

< Previous

≡ Hide menu

Lecture: Naive Bayes

- **⊘ Video:** Week Introduction
- **⊘ Video:** Probability and Bayes' 3 min
- Reading: Probability and Bayes' 10 min
- ✔ Video: Bayes' Rule
- Reading: Bayes' Rule
- ✔ Video: Naïve Bayes Introduction 5 min
- Reading: Naive Bayes Introduction 10 min
- Reading: Laplacian Smoothing 10 min
- 6 min
- Reading: Log Likelihood, Part 1
- Reading: Log Likelihood Part 2
- ▶ Video: Training Naïve Bayes 3 min
- Reading: Training naïve Bayes 10 min
- **Lab:** Visualizing likelihoods and confidence ellipses
- ▶ Video: Testing Naïve Bayes
- Reading: Testing naïve Bayes
- Bayes 3 min
- Reading: Applications of Naive Bayes 10 min
- Reading: Naïve Bayes Assumptions 10 min
- **Video:** Error Analysis
- Reading: Error Analysis
- Video: Week Conclusion

Lecture Notes (Optional) Practice Quiz

Naive Bayes Introduction

To build a classifier, we will first start by creating conditional probabilities given the following table:

I am sad, not happy

Positive tweet	S
I am happy be	ecause I am learning NLP
Таптарру, по	
	Negative tweets
l ar	m sad, I am not learning NLP

N _{class}	13	12	
not	1	2	
sad	1	2	
NLP	1	1	
learning	1	1	
because	1	0	
happy	2	1	
am	3	3	
	3	3	

word Pos Neg

This allows us compute the following table of probabilities:

Pos	Neg
0.24	0.25
0.24	0.25
0.15	0.08
0.08	0
0.08	0.08
80.0	0.08
80.0	0.17
0.08	0.17
	0.24 0.24 0.15 0.08 0.08 0.08

Once you have the probabilities, you can compute the likelihood score as follows

Tweet: I am happy today; I am learning.

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} = \frac{0.14}{0.10} = 1.4 > 1$$

$\frac{0.26}{0.20}$	$\frac{0.20}{0.20}$	$*\frac{0.14}{0.10}$	*\frac{0.20}{0.20}	*\frac{0.20}{0.20}	*\frac{0.10}{0.10}
<i>p</i> .20	, ,0.20	0.10	/0.20	/ 0. _ 0	70.10

word	Pos	Neg
	0.20	0.20
am	0.20	0.20
happy	0.14	0.10
because	0.10	0.05
learning	0.10	0.10
NLP	0.10	0.10
sad	0.10	0.15
not	0.10	0.15

A score greater than 1 indicates that the class is positive, otherwise it is negative.

Mark as completed

△ Like
☐ Dislike
☐ Report an issue

