Telecom : notes de cours

Arian Dervishaj

October 4, 2023

Rappel mathématique

$$\begin{aligned} \forall x \in R_+ &\text{ et } y \in R, \text{ on a :} \\ y &= \ln(x) \iff x = \exp(y) = e^y \\ x &= \log_a(y) = \frac{\ln(y)}{\ln(a)} \\ \ln(e) &= 1 \\ \log_a(xy) &= \log_a x + \log_a y \\ \log_a x^r &= r \log_a x \\ lb &= \log_2 \end{aligned}$$

a.
$$\log_a(\frac{1}{x}) = -\log_a x;$$

b.
$$\log_a(\frac{x}{y}) = \log_a x - \log_a y;$$

Introduction aux Télécommunications

Qu'est ce qu'est la théroie de l'information

- Concerne la mesure et la transmissions d'informations par un canal bruité
- Une base fondamentale est l'information de Shannon, fournit de nombreux outils basés sur les mesures d'information en bits, bit/s et corrections d'erreurs.

Les idées de Shannon

- Former la base pour le champ de la théorie de l'information
- Fournir les critères pour mesurer l'efficacité d'un systeme de communication
- Identifié les problèmes à resoudre pour arriver à des systèmes ideaux

Information et codage

Canal de transmission

Schema de communication

Mesure de l'information

Une source est un systeme capable de générer un flux d'ifnormation. La source sera continue ou discrète. (On se focus sur un milieu discret).

Soit X une source d'info dont l'alphabet est $\{x_1, x_2, \dots, x_m\}$. Si les symboles sont indépendant, alors la source est sans mémoire.

Quantité d'information

La quantité d'information représente une valeur d'information contenue dans chaque symbole d'une source discrète.

 $I(x_i) = -lb[Prob(x_i)]$ avec $Prob(x_i)$ la proba d'apparition de l'événement x_i .

Entropie

L'entropie correspond à la moyenne des quantités d'informations de la source.

$$H(x) = \sum_{i=1}^{n} Prob(x_i) * I(x_i)$$

La quantité de décision

Correspond au max de l'entropie qui est atteint quand les symboles sont équiprobables.

$$D = lb(m)$$

Redondace

Exprime la différence entre la valeur de l'entropie et la quantité de décision

$$R = D - H$$

Capacité d'un canal

Un canal de bande passante B en présence d'un bruit blanc gaussien a comme capacité :

$$C = B * lb(1 + \xi)$$

Compression et codage

1er Th. de Shannon

Si H est l'entropie d'une source discrète sans mémoire, on peut coder la source par une suite binaire en utilisant en moyenne H bits par symbole, sans jamais être inférieur à H.

Code de Shannon-Fano

- 1. Ordonner les caractères selon l'ordre décroissant de leurs probabilités.
- 2. Diviser l'ensemble à encoder en deux sous-ensemble aussi équiprobables que possible
- 3. Attribuer à chauge sous ensemble un symbole binaire distinct
- 4. Répéter la procédure pour chaque caractère à encoder, jusqu'à ce que chacun d'eux possède une transcription binaire distincte.

Exmple: n = 8