$Solutions \ MP/MP^*$ $Fonction \ d$ 'une variable réelle

Solution 1. Tout d'abord, $deg(L_n) = n$ et son coefficient dominant et $\frac{(2n)!}{2^n(n!)^2}$.

1. Soit $f \in \mathcal{C}^0([0,1],\mathbb{R})$. -1 et 1 sont racines d'ordre n de P_n donc pour tout $k \in \{0,\ldots,n-1\}$ $P_n^{(k)}(-1) = P_n^{(k)}(-1) = 0$. Ainsi, on a par intégrations par parties successives :

$$(f|L_n) = (-1)^n \int_{-1}^1 f^{(n)}(t) P_n(t) dt \tag{1}$$

Notamment, si $P \in \mathbb{R}_{n-1}[X]$, $P^{(n)} = 0$ et $(P|L_n) = 0$. En particulier, pour tout m < n, $\deg(L_m) \leq n - 1$ et $(L_m|L_n) = 0$ donc $(L_n)_{n \in \mathbb{N}}$ est orthogonale. Notons dès maintenant que l'on peut calculer la norme de L_n grâce aux intégrales de Wallis :

$$||L_n||_2^2 = (L_n|L_n) \tag{2}$$

$$= (-1)^n \int_{-1}^1 L_n^{(n)} (t^2 - 1)^n dt \tag{3}$$

$$= \frac{(2n)!}{2^{2n}(n!)^2} \int_{-1}^{1} (1-t^2)^n dt \tag{4}$$

On pose $t = \cos(\theta)$ d'où $dt = -\sin(\theta)d\theta$, d'où

$$\int_{1}^{1} (1 - t^{2})^{n} dt = \int_{0}^{\pi} \sin(\theta)^{2n+1} d\theta \tag{5}$$

$$=2I_{2n+1} \text{ [Wallis]} \tag{6}$$

On a classiquement $I_{n+2} = \frac{n+1}{n+2} I_n$. D'où

$$I_{2n+1} = \frac{2n}{2n+1} \times \frac{2n-2}{2n-1} \times \dots \times \frac{2}{3} \times \underbrace{I_1}_{} = 1$$
 (7)

$$=\frac{2^{2n}(n!)^2}{(2n+1)!}\tag{8}$$

d'où

$$||L_n||_2^2 = \frac{(2n)!}{2^{2n}(n!)^2} \times 2 \times \frac{2^{2n}(n!)^2}{(2n+1)!} = \frac{2}{2n+1}$$
(9)

- 2. On utilise la formule de Leibniz en écrivant $X^2 1 = (X + 1)(X 1)$.
- 3. On montre le résultat par récurrence sur $k \in \{0, ..., n\}$ en invoquant le théorème de Rolle. On trouve donc que $L_n = P_n^{(n)}$ s'annule au moins n fois sur]-1,1[. Or $\deg(L_n)=n$, donc ces zéros sont simples et ce sont les seuls.

4. (L_0, \ldots, L_n) est une base de $\mathbb{R}_n[X]$ (étagée en degré). Donc il existe $(\alpha_{n,0}, \ldots, \alpha_{n,k}) \in \mathbb{R}^{k+1}$ tel que $XL_{n-1} = \sum_{k=0}^n \alpha_{n,k} L_k$. Si $k \leq n-3$, on a

$$(XL_{n-1}L_k) = \alpha_{n,k} ||L_k||_2^2 = (L_{n-1}XL_k) = 0$$
(10)

 $\operatorname{car} \operatorname{deg}(XL_k) = k + 1 \leqslant n - 2$. Donc

$$XL_{n-1} = \alpha_{n,n-2}L_{n-2} + \alpha_{n,n-1}L_{n-1} + \alpha_{n,n}L_n \tag{11}$$

Pour calculer les coefficients, on fait tout simplement les produits scalaires :

$$(Xl_{n-1}|L_{n-1}) = \int_{-1}^{1} tL_{n-1}(t)^{2} dt$$
 (12)

Or P_n est paire, donc L_n est de la parité de n et donc L_n^2 est paire puis XL_n^2 est impaire. Donc $\alpha_{n,n-1}=0$.

$$(XL_{n-1}|L_{n-2}) = \alpha_{n,n-2} \underbrace{\|L_{n-2}\|_2^2}_{=\frac{2}{2n-3}}$$
(13)

$$= (-1)^n \int_{-1}^1 P_{n-1}(t) \underbrace{(XL_{n-2})^{(n-1)}(t)}_{\underbrace{\frac{(2n-4)!(n-1)}{2^{n-2}(n-2)!}}}$$
(14)

Par ailleurs,

$$(-1)^{n-1} \int_{-1}^{1} P_{n-1}(t)dt = \frac{1}{2^{n-1}(n-1)!} \underbrace{\int_{-1}^{1} (1-t^2)^{n-1} dt}_{2I_{2n-1}}$$
(15)

$$= \frac{1}{2^{n-1}(n-1)!} \times 2 \times \frac{2^{2n-2}(n-1)!}{(2n-1)!}$$
 (16)

$$=\frac{2^n(n-1)!}{(2n-1)!}\tag{17}$$

donc $\frac{\alpha_{n,n-2}}{\alpha_{n,n}} = \frac{n-1}{n}$. D'où le résultat.

Solution 2. On forme

$$: [a,b] \rightarrow \mathbb{R}$$

$$x \mapsto \underbrace{\Delta f(x_0, \dots, x_{n-1}, x)}_{\varphi(x)} - \underbrace{\prod_{i=0}^{n-1} (x - x_i) A}_{P(x)}$$

$$\tag{18}$$

On a $g(x_n) = 0$. On suppose les $(x_i)_{1 \le i \le n}$ distincts, et on pose

$$A = \frac{V(x_0, \dots, x_n)}{\prod_{i=0}^{n-1} (x_n - x_i)}$$
(19)

g est de classe \mathcal{C}^n et pour tout $i \in \{0, \dots, n\}$, on a $g(x_i) = 0$. Donc il existe $\xi \in]a, b[$ tel que $g^{(n)}(\xi) = 0$ (théorème de Rolle appliqué n fois. $\deg(P) = n$ et son coefficient dominant est A donc $P^{(n)}(\xi) = An! = \varphi^{(n)}(\xi)$.

On développe maintenant $\varphi(x)$ par rapport à la dernière colonne :

$$\varphi(x) = f(x) \times V_n(x_0, \dots, x_{n-1}) + Q(X)$$
(20)

avec $\deg(Q) \leqslant n-1$ et $V_n(x_0,\ldots,x_{n-1}) = \prod_{0 \leqslant j < i \leqslant n-1} (x_i-x_j)$ (déterminant de Vandermonde). On a donc

$$\varphi^{(n)}(x) = f^{(n)}(x) \prod_{0 \le j < i \le n-1} (x_j - x_i)$$
(21)

et en reportant, on a

$$\frac{f^{(n)}(\xi)}{n!} = \frac{A}{\prod_{0 \le i \le j \le n-1} (x_j - x_i)} = \Delta f(x_0, \dots, x_n)$$
 (22)

Solution 3. On utilise le développement de Taylor avec reste intégral.

$$f(0) = f\left(\frac{1}{2}\right) - \frac{1}{2}f'\left(\frac{1}{2}\right) + \int_{\frac{1}{2}}^{0} -tf''(t)dt$$
 (23)

et de même

$$f(1) = f\left(\frac{1}{2}\right) - \frac{1}{2}f'\left(\frac{1}{2}\right) + \int_{\frac{1}{2}}^{1} (1-t)f''(t)dt$$
 (24)

D'où

$$A(f) = f(0) - f\left(\frac{1}{2}\right) + f(1) - f\left(\frac{1}{2}\right) \tag{25}$$

$$= \int_0^{\frac{1}{2}} t f''(t)dt + \int_{\frac{1}{2}}^1 (1-t)f''(t)dt$$
 (26)

$$\leqslant \int_0^{\frac{1}{2}} t dt + \int_{\frac{1}{2}}^1 (1 - t) dt \tag{27}$$

$$=\frac{1}{4}\tag{28}$$

Et c'est atteint pour $f(t) = \frac{t^2}{4}$.

Solution 4. Pour tout $(x,h) \in \mathbb{R}^2$, f(x+h) - f(x-h) = 2hf'(x) donc

$$f'(x) = \frac{1}{2}(f(x+1) - f(x-1))$$
(29)

donc f' est \mathcal{C}^1 et donc f est \mathcal{C}^2 . On fixe alors x et on dérive deux fois (29) en fonction de h. On a alors

$$f''(x+h) = f''(x-h)$$
 (30)

pour tout $(x,h) \in \mathbb{R}^2$ donc f'' est constante et f est polynômiale de degré 2.

Réciproquement, si $f(x) = ax^2 + bx + c$, on a bien la relation de l'énoncé.

Solution 5.

1. Soit a > 0,

$$\tau_a: \mathbb{R} \to]a, +\infty[$$

$$x \mapsto \frac{f(x) - f(a)}{x - a}$$
(31)

est croissante. Donc il existe $l = \lim_{x \to +\infty} \tau_a(x) \in \overline{\mathbb{R}}$. On écrit alors

$$\frac{f(x)}{x} = \frac{f(x) - f(a)}{x - a} \times \frac{x - a}{x} + \frac{f(a)}{x} \xrightarrow[x \to +\infty]{} l$$
 (32)

- 2. S'il existe $a < b \in (\mathbb{R}_+^*)^2$ tel que f(a) < f(b), alors $\tau_a(b) > 0$. Comme τ_a est croissante, $l \ge \tau_a(b) > 0$. Par contraposée, si $l \ge 0$, f est décroissante.
- 3. Posons pour tout $x \in \mathbb{R}_+^*$, $\varphi(x) = f(x) lx$. Pour x < y, on a

$$\frac{\varphi(y) - \varphi(x)}{y - x} = \frac{f(y) - f(x)}{y - x} - l \leqslant 0 \tag{33}$$

Donc φ est décroissante et $\lim_{x\to +\infty} \varphi(x) \in \overline{\mathbb{R}}$ existe.

Solution 6.

1. On forme

$$g: [0,1] \to \mathbb{R}$$

$$x \mapsto \frac{1}{\frac{1}{p}+x}$$

$$(34)$$

Alors

$$\sum_{k=0}^{np} \frac{1}{n+k} = \frac{1}{np} \sum_{k=0}^{np} \frac{1}{\frac{1}{p} + \frac{k}{np}} \xrightarrow[n \to +\infty]{} \int_{0}^{1} \frac{dx}{\frac{1}{p} + x} = \ln(p+1) = l_{p}$$
 (35)

2. On note $f(x) = f(0) + xf'(0) + x\varepsilon(x)$ avec $\varepsilon(x) \xrightarrow[\varepsilon \to 0]{} 0$.

Soit $\varepsilon_0 > 0$. Il existe $\alpha_0 > 0$ tel que si $0 < x < \alpha_0$, alors $|\varepsilon(x_0)| \le \varepsilon_0$, et il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \ge N_0$, $\frac{1}{n} \le \alpha_0$. Alors pour tout $n \ge N_0$, pour tout $k \in \{0, \ldots, np\}$,

$$\frac{1}{k+n} \Rightarrow \left| \varepsilon \left(\frac{1}{k+n} \right) \right| \leqslant \frac{\varepsilon_0}{p} \tag{36}$$

et

$$\left| \sum_{k=0}^{np} \frac{\varepsilon(\frac{1}{k+n})}{k+n} \right| \leqslant \sum_{k=0}^{np} \frac{\frac{\varepsilon_0}{p}}{k+n} \leqslant \frac{\varepsilon_0}{p} \frac{np+1}{n+1} \leqslant \varepsilon_0$$
 (37)

On a donc

$$v_n = \sum_{k=0}^{np} \frac{1}{n+k} f'(0) + \sum_{k=0}^{np} \frac{\varepsilon(\frac{1}{n+k})}{n+k} \xrightarrow[n \to +\infty]{} \ln(p+1) f'(0)$$
 (38)

3. On peut penser à $f: x \mapsto \sqrt{x}$ continue et f(0) = 0. De plus,

$$\sum_{k=0}^{np} \frac{1}{\sqrt{n+k}} \geqslant \frac{np+1}{\sqrt{n(p+1)}} \xrightarrow[n \to +\infty]{} +\infty$$
 (39)

donc v_n diverge.

4. On écrit $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + x^2\varepsilon(x)$ avec $\varepsilon(x) \xrightarrow[\varepsilon \to +\infty]{} 0$. Ainsi,

$$v_n = \sum_{k=0}^{np} \frac{f''(0)}{2(n+k)^2} + \sum_{k=0}^{bp} \frac{\varepsilon(\frac{1}{k+n})}{(k+n)^2}$$
(40)

Soit $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, pour tout $k \in \{0, \dots, np\}$, $|\varepsilon(\frac{1}{n+k})| \le \varepsilon$ et donc

$$\left| \sum_{k=0}^{np} \frac{\varepsilon(\frac{1}{n+k})}{(n+k)^2} \right| \leqslant \sum_{k=0}^{np} \frac{\varepsilon}{(n+k)^2}$$
 (41)

donc

$$\sum_{k=0}^{np} \frac{\varepsilon(\frac{1}{n+k})}{(n+k)^2} = O\left(\sum_{k=0}^{np} \frac{f''(0)}{2} \times \frac{1}{(n+k)^2}\right)$$
(42)

puis

$$v_n \underset{n \to +\infty}{\sim} \sum_{k=0}^{np} \frac{f''(0)}{2(n+k)^2}$$
 (43)

Or

$$\sum_{k=0}^{np} \frac{1}{(n+k)^2} = \frac{1}{(np)^2} \sum_{k=0}^{np} \frac{1}{(\frac{1}{p} + \frac{k}{np})^2}$$
(44)

$$= \frac{1}{np} \times \underbrace{\frac{1}{np} \sum_{k=0}^{np} \frac{1}{\left(\frac{1}{p} + \frac{k}{np}\right)^2}}_{\xrightarrow[n \to +\infty]{}} \int_0^1 \frac{dx}{\left(\frac{1}{n} + x\right)^2}$$
(45)

donc

$$v_n \underset{n \to +\infty}{\sim} \frac{f''(0)p}{n(p+1)} \tag{46}$$

Solution 7. Supposons que f' ne tend pa vers 0 en $+\infty$: il existe $\varepsilon_0 > 0$, $\forall A > 0$, $\exists x_A \geqslant A$, $|f'(x_A)| \geqslant \varepsilon_0 > 0$. Par continuité uniforme, il existe $\alpha_0 \geqslant 0$, $\forall (x,y) \in (\mathbb{R}_+)^2$, si $|x-y| \leqslant \alpha_0$ alors $|f'(x)-f'(y)| \leqslant \frac{\varepsilon_0}{2}$. Alors pour tout $t \in [x_A - \alpha, x_A + \alpha]$, on a

$$|f'(t)| \ge |f'(x_A)| - |f'(x_A) - f'(t)| \ge \varepsilon_0 - \frac{\varepsilon_0}{2} \ge \frac{\varepsilon_0}{2}$$
 (47)

et pour A=n, pour tout $n \in \mathbb{N}, \exists x_n \geqslant n, \forall t \in [x_n-\alpha,x_n+\alpha], |f'(t)| \geqslant \frac{\varepsilon_0}{n}$. D'après le théorème des valeurs intermédiaires, f' est de signe constant sur $[x_n-\alpha,x_n+\alpha]$. Quitte à changer f en -f, on peut supposer qu'il existe une infinité de $n \in \mathbb{N}$ tels que f' > 0 sur les $[x_n-\alpha,x_n+\alpha]$. Alors

$$f(x_n + \alpha_0) - f(x_n - \alpha_0) = \int_{x_n - \alpha_0}^{x_n + \alpha_0} f'(t)dt \geqslant \varepsilon_0 \alpha_0 > 0$$
(48)

mais comme $\lim_{x\to +\infty} f(x) \in \mathbb{R}$, on a

$$\lim_{n \to +\infty} f(x_n + \alpha_0) - f(x_n - \alpha_0) = 0 \tag{49}$$

d'où la contradiction.

Si $f \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{C})$, on applique ce qui précède à $\Im(f)$ et $\Re(f)$.

Si f' n'est pas uniformément continue, ce n'est plus valable, par exemple

$$f(x) = \frac{\sin(x^2)}{x} \xrightarrow[x \to +\infty]{} 0 \tag{50}$$

 $\operatorname{car} |f(x)| \leqslant \frac{1}{x} \operatorname{et}$

$$f'(x) = \underbrace{-\frac{1}{x^2}\sin(x^2)}_{\text{x} \to +\infty} + \underbrace{\frac{2x\cos(x^2)}{x}}_{\text{n'a pas de limite en } +\infty}$$
(51)

Solution 8. Soit $x \in \mathbb{R}$ et $h \neq 0$, on a

$$\frac{f(x+h) - f(x)}{h} = g(x + \frac{h}{2}) \xrightarrow[h \to 0]{} g(x)$$

$$(52)$$

par continuité de g. Donc f est dérivable et f'=g. Par ailleurs, pour $y=\frac{1}{2},$ on a

$$f'(x) = f(x + \frac{1}{2}) - f(x - \frac{1}{2})$$
(53)

par récurrence f est \mathcal{C}^{∞} .

En outre, en fixant x et en dérivant la relation de départ deux fois par rapport à y, on a

$$f''(x+y) - f''(x-y) = 0 (54)$$

Donc f'' est constante donc f est un polynôme de degré plus petit que 2.

Réciproquement, on vérifie que ces fonctions marchent (avec f' = g).

Solution 9. On a

$$S_n = \sum_{k=1}^{n-1} \frac{1}{2} (f(k) + f(k+1)) - \int_k^{k+1} f(t)dt$$
 (55)

On note $F(x) = \int_1^x f(t)dt$ de classe C^2 .

On a

$$F(b) = F(a) + F'(a)(b-a) + \int_{a}^{b} F''(t)(b-t)dt$$
(56)

Pour a = k et $b = k + \frac{1}{2}$, on a

$$F(k+\frac{1}{2}) = F(k) + \frac{1}{2}F'(k) + \int_{k}^{k+\frac{1}{2}} (k+\frac{1}{2}-t)f'(t)dt = F(k) + \frac{1}{2}F'(k) + \int_{0}^{\frac{1}{2}} uf'(k+\frac{1}{2}-u)du$$
 (57)

et pour $a = k + 1, b = k + \frac{1}{2}$,

$$F(k+\frac{1}{2}) = F(k+1) - \frac{1}{2}F'(k+1) + \int_{k+1}^{k+\frac{1}{2}} (k+\frac{1}{2}-t)f'(t)dt = F(k+1) - \frac{1}{2}F'(k+1) + \int_{0}^{\frac{1}{2}} uf'(k+\frac{1}{2}+u)du$$
(58)

On a donc

$$\frac{1}{2}(f(k) - f(k+1)) - \int_{k}^{k+1} f(t)dt = \int_{0}^{\frac{1}{2}} u(f'(k+\frac{1}{2}+u) - f'(k+\frac{1}{2}-u))du$$
 (59)

d'où

$$S_n = \int_0^{\frac{1}{2}} u \sum_{k=1}^{n-1} \underbrace{f'(k + \frac{1}{2} + u) - f'(k + \frac{1}{2} - u)}_{\geqslant 0 \text{ car } u \geqslant 0 \text{ et } f' \text{ croissante}} du$$
 (60)

et $f'(k + \frac{1}{2} + u) - f'(k + \frac{1}{2} - u) \le f'(k + 1) - f'(k)$ d'où

$$S_n \leqslant \underbrace{\int_0^{\frac{1}{2}} u du(f'(n) - f'(1))}_{=\frac{1}{2}}$$
 (61)

Solution 10.

1. D'après l'inégalité de Taylor-Lagrange, on a

$$\begin{cases}
 \|A\| \leqslant \frac{h^2}{2} M_2 \\
 \|B\| \leqslant \frac{h^2}{2} M_2
\end{cases}$$
(62)

On a B-A-f(x-h)+f(x+h)=2hf'(x) d'où

$$||f'(x)|| \le \frac{hM_2}{2} + \frac{M_0}{h}$$
 (63)

Donc f' est bornée sur \mathbb{R} . On a ensuite un majorant qui dépend de h que l'on peut optimiser, et on trouve la borne demandée.

2. L'inégalité de Taylor-Lagrange donne à nouveau

$$\forall k \in \{1, \dots, n-1\}, ||A_k|| \leqslant \frac{k^n}{n!} M_n$$
 (64)

On forme alors

$$\begin{pmatrix}
A_{1} - f(x+1) \\
\vdots \\
A_{k} - f(x+k) \\
\vdots \\
A_{n} - f(x+n)
\end{pmatrix} = \underbrace{\begin{pmatrix}
-1 & -1 & \dots & \frac{-1}{(n-1)!} \\
\vdots & \vdots & & \vdots \\
-1 & -k & \dots & \frac{-k^{n-1}}{(n-1)!} \\
\vdots & \vdots & & \vdots \\
-1 & -n & \dots & \frac{-n^{n-1}}{(n-1)!}
\end{pmatrix}}_{=M} \begin{pmatrix}
f(x) \\
\vdots \\
f^{(k)}(x) \\
\vdots \\
f^{(n-1)}(x)
\end{pmatrix}$$
(65)

On a

$$\det(M) = \frac{(-1)^n}{1! \times 2! \times \dots \times (n-1)!} V(1, \dots, n)$$
(66)

où V est le déterminant de Vandermonde. Donc $\det(M) \neq 0$. On peut former les $f^{(j)}(x)$ en fonction des $(A_i - f(x+i))_{1 \leq i \leq n}$: il existe $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ tel que pour tout $x \in \mathbb{R}$, $f^{(j)}(x) = \sum_{i=1}^n \alpha_i (A_i - f(x+i))$. Donc

$$||f^{(j)}(x)|| \le \sum_{i=1}^{n} |\alpha_i| \left(\frac{n}{n!} M_n + M_0\right)$$
 (67)

Donc $f^{(j)}$ est bornée pour tout $j \in \{1, \dots, n-1\}$.

Solution 11.

1.

$$l_{\sigma,\gamma} = \sum_{i=0}^{n-1} \left\| \int_{a_i}^{a_{i+1}} \gamma'(t) dt \right\| \leqslant \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} \|\gamma'(t)\| dt = \int_a^b \|\gamma'(t)\| dt$$
 (68)

2. On a

$$\left| l_{\sigma,\gamma} - \sum_{i=0}^{n-1} \|\gamma'(a_i)\| (a_{i+1} - a_i) \right| = \left| \sum_{i=0}^{n-1} \|\gamma(a_{i+1}) - \gamma(a_i)\| - \|\underbrace{(a_{i+1} - a_i)}_{>0} \gamma'(a_i)\| \right|$$
(69)

$$\leq \sum_{i=0}^{n-1} \|\gamma(a_{i+1}) - \gamma(a_i) - (a_{i+1} - a_i)\gamma'(a_i)\|$$
 (70)

$$\leq \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} \|\gamma'(t) - \gamma'(a_i)\| dt$$
 (71)

3. $\|\gamma'\|$ est continue donc

$$\int_{a}^{b} \|\gamma'(t)\| dt = \lim_{\delta(\sigma) \to 0} \sum_{i=0}^{n-1} \|\gamma'(a_i)\| (a_{i+1} - a_i)$$
 (72)

Donc α_0 existe.

 γ' est continue sur [a,b] donc uniformément continue sur [a,b], et il existe $\alpha_1 > 0$ tel que pour tout $(x,y) \in [a,b]^2$, on a

$$|x - y| \leqslant \alpha \Rightarrow ||\gamma'(x) - \gamma'(y)|| \leqslant \frac{\varepsilon}{2(b - a)}$$
 (73)

Alors si $\delta(\sigma) \leq \alpha_1$, pour tout $i \in \{0, \dots, n-1\}$, pour tout $t \in [a_i, a_{i+1}]$, on a

$$|t - a_i| \leqslant (a_{i+1} - a_i) \leqslant \alpha_1 \tag{74}$$

d'où

$$\|\gamma'(a_i) - \gamma'(t)\| \leqslant \frac{\varepsilon}{2(b-a)} \tag{75}$$

et d'après la question 2, on a donc

$$\left| l_{\sigma,\gamma} - \sum_{i=0}^{n-1} \|\gamma'(a_i)\| (a_{i+1} - a_i) \right| \leqslant \frac{\varepsilon}{2}$$

$$(76)$$

Finalement, si $@d(\sigma) \leq \min(\alpha_0, \alpha_1)$, on a

$$\left| l_{\sigma,\gamma} - \int_{a}^{b} \|\gamma'(t)\| dt \right| \leqslant \varepsilon \tag{77}$$

Donc

$$l(\gamma) = \int_{a}^{b} \|\gamma'(t)\| dt \tag{78}$$

4. On a

$$\gamma'(t) = \begin{pmatrix} -R\sin(t) \\ R\cos(t) \end{pmatrix} \tag{79}$$

donc $\|\gamma'(t)\| = R$ et $l(\gamma) = 2\pi R$.

Solution 12.

1. Pour tout $t \in I$, on a

$$\gamma(t) = |\gamma(t)|e^{i\theta_1(t)} = |\gamma(t)|e^{i\theta_2(t)}$$
(80)

donc

$$e^{\mathrm{i}(\theta_1(t) - \theta_2(t))} = 1 \tag{81}$$

Ainsi, pour tout $t \in I$, il existe $k(t) \in \mathbb{Z}$ telle que $\theta_2(t) - \theta_1(t) = 2k(t)\pi$. On a

$$k(t) = \frac{\theta_2(t) - \theta_1(t)}{2\pi} \tag{82}$$

qui est continue et à valeurs entières, donc constante égale à k_0 d'après le théorème des valeurs intermédiaires.

2. Si $\gamma(t) = x(t) + iy(t)$,

$$|\gamma(t)| = \sqrt{x(t)^2 + y(t)^2}$$
 (83)

Comme $\sqrt{\cdot}$ est \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} , par composition, f est \mathcal{C}^{k} . On a alors

$$f(t) = e^{i\theta(t)} \Rightarrow f'(t) = i\theta'(t)e^{i\theta(t)} = i\theta'(t)f(t)$$
(84)

Donc

$$\theta(t) = -i\frac{f'(t)}{f(t)} \tag{85}$$

De plus, on a

$$\theta(t) = \theta(t_0) - i \int_{t_0}^t \frac{f'(u)}{f(u)} du$$
(86)

pour $t_0 \in I$.

3. On fixe $t_0 \in I$. Soit θ_0 un argument de $\gamma(t_0)$, on pose

$$\theta(t) = \theta_0 - i \int_{t_0}^t \frac{f'(u)}{f(u)} du \tag{87}$$

Comme $\frac{f'}{f}$ est \mathcal{C}^{k-1} , θ est bien \mathcal{C}^k . On forme $g(t)=e^{\mathrm{i}\theta(t)}$ qui est de classe \mathcal{C}^k . On a

$$g'(t) = i\theta'(t)g(t) = \frac{f'(t)}{f(t)}g(t)$$
(88)

donc $\left(\frac{g}{f}\right)' = 0$, donc $\frac{g}{f}$ est constante sur I et $g(t_0) = e^{i\theta_0} = f(t_0)$ donc g = f sur I. Ainsi, pour tout $t \in I$, on a $|f(t)| = |e^{i\theta(t)}| = 1$ et si $\theta(t) = a(t) + i(t)$, on a donc

$$e^{\mathrm{i}\theta(t)} = e^{-b(t)}e^{\mathrm{i}a(t)} \tag{89}$$

donc b(t) = 0 et $\theta(t) \in \mathbb{R}$.