Universität Regensburg

F-Praktikum

Supraleitung

Michael Rößner und Jonas Schambeck

30. Dezember 2019

Inhaltsverzeichnis

1	Einle	eitung			3				
2	Vorl	Vorbereitung							
	2.1	Theore	etische Grundlagen		4				
		2.1.1	Bosonen und Fermionen						
		2.1.2	BCS-Theorie						
		2.1.3	Einteilung von Supraleitern $\ .\ .\ .$		6				
3	Vers	Versuchsdurchführung							
	3.1	Tiefter	mperatur Supraleitung		7				
		3.1.1	Messungen am Spulenkörper		7				
		3.1.2	Messungen am Niob-Film						
	3.2	Hochte	emperatur Supraleitung						
		3.2.1	a-b-Richtung		18				
		3.2.2	c-Richtung						
	3.3	Levita	tion		20				
4	Anh	Anhang 22							
	4.1	Messki	ırven zum Tieftemperaturteil (Spule	enkörper)	22				
	4.2	Messki	ırven zum Tieftemperaturteil (Niob-	-Film)	22				
5	Fazi	t			23				

1 Einleitung

2 Vorbereitung

Supraleiter zeichnen sich durch eine widerstandslose Leitung unter einer kritischen Temperatur T_c aus. Schon seit Anfang des 20. Jahrhunderts bekannt ist dies in Metallen bei sehr tiefen Temperaturen nahe des Nullpunktes. Hochtemperatursupraleiter konnten dagegen erst 1986 entdeckt werden. Die theoretischen Grundlagen hinter diesen Effekten sind zahlreich und zum Teil noch heute ungeklärt. Hier soll ein kleiner Überblick gegeben werden.

2.1 Theoretische Grundlagen

2.1.1 Bosonen und Fermionen

Zum Verständnis der Supraleitung essentiell ist die Unterscheidung der Elementarteilchen in Bosonen und Fermionen, sowie die Eigenschaften Dieser. Für unsere Zwecke genügt es Bosonen und Fermionen zu betrachten.

Fermionen

Als Fermionen werden Teilchen mit halbzahligem Spin $(\frac{1}{2}, \frac{3}{2}, \dots)$ bezeichnet. Diese Gruppe der Elementarteilchen, zu der Quarks und Leptonen gezählt werden, bildet die Materie.

Für die Supraleitung wichtig ist vor allem das Pauli'sche Ausschlussprinzip, welchem Fermionen unterliegen. Es besagt, dass 2 Fermionen am selben Ort nicht den selben Quantenzustand besetzen dürfen.

Dies wird am Beispiel der Elektronen in Atomorbitalen klar. Ohne dieses Prinzip könnten alle Elektronen im energetisch günstigsten Grundzustand liegen, in Atomen werden jedoch Besetzungen energetisch höherliegender Zustände beobachtet. In Abbildung 2.1 ist die Aufteilung zu sehen. Zuerst werden die beiden Zustände der ersten Schale besetzt, die sich nur in der Spinausrichtung unterscheiden. In den nächsten Schalen werden durch unterschiedliche Drehimpulse und Spinausrichtungen der einzelnen Elektronen weitere Zustände besetzt, mit immer größer werdender Energie.

Bosonen

Als Bosonen werden Teilchen mit ganzzahligem Spin bezeichnet. Elementar treten Bosonen nur als Austauschteilchen der elementaren Wechselwirkungen zwischen Fermionen auf. Ein Beispiel ist hier das Photon als Überträger der elektromagnetischen Kraft. Für unsere Zwecke sind jedoch aus Fermionen zusammengesetzte Bosonen weitaus wichtiger.

Abbildung 2.1: Energieniveaus der Elektronen in Atomorbitalen [1]

Mehrere Fermionen können durch Wechselwirkungen so aneinander koppeln, dass sie durch eine gemeinsame Gesamtwellenfunktion beschrieben werden müssen. Einfach hat dies zur Folge, dass sich Verbunde aus Fermionen, ein bekanntes Beispiel hierfür stellen Atomkerne dar, wie Bosonen verhalten.

Im Gegensatz zu den Fermionen unterliegen Bosonen nicht dem Pauli-Prinzip. Anders als im obigen Energieschema, ist es also für Bosonen möglich den selben Energiezustand zu besetzen. Dies wird später für die Theorie der Supraleitung essentiell.

2.1.2 BCS-Theorie

Eine gute theoretische Beschreibung Supraleiter 1. Art bietet die BCS-Theorie. Zwar kann durch diese die Hochtemperatursupraleitung auch erklärt werden, das Prinzip der Paarbildung bleibt jedoch ungeklärt.

Cooper-Paare

Grundlage der Supraleitung ist die Cooper-Paarbildung der Elektronen im Festkörper.

Es wird angenommen, dass ein Elektron, aufgrund seiner negativen Ladung, eine Deformationsspur hinterlässt. Siehe hierzu Abbildung 2.2. Ein Elektron zieht die positiv geladenen Kerne an, was diese zum Schwingen anregt. Nach einer viertel Schwingperiode erreicht die Konzentration der positiven Ladungen ihr Maximum und weitere Elektronen werden angezogen. Durch die große Reichweite dieser Kraft, das erste Elektron ist nach einer viertel Schwingperiode schon weit durch den Festkörper gewandert, wird sie nicht durch die Coulomb-Abstoßung aufgehoben.

Grundlage der BCS-Theorie ist nun die Kopplung zweier Elektronen durch diese Wechsel-

Abbildung 2.2: Deformationsspur hinter einem Elektron

wirkung, wodurch der Verbund durch eine bosonische Gesamtwellenfunktion beschrieben werden muss.

2.1.3 Einteilung von Supraleitern

Wie bereits erwähnt gibt es verschiedene Arten von Supraleitern, die Typ-I und Typ-II Supraleiter. Unterschieden wird hier anhand des Verhaltens in einem Magnetfeld.

Typ-I Supraleiter

Der Typ-I Supraleiter ist der "klassische SSupraleiter. Die meisten Metallischen können hier zugeordnet werden. Legt man an einen Typ-I Supraleiter im normalleitenden Zustand ein Magnetfeld an und kühlt diesen anschließend auf $T < T_c$, so wird das innere Magnetfeld, bis auf einen kleinen Bereich am Rand, vollständig verdrängt. Die supraleitende Phase kann durch ein Erwärmen über die kritische Temperatur T_c , das Anlegenen eines starken Magnetfelds mit einer Feldstärke größer der kritischen Feldstärke B_c , oder dem Überschreiten der kritischen Stromdichte J_c durchbrochen werden.

Weiter haben Materialien diesen Typs meist eine sehr niedrige Sprungtemperatur T_c von nur wenigen Kelvin.

Typ-II Supraleiter

Der Typ-II Supraleiter zeigt bis zum unteren kritischen Magnetfeld B_{c1} dasselbe Verhalten. Wird ein stärkeres Magnetfeld angelegt, so können Feldlinien in Form von Flussschläuchen (extra Kapitel?) in das Material eindringen. Durch ein Wandern dieser Flussschläuche und der daraus resultierenden Feldbewegung, entsteht auch ein elektrischer Widerstand im Supraleiter.

3 Versuchsdurchführung

3.1 Tieftemperatur Supraleitung

Im ersten Versuchsteil sollten wir das Verhalten eines Niob-Films und eines Spulenkörpers mit Bleikern bei sehr niedrigen Temperaturen in Abhängigkeit eines Magnetfelds beobachten. Dazu wurde ein vorgefertigter Messaufbau, der an einem Edelstahlstab befestigt war in eine mit flüssigem Helium gefüllte Kanne gesenkt (siehe Abb. 3.1) und somit langsam auf ca. 4,5K abgekühlt. Nach Erreichen des thermodynamischen Gleichgewichts zwischen Helium und Probenaufbau wurde mit der Messung des Spulenkörpers begonnen: Dazu wurde die Temperatur mittels einer im Probenkörper verbauten Heizspule langsam schrittweise von 4,45K auf 8,03K erhöht und jeweils das Magnetfeld um den Probenkörper durchgesweept. Dies erfolgte über die supraleitende Magnetspule, die sich in der Hülle des Probenkörpers befand (siehe Abb. 3.1). Die Ansteuerung der Magnetspule, sowie die Messung des Spannungsabfalls am Probenkörper erfolgten hierbei automatisch über ein Computerprogramm.

Abbildung 3.1: links: Helium-Kanne. rechts: Versuchsaufbau im Probenkörper, befestigt an einem Edelstahlrohr, welcher in die Helium-Kanne gesenkt wird.

3.1.1 Messungen am Spulenkörper

Der Strom durch die Magnetspule wurde von 0 bis 4A und wieder zurück auf 0 gesweept. Dabei wurde die induzierte Spannung des Spulenkörpers gegen den Strom durch die Magnetspule aufgetragen. Mit der Gleichung des Magnetfelds einer langen Spule

$$B = \mu_0 \frac{N}{l} \cdot I$$

ergibt sich also bei 4A eine maximale Magnetfeldstärke von 0,2T. Die Windungszahl N der Spule betrug N=6245, die Länge 1 der Spule 15,8cm und die magnetische Feldkonstante μ_0 beträgt ca. $1.257 \times 10^{-6} \,\mathrm{N\,A^{-2}}$.

Eine beispielhafte Messkurve ist in Abb. 3.2 zu sehen. Es handelt sich hierbei um die Messung der Spule bei 4,45K. Die Kurve beginnt im oberen Ast des Graphen bei 0T und bleibt bis zu einer kritischen Magnetfeldstärke von $B_c \approx 0.052\,\mathrm{T}$ relativ konstant bei $U_{ind} \approx 0.3\,\mathrm{mV}$, was durch die Magnetfeldverdrängung eines Supraleiters (Meißner-Effekt) zu erwarten war. Bei Erreichen der kritischen Magnetfeldstärke B_c wird der Bleikern der Spule schlagartig normalleitend, wodurch sich eine hohe Flussänderung durch

die Spule ergibt, welche zu einem kurzen und hohen Anstieg der induzierten Spannung führt. Danach bleibt die induzierte Spannung bei einem konstanten Wert von ca. 1,1mV. Beim Herunterfahren des Magnetfelds ändert sich mit dem Vorzeichen der Flussänderung auch das Vorzeichen von U_{ind} und die Kurve wird an der x-Achse gespiegelt. Beim kritischen Magnetfeld ist hier nur ein kleiner Peak zu erkennen und anschließend sinkt der Betrag der induzierten Spannung leicht ab.

Abbildung 3.2: Messkurve der Spule bei 4,45K. Gut zu erkennen ist der Peak, eingeleitet durch das Erreichen der kritischen Magnetfeldstärke $B_c \approx 0.052\,\mathrm{T}$.

Insgesamt wurden 21 solcher Messkurven bei Temperaturen von 4,45K bis 8,03K aufgenommen. Aus diesen Messreihen wurden dann jeweils die kritischen Magnetfeldstärken B_c ermittelt und geplottet, um eine $B_c(T)$ Kurve zu erhalten (siehe Abb. 3.3). Ab der Messung bei 7,34K setzte der normalleitende Zustand schon ohne Magnetfeld ein, die kritische Temperatur T_c war ab hier also überschritten.

Die Kurve wurde mittels q
ti-plot gemäß der Funktion

$$B_c(T) = B_c(0) \cdot \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$$

gefittet, wobei folgende Werte errechnet wurden:

- $B_c(0) = 0.0858 \,\mathrm{T}$
- $T_c = 7.31\,\mathrm{K}$ (Literaturwert für Blei: $T_c = 7.2\,\mathrm{K})$

Abbildung 3.3: $B_c(T)$ -Messwerte (schwarz) für den Spulenkörper mit entsprechendem Fit (rot).

Zusätzlich sollte noch die magnetische Suszeptibilität χ_s des Bleikerns im supraleitenden Zustand bestimmt werden. Der Index s steht hierbei im Folgenden für den supraleitenden Zustand, der Index n für den normalleitenden Zustand. Über die Beziehung

$$U_{ind} = N_p A_p \mu_0 \mu \frac{N}{l} \dot{I}$$

folgt mit $\mu = 1 + \chi$:

$$U_{ind} = \frac{N_p A_p \mu_0 N \dot{I}}{l} (1 + \chi)$$

und daraus:

$$\Delta U = U_{ind,n} - U_{ind,s} = \frac{N_p A_p \mu_0 N \dot{I}}{l} (\chi_n - \chi_s)$$

was sich umformen lässt zu

$$\chi_s = -\frac{\Delta Ul}{N_n A_n \mu_0 N\dot{I}} + \chi_n$$

hierbei bezeichnet

- $\Delta U = U_{ind,n} U_{ind,s}$ den gemittelten Unterschied der induzierten Spannung zwischen dem supraleitenden und dem normalleitenden Zustand (siehe Abb. 3.4), $\Delta U \approx 0.8 \,\mathrm{mV}$
- l die Länge der Magnetfeldspule, $l=15.8\,\mathrm{cm}$
- N_p die Windungszahl des Spulenkörpers, $N_p = 2900$
- A_p die Querschnittsfläche des Spulenkörpers, $A_p=\pi r^2=\pi (2.1\,{\rm mm})^2=13.85\times 10^{-6}\,{\rm m}^2$
- $\,\mu_0$ die magnetische Feldkonstante, $\mu_0\approx 1.257\times 10^{-6}\,\mathrm{N\,A^{-2}}$
- N die Windungszahl der Magnetfeldspule, N=6245
- \dot{I} die zeitliche Ableitung des Stroms durch die Magnetfeldspule, $\dot{I} = \frac{4 \, \text{A}}{8 \, \text{s}} = 0.5 \, \text{A} \, \text{s}^{-1}$
- $\chi_n \approx -1.8 \times 10^{-6}$

Mit diesen Werten ergibt sich

$$\chi_s \approx -0.80$$

Zu erwarten wäre hier ein Wert von exakt -1 gewesen. Mögliche Gründe für die Abweichung sind zum einen die Bestimmung von ΔU aus den verrauschten Messkurven. Einen großen Beitrag zur Ungenauigkeit des Ergebnisses liefert jedoch auch der Radius des Spulenkörpers: wird für den Radius z.B. $r=2\,\mathrm{mm}$ benutzt, was dem Innenradius der Spule entspricht, ergibt sich für die Suszeptibilität ein Wert von $\chi_s \approx -0,88$.

Abbildung 3.4: Bestimmung von ΔU aus den Messkurven. Es wurde hierbei über mehrere Diagramme gemittelt.

3.1.2 Messungen am Niob-Film

Hier sollten R(B)-Kurven bei verschiedenen Temperaturen (13 Messungen von 8,06K bis 9,19K) aufgenommen werden. Dazu wurde durch den Niob-Film ein konstanter Strom von 8 μ A geschickt und die abfallende Spannung gemessen. Ansonsten war das Verfahren analog zum vorherigen Teil. Die so erhaltenen U(B)-Kurven konnten dann mithilfe der Beziehung R=U/I in R(B)-Kurven umgewandelt werden. Ein beispielhaftes Diagramm

Von den jeweiligen R(B)-Kurven wurde jeweils der Widerstand bei B=0 T ermittelt, um eine R(T)-Kurve für das Nullfeld zu ermitteln, woraus sich die Sprungtemperatur zu $T_c\approx 9$ K ermitteln lässt (siehe Abb. 3.6). Der Literaturwert hierzu liegt bei 9.2 K.

ist in Abb. 3.5 zu sehen.

Abbildung 3.5: R(B)-Kurve des Niob-Films bei einer Temperatur von 8,73K. Das kritische Magnetfeld liegt hier ca. bei $0.11\,\mathrm{T}$

Abbildung 3.6: R(T)-Kurve des Niob-Films. Die Sprungtemperatur T_c liegt ca. bei 9K.

Zusätzlich sollte hier ebenfalls eine $B_c(T)$ -Kurve, analog zu Kapitel 3.1.1, angefertigt werden. Diese ist in Abb. 3.7 dargestellt. Die Fitparameter ergaben für die kritische Magnetfeldstärke bei $0 \, \mathrm{K} \, B_c(0) = 1.82 \, \mathrm{T}$ und für die Sprungtemperatur $T_c = 8.99 \, \mathrm{K}$.

Abbildung 3.7: Messwerte der kritischen Magnetfeldstärke (schwarz) mit Fit-Kurve (rot). Gut zu erkennen ist $B_c(0) = 1.82\,\mathrm{T}$ (Schnittpunkt mit der y-Achse). Die errechnete kritische Temperatur liegt bei $T: c = 8.99\,\mathrm{K}$.

3.2 Hochtemperatur Supraleitung

In diesem Versuchsteil sollten die R(T)-Kurven einer YBCO-Tablette für a-b-Leitung, sowie für c-Leitung aufgenommen werden. Dazu wurde der YBCO-Kristall in flüssigen Stickstoff getaucht und somit langsam auf 77K abgekühlt. Die Temperatur des Ky-

rostaten wurde dabei mit Hilfe eines Thermoelements ermittelt. Zur Bestimmung des Widerstands wurde ein konstanter Strom $(I=1,55\mathrm{mA})$ durch den Kristall geleitet und die an der Tablette abfallende Spannung mittels eines Lock-In Verstärkers ermittelt. Dadurch konnte über die Beziehung R=U/I der Widerstand errechnet werden. Kurz nach dem Eintauchen des Kristalls in den flüssigen Stickstoff wurde ein Messprogramm am Computer gestartet, welches im Abstand von einer Sekunde die an der Tablette abfallende Spannung gegen die Thermospannung des Thermoelements auftrug. Der Versuchsaufbau ist in Abb. 3.8 dargestellt.

Dieser Versuchsteil konnte von uns nicht korrekt durchgeführt werden, da sich während der Messung in c-Richtung herausstellte, dass der Probenkörper ein Leck hatte und somit der flüssige Stickstoff direkt mit dem Kristall in Kontakt kommen konnte, was die Messung verfälschte (siehe Abb. 3.9). In Rücksprache mit dem Betreuer verwenden wir deshalb für diesen Teil die Messergebnisse einer anderen Praktikumsgruppe. Leider ist uns deswegen auch die für die Widerstandsbestimmung benötigte konstante Stromstärke nicht bekannt, weswegen wir hierfür unseren Wert ($I = 1.55 \,\mathrm{mA}$) verwenden. Zur Umrechnung der Thermospannung in Temperatur verwendeten wir die im Anhang der Anleitung gegebene Näherung:

$$T \approx \sqrt{\frac{U}{0,0637} + 16111} - 49.5 \,\mathrm{K}$$

wobei U die **Thermospannung in Mikrovolt** bezeichnet.

hochtemp_aufbau.png

Abbildung 3.8: Schematische Darstellung des Versuchsaufbaus zur Hochtemperatur-Supraleitung.

Abbildung 3.9: Fehlgeschlagene Messung in c-Richtung. Auffällig ist der unregelmäßige Verlauf der Kurve unterhalb von 150 K. Außerdem liegt hier die gemessene Sprungtemperatur bei ca. 78 K, was weit unter dem Literaturwert $(T_c=92\,\mathrm{K})$ liegt.

3.2.1 a-b-Richtung

Die a-b-Ebene bezeichnet beim YBCO-Kristall die Ebene, in der die CuO_2 -Schichten liegen, welche zum einen für die Ausbildung der Supraleitung verantwortlich sind und zum anderen auch im normalleitenden Zustand die höchste Leitfähigkeit besitzen. Deshalb ist hier oberhalb der Sprungtemperatur ein geringerer Widerstand zu erwarten als bei der Messung senkrecht zu den CuO_2 -Schichten, also in c-Richtung.

Beim Verlauf der R(T)-Kurve (siehe Abb. 3.10) fällt auf, dass der Widerstand zunächst mit sinkender Temperatur steigt, wodurch schon erkannt werden kann, dass es sich beim YBCO-Kristall um keinen metallischen Leiter handelt, da hier ein gegenteiliges Verhalten zu erwarten wäre.

Die Sprungtemperatur T_c konnten wir zu $T_c \approx 92\,\mathrm{K}$ bestimmen, was dem Literaturwert entspricht.

Bei beiden Messungen tritt ein Offset in y-Richtung auf, d.h. auch unterhalb der Sprungtemperatur fällt der gemessene Widerstand des Kristalls nicht auf exakt Null. Dieser Offset ist durch die Übergangswiderstände der Messkontakte zu erklären, welche durch den Übergang von Metall (vergoldete Messkontakte) auf Keramikmaterial (YBCO-Tablette) zustande kommen. Der Offset liegt bei der Messung in a-b-Richtung bei ca. $1.8\,\Omega$.

Abbildung 3.10: R(T)-Kurve der Messung in a-b-Richtung. Der steile Abfall des Widerstandes ist deutlich zu sehen, bei einer Sprungtemperatur von ca. 92 K. Der Offset liegt bei ca. 1 Ω .

3.2.2 c-Richtung

Die Messung in c-Richtung ergab eine relativ ähnliche R(T)-Kurve wie in a-b-Richtung (siehe Abb. 3.11), jedoch - wie zu erwarten - mit etwas höheren Widerständen in der normalleitenden Phase. Die Sprungtemperatur konnten wir zu $T_c \approx 93\,\mathrm{K}$ bestimmen.

Abbildung 3.11: R(T)-Kurve in c-Richtung. Im Vergleich zur a-b-Richtung ist die normalleitende Phase um ca. $0.3\,\Omega$ nach oben verschoben (zu beachten ist die unterschiedliche Skalierung der y-Achsen!). Die Sprungtemperatur liegt bei ca. $93\mathrm{K}$, der Offset bei ca. $1.8\,\Omega$.

3.3 Levitation

Im letzten Versuchsabschnitt wurde die Levitation eines Supraleiters untersucht. Dazu wurde eine YBCO-Tablette und ein kleiner Permanentmagnet verwendet.

Zuerst wurde die Tablette in einer Schale mit flüssigem Stickstoff unter die Sprungtemperatur abgekühlt. Mit einer Pinzette näherten wir nun den Magneten an die Tablette an und stellten eine deutliche abstoßende Kraft fest. Erklären lässt sich dies durch die Magnetfeldverdrängung eines Supraleiters. Die YBCO-Tablette ist im supraleitenden Zustand perfekt diamagnetisch, das heißt sie baut ein gleich großes Gegenfeld zum Magnetfeld des Permanentmagneten auf, was dann durch die abstoßende Kraft bemerkbar wird. Wir konnten so jedoch keinen Zustand herstellen, in dem der Magnet über der Tablette schwebt. Um dies zu erreichen, legten wir die Tablette in die leere Schale, positionierten darauf ein kleines Stück Styropor als Abstandhalter und legten darauf den Magneten. Anschließend wurde die Tablette wieder mit flüssigem Stickstoff abgekühlt. Nach Entfernen des Abstandhalters schwebte der Magnet über dem YBCO Kristall (siehe Abb. 3.13). Der Magnet konnte sogar für wenige Sekunden mit einer Pinzette angehoben und gedreht werden, während die Tablette weiterhin unter dem Magneten schwebte (siehe Abb. 3.12). Erklären lässt sich dieses Phänomen dadurch, dass das Magnetfeld des Magneten die YBCO-Tablette im normalleitenden Zustand durchdringen kann. Beim Abkühlen unter die Sprungtemperatur bilden sich nun magnetische Flussschläuche im Supraleiter aus, welche von ringförmigen Abschirmströmen umgeben werden. Der Supraleiter als idealer Diamagnet wirkt nun jeder Änderung des Magnetfelds entgegen, wodurch der energetisch günstige Zustand somit dann erreicht ist, wenn sich die relative Position der Tablette zum Magneten nicht ändert. Wird der Magnet also angehoben, folgt die Tablette in konstantem Abstand.

Abbildung 3.12: Die YBCO-Tablette schwebt unter dem Permanentmagneten. Unterhalb ist die Schale mit flüssigem Stickstoff zu sehen.

Abbildung 3.13: Der Magnet schwebt über der YBCO-Tablette. Außerhalb vom flüssigen Stickstoff ist dieser Zustand nur wenige Sekunden stabil, bis der Supraleiter sich über seine Sprungtemperatur aufgewärmt hat. Auf der Tablette sind Blasen des siedenden Stickstoffs zu erkennen.

4 Anhang

Messkurven z	um Tieftem	peraturteil	(Spulenk	örpe
graphen_spule	.png			

4.2 Messkurven zum Tieftemperaturteil (Niob-Film)

5 Fazit

Literaturverzeichnis

[1] $\label{lem:https://chemiezauber.de/images/q1/materie/energieniveaus-elektronen.} jpg, 30.12.2019$