You measure the rate of reaction at for various concentrations of A. You then add an inhibitor I with a concentration of 0.1 mmol/L and repeat the rate measurements.

Ca (mmol/L)	1.00	1.29	1.67	2.15	2.78	3.59	4.64	5.99	7.74	10.0
-ra (x 10-3 mmol L • min	4.27	5.36	6.92	8.06	9.15	11.4	13.8	15.0	19.5	19.3
-ra,inhib (x 10-3 mmol L•min	2.13	2.66	3.22	4.02	4.71	5.52	6.51	7.16	8.62	9.00

- **a.** Determine the Michaelis-Menten parameters (KM and V_{max}).
- **b.** Using Lineweaver-Burk plots, determine the type of inhibition occurring when the inhibitor I is added to the system.
- c. From your plot in part (b), determine the Kı value.