Introduction to Cognitive Science

(3: The turn to the brain)

(fMRI in the next presentation)

Intro

- Cognitive systems as functional systems
 - Performing a function (goal?)
 - Is this different from information processing? Is it compatible with information processing?
 - We can study algorithms without thinking about the circuitry, but thinking about circuitry might help
 - Also, nature-inspired computation is a big thing right now!
 - But beware: CogSci as science takes as a fundamental assumption that cognitive processes can be studied independently of the hardware/wetware

Should we ignore the brain?

- Most CogSci think yes
 - But not in a complete sense, rather in the sense that we should not get caught in neural peculiarities which do not carry over to say crows
 - i.e. it may lead to a misleading view on cognitive processes qua cognitive processes
 - e.g. can we conclude all hearts have four chambers just because the human heart has?
- "There is an artificial version of every organ asides from the brain"
 - Is this true?
 - Why?

Should we ignore the brain?

- But let us explore an idea:
 - Do brains learn how they learn because of how they are constructed?
 - If so, their construction is highly relevant

Basic brain anatomy

- Three different parts:
 - Forebrain (hemispheres form the celebral cortex):
 - Left hemisphere (four lobes)
 - Right hemisphere (four lobes)
 - Interhemispheric fissure
 - Midbrain
 - Hindbrain

Cerebral cortex: four lobes

What Does Each Lobe Do?

- Frontal lobe reasoning, planning, parts of speech, movement, emotions, and problem solving
- Parietal lobe movement, orientation, recognition, perception of stimuli
- Occipital lobe associated with visual processing
- Temporal lobe associated with perception and recognition of auditory stimuli, memory, and speech

Inside lobes

- There is further organization within each lobe
 - 52 Brodmann areas
 - We are interested in Brodmann area 17, also known as:
 - the primary visual cortex or
 - the striate cortex or
 - area V1
- Contralateral organization of the brain

Figure 3.4 The primary visual pathway. Note the contralateral organization, with information from the right side of space processed by the left side of the brain.

Two visual systems hypothesis: 1982 Ungerleiden and Mishkin

- Example of a bottom-up approach to cogSci
- Theysuggested that visual information does not follow a single route to the primary visual cortex
 - Information relevant for recognizing and identifying the object follows a ventral route from the primary visual cortex (PVC) to the temporal lobe
 - Information for locating objects follows a dorsal route from the PVC to the posterior parietal lobe

Two visual systems hypothesis: 1982 Ungerleiden and Mishkin

- How did they arrive at this conclusion?
- Studying cognitive impairments due to brain damage and performing neuroanatomical experiments on monkeys
- Back then, there was already significant evidence to suggest that patients with damage to the temporal an parietal lobes exhibit very different types of cognitive problems

Cross-lesion disconnection experiments

- Standard experiments with a region-lesion have (another) fatal flaw: we do not know if the cognitive impairment is:
 - due to the region-lesion as such, or
 - because of the connective property of the region (i.e. because two other regions cannot communicate)
- Hence, precise surgical removal is required for a conclusive proof (major technical limitation)
- Cross-lesion disconnection experiments exploit the fact that the cerebellum is divided in two hemispheres with duplication of the primary areas

Experiments

- Ungerleider and Mishkin hypothesized that:
 - There is a pathway from PVC to inf. temp. area
- Three stage removal:
 - ITA right
 - PVC left
 - Corpus callosum
- Location test had the most severe drop in training after the second stage (PVC) removal
- Recognition dropped only after corpus callosum removal

- PET: Positron emisson tomography (not the same as fMRI)
- The idea behind functional neuroimaging (among which is PET):
 - Function of different brain areas by measuring blood flow
 - Subjects are injected with oxygen-15 which emits positrons and then the PET scanner tracks it.
 - Lasts for about a minute before decaying
- However, just identifying which areas have a higher bloodflow is not conclusive:
 - That is why we need to be careful on how to design an experiment around a technique
 - We need to filter out irrelevant background brain activity

- How linguistic info is processed
- Lexical access: info-proc. Models of single word processing
- Two different models:
 - Neurology, based on studies on lesions: processing a single word uses an invariant pathway (serial)
 - CogSci, based on experiments on non-damaged brains: the brain can carry out several processes at once, no fixed route

- Petersen et al. Designed a complex experiment to decide which model is correct
- Main idea is to organize the experimental conditions hierarchically, so that each condition uses a more advanced version of information processing
- This means looking at new brain areas that become involved
 - (Also we can positively identify which areas are never involved)

- Baseline condition: Subjects were asked to look at a crosshair on a screen (visually attending to something which is not a word)
- Second condition: flashed a word on the screen at a rate of 40 words per min
 - Subtract the brain activation of the first from the second
- Third condition: they had to speak outloud the word
- Fourth condition: they had to say outloud an associated verb with the word on the screen

Figure 3.9 Images showing the different areas of activation (as measured by blood flow) during the four different stages in Petersen et al.'s (1988) lexical access studies. (From Posner and Raichle 1994)

- Results showed clear evidence against the neurological model
- Also:
 - When speaking outloud the word, there were no activations in the regions associated with auditory processing
 - Areas involved in semantic processing (4th condition) were not used in any other task

Homework

Easy read:

Section 3.3. of chapter 3 (pp. 76-80)