Math 113 Homework 3

Aniruddh V.

September 2023

1 Exercise 16

Solution We have the following commutative diagram:

$$Z_{1} \longleftarrow^{\phi_{1}} Y_{1} \longleftarrow^{\chi_{1}} X_{1}$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\gamma}$$

$$Z_{2} \longleftarrow^{\phi_{2}} Y_{2} \longleftarrow^{\chi_{2}} X_{2}$$

Since χ_1 is injective, it has a left inverse χ_1^{-1} such that $\chi_1^{-1} \circ \chi_1 = id_{X_1}$. Similarly, since ϕ_2 is surjective, it has a right inverse ϕ_2^{-1} such that $\phi_2 \circ \phi_2^{-1} = id_{Z_2}$.

Now suppose there are β_1 and β_2 such that the diagram below commutes.

With the inverses added in, the diagram looks as follows:

From these diagrams we can read off the following relations: $\alpha \circ \phi_1 = \phi_2 \circ \beta_1$ and $\beta_2 \circ \chi_1 = \chi_2 \circ \gamma$. Now using applying the left and right inverses gives $\beta_1 = \phi_2^{-1} \circ \alpha \circ \phi_1$ and $\beta_2 = \chi_2 \circ \gamma \circ \chi_1^{-1}$. But by the commutativity of the first diagram, we have $\alpha \circ \phi_1 \circ \chi_1 = \phi_2 \circ \chi_2 \circ \gamma$, and applying inverses gives $\phi_2^{-1} \circ \alpha \circ \phi_1 = \chi_2 \circ \gamma \circ \chi_1^{-1}$. But then we have

$$\beta_1 = \phi_2^{-1} \circ \alpha \circ \phi_1 = \chi_2 \circ \gamma \circ \chi_1^{-1} = \beta_2$$

so $\beta_1 = \beta_2 := \beta$ is unique, as desired.

2 Exercise 20

Solution Suppose $f^*B \subseteq A$. Then, by definition, if $x \in X$ such that $f(x) \in B$, then $x \in A$, so $B \subseteq f_*A$. But if $x \in f_*A$, then $x \notin f_*(X \setminus A)$, so $x \in Y \setminus f_*(X \setminus A) = f_!A$. On the other hand, suppose $B \subseteq f_!A$. Then for all $x \in B$, $x \in Y \setminus f_*(X \setminus A)$, so $x \notin f_*(X \setminus A)$. Thus $x \in f_*A$ which means $f^*B \subseteq A$. Thus $f^*B \subseteq A$ if and only if $B \subseteq f_!A$

3 Exercise 23

Solution The functions $(\mathrm{id}_X)_*$, $(\mathrm{id}_X)^*$ and $(\mathrm{id}_X)_!$ are all clearly mappings from $\mathscr{P}X \to \mathscr{P}X$, so it only remains to show that the assignments of all three functions are equal to the assignments on $\mathscr{P}X$. By the definition of f_* and f^* , we obviously have $(\mathrm{id}_X)^* = \mathrm{id}_{\mathscr{P}X}$ and $(\mathrm{id}_X)_* = \mathrm{id}_{\mathscr{P}X}$. By definition, we have $(\mathrm{id}_X)_!A = X \setminus (\mathrm{id}_X)_*(XA) = A$, so $(\mathrm{id}_X)_! = \mathrm{id}_{\mathscr{P}X}$

4 Exercise 28

Solution Let $f: X \to Y$ be a function, with $\mathscr{A} \subset \mathscr{P}X$ a family of subsets of X, and $\mathscr{B} \subset \mathscr{P}Y$ a family of subsets of Y. Let $y \in f_*(\cup \mathscr{A})$. Then there is $x \in \cup \mathscr{A}$ such that f(x) = y, so $y \in \cup f_{**}\mathscr{A}$. Thus we have $f_*(\cup \mathscr{A}) \subseteq \cup f_{**}\mathscr{A}$. Now suppose $y \in \cup f_{**}\mathscr{A}$. Then $y \in A$ for some $A \in \mathscr{A}$, so $y \in f_*(\cup \mathscr{A})$. Thus $f_*(\cup \mathscr{A}) = \cup f_{**}\mathscr{A}$. This can be represented in the following commutative diagram:

$$\begin{array}{ccc} \mathscr{P}\mathscr{P}X & \xrightarrow{f_{**}} & \mathscr{P}\mathscr{P}Y \\ \downarrow & & \downarrow \cup \\ \mathscr{P}X & \xrightarrow{f_{*}} & \mathscr{P}Y \end{array}$$

Now suppose $x \in f^*(\cup \mathcal{B})$. Then there is $y \in \cup \mathcal{B}$ such that f(x) = y. But $y \in B \in \mathcal{B}$ we also have $x \in \cup f^*_*\mathcal{B}$. Thus we have $f^*(\cup \mathcal{B}) \subseteq \cup f^*_*\mathcal{B}$. On the other hand, suppose $x \in \cup f^*_*\mathcal{B}$. Then $x \in B$ for some $B \in \mathcal{B}$, so we also have $x \in f^*(\cup \mathcal{B})$. Thus $f^*(\cup \mathcal{B}) = \cup f^*_*\mathcal{B}$. This can be represented in the following commutative diagram:

$$\begin{array}{cccc}
\mathscr{P}\mathscr{P}Y & \xrightarrow{f^*_*} & \mathscr{P}\mathscr{P}X \\
\downarrow & & \downarrow & \downarrow \\
\mathscr{P}Y & \xrightarrow{f^*} & \mathscr{P}X
\end{array}$$

5 Exercise 29

Solution Let $x \in f^*(\cap \mathscr{B})$. Then for all $B \in \mathscr{B}$, there is $y \in B \in \mathscr{B}$ such that y = f(x). But then $x \in f^*_*\mathscr{B}$, so $x \in \cap f^*_*\mathscr{B}$. Thus $f^*(\cap \mathscr{B}) \subseteq \cap f^*_*\mathscr{B}$ Now suppose $x \in \cap f^*_*\mathscr{B}$. Then there is y = f(x) such that $y \in \cap \mathscr{B}$, so $x \in f^*(\cap \mathscr{B})$. Thus $f^*(\cap \mathscr{B}) = \cap f^*_*\mathscr{B}$. This is represented in the following commutative diagram:

$$\begin{array}{ccc}
\mathscr{P}\mathscr{P}Y & \xrightarrow{f^*_*} & \mathscr{P}\mathscr{P}X \\
\cap \downarrow & & \downarrow \cap \\
\mathscr{P}Y & \xrightarrow{f^*} & \mathscr{P}X
\end{array}$$

Next, let $y \in f_!(\cap \mathscr{A})$. Then for all $A \in \mathscr{A}$, $y \in f_!A$, so $y \in \cap f_{!*}\mathscr{A}$. Thus $f_!(\cap \mathscr{A}) \subseteq \cap f_{!*}\mathscr{A}$. Now, let $y \in f_{!*}\mathscr{A}$. Then for all $A \in \mathscr{A}$, $y \in f_!A$. Thus $y \in f_!(\cap \mathscr{A})$, and $f_!(\cap \mathscr{A}) = \cap f_{!*}\mathscr{A}$. This can be represented in the following commutative diagram:

$$\begin{array}{ccc} \mathscr{P}\mathscr{P}X & \xrightarrow{f_{!*}} & \mathscr{P}\mathscr{P}Y \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \mathscr{P}X & \xrightarrow{f_{!}} & & \mathscr{P}Y \end{array}$$

6 Exercise 30

Solution Let $y \in f_*(\cap \mathscr{A})$. Then for all $A \in \mathscr{A}$, $y \in f_*A$, so $y \in \cap f_{**}\mathscr{A}$. Thus $f_*(\cap \mathscr{A}) \subseteq \cap f_{**}\mathscr{A}$. Next, let $y \in f_!(\cup \mathscr{A})$. Then there is an $A \in \mathscr{A}$ such that $y \in f_!A$, so $y \in \cup f_!*\mathscr{A}$. Thus $f_!(\cap \mathscr{A}) \subseteq \cap f_!*\mathscr{A}$.

7 Exercise 31

Solution Let (A, \cdot) be a binary algebraic structure with an associative binary operation. Let $\lambda_a : b \mapsto ab$ be the left multiplication function. Then we have

$$\lambda_{ab} = \lambda_{ab}(x) = (ab)x = a(bx) = \lambda_a(\lambda_b(x)) = \lambda_a \circ \lambda_b$$

so left multiplication is a homomorphism of binary algebraic structures. On the other hand, suppose left multiplication was a homomorphism of binary algebraic structures. Then this implies $\lambda_{ab} = \lambda_a \circ \lambda_b$. But this implies $\lambda_{ab}(x) = \lambda_a \circ \lambda_b(x)$, or (ab)x = a(bx). So the binary algebraic structure is associative. Thus, a binary associative structure is associative if and only if left multiplication is a homomorphism.