

DeepMARCOSMobi: A Deep Learning-Enhanced Mobile Phone Ranking System

Name: Debamala Das Adhikari
Registration No: 23122111
5MScDsB

•Guide: Dr. Lija Jacob

Co-Guide: Miss. Margaret Salve

Guide: Dr. Vandana Vijay Bhagat(Before)

Mission

Vision

Core Values

Introduction

- •Mobile phone ranking systems often use static methods, which may not solve to individual preferences effectively.
- •This research focuses on developing a dynamic ranking system that adjusts feature weights based on user preferences using deep learning.
- •By integrating the MARCOS method with deep learning, the system provides personalized rankings considering factors like gaming, camera, and budget.
- •The goal is to offer a more accurate and user-centric mobile phone ranking system.

Goal of the Domain:

- •Improve Mobile Phone Ranking Accuracy: Create a more reliable and personalized ranking system that adapts to user preferences.
- •Dynamic User Preferences Integration: Use deep learning to adjust feature weights dynamically, considering factors like gaming performance, photography, and budget.
- •Enhanced Rankings via Deep Learning and MARCOS: Incorporate the MARCOS method for multi-criteria decision making, combined with deep learning for better weight adjustment, offering accurate and relevant rankings.

Applications of the Domain

- •E-commerce: Provide personalized mobile phone recommendations to users based on their preferences enhancing shopping experiences.
- •Retail Industry: Assist businesses in identifying and stocking popular smartphones that align with consumer demands and preferences.
- •Tech Reviews: Help reviewers generate rankings based on objective criteria and tailored recommendations, aiding users in making informed purchase decisions.

Literature Review:

MCDM Techniques:

Several Multi-Criteria Decision-Making (MCDM) methods like TOPSIS, AHP, and MARCOS have been used for mobile phone ranking. MARCOS offers a more flexible and accurate approach by considering ideal and anti-ideal solutions, which aligns well with user preferences.

• Deep Learning for Ranking:

Deep learning models have shown promise in adjusting ranking weights dynamically based on user preferences and patterns, providing a personalized and context-aware ranking system. Various studies have explored neural networks to predict feature importance for ranking systems.

• LLMs in Recommendation Systems:

- Large Language Models (LLMs) like GPT, BERT, and others have been integrated into recommendation systems to generate personalized suggestions, refine rankings, and provide explanations based on natural language queries.
- **Research Gaps:** Despite progress, existing methods often lack the dynamic adjustment of ranking criteria based on real-time preferences, and few studies combine deep learning-based weight adjustment with LLM-based explanations in mobile phone ranking systems.

Problem Statement

Existing Ranking Systems:

- Rely on static weight assignments for criteria.
- Lack adaptability to individual user preferences (e.g., gaming, photography, budget).
- Do not dynamically adjust rankings based on evolving user needs.

Challenges:

- Inaccurate recommendations due to rigid, predefined feature weights.
- Users may not find rankings that align with their specific priorities.

Need for an Intelligent System:

- Dynamic Weight Adjustment: Incorporating deep learning models to adjust feature weights based on user preferences.
- Personalized Rankings: Tailoring phone rankings to individual preferences and needs.

Research Objectives

•Develop a Dynamic Mobile Phone Ranking System:

Leverage the MARCOS (Multi-Attribute Realizing the Comprehensive Optimization Solution) method for more accurate rankings.

•Integrate Deep Learning for Weight Adjustment:

Use deep learning models to predict and adjust feature weights based on individual user preferences (e.g., gaming, photography, budget).

•Incorporate Large Language Models (LLMs) for Personalized Explanations:

Provide transparent, customized recommendations and reasoning behind rankings.

Dataset & Attributes

Data Source:

Gigasheet

Dataset Description: Real World Smartphone Dataset

Overview, the dataset consists of 975 entries, each representing a smartphone with various features.

Category	Features
Basic	Brand, Model, Price, Average Rating
Performance	Processor, RAM, Internal Storage
Display	Screen Size, Refresh Rate, Resolution
Camera	Rear & Front Camera Specs
Battery	Capacity, Charging Speed
Connectivity	5G Support, Network Bands

Attributes:

- **1. brand_name** (*string*): The brand of the smartphone (e.g., Apple, Samsung, Xiaomi).
 - **2. model** (*string*): The specific model name or identifier.
 - **3. price** (*integer*): The price of the smartphone (in an unspecified currency).
 - **4. avg_rating** (*float*): The average user rating for the smartphone.
 - **5. 5G_or_not** (*integer*): Indicates if the phone supports **5G** (1: Yes, 0: No).
 - **6. processor_brand** (*string*): The brand of the processor (e.g., Qualcomm, MediaTek, Bionic).
 - **7. num_cores** (*integer*): The number of cores in the smartphone's processor.
 - **8.** processor_speed (*float*): The speed of the processor in GHz.
 - **9. battery_capacity** (*integer*): The battery capacity in milliampere hours (mAh).
 - **10.fast_charging_available** (*integer*): Indicates if fast charging is supported (1: Yes, 0: No).
 - **11.fast_charging** (*integer*): The power of fast charging in watts.
 - **12.ram_capacity** (*integer*): The RAM size in gigabytes (GB).
 - **13.internal_memory** (*integer*): The internal storage size in gigabytes (GB).
 - **14.screen_size** (*float*): The diagonal size of the screen in inches.
 - **15.refresh_rate** (*integer*): The screen refresh rate in Hertz (Hz).
 - **16.num_rear_cameras** (*integer*): The number of rear cameras on the phone.
 - **17.os** (*string*): The operating system of the smartphone (e.g., Android, iOS).
 - **18.primary_camera_rear** (*integer*): The megapixel value of the primary rear camera.
 - **19.primary_camera_front** (*integer*): The megapixel value of the primary front camera.
 - **20.extended_memory_available** (*integer*): Indicates if the phone supports expandable storage (1: Yes, 0: No).
 - **21.resolution_height** (*integer*): The height of the screen resolution in pixels.
 - **22.resolution_width** (*integer*): The width of the screen resolution in pixels.

Flow of the Research

□ Data Collection
 Collect smartphone features.
 □ Feature Engineering
 Preprocess and normalize data for consistent comparison and scoring.
 □ Model Development
 Implement MARCOS for initial ranking and integrate deep learning models to predict dynamic feature weights based on user preferences.
 □ Deployment & GUI Integration
 Develop a user-friendly GUI using Tkinter for real-time ranking adjustments and explanations, integrating LLMs for personalized insights.

Implementation Flow

Methodology

Data Preparation:

Smartphone features are selected and scaled (e.g., gaming, camera, price).

Simulated dynamic weights (target variable) are generated for training.

Deep Learning Model:

A neural network is built with layers like Dense, BatchNormalization, and Dropout.

The model learns dynamic feature importance by predicting weights for each feature.

Model Training:

The model is compiled using Adam optimizer with mean squared error loss.

It is trained over 150 epochs to adjust weights based on smartphone features.

MARCOS Scoring:

Step 1: Adjust feature scores by multiplying with predicted weights.

Step 2: Calculate Euclidean distances to ideal best and worst solutions.

Step 3: Compute MARCOS score to rank smartphones based on proximity to ideal solutions.

Ranking:

Smartphones are ranked in descending order of MARCOS scores, with the highest score indicating the best option for the user.

Results And Comparison From A Site

Findings:

I selected three different phones based on the rankings generated by

DeepMARCOSMobi (the model implemented by me) and compared them with the rankings from **Smartprix.com** to verify consistency.

- 1. **Samsung Galaxy A74** ranked **first** in both my model and Smartprix(an online website).
- 2. **Samsung Galaxy A53s 5G** ranked after the first one in my model and also held a similar position on Smartprix.
- 3. To test for potential bias toward Android, I included the **Apple iPhone SE3**, which ranked after this two in my model, aligning with its position on Smartprix.

Conclusion

The alignment between **DeepMARCOSMobi** rankings and **Smartprix.com** validates the model's accuracy and reliability. Additionally, since **Apple iPhone SE3** ranked appropriately without being unfairly penalized, it suggests that the model is **not biased toward Android** and fairly evaluates all brands based on their features.

Conclusion

•Key Contributions:

- •Developed a novel mobile phone ranking system using a deep learning-based Multi-Criteria Decision-Making (MCDM) approach with MARCOS.
- •Integrated dynamic weight adjustment based on user preferences to offer personalized recommendations.
- •Leveraged LLMs (GPT-2) to generate insightful explanations of ranking decisions, enhancing transparency.

•Impact:

- •The system helps users make more informed decisions by ranking mobile phones based on their specific needs and preferences (e.g., gaming, photography, budget).
- •Improved ranking accuracy with the ability to dynamically adjust to changing user inputs and market trends.

Future Work

•Real-Time Data Integration:

- •Incorporate live reviews and social media sentiment for up-to-date recommendations.
- •Use real-time trend analysis for dynamic and context-aware recommendations.

•LLM Fine-Tuning:

•Fine-tune large language models (LLMs) to better understand user preferences and provide context-specific recommendations.