Set Theory

1		oms and Operations	
	1.1	Basic Axioms	
2	Rel	ations and Functions	
	2.1	Ordered Pairs	
	2.2	Relations	
	2.3	Equivalence Relations and Ordering Relations	
3	Natural Numbers		
	3.1	Inductive Sets	
	3.2	Recursion	
	3.3	Arithmetic	
	3.4	Ordering	

Chapter 1

Axioms and Operations

1.1 Basic Axioms

For sets x and y, we write $x \in y$ to say that x is an element of y, and we write x = y to say that x and y are equal. Furthermore, we define

$$x \notin y \Leftrightarrow \neg(x \in y)$$

 $x \neq y \Leftrightarrow \neg(x = y).$

Axiom I (Extensionality). Two sets are equal if they have exactly the same elements. Formally,

$$\forall x \forall y (\forall z (z \in x \leftrightarrow z \in y) \to x = y).$$

Definition 1.1. Let x and y be sets. We say that x is a **subset** of y, denoted by $x \subseteq y$, if every element of x belongs to y. Formally,

$$x \subseteq y \iff \forall z (z \in x \to z \in y).$$

Furthermore, x is a **proper subset** of y, denoted by $x \subseteq y$, if both $x \subseteq y$ and $x \neq y$ hold.

Definition 1.2. The **empty set**, denoted by \emptyset , is the set that has no elements.

Axiom II (Pairing). For any two sets x and y, there is a set that consists of exactly x and y. Formally,

$$\forall x \forall y \exists z \forall w (w \in z \leftrightarrow (w = x \lor w = y)).$$

Definition 1.3. The pair set of two sets x and y, denoted by $\{x, y\}$, is the set that consists of exactly x and y.

Axiom III (Power Set). For any set x, there is a set whose members are exactly the subsets of x. Formally,

$$\forall x \exists y \forall z (z \subseteq x \leftrightarrow z \in y).$$

Definition 1.4. The **power set** of a set x, denoted by $\mathcal{P}(x)$, is the set that consists of exactly the subsets of x.

Axiom IV (Separation Scheme). Let $\phi(z)$ be a formula. For any set x, there exists a set y such that for any set z, we have $z \in y$ if and only if both $z \in x$ and $\phi(z)$ hold. Formally,

$$\forall x \exists y \forall z (z \in y \leftrightarrow z \in x \land \phi(z)).$$

Definition 1.5. Let x, y be sets and let $\phi(z)$ be a formula. If for any set z, we have $z \in y$ if and only if $z \in x$ and $\phi(z)$, then we write

$$y = \{z \in x : \phi(z)\}.$$

Theorem 1.6. There is no set to which every set belongs. Formally,

$$\forall x \exists y (y \notin x).$$

Proof. Let x be a set and let $y = \{z \in x : z \notin z\}$. Then

$$y \in y \quad \Leftrightarrow \quad y \in x \land y \notin y.$$

If $y \in x$, then

$$y \in y \quad \Leftrightarrow \quad y \notin y,$$

contradiction. Thus $y \notin x$, which completes the proof.

Axiom V (Union). For any set x, there exists a set whose elements are exactly the elements of the elements of x. Formally,

$$\forall x \exists y \forall z (z \in y \leftrightarrow \exists w (w \in x \land z \in w)).$$

Definition 1.7. Let x be a set.

• We define the **union** of x, denoted by $\bigcup x$, to be the set that consists of the sets that belongs to at least one element of x. Formally, for any set z we have

$$z \in \bigcup x \iff \exists w (w \in x \land z \in w).$$

• If x is nonempty, we define the **intersection** of x, denoted by $\bigcap x$, to be the set that consists of the sets that belongs to all elements of x. Formally, for any set z we have

$$z \in \bigcap x \quad \Leftrightarrow \quad \forall w (w \in x \to z \in w).$$

Definition 1.8. For any sets x and y, we define

$$x \cup y = \bigcup \{x, y\}, \qquad x \cap y = \bigcap \{x, y\}.$$

Chapter 2

Relations and Functions

2.1 Ordered Pairs

Definition 2.1. For sets x and y, we define

$$\langle x, y \rangle = \{ \{x\}, \{x, y\} \}.$$

Lemma 2.2. Let x, y, y' be sets. If $\{x, y\} = \{x, y'\}$, then y = y'.

Proof. Suppose that $y \neq y'$. Since $y \in \{x, y\} = \{x, y'\}$ and $y \neq y'$, we have y = x. Then we have $y' \in \{x, y'\} = \{x, y\} = \{x\}$, implying y' = x = y, contradiction. Thus, y = y'.

Theorem 2.3. For sets x, x', y, y', we have

$$\langle x, y \rangle = \langle x', y' \rangle$$

if and only if x = x' and y = y'.

Proof. (\Leftarrow) Straightforward. (\Rightarrow) Suppose that $x \neq x'$. Since

$$\{\{x\},\{x,y\}\} = \{\{x'\},\{x',y'\}\},\$$

either $\{x\} = \{x', y'\}$ or $\{x\} = \{x'\}$ holds. For both cases we all have $x' \in \{x\}$, implying x' = x, contradiction. Hence we have x = x', and it follows that $\{x\} = \{x'\}$, implying $\{x, y\} = \{x', y'\}$, and thus y = y'.

Lemma 2.4. If $x, y \in C$, then $\langle x, y \rangle \in \mathcal{P}(\mathcal{P}(C))$.

Proof. Since $\{x\}$ and $\{y\}$ are subsets of C, we have $\{x\}, \{x, y\} \in \mathcal{P}(C)$. It follows that $\{\{x\}, \{x, y\}\}$ is a subset of $\mathcal{P}(C)$, implying

$$\langle x, y \rangle = \{ \{x\}, \{x, y\} \} \in \mathcal{P}(\mathcal{P}(C)).$$

Theorem 2.5. For any sets A and B, there is a set whose members are exactly the pairs (x, y) with $x \in A$ and $y \in B$.

Proof. Since $x, y \in A \cup B$, the set of pairs $\langle x, y \rangle$ with $x \in A$ and $y \in B$ can be given by

$$\{z \in \mathcal{P}(\mathcal{P}(A \cup B)) : z = \langle x, y \rangle \text{ for some } x \in A \text{ and } y \in B\}.$$

Definition 2.6. For any sets A and B, the **Cartesian product** of A and B, denoted by $A \times B$, is the set whose members are exactly the pairs $\langle x, y \rangle$ with $x \in A$ and $y \in B$.

2.2 Relations

Definition 2.7. A **relation** is a set of ordered pairs. For any relation R, the **domain** and the **range** of R, denoted by dom(R) and ran(R), respectively, are defined as follows.

- dom(R) is the collection of sets x with $\langle x, y \rangle \in R$ for some y.
- ran(R) is the collection of sets y with $\langle x, y \rangle \in R$ for some x.

Definition 2.8. Let R and S be relations and let X be a set.

- The **inverse** of R, denoted by R^{-1} , is the set of all pairs $\langle y, x \rangle$ with $\langle x, y \rangle \in R$.
- The **restriction** of R to X, denoted by $R \upharpoonright X$, is the set of all pairs $\langle x, y \rangle \in R$ with $x \in X$.
- The **composition** of R and S, denoted by $R \circ S$, is the set of all pairs $\langle x, z \rangle$ with $\langle x, y \rangle \in R$ and $\langle y, z \rangle \in S$.

Definition 2.9. A function is a relation f such that for any set $x \in \text{dom}(f)$, there exists a unique set y such that $\langle x, y \rangle \in f$. The unique set y with respect to x is called the **value** of f at x and is denoted f(x).

- We say that f is a function from A to B, denoted by $f: A \to B$, if dom(f) = A and $ran(f) \subseteq B$.
- f is **one-to-one** if for any $y \in \text{ran}(f)$, there exists a unique set $x \in \text{dom}(f)$ with f(x) = y.

Definition 2.10. For any sets A and B, the set of functions from A to B is denoted by B^A .

2.3 Equivalence Relations and Ordering Relations

Definition 2.11. Let A be a set. An **equivalence relation** on A is a relation $R \subseteq A \times A$ that satisfies the following three conditions.

- Reflexivity: $\langle x, x \rangle \in R$ for any $x \in A$.
- Symmetry: $\langle x, y \rangle \in R$ implies $\langle y, x \rangle \in R$ for any $x, y \in A$.
- $\bullet \ \ \text{Transitivity:} \ \langle x,y\rangle \in R \ \text{and} \ \langle y,z\rangle \in R \ \text{implies} \ \langle x,z\rangle \in R \ \text{for any} \ x,y,z \in A.$

Chapter 3

Natural Numbers

3.1 Inductive Sets

Definition 3.1. The successor of a set x, denoted x^+ , is defined by

$$x^+ = x \cup \{x\}.$$

We say that a set A is **inductive** if $\emptyset \in A$ and for any $x \in A$, we have $x^+ \in A$.

Axiom VI (Infinity). There exists an inductive set.

Definition 3.2. A natural number is a set belonging to all inductive sets. The set of natural numbers is denoted by ω .

Theorem 3.3. ω is inductive.

Proof. First, $\emptyset \in \omega$ since \emptyset belongs to all inductive sets by definition. For any set $x \in \omega$, x belongs to all inductive sets, implying that x^+ belongs to all inductive sets, and thus $x^+ \in \omega$. Thus, ω is inductive.

3.2 Recursion

Theorem 3.4 (Recursion Theorem). Let S be a set, let $s \in S$, and let $\sigma : S \to S$. Then there exists a unique function $f : \omega \to S$ such that f(0) = s and $f(n^+) = \sigma(f(n))$ for all $n \in \omega$.

- 3.3 Arithmetic
- 3.4 Ordering