Geometryczna Teoria Grup

Weronika Jakimowicz

Zima 2024/25

Spis treści

1 Informacje wstępne								
	02.10.2024	Grafy Cayleya	1					
	1.	Metryka słów	1					
	2.	Graf Cayleya	1					
	3.	Quasi-izometrie	3					
	4.	Przestrzenie geodezyjne	5					
	5.	Lemat Milnora-Švarca	6					
	6.	Grupy współmierne	7					
	09.10.2024	Lemat Milnora-Švarca	8					
2 Niezmienniki izometrii								
	16.10.2024	Końce (w nieskończoności) grup przestrzeni	13					
	1.	Granica odwrotna	14					
	2.	Przestrzeń końców	16					
	23.10.2024	Przestrzeń końców jest niezmiennikiem q.i	19					
	1.	Alternatywny opis przestrzeni końców (promienie)	19					
	30.10.2024	cos	22					
	13.11.2024	Tempo wzrostu grupy	24					
	1.	Abstrakcyjne funkcje wzrostu	24					
	2.	Tempo wzrostu grupy	24					
	3.	Grupy o wzroście wielomianowym	27					
	04 12 2024	To be named 2	20					

1. Informacje wstępne

02.10.2024 Grafy Cayleya

1. Metryka słów

Definicja 1.1: metryka słów

Niech G będzie grupą, a S dowolnym układem jej generatorów. Wówczas dla dowolnych $g_1, g_2 \in G$ odległość między nimi w metryce słów definiujemy jako

$$\mbox{ds}(g_1,g_2) = \mbox{min}\{n \ : \ g_2 = g_1 s_1,...,s_n, \ s_i \in S \cup S^{-1}\},$$
 gdzie $S^{-1} = \{g^{-1} \ : \ g \in S\}.$

Metryka słów jest

- 1. skończona
- 2. symetryczna (z definicji generatorów)
- 3. lewo-niezmiennicza, czyli $(\forall \gamma \in G) ds(\gamma g_1, \gamma g_2) = ds(g_1, g_2)$

Ostatnia własność oznacza, że G działa na sobie jako na przestrzeni metrycznej przez izometrie.

Gromov chce patrzeć na dyskretne przestrzenie metryczne, jakimi są grupy z metryką słów, jako na przestrzenie ciągłe (z dużej odległości).

2. Graf Cayleya

Definicja 1.2: graf Cayleya

Niech G będzie grupą, a S zbiorem jej generatorów. C(G,S) to graf Cayleya o wierz-chołkach będących elementami G i skierowanych krawędziach etykietowanych generatorami:

$$g \stackrel{s}{\longrightarrow} gs$$

 $gdzie\ g\in G\ i\ s\in S.$

Przykłady

1. Dla $G = \mathbb{Z}^2$ oraz $S = \{ (1,0), (0,1) \}$ graf Cayleya to nieskończona "kratka"

2. Dla grupy cyklicznej rzędu p z generatorem s graf Cayleya to p-kąt

3. TO DO parkietarz kwadratami

Innym wariantem grafu Cayleya niż zdefiniowany wcześniej jest graf w którym wierzchołki są elementami grupy V=G, ale krawędzie są niezorientowane: $E=\{\{g_1,g_2\}: ds(g_1,g_2)=1\}$. W przykładzie z parkietarzem zamiast podwójnych krawędzi w obie strony będzie on miał pojedyńczą, nieskierowaną krawędź

Każdy graf Cayleya jest **spójny**, bo jego krawędzie to mnożenie przez generatory. Dodatkowo, grupa G działa na nim przez automorfizmy zachowując krawędzie oraz ich etykiety. To znaczy, że krawędż z wierzchołkami

$$g \stackrel{s}{\longrightarrow} gs$$

pod działaniem elementu $\gamma \in G$ staje się

$$\gamma g \xrightarrow{s} \gamma g s.$$

Jeśli każdą krawędź w grafie Cayleya potraktujemy jako odcinek długości 1, to możemy na nim zdefiniować metrykę która jako odległość dwóch punktów przyjmuje długość najkrótszej ścieżki między nimi. Ta metryka na wierzchołkach pokrywa się z **metryką słów** na grupie G o generatorach S, której graf rozpatrujemy. Przy takiej metryce działanie grupy G jest więc działaniem nie tylko przez automorfizmy, ale przez izometrie (lewa-niezmienniczość).

Dla surjekcji $\pi: F_S \to G$, gdzie $G = \langle S \mid R \rangle = F_S/N$ możemy mieć dwie tak samo zorientowane strzałki między dwoma wierzchołkami (gdy np. $g_1\pi(s_1) = g_1\pi(s_2) = g_2$

Definicja 1.3: suma drzewiasta

Mając dwie grupy (G_1, S_1) i (G_2, S_2) graf Cayleya ich sumy wolnej, czyli graf $(G_1 \star G_2, S_1 \cup S_2)$ to graf pierwszej grupy, który w każdym wierzchołku ma kopię grafu drugiej grupy, która w każdym wierzchołku ma kopię pierwszej grupy...

3. Quasi-izometrie

Definicja 1.4: quasi-izometria

Dla dwóch przestrzeni metrycznych (X_i,d_i) , i=1,2, mówimy, że przekształcenie $f:X_1\to X_2$ (niekoniecznie ciągłe) jest **quasi-izometryczne zanurzenie**, gdy istnieje $C\ge 1$ oraz $L\ge 0$ takie, że $\forall~x,y\in X_1$ zachodzi

$$\frac{1}{\mathsf{C}}\mathsf{d}_1(\mathsf{x},\mathsf{y}) - \mathsf{L} \leq \mathsf{d}_2(\mathsf{f}(\mathsf{x}),\mathsf{f}(\mathsf{y})) \leq \mathsf{C} \cdot \mathsf{d}_1(\mathsf{x},\mathsf{y}) + \mathsf{L}.$$

Ponadto, jeśli istnieje D ≥ 0 takie, że $f(X_1)$ jest D-gęsty (D-siecią) w X_2 , tzn.

$$(\forall y \in X_2)(\exists x \in X_1) d_2(y, f(x)) \leq D$$

to wtedy f jest quasi-izometria.

Zwykle przyjmujemy L = D (większe z dwóch) i mówimy o tzw. (C, L)-quasi-izometrii.

Fakt 1.5: własności q.i.

- 1. złożenie q.i. jest q.i
- 2. dla dowolnej q.i. $f: X_1 \to X_2$ istnieje $g: X_2 \to X_1$ takie, że istnieje $D \ge 0$ takie, że

$$(\forall x_2 \in X_2) d_2(f \circ g(x_2), x_2) \leq D$$

$$(\forall \ x_1 \in X_1) \ d_1(g \circ f(x_1), x_1) \leq D$$

to wówczas g też jest q.i.

Definicja 1.6: quasi-izometryczne rozmaitości

Mówimy, że (X_1, d_1) jest quasi-izometryczna z (X_2, d_2) jeśli istnieje q.i. $f: X_1 \to X_2$. Jest to relacja równoważności.

Przykłady

- 1. (X, d) jest q.i. z punktem \iff X jest ograniczone.
- 2. X jest q.i. z dowolną swoją D-siecią Y ⊆ X przez inkluzję.
- 3. Dla dowolnego B ograniczonego $X \times B \cong X$ są q.i.
- 4. Dowolne dwa drzewa regularne T_k stopnia $k \ge 3$ są ze sobą q.i.
- 5. Graf Farey'a, nieskończony konstruowany jak niżej, z metryką kombinatoryczną (każda krawędź ma długość 1) jest q.i. z drzewem przeliczalnego stopnia $T_{\omega} = T_{\aleph_0}$.

Fakt 1.7

Niech G będzie grupą skończenie generowalną i niech S_1 , S_2 jej skończonymi zbiorami generatorów. Wówczas odwzorowanie tej grupy jako dwóch przestrzeni metrycznych $(G,S_1) \rightarrow (G,S_2)$ gdzie zmieniamy metrykę słów jest q.i.

Dowód

Dokładniej, id_G jest (C, L)-q.i. dla

$$C = \max\{\max\{|s_1|_{S_2} \ : \ s_1 \in S_1\} \text{, } \max\{|s_2|_{S_1} \ : \ s_2 \in S_2\}\} \text{,}$$

gdzie
$$|g| = d(1,g) = min\{n : g = s_1...s_n, s_i \in S \cup S^{-1}\}$$
, oraz $L = 0$.

Wniosek 1.8

Skończenie generowana grupa G determinuje jednoznacznie klasę quasi-izometrii. Innymi słowy, skończenie generowana grupa jest jednoznacznym obiektem quasi-metrycznym.

4. Przestrzenie geodezyjne

Geodezyjną w przestrzeni metrycznej (X,d) łączącą punkty a, b $\in X$ nazwiemy izometryczne włożenie

$$\gamma:[0,\mathsf{d}(\mathsf{a},\mathsf{b})]\to\mathsf{X}$$

takie, że $\gamma(0) = a i \gamma(d(a, b)) = b$.

Definicja 1.9: przestrzeń geodezyjna

Powiemy, że przestrzeń X jest przestrzenią geodezyjną, jeśli dla wszystkich par punktów a, b \in X istnieje geodezyjna pomiędzy nimi (niekoniecznie jedyna).

Definicja 1.10

Przestrzeń X jest **właściwa**, gdy domknięte kule $B_r(x)$ w X są zwarte dla dowolnych $r < \infty$ i $x \in X$.

Każda przestrzeń właściwa jest lokalnie zwarta oraz zupełna, z kolei dla przestrzeni geodezyjnych jeśli przestrzeń jest właściwa, to jest też zwarta i zupełna.

Przykłady

- 1. Spójne i gładkie rozmaitości Riemmanowskie są przestrzeniami metrycznymi z metryką ρ minimalizowania długości krzywych gładkich łączących punkty. Gdy (M, ρ) jest zupełna, to M jest geodezyjna oraz właściwa.
- 2. Graf Cayleya skończenie generowanej grupy G jest przestrzenią geodezyjną właściwą.

5. Lemat Milnora-Švarca

Lemat 1.11: Milnora-Švarca

Niech X będzie właściwą przestrzenią geodezyjną a Γ grupą działającą na X przez izometrie właściwie i kozwarcie. Wówczas Γ jest skończenie generowalna i quasi-izometryczna z X. Dokładniej, $\forall \ \mathbf{x}_0 \in \mathsf{X}$ odwzorowanie $\Gamma \to \mathsf{X}$ określone przez $\gamma \mapsto \gamma \cdot \mathbf{x}_0$ jest quasi-izometrią.

Mówimy, że grupa działa

właściwie, gdy dla dowolnego zwartego K \subseteq X zbiór $\{g \in \Gamma : g \cdot K \cap K \neq \emptyset\}$ jest skończony kozwarcie, gdy istnieje zwarty K \subseteq X taki, że rodzina $\{g \cdot K : g \in \Gamma\}$ pokrywa X.

Przykłady

- 1. Działanie grupy $\mathbb{Z}^n \subset (\mathbb{R}^n, d_{eukl.})$ przez przesunięcia jest izometrią. Czyli $\mathbb{Z}^n \stackrel{q.i.}{\cong} \mathbb{R}^n$.
- 2. Grupa symetrii regularnego (co najmniej dwie symetrie w dwóch różnych kierunkach) parkietażu/wzorca działa na $(\mathbb{R}^2, d_{\text{eukl.}})$ geometrycznie.
- 3. Kozwarte, dyskretne podgrupy w grupach Liego G działają lewostronnie na G w sposób geometryczny.
- 4. $\Pi_1(\mathsf{sk.}\ \mathsf{kompleks}\ \mathsf{symplicajlny}) \ \bigcirc\ \widetilde{\mathsf{K}}$

Konsekwencje lematu Milnora-Švarca

- 1. Jeśli $H \le G$ jest grupą skończonego indeksu w grupie skończenie generowalnej, to $H \bigcirc (G,S)$ jest działaniem geometrycznym. Stąd H jest q.i. z G i jest skończenie generowalna.
- 2. Niech ciąg

$$1 \longrightarrow \mathsf{K} \longrightarrow \Gamma \stackrel{\mathsf{q}}{\longrightarrow} \mathsf{G} \longrightarrow 1$$

gdzie q jest odwzorowaniem ilorazowym, będzie ciągiem dokładnym. Załóżmy, że K i G $\cong \Gamma/K$ są skończenie generowalne. Wówczas $\Gamma \subset (G,S)$ przez $\gamma \cdot g = q(\gamma)g$ jest działaniem geometrycznym. Stąd Γ jest skończenie generowana i q : $\Gamma \to G$ jest q.i..

6. Grupy współmierne

Definicja 1.12

Dwie grupy G_1 , G_2 są **współmierne** (commeasurable), gdy posiadają izomorficzne podgrupy skończonego indeksu.

Wniosek

Grupy współmierne są q.i..

Można więc zadać pytanie, czy q.i. nie sprowadza się do współmierności? Okazuje się, że tak nie jest.

Definicja 1.13

Grupa G jest współmiernościowo sztywna, jeśli każda H q.i. z G jest współmierna z G.

Przykłady

- 1. Wszystkie grupy skończone są współmiernościowo sztywne, bo H jest q.i. ze skończoną grupą $G \iff H$ jest samo skończone.
- 2. Grupy wirtualnie cykliczne grupy zawierające cykliczną podgrupę skończonego indeksu, są współmiernościowo sztywne.
- 3. Grupy wirtualnie \mathbb{Z}^n .
- 4. Grupy wirtualnie wolne, np. $K_1 \# K_2$ dla skończoneych K_1 , K_2 .
- 5. Grupy powierzchni $\pi_1(z_q)$ dla g > 1.

09.10.2024 Lemat Milnora-Švarca

Lemat 1.14: Milnora-Švarca

Niech X będzie właściwą przestrzenią geodezyjną a Γ grupą działającą na X przez izometrie właściwie i kozwarcie. Wówczas Γ jest skończenie generowalna i quasi-izometryczna z X. Dokładniej, $\forall \ x_0 \in X$ odwzorowanie $\Gamma \to X$ określone przez $\gamma \mapsto \gamma \cdot x_0$ jest quasi-izometrią.

Mówimy, że grupa działa

właściwie, gdy dla dowolnego zwartego K \subseteq X zbiór $\{g \in \Gamma : g \cdot K \cap K \neq \emptyset\}$ jest skończony kozwarcie, gdy istnieje zwarty K \subseteq X taki, że rodzina $\{g \cdot K : g \in \Gamma\}$ pokrywa X.

Dowód

Wybierzmy $x_0 \in X$. Z kozwartości tego działania, istnieje promień R > 0 taki, że dla kuli $B = B_R(x_0)$ o środku w x_0 taki, że rodzina przesunięć kuli $\{g \cdot B : g \in \Gamma\}$ jest pokryciem X. Rozważmy zbiór $S = \{s \in \Gamma : s \neq 1, s \cdot B \cap B \neq \emptyset\}$ niewielkich przesunięć kuli B. Z właściwości działania oraz z właściwości przestrzeni X, zbiór S jest skończony. Ponadto, zbiór jest ten jest symetryczny $S = S^{-1}$ ($s \in S \implies s^{-1} \in S$), bo jeśli $s \cdot B \cap S \neq \emptyset$ to również $s^{-1} \cdot (s \cdot B \cap B) \neq \emptyset$.

Określamy v := inf $\{d(B,g\cdot B):g\in \Gamma-S-\{1\}\}$ czyli najmniejsza odległość kuli od jej rozłącznych z nią przesunięć.

Clam 1: v > 0

Dla każdego g $\in \Gamma$ –S– $\{1\}$ wiemy, że $d(B,g\cdot B)>0$. Gdyby to infimum v=0, to mielibyśmy ciąg parami różnych elementów $g_n\in \Gamma$ takich, że $d(B,g_n\cdot B)\searrow 0$ maleją do 0. Stąd mielibyśmy punkty $z_n\in B$ takie, że $d(z_n,g_n\cdot B)\searrow 0$ (jako punkty prawie realizujące odległość między zbiorami). Istnieje podciąg n_k taki, że $z_{n_k}\in z_0\in B$, a stąd $d(z_0,g_n\cdot B)\searrow 0$. To oznacza, że $B_{2R}(x_0)$ przecina niepusto nieskończenie wiele spośród przesunięc $g_n\cdot B_{2R}(x_0)$, a to jest sprzeczne z właściwością działania.

Clam 2: S generuje Γ oraz dla każdego $\gamma \in \Gamma$

$$\frac{1}{\lambda} \mathsf{d}_{\mathsf{X}} (\mathsf{x}_0, \gamma \cdot \mathsf{x}_0) \leq \mathsf{d}_{\mathsf{S}} (1, \gamma) \leq \frac{1}{r} \mathsf{d}_{\mathsf{X}} (\mathsf{x}_0, \gamma \cdot \mathsf{x}_0) + 1 \text{,}$$

 $\operatorname{gdzie} \lambda := \max_{s \in S} d_{X}(x_{0}, s \cdot x_{0}).$

I scenariusz:

II scenariusz

Niech y_0 będzie punktem na geodezyjnej $[x_0, \gamma \cdot x_0] = \eta$ z kuli B najdalszy od x_0 na tej geodezyjnej. W odległości r od y_0 obierzmy punkt x_1 . Wtedy odcinek $(y_0, x_1) \subseteq \eta \subseteq \bigcup_{s \in S} s \cdot B$, ale to jest zbiór domknięty, z czego wynika, że $x_1 \in \bigcup_{s \in S} s \cdot B$, czyli $x_1 \in s_1 \cdot B$. Iterujemy się tak aż kulą $B_k = s_k s_{k-1} ... s_1 \cdot B$ trafimy w $\gamma \cdot x_0$.

W scenariuszu I mamy $\gamma \cdot B \cap s_k...s_1 \cdot B \neq \emptyset$, bo $\gamma x_0 \in \gamma \cdot B$ oraz $\gamma x_0 \in s_k...s_1 \cdot B$. W takim razie $s_1^{-1}...s_k^{-1} \gamma \cdot B \cap B \neq \emptyset$. Czyli zachodzi jedna z równości

1.
$$s1^{-1}...s_k^{-1}\gamma = 1 \implies \gamma = s_k...s_1$$

2.
$$s_1^{-1}...s_k^{-1} \gamma = s_{k+1} \in S \implies \gamma = s_k...s_1s_{k+1}$$

W scenariuszu II d $(\gamma x_0, s_k...s_1 \cdot B) < v \implies d(x_0, \gamma^{-1}s_k...s_1 \cdot B) < r \implies d(B, \gamma^{-1}s_k...s_1 \cdot B) < r$. W takim razie znowu zachodzi jedna z równości

1.
$$s1^{-1}...s_k^{-1}\gamma = 1 \implies \gamma = s_k...s_1$$

2.
$$s_1^{-1}...s_k^{-1} \gamma = s_{k+1} \in S \implies \gamma = s_k...s_1s_{k+1}$$

Dla uzyskania prawej nierówności, zauważamy, że w obu scenariuszach $d_S(1,\gamma) \le k+1 \le \frac{1}{r} d_X(x_0,\gamma \cdot x_0) + 1$, bo $d(x_0,\gamma \cdot x_0) \ge k \cdot r$ bo tyle razy udało nam się odłożyć r na geodezyjnej.

Jeśli d $_{\mathsf{S}}(1,\gamma)=\mathsf{m}$, a $\gamma=\mathsf{s}_1...\mathsf{s}_{\mathsf{m}}$, to wówczas

$$\mathsf{d}_\mathsf{X}(\mathsf{s}_1,...,\mathsf{s}_k\cdot\mathsf{x}_0,\mathsf{s}_1...\mathsf{s}_{k-1}\cdot\mathsf{x}_0) = \mathsf{d}_\mathsf{X}(\mathsf{s}_k\cdot\mathsf{x}_0,\mathsf{x}_0) \leq \lambda.$$

Z nierówności trójkąta

$$\mathsf{d}(\gamma \cdot \mathsf{x}_0, \mathsf{x}_0) = \mathsf{d}(\mathsf{s}_1...\mathsf{s}_k \cdot \mathsf{x}_0, \mathsf{x}_0) \leq \mathsf{m} \cdot \lambda = \mathsf{d}_\mathsf{S}(1, \gamma) \cdot \lambda$$

co właściwie kończy dowód Claim 2.

Pozostaje nam udowodnienie quasi-izometryczności $f(\gamma) \rightarrow \gamma \cdot x_0$, które staje się **Claim 3**.

Z lewo niezmienniczości metryki słów d $_S$ wiemy, że d $_S(\gamma_1,\gamma_2)=d_s(1,\gamma_1^{-1}\gamma_2)$, czyli wszystkie dystanse wyrażają się jako dystanse od 1. Z kolei z lewo- Γ -niezmienniczości metryki d $_X$ na X mamy

$$\mathsf{d}_\mathsf{X}(\mathsf{f}(\gamma_1),\mathsf{f}(\gamma_2)) = \mathsf{d}_\mathsf{X}(\gamma_1 \cdot \mathsf{x}_0,\gamma_2 \cdot \mathsf{x}_0) = \mathsf{d}_\mathsf{X}(\mathsf{x}_0,\gamma_1^{-1}\gamma_2 \cdot \mathsf{x}_0).$$

Nierówności z Claim 2 otrzymujemy następujący wariant nierówności

$$\frac{1}{\lambda} \mathsf{d}_{\mathsf{X}}(\mathsf{f}(\gamma_1),\mathsf{f}(\gamma_2)) \leq \mathsf{d}_{\mathsf{S}}(\gamma_1,\gamma_2) \leq \frac{1}{\mathsf{r}} \cdot \mathsf{d}_{\mathsf{X}}(\mathsf{f}(\gamma_1),\mathsf{f}(\gamma_2)) + 1$$

Stąd wynika, że

$$rd_{S}(\gamma_{1},\gamma_{2})-r\leq d_{x}(f(\gamma_{1}),g(\gamma_{2})\leq \lambda d_{S}(\gamma_{1},\gamma_{2})$$

i f jest quasi-izometrycznym włożeniem dla $C = \max(\lambda, \frac{1}{r})$ i L = r.

Ponadto, obraz $f(\Gamma)$ jest R-gęsty (dla R promienia z początku dowodu) w X, bo dla każdego $x \in X$ istnieje $\gamma \in \Gamma$ takie, że $x \in \gamma \cdot B_R(x_0) = B_R(\gamma \cdot x_0)$. Czyli $d_X(x, \gamma \cdot x_0) \le R$, ale $\gamma \cdot x = f(x)$. Stąd f jest quasi-izometrią.

Niewszystkie guasi-izometryczne grupy są współmierne.

Przykłady

1. Grupy podstawowe $\pi_1(M_1)$, $\pi_1(M_2)$ zamkniętych 3-wymiarowych rozmaitości hiperbolicznych M_1 , M_2 o niewspółmiernych (jedna nie jest iloczynem drugiej przez liczbę wymierną) objętościach vol (M_i) .

Wiadomo, że istnieje wiele klas niewspółmierności wśród objętości takich rozmaitości.

Twierdzenie 1.15: Mostowa o sztywności [1968]

Dwie zamknięte hiperboliczne rozmaitości o izomorficznych grupach podstawowych są izometryczne. W szczególności, mają jednakowe objętości.

Załóżmy nie wprost, że $\pi_1(\mathsf{M}_1)$ i $\pi_1(\mathsf{M}_2)$ są współmierne, to wówczas mielibyśmy wspólną podgrupę skończonego indeksu H < $\pi_1(\mathsf{M}_1)$, H < $\pi_1(\mathsf{M}_2)$. Niech $\overline{\mathsf{M}}_1$ i $\overline{\mathsf{M}}_2$ będą nakryciami M_1 , M_2 wyznaczone przez H. Skoro indeks grupy jest skończony, to nakrycia też takie są, a więc $\overline{\mathsf{M}}_i$ są zwarte i z podniesionymi metrykami

Riemanna, a więc są w dalszym ciągu hiperboliczne.

Z teorii nakryć wiemy, że $\pi_1(\overline{\mathsf{M}}_1) \cong \mathsf{H} \cong \pi_1(\overline{\mathsf{M}}_2)$. Stąd wynika, że $\overline{\mathsf{M}}_1$ jest izometryczna z $\overline{\mathsf{M}}_2$, a więc ich objętości są równe sobie. Ale

$$\text{vol}(\overline{M}_i) = (\underbrace{\text{krotność nakrycia}}_{=[\pi_1(M_i):H]}) \cdot \text{vol}(M_i)$$

stąd

$$\frac{\operatorname{vol}(\mathsf{M}_1)}{\operatorname{vol}(\mathsf{M}_2)} = \frac{[\pi_1(\mathsf{M}_1) : \mathsf{H}]}{[\pi_1(\mathsf{M}_2) : \mathsf{H}]}$$

daje sprzeczność z niewspółmiernością.

2. Niech G_A będzie produktem półprostym $\mathbb{Z} \ltimes_A \mathbb{Z}^2$, gdzie $A: \mathbb{Z}^2 \to \mathbb{Z}^2$ jest zadane macierzą $A \in Sl_2\mathbb{Z}$. Chcemy, żeby A było macierzą hiperboliczną (tzn. |tr(A)| > 2) posiadającą dwie różne rzeczywiste wartości własne, odwrotne do siebie. Wówczas grupa G_A jest kratą (podgrupą dyskretną i kozwartą) w pewnej grupie Liego $Sol = (\mathbb{R}^3, \cdot)$, gdzie mnożenie jest zadane jako

$$(x,y,z)\cdot(a,b,c)=(e^{Z}\cdot a,e^{-Z}\cdot b,c+z)$$

2. Niezmienniki izometrii

16.10.2024 Końce (w nieskończoności) grup przestrzeni

Zanim zaczniemy, zróbmy szybką motywację, czyli graf Cayleya grupy $\mathbb Z$ z jednym generatorem (rysunek 2.1)

Rysunek 2.1: Graf Cayleya grupy \mathbb{Z} ma dwa końce.

który ma "dwa końce". Natomiast grupa wolna F_2 o dwóch generatorach ma "nieskończenie wiele końców" (rysunek 2.2).

Rysunek 2.2: Graf Cayleya grupy wolnej F₂ ma nieskończenie wiele końców.

Z drugiej strony, grupa \mathbb{Z}^2 ma jeden koniec: jeśli weźmiemy dwa bardzo odległe od siebie obszary, to one są ze sobą połączone, chociaż jest to połączenie "bardzo odległe" (obrazek 2.3).

Rysunek 2.3: Graf Cayleya grupy \mathbb{Z}^2 ma jeden koniec.

Każda przestrzeń skończona, np. graf Cayleya grupy skończonej, ma 0 końców.

Chcemy z liczby końców przestrzeni (albo przestrzeni końców) uczynić tzw. niezmiennik asymptotyczny, czyli cechę niezmienną na quazi-izometrie właściwych geodezyjnych przestrzeni metrycznych, a co za tym idzie - przestrzeni skończenie generowanych.

1. Granica odwrotna

Definicja 2.1: zbiór skierowany

Zbór z częściowym porządkiem (Λ, \leq) jest **skierowany**, gdy dla dowolnych $\lambda_1, \lambda_2 \in \Lambda$ istnieje $\lambda \in \Lambda$ takie, że $\lambda \geq \lambda_1$ oraz $\lambda \geq \lambda_2$.

Definicja 2.2: system odwrotny

System odwrotny nad zbiorem skierowanym Λ to rodzina zbiorów

$$\mathfrak{X} := \{ \mathsf{X}_{\lambda} \ : \ \lambda \in \Lambda \}$$

oraz rodzina odwzorowań

$$\mathcal{F} := \{ \mathsf{f}_{\lambda\mu} : \mathsf{X}_{\mu} \to \mathsf{X}_{\lambda} : \lambda \le \mu \}$$

takich, że

- 1. dla dowolnego λ mamy funkcję identycznościową: $\mathsf{f}_{\lambda\lambda} = \mathsf{id}_{\mathsf{X}_\lambda}$
- 2. dla dowolnych $\lambda \le \mu \le \nu$ złożenia zachowują się dobrze: $f_{\lambda\nu} = f_{\lambda\mu} \circ f_{\mu\nu}$.

Będziemy oznaczać: $X := (\Lambda, \mathfrak{X}, \mathcal{F})$

Definicja 2.3: granica odwrotna

Granicą odwrotną systemu X nazywamy zbiór

$$\varprojlim \underline{\mathbf{X}} = \varprojlim (\Lambda, \mathfrak{X}, \mathcal{F}) := \{ \xi \in \prod_{\lambda \in \Lambda} \mathbf{X}_{\lambda} \ : \ (\forall \ \lambda' \leq \lambda) \ \xi_{\lambda'} = \mathbf{f}_{\lambda'\lambda}(\xi_{\lambda}) \}.$$

Elementy ξ jak wyżej nazywamy niciami (threads) w \underline{X} .

Odwzorowania

$$f_{\lambda}: \lim \underline{X} \to X_{\lambda}$$

takie, że $f_{\lambda}(\xi)=\xi_{\lambda}$ nazywamy **odwzorowaniami granicznymi**. O odwzorowaniach granicznych można myśleć jako o odwzorowaniach, które pytają "kim byłem w czasie λ ".

Dla $\lambda \leq \mu$ diagram

$$X_{\lambda} \xleftarrow{f_{\lambda}} X_{\mu}$$

zawsze komutuje.

Kiedy zbiory X_{λ} są przestrzeniami topologicznymi, zaś $f_{\lambda\mu}$ są ciągłe, to na granicy odwrotnej $\varprojlim \underline{X}$ rozważamy również topologię graniczną. Jest to topologia dziedziczona z topologii produktowej na $\prod_{\lambda \in \Lambda} X_{\lambda}$.

Bazą tej topologii są zbiory postaci $f_{\lambda}^{-1}(U)$ dla $\lambda \in \Lambda$ i otwartych $U \subseteq X$.

Fakt 2.4

Granica odwrotna lim X jest:

- 1. domkniętym podzbiorem $\prod_{\lambda \in \Lambda} X_{\lambda}$, jeśli X_{λ} są Hausdorffa,
- 2. zwarta i metryczna, jeśli X_{λ} takie są,
- 3. zwarta i metryczna, jeśli Λ jest przeliczalny, a X_{λ} są skończone (z topologią dyskretną).

W ostatnim przypadku $\varprojlim \underline{X}$ nie jest przestrzenią dyskretną, pomimo, że wszystkie zbiory po których bierzemy granicę takie były. Rozważmy następujący przykład, w którym $\Lambda=\mathbb{N}$, a wszystkie X_{λ} są skończone dyskretne, natomiast $\varprojlim \underline{X}$ jest niedyskretne i nieskończone.

Przykład

Niech $\Lambda=(\mathbb{N},\leq)$ i niech X_k będzie zbiorem wszystkich ciągów 0-1 długości k. Dla $k\leq m$ rozważamy

$$f_{km}: X_m \rightarrow X_k$$

będące obcięciem ciągu długości m do początkowego ciągu długości k. Dostajemy wówczas system odwrotny $\underline{X} = (\mathbb{N}, \{X_k\}, \{f_{km}\})$ zbiorów skończonych. Wówczas $\varprojlim \underline{X}$ jest homeomorficzny ze zbiorem Cantora.

2. Przestrzeń końców

Na tym wykładzie będziemy zajmować się X, które są właściwymi geodezyjnymi przestrzeniami metrycznymi. Takimi przestrzeniami są np. grafy Cayleya grup skończenie generowalnych. Przez zbiór $\mathcal K$ będziemy rozumieć rodzinę wszystkich zwartych podzbiorów K \subseteq X z porządkiem inkluzji.

Definicja 2.5: podzbiór współkońcowy

Podzbiór M $\subseteq \Lambda$ zbioru skierowanego Λ nazywamy współkońcowym, jeśli

$$(\forall \lambda \in \Lambda)(\exists \mu \in M) \lambda \leq \mu$$

wtedy (M, \leq) też jest zbiorem skierowanym. Dla $\underline{X} = (\Lambda, \mathfrak{X}, \mathcal{F})$ niech

$$\underline{\mathbf{X}}_{|\mathsf{M}} = (\mathsf{M}, \{\mathbf{X}_{\lambda} \ : \ \lambda \in \mathsf{M}\}, \{\mathbf{f}_{\mu\mu'} \in \mathcal{F} \ : \ \mu, \mu' \in \mathsf{M}\})$$

będzie obcięciem \underline{X} do M. Wtedy $\underline{X}_{|M}$ jest systemem odwrotnym nad M.

Fakt 2.6

$$\varprojlim \underline{X} = \varprojlim \underline{X}_{|M}$$

Przez bijekcją polegającą na obcinaniu nici do M. Jest ona jednocześnie homomorfizmem.

Wniosek

Jeśli X_λ są zwarte i metryczne, zaś Λ posiada przeliczalny podzbiór współkońcowy, to lim \underline{X} jest zwarta i metryczna.

Przykład

Rodzina zbiorów zwartych $\mathcal K$ posiada współkońcowy podciąg $K_i:=B_{i\cdot R}(x_0)$ dla R>0 i pewnego $x_0\in X$.

Dla dowolnego K $\in \mathcal{K}$ niech $\Pi_{\mathsf{K}}^{\mathsf{X}}$ będzie zbiorem nieograniczonych komponent spójności w dopełnieniu X – K.

Przestrzeń geodezyjna jest lokalnie drogowo spójna i każda jej otwarta podprzestrzeń również jest lokalnie drogowo spójna. Stąd każde X – K też jest lokalnie drogowo spójna. W lokalnie drogowo spójnych przestrzeniach komponenty spójności to to samo co komponenty drogowej spójności.

Dla K \subseteq K', każda nieograniczona komponenta spójności C' \subseteq X – K' zawiera się w dokładnie jednej nieograniczonej komponencie spójności C \subseteq X – K. Dostajemy więc odwzorowanie

$$f_{KK'}:\Pi^X_{K'}\to\Pi^X_K$$

takie, że $f_{KK'}(C') = C$.

Trójka $(\mathcal{K}, \{\Pi_K^X : K \in \mathcal{K}\}, \{f_{KK'} : K' \subseteq K\})$ tworzy system odwrotny nad zbiorem skierowanym \mathcal{K} :

$$\Pi^{\mathsf{X}}_{\mathsf{K}} \xleftarrow{\mathsf{f}_{\mathsf{K}\mathsf{K}'}} \Pi^{\mathsf{X}}_{\mathsf{K}'} \xleftarrow{\mathsf{f}_{\mathsf{K}'\mathsf{K}''}} \Pi^{\mathsf{X}}_{\mathsf{K}''}$$

Fakt 2.7

Dla każdego K $\in \mathcal{K}$ zbiór Π_K^X jest skończony.

Dowód

Weźmy dowolny K $\in \mathcal{K}$ i x_0 oraz r takie, że

$$K \subseteq B_r(x_0)$$
.

Niech R > r i rozważmy zwartą kulę $B_R(x_0)$. Każda nieograniczona komponenta C spójności w X – K przecina niepusto sferę $S_R(x_0)$, bo X jest geodezyjna, a więc lokalnie drogowo spójna...

Zatem przekrój $C \cap B_R(x_0)$ jest niepusty. Wtedy rodzina

$$\{C\cap B_R(x_0)\ :\ C\ dowolna\ komponenta\ dopełnienia\ X-K\}\cup\{\overline{B_R}(x_0)=B_R(x_0)-S_R(x_0)\}$$

pokrywa $B_R(x_0)$. Dodatkowo, jest to otwarte pokrycie, bo komponenty spójności lokalnie spójnej przestrzeni są otwartymi podzbiorami w tej przestrzeni.

Ze zwartości X to pokrycie posiada skończone podpokrycie, ale z drugiej strony każdy zbiór postaci $C \cap B_R(x_0)$ dla nieograniczonych komponent musi przetrwać w każdym podpokryciu, bo zawiera punkty które należą tylko do niego. Stąd nieograniczonych komponent jest skończenie wiele.

Definicja 2.8: przestrzeń końców

Zbiorem (przestrzenią) końców, Ends(X), właściwej geodezyjnej przestrzeni metrycznej X nazywamy granicę odwrotną

$$\text{Ends}(\textbf{X}) = \varprojlim(\boldsymbol{\Pi}^{\textbf{X}}) = \varprojlim(\mathcal{X}, \{\boldsymbol{\Pi}_{K}^{\textbf{X}}\}, \{f_{KK'}\})\text{,}$$

gdzie Π_{K}^{X} to nieograniczone komponenty w X – K. Jest to zwarta przestrzeń metryczna.

Przykłady

- 1. $Ends(ograniczone)) = \emptyset$
- 2. Ends $(\mathbb{Z}^2)=\{\star\}$ to punkt w nieskończoności kraty
- 3. $\mathsf{Ends}(\mathbb{Z}) = \{-\infty, \infty\}$ i jest równoliczny z $\mathsf{Ends}(\mathbb{R})$
- 4. zbiór końców drzewa k-regularnego, dla k ≥ 3 , jest izomorficzny ze zbiorem Cantora
- 5. dla nieskończonych grup skończenie generowanych ${\sf G}_1, {\sf G}_2$ przestrzeń końców ${\sf Ends}({\sf G}_1\star{\sf G}_2)$ jest nieskończonym zbiorem

23.10.2024 Przestrzeń końców jest niezmiennikiem q.i.

Celem dzisiejszego wykładu będzie udowodnienie poniższego twierdzenia.

Twierdzenie 2.9

Przestrzeń końców Ends(X), a w szczególności ich liczba, jest niezmiennikiem quasiizometrii geodezyjnych przestrzeni właściwych (przestrzenie końców są wtedy homeomorficzne).

1. Alternatywny opis przestrzeni końców (promienie)

Przypomnijmy, że jeśli X jest właściwa przestrzenią geodezyjną, to jest również lokalnie drogowo spójna. Czyli otwarte podzbiory $U \subseteq X$ są spójne \iff są drogowo spójne.

Definicja 2.10: promień, współkońcowość promieni

Właściwy promień (eng. proper ray) w X to dowolne ciągłe odwzorowanie $\rho:[0,\infty)\to X$ takie, że

$$\lim_{t\to\infty} d_{X}(\rho(0), \rho(t)),$$

odległość mierzona od początku ρ ucieka do nieskończoności wraz z oddalaniem się od 0.

Zbiór wszystkich promieni w X oznaczamy ρ^{X} .

Powiemy, że dwa promienie ρ_1 , ρ_2 są współkońcowe ($\rho_1 \overset{\mathsf{E}}{\sim} \rho_2$), jeśli dla dowolnego zwartego K \subseteq X istnieje R > 0 taki, że $\rho_1([\mathsf{R},\infty))$ oraz $\rho_2([\mathsf{R},\infty))$ leżą w tej samej komponencie X – K.

Relacja współkońcowości promieni na zbiorze ρ^{X} jest relacją równoważności.

Fakt 2.11

Zbiór klas abstrakcji $\rho^{\mathsf{X}}/\stackrel{\mathsf{E}}{\sim}$ w naturalny sposób utożsamia się z Ends(X).

Dowód

Weźmy $\rho \in \rho^X$ takie, że dla każdego K \subseteq X mamy jedyną komponentę $C_K^{\rho} \in \Pi_K^X$ w dopełnieniu zbioru K w X do której należy $\rho([R,\infty))$ dla dostatecznie dużych R. Wtedy ciąg

$$(\mathsf{C}^\rho_\mathsf{K})_{\mathsf{K}\in\mathcal{K}}$$

jest nicią [2.3] w systemie odwrotnym $(\mathcal{K},\Pi^X,)f_{KK'})$.

Współkońcowe promienie wyznaczają tę samą nić, więc istnieje dobrze określone odwzorowanie

$$\beta: \rho^{\mathsf{X}}/\stackrel{\mathsf{E}}{\sim} \to \mathsf{Ends}(\mathsf{X})$$

$$\beta([\rho]_{\mathsf{E}}) = (\mathsf{C}^{\rho}_{\mathsf{K}})_{\mathsf{K} \in \mathcal{K}} \in \mathsf{Ends}(\mathsf{X})$$

 β jest różnowartościowe, bo dla niewspółkońcowych ρ_1 , ρ_2 istnieje K \subseteq X takie, że $C_K^{\rho_1} \neq C_K^{\rho_2}$, a wtedy nici $\beta([\rho_1]) \neq \beta([\rho_2])$.

Wystarczy przekonać się, że β jest surjekcją.

Niech $\xi = (\xi_K) \in \text{Ends}(X)$ będzie dowolną nicią. Szukamy promienia który na nie przechodzi. Dla każdego n $\in \mathbb{N}$ wybieramy punkt $y_n \in \xi_{B_n}$, gdzie ξ_{B_n} to nieograniczona komponenta w $X - B_n$ dla $B_n = B_n(x_0)$ przy ustalonym x_0 .

Określmy $\rho=[y_0,y_1]\cup[y_1,y_2]\cup...$ mając na myśli odwzorowanie ρ które odcinek [n,n+1] przeprowadza na geodezyjną od y_n do y_{n+1} . Dla takiego ρ mamy $C_{B_n}^\rho=\xi_{B_n}$. Dla dowolnego innego K $\in \mathcal{K}$ z racji, że istnieje kula taka, że K \subseteq B $_n$ to dla pewnego n zarówno C_K^ρ jak i ξ_K to ta sama komponenta w X_K , zawierająca ξ_{B_n} .

Na $\rho^X/\stackrel{E}{\sim}$ mamy topologie indukowana przez bijekcję β z topologii Ends(X). Baza tej topologii są zbiory postaci

$$\{U_C^K : K \in \mathcal{K} \mid C \in \Pi_K^X\},$$

 $\mathsf{U}^\mathsf{K}_\mathsf{C} = \{[\rho] \ : \ \rho([\mathsf{R},\infty)) \in \mathsf{C}\} \ \mathsf{dla} \ \mathsf{pewnego} \ \mathsf{R}.$

Wróćmy więc do twierdzenia 2.9.

Dowód

Dowód twierdzenia 2.9.

Niech X, Y będą włąsciwymi przestrzeniami geodezyjnymi oraz $f: X \to Y$ niech będzie (L, C)-quasi-izometrią. Ciągłe drogi $\nu: [a,b] \to X$ lub $\nu: [0,\infty) \to X$ przerabiamy na ciągłe drogi $\nu:_f$ w Y następująco:

- 1. niech a = $t_0 < t_1 < ... < t_m = b$ będzie takie, że $d_X(\nu(t_k), \nu(t_{k+1})) \le 1$
- 2. wtedy ciąg $f(\nu(t_n))$ jest (L+C)-drogą, czyli $d_Y(f(\nu(t_k)),f(\nu(t_{k+1}))) \le L+C$ dla każdego k
- 3. łączymy te punkty kolejno odcinkami geodezyjnymi w Y

W ten sposób dostajemy ciągłą drogę ν_f w Y zawierającą się w (L + C)-otocznieu obrazu $f(\nu[a,b])$ łączącą $f(\nu(a))$ z $f(\nu(b))$. Gdy $\nu:[0,\infty)\to X$ jest ciągłym odwzorowaniem, to ν_f jest

ciągłym odwzorowaniem o obrazie zawierającym się w (L+C)-otoczeniu obrazu $f(\nu[0,\infty))$ i o początku w $f(\nu(0))$.

Lemat 2.12

Niech $f: X \to Y$ będzie (L,C)-quasi-izometrią. Wówczas dla każdego zwartego $K \subseteq Y$ istnieje zwarty $K' \subseteq X$ taki, że dla każdej komponenty $C' \subseteq X - K'$ jej pogrubiony obraz $N_{L+C}[f(C')]$ ($N_R(A) = \{x \in X : d_X(x,A) \le R\}$) zawiera się w pojedynczej komponencie C w dopełnieniu X - K.

Jeśli więc ν , ν' są współkońcowymi promieniami w X, to utworzone przez nie promienie $\nu_{\rm f}$ i $\nu'_{\rm f}$ również są współkońcowe. Chcemy sprawdzić, czy "końcówki" $\nu_{\rm f}$ oraz $\nu'_{\rm f}$ należą do tej samej komponenty X – K.

Z założenia wiemy, że końcówki ν i ν' należą do tej samej komponenty C' w X-K' (dla K' jak w lemacie wyżej). Czyli końcówka ν_f zawiera się w obrazie w N_{L+C} obrazu przez f końcówki ν , która z kolei zawiera się w $N_{L+C}f(C')\subseteq C$. Stąd ν_f jest wpsółkońcowe z ν_f' . Mamy zatem przyporządkowanie $f_E: \rho^X/\stackrel{E}{\sim} \to \rho^Y/\stackrel{E}{\sim}$ zadane przez $f_E([\nu])=[\nu_f]$. Mamy też podobne przyporządkowanie g_E idące w odwrotną stronę, gdzie $g:Y\to X$ jest "odwrotną" q.i..

Odwzorowanie $f_E: \rho^X/\stackrel{E}{\sim} \to \rho^Y/\stackrel{E}{\sim}$ jest ciągłe. Stąd f_E jest homeomorfizmem. Bierzemy bazowy zbiór U_K^C będący otoczeniem $[\nu_f]$, tzn. $K\subseteq Y$ jest zwarty i C jest nieograniczoną komponentą Y-K. Wtedy $\nu_f([R,\infty))\subseteq C$. Znajdziemy wówczas bazowy $U_{K'}^{C'}$ zawierający $[\nu]$ taki, że $f_E(U_{K'}^{C'})\subseteq U_K^C$. Niech $K'\subseteq X$ jak w lemacie wyżej i niech C; będzie tą nieograniczoną komponentą w X-K' dla której $\nu([R,\infty))\subseteq C'$. Wówczas C jest dokładnie tą komponentą w Y-K w której zawiera się $N_{L+C}(f(C'))$. $f_E(U_{K'}^{C'})\subseteq U_K^C$. DOKOŃCZYĆ BO COŚ SIĘ NIE MOGĘ SKUPIĆ

30.10.2024 cos

Główne twierdzenie na dzisiaj:

Twierdzenie 2.13: Freudanthal-Hopf

Skończenie generowalna grupa G ma 0, 1, 2 lub nieskończenie wiele końców. Gdy $|\operatorname{Ends}(\mathsf{G})| = \infty$, to $|\operatorname{Ends}(\mathsf{G})|$ jest przestrzenią bez punktów izolowanych - w szczególności mamy continuum. W istocie, $\operatorname{Ends}(\mathsf{G})$ jest wtedy zbiorem Cantora.

Zanim przejdziemy dalej, warto wiedzieć kilka rzeczy o zbiorze Cantora, np. jak jest on charakteryzowany w matematyce:

- jest to jedyna z dokładnością do homeomorfizmu przestrzeń metryczna, która jest całkowicie niespójna (0-wymiarowa), to znaczy, że każdy punkt posiada bazę otoczeń otwartodomkniętych
- o nie ma on punktów izolowanych.

Niech X = $(\Lambda, \mathcal{X}, \mathcal{F})$ będzie systemem odwrotnym zbiorów skończonych. Załóżmy, że wszystkie odwzorowania $f_{\lambda,\mu} \in \mathcal{F}$ są surjekcjami oraz $\forall \ \lambda \in \Lambda \ \forall \ x \in X \ \forall \mu > \lambda$ takie, że $|f_{\lambda\mu}^{-1}(x)| \geq 2$ to wówczas $\varprojlim \underline{X}$ jest homeomorficzny ze zbiorem Cantora. To znaczy, że \underline{X} rozdziela się w każdym kroku na co najmniej dwie części dokładnie tak jak zbiór Cantora.

Dowód

Wiemy, że $|\operatorname{Ends}(G)| = 0, 1, 2$ jest możliwe, bo 0 końców mają grupy skończone, 1 ma \mathbb{Z}^2 , a \mathbb{Z} ma końców 2 sztuki.

Załóżmy, że $|\operatorname{Ends}(G)| \ge 3$. Oznacza to, że dla $X = \operatorname{Cay}(G,S)$ istnieje zwarty $K \subseteq X$ taki, że Π_K^X ma co najmniej 3 elementy (tzn. X - K ma co najmniej 3 nieograniczone komponenty spójności).

Naszym celem jest pokazanie, że dla dowolnego L \subseteq X zwartego i dowolnej nieograniczonej komponenty C w X – L istnieje większy zbiór L \subseteq L' \subseteq X oraz nieograniczone komponenty C'₁ \neq C'₂ w $\Pi_{L'}^{X}$ takie, że C'₁, C'₂ \subseteq C (czyli $f_{LL'}(C_i) = C$ dla i = 1, 2). Jako ćwiczenie pozostawione zostanie pokazanie, że wówczas $|\operatorname{Ends}(G)| = \infty$.

Ustalmy zwarty $L \subseteq X$ oraz nieograniczoną komponentę $C \le X - L$. Niech $M \subseteq X$ będzie zbiorem z definicji kozwartości działania $G \bigcirc X$, tzn. takim, że

$$\bigcup_{g \in G} gM = X.$$

Bez straty ogólności załóżmy, że K \subseteq M, a co za tym idzie $|\Pi_{M}^{X}| \ge 3$.

Niech $x_0 \in C$ będzie takim punktem, że $d(x_0, L) \ge diamL + 2diamM$. Niech teraz $g_0 \in G$ będzie taki, że $x_0 \in g_0M$. Wtedy ponieważ $diam(g_0M) = diam(M)$, mamy $d_X(L, g_0M) \ge diamM$ ale też $\ge diamL$. Więc tym bardziej $d_X(L, g_0K) \ge diamM$ ale też diamL.

Twierdzimy, że $g_0K \subseteq g_0M \subseteq C$ oraz no i spadlo mi sie z rowerka

Dowód (3)

Załóżmy, że komponenty $C_1,...,C_m$ są rozłączne z L, bo L $\subseteq C_0$. Więc każda z nich zawiera się w pojedynczej komponencie X – L. Każda spośród $C_1,...,C_m$ posiada punkty dowolnie bliskie zbioru g_0K , bo np. pierwszy punkt na geodezyjnej od punktu a $\in C_i$ do punktu b $\in g_0K$ nienależący do C_i musi należeć do g_0K , czyli punkty leżące w C

Skoro C_i zachacza o C, to musi być zawarte w C.

Dla ukończenia realizacji CELU (i dowodu twierdzenia) weźmy L' = L \cup g $_0$ K. Wtedy C $_1$, ..., C $_m$ są komponentami w X – L'.

Dalsze wyniki:

- ⓐ Jeśli $|\operatorname{Ends}(G)| = \infty$, to G rozkłada się w sposób nietrywialny i nie 2-końcowy nad skończoną podgrupą H, tzn. $G = G_1 \star_H G_2$ i $[G_i : H] \geq 3$ dla przynajmniej jednego i, lub $G = \star_H G_0$ (HNN-rozszerzeniem), $\phi_i : H \hookrightarrow G_0$, $[G_0 : \phi_i(H)] \geq 2$ dla pewnego i.

13.11.2024 Tempo wzrostu grupy

Funkcja wzrostu: $\beta_{G,S}:\mathbb{N}\to\mathbb{N}$ zdefiniowana jako liczność kuli o promieniu k i środku w elemencie neutralnym: $f_{G,S}(k)=|B_k^{G,S}(e)|$

1. Abstrakcyjne funkcje wzrostu

Abstrakcyjna funkcja wzrostu f to po prostu niemalejąca funkcja $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$. Każda funkcja wzrostu $\beta_{G,S}$ wyznacza abstrakcyjną funkcję wzrostu

$$\widetilde{\beta}_{\mathsf{G,S}}(\mathsf{t}) := \beta_{\mathsf{G,S}}([\mathsf{t}]),$$

która nadal jest multiplikatywna, tzn. $\widetilde{\beta}_{G,S}(t+t') \leq \widetilde{\beta}_{G,S}(t) \cdot \widetilde{\beta}_{G,S}(t')$.

Konkurencyjnie możemy zdefiniować $\widetilde{\beta}_{G,S}(t) := \beta_{G,S}(\lfloor t \rfloor)$, ale nie zachowujemy wówczas multiplikatywności funkcji.

Definicja 2.14: quasi-dominacja

Mówimy, że funkcja g **quasi-dominuje** [g > f] funkcję f, jeśli istnieje c ≥ 1 i b ≥ 0 takie, że

$$(\forall~t\in\mathbb{R}_{\geq 0})~f(t)\leq c\cdot g(ct+b)+b$$

Przykłady

- 1. Dla każdego wielomianu w(t) stopnia n o dodatnich współczynnikach $w(t) < t^n$.
- 2. Dla dowolnych a, b > 1 zachodzi

$$a^t > b^t$$
,

nawet gdy a > b.

Relacja quasi-dominacji jest relacją przechodnią i zwrotną.

2. Tempo wzrostu grupy

Definicja 2.15: quasi-równoważność

Dwie funkcje f i g są quasi-równoważne [f \sim g], gdy f \succ g i g \succ f. Jest to relacja równoważności. Klasy tej relacji nazywamy typami wzrostu [eng. growth rate types].

Przykłady

- 1. Dla a ≥ 0 funkcje t \mapsto t^a określają parami różne typy wzrostu.
- 2. Dla 0 > a > b zachodzi $e^{ta} \sim e^{tb}$. Jest to tzw. tym wzrostu eksponencjalnego.
- 3. $(\forall a \ge 0)$ $t^a < e^t$ oraz $t^a \not < e^t$, czyli wzrost eksponencjalny nigdy nie jest równy wzrostowi t^a .
- 4. Wszystkie funkcje wzrostu grup $\beta_{G,S}$ są quasi-zdominowane przez e^t , $\beta_{G,S} < e^t$. Aby pokazać, że grupa (G,S) ma typ wzrostu eksponencjalnego wystarczy pokazać, że $\beta_{G,S} > e^t$, co jest równoważne nierówności $\beta_{G,S} \ge ca^t b$ dla a > 1, $b \ge 0$ i c > 0.
- 5. $\widetilde{\beta}_{G,S} \sim \widetilde{\beta}_{G,S}$

Fakt 2.16

Niech (G,S) i (H,T) będą grupami ze skończonym układem generatorów. Jeśli istnieje quasi-izometryczne zanurzenie

$$f:(G,d_S)\rightarrow (H,d_T),$$

to wówczas funkcja wzrostu w G jest zdominowana przez funkcję wzrostu w H: $\beta_{\rm G,S}$ < $\beta_{\rm H,T}$.

Zanim przejdziemy do dowodu faktu 2.16, wymieńmy kilka ważnych wniosków z niego wynikających.

Wniosek

- 1. Jeśli grupy (G, d_S) i (H, d_T) są quasi-izometryczne, to wówczas mają ten sam typ wzrostu: $\beta_{G,S} \sim \beta_{H,T}$.
- 2. Dla różnych skończonych układów generatorów S_1 , S_2 grupy G zachodzi $\beta_{G,S_1} \sim \beta_{G,S_2}$, czyli grupa jednoznacznie determinuje swój typ wzrostu.

Wyróżniamy grupy o wzroście

- wielomianowym, czyli taki dla których funkcja wzrostu jest zdominowana przez t^a dla pewnego a [β_{G,S} < t^a],
- eksponencjalnym,
- pośrednim [eng. intermediate growth], czyli ani wielomianowym ani eksponencjalnym (dominuje ściśle nad wielomianowym, ale jest zdominowany ściśle nad eksponencjalnym).

Okazuje się, że w przypadku wzrostu nieprzekraczającego wielomianowego, wzrost musi być typu $\beta_{G,S} \sim t^m$ dla pewnego m $\in \mathbb{N}$. Tzn. nie ma grup o typie wzrostu "ułamkowopotęgowego" ani $t \cdot \log t$ etc.

Istnieją grupy o wzroście pośrednim, np. tak zwana grupa Grigorchuka (automorfizmów pewnego drzewa). Wiadomo dla niej, że

$$e^{t^{\alpha}} < \beta_{G} < e^{t^{\beta}}$$

dla pewnych $0 < \alpha < \beta < 1$, ale nie mamy wyznaczonej konkretnej funkcji. Grupa ta jest skończenie generowalna, ale nieskończenie prezentowalna.

Istnieje otwarta hipoteza, że jeśli G ma wzrost pośredni, to $\beta_{\mathsf{G}} > \mathsf{e}^{\mathsf{t}^{\alpha}}$ dla pewnego $0 < \alpha < 1$. Nie wiemy też, czy istnieje grupa skończenie prezentowalna, która dopuszcza pośredniego wzrostu (otwarte jest pytanie o dowód, że nie może tak być).

Żadna grupa o wzroście pośrednim nie ma wyznaczonego dokładnego typu wzrostu.

Wracamy do 2.16.

Dowód

Niech $f: (G, d_S) \rightarrow (H, d_T)$ będzie q.i. zanurzenie i niech $C \ge 1$ będzie takie, że

$$(\forall \ g,g' \in G) \ \frac{1}{c} d_S(g,g') - C \leq d_T(f(g),f(g')) \leq C d_S(g,g') + C.$$

Niech e' = f(e) i niech $r \in \mathbb{N}$. Wtedy jeśli $g \in B_r^{G,S}(e)$, to wówczas

$$d_T(f(g),e') \leq C \cdot d_S(g,e) + C \leq C \cdot r + C.$$

W takim razie

$$f\Big[B_r^{G,S}(e)\Big[\subseteq B_{Cr+C}^{H,T}(e').$$

Niestety, q.i. może sklejać elementy i niekoniecznie jest różnowartościowa. Musimy więc znaleźć oszacowanie na moc przeciwobrazów $f^{-1}(h)$.

Jeśli f(g) = f(g'), to wówczas z faktu, że f jest q.i. mamy

$$\mathsf{d}_\mathsf{S}(\mathsf{g},\mathsf{g'}) \leq \mathsf{C} \cdot [\mathsf{d}_\mathsf{T}(\mathsf{f}(\mathsf{g}),\mathsf{f}(\mathsf{g'})) + \mathsf{C}] = \mathsf{C}^2.$$

Stąd $f^{-1}(h)$ zawiera się w kuli o promieniu C^2 wokół dowolnego punktu z $f^{-1}(h)$. Ponieważ kule względem metryki słów o ustalonym promieniu i zmiennym środku są równoliczne, więc mamy oszacowanie

$$|f'(h)| \le |B_{C^2}^{G,S}(e)|$$
.

Stąd dostajemy

$$\left|B_r^{G,S}(e)\right| \leq \left|B_{C^2}^{G,S}(e)\right| \cdot \left|B_{Cr+C}^{H,T}(e')\right|,$$

czyli

$$\beta_{G,S}(r) \le \left|B_{C^2}^{G,S}(e)\right| \cdot \beta_{H,T}(Cr+C),$$

czyli $\beta_{G,S} < \beta_{H,T}$.

Przykłady

- 1. $\mathbb{Z}^n \approx \mathbb{Z}^m$ są q.i. $\iff n = m$, bo $\beta_{\mathbb{Z}^n} \sim t^n \not \sim t^m \sim \beta_{\mathbb{Z}^m}$.
- 2. Grupa wolna F nie jest q.i. z \mathbb{Z}^m , bo $\beta_F \sim e^t$, a $\beta_{\mathbb{Z}^m} \sim t^m$ i $e^t \not\sim t^m$.
- 3. Dla skończenie generowalnej podgrupy H \leq G zachodzi $\beta_{H} < \beta_{G}$.

Wniosek

Każda grupa zawierająca podgrupę wolną (nieabelową) ma wzrost eksponencjalny.

4. Grupa Heisenberga

$$\mathsf{H} = \mathbb{Z} \ltimes_{\mathsf{A}} \mathbb{Z}^2,$$

$$\mathsf{L}_{\mathsf{A}} = \mathsf{L}_{\mathsf{A}} \mathsf{L}_{\mathsf$$

$$\mathsf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

ma $eta_{\mathsf{H}} \sim \mathsf{t}^4$. Stąd można wywnioskować, że H $\not\approx \mathbb{Z}^3$ nie jest q.i.. Jako ciekawostka można nadmienić, że wymiar asymptotyczny grupy H wynosi 3, a grupy \mathbb{Z}^4 wynosi 4, co mówi, że H $\not\approx \mathbb{Z}^4$ nie są q.i..

3. Grupy o wzroście wielomianowym

Dla przypomnienia, patrzymy teraz na grupy $\beta_{\rm G} < {\rm t^a}$ dla pewnego a > 0. Zacznijmy od kilku przykładów.

Dla grupy G określamy $C_n(G)$ indukcyjnie przez $C_0(G) := G$, $C_{n+1}(G) = [G, C_n(G)]$. Taki ciąg nazywamy **dolnym ciągiem centralnym grupy**. Zachodzi $C_{j+1}(G) \triangleleft C_j(G)$ oraz $C_j(G)/C_{j+1}(G)$ jest abelowa. Gdy G jest skończenie generowalna, to wszystkie $C_j(G)$ i ilorazy $C_j(G)/C_{j+1}(G)$ też takie są.

Grupa G jest nilpotentna, gdy $C_n(G)$ jest trywialne dla pewnego n.

Definicja 2.17: wymiar jednorodny grupy nilpotentnej

Skończenie generowalna grupa abelowa A ma jednoznaczny rozkład A ~ $\mathbb{Z}^m \oplus B$, gdzie B jest grupą skończoną. Definiujemy wówczas rank(A) = m.

Wymiar jednorodny grupy nilpotentnej to skończona suma (bo od pewnego momentu $\mathsf{C_i}(\mathsf{G}) = 0$)

$$\mathsf{d}(\mathsf{G}) := \sum_{i=0}^{\infty} (\mathsf{j}+1) \, \mathsf{rank}(\mathsf{C}_{\mathsf{j}}(\mathsf{G})/\mathsf{C}_{\mathsf{j}+1}(\mathsf{G})).$$

Fakt 2.18

Dla dowolnej skończenie generowalnej grupy nilpotentnej G zachodzi

$$\beta_G \sim t^{d(G)}$$

Przykład

Dla grupy Heisenberga $H = \mathbb{Z} \ltimes_{A} \mathbb{Z}^{2}$, która jest nilpotentna, mamy

$$\begin{split} &\mathsf{C}_1(\mathsf{H}) \cong \mathbb{Z} \quad \mathsf{C}_0(\mathsf{H})/\mathsf{C}_1(\mathsf{H}) = \mathsf{H}/\mathsf{C}_1(\mathsf{H}) \cong \mathbb{Z}^2 \\ &\mathsf{C}_2(\mathsf{H}) = 0 \qquad \mathsf{C}_1(\mathsf{H})/\mathsf{C}_2(\mathsf{H}) \cong \mathsf{C}_1(\mathsf{H}) \cong \mathbb{Z} \end{split}$$

więc
$$d(H) = \operatorname{rank}(\mathbb{Z}^2) + 2 \cdot \operatorname{rank}(\mathbb{Z}) = 2 + 2 = 4$$
.

Definicja 2.19: wirtualna nilpotentność

Skończenie generowana grupa G jest wirtualnie nilpotentna, jeśli zawiera skończonego indeksu podgrupę nilpotentną.

Twierdzenie 2.20: [Gromova]

Skończenie generowalna grupa G ma wzrost wielomianowy $\beta_{\rm G}$ < t^a \iff G jest wirtualnie nilpotentna.

04.12.2024 To be named 2

Yu [1998] pokazał, że jeśli asdim $G < \infty$, to G spełnia hipotezę Novikova, a w 2003 Roe udowodnił, że asdim $G < \infty \implies G$ zgrubnie zanurza się w przestrzeni Hilberta.

Pytanie na dziś: jak pokazać, że asdim $\mathbb{Z}^n = \operatorname{asdim} \mathbb{R}^n \ge n$?

Metoda homologiczna:

- 1. zdefiniowanie asdim_h (asymptotyczny wymiar homologiczny)
- 2. pokazanie, że asdim_h $\mathbb{Z}^n \ge n$
- 3. na koniec wystarczy pokazać, że zwykły wymiar asymptotyczny jest nie mniejszy asdim \geq asdim_h.

Definicja 2.21 -

Dla $\epsilon > 0$ q-wymiarowy ϵ -sympleks w przestrzeni metrycznej X to układ $(x_0, x_1, ..., x_q)$ punktów z X (niekoniecznie różnych) takich, że $d_X(x_i, x_i) \le \epsilon$ dla $0 \le i \ne j \le q$.

Określamy w oczywisty sposób q-wymiarowe ϵ -łańcuchy, brzegowanie oraz ϵ -homologie $H_{\mathfrak{a}}^{\epsilon}(X)$ [teoria homologii Alexandrowa].

Dla ϵ -łańcucha U w X definiujemy nośnik supp(U) jako zbiór wszystkich wierzchołków we wszystkich ϵ -sympleksach z U (mających niezerowy współczynnik).

Dla ϵ -cyklu z, jego ϵ -wypełnieniem nazywamy dowolny ϵ -łańcuch w taki, że $\partial w = z$.

•	•	•	•	•	•	•	•
•							•
•							•
•							•
•							•
•							•
•							•
	_	_	_			_	_

Definicja 2.22

asdim $_h(X) \le p$ gdy dla każdego $\nu > 0$ istnieje $\alpha > 0$ (zależna tylko od X i ν) taka, że dla q $\ge p$ dowolny q-wymiarowy ν -cykl ϕ , ν -homologicznie trywialny w X, jest także α -homologicznie trywialny w swoim nośniku supp (ϕ) .

 $\mbox{asdim}_h(X) \geq n \mbox{ gdy istnieje } \nu \mbox{ takie, } \dot{\mbox{ze dla każdego }} \alpha \mbox{ istnieje } (n-1) \mbox{-wymiarowy } \nu \mbox{-cykl } \nu \mbox{-homologii} \mbox{ } \phi \mbox{ trywialny w X oraz } \alpha \mbox{-homologicznie nietrywialny w swoim nośniku.} \\ \mbox{asdim}_h(X) = \min \{p : \mbox{asdim}_h(X) \leq p\}$

Można pokazać, że asdim_h jest niezmiennikiem q.i..

Twierdzenie 2.23

$$\mathsf{asdim}_h(\mathbb{Z}^n) = \mathsf{asdim}_h(\mathbb{R}^n) \geq n$$

TUTAJ ZDJECIA JAKIES CZY COS

Twierdzenie 2.24

 $asdim(X) \ge asdim_h(X)$