) വൈദ്യുതകാന്തികപ്രേരണം

ബാബുവിന്റെ സംശയം തീർക്കാൻ നിങ്ങൾക്ക് കഴിയുമോ? വൈദ്യുതോർജത്തെ വിവിധ ഊർജരൂപങ്ങളാക്കി മാറ്റാമെന്ന് അറിയാമല്ലോ. ഏതാനും ഉദാ ഹരണങ്ങൾ എഴുതിനോക്കൂ.

സോളാർസെൽ പ്രകാശോർജത്തെ വൈദ്യുതോർജമാക്കുന്നുവെന്ന് നിങ്ങൾക്കറിയാം. ഇതു പോലെ ഏതെല്ലാം ഊർജരൂപങ്ങളെ വൈദ്യുതോർജമാക്കി മാറ്റാൻ കഴിയും? കാന്തികോർജം പ്രയോജനപ്പെടുത്തി വൈദ്യുതോർജം ഉണ്ടാക്കാൻ സാധിക്കുമോ എന്ന് നോക്കാം. കാന്തികമണ്ഡലത്തിൽ സ്ഥിതിചെയ്യുന്ന ഒരു ചാലകത്തിൽ വൈദ്യുതപ്രവാഹമുണ്ടാ കുമ്പോൾ ബലം അനുഭവപ്പെടുമെന്നും തദ്ഫലമായി ചാലകം ചലിക്കുമെന്നും കഴിഞ്ഞ അധ്യായത്തിൽ മനസ്സിലാക്കിയിട്ടുണ്ട്. എങ്കിൽ കാന്തികമണ്ഡലത്തിൽ ഒരു ചാലകം ചലിപ്പിച്ചാൽ വൈദ്യുതി ഉണ്ടാകുമോ?

ഇത്തരത്തിലൊരു പരീക്ഷണം ആദ്യമായി അവതരിപ്പിച്ചത് മൈക്കൽ ഫാരഡെയാ ണ്. ഈ പരീക്ഷണം നമുക്കൊന്ന് ചെയ്തു നോക്കാം.

പരീക്ഷണസാമഗ്രികൾ

- ബാർ മാഗ്നറ്റ്
- സോളിനോയ്ഡ്
- ഗാൽവനോമീറ്റർ

ചിത്രത്തിൽ സൂചിപ്പിച്ചതുപോലെ ഉപകരണങ്ങൾ ക്രമീകരിച്ച് കാന്തം സോളിനോയ് ഡിനുള്ളിലേക്കും പുറത്തേക്കും ചലിപ്പിക്കൂ. ഓരോ പ്രക്രിയയിലും ഗാൽവനോമീറ്റർ സൂചിയുടെ ചലനം നിരീക്ഷിക്കുക.

ചിത്രം 3.1 (b)

നിങ്ങളുടെ നിരീക്ഷണങ്ങൾ താഴെ കൊടുത്ത പട്ടികയിൽ എഴുതുക.

		നിരീക്ഷണം (ഗാൽവനോമീറ്റർസൂചി)	
ക്രമ നം.	പരീക്ഷണപ്രവർത്തനം	ചലിക്കുന്നു/ ചലിക്കുന്നില്ല	ദിശ ഇടത്തോട്ട്/ വലത്തോട്ട്
1.	കാന്തം സോളിനോയ്ഡിനരികിൽ നിശ്ചലമായിരിക്കു മ്പോൾ		
2.	കാന്തത്തിന്റെ ഉത്തരധ്രുവം സോളിനോയ്ഡിനുള്ളി ലേക്കു നീക്കുമ്പോൾ		
3.	കാന്തം സോളിനോയ്ഡിനുള്ളിൽ നിശ്ചലമായിരിക്കു മ്പോൾ		
4.	കാന്തം സോളിനോയ്ഡിനുള്ളിൽനിന്ന് പുറത്തേക്കു നീക്കുമ്പോൾ		
5.	കാന്തത്തിന്റെ ദക്ഷിണധ്രുവം സോളിനോയ്ഡിനുള്ളി ലേക്കു നീക്കുമ്പോൾ		
6.	കാന്തം സോളിനോയ്ഡിനുള്ളിൽ വച്ച് രണ്ടും ഒരുമിച്ച് ഒരേ വേഗത്തിൽ ഒരേ ദിശയിൽ ചലിപ്പിക്കുമ്പോൾ		
7.	കാന്തം സ്ഥിരമാക്കിവച്ച് സോളിനോയ്ഡ് ചലിപ്പിക്കു മ്പോൾ		

ശക്തിയേറിയ കാന്തങ്ങൾ ഉപയോഗിച്ചും ചുറ്റുകളുടെ എണ്ണം വർധിപ്പിച്ചും കാന്തത്തെ സോളിനോയ്ഡിനകത്തേക്കും പുറത്തേക്കും ചലിപ്പിക്കുക. നിരീക്ഷ ണഫലത്തിന്റെ അടിസ്ഥാനത്തിൽ പട്ടിക 3.2 പൂർത്തിയാക്കൂ.

10000000	ഗാൽവനോമീറ്ററിലെ സൂചിയുടെ വിഭ്രംശം		
പരീക്ഷണം	കൂടുന്നു	കുറയുന്നു	
ചുറ്റുകളുടെ എണ്ണം വർധിപ്പിക്കുന്നു.			
ശക്തികൂടിയ കാന്തം ഉപയോഗിക്കുന്നു.			
കാന്തത്തിന്റെ/സോളിനോയ്ഡിന്റെ ചല നവേഗം കൂട്ടുന്നു.			

പട്ടിക 3.2 മുകളിൽ ചെയ്ത പരീക്ഷണത്തിന്റെയും പട്ടികവിശകലനത്തി ന്റെയും അടിസ്ഥാനത്തിൽ ചോദ്യങ്ങൾക്കുത്തരം കണ്ടെത്തി

സയൻസ് ഡയറിയിൽ എഴുതൂ.

പരീക്ഷണത്തിൽ ഗാൽവനോമീറ്റർസൂചി വിഭ്രം ശിച്ചതെന്തുകൊണ്ട്?

- ഏതെല്ലാം സന്ദർഭങ്ങളിലാണ് സോളിനോയ്ഡിലൂടെ വൈദ്യുതപ്രവാഹമുണ്ടായത്?
- ഏതെല്ലാം സന്ദർഭങ്ങളിലാണ് വൈദ്യുതിയുടെ അളവ് കൂടിയത്?

വൈദ്യുതകാന്തികപ്രേരണം (Electromagnetic Induction)

കാന്തവും സോളിനോയ്ഡും തമ്മിൽ ഒരു ആപേക്ഷികചല നമുള്ളപ്പോൾ സെർക്കീട്ടിലൂടെ വൈദ്യുതപ്രവാഹം ഉണ്ടാ കുന്നു എന്നു പരീക്ഷണത്തിലൂടെ നാം തിരിച്ചറിഞ്ഞു. എന്നാൽ കാന്തത്തെ സോളിനോയ്ഡിന്റെ അടുത്തേക്കു ചലി പ്പിക്കുമ്പോഴും അകലേക്ക് ചലിപ്പിക്കുമ്പോഴും എന്തു മാറ്റമാണ് സോളിനോയ്ഡിൽ സംഭവിക്കുന്നതെന്ന് ചിന്തിച്ചിട്ടുണ്ടോ?

ചുവടെ കൊടുത്ത ചിത്രം നിരീക്ഷിക്കുക.

(പരീക്ഷണം ചെയ്യുമ്പോഴുള്ള രണ്ടു ഘട്ടങ്ങളാണ് ചിത്രത്തിൽ സൂചിപ്പിച്ചിരിക്കു ന്നത്.)

🧽 ഗാൽവനോമീറ്റർ

ഒരു സെർക്കീട്ടിലെ നേരിയ കറന്റിന്റെ സാന്നിധ്യവും ദിശയും മനസ്സിലാ ക്കാനുള്ള ഉപകരണമാണ് ഗാൽവനോമീ റ്റർ. ഇതിന്റെ സൂചി മധ്യഭാഗത്തുള്ള അങ്കനത്തിലായിരിക്കും. പൂജ്യം വൈദ്യുതി പ്രവഹിക്കുമ്പോൾ കറന്റിന്റെ ദിശയ്ക്കനുസരിച്ച് സൂചി വലത്തോട്ടോ ഇടത്തോട്ടോ വിഭ്രംശിക്കുന്നു. കറന്റിന്റെ അളവ് കൂടുമ്പോൾ വിഭ്രംശവും കൂടുന്നു.

- ഏതു സന്ദർഭത്തിലാണ് സോളിനോയ്ഡുമായി ബന്ധപ്പെട്ട ഫ്ളക്സ് കുറവ്?
- ഏതു സന്ദർഭത്തിലാണ് സോളിനോയ്ഡുമായി ബന്ധപ്പെട്ട ഫ്ളക്സ് കൂടു തൽ?
- പരീക്ഷണം ചെയ്യുമ്പോൾ ഏതു സന്ദർഭത്തിലാണ് സോളിനോയ്ഡുമായി ബന്ധപ്പെട്ട ഫ്ളക്സിന് മാറ്റം വരുന്നത്? (ചലിപ്പിക്കുമ്പോൾ/നിശ്ചലമാക്കി വയ്ക്കുമ്പോൾ)

(1791-1867)

ഭൗതികശാസ്ത്രത്തിലും രസതന്ത്ര ത്തിലും പ്രഗല്ഭനായ ശാസ്ത്രജ്ഞൻ. 1821 ൽ ഫാരഡെ തന്റെ ആദ്യത്തെ കണ്ടുപിടിത്തം നടത്തി. കാന്തികമണ്ഡ ലത്തിൽ ഒരു കമ്പിവച്ച് അതിലൂടെ വൈദ്യുതി പ്രവഹിപ്പിച്ചാൽ കമ്പി ചലി ക്കുമെന്ന് അദ്ദേഹം തെളിയിച്ചു. 1831 ൽ നടത്തിയ പരീക്ഷണപരമ്പരകളി ലൂടെ കാന്തശക്തി ഉപയോഗിച്ച് വൈ ദ്യുതി ഉൽപ്പാദിപ്പിക്കാമെന്ന് അദ്ദേഹം കണ്ടെത്തി. അതിനാൽ വൈദ്യുതി യുടെ പിതാവായി ഫാരഡെ അറിയ പ്പെടുന്നു. രസതന്ത്രത്തിനും അദ്ദേഹം വിലപ്പെട്ട സംഭാവനകൾ നൽകിയി ട്ടുണ്ട്. കോളേജ് വിദ്യാഭ്യാസമോ വേണ്ടത്ര ഔപചാരികവിദ്യാഭ്യാസമോ അദ്ദേഹത്തിന് ലഭിച്ചിരുന്നില്ല.

സോളിനോയ്ഡുമായി ബന്ധപ്പെട്ട കാന്തികഫ്ളക്സിന് മാറ്റം വരുമ്പോഴാണ് സെർക്കീട്ടിൽ വൈദ്യുതി പ്രേരിതമാ വുന്നത് എന്നു മനസ്സിലായല്ലോ. ഈ പ്രതിഭാസം വൈദ്യുത കാന്തികപ്രേരണം എന്നറിയപ്പെടുന്നു. തദ്ഫലമായി ഉണ്ടാ വുന്ന വൈദ്യുതിയെ പ്രേരിതവൈദ്യുതി എന്നും വോൾ ട്ടതയെ പ്രേരിത emf എന്നും പറയുന്നു.

പ്രേരിത emf നെ സ്വാധീനിക്കുന്ന ഘടകങ്ങൾ ഏതെല്ലാ മായിരിക്കും?

- ചുറ്റുകളുടെ എണ്ണം

ഒരു ചാലകവുമായി ബന്ധപ്പെട്ട കാന്തികഫ്ളക്സിൽ മാറ്റ മുണ്ടാകുന്നതിന്റെ ഫലമായി ചാലകത്തിൽ ഒരു emf പ്രേരണം ചെയ്യപ്പെടുന്ന പ്രതിഭാസമാണ് വൈദ്യുത കാന്തികപ്രേരണം (Electromagnetic induction).

വൈദ്യുതകാന്തികപ്രേരണത്തിന്റെ ഫലമായി ഉണ്ടാകുന്ന വൈദ്യുതപ്രവാഹത്തിന്റെ ദിശ ഏതെല്ലാം ഘടകങ്ങളെ യാണ് ആശ്രയിക്കുന്നത്?

- കാന്തികമണ്ഡലത്തിന്റെ ദിശ
- (കാന്തികമണ്ഡലദിശ ഉത്തരധ്രുവത്തിൽനിന്ന് (North pole) ദക്ഷിണ ധ്രുവത്തിലേക്ക് (South pole) ആണെന്ന് സങ്കൽപ്പി ച്ചിരിക്കുന്നു).

കാന്തികമണ്ഡലരേഖകൾക്ക് ലംബമായാണ് ചാലകം ചലിക്കുന്നതെങ്കിൽ ഉണ്ടാ വുന്ന പ്രേരിതവൈദ്യുതി പരമാവധി ആയിരിക്കുമെന്നും കാന്തികമണ്ഡലദിശ, ചാലകത്തിന്റെ ചലനദിശ, പ്രേരിതവൈദ്യുതിയുടെ ദിശ എന്നിവ തമ്മിലുള്ള ബന്ധം ലളിതമായി വിശദീകരിക്കാമെന്നും ബ്രിട്ടിഷ് ശാസ്ത്രജ്ഞനായ ജോൺ അംബ്രോസ് ഫ്ളെമിങ് കണ്ടെത്തിയിട്ടുണ്ട്. ഇത് ഫ്ളെമിങ്ങിന്റെ വലതുകൈ നിയമം എന്നറിയപ്പെടുന്നു.

ഫ്ളെമിങ്ങിന്റെ വലതുകെനിയമം (Fleming's right hand rule)

ഒരു ചാലകത്തെ കാന്തികമണ്ഡലത്തിനു ലംബമായി ചലിപ്പിക്കുന്നുവെന്ന് കരുതുക. വലതുകെയിലെ തള്ളവിരൽ, ചൂണ്ടുവിരൽ, നടുവിരൽ എന്നിവ ഓരോന്നും പരസ്പരം ലംബമായി വരത്തക്കവണ്ണം നിവർത്തു ക. ഇതിൽ ചൂണ്ടുവിരൽ കാന്തികമണ്ഡലത്തിന്റെ ദിശയെയും തള്ളവി രൽ ചാലകത്തിന്റെ ചലനദിശയെയും സൂചിപ്പിക്കുന്നുവെങ്കിൽ നടുവി രൽ പ്രേരിതവൈദ്യുതിയുടെ ദിശയെ കുറിക്കുന്നു.

വൈദ്യുതകാന്തികപ്രേരണം വഴി ലഭിക്കുന്ന വൈദ്യുതിയും ഒരു ബാറ്ററി/സെൽ എന്നിവയിൽനിന്ന് ലഭിക്കുന്ന വൈദ്യുതിയും ഒരുപോലെയായിരിക്കുമോ?

പ്രത്യാവർത്തിധാരാ വൈദ്യുതി (AC), നേർധാരാ വൈദ്യുതി (DC)

ടോർച്ചിലോ ക്ലോക്കിലോ ഉപയോഗിക്കുന്ന സെല്ലിനെ ഒരു പ്രതിരോധകം $(6\ k\Omega)$, ഗാൽവനോമീറ്റർ എന്നിവയുമായി ശ്രേണിയിൽ ബന്ധിപ്പിക്കുക. ഗാൽവനോമീറ്റർസൂചിയുടെ ചലനം നിരീക്ഷിക്കുക. നിങ്ങളുടെ നിരീക്ഷണഫലം പട്ടികപ്പെടുത്തി, പ്രവർത്തനം $2\$ ന്റെ നിരീക്ഷണഫലവുമായി താരതമും ചെയ്യുക.

പ്രവർത്തനം	ഗാൽവനോമീറ്റർ സൂചിയുടെ ചലനം
പ്രവർത്തനം 1	
ഗാൽവനോമീറ്റർ, സെൽ, പ്രതിരോധകം, സ്വിച്ച് എന്നിവ ശ്രേണിയിൽ ഘടിപ്പിക്കുന്നു. സ്വിച്ച് ഓൺ ചെയ്യുന്നു.	
പ്രവർത്തനം 2 ഗാൽവനോമീറ്ററുമായി സോളിനോയ്ഡ് ഘടി പ്പിച്ച്, കാന്തം സോളിനോയ്ഡിനുള്ളിലേക്കും പുറത്തേക്കും തുടർച്ചയായി ചലിപ്പിക്കുന്നു.	

സെല്ലിൽനിന്നു ലഭിച്ച വൈദ്യുതി ഒരേ ദിശയിലും ഒരേ അളവിലുമാണ് എങ്കിൽ വൈദ്യുതകാന്തികപ്രേരണം വഴി ലഭിച്ച വൈദ്യുതിയുടെ പ്രത്യേക തകൾ എന്താണ്?

ദിശ മാറുന്നു.

തുടർച്ചയായി ഒരേ ദിശയിൽ പ്രവഹിക്കുന്ന വൈദ്യുതിയാണ് നേർധാരാ വൈദ്യുതി (Direct Current - DC). ക്രമമായ ഇടവേളകളിൽ തുടർച്ച യായി ദിശമാറിക്കൊണ്ടിരിക്കുന്ന വൈദ്യുതിയാണ് പ്രത്യാവർത്തിധാരാ വൈദ്യുതി (Alternating Current - AC).

കാന്തത്തിന്റെയോ കമ്പിച്ചുരുളിന്റെയോ ചലനംമൂലം തുടർച്ചയായി വൈദ്യുതി ലഭ്യമാക്കുന്ന ഏതെങ്കിലും ഉപകരണങ്ങൾ ഉണ്ടോ? അത്തരത്തിലൊന്നാണ് അധ്യായത്തിന്റെ തുടക്കത്തിൽ കണ്ടത്. ജനറേറ്റർ എന്നാണ് ഇതിന്റെ പേര്. സൈക്കിൾ ഡൈനാമോയും ഇത്തരത്തിലൊരു ഉപകരണമാണ്.

ജനറേറ്ററുകളിൽ കാന്തത്തെയോ കമ്പിച്ചുരുളിനെയോ തുടർച്ചയായി ചലി പ്പിക്കാൻ യാന്ത്രികോർജമാണ് ഉപയോഗിക്കുന്നത്. എങ്കിൽ ജനറേറ്ററുകളിൽ നടക്കുന്ന ഊർജമാറ്റം എന്തായിരിക്കും?

യാന്ത്രികോർജം ightarrow

വൈദ്യുതകാന്തികപ്രേരണം പ്രയോജനപ്പെടുത്തി യാന്ത്രികോർജത്തെ വൈദ്യുതോർജമാക്കി മാറ്റുന്ന ഉപകരണമാണ് ജനറേറ്റർ.

ജനറേറ്റർ (Generator)

ഒരു ജനറേറ്ററിന്റെ ഘടന ചുവടെ ചേർത്ത ചിത്രത്തിന്റെ സഹായത്തോടെ മനസ്സിലാക്കാം.

ചിത്രം 3.5 (a) നിരീക്ഷിച്ച് ചിത്രം 3.5 (b) യിലെ താഴെ കൊടുത്ത ഭാഗങ്ങൾ ഏതെന്ന് രേഖപ്പെടുത്തുക.

ABCD	
B _{1,} B ₂	
R., R.	

ചിത്രം 3.5 (b) നിരീക്ഷിക്കുക. ABCD എന്നത് ആർമെച്ചർ കോയിലിന്റെ ഒരു ചുറ്റിനെ സൂചിപ്പിക്കുന്നു. ആർമെച്ചർ അക്ഷത്തിനെ ആധാരമാക്കി കറങ്ങുമ്പോൾ (പ്രദക്ഷിണദിശ യിൽ) AB എന്ന ഭാഗം മുകളിലേക്കും CD എന്ന ഭാഗം താഴേ ക്കുമാണല്ലോ ചലിക്കുക.

എങ്കിൽ ഫ്ളെമിങ്ങിന്റെ വലതുകൈനിയമം അനുസരിച്ച്,

- AB എന്ന ഭാഗത്തുണ്ടാവുന്ന പ്രേരിതവൈദ്യുതിയുടെ ദിശ ഏത്? (A യിൽനിന്ന് B യിലേക്ക്/B യിൽനിന്ന് A യിലേ ക്ക്)
- CD എന്ന ഭാഗത്തുണ്ടാവുന്ന പ്രേരിതവൈദ്യുതിയുടെ ദിശ ഏത്? (C യിൽനിന്ന് D യിലേക്ക്/D യിൽനിന്ന് C യിലേ ക്ക്)
- ABCD എന്ന ചുറ്റിലുണ്ടാവുന്ന വൈദ്യുതിയുടെ ദിശ ഏത്?
 (A യിൽനിന്ന് D യിലേക്ക്/D യിൽനിന്ന് A യിലേക്ക്)
- ബാഹ്യസെർക്കീട്ടിലൂടെയുള്ള (ഗാൽവനോമീറ്ററിലൂടെയുള്ള) വൈദ്യുത പ്രവാഹദിശ ഏത്? (\mathbf{B}_2 വിൽനിന്ന് \mathbf{B}_1 ലേക്ക്/ \mathbf{B}_1 ൽനിന്ന് \mathbf{B}_2 വിലേക്ക്)

ഈ സന്ദർഭത്തിൽ ആർമെച്ചറിന്റെ AB, CD എന്നീ ഭാഗങ്ങൾ കാന്തികമണ്ഡ ലത്തിന് ലംബമായാണല്ലോ ചലിക്കുന്നത്. അതിനാൽ വൈദ്യുതപ്രവാഹം പരമാവധിയായിരിക്കും. 90° കറങ്ങിക്കഴിയുമ്പോൾ ആർമെച്ചറിന്റെ AB എന്ന ഭാഗത്തിന്റെയും CD എന്ന ഭാഗത്തിന്റെയും ചലനം കാന്തികമണ്ഡലത്തിന് സമാന്തരമാവുന്നതിനാൽ പ്രേരിതവൈദ്യുതി പൂജ്യമായിരിക്കും.

ആർമെച്ചർ 180° അഥവാ ഒരു അർധഭ്രമണം പൂർത്തിയാക്കുമ്പോൾ AB യുടെയും CD യുടെയും സ്ഥാനം എപ്രകാരമായിരിക്കും?

കറക്കത്തിന്റെ ഈ ഘട്ടം സയൻസ് ഡയറിയിൽ ചിത്രീകരിക്കുക. ഈ സന്ദർഭ ത്തിൽ

- AB യുടെ ചലനദിശ എങ്ങോട്ട്?
- CD യുടെ ചലനദിശ എങ്ങോട്ട്?
- ആർമെച്ചറിലുണ്ടാവുന്ന വൈദ്യുതപ്രവാഹദിശ ഏത്?
- ബാഹ്യ സെർക്കീട്ടിലൂടെയുള്ള (ഗാൽവനോമീറ്ററിലൂടെയുള്ള) വൈദ്യുത പ്രവാഹദിശ ഏത്?

ഓരോ അർധഭ്രമണത്തിലും വൈദ്യുതപ്രവാഹദിശ മാറുന്നതായും വൈദ്യു തിയുടെ അളവ് കൂടുകയും കുറയുകയും ചെയ്യുന്നതായും മനസ്സിലാക്കിയല്ലോ.

<mark>ജനറേറ്ററിന്റെ</mark> ഭാഗങ്ങൾ

<mark>ഫീൽഡ്</mark> കാന്തം

<mark>ജനറേറ്ററിൽ കാന്തികഫ്ളക്സ് സൃഷ്ടി ക്കുന്ന കാന്തം.</mark>

<mark>ആർമെച്ചർ</mark>

ഒരു പച്ചിരുമ്പുകോറിൽ കവചിത ചാലക ക്കമ്പി ചുറ്റിയെടുത്ത ക്രമീകരണം. ഇതിനെ ഒരു അക്ഷത്തെ ആധാരമാക്കി കറക്കാൻ കഴിയും.

<mark>സ്ലിപ്പ്റിങ്</mark>സ്

<mark>ആർമെച്ചർ ടെർമി</mark>നലുമായി വിളക്കി ച്ചേർത്ത പൂർണവളയങ്ങൾ. ഇവ <mark>ആർമെച്ചറിനൊ</mark>പ്പം അതേ അക്ഷത്തെ <mark>ആധാരമാക്കി</mark> കറങ്ങുന്നു.

ബ്രഷ്

സ്സിപ്പ് റിങ്സുമായി സദാ സ്പർശിച്ചുകൊ ണ്ടിരിക്കുന്ന ക്രമീകരണം. ബാഹ്യ സെർക്കീട്ടിലേക്ക് ഇതിലൂടെ വൈദ്യുതി പ്രവഹിക്കുന്നു. ഇത്തരത്തിലുള്ള വൈദ്യുതി അതായത് പ്രത്യാവർത്തിധാരാവൈദ്യുതി (AC) ഉൽപ്പാദിപ്പിക്കുന്ന ജനറേറ്റർ AC ജനറേറ്റർ എന്നറിയപ്പെടുന്നു.

കാന്തികമണ്ഡലത്തിൽ ആർമെച്ചർ ഒരു ഭ്രമണം പൂർത്തിയാക്കുന്നതിനിടയി ലുള്ള വിവിധ ഘട്ടങ്ങളും ആ സന്ദർഭങ്ങളിലെ emf ന്റെ അളവ് സൂചിപ്പി ക്കുന്ന ഗ്രാഫും ചിത്രീകരിച്ചിരിക്കുന്നു. ഗ്രാഫ് അപഗ്രഥിച്ച്, താഴെ കൊടുത്ത പട്ടിക പൂരിപ്പിക്കുക.

പിരീയഡ് T

<mark>ആർമെച്ചർ</mark> കോയിലിന്റെ <mark>ഒരു പൂർണഭ്ര</mark>മണത്തിനെ <mark>ടുക്കുന്ന സമ</mark>യമാണ് പിരീ <mark>യഡ് T</mark>. അർധഭ്രമണം <mark>അഥവാ 180°</mark> തിരിയാനെടു <mark>ക്കുന്ന സമയ</mark>മാണ് T/2.

	സമയം				
	0	T/4	T/2	³∕4 T	T
ആർമെച്ചർ തിരിഞ്ഞ കോൺ	0_0	90^{0}	180^{0}	270^{0}	360^{0}
ഫ്ളക്സ് വ്വതിയാനനിരക്ക്	0	പരമാവധി	0		
പ്രേരിത emf വോൾട്ടിൽ (V)	0	പരമാവധി	0		

പട്ടിക 3.4

AC ജനറേറ്ററിന്റെ ആർമെച്ചർ ആദ്യ അർധഭ്രമണത്തിൽ ഒരു ദിശയിൽ ഉൽപ്പാ ദിപ്പിക്കുന്ന പ്രേരിതവൈദ്യുതിയും അടുത്ത അർധഭ്രമണത്തിൽ വിപരീതദി ശയിൽ ഉൽപ്പാദിപ്പിക്കുന്ന പ്രേരിതവൈദ്യുതിയും ചേർന്നാൽ AC യുടെ ഒരു പരിവൃത്തി (Cycle) ലഭിക്കും. ഒരു സെക്കന്റിലെ പരിവൃത്തികളുടെ എണ്ണമാണ് AC യുടെ ആവൃത്തി.

നമ്മുടെ രാജ്യത്ത് വിതരണത്തിനുവേണ്ടി ഉൽപ്പാദിപ്പിക്കുന്ന AC യുടെ ആവൃത്തി 50 സൈക്കിൾ / സെക്കന്റ് അഥവാ 50 Hz ആണ്.

ലഭിക്കുന്ന വൈദ്യുതിയുടെ ആവൃത്തി 50 Hz ആകണമെങ്കിൽ ആർമെച്ചർ കോയിൽ ഒരു സെക്കന്റിൽ 50 പ്രാവശ്യം ഭ്രമണം ചെയ്യേണ്ടതല്ലേ? പ്രായോഗികബുദ്ധിമുട്ടുകൾ പരിഗണിച്ച് കറക്കത്തിന്റെ എണ്ണം കുറയ്ക്കാൻ ജനറേറ്ററുകളിൽ കാന്തികധ്രുവങ്ങളുടെയും ആർമെച്ചർ കോയിലുകളുടെയും എണ്ണം വർധിപ്പിച്ചിട്ടുണ്ട്.

50Hz ആവൃത്തിയുള്ള AC യിൽ വൈദ്യുതപ്രവാഹദിശ ഒരു സെക്കന്റിൽ എത്ര പ്രാവശ്യം വ്യത്യാസപ്പെടുന്നു?

ഒരു ജനറേറ്ററിന്റെ ആർമെച്ചർ കറങ്ങുമ്പോൾ പ്രേരിതമാവുന്ന വൈദ്യു തിയെ ബാഹ്യ സെർക്കീട്ടിലെത്തിക്കാനുള്ള സംവിധാനമാണല്ലോ സ്ലിപ് റിങ്ങുകളും ബ്രഷുകളും. എന്നാൽ ജനറേറ്ററിലെ കാന്തമാണ് കറക്കുന്ന തെങ്കിൽ ഇത്തരത്തിലുള്ള സംവിധാനം ആവശ്യമുണ്ടോ?

സ്ലിപ് റിങ്ങുകൾ ബ്രഷുമായി ഉരസി സ്പാർക്ക് ഉണ്ടാവുന്നതിനാൽ, AC ജനറേറ്ററുകളിൽ കാന്തമാണ് കറക്കുന്നത്. ഇത്തരത്തിൽ കറക്കാനാവശ്യ മായ യാന്ത്രികോർജം ലഭിക്കാൻ പല മാർഗങ്ങളും അവലംബിക്കാറുണ്ട്. ഡീസൽ/പെട്രോൾ എൻജിനുകൾ, അണക്കെട്ടിലെ ജലം എന്നിവ ഉപയോഗപ്പെടുത്തി ജനറേറ്ററുകൾ പ്രവർത്തിപ്പിക്കാം.

മറ്റേതെല്ലാം രീതിയിൽ ജനറേറ്റർ പ്രവർത്തിപ്പിക്കാനാവശ്യമായ യാന്ത്രി കോർജം ലഭ്യമാക്കാം എന്ന് ഡയറിയിൽ കുറിക്കൂ.

വേദിക്കരികിൽ ബാബു കണ്ട ജനറേറ്റർ വൈദ്യുതി ഉൽപ്പാദിപ്പിക്കുന്നതെ ങ്ങനെയെന്ന് ഇനി സയൻസ് ഡയറിയിൽ എഴുതിനോക്കു.

ഒരു ജനറേറ്റർ ഉപയോഗിച്ച് DC (നേർധാരാവൈദ്യുതി) ഉൽപ്പാദിപ്പിക്കാൻ സാധിക്കുമോ?

ജനറേറ്ററിലെ സ്ലിപ് റിങ്ങിനു പകരം സ്പ്ലിറ്റ് റിങ് കമ്മ്യൂട്ടേറ്റർ സംവിധാനം ഉപയോഗിക്കുകയാണെങ്കിൽ അത്തരം ജനറേറ്ററിൽ നിന്ന് ലഭിക്കുന്നത് DC ആയിരിക്കും. ചിത്രം നിരീക്ഷിക്കുക.

ഇവിടെ ഒരു ബ്രഷ് $(\mathbf{B_1})$ എല്ലായ്പ്പോഴും, കാന്തികമണ്ഡലത്തിൽ മുകളി ലേക്കു ചലിക്കുന്ന ആർമെച്ചർ ഭാഗമായും രണ്ടാമത്തെ ബ്രഷ് $(\mathbf{B_2})$ എല്ലാ

യ്പ്പോഴും താഴേക്കു ചലിക്കുന്ന ആർമെച്ചർ ഭാഗമായും ബന്ധപ്പെട്ടിരിക്കുന്നു. തദ്ഫലമായി ആർമെച്ചർ കറങ്ങുമ്പോൾ AC ഉണ്ടാവുമെങ്കിലും ബാഹ്യ സെർക്കീട്ടിൽ DC യാണ് ലഭിക്കുക.

ഇത്തരം ജനറേറ്ററുകളാണ് DC ജനറേറ്ററുകൾ.

കഴിഞ്ഞ അധ്യായത്തിൽ പരിചയപ്പെട്ട DC മോട്ടോറിന്റെ ഘടനയും DC ജനറേറ്ററിന്റെ ഘടനയും തമ്മിലുള്ള സാമ്യങ്ങൾ എന്തെല്ലാമാണ്?

- സ്ഥിരകാന്തം
- •
- ഒരു ചെറിയ DC ജനറേറ്ററിന്റെ ഔട്ട്പുട്ടിൽ ഗാൽവനോമീറ്റർ ഘടിപ്പിച്ച് ആർമെ ച്ചർ തുടർച്ചയായി കറക്കുക.
- സൂചിയുടെ വിഭ്രംശം ഏതു രീതിയിലാണ്?
- വൈദ്യുതിയുടെ ദിശ മാറുന്നുണ്ടോ?
- വൈദ്യുതിയുടെ അളവ് ഒരേ രീതിയിലാണോ?
 വൈദ്യുതിയുടെ ദിശ മാറുന്നില്ല എന്നും ഏറ്റക്കുറച്ചിലുള്ള വൈദ്യുതിയാണ് ലഭിക്കുന്നതെന്നും മനസ്സിലായല്ലോ.

AC ജനറേറ്റർ, ബാറ്ററി, DC ജനറേറ്റർ എന്നിവയിൽനിന്നു ലഭിക്കുന്ന emf-ന്റെ ഗ്രാഫികചിത്രീകരണം പട്ടികയിൽ കൊടുക്കുന്നു. ഗ്രാഫ് നിരീക്ഷിച്ച് വൈദ്യുതിയുടെ പ്രത്യേകതകൾ എഴുതുക.

പട്ടിക 3.5

ഒരു കാന്തവും കമ്പിച്ചുരുളും ഉപയോഗിച്ച് വൈദ്യുതകാന്തികപ്രേരണം ഉണ്ടാ വുന്ന വിധം മനസ്സിലാക്കിയല്ലോ. മറ്റേതെങ്കിലും രീതിയിൽ വൈദ്യുതകാന്തിക പ്രേരണം സാധ്യമാണോ? പരീക്ഷണം ചെയ്തു നോക്കാം.

മ്യൂചാൽ ഇൻഡക്ഷൻ (Mutual Induction)

ചിത്രത്തിൽ കാണുന്നതുപോലെ ഒരു പച്ചിരുമ്പുകോറിനു മുകളിൽ കവചിത കമ്പികൊണ്ട് ചുറ്റുകളുണ്ടാക്കുക (ഏകദേശം 500 ചുറ്റുകൾ). ആദ്യത്തെ കമ്പിച്ചുരുളിന്റെ അഗ്രങ്ങളെ ഒരു സെല്ലും സിച്ചുമായും രണ്ടാമത്തെ ചുരുളിന്റെ അഗ്രങ്ങളെ ഒരു ബൾബുമായും ഘടിപ്പിക്കുക.

- സിച്ച് തുടർച്ചയായി ഓണാക്കുകയും ഓഫാക്കുകയും ചെയ്യുക. എന്തു നിരീ ക്ഷിക്കുന്നു?
- സിച്ച് ഓണാക്കിയ അവസ്ഥയിൽ വച്ചിരുന്നാൽ എന്തു നിരീക്ഷിക്കുന്നു?
 വൈദ്യുതി കടന്നുപോകുമ്പോൾ പച്ചിരുമ്പുകോറിനു ചുറ്റും കാന്തികഫ്ളക്സ് രൂപപ്പെടുമല്ലോ.
- ഏതെല്ലാം സന്ദർഭങ്ങളിലാണ് ഫ്ളക്സിന് മാറ്റം ഉണ്ടാകുന്നത്?
- രണ്ടാമത്തെ കോയിലിൽ വൈദ്യുതപ്രവാഹമുണ്ടാകുന്നത് ഏതെല്ലാം സന്ദർഭങ്ങളിലാണ്?

ഏതു കോയിലിലാണോ നാം വൈദ്യുതി നൽകുന്നത്, അതാണ് പ്രൈമറി കോയിൽ. ഏതു കോയിലിലാണോ വൈദ്യുതി പ്രേരിതമാകുന്നത്, അതാണ് സെക്കൻഡറി കോയിൽ.

സ്വിച്ച് തുടർച്ചയായി ഓൺ-ഓഫ് ചെയ്യാതെതന്നെ കാന്തികഫ്ളക്സിൽ മാറ്റം ഉണ്ടാക്കാൻ ഒരു മാർഗം നിർദേശിക്കാമോ?

DC ക്ക് പകരം AC യാണ് പ്രൈമറി കോയിലിൽ നൽകുന്നതെങ്കിൽ സെക്കന്ററി കോയിലിൽ തുടർച്ചയായി emf പ്രേരണം ചെയ്യപ്പെടും.

പ്രൈമറിയിലൂടെ AC കടത്തിവിട്ടപ്പോൾ AC യുടെ ദിശ മാറുന്നതിനനുസരിച്ച് പച്ചിരുമ്പുകോറിനു ചുറ്റും തുടർച്ചയായി മാറ്റം സംഭവിക്കുന്ന കാന്തികമണ്ഡലം ഉണ്ടാകുന്നു. മാറുന്ന ഈ കാന്തികമണ്ഡലത്തിലാണ് സെക്കൻഡറി കോയിൽ സ്ഥിതിചെയ്യുന്നത്. ഇത് സെക്കൻഡറി ചുരുളിനുള്ളിൽ വച്ച് ഒരു കാന്തം ചലിപ്പി ക്കുന്നതിന് സമാനമാണ്. തന്മൂലം സെക്കൻഡറിയിൽ ഫ്ളക്സ് വ്യതിയാനം അനുഭവപ്പെടുകയും അതിൽ emf പ്രേരണം ചെയ്യപ്പെടുകയും ചെയ്യുന്നു. ഈ പ്രവർത്തനമാണ് മ്യൂച്വൽ ഇൻഡക്ഷൻ.

സമീപസ്ഥങ്ങളായി സ്ഥിതിചെയ്യുന്ന രണ്ടു കമ്പിച്ചൂരുളുകളിൽ ഒന്നിലെ വൈദ്യുതപ്രവാഹതീവ്രതയിലോ ദിശയിലോ മാറ്റമുണ്ടാകുമ്പോൾ അതിനു ചുറ്റുമുള്ള കാന്തികഫ്ളക്സിന് മാറ്റമുണ്ടാകുന്നു. ഇതിന്റെ ഫല മായി രണ്ടാമത്തെ കമ്പിച്ചുരുളിലും ഒരു emf പ്രേരിതമാകുന്നു. ഈ പ്രതിഭാസമാണ് മ്യൂചൽ ഇൻഡക്ഷൻ.

മ്യൂച്വൽ ഇൻഡക്ഷന്റെ അടിസ്ഥാനത്തിൽ പ്രവർത്തിക്കുന്ന ഉപകരണമാണ് ട്രാൻസ്ഫോമർ

ട്രാൻസ്ഫോമർ (Transformer)

ട്രാൻസ്ഫോമർ ചിത്രം 3.9

പ്രതീകം

പവറിൽ വൃത്യാസം വരാതെ ACയുടെ വോൾട്ടത ഉയർത്താനോ താഴ്ത്താനോ സഹായിക്കുന്ന ഉപകരണമാണ് ട്രാൻസ്ഫോമർ. ട്രാൻസ്ഫോമർ രണ്ടു തരമുണ്ട്.

AC യുടെ വോൾട്ടത ഉയർത്തുന്നത് സ്റ്റെപ്അപ് ട്രാൻസ്ഫോമ റും (Step up transformer) AC യുടെ വോൾട്ടത താഴ്ത്തുന്നത് സ്റ്റെപ്ഡൗൺ ട്രാൻസ്ഫോമറും (Step down transformer) ആണ്. സ്റ്റെപ്അപ്, സ്റ്റെപ്ഡൗൺ ട്രാൻസ്ഫോമറുകളുടെ രേഖാചിത്രം നിരീക്ഷിച്ച് ഘടനയിലുള്ള വ്യത്യാസം പട്ടികപ്പെടുത്തുക.

സ്റ്റെപ്അപ് ട്രാൻസ്ഫോമർ	സ്റ്റെപ്ഡൗൺ ട്രാൻസ്ഫോമർ
 പ്രൈമറിയിൽ വണ്ണം കൂടിയ കമ്പികൾ ഉപയോഗിച്ചിരിക്കുന്നു. 	
•	
•	

പട്ടിക 3.6

ഒരു ട്രാൻസ്ഫോമറിന്റെ ഇരു കോയിലുകളിലെയും ഓരോ ചുറ്റിലുമുള്ള emf തുല്യമായിരിക്കും. ഒരു ചുറ്റിലുള്ള emf $m{\mathcal{E}}$ ആയാൽ, പ്രൈമറി കോയിലിലെ emf, $V_{_{\mathrm{p}}}$ = $N_{_{\mathrm{p}}}$ imes ϵ

സെക്കൻഡറി ചുരുളിൽ പ്രേരിതമാകുന്ന emf, V_s = N_s \times ϵ ആയിരിക്കും. അതി നാൽ സെക്കൻഡറിയിലെ ചുറ്റുകളുടെ എണ്ണത്തിനനുസരിച്ച് V_s മാറുന്നു.

ഒരു ട്രാൻസ്ഫോമറിന്റെ പ്രൈമറിയിലെ ചുറ്റുകളുടെ എണ്ണത്തിന്റെ എത്ര മടങ്ങാണോ സെക്കൻഡറിയിലെ ചുറ്റുകളുടെ എണ്ണം, അത്രതന്നെ മടങ്ങ് വോൾട്ട തയിലും വ്യത്യാസമുണ്ടാകും.

 $V_{\rm S}$ സെക്കൻഡറി വോൾട്ടതയും $V_{\rm P}$ പ്രൈമറി വോൾട്ടതയും $N_{\rm S}$ സെക്കൻഡറിയിലെ ചുറ്റുകളുടെ എണ്ണവും $N_{\rm P}$ പ്രൈമറി ചുറ്റുകളുടെ എണ്ണവുമായാൽ, ഒരു ട്രാൻസ്ഫോമറിന്റെ ചുറ്റുകളുടെ എണ്ണവും അതിൽ പ്രേരിതമാ

കുന്ന emf ഉം തമ്മിലുള്ള ബന്ധമാണ്. $\frac{V_{s}}{V_{p}} = \frac{N_{s}}{N_{p}}$

ഈ സമവാകൃമുപയോഗിച്ച് പട്ടിക 3.7 പൂർത്തിയാക്കുക.

	<u> </u>	· •	
പ്രൈമറി കോയിൽ		സെക്കൻഡറി കോയിൽ	
ചുറ്റുകളുടെ	വോൾട്ടത	ചുറ്റുകളുടെ	വോൾട്ടത
എണ്ണം $\mathrm{N}_{_{\mathrm{P}}}$	V _P	എണ്ണം $ m N_{_S}$	V_s
500	10 V	2500	
•••••	100 V	800	25 V
600		1800	120 V
12000	240 V		12 V

പട്ടിക 3.7

- 240 V AC യിൽ പ്രവർത്തിക്കുന്ന ഒരു ട്രാൻസ്ഫോമർ ആ സെർക്കീ ട്ടിലെ ഒരു ഇലക്ട്രിക് ബെല്ലിന് 8 V വോൾട്ടത നൽകുന്നു. ഇതിന്റെ പ്രൈമറി കോയിലിൽ 4800 ചുറ്റുകൾ ഉണ്ടെങ്കിൽ സെക്കൻഡറിയിലെ ചുറ്റുകളുടെ എണ്ണം കണക്കാക്കുക.
- 240 V ഇൻപുട്ട് വോൾട്ടേജിൽ പ്രവർത്തിക്കുന്ന ഒരു ട്രാൻസ്ഫോമറിന്റെ സെക്കൻഡറിയിൽ 80 ചുറ്റുകളും പ്രൈമറിയിൽ 800 ചുറ്റുകളുമുണ്ട്. ഈ ട്രാൻസ്ഫോമറിന്റെ ഔട്ട്പുട്ട് വോൾട്ടത എത്ര?

ഒരു ട്രാൻസ്ഫോമറിന്റെ പ്രൈമറി, സെക്കൻഡറി കോയിലുകളിലെ പവർ തുല്യമാണല്ലോ.

അതായത് ഒരു ട്രാൻസ്ഫോമറിൽ മറ്റ് ഊർജനഷ്ടങ്ങൾ ഒന്നുമില്ലെങ്കിൽ പ്രൈമറിയിലെ പവറും സെക്കൻഡറിയിലെ പവറും തുല്യമായിരിക്കും.

• വോൾട്ടതയും കറന്റും അറിയാമെങ്കിൽ പവർ കണ്ടെത്താനുള്ള സൂത്ര വാക്യം ഏതാണ്?

ട്രാൻസ്ഫോമറിന്റെ പ്രൈമറിയിലെ വോൾട്ടത $V_{_{
m P}}$ യും അതിലെ കറന്റ് $I_{_{
m P}}$ യും, സെക്കൻഡറിയിലെ വോൾട്ടത $\mathrm{V_{_{S}}}$ ഉം അതിലെ കറന്റ് $\mathrm{I_{_{S}}}$ ഉം ആയാൽ ഇവയെ ബന്ധിപ്പിക്കുന്ന സൂത്രവാക്യം എഴുതാമോ?

പ്രൈമറിയിലെ പവർ =×

സെക്കൻഡറിയിലെ പവർ =×

ഒരു ട്രാൻസ്ഫോമറിനെ സംബന്ധിച്ചിടത്തോളം പ്രൈമറിയിലെ പവർ = സെക്കൻഡറിയിലെ പവർ, അതായത്,

$$V_P \times I_P = V_S \times I_S$$

$$\therefore \frac{I_p}{I_s} = \frac{V_s}{V_p}$$

 $V_{_P} imes I_{_P} = V_{_S} imes I_{_S}$ സ്റ്റെപ്അപ് ട്രാൻസ്ഫോമറിന്റെ സെക്കൻഡറി വോൾട്ടത കൂടുതലും കറന്റ് കുറവുമായിരിക്കും. സ്റ്റെപ്ഡൗൺ ട്രാൻസ്ഫോമറിലെ സെക്കൻഡറി വോൾട്ടത കുറവും കറന്റ് കൂടുതലുമായിരിക്കും.

പവർ നഷ്ടമില്ലാത്ത ഒരു ട്രാൻസ്ഫോമറിലെ പ്രൈമറിയിൽ 5000 ചുറ്റു കളും സെക്കൻഡറിയിൽ 250 ചുറ്റുകളുമാണുള്ളത്. പ്രൈമറിയിലെ വോൾട്ടത 120 V ഉം വൈദ്യുതപ്രവാഹതീവ്രത 0.1A ഉം ആണ്. സെക്കൻഡറിയിലെ വോൾട്ടതയും കറന്റും കണക്കാക്കുക.

താഴെ കൊടുത്ത ബന്ധങ്ങളെ സ്റ്റെപ്അപ്/സ്റ്റെപ്ഡൗൺ ട്രാൻസ്ഫോമറുമായി ബന്ധപ്പെടുത്തി തരംതിരിക്കുക.

$$\bullet \qquad V_{_{S}} > V_{_{p}} \qquad \qquad \bullet \quad V_{_{S}} < V_{_{p}}$$

$$V_s < V_s$$

$$I_s > I_p$$

$$\bullet I_s > I_p \qquad \bullet \frac{N_s}{N_p} < 1 \qquad \bullet \frac{N_s}{N_p} > 1$$

$$\frac{N_s}{N_p} > 1$$

ഒരു സോളിനോയ്ഡിലൂടെ വൈദ്യുതി പ്രവഹിക്കുന്നതിന്റെ ഫലമായി അതേ സോളിനോയ്ഡിൽ പ്രേരിതവൈദ്യുതിയുണ്ടാവാൻ സാധ്യതയുണ്ടോ?

സെൽഫ് ഇൻഡക്ഷൻ (Self Induction)

താഴെ കൊടുത്ത രണ്ടു പരീക്ഷണങ്ങൾ നിരീക്ഷിക്കുക.

സിച്ച് ഓൺ ചെയ്ത് വച്ചിരിക്കുമ്പോൾ സെർക്കീട്ടിലെ ബൾബ് പ്രകാശി ക്കുമല്ലോ.

ഏതു സെർക്കീട്ടിലെ ബൾബിനാണ് പ്രകാശതീവ്രത കുറവ്? എന്തുകൊണ്ടായിരിക്കും പ്രകാശതീവ്രത കുറ ഞ്ഞത്? നിരീക്ഷണത്തിന്റെ അടിസ്ഥാനത്തിൽ ചോദ്യ ങ്ങൾക്കുത്തരം കണ്ടെത്തു.

- ഏതു സെർക്കീട്ടിലാണ് സോളിനോയ്ഡിനു ചുറ്റും കാന്തികമണ്ഡലമുണ്ടായത്?
- ഏതു സെർക്കീട്ടിലാണ് സോളിനോയ്ഡിനു ചുറ്റും
 മാറുന്ന കാന്തികമണ്ഡലമുണ്ടായത്?
- എങ്കിൽ ഏതു സോളിനോയ്ഡിലായിരിക്കും ഒരു പ്രേരിത emf തുടർച്ചയായി സംജാതമാവുക?

ഒരു സോളിനോയ്ഡിലൂടെ AC കടന്നുപോകുമ്പോൾ, ചുറ്റും മാറിക്കൊണ്ടിരിക്കുന്ന ഒരു കാന്തികമണ്ഡലം ഉണ്ടാ കുന്നു. ഇതിന്റെ ഫലമായി ഇതേ സോളിനോയ്ഡിൽ ഒരു പ്രേരിത emf ഉണ്ടാകുന്നു. ഈ പ്രേരിത emf സെർക്കീ ട്ടിൽ പ്രയോഗിച്ച emf ന് വിപരീതദിശയിലായിരിക്കും. അതി നാൽ ഇത് ബാക്ക് emf എന്നറിയപ്പെടുന്നു. ഈ emf സെർക്കീ ട്ടിലെ സഫല വോൾട്ടത കുറയ്ക്കുകയും ചെയ്യുന്നു.

പച്ചിരുമ്പിന്റെ പ്രാധാന്യം

പച്ചിരുമ്പിന് കാന്തികഫ്ളക്സിനെ ഉള്ളിലേക്കു പ്രസരിപ്പിക്കാനുള്ള ശേഷി (പെർമിയബിലിറ്റി) കൂടുതലാ ണ്. അതിനാൽ കാന്തിക്മണ്ഡലത്തിൽ ഏതെങ്കിലുമൊരു ഭാഗത്ത് ഫ്ളക്സ് സാന്ദ്രത വർധിപ്പിക്കാൻ പച്ചിരുമ്പ് ആ ഭാഗത്ത് അനുയോജ്യമായി ക്രമീകരി ച്ചാൽ മതി. ജനറേറ്ററുകൾ, മോട്ടോറു കൾ, ട്രാൻസ്ഫോമറുകൾ എന്നിവയി ലെല്ലാം കമ്പിച്ചുരുൾ ചുറ്റിയിരിക്കുന്ന ത് പച്ചിരുമ്പുകോറിലാണ്. കൂടാതെ, ഒരു കാന്തികമണ്ഡലത്തിന്റെ സാന്നിധ്യ ത്തിൽ പെട്ടെന്ന് കാന്തവൽക്കരിക്കപ്പെ ടുകയും കാന്തികമണ്ഡലം അപ്രതൃക്ഷ മാകുമ്പോൾ കാന്തശക്തി ഉടനടി നഷ്ട പ്പെടുകയും ചെയ്യുക എന്ന പ്രത്യേക തയും പച്ചിരുമ്പിനുണ്ട്.

ഒരു സോളിനോയ്ഡിൽ വൈദ്യുതി പ്രവഹിക്കുമ്പോഴുണ്ടാകുന്ന ഫ്ളക്സ് വൃതിയാനം, അതേ ചാലകത്തിൽ വൈദ്യുതപ്രവാഹത്തെ എതിർക്കുന്ന ദിശയിൽ ഒരു emf (ബാക്ക് emf) ഉണ്ടാക്കുന്നു. ഈ പ്രതി ഭാസമാണ് സെൽഫ് ഇൻഡക്ഷൻ.

രണ്ടാമത്തെ സെർക്കീട്ടിലെ ബൾബിന്റെ പ്രകാശതീവ്രത കുറയാനുണ്ടായ കാരണം മനസ്സിലായല്ലോ. സയൻസ് ഡയറിയിൽ എഴുതൂ.

സെൽഫ് ഇൻഡക്ഷന്റെ അടിസ്ഥാനത്തിൽ പ്രവർത്തിക്കുന്ന ഒരു ഉപകര ണമാണ് ഇൻഡക്ടർ

ഇൻഡക്ടർ (Inductor)

സർപ്പിളാകൃതിയിൽ (Helical) ചുറ്റിയെടുത്ത കവചിതചാലകമാണ് ഇൻഡ ക്ടർ.

ഒരു സെർക്കീട്ടിലെ വൈദ്യുതപ്രവാഹത്തിലുണ്ടാകുന്ന മാറ്റങ്ങളെ എതിർക്കുന്ന കമ്പിച്ചുരുളുകളാണ് ഇൻഡക്ടറുകൾ. AC സെർക്കീട്ടിൽ പവർനഷ്ടം കൂടാതെ വൈദ്യുതപ്രവാഹം ആവശ്യാനുസരണം കുറ യ്ക്കുന്നതിനാണ് ഇൻഡക്ടറുകൾ ഉപയോഗിക്കുന്നത്.

ചിത്രം 3.12

പ്രതീകം

- ഇലക്ട്രോണിക് സെർക്കീട്ടുകളിൽ ഇൻഡക്ടറുകൾ വ്യാപകമായി ഉപ യോഗിക്കാറുണ്ട്. ഇതിന്റെ ആവശ്യകത എന്ത്?
- ഇൻഡക്ടറുകൾക്ക് പകരം AC സെർക്കീട്ടിൽ പ്രതിരോധകങ്ങൾ ഉപ യോഗിച്ചാലുള്ള പ്രശ്നം എന്തായിരിക്കും?
- DC സെർക്കീട്ടുകളിൽ ഇൻഡക്ടറുകൾ ഉപയോഗിക്കാറില്ല. കാരണം കണ്ടെത്തി സയൻസ് ഡയറിയിൽ കുറിക്കൂ.

ജനറേറ്റർ, ട്രാൻസ്ഫോമർ, ഇൻഡക്ടർ എന്നിവയെല്ലാം വൈദ്യുത കാന്തിക പ്രേരണ തത്തവുമായി ബന്ധപ്പെട്ട് പ്രവർത്തിക്കുന്നവയാണെന്ന് മനസ്സിലാ ക്കിയല്ലോ. വൈദ്യുതകാന്തികപ്രേരണ തത്ത്വത്തിന്റെ അടിസ്ഥാനത്തിൽ പ്രവർത്തിക്കുന്ന മറ്റൊരു ഉപകരണമാണ് ചലിക്കുംചുരുൾ മൈക്രോഫോൺ.

ചലിക്കുംചുരുൾ മൈക്രോഫോൺ (Moving Coil Microphone)

ചിത്രം 3.13 വിശകലനം ചെയ്ത് തന്നിരിക്കുന്ന ചോദ്യങ്ങൾക്ക് ഉത്തരം കണ്ടെത്തു.

ചലിക്കുംചുരുൾ മൈക്രോഫോൺ ചിത്രം 3.13

- ചലിക്കുംചുരുൾ മൈക്രോഫോണിന്റെ പ്രധാന ഭാഗങ്ങൾ ഏതെല്ലാം?
 - -----
- ഇതിൽ ചലിക്കുന്ന ഭാഗം ഏതാണ്?
 - -----
- ചലനശേഷിയുള്ള ഡയഫ്രത്തിനു മുമ്പിൽ ശബ്ദം പുറപ്പെടുവിച്ചാൽ ഡയഫ്രത്തിനെന്തു സംഭവിക്കും?
- - -----
- ഇതിന്റെ ഫലമെന്ത്?

<mark>ചലിക്കുംചുരുൾ മൈക്രോഫോണിന്റെ</mark> പ്രവർത്തനം

കാന്തികമണ്ഡലത്തിൽ സ്ഥിതിചെയ്യുന്ന വോയ്സ് കോയിൽ അതിനോടു ബന്ധിച്ചിരിക്കുന്ന ഡയഫ്ര ത്തിൽ പതിക്കുന്ന ശബ്ദതരംഗങ്ങൾക്കനുസൃതമായി കമ്പനം ചെയ്യുന്നു. ഇതിന്റെ ഫലമായി വോയ്സ് കോയിലിൽ ശബ്ദത്തിനനുസൃതമായ വൈദ്യുത സിഗ്നലുകൾ ഉണ്ടാകുന്നു. മൈക്രോഫോണിൽ യാന്ത്രികോർജം വൈദ്യുതോർജമായി മാറുന്നു.

മൈക്രോഫോണിന് മുമ്പിൽനിന്ന് ശബ്ദം പുറപ്പെടുവി ച്ചാൽ, കോയിലിൽ ശബ്ദത്തിനനുസൃതമായ വൈദ്യുത സിഗ്നലുകൾ സംജാതമാകുന്നു. മൈക്രോഫോണിൽ നിന്നു ലഭിക്കുന്ന സിഗ്നലുകൾ ദുർബലമായതിനാൽ, ഇവയെ ശക്തീകരിക്കുന്നതിനായി ആംപ്ലിഫയറിൽ എത്തിക്കുന്നു.

ആംപ്ലിഫയറിൽ എത്തുന്ന സിഗ്നലുകൾ ശക്തി വർധി പ്പിച്ചശേഷം ലൗഡ് സ്പീക്കറിലേക്ക് അയയ്ക്കുകയും ശബ്ദം പുനഃസൃഷ്ടിക്കപ്പെടുകയും ചെയ്യുന്നു.

ചലിക്കുംചുരുൾ ലൗഡ്സ്പീക്കറിന്റെ ഘടന, പ്രവർ ത്തനം എന്നിവ കഴിഞ്ഞ അധ്യായത്തിൽ മനസ്സിലാക്കി യല്ലോ.

ചലിക്കുംചുരുൾ ലൗഡ് സ്പീക്കറും ചലിക്കുംചുരുൾ മൈക്രോഫോണും തമ്മിലുള്ള സാമൃങ്ങളും വൃത്യാസ ങ്ങളും സയൻസ് ഡയറിയിൽ എഴുതൂ.

ചലിക്കുംചുരുൾ മൈക്രോഫോണിൽ നടക്കുന്ന ഊർജ പരിവർത്തനമെന്ത്?

വിവിധ തത്താങ്ങളുടെ അടിസ്ഥാനത്തിൽ പ്രവർത്തി ക്കുന്ന മൈക്രോഫോണുകളിൽ ഒന്നു മാത്രമാണ് ചലിക്കുംചുരുൾ മൈക്രോഫോൺ.

പവർ പ്രേഷണവും വിതരണവും

വൈദ്യുതകാന്തിക പ്രേരണതത്താം ഉപയോഗപ്പെടുത്തി യാണ് ലോകത്ത് വൻതോതിൽ വൈദ്യുതി ഉൽപ്പാദിപ്പി ക്കുന്നത്. AC ജനറേറ്ററുകൾ ഉപയോഗിച്ചാണ് വിതരണാ വശ്യത്തിനുള്ള വൈദ്യുതി ഉൽപ്പാദിപ്പിക്കുന്നത്. ഇത്തരം ജനറേറ്ററുകൾക്ക് വേണ്ട യാന്ത്രികോർജം ലഭിക്കുന്നതി നുള്ള മാർഗങ്ങൾ ഏവ?

വിവിധതരം മൈക്രോഫോണുകൾ

ചലിക്കും ചുരുൾ മൈക്രോഫോണുകൾ കൂടാതെ പലതരം മൈക്രോഫോണുകൾ ഇന്ന് ഉപയോഗത്തി ലുണ്ട്.

1. കാർബൺ മൈക്രോഫോണുകൾ

കാർബൺ തരികൾ അടങ്ങുന്ന ബട്ടൺ എന്നു വിളിക്കപ്പെടുന്ന ഒരു ചെറിയ പേടകമാണ് ഇതിന്റെ പ്രധാന ദാഗം. ഡയഫ്രം എന്നു വിളിക്കപ്പെടുന്ന ഒരു ലോഹത്തകിട് ബട്ടണിൽ അമർന്നിരിക്കത്തക്ക വിധം ക്രമീകരിച്ചിട്ടുണ്ട്. ശബ്ദതരംഗങ്ങൾക്ക് അനു സ്വതമായി ഡയഫ്രം കമ്പനം ചെയ്യുന്നു. ഈ കമ്പ നങ്ങളെ മൈക്രോഫോൺ ശബ്ദത്തിന് അനുസ്വ തമായ വൈദ്യുതസ്പന്ദനങ്ങളാക്കി മാറ്റുന്നു. ടെലി ഫോണുകളിലാണ് കാർബൺ മൈക്രോഫോണു കൾ പ്രധാനമായും ഉപയോഗിക്കുന്നത്.

2. ക്രിസ്റ്റൽ /സിറാമിക് മൈക്രോഫോണുകൾ

പിസോ ഇലക്ട്രിക് ക്രിസ്റ്റലുകളാണ് ഇത്തരം മൈക്രോഫോണുകളുടെ പ്രധാന ഭാഗം. മർദം അനുഭവപ്പെടുമ്പോൾ വൈദ്യുതി ഉൽഷാദിപ്പിക്കാൻ കഴിയുന്നവയാണ് പിസോ ഇലക്ട്രിക് ക്രിസ്റ്റലു കൾ. ഹാം റേഡിയോകളിൽ ക്രിസ്റ്റൽ / സിറാമിക് മൈക്രോഫോണുകൾ ഉപയോഗിക്കുന്നു.

3. റിബൺ മൈക്രോഫോണുകൾ

ഒരു കാന്തികമണ്ഡലത്തിൽ തൂക്കിയിട്ടിരിക്കുന്ന ലോഹ റിബണാണ് ഇതിന്റെ പ്രധാന ഭാഗം. ശബ്ദ തരംഗങ്ങൾ റിബണിൽ തട്ടുമ്പോൾ അതിനനുസ്വ തമായി റിബൺ കാന്തികമണ്ഡലത്തിൽ ചലിക്കു കയും വൈദ്യുതപ്രവാഹം ഉണ്ടാക്കുകയും ചെയ്യുന്നു.

4. കപ്പാസിറ്റർ മൈക്രോഫോണുകൾ

ഇവ കണ്ടൻസർ മൈക്രോഫോണുകൾ എന്നും അറിയപ്പെടുന്നു. അടുത്തടുത്തായി ക്രമീകരിച്ചി ട്ടുള്ള രണ്ടു ലോഹത്തകിടുകളാണ് പ്രധാന ഭാഗങ്ങൾ. മുൻവശത്തെ അയവുള്ള പ്ലേറ്റ് ഡയഫ്രം ആയി പ്രവർത്തിക്കുന്നു. പിറകിലത്തെ പ്ലേറ്റ് ചലിക്കാൻ കഴിവുള്ളതല്ല. ശബ്ദതരംഗങ്ങൾ മുൻവ ശത്തെ പ്ലേറ്റിനെ കമ്പനം ചെയ്യിക്കുന്നു. ഇത് കപ്പാ സിറ്ററിൽ നിന്നുള്ള വൈദ്യുതിയുടെ വ്വതിയാനത്തിന് കാരണമാകുന്നു. ശ്രവണസഹായികളിലാണ് ഇത്തരം മൈക്രോഫോണുകൾ ഉപയോഗിക്കുന്നത്.

ഫീൽഡ്കാന്തത്തിന്റെ ധ്രുവങ്ങൾക്കിട യിൽ ഒരു സെറ്റ് കമ്പിച്ചുരുൾ മാത്രമുള്ള ജനറേറ്ററുകളാണ് സിംഗിൾ ഫേസ് ജനറേറ്റ റുകൾ. വൻതോതിൽ വൈദ്യുതി ഉൽപ്പാദി പ്പിക്കുന്നതിന് ത്രീഫേസ് ജനറേറ്ററുകളാണ് ഉപയോഗിക്കുന്നത്.

പവർ ജനറേറ്ററുകളിൽ ഫീൽഡ്കാന്തത്തിനു ചുറ്റുമായി 120° കോൺ വ്യത്യാസത്തിൽ സമാനമായ മൂന്ന് ആർമെച്ചറുകൾ ഉണ്ടായി രിക്കും. ഫീൽഡ് കാന്തം കറങ്ങുമ്പോൾ മൂന്ന് ആർമെച്ചറുകളിലും ഒരേസമയം മൂന്നു വ്യത്യസ്ത ഫേസിലുള്ള AC ഉൽപ്പാദിപ്പിക്കുന്നു. ഓരോ ആർമെച്ചറിലും ഏറ്റവും കൂടിയ emf ഉം ഏറ്റവും കുറഞ്ഞ emf ഉം ഉണ്ടാകുന്നത് പല സമയങ്ങളിലാണ്. ഇത്തരം ജന റേറ്ററുകളാണ് ത്രീഫേസ് ജനറേറ്ററുകൾ.

• ന്യൂക്ലിയർ ഊർജം

വിതരണ ആവശ്യത്തിനായി വൻതോതിൽ വൈദ്യുതി ഉൽപ്പാദിപ്പിക്കുന്ന സ്ഥലങ്ങളാണ് പവർസ്റ്റേഷനുകൾ. പവർസ്റ്റേഷനുകളിൽ ഉപയോഗിക്കുന്നത് 3 ഫേസ് എ.സി. ജനറേറ്ററുകളാണ്.

കേരളത്തിലെ ഏതാനും പവർസ്റ്റേഷനുകളുടെ പേരെ ഴുതുക.

- ഇടുക്കി മൂലമറ്റം
- •
- •

ഇന്ത്യയിലെ പവർസ്റ്റേഷനുകളിൽ സാധാരണയായി $11kV(11000\,V)$ യിലാണ് വൈദ്യുതി ഉൽപ്പാദിപ്പിക്കുന്നത്. ദൂരസ്ഥലങ്ങളിലേക്ക് പവർ പ്രേഷണം ചെയ്യുമ്പോൾ ചാലകത്തിൽ താപരൂപത്തിൽ ഊർജനഷ്ടം ഉണ്ടാവും. ഇത് പ്രസരണനഷ്ടം എന്നറിയപ്പെടുന്നു.

H = I²Rt എന്ന സമവാക്യം അനുസരിച്ചാണല്ലോ താപം ഉൽപ്പാദിപ്പിക്കപ്പെടുന്ന ത്. എങ്കിൽ

താപം കുറയ്ക്കാനുള്ള മാർഗങ്ങൾ എന്തെല്ലാം?

പവർ പ്രേഷണം തുടർച്ചയായ പ്രക്രിയയായതുകൊണ്ട് സമയം t കുറയ്ക്കുക പ്രായോഗികമല്ല. കൂടാതെ ചാലകത്തിന്റെ പ്രതിരോധം കുറയ്ക്കുന്നതിലും സാങ്കേ തിക തടസ്സങ്ങളുണ്ട്.

എങ്കിൽ

- കറന്റ് $\frac{1}{10}$ ആക്കി കുറച്ചാൽ താപം എത്ര കുറയും?

കറന്റ് കുറച്ചാൽ താപനഷ്ടം കുറയ്ക്കാമെന്ന് മനസ്സിലായല്ലോ.

• പവറിൽ വ്യത്യാസം വരാതെ കറന്റ് കുറയ്ക്കാനുള്ള മാർഗം എന്താണ്? P=V imes I എന്ന സമവാകൃത്തിന്റെ അടിസ്ഥാനത്തിൽ കണ്ടെത്തൂ.

പവർസ്റ്റേഷനിൽ വച്ചുതന്നെ സ്റ്റെപ്അപ് ട്രാൻസ്ഫോമർ ഉപയോഗിച്ച് വോൾട്ടത $220~\mathrm{kV}$ വരെ ഉയർത്തുന്നു. (പ്രേഷണം ചെയ്യേണ്ട ദുരത്തിനനുസരിച്ച് $110~\mathrm{kV},$ 400 kV എന്നീ വോൾട്ടതയും ഉപയോഗപ്പെടുത്താറുണ്ട്.) ഇതിന്റെ ഫലമായി കറന്റും താപരുപേണയുള്ള ഊർജനഷ്ടവും കുറയുന്നു. പിന്നീട് പവർ പ്രേഷ ണത്തിന്റെ വിവിധ ഘട്ടങ്ങളിൽ സബ്സ്റ്റേഷനുകളിൽ വച്ച് വോൾട്ടത ക്രമ മായി താഴ്ത്തുകയും വിതരണ ട്രാൻസ്ഫോമറിലേക്ക് 11 kV യിൽ വൈദ്യുതി എത്തിക്കുകയും ചെയ്യുന്നു.

ഗാർഹിക ആവശ്യങ്ങൾക്കുള്ള 230 V ലഭിക്കുന്നത് വിതരണ ട്രാൻസ്ഫോമ റിൽ നിന്നാണ്. കൂടാതെ വ്യാവസായിക ആവശ്യങ്ങൾക്കുള്ള 400~
m V വൈദ്യു തിയും വിതരണ ട്രാൻസ്ഫോമറിന്റെ ഔട്ട്പുട്ടിൽനിന്ന് ലഭിക്കുന്നു.

വിതരണ ട്രാൻസ്ഫോമറിന്റെ ഔട്ട്പുട്ടിൽനിന്ന് 4 വയറുകളാണ് പുറത്തു വരു ന്നത്. ഇതിൽ ഒന്ന് ന്യൂട്രലും മൂന്നെണ്ണം ഫേസുകളുമാണ്. ന്യൂട്രൽ പൊട്ടൻഷ്യൽ പൂജ്യമായിരിക്കും. ഫേസിനും ന്യൂട്രലിനുമിടയിൽ പൊട്ടൻഷ്യൽ വൃത്യാസം 230 V യും ഏതെങ്കിലും രണ്ടു ഫേസുകൾക്കിടയിലുള്ള പൊട്ടൻഷ്യൽ വ്യത്യാസം 400 V യും ആയിരിക്കും.

- പ്രസരണനഷ്ടം കുറയ്ക്കാനുള്ള മാർഗമെന്ത്?
- പവർസ്റ്റേഷനുകളിലെ ട്രാൻസ്ഫോമർ ഏതു തരമാണ്?
- സബ്സ്റ്റേഷനുകളിലെ ട്രാൻസ്ഫോമർ ഏതു തരമാണ്?
- വിതരണ ട്രാൻസ്ഫോമർ ഏതു തരമാണ്?
- ഭുമിയിൽ സ്പർശിച്ചുകൊണ്ട് ഫേസ്ലൈനിൽ തൊടുന്നയാൾക്ക് ഷോക്കേൽ ക്കുമോ? എന്തുകൊണ്ട്?
- ഗൃഹ വൈദ്യുതീകരണത്തിനാവശ്യമായ ലൈനുകൾ ഏതെല്ലാം?

ഗൂഹവൈദ്യുതീകരണം (Household electrification)

ഒരു ഗൃഹവൈദ്യുതീകരണ സെർക്കീട്ടിന്റെ (Tree system) ചിത്രീകരണം ശ്രദ്ധിക്കൂ.

ചിത്രം 3.14

<mark>ചാലക</mark>ങ്ങൾ കുറുകെ കടക്കുമ്പോൾ

സെർക്കീട്ട് ചിത്രം വര യ്ക്കുമ്പോൾ AB എന്ന ചാലകവും CD എന്ന ചാലകവും തമ്മിൽ ബന്ധ മില്ല എന്നു സൂചിപ്പിക്കാൻ ചിത്രം (i) ഉം

AB എന്ന ചാലകവും CD എന്ന ചാലകവും P എന്ന ബിന്ദുവിൽ ബന്ധിപ്പിച്ചിരി ക്കുന്നു എന്നു സൂചിപ്പി ക്കാൻ ചിത്രം (ii) ഉം ഉപ യോഗിക്കുന്ന രീതിയും നിലവിലുണ്ട്. ചിത്രം 3.14 ൽ തന്നിരിക്കുന്ന ഗൃഹവൈദ്യുതീകരണ സെർക്കീട്ട് വിശകലനം ചെയ്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം കണ്ടെത്തു.

- നമ്മുടെ വീട്ടിലേക്കുള്ള വൈദ്യുതലൈൻ ആദ്യം ബന്ധിപ്പിക്കുന്നത് ഏത് ഉപകരണത്തിലേക്കാണ്?
- എർത്ത് ലൈൻ ആരംഭിക്കുന്നത് എവിടെ നിന്നാ ണ്?
- വാട്ട് അവർ മീറ്റർ ഉപയോഗിക്കുന്നതിന്റെ ആവശ്യ കത എന്ത്?
- ഏതു ലൈനിലാണ് ഫ്യൂസുകൾ ഘടിപ്പിച്ചിരിക്കു ന്നത്?

 മെയിൻ സ്വിച്ചിന്റെ ധർമം എന്ത്? ഇതിന്റെ സ്ഥാനം സെർക്കീട്ടിൽ എവിടെയാണ്?

 ഗൃഹവൈദ്യുതീകരണ സെർക്കീട്ടിൽ ഫേസും ന്യൂട്രലും അല്ലാത്ത മൂന്നാ മത്തെ ലൈൻ ഏതാണ്?

 ഫേസ്, ന്യൂട്രൽ, എർത്ത് എന്നീ ലൈനുകൾക്ക് ഏതെല്ലാം നിറങ്ങ ളിലുള്ള വയറുകളാണ് ഉപയോഗിക്കുന്നത്.

ത്രീപിൻ സോക്കറ്റിൽ എർത്ത് വയർ ഘടിപ്പിച്ചിരിക്കുന്നത് എവിടെ യാണ്?

ഗാർഹിക ഉപകരണങ്ങൾ ഘടിപ്പിച്ചിരിക്കുന്നത് ഏതു രീതിയിലാണ്? (ശ്രേണി/ സമാന്തരം)

ഉപകരണങ്ങൾ സമാന്തരരീതിയിൽ ഘടിപ്പിക്കുന്നതുകൊണ്ടുള്ള മേന്മകൾ എന്തെല്ലാമാണെന്ന് മുൻ അധ്യായത്തിൽ മനസ്സിലാക്കിയത് എഴുതി നോക്കൂ.

- രേഖപ്പെടുത്തിയ പവറിനനുസരിച്ച് ഉപകരണങ്ങൾ പ്രവർത്തിക്കുന്നു.
- ഉപകരണങ്ങളെ സ്വിച്ച് ഉപയോഗിച്ച് യഥേഷ്ടം നിയന്ത്രിക്കാൻ കഴി യുന്നു.
- •
- •

വാട്ട് അവർ മീറ്റർ (Watt-hour meter)

വൈദ്യുതോർജം അളക്കാനുപയോഗിക്കുന്ന ഉപകരണമാണ് വാട്ട് അവർ മീറ്റർ. കിലോവാട്ട് അവർ (kWh) യൂണിറ്റിലാണ് വൈദ്യുതോർജം അളക്കുന്നത്. ഇത് യൂണിറ്റ് എന്നും അറിയപ്പെടുന്നു.

1 യൂണിറ്റ് വൈദ്യൂതോർജം = 1kWh

വൈദ്യുതോർജത്തിന്റെ വ്യാവസായിക യൂണിറ്റ് കിലോ വാട്ട് അവർ (kWh) ആണ്. 1000 വാട്ട് (1 kW) പവറുള്ള ഒരു ഉപകരണം ഒരു മണിക്കൂർ (1 h) പ്രവർത്തിക്കുമ്പോഴാണ് 1 യൂണിറ്റ് (1 kWh) വൈദ്യുതോർജം ഉപയോഗിക്കു ന്നത്.

വാട്ട് അവർ മീറ്റർ ചിത്രം 3.15

ഉപയോഗിച്ച വൈദ്യുതോർജം കണക്കാക്കാൻ താഴെ കൊടുത്ത സമവാക്യം ഉപ യോഗിക്കാം.

കിലോവാട്ട് അവറിലുള്ള ഊർജം = $\frac{$ വാട്ടിലുള്ള പവർ \times മണിക്കൂറിലുള്ള സമയം 1000

• 750 W പവർ ഉള്ള ഒരു ഗ്രൈൻഡർ 2 മണിക്കൂർ പ്രവർത്തിക്കുമ്പോഴുള്ള വൈദ്യുതോർജം കണക്കാക്കിനോക്കാം.

kWh ലുള്ള ഊർജം =
$$\frac{750\times2}{1000}$$
 = $\frac{1500}{1000}$ = 1.5 യൂണിറ്റ് (kWh)

ഒരു വീട്ടിൽ 20 W ന്റെ 5 സി.എഫ്. ലാമ്പുകൾ 4 മണിക്കൂറും 60 W ന്റെ 4 ഫാനുകൾ 5 മണിക്കൂറും 100 W ന്റെ ടി.വി. 4 മണിക്കൂറും പ്രവർത്തിക്കുന്നു. എങ്കിൽ, ഒരു ദിവസം വാട്ട് അവർ മീറ്ററിൽ എത്ര യൂണിറ്റ് ഉപയോഗം രേഖപ്പെടുത്തും?

കെ.എസ്.ഇ.ബി. ഗാർഹിക ഉപഭോക്താക്കൾക്കേർപ്പെടുത്തിയ താരിഫ് പട്ടിക 3.8 ൽ കൊടുത്തിരിക്കുന്നു. ഇത് വിശകലനം ചെയ്ത് ഊർജ സംരക്ഷണത്തിന് എന്തെല്ലാം സാധ്യതകളുണ്ടെന്ന് കണ്ടെത്തുക. നിങ്ങളുടെ വീട്ടിലെ ഊർജ ഉപഭോഗം ആസൂത്രണം ചെയ്യുന്നതു വഴി എങ്ങനെ വൈദ്യുത ചെലവ് കുറയ്ക്കാൻ കഴിയും എന്ന് ഒരു പ്രോജക്ട് തയാറാക്കുകയും ചെയ്യുക. വൈദ്യുതി വളരെയേറെ അപകടസാധ്യതയുള്ള ഊർജരൂപമാണെന്നറിയാമല്ലോ. അതുകൊണ്ടുതന്നെ പലവിധത്തിലുമുള്ള സുരക്ഷാക്രമീകരണങ്ങൾ ഉൾപ്പെടുത്തിക്കൊണ്ടാണ് ഗുഹവൈദ്യുതീകരണം നടത്തുന്നത്.

ഗാർഹിക വൈദ്യുതിവിതരണത്തിൽ സുരക്ഷിതത്വം ഉറപ്പുവരുത്തുന്ന മാർഗങ്ങൾ

1. സുരക്ഷാ ഫ്യൂസ് (Safety fuse)

Monthly Fixed Charges	(Rs / consumer)	
Single phase	30	
Three phase	80	
Energy Charges	D- /	
Monthly consumption slab	Rs / unit	
0-40 units (Applicable for BPL customers with connected load of and below 1000 watts)	1.50	
0-50 units	2.90	
51-100 units	3.40	
101-150 units	4.50	
151-200 units	6.10	
201-250 units	7.30	
251 -300 units	(For entire Unit) 5.50	
301-350 units	(For entire Unit) 6 .20	
351-400 units	(For entire Unit) 6 .50	
401-500 units	(For entire Unit) 6.70	
Above 500 units	(For entire Unit) 7.50	

പട്ടിക 3.8

ഫ്യൂസ് സെർക്കീട്ടിനെ സംരക്ഷിക്കുന്നതെങ്ങനെയെന്ന് കഴിഞ്ഞ അധ്യായത്തിൽ മനസ്സിലാക്കിയിട്ടുണ്ടല്ലോ.

- ഗാർഹിക സെർക്കീട്ടിൽ അമിത വൈദ്യുതപ്രവാഹം ഉണ്ടാകാനുള്ള സാഹചര്യങ്ങൾ ഏതെല്ലാമാണ്?
- അമിത വൈദ്യുതപ്രവാഹം ഉണ്ടായാൽ സെർക്കീട്ടിനെന്താണ് സംഭ വിക്കുക?

🛚 സെർക്കീട്ട് ബ്രേക്കർ

ഓവർ ലോഡിങ് മൂലം സെർക്കീട്ടിലെ കറന്റ് ക്രമേണ ഉയരുമ്പോൾ MCB യിലെ bimetallic strip അമിതമായി ചൂടാ വുകയും വളയുകയും ചെയ്യുന്നു. ഇതിന്റെ ഫലമായി സെർക്കീട്ട് ബ്രേക്കർ സ്വിച്ച് ഓഫായി (trip) വൈദ്യുതപ്രവാഹം വിഛേദിക്കപ്പെടു ന്നു. ഷോർട്ട് സെർക്കീട്ട് ഉണ്ടാവുകയാ ണെങ്കിൽ റിലേ കോയിലിൽ ഉണ്ടാ വുന്ന കാന്തികബലത്തിന്റെ ഫലമായി

ആദ്യകാല ELCB യിൽ റിലേകോയി ലിന്റെ ഒരഗ്രം ഉപകരണത്തിന്റെ ലോഹചട്ടക്കൂടുമായും മറ്റേ അഗ്രം എർത്തിലേക്കും ബന്ധിപ്പിച്ചിരിക്കുന്നു. ഇൻസുലേഷൻ തകരാർ മൂലമോ മറ്റോ കറന്റ് എർത്തിലേക്ക് ലീക്ക് ആയാൽ റിലേ കോയിലിന്റെ അഗ്രങ്ങൾക്കിട യിൽ ഒരു പൊട്ടൻഷ്യൽ വ്യത്യാസം ഉണ്ടാവുകയും തദ്ഫലമായുണ്ടാവുന്ന കറന്റ് ഒരു നിശ്ചിത പരിധിയിലധിക മായാൽ റിലേയുടെ പ്രവർത്തനഫല മായി ELCB trip ആവുകയും ചെയ്യു ന്നു. RCCB യിലാണെങ്കിൽ ഫേസ്ക റന്റും ന്യൂട്രൽകറന്റും തമ്മിലുളള വൃത്യാസത്തിലൂടെ കറന്റ് ലീക്ക് തിരി ച്ചറിഞ്ഞ് സെർക്കീട്ട് വിഛേദിക്കുന്ന സംവിധാനമാണ് ഉളളത്.

 ഇത്തരം സാഹചര്യങ്ങളിൽ ഫ്യൂസ് സെർക്കീട്ടിനെ സംര ക്ഷിക്കുന്നതെങ്ങനെ?

സെർക്കീട്ടിലെ അമിത വൈദ്യുതപ്രവാഹ സാധ്യതകൾ പരി ഹരിച്ച ശേഷം അനുയോജ്യമായ ആമ്പയറേജുള്ള ഫ്യൂസ് പുനസ്ഥാപിച്ചാൽ സെർക്കീട്ട് പൂർവസ്ഥിതിയിലാക്കാവുന്നതാ ണ്.

2. MCB (Miniature Circuit Breaker), ELCB (Earth leakage circuit breaker)

ഫ്യൂസിനു പകരമായി ശാഖാ സെർക്കീട്ടുകളിൽ ഉപയോഗി ക്കുന്ന സംവിധാനമാണ് MCB. സെർക്കീട്ടിൽ ഷോർട്ട് സെർക്കീട്ട്, ഓവർലോഡ് എന്നിവ മൂലം അമിത വൈദ്യുത പ്രവാഹമുണ്ടാകുമ്പോൾ, MCB സിച്ച് സ്വയം നിയന്ത്രിതമായി (Automatic) സെർക്കീട്ട് വിഛേദിക്കപ്പെടുന്നു. സെർക്കീട്ടിലെ പ്രശ്നം പരിഹരിച്ചശേഷം MCB സിച്ച് ഓണാക്കി സെർക്കീട്ട് പൂർവസ്ഥിതിയിലാക്കാം. വൈദ്യുതിയുടെ താപഫലവും കാന്തി കഫലവും ഉപയോഗപ്പെടുത്തിയാണ് MCB പ്രവർത്തിക്കുന്നത്.

ഇൻസുലേഷൻ തകരാർ മൂലമോ മറ്റോ സെർക്കീട്ടിൽ കറന്റ് ലീക്ക് ഉണ്ടായാൽ സെർക്കീട്ട് ഓട്ടോമാറ്റിക് ആയി വിഹേദിക്ക പ്പെടാൻ ELCB സഹായിക്കുന്നു. ഇതുമൂലം വൈദ്യുത സെർക്കീട്ടോ ഉപകരണമോ ആയി സമ്പർക്കത്തിൽ വരുന്ന വർക്ക് ഷോക്ക് ഏൽക്കുന്നില്ല. ELCB ക്ക് പകരം കൂടുതൽ സുരക്ഷ ഉറപ്പുവരുത്തുന്ന RCCB (Residual Current Circuit Breaker) ആണ് ഇപ്പോൾ ഉപയോഗിക്കുന്നത്.

- സാധാരണ ഫ്യൂസും MCB യും തമ്മിലുള്ള വ്യത്യാസങ്ങൾ ഏവ?
- ഫ്യൂസിനെ അപേക്ഷിച്ച് MCB ക്കുള്ള മേന്മ എന്ത്?
- സെർക്കീട്ടിൽ ELCB/ RCCB യുടെ ധർമം എന്ത്?

3. ത്രീപിൻ പ്ലഗും എർത്തിങും (Three pin Plug and Earthing)

ചില ഉപകരണങ്ങൾ ഉപയോഗിക്കുമ്പോൾ സുരക്ഷിതത്വം ഉറപ്പുവരുത്തു ന്നതിനായി ത്രീപിൻ പ്ലഗുകളാണ് ഉപയോഗിക്കുന്നത്. ചിത്രത്തിൽ ഇസ്തി രിപ്പെട്ടിയുടെ കോയിൽ ഏതൊക്കെ ലൈനുകളുമായിട്ടാണ് ബന്ധിപ്പിച്ചി രിക്കുന്നത്?

ക്കൂടുമായി സമ്പർക്കത്തിൽ വന്നാൽ ലോഹചട്ടക്കൂ ടിൽ സ്പർശിക്കുന്ന ആൾക്ക് എന്തു സംഭവിക്കുന്നു? ത്രീപിൻ പ്ലഗ് സുരക്ഷിതത്വം ഉറപ്പുവരുത്തുന്നതെ ങ്ങനെ?

- E എന്ന പിൻ ഏതു ലൈനുമായിട്ടാണ് സമ്പർക്ക ത്തിൽ വരുന്നത്?
- എർത്ത് പിൻ മറ്റു പിന്നുകളിൽനിന്ന് എങ്ങനെ വ്യത്യാസപ്പെട്ടിരിക്കുന്നു? എന്തിനാണ് ഇങ്ങനെ വ്യത്യാസപ്പെടുത്തിയിരിക്കുന്നത്?
- എർത്ത് ലൈൻ ഉപകരണത്തിന്റെ ഏതു ഭാഗവു മായിട്ടാണ് ബന്ധിച്ചിരിക്കുന്നത്?

നമ്മുടെ വീടുകളിൽ ലഭിക്കുന്ന വൈദ്യുതി AC ആണല്ലോ. എന്നാൽ പല ഉപകരണങ്ങളും DC യിൽ ആണ് പ്രവർത്തിക്കുന്നത് എന്നറിയാമല്ലോ.

ടി.വി. പ്രവർത്തിക്കുന്നത് AC യിലാണോ DC യിലാണോ?

മൊബൈൽഫോൺ ബാറ്ററിയിൽനിന്ന് DC യാണല്ലോ ലഭിക്കുന്നത്. എന്നാൽ അത് ചാർജ് ചെയ്യുമ്പോൾ AC അല്ലേ ഉപയോഗിക്കുന്നത്? എന്തായിരിക്കും കാരണം?

DC യിൽ മാത്രം പ്രവർത്തിക്കുന്ന പല ഉപകരണ ങ്ങളും AC യെ DC ആക്കി മാറ്റിയാണ് പ്രവർത്തിക്കു ന്നത്. മൊബൈൽ ചാർജർ AC യെ DC ആക്കുന്ന ഒരുപകരണമാണ്.

ചിത്രം 3.16

എർത്തിങ്

ത്രീപിൻ പ്ലഗ്ഗിലെ E എന്ന പിൻ എർത്ത് ലൈനുമായി സമ്പ ർക്കത്തിൽ വരുന്നു. ഈ പിൻ ഉപകരണത്തിന്റെ ചട്ടക്കൂടുമായി

ബന്ധിപ്പിച്ചിരിക്കുന്നതിനാൽ ഏതെങ്കിലും കാര ണത്താൽ ചട്ടക്കൂടിന് വൈദ്യുതിബന്ധം വരു കയാണെങ്കിൽ വൈദ്യുതി എർത്ത് വയർ കനം കൂടിയതിനാൽ പ്രതിരോധം കുറഞ്ഞ സെർക്കീ ട്ടിലൂടെ ഭൂമിയിലേക്കുള്ള വൈദ്യുതിയുടെ ഒഴു ക്കിന്റെ തീവ്രത കൂടുന്നു. തന്മൂലം ഫ്യൂസ്വയ റിൽ ഉൽപ്പാദിപ്പിക്കപ്പെടുന്ന താപം വർധിച്ച് ഫ്യൂസ്വയർ ഉരുകിയോ ELCB പ്രവർത്തിച്ചോ വൈദ്യുതബന്ധം വിച്ഛേദിക്കപ്പെടുന്നു. ഇത് ഉപ കരണത്തിന്റെയും അത് കൈകാര്യം ചെയ്യുന്ന

എർത്ത് പിന്നിന് മറ്റു രണ്ട് പിന്നുകളെ അപേക്ഷിച്ച് വണ്ണവും നീളവും കൂടുതലായിരിക്കും. നീളം കൂടുതലായതിനാൽ ത്രീപിൻ സോക്കറ്റി ലേക്ക് ഘടിപ്പിക്കുമ്പോൾ എർത്ത്പിൻ സെർക്കീ ട്ടുമായി ആദ്യം സമ്പർക്കത്തിൽ വരുകയും ത്രീപിൻ സോക്കറ്റിൽനിന്ന് ഊരുമ്പോൾ എർത്ത് പിൻ അവസാനം സമ്പർക്കം വിഛേദിക്കു കയും ചെയ്യുന്നതിനാൽ സെർക്കീട്ടിൽ പൂർണ നിങ്ങൾക്കറിയാവുന്ന ഉപകരണങ്ങളെ AC യിൽ പ്രവർത്തിക്കുന്നവ, DC യിൽ പ്രവർത്തിക്കുന്നവ എന്ന് തരംതിരിക്കുക.

AC യിൽ പ്രവർത്തിക്കുന്നവ	DC യിൽ പ്രവർത്തിക്കുന്നവ
• ഫാൻ	കാൽക്കുലേറ്റർ
•	•
•	•
•	•

പട്ടിക 3.9

AC യിലും DC യിലും പ്രവർത്തിക്കുന്ന ഉപകരണങ്ങൾ ഉണ്ടോ? ലിസ്റ്റ് ചെയ്യുക.

AC യെ DC ആക്കുന്ന ഒരു സംവിധാനമാണ് റെക്ടിഫയർ. ഒരു സ്റ്റെപ് ഡൗൺ ട്രാൻസ്ഫോമറോ ഇൻഡക്ടറോ ഉപയോഗിച്ച് 230 V AC യെ ഉപകരണത്തി നാവശ്യമായ 12 V, 6 V തുടങ്ങിയ വോൾട്ടതയിലേക്ക് താഴ്ത്തിയ ശേഷ മാണ് DC ആക്കി മാറ്റുന്നത്. ഡയോഡ് എന്നറിയപ്പെടുന്ന ഒരു ഇലക്ട്രോണിക് ഘടകമാണ് ഇതിലെ പ്രധാന ഭാഗം. ഇത് വൈദ്യുതിയെ ഒരു ദിശയി ലേക്ക് മാത്രം കടത്തിവിടുന്നു. ഇത്തരത്തിലുള്ള റെക്ടിഫയറുകൾ കൂടാതെ വിവിധ ഇലക്ട്രോണിക് ഘടകങ്ങൾ ഉപയോഗിച്ചുള്ള റെക്ടിഫയറുകളാണ് ഇപ്പോൾ കൂടുതൽ പ്രചാരത്തിലുള്ളത്.

ഗാർഹിക വൈദ്യുത സെർക്കീട്ടിൽ സുരക്ഷിതത്വം ഉറപ്പാക്കുന്ന വിവിധ രീതി കൾ ഉണ്ടെന്ന് മനസ്സിലാക്കിയല്ലോ. എന്നാലും വൈദ്യുത സെർക്കീട്ടുമായോ ഉപകരണങ്ങളുമായോ ഇടപഴകുമ്പോൾ നിർബന്ധമായും ചില മുൻകരുത ലുകൾ പാലിക്കേണ്ടതുണ്ട്.

വൈദ്യുതാഘാതം (Electric Shock)

ഇന്ത്യയിൽ മൊത്തമുണ്ടാകുന്ന വൈദ്യുതി അപകടങ്ങളിൽ പത്തു ശത മാനത്തോളവും സംഭവിക്കുന്നത് നമ്മുടെ സംസ്ഥാനത്താണ്. വൈദ്യുതാ ഘാതം മരണത്തിനും കാരണമാകാം. അതിനാൽ സുരക്ഷിതമായി വൈദ്യുതി ഉപയോഗിക്കേണ്ടതുണ്ട്. കവചമില്ലാത്ത വയറുകൾ, ഇൻസുലേ ഷന് ക്ഷതം സംഭവിച്ച കേബിളുകൾ എന്നിവ സ്പർശിക്കുകയോ ഇടിമിന്നൽ ഏൽക്കുകയോ ചെയ്യുമ്പോൾ വൈദ്യുതാഘാതം ഉണ്ടാകുന്നു. ശരീരത്തി ലൂടെ വൈദ്യുതി പ്രവഹിക്കുന്നതുകൊണ്ട് തീവ്രമായ പരിക്കുകൾ ഏൽക്കാനി ടയുണ്ട്.

ഷോക്കിനുപുറമെ പൊള്ളലുകളും ഉണ്ടാകാം. ആർക്കെങ്കിലും ഷോക്ക് ഏൽക്കുന്നതായി ശ്രദ്ധയിൽപ്പെട്ടാൽ ഉടൻ മെയിൻ സ്വിച്ച് ഓഫ് ചെയ്യുക. വൈദ്യുതാഘാതമേറ്റ വ്യക്തിയെ ഉണങ്ങിയ തടിക്കഷണം കൊണ്ടോ വൈദ്യുതവാഹിയല്ലാത്തതും ഈർപ്പരഹിതവുമായ വസ്തു ഉപയോഗിച്ചോ വൈദ്യുതബന്ധത്തിൽനിന്നു വേർപെടുത്തുക. ഒരു കാരണവശാലും വെറുംകൈകൊണ്ട് ഷോക്ക് ഏറ്റയാളെ സ്പർശിക്കരുത്.

ഹൈ വോൾട്ടേജ് ഷോക്കുകൾ ചിലപ്പോൾ പരിക്കുകൾ ഉണ്ടാക്കില്ലെങ്കിലും പെട്ടെന്ന് വൈദ്യസഹായം തേടേണ്ടതാണ്. കാരണം, ഇത് തലച്ചോറിനെ കാര്യ മായി ബാധിക്കും. അപസ്മാരം, ഡിപ്രഷൻ, ഉൽക്കണ്ഠ, പക്ഷാഘാതം എന്നിവയ്ക്ക് സാധ്യതയുണ്ട്. ചെറിയ വോൾട്ടേജ് ആണെങ്കിലും അബോധാവസ്ഥ, സ്പർശനശേഷി തകരാറ്, കാഴ്ചക്കുറവ്, കേൾവിക്കുറവ് എന്നിവ ഉണ്ടാകാം.

വൈദ്യുതാഘാതമേൽക്കാതിരിക്കാൻ പാലിക്കേണ്ട മുൻകരുതലുകൾ ഏതെല്ലാ മാണെന്ന് നോക്കാം.

മുൻകരുതലുകൾ

- നനഞ്ഞ കൈകൊണ്ട് വൈദ്യുത ഉപകരണങ്ങൾ കൈകാര്യം ചെയ്യുകയോ
 സിച്ച് പ്രവർത്തിപ്പിക്കുകയോ ചെയ്യരുത്.
- സ്വിച്ച് ഓഫാക്കിയശേഷം മാത്രമേ സോക്കറ്റിൽ പ്ലഗ് ഘടിപ്പിക്കാനും സോക്കറ്റിൽനിന്നു വിടുതൽ ചെയ്യാനും പാടുള്ളൂ.
- സാധാരണ സോക്കറ്റിൽ പവർ കൂടിയ ഉപകരണങ്ങൾ പ്രവർത്തിപ്പിക്കരുത്.
- വൈദ്യുതോപകരണങ്ങൾ പ്രവർത്തിപ്പിക്കേണ്ടി വരുമ്പോൾ റബ്ബർ ചെരുപ്പ് ധരിക്കുക.
- കേബിൾ TV യുടെ അഡാപ്റ്ററിന്റെ ഉൾവശത്ത് സ്പർശിക്കരുത്.
 അഡാപ്റ്ററിനു വൈദ്യുതി പ്രവഹിക്കാത്ത അടപ്പുണ്ടെന്ന് ഉറപ്പു വരുത്തുക.
- വൈദ്യുത ലൈനുകൾക്ക് സമീപം പട്ടം പറത്തരുത്.
- ടേബിൾ ഫാൻ ഉപയോഗിച്ച് തലമുടി ഉണക്കരുത്.
- വൈദ്യുതലൈനുകൾക്ക് സമീപം ഉയരമുള്ള കെട്ടിടങ്ങൾ, മരങ്ങൾ എന്നിവ ഇല്ല എന്ന് ഉറപ്പുവരുത്തേണ്ടതാണ്.
- ഗൃഹ വൈദ്യുത സെർക്കീട്ടിൽ അറ്റകുറ്റപ്പണികൾ ചെയ്യുമ്പോൾ മെയിൻ സ്വിച്ച്, ഇ.എൽ.സി.ബി. എന്നിവ ഓഫ് ചെയ്തു എന്ന് ഉറപ്പുവരുത്തേണ്ട താണ്.

പ്രത്യേക സാഹചര്യങ്ങളിലെ മുൻകരുതലുകൾ

- ഇടിമിന്നലുണ്ടാവുന്ന അവസരത്തിൽ വൈദ്യുത സെർക്കീട്ടുമായി സമ്പർക്ക ത്തിൽ വരുന്ന പ്രവർത്തനങ്ങൾ ചെയ്യരുത് (സെർക്കീട്ടിൽ അമിത വൈദ്യു തപ്രവാഹം ഉണ്ടാവാൻ സാധ്യതയുണ്ട്).
- ഇടിമിന്നലിനു സാധ്യതയുള്ള അവസരങ്ങളിൽ അതിനുമുമ്പായി ഉപകര ണങ്ങളുടെ പ്ലഗ് സോക്കറ്റിൽ നിന്നു വിടുതൽ ചെയ്തുവയ്ക്കണം.
- മഴയും കാറ്റുമുള്ള അവസരങ്ങളിൽ വൈദ്യുതലൈനുകൾ ഭൂമിയിൽ സ്പർശിച്ച് അപകടസാധ്യതയുള്ളതിനാൽ അക്കാര്യം ശ്രദ്ധിക്കേണ്ടതുണ്ട്.

 വീടുകളിൽ വെള്ളം കയറുന്ന സാഹചര്യങ്ങളിൽ (പ്രളയം മൂലമോ മറ്റോ) വൈദ്യുതബന്ധം വിച്ഛേദിക്കുകയും വെള്ളം ഇറങ്ങിക്കഴിഞ്ഞാൽ സിച്ച് ബോർഡുകൾ, മെയിൻ സിച്ച് എന്നിവ പൂർണമായും ഉണങ്ങിയ ശേഷം മാത്രം വൈദ്യുതബന്ധം പുനസ്ഥാപിക്കുകയും ചെയ്യണം.

വൈദ്യുതാഘാതമേൽക്കുമ്പോൾ നൽകേണ്ട പ്രഥമശുശ്രൂഷ

വൈദ്യുതാഘാതമേൽക്കുന്നതിന്റെ ഫലമായി ശരീരതാപനില കുറയുകയും രക്തത്തിന്റെ വിസ്കോസിറ്റി കൂടി രക്തം കട്ടപിടിക്കുകയും ചെയ്യുന്നു. കൂടാതെ ശരീരത്തിലെ പേശികൾ ചുരുങ്ങുന്നു.

ഷോക്കേറ്റയാളും വൈദ്യുതക്കമ്പിയും തമ്മിലുള്ള ബന്ധം വിച്ഛേദിച്ച തിനുശേഷമേ പ്രഥമശുശൂഷ നൽകാവൂ.

- ശരീരതാപനില വർധിപ്പിക്കുക (ശരീരം തിരുമ്മി ചൂടുപിടിപ്പിക്കുക).
- കൃത്രിമ ശ്വാസോച്ച്വാസം നൽകുക.
- മസിലുകൾ തിരുമ്മി പൂർവസ്ഥിതിയിലാക്കുക.
- ഹൃദയം പ്രവർത്തിപ്പിക്കാനുള്ള പ്രഥമശുശ്രൂഷ ആരംഭിക്കുക (നെഞ്ചിൽ ക്രമമായി, ശക്തിയായി അമർത്തുക).
- എത്രയും പെട്ടെന്ന് അടുത്തുള്ള ആശുപത്രിയിൽ എത്തിക്കുക.

ചിത്രം 3.17

വൈദ്യുതി നിതൃജീവിതത്തിലെ അവശൃഘടകമായി മാറിയിരിക്കുന്നു. നാളേക്കാവശ്യമായ ഈ ഊർജത്തിന്റെ ഉപഭോഗം കഴിയുന്നത്ര കുറയ്ക്കേ ണ്ടതാണ്. "വൈദ്യുതി സംരക്ഷിക്കുന്നത് വൈദ്യുതി ഉൽപ്പാദിപ്പിക്കുന്ന തിന് തുല്യമാണ്". വൈദ്യുതി അതൃന്തം ഉപകാരപ്രദവും എന്നാൽ അപക ടസാധ്യത ഉള്ളതുമായ ഊർജരൂപമാണ്. അതുകൊണ്ട് വൈദ്യുതോപകരണ ങ്ങൾ അതീവ ശ്രദ്ധയോടെ മാത്രമേ കൈകാര്യം ചെയ്യാവു.

ഗാർഹിക സെർക്കീട്ട് നിർമാണം

ഗാർഹിക വൈദ്യുതിവിതരണവുമായി ബന്ധപ്പെട്ട സെർക്കീട്ട് പരിചയ പ്പെട്ടല്ലോ. ഇത്തരം ഒരു സെർക്കീട്ട് പ്രായോഗികമായി എങ്ങനെ നിർമി ക്കാമെന്ന് മനസ്സിലാക്കാം. ഇതിനായി എന്തെല്ലാം സാമഗ്രികൾ ആവശ്യ മാണ്? താഴെ കൊടുത്ത പട്ടികയിലുള്ള ഘടകങ്ങൾ തിരിച്ചറിഞ്ഞ് ഉപ യോഗം എഴുതുക.

ഘടകം / ഉപകരണം	പേര്/ ഉപയോഗം	ഘടകം / ഉപകരണം	പേര്/ ഉപയോഗം
N. W.	വൺ വേ സ്വിച്ച്		RCCB
chich a	ടു വേ സ്വിച്ച്		MCB
	ത്രീപിൻ സോക്കറ്റ്		കിറ്റ്കാറ്റ് ഫ്യൂസ്
	സീലിങ് റോസ് 		സിച്ച് ബോർഡ്
	ELCB	POSICION SOLUTION SOL	മീറ്റർ
	റെഗുലേറ്റർ 		മെയിൻ സ്വിച്ച്
	ഇൻഡിക്കേറ്റർ 		ബൾബ് ഹോൾഡർ

വീട്ടിലെ ഒരു മുറിയിലേക്കുള്ള സെർക്കീട്ടാണ് ചിത്രം 3.18 ൽ കൊടുത്തത്. ഇതിൽ ഉൾപ്പെടുന്ന ഘടകങ്ങൾ ഏതെല്ലാമെന്നെഴുതൂ.

- മെയിൻ സ്വിച്ച്
- ഫ്യൂസ്
- എം.സി.ബി.

നം.	സാമഗ്രികൾ	റേറ്റിങ്	എണ്ണം
1.	പ്ലൈവുഡ്/softwood	$1.5 \text{m} \times 1 \text{m} \times 6 \text{mm}$	1
2.	ഡിസ്ട്രിബ്യൂഷൻ		
	ബോർഡ്		1
3.	മെയിൻ ഫ്യൂസ്	16 A, 230 V	1
4.	മെയിൻ സിച്ച്	16 A, 230 V	1
5.	ELCB	Single phase	1
6.	MCB	6A,230 V	1
7.	റെഗുലേറ്റർ	60 W, 230 V	1
8.	സിച്ച്	6A,230 V	3
9.	3 പിൻ സോക്കറ്റ്	6A,230 V	1
10.	സിച്ച് ബോക്സ്	3 way D	1
11.	ബൾബ്	LED 9 W, 230 V	1
12.	ബൾബ് ഹോൾഡർ	6A,230 V	1
13.	ജങ്ഷൻ ബോക്സ്	20mm	2
14.	സീലിങ് റോസ്	20mm	1
15.	PVC പൈപ്പ്	20 mm	2m
16.	സീലിങ് ഫാൻ	60 W, 230 V	1
17.	ക്ലാമ്പ്	20mm	4
18.	സ്ക്രൂ	12 mm	12
19.	വയർ (ചുവപ്പ്, കറുപ്പ്)	$1 \mathrm{mm}^2$	3m
			വീതം
20.	എർത്ത് വയർ 16/14 SWC	16/14 SWG	2m
21.	സ്ലീവ് (പച്ച)	16/14 SWG	2m
	(എർത്ത് വയർ പൊതിയാൻ)		
22.	ടെസ്റ്റർ		1
23.	പ്ലെയർ	150 mm	1
24.	സ്കൂഡ്രൈവർ	150 mm	1
25.	ഹാമർ		1

ഇത്തരത്തിലുള്ള ഒരു സെർക്കീട്ട് പ്ലൈവുഡ് ഷീറ്റിൽ ചിത്രം 3.19 ൽ കൊടുത്തപ്രകാരം നിർമിക്കുക. ഇതിനാവശ്യമായ സാമഗ്രികൾ ഏതെല്ലാമാണെന്നും എത്ര വീതമാണെന്നും പട്ടിക₄3.11 ൽ കൊടുക്കുന്നു.

ചിത്രം 3.19

ഇന്ത്യൻ ഇലക്ട്രിസിറ്റി നിയമങ്ങൾ (IE rules - 1956) പ്രകാരമുള്ള നിബന്ധ നകൾ അനുസരിച്ചും BIS മാനദണ്ഡ ങ്ങൾ പാലിക്കുന്ന സാമഗ്രികൾ ഉപയോഗിച്ചും ആയിരിക്കണം വൈദ്യു തീകരണം നടത്തേണ്ടത്.

സെർക്കീട്ട് നിർമിച്ച ശേഷം അധ്യാപകന്റെയോ ഇലക്ട്രീഷ്യന്റെയോ സഹായത്തോടെ കണക്ഷനുകൾ ശരിയായ രീതിയിലാണെന്ന് ഉറപ്പുവരുത്തുക. നിങ്ങൾ നിർമിച്ച ബോർഡിലെ ഫേസ്, ന്യൂട്രൽ, എർത്ത് എന്നിവ ഒരു ത്രീപിൻ പ്ലഗുമായി ബന്ധിപ്പിച്ച് വീട്ടിലെ പവർപ്ലഗ് സോക്കറ്റിൽ ഘടിപ്പിക്കുക.

ശ്രദ്ധിക്കുക ഃ

വിദഗ്ധരുടെ മേൽനോട്ടത്തിലാഖിരിക്കുണം ഈ പ്രവർത്തനം ചെട്യേണ്ടത്.

നിർമിച്ച സെർക്കീട്ട് ശരിയായി പ്രവർത്തിക്കുന്നുണ്ടോ എന്നു പരിശോധിക്കാൻ താഴെ കൊടുത്ത പ്രവർത്തനങ്ങൾ ചെയ്യുക.

- ടെസ്റ്റർ ഉപയോഗിച്ച് സോക്കറ്റിൽ കറന്റ് എത്തുന്നുണ്ടോ എന്നു പരിശോധിക്കുക.
- ബൾബ് സിച്ച് ഉപയോഗിച്ച് പ്രവർത്തിപ്പിക്കുക.
- ഫാൻ സിച്ച് ഉപയോഗിച്ച് പ്രവർത്തിപ്പിക്കുക. റെഗുലേറ്റർ ഉപയോഗിച്ച് വേഗം ക്രമീകരിക്കുക.
- ത്രീപിൻ സോക്കറ്റിൽ മൊബൈൽഫോൺ ചാർജ് ചെയ്യുക.
- സോക്കറ്റിൽ ഷോർട്ട് സെർക്കീട്ട് ചെയ്ത് സെർക്കീട്ടിന്റെ സുരക്ഷ പരിശോധി ക്കുക.
- ഈ സെർക്കീട്ടിൽ ഒരു ഇൻഡക്ഷൻ കുക്കർ ഉപയോഗിക്കണമെങ്കിൽ വരുത്തേണ്ട മാറ്റങ്ങൾ എന്തെല്ലാമെന്നെഴുതുക.

അധിക പ്രവർത്തനങ്ങൾ

- ഒരു ബൾബ്, രണ്ട് സിച്ചുകൾ (ടു വേ സിച്ച്) ഉപയോഗിച്ച് പ്രവർത്തിപ്പിക്കുന്ന തെങ്ങനെയെന്ന് കണ്ടെത്തി ഡയഗ്രം വരച്ചശേഷം സെർക്കീട്ട് നിർമിക്കുക.
- രണ്ട് ത്രിപിൻ സോക്കറ്റുകളും സ്വിച്ചും ഉൾപ്പെടുന്ന ഒരു എക്സ്റ്റൻഷൻ കോഡ് നിർമിക്കുക.

വിലയിരുത്താം

- വൈദ്യുതകാന്തികപ്രേരണതത്തിന്റെ അടിസ്ഥാനത്തിൽ പ്രവർത്തിക്കുന്ന ഏതാനും ഉപകരണങ്ങളുടെ പേരെഴുതുക.
- വൈദ്യുതകാന്തികപ്രേരണം പരീക്ഷണത്തിലൂടെ തെളിയിക്കാൻ ഏതെല്ലാം ഘട കങ്ങൾ ആവശ്യമാണ്?
- 3. വൈദ്യുതകാന്തികപ്രേരണ ഫലമായുണ്ടാവുന്ന പ്രേരിത *emf* നെ സ്വാധീനി ക്കുന്ന ഘടകങ്ങൾ ഏതെല്ലാം?
- 4. ഒരു കാൽക്കുലേറ്ററിൽ നിന്നോ ടി.വിയുടെ റിമോട്ട് കൺട്രോളിൽനിന്നോ ഒഴിവാക്കിയ (ഉപ യോഗശൂന്യമായ) സെൽ എടുത്ത് ഒരു ഗാൽവനോമീറ്ററുമായി ചുവടെ കൊടുത്ത പ്രകാരം ഘടിപ്പിക്കുക. നിരീക്ഷണം എന്ത്?

- 5. നേർധാരാ വൈദ്യുതിയുടെ (DC) സ്രോതസ്സുകളുടെ പേരെഴുതുക.
- 6.

- (a) ചിത്രത്തിൽ നമ്പറിട്ടിട്ടുള്ള ഭാഗങ്ങളുടെ പേരെഴുതുക.
- (b) ഈ ഉപകരണത്തിന്റെ പ്രവർത്തനതത്താം പ്രസ്താവിക്കുക.
- 7. നേർധാരാ വൈദ്യുതി (DC) യുടെയും പ്രത്യാവർത്തിധാരാ വൈദ്യുതി (AC) യുടെയും പ്രത്യേകതകൾ എഴുതുക.
- 8. താഴെ കൊടുത്ത AC യുടെ ഗ്രാഫ് വിശകലനം ചെയ്ത് ഏതെല്ലാം സമയ ത്താണ് emf കൂടുതലും കുറവുമെന്നെഴുതുക.

- 9. "ജനറേറ്റർ ഒരു തരമേ ഉള്ളൂ AC ജനറേറ്റർ". ഈ പ്രസ്താവനയോട് നിങ്ങളുടെ പ്രതികരണം എഴുതുക.
- 10. ജനറേറ്ററിന്റെ രണ്ടു രേഖാചിത്രങ്ങൾ താഴെ കൊടുക്കുന്നു.

- മ) രണ്ടിന്റെയും ആർമെച്ചറാണ് കറങ്ങുന്നതെങ്കിൽ ഗാൽവനോമീറ്ററിൽ
 ലഭിക്കുന്ന വൈദ്യുതിയുടെ പ്രത്യേകത എന്ത്?
- b) രണ്ടിന്റെയും ഫീൽഡ് കാന്തമാണ് കറങ്ങുന്നതെങ്കിൽ ഗാൽവനോ മീറ്ററിൽ ലഭിക്കുന്ന വൈദ്യുതിയുടെ പ്രത്യേകത എന്ത്?
- c) രണ്ടു സന്ദർഭത്തിലും ലഭിക്കുന്ന വൈദ്യുതിയുടെ ഗ്രാഫ് ചിത്രീക രിക്കുക.
- 11. വൈദ്യുത കാന്തികപ്രേരണം എന്നത്
 - a) ഒരു പദാർഥത്തെ വൈദ്യുത ചാർജുള്ളതാക്കുന്ന പ്രക്രിയയാണ്.
 - b) ഒരു കമ്പിച്ചുരുളിലൂടെ വൈദ്യുതി പ്രവഹിപ്പിച്ച് കാന്തികമണ്ഡലം സംജാതമാക്കുന്ന പ്രക്രിയയാണ്.
 - c) ഒരു വൈദ്യുത ജനറേറ്ററിന്റെ ആർമെച്ചർ കറക്കുന്ന പ്രക്രിയയാണ്.
 - d) ഒരു കാന്തത്തിന്റെയോ കമ്പിച്ചുരുളിന്റെയോ ആപേക്ഷികചലനം മൂലം പ്രേരിതവൈദ്യുതി ഉണ്ടാക്കുന്ന പ്രക്രിയയാണ്.
- 12. വൈദ്യുതി ഉൽപ്പാദിപ്പിക്കാനുള്ള ഉപകരണം ഏത്?
 - a) ജനറേറ്റർ
- b) ഗാൽവനോമീറ്റർ

c) മോട്ടോർ

- d) അമ്മീറ്റർ
- 13. AC ജനറേറ്ററും DC ജനറേറ്ററും തമ്മിലുള്ള ഘടനാപരമായ വ്യത്യാസ ങ്ങളും സാമ്യങ്ങളും എഴുതുക.
- 14. തെക്കുവടക്കു ദിശയിൽ തിരശ്ചീനമായി തൂക്കിയിട്ടിരിക്കുന്ന ഒരു ചാല കത്തിന്റെ രണ്ടഗ്രങ്ങളും ഗാൽവനോമീറ്ററുമായി ബന്ധിപ്പിച്ചിരിക്കുന്നു. കിഴക്കു-പടിഞ്ഞാറു ദിശയിൽ പ്രവർത്തിക്കുന്ന ഒരു കാന്തികമണ്ഡല ത്തിലാണ് ചാലകം സ്ഥിതിചെയ്യുന്നത്. ചാലകത്തിലൂടെ തെക്കുവടക്കു ദിശയിൽ പരമാവധി വൈദ്യുതപ്രവാഹമുണ്ടാകണമെങ്കിൽ ചാലകം ഏതു ദിശയിൽ ചലിപ്പിക്കണം. ഉത്തരം സാധൂകരിക്കുക.
 - a) കിഴക്കുദിശയിൽ
- b) താഴേക്ക്
- c) മുകളിലേക്ക്
- d) വടക്കുദിശയിൽ
- 15. ഒരേ നീളവും വണ്ണവുമുള്ള ചെമ്പുകമ്പികൾ മൂന്ന് സമാന സെർക്കീട്ടു കളിലും A, B എന്നീ ബിന്ദുക്കളുമായി ബന്ധിപ്പിച്ചിരിക്കുന്നു. സെർക്കീട്ട് (a) യിൽ ചെമ്പുകമ്പി ചുരുളാക്കാതെയും (b), (c) എന്നിവയിൽ ചുരു ളാക്കിയും ഉപയോഗിച്ചിരിക്കുന്നു. സെർക്കീട്ട് നിരീക്ഷിച്ച് താഴെ കൊടുത്ത ചോദ്യങ്ങൾക്ക് ഉത്തരം നൽകുക.

- (a) സെർക്കീട്ട് (a) യിൽ സിച്ച് S ഓൺ ചെയ്യുമ്പോൾ എന്തു നിരീക്ഷി ക്കുന്നു?
- (b) സെർക്കീട്ട് (b) യിൽ സ്വിച്ച് S ഓൺ ചെയ്യുമ്പോൾ ബൾബിന്റെ പ്രകാശതീവ്രതയ്ക്ക് എന്തു വൃത്യാസമാണ് നിരീക്ഷിച്ചത്? ഉത്തരം സാധൂകരിക്കുക.
- (c) സെർക്കീട്ട് (c) യിൽ സിച്ച് S ഓൺ ചെയ്യുമ്പോൾ പ്രകാശതീവ്ര തയ്ക്ക് എന്തു മാറ്റമാണുണ്ടാവുന്നത്? ഉത്തരം സാധൂകരിക്കുക.
- 16 ഒരു ട്രാൻസ്ഫോമറിന്റെ സെക്കൻഡറിയിലെ വൈദ്യുതപ്രവാഹതീവ്രത 1A ഉം പ്രൈമറിയിലെ പ്രവാഹതീവ്രത 0.5~A ഉം ആണ്.
 - (a) ഇത് ഏതുതരം ട്രാൻസ്ഫോമറാണ്?
 - (b) ഈ ട്രാൻസ്ഫോമറിന്റെ സെക്കൻഡറിയിൽ 200 V ലഭിക്കുമെങ്കിൽ പ്രൈമറിയിലെ വോൾട്ടത എത്രയായിരിക്കും?
 - (c) ഒരു ട്രാൻസ്ഫോമറിന്റെ പ്രവർത്തനതത്താം വിശദീകരിക്കുക.
- 17. മൈക്രോഫോണിന്റെ പ്രവർത്തനവുമായി ബന്ധപ്പെട്ട് ബോക്സിൽ തന്നവ ശരിയായ ക്രമത്തിൽ എഴുതുക.

- 18. ഒരു സ്റ്റെപ്അപ് ട്രാൻസ്ഫോമറിന്റെ പ്രൈമറിയിലും സ്റ്റെപ്ഡൗൺ ട്രാൻസ്ഫോമറിന്റെ സെക്കൻഡറിയിലും കട്ടികൂടിയ കവചിത കമ്പികൊണ്ടുള്ള ചുറ്റുകൾ ഉപയോഗിച്ചിരിക്കുന്നു. ഇതിന്റെ ആവശ്യകതയെന്ത്?
- 19. വൈദ്യുത ഷോർട്ട് സെർക്കീട്ട് സംഭവിക്കുന്ന സാഹചര്യം ഏതാണ്?
- 20. ഗൃഹവൈദ്യുതീകരണത്തിൽ എർത്ത് വയറിന്റെ ധർമ്മമെന്ത്?
- 21. ലോഹ ഉപകരണങ്ങൾ എർത്ത് ചെയ്യണം എന്ന് നിഷ്കർഷിക്കുന്നതെ ന്തിനാണ്?
- 22. 1.5 kW- 230 V എന്ന് രേഖപ്പെടുത്തിയ ഒരു വൈദ്യുത ഹീറ്റർ, 5 ആമ്പി യറേജ് ഫ്യൂസ് ഉൾപ്പെടുത്തിയ ഒരു ഗാർഹിക ശാഖാ സെർക്കീട്ടിൽ ഘടിപ്പിച്ചു പ്രവർത്തിപ്പിച്ചാൽ എന്തു സംഭവിക്കും? വിശദീകരിക്കുക.
- 23. ഗൃഹവൈദ്യുതീകരണത്തിൽ ശ്രേണീരീതിയിൽ ഘടിപ്പിക്കുന്ന ഉപകര ണങ്ങൾ ഏതെല്ലാം?
- 24. വൈദ്യുതോർജം സംരക്ഷിക്കാൻ വീടുകളിലും സ്കൂളുകളിലും ചെയ്യാ വുന്ന കാര്യങ്ങൾ എന്തെല്ലാം?
- 25. ചില മൊബൈൽഫോൺ ചാർജറുകൾക്ക് ത്രീപിൻ പ്ലഗ് ഉപയോഗിക്കു ന്നത് എന്തിനുവേണ്ടിയാണ്?

തുടർപ്രവർത്തനങ്ങൾ

- കവചിത ചെമ്പുകമ്പി ഉപയോഗിച്ച് വ്യത്യസ്ത എണ്ണം ചുറ്റുകളുള്ള കമ്പിച്ചു രുളുകൾ നിർമ്മിക്കുക, വ്യത്യസ്ത ശക്തിയുള്ള കാന്തങ്ങൾ ഉപയോഗിച്ച് പ്രേരിത emf ഉൽപ്പാദിപ്പിക്കുക. ഈ പ്രവർത്തനം സയൻസ് ക്ലബ്ബിൽ അവത രിപ്പിക്കൂ.
- 2. മൈക്കിൾ ഫാരഡെ വൈദ്യുതിയുടെ പിതാവ്. പ്രാഥമികവിദ്യാഭ്യാസം പോലും ലഭിക്കാതെപോയ ഫാരഡെയുടെ ശാസ്ത്രരംഗത്തെ വളർച്ച ഏവർക്കും പ്രചോദനമാണ്? 'ഫാരഡെയുടെ സംഭാവനകളും അതിനുപിന്നിലെ കഠിനാധാനവും' - സെമിനാർ സംഘടിപ്പിക്കൂ.
- 3. ഊർജം അമൂല്യമാണ്. പ്രത്യേകിച്ചും വൈദ്യുതോർജം. വൈദ്യുതി ഉപഭോഗം ലഘൂകരിക്കേണ്ടതിന്റെ ആവശ്യകത സമൂഹത്തെ ബോധ്യപ്പെടുത്താനുതകുന്ന പോസ്റ്ററുകൾ നിർമ്മിച്ച് പ്രചരിപ്പിക്കൂ.
- 4. ജനറേറ്ററിലെ കാന്തികധ്രുവങ്ങൾക്കിടയിൽ ആർമെച്ചർ ഒരു ഭ്രമണം പൂർത്തിയാക്കുമ്പോൾ ലഭിക്കുന്ന പ്രേരിതവൈദ്യുതിയും കാന്തവും കമ്പി ച്ചുറ്റും ഉപയോഗിച്ച് പരീക്ഷണം നടത്തിയപ്പോൾ ലഭിച്ച പ്രേരിതവൈദ്യുതിയും താരതമും ചെയ്യൂ.
- 5. വെദ്യുതിവിതരണ ശൃംഖലയുടെ മാതൃക പ്രദർശിപ്പിക്കൂ.
- നിങ്ങളുടെ ക്ലാസ്മുറിക്കാവശ്യമായ വൈദ്യുത ഉപകരണങ്ങൾ ഉൾപ്പെടുത്തി ഒരു സെർക്കീട്ട് ചിത്രീകരിക്കുക.
- 7. വൈദ്യുത സെർക്കീട്ടുകളിൽ മെച്ചപ്പെട്ട സുരക്ഷ ഉറപ്പുവരുത്തുന്നതിനുള്ള എർത്തിങ് സമ്പ്രദായം എങ്ങനെയായിരിക്കണം? ചർച്ചചെയ്ത് കുറിപ്പ് തയാ റാക്കുക.
- 8. നിങ്ങളുടെ വീട്ടിലെ 10 ദിവസത്തെ മീറ്റർ റീഡിങ് തുടർച്ചയായി നിരീക്ഷിച്ച് രേഖപ്പെടുത്തുക. ഇതിൽനിന്ന് ഒരുദിവസത്തെ ശരാശരി ഉപഭോഗം കണ്ടെ ത്തുക. വൈദ്യുത ഉപഭോഗം കുറയ്ക്കുന്നതിനുള്ള മാർഗങ്ങൾ കണ്ടെത്തി എഴുതുക. നിങ്ങളുടെ കണ്ടെത്തലുകൾ എനർജി ക്ലബ്ബിൽ അവതരിപ്പിക്കൂ.
- 9. വൈദ്യുതാഘാതത്തെക്കുറിച്ച് അവബോധം ഉണ്ടാക്കുന്നതിനായി സയൻസ് ക്ലബ്ബിന്റെ നേതൃത്വത്തിൽ ബോധവൽക്കരണ ക്ലാസ് സംഘടിപ്പിക്കുക.
- 10. വെദ്യുതാഘാതംമൂലം അത്യാഹിതത്തിൽപ്പെട്ട ഒരു വൃക്തി അബോധാവസ്ഥയിലോ ശ്വസിക്കാൻ കഴിയാത്ത അവസ്ഥയിലോ ആയാൽ അയാൾക്ക് കാർഡിയോ പൾമനറി റിസ്സിറ്റേഷൻ (സി.പി.ആർ) എങ്ങനെ നൽകാം എന്ന് ഒരു ഡോക്ടറുടെ സഹായത്തോടെ മനസ്സിലാക്കുക.

