National University of Computer and Emerging Sciences Lahore Campus

Database Systems (CS2005) Sessional-II Exam

Date: April 5th 2024 **Total Time (Hrs.):** 1 **Course Instructor(s) Total Marks:** 25 5 **Total Questions:** Roll No Section Student Signature Do not write below this line. Attempt all the questions. CLO # 3 **Q. No 1:** Consider a relation R (A, B, C, D, E, F), with the set of FDs $F = \{AB \rightarrow C, CD \rightarrow E, EF \rightarrow A, BC \rightarrow D, CD \rightarrow E, EF \rightarrow B, CD \rightarrow E, EF \rightarrow E$ DE→F}. Find all possible keys (i.e. candidate keys) of this relation? Prove it. [5] Ans: Keys are Ans: AB, BC, BDE, BEF.

CLO # 3

Q. No 2: Consider the relation schema R (A, B, C, D, E), with FDs F= $\{A \rightarrow BC, BCD \rightarrow E, BC \rightarrow D, A \rightarrow D\}$. Find a minimal cover of F (i.e. F_c). [5]

Ans: $F_c = \{A \rightarrow BC, BC \rightarrow E, BC \rightarrow D, A \rightarrow D\}$ i.e. $F_c = \{A \rightarrow BC, BC \rightarrow DE\}$.

CLO # 3

Q. No 3: Consider two sets of FDs, F and G, F = $\{A \rightarrow BC, B \rightarrow D, C \rightarrow E, D \rightarrow E\}$ and G = $\{A \rightarrow BC, B \rightarrow D, C \rightarrow E, BD \rightarrow E, A \rightarrow D\}$. Are F and G equivalent? Prove it. [5]

Ans: Not equivalent. F covers G, but G does not cover F, as FD: D→E is not determined by G. CLO #3

Q. No 4: Consider the relation R (A, B. C, D, E), with FDs $\{AC \rightarrow B, D \rightarrow E\}$. State which of the following decompositions of R relation are lossless decomposition. Prove/disprove it. [5]

a. R1(A, C, D), R2(A, B, C), and R3(D, E).

b. R1(A, B, D), R2 (A, B, C), and R3(D, E).

Ans: Key of R is {ACD}.

- a. Lossless decomposition. R1(A, C, D), R2(A, B, C), R3(D, E); R1 \cap R2 \rightarrow R2 & R1 \cap R3 \rightarrow R3.
- **b. Lossy decomposition.** R1(\underline{A} , \underline{B} , \underline{D}), R2(\underline{A} , \underline{B} , \underline{C}), R3(\underline{D} , E); Only one condition is true i.e. R1 \cap R3 \rightarrow R3. *CLO # 3*

Q. No 5: Consider the relation schema R (A, B, C, D, E), with FDs F= {AB \rightarrow C, BC \rightarrow D, D \rightarrow E, AE \rightarrow B}. Keys of this relation are AB, AD, and AE. Identify the best normal form that R satisfies (1NF, 2NF, 3NF, or BCNF). Justify your answer. If R is not in BCNF, decompose it into a set of BCNF relations and show your steps. Indicate which dependencies if any are not preserved by the BCNF decomposition. [5]

Ans: HNF=3NF as FD2/FD3 violate BCNF. BCNF Schema is R1(A B C), R2(B C D), R3(D E). FD4: AE \rightarrow B is lost.