Sprawozdanie Geostatystyka ćw 4

Analiza Zbiorów Punktowych – Wprowadzenie. Badanie Losowości Natalia Gadocha 304165 Geoinformatyka II

I Generacja punktów losowych

1.

set.seed(500)
x <- runif(200)
y <- 2* runif(200)</pre>

2.

plot(x,y)

plot(x,y, asp=1) rect(0, 0, 1, 2)

4.

disc

II Testowanie losowości rozmieszczenia punktów

5.

```
ppp1 <- ppp(r_squared$x, r_squared$y, window = disc(r_squared, radius = 100, centre = c(100, 100), nsim=1) , xrange, yrange)

ppp1
p = plot(ppp1)</pre>
qt
```

qt = quadrat.test.ppp(ppp1, 5, 5)

residuals(qt)

plot(qt)

p-value nie jest bardzo mała, jej wartość wynosi 0.8677, co sprawia, że nie odrzucamy hipotezy zerowej o całkowicie losowym rozmieszczeniu punktów.

		qt		
207	7 11 5 ¹ -1.4	8 15 0.77	13 11.8 0.36	21
10 11	.0.84	321 15.	315 15.3	9 11
-0.51		1.5	-0.073	-0.8
6 15	14 15.3	316 15.	313 15.3	320 15
-2.3	-0.33	0.18	-0.58	1.3
17 11	⁸ 1 15.:	314 15.	319 15.3	1.2
1.5	-1.1	-0.33	0.95	
-0.0	6 14 11 0.66	8 ₁₃ 15	15 11.8 0.95	0.06

```
> qt

Chi-squared test of CSR using quadrat counts

data: ppp1

X2 = 22.219, df = 24, p-value = 0.8677
alternative hypothesis: two.sided

Quadrats: 25 tiles (irregular windows)

> |
```

okrag = disc(radius =10, centre = c(10, 10), nsim=1)

lambda=100/(2*pi*10)

plot(rpoispp(lambda, lmax=NULL, win=okrag, nsim=1, drop=TRUE, ex=NULL, warnwin=TRUE), main = "rpoispp")

rpoispp

Wynik, jaki otrzymujemy jest zawsze zbliżony do ilości 500 punktów.

III Projekt

7.

dane<-load(url("http://github.com/mgimond/Spatial/raw/master/Data/ppa
.RData"))</pre>

8.

marks(starbucks) <- NULL</pre>

9.

Window(starbucks) <- ma

10.

plot(starbucks, main="starbucks", cols="grey", pch=20)

starbucks

hist(pop, main="histogram populacji",col = "yellow")

plog <- log(pop) hist(plog, main="histogram populacji", xlab="log x", col="yellow", las=1)

12.


```
kw <- quadrat.test(starbucks, nx= 6, ny=3)
plot(starbucks, pch=20, cols="grey")
plot(kw, add=TRUE)
kint <- intensity(kw)</pre>
```

starbucks

> kw

Chi-squared test of CSR using quadrat counts

data: starbucks

X2 = 288.12, df = 13, p-value < 2.2e-16
alternative hypothesis: two.sided

Quadrats: 14 tiles (irregular windows)
> |

Wartość p-value jest niewielka i wynosi <2.2e-16, co sprawia, że możemy odrzucić hipotezę zerową

Kw <- quadratcount(starbucks, nx= 6, ny=3)</pre>

Kwd <- intensity(Kw)</pre>

plot(intensity(Kw, image=TRUE), main="Gestość punktów w kwadratach",
las=1)

plot(starbucks, pch=20, cex=0.6, col="black", add=TRUE)

Gęstość punktów w kwadratach

15.

kw2 <- quadratcount(rescale(starbucks, 1000, "km"), nx= 6, ny=3)</pre>

kint2 <- intensity(kw)</pre>

plot(intensity(kw2, image=TRUE), las=1)

plot(rescale(starbucks, 1000, "km"), pch=20, cex=0.6, add=TRUE)

