4 de marzo de 2019

Problema 1: Método Monte Carlo

- 1. Utilizando el resultado del problema 5 de la guía 3, genere con la computadora 10000 números al azar que sigan la distribución de Cauchy a partir de una uniforme [0,1]. Presente los datos en un histograma y grafique sobre éstos la predicción teórica.
- 2. Repita el ítem anterior pero ahora usando el Método Monte Carlo (conocido como aceptación-rechazo) que se describe en el problema 10 de la guía 3.
- 3. Discuta los pros y contras de cada método.

Problema 2: Cuadrados mínimos y banda de error

1. Encuentre, con su error, los parámetros de la recta que mejor ajusta los siguientes datos, con $\sigma = 0.3$. Grafique los datos, con su error, y la recta obtenida para $0 \le x \le 5$. $\hat{a}_1 = 1.452 \pm 0.721$ y $\hat{a}_2 = 0.799 \pm 0.286$

\prod	Χ	2.00	2.10	2.20	2.30	2.40	2.50	2.60	2.70	2.80	2.90	3.00
	Y	2.78	3.29	3.29	3.33	3.23	3.69	3.46	3.87	3.62	3.40	3.00 3.99

- 2. A partir de esta recta prediga, con su error, el valor esperado y_a para un cierto x_a . No olvide usar la matriz de covarianza completa. Grafique $y_a(x_a)$, y agréguelo al gráfico anterior en forma de banda de error. Encuentre qué valor de x_a minimiza el error de y_a , e interprete la magnitud de este valor mínimo. Discuta por qué el error aumenta para valores de x_a alejados de la región donde se hicieron las mediciones.
- 3. Grafique la banda de error que obtiene si ignora el término de correlación en la propagación de errores y discuta por qué ésta es claramente errónea.
- 4. Verifique los resultados analíticos obtenidos en el ítem 2 escribiendo un programa que realice la siguiente simulación numérica:
 - a) para cada x_i genere al azar un y_i de la distribución gaussiana $N(\hat{a}_1 + \hat{a}_2 x_i, \sigma)$.
 - b) ajuste una recta a los (x_i, y_i) generados, y prediga el valor y_a para $x_a = 0.5$.

Repita 1000 veces los pasos 4a-4b, construyendo un histograma con los valores de y_a , y dibuje sobre éste la gaussiana con el valor esperado y el error de y_a calculado teoricamente en 2.

4 de marzo de 2019

Consignas

- 1. Indicar nombre, apellido, libreta o DNI.
- 2. Dar una descripción resumida, clara y precisa de la metodología seguida para cumplir las consignas de los problemas. Procure seguir el orden en que aparecen en los problemas y no omita ninguna de ellas.
- 3. Incluir todas las figuras con sus correspondientes leyendas.
- 4. Si realiza un histograma incluya las barras de error y explique con qué criterio las determinó.
- 5. Justifique toda hipótesis en la que se sustenten sus resultados.
- 6. Discuta brevemente los resultados obtenidos.
- 7. El informe debe ser autocontenido. Los comentarios en los códigos son sólo para facilitar su entendimiento pero no se considerarán parte del informe.
- 8. Enviar el informe por mail a todos los docentes de la práctica.
 - a) Asunto del mail: Computacional 2.
 - b) Nombre del archivo adjunto: MEFE2-SuApellido.pdf o MEFE2-SuApellido.ipynb.
 - c) Adjuntar todos los códigos utilizados.
 - d) Fecha limite: Miércoles 13 de marzo inclusive.