Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, Ameet Talwalkar JMLR 2017

Information & Intelligence System Lab.

Sang Heon Lee

lawlee1@naver.com

2018/08/10

Introduction

- Hyperparameter optimization
 - Finding particular hyperparameters that optimizes some evaluation criterion, e.g., loss on a validation set
- High variability in model quality across hyperparameter settings

 Can we identify and terminate poor-performing hyperparameter settings early in a principled online fashion to speed up hyperparameter optimization?

Introduction (Cont'd)

- Previous research
 - Evaluate models after they are fully trained to convergence
 - Require explicit forms for the convergence rate behavior of the iterations

- Propose a robust, general-purpose, widely applicable bandit-based solution to hyperparameter optimization
 - without any information about the rate of convergence
 - non-stochastic best arm identification problem

Background

Multi-armed bandit problem

- n different slot machines (arms)
- Each machines have different rewards (regrets)
- How to maximize rewards (or minimize regrets) in limited time?

Background (Cont'd)

- Exploitation vs. Exploration
 - Exploitation : choose the best arm until now
 - Exploration : choose a new arm to get more information
 - trade-off relations : the proper control of these two behaviors is core

EXPLOITATION & EXPLORATION

Background (Cont'd)

- Stochastic and non-stochastic best arm identification
 - n arms where $l_{i,k}$ denotes the loss observed on the kth pull of the ith arm T_i is the number of times the ith arm was pulled

Stochastic: For all $i \in [n]$, $k \ge 1$, let $\ell_{i,k}$ be an i.i.d. sample from a probability distribution on [0,1] such that $\mathbb{E}[\ell_{i,k}] = \mu_i$. The goal is to identify $\arg\min_i \mu_i$ while minimizing $\sum_{i=1}^n T_i$.

Non-stochastic (proposed in this work): For all $i \in [n]$, $k \geq 1$, let $\ell_{i,k} \in \mathbb{R}$ be generated by an oblivious adversary, i.e., the loss sequences are independent of the algorithm's actions. Further, assume $\nu_i = \lim_{\tau \to \infty} \ell_{i,\tau}$ exists. The goal is to identify $\lim_{\tau \to \infty} \nu_i$ while minimizing $\sum_{i=1}^n T_i$.

Background (Cont'd)

- Multi-armed bandit problem and hyperparameter optimization
 - best arm identification problem
 - arms = hyperparameter settings
 - # of pulling the arm = number of training iterations
 - regret (output) = intermediate validation loss of model
 - MAB problem in hyperparameter optimization
 - : find hyperparameter settings that minimize final loss

Proposed method

- Find the best arm in limited time as soon as possible
 - "The question is not if the algorithm will identify the best arm, but how fast it does so relative to a baseline method."
- Non-stochastic best arm identification problem
 - No assumptions on the convergence behavior of the validation losses
- Simple and intuitive algorithm
 - requires no inputs or free-parameters to adjust
 - outperforms the baseline method

- Successive Halving Algorithm
 - Originally introduced by Zohar Karnin (2013)
 - 1. Set a budget (total time for hyperparameter tuning)
 - 2. Uniformly allocate the budget to a set of hyperparameter configurations
 - 3. Evaluate their performance
 - 4. Throw out the worst half
 - 5. Repeat until one configuration remains
- The budget as an input is easily removed by the "doubling trick"
 - B \leftarrow n, run, B \leftarrow 2*B, ...

Successive Halving Algorithm

input: Budget B, n arms where $\ell_{i,k}$ denotes the kth loss from the ith arm

Initialize: $S_0 = [n]$.

For
$$k = 0, 1, ..., \lceil \log_2(n) \rceil - 1$$

Pull each arm in S_k for $r_k = \lfloor \frac{B}{|S_k| \lceil \log_2(n) \rceil} \rfloor$ additional times and set $R_k = \sum_{j=0}^k r_j$.

Let σ_k be a bijection on S_k such that $\ell_{\sigma_k(1),R_k} \leq \ell_{\sigma_k(2),R_k} \leq \cdots \leq \ell_{\sigma_k(|S_k|),R_k}$

$$S_{k+1} = \left\{ i \in S_k : \ell_{\sigma_k(i), R_k} \le \ell_{\sigma_k(\lfloor |S_k|/2\rfloor), R_k} \right\}.$$

output : Singleton element of $S_{\lceil \log_2(n) \rceil}$

Successive Halving Algorithm

Successive Halving Algorithm

input: Budget B, n arms where $\ell_{i,k}$ denotes the kth loss from the ith arm

Initialize: $S_0 = [n]$.

For
$$k = 0, 1, ..., \lceil \log_2(n) \rceil - 1$$

Pull each arm in S_k for $r_k = \lfloor \frac{B}{|S_k| \lceil \log_2(n) \rceil} \rfloor$ additional times and set $R_k = \sum_{j=0}^k r_j$.

Let σ_k be a bijection on S_k such that $\ell_{\sigma_k(1),R_k} \leq \ell_{\sigma_k(2),R_k} \leq \cdots \leq \ell_{\sigma_k(|S_k|),R_k}$

$$S_{k+1} = \left\{ i \in S_k : \ell_{\sigma_k(i), R_k} \le \ell_{\sigma_k(\lfloor |S_k|/2\rfloor), R_k} \right\}.$$

output : Singleton element of $S_{\lceil \log_2(n) \rceil}$

[Example]
$$B = 64$$
(epochs), $n=16$ - $k = 0, 1, 2, 3$

$$- k = 0$$

$$-S_0 = [16], r_0 = \left\lfloor \frac{64}{|[16]|[\log_2 16]} \right\rfloor = 1$$

- iterate 1 epoch for each 16 hyperparameters
- remove the half worst : $S_1 = [8]$

$$- k=1$$
)

$$-S_1 = [8], r_1 = \left\lfloor \frac{64}{\|[8]\|[\log_2 16]} \right\rfloor = 2$$

- iterate 2 epochs for each 8 hyperparameters
- remove the half worst : $S_2 = [4]$

• •

- Analysis of Success Halving algorithm
 - Budget B, n arms where $l_{i,k}$ denotes the kth loss from the ith arm
 - $\nu_i = \lim_{\tau \to \infty} \ell_{i,\tau}$ for $i = 1, \ldots, n$ and $\nu_1 < \nu_2 \leq \cdots \leq \nu_n$
 - $\gamma_i(t)$: non-increasing function of t with $|\ell_{i,t} \nu_i| \leq \gamma_i(t)$
 - $\gamma_i^{-1}(\alpha) = \min\{t \in \mathbb{N} : \gamma_i(t) \leq \alpha\}$
 - if $t_i > \gamma_i^{-1}(\frac{\nu_i \nu_1}{2})$ and $t_1 > \gamma_1^{-1}(\frac{\nu_i \nu_1}{2})$, then

$$\ell_{i,t_{i}} - \ell_{1,t_{1}} = (\ell_{i,t_{i}} - \nu_{i}) + (\nu_{1} - \ell_{1,t_{1}}) + 2\left(\frac{\nu_{i} - \nu_{1}}{2}\right) \stackrel{\text{g}}{\to}_{0.8}^{1.0}$$

$$\geq -\gamma_{i}(t_{i}) - \gamma_{1}(t_{1}) + 2\left(\frac{\nu_{i} - \nu_{1}}{2}\right) > 0$$

- so $\ell_{i,t_i} > \ell_{1,t_1}$
 - ightharpoonup Comparing immediate loss at t_i and t_1 suffices to determine ordering of final values v_i and v_1

- Comparing immediate loss at t_i and t_1 suffices to determine ordering of final values v_i and v_1
 - But, we don't have any information about $\gamma_i(t)$
 - When is t_i and t_1 ?
- Increase pulling time of each arm gradually
 - Remove the worst half at each step
 - Using "doubling trick"
 - B<-n, run, B<-2B, run, ...

• Theorem 1 Let
$$\nu_i = \lim_{\tau \to \infty} \ell_{i,\tau}$$
, $\bar{\gamma}(t) = \max_{i=1,\dots,n} \gamma_i(t)$, and
$$z_{SH} = 2\lceil \log_2(n) \rceil \max_{i=2,\dots,n} i \left(1 + \bar{\gamma}^{-1} \left(\frac{\nu_i - \nu_1}{2}\right)\right)$$
$$\leq 2\lceil \log_2(n) \rceil \left(n + \sum_{i=2,\dots,n} \bar{\gamma}^{-1} \left(\frac{\nu_i - \nu_1}{2}\right)\right).$$

If the Successive Halving algorithm is run with any budget $B > Z_{SH}$ then the best arm is guaranteed to be returned.

• If the algorithm is bootstrapped by the "doubling trick", then this procedure returns the best arm once

- Drawback of Successive Halving Algorithm
 - Requires number of configurations n as an input
 - Given finite budget B, B/n resources are allocated
 - \rightarrow trade-off between n and B/n: exploration and exploitation problem
- *Hyperband* algorithm
 - addresses this "n versus r(=B/n)" problem
 - 2 loops
 - (1) inner loop invokes $Successive\ Halving\$ for fixed values of n and r
 - (2) outer loop iterates over different values of n and r
 - Each run of *Successive Halving* algorithm in *Hyperband* = "bracket"

• Hyperband algorithm

- R : maximum amount of resource(training time) that can be allocated to a single configuration
- η : percentage of configurations discarded at each step

• Hyperband algorithm

```
Algorithm 1: Hyperband algorithm for hyperparameter optimization.
                       : R, \eta \text{ (default } \eta = 3)
    input
    initialization: s_{\text{max}} = \lfloor \log_{\eta}(R) \rfloor, B = (s_{\text{max}} + 1)R
 1 for s \in \{s_{\max}, s_{\max} - 1, \dots, 0\} do
       n = \left\lceil \frac{B}{R} \frac{\eta^s}{(s+1)} \right\rceil, \qquad r = R \eta^{-s}
        // begin SuccessiveHalving with (n,r) inner loop
       T = get\_hyperparameter\_configuration(n)
        for i \in \{0, \ldots, s\} do
            n_i = |n\eta^{-i}|
            r_i = r\eta^i
             L = \{ run\_then\_return\_val\_loss(t, r_i) : t \in T \}
            T = \mathsf{top\_k}(T, L, |n_i/\eta|)
        end
10 end
11 return Configuration with the smallest intermediate loss seen so far.
```

```
[Example] R = 81, \eta = 3

- s_{max} = [log<sub>3</sub> 81] = 4 : 5 brackets (0, 1, 2, 3, 4)

- B = (s_{max}+1)R = 5*81
```

- s=4)
 n = $\left[\frac{5*81}{81}\frac{3^4}{5}\right]$ = 81, r = 81 * 3^(-4) = 1
 get 81 configurations
 - Successive Halving with 1/3 discarded

- s=3)
- n =
$$\left[\frac{5*81}{81}\frac{3^3}{4}\right]$$
 = 34, r = 81 * 3^(-3) = 3
- get 34 configurations

- Successive Halving with 1/3 discarded

..

• *Hyperband* algorithm

```
Algorithm 1: Hyperband algorithm for hyperparameter optimization.
                       : R, \eta \text{ (default } \eta = 3)
    input
    initialization: s_{\text{max}} = \lfloor \log_{\eta}(R) \rfloor, B = (s_{\text{max}} + 1)R
 1 for s \in \{s_{\max}, s_{\max} - 1, \dots, 0\} do
        n = \left\lceil \frac{B}{R} \frac{\eta^s}{(s+1)} \right\rceil, \qquad r = R \eta^{-s}
        // begin SuccessiveHalving with (n,r) inner loop
        T = get_hyperparameter_configuration(n)
        for i \in \{0, \ldots, s\} do
            n_i = |n\eta^{-i}|
            r_i = r\eta^i
            L = \{ run\_then\_return\_val\_loss(t, r_i) : t \in T \}
            T = \mathsf{top\_k}(T, L, |n_i/\eta|)
        end
10 end
11 return Configuration with the smallest intermediate loss seen so far.
```

[Example] R = 81, η = 3

- 5 Successive Halving algorithm with different n and r

	s = 4		s = 3		s = 2		s = 1		s = 0	
i	n_i	r_i								
0	81	1	27	3	9	9	6	27	5	81
1	27	3	9	9	3	27	2	81		
2	9	9	3	27	1	81				
3	3	27	1	81						
4	1	81								

- Features of Hyperband algorithm
 - Different types of resources
 - Training time
 - Training dataset
 - Feature Subsampling (# of filters in image processing)
 - Determine R and η
 - R as the ratio between max and min resource
 - η as 3 or 4

Experiment

- Hyperparameter Optimization Experiments
 - 3 different resource type: iterations, dataset, feature subsamples
 - Compare with 3 Bayesian Optimization algorithms
 - SMAC, TPE, Spearmint
 - Variant of *SMAC* using early termination proposed by Domhan et al. (2015)
 - baseline : random search, "random 2X" (B=B*2) : for speedups
 - getting hyperparameters configuration : uniform sampling

- (1) Resource: training iterations
 - Tuning CNN
 - 8 hyperparameters
 - 6 for SGD, 2 for norm layers
 - Dataset
 - CIFAR-10 (R=300), MRBI (R=300), SVHN (R=600)
 - batch size = 100
 - unit of R : 100 mini-batch iterations, $\eta = 4$
 - Result
 - 20x faster than random search
 - less variable than other searchers

avg error across 10 trials

(2-1) Resource : dataset

- Framework introduced by Feurer (2015)
 - explored a structured hyperparameter search space
 - 110 hyperparameters

Dataset

- 117 binary and multiclass classification dataset for OpenML
- R = full training set size for each data set $\eta = 3$

avg error across 20 trials

(2-2) Resource : dataset

- Kernel-based classifier for CIFAR-10
 - multi-class regularized least squares classification model
- Hyperparameter
 - preprocessing method, kernel type, regularization, ...: 6 hyperparameters
- R = 400 (unit : 100 datapoints), $\eta = 4$
- Result
 - 30x faster than B.O, 70x faster than random

Figure 7: Average test error of the best kernel regularized least square classification model found by each searcher on CIFAR-10. The color coded dashed lines indicate when the last trial of a given searcher finished.

avg error across 10 trials

- (3) Resource : feature subsample
 - Kernel-based classifier for CIFAR-10
 - multi-class regularized least squares classification model
 - Features were randomly generated
 - method described in Rahimi (2007)
 - R = 1000 (unit : 100 features), $\eta = 4$
 - Result
 - 6x faster than B.O and random

Figure 8: Average test error of the best random features model found by each searcher on CIFAR-10. The test error for Hyperband and bracket s=4 are calculated in every evaluation instead of at the end of a bracket.

Conclusion

- Hyperparameter optimization method from non-stochastic multi-armed bandit problem perspective
- Proposed Hyperband algorithm
 - Search hyperparameter configuration without any information about convergence of loss
 - Faster than Bayesian optimization, better than baseline
- Combining Bayesian Optimization with Hyperband