

Outline

The Center for Digital Scholarship

- What is GIS?
 - Data types

GIS software and analysis

Campus GIS resources

Center for Digital Scholarship

- Center services:
 - Text Analysis
 - Research design
 - Data management
 - Statistic analysis
 - Geographic Information Systems (GIS)

What is GIS?

- In short: "computerized mapping software"
- Formal definition

A Geographic Information System (GIS) is a computerized database management system for capture, storage, retrieval, manipulation, analysis and display of spatial (i.e. locationally defined) data

Layers

- A GIS is composed of layers of spatial information
- Can be different types of data
- Everything is referenced to a coordinate system
 - e.g. latitude / longitude

GIS digitally models the real world using:

Three types of geometry

- -Points
- -Lines
- -Areas

Cells in an image

Data tables

Raster Data

Based on pixel

Vector Data

Based on discrete points

Rasters

Spatial Resolution

The length, in real world measurements, of each side of a square pixel

Raster Resolution Comparison

Raster Data Model

Raster Advantages

- Continuous Coverage
- Detail beyond human perception
- Easily manipulated

Raster Disadvantages

- Fixed resolution
- Large file size
- Difficult to edit individual pixels

Digital Elevation Model (DEM)

- Type of raster where the pixel value corresponds to elevation
- Used for analyzing slope, waterflow, visibility, etc.

Raster Data

Based on pixel

Vector Data

Based on discrete points

Vectors

Data Types

Attribute Tables

Raster Resolution Comparison

Vector Resolution Comparison

Vector vs. Raster

Vector Advantages

- Economical in space
- Good for discrete features
- More flexible with regard to scale

Vector Disadvantages

- More schematized version of reality
- Poorly suited for continuous phenomena

Attribute Data

Attribute Data

bjectID	FIPS_CNT	GMI_CHT	CHTRY_NAME	POP_CNTRY	CURR_TYPE	CURR_C	LANDLO	SQKM	SQMI	Shape
393218	BF	BHS	The Bahamas	272209	Dollar	BSD	N	12163.91	4696.49	Polygon
458752	CS	CRI	Costa Rica	3319438	Colon	CRC	N	51286.8	19801.83	Polygon
458753	PM	PAN	Panama	2562045	Balboa	PAB	N	74445.89	28743.56	Polygon
524288	BH	BLZ	Belize	207586	Dollar	BZD	N	22166.04	8558.31	Polygon
524289	CJ	CYM	Cayman Is.	31777	Dollar	KYD	N	209.25	80.79	Polygon
524290	CU	CUB	Cuba	11102280	Peso	CUP	N	109495.2	42276.1	Polygon
524291	ES	SLV	El Salvador	5752470	Colon	SVC	N	20646.47	7971.6	Polygon
524292	НО	HND	Honduras	5367067	Lempira	HNL	N	112618.31	43481.93	Polygon
524293	NU	NIC	Nicaragua	4275103	Cordoba Oro	NIO	N	128594.63	49650.38	Polygon
589824	ДД	ABW	Aruba	67074	Euro	EUR	N'	200.35	77.35	Polygon
589825	DR	DOM	Dominican Republic	7759957	Peso Oro	DOP	N	48516.99	18732.41	Polygon
589826	НА	HTI	Haiti	7044890	Gourde	HTG	N	27254.61	10523	Polygon
589827	JM	JAM	Jamaica	2407607	Dollar	JMD	N	11072.63	4275.14	Polygon
589828	NT	ANT	Netherlands Antilles	191572	Euro	EUR	N	791.72	305.68	Polygon
589829	TK	TCA	Turks & Caicos Is.	14512	US Dollar	USD	N	299.61	115.68	Polygon
655360	GY	GUY	Guyana	754931	Dollar	GYD	N	211507.8	81663.16	Polygon
655361	TD	TTO	Trinidad & Tobago	1292000	Dollar	TTD	N	5030.55	1942.29	Polygon
655362	VE	VEN	Venezuela	19857850	Bolivar	VEB	N'	914737.19	353180.03	Polygon
720896	AC	ATG	Antigua & Barbuda	65212	EC Dollar	XCD	N	538.66	207.98	Polygon
720897	MH	MSR	Montserrat	12771	EC Dollar	XCD	N	112.95	43.61	Polygon
786432	AV	AIA	Anguilla	9208	EC Dollar	XCD	N	91.57	35.36	Polygon
786433	VΙ	VGB	British Virgin Is.	18194	US Dollar	USD	N	115.74	44.69	Polygon
786434	RQ	PRI	Puerto Rico	3647931	US Dollar	USD	N	9176.41	3543.01	Polygon
786435	SC	KNA	St. Kitts & Nevis	42908	EC Dollar	XCD	N	196.24	75,77	Polygon

Building a GIS map

Individual data layers combine with ways of symbolizing data, charts and figures, editing rules and other tools to form a full GIS map

Not just pretty maps

- Google Maps and similar software are a type of simple GIS
- Full GIS packages usually have additional editing and analytical tools

There is very little in the GIS toolkit that cannot be done by traditional means, but it might be computationally difficult or very time consuming

What can GIS be used for?

- GIS adds "space" to research dimensions
 - Geographical significance & patterning
 - Does location make any difference?
 - Real estate, new business locations
 - Are there any patterns?
 - Migration patterns? How did the disease spread?
 - Geographical correlations and relationships
 - Are A and B in this location related?
 - Crime rate and average income
 - Prediction and predictive modeling
 - How many people will be affected by something?
 - Where are we likely to find something?

Why is GIS important?

Government

- 80% of local government activities estimated to be geographically based
 - plots, zoning, public works (streets, water supply, sewers), garbage collection, land ownership and valuation, public safety (fire and police)
 - natural resource management
 - highways and transportation

Businesses

- retail site selection & customer analysis
- logistics: vehicle tracking & routing
- natural resource exploration
- civil engineering and construction

Military and defense

- Battlefield management
- Satellite imagery interpretation

Research:

- Hard Sciences: Geography, geology, botany, epidemiology
- Social Sciences: Anthropology, sociology, economics, political science
- Humanities: History, criminology

Examples of how GIS can be used

Example: Patterns

Socio-economic

- 2000 Census data
- Unit Census Tract
- Over the community area boundaries
- % families below poverty level

GIS Ex: Patterns – historical/trend

Trend

Changes over time using historical (time-series) data

Example: Relationship

- Association
 - Demography x Libraries
 - Are there enough libraries to serve local residents?

Example: Associations

Crime hotspots

% families below poverty level

Areas impacted by sea-level rise

Geographers have even analyzed the distribution of generic names for soft drinks by US county

Same analysis, but done via geotagged tweets mentioning one of the key words

Predictive Modeling

April 15 -22, 2006 Cape Cod 0.92 0.85 0.77 0.69 0.62 0.54 0.46 May 1 - 8, 2006 0.38 0.31 0.23 Cape Cod 0.15 0.08

Models of plague activity in California ground squirrels
Used to identify potential plague risk areas based on future climate scenarios

Prediction of likely right whale locations off of Cape Cod

Prediction and Modeling: Erosion Risk

Input Data 1. Soils

Prediction and Modeling: Erosion Risk

Input Data 2. Slope

Prediction and Modeling: Erosion Risk

Input Data 3: Vegetation Density (NDVI)

Complex Calculation: Erosion Risk

Erosion risk model

30 %: Slope

20 %: Vegetation

50 %: Soils

Use GIS tools to weight each factor and create a single layer representing erosion risk

Complex Calculation: Erosion Risk

Final map: Erosion risk is ranked from 1 – 10

Digital Elevation Model (DEM)

- Type of raster where the pixel value corresponds to elevation
- Used for analyzing slope, waterflow, visibility, etc.

GIS software and analytical tools

GRASS: Open source GIS

GIS Software

Quantum GIS: Open source GIS

ArcInfo GIS: Proprietary, industry standard, GIS package

ArcGIS 10.1

ArcGlobe

2d Visualization ArcMap

3d Visualization ArcScene and ArcGlobe

Model building and Scripting


```
reproject.py - C:\Doc ments and Settings\Mat\Desktop\reproject.py
                                                                                - | D | ×
File Edit Format Run Options Windows Help
  reproject.py
  Created on: Thu Aug 19 2010 10:50:06 AM
    (generated by ArcGIS/ModelBuilder)
# Import system modules
import sys, string, os, arcgisscripting
# Create the Geoprocessor object
qp = arcgisscripting.create()
# Load required toolboxes...
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Data Management Tool
# Local variables...
output = "Y:\\OpenProjects\\Dissertation\\GISData\\DataSourceBackups\\RandyScans
inputS = "Y:\\OpenProjects\\Dissertation\\GISData\\DataSourceBackups\\RandyScans
gp.ProjectRaster management(inputS, output, "PROJCS['WGS 1984 UTM Zone 31N',GEOG
```

GIS resources in the library

- Center for Digital Scholarship
 - Bank of 8 computers with extensive GIS software
 - ESRI ArcGIS
 - DIVA-GIS
 - GRASS
 - Quantum GIS
 - Google Earth Professional
 - 42" sheet-feed map scanner
 - 8 baseline GPS units and 2 high-end data collectors

GIS resources in the library

- Staff
 - Matthew Sisk (CDS): General GIS questions, Data acquisition and management, Satellite imagery analysis
 - Milan Budhathoki (CRC): Industry GIS, Vector analysis, GIS Analysis