CLAIMS

1	1.	(currently amended) A method for reducing spurious emissions in an amplified signal,		
2	comprising the steps of:			
3	(a)	receiving an input signal; and		
4	(b)	applying frequency-dependent phase pre-distortion to the input signal to generate a pre-		
5	distorted outp	ut signal, wherein the frequency-dependent phase pre-distortion is based on at least one		
. 6	corresponding	corresponding phase difference between at least one pair of critical frequencies, such that, when the pre-		
7	distorted outp	ut signal is applied to an amplifier to generate the amplified signal, the frequency-		
- 8	dependent pha	se pre-distortion reduces spurious emissions in the amplified signal, wherein step (b)		
9	comprises the	steps of:		
10		(1) generating a main output signal from the input signal;		
11		(2) generating one or more frequency-dependent phase pre-distortion signals from		
12	the input signa	al; and		
13		(3) advancing or delaying each frequency-dependent phase pre-distortion signal		
14	relative to the main output signal; and			
15		(4) combining each advanced or delayed frequency-dependent phase pre-distortion		
16	signal with the	e main output signal to generate the pre-distorted output signal.		
1 .	2.	(canceled)		
1	3.	(currently amended) The invention of claim [[2]] 1, wherein step (b)(1) comprises the		
2	step of applying frequency-independent magnitude and phase pre-distortion to the input signal to			
3	generate the n	nain output signal.		
1	4.	(currently amended) The invention of claim [[2]] 1, wherein each frequency-dependent		
2	phase pre-dist	ortion signal is based on a corresponding phase difference between a pair of critical		
3	frequencies.			
1	5.	(original) The invention of claim 4, wherein step (b)(3) comprises the step of advancing		
2	or delaying ea	ch frequency-dependent phase pre-distortion signal relative to the main output signal based		
3	on the frequency difference between the corresponding pair of critical frequencies			

1	6. (original) The invention of claim 4, wherein step (b)(2) comprises the step of generating			
2	two or more different frequency-dependent phase pre-distortion signals from the input signal based on			
3	two or more different pairs of critical frequencies.			
1	7. (original) The invention of claim 1, wherein the input signal is a baseband signal and the			
2	frequency-dependent phase pre-distortion is applied in the baseband domain.			
-				
1	8. (original) The invention of claim 1, wherein the input signal is an RF signal and the			
- 2	frequency-dependent phase pre-distortion is applied in the RF domain.			
1	9. (original) The invention of claim 1, wherein the frequency-dependent phase pre-			
2	distortion is based on data retrieved from one or more look-up tables.			
_				
1	10. (original) The invention of claim 9, wherein the one or more look-up tables are			
2	adaptively updated according to control signals generated based on the amplified signal.			
1	11. (original) The invention of claim 1, wherein:			
2	step (b) comprises the steps of:			
3	(1) applying frequency-independent magnitude and phase pre-distortion to the input			
4	signal to generate a main output signal;			
5	(2) generating one or more frequency-dependent phase pre-distortion signals from			
6	the input signal, wherein each frequency-dependent phase pre-distortion signal is advanced or delayed			
7	relative to the main output signal based on the frequency difference between the corresponding pair of			
8	critical frequencies; and			
9	(3) advancing or delaying each frequency-dependent phase pre-distortion signal			
10	relative to the main output signal; and			
11	(4) combining each advanced or delayed frequency-dependent phase pre-distortion			
12	signal with the main output signal to generate the pre-distorted output signal;			
13	each frequency-dependent phase pre-distortion signal is based on a corresponding phase			
14	difference between a pair of critical frequencies;			
15	the frequency-dependent phase pre-distortion is based on data retrieved from one or more look-			
	Justice Annual Property of angular and an angular and an angular and an analysis of the or more took.			

up tables, wherein the one or more look-up tables are adaptively updated according to control signals

16 17

generated based on the amplified signal

1	12.	(original) The invention of claim 11, wherein step (b)(2) comprises the step of	
2	generating two	or more different frequency-dependent phase pre-distortion signals from the input signal	
3	based on two or more different pairs of critical frequencies.		
1	13.	(original) The invention of claim 11, wherein the input signal is a baseband signal and	
2	the frequency-	dependent phase pre-distortion is applied in the baseband domain.	
1	14.	(original) The invention of claim 11, wherein the input signal is an RF signal and the	
- 2	frequency-dependent phase pre-distortion is applied in the RF domain.		
1	15.	(currently amended) An apparatus for reducing spurious emissions in an amplified	
2	signal, wherein the apparatus is configured to:		
3	(a)	receive an input signal; and	
4	(b)	apply frequency-dependent phase pre-distortion to the input signal to generate a pre-	
5	distorted output signal, wherein the frequency-dependent phase pre-distortion is based on at least one		
6	corresponding phase difference between at least one pair of critical frequencies, such that, when the pre-		
7	distorted output signal is applied to an amplifier to generate the amplified signal, the frequency-		
8	dependent phase pre-distortion reduces spurious emissions in the amplified signal, wherein the apparatus		
9	comprises:		
10		a main signal processing path configured to generate a main output signal from the input	
11	signal;		
12		one or more frequency-dependent phase pre-distortion paths configured to generate one	
13	or more frequency-dependent phase pre-distortion signals from the input signal;		
14		one or more delay blocks configured to advance or delay each frequency-dependent	
.15	phase pre-disto	ortion signal relative to the main output signal; and	
16		a combiner configured to combine each advanced or delayed frequency-dependent phase	
- 17	pre-distortion	signal with the main output signal to generate the pre-distorted output signal.	
1	16.	(canceled)	
1	17.	(currently amended) The invention of claim [[16]] 15, wherein the main signal	
2	processing path is configured to apply frequency-independent magnitude and phase pre-distortion to the		
3	input signal to generate the main output signal.		

- 18. (currently amended) The invention of claim [[16]] 15, wherein each frequency-dependent phase pre-distortion signal is based on a corresponding phase difference between a pair of critical frequencies.
- 19. (original) The invention of claim 18, wherein the one or more delay blocks advance or delay each frequency-dependent phase pre-distortion signal relative to the main output signal based on the frequency difference between the corresponding pair of critical frequencies.
- 20. (original) The invention of claim 18, comprising two or more frequency-dependent phase pre-distortion paths configured to generate two or more different frequency-dependent phase pre-distortion signals from the input signal based on two or more different pairs of critical frequencies.
- 21. (original) The invention of claim 15, wherein the input signal is a baseband signal and the apparatus applies the frequency-dependent phase pre-distortion in the baseband domain.
- 22. (original) The invention of claim 15, wherein the input signal is an RF signal and the apparatus applies the frequency-dependent phase pre-distortion in the RF domain.
- 23. (original) The invention of claim 15, wherein the apparatus retrieves data for the frequency-dependent phase pre-distortion from one or more look-up tables.
 - 24. (original) The invention of claim 23, wherein the apparatus adaptively updates the one or more look-up tables according to control signals generated based on the amplified signal.
 - 25. (previously presented) A machine-readable medium, having encoded thereon program code, wherein, when the program code is executed by a machine, the machine implements a method for reducing spurious emissions in an amplified signal, comprising the steps of:
 - (a) receiving an input signal; and

. 1

(b) applying frequency-dependent phase pre-distortion to the input signal to generate a pre-distorted output signal, wherein the frequency-dependent phase pre-distortion is based on at least one corresponding phase difference between at least one pair of critical frequencies, such that, when the pre-distorted output signal is applied to an amplifier to generate the amplified signal, the frequency-dependent phase pre-distortion reduces spurious emissions in the amplified signal.

26. (previously presented) A method for reducing spurious emissions in an amplified signal, comprising the steps of:(a) receiving an input signal; and

1 2

3

4

5

6

7

8

. 9

10

11

12

13

14

15

1

2

3

4

5

6

7

8 9

10

11 12

1

2

1

- (b) applying frequency-dependent phase pre-distortion to the input signal to generate a predistorted output signal, such that, when the pre-distorted output signal is applied to an amplifier to generate the amplified signal, the frequency-dependent phase pre-distortion reduces spurious emissions in the amplified signal, wherein step (b) comprises the steps of:
- (1) applying frequency-independent magnitude and phase pre-distortion to the input signal to generate a main output signal;
- (2) generating one or more frequency-dependent phase pre-distortion signals from the input signal; and
- (3) advancing or delaying each frequency-dependent phase pre-distortion signal relative to the main output signal; and
- (4) combining each advanced or delayed frequency-dependent phase pre-distortion signal with the main output signal to generate the pre-distorted output signal.
- 27. (previously presented) An apparatus for reducing spurious emissions in an amplified signal, wherein the apparatus comprises:
- (a) a main signal processing path configured to apply frequency-independent magnitude and phase pre-distortion to the input signal to generate a main output signal;
- (b) one or more frequency-dependent phase pre-distortion paths configured to generate one or more frequency-dependent phase pre-distortion signals from the input signal;
- (c) one or more delay blocks configured to advance or delay each frequency-dependent phase pre-distortion signal relative to the main output signal; and
- (d) a combiner configured to combine each advanced or delayed frequency-dependent phase pre-distortion signal with the main output signal to generate a pre-distorted output signal, such that, when the pre-distorted output signal is applied to an amplifier to generate the amplified signal, the frequency-dependent phase pre-distortion reduces spurious emissions in the amplified signal.
- 28. (previously presented) The invention of claim 26, wherein step (b)(2) comprises generating two or more frequency-dependent phase pre-distortion signals from the input signal.
 - 29. (previously presented) The invention of claim 27, wherein the apparatus comprises:

2	two or more frequency-dependent phase pre-distortion paths configured to generate two or more
3	frequency-dependent phase pre-distortion signals from the input signal; and
4	two or more delay blocks configured to advance or delay each frequency-dependent phase pre-

two or more delay blocks configured to advance or delay each frequency-dependent phase predistortion signal relative to the main output signal.

- 30. (new) A method for reducing spurious emissions in an amplified signal, comprising the steps of:
 - (a) receiving an input signal; and

5

1

2

3

4

5

6

7

8

9

10

11

1

2

1

2

4

5

6

7

8

9

10

11

1 2 (b) applying frequency-dependent phase pre-distortion to the input signal to generate a predistorted output signal, wherein:

the frequency-dependent phase pre-distortion is based on at least one corresponding phase difference between at least one pair of critical frequencies, such that, when the pre-distorted output signal is applied to an amplifier to generate the amplified signal, the frequency-dependent phase pre-distortion reduces spurious emissions in the amplified signal; and

the frequency-dependent phase pre-distortion is based on data retrieved from one or more look-up tables.

- 31. (new) The invention of claim 30, wherein the one or more look-up tables are adaptively updated according to control signals generated based on the amplified signal.
- 32. (new) An apparatus for reducing spurious emissions in an amplified signal, wherein the apparatus is configured to:
 - (a) receive an input signal; and
- (b) apply frequency-dependent phase pre-distortion to the input signal to generate a predistorted output signal, wherein:

the frequency-dependent phase pre-distortion is based on at least one corresponding phase difference between at least one pair of critical frequencies, such that, when the pre-distorted output signal is applied to an amplifier to generate the amplified signal, the frequency-dependent phase pre-distortion reduces spurious emissions in the amplified signal; and

the apparatus retrieves data for the frequency-dependent phase pre-distortion from one or more look-up tables.

33. (new) The invention of claim 32, wherein the apparatus adaptively updates the one or more look-up tables according to control signals generated based on the amplified signal.