Lab 1: Introduction to R

Outline

- Install R and data packages
- Basic commands
- Example of preliminary analysis of a dataset

Install R and data packages

Install R

https://www.r-project.org/

[Home]

Download

CRAN

R Project

About R
Logo
Contributors
What's New?
Reporting Bugs
Conferences
Search
Get Involved: Mailing Lists
Developer Pages
R Blog

The R Project for Statistical Computing

Getting Started

R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To **download R**, please choose your preferred CRAN mirror.

If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.

News

- R version 4.1.1 (Kick Things) has been released on 2021-08-10.
- R version 4.0.5 (Shake and Throw) was released on 2021-03-31.
- Thanks to the organisers of useR! 2020 for a successful online conference. Recorded tutorials and talks from the conference are available on the R Consortium YouTube channel.
- You can support the R Foundation with a renewable subscription as a supporting member

Install Rstudio Desktop (Optional)

https://www.rstudio.com/products/rstudio/download/

RStudio Desktop 1.4.1717 - Release Notes

- 1. Install R. RStudio requires R 3.0.1+.
- 2. Download RStudio Desktop. Recommended for your system:

Requires Windows 10 (64-bit)

Data Sets Used in Labs and Exercises

• ISLR2:

- Data for an Introduction to Statistical Learning with Applications in R
- https://cran.rproject.org/package=ISLR2
- The MASS library
 - Functions and datasets to support Venables and Ripley's MASS
 - https://cran.rproject.org/package=MASS
- Base R

Name	Description					
Auto	Gas mileage, horsepower, and other information for cars.					
Bikeshare	Hourly usage of a bike sharing program in Washington, DC.					
Boston	Housing values and other information about Boston census tracts					
BrainCancer	Survival times for patients diagnosed with brain cancer.					
Caravan	Information about individuals offered caravan insurance.					
Carseats	Information about car seat sales in 400 stores.					
College	Demographic characteristics, tuition, and more for USA colleges.					
Credit	Information about credit card debt for 10,000 customers.					
Default	Customer default records for a credit card company.					
Fund	Returns of 2,000 hedge fund managers over 50 months.					
Hitters	Records and salaries for baseball players.					
Khan	Gene expression measurements for four cancer types.					
NCI60	Gene expression measurements for 64 cancer cell lines.					
NYSE	Returns, volatility, and volume for the New York Stock Exchange					
OJ	Sales information for Citrus Hill and Minute Maid orange juice.					
Portfolio	Past values of financial assets, for use in portfolio allocation.					
Publication	Time to publication for 244 clinical trials.					
Smarket	Daily percentage returns for S&P 500 over a 5-year period.					
USArrests	Crime statistics per 100,000 residents in 50 states of USA.					
Wage	Income survey data for men in central Atlantic region of USA.					
Weekly	1,089 weekly stock market returns for 21 years.					

Install ISLR2 Package

- Manual download with R
 - Click Packages & Data → Package Installer → input the package name → select a mirror site
- Manual download with Rstudio
 - Click Tools → Install package → install from CRAN/local archive file
- By R command line
 - install.packages("ISLR2")

Basic commands

Vector

- Insert vector using function c()
- Check length of vector using length()

```
> x <- c(1, 2, 3, 4, 5, 6, 7, 8, 9)
> x
[1] 1 2 3 4 5 6 7 8 9
> length(x)
[1] 9
```

Matrix

- Declare a matrix using function matrix()
- Use byrow =TRUE/FALSE to specify order
- Use dim() to find dimension of a matrix

Matrix

```
> x <- matrix (data = c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3)
> X
  [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> x <- matrix (data = c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3, byrow = TRUE)
> X
  [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
> x <- matrix (data = c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3, byrow = FALSE)
> X
  [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> dim(x)
[1] 2 3
```

Select Elements in A Matrix

```
> A <- matrix(1:16, 4, 4)
> A
    [,1] [,2] [,3] [,4]
[1,]
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,]
     4 8 12
                 16
> A[2, 3]
[1] 10
> A[c(1, 3), c(2, 4)]
    [,1] [,2]
[1,] 5 13
[2,]
> A[1:2,]
    [,1] [,2] [,3] [,4]
[1,] 1
[2,]
              10
                   14
```

```
> A[, 1]
[1] 1 2 3 4
> A[, 1:2]
    [,1][,2]
[1,]
[2,] 2
[3,] 3 7
[4,]
> A[-1,]
    [,1] [,2] [,3] [,4]
[1,]
               10 14
[2,] 3 7
               11
                   15
[3,]
               12
                   16
> A[-c(1, 2),]
    [,1] [,2] [,3] [,4]
[1,]
               11
[2,]
               12
                   16
```

Generate Random Numbers

 Generate random numbers from a standard normaldistribution using rnorm (n)

```
> y <- rnorm(20)
> y

[1] -1.09460899   0.22386861  -0.20583813  -1.11530919   0.58994271  -2.06441523   1.39271334
[8] -0.23312401  -0.10541311  -0.63185659   0.25970922   0.43194340  -0.04194421   0.09849715
[15] -0.50593705   1.15531491  -1.14990503  -0.26525399   0.87302274   0.12407061
```

Calculate mean(), var(), sd() of random numbers

```
> mean(y)
[1] -0.1132261
> var(y)
[1] 0.7009881
> sd(y)
[1] 0.8372503
```

Set the Seed of Random Number Generator

- Set the seed of random number generator using set.seed
- To reproduce the exact same set of random numbers, use the same seed

```
> set.seed(1)
> rnorm(5)
[1] -0.6264538  0.1836433 -0.8356286  1.5952808  0.3295078
> rnorm(5)
[1] -0.8204684  0.4874291  0.7383247  0.5757814 -0.3053884
> set.seed(1)
> rnorm(5)
[1] -0.6264538  0.1836433 -0.8356286  1.5952808  0.3295078
```

Example of preliminary analysis of a dataset

Load Dataset

- To load a data set in the ISLR2 package or other packages/libraries, you only need to load the package
- > library (ISLR2)
- To load an external data set, first specify the directory, Misc → Change Working Directory
 - If the data are saved as a text file
 - > Auto <- read.table("Auto.data", header=T, na.strings="?", stringsAsFactors=T)</pre>
 - If the data are saved as a csv file (Excel)
 - > College <- read.csv("College.csv", na.strings="?", stringsAsFactors=T)</pre>
- Try loading external data files using datasets available on the textbook website https://www.statlearning.com/resources-second-edition

View Data

Then, check a dataset by typing its name in console or view()

•	mpg [‡]	cylinders [‡]	displacement	horsepower	weight [‡]	acceleration	year [‡]	origin [‡]	name
1	18	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
2	15	8	350.0	165	3693	11.5	70	1	buick skylark 320
3	18	8	318.0	150	3436	11.0	70	1	plymouth satellite
4	16	8	304.0	150	3433	12.0	70	1	amc rebel sst
5	17	8	302.0	140	3449	10.5	70	1	ford torino
6	15	8	429.0	198	4341	10.0	70	1	ford galaxie 500
7	14	8	454.0	220	4354	9.0	70	1	chevrolet impala
8	14	8	440.0	215	4312	8.5	70	1	plymouth fury iii
9	14	8	455.0	225	4425	10.0	70	1	pontiac catalina
10	15	8	390.0	190	3850	8.5	70	1	amc ambassador dpl
11	15	8	383.0	170	3563	10.0	70	1	dodge challenger se
12	14	8	340.0	160	3609	8.0	70	1	plymouth 'cuda 340

Dimension & Variables

• Type names(datasetname), e.g., names(Auto), to list all attributes (column names) of the table

Background

 To gather more information about the data set, type
 ?datasetname (e.g., ?Auto, or help(Auto))

Auto Data Set

Description

Gas mileage, horsepower, and other information for 397 vehicles.

Usage

Auto

Format

A data frame with 397 observations on the following 9 variables.

mpg

miles per gallon

cylinders

Number of cylinders between 4 and 8

displacement

Engine displacement (cu. inches)

horsepower

Engine horsepower

Access Variables in the Dataset

Method 1: giving name of the variable and the dataset

```
> Auto$mpg
[1] 18.0 15.0 18.0 16.0 17.0 15.0 14.0
[8] 14.0 14.0 15.0 15.0 14.0 15.0 14.0
[15] 24.0 22.0 18.0 21.0 27.0 26.0 25.0
```

 Method 2: first attach the dataset to the R search path, then all variables in the dataset can be accessed by simply giving their names

```
> attach(Auto)
> mpg
   [1] 18.0 15.0 18.0 16.0 17.0 15.0 14.0 14.0
   [9] 14.0 15.0 15.0 14.0 15.0 14.0 24.0 22.0
[17] 18.0 21.0 27.0 26.0 25.0 24.0 25.0 26.0
```

Numerical Summaries

 Numerical summary of dataset or variable summary(dataset) or summary(dataset\$colname)

```
> summary(Auto)
                                 displacement
                  cylinders
                                                  horsepower
                                                                    weight
      mpg
Min. : 9.00
                Min.
                       :3.000
                                 Min. : 68.0
                                                Min.
                                                       : 46.0
                                                                Min.
                                                                        :1613
                                                1st Qu.: 75.0
 1st Qu.:17.00
                1st Qu.:4.000
                                 1st Qu.:105.0
                                                                1st Qu.:2225
 Median :22.75
                Median :4.000
                                 Median :151.0
                                                Median : 93.5
                                                                Median :2804
       :23.45
                       :5.472
                                       :194.4
                                                       :104.5
                                                                        :2978
 Mean
                Mean
                                                Mean
                                                                 Mean
                                 Mean
 3rd Qu.:29.00
                3rd Qu.:8.000
                                 3rd Qu.:275.8
                                                3rd Qu.:126.0
                                                                 3rd Qu.:3615
       :46.60
                       :8.000
                                       :455.0
                                                        :230.0
                                                                       :5140
 Max.
                                                                Max.
                Max.
                                 Max.
                                                Max.
 acceleration
                                    origin
                     year
                                                                 name
                       :70.00
Min. : 8.00
                Min.
                                 Min.
                                       :1.000
                                                amc matador
 1st Qu.:13.78
                1st Qu.:73.00
                                 1st Qu.:1.000
                                                ford pinto
Median :15.50
                Median :76.00
                                 Median :1.000
                                                toyota corolla
                       :75.98
       :15.54
                                       :1.577
                                                amc gremlin
 Mean
                Mean
                                 Mean
                 3rd Qu.:79.00
                                                 amc hornet
 3rd Qu.:17.02
                                 3rd Qu.:2.000
                       :82.00
                                                chevrolet chevette: 4
 Max.
       :24.80
                Max.
                                 Max.
                                       :3.000
                                                 (Other)
                                                                   :365
```

Graphs

Generate figures of single variables using plot()

```
> plot(College$F.Undergrad, type='l', xlab="College Index", ylab="#Full-time Undergraduates",
main="Figure 1")
Figure 1
```


- > attach(College)
- > plot(F.Undergrad, type='l', xlab="College Index", ylab="#Full-time Undergraduates", main="Figure 1")

Graphs

Generate plots of two variables

```
> plot(Apps, Accept, xlab="#Received",
ylab="#Accepted")
```

Private : Public/private indicator

Apps: Number of applications received

Accept: Number of applicants accepted

> plot(Apps[Private=="Yes"], Accept[Private=="Yes"], col="blue", xlab="#Received", ylab="#Accepted")
> points(Apps[Private=="No"], Accept[Private=="No"], col="green", xlab="#Received", ylab="#Accepted")

