1.2 群的重排定理

设 $G=\{g_{\alpha}\}$ 为群,f 为 G 中一个确定的元素。当 α 取遍所有可能的取值时, fg_{α} 给出且仅仅一次给出 G 的所有元素。

$$G = \{g_{lpha}\} = \{fg_{lpha}\}$$

证明思路: 先证明 $\{fg_{\alpha}\}$ 确实是一个集合(无重复元素),再证明 $\{fg_{\alpha}\}\subseteq G$,最后证明 $G\subseteq \{fg_{\alpha}\}$ 。

证明:

假设 fg_{α} 有重复元素,即 $\exists \alpha \neq \alpha', g_{\alpha} \neq g_{\alpha'}$,使得 $fg_{\alpha} = fg_{\alpha'}$,两边左乘 f^{-1} 得 $g_{\alpha} = g_{\alpha'}$,这与假设矛盾。故 $\{fg_{\alpha}\}$ 是一个集合。

 $orall fg_lpha \in \{fg_lpha\}$,由于 $f,g_lpha \in G$,再结合群的封闭性可知 $fg_lpha \in G$,于是 $\{fg_lpha\} \subseteq G$

 $orall g_eta\in G$,由于 $f\in G$,于是 $\exists f^{-1}\in G$,群的封闭性给出 $f^{-1}g_eta=g_lpha\in G$,两边左乘 f 得 $g_eta=fg_lpha\in\{fg_lpha\}$,于是 $G\in\{fg_lpha\}$

- 群乘法表中的每行、每列都是G的元素的重新排列。
- 乘法表每个元素在每行每列中只出现依次。
- 乘法表的任意两行、两列都不会相同。

1.3 子群和陪集

子群的定义

若群 G 的非空子集 H 也构成一个群(相同的乘法),则 H 称为群 G 的一个子群。

子集 H 为群 G 的子群的条件为:

- (1) 封闭性: $\forall h_{\alpha}, h_{\beta} \in H, h_{\alpha}h_{\beta} \in H$
- (2) 存在逆元: $orall h_lpha\in H, \exists h_lpha^{-1}\in H$,使得 $h_lpha h_lpha^{-1}=h_lpha^{-1}h_lpha=e$

每一个非平庸群 G 最少有两个子群,一个是 $\{e\}$,另一个是它自身,这两个子群称为群 G 的平庸子群。除此之外的子群称为固有子群。

一些关于子群的结论

- (1) 子群 H 的恒元就是群 G 的恒元。
- (2) HH = H

子群的陪集

设 H 为群 G 的一个子群, $f\in G, f\notin H$,则 $fH=\{fh_{\alpha}\}$ 称为子群 H 关于 f 的左陪集; $Hf=\{h_{\alpha}f\}$ 称为子群 H 关于 f 的右陪集。

若 H 为有限群,则 $n_{fH} = n_{Hf} = n_H$

• 由于 $e \notin fH$, 于是陪集不是群。

证明:假设 $e\in fH$,则 $\exists h_{\alpha}\in H$,使得 $e=fh_{\alpha}$ 。又 H 是群 G 的子群,于是子群 H 存在逆元 $h_{\alpha}^{-1}\in H$,两边右乘 h_{α}^{-1} 得到 $h_{\alpha}^{-1}=f\in H$,这与陪集定义中 $f\notin H$ 矛盾,于是 $e\notin fH$

由于左陪集 fH 和右陪集 Hf 总有一个共同元素 fe=ef=f,于是同一个子群关于同一个元素的左右陪集总是有交集的。

• 子群 H 关于 $f \notin H$, $f \in G$ 的左陪集 fH 与子群 H 没有公共元素。

证明:

若子群 H 关于 $f\in G, f\notin H$ 的左陪集 fH 和 H 有公共元素,即存在 $h_{\alpha}, h_{\beta}\in H$ 使得 $fh_{\alpha}=h_{\beta}$,右乘 h_{α}^{-1} 得 $f=h_{\beta}h_{\alpha}^{-1}\in H$,这与 $f\notin H$ 矛盾。

陪集定理

子群 H 的两个左陪集(右陪集)要么完全重合,要么没有公共元素。

证明:

设 H 是群 G 的子群,设 $f_1,f_2\in G,f_1,f_2\notin H$,设 f_1H 和 f_2H 有一个共同元素,即 $\exists h_\alpha,h_\beta\in H$,使得:

$$f_1 h_lpha = f_2 h_eta$$

两边先左乘 f_2^{-1} 再右乘 h_α^{-1} 得:

$$f_2^{-1} f_1 = h_{eta} h_{lpha}^{-1}$$

于是:

$$f_2^{-1}f_1H=h_\beta h_\alpha^{-1}H$$

子群的封闭性给出 $h_{eta}h_{lpha}^{-1}\in H$,于是群的重排定理给出:

$$h_{eta}h_{lpha}^{-1}H=H$$

对比得:

$$f_2^{-1}f_1H = H$$

两边左乘 f_2 得:

$$f_1H=f_2H$$

这就是说,只要 f_1H 和 f_2H 有一个公共元素,则它们相等。

对于 D_3 群,其子群 $H_1 = \{e, d, f\}$ 有三个相同的左陪集:

$$aH_1 = \{a, b, c\}, \ bH_1 = \{b, c, a\}, \ cH_1 = \{c, a, b\}$$

子群 $H_2 = \{e, a\}$ 的左右陪集为:

$$dH_2 = \{d, c\}, \ H_2d = \{d, b\}$$

$$fH_2 = \{f, b\}, \ H_2f = \{f, c\}$$

拉格朗日定理

有限群的子群的阶等于群阶的因子。

证明:

设群 G 是 n_G 阶有限群,H 为 G 的 n_H 阶子群。取 $f_1 \in G$ 且 $f_1 \notin H$,则 f_1H 为子群 H 的一个 左陪集,且 f_1H 与 H 无重复元素, $n_H=n_{f_1H}$

若 H 和 f_1H 没有穷尽 G,取 $f_2\in G, f_2\notin H, f_2\notin f_1H$,构造左陪集 f_2H 。由于 $f_2\notin f_1H$, $f_2\in f_2H$,则由陪集定理可知 f_1H 和 f_2H 没有公共元素。同样,由于 $f_2\notin H$,于是 f_2H 与 H 没有公共元素。

重复上述方法, 直到穷尽群 G 的所有元素。

最终得到包括 H 在内的集合串:

$$H, f_1H, f_2H, \cdots, f_{k-1}H$$

每一个集合都有 n_H 个元素,且集合串中任意两个集合没有重复元素,且集合串中的元素穷尽了 G,于是:

$$n_H k = n_G, \ k \in \mathbb{N}^+$$

拉格朗日定理的推论

- 阶为素数的群 G 没有非平庸子群,这种群只能是循环群。
- 循环群可能有非平庸子群。如 C_4 群有子群 C_2

若 n_G 是非素数,则 n_G 可以分解为:

$$n_G = n_1 \times n_2 = \cdots$$

设 $\forall g
eq e, g^m = e, m > 1$,由于群 G 为有限群,则

$$H_q = \{g, g^2, \cdots, g^m = e\}$$

构成 G 的一个 m 阶子群,拉格朗日定理给出 m 是 n_G 的因子。

若 $m=n_i < n_G$,则 H_g 为 G 的一个非平庸循环子群。

若 $m = n_G$,则 G 为非素数阶的循环群,它必有非平庸子群。

经典群

$\mathrm{GL}(n,\mathbb{C})$ 群和 $\mathrm{GL}(n,\mathbb{R})$ 群

General Linear Transformation, 一般线性变换群。

$$GL(n, \mathbb{C}) \equiv \{A | A \ni n \times n$$
的复矩阵, $\det(A) \neq 0\}$

$$GL(n,\mathbb{R}) \equiv \{A|A \ni n \times n$$
的实矩阵, $\det(A) \neq 0\}$

乘积定义为矩阵乘法。

$\mathrm{SL}(n,\mathbb{C})$ 群和 $\mathrm{SL}(n,\mathbb{R})$ 群

$$\mathrm{SL}(n,\mathbb{C}) \equiv \{A | A \ni n \times n$$
的复矩阵, $\det(A) = 1\}$

$$SL(n,\mathbb{R}) \equiv \{A|A \ni n \times n$$
的实矩阵, $det(A) = 1\}$

乘积定义为矩阵乘法。

幺正群和正交群

幺正群:

$$\mathrm{U}(n) \equiv \{A|A\in \mathrm{GL}(m,\mathbb{C}), A^\dagger A = AA^\dagger = I\}$$

特殊幺正群:

$$\mathrm{SU}(n) \equiv \{A | A \in \mathrm{U}(n), \det(A) = 1\}$$

正交群:

$$\mathrm{O}(n) \equiv \{A|A \in \mathrm{GL}(n,\mathbb{R}), A^{\mathrm{T}}A = AA^{\mathrm{T}} = I\}$$

特殊正交群:

$$SO(n) = \{A | A \in O(n), \det(A) = 1\}$$

以上几种经典群之间的关系可以用下图来说明:

1.4 共轭元素和类

共轭元素的定义

设 $g_{\alpha},g_{\beta}\in G$,若 $\exists f\in G$ 使得

$$g_lpha = f g_eta g^{-1}$$

则称 g_{α} 和 g_{β} 互为共轭元素,记为:

$$g_{lpha} \sim g_{eta}$$

共轭元素的性质

传染性: 若 $g_{lpha} \sim g_{\gamma}, g_{eta} \sim g_{\gamma}$,则 $g_{lpha} \sim g_{eta}$

传递性: 若 $g_{lpha} \sim g_{eta}, g_{eta} \sim g_{\gamma}$,则 $g_{lpha} \sim g_{\gamma}$

类的定义

 $\forall a \in G$, G 中所有与 a 共轭的元素组成的集合 C_a 称为 a 的类:

$$C_a \equiv \{g_{lpha}ag_{lpha}^{-1}|g_{lpha}\in G\}$$

由共轭的传染性可知, C_a 中的元素互相共轭。

对于 D_3 群,它的类有:

$$\{e\}, \{a, b, c\}, \{d, f\}$$

类的性质

- 对于任何群,恒元自成一类。(与恒元共轭的元素只有其自身)
- Abel 群的每个元素自成一类。(Abel 群的元素乘积可交换)特别地,n 阶循环群是 Abel 群,n 阶循环群的每一个元素自成一类,共n 个类。
- $g_{lpha}g_{eta}\sim g_{eta}g_{lpha}$,即 $g_{lpha}g_{eta}$ 与 $g_{eta}g_{lpha}$ 在同一类中。

$$g_{lpha}g_{eta}=g_{lpha}g_{eta}e=g_{lpha}(g_{eta}g_{lpha})g_{lpha}^{-1}\Longrightarrow g_{lpha}g_{eta}\sim g_{eta}g_{lpha}$$

• 同类元素的阶必然相同。

若 $a^m = e$,则

$$\left(g_{\alpha}ag_{\alpha}^{-1}\right)^{m}=g_{\alpha}a^{m}g_{\alpha}^{-1}=g_{\alpha}eg_{\alpha}^{-1}=e$$

- 两个不同的类没有公共元素。
- 有限群的类的元素个数为群阶的因子。