GIẢI TÍCH (CƠ SỞ)

Tài liệu ôn thi cao học năm 2005

Phiên bản đã chỉnh sửa

PGS TS Nguyễn Bích Huy

Ngày 26 tháng 1 năm 2005

§5. Bài ôn tập

Bài 1:

Trên $X=C_{[0,1]}$ ta xét metric hội tụ đều. Cho tập hợp $A=\{x\in X: x(1)=1, 0\leq x(t)\leq 1\; \forall t\in [0,1]\}$ và ánh xạ $f:X\to R,\, f(x)=\int_0^1 x^2(t)\,dt.$

- 1. Chứng minh inf f(A) = 0 nhưng không tồn tại $x \in A$ để f(x) = 0.
- 2. Chúng minh A không là tập compact.

Giải

1. • Đặt $\alpha = \inf f(A)$. Ta có $f(x) \ge 0 \ \forall x \in A$ nên $\alpha \ge 0$. Với $x_n(t) = t^n$, ta có $x_n \in A$

$$\alpha \le f(x_n) = \int_0^1 t^{2n} dt = \frac{1}{2n+1} \longrightarrow 0 \qquad (n \to \infty)$$

Do đó $\alpha = 0$.

• Nếu f(x) = 0, ta có:

$$\left(\int_0^1 x^2(t)\,dt=0, x^2(t)\geq 0, x^2(t) \text{ liên tục trên } [0,1]\right)\\ \Longrightarrow x(t)=0 \qquad \forall t\in [0,1]\\ \Longrightarrow x\notin A.$$

2. Ta có:

$$\left\{ \begin{array}{ll} f \text{ liên tục trên } X, \text{ nhận giá trị trong } R \text{ (xem bài tập §3)} \\ f(x) \neq \inf f(A) & \forall x \in A \end{array} \right.$$

 \implies A không compact (xem lý thuyết §4).

Bài 2:

Cho (X,d) là không gian metric compact và ánh xạ $X \to X$ thỏa mãn

$$d(f(x), f(y)) < d(x, y) \qquad \forall x, y \in X, x \neq y. \tag{1}$$

Chứng minh tồn tại duy nhất điểm $x_0 \in X$ thỏa mãn $x_0 = f(x_0)$ (ta nói x_0 là điểm bất động của ánh xạ f).

Giải

Ta xét hàm $g: X \to R, g(x) = d(f(x), x), x \in X$. Ta chỉ cần chứng minh tồn tại duy nhất $x_0 \in X$ sao cho $g(x_0) = 0$.

Áp dụng bất đẳng thức tứ giác và điều kiện (1), ta có

$$|g(x) - g(y)| = |d(f(x), x) - d(f(y), y)| \le 2d(x, y)$$

nên g liên tục. Từ đây và tính compact của X ta có:

$$\exists x_0 \in X : g(x_0) = \inf g(X) \tag{2}$$

Ta sẽ chứng minh $g(x_0)=0$. Giả sử $g(x_0)\neq 0$; ta đặt $x_1=f(x_0)$ thì $x_1\neq x_0$, do đó:

$$\begin{array}{lcl} & d(f(x_1),f(x_0)) & < & d(x_1,x_0) \\ \Rightarrow & d(f(x_1),x_1) & < & d(f(x_0),x_0) \\ \Rightarrow & g(x_1) & < & g(x_0), \quad \text{mẫu thuẫn với (2)}. \end{array}$$

Vậy $g(x_0) = 0$ hay $f(x_0) = x_0$.

Để chứng minh sự duy nhất ta giả sử trái lại, có $x' \neq x_0$ và x' = f(x'). Khi đó:

$$d(x', x_0) = d(f(x'), f(x_0)) < d(x', x_0)$$

Ta gặp mâu thuẫn.

Bài 3:

Cho các không gian metric $(X, d), (Y, \rho)$ và ánh xạ $f: X \to Y$. Trên $X \times Y$ ta xét metric

$$d_1((x,y),(x',y')) = d(x,x') + \rho(y,y'), \quad (x,y),(x',y') \in X \times Y.$$

và xét tập hợp $G = \{(x, f(x)) : x \in X\}.$

- 1. Giả sử f liên tục, chứng minh G là tập đóng.
- 2. Giả sử G là tập đóng và (Y, ρ) là không gian compact, chứng minh f liên tục.

Giải

1. Xét tùy ý dãy $\{(x_n, f(x_n))\}\subset G$ mà $\lim(x_n, f(x_n)) = (a, b)$ (1) Ta cần chứng minh $(a, b) \in G$ hay b = f(a).

Từ (1), ta có

$$\lim x_n = a \qquad (2), \qquad \lim f(x_n) = b \qquad (3).$$

Từ (2) và sự liên tục của f ta có $\lim f(x_n) = f(a)$; kết hợp với (3) ta có b = f(a) (đpcm).

2. Xét tùy ý tập đóng $F \subset Y$, ta cần chứng minh $f^{-1}(F)$ là tập đóng trong X:

Để chứng minh $f^{-1}(F)$ đóng, ta xét tùy ý dãy $\{x_n\} \subset f^{-1}(F)$ mà $\lim x_n = a$ và cần chứng tỏ $a \in f^{-1}(F)$.

Ta có:

$$\begin{cases} f(x_n) \in F, & n \in N^* \\ F \text{ là tập compact (do } F \text{ đóng, } Y \text{ compact)} \end{cases}$$

$$\Longrightarrow \exists \{x_{n_k}\} : \lim_{k \to \infty} f(x_{n_k}) = b \in F.$$

Khi đó:

$$\lim_{k\to\infty} (x_{n_k}, f(x_{n_k})) = (a, b), (x_{n_k}, f(x_{n_k})) \in G, G$$
 đóng

$$\implies$$
 $(a, b) \in G$ hay $b = f(a)$.
Vậy $f(a) \in F$ hay $a \in f^{-1}(F)$ (đpcm).

Bài 4:

Cho không giam metric compact (X,d) và các ánh xạ liên tục $f_n: X \to R \ (n \in N^*)$ thỏa mãn các điều kiện sau:

$$f_1(x) \ge f_2(x) \ge \dots, \qquad \lim_{n \to \infty} f_n(x) = 0 \qquad \forall x \in X \qquad (*)$$

Chúng minh dãy $\{f_n\}$ hội tụ đều trên X về không, nghĩa là:

$$\forall \varepsilon > 0 \ \exists n_0 : \forall n \ge n_0 \Longrightarrow \sup_{x \in X} |f_n(x)| < \varepsilon$$
 (**)

Áp dụng phương pháp sau: với $\varepsilon > 0$ đã cho, đặt

$$G_n = \{x \in X : f_n(x) < \varepsilon\}, \quad n \in N^*$$

Chỉ cần chứng minh tồn tại n_0 sao cho $G_{n_0} = X$.

Giải

Trước tiên từ giả thiết (*) ta suy ra rằng $f_n(x) \ge 0 \ \forall x \in X, \ \forall n \in \mathbb{N}^*$. Ta có:

 G_n là tập mở (do f_n liên tục và $G_n = f_n^{-1}(-\infty, \varepsilon)$)

 $G_n \subset G_{n+1}$, (do $f_n(x) \ge f_{n+1}(x)$)

$$X = \bigcup_{n=1}^{\infty} G_n \text{ (do } \forall x \in X \ \exists n_x : \forall n \ge n_x \Rightarrow f_n(x) < \varepsilon)$$

Do X là không gian compact ta tìm được n_1, n_2, \ldots, n_k sao cho

$$X = \bigcup_{i=1}^{k} G_{n_i}$$

Đặt $n_0 = \max\{n_1, \dots, n_k\}$ ta có $X = G_{n_0}$. Khi $n \ge n_0$ ta có $G_n \supset G_{n_0}$ nên $G_n = X$. Từ đây ta thấy (**) đúng.

Bài 5:

Cho không gian metric compact (X,d) và ánh xạ liên tục $f:X\to X$. Ta định nghĩa

$$A_1 = f(X), \quad A_{n+1} = f(A_n), \quad n = 1, 2, \dots, \quad A = \bigcap_{n=1}^{\infty} A_n.$$

Chứng minh $A \neq \emptyset$ và f(A) = A.

Giải

Ta có

$$\emptyset \neq A_1 \subset X, A_1$$
 compact (do X compact và f liên tục).

Dùng quy nap, ta chứng minh được rằng

$$\emptyset \neq A_n \supset A_{n+1}, \quad A_n \text{ compact } \forall n = 1, 2, \dots$$

Từ đây ta có $\{A_n\}$ là họ có tâm các tập đóng trong không gian compact. Do đó $A \neq 0$.

• Bao hàm thức $f(A) \subset A$ được suy từ

$$f(A) \subset f(A_{n-1}) = A_n \ \forall n = 1, 2, \dots (\text{ do } A \subset A_{n-1}, \text{ với quy ước } A_0 = X).$$

• Để chứng minh $A \subset f(A)$, ta xét tùy ý $x \in A$. Vì $x \in A_{n+1} = f(A_n)$ nên

$$\forall n = 1, 2, \dots \quad \exists x_n \in A_n : x = f(x_n).$$

Do X compact nên có dãy con $\{x_{n_k}\}$, $\lim_{k\to\infty}x_{n_k}=a$. Khi đó

$$\begin{array}{rcl} x & = & \lim_{k \to \infty} f(x_{n_k}) & \text{(do cách xây dựng } \{x_n\}) \\ & = & f(a) & \text{(do } f \text{ liên tục)} \end{array}$$

Ta còn phải chứng minh $a \in A$. Cố định n, ta có

$$x_{n_k} \in A_n \text{ khi } n_k \geq n \quad (\text{do } x_{n_k} \in A_{n_k} \subset A_n)$$

$$\Longrightarrow a = \lim_{k \to \infty} x_{n_k} \in A_n \pmod{A_n}$$
 dóng).

Vậy
$$a \in A_n \quad \forall n = 1, 2, ...;$$
 do đó $a \in A$ và $x = f(a) \in f(A)$. (đpcm).