Sample Questions - Mid-Session Test CHEM1011

1.

(A)

(B)

(C)

(D)

(E)

(Note your test will consist of only 20 questions similar to these examples).

CO (molar mass 28 g mol⁻¹)

 CF_4 (molar mass 88 g mol⁻¹)

 CH_4 (molar mass 16 g mol⁻¹)

 CO_2 (molar mass 44 g mol^{-1})

 $\text{Cl}_2 \text{ (molar mass 71 g mol}^{-1}\text{)}$

A 1.00 L gas sample at 705 Torr and 47 °C has a mass of 0.988 g. The gas is most likely:

2.	The name of the compound BaCl ₂ .2H ₂ O is			
	(A)	barium dichloride		
	(B)	barium dichlorohydrate		
	(C)	barium chloride dihydrate		
	(D)	barium chloride		
	(E)	barium dichloride dihydrate		
3.	A binary compound of lead and oxygen was found to contain 90.66% Pb. What is the empirical formula for the compound?			
	(A)	PbO		
	(B)	Pb_3O_4		
	(C)	PbO ₉		
	(D)	Pb ₉ O		
	(E)	${ m PbO}_2$		
4.	The nucleus of the species F ⁻ is made up of			
	(A)	9 protons, 19 neutrons and 0 electrons		
	(B)	9 protons, 10 neutrons and 0 electrons		
	(C)	10 protons, 9 neutrons and 0 electrons		
	(D)	10 protons, 9 neutrons and 10 electrons		
	(E)	9 protons, 10 neutrons and 9 electrons		
5.	What amount of iron is contained in 125 g of it? (The atomic mass of iron is 55.85 g mol^{-1}).			
	(A)	1.12 mol		
	(B)	0.447 mol		
	(C)	3.49 mol		
	(D)	6.98 mol		
	(E)	2.24 mol		
6.	The charge on a halide ion is			
	(A)	always -2		
	(B)	may be -1, +1, +3, +5, or +7		
	(C)	always +1		
	(D)	always –1		
	(E)	-1 or +7		

7.	Given the	unbalanced equation: $P_4 + Cl_2 \rightarrow PCl_3$		
	The balanced equation shows that for every mole of Cl ₂ used that the number of mole of PCl ₃			
	formed is			
	(A)	3		
	(B)	2		
	(C)	3/2		
	(D)	2/3		
	(E)	6		
8.	A gas mixture contains four times as many CH_4 molecules as C_2H_4 molecules. The partial pressure of CH_4 is 100 mmHg. What is the partial pressure of C_2H_4 in the mixture?			
	(A)	400 mmHg		
	(B)	25 mmHg		
	(C)	20 mmHg		
	(D)	500 mmHg		
	(E)	100 mmHg		
9.	The molar mass of dinitrogen oxide (laughing gas) is 44.02 g.mol^{-1} . A sample contains 4.00×10^{24} dinitrogen oxide molecules. What is the mass of the sample in grams?			
	(A)	$2.92 \times 10^2 \text{ g}$		
	(B)	29.2 g		
	(C)	$1.51 \times 10^2 \text{ g}$		
	(D)	$3.42 \times 10^2 \text{ g}$		
	(E)	$1.51 \times 10^{-2} \text{ g}$		
10.	What volume of 0.202 M NaCl(aq) should be used to prepare 125 mL of 3.20 x 10 ⁻³ M NaCl(aq)?			
	(A)	25.3 mL		
	(B)	0.0808 mL		
	(C)	1.98 mL		
	(D)	7.89 mL		
	(E)	0.400 mL		
11.	Calculate the number of moles of Ca(OH) ₂ (aq) needed to react completely with 125 mL of 6.00 M HCl(aq).			
	(A)	0.0416 mol		
	(B)	0.750 mol		
	(C)	3.00 mol		
	(D)	0.375 mol		
	(E)	1.50 mol		

12.	_	es of the following three anions are respectively,			
	PO_4^{3-}	$SO_3^{2-} CO_3^{2-}$			
	(A)	phosphide ion, sulfite ion, carbonate ion			
	(B)	phosphate ion, sulfate ion, carbonate ion			
	(C)	phosphite ion, sulfite ion, carbonite ion			
	(D)	phosphite ion, sulfate ion, carbonate ion			
	(E)	phosphate ion, sulfite ion, carbonate ion			
13.	For the re	eaction:			
		$6 \text{ Na(l)} + \text{Al}_2\text{O}_3(s) \rightarrow 2 \text{ Al(l)} + 3 \text{ Na}_2\text{O}(s)$			
		52 grams of Na (molar mass 23.0 g.mol ⁻¹) is reacted with excess $Al_2O_3(s)$ (molar			
	mass 102 Al is:	g.mol ⁻¹), 1.00 g of Al(l) (molar mass 27.0 g.mol ⁻¹) is produced. The percent yield of			
	(A)	46.3%			
	(B)	18.1%			
	(C)	11.1%			
	(D)	39.1%			
	(E)	15.4%			
14.	The form	ula for sulfurous acid is			
	(A)	HSO ₃			
	(B)	H_2SO_3			
	(C)	H_2S			
	(D)	HSO ₄			
	(E)	H_2SO_4			
15.	Consider	the following reaction: $3 \text{ NO}_2(g) + \text{H}_2\text{O}(l) \rightarrow 2 \text{ HNO}_3(l) + \text{NO}(g)$			
	How many mole of the excess reactant remain after the reaction is complete if 2.00 moles of $\rm H_2O(l)$ and 5.00 moles of $\rm NO_2$ (g) are used?				
	(A)	0.33 mol H ₂ O(l)			
	(B)	4.00 mol NO ₂ (g)			
	(C)	1.67 mol H ₂ O(l)			
	(D)	3.00 mol NO ₂ (g)			
	(E)	$1.00 \text{ mol NO}_2(g)$			
16.	The dye, Bismark brown, has a molar mass of 228.3 g.mol ⁻¹ . Analysis shows that it is 30.68% N. How many nitrogen atoms are in each Bismark brown molecule?				
	(A)	5			
	(B)	0.5			
	(C)	1			

(D)

(E)

4

3

23.	Which of the following groups of elements are arranged in order of decreasing atomic radius (that is, from largest to smallest)?					
	(A)	Na, K, Rb				
	(B)	Ne, Na, Mg				
	(C)	Cl, Ar, K				
	(D)	Be, C, O				
	(E) Ar, Kr, Ne		Ne			
24.	For which of the following atoms or ions is the electronic configuration given NOT the ground state configuration for that atom or ion?					
	(A)	N	$1s^2 2s^2 2p^3$			
	(B)	S	$1s^2 2s^2 2p^6 3s^2 3p^4$			
	(C)	Cr	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^4$			
	(D)	Cl ⁻	$1s^2 2s^2 2p^6 3s^2 3p^6$			
	(E)	Ca^{2+}	$1s^2 2s^2 2p^6 3s^2 3p^6$			
25.	Which one of the following statements is TRUE?					
	(A)	Silicon has 12 core electrons and 2 valence electrons				
	(B)	Isolated atoms of zinc are diamagnetic				
	(C)	Cl ⁺ is isoelectronic with Ar				
	(D)	The ionic radius of Fe^{3+} is larger than the ionic radius of Fe^{2+}				
	(E)	Isolated	atoms of silicon are diamagnetic			
26.	The first five successive ionisation energies of an element are 0.807, 2.433, 3.666, 25.033, 32.834 MJ mol ⁻¹ . Which one element from those listed below could this element be?					
	(A)	В				
	(B)	C				
	(C)	N				
	(D)	O				
	(E)	F				
27.	In which one of the following species is the central atom (the first atom in the formula) unlikely to have an octet of valence electrons?					
	(A)	BF_4^-				
	(B)	XeO_3				
	(C)	SiCl ₄				
	(D)	NH ₃				
	(E)	CH_2Cl_2				
28.	How many lone pairs of electrons are there in TOTAL in the Lewis structure of XeF ₄ ?					
	(A)	14				
	(B)	6				
	(C)	4				
	(D)	12				
	(E)	2				

29. Which of the following formulae has, pictured below it, the <u>least realistic</u> Lewis diagra			vis diagram?		
	(A) NO	(B) HCN	(C) NO_2^-	(D) SO_3^{2-}	(E) PCl ₅
	• N •	: x: C H		[:0:]2- s=0 :0:]	: CI

- 30. Which of the following elements has the lowest first ionisation energy?
 - (A) C
 - (B) K
 - (C) Br
 - (D) F
 - (E) Mg
- 31. The correct ground state electronic configuration for the isolated iron(III) ion is:

(A)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3d ↑ ↑ ↑ ↑ ↑ ↑	4s
(B)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3d ↑ ↑ ↑ ↑ ↑	4s
(C)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3d ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	4s
(D)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3d ↑ ↑ ↑ ↑	4s ↑↓
(E)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3d ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	4s ↑↓