

MÉRÖKÉSZÜLÉKEK

G) TÖBB FELADATÚ GYÁRI MÉRÖKÉSZÜLÉKEK

„ORIPONS” MÉRÖHÍD (1432/B típus) (EMG)

Műszaki adatok

Méréshatárok:		Hálózati csatlakozás:	110/220 V, 50—60 Hz
egyenfeszültséggel: 0,5 Ω—1 MΩ		Teljesítményfelvétel:	kb. 15 W
váltakozó feszültség-	0,5 Ω—10 MΩ	Csövek:	1 db 6 AU 6
gel: 50 pF—1000 μF			1 db EM 4
százalékos összehason-			1 db 6X4 -
lító mérésnél: —20-tól +20%-ig		Méret:	24×18×10 cm
Mérési pontosság:	±3—5%	Súly:	4,2 kg

Leírás. Univerzális RC-mérőhíd, elektroncsöves erősítéssel és indikálással. minden olyan dielektrometriás, ill. konduktometriás analízisre alkalmas, amely kapacitásmérésen vagy vezetőképességmérésen alapul.

A mérőhidat általában a hálózati váltakozó feszültség táplálja, lehetséges azonban ellenállások egyenfeszültségű mérése is. A nagy érzékenységű indikátorrész pontos mérést tesz lehetővé. Módunkban áll a készülékkel nagyon gyors, összehasonlító százalékos méréseket is végezni.

Használat. Bekapcsolás előtt ellenőrizzük a hálózati feszültségnak megfelelő helyes beállítást. Szükség esetén a transzformátoron levő feszültségátkapcsoló lemezeit a kívánt feszültségnak megfelelően áthelyezzük.

A készülék előlapját a 294. ábra, részletes kapcsolását pedig a 295. ábra mutatja.

Az előlap jobb oldalán találjuk a P_1 mérőpotenciométert, bal oldalon alul a P_2 potenciométert, amely a tg 0% mérésére való, és a P_6 potenciométert, amely az indikátor-rész érzékenységét szabályozza. E két potenciométer for-

294. ábra. EMG „Oriponts” mérőhíd előlapja

295. ábra. EMG „Oripons“ mérőhíd kapcsolási rajza

MÉRÖKÉSZÜLÉKEK

14. táblázat

Az EMG 1432/B típusú „ORIPONS” mérőhid alkatrészjegyzéke

Szám	Megnevezés	Érték	Tűrés, ±%	Üzemi feszültség, V	Terhelhetőség, W
C ₁	Styrosflex kond.	0,1 μ F	1	250	
C ₂	Papírkondenzátor	20 nF	20	200	
C ₃	Elektrolitkond.	1000 μ F		12/15	
C ₄	Elektrolitkond.	1000 μ F		12/15	
C ₅	Papírkondenzátor	200 nF	20	200	
C ₆	Papírkondenzátor	20 nF	20	400	
C ₇	Elektrolitkond.	8 μ F		450/500	
C ₈	Elektrolitkond.	8 μ F		450/500	
P ₁	Huzalpot.-méter	10 k Ω	10		3
P ₂	Huzalpot.-méter	200 Ω	10		1
P ₃	Huzalpot.-méter	100 Ω	10		1
P ₄	Huzalpot.-méter	100 k Ω	2		8
P ₅	Huzalpot.-méter	50 Ω	10		1
P ₆	Rétegpot.-méter	1 M Ω	20		0,3
R ₁	Huzalellenállás	1 Ω	1		
R ₂	Huzalellenállás	100 Ω	1		0,25
R ₃	Rétegellenállás	100 Ω	1		0,5
R ₄	Rétegellenállás	1 k Ω	1		0,5
R ₅	Rétegellenállás	10 k Ω	1		0,5
R ₆	Rétegellenállás	100 k Ω	1		0,5
R ₇	Rétegellenállás	1 M Ω	1		0,5
R ₈	Rétegellenállás	910 Ω	5		0,5
R ₉	Huzalellenállás	180 Ω	5		1
R ₁₀	Huzalellenállás	60 Ω	1		0,25
R ₁₁	Huzalellenállás	180 Ω	5		0,25
R ₁₂	Huzalellenállás	100 Ω	10		1
R ₁₃	Huzalellenállás	47 Ω	10		0,5
R ₁₄	Huzalellenállás	3,3 k Ω	10		1
R ₁₅	Huzalellenállás	220 k Ω	10		0,5
R ₁₆	Rétegellenállás	220 Ω	10		0,5
R ₁₇	Rétegellenállás	510 k Ω	10		1
R ₁₈	Rétegellenállás	2 M Ω	5		0,5
R ₁₉	Rétegellenállás	1 M Ω	10		0,5
R ₂₀	Rétegellenállás	1 M Ω	10		0,5
R ₂₁	Rétegellenállás	22 k Ω	10		1
S ₁	Kapcsoló				
S ₂	Kapcsoló				
T ₁	Hálózati transzformátor				
V ₁	Elektroncső 6 AU 6				
V ₂	Elektroncső EM 4				
V ₃	Elektroncső 6X4				
1a	Csatlakozóhüvely (piros)				
1b	Csatlakozóhüvely (fekete)				
1c	Csatlakozóhüvely (piros)				
1d	Csatlakozóhüvely (földelés)				
5	Vibrátor				
44	Feszültségátkapcsoló				

..ORIPONS" MÉRÖHÍD (1432/B TYPUS)

gatógombja között találjuk az egyenfeszültségű ellenállásmérésnél használt szaggató 4 kapcsoló-gombját. Felette az S₂ méréshatár-kapcsolót, ez utóbbi felett pedig az S₁ műveletkapcsolót. Az előlap bal szélén vannak az 1a, 1b, 1c csatlakozóhüvelyek. A mérések pontossága megköveteli a készülék földelését, az erre szolgáló 1d földelőkapocsnál.

A MΩ nagyságrendű ellenállásokat és a 100 pF nagyságrendű kapacitásokat feltétlenül a mérőkapcsoknál közvetlenül mérjük, hozzávezető huzalok nélkül.

Konduktometriás titrálások és egyéb vezetőképességi analitikai, fiziko-kémiai vizsgálatok során, ha belső etalonnal (vagyis a készülék méréshatárán belül) mérünk, a vezetőképességi cellát az 1b, 1c kapcsokra kötjük ez S₁ műveletkapcsolót „R” állásba hozzuk. Külső etalon használatakor a S₁ műveletkapcsolót fordítuk „EXT” állásba. A külső etalon kössük az 1a, 1b kapcsokra, a mérő cellát pedig az 1b, 1c kapcsokra. A hidat a P₄ potenciométerrel egyenlítjük ki. A vizsgált ellenállás értékét megkapjuk, ha a mérőpotenciométer skáláján leolvassott számmal a külső vagy belső etalon értékét megszorozzuk. Belső etalon használata esetén a belső etalon értéke közvetlenül a sávhatárkapcsoló állásából olvasható le. Kémiai konduktometriás titrálásoknál a vizsgálat céljának megfelelően válasszuk meg az etalon-ellenállás nagyságát (a méréshatárt). Élsszerűen alkalmazhatunk egy ugyanolyan vezetőképességi edényt, ill hengerpoharat, hasonló összetételű oldattal megtöltve. Konduktometriás titrálásoknál elegendő a mérőpotenciométer egyes állásait leolvasnai.

A mérésbiztonság érdekében, különösen kisohmos ellenállásmérések esetén (sav—bázis titrálások), ajánlatos az üzemmód- és sávátkapcsolót használat előtt néhányszor körülforgatni.

Dízelkrometriás kémiai analízisekhez az S₁ műveletkapcsolót „C” állásba hozzuk, a szilárd vizsgálati anyaggal, ill folyadékkel töltött kondenzátorokat pedig az 1a, 1b kapcsokra kötjük. A hidat a P₄ és P₁ potenciométerrel egyenlítjük ki. A két potenciométerrel külön-külön állitsuk be a minimumot. A P₁ potenciométerrel a tg 0% értékét mérjük, a P₄ potenciométer skáláján — hasonlóan a vezetőképességi mérésekhez — a kapacitás értékét olvashatjuk le.

Összehasonlító százalékos analízisekhez az S₁ műveletkapcsolót „%” állásba fordítjuk. Az összehasonlitandó ellenálláscellákat, ill. kondenzátoreredényeket az 1a, 1b, ill. 1b, 1c kapcsokra kötjük, s a százalékos eltérést a P₄ potenciométer skáláján olvassuk le, mégpedig „0” középállástól jobbra vizsgált anyag „+”, balra „-” %-os eltérését az anyagminta-étalonhoz képest (részletesebben a „Philoscop”-nál).

A készülék bekapcsolása után 5 perccel éri el azt az állandó belső hőmérsékletet, amelyre a megadott mérési pontosságok érvényesek.

A berendezés a hátlapon levő csavar kioldása után dobozából klemelhető.

A készülék rendellenes működése esetén — amennyiben minden alkatrésze hibátlan — a csövek érintkezőcsapjait tisztagassuk meg, a fokozatkapsoló érintkező rugóit feszítsük kissé erőteljesebbre, és távolítsuk el az esetleg ódakerült tisztatalanságokat.

Ha a mérőpotenciométer mutatója elmozdult, az alábbiak szerint hitelesítsük: állitsuk a készüléket %-mérésre, és kapcsolunk rá 2 db 0,5%-on belül egyenlő értékű (százas ohm-nagyságrendű) ellenállást. A mérőpotenciométer segítségével egyenlítsük ki a hidat. A mérőhíd kiegyenlített állapotában a mutatót úgy helyezzük fel, hogy az „0%” jelzésen álljon.

A készülék alkatrészeinek jegyzéke a 14. táblázatban található.