Solutions dans S^2 de $|u \cdot (s_1 - s_2)| \leq K$ projetées sur un plan P

On se place dans l'espace euclidien \mathbb{R}^3 . On note \mathcal{S}^2 la sphère unité de \mathbb{R}^3 .

Soient $u, s_1 \in \mathcal{S}^2$ et $K \in \mathbb{R}^+$.

Soit \mathcal{P} un plan de \mathbb{R}^3 . On suppose qu'on dispose d'un vecteur normal u_0 de \mathcal{P} et d'un point $p_0 \in \mathcal{P}$. Soit $p \in \mathcal{P}$. On note $s_2 \in \mathcal{S}^2$ le vecteur unitaire allant de p à l'origine.

Objectif: on cherche l'ensemble des points $p \in \mathcal{P}$ tels que:

$$|u \cdot (s_1 - s_2)| \le K. \tag{1}$$

Afin de ramener tous les vecteurs à la même origine, on pose $v = -s_2$ et on cherche l'ensemble des $v \in S^2$ tels que:

$$|u \cdot (s_1 + v)| \le K. \tag{2}$$

L'équation 2 est équivalente à:

$$-K - u \cdot s_1 \le u \cdot v \le K - u \cdot s_1. \tag{3}$$

On va obtenir une paramétrisation des solutions de l'équation 3.

Soit \mathcal{P}_0 le plan passant par l'origine et dont u est un vecteur normal.

Notons $u = (u^x, u^y, u^z)$ les coordonnées de u dans la base canonique.

Cherchons $u_1 = (u_1^x, u_1^y, u_1^z)$ et $u_2 = (u_2^x, u_2^y, u_2^z)$ deux vecteurs formant une base orthonormée de \mathcal{P}_0 .

Pour cela, on va construire une base non-orthonormale $w_1 = (w_1^x, w_1^y, w_1^z)$ et $w_2 = (w_2^x, w_2^y, w_2^z)$ qu'on va ensuite orthonormaliser.

On pose $w_1^x = 0$ et $w_1^y = -1$ et on utilise l'équation cartésienne de \mathcal{P}_0 (i.e., $u \cdot w_1 = 0$) pour trouver la troisième coordonnée² $w_1^z = u^y/u^z$. Donc $w_1 = (0, -1, u^y/u^z)$. On pose $u_1 = w_1/\|w_1\|$.

De même, on obtient $w_2 = (-1, 0, u^x/u^z)$ de sorte que (w_1, w_2) forme une base de \mathcal{P}_0 .

Afin de déterminer u_2 , on cherche $\mu \in \mathbb{R}$ tel que $u_1 \cdot (w_2 - \mu u_1) = 0$. On obtient :

$$\mu = u_1 \cdot w_2,$$

et on pose:

$$u_2 = \frac{w_2 - \mu \ u_1}{\|w_2 - \mu \ u_1\|}.$$

On peut maintenant écrire les solutions explicites de l'équation 3 dans \mathbb{R}^3 . Il s'agit de l'ensemble \mathcal{A}_1 défini par³:

$$\mathcal{A}_1 = \{ \lambda_1 u_1 + \lambda_2 u_2 + \lambda u : \lambda_1, \lambda_2 \in \mathbb{R}, \lambda \in [-K - u \cdot s_1, K - u \cdot s_1] \}. \tag{4}$$

Dans l'équation 4, le paramètre λ permet de choisir un plan parmi l'infinité de plans situés entre $-K - u \cdot s_1$ et $K - u \cdot s_1$. Une fois le plan choisi, on peut le parcourir avec λ_1 et λ_2 .

Cependant, on cherchait les solutions $v \in \mathcal{S}^2$. Notons \mathcal{A}_2 l'ensemble des solutions de l'équation 3 dans \mathcal{S}^2 . On a $\mathcal{A}_2 = \mathcal{A}_1 \cap \mathcal{S}^2$. Posons $K_1 = \max\{-K - u \cdot s_1, -1\}$ et $K_2 = \min\{K - u \cdot s_1, 1\}$. Si $K_1 > K_2$ alors il n'y a pas de solutions car $\mathcal{A}_1 \cap \mathcal{S}^2 = \emptyset$. Dans la suite, on suppose que $K_1 \leq K_2$.

Fixons un $\lambda \in [K_1, K_2]$, ce qui revient à fixer un plan. On souhaite maintenant parcourir le cercle qui est l'intersection entre ce plan et S^2 . Pour cela, il suffit d'utiliser un paramètre angulaire $\theta \in [0, 2\pi[$ et les vecteurs u_1 et u_2 . Cependant, on a besoin de connaître le rayon de ce cercle. Le paramètre λ nous donne

¹Dans notre cas, on a par exemple $u_0 = (0, 0, 1)$ et $p_0 = (0, 0, -600)$.

²Si $u^z = 0$, il suffit de permuter les indices.

 $^{^3}$ Attention: il faut s'assurer que u est bien un vecteur unitaire.

la distance entre le centre du cercle et le centre de la sphère S^2 . La sphère étant de rayon 1, le théorème de Pythagore permet de déterminer que le rayon du cercle est $\sqrt{1-\lambda^2}$. On peut maintenant expliciter l'ensemble des solution A_2 :

$$\mathcal{A}_{2} = \left\{ \sqrt{1 - \lambda^{2}} \left(\cos(\theta) u_{1} + \sin(\theta) u_{2} \right) + \lambda u : \lambda \in \left[K_{1}, K_{2} \right], \theta \in \left[0, 2\pi \right[\right\}.$$

On a bien obtenu une paramétrisation des solutions de l'équation 3. Victoire ! Mais ce n'est pas encore fini ...

On cherche maintenant l'ensemble des points $p \in \mathcal{P}$ tels que le vecteur unitaire allant de l'origine à p soit dans \mathcal{A}_2 . Pour cela, il suffit de projeter $\mathcal{A}_2 \subseteq \mathcal{S}^2$ sur le plan \mathcal{P} en utilisant une projection stéréographique partant de l'origine⁴. Notons ϕ une telle projection. **Nous allons expliciter** ϕ . Soit $v \in \mathcal{S}_2$. On cherche son image $\phi(v) \in \mathcal{P}$.

Sachant que p est sur la droite partant de l'origine et passant par v, on sait que $p = \kappa v$ pour un certain $\kappa \in \mathbb{R}^+$. D'autre part, $p \in \mathcal{P}$ donc $u_0 \cdot (p - p_0) = 0$. D'où :

$$\kappa = \frac{u_0 \cdot p_0}{u_0 \cdot v}.$$

Si $u_0 \cdot v = 0$, κ n'est pas défini. Cela correspond aux vecteurs v parallèles au plan \mathcal{P} qui sont projetés à l'infini. Si $\kappa < 0$, v n'a pas d'image par ϕ . Finalement, si $\kappa \ge 0$ (ce qu'on peut écrire $(u_0 \cdot p_0)(u_0 \cdot v) \ge 0$) on a :

$$\phi(v) = \frac{u_0 \cdot p_0}{u_0 \cdot v} v.$$

Dans tous les autres cas ($\kappa < 0$ ou non défini), $\phi(v)$ n'est pas défini.

Pour le plaisir (et pour pouvoir le coder et le ploter), voici explicitement l'ensemble \mathcal{A}_3 des points $p \in \mathcal{P}$ répondant à l'**Objectif** qu'on s'était fixé :

$$\mathcal{A}_{3} = \left\{ \frac{u_{0} \cdot p_{0}}{u_{0} \cdot v} v : v = \sqrt{1 - \lambda^{2}} \left(\cos(\theta) u_{1} + \sin(\theta) u_{2} \right) + \lambda u : \lambda \in [K_{1}, K_{2}], \theta \in [0, 2\pi[, (u_{0} \cdot p_{0})(u_{0} \cdot v) \geq 0] \right\}.$$

Victoire totale!!

⁴Cela revient à mettre une source lumineuse à l'origine. Cette source est enfermée dans la sphère S^2 qui est complètement opaque à l'exception de la surface $A_2 \subseteq S^2$ qui est transparente. On cherche alors la partie de \mathcal{P} qui sera éclairée par la source.