from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

import pandas as pd
import numpy as np
data = pd.read_csv("/content/drive/MyDrive/IBM_nalaiyathiran/Churn_Modelling.csv")
data

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenur
0	1	15634602	Hargrave	619	France	Female	42	
1	2	15647311	Hill	608	Spain	Female	41	
2	3	15619304	Onio	502	France	Female	42	
3	4	15701354	Boni	699	France	Female	39	
4	5	15737888	Mitchell	850	Spain	Female	43	
9995	9996	15606229	Obijiaku	771	France	Male	39	
9996	9997	15569892	Johnstone	516	France	Male	35	1
9997	9998	15584532	Liu	709	France	Female	36	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	
Saving		×	Walker	792	France	Female	28	

data.head()

data.boxplot(column =['EstimatedSalary'], grid = False)

data.isnull().sum()

RowNumber	0	
CustomerId	0	
Surname	0	
CreditScore	0	
Geography	0	
Gender	0	
Age	0	
Tenure	0	
Balance	0	
NumOfProducts	0	
Saving		X
	-	
Exited	0	
dtvpe: int64		

data.describe()

		RowNumber	CustomerId	CreditScore	Age	Tenure	Ва
	count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.C
		.preprocessin	ng import Labe	lEncoder			
		• • • • • • • • • • • • • • • • • • • •	_transform(dat	a['Geography'	1)		
_	_		ansform(data['	- 0 . ,	1,		
data.	head()						

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	
0	1	15634602	Hargrave	619	0	0	42	2	
1	2	15647311	Hill	608	2	0	41	1	
2	3	15619304	Onio	502	0	0	42	8	1
3	4	15701354	Boni	699	0	0	39	1	
4	5	15737888	Mitchell	850	2	0	43	2	1


```
y=data['EstimatedSalary']
x=data.drop(columns=['EstimatedSalary','Surname'],axis=1)
```

```
names=x.columns
 Saving...
                                   d', 'CreditScore', 'Geography', 'Gender', 'Age',
            'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember',
            'Exited'],
           dtype='object')
from sklearn.preprocessing import scale
x=scale(x)
Х
     array([[-1.73187761, -0.78321342, -0.32622142, ..., 0.64609167,
              0.97024255, 1.97716468],
            [-1.7315312, -0.60653412, -0.44003595, ..., -1.54776799,
             0.97024255, -0.50577476],
            [-1.73118479, -0.99588476, -1.53679418, ..., 0.64609167,
             -1.03067011, 1.97716468],
            [1.73118479, -1.47928179, 0.60498839, ..., -1.54776799,
             0.97024255, 1.97716468],
            [1.7315312, -0.11935577, 1.25683526, ..., 0.64609167,
             -1.03067011, 1.97716468],
            [1.73187761, -0.87055909, 1.46377078, ..., 0.64609167,
```

-1.03067011, -0.50577476]])

x=pd.DataFrame(x,columns=names)
x.head()

	RowNumber	CustomerId	CreditScore	Geography	Gender	Age	Tenure	I
0	-1.731878	-0.783213	-0.326221	-0.901886	-1.095988	0.293517	-1.041760	-1
1	-1.731531	-0.606534	-0.440036	1.515067	-1.095988	0.198164	-1.387538	С
2	-1.731185	-0.995885	-1.536794	-0.901886	-1.095988	0.293517	1.032908	1
3	-1.730838	0.144767	0.501521	-0.901886	-1.095988	0.007457	-1.387538	-1
4	-1.730492	0.652659	2.063884	1.515067	-1.095988	0.388871	-1.041760	0

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
x_train

	RowNumber	CustomerId	CreditScore	Geography	Gender	Age	Tenure
8243	1.123581	-1.651082	1.805214	-0.901886	0.912419	-0.946079	-0.695982
9488	1.554862	-0.439100	0.211811	1.515067	0.912419	-0.660018	0.341352
6474	0.510782	-0.900810	0.460134	-0.901886	0.912419	-0.183251	-1.041760
Saving		×	0.894698	1.515067	-1.095988	0.579578	-1.041760
			0.677416	-0.901886	-1.095988	0.484225	-1.387538
9298	1.489044	-0.596302	0.946432	0.306591	0.912419	-1.136786	-0.004426
6951	0.676019	0.666575	0.077303	-0.901886	0.912419	0.293517	1.032908
7291	0.793799	-1.106905	-0.533157	1.515067	0.912419	-0.564665	-0.350204
2742	-0.782021	-1.596141	-0.015818	-0.901886	-1.095988	0.198164	-1.041760
7066	0.715857	-0.143156	0.811924	1.515067	-1.095988	0.293517	-1.387538
8000 rc	ows × 12 colur	mns					

import tensorflow

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

```
model = Sequential()
model.add(Dense(units = 4,kernel_initializer= "random_uniform",activation= "relu"))
model.add(Dense(units = 10,kernel_initializer= "random_uniform",activation= "relu"))
model.add(Dense(units = 12,kernel_initializer= "random_uniform",activation= "relu"))
model.add(Dense(units = 32,kernel_initializer= "random_uniform",activation= "relu"))
model.add(Dense(units = 1 ,kernel initializer= "random uniform"))
model.compile(loss="mse",metrics=["mse"],optimizer="adam")
model.fit(x_train,y_train,epochs=10,batch_size=10)
    Epoch 1/10
    800/800 [============= ] - 2s 2ms/step - loss: 11321431040.0000 - ms
    Epoch 2/10
    800/800 [============== ] - 1s 2ms/step - loss: 3643340288.0000 - mse
    Epoch 3/10
    800/800 [============ ] - 1s 2ms/step - loss: 3409902848.0000 - mse
    Epoch 4/10
                                ======] - 1s 2ms/step - loss: 3380759552.0000 - mse
Saving...
                           ______ - 1s 2ms/step - loss: 3363616256.0000 - mse
    000/000 [--
    Epoch 6/10
    800/800 [=============== ] - 1s 2ms/step - loss: 3355409152.0000 - mse
    Epoch 7/10
    800/800 [============== ] - 1s 2ms/step - loss: 3347043840.0000 - mse
    Epoch 8/10
    800/800 [============ ] - 1s 2ms/step - loss: 3342067456.0000 - mse
    Epoch 9/10
    800/800 [============= ] - 1s 2ms/step - loss: 3339269888.0000 - mse
    Epoch 10/10
    800/800 [============== ] - 1s 2ms/step - loss: 3334885632.0000 - mse
    <keras.callbacks.History at 0x7f3cdfe28ed0>
pred = model.predict(x test)
pred
    63/63 [========= ] - 0s 1ms/step
    array([[103847.41],
           [ 99726.73 ],
           [ 96623.8 ],
           [ 94247.2 ],
```

[102013.734], [98707.766]], dtype=float32)

from sklearn import metrics
metrics.mean_squared_error(pred,y_test)

3259410733.7873964

×