

NextRAN-Al

ETH- Huawei Sweden, kickoff

Marco Bertuletti <u>mbertuletti@iis.ee.ethz.ch</u>

Yichao Zhang <u>yiczhang@iis.ee.ethz.ch</u>

Mahdi Abdollahpour <u>mahdi.abdollahpout@unibo.it</u>

Alessandro Vanelli-Coralli <u>avanelli@iis.ee.ethz.ch</u>

Luca Benini <u>lbenini@iis.ee.ethz.ch</u>

PULP Platform

Open Source Hardware, the way it should be!

youtube.com/pulp_platform 🕞

Outline

- Presentation of previous work on the TeraPool project
- Presentation of work-packages for Y1
- First steps and research directions for WP1.Y1

Presentation of the previous work on the TeraPool project

Lightweight cores with specialized ISA

Snitch core:

- Single-stage Single-issue
- Outstanding Load&Stores (hides latency of mem. ops.)

ISA-Extended: RV32IMA +

- zfinx & zhinx
- SIMD integer/FP
- Complex FP-dotp

Building the parallel cluster hierarchically from TILES...

- 8 Snitches, 4KiB Shared I\$, 32KiB Tightly Coupled Data Memory
- 1 cycle access to TCDM, remote access to other Tiles

... & High bandwidth X-BAR hierarchical interconnects

Hierarchical Design:

- 8x cores/Tile
- 8xTiles/SubGroup
- 4xSubGroups/Group
- 4xGroup/Cluster

Hierarchical interconnects

→ Cores in any Tile can access the TCDM of other Tiles (7, 9, 11 cycles)

Connected to HBM for up to 900Gbps uplinks

- A hierarchical AXI interconnect allows access to main-memory
- Each core can program the **DMA-Frontend** through AXI-writes
- The Backend initiates transfers from DRAM to each SubGroup

TeraPool: Physically-feasible, 1024 FP RISC-V Cores

Shared-4MiB-L1

Methodology:

- GlobalFoundries' 12P+ FinFET
- Synopsys' FusionCompiler 2022.03
- Synopsys' PrimeTime 2022.03
- WC: SS/0.72V/125C ;TT: TT/0.80V/25C

Area:

- Subgroup: 1.74 x 1.74 mm² (58% utilization)
- Group: 4.2 x 4.2 mm²
- Cluster: 9 x 9mm²

Performance:

730MHz @WC, 910MHz @TT

TeraPool accelerates Lower-PHY tasks in-line

Physical Uplink Shared Channel

- 273 Resource Blocks, 50MHz, 15kHz sub-carrier spacing
- 64RX, 4TX, 32 Beams
- 1.77ms (floating-point) 2.5ms (fixed-point) latency,
- 5.5W average power-consumption

Time[ms] & Energy[mJ] Breakdown

Presentation of work-packages for Y1

Project plan

YEAR 1					
WP1.Y1	Hardware and Architecture - SoA Analysis, requirement analysis, architectural specification, initial design				
WP2.Y1	Al Models - Exploration, selection, initial benchmarking				
WP3.Y1	Software and mapping - SoA Analysis, requirements. Codesign specification and initial design				

YEAR 2	
WP1.Y2	Hardware and Architecture - Design, optimization and characterization
WP2.Y2	AI Models - Benchmarking and tuning of models. End-to-end heterogeneous (ML + non-ML functions needed) workload benchmarking extension
WP3.Y2	Software and mapping - Development and optimization of software stack for heterogeneous workloads

- M1.1.Y1 (M6) SoA analysis + benchmarking report
- M1.2.Y1 (M12) Open-source HW, SW (preliminary)
- M1.1.Y2 (M24) Open-source HW, SW (final)
- M1.2Y2 (M24) Open-Source HW, SW documentation (final) + benchmarking report

WP1.Y1: Hardware and Architecture

- Classification of AI models for baseband processing:
 - Function (CSI, CSI feedback, beam management, ...);
 - Model type (RNN, CNN, transformer, ...);
 - Memory footprint and compute complexity.
- First assessment of the hardware platform requirements to meet the latencythroughput constraints.

WP2.Y1: Exploration, selection, initial benchmarking

Moving from the SoA analysis (Y1.WP1)...

- Selection of the models that optimize the telecommunication performance:
 - Quality of service KPIs (BER, MSE vs. input SNR),
 - B5G specifications (bandwidth, number of users, and number of base station antennas).
- Initial benchmarking of the model
- Possible extension to the B5G use-case if the desired KPI are not matched.

WP3.Y1: Software and Mapping

- Implementation of parallel ML micro-kernels for the TeraPool architecture.
- Scheduling of the selected ML model on TeraPool.
- Analysis of the hardware KPIs (compute-elements and memory-bandwidth utilization, power consumption) to identify bottlenecks.

In case the desired latency-throughput is not matched by the current TeraPool architecture we will consider **domain-specialization** and merge the output of **WP3.Y1** with the output of **WP1.Y2 «Design of ML-oriented acceleration»**

First steps and research directions for WP1.Y1

Focus on CSI and full MIMO AI-receivers

- Channel State Information (CSI)
 - Influences the performance of the receiver (BER vs SNR)
 - Must be performed at the edge, to avoid high-latency data transfer on the fronthaul
 - Compute requirements scale with the MIMO-size (UEs/BW and number of antennas)
- We target full MIMO receivers → (OFDM, Beamforming, CHE, detection, demapping)
 - Direct comparison with the work on TeraPool PUSCH
 - Partial model-driven and data-driven rx, depending on blocks with highest perf. gains

Models currently under study

Name	Processing	NSC	NRXxNTX	Modulation	Model	Gain wrt Conventional receiver @BER10 ⁻³		
Deep-RX	Ch.Est. + Det.	312	2x1	16QAM	ResNet	2.5 dB *		
Deep-RX MIMO	Ch.Est. + Det.	312	16x4	16QAM	ResNet	2.5 dB *		
Neural-RX RT	Ch.Est. + Det.	1584	4x2	16QAM	CGNN	1.0 dB *		
Neural-RX	Ch.Est. + Det.	1584	4x2	16QAM	CGNN	2.0 dB *		
Extend to more subcarriers, RX, TX for B5G use-cases								

^{*} LS Channel Estimation + LMMSE Detection

Next Steps:

- Evaluate other possible models
- Evaluate computational complexity of the involved operators
- Compare computational complexity with capabilities of TeraPool

Work planned for the next period

- Deep-learning receivers for the Lower-PHY survey
 - Telecommunication performance (NTX, NRX, NPRBs, BER/MSE vs SNR)
 - Model type (e.g. Fully-Connected, Convolutional, Transformer, ...) and operators involved (e.g. matrix-multiplication, convolution, depthwise-separable convolution, ...)
 - Evaluation of the model complexity -> number of OPS, memory footprint.
- Performance required for real-time operation and comparison with TeraPool
 - OPS/s in real-time operation
 - Compare OPS/s and memory footprint with TeraPool performance and L1 capacity

Thank you!

