VOORTGANG ONDERZOEK PEPPER

Een onderzoek naar de mogelijkheden van 3D-camera's door fysiotherapeuten bij het beoordelen van schouderbewegingen

Inhoud

- Waar zijn we mee bezig
 - Probleemstelling
 - Doel
- Clusteren van data
- The Pepper Train

Probleemstelling

- Geen objectieve meting kunnen doen waarbij een 'Painful arc' optreed.
- Kost veel tijd om het juiste probleem te herkennen waar de patiënt last van heeft.

Oorspronkelijke doel

Het identificeren van painful arcs met behulp van de 3D camera te vinden in de robot Pepper.

Voor wie: Fysiotherapeut Dr. E. Vermeulen LUMC

Wat: Schouderbewegingen

1.1 Aangepast:

Het identificeren van schouder klachten met behulp van een KINECT 3D camera.

Voor wie: Fysiotherapeut Dr. E. Vermeulen LUMC

Wat: Schouderbewegingen

Microsoft KINECT

- 3D diepte camera
- Skelet algoritme
- meer...

Reinier de Graaf gasthuis

- gediagnosticeerde patiënten.
- Ondersteuning voor MEC

Clusteren van de data.

```
from sklearn.cluster import KMeans
model = KMeans(n_clusters = 6)
model.fit(df_max_arcs)
labels = model.predict(df_max_arcs)
print(len(labels))
```

61

```
import matplotlib.pyplot as plt

plt.figure(figsize=(15, 15))

xs = df_max_arcs['arc_right']
ys = df_max_arcs['arc_left']
plt.xlabel("max_hoek_Right")

plt.ylabel("max_hoek_Left")
centroids = model.cluster_centers_
centroids_x = centroids[:,0]
centroids_y = centroids[:,1]

plt.scatter(centroids_x, centroids_y, marker= 'D', s=30, color='blue')

plt.scatter(xs, ys , alpha=1, c=labels, cmap=plt.cm.RdYlGn)
plt.show()
```



```
cluster1 [1, 3, 4, 8, 22, 27, 30, 33, 44, 45, 48, 54, 58]
cluster2 [5, 6, 7, 11, 15, 17, 18, 28, 29, 31, 32, 35, 40, 42, 46, 47, 52, 57, 60, 61]
cluster3 [2]
cluster4 [9, 10, 13, 16, 19, 20, 21, 34, 36, 37, 43, 50, 51, 56, 59]
cluster5 [12, 14, 23, 24, 38, 41, 49, 53, 55]
cluster6 [25, 26, 39]
```


5 stappen:

- Combineren opnames personen in één file
- Cleaning data
- Knippen van frames
- Roteren van data
- Berekenen van hoeken

- Getest op data van 107 personen:

- Testen op data van 107 personen:
 - Errors in de stappen
 - Knippen
 - Roteren
 - Hoeken bereken
- Waarom?
 - Knip-algoritme niet goed genoeg?
 - Oude en nieuwe data verschillen, nieuwe data bevat bijv. meer frames per seconde


```
EXCEPTION while cutting: Person 107 exercise 3
                                                  4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20
Cutting frames finished, person cut and sided: [ 1
 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
 39 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 58 59 60 61 62 87 88 89 90 91 92 95 96 97 98 99 100 101
102 103 104 106 107]
EXCEPTION while rotating: Person 91 exercise 2
EXCEPTION while rotating: Person 92 exercise 1
EXCEPTION while rotating: Person 95 exercise 3
EXCEPTION while rotating: Person 96 exercise 1
EXCEPTION while rotating: Person 99 exercise 1
EXCEPTION while rotating: Person 101 exercise 1
Rotating data finished, person rotated: [ 1
                                         3
                                           4 5 6
                                                     7 8 9 10 11 12 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
 39 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 58 59 60 61 62 87 88 89 90 91 95 96 97 98 99 100 101 102
103 104 106 107]
EXCEPTION while calculating angles: Person 89 exercise 1
EXCEPTION while calculating angles: Person 95 exercise 2
```

Personen aanwezig:

```
    1
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    14
    15
    16
    17
    18
    19
    20

    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38

    39
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57

    58
    59
    60
    61
    62
    87
    88
    90
    91
    95
    96
    97
    98
    99
    100
    101
    102
    103

    104
    106
    107
    107
```

Aantal personen:

75

The Pepper Train Future

- Uitzoeken wat veroorzakers errors zijn
 - Die oplossen
- Herschrijven knip algoritme
- Efficiënter uitvoeren treintje met spark

The Pepper Train Future

Vragen?

Tot volgend jaar

Team Pepper