

December 8-10 | Virtual Event

CONTRIBUTE. COLLABORATE. COMMERCIALIZE.

December 8-10 | Virtual Event

kexec based bootloaders on RISC-V: Use-cases & Advantages
Bhupesh Sharma
Senior Software Engg
Red Hat

Reu nat

#RISCVSUMMIT

bhsharma@redhat.com

\$ whoami

RISC-V® Summit

- Part of Red Hat kernel team.
- Been hacking on bootloaders and kernel since past 14 years.
- Contribute to:
 - · Linux,
 - · EFI/u-boot bootloader, and
 - · User-space utilities like:
 - · kexec-tools, and
 - · makedumpfile.
- Co-maintain crash-utility tool

- About kexec What?
- About kexec How?
- Linux booting Linux kexec based bootloaders
- Case for kexec based bootloaders on RISC-V
- So everything works fine, or does it ...
- Pain Points
- Suggestions

About kexec - What?

- <u>kexec</u> enables you to load and boot into **another kernel** from the currently running kernel.
- Standard system boot v/s kexec boot:
 - kexec boot skips hardware initialization performed by BIOS / firmware.
- So, overall **kexec** reboot time reduces

- Related <u>syscalls</u>
 - kexec_load()
 - kexec_file_load()

About kexec - What?

- Related kernel CONFIG options
 - CONFIG_KEXEC
 - CONFIG_KEXEC_FILE
- Supported architectures
 - x86_64,ppc64/ppc64le,s390/s390x,arm,arm64

About kexec - How?

- 2-Step process
 - Kernel space support
 - kexec_load() and kexec_file_load() syscall(s) loads a new kernel into memory.
 - reboot(LINUX_REBOOT_CMD_KEXEC) syscall reboots into the new kernel.
 - **User** space support
 - /usr/bin/kexec provided by kexec-tools package

Kexec design

About kexec - How?

- 2-Step process
 - Load a new kernel into the physical memory:

```
# kexec -l <kernel-image> --initrd=<initramfs-image> --reuse-cmdline
```

- Boot into the new kernel:

```
# kexec -e
```

- Unload the loaded kernel (if need be):

```
# kexec -u
```


Linux booting Linux - kexec based bootloaders

- Several kexec based open-source bootloaders are available:
- LinuxBoot
- Petitboot
- kexecboot
- kboot, several more ...

Case for kexec based bootloader on RISC-V

- Fast reboot / Warm booting remains an important feature for RISC-V platforms as well.
- Kernel kexec patches were proposed for RISC-V
 - But seems <u>further work</u> still needed to upstream them.
- User-space kexec-tools patches were proposed for RISC-V
 - But seems <u>further work</u> still needed to upstream them.
- Requests have also come up for crash-utility support for RISC-V
- Look here (<u>riscv-for-next</u>) for more developmental features.

On Amazon EC2 Nitro platform running RHEL 8, the Fast boot using "kexec -e" and "systemctl kexec" causes the kernel to crash.

SOLUTION IN PROGRESS - Updated June 22 2020 at 8:29 AM - English -

- On Amazon EC2 Nitro platform running RHEL 8, the Fast boot using kexec -e and systemctl kexec causes the kernel to crash.
- The same kernel panic is appearing with kexec -p and echo c > /proc/sysrq-trigger as well

[3.327901] sched: Unexpected reschedule of offline	CPU#1!	
[3.334363] WARNING: CPU: 0 PID: 1 at arch/x86/kerne	l/smp.c:128 native_smp_send_reschedule+0x34/0x40	
[3.346699] Modules linked in:		
[3.352238] CPU: 0 PID: 1 Comm: init Not tainted 4.1	352238] CPU: 0 PID: 1 Comm: init Not tainted 4.18.0-80.1.2.el8_0.x86_64 #1	
[3.363631] Hardware name: Amazon EC2 t3.large/, BIO	1] Hardware name: Amazon EC2 t3.large/, BIOS 1.0 10/16/2017	
]	3.370639] RIP: 0010:native_smp_send_reschedule+0x3] RIP: 0010:native_smp_send_reschedule+0x34/0x40	
[3.377330] Code: 05 21 90 3b 01 73 15 48 8b 05 78 a	f 10 01 be fd 00 00 00 48 8b 40 30 e9 9a 94 bb 00 89 fe 48 c7 c7 a8 68 e	
9e	e e8 b6 28 06 00 <0f> 0b c3 66 0f 1f 84 00 00 00	00 00 0f 1f 44 00 00 53 48 83 ec 20	
]	3.398020] RSP: 0018:ffff98e9f9403e48 EFLAGS: 00010	086	
]	3.404505] RAX: 000000000000000 RBX: ffff98e9f9523	080 RCX: ffffffff9f059d28	
Г	3 4118911 RDY: 00000000000001 RST: 000000000000	996 RDT: 0000000000000046	

High

High

Bug Description

Xenial

Bionic

Eoan

Focal

* Currently, users cannot perform multiple kernel kexec loads on AWS Nitro instances (KVM-based); after the 2nd or 3rd kexec, an initrd corruption is observed, with the following signature:

Fix Released 🕖

Fix Released 📝

Fix Released 🕐

Fix Released 📝

Initramfs unpacking failed: junk within compressed archive

Also affects project

Also affects distribution/package

Nominate for series

Kernel panic - not syncing: No working init found

Try passing init= option to kernel. See Linux Documentation/admin-guide/ init.rst for guidance.

CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.5.0-rc7-gpiccoli+ #26 Hardware name: Amazon EC2 t3.large/, BIOS 1.0 10/16/2017 Call Trace:

dump stack+0x6d/0x9a

https://launchpad.net/ubuntu =neric+0x150/0x170

🚨 Guilherme G. Piccoli

🚨 Guilherme G. Piccoli

Guilherme G. Piccoli

🚨 Guilherme G. Piccoli

So everything works fine, or does it ...

So everything works fine, or does it

RISC-V® Summit

So everything works fine, or does it ...

So sometimes kexec *does not work* RISC-V as intended

kexec'ed

kernel fails to

boot

riscvsummit.com

Suggestions

[PATCH] ata: ahci: Add shutdown to freeze hardware resources of ahci

[PATCH] scsi: lpfc: Add shutdown method for kexec

From: Anton Blanchard <anton@xxxxxxxxxx

We see lpfc devices regularly fail during kexec. Fix this by adding a shutdown method which mirrors the remove method.

Next Steps

- There is still work to be done for enabling kexec fully on RISC-V in upstream communities.
- Report kexec reboot failures @ kexec@lists.infradead.org
- kexec failures can be related to missing shutdown() callbacks in DMA capable drivers, e.g.
 - SATA, USB, NIC, PCIe driver
- Add more debugging capabilities to your kexec based bootloader.
 - console logs pretty useful.

December 8-10 | Virtual Event

Thank you for joining us.

Contribute to the RISC-V conversation on social!

#RISCVSUMMIT @risc_v

