inductor.

4

	5	[b) by means of application of applying high-frequency radiation of a specific resonance
,	6	frequency[,] so that transitions between spin energy levels of the atomic nuclei of the examination
/	7	object are excited, and MR signals are produced, [and]
187	8	[c) MR signals thus produced are detected] detecting the MR signals as signal responses,
	9	which are evaluated[,] and imaged in spatial resolution,
	10	unfolding the device after insertion into the examination object, and
	11	[characterized in that, in a locally defined area inside and/or outside the device,] producing
•	17	a changed signal response of the examination object [is produced] <u>in a locally defined area</u> [whereby]
	1/3	with the device,
1	14	wherein the device includes a [has or forms at least one] passive resonance circuit with an
\	15	[inductance] inductor and a capacitor, [capacitance whereby their] the circuit having a resonance
	16	frequency [is] essentially equal to the resonance frequency of the applied high-frequency radiation,
	17	[whereby an unfoldable part of the device forms] and
	18	wherein the [inductance] inductor [or is integrated therein] is located in an unfoldable part
	19	of the device[, this unfoldable part is unfolded after insertion of the device in the examination object
	20	and] in the area [is] to be imaged with the changed signal response [in spatial resolution].
	1	2. (Amended) The method [Method] according to Claim 1[, characterized in that]
	2	wherein the application of the high-frequency radiation excites the resonance circuit [and thus an
	3	amplified] so that the excitation of the nuclear spins of the examination object [results] is amplified
	4	in the locally defined area.
	1	3. (Amended) The method [Method] according to Claim 2[, characterized in that]
	2	wherein the locally defined area where [an] the amplification of the excitation of the nuclear spins
	3	takes place is located in a compartment formed within the device and surrounded by the [inductance]

- 4. (Amended) The method [Method] according to Claim 2[, characterized in that] wherein the locally defined area where [an] the amplification of the excitation of the nuclear spins takes place is outside the device and adjacent thereto, [whereby] and wherein at least one resonance circuit is arranged on the surface of the device such that with the application of high-frequency radiation, the magnetic flow in the adjacent area [observed] is amplified.
- 5. (Amended) The method [Method] according to Claim 1[, characterized in that with the application of the] wherein when high-frequency radiation is applied to the resonance circuit, the circuit becomes detuned or the [capacitance] capacitor is short circuited to the extent that no amplified excitation of the nuclear spins takes place in the locally defined area, [whereas by measuring of] but wherein when the signal response of the locally defined area is measured, the detuning of the resonance circuit or the short circuiting of the capacitance is canceled[, thus resulting] and results in a change in the signal response.
- 6. (Amended) The method [Method] according to [at least one of the preceding claims, characterized in that] Claim 1, 2, 3, 4, or 5 wherein the resonance circuit is adjusted to the resonance frequency by unfolding [of] the device after insertion of the device into the examination object.
- 7. (Twice amended) The method [Method] according to Claim 1[, characterized in that] wherein at least one of the inductor [inductance] and [/or] the capacitor [capacitance] are adjusted for the resonant tuning of the resonance circuit.
- 8. (Twice amended) The method [Method] according to Claim 1[, characterized in that] wherein the device has at least two resonance circuits [formed or arranged on the device are used, whereby] whose inductors have coils, and wherein the coils of the respective inductors [inductances] are [arranged] oriented differently from each other.

	1	9. (Amended) <u>An unfoldable</u> [Unfoldable] medical device[/in particular a vena cava
ر ومسر ومسر	2 1	filter (17) or of a balloon catheter (12), characterized by] comprising at least one passive resonance
	3/	circuit [with] having an inductor [inductance (22a,22b,25a, 25b)] and a capacitor [capacitance (32a,
	4	32b, 35a, 35b)], whose resonance frequency is essentially equal to [the] a resonance frequency of
	5	[the] of an MR imaging system's applied high-frequency radiation [of an MR imaging system,
	6	whereby], wherein an unfoldable part of the device forms the inductor [inductance (22a,22b,25a,
	7	25b)] or the inductor [inductance (22a,22b,25a, 25b)] is integrated into such a part, such that [it] the
	8	inductor unfolds along with the device when this is unfolded.
	1	10. (Amended) The device [Device] according to Claim 9, [characterized in that]
	2	wherein the [inductance (22a, 22b, 25a, 25b)] inductor is formed or arranged on the surface of the
5	3	device.

- 11. (Amended) The device [Device] according to Claim 9 or 10, [characterized in that] wherein the [inductance (22a, 22b, 25a, 25b)] inductor is formed by a conductor which runs on the surface of the device.
- 12. (Amended) The device [Device] according to Claim 11, [characterized in that] wherein the [inductance (22a, 22b)] inductor is formed on a foil which is adhered to the surface of the device [(12)].
- 13. (Amended) The device [Device] according to Claim 8 or 10, [characterized in that] wherein the [inductance (25a, 25b)] inductor is formed from the material of the device [(17)].
- 14. (Twice amended) The device [Device] according to Claim 9, [characterized in that] wherein the device [(12, 17)] is elongated in shape and has a longitudinal axis, [and] the inductor is formed as a coil having an axis, and the axis of the [inductance (22b, 25b)] inductor runs substantially parallel to the longitudinal axis of the device [(12, 17)].

4

1	15. (Amended) The device [Device] according to Claim 14, [characterized in that]
2	wherein the [inductance] inductor is formed by a conductor arranged on the surface of the device in
3	the shape of attleast a single[, double or multiple] helix.
1	16. (Twice amended) The device [Device] according to Claim 9, [characterized in
2	that] wherein the device [(12, 17)] is elongated in shape and has a longitudinal axis, [and] the
3	inductor is formed as a coil, having an axis, and the axis of the [inductance (22a, 25a)] inductor runs
4	substantially perpendicular to the longitudinal axis of the device [(12, 17)].
1	17. (Amended) The device [Device] according to Claim 16, [characterized in that]
2	wherein the [inductance] inductor is formed by a spiral-shaped conductor [(22a, 25a)] formed or
3	arranged on the surface of the device.
	·
1	18. (Twice amended) The device [Device] according to Claim 9, [characterized in
2	that] wherein the device has a plurality of resonance circuits with a plurality of inductors
3	[inductances, which are preferably arranged vertically relative to each other or arranged behind each
4	other].
1.	19. (Twice amended) The device [Device] according to Claim 9, [characterized in
2	that] wherein the device has means [(113)] for detuning at least one resonance circuit with the
3	application of high-frequency radiation.
1	20. (Amended) <u>The device</u> [Device] according to Claim 19, [characterized in that]
2	wherein the [means for] detuning means [the at least one resonance circuit] are designed such that
3	they switch a condenser [(113)] parallel to the [capacitance (3')] capacitor of the resonance circuit

with the application of high-frequency radiation.

	\
1	(Amended) The device [Device] according to Claim 19, [characterized in that
2	wherein the [means for] detuning means [the at least one resonance circuit] are designed such that
3	they switch a coil [(114)] parallel to the [inductance (2')] inductor of the resonance circuit with th
4	application of high-frequency radiation.
1	22. (Twice amended) <u>The device</u> [Device] according to Claim 9, [characterized i
2	that] wherein the device is provided with means [(112) for the] to short circuit [circuiting of] the
3	[capacitance (3')] capacitor when applying [the] high-frequency radiation.
1	23. (Amended) The device [Device] Claim 22, [characterized in that] wherein the
2	means for [the] short circuiting [of] the [capacitance have] capacitor comprises two diodes [(112)
3	which are switched parallel to the <u>capacitor</u> [capacitance (3')].
1	24. (Twice amended) <u>The device</u> [Device] according to Claim 9, [characterized in
2	that] wherein a switch [(10)] is provided[,] by which the at least one resonance circuit can b
3	activated or deactivated.
1	25. (Twice amended) The device [Device] according to Claim 9, [characterized in
2	that the inductance (2) and/or the capacitance (3)] wherein at least one of the inductor and the
3	capacitor of the resonance circuit are adjustable for [the] tuning to the resonance frequency of the
4	MR system.
1	26. (Twice amended) <u>The device</u> [Device] according to Claim, 9, [characterized in
2	that] wherein the resonance circuit [(4)] has a plurality of parallel or serially switched [inductance
3	(2a, 2n)] inductors and/or capacitors [capacitances (3a, 3n)].
1	27. (Twice amended) The device [Device] according to Claim 9, [characterized in
2	that] wherein the device is a balloon catheter having an axis and an outer skin [(12),] on [whos
3	outer skipl which a spiral-shaped or helix-shaped inductor (inductance (22a 22b)) is formed

2

	``					
1	28.	(Amended) The device [Device] according to Claim 27, [characterized in that]				
2	wherein the [capacitance (32a, 32b)] capacitor is [realized] in the form of parallel conductors wh					
3	run along the axis [(121)] of the balloon catheter [(12)].					
	,					
1	29.	(Twice amended) The device [Device] according to Claim 9, [characterized in				
2	that] wherein	the device is a vena cava filter [(17) with] having elongated, movable toothed elements				
3	[(171), where	eby] and the [inductance (25a, 25b)] inductor is attached to the toothed elements.				
1	30.	(Amended) The device [Device] according to Claim 29, [characterized in that]				
2	wherein at le	east one of the inductor and capacitor [inductance (25a, 25b) and/or the capacitance				
3	(35a, 35b)] a	re made of the same material [of] as the vena cava filter.				
1	31.	(Twice amended) An MR imaging system for performance of the method				
2	according to	Claim 1.				
1	32.	(Amended) An MR imaging system [characterized by] having a device according				
2	to Claim 9.					
	Pleas	e add new claims 33-38 as follows.				
1	33.	The method according to Claim 1 wherein the medical device is selected from a vena				
2	cava filter or	a balloon catheter				
1/						
1	34.	The method according to Claim 1 wherein the inductor is either formed by or				
2	integrated in	to an unfoldable part of the device				
1	35.	The method according to claim 8 wherein the inductors are aligned one of				

perpendicularly to each other and behind each other.--