

Jagadesh T

Department of Production Engineering, NIT Trichy

Laser material processing micro manufacturing Modelling of manufacturing process FEM composites

GET MY OWN PROFILE			
	All	Since 2015	
Citations	53	53	
h-index	4	4	
i10-index	2	2	

TITLE	CITED BY	YEAR
Development of a 4-speed automated manual transmission for automobile applications MP Ram, SV Narasimhan, RV Vikraman, T Jagadesh Materials Today: Proceedings		2020
Experimental investigation on emissivity of 75Ni-25Cr alloy coated Aluminium surface for the purpose of solar applications K Sivakumar, AR Prasad, T Jagadesh, SD Kumar, A Ponshanmugakumar, Materials Today: Proceedings		2020
Investigations into solid lubricant filled textured tools on hole geometry and surface integrity during drilling of aluminium alloy N Dheeraj, S Sanjay, KK Bhargav, T Jagadesh Materials Today: Proceedings	1	2020
Investigations into edge radius and point angle on energy consumption during micro drilling of titanium alloy N Suresh, S Ganesh, T Jagadesh Materials Today: Proceedings		2020
The Influence of graphite, MOS2 and Blasocut lubricant on hole and chip geometry during peck drilling of aerospace alloy T Jagadesh Materials Today: Proceedings 24, 690-697		2020
Prediction of micro abrasive intermittent jet machining process using adaptive neuro-fuzzy inference system V Shashank, CVM Varma, D Chaudhari, VS Sasank, T Jagadesh AIP Conference Proceedings 2134 (1), 060009		2019
Modeling of laser assisted machining process using Artificial Neural Network V Shashank, T Jagadesh Journal of Physics: Conference Series 1172 (1), 012040	1	2019
Investigations into surface integrity and cylindricity error during peck drilling of aerospace alloy using graphite, MOS2 and blasocut lubricant N Harshith, Y Devendra, T Jagadesh Materials Today: Proceedings 18, 3091-3098	9	2019
The influence of deep cryogenic treatment and in-situ cryogenic micro turning of Ti-6Al-4V on cutting forces, surface integrity and chip morphology T Jagadesh, GL Samuel	1	2019

International Journal of Precision Technology 8 (2-4), 312-334

TITLE	CITED BY	YEAR
Experimental Investigations into Performance Evaluation of Thermosypho Solar Heating System Using Modified PCM Modules TK Naveen, T Jagadesh Advances in Fluid and Thermal Engineering, 211-221	n 1	2019
Recent Trends in Finite Element Modeling of Micro Manufacturing Processes for Industrial Applications N Suresh, S Ganesh, S Gopinathan, T Jagadesh ICRTEMMS Conference Proceedings 254 (258), 254-258		2018
Prediction of surface roughness and material removal rate in laser assiste turning of aluminium oxide using fuzzy logic TJ V Pardha Saradhi, V Shashank, P Sai teja, G Anbarasu, A Bharat Materials today proceedings 5 (9), 20343-20350	d 6	2018
Finite Element Simulations of Micro Turning of Ti-6Al-4V using PCD and Coated Carbide tools T Jagadesh, GL Samuel Journal of The Institution of Engineers (India): Series C 98 (1), 5-15	4	2017
Finite element simulation for prediction of cutting forces and chip morphology during in-situ cryogenic micro turning of titanium alloy T Jagadesh, GL Samuel COPEN	1	2017
Mechanistic and finite element model for prediction of cutting forces during micro-turning of titanium alloy T Jagadesh, GL Samuel Machining Science and Technology 19 (4), 593-629	g 16	2015
Investigations into cutting forces, surface roughness, and chip morphology during micro turning of cryogenically treated titanium alloy T Jagadesh, GL Samuel AMPT 2015, SPAIN, PP – 131	y	2015
Finite Element Modeling for Prediction of Cutting Forces during Micro Turning of Titanium Alloy T Jagadesh, GL Samuel All India Manufacturing Technology, Design and Research Conference, AIMTDR	7	2014
Investigations into cutting forces and surface roughness in micro turning of titanium alloy using coated carbide tool T Jagadesh, GL Samuel Procedia Materials Science 5, 2450-2457	of 15	2014
Study on microwave sintered Aluminium based metal matrix composites T Jagadesh, A Rajadurai National conference on recent trends in Mechanical Engineering		2011