Análisis de la asociación espacial

Usos de I de Moran

Gerardo Martín 2022-06-29

Papel del espacio

- · Crea correlación espacial
 - · Observaciones no son independientes
 - · Interpretación correcta de regresión asume independencia
- · Medición de independencia
 - · Antes y después de análsisis de regresión
 - · Después de regresión: sobre residuales
 - · Residuales: lo que la regresión no explica

El procedimiento

- 1. Medir correlación
- 2. Hacer análisis de regresión
- 3. Medir correlación de residuales de todos los modelos
- 4. Si residuales están espacialmente correlacionados:
 - · Identificar otras covariables
 - · Incluir efecto del espacio
 - · Implementar interpolación (excepciones más adelante)

El análisis

Importación de datos colectados

datos <- read.csv("../Datos-ejemplos/Datos-puntos-Moran-2.csv
with(datos, plot(Longitud, Latitud, cex = Mediciones/5))</pre>

Prueba previa de correlación

library(spdep)

```
vecindad <- dnearneigh(x = as.matrix(datos[, c("Longitud", "Longitud", "L
```

I.meds <- moran.test(x = datos\$Mediciones, listw = vec.listw)</pre>

Correlación espacial de mediciones

```
T.meds
##
   Moran I test under randomisation
##
##
## data: datos$Mediciones
## weights: vec.listw
##
   Moran I statistic standard deviate = 14.18,
##
value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran T statistic
                          Expectation
                                              Variance
        0.769152627
                        -0.010101010
                                           0.003020113
##
```

Importación de variables raster

```
library(raster)
r <- stack(paste0("../Datos-ejemplos/Var-", c(1, 2), ".tif"))</pre>
```


Extracción de valores en localidades de muestreo

r.extract <- data.frame(extract(r, datos[, c("Longitud", "Lat
datos <- data.frame(datos, r.extract)</pre>

Longitud	Latitud	Mediciones	Var.1	Var.2
-103.3797	28.13648	4.462367	188	108
-104.1984	29.28437	3.245952	197	106
-102.5610	25.91724	1.421369	208	136
-101.2730	27.30093	1.112655	221	137
-104.4254	28.26304	5.107742	173	89
-101.0895	29.13997	3.628602	214	125

Ajuste de primer modelo

```
modelo.1 <- lm(Mediciones ~ Var.2, data = datos)</pre>
summary(modelo.1)
##
## Call:
## lm(formula = Mediciones ~ Var.2, data = datos)
##
## Residuals:
     Min 1Q Median 3Q
##
                                Max
## -3.5996 -0.5276 0.2858 0.8551 1.9831
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## Var.2 -0.100829 0.009265 -10.88 <2e-16 ***
## ---
```

Extracción y visualización de residuales

```
datos$Residuales <- residuals(modelo.1)</pre>
with(datos, plot(Longitud, Latitud, cex = Residuales))
                28
                26
                                          -100
                      -104
                                -102
                             Longitud
```

Prueba de correlación de residuales

```
I.res <- moran.test(x = datos$Residuales, listw = vec.listw)</pre>
I.res
##
##
   Moran I test under randomisation
##
## data: datos$Residuales
## weights: vec.listw
##
   Moran I statistic standard deviate = 15.7, p-
##
value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic
                          Expectation
                                               Variance
##
        0.852139315 -0.010101010
                                            0.003016244
```