

Mawlana Bhashani Science and Technology University Lab-Report

Report No : 11

Experiment name : Implementation of FIFO page replacement Algorithm

Course code : ICT-3110

Course title : Operating System Lab.

Date of Performance :

Date of Submission :

Submitted by

Name: Iqbal Hossen

ID: IT-18041

3rd year 1st semester

Session: 2017-18

Dept. of ICT

MBSTU.

Submitted To

Nazrul Islam

Assistant Professor

Dept. of ICT

MBSTU.

i) What is FIFO page replacement Algorithm?

FIFO page replacement Algorithm:

Consider the following reference string: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2. Assume demand paging with three frames.

Using FIFO page replacement algorithm –

7	0	1	2	0	3	0	4	2	3	0	3	2
7	7	7	2	2	2	2	4	4	4	0	0	0
	0	0	0	0	3	3	3	2	2	2	2	2
		1	1	1	0	0	0	3	3	3	3	3

<u>ii) Implementation of FIFO page replacement algorithm in C?</u>

The implementation of FIFO page replacement algorithm in C is given below:

Code:

```
//implementation of FIFO page replacement in c++
#include<bits/stdc++.h>
using namespace std;
int pageFaults(int pages[], int n, int capacity)
{
    unordered_set<int> s;
    queue<int> indexes;
    int page_faults = 0;
    for (int i=0; i<n; i++)</pre>
```

```
{
  if (s.size() < capacity)
  {
     if (s.find(pages[i])==s.end())
     {
       s.insert(pages[i]);
       page_faults++;
       indexes.push(pages[i]);
     }
  }
  else
  {
     if (s.find(pages[i]) == s.end())
     {
       int val = indexes.front();
       indexes.pop();
       s.erase(val);
       s.insert(pages[i]);
       indexes.push(pages[i]);
       page_faults++;
     }
  }
```

Output:

```
The total no. of page faults: 10

Process returned 0 (0x0) execution time : 0.275 s

Press any key to continue.
```