Modale logica

Maria Aloni
ILLC-University of Amsterdam
M.D.Aloni@uva.nl

Logica en de Linguistic Turn 2013

26/11/13

Plan voor vandaag

- 1. Modale logica: syntaxis
- 2. Modale logica in meervoud
- 3. Logisch-filosofische motivatie van de modale logica
- 4. NatDed: extra opgaven 1 en 2

Huiswerk:

- Gamut, opg 4.7, extra opg. NatDed 3-4; Syllabus, 4.1 incl. opgaven
- Quine: tekst lezen en tekstvragen beantwoorden

Overig:

- HW3 (deadline 1 dec)
- Wiki: commentaar (deadline vandaag) en eindversie lemma (deadline 1 dec)

Modale logica

- ▶ Modale logica: propositielogica + □ en ◊
 - ▶ □ → noodzakelijkheid
- ▶ De modale logica bestudeert de logica van modale stellingen.
 - (1) Modale stelling = stelling die niet alleen maar op grond van wat nu en hier het geval is beoordeeld kan worden
 - (2) Voorbeelden van modale stellingen:
 - a. De muur is rood maar hij had wit kunnen zijn.
 - Jan kwam niet naar het hoorcollege maandag, maar hij had wel moeten komen.
 - McX denkt dat er universalia zijn, maar er zijn geen universalia.
 - d. Volgens de Griekse mythologie is Pegasus een paard met vleugels, maar Pegasus bestaat niet.
 - e. Misschien is Jan aangekomen.
 - f. Klaas moet zijn zieke moeder verzorgen.
 - g. ..

Definitie van de taal van modale logica

Zij *PROP* een verzameling propositieletters.

- 1. Als $p \in PROP$, dan is p is een formule van ML;
- 2. als ϕ en ψ formules van ML zijn, dan zijn $\neg \phi$, $\neg \psi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ dat ook;
- 3. Als ϕ een formule van ML is dan zijn $\Diamond \phi$ en $\Box \phi$ dat ook;
- 4. Niets is een formule van *ML* als het niet in een eindig aantal stappen gegenereerd is door de bovenstaande clausules.
- Formule of niet?
 - $(3) \qquad p, \ pp, \ p\neg q, \ p \land \neg q, \ \Box(p \land \neg q), \ \diamondsuit p \to \Box q, \\ \diamondsuit p \diamondsuit \to \Box q, \ \Box\Box, \ \Box\Box p, \ \diamondsuit(\Box \land \neg\Box q), \ \diamondsuit(p \land \neg\Box q), \\ (\Box(\Box p \to p) \to \diamondsuit p) \ [\text{constructieboom}]$

Modaliteiten (in het meervoud)

Modale operatoren en hun verschillende interpretaties

- Nee, hoor, dat is niet mogelijk. Hans kan niet zowel lang als ook klein zijn. [logische (of alethische) mogelijkheid]
- 2. Het *niet mogelijk* om een vak meer dan 3 keer te herkansen. [deontische mogelijkheid]
- 3. Ik weet niet of Johannes de goudvis nog leeft. Het is *mogelijk* dat Mathilda's kat hem heeft opgevreten.

[epistemische (of doxastische) mogelijkheid]

Alethische modaliteit

- ► Mogelijkheid en noodzakelijkeid vanuit een logisch oogmerk.
 - □ → logische noodzakelijkheid

[aletheia = waarheid]

- ▶ ♦ → logische mogelijkheid
- Voorbeelden:
 - (4) a. Het is waar maar had ook onwaar kunnen zijn. $\mapsto p \land \lozenge \neg p$
 - b. Het is noodzakelijk dat elke object identiek is met zichzelf. $\mapsto \Box q$

Deontische modaliteit

- ▶ Mogelijkheid en noodzakelijkeid gegeven een regelsysteem.
 - $ightharpoonup \Leftrightarrow \mapsto \mathsf{het} \mathsf{ is toegestaan}$
 - ightharpoonup $\Box \mapsto \mathsf{het} \mathsf{ is verplicht}$
- Voorbeelden:
 - (5) a. Bellen tijdens de les is niet toegestaan. $\mapsto \neg \Diamond p$
 - b. Jij moet je mobiel uitzetten. $\mapsto \Box p$
 - c. Alcohol drinken en auto rijden is verboden.
 - $\mapsto \neg \Diamond (p \land q)$
 - d. Jij mag nog een stukje taart nemen. $\mapsto \Diamond p$

Epistemische en doxastische modaliteit

- ▶ Mogelijkheid en noodzakelijkeid gegeven wat wij weten of geloven.
 - ▶ ♦ pegeven de beschikbare informatie is het mogelijk
 - ▶ □

 → gegeven de beschikbare informatie is het noodzakeiljk
- Voorbeelden
 - (6) a. Jan moet aangekomen zijn. $\mapsto \Box p$
 - b. Misschien heeft Piet een ongeluk gehad. $\mapsto \Diamond p$
 - (7) a. Jan gelooft dat Sinterklaas in het land is. $\mapsto \Box p$ [doxa]
 - b. Ik weet dat Sinterklaas in het land is. $\mapsto \Box p$ [episteme]

Logisch-filososche motivatie van de modale logica

- ► Een valuatie *V* voor de taal van de propositielogica was een functie van formules naar waarheidswaardes:
 - $V: \mathcal{L} \rightarrow \{0,1\}$
- ► In Modale Logica:
 - 1. Valuaties gezien als mogelijke werelden;
 - 2. De waarheid van een formule kan afhankelijk zijn van *meer dan één* mogelijke wereld;
 - 3. Niet alles wat logisch mogelijk is is ook daadwerkelijk mogelijk.

Valuaties als mogelijke werelden

- In een valuatie V voor de taal van de propositielogica, voor elke ϕ : $V(\phi) = 1$, of $V(\phi) = 0$.
- Een valuatie legt de waarheidswaarde van elke mogelijke uitspraak over de wereld vast
- ► En kan dus worden gezien als een volledige beschrijving van een mogelijke toestand van de wereld
- ▶ We noemen een valuatie om die reden ook wel een mogelijke wereld.
- Alles wat we zullen zeggen over mogelijkheid en noodzakelijkheid in ML, zal gedefiniëerd zijn in termen van mogelijke werelden.

I believe, and so do you, that things could have been different in countless ways. (. . .) Ordinary language permits the paraphrase: there are many ways things could have been besides the way they actually are. (. . .) It says that there exist many entities of a certain description, to wit ways things could have been. (. . .) I believe permissible paraphrases of what I believe; (. . .) I therefore believe in the existence of entities that might be called ways things could have been. I prefer to call them possible worlds. [David Lewis, 1979]

Mogelijkheid in de Tractatus en modale logica

- Wittgensteins Tractatus:
 - ▶ Logische ruimte: verzameling mogelijke standen van zaken
 - ► Actuele wereld: deelverzameling logische ruimte
- ► Modale logica:
 - Logische ruimte: verzameling mogelijke werelden
 - ► Actuele wereld: element van logische ruimte

Waarheid in ML afhankelijk van meer dan één wereld

- In PL was de waarheid van een formule bepaald op basis van één valuatie, die wat feitelijk het geval is in de actuele wereld representeert.
- In modale logica, de waarheid van een formule kan afhankelijk zijn van meer dan één mogelijke wereld.
 - (8) a. Zin: Jan kwam niet naar het hoorcollege gisteren, maar hij had wel kunnen komen
 - b. Vertaling: $\neg p \land \Diamond p$
 - c. Analyse: in de actuele wereld kwam Jan niet, maar er is een andere mogelijk wereld waarin hij wel kwam.
- ▶ Dit vraagt om een een wereld afhankelijk notie van valuatie:
 - $V: W \times PROP \rightarrow \{0,1\}$

Intuitief, per wereld w, zegt die valuatie V dat V(w,p)=1 als p waar is in w, en V(w,p)=0 als p onwaar is in w

Niet alles wat logisch mogelijk is is ook daadwerkelijk mogelijk

- ► In PL, alle logische mogelijke valuaties relevant voor *metalogische noties* zoals logisch equivalentie of geldigheid
- ▶ In ML, meerdere werelden relevant voor waarheid van formules:
 - (9) a. $\Diamond \phi$ waar in w desda er is een w' die bereikbaar is vanuit w zodat ϕ waar is in w'
 - b. $\Box \phi$ waar in w desda elke w' die bereikbaar is vanuit w is zodat ϕ waar is in w'
- ▶ Afhankelijk van interpretatie van ♦ en □ kunnen verschillende verzamelingen van mogelijke werelden relevant (bereikbaar) zijn:
 - ▶ alle logisch mogelijke werelden (alethisch modaliteit);
 - werelden in overeenstemming met een bepaalde verzameling van wetten (deontische modaliteit);
 - mogelijkheden die een persoon onderscheidt op basis van wat hij/zij weet (epistemische modaliteit).

We noemen dit de **modale basis** van de operatoren \Diamond en \square .

Voorbeeld: logisch mogelijk \neq deontisch mogelijk

- Stel dat drinken en rijden verboden is
 - ► Twee propositieletters: *p* is drinken, en *q* is rijden
 - ▶ Vier logische mogelijkheden (vier mogelijke werelden)
 - Maar alleen drie deontische mogelijkheden.
 - Dus alleen drie werelden in deontische modale basis.
 - (10) a. Jij mag drinken, jij mag rijden, maar jij mag niet drinken en rijden.
 - b. $\Diamond p \land \Diamond q \land \neg \Diamond (p \land q)$
 - c. Er is een deontisch mogelijke wereld waarin jij drinkt, er is een deontisch mogelijke wereld waarin jij rijdt, maar er is geen deontisch mogelijke wereld waarin jij drinkt en rijdt.

Opgave

Vertaal de volgenden zinnen in de taal van de modale logica:

- (11) Als het mogelijk waar is dat a is b dan is het ook noodzakelijk waar.
 - a. Modale basis: alle logische mogelijkheden
 - b. Vertalingsleutel: p : a is b
 - c. Vertaling: $\Diamond p \rightarrow \Box p$
- (12) Als Peter niet binnen mag komen, dan moeten Jan en Bea ook weg.
 - Modale basis: alle deontische mogelijkheden (of alle mogelijkheden binnen de regels van de spreker)
 - b. Vertalingsleutel: p: P komt binnen, q: J gaat weg, r: B gaat weg,
 - c. Vertaling: $\neg \Diamond p \rightarrow \Box (q \land r)$
- (13) Sherlock acht het mogelijk dat Thelma niet vermoord is, en gelooft dat als zij wel vermoord is, dan heeft Louise het gedaan.
 - Modale basis: Alle mogelijkheden gegeven de beschikbare informatie van Sherlock.
 - b. Vertalingsleutel: p: T is vermoord, q: L heeft het gedaan
 - c. Vertaling: $\Diamond \neg p \land \Box (p \rightarrow q)$

Opgave

Vertaal de volgenden zinnen in de taal van de modale logica:

- (14) a. De muur is rood maar hij had wit kunnen zijn.
 - b. Jan kwam niet naar het hoorcollege maandag, maar hij had wel moeten komen.
 - McX denkt dat er universalia zijn, maar er zijn geen universalia.
 - Volgens de Griekse mythologie is Pegasus een paard met vleugels, maar Pegasus bestaat niet.
 - e. Misschien is Jan aangekomen.
 - f. Klaas moet zijn zieke moeder verzorgen.