Київський Національний Університет ім. Т. Шевченка

Фізичний факультет

Звіт

По лабораторній роботі № 2 3 курсу «Основи електроніки»

Напівпровідникові діоди

Роботу виконав: Максимук В.С. Група: 5-Б Викладачі: Єрмоленко Р.В. Мягченко Ю.О.

БКК 73Ц I-72

Укладач: Максимук В.С.

І-72 Звіт. Напівпровідникові діоди/ укл. Максимук В.С.

-К: КНУ ім. Т. Шевченка, 2021. - с. (Укр. мов.)

Наведено загальний звіт виконання роботи з моделювання електронних схем у програмі $Ni\ Multisim^{TM}$.

Зміст

- 1. Вступ
 - 1.1 Мета роботи
 - 1.2 Методи вимірювання
- 2. Термінологія
- 3. Практична частина
- 4. Висновок

1. Вступ

Мета роботи: навчитися одержувати зображення ВАХ діодів на екрані двоканального осцилографа, дослідити властивості *p-n*—переходів напівпровідникових діодів різних типів.

Методидослідження:

- 1) одержання зображення ВАХ діодів на екрані двоканального осцилографа, який працює в режимі характериографа;
- 2) побудова ВАХ діодів шляхом вимірювання певної кількості значень сили струму І, що відповідають певним значенням та полярності напруги U, і подання результатів вимірів у вигляді графіка.

2. Термінологія

Напівпровідниковий діод — це напівпровідниковий прилад з одним p-n-переходом

і двома виводами.

p-n-перехід — перехідний шар, що утворюється на межі двох областей напівпровідника, одна з яких має провідність n-типу, а інша — провідність ртипу.

Вольт-амперна характеристика (ВАХ) діода — це залежність сили струму Ід через p-n—перехід діода від величини і полярності прикладеної до діода напруги U_D .

Характериограф — електронно-променевий прилад, на екрані якого можна спостерігати графіки функцій будь-яких фізичних величин, що можуть бути перетворені у пропорційні їм напруги, наприклад, графіки залежності сили струму I_D від напруги U_D .

3. Практична частина

1. Схема установки

Рис.1.Параметри джерела

Рис. 2.Схема установки

2. Випрямлювальний діод

Рис. 3. ВАХ випрямлювального діода

Рис. 4. ВАХ випрямлювального діода (характериограф)

3. Стабілітрон

Рис. 5. BAX стабілітрона

Рис. 6. ВАХ стабілітрона (характериограф)

4. Світлодіод

Рис. 7. ВАХ світлодіода

Рис. 8. ВАХ світлодіода (характериограф)

Висновки

За допомогою даної лабораторної роботи вдалось дослідити ВАХ діодів. При дослідження використовувалось спільна схема і три типи напівпровідникових діодів: випрямлювальний, стабілізатор та світлодіод. Їхнє почергове підключення регулювалось замкненням відповідного ключа.