, on utilise l'astuce suivante :

$$f$$
 décroissante $\implies f\circ f$ croissante.

On peut donc appliquer les résultats du cas croissant aux suites $(u_{2n})_n$ et $(u_{2n+1})_n$.

Proposition 11

On suppose f décroissante. Alors, on a

$$u_2 \geqslant u_0 \implies \begin{cases} (u_{2n})_n \text{ croissante} \\ (u_{2n+1})_n \text{ décroissante} \end{cases}$$
 et $u_2 \leqslant u_0 \implies \begin{cases} (u_{2n})_n \text{ décroissante} \\ (u_{2n+1})_n \text{ croissante.} \end{cases}$

$D\'{e}monstration.$ —

- Supposons que $u_2 \geqslant u_0$.
 - \triangleright On peut alors montrer par récurrence que $\forall n \in \mathbb{N}, u_{2n+2} \geqslant u_{2n}$.
 - \circledast On note, pour $n \in \mathbb{N}$, $\mathscr{P}(n) : \langle u_{2n+2} \geqslant u_{2n} \rangle$.
 - \circledast Par hypothèse, $\mathscr{P}(0)$ est vraie.
 - \circledast Montrons que $\forall n \in \mathbb{N}, \ \mathscr{P}(n) \Longrightarrow \mathscr{P}(n+1)$. Soit $n \in \mathbb{N}$ est tel que $u_{2n+2} \geqslant u_{2n}$. Alors, en utilisant la croissance de la fonction $f \circ f$, on obtient

$$(f \circ f)(u_{2n+2}) \geqslant (f \circ f)(u_{2n})$$

$$ie \qquad (f \circ f)(u_{2n+4}) \geqslant (f \circ f)(u_{2n+2})$$

$$ie \qquad \mathscr{P}(n+1).$$

D'où le résultat : $(u_{2n})_n$ est croissante.

- \triangleright Montrons maintenant que $(u_{2n+1})_n$ est décroissante.
 - \circledast Comme on a $u_2 \geqslant u_0$ et f décroissante, on a $f(u_2) \leqslant f(u_0)$ ie $u_3 \geqslant u_1$.
 - \circledast On prouverait alors, par récurrence, que $\forall n \in \mathbb{N}, u_{2n+3} \leq u_{2n+1}$.
- Le cas $u_2 \leq u_0$ se traiterait de même.

c) Un résultat utile

Rappelons un résultat classique qui peut être utile dans ce contexte.

Proposition 12

Soit $(v_n)_n \in \mathbb{R}^{\mathbb{N}}$ et soit $\ell \in \mathbb{R}$. Alors, on a

$$\frac{u_{2n} \longrightarrow \ell}{u_{2n+1} \longrightarrow \ell} \implies u_n \longrightarrow \ell.$$

Démonstration. — On la laisse en exercice; il faut utiliser les $\varepsilon > 0$.

VI. Points fixes de f

1. Points fixes

On rappelle:

Définition 13

Soit $\ell \in I$. On dit que ℓ est un point fixe de f ssi $f(\ell) = \ell$.

Les points fixes de f correspondent aux points d'intersection entre \mathscr{C}_f et la droite (y=x).

2. Points fixes de f et limites de $(u_n)_n$

Théorème 14

On suppose f continue. Soit $\ell \in I$.

Alors, on a

$$u_n \longrightarrow \ell \quad \Longrightarrow \quad f(\ell) = \ell.$$

Démonstration. — On suppose que $u_n \longrightarrow \ell$. On a donc, par propriété des suites extraites, $u_{n+1} \longrightarrow \ell$. Or, comme on le verra plus tard dans le chapitre « Continuité », si f est continue, on a $f(u_n) \longrightarrow f(\ell)$. Donc, on a $u_{n+1} \longrightarrow f(\ell)$.

Par unicité de la limite d'une suite, on a donc $f(\ell) = \ell$.

Remarque

Attention, si $\ell \notin I$, ce résultat n'a plus de sens et est faux.

Exercice 15

Imaginer une fonction $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ telle que :

- f est continue;
- f n'admet pas de limite en 0^+ ;
- il existe une suite $(u_n)_n$ f-définie par récurrence et vérifiant $u_n \longrightarrow 0$.

3. Un résultat d'infranchissabilité

Proposition 16

On suppose f croissante. Soit $\ell \in I$ un point fixe de f. Alors, on a

$$\begin{array}{cccc} u_0 \leqslant \ell & & \Longrightarrow & & \forall n \in \mathbb{N}, \ u_n \leqslant \ell \\ \text{et} & u_0 \geqslant \ell & & \Longrightarrow & & \forall n \in \mathbb{N}, \ u_n \geqslant \ell. \end{array}$$

Autrement dit, dans ce cas, les points fixes de f sont infranchissables par $(u_n)_n$.

Démonstration. — Encore une fois, il s'agit de récurrences simples.

- On suppose $u_0 \leqslant \ell$.
 - \triangleright On note, pour $n \in \mathbb{N}$, $\mathscr{P}(n)$: « $u_n \leqslant \ell$ ».
 - $\,\rhd\,$ Déjà, $\mathscr{P}(0)$ est vraie par hypothèse.
 - ightharpoonup Montrons que $\forall n \in \mathbb{N}, \mathscr{P}(n) \implies \mathscr{P}(n+1)$. Soit $n \in \mathbb{N}$ tel que $\mathscr{P}(n)$ soit vraie. On a donc $u_n \leqslant \ell$. Or, f est croissante. Donc, on a

$$f(u_n) \leqslant f(\ell)$$
 ie $u_{n+1} \leqslant \ell$ ie $\mathscr{P}(n+1)$.

Ainsi, d'après le principe de récurrence, on a $\forall n \in \mathbb{N}, \ u_n \leqslant \ell.$

• Si on a $u_0 \ge \ell$, on procède de même.

VII. Position de \mathscr{C}_f par rapport à (y=x)

Proposition 17

On a

$$\mathscr{C}_f$$
 est au-dessus de $(y=x)$ sur I \Longrightarrow $(u_n)_n$ est croissante \mathscr{C}_f est en-dessous de $(y=x)$ sur I \Longrightarrow $(u_n)_n$ est décroissante.

Démonstration. — Encore une fois, il s'agit de récurrences simples.

- On suppose $u_0 \leq \ell$.
 - \triangleright On note, pour $n \in \mathbb{N}$, $\mathscr{P}(n)$: « $u_n \leqslant \ell$ ».
 - \triangleright Déjà, $\mathscr{P}(0)$ est vraie par hypothèse.
 - ightharpoonup Montrons que $\forall n \in \mathbb{N}, \mathscr{P}(n) \Longrightarrow \mathscr{P}(n+1)$. Soit $n \in \mathbb{N}$ tel que $\mathscr{P}(n)$ soit vraie. On a donc $u_n \leqslant \ell$. Or, f est croissante. Donc, on a

$$f(u_n) \leqslant f(\ell)$$
 ie $u_{n+1} \leqslant \ell$ ie $\mathscr{P}(n+1)$.

Ainsi, d'après le principe de récurrence, on a $\forall n \in \mathbb{N}, u_n \leq \ell$.

• Si on a $u_0 \ge \ell$, on procède de même.

VIII. Bilan

Voilà un plan possible pour étudier la suite $(u_n)_n$.

- 1) Recherche des points fixes de f. On résout l'équation $f(\ell) = \ell$, avec $\ell \in I$.
- 2) Étude de f.
- 3) Éventuellement, étude de la position relative de \mathscr{C}_f par rapport à la droite Δ d'équation y=x. Autrement dit, on étudie le signe de la fonction $x\longmapsto f(x)-x$.
- 4) Restriction de f à un intervalle stable, dont généralement l'une des bornes est un point fixe de f
- 5) Utilisation des résultats généraux énoncés ci-dessus, qui doivent être vus comme des réflexes et qui doivent être redémontrés.

IX. Exercices

Exercice 18

Étudier la suite $(u_n)_n$ définie par

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{1 + u_n}. \end{cases}$$

Exercice 19

Étudier la suite $(u_n)_n$ définie par

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{2 + u_n}. \end{cases}$$

Exercice 20

Étudier la suite $(u_n)_n$ définie par

$$\begin{cases} u_0 > 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{3}u_n^2 + \frac{2}{3}. \end{cases}$$

Exercice 21

Étudier la suite $(u_n)_n$ définie par

$$\begin{cases} u_0 = -2 \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n + \frac{1}{u_n} - 1. \end{cases}$$

Exercice 22

Étudier la suite $(u_n)_n$ définie par

$$\begin{cases} u_0 \in \left] 0, \frac{1}{2} \right[\\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n (1 - u_n). \end{cases}$$