Determine the decimal equivalent of the following numbers

- (1101)₂
- (EE)₁₆
- $(56)_8$

Sol

Determine the base of the numbers in each case for the following operations to be correct:

(a)
$$14/2 = 5$$

(a)
$$14/2 = 5$$
 (b) $54/4 = 13$ (c) $24+17=40$

(c)
$$24+17=40$$

Solution:

The base of the numbers in each case for the following operations to be correct:

(a)
$$14/2 = 5$$
;
Find decimal equivalent $14=1 \times r^1 + 4 \times r^0 = r + 4$
 $2=2 \times r^0 = 2$
 $5=5 \times r^0 = 5$
 $(4+r)/2 = 5$
Solving this equation, we get $r=6$, base 6

(b)
$$54/4 = 13$$
;
Find decimal equivalent $54=5 \times r^1 + 4 \times r^0 = 5r + 4$
 $4=4 \times r^0 = 4$
 $13=1 \times r^1 + 3 \times r^0 = r + 3$
 $(5r+4)/4=r+3$
Solving this equation, we get $r=8$, base 8

(c)
$$24+17=40$$
;
Find decimal equivalent $24=2 \times r^1 + 4 \times r^0 = 2r + 4$
 $17=1 \times r^1 + 7 \times r^0 = r + 7$
 $40=4 \times r^1 + 0 \times r^0 = 4r + 0$
 $(2r + 4) + (r + 7) = 4r$
Solving this equation, we get $r=11$, base 11

Obtain the 1's and 2's complement of the following binary numbers: a) 11101010 b) 011111110 c) 00000001 d) 10000000 e) 00000000

Sol

Solution:

1's complement : change every 1 to 0 and vice versa.

2's complement : change every 1 to 0 and vice versa ,then add (1) to the least significant bit.

a) 11101010 1's complement : 00010101 2's complement : 00010110

b) 01111110 1's complement : 10000001 2's complement : 10000010

c) 00000001 1's complement: 01111110 2's complement: 11111111

d) 10000000 1's complement : 01111111 2's complement : 10000000

e) 00000000 1's complement : 11111111 2's complement : 100000000