Theorem: Determinant of an Inverse Matrix

If A is an $n \times n$ invertible matrix, then

$$det(A^{-1}) = \frac{1}{det(A)}$$

Proof

The matrix A is invertible, so $AA^{-1}=I$, and using Theorem Determinant of a Matrix Product, $|A||A^{-1}|=|I|=1$. By Theorem Determinant of an Invertible Matrix, you know that $|A|\neq 0$, so you can divide each side by |A| to obtain

$$|A^{-1}| = \frac{1}{|A|}$$