1

Assignment 13

AVVARU BHARAT - EE20MTECH11008

Download the latex-tikz codes from

https://github.com/Bharat437/Matrix_Theory/tree/master/Assignment13

1 Problem

(UGC,Dec 2018,77):

Define a real values function \mathbf{B} on $\mathbb{R}^2 \times \mathbb{R}^2$ as follows. If $v = (x_1, x_2)$, $w = (y_1, y_2)$ belong to \mathbb{R}^2 define $\mathbf{B}(v, w) = x_1y_1 - x_1y_2 - x_2y_1 + 4x_2y_2$. Let $v_0 = (1, 0)$ and let $\mathbf{W} = \{v \in \mathbb{R}^2 : \mathbf{B}(v_0, v) = 0\}$. Then \mathbf{W}

- 1) is not a subspace of \mathbb{R}^2
- 2) equals $\{(0,0)\}$
- 3) is the y axis
- 4) is the line passing through (0,0) and (1,1)

2 EXPLANATION

Subspace	A non-empty subset W of V is a subspace of V if and only if for each pair of vectors α ,
	β in W and each scalar c in F the vector $c\alpha + \beta$ is again in W.

TABLE 1: Definitions and theorem used

3 Solution

Statement	Observations	
	$\mathbf{W} = \left\{ \mathbf{v} \in \mathbb{R}^2 : \mathbf{B}(\mathbf{v_0}, \mathbf{v}) = 0 \right\}$	(3.0.1)
	$\mathbf{v} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$	(3.0.2)
Given	$\mathbf{w} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$	(3.0.3)
	$\mathbf{v_0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	(3.0.4)
	$\mathbf{B}(\mathbf{v}, \mathbf{w}) = x_1 y_1 - x_1 y_2 - x_2 y_1 + 4x_2 y_2$	(3.0.5)
	we will express (3.0.5) in quadratic form.	
	$\mathbf{B}(\mathbf{v}, \mathbf{w}) = \mathbf{v}^T \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \mathbf{w}$	(3.0.6)
	From (3.0.2), (3.0.4), (3.0.6) we will calculate $\mathbf{B}(\mathbf{v_0}, \mathbf{v})$	

$$\implies \mathbf{B}(\mathbf{v_0}, \mathbf{v}) = \mathbf{v_0}^T \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \mathbf{v}$$
 (3.0.7)

$$\Longrightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{v}) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 (3.0.8)

$$\implies \mathbf{B}(\mathbf{v_0}, \mathbf{v}) = \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \tag{3.0.9}$$

Now we find the basis vector for W, which is the basis vector of null space of $B(v_0, v)$.

$$\Longrightarrow \mathbf{B}(\mathbf{v_0}, \mathbf{v}) = 0 \tag{3.0.10}$$

$$\Longrightarrow \left(1 \quad -1\right) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \tag{3.0.11}$$

$$\Longrightarrow \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \tag{3.0.12}$$

$$\implies x_1 = x_2 \tag{3.0.13}$$

Therefore, the basis vector for W is

$$\mathbf{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{3.0.14}$$

TABLE 2: Observations

Option	Solution		True/False
1.	Now we will see whether W is a subspace or not.		
	Let $\alpha = \binom{m}{m}$ and $\beta = \binom{n}{n}$ be two pair of vectors in W where $\alpha, \beta \in$	\mathbb{R}^2	
	and c be a scalar value in \mathbb{R} .		
	Now we will see whether the vector $c\alpha + \beta$ is in W or not.		
	Here		
	$c\alpha + \beta = \begin{pmatrix} cm + n \\ cm + n \end{pmatrix}$	(3.0.15)	
	Now we will calculate $\mathbf{B}(\mathbf{v_0}, c\alpha + \beta)$ using (3.0.6)		False
	$\implies \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} cm + n \\ cm + n \end{pmatrix}$	(3.0.16)	
	= (cm+n) - (cm+n)	(3.0.17)	
	$\implies \mathbf{B}(\mathbf{v_0}, c\alpha + \beta) = 0$	(3.0.18)	
	From (3.0.18), we can say that vector $c\alpha + \beta \in \mathbf{W}$. Therefore, W is a subspace of \mathbb{R}^2		
2.	From Table 2, we got W contains the vectors which are all linear		
	combination of basis vector b in (3.0.14).		
	Therefore,		False
	$\mathbf{W} \neq \{(0,0)\}$	(3.0.19)	

3.	Let us consider a vector on y-axis	
	$\mathbf{p} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \tag{3.0.20}$	
	Here	
	$\mathbf{p} \neq k\mathbf{b} \tag{3.0.21}$	False
	for any $k \in \mathbb{R}$	
	The vector \mathbf{p} can not be written in terms of the basis vector \mathbf{b} . Then $\mathbf{p} \notin \mathbf{W}$.	
4.	Therefore, the vectors in \mathbf{W} is not y-axis. There is only one basis vector \mathbf{b} for \mathbf{W} . Therefore the vectors in \mathbf{W} forms a straight line in vector space \mathbb{R}^2 . Since,	
	$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0\mathbf{b} \tag{3.0.22}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1\mathbf{b} \tag{3.0.23}$	Тти
	$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1\mathbf{b} \tag{3.0.23}$	True
	Therefore, the line passes through $(0,0)$ and $(1,1)$.	

TABLE 3: Solution