

Universidade Estadual de Santa Cruz – UESC

Relatórios de Implementações de Analisador Descendente Recursivo para GLC

Docente César Alberto Bravo Pariente

Discente Matheus Miranda Brandão

Matrícula 201820065

Disciplina Compiladores.

Curso Ciência da Computação

Semestre 2022.2

Ilhéus – BA 2022

Índice

GLC LL	3
Produções:	3
Compilando e Executando	4
Testes	5
m(){ r(1); }	5
$m()\{ h=(x+y); r(0); \}$	5
m(){ (1-1); r(1); }	6
$m()\{ w(1) \{ (1/x); \}; r(1); \}$	6
$n() \; \{ \; (0/y); r(y); \; \} \; g() \; \{ \; i = y; r(x); \; \} \; m() \; \{ \; (1-x); r(0); \; \}$	7
$m()\{w(x)\{f(y)\{k=(1+(1*0));\};\};r(0);\}$	7
Link para download	8
Referências	9

GLC LL

O projeto consiste na implementação em C de um algoritmo que busca simular um Analisador Descendente Recursivo que reconhece a linguagem gerada por uma gramática livre de contexto. A execução do código recebe como entrada a palavra e retorna se a palavra foi aceita ou ocorreu um erro, suas produções e o vetor referente a Árvore de Análise.

O analisador implementado ignora o token ' '.

Produções:

```
\begin{split} p_1: S -> M \mid GM \mid NGM \\ p_4: N -> n() \{ \ C; \ r(E); \ \} \\ p_5: G -> g() \{ \ C; \ r(E); \ \} \\ p_6: M -> m() \ \{ \ C; \ r(E); \ \} \\ p_7: E -> 0 \mid 1 \mid x \mid y \mid (EXE) \\ p_{12}: X -> + \mid - \mid * \mid / \\ p_{16}: C -> h = E \mid i = E \mid j = E \mid k = E \mid z = E \mid (EXE) \mid w(E) \{ \ C; \ \} \mid f(E) \{ \ C; \ \} \mid o(E; E; E) \{ \ C; \ \} \end{split}
```

Compilando e Executando

Para a execução não é necessário o uso de nenhuma dependência, basta compila-lo normalmente.

```
$ gcc proj2 b.c -o proj2 b
```

Ao executar é necessário digitar o nome do arquivo destino contendo as palavras, caso contrário resultará em erro.

Exemplo:

```
$ ./proj2_b examples/inputs.txt
```

Neste projeto pode-se adicionar num .txt todas as palavras separadas por uma quebra de linha. Em caso de erro, pularemos para a próxima palavra.

Exemplo:

```
m(){ r(1); }
m(){ h=(x+y); r(0); }
m(){ (1-1); r(1); }
m(){ w(1) { (1/x); }; r(1); }
n() { (0/y); r(y); } g() { i=y; r(x); } m() { (1-x); r(0); }
m(){w(x){f(y){k=(1+(1*0));};};r(0);}
```

Testes

Caso a entrada dada seja incorreta o programa irá imprimir os tokens até o momento, então avisará sobre o erro, informará qual o código e o token inesperado, então pulará para a próxima palavra. Como outputs temos a palavra analisada, as produções e a árvore sintática (no formato '[index | mapeamento | token]'), foi considerado o pior caso, onde temos uma árvore n-ária de 12. A árvore foi feita seguindo o modelo de árvore compacta.

Para criação de palavras compatíveis com a linguagem gerada pela GLC foi utilizado o website "CFG Developer".

```
m(){ r(1); }
Palavra 1: m(){

Erro 83. Token 'r' inesperado. Prosseguindo para proxima palavra.

Producoes: P1, P6

Arvore: [0|0| S ], [1|1| M ], [2|13| m ], [3|14| ( ], [4|15| ) ], [5|16| { ], [6|17| C ], [7|18| ; ], [8|19| r ], [9|20| ( ], [10|21| E ], [11|22| ) ], [12|23| ; ], [13|24| } ]

m(){ h=(x+y); r(0); }
Palavra 2: m(){ h=(x+y); r(0); }
Palavra aceita.

Producoes: P1, P6, P16, P11, P9, P12, P10, P7

Arvore: [0|0| S ], [1|1| M ], [2|13| m ], [3|14| ( ], [4|15| ) ], [5|16| { ], [6|17| C ], [7|18| ; ], [8|19| r ], [9|20| ( ], [10|21| E ], [11|22| ) ], [12|23| ; ], [13|24| } ], [14|205| h ], [15|206| = ], [16|207| E ], [17|2485| ( ], [18|2486| E ], [19|2487| X ], [20|2488| E ], [21|2489| ) ], [22|29833| x ], [23|29845| + ], [24|29857| y ], [25|253| 0 ]
```

```
m(){ (1-1); r(1); }
Palavra 3: m(){ (1-1); r(1); }
Palavra aceita.

Producoes: P1, P6, P21, P8, P13, P8, P8

Arvore: [0|0| S ], [1|1| M ], [2|13| m ], [3|14| ( ], [4|15| ) ], [5|16| { ], [6|17| C ], [7|18| ; ], [8|19| r ], [9|20| ( ], [10|21| E ], [11|22| ) ], [12|23| ; ], [13|24| } ], [14|205| ( ], [15|206| E ], [16|207| X ], [17|208| E ], [18|209| ) ], [19|2473| 1 ], [20|2485| - ], [21|2497| 1 ], [22|253| 1 ]

m(){ w(1) { (1/x); }; r(1); }
Palavra 4: m(){ w(1) { (1/x); }; r(1); }
Palavra aceita.

Producoes: P1, P6, P22, P8, P21, P8, P15, P9, P8

Arvore: [0|0| S ], [1|1| M ], [2|13| m ], [3|14| ( ], [4|15| ) ], [5|16| { ], [6|17| C ], [7|18| ; ], [8|19| r ], [9|20| ( ], [10|21| E ], [11|22| ) ], [12|23| ; ], [13|24| } ], [14|205| w ],
```

[15|206| (], [16|207| E], [17|208|)], [18|209| {], [19|210| C], [20|211| ;], [21|212| }],

[22|2485| 1], [23|2521| (], [24|2522| E], [25|2523| X], [26|2524| E], [27|2525|)],

[28|30265| 1], [29|30277| /], [30|30289| x], [31|253| 1]

```
n() \{ (0/y); r(y); \} g() \{ i=y; r(x); \} m() \{ (1-x); r(0); \}
```

Palavra 5: n() { (0/y); r(y); } g() { i=y; r(x); } m() { (1-x); r(0); }

Palavra aceita.

Producoes: P3, P4, P21, P7, P15, P10, P10, P5, P17, P10, P9, P6, P21, P8, P13, P9, P7 Arvore: $[0|0| \ S \]$, $[1|1| \ N \]$, $[2|2| \ G \]$, $[3|3| \ M \]$, $[4|13| \ n \]$, $[5|14| \ (\]$, $[6|15| \) \]$, $[7|16| \ \{\]$, $[8|17| \ C \]$, $[9|18| \ ; \]$, $[10|19| \ r \]$, $[11|20| \ (\]$, $[12|21| \ E \]$, $[13|22| \) \]$, $[14|23| \ ; \]$, $[15|24| \ \} \]$, $[16|205| \ (\]$, $[17|206| \ E \]$, $[18|207| \ X \]$, $[19|208| \ E \]$, $[20|209| \) \]$, $[21|2473| \ 0 \]$, $[22|2485| \ / \]$, $[23|2497| \ y \]$, $[24|253| \ y \]$, $[25|25| \ g \]$, $[26|26| \ (\]$, $[27|27| \) \]$, $[28|28| \ \{\]$, $[29|29| \ C \]$, $[30|30| \ ; \]$, $[31|31| \ r \]$, $[32|32| \ (\]$, $[33|33| \ E \]$, $[34|34| \) \]$, $[35|35| \ ; \]$, $[36|36| \ \} \]$, $[37|349| \ i \]$, $[38|350| \ = \]$, $[39|351| \ E \]$, $[40|4213| \ y \]$, $[41|397| \ x \]$, $[42|37| \ m \]$, $[43|38| \ (\]$, $[44|39| \) \]$, $[45|40| \ \{\]$, $[46|41| \ C \]$, $[47|42| \ ; \]$, $[48|43| \ r \]$, $[49|44| \ (\]$, $[50|45| \ E \]$, $[51|46| \) \]$, $[52|47| \ ; \]$, $[53|48| \]$, $[54|493| \ (\]$, $[55|494| \ E \]$, $[56|495| \ X \]$, $[57|496| \ E \]$, $[58|497| \)$, $[59|5929| \ 1 \]$, $[60|5941| \ -\]$, $[61|5953| \ x \]$, $[62|541| \ 0 \]$

$m()\{w(x)\{f(y)\{k=(1+(1*0));\};\};r(0);\}$

Palavra 6: $m()\{w(x)\{f(y)\{k=(1+(1*0));\};\};r(0);\}$

Palavra aceita.

Producoes: P1, P6, P22, P9, P23, P10, P19, P11, P8, P12, P11, P8, P14, P7, P7
Arvore: [0|0| S], [1|1| M], [2|13| m], [3|14| (], [4|15|)], $[5|16| {], [6|17| C], [7|18| ;], [8|19| r], [9|20| (], [10|21| E], [11|22|)]$, [12|23| ;], $[13|24| {]}$, [14|205| w], [15|206| (], [16|207| E], [17|208|)], $[18|209| {], [19|210| C], [20|211| ;], [21|212| {]}$, [22|2485| x], [23|2521| f], [24|2522| (], [25|2523| E], [26|2524|)], $[27|2525| {]}$, [28|2526| C], [29|2527| ;], $[30|2528| {]}$, [31|30277| y], [32|30313| k], [33|30314| =], [34|30315| E], [35|363781| (], [36|363782| E], [37|363783| X], [38|363784| E], <math>[39|363785|)], [40|4365385| 1], [41|4365397| +], [42|4365409| (], [43|4365410| E], <math>[44|4365411| X], [45|4365412| E], [46|4365413|)], [47|52384921| 1], [48|52384933| *], [49|52384945| 0], [50|253| 0]

Link para download

Código fonte e exemplos encontram-se para download no seguinte link:

https://github.com/MatBrands/Compiladores/tree/master/Proj2/Proj2b%20Compactado

Referências

https://web.stanford.edu/class/archive/cs/cs103/cs103.1156/tools/cfg/