

Ayudantía 5 - Corriente Alterna II: RCL, Impedancia y Solemne 1

Pedro Morales Nadal

pedro.morales1@mail.udp.cl

© +56 9 30915977

Edicson Solar Salinas

 ${\tt edicson.solar@mail.udp.cl}$

© +56 9 92763279

Shi Hao Zhang

shi.zhang@mail.udp.cl

© +56 9 90787770

Ingeniería Civil en Informática y Telecomunicaciones

¿Qué veremos?

- Condensadores, Inductores, Impedancia
- Circuitos RCL
- Ejercicios (AC y Thévenin)

Impedancia en Corriente Alterna

- La impedancia (Z) es la resistencia total de un circuito en AC.
- Se expresa en forma compleja: Z = R + jX, donde:
 - R: Resistencia real (en ohmios).
 - X: Reactancia (en ohmios).
- Z depende del tipo de componente en el circuito (resistor, inductor, condensador).

Impedancia de Resistor, Inductor y Condensador

- Resistor: $Z_R = R$.
- Inductor: $Z_L = j\omega L$, donde ω es la frecuencia angular ($\omega = 2\pi f$).
- Condensador: $Z_C = \frac{1}{j\omega C}$.

Notita

El término j es la unidad imaginaria, que representa un desfase de 90 grados.

Suma de Impedancias Complejas

- Para circuitos en paralelo o serie, la impedancia total es la suma o la inversa de la suma de las impedancias individuales.
- En serie: $Z_{\text{total}} = Z_1 + Z_2 + Z_3 + \dots$
- En paralelo: $\frac{1}{Z_{\text{total}}} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} + \dots$

Desfase en Circuitos RLC

- El desfase (φ) es la diferencia de fase entre la tensión y la corriente en un circuito.
- En un resistor: no hay desfase ($\varphi = 0^{\circ}$ ó 0 radianes).
- En un inductor: la corriente se retrasa respecto a la tensión ($\varphi = +90^{\circ}$ ó $+\frac{\pi}{2}$ radianes).
- En un condensador: la corriente adelanta respecto a la tensión ($\varphi=-90^\circ$ ó $-\frac{\pi}{2}$ radianes).

Desfase en Circuitos RLC

Nemotecnia

HELICE

- E: Voltaje
- I: Corriente
- L: Reactancia inductiva
- C: Reactancia capacitiva

Diagramas de Fase

Resistencia
El Voltaje va en fase con la
Corriente.

El Voltaje se adelanta 90° de la corriente.

CondensadorEl Voltaje se retrasa 90° de la corriente.

Diagramas como gráficos

Componentes Electrónicos

Notación

- R: Resistencia
- X: Reactancia
 - \triangleright X_L : Reactancia Inductiva
 - \triangleright X_C : Reactancia Capacitiva
- Z: Impedancia

$$Z = R + jX_L - jX_C$$

Ejercicio 1

Para el siguiente circuito, indique el valor de la resistencia de carga (entre los puntos A-B), para que exista el 70% de la potencia máxima transferida a la resistencia de carga.

Ejercicio 2

Para el siguiente circuito, Determine el voltaje v_o , sabiendo que $v_i = 110 \angle 90^\circ$ [V] y que la frecuencia del circuito es f = 50 Hz

$$\textit{R}_{1} = 2\,\Omega, \; \textit{R}_{2} = 2\,\Omega, \; \textit{R}_{3} = 4\,\Omega, \; \textit{R}_{4} = 8\,\Omega, \; \textit{L}_{1} = 4\,\textit{H}, \; \textit{L}_{2} = 6\,\textit{H}$$

¿DUDAS?

CHAO GENTE

