WHAT IS CLAIMED IS:

July 3 3

5

6

7

8

9

10

11

1

2

3

1

Man. Men.

14

F.

A compressor comprising:

a compressor mechanism, said compressor mechanism having a function for compressing and vomiting a refrigerator, and

a motor driving said compression mechanism;

wherein said motor includes a stator core having a plurality of teeth parts, a concentrated winding applied over each teeth part of said plurality of teeth parts and a rotor incorporating a plurality of permanent magnets;

said stator core is formed in an annular form by combining said plurality of core elements, and

each of said plurality of permanent magnets is provided at a larger pitch than the stator coil pitch.

- 2. The compressor of claim 1, wherein said rotor further includes an iron as a flux of magnetic induction, said iron being disposed between said each permanent magnet.
 - 3. A compressor comprising:
- a compression mechanism, said compressor mechanism having a function for compressing and vomiting a refrigerator, and
- a motor driving said compression mechanism,

thereof,

11

wherein said motor includes a stator core having a plurality of teeth 5 parts, a concentrated winding applied over each teeth part of said plurality of teeth 6 parts and a rotor incorporating a plurality of permanent magnets. 7 said stator core is formed in an annular form by combining said 8 plurality of core elements, and 9 each of said plurality of permanent magnets is provided at a larger 10 pitch than the stator coil pitch. 11 The compressor of claim 3 wherein said each teeth part 4. 1 includes an outer circumference part, and said each teeth part is combined by 2 fitting parts disposed at end portion of said outer circumference part. 3 A compressor comprising: 5. 1 a compression mechanism, said compressor mechanism having a 2 function for compressing and vomiting a refrigerator, and 3 a motor driving said compression mechanism, wherein said motor includes à stator core having a plurality of teeth 5 parts, a concentrated winding applied over each teeth part of said plurality of teeth 6 parts and a rotor incorporating a plurality of permanent magnets, 7 each of said plurality of permanent magnets is provided at a larger 8 pitch than the stator coil pitch, 9 10 said plurality of permanent magnet are arranged around a center

5	wherein said motor includes a stator core having a plurality of teeth
6	parts a concentrated winding applied over each teeth part of said plurality of teeth
7	parts and a rotor incorporating a plurality of permanent magnets,
8	each of said plurality of permanent magnets is provided at a larger
9	pitch than the stator coil pitch, and
10	a first outer periphery portion of said rotor is different shape than a
11	second outer periphery portion of said rotor without said second outer periphery
12	portion being situated directly between any of said magnet.
1	8. An air-conditioner comprising:
2	a compressor of claim 1,
3	a heat exchanger, and
4	a refrigerating cycle connecting said compressor and said heat
5	exchanger.
1	9. A refrigerator comprising:
•	
2	a compressor of claim 1,
3	a heat exchanger, and
1	a refrigerating evels competing and competing and competing
	a refrigerating cycle connecting said compressor and said heat
5	exchanger.
	18
	6 7 8 9 10 11 12 3 4 5 1

Ma 18