DecoyAuth: Authentication with Compromise Detection

Mathy Vanhoef

February 2025

Funded by NGI Sargasso under the DecoyAuth project.

Stolen credentials still a big issue

Verizon 2024 data breach report (30,458 security incidents)

Stolen credentials still the top cause of breaches

Solution: decoy tokens

- Act as reverse honeypot
- Use of a decoy token means a breach occurred

Problem

Zero-Knowledge Authentication (ZK-Auth)

- > Counterparty *only* learns if token was correct
- › Downside: can't use decoy tokens!

We add support of decoy tokens to ZK protocols

- Decoy token is indistinguishable from a real token
- If decoy token is used: take appropriate measures

Objective: next-gen security and identity

- 1. Design the DecoyAuth protocol.
 - Based on Dragonfly.
- 2. Make a reference implementation
 - Will be open-sourced. Integrate into EAP authentication framework.
- 3. Create an open specification

Open standardization is core goal

Pick random r_A and m_A $s_A = (r_A + m_A) \bmod q$ $E_A = -m_A \cdot P$ Pick random r_B and m_B $s_B = (r_B + m_B) \bmod q$ $E_B = -m_B \cdot P$

Pick random r_A and m_A $s_A = (r_A + m_A) \mod q$ $E_A = -m_A$

Pick random r_B and m_B $s_B = (r_B + m_B) \bmod q$ $E_B = -m_B$

Password is hashed to group element P

(Simplified Shallue Woestijne-Ulas)

Pick random r_A and m_A $s_A = (r_A + m_A) \bmod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

Pick random r_B and m_B $s_B = (r_B + m_B) \bmod q$ $E_B = -m_B \cdot P$

Pick random r_A and m_A $s_A = (r_A + m_A) \mod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

Pick random r_B and m_B $s_B = (r_B + m_B) \bmod q$ $E_B = -m_B \cdot P$

Commit(s_B, E_B)

Could also have design without scalar s, it was added to avoid patent issues...

Pick random r_A and m_A $s_A = (r_A + m_A) \bmod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

$$K = r_A \cdot (s_B \cdot P + E_B)$$

$$= r_A \cdot (r_B \cdot P + m_B \cdot P - m_B \cdot P)$$

$$= r_A \cdot r_B \cdot P$$

$$\kappa = \text{Hash}(K)$$

$$tr = (s_A, E_A, s_B, E_B)$$

$$c_A = \text{HMAC}(\kappa, tr)$$

Pick random r_B and m_B $s_B = (r_B + m_B) \bmod q$ $E_B = -m_B \cdot P$

Pick random r_A and m_A $s_A = (r_A + m_A) \mod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

 $K = r_A \cdot (s_B \cdot P + E_B) = r_A \cdot r_B \cdot P$ $\kappa = \text{Hash}(K)$ $tr = (s_A, E_A, s_B, E_B)$ $c_A = \text{HMAC}(\kappa, tr)$ Pick random r_B and m_B $s_B = (r_B + m_B) \bmod q$ $E_B = -m_B \cdot P$

Pick random r_A and m_A $s_A = (r_A + m_A) \mod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

 $K = r_A \cdot (s_B \cdot P + E_B) = r_A \cdot r_B \cdot P$ $\kappa = \text{Hash}(K)$ $tr = (s_A, E_A, s_B, E_B)$ $c_A = \text{HMAC}(\kappa, tr)$ Pick random r_B and m_B $s_B = (r_B + m_B) \bmod q$ $E_B = -m_B \cdot P$

Pick random r_A and m_A $s_A = (r_A + m_A) \mod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

$$K = r_A \cdot (s_B \cdot P + E_B) = r_A \cdot r_B \cdot P$$

 $\kappa = \text{Hash}(K)$
 $tr = (s_A, E_A, s_B, E_B)$
 $c_A = \text{HMAC}(\kappa, tr)$

Pick random r_B and m_B $s_B = (r_B + m_B) \bmod q$ $E_B = -m_B \cdot P$

Commit(s_B, E_B)

 $K = r_B \cdot (s_A \cdot P + E_A) = \mathbf{r_A} \cdot \mathbf{r_B} \cdot \mathbf{P}$ $\kappa = \operatorname{Hash}(K)$ $tr = (s_B, E_B, s_A, E_A)$ $c_B = \operatorname{HMAC}(\kappa, tr)$

Negotiate shared key. Similar to SPEKE (expired patent) but using a <u>mask and scalar</u>.

Pick random r_A and m_A $s_A = (r_A + m_A) \mod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

$$K = r_A \cdot (s_B \cdot P + E_B) = \mathbf{r}_A \cdot \mathbf{r}_B \cdot \mathbf{P}$$

$$\kappa = \text{Hash}(K)$$

$$tr = (s_A, E_A, s_B, E_B)$$

$$c_A = \text{HMAC}(\kappa, tr)$$

 $\bigcirc{\mathsf{Confirm}(c_A)}$

 $c_{R} = \text{HMAC}(\kappa, tr)$

 $K = r_B \cdot (s_A \cdot P + E_A) = \mathbf{r}_A \cdot \mathbf{r}_B \cdot \mathbf{P}$ $\kappa = \operatorname{Hash}(K)$ $tr = (s_B, E_B, s_A, E_A)$

Pick random r_A and m_A $s_A = (r_A + m_A) \mod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

 $K = r_A \cdot (s_B \cdot P + E_B) = r_A \cdot r_B \cdot P$ $\kappa = \text{Hash}(K)$ $tr = (s_A, E_A, s_B, E_B)$ $c_A = \text{HMAC}(\kappa, tr)$ Pick random r_B and m_B $s_B = (r_B + m_B) \bmod q$ $E_B = -m_B \cdot P$

Commit(s_B, E_B)

 $K = r_B \cdot (s_A \cdot P + E_A) = \mathbf{r}_A \cdot \mathbf{r}_B \cdot \mathbf{P}$ $\kappa = \operatorname{Hash}(K)$ $tr = (s_B, E_B, s_A, E_A)$ $c_B = \operatorname{HMAC}(\kappa, tr)$

(3)-

Confirm (c_A)

Confirm (c_B)

4

Confirm peer negotiated same key

What do people seem to want?

- Solution should support any key type including passwords
- Ideally same security guarantees as normal Dragonfly
- Avoid DoS attacks, in particular against the server
- "Ideally minimal changes to Dragonfly to ease implementation"
- "Ideally support tens of thousands of decoy keys"

Naïve: do *n* parallel Dragonfly executions

- Has obvious overhead:
 - >> All packets sent *n* times, all computations done *n* times
- > We can do better: adapt O-PAKE or SweetPAKE [1,2]

Adapting O-PAKE

O-PAKE can turn any PAKE into an oblivious PAKE

- Oblivious = client can try n keys at once
- Authentication succeeds if any of out n keys is valid
- Server sends encoding of points to the client
- Client recovers the right message using its key

Adapting O-PAKE

O-PAKE can turn any PAKE into an oblivious PAKE

- Oblivious = client can try n keys at once
- Authentication succeeds if any of out n keys is valid
- Server sends encoding of points to the client
- Client recovers the right message using its key

→ We reverse direction & apply to Dragonfly

Direct O-PAKE adaption

Pick random r_A and m_A $s_A = (r_A + m_A) \mod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

For all passwords i:

Pick random $r_{B,i}$ and $m_{B,i}$

$$s_{B,i} = (r_{B,i} + m_{B,i}) \bmod q$$

$$E_{B,i} = -m_{B,i} \cdot P$$

points += $(H(pw_i), s_{B,i} || E_{B,i})$

vals = encode(points)

Commit(vals)

4

$s_{B,i}$ and $E_{B,i} = \text{decode(vals, H}(pw))$

$$K = r_A \cdot (s_{B,i} \cdot P + E_{B,i}) = r_A \cdot r_{B,i} \cdot P$$

$$c_A = \mathrm{HMAC}(\mathrm{H}(K), (s_A, E_A, s_B, E_B))$$

Confirm (c_A)

Confirm (c_B)

For all passwords i:

$$K = \mathbf{r}_{B,i} \cdot (s_A \cdot P + E_A) = \mathbf{r}_A \cdot \mathbf{r}_{B,i} \cdot \mathbf{P}$$

$$c'_A = \text{HMAC}(H(K), (s_A, E_A, s_{B,i}, E_{B,i}))$$

pw found if
$$c'_A = c_A$$

Calculate c_B

Decoy-Dragonfly

- Data overhead is O(c n) where n = #keys
 - This seems hard to avoid...
 - ...unless we can reuse data across handshakes?
 - ...unless decoy keys are generated or have structure?
- First: can we reduce the value of c in O(c n)?
 - » Reuse the same scalar for all keys!
 - » Note: what comes next are fresh ideas without any proofs...

Direct O-PAKE adaption

Pick random r_A and m_A $s_A = (r_A + m_A) \bmod q$ $E_A = -m_A \cdot P$

 $Commit(s_A, E_A)$

For all passwords i:

Pick random $r_{B,i}$ and $m_{B,i}$ $s_{B,i} = (r_{B,i} + m_{B,i}) \mod q$ $E_{B,i} = -m_{B,i} \cdot P$ points $+= (H(pw_i), s_{B,i} || E_{B,i})$ vals = encode(points)

Pick random r_A and m_A $s_A = (r_A + m_A) \bmod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

Pick random s_R

For all passwords i:

Pick random $r_{B,i}$ and $m_{B,i}$

$$s_{B,i} = (r_{B,i} + m_{B,i}) \bmod q$$

$$E_{B,i} = -m_{B,i} \cdot P$$

points +=
$$(H(pw_i), s_{B,i} || E_{B,i})$$

Pick random r_A and m_A $s_A = (r_A + m_A) \mod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

Pick random s_R

For all passwords i:

Pick random $r_{B,i}$ and $m_{B,i}$

$$s_{B,i} = (r_{B,i} + m_{B,i}) \bmod q$$

$$E_{B,i} = -m_{B,i} \cdot P$$

points +=
$$(H(pw_i), s_{B,i} || E_{B,i})$$

Pick random r_A and m_A $s_A = (r_A + m_A) \bmod q$ $E_A = -m_A \cdot P$

 $Commit(s_A, E_A)$

Pick random s_R

For all passwords i:

Pick random $r_{B,i}$ and $m_{B,i}$

$$r_{B,i} = (s_B - m_{B,i}) \bmod q$$

$$E_{B,i} = -m_{B,i} \cdot P$$

points +=
$$(H(pw_i), s_{B,i} || E_{B,i})$$

vals = encode(points)

Commit(vals)

Pick random r_A and m_A $s_A = (r_A + m_A) \mod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

Pick random s_R

For all passwords i:

Pick random $r_{B,i}$ and $m_{B,i}$

$$r_{B,i} = (s_B - m_{B,i}) \bmod q$$

$$E_{B,i} = -m_{B,i} \cdot P$$

points += $(H(pw_i), s_{B,i} || E_{B,i})$

vals = encode(points)

Commit(s_B , vals)

 $s_{B,i}$ and $E_{B,i} = \text{decode(vals, H}(pw))$ $K = r_A \cdot (s_{B,i} \cdot P + E_{B,i}) = r_A \cdot r_{B,i} \cdot P$

$$c_A = \mathrm{HMAC}(H(K), (s_A, E_A, s_B, E_B))$$

Reuse scalar (final)

Pick random r_A and m_A $s_A = (r_A + m_A) \bmod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

Pick random s_B

For all passwords i:

Pick random $r_{B,i}$ and $m_{B,i}$

$$r_{B,i} = (s_B - m_{B,i}) \bmod q$$

$$E_{B,i}=-m_{B,i}\cdot P$$

points += $(H(pw_i), s_{B,i} || E_{B,i})$

vals = encode(points)

Commit(s_B , vals)

 $E_{B,i} = \text{decode(vals, } H(pw))$

$$K = r_A \cdot (\mathbf{s}_B \cdot P + E_{B,i}) = r_A \cdot r_{B,i} \cdot P$$

 $c_A = \text{HMAC}(H(K), (s_A, E_A, s_B, E_B))$

Confirm (c_A)

Confirm (c_B)

For all passwords \emph{i} :

$$K = r_{B,i} \cdot (s_A \cdot P + E_A) = r_A \cdot r_{B,i} \cdot P$$

$$c'_A = \text{HMAC}(H(K), (s_A, E_A, s_{B,i}, E_{B,i}))$$

pw found if $c'_A = c_A$

Calculate c_B

Decoy-Dragonfly

- Data overhead is now lower!
- > But still requires point encoding in every handshake
 - ›› Can optimize with precomputation if keys remain identical [3]
 - >> But still O(n²) in number of the keys
- Do point envoding once and reuse the encoded values?
 - $^{"}$ We can easily change the scalar s_B while keeping all $m_{B,i}$ the same
 - » Would what this look like? Let's explore...

Reuse scalar (final)

Pick random r_A and m_A $s_A = (r_A + m_A) \bmod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

Pick random s_B For all passwords i:

Pick random $m_{B,i}$ $r_{B,i} = \left(s_B - m_{B,i}\right) \mod q$ $E_{B,i} = -m_{B,i} \cdot P$ points $+= (H(pw_i), E_{B,i})$ vals = encode(points)

Reuse values

Pick random r_A and m_A $s_A = (r_A + m_A) \bmod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

Pick random s_R

For all passwords i:

Pick random $m_{B,i}$

$$r_{B,i} = (s_B - m_{B,i}) \bmod q$$

$$E_{B,i} = -m_{B,i} \cdot P$$

points $+= (H(pw_i), E_{B,i})$

vals = encode(points)

Reuse values

Pick random r_A and m_A $s_A = (r_A + m_A) \bmod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

For all passwords i:

Pick random $m_{B,i}$ $E_{B,i} = -m_{B,i} \cdot P$ points $+= (H(pw_i), E_{B,i})$ vals = encode(points)

Pick random s_B $\forall i: r_{B,i} = (s_B - m_{B,i}) \mod q$

Reuse values

Pick random r_A and m_A $s_A = (r_A + m_A) \mod q$ $E_A = -m_A \cdot P$

Commit(s_A , E_A)

For all passwords i:

Pick random $m_{B,i}$

$$E_{B,i} = -m_{B,i} \cdot P$$

points $+= (H(pw_i), E_{B,i})$

vals = encode(points)

Pick random s_B

Commit(s_B , vals)

 $E_{B,i} = decode(vals, H(pw))$

$$K = r_A \cdot (s_B \cdot P + E_{B,i}) = r_A \cdot r_{B,i} \cdot P$$

 $c_A = \mathrm{HMAC}(H(K), (s_A, E_A, s_B, E_B))$

Confirm (c_A)

Confirm (c_B)

For all passwords \emph{i} :

$$K = r_{B,i} \cdot (s_A \cdot P + E_A) = r_A \cdot r_{B,i} \cdot P$$

$$c'_A = \text{HMAC}(H(K), (s_A, E_A, s_{B,i}, E_{B,i}))$$

pw found if $c'_A = c_A$

Calculate c_B

Reuse values (final)

Pick random r_A and m_A $s_A = (r_A + m_A) \mod q$

$$s_A = (r_A + m_A) \mod q$$

 $E_A = -m_A \cdot P$

Commit(s_A , E_A)

For all passwords i:

Pick random $m_{B,i}$

$$E_{B,i}=-m_{B,i}\cdot P$$

points
$$+= (H(pw_i), E_{B,i})$$

vals = encode(points)

Pick random s_B

 $\forall i: r_{B,i} = (s_B - m_{B,i}) \bmod q$

Commit(s_B , vals)

$$E_{B,i} = decode(vals, H(pw))$$

$$K = r_A \cdot (s_B \cdot P + E_{B,i}) = r_A \cdot r_{B,i} \cdot P$$

 $c_A = \mathrm{HMAC}(H(K), (s_A, E_A, s_B, E_B))$

Confirm (c_A)

Confirm (c_B)

For all passwords \emph{i} :

$$K = r_{B,i} \cdot (s_A \cdot P + E_A) = r_A \cdot r_{B,i} \cdot P$$

 $c'_A = \text{HMAC}(H(K), (s_A, E_A, s_{B,i}, E_{B,i}))$

pw found if $c'_A = c_A$

Calculate c_B

Advantages

- Can broadcast the encoded values to all clients at once
 - ›› Can even be sent outside the handshake...
 - ...this makes supporting many keys more feasible
- Reduces computational burden on the AP
 - >> AP still loops over all keys, but seems hard to avoid

Other directions

- Can also do similar things like SweetPAKE [2]
 - » Based on Password-Authenticated Public-Key Encryption (PAPKE)
 - >> Not based on Dragonfly, IEEE 802.11 might be more hesitant to adopt
 - » But also seems worth exploring!
- Could even combine point encoding with PAPKE
 - » Happy to discuss, see backup slides
- > Post-quantum? Currently not (yet) a focus in Wi-Fi...

Future extensions

Multi-password Wi-Fi feature

- Implemented by practically all vendors for WPA2!
- > Nice alternative to have per-user credentials...
- ...but without the hassle of certificates/usernames
- No longer possible with WPA3, because it uses Dragonfly...
- ...we are looking into adding this feature as well

Advantage of multi-password WPA3

A single network name but multiple passwords

- > Better user experience + less airtime overhead
- Use case: guests get a different password
 - >> Devices connect to same network, but are put in different VLANs
- Use case: all users or devices get a different password
 - >> Infer identity from used password, can again have different VLANs
 - » Revoke/change individual passwords, e.g., hotels, employees,...
 - >> Malicious insider can't create rogue clone of the network

Conclusion

- Supporting decoy keys is feasible
- Help needed to optimize solutions!
 - » Security analysis, optimizations, ideas...
 - >> Eternal fame awaits! ©

→ https://github.com/DistriNet/decoyauth

References

- 1. F. Kiefer and M. Manulis. Oblivious PAKE: Efficient handling of password trials. In Springer International Conference on Information Security, 2015.
- 2. A. Arriaga, P. Y. Ryan, and M. Skrobot. SweetPAKE: Key exchange with decoy passwords. In Asia CCS, 2024.
- 3. D. Harkins. Simultaneous authentication of equals: A secure, password-based key exchange for mesh networks. In IEEE SensorComm, 2008.