Assignment Objective

Build a model to predict the house prices

Import Libraries

```
# Import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Import the dataset

```
# Import dataset as a pandas DataFrame
df = pd.read_excel('./dataset1.xlsx')
```

- Exploratory Data Analysis
- View 5 random samples

df.sample(5)

→		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	po
	9345	-117.65	33.65	15	4713	671.0	
	8432	-122.54	37.96	33	2534	495.0	
	17863	-119.32	36.33	20	1896	266.0	
	689	-122.10	37.66	33	1954	464.0	
	13349	-117.08	32.69	36	1571	284.0	

View the number of rows and columns in the dataset

df.shape

→ (18565, 10)

One-Hot Encoding for Ocean Proximity

from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder(sparse_output=False, handle_unknown='ignore').set_output('ohe_transform = encoder.fit_transform(df[['ocean_proximity']])
df = pd.concat([df,ohe_transform], axis=1).drop(columns=['ocean_proximity'])

df.dtypes

	0
longitude	float64
latitude	float64
housing_median_age	int64
total_rooms	int64
total_bedrooms	float64
population	int64
households	int64
median_income	float64
median_house_value	int64
ocean_proximity_<1H OCEAN	float64
ocean_proximity_INLAND	float64
ocean_proximity_ISLAND	float64
ocean_proximity_NEAR BAY	float64
ocean_proximity_NEAR OCEAN	float64

dtype: object

View number of missing values in each column

df.isnull().sum()

	0
longitude	0
latitude	0
housing_median_age	0
total_rooms	0
total_bedrooms	189
population	0
households	0
median_income	0
median_house_value	0
ocean_proximity_<1H OCEAN	0
ocean_proximity_INLAND	0
ocean_proximity_ISLAND	0
ocean_proximity_NEAR BAY	0
ocean_proximity_NEAR OCEA	N 0

dtype: int64

Using KNN Imputer for missing values

```
# total_bedrooms has 189 missing values
from sklearn.impute import KNNImputer
imputer = KNNImputer(n_neighbors=2)
imputed_array = imputer.fit_transform(df)
df = pd.DataFrame(imputed_array, columns=df.columns, index=df.index)
```

df.isnull().sum()

→	0
longitude	0
latitude	0
housing_median_age	0
total_rooms	0
total_bedrooms	0
population	0
households	0
median_income	0
median_house_value	0
ocean_proximity_<1H OCEAN	0
ocean_proximity_INLAND	0
ocean_proximity_ISLAND	0
ocean_proximity_NEAR BAY	0
ocean_proximity_NEAR OCEAN	0
dtype: int64	

df.sample()

→

,		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	pol
,	11106	-116.53	33.85	16.0	10077.0	2186.0	

View the distribution of features and target variable

```
# View distribution of variables
df.hist(bins=50, figsize=(15, 15))
```

plt.show()

Target variable has outliers

plt.boxplot(df['median_house_value'], tick_labels=['Median House Price'], vert=Fale
plt.title('Median House Prices')
plt.show()

Remove outliers in target variable

iqr = q3-q1
lower_boundary = q1 - 1.5*iqr
upper_boundary = q3 + 1.5*iqr
range = [lower_boundary,upper_boundary]
range

[np.float64(-98350.0), np.float64(482050.0)]

outliers
outlier = df[(df['median_house_value'] < lower_boundary) | (df['median_house_value'] outlier</pre>

₹

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	poj
82	-122.27	37.80	52.0	249.0	78.0	
414	-122.25	37.87	52.0	609.0	236.0	
444	-122.25	37.86	48.0	2153.0	517.0	
448	-122.24	37.86	52.0	1668.0	225.0	
449	-122.24	37.85	52.0	3726.0	474.0	
18366	-118.90	34.14	35.0	1503.0	263.0	
18370	-118.69	34.18	11.0	1177.0	138.0	
18371	-118.80	34.19	4.0	15572.0	2222.0	
18380	-118.69	34.21	10.0	3663.0	409.0	
18387	-118.85	34.27	50.0	187.0	33.0	
064 rows	x x 1.4 columns					

964 rows × 14 columns

Next steps: Generate code with outlier View recommended plots New interactive sheet

df = df[(df['median_house_value'] > lower_boundary) & (df['median_house_value'] <</pre>

df['median_house_value'].hist(bins=30)

df.shape

→ (17601, 14)

View the datatype of each column

df.dtypes

		0
longitud	de	float64
latitud	е	float64
housing_med	ian_age	float64
total_roo	ms	float64
total_bedro	ooms	float64
populati	on	float64
househo	lds	float64
median_in	come	float64
median_hous	e_value	float64
ocean_proximity_	<1H OCEAN	float64
ocean_proximit	y_INLAND	float64
ocean_proximit	y_ISLAND	float64
ocean_proximity_	NEAR BAY	float64
ocean_proximity_N	NEAR OCEAN	float64

dtype: object

Add new features

Add new features
df['rooms_per_household'] = df['total_rooms'] / df['households']
df['bedrooms_per_room'] = df['total_bedrooms'] / df['total_rooms']
df['population_per_household'] = df['population'] / df['households']
df.head()

₹

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	popula
0	-122.23	37.88	41.0	880.0	129.0	,
1	-122.22	37.86	21.0	7099.0	1106.0	2
2	-122.25	37.85	52.0	1627.0	280.0	
3	-122.25	37.85	52.0	919.0	213.0	
4	-122.25	37.84	52.0	2535.0	489.0	1

Next steps: (

Generate code with df

New interactive sheet

Remove total_rooms, total_bedrooms, population_per_household
df = df.drop(['total_rooms','total_bedrooms','population'], axis=1)

df.sample()

 $\overline{\mathbf{x}}$

	longitude	latitude	housing_median_age	households	median_income	media
8311	-120.11	36.96	17.0	536.0	3.8952	

df.hist(bins=50, figsize=(15, 15))
plt.show()

View correlation of median household value with other features
correlations = df.corr()
corr_house_price = correlations['median_house_value']
corr_house_price

_		_
•	•	
	→	v
	_	_

	median_house_value
longitude	-0.046439
latitude	-0.150336
housing_median_age	0.062694
households	0.099881
median_income	0.643706
median_house_value	1.000000
ocean_proximity_<1H OCEAN	0.289026
ocean_proximity_INLAND	-0.503104
ocean_proximity_ISLAND	0.033530
ocean_proximity_NEAR BAY	0.156472
ocean_proximity_NEAR OCEAN	0.137837
rooms_per_household	0.106967
bedrooms_per_room	-0.215925
population_per_household	-0.020016

dtype: float64

Setup validation framework: Split data into training & test sets

```
# Split data into train, test, split
y = df['median_house_value']

features = ['latitude', 'median_income', 'ocean_proximity_<1H OCEAN', 'ocean_proximity_
X = df[features]</pre>
```

Feature Scaling

```
# Standardize Features
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

Train Linear Regression Model

```
# Train the Linear Regression Model
# Import LinearRegression.
from sklearn.linear_model import LinearRegression

# Instantiate linear regression model.
model = LinearRegression()

# Fit the model to the training data.
model.fit(X_train_scaled, y_train)

The LinearRegression ()

LinearRegression()
```

Evaluate Model Performance

Make predictions on the testing data.
y_pred = model.predict(X_test_scaled)

```
# Import metrics.
from sklearn.metrics import mean_squared_error, r2_score
# Calculate and print R^2 score.
r2 = r2_score(y_test, y_pred)
print(f"R-squared: {r2:.4f}")

$\frac{1}{2}$ R-squared: 0.5480
```

```
# Calculate and print MSE.
mse = mean_squared_error(y_test, y_pred)
print(f"Mean squared error: {mse:.4f}")
# Calculate and print RMSE.
rmse = mse ** 0.5
print(f"Root mean squared error: {rmse:.4f}")
→ Mean squared error: 4034851473.8891
    Root mean squared error: 63520.4807
print("Intercept:", model.intercept_)
coeff_df = pd.DataFrame({"Feature": X.columns, "Coefficient": model.coef_})
print("\nFeature Coefficients:\n", coeff_df)
→ Intercept: 190135.3122159091
    Feature Coefficients:
                                       Coefficient
                            Feature
                          latitude
                                      2562.599372
    1
                    median income
                                     64967.025877
    2
        ocean proximity <1H OCEAN -92572.133647
           ocean_proximity_INLAND -119011.501232
    4
         ocean_proximity_NEAR BAY -53416.907974
       ocean_proximity_NEAR OCEAN -56561.160148
    6
              rooms_per_household
                                     1512.709388
    7
                                     16111.885822
                bedrooms_per_room
```

Sort dataframe by coefficients.

```
coef_df_sorted = coeff_df.sort_values(by="Coefficient", ascending=False)

# Create plot.
plt.figure(figsize=(8,6))
plt.barh(coeff_df["Feature"], coef_df_sorted["Coefficient"], color="blue")
plt.xlabel("Coefficient Value")
plt.ylabel("Feature")
plt.title("Feature Importance (Linear Regression Coefficients)")
plt.show()
```


-50000

-25000

Coefficient Value

25000

50000

-125000 -100000 -75000

```
# Compute residuals.
residuals = y_test - y_pred
```

```
# Create plots.
plt.figure(figsize=(12,5))
# Plot 1: Residuals Distribution.
plt.subplot(1,2,1)
sns.histplot(residuals, bins=30, kde=True, color="blue")
plt.axvline(x=0, color='red', linestyle='--')
plt.title("Residuals Distribution")
plt.xlabel("Residuals (y_actual - y_predicted)")
plt.ylabel("Frequency")
# Plot 2: Regression Fit (Actual vs Predicted).
plt.subplot(1,2,2)
sns.scatterplot(x=y_test, y=y_pred, alpha=0.5)
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red', line
plt.title("Regression Fit: Actual vs Predicted")
plt.xlabel("Actual Prices")
plt.ylabel("Predicted Prices")
# Show plots.
plt.tight_layout()
plt.show()
```



```
y_pred
```

```
⇒ array([227201.28619909, 104773.24437391, 90962.98234827, ..., 234983.29961186, 99568.66165704, 167015.90740646])
```

Start coding or generate with AI.

Start coding or generate with AI.

Start coding or generate with AI.

Train Random Forest Regressor Model

Evaluate Random Forest Regressor Model Performance

```
# Make predictions on the testing data
y_pred_forest = forest_model.predict(X_test_scaled)

# Calculate and print R^2 score
r2_forest = r2_score(y_test, y_pred_forest)
print(f"Random Forest R-squared: {r2_forest:.4f}")

# Calculate and print MSE
mse_forest = mean_squared_error(y_test, y_pred_forest)
print(f"Random Forest Mean squared error: {mse_forest:.4f}")

# Calculate and print RMSE
rmse_forest = mse_forest ** 0.5
print(f"Random Forest Root mean squared error: {rmse_forest:.4f}")

And Random Forest R-squared: 0.6345
Random Forest Mean squared error: 3262685866.5878
Random Forest Root mean squared error: 57119.9253
```

Model Performance Comparison

Here is a comparison of the performance metrics for the Linear Regression and Random Forest Regressor models:

Metric	Linear Regression	Random Forest Regressor
R-squared	{{r2:.4f}}	{{r2_forest:.4f}}
Mean Squared Error	{{mse:.4f}}	{{mse_forest:.4f}}
Root Mean Squared Error	{{rmse:.4f}}	{{rmse_forest:.4f}}

Based on these metrics, the **Random Forest Regressor** model shows better performance with a higher R-squared value and lower Mean Squared Error and Root Mean Squared Error.

Make Predictions with Random Forest Regressor Model

```
# Simulate new data (replace with your actual new data)
# The new data should have the same features as the training data (X)
# 'latitude','median_income', 'ocean_proximity_<1H OCEAN', 'ocean_proximity_INLAN</pre>
new data = pd.DataFrame({
    'latitude': [34.05, 33.93],
    'median_income': [5.0, 4.5],
    'ocean_proximity_<1H OCEAN': [1.0, 0.0],
    'ocean_proximity_INLAND': [0.0, 1.0],
    'ocean_proximity_ISLAND': [0.0, 0.0], # Added the missing column
    'ocean_proximity_NEAR BAY': [0.0, 0.0],
    'ocean_proximity_NEAR OCEAN': [0.0, 0.0],
    'rooms_per_household': [6.0, 5.5],
    'bedrooms per room': [0.15, 0.20]
})
# Scale the new data using the same scaler fitted on the training data
new data scaled = scaler.transform(new data)
# Make predictions
new_predictions = forest_model.predict(new_data_scaled)
# Display the predictions
print("Predictions for new data:")
print(new predictions)
```

ValueError: The feature names should match those that were passed during fit.
_ Feature names unseen at fit time:

Next steps: Explain error

2779

Compare Predictions with Actual Values (Random Forest Regressor)

```
# Make predictions on the testing data (already done in evaluation step)
# y_pred_forest = forest_model.predict(X_test_scaled)

# Compare predictions with actual values
comparison_df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred_forest})
print("Comparison of Actual vs Predicted Values:")
print(comparison_df.head())

# Visualize the comparison (Actual vs Predicted)
plt.figure(figsize=(8, 6))
sns.scatterplot(x=y_test, y=y_pred_forest, alpha=0.5)
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red', line
plt.title("Actual vs Predicted House Prices (Random Forest Regressor)")
plt.xlabel("Actual Prices")
plt.ylabel("Predicted Prices")
```

plt.show()

```
\overline{2}
```

Comparison of Actual vs Predicted Values:

	Actual	Predicted
3429	325000.0	266329.0
14820	187500.0	133900.0
1843	153800.0	97091.0
12815	88600.0	124005.0
7137	194600.0	206307.0

Feature Importance (Random Forest Regressor)

Get feature importances from the Random Forest model
feature_importances = forest_model.feature_importances_

```
# Create a DataFrame for feature importances
feature_importance_df = pd.DataFrame({'Feature': X_train.columns, 'Importance': for
# Sort features by importance
feature_importance_df = feature_importance_df.sort_values(by='Importance', ascend)
# Print the feature importances
print("Feature Importances (Random Forest Regressor):")
print(feature_importance_df)
# Visualize feature importances
plt.figure(figsize=(10, 6))
plt.barh(feature_importance_df['Feature'], feature_importance_df['Importance'], cold plt.valabel('Importance')
plt.valabel('Feature')
plt.title('Feature Importance (Random Forest Regressor)')
plt.gca().invert_yaxis() # Invert y-axis to show most important features at the plt.show()
```


Feature Importances (Random Forest Regressor):

	Feature	Importance
1	median_income	0.488776
3	ocean_proximity_INLAND	0.162334
0	latitude	0.154167
7	bedrooms_per_room	0.095974
6	rooms_per_household	0.083266
5	ocean_proximity_NEAR OCEAN	0.007478
2	ocean_proximity_<1H OCEAN	0.005835
4	ocean_proximity_NEAR BAY	0.002170

