

# School of Computer Engineering and Technology

**Big Data Analytics Laboratory** 

# Lab Assignment-07

Write a python program to perform preprocessing on suitable dataset and illustrate various visualization techniques on suitable sample data. Analyze the same.

#### Index

- Data Preprocessing steps in Python
  - Importing the libraries.
  - Importing the Dataset.
  - Handling of Missing Data.
  - Handling of Categorical Data.
  - Splitting the dataset into training and testing datasets.
  - Feature Scaling.



## **Step 1: Import Libraries**

- Following are the key libraries that we will need to perform Assignment.
  - NumPy
  - SciPy
  - Pandas
  - SciKit-Learn
  - matplotlib
  - Seaborn
  - Bokeh
  - Altair
  - Plotly
  - ggplot
  - Eg: import pandas as pd

### **Step 2: Import the Dataset**

- There are different file format commonly used to read data from
- .CSV
- .xls
- .txt

```
data_csv=pd.read_csv('Iris_data_sample.csv')

dataset =
pd.read_excel('age_salary.xls')
dataset =
pd.read_table('age_salary.txt')
```

#### Methods for preprocessing data

- .head()
- .tail()
- .columns()
- .info()
- .describe()
- .dtypes()
- .index()
- fillna()
- dropna()
- isnull()
- isna()

## Methods description

A DataFrame is a 2-dimensional data structure that can store data of different types (including characters, integers, floating point values, factors and more) in columns.

| df.attribute | description                                    |
|--------------|------------------------------------------------|
|              |                                                |
| dtypes       | list the types of the columns                  |
| columns      | list the column names                          |
| axes         | list the row labels and column names           |
| ndim         | number of dimensions                           |
| size         | number of elements                             |
| shape        | return a tuple representing the dimensionality |
| values       | numpy representation of the data               |

| df.method()          | description                                                |
|----------------------|------------------------------------------------------------|
| head([n]), tail([n]) | first/last n rows                                          |
| describe()           | generate descriptive statistics (for numeric columns only) |
| max(), min()         | return max/min values for all numeric columns              |
| mean(), median()     | return mean/median values for all numeric columns          |
| std()                | standard deviation                                         |
| dropna()             | drop all the records with missing values                   |

#### Introduction to Visualization

|           | description                                         |
|-----------|-----------------------------------------------------|
| distplot  | histogram                                           |
| barplot   | estimate of central tendency for a numeric variable |
| jointplot | Scatterplot                                         |
| regplot   | Regression plot                                     |
| pairplot  | Pairplot                                            |

#### References

- https://data-flair.training/blogs/pythonml-data-preprocessing/
- Python for Data Analysis, Research Computing Services, Katia Oleinik (koleinik@bu.edu)
- https://blog.insightdatascience.com/datavisualization-in-python-advancedfunctionality-in-seaborn-20d217f1a9a6