Howework 6 1) Show that every vector space V is isomorphic to (V) " by explicitly constructing the isomorphism. We construct a map: * f: V -> (V*)* f(v): V*-R VEV For any vector $v \in V$, f(v) is a linear form on V^{α} that takes a linear form of such qualities at V. For any fevy: P(v)(f) = 4 f(v) ER Linearity I he wan our map? is linear since f is linear. #) Byectively: a) swiectrity: We know Im(v) = Jim(v*) = Jim(v*) + Jim show subjectivity. b) Injectivity: By rank-nullity theorem we know that disn(v(1)) + disn(v(1)) = 2 m/9, and we know in (1) = dishitly ine know it's injective. Livear + Bijective = SOMORPHISM. We proved that V is isomorphic to (V")*.

