SRI SAIRAM COLLEGE OF ENGINEERING ANEKAL, BENGALURU-562106

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

ARTIFICIAL INTELLIGENE & MACHINE LEARNING LABORATORY MANUAL 18CSL76

FOR B.E, VII Semester AS PER VTU NEW SYLLABUS (CBCS)

Prepared by

Prof. C.Sharon Roji Priya Mr. V.A.Guruprasath

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING LABORATORY (Effective from the academic year 2018 - 2019) SEMESTER - VII				
Course Code	18CSL76	CIE Marks	40	
Number of Contact Hours/Week	0:0:2	SEE Marks	60	
Total Number of Lab Contact Hours	36	Exam Hours	03	
	Credits - 2	•		
Course Learning Objectives: This course (18CSL76) will en:	able students to:		
 Implement and evaluate AI and ML 	algorithms in and	Python programming l	anguage.	
Descriptions (if any):				

Installation procedure of the required software must be demonstrated, carried out in groups and documented in the journal.

Programs List:

- Implement A* Search algorithm.
- Implement AO* Search algorithm.
- For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.
- Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge toclassify a new sample.
- Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.
- Write a program to implement the naïve Bayesian classifier for a sample training data set stored. as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.
- Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
- Implement the non-parametric Locally Weighted Regressionalgorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

Laboratory Outcomes: The student should be able to:

- Implement and demonstrate AI and ML algorithms.
- Evaluate different algorithms.

Conduct of Practical Examination:

- Experiment distribution
 - For laboratories having only one part: Students are allowed to pick one experiment from the lot with equal opportunity.
 - For laboratories having PART A and PART B: Students are allowed to pick one experiment from PART A and one experiment from PART B, with equal opportunity.
- Change of experiment is allowed only once and marks allotted for procedure to be made zero of the changed part only.
- Marks Distribution (Courseed to change in accoradance with university regulations)
 - q) For laboratories having only one part Procedure + Execution + Viva-Voce: 15+70+15 = 100 Marks
 - For laboratories having PART A and PART B
 - Part A Procedure + Execution + Viva = 6 + 28 + 6 = 40 Marks
 - Part B Procedure + Execution + Viva = 9 + 42 + 9 = 60 Marks

Ex. No 1 Implement A* searching technique using Python Programming.

Aim: To implement and test A* searching technique using Python Programming.

```
import csv
#Function to read the graph
def readgraph(gfile):
       graph = csv.reader(open(gfile, "rt"))
       garray = list(graph)
       return garray
#Function to read the heuristic values
def readheuristic(hfile):
  heu = csv.reader(open(hfile,"rt"))
  H = list(heu)
  return H
def findchildren(Node):
  global g
  child = []
  for i in range(len(g)-1):
     if Node == g[i][0]:
          child.append(g[i][1])
          #child.append(g[i+1][1])
  return child
def calculate\_prev\_fn(X,P):
  P.append(X)
  prevfn = 0
  if P == []:
     return(0)
  else:
     for i in range (len(P)-1):
       for j in range(len(g)-1):
          if P[i] == g[i][0] and P[i+1] == g[i][1]:
             prevfn = prevfn + int(g[j][2])
  return(prevfn)
def cal_old_val(X,Y):
     L = []
     for c in range(len(X)):
          L.append(X[c])
     L.append(Y)
     oldval = 0
     if L == []:
          return (0)
```



```
else:
          for i in range(len(L)-1):
               for j in range(len(g)-1):
                    if L[i] == g[j][0] and L[i+1] == g[j][1]:
                         oldval = oldval + int(g[i][2])
     return(oldval)
def list_of_nodes(g):
  nodes = []
  i=0
  for i in range(len(g)):
     if g[i][0] not in nodes:
       nodes.append(g[i][0])
       j=j+1
def cal_total(k,val):
     for i in range(len(h)):
          if h[i][0] == k:
               total = val + int(h[i][1])
               return(total)
visited = []
path = []
filegraph = "OneDrive\Desktop\graph.csv"
g = readgraph(filegraph)
#print(g)
hfile = "OneDrive\Desktop\heuristic.csv"
h = readheuristic(hfile)
print(h)
start = input("Enter the starting Node")
goal = input("Enter the Goal Node")
path.append(start)
nodes = list\_of\_nodes(g)
for i in path:
     if i == goal:
          print(path)
          break
     else:
          current = findchildren(i)
          hn_all_children = []
          for k in current:
               if k not in path:
                    val = cal_old_val(path,k)
                    total = cal_total(k,val)
                    hn_all_children.append([k,total])
          val1 = []
          mini_node=" "
          for a in range(len(hn_all_children)):
               val1.append(hn_all_children[a][1])
```



```
minimum = min(val1)
for b in range(len(hn_all_children)):
    if hn_all_children[b][1] == minimum:
        mini_node = hn_all_children[b][0]
        #print(mini_node)
        break
if mini_node not in path:
    path.append(mini_node)
print(path)
```


Cost value from node to node(g(n)):

Α	В	3
Α	С	4
В	D	2
С	Α	4
C C	D	1
С	E	3
С	F	2
D	В	2
D	С	1
D	E	1
Е	С	3
Е	D	1
Е	G	4
F	С	2
F	G	1
G	F	1
G	Е	4

Heuristic value from Node to Goal(h(n)):

Α	10
В	8
С	9
D	2
E	25
F	3
G	0

Ex. No 2 Implement AO* searching technique using Python Programming.

Aim: To implement and test AO* searching technique using Python Programming.

```
class Graph:
  def __init__(self, graph, heuristicNodeList, startNode): #instantiate graph object with graph topology, heuristic values, start node
    self.graph = graph
    self.H=heuristicNodeList
    self.start=startNode
    self.parent={}
    self.status={}
    self.solutionGraph={}
  def applyAOStar(self):
                            # starts a recursive AO* algorithm
    self.aoStar(self.start, False)
  def getNeighbors(self, v): # gets the Neighbors of a given node
    return self.graph.get(v,")
  def getStatus(self,v):
                          # return the status of a given node
    return self.status.get(v,0)
  def setStatus(self,v, val): # set the status of a given node
    self.status[v]=val
  def getHeuristicNodeValue(self, n):
    return self.H.get(n,0) # always return the heuristic value of a given node
  def setHeuristicNodeValue(self, n, value):
    self.H[n]=value
                         # set the revised heuristic value of a given node
  def printSolution(self):
    print("FOR GRAPH SOLUTION, TRAVERSE THE GRAPH FROM THE START NODE:",self.start)
    print("-----")
    print(self.solutionGraph)
    print("-----")
  def computeMinimumCostChildNodes(self, v): # Computes the Minimum Cost of child nodes of a given node v
    minimumCost=0
    costToChildNodeListDict={}
    costToChildNodeListDict[minimumCost]=[]
    flag=True
    for nodeInfoTupleList in self.getNeighbors(v): # iterate over all the set of child node/s
      cost=0
       nodeList=[]
      for c, weight in nodeInfoTupleList:
         cost=cost+self.getHeuristicNodeValue(c)+weight
         nodeList.append(c)
       if flag==True:
                                # initialize Minimum Cost with the cost of first set of child node/s
         minimumCost=cost
         costToChildNodeListDict[minimumCost]=nodeList # set the Minimum Cost child node/s
         flag=False
       else:
                            # checking the Minimum Cost nodes with the current Minimum Cost
         if minimumCost>cost:
           minimumCost=cost
           costToChildNodeListDict[minimumCost]=nodeList # set the Minimum Cost child node/s
    return minimumCost, costToChildNodeListDict[minimumCost] # return Minimum Cost and Minimum Cost child node/s
```



```
def aoStar(self, v, backTracking): # AO* algorithm for a start node and backTracking status flag
             print("HEURISTIC VALUES :", self.H)
             print("SOLUTION GRAPH :", self.solutionGraph)
             print("PROCESSING NODE :", v)
             print("-----")
             if self.getStatus(v) >= 0:
                                        # if status node v \ge 0, compute Minimum Cost nodes of v
                minimumCost, childNodeList = self.computeMinimumCostChildNodes(v)
                self.setHeuristicNodeValue(v, minimumCost)
                self.setStatus(v,len(childNodeList))
                                      # check the Minimum Cost nodes of v are solved
                solved=True
                for childNode in childNodeList:
                  self.parent[childNode]=v
                  if self.getStatus(childNode)!=-1:
                    solved=solved & False
                if solved==True:
                                       # if the Minimum Cost nodes of v are solved, set the current node status as solved(-1)
                  self.setStatus(v,-1)
                  self.solutionGraph[v]=childNodeList # update the solution graph with the solved nodes which may be a part of solution
                if v!=self.start:
                                    # check the current node is the start node for backtracking the current node value
                  self.aoStar(self.parent[v], True) # backtracking the current node value with backtracking status set to true
                if backTracking==False: # check the current call is not for backtracking
                  for childNode in childNodeList: # for each Minimum Cost child node
                    self.setStatus(childNode,0) # set the status of child node to 0(needs exploration)
                    self.aoStar(childNode, False) # Minimum Cost child node is further explored with backtracking status as false
         h1 = {'A': 1, 'B': 6, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 5, 'H': 7, 'I': 7, 'J': 1, 'T': 3}
         graph1 = {
           'A': [[('B', 1), ('C', 1)], [('D', 1)]],
           'B': [[('G', 1)], [('H', 1)]],
           'C': [[('J', 1)]],
           'D': [[('E', 1), ('F', 1)]],
           'G': [[(T, 1)]]
         G1= Graph(graph1, h1, 'A')
         G1.applyAOStar()
         G1.printSolution()
         h2 = {'A': 1, 'B': 6, 'C': 12, 'D': 10, 'E': 4, 'F': 4, 'G': 5, 'H': 7} # Heuristic values of Nodes
         graph2 = {
                                         # Graph of Nodes and Edges
           'A': [[('B', 1), ('C', 1)], [('D', 1)]], # Neighbors of Node 'A', B, C & D with repective weights
           'B': [[('G', 1)], [('H', 1)]],
                                          # Neighbors are included in a list of lists
           'D': [[('E', 1), ('F', 1)]]
                                         # Each sublist indicate a "OR" node or "AND" nodes
         G2 = Graph(graph2, h2, 'A')
                                                # Instantiate Graph object with graph, heuristic values and start Node
                                             # Run the AO* algorithm
         G2.applyAOStar()
         G2.printSolution()
                                            # Print the solution graph as output of the AO* algorithm search
output:
HEURISTIC VALUES : {'A': 1, 'B': 6, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 5, 'H': 7, 'I': 7, 'J': 1, 'T': 3}
SOLUTION GRAPH
                     : {}
PROCESSING NODE
                     : A
HEURISTIC VALUES : {'A': 10, 'B': 6, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 5, 'H': 7, 'I': 7, 'J': 1, 'T': 3
SOLUTION GRAPH
PROCESSING NODE
                    : B
HEURISTIC VALUES : {'A': 10, 'B': 6, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 5, 'H': 7, 'I': 7, 'J': 1, 'T': 3
SOLUTION GRAPH
PROCESSING NODE
                    : A
HEURISTIC VALUES : {'A': 10, 'B': 6, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 5, 'H': 7, 'I': 7, 'J': 1, 'T': 3
```



```
SOLUTION GRAPH
PROCESSING NODE
                : G
HEURISTIC VALUES : {'A': 10, 'B': 6, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 8, 'H': 7, 'I': 7, 'J': 1, 'T': 3
SOLUTION GRAPH
                 : {}
PROCESSING NODE : B
HEURISTIC VALUES : {'A': 10, 'B': 8, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 8, 'H': 7, 'I': 7, 'J': 1, 'T': 3
SOLUTION GRAPH
                 : {}
PROCESSING NODE : A
HEURISTIC VALUES : {'A': 12, 'B': 8, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 8, 'H': 7, 'I': 7, 'J': 1, 'T': 3
SOLUTION GRAPH
                 : {}
                : I
PROCESSING NODE
HEURISTIC VALUES : {'A': 12, 'B': 8, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 8, 'H': 7, 'I': 0, 'J': 1, 'T': 3
SOLUTION GRAPH
                 : {'I': []}
                : G
PROCESSING NODE
HEURISTIC VALUES : {'A': 12, 'B': 8, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 1, 'H': 7, 'I': 0, 'J': 1, 'T': 3
SOLUTION GRAPH
                 : {'I': [], 'G': ['I']}
PROCESSING NODE
                : B
HEURISTIC VALUES : {'A': 12, 'B': 2, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 1, 'H': 7, 'I': 0, 'J': 1, 'T': 3
SOLUTION GRAPH
                 : {'I': [], 'G': ['I'], 'B': ['G']}
PROCESSING NODE
                : A
HEURISTIC VALUES : {'A': 6, 'B': 2, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 1, 'H': 7, 'I': 0, 'J': 1, 'T': 3}
                  : {'I': [], 'G': ['I'], 'B': ['G']}
SOLUTION GRAPH
PROCESSING NODE
                : C
HEURISTIC VALUES : {'A': 6, 'B': 2, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 1, 'H': 7, 'I': 0, 'J': 1, 'T': 3}
                 : {'I': [], 'G': ['I'], 'B': ['G']}
SOLUTION GRAPH
PROCESSING NODE
HEURISTIC VALUES : {'A': 6, 'B': 2, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 1, 'H': 7, 'I': 0, 'J': 1, 'T': 3}
                 : {'I': [], 'G': ['I'], 'B': ['G']}
SOLUTION GRAPH
PROCESSING NODE
                : J
HEURISTIC VALUES : {'A': 6, 'B': 2, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 1, 'H': 7, 'I': 0, 'J': 0, 'T': 3}
                 : {'I': [], 'G': ['I'], 'B': ['G'], 'J': []}
SOLUTION GRAPH
PROCESSING NODE
HEURISTIC VALUES : {'A': 6, 'B': 2, 'C': 1, 'D': 12, 'E': 2, 'F': 1, 'G': 1, 'H': 7, 'I': 0, 'J': 0, 'T': 3}
                 : {'I': [], 'G': ['I'], 'B': ['G'], 'J': [], 'C': ['J']}
SOLUTION GRAPH
PROCESSING NODE
                : A
FOR GRAPH SOLUTION, TRAVERSE THE GRAPH FROM THE START NODE: A
{'I': [], 'G': ['I'], 'B': ['G'], 'J': [], 'C': ['J'], 'A': ['B', 'C']}
HEURISTIC VALUES : {'A': 1, 'B': 6, 'C': 12, 'D': 10, 'E': 4, 'F': 4, 'G': 5, 'H': 7}
SOLUTION GRAPH
                 : {}
PROCESSING NODE
                : A
HEURISTIC VALUES : {'A': 11, 'B': 6, 'C': 12, 'D': 10, 'E': 4, 'F': 4, 'G': 5, 'H': 7}
SOLUTION GRAPH
                 : {}
                : D
PROCESSING NODE
HEURISTIC VALUES : {'A': 11, 'B': 6, 'C': 12, 'D': 10, 'E': 4, 'F': 4, 'G': 5, 'H': 7}
SOLUTION GRAPH
                 : {}
PROCESSING NODE
                : A
HEURISTIC VALUES : {'A': 11, 'B': 6, 'C': 12, 'D': 10, 'E': 4, 'F': 4, 'G': 5, 'H': 7}
SOLUTION GRAPH
                 : {}
PROCESSING NODE
                : E
HEURISTIC VALUES : {'A': 11, 'B': 6, 'C': 12, 'D': 10, 'E': 0, 'F': 4, 'G': 5, 'H': 7}
                 : {'E': []}
SOLUTION GRAPH
PROCESSING NODE
                 : D
HEURISTIC VALUES : {'A': 11, 'B': 6, 'C': 12, 'D': 6, 'E': 0, 'F': 4, 'G': 5, 'H': 7}
                 : {'E': []}
SOLUTION GRAPH
PROCESSING NODE
```



```
HEURISTIC VALUES : {'A': 7, 'B': 6, 'C': 12, 'D': 6, 'E': 0, 'F': 4, 'G': 5, 'H': 7}
SOLUTION GRAPH : {'E': []}
PROCESSING NODE : F
HEURISTIC VALUES : {'A': 7, 'B': 6, 'C': 12, 'D': 6, 'E': 0, 'F': 0, 'G': 5, 'H': 7}
                  : {'E': [], 'F': []}
SOLUTION GRAPH
PROCESSING NODE : D
HEURISTIC VALUES : {'A': 7, 'B': 6, 'C': 12, 'D': 2, 'E': 0, 'F': 0, 'G': 5, 'H': 7}
SOLUTION GRAPH : {'E': [], 'F': [], 'D': ['E', 'F']}
PROCESSING NODE : A
FOR GRAPH SOLUTION, TRAVERSE THE GRAPH FROM THE START NODE: A
{'E': [], 'F': [], 'D': ['E', 'F'], 'A': ['D']}
```


Ex. No 3 For a given set of training data examples stored in a .CSV file, implement and test the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

Aim: To implement and test the Candidate-Elimination algorithm which outputs a description of the set of all hypotheses consistent with the training examples.

```
import numpy as np
import pandas as pd
data = pd.DataFrame(data=pd.read_csv('training_examples.csv'))
print(data)
concepts = np.array(data.iloc[:,0:-1])
target = np.array(data.iloc[:,-1])
print(target)
print(concepts)
def learn(concepts, target):
     learn() function implements the learning method of the Candidate elimination algorithm.
  Arguments:
  concepts - a data frame with all the features
  target - a data frame with corresponding output values
  # Initialise S0 with the first instance from concepts
  #.copy() makes sure a new list is created instead of just pointing to the same memory location
  specific_h = concepts[0].copy()
  print("initialization of specific_h and general_h")
  print(specific_h)
  general_h = [["?" for i in range(len(specific_h))] for i in range(len(specific_h))]
  print(general_h)
  # The learning iterations
  for i, h in enumerate(concepts):
     # Checking if the hypothesis has a positive target
     if target[i] == "Yes":
       for x in range(len(specific_h)):
          # Change values in S & G only if values change
          if h[x] != specific_h[x]:
            specific_h[x] = '?'
            general_h[x][x] = '?'
     # Checking if the hypothesis has a positive target
     if target[i] == "No":
       for x in range(len(specific_h)):
          # For negative hyposthesis change values only in G
          if h[x] != specific_h[x]:
            general_h[x][x] = specific_h[x]
          else:
            general_h[x][x] = '?'
```



```
print(" steps of Candidate Elimination Algorithm",i+1)
print(specific_h)
print(general_h)

# find indices where we have empty rows, meaning those that are unchanged
indices = [i for i, val in enumerate(general_h) if val == ['?', '?', '?', '?', '?', '?']]
for i in indices:
    # remove those rows from general_h
    general_h.remove(['?', '?', '?', '?', '?', '?'])

# Return final values
return specific_h, general_h
s_final, g_final = learn(concepts, target)
print("Final Specific_h:", s_final, sep="\n")
print("Final General_h:", g_final, sep="\n")
```

output:

sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	change	yes

Ex. No 4 Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

Aim: To implement and test ID3 algorithm that uses a set of data for building a decision tree.

```
import pandas as pd
import math
import numpy as np
data = pd.read csv("OneDrive\Desktop\lab3.csv")
features = [feat for feat in data]
features.remove("answer")
class Node:
  def __init__(self):
     self.children = []
     self.value = ""
     self.isLeaf = False
     self.pred = ""
def entropy(examples):
  pos = 0.0
  neg = 0.0
  for , row in examples.iterrows():
     if row["answer"] == "yes":
       pos += 1
     else:
       neg += 1
  if pos == 0.0 or neg == 0.0:
     return 0.0
  else:
     p = pos / (pos + neg)
     n = neg / (pos + neg)
     return -(p * math.log(p, 2) + n * math.log(n, 2))
def info_gain(examples, attr):
  uniq = np.unique(examples[attr])
  #print ("\n",uniq)
  gain = entropy(examples)
  #print ("\n",gain)
  for u in uniq:
     subdata = examples[examples[attr] == u]
     #print ("\n",subdata)
     sub e = entropy(subdata)
     gain -= (float(len(subdata)) / float(len(examples))) * sub_e
     #print ("\n",gain)
  return gain
def ID3(examples, attrs):
```



```
root = Node()
  max_gain = 0
  max feat = ""
  for feature in attrs:
    #print ("\n",examples)
    gain = info_gain(examples, feature)
    if gain > max_gain:
       max_gain = gain
       max feat = feature
  root.value = max feat
  #print ("\nMax feature attr",max_feat)
  uniq = np.unique(examples[max_feat])
  #print ("\n",uniq)
  for u in uniq:
    #print ("\n",u)
    subdata = examples[examples[max_feat] == u]
    #print ("\n",subdata)
    if entropy(subdata) == 0.0:
       newNode = Node()
       newNode.isLeaf = True
       newNode.value = u
       newNode.pred = np.unique(subdata["answer"])
       root.children.append(newNode)
    else:
       dummyNode = Node()
       dummyNode.value = u
       new_attrs = attrs.copy()
       new_attrs.remove(max_feat)
       child = ID3(subdata, new_attrs)
       dummyNode.children.append(child)
       root.children.append(dummyNode)
  return root
def printTree(root: Node, depth=0):
  for i in range(depth):
    print("\t", end="")
  print(root.value, end="")
  if root.isLeaf:
    print(" -> ", root.pred)
  print()
  for child in root.children:
    printTree(child, depth + 1)
root = ID3(data, features)
printTree(root)
```


output:

				I
outlook	temperature	humidity	wind	answer
sunny	hot	high	weak	no
sunny	hot	high	strong	no
overcast	hot	high	weak	yes
rain	mild	high	weak	yes
rain	cool	normal	weak	yes
rain	cool	normal	strong	no
overcast	cool	normal	strong	yes
sunny	mild	high	weak	no
sunny	cool	normal	weak	yes
rain	mild	normal	weak	yes
sunny	mild	normal	strong	yes
overcast	mild	high	strong	yes
overcast	hot	normal	weak	yes
rain	mild	high	strong	no

Ex. No 5 Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.

Aim: To build an Artificial Neural Network by implementing the Backpropagation algorithm and test it using appropriate data sets.

```
import numpy as np
X = \text{np.array}(([2, 9], [1, 5], [3, 6]), \text{dtype=float})
y = np.array(([92], [86], [89]), dtype=float)
X = X/np.amax(X,axis=0) #maximum of X array longitudinally
y = y/100
#Sigmoid Function
def sigmoid (x):
  return 1/(1 + np.exp(-x))
#Derivative of Sigmoid Function
def derivatives_sigmoid(x):
  return x * (1 - x)
#Variable initialization
epoch=5 #Setting training iterations
lr=0.1 #Setting learning rate
inputlayer_neurons = 2 #number of features in data set
hiddenlayer_neurons = 3 #number of hidden layers neurons
output_neurons = 1 #number of neurons at output layer
#weight and bias initialization
wh=np.random.uniform(size=(inputlayer neurons, hiddenlayer neurons))
bh=np.random.uniform(size=(1,hiddenlayer_neurons))
wout=np.random.uniform(size=(hiddenlayer neurons,output neurons))
bout=np.random.uniform(size=(1,output_neurons))
#draws a random range of numbers uniformly of dim x*y
for i in range(epoch):
  #Forward Propogation
  hinp1=np.dot(X,wh)
  hinp=hinp1 + bh
  hlayer_act = sigmoid(hinp)
  outinp1=np.dot(hlayer act,wout)
  outinp= outinp1+bout
  output = sigmoid(outinp)
  #Backpropagation
  EO = y-output
  outgrad = derivatives_sigmoid(output)
  d_output = EO * outgrad
  EH = d_output.dot(wout.T)
  hiddengrad = derivatives sigmoid(hlayer act)#how much hidden layer wts contributed to error
  d_hiddenlayer = EH * hiddengrad
  wout += hlayer_act.T.dot(d_output) *lr # dotproduct of nextlayererror and currentlayerop
  wh += X.T.dot(d_hiddenlayer) *lr
  print ("------Epoch-", i+1, "Starts-----")
  print("Input: \n" + str(X))
  print("Actual Output: \n" + str(y))
```



```
print("Predicted Output: \n" ,output)
          print ("------Epoch-", i+1, "Ends-----\n")
        print("Input: \n" + str(X))
        print("Actual Output: \n" + str(y))
        print("Predicted Output: \n" ,output)
Input:
        [[0.66666667 1.
         [0.33333333 0.55555556]
                    0.66666667]]
        Actual Output:
        [[0.92]
         [0.86]
         [0.89]]
        Predicted Output:
         [[0.66485937]
         [0.65534372]
         [0.66364741]]
Output:
         ------Epoch- 1 Starts-----
        Input:
        [[0.66666667 1.
         [0.33333333 0.55555556]
                0.66666667]]
        Actual Output:
        [[0.92]
         [0.86]
         [0.89]]
        Predicted Output:
         [[0.63697455]
         [0.62960753]
         [0.63584726]]
         -----Epoch- 1 Ends-----
         -----Epoch- 2 Starts-----
        Input:
        [[0.6666667 1.
         [0.33333333 0.55555556]
               0.66666667]]
         ſ1.
        Actual Output:
        [[0.92]
         [0.86]
         [0.89]]
        Predicted Output:
         [[0.64443549]
         [0.63648142]
         [0.64328423]]
         -----Epoch- 2 Ends-----
        -----Epoch- 3 Starts-----
        Input:
        [[0.66666667 1.
         [0.33333333 0.55555556]
                    0.66666667]]
        Actual Output:
        [[0.92]
         [0.86]
         [0.89]]
        Predicted Output:
         [[0.65155845]
         [0.64305189]
         [0.65038519]]
         -----Epoch- 3 Ends-----
         -----Epoch- 4 Starts-----
        Input:
        [[0.66666667 1.
         [0.33333333 0.55555556]
                    0.66666667]]
         [1.
        Actual Output:
        [[0.92]
         [0.89]]
        Predicted Output:
         [[0.65836081]
```



```
[0.64933436]
 [0.65716736]]
-----Epoch- 4 Ends-----
-----Epoch- 5 Starts-----
Input:
[[0.66666667 1. ]
[0.333333333 0.55555556]
 [1.
          0.66666667]]
Actual Output:
[[0.92]
 [0.86]
 [0.89]]
Predicted Output:
[[0.66485937]
 [0.65534372]
[0.66364741]]
-----Epoch- 5 Ends-----
```


Ex. No 6 Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

Aim: To implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. To compute the accuracy of the classifier, considering few test data sets.

Program:

```
import pandas as pd
msg = pd.read_csv('document.csv', names=['message', 'label']) #Note: Give proper address of the csv file
print("Total Instances of Dataset: ", msg.shape[0])
msg['labelnum'] = msg.label.map(\{'pos': 1, 'neg': 0\})
X = msg.message
y = msg.labelnum
from sklearn.model_selection import train_test_split
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y)
from sklearn.feature_extraction.text import CountVectorizer
count_v = CountVectorizer()
Xtrain dm = count v.fit transform(Xtrain)
Xtest_dm = count_v.transform(Xtest)
df = pd.DataFrame(Xtrain_dm.toarray(),columns=count_v.get_feature_names())
print(df[0:5])
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB()
clf.fit(Xtrain_dm, ytrain)
pred = clf.predict(Xtest_dm)
for doc, p in zip(Xtrain, pred):
  p = 'pos' if p == 1 else 'neg'
  print("%s -> %s" % (doc, p))
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score
print('Accuracy Metrics: \n')
print('Accuracy: ', accuracy_score(ytest, pred))
print('Recall: ', recall_score(ytest, pred))
print('Precision: ', precision_score(ytest, pred))
print('Confusion Matrix: \n', confusion_matrix(ytest, pred))
```

•	
I love this sandwich	pos
This is an amazing place	pos
I feel very good about these beers	pos
This is my best work	pos
What an awesome view	pos
I do not like this restaurant	neg
I am tired of this stuff	neg
I can't deal with this	neg
He is my sworn enemy	neg

My boss is horrible	neg
This is an awesome place	pos
I do not like the taste of this juice	neg
I love to dance	pos
I am sick and tired of this place	neg
What a great holiday	pos
That is a bad locality to stay	neg
We will have good fun tomorrow	pos
I went to my enemy's house today	neg

Output:

I am sick and tired of this place -> pos
I do not like the taste of this juice -> neg
I love this sandwich -> neg
I can't deal with this -> pos
I do not like this restaurant -> neg

Accuracy Metrics:

Accuracy: 0.6

Recall: 0.5

Precision: 1.0

Confusion Matrix:

[[1 0] [2 2]]

Ex. No 7 Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.

Aim: To apply EM algorithm to cluster a set of data stored in a .CSV file. To clustering using k-Means algorithm with same data set.

Program:

```
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
import sklearn.metrics as metrics
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
names = ['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width', 'Class']
dataset = pd.read_csv("8-dataset.csv", names=names) #Note: Give the exact address of the data set file
X = dataset.iloc[:, :-1]
label = {'Iris-setosa': 0,'Iris-versicolor': 1, 'Iris-virginica': 2}
y = [label[c] \text{ for c in dataset.iloc}[:, -1]]
plt.figure(figsize=(14,7))
colormap=np.array(['red','lime','black'])
# REAL PLOT
plt.subplot(1,3,1)
plt.title('Real')
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[y])
# K-PLOT
model=KMeans(n_clusters=3, random_state=0).fit(X)
plt.subplot(1,3,2)
plt.title('KMeans')
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[model.labels_])
print('The accuracy score of K-Mean: ',metrics.accuracy_score(y, model.labels_))
print('The Confusion matrix of K-Mean:\n',metrics.confusion matrix(y, model.labels ))
# GMM PLOT
gmm=GaussianMixture(n_components=3, random_state=0).fit(X)
y_cluster_gmm=gmm.predict(X)
plt.subplot(1,3,3)
plt.title('GMM Classification')
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[y_cluster_gmm])
print('The accuracy score of EM: ',metrics.accuracy_score(y, y_cluster_gmm))
print('The Confusion matrix of EM:\n ',metrics.confusion_matrix(y, y_cluster_gmm)
```

Output:

The accuracy score of K-Mean: 0.24

The Confusion matrix of K-Mean:

[[0 50 0]

[48 0 2]

[14 0 36]]

The accuracy score of EM: 0.3666666666666664

The Confusion matrix of EM:

[[50 0 0]

[0 5 45]

[0 50 0]]

5.1	3.5	1.4	0.2	Iris-setosa
4.9	3	1.4	0.2	Iris-setosa
4.7	3.2	1.3	0.2	Iris-setosa
4.6	3.1	1.5	0.2	Iris-setosa
5	3.6	1.4	0.2	Iris-setosa
5.4	3.9	1.7	0.4	Iris-setosa
4.6	3.4	1.4	0.3	Iris-setosa
5	3.4	1.5	0.2	Iris-setosa
4.4	2.9	1.4	0.2	Iris-setosa
4.9	3.1	1.5	0.1	Iris-setosa
5.4	3.7	1.5	0.2	Iris-setosa
4.8	3.4	1.6	0.2	Iris-setosa
4.8	3	1.4	0.1	Iris-setosa
4.3	3	1.1	0.1	Iris-setosa
5.8	4	1.2	0.2	Iris-setosa
5.7	4.4	1.5	0.4	Iris-setosa
5.4	3.9	1.3	0.4	Iris-setosa
5.1	3.5	1.4	0.3	Iris-setosa
5.7	3.8	1.7	0.3	Iris-setosa

LEGE OF ENGINEERING				
5.1	3.8	1.5	0.3	Iris-setosa
5.4	3.4	1.7	0.2	Iris-setosa
5.1	3.7	1.5	0.4	Iris-setosa
4.6	3.6	1	0.2	Iris-setosa
5.1	3.3	1.7	0.5	Iris-setosa
4.8	3.4	1.9	0.2	Iris-setosa
5	3.4	1.6	0.2	Iris-setosa
5	3.4	1.6	0.4	Iris-setosa
5.2	3.5	1.5	0.4	Iris-setosa
5.2	3.4	1.4	0.2	Iris-setosa
4.7	3.2	1.6	0.2	Iris-setosa
4.7				
	3.1	1.6	0.2	Iris-setosa
5.4	3.4	1.5	0.4	Iris-setosa
5.2	4.1	1.5	0.1	Iris-setosa
5.5	4.2	1.4	0.2	Iris-setosa
4.9	3.1	1.5	0.1	Iris-setosa
5	3.2	1.2	0.2	Iris-setosa
5.5	3.5	1.3	0.2	Iris-setosa
4.9	3.1	1.5	0.1	Iris-setosa
4.4	3	1.3	0.2	Iris-setosa
5.1	3.4	1.5	0.2	Iris-setosa
5	3.5	1.3	0.3	Iris-setosa
4.5	2.3	1.3	0.3	Iris-setosa
4.4	3.2	1.3	0.2	Iris-setosa
5	3.5	1.6	0.6	Iris-setosa
5.1	3.8	1.9	0.4	Iris-setosa
4.8	3	1.4	0.3	Iris-setosa
5.1	3.8	1.6	0.2	Iris-setosa
4.6	3.2	1.4	0.2	Iris-setosa
5.3	3.7	1.5	0.2	Iris-setosa
5	3.3	1.4	0.2	Iris-setosa
7	3.2	4.7	1.4	Iris-versicolor
6.4	3.2	4.5	1.5	Iris-versicolor
6.9	3.1	4.9	1.5	Iris-versicolor
5.5	2.3	4	1.3	Iris-versicolor
6.5	2.8	4.6	1.5	Iris-versicolor
5.7	2.8	4.5	1.3	Iris-versicolor
6.3	3.3	4.7	1.6	Iris-versicolor
4.9	2.4	3.3	1	Iris-versicolor
6.6	2.9	4.6	1.3	Iris-versicolor
5.2	2.7	3.9	1.4	Iris-versicolor
5.2	2.7	3.5	1.4	Iris-versicolor
5.9	3	4.2	1.5	Iris-versicolor
6	2.2	4.2	1.3	Iris-versicolor
6.1	2.2	4.7	1.4	Iris-versicolor
5.6	2.9	3.6	1.3	Iris-versicolor
6.7	3.1	4.4	1.4	Iris-versicolor

LEGE OF ENGINEERING				
5.6	3	4.5	1.5	Iris-versicolor
5.8	2.7	4.1	1	Iris-versicolor
6.2	2.2	4.5	1.5	Iris-versicolor
5.6	2.5	3.9	1.1	Iris-versicolor
5.9	3.2	4.8	1.8	Iris-versicolor
6.1	2.8	4	1.3	Iris-versicolor
6.3	2.5	4.9	1.5	Iris-versicolor
6.1	2.8	4.7	1.2	Iris-versicolor
6.4	2.9	4.3	1.3	Iris-versicolor
6.6	3	4.4	1.4	Iris-versicolor
6.8	2.8	4.8	1.4	Iris-versicolor
6.7	3	5	1.7	Iris-versicolor
6	2.9	4.5	1.5	Iris-versicolor
5.7	2.6	3.5	1	Iris-versicolor
5.5	2.4	3.8	1.1	Iris-versicolor
5.5	2.4	3.7	1	Iris-versicolor
5.8	2.7	3.9	1.2	Iris-versicolor
6	2.7	5.1	1.6	Iris-versicolor
5.4	3	4.5	1.5	Iris-versicolor
6	3.4	4.5	1.6	Iris-versicolor
6.7	3.1	4.7	1.5	Iris-versicolor
6.3	2.3	4.4	1.3	Iris-versicolor
5.6	3	4.1	1.3	Iris-versicolor
5.5	2.5	4	1.3	Iris-versicolor
5.5	2.6	4.4	1.2	Iris-versicolor
6.1	3	4.6	1.4	Iris-versicolor
5.8	2.6	4	1.2	Iris-versicolor
5	2.3	3.3	1	Iris-versicolor
5.6	2.7	4.2	1.3	Iris-versicolor
5.7	3	4.2	1.2	Iris-versicolor
5.7	2.9	4.2	1.3	Iris-versicolor
6.2	2.9	4.3	1.3	Iris-versicolor
5.1	2.5	3	1.1	Iris-versicolor
5.7	2.8	4.1	1.3	Iris-versicolor
6.3	3.3	6	2.5	Iris-virginica
5.8	2.7	5.1	1.9	Iris-virginica
7.1	3	5.9	2.1	Iris-virginica
6.3	2.9	5.6	1.8	Iris-virginica
6.5	3	5.8	2.2	Iris-virginica
7.6	3	6.6	2.1	Iris-virginica
4.9	2.5	4.5	1.7	Iris-virginica
7.3	2.9	6.3	1.8	Iris-virginica
6.7	2.5	5.8	1.8	Iris-virginica
7.2	3.6	6.1	2.5	Iris-virginica
6.5	3.2	5.1	2.3	Iris-virginica
6.4	2.7	5.3	1.9	Iris-virginica
6.8	3	5.5	2.1	Iris-virginica Iris-virginica
0.8	3	J.J	۷.1	mis-virginica

5.7	2.5	5	2	Iris-virginica
5.8	2.8	5.1	2.4	Iris-virginica
6.4	3.2	5.3	2.3	Iris-virginica
6.5	3	5.5	1.8	Iris-virginica
7.7	3.8	6.7	2.2	Iris-virginica
7.7	2.6	6.9	2.3	Iris-virginica
6	2.2	5	1.5	Iris-virginica
6.9	3.2	5.7	2.3	Iris-virginica
5.6	2.8	4.9	2	Iris-virginica
7.7	2.8	6.7	2	Iris-virginica
6.3	2.7	4.9	1.8	Iris-virginica
6.7	3.3	5.7	2.1	Iris-virginica
7.2	3.2	6	1.8	Iris-virginica
6.2	2.8	4.8	1.8	Iris-virginica
6.1	3	4.9	1.8	Iris-virginica
6.4	2.8	5.6	2.1	Iris-virginica
7.2	3	5.8	1.6	Iris-virginica
7.4	2.8	6.1	1.9	Iris-virginica
7.9	3.8	6.4	2	Iris-virginica
6.4	2.8	5.6	2.2	Iris-virginica
6.3	2.8	5.1	1.5	Iris-virginica
6.1	2.6	5.6	1.4	Iris-virginica
7.7	3	6.1	2.3	Iris-virginica
6.3	3.4	5.6	2.4	Iris-virginica
6.4	3.1	5.5	1.8	Iris-virginica
6	3	4.8	1.8	Iris-virginica
6.9	3.1	5.4	2.1	Iris-virginica
6.7	3.1	5.6	2.4	Iris-virginica
6.9	3.1	5.1	2.3	Iris-virginica
5.8	2.7	5.1	1.9	Iris-virginica
6.8	3.2	5.9	2.3	Iris-virginica
6.7	3.3	5.7	2.5	Iris-virginica
6.7	3	5.2	2.3	Iris-virginica
6.3	2.5	5	1.9	Iris-virginica
6.5	3	5.2	2	Iris-virginica
6.2	3.4	5.4	2.3	Iris-virginica
5.9	3	5.1	1.8	Iris-virginica

Ex. No 8 Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.

Aim: To implement k-Nearest Neighbor algorithm to classify the iris data set.

```
Program:
```

```
import numpy as np
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'Class']
# Read dataset to pandas dataframe
dataset = pd.read_csv("9-dataset.csv", names=names) #Note: Give the exact address of the data set file
X = dataset.iloc[:, :-1]
y = dataset.iloc[:, -1]
print(X.head())
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.10)
classifier = KNeighborsClassifier(n_neighbors=5).fit(Xtrain, ytrain)
ypred = classifier.predict(Xtest)
print ("\n-----")
print ('%-25s %-25s %-25s' % ('Original Label', 'Predicted Label', 'Correct/Wrong'))
print ("-----")
for label in ytest:
  print ('%-25s %-25s' % (label, ypred[i]), end="")
  if (label == ypred[i]):
    print (' %-25s' % ('Correct'))
    print (' %-25s' % ('Wrong'))
  i = i + 1
print ("-----")
print("\nConfusion Matrix:\n",metrics.confusion_matrix(ytest, ypred))
print ("-----")
print("\nClassification Report:\n",metrics.classification_report(ytest, ypred))
print ("-----")
print('Accuracy of the classifer is %0.2f' % metrics.accuracy_score(ytest,ypred))
print ("-----")
```


Output:

sepal-length sepal-width petal-length petal-width

0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

Original	Predicted	Correct/Wrong
Label	Label	
Iris-versicolor	Iris-versicolor	Correct
Iris-virginica	Iris-versicolor	Wrong
Iris-virginica	Iris-virginica	Correct
Iris-versicolor	Iris-versicolor	Correct
Iris-setosa	Iris-setosa	Correct
Iris-versicolor	Iris-versicolor	Correct
Iris-setosa	Iris-setosa	Correct
Iris-setosa	Iris-setosa	Correct
Iris-virginica	Iris-virginica	Correct
Iris-virginica	Iris-versicolor	Wrong
Iris-virginica	Iris-virginica	Correct
Iris-setosa	Iris-setosa	Correct
Iris-virginica	Iris-virginica	Correct
Iris-virginica	Iris-virginica	Correct
Iris-versicolor	Iris-versicolor	Correct

*Output is manually formatted

Confusion Matrix:

[[4 0 0]

 $[0 \ 4 \ 0]$

[0 2 5]]

Classification Report:

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	4
Iris-versicolor	0.67	1.00	0.80	4
Iris-virginica	1.00	0.71	0.83	7
avg / total	0.91	0.87	0.87	15

Accuracy of the classifier is 0.87

5.1	3.5	1.4	0.2	Iris-setosa
4.9	3	1.4	0.2	Iris-setosa
4.7	3.2	1.3	0.2	Iris-setosa
4.6	3.1	1.5	0.2	Iris-setosa
5	3.6	1.4	0.2	Iris-setosa
5.4	3.9	1.7	0.4	Iris-setosa
4.6	3.4	1.4	0.3	Iris-setosa
5	3.4	1.5	0.2	Iris-setosa
4.4	2.9	1.4	0.2	Iris-setosa
4.9	3.1	1.5	0.1	Iris-setosa
5.4	3.7	1.5	0.2	Iris-setosa
4.8	3.4	1.6	0.2	Iris-setosa
4.8	3	1.4	0.1	Iris-setosa
4.3	3	1.1	0.1	Iris-setosa
5.8	4	1.2	0.2	Iris-setosa
5.7	4.4	1.5	0.4	Iris-setosa
5.4	3.9	1.3	0.4	Iris-setosa
5.1	3.5	1.4	0.3	Iris-setosa
5.7	3.8	1.7	0.3	Iris-setosa
5.1	3.8	1.5	0.3	Iris-setosa
5.4	3.4	1.7	0.2	Iris-setosa
5.1	3.7	1.5	0.4	Iris-setosa
4.6	3.6	1	0.2	Iris-setosa
5.1	3.3	1.7	0.5	Iris-setosa
4.8	3.4	1.9	0.2	Iris-setosa
5	3	1.6	0.2	Iris-setosa
5	3.4	1.6	0.4	Iris-setosa
5.2	3.5	1.5	0.2	Iris-setosa
5.2	3.4	1.4	0.2	Iris-setosa
4.7	3.2	1.6	0.2	Iris-setosa
4.8	3.1	1.6	0.2	Iris-setosa
5.4	3.4	1.5	0.4	Iris-setosa
5.2	4.1	1.5	0.1	Iris-setosa
5.5	4.2	1.4	0.2	Iris-setosa
4.9	3.1	1.5	0.1	Iris-setosa
5	3.2	1.2	0.2	Iris-setosa
5.5	3.5	1.3	0.2	Iris-setosa
4.9	3.1	1.5	0.1	Iris-setosa
4.4	3	1.3	0.2	Iris-setosa
5.1	3.4	1.5	0.2	Iris-setosa
5	3.5	1.3	0.3	Iris-setosa
4.5	2.3	1.3	0.3	Iris-setosa
4.4	3.2	1.3	0.2	Iris-setosa
	L			

TELEGE OF ENGINEERING	_			
5	3.5	1.6	0.6	Iris-setosa
5.1	3.8	1.9	0.4	Iris-setosa
4.8	3	1.4	0.3	Iris-setosa
5.1	3.8	1.6	0.2	Iris-setosa
4.6	3.2	1.4	0.2	Iris-setosa
5.3	3.7	1.5	0.2	Iris-setosa
5	3.3	1.4	0.2	Iris-setosa
7	3.2	4.7	1.4	Iris-versicolor
6.4	3.2	4.5	1.5	Iris-versicolor
6.9	3.1	4.9	1.5	Iris-versicolor
5.5	2.3	4	1.3	Iris-versicolor
6.5	2.8	4.6	1.5	Iris-versicolor
5.7	2.8	4.5	1.3	Iris-versicolor
6.3	3.3	4.7	1.6	Iris-versicolor
4.9	2.4	3.3	1	Iris-versicolor
6.6	2.9	4.6	1.3	Iris-versicolor
5.2	2.7	3.9	1.4	Iris-versicolor
5	2	3.5	1	Iris-versicolor
5.9	3	4.2	1.5	Iris-versicolor
6	2.2	4	1	Iris-versicolor
6.1	2.9	4.7	1.4	Iris-versicolor
5.6	2.9	3.6	1.3	Iris-versicolor
6.7	3.1	4.4	1.4	Iris-versicolor
5.6	3	4.5	1.5	Iris-versicolor
5.8	2.7	4.1	1.3	Iris-versicolor
6.2	2.2	4.5	1.5	Iris-versicolor
5.6	2.5	3.9	1.1	Iris-versicolor
5.9	3.2	4.8	1.8	Iris-versicolor
6.1	2.8	4	1.3	Iris-versicolor
6.3	2.5	4.9	1.5	Iris-versicolor
6.1	2.8	4.7	1.2	Iris-versicolor
6.4	2.9	4.3	1.3	Iris-versicolor
6.6	3	4.4	1.4	Iris-versicolor
6.8	2.8	4.8	1.4	Iris-versicolor
6.7	3	5	1.7	Iris-versicolor
6	2.9	4.5	1.5	Iris-versicolor
5.7	2.6	3.5	1.3	Iris-versicolor
5.5	2.4	3.8	1.1	Iris-versicolor
5.5	2.4	3.7	1.1	Iris-versicolor
5.8	2.7	3.9	1.2	Iris-versicolor
5.8	2.7	5.1	1.6	Iris-versicolor
5.4	3	4.5	1.5	Iris-versicolor
6	3.4	4.5	1.6	Iris-versicolor
6.7		4.3		
6.3	2.3	4.7	1.5	Iris-versicolor Iris-versicolor
	3			
5.6	2.5	4.1	1.3	Iris-versicolor
5.5	2.5	4	1.3	Iris-versicolor

OLLEGE OF ENGINEERIN	10			
5.5	2.6	4.4	1.2	Iris-versicolor
6.1	3	4.6	1.4	Iris-versicolor
5.8	2.6	4	1.2	Iris-versicolor
5	2.3	3.3	1	Iris-versicolor
5.6	2.7	4.2	1.3	Iris-versicolor
5.7	3	4.2	1.2	Iris-versicolor
5.7	2.9	4.2	1.3	Iris-versicolor
6.2	2.9	4.3	1.3	Iris-versicolor
5.1	2.5	3	1.1	Iris-versicolor
5.7	2.8	4.1	1.3	Iris-versicolor
6.3	3.3	6	2.5	Iris-virginica
5.8	2.7	5.1	1.9	Iris-virginica
7.1	3	5.9	2.1	Iris-virginica
6.3	2.9	5.6	1.8	Iris-virginica
6.5	3	5.8	2.2	Iris-virginica
7.6	3	6.6	2.1	Iris-virginica
4.9	2.5	4.5	1.7	Iris-virginica
7.3	2.9	6.3	1.8	Iris-virginica
6.7	2.5	5.8	1.8	Iris-virginica
7.2	3.6	6.1	2.5	Iris-virginica
6.5	3.2	5.1	2	Iris-virginica
6.4	2.7	5.3	1.9	Iris-virginica
6.8	3	5.5	2.1	Iris-virginica
5.7	2.5	5	2	Iris-virginica
5.8	2.8	5.1	2.4	Iris-virginica
6.4	3.2	5.3	2.3	Iris-virginica
6.5	3	5.5	1.8	Iris-virginica
7.7	3.8	6.7	2.2	Iris-virginica
7.7	2.6	6.9	2.3	Iris-virginica Iris-virginica
6.9	3.2	5.7	2.3	Iris-virginica
5.6	2.8	4.9	2.3	Iris-virginica
7.7	2.8	6.7	2	Iris-virginica
6.3	2.7	4.9	1.8	Iris-virginica
6.7	3.3	5.7	2.1	Iris-virginica
7.2	3.2	6	1.8	Iris-virginica
6.2	2.8	4.8	1.8	Iris-virginica
6.1	3	4.9	1.8	Iris-virginica
6.4	2.8	5.6	2.1	Iris-virginica
7.2	3	5.8	1.6	Iris-virginica
7.4	2.8	6.1	1.9	Iris-virginica
7.9	3.8	6.4	2	Iris-virginica
6.4	2.8	5.6	2.2	Iris-virginica
6.3	2.8	5.1	1.5	Iris-virginica
6.1	2.6	5.6	1.4	Iris-virginica
7.7	3	6.1	2.3	Iris-virginica
6.3	3.4	5.6	2.4	Iris-virginica
-	i			

6.4	3.1	5.5	1.8	Iris-virginica
6	3	4.8	1.8	Iris-virginica
6.9	3.1	5.4	2.1	Iris-virginica
6.7	3.1	5.6	2.4	Iris-virginica
6.9	3.1	5.1	2.3	Iris-virginica
5.8	2.7	5.1	1.9	Iris-virginica
6.8	3.2	5.9	2.3	Iris-virginica
6.7	3.3	5.7	2.5	Iris-virginica
6.7	3	5.2	2.3	Iris-virginica
6.3	2.5	5	1.9	Iris-virginica
6.5	3	5.2	2	Iris-virginica
6.2	3.4	5.4	2.3	Iris-virginica
5.9	3	5.1	1.8	Iris-virginica

Ex. No 9

Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs

Aim: To implement the non-parametric Locally Weighted Regression algorithm in order to fit data points.

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
def kernel(point, xmat, k):
  m,n = np.shape(xmat)
  weights = np.mat(np1.eye((m)))
  for j in range(m):
    diff = point - X[i]
    weights[j,j] = np.exp(diff*diff.T/(-2.0*k**2))
  return weights
def localWeight(point, xmat, ymat, k):
  wei = kernel(point,xmat,k)
  W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
  return W
def localWeightRegression(xmat, ymat, k):
  m,n = np.shape(xmat)
  ypred = np.zeros(m)
  for i in range(m):
    ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
  return ypred
# load data points
data = pd.read_csv('10-dataset.csv') #Note: Give the exact address of the data set file
bill = np.array(data.total bill)
tip = np.array(data.tip)
#preparing and add 1 in bill
mbill = np.mat(bill)
mtip = np.mat(tip)
m = np.shape(mbill)[1]
one = np.mat(np1.ones(m))
X = np.hstack((one.T,mbill.T))
#set k here
ypred = localWeightRegression(X,mtip,0.5)
SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]
fig = plt.figure()
ax = fig.add subplot(1,1,1)
ax.scatter(bill,tip, color='green')
```


ax.plot(xsort[:,1],ypred[SortIndex], color = 'red', linewidth=5)
plt.xlabel('Total bill')
plt.ylabel('Tip')
plt.show();

Output:

Total_Bill	Tip	Sex	Smoker	Day	Time	Size
16.99	1.01	Female	No	Sun	Dinner	2
10.34	1.66	Male	No	Sun	Dinner	3
21.01	3.5	Male	No	Sun	Dinner	3
23.68	3.31	Male	No	Sun	Dinner	2
24.59	3.61	Female	No	Sun	Dinner	4
25.29	4.71	Male	No	Sun	Dinner	4
8.77	2	Male	No	Sun	Dinner	2
26.88	3.12	Male	No	Sun	Dinner	4
15.04	1.96	Male	No	Sun	Dinner	2
14.78	3.23	Male	No	Sun	Dinner	2
10.27	1.71	Male	No	Sun	Dinner	2
35.26	5	Female	No	Sun	Dinner	4
15.42	1.57	Male	No	Sun	Dinner	2
18.43	3	Male	No	Sun	Dinner	4
14.83	3.02	Female	No	Sun	Dinner	2
21.58	3.92	Male	No	Sun	Dinner	2
10.33	1.67	Female	No	Sun	Dinner	3
16.29	3.71	Male	No	Sun	Dinner	3
16.97	3.5	Female	No	Sun	Dinner	3
20.65	3.35	Male	No	Sat	Dinner	3
17.92	4.08	Male	No	Sat	Dinner	2
20.29	2.75	Female	No	Sat	Dinner	2
15.77	2.23	Female	No	Sat	Dinner	2
39.42	7.58	Male	No	Sat	Dinner	4
19.82	3.18	Male	No	Sat	Dinner	2
17.81	2.34	Male	No	Sat	Dinner	4

DELEGE OF ENGINEERING	,					
13.37	2	Male	No	Sat	Dinner	2
12.69	2	Male	No	Sat	Dinner	2
21.7	4.3	Male	No	Sat	Dinner	2
19.65	3	Female	No	Sat	Dinner	2
9.55	1.45	Male	No	Sat	Dinner	2
18.35	2.5	Male	No	Sat	Dinner	4
15.06	3	Female	No	Sat	Dinner	2
20.69	2.45	Female	No	Sat	Dinner	4
17.78	3.27	Male	No	Sat	Dinner	2
24.06	3.6	Male	No	Sat	Dinner	3
16.31	2	Male	No	Sat	Dinner	3
16.93	3.07	Female	No	Sat	Dinner	3
18.69	2.31	Male	No	Sat	Dinner	3
31.27	5	Male	No	Sat	Dinner	3
16.04	2.24	Male	No	Sat	Dinner	3
17.46	2.54	Male	No	Sun	Dinner	2
13.94	3.06	Male	No	Sun	Dinner	2
9.68	1.32	Male	No	Sun	Dinner	2
30.4	5.6	Male	No	Sun	Dinner	4
18.29	3	Male	No	Sun	Dinner	2
22.23	5	Male	No	Sun	Dinner	2
32.4	6	Male	No	Sun	Dinner	4
28.55	2.05	Male	No	Sun	Dinner	3
18.04	3	Male	No	Sun	Dinner	2
12.54	2.5	Male	No	Sun	Dinner	2
10.29	2.6	Female	No	Sun	Dinner	2
34.81	5.2	Female	No	Sun	Dinner	4
9.94	1.56	Male	No	Sun	Dinner	2
25.56	4.34	Male	No	Sun	Dinner	4
19.49	3.51	Male	No	Sun	Dinner	2
38.01	3	Male	Yes	Sat	Dinner	4
26.41	1.5	Female	No	Sat	Dinner	2
11.24	1.76	Male	Yes	Sat	Dinner	2
48.27	6.73	Male	No	Sat	Dinner	4
20.29	3.21	Male	Yes	Sat	Dinner	2
13.81	2	Male	Yes	Sat	Dinner	2
11.02	1.98	Male	Yes	Sat	Dinner	2
18.29	3.76	Male	Yes	Sat	Dinner	4
17.59	2.64	Male	No	Sat	Dinner	3
20.08	3.15	Male	No	Sat	Dinner	3
16.45	2.47	Female	No	Sat	Dinner	2
3.07	1	Female	Yes	Sat	Dinner	1
20.23	2.01	Male	No	Sat	Dinner	2
15.01	2.09	Male	Yes	Sat	Dinner	2
12.02	1.97	Male	No	Sat	Dinner	2
17.07	3	Female	No	Sat	Dinner	3
26.86	3.14	Female	Yes	Sat	Dinner	2

OLLEGE OF ENGINEERING						
25.28	5	Female	Yes	Sat	Dinner	2
14.73	2.2	Female	No	Sat	Dinner	2
10.51	1.25	Male	No	Sat	Dinner	2
17.92	3.08	Male	Yes	Sat	Dinner	2
27.2	4	Male	No	Thur	Lunch	4
22.76	3	Male	No	Thur	Lunch	2
17.29	2.71	Male	No	Thur	Lunch	2
19.44	3	Male	Yes	Thur	Lunch	2
16.66	3.4	Male	No	Thur	Lunch	2
10.07	1.83	Female	No	Thur	Lunch	1
32.68	5	Male	Yes	Thur	Lunch	2
15.98	2.03	Male	No	Thur	Lunch	2
34.83	5.17	Female	No	Thur	Lunch	4
13.03	2	Male	No	Thur	Lunch	2
18.28	4	Male	No	Thur	Lunch	2
24.71	5.85	Male	No	Thur	Lunch	2
21.16	3	Male	No	Thur	Lunch	2
28.97	3	Male	Yes	Fri	Dinner	2
22.49	3.5	Male	No	Fri	Dinner	2
5.75	1	Female	Yes	Fri	Dinner	2
16.32	4.3	Female	Yes	Fri	Dinner	2
22.75	3.25	Female	No	Fri	Dinner	2
40.17	4.73	Male	Yes	Fri	Dinner	4
27.28	4	Male	Yes	Fri	Dinner	2
12.03	1.5	Male	Yes	Fri	Dinner	2
21.01	3	Male	Yes	Fri	Dinner	2
12.46	1.5	Male	No	Fri	Dinner	2
11.35	2.5	Female	Yes	Fri	Dinner	2
15.38	3	Female	Yes	Fri	Dinner	2
44.3	2.5	Female	Yes	Sat	Dinner	3
22.42	3.48	Female	Yes	Sat	Dinner	2
20.92	4.08	Female	No	Sat	Dinner	2
15.36	1.64	Male	Yes	Sat	Dinner	2
20.49	4.06	Male	Yes	Sat	Dinner	2
25.21	4.29	Male	Yes	Sat	Dinner	2
18.24	3.76	Male	No	Sat	Dinner	2
14.31	4	Female	Yes	Sat	Dinner	2
14	3	Male	No	Sat	Dinner	2
7.25	1	Female	No	Sat	Dinner	1
38.07	4	Male	No	Sun	Dinner	3
23.95	2.55	Male	No	Sun	Dinner	2
25.71	4	Female	No	Sun	Dinner	3
17.31	3.5	Female	No	Sun	Dinner	2
29.93	5.07	Male	No	Sun	Dinner	4
10.65	1.5	Female	No	Thur	Lunch	2
12.43	1.8	Female	No	Thur	Lunch	2
24.08	2.92	Female	No	Thur	Lunch	4
			•			

11.69	2.31	Male	No	Thur	Lunch	2
13.42	1.68	Female	No	Thur	Lunch	2
14.26	2.5	Male	No	Thur	Lunch	2
15.95	2	Male	No	Thur	Lunch	2
12.48	2.52	Female	No	Thur	Lunch	2
29.8	4.2	Female	No	Thur	Lunch	6
8.52	1.48	Male	No	Thur	Lunch	2
14.52	2	Female	No	Thur	Lunch	2
11.38	2	Female	No	Thur	Lunch	2
22.82	2.18	Male	No	Thur	Lunch	3
19.08	1.5	Male	No	Thur	Lunch	2
20.27	2.83	Female	No	Thur	Lunch	2
11.17	1.5	Female	No	Thur	Lunch	2
12.26	2	Female	No	Thur	Lunch	2
18.26	3.25	Female	No	Thur	Lunch	2
8.51	1.25	Female	No	Thur	Lunch	2
10.33	2	Female	No	Thur	Lunch	2
14.15	2	Female	No	Thur	Lunch	2
16	2	Male	Yes	Thur	Lunch	2
13.16	2.75	Female	No	Thur	Lunch	2
17.47	3.5	Female	No	Thur	Lunch	2
34.3	6.7	Male	No	Thur	Lunch	6
41.19	5	Male	No	Thur	Lunch	5
27.05	5	Female	No	Thur	Lunch	6
16.43	2.3	Female	No	Thur	Lunch	2
8.35	1.5	Female	No	Thur	Lunch	2
18.64	1.36	Female	No	Thur	Lunch	3
11.87	1.63	Female	No	Thur	Lunch	2
9.78	1.73	Male	No	Thur	Lunch	2
7.51	2	Male	No	Thur	Lunch	2
14.07	2.5	Male	No	Sun	Dinner	2
13.13	2	Male	No	Sun	Dinner	2
17.26	2.74	Male	No	Sun	Dinner	3
24.55	2	Male	No	Sun	Dinner	4
19.77	2	Male	No	Sun	Dinner	4
29.85	5.14	Female	No	Sun	Dinner	5
48.17	5	Male	No	Sun	Dinner	6
25	3.75	Female	No	Sun	Dinner	4
13.39	2.61	Female	No	Sun	Dinner	2
16.49	2	Male	No	Sun	Dinner	4
21.5	3.5	Male	No	Sun	Dinner	4
12.66	2.5	Male	No	Sun	Dinner	2
16.21	2	Female	No	Sun	Dinner	3
13.81	2	Male	No	Sun	Dinner	2
17.51	3	Female	Yes	Sun	Dinner	2
24.52	3.48	Male	No	Sun	Dinner	3
20.76	2.24	Male	No	Sun	Dinner	2

OLLEGE OF ENGINEERING						
31.71	4.5	Male	No	Sun	Dinner	4
10.59	1.61	Female	Yes	Sat	Dinner	2
10.63	2	Female	Yes	Sat	Dinner	2
50.81	10	Male	Yes	Sat	Dinner	3
15.81	3.16	Male	Yes	Sat	Dinner	2
7.25	5.15	Male	Yes	Sun	Dinner	2
31.85	3.18	Male	Yes	Sun	Dinner	2
16.82	4	Male	Yes	Sun	Dinner	2
32.9	3.11	Male	Yes	Sun	Dinner	2
17.89	2	Male	Yes	Sun	Dinner	2
14.48	2	Male	Yes	Sun	Dinner	2
9.6	4	Female	Yes	Sun	Dinner	2
34.63	3.55	Male	Yes	Sun	Dinner	2
34.65	3.68	Male	Yes	Sun	Dinner	4
23.33	5.65	Male	Yes	Sun	Dinner	2
45.35	3.5	Male	Yes	Sun	Dinner	3
23.17	6.5	Male	Yes	Sun	Dinner	4
40.55	3	Male	Yes	Sun	Dinner	2
20.69	5	Male	No	Sun	Dinner	5
20.9	3.5	Female	Yes	Sun	Dinner	3
30.46	2	Male	Yes	Sun	Dinner	5
18.15	3.5	Female	Yes	Sun	Dinner	3
23.1	4	Male	Yes	Sun	Dinner	3
15.69	1.5	Male	Yes	Sun	Dinner	2
19.81	4.19	Female	Yes	Thur	Lunch	2
28.44	2.56	Male	Yes	Thur	Lunch	2
15.48	2.02	Male	Yes	Thur	Lunch	2
16.58	4	Male	Yes	Thur	Lunch	2
7.56	1.44	Male	No	Thur	Lunch	2
10.34	2	Male	Yes	Thur	Lunch	2
43.11	5	Female	Yes	Thur	Lunch	4
13	2	Female	Yes	Thur	Lunch	2
13.51	2	Male	Yes	Thur	Lunch	2
18.71	4	Male	Yes	Thur	Lunch	3
12.74	2.01	Female	Yes	Thur	Lunch	2
13	2	Female	Yes	Thur	Lunch	2
16.4	2.5	Female	Yes	Thur	Lunch	2
20.53	4	Male	Yes	Thur	Lunch	4
16.47	3.23	Female	Yes	Thur	Lunch	3
26.59	3.41	Male	Yes	Sat	Dinner	3
38.73	3	Male	Yes	Sat	Dinner	4
24.27	2.03	Male	Yes	Sat	Dinner	2
12.76	2.23	Female	Yes	Sat	Dinner	2
30.06	2	Male	Yes	Sat	Dinner	3
25.89	5.16	Male	Yes	Sat	Dinner	4
48.33	9	Male	No	Sat	Dinner	4
13.27	2.5	Female	Yes	Sat	Dinner	2

28.17	6.5	Female	Yes	Sat	Dinner	3
12.9	1.1	Female	Yes	Sat	Dinner	2
28.15	3	Male	Yes	Sat	Dinner	5
11.59	1.5	Male	Yes	Sat	Dinner	2
7.74	1.44	Male	Yes	Sat	Dinner	2
30.14	3.09	Female	Yes	Sat	Dinner	4
12.16	2.2	Male	Yes	Fri	Lunch	2
13.42	3.48	Female	Yes	Fri	Lunch	2
8.58	1.92	Male	Yes	Fri	Lunch	1
15.98	3	Female	No	Fri	Lunch	3
13.42	1.58	Male	Yes	Fri	Lunch	2
16.27	2.5	Female	Yes	Fri	Lunch	2
10.09	2	Female	Yes	Fri	Lunch	2
20.45	3	Male	No	Sat	Dinner	4
13.28	2.72	Male	No	Sat	Dinner	2
22.12	2.88	Female	Yes	Sat	Dinner	2
24.01	2	Male	Yes	Sat	Dinner	4
15.69	3	Male	Yes	Sat	Dinner	3
11.61	3.39	Male	No	Sat	Dinner	2
10.77	1.47	Male	No	Sat	Dinner	2
15.53	3	Male	Yes	Sat	Dinner	2
10.07	1.25	Male	No	Sat	Dinner	2
12.6	1	Male	Yes	Sat	Dinner	2
32.83	1.17	Male	Yes	Sat	Dinner	2
35.83	4.67	Female	No	Sat	Dinner	3
29.03	5.92	Male	No	Sat	Dinner	3
27.18	2	Female	Yes	Sat	Dinner	2
22.67	2	Male	Yes	Sat	Dinner	2
17.82	1.75	Male	No	Sat	Dinner	2
18.78	3	Female	No	Thur	Dinner	2