装

订

线

本试卷适应范围 管理类、工科类

南京农业大学试题纸

2017-2018 学年 第一学期

课程类型: 必修

试卷类型: A

MATH2115-02

课程名 概率论与数理统计 A

学分 4

_学	:号			姓名 .					班级	<u> </u>	<u></u>
	题号	 =	=	四	五	六	七	八	九	总分	签名
	得分							4.5°	- N - PA -		
	阅卷人				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			*	· · im-m-	·	
	核分人			ě				*		.	

附表:

$$\Phi(2.5) = 0.994$$

$$\Phi(1.5) = 0.933$$

$$Z_{0.025}$$
 $gu_{0.025} = 1.96$ $Z_{0.05}$ $gu_{0.05} = 1.645$

$$Z_{osc}$$
或 $u_{osc} = 1.645$

$$F_{0.01}(1,9) = 10.56$$

 $\chi_{0.025}^{2}(9) = 19.02$

$$F_{0.01}(1,10) = 10.04$$

$$\chi_{0.025}^2(10) = 20.48$$
 $\chi_{0.975}^2(9) = 2.7$

$$\chi^2_{0.975}(10) = 3.25$$

$$\chi^2_{0.05}(9) = 16.92$$

$$\chi^2_{0.05}(10) = 18.31$$
 $\chi^2_{0.95}(9) = 3.33$

$$\chi_{0.95}^2(9) = 3.33$$

$$\chi^2_{0.95}(10) = 3.94$$

- 一、选择题(每题3分,共15分)
- 1. 设事件 A = B 的概率均大于零,且 A = B 为对立事件,则下列不成立的是【
 - A. A与B互不相容

B. A与B相互独立

C. A与B互不独立

- D. $\overline{A} = \overline{B}$ 互不相容
- 2. 设总体 $X\sim N(\mu,\sigma^2)$,其中 σ^2 已知,则 μ 的置信区间长度 l 与置信度 $l-\alpha$ 的关系是 【

- A. 当 $1-\alpha$ 减少时,1不变
- B. 当1-α减少时, 1增大
- C. 当 $1-\alpha$ 减少时,1减少
- D. 不能确定
- 3. 设连续型随机变量的密度函数和分布函数分别为 f(x) 和 F(x) ,则下列正确的是【

A. $P(X=x) \leq F(x)$

B. P(X=x) = F(x)

C. P(X=x)=f(x)

- $D. \ 0 \le f(x) \le 1$
- 4. 在假设检验中, 显著性水平α表示为【

- A. 犯第Ⅱ类错误的概率
- B. P(拒绝H₀|H₀为真)

C. P(接受H₀|H₀为假)

D. 无具体含义

- 5. 设 X 为一随机变量,若 EX² = 1.1, DX = 0.1, 则一定有【 A. $P(-1 < X < 1) \ge 0.9$ B. $P(0 < X < 2) \ge 0.9$

- c. $P(X+1 \ge 1) \le 0.9$
- D. $P(|X| \ge 1) \le 0.1$
- 二、填空题 (每题 3 分, 共 15 分)
- C. P(X+1<1) 3 (5) 2 (5) 3 (5) 3 (5) 4 (5) 3 (5) 4 (5) 4 (5) 5 (5) 6 (5) 6 (5) 7 (5) 6 (5) 7 (5) 6 (5) 7 (5) 6 (5) 7 (5) 8 (5) 8 (5) 9 (5

_		3	
律为	·5	5.5	
x	-1	1	
P	0.5	0.5	

2. 设 $X_1, X_2, ..., X_M$ 是来自总体 $X \sim N(0,1)$ 的一个样本, \overline{X}, S^2 分别是样本均值和样本方差,令

$$Y = \frac{10\overline{X}^2}{S^2}$$
,若已知 $P(Y \ge C) = 0.01$,则 $C =$ ______.

3. 设二维连续型随机变量(X,Y)的联合概率密度为: $f(x,y)=\begin{cases} k,0 < x < 1,0 < y < x \\ 0.$ 其他

X的边缘概率密度为 $f_{Y}(x) =$ ________, Y的边缘概率密度为 $f_{Y}(y) =$ _______.

- 4. 设超大牵伸纺机所纺的纱的断裂强度服从 $N(\mu, 2.18^2)$, 普通纺机所纺的纱的断裂强度服从 $N(\mu, 1.76^2)$, 现对前者抽取容量为 200 的样本, 得 $\bar{x} = 5.32$, 对后者抽取容量为 100 的样本, 得 $\overline{\nu} = 5.76$,给定置信度为 0.95,则 $\mu - \mu_2$ 的双侧置信区间为_
- 5. 己知 $X \sim N(1,9), Y \sim N(0,4)$,且相关系数 $\rho_{XY} = 0.5$,设 $Z = \frac{1}{3}X + \frac{1}{2}Y$,则 $D(Z) = _$
- 三、计算题 (共70分)
- 1. (10 分) 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占 20%, 以 X 表示在随机抽查的 100个索赔户中,因被盗向保险公司索赔的户数。
- (1)写出 X 的概率分布。
- (2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率的近似值、

3. (10 分)设随机变量 X 关于随机变量 Y 的条件概率密度为: 当 0 < y < 1 时, $f_{x|y}(x|y) = \begin{cases} \frac{3x^2}{y^3}, 0 < x < y \\ 0, 其他 \end{cases}$

而 Y 的概率密度为 $f_Y(y) = \begin{cases} 5y^4, 0 < y < 1 \\ 0, 其他 \end{cases}$,求 $P\left(X > \frac{1}{2}\right)$.

4. (10 分) 一台机床有 $\frac{1}{3}$ 的时间加工零件A,其余时间加工零件B。加工零件A时,停机的概率是0.3,加工零件B时,停机的概率是0.4,则

- (1) 求这台机床停机的概率。
- (2) 若发现停机了, 求它在加工零件 B 的概率。

5. (18 分)设(X,Y)的联合分布律如下表:

X/Y	1	2	3
-1	0	1/15	3/15
0	2/15	5/15	4/15

求(1) X 与 Y 是否独立?.

- (2) E(X+Y), E(XY), D(X+Y), D(XY)
- (3) X与Y是否相关?

6. (12 分) 设随机变量 X 在区间 $[\theta, \theta+1]$ 服从均匀分布,其中 θ 为未知参数, X_1 , X_2 , \dots , X_n 是来自总体 X 的一个简单随机样本,X 为样本均值,求

(1) heta 的矩估计 $\hat{ heta}_1$. (2) heta 的最大似然估计 $\hat{ heta}_2$. (3) $\hat{ heta}_1$ 是否为heta 的无偏估计?

系主任 李 强

出卷人 温阳俊

2017-2018-1-AMATH2115-02 概率论与数理统计 A

一. 选择题(15分, 每题 3分)1.B

二. 填空题(15分,每题3分,第1题和第3题,每空1分)

	$\int 0, x \ll 1$	Υ	-1	3
$1.F_X(x)=$	$0.5, -1 \le x < 1.$	P	0.5	0.5
	$\begin{cases} 1, & x \ge 1 \end{cases}$	<i>*</i>	•	-

$$F_{y}(y) = \begin{cases} 0, & y < 1 \\ 0.5, -1 \le y < 3 \\ 1, & y \ge 3 \end{cases}$$

2.
$$F_{0.01}(1,9) = 10.56$$

3. 2.
$$f_x(x) = \begin{cases} 2x, 0 < x < 1 \\ 0, & \text{id.} \end{cases}$$
, $f_y(y) = \begin{cases} 2(1-y), 0 < y < 1 \\ 0, & \text{id.} \end{cases}$

三. 解答题(70分)

1.(10分)解: (1)设在抽查的 100个索赔户中,被盗户数为X,则 $X \sim b$ (100,0.2),X 的

概率分布为:
$$P(X=k) = C_{100}^{k} 0.2^{k} 0.8^{100-k}, k=0,1,2,...,100.$$
 (5分)

(2)由中心极限定理得

$$P(14 \le X \le 30) \approx \Phi\left(\frac{30 - 100 \times 0.2}{\sqrt{100 \times 0.2 \times 0.8}}\right) - \Phi\left(\frac{14 - 100 \times 0.2}{\sqrt{100 \times 0.2 \times 0.8}}\right)$$

$$= \Phi(2.5) - \Phi(-1.5) = 0.927$$
(5 \(\frac{\psi}{2}\))

2.(10 分)解: (1) 假设检验: $H_0: \mu \leq \mu_0 = 10600, H_1: \mu > 10600$

(1分)

拒绝域
$$C: Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \ge Z_{\alpha}$$
 (1分)

其中,
$$Z = \frac{10653 - 10600}{82/\sqrt{10}} = \underline{2.044}$$
, $Z_{\alpha} = Z_{0.05} = 1.645$,

故落在拒绝域里,拒绝 H_0 ,认为新工艺生产的缆绳抗拉强度有显著提高. (1分)

2=2044. 21=2005=1.645.

(2) 假设检验:
$$H_0: \sigma^2 = \sigma_0^2 = 82^2, H_1: \sigma^2 \neq 82^2$$
 (1分)

拒绝域为 C:
$$\frac{(n-1)S^2}{\sigma_0^2} \ge \chi_{\frac{q}{2}}^2 (n-1)$$
 或 $\frac{(n-1)S^2}{\sigma_0^2} \le \chi_{1-\frac{q}{2}}^2 (n-1)$ (1分)

其中,
$$\frac{(n-1)S^2}{\sigma_0^2} = \frac{9 \times 6992}{82^2} = 9.36$$
,

$$\chi_{\frac{\pi}{2}}^{2}(n-1)=\chi_{0.025}^{2}(9)=19.02 \chi_{1-\frac{\pi}{2}}^{2}(n-1)=\chi_{0.975}^{2}(9)=2.7$$
 因为2.7 < 9.36 < 19.02 * (2 分)

所以落在接受域里,接受 H_0 ,认为新工艺生产的缆绳抗拉强度的方差和旧工艺没有显著差异。 (1分)

3.(10分)解: 因为
$$f(x,y) = f_{X|Y}(x|y)f_Y(y)$$
 (2分)

所以
$$f(x,y) = \begin{cases} 15x^2y, 0 < x < y < 1 \\ 0, 其他 \end{cases}$$
 (2分)

所以
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \begin{cases} \int_{x}^{1} 15x^2 y dy, 0 < x < 1 \\ 0, 其他 \end{cases}$$

故
$$f_X(x) = \begin{cases} \frac{15}{2} x^2 (1-x^2), 0 < x < 1 \\ 0, 其他 \end{cases}$$
 (3分)

故
$$P\left(X > \frac{1}{2}\right) = \int_{\frac{1}{2}}^{1} f_X(x) dx = \int_{\frac{1}{2}}^{1} \frac{15}{2} x^2 (1 - x^2) dx = \frac{47}{64}.$$
 (3 分)

4. (10 分)解: 设C:该机床停机,D: 加工零件A, \overline{D} : 加工零件B.

则
$$P(D) = \frac{1}{3}, P(\bar{D}) = \frac{2}{3}, P(C|D) = 0.3, P(C|\bar{D}) = 0.4$$
,

(1) 由全概率公式得

$$P(C) = P(C|D) \times P(D) + P(C|\overline{D}) \times P(\overline{D}) = 0.3 \times \frac{1}{3} + 0.4 \times \frac{2}{3} = \frac{11}{30} = 0.367 (5 \%)$$

(2) 由贝叶斯公式得

$$P(\overline{D} \mid C) = \frac{P(C \mid \overline{D}) \times P(\overline{D})}{P(C)} = \frac{0.4 \times \frac{2}{3}}{\frac{11}{30}} = \frac{8}{11} = 0.727$$
(5 \(\frac{1}{2}\))

5. (18分)解:

(1) X, Y 的边缘分布律分别如下表:

\overline{X}	-1	0
'n	4	11
<i>P</i>	15	15

Y	1	2	3
D	2	6	7
1	15	15	15

由于
$$P_{1\bullet} \bullet P_{\bullet 1} = \frac{4}{15} \times \frac{2}{15} \neq P_{11} = 0$$
,所以 X, Y 不独立. (3分)

(2) X+Y 分布律为:

X+Y	1	2	3
D	3	8	4
<i>T</i>	15	15	15

所以

$$E(X+Y) = 1 \times \frac{3}{15} + 2 \times \frac{8}{15} + 3 \times \frac{4}{15} = \frac{31}{15}$$

$$D(X+Y) = E(X+Y)^{2} - \left[E(X+Y)\right]^{2} = 1^{2} \times \frac{3}{15} + 2^{2} \times \frac{8}{15} + 3^{3} \times \frac{4}{15} - \left(\frac{31}{15}\right)^{2} = \frac{104}{225}$$

(6分)

XY 的分布律为:

XY	-3	-2	0	
	3	1	11	
P	15	15	15	

FIF UL

$$E(XY) = -3 \times \frac{3}{15} - 2 \times \frac{1}{15} + 0 \times \frac{11}{15} = -\frac{11}{15}$$

$$D(XY) = E(XY)^{2} - \left[E(XY)\right]^{2} = (-3)^{2} \times \frac{3}{15} + (-2)^{2} \times \frac{1}{15} + 0^{2} \times \frac{11}{15} - \left(-\frac{11}{15}\right)^{2} = \frac{344}{225}$$

(3)
$$E(X) = -1 \times \frac{4}{15} + 0 \times \frac{11}{15} = -\frac{4}{15}, E(Y) = 1 \times \frac{2}{15} + 2 \times \frac{6}{15} + 3 \times \frac{7}{15} = \frac{35}{15}$$

所以
$$cov(X,Y) = E(XY) - E(X)E(Y) = -\frac{11}{15} - \left(-\frac{4}{15}\right) \times \frac{35}{15} = -\frac{1}{9} \neq 0$$
, 所以 X 和 X 不相关. (3 分)

6(12 分)解:

(1)由
$$\overline{X} = E(X) = \frac{\theta + \theta + 1}{2}$$
,所以 $\hat{\theta}_i = \overline{X} - \frac{1}{2}$ (4分)

(2)由X的概率密度 $f(x,\theta) = \begin{cases} 1, \theta \le x \le \theta + 1 \\ 0, \end{cases}$ 其他, 得到 θ 的似然函数为

$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta) = \begin{cases} 1, \theta \leq x_1, x_2, ..., x_n \leq \theta + 1 \\ 0, \quad 其他 \end{cases}.$$

因此
$$\theta$$
的范围为 $x_{(n)}-1 \le \theta \le x_{(1)}$. (2分)

由于似然函数是一个常数 1, 所以在区间 $\left[x_{(n)}-1,x_{(1)}\right]$ 内任何一点都可以作为 θ 的最大似然估计.

(3)因为
$$E(\hat{\theta}_1)=E(\bar{X})-\frac{1}{2}=\frac{\theta+\theta+1}{2}-\frac{1}{2}=\theta$$
,所以 $\hat{\theta}_1$ 是 θ 的无偏估计. (4分)

本试卷适应范围 管理类、工科类

南京农业大学试题纸

2016-2017 学年 第一学期 课程类型: 必修 试卷类型: A

课程号 <u>MATH2115-02</u>

课程名 概率论与数理统计 A

学分 4

_	字号			姓名 .					班约	逐	
	题号	 =	3	四	五	六	七	八	九	总分	签名
	得分										
	阅卷人										
	核分人		:								

附表:

$$F_{0.025}(9,7) = 4.82 \qquad F_{0.025}(10,8) = 4.30 \qquad F_{0.05}(9,7) = 3.68 \qquad F_{0.05}(10,8) = 3.35$$

$$F_{0.025}(7,9) = 4.20 \qquad F_{0.025}(8,10) = 3.85 \qquad F_{0.05}(7,9) = 3.29 \qquad F_{0.05}(8,10) = 3.07$$

$$t_{0.025}(18) = 2.10 \qquad t_{0.025}(17) = 2.11 \qquad t_{0.025}(16) = 2.12 \qquad t_{0.05}(18) = 1.73$$

$$t_{0.05}(17) = 1.74 \qquad t_{0.05}(16) = 1.75 \qquad \chi^{2}_{0.025}(16) = 28.85 \qquad \chi^{2}_{0.025}(15) = 27.49$$

$$\chi^{2}_{0.05}(16) = 26.30 \qquad \chi^{2}_{0.05}(15) = 25.00 \qquad \chi^{2}_{0.975}(16) = 6.91 \qquad \chi^{2}_{0.975}(15) = 6.26$$

$$\chi^{2}_{0.95}(16) = 7.96 \qquad \chi^{2}_{0.95}(15) = 7.26 \qquad Z_{0.025} = 1.96 \qquad Z_{0.05} = 1.645$$

- 一、选择题(每题3分,共15分)
- 1. 设X 是随机变量,c 为任意实数,E(X) 是X 的数学期望,则【
 - A. $E(X-c)^2 = E(X-EX)^2$

B. $E(X-c)^2 \ge E(X-EX)^2$

c. $E(X-c)^2 < E(X-EX)^2$

- D. $E(X-c)^2 = 0$
- 2. 若 $X \sim N(1,1)$,概率密度为f(x),分布函数为F(x),则【
 - A. $P(X \le 0) = P(X \ge 0) = 0.5$ B. $P(X \le 1) = P(X \ge 1) = 0.5$
 - C. $f(x) = f(-x), x \in (-\infty, +\infty)$
- D. $F(x) = 1 F(-x), x \in (-\infty, +\infty)$
- 3. 设A和B是任意两事件,则P(A-B)=【
 - A. P(A) P(B)

B. $P(A) - P(B) + P(\overline{A}B)$

C. P(A) - P(AB)

- D. $P(A) + P(\overline{B}) P(AB)$
- 4. 在假设检验中, 样本容量一定时, 缩小犯第 II 类错误的概率, 则犯第 I 类错误的概率 【

A. 变小

B. 变大

C. 不确定

D. 不变

5. 设 $X_1, X_2, ..., X_{1000}$ 是相互独立的随机变量,且 $X_i \sim b(1, p), i=1, 2, ..., 1000$,则下列【

不正确

A.
$$\frac{1}{1000} \sum_{i=1}^{1000} X_i \approx p$$

B.
$$\sum_{i=1}^{1000} X_i \sim b(1000, p)$$

C.
$$P\left(a < \sum_{i=1}^{1000} X_i < b\right) \approx \Phi(b) - \Phi(a)$$

D.
$$P\left(a < \sum_{i=1}^{1000} X_i < b\right) \approx \Phi\left(\frac{b - 1000 p}{\sqrt{1000 p(1-p)}}\right) - \Phi\left(\frac{a - 1000 p}{\sqrt{1000 p(1-p)}}\right)$$

- 二、填空题 (每题 3 分, 共 15 分)
- 1. 袋中有5个球(3个新球,2个旧球)。每次取一个,无放回地取两次,则第二次取到新球的概率是
- 2. $\forall EX=1$, DX=2, EY=-1, DY=4, $\rho_{XY}=0.6$, $\forall E(2X-Y+1)^2=$
- 3. 已知电气元件寿命 X 服从指数分布: $f(x) = \begin{cases} \frac{1}{1000} e^{-\frac{x}{1000}}, x > 0 \\ 0, x \le 0 \end{cases}$, 假设仪器装有 5 个这样元件且其中

任一个元件损坏时仪器即停止工作,则仪器无故障工作 1000 小时以上的概率为______

- 4. 若 $X_1,~X_2,~\dots,X_n$ 是总体X的一个样本,设 $EX=\mu$, $DX=\sigma^2$,则确定常数C=_______, 使得 $c\sum_{i=1}^{n-1}\left(X_{i+1}-X_i\right)^2$ 为 σ^2 的无偏估计量。
- 5. 在总体 $X \sim N(80, 20^2)$ 中随机地抽取一容量为 100 的样本,则样本均值与总体均值的差的绝对值大于 3 的概率为 _______。
- 三、计算题 (共70分)
- 1. (10 分) 某砖厂制成两批机制红砖,抽样检查测量砖的抗折强度(千克),得到结果如下,第一批: $n_1=10,\ \overline{x}=27.3,\ S_1=6.4$ 第二批: $n_2=8,\ \overline{y}=30.5,\ S_2=3.8$,已知砖的抗折强度服从正态分布,试检验: (1) 两批红砖的抗折强度的方差是否有显著差异?
 - (2) 两批红砖的抗折强度的数学期望是否有显著差异?

- (1) 求方差 σ^2 的置信水平为 0.95 的双侧置信区间;
- (2) 按仪器规定其方差不得超过 0.01, 问此仪器工作是否稳定?

- 3. (10 分)设随机变量 X 的概率密度为: $f(x) = \begin{cases} ax + b, 0 < x < 1 \\ 0, 其他 \end{cases}$ 又已知 $P\left(X < \frac{1}{3}\right) = P\left(X > \frac{1}{3}\right)$, 求
- (1) a 和b;
- (2) Y = 3X + 1 的概率密度。

4. (10 分) 病树的主人外出,委托邻居浇水,设已知如果不浇水,树死去的概率为 0.8。若浇水则树死去的概率为 0.15。有 0.9 的把握确定邻居会记得浇水。

- (1) 求主人回来树还活着的概率。
- (2) 若主人回来树已死去,求邻居忘记浇水的概率。

5. (10 分)设总体 X 具有分布律

X	1	2	3
.P	$ heta^2$	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 $\theta(0<\theta<1)$ 为未知参数。已知取得了样本值 $x_1=1,x_2=3,x_3=1,x_4=2$ 、求

- (1) θ 的矩估计;
- (2) θ的最大似然估计.

6. (20分)设随机变量 X,Y 相互独立,且 X,Y 的分布律分别如下表:

X	1	3
P	0.3	0.7

Υ	-I	1
P	0.6	0.4

- 求 (1) (X,Y) 的联合分布律: (2) X 与 Y 的相关系数 ρ_{XY} : (3) $Z_i = \min(X,Y)$ 的分布律:
- (4) $Z_2=X/Y$ 的分布律。 (5) $E(Z_1)$, $D(Z_2)$

系主任 李强

出卷人 温阳俊

装 订

线

本试券适应范围 经管、工科本科

南京农业大学试题纸

2015-2016 学年 第1学期 课程类型: 必修 试卷类型: A

-	课程 概率	至论与数理统计	班级		号	姓名	
***************************************	题号		=	=	总分	签名	
************	得分					÷ .	

附表:
$$t_{0.025}(9) = 2.2622$$
; $t_{0.025}(10) = 2.2281$; $t_{0.05}(9) = 1.8331$; $t_{0.05}(10) = 1.8125$;
 $\chi^2_{0.025}(9) = 19.022$; $\chi^2_{0.025}(10) = 20.483$; $\chi^2_{0.975}(9) = 2.700$; $\chi^2_{0.975}(10) = 3.247$
 $\chi^2_{0.05}(9) = 16.919$; $\chi^2_{0.05}(10) = 18.307$; $\chi^2_{0.95}(9) = 3.325$; $\chi^2_{0.95}(10) = 3.940$
 $F_{0.025}(16, 10) = 3.50$; $F_{0.05}(16, 10) = 2.83$; $F_{0.025}(15, 9) = 3.77$; $F_{0.05}(15, 9) = 3.01$
 $Z_{0.05} = 1.645$; $Z_{0.025} = 1.960$.

- 选择题(每小题3分,共15分)
- 1. 在假设检验中,原假设为 H_0 ,备择假设为 H_1 ,则称为犯第二类错误的是【
 - $A. H_0$ 为真,接受 H_1
- B. H_0 不真,接受 H_0
- C. H_0 为真, 拒绝 H_1
- D. Ho不真, 拒绝Ho

2. 若函数
$$F(x) = \begin{cases} 0, & x \le 0 \\ \frac{x}{2}, 0 < x \le 1, \text{ 则【 } \end{cases}$$
1. $x > 1$

- A. F(x)是某一随机变量的分布函数
- B. F(x)不是分布函数

C. F(x)是离散型分布函数

- D. F(x)是连续型分布函数
- 3. 设P(A) = 0.8, P(B) = 0.7, $P(A \mid B) = 0.8$, 则下列结论正确的是【

- A. 事件 A 和 B 相互独立
- B. 事件 A 和 B 互斥

C. $B \supset A$

- D. P(AUB) = P(A) + P(B)
- 4. 设 X_1 , X_2 , …, X_n 是来自总体X的样本,且EX = μ , DX = σ^2 , 则【 】可以作为 σ^2 的无偏估计。

- A. 当 μ 已知时,统计量 $\sum_{i=1}^{n} (X_i \mu)^2/n$
- B. 当 μ 已知时,统计量 $\sum_{i=1}^{n} (X_i \mu)^2/(n-1)$
- C. 当 μ 未知时,统计量 $\sum_{i=1}^{n} (X_i \mu)^2/n$
- D. 当 μ 未知时,统计量 $\sum_{i=1}^{n} (X_i \mu)^2/(n-1)$

5. 设两个随机变量	是X和Y相互独立且同	司分布: P(X = -1) =	$= P(Y = -1) = \frac{1}{2}$	P(X = 1) = P(Y =	1) = $\frac{1}{2}$, 则下
列各式中成立的是					-
A. P(X = Y) =	<u>1</u> 2	B. $P(X = Y) =$	= 1		
C. P(X+Y=0)	$=\frac{1}{4}$	D. $P(XY = 1)$	$=\frac{1}{4}$		
二、填空题(每人	小题3分,共15分)				
1. 设随机变量X~	~ U(−1, b), 由切比	雪夫不等式有P(X	$-1 <\varepsilon)\geq 2/3,$	则b =	, , , , , , , , , , , , , , , , , , ,
ε =	•				
2. 设 X ₁ , X ₂ , ···	·, X _n 是来自总体X	~π(λ)的一个样本,	其中 λ 未知.则	』P(X = 0) 的最大	似然估计值
是	*				
3. 设随机变量X和1	Y满足Y = aX + b.a =	≠ 0,DX存在,则相乡	气系数ρ_{XY} =	o	
-	$N(1, 2), X_2 \sim N(0)$,且 X_1 , X_2 , X_3 [†]	泪互独立,则	
$P(0 \le 2X_1 + 3X_2 -$	$X_3 \le 6) = $	•	, e		
5. 设 X ₁ , X ₂ ,	, X ₁₆ 是来自总体N(0,	, 1)的样本, Y = (Σ	$(\sum_{i=1}^{4} X_i)^2 + (\sum_{i=5}^{8} X_i)^2$	$()^2 + (\sum_{i=9}^{12} X_i)^2 + (\sum_{i=9}^{12}$	$(\sum_{i=13}^{16} X_i)^2$,
	时,cY服从;				
- 1 - 1					
三、计算题(共	70分)				
	心极限定理计算。复杂为 0.10。为了使整个。				
ta Pina					
		y		• ·	
				•	
	• • • • • • • • • • • • • • • • • • •				
	M.		•		

2. (8分) 二维随机变量(X, Y)的分布律如下表:

Y	-1	1	2
-1	5/20	2/20	6/20
2	3/20	3/20	1/20

求(1) Z = X + Y; (2) Z = XY; (3) Z = X/Y; (4) Z = max(X, Y)的分布律。

3. (10 分) 由以往记录的数据分析,某船只运输某种物品损坏 2%,10%,90%的概率分别为 0.8,0.15 和 0.05,现在从中随机地取三件,发现这三件全三好的。试分析这批物品的损坏率为多少(这里设物品件数很多,取出任一件后不影响取下一件的概率)?

4. (10 分)设二维随机变量(X,Y)的概率密度为 $f(x,y) = \begin{cases} \frac{1}{n}, x^2 + y^2 \le 1, \\ 0, &$ 其他. 试验证 X 和 Y 是不相关的,但 X 和 Y 不是相互独立的。

5. (10 分)为了解灯泡使用时数的均值 μ 及标准差 σ ,测量 10 个灯泡,得s=1500小时,s=20小时。如果已知灯泡的使用时数服从正态分布,求 μ 和 σ 的 95%的置信区间。

- 6. (12 分) 设连续型随机变量X的分布函数为: $F(x) = \begin{cases} 0, x < 0; \\ kx + b, 0 \le x < \pi; \\ 1, x \ge \pi \end{cases}$
- (1) 试确定常数k, b的值。
- (2) 求EX, DX。

 \cdot 7. (12 分)假设随机变量 X 与 Y 相互独立,它们分别服从正态分布N(μ_1 , σ_1^2),N(μ_2 , σ_2^2),其中 μ_1 、 μ_2 、 σ_1^2 、 σ_2^2 均未知。现有 16 个 X 的观察值 x_1 , x_2 , …, x_{16} , 与 10 个 Y 的观察值 y_1 , y_2 , …, y_{10} , 且有 $\sum_{i=1}^{16} x_i = 84$, $\sum_{i=1}^{16} x_i^2 = 563$, $\sum_{i=1}^{10} y_i = 18$, $\sum_{i=1}^{10} y_i^2 = 72$ 。

- (1) 分别求μ1、μ2的矩估计值:
- (2) 分别求σ₁²、σ₂²的最大似然估计值:
- (3) 在显著性水平 $\alpha = 0.05$ 下,检验 $H_0: \sigma_1^2 \le \sigma_2^2, H_1: \sigma_1^2 > \sigma_2^2$ 。

$$s'$$
) = 1. 3. 2 ; 2. e^{-x} , 3. ±1

$$P(x > 85) = P(\frac{x-90}{3} > \frac{85-90}{3}) = \Phi(\frac{5}{3}) = 0.952$$

3. B:三件都是好的 A:排下年为 27. A: 换下年为 10 % (10') A3: 极怀率为90%

$$P(A_1) = 0.8$$
 $P(A_2) = 0.15$ $P(A_3) = 0.05$
 $P(B|A_1) = 0.98$ $P(B|A_2) = 0.93$ $P(B|A_3) = 0.13$

全概率 P(B) = 产 P(B|Ai) P(Ai) = 0.98 x 6.2 + 0.93 x 6.13 + 0.13 x 0.05

Bayes:
$$P(A, |B) = \frac{P(B|A, P(A))}{P(B)} = \frac{1.98^3 \times 0.8}{0.8629} = 0.8[3]$$

$$P(A_2|B) = \frac{P(B|A_2)P(A_2)}{P(B)} = \frac{0.93 \times 0.15}{0.8624} = 0.1268$$

$$P(A_3|B) = \frac{P(B|A_3)P(A_3)}{P(B)} = \frac{0.1^3 \times 0.05}{0.8624} = 0.000$$

· P(A, B) 比 P(A)B)· P(A)B) 大得多

小认为这批的品换作手为2%

$$\begin{array}{lll}
G: \left(\sqrt{\frac{(n-1)5^2}{\gamma_{\frac{1}{2}}^2(n-1)}}, \sqrt{\frac{(n-1)5^2}{\gamma_{\frac{1-1}{2}}^2(n-1)}}\right) & \gamma_{0.97519}^2 & 17.023, n=410\\
&= \left(13.76.36.51\right)
\end{array}$$

$$f(x) = \frac{1}{\pi}$$
, $v < x < \pi$

$$Ex = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{\pi} \frac{x}{\pi} dx = \frac{\pi^{2}}{2}$$

$$Ex^{2} = \int_{-\infty}^{+\infty} x^{2} f(x) dx = \int_{0}^{\pi} \frac{x^{2}}{\pi} dx = \frac{\pi^{2}}{3}$$

$$Dx = Ex^{2} - (Ex)^{2} = \frac{\pi^{2}}{3} - \frac{\pi^{2}}{4} = \frac{\pi^{2}}{3}$$

4' (3) EY =
$$\xi \sin X = \int_{-\infty}^{+\infty} \sin x \int_{-\infty}^{\infty} \sin x dx = \int_{0}^{+\infty} \frac{1}{\pi} \sin x dx = \frac{2}{\pi}$$

$$\hat{u}_{1} = \overline{x} = \frac{84}{16} = 5.25$$

$$\hat{u}_{2} = \overline{y} = \frac{18}{10} = 1.8$$

(2)
$$\frac{n}{n} = \beta_2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{1}{n} \frac{\sum_{i=1}^{n} x_i^2 - \overline{x}^2}{\sum_{i=1}^{n} x_i^2 - \overline{x}^2}$$

4'
$$\hat{G}_{1}^{2} = \frac{1}{16} \times 563 - 5.25^{2} = 7.625$$

$$\hat{G}_{2}^{2} = \frac{1}{10} \times 72 - 1.8^{2} = 3.96$$

(3) 拒绝域 C:
$$\frac{S_1^2}{S_2^2}$$
 7 $f_{0.05}$ $(n_{1-1}, n_{2-1}) = f_{0.05}$ (15.9) = 3.0/

$$(n_{2}-1)S_{1}^{2} = n_{1}G_{1}^{2}$$

$$S_{1}^{2} = \frac{n_{1}G_{1}^{2}}{h_{1}-1} = \frac{16}{15} \times 7.625$$

$$(n_{2}-1)S_{2}^{2} = n_{2}G_{2}^{2}$$

$$S_{2}^{2} = \frac{n_{2}G_{2}^{2}}{n_{2}-1} = \frac{10}{9} \times 3.96$$

装订线

本试卷适应范围 经管、工科本科

南京农业大学试题纸

2014-2015 学年 第1学期 课程类型: 必修 试卷类型: A

		ZULTEZUL.	3. T. T. NA. Y.	エンタ1 かりまう	(田: 五)	风仓矢垒:A	
课程概学	《论与数理统计_	班级		全号		*	
题号	. /*		<u>=</u>	总分	签名		
得分							
附表: $t_{0.025}(18) = 2.1009$; $t_{0.025}(19) = 2.0930$; $t_{0.025}(20) = 2.0860$; $t_{0.05}(18) = 1.7341$; $t_{0.05}(19) = 1.7291$; $t_{0.05}(20) = 1.7247$ $F_{0.025}(9, 9) = 4.03$; $F_{0.05}(9, 9) = 3.18$; $F_{0.025}(10, 10) = 3.72$; $F_{0.05}(10, 10) = 2.98$							

- 一、选择题(每小题3分,共15分)
- 1. 设 X_1 , X_2 , ..., X_n 是来白总体 $X \sim N(\mu, \sigma^2)$ 的样本,其中 μ 和 σ^2 均未知,对 μ 进行假设检验 H_0 : $\mu \leq \mu_0$, H_1 : $\mu > \mu_0$ 。若在显著性水平 $\alpha = 0.025$ 下,拒绝原假设,则在显著性水平 $\alpha = 0.05$ 下,检验的结果是【
 - A. 拒绝原假设

B. 接受原假设

C. 用x² 检验法检验

- D. 不能确定
- 2. 若函数y = f(x)是一随机变量X的概率密度,则【
- 】一定成立。

1

- A. f(x)的定义域为[0, 1]
- B. f(x)的值域为[0, 1]

C. f(x)非负

- D. f(x)在 $(-\infty, +\infty)$ 内连续
- 3. 事件 A 和事件 B 同时出现的概率为 0,则下列说法正确的是【
 - A. 事件 A 和 B 互为对立事件
- B. 事件 A 和 B 互斥
- C. 事件 AB 未必是不可能事件
- D. 事件 A 和 B 独立
- 4. 设 X_1 , X_2 , ..., X_n 是来自总体X的样本,且DX = σ^2 , S是样本标准差,则【 】
 - A. S是σ的无偏估计

- B. S^2 是 σ^2 的无偏估计
- $C. S^2$ 是 σ^2 的最大似然估计
- D. S^2 与 \bar{X} 相互独立
- 5. 随机变量 $X \sim N(\mu, \sigma^2)$,则随着 σ 的增大,概率 $P(|X \mu| < \sigma)$ 【
 - A. 单调增大

B. 单调减少

C. 保持不变

D. 增减不定

	填空题	(每小题 3 分	生 15 公1
<u> </u>	75.1.10	ノサリル3 3 77	", ** 13 7T)

1. 设顾客在某银行的窗口等待的服务时间 X (min) 服从指数分布,其概率密度为 $f(x) = \begin{cases} \frac{1}{5} \exp\left(-\frac{x}{5}\right), \ x > 0 \\ 0, \quad \text{其他} \end{cases}$,某顾客在窗口等待服务,若超过 10min,他就离开。他一个月要到银行 5 次。

用Y表示一个月内他未等到服务而离开窗口的次数,则P{Y≥1}=____

- 2. 设P(A) = 1/4, P(B | A) = 1/3, P(A | B) = 1/2, 则 P(A U B) =____
- 3. 设随机变量X的分布律如下表,则 $Y=X^2$ 的分布律为_____

Х	-2	-1	0	1	2	Ì
Р	0.2	0	0.4	0.2	0.2	

三、计算题 (共70分)

- 1. (10 分)设 X_1 , X_2 , …, X_n 是来自总体 $X\sim U[a,b]$ 的样本,其中a, b未知,求
- (1) a, b的矩估计:
- (2) a. b的最大似然估计。

2. (8分) 据美国的一份资料报导,在美国总的来说患肺癌的概率约为 0.1%, 在人群中有 20%是吸烟者, 他们患肺癌的概率约为 0.4%, 求不吸烟者患肺癌的概率是多少?

- 3. (10 分) 已知随机变量X, Y分别服从N(1, 3²), N(0, 4²), $\rho_{XY} = -\frac{1}{2}$, 设 $Z = \frac{X}{3} + \frac{Y}{2}$.
- (1) 求Z的数学期望和方差。
- (2) 求X与Z的相关系数。

4. (10 分)利用中心极限定理计算。一船舶在某海区航行,已知每遭受一次海浪的冲击,纵摇角大于 3°的 概率为 1/3,若船舶遭受了 90 000 次波浪冲击,问其中有 29 500~30 500 次纵摇角大于 3°的概率是多少?

- 5. (12 分) 设随机变量(X,Y)的概率密度为 $f(x,y) = \begin{cases} be^{-(x+y)}, & 0 < x < 1,0 < y < \infty \\ 0, & 其他 \end{cases}$
- (1) 试确定常数 b。
- (2) 求边缘概率密度 $f_X(x)$, $f_Y(y)$ 。
- (3) 求函数 $U = \max\{X,Y\}$ 的分布函数。

6.(10 分) 设两位化验员 A,B 独立地对某种聚合物含氯量用相同的方法各做 10 次测定,其测定值的样本方差依次为 $s_A{}^2=0.5419$, $s_B{}^2=0.6065$ 。设 $\sigma_A{}^2$, $\sigma_B{}^2$ 分别为所测定的测定值总体的方差,总体均为正态分布,且两样本独立。求方差之比 $\sigma_A{}^2/\sigma_B{}^2$ 置信水平为 0.95 的置信区间,并解释结果。

7. (10 分)在平炉上进行一项试验以确定改变操作方法的建议是否会增加钢的得率, 试验是在同一只平炉上进行的。每炼一炉钢时除操作方法外,其它条件都尽可能做到相同。先采用标准方法炼一炉, 然后用新方法炼一炉, 以后交替进行, 各炼了 10 炉, 其得率的均值及方差分别为标准方法: $\bar{x}=76.23$, $s_1^2=3.325$, 新方法: $\bar{y}=79.43$, $s_2^2=2.225$, 设这两个样本相互独立,且分别来自正态总体 $N(\mu_1,\sigma^2)$, $N(\mu_2,\sigma^2)$, μ_1 , μ_2 , σ^2 未知,问新方法能否提高得率? $\alpha=0.05$

```
. -- I. A 2. C 3. C 4. B 5. C
  =.1.1-(1-e^{-R})^{\frac{1}{2}} \approx 0.5167
                                                   2.\frac{1}{3} 3.\frac{1}{9}
         4 \le \frac{1}{9} , 3\frac{21}{25} 成 3084 5. \frac{4}{7} , \frac{4}{7} 填空有两空,对一空给2分.
  \equiv 1 \cdot \mu = A, \triangleq Ex = \frac{a+b}{a}
                  A_2 \leq E_X^2 = (E_X)^2 + p_X = \left(\frac{a+b}{2}\right)^2 + \frac{(b-a)^2}{12}
A_3 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2
 (2') \hat{b} = A_1 + \sqrt{3(A_2 - A_1^2)}
     (2) $\frac{1}{2} \text{ X0]= min (X1, \cdots, Xn). } \text{X0} = \text{Max(X1, \cdots, Xn)}
 (3') 做些面包 L(a,b) = \frac{1}{(b-a)^n} , q = x_0 = \dots = x_m = b (成 a = x_1, x_2, \dots, x_n = b)
                                                    抽
       \frac{1}{(\lambda_{n}-\chi_{0})^{n}} \leq \frac{1}{(\chi_{n}-\chi_{0})^{n}}
                 \hat{\lambda} = X_{(1)}.
\hat{\lambda} = X_{(2)}.
           C: 患肺癌
                                 A: 吸烟
           P(C) = 0.001 P(A) = 0.2 P(C|A) = 0.004
         .. p(c) = p(c|A)p(A) + p(c|A)p(A)
                                                                             住搬车以武
                0.001 = 0.004 x0.2 + p(c/A) x 0.8
 2') ·· P(C[A) = 0.00025
                E2 = E(\frac{x}{3} + \frac{y}{2}) = \frac{1}{3}Ex + \frac{1}{2}Ey = \frac{1}{3}x^{2} + \frac{1}{2}x^{2} = \frac{1}{3}
   3. (1)
              D2 = D(\frac{x}{3} + \frac{1}{2}) = \frac{1}{9}Dx + \frac{1}{4}D + 2Gv(\frac{x}{3}, \frac{1}{2})
                       = = = 1 DX + 1 DY + = PXY (DX . ) DY
   = \frac{1}{9} \times 3^{2} + \frac{1}{4} \times 4^{2} + \frac{1}{2} \times (-\frac{1}{2}) \times \sqrt{3^{2}} \times \sqrt{4^{2}} = 3
```

(4')
$$\left(\frac{S_{k}^{2}}{S_{k}^{2}}, \frac{1}{f_{k}(n_{k-1}, n_{k-1})}, \frac{S_{k}^{2}}{S_{k}^{2}}, \frac{1}{f_{k-1}(n_{k-1}, n_{k-1})}\right)$$

12') "
$$F_{0.02}(9.9) = 4.03$$
 $F_{0.02}(9.9) = \frac{1}{F_{0.02}(9.9)} = \frac{1}{4.03}$

(21) · 33 A5B的总体分差 09 508 没有园著笔异

7. Ho:
$$u_1 = u_2$$
 H1: $u_1 < u_2$
(21)
$$h_1 = 10$$
 $\overline{x} = 76.23$ $s_1^2 = 3.225$

$$h_2 = 10$$
 $\overline{y} = 79.43$ $s_2^2 = 2.225$

$$S_{w}^{2} = \frac{(n_{1}-1^{2})S_{1}^{2} + (n_{2}-1)S_{2}^{2}}{n_{1}+n_{2}-2} = 2.775, \quad u_{1}-u_{2}=\delta=0$$

(2') : 髂脊指缝城 c中. 拒绝什. 认为荆祜结据而来的治法为优

装订线

本试卷适应范围 经管、工科本科

南京农业大学试题纸

2013-2014 学年 第 1 学期 课程类型: 必修 试卷类型: A

3	课程	运论与数理统计	班级	~	: 몽	姓名		
	题号	٠. ٨	- -	=	四	总分	签名	
	得分							

附表: $t_{0.025}(14) = 2.1448$; $t_{0.025}(15) = 2.1315$; $t_{0.025}(16) = 2.1199$; $t_{0.05}(14) = 1.7613$; $t_{0.05}(15) = 1.7531$; $t_{0.05}(16) = 1.7459$

$$\chi^{2}_{0.05}(8) = 15.507, \ \chi^{2}_{0.05}(9) = 16.919, \ \chi^{2}_{0.95}(8) = 2.733, \ \chi^{2}_{0.95}(9) = 3.325;$$

$$\chi^{2}_{0.025}(8) = 17.534; \ \chi^{2}_{0.025}(9) = 19.022; \ \chi^{2}_{0.975}(8) = 2.180; \ \chi^{2}_{0.975}(9) = 2.700$$

- 一、选择题 (每小题 3 分, 共 15 分)
 - I. 设总体 $X\sim N(\mu,\sigma^2)$,其中 σ^2 和样本容量 n 已知,则总体均值 μ 的置信区间长度I与置信度 $1-\alpha$ 的关系是

[]

A. 当 $1-\alpha$ 减少时,1不变

B. 当1-α减少时,1缩短

C. 当1-α减少时, 1增大

- D. 不能确定
- 2. 设(X, Y)的联合分布律如下表,则【 】.

X	0	1	2
-1	1/10	1/20	7/20
2	3/10	1/10	1/10

A. X与Y不独立

B. X与Y独立

 $C. E(XY) = \frac{21}{40}$

- D. X与Y不相关
- 3. 对正态总体的数学期望进行假设检验,如果在显著水平 $\alpha=0.05$ 下,接受 H_0 : $\mu=\mu_0$,则在显著水平 $\alpha=0.01$ 下,下列结论中正确的是【 】
 - A、 必接受Ho
- B. 可能接受Ho, 也可能拒绝Ho
- C. 必拒绝Ho
- D. 不接受H₀, 也不拒绝H₀
- 4. 设 $F_1(x)$ 和 $F_2(x)$ 分别为随机变量 X_1 和 X_2 的分布函数,为使 $F(x)=aF_1(x)-bF_2(x)$ 是某一随机变量的分布函
- 数,在下列给定的各组值中应取【

A.
$$a = \frac{3}{5}$$
, $b = -\frac{2}{5}$

B.
$$a = \frac{2}{3}$$
, $b = \frac{2}{3}$

C.
$$a = \frac{1}{2}$$
, $b = \frac{3}{2}$

D.
$$a = \frac{1}{2}$$
, $b = -\frac{3}{2}$

		,		
5.	设X与Y相互独立,	且均服从N(0,	1).	则【

A.
$$P(X + Y \le 0) = \frac{1}{4}$$

B.
$$P(X - Y \le 0) = \frac{3}{4}$$

C.
$$P(\max(X, Y) \le 0) = \frac{3}{4}$$

D.
$$P(\min(X, Y) \leq 0) = \frac{3}{4}$$

二、填空题(每小题3分,共15分)

次数,则P{Y=2}=____。

2. 设E(X) = 1.
$$D(X) = 1$$
. $E(Y) = 2$. $D(Y) = 4$. $\rho_{XY} = 0.6$. 则 $E(2X - Y + 1)^2 =$

- 3. 设 X_1 , X_2 , …, X_n 是来自正态总体N(0, 1)的样本, $\diamondsuit Y_n = a(X_1 + X_2 + \dots + X_m)^2 + b(X_{m+1} + X_{m+2} + \dots + X_n)^2$, (m < n), 为使 Y_n 服从 X^2 分布,则a =_______,b =_________
- 4. 己知P(A) = 0.4, P(B) = 0.6, P(B|A) = 0.8, 则 $P(B\bar{A}) = _____$
- 5. 设二维连续型随机变量(X,Y)的概率密度为 $f(x,y) = \begin{cases} kxy & 0 < x < 2, 0 < y < 1 \\ 0 & 其它 \end{cases}$

三、计算题 (每题 10 分, 共 60 分)

1. 设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的可能性分别为 0.3,0.2,0.1,0.4。如果他乘飞机来,不会迟到:而乘火车、轮船或汽车来迟到的概率分别为 $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{12}$ 。已知此人迟到,试推断他最有可能怎么来的?

2.设 X_1 , X_2 , ..., X_n 是来自两参数指数分布的样本,此分布的概率密度为 $f(x;\mu,\theta) = \begin{cases} \frac{1}{\sigma}e^{-(x-\mu)/\theta}, & x \geq \mu \\ 0,$ 其他

中 $-\infty < \mu < +\infty$, $\theta > 0$, (1)当 μ 已知时,求参数 θ 的矩估计; (2) 当 θ 已知时,求参数 μ 的最大似然估计。

3. 一保险公司有 10000 人参加人寿保险,每人每年付 12 元保险员,在一年内一个人死亡的概率为 0.006,死亡时,其家属可向保险公司领得 1000 元. 试问

- (1) 保险公司亏本的概率有多大?
- (2) 保险公司年利润不少于 60000 元的概率?

随机变量X~U(0,	ary asia										
				ą.							
		•						. *			£
								ē			
	<i>5</i>										
÷		,	*								
,											
			*								
	A									,	
			*		*						
		v									
11 4m 10 /10 336 440	ري وسوم والمسار والمسار	4 AP	्र भूगोत्स्य स्टब्स	الكائم بين والمين	L Han is wint		and and	na moss rar			
为提高某化学生 进行了 $n_1 = 8$ 次试	7 人主任主日	1 1 1 1 1 1 1	NANK (13	1'।' वर्ग म) (EE (1) 19 o	小川兵里	ERCYC,	尤进行	以一位。	议 米片	即从米的
两样本独立。试	代求两总位	体均值差		2的置信7	² = 4.02. 水平为 0.	95 的置	信区间	并解	铎结果.	• .	
两样本独立。试	《求两总》	体均值差	皇μ1 一 μ	2的置信7	火平为 0.	95 的置	信区间	,并解	铎结果.		
两样本独立。试	(求两总(体均值差	<u> </u>	2的置信2	火平为 0.	95 的置	信区间	,并解	铎结果。		
两样本独立。试	【求两总 (体均值差	美μ ₁ — μ	2的置信7	水平为 0.0	95 的置	信区间,	,并解	铎结果.		
两样本独立。试	(求两总(体均值差	<u>Е</u> µ1 — µ	2的置信7	水平为 0. ⁰	95 的置	信区间,	· 并解》	铎结果。		
两样本独立。试	《求两总 》	体均值多	έ μ₁ − μ	2的置信7	水平为 0.	95 的置	信区间	,并解和	铎结果。		
两样本独立。试	《求两总 》	体均值多	Ēμ₁ — μ	2的置信7	水平为 0. ⁴	95 的置	信区间	· 并解》	释结果。		
两样本独立。试	《求两总 》	体均值差	Éμ ₁ — μ	2的置信7	水平为 0.	95 的置	信区间	,并解	铎结果.		
两样本独立。试	《求两 总介	体均值差	Ēμ ₁ — μ	2的置信2	水平为 0.	95 的置	信区间	,并解料	铎结果。		
两样本独立。试	《求两总 》	体均值差	Ēμ ₁ — μ	2的置信7	水平为 0.4	95 的置	信区间	,并解制	铎结果,	•	
两样本独立。试	《求两总 》	体均值差	Ēμ ₁ — μ	2的置信7	水平为 0.	95 的置	信区间	,并解料	铎结果,		
两样本独立。试	《求两总 》	体均值差	Ēμ ₁ — μ;	2的單信7	水平为 0.	95 的置	信区间	,并解制	译结果 。		
两样本独立。试	《求两总	体均值差	Ēμ₁ — μ;	2的置信7	水平为 0.	95 的置	信区间	,并解》	铎结果 ,	•	
两样本独立。试	《求两总	体均值差	Ēμ₁ — μ;	2的置信7	水平为 0.	95 的置	信区间	,并解料	铎结果.		
两样本独立。试	《求两总	体均值差	Ēμ₁ — μ;	2的單信7	水平为 0.	95 的置	信区间	,并解制	译结果 。		
两样本独立。试	《求两总	体均值差	Ēμ ₁ — μ;	2的置信7	k平为 0.	95 的置	信区间	,并解料	铎结果.	•	
两样本独立。试	《求两总	体均值差	Ēμ ₁ — μ;	2的置信7	k平为 0.	95 的置	信区间,	, 并解*	铎结果.		
两样本独立。试	《求两总	体均值差	Ēμ₁ — μ;	2的置信7	k平为 0.	95 的置	信区间	,并解料	铎结果.		
两样本独立。试	《 求两总介	体均值差	Ēμ ₁ — μ;	2的置信7	k平为 0.	95 的置	信区间,	, 并解*	铎结果.		
两样本独立。试	《 求两总介	体均值差	Ēμ₁ — μ;	2的置信7	k平为 0.4	95 的置	信区间	, 并解*	铎结果.		
两样本独立。试	《 求两总介	体均值	Ēμ₁ — μ;	2的置信7	k平为 0.	95 的置	信区间	, 并解*	铎结果.		
两样本独立。试	《 求两总	体均值差	Ēμ₁ — μ;	2的置信7	k平为 0.	95 的置	信区间,	, 并解*	铎结果.		
两样本独立。试	《 求两总	体均值差	Ēμ₁ — μ;	2的置信7	k平为 0.4	95 的置	信区间,	, 并解*	铎结果.		

6. 某种导线,要求其电阻的标准差不得超过 0.005Ω ,今在生产的一批导线中取样品 9 根,测得s = 0.007Ω ,设总体为正态分布,参数均未知,问在显著性水平 $\alpha=0.05$ 下,能否认为这批导线的标准差显著地偏大?

四、证明题(共10分)

1. (4分)设 $\hat{\theta}$ 是参数 θ 的无偏估计,且有 $D(\hat{\theta}) > 0$,试证: $\hat{\theta}^2 = (\hat{\theta})^2 \mathcal{L}\theta^2$ 的有偏估计。

2. (6 分) 假设随机变量X服从分布F(n,n), 求证: $P(X \le 1) = P(X \ge 1) = 0.5$

系主任 李强

出卷人 温阳俊

= . 1.
$$\frac{9}{64}$$
 2. 4.2 3. $a = \frac{1}{m}$ $b = \frac{1}{n-m}$ 4. 0.28 5, $k = 1$, $\frac{13}{24}$

B:
$$\mathbb{R}^{8n}$$
 $P(A_1) = 0.3$
 $P(A_2) = 0.2$
 $P(A_3) = 0.1$
 $P(A_4) = 0.4$
 $P(B|A_1) = \frac{1}{3}$, $P(B|A_2) = \frac{1}{12}$, $P(B|A_4) = 0$

M ETRAINED P(B) =
$$\frac{4}{15}$$
 P(B) = $\frac{4}{15}$ P(B) = $\frac{4}{15}$

$$(1)$$
 $P(A | B) = \frac{P(B|A_1)P(A_1)}{P(B)} = \frac{2 \times 0.3}{0.15} = 0.5$

(1')
$$P(A_2|B) = \frac{P(B|A_2)P(A_2)}{P(B)} = \frac{\frac{1}{3} \times v.2}{0.15} = 0.44$$

(1')
$$P(A_3|B) = \frac{P(B|A_3)P(A_3)}{P(D)} = \frac{\frac{1}{12}x0.1}{0.15} = 0.056$$

$$P(AA|B) = \frac{P(B|AA)P(AA)}{P(B)} = 0$$

2. 11) :
$$A_1 = \overline{X} \triangleq E_X = \int_{-\infty}^{+\infty} x f(x) dx = \int_{-\infty}^{+\infty} \frac{1}{0} x e^{-\frac{x-u}{0}} dx = u+0$$

(2)
$$L(u) = \frac{n}{12i} + (x_i; u, 0) = \frac{n}{12i} = \frac{n}{0}e^{-\frac{(x_i - u)}{0}} = \frac{n(x_i - u)}{0}$$
, $X_{(1)} = M_{(1)} = M_{(1)} = M_{(2)} = M_{(2$

$$(2)$$
 $P(-10^{r} + 12 \times 10^{r} > 6 \times 10^{r})$ $= P(Y \leq 60) = P(\frac{Y - 60}{\sqrt{60 \times 0.994}} \leq \frac{0}{\sqrt{60 \times 0.994}})$ 中心极限机 $\approx \Phi(0) = 0.5$

4.
$$x \sim U(0,T)$$
 : $f_{x}(x) = \frac{1}{\pi}$, $0 < x < \pi$.

 $y = co_{x}x \not\equiv (0,T) \perp \not\equiv i\pi$

: $h(y) = arccory$, $-|cy| < 1$

$$h'(y) = -\frac{1}{\sqrt{1-y^{2}}}$$
: $f_{x}(y) = f_{x}(h(y)) \mid h'(y) \mid$

$$= \frac{1}{\pi} \cdot \frac{1}{\sqrt{1-y^{2}}} \cdot \frac{1}$$

成用分析 配数 定义 版 · 当 y > 1 m Fr(y)=1. 当火 - 1 m · Fr(y)=0
当-1 e y = p(x < y) = p(cos x < y) = p(x > are cos y) = 1 - p(x < are cos y)
= 1 - p(x < arc cos y) = 1 - fx(are cos y)
fr(y) = fx(y) = -fx(are cos y) · -
$$\sqrt{1-y^2} = \frac{1}{\pi} \cdot \sqrt{1-y^2} \cdot - 1 < y < 1$$

[10]

$$\left(\overline{X}_1 - \overline{X}_2 \pm S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} t_{\frac{n_1}{2}} (n_1 + n_2 - 2)\right)$$

$$|| x_1 = 91.73, || x_2 = 93.75 || n_1 = 8, || n_2 = 8, || s_1 = 7.8 || s_2 = 4.02$$

$$|| s_w|| = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2}{n_1 + n_2 - 2} = 3.96$$

(2) 见念罗,认为年用区的种作任剂所得二得辛二炒值没有显著差别

6. Ho:
$$\sigma \leq 0.005 = \sigma_0$$
. Hi: $\sigma > \sigma_0 = 0.005$ $\rho = 0.005$, $\rho = 0.005$

(3') 拒绝树
$$C: \gamma_{=}^{2} \frac{(n-1)s^{2}}{\sigma_{v}^{2}} > \gamma_{\alpha}^{2} (n-1) = \gamma_{0.05}(8) = 15.50$$

$$(2') \qquad \gamma^2 = \frac{8 \times 0.00^{2}}{0.005^{2}} = 15.68 > 15.50$$

(21) 陪在拒绝域 C里, 拒绝 Ho. 认为 标准表 中国 包着 偷大

$$(4')$$
 .. $E\hat{\theta}^2 = P\hat{0} + (E\hat{0})^2 = P\hat{0} + \theta^2 > 0^2$.. $\hat{\theta}^2 + \theta^2 = 0^2$ 的循环计

(2')
$$\frac{1}{2} P(X \le 1) = P(X \ge 1) = P(X \ge 1)$$

$$(2')$$
 $= p(x \leq i) = p(x > i) = 0.5$

本试卷适应范围 经管、工科本科

南京农业大学试题纸

2012-2013 学年 第一学期

课程类型: 必修

试券类型: A

概率论与数理统计 课程

班级

学号

姓名

题号		=		总分	签名
得分	·		*		

附表: $F_{0.05}(7,8) = 3.500$, $F_{0.05}(8,7) = 3.730$, $\chi^2_{0.01}(25) = 44.314$,

$$\chi^2_{0.99}(25) = 11.524$$
, $t_{0.05}(15) = 1.753$

- 一、选择题(本题共5小题,每小题3分,总分15分)
- 1. 设A和B是随机事件,则下列选项正确的是(B).
 - (A) $P(A \cup B)P(AB) > P(A)P(B)$
- (B) $P(A \cup B)P(AB) \le P(A)P(B)$
- (C) $P(A \cup B)P(AB)$ 与 P(A)P(B) 大小关系不定 (D) 以上都不正确
- 2. 下列各函数为随机变量的分布函数的是(1)).

(A)
$$F(x) = \frac{1}{x^2 + 1}$$
 $x \in R$ (B) $F(x) = \sin x$ $x \in R$

(B)
$$F(x) = \sin x$$
 $x \in R$

(C)
$$F(x) = \begin{cases} 0 & x < 0 \\ 2 & x = 0 \\ 1 & x > 0 \end{cases}$$
 (D) $F(x) = \begin{cases} \frac{1}{1+x^2} & x \le 0 \\ 1 & x > 0 \end{cases}$

(D)
$$F(x) = \begin{cases} \frac{1}{1+x^2} & x \le 0\\ 1 & x > 0 \end{cases}$$

3. 设连续型随机变量X的密度函数f(x)是偶函数,F(x)是其分布函数,则对任意实数t有(A).

(A)
$$F(-t) = -F(t)$$

(B)
$$F(-t) = \frac{1}{2} - \int f(t)dt$$

(C)
$$F(-t) = 1 - \int f(t)dt$$
 (D) $F(-t) = 2F(t) - 1$

(D)
$$F(-t) = 2F(t) - 1$$

4. 设随机变量X和Y独立同分布,分布律为 $\begin{pmatrix} -1 & 1 \\ 0.5 & 0.5 \end{pmatrix}$,则下列式子正确的是 ($\begin{pmatrix} C \end{pmatrix}$).

(A)
$$X = Y$$

(B)
$$P\{X = Y\} = 0$$

(C)
$$P\{X = Y\} = 0.5$$
 (D) $P\{X = Y\} = 1$

(D)
$$P\{X = Y\} = 1$$

- 5. 设随机变量(X,Y)服从二元正态分布,则X和Y不相关是独立的(\bigwedge).
 - (A) 充分必要条件
- (B) 必要不充分条件
- (C) 充分不必要条件
- (D) 既不充分又不必要条件

- 二、填空题(本题共5小题,每小题3分,总分15分)
- 7. 设随机变量 $X \sim B(3, p)$, $Y \sim B(5, p)$, 且 $P\{X \ge 1\} = \frac{19}{27}$, 则 $P\{Y \ge 1\} = \frac{221}{245}$.
- 8. 当0 < x < 1, 0 < y < 1时随机变量 (X,Y) 的联合分布函数 $F(x,y) = x^2 y^2$,记 (X,Y) 的联合密度函数为 f(x,y),则 $f(\frac{1}{2},\frac{1}{3}) = \frac{2}{2}$.
- 9. 设随机变量 X 和Y的方差分别为25和16,且它们的相关系数为0.4,则方差 D(X+2Y) = 12 _____.
- 10. 设总体X的概率分布为

- 三、计算题(本题共7小题,每小题10分,总分70分)
- 11. 设玻璃杯整箱出售,每箱20只,各箱含0,1,2只残次品的概率分别为0.8,0.1,0.1. 顾客欲购买一箱玻璃杯,由售货员任取一箱,经顾客开箱随机察看4只,若无残次品,则购买这箱玻璃杯,否则不买.求:
- (1) 顾客购买此箱玻璃杯的概率: (2) 在顾客买的那箱玻璃杯中, 确实没残次品的概率.

(1)
$$P(A) = 0.8 + 0.1 \times \frac{G_9^4}{G_9^4} + 0.1 \times \frac{G_9^4}{G_9^4} = \frac{448}{475} \implies 0.94$$
 5/

(2)
$$p(BdA) = \frac{0.8 \times 1}{0.94} = 0.85$$

- 12. 设随机变量 X 的可能取值为1, 2, 3, 且取这三个值的概率之比为1: 2: 3. 求 (1) X 的分布函数 F(x):
- (2) X 的方差 D(X).

(1)
$$\int_{1}^{6} (x) = \begin{cases} 0 & \chi \ge 1 \\ \frac{1}{5} & 1 \le \chi \ge 2 \end{cases}$$

$$= \frac{7}{3} \qquad 2 \le \chi < 3$$

$$= \frac{7}{3} \qquad 2 \le \chi$$

13. 设随机变量
$$(X,Y)$$
的联合密度 $f(x,y) = \begin{cases} ke^{-(3x+4y)}, x > 0, y > 0 \\ 0, 其他 \end{cases}$ (1) 求边缘密度函数,且问 X 和 Y

是否独立,为什么? (2) 求联合分布函数 F(x,y).

$$f_{X}(x) = \begin{cases} 3e^{-3x} & x_{70} \\ 5x^{(2)} = \begin{cases} 3e^{-3x} & x_{70} \\ 0 & x \le 0 \end{cases} \end{cases} \xrightarrow{(2)} f_{X}(y) = \begin{cases} 0 & x < 0 \text{ or } y < 0 \end{cases}$$

$$f_{Y}(y) = \begin{cases} 4e^{-4y} & y_{70} \\ 0 & y \le 0 \end{cases} \qquad (2) f_{X}(y) = \begin{cases} 0 & x < 0 \text{ or } y < 0 \end{cases}$$

$$(1) \begin{cases} 1e^{-3x} \\ 1e^{-4y} \\ 0 & x < 0 \end{cases} \end{cases} \xrightarrow{(2)} f_{X}(y) = \begin{cases} 0 & x < 0 \text{ or } y < 0 \end{cases}$$

14. 某报纸销售人每份报纸卖 1 元, 其成本为 0.60 元, 报社规定销售者不能将卖不掉的报纸退回, 如果这位 卖报人每日的报纸销售量服从[200, 400]上的均匀分布, 为使他的期望利润达到最大, 他应购进多少份报纸?

$$EY = \frac{1}{200} \left[\int_{200}^{t} x - 0.6t \, dx + \int_{t}^{400} 0.4t \, dx \right] 8'$$

$$= \frac{1}{200} \left(-\frac{t^{2}}{3} + 280t - 20000 \right) \qquad 9'$$

$$t = 280 \qquad 10'$$

15. 设 $X_1, X_2, \cdots, X_{2012}$ 为来自正态总体 $N(\mu, \sigma^2)$ 的样本,X 为样本均值, S^2 为样本方差. 设随机变量

$$X_{2013} \sim N(\mu, \sigma^2)$$
且与 $X_1, X_2, \dots, X_{2012}$ 相互独立、求统计量 $Q = \frac{X_{2013} - \overline{X}}{S} \sqrt{\frac{2012}{2013}}$ 的分布。
$$\overline{X} \sim N(\mu, \frac{\sigma^2}{2012}), \quad \frac{2011S^2}{\sigma^2} \sim \chi^2_{(2011)} \qquad 4' \qquad \qquad Q = \frac{\overline{X} - \chi_{2013}}{S} \sqrt{\frac{2013}{2015}}$$

$$\overline{X} - \chi_{2013} \sim N(\nu, \frac{2013}{2012} \sigma^2), \quad \overline{\chi} - \chi_{2013} \sqrt{\frac{2012}{2013}} \sim N(\nu, 1) \qquad b' \qquad = \frac{\overline{X} - \chi_{2013}}{S} \sqrt{\frac{2013}{2015}}$$

$$\overline{\chi} = \frac{\overline{\chi} - \chi_{2013}}{\sqrt{\frac{2013}{2015}}} \sqrt{N(\nu, 1)} \qquad b' \qquad = \frac{\overline{\chi} - \chi_{2013}}{\sqrt{\frac{2013}{2015}}} \sqrt{\frac{2013}{2015}} \sqrt{N(\nu, 1)} \qquad b' \qquad = \frac{\overline{\chi} - \chi_{2013}}{\sqrt{\frac{2013}{2015}}} \sqrt{\frac{2013}{2015}} \sqrt{N(\nu, 1)} \qquad b' \qquad = \frac{\overline{\chi} - \chi_{2013}}{\sqrt{\frac{2013}{2015}}} \sqrt{\frac{2013}{2015}} \sqrt{\frac{2013$$

16. 某厂生产的电池寿命(以小时计)长期以来服从方差为 5000 的正态分布,现有一批电池,从生产情况来看寿命的波动性有所变化。随机取 26 只电池,测出其寿命的样本方差是 9200. 问根据这一数据能否推断这批电池的寿命的波动性较以往有显著的变化?($\alpha=0.02$)

Ho:
$$G^2 = 5000 \longleftrightarrow Hi: \sigma^2 + 5000$$
 2'
 检验统计量 $T = \frac{255^2}{5000} \hookrightarrow \chi^2_{(25)}$ 4'
 拒絕域 $W = \{t | t > \chi^2_{0.01}(25) \text{ or } 0 \le t \le \chi^2_{0.99}(37)\}$ 8'
 $t = \frac{255^2}{5000} = 46 \in W$ 9' : 拒絕的即有显著变化。 10'

17. 一商店销售的某种商品来自甲、乙两个工厂,为考察商品性能的差异,现从甲、乙两个工厂中分别抽出8件和9件产品,测其性能指标X,得到两组数据,经对其作相应运算,来自甲厂的样本均值和方差分别为 $\overline{X}_1=0.190$ 和 $S_1^2=0.006$;来自乙厂的样本均值和方差分别为 $\overline{X}_2=0.238$ 和 $S_2^2=0.008$.假设测定结果服从正态分布 $N(\mu_i,\sigma_i^2)$ (i=1,2),求 $\frac{\sigma_1^2}{\sigma_2^2}$ 和 $\mu_1-\mu_2$ 的90%的双侧置信区间,并对所得结果加以说明,

(1) 晉 阳% 阳望信间为[
$$\frac{1}{F_{vs}}$$
(7,8) $\frac{S_1^2}{S_2^2}$, F_{vvs} (8,7) $\frac{S_1^3}{S_2^3}$]=[$\frac{1}{3.50}$, $\frac{0.006}{6008}$, $\frac{3.73}{6008}$, $\frac{0.006}{6008}$] = [0.214, 2.798) 4

业区间包含1, 故可以认为 si= si 51

(2)从一班的%的置信区间为[文-マーナル。」いいいます。又一个十七小的500位付]

此E间不包含0、故可以认为从于N2 即两丁有显著差异 101.

系主任

出卷人 潘 群 星

装订线

本试卷适应范 经管文科

南京农业大学试题纸

11-12 学年1学期 课程类型: 必修 试卷类型: A

<u></u>				. غيرو بيلاس.		ا ا					
课程 概	<u>率论与数</u>	理统计		班级	·	学号		<u></u>			成绩
题号	·*************************************			四	五.	六	七	八	九	总分	签名
得分											
得分	评阅》										
			、填空	题 (每是	返3分 .	共 21 :	分)				
2、掷两 ^果 P(B A)=_	I、将3个球随机的放入4个杯子中,则杯子中球的最大个数为2的概率为。 2、掷两颗骰子,以A记事件"两颗点数之和为10",以B记事件"第一颗点数小于第二颗点数",则P(B A)=。 3、设某种电子元器件的寿命X服从指数分布,且已知其平均寿命10000小时,则其方差为										
Var(X) =	=										
4、设某电时最多只有				小 时的穆 —•	延率为 0.3	,进行重	复独立词	、 则	三个元件	在使用了	1000 小
5、若P()	$(x > x_1) =$	$=1-\alpha, P$	$Y(X < x_2)$	$)=1-\beta$, 若 _不 <	< x ₂ ,则	方程 P(x ₁	< X < x	2)=	, o	
6、设随机	.变量(X,	Y)的联合	概率密度	逐函数为	p(x,y) =	$\begin{cases} 3x, 0 < \\ 0, \end{cases}$	x < 1,0 < 其他.	y < x;	则关于 <i>X</i>	的边缘智	密度函数
$p_X(x) = $		ø				•					
7、设 <i>X</i> ,Y 》	7、设 X,Y 独立同正态分布 $N(\mu,\sigma^2)$,令 $U=3X+Y,V=X-3Y$, U 和 V 的相关系数为 $Corr(U,V)=$ 。										
得分	评阅。	1	、选择	:题 (每题	题3分,	共24分)				

- 8、设随机事件 A、B 两个随机事件,且P(A) = 0.6, P(B) = 0.4,则下一定成立的是【
- A. $P(A \cup B) = P(A)$; B. $P(B \mid A) = P(B)$; C. $P(\overline{A} \mid \overline{B}) = P(AB)$; D. P(AB) = P(B)
- 9、设连续型随机变量 X 的概率密度函数为 $P(x) = \begin{cases} a + bx^2, 0 < x < 1 \\ 0, 其它 \end{cases}$,且 $E(X) = \frac{2}{3}$,则【 】。

A.
$$a = \frac{3}{5}, b = \frac{6}{5}$$
; B. $a = \frac{1}{3}, b = 2$; C. $a = 2, b = 1$; D. $a = 1, b = 2$

10、设 X,Y 是两个随机变量,且
$$P(X \ge 0, Y \ge 0) = \frac{2}{5}, P(X \ge 0) = P(Y \ge 0) = \frac{3}{5}, 则 P(\max(X, Y) < 0) = 【 】$$

A. $\frac{3}{5}$ B. $\frac{2}{5}$ C. $\frac{4}{5}$ D. $\frac{1}{5}$

11、设随机变量(X,Y)的联合密度函数为 $p(x,y) = \begin{cases} 1, |y| < x, 0 < x < 1; \\ 0, \\ 1 \end{cases}$,则 X 在 Y=0.25 下的条件密度

p(x | y = 0.25) = I

A. $\begin{cases} \frac{4}{3}, \frac{1}{4} < x < 1 \\ 0 \text{ 其他.} \end{cases}$ B. $\begin{cases} \frac{3}{4}, \frac{1}{4} < x < 1 \\ 0 \text{ 其他.} \end{cases}$ C. $\begin{cases} \frac{1}{1-|y|}, |y| < x < 1 \\ 0, \text{其他.} \end{cases}$ D. $\begin{cases} 1, 0 < x < 1 \\ 0, \text{其他.} \end{cases}$

12、掷一颗骰子 100 次,记第 i 次掷出的点数为 X_i , i=1, 2, …, 100, 其算术平均值为 $\overline{X} = \frac{1}{100} \sum_{i=1}^{100} X_i$, 则

由中心极限定理知 $P(3 \le X \le 4)$ 近似于($\Phi(x)$ 为标准正态分布的分布函数)【

A. $\Phi(4) - \Phi(3)$ **B.** $2\Phi(\frac{0.5}{\sqrt{7/240}}) - 1$ **C.** $2\Phi(0.5) - 1$ **D.** $\Phi(0.5) - \Phi(-0.5)$

13、设X和Y分别表示独立掷两颗骰子中第一次和第二次掷出的点数,则Var(X+Y)=【

A. 35/6

C. 35/2

14、设随机变量 X 服从二项分布 b(n,p),记q=1-p,则它的特征函数为【

A. $(pe^{it}+q)^n$ B. $pe^{it}+q$ C. $\frac{p}{(1-qe^{it})}$ D. $\frac{p}{(1-qe^{it})^n}$

15、设随机变量 $X_i\sim N(\mu_i,\sigma_i^2),i=1,2$.,且 X_1,X_2 相互独立,则 $Y=X_1+X_2$ 所服从的分布为【

A. $N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2)$ B. $N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ C. $N(\frac{\mu_1 + \mu_2}{2}, \frac{\sigma_1^2 + \sigma_2^2}{2})$ D. $N(\mu_1 \mu_2, \sigma_1^2 \sigma_2^2)$

得分 评阅人

三、计算或证明题(共55分)

16、两台车床加工同样的零件,第一台出现不合格品的概率为 0.03,第二台出现不合格品的概率分 0.06, 加工的零件放在一起,并且已知第一台加工的零件比第二台加工的多一倍。(1) 求任取一个零件为次品的概 率: (2) 如果取出的产品为不合格品,求它是由第二台车床生产的概率。(10分)

17、设某种电动车的链条的寿命 X 服从对数正态分布(单位:千公里), 即它的概率密度函数为

$$p(x) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma}} \frac{1}{x} e^{\frac{(\ln x - \mu)^2}{2\sigma^2}}, x > 0; \\ 0, & \text{ 其它.} \end{cases}$$

(1) 证明: $Y = \ln X$ 服从正态分布 $N(\mu, \sigma^2)$; (2) 求这种电动车的链条的平均寿命。(10 分)

18、若 X, Y 相互独立, 且分别服从伽玛分布 $X \sim Ga(\alpha_1,\lambda), Y \sim Ga(\alpha_2,\lambda)$,设 $U=X+Y, V=\frac{X}{X+Y}$.求(1) 随机变量 U 和 V 的联合概率密度函数; (2) 试问 U 与 V 是否相互独立? (10 分)

19、设随机变量(X,Y)的联合分布列为

X	1	2	3	
1	0.2	0.3	0.2	
2	0.1	0.05	0.15	

试求: (1) Y 在{X=1}的条件分布律: (2) E(Y|X=1). (10分)。

20、设随机变量 X、Y 相互独立,且 $X\sim P(\lambda_1)$, $Y\sim P(\lambda_2)$,证明: $Z=X+Y\sim P(\lambda_1+\lambda_2)$ (7分)

21、设0 < P(A) < 1, 0 < P(B) < 1,若 $P(A|B) + P(\overline{A}|\overline{B}) = 1$,证明: A与B独立. (8分)

试卷 (A) 答案

一、填空题(每题3分,共21分)

1、
$$\frac{C_4^1 C_3^2 C_3^1}{4^3} = \frac{9}{16}$$
; 2、 $\frac{1/36}{3/36} = \frac{1}{3}$; 3、 1.0×10^8 ; 4、 $0.3^3 + 3 \times 0.3^2 \times 0.7 = 0.216$; 5、 $1 - \alpha - \beta$; 6、 $p_X(x) = \begin{cases} 3x^2, 0 < x < 1; \\ 0, 其他. \end{cases}$; 7、0.

二、选择题(每题3分,共24分)

8, C; 9, B; 10, D; 11, A; 12, B; 13, A; 14, A; 15, B.

三、计算题

16、 记 A_1, A_2 分别表示零件为第一台、第二台车床生产的事件,B 表示取出的产品为次品的事件。

(1)
$$P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2) = \frac{2}{3} \times 0.03 + \frac{1}{3} \times 0.06 = 0.04$$
 5 \$\frac{1}{2}\$

(2)
$$P(A_2|B) = \frac{P(A_2B)}{P(B)} = \frac{P(A_2)P(B|A_2)}{P(B)} = \frac{\frac{1}{3} \times 0.06}{0.04} = \frac{1}{2}$$
.

17、(1) 由于 $y=\ln x$ 在 $(0,+\infty)$ 单调递增且可导,所以它存在唯一的反函数 $x=e^y$,且 $x_y'=e^y>0$ >0,由随机变量变换公式得 $Y=\ln X$ 概率密度函数为

$$f_{Y}(y) = f[e^{y}] |x'_{y}|, -\infty < y < +\infty, \square f_{Y}(y) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(y-\mu)^{2}}{2\sigma^{2}}}, -\infty < y < +\infty.$$
 5 \(\frac{\partial}{\sigma}\)

(2)
$$E(X) = E(e^{Y}) = \int_{-\infty}^{+\infty} e^{y} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y-\mu)^{2}}{2\sigma^{2}}} dy = e^{\mu + \frac{\sigma^{2}}{2}}.$$
 5 $\frac{\pi}{2}$

18、(1) (X,Y) 的概率密度为

$$p_{(X,Y)}(x,y) = p_X(x)p_Y(y) = \begin{cases} \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} x^{\alpha_1 - 1} y^{\alpha_2 - 1} e^{-\lambda(x+y)}, & x > 0, y > 0 \\ 0, & \text{ 其它} \end{cases}$$

而变换为
$$\begin{cases} u = x + y \\ v = \frac{x}{x + y} \end{cases}$$
 有唯一的逆变换
$$\begin{cases} x = uv \\ y = u(1 - v) \end{cases}$$
 ,雅可比行列式为

$$J = \frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} v & u \\ 1 - v & -u \end{vmatrix} = -u$$

由随机向量变换公式可得(U, V)的联合概率密度函数为

$$\begin{split} p_{(U,V)}(u,v) &= \begin{cases} p_{(X,Y)}(uv,u(1-v)) \mid -u\mid, u>0, 0 < v < 1 \\ 0, & \text{其他} \end{cases} \\ &= \begin{cases} \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} u^{\alpha_1 + \alpha_2 - 1} e^{-\lambda u} v^{\alpha_1 - 1} (1-v)^{\alpha_2 - 1}, u>0, 0 < v < 1 \\ 0, & \text{其他} \end{cases} \end{split}$$

$$p_{U}(u) = \int_{-\infty}^{+\infty} p_{(U,V)}(u,v) dv = \begin{cases} \int_{0}^{\infty} \frac{\lambda^{\alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} u^{\alpha_{1}+\alpha_{2}-1} e^{-\lambda u} v^{\alpha_{1}-1} (1-v)^{\alpha_{2}-1} dv, u > 0 \\ 0, \qquad \qquad \text{其他} \end{cases}$$

$$= \begin{cases} \frac{\lambda^{\alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1}+\alpha_{2})} u^{\frac{\alpha_{1}+\alpha_{2}-1}{2}} e^{-\lambda u}, u > 0; \\ 0, \qquad \qquad \text{其他}. \end{cases}$$

$$\begin{split} p_{V}(v) &= \int_{-\infty}^{+\infty} p_{(U,V)}(u,v) du = \begin{cases} \int_{0}^{\infty} \frac{\lambda^{\alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} u^{\alpha_{1}+\alpha_{2}-1} e^{-\lambda u} v^{\alpha_{1}-1} (1-v)^{\alpha_{2}-1} du, 0 < v < 1 \\ 0, & \text{ 其他} \end{cases} \\ &= \begin{cases} \frac{1}{B(\alpha_{1},\alpha_{2})} v^{\alpha_{1}-1} (1-v)^{\alpha_{2}-1}, 0 < v < 1; \\ 0, & \text{ 其他}. \end{cases} \end{split}$$

由于
$$p_{(U,V)}(u,v) = p_U(u) \cdot p_V(v)$$
,所以U与V相互独立。 5分

19. (1) 由联合分布律可得
$$P(X=1) = \sum_{j=1}^{3} P\{X=1, Y=j\} = 0.7$$
.

所以,Y在{X=1}的条件分布律为

$$P(Y=1|X=1) = \frac{P(X=1,Y=1)}{P(X=1)} = \frac{0.2}{0.7} = \frac{2}{7}$$

$$P(Y=2 | X=1) = \frac{P(X=1, Y=2)}{P(X=1)} = \frac{0.3}{0.7} = \frac{3}{7}$$

$$P(Y=3 \mid X=1) = \frac{P(X=1,Y=3)}{P(X=1)} = \frac{0.2}{0.7} = \frac{2}{7}.$$

(2) 由条件数学期望公式可得

$$E(Y|X=1) = 1 \times P(Y=1|X=1) + 2 \times P(Y=2|X=1) + 3 \times P(Y=3|X=1)$$

$$= 1 \times \frac{2}{7} + 2 \times \frac{3}{7} + 3 \times \frac{2}{7} = 2.$$
5 \(\frac{1}{2}\)

解之得 EX=6 (小时)

20、证: 由特征函数的性质有

$$\varphi_{Y}(t) = \varphi_{X_{1}}(t)\varphi_{X_{2}}(t) = e^{\lambda_{1}(e^{u}-1)}e^{\lambda_{2}(e^{u}-1)} = e^{(\lambda_{1}+\lambda_{2})(e^{u}-1)},$$

上式右端是 $P(\lambda_1 + \lambda_2)$ 的特征函数,故由唯一性定理知 $Z=X+Y\sim P(\lambda_1 + \lambda_2)$. 7分

21、证明: 由 $P(A|B) + P(\overline{A}|\overline{B}) = 1$ 可得

 $P(A|B) = 1 - P(\overline{A}|\overline{B}) = P(A|\overline{B})$, 由条件概率公式可得

$$P(A \mid B) = \frac{P(AB)}{P(B)} = P(A \mid \overline{B}) = \frac{P(A\overline{B})}{P(\overline{B})} = \frac{P(A) - P(AB)}{1 - P(B)}$$

去分母可得

$$P(AB) - P(B)P(AB) = P(A)P(B) - P(B)P(AB)$$

由此可得

$$P(AB) = P(A)P(B)$$

即A与B独立。

8分

本试卷适应范围 经管、工科本科

南京农业大学试题纸

2009-2010 学年 第一学期 课程类型:必修 试卷类型: A

92	课程	概率论与数理统	计	及		学号	*	姓名	
	题	∄	<u> </u>	=	. 四		总分	签名	
	得	j.		,	\$				

注意: 请保留小数点后三位有效数字

样本方差
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
 . $z_{0.025} = \mu_{0.025} = 1.960$, $\chi^2_{0.025}(9) = 19.023$, $\chi^2_{0.975}(9) = 2.700$,

 $t_{0.025}(9) = 2.262$, $t_{0.025}(15) = 2.132$, $F_{0.025}(8,7) = 4.900$, $F_{0.025}(7,8) = 4.530$.

得分	评阅人
-	

一、选择题(本题共6小题,每小题3分,总分18分,每小题只有一个最佳答案。

1. 事件 A和 B互不相容,则下列各式错误的是(P).

A.
$$P(AB) = 0$$

B.
$$P(AB) = P(A)P(B)$$

C.
$$P(A \cup B) = P(A) + P(B)$$

$$D. P(B-A) = P(B)$$

2. 任何一个连续型随机变量 X 的密度函数 f(x) 一定满足(C).

$$A. \quad 0 \le f(x) \le 1$$

B. 在定义域内单调不减

C.
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

D.
$$\lim_{x\to \infty} f(x) = 1$$

3. 随机变量 $X = X_1 + X_2 + \cdots + X_n$ 服从 B(n,p)(0 ,则当<math>n充分大时下列错误的是(\bigcap).

A.
$$\lim_{n\to+\infty} P\left\{\frac{X}{n}-p\right| \le \varepsilon\} = 1, \forall \varepsilon > 0$$
 B. $X \sim N(np, np(1-p))$

B.
$$X \sim N(np, np(1-p))$$

$$C. \frac{X}{n} \sim N(p, \frac{p(1-p)}{n})$$

D.
$$\frac{X-np}{\sqrt{p(1-p)}} \sim N(0,1)$$

- 4. 总体 $X\sim N(\mu,\sigma^2)$, σ^2 已知,样本容量不变,则 μ 的置信区间长度 L 与置信水平 $1-\alpha$ 的关系是(A).
 - A. 当 $1-\alpha$ 减小时,L缩短
- B. 当 $1-\alpha$ 减小时,L增大
- \mathbf{C} . 当 $\mathbf{1}$ - $\mathbf{\alpha}$ 減小时, \mathbf{L} 不变
- D. 不能确定

- 5. 假设检验是根据样本统计量的观察值是否落入原假设的拒绝域来对原假设作出拒绝或接受的推断,因此 推断结论 ()).
 - A. 不可能犯错误

- B. 只可能犯第一类错误
- C. 只可能犯第二类错误
- D. 两类错误都可能犯
- 6. 从一批零件中随机抽取 100 个测量其直径,测得平均直径为 5.2 厘米,标准差为 1.6 厘米。如果想检验 这批零件的直径是否符合标准直径 5 厘米,采用 t-检验法,在显著水平 α下接受域为 (♠).

A.
$$|t| < t_{\frac{\alpha}{2}}(100)$$
 B. $|t| < t_{\frac{\alpha}{2}}(99)$ C. $|t| \ge t_{\frac{\alpha}{2}}(99)$ D. $|t| \ge t_{\frac{\alpha}{2}}(100)$

得分	评阅	入
	•	-

二、填空题(本题共6小题,每小题3分,总分18分)

- 7. 10 件产品中有 4 件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率为____.
- 8. 已知当0 < x < 1,0 < y < 1时随机变量(X,Y)的联合分布函数 $F(x,y) = x^2y^2$,记(X,Y)的联合密度函数为f(x,y),则 $f(\frac{1}{3},\frac{1}{3}) = \frac{4}{9}$
- 9. 随机变量 X, Y 独立同分布,服从标准正态分布 N(0,1),则 $P\{max(X,Y) \ge 0\} = \frac{2}{4}$
- 10. 中国人寿保险公司规定一年内顾客的投保事件A发生,就赔偿顾客Q元. 一年内事件A发生的概率为p,为使公司收益的期望值等于Q的10%,公司应该要求顾客交保险费 $\mathcal{Q}(P+v_{\mathcal{S}}^{\mathcal{S}})$ 元.
- 11. 某实验室对一批建筑材料进行抗断强度试验,已知这批材料的抗断强度 $X \sim N(\mu, 0.3^2)$. 现从中抽取容量为 9 的样本,得样本均值为 8.54,则置信水平为 0.95 时 μ 的置信区间为 18.544 8.756
- 12. 总体 $X\sim N(\mu,\sigma^2)$, 待检的原假设 $H_0:\sigma^2=\sigma_0^2$,显著性水平为 α , 若拒绝域为($\chi^2_\alpha(n-1),+\infty$),则相应的备选假设 $H_1:\underline{\qquad \ \ }^2 > \overline{\ \ \, }^2$

得分 评阅人

三、计算题(本题共5小题,每小题10分,总分50分.)

13. 根据以往这门课程考试结果分析,努力学习的学生有 90%的可能考试及格,不努力学习的学生有 90%的可能考试不及格. 据调查,全校学生中有 90%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?

解: A={努力学习的学生《P(A)= 0.9 P(A)= 0.1

(2)
$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(A)P(B|A)} = \frac{o.9 \times o.1}{o.9 \times o.1 + o.1 \times o.9} = o.5$$
 (105)

- (2) 求X的分布函数F(x).

解: (1)
$$\int_0^1 k \chi^4 d\chi = (25)$$
 $\Rightarrow \begin{cases} k=3 \\ j = 2 \end{cases}$ (5分)

(2)
$$F(x) = \int_{-\infty}^{x} f(t) dt = \begin{bmatrix} 0 & x \leq 0 \\ x^3 & 4 < x < \end{bmatrix}$$
 (10 5)

- 15.. 随机变量 X和 Y 的分布律都为 $\begin{bmatrix} -1 & 0 & 1 \\ 0.25 & 0.5 & 0.25 \end{bmatrix}$,且 $P\{XY=0\}=1$. (1) 求 X和 Y 的联合分布律
- (2) 问事件 $A = \{X = 1\}$ 和 $B = \{X + Y = 1\}$ 是否独立,为什么?

解:

(1)
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

16. 随机变量(X,Y)服从以(0,1),(1,0)和(1,1)为顶点的三角形区域上的均匀分布.(1)求(X,Y)的联合密度函数f(x,y);(2)求方差D(X+Y).

解:

(1)
$$f(x, y) = \int_0^2 0 = x, y = 1, x + y > 1$$
 (25)

(2)
$$f_{\star}(x) = \int_{-\infty}^{1} 2dy = 2x \quad 0 \le x \le 1$$
 (35)

$$EX = \int_{0}^{1} 2X^{2} dX = \frac{2}{3}$$

$$Fx^2 = \int_0^1 2x^3 dx = \frac{1}{2}$$

17. 总体 X 的概率分布为

其中 θ (0 < θ < 1) 为未知参数. 从总体 X 中抽取样本 X_1, X_2, \cdots, X_n , 其中有 n_j ↑ a_j (j = 1,2,3),

 $n_1 + n_2 + n_3 = n$, 求 θ 的极大似然估计.

解:

$$\frac{e^{(1 \ln 10)}}{e^{(19)}} = \frac{2h_1 + h_2}{B} - \frac{h_2 + 2h_3}{1 - B} = 0 \tag{95}$$

$$\widetilde{\mathcal{Q}} = \frac{2n_1 + n_2}{2n} \tag{105}$$

得分 评阅人

四、综合题(本题共3小题,选做2题,每小题7分,总分14分、全做,以前两题计分.)

18. 连续型随机变量 X 的密度函数 f(x) = $\begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & x \leq 0 \end{cases}, \quad \lambda > 0, \quad \bar{x} \ Y = \min(X,2) \text{ 的分布函数 } F_{y}(y).$

$$= + P[X74, 274] = + P[X74]$$
 (65)

19. 证明常数 C 与任何随机变量 Y 相互独立.

证明:
$$X=C$$
, $F_{\lambda}(x)=\begin{cases} 1 & \chi_{\lambda}C \\ 0 & \chi_{\lambda}C \end{cases}$ (2分)

$$F(x,y) = P[X \leq C, Y \leq y] = \begin{cases} P[Y \leq y] = F(y) & \text{x_{7}C} \\ P(\phi) = 0 & \text{x_{4}C} \end{cases}$$

$$(65)$$

20. 随机变量X服从F(n,n),证明 $P\{X \le 1\} = P\{X \ge 1\} = 0.5$.

$$Ha, P[x_{71}] = P[x_{71}]$$
 (55)

ĭŢ

本试卷适应范围 经管、工科本科

南京农业大学试题纸

2007-2008 学年 第一 学期 课程类型: 必修

试卷类型: A

课程 概率	论与数理统计	土 班级	<u> </u>	产号	姓名
题号		<u></u>	Ξ	总分	签名
得分					

注意: 必要时请保留三位有效数字、样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

 $\mu_{0.05} = 1.640$ $\mu_{0.1} = 1.282$ $\chi^{2}_{0.025}(8) = 17.535$ $\chi^{2}_{0.975}(8) = 2.180$

 $t_{0.025}(9) = 2.262$

 $F_{0.025}(8,7) = 4.900$ $F_{0.025}(7,8) = 4.530$

得分 | 评阅人

一、选择题(本题共 5 小题、每小题 3 分,总分 15 分,每小题只有一个最佳答案。)

- 1. 事件A和B同时出现的概率P(AB)=0,则下列说法正确的是(
 - A. A和B互为对立事件
- B. 事件A和B互斥
- C. AB 未必是不可能事件
- D、事件A和B独立
- 2. 随机变量 X 是连续型的,则下列说法不正确的是 (·). ·

 - A, X可取某个区间内一切值 B. X在一点处取值的概率为0
 - C. X的密度函数 f(x) 一定是连续函数 D. X的分布函数 F(x) 一定是连续函数
- 3. 简机变量 X 和 Y 独立是不相关的().
 - A. 充分不必要条件
- B. 必要不充分条件

C. 充分必要条件

- D. 既不充分又不必要条件
- - A. E(X-EX)

B. $EX^2 - (EX)^2$

C. E|X-EX|

- D. 以上都不对
- 5. 样本 $X_1,X_2,...,X_n$ 来自正态分布 $N(\mu,\sigma^2)$, 其中 μ 已知, σ^2 未知,则下列不是统计量的是(
 - A. $X_1 + X_2 + 2X_3$
- B. $max(X_1, X_2, X_3)$
- $C, X_1 + \mu$

 $D. \quad \sum_{i=1}^{3} \frac{X_i^2}{\sigma^2}$

得分 评阅人

二、填空题(本题共5小题,每小题3分,总分15分.)

- 6. 事件A和B满足P(A)=0.7, P(A-B)=0.3, 则P(AB)=____.
- 7. 随机变量 X 的分布律为 $\begin{pmatrix} 0 & 1 \\ 9a^2 a & 3 8a \end{pmatrix}$ 则常数 a =______.
- 8. 随机变量X的期望为1,方差为0.04,由切贝雪夫不等式得 $P\{0.4 \le X \le 1.6\} \ge _____$.
- 9. X_1 , X_2 为总体 $N(\mu, \sigma^2)$ 的样本,若 $cX_1 + \frac{1}{2008} X_2$ 为 $\mu(\neq 0)$ 的无偏估计量,则 c=_____.
- 10. 在显著水平为α的假设检验中,犯第一类去真错误的概率为_____

得分评阅人

三、计算题(本题共7小题,每小题10分,总分70分)

11. 按高、中、低三类调查居民收入,结果是这三类分别占总户数10%,60%,30%,银行存款在5千元以上的户在这三类中分别占100%,60%,5%。求(1)存款在5千元以上居民户在全体居民中所占比例。 (2)一个存款5千元以上的居民户属于高收入的概率

12. 随机变量 X 的密度函数 $f(x) = \begin{cases} kx^2 & 0 < x < 1 \\ 0 &$ 其它 \end{cases} , Y 表示对 X 三次独立测量时 $\{X \le 0.5\}$ 出现的次数。 求(1) k ;(2) $P\{Y = 2\}$.

13. 连续型随机变量 X 的分布函数 F(x) 严格单调, Y = F(X). (1) 求 Y 的密度函数: (2) 求二次方程 $t^2 + 3Yt + 1 = 0$ 有实根的概率.

- 14. 随机变量X和Y的分布律为X~ $\begin{bmatrix} -1 & 0 & 1 \\ 0.25 & 0.5 & 0.25 \end{bmatrix}$, Y~ $\begin{bmatrix} 0 & 1 \\ 0.5 & 0.5 \end{bmatrix}$, 且P $\{XY = 0\} = 1$.
 - (1) 求 X 和 Y 的联合分布律; (2) 问 X 和 Y 是否独立, 为什么?

15. 总体 X 的密度函数 $f(x) = \begin{cases} (\theta+1)x^{\theta} & 0 < x < 1 \\ 0 &$ 其它 , 未知参数 $\theta > -1$, $X_1, X_2, ..., X_n$ 来自 X 的样本.

求 (1) θ 的矩估计 $\hat{\theta}$; (2) θ 的极大似然估计 $\widetilde{\theta}$.

16. 随机地取某种炮弹 9 发做试验,测得炮口速度的样本标准差 S=11(m/s). 假定炮口速度服从正态分布, 求这种炮弹的炮口速度的标准差 σ 的置信区间. $(\alpha=0.05)$

17. 从某锌矿的南北两支矿脉中各抽取容量5和4的样本分析后得含锌量(%)的均值分别为:

南支: x = 21.5; 北支: y = 18.0.

资料表明南北两支矿脉的含锌量分别服从 $N(\mu_1,7.5)$ 和 $N(\mu_2,2.6)$,问两支矿脉含锌量有无显著差异? $(\alpha=0.10)$

系主任 李 3%

出卷人 潘 群 星

参考答案与评分标准

一选择题

1. C 2. C 3. A 4. B 5. D

二、填室题

6.06 7. \$ 8. \$ 9. 7007 10. CL

三、计算题

小 BI=「高松产版」,B2=「中松产版」,B3=《你从产版》,A=「存款5十九以上居民产版」

(2)
$$p(B_1|A) = \frac{p(B_1)p(AB_1)}{p(A)} = \frac{\alpha(2)}{\alpha(4)} = \frac{4}{19}$$
 (10%)

12. (1)
$$\int_{0}^{+\infty} f m dx = \int_{0}^{1} k \alpha^{2} dx = \frac{k}{3} \implies k = 3$$
 (3/3)

13.111 Fix = P[F(x)=y] =
$$\begin{cases} P(\phi) \\ P[x=F(y)] = \begin{cases} y & \text{ordel} \\ y & \text{ordel} \end{cases}$$
 if $f(y) = \begin{cases} 0 & \text{if } (0) = s \\ 0 & \text{if } (0) = s \end{cases} \end{cases} \end{cases} \end{cases}$

(2) Ym U[0,1], 豬旗根白3=91-470即173=015-3

14 (1) P{x=0=1=1= P{x=40}=0=> P{x=1, Y=1}+ P{x=1, Y=1}=0 => P{x=1, Y=1}= P{x=1, Y=1}=0 (2%)

(2) Pil=0·万丰Pi.Pil=0·田×0·丁、: X5丁不对立 (10分)

15. (1)
$$EX = \int_{10}^{100} \chi f_{10} d\chi = \int_{0}^{10} \chi (0+1) \chi^{0} d\chi = \frac{0+1}{0+2}$$
 (35)

$$\overline{\chi} = \frac{\partial H}{\partial L} \Rightarrow d = \frac{2\overline{\chi}H}{H\overline{\chi}}$$
(5%)

$$F(0) = \ln L(0) = N \ln (O(1) + O \ln (O(1) - O(1)), \quad F'(0) = \frac{N}{O(1)} + \ln (O(1) - O(1)) = \frac{N}{O(1)} + \ln (O(1) - O(1)) = \frac{N}{O(1)} + \frac{N}{O(1)} = \frac{N}{O(1)} = \frac{N}{O(1)} + \frac{N}{O(1)} = \frac{N}{O(1)} + \frac{N}{O(1)} = \frac{N}{O(1)} + \frac{N}{O(1)} = \frac{N}{O(1)} + \frac{N}{O(1)} = \frac{N}{O(1)} = \frac{N}{O(1)} + \frac{N}{O(1)} = \frac$$

16. $\chi \sim N(U, S^2)$, $\chi = q$, S = 11, d = o.ut, $\chi^2_{o.uss}(S) = 17.535$, $\chi^2_{o.uq_{15}}(S) = 2.180$, $U \neq \chi_0 = 186$ 人 $\chi^2_{o.uss}(S) = 17.535$, $\chi^2_{o.uq_{15}}(S) = 2.180$, $U \neq \chi_0 = 186$ 人 $\chi^2_{o.uss}(S) = 17.535$, $\chi^2_{o.uq_{15}}(S) = 2.180$, $U \neq \chi_0 = 186$ 人 $\chi^2_{o.uss}(S) = 17.535$, $\chi^2_{o.uq_{15}}(S) = 2.180$, $U \neq \chi_0 = 186$ 人 $\chi^2_{o.uss}(S) = 17.535$, $\chi^2_{o.uq_{15}}(S) = 2.180$, $\chi^2_{o.uss}(S) = 17.535$, $\chi^2_{o.uss}(S) = 2.180$, $\chi^2_{o.uss}(S$

的盟信区间(新了),脚落似维盟给40975的分别望信柜间为(74,21.101) (10分

17. X~NW, 7.5), 11=5, 8=21.5; Y~N(Uz, 2.6), 12=4, 9=180. d=010, Now = 1.640.
Ho: Unit 411: With (25)

Ha 放 和 U= 文-P ~ N(6.1). (5分)

拒绝域W={U/W7Uen;}= {U/W71440]、内据从线U的双项值涉LU=239EW. 的以拒绝的即有显著解(10g

概率论与数理统计

第二章和第三章

	、选择题
1.	设随机变量 X , Y 独立同分布,且 X 的分布函数为 $F(x)$,则 $Z=max\{X,Y\}$ 的分布函
	数为(A).
	(A) $F^{2}(x)$ (B) $F(x)F(y)$ (C) $1-[1-F(x)]^{2}$ (D) $[1-F(x)][1-F(y)]$
2.	设 $F_1(x)$ 与 $F_2(x)$ 为两个分布函数,其相应的概率密度函数 $f_1(x)$ 与 $f_2(x)$ 是连续函数,
	则必为概率密度的是 (D).
	(A) $f_1(x)f_2(x)$ (B) $2f_1(x)F_2(x)$
	(C) $2f_2(x)F_1(x)$ (D) $f_1(x)F_2(x)+F_1(x)f_2(x)$
3.	设随机变量 $X\sim N(\mu,\sigma^2)$ $(\sigma>0)$,记 $p=P(X\leq \mu+\sigma^2)$,则(B).
	(A) p 随着 μ 的增加而增加 (B) p 随着 σ 的增加而增加
	(C) p 随着 μ 的增加而减少 (D) p 随着 σ 的增加而减少
4.	设随机变量 X 服从正态分布 $N(\mu_1,\sigma_1^{2})$, Y 服从正态分布 $N(\mu_2,\sigma_2^{2})$,且
	$P(X-\mu_1 <1)>P(Y-\mu_2 <1)$,则必有(A).
	(A) $\sigma_1 < \sigma_2$ (B) $\sigma_1 > \sigma_2$ (C) $\mu_1 < \mu_2$ (D) $\mu_1 > \mu_2$
·	填空题
	设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0}=
	答案: $\frac{1}{2}$
2.	设随机变量 X 服从参数为1的指数分布, a 为常数且大于零, 则
F	$P\{Y \le a+1 Y>a\} = \underline{\hspace{1cm}}$
	答案: 1-e ⁻¹
3. i	及随机变量 X 服从参数为1的泊松分布,则 P { X=E(X²)} =

答案:
$$\frac{1}{2}e^{-1}$$

4. 设随机变量 X 与 Y 相互独立,且他们均服从区间[0,3]上的均匀分布,则

$$P(\max\{X,Y\} \le 1) = \frac{1}{9}$$

三、综合题(每题10分)

- 1. 设袋中有1个红球,2个黑球与3个白球,现有放回地从袋中取两次,每次取一球,以X, Y,Z分别表示两次取球所取得的红球、黑球与白球的个数。
 - (I) 求 $P{X=1|Z=0}$; (II) 求二维随机变量(X,Y)的概率分布(即联合分布律).

解: (I)

$$P\{X=1|Z=0\} = \frac{P\{X=1,Z=0\}}{P\{Z=0\}} = \frac{C_2^1 \frac{1}{6} \times \frac{2}{6}}{\left(\frac{1}{2}\right)^2} = \frac{4}{9} \qquad (5 \text{ } \%)$$

(II) X与Y的可能取值均为0,1,2.

......(7 分)

$$P\{X=0, Y=0\} = \frac{3}{6} \times \frac{3}{6} = \frac{1}{4}, \qquad P\{X=0, Y=1\} = C_{2}^{1} \cdot \frac{2}{6} \times \frac{3}{6} = \frac{1}{3}$$

$$P\{X=0, Y=2\} = \left(\frac{2}{6}\right)^{2} = \frac{1}{9}, \qquad P\{X=1, Y=0\} = C_{2}^{1} \cdot \frac{1}{6} \times \frac{3}{6} = \frac{1}{6}$$

$$P{X=1, Y=1}=C_2^1\frac{1}{6}\times\frac{2}{6}=\frac{1}{9}, \qquad P{X=2, Y=0}=\left(\frac{1}{6}\right)^2=\frac{1}{36}$$

故(X,Y)的概率分布为

XY	0	1	2
0	$\frac{1}{4}$	$\frac{1}{3}$	1 9
1.	$\frac{1}{6}$	1 9	0
2	1 36	0	0

.....(10 分)

2. 设二维随机变量(X,Y)的概率密度如下, 试求 $P\{X>2Y\}$.

$$f(x,y) = \begin{cases} 2-x-y, & 0 < x < 1, 0 < y < 1 \\ 0, & 其它 \end{cases}$$

解:
$$P\{X>2Y\} = \iint_{x>2y} f(x,y) dx dy$$
 (4 分)

$$= \int_0^x dx \int_0^{\frac{x}{2}} (2 - x - y) dy$$
 (8 \(\frac{x}{2}\))

$$= \int_0^1 (x - \frac{5}{8}x^2) dx = \frac{7}{24}$$
 (10 \Re)

第四章

-,	选择题

- 1. 设随机变量 X~N(0,1), Y~N(1,4), 且相关系数 $\rho_{XY}=1$,则 (D). (A) P(Y=-2X-1)=1 (B) P(Y=2X-1)=1
 - (C) P(Y=-2X+1)=1 (D) P(Y=2X+1)=1
- 2. 设随机变量 X 与 Y 相互独立, 且 E X 与 E Y 存在, 记 U=max{X,Y}, V=max{X,Y}, 则 E(U V)为(
 B
 - (A) EU-EV (B) EX-EY (C) EU-EY (D) EX-EV
- 3. 设随机变量 X 与 Y 不相关, 且 E(X)=2, E(Y)=1, D(X)=3, 则 E[X(X+Y-2)] 为
 (D).
 (A) -3
 (B) 3
 (C) -5
 (D) 5

- 5. 设连续型随机变量 X_1 与 X_2 相互独立且方差均存在, X_1 与 X_2 的概率密度函数分别为 $f_1(x)$ 与 $f_2(x)$, 随机变量 Y_1 的概率密度为 $f_{Y_1}(y) = \frac{1}{2} [f_1(y) + f_2(y)]$, 随机变量 $Y_2 = \frac{1}{2}(X_1 + X_2)$, \emptyset (D.).

 - (A) $EY_1 > EY_2$, $DY_1 > DY_2$ (B) $EY_1 = EY_2$, $DY_1 = DY_2$

 - (C) $EY_1 = EY_2$, $DY_1 < DY_2$ (D) $EY_1 = EY_2$, $DY_1 > DY_2$

二、填空题

1. 已知正常男性成人血液中,每一毫升白细胞数平均是7300,均方差是700,利用切比雪 夫不等式估计每毫升白细胞数在6000~8600之间的概率p_

答案:
$$\geq 1 - (\frac{7}{13})^2$$

2. 设二维随机变量(X,Y) 服从正态分布 $N(\mu,\mu;\sigma^2,\sigma^2;0)$. 则 $E(XY^2)=$ ______

答案:
$$\mu(\sigma^2 + \mu^2)$$

三、综合题(每题10分)

1. 设A和B是试验E的两个事件,且P(A)>0,P(B)>0,并定义随机变量X,Y如下:

$$X = \begin{cases} 1, & \text{若A发生} \\ 0, & \text{若A不发生} \end{cases}$$
 $Y = \begin{cases} 1, & \text{若B发生} \\ 0, & \text{若B不发生} \end{cases}$

试证明若随机变量 X 与 Y 不相关,则 X 与 Y 必定相互独立。

证明: 随机变量 X 与 Y 不相关 \Leftrightarrow 相关系数 $\rho_{xy} = 0$

$$\Leftrightarrow$$
 E(XY)=EX·EY (4 分)

由于 EX = P(X=1)=P(A), EY = P(Y=1)=P(B),

	E(XY) = P(X=1,Y=1) = P(X=1,Y=1)	****************	(7	分)	
知:	若随机变量 X 与 Y 不相关,	则P(AB)=P(A)P(B)),即事件 A 和 B	相互独	立,
从而	īX与Y必定相互独立。				
			*******	(10	分)

.