EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

MODEL BUILDING Save the Model

Date	02 November 2022
T ID	DN/E2022EN (1D2007.4
Team ID	PNT2022TMID30054
Project Name	Emerging Methods for Early Detection of
	Forest Fires.

##Importing The ImageDataGenerator Library

import keras

from keras.preprocessing.image import ImageDataGenerator

###Define the parameters/arguments for ImageDataGenerator class

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,rotation_range=180,zoom_range=0.2,horizontal_flip=True)

test_datagen=ImageDataGenerator(rescale=1./255)

###Applying ImageDataGenerator Functionality to trainset

 $x_train=train_datagen.flow_from_directory(r'C:\archive\Dataset\Dataset\train_set', target_size=(128,128), batch_size=32, class_mode='binary')$

###Applying ImageDataGenerator Functionality to testset

 $x_test=test_datagen.flow_from_directory(r'C:\archive\Dataset\Dataset\test_set',target_size=(128,128),batch_size=32,class_mode='binary')$

##Import model building libraries

#To Define linear initialization import Sequential

from keras.models import Sequential

#To add layers import Dense

from keras.layers import Dense

#To create Convolution kernel import Convolution 2D

from keras.layers import Convolution2D

#import maxpooling layers

from keras.layers import MaxPooling2D

#import flatten Layer

from keras.layers import Flatten import

warnings

warnings.filterwarnings('ignore')

#Initializing the Model

model=Sequential()

##adding CNN layers

model.add(Convolution2D(32,(3,3),input_shape=(128,128,3),activation='relu'))

##adding maxpooling layer

model.add(MaxPooling2D(pool_size=(2,2)))

##adding flatten Layer model.add(Flatten())

##add hidden layer

model.add(Dense(150,activation='relu'))

##add output layer model.add(Dense(1,activation='sigmoid'))

#Configure the Learning Process

```
model.compile(loss="binary_crossentropy",optimizer="adam",metrics=['accuracy']
)
```

Training the model

model.fit_generator(x_train,steps_per_epoch=14,epochs=10,validation_data=x_test,validation_steps=4)

#save the model

model.save("forest1.h5")