Professors IDI

IDI – Usability Testing

Outline

- Concepts
- Usability testing
- Formal usability tests
- Use cases

Concepts

Usability:

- Ease of use and acceptability of a system or product for a particular class of users carrying out specific tasks in a specific environment.
 - Where "Ease of use" affects user performance (efficacy, efficiency), satisfaction (comfort).
 - And "Acceptability" affects whether or not the product is used.

Concepts

Usability:

- The extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency, and satisfaction in a specified context of use.
- To be useful, usability has to be specific. It must refer to <u>particular tasks</u>, <u>particular environments</u> and <u>particular users</u>.
 - So has to be its testing!

Concepts

- How to test?
 - Ease of use is inversely proportional to the number and severity of difficulties people have in using software.
 - Let's examine the difficulties!!!

Outline

- Concepts
- Usability testing
- Formal usability tests
- Use cases

- Two major families by goals:
 - Determine usability problems (i.e.text editor):
 - Discovery, prioritization, and resolution of usability problems
 - Iterative testing
 - Measure task performance (i.e. 3D selection). Include two fundamental tasks:
 - The development of the usability objectives
 - Iterative testing to determine if the product under test has met the objectives

- Great variety of usability tests:
 - Can be very informal or very formal
 - Observer might sit next to the participant, watch through a one-way glass, or watch the on-screen behaviour of a participant who is performing specified tasks.
 - Often use think-aloud (TA)
 - Observers might watch one or two participants at a time
 - Evaluated software can be varied:
 - Prototypes, under development, competitive products...

Think-Aloud:

- Participants must talk about what they are doing as they do it
 - Prompt participants to resume if they stop talking
 - What users say during tasks is more reliable than posterior interviews
 - In interviews users are inclined to answer what they think you would like them to
 - When people verbalize after the experiment, they only note what they remember
 - People tries to rationalize their behaviour (giving reasons why they did not see a button...)

Think Aloud:

- Can be apply to almost any usability testing method
- Seem to work better with pairs of participants
- Seem to be best suited than silent participation in problem discovery
- Better for problem discovery than measurement

- Testing techniques:
 - Remote testing
 - Extra work
 - Heuristic/expert evaluation
 - Extra work
 - "Formal" usability tests

Outline

- Concepts
- Usability testing
- Formal usability tests
 - Environment
 - Usability tests tasks and roles
 - Development
 - Reporting
 - Cheap tests
- Use cases

Formal usability tests. Environment

- <u>"Formal"</u> usability tests require a controlled environment
 - Inside a room, outside...
 - Illumination conditions (useful for perception studies)
 - Devices used (e.g. computer with Internet connection and a browser, or a mobile...)
 - Other conditions (e.g. connection quality...)
 Usability lab ☺

Formal usability tests. Environment

- Set of soundproofed rooms
 - Proper recording and avoiding distractions to participants
- Different areas and equipment
 - Participant area (where the experiment is carried out)
 - Observer area with one-way glass
 - Executive viewing area behind the primary observer area
 - Video cameras and microphones, telephone...

Usability test workflow:

- Usability test roles:
 - A: Test administrator
 - B: Briefer
 - CO: Camera Operator
 - DR: Data Recorder
 - HD: Help Desk Operator
 - PE: Product Expert
 - S: Statistician

- Preparation:
 - Product understanding: Purpose of the product, parts ready to test, type of users...: A, PE
 - Test purpose: Product comparison, within/between subjects...: A, S
 - Measures/Goals: Number of iterations, counting mistakes/errors, timings...: A, S

Test purpose

Leucio, Realitat Virtual i interacció Gràfica

- Product understanding (A):
 - Understand the purpose of the product
 - Parts of the product are ready for testing
 - 3. Types of people who will use the product
 - 4. Determine the use given to the product
 - 5. Conditions of usage of the product

- Implementation:
 - Participants' selection: A
 - Task scenarios: initial conditions, steps: A
 - Pilot test: Members of the team: A, B, CO, DR,
 HD
 - Testing, A, B, CO, DR, HD

- Participants' selection
 - Extra work

Test task scenarios:

- Must be representative
 - Core tasks: Features that everybody uses (write a text)
 - Peripheral tasks: Features used less often (table insertion)
- Once the tasks are defined, scenarios of use must be created
 - Define initial conditions
 - Description of the scenario: what to do and why
 - Some action must be taken on finish
 - Should not provide step-by-step instructions but should include details
 - Not all users must be provided with the same scenarios (may depend on the user profile)

- Testing (A, B, CO, DR, [HD]):
 - Brief participants: B
 - Initial questionnaire: B
 - Develop tasks: B, CO, DR, [HD], A
 - Debrief: B
 - Final questionnaires: B

- Reporting (whole team):
 - Data Analysis & Evaluation: A, S
 - Issues/Measures & Recommendations: A, S, team
 - Report: A, S, team

Reporting Results:

- Describe & prioritize the usability problems
- Present quantitative measurements

Should lead to a recommendation

Problem evaluation:

- Frequency: Number of users that find a problem divided by the number of users testing the app or web
 - Easy (objective) to evaluate
- Severity: Importance of the problem
 - Might be completely catastrophic or simply cosmetic
 - Difficult (more subjective) to evaluate

- Reporting. Usability problems:
 - Should indicate the importance: <u>severity</u>
 - Can be classified:
 - Mistakes: Errors due to incorrect intention
 - Slips: Errors due to appropriate intention but incorrect action
 - Expertise does not affect on the number of errors
 - But affects how fast they are handled

- Rating the severity of usability problems:
 - Some thoughts on severity and frequency
 - Local evaluation: Jeff Rubin, Jakob Nielsen...
 - Global evaluation: Dumas and Redish

- Problem evaluation. Dumas and Redish:
 - Level 1: Prevents Task Completion
 - Level 2: Creates significant delay and frustration
 - Level 3: Problems have a minor effect on usability
 - Level 4: Subtle and possible enhancements/suggestions

Problem evaluation. Jeff Rubin:

- 4: Unusable: The user is not able to or will not want to use a particular part of the product because of the way that the product has been designed and implemented.
- 3: Severe: The user will probably use or attempt to use the product here, but will be severely limited in his or her ability to do so.
- 2: Moderate: The user will be able to use the product in most cases, but will have to undertake some moderate effort in getting around the problem.
- 1: Irritant: The problem occurs only intermittently, can be circumvented easily, or is dependent on a standard that is outside the product's boundaries. Could also be a cosmetic problem.

- Reporting. Recommendations:
 - Create a problem grid: frequency/impact
 - Global changes (prevent task completion) first
 - Must be checked:
 - A missing help may be a global problem or something related with a concrete UI
 - Try to give at least one recommendation for each problem
 - Present the different trade-offs clearly

- Problem evaluation. Conclusions
 - Do not use a large number of categories
 - Do not get obsessed by the number of categories either
 - Different evaluators may disagree on some problems' severity
 - Treat frequency separately from severity
 - Do not forget to point out positive findings

- Testing just a single person early is much better than 50 near the end
- The point of testing is to inform your judgment

- Testing on the cheap
 - Guerrilla usability testing
 - Steve Krug's "usability testing on 10 cents a day"

- Guerrilla usability testing
 - Take someone in a coffee or public space and ask her to use a website for a couple of minutes
 - Observe users
 - Ask open-ended questions such as "What would you do here?"
 - Get to know them a bit
 - Offer coffee or bagels
 - Analyse captured data
 - Considering your audience

- "Usability testing on 10 cents a day"
 - Prepare some tasks to evaluate
 - Grab somebody from the company as user
 - Gather stakeholders in an observing room
 - Let the user do a set of tasks
 - Capture gestures, mouse, record...
 - Discuss over lunch (order pizza for everybody)
 - Report

Outline

- Concepts
- Usability testing
- Formal usability tests
- Use cases
 - Guerrilla testing: WhatsApp web app
 - Measure test: Depth perception in VR

Web application

- Type of usability test: Guerrilla
- Objective
 - Identify common problems on WhatApp web
- Testing parameters
 - What is tested: Just two common tasks
 - Participants: 3 users, 2 never used it previously
 - Test procedure: Observation + interview

Test process

- User tasks
 - Send a message to a friend
 - Share photos with a friend

- Development
 - Give the instructions to the users
 - Users are observed with performing actions
 - Asked about the experience on certain subtasks

Development of task 1

Development of task 2

- Analyse problems. Finding a contact:
 - There are two ways to start a new chat:
 - (i) Search within Chats list, (ii) Go to New Chat icon on top and search contact
 - The user was not clear to differentiate between these two options

- Analyse problems. Finding a contact:
 - Searching in Chats list gives an assumption that search will run through the Chats list only, and in fact it works for both Chats and Contacts
 - On the other side, New Chat option also provides a list of Chats as well as Contacts. This requires some kind of clarity

Recommendation:

- A clear separation between Chats and Contacts is needed
 - Can be done by giving a filter option in Contact list, or a single list can be sorted based on Recent Chats or Contact names.

- Analyse problems. Viewing Message Receipt:
 - In Message Info pane, the area showing message status is merged with the Message pane
 - Also, it is not clear that user is viewing status of which message
 - Also, it took time for the user to find Close icon on top on Message Info pane

- Recommendation: The area of Message info pane and Message pane needs to differentiate clearly
 - Since this is desktop version and Message area is still visible when Info pane is opened, the link between message and its info could be made more prominent

- Analyse problems. Using attach
 - The Attach menu and tooltips do not match with the UI
 - Shows a totally different theme and experience in current screen

- Recommendation: Make menu placement and theme consistent with UI.
 - Instead of Tooltips, the option names along with icons seems more helpful.

- Analyse problems. Attaching photos:
 - Close icon with Preview title is confusing.
 - The user clicked it just to close the preview of selected photos, but it discards all the selected photos.
 - Adding more files option is not clear.
 - The Attach icon still displays on top, but it is not functional. The user clicked on that icon first.
 - It is difficult to navigate large number of selected files.

- Recommendation:
 - Rename preview area to Attachments to avoid any confusion for the user.
 - Provide scrolling in thumbnails area
 - User should be able to add more files by clicking an Add icon with caption

- More Observations
 - Using a scrollbar requires high accuracy to hold the bar and scroll it
 - Cursor is changed to resize when user tries to scroll Message pane
 - No keyboard scroll allowed in Contacts & Contact/Group Info
 - Little visibility of actions' visual feedback (bottom left)
 - Were skipped multiple times
 - Status cannot be updated on desktop version
 - Users cannot see others' status

Goal:

Evaluate performance of shading technique in VR environments

Context:

- Perception of complex, volume datasets is difficult in VR
- Shading techniques may enhance shape and depth perception

- Purpose of the test:
 - Analyze whether shading techniques influence the perception of shapes and depth in VR
- Methodology:
 - Provide images under different shading conditions
 - Ask the users to classify two points of the scene placed at different depths
 - Analyze the results obtained

Sample images:

Shading techniques:

- Test preparation:
 - Select shading models (4)
 - Select models (likely unknown to users)
 - Determine number of participants, iterations
 - Low level perception problem -> should be > 10
 - Latin squares balance results -> 16 per experiment
 - Two tasks

- Images selection:
 - Select models likely unknown
 - Avoid previous knowledge
 - Random shading sorting
 - Avoid learning (shading)
 - Random model sorting
 - Avoid learning (model)
 - Latin squares
 - Avoid fatigue and learning (within users)

- Measures (what we measure in the test):
 - Time to answer
 - Correctness

- Variables to include in the analysis (to discard confounding or correlating variables)
 - Shading technique
 - Depth values
 - May analyze if absolute difference correlates with correctness
 - Previous VR background
 - Information of images for left and right eye
 - Luminance of the points' environment
 - Correlation between depth and shading maps

- Experiment setup:
 - 3DTV
 - Users placed at fixed distance
 - Chair to reduce movements
 - Avoid parallax as confounding variable
 - Dark room
 - External light (for virtual light source consistency analysis)

Experiment setup:

- Experiment setup:
 - Modified keyboard to facilitate entry
 - Will compute timings

- Experiment setup:
 - Initial questionnaire (background, VR exposition...)
 - Initial training
 - Tasks
 - May rest between tasks
 - Post questionnaires

 Task: Select the closer point. 2-alternative forced choice (2AFC)

Analysis of results

Analysis of results

- Statistical analysis:
 - ANOVA test: One-way analysis of variance to reject the null hypothesis that all correctness means are equal between shading techniques.
 - For a significance level of α = 0.05, a Bonferroni post-hoc test with the same acceptance level to reveal differences between the individual shading techniques
 - **Result:** reject the null hypothesis when p < 0.05

- Statistical analysis.
 - Chi-square test of association for the categorical variables relative depth and users' answers from tasks 1 and 2

Variables	χ^2	p value	Correct answers for each depth category
T1: relative depth vs. users' answers	5.991	< 0.0001	<0.05: 66 % 0.05–0.1: 88 %
T2: relative depth vs. users' answers	5.991	< 0.0001	>0.1: 86 % <0.05: 63 % 0.05–0.1: 86 % >0.1: 87 %

- Guidelines and recommendations
 - Using advanced volumetric shading improves depth perception
 - Among the tested shading models the simulation of soft shadows by using directional occlusion shading for desktop-based VR seem to yield better results

- Guidelines and recommendations
 - Real illumination does not affect depth perception when using advanced volume illumination techniques
 - External lighting may be carefully controlled to provide a pleasant environment
 - Specular highlights on the screen, reflections, or overilluminated areas will certainly affect the correct perception of the data

- Guidelines and recommendations
 - When trying to judge depth in volume models, the X/Y relative position of the markers or the luminance of the points to classify seems to have no importance

Professors IDI

IDI – Usability Testing