## Item reduction for digital literacy assessment: Perspectives from content-expert, psychometrics, and machine-learning

He Ren¹, Qianqian Pan², Yuxiao Zhang³, Weicong Lyu⁴

- <sup>1</sup> College of Education, University of Washington, United States
- <sup>2</sup> National Institute of Education, Nanyang Technological University, Singapore
- <sup>3</sup> College of Education, Purdue University, United States
- <sup>4</sup> Faculty of Education, University of Macau, Macau, China

NCME 2025, 4/26, Denver







## Outline

- > Background
- > Methods
- > Study Design
- > Results
- Discussions



# Background: Digital literacy (DL)

Digital literacy (DL) is an essential skill for success in education, work, and social interactions

- A digital literacy assessment based on DigComp 2.1 was developed (Law et al., 2023)
  - Assess a broad age range
  - Offer a comprehensive view of individuals' DL skills



## Background: The Digital literacy Assessment (DLA)

- Properties of the DLA
  - Confirmed a unidimensional construct of digital literacy, with strong item discrimination, a wide difficulty range, and high reliability
  - A relatively long test

| Form 1                | Form 2                | Form 3                  |
|-----------------------|-----------------------|-------------------------|
| Grade 3 to 5 students | Grade 6 to 9 students | Grade 10 to 12 students |
| 45 items              | 50 items              | 51 items                |



## Background: Item reduction

- > A real-world problem
  - Longer tests might lead to low response rate, more careless responses
  - Longer tests might lead to higher administration costs
  - Adding new domains to an existing test often requires reducing the number of items in the original test



# Methods: Psychometric methods

- > Item response theory (IRT)
  - A family of psychometric models that predict' responses by linking students' latent ability and item characteristics
  - Item information is the quantity that measures how precisely an item can assess individual with specific latent traits

$$I_{j}(\theta) = \frac{\left[P'_{j}(\theta)\right]^{2}}{P_{j}(\theta)\left[1 - P_{j}(\theta)\right]}.$$

Probability of correct response on item *j* 





## Methods: Psychometric methods

- > High information in a wide range
  - Plot of peak information vs. range with information >  $\delta$
  - The upper right items are selected



## Methods: Machine learning methods

- > A feature selection problem
  - Each item is one feature
  - The outcome is student's performance/ability
- > Several methods
  - LASSO regression
  - Random forest (RF)
  - Genetic algorithm (GA)



## Methods: LASSO regression

> For a linear regression

$$y = X\beta$$

• The optimization can be expressed as

$$\min_{\beta} \{ \| \boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta} \|_2^2 \}$$

• LASSO regression optimize

$$\min_{\beta} \{ \| \boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta} \|_{2}^{2} + \lambda \| \boldsymbol{\beta} \|_{1} \}$$

 $l_1$  norm so that unimportant  $\beta$ s will be shrunk to 0



#### Methods: RF

- > An ensemble method with decision tree as the basic unit
- Permutation Feature importance
  - By breaking the relationship between each feature and outcome, we determine the importance of each feature (measured by the decrease in prediction accuracy).



#### Methods: GA

> Item selection can be represented by an indicator vector

$$(1,0,0,0,1,0,0)$$
 The 1<sup>st</sup> and 5<sup>th</sup> items are selected out of the 7 items

Aims to minimize the cost function

Number of selected items

$$Cost = l * s + (1 - R_{adj}^2)$$
 Fit for estimating the total score

- $\geq$  2<sup>*D*</sup> possible combinations with *D* items
- > A computational search technique



#### Methods: GA

- Searching procedure
  - Crossover
  - Mutation

Parents Offsprings Offsprings 
$$(1,0,0,0,1,0,0)$$
  $(1,0,0,0,1,0,1)$   $(1,0,0,0,1,0,1)$   $(0,0,1,0,1,0,0)$   $(0,0,1,0,1,0,0)$  Crossover Mutation



## Study Design

- Experts have developed a short DLA, with 10 items per form (Pan et al., 2024)
- > Short DLAs with the same length were developed with data-driven methods
- > Procedure



IRT analysis was conducted on the test sample with selected and all items, respectively

#### Results

#### > Evaluation on ability estimation

Table 1. Correlations between IRT estimated ability with selected items and full test

|                            | Method               | Cohort 1 | Cohort 2 | Cohort 3 |  |
|----------------------------|----------------------|----------|----------|----------|--|
|                            | Expert               | 0.799    | 0.910    | 0.898    |  |
| Data-<br>driven<br>methods | Item Information-IRT | 0.893    | 0.922    | 0.924    |  |
|                            | LASSO                | 0.878    | 0.930    | 0.924    |  |
|                            | GA                   | 0.860    | 0.920    | 0.894    |  |
|                            | RF                   | 0.878    | 0.923    | 0.918    |  |

Note. GA: genetic algorithm; RF=random forest

## Results

Evaluation on test information



GA\_item — lasso\_item — Whole Test

Method

## Results

Evaluation on content coverage

Table 2. Number of selected items in each domain.

| Cohort  | Method                   | Domain 1 | Domain 2 | Domain 3 | Domain 4 | Domain 5 |
|---------|--------------------------|----------|----------|----------|----------|----------|
| 1       | Expert                   | 2        | 2        | 2        | 2        | 2        |
| Data-   | Item Information-<br>IRT | 1        | 2        | 1        | 4        | 2        |
| driven  | LASSO                    | 1        | 2        | 1        | 3        | 3        |
| methods | GA                       | 1        | 2        | 1        | 3        | 3        |
|         | RF                       | 1        | 2        | 1        | 3        | 3        |
| 2       | Expert                   | 2        | 2        | 2        | 2        | 2        |
| 3       | Item Information-<br>IRT | 0        | 2        | 2        | 4        | 2        |
|         | LASSO                    | 0        | 1        | 2        | 5        | 2        |
|         | GA                       | 2        | 1        | 1        | 3        | 3        |
|         | RF                       | 1        | 1        | 2        | 5        | 1        |
|         | Expert                   | 2        | 2        | 2        | 2        | 2        |
|         | Item Information-<br>IRT | 0        | 3        | 3        | 1        | 3        |
|         | LASSO                    | 0        | 2        | 2        | 3        | 3        |
|         | GA                       | 2        | 2        | 1        | 3        | 2        |
|         | RF                       | 0        | 1        | 3        | 3        | 3        |

Note. GA: genetic algorithm; RF=random forest

#### Discussion

- > This study investigated a variety of item reduction methods for a performance-based digital literacy assessment
- > All data-driven methods (psychometric–based and ML–based) produced short-form scores that correlated more strongly with the full test score than the expert-driven short form
- > A significant limitation of data-driven methodologies is the reduced content coverage
- > No single method consistently outperformed the others across all cohorts
- Underscored the necessity of contextual calibration and iterative validation

# Thanks! heren@uw.edu



Personal Homepage

He Ren<sup>1</sup>, Qianqian Pan<sup>2</sup>, Yuxiao Zhang<sup>3</sup>, Weicong Lyu<sup>4</sup>

- <sup>1</sup> College of Education, University of Washington, United States
- <sup>2</sup> National Institute of Education, Nanyang Technological University, Singapore
- <sup>3</sup> College of Education, Purdue University, United States
- <sup>4</sup> Faculty of Education, University of Macau, Macau, China







