

Computer Aided Digital System Design (99-00-1)

Dr. Hajar Falahati

Homework 3: Behavioral Modeling Deadline: 1399/10/2 23:59						
Problem	Definition	Credit	Your Mark			
P1	Cary Look Ahead	30				
P2	Protein Detection	45				
P3	Elevator	20				
P4	Timing	40				
	Total	140				

Required File:

Upload a zip file titled as "CAD-HW3- Student numberi- ... - Student numberj".

Contact Information:

Ask your questions via the course website or send an email to:

hosseinaminiii75@gmail.com hosseini99.zahra@gmail.com hfalahati@ipm.ir

1- Cary Look Ahead [30 points]

Design a 4-bit adder which follows the carry look ahead mechanism.

- i. Implement the adder in Verilog (behavioral level). [10 points]
- ii. Implement the adder logic using the combinational gates. [10 points]
- iii. Implement the adder in Verilog (gate level). [10 points]

2- Protein Detection (LDLD, MST) [45 points]

BLAST, Basic Local Alignment Search Tool, is a heuristic-based sequencing technique which finds all similar sequences in a data base. BLAST is able to find the most similar DNA sequences or proteins for a given unknown sequence. Sequencing is widely used in detecting the new genome, organism, virus, and is an important step in finding the medicine.

- i. Is BLAST a software or a hardware approach? Support your answer. [10 points]
- ii. Introduce a new hardware-based approach for sequencing in at least one paragraph. [10 points]
- iii. Draw a protein sequence detector FSM which detects both LDLD and MST proteins, i.e., amino acid sequences. You have to implement one FSM. [15 points]
- iv. Implement the protein sequence detector FSM in Verilog (behavioral modeling). [10 points]

3- Elevator [20 points]

Consider the elevator in quiz 1 and implement the control unit which:

- **i.** Turns on the elevator to go to the requested floor/s.
- **ii.** Turn off the elevator.
- iii. Monitors the temperature and manage the air conditioner to keep the temperature between $24-26\,\mathrm{C}$.

4- Timing [40 points]

Consider the bellow circuit and timing characteristics. Suppose that each input comes from a pose-edge D-FF and the output goes to a pose-edge D-FF.

- i. Calculate the delay of critical path.
- **ii.** What is the maximum frequency of the circuit?
- iii. Does this circuit satisfy the timing requirements? If no, fix the issue.
- iv. Suppose the maximum clock period can be 300 ps, fix the circuit to satisfy the clock constraints.

	21 3	20			
	Ż	Ż			
<i>D</i> ₀ –)—	_
<i>D</i> ₁ –)_	_
<i>D</i> ₂ –			Ī	_	
D ₃ -				_	Щ
) 1	Щ
				\	\bigvee
					Out

Gate	T _{pd} (ps)	T _{cd} (ps)	
NOT	30	20	
2-input AND	40	30	
3-input AND	50	40	
4-input OR	60	50	
Tristate (input to output)	35	25	
Tristate (enable to output)	25	15	
FF (clock to output)	40	20	
T _{setup}	60		
T _{hold}	120		
T _{skew}	40		