两种算法比较:

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$(D) \max Z = \lambda b$$
$$\lambda A \le C$$

单纯形法

$$\begin{array}{c|cccc}
-C_B B^{-1} b & C - C_B B^{-1} A \geqslant 0 \\
\hline
B^{-1} b \geq 0 & B^{-1} A
\end{array}$$

$$y_{0q} < 0 \longrightarrow x_q$$
进基 $2)\min S$

$$S^1 = y_{00} + y_{0q}\theta < y_{00} = S^0$$

 $\theta =$ 最小非负比值 $\rightarrow x$,离基 $\epsilon =$ 最小非负比值 $\rightarrow x_k$ 进基 $\rightarrow B^{-1}b \ge 0$

对偶单纯形法 $\overline{\lambda} = \lambda - \varepsilon u^r$,

$$\overline{\lambda} = \lambda - \varepsilon u^r$$
.

$$y_{r0} < 0 \rightarrow x_{Jr}$$
 离基 $\frac{1}{20 \text{max } Z}$ $\frac{\lambda b}{\lambda b} = \lambda b - \varepsilon y_{r0} > \lambda b$

$$C - C_B B^{-1} A \ge 0$$

第九节 线性规划问题的灵敏度分析

$$(P) \min S = CX$$
 已知 $C, A, b, 求 X^*$ $AX = b$ $X \ge 0$

灵敏度分析解决以下两个问题:

- 1) c_j, a_{ij}, b_i 在什么范围内变化时, X^* 不变。
- 2) 如果 X^* 发生变化,如何用最简便的方法求出新的最优解。

第九节 线性规划问题的灵敏度分析

- 目标函数成本系数℃的灵敏度分析
- 约束右端项b的灵敏度分析
- 约束矩阵4的灵敏度分析

例1-20

某工厂计划生产三种产品 A_1,A_2,A_3 ,三种产品每件 的收益分别是2,3,1,资源总数为:人工为1,材料为3。

每件产品所需人工和材料 数如右表,试决定最优的 生产方案使该厂收益最大。

解: 设 A_1,A_2,A_3 的产量分 别为 x_1,x_2,x_3

 $\max S = 2x_1 + 3x_2 + x_3$ $\begin{cases} \frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3 \le 1 \\ \frac{1}{3}x_1 + \frac{4}{3}x_2 + \frac{7}{3}x_3 \le 3 \end{cases} \xrightarrow{\text{kir} \text{lim}} \begin{cases} \frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3 + x_4 = 1 \\ \frac{1}{3}x_1 + \frac{4}{3}x_2 + \frac{7}{3}x_3 + x_5 = 3 \\ x_1, x_2, x_3 \ge 0 \end{cases}$

	A_1	A_2	A_3	资源
人工	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1
材料	1/3	4/3	7/3	3
收益	2	3	1	

$$\frac{\max S}{\begin{cases} \frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3 + x_4 = 1\\ \frac{1}{3}x_1 + \frac{4}{3}x_2 + \frac{7}{3}x_3 + x_5 = 3\\ x_1, x_2, x_3 \ge 0 \end{cases}}$$

线性规划1-9

$$(P_1)$$
 $\min S = CX$
 $AX = b$
 $X \ge 0$

$$(P_2) \max S = CX$$

$$AX = b$$

$$X \ge 0$$

(P_1) 的最优性判别定理:

对于基
$$B$$
, 若 $B^{-1}b \ge 0$, $C - C_B B^{-1}A \ge 0$ 则 $X^* = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$ 是 (P_1) 的最优解。若有某个 $y_{0i} = c_i - c_B B^{-1}p_i < 0$,

 x_i 进基做基变量可使目标值 \downarrow (非退化)

(P_{i}) 的最优性判别定理:

对于基
$$B$$
, 若 $B^{-1}b \ge 0$, $C - C_B B^{-1}A \le 0$ 则 $X^* = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$ 是 (P_2) 的最优解。若有某个 $y_{0i} = c_i - c_B B^{-1}p_i > 0$,

 x_i 进基做基变量可使目标值 \uparrow .(非退化)

$$\frac{\max S = 2x_1 + 3x_2 + x_3}{\sqrt{\frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3 + x_4} = 1} \qquad y_{0j} = c_j - C_B B^{-1} p_j = c_j}
\sqrt{\frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3 + x_4} = 1} \qquad C_B = (0, 0)
\sqrt{\frac{1}{3}x_1 + \frac{4}{3}x_2 + \frac{7}{3}x_3 + x_5} = 3} \qquad y_{00} = C_B B^{-1} b}
x_1, x_2, x_3 \ge 0$$

初始表

		\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	X_5
	0	2	3	1	0	0
X_4	1	$\frac{1}{3}$	1/3	1/3	1	0
x_5	3	1/3	$\frac{4}{3}$	$\frac{7}{3}$	0	1
	b	p_1	p_2	p_3	p_4	p_5

A

			\dot{x}_1	\ddot{x}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_{5}	
		0	2	3	1	0	0	$y_{0j} = c_j - C_B B^{-1} p_j \le 0$
初一始	- X ₄	1	1/3	1/3	1/3	1	0	-? X
始表	\mathcal{X}_5	3	1/3	4/3	7/3	0	1	
		-6	0	1	-1	-6	0	$y_{0j} = c_j - C_B B^{-1} p_j \le 0$
	x_1	3	1	1	1	3	0	X
←	$-\chi_5$	2	0	1	2	-1	1	
		-8	0	0	-3	-5	-1	$y_{0j} = c_j - C_B B^{-1} p_j \le 0$
最	\mathcal{X}_1	1	1	0	-1	4	-1	₹ ✓
	\mathcal{X}_2	2	0	1	2	-1	1	

			\mathcal{X}_1	X_2	X_3	\mathcal{X}_4	X_5	
		0	2	3	1	0	0	
初	\mathcal{X}_4	1	1/3	1/3	1/3	1	0]
初始 表	$\mathbf{B}_{\chi_{5}}^{-1}$	b 3	$\frac{1}{3}$	3 4/3	7/3	0	E 1	
- C	$_{B}B^{-1}b$	-8	0	0	-3	- 5	$-1 c_j$	$-C_B B^{-1} p_j$
最份	X_1	1	1	0	-1	4	-1	
最优表	\mathcal{X}_2	2	0	1	2	-1	1	
•		$B^{-1}b$	1	5	$B^{-1}p_3$		B^{-1}	

最优解:
$$X^* = (1, 2, 0, 0, 0)^T, S^* = 8$$

最优基:
$$B = (p_1, p_2) = \begin{pmatrix} 1/& 1/\\ /3 & /3\\ 1/& 4/\\ /3 & /3 \end{pmatrix}$$

$$B^{-1} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}$$

第九节 线性规划问题的灵敏度分析

- ➡ 目标函数成本系数C的灵敏度分析
 - 约束右端项b的灵敏度分析
 - 约束矩阵4的灵敏度分析

一、C的灵敏度分析

- c_j 是非基变量 x_j 的系数;
 - (2) c_{J_r} 是第r个方程的基变量 x_{J_r} 的系数;

一、C的灵敏度分析

(1) c_j 是非基变量 x_j 的系数;

设 $c_j \rightarrow c_j + \Delta c_j$,其他参数(C中其他分量,A,b)都不变。 改变量 Δc_i 只影响 x_i 的检验数 y_{0j} :

			\mathcal{X}_1	\mathcal{X}_2	X_3	x_{i}	\mathcal{X}_4	\mathcal{X}_{5}
		0	2	3	1	c_i	$c_j + \Delta c_j$	0
初始	\mathcal{X}_4	1	1/3	1/3	1/3	n	1	0
初始表	\mathcal{X}_5	3	1/3	4/3	7 <mark>c_j +</mark>	$\frac{\Delta c_j - C_B B^{-1}}{\bullet}$	$p_j \leq 0$	1
$-\underline{C}_B$	$B^{-1}b$	-8	0	0	-3 <i>c</i>	$_{j}-C_{B}B^{-1}p_{j}$	≤0-5	-1
最份	\mathcal{X}_1	1	1	0	-1	n -1	4	-1
表	\mathcal{X}_2	2	0	1	2	$B^{-1}p_j$	-1	1

最优解:
$$X^* = (1, 2, 0, 0, 0, 0)^T, S^* = 8$$

最优基:
$$B = (p_1, p_2) = \begin{pmatrix} 1/3 & 1/3 \\ 1/3 & 4/3 \end{pmatrix}$$
 $B^{-1} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}$

$$B^{-1} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}$$

一、 C的灵敏度分析

(1) c_j 是非基变量 x_j 的系数;

设 $c_j \rightarrow c_j + \Delta c_j$,其他参数都不变。

改变量 Δc_i 只影响 x_j 的检验数 y_{0j} :

设最优表中 x_j 的原检验数 $y_{0j} = c_j - c_B B^{-1} p_j \le 0$ 新检验数 $y'_{0j} = (c_j + \Delta c_j) - c_B B^{-1} p_j$ $= y_{0j} + \Delta c_j \cap S \le 0$

则最优解不变。

续 例			x_1	\mathcal{X}_2	X_3	x_4 x_5
נילו '		0	2	3	1	0 0
初始	\mathcal{X}_4	1	1/3	1/3	1/3	1 0
初始表	\mathcal{X}_5	3	1/3	4/3	7/3	0 1
[-8	0	0	-3	-5 -1
最份	x_1	1	1	0	-1	4 -1
最 优 表	\mathcal{X}_2	2	0	1	2	-1 1

 x_3 的系数 $c_3 = 1$ 有改变量 Δc_3

 $y_{0j}' = y_{0j} + \Delta c_j$

1) 当 $y'_{03} = y_{03} + \Delta c_{3} = -3 + \Delta c_{3} \le 0$ 时,即 $\Delta c_{3} \le 3$,即 A_{3} 的单位收益 $\bar{c}_{3} = c_{3} + \Delta c_{3} \le 1 + 3 = 4$ 时,原最优方案不变。 $X^{*} = (1, 2, 0, 0, 0, 0)^{T}$,生产 A_{3} 是不经济的。

线性规划1-9

			\mathcal{X}_1	\mathcal{X}_2	X_3	\mathcal{X}_4	X_5
		0	2	3	1→6	0	0
初始	\mathcal{X}_4	1	1/3	1/3	1/3	1	0
炉 表	X_5	3	1/3	4/3	7/3	0	1
		-8	0	0	-3 →2	-5	-1
最优表	\mathcal{X}_1	1	1	0	-1	4	-1
表	\mathcal{X}_2	2	0	1	2	-1	1

 x_3 的系数 $c_3 = 1$ 有改变量 Δc_3 1)当 $\Delta c_3 \leq 3$ 时, X^* 不变2)当 $\Delta c_3 > 3$,即 A_3 的单位收益 $\bar{c}_3 = c_3 + \Delta c_3 > 4$,如增加到 $6 = c_3 + \Delta c_3 \longrightarrow \Delta c_3 = 5$ 时, $y_{03}' = y_{03} + \Delta c_3 = -3 + 5 = 2 > 0$, X^* 不再最优。 x_3 进基,即生产 A_3 可以提高收益。

			\mathcal{X}_1	\mathcal{X}_2	x_3	x_4 x_5
		0	2	3	1→6	0 0
初始表	\mathcal{X}_4	1	1/3	1/3	1/3	1 0
装	\mathcal{X}_{5}	3	1/3	4/3	7/3	0 1
		-8	0	0	2	− 5 − 1
	\mathcal{X}_1	1	1	0	-1	4 –1
	$-x_2$	2	0	1	2	-1 1
		-10	0	-1	0	
最少	x_1	2	1	1/2	0	$X^* = (2,0,1)^T$
最优表	X_3	1	0	$\frac{1}{2}$	1	$S^* = 10$

一、C的灵敏度分析

- (1) c_j 是非基变量 x_j 的系数;
- c_{J_r} 是第r个方程的基变量 x_{J_r} 的系数;

一、C的灵敏度分析

(2) c_{J_r} 是第r个方程的基变量 x_{J_r} 的系数

当 C_{J_r} 有改变量 ΔC_{J_r} 时,则 C_B 发生变化: $C_B \rightarrow C_B + \Delta C_B$

$$C_{B} = (c_{J_{1}}, \dots, c_{J_{r}}, \dots, c_{J_{m}})$$

$$C_{B} + \Delta C_{B} = (c_{J_{1}}, \dots, c_{J_{r}} + \Delta c_{J_{r}}, \dots, c_{J_{m}})$$

所有非基变量检验数 $y_{0j} = c_j - C_B B^{-1} p_j$ 都随之变化,为使原最优解不变,所有非基变量的新检验数

$$y'_{0j} = c_j - (C_B + \Delta C_B)B^{-1}p_j \leq 0$$

									<u> </u>
			x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	X_5		
		0	2	3	1	0	0		
初	X_4	1	1/3	1/3	$\frac{1}{2}$	1	0		
始	$B_{\chi_5}^{-1}$	b	$\frac{1}{3}B$	4/3	p ₃ /3	p ₄	p ₅	$y_{0j}' = c_j - (C_B + \Delta C_B)$	$(C_B)B^{-1}p_j$
T	5	5	/3	/3	/3		·		
		-8	0	0	-3	-5	-1	$y_{0j} = C_j - C_B B$	$p_j \leq 0$
最	\mathcal{X}_1	1	1	0	-1	4	1–1		
表	\mathcal{X}_2	2	0	1	2	$-1^{\mathbf{B}}$	1		
•		$B^{-1}b$	<u> </u>		$B^{-1}p_3$	$B^{-1}p_A$	$B^{-1}p$	$X^* = (1, 2, 0)$	$(0,0,0)^{T}$
•	$y_{03}'=1$	$-(2+\Delta$	$(c_1,3)\begin{bmatrix} -1\\2 \end{bmatrix}$	$= \Delta c_1 -$	$-3 \le 0$	$\rightarrow \Delta c_1 \leq$	3		
	$y_{04}'=0$	$-(2+\Delta$	$(c_1,3)$	 = −4∆	$c_1 - 5 \le 0$	$\rightarrow \Delta c_1$	≥ -5	$-5/4 \le \Delta c_1$	≤1
	$y_{05}'=0$	-(2+∆	$(x_1,3)\begin{pmatrix} -1\\ -1\\ 1 \end{pmatrix}$	$=\Delta c_1$	-1≤0	$\Delta c_1 \leq$	1	线性规划1-9	

			\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_{5}	
		0	2	3	1	0	0	
初	\mathcal{X}_4	1	1/3	1/3	1/3	1	0	
始 表	X_5	3	1/3	4/3	7/3	0	1	$y'_{0j} = c_j - (C_B + \Delta C_B)B^{-1}p_j$
		-8	0	0	-3	-5	-1	$y_{0j} = c_j - C_B B^{-1} p_j \le 0$
最份	\mathcal{X}_1	1	1	0	-1	4	-1	
表	\mathcal{X}_2	2	0	1	2	-1	1	

$$X^* = (1, 2, 0, 0, 0)^T$$

$$-5/4 \le \Delta c_1 \le 1$$

 $\bar{c}_1 = c_1 + \Delta c_1$ 在[2-5/4, 2+1]=[3/4, 3]内变化时,原X*不变,

线性规划1-9

第九节 线性规划问题的灵敏度分析

- ✓ 目标函数成本系数C的灵敏度分析
- 约束右端项b的灵敏度分析
 - 约束矩阵4的灵敏度分析

二、b的灵敏度分析

而其他参数不变时,问 b, 在什么范围内变化时,最 优基B不变?

分析: 因为b的变化不影响检验数 $y_{0j} = c_j - C_B B^{-1} p_j$ 所以当 $b \to \bar{b}$ 时,在最优表中 $B^{-1}b \to B^{-1}\bar{b}$, ≥0 若仍≥0 则最优基B不变。

但最优解和最优值都发生变化:

$$X^* = \begin{pmatrix} B^{-1}\overline{b} \\ 0 \end{pmatrix} \quad S^* = C_B B^{-1}\overline{b}$$

当
$$b = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \rightarrow \bar{b} = \begin{pmatrix} \bar{b}_1 \\ 3 \end{pmatrix}$$
 时,为使最优基 B 不变,

$$B^{-1}\overline{b} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \overline{b}_1 \\ 3 \end{pmatrix} = \begin{pmatrix} 4\overline{b}_1 - 3 \\ -\overline{b}_1 + 3 \end{pmatrix} \ge 0 \longrightarrow \frac{3}{4} \le \overline{b}_1 \le 3$$

$$X^* = (1,2,0)^T$$

 $S^* = 8$
最优基

$$\boldsymbol{B} = (\boldsymbol{p}_1, \boldsymbol{p}_2)$$

$$B^{-1} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}$$

当
$$b = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \rightarrow \bar{b} = \begin{pmatrix} \bar{b}_1 \\ 3 \end{pmatrix}$$
 时,为使最优基 B 不变, $\frac{3}{4} \leq \bar{b}_1 \leq 3$

但
$$X^*, S^*$$
变化为: $X^* = \begin{pmatrix} B^{-1}\overline{b} \\ 0 \end{pmatrix}$ $S^* = C_B B^{-1}\overline{b}$

			\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	X_5
		0	2	3	1	0	0
 切台	\mathcal{X}_4	4	$\frac{1}{3}$	1/3	1/3	1	0
長	X_5	3	$\frac{1}{3}$	4/3	7/3	0	1
		-23	0	0	-3	-5	-1
	$\begin{array}{c} x_1 \\ x_2 \end{array}$	13 -1	1 0	0	-1 2	4 -1 B	-1 1

$$\frac{3}{4} \le \overline{b}_1 \le 3$$

$$B = (p_1, p_2)$$

不是可行基

$$B^{-1} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}$$

$$\stackrel{\text{\tiny Δ}}{\Rightarrow} b = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \rightarrow \bar{b} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \quad \text{Fig. } B^{-1}\bar{b} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 13 \\ -1 \end{pmatrix}$$

$$S = C_B B^{-1} \overline{b} = (2,3) \begin{pmatrix} 13 \\ -1 \end{pmatrix} = 23$$

•
初
ÍNÌ
九台
为日
1X

		x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	X_5
	0	2	3	1	0	0
X_4	4	$\frac{1}{3}$	1/3	1/3	1	0
X_5	3	$\frac{1}{3}$	4/3	7/3	0	1
	-23	0	0	-3	- 5	-1
$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	13 -1	1 0	0 1	-1 2	4 -1 B	-1 1

$$B = (p_1, p_2)$$

不是可行基

$$B^{-1} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}$$

当
$$b = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \rightarrow \overline{b} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 时, $B^{-1}\overline{b} = \begin{pmatrix} 13 \\ -1 \end{pmatrix}$ $S = C_B B^{-1}\overline{b} = 23$

但此时所有检验数仍 ≤ 0 ,所以B是正则基。

可用对偶单纯形法求新的最优解。

			\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	x_4	\mathcal{X}_{5}
		0	2	3	1	0	0
初始	\mathcal{X}_4	4	1/3	1/3	1/3	1	0
装	X_5	3	1/3	4/3	7/3	0	1
		-23	0	0	-3	-5	-1
	x_1	13	1	0	-1	4	-1
4	$-x_2$	-1	0	1	2	-1	1

$$\max S = CX$$
$$AX = b$$
$$X \ge 0$$

$$\min S = CX \\
AX = b \\
X \ge 0$$

$$\varepsilon = \min\{\frac{y_{0j}}{y_{rj}} \middle| y_{rj} < 0\} = \frac{y_{0k}}{y_{rk}} \longrightarrow x_k$$
为进基变量

$$\varepsilon = \min\{\frac{y_{0j}}{-y_{rj}} \middle| y_{rj} < 0\} = \frac{y_{0k}}{y_{rk}} \longrightarrow x_k$$
为进基变量

			\mathcal{X}_1	\mathcal{X}_2	x_3	x_4	X_5
		0	2	3	1	0	0
初始	\mathcal{X}_4	4	1/3	1/3	1/3	1	0
始表	\mathcal{X}_5	3	1/3	4/3	7/3	0	1
		-23	0	0	-3	- 5	-1
	\mathcal{X}_1	13	1	0	-1	4	-1
4	$-x_2$	-1	0	1	2	-1	1
	\mathcal{X}_1						
	\mathcal{X}_4						

			\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	x_4	X_5
		0	2	3	1	0	0
初始	\mathcal{X}_4	4	1/3	1/3	1/3	1	0
始表	X_5	3	1/3	4/3	7/3	0	1
		-23	0	0	-3	-5	-1
	x_1	13	1	0	-1	4	-1
4	$-x_2$	-1	0	1	2	-1	1
	$\begin{bmatrix} x_1 \\ x_4 \end{bmatrix}$	1	0	-1	-2	1	-1

			\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	x_4	X_5
		0	2	3	1	0	0
初始	\mathcal{X}_4	4	1/3	1/3	1/3	1	0
始表	X_5	3	1/3	4/3	7/3	0	1
		-23	0	0	-3	-5	-1
	\mathcal{X}_1	13	1	0	-1	4	-1
4	$-x_2$	-1	0	1	2	-1	1
	x_1	9	1	4	7	0	3
	\mathcal{X}_4	1	0	-1	-2	1	-1

			\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	x_4	X_5
		0	2	3	1	0	0
初始	\mathcal{X}_4	4	1/3	1/3	1/3	1	0
始表	X_5	3	1/3	4/3	7/3	0	1
		-23	0	0	-3	-5	-1
	\mathcal{X}_1	13	1	0	-1	4	-1
4	$-x_2$	-1	0	1	2	-1	1
		-18	0	-5	-13	0	-6
最	\mathcal{X}_1	9	1	4	7	0	3
仇 表	\mathcal{X}_4	1	0	-1	-2	1	-1

$$X^* = (9,0,0)^T$$

 $S^* = 18$

第九节 线性规划问题的灵敏度分析

- ✓ 目标函数成本系数C的灵敏度分析
- ✓ 约束右端项b的灵敏度分析
- → 约束矩阵A的灵敏度分析

作业: P96 11 (1) (2) (3) (4) (5) (6)

作业: P84 3 (1) (2) (3) (4) (5) (6)

	求min的问题	求max的问题
最优性 判别	$B^{-1}b \ge 0$ $C - C_B B^{-1}A \ge 0$	$B^{-1}b \ge 0$ $C - C_B B^{-1}A \le 0$
单 进基纯	$y_{0q} < 0$, x_q 进基	$y_{0q} > 0$, x_q 进基
形	$\min\{\frac{y_{i0}}{y_{iq}} \mid y_{iq} > 0\} = \frac{y_{p0}}{y_{pq}}$	$\min\{\frac{y_{i0}}{y_{iq}} \mid y_{iq} > 0\} = \frac{y_{p0}}{y_{pq}}$
对 偶 离基 单	$y_{r0} < 0$, x_{J_r} 离基	$y_{r_0} < 0$, x_{J_r} 离基
纯 形 进基 法	$\min\{\frac{y_{0j}}{-y_{rj}} \mid y_{rj} < 0\} = \frac{y_{0k}}{-y_{rk}}$	$\min\{\frac{y_{0j}}{y_{rj}} \mid y_{rj} < 0\} = \frac{y_{0k}}{y_{rk}}$

小结

- --、C的灵敏度分析 ——改变C中一个元素
- (1) c_{j} 是非基变量 x_{j} 的系数 设最优表中 x_{j} 的原检验数 $y_{0j} = c_{j} c_{B}B^{-1}p_{j} \le 0$ 若新检验数 $y'_{0j} = y_{0j} + \Delta c_{j}$ 仍 ≤ 0 则最优解不变。 否则, x_{i} 进基,用单纯形法找新的最优解。
- (2) c_{J_r} 是第r 个方程的基变量 x_{J_r} 的系数 为使原最优解不变,需所有非基变量的新检验数 $y'_{0j} = c_j (C_B + \Delta C_B)B^{-1}p_j \leq 0$ (不等式组) 否则,用单纯形法找新的最优解。

二、b的灵敏度分析

当 $b \rightarrow \bar{b}$ 时,在最优表中 $B^{-1}b \rightarrow B^{-1}\bar{b}$, ≥ 0 若仍 ≥ 0

则最优基B不变。但最优解和最优值都发生变化,

新最优解和最优值为
$$X^* = \begin{pmatrix} B^{-1}\overline{b} \\ 0 \end{pmatrix}$$
, $S^* = C_B B^{-1}\overline{b}$

若 $B^{-1}\bar{b}$ ≥0,用对偶单纯形法找新的最优解。

			x_1	\mathcal{X}_2	x_3	\mathcal{X}_4	X_5		
		0	2	3	1	0	0		
初始	\mathcal{X}_4	1	$\frac{1}{3}$	$\frac{1}{3}$	1/3	1	0		
始表	\mathcal{X}_5	3	$\frac{1}{3}$	4/3	7/3	0	1		
		-8	0	0	-3	<u>-5</u>	<u>-1</u>	$-C_BB^{-1}$	
最份	\mathcal{X}_1	1	1	0	-1	4	₋₁ -1		
表	\mathcal{X}_2	2	0	1	2	-1 ^D	1		

$$B^{-1}p_3 B^{-1}p_4 B^{-1}p_5$$

要会从最优表中找所需信息!!

第一章 线性规划

第九节 线性规划问题的灵敏度分析

- ✓ 目标函数成本系数C的灵敏度分析
- ✓ 约束右端项b的灵敏度分析
- → 约束矩阵A的灵敏度分析

约束矩阵A的灵敏度分析

- 某个元素 a_{ij} 有改变量 Δa_{ij}
 - 增加新的一列(即增加一个新的变量)
 - 增加新的一行(即增加一个新的约束)

(1)某个元素 a_{ii} 有改变量 Δa_{ii} ,且它是非基列 P_i 的分量:

$$p_{j} = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{ij} \\ \vdots \\ a_{mj} \end{pmatrix} \rightarrow \overline{p}_{j} = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{ij} + \Delta a_{ij} \\ \vdots \\ a_{mj} \end{pmatrix}$$

			x_1	\mathcal{X}_2	\mathcal{X}_3	x_{j}	\mathcal{X}_4	X_5
		0	2	3	1	c_{j}	0	0
初始	\mathcal{X}_4	1	$\frac{1}{3}$	$\frac{1}{3}$	1/3	p_{j}	$p_j + \Delta p_j$	0
始表	X_5	3	$\frac{1}{3}$	4/3	$\frac{c_j-C}{c_j}$	$_{B}B^{-1}(p_{j}+$	$\Delta p_j) \leq 0$	<mark>0</mark> 1
$-\underline{C}_B$	$B^{-1}b$	-8	0	0	-3 <i>c</i>	$_{j}-C_{B}B^{-1}p_{j}\leq$	≤0-5	-1
最份	\mathcal{X}_1	1	1	0	-1	$R^{-1}n$	$R^{-1}(n \rightarrow R^{-1})$	-1
表	\mathcal{X}_2	$2^{-1}h$	0	1	2	D p_j	$B^{-1}(p_j +$	I

最优解: $X^* = (1,2,0,0,0,0)^T, S^* = 8$

最优基:
$$B = (p_1, p_2) = \begin{pmatrix} 1/3 & 1/3 \\ 1/3 & 1/3 \\ 1/3 & 1/3 \end{pmatrix}$$
 $B^{-1} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}$

(1)某个元素 a_{ii} 有改变量 Δa_{ii} ,且它是非基列 P_i 的分量:

$$p_{j} = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{ij} \\ \vdots \\ a_{mj} \end{pmatrix} \rightarrow \overline{p}_{j} = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{ij} + \Delta a_{ij} \\ \vdots \\ a_{mj} \end{pmatrix}$$

非基变量 x_j 的原检验数 $y_{0j} = c_j - C_B B^{-1} p_j \le 0$ 非基变量 x_j 的新检验数 $y'_{0j} = c_j - C_B B^{-1} \bar{p}_j \le 0$ 则原最优解不变。

若 $y'_{0j} = c_j - C_B B^{-1} \bar{p}_j > 0$,则原最优解不再是最优解。 让 x_i 进基进行换基运算求出新的最优解。

-								
			\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_{5}	$X^* = (1,2,0)^T$
		0	2	3	1	0	0	$S^* = 8$
初始	\mathcal{X}_4	1	$\frac{1}{3}$	$\frac{1}{3}$	1/3	$y'_{0j} = 0$	$C_j - C_B B^-$	$-\frac{1}{p_i} \leq 0$
炉 表	X_5	3	$\frac{1}{3}$	4/3	7/3	$y_{0j} = 0$	$C_j - C_B B$	取
		-8	0	0	-3	-5	-1	
最份	x_1	1	1	0	-1	4	- 1	$B^{-1} = \begin{pmatrix} 4 & -1 \\ & & \end{pmatrix}$
表	\mathcal{X}_2	2	0	1	2	$-1^{\mathbf{B}}$	1	$\begin{bmatrix} & (-1 & 1) \end{bmatrix}$

 $a_{13} = 1/3$ 有改变量 Δa_{13} , 求 Δa_{13} 的范围使原 X^* 不变。

$$p_{3} = \begin{pmatrix} 1/3 \\ 7/3 \end{pmatrix} \rightarrow \overline{p}_{3} = \begin{pmatrix} 1/3 + \Delta a_{13} \\ 7/3 \end{pmatrix} \qquad \lambda = C_{B}B^{-1} = (2,3) \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix} = (5 \ 1)$$

$$y'_{03} = c_{3} - C_{B}B^{-1}\overline{p}_{3} = 1 - (5,1) \begin{pmatrix} 1/3 + \Delta a_{13} \\ 7/3 \end{pmatrix} = -3 - 5\Delta a_{13} \le 0 \rightarrow \Delta a_{13} \ge -3/5$$

			\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	X_5	$X^* = (1,2,0)^T$
		0	2	3	1	0	0	$S^* = 8$
初始	\mathcal{X}_4	1	$\frac{1}{3}$	1/3	1/3	$y'_{0j} = 0$	$C_j - C_B B$	$\overline{p}_i \leq 0$
始表	X_5	3	$\frac{1}{3}$	4/3	7/3	$y_{0j} = 0$	$C_{j} - C_{B}B$	取忧基 p_1, p_2
		-8	0	0	-3	-5	-1	
最份	x_1	1	1	0	-1	4	1	$B^{-1} = \begin{pmatrix} 4 & -1 \\ & & 1 \end{pmatrix}$
表	\mathcal{X}_2	2	0	1	2	-1^{B}	1	(-1 1)

 $a_{13} = 1/3$ 有改变量 Δa_{13} , 求 Δa_{13} 的范围使原 X*不变。

$$p_{3} = \begin{pmatrix} 1/3 \\ 7/3 \end{pmatrix} \rightarrow \bar{p}_{3} = \begin{pmatrix} 1/3 + \Delta a_{13} \\ 7/3 \end{pmatrix} \quad y'_{03} = c_{3} - C_{B}B^{-1}\bar{p}_{3} = -3 - 5\Delta a_{13} \le 0 \quad \Delta a_{13} \ge -3/5$$
即 $\bar{a}_{13} = a_{13} + \Delta a_{13} \ge \frac{1}{3} - \frac{3}{5} = -\frac{4}{15}$,原最优解不变。

			\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	X_5
		0	2	3	1	0	0
初始	\mathcal{X}_4	1	1/3	1/3	1/3	1	0
炉表	\mathcal{X}_5	3	$\frac{1}{3}$	4/3	7/3	0	1
		-8	0	0	-3	-5	-1
最份	\mathcal{X}_1	1	1	0	-1	4	- 1
表	\mathcal{X}_2	2	0	1	2	-1^{B}	1

$$X^* = (1,2,0)^T$$

 $S^* = 8$

最优基

$$\boldsymbol{B} = (\boldsymbol{p}_1, \boldsymbol{p}_2)$$

$$B^{-1} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}$$

注意:不去讨论基变量 x_{J_j} 的系数列 p_{J_j} 的某个元素 a_{iJ_j} 的改变对 X^* 的影响。比如: p_1 中的1/3改变,

$$p_1 \mathfrak{S} \to B \mathfrak{S} \to B^{-1} \mathfrak{S} \to \begin{cases} y_{0j} = c_j - C_B B^{-1} p_j \mathfrak{S} \\ B^{-1} b \mathfrak{S}, C_B B^{-1} b \mathfrak{S} \end{cases}$$

线性规划1-9

约束矩阵的A灵敏度分析

- \checkmark 某个元素 a_{ij} 有改变量 Δa_{ij}
- 增加新的一列(即增加一个新的变量)
 - 增加新的一行(即增加一个新的约束)

(2) 增加新的一列(即增加一个新的变量)

设增加变量 x_{n+1} ,对应的成本系数为 c_{n+1} ,系数列 p_{n+1}

即在单纯形表中新增加一列: c_{n+1}

 \boldsymbol{x}_{n+1}

 \boldsymbol{p}_{n+1}

则在最优表中 x_{n+1} 的检验数为: $y_{0n+1} = c_{n+1} - C_B B^{-1} p_{n+1}$

若 $y_{0n+1} \leq 0$,则原最优解不变;

若 $y_{0n+1} > 0$,则原最优解不再最优。 x_{n+1} 进基,求新的最优解。

例1-20

					6
	A_{1}	A_{2}	A_3	资源	A_4
人工	1/3	$\frac{1}{3}$	1/3	1	1/3
材料	1/3	4/3	7/3	3	1/3
收益	2	3	1		$\boldsymbol{c_6}$

$$\max S = 2x_1 + 3x_2 + x_3$$

$$\frac{x_6}{A_4}$$

$$\frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3 + x_4 = 1$$

$$\frac{1}{3}x_1 + \frac{4}{3}x_2 + \frac{7}{3}x_3 + x_5 = 3$$

$$x_1, x_2, x_3 \ge 0$$

问单位收益 c_6 为多少时,才有利于 A_4 的投产?即 c_6 为何值时, $y_{06} > 0$?

分析:

$$y_{06} > 0 \rightarrow x_6$$
 进基 $\rightarrow x_6 > 0 \rightarrow A_4$ 投产

			\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_{5}	x_6	
		0	2	3	1	0	0	c_6	$S^* = 8$
初始	\mathcal{X}_4	1	$\frac{1}{3}$	1/3	1/3	1	0	1/3	
知 表	X_5	3	$\frac{1}{3}$	4/3	7/3	0	1	1/3	
_		-8	0	0	-3	-5	-1	$c_6 - C_{B}$	$B^{-1}p_{6}$
最份	x_1	1	1	0	-1	4	-1	1	
表	\mathcal{X}_2	2	0	1	2	-1 B	1	$B^{-1}p_6$	

$$y_{06} = c_6 - C_B B^{-1} p_6 = c_6 - (5,1) \begin{pmatrix} 1/3 \\ 1/3 \end{pmatrix} X^* = (1,2,0,0)^T$$

$$= c_6 - 2 \begin{cases} \le 0 \rightarrow \exists c_6 \le 2 \text{ pt}, x_6 = 0, \text{即生产} A_4 \text{不利} \\ > 0 \rightarrow \exists c_6 > 2 \text{ pt}, x_6 > 0, \text{ 即生产} A_4 \text{ 有利} \end{cases}$$
(进基) 提性规划1-9

约束矩阵的A灵敏度分析

- \checkmark 某个元素 a_{ij} 有改变量 Δa_{ij}
- ✓ 增加新的一列(即增加一个新的变量)
- 增加新的一行(即增加一个新的约束)

(3) 增加新的一行(即增加一个新的约束)

$$\min S = CX \\
AX = b \\
X \ge 0$$

- 设增加新的约束为: $a_{m+1,1}x_1 + a_{m+1,2}x_2 + \cdots + a_{m+1,n}x_n \le b_{m+1}$
- a) 如果原最优解满足新约束,则原最优解仍是最优的。
- b) 如果原最优解不满足新约束,则原最优解不再最优。

为了寻求新的最优解,在新约束中加松弛变量 x_{n+1} ,

$$a_{m+1,1}x_1 + a_{m+1,2}x_2 + \cdots + a_{m+1,n}x_n + x_{n+1} = b_{m+1}$$

在原最优表中增加新的一行(对应新约束),然后用对 偶单纯形法求新的最优解。

例1-20

增加一个新约束:

工时	1	2	1	b ₃
	A_1	A_2	A_3	资源
人工	/3	1/3	1/3	1
材料	1/3	4/3	7/3	3
收益	2	3	1	

生产三种产品每件所需检验工时分别为1,2,1,且可供检验的时间为 b_3 $x_1+2x_2+x_3 \le b_3$ 求 b_3 的范围使原最优解不变。

分析:

a) 将原最优解 $X^* = (1,2,0)^T$ 代入新约束:

$$5 = 1 + 2 \times 2 + 0 \le b_3$$

即当 $b_3 \ge 5$ 时,原最优解不变。

增加一个新约束:

工时	1	2	1	b ₃
	A_1	A_2	A_3	资源
人工	/3	1/3	1/3	1
材料	1/3	4/3	7/3	3
收益	2	3	1	

生产三种产品每件所需检验工时分别为1,2,1,且可供检验的时间为 b_3 $x_1+2x_2+x_3 \le b_3$ 求 b_3 的范围使原最优解不变。

b) 当检验工时 $b_3 < 5$ 时,如 $b_3 = 4$,此时新约束为 $x_1 + 2x_2 + x_3 \le 4$ 加入该约束后,原最优解已不可行。为了寻求新的最优解,在新约束中引入松弛变量 x_6 ,即 $x_1 + 2x_2 + x_3 + x_6 = 4$ 加到原最优表中的第三行进行迭代。

			X_1	Y	x_3	Υ	Y	Y	
		-8	0	$\frac{x_2}{0}$	-3	$\frac{x_4}{-5}$	$\frac{x_5}{-1}$	<i>x</i> ₆ 0	
_		_					ا 		
厚	\mathcal{X}_1	1	1	0	-1	4	-1	0	$r_3 - r_1$
取	\mathcal{X}_2	2	0	1	2	-1	1	0	$r_3 - r_1$ $r_3 - 2r_2$
原最优表	\mathcal{X}_{6}	4	1	2	1	0	0	1	
***								x_1	$+2x_2 + x_3 + x_6 = 4$

			x_1	\mathcal{X}_2	x_3	X_4	\mathcal{X}_{5}	\mathcal{X}_{6}
		-8	0	0	-3	-5	−1 [▼]	0
原	\mathcal{X}_1	1	1	0	-1	4	-1	0
最份	\mathcal{X}_2	2	0	1	2	-1	1	0
原最优表	\mathcal{X}_{6}	4	1	2	1	0	0	1
		-8	0	0	-3	-5	-1	0
	\mathcal{X}_1	1	1	0	-1	4	-1	0
	\mathcal{X}_2	2	0	1	2	-1	1	0
4	$-x_6$	-1	0	0	-2	-2	-1	1

$$r_3 - r_1$$

 $r_3 - 2r_2$
 $\varepsilon = \min$
 $\{\frac{-3}{-2}, \frac{-5}{-2}, \frac{-1}{-1}\} = 1$
 \downarrow
 x_5 为进基变量

			x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_{5}	\mathcal{X}_{6}
		-8	0	0	-3	-5	−1 [▼]	0
原最	\mathcal{X}_1	1	1	0	-1	4	-1	0
最份	\mathcal{X}_2	2	0	1	2	-1	1	0
优表	\mathcal{X}_{6}	4	1	2	1	0	0	1
		-8	0	0	-3	-5	-1	0
	x_1	1	1	0	-1	4	-1	0
	\mathcal{X}_2	2	0	1	2	-1	1	0
4	$-x_6$	-1	0	0	-2	-2	-1	1
		-7	0	0	-1	-3	0	-1
最	\mathcal{X}_1	2	1	0	1	6	0	-1
优	\mathcal{X}_2	1	0	1	0	-3	0	1
表	\mathcal{X}_5	1	0	0	2	2	1	-1

$$\{\frac{-3}{-2}, \frac{-5}{-2}, \frac{-1}{-1}\} = 1$$

 x_5 为进基变量

$$X^* = (2,1,0)^T$$

 $S^* = 7$
 $x_1 + 2x_2 + x_3 \le 4$

约束矩阵的A灵敏度分析

- \checkmark 某个元素 a_{ij} 有改变量 Δa_{ij}
- ✓ 增加新的一列(既增加一个新的变量)
- 增加新的一行(既增加一个新的约束)

第一章 线性规划

第九节 线性规划问题的灵敏度分析

- ✓ 目标函数成本系数C的灵敏度分析
- ✓ 约束右端项b的灵敏度分析
- ✓ 约束矩阵A的灵敏度分析

作业: P96 11 (1) (2) (3) (4) (5) (6)

作业: P84 3 (1) (2) (3) (4) (5) (6)