Machine Learning Homework5

LiWei Wang

October 24, 2016

1 Problem

Figure out the relationship between Φ and \mathcal{H} .

2 Poblem

Compute the VC-Dimension of Linear Classifier.

3 Problem

Given a matrix $A = (a_{ij})_{n \times m}$, show that $\min_{i \le n} \max_{j \le m} a_{ij} \ge \max_{i \le m} \min_{j \le n} a_{ji}$.

4 Optional Problem, VC-inequality

Let p be a distribution over [n] then let H be a family of subsets of [n]. Suppose the corresponding family of indicator functions $F = \{I_S : S \in H\}$ has VC-dimension d. Independently take m samples from p, denoted by $X_1, X_2, ..., X_m$.

4.1

Prove that,

$$\mathbf{E}[\sup_{S \in H} |\frac{1}{m} \sum_{i=1}^{m} I[X_i \in S] - S(p)|] = O(\sqrt{\frac{d}{m}})$$

Where $S(p) = \sum_{i \in S} p_i$.

4.2

Show that if $m = O(\frac{n + \log \frac{1}{\delta}}{\epsilon^2})$ then with probability at least $1 - \delta$, the L_1 -distance between the empirical distribution $\frac{1}{m} \sum_{i=1}^m \delta_{X_i}$ and p is less than ϵ . Where δ_{X_i} is the Dirac delta function.

4.3

The Kolmogorov's distance between two distributions p and q is $\max_{i \leq n} |p(\{1,...,i\}) - q(\{1,...,i\})|$, i.e. the largest discrepency between their CDFs. Such that, if $m = O(\frac{\log \frac{1}{\delta}}{\epsilon^2})$ then with probability at least $1 - \delta$, the Kolmogorov's distance between $\frac{1}{m} \sum_{i=1}^m \delta_{X_i}$ and p is less than ϵ .