Hypothesis tests allow us to answer simple "yes-or-no" questions, such as:

- Is the true coefficient β_i in a linear regression equal to zero?
- Does the expected blood pressure among mice in the treatment group equal the expected blood pressure among mice in the control group?

Hypothesis tests allow us to answer simple "yes-or-no" questions, such as:

- Is the true coefficient β_i in a linear regression equal to zero?
- Does the expected blood pressure among mice in the treatment group equal the expected blood pressure among mice in the control group?

Hypothesis testing proceeds as follows:

1. Define the null and alternative hypotheses

Hypothesis tests allow us to answer simple "yes-or-no" questions, such as:

- Is the true coefficient β_i in a linear regression equal to zero?
- Does the expected blood pressure among mice in the treatment group equal the expected blood pressure among mice in the control group?

Hypothesis testing proceeds as follows:

- 1. Define the null and alternative hypotheses
- 2. Construct the test statistic

Hypothesis tests allow us to answer simple "yes-or-no" questions, such as:

- Is the true coefficient β_i in a linear regression equal to zero?
- Does the expected blood pressure among mice in the treatment group equal the expected blood pressure among mice in the control group?

Hypothesis testing proceeds as follows:

- 1. Define the null and alternative hypotheses
- 2. Construct the test statistic
- 3. Compute the p-value

Hypothesis tests allow us to answer simple "yes-or-no" questions, such as:

- Is the true coefficient β_i in a linear regression equal to zero?
- Does the expected blood pressure among mice in the treatment group equal the expected blood pressure among mice in the control group?

Hypothesis testing proceeds as follows:

- 1. Define the null and alternative hypotheses
- 2. Construct the test statistic
- 3. Compute the p-value
- 4. Decide whether to reject the null hypothesis

1. Define the Null and Alternative Hypotheses

- We divide the world into *null* and *alternative* hypotheses.
- The null hypothesis, H_0 , is the default state of belief about the world. For instance:
 - 1. The true coefficient β_i equals zero.
 - 2. There is no difference in the expected blood pressures.

1. Define the Null and Alternative Hypotheses

- We divide the world into *null* and *alternative* hypotheses.
- The null hypothesis, H_0 , is the default state of belief about the world. For instance:
 - 1. The true coefficient β_i equals zero.
 - 2. There is no difference in the expected blood pressures.
- The alternative hypothesis, H_a , represents something different and unexpected. For instance:
 - 1. The true coefficient β_i is non-zero.
 - 2. There is a difference in the expected blood pressures.

2. Construct the Test Statistic

• The test statistic summarizes the extent to which our data are consistent with H_0 .

2. Construct the Test Statistic

- The test statistic summarizes the extent to which our data are consistent with H_0 .
- Let $\hat{\mu}_t / \hat{\mu}_c$ respectively denote the average blood pressure for the n_t / n_c mice in the treatment and control groups.

2. Construct the Test Statistic

- The test statistic summarizes the extent to which our data are consistent with H_0 .
- Let $\hat{\mu}_t / \hat{\mu}_c$ respectively denote the average blood pressure for the n_t / n_c mice in the treatment and control groups.
- To test $H_0: \mu_t = \mu_c$, we use a two-sample t-statistic

$$T = \frac{\hat{\mu}_t - \hat{\mu}_c}{s\sqrt{\frac{1}{n_t} + \frac{1}{n_c}}}$$

• The p-value is the probability of observing a test statistic at least as extreme as the observed statistic, under the assumption that H_0 is true.

- The p-value is the probability of observing a test statistic at least as extreme as the observed statistic, under the assumption that H_0 is true.
- A small p-value provides evidence against H_0 .

- The p-value is the probability of observing a test statistic at least as extreme as the observed statistic, under the assumption that H_0 is true.
- A small p-value provides evidence against H_0 .
- Suppose we compute T=2.33 for our test of $H_0: \mu_t=\mu_c$.

- The p-value is the probability of observing a test statistic at least as extreme as the observed statistic, under the assumption that H_0 is true.
- A small p-value provides evidence against H_0 .
- Suppose we compute T=2.33 for our test of $H_0: \mu_t=\mu_c$.
- Under H_0 , $T \sim N(0,1)$ for a two-sample t-statistic.

- The p-value is the probability of observing a test statistic at least as extreme as the observed statistic, under the assumption that H_0 is true.
- A small p-value provides evidence against H_0 .
- Suppose we compute T=2.33 for our test of $H_0: \mu_t=\mu_c$.
- Under H_0 , $T \sim N(0,1)$ for a two-sample t-statistic.

• The p-value is 0.02 because, if H_0 is true, we would only see |T| this large 2% of the time.

• A small p-value indicates that such a large value of the test statistic is unlikely to occur under H_0 .

- A small p-value indicates that such a large value of the test statistic is unlikely to occur under H_0 .
- So, a small p-value provides evidence against H_0 .

- A small p-value indicates that such a large value of the test statistic is unlikely to occur under H_0 .
- So, a small p-value provides evidence against H_0 .
- If the p-value is sufficiently small, then we will want to reject H_0 (and, therefore, make a potential "discovery").

- A small p-value indicates that such a large value of the test statistic is unlikely to occur under H_0 .
- So, a small p-value provides evidence against H_0 .
- If the p-value is sufficiently small, then we will want to reject H_0 (and, therefore, make a potential "discovery").
- But how small is small enough? To answer this, we need to understand the Type I error.

		Truth	
		H_0	H_a
Decision	Reject H_0	Type I Error	Correct
	Do Not Reject H_0	Correct	Type II Error

- The *Type I error rate* is the probability of making a Type I error.
- We want to ensure a small Type I error rate.

- The *Type I error rate* is the probability of making a Type I error.
- We want to ensure a small Type I error rate.
- If we only reject H_0 when the p-value is less than α , then the Type I error rate will be at most α .

- The *Type I error rate* is the probability of making a Type I error.
- We want to ensure a small Type I error rate.
- If we only reject H_0 when the p-value is less than α , then the Type I error rate will be at most α .
- So, we reject H_0 when the p-value falls below some α : often we choose α to equal 0.05 or 0.01 or 0.001.