мэи	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 18	Утверждаю:
	Кафедра ВМСС	Зав.кафедрой
	Дисциплина МСПИ II часть	00.01.22.5
	Институт ИВТ	09.01.22 г.

- 1. Теорема Умова-Пойнтинга. Понятие вектора Пойнтинга.
- Расчет первичных параметров двусвязной длинной линии (двухпроводной и коаксиальной).

1. Теорема Умова-Пойнтинга. Понятие вектора Пойнтинга.

Из уравнений Максвелла можно получить основную теорему электромагнетизма, выражающую закон сохранения энергии электромагнитного поля.

При этом необходимо умножить на вектор E первое уравнение Максвелла в дифференциальной форме равное: $\text{rot }H=J^{\text{9}}+\frac{dD}{dt}$ и умножить вектор H на второе уравнение Максвелла в дифференциальной форме равное: $\text{rot }E=\frac{dB}{dt}$. После чего необходимо вычесть второе из первого, тогда получится выражение:

$$H \operatorname{rot} E - E \operatorname{rot} H = -\frac{\partial}{\partial t} \left(\frac{\varepsilon_a E^2}{2} - \frac{\mu_a H^2}{2} \right) - \sigma E^2 - J^{cm} E$$

Применив равенство $\nabla [E,H] = H[\nabla,E] - E[\nabla,H]$, получим:

$$\operatorname{div}[E, H] = -\frac{\partial}{\partial t} \left(\frac{\varepsilon_{a} E^{2}}{2} - \frac{\mu_{a} H^{2}}{2} \right) - \sigma E^{2} - J^{cT} E.$$

Проинтегрируем полученное выражение по любому объему V и, применив теорему Остроградского — Гаусса, получим теорему Умова-Пойнтинга о балансе мощностей электромагнитного поля:

$$-\int_{V} J^{cT} E \, d\nu = \frac{\partial}{\partial t} \int_{V} \left(\frac{\varepsilon_{a} E^{2}}{2} - \frac{\mu_{a} H^{2}}{2} \right) d\nu + \int_{V} \sigma E^{2} d\nu + \int_{S} [E, H] n \, ds$$

Левая часть выражения — мгновенная мощность, отдаваемая сторонними источниками тока, расположенными в объеме V.

Первое слагаемое в правой части — мгновенная мощность, накапливаемая в объеме V; Второе — тепловые потери в объеме V;

Третье — мгновенная мощность, излучаемая из этого объема через поверхность S , ограничивающую объем V, в окружающее пространство.

Вектором Пойнтинга называется подынтегральное выражение в последнем слагаемом, обозначаемое $\Pi = [E,H]$, которое представляет собой мгновенное значение вектора плотности потока мощности через единичную площадку ds поверхности S.

Интеграл
$$\int\limits_{S} [E,H] n \ ds$$
, распространенный по замкнутой поверхности S , имеет

физический смысл полной мощности, излучаемой из объема V. В случае наложения, например, электростатического поля на магнитостатичское поле, вектор Пойнтинга может иметь конечное значение в некоторых точках объема, но при этом div Π = H rot E – E rot H

=0, так как rot E = 0 и rot H =0 , и, соответственно:
$$\int\limits_{S} [E,H] n \ ds = \int\limits_{V} div \ \varPi \ d\nu = 0, \text{ т.e.}$$

при такой системе полей излучения из объема нет.

2. Расчет первичных параметров двусвязной длинной линии (двухпроводной и коаксиальной).

Двухпроводные линии:

Первичные параметры длинной линии r_0 , L_0 , g_0 , C_0 для двусвязных линий передачи рассчитываются в приближении квазистатических электрических и квазистационарных магнитных плоскопараллельных полей.

Формула, связывающая погонную ёмкость и поперечную проводимость:

$$g_0 = \frac{I_y}{U} = C_0 \frac{\sigma}{\varepsilon_0 \varepsilon_r}.$$

Погонная ёмкость равна: τ = C_0U , где C_0 - линейный заряд на проводах (или проводниках) линии передачи, U- разность потенциалов между ними.

Погонная индуктивность с помощью индуктивности линии, как контура (одного витка, т.е.W=1), которая определяется по формуле: $L_0 = \frac{\Psi}{lI} = \frac{W\Phi}{lI} = \frac{\Phi}{lI}$, где W — число витков, а 1 — длина линии.

Погонное продольное сопротивление двухпроводной линии с двумя проводниками круглого поперечного сечения на постоянном токе (или на низких частотах) равно:

$$R_0 = 2\frac{1}{\sigma S} = \frac{2}{\varrho \pi r_0^2}$$

Погонная поперечная ёмкость:

$$C_0 = \frac{\tau}{U} = \frac{\tau}{\frac{\tau}{2\pi\varepsilon_0\varepsilon_r}\ln\frac{2a}{r_0}} = \frac{2\pi\varepsilon_0\varepsilon_r}{\ln\frac{2a}{r_0}}$$
, где $U = \int_{r_1}^{r_2} \frac{\tau}{2\pi\varepsilon_0r} dr = \frac{\tau}{2\pi\varepsilon_0}\ln\frac{r_2}{r_1}$. (1)

Погонная поперечная проводимость
$$g_0 = C_0 \frac{\sigma}{\varepsilon_0 \varepsilon_r} = \frac{2\pi \varepsilon_0 \varepsilon_r}{\ln \frac{2a}{r_0}} * \frac{\sigma}{\varepsilon_0 \varepsilon_r} = \frac{2\pi \sigma}{\ln \frac{2a}{r_0}}$$

Подставляя выражение суммарной напряженности поля:

$$H_y=H_{lpha}=2igg(-rac{1}{2\pi r}igg)=-rac{1}{2\pi x}$$
 , где ${
m r}={
m x}$ в формулу погонной продольной индуктивности: $L_0=rac{\Phi}{lI}=\int_0^l\int_{r_0}^{(2a-r_0)}\mu_0H_ydxdl$ получим:

 $L_0 = - \ rac{\mu_0}{\pi} \ln rac{2a - r_0}{r_0}$ («-»характеризует направление потока индукции и не влияет на величину L_0).

Пусть сечение провода – круг и равномерная плотностью тока $\frac{1}{\pi a^2}$, где а – радиус проводника.

Поток внутри провода находится подстановкой в формулу

$$egin{aligned} arPhi_i &= rac{1}{I} \int arPhi_k di = rac{1}{I} \int L_k I_k di = rac{1}{I} \int I_k d arPhi_k \, \mathrm{формулы} \ d arPhi_r &= B_a dS = rac{\mu_0 I l r^2}{2\pi r a^2} dr = rac{\mu_0 I l r}{2\pi a^2} dr \, \mathrm{u} \, \mathrm{pabeh:} \, arPhi_i &= rac{\mu_0 I l}{2\pi a^2 a^2} \int_0^a r^3 = rac{\mu_0 I l}{8\pi} \ \mathrm{d} r \, \mathrm{u} \, \mathrm{pabeh:} \, arPhi_i &= rac{\mu_0 I l}{2\pi a^2 a^2} \int_0^a r^3 = rac{\mu_0 I l}{8\pi} \ \mathrm{d} r \, \mathrm{u} \, \mathrm{pabeh:} \, \dot{arPhi}_i &= rac{\mu_0 I l}{2\pi a^2 a^2} \int_0^a r^3 \, \mathrm{d} r \, \mathrm$$

Полная погонная индуктивность двухпроводной линии выводится из формул внешней ($L_{0e}=\frac{\mu_0}{\pi}\ln\frac{2a-r_0}{r_0}$) и внутренней ($L_{0i}=\frac{\mu_0 l}{8\pi}$) погонной индуктивности для одиночного провода:

$$L_0 = L_{0e} + 2L_{0i} = \frac{\mu_0}{\pi} \ln \frac{2a - r_0}{r_0} + 2\frac{\mu_0 l}{8\pi} = \frac{\mu_0}{\pi} \left[\ln \frac{2a - r_0}{r_0} + \frac{1}{4} \right] \approx \frac{\mu_0}{\pi} \left[\ln \frac{2a}{r_0} + \frac{1}{4} \right]$$

Коаксиальные линии:

Погонное продольное сопротивление коаксиальной линии с проводниками круглого поперечного сечения на постоянном токе или на низких частотах состоит из суммы погонных сопротивлений жилы: $R_{0\, m}=\frac{1}{\sigma S}=\frac{1}{\varrho \pi r_1^2}$ и оболочки:

$$R_{0 o \delta} = \frac{1}{\sigma S_{o \delta}} = \frac{1}{\varrho \pi (r_2^2 - r_3^2)}.$$

Погонная поперечная ёмкость: $C_0 = \frac{\tau}{U} = \frac{\tau}{\frac{\tau}{2\pi\varepsilon_0\varepsilon_r} \ln\frac{r_2}{r_1}} = \frac{2\pi\varepsilon_0\varepsilon_r}{\ln\frac{r_2}{r_1}}$, где U=формуле(1).

Погонная поперечная проводимость:
$$g_0 = C_0 \frac{\sigma}{\varepsilon_0 \varepsilon_r} = \frac{2\pi \varepsilon_0 \varepsilon_r}{\ln \frac{r_2}{r_1}} * \frac{\sigma}{\varepsilon_0 \varepsilon_r} = \frac{2\pi \sigma}{\ln \frac{r_2}{r_1}}$$
.

Внешняя погонная продольная индуктивность коаксиальной линии определяется из формулы индуктивности петли единичной продольной длины, образованной центральным

проводником и оболочкой линии: $L_{0e}=\frac{\Phi}{lI}=\int_0^l\int_{r_1}^{r_2}\mu_0H_\alpha drdl$ подстановкой в неё $H_\alpha=\frac{1}{2\pi r}$ и равна: $L_{0e}=\frac{1}{lI}l\int_{r_1}^{r_2}\mu_0\frac{I}{2\pi r}dr=\frac{\mu_0}{2\pi}\mathrm{ln}\frac{r_2}{r_1}.$

Внутренняя индуктивность для жилы равна $L_i=\frac{\mu_0 l}{8\pi}$. А для оболочки (при ${\rm r2}\leq {\rm r}\leq {\rm r3}$) с учетом радиального изменения тока в оболочке и, значит, выражением суммарного тока ${\rm I}_\Sigma$ в поперечном сечении линии по формуле

Суммарный ток в поперечном сечении линии равен:

$$I_{\sum} = I - I \frac{\pi(r^2 - r_3^2)}{\pi(r_3^2 - r_2^2)} = I \frac{(r_3^2 - r_2^2)}{(r_3^2 - r_2^2)}$$
.

Зависимость напряженности магнитного поля в оболочке: $H_{\alpha} = \frac{1}{2\pi r} \frac{\left(r_3^2 - r^2\right)}{\left(r_3^2 - r_2^2\right)}$.

Поток внутри оболочки находится подстановкой в формулу $\Phi_i = \frac{1}{I} \int I_{\sum} d\Phi_r$ формулы:

 $d\Phi_r = B_a dS = rac{\mu_0 I (r_3^2 - r^2) l}{2\pi r (r_3^2 - r_2^2)} dr$ и формулы суммарного тока в поперечном сечении линии (при dS = ldr).

Внутренняя индуктивность коаксиального кабеля:

$$L_{i o \delta} = \frac{\mu_0}{2\pi \left(r_3^2 - r_2^2\right)^2} \left\{ r_3^4 \ln \frac{r_3}{r_2} - 2r_3^2 \frac{\left(r_3^2 - r_2^2\right)}{2} + \frac{\left(r_3^4 - r_2^4\right)}{4} \right\}.$$

Сравнив внешнюю и внутреннюю индуктивности коаксиального провода, соотношение между которыми составляет: $\frac{\mu_0}{2\pi} \ln \frac{r_2}{r_1} * \frac{8\pi}{\mu_0} = 4 \ln \frac{r_2}{r_1}$, можно считать, что погонная

индуктивность коаксиального кабеля определяется формулой: $L_0 = \frac{\mu_0}{\pi} \left[\ln \frac{2a}{r_0} + \frac{1}{4} \right]$.

Формулы L_0 двухпроводной и коаксиальной линии идентичны.