Partial Differential Equations in Finance

Your Name

May 22, 2025

Overview of Topics

- Charting theory and nature of boundary and initial conditions
- Explicit solutions, including original Black-Scholes formula
- Special problems arising when there are free boundaries

Key Questions in Financial PDEs

- Physical interpretation of the equations?
- ▶ Mathematical properties of the solution?
- Techniques for obtaining explicit solutions?

PDEs in finance:

- ► Fundamental equations (e.g., Black-Scholes)
- Linear vs. nonlinear problems

Considerations for PDEs in Finance

- 1. Does the equation make sense as a well-posed problem?
 - Appropriate boundary or initial/final conditions?
 - Nature of the mathematical problem?
 - Smooth or discontinuous solutions?
- 2. Can we develop analytical tools to solve the equation?
- 3. How should we solve the equation numerically if necessary?

First Order Linear PDE

Consider the equation:

$$\alpha(s,t)\frac{\partial u}{\partial s} + \beta(s,t)\frac{\partial u}{\partial t} = \gamma(s,t)u(t)$$

Linearity Property

If u_1, u_2 are solutions, then $c_1u_1 + c_2u_2$ is also a solution for constants c_1, c_2 .

Proof.

Substitute $u=c_1u_1+c_2u_2$ into the PDE and use linearity of derivatives.

Constant Coefficient Case

When α, β are constants and $\gamma \equiv 0$:

$$\alpha_0 \frac{\partial u}{\partial s} + \beta_0 \frac{\partial u}{\partial t} = 0 \quad (4.2)$$

Define the vector $\vec{v} = (\alpha_0, \beta_0)$ with $\beta_0 \alpha_0 \neq 0$. The directional derivative:

$$\nabla_{\vec{v}} u = \langle \alpha_0, \beta_0 \rangle \cdot \langle \frac{\partial u}{\partial s}, \frac{\partial u}{\partial t} \rangle$$

Thus, (4.2)
$$\Leftrightarrow \nabla_{\vec{v}} u \equiv 0$$

Characteristic Coordinates

Introduce new coordinates:

$$\xi = \beta_0 s + \alpha_0 t, \quad \zeta = \beta_0 s - \alpha_0 t$$

The Jacobian determinant:

$$\begin{vmatrix} \beta_0 & \alpha_0 \\ \beta_0 & -\alpha_0 \end{vmatrix} = -2\alpha_0\beta_0 \neq 0$$

Computing $\frac{\partial u}{\partial \xi}$:

$$\frac{\partial u}{\partial \xi} = \beta_0 \frac{\partial u}{\partial s} + \alpha_0 \frac{\partial u}{\partial t} \equiv 0$$

Therefore, u depends only on ζ : $u = F(\zeta)$

Characteristics and Information Propagation

- $\xi = \beta_0 s \alpha_0 t$ is called a **characteristic**
- Characteristics represent directions in which information propagates
- Analogous to constants of integration in ODEs

Important Note

Without boundary conditions, the solution remains arbitrary (like the constant ${\it C}$ in ODEs)