

School of Computer Science and Engineering

College of Engineering

Deep Neural Network Quantization via Layer-Wise Optimization using Limited Training Data

schen025@e.ntu.edu.sg, {wangwy, sinnopan}@ntu.edu.sg

Motivation

Most prevailing low bits compression methods relied on a heavy training process with large amount of labeled data.

Shangyu Chen, Wenya Wang, Sinno Jialin Pan

Contribution

We propose a new layer-wise quantization method for limited training data scenario:

- 1. Layer-wise parameters are quantized using closed-form solution.
- 2. Preserves performance with theoretical guarantee.
- 3. A small portion of training data (1% in experiments) is required in the whole process.

Cascade Layer-Wise Quantization

Notations:

- Quantized weights: (-)
- Un-Quantized weights: $ar{oldsymbol{\Theta}}$, $ar{oldsymbol{\Theta}}^{new}$
- Inputs to the I-th quantized layer: $\hat{\mathbf{Y}}^{l-1}=f(\mathbf{Y}^0;\hat{\mathbf{\Theta}}_{[1....l-1]})$
- Origin inputs: \mathbf{Y}^{l-1}

Goal:

Divergence of final layer output before and after quantization is minimized:

$$\begin{split} & \min_{\hat{\mathbf{\Theta}}_{[l,\dots,L]}} \ ||f(\hat{\mathbf{Y}}^{l-1};\hat{\mathbf{\Theta}}_{[l,\dots,L]}) - f(\mathbf{Y}^{l-1};\bar{\mathbf{\Theta}}_{[l,\dots,L]})||_F^2, \\ & \text{s.t.} \quad \hat{\mathbf{\Theta}}_{[l,\dots,L]} \in \mathbf{\Omega}_{[l,\dots,L]}. \end{split}$$

Approximation:

$$\begin{split} ||f(\hat{\mathbf{Y}}^{l-1}; \hat{\mathbf{\Theta}}_{[l,...,L]}) - f(\mathbf{Y}^{l-1}; \bar{\mathbf{\Theta}}_{[l,...,L]})||_F^2 \\ \leq \underbrace{||f(\hat{\mathbf{Y}}^{l-1}; \hat{\mathbf{\Theta}}_{[l,...,L]}) - f(\hat{\mathbf{Y}}^{l-1}; \bar{\mathbf{\Theta}}_{[l,...,L]}^{new})||_F^2}_{\text{Quantization}} \\ + \underbrace{||f(\hat{\mathbf{Y}}^{l-1}; \bar{\mathbf{\Theta}}_{[l,...,L]}^{new}) - f(\mathbf{Y}^{l-1}; \bar{\mathbf{\Theta}}_{[l,...,L]})||_F^2}_{\text{Weights Update}}, \end{split}$$

Quantization

- Layer output with quantized weights: $\hat{\mathbf{Z}}^l = \hat{\mathbf{Y}}^{l-1} \cdot \hat{\boldsymbol{\Theta}}_l$ Layer output with origin weights: $\mathbf{Z}_*^l = \hat{\mathbf{Y}}^{l-1} \cdot \bar{\boldsymbol{\Theta}}_l^{new}$
- $\delta \mathbf{\Theta}_l = \hat{\mathbf{\Theta}}_l \bar{\mathbf{\Theta}}_l^{new}$

Error Function:

$$E^{l} = E(\hat{\mathbf{Z}}^{l}) = \frac{1}{n} \|\hat{\mathbf{Z}}^{l} - \mathbf{Z}_{*}^{l}\|_{F}^{2}$$

$$= \left(\frac{\partial E^{l}}{\partial \mathbf{\Theta}_{l}}\right)^{\top} \delta \mathbf{\Theta}_{l} + \frac{1}{2} \delta \mathbf{\Theta}_{l}^{\top} \mathbf{H}_{l} \delta \mathbf{\Theta}_{l} + O(\|\delta \mathbf{\Theta}_{l}\|_{2}^{3})$$

Optimization Objective:

$$\begin{split} \min_{\hat{\boldsymbol{\Theta}}_{l}} & f(\hat{\boldsymbol{\Theta}}_{l}) = \frac{1}{2} (\hat{\boldsymbol{\Theta}}_{l} - \bar{\boldsymbol{\Theta}}_{l}^{new})^{\top} \mathbf{H}_{l} (\hat{\boldsymbol{\Theta}}_{l} - \bar{\boldsymbol{\Theta}}_{l}^{new}), \\ & \text{s.t. } \hat{\boldsymbol{\Theta}}_{l} \in \boldsymbol{\Omega}_{\boldsymbol{l}}, \end{split}$$

Quantization with ADMM

By introducing an auxiliary parameter **G** to relax $\hat{\Theta}$ to continuous:

$$L_{\rho}(\hat{\mathbf{\Theta}}, \mathbf{G}, \boldsymbol{\lambda})$$

$$= f(\hat{\mathbf{\Theta}}) + I_{\Omega}(\mathbf{G}) + \frac{\rho}{2} ||\hat{\mathbf{\Theta}} - \mathbf{G} + \boldsymbol{\lambda}||_{2}^{2} - \frac{\rho}{2} ||\boldsymbol{\lambda}||_{2}^{2}.$$

Proximal Step optimize Θ:

$$\big(\mathbf{H} + \operatorname{diag}(\rho)\big)\hat{\mathbf{\Theta}}^{k+1} = \mathbf{H}\bar{\mathbf{\Theta}}^{new} + \operatorname{diag}(\rho)(\mathbf{G}^k - \boldsymbol{\lambda}^k).$$

• Projection Step optimize G:

$$\min_{\mathbf{G}} \|\hat{\mathbf{\Theta}}^{k+1} - \mathbf{G} + \boldsymbol{\lambda}^k\|_2^2, \text{ s.t. } \mathbf{G} \in \boldsymbol{\Omega}.$$

• Dual Update Step optimize λ :

$$\boldsymbol{\lambda}^{k+1} = \boldsymbol{\lambda}^k + \hat{\boldsymbol{\Theta}}^{k+1} - \mathbf{G}^{k+1}.$$

Remaining Non-quantized Weights Update

Experiments

Using only 1% of CIFAR10 and ImageNet dataset:

Dataset	Network	Method	bits	Improve(%)	Full-Precision
CIFAR10	ResNet20	TTQ	3	-77.25	91.77
		INQ	15	-48.48	90.02
		ExNN	3	-11.15	91.5
		VQ	3	-11.27	
		DQ	3	-19.92	
		L-DNQ	3	-4.30	
ImageNet	ResNet18	TTQ	3	-69.48/-88.49	69.6/89.2
		INQ	15	-61.27/-64.22	68.27/88.69
		ExNN	3	-43.53/-37.82	69.76/89.02
		VQ	3	-35.69/-29.08	
		DQ	3	-61.22/-65.64	
		L-DNQ	3	-16.43/-10.67	
			8	-56.78/-58.92	
		DQ	16	-13.81/-8.68	
			32	-2.82/-1.51	
		L-DNQ	9	-2.73/-0.90	

Performance as number of instances climbs:

