## **Preliminary Concepts**

#### **Giuseppe Anastasi**



Executive Director, Industry 4.0 CrossLab

Dept. of Information Engineering, University of Pisa

E-mail: giuseppe.anastasi@unipi.it

Website: www.iet.unipi.it/g.anastasi/











#### **Internet of Things**



"The next logical step in the technological revolution connecting people anytime, anywhere is to connect inanimate objects. This is the vision underlying the Internet of things: anytime, anywhere, by anyone and anything"

(ITU, Nov. 2005)

#### Any object can be addressed

- computers and communication devices
- cars, robots, machine tools
- persons, animals, and plants
- garments, food, drugs, etc.

### Objects can be connected and communicate





### **Internet of Things**





IoT envisions a future in which any object is empowered with computing and communication capabilities

#### **Enhanced services**

- remote control of connected cars
- Intelligent thermostat
- Smart wash machine
- **-** ...





#### **Smart Devices**



# Increasing Connectivity Capabilities























### **Smart Object**



#### Any real-world object empowered with

- Communication capabilities
  - Allow the smart object to communicate
- Computing capabilities
  - Give the smart object its behavior
- Sensing/Actuating capabilities
  - Allow the smart object to interact with the physical world
- Power Source
  - Needed to feed electronic circuits

















### **Smart Object**



#### Real-world object + instrumenting device









#### Low-cost device, embedded to the object, with

- Communication capabilities
- Computing capabilities
- Sensing/Actuating capabilities
- Power Source















RFID Tags: only connectivity

RFID Reader required for communication















RFID Tags: only connectivity

RFID Reader required for communication









#### Sensor node









### **Smart Object Networks**



- Smart Objects typically are part of a distributed system
  - Where different smart objects cooperate to perform a specific task
  - Wireless/Wired communication





#### **Smart Environment**



- Smart Objects are the building blocks for smart environments
  - Smart environment
    - ⇒ a place where human activities are assisted and supported by ICT
    - ⇒ Through cooperating smart objects
  - Most of the environments where we live, work, spend our time are smart, or can be made smart





#### **Smart Environments**



- Smart Cities
- Smart Mobility
- Smart Parking
- Smart Lighting
- Smart Waste/Water Management
- Smart Buildings
- Smart Energy (Smart Grid)
- Smart Healthcare
- Smart Factory (Smart Industry)
- Smart Manufacturing
- Smart \*

The keyword «smart» is extremely popular





#### **Smart Cities**



A city instrumented with ICT tools to provide improved efficiency, sustainable development, better quality of life, incresaed security, citizens' participation, inclusion of disadvantged people, ...







#### **Smart Mobility**



Sensors deployed at the main entrance of the city for real-time monitoring of urban traffic

Allows to take timely and appropriate decision









#### **Smart Parking**



#### **Efficient Management of Parking Areas**







Sensors deployed at each parking lot allows to monitor the status of parking lots and send information to a server

Drivers are guided to the closest parking area





#### **Smart Lighting**



#### **Energy effiency + innovative city services**





### **Smart Buildings/Homes**





Buildings providing their owner, operator, and occupants with an environment that is flexible, effective, comfortable, and secure through the use of ICT solutions



#### **Smart Homes**





A lot of networked embedded sensors and actuators that monitors and automatically control all the home activities crossla



#### **Smart Energy**









#### Electrical Grid augmented with ICT

- Information management is essential in smart grids
- for improved efficiency, security, safety, ...





#### **Smart Factory**



Real-time networking of human beings, machines, and smart objects for intelligent factory management

- Emergency actions
- Process control
- Alerting

Logging & monitoring

Predictive maintenance

Intra-logistics

•



### **Industry 4.0**









#### In the considered systems we observe

Lots of *smart objects* (with embedded sensors and/or actuators) ... pervasively deployed ... and wirelessly connected



Sensors collect data ...

to be *processed* for

services

⇒ users, operators, ...

intelligent decision making

⇒ actuators, people





### **Cyber-Physical System**



#### In the considered systems we observe

- a real space
  - people, appliances, cars, machines, ...

a cyber-space

hw, sw, algorithms

Cyber-Physical Systems







#### In the considered systems we observe

#### People in the loop as

- users
- sensors
- actuators





#### **Current solutions: verticals**









#### **Current solutions: verticals**







#### **Communication Standards**





Interoperable and open communication standards

CROSSLAB Innovation for industry 4.0



#### **Standardization Bodies**







#### **IP for Smart Objects**

- Set of IPv6-based solutions defined (or under definition) by IETF
- Supported by the IPSO alliance

#### Machine-to-Machine (M2M)

 Service architecture defined by the ETSI M2M Technical Committee









### **IETF Reference Architecture for IoT**





LLN: Low-power and Lossy Network





#### **IETF Protocol Stack for IoT**





Protocol stack built around the IPv6 protocol

Common "language" used by communication networks nowadays





### Why IPv6 for Smart Objects?



Interoperability

 Layered approach for independence of underlying technologies

Scalability

- Survived the current Internet evolution
- Unique (IPv6) addressing
- Direct support for self-configuration and management

End-to-end

- No multi-protocol intermediate gateways that:
  - Are expensive and difficult to manage
  - Lack of QoS end-to-end
  - Have security holes

# of protocols HTTP, XML, etc. TCP, UDP **IP** IEEE802.3 IEEE802.11 IEEE802.15.4





#### Is IoT Still a Vision?







### **IoT vs. Cyber-Physical Sistems**



- Cyber component + physical component
  - The cyber component receives data from the physical world
  - Processes the received data and takes intelligent decisions that are communicated to actuators
  - Smart object interact with the physical world
    - ⇒ Border between the cyber and physical world
- In IoT smart objects are connected to the Internet and communicate through IoT protocols



### **IoT Protocol Stack**

COAP

RPL

UDP

**ICMP** 

IPV6

**6LowPAN** 

IEEE 802.15.4





The IETF architecture assumes the IEEE 802.15.4 MAC protocol

The IEEE802.15.4 standard has been designed for low-power communications

It is the de-facto standard for the communication of lowpower wireless devices and sensor networks

Small frames, up to 127 bytes!

COAP **RPL UDP ICMP** IPV6 **6LOWPAN** IEEE 802.15.4 MAC IEEE 802.15.4 PHY





#### **6LowPAN Adaptation Layer**



Adaptation Layer to allow the transmission of IPv6 datagram on a IEEE 802.15.4 frame

6LowPAN defines the operations to be performed to transmit IPv6 packets in such networks

- How compress/translate the header
- How fragmentation can be performed
- How discovery is performed









In principle smart objects could use HTTP as application-layer protocol

In practice, they do NOT have enough memory to implement a complex application protocol

The *Constrained Application Protocol* (CoAP) to fulfill their needs

Simplified version of HTTP with specific features for the IoT

**COAP RPL UDP ICMP** IPV6 **6LOWPAN** IEEE 802.15.4 MAC IEEE 802.15.4 PHY





### Multi-hop communication



Wireless technologies for IoT devices are typically low-power

The transmission range of devices is limited

Multi-hop communication used to reach the destination when it is outside of the transmission range of the sending device





### **RPL Routing Protocol**



#### **IPv6 Routing Protocol for Low-Power and Lossy Networks**

RPL routing protocol for multi-hop communication

#### **RPL**

- collects information on the network topology
- computes the multi-hop routes
- populates the routing tables of each node





## Questions

