

Работа на биполярен транзистор като усилвател

Какво е усилвател?

Усилвател е електронна схема, която увеличава амплитудата на сигнала.

Транзисторът работи като усилвател, ако при осигурен подходящ постоянно токов режим, към входа му е свързан източник на променлив сигнал, а в изхода — товар, върху който се получава усиленият променлив сигнал.

Пример за усилвател с биполярен транзистор

Графичен анализ

Променливото входно напрежение предизвиква появата на променлив ток в базата, което довежда до промяна в колекторния ток и съответно до промяна в изходното напрежение.

Принцип на работа на усилвател с биполярен транзистор

Предавателна характериситка

 g_m — стръмност на предавателната х-ка (transconductance)

$$g_m = \frac{\partial i_c}{\partial u_{be}} \bigg|_{i_c = I_c}$$

Как се избира работната точка Q?

Режими на работа на биполярен транзистор

Изходна характеристика

Режими на работа на БТ

Активен режим: $Ic = h_{FE}$. Ib

Режим на насищане: $Ic < h_{FE}$. Ib

Товарна права

Пресечната точка на товарната права с характеристика на транзистора определя постояннотоковата работна точка със стойности I_{BQ} , I_{CQ} , U_{CEQ} . При промяна на потояннотоковия режим (нови стойности на I_B , I_C , U_{CE}) работната точка се движи само по товарната права.

Влияние на работната точка

Основно изискване на усилвателите е да осигуряват линейност на усилването, т.е. да не променят формата на сигнала, а само амплитудата му.

Изкривявания се получават, когато работната точка се избере в близост до областта на насищане или на отсечка. За максимално неизкривена амплитуда на сигнала работната точка се избира в средата на товарната права.

Установяване на работна точка – фиксиран базов ток

$$I_{B} = \frac{U_{BB} - U_{BE}}{R_{B}} = \frac{5 - 0.7}{20.10^{3}} = 215 \text{ uA}$$
 $I_{C} = \beta. I_{B}$

hFE values are calssified as follows:

rank	Q	R	S
h _{FE}	120-270	180-390	270-560

$$I_{Cmin} = 180 . 215.10^{-6} = 38,7 \text{ mA}$$

$$I_{Cmax} = 390 . 215.10^{-6} = 70,2 \text{ mA}$$

Недостатък на схемата – силна зависимост на $I_{\mathcal{C}}$ от параметъра β , който има големи производствени толеранси и също така зависи от температурата и режима на транзистора.

В зависимост от конкретната стойност на β, транзисторът може да е както в активен режим, така и в режим на насищане.

Установяване на работна точка – фиксиран емитерен ток

$$U_{BB} = U_{BE} + U_E = U_{BE} + I_E R_E$$

$$I_E = \frac{U_{BB} - U_{BE}}{R_E}$$

$$I_C \approx I_E$$

$$U_{CE} = U_{CC} - I_C (R_C + R_E)$$

Стойността на $I_{\mathcal{C}}$ в работната точка не зависи от β , което гарантира стабилност на работната точка.

Пример - фиксиран емитерен ток

$$U_{BB} = U_{BE} + U_E = U_{BE} + I_E R_E$$

$$I_E = \frac{U_{BB} - U_{BE}}{R_E} = \frac{5 - 0.7}{2.2.10^3} = 1,95 mA$$

$$I_C \approx I_E = 1.95 mA$$

$$U_{CE} = U_{CC} - I_C R_C - U_E = 15 V - 1,95 mA. 1 k\Omega - 4.3 V = 8,8 V$$

Делител на напрежение

$$I = \frac{U_{CC}}{R_1 + R_2}$$

$$U_{mid} = I \cdot R_2$$
$$= \frac{U_{CC} \cdot R_2}{R_1 + R_2}$$

Установяване на работна точка с делител на напрежение

Когато
$$I_2 \gg I_B$$
:.
$$I_1 \approx I_2 = \frac{U_{CC}}{R_1 + R_2}$$

$$U_{BB} = I_2 \cdot R_2$$

$$= \frac{U_{CC} \cdot R_2}{R_1 + R_2}$$

$$I_C \approx I_E = \frac{U_{BB} - U_{BE}}{R_E}$$

$$U_{CE} = U_{CC} - I_C(R_C + R_E)$$

Предимство на схемата – не е необходим отделен източник за Ubb

Пример – Определяне на постоянно-токов режим на усилвател

$$U_{CC} = 9V, R_C = 10k\Omega, R_E = 1k\Omega$$
$$R_1 = 195k\Omega, R_2 = 30k\Omega$$

$$I_C = ?, U_{CE} = ?$$

$$U_{BB} = U_{CC} \frac{R_2}{R_1 + R_2}$$
$$= 9V \cdot \frac{30k\Omega}{195k\Omega + 30k\Omega}$$
$$= 9 \cdot \frac{30}{225} = 1, 2V$$

$$I_C \approx I_E = \frac{U_{BB} - U_{BE}}{R_E}$$
$$= \frac{1,2V - 0,7V}{1k\Omega}$$
$$= 0,5mA$$

$$U_{CE} = U_{CC} - I_C(R_C + R_E)$$
= $9V - 0, 5mA(10k\Omega + 1k\Omega)$
= $9V - 0, 5mA \cdot 11k\Omega$
= $9V - 5, 5V = 3, 5V$

Проверка с LTSpice

Резултати от приблизителните изчисления

Ubb = 1,2V lc = 0,5mA Uce = 3,5V

--- Operating Point ---

V(c): 3.69657 voltage V(b): 1.15318 voltage V(e): voltage 0.532144 V(n001): voltage device_current Ic(Q1): 0.000530343 Ib(Q1): 1.80065e-006 device_current Ie(Q1): device_current -0.000532144 I(R2): 3.84394e-005 device current I(Re): device_current 0.000532144 device_current I(Rc): 0.000530343 I(R1): 4.02401e-005 device_current I(Vcc): -0.000570584 device_current

Пример – Усилвател общ колектор

$$U_{CC} = 10V, R_E = 1k\Omega$$
$$R_1 = 100k\Omega, R_2 = 150k\Omega$$

$$I_C = ?, U_{CE} = ?$$

$$U_{BB} = U_{CC} \frac{R_2}{R_1 + R_2}$$

$$= 10V \cdot \frac{150k\Omega}{100k\Omega + 150k\Omega}$$

$$= 10 \cdot \frac{150}{250} = 6V$$

$$I_C \approx I_E = \frac{U_{BB} - U_{BE}}{R_E}$$
$$= \frac{6V - 0.7V}{1k\Omega}$$
$$= 6.3mA$$

$$U_{CE} = U_{CC} - I_C \cdot R_E$$
$$= 10V - 6, 3mA \cdot 1k\Omega$$
$$= 10V - 6, 3V = 3, 7V$$

Динамични параметри

Динамичните параметри характеризират поведението на транзисторните усилватели по променлив ток.

$$A_{U} = \frac{u_{out}}{u_{in}} \qquad A_{I} = \frac{i_{out}}{i_{in}} \qquad A_{P} = A_{U}A_{I} \qquad r_{in} = \frac{u_{in}}{i_{in}} \qquad r_{out} = \frac{u_{out}}{i_{out}}$$

За изчислението им се използват еквивалентни схеми на транзисторите по променлив ток.

Схеми на усилватели

Усилвател ОЕ

 A_I — висок

 A_U - висок

Усилвател ОБ

 $A_I < 1$

 A_U - висок

Усилвател ОК

 A_I - висок

 $A_U < 1$

Пример – Коефициент Аи и входно съпротивление на усилвател

SPICE Error Log: C:\usr\github\ppe\Circuits\BJT\experiments\AMP-CE-TRAN.log

Circuit: * C:\usr\github\ppe\Circuits\BJT\experiments\AMP-CE-TRAN.asc

Direct Newton iteration for .op point succeeded.

uin: PP(v(in))=0.059999 FROM 0 TO 0.01 uout: PP(v(out))=0.51442 FROM 0 TO 0.01

au: uout/uin=8.57381

Date: Wed Nov 09 23:03:45 2022 Total elapsed time: 0.072 seconds.

tnom = 27temp = 27

Пример – Коефициент Аи и входно съпротивление на усилвател

SPICE Error Log: C:\usr\github\ppe\Circuits\BJT\experiments\AMP-CE-TRAN.log

Circuit: * C:\usr\github\ppe\Circuits\BJT\experiments\AMP-CE-TRAN.asc

Direct Newton iteration for .op point succeeded.

uin: PP(v(in))=0.0599976 FROM 0 TO 0.01 uout: PP(v(out))=3.05542 FROM 0 TO 0.01

au: uout/uin=50.9257

Date: Wed Nov 09 23:08:56 2022 Total elapsed time: 0.038 seconds.

tnom = 27temp = 27

Работа при високи честоти

При високи честоти върху поведението на транзистора започват да оказват влияние:

- инерционността на процесите на пренасяне на токоносителите от емитерния до колекторния преход
- капацитетите на преходите
- паразитните капацитети на корпуса и индуктивности на изводите

В резултат се наблюдава намаляване на амплитудата на изходния сигнал и изоставането му по фаза (закъсняване) спрямо входния.

За оценка на усилвателните свойства на транзистора при високи честоти се използват граничните честоти.

Транзитна честота

Произведението на модула на диференциалния коефициент на усилване β и текущата честота се нарича транзитна честота f_{T} .

$$\beta . f = f_T$$

Ако
$$f = f_T$$
, $\beta \approx 1$

Транзитната честота $f_{\mathcal{T}}$ може да се дефинира и като честотата, при която модулът на коефициента β става приблизително единица.

Транзитна честота (gain bandwidth product) и Noise Figure

Current - Gain - Bandwidth Product		f _T	.=-			MHz
$(I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 100 \text{ MHz})$	BC546 BC547		150 150	300 300	_	
	BC548		150	300	-	
Output Capacitance ($V_{CB} = 10 \text{ V}, I_{C} = 0, f = 1.0 \text{ MHz}$)		C _{obo}	-	1.7	4.5	pF
Input Capacitance ($V_{EB} = 0.5 \text{ V}, I_{C} = 0, f = 1.0 \text{ MHz}$)		C _{ibo}	-	10	-	pF
Small – Signal Current Gain (I _C = 2.0 mA, V _{CF} = 5.0 V, f = 1.0 kHz)	BC546	h _{fe}	125	_	500	-
(IC = 2.0 III I, VGE = 0.0 V, I = 1.0 KI 12)	BC547/548		125	_	900	
	BC547A		125	220	260	
	BC546B/547B/548B BC547C/548C		240 450	330 600	500 900	
Noise Figure (I _C = 0.2 mA, V_{CE} = 5.0 V, R_{S} = 2 k Ω , f = 1.0 kHz, Δ f = 200 Hz)		NF				dB
	BC546 BC547		-	2.0 2.0	10 10	
	BC548		_	2.0	10	

$$NF = SNR_{in,dB} - SNR_{out,dB}$$

Figure 12. Current-Gain - Bandwidth Product

Пример – променливо-токов анализ на усилвател

