Machine Learning-Enhanced Computational Modeling of Metal-Protein Interactions

Charlie Klawitter

Mentor: Dr. Mengdi Huai

July 11, 2025

Project Role

Train and Refine a Machine Learning Model to Enhance the Modeling of Metal-Protein Interactions

Summary of Work to Date

- Develop a program to extract necessary data from EFP .log files
- Create baseline ML model to predict the Final EFP Energies
- Program a neural network model to predict key energies from a range of molecule features on synthetic data

Future Plans

- Introduce real, up to date data for metal systems into the baseline neural network model
- Record discoveries and refine model to increase accuracy and efficiency
- Generate future ambition for the project

Learning Outcomes

Learning Points

Machine Learning

How to develop a machine learning model in PyTorch

Git, Linux, and Python

Git flow, version control, Linux operations, and python skills

Effective Fragment Potential

Basic understanding of EFP and key features

Research Methodology

The proper flow of developing a strong research project

Progress (EFP Energies Model)

Data Extraction Python Script

- Extracted data to obtain key energies from molecules
- Converted from Hartree to Kcal/Mol
- Electrostatic, Penetration, Polarization, Final EFP, etc.

Basic Neural Network to Predict Final EFP Energy

and

- 80/20 Train/Test split
- Test Mean Squared Error: 0.0781

Progress (EFP Energies Model)

Progress (Synthetic Data Neural Network)

01 Input Features

Charge of fragments, distance between fragments, dipole moment of fragments, etc.

02 Target Outputs

Electrostatic energy, Polarization energy, Dispersion energy, etc.

03 Model Specifications

200 epochs, 80/20 split, 3 layers for NN, and 500 data points

04 Results

Test MSE: 0.1037

Progress (Sij/Rij/undamped electrostatic energy)

$$E_{e-e}^{pen} = -2(\frac{1}{-2ln|S_{ij}|})^{\frac{1}{2}}\frac{S_{ij}^2}{R_{ij}}$$

 S_{ij} : Intermolecular overlap integral between LMOs i and j R_{ij} : The distance between centroids of LMOs i and j

- Extracted Sij and Rij values along with Undamped Electrostatic Energy
- These features were used as input data for a neural network model with 1 hidden layer (simple at first)
- The goal is to predict the damped electrostatic energy, therefore solving the problem of creating a more accurate and efficient dampening function

Progress (Sij/Rij/undamped electrostatic energy)

01 Input Features

SIJ/RIJ Values and Undamped Electrostatic Energy

02 Target Outputs

Damped Electrostatic Energy

03 Model Specifications

65 samples, 100 epochs, 80/20, 3 layers

04 Results

R²: 0.5143

Future Goals

Greatest Dificulty

Acknowledgements

- NSF for funding SIMCODES
- SIMCODES and ISU for mentorship

