Университет ИТМО

Физико-технический мегафакультет

Группа <u>Р3208</u>	К работе допущен
Студенты Ступин Т.Р. Петров В.М. Есоян В.С.	Работа выполнена
Преподаватель Сорокина Е. К.	Отчет принят
Рабочий прото	
лабораторно	й работе №5
лабораторно Исследование коле	

1. Цель работы.

1. Изучение характеристик затухающих колебаний физического маятника.

2. Задачи, решаемые при выполнении работы.

- 1. Измерение периода затухающих колебаний.
- 2. Определение зависимости амплитуды затухающих колебаний физического маятника от времени.
- 3. Определение зависимости периода колебаний от момента инерции физического маятника.
- 4. Определение преобладающего типа трения.
- 5. Определение экспериментальной и теоретической приведенных длин маятника при его разных конфигурациях.

3. Объект исследования.

Физический маятник

4. Метод экспериментального исследования.

- Измерение времени 10 полных колебаний маятника при различных положениях утяжелителей
- Измерение времени достижения отклонения от положения равновесия в 25° , 20° , 15° , 10° , 5° .

5. Рабочие формулы и исходные данные.

• Среднее время колебаний

$$\overline{t} = \frac{\sum_{i=1}^{n} t_i}{n}$$

• Период колебаний

$$T = \frac{\overline{t}}{N}$$

• Закон изменения амплитуда при сухом трении

$$A(t = nT) = A_0 - 4n\Delta\varphi_3$$

• Угловой коэффициент в зависимости A(t)

$$k = \frac{\sum_{i=1}^{5} \left(\overline{t}_{i} - \overline{\overline{t}}\right) \left(A_{i} - \overline{A}\right)}{\sum_{i=1}^{5} \left(\overline{t}_{i} - \overline{\overline{t}}\right)^{2}}$$

• Расстояние между осью вращение и центром утяжелителя

$$R = l_1 + (n-1)l_0 + \frac{1}{2}b$$

• Момент инерции грузов

$$I_{\rm rp} = m_{\rm rp} \big(R_{\rm Bepx}^2 + R_{\rm Hum}^2 + 2 R_{\rm 60K}^2 \big)$$

• Момент инерции ступицы и крестовины

$$I_0 = 8 \cdot 10^{-3} \text{ кг} \cdot \text{м}^2$$

• Полный момент инерции физического маятника

$$I = I_{rp} + I_0$$

• Коэффициент b в аппроксимированной линейной зависимости $T^2 = a + b \cdot I$

$$b = \frac{\sum_{i=1}^{6} \left(I_i - \overline{I}\right) \left(T_i^2 - \overline{T^2}\right)}{\sum_{i=1}^{6} \left(I_i - \overline{I}\right)^2}$$

• Коэффициент a в аппроксимированной линейной зависимости $T^2 = a + b \cdot I$

$$a = \overline{T^2} - b \cdot \overline{I}$$

• Период колебаний маятника

$$T = 2\pi \sqrt{\frac{I}{mgl}} = 2\pi \sqrt{\frac{l_{\rm np}}{g}}$$

• Приведённая длинна маятника

$$l_{\rm np} = \frac{I}{ml}$$

• Ускорение свободного падения

$$g = 9.82 \frac{M}{c^2}$$

6. Измерительные приборы.

Таблица 1. Характеристики средств измерения

№ п/п	Наименование средства измерения	Предел измерений	Цена деления	Погрешность $\delta_{\scriptscriptstyle extsf{H}}$	
1	Секундомер	200 с	0,01 c	0,01 c	
2	Шкала	60°	1°/дел.	1°	

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 1. Стенд лаборатории механики (общий вид)

Общий вид экспериментальной установки изображен на Рис. 1. В состав установки входят:

- 1. Шкала
- 2. Груз
- 3. Рукоятка сцепления
- 4. Передняя крестовина

Таблица 2 Параметры установки

	Параметры установки				
1.	Масса каретки $(m_{\scriptscriptstyle m K})$	$(47,0 \pm 0,5) \; \Gamma$			
2.	Масса шайбы ($m_{\scriptscriptstyle m III}$)	$(220,0\pm0,5)\ \Gamma$			
3.	Масса грузов на крестовине $(m_{\rm rp})$	$(408,0\pm0,5)\ \Gamma$			
4.	Расстояние от оси до первой риски (l_1)	$(57.0 \pm 0.5) \text{ mm}$			
5.	Расстояние между рисками (l_0)	$(25,0\pm 0,2)\ { m mm}$			
6.	Диаметр ступицы (d)	$(46,0\pm 0,5)\ { m mm}$			
7.	Диаметр груза на крестовине	$(40,0\pm 0,5)\ { m mm}$			
8.	Высота груза на крестовине (b)	$(40.0 \pm 0.5) \; \mathrm{mm}$			
9.	Расстояние, проходимое грузом (h)	$(700,0\pm0,5)~{ m mm}$			

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 3 Время десяти колебаний

<i>t</i> ₁ , c	t ₂ , c	<i>t</i> ₃ , c	\overline{t} , c	Т, с
18,20	18,01	18,26	18,16	1,816

Таблица 4 Время отклонения до определённой амплитуды

Амплитуда отклонения Время, с.	25°	20°	15°	10°	5°
t_1	16,70	33,02	47,56	65,56	87,45
t_2	16,82	33,05	49,29	67,64	85,52
t ₃	16,55	32,99	47,71	67,60	85,75
\overline{t}	16,69	33,02	48,19	66,93	86,24

Таблица 5 Время 10 колебаний при различных положениях грузов

Положение боковых грузов	t_1	t_2	t_3	ī	T
1 риска	16,15	16,06	16,4	16,20	1,62
2 риски	17,31	17,33	17,16	17,27	1,73
3 риски	18,37	17,92	18,03	18,11	1,81
4 риски	19,56	19,5	19,47	19,51	1,95
5 рисок	20,97	21,08	21,06	21,04	2,10
6 рисок	22,33	22,47	22,15	22,32	2,23

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Для начала рассчитаем среднее время 10 колебаний и период колебаний, заполнив таблицу 3

$$\overline{t} = \frac{t_1 + t_2 + t_3}{3} = \frac{18,20 + 18,01 + 18,26}{3} = 18,16 \text{ c}$$

$$T = \frac{\overline{t}}{10} = \frac{18,16}{10} = 1,816 \text{ c}$$

Аналогичным образом вычислим среднее время в таблицах 4 и 5, а таже период в таблице 5 По данным из таблицы 4 построим график зависимости амплитуды колебаний от времени (рис 2)

Из графика видно, что в системе преобладает сухое трение

Вычислим ширину зоны застоя $\Delta \varphi_3$

Для этого используя метод наименьших квадратов, вычислим угловой коэффициент в зависимости A(t)

Для начала вычислим средние значения измеренных величин A и t

$$\overline{A} = \frac{\sum_{i=1}^{5} A_i}{5} = 0,262 \text{ рад}$$

$$\overline{\overline{t}} = \frac{\sum_{i=1}^{5} \overline{t}_i}{5} = 50,214 c$$

Теперь вычислим сам коэффициент

$$k = \frac{\sum_{i=1}^{5} (\overline{t}_i - 50,214) (A_i - 0,262)}{\sum_{i=1}^{5} (\overline{t}_i - 50,214)^2} = -0,005$$

Выразим значение $\Delta \varphi_3$ через найденный угловой коэффициент:

$$A(t = nT) = A_0 - 4n\Delta\varphi_3 \Rightarrow A(t) = A_0 - \frac{4\Delta\varphi_3}{T} \cdot t$$

Откуда

$$k = -\frac{4\Delta\varphi_3}{T} \Rightarrow \Delta\varphi_3 = -\frac{kT}{\Delta} =$$

Подставив значения получим:

$$\Delta \varphi_{\scriptscriptstyle 3} = - \frac{-0,005 \cdot 1,816}{4} = 0,002$$
 рад

Найдем количество колебаний п, после которого колебания прекратятся

$$0 = A_0 - 4n\Delta\varphi_3 \Rightarrow \Delta\varphi_3 = \frac{A_0 - A}{4n} \Rightarrow n = \frac{A_0 - A}{4\Delta\varphi_3}$$

Подставив значения получим:

$$n = \frac{\frac{\pi}{6} - 0}{4 \cdot 0.002} = 66$$

Приступим к заполнению таблицы 6

Для каждого положения грузов вычислить расстояния центров верхнего ($R_{\rm верх}$), нижнего ($R_{\rm нижн}$) и боковых ($R_{\rm бок}$) грузов от оси вращения:

По условию верхний груз расположен на первой риске, значит n=1. Подставляя значения в формулу, получаем:

$$R_{\text{Bepx}} = 57.0 \cdot 10^{-3} + (1 - 1) \cdot 25.0 \cdot 10^{-3} + \frac{1}{2} \cdot 40.0 \cdot 10^{-3} = 0.077 \text{ M}$$

Для нижнего груза n = 6, так что получаем:

$$R_{\text{нижн}} = 57.0 \cdot 10^{-3} + (6-1) \cdot 25.0 \cdot 10^{-3} + \frac{1}{2} \cdot 40.0 \cdot 10^{-3} = 0.202 \text{ M}$$

Расчёты для боковых рисок проводятся аналогично, посредством смены значения n от 1 до 6 Теперь вычислим моменты инерции грузов.

Для примеры проведём расчёты для первой риски:

$$I_{\rm rp} = 408.0 \cdot 10^{-3} \cdot (0.077^2 + 0.202^2 + 2 \cdot 0.077^2) = 0.024 \,\mathrm{kg \cdot m}^2$$

Дальше для каждого положения грузов вычислим полный момент инерции физического маятника. Для примера проведём расчёты для первой риски:

$$I = 0.024 + 8 \cdot 10^{-3} = 0.032 \text{ кг} \cdot \text{м}^2$$

Построим график зависимости $T^2(I)$ (рис 3)

Вычислим коэффициенты в аппроксимированной линейной зависимости $T^2 = a + bI$ методом наименьших квадратов:

Найдём средние значения T^2 и I:

$$\overline{T^2} = \frac{\sum_{i=1}^6 T_i^2}{6} = 3,683 \ c^2$$

$$\overline{I} = \frac{\sum_{i=1}^{6} I_i}{6} = 0.044 \text{ KG} \cdot \text{M}^2$$

Теперь вычислим коэффициенты:

$$b = \frac{\sum_{i=1}^{6} (I_i - 0.044)(T_i^2 - 3.683)}{\sum_{i=1}^{6} (I_i - 0.044)^2} = 83.443$$
$$a = 3.683 - 83.443 \cdot 0.044 = -0.025$$

Найдём величину ml используя формулу периода колебаний и найденный коэффициент b:

$$T = 2\pi \sqrt{\frac{I}{mgl}} \Rightarrow T^2 = \frac{4\pi^2}{mgl} \cdot I \Rightarrow b = \frac{4\pi^2}{mgl} \Rightarrow ml = \frac{4\pi^2}{gb}$$

Подставив значения получим:

$$ml = \frac{4\pi^2}{9.82 \cdot 83.443} = 0,048 \,\mathrm{K}\mathrm{\Gamma} \cdot \mathrm{M}$$

Предполагая, что основная масса маятника сосредоточена в грузах на спицах, вычислим расстояние $l_{\rm Teop}$ от оси вращения до центра масс

Для этого примем массу $m=4m_{\rm rp}$ и выразим l из выведенной выше формулы:

$$l_{\text{reop}} = \frac{4 \cdot \pi^2}{gb \cdot 4 \cdot m_{\text{rp}}} = \frac{\pi^2}{gbm_{\text{rp}}} = \frac{\pi^2}{9,82 \cdot 83,443 \cdot 0,408} = 0.0295 \text{ M}$$

На основании периодов из таблицы 5 рассчитаем экспериментальную приведённую длину $l_{\rm пр_{\rm эксп}}$ маятника и занесём её в таблицу 6

$$T = 2\pi \sqrt{\frac{l_{
m np}}{g}} \Rightarrow l_{
m np_{
m skcn}} = \frac{T^2 g}{4\pi^2}$$

Для примера проведём расчёты для первой риски

$$l_{{
m пp}_{
m 9KC\Pi}} = rac{1,62^2 \cdot 9,82}{4\pi^2} = 0,653~{
m kg} \cdot {
m m}^2$$

Наконец вычислим теоретическое значение $l_{\rm пр_{\rm reop}}$ приведённой длинны для каждого значения I и занесём результаты в таблицу 6

Для примера проведём вычисления для первой риски:

$$l_{\text{пр}_{\text{теор}}} = \frac{I}{ml} = \frac{0,032}{0.048} = 0,662 \text{ kg} \cdot \text{m}^2$$

Таблица 6 Результаты расчётов

Риски	1	2	3	4	5	6
$R_{ m Bepx}$, м	0,077					
$R_{ m HИЖH}$, м	0,202					
$R_{ m 6ok}$, м	0,077	0,102	0,127	0,152	0,177	0,202
$I_{ m rp}$, кг \cdot м 2	0,024	0,028	0,032	0,038	0,045	0,052
<i>I</i> ,кг⋅м²	0,032	0,036	0,040	0,046	0,053	0,060
$l_{ m пр_{ m эксп}}$, кг \cdot м 2	0,653	0,742	0,816	0,947	1,101	1,239
$l_{ m пp_{ m reop}}$, кг \cdot м 2	0,662	0,738	0,835	0,953	1,092	1,253

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

11. Графики (перечень графиков, которые составляют Приложение 2).

 $Puc.\ 2.\ \Gamma paфик зависимости <math>A(t)$

Рис. 3. График зависимости $I(T^2)$

12. Окончательные результаты.

Преобладающий тип трения – сухое.

13. Выводы и анализ результатов работы

В ходе работы были изучены характеристики физического маятника. Мы измерили период затухающих колебаний и определили зависимость амплитуды затухающих колебаний от времени. На основании построенного графика этой зависимости было установлено, что преобладающий тип трения в нашей модели маятника — сухое. В ходе дальнейшего выполнения работы мы определили и построили график зависимости момента инерции физического маятника от квадрата периода колебаний, а также рассчитали экспериментальную и теоретическую приведённые длинны маятника при его различных конфигурациях.