Deep Generative Models

Lecture 13

Roman Isachenko

Son Masters

Spring, 2022

1. Neural ODE: finish

2. Continuous-in-time normalizing flows

- 3. Langevin dynamic
- 4. Score matching

- 1. Neural ODE: finish
- 2. Continuous-in-time normalizing flows
- Langevin dynamic
- 4. Score matching

Neural ODE

Adjoint functions

$$\mathbf{a_z}(t) = \frac{\partial L(\mathbf{y})}{\partial \mathbf{z}(t)}; \quad \mathbf{a_{\theta}}(t) = \frac{\partial L(\mathbf{y})}{\partial \theta(t)}.$$

Theorem (Pontryagin)

$$\frac{d\mathbf{a}_{\mathbf{z}}(t)}{dt} = -\mathbf{a}_{\mathbf{z}}(t)^{\mathsf{T}} \cdot \frac{\partial f(\mathbf{z}(t), \boldsymbol{\theta})}{\partial \mathbf{z}}; \quad \frac{d\mathbf{a}_{\boldsymbol{\theta}}(t)}{dt} = -\mathbf{a}_{\mathbf{z}}(t)^{\mathsf{T}} \cdot \frac{\partial f(\mathbf{z}(t), \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}.$$

Do we know any initilal condition?

Solution for adjoint function

$$\begin{aligned} \frac{\partial L}{\partial \boldsymbol{\theta}(t_0)} &= \mathbf{a}_{\boldsymbol{\theta}}(t_0) = -\int_{t_1}^{t_0} \mathbf{a}_{\mathbf{z}}(t)^T \frac{\partial f(\mathbf{z}(t), \boldsymbol{\theta})}{\partial \boldsymbol{\theta}(t)} dt + 0 \\ \frac{\partial L}{\partial \mathbf{z}(t_0)} &= \mathbf{a}_{\mathbf{z}}(t_0) = -\int_{t_1}^{t_0} \mathbf{a}_{\mathbf{z}}(t)^T \frac{\partial f(\mathbf{z}(t), \boldsymbol{\theta})}{\partial \mathbf{z}(t)} dt + \frac{\partial L}{\partial \mathbf{z}(t_1)} \end{aligned}$$

Note: These equations are solved back in time.

Neural ODE

Forward pass

$$\mathbf{z}(t_1) = \int_{t_0}^{t_1} f(\mathbf{z}(t), oldsymbol{ heta}) dt + \mathbf{z}_0 \quad \Rightarrow \quad \mathsf{ODE} \; \mathsf{Solver}$$

Backward pass

Backward pass
$$\frac{\partial L}{\partial \theta(t_0)} = \mathbf{a}_{\theta}(t_0) = -\int_{t_1}^{t_0} \mathbf{a}_{\mathbf{z}}(t)^T \frac{\partial f(\mathbf{z}(t), \theta)}{\partial \theta(t)} dt + 0$$

$$\frac{\partial L}{\partial \mathbf{z}(t_0)} = \mathbf{a}_{\mathbf{z}}(t_0) = -\int_{t_1}^{t_0} \mathbf{a}_{\mathbf{z}}(t)^T \frac{\partial f(\mathbf{z}(t), \theta)}{\partial \mathbf{z}(t)} dt + \frac{\partial L}{\partial \mathbf{z}(t_1)}$$

$$\mathbf{z}(t_0) = -\int_{t_1}^{t_0} f(\mathbf{z}(t), \theta) dt + \mathbf{z}_1.$$

Note: These scary formulas are the standard backprop in the discrete case.

Chen R. T. Q. et al. Neural Ordinary Differential Equations, 2018

- 1. Neural ODE: finish
- 2. Continuous-in-time normalizing flows
- Langevin dynamic
- 4. Score matching

Discrete Normalizing Flows

$$\mathbf{z}_{t+1} = f(\mathbf{z}_t, \boldsymbol{\theta}); \quad \log p(\mathbf{z}_{t+1}) = \log p(\mathbf{z}_t) - \log \left| \det \frac{\partial f(\mathbf{z}_t, \boldsymbol{\theta})}{\partial \mathbf{z}_t} \right|.$$

Continuous-in-time dynamic transformation

$$\frac{d\mathbf{z}(t)}{dt} = f(\mathbf{z}(t), \boldsymbol{\theta}).$$

Assume that function f is uniformly Lipschitz continuous in \mathbf{z} and continuous in t. From Picard's existence theorem, it follows that the above ODE has a **unique solution**.

Forward and inverse transforms

$$\mathbf{z} = \mathbf{z}(t_1) = \mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), \boldsymbol{\theta}) dt$$
 $\mathbf{z} = \mathbf{z}(t_0) = \mathbf{z}(t_1) + \int_{t_1}^{t_0} f(\mathbf{z}(t), \boldsymbol{\theta}) dt$

Papamakarios G. et al. Normalizing flows for probabilistic modeling and inference, 2019

To train this flow we have to get the way to calculate the density $p(\mathbf{z}(t))$.

Theorem (special case of Kolmogorov-Fokker-Planck)

if function f is uniformly Lipschitz continuous in ${\bf z}$ and continuous in ${\bf t}$, then

$$\frac{d \log p(\mathbf{z}(t))}{dt} = -\operatorname{tr}\left(\frac{\partial f(\mathbf{z}(t), \boldsymbol{\theta})}{\partial \mathbf{z}(t)}\right).$$

Note: Unlike discrete-in-time flows, the function f does not need to be bijective, because uniqueness guarantees that the entire transformation is automatically bijective.

Density evaluation

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{z}) - \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial f(\mathbf{z}(t), \boldsymbol{\theta})}{\partial \mathbf{z}(t)}\right) dt.$$

Adjoint method is used to integral evaluation.

Forward transform + log-density

$$\begin{bmatrix} \mathbf{x} \\ \log p(\mathbf{x}|\boldsymbol{\theta}) \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ \log p(\mathbf{z}) \end{bmatrix} + \int_{t_0}^{t_1} \begin{bmatrix} f(\mathbf{z}(t), \boldsymbol{\theta}) \\ -\text{tr}\left(\frac{\partial f(\mathbf{z}(t), \boldsymbol{\theta})}{\partial \mathbf{z}(t)}\right) \end{bmatrix} dt.$$

- ▶ Discrete-in-time normalizing flows need invertible f. It costs $O(m^3)$ to get determinant of the Jacobian.
- Continuous-in-time flows require only smoothness of f. It costs $O(m^2)$ to get the trace of the Jacobian.

Grathwohl W. et al. FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models. 2018

- ▶ $\operatorname{tr}\left(\frac{\partial f(\mathbf{z}(t),\theta)}{\partial \mathbf{z}(t)}\right)$ costs $O(m^2)$, or approximately the same cost as m evaluations of f, since each entry of the diagonal of the Jacobian requires computing a separate derivative of f.
- ▶ Vector-Jacobian products $\mathbf{v}^T \frac{\partial f}{\partial \mathbf{z}}$ can be computed for approximately the same cost as evaluating f.

It is possible to reduce cost from $O(m^2)$ to O(m)!

Hutchinson's trace estimator

$$\operatorname{tr}(A) = \mathbb{E}_{p(\epsilon)} \left[\epsilon^T A \epsilon \right]; \quad \mathbb{E}[\epsilon] = 0; \quad \operatorname{\mathsf{Cov}}(\epsilon) = I.$$

FFJORD density estimation

$$\begin{split} \log p(\mathbf{z}(t_1)) &= \log p(\mathbf{z}(t_0)) - \int_{t_0}^{t_1} \operatorname{tr} \left(\frac{\partial f(\mathbf{z}(t), \boldsymbol{\theta})}{\partial \mathbf{z}(t)} \right) dt = \\ &= \log p(\mathbf{z}(t_0)) - \mathbb{E}_{p(\epsilon)} \int_{t_0}^{t_1} \left[\epsilon^T \frac{\partial f}{\partial \mathbf{z}} \epsilon \right] dt. \end{split}$$

Grathwohl W. et al. FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models. 2018

- 1. Neural ODE: finish
- 2. Continuous-in-time normalizing flows
- 3. Langevin dynamic
- 4. Score matching

Generative models zoo

Langevin dynamic

Imagine that we have some generative model $p(\mathbf{x}|\theta)$.

Statement

Let \mathbf{x}_0 be a random vector. Then under mild regularity conditions for small enough η samples from the following dynamics

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \eta \frac{1}{2} \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \boldsymbol{\theta}) + \sqrt{\eta} \cdot \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, 1).$$

will comes from $p(\mathbf{x}|\theta)$.

What do we get if $\epsilon = 0$?

Energy-based model

$$\begin{split} p(\mathbf{x}|\boldsymbol{\theta}) &= \frac{\hat{p}(\mathbf{x}|\boldsymbol{\theta})}{Z_{\boldsymbol{\theta}}}, \quad \text{where } Z_{\boldsymbol{\theta}} = \int \hat{p}(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{x} \\ \nabla_{\mathbf{x}} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \nabla_{\mathbf{x}} \log \hat{p}(\mathbf{x}|\boldsymbol{\theta}) - \nabla_{\mathbf{x}} \log Z_{\boldsymbol{\theta}} = \nabla_{\mathbf{x}} \log \hat{p}(\mathbf{x}|\boldsymbol{\theta}) \end{split}$$

Stochastic differential equation (SDE)

Let define stochastic process $\mathbf{x}(t)$ with initial condition $b\mathbf{x}(0) \sim p_0(\mathbf{x})$:

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

 $\mathbf{w}(t)$ is the standard Wiener process (Brownian motion)

$$\mathbf{w}(t) - \mathbf{w}(s) \sim \mathcal{N}(0, t - s), \quad d\mathbf{w} = \epsilon \cdot \sqrt{dt}, \text{ where } \epsilon \sim \mathcal{N}(0, 1).$$

- ▶ f(x, t) is the **drift** function of x(t).
- ▶ g(t) is the **diffusion** coefficient of $\mathbf{x}(t)$.
- ▶ If g(t) = 0 we get standard ODE.

How to get distribution $p(\mathbf{x}|t)$ for $\mathbf{x}(t)$?

Stochastic differential equation (SDE)

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

Theorem (Kolmogorov-Fokker-Planck)

Evolution of the distribution $p(\mathbf{x}|t)$ is given by the following ODE:

$$\frac{\partial p(\mathbf{x}|t)}{\partial t} = -\frac{\partial}{\partial \mathbf{x}} (\mathbf{f}(\mathbf{x},t)p(\mathbf{x})) + \frac{1}{2}g^2(t) \frac{\partial^2 p(\mathbf{x}|t)}{\partial \mathbf{x}^2}$$

Langevin SDE

Let consider special case of SDE with g(t)=1 and $\mathbf{f}(\mathbf{x},t)=\frac{1}{2}\frac{\partial}{\partial \mathbf{x}}\log p(\mathbf{x}|t)$.

$$d\mathbf{x} = \frac{1}{2} \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x}|t) dt + d\mathbf{w}$$

Let apply KFP theorem.

Stochastic differential equation (SDE)

Langevin dynamic

Let discretize the Langevin SDE

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \eta \frac{1}{2} \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x}|t) + \sqrt{\eta} \cdot \epsilon, \quad \epsilon \sim \mathcal{N}(0, 1).$$

Statement

Let \mathbf{x}_0 be a random vector. Then under mild regularity conditions for small enough η samples from the following dynamics

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \eta \frac{1}{2} \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \boldsymbol{\theta}) + \sqrt{\eta} \cdot \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, 1).$$

will comes from $p(\mathbf{x}|\theta)$.

The desity $p(\mathbf{x}|\boldsymbol{\theta})$ is a **stationary** distribution for this SDE.

- 1. Neural ODE: finish
- 2. Continuous-in-time normalizing flows
- 3. Langevin dynamic
- 4. Score matching

Score matching

We could sample from the model if we have $\nabla_{\mathbf{x}} \log p(\mathbf{x}|\boldsymbol{\theta})$.

Fisher divergence

$$D_{F}(\pi, p) = \frac{1}{2} \mathbb{E}_{\pi} \left\| \nabla_{\mathbf{x}} \log p(\mathbf{x}|\boldsymbol{\theta}) - \nabla_{\mathbf{x}} \log \pi(\mathbf{x}) \right\|_{2}^{2} \to \min_{\boldsymbol{\theta}}$$

Score function

$$s(x, \theta) = \nabla_x \log p(x|\theta)$$

Problem: we do not know $\nabla_{\mathbf{x}} \log \pi(\mathbf{x})$.

Theorem

$$\frac{1}{2}\mathbb{E}_{\pi}\big\|\mathbf{s}(\mathbf{x},\boldsymbol{\theta}) - \nabla_{\mathbf{x}}\log\pi(\mathbf{x})\big\|_{2}^{2} = \mathbb{E}_{\pi}\Big[\frac{1}{2}\|\mathbf{s}(\mathbf{x},\boldsymbol{\theta})\|_{2}^{2} + \mathrm{tr}\big(\nabla_{\mathbf{x}}\mathbf{s}(\mathbf{x},\boldsymbol{\theta})\big)\Big] + \mathrm{const}$$

Here $\nabla_{\mathbf{x}}\mathbf{s}(\mathbf{x}, \boldsymbol{\theta}) = \nabla_{\mathbf{x}}^2 \log p(\mathbf{x}|\boldsymbol{\theta})$ is a Hessian matrix.

Score matching

Theorem

$$\frac{1}{2}\mathbb{E}_{\pi}\big\|\mathbf{s}(\mathbf{x},\boldsymbol{\theta}) - \nabla_{\mathbf{x}}\log\pi(\mathbf{x})\big\|_{2}^{2} = \mathbb{E}_{\pi}\Big[\frac{1}{2}\|\mathbf{s}(\mathbf{x},\boldsymbol{\theta})\|_{2}^{2} + \mathrm{tr}\big(\nabla_{\mathbf{x}}\mathbf{s}(\mathbf{x},\boldsymbol{\theta})\big)\Big] + \mathrm{const}$$

Proof (only for 1D)

$$\begin{split} \mathbb{E}_{\pi} \left\| s(x) - \nabla_{x} \log \pi(x) \right\|_{2}^{2} &= \mathbb{E}_{\pi} \left[s(x)^{2} + (\nabla_{x} \log \pi(x))^{2} - 2[s(x)\nabla_{x} \log \pi(x)] \right] \\ \mathbb{E}_{\pi} [s(x)\nabla_{x} \log \pi(x)] &= \int \pi(x)\nabla_{x} \log p(x)\nabla_{x} \log \pi(x) dx \\ &= \int \nabla_{x} \log p(x)\nabla_{x} \pi(x) dx = \pi(x)\nabla_{x} \log p(x) \Big|_{-\infty}^{+\infty} \\ &= -\int \nabla_{x}^{2} \log p(x)\pi(x) dx = -\mathbb{E}_{\pi} \nabla_{x}^{2} \log p(x) \\ &\frac{1}{2}\mathbb{E}_{\pi} \left\| s(x) - \nabla_{x} \log \pi(x) \right\|_{2}^{2} = \frac{1}{2}\mathbb{E}_{\pi} \left[s(x)^{2} + \nabla_{x} s(x) \right] + \text{const.} \end{split}$$

Summary

Adjoint method generalizes backpropagation procedure and allows to train Neural ODE solving ODE for adjoint function back in time.

 Kolmogorov-Fokker-Planck theorem allows to construct continuous-in-time normalizing flow with less functional restrictions.

FFJORD model makes such kind of flows scalable.