Лабораторная работа №16

Задачи оптимизации. Модель двух стратегий обслуживания

Кадров Виктор Максимович

Содержание

1	Введение	5
	1.1 Цели и задачи	5
2	Выполнение лабораторной работы	6
	2.1 Постановка задачи	6
	2.2 Построение модели	6
	2.3 Оптимизация модели двух стратегий обслуживания	10
3	Выводы	17
Сг	ісок литературы	18

Список иллюстраций

2.1	Модель первой стратегии обслуживания	7
2.2	Отчёт по модели первой стратегии обслуживания	8
2.3	Модель второй стратегии обслуживания	9
2.4	Отчет по модели второй стратегии обслуживания	9
2.5	Модель двух стратегий обслуживания с 1 пропускным пунктом	11
2.6	Отчёт по модели двух стратегий обслуживания с 1 пропускным	
	пунктом	11
2.7	Модель первой стратегии обслуживания с 3 пропускными пунктами	12
2.8	Отчёт по модели первой стратегии обслуживания с 3 пропускными	
	пунктами	13
2.9	Модель второй стратегии обслуживания с 3 пропускными пунктами	14
2.10	Отчёт по модели второй стратегии обслуживания с 3 пропускными	
	пунктами	14
2.11	Модель первой стратегии обслуживания с 4 пропускными пунктами	15
2.12	Отчёт по модели первой стратегии обслуживания с 4 пропускными	
	пунктами	16

Список таблиц

2.1	Сравнение ст	ратегий .														 									10)
 _	Cpublicitie Ci	parcifir .	•	•	•	•	•	•	•	•	 	•	•	•	•	 	•	•	•	•	•	•	 •	•	т,	,

1 Введение

1.1 Цели и задачи

Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры[1].

Задание

Реализовать с помощью gpss[2]:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

2 Выполнение лабораторной работы

2.1 Постановка задачи

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска.

Исходные данные: μ = 1, 75 мин, a = 1 мин, b = 7 мин.

2.2 Построение модели

Целью моделирования является определение:

 характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска;

- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- коэффициенты загрузки системы;
- максимальные и средние длины очередей;
- средние значения времени ожидания обслуживания.

Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель (рис. 2.1).

Рис. 2.1: Модель первой стратегии обслуживания

После запуска симуляции получим отчёт (рис. 2.2).

Untitlea M	OTHEKT				_	0000	UUU									
	OTHER2					0000										
	PUNKT1					0002										
	PUNKT2					0002			I							
	PUNK12				_	0003	.000									
LABEL		TOC	BLOC	K TYP	R	ENT	SA COIL	NT CU	BREN'	r cor	INT	RETR	v			
		1		RATE	_		5696			0		0	-			
		2	TEST				5696			ō		0				
		3	TEST				2847			0		0				
		4	TRAN				2232			ō		0				
BSL 1		5	OUEU				2847			339		ō				
		6	SEIZ				2508			0		0				
		7	DEPA	RT			2508			0		0				
		8	ADVA	NCE			2508			1		0				
		9	RELE	ASE			2507			0		0				
		10	TERM	INATE			2507			0		0				
BSL 2		11	QUEU	E			2849			339		0				
_		12	SEIZ	E			2510			0		0				
		13	DEPA	RT			2510			0		0				
		14	ADVA	NCE			2510			1		0				
		15	RELE	ASE			2509			0		0				
		16	TERM	INATE			2509			0		0				
		17	GENE	RATE			1			0		0				
		18	TERM	INATE			1			0		0				
FACILITY		ENTRIE														
PUNKT1		2508		999		4.01			34	0	0		0	339		
PUNKT2		2510	0.	995		3.99	5 1	49	96	0	0		0	339		
DUEUE		MAX	CONT.	ENTRY	ENTR	Y (0)	AVE.C	ONT.	AVE.	TTME	Δ.	VE. (-	-0)	RETRY		
OTHER1		340		2847		8	167.4					594.		0		
OTHER2		340		2849			166.9					593.0		0		
		2.0												-		

Рис. 2.2: Отчёт по модели первой стратегии обслуживания

Составим модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом (рис. 2.3, 2.4).

```
punkt STORAGE 2
GENERATE (EXPONENTIAL(1,0,1.75))

QUEUE Other
ENTER punkt,1
DEPART Other
ADVANCE 4,3
LEAVE punkt,1
TERMINATE

GENERATE 10080
TERMINATE 1
START 1
```

Рис. 2.3: Модель второй стратегии обслуживания

		суббо	Ta, N	ая 24, 1	2025 2	2:28:30				
	START	TIME		END :	TIME	BLOCKS	FACILI	TIES	STORAGES	
	0	.000		10080	.000	9	0		1	
	NAM	E			V	ALUE				
	OTHER PUNKT				1000					
LABEL		LOC	BLOC	K TYPE	EN	TRY COU	NT CURE	RENT C	OUNT RETRY	
		1	GENE	RATE		5719		0	0	
		2	QUE	JE		5719		668	0	
		3	ENTE	.R		5051		0	-	
				RT		5051		0		
		_		NCE		5051		_	0	
				Έ		5049			0	
				INATE				0	_	
				RATE		1		0		
		9	TERM	INATE		1		0	0	
									E AVE.(-0)	
OTHER		668	668	5719	4	344.4	66 6	50 T .13	8 607.562	0
TORAGE		CAP.	REM.	MIN. MA	X. EN	TRIES A	VL. AV	/E.C.	UTIL. RETRY	DELAY
PUNKT		2	0	0 :	2	5051	1 2.	.000	1.000 0	668
EC XN	PRI	BDT		ASSEM	CURRE	NT NEX	T PARA	AMETER	VALUE	
5721	0	10080.	466	5721	0	1				
5051	0	10081.	269	5051	5	6				
5052	0	10083.	431	5052	5	6				
5722	0	20160.	000	5722	0	8				

Рис. 2.4: Отчет по модели второй стратегии обслуживания

Составим таблицу по полученной статистике (табл. 2.1).

Таблица 2.1: Сравнение стратегий

Показатель	стратегия 1			стратегия 2
	пункт 1	пункт 2	в целом	
Поступило автомобилей	2847	2849	5696	5719
Обслужено автомобилей	2507	2509	5016	5049
Коэффициент загрузки	0.999	0.995	0.9975	1
Максимальная длина	340	340	340	668
очереди				
Средняя длина очереди	167.473	166.962	167.2175	344.466
Среднее время ожидания	592.951	590.725	591.538	609.138

2.3 Оптимизация модели двух стратегий обслуживания

Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии:

- коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5;
 0, 95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин.

Для обеих стратегий модель с одним пунктом выглядит одинаково (рис. 2.5).

Рис. 2.5: Модель двух стратегий обслуживания с 1 пропускным пунктом

После симуляции получим следующий отчет (рис. 2.5).

STRAT2.3	.1 - REPORT		
	NAME	E VALUE	
	OTHER	10001.000	
	PUNKT	10000.000	
LABEL		LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY	
LADEL		1 GENERATE 5744 0 0	
		2 OUEUE 5744 3233 0	
		3 ENTER 2511 0 0	
		4 DEPART 2511 0 0	
		5 ADVANCE 2511 1 0	
		6 LEAVE 2510 0 0	
		7 TERMINATE 2510 0 0	
		8 GENERATE 1 0 0	9
		9 TERMINATE 1 0 0	Į
QUEUE		MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY	
OTHER		3234 3233 5744 1 1617.676 2838.819 2839.313 0	
STORAGE		CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY	
PUNKT		1 0 0 1 2511 1 1.000 1.000 0 3233	
FEC XN	PRI	BDT ASSEM CURRENT NEXT PARAMETER VALUE	
2512	0	10080.255 2512 5 6	
5746		10080.384 5746 0 1	
5747	0	20160.000 5747 0 8	

Рис. 2.6: Отчёт по модели двух стратегий обслуживания с 1 пропускным пунктом

В этом случае модель не проходит ни по одному из критериев, так как

коэффициент загрузки, размер очереди и среднее время ожидания больше.

Построим модель для первой стратегии с 3 пропускными пунктами и получим отчет (рис. 2.7, 2.8).

Рис. 2.7: Модель первой стратегии обслуживания с 3 пропускными пунктами

STRAT1.2.1 - RE	PORT											
LABEL	LOC	BLOCK TYP	PE.	ENTR	Y COUNT	CURRE	NT CC	UNT	RETR	Y		
	1	GENERATE		5	547		0		0			
	2	TRANSFER		5	547		0		0			
OTHERS	3	TRANSFER		3	682		0		0			
DBSL 1	4	QUEUE		1	853		1		0			
_	5	SEIZE		1	852		0		0			
	6	DEPART		1	852		0		0			
	7	ADVANCE		1	852		1		0			
	8	RELEASE		1	851		0		0			
	9	TERMINATE	Ξ	1	851		0		0			
DBSL 2	10	QUEUE		1	829		0		0			
-	11	SEIZE		1	829		0		0			
	12	DEPART		1	829		0		0			
	13	ADVANCE		1	829		0		0			
	14	RELEASE		1	829		0		0			
	15	TERMINATE	2	1	829		0		0			
BSL 3	16	QUEUE		1	865		3		0			
_	17	SEIZE		1	862		0		0			
	18	DEPART		1	862		0		0			
	19	ADVANCE		1	862		1		0			
	20	RELEASE		1	861		0		0			
	21	TERMINATE	Ξ	1	861		0		0			
	22	GENERATE			1		0		0			
	23	TERMINATE	2		1		0		0			
ACILITY		UTIL. 0.717										
PUNKT2				3.952	_	0	0	0		0	0	
PUNKT3		0.740			1	5534				0	3	
PUNKT1	1852	0.727		3.957	1	5546	0	0		0	1	
QUEUE	MAX CO	ONT. ENTRY	ENTE	RY (0)	AVE.CON	T. AVE	.TIME	A	VE.(-0)	RETRY	
OTHER2	11	0 1829	9 5	808	1.112		6.126	5	8.	482	0	
OTHER3	13	3 1865	5 5	513	1.134		6.132	2	8.	458	0	
OTHER1	9	1 1853		20	0 020		- 0		7	075	0	

Рис. 2.8: Отчёт по модели первой стратегии обслуживания с 3 пропускными пунктами

В этом случае среднее время ожидания больше 4.

Построим модель для второй стратегии с 3 пропускными пунктами и получим отчет (рис. 2.9, 2.10).

```
punkt STORAGE 3
GENERATE (EXPONENTIAL(1,0,1.75))

QUEUE Other
ENTER punkt,1
DEPART Other
ADVANCE 4,3
LEAVE punkt,1
TERMINATE

GENERATE 10080
TERMINATE 1
START 1
```

Рис. 2.9: Модель второй стратегии обслуживания с 3 пропускными пунктами

_										
STRAT2.4	.1 - REPOR	Т								
		суббот	а, мая 24,	2025 22:38	:12					
			-,							
			END :					ES		
	(0.000	10080	.000 9		0	1			
	NAI	ME		VALUE						
	OTHER			10001.00	0					
	PUNKT			10000.00	0					
									_	
LABEL		T.O.C.	BLOCK TYPE	ENTRY	COUNT	CURRENT (COUNT RE	TRY	I	
			GENERATE	568			0 (
		_	QUEUE				0 ()		
			ENTER	568	3		0 ()		
			DEPART	568	3		0 ()		
		5	ADVANCE	568	3		3 ()		
		6	LEAVE	568	0		D ()		
		7	TERMINATE	568	0		0 ()		
		8	GENERATE		1		0 ()		
		9	TERMINATE		1		0 ()		
QUEUE		MAX CO	NT. ENTRY E	NTRY(0) AV	E.CONT	. AVE.TI	ME AVE	(-0)	RETRY	
OTHER			0 5683							
STORAGE			EM. MIN. MA							
PUNKT		3	0 0	3 5683	1	2.243	0.748	0	0	
FEC XN	PRI	BDT	ASSEM	CURRENT	NEXT	PARAMETE	R VALU	JE		
5680	0	10080.4	34 5680	5	6					
5683	0	10080.6	31 5683	5	6					
5685	0	10082.0	68 5685	0	1					
5684	Ω	10085.5	92 5684	5	6					

Рис. 2.10: Отчёт по модели второй стратегии обслуживания с 3 пропускными пунктами

В этом случае все критерии выполняются, поэтому модель оптимальна.

Построим модель для первой стратегии с 4 пропускными пунктами (рис. 2.11, 2.12).

```
🎇 STRAT1.gps
 GENERATE (EXPONENTIAL (1,0,1.75))
 TRANSFER 0.5, others, others1
 others TRANSFER 0.5,0bsl 1,0bsl 2
 others1 TRANSFER 0.5, Obsl 3, Obsl 4
 Obsl 1 QUEUE Other1
 SEIZE punkt1
 DEPART Other1
 ADVANCE 4,3
 RELEASE punkt1
 TERMINATE
 Obsl 2 QUEUE Other2
 SEIZE punkt2
 DEPART Other2
 ADVANCE 4,3
 RELEASE punkt2
 TERMINATE
 Obsl 3 QUEUE Other3
 SEIZE punkt3
                    I
 DEPART Other3
 ADVANCE 4,3
 RELEASE punkt3
 TERMINATE
 Obsl 4 QUEUE Other4
 SEIZE punkt4
 DEPART Other4
 ADVANCE 4,3
 RELEASE punkt4
 ПЕРМЕНТИТО
```

Рис. 2.11: Модель первой стратегии обслуживания с 4 пропускными пунктами

15	TRAT1.3.sim – JO	DURNAL										
	STRAT1.3.1 - I	REPORT										
)	OBSL 2	11	QUEUE		13	366		0		0		
ᆀ	_	12	SEIZE		13	366		0		0		
)		13	DEPART		13	366		0		0		
)	I	14	ADVANCE		13	366		0		0		
)		15	RELEASE		13	366		0		0		
ш		16	TERMINAT	E	13	366		0		0		
ш	OBSL_3	17	QUEUE			378		0		0		
ш		18	SEIZE		13	378		0		0		
ш		19	DEPART			378		0		0		
ш		20	ADVANCE			378		0		0		
ш		21	RELEASE			378		0		0		
ш		22	TERMINAT	Ε		378		0		0		
ш	OBSL_4	23	QUEUE			113		0		0		
ш		24	SEIZE			113		0		0		
- 1		25	DEPART			113		0		0		
- 1		26	ADVANCE			113		1		0		
ш		27	RELEASE			112		0		0		
- 1		28	TERMINAT		14	112		0		0		
- 1		29	GENERATE			1		0		0		
		30	TERMINAT	E		1		0		0		
	FACILITY	ENTRIE	UTIL.	AVE.	TIME A	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY	
ш	PUNKT4	1413	0.557		3.971	1	5623	0	0	0	0	
ш	PUNKT3	1378			3.989	1	0	0	0	0	0	
ш	PUNKT2	1366	0.541		3.993		0	_	0	0	0	
	PUNKT1	1465	0.584		4.018	1	5621	0	0	0	0	
4	QUEUE	MAX	CONT. ENTR	Y ENT	RY(0) I	AVE.CO	NT. AVE	E.TIME	AVI	E. (-0)	RETRY	
Ш	OTHER4	7	0 141		628	0.41	5	2.958		5.325	0	
Ш	OTHER3	8	0 137		655	0.34		2.527		4.816	0	
H	OTHER2	6			625			2.676		4.934		
4	OTHER1	6	0 146	5	590	0.49	2	3.385	5	5.667	0	
.]												

Рис. 2.12: Отчёт по модели первой стратегии обслуживания с 4 пропускными пунктами

В этом случае все критерии выполнены, поэтому 4 пункта являются оптимальным количеством для первой стратегии.

В результате анализа наилучшим количеством пропускных пунктов будет 3 при втором типе обслуживания и 4 при первом.

3 Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

Список литературы

- 1. Королькова А.В., Кулябов Д.С. Лабораторная работа 16. Задачи оптимизации. Модель двух стратегий обслуживания [Электронный ресурс].
- 2. Королькова А.В., Кулябов Д.С. Имитационное моделирование в GPSS [Электронный ресурс].