Operational Amplifier Design

Insoo Kim, Jaehyun Lim, Kyungtae Kang, Kyusun Choi

Mixed Signal CHIP Design Lab.

Department of Computer Science & Engineering

The Pennsylvania State University

2 Stage OP Amp Design

2 Stage OP Amp

[Reminder] Common Mode

Common Mode Gain

Common Mode Rejection Ratio

$$CMRR = \frac{A_{dm}}{A_{cd}}$$
 $CMRR = (2g_{m1}r_{o5}) \cdot g_{m3}(r_{o1} || r_{o3})$

Common Mode Input Voltage Range

$$V_{SS} + V_{TN1} + V_{DSAT5} + V_{DSAT1} < V_{IC} < V_{DD} - |V_{DSAT3}| - |V_{TP3}| + |V_{TN1}|$$

2 Stage OP Amp Design

Design Process

Model Parameter Extraction (1/6)

kn : 55.84 uA/V2kp : 23.51 uA/V2

 $-\lambda n: 0.025$ $-\lambda p: 0.055$

Vthn: 0.776 VVthp: 0.858 V

Assign Current from Power Consumption Spec. (2/6)

Power Consumption : 2 mW

Total Current : 0.4 mA @ 5V VDD

Input Pair : 0.2 mA

Second Stage : 0.2 mA

Insoo Kim

2 Stage OP Amp Design

- Design Process
 - Determine minimum channel length (3/6)
 - Determine channel width (4/6)
 - Determine W_{1,2} from voltage gain spec.

$$A_{v} = g_{m1,2} \cdot (r_{o2} \parallel r_{o4})$$

$$= \sqrt{2\beta \frac{W}{L} I_{D}} \cdot (r_{o2} \parallel r_{o4})$$

Determine W₅ & Bias Voltage from power consumption & CM min.

$$V_{SS} + V_{TN1} + V_{DSAT5} + V_{DSAT1} < V_{IC}$$

Determine W_{3,4} from CM max.

$$V_{IC} < V_{DD} - |V_{DSAT3}| - |V_{TP3}| + |V_{TN1}|$$

- Determine Bias Level of Current Source Tr. (5/6)
 - Considering CM min value and the transistor size
- Check other specifications (6/6)
 - Repeat step 4 to 6

A Calculation Example

Calculated Gain= 3000 (70dB)

Simulation Results

Gain: 59dB

BW: 1.15 GHz

[Reminder] Feedback & Stability

$$A(s) = \frac{V_{out}(s)}{V_{in}(s)} = \frac{A_{v}(s)}{1 + F \cdot A_{v}(s)}$$

✓ Unstable Condition : $F \cdot A_V(s) = -1$

$$|A_{v}(s)| = \frac{1}{F}$$
 & $\angle A_{v}(s) = -180^{\circ}$

Before Frequency Compensation

A unit gain buffer characteristic without frequency compensation

Frequency Analysis

KCL at v6 and vo nodes
$$G_{m1} \cdot (v_{i2} - v_{i1}) + \left\{ s(C_1 + C_C) + \frac{1}{R_{o1}} \right\} \cdot v_6 - sC_C \cdot v_o = 0$$

$$(G_{m2} - sC_C) \cdot v_6 + \left\{ s(C_L + C_C) + \frac{1}{R_{o2}} \right\} \cdot v_o = 0$$

(cont'd) Frequency Analysis

$$A_{dv}(s) = \frac{v_o}{v_{i2} - v_{i1}} = \frac{(G_{m1}R_{o1}) \cdot (G_{m2}R_{o2}) \cdot (1 - sC_C/G_{m2})}{\left[1 + s \cdot \{C_LR_{o2} + C_1R_{o1} + C_C \cdot (G_{m2}R_{o2}R_{o1} + R_{o1} + R_{o2})\} \right]} + s^2 \cdot \{C_1C_L + (C_1 + C_L)C_C\} \cdot R_{o1}R_{o2}$$

$$A_{dv}(s) = \frac{A_{dv}(0) \cdot \left(1 - \frac{s}{z_1}\right)}{\left(1 - \frac{s}{p_1}\right) \cdot \left(1 - \frac{s}{p_2}\right)} \approx \frac{A_{dv}(0) \cdot \left(1 - \frac{s}{z_1}\right)}{1 - \frac{s}{p_1} + \frac{s^2}{p_1 p_2}}$$

Dominant pole approximation: $|p_1| << |p_2|$

$$|p_1| \ll |p_2|$$

$$p_1 = \frac{-1}{C_C \cdot (G_{m2}R_{o2}R_{o1} + R_{o1} + R_{o2}) + C_LR_{o2} + C_1R_{o1}} \approx \frac{-1}{R_{o1} \cdot G_{m2}R_{o2} \cdot C_C}$$

$$p_2 = \frac{+1}{p_1 \cdot \left\{ \; C_C(C_1 + C_L) + C_1 C_L \; \right\} R_{o1} R_{o2}} = \frac{-G_{m2} C_C}{C_C(C_1 + C_L) + C_1 C_L}$$

Positive Zero & Pole-Zero Cancellation

Feed Forward

Positive Zero & Pole-Zero Cancellation

Pole-Zero Cancellation

$$z_1 = \frac{G_{m2}}{C_C} \cdot \frac{1}{1 - G_{m2} \cdot R_Z}$$

An Example of Frequency Compensation

After Frequency Compensation

A unit gain buffer characteristic with frequency compensation

Frequency Compensation must be considered in designing OP Amps

Folded Cascode Op Amp

Basic Folded Cascode

Design of Single Ended Folded Cascode

Cascode Stage

Small Signal Analysis

$$V_{out} = (R_{out} \parallel R_D) \cdot g_{m1} V_{in}$$

$$A_v = g_{m1} \cdot (R_{out} \parallel R_D)$$

Rout

$$R_{out} = r_{o1} \cdot [(g_{m2} + g_{mb2})r_{o2} + 1] + r_{o2}$$

$$\approx r_{o2} \cdot [r_{o1} \cdot (g_{m2} + g_{mb2}) + 1]$$

Folded Cascode Stage

Schematic

Advantages

- Wider Operating Range than telescopic cascode stage
- Easy to set Common Mode Voltage

Disadvantages

- Limited Output swing
- Large Voltage Headroom
- Large Power Consumption

Single Ended Folded Cascode Op Amp

Circuit Configuration

Gm

$$i_d = \frac{v_{id}}{r_{s1} + r_{s2}} = \frac{1}{2} g_{m1} v_{id}$$

$$G_{md} = \frac{i_{od}}{v_{id}} = \frac{2i_d}{v_{id}} = g_{m1}$$

Rout

Insoo Kim

- Design Process (1/3)
 - Model Parameter Extraction

- kn : 55.84 uA/V2 - kp : 23.51 uA/V2

 $-\lambda n: 0.025$ $-\lambda p: 0.055$

Vthn: 0.776 V- Vthp: 0.858 V

Assign Current from Power Consumption Spec.

Total Current : 0.375 mA

Input pair : 0.125 mA

Current mirror: 0.25 mA

Insoo Kim

- Design Process (2/3)
 - Determine W3 from CM_min, CM_max Spec.
 - CM min

$$V_{SS} + V_{DSAT\;3} + V_{GS\;1} = V_{SS} + V_{DSAT\;3} + V_{DSAT\;1} + V_{THn\;1}$$

CM_max

$$V_{DD} - \left| V_{DSAT \, 4} \right| + V_{THn \, 1}$$

- Determine W4~W7 and Bias2 from Vout_max Spec.
 - Vout_max : V_{B2} + V_{THp 7}
 → Determine VB2
 - Assign Vdsat of M4,5 and M6,7 from Vout_max Spec
 - □ Eg) Vout_max=4V \rightarrow Vdsat of M4,5= 0.6V, Vdsat of M6,7 = 0.4V
 - Calculate W4~7 to satisfy Vdsat & Ids of M4~7
- Determine W8~W11 from Vout_min Spec.
 - Assign Vdsat of M8~M11 from Vout_min Spec.
 - □ Eg) Vout_min=0.8V → Vdsat of M8~11 = 0.4V
 - Calculate W8~11 to satisfy Vdsat and Ids of M8~11

- Design Process (3/3)
 - Determine W1,2 from Gain Spec.
 - Calculate Rout tot

$$R_o = \frac{v_x}{i_x} = \left\{ g_{m7} r_{o7} \cdot (r_{o2} \| r_{o5}) \right\} \| \left\{ g_{m9} r_{o9} \cdot r_{o11} \right\}$$

- Calculate Required Gm value to satisfy Gain Spec.
 - □ Gain = Gm*Rout
- Calculate W1,2 from Gm
- Check other Spec. and Repeat the design process to optimize transistors size
 - Slew Rate
 - CM_min Check required
 - CMRR, PSRR
 - Check and Modify Bias Voltage to optimize transistor size.

Frequency Analysis

$$A_{vd} = g_{m1}R_o$$
 $|p_1| = \frac{1}{R_o C_L}$ $\omega_T = \frac{g_{m1}}{C_L}$ $|p_2| = \frac{1}{r_{s6}C_6}$

Design Example

Calculated Gain= 3000 (70dB)

Simulation Result

Gain: 68dB

BW: 170MHz

Loading: 2pF

Folded Cascode Op Amp with CMFB

Slew Rate Enhanced Folded Cascode Op Amp

References

- Joongho Choi, "CMOS analog IC Design," IDEC Lecture Note, Mar. 1999.
- B. Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2001.
- Hongjun Park, "CMOS Analog Integrated Circuits Design," Sigma Press, 1999.