NEUTRON STAR POWERED NEBULAE: A NEW VIEW ON PULSAR WIND NEBULAE WITH THE FERMI GAMMA-RAY SPACE TELESCOPE

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PHYSICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Joshua Jeremy Lande May 2013

© Copyright by Joshua Jeremy Lande 2013 All Rights Reserved

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.
(Stefan Funk) Principal Adviser
I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.
(Elliott Bloom)
I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.
(Roger Romani)
Approved for the University Committee on Graduate Studies

Contents

\mathbf{A}	bstra	ct		v
A	$oldsymbol{A}$ cknowledgement			V
1	Ove	erview		4
2	Gar	nma-ra	ay Astrophysics	6
	2.1	Astroi	nomy and the Atmosphere	6
	2.2	The H	Iistory of Gamma-ray Astrophysics	7
	2.3	The F	Termi Gamma-ray Space Telescope	12
		2.3.1	The LAT Detector	13
		2.3.2	Performance of the LAT	13
	2.4	Pulsar	rs and Pulsar Wind Nebulae	16
		2.4.1	Pulsars	16
		2.4.2	Pulsar Wind Nebulae	17
	2.5	Source	es Detected by Large Area Telescope	19
		2.5.1	The Galactic Diffuse and Isotropic Gamma-ray Background $$.	21
		2.5.2	The Second Fermi Catalog	21
		2.5.3	The Second Fermi Pulsar Catalog	22
		2.5.4	Pulsar Wind Nebulae Detected by Large Area Telescope	22
	2.6	Radia	tion Processes in Gamma-ray Astrophysics	26
		2.6.1	Synchrotron	27
		2.6.2	Inverse Compton	29
		2.6.3	Bremsstrahlung	30

		2.6.4	Pion Decay	30
3	The	Pulsa	r/Pulsar Wind Nebula System	31
	3.1	Neutro	on Star Formation	31
	3.2	Pulsar	Evolution	32
	3.3	Pulsar	Magnetosphere	35
	3.4	Pulsar	Wind Nebulae Structure	37
	3.5	Pulsar	Wind Nebula Emission	38
4	Max	ximum	a-likelihood Analysis of LAT Data	42
	4.1	Motiv	ations for Maximum-Likelihood Analysis of Gamma-ray Data .	43
	4.2	Descri	ption of Maximum-Likelihood Analysis	44
	4.3	Defini	ng a Model of the Sources in the Sky	45
	4.4	The L	AT Instrument Response Functions	47
	4.5	Binne	d Maximum-Likelihood of LAT Data with the Science Tools	49
	4.6	The A	lternate Maximum-Likelihood Package pointlike	51
5	Ana	dysis o	of Spatially Extended LAT Sources	53
	5.1	Introd	luction	53
	5.2	Analy	sis Method	56
		5.2.1	Modeling Extended Sources in the pointlike Package	56
		5.2.2	Extension Fitting	58
		5.2.3	gtlike Analysis Validation	61
		5.2.4	Comparing Source Sizes	61
	5.3	Valida	tion of the TS Distribution	63
		5.3.1	Point-like Source Simulations Over a Uniform Background $$	63
		5.3.2	Point-like Source Simulations Over a Structured Background $.$	65
		5.3.3	Extended Source Simulations Over a Structured Background $. $	69
	5.4	Exten	ded Source Detection Threshold	74
	5.5	Testin	g Against Source Confusion	76
	5.6	Tost o	of 2LAC Sources	QF

6	Sea	rch for Spatially-extended LAT Sources	89
	6.1	Analysis of Extended Sources Identified in the 2FGL Catalog	90
	6.2	Systematic Errors on Extension	91
	6.3	Extended Source Search Method	94
	6.4	New Extended Sources	100
		6.4.1 2FGL J0823.0-4246	103
		6.4.2 2FGL J0851.7-4635	105
		6.4.3 2FGL J1615.0-5051	105
		6.4.4 2FGL J1615.2-5138	109
		6.4.5 2FGL J1627.0-2425c	110
		6.4.6 2FGL J1632.4-4753c	111
		6.4.7 2FGL J1712.4-3941	114
		6.4.8 2FGL J1837.3-0700c	116
		6.4.9 2FGL J2021.5+4026	118
	6.5	Discussion	121
7	Sea	rch for PWNe Associated with Gamma-loud Pulsars	127
	7.1	Off-peak Phase Selection	128
	7.2	Off-peak Analysis Method	129
	7.3	Off-peak Results	133
	7.4	Off-Peak Individual Source Discussion	139
8	Sea	rch for PWNe associated with TeV Pulsars	142
	8.1	List of very high energy (VHE) PWN Candidates	143
	8.2	Analysis Method	146
	8.3	Sources Detected	147
		8.3.1 "PWN"-type and "PWNc"-type Sources	149
		8.3.2 "O"-type Sources	151
		8.3.3 "PSR"-type Sources	151
Ω	Dor	pulation Study of LAT-detected PWNs	159

10 Outlook 158

List of Tables

5.1	Monte Carlo Spectral Parameters	68
5.2	Extension Detection Threshold	77
6.1	Analysis of the twelve extended sources included in the 2FGL catalog	92
6.2	Nearby Residual-induced Sources	99
6.3	Extension fit for the nine additional extended sources	101
6.4	Dual localization, alternative PSF, and alternative approach to mod-	
	eling the diffuse emission	102
7.1	Off-Peak Spatial and Spectral Results	136
8.1	List of analyzed VHE sources	144
8.1	List of analyzed VHE sources	145
8.2	Spatial and spectral results for detected VHE sources	148
9.1	The muliwavelenth properties of the VHE source and their associated	
	Large Area Telescope (LAT)-detected pulsars	153

List of Figures

2.1	The position of all 621 cosmic γ -rays detected by the Third Orbit-	
	ing Solar Observatory (OSO-3). This figure is from Kraushaar et al.	
	$(1972). \qquad \dots $	8
2.2	A map of the sources observed by COS-B. The filled circles represent	
	brighter sources. The unshaded region corresponds to the parts of the	
	sky observed by COS-B. This figure is from Swanenburg et al. (1981).	9
2.3	A diagram of the the Energetic Gamma Ray Experiment Telescope	
	(EGRET) detector. This figure is from (Thompson et al. 1993)	10
2.4	The position of EGRET sources in the sky in galactic coordinates. The	
	size of the source markers corresponds to the overall source intensity.	
	This figure is from (Hartman et al. 1999)	11
2.5	A schematic diagram of the LAT with an incident γ -ray (red line) pair-	
	converting into an electron and positron pair (blue lines). This figure	
	is taken from (Atwood et al. 2009)	12
2.6	The LAT point-source sensitivity for exposures of $100\mathrm{s},1$ orbit, $1\mathrm{day},$	
	and 1 yr. This figure is from Atwood et al. (2009)	14
2.7	The LAT effective area (a) as a function of energy for γ -rays that are	
	incident on the LAT perpendicularly from above and (b) as a function	
	of incident angle for photons with an energy of $10\mathrm{GeV}$. The LAT per-	
	formance is computed for the P7SOURCE_V6 event classification. This	
	figure is from Ackermann et al. (2012)	14

2.8	The angular resolution (68% and 95% containment radius) as a func-	
	tion of energy. The LAT performance is computed for the P7SOURCE_V6	
	event classification. This figure is from Ackermann et al. (2012). $$	15
2.9	The energy dispersion (a) as a function of energy for γ -rays that are in-	
	cident on the LAT perpendicularly from above and (b) as a function of	
	the incident angle for photons with an energy of $10\mathrm{GeV}$. The LAT per-	
	formance is computed for the P7SOURCE_V6 event classification. This	
	figure is from Ackermann et al. (2012)	15
2.10	The Orion plate from Bevis' book <i>Uranographia Britannica</i> . The Crab	
	nebula can be found on the horn of Taurus the Bull on the top of the	
	figure and the source is marked by a cloudy symbol. This figure was	
	reproduced from Ashworth (1981)	18
2.11	An Aitoff projection map of the γ -ray sky observed by the LAT with	
	a 2 year exposure. This map is integrated in the energy range from	
	$100\mathrm{MeV}$ to $10\mathrm{GeV}$ in units of $10^{-7}\mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}\mathrm{sr}^{-1}$. This figure is from	
	Nolan et al. (2012)	20
2.12	The spectral energy distribution (SED) of the Crab nebula observed	
	by the LAT as well as several other instruments. This figure is from	
	Abdo et al. (2010e)	23
2.13	The SED of Vela—X observed at radio, x-ray, $\gamma\text{-ray},$ and VHE energies.	
	The emission was suggested by (Abdo et al. 2010) to be driven by	
	two pollutions of electrons. In this model, the lower-energy electron	
	population powers the radio and γ -ray emission ad n the higher-energy	
	electron population powers the x-ray and VHE emission. This figure	
	is from Abdo et al. (2010)	24
2.14	In synchrotron radiation, charged particles spiral along magnetic filed	
	lines, radiating photons as they accelerate	27
3.1	The rotating dipole model of a pulsar. This figure is taken from (Carroll	
	& Ostlie 2006)	3.5

3.2	The magnetosphere for a rotating pulsar. The pulsar is on the bottom	
	left of the plot. This figure is from Goldreich & Julian (1969)	36
3.3	The regions of emission in a pulsar/pulsar wind nebula (PWN) system.	
	This figure shows (top) the pulsar's magnetosphere, (middle), the un-	
	shocked pulsar wind and (bottom) the shocked pulsar wind which can	
	be observed as the PWN. "R", "O", "X", and " γ " describe sites of ra-	
	dio, optical, X-ray, and γ -ray emission respectively. "CR", "Sy", and	
	"IC" refer to regions of curvature, inverse Compton, and synchrotron	
	emission. Figure is taken from Aharonian & Bogovalov (2003)	39
5.1	Counts maps and TS profiles for the SNR IC 443. (a) TS vs. extension	
	of the source. (b) $\mathrm{TS}_{\mathrm{ext}}$ for individual energy bands. (c) observed radial	
	profile of counts in comparison to the expected profiles for a spatially	
	extended source (solid and colored red in the online version) and for a	
	point-like source (dashed and colored blue in the online version). (d)	
	smoothed counts map after subtraction of the diffuse emission com-	
	pared to the smoothed LAT PSF (inset). Both were smoothed by a	
	0°.1 2D Gaussian kernel. Plots (a), (c), and (d) use only photons with	
	energies between 1 GeV and 100 GeV. Plots (c) and (d) include only	
	photons which converted in the front part of the tracker and have an	
	improved angular resolution (Atwood et al. 2009)	60
5.2	A comparison of a 2D Gaussian and uniform disk spatial model of	
	extended sources before and after convolving with the PSF for two	
	energy ranges. The solid black line is the PSF that would be observed	
	for a power-law source of spectral index 2. The dashed line and the	
	dash-dotted lines are the brightness profile of a Gaussian with $\rm r_{68}$ =	
	0.5 and the convolution of this profile with the LAT PSF respectively	
	(colored red in the online version). The dash-dot-dotted and the dot-	
	dotted lines are the brightness profile of a uniform disk with $r_{68} =$	
	$0^{\circ}5$ and the convolution of this profile with the LAT PSF respectively	
	(colored blue in the online version).	62

5.3	Cumulative distribution of the TS for the extension test when fitting	
	simulated point-like sources in the 1 GeV to 100 GeV energy range.	
	The four plots represent simulated sources of different spectral indices	
	and the different lines (colored in the online version) represent point-	
	like sources with different 100 MeV to 100 GeV integral fluxes. The	
	dashed line (colored red) is the cumulative density function of Equa-	
	tion 5.11	66
5.4	The same plot as Figure 5.3 but fitting in the $10~\mathrm{GeV}$ to $100~\mathrm{GeV}$	
	energy range	67
5.5	Cumulative distribution of $TS_{\rm ext}$ for sources simulated on top of the	
	Galactic diffuse and isotropic background	70
5.6	The distribution of TS values when fitting 985 statistically independent	
	simulations of W44. (a) is the distribution of TS values when fitting	
	W44 as a point-like source and (b) is the distribution of $TS_{\rm ext}$ when	
	fitting the source with a uniform disk or a radially-symmetric Gaussian	
	spatial model. (c) is the distribution of the change in TS when fitting	
	the source with an elliptical disk spatial model compared to fitting it	
	with a radially-symmetric disk spatial model and (d) when fitting the	
	source with an elliptical ring spatial model compared to an elliptical	
	disk spatial model	72
5.7	The distribution of fit parameters for the Monte Carlo simulations of	
	W44. The plots show the distribution of best fit (a) flux (b) spec-	
	tral index and (c) 68% containment radius. The dashed vertical lines	
	represent the simulated values of the parameters	73

5.8	The detection threshold to resolve an extended source with a uniform	
	disk model for a two-year exposure. All sources have an assumed	
	power-law spectrum and the different line styles (colors in the elec-	
	tronic version) correspond to different simulated spectral indices. The	
	lines with no markers correspond to the detection threshold using pho-	
	tons with energies between 100 MeV and 100 GeV, while the lines with	
	star-shaped markers correspond to the threshold using photons with	
	energies between 1 GeV and 100 GeV	75
5.9	The LAT detection threshold for four spectral indices and three back-	
	grounds $(1\times, 10\times, \text{ and } 100\times \text{ the Sreekumar-like isotropic background})$	
	for a two-year exposure. The left-hand plots are the detection threshold	
	when using photons with energies between 1 GeV and 100 GeV and the	
	right-hand plots are the detection threshold when using photons with	
	energies between 10 GeV and 100 GeV. The flux is integrated only in	
	the selected energy range. Overlaid on this plot are the LAT-detected	
	extended sources placed by the magnitude of the nearby Galactic dif-	
	fuse emission and the energy range they were analyzed with. The star-	
	shaped markers (colored red in the electronic version) are sources with	
	a spectral index closer to 1.5, the triangular markers (colored blue) an	
	index closer to 2, and the circular markers (colored green) an index	
	closer to 2.5. The triangular marker in plot (d) below the sensitivity	
	line is MSH 15-52	78

5.10	The projected detection threshold of the LAT to extension after 10	
	years for a power-law source of spectral index 2 against 10 times the	
	isotropic background in the energy range from 1 GeV to 100 GeV	
	(solid line colored red in the electronic version) and $10~{\rm GeV}$ to 100	
	GeV (dashed line colored blue). The shaded gray regions represent	
	the detection threshold assuming the sensitivity improves from 2 to 10	
	years by the square root of the exposure (top edge) and linearly with	
	exposure (bottom edge). The lower plot shows the factor increase in	
	sensitivity. For small extended sources, the detection threshold of the	
	LAT to the extension of a source will improve by a factor larger than	
	the square root of the exposure	79
5.11	(a) and (b) are the distribution of $TS_{\rm ext}$ and of $TS_{\rm 2pts}$ when fitting sim-	
	ulated spatially extended sources of varying sizes as both an extended	
	source and as two point-like sources. (c) and (d) are the distribution	
	of $TS_{\rm ext} - TS_{\rm 2pts}$ for the same simulated sources. (a) and (c) represent	
	sources fit in the 1 GeV to 100 GeV energy range and (b) and (d) rep-	
	resent sources fit in the 10 GeV to 100 GeV energy range. In (c) and	
	(d), the plus-shaped markers (colored red in the electronic version) are	
	fits where $TS_{ext} \ge 16$	82
5.12	The distribution of $TS_{ext} - TS_{2pts}$ when fitting two simulated point-	
	like sources of varying separations as both an extended source and as	
	two point-like sources. (a), and (b) represent simulations of two point-	
	like sources with the same spectral index and (c) and (d) represent	
	simulations of two point-like sources with different spectral indices.	
	(a) and (c) fit the simulated sources in the 1 GeV to 100 GeV energy	
	range and (b) and (d) fit in the 10 GeV to 100 GeV energy range.	
	The plus-shaped markers (colored red in the electronic version) are fits	
	where $TS_{ext} > 16$	83

5.13	The cumulative density of $TS_{\rm ext}$ for the 733 clean AGN in 2LAC that	
	were significant above 1 GeV calculated with pointlike (dashed line	
	colored blue in the electronic version) and with gtlike (solid line col-	
	ored black). AGN are too far and too small to be resolved by the LAT.	
	Therefore, the cumulative density of $TS_{\rm ext}$ is expected to follow a $\chi_1^2/2$	
	distribution (Equation 5.11, the dash-dotted line colored red)	87
6.1	A TS map generated for the region around the SNR IC 443 using	
	photons with energies between 1 GeV and 100 GeV. (a) TS map after	
	subtracting IC 443 modeled as a point-like source. (b) same as (a),	
	but IC 443 modeled as an extended source. The cross represents the	
	best fit position of IC 443	96
6.2	A diffuse-emission-subtracted 1 GeV to 100 GeV counts map of the	
	region around 2FGL J1856.2+0450c smoothed by a 0°.1 2D Gaussian	
	kernel. The plus-shaped marker and circle (colored red in the online	
	version) represent the center and size of the source fit with a radially-	
	symmetric uniform disk spatial model. The black crosses represent	
	the positions of other 2FGL sources. The extension is statistically	
	significant, but the extension encompasses many 2FGL sources and the	
	emission does not look to be uniform. Although the fit is statistically	
	significant, it likely corresponds to residual features of inaccurately	
	modeled diffuse emission picked up by the fit.	98

- 6.3 A diffuse-emission-subtracted 1 GeV to 100 GeV counts map of 2FGL J0823.0—4246 smoothed by a 0°.1 2D Gaussian kernel. The triangular marker (colored red in the online version) represents the 2FGL position of this source. The plus-shaped marker and the circle (colored red) represent the best fit position and extension of this source assuming a radially-symmetric uniform disk model. The two star-shaped markers (colored green) represent 2FGL sources that were removed from the background model. From left to right, these sources are 2FGL J0823.4—4305 and 2FGL J0821.0—4254. The lower right inset is the model predicted emission from a point-like source with the same spectrum as 2FGL J0823.4—4305 smoothed by the same kernel. This source is spatially coincident with the Puppis A SNR. The light blue contours correspond to the X-ray image of Puppis A observed by ROSAT (Petre et al. 1996). 104
- A diffuse-emission-subtracted 10 GeV to 100 GeV counts map of 2FGL J0851.7-4635 6.4smoothed by a 0°25 2D Gaussian kernel. The triangular marker (colored red in the electronic version) represents the 2FGL position of this source. The plus-shaped marker and the circle (colored red) are the best fit position and extension of this source assuming a radiallysymmetric uniform disk model. The three black crosses represent background 2FGL sources. The three star-shaped markers (colored green) represent other 2FGL sources that were removed from the background model. They are (from left to right) 2FGL J0853.5-4711, 2FGL J0855.4-4625, and 2FGL J0848.5-4535. The circular and squareshaped marker (colored blue) represents the 2FGL and relocalized position of another 2FGL source. This extended source is spatially coincident with the Vela Jr. SNR. The contours (colored light blue) correspond to the TeV image of Vela Jr. (Aharonian et al. 2007c). . .

6.5	A diffuse-emission-subtracted 10 GeV to 100 GeV counts map of 2FGL ${ m J}$	615.0-5051
	(upper left) and 2FGL J1615.2 -5138 (lower right) smoothed by a 0°.1	
	2D Gaussian kernel. The triangular markers (colored red in the elec-	
	tronic version) represent the 2FGL positions of these sources. The	
	cross-shaped markers and the circles (colored red) represent the best fit	
	positions and extensions of these sources assuming a radially symmet-	
	ric uniform disk model. The two black crosses represent background	
	2FGL sources and the star-shaped marker (colored green) represents	
	2FGL J1614.9-5212, another 2FGL source that was removed from the	
	background model. The contours (colored light blue) correspond to	
	the TeV image of HESS J1616 -508 (left) and HESS J1614 -518 (right)	
	(Aharonian et al. 2006e)	107
6.6	A diffuse-emission-subtracted 1 GeV to 100 GeV counts map of (a)	
	the region around 2FGL J1627.0 -2425 smoothed by a 0°.1 2D Gaussian	
	kernel and (b) with the emission from 2FGL J1625.7 -2526 subtracted.	
	The triangular marker (colored red in the online version) represents the	
	2FGL position of this source. The plus-shaped marker and the circle	
	(colored red) represent the best fit position and extension of this source	
	assuming a radially-symmetric uniform disk model and the black cross	
	represents a background 2FGL source. The contours in (a) correspond	
	to the 100 μm image observed by IRAS (Young et al. 1986). The	
	contours in (b) correspond to CO $(J=1\rightarrow 0)$ emission integrated	
	from $-8~{\rm kms^{-1}}$ to $20~{\rm kms^{-1}}$. They are from de Geus et al. (1990),	
	were cleaned using the moment-masking technique (Dame 2011), and	
	have been smoothed by a 0°25 2D Gaussian kernel	110

6.7	A diffuse-emission-subtracted 10 GeV to 100 GeV counts map of 2FGL J1632.4-4753c
	(a) smoothed by a 0°.1 2D Gaussian kernel and (b) with the emission
	from the background sources subtracted. The triangular marker (col-
	ored red in the electronic version) represents the 2FGL position of
	this source. The plus-shaped marker and the circle (colored red) are
	the best fit position and extension of $2FGL J1632.4-4753c$ assuming
	a radially-symmetric uniform disk model. The four black crosses rep-
	resent background 2FGL sources subtracted in (b). The circular and
	square-shaped markers (colored blue) represent the 2FGL and relocal-
	ized positions respectively of two additional background 2FGL sources
	subtracted in (b). The star-shaped marker (colored green) represents
	2FGL J $1634.4-4743c$, another 2 FGL source that was removed from
	the background model. The contours (colored light blue) correspond
	to the TeV image of HESS J1632 -478 (Aharonian et al. 2006e) 112
6.8	The spectral energy distribution of four extended sources associated
	with unidentified extended TeV sources. The black points with circular
	markers are obtained by the LAT. The points with plus-shaped markers
	(colored red in the electronic version) are for the associated the High
	Energy Stereoscopic System (H.E.S.S.) sources. (a) the LAT SED of
	2FGL J1615.0 -5051 together with the H.E.S.S. SED of HESS J1616 -508 .
	(b) 2FGL J1615.2 -5138 and HESS J1614 -518 . (c) 2FGL J1632.4 -4753 c
	and HESS J1632 -478 . (d) 2FGL J1837.3 $-0700c$ and HESS J1837 -069 .
	The H.E.S.S. data points are from (Aharonian et al. 2006e). Both LAT
	and H.E.S.S. spectral errors are statistical only

6.9	A diffuse-emission-subtracted 10 GeV to 100 GeV counts map of 2FGL J1 $$	712.4-3941
	(a) smoothed by a 0°.15 2D Gaussian kernel and (b) with the emission	
	from the background sources subtracted. This source is spatially coin-	
	cident with RX J1713.7—3946 and was recently studied in Abdo et al.	
	(2011b). The triangular marker (colored red in the online version)	
	represents the 2FGL position of this source. The plus-shaped marker	
	and the circle (colored red) are the best fit position and extension of	
	this source assuming a radially symmetric uniform disk model. The	
	two black crosses represent background 2FGL sources subtracted in	
	(b). The contours (colored light blue) correspond to the TeV image	
	(Aharonian et al. 2007d)	115
6.10	A diffuse-emission-subtracted 10 GeV to 100 GeV counts map of the	
	region around 2FGL J1837.3 $-0700\mathrm{c}$ (a) smoothed by a 0°.15 2D Gaussian	
	sian kernel and (b) with the emission from the background sources	
	subtracted. The triangular marker (colored red in the online version)	
	represents the 2FGL position of this source. The plus-shaped marker	
	and the circle (colored red) represent the best fit position and extension	
	of $2\mathrm{FGL}\mathrm{J}1837.3-0700\mathrm{c}$ assuming a radially-symmetric uniform disk	
	model. The circular and square-shaped markers (colored blue) repre-	
	sent the 2FGL and the relocalized positions respectively of two back-	
	ground 2FGL sources subtracted in (b). The star-shaped marker (col-	
	ored green) represents $2FGL\ J1835.5-0649$, another $2FGL\ source$ that	
	was removed from the background model. The contours (colored light	
	blue) correspond to the TeV image of HESS J1837 -069 (Aharonian	
	et al. 2006e). The diamond-shaped marker (colored orange) represents	
	the position of PSR J1838 -0655 and the hexagonal-shaped marker	
	(colored purple) represents the position AX J1837.3 -0652 (Gotthelf	
	& Halpern 2008)	117

6.11	A diffuse-emission-subtracted 10 GeV to 100 GeV counts map of the
	region around $2FGL\ J2021.5+4026$ smoothed by a 0°.1 2D Gaussian
	kernel. The triangular marker (colored red in the online version) rep-
	resents the 2FGL position of this source. The plus-shaped marker and
	the circle (colored red) represent the best fit position and extension
	of 2FGL J2021.5+4026 assuming a radially-symmetric uniform disk
	model. The star-shaped marker (colored green) represents 2FGL J2019.1+4040,
	a 2FGL source that was removed from the background model. 2FGL J2021.5+4026 $$
	is spatially coincident with the γ -Cygni SNR. The contours (colored
	light blue) correspond to the 408MHz image of γ -Cygni observed by
	the Canadian Galactic Plane Survey (Taylor et al. 2003) 119
6.12	The spectral energy distribution of the extended sources Puppis A
	(2FGL J0823.0-4246) and $\gamma\text{-Cygni}$ (2FGL J2021.5+4026). The lines
	(colored red in the online version) are the best fit power-law spectral
	models of these sources. Puppis A has a spectral index of 2.21 \pm
	0.09 and γ -Cygni has an index of 2.42 \pm 0.19. The spectral errors are
	statistical only. The upper limit is at the 95% confidence level 120
6.13	The 21 spatially extended sources detected by the LAT at GeV en-
	ergies with 2 years of data. The twelve extended sources included in
	2FGL are represented by the circular markers (colored red in the on-
	line version). The nine new extended sources are represented by the
	triangular markers (colored orange). The source positions are overlaid
	on a 100 MeV to 100 GeV Aitoff projection sky map of the LAT data
	in Galactic coordinates

6.14	A comparison of the sizes of extended sources detected at both GeV and	
	TeV energies. The TeV sizes of W30, 2FGL J1837.3 -0700 c, 2FGL J1632.4	4 - 4753c,
	2FGL J1615.0 -5051 , and 2 FGL J1615.2 -5138 are from Aharonian et al.	
	(2006e). The TeV sizes of MSH 15 -52 , HESS J1825 -137 , Vela X,	
	Vela Jr., RX J1713.7 -3946 and W28 are from Aharonian et al. (2005a,	
	2006c,d, 2007c,d, 2008a). The TeV size of IC 443 is from Acciari et al.	
	(2009) and W51C is from Krause et al. (2011). The TeV sizes of	
	MSH15-52,HESSJ1614-518,HESSJ1632-478,andHESSJ1837-069	
	have only been reported with an elliptical 2D Gaussian fit and so the	
	plotted sizes are the geometric mean of the semi-major and semi-minor	
	axis. The LAT extension of Vela X is from Abdo et al. (2010). The TeV	
	sources were fit assuming a 2D Gaussian surface brightness profile so	
	the plotted GeV and TeV extensions were first converted to $\rm r_{68}$ (see Sec-	
	tion 5.2.4). Because of their large sizes, the shape of RX J1713.7 -3946	
	and Vela Jr. were not directly fit at TeV energies and so are not in-	
	cluded in this comparison. On the other hand, dedicated publications	
	by the LAT collaboration on these sources showed that their mor-	
	phologies are consistent (Abdo et al. 2011b; Tanaka et al. 2011). The	
	LAT extension errors are the statistical and systematic errors added in	
	quadrature	123
6.15	The distributions of the sizes of 18 extended LAT sources at ${\rm GeV}$	
	energies (colored blue in the electronic version) and the sizes of the 40	
	extended H.E.S.S. sources at TeV energies (colored red). The H.E.S.S.	
	sources were fit with a 2D Gaussian surface brightness profile so the	
	LAT and H.E.S.S. sizes were first converted to $\rm r_{68}.$ The GeV size of	
	Vela X is taken from Abdo et al. (2010). Because of their large sizes,	
	the shape of RX J1713.7 -3946 and Vela Jr. were not directly fit at	
	TeV energies and are not included in this comparison. Centaurus A is	
	not included because of its large size	124

6.16	The distribution of spectral indices of the 1873 2FGL sources (colored	
	red in the electronic version) and the 21 spatially extended sources	
	(colored blue). The index of Centaurus A is taken from Nolan et al.	
	(2012) and the index of Vela X is taken from Abdo et al. (2010)	126
7.1	The energy-and-radius optimized light curve, Bayesian block decompo-	
	sition of the light curve, and off-peak interval for (a) PSR $J0007+7303$,	
	(b) PSR J0205+6449, (c) PSR J1410-6132, (d) PSR J1747-2958, (e)	
	PSR J2021+4026, and (f) PSR J2124-3358. The black histograms	
	represent the light curves, the gray lines (colored red in the electronic	
	version) represent the Bayesian block decompositions of the pulsar light	
	curves, and the hatched areas represent the off-peak intervals selected	
	by this method	130
7.2	Spectral energy distributions for the off-peak phase intervals around	
	(a) PSR J0007+7303 (b) PSR J0205+6449, (c) PSR J1410-6132, (d)	
	PSR J1747-2958, (e) PSR J2021+4026, and (f) PSR J2124-3358.	
	We plot a detection in those energy bands in which the source is found	
	with $TS \geq 4$ (a 2σ detection) and report a Bayesian 95% confidence-	
	level upper limit otherwise. The best-fit spectral model, using the full	
	energy range is also shown for comparison	137

7.3	The off-peak luminosity compared to the observed pulsar spindown	
	power. The luminosity is computed and plotted with the same conven-	
	tion as luminosities in Abdo et al. (in prep). A luminosity upper limit	
	is plotted when there is no significant off-peak emission or when there	
	is only a distance upper limit. The star-shaped markers (colored red	
	in the online version) represent type 'W' sources, the square-shaped	
	markers (colored blue) represent type 'M' and 'M*' sources, circular	
	markers (colored green) represent type 'U' sources, and the gray ar-	
	rows represent non-detections. The filled blue square-shaped markers	
	represent 'M' and 'M*' sources with a detected luminosity and the un-	
	filled markers represent luminosity upper limits where there is only a	
	distance upper limit. The solid, dashed, and dotted diagonals show	
	100%, $10%$, and $1%$ efficiency (respectively)	138
9.1	The observed γ -ray luminosities plotted against the observed spin-	
	down luminosities for the PWNe candidates from Table 9.1	154
9.2	The observed γ -ray luminosities and the GeV to TeV luminosity ratios	
	as a function of the ages and spin-down energies for the PWN can-	
	didates from Table 9.1. The dotted line corresponds to the average	
	luminosity ratio (\bar{R}). Because HESS J1708 -443 is classified as being	
	a "PSR"-type source in Chapter 8, we consider the observed γ -ray	
	luminosity of it to be an upper limit on the PWN emission	156
9.3	The observed X-ray flux and GeV to TeV luminosity ratios as a func-	
	tion of the age and spin-down energies for the PWN candidates from	
	Table 9.1. The dotted line corresponds to the scaling relationships from	
	Mattana et al. (2009) for the TeV to X-ray luminosity ratio scaled by	
	the average GeV to TeV luminosity (\bar{R}) . We caution that 3C 58 does	
	not have a X-ray luminosity error	157

List of Acronyms

1FHL the first *Fermi* hard-source list. 146

2CG the second COS-B catalog. 9

2FGL the second *Fermi* catalog. 19, 22, 43, 89, 142, 147, 149

2LAC the second LAT AGN catalog. 5

2PC the second *Fermi* pulsar catalog. 19, 22, 144, 145

3EG the third EGRET catalog. 10

ACD Anti-Coincidence Detector. 13

AGILE Astro-rivelatore Gamma a Immagini LEggero. 10, 12, 25

AGN active galactic nucleus. 22

arcsec second of arc. 38

ASI Italian Space Agency. 10

ATNF Australia Telescope National Facility. 16

BPL broken-power law. 46

CGRO the Compton Gamma Ray Observatory. 9, 10

CGS the Centimetre-Gram-Second System of Units. 45

List of Acronyms 2

CMB cosmic microwave background. 30, 40

CsI cesium iodide. 13

CTA the Cherenkov Telescope Array. 158

DOE United States Department of Energy. 10

ECPL exponentially-cutoff power law. 46

EGRET the Energetic Gamma Ray Experiment Telescope. xiii, 8–11, 16, 44, 50

ESA the European Space Agency. 9

GBM Gamma-ray Burst Monitor. 12

GRB gamma-ray burst. 12

H.E.S.S. the High Energy Stereoscopic System. xxii, xxv, 25, 26, 54, 109, 111, 113, 114, 116, 121, 124, 125, 158

HMB high-mass binary. 22

IACT Imaging air Cherenkov detector. 19, 54, 125, 142, 143, 158

IC inverse Compoton. 7, 19, 21, 23, 25, 26, 29, 37, 38, 40, 41, 146, 158

IRF instrument response function. 4, 47

LAT Large Area Telescope. v, vi, viii, xii–xiv, 4, 5, 12–16, 19–23, 26, 37, 41–43, 47–49, 51, 89, 142, 143, 146–148, 150–153, 155, 158

LMC Large Magellanic Cloud. 19

LRT likelihood-ratio test. 44, 50

MIT the Massachusetts Institute of Technology. 16

List of Acronyms 3

MSC massive star cluster. 145

MSP millisecond pulsar. 22, 33

NASA the National Aeronautics and Space Administration. 8, 10

NRL the Naval Research Laboratory. 16

NS neutron star. 16, 17, 31, 32, 35, 36

OG outer gap. 37

OSO-3 the Third Orbiting Solar Observatory. xiii, 7, 8

PC polar cap. 37

PL power law. 46

PSF point spread function. 13, 43, 48, 49, 51, 146

PWN pulsar wind nebula. v, xv, xxvii, 4, 5, 7, 17, 19, 22, 23, 25, 26, 31, 35, 37–41, 47, 53, 142, 143, 145–159

SA solid angle. 47

SAS-2 the second Small Astronomy Satellite. 8, 9

SED spectral energy distribution. xiv, 23, 24

SN supernova. 17

SNR supernova remnant. 16, 22, 25, 35, 37, 38, 47

TPC two pole caustic. 37

UNID unidentified source. 143, 145

VHE very high energy. x, xii, xiv, 5, 19, 24–26, 40, 41, 43, 142–153, 155, 158, 159

Chapter 10

Outlook

Since the observation of the Crab Nebula in 1989 (Weekes et al. 1989), we have learned much about the high-energy inverse Compoton (IC) emission from pulsar wind nebula (PWN). The current generation of very high energy (VHE) experiments (the High Energy Stereoscopic System (H.E.S.S.), Magic, and Veritas) have drastically expanded the population of PWN observed at γ -ray energies and PWNe are the most populous class of VHE sources in the Galaxy. Now, using the Large Area Telescope (LAT) on board Fermi, we have detected a large fraction of these VHE PWN at GeV energies and one PWN not yet detected at VHE energies.

The next great improvement in our knowledge of PWN will most likely come from future Imaging air Cherenkov detectors (IACTs). The proposed the Cherenkov Telescope Array (CTA) (Actis et al. 2011) will would have a much improved effective area and angular resolution, allowing for the discovery of more VHE PWN as well as improved imaging of PWN candidates.

As was the case for HESS J1825—137 energy-dependent morphology at VHE energies can be used to unambiguous identify VHE emission as being caused by a PWN (Aharonian et al. 2006c). Similarly, Van Etten & Romani (2011) showed for HESS J1825—137 that detailed spatial and spectral observations combined with multi-zone modeling of a PWN can be constraining detailed properties of the PWN. Detailed energy-dependent imaging of a larger sample of PWN will allow us a greater understanding of the physics of pulsar winds.

In addition, the Crab nebula has challenged our basic understand of the physics of PWN. It is possible the more detailed observations could uncover additional variable PWN, which could help to shine light on the nature of the variable emission.

Finally, because of the large density of PWN-emitting VHE sources in the galactic plane, it is important to identify VHE PWN to help in the search for new source classes. There is significant potential for discovery of new source classes in the sources that are not classified as PWN. If the past is any guide towards the future, there is much still to be learned about PWNe.

Bibliography

Abdo, A., Ackermann, M., Ajello, M., et al. 2010, Astrophys.J., 722, 1303

Abdo, A. A., Ajello, M., Allafort, A., Baldini, L., & et al. in prep, ApJS

Abdo, A. A., Allen, B., Berley, D., et al. 2007, ApJ, 664, L91

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009a, ApJ, 699, L102

—. 2009b, Physical Review Letters, 103, 251101

Abdo, A. A., Ackermann, M., Atwood, W. B., et al. 2009c, ApJ, 696, 1084

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009d, ApJ, 706, L1

—. 2009e, ApJS, 183, 46

Abdo, A. A., Allen, B. T., Aune, T., et al. 2009f, ApJ, 700, L127

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009g, Astroparticle Physics, 32, 193

—. 2010a, ApJ, 714, 927

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010b, A&A, 523, A46

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010c, Science, 328, 725

- —. 2010d, ApJS, 188, 405
- —. 2010e, ApJ, 708, 1254
- —. 2010f, ApJ, 718, 348

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, The Astrophysical Journal, 713, 146

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010a, Science, 327, 1103

—. 2010b, ApJ, 712, 459

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010c, A&A, 512, A7

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010d, Physical Review Letters, 104, 101101

- —. 2010e, ApJS, 187, 460
- —. 2011a, Science, 331, 739
- —. 2011b, ApJ, 734, 28

Abdo, A. A., Wood, K. S., DeCesar, M. E., et al. 2012, ApJ, 744, 146

Acciari, V. A., Aliu, E., Arlen, T., et al. 2009, ApJ, 698, L133

- —. 2010, ApJ, 719, L69
- —. 2011, ApJ, 738, 3

Acero, F., Ackermann, M., Ajello, M., & et al. in prep., ApJ

Acero, F., Djannati-Ataï, A., Förster, A., et al. 2012, ArXiv e-prints

Ackermann, M., Ajello, M., Allafort, A., et al. in prep, ApJ

Ackermann, M., Ajello, M., Baldini, L., et al. 2011a, ApJ, 726, 35

Ackermann, M., Ajello, M., Allafort, A., et al. 2011b, ApJ, 743, 171

Ackermann, M., Ajello, M., Atwood, W. B., et al. 2012, The Astrophysical Journal, 750, 3

Ackermann, M., Ajello, M., Albert, A., et al. 2012, ApJS, 203, 4

Actis, M., Agnetta, G., Aharonian, F., et al. 2011, Experimental Astronomy, 32, 193

Aharonian, F., Akhperjanian, A. G., Aye, K.-M., et al. 2005a, A&A, 435, L17

—. 2005b, A&A, 439, 1013

Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. 2006a, A&A, 460, 743

- —. 2006b, A&A, 456, 245
- —. 2006c, A&A, 460, 365
- —. 2006d, A&A, 448, L43
- —. 2006e, ApJ, 636, 777
- —. 2007a, A&A, 467, 1075
- —. 2007b, A&A, 472, 489
- —. 2007c, ApJ, 661, 236
- —. 2007d, A&A, 464, 235
- —. 2008a, A&A, 481, 401

Aharonian, F., Akhperjanian, A. G., Barres de Almeida, U., et al. 2008b, A&A, 484, 435

—. 2008c, A&A, 477, 353

Aharonian, F., Akhperjanian, A. G., Anton, G., et al. 2009, A&A, 499, 723

Aharonian, F. A., & Bogovalov, S. V. 2003, New A, 8, 85

Aharonian, F. A., Coppi, P. S., & Voelk, H. J. 1994, ApJ, 423, L5

Aharonian, F. A., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. 2005c, A&A, 442, L25

- —. 2007e, A&A, 469, L1
- Ajello, M., Allafort, A., Baldini, L., et al. 2012, ApJ, 744, 80
- Akaike, H. 1974, IEEE Transactions on Automatic Control, 19, 716
- Albert, J., Aliu, E., Anderhub, H., et al. 2006, Science, 312, 1771
- Aliu, E. 2011, in International Cosmic Ray Conference, Vol. 7, International Cosmic Ray Conference, 227
- Arnold, J. R., Metzger, A. E., Anderson, E. C., & van Dilla, M. A. 1962, J. Geophys. Res., 67, 4878
- Arons, J. 1996, Space Sci. Rev., 75, 235
- Ashworth, William B., J. 1981, Proceedings of the American Philosophical Society, 125, pp. 52
- Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071
- Baade, W., & Zwicky, F. 1934, Physical Review, 46, 76
- Balbo, M., Saouter, P., Walter, R., et al. 2010, A&A, 520, A111
- Baltz, E. A., Berenji, B., Bertone, G., et al. 2008, J. Cosmology Astropart. Phys., 7, 13
- Bamba, A., Ueno, M., Koyama, K., & Yamauchi, S. 2003, The Astrophysical Journal, 589, 253
- Bartoli, B., Bernardini, P., Bi, X. J., et al. 2012, ApJ, 745, L22
- Baum, W. A., Johnson, F. S., Oberly, J. J., et al. 1946, Phys. Rev., 70, 781
- Bertsch, D. L., Brazier, K. T. S., Fichtel, C. E., et al. 1992, Nature, 357, 306
- Bignami, G. F., Boella, G., Burger, J. J., et al. 1975, Space Science Instrumentation, 1, 245

Blandford, R. D., & Romani, R. W. 1988, MNRAS, 234, 57P

Blumenthal, G. R., & Gould, R. J. 1970, Rev. Mod. Phys., 42, 237

Bogovalov, S. V., & Aharonian, F. A. 2000, MNRAS, 313, 504

Bolton, J. G., Stanley, G. J., & Slee, O. B. 1949, Nature, 164, 101

Bowyer, S., Byram, E. T., Chubb, T. A., & Friedman, H. 1964, Science, 146, 912

Bradt, H., Rappaport, S., & Mayer, W. 1969, Nature, 222, 728

Browning, R., Ramsden, D., & Wright, P. J. 1971, Nature Physical Science, 232, 99

Brumfiel, G. 2007, Nature, 448, 974

Buehler, R., Scargle, J. D., Blandford, R. D., et al. 2012, ApJ, 749, 26

Burnham, K. P., & Anderson, D. R. 2002, Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. (Springer)

Burnight, T. 1949, Phys. Rev, 76, 19

Caballero, I., & Wilms, J. 2012, Mem. Soc. Astron. Italiana, 83, 230

Carroll, B. W., & Ostlie, D. A. 2006, An Introduction to Modern Astrophysics, 2nd edn. (Benjamin Cummings)

Cash, W. 1979, ApJ, 228, 939

Castelletti, G., Dubner, G., Golap, K., & Goss, W. M. 2006, A&A, 459, 535

Caswell, J. L., Milne, D. K., & Wellington, K. J. 1981, MNRAS, 195, 89

Chandrasekhar, S. 1931, ApJ, 74, 81

Chaves, R. C. G., Renaud, M., Lemoine-Goumard, M., & Goret, P. 2008, in American Institute of Physics Conference Series, Vol. 1085, American Institute of Physics Conference Series, ed. F. A. Aharonian, W. Hofmann, & F. Rieger, 372–375

Chen, A. W., Piano, G., Tavani, M., et al. 2011, A&A, 525, A33

- Cheng, K. S., Ho, C., & Ruderman, M. 1986, ApJ, 300, 522
- Clifton, T. R., Lyne, A. G., Jones, A. W., McKenna, J., & Ashworth, M. 1992, MNRAS, 254, 177
- Cocke, W. J., Disney, M. J., & Taylor, D. J. 1969, Nature, 221, 525
- Collins, II, G. W., Claspy, W. P., & Martin, J. C. 1999, PASP, 111, 871
- Dame, T. M. 2011, ArXiv e-prints
- Daugherty, J. K., & Harding, A. K. 1996, ApJ, 458, 278
- de Geus, E. J., Bronfman, L., & Thaddeus, P. 1990, A&A, 231, 137
- de Jager, O. C., & Djannati-Ataï, A. 2009, in Astrophysics and Space Science Library, Vol. 357, Astrophysics and Space Science Library, ed. W. Becker, 451
- de los Reyes, R., Zajczyk, A., Chaves, R. C. G., & for the H. E. S. S. collaboration. 2012, ArXiv e-prints
- de Naurois, M., & H.E.S.S. Collaboration. 2013, Advances in Space Research, 51, 258
- de Palma, F., Brandt, T. J., Johannesson, G., Tibaldo, L., & for the Fermi LAT collaboration. 2013, in Fourth International Fermi Symposium
- Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T. 2010, Nature, 467, 1081
- Djannati-Ataĭ, A., de Jager, O. C., Terrier, R., & et al. 2008, in International Cosmic Ray Conference, Vol. 2, International Cosmic Ray Conference, 823–826
- Domainko, W., & Ohm, S. 2012, A&A, 545, A94
- Dombrovsky, V. A. 1954, Doklady Akademiya Nauk USSR, 94, 1021
- Drury, L. O., Aharonian, F. A., & Voelk, H. J. 1994, A&A, 287, 959

Duncan, J. C. 1921, Proceedings of the National Academy of Science, 7, 179

Dyks, J., & Rudak, B. 2003, ApJ, 598, 1201

Eadie, W. T., Drijard, D., & James, F. E. 1971, Statistical methods in experimental physics (North-Holland Pub. Co.)

Espinoza, C. M., Lyne, A. G., Kramer, M., Manchester, R. N., & Kaspi, V. M. 2011, ApJ, 741, L13

Falanga, M., Kuiper, L., Poutanen, J., et al. 2005, A&A, 444, 15

Feenberg, E., & Primakoff, H. 1948, Phys. Rev., 73, 449

Fichtel, C. E., Hartman, R. C., Kniffen, D. A., et al. 1975, ApJ, 198, 163

Finley, J. P., Srinivasan, R., & Park, S. 1996, ApJ, 466, 938

Fisher, R. A. 1925, Statistical Methods for Research Workers (Edinburgh: Oliver and Boyd)

Fritz, G., Henry, R. C., Meekins, J. F., Chubb, T. A., & Friedman, H. 1969, Science, 164, 709

Funk, S., Hinton, J. A., Pühlhofer, G., et al. 2007, ApJ, 662, 517

Gaensler, B. M., Schulz, N. S., Kaspi, V. M., Pivovaroff, M. J., & Becker, W. E. 2003, ApJ, 588, 441

Gaensler, B. M., & Slane, P. O. 2006, ARA&A, 44, 17

Gaisser, T. K., Protheroe, R. J., & Staney, T. 1998, ApJ, 492, 219

Gelfand, J. D., Slane, P. O., & Zhang, W. 2009, ApJ, 703, 2051

Giordano, F., & Fermi LAT Collaboration. 2011, in High-Energy Emission from Pulsars and their Systems, ed. D. F. Torres & N. Rea, 69

Gold, T. 1968, Nature, 218, 731

Goldreich, P., & Julian, W. H. 1969, ApJ, 157, 869

Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759

Gotthelf, E. V., & Halpern, J. P. 2008, ApJ, 681, 515

Gould, R. J., & Burbidge, G. R. 1965, Annales d'Astrophysique, 28, 171

Grenier, I. A., Casandjian, J.-M., & Terrier, R. 2005, Science, 307, 1292

Grindlay, J. E., & Hoffman, J. A. 1971, Astrophys. Lett., 8, 209

Grondin, M.-H., Romani, R. W., Lemoine-Goumard, M., et al. 2013

Grondin, M.-H., Funk, S., Lemoine-Goumard, M., et al. 2011, ApJ, 738, 42

Gunn, J. E., & Ostriker, J. P. 1969, Nature, 221, 454

H. E. S. S. Collaboration, Abramowski, A., Acero, F., et al. 2012, A&A, 541, A5

Hall, T. A., Bond, I. H., Bradbury, S. M., et al. 2003, ApJ, 583, 853

Hartman, R. C., Bertsch, D. L., Bloom, S. D., et al. 1999, ApJS, 123, 79

Haug, E. 1975, Zeitschrift Naturforschung Teil A, 30, 1099

—. 1997, A&A, 326, 417

Hayakawa, S. 1952, Progress of Theoretical Physics, 8, 571

Heitler, W. 1954, The Quantum Theory of Radiation, Dover Books on Physics Series (New York: Dover Publications, Incorporated)

Herschel, W. 1800, Philosophical Transactions of the Royal Society of London, 90, pp. 284

H.E.S.S. Collaboration, Abramowski, A., Acero, F., et al. 2011a, A&A, 531, A81

—. 2011b, A&A, 528, A143

H.E.S.S. Collaboration, Acero, F., Aharonian, F., et al. 2011c, A&A, 525, A45

H.E.S.S. Collaboration, Abramowski, A., Acero, F., et al. 2011d, A&A, 533, A103

—. 2011e, A&A, 525, A46

Hessels, J. W. T., Nice, D. J., Gaensler, B. M., et al. 2008, ApJ, 682, L41

Hester, J. J. 2008, ARA&A, 46, 127

Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. 1968, Nature, 217, 709

Hewitt, J., Grondin, M.-H., Lemoine-Goumard, M., et al. 2012

Hofverberg, P. 2011, in International Cosmic Ray Conference, Vol. 7, International Cosmic Ray Conference, 247

Hoppe, S. 2008, in International Cosmic Ray Conference, Vol. 2, International Cosmic Ray Conference, 579–582

Houck, J. C., & Allen, G. E. 2006, ApJS, 167, 26

Hutchinson, G. 1952, Philosophical Magazine Series 7, 43, 847

Hwang, U., Petre, R., & Flanagan, K. A. 2008, ApJ, 676, 378

Jackson, B., Scargle, J. D., Barnes, D., et al. 2005, IEEE Signal Processing Letters, 12, 105

James, F., & Roos, M. 1975, Computer Physics Communications, 10, 343

Jansky, K. 1933, Proceedings of the Institute of Radio Engineers, 21, 1387

Kamae, T., Karlsson, N., Mizuno, T., Abe, T., & Koi, T. 2006, ApJ, 647, 692

Kargaltsev, O., Pavlov, G. G., & Wong, J. A. 2008, ArXiv e-prints

Kaspi, V. M., & Helfand, D. J. 2002, in Astronomical Society of the Pacific Conference Series, Vol. 271, Neutron Stars in Supernova Remnants, ed. P. O. Slane & B. M. Gaensler, 3

Kaspi, V. M., Roberts, M. S. E., & Harding, A. K. 2006, Isolated neutron stars, ed. W. H. G. Lewin & M. van der Klis, 279–339

Katagiri, H., Tibaldo, L., Ballet, J., et al. 2011, ApJ, 741, 44

Katsuta, J., Uchiyama, Y., Tanaka, T., et al. 2012

Kennel, C. F., & Coroniti, F. V. 1984a, ApJ, 283, 694

—. 1984b, ApJ, 283, 710

Kerr, M. 2010, PhD thesis, University of Washington

Kijak, J., & Gil, J. 2003, A&A, 397, 969

King, I. 1962, AJ, 67, 471

Klein, O., & Nishina, T. 1929, Zeitschrift für Physik, 52, 853

Kniffen, D. A., & Fichtel, C. E. 1970, ApJ, 161, L157

Koch, H. W., & Motz, J. W. 1959, Reviews of Modern Physics, 31, 920

Konopelko, A. 2008, in International Cosmic Ray Conference, Vol. 2, International Cosmic Ray Conference, 767–770

Krause, J., Carmona, E., Reichardt, I., & for the MAGIC Collaboration. 2011, ArXiv e-prints

Kraushaar, W., Clark, G. W., Garmire, G., et al. 1965, ApJ, 141, 845

Kraushaar, W. L., Clark, G. W., Garmire, G. P., et al. 1972, ApJ, 177, 341

Lampland, C. O. 1921, PASP, 33, 79

Lande, J., Ackermann, M., Allafort, A., et al. 2012

Landi, R., de Rosa, A., Dean, A. J., et al. 2007a, MNRAS, 380, 926

Landi, R., Masetti, N., Bassani, L., et al. 2007b, The Astronomer's Telegram, 1047, 1

Large, M. I., Vaughan, A. E., & Mills, B. Y. 1968, Nature, 220, 340

Lemoine-Goumard, M., Ferrara, E., Grondin, M.-H., Martin, P., & Renaud, M. 2011a, Mem. Soc. Astron. Italiana, 82, 739

Lemoine-Goumard, M., Zavlin, V. E., Grondin, M.-H., et al. 2011b, A&A, 533, A102

Li, T.-P., & Ma, Y.-Q. 1983, ApJ, 272, 317

Longair, M. S. 2011, High Energy Astrophysics, 3rd edn. (The Edinburgh Building, Cambridge CB2 8RU, UK: Cambridge University Press)

Lundmark, K. 1921, PASP, 33, 225

Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, AJ, 129, 1993

Markwardt, C. B., & Ogelman, H. 1995, Nature, 375, 40

Matsumoto, H., Ueno, M., Bamba, A., et al. 2007, PASJ, 59, 199

Matsumoto, H., Uchiyama, H., Sawada, M., et al. 2008, PASJ, 60, 163

Mattana, F., Falanga, M., Götz, D., et al. 2009, ApJ, 694, 12

Mattox, J. R., Bertsch, D. L., Fichtel, C. E., et al. 1992, ApJ, 401, L23

Mattox, J. R., Bertsch, D. L., Chiang, J., et al. 1996, ApJ, 461, 396

Mayall, N. U., & Oort, J. H. 1942, PASP, 54, 95

Mayer-Hasselwander, H. A., Kanbach, G., Bennett, K., et al. 1982, A&A, 105, 164

McArthur, S. 2011, ArXiv e-prints

McK Mahille, J., Schild, R., Wendorf, F., & Brenmer, R. 2007, African Skies, 11, 2

Meegan, C., Lichti, G., Bhat, P. N., et al. 2009, ApJ, 702, 791

Mizukami, T., Kubo, H., Yoshida, T., et al. 2011, ApJ, 740, 78

Morrison, P. 1958, Il Nuovo Cimento, 7, 858

Moskalenko, I. V., & Strong, A. W. 2000, ApJ, 528, 357

Murphy, T., Mauch, T., Green, A., et al. 2007, MNRAS, 382, 382

Muslimov, A. G., & Harding, A. K. 2004, ApJ, 606, 1143

Neronov, A., Semikoz, D. V., Tinyakov, P. G., & Tkachev, I. I. 2011, A&A, 526, A90

Nolan, P. L., Arzoumanian, Z., Bertsch, D. L., et al. 1993, ApJ, 409, 697

Nolan, P. L., Fierro, J. M., Lin, Y. C., et al. 1996, A&AS, 120, C61

Nolan, P. L., Abdo, A. A., Ackermann, M., et al. 2012, ApJS, 199, 31

O'Brien, J. T., Johnston, S., Kramer, M., et al. 2008, MNRAS, 388, L1

Pacini, F. 1967, Nature, 216, 567

—. 1968, Nature, 219, 145

Pacini, F., & Salvati, M. 1973, ApJ, 186, 249

Parent, D., Kerr, M., den Hartog, P. R., et al. 2011, ApJ, 743, 170

Paron, S., Dubner, G., Reynoso, E., & Rubio, M. 2008, A&A, 480, 439

Pellizzoni, A., Trois, A., Tavani, M., et al. 2010, Science, 327, 663

Petre, R., Becker, C. M., & Winkler, P. F. 1996, The Astrophysical Journal Letters, 465, L43

Pittori, C., & the AGILE Team. 2003, Chinese Journal of Astronomy and Astrophysics, 3, 517

Pollock, A. M. T. 1985, A&A, 150, 339

Protassov, R., van Dyk, D. A., Connors, A., Kashyap, V. L., & Siemiginowska, A. 2002, ApJ, 571, 545

Rea, N., & Esposito, P. 2011, in High-Energy Emission from Pulsars and their Systems, ed. D. F. Torres & N. Rea, 247

Rees, M. J., & Gunn, J. E. 1974, MNRAS, 167, 1

Renaud, M., Goret, P., & Chaves, R. C. G. 2008, in American Institute of Physics Conference Series, Vol. 1085, American Institute of Physics Conference Series, ed. F. A. Aharonian, W. Hofmann, & F. Rieger, 281–284

Reynoso, E. M., Dubner, G. M., Goss, W. M., & Arnal, E. M. 1995, AJ, 110, 318

Reynoso, E. M., Green, A. J., Johnston, S., et al. 2003, MNRAS, 345, 671

Richards, D. W., & Comella, J. M. 1969, Nature, 222, 551

Rieke, G. H., & Weekes, T. C. 1969, ApJ, 155, 429

Rishbeth, H. 1958, Australian Journal of Physics, 11, 550

Rodriguez, J., Tomsick, J. A., Foschini, L., et al. 2003, A&A, 407, L41

Romani, R. W. 1996, ApJ, 470, 469

Romani, R. W., Kerr, M., Craig, H. A., et al. 2011, ApJ, 738, 114

Rousseau, R., Grondin, M.-H., Van Etten, A., et al. 2012, A&A, 544, A3

Rowell, G., Horns, D., Fukui, Y., & Moriguchi, Y. 2008, in American Institute of Physics Conference Series, Vol. 1085, American Institute of Physics Conference Series, ed. F. A. Aharonian, W. Hofmann, & F. Rieger, 241–244

Rybicki, G. B., & Lightman, A. P. 1979, Radiative processes in astrophysics (New York: John Wiley & Sons Ltd)

Scargle, J. D., Norris, J. P., Jackson, B., & Chiang, J. 2013, ApJ, 764, 167

Schwarz, G. 1978, The Annals of Statistics, 6, pp. 461

Seward, F. D., & Harnden, Jr., F. R. 1982, ApJ, 256, L45

Shaver, P. A., & Goss, W. M. 1970, Australian Journal of Physics Astrophysical Supplement, 14, 133

Sheidaei, F. 2011, in International Cosmic Ray Conference, Vol. 7, International Cosmic Ray Conference, 243

Shklovskii, I. S. 1953, Doklady Akad. Nauk SSSR, 90, 983

Slane, P., Castro, D., Funk, S., et al. 2010, The Astrophysical Journal, 720, 266

Slane, P., Castro, D., Funk, S., et al. 2010, ApJ, 720, 266

Slane, P., Helfand, D. J., Reynolds, S. P., et al. 2008, ApJ, 676, L33

Slane, P., Helfand, D. J., van der Swaluw, E., & Murray, S. S. 2004, ApJ, 616, 403

Sreekumar, P., Bertsch, D. L., Hartman, R. C., Nolan, P. L., & Thompson, D. J. 1999, Astroparticle Physics, 11, 221

Sreekumar, P., Bertsch, D. L., Dingus, B. L., et al. 1992, ApJ, 400, L67

Sreekumar, P., Bertsch, D. L., Dingus, B. L., et al. 1998, The Astrophysical Journal, 494, 523

Staelin, D. H., & Reifenstein, III, E. C. 1968, Science, 162, 1481

Strong, A. W., & Moskalenko, I. V. 1998, ApJ, 509, 212

Sugizaki, M., Mitsuda, K., Kaneda, H., et al. 2001, ApJS, 134, 77

Swanenburg, B. N., Hermsen, W., Bennett, K., et al. 1978, Nature, 275, 298

Swanenburg, B. N., Bennett, K., Bignami, G. F., et al. 1981, ApJ, 243, L69

Tam, P. H. T., Wagner, S. J., Tibolla, O., & Chaves, R. C. G. 2010, A&A, 518, A8

- Tanaka, T., Allafort, A., Ballet, J., et al. 2011, ApJ, 740, L51
- Taylor, A. R., Gibson, S. J., Peracaula, M., et al. 2003, AJ, 125, 3145
- Terrier, R., Mattana, F., Djannati-Atai, A., et al. 2008, in American Institute of Physics Conference Series, Vol. 1085, American Institute of Physics Conference Series, ed. F. A. Aharonian, W. Hofmann, & F. Rieger, 312–315
- The Fermi LAT Collaboration, Coe, M. J., Di Mille, F., et al. 2012, ArXiv e-prints
- Thompson, D. J. 2008, Reports on Progress in Physics, 71, 116901
- Thompson, D. J., Fichtel, C. E., Hartman, R. C., Kniffen, D. A., & Lamb, R. C. 1977a, ApJ, 213, 252
- Thompson, D. J., Fichtel, C. E., Kniffen, D. A., & Ogelman, H. B. 1977b, ApJ, 214, L17
- Thompson, D. J., Bertsch, D. L., Fichtel, C. E., et al. 1993, ApJS, 86, 629
- Tomsick, J. A., Lingenfelter, R., Walter, R., et al. 2003, IAU Circ., 8076, 1
- Torii, K., Slane, P. O., Kinugasa, K., Hashimotodani, K., & Tsunemi, H. 2000, PASJ, 52, 875
- Torii, K., Kinugasa, K., Toneri, T., et al. 1998, ApJ, 494, L207
- Trussoni, E., Massaglia, S., Caucino, S., Brinkmann, W., & Aschenbach, B. 1996, A&A, 306, 581
- van der Swaluw, E., & Wu, Y. 2001, ApJ, 555, L49
- Van Etten, A., & Romani, R. W. 2011, ApJ, 742, 62
- Vladimirov, A. E., Digel, S. W., Jóhannesson, G., et al. 2011, Computer Physics Communications, 182, 1156

Watters, K. P., & Romani, R. W. 2011, ApJ, 727, 123

Weekes, T. C., Cawley, M. F., Fegan, D. J., et al. 1989, ApJ, 342, 379

Weinstein, A., & for the VERITAS Collaboration. 2009, ArXiv e-prints

Wilks, S. S. 1938, Annals of Mathematical Statistics, 9, 60

Young, E. T., Lada, C. J., & Wilking, B. A. 1986, ApJ, 304, L45