Ausgabe: 02. Mai 2023 _______ Besprechung: 08. Mai 2023

Einführung in die angewandte Stochastik

Übungsblatt 3

Aufgabe 9

Es sei $\Omega = \{0, 1, 2\}$, und für $c \in \mathbb{R}$ sei die Abbildung $p_c : \Omega \mapsto \mathbb{R}$ definiert durch

$$p_c(0) := c^2, \quad p_c(1) := \frac{1}{6}c, \quad p_c(2) := \frac{5}{6}.$$

Bestimmen Sie alle Parameter $c \in \mathbb{R}$, für die durch die zugehörige Funktion p_c eine Zähldichte auf Ω gegeben ist.

Aufgabe 10

Es werden zwei faire, sechsseitige Würfel geworfen. Die Summe der Augenzahlen sei mit X bezeichnet.

- (a) Modellieren Sie die Situation als Laplace Raum (Ω, P) und definieren Sie X als geeignete Zufallsvariable.
- (b) Beschreiben Sie ein Ereignis $A \subset \Omega$, das sich nicht durch X beschreiben lässt, das also keine Darstellung $\{\omega \in \Omega : X(\omega) \in A\}$ besitzt.
- (c) Bestimmen Sie die Verteilung P_X von X.
- (d) Bestimmen Sie die Verteilungsfunktion F_X von X.

Aufgabe 11

Es sei die Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$ gegeben durch

$$f(x) = \begin{cases} \frac{c}{\sqrt{x+2}}, & 2 \le x \le 7, \\ 0, & \text{sonst}, \end{cases}$$

mit einer Konstanten $c \in \mathbb{R}$.

- (a) Bestimmen Sie c so, dass f Dichtefunktion einer stetigen Zufallsvariablen X ist.
- (b) Bestimmen Sie für das in (a) bestimmte c die Verteilungsfunktion F_X der Zufallsvariablen X.
- (c) Berechnen Sie für das in (a) bestimmte c die folgenden Wahrscheinlichkeiten:

(i)
$$P(X \in (-\infty, 5])$$
, (ii) $P(X \in (3, 5])$, (iii) $P(X \in (5, \infty))$.

(Hierbei bezeichnet P die zugrundeliegende Wahrscheinlichkeitsrechnung.)

Aufgabe 12

Sei X eine stetige Zufallsvariable mit Verteilungsfunktion $F: \mathbb{R} \to [0,1]$. Mit F^{-1} notieren wir wie in der Vorlesung die zugehörige Quantilfunktion. Zeigen Sie:

(a) Es gilt für $x \in \mathbb{R}$ und $p \in (0,1)$

$$F(x) \le p \Leftrightarrow x \le F^{-1}(p)$$
.

(b) Sei F nun stetig und streng monoton wachsend. Dann besitzt die Zufallsvariable Y=F(X) die Verteilungsfunktion

$$G: \mathbb{R} \to [0,1], y \mapsto \begin{cases} 0, & y < 0 \\ y, & 0 \le y \le 1 \\ 1, & y > 1 \end{cases}$$