MASCHINELLES LERNEN & DATAMINING

Vorlesung im Wintersemester 2017

Prof. E.G. Schukat-Talamazzini

Stand: 25. August 2017

Module und Studiengänge

Module und Studiengänge

Zur Vorlesung Zur Modulprüfung Zum Inhalt Literatur zur Lehrveranstaltung

Professur für Musteranalyse

Lehrangebot Wintersemester & Sommersemester

Lehrbereich

Inhaltliche Abhängigkeiten

Module und Studiengänge

Zur Vorlesung Zur Modulprüfung Zum Inhalt Literatur zur Lehrveranstaltung

Meine Lehrveranstaltungen für ...

Informatiker & Bioinformatiker & Informatikerinnen & Bioinformatikerinnen

	SOMMERSEMESTER	WINTERSEMESTER	
ASQ und EF Inf.	Intelligente Systeme 4V	Literaturarbeit und Präsentation ^{ASQ} 2S	
Bachelor	Mustererkennung 4V Werkzeuge ME/ML 2Ü	Strukturiertes Programmieren 4V+2Ü	
Master	Stochastische Grammatikmodelle 2V Biometriesysteme (Seminar) 2S	Maschinelles Lernen und Datamining 4V Spezielle Musteranalysesysteme 2V	

Zur Modulprüfung

Wie studiere ich MUSTERANALYSE?

Studiengänge: Informatik · Bioinformatik · Angewandte Informatik

Bachelor

Mustererkennung⁶

Master

Maschinelles Lernen^{6₽} Stochast. Grammatik³¹ Musteranalysesysteme^{3p}

Vertiefungsangebote

auf Antrag beim Prüfungsamt:

Nivellierungsmodule

auf Antrag beim Prüfungsamt: Mustererkennung⁶ ₽

Module und Studiengänge

Zur Vorlesung

Zur Modulprüfung

Zum Inhalt Literatur zur Lehrveranstaltung

Stochastische Grammatikmodelle

Vorlesung der Master-Studiengänge · 2V · 3 LP

ach kontextfreie Grammatiken (IG, TAG, HG, CG) robuste Häufigkeitsschätzung (Bayes, Good-Turing, Zipf) N-Gramme, Interpolation, Maximum-Entropiestochastische

Modulnummer/-code	FMI-IN0146	
Modultitel (deutsch)	Stochastische Grammatikmodelle	
Modultitel (englisch)	Stochastic Grammars	
Modulverantwortlicher	Ernst Günter Schukat-Talamazzini	
Voraussetzungen für Zulassung zum Modul	keine	
Empfohlene bzw. erwartete Vorkenntnisse	keine	
Art des Moduls (Pflicht-,	Wahlpflichtmodul (KIME, INT) für den M.Sc. Informatik	
Wahlpflicht- oder Wahlmodul)	Wahlpflichtmodul für den M.Sc. Bioinformatik (Bereich bioinformatisch relevante Informatik)	
	Wahlpflichtmodul für den M.Sc. Mathematik (Nebenfach Informatik)	
	Wahlpflichtmodul (INF) für den M.Sc. Computational Science	
Häufigkeit des Angebots (Zyklus)	jedes 2. Semester (ab Sommersemester)	
Dauer des Moduls	1 Semester	
Zusammensetzung des Moduls / Lehrformen (VL, Ü, S, Praktikum)	2V	
Leistungspunkte (ECTS credits)	3LP	
Arbeitsaufwand (work load)	90h	
- Präsenzstunden	30h	
- Selbststudium (einschl. Prüfungsvorbereitungen)	60h	
Inhalte	Grammatische Modellierung von Zeichenfolgen natürlicher ("Texte") und künstlicher (z.B. Nukleotid- oder Aminosäuresequenzen) Sprachen.	

M.Sc. Informatik WP-Bereich Int.Syst. Schwerpunkt KI/ME

M.Sc. Bioinform. WP-Bereich

M.Sc. Comp.Science WP-Bereich

Zur Vorlesung Zur Modulprüfung

Maschinelles Lernen & Data Mining

Vorlesung der Master-Studiengänge · 4V · 6 LP

Modultitel (deutsch) Maschinelles Lernen und Datamining			
Modultitel (englisch)	Machine Learning and Datamining		
Modulnummer	FMI-IN0034	02.12.09	
Art des Moduls (Pflicht-, Wahlpflicht- oder Wahlmodul)	Wahlpflichtmodul (KIME, INT) für den M.Sc. Informatik Wahlpflichtmodul (INT) für den B.Sc. Informatik (zusätzlich gebot) Wahlpflichtmodul für den M.Sc. Bioinformatik (Bereich Info Wahlpflichtmodul (INF) für den M.Sc. Computational Scienc Wahlpflichtmodul für das Lehramt Informatik	rmatik)	
Modul-Verantwortlicher	Ernst Günter Schukat-Talamazzini		
Leistungspunkte (ECTS credits)	6		
Arbeitsaufwand (work load) in: - Präsenzstunden - Selbststudium (einschl. Prüfungsvorbereitung)	180 Std. 60 Std. 120 Std.		
Lehrform (SWS)	4V (mit Projektanteil)		
Häufigkeit des Angebots (Modultur- nus)	jährlich im Wintersemester		
Dauer des Moduls	1 Semester		
Voraussetzung für die Zulassung zum Modul	Keine		
Empfohlene Vorkenntnisse für das Modul	rhlene Vorkenntnisse für das FMI-IN0036 (Mustererkennung)		
Voraussetzung für die Zulassung zur Modulprüfung	Keine		
Voraussetzung für die Vergabe von Leistungspunkten (Prüfungsform)	Klausur (120min) oder mündliche Prüfung (30min) zur Vorle	esung	
Inhalte	Strukturaufdeckung, Klassifizierung oder Entwicklungsvorhersage aus großen Datenluen (Finanzprozese, Handel und Transport, med./biol.) Datensätze, Klimamesswerte, elektronische Dokumente, Fertigungsautomatisierung) – Vorlesungsthemen sind u.a.: Skalentypen; Visualisierung hochdimensionaler Daten (PCA, MDS, ICA); überwachte Lemverfahren (Versionenraum, Entscheidungsbaum, inieare/logistische Modelle); uniberwachte Leruverfahren (hierarchisch (füzzy) K-means, spektral); Graphische Modelle (Bayesnetze, Markovnetze, Induktion und Inferenz)		
(Qualifikations-)Ziele	Tiefgreifende Fachkenntnisse des Gebiets Maschinelles Lern Fähigkeit zur Analyse, Design und Realisierung von ML-Sys Flächendeckende Übersicht aktueller Techniken des Datamin	temen	

M.Sc. Informatik WP-Bereich Int.Syst. Schwerpunkt KI/ME

Zum Inhalt Literatur zur Lehrveranstaltung

M.Sc. Bioinform. WP-Bereich

M.Sc. Comp.Science WP-Bereich

B.Sc. Informatik Zusatzangebot

LG Informatik FS 6-9

Module und Studiengänge

Zur Vorlesung

Zur Modulprüfung Zum Inhalt

Literatur zur Lehrveranstaltung

Spezielle Musteranalysesysteme

Vorlesung der Master-Studiengänge · 2V · 3 LP

Modultitel (deutsch)	Spezielle Musteranalysesysteme		
Modultitel (englisch)	Pattern Analysis Systems		
Modulnummer	FMI-IN0054 02.12.09		
Art des Moduls (Pflicht-, Wahlpflicht- oder Wahlmodul)	Wahlpflichtmodul (INT) für den M.Sc. Informatik Wahlpflichtmodul für den M.Sc. Bioinformatik (Bereich Informatik)		
Modul-Verantwortlicher	Ernst Günter Schukat-Talamazzini		
Leistungspunkte (ECTS credits)	3		
Arbeitsaufwand (work load) in: - Präsenzstunden - Selbststudium (einschl. Prüfungsvorbereitung)	90 Std. 30 Std. 60 Std.		
Lehrform (SWS)	2V (mit Projektanteil)		
Häufigkeit des Angebots (Modultur- nus)	jährlich im Sommersemester		
Dauer des Moduls	1 Semester		
Voraussetzung für die Zulassung zum Modul	keine		
Empfohlene Vorkenntnisse für das Modul	FMI-IN0036 (Mustererkennung) Vorkenntnisse aus den Bereichen Künstliche Intelligenz und Digital Bildverarbeitung		
Voraussetzung für die Zulassung zur Modulprüfung	keine		
Voraussetzung für die Vergabe von Leistungspunkten (Prüfungsform)	mündliche Prüfung (30min) zur Vorlesung oder Ausarbeitung/ Präsentation zu einer Projektaufgabe		
Inhaite	Komplexe Musteranalyseaufgaben mit longitudinalen Daten (Sprach- und Sprechererkennung, (Hand)schrifterkennung, DNA-Motive, Musikretireval) Geeignete Lernverfahren (z.B. Hidden Markov Modelle; siehe Webseite zum Kurs für Detailinformationen), unterstützende Werkzeuge Vorverarbeitung und Etikettierung der Lerndaten und syntaktische Modellierungsverfahren am Beispiel einer oder mehrerer ausgewähl ter Aufgabenstellungen		
(Qualifikations-)Ziele	Vertiefte Kenntnis der Methoden syntaktischer Musteranalyse Kompetenzen der Analyse, des Designs und der Realisierung von Musteranalysesystemen realistischer Größenordnung Fertigkeiten der Nutzung ausgewählter Softwarewerkzeuge der syntaktischen Musteranalyse		

M.Sc. Informatik WP-Bereich Int.Syst.

M.Sc. Bioinform. WP-Bereich Informatik

Zur Modulprüfung Zum Inhalt Literatur zur Lehrveranstaltung

Mustererkennung

Vorlesung der Bachelor/Master-Studiengänge · 4V · 6 LP

Modultitel (englisch)	Mustererkennung Pattern Recognition	
Modulnummer	FMI-IN0036	01.04.12
Art des Moduls (Pflicht-, Wahlpflicht- oder Wahlmodul)	FMI-INOUSO Wahlpflichtmodul (INT) für den B.Sc. Informatik Wahlpflichtmodul (INT) für den B.Sc. Angewandte Informatik Wahlpflichtmodul (Wahlpflichtbereich 2) für den B.Sc. Bioinformatik Wahlpflichtmodul (Wahlpflichtbereich 2) für den B.Sc. Bioinformatik Wahlpflichtmodul für den M.Sc. Informatik (Bereich Informatik) Pflichtmodul für das Anwendungsfach Computational Neuroscience zum B.Sc. Angewandte Informatik Wahlpflichtmodul für das Lehramt Informatik	
Modul-Verantwortlicher	Ernst Günter Schukat-Talamazzini	
Leistungspunkte (ECTS credits)	6	
Arbeitsaufwand (work load) in: 180 Std. - Präsenzstunden 60 Std Selbststudium (einschl Prüfungsvorbereitung) 120 Std.		
Lehrform (SWS)	3 V + 1 Ü	
Häufigkeit des Angebots (Modultur- nus)	jährlich im Sommersemester	
Dauer des Moduls	1 Semester	
Voraussetzung für die Zulassung zum Modul		
Empfohlene Vorkenntnisse für das Modul	- FMI-IN0070 (Grundlagen der Modellierung und Program oder FMI-IN0040 (Grundlagen der Modellierung und Programmierung (Grundleit)) oder FMI-IN0025 (Struktu Programmieren für Bioinformatiker) - FMI-IN0001 (Algorithmen und Datenstrukturen) - FMI-MA0007 (Einführung in die Wahrscheinlichkeitsthe	riertes
Voraussetzung für die Zulassung zur Modulprüfung	Bearbeitung der Übungsaufgaben Mindestens 50% der erzielbaren Punkte erreicht	
Voraussetzung für die Vergabe von Leistungspunkten (Prüfungsform)	Klausur (120min) oder mündliche Prüfung (30min) zur Vorles Studiengangbezogene Erfolgsmetriken. Abgestufte (Prüfungs) Anforderungen berücksichtigen das von Bachelor- und Maste den jeweils erwartbare Leistungsniveau.	-
Inhalte	Einführung in die Methoden der Mustererkennung zur maschib Modellierung und Simulation komplexer Informationsverarbet zesse, wie sie insbesondere bei der Wahrnehmung und Auswendeller, akustischer oder taktiler Sinneseindrücke durch den Met auftreten. Diskretisierung/Filterung/Normierung; Merkmalauswahl und transformation; statistische, diskriminative und nichtparametu sifikatoren; unüberwachtes Leren; Zeitreibe	eitungspro- ertung visu- nschen Merkmal-

B.Sc. Informatik WP-Bereich Int.Syst.

B.Sc. Bioinform. WP-Bereich

B.Sc. Ang.Inform.

WP-Bereich Int.Syst. Pflicht im Anw.fach CNS

M.Sc. Informatik WP-Bereich Int.Syst.

M.Sc. Bioinform. WP-Bereich Int.Syst.

LG Informatik FS 6-9

Literatur zur Lehrveranstaltung

Zur Vorlesung

Zur Vorlesung Zur Modulprüfung

Werkzeuge Mustererkennung & Maschinelles Lernen

Vorlesung der Bachelor/Master-Studiengänge · 2V/P · 3 LP

Modultitel (deutsch)	Werkzeuge der Mustererkennung und des Maschinellen Lernens		
Modultitel (englisch)	Tools for Pattern Recognition and Machine Learning		
Modulnummer	FMI-IN0086 01.04.12		
Art des Moduls (Pflicht-, Wahlpflicht- oder Wahlmodul)	Wahlpflichtmodul (INT) für B.Sc. Informatik Wahlpflichtmodul (INT) für B.Sc. Angewandte Informatik Wahlpflichtmodul (KIME,INT) für den M.Sc. Informatik (auf Antrag) Wahlpflichtmodul für den B.Sc. Bioinformatik (Bereich Informatik)		
Modul-Verantwortlicher	Ernst Günter Schukat-Talamazzini		
Leistungspunkte (ECTS credits)	3		
Arbeitsaufwand (work load) in: - Präsenzstunden - Selbststudium (einschl. Prüfungsvorbereitung)	90 Std. 30 Std. 60 Std.		
Lehrform (SWS)	2V (mit Übung)		
Häufigkeit des Angebots (Modulturnus)	jedes Sommersemester		
Dauer des Moduls	1 Semester		
Voraussetzung für die Zulassung zum Modul	Keine		
Empfohlene Vorkenntnisse für das Modul	FMI-IN0036 (Mustererkennung) sollte gleichzeitig belegt werden		
Voraussetzung für die Zulassung zur Modulprüfung	50% der erreichbaren Punkte aus den Übungsaufgaben		
Voraussetzung für die Vergabe von Leistungspunkten (Prüfungsform)	Mündliche Prüfung oder Klausur		
Inhalte	Aufgabenstellungen aus den Bereichen Mustererkennung, Maschinelles Lernen, Datamining und ihre Bearbeitung mit geeigneten Softwarewerkzeugen:		
	Klassifikation, Vorhersage, Clustering, Transformation, Visualisierung, Zeitreihen, Spektraldarstellung, Wahrscheinlichkeitsmodelle		
(Qualifikations-)Ziele	Fähigkeiten im praktischen Umgang mit Entwicklungswerkzeugen für maschinelles Lernen in Musteranalyse und Datamining		
	Grundlegende Kenntnisse über den Aufbau von Softwaresystemen und Programmierparadigmen für die maschinelle Datenanalyse Kompetenzen in Datenanalyse, Versuchsplanung, Konfiguration von M. Läuspagen.		

B.Sc. Informatik WP-Bereich Int.Syst.

B.Sc. Ang.Inform. WP-Bereich Int.Syst.

B.Sc. Bioinform. Zusatzmodul

M.Sc. Bioinform. WP-Bereich Int.Syst.

M.Sc. Informatik KI/ME & INT auf Antrag

Module und Studiengänge

Zur Vorlesung

Zur Modulprüfung

Zum Inhalt

Literatur zur Lehrveranstaltung

Vorlesung

Nutzung der Folienpräsentation

- Die Folien sollen vom Mitschreiben während der Vorlesung entlasten.
- Das Mitschreiben wird dadurch nicht überflüssig.
- Die Folien sind kein Lehrbuch.
- Die Folien sind daher im allgemeinen nur mit den Erläuterungen während der Vorlesung und entsprechenden eigenen Notizen verständlich.

- Wichtige mathematische Grundlagen werden in Steilkursen wiederholt.
- Die entsprechenden Fakten sind (oft) im letzten Abschnitt eines Vorlesungsteils dargestellt.
- Schwierige mathematische Zusammenhänge werden in der Anwendung verständlicher.
- Umfangreiche mathematische Formeln erscheinen viel harmloser, nachdem man/frau sie einmal programmtechnisch umgesetzt hat.

Module und Studiengänge Zur Vorlesung Zur Modulprüfung

Zum Inhalt Literatur zur Lehrveranstaltung

Zur Modulprüfung

Module und Studiengänge Zur Vorlesung Zur Modulprüfung Zum Inhalt Literatur zur Lehrveranstaltung

Vorlesung

Elektronisches Folienskript

Die PDF-Fassung des Folienskripts enthält einige Hyperlinks:

- Verweise auf externe Webseiten Detaillierte Zusatzinformationen, Daten, Bilder (funktioniert nicht während der Vorlesung ...)
- Literaturangaben Verweis auf Quellenangaben am Ende des Dokuments
- Programmcode
 - 'R'-Code zur Erstellung einer Grafik oder Tabelle 'dot'-Code zur Erzeugung eines (gerichteten) Graphen

Module und Studiengänge Zur Vorlesung Zur Modulprüfung Zum Inhalt Literatur zur Lehrveranstaltung

Prüfung

Was wird wann wie von wem geprüft?

Prüfungsvorgang

Mündliches "Verhör" · circa 30 Minuten

Prüfungstermine mehr Information

Erstprüfung am Mi 14/21 (28) Februar 2018 Wiederholung am Do 5 April 2018

Prüfungsstoff

Vorlesungsinhalte in Schrift und Wort

Module und Studiengänge Zur Vorlesung Zur Modulprüfung Zum Inhalt Literatur zur Lehrveranstaltung Module und Studiengänge Zur Vorlesung Zur Modulprüfung Zum Inhalt Literatur zur Lehrveranstaltung

Zum Inhalt

Module und Studiengänge Zur Vorlesung Zur Modulprüfung Zum Inhalt Literatur zur Lehrveranstaltung

Zum Vorlesungsinhalt

Die Grundrechnungsarten des Dataminings

Datenpräparation

Akquisition · Auswahl · Filterung · Komplettierung

Visualisierung

hochdimensionaler oder nichtnumerischer Datensätze

Kategorisierung

von Objekten unterschiedlicher Attributskalen

Gruppierung

von Objekten unterschiedlicher Attributskalen

Vorhersage

verdeckter Attribute oder zukünftiger Objekte

Abhängigkeitsstruktur

Stärke und Richtung von Attributassoziationen

Zum Vorlesungsinhalt

Form, Zweck & Lernziele

Lehrveranstaltungsform

Vorlesung (4V) · kein Übungsanteil

Zulassungsvoraussetzungen

keine, aber empfehlenswert: Mustererkennung

Themengebiet

Explorative Analyse großer Datenmengen mit maschinellen Lernverfahren

Zweck

Verstehen der wichtigsten Konzepte hinter den Schaltflächen einschlägiger Datamining-Systeme

Lernziele

Automatische Strukturaufdeckung in Datenbeständen Behandlung numerischer und nichtnumerischer Attribute

Module und Studiengänge Zur Vorlesung Zur Modulprüfung Zum Inhalt Literatur zur Lehrveranstaltung

Literatur zur Lehrveranstaltung

Zur Vorlesung Zur Modulprüfung Zum Inhalt Literatur zur Lehrveranstaltung

Maschinelles Lernen

Empfohlene Bücher zur Vorlesung

Tom M. Mitchell.

Machine Learning.

McGraw-Hill Series in Computer Science, McGraw-Hill, New York, NY, 1997.

Miroslav Kubat.

An Introduction to Machine Learning.

Springer, 2015.

Yuichiro Anzai.

Pattern Recognition and Machine Learning.

Academic Press, San Diego, CA, 1992.

Dana H. Ballard.

An Introduction to Natural Computation.

Complex Adaptive Systems. MIT Press, Cambridge, MA, 1997.

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors.

Machine Learning. An Artificial Intelligence Approach.

Symbolic Computation. Springer, Berlin, 1984.

Paul Fischer.

Algorithmisches Lernen.

Teubner, Wiesbaden, 2000.

Module und Studiengänge Zur Vorlesung Zur Modulprüfung Zum Inhalt

Literatur zur Lehrveranstaltung

Data Mining

Empfohlene Bücher zur Vorlesung

Michael R. Berthold, Christzian Borgelt, Frank Höppner, and Frank Klawonn. Guide to Intelligent Data Analysis.

Texts in Computer Science. Springer, 2010.

J. Han and M. Kamber.

Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2000.

Max Bramer.

Principles of Data Mining.

Undergraduate Topics in Computer Science. Springer, 2013.

2. Auflage.

Thomas A. Runkler.

Data Analytics. Models and Algorithms for Intelligent Data Analysis.

Springer Vieweg, 2012.

Thomas A. Runkler.

Information Mining. Methoden, Algorithmen und Anwendungen intelligenter Datenanalyse.

Computational Intelligence. Vieweg/Gabler, Braunschweig, 2000.

Michael Berthold and David J. Hand.

Intelligent Data Analysis.

Springer, 2003

Numerisch orientiertes Lernen

Zur Modulprüfung

Empfohlene Bücher zur Vorlesung

Christopher M. Bishop.

Pattern Recognition and Machine Learning.

Springer, 2006.

Hardcover 60 EUR.

Bertrand Clarke, Ernest Fokoue, and Hao Helen Zhang.

Principles and Theory for Data Mining and Machine Learning.

Springer Series in Statistics. Springer, 2009.

T. Hastie, R. Tibshirani, and J. Friedman.

The Elements of Statistical Learning.

Springer, 2001.

G. James, D. Witten, T. Hastie, and R. Tibshirani.

An Introduction to Statistical Learning.

Number 103 in Springer Texts in Statistics. Springer, 2013.

Alan Julian Izenman.

Modern Multivariate Statistical Techniques. Regression, Classification, and Manifold Learning.

Springer Texts in Statistics. Springer, 2008.

Hubert B. Keller.

Maschinelle Intelligenz. Grundlagen, Lernverfahren, Bausteine intelligenter Systeme.

Module und Studiengänge

Zur Vorlesung Zur Modulprüfung Zum Inhalt

Literatur zur Lehrveranstaltung

Zum Inhalt Literatur zur Lehrveranstaltung

Statistische Modelle

Empfohlene Bücher zur Vorlesung

Ludwig Fahrmeir, Thomas Kneib, and Stefan Lang. Regression.

Springer, 2007.

Lucas Drumond

Factorization Models for Multi-Relational Data.

Cuvillier Verlag, 2014.

J. Kreiß and G. Neuhaus.

Einführung in die Zeitreihenanalyse. Springer, 2006.

Peter Bühlmann and Sara van de Geer.

Statistics for High-Dimensional Data.

Springer Series in Statistics. Springer, 2011.

John C. Loehlin.

Latent Variable Models.

Lawrence Erlbaum Assoc Inc. 2004.

Giovanni Petris, Sonia Petrone, and Patrizia Campagnoli.

Dynamic Linear Models with R. Use R! Springer, 2009.

Graphische Modelle

Empfohlene Bücher zur Vorlesung

Probabilistic Graphical Models. Principles and Techniques.

Adaptive Computation and Machine Learning. MIT Press, 2009.

Probabilistic Reasoning in Intelligent Systems.

Morgan Kaufmann, 1997.

D.R. Cox and Nanny Wermuth.

Multivariate Dependencies. Models, Analysis and Interpretation.

Chapman & Hall, Boca Raton, 1996.

Joe Whittaker.

Graphical Models in Applied Multivariate Statistics.

John Wiley & Sons, Chichester, 1995.

Graphical Models.

Oxford Statistical Science Series. Clarendon Press, Oxford, 1996.

Module und Studiengänge Zur Vorlesung Zur Modulprüfung

Zum Inhalt

Literatur zur Lehrveranstaltung

Assoziationsregeln, Warenkorbanalyse, Netzwerkdaten Empfohlene Bücher zur Vorlesung

Jean-Marc Adamo.

Data Mining for Association Rules and Sequential Patterns.

Paul Alpar and Joachim Niedereichenholz, editors.

Data Mining im praktischen Einsatz.

Vieweg, Wiesbaden, 2000

Alex A. Freitas.

Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer, 2002

Chengqi Zhang and Shichao Zhang.

Association Rule Mining. Models and Algorithms, volume 2307 of LNCS. Springer, 2002.

Eric D. Kolaczyk and Gábor Csárdi.

Statistical Analysis of Network Data with R.

Use R! Springer, 2014.

Zur Modulprüfung

Graphische Modelle (DAG)

Empfohlene Bücher zur Vorlesung

Richard E. Neapolitan.

Learning Bayesian Networks.

Prentice Hall, 2003.

Richard E. Neapolitan.

Probabilistic Reasoning in Expert Systems.

John Wiley & Sons, 1990.

Russell G. Almond

Graphical Belief Modeling.

Chapman & Hall, London, 1995.

F.B. Jensen

Bayesian Networks and Decision Graphs.

Springer, 2001.

Judea Pearl.

Causality.

Cambridge University Press, 2000.

Module und Studiengänge Zur Vorlesung Zur Modulprüfung

Zum Inhalt

Literatur zur Lehrveranstaltung

Zum Inhalt Literatur zur Lehrveranstaltung

Ausgewählte Verfahren ML/DM

Empfohlene Bücher zur Vorlesung

Lior Rokach and Oded Maimon.

Data Mining with Decision Trees, volume 81 of Machine Perception and Artificial Intelligence.

Springer, 2014.

2. Edition.

D. Goldberg.

Genetic Algorithms: Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA, 1989.

V.N. Vapnik.

Statistical Learning Theory.

Wiley, 1998.

Michel Neuhaus and Horst Bunke.

Bridging the Gap between Graph Edit Distance and Kernel Machines, volume 68 of Series in Machine Perception and Artificial Intelligence.

World Scientific, Singapore, 2007.

A.Hyvarinen, J.Karhunen, and E.Oja.

John Wiley & Sons, 2001.

Independent Component Analysis.

Richard S. Sutton and Andrew G. Barto.

Reinforcement Learning: An Introduction.

odule und Studiengänge Zur Vorlesung Zur Modulprüfung Zum Inhalt Literatur zur Lehrveranstaltung Module und Studiengänge Zur Vorlesung Zur Modulprüfung Zum Inhalt Literatur zur Lehrveranstaltung

Spezielle Anwendungen ML/DM

Empfohlene Bücher zur Vorlesung

Pierre Baldi and Søren Brunak.

Bioinformatics. The Machine Learning Approach.

Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA, 1998.

Thorsten Joachims.

Learning to Classify Text Using Support Vector Machines. Kluwer Academic Publ., Boston, MA, 2002.

Reginald Ferber.

Information Retrieval. Suchmodelle und Data-Mining-Verfahren für Textsammlungen und das Web. dpunkt.verlag, 2003.

Paul S.P. Cowpertwait and Andrew V. Metcalfe. *Introductory Time Series with R.*Use R! Springer, 2009.

Softwaresysteme

Empfohlene Bücher zur Vorlesung

Ian H. Witten and Eibe Frank.

Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, 2005.

2. Auflage.

David Edwards.

Introduction to Graphical Modelling.
Springer Texts in Statistics. Springer, New York, NY, 1995.

W.N. Venables and B.D. Ripley. *Modern Applied Statistics with S.* Springer, 2002.

Brian Everitt and Torsten Hothorn.

An Introduction to Applied Multivariate Analysis with R. Use R. Springer, 2011.

Graham Williams.

Data Mining with Rattle and R.

Use R. Springer, 2011.

Søren Højsgaard, David Edwards, and Steffen Lauritzen. Graphical Models with R.

Use R! Springer, 2012.