

基于MDEV的国产显卡虚拟化方案

邓林文

景嘉微虚拟化技术专家

目录

01 背景

- 要解决的问题
- · GPU虚拟化方案

02 方案实现 03 产品化效果 04 未来规划

- 整体方案
- MDEV驱动实现细节
- 优势
- 性能

MDEV+SRIOV

云桌面GPU虚拟化要解决的问题

业务的连续性,本地的性能,云上的灵活性

应用兼容性(API) 平台兼容性(指令集) 硬件兼容性

渲染性能(跑分) 编码推流性能(显示效果)

资源灵活分配(套餐规格) 资源共享(实例密度) 方便云厂商对接(管理接口)

云桌面GPU虚拟化方案

Virtio

VFIO透传

SR-IOV

MDEV

使用广泛,硬件要求低 性能差,应用兼容性差

QXL, Virtio GPU/Virgl

性能好 不支持共享,可扩展性差

VFIO-PCI

性能好,支持多实例 硬件实现复杂,灵活性差

AMD S7150

性能好,支持多实例,配置灵活 软件复杂

NVIDIA GRID, Intel GVT

目录

01 背景

- 要解决的问题
- GPU虚拟化方案

02 方案实现 03 产品化效果 04 未来规划

・ 整体方案

- 优势
- · MDEV驱动实现细节

性能

MDEV+SRIOV

基于MDEV的GPU虚拟化架构

GPU硬件

GPU是一个复杂的SoC系统

- 功能模块
 - 2D Engine、3D、EDMA、编码器、解码器
- 控制模块
 - · 中断、TOP...
- 接口模块
 - PCIE
 - 显示接口
- 帧存(DDR)

基于MDEV的GPU虚拟化Host驱动

- VFIO (Virtual Function I/O)
 - 用户态直接访问设备的驱动框架
- MDEV (Mediated Device)
 - 复用VFIO框架,支持多个实例共用一个设备
- JMGPU Host驱动
 - · GPU虚拟化具体实现

vGPU规格定义

- 每种vGPU规格对于着不用的资源分配方式
 - 帧存大小
 - 最大分辨率
 - 渲染核心(2D、3D)数量
 - 编解码核心数量
 - 显示模式
- 外部接口
 - /sys/bus/mdev/<device>/mdev_supported_types

vGPU创建

- 根据规格创建相应的vGPU资源
 - PCI配置空间
 - 帧存
 - 渲染资源(3D/2D)
 - ・・・中断
 - 显示
 - ...
- vGPU创建成功后,mdev设备节点可被Qemu访问
 - /sys/bus/mdev/<device>/<UUID>

vGPU 资源映射

- 虚拟机创建时,通过MDEV IOCTL获取并 配置vGPU基本信息
 - GET_INFO
 - GET_REGION_INFO
 - GET/SET_IRQ
 - QUERY_GFX_PLANE
- 通过VFIO IOCTL,将虚拟机的GPA与 HPA建立映射
 - IOMMU_MAP

vGPU 使用

• 虚拟机访问vGPU资源

- PCI配置空间读写
- 寄存器读写
 - TRAP
 - MMIO 直接映射
 - 内存映射
- 帧存访问
- DMA
- 中断

vGPU 复位

- · 虚拟机关机或销毁后,vGPU后端 资源需要进行复位
 - PCI复位
 - 功能模块复位
- 基本要求
 - · 不影响其它vGPU
 - 硬件状态能恢复

GUEST虚拟化驱动实现

驱动应与物理机保持"一致",保证应用的兼容性

- 内核态驱动为保证性能,需要进行一些半虚拟化处理
 - 性能损耗: trap > memcpy > mmap
 - 独占的资源用mmap
 - 共享的控制模块用trap
 - · 共享的功能模块用memcpy
- 虚拟显示
 - 不需要对物理显示控制器进行配置(KMS)
 - 需要独立接口传递EDID信息
- 监控
 - 多实例共享资源,需要对采样方法和数据进行额外处理
- 特权模块
 - 中断控制器的中断状态与功能模块内部的中断状态需要一致
 - 复位,

目录

01 背景

- 要解决的问题
- GPU虚拟化方案

02 方案实现 03 产品化效果 04 未来规划

- 整体方案
- MDEV驱动实现细节
- ・优势
- ・性能

MDEV+SRIOV

基于MDEV的GPU虚拟化产品优势

基于MDEV的GPU虚拟化效果

- 测试环境
- 服务器
 - 鲲鹏920 + 景云1号 + KylinV10 Server
 - Qemu + Spice-server
- 虚拟机
 - 4C8G + 1/2 vGPU + KylinV10 Desktop
 - · 虚拟机内抓屏编码(SDK)
 - 单卡最多支持8路虚拟化
- 客户端
 - 飞腾D2000 + JM9100
 - Spice-client
- 用例
 - 3D测试: glmark2
 - 视频播放: 4K@60 FPS H.265
 - 抓屏编码: 1920x1080@60 FPS H.264

基于MDEV的GPU虚拟化效果

目录

01 背景

- 要解决的问题
- GPU虚拟化方案

02 方案实现 03 产品化效果 04 未来规划

• 整体方案

- - 优势 性能

MDEV+SRIOV

- MDEV驱动实现细节

后续规划

MDEV + SRIOV,MDEV设备与VF 1v1绑定,性能与灵活性兼顾

主机接口	PCIE 4.0 x16
核心频率	1.2 Ghz
显存容量	32GB DDR4/LPDDR4
高清编码	8路4K@60fps编码,32路1080@60fps编码
高清解码	16路4K@60fps解码,64路1080@60fps解码
API接口	OpenGL4.6/OpenCL3.0/Vulkan1.2/DX11
硬件虚拟化	SR-IOV, 最大支持32路
典型功耗	150W

景美公众号