

characterization of full families of groups

 ${\bf Canonical\ name} \quad {\bf Characterization Of Full Families Of Groups}$

Date of creation 2013-03-22 18:36:08 Last modified on 2013-03-22 18:36:08

Owner joking (16130) Last modified by joking (16130)

Numerical id 9

Author joking (16130) Entry type Derivation Classification msc 20A99 **Proposition.** Let $\mathcal{G} = \{G_k\}_{k \in I}$ be a family of groups. Then \mathcal{G} is full if and only if for any $i, j \in I$ such that $i \neq j$ we have that any homomorphism $f: G_i \to G_j$ is trivial.

Proof. ,, \Rightarrow " Assume that $f: G_i \to G_j$ is a nontrivial group homomorphism. Then define

$$h: \bigoplus_{k \in I} G_k \to \bigoplus_{k \in I} G_k$$

as follows: if $t \in I$ is such that $t \neq i$ and $g \in \bigoplus_{k \in I} G_k$ is such that $g \in G_t$, then h(g) = g. If $g \in \bigoplus_{k \in I} G_k$ is such that $g \in G_i$, then h(g)(j) = f(g(i)) and h(g)(k) = 0 for $k \neq j$. This values uniquely define h and one can easily check that h is not decomposable. \square

" \Leftarrow " Assume that for any $i, j \in I$ such that $i \neq j$ we have that any homomorphism $f: G_i \to G_j$ is trivial. Let

$$h: \bigoplus_{k\in I} G_k \to \bigoplus_{k\in I} G_k$$

be any homomorphism. Moreover, let $i \in I$ and $g \in \bigoplus_{k \in I} G_k$ be such that $g \in G_i$. We wish to show that $h(g) \in G_i$.

So assume that $h(g) \notin G_i$. Then there exists $j \neq i$ such that $0 \neq h(g)(j) \in G_j$. Let

$$\pi: \bigoplus_{k\in I} G_k \to G_j$$

be the projection and let

$$u:G_i\to\bigoplus_{k\in I}G_k$$

be the natural inclusion homomorphism. Then $\pi \circ u : G_i \to G_j$ is a nontrivial group homomorphism. Contradiction. \square

Corollary. Assume that $\{G_k\}_{k\in I}$ is a family of nontrivial groups such that G_i is periodic for each $i \in I$. Moreover assume that for any $i, j \in I$ such that $i \neq j$ and any $g \in G_i$, $h \in G_j$ orders |g| and |h| are realitively prime (which implies that I is countable). Then $\{G_k\}_{k\in I}$ is full.

Proof. Assume that $i \neq j$ and $f: G_i \to G_j$ is a group homomorphism. Then |f(g)| divides |g| for any $g \in G_i$. But $f(g) \in G_j$, so |g| and |f(g)| are relatively prime. Thus |f(g)| = 1, so f(g) = 0. Therefore f is trivial, which (due to proposition) completes the proof. \square