Midterm Review

Group 16

February 25, 2020

Chapter 6 Number 10 (Linear Model Selection / Regularization)

Question 10: We have seen that as the number of features used in a model increases, the training error will necessarily decrease, but the test error may not. We will now explore this in a simulated data set.

(a) Generate a data set with p=20 features, $n=1{,}000$ observations, and an associated quantitative response vector generated according to the model

$$Y = X\beta + \epsilon$$
,

where β has some elements that are exactly equal to zero.

```
set.seed(17)
p <- 20 # features
n <- 1000 # observations

x = matrix(rnorm(n * p), n, p)
Betas = rnorm(p)
Betas[2] = 0
Betas[9] = 0
Betas[12] = 0
Betas[12] = 0
Betas[15] = 0
Betas[19] = 0
eps = rnorm(p)
y = x %*% Betas + eps</pre>
```

(b) Split your data set into a training set containing 100 observations and a test set containing 900 observations.

```
train = sample(seq(1000), 100, replace = FALSE)
y.train = y[train, ]
y.test = y[-train, ]
x.train = x[train, ]
x.test = x[-train, ]
```

(c) Perform best subset selection on the training set, and plot the training set MSE associated with the best model of each size.

```
# Verify leaps package is loaded
# From p.245
require(leaps)
```

```
## Loading required package: leaps
```

Warning: package 'leaps' was built under R version 3.6.2

Training errors across features

which.min(errors) # min for train error should be at max pred count

[1] 18

(d) Plot the test set MSE associated with the best model of each size.

Test MSE errors across features

(e) For which model size does the test set MSE take on its minimum value? Comment on your results. If it takes on its minimum value for a model containing only an intercept or a model containing all of the features, then play around with the way that you are generating the data in (a) until you come up with a scenario in which the test set MSE is minimized for an intermediate model size.

```
(min <- which.min(errors))</pre>
```

[1] 11

(f) How does the model at which the test set MSE is minimized compare to the true model used to generate the data? Comment on the coefficient values.

```
coef(regfit.full, id = min)
```

```
## (Intercept)
                                                  x.7
                                                               x.8
                                                                           x.10
                        x.1
                                     x.3
##
     0.4269208
                               1.9139172
                 -0.9092418
                                            0.5197140
                                                         1.0232232
                                                                      1.7243344
##
          x.11
                       x.13
                                    x.14
                                                 x.17
                                                              x.18
                                                                           x.20
     1.9652998
                 -1.0439678
                               0.2216461
                                            0.2762867
                                                       -1.1132668
                                                                    -0.9127267
##
```

(g) Create a plot displaying $\sqrt{\sum_{j=1}^{p}(\beta_{j}-\hat{\beta}_{j}^{r})^{2}}$ for a range of values of r, where $\hat{\beta}_{j}^{r}$ is the jth coefficient estimate for the best model containing r coefficients. Comment on what you observe. How does this compare to the test MSE plot from (d)?

```
errors = rep(NA, p)
a = rep(NA, p)
b = rep(NA, p)
for (i in 1:p) {
    coefi = coef(regfit.full, id = i)
        a[i] = length(coefi) - 1
        b[i] = sqrt(sum((Betas[x_cols %in% names(coefi)] - coefi[names(coefi) %in% x_cols])^2) +
            sum(Betas[!(x_cols %in% names(coefi))])^2)
}
plot(x = a, y = b, type = "b", xlab = "number of coefficients", ylab = "error between estimated and true coefficients")
```


number of coefficients

```
which.min(b)
```

```
## [1] 9
```

A model with 9 coefficients (10 with intercept) minimizes the error between the estimated and true coefficients.

Of the 20 original features, five were set to zero. 11 plus the intercept were useful meaning that an 11 parameter model is better than a 20 parameter model. A better fit of the true coefficient as measured here doesn't mean the model will have a lower test MSE.

Chapter 7 Number 6 (Polynomial Regression and Step Function)

In this exercise, you will further analyze the Wage data set considered throughout this chapter.

```
require(ISLR)

## Loading required package: ISLR

require(boot)

## Loading required package: boot

attach(Wage)
dim(Wage)

## [1] 3000 11
```

head(Wage)

```
##
         year age
                            maritl
                                       race
                                                  education
                                                                       region
## 231655 2006 18 1. Never Married 1. White
                                               1. < HS Grad 2. Middle Atlantic
## 86582 2004 24 1. Never Married 1. White 4. College Grad 2. Middle Atlantic
## 161300 2003 45
                        2. Married 1. White 3. Some College 2. Middle Atlantic
                        2. Married 3. Asian 4. College Grad 2. Middle Atlantic
## 155159 2003 43
                       4. Divorced 1. White
                                                 2. HS Grad 2. Middle Atlantic
## 11443 2005
              50
                   2. Married 1. White 4. College Grad 2. Middle Atlantic
## 376662 2008
##
               iobclass
                                health health_ins logwage
                                                               wage
## 231655 1. Industrial
                             1. <=Good</pre>
                                            2. No 4.318063 75.04315
## 86582 2. Information 2. >=Very Good
                                            2. No 4.255273 70.47602
## 161300 1. Industrial
                                           1. Yes 4.875061 130.98218
                             1. <=Good
## 155159 2. Information 2. >=Very Good
                                           1. Yes 5.041393 154.68529
## 11443 2. Information
                             1. <=Good
                                           1. Yes 4.318063 75.04315
## 376662 2. Information 2. >=Very Good
                                           1. Yes 4.845098 127.11574
```

```
names(Wage)
```

```
## [1] "year" "age" "maritl" "race" "education"
## [6] "region" "jobclass" "health" "health_ins" "logwage"
## [11] "wage"
```

(a) Perform polynomial regression to predict wage using age. Use cross-validation to select the optimal degree d for the polynomial. What degree was chosen, and how does this compare to the results of hypothesis testing using ANOVA? Make a plot of the resulting polynomial fit to the data.

```
#Keep an array of all cross-validation errors.
#We are performing K-fold cross validation with K=10.
set.seed(1)
#we are not yet sure what is the best optimal degree d, so we set it as i,
#and we will use for loop to do cross validation and figure out optimal d for the model
all.deltas = rep(NA, 10)
for (i in 1:10) {
   glm.fit = glm(wage~poly(age, i), data=Wage)
   all.deltas[i] = cv.glm(Wage, glm.fit, K=10)$delta[2]
}
all.deltas
```

```
## [1] 1676.681 1600.607 1598.089 1595.381 1594.716 1595.676 1593.962 1597.595
## [9] 1593.472 1595.397
```

```
which.min(all.deltas)
```

```
## [1] 9
```

```
min(all.deltas)
```

```
## [1] 1593.472
```

We will plot the graph with degree from 1 to 10 on the x axis, cv error on the y axis. We want to try to figure out which degree has the lowest cv error. By using which min, we see that the lowest error is found at 9 features with a total of 1593.472. We can then use this to identify one standard deviation from the min.

```
plot(1:10, all.deltas, xlab="Degree", ylab="CV error", type="b", pch=20, lwd=2)
min.point = which.min(all.deltas)
sd.points = sd(all.deltas[2:10])
abline(h=sd.points + all.deltas[min.point], col="red", lty="dashed")
legend("topright", "1 standard deviation lines", lty="dashed", col="red")
```


The cv-plot with standard deviation lines show that four degrees of freedom is the lowest df under one standard deviation from the min, therefore we select it as our best model.

How does this compare to using anova? Let's find out.

```
fit.1 = lm(wage~poly(age, 1), data=Wage)
fit.2 = lm(wage~poly(age, 2), data=Wage)
fit.3 = lm(wage~poly(age, 3), data=Wage)
fit.4 = lm(wage~poly(age, 4), data=Wage)
fit.5 = lm(wage~poly(age, 5), data=Wage)
fit.6 = lm(wage~poly(age, 6), data=Wage)
fit.7 = lm(wage~poly(age, 7), data=Wage)
fit.8 = lm(wage~poly(age, 8), data=Wage)
fit.9 = lm(wage~poly(age, 9), data=Wage)
fit.10 = lm(wage~poly(age, 10), data=Wage)
anova(fit.1, fit.2, fit.3, fit.4, fit.5, fit.6, fit.7, fit.8, fit.9, fit.10)
```

```
## Analysis of Variance Table
##
## Model 1: wage ~ poly(age, 1)
## Model 2: wage ~ poly(age, 2)
## Model 3: wage ~ poly(age, 3)
## Model 4: wage ~ poly(age, 4)
## Model 5: wage ~ poly(age, 5)
## Model 6: wage ~ poly(age, 6)
## Model 7: wage ~ poly(age, 7)
## Model 8: wage ~ poly(age, 8)
## Model 9: wage ~ poly(age, 9)
## Model 10: wage ~ poly(age, 10)
##
      Res.Df
                RSS Df Sum of Sq
                                             Pr(>F)
## 1
       2998 5022216
        2997 4793430 1
## 2
                          228786 143.7638 < 2.2e-16 ***
## 3
        2996 4777674 1
                           15756
                                   9.9005 0.001669 **
## 4
       2995 4771604 1
                            6070
                                   3.8143 0.050909 .
## 5
       2994 4770322 1
                            1283
                                   0.8059 0.369398
        2993 4766389 1
## 6
                            3932
                                   2.4709 0.116074
## 7
       2992 4763834 1
                            2555
                                   1.6057 0.205199
## 8
       2991 4763707 1
                             127
                                   0.0796 0.777865
## 9
        2990 4756703 1
                            7004
                                   4.4014 0.035994 *
## 10
        2989 4756701 1
                                   0.0017 0.967529
## ---
## Signif. codes:
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The Anova shows us that there is little difference (variance) between the models from three polynomials on. This makes sense because from one to two has a very large change. Two to three is minor, and after that each of the models are pretty much the same in comparison to each other. The good news is that we therefore know since there is not much difference AND four degrees of freedom has the smallest error under the standard deviation rule, that we can comfortably use it.

Let's plot the polynomial prediction using the best degrees of freedom that we found (four).

```
plot(wage~age, data=Wage, col="darkgrey")
agelims = range(Wage$age)
age.grid = seq(from=agelims[1], to=agelims[2])
lm.fit = lm(wage~poly(age, 4), data=Wage)
lm.pred = predict(lm.fit, data.frame(age=age.grid))
lines(age.grid, lm.pred, col="blue", lwd=2)
```


Beautiful.

(b) Fit a step function to predict wage using age, and perform cross-validation to choose the optimal number of cuts. Make a plot of the fit obtained.

Let's begin by making cut points from 1:10 and seeing how they compare when performing cross-validation. Then we will grab the best when assessing cross-validation error.

```
all.cvs = rep(NA, 10)
for (i in 2:10) {
    Wage$age.cut = cut(Wage$age, i)
    lm.fit = glm(wage~age.cut, data=Wage)
    all.cvs[i] = cv.glm(Wage, lm.fit, K=10)$delta[2]
}
plot(2:10, all.cvs[-1], main = "Cross-Validation of Cut Points", xlab="Number of cuts", ylab="CV error", type="b", pch=20, lwd=2)
```

Cross-Validation of Cut Points

This shows that cross-validation is lowest when the number of cuts equals 8. Let us use it to train the entire data set and plot it.

```
lm.fit = glm(wage~cut(age, 8), data=Wage)
agelims = range(Wage$age)
age.grid = seq(from=agelims[1], to=agelims[2])
lm.pred = predict(lm.fit, data.frame(age=age.grid))
plot(wage~age, data=Wage, col="darkgrey", main = "Data set validated over 8 cuts")
lines(age.grid, lm.pred, col="red", lwd=3)
```

Data set validated over 8 cuts

Chapter 8 Number 7 (Random Forests)

7. In the lab, we applied random forests to the Boston data using mtry=6 and using ntree=25 and ntree=500. Create a plot displaying the test error resulting from random forests on this data set for a more comprehensive range of values for mtry and ntree. You can model your plot after Figure 8.10. Describe the results obtained.

```
# Required Packages
require(MASS)

## Loading required package: MASS

require(randomForest)

## Loading required package: randomForest

## randomForest 4.6-14
```

We first set the random seed and then split the data into training and testing sets

Type rfNews() to see new features/changes/bug fixes.

```
set.seed(10)
train <- sample(1:nrow(Boston), nrow(Boston) / 2)
B.train <- Boston[train, -14]
B.test <- Boston[-train, -14]
Y.train <- Boston[train, 14]
Y.test <- Boston[-train, 14]</pre>
```

We now perform our randomForest() function multiple times with three different predictor values. Through these functions we will plot below to compare the different test MSE's with their given predictors.

```
rf_b1 <- randomForest(B.train, y = Y.train, xtest = B.test, ytest = Y.test, mtry = ncol(Boston)
- 1, ntree = 500)
rf_b2 <- randomForest(B.train, y = Y.train, xtest = B.test, ytest = Y.test, mtry = (ncol(Boston)
- 1) / 2, ntree = 500)
rf_b3 <- randomForest(B.train, y = Y.train, xtest = B.test, ytest = Y.test, mtry = sqrt(ncol(Boston) - 1), ntree = 500)</pre>
```

The following plot illustrates the effect of the different amount of predictors on the MSE

```
plot(1:500, rf_b1$test$mse, main = "Test MSEs compared to number of trees", col = "green", type
= "l", xlab = "Number of Trees", ylab = "Test MSE", ylim = c(8, 20))
lines(1:500, rf_b2$test$mse, col = "red", type = "l")
lines(1:500, rf_b3$test$mse, col = "black", type = "l")
legend("topright", c("m = p", "m = p/2", "m = sqrt(p)"), col = c("green", "red", "black"), cex =
1, lty = 1)
```

Test MSEs compared to number of trees

This plot shows that the Test MSE is extremely high with just one singular tree. The Test MSE rapidly decrease as the number of trees used within the randomForest function increases.

We also find that the test MSE for all predictors is higher than if we simply used the squart root or half of the predictors.