7.4 Singular Value Decomposition

- · Let A be an $n \times n$ matrix. Then, A^TA is symmetric and can be ormogonally diagonalized
- Let $\{V_1, ..., V_n\}$ be an orthonormal basis for \mathbb{R}^N , consisting of eigenvectors of A^TA and $\lambda_1, ..., \lambda_n$ be its eigenvalues
- Then, $\| A v_i \|^2 = (A V_i)^T (A V_i) = V_i^T A^T A V_i = V_i^T \lambda_i V_i = \lambda_i V_i$ is a unit vertex
- · So, all of these eigenvalus are non-negative
 - The Singular values of A are the square poots of the eigenfalls of A^TA devoted G, ... G_N anamyd in decreasing order
- . All the length of AV, ... AVn
- Theorem 9: Suppose $\{V_1,...,V_n\}$ is an orthonormal basis of \mathbb{R}^n consisting of the eigenvector of $\mathbb{A}^T\mathbb{A}$, arranged so that the corresponding eigenvalue of $\mathbb{A}^T\mathbb{A}$ satisfy $\lambda_1 \geq ... \geq \lambda_n$ and suppose \mathbb{A} has r non-zero singular values. Then, $\{\mathbb{A}V_1,...,\mathbb{A}V_r\}$ is an orthogonal basis for $Col\ \mathbb{A}$ and $rank\ \mathbb{A} = \mathcal{V}$

Theorem 10: The Singular Value Decomposition

Let A be an non matrix with rank r, then \exists an mon matrix Σ_i as below, for which the diagnol entries in D are the first r singular values of A, $G_1 \geq G_2 \geq G_1 \geq 0$, and \exists an mon orthogonal matrix V and an non orthogonal matrix V such that:

The steps of SVD for a matrix A:

3) Construct U

- eljen vectors. Dit the singular value matrix
- 2) Set up V and S.

 a) V is the act of the NORMALIZED eigenvectors
- a) The first R columns of U are normalised vectors of AV, 1... AVr where V's are the eigen vectors
- If A is an non matrix with n non-singular values, then A has n non-zero singular values