

Lab 1

Implementing a solver for systems of linear equations

Julen Cayero, Cecilio Angulo

Bachelor's Degree in Video Game Design and Development

- 1 Introduction
- 2 Class assignment

- 3 Problems
- 4 Lab Homework

- 1 Introduction
- 2 Class assignment

- 3 Problems
- 4 Lab Homework

It wouldn't be too difficult to implement a naive solver using the Gauss method.

We will need 2 functions:

- Triangulate a given matrix
- 2 Backtracking of a triangular matrix

However in practice there are some problems associated with this way of proceed related with:

- Avoid handling with large numbers
- 2 Proceed efficiently
- Identify critical cases (Indeterminate or incompatible system)

- 1 Introduction
- 2 Class assignment

- 3 Problems
- 4 Lab Homework

Naïve Pseudocode I Class assignment

Simple MatLab code for triangulate a matrix:

```
function [At, bt] = ownTriangulation(A,b)
   % TO DO
    % Aa = concatenation of A and B
    % TO DO
    % L = number of unknowns
    % TO DO
10
    % for loop c = from 1 until # columns -1
11
        % for loop r = from c+1 until #rows
12
                %row_r = pivot*row_r - subpivot* row_p
13
14
   % TO DO
15
    % At = part of Aa
    % bt = part of Aa
```

Test:

$$\mathbf{A} = \begin{pmatrix} 5 & 4 & 2 \\ 2 & 1 & 1 \\ 1 & 2 & -3 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix} \quad \rightarrow \quad \mathbf{A}_{T} = \begin{pmatrix} 5 & 4 & 2 \\ 0 & -3 & 1 \\ 0 & 0 & 45 \end{pmatrix} \quad \mathbf{b}_{T} = \begin{pmatrix} 5 \\ -5 \\ 45 \end{pmatrix}$$

Naïve Pseudocode II Class assignment

Simple MatLab code for backtracking:

```
function [x] = backSubs(A,b)

f
```

Test:

$$\mathbf{A}_{T} = \begin{pmatrix} 5 & 4 & 2 \\ 0 & -0.6 & 0.2 \\ 0 & 0 & -3 \end{pmatrix} \quad \mathbf{b}_{T} = \begin{pmatrix} 5 \\ -1 \\ -3 \end{pmatrix} \quad \rightarrow \quad \mathbf{x} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$$

- 3 Problems
- 4 Lab Homework

- 1 Introduction
- 2 Class assignment

Handling large numbers Problems

Computer does not like large numbers ¹. Try:

```
1 a = 1E99;
2 b = 1E99 + 1;
3 c = a-b
```

- Which value do you expect for c?
- What is the value of c that MatLab throws?

When triangulating, the operation

$$r_j = r_j Aa(p, p) - r_p Aa(j, p)$$

Tends to increase the value of the entries in A.

¹In case you're interested, there are special ways of dealing with those numbers, however it will be complex and computational expensive

Handling large numbers II Problems

Things we can do:

1 Since we can multiply and divide every row by a non-zero number

$$r_j = r_j - r_p Aa(j, p)/Aa(p, p)$$

However we must ensure that A(p,p) is far enough from 0.

2 Since we can choose any row for triangulate. Select the row with the biggest (absolut value) possible pivot.

$$r_j = r_j - r_p Aa(j, p)/Aa(p, c)$$

or even better, calculate $s_j = \max_i |A(j,i)|$ once for every row and choose the pivots such that:

$$p = \underset{j}{\operatorname{argmax}} \frac{|Aa(j,c)|}{s_j}$$

That is call scaled partial pivoting

Exchange rows means wasting time

We can do that without actually make a real exchange of rows. For this purpose:

- Maintain a list of the visited rows (in order)
 - initialise as an empty vector vr = []
 - Whenever you visit a row vr = [vr p]
- Maintain a list of the unvisited rows
- initialise as an empty vector uvr = [1:L]
- Whenever you visit a row extract the visited row from the vector. Use uvr = setdiff(uvr,p)

Pivoting Problems

Note: that, after make the Gaussian elimination Aa(vr,:) is a triangular matrix with 0's under the diagonal. It means that the backsubstitution algorithm must be adapted.

But is easy. Whenever you access an element of a row you must do it by using the pointer.

E.g. the last component of x was calculated before as

$$x_L = b(L)/x(L, L)$$

Now that must be substituted by;

$$x_L = b(rv(L))/x(rv(L), L)$$

Identify critical cases Problems

Indeterminate or Incompatible systems of equations?

By maintaining the strategy of selecting the row with the biggest pivot, we can check when the pivot \approx 0, we are going to be in one of those critical cases.

Set a threshold value (something small $\approx 1E-8$) and compare the pivot value. If exceeded, return x = 'NaN' and a flag to the non-solved value.

- Try to use matrix multiplications
- Try to avoid loops
- Do not waste time putting 0's that later you are not going to use

- 3 Problems
- 4 Lab Homework

- Introduction
- 2 Class assignment

Pseudocode Lab Homework

Modified MatLab code for triangulate a matrix:

```
function [At ,bt, vr, flag] = ownTriangulation_mod(A,b)
    % flag = -1 -> indeterminate or incompatible
    % flag = 0 -> solvable
6
    % TODO: initialise Th
    % TODO: Aa = concatenation of A and b
    % TODO: L = number of unknowns
10
11
12
    % TODO: Tnitialize vr and uvr vectors
13
14
    % TODO: create the si vector
15
16
    % TO DO: for loop c = from 1 until # columns -1
17
18
        % TO DO: implement a function that Given Aa, si and uvr returns
19
                % the abs value of the pivot and the row of the pivot
20
21
        % TO DO: Check if the returned value is under the threshold
```

continues on the next slide

Modified MatLab code for (virtually) triangulate a matrix:

```
21
        % TO DO: Check if the returned value is under the threshold
22
23
        % TO DO: Update the lists to remember the row pivot as visited
24
25
        % TO DO: for loop rs in uvr, modify the uvr
26
27
        % TO DO: Update the lists to remember the row pivot as visited
28
29
        % TO DO: for loop rs in uvr, modify the uvr
30
31
    % TO DO: check if the last unvisited row has a unvalid pivot nad introduce
32
    % the last row in the lists as visited
33
34
    % TO DO: At as part of Aa
    % TO DO: bt as part of Aa
```

Pseudocode Lab Homework

Modified MatLab code for backward substitution:

```
function [x] = backSubs_mod(At,bt,vr)
function [x] = backSubs_mod
```

Principal function that calls the other two:

```
1 function [x, flag] = ownGauss_mod(A,b)
2 % flag = -1 -> indeterminate or incompatible
3 % flag = 0 -> solvable
4
5 [At ,bt, vr, flag] = ownTriangulation_mod(A,b)
6
7 %TO DO: check the flag and return x = NaN if not solvable
8
9 [x] = backSubs_mod(At,bt,vr)
```


Tests
Lab Homework

We give you an additional tests.m file with several calls to your main function. Use it to verify that your functions is properly implemented.