НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Основы теории управления

Задание 3. Анализ устойчивости регуляторов по критерию Найквиста

Bыполнил Кондренко К.П., группа 21203

Преподаватель Ломов А.А.

Содержание

1	Введение	2
2	Постановка задачи	2
3	Схемы и результаты моделирования	3
4	Выводы	3
5	Приложения	4

1 Введение

Цель

Исследование и анализ устойчивости регуляторов по критерию Найквиста.

Определение

Годограф Найквиста — это функция

$$v(iw) = W(iw),$$

где W(s) — передаточная функция рассматриваемой системы.

Критерий (Найквиста при использовании ЛЧХ)

Система устойчива тогда и только тогда, когда годограф Найквиста не охватывает точку (-1;0).

2 Постановка задачи

Определение

Запасом устойчивости по амплитуде называется число

$$K_a = 20 \log \frac{1}{a},$$

где a — расстояние от годографа Найквиста до точки (-1;0).

Определение

Запасом устойчивости по фазе называется число $\Delta \varphi$, равняющееся углу $L-1;0;A_{\perp}$, где A — точка, лежащая на единичной окружности (с центром в нуле) и принадлежащая годографу Найквиста.

Замечание

Достаточным считается запас устойчивости по фазе не менее 30-60 градусов, а по амплитуде не менее 6-12 дБ.

Замечание

Требуется определить запас устойчивости по фазе и по амплитуде для систем автоматического управления с объектом управления из задания №1 при одном значении чистого запаздывания с ПИ и ПИД-регуляторами. Параметры ПИ и ПИД-регуляторов получены при выполнении задания №1 оптимальной настройкой по интегральному критерию качества.

3 Схемы и результаты моделирования

Рис. 1: Схема моделирования частотных характеристик с ПИ-регулятором

Рис. 2: Схема моделирования частотных характеристик с ПИД-регулятором

a	$\mathbf{K_a}, \mathrm{dB}$	$\varphi,^{\circ}$	$oldsymbol{\Delta}arphi,^{\circ}$
0.602	4.406	245	65

Таблица 1: Результаты исследования запаса устойчивости с ПИ-регулятором

a	$\mathbf{K_a}, \mathrm{dB}$	$\varphi,^{\circ}$	$\Delta arphi,^{\circ}$
0.587	4.62	253	73

Таблица 2: Результаты исследования запаса устойчивости с ПИД-регулятором

4 Выводы

Проведённый анализ показывает, что ПИ-регулятор для рассматриваемого объекта имеет меньший запас устойчивости (и по амплитуде, и по фазе) по сравнению с ПИД-регулятором для того же объекта.

5 Приложения

Рис. 3: Определение запаса устойчивости по амплитуде для ПИД-регулятора

Рис. 4: Определение запаса устойчивости по фазе для ПИД-регулятора

Рис. 5: Определение запаса устойчивости по амплитуде для ПИ-регулятора

Рис. 6: Определение запаса устойчивости по фазе для ПИ-регулятора