

Exploiting Monolingual Speech Corpora for Code-mixed Speech Recognition

Karan Taneja¹, Satarupa Guha², Preethi Jyothi¹, Basil Abraham²

¹ Indian Institute of Technology Bombay, Mumbai, India ² Microsoft India Development Center, Hyderabad, India

(ah, ae)

fragment phone

transition (FPT)

Span Length Based Concatenation Sentence Length Sample a sentence Distribution length S Switch the current Add the sentence $CSL \geq S$ language (CL) to corpus. Append a segment Sample a span length L from CL with length *L* CSL: current sentence length **SPT and FPT Based Concatenation** SPT Sample $SPT(p | \langle s \rangle)$ Distributions p equals Sample SPT(p|q)</s>? **FPT** Sample Append a segment FPT(q|p)with FPT(p,q)<s> ah | bh ... h | ae | tr | oh ... n | jh | k | ah ... jh | a | </s> <s> ah bh ... h ae tr oh ... n jh k ah ... jh **CM-WER Metric and Datasets** Ref मुझे SPORTS के ** बारेमे आपको क्या क्या INFORMATION है स्पोर्ट Hyp मुझे SPORTS के बारे में आपको क्या क्या Err C

switch points

50 hours of Hindi/English

100 hours of synthetic data based on PT or SL

distributions or naïve concatenation.

12.6k code-mixed text utterances

Description

Dataset

CMtext

switch point

phone transition

(SPT)

HI/EN(50)

SynPT / SynSL /

SynConcat (100)

CM-WER = 3/8 WER = 6/11

Span Length Distributions CL: current language Add the sentence to corpus. Distributions की INFORMATIONS

Experiments with Acoustic and Language Models

Training	Dev WER	Test WER
HI(50)	63.01	65.14
HI(50)+SynConcat(100)	60.89	62.44
HI(50)+SynSL(100)	60.22	62.28
HI(50)+SynPT(100)	59.05	60.81
HI(350)	58.99	60.47
HI(350)+SynConcat(100)	57.91	59.65
HI(350)+SynSL(100)	57.22	58.29
HI(350)+SynPT(100)	57.31	58.73
HI(350)	58.99	60.47
HI(350)+SynPT(100)	57.31	58.73
HI(350)+SynPT(200)	56.62	58.73
HI(350)+SynPT(350)	56.28	58.29

Training	Dev WER	Test WER
HI	58.65(63.81)	60.83(65.50)
HI + EN	72.36(77.66)	73.81(80.62)
HI + ECT	58.39(62.24)	60.86(65.41)
HI + EN + ECT	57.72(60.57)	60.12(62.92)
HI + EN + SynConcat	57.75(60.60)	60.15(63.04)
HI + EN+ SynSL	57.51(60.03)	60.11(62.75)
HI + EN + SynPT	57.49(60.00)	60.12(62.86)
SynSL + SynPT + ECT (S-All)	57.88(60.05)	60.25(62.79)
CMtext	55.10(52.79)	57.38(55.33)
CMtext + S-All	54.59 (52.92)	56.97(55.05)

Numbers in brackets denote CM-WER after transliteration. ECT: Equivalence Constraint Theory, SynConcat: Naïve concatenation

Summary and Conclusions

- Span length distribution and phone transition distributions are effective in characterizing code-mixed language.
- Augmenting ASR training with synthetic speech that preserves these distributions lead to an improved ASR performance on code-mixed speech.
- Language models also benefit from using text from the synthetic speech.
- Future work: Explore text-to-speech (TTS) systems to improve the quality of synthetically generated speech.

References

- [1] A. Pratapa, G. Bhat, M. Choudhury, S. Sitaram, S. Dandapat, and K. Bali, "Language modeling for code-mixing: The role of linguistic theory based synthetic data," in Proceedings of ACL, 2018.
- [2] H. Seki, S. Watanabe, T. Hori, J. L. Roux, and J. R. Hershey, "An end-to-end language-tracking speech recognizer for mixed language speech," in Proceedings of ICASSP, 2018.