Importing Libraries

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import warnings
   warnings.filterwarnings('ignore')
```

Loading the dataset

```
In [2]: df=pd.read_csv(r"C:\Users\Shubham\Desktop\Data Science\Data Science Class\Stats and
df.head()
```

Out[2]:

	Unnamed: 0	label	text	label_num
0	605	ham	Subject: enron methanol ; meter # : 988291\r\n	0
1	2349	ham	Subject: hpl nom for january 9 , 2001\r\n(see	0
2	3624	ham	Subject: neon retreat\r\nho ho ho , we ' re ar	0
3	4685	spam	Subject: photoshop , windows , office . cheap	1
4	2030	ham	Subject: re : indian springs\r\nthis deal is t	0

```
In [3]: df=df.iloc[:,1:3]
```

```
In [4]: df.head()
```

Out[4]:

	label	text
0	ham	Subject: enron methanol ; meter # : 988291\r\n
1	ham	Subject: hpl nom for january 9 , 2001\r\n(see
2	ham	Subject: neon retreat\r\nho ho ho , we ' re ar
3	spam	Subject: photoshop , windows , office . cheap
4	ham	Subject: re : indian springs\r\nthis deal is t

Check for the null values

```
In [5]: df.isna().sum()
Out[5]: label  0
    text  0
    dtype: int64
```

Balancing the Data

```
ham = df[df['label']=='ham']
 In [7]:
         spam = df[df['label']=='spam']
In [8]: spam = spam.sample(ham.shape[0], replace=True)
In [9]: |print(ham.shape, spam.shape)
         (3672, 2) (3672, 2)
In [10]:
         df = ham.append(spam, ignore_index=True)
         df.shape
Out[10]: (7344, 2)
In [11]: df.label.value_counts()
Out[11]: ham
                 3672
                 3672
         spam
         Name: label, dtype: int64
```

Importing The Nural language toolkit

```
In [12]: import re
import nltk
nltk.download('stopwords')

[nltk_data] Downloading package stopwords to
[nltk_data] C:\Users\Shubham\AppData\Roaming\nltk_data...
[nltk_data] Package stopwords is already up-to-date!
Out[12]: True
```

preprocess a corpus of text data using NLTK's tools for natural language processing.

```
In [16]: from nltk.corpus import stopwords
    from nltk.stem.porter import PorterStemmer
    ps = PorterStemmer()
    corpus = []

for i in range(0, len(df)):
        review = re.sub('[^a-zA-Z]',' ', df['text'][i])
        review = review.lower()
        review = review.split()
        review = review.split()
        review = [ps.stem(word) for word in review if not word in stopwords.words('eng.review = ' '.join(review)
        corpus.append(review)
```

Bag of words

```
In [17]: from sklearn.feature_extraction.text import CountVectorizer
           cv = CountVectorizer()
           x = cv.fit transform(corpus).toarray()
In [18]: x.shape
Out[18]: (7344, 36280)
In [19]:
Out[19]: array([[0, 0, 0, ..., 0, 0, 0],
                   [0, 0, 0, \ldots, 0, 0, 0],
                   [0, 0, 0, ..., 0, 0, 0]], dtype=int64)
In [21]: df.head()
Out[21]:
              label
                                                         text
           0
                     Subject: enron methanol; meter #: 988291\r\n...
               ham
            1
               ham
                      Subject: hpl nom for january 9, 2001\r\n( see...
            2
               ham
                       Subject: neon retreat\r\nho ho ho, we 're ar...
                         Subject: re: indian springs\r\nthis deal is t...
               ham
               ham Subject: ehronline web address change\r\nthis ...
```

Encoding Concept

```
In [22]: df['label'] = df['label'].astype('category')
    df['label'] = df['label'].cat.codes

In [23]: df.shape
Out[23]: (7344, 2)
```

split the data into training and test

```
In [25]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, df['label'], test_size=0.25
```

Building Niave Bayes Theorem

```
In [26]: from sklearn.naive_bayes import MultinomialNB
  nbmodel = MultinomialNB().fit(x_train, y_train)
```

Predict the data

```
In [27]: y_pred_train = nbmodel.predict(x_train)
y_pred_test = nbmodel.predict(x_test)

In [28]: y_pred_test
Out[28]: array([0, 0, 0, ..., 1, 1, 1], dtype=int8)
```

Evaluate the model

```
In [31]: print(classification_report(y_train, y_pred_train))
    print()
    print(classification_report(y_test, y_pred_test))
```

	precision	recall	f1-score	support
0	0.98	0.99	0.98	2791
1	0.99	0.97	0.98	2717
accuracy			0.98	5508
macro avg	0.98	0.98	0.98	5508
weighted avg	0.98	0.98	0.98	5508
	precision	recall	f1-score	support
0	precision 0.97	recall 0.98	f1-score	support 881
0 1	•			
_	0.97	0.98	0.98	881
1	0.97	0.98	0.98 0.98	881 955

```
In [32]: print(accuracy_score(y_train, y_pred_train))
    print()
    print(accuracy_score(y_test, y_pred_test))
```

- 0.9820261437908496
- 0.9771241830065359

In []: