Redes Neurais e Deep Learning

FUNÇÃO DE ATIVAÇÃO

Zenilton K. G. Patrocínio Jr zenilton@pucminas.br

Funções de Ativação – Inspiração Biológica

Sigmoid

$$\sigma(x)=1/(1+e^{-x})$$

Sigmoid

$$\sigma(x)=1/(1+e^{-x})$$

Tanh tanh(x)

Sigmoid

$$\sigma(x)=1/(1+e^{-x})$$

Tanh tanh(x)

ReLU max(0,x)

Sigmoid

$$\sigma(x)=1/(1+e^{-x})$$

Tanh tanh(x)

ReLU max(0,x)

Sigmoid

$$\sigma(x)=1/(1+e^{-x})$$

Tanh tanh(x)

ReLU max(0,x)

Leaky ReLU

ELU

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

Sigmoid

$$\sigma(x)=1/(1+e^{-x})$$

Tanh tanh(x)

ReLU max(0,x)

Leaky ReLU max(0,1x; x)

ELU

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha & (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

Maxout

$$\max(w_1^Tx+b_1,w_2^Tx+b_2)$$

Historicamente popular, uma vez que tem uma boa interpretação como uma "taxa de disparo" de um neurônio saturado

Função Sigmoide (logística)

$$\sigma(x) = 1/(1 + e^{-x})$$

Função Sigmoide (logística)

$$\sigma(x) = 1/(1 + e^{-x})$$

- Historicamente popular, uma vez que tem uma boa interpretação como uma "taxa de disparo" de um neurônio saturado
- "Espreme" os valores para o intervalo [0,1] pode "matar" (zerar) os gradientes

- O que acontece quando x = -10?
- O que acontece quando x = 0?
- O que acontece quando x = 10?

- Historicamente popular, uma vez que tem uma boa interpretação como uma "taxa de disparo" de um neurônio saturado
- "Espreme" os valores para o intervalo [0,1] pode "matar" (zerar) os gradientes
- Não é centrada em torno de zero

Função Sigmoide (logística)

$$\sigma(x) = 1/(1 + e^{-x})$$

Considere o que acontece quando a entrada de um neurônio (x) é sempre positiva:

O que se pode dizer sobre os gradientes em relação a w?

Considere o que acontece quando a entrada de um neurônio (x) é sempre positiva:

Considere o que acontece quando a entrada de um neurônio (x)

é sempre positiva:

$$f\left(\sum_i w_i x_i + b
ight)$$

$$\sigma(x) = 1/(1 + e^{-x})$$

Direções possíveis para atualiação de gradientes

Direções possíveis para atualiação de gradientes

Considere o que acontece quando a entrada de um neurônio (x)

é sempre positiva:

Considere o que acontece quando a entrada de um neurônio (x)

é sempre positiva:

$$f\left(\sum_i w_i x_i + b\right)$$
 Direções possíveis para atualiação de gradientes
$$\sigma(x) = 1/(1+e^{-x})$$
 Direções possíveis para atualiação de gradientes
$$vetor \mathbf{w}$$
 hipotético ótimo

Considere o que acontece quando a entrada de um neurônio (x)

é sempre positiva:

O que se pode dizer sobre os gradientes em relação a w?

Sempre todos positivos ou negativos :(É também por isso que se deseja dados com média zero!

Função Sigmoide (logística)

$$\sigma(x) = 1/(1 + e^{-x})$$

- Historicamente popular, uma vez que tem uma boa interpretação como uma "taxa de disparo" de um neurônio saturado
- "Espreme" os valores para o intervalo [0,1] pode "matar" (zerar) os gradientes
- Não é centrada em torno de zero
- O uso de exp() é um pouco "caro"
- Não é adequada para tratamento de imagens (substituída por ReLU)

Função Sigmoide (logística)

$$\sigma(x) = 1/(1+e^{-x})$$

- Historicamente popular, uma vez que tem uma boa interpretação como uma "taxa de disparo" de um neurônio saturado
- "Espreme" os valores para o intervalo [0,1] pode "matar" (zerar) os gradientes
- Não é centrada em torno de zero
- O uso de exp() é um pouco "caro"
- Não é adequada para tratamento de imagens (substituída por ReLU)
- É um elemento chave em redes LSTM "controle de sinais"
- Ideal para aprendizado de funções "lógicas" pois produz resultado no intervalo [0, 1]

Função de Ativação – Tanh

Tanh(x)

[LeCun et al., 1991]

- "Espreme" os valores para o intervalo [-1,1]
- É centrada em zero (que é bom)
- Ainda "mata" os gradientes quando saturada :(
- Também é usada em redes LSTM para valores limitados e com sinal
- Não é "boa" para funções binárias

ReLU (Rectified Linear Unit)

[Krizhevsky et al., 2012]

- Computa f(x) = max(0,x)
- Não fica saturada na região positiva
- É muito eficiente computacionalmente
- Converge mais rapidamente que sigmoide/tanh sobre imagens (≈ 6x)
- Sua saída não é centrada em zero
- Não é adequada para funções lógicas
- Não é usada no controle de redes recorrentes
- Apresenta uma inconveniência : qual o gradiente quando x < 0?

- O que acontece quando x = -10?
- O que acontece quando x = 0?
- O que acontece quando x = 10?

Função de Ativação – Leaky ReLU

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

[Mass et al., 2013] [He et al., 2015]

- Não satura nunca
- É computacionalmente eficiente
- Converge mais rapidamente que sigmoide/tanh sobre imagens (≈ 6x)
- Nunca "mata" os gradientes

Função de Ativação – Leaky ReLU

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

[Mass et al., 2013] [He et al., 2015]

- Não satura nunca
- É computacionalmente eficiente
- Converge mais rapidamente que sigmoide/tanh sobre imagens (≈ 6x)
- Nunca "mata" os gradientes

PReLU (Parametric Rectifier Linear Unit)

$$f(x) = \max(lpha x, x)$$
BackProp sobre $lpha$
(parâmetro)

ELU (Exponential Linear Units)

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

[Clevert et al., 2015]

- Apresenta todos os benefícios de ReLU
- Não "mata" os gradientes
- Produz saídas com médias próximas de zero
- Necessita de exp() para seu cálculo

Função de Ativação – Maxout

$$\max(w_1^Tx+b_1,w_2^Tx+b_2)$$

[Goodfellow et al., 2013]

- Não possui a forma básica de produto interno seguido por não-linearidade
- Generaliza ReLU e Leaky ReLU
- Apresenta um regime linear! Nunca satura!
 Nunca "mata" os gradientes!

Problema: aumenta o número de parâmetros por neurônio :(