00. Presentación del curso

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales Departamento de Ingeniería Civil Mecánica Tensorial

2023a

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada Álvarez (2022).

- Conceptos básicos
- 2 Esfuerzos en un punto
- 3 Desplazamientos y deformaciones en un punto
- 4 Relaciones entre esfuerzos y deformaciones
- 6 Referencias

- Conceptos básicos
- 2 Esfuerzos en un punto
- 3 Desplazamientos y deformaciones en un punto
- 4 Relaciones entre esfuerzos y deformaciones
- 6 Referencias

m :

Diferenciales de primer, segundo y tercer orden

Fuerzas que actúan sobre un sólido

Fuerzas másicas

(body forces)

$$b(x, y, z) := [X(x, y, z), Y(x, y, z), Z(x, y, z)]^T$$

Fuerzas superficiales

(surface forces)

$$\boldsymbol{f}(x,y,z) \coloneq [\bar{X}(x,y,z),\bar{Y}(x,y,z),\bar{Z}(x,y,z)]^T$$

Videos de YouTube

- Lista de resproducción: 01 Conceptos básicos
- Diapositivas del 2022b (resumen del capítulo): 01. Conceptos fundamentales

- Conceptos básicos
- 2 Esfuerzos en un punto
- 3 Desplazamientos y deformaciones en un punto
- 4 Relaciones entre esfuerzos y deformaciones
- 6 Referencias

Fórmula de Cauchy bidimensional

$$\begin{bmatrix} q_x \\ q_y \end{bmatrix} = \begin{bmatrix} \sigma_x & \tau_{xy} \\ \tau_{xy} & \sigma_y \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

Esfuerzos en 3D

Fórmula de Cauchy tridimensional

$$\begin{bmatrix} q_x \\ q_y \\ q_z \end{bmatrix} = \begin{bmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_y & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_z \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

- Sistema de coordenadas **globales**: $({m x}_i,{m{\hat e}}_i)$
- Sistema de coordenadas **locales**: $(x_i', \hat{e'}_i)$

Matriz de esfuerzos en otro sistema coordenado

Del sistema global al local

Incómodo al cómodo

$$\underline{\underline{\sigma}}' = T^T \underline{\underline{\sigma}} T$$

Del sistema local al global

Cómodo al incómodo

$$\underline{\sigma} = T\underline{\sigma}'T^T$$

Se encuentran al obtener los valores y vectores propios de la matriz de esfuerzos:

$$\underline{\underline{\boldsymbol{\sigma}}}\hat{\boldsymbol{n}} = \sigma_n \hat{\boldsymbol{n}}$$

$$\det(\underline{\underline{\boldsymbol{\sigma}}} - \sigma_n \boldsymbol{I}) = 0$$

1 P

Esfuerzos y direcciones principales 2D

$$(\sigma_1)_{xy} = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
$$(\sigma_2)_{xy} = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Michael H.P.

Mecánica tensorial, introducción

Círculo de Mohr bidimensional

Se construye con:

$$\sigma_n(\theta) = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
$$\tau_n(\theta) = \tau_{xy} \cos 2\theta - \frac{\sigma_x - \sigma_y}{2} \sin 2\theta$$

m ?

Círculo de Mohr bidimensional

Videos de YouTube

18 / 41

- Lista de resproducción: 02 Esfuerzos o Tensiones
- Diapositivas del 2022b (resumen del capítulo): 02. Estudio de los esfuerzos en un punto

Michael H.P. Mecánica tensorial, introducción 2023a

- Conceptos básicos
- Esfuerzos en un punto
- 3 Desplazamientos y deformaciones en un punto
- A Relaciones entre esfuerzos y deformaciones
- 6 Referencias

Campo vectorial de desplazamientos

Deformaciones longitudinales

 $\varepsilon_x > 0$ (estiramiento en dirección x) ε_{ν} < 0 (contracción en dirección γ)

 ε_x < 0 (contracción en dirección x) $\varepsilon_{\nu} > 0$ (estiramiento en dirección ν)

$$\varepsilon_x(x, y, z) := \frac{\partial u(x, y, z)}{\partial x}$$

$$\varepsilon_y(x, y, z) := \frac{\partial v(x, y, z)}{\partial y}$$

$$\varepsilon_z(x, y, z) := \frac{\partial w(x, y, z)}{\partial z}$$

Deformaciones angulares

$$\begin{split} \gamma_{xy}(x,y,z) &:= \frac{\partial u(x,y,z)}{\partial y} + \frac{\partial v(x,y,z)}{\partial x} \\ \gamma_{xz}(x,y,z) &:= \frac{\partial u(x,y,z)}{\partial z} + \frac{\partial w(x,y,z)}{\partial x} \\ \gamma_{yz}(x,y,z) &:= \frac{\partial v(x,y,z)}{\partial z} + \frac{\partial w(x,y,z)}{\partial y} \end{split}$$

n ?

Deformaciones angulares: matemáticas vs ingenieriles

$$\underbrace{\varepsilon_{xy}(x,y)}_{Def.matem\'aticas} :- \underbrace{\frac{\gamma_{xy}(x,y)}{2}}_{Def.ingenieriles}$$

Deformaciones en otras direcciones

$$\varepsilon_x'(\theta) = \frac{\varepsilon_x + \varepsilon_y}{2} + \frac{\varepsilon_x - \varepsilon_y}{2} \cos 2\theta + \varepsilon_{xy} \sin 2\theta$$
$$\varepsilon_{x'y'}(\theta) = \varepsilon_{xy} \cos 2\theta - \frac{\varepsilon_x - \varepsilon_y}{2} \sin 2\theta + \varepsilon_{xy} \sin 2\theta$$

Deformaciones en otras direcciones

• En términos de deformaciones matemáticas:

$$\underline{arepsilon}' = T_{oldsymbol{\sigma}} \underline{arepsilon}$$

En términos de deformaciones ingenieriles:

$$\underline{arepsilon}' = T_{oldsymbol{arepsilon}} \underline{arepsilon}$$

Con la relación

$$T_{\boldsymbol{\sigma}}^{-1} = T_{\boldsymbol{\varepsilon}}^T$$

$$\underline{\underline{\varepsilon}} = T\underline{\underline{\varepsilon}}'T^T$$

Deformaciones principales

Círculo de Mohr para deformaciones.

Videos de YouTube

- Lista de resproducción: 03 Deformaciones y desplazamientos
- Diapositivas del 2022b (resumen del capítulo): 03. Estudio de los desplazamientos y deformaciones en un punto

Derrotero

- Conceptos básicos
- Esfuerzos en un punto
- 3 Desplazamientos y deformaciones en un punto
- 4 Relaciones entre esfuerzos y deformaciones
- 6 Referencias

Materiales frágiles y materiales dúctiles

Comportamiento de los materiales dúctiles

Ley de Hooke generalizada para materiales isótropos

Ley de Hooke generalizada para materiales isótropos

Dilatación cúbica

Michael H.P. Mec

Teorema de la divergencia

36 / 41

Michael H.P. Mecánica tensorial, introducción 2023a

Módulo de compresibilidad

37 / 41

2023a

Michael H.P. Mecánica tensorial, introducción

Videos de YouTube

- No hay : (
- Diapositivas del 2022b (resumen del capítulo): 04. Relaciones entre los esfuerzos y las deformaciones

- Conceptos básicos
- 2 Esfuerzos en un punto
- 3 Desplazamientos y deformaciones en un punto
- 4 Relaciones entre esfuerzos y deformaciones
- 6 Referencias

Referencias I

Álvarez, D. A. (2022). Teoría de la elasticidad. Universidad Nacional de Colombia.

Enlaces de interés

Repositorio de GitHub: github.com/michaelherediaperez/medio_continuo