Homework 4 - Quantum Mechanics I

N T A N /TT	$\alpha\alpha\alpha$	
NAME	SCORE	
	 SCOILL.	

Deadline: Friday 1 December 2023 by 16:00

Credits: 20 points Number of problems: 5

Type of evaluation: Formative Evaluation

- This homework includes problems on units 3 and 4 of the QM course.
- This assignment should be submitted individually by the deadline.
- Please justify all calculations and highlight your answers.

1. (4 points) Mathematical formalism of quantum mechanics

- (a) Consider the orthonormal states: $|1\rangle$, $|2\rangle$, $|3\rangle$, $|4\rangle$. For which value of x are the following states, $|\Psi_1\rangle = 4|1\rangle 3|2\rangle + 7|3\rangle + |4\rangle$ and $|\Psi_2\rangle = 2|1\rangle + 5|2\rangle x|3\rangle 2|4\rangle$, orthogonal?
- (b) Let $|n\rangle$ be the normalised n-th energy eigenstate of the 1D harmonic oscillator. We know that $\hat{H} |n\rangle = \hbar \omega (n + \frac{1}{2}) |n\rangle$. If $|\psi\rangle$ is a normalised ensemble state that can be expressed as a linear combination of the eigenstates as follows: $|\psi\rangle = \frac{1}{\sqrt{14}} |1\rangle \frac{2}{\sqrt{14}} |2\rangle + \frac{3}{\sqrt{14}} |3\rangle$, what is the expectation value of the energy operator in this ensemble state?
- (c) Consider the state $\Psi = \frac{1}{\sqrt{5}}\Psi_{-1} + \frac{1}{\sqrt{4}}\Psi_{+1} + \frac{1}{\sqrt{20}}\Psi_{+2} + \frac{1}{\sqrt{2}}\Psi_{+3}$, which is a linear combination of four orthonormal eigenstates of the operator \hat{Q} corresponding to eigenvalues -1, +1, +2, and +3. Calculate the expectation value of the operator \hat{Q} for this state.
- (d) Considering the derivative operator, $\hat{Q} = \frac{d}{dx}$, find: $\left(\sin \hat{Q}\right) x^5$.

2. (4 points) Dirac notation: brakets and dual basis

Consider a 3D vector space spanned by an orthonormal basis $|1\rangle$, $|2\rangle$, $|3\rangle$. In this basis, let the $|\Psi_0\rangle$ and $|\Psi_1\rangle$ kets be:

$$|\Psi_0\rangle = \frac{1}{\sqrt{2}} |1\rangle + \frac{i}{2} |2\rangle + \frac{1}{2} |3\rangle$$

$$|\Psi_1\rangle = \frac{1}{\sqrt{3}}|1\rangle + \frac{i}{\sqrt{3}}|3\rangle$$

- (a) Are these kets normalised? If not, normalise them.
- (b) Write $\langle \Psi_0 |$ and $\langle \Psi_1 |$ in terms of the dual basis $\langle 1 |$, $\langle 2 |$, $\langle 3 |$.
- (c) Find $\langle \Psi_0 | \Psi_1 \rangle$ and $\langle \Psi_1 | \Psi_0 \rangle$, and confirm that $\langle \Psi_1 | \Psi_0 \rangle = \langle \Psi_0 | \Psi_1 \rangle^*$.
- (d) Find all the matrix elements of the operators $\hat{M}_{01} = |\Psi_0\rangle \langle \Psi_1|$, $\hat{M}_{00} = |\Psi_0\rangle \langle \Psi_0|$, and $\hat{M}_{11} = |\Psi_1\rangle \langle \Psi_1|$ in this basis, and construct their respective matrices, are they hermitian?

3. (3 points) Wave function formalism

Consider a quantum particle in the ground state of the harmonic oscillator.

- (a) Compute its momentum-space wave function, $\Phi(p,t)$.
- (b) Calculate the probability that a measurement of momentum, p, returns a value outside the classical range for the same energy, E.

4. (4 points) Spherical harmonics

- (a) A quantum system is known to be in the (unnormalised) state described by the wave function $\psi(\theta, \phi) = 5Y_4^3 + Y_6^3 2Y_6^0$, where the $Y_\ell^m(\theta, \phi)$ are the spherical harmonics. What is the probability of finding the system in a state with quantum number m = 3?
- (b) Construct all the possible spherical harmonics, $Y_{\ell}^{m}(\theta, \phi)$, for $\ell = 2$.
- (c) Using your favourite programming language, make 3D plots of all of them.
- (d) Choose two of the spherical harmonics constructed in part (b), and prove that they are normalised and orthogonal.

5. (5 points) Hydrogen atom

- (a) Construct all the possible spatial wave functions, $\psi_{nlm}(r,\theta,\phi) = R_{n\ell}(r)Y_{\ell}^{m}(\theta,\phi)$, of the hydrogen atom for $(n,\ell,m) = (3,2,m)$.
- (b) Using your favourite programming language, make density plots of all of these states.
- (c) Calculate the energy level of these states in units of eV.
- (d) In terms of the Bohr radius, find $\langle r \rangle$, $\langle x \rangle$, $\langle r^2 \rangle$ and $\langle x^2 \rangle$ for an electron in the ground state of hydrogen.
- (e) Find $\langle x^2 \rangle$ in the state $(n, \ell, m) = (3, 2, m)$ with the lowest possible value of m that is allowed. How different is the result with respect to that calculated in part (d) for the ground state of hydrogen?