Section 4.5

Problem # 28

For an arbitrary subgroup H of the group G, the **normalizer** of H in G is the set $\mathcal{N}(H) = \{x \in G \mid xHx^{-1} = H\}$.

- Prove that $\mathcal{N}(H)$ is a subgroup of G.
- Prove that H is a normal subgroup of $\mathcal{N}(H)$.
- Prove that if K is a subgroup of G that contains H as a normal subgroup, then $K \subseteq \mathcal{N}(H)$.

Solution

Part (a)

- (a) $\mathcal{N}(H)$ contains the identity element $e \in G$ and $eHe^{-1} = H$ so $e \in \mathcal{N}(H)$
- (b) $\mathcal{N}(H)$ contains inverses For any $a \in \mathcal{N}(H)$, $aHa^{-1} = H$. This implies that $a^{-1}Ha = a^{-1}H(a^{-1})^{-1} = H$ and thus $a^{-1} \in \mathcal{N}(H)$.
- (c) $\mathcal{N}(H)$ is closed For any $a, b \in \mathcal{N}(H)$

$$abH(ab)^{-1} = abHb^{-1}a^{-1}$$

= aHa^{-1}
= H (1)

So $ab \in \mathcal{N}(H)$.

Part (b)

H is a subset of $\mathcal{N}(H)$ because for all $h \in H$ $hHh^{-1} = H$ so $h \in \mathcal{N}(H)$.

We are told that H is a group.

By the definition of $\mathcal{N}(H)$, for all $x \in \mathcal{N}(H)$, xHx^{-1} . H is a subgroup of $\mathcal{N}(H)$ so H is normal.

Part (c)

H is a normal subgroup of K. This means that $\forall k \in K, kHk^{-1} = H$. K is a subgroup of G so each k is also a member of G. The group $\mathcal{N}(H)$ is the set of all elements x in G that have the property that $xHx^{-1} = H$. Therefore $K \subseteq \mathcal{N}(H)$.

Problem # 29

Find the normalizer of the subgroup $\{(1), (1,3)(2,4)\}$ of the octic group D_4 .

Solution

$$\{(1), (1,3)(2,4)\}$$

Problem # 40

Find the commutator subgroup of each of the following groups.

- (a) The quaternion group $\{\pm 1, \pm i, \pm j, \pm k\}$.
- (b) The symmetric group S_3 .

Solution

Part (a)

$$\{1, -1\}$$

Part (b)

$$\{(1), (1, 2, 3), (1, 3, 2)\}$$

Section 4.6

Problem # 28

Assume that ϕ is an epimorphism from the group G to the group G'.

- (a) Prove that the mapping $H \to \phi(H)$ is a bijection from the set of all subgroups of G that contain ker ϕ to the set of all subgroups of G'.
- (b) Prove that if K is a normal subgroup of G', then $\phi^{-1}(K)$ is a normal subgroup of G.

Solution

Part (a)

Let us label the mapping $H \to \phi(H)$ as f. In order to show that f is bijective we will show that the mapping $g: H' \to \phi^{-1}(H')$ is the inverse of f.

It is obvious that $\phi(\phi^{-1}(H')) = H'$. Now we need to show that $\phi^{-1}(\phi(H)) = H$. In order to do this we show that for every g in G, $\phi(g) \in \phi(H)$ implies that $g \in H$. If $\phi(g) \in \phi(H)$ then for some $h \in H$:

$$\phi(g) = \phi(h)$$

$$\Rightarrow \phi(g)\phi(h)^{-1} = e$$

$$\Rightarrow \phi(g)\phi(h^{-1}) = e$$

$$\Rightarrow \phi(gh^{-1}) = e$$

$$\Rightarrow gh^{-1} \in \ker \phi \subseteq H$$

$$\Rightarrow gh^{-1} \in H$$

$$\Rightarrow g \in H$$
(2)

Thus g is the inverse of f and f is a bijection.

Part (b)

Group homomorphisms preserve subgroups so we know that K is a subgroup of G'. For all $k \in \phi^{-1}(K)$ and all $g \in G$, $gkg^{-1} \in \phi^{-1}(K)$. This is equivalent to saying that $\phi(gkg^{-1}) \in K$ or $\phi(g)\phi(k)\phi(g)^{-1} \in K$. We know that $\phi(g)$ and $\phi(g^{-1})$ are both elements of G' and $\phi(k)$ is an element of G. We also know that G' is normal in G'. Thus $\phi^{-1}(K)$ is a normal subgroup of G.

Problem # 29

Suppose ϕ is an epimorphism from the group G to the group G'. Let H be a normal subgroup of G containing ker ϕ , and let $H' = \phi(H)$.

- (a) Prove that H' is a normal subgroup of G'.
- (b) Prove that G/H is isomorphic to G'/H'.

Solution

- (a) We first prove that H' is a subgroup of G'. It is clear that H' is a subset of G'.
 - (i) Identity H contains $\ker \phi$ so it must contain e.
 - (ii) Closed ϕ is onto so for any $a', b' \in H'$ there exist $a, b \in H$ such that $a' = \phi(a)$ and $b' = \phi(b)$. Then:

$$a'b' = \phi(a)\phi(b)$$

$$= \phi(ab)$$
(3)

H is closed so $ab \in H$ and $\phi(ab) \in H'$ so H' is closed.

(iii) Inverses

 ϕ is onto so for any $a' \in H'$, there exists an $a \in H$ such that $a' = \phi(a)$. Then:

$$a'^{-1} = \phi(a)^{-1} = \phi(a^{-1})$$
 (4)

H is a group so $a^{-1} \in H$ and thus $a'^{-1} \in H'$

Thus H' is a subgroup of G'.

We now prove that H' is normal in G'. Let $g' \in G'$ and $h' \in \phi(H)$. So there exists an $h \in H$ such that $\phi(h) = h'$ and because ϕ is an epimorphism there exists $g \in G$ such that $\phi(g) = g'$. Then:

$$g'h'g'^{-1} = \phi(g)\phi(h)\phi(g)^{-1} = \phi(ghg^{-1}).$$
 (5)

H is normal in G so $ghg^{-1} \in H$ and thus $\phi(ghg^{-1} \in H')$. So H' is normal in G'.

(b) Define the mapping $\sigma: G/H \to G'/H'$ by $\sigma(gH) = \phi(g)H'$. First we show that σ is well defined. Assume that for $g_1, g_2 \in G$, $g_1H = g_2H$. Then $g_1^{-1}g_2 = h$ for some $h \in H$. Then:

$$\phi(g_2)^{-1}\phi(g_1) = \phi(g_2^{-1}g_1) = \phi(h)$$
(6)

 $\phi(h) \in \phi(H) = H'$ so $\phi(g_1)H' = \phi(g_2)H'$. Thus:

$$\sigma(g_1H) = \phi(g_1)H' = \phi(g_2)H' = \sigma(g_2H)$$

so σ is well defined. Now we show σ is a homomorphism.

$$\sigma(g_1 H)\sigma(g_2 H) = \phi(g_1)H'\phi(g_2)H'$$

$$= \phi(g_1)\phi(g_2)H'$$

$$= \phi(g_1 g_2)H'$$

$$= \sigma(g_1 g_2 H)$$

$$= \sigma(g_1 H g_2 H)$$

$$(7)$$

In order to show that σ is one-to-one, assume that for some $g_1, g_2 \in G$, $\sigma(g_1H) = \sigma(g_2H)$. Then $\phi(g_1)H' = \phi(g_2)H'$ which implies that $\phi(g_1)^{-1}\phi(g_2) \in H'$ and $\phi(g_1)^{-1}\phi(g_2) = h'$ for some $h' \in H'$. $H' = \phi(H)$ so there exists an $h \in H$ such that $h' = \sigma(h)$. Thus:

$$\phi(g_1)\phi(g_2) = \phi(h) \tag{8}$$

$$\phi(g_1)\phi(g_2)\phi(h)^{-1} = e' \tag{9}$$

$$\phi(g_1 g_2 h^{-1}) = e' \tag{10}$$

Therefore, $g_1g_2h^{-1} \in \ker \phi \subseteq H$. Multiplying by h we get $g_1g_2 \in H$ and thus $g_1H = g_2H$ and σ is one-to-one.

Let g'h' be an arbitrary element in G'/H'. σ is onto so there exists an element $g \in G$ such that $\phi(g) = g'$. Then $\sigma(gH) = \phi(g)H' = g'H'$ and σ is onto.

Being a bijective homomorphism, σ is an isomorphism and G/H is isomorphic to G'/H'.

Problem # 30

Let G be a group with center Z(G) = C. Prove that if G/C is cyclic, then G is abelian.

Solution

 $G/C = \{gC \mid g \in G\}$. G/C is cyclic so there is some element gC that generates G/C. For $a, b \in G$, $a \in (gC)^i = g^iC$, and $b \in (gC)^j = g^jC$. Then for some $c_1, c_2 \in C$, $a = g^ic_1$ and $b = g^jc_2$. Then

$$ab = g^{i}c_{1}g^{j}c_{2}$$

$$= g^{i}g^{j}c_{1}c_{2}$$

$$= g^{i+j}c_{1}c_{2}$$

$$= g^{j+1}c_{1}c_{2}$$

$$= g^{j}g^{i}c_{1}c_{2}$$

$$= g^{j}c_{1}g^{i}c_{2}$$

$$= ba$$

$$(11)$$

Therefore G is abelian.

Problem # 32

Let a be a fixed element of the group G. According to Exercise 20 of Section 3.5, the mapping $t_a: G \to G$ defined by $t_a(x) = axa^{-1}$ is an automorphism of G. Each of these automorphisms t_a is called an **inner automorphism** of G. Prove that the set $Inn(G) = \{t_a \mid a \in G\}$ forms a normal subgroup of the group of all automorphisms of G.

Solution

Part (a)

It is clear that Inn(G) is a subset of the group containing all automorphisms of G. First we show that it is a subgroup.

• Identity $t_e \in Inn(G)$

• Closed For $t_{a_1}, t_{a_2} \in \text{Inn}(G)$:

$$t_{a_1} \circ t_{a_2}(g) = t_{a_1}(t_{a_2}(g))$$

$$= t_{a_1}(a_2 g a_2^{-1})$$

$$= (a_1 a_2 g a_2^{-1} a_1^{-1})$$

$$= (a_1 a_2) g (a_1 a_2)^{-1}$$

$$= t_{a_1 a_2}(g)$$
(12)

G is closed so $a_1a_2 \in G$ and $t_{a_1a_2}$ is another inner automorphism.

• Inverses For $a \in G$, $t_a(G) = aga^{-1}$. Then:

$$t_{a^{-1}} \circ t_a(g) = t_{a^{-1}}(t_a(g))$$

$$= t_{a^{-1}a}(g)$$

$$= t_e(g)$$
(13)

and

$$t_{a} \circ t_{a^{-1}}(g) = t_{a}(t_{a^{-1}}(g))$$

$$= t_{aa^{-1}}(g)$$

$$= t_{e}(g)$$
(14)

So Inn(G) contains inverses.

Therefore Inn(G) is a subgroup of the group of all automorphisms of G.

Part (b)

Now we show that $\operatorname{Inn}(G)$ is normal by demonstrating that for any automorphism $\phi: G \to G$ and any $t_a \in \operatorname{Inn}(G)$, $\phi t_a \phi^{-1} \in \operatorname{Inn}(G)$.

$$\phi \circ t_{a} \circ \phi^{-1}(g) = \phi(t_{a}(\phi^{-1}(g)))
= \phi(a\phi^{-1}(g)a^{-1})
= \phi(a)\phi(\phi^{-1}(g))\phi(a^{-1})
= \phi(a)h\phi(a^{-1})
= \phi(a)h[\phi(a)]^{-1}
= t_{\phi(a)}$$
(15)

 ϕ is an automorphism so $\phi(a) \in G$ and therefore $\phi t_a \phi^{-1} = t_{\phi(a)} \in \text{Inn}(G)$.

Problem # 34

If H and K are normal subgroups of the group G such that G = HK and $H \cap K = \{e\}$, then G is said to be the **internal direct product** of H and K, and we write $G = H \times K$ to denote this. If $G = H \times K$, prove that $\phi : H \to G/K$ defined by $\phi(h) = hK$ is an ismorphism from H to G/K.

Solution

First we show that ϕ is a homomorphism. For $h_1, h_2 \in H$:

$$\phi(h_1 h_2) = h_1 h_2 K$$

$$= h_1 K h_2 K$$

$$= \phi(h_1) \phi(h_2)$$
(16)

Now we show that ϕ is one-to-one. For $h_1, h_2 \in H$ assume that $\phi(h_1) = \phi(h_2)$. Then $h_1K = h_2K$ and $h_2^{-1}h_1 = K$. This implies that $h_2^{-1}h_2 \in K$ and because H is closed it is clear that $h_2^{-1}h_1 \in H$. Therefore $h_2^{-1}h_1 = e$. This implies that $h_1 = h_2$ and thus ϕ is one-to-one. Now we show that ϕ is onto. For any $g \in G$, g = hk for some $h \in H, k \in K$. Thus $gK = hkK = \phi(h)$ and ϕ is onto.

Being a homomorphism that is both one-to-one and onto, ϕ is an isomorphism.

Section 4.7

Problem # 18

- (a) Find all subgroups of $\mathbb{Z}_2 \oplus \mathbb{Z}_4$.
- (b) Find all subgroups of $\mathbb{Z}_2 \oplus \mathbb{Z}_6$.

Solution

Part (a)

$$\{(0,0)\}, \{(0,2),(0,0)\}, \{(1,0),(0,0)\}, \{(1,2),(0,0)\}, \{(0,2),(1,0),(1,2),(0,0)\}, \\ \{(0,1),(0,2),(0,3),(0,0)\}, \{(1,1),(0,2),(1,3),(0,0)\}, \mathbb{Z}_2 \oplus \mathbb{Z}_4$$

Part (b)

$$\{(0,0)\}, \{(0,0), (0,1), (0,2), (0,3), (0,4), (0,5)\}, \{(0,0), (0,3)\}, \{(0,0), (1,0)\}, \{(0,0), (1,3)\}$$

$$\{(0,0), (0,1), (0,2), (0,3), (0,4), (0,5), (1,0), (1,1), (1,2), (1,3), (1,4), (1,5)\}, \{(0,0), (0,3), (1,0), (1,4)\}$$

$$\{(0,0), (1,0), (1,1), (1,2), (1,3), (1,4), (1,5)\}$$