Clôture par congruence et procédures de décision

Damien Rouhling

ENS de Lyon

03 Septembre 2013

• Preuve automatique de formules

- Preuve automatique de formules
- PSYCHE

- Preuve automatique de formules
- PSYCHE
- Raisonnement modulo théories

- Preuve automatique de formules
- PSYCHE
- Raisonnement modulo théories
- Théorie de l'égalité

- Preuve automatique de formules
- PSYCHE
- Raisonnement modulo théories
- Théorie de l'égalité Exemple :

$$f(b) = d \wedge b = d \wedge f(d) = a \Rightarrow a = b$$

Plan

- Clôture par congruence
 - La question
 - Extensions

- Analyse de conflit
 - Recherche d'explications
 - Premier ancêtre commun

Plan

- Clôture par congruence
 - La question
 - Extensions

- Analyse de conflit
 - Recherche d'explications
 - Premier ancêtre communi

Le problème

Axiomes:

- Pour chaque symbole de fonction f d'arité n :

$$\forall x_1, \dots, x_n, y_1, \dots, y_n, \ (x_1 = y_1 \wedge \dots \wedge x_n = y_n)$$
$$\Rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$

$$f(b) = d \wedge b = d \wedge f(d) = a \Rightarrow a = b$$

$$f(b) = d \wedge b = d \wedge f(d) = a \Rightarrow a = b$$

 $b = d$

$$f(b) = d \wedge b = d \wedge f(d) = a \Rightarrow a = b$$

$$f(b) = f(d)$$

$$f(b) = d \wedge b = d \wedge f(d) = a \Rightarrow a = b$$

$$f(b) = f(d)$$

f(b) = a

$$f(b) = d \wedge b = d \wedge f(d) = a \Rightarrow a = b$$

$$f(b) = f(d)$$

$$f(b) = a$$

d = a

$$f(b) = d \wedge b = d \wedge f(d) = a \Rightarrow a = b$$

$$f(b) = f(d)$$

$$f(b) = a$$

$$d = a$$

$$b = a$$

Plan

- Clôture par congruence
 - La question
 - Extensions

- - Recherche d'explications
 - Premier ancêtre commun

$${a = f(f(f(a))), a = f(f(f(f(a)))), a \neq f(a)}$$

$$\{a = f(f(f(a))), a = f(f(f(f(a))))), a \neq f(a)\}$$
$$a = f(f(f(a)))$$

$$\{a = f(f(f(a))), a = f(f(f(f(a))))), a \neq f(a)\}$$

$$f(a) = f(f(f(f(a))))$$

$$\{a = f(f(f(a))), a = f(f(f(f(a))))), a \neq f(a)\}$$

$$f(f(a)) = f(f(f(f(f(a)))))$$

$$\{a = f(f(f(a))), a = f(f(f(f(f(a))))), a \neq f(a)\}$$

$$f(f(a)) = f(f(f(f(f(a)))))$$

$$f(f(a)) = a$$

$$\{a = f(f(f(a))), a = f(f(f(f(f(a))))), a \neq f(a)\}$$

$$f(f(a)) = f(f(f(f(f(a)))))$$

$$f(f(a)) = a$$

$$a = f(a)$$

Classes d'équivalence

Classes d'équivalence

Union-Find

Problème initial : $0 + x = 1, y = 0, f(x + y) \neq f(1)$

Problème initial : $0 + x = 1, y = 0, f(x + y) \neq f(1)$

Termes connus : $\{0, 1, x, y, 0 + x, x + y, y + 1, f(x + y), f(1)\}$

Problème initial : $0 + x = 1, y = 0, f(x + y) \neq f(1)$

Termes connus : $\{0, 1, x, y, 0 + x, x + y, y + 1, f(x + y), f(1)\}$

Valeurs	0				
Termes associés	0				

Problème initial : $0 + x = 1, y = 0, f(x + y) \neq f(1)$

Termes connus : $\{0, 1, x, y, 0 + x, x + y, y + 1, f(x + y), f(1)\}$

Valeurs	0	1			
Termes associés	0	1			

Problème initial : $0 + x = 1, y = 0, f(x + y) \neq f(1)$

Termes connus : $\{0, 1, x, y, 0 + x, x + y, y + 1, f(x + y), f(1)\}$

Valeurs	0	1	X			
Termes associés	0	1	Х			

Problème initial : $0 + x = 1, y = 0, f(x + y) \neq f(1)$

Termes connus : $\{0, 1, x, y, 0 + x, x + y, y + 1, f(x + y), f(1)\}$

Valeurs	0	1	X	Y		
Termes associés	0	1	Х	У		

Problème initial : $0 + x = 1, y = 0, f(x + y) \neq f(1)$

Termes connus : $\{0, 1, x, y, 0 + x, x + y, y + 1, f(x + y), f(1)\}$

Valeurs	0	1	X	Y		ĺ
Termes associés	0	1	Х	У		
			0 + x			

Problème initial : $0 + x = 1, y = 0, f(x + y) \neq f(1)$

Termes connus : $\{0, 1, x, y, 0 + x, x + y, y + 1, f(x + y), f(1)\}$

Valeurs	0	1	X	Y	X + Y		
Termes associés	0	1	X	У	x + y		
			0+x				

Problème initial : $0 + x = 1, y = 0, f(x + y) \neq f(1)$

Termes connus : $\{0, 1, x, y, 0 + x, x + y, y + 1, f(x + y), f(1)\}$

Valeurs	0	1	X	Y	X + Y	1+Y	
Termes associés	0	1	Х	У	x + y	y + 1	
			0+x				

Problème initial : $0 + x = 1, y = 0, f(x + y) \neq f(1)$

Termes connus : $\{0, 1, x, y, 0 + x, x + y, y + 1, f(x + y), f(1)\}$

Valeurs	0	1	X	Y	X + Y	1+Y	F	
Termes associés	0	1	Х	У	x + y	y + 1	f(x+y)	
			0+x					

Problème initial : $0 + x = 1, y = 0, f(x + y) \neq f(1)$

Termes connus : $\{0, 1, x, y, 0 + x, x + y, y + 1, f(x + y), f(1)\}$

Valeurs	0	1	X	Y	X + Y	1+Y	F	G
Termes associés	0	1	Х	У	x + y	y + 1	f(x+y)	f (1)
			0+x					

Plan

- Clôture par congruence
 - La question
 - Extensions

- Analyse de conflit
 - Recherche d'explications
 - Premier ancêtre commun

Exemple:

$$1 + 1 = 2$$
?

Exemple:

$$1+1=2$$
?

$$E = \{a_1 = b_1, a_1 = c_1, f(a_1, a_1) = a, f(b_1, b_1) = b, f(c_1, c_1) = c, a \neq c\}$$

Exemple:

$$1+1=2$$
?

$$E = \{a_1 = b_1, a_1 = c_1, f(a_1, a_1) = a, f(b_1, b_1) = b, f(c_1, c_1) = c, a \neq c\}$$

Ε

Exemple:

$$1+1=2$$
?

$$E = \{a_1 = b_1, a_1 = c_1, f(a_1, a_1) = a, f(b_1, b_1) = b, f(c_1, c_1) = c, a \neq c\}$$

E ou
$$\{a_1 = c_1, f(a_1, a_1) = a, f(c_1, c_1) = c, a \neq c\}$$
?

 $r_4 \equiv s_2 \text{ via } e_9$:

 $r_4 \equiv s_2$ via e_9 :

 $r_4 \equiv s_2$ via e_9 :

 $r_4 \equiv s_2$ via e_9 :

Exemple

Problème initial :
$$0 + x = 1, y = 0, f(x + y) \neq f(1)$$

Termes connus :
$$\{0, 1, x, y, 0 + x, x + y, y + 1, f(x + y), f(1)\}$$

$$0 \quad 1 \quad X \quad Y \quad X + Y \quad 1 + Y \quad F \quad G$$

Exemple

Problème initial : $0 + x = 1, y = 0, f(x + y) \neq f(1)$

Termes connus : $\{0, 1, x, y, 0 + x, x + y, y + 1, f(x + y), f(1)\}$

Exemple

Problème initial : $0 + x = 1, y = 0, f(x + y) \neq f(1)$

Termes connus : $\{0, 1, x, y, 0 + x, x + y, y + 1, f(x + y), f(1)\}$

Plan

- Clôture par congruence
 - La question
 - Extensions

- Analyse de conflit
 - Recherche d'explications
 - Premier ancêtre commun

PAC (Premier Ancêtre Commun) est lié à IMIN (Indice de la valeur MINimale entre deux indices dans un tableau).

PAC (Premier Ancêtre Commun) est lié à IMIN (Indice de la valeur MINimale entre deux indices dans un tableau).

Un Tour Eulerien avec les profondeurs

			-							10			_		
										h					
ofondeur	0	1	0	1	0	1	2	1	2	3	2	3	2	1	0

PAC (Premier Ancêtre Commun) est lié à IMIN (Indice de la valeur MINimale entre deux indices dans un tableau).

Un Tour Eulerien avec les profondeurs

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Noeud	a	d	а	С	а	b	e	b	f	h	f	g	f	b	а
Profondeur	0	1	0	1	0	1	2	1	2	3	2	3	2	1	0

a	b	С	d	е	f	g	h
1	6	4	2	7	9	12	10

PAC (Premier Ancêtre Commun) est lié à IMIN (Indice de la valeur MINimale entre deux indices dans un tableau).

Un Tour Eulerien avec les profondeurs

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	а														
rofondeur	0	1	0	1	0	1	2	1	2	3	2	3	2	1	0

a	b	С	d	е	f	g	h
1	6	4	2	7	9	12	10

PAC(e,g)?

PAC (Premier Ancêtre Commun) est lié à IMIN (Indice de la valeur MINimale entre deux indices dans un tableau).

Un Tour Eulerien avec les profondeurs

Noeud Reformed Research Resear

a	b	С	d	е	f	g	h
1	6	4	2	7	9	12	10

 $PAC(e,g)? \Rightarrow T(IMIN(7,12))$

PAC (Premier Ancêtre Commun) est lié à IMIN (Indice de la valeur MINimale entre deux indices dans un tableau).

Un Tour Eulerien avec les profondeurs

													13		
													f		
Profondeur	0	1	0	1	0	1	2	1	2	3	2	3	2	1	0

a	b	С	d	е	f	g	h
1	6	4	2	7	9	12	10

 $PAC(e,g)? \Rightarrow T(IMIN(7,12)) \Rightarrow b$

Prétraitement
$$\mathcal{O}(n \log(n))$$
:
 $A(i,k) = \text{IMIN}(i,i+2^k-1)$

$$k-1 \qquad k$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ \cdots \qquad \cdots \qquad X \qquad \leftarrow \qquad ?$$

$$\vdots \qquad \vdots \qquad \checkmark \qquad \cdots \qquad X$$

Prétraitement
$$\mathcal{O}(n \log(n))$$
:
 $A(i,k) = \text{IMIN}(i,i+2^k-1)$

$$i \qquad k-1 \qquad k$$

$$i \qquad \cdots \qquad X \qquad \leftarrow \qquad ?$$

$$i+2^{k-1} \qquad \cdots \qquad X \qquad \qquad \downarrow$$

Résolution d'une instance $\mathcal{O}(1)$: (i,j)

Prétraitement
$$\mathcal{O}(n \log(n))$$
:
 $A(i,k) = |M|N(i,i+2^k-1)$

$$i = \begin{pmatrix} k-1 & k \\ \vdots & \vdots & \vdots \\ \cdots & \cdots & X & \leftarrow & ? \\ \vdots & \vdots & \checkmark & \\ \cdots & \cdots & X & & \end{pmatrix}$$

Résolution d'une instance $\mathcal{O}\left(1\right)$:

$$(i,j) \Rightarrow p = \lfloor \log_2 (j-i+1) \rfloor$$

Prétraitement
$$\mathcal{O}(n \log(n))$$
:
 $A(i,k) = |M|N(i,i+2^k-1)$

$$i \qquad k-1 \qquad k$$

$$i \qquad \vdots \qquad \vdots \qquad \vdots$$

$$i+2^{k-1} \left(\cdots \qquad X \qquad \longleftarrow ? \qquad \cdots \qquad X \right)$$

Résolution d'une instance $\mathcal{O}(1)$:

$$(i,j) \Rightarrow p = |\log_2(i-i+1)| \Rightarrow A(i,p) \text{ ou } A(i-2^p+1,p)$$
?

Programmation

- Programmation
- Tests et performances

- Programmation
- Tests et performances
- Aspects pratiques

- Programmation
- Tests et performances
- Aspects pratiques
- Premier ordre