For Symmetric matrices A&B Real Symmetric Matrix: (i) $(A+B)^T = (A+B)$ Def: A matrix Ann with real entries and the property that $A^T = A$ is called a We know that matrix additions real Symmetric matrix commute. > A+B = B+A. We also know that $(A+B)^T = A^T + B^T$ = A + B, (A & B Symmetric) = A + B. => SUM of Symmetric matrices is another Symmetric matrix

(ii) Given A, real symmetric	we know that $I^T = I$.
(ii) Given A, real symmetric matrix, and k any real	
Scalar	$(AA^{-1}) = I = I^{T} = (AA^{-1})^{T}$
k A is also Symmetric.	
U	$= (A^{-1})^T A^T$
(iii) If A is an invertible real	
Symmetric matrix, A' is	Rearranging we get
also real Symmetric	
	$A^{-1}A = (A^{-1})^T A^{T}$
Proof: We know that	$\Rightarrow A^{-1}AA^{-1} = (A^{-1})^{T}A^{T}A^{-1}, A^{T} = A$ $\Rightarrow A^{-1}(I) = (A^{-1})^{T}I \Rightarrow A^{-1} = (A^{-1})^{T}.$
$A^{-1}A = AA^{-1} = I$	> A-1(I) = (A-1) T I > A-1 = (A-1) T.

Consider $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ \Rightarrow Symm Consider $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$, neal walkix b = c c = c c =

$$(\alpha - \lambda)(c - \lambda) - b^{2} = 0$$

$$\Rightarrow \lambda^{2} - \lambda(a+c) - b^{2} + ac = 0$$

$$\text{Noots of the above are}$$

$$\lambda = (a+c) \pm \sqrt{a+c^{2} - 4(ac-b^{2})}$$

$$= (a+c) \pm \sqrt{a^{2} + 2ac + c^{2} - 4ac + 4b^{2}}$$

$$\lambda = \frac{(a+c) \pm \int a^2 - 2ac + c^2 + 4b^2}{2}$$

$$= (a+c) \pm \left(\int (a-c)^2 + 4b^2 \right)$$

$$= 2$$

The value $(a-c)^2+4b^2$ is always ≥ 0 . Hence the square root of $(a-c)^2+4b^2$ is always real.

Case when $(a-c)^2 + 4b^2 = 0$

$$\Rightarrow \alpha - C = 0 \Rightarrow C = \alpha$$

$$4b^2 = 0 \Rightarrow b = 0$$

... Matrix A now becomes

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$

 $9x(a-c)^2+4b^2>0$

$$\lambda = (a+c) + \sqrt{(a-c)^2 + 4b^2}$$

The eigenvalues of a real symmetric 2x2 matrix are REAL.

Consider the product $A^{T}A$ Where A is a real Symmetric matrix

Let $B = A^{T}A$ $B^{T} = (A^{T}A)^{T} = (A^{T})(A^{T})^{T}$ $= A^{T}A = B$ $B^{T} = B$

The product matrix $A^TA = B$ is also a real symmetric matrix.

Similarly the product $AA^{T}=C$ is also symmetric.

 $C = AA^{T}$ $C^{T} = (AA^{T})^{T} = (A^{T})^{T}A^{T} = AA^{T}$

CT = AAT = C.