Doc history

Rev	Date	Author	Description
00	01/15/2025	Marco Selva	Create project template
01	02/05/2025	Marco Selva	Add meeting update
02	02/26/2025	Marco Selva	Update project description and link architecture doc
03	03/27/2025	Marco Selva	Add MoM 2 meeting

Linked doc

Cod	Link	Name	Description
A2	<u>link</u>	[A2] - Architecture	Architecture and developer doc
A3	link	[A3] - Energy and cost simulation	Excel with energy and cost estimation and PC selection

20250327 - 2 meeting

Iniziare a formattare

- Ubutnu server
 - o Dobbiamo formattare i PC
 - Prepare chiavetta
- Use case
 - o Tool interni per BM o staff
 - Siti static
 - Per il moment non serve scalabilita
- Possiamo optare per soluzione più leggere con solo Docker, per partire

Per accesso da remoto:

- Cloudfare Tunnel
 - Supporta OAuth
 - o Esporre porte direttamente, tramite sottodominio di rete
- Valutazione di router
- Dominio per il momento uno che ci da @Flavio Renzi
 - @Marco Selva to buy router

GitLab

- Perchè usare questo?
- Si può semplificare con GitHub,
 - o usare questo per pushare il codice e non fare il deploy interno

STEP 0:

- Installazione minima
 - Ubutnu server CHIAVETTA @Marco Selva
 - 1 partizione minima da 50/100 Gb
 - Lasciamo spazio vuoto
 - o Router e rete online con 1 PC
 - Router fare
 - Costo del dominio
 - Docker
 - Accesso da remoto
 - Cloudfare Tunnel
 - @Flavio Renzi preparere breve doc per configurazione
- Stima con costi mantenimento

- o Con presa di consumi
 - Presa moitor o shelly per stima consumi medi effettivi

2 Aprile

- Ubutnu server chiavetta
- Router

Storage Server - STANDBY

- DB storage persistente
- Con MicroCeph: partizione con partizione ridondata
- 3 worker node:
 - o Partizione di sistema
 - o Partizione di sati, gestita da MicroCeph, tutti i dati sono replicati.
 - Viene visto come un disco montato

Hosting and Cloud project

Project Description:

This initiative gives new life to legacy company PCs by transforming them into a powerful **on-premises private cloud infrastructure**, powered by Kubernetes and GitLab. By leveraging existing hardware, we create a scalable, fault-tolerant environment that supports essential applications and continuous integration processes, optimizing scalability and cost-efficiency.

More than just a technical solution, this infrastructure will **drive the company's internal projects**, centralizing development, testing, and operational workflows. It also opens the door for hosting client demos, **showcasing our capability to deliver secure**, **sustainable custom solutions**.

Through the reuse of company assets, we **reduce environmental impacts** and operational costs, paving the way for innovation, sustainability, and stronger data security initiatives.

Roles and Responsibilities:

Group Leader: Silvio Mario Pastori

- Main Responsibilities:
 - Coordinate group activities.
 - o Ensure the achievement of set objectives.
 - o Facilitate communication among team members.

Developers: Flavio Renzi, Marco Selva

- Main Responsibilities:
 - Develop code according to provided specifications.
 - o Collaborate in drafting technical documentation.
 - o Participate in design reviews and provide feedback.
 - Test and validate implemented solutions.

Specific Objective (End)

- Develop and release the Cloud Management Module by end if Q2 2025.
- Serve other internal projects as soon as possible, 2-3 month

Priority Goal

 Ensure seamless integration of the Cloud Management Module with existing internal systems—supporting continuous integration pipelines and critical applications—without introducing regressions.

Tasks and Planning

Task 1: Requirement Analysis

- Objective: Gather and analyze requirements for the Cloud Management Module.
- Activities:
 - Interview stakeholders and end-users
 - Document functional and non-functional requirements
- **Deliverable:** Detailed requirements specification document
- Estimation: X weeks

Task 2: Architecture & Design

- Objective: Define the system architecture for scalability and fault tolerance.
- Activities:
 - o Create system diagrams and interface designs
 - Select appropriate hardware and software configurations
- **Deliverable:** Architectural design document and prototype diagrams
- Estimation: X weeks

Task 3: Implementation & Integration

- Objective: Develop Module X and integrate it with the internal cloud environment.
- Activities:
 - Code development and unit testing
 - Continuous integration via GitLab CI/CD
- Responsible Person: Development Team
- **Deliverable:** Source code and integration test reports
- Estimation: X weeks

Task 4: Testing & Quality Assurance

- **Objective:** Validate the module's functionality and performance.
- Activities:
 - Execute functional, regression, and performance tests
 - Compile and resolve any identified issues
- Deliverable: Comprehensive test report and bug resolution logs
- Estimation: X weeks

Task 5: Deployment & Training

- **Objective:** Deploy Module to production and train relevant teams.
- Activities:
 - o Final deployment and system integration
 - Conduct training sessions and prepare user manuals

Deliverable: Live deployment, training materials, and session feedback

• Estimation: X weeks

Expected Outputs

- Source Code: Fully functional code for the Cloud Management Module
- Technical Documentation: Detailed design, architecture, and user guides
- **UI Designs:** Prototypes and final designs for user interfaces
- Test Reports: Comprehensive test documentation with performance and regression details

Necessary Resources

Tools:

- IDE: Visual Studio
- **Repository:** GitHub for version control and collaboration
- Other Tools: Kubernetes management tools, GitLab CI/CD, Docker, and monitoring tools (e.g., Prometheus)

Budget:

 Anticipated costs include hardware upgrades, software licenses, and possible cloud testing expenses.

Training:

 Targeted sessions for Kubernetes, GitLab CI/CD, and cloud infrastructure management will be required.

Feedback and Evaluation

Success Metrics:

- Project completion within the planned timeline
- High stakeholder satisfaction
- Absence of critical bugs in production

Evaluation Process:

- Final review meeting with all project team members
- Collection of both individual and collective feedback through a retrospective analysis

Update

20250205 - First Meeting

- Docker compose
- Kubernetes + HELM (for environment variables)
- K9s
- Grafana for monitoring
- On the hardware side: 4 PCs

Steps to do:

- Hardware request
 - o Flavio already ON
 - o Our switch for ...
- Waiting for Silvio's documentation
 - o Ubuntu (Mate) setup
- Network setup
 - o Determine whether to be on the corporate network or not
 - Also evaluate the connection
- Tools:
 - o Docker swarm (https://github.com/docker-archive/classicswarm)
 - o Microceph (https://github.com/canonical/microceph)