Zusammenfassung Numerik III

30. November 2012

Inhaltsverzeichnis

1	Einführung	2
	1.1 Klassifikation von partiellen DGLs	2

1 Einführung

1.1 Klassifikation von partiellen DGLs

Definition (Partielle DGL).

Sei $\Omega\subset\mathbb{R}^n$ offen. Eine partielle DGL k-ter Ordnung hat die Form

$$F(x, u, D u, D^2 u, ..., D^k u) = 0,$$
 (PDE (*))

wobei

$$F: \Omega \times \mathbb{R} \times \mathbb{R}^n \times \cdots \times \mathbb{R}^{n^k} \to \mathbb{R}$$

gegeben und $u:\Omega\to\mathbb{R}$ gesucht.

Definition (Klassifikation PDEs).

1. PDE (*) heißt *linear*, wenn sie die Form

$$\sum_{|\alpha| \le k} a_{\alpha}(x) D^{\alpha} u = f(x)$$

hat, wobei $a_{\alpha}: \Omega \to \mathbb{R}, f: \Omega \to \mathbb{R}$ gegeben.

2. PDE (*) heißt semilinear, wenn sie die Form

$$\sum_{|\alpha|=k} a_{\alpha}(x) D^{\alpha} u + a_0(x, u, D u, \dots, D^{k-1} u) = 0$$

hat, wobei $a_{\alpha}: \Omega \to \mathbb{R}, a_0: \Omega \times \mathbb{R} \times \mathbb{R}^n \times \cdots \times \mathbb{R}^{n^{k-1}} \to \mathbb{R}$ gegeben.

3. PDE (*) heißt quasilinear, wenn sie die Form

$$\sum_{|\alpha|=k} a_{\alpha}(x, u, D u, \dots, D^{k-1} u) D^{\alpha} u + a_{0}(x, u, D u, \dots, D^{k-1} u) = 0$$

hat, wobei $a_{\alpha}, a_0 : \Omega \times \mathbb{R} \times \mathbb{R}^n \times \cdots \times \mathbb{R}^{n^{k-1}} \to \mathbb{R}$ gegeben.

4. PDE (*) heißt nichtlinear, wenn sie nicht von Typ 1. - 3. ist.