AMENDMENTS

In the Claims

Please amend the claims as indicated below. A complete set of all claims previously submitted, including the status for each claim, immediately follows below.

- 1. Cancelled
- 2. Cancelled
- 3. Cancelled
- 4. Cancelled
- 5. Cancelled
- 6. Cancelled
- 7. Cancelled
- 8. Cancelled
- 9. Cancelled
- 10. Cancelled
- 11. Cancelled
- 12. Cancelled
- 13. Cancelled
- 14. Cancelled
- 15. Cancelled
- 16. Cancelled
- 17. Cancelled
- 18. Cancelled
- 19. Cancelled
- 20. Cancelled
- 21. Cancelled

- 22. Cancelled
- 23. Cancelled
- 24. Cancelled
- 25. Cancelled
- 26. Cancelled
- 27. Cancelled
- 28. Cancelled
- 29. Cancelled
- 30. Cancelled
- 31. Cancelled
- 32. Cancelled
- 33. Cancelled
- 34. Cancelled.
- 35. Cancelled.
- 36. Cancelled.
- 37. Cancelled.
- 38. Withdrawn.
- 39. Cancelled.
- 40. Cancelled.
- 41. Withdrawn.
- 42. Cancelled.
- 43. Cancelled.
- 44. (New) A method of preventing diabetes in an animal, comprising administering to said animal a therapeutically effective amount of a fructose-1,6-bisphosphatase inhibitor wherein said inhibitor is a compound of formula 1:

$$\begin{array}{c|c}
0 & A & A \\
R^1O - P - X - N & N & A \\
R^1O & V & N & E
\end{array}$$

wherein

A is selected from the group consisting of $-NR^8_2$, $-NHSO_2$ R^3 , $-OR^5$, $-SR^5$, halo, lower alkyl, $-CON(R^3)_2$, guanidino, amidino, -H, and perhaloalkyl;

E is selected from the group consisting of -H, halo, lower alkylthio, lower perhaloalkyl, lower alkyl, lower alkynyl, lower alkoxy, -CN, and $-NR^{7}_{2}$;

X is selected from the group consisting of -alk-NR-, alkylene, alkenylene, alkynylene, arylene, heteroarylene, -alk-NR-alk-, -alk-O-alk-, -alk-S-alk-, -alk-S-, alicyclicene, heteroalicyclicene, 1,1-dihaloalkylene, -C(O)-alk-, -NR-C(O)-NR'-, -alk-NR-C(O)-, -alk-C(O)-NR-, -Ar-alk-, and -alk-Ar-, all optionally substituted, wherein each R and R' is independently selected from -H and lower alkyl, and wherein each "alk" and "Ar" is an independently selected alkylene or arylene, respectively;

Y is selected from the group consisting of –H, alkyl, alkenyl, alkynyl, aryl, alicyclic, heteroalicyclic, aralkyl, aryloxyalkyl, alkoxyalkyl, $-C(O)R^3$, $-S(O)_2R^3$, $-C(O)-OR^3$, – $CONHR^3$, $-NR^2_2$, and $-OR^3$, all except H are optionally substituted;

 R^1 is independently selected from the group consisting of –H, alkyl, aryl, heteroalicyclic where the cyclic moiety contains a carbonate or thiocarbonate, $-C(R^2)_2$ -aryl, -alk-aryl, – $C(R^2)_2$ OC(O)NR 2 , -NR 2 -C(O)-R 3 , -C(R 2)₂ -OC(O)R 3 , -C(R 2)₂ -O-C(O)OR 3 , -C(R 2)₂ OC(O)SR 3 , -alk-S-C(O)R 3 , -alk-S-S-alkylhydroxy, and -alk-S-S-alkylhydroxy, or together R 1 and R 1 are -alk-S-S-alk- to form a cyclic group, wherein each "alk" is an independently selected alkylene, or together R 1 and R 1 are

$$\underset{\mathsf{W}}{\overset{\mathsf{V}}{\longrightarrow}} \mathsf{z}$$

wherein

V and W are independently selected from the group consisting of hydrogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkenyl, 1-alkynyl, and $-R^9$; or

together V and Z are connected via a chain of 3-5 atoms, only one of which can be a heteroatom, to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus; or

together V and W are connected via a chain of 3 carbon atoms to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, alkylthiocarboxy, hydroxymethyl, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus;

Z is selected from the group consisting of $-CH_2$ OH, $-CH_2$ OCOR³, $-CH_2$ OC(O)SR³, $-CH_2$ OCO₂ R³, $-SR^3$, $-S(O)R^3$, $-CH_2$ N₃, $-CH_2$ NR²₂, $-CH_2$ Ar, -CH(Ar)OH, $-CH(CH=CR^2$ R²)OH, $-CH(C \equiv CR^2)OH$, and $-R^2$;

with the provisos that:

- a) V, Z, W are not all –H; and
- b) when Z is $-R^2$, then at least one of V and W is not -H or $-R^9$;

R² is selected from the group consisting of R³ and -H;

R³ is selected from the group consisting of alkyl, aryl, alicyclic, heteroalicyclic, and aralkyl;

R⁴ is independently selected from the group consisting of –H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, and lower aryl;

R⁵ is selected from the group consisting of lower alkyl, lower aryl, lower aralkyl, lower alicyclic, and lower heteroalicyclic;

R⁶ is independently selected from the group consisting of -H, and lower alkyl;