Несобственные интегралы

Определение. $f:[a,b) \to \mathbb{R}$ $-\infty < a < b \le +\infty$ f допустима, если f — кусочно-непрерывна на [a,A] $\forall A \in (a,b)$

Определение.

$$\Phi(A) := \int_{a}^{A} f$$

$$?\exists \lim_{A \to b=0} \Phi(A)$$

- Если да, то это несобственный интеграл $\int\limits_a^{\to b} f dx.$
- Если этот предел конечный, то тот несобственный интеграл сходится.
- Если этот предел бесконечный или не существует, то несобственный интеграл расходится.

Пример.

$$\int_{1}^{+\infty} \frac{1}{x^{p}} dx = \lim_{A \to \infty} \int_{1}^{A} \frac{1}{x^{p}} dx$$

$$\int_{1}^{A} \frac{1}{x^{p}} dx = \begin{cases} \frac{A^{1-p} - 1^{1-p}}{1-p}, & p \neq 1\\ \ln A - \ln 1, & p = 1 \end{cases}$$

$$\lim_{A \to \infty} \int_{1}^{A} \frac{1}{x^{p}} dx = \begin{cases} \frac{1}{p-1}, & p > 1\\ +\infty, & p < 1\\ +\infty, & p = 1 \end{cases}$$

p > 1 — интеграл сходится, $p \le 1$ — интеграл расходится.

Пример.

$$\int_{\to 0}^1 \frac{1}{x^p} dx$$

$$\lim_{A\to \infty} \int_A^1 \frac{1}{x^p} dx = \begin{cases} \text{koh.}, & p<1\\ +\infty, & p\geq 1 \end{cases}$$

Можно разбивать интеграл с > 1 причиной несобственности на части, где только одна причина:

$$\int_0^{+\infty} \frac{1}{x^p} dx = \int_0^{10} + \int_{10}^{+\infty}$$

Если все интегралы в правой части сходятся, то в левой части тоже.

Пример.

$$\int_{-1}^{1} \frac{1}{x} dx = \int_{-1}^{0} \frac{1}{x} dx + \int_{\to 0}^{1} \frac{1}{x} dx$$
$$\int_{-1}^{0} \frac{1}{x} dx = -\infty \quad \int_{\to 0}^{1} \frac{1}{x} dx = +\infty$$

Итого $\int_{-1}^{1} \frac{1}{x} dx$ расходится. Хочется сократить бесконечности, особенно если посмотреть на график $\frac{1}{x}$ — он симметричен. Кажется, что $\int_{-1}^{1} \frac{1}{x} dx = 0$. Однако мы все равно считаем этот интеграл расходящимся. Это можно обосновать так: если нагреть одну сторону стула до +200 градусов, а другую охладить до -170, то вы не захотите на нем сидеть, хотя средняя температура адекватная.

Свойства

Критерий Больцано-Коши

$$\lim_{A\to b-0}\int_a^A \text{ Koh.} \Leftrightarrow \forall \varepsilon>0 \ \ \exists \Delta\in(a,b) \ \ \forall A,B\in(\Delta,b) \quad \ \left|\int_A^B f\right|<\varepsilon$$

Доказательство. Тривиально из определения предела.

Следствие. Если $\exists A_n, B_n \to b-0$ $\int\limits_A^{B_n} f \xrightarrow{n \to +\infty} 0$, то $\int\limits_a^{\to b} f$ расходится.

Пример.

$$\int_{1}^{+\infty} \sin \sqrt{x} dx$$

Это синусоида с увеличивающимся периодом.

Чтобы доказать, что интеграл расходится, возьмём A_n, B_n такие что $\int_0^{B_n} \sin \sqrt{x} dx \xrightarrow{\eta \to +\infty} 0$.

$$A_n := (2\pi n + \frac{\pi}{6})^2 \quad B_n := \left(2\pi (n+1) - \frac{\pi}{6}\right)^2$$
$$\int_{A_n}^{B_n} \sin \sqrt{x} dx \ge \frac{1}{2} (B_n - A_n) \to \infty$$

Аддитивность по промежутку

f — допустима. $[a,b)\quad c\in(a,b)$ Тогда $\int_a^{\to b}f$ и $\int_c^{\to b}f$ — сходятся/расходятся одновременно и, если сходятся, $\int_a^{\to b}f=\int_a^cf+\int_c^{\to b}f$ Берем $A > c \int_a^A \int_a^c \int_a^c + \int_c^A$

 $\mathit{Спедствие}.\ f$ — допустима. $[a,+\infty),\, \int_a^{+\infty}f$ — сходится. Тогда

$$\int_{A}^{+\infty} f \xrightarrow{A \to +\infty} 0$$

Это называется "хвост".

Линейность

$$f,g$$
 — допустима $\int_a^{\to b} f, \int_a^{\to b} g - \cos g$.

Тогда $\lambda f, f \pm g$ — допустима b $\int_a^{\to b} \lambda f, \int_a^{\to b} f \pm g$ — сходятся.

$$\int_{a}^{\to b} \lambda f = \lambda \int_{a}^{\to b} f \qquad \int_{a}^{\to b} f \pm g = \int_{a}^{\to b} f \pm \int_{a}^{\to b} g$$

Доказательство. Тривиально.

Интегрирование неравенств

$$f,g$$
— доп., $\int_a^{\to b}f,\int_a^{\to b}g$ — существуют в $\overline{\mathbb{R}}$ $f\leq g$ на $[a,b).$ Тогда

$$\int_{a}^{b} f \leq \int_{a}^{b} g$$

Очевидно: $\int_a^A f \leq \int_a^A g, A \to b - 0$

M3137y2019

Пятое свойство

f,g — дифф. [a,b);f',g' — допустимы. Это эквивалентно $f,g\in C^1[a,b)$. Тогда*

$$\int_{a}^{b} fg' = fg \bigg|_{a}^{b} - \int_{a}^{b} f'g$$

* значит, что если два из трех пределов существуют, то существует третий и выполняется равенство.

Шестое свойство

 $\varphi: [\alpha,\beta) \to \langle A,B\rangle, \varphi \in C^1$ $f: \langle A,B\rangle \to \mathbb{R}, f$ — непр., $\exists \varphi(\beta-0) \in \overline{\mathbb{R}}$ Тогда*

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(\alpha)}^{\beta} f(x)dx$$

 $\ensuremath{\Pi} p$ имечание. f — кусочно непрерывна на [a,b]. f можно также рассматривать на [a,b). Тогда

$$\int_{a}^{\to b} f = \int_{a}^{b} f$$

Упраздняем " \rightarrow ".

Признаки сходимости несобственных интегралов

f — допустима на $[a,b), f \geq 0, \Phi(A) = \int_a^A f dx$ $\int_a^b f$ — сходится $\Leftrightarrow \Phi$ ограничена.

Доказательство. $\int_a^b f - \mathrm{cx.} \Leftrightarrow \lim_{A \to b = 0} \Phi(A)$ кон. $\Leftrightarrow \Phi - \mathrm{orp.}$

Пемма 1. Признак сравнения:

 $f,g \geq 0$, допустимы на [a,b)

- 1. $f \leq g$ на [a, b). Тогда:
 - (a) $\int_a^b g \operatorname{cxodumcs} \Rightarrow \int_a^b f \operatorname{cxodumcs}$
 - (b) $\int_a^b f pacxoдumcя \Rightarrow \int_a^b g pacxoдumcя$
- 2. $\exists \lim_{x \to b-0} \frac{f(x)}{g(x)} = l < +\infty :$
 - (a) $\int_a^b g \operatorname{cxodumcs} \Rightarrow \int_a^b f \operatorname{cxodumcs}$
 - (b) $\int_a^b f pacxoдumcя \Rightarrow \int_a^b g pacxoдumcя$

Доказательство. 1. $\Phi(A) := \int_a^A f, \Psi(A) = \int_a^A g$

$$0 \le \Phi(A) \le \Psi(A)$$

- (a) $\int_a^b g \mathrm{cxogutcs} \Rightarrow \Psi$ orp. $\Rightarrow \Phi$ orp. $\Rightarrow \int_a^b f \mathrm{cxogutcs}$
- (b) $\int_a^b f$ расходится $\Rightarrow \Phi$ неогр. $\Rightarrow \Psi$ неогр. $\Rightarrow \int_a^b g$ расходится

M3137y2019

2. $l < +\infty \stackrel{def}{\Longrightarrow} \exists a_1 : \forall x > a_1 \ 0 \leq \frac{f(x)}{g(x)} \leq l+1 \Rightarrow f(x) \leq g(x)(l+1)$, дальше тривиально (предположительно по пункту 1.)

Примечание. l > 0:

$$\exists a_2 : \forall x > a_2 \quad \frac{l}{2} < \frac{f(x)}{g(x)}$$

1.
$$\int_a^b f - \operatorname{сходится} \Rightarrow \int_a^b g - \operatorname{сходится}$$

2.
$$\int_a^b g$$
 — расходится $\Rightarrow \int_a^b f$ — расходится

Следствие. Если $+\infty > l > 0$, то:

1.
$$\int_a^b f - \text{сходится} \Leftrightarrow \int_a^b g - \text{сходится}$$

2.
$$\int_a^b f$$
 — расходится $\Leftrightarrow \int_a^b g$ — расходится

Пример.

$$\int_0^{+\infty} \frac{\cos^2 x}{1+x^2} dx$$
 сходится?

С трюком:

$$\frac{\cos^2 x}{1+x^2} \le \frac{1}{1+x^2} \quad \int_0^{+\infty} \frac{1}{1+x^2} = \arctan \Big|_0^{+\infty} = \frac{\pi}{2}$$

Более цинично:

$$\frac{\cos^2 x}{1+x^2} \leq \frac{1}{x^2}$$
на $[2020,+\infty)$

$$\int_{2020}^{+\infty} \frac{1}{x^2} \operatorname{сходится} \Rightarrow \int_{2020}^{+\infty} f \operatorname{сходится}$$

Пример. Этот пример будет на экзамене.

При каких α и β сходится:

$$\int_{10}^{+\infty} \frac{dx}{x^{\alpha} (\ln x)^{\beta}}$$

Мы знаем, что $\int_1^\infty \frac{dx}{x^p}$ сходится при p>1 и расходится при $p\leq 1$.

При $\alpha > 1, \beta > 0$

$$\frac{1}{x^{\alpha}(\ln x)^{\beta}} < \frac{1}{x^{\alpha}}$$

Таким же образом можно еще что-то выяснить, но мы так делать не будем. Вместо этого воспользуемся методом "удавливание логарифма"

1.
$$\alpha > 1$$
 $\alpha = 1 + 2a, a > 0$

$$0 \leq \frac{1}{x^{1+2a}(\ln x)^{\beta}} = \frac{1}{x^{1+a}} \cdot \frac{1}{x^a(\ln x)^{\beta}}$$

$$\beta \geq 0 \quad x^a(\ln x)^{\beta} \to +\infty$$

$$b := -\beta \quad \beta < 0 \quad x^a(\ln x)^{\beta} = \frac{x^a}{(\ln x)^b} = \left(\frac{x^{\frac{a}{b}}}{\ln x}\right)^b \xrightarrow[x \to \infty]{} \left[\frac{\infty}{\infty}\right] \xrightarrow[x \to \infty]{} \frac{\frac{a}{b}x^{\frac{a}{b}-1}}{\frac{1}{x}} \to +\infty$$

$$x^a(\ln x)^{\beta} \xrightarrow[x \to +\infty]{} +\infty \Rightarrow \frac{1}{x^{1+a}} \cdot \frac{1}{x^a(\ln x)^{\beta}} < \frac{1}{x^{1+a}} - \text{сходится}$$

2. $\alpha < 1$ $\alpha = 1 - 2a, a > 0$

$$\frac{1}{x^{1-2a}(\ln x)^{\beta}} = \frac{1}{x^{1-a}} \cdot \frac{x^a}{(\ln x)^{\beta}} > \frac{1}{x^{1-a}}$$

3. $\alpha = 1$

$$\int_{10}^{+\infty} \frac{dx}{x(\ln x)^{\beta}} \stackrel{y=\ln x}{=} \int_{\ln 10}^{+\infty} \frac{dy}{y^{\beta}}$$

Сходится при $\beta > 1$, расходится при $\beta \geq 1$

Гамма-функция Эйлера

 Γ — гамма-функция Эйлера

$$\Gamma(t) = \int_0^{+\infty} x^{t-1} e^{-x} dx$$

Область определения

1. $\int_1^{+\infty} x^{t-1} e^{-x} dx$ — сходится при всех $t \in \mathbb{R}^+$:

$$\int_{1}^{+\infty}e^{-x}dx=-e^{-x}\bigg|_{1}^{+\infty}=e$$

$$0\leq x^{t-1}e^{-x}\leq x^{t-1}e^{-\frac{x}{2}}e^{-\frac{x}{2}}$$

$$x^{t-1}e^{-\frac{x}{2}}\xrightarrow{x\to+\infty}0\Rightarrow \text{ при больших }x\ x^{t-1}e^{-\frac{x}{2}}e^{-\frac{x}{2}}\leq e^{-\frac{x}{2}}$$

2.
$$\int_{-0}^{1} x^{t-1} e^{-x} dx$$

$$x^{t-1}e^{-x} \mathop{\sim}\limits_{x o 0} x^{t-1} \quad t > 0$$
 сходится, $t \le 0$ расходится

Выпуклость

Подынтегральное выражение как функция от t является выпуклой функцией (при $x \ge 0$)

$$t \mapsto x^{t-1}e^{-x} = f_x(t)$$
$$f(\alpha t_1 + (1 - \alpha)t_2) \le \alpha f_x(t_1) + (1 - \alpha)f_x(t_2)$$
$$\int_0^{+\infty} f_x dx \le \alpha \int_0^{+\infty} f_x(t_1) dx + (1 - \alpha) \int_0^{\infty} f_x(t_2) dx$$

Определение выпуклости:

$$x^{(\alpha t_1 + (1-\alpha)t_2) - 1}e^{-x} \le \alpha x^{t_1 - 1}e^{-x} + (1-\alpha)x^{t_2 - 1}e^{-x}$$

Зафиксируем α, t_1, t_2 . Проинтегрируем по x от 0 до $+\infty$:

$$\Gamma(\alpha t_1 + (1 - \alpha)t_2) \le \alpha \Gamma(t_1) + (1 - \alpha)\Gamma(t_2)$$

 Γ — выпуклая \Rightarrow Γ — непрерывная

Третье свойство

$$\Gamma(t+1) = t\Gamma(t)$$

$$\Gamma(t+1) = \int_0^{+\infty} x^t e^{-x} dx = -x^t e^{-x} \bigg|_0^{+\infty} + t \int_0^{+\infty} x^{t-1} e^{-x} dx = 0 + t \Gamma(t)$$

Следствие. $\Gamma(n+1) = n!$

Доказательство.

$$\Gamma(n+1) = n\Gamma(n) = n(n-1)\Gamma(n-1) = \dots = n(n-1)\cdots 1\Gamma(1) = n!$$

Четвертое свойство

$$\Gamma(t) = \frac{\Gamma(t+1)}{t} \underset{t \to +0}{\sim} \frac{1}{t}$$

Пятое свойство

$$\Gamma\left(\frac{1}{2}\right)=\int_{0}^{+\infty}\frac{1}{\sqrt{x}}e^{-x}dx\stackrel{x=y^2}{=}2\int_{0}^{+\infty}e^{-y^2}dy=2\frac{1}{2}\sqrt{\pi}$$
— интеграл Эйлера-Пуассона

Доказательство.

$$1 - x^2 \le e^{-x^2} \le \frac{1}{1 + x^2} \quad \forall x \in \mathbb{R}$$

Оба неравенства следуют из неравенства $e^t \geq 1 + t \; \forall t.$

Зафиксируем $n \in \mathbb{N}$

$$(1-x^2)^n \le e^{-nx^2} \le \left(\frac{1}{1+x^2}\right)^n$$
$$\int_0^1 (1-x^2)^n dx \le \int_0^1 e^{-nx^2} \le \int_0^{+\infty} e^{-nx^2} \le \int_0^{+\infty} \frac{1}{(1+x^2)^n}$$

Казалось бы, переход от интеграла \int_0^1 к $\int_0^{+\infty}$ очень грубый, но это не так.

$$\int_0^{+\infty} e^{-nx^2} \stackrel{y== \sqrt{n}x}{=} \frac{1}{\sqrt{n}} I$$

$$\int_0^1 (1-x^2)^n dx \stackrel{x=\cos y}{=} \int_0^{\frac{\pi}{2}} \sin^{2n+1} y dy$$

$$\int_0^{+\infty} \frac{1}{(1+x^2)^n} \stackrel{x=\operatorname{tg} y}{=} \int_0^{\frac{\pi}{2}} (\cos y)^{2n-2} dy = \int_0^{\frac{\pi}{2}} (\sin t)^{2n-2} dt$$

$$\sqrt{n} \int_0^{\frac{\pi}{2}} \sin^{2n+1} y dy \le I \le \sqrt{n} \int_0^{\frac{\pi}{2}} (\sin t)^{2n-2} dt$$

$$\int_0^{\frac{\pi}{2}} \sin^n x dx = \frac{(n-1)!!}{n!!} \begin{cases} \frac{\pi}{2}, & n \text{ чет.} \\ 1, & n \text{ нечет.} \end{cases}$$

$$\sqrt{n} \frac{(2n)!!}{(2n+1)!!} \le I \le \frac{(2n-3)!!}{(2n-2)!!} \frac{\pi}{2} \sqrt{n}$$

П

По формуле Валлиса $\frac{(2k)!!}{(2k-1)!!}\cdot \frac{1}{\sqrt{k}} o \sqrt{\pi}$:

$$\sqrt{n} \frac{(2n)!!}{(2n+1)!!} = \left(\frac{1}{\sqrt{n}} \frac{(2n)!!}{(2n-1)!!}\right) \frac{n}{2n+1} \to \frac{\sqrt{\pi}}{2}$$
$$\frac{(2n-3)!!}{(2n-2)!!} \frac{\pi}{2} \sqrt{n} = \frac{\frac{\pi}{2} \sqrt{n} \frac{1}{\sqrt{n-1}}}{\frac{(2n-2)!!}{(2n-3)!!} \frac{1}{\sqrt{n-1}}} \to \frac{\sqrt{\pi}}{2}$$

М3137у2019 Лекция 7