Funções

José Antônio O. Freitas

MAT-UnB

16 de setembro de 2020

1/18

Uma **função**

Uma **função** $f: A \rightarrow B$,

Uma **função** $f: A \rightarrow B$, de um conjunto A

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B,

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

i) Para todo $x \in A$,

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

i) Para todo $x \in A$, existe $y \in B$

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- *ii)* Se $x \in A$

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 ,

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$,

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de imagem

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de domínio

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de domínio de f

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por dom (f).

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por dom(f). O conjunto B é chamado de **contra-domínio**

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por dom(f). O conjunto B é chamado de **contra-domínio** de f.

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por dom(f). O conjunto B é chamado de **contra-domínio** de f. O conjunto

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por dom(f). O conjunto B é chamado de **contra-domínio** de f. O conjunto

$$\operatorname{Im}(f) =$$

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por dom(f). O conjunto B é chamado de **contra-domínio** de f. O conjunto

$$\mathrm{Im}(f)=\{f(x)$$

2/18

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por dom(f). O conjunto B é chamado de **contra-domínio** de f. O conjunto

$$\operatorname{Im}(f) = \{f(x) \mid x \in A\}$$

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por dom(f). O conjunto B é chamado de **contra-domínio** de f. O conjunto

$$\operatorname{Im}(f) = \{f(x) \mid x \in A\} \subseteq B$$

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por dom(f). O conjunto B é chamado de **contra-domínio** de f. O conjunto

$$\operatorname{Im}(f) = \{f(x) \mid x \in A\} \subseteq B$$

é chamado imagem de f.

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por dom(f). O conjunto B é chamado de **contra-domínio** de f. O conjunto

$$\operatorname{Im}(f) = \{f(x) \mid x \in A\} \subseteq B$$

é chamado imagem de f.

1) Sejam $A = \{0, 1, 2, 3\}$

1) Sejam $A = \{0, 1, 2, 3\}$ e $B = \{4, 5, 6, 7, 8\}$.

1) Sejam $A = \{0, 1, 2, 3\}$ e $B = \{4, 5, 6, 7, 8\}$. Quais das seguintes relações são funções?

- 1) Sejam $A = \{0, 1, 2, 3\}$ e $B = \{4, 5, 6, 7, 8\}$. Quais das seguintes relações são funções?
 - a) $R_1 = \{(0,5), (1,6), (2,7)\}$

- 1) Sejam $A = \{0, 1, 2, 3\}$ e $B = \{4, 5, 6, 7, 8\}$. Quais das seguintes relações são funções?
 - a) $R_1 = \{(0,5), (1,6), (2,7)\}$

b) $R_2 = \{(0,4), (1,5), (1,6), (2,7), (3,8)\}$

- 1) Sejam $A = \{0, 1, 2, 3\}$ e $B = \{4, 5, 6, 7, 8\}$. Quais das seguintes relações são funções?
 - a) $R_1 = \{(0,5), (1,6), (2,7)\}$

b) $R_2 = \{(0,4), (1,5), (1,6), (2,7), (3,8)\}$

c) $R_3 = \{(0,4), (1,5), (2,7), (3,8)\}$

- 1) Sejam $A = \{0, 1, 2, 3\}$ e $B = \{4, 5, 6, 7, 8\}$. Quais das seguintes relações são funções?
 - a) $R_1 = \{(0,5), (1,6), (2,7)\}$

b) $R_2 = \{(0,4), (1,5), (1,6), (2,7), (3,8)\}$

c) $R_3 = \{(0,4), (1,5), (2,7), (3,8)\}$

d) $R_4 = \{(0,5), (1,5), (2,6), (3,7)\}$

- 1) Sejam $A = \{0, 1, 2, 3\}$ e $B = \{4, 5, 6, 7, 8\}$. Quais das seguintes relações são funções?
 - a) $R_1 = \{(0,5), (1,6), (2,7)\}$

b) $R_2 = \{(0,4), (1,5), (1,6), (2,7), (3,8)\}$

c) $R_3 = \{(0,4), (1,5), (2,7), (3,8)\}$

d) $R_4 = \{(0,5), (1,5), (2,6), (3,7)\}$

2)
$$R_5 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y^2 = x^2\}$$

2)
$$R_5 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y^2 = x^2\}$$

3)
$$R_6 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 = 1\}$$

2)
$$R_5 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y^2 = x^2\}$$

3)
$$R_6 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 = 1\}$$

4)
$$R_7 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x^2\}$$

2)
$$R_5 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y^2 = x^2\}$$

3)
$$R_6 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 = 1\}$$

4)
$$R_7 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x^2\}$$

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora**

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 ,

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $f(x_1) =$

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$,

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$.

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente,

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora**

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 .

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$,

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é sobrejetora

- i) Dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$,

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.
- iii) Dizemos que f e bijetora

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.
- iii) Dizemos que f e bijetora se f for injetora

- i) Dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.
- iii) Dizemos que f e bijetora se f for injetora e sobrejetora

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.
- iii) Dizemos que f e **bijetora** se f for **injetora** e **sobrejetora** simultaneamente.

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.
- iii) Dizemos que f e **bijetora** se f for **injetora** e **sobrejetora** simultaneamente.

Verifique se as seguintes funções são injetoras

Verifique se as seguintes funções são injetoras ou sobrejetoras:

Verifique se as seguintes funções são injetoras ou sobrejetoras:

1)
$$f: \mathbb{Z} \to \mathbb{Z}$$
 dada por $f(x) = 3x + 1$

2)
$$g: \mathbb{Z}_5 \times \mathbb{Z}_9 \to \mathbb{Z}_5 \times \mathbb{Z}_9$$
 tal que $f(\bar{x}, \bar{y}) = (\bar{2}\bar{x} + \bar{3}, \bar{4}\bar{y} + \bar{5})$.

3) $h: \mathbb{R} \to \mathbb{R}$ dada por $h(x) = x^2$

Sejam $f: A \rightarrow B$

Sejam $f: A \rightarrow B \ e \ g: B \rightarrow C$

Sejam $f: A \rightarrow B \ e \ g: B \rightarrow C \ funções.$

Sejam $f: A \rightarrow B \ e \ g: B \rightarrow C \ funções$. Definimos a **função composta**

Sejam $f:A\to B$ e $g:B\to C$ funções. Definimos a **função composta** de g com f

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f$

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x)$

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x) = g(f(x))$

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x) = g(f(x))$ para todo $x \in A$.

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x) = g(f(x))$ para todo $x \in A$.

1) Sejam $f: \mathbb{R} \to \mathbb{R}$

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$ e g(x) = x + 1.

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$ e g(x) = x + 1. Assim podemos definir $g \circ f$

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$ e g(x) = x + 1. Assim podemos definir $g \circ f$ e $f \circ g$ e:

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$ e g(x) = x + 1. Assim podemos definir $g \circ f$ e $f \circ g$ e:

2) $f: \mathbb{R}_- \to \mathbb{R}_+^*$

2)
$$f: \mathbb{R}_- \to \mathbb{R}_+^* \ e \ g: \mathbb{R}_+^* \to \mathbb{R}$$

2)
$$f: \mathbb{R}_- \to \mathbb{R}_+^*$$
 e $g: \mathbb{R}_+^* \to \mathbb{R}$ dadas por $f(x) = x^2 + 1$

2)
$$f: \mathbb{R}_- \to \mathbb{R}_+^*$$
 e $g: \mathbb{R}_+^* \to \mathbb{R}$ dadas por $f(x) = x^2 + 1$ e $g(x) = \ln x$.

2) $f: \mathbb{R}_- \to \mathbb{R}_+^* \ e \ g: \mathbb{R}_+^* \to \mathbb{R}$ dadas por $f(x) = x^2 + 1$ e $g(x) = \ln x$. Nesse caso só podemos definir $g \circ f: \mathbb{R}_- \to \mathbb{R}$ e:

2) $f: \mathbb{R}_- \to \mathbb{R}_+^* \ e \ g: \mathbb{R}_+^* \to \mathbb{R}$ dadas por $f(x) = x^2 + 1$ e $g(x) = \ln x$. Nesse caso só podemos definir $g \circ f: \mathbb{R}_- \to \mathbb{R}$ e:

Se $f: A \rightarrow B$

Se $f: A \rightarrow B \ e \ g: B \rightarrow C$

Se $f: A \rightarrow B$ e $g: B \rightarrow C$ são funções injetoras,

Se $f: A \rightarrow B$ e $g: B \rightarrow C$ são funções injetoras, então $g \circ f$:

Se $f: A \rightarrow B$ e $g: B \rightarrow C$ são funções injetoras, então $g \circ f: A \rightarrow C$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova:

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 ,

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados $x_1, x_2 \in A$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1)$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados $x_1, x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$.

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g \circ f)(x_1) = (g \circ f)(x_2)$$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora,

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1)$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1) = f(x_2)$.

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1) = f(x_2)$. Mas f também é injetora,

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1) = f(x_2)$. Mas f também é injetora, por hipótese,

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1) = f(x_2)$. Mas f também é injetora, por hipótese, daí $x_1 =$

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g \circ f)(x_1) = (g \circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1) = f(x_2)$. Mas f também é injetora, por hipótese, daí $x_1 = x_2$, como queríamos.

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g \circ f)(x_1) = (g \circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1) = f(x_2)$. Mas f também é injetora, por hipótese, daí $x_1 = x_2$, como queríamos. Portanto $g \circ f$ é injetora.

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g\circ f)(x_1)=(g\circ f)(x_2)$$

$$g(f(x_1))=g(f(x_2)).$$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1) = f(x_2)$. Mas f também é injetora, por hipótese, daí $x_1 = x_2$, como queríamos. Portanto $g \circ f$ é injetora.

Se $f: A \rightarrow B$

Se $f: A \rightarrow B$ e $g: B \rightarrow C$

Se $f: A \rightarrow B$ e $g: B \rightarrow C$ são funções sobrejetoras,

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova:

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \rightarrow C$

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora,

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$,

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$.

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$.

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$. Como $g : B \to C$ é sobrejetora,

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$. Como $g : B \to C$ é sobrejetora, existe $z \in A$

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$. Como $g : B \to C$ é sobrejetora, existe $z \in A$ tal que

g(z) = y.

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$.

Assim seja $y \in C$. Como $g: B \to C$ é sobrejetora, existe $z \in A$ tal que

$$g(z) = y$$
. Mas $z \in B$

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$.

Assim seja $y \in C$. Como $g : B \to C$ é sobrejetora, existe $z \in A$ tal que

$$g(z) = y$$
. Mas $z \in B$ e $f: A \to B$

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f: A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$.

Assim seja $y \in C$. Como $g: B \to C$ é sobrejetora, existe $z \in A$ tal que

g(z) = y. Mas $z \in B$ e $f: A \to B$ é sobrejetora

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f: A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$.

Assim seja $y \in C$. Como $g: B \to C$ é sobrejetora, existe $z \in A$ tal que

g(z) = y. Mas $z \in B$ e $f: A \to B$ é sobrejetora. Assim existe $x \in A$

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Se $f: A \to B$ e $g: B \to C$ são funções sobrejetoras, então $g \circ f: A \to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f: A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$. Como $g: B \to C$ é sobrejetora, existe $z \in A$ tal que

g(z) = y. Mas $z \in B$ e $f: A \to B$ é sobrejetora . Assim existe $x \in A$ tal

que f(x) = z. Logo

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

$$(g \circ f)(x)$$

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

$$(g\circ f)(x)=g(f(x))$$

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

$$(g \circ f)(x) = g(f(x)) = g(z)$$

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

$$(g \circ f)(x) = g(f(x)) = g(z) = y.$$

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$. Como $g : B \to C$ é sobrejetora, existe $z \in A$ tal que g(z) = y. Mas $z \in B$ e $f : A \to B$ é sobrejetora. Assim existe $x \in A$ tal

g(z)=y. Mas $z\in B$ e $f\colon A\to B$ é sobrejetora . Assim existe $x\in A$ tal que f(x)=z. Logo

$$(g \circ f)(x) = g(f(x)) = g(z) = y.$$

Portanto $g \circ f$

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$. Como $g : B \to C$ é sobrejetora, existe $z \in A$ tal que g(z) = y. Mas $z \in B$ e $f : A \to B$ é sobrejetora . Assim existe $x \in A$ tal

$$g(z)=y.$$
 Mas $z\in B$ e $f\colon A\to B$ é sobrejetora . Assim existe $x\in A$ ta que $f(x)=z.$ Logo

$$(g\circ f)(x)=g(f(x))=g(z)=y.$$

Portanto $g \circ f$ é sobrejetora.

Se $f:A\to B$ e $g:B\to C$ são funções sobrejetoras, então $g\circ f:A\to C$ é sobrejetora.

Prova: Para mostrar que $g \circ f : A \to C$ é sobrejetora, precisamos mostrar que para todo $y \in C$, existe $x \in A$ tal que $(g \circ f)(x) = y$. Assim seja $y \in C$. Como $g : B \to C$ é sobrejetora, existe $z \in A$ tal que

g(z)=y. Mas $z\in B$ e $f\colon A\to B$ é sobrejetora . Assim existe $x\in A$ tal que f(x)=z. Logo

$$(g \circ f)(x) = g(f(x)) = g(z) = y.$$

Portanto $g \circ f$ é sobrejetora.