

Machine Learning Lab 2.1.

Miguel Andrés Villamil Carrillo

Universidad Nacional de Colombia Bogotá, Colombia 2018

1 Multinomial Naive Bayes Implementation.

The data set used is displayed in the next table.

Table 1: Table 1 (13.10)

	docID	words in document	in $c = china?$
Training set	1	Taipei Taiwan	yes
	2	Macao Taiwan Shanghai	yes
	3	Japan Sapporo	no
	4	Sapporo Osaka Taiwan	no
Test set	5	Taiwan Taiwan Sapporo	?

For the Multinomial Naive Bayes classifier implementation, the equation (1) will be applied to each of the classes (c) where c stands for "in China" and (\bar{c}) for "not in China"), using the Laplace smoothing technique.

$$P(c|d) \propto P(c) \prod_{k=1}^{n} P(t_k|c) \tag{1}$$

The equation (2) is used to calculate each of the $(P(t_k|c))$ on the data set.

$$P(t|c) = \frac{T_{ct}+1}{\sum_{t \in V} T_{ct} + B}$$
 (2)

With (B=7) in the equation (2) and $(P(c)=P(\bar{c})=\frac{1}{2})$ in the equation (1). Applying the equation (2) to the training set we end with the next results.

$$\begin{array}{lll} P(Taiwan|c) &= (2+1)/(5+7) &= 1/4 \\ P(Sapporo|c) &= ((0+1)/(5+7)) &= (1/12) \\ P(Taiwan|\bar{c})) &= (1+1)/(5+7) &= 1/6 \\ P(Sapporo|\bar{c}) &= (2+1)/(5+7) &= 1/4 \end{array}$$

Based on the previous results when attempting to classify the test set we get the results:

$$P(c|d_5)$$
 $\alpha \frac{1}{2} * (\frac{1}{4})^2 * \frac{1}{12}$ ≈ 0.00260
 $P(\bar{c}|d_5)$ $\alpha \frac{1}{2} * (\frac{1}{6})^2 * \frac{1}{4}$ ≈ 0.00347

By analizing the results we can say that the test set is more likely to not be in c.

2 Bernoulli NB Implementation.

Based on Table 2 the values for $P(c|d_5)$ and $P(\bar{c}|d_5)$ are:

$$P(c|d_5) = \frac{1}{2} * \frac{3}{4} * \frac{1}{4} * (1 - \frac{1}{2}) * (1 - \frac{1}{2}) * (1 - \frac{1}{2}) * (1 - \frac{1}{4}) * (1 - \frac{1}{4})$$

 $P(c|d_5) \approx 0.00659$

	Table 2:		
Term	c	$ar{c})$	
Taipei	(1+1)/(2+2) = 1/2	(0+1)/(2+2) = 1/4	
Taiwan	(2+1)/(2+2) = 3/4	(1+1)/(2+2) = 1/2	
Macao	(1+1)/(2+2) = 1/2	(0+1)/(2+2) = 1/4	
Shanghai	(1+1)/(2+2) = 1/2	(0+1)/(2+2) = 1/4	
Japan	(0+1)/(2+2) = 1/4	(1+1)/(2+2) = 1/2	
Sapporo	(0+1)/(2+2) = 1/4	(1+1)/(2+2) = 1/2	
Osaka	(0+1)/(2+2) = 1/4	(1+1)/(2+2) = 1/2	

$$P(-d5)=1_{2*\frac{1}{2}*\frac{1}{2}*(1-\frac{1}{4})*(1-\frac{1}{4})*(1-\frac{1}{4})*(1-\frac{1}{2})*(1-\frac{1}{2})}$$

$$P(\bar{c}|d_5) \approx 0.01318$$

The test set is more likely to not be in (c).