2^{er} semestre, année 2019/2020 3^{ième} année licence Maths Module: Probabilités Avancées

$T.D. N^04$

Exercice \mathbf{n}^0 1: La durée d'une communication téléphonique urbaine est présenté par une v.a D uniformément distribuée sur [0,t], où t est un nombre réel positif donné. On souhaite étudier le comportement de la plus longue durée de n communications, définie par $M_n = \max(D_1, ..., D_n)$, lorsque n devient infini, les v.a D_i étant supposées indépendantes et de même loi que D. Montrer que M_n converge en probabilité vers t.

Exercice n⁰ 2 (Devoir): Montrer que la convergence presque-sûre implique la convergence en probabilité.

Exercice n⁰ 3 : Soient X et $(X_n)_{n\geq 1}$ des v.a réelles définies sur le même espace probabilisé (Ω, F, \mathbb{P}) et vérifiant

$$\forall \varepsilon > 0, \qquad \sum_{n=1}^{\infty} \mathbb{P}\left(|X_n - X| \ge \varepsilon\right) < \infty$$

Montrer que X_n converge presque sûrement vers X.

Exercice \mathbf{n}^0 4 : Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles sur un espace probabilisé (Ω, F, \mathbb{P}) ; on suppose qu'il existe une suite de réels $(a_n)_{n\in\mathbb{N}}$ telle que les séries

$$\sum_{n} a_{n}, \qquad \sum_{n} \mathbb{P}\left(\left\{X_{n} \neq a\right\}\right)$$

soient convergentes. Démontrer que la série $\sum_n X_n$ est p.s. convergente.

Exercice n⁰ **5**: Soit $(X_i)_{i\in I}$ une famille de variables aléatoires réelles sur (Ω, F, \mathbb{P}) ; on suppose qu'il existe une fonction $G: [0, +\infty[\to [0, +\infty[$ vérifiant $\lim_{t\to\infty} \frac{G(t)}{t} = \infty$ telle que

$$\sup_{i} E\left[G\left(|X_{i}|\right)\right] < \infty.$$

Démontrer que la famille $(X_i)_{i\in I}$ est uniformément intégrable.

Exercice n⁰ **6**: Soient $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$ deux suites de variables aléatoires réelles sur (Ω, F, \mathbb{P}) convergeant en loi respectivement vers X et Y. On suppose que pour tout n, X_n , et Y_n sont indépendantes et que X et Y sont indépendantes.

- 1. Démontrer que $X_n + Y_n$ converge en loi vers X + Y.
- 2. Donner un exemple montrant que l'hypothèse d'indépendance est indispensable.