

INF391 - Reconocimiento de Patrones en Minería de Datos

Tarea 1: Técnicas de Clustering

Francisca Ramírez

Juan Pablo Muñoz

17 de abril del 2019

Introducción

En esta tarea se exploran distintas técnicas de reconocimiento de patrones basadas en *clustering* vistas en cátedra. Para ello, se cuenta con tres pequeños *datasets* con distintas características, que servirán para contrastar la aptitud que cada técnica posee para cada caso.

Luego de la experimentación, se responden las dos preguntas conceptuales planteadas en el enunciado.

Parte I

Primero, se prepara la ingesta de datos.

```
In [1]:
             import os.path
             import numpy as np
             def ingest_dataset(txt_dir):
          5
                 dataset = list()
          6
                 if os.path.exists(txt_dir):
                     with open(txt_dir, 'r') as f:
          8
                         for line in f.readlines():
          9
                             data_point = line.split()
         10
                             x_coord, y_coord = float(data_point[0]), float(data_point[1])
         11
                             dataset.append([x_coord, y_coord])
         12
                 return np.array(dataset)
```

Y se instancian los tres datasets.

```
In [2]: 1    smile = ingest_dataset('smile.txt')
2    mouse = ingest_dataset('mouse.txt')
3    spiral = ingest_dataset('spiral.txt')
```

(Hacer plot y breve análisis de cada dataset: hablar sobre cantidad de datos, presencia obvia de clusters, densidad de éstos, convexidad, etc.)

A continuación, se procede a aplicar las técnicas de clustering.

(Info teórica sobre los algoritmos de clustering excepto Fuzzy se puede hallar acá: https://scikit-learn.org/stable/modules/clustering.html))

1. K-Means

```
In [92]:
           1 from sklearn.cluster import KMeans
              import matplotlib.pyplot as plt
              from ipywidgets import interact
           3
              from ipywidgets import FloatSlider
           6
              def apply_kmeans(dataset, k, max_iterations=300, tolerance=1e-4):
                  kmeans = KMeans(
           7
           8
                      n_clusters=k,
           9
                      init='random',
          10
                      n_init=1,
          11
                      max_iter=max_iterations,
          12
                      tol=tolerance,
          13
                      random_state=0,
          14
          15
                  kmeans.fit(dataset)
          16
                  return kmeans.cluster_centers_, kmeans.labels_
          17
          18
              @interact(
          19
                  dataset_name=['smile', 'mouse', 'spiral'],
          20
                  k=(2,10, 1),
          21
                  max_iterations=(10, 100, 10),
          22
                  tolerance=FloatSlider(
          23
                      min=5e-5,
          24
                      max=5e-4,
          25
                      step=5e-5,
          26
                      continuous_update=False,
          27
                      readout=True,
                      readout_format='.5f'
          28
          29
                  ),
              )
          30
          31
              def plot_kmeans(dataset_name, k, max_iterations, tolerance):
          32
                  if dataset_name == 'smile':
          33
                      dataset = smile
          34
                  elif dataset_name == 'mouse':
          35
                      dataset = mouse
          36
                  elif dataset_name == 'spiral':
          37
                      dataset = spiral
          38
                  centroids, labels = apply_kmeans(dataset, k, max_iterations, tolerance)
          39
                  plt.figure(figsize=(12,12))
                  \verb|plt.scatter(dataset[:, 0], dataset[:, 1], marker='o', c=labels, \\
          40
          41
                               edgecolors='k', s=60, cmap=plt.cm.ocean)
                  plt.scatter(centroids[:, 0], centroids[:, 1], marker='X', s=150,
          42
          43
                               linewidths=.5, c='gray', cmap=plt.cm.ocean, label='Centroide')
          44
                  plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=100,
          45
                               linewidths=2, c=list(range(len(centroids))),
          46
                               cmap=plt.cm.ocean)
                  plt.title('Algoritmo: KMeans | dataset: {} | k={} | Máx. Iters={} | Tolerancia={}'.format(dataset_nam
          47
          48
                  plt.legend(loc='upper left')
```


0.6

0.8

Análisis K-Means

Bla...

0.1

2. Agglomerative Hierarchical Clustering

0.2

```
In [42]:
            from sklearn.cluster import AgglomerativeClustering
            def apply_hac(dataset, linkage, n_clusters):
         3
         4
               hac = AgglomerativeClustering(n_clusters=n_clusters, linkage=linkage)
         5
               hac.fit(dataset)
         6
               return hac.labels_
         7
         8
            @interact(
         9
               dataset_name=['smile', 'mouse', 'spiral'],
               linkage=['single', 'complete'],
        10
               n_clusters=(2,10, 1),
        11
        12
        13
            def plot_hac(dataset_name, linkage, n_clusters):
         14
               if dataset_name == 'smile':
        15
                   dataset = smile
        16
                elif dataset_name == 'mouse':
        17
                   dataset = mouse
                elif dataset_name == 'spiral':
        18
         19
                   dataset = spiral
         20
         21
               labels = apply_hac(dataset, linkage, n_clusters)
         22
               plt.figure(figsize=(12,12))
               23
         24
         25
         26
```


Análisis Agglomerative Hierarchical Clustering

Bla...

3. DBSCAN

```
In [62]:
             from sklearn.cluster import DBSCAN
              def apply_dbscan(dataset, min_pts, eps):
          3
          4
                  dbscan = DBSCAN(eps=eps, min_samples=min_pts)
          5
                 dbscan.fit(dataset)
          6
                 core_samples_mask = np.zeros_like(dbscan.labels_, dtype=bool)
           7
                  core_samples_mask[dbscan.core_sample_indices_] = True
                  noise_points_mask = (dbscan.labels_ == -1)
          8
          9
                  border_points_mask = np.zeros_like(dbscan.labels_, dtype=bool)
          10
                 border_points_mask[~core_samples_mask & ~noise_points_mask] = True
          11
          12
                  # Number of clusters in labels, ignoring noise if present.
                 n_clusters_ = len(set(dbscan.labels_)) - (1 if -1 in dbscan.labels_ \
          13
                                                           else 0)
          14
          15
                 n_noise_ = list(dbscan.labels_).count(-1)
          16
                  return dbscan.labels_, n_clusters_, n_noise_, core_samples_mask, \
                     border_points_mask, noise_points_mask
          17
          18
          19
             @interact(
                 dataset_name=['smile', 'mouse', 'spiral'],
          20
          21
                  min_pts=(1,50, 1),
          22
                 eps=(0.01, 5.0, 0.01),
          23
              def plot_dbscan(dataset_name, min_pts, eps):
          24
          25
                  if dataset_name == 'smile':
          26
                     dataset = smile
          27
                  elif dataset_name == 'mouse':
          28
                     dataset = mouse
                  elif dataset_name == 'spiral':
          29
                     dataset = spiral
          30
          31
                  labels, n_clusters, n_noise, core_samples_mask, border_points_mask,\
          32
                  noise_points_mask = apply_dbscan(dataset, min_pts, eps)
          33
                  core_points = dataset[core_samples_mask]
          34
                 border_points = dataset[border_points_mask]
          35
                 noise_points = dataset[noise_points_mask]
          36
                  n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
          37
                 plt.figure(figsize=(12,12))
          38
                  # Plot core samples
          39
                 plt.scatter(core_points[:, 0], core_points[:, 1], marker='o',
                             c=labels[core_samples_mask], edgecolors='k', s=60,
          40
          41
                             cmap=plt.cm.tab20, label='Core')
          42
                 # Plot border points
          43
                 plt.scatter(border_points[:, 0], border_points[:, 1], marker='o',
          44
                              c=labels[border_points_mask], edgecolors='k', s=20,
                              cmap=plt.cm.tab20, label='Border')
          45
          46
                  # Plot noise points
          47
                 plt.scatter(noise_points[:, 0], noise_points[:, 1], marker='o',
                 48
          49
          50
             Clusters resultantes: {} | Core samples: {} | Border points: {} | Noise points: {}'
          51
          52
                            .format(dataset_name, eps, min_pts, n_clusters,
          53
                                   len(core_points), len(border_points),
                                   len(noise_points)))
          54
          55
                 plt.legend(loc='upper left')
          56
```


Algoritmo: DBSCAN | dataset: spiral | eps=1.97 | min_samples=7 Clusters resultantes: 3 | Core samples: 174 | Border points: 12 | Noise points: 126

Análisis DBSCAN

Bla...

4. Mean-shift

```
In [67]:
              from sklearn.cluster import MeanShift
              def apply_meanshift(dataset, bandwidth):
           3
           4
                 meanshift = MeanShift(bandwidth=bandwidth)
           5
                 meanshift.fit(dataset)
           6
                 return meanshift.cluster_centers_, meanshift.labels_
           7
           8
              @interact(
          9
                 dataset_name=['smile', 'mouse', 'spiral'],
                 bandwidth=(0.1, 10, 0.1),
          10
          11
          12
              def plot_kmeans(dataset_name, bandwidth):
    if dataset_name == 'smile':
          13
          14
                     dataset = smile
          15
                  elif dataset_name == 'mouse':
          16
                      dataset = mouse
          17
                  elif dataset_name == 'spiral':
                      dataset = spiral
          18
          19
                  centroids, labels = apply_meanshift(dataset, bandwidth=bandwidth)
                 plt.figure(figsize=(12,12))
          20
          21
                 plt.scatter(dataset[:, 0], dataset[:, 1], marker='o', c=labels,
                              edgecolors='k', s=60, cmap=plt.cm.tab20)
          22
                 23
          24
                 plt.scatter(centroids[:, \ 0], \ centroids[:, \ 1], \ marker=\mbox{$^{'}$x'}, \ s=100,
          25
          26
                              linewidths=2, c=list(range(len(centroids))),
          27
                              cmap=plt.cm.tab20)
                  plt.title('Algoritmo: Mean-shift | dataset: {} | bandwidth={}\nClusters resultantes: {}'.format(datas
          28
                 plt.legend(loc='upper left')
          29
```


Análisis Mean-shift

Bla...

5. Spectral clustering

```
In [127]:
               from sklearn.cluster import SpectralClustering
            1
               def apply_spectral_rbf(
            3
            4
                   dataset,
            5
                   n clusters.
            6
                   random_state=0,
                   n init=1,
                   gamma=1.0,
            8
            9
                   affinity_matrix_method='rbf',
           10 ):
           11
                   spectral = SpectralClustering(
           12
                       n_clusters=n_clusters,
           13
                        random_state=random_state,
           14
                        n_init=n_init,
           15
                        gamma=gamma,
                        affinity=affinity_matrix_method,
           16
           17
                    spectral.fit(dataset)
           18
           19
                   return spectral.labels_
           20
           21
               def apply_spectral_nearest_neighbors(
           22
                   dataset.
           23
                   n_clusters,
           24
                   n_neighbors,
           25
                   random_state=0,
           26
                   n_init=1,
           27
                   affinity_matrix_method='nearest_neighbors',
           28
               ):
           29
                   spectral = SpectralClustering(
                        n_clusters=n_clusters,
           30
           31
                        random_state=random_state,
           32
                        n_init=n_init,
           33
                        affinity=affinity_matrix_method,
           34
                        n_neighbors=n_neighbors,
           35
           36
                   spectral.fit(dataset)
           37
                   return spectral.labels_
           38
           39
               @interact(
                   dataset_name=['smile', 'mouse', 'spiral'],
           40
           41
                   affinity=['RBF', 'K-nearest neighbors'],
           42
                   n_clusters=(2,10, 1),
           43
                   gamma=(0.1, 5.0, 0.1),
                   n_neighbors=(1, 20, 1),
           44
           45
           46
               def plot_spectral(
           47
                   dataset_name,
           48
                   affinity,
           49
                   n clusters.
           50
                   gamma,
           51
                   n_neighbors,
           52 ):
           53
                   if dataset_name == 'smile':
                       dataset = smile
           54
                   elif dataset_name == 'mouse':
           55
           56
                       dataset = mouse
                   elif dataset_name == 'spiral':
           57
                       dataset = spiral
           58
           59
                   if affinity == 'RBF':
           60
                        labels = apply_spectral_rbf(
           61
                            dataset=dataset.
           62
                            n_clusters=n_clusters,
           63
                            gamma=gamma,
           64
                            affinity_matrix_method='rbf',
           65
                   elif affinity == 'K-nearest neighbors':
           66
           67
                        labels = apply_spectral_nearest_neighbors(
           68
                            dataset=dataset,
           69
                            n_clusters=n_clusters,
           70
                            n_neighbors=n_neighbors,
           71
                            affinity_matrix_method='nearest_neighbors',
           72
           73
                   plt.figure(figsize=(12,12))
                   \verb|plt.scatter(dataset[:, 0], dataset[:, 1], marker='o', c=labels, \\
           74
                                edgecolors='k', s=60, cmap=plt.cm.PiYG)
           75
           76
                   if affinity == 'RBF':
           77
                        plt.title('Algoritmo: Spectral Clustering | Affinity: RBF\
           78
                (gamma={}) | dataset: {} | n_clusters={}'.format(round(gamma, 2),
           79
                                                                    dataset_name, n_clusters))
           80
                    elif affinity == 'K-nearest neighbors':
                        plt.title('Algoritmo: Spectral Clustering | Affinity: {}-nearest\
           81
```


(Se pueden agregar más métodos de construcción de matriz de afinidad)

Análisis	Spectral	clustering
-----------------	----------	------------

Bla...

6. Fuzzy C-Means

```
In [145]:
             1 from skfuzzy import cluster as fuzzy
                from ipywidgets import IntSlider
             4 # Info: https://pythonhosted.org/scikit-fuzzy/auto_examples/plot_cmeans.html
                def apply_cmeans(dataset, c, m, error, maxiter, seed=0):
    # El argumento 'data' de cmeans exige que el dataset venga transpuesto!
             5
             6
                    cntr, u, u0, d, jm, p, fpc = fuzzy.cmeans(
             7
             8
                         data=dataset.T,
            9
                         c=c,
            10
                        m=m,
            11
                         error=error,
            12
                         maxiter=maxiter,
            13
                         seed=seed,
            14
            15
                    return cntr, u, u0, d, jm, p, fpc
            16
            17
                @interact(
                    dataset_name=['smile', 'mouse', 'spiral'],
            18
            19
                    n_clusters=(2, 10, 1),
            20
                    p_exponent=(1.1, 3.0, 0.1),
            21
                    error=FloatSlider(
            22
                        min=5e-4,
            23
                         max=5e-2.
            24
                         step=5e-4,
            25
                         continuous_update=False,
            26
                         readout=True,
            27
                         readout_format='.4f'
            28
            29
                    max_iterations=(1, 1000, 1),
            30
            31
                def plot_cmeans(
            32
                    dataset_name,
            33
                    n_clusters,
            34
                    p_exponent,
            35
                    error,
                    max_iterations,
            36
                ):
            37
            38
                    if dataset_name == 'smile':
            39
                        dataset = smile
                    elif dataset_name == 'mouse':
            40
            41
                        dataset = mouse
                    elif dataset_name == 'spiral':
            42
            43
                         dataset = spiral
            44
                    cntr, u, u0, d, jm, p, fpc = apply_cmeans(
            45
                         dataset=dataset,
            46
                         c=n_clusters,
            47
                         m=p_exponent,
            48
                         error=error,
                         maxiter=max_iterations,
            49
            50
                    .
# El color de cada punto es asignado segun el cluster al cual pertenezca
            51
            52
                    # con mayor porcentaje
            53
                    labels = u.argmax(axis=0)
                    plt.figure(figsize=(12,12))
            54
            55
                    plt.scatter(dataset[:, 0], dataset[:, 1], marker='o', c=labels,
            56
                                  edgecolors='k', s=60, cmap=plt.cm.ocean)
                    plt.scatter(cntr[:, 0], cntr[:, 1], marker='X', s=150,
            57
                    linewidths=.5, c='gray', cmap=plt.cm.ocean, label='Centroide')
plt.scatter(cntr[:, 0], cntr[:, 1], marker='x', s=100,
            58
            59
            60
                                 linewidths=2, c=list(range(n_clusters)),
            61
                                 cmap=plt.cm.ocean)
            62
                    plt.title('Algoritmo: Fuzzy C-Means | dataset: {} | n_clusters={} | \
                p={} | Máx. Iters={} | error={}\nFuzzy partition coefficient (FPC): {}'.format(
            63
            64
                         dataset name,
            65
                         n clusters,
            66
                         round(p_exponent, 2),
            67
                         max_iterations,
            68
                         round(error, 5),
            69
                         round(fpc, 3),
            70
                    plt.legend(loc='upper left')
            71
```


1000

Algoritmo: Fuzzy C-Means | dataset: spiral | n_clusters=3 | p=2.0 | Máx. Iters=1000 | error=0.0015 Fuzzy partition coefficient (FPC): 0.603

Análisis Fuzzy C-Means

(este link puede ayudar con el análisis: https://pythonhosted.org/scikit-fuzzy/auto_examples/plot_cmeans.html (https://pythonhosted.org/scikit-fuzzy/auto_examples/plot_cmeans.html))

Bla...

Parte II

(a) Se tiene un conjunto de datos con 100 objetos. Se le pide realizar clustering utilizando K-means, pero para todos los valores de k, 1 ≤ k ≤ 100, el algoritmo retorna que todos los clusters estan vacíos, excepto uno. ¿En que situación podría ocurrir esto? (analice los datos y no los parametros del algoritmo, i.e., iteraciones). ¿Qué resultado tendría single-link y DBSCAN para este tipo de datos?

Resp.:

(b) Considerando single-link y complete-link hierarchical clustering, ¿es posible que un objeto esté más cerca (en distancia Euclidiana) de los objetos de otros clusters en relación a los de su propio cluster? Si fuese posible, ¿en que enfoque (single y/o complete) esto podría ocurrir? Justifique con un ejemplo en cada caso.

Resp.: