Topic II

Symmetry and Group Theory in Chemistry

II.1 Module 3: Symmetry Elements and Operations

1/13: • He will upload lecture slides in advance in the future.

- An object is symmetric if one part is the same as other parts.
- The symmetry of discrete objects is described using **Point Symmetry**.
- Point groups (~ 32 for molecules) provide us with a way to indicate the symmetry unambiguously.
- Point groups have symmetry about a single point at the center of mass of the system.
- Extended objects (e.g., crystals) have **translational symmetry** described by **Space groups**^[1] (230 total).
- Reading: Miessler et al. (2014) Chapter 4 and https://en.wikipedia.org/wiki/Molecular_symmetry.
- Symmetry elements: Geometric entities about which a symmetry operation can be performed. In a point group, all symmetry elements must pass through the center of mass (the point).
- Symmetry operation: The action that produces an object identical to the initial object.

Element	Operation
Identity, E	nothing
Rotation axis, C_n	n-fold rotation
Improper rotation axis, S_n	<i>n</i> -fold improper rotation
Plane of symmetry, σ	Reflection
Center of symmetry, i	Inversion

- Identity: Does nothing to the object, but is necessary for mathematical completeness.
- **n-fold rotation**: A rotation of $360^{\circ}/n$ about the C_n axis $(n \in [1, \infty))$.
 - In H_2O , there is a C_2 axis, so we can perform a 2-fold (180°) rotation to get the same molecule.
 - Remember, because of quantum mechanical properties, the hydrogens are indistinguishable so when we rotate it 180°, we cannot tell it apart from the unrotated molecule.
 - Rotations are considered positive in the counterclockwise direction.

¹Not covered in this course.

- Each possible rotation operation is assigned using a superscript integer m of the form C_n^m . m is the number of sequential applications.
- The rotation $C_n^n \equiv E$ is equivalent to the identity operation (nothing is moved).
- Linear molecules have an infinite number of rotational options C_{∞} because any rotation on the molecular axis will give the same arrangement.
- Principal axis: The highest order rotation axis.
 - By convention, the principal axis is assigned to the z-axis if we are using Cartesian coordinates.
- Reflection: Exchanges one half of the object with the reflection of the other half.
- Vertical mirror plane: A mirror plane that contains the principal axis. Also known as σ_v .
- Horizontal mirror plane: A mirror plane that is perpendicular to the principal axis. Also known as σ_h .
- Dihedral mirror planes: A special type of σ_v that is between sides or planes. Also known as σ_d .
 - For example, we might have vertical mirror planes in the xz- or yz-planes. In this case, the dihedral planes would contain the lines $y = \pm x$.
- Two successive reflections are equivalent to the identity operation.
- **Inversion**: Every part of the object is reflected through the inversion center, which must be at the center of mass of the object.

$$-(x,y,z) \xrightarrow{i} (-x,-y,-z).$$

• n-fold improper rotation: This operation involves a rotation of $360^{\circ}/n$ followed by a reflection perpendicular to the axis. It is a single operation and is labeled in the same manner as "proper" rotations. Also known as S_n^m , rotation-reflection operation.

Figure II.1: Methane's S_4 symmetry.

- Methane has S_4 symmetry.
- Note that $S_1 \equiv \sigma_h$, $S_2 \equiv i$, and sometimes $S_{2n} \equiv C_n$. In methane, for example, $S_4^2 \equiv C_2$.
- Applied to a triangular prism, is a good example.
- If n is even, we have n unique operations. There should be $C_{n/2}$.
- If n is odd, we have 2n unique operations. There should be C_n and σ_h .
- The absence of an S_n axis is the defining symmetry property of **chiral** molecules.
 - Formerly, we learned that chiral molecules should not have mirror planes and inversion centers.
 - Rigorously, chiral molecules must not have any improper rotation axes.

II.2 Module 4: Symmetry Point Groups

- Identifying the point groups:
 - 1. Determine if the symmetry is special (e.g., octahedral).
 - 2. Determine if there is a principal rotation axis.
 - 3. Determine if there are rotation axes perpendicular to the principal axis.
 - 4. Determine if there are mirror planes.
 - 5. Assign point groups.
- High symmetry and low symmetry groups are the most difficult to identify.
- High symmetry:
 - Perfect tetrahedral (T_d) , e.g., P_4 and CH_4 .
 - Perfect octahedral (O_h) , e.g., SF₆.
 - Perfect icosahedral (I_h) , e.g., C_{60} and $B_{12}H_{12}^{2-}$.
- Low symmetry:

Figure II.2: Low symmetry point groups.

- Only an improper axis: S_n .
- Only a mirror plane: C_s .
- Only an inversion center: C_i .
- No symmetry: C_1 .
- C_n groups:
 - Only a C_n axis. Note that conformation is important.
- C_{nh} groups have a C_n axis and a σ_h reflection plane (such as B(OH)₃).
 - H_2O_2 has C_{2h} symmetry.
- All symmetry elements are listed in the top row of the corresponding characters table (Appendix C in Miessler et al. (2014)).
- C_{nv} groups have a C_n axis and a σ_v reflection plane.
 - NH₃ has C_{3v} symmetry.
 - CO has $C_{\infty v}$ symmetry since there are an infinite number of both C_n axes and σ_v mirror planes.
- D_{nh} groups: A C_n axis, n perpendicular C_2 axes, and a σ_h reflection plane.

- BH₃ has D_{3h} symmetry.
- A square prism has D_{4h} symmetry.
- CO_2 has $D_{\infty h}$ symmetry.
- D_n groups: A C_n axis, n perpendicular C_2 axes, and no mirror planes.
 - A 3-bladed propeller has D_3 symmetry.
- D_{nd} groups: A C_n axis, n perpendicular C_2 axes, and a σ_d .
 - Ethane in the staggered conformation has D_{3d} symmetry.
- Local symmetry:
 - Sometimes, rigorous math analysis needs to be adjusted to physical reality.
 - If a cyclopentane ring is bonded through the center to $Mn(CO)_3$, this molecule has only C_s symmetry.
 - However, spectroscopically, there is fast rotation about the Mn–Cp bond. This means that the Mn(CO)₃ fragment exhibits pseudo- C_{3v} symmetry while the C₅H₅ ligand exhibits pseudo- C_{5v} symmetry.
 - Often, the absolute symmetry of a molecule is very low, but the interactions are far away from the centers of interest, and do not perturb them significantly.
 - If we have platinum as a central atom bonded to two chlorines and two P(Et)₃ groups, this molecule technically has C_1 symmetry due to the orientations of atoms within R groups (staggered), but IR spectroscopy is characteristic of highly symmetric species (D_{2h}) .

II.3 Module 5: Group Theory 101

- **Group**: A set of elements together with an operation that combines any two of its elements to form a third element satisfying four conditions called the group axioms.
 - Closure: All binary products must be members of the group.
 - Associativity: Associative law of multiplication must hold.
 - **Identity**: A group must contain the identity operator.
 - Inverse: Every operator must have an inverse.
- The integers with the addition operation form a group, for example.
- History:

1/15:

- Early group theory was driven by the quest for solutions of polynomial equations of degree 5 and above.
- Early 1800s: Évariste Galois realized that the algebraic solution to a polynomial equation is related to the structure of a group of permutations associated with the roots off the polynomial, the Galois group of the polynomial.
 - Link to Galois video here.
- 1920s: Group theory was applied to physics and chemistry.
- 1931: It is often hard or even impossible to obtain a solution of the Schrödinger equation however, a large part of qualitative results can be obtained by group theory. Almost all the rules of spectroscopy follow from the symmetry of a problem.
- We will use group theory for describing symmetry of molecules. We will use group theory to understand the bonding and spectroscopic features of molecules.

- For us, a group consists of a set of symmetry elements (and associated symmetry operations) that completely describes the symmetry of a molecule.
- Order (of a group): The total number of elements (i.e., symmetry operations) in the group. Also $known \ as \ h$.
- Rule 1: Closure.

Figure II.3: Symmetry elements for H₂O.

- H_2O is of the C_{2v} point group (refer to Figure II.3).
 - Symmetry operations: $E, C_2, \sigma_{v(xz)}, \text{ and } \sigma'_{v(yz)}$.

 - The above property (order does not matter) shows that C_{2v} is an **Abelian group**.
- NH₃ is of the C_{2v} point group.
 - Symmetry operations: $E, C_3^+, C_3^-, \sigma_v, \sigma_v'$, and σ_v'' .
 - $\sigma_v'' \cdot C_3 = \sigma_v$, but $C_3 \cdot \sigma_v'' = C_3^- = C_3^2$.
 - The above property (order does matter) shows that C_{3v} is a non-Abelian group.
- Rule 2: Associativity.
 - H_2O is of the C_{2v} point group (refer to Figure II.3).

$$\begin{split} \sigma'_v C_2 \sigma_v(1,2) &= \sigma'_v C_2(2,1) & \sigma'_v(C_2 \sigma_v)(1,2) = \sigma'_v E(1,2) & (\sigma'_v C_2) \sigma_v(1,2) = \sigma_v \sigma_v(1,2) \\ &= \sigma'_v(1,2) &= \sigma_v(1,2) &= \sigma_v(2,1) \\ &= (1,2) &= (1,2) &= (1,2) \end{split}$$

- Rule 3: Identity.
- Rule 4: Inverse.
 - For a C_{2v} point group:

$$E \cdot E = E$$
 $C_2 \cdot C_2 = E$ $\sigma_v \cdot \sigma_v = E$ $\sigma_v' \cdot \sigma_v' = E$

• Group multiplication tables.

C_{2h}	\boldsymbol{E}	C_2	σ_h	$m{i}$
\boldsymbol{E}	E	C_2	σ_h	i
C_2	C_2	E	i	σ_h
σ_h	σ_h	i	E	C_2
i	i	σ_h	C_2	E

Table II.1: Group multiplication table for the C_{2h} point group.

- Table II.1 corresponds to the C_{2h} point group, which has E, C_2, σ_h , and i operations.
- Note that the operation in the top row is the one that's applied first, while the one in the left column will be applied second.
- Subgroup: Fractional parts of groups that are groups, too.

C_{3v}	E	C_3	$C_3{}^2$	σ_v	σ_v'	$\sigma_v^{\prime\prime}$
E C_3 C_3^2	E	C_3	C_3^2	σ_v	σ_v'	$\sigma_v^{\prime\prime}$
C_3	C_3	C_3^2	E	$\sigma_v^{\prime\prime}$	σ_v	σ_v'
C_3^2	C_3^2	E	C_3	σ_v'	$\sigma_v^{\prime\prime}$	σ_v
σ_v	σ_v	σ'_v	σ_v'' σ_v' σ_v	E	C_3	C_3^2
σ_v'	$\sigma_v^{\prime\prime}$	σ_v	σ_v'	C_3	C_3^2	E
$\sigma_v^{\prime\prime}$	σ'_v	$\sigma_v^{\prime\prime}$	σ_v	C_3^2	E	C_3

Table II.2: Group multiplication table for the C_{3v} point group.

- If h = 6 (as in the C_{3v} group), subgroup order can be h = 3, 2, 1. Why only these?
- The order 1 and 3 charts are subgroups.
- The order 2 chart is not a subgroup because C_3^2 is not an operation in the group (therefore, the "subgroup" is not closed).
- We use subgroups because they can make complex problems simpler.
 - For example, calculating the vibrational modes of CO_2 .
 - As another example, D_{2h} is a subgroup of $D_{\infty h}$.

II.4 Module 6: Representations

- Items of the same point group have the same vibration modes.
- Representation (of a group): Any collection of quantities (or symbols) which obey the multiplication table of a group. Also known as Γ .
- For our purposes, these quantities are the matrices that show how certain characteristic of a molecule behave under the symmetry operations of the group.
- Operations (on a point (x, y, z) in Cartesian coordinates):
 - E(x, y, z) = (x, y, z).
 - $\sigma_{xz}(x, y, z) = (x, -y, z).$
 - -i(x, y, z) = (-x, -y, -z).
 - C_n : Convention is a counterclockwise rotation of the point by $\theta = \frac{2\pi}{n}$ radians.
 - S_n : Convention is a clockwise rotation of the point C_n followed by a σ through a plane perpendicular to C.

• Matrix forms of operations:

$$- \text{ Identity: } E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

– One example of a reflection (there are two more):
$$\sigma_{xy} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
.

- Inversion:
$$i = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
.

- Rotation: Counterclockwise is
$$C_n(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and clockwise is $C_n(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

- A derivation of this matrix can be found in the slides.
- Improper rotation: $S_n(\theta) = \sigma_h C_n(\theta)$.

• Reducible representations (Γ) :

- A representation of a symmetry operation of a group.
- Can be expressed in terms of a representation of lower dimension.
- Can be broken down into a simpler form.
- Characters can be further diagonalized.
- Are composed of the direct sum of irreducible representations.
- Infinite possibilities.

• Irreducible representations (Γ_i) :

- A fundamental representation of a symmetry operation of a group.
- Cannot be expressed in terms of a representation of lower dimension.
- Cannot be broken down into a simpler form.
- Characters cannot be further diagonalized.
- Small finite number dictated by point group.
- Good example of reducible/irreducible representations?
- A representation shows how certain characteristics of an object (a basis) behave under the symmetry operation of the group.
- ullet Conjugate elements: Two elements X and Y for which there exists an element Z in the group such that

$$Z^{-1} \cdot X \cdot Z = Y$$

- Every element is conjugated with itself (let Z = E).
- If X is conjugated with Y, then Y is conjugated with X.
- If X is conjugated with Y and W, then Y and W are also conjugate.
- Class: A complete set of elements of a group that are conjugate to one another.
 - Geometric meaning: operations in the same class can be converted into one another by changing the axis system through application of some symmetry operation of the group.
- Find the conjugates to C_3 in the C_{3v} point group (refer to Table II.2 throughout the following discussion).

- Let $X = C_3$, let Z iterate through the six symmetry elements $(E, C_3, C_3^2, \sigma_v, \sigma'_v, \sigma''_v)$, and let Z^{-1} iterate through the corresponding inverses $(E, C_3^2, C_3, \sigma_v, \sigma'_v, \sigma''_v)$.
- Thus, we have

$$E \cdot C_3 \cdot E = C_3$$

$$C_3^2 \cdot C_3 \cdot C_3 = C_3$$

$$C_3 \cdot C_3 \cdot C_3^2 = C_3$$

$$\sigma_v \cdot C_3 \cdot \sigma_v = C_3^2$$

$$\sigma'_v \cdot C_3 \cdot \sigma'_v = C_3^2$$

$$\sigma''_v \cdot C_3 \cdot \sigma''_v = C_3^2$$

- It follows from the above that C_3 and C_3 are conjugates, and C_3 and C_3 are conjugates.
- Thus, C_3 and C_3^2 are in the same class.
- We can use a similar method to prove that σ_v , σ'_v , and σ''_v are all in the same class within the C_{3v} point group.
- Likewise E is in a class by itself.
- Thus, for the C_{3v} point group, E forms a class of order 1, C_3 , C_3^2 form a class of order 2, and $\sigma_v, \sigma'_v, \sigma''_v$ form a class of order 3.
- Similarity transformation: The transformation

$$v^{-1} \cdot A \cdot v = A'$$

- -A is a representation for some type of symmetry operation.
- -v is a similarity transform operator.
- $-v^{-1}$ is the inverse of the similarity transform operator.
- -A' is the product.
- -A and A' are conjugates, and we say that A' is the similarity transform of A by v.
- Block-diagonal (matrix): A matrix with nonzero values only in square blocks along the diagonal from the top left to the bottom right.

$$\begin{bmatrix} 2 & 3 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

- The above matrix is an example of a block-diagonal matrix.
- Irreducible representations are the ones where the matrices have the most block-diagonalized form that they can.

II.5 Module 7: Characters and Character Tables

- 1/19: Nocera Lecture 3 notes (on Canvas) explain how reducible and irreducible transformations are related to each other through the similarity transformations.
 - \bullet For H_2O , each atom has 3 Cartesian coordinates, so our transformation matrix^[2] is 9-square.

²Some values in it are negative because of the cosine/sine definition of a rotation matrix for $\theta = 180^{\circ}$.

- However, we can also apply a smaller matrix to the molecule as a whole and invoke symmetry to find the position of the individual atoms.
- Characters (of a representation): The traces (i.e., sums of the diagonal matrix elements) of the representation matrices for each operation. Also known as χ .
 - The character is an invariant for each type of symmetry operation (e.g., regardless of the axis about which a C_n operation is performed, the trace of the corresponding matrix will be the same).
- Common characters:
 - C_n character: $\chi = 2\cos\theta + 1$.
 - $-\sigma_v, \sigma_d$ character: $\chi = 1$.
 - $-S_2 \equiv i \text{ character: } \chi = -3.$
 - $-S_n$ character: $\chi = 2\cos\theta 1$.
 - $-\perp C_2$ axes character: $\chi=-1$.
- Character table: The collection of characters for a given irreducible representation, under the operations of a group.

Group Symbol			Symmetry Elements				
	C_{2v}	$\stackrel{\frown}{E}$	C_2	$\sigma_v(xz)$	$\sigma'_v(yz)$	linear	quadratic
Irreducible Represen- tations	A_1	1	1	1	1	z	x^2, y^2, z^2
	1212	1	1	-1	-1	R_z	xy
	B_1	1	-1	1	-1	x, R_y	xz
	B_2	1	-1	-1	1	y, R_x	yz
Characters			Basis	Functions			

Figure II.4: A character table.

- Character tables for all point groups are listed in Appendix C of Miessler et al. (2014).
- Mulliken symbols are used to classify irreducible representations based on degeneracy and symmetry.
 - A or B: singly degenerate (the maximum block size in the block-diagonalized irreducible transformation matrix is 1×1).
 - E: Doubly degenerate (the maximum block size in the block-diagonalized irreducible transformation matrix is 2×2).
 - T: Triply degenerate (the maximum block size in the block-diagonalized irreducible transformation matrix is 3×3).
 - A: symmetric (+) with respect to C_n .
 - B: anti-symmetric (–) with respect to C_n .
 - Subscript g: symmetric (+) with respect to i. Etymology short for gerade (German for symmetric).
 - Subscript u: anti-symmetric (-) with respect to i. Etymology short for ungerade (German for unsymmetric).
 - \blacksquare If the molecule has a center of inversion, we label irreducible representations with q or u.
 - Subscript 1: symmetric (+) with respect to $\perp C_2$ or σ_v .
 - Subscript 2: anti-symmetric (-) with respect to $\perp C_2$ or σ_v .
 - Superscript ': symmetric (+) under σ_h (if no i).
 - Superscript ": anti-symmetric (-) under σ_h (if no i).

- Don't mistake the operation E for the Mulliken symbol E!
- To assign Mulliken symbols, use the character table.
 - Assigning the main letter:
 - If E-character = 1 and C_n -character = 1: A.
 - If E-character = 1 and C_n -character = -1: B.
 - If E-character = 2: E.
 - If E-character = 3: T.
 - Assigning a subscript g or u:
 - If *i*-character = 1: g.
 - If *i*-character = -1: u.
 - \blacksquare This subscript can be assigned to A, B, E, T representations.
 - Assigning a superscript ' or ":
 - If σ_h -character = 1: '.
 - If σ_h -character = -1: ".
 - \blacksquare This subscript can be assigned to A, B representations.
 - Assigning a subscript 1 or 2:
 - If $\perp C_2$ or σ_v -character = 1: 1.
 - If $\perp C_2$ or σ_v -character = -1: 2.
 - \blacksquare This subscript can be assigned to A, B representations.
- σ , π , and δ bonds come from the Mulliken symbols!
 - Infinity tables use Greek rather than Latin letters.

D_3	E	$2C_3(z)$	$3C_2'$	linear	quadratic
A_1	1	1	1		$x^2 + y^2, z^2$
A_2	1	1		z, R_z	
E	2	-1	0	$(x,y)(R_x,R_y)$	$(x^2 - y^2, xy)(xz, yz).$

Table II.3: Character table for the D_3 point group.

- In character tables, we need to multiply each symmetry operation by the number of types there are (see Table II.3).
- Basis functions show us how different functions transform under different symmetry operations.
- In the C_{2v} point group:
 - The p_x orbital has B_1 symmetry.
 - $-p_x$ transforms as B_1 .
 - $-p_x$ has the same symmetry as B_1 .
 - $-p_x$ forms a basis for the B_1 irreducible representation.
 - p_x is B_1 because (see Table 0.2 and Figure II.4) it does not change under E, it inverts under C_2 , it does not change under $\sigma_v(xz)$, and it inverts under $\sigma'_v(yz)$.
- We can apply the same procedure to other more complex functions.
 - For example, in the C_{2v} point group, we know that (with respect to orbitals):
 - $\blacksquare p_y \text{ is } B_2.$

- $\blacksquare p_z \text{ is } A_1.$
- \blacksquare d_{z^2} is A_1 .
- $\blacksquare d_{x^2-y^2} \text{ is } A_1.$
- \blacksquare d_{yz} is B_2 .
- \blacksquare d_{xy} is A_2 .
- \blacksquare d_{xz} is B_1 .
- \blacksquare We can even go into the cubic functions describing the f orbitals and assign them Mulliken symbols.
- Essentially, the right hand side of a character table tells you how atomic orbitals will transform under certain symmetry operations.
- Properties of a character table:
 - 1. The characters of all matrices belonging to the operations in the same class are identical in a given irreducible representation.
 - As such, we form **classes** of operations.
 - We most commonly form a **rotational class** and a **reflection class**.
 - 2. The number of irreducible representations in a group is equal to the number of classes of that group.
 - 3. There is always a totally symmetric representation for any group.
 - I.e., a representation where every character is 1.
 - 4. The sum of the squares of the dimensionality of all the irreducible representations is equal to the order of the group. Mathematically,

$$h = \sum_{i} [\chi_i(E)]^2$$

- For example, the dimensionalities (characters under E) of the D_3 point group (see Table II.3) are 1, 1, and 2, and the order is, indeed, $6 = 1^2 + 1^2 + 2^2$.
- 5. The sum of the squares of the characters multiplied by the number of operations in the class equals the order of the group. Mathematically,

$$h = \sum_{R_c} g_c [\chi_i(R_c)]^2$$

- For example, with respect to the D_3 point group (see Table II.3),

$$6 = (1)(1)^{2} + (2)(1)^{2} + (3)(1)^{2}$$
$$= (1)(1)^{2} + (2)(1)^{2} + (3)(-1)^{2}$$
$$= (1)(2)^{2} + (2)(-1)^{2} + (3)(0)^{2}$$

6. The sum of the products of the corresponding characters of any two different irreducible representations of the same group is zero. Mathematically,

$$\sum_{R_c} g_c \chi_i(R_c) \chi_f(R_c) = 0$$

- Basically, this means that if we treat irreducible representations as vectors in h-space, they are orthogonal.
- For example, with respect to the D_3 point group (see Table II.3),

$$0 = 1(1)(1) + 2(1)(1) + 3(1)(-1)$$

= 1(1)(2) + 2(1)(-1) + 3(1)(0)
= 1(1)(2) + 2(1)(-1) + 3(-1)(0)

II.6 Module 8: Using Character Tables

• A reducible representation of a group is any representation Γ of the form

$$\Gamma = \sum_{i} a_i \Gamma_i$$

where each Γ_i is an irreducible representation of the group and a_i is a real scalar.

- Basically, a reducible representation is any nontrivial linear combination of irreducible representations.
- For example, with respect to the C_{2v} point group (see Figure II.4), $\Gamma = (7, 1, 5, 3) = 4A_1 + 2B_1 + B_2$ is a reducible representation.
- We may "factor" reducible representations by inspection, or by the...
- Decomposition/reduction formula for a reducible representation:

$$a_i = \frac{1}{h} \sum_{Q} N \cdot \chi(R)_Q \cdot \chi_i(R)_Q$$

- a_i is the number of times the irreducible representation appears in Γ_1 .
- -h is the order of the group.
- -N is the number of operations in class Q.
- $-\chi(R)_Q$ is the character of the reducible representation.
- $-\chi_i(R)_Q$ is the character of the irreducible representation.
- This formula cannot be applied to $D_{\infty h}$ and $C_{\infty v}$.
- Let's look at decomposing $\Gamma = (7, 1, 5, 3)$ into its component irreducible point groups using the above formula.

$$a_{A_1} = \frac{1}{4}(1 \cdot 7 \cdot 1 + 1 \cdot 1 \cdot 1 + 1 \cdot 5 \cdot 1 + 1 \cdot 3 \cdot 1) = 4$$

$$a_{A_2} = \frac{1}{4}(1 \cdot 7 \cdot 1 + 1 \cdot 1 \cdot 1 + 1 \cdot 5 \cdot -1 + 1 \cdot 3 \cdot -1) = 0$$

$$a_{B_1} = \frac{1}{4}(1 \cdot 7 \cdot 1 + 1 \cdot 1 \cdot -1 + 1 \cdot 5 \cdot 1 + 1 \cdot 3 \cdot -1) = 2$$

$$a_{B_2} = \frac{1}{4}(1 \cdot 7 \cdot 1 + 1 \cdot 1 \cdot -1 + 1 \cdot 5 \cdot -1 + 1 \cdot 3 \cdot 1) = 1$$

- You can also find websites that will apply the formula for you.
- Basis \rightarrow reducible representation \rightarrow irreducible representations workflow:
 - 1. Assign a point group.
 - 2. Choose a basis function (bond, vibration, orbital, angle, etc.).
 - 3. Apply operations.
 - The following shortcuts allow us to skip matrix math in certain situations.
 - If the basis stays the same: +1.
 - If the basis is reversed: -1.
 - If it is a more complicated change: 0.
 - 4. Generate a reducible representation.
 - 5. Reduce to irreducible representation.

- We now look at an example of applying the above method to H₂O.
 - H_2O is of the C_{2v} point group.
 - The 9×9 identity matrix represents the identity operation on the 3 atoms in H₂O, each described by 3 Cartesian coordinates. Thus, $\chi(E) = 9$.
 - The following matrix represents the C_2 symmetry operation. Thus, $\chi(C_2)=-1$.

- Note that atoms moved during the transformation do not contribute to the character of the transformation matrix.
- Since under $\sigma_v(xz)$ only O is unshifted, we need only consider its part of the transformation matrix (as follows) when looking for the character. Thus, $\chi(\sigma_v(xz)) = 1$.

$$\begin{bmatrix} x'\\y'\\z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\0 & -1 & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\z \end{bmatrix}$$

- Since under $\sigma_v(yz)$ no atom is shifted, we need to consider each (identical) part of the transformation matrix (as follows) when looking for the character. Thus, $\chi(\sigma_v(yz)) = 3$.

$$\begin{bmatrix} x'\\y'\\z' \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\z \end{bmatrix}$$

- Thus, the characters of our final reducible representation is $\Gamma_{3N} = (9, -1, 1, 3)$.
 - This representation represents fully unrestricted motion of all 3 ambiguities of freedom.
- Another example: XeOF₄.

Figure II.5: XeOF₄.

- Point group: C_{4v} .
- Basis function: F atoms.
- Let's see what happens to the fluorine atoms under the C_{4v} operations (remember that if a basis element (a fluroine atom) stays the same, it contributes +1 to the character of an operation, and if it moves, it contributes 0 to the character).

E	all unchanged	4
C_4	all move	0
C_2	all move	0
$2\sigma_v$	2 move, 2 unchanged	2
$2\sigma_d$	all move	0

Table II.4: Changes in the fluorine atoms of XeOF₄ under the C_{4v} symmetry operations.

- Thus, $\Gamma = (4, 0, 0, 2, 0)$.
- With the C_{4v} character table and the decomposition formula, we can discover that $\Gamma = A_1 + B_1 + E$.

II.7 TA Review Session 1

- 1/22: We also don't need to show the equatorial electron pair in the shape picture.
 - For SeCl₄, we need to show that the axial bonds are longer and are not straight up and down.
 - For I_3^- , it's trigonal bipyrimidal EPA and linear molecular geometry there's an extra electron pair around the central iodine atom. This makes it $D_{\infty h}$ point group.
 - For SeOCl₄, we should also make the axials longer and bent away from the oxygen atom.
 - This molecule is sp^3d hybridized, not sp^2d^2 , as it would be if the oxygen were axial.
 - For IO(OH)₅, we should show the equatorial OH's pushed away from the oxygen atom. The oxygen bond should also be a bit shorter.
 - In the exam, they will specify whether we need to consider the hydrogens or not when calculating symmetry.
 - For ClOF₄⁻, one or the other of the lone pair/oxygen will push the equatorial fluorines a bit. You don't have to know witch, just show bent.
 - For XeO₂F₂, show the lone pair pushing the axial fluorines away.
 - For ${\rm IF_3}^{2-}$, show that this is a distorted T.
 - A tennis ball belongs to the D_{2d} point group since you have perpendicular C_2 axes punching through the seam and mirror planes at 45° angles to the C_2 axes (i.e., dihedral).
 - FeF_6^{3-} also loses 4 C_2 axes.
 - There are three possible isomers of IF₃O₂ (see Figure I.1), but the one with equatorial oxygens is the most stable.
 - The structure analogous to Figure I.1a has C_{2v} symmetry.
 - The structure analogous to Figure I.1b has D_{3h} symmetry.
 - The structure analogous to Figure I.1c has C_s symmetry.
 - Determine the point group of NO₃²⁻, HFC=C=CHF, H₂C=CF₂, and C₂H₆ (consider three possible conformers).
 - NO_3^{2-} is of the D_{3h} point group.
 - HFC=C=CHF is of the C_2 point group.
 - $H_2C=CF_2$ is of the C_{2v} point group.
 - C_2H_6 eclipsed has D_{3h} symmetry, staggered has D_{3d} symmetry, and others have D_3 symmetry.

II.8 Chapter 4: Symmetry and Group Theory

From Miessler et al. (2014).

- 1/18: Coincident (axes): Two identical axes.
 - For example, the C_3 rotation axis of CHCl₃ is **coincident** with the C-H bond axis.
 - Snowflakes, which are often planar and have hexagonal symmetry, have a twofold (C_2) , threefold (C_3) , and sixfold (C_6) axis through their center and perpendicular to their plane.
 - Rotations C_3^2 and C_6^5 are also symmetry operations.

1/19:

- (a) About the principal axis.
- (b) About perpendicular axes.

Figure II.6: Rotations of a snowflake design.

1/18:

• "When necessary, the C_2 axes perpendicular to the principal axis are designated with primes; a single prime (C_2') indicates that the axis passes through several atoms of the molecule, whereas a double prime (C_2'') indicates that it passes between the outer atoms" (Miessler et al., 2014, p. 77).

1/19:

- Even though $S_2 \equiv i$ and $S_1 \equiv \sigma$, the *i* and σ notations are preferred because of the group theory requirement of maximizing the number of unique classes of symmetry operations associated with a molecule.
- Point group: A set of symmetry operations that describes a molecule's overall symmetry.
- Alternative steps for assigning point groups:
 - 1. Determine whether the molecule exhibits very low symmetry (C_1, C_s, C_i) or high symmetry $(T_d, O_h, C_{\infty v}, D_{\infty h}, I_h)$.
 - 2. If not, find the highest order C_n axis for the molecule.
 - 3. Does the molecule have any C_2 axes perpendicular to the principal C_n axis? If it does, there will be n of such C_2 axes, and the molecule is in the D set of groups. If not, it is in the C or S set.
 - 4. Does the molecule have a mirror plane (σ_h) perpendicular to the principal C_n axis? If so, it is classified as C_{nh} or D_{nh} . If not, continue with Step 5.
 - 5. Does the molecule have any mirror planes that contain the principal C_n axis $(\sigma_v \text{ or } \sigma_d)$? If so, it is classified as C_{nv} or D_{nd} . If not, but it is in the D set, it is classified as D_n . If the molecule is in the C or S set, continue with Step 6.
 - 6. Is there an S_{2n} axis collinear with the principal C_n axis? If so, it is classified as S_{2n} . If not, the molecule is classified as C_n .
- Groups of high symmetry:
 - $-C_{\infty v}$ (linear): These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They do not have a center of inversion.

- $-D_{\infty h}$ (linear): These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They also have perpendicular C_2 axes, a perpendicular reflection plane, and an inversion center.
- T_d (tetrahedral): Most (but not all) molecules in this point group have the familiar tetrahedral geometry. They have four C_3 axes, three C_2 axes, three S_4 axes, and six σ_d planes. They have no C_4 axes.
 - Look for C_3 and C_2 axes.
- O_h (octahedral): These molecules include those of octahedral structure, although some other geometrical forms, such as the cube, share the same set of symmetry operations. Among their 48 symmetry operations are four C_3 rotations, three C_4 rotations, and an inversion.
 - Look for C_4 , C_3 , and C_2 axes.
- $-I_h$ (icosahedral): Icosahedral structures are best recognized by their six C_5 axes, as well as many other symmetry operations 120 in all.
 - Look for C_5 , C_3 , and C_2 axes.
- T_h : Adds i to T_d . Example: W[N(CH₃)₂]₆.