BEST AVAILABLE COPY

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 96/148	74
A61K 48/00, 47/48	A1	(43) International Publication Date: 23 May 1996 (23.05.	96)
(21) International Application Number: PCT/IB (22) International Filing Date: 10 November 1995 (CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, I	BE, PT,
(30) Priority Data: 08/339,245 10 November 1994 (10.11.9) (60) Parent Application or Grant (63) Related by Continuation US Filed on 10 November 1994 (245 (CI	7	the t of
 (71) Applicant (for all designated States except US): UNIV OF MANITOBA [CA/CA]; 311 Administration Winnipeg, Manitoba R3T 2N2 (CA). (72) Inventors; and (75) Inventors/Applicants (for US only): SEHON, Alec 695 Academy Road, Winnipeg, Manitoba R3N (LANG, Glen, M. [CA/CA]; 14 Furness Bay, Manitoba R2N 2S4 (CA). 	Buildii [CA/C/)E8 (C. Winnip	TY	

(54) Title: METHOD FOR GENE THERAPY INVOLVING SUPPRESSION OF AN IMMUNE RESPONSE

(57) Abstract

A method for specifically suppressing the capacity of a mammal receiving gene therapy to mount an immune response to a given expressed protein product of the deficient gene in question, which response is caused by the administration of one or more "foreign" DNA or other immunogenic therapeutic material, such as vectors used for expression of the deficient protein in the patient receiving gene therapy.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

					•
AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HTU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL.	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	St	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	u	Liechsenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		-		

1

METHOD FOR GENE THERAPY INVOLVING SUPPRESSION OF AN IMMUNE RESPONSE

This application is a continuation-in-part of pending U.S. application Serial No. 07/877,368, filed on May 4, 1992 by Lang et al., which is a continuation of abandoned U.S. application Serial No. 07/707,972, filed on May 23, 1991 by Lang et al., which is a continuation of abandoned U.S. application Serial No. 07/478,049, filed on February 2, 1990 by Lang et al., which is a continuation to abandoned U.S. application Serial No. 07/071,4621, filed on July 9, 1987 by Lang et al.

10

15

20

25

5

FIELD OF THE INVENTION

The present invention relates to a method for suppressing the capacity of a mammal to mount an immune response caused by the administration of one or more immunogenic therapeutic material(s), such as gene vectors or their expression proteins used in applications to gene therapy.

BACKGROUND

Foreign proteins or DNA, such as genetic material or vectors for gene therapy, or their derivatives, have therapeutic properties and are administered to patients suffering from certain diseases. However, as discussed later, the immunogenicity of the said foreign proteins, nucleotides, DNA or vectors, or of their derivatives, may vitiate the treatment and hence this invention provides an improved method for the treatment of such diseases.

Gene therapy is the insertion of a functioning gene into the cells of a patient (i) to correct an inborn

5

10

15

20

25

30

35

2

error of metabolism (i.e., genetic abnormality or birth defect resulting in the deficiency of the patient with respect to one or more essential proteins such as enzymes or hormones), or (ii) to provide a new function in a cell (Kulver, K.W., "Gene Therapy", 1994, p. xii, Mary Ann Liebert, Inc., Publishers, New York, NY).

When the host is totally deficient of the inserted gene from birth, the new protein expressed by this gene --when the latter is inserted into the appropriate cell of an adult host-- would be expected to induce in the host an immune response against itself. Hence, (i) the host would produce antibodies or cytotoxic cells to the "new" protein, and (ii) this immune response would not only combine and neutralize and thus inactivate the function of the "new" protein, but may also lead to untoward therapeutic complications due to formation of immune complexes. It is, therefore, not surprising that gene therapy has proven successful in adenosine deaminase (ADA) deficiency, i.e., in children deficient of ADA from birth, which is manifested by the absence of functional T lymphocytes and consequently to the severe combined immunodeficiency (SCID) syndrome. The reported success of gene therapy in young children deficient of ADA from birth is related to the immunodeficient status of the child, as no immune response can be generated against the foreign therapeutic genetic material. As a corollary, gene therapy would be successful if it is instituted from birth, when it is relatively easy to induce immunological tolerance to a foreign immunogenic material.

Foreign immunogenic materials, such as biologic response modifiers or their derivatives, often have therapeutic properties and are, therefore, administered to patients suffering from certain diseases. However, as a result of the immunogenicity of the foreign materials, or of their derivatives, for the reasons stated above the

5

10

15

20

25

30

35

insertion of the appropriate gene may vitiate the desired therapeutic effects. This invention provides a method for overcoming this inherent complication due to the immunogenic capacity of the expressed protein, and is therefore considered to represent a novel and an essential improvement for the treatment of such diseases.

As background to the present invention:

Chen, Y., Takata, M., Maiti, P.K., Mohapatra, S., Mohapatra, S.S. and Sehon, A.H., disclose that the suppressor factor of Ts cells induced by tolerogenic conjugates of OVA and mPEG is serologically and physicochemically related to the aß heterodimer of the TCR. J. Immunol. 152:3-11, 1994.

Mohapatra, S., Chen, Y., Takata, M., Mohapatra, S.S. and Sehon, A.H. disclose "Analysis of TCR α S chains of CD8' suppressor T cells induced by tolerogenic conjugates of antigen and monomethoxypolyethylene glycol: Involvement of TCR α -CDR3 domain in immuno-suppression." J. Immunol. 151:668-698, 1993.

Bitoh, S., Takata, M., Maiti, P.K., Holford-Stevens, V., Kierek-Jaszczuk, D. and Sehon, A.H., disclose that "Antigen-specific suppressor factors of noncytotoxic CD8' suppressor T cells downregulate antibody responses also to unrelated antigens when the latter are presented as covalently linked adducts with the specific antigen." Cell. Immunol. 150:168-193, 1993.

Bitoh, S., Lang, G.M., Kierek-Jaszczuk, D., Fujimoto, S. and Sehon, A.H., disclose "Specific immunosuppression of human anti-murine antibody (HAMA) responses in hu-PBL-SCID mice." Hum. Antibod. Hybridomas 4:144-151, 1993.

Bitoh, S., Lang, G.M. and Sehon, A.H., disclose the "Suppression of human anti-mouse idiotypic antibody responses in hu-PBL-SCID mice." Hum. Antibod. Hybridomas. 4:144-151, 1993.

Dreborg, S. and Akerblom, E., disclose the safety in humans of "Immunotherapy with monomethoxypolyethylene glycol modified allergens." In: S.D. Bruck (Ed.), CRC Crit. Rev. Ther. Drug Carrier Syst. 6:315-363, (1990).

5

Generally the term antigen refers to a substance capable of eliciting an immune response and ordinarily this is also the substance used for detection of the corresponding antibodies by one of the many in vitro and in vivo immunological procedures available for the demonstration of antigen-antibody interactions.

10

Similarly, the term allergen is used to denote an antigen having the capacity to induce and combine with reaginic (i.e., IgE) antibodies which are responsible for common allergies; however, this latter definition does not exclude the possibility that allergens may also induce reaginic antibodies, which may include immunoglobulins of classes other than IgE.

20

25

15

As used herein, the term antigenicity is defined as the ability of an antigen (immunogenic material) or allergen to combine in vivo and in vitro with the corresponding antibodies; the term allergenicity or skin activity is defined as the ability of an allergen to combine in vivo with homologous reaginic antibodies thereby triggering systemic anaphylaxis or local skin reactions, the latter reactions being the result of direct skin tests or of passive cutaneous anaphylactic (PCA) reactions; and the term immunogenicity in a general sense is the capacity of an antigen or allergen, or of their derivatives produced in vitro or processed in vivo, to induce the corresponding specific antibody response.

30

In relation to this invention, tolerogens are defined as immunosuppressive covalent conjugates consisting of an antigenic material (immunogenic proteins, etc.) and a water-soluble polymer (see e.g. Sehon, A.H., <u>In</u> "Progress in Allergy" (K. Ishizaka, ed.)

35

5

10

15

20

25

30

35

5

Vol. 32 (1982) pp. 161-202, Karger, Basel; and US patent specification No. 4261973).

In the present context and claims the term tolerogen thus refers to a conjugate consisting of an immunogenic material (protein or polynucleotide) and a nonimmunogenic conjugate, said tolerogen being immunosuppressive in an immunologically specific manner with respect to the antigen which is incorporated into the tolerogenic conjugate irrespective of the immunoglobulin class which is downregulated; furthermore, the tolerogen may comprise a conjugate of an essentially nonimmunogenic polymer and an immunogenic biologically active product or derivative of the genetic material used for gene therapy.

foreign administration of therapeutic immunogenic material induces an immune response leading different of · antibodies of formation the on repeated classes. Hence, immunoglobulin administration, the material may form complexes in vivo with such antibodies leading to a poor therapeutic effect by virtue of its being sequestered and neutralized by the antibodies, or to anaphylactic reactions by combination untoward other antibodies, or to reaginic conditions, i.e. immune complex diseases due to the deposition of antibody-antigen complexes in vital tissues and organs.

Wilkinson et al. "Tolerogenic polyethylene glycol derivatives of xenogenic monoclonal immunoglobulins", Immunology Letters, Vol. 15 (1987) pp. 17-22, discloses the criticality of the administration time of a tolerogenic conjugate to a non-sensitized individual at least one day prior to challenge with an antigen.

The present invention overcomes deficiencies of the prior art, providing a means for inducing a priori tolerance to a protein or polynucleotide in an individual deficient of the given protein or polynucleotide, thus

6

11 1

making the administration of gene therapy --which involves the generation of immunogenic material in a patient deficient of the corresponding gene-- possible and effective.

Fig. 3 shows the effect of tolerogenic conjugates on the IgG response were the same as those used in Fig. 1. As illustrated in Fig. 3, administration of 50 μ g of OA-mPEG, 6 resulted in the maximal suppression, i.e. of the order of 98% of the primary anti-OA IgG response, which was determined 14 days after the first injection of the sensitizing dose of OA by a radio-immunoassay employing the paper radio immunosorbent procedure.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

Gene therapy procedures as currently practiced -involve the administration by itself of a foreign genetic material, or of its biologically active products -- do have certain disadvantages and limitations which are primarily due to their potential immunogenicity in the host deficient of the corresponding gene. The objectives of the present invention aim at overcoming the above mentioned complications by suppressing the production of antibodies to the foreign therapeutic genetic material and of its expression products, and of thus ensuring the efficacy of gene therapy by the prior administration of doses of tolerogenic conjugates immunosuppressive consisting of therapeutically active and potentially immunogenic materials coupled to nonimmunogenic polymers, thus overcoming or minimizing the risk of inducing anaphylactic reactions or immune complex diseases. Thus, the main objective of the invention aims at suppressing substantially an immune response to the protein resulting as a consequence of successful gene therapy, which response would undermine the therapeutic efficacy of a biologically active genetic material and which may also

7

cause untoward physiological reactions (e.g. anaphylaxis and/or immune complex diseases).

The invention provides a method for conducting gene therapy comprising administration to a mammal of an immunosuppressing effective amount of a tolerogenic conjugate comprising the genetic material and/or its expression product (i.e., the protein of which the patient is deficient) and monomethoxypolyethylene glycol having a molecular weight of about 500-35,000 daltons, preferably 4,500-10,000 daltons, and more preferably 3000-6000 daltons, the above administration—being at prior to administration of the therapeutic genetic material for gene therapy, wherein said method results in the specific suppression of the immune response and the active development of specific tolerance to said therapeutic genetic material and/or its expression product(s). Preferably the tolerogenic conjugate is administered at least one day prior to the therapeutic genetic material.

In a preferred embodiment the therapeutic genetic material is selected from nucleotides, DNA, RNA, mRNA, attached to appropriate vectors for expression of the required therapeutic protein.

In a more preferred embodiment gene therapy vectors include Moloney murine leukemia virus vectors, adenovirus vectors with tissue specific promotors, herpes simplex vectors, vaccinia vectors, artificial chromosomes, receptor mediated gene delivery vectors, and mixtures of the above vectors.

5

10

15

20

25

30

35

BRIEF DESCRIPTION OF THE FIGURES

Figures 1, 2 and 3 show diagrams illustrating the efficiency of the invention. The percentages in brackets of Figs. 1 and 3 represent the degree of suppression with respect to the minimal immune response in animals

receiving phosphate buffered saline (PBS) in lieu of the conjugates.

Figure 1 shows the results of experiments clearly demonstrate the stringent dependency of the suppressogenicity of mPEG conjugates on their molecular composition.

Fig. 2 shows treatment with different conjugates at doses of 10 μg and 50 μg per mouse revealed marked differences in their suppressogenic capacity. It is also to be noted that at a dose of 150 μg , all conjugates were highly suppressive and at 600 μg (data note shown) all the compounds tested suppressed completely the IgE response.

DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

The objectives of the present discovery are accomplished by a method, wherein an immunosuppressively effective amount of a tolerogen incorporating a foreign genetic material or its active derivative(s) is administered to the mammal prior to the administration of the foreign genetic material or its biologically active derivative(s). The tolerogenic conjugate is preferably administered to individuals who have not received a prior treatment with the foreign genetic material or its product, i.e. to unsensitized individuals.

The invention will provide improved methods for gene therapy of different human diseases which can be ameliorated or eliminated by the administration of the appropriate genetic materials, etc. or their therapeutic derivatives, of which the patient is deficient. The tolerogenic conjugates may be synthesized by covalent or noncovalent attachment of nonimmunogenic polymers to natural or synthetic biologically active proteins such as for example (i) murine or rat monoclonal antibodies to human T-cells which have been used to suppress transplant

9

rejection (Colvin, R.B. et al.; Fed. Proc. 41 (1982) p. 363, Abstr. 554) or as "miracle bullets" for the destruction of tumors (Froese, G. et al.; Immunology 45 (1982) p. 303-12, and Immunological Reviews 62 (1982), Ed. G. Möller, Munksgaard, Copen-hagen), (ii) enzymes, such as superoxide dismutase (Kelly, K. et al.; Cdn. J. of Physiol. Pharmacol., 609 (1982) p. 1374-81) or L-asparaginase (Uren, J.r. et al.; Canc. Research 39 (1979) p. 1927-33), or (iii) natural or synthetic hormones.

In the presently best developed and therefore also currently best preferred mode of the invention, the is tolerogen covalent conjugate monomethoxypolyethylene glycol (mPEG) with molecular weight in the range of 2000-10,000 daltons and a foreign protein such as ovalbumin (OA), which served as a model According to this modality, tolerogens of appropriate composition (i.e. consisting of the genetic material or its expression product and an optimal number of mPEG chains attached to it covalently) substantially suppress the formation of antibodies of different classes IgE and IgG) which are directed specifically against the genetic material per se and/or against its expression product(s). The latter case is exemplified by OA or its covalent derivative with a number of 2,4dinitrophenyl groups (DNP), i.e. $OA-DNP_n$, represents the average number of DNP groups coupled per one OA molecule.

Animal model

5

10

15

20

25

30

The acceptability of the mouse as an experimental model for correlation to human utility in the present experiments is evidenced by Dreborg et al. "Immunotherapy with Monomethoxypolyethylene Glycol Modified Allergens". page 325, which indicates that similar results were

achieved in humans and mice and thus confirms mice are an acceptable experimental model for evaluation of mPEG-modified allergens. See also <u>Antibodies: A Laboratory Manual</u>, Cold Spring Harbor Press, 1988, p. 93, which indicates that laboratory mice are an acceptable experimental animal model for examining the immune response, and that mice, in particular, possess appropriate characteristics for studies of the genetics of the immune response.

The tolerogen employed

5

10

15

20

25

30

As water-soluble polymers to be used for the preparation of a tolerogen, polyethylene glycols, having molecular weights in the range of 2,000 to 35,000, have proved to be effective. Polyethylene glycols in this physiologically acceptable include context also mono-alkyl ethers, thereof, such as derivatives preferably the monomethyl ether, whereby the remaining single terminal hydroxyl groups of the molecules are conveniently used for coupling to the protein.

Also other water-soluble polymers (macromolecules) may be used, such as polyvinylalcohols, polyvinyl-pyrrolidones, polyacrylamides and homo- as well as hetero-polymers of amino acids, polysaccharides (e.g. pullulan, inulin, dextran and carboxymethyl cellulose) or physiologically acceptable derivatives of these polymers.

For the covalent coupling of such polymers to the genetic material or its antigenic expression molecules, chemical methods normally used for coupling of biologically active materials to polymers may be used. Such methods include coupling by means of mixed anhydride, cyanuric chloride, isothiocyanate, reaction between SH derivatives and CH₂I derivatives of the reacting molecules. However, it is obvious to the workers skilled in the art that other appropriate

chemical methods may be used to lead to the production of conjugates of desired compositions.

The coupling reaction is made between active groups in the antigen molecules and in the polymer molecules. If necessary such groups may have to be introduced into said molecules before the coupling reaction. Such active groups are for example -NH₂, -NCS, -SH, -OH, -CH₂I and COOH and they may be introduced according to well-known methods, if not already present in the molecules used for the production of tolerogenic conjugates.

5

10

15

20

25

30

35

In order to minimize the liberation in vivo of the immunogenic and/or allergenic constituent(s) of the tolerogenic conjugates and to maximize their effectiveness at a low dose, it is desirable that the covalent link between the water-soluble polymer and protein or its active derivative(s) should be as stable as possible under physiological conditions.

The coupling of the polymer onto the antigenic or genetic material must, as mentioned above, have been carried out to such an extent that the conjugate is rendered tolerogenic, as well as substantially non-allergenic and substantially non-immunogenic. In other words the tolerogens must retain a certain number of epitopes of the unmodified antigen, as long as their immunogenicity has been decreased to that they do not induce the formation of antibodies which may cause unacceptable adverse reactions.

of To achieve tolerogenicity, the degree substitution, also referred to as the degree conjugation, which is defined as the number of polymer molecules coupled per antigen molecule, varies from one antigen molecule to another depending on the nature and size of the antigen and on the polymer and its molecular Therefore, for the synthesis of a tolerogenic conjugate of a given antigen it is essential to

5

10

15

20

25

30

35

12

synthesize a series of conjugates with different degrees of substitution and then establish the special range wherein the above mentioned requirements are fulfilled. Too low a degree of substitution may result in conjugates still endowed with allergenic and immunogenic properties, and too high a degree of substitution may result in conjugates which are not tolerogenic. One of skill in the relevant art will be able to optimize the degree of substitution using the disclosure as example. optional substitution range is one in which tolerogenicity is achieved. One of skill in the art can perform the steps outlined in the specification and arrive at the appropriate degree of coupling of the nonimmunogenic polymer onto the antigenic protein so as to achieve the claimed properties. In a preferred emobodiment, a ratio of 2-12 mPEG per antigenic protein is preferred (see Tables 5-7).

In view of the finely tuned homeostatic balance of the immune response, which may be easily perturbed either upwards or downwards by the administration of a given antigen depending on its dose, state of aggregation and route of administration, as well as the presence or absence of adjuvants, it is critical when practicing the invention for treatment of appropriate conditions, that the tolerogenic conjugates administered in such a manner as to lead to the downregulation of the immune response with respect to one or more classes of immunoglobulins directed against the unconjugated biologically active product of the genetic Hence, in practicing this invention for material. appropriate diseases, the tolerogenic treatment of conjugates are to be injected in absence of adjuvants since the adjuvants may counteract their suppressogenic effects. However, the inclusion of adjuvants along with the unconjugated immunogenic material in the examples

given below was justified so as to stimulate in experimental animals the enhanced production of antibodies in a relatively short time and to thus test under more stringent conditions the capacity of the tolerogenic conjugates to suppress the immune response in these animals even under these extreme conditions which are particularly favorable for enhancing the immune response.

The foreign genetic material or vehicle

5

10

15

20

25

30

In the claims and in the specifications, proteins and polypeptides are used synonymously. In the present context and claims the term foreign genetic material refers to a nucleotide, DNA, RNA, mRNA, plasmid, which are used as carriers of the gene and/or the gene itself responsible for the expression of the appropriate protein or protein derivative (fragments included), which are substantially immunogenic in the animal to be treated. The term biologically active antigenic protein as used herein includes preproteins, protein fragments, and gene fragments which express active proteins.

According to one aspect of the invention the genetic material should be therapeutically effective. Many such proteins, vectors, DNA are known per se (Culver, K.W., "Gene Therapy", 1994, p. xii, Mary Ann Liebert, Inc., incorporated herein by New York, NY, Publishers, reference in its entirety). For the purposes of example . only, vectors may be selected from the group consisting of Moloney murine leukemia virus vectors, adenovirus vectors with tissue specific promotors, herpes simplex vectors, vaccinia vectors, artificial chromosomes, receptor mediated gene delivery, and mixtures of the Gene therapy vectors are commercially above vectors. available from different laboratories such as Chiron, Inc., Emeryville, California; Genetic Therapy, Inc.,

14

Gaithersburg, Maryland; Genzyme, Cambridge, Massachusetts; Somatx, Almeda, California; Targeted Genetics, Seattle, Washington; Viagene and Vical, San Diego, California.

The effective doses (amounts) and formulations commonly used are also known and may be applied to the present invention, although the invention potentially may employ reduced or increased doses. In principle, both the biologically active foreign genetic material or its derivatives, as well as the corresponding tolerogenic conjugates, may be administered parenterally in a soluble in isotonic solution and after removal of form aggregates by centrifugation. Moreover, to destroy unwanted cells, such as cancer cells or the host's cytotoxic cells responsible for auto-immune diseases, one may insert genetic material consisting in tandem of the DNA specific for the carrier of the bullet (e.g., an antibody molecule directed to a cell marker) and the DNA representing the bullet (e.g., toxins represented by ribosome inactivating proteins) into the patient.

Time intervals for the administration

5

10

15

20

25

30

For the induction of immunological tolerance to a given protein the protocol followed according to the invention comprises the administration initially of an immunosuppressively effective dose (amount) of tolerogen, which is given prior to the administration of the therapeutically active protein or its product. If necessary, this dose may be portioned and given on repeated occasions. The immunosuppressive dose which is given may vary from tolerogen to tolerogen, but it has to be administered prior to the entry of the protein into the host's system. According to the principles outlined in the examples, the practitioner skilled in the art can determine the variables such as dose of tolerogen and the

5

10

15

20

25

30

35

15

minimum interval of time between its administration and the appearance of the immunogenic protein in the host's system. See, for example, references discussed in background of the invention. However, it is to be expected that gene therapy, resulting in the production of a "new" protein in the protein-deficient patient, has to be preceded by administration of the specific tolerogenic conjugate, i.e., the conjugate comprising the same protein and capable of suppressing selectively the immune response of the host with respect to the protein in question.

Generally the tolerogenic conjugate administered at any time prior to the administration of the foreign antigenic protein or genetic material. A time period of at least one day prior to the administration of the foreign genetic material is preferred. In a more preferred embodiment, the tolerogenic conjugate administered at least seven days prior to administration of the foreign genetic material. The immunosuppressive dose refers to the amount of tolerogen required to substantially reduce the immune response of the patient to the protein or to its derivative(s) which will be produced as a result of the gene therapy. According to one mode of the invention, further doses of the tolerogen may be given in conjunction with the protein or its derivative(s), i.e. after the primary administration of This mode may represent one way of the tolerogen. sustaining the suppression and may offer a more efficient therapeutic regimen for the disease condition for which the treatment has been designed.

The invention will now be illustrated by some non-limiting examples wherein OA and its tolerogenic mPEG derivatives have been applied as model substances to confirm the usefulness of the proposed immunosuppressive treatment of a well-established animal model commonly

5

10

15

20

25

30

1

utilized in the field of immunology. The conjugates will be designated as $OA-(mPEG)_n$ where n represents the average degree of conjugation.

EXAMPLE 1

Preparation of OA-mPEG conjugates having different degrees of substitution

The conjugates used in the experiments given below have been prepared by coupling mPEG molecules to OA essentially according to the procedure described by Abuchowski et al. (*J. Biol. Chem.* 252, 3518, 1977 utilizing cyanuric chloride as one of the possible coupling agents. To begin with, in the experiment described the "active intermediate" consisting of an mPEG molecule attached to cyanuric chloride was prepared.

It was found that the most important condition of this reaction was that all reagents be completely anhydrous and that the reaction mixture be protected from atmospheric moisture because of its high susceptibility Among various methods used for the to hydrolysis. synthesis of the "active intermediate", the example given below illustrates the general procedure. Jackson, C. -J.C., Charlton, J.L., Kuzminski, K., Lang, isolation "Synthesis, and Sehon, A.H. of ovalbumin with conjugates of characterization monomethoxypolyethylene glycol using cyanuric chloride as Anal. Biochem. 165: 114, 1987, the coupling agent. incorporated herein by reference in its entirety.)

Monomethoxypolyethylene glycol (2.5 g. mol wt 5590, Union Carbide) was dissolved with warming in anhydrous benzene (40 ml) and a portion of the benzene (20 ml) was removed by distillation to azeotrope off any water in the polymer. Cyanuric chloride [(CNCl)₃, 0.83 g, Aldrich, recrystallized from benzene) was added under nitrogen followed by potassium carbonate (0.5 g. anhydrous

powdered) and the mixture stirred at room temperature for 15 hours. The mixture was then filtered under dry nitrogen and the filtrate mixed with anhydrous petroleum ether (ca 50 ml, b.pt. 30-60°C) in order to precipitate the polymer. The polymer was separated by filtration under nitrogen, dissolved in benzene (20 ml) and reprecipitated with petroleum ether. This process was repeated seven times to insure that the polymer was free of any residual cyanuric chloride. The active intermediate was finally dissolved in benzene, the solution frozen and the benzene sublimed away under high vacuum to leave a fine white powder.

Elemental analysis of the intermediate confirmed that it contained 2 chlorine atoms. The intermediate, corresponding to $C_{256.3}H_{307.7}O_{127.2}N_3Cl_2$ with an average molecular weight of 5,738 daltons would have a theoretical composition in percentages of C, 53.65; H, 8.92; N, 0.73; Cl, 1.24; which agrees with its determined composition of C, 53.51; H, 8.89; N, 0.77; Cl, 1.08.

The chloride content of the intermediate was also determined by hydrolysis and titration of the chloride released with silver nitrate. Thus, the activated intermediate (120 mg) was dissolved in water (10 ml) and the pH adjusted to 10 with dilute sodium hydroxide. After heating at 90°C for two hours, the solution was cooled and the chloride titrated with silver nitrate (0.001N), using a chloride ion selective electrode to indicate the endpoint. The chloride content of the activated intermediate was found to be 2.1, consistent with the structure shown above.

The OA [40 mg, purified by chromatography on Ultrogel® AcA-54 (LKB, Bromma, Sweden)] was dissolved in sodium tetraborate buffer (4 ml, 0.1 M, pH 9.2) and the activated mPEG added to the solution at 4°C. The amount of activated mPEG was varied to prepare conjugates of

5

10

15

20

differing degrees of polymer substitution. Mole ratios (mPEG/OA) used to prepare specific conjugates are given in Table 1. The polymer-protein mixture was stirred for one half hour at 4°C and then one half hour at room temperature. The reaction mixture was desalted by either dialyzing for four days against running distilled water or by passing through a column of Sephadex® G-25 (Pharmacia Fine Chemicals AB, Uppsala, Sweden).

A DEAE-cellulose or DEAE-Sephacryl® (Pharmacia Fine Chemicals AB, Uppsala, Sweden) column (5 cm by 30 cm) was equilibrated with phosphate buffer (0.008 M, pH 7.7). The salt free OA conjugates were applied in water and the free (unbound) mPEG washed through the column with the pH 7.7 buffer. Free mPEG was detected on thin layer chromatography [Camag (Kieselgel DSF-5, Terochem Lab Ltd, Alberta) eluant 3:1 chloroform/methanol] using iodine vapor for development. After removal of the free mPEG from the ion-exchange column, sodium acetate buffer (0.05 M, pH 4.0) was used to elute the conjugate. The conjugate fractions were dialyzed and lyophilized to give the dry conjugates.

Table 1

Preparation of OA-mPEG _n Conjugates				
	Preparation ratiob	% mPEG ^{c.e}	%OA ^{d, €}	
OA-mPEG _{3.2}	10:1	26	70	
OA-mPEG _{6.6}	25:1	36	47	
OA-mPEG _{7.6}	25:1	42	47	
OA-mPEG _{10.6}	50:1	51	41	
OA-mPEG _{11.9}	50:1	52.4	38	

19

The degree of substitution, n, is calculated by the formula

% mPEG
% OX X mol wt OA
mol wt mPEG

Mole ratio mPEG:OA based on a molecular weight of 5.740 for mPEG-dichlorocyanurate and 44.460 daltons for OA.

The percentages of mPEG by weight were determined by nuclear magnetic resonance (NMR).

The percentages of protein by—weight were determined by the biuret method.

The total compositions of the conjugates, as calculated form the NMR and biuret analysis, are only of the order of 90% of the samples by weight; the difference of the order of 10% is attributed to moisture absorbed by the conjugates and/or to small amounts of DEAE-cellulose leaching from the column.

EXAMPLE 2

5

10

15

20

25

30

Determination of the immunosuppressive effect on the IqE response of different OA-mPEG, conjugates

The results of experiments illustrated in Fig. 1 clearly demonstrate the stringent dependency of the suppressogenicity of mPEG conjugates on their molecular composition. Thus, whereas treatment of groups of four (B6D2) F1 mice each with 50 μ g of OA-mPEG_{3.2}, or OA-mPEG_{6.6}, to intraperitoneal OA-mPEG_{7.6} one day prior or immunization with the sensitizing dose, consisting of $1\mu g$ of OA and 1 mg Al(OH), led to essentially complete (99-100%) abrogation of the primary anti-OA. IgE response, as measured --on day 14 after immunization-- by PCA in hooded rats, the more substituted conjugates, i.e. OAmPEG_{10.6} and OA-mPEG_{11.9}, inhibited the anti-OA IqE response, respectively, only to the extent of 94% and

20

50%. In this and the following examples, the weights of the conjugates given correspond to their protein content.

EXAMPLE 3

5

10

15

20

25

Long lasting suppression of the IgE response by proteinmPEG conjugates in contrast to a transient suppressive effect of unconjugated protein

It is to be noted that even unmodified OA was capable of downregulating the primary IgE response in relation to the response of control mice which had received PBS instead of OA or conjugates. experiment three groups of four (B6D2)F1 mice each received phosphate buffered saline, or 50 μg of OA-mPEG. or 50 μ g of OA. All animals were bled on day 10, 14, 21, 27, 35, 42 and 49 and their IgE titers were determined by PCA in hooded rats. As illustrated in Table 2, it is important to point out that whereas the suppressogenic effect of OA-mPEG conjugates was long-lasting, the downregulating effect of free OA was of short duration and, in actual fact, its administration predisposed the animals to an anamnestic response which reached, after booster immunization (administered on day 28), antibody levels equivalent to those of control animals which had received PBS and the two sensitizing doses of The results given in Table 2 clearly one antigen. demonstrate that a tolerogenic conjugate injected prior to repeated administration of the corresponding free protein essentially abrogated the immune response.

PCT/IB95/00995

15

20

25

30

 $\frac{Table\ 2}{Effect\ of\ administering\ 50\ \mu g\ of\ OA-mPEG_{4.5}\ or\ of\ free\ OA}$ one day prior to immunization

5	Day of bleeding after	PCA tit	ers for	groups of	
	primary immunization	mice tr	ceated w	vith	
		<u>PBS</u>	<u>OA</u>	OA-mPEG4.5	,
	10	5,120	40	< 4	
	14	1,940	40	< 4	
10	21	1,280	40	< 4	
	27	640	40	< 4	
	35	1,920	1,920	160	
	42	2,560	1,280	160	
	49	5,120	N.D.	160	

On day 28 all three groups received a booster dose of the sensitizing OA preparation.

EXAMPLE 4 The effect of different doses of the tolerogen on the IgE response

Each OA-mPEG conjugate was injected into groups of 4 mice each at the four doses of 10 μ g, 50 μ g, 150 μ g and 600 μ g. The control group of mice received PBS as placebo.

As is evident from Fig. 2, treatment with different conjugates at doses of 10 μg and 50 μg per mouse revealed marked differences in their suppressogenic capacity. It is also to be noted that at a dose of 150 μg , all conjugates were highly suppressive and at 600 μg (data note shown) all the compounds tested suppressed completely the IgE response.

^{*} N.D. = not determined

22

EXAMPLE 5

5

10

15

20

25

30

1

The effect of different doses of the tolerogen on the IgE response

The sera used in Fig. 3 to illustrate the effect of tolerogenic conjugates on the IgG response were the same as those used in Fig. 1. As illustrated in Fig. 3, administration of 50 µg of OA-mPEG_{7.6} resulted in the maximal suppression, i.e. of the order of 98% of the primary anti-OA IgG response, which was determined 14 days after the first injection of the sensitizing dose of OA by a radio-immunoassay employing the paper radio immunosorbent procedure (Kelly, K.A. et al.; J. Immunol. Meth. 39 (1980) p. 317-33) utilizing OA bound to the paper and with 125I-labelled affinity purified sheep antiserum to mouse IgG.

EXAMPLE 6

The suppressive effect of OA-mPEG₁₀ on IgM, IgG, and IgE plaque forming cells (PFC) in spleen and lymph nodes.

One mg of $OA-mPEG_{10}$ (containing 10 mPEG groups with an average mol wt of 10,000 daltons, which were coupled per OA molecule by the succinic anhydride method (Wie, S.I. et al., Int. Archs. Allergy appl. Immun. <u>64</u>, 84 (1981)) or PBS was administered intraperitoneally to each group of four (B6D2)F1 mice each one day prior to immunization with 1 μ g of DNP_3-OA in 1 mg Al $(OH)_3$.

On several days thereafter the spleen, as well as the mesenteric, parathymic and inguinal lymph nodes were removed and assayed for IgM, IgG, and IgE anti-DNP PFC (Rector, E.S. et al., Eur. J. Immunol. 10, p. 944-49 (1980). In Table 3 are given the numbers of PFC in the above tissues 10 days after immunization; from these data it is evident that treatment with this tolerogen markedly reduced the number of IgM, IgE, and IgG PFC in all tissues examined. Therefore, these results support the

claim that the tolerogens shut off the immune response rather than neutralize the circulating antibodies.

Table 3

The effect of OA-mPEG₁₀ on the suppression of IgM, IgG, and IgE plaque forming cells (PFC) in spleen and lymph nodes

	N 4 N 3	Anti-			from different	
	Antibody Class	Treatment	Spleen	Parathymic Nodes	Mesenteric Nodes	Inguinal Nodes
10	IgM	PBS OA-mPEG	2,150 900	2,950 200	Nd Nd	Nd ** Nd
	IgG	PBS OA-mPEG	15,350 N d	78,550 .1,300	5,000 Nd	Nd Nd
15	IgE	PBS OA-mPEG	10,410 500	16,530 950	11,140 400	300 Nd

^{*} Each tissue sampling represents a pool from 4 mice

** Nd = undetected

The above experiments establish the immunosuppressive effects discussed above and the effects at the various dosages.

EXAMPLE 7

25

30

35

In addition, utilizing the hu-PBL-SCID mice, it was demonstrated that in accordance with the phenomenon of "linked immunological suppression", cross-specific suppression of the human antibody response could be induced to murine mAbs which differ in their antigen binding specificities from those of the murine mAbs which had been incorporated into the tolerogenic conjugates, on condition that both mAbs shared the same heavy and light Thus, that pan-specific suppression of the "human" antibody responses against murine monoclonal antibodies (i.e., HAMA responses) of the IgG class could be achieved with 8 tolerogenic mPEG preparations, each consisting of one of the 4 gamma chains and of one of the

5

- 10

15

20

25

30

35

two types of light chains of murine IgG (Bitoh, S., Lang, G.M., Kierek-Jaszczuk, D., Fujimoto, S. and Sehon, A.H. Specific immunosuppression of human anti-murine antibody (HAMA) responses in hu-PBL-SCID mice. Hum. Antibod. Hybridomas 4:144-151, 1993).

The utility of this technology for therapeutic strategies in man, which necessitate the administration of immunogenic Biological Response Modifiers (BRMs), is apparent.

The safety of administration of mPEG conjugates of different allergenic proteins has been established in clinical trials in a number of countries in close to 300 patients afflicted by a variety of allergies medicated by IgE antibodies (Dreborg, S. and Akerblom, E. Immunotherapy with monomethoxypolyethylene glycol modified allergens. In: S.D. Bruck (Ed.), CRC Crit. Rev. Ther. Drug Carrier Syst. 6:315-363, (1990)).

It is to be emphasized that the function of the mPEGylated protein in the present strategy is to induce Suppressor T (Ts) cells which recognize the epitopes shared by both the unmodified and the mPEGylated BRM. In other words, this technology leads to conversion of antigens not only to nonimmunogenic, but most importantly to actively immunosuppressive molecules, which induce immunologic tolerance with respect to the original unmodified protein antigen. By contrast, the purpose of some other workers and companies utilizing mPEG conjugates of BRMs is to only reduce their immunogenicity i.e., without converting them to active tolerogens, and to thus only increase their half-life in circulation.

The discovery that pretreatment of a host with tolerogenic mPEG conjugates of a given protein Ag, followed by administration of the unmodified Ag, results in abrogation of the host's capacity to mount an antibody response to the Ag in question has a direct utility in

5

10

15

20

25

30

35

some forms of "gene therapy" which would result in the production of the protein corresponding to the gene in question, on condition that the host would have been deficient of the gene responsible for the expression of the particular protein from birth (see, Sehon, A.H. Suppression of antibody responses by chemically modified Memorial Lecture, XVIII Prausnitz Carl antigens, Symposium Collegium Internationale Allergologicum, Int. Arch. Allergy appl. Immunol. 94:11-20, 1991; Takata, M., Maiti, P.K., Kubo, R.T., Chen, Y-H. Holford-Stevens, V., Rector, E.S. and Sehon, A.H. Cloned suppressor T cells derived from mice tolerized with conjugates of antigen and monomethoxypolyethylene glycol. J. Immunol. 145:2846-1990; and Takata, M., Maiti, P.K., Bitoh, S., Holford-Stevens, V., Kierek-Jaszczuk, D., Chen, Y., Lang, G.M. and Sehon, A.H. Downregulation of helper T cells by an antigen-specific monoclonal Ts factor. Cell. Immunol. 137:139-149, 1991).

On the basis of well known immunological principles, it would be obvious that in conditions when the host is totally deficient, from birth, of the gene which has to be inserted after the maturation of the immune system, the protein expressed by the gene in question induces in the host an immune response against itself, (since the host with a normal immune system would not have been rendered from birth tolerant to the protein in question). Thus, (i) the immune response of the host to this protein would be manifested in the production of antibodies or cytotoxic cells by the host to the "new" protein, and (ii) this immune response would not only neutralize the "new" protein, but may also lead to diverse therapeutic complications due to formation of "immune complexes" consisting of the resulting antibody-antigen aggregates.

Clearly, the one condition for which gene therapy has proven to be an effective therapeutic modality is

adenosine deaminase (ADA) deficiency, which results in the impairment of T lymphocytes and hence in the severe combined immunodeficiency disorder (SCID) in children deficient of ADA from birth. Therefore, it is not surprising that Dr. Culver was successful in developing a curative gene therapy for this condition by treating the SCID kids by infusion of their own "ADA gene-corrected cells".

However, unless gene therapy is instituted from relatively easier it is immunological tolerance to a foreign genetic material or adulthood expressed products, than in maturation of the immune system, the success of gene therapy in hosts with a well formed immune system would be undermined by the above-mentioned complications. Hence, to avoid these complications, the induction of immunological tolerance to a well-defined protein Ag, by pretreatment of the host with tolerogenic mPEG conjugates of the corresponding Ag, i.e., Ag(mPEG), is indispensable for the success of gene therapy in disease conditions, when the same protein is expressed by the since this protein would inserted gene, deleterious immune response against itself in the host.

The present invention is the confirmation and extension of the earlier discovery of induction of immunological tolerance by immunosuppressive $Ag(mPEG)_n$ conjugates to therapies involving the insertion of new genes into the host with an intact immune system.

EXAMPLE 8

5

10

15

20

25

30

Thus, in accordance with the present invention, prior to beginning of gene therapy, i.e., prior to insertion of a new gene into a host which is required for expression of a protein beneficial to the host, e.g., one of the deficient clotting factors or enzymes, it is essential to

27

render the host tolerant to the protein in question by the use of the invention described.

EXAMPLE 9

5

10

15

20

25

30

The expressed protein material of the cystic fibrosis transmembrane conductance regulatory gene (CFTR) (Genzyme, Cambridge, Massachusetts) for the treatment of cystic fibrosis is dissolved in sodium tetraborate buffer (4 ml, 0.1 M, pH 9.2) and the activated mPEG added to the solution at 4°C. The amount of activated mPEG is varied to prepare conjugates of differing degrees of polymer substitution. Different mole ratios (mPEG/gene product) are used to prepare specific tolerogenic conjugates as described earlier. The polymer-gene product mixture is stirred for one half hour at 4°C and then one half hour at room temperature. The reaction mixture is desalted by either dialyzing for four days against running distilled water or by passing through a column of Sephadex® G-25 (Pharmacia Fine Chemicals AB, Uppsala, Sweden).

A DEAE-cellulose or DEAE-Sephacryl® (Pharmacia Fine Chemicals AB, Uppsala, Sweden) column (5 cm by 30 cm) is equilibrated with phosphate buffer (0.008 M, pH 7.7). The salt free mPEG conjugates of the cystic fibrosis gene product are applied in water and the free (unbound) mPEG washed through the column with the pH 7.7 buffer. Free mPEG is detected on thin layer chromatography [Camag (Kieselgel DSF-5, Terochem Lab Ltd, Alberta) eluant 3:1 chloroform/methanol] using iodine vapor for development. After removal of the free mPEG from the ion-exchange column, sodium acetate buffer (0.05 M, pH 4.0) is used to elute the conjugate. The conjugate fractions are dialyzed and lyophilized to give the dry conjugates.

Conjugates of the CFTR gene are administered to a patient at least one day prior to transfer of the cystic fibrosis transmembrane conductance regulator gene to lung

28

tissue using recombinant adenoviral vectors or liposomes.

EXAMPLE 10

5

10

15

20

25

30

The expressed protein material of the low density lipoprotein receptor (LDLr) gene used in the treatment of familial hypercholesterolemia is dissolved in sodium tetraborate buffer (4 ml, 0.1 M, pH 9.2) and the activated mPEG added to the solution at 4°C. The amount of activated mPEG is varied to prepare conjugates of differing degrees of polymer substitution. Different mole ratios (mPEG/gene product) is used to prepare specific tolerogenic conjugates as described earlier. The polymer-gene product mixture is stirred for one half hour at 4°C and then one half hour at room temperature. The reaction mixture is desalted by either dialyzing for four days against running distilled water or by passing through a column of Sephadex® G-25 (Pharmacia Fine Chemicals AB, Uppsala, Sweden).

A DEAE-cellulose or DEAE-Sephacryl® (Pharmacia Fine Chemicals AB, Uppsala, Sweden) column (5 cm by 30 cm) is equilibrated with phosphate buffer (0.008 M, pH 7.7). The salt free mPEG conjugates of the LDLr-gene products are applied in water and the free (unbound) mPEG washed through the column with the pH 7.7 buffer. Free mPEG is detected on thin layer chromatography [Camag (Kieselgel Lab Ltd, Alberta) DSF-5, Terochem eluant 3:1 chloroform/methanol] using iodine vapor for development. After removal of the free mPEG from the ion-exchange column, sodium acetate buffer (0.05 M, pH 4.0) is used to elute the conjugate. The conjugate fractions are dialyzed and lyophilized to give the dry conjugates.

Conjugates of the LDLr gene product are administered to a patient. Hepatocytes are grown in the laboratory and genetically altered with a murine retroviral vector containing LDLr gene. The cells are reinfused through

the hepatic artery to the liver of the patient at least one day after administration of the conjugate.

TABLE 4

WO 96/14874

5

DEPENDENCE OF IMMUNOSUPPRESSIVE EFFECTIVENESS OF PROTEIN (mPEG), CONJUGATES ON THE AVERAGE DEGREE OF CONJUGATION (n)*

TABLE 4: SUPPRESSION OF ANTIBODIES TO OVALBUMIN (OVA)

Conjugate **	Degrees of Suppression of the Anti-OVA Antibody Responses Compared to Responses in Control Mice Which Had Received Saline in lieu of the Conjugate***				
	IgE antibody	IgG1 antibody			
OVA (mPEG) 3.2	994	864			
OVA (mPEG) 6.6	100%	. 914			
OVA (mPEG) 7.6	100%	981			
OVA (mPEG) 10.6	941	901			
OVA (mPEG) 11.9	50%	861			

The value of n for each conjugate was calculated by dividing the micromoles of mPEG (determined by NMR) by the micromoles of protein (determined by the Biuret assay).

^{**} A single dose of 50 μ g (with respect to protein content of each conjugate) was administered into mice seven days prior to immunization with OVA.

*** The degrees of suppression for IgE and IgG antibodies were calculated, respectively, by the formulae:

$$\left[1 - \frac{\text{mean of PCA titers of test group}}{\text{mean of PCA titers of control group}}\right] \times 100\%$$

$$\left[1 - \frac{\text{mean of ELISA titers of test group}}{\text{mean of ELISA titers of control group}}\right] \times 100\%$$

**** The molecular weight of the mPEG used for this conjugation was 6200 daltons.

*****From Table 4 it can be seen that ratios of mPEG of 3.2, 6.6, 7.6, 10.6 and 11.9 to one antigenic protein, for example OVA, are preferred.

TABLE 5

TABLE 5: SUPPRESSION ANTIBODIES TO SAPORIN (SAP)

Conjugate*	Degrees of Suppression of the Anti- SAP Antibody Responses**		
	IgE antibody	IgG1 antibody	
SAP (mPEG) ₆	100%	94%	
SAP (mPEG),	100%	96%	
SAP (mPEG) 11	100%	99 k	

- * A single dose of 100 μg (with respect to protein content of each conjugate) was administered into mice seven days prior to immunization with SAP.
- ** Please see explanatory notes in footnote "***" to Table 4.
- *** The molecular weight of the mPEG used for this conjugation was 3000 daltons. From Table 5 it can be seen that ratios of mPEG of 6, 7 and 11 to one antigenic protein, for example SAP, are preferred.

TABLE 6

· 5

10

15

TABLE 6: SUPPRESSION OF ANTIBODIES TO HUMANIZED MURINE IGG (Haigg)

Conjugate*	Percent Suppression of the IgG1 Anti-H_IgG antibody responses
HmIgG (mPEG) 32	91 %
HmIgG (mPEG) 36	94\$
HmIgG (mPEG) 19	98\$
HmIgG (mPEG) 40	98%
	97%

- A single dose of 200 µg (with respect to protein content of each conjugate)
 was administered into rats seven days prior to immunization with HmIgG.
- ** Please see explanatory notes in footnote **** to Table 5.
- *** The molecular weight of the mPEG used for this conjugation was 3000 daltons.

****From Table 6 it can be seen that ratios of mPEG of 32, 36, 39, 40, and 41 to one antigenic protein, for example IgG, are preferred.

Table 7 shows a list of gene therapy systems which have been approved by the Recombinant DNA Activities Committee of the National Institutes of Health. However, no consideration appears to have been given to overcoming the potential complications due to the host mounting an immune response against the respective gene products. Clearly, if the patient had been producing from birth these proteins, he/she would be tolerant to them, i.e., and gene therapy would not necessitate the strategy of the described invention if the patient has retained his/her tolerance between the shutting off of his/her own genes producing the desired protein and the time of initiation of gene therapy by transfer of the gene in association with an appropriate "vehicle" for the renewed production of the protein. The table also shows a list of health disorders for which chromosomal locations are known which are considered treatable by gene therapy.

Disorder (gene used)	Cells altered (vector)
Adenosine deaminase	T-cells and stem cells
deficiency (ADA)	(retroviral)
Brain tumors (MDR-1)	Stem cells (retroviral)
Brain tumors (primary and metastatic) (HS-tk)	Tumor cells (retroviral)
Brain tumors (primary) ^a (HS-tk)	Tumor cells (retroviral)
Brain tumors (primary and metastatic) (HS-tk)	Tumor cells (retroviral)
Brain tumors (primary and metastatic) (HS-tk)	Tumor cells (retroviral)
Brain tumors (primary)	Tumor cells
(anti-sense IGF-1)	(DNA transfection)
Brain tumors (primary) ^a (HS-tk)	Tumor cells (retroviral)
Brain tumors (primary and metastatic) (HS-tk).	Tumor cells (retroviral)
Breast cancer (IL-4)	Fibroblasts (retroviral)
Breast cancer (MDR-1)	Stem cells (retroviral)
Breast cancer (MDR-1)	Stem cells (retroviral)
Colorectal cancer (IL-4)	Fibroblasts (retroviral)
Colorectal cancer (IL-2 or TNF-α gene)	Tumor cells (retroviral)
Colorectal cancer (HLA-87 and β2-microglobulin)	Tumors cells (liposomes
Colorectal cancer (IL-2)	Fibroblasts (retroviral)
Cystic fibrosis ^a (CF TR)	Respiratory epithelium (adenoviral)
Cystic fibrosis ^a	Respiratory epithelium
(CF TR)	(adenoviral)
Cystic fibrosis	Respiratory epithelium
(CF TR)	(liposomes)

Disorder (gene used)	Cells altered (vector)
Cystic fibrosis*	Respiratory epithelium
(CF TR)	(adenoviral)
Cystic fibrosis ²	Respiratory epithelium
(CF TR)	(adenoviral)
Cystic fibrosis ^a	Respiratory epithelium
(CFTR)	(adenoviral)
Familial	Liver cells (retroviral)
hypercholesterolemia ^a	
(LDLr)	
Gaucher disease ^a	Stem cells (retroviral)
(glucocerebrosidase)	
Gaucher disease ^a	Stem cells (retroviral)
(glucocerebrosidase)	
Gaucher disease ^a	Stem cells (retroviral)
(glucocerebrosidase)	
Gaucher disease	Stem cells (retroviral)
(glucocerebrosidase)	
HIV infection	T cells (retroviral)
(Mutant Rev)	
HIV infection	Muscle (retroviral)
(HIV-1 ill env)	
HIV infection	Muscle (retroviral)
(HIV-1 IIIB Env and Rev)	
HIV infection	T cells (retroviral)
(HIV-1 ribozyme)	
Leptomeningeal	Tumor cells (retroviral)
carcinomatosis	
(HS-tk)	
Malignant melanoma	Tumor cells (retroviral)
(IL-4)	- " (
Malignant melanoma	Tumor cells (retroviral)
(IL-2)	
	Tumor cells (retroviral)
Malignant melanoma	(AUDOL CENS (LED CARA)
(IL-2) ·	
Malianant malanama	Tumor cells (retroviral)
Malignant melanoma (IL-2)	
Malignant melanoma	Fibroblasts (retroviral)
(IL-4)	\
Malignant melanoma	Tumor cells (liposomes)
(HLA-B7)	
(UPA-01)	

Disorder (gene used)	Cells altered (vector)
Malignant melanoma (HLA-87 and	Tumor cells (liposomes)
β_2 -microglobulin)	The state of the s
Malignant melanoma (TNF-α or IL-2)	T cells or tumor cells (retroviral)
Malignant melanoma (interferon-y)	Tumor cells (retroviral)
Malignant melanoma (87)	Tumor cells (retroviral)
Neuroblastoma ^a (IL-2)	Tumor cells (retroviral)
Non-small cell lung cancer	Tumor cells (retroviral)
(p53 or antisense K-ras)	The second tests
Ovarian cancer (HS-tk)	Tumor cells (retroviral)
Ovarian cancer (MDR-1)	Stem cells (retroviral)
Ovarian cancer (MDR-1)	Stem cells (retroviral)
Renal cell carcinoma (IL-2)	Tumor cells (retroviral)
Renal cell carcinoma (IL-4)	Fibroblasts (retroviral)
Renal cell carcinoma (TNF-α or IL-2)	Fibroblasts (retroviral)
Renal cell carcinoma (GM-CSF)	Tumor cells (retroviral)
Small cell lung cancer	Tumor cells
(IL-2)	(DNA transfection)
Solid tumors (HLA-B7 and β2-microglobulin)	Tumor cells (liposomes)

Disorder	Location	Disorder	Location
▲ Il-Beta-hvdrozysteroid dehydrogenase		[AMP deaminase deficiency, erythrocyte] (1)	lp21-p13
	Chr.1	Amyloid neuropathy, familial, several allelic types (1)	18911.2-912.1
3-Bess-hydrosysteroid dehydrogenese.	••••	Amyloidosis, cerebroarterial, Dutch type (1)	21921.3-922.05
	1p13.1	Amyloidosia, Finnish type, 105120 (1)	9034
	Chr.1	Amyleidania, heroditary renal, 108200 (1)	4928
	11422.8-428.1	Amyloidosis, lows type, 107860,0010 (1)	11023
	XpII.21	{?Amyloidosis, secondary, susceptibility to} (1)	ig21-g23
betalipoproteinenis (1)	2p24	Amyloidonis, senile systemic (1)	18911.2-912.)
leanthocytosis, one form! (1)	17021-022	Agyetrephic interni acierosis, juvenile (2)	2983-925
catalosemia (1)	11p13	Amytrophic lateral sciences, one form, 105400 (3)	2/022.1
cetyl-CoA carboxylase deficiency (1)	1702)	?Anal canal carcinoma (2)	11o22-over
rid-multase deficiency, adult (1)	17023	Analbuminemia (1)	4q11-q13
coustic neuroma (2)	•	Anemia, megaloblastic, due to DHFR deficiency (1)	6q11.2-q13.2
	22q12.2	Anemia, pernicious, congenital, due to deficiency of	pd 119-419-6
Acrocalismal syndrome (2)	13p18.5-p11.1	intrinste factor (1)	Chr.11
CTH deficiency (1)	2p25	!Anexia, sideroblastic, with spinner-chellar statis (2)	
ryl-CoA dehydrogenase, long chain, deficiency of (1)	2q34-q35	Anemia, sideroblastic/hypochromic (3)	Xp11.21
cyl-CoA dehydrogenase, medium chain, deficiency of (1)	1931	Aneurysm. (amilial, 100070 (1)	•
cyl-CoA dehydrogenase, short chain, deficiency of (1)	12q29-qter	Angelman syndrome (2)	2931
denylosuccinase deficiency (1)	22q13.1	•	15911-913
drenal hyperplasia, congenital, due to l'i-beta-hydronylase	• • •	Angiordemis, hereditary (1)	11q11-q13.1
deficiency (1)	8q21	Anhidrotte ectodermal dysplasia (2)	Xq12.2-13.1
drenal hyperplasia, congenital, due to 21-hydroxylase		Aniridia of WAGR syndrome (2)	11913
deficiency (3)	8p21.3	Aniridia-2 (5)	11p13
drenal hyperplasia V (I)	10q2+.3	Anhylesing speedylitis (2)	4-21.3
drezel hypopiasie, primary (2)	Xp21.3-p21.2	"Anophthulmos-1 (2)	Xq27-q28
drenocortical carcinoma (2)	11p16.5	Anterior segment mesenchymal dysgenesis (2)	4q 28-q 31
dresocuries) carelsons, bereditary (2)	lipiss	Antithrombin III deficiency (3)	1923-925
drenoleukodystrophy (2)	Xq28	ApoA-1 and apoC-III deficiency, combined (1)	11923
drenomyeloneuropathy (2)	Xq28	Apolipoprotein B-100, defective (1)	2024
AFP deficiency, congenital (1)	4q11-q13	Apohpoprosein H deficiency (1)	i Talsaler
gammaglobulinemia, type 1, X-linked (3)	Xq21.3-q22	Argininemia (1)	6q23
gammaglobutinemia, type 2. X-linked (2)	Xp22	Argininesuceimeaeiduria (1)	icen-all.2
Licardi syndrome (2)	Xp22	Aspartylglucosaminuria (3)	4q23-q27
Magille syndrome (2)	20911.2	Ataxia-celanguectasia (2)	11922-923
Ubinian (3)	11914-921	(Atheroscierosis, susceptibility to) (2)	19p13.3-p13.2
Libinian, brown, 203290 (1)	9p23	?(Atheroselerosis, susceptibility to) (3)	8p21-p12
Ubinism, oculocutaneous, type II (3)	15q11.3-q12	Alopy (2)	11912-913
Ubinism-dealness syndrome (2)	Xq26.3-q27.1	Atransferrsnemia (1)	392)
Alleight hereditary estandystrophy-2 (2)	15911-913	Atrial septal defect, secondum type (2)	6p21.3
Alcohol intolerance, acuta (1)	12024.2	Autonomic failure due to DBH deficiency (1)	Pq54
Aldolase A deficiency (1)	16922-924	Basal cell nevus syndrome (2)	9q31
Aldeneronism, gracusordenid-remediable (1)	8431	Betten disease (2)	16p12
Allan-Herndon syndrome (2)	Xq21	Batten disease, one form, 204200 (1)	15q24-q25
Alpha-I-antichymotrypsin deliciency (1)	14932.1	Becker muscular dystrophy (3)	Xp21.2
Alpha-NaGA deficiency (1)	22q11	Reckwith-Wiedemann syndrome (2)	11pter-p36.4
Alpho theismemis/mental retardation syndrage,		Bernard-Soulier syndrome (1)	17pter-p12
type 1 (1)	16pterp12.3	Blepharophimosis epicanthus inversits and plans (2)	3922423
Alpha-thalassemia/mental retardation syndrome, type 2 (2)		Bicom syndrome (2)	16q24.1
Alport syndrome, 301050 (3)	Xq22	Borjeson-Forssman-Lehmann syndrome (2)	Xq26-q27
Airenias proteinosis, congezitai, 285129 (1)	Chr.2	Rornholm eye disease (2)	Xq28
Aixheimer dusease, APP related (3)	21921.3-922.05	Branchicotic syndrome (2)	8q13.3
Alzheimer diseast-1 (2)	21q	*Breast cancer (1)	17p13.3
Abbeiner dimest-3 (2)	14924.3	Breast cancer (1)	6q24-q27
Alzheimer disease-2, late onset (2)	ibcen-q13.2	Breast cancer, ductal (2)	1 p36
Amelogenesis Imperfects (1)	Xp22.3-p22.1	Breast cancer, ductal (2)	Chr.13

Disorder	Location	Disorder	Location
Brody Dyopethy (1)	Chr.16	Colorblindness, trium (2)	
Burkitt lymphoma (3)	8q24.12-q24.13	Columental adendera (1)	79 23-e ter 12012.1
**TC1q deficiency (1)	1p36.8-p34.1	Colerectal cancer (1)	12p12.1
CIr/Cls deficiency, combined (1)	12013	Colorectal cancer (1)	18023.3
CZ deficiency (3)	6021.3	Coloractal cancer (1)	5021
3 deficiency (1)	18p13.3-p13.2	Coloractal cancer, 114500 (3)	17013.1
3b inactivator delicioncy (1)	4925	Columettal conour (3)	5481-472
4 deficiency (3)	6921.3	Combined CO/CT deficiency (1)	5p13 :
5 deficiency (1)	9q34.)	*Combined variable hypogammaglobulinemia (1)	14032.33
6 deficiency (1)	5p13	Congruital Material abuses of vas deferres (1)	7481.2
7 deficiency (1) Il deficiency, cope I (2)	Sp13	Montenesi enriios anomolius (2)	23e11
a germany, type (() 3 deliciency, type () (2)	1932	Contractural arachnoductyly, congenital (3)	Chr.S
	1p32	Coproporphyria (1)	Chr.9
9 delicinate (1)	5013	*Cornelia de Lange syndrome (2)	3q26.3
amponelie dysplacia-1 (2)	17924.8-925.1	(Commany artery disease, miscopublicy to [[]	6427
arbamoviphosphate synthetase I delicency (1)	2p	Cortisol resistance (1)	5931
Carbonic anhydrase I deficiency) (1)	8q22	CRI deliciency (1)	1e32
arboxyspeddaet B deficiency (1) Cardiomyopathy (1)	Che.18	(2)	Xpurg22.2
,	2036	Craminopaniania, type II (2)	Equipment
ardiomyopathy, dilated, X-linked (1) Ardiomyopathy, familial hypertrophic, 1, 192600 (8)	Xp21.2	Cranicsynesicsus, type I (2)	7p21.3-p21.2
artismyspathy, familial hypertrophic, 2 (2)	14q12	Creatine sinane, brain type, ecupic expression of [(2)	14032
arthomyopathy, familial hypertrophic, 3 (2)	193	Crestzfeldt-Jakob dusease, 125000 (3)	2upter-p12
ertiago bair hypoplada (2)	1592	Gripher-Najper syndrome, type I, 218300 (1)	Cltr2
su-eve syndrome (2)	9p18q11	*Cryptorchidista (2)	Xp21
Cataract, anterior polar, 1 (2)	22411	*Cutts laxa, marfanoid neonatal type (1)	1431.1431.2
Catarart congenital total (2)	14 434-que r	Cystathonumria (1) -	Chr.16
attract, congenital, with microphthalmia (2)	Xp 16018.3	Cystic fibrosis (3)	7431.2
ataract. Coppoch-like (3)	2033-035	1Continued (8)	14423
aturact. Marner type (2)	16022.1	**Cyntheuria, 220100 (1)	2purq32.8
Alaraci, somular pulversient-) (2)	102	Denfaest, conductive, with stapes fixetion (2)	Xq18-q21.1
DS. assa citain. deficiency (1)	1023-42521,1	Destress, tow-tone (2)	5931-933
retral core disease (8)	16e12	Debracquina amountity (1)	22011.1
entrui core dustuse of muscle (2)	19q13.1	Dentinogenesis imperfecta-1 (2) Denvis-Drash syndreme (1)	4913-921
entrocytir tymphoma (2)	11913		11013
erebrai amyloid angiopathy (1)	20p11	Diabetes insipidus, nephrogenic (3)	Xq28
erobral extenspetty with enterorical inferest and	COPII	Diabetes suspectus, neuronypophyseol, 125700 (1) **Diabetes mellitus, tasulin-dependent-1 (2)	20-13
icuturesorphologathy (2)	19412	December medicus, exputre-restigns, una generacus	6p21.3
errbrotendinous zanthomatoxis (2)	2013-01e1	nagracine (1)	10-10-0
eroid lipoluscinosis, neuronal-1, infantile (2)	1032	Diabetas mellitus, rare form (1)	/9p/2.2 11p15.5
ervical carcinoma (2)	11013	Diastrophic dysplasia (2)	11913.3 5q31-q34
CETP deliciency [11]	16a21	DiGeorge syndrome (2)	22011
harcol-Marie-Tooth neuropathy, sinw nerve conduction		Diphenylhydantom toxacity (1)	ibli-acer
type (a (2)	17011.2	(Diphtheria, susceptibility to) (1)	SoZi
narcot-Marie-Tooth neuropathy, slow nerve conduction	•	DNA ligner I deGelency (1)	19913.3918.3
type lb (2)	1921.9-923	Dulan-Jahnson syngrome (2)	i Jour
harcot-Marie-Tooth neuropathy, X-linked-1, dominant [2]	Xq13	Durneane muscular dystrophy (3)	Xo21.2
harcot-Marie-Tooth neuropathy, X-tinked-2, recessive (2)	Xp22.2	Desainsminemic hyperthyroxinemia (1)	4011-013
holestervi ester storage disease (1)	10024-925	[[Axaibuminemic hypertineemis] (])	6011-013
Chendrodysplania panezaza, rhesomelle (2)	4916-914	Lynamonomia. familial (2)	9931-933
hondrodyspiasia punctata, X-hinked dominant (2)	Xq28	Unafibrinopenomia, alpha types (1)	4928
handrodyspiania punctata. X-linkeo recessive (2)	Xp22.3	Evisior:noernemia, beis types (1)	4028
horesderemis (2)	Xq21.2	Dysfibrinogenemia, gamma types (1)	4928
hronic granulomatous disease, autosomal, due to		Dyskeratosis congenita (2)	Xq28
dehesency of CYBA (3)	16934	"Dyniema-1 (2)	15q11
htunic granutomatous onease due to deficiency of		(1) Spiesminogenemir thrombaphilis (1)	6q24-q2:
NCP-1 (1)	7011.23	Dysprothromoinemia (1)	11011-012
hronic granutomatous onease due to deliciency of		Lymranshvertinemic httperthvroxinemia ()	16011.2-0121
NCF-2 (1)	1925	?EEC synarome (2)	iq11.2-q21.3
	Xp21.1	Ehlers-Danios syndrome, type IV, 130080 (3	2g31
hronic granuiomatous disease, X-linked (3)		Ehlers-Danios syngrome, type VI, 225400 (11	1036.3-036.2
	10411.2-421		17921.31-922.05
hronic granuiomatous disease, X-linked (3)	9q34	Ehlers-Eranius syngrame, type VIIA1, 130080 (3)	7 . 40 . a
hronic granuiomatous disease, X-linked (3) Chronic infections, due to upsomn defect[(1) itrullinemia (1) Infi palaie, X-linked (2)	9q34 XaI3-q21.31	Ehlers Lightus susamme, type VIII.2. 130080 (3)	7q22.1
hromic granuiomatous disease, X-linked (3) Chronic infections, due to upsomin defect[(1) struktinemis (1)	9034	Ehlers-Lanus sunarome, type VII.2. 130080 (3) *Ehlers-Dantos sunarome, type X (1)	
hronic granuiomatous disease, X-linked (3) Chronic infections, due to upsomin defect (1) idrullinemia (1) Igf palais, X-linked (2) Oridocranial graphada (2) MO II deficiency (1)	9q34 <i>Xu13-q21.31</i> 8 q22 8q21	Ehlers-Danus sunstrome, type VII.2: 130080 (3) *Ehlers-Danus sunstrome, type X (1) Elliptocytosis. Melaysisn-Meisnestan type (1)	Tq22.1
hromic granuiomatous disease, X-linked (3) Chronic infections, due to upsomin defect[{ 1 } itrutinismis (1) [oft polate, X-limked (2) Cleidocranial gruplants (2) MO 11 defecency (1) schayne syndrome-2, late seact, 214410 (2)	9034 <i>Xa13-021-31</i> 8 q22 8q21 10q11	Ehlers-Iranus sunnrume, type VII.3: 130080 (3) *Ehlers-Iranus sunnrume, type X (1) Elliptocytosis: Malaysun-Meianesian type (1) Elliptocytosis (3)	Tq22.1 2034
hromic granuiomatous disease, X-linked (3) Chronic infections, due to upsomin defect[{ 1 } itsultinemin { 1 } left palais, X-linked (2) Chidocranial graphada (2) MO II deficiency (1) schayae syndrome 2, laid sanct, 218410 (2) offin-Lowry syndrome (2)	9034 Xa13-021-31 8q22 8q21 10q11 An22.2-p22	Ehlers-Danus sunstrome, type VII.2: 130080 (3) *Ehlers-Danus sunstrome, type X (1) Elliptocytosis. Melaysisn-Meisnestan type (1)	Tq12.1 2014 17q21-q22
hronic granuiomatous disease, X-linked (3) Chronic infections, due to upsonin defect [(1) struktinemia (1) log policie, X-linked (2) Chidocranial gruptadia (2) MO II deficiency (1) sekayas syndromo 2, lais sanct, 216410 (2) offio-Lowry syndromo (2) sless manuer, Samilial, mespetyposts type 8 (2)	9034 Xa/3-02/-3/ 8q23 8q23 10q11 10q11 An22.2-p22 { 2-10-p16	Ehlers-Dahus sunnyme, type VII.2, 130080 (3) *Ehlers-Dahus sunnyme, type X (1) Elliptocytosis, Malaysin-Melanesian type] (1) Elliptocytosis-1 (3) Elliptocytosis-2 (2) Elliptocytosis-3 (2)	7 <i>022.1</i> 2030 17021-022 1036.2-034
hromic granuiomatous disease, X-linked (3) Chronic infections, due to upsomin defect[{ 1 } itsultinemin { 1 } left palais, X-linked (2) Chidocranial graphada (2) MO II deficiency (1) schayae syndrome 2, laid sanct, 218410 (2) offin-Lowry syndrome (2)	9034 Xa13-021-31 8q22 8q21 10q11 An22.2-p22	Ehlers-Iranus sunstrume, type VII.2: 130080 (3) *Ehlers-Iranus sunstrume, type X (1) [Elliptocytosus Malaysun-Meianesian type] (1) Elliptocytosus (3) Elliptocytosus (2)	7g27.1 2g34 17g21-g22 1g36.2-g34 1g21

Disorder	Location	Disorder	Location
Emphysema-currhosis (1)	14022.1	Glaucema, congenital (2)	Chr.11
	X4M	Giannena, primary open angle (2)	lallell
Enchase deficiency (1)	lpter-p36.13	Glioblastoma multiforme (2)	10p12-23.2
*Connophilic mycioproliferative disorder (2)	12p13	Gincoso/galactose malahsorption (1)	22011.2-quer
Epidermotysis buildes dystrophics, dominal 1, 131750 (3)	3p21.3	Gistarionaldemia type IIC (3)	tell-enr
Epidermolysis bullosa dystrophica, recessive, 226600 (3)	3021.3	Glutaricaciduma, type IIA (1)	15q28-q25
	8434	Gistaricacidaria, type IIB (2)	Casto
	17q1 3- q2i	Glutathioniauria (1)	22q11.1-q11.2
Epidermolysia balisma simplex, Dowling-Moura type,		Glycerol kinase deficiency (2)	Xp21.3-p21.2
121700 (3)	12411412	Gipropus status danalis III (8)	lp21
Epidermolysis builosa sumplex, Dowling-Meara type,		Glycogen storage disease VII (1)	1000-432
131760 (5)	17912-921	Olycogen storage disease, X-linked nepatic (2)	Xp22.2-p32.1
	12q11∢ 3	[Glycealese deficiency (1)	16913
?Epidermolysis bullose sumplez, localized, 131800 (1)	12011-013	GM1-gangliosidosis (1)	3p21-p14.2
Epidermolysis bullosa, Weber Cocksyne type, 131800 (2)	12411-413	GMB-gangiosidosis. Ali variant (1)	Chr.5
Spidermolysis hypermentals, 11200 (1)	17431-423	OM2-ganglioudosis, juvenile, adult (1)	15q 23 -q2+
Epidermolytic hyperisonansis, 113000 (3)	12411418	Goeminne TKCR syngrome (2)	Xq28
Epidermelytic palthoplantar keretoderma (2)	17q11-q23	Gorter, adolescent, multinodular (1)	8q24.2 q2 4.3
Spiloper, besign recental (2)	20q18.2-q18.3	Gelten penendemic, simple (1)	0924.3924.8
Epilepsy, pavenile myoclanic (2)	6p21.3	*Goldenhar syndreme (2)	7p
Epilepsy, progressive myoclonic (2)	21922.3	Consdal dyspenesis. XY female type (2)	Xp22-p21
Epithelioma, seif-healing, squamous I.	0-81	Genedal dyspensia, XY type (3)	Yp11.8
Ferguson-Smith type (2)	9q31 7a23	Gonadebiastoma (2)	1 lp13
?Erythremia (1)	1921 16ater-p13.3	?Gonadotropin deficiency (2)	Xp21
Erythrenias, alpha- (1)	11915.5	Greig craniopolysyndactyly syndrame (3)	7913
Erythremias, beta-(1)	1936.3-934	**Cynecemastis, familial, due to increased aromatase activity (1)	
Erythrobiastosis fetalis (1) Brythrocytosia, familial , 189100 (2)	19918.5-013.2		16421.1
Erythrokeratodermia variabilis (2)	1936.3-934	Gyrate strephy of choroid and retina with ofhithmenta, 86 responsive or unresponsive (1)	10-04
	Za22		10q26
Euthyroidel hyper and hypothyromnemia (1)	22412	Harderoporphyrikuria (1) Thintensy disease, 254500 (1)	Chr.9
Ewing carcoma (3) Example investobinaria due to deficiency of LDH-A (1)	11pi5.4	Heinz body anemias, alpha-(1)	2pterq22.8
Executive Historic thougasty, X-linked (2)	XallSi	Heinz body anemias, bota- (1)	16pter-p13.3 11p16.5
Pabry duscase (3)	X=22	Hemochromatosis (2)	6o2L3
Factorspulchumeral mutcular dysrephy (2)	40.55	Hemodialysus-related amyloidosis (1)	15a21-a22
Factor H deficiency (1)	1023	Hemolytic anemia due to Alia excess (1)	20413.11
Factor V deliciency (1)	1923	Hemolytic anemia due to adenytate kinase deficiency (1)	9034.1
Factor VII deficiency (1)	12034	Hemotytic anemia due to bisphosphogiycerate mutase	-q-1.1
Factor X deficiency (1)	13634	deficiency (1)	7031-034
Factor XI deficiency (1)	4035	Hemolytic anomia due to GBPD deficiency (1)	Xq23
Factor XII deficiency (1)	5q39-qter	hemolytic animus due to glucosephosphase womerase	
Factor XIIIA deficiency (3)	5p28-p24	deficiency (1)	19a13.1
Factor XIIIB deficiency (1)	1431-432.1	Hemohitic anemia due to giutathione peroxidate	•
Familial Mediterranean fever (2)	16913	deficiency (1)	3q11-q12
Fanconi anemia (1)	1912	Hemotytic anemia due to glutatnione reductase	
Fanconi anemio-1 (2)	2001334123	deliciency (1)	8p21.1
Favern (1)	Xq28	Hemolytic anumia due to bezokinam deficiency (1)	10422
(?Fetal alcohol syndrome) (1)	12424.2	Hemolytic anemia due to PGK deficiency (1)	Xql3
?Petal hydantoin syndrome (1)	ipli-geer	Hemotylic anemia que la phosphotructorinase deliciency (1)	21922.3
Phytodyspiana aut/icens progressus (1)	20p12	Remotytic anemia due to unosephosphate isomerase	
Fish-eye disease (3)	16q22.1	deliciency (1)	12013
Fish-odor syndrome (1)	lq	Hemophilia A (3)	Xq26
Flencher factor deficiency (1)	4q35	Hemophilla B (3)	%q27.1- q27.2
Focsi dermai hypoptania (2)	Xp22.31	Hemorrhagic disthesis due to "anuthrombin" Pittsburgh (1)	14032.1
Friedreich staxià (2)	9q1 8- q21.1	Hemotrhagic diatness due to PA11 deficiency (1)	7q21.3-q22
Fructase intolerance (1)	9422	?Hepsuc lipuse deficiency (1)	15921-923
Fucosidosis (1)	1p34	?Hepatocarcinoma (1)	2014-921
Fumaruse deficiency (1)	1912.1	Hepstocellular carcinoma (3)	4032.1
G6PD deficiency (3)	Xq28	[Hereditary perassence of alpha-fetoprotein] (3)	4011-013
- !Galactokinase deficiency (1)	17921-922	?Hereditary persusionce of fetal nemoglobin (3)	11915.5
Galactose epitherase deficiency (1)	1p36-p35	?Heroditary persustence of fetal hemoglobin.	
Galactosemia (1)	9p13	neueroceliniar, Indian type (2)	7436
	20413.1	?Hereditary persistence of fetal hemoglobin. Swiss type (2)	Xp11.23
Galactosialidosis (1)		Hermanic-Pediak syndrame, 203800 (1)	16935
Garáner synárome (3)	5q\$1-q22		
Gardner syndrome (3) Gaucher disease (1)	1921	Hern disease, or glycogen storage disease VI (1)	Chr.14
Gordner synanome (3) Gaucher disease (1) Gaucher disease, variant form (1)	1g21 10g21-g22	Heterocalister hereditary persecence of fetal hemoglobin (2)	11015
Gordner synarroms (3) Gaucher disease (1) Gaucher disease, variant form (1) Gentuertanny drestada (2)	1921 10921-922 11913	Heterocalistic heroditary permittence of fetal hemoglobin (2) HCRA pseudodeficiency (1)	11p15 15q 23- q24
Gordner synarroms (3) Gaucher disease (1) Gaucher disease, variant form (1) Genhaustansy dynalasia (2) Genhaustansy dynalasia (2) Genhaustansy dynalasia (2)	1921 10921-922 11918 20pter-912	Heterocalister hereditary persistence of fetal hemoglobin (2) HCR A pseudodeficiency (1) ?HHH syndrome (2)	11015 15q 23- q24 1 3 q34
Gordner synarroms (3) Gaucher disease (1) Gaucher disease, variant form (1) Gentuertanny drestada (2)	1921 10921-922 11913	Heterocalistic heroditary permittence of fetal hemoglobin (2) HCRA pseudodeficiency (1)	11p15 15q 23- q24

Disorder	Location	Disorder	Location
?Hotoprocescephalp-2 (2)	2021	About GN and Assessed and and and and and and and and and an	
? Estopromonphaly-4 (2)	14411.1418	absent GH and Acovarski type with bioinsciive GH (3) isovaiericacidemia (1)	17922-924
?Hols-Orass syndrome (2)	14923-424.2	T Liacobean syndrame (2)	15q14-q15
?Holt-Oram syndrome (3)	20913	(0)	119
Homocystumuria, Bo-responsive and nonresponsive types (• •	ีย	
HPFH, deletion type (1)	110164	T Kalimann syndrome (2)	Xo22.3
HPTN, nondeletion type A (1) HPTN, nondeletion type G (1)	11918.5	Nappa light chain deficiency] (1)	2p12
HPRT-related gout (1)	11p15.5 Xa 28-a27. 2	Kereseels folliculares spinulosa decaivans (2)	Xp22.3-p21.2
!Humoral hypercalcumus of malignancy (1)	12012.1-011.2	Kininegan deficiency] (1)	3q26-quer
Huntington disease (2)	4p)&3	YRippel-Pell syndrume (2) Kniest dysplasia (1)	fall.2
Horter syndrome (1)	4916.3	?Kostnann ng.angiocytosis (2)	12013.11-013.2
Hurler-Scheie syndrome (1)	4916.3	Krabbe duegue (1)	6p21.3 /+a24.3-a32./
Hydromphalms due to aquatical of Sylvies, 207000 (3)	Zq25	Plactate deficiency, adult, 223100 (1)	Chr.2
Hydrops fetalus, one form (1)	19419.1	?Lactase deficiency, congenital (1)	Chr.2
Hyperemmonemus due to CTP aut deficiency (1) Hyperbetatipoproteinemis (1)	191 3 -911	?Lactoferrin-delicient neutrophils, 245480 (1)	3921-923
ijypernemijo, iyyochidatic, familiol (3)	2p24 3q23-q24	Langer-Gredion syndrome (2)	\$q24.11- q2 4.13
Hypercholosterelessia, familiai (3)	19p13.2-p13.1	Langer-Saldino achondrogenesis-hypochondrogenesis (1)	12a13.11-q13.2
Hyperglycaemia, inclated nonketotic, type ((2)	Bo22	Laren desplism (1)	5p13-p12
Hyperimmunoglobulin G1 syndrome (2)	14a32.33	?Laryngesi adductor paralysis (2) [Lead pousaing, susceptibility to] (1)	6021.3-p21.2
hyperkalemie pariodic paralysis (3)	17923.1-028.3	Letomyomata, multiple hereditary eutaneous (2)	9 q34 18e11,32
Hyperleucinemia-lasteucinemia er hypervalinemia ();	l'apter-q12	Lesomyamasasia-nephropathy syndrome, 308940 (1)	18911.32 Xo22
Hyperispoprotesnemia I (1)	8p22	Leprochaument (1)	190132
Typerlipoperatements, type Ib (1)	19913.2	Lesch-Nynas syndrome (3)	Xq26-q27.2
Hyperhypoproteinemia, type III (1)	19413.2	!Latterer-Siwe dinesse (2)	13914-931
Hyperphenylalaninemia, mild] (3) ?Hyperprognicasonemia] (1)	1 2q2 6.1 2 q38-q3 7	Landatino, acute tymphoblastic (1)	199153
typerpropagation (1)	lipit.	Leukemia, acute tympheblastic (2)	9p23-p31
Hypermains, countiel, 145509 (1)	17421-422	?Lenkems, scute lymphocytic, with 4/11 translocation (2)	4001
Hypertension, essential, encouptibility to (3)	1943-943	Leuteman, acute repeloid (3)	4421 2/a22.3
typerunglyceridemia. ene form (1)	ileE3	Louismin, acute myeloid, M2 type (1)	XpRF.95
Hypervalinemia or hyperleucine-boleucinemia (1)	Chr.19	Leukemia, acuse pre-B-cell (2)	1923
typosiphalipoproteinemia (1)	11423	Leukemia, acute promyelocytic (1)	17921.1
iypobstalipoproteinemis (1)	2924	Leukemia, acute premyelocytic (2)	15q22
kypeenkdarie kypereniustain, typs II (2) Hypocerulopiasminemia, neredstary! (1)	19718.8	Loukemia, acute, T-cell (2)	11p13
typofibrinogenemia, gamma types (1)	3q21-q24 4 q28	Leukemia, ekronic sivelold (3)	22q11.2i
Rypegymenia due to PCK1 deficiency (1)	20-18-91	Leukemia, chronic myoloid (3) Leukemia, welchioongo (8)	9034.1 Che.4
typegonadism, hypergonadotropic (1)	19913.32	Leukemia, mycloid/lymphoid or mixed-lineage (2)	11023
Hypogonadism, hypogonadotropic due to GNRH		Leukemia. T-cell acute lymphoblastic (2)	11p15
defenency, 227200 (1)	Bp21-p11.2	Laukemia. T-cell acute lymphoblastic (2)	9934.3
typemagnesemia, X-linked primary (2)	X022	Leuhemia, Teeli acuse tymphotiostoid (2)	19p13.8·p13.1
Hypemeianosis of Ito (2)	15411-413	Leukemia. T-cell scute symphocytic (2)	10024
Hypometanosis of Ito (2) typomarathyroidism, familial (1)	9439-eter	Leutemia, transiers (2) Leutemia-1, T-cell acute lymphobiastic (3)	21a11.2
typoparathyroidism, X-linked (2)	11p15.3-p15.1 Xq2 8-q 27	Leukemia-2. T-cell acute nymphobiastic (3)	1p32 9p31
Hypophosphatasia, adult, 146700 (1)	1036.1-034	Leukemia/lymphoms, B-ccil, 1 (2)	114133
typophosphatasia, infantile, 241500 (3)	1p36.1-p34	Leukemia/lymphoma, B-cell, 2 (2)	18921 3
Typophosphatemia, hereditary (2)	Xp22.2-p22.1	Leukamia/lymphoma. B-cell, 3 (2)	19913
Hypophosphatemia with dealness (2)	Xp22	Leukemia/lympsema. T-cell (2)	14932.1
typoprothrombinemia (1)	11011-012	Leukemia/lympnoma. T-cell (2)	2934
Hypospadias-dysphagia syndrame (2)	5p12-p12	Leutemia/lymphoma, T-cell (3)	14411.2
Hypothyroidism, heroditary enegenical (l) Hypothyroidism, nongestrous (l)	8q24.2-q24.2 1p13	Laukocyte adhesion deficiency (1) Li-Fraument synarome (1)	21 922.3 17 p13. 1
typothyroidism, nongestrous, due to TSH resustance (1)	14031	Liposimide dehydrogenase deficiency (1)	7031-032
Tichthyons volgaris, 146700 (1)	1021	Lipoma (2)	12913-914
Ichthyesis. X-tinked (3)	Xp22.32	Liver cell carcinoma (1)	11014-013
Themselie citie syndrome (2)	6 p	Long QT syndrome (2)	11p15.5
manusodeficiency, X-linked, with hyper-lgM (3)	Xq24-q27	Lowe syndrome (3)	Xq26.1
accontinentia pigmenti, familial (2)	Xq27 ⊲28	Lupus erythematosus, systemic, 152700 (1)	1923
scontinentia pigmenti, sporadic type (2)	Xp11.21	Lymphoproliferative syndrome, X-tiphed (2)	In25
plertile male syndrome (1) Inoxine triphosphatase deficiency] (1)	λ cso-q22 20p	*Livneh cancer family syngrome 11 (2) *Livneh cancer family syngrome 11 (2) *Livneh cancer family syngrome 11 (2)	18q11-q12
mount triprosonatase ecirclency; (1)	20pter-p12	Macrocytic anomia of 5q-syndrome, refractory (2)	11p12-p13
inselin-dependent diabous melitino \$ (3)	11q	Macrocytic are into or sq-syndrome, retractory (2) Macrocytic aperitus retractory, of 69 syndrome,	
nterferon, alpha, deficiency (1)	9p2i	TVI 163666 (1)	5421.1
niarferon, immune, deficiency (1)	12924.1	Machine dystrophy (1)	\$p21.1<
isolated growth hormone delicipacy due to defect in		Macutar dystrophy, atypical vitelliform (2)	8924
GHRF(1)	20p11:23-qter	Mastel Courophy, North Carolina type (2)	6914-916.2
soluted growth hormone deferency, this type was			

Disorder	Location	Disorder	Location
*Male intertility due to acrosin deficiency (2)	22q13-quar	Multiple endocrone neoplacia II (2)	10-110
*Mate infertility, familial (1)	11913	Multiple endocrene neoplasia III (2)	10q11.2 10q11.5
?Male pseudohermaphrodiusm due to defective LH (1)	19412.32	!Multiple exocuses (2)	8023-424.1
Malignant hyperthermie susceptibility-3, 145800 (3)	19q13.1	?Multiple lipomatosis (2)	12913-414
Malignant hyporthornie macopilitity-2, 145000 (2)	17011.3-434	(Makiple eclarents, susceptibility to) (2)	18q23-que
Malegnant melanoma, cutaneses (2)	1936	?Muscle glycogenosis (1)	Xq12-q13
*Manie-depressive illness. X-linked (2)	X423	Massaler dynrophy, Duchesso-like, antennal (2)	18018-018
Managedosis (1)	19p12.2-q12	Muscular dystrophy, instigerate, automost	
Maple syrup urine disease, type 3 (3) Maple syrup urine disease, type 2 (3)	19013.1-412.2	dominani (3)	50223031.3
Maple syrup terms disease, type 3 (1)	1931	Muscular dystrophy, limb-girdle, autosomal recessive (2)	16q15-q22
Marian syndrome, 154709 (3)	6p22-p21 15q2),1	Myelwhyspiantic syndrome, protentionie (8)	8q\$1.1
Maretenux-Lamy syndrome, several forms (1)	5018-013	Myelogenous leukemia, acute (3)	5931.1
Martin-Bell syndrome (2)	X427.3	Myetoperoxidase deficiency (1)	17921.3-922
MASA syndrome (1)	Xe28	Myondenylate deamsmane deficiency (1)	1 p21-p 13
McArdin disease (1)	lie)3	(Mysenrikal Infermion, manupolikity to) (3)	17422
McCune-Albright polyostotic fibrous dyspissis. 174800 (1)		Mysglobinuris/hemolysis due to PGK deliciency (1)	Xq13
McLeed phenotype (2)	Xp21.2-p21.1	Myspothy due to CTPost deficiency (1)	1 915-91 1
Medicitary thyrond-currenoma (2)	10,11.1	Myopathy due to phosphogycerate mutase deficiency (1) Myopis-1 (2)	7913-0123
Megasolos (2)	10011.2		Xq28
Megalocorness, X-linked (2)	Xo11.3-e22	Mystania congenita, stypical acetamianinde-responsive (2) Mystania congenita, duminant, 160000 (3)	
Melecone, estanoves malignant (2)	9921	Mysterius congenuta, recessive, 255700 (3)	7485
Menogema (2)	22q12.3-qter	Hystonic dystrophy (2)	7¢35
Heningnema (3)	220123-013.1	Mystabular myopathy, X-linked (2)	19q12.2-q13.3
Metites desoure (2)	X418-q13	Mysaid liposarcome (2)	Xq28 12q13-q14
Mental retardation of WAGR (2).	11913	T :N syndrome, 310465 (1)	Xp22.3-p2].1
Mental parardation, Suprier Robinson type (2)	Xp21	Nail-patella syndrome (2)	Pa34
Mostal returnstes, X-linked nonspecific,	•	Nance-Horan syndrome (2)	Xp27.3-p21.1
with spheric (2)	Xell .	Nematine myoputhy-1 (8)	1021-023
Mental retardation, X-linked, syndromic-1, with		Naphrosophthisis, juvalie (2)	2-13-00
dystonic movements, statis, and scitting (2)	Xp22.3-p21.1	Neuroblastems (2)	Jp36.2-e36.1
Mental retardation, X-linked, syndramic-2, with		Notrespitheliene, 123488 (1)	11925-24
dysmorphism and cerebral strophy (2)	Xp11-q21	Neuroepitheboma (2)	22012
Montal retardation, X-hinked, syndromic-3, with		Neurofibromatosis, von Rechtinghausen (3)	17911.2
spassic diplogia (2) Mestal retardation, X-linked, syndromic-4, with	Xp11-q21.3	Neuropetics, recurrent, with pressure pointes,	•
confenital contractures and low fingerup arches (2)	V-18 -00	163500 (3)	17p11.3
Membel seturdation, X-linked, syndromic-5, with	Xq13-q22	Neutropenia, mmuno (2)	le23
Dandy-Walker malformation, basel ganglia dueses,		hiemann-Pich disease, type A (1)	11916.4-15.1
and sessares (2)	Xq25-q27	Nament-Pick disease, type B (1)	11p18.4-15.1
Mental retardation, X-linhod, syndromic-6, with	vdendei	Nomeno-Fich disease, type C (2)	129
generomastia and obesity (2)	Xp21.1-q22	Nightblindness, congenital stationary, type I (2)	Xp11.3
Mental retardation, X-linked-1, non-dysmorphie (2)	Xe22	l Mon-lamila dependent dinheron melitims, smoontibility to J (2)	
"Mental returdation, X-linked-Z, non-dysmorphic (2)	Xq11-q12	Notice disease (2)	17412.3
Mental retardation, X-linked-3 (2)	Xc24	Norum disease (3)	Xp1].4
Mentai retargatmo-skeletai dyspiassa (2)	Xo28	Nucleoside phosphorytase deficiency, immunodeficiency	16922.1
Metachrumatic leukodystrophy (1)	22913.31-qter	due to (1)	14.10.
Metaentomatic leukolystrophy due to deficiency of		Obesity (2)	14g[3.1 7a31
SAP-1 (1)	10021-022	?Ocular albinism autonomal recessive (2)	6013-015
Methemoglobinemia due to extochrome há deficiency (3)	Chr.1A	Ocular athinism. Forsius-Eriksson type (2)	Xpii-qii
Methemoglobinemia, engymopathic (1)	22013.31-quer	Ocular albinism, Nettleship-Falls type (2)	Xp22.3
Mathemogiohinemus, aipha- (1)	16pter-p13.3	Ornithine transcarbamytase deficiency (3)	Xb21.1
Methemoglobinemius, beis- (1)	11p15.5	Orefacial cleft (2)	6pter-p23
Methylmaionicaciduria. mulase deficiency type (3)	S p21	Oroticacióuria (1)	3013
Meraleniandeuris (1)	Chr. 12	Ostenarthrosis, proceedous (3)	12913-11-913.2
?Microphthaimie with linear skin defects (2)	Xp22.2	Ostenornens unperfecto, e cunucat forms,	
Miller-Dieker lissencephair syndrome (2)	17p13.3	186200, 186210, 259420, 166220 (3)	17421.31-022.05
*Mitanbookriai masplex i deficiency, 252010 (1)	ligis	Ostonomicas emperfecta, o cienical forms	
MODY, she form (3)	11p15.5	166200, 166210, 259420, 166220 (3)	7q22.1
MODY, type 1 (2)	20q13	*Osteopeurosis. 259700 (1)	[p21-p13
MODY, type II, 125851 (3) *Monthlys syndrome (2)	7p16-p13	Outcoporunia, idiopathic,164710 (8)	17421.31422.86
• • •	13912.2-913	Ommerwaa, 258500 (2)	13q14.1-q14.2
*Monoryte carboxyresterase deficiency (1)	16q13-q22.1	Usepalatodigital syndrome, type I (2)	Xq28
Nursimators II (1)	4921-923	Overtee enreaseme_167000 (2)	19913.1-913.2
Mucolipidens III (1)	4031-023	Ovarian careinoma (2)	9p24
Mucapanisaccharidose (1)	4p16.3	Ovarian failure, premature (2)	Xq26-q27
Hecopolysaccharidese II (2) Musepolysaccharidesia FØA (2)	Xq28	Ozulosis I (1)	2038-037
Mucopohraccharioosis IVB (1)	10434.3 1043-014.7	?Pages disease of hone (2)	6p21.3
Murapolysacchandosis VII (1)	3p21-p14.2 7q21.11	** Pallioner Hall syndrome (2)	3925.3
Multiple endocrine recognisis (())	11913	Pascreate (tous deficiency ())	10a26 '
		*Panhypopitudansm (1)	3 q

Disorder	Location	Disorder	Location
Panhypopituitarism, X-hokud (2)	Xq21.3-q22	Bacinitis pigitemieno esteronasi recursivo (2)	Inile24
terepositions (2)	11022.3023.2	Rettritte pigmentone, peripherin-related (2)	4921.1-m
eramyetenia congraita, 1663(h (3)	17923.1-925.3	Retinitis pigmentosa-1 (2)	8p11-421
erstlyfeid adenomatosis I I'i.	11913	Retinitis pigmentosa-2 (2)	Xell.3
Paristal Seremina (2) Physicians sum pathinty to) (1)	/lipiSpiLi2	Retmilie pigmentoeo-3 (2)	Xp21.1
'avenuel nocturnal hemographuris (1)	22q/3./ Xa22.)	Retheltis pignemented, antenunal demisant (3)	3481424
vitaeus-Merahacher disseas (3)	Xo22	Retinitis pigmenteen-8 (2) !ketinitis pigmenteen-8 (2)	Sq
abtereuric junction observation (2)	69	Retinitie pignenemo 0 (2)	Xp21.2-p21.2 7p16.3-p12
Pendred syndrome (2)	Bq24	Betinktis pigmentono-18 (2)	76
eriodontitis, juvenile (2)	4911-913	Recipités pranciata albanema (1)	6921.1-cza
ersistent Mulierian duct envamme (1)	19p13.3-p13.2	Retinoblamena (3)	13914.1-914.2
benylketonuria (3)	12424.1	Retinol binding protein, deficiency of (1)	10q23-q24
penylbetonutia due ta dibinirur.endore metuccase deficiency ())		Reunoschisis (2)	Xp22.3-p22.1
haselvencymes (2)	ip	*Rett syndrome (2)	Хp
hosphoribosyl pyrophosphate syntholase-related gout (1)	XQ Z3-4 24	Rhabdomyosarcoma (2)	11015.5
Phosphorytase sinase deficiency of liver and diuscle,	16-19-19-1	Rhabdomyosarcoma, alveolar (2)	2037
261750 (2) idealdism /3/	16q12-q13.1 4q/2	Rhabdomyosercoma, alveolar (3)	2425
ituitary tumbe, growth-horrace-secretary (1)	20013.2	ith-null disease (1) "Rh-null nemolytic anemia (1)	Jeen-q22
K deficiency hemotytic anemia (1)	1921	Rickets, vitamin Deresistant (1)	1936.2-p34
Placental factoren deficients: (1)	17a 22- a24	Reser squareme (2)	12q12-q14 4a25-a27
lacental steroid sulfatase deferency (3)	Xn22.32	kod menochromary (2)	Chr.14
leganin inhibitor deficiency (.	lipter-p12	?Kothmund-Themson syndrome (2)	Chi.F
lauminogen activater defirercy (1)	Spl2	Rusussein-Taybi syndrome (2)	16p13.3
lasminogen deficiency, typus i and II (1)	6q28-q27	?Reservéteur speárens (2)	17925
tasminogen Tochigi disease (Li	6q26-q7;	California systems (2)	79
istelet obphartletts storoge prot deficiency (1)	1423-425	Salivary gland peromorphic adenoma (2)	8q12
Poho, succeptibility to/ (2)	19913.2412.3	Sandholl disease (1)	Sq13
olycystic hidney disease (2)	16p13.31-p13.12	Tinnilippo disense, type IIC (2)	Che.14
olycystic ovarjan duosas (1 -	17q11-q12 <i>5e</i> 31- q £2	Sanfilippo syndrome D (1) Surcoma, synovial (2)	12q14
'utypons cols, familial (3) 'ongo disesse (1)	17023	School syndrome (1)	λρ11.2 4ρ16.3
'erphyria, acute hopatic (1)	9634	(2)	50112-0123
Porphyria, acute intermittent ::)	11424.1-424.2	Schiesphrunia, chruele (8)	21921.5-922.05
orphoria, Chester type (2)	119	[?Schizophrania. commetthility to] (2)	2418.3
orphysia, congenital stythrospicus (1)	10025.2-028.3	Scierotylasis (2)	1028-031
Porphyria cutanea tarda (1)	1934	tievere entablised immunodeficteery, 207500 (1)	10p16-p14
forphyria, hepatosrythropostic (1)	1934	Severe combined immunodeficiency due to	
orphyria variegata (1)	14432	AUA deliciency (1)	20013.11
ostanephetic apnes (1)	3026.1-428.2	Severe combined unmunodeficientry due to	
rader-Willi syndrome (2)	15q11 1 q43-q43	112 deficiency (1) Sever combined immunodeficuracy,	40 26 -927
Pro-minmpule, emporptibility on (3) Progressive come dystrophy (2	Xp21.1-p11.3	HLA class II-neoutre type (1)	19=13.1
Protidate deficiency (1)	ibren-e13.11	Severe company immunidationers, X-linked 200400 (3)	Xalis
roserdin ecficiency, X-linked	λρ11.4-ρ11.23	Short stature (2)	Apren 22.82
Topichicaendemia, type i or pre-a type (1)	13932	"Sualistosis (2)	6p21.3
regionicacidemia, type II or :c:il type (1)	3021-022	Sirkle celt anemia (1)	Hpl5.5
Protein C deficiency (1)	2q13-q14	75-mono-Galabi-Behmel syndrome (2)	Xcc=421.3
Protein C inhibitor definency (2)	14932.1	Sum initial infitum (2)	1405
Protein S deliciency (1)	3p11.1-g11.2	SLE (1)	1035
томрагразтия, ступагоромска: "/	Inpereptial	Small-reti center of lung (2)	3p 23 -p21
"seudohermaunroditism, mase with genocomastis (1)	7q11-q12	"Smith-Lemb-Owiz syndrome (2)	To34-qter
Pseudohypouldosurronnth (1.	4q31.1 20q13.7	Smith-Mazenis syndrome (2) Suastic paraptegia, A-knirol, uncompleated (2)	17p11.2 λg21-g22
Pseudohypoparathyrvidism, tyse la (1) Pseudoragiael puriscontrocal aypuspedino (1)	Che.2	Spherocytonia, bereditary (3)	17921423
Pseudo-vitamia D dependento ricketti 1 (2)	12014	Spherocytosis, hereditary, Januarise type (1)	Bali
Pseudo-Zeilweger syndreme (:	3021-021	Supermysosis, recessive (1)	1921
Pyridexine dependency with serzires (1)	التولا	Spherocytosus-1 (3)	14022-023.2
Pyropoiktiorytosis (1)	1921	Spherocytosu-2 (3)	3011.2
Pyruvate curbonylase deficiency (1)	liq	Spinal and bulber muscular atropos of Kennedy,	
lyturate dehydroganase deficiency (1)	Au2120221	313200 (3)	Aren-g22
?Kabson-Mendeshall syndrome (1)	19913.2	Spinia muscular strophy II (2)	30122-013.3
!Ranwerd sennitrity :	6p21.3	Spinal moreular stripple (11 (2)	3c12.2-q13.3
L W Resienzano syndrome :	\rea.q22	Spinocerebellur maxin (2)	6621.3-p21.2
kensi cui caremona (2)	3p1(2	Spenocerebellar asrephy II (2) Substantificat deforming type I (2)	12 424
[kenal glucosuria] (2)	6021.3 ho21	Suin-hand/foot deformity, type 1 (2) Split-hand/split-foot deformity, type 2 (2)	1a21.2-g21 3 3a26
Renal tubular arrousis-ostrope;, sis syndrome (1)	NGZS GaZŠ-aZI-	Spinonviorpiphwarai dyspiania (migraita (3)	12013 11-013.2
"Matural come destruction 1 / 7			
"Reunal cone mystrophy-1 (2 !Reunal cone-rod dystrophy (;	18921-022.2	Spinndvice-piphysical distributia tarda (2)	Ap22

Disorder	Location	Disorder	Locatio	
Stickler syndrome (3)	12q13.11-q13.2	Unher syndrome, type IC (2)	11p	
Sucrose intolerance (1)	3925-926	Usher syndrome, type 2 (2)	1032	
Supravaivat nortic stenode (3)	7911.2	Y yan der Woude syndrome (2)	1932	
Tav-Sachs disease (1)	15q23-q24	Velocardiofacial syndrome (2)	23411	
Testicular feminization (1)	доев-а22	Vitreoretisopathy, exadative, familial (2)	11913-23	
Thalassemias, alpha-(1)	lópter-p13.3	Viscoretinopathy, neovascular inflammatory (2)		
Thalassemias, beta-(1)	11p15.5	(Vivax malaria, susceptibility to) (1)	11913	
Thrombocytopenia, X-linked (2)	Xp21-p11	von Hippel-Lindau syngrome (2)	1921-922	
Infombophilia due to ejevated HRG (1)	3p14-gter	von Willebrand disease (1)	3p26-p25	
Incombophilia due to excessive plasminogen activator		TT 7 Waardenburg syndrome, type 1 (3)	Jupter-p12 2a35	
inhibitor (1)	7021.3-022	Waardenburg syndrome, type III,	edoo	
Inrombophilia due to neparin cofactor II	•	V 48820 (8)	3435	
deficiency (1)	22 q11	Waisman parkinsonism-mental retardation syndrome (2)	Xq28	
Trivroid hormone resistance, 274300, 188570 (3)	3p24.3	Watson syndrome, 193520 (3)	17411.2	
Thyroid rodine peroxidase deficiency (1)	27/3	Werdnig-Hoffmann disease (2)	5012.2-a13.3	
Thyroid papillary carcinoma (1)	10011-012	Werner syndrome (2)	8p12-p11	
Thyrotropin-releasing hormone deficiency (1)	Chr.3	(Wernicke-Kornakoff syndreme, susceptibility to) (1)	3p14.3	
Torsion dystonia (2)	9932-934	Wiescher-Wolff syndroms (2)		
Torsion dystonia-parkinionism. Pilipino type (2)	Xq12-q21.1	Miliano Beura systrano (2)	Xq13-q21 4q38-q35.1	
Tourette syndrome (2)	18q22.1	Wilms tumor (2)	11p13	
Transcobalamin II deficiency (1)	22q11.2-quer	Wilms turner, type 2 (2)	11015.5	
/Transcorun deficiency/ (1)	14652.1	Wilson disease (2)	13a14-a21	
Treacher Colines mandibulofacial disostoris (2)	5q 32-q33 ./	Wishoul-Aldrich syndrame (2)	Xp11.3-p11.2	
Trichorhinophalangeal syndrome, type 1 (2)	8q24.12	TWolf-Hirschhorn syndrome, 194190 (3)	4p16.1	
Trypsinogen deficiency (1)	1932-gret	Wilf-Hirschhorn syndrome (2)	1p16.3	
(Tibburcalania, succeptibility to) (2)	24	Wolman disease (1)	10924-925	
Tuperous scierosis-1 (2)	9933-934	Wrinkly skin syndrome (2)	2082	
Tuberous scierosis-2 (2)	11423	** ?\\\ Aeroderma pigmentosum (1)	1942	
Tuberous scierosis-3 (2)	12923.3	Xeroderma pigmentosum, group B (3)	2021	
Taberous sciercais-4 (2)	16p13	A Xernderma pigmentomm, complementarios		
Turner syndrome (1)	Xq13.1	group C (2)	Chr.5	
Tyrosinemia, type 1 (1)	15q23-q25	Xeroderma pigmentosum, group D. 278730 (1)	19013.2-013.3	
Tyrosinemia, type II (1)	16q22.1-q22.3	Xeroderma pigmeniosum, type A (1)	9034.1	
T Urate oxidase deficiency (1)	1p22	?heroderma pigmentosum, type F (2)	Chr.15	
Urolithiasis, 2.8-dihydroxyadenine (1)	16924	Zeliweger syngrome, type [1 (1)	Jp22-p21	
Under syndrome, type IA (2)	14q32	Zellweger syndrome-1 (2)	7911.23	
Unher eyndreme, type 13 (2)	11918.5		J	

5

10

15

20

25

30

(reprinted from Culver, K.W., "Gene Therapy", 1994, p. 93, Mary Ann Liebert, Inc., Publishers, New York, NY).

Alternatively tolerogenic conjugates may be submitted in accordance with United States Patent No. 5,358,710 to Sehon et al., incorporated herein by reference in its entirety. Thus the present invention can readily be adapted to any gene therapy protocol and is generally applicable to the administration of any therapeutic immunogenic material and not just the specific examples listed above.

Gene therapy according to the existing art may be applied to somatic cells or germ line cells by methods known such as gold electroporation, microinjection or jet injection, or other methods as set forth in Sambrook et al. "Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press (1989)" incorporated herein by reference in its entirety.

Thus the invention provides for a method for treating by gene therapy a mammal with a therapeutic amount of a biologically active antigenic material or its expression product. To retain the effectiveness of said antigenic material(s) from counteraction by an antibody(ies) produced against it(them); it is essential to suppress the capacity of the recipient of the gene to mount an antibody response(s) to said biologically active antigenic material(s). This method comprises:

- (a) selecting a mammal which has not received prior exposure to said biologically active antigenic material(s);
- (b) administering to said mammal in step (a) an immunosuppressive effective amount of a tolerogenic covalent conjugate of said biologically active antigenic material, or an immunogenic fragment thereof, covalently bound to monomethoxypolyethylene glycol of a molecular

5

10

15

20

25

30

35

42

weight of about 2000 to 10,000, wherein said poly(ethylene glycol) is monomethoxypolyethylene glycol and said method suppresses the formation of about 98% of antibodies against said antigenic genetic material or its product, the effective amount of said suppressing in said mammal the formation of immunoglobulin antibodies against the antigenic genetic material(s); and subsequently

administering to said mammal a therapeutically effective amount of said biologically active antigenic genetic material alone, or a derivative thereof synthesized by conjugating to said antigenic genetic material the DNA expressing biologically pharmacologically molecules, active wherein said tolerogenic conjugate of step (b) is administered at least one day prior to said antigenic genetic material of step (c). The effective dosage for mammals may vary due to such factors as age, weight, activity level or condition of the subject being treated. The effective dosage for animals and humans may be calculated on the basis of the subject's weight.

In an alternative embodiment, the invention provides a method for suppressing the capacity of a mammal to mount an IgG class antibody response to a biologically active antigenic product of genetic material comprising:

- (a) selecting a mammal which has not received prior exposure to said biologically active antigenic genetic material;
- (b) administering to said mammal of step (a), a tolerogenic covalent conjugate comprising said biologically active antigenic genetic material or an immunogenic fragment thereof, covalently bound to monomethoxypoly(ethylene glycol) of a molecular weight of about 4,500 to 10,000, in an immunosuppressive effective amount capable of suppressing the formation of

5

10

15

20

25

30

35

immunoglobulin antibodies of the IgG immunoglobulin class against said antigenic genetic material; and subsequently

(c) administering to said mammal a therapeutically effective amount of said biologically active antigenic genetic material alone or an immunogenic derivative of said genetic material, wherein said mammal is suppressed from mounting an IgG class antibody response to said biologically active antigenic genetic material or immunogenic derivative thereof, wherein said tolerogenic conjugate of step (b) is administered at least one day prior to said antigenic protein of step (c).

Similarly the invention provides a method for suppressing the capacity of a mammal to mount an immune response to a biologically active antigenic protein comprising:

- (a) selecting a mammal which has not received prior exposure to said biologically active antigenic protein;
- (b) administering to said mammal of step (a), a tolerogenic covalent conjugate comprising said biologically active antigenic protein or an antigenic fragment thereof, covalently bound to monomethoxy poly(ethylene glycol) of a molecular weight of 2000 to 10,000, in an immunosuppressive effective amount capable of suppressing an immune response against said antigenic protein; and subsequently
- (c) administering to said mammal a therapeutically effective amount of said biologically active antigenic protein alone or an antigenic fragment of said protein, wherein said mammal is suppressed from mounting an immune response to said biologically active antigenic protein or antigenic fragment thereof.

Additionally a method for suppressing the capacity of a mammal's IgG class antibody mediated immune response to a biologically active antigenic protein comprising:

(a) selecting a mammal which has not received prior

exposure to said biologically active antigenic protein;

(b) administering to said mammal of step (a), a tolerogenic covalent conjugate comprising said biologically active antigenic protein or an antigenic fragment thereof, covalently bound to monomethoxy poly(ethylene glycol) of a molecular weight of 2000 to 10,000, in an immunosuppressive effective amount capable of suppressing the formation of immunoglobulin antibodies of the IgG immunoglobulin class against said antigenic protein; and subsequently

5

10

15

20

25

30

35

(c) administering to said mammal a therapeutically effective amount of said biologically active antigenic protein alone or an antigenic fragment of said protein, wherein said mammal is suppressed from mounting an IgG class antibody response to said biologically active antigenic protein or antigenic fragment thereof, wherein said tolerogenic conjugate of step (b) is administered at least one day prior to said antigenic protein or antigenic fragment thereof of step (c), is provided for by the invention.

In a preferred embodiment the tolerogenic conjugate is administered 0-7 days prior to administration of said antigenic protein. Generally, the tolerogenic conjugate need only be administered at some time prior to administration of the antigenic protein. The administration of the tolerogenic covalent conjugate may be repeated in a preferred embodiment of the invention.

Advantageously the invention also provides a method of preparing an animal for gene therapy comprising

- (a) selecting a mammal which has not received prior exposure to a gene therapy biologically active antigenic protein;
- (b) administering to said mammal of step (a), a tolerogenic covalent conjugate comprising said gene therapy biologically active antigenic protein or an

antigenic fragment thereof, covalently bound to monomethoxy poly(ethylene glycol) of a molecular weight of 2000 to 10,000, in an immunosuppressive effective amount capable of suppressing an immune response against said gene therapy antigenic protein, wherein said mammal is suppressed from mounting an immune response to a gene therapy biologically active antigenic protein or antigenic fragment thereof.

5

10

15

20

25

30

35

The invention provides a composition for performing gene therapy comprising a tolerogenic covalent conjugate comprising a gene therapy biologically active antigenic protein or an antigenic fragment thereof, covalently bound to monomethoxy poly(ethylene glycol) of a molecular weight of 2000 to 10,000, in an immunosuppressive effective amount capable of suppressing an immune response against said gene therapy antigenic protein. In a preferred embodiement the composition does not comprise an immunological adjuvant.

In a preferred embodiment the invention provides a method for suppressing an immune response comprising the steps of

a) administering to a mammal an immunosuppressive effective amount of a tolerogenic conjugate including a therapeutic protein, coupled to monomethoxy-polyethylene glycol having a molecular weight of about 2000-10,000 daltons, at least one day prior to administration of therapeutic protein, wherein said method results in suppression of an immune response and the development of tolerance to said therapeutic protein.

The effective amount of the tolerogenic conjugate is preferably about 50-600 micrograms. The tolerogenic conjugate may comprise about 26 to 53% mPEG.

An immunosuppressive composition comprising a tolerogenic covalent conjugate comprising a biologically active antigenic protein or an antigenic fragment

5

10

15

ı

46

thereof, covalently bound to monomethoxy poly(ethylene glycol) of a molecular weight of 2000 to 10,000, in an immunosuppressive effective amount capable of suppressing an immune response against said antigenic protein. The degree of conjugation between mPEG and the antigenic protein is selected according to the composition, size and conformation of the antigenic protein, such that the degree of conjugation suppresses an immune response to the tolerogenic conjugate.

The purpose of the above description and examples is to illustrate some embodiments of the present invention without implying any limitation. It will be apparent to those of skill in the art that various modifications and variations may be made to the composition and method of the present invention without departing from the underlying principles or scope of the invention. All patents and publications cited herein are incorporated by reference in their entireties.

WE CLAIM

5

10

5

5

 A method for conducting gene therapy comprising the steps of

- a) administering to a mammal an immunosuppressive effective amount of a tolerogenic conjugate including genetic material or its product, coupled to monomethoxy-polyethylene glycol having a molecular weight of about 2000-35,000 daltons, at least one day prior to administration of therapeutic genetic material for gene therapy, wherein said method results in suppression of the immune response and the development of tolerance to said therapeutic genetic material or its expressed product.
- 2. The method of claim 1 wherein said therapeutic genetic material is selected from the group consisting of nucleotides, DNA, RNA, mRNA, and vectors including said therapeutic genetic material, and mixtures thereof, for the expression of a deficient protein product by the methods of gene therapy.
- 3. The method of claim 1 wherein the deficient protein is expressed in the host by the use of said vectors including said therapeutic genetic materials which are selected from the group consisting of Moloney murine leukemia virus vectors, adenovirus vectors with tissue specific promotors, herpes simplex vectors, vaccinia vectors, artificial chromosomes, receptor mediated gene delivery vectors, and mixtures of the above vectors.
- 4. The method of claim 1 wherein said gene therapy comprises, the administration of a cystic fibrosis transmembrane conductance regulator gene (CFTR) or a low density lipoprotein receptor (LDLr) gene.

5

10

15

5

- 5. A method for suppressing the capacity of a mammal to mount an immune response to a biologically active antigenic protein comprising:
- (a) selecting a mammal which has not received prior exposure to said biologically active antigenic protein;
- (b) administering to said mammal of step (a), a tolerogenic covalent conjugate comprising said biologically active antigenic protein or an antigenic fragment thereof, covalently bound to monomethoxy poly(ethylene glycol) of a molecular weight of 2000 to 10,000, in an immunosuppressive effective amount capable of suppressing an immune response against said antigenic protein; and subsequently
- (c) administering to said mammal a therapeutically effective amount of said biologically active antigenic protein alone or an antigenic fragment of said protein, wherein said mammal is suppressed from mounting an immune response to said biologically active antigenic protein or antigenic fragment thereof.
- 6. A method for suppressing the capacity of a mammal's IgG class antibody mediated immune response to a biologically active antigenic protein comprising:
- (a) selecting a mammal which has not received prior exposure to said biologically active antigenic protein;
- (b) administering to said mammal of step (a), a tolerogenic covalent conjugate comprising said biologically active antigenic protein or an antigenic fragment thereof, covalently bound to monomethoxy poly(ethylene glycol) of a molecular weight of 2000 to 35,000, in an immunosuppressive effective amount capable of suppressing the formation of immunoglobulin antibodies of the IgG immunoglobulin class against said antigenic protein; and subsequently

49

15 (c) administering to said mammal a therapeutically effective amount of said biologically active antigenic protein alone or an antigenic fragment of said protein, wherein said mammal is suppressed from mounting an IgG class antibody response to said biologically active antigenic protein or antigenic fragment thereof, wherein said tolerogenic conjugate of step (b) is administered at least one day prior to said antigenic protein or

antigenic fragment thereof of step (c).

· 5

10

- 7. The method of claim 6, wherein said tolerogenic conjugate is administered 7 days prior to administration of said antigenic protein.
- 8. The method of claim 6, further comprising, repeating the administration of said tolerogenic covalent conjugate.
- 9. A method of preparing an animal for gene therapy comprising
- (a) selecting a mammal which has not received prior exposure to a gene therapy biologically active antigenic protein;
- (b) administering to said mammal of step (a), a tolerogenic covalent conjugate comprising said gene therapy biologically active antigenic protein or an antigenic fragment thereof, covalently bound to monomethoxy poly(ethylene glycol) of a molecular weight of 2000 to 10,000, in an immunosuppressive effective amount capable of suppressing an immune response against said gene therapy antigenic protein, wherein said mammal is suppressed from mounting an immune response to a gene therapy biologically active antigenic protein or antigenic fragment thereof.

5

5

10

- 10. A gene therapy composition comprising a tolerogenic covalent conjugate comprising a gene therapy biologically active antigenic protein or an antigenic fragment thereof, covalently bound to monomethoxy poly(ethylene glycol) of a molecular weight of 2000 to 10,000, in an immunosuppressive effective amount capable of suppressing an immune response against said gene therapy antigenic protein.
- 11. A composition according to claim 10, wherein said composition does not comprise an immunological adjuvant.
- 12. A method for suppressing an immune response comprising the steps of
- a) administering to a mammal an immunosuppressive effective amount of a tolerogenic conjugate including a therapeutic protein, coupled to monomethoxy-polyethylene glycol having a molecular weight of about 2000-10,000 daltons, at least one day prior to administration of therapeutic protein, wherein said method results in suppression of an immune response and the development of tolerance to said therapeutic protein.
- 13. The method of claim 12, wherein said tolerogenic conjugate comprises about 26 to 53% mPEG.
- 14. An immunosuppressive composition comprising a tolerogenic covalent conjugate comprising a biologically active antigenic protein or an antigenic fragment thereof, covalently bound to monomethoxy poly(ethylene glycol) of a molecular weight of 2000 to 10,000, in an immunosuppressive effective amount capable of suppressing an immune response against said antigenic protein.

51

- 15. A composition according to claim 14, wherein the ratio of the mPEG to antigenic protein is about 3-12 mPEG to one antigenic protein.
- 16. A composition according to claim 10, wherein the ratio of the mPEG to antigenic protein is about 3-12 mPEG to one antigenic protein.
- 17. A composition according to claim 14, wherein the ratio of the mPEG to antigenic protein is about 30-50 mPEG to one antigenic protein.
- 18. A composition according to claim 10, wherein the ratio of the mPEG to antigenic protein is about 30-50 mPEG to one antigenic protein.
- 19. A composition according to claim 10, wherein the degree of conjugation between mPEG and said antigenic protein is selected according to the composition, size and conformation of the antigenic protein, such that said degree of conjugation suppresses an immune response to the tolerogenic conjugate.

Inte onal Application No PC1/IB 95/00995

A. CLASSIFICATION IPC 6 A61K4	OF SUBJECT 8/00	MATTER A61K47/48
-------------------------------	--------------------	---------------------

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC $\,6\,$ A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	GB,A,2 238 959 (A.SEHON ET AL.) 19 June 1991 cited in the application see page 5, line 22 - page 11, line 14	5-8, 10-19
X	WO,A,93 12145 (BAYLOR COLLEGE OF MEDECINE) 24 June 1993 see page 26, line 30 - page 28, line 18	5-8, 11-14
A	FASEB JOURNAL FOR EXPERIMENTAL BIOLOGY, vol. 6, July 1992 BETHESDA, MD US, pages 2836-2842, R.P.VEMURU ET AL. 'Immune tolerance to a defined heterologous antigen after intrasplenic hepatocyte transplantation: implications for gene therapy' see page 2836	1-4,9

l in annex.
ternational filing date with the application but theory underlying the e claimed invention to be considered to focument is taken alone the claimed invention inventive step when the more other such docu- tious to a person skilled int family
search report
_

Into Tonal Application No
PUT/IB 95/00995

(Contract	aton) DOCUMENTS CONSIDERED TO BE RELEVANT	5/00995	
tegory *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
1	WO,A,94 16065 (EXEMPLAR CORPORATION) 21 July 1994 see page 2		1-4,9
1	SCIENCE, vol. 254, 20 December 1991 LANCASTER, PA US, pages 1802-1805, J.R.CHOWDHURY ET AL. 'Long-term improvement of hypercholesterolemia after ex vivo therapy in LDLR-deficient rabbits.' see page 1804, last paragraph		1-4,9
· avec	Wind .	manager and a second se	
		į	
		i	
	-		
•			
			· .

1 **rnational application No.

PCT/IB 95/00995-

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 1-9,12,13 because they relate to subject matter not required to be searched by this Authority, namely. Remark: Although claims 1-9,12 and 13 are directed to a method of treatment of the human/animal body the search has been carried out and based on the alleged effects of the composition.
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
- Marting Committee and an analysis of the committee of t
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

information on patent family members

Intrarional Application No PCI/IB 95/00995

Patent document cited in search report	Publication date	Patent memb		Publication date
GB-A-2238959	19-06-91	US-A-	5358710	25-10-94
WO-A-9312145	24-06-93	AU-B-	3423293	19-07-93
WO-A-9416065	21-07-94	AU-B-	5962694	15-08-94

Form PCT/ISA/210 (patent family annex) (July 1992)

THIS PAGE BLANK (USPFO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)