UNIVERSITÄT BONN

Juergen Gall

Camera Calibration
MA-INF 2201 - Computer Vision
WS24/25

MA-INF 2206 - Seminar Vision

 First meeting: Friday, 24.1., 11:45, Friedrich-Hirzebruch Allee 5, HS 3

 Second meeting: Friday, 31.1., 11:45, Friedrich-Hirzebruch Allee 5, HS 3

Literature

Multiple View Geometry in Computer Vision, Second Edition, Richard Hartley and Andrew Zisserman, Cambridge University Press, March 2004.

Our goal: Recovery of 3D structure

Recovery of structure from one image is inherently ambiguous

Our goal: Recovery of 3D structure

We will need multi-view geometry

Cameras

Pinhole camera model

Pinhole model:

- Captures pencil of rays all rays through a single point
- The point is called Center of Projection (focal point)
- The image is formed on the Image Plane

Steve Seitz

Vanishing points

Each direction in space has its own vanishing point

- All lines going in that direction converge at that point
- Exception: directions
 parallel to the image plane

Vanishing points

Each direction in space has its own vanishing point

- All lines going in that direction converge at that point
- Exception: directions parallel to the image plane How do we construct the vanishing point of a line?

Vanishing points

- Each direction in space has its own vanishing point
 - All lines going in that direction converge at that point
 - Exception: directions parallel to the image plane
- How do we construct the vanishing point of a line?
 - What about the vanishing line of a plane?

Perspective distortion

Problem for architectural photography: converging

verticals

Perspective distortion

Problem for architectural photography: converging verticals

Tilting the camera upwards results in converging verticals

Keeping the camera level, with an ordinary lens, captures only the bottom portion of the building

Shifting the lens upwards results in a picture of the entire subject

Solution: view camera (lens shifted w.r.t. film)

http://en.wikipedia.org/wiki/Perspective_correction_lens

Perspective distortion

Problem for architectural photography: converging verticals

Result:

Modeling projection

The coordinate system

- The optical center (O) is at the origin
- The image plane is parallel to xy-plane (perpendicular to z axis)

Modeling projection

Projection equations

- Compute intersection with image plane of ray from P = (x,y,z) to O
- Derived using similar triangles

$$(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z}, f)$$

— We get the projection by throwing out the last coordinate:

$$(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z})$$

Homogeneous coordinates

$$(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z})$$

Is this a linear transformation?

Trick: add one more coordinate:

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

$$(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Perspective Projection Matrix

Projection is a matrix multiplication using homogeneous coordinates

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z/f \end{bmatrix} \Rightarrow (f\frac{x}{z}, f\frac{y}{z})$$
divide by the third coordinate

Perspective Projection Matrix

Projection is a matrix multiplication using homogeneous coordinates

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z/f \end{bmatrix} \implies (f\frac{x}{z}, f\frac{y}{z})$$
divide by the third coordinate

In practice: lots of coordinate transformations...

Orthographic Projection

Distance from center of projection to image plane is

infinite

- Also called "parallel projection"
- What's the projection matrix?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

Building a real camera

Home-made pinhole camera

Why so blurry?

http://www.debevec.org/Pinhole/

Shrinking the aperture

Shrinking apperture

Adding a lens

A lens focuses light onto the film

- Thin lens model:
 - Rays passing through the center are not deviated (pinhole projection model still holds)
 - All parallel rays converge to one point on a plane located at the focal length f

Adding a lens

A lens focuses light onto the film

 There is a specific distance at which objects are "in focus"

What is the relation between the focal length (f), the distance of the object from the optical center (D), and the distance at which the object will be in focus (D')?

$$y'/y = D'/D$$

$$y'/y = D'/D$$

 $y'/y = (D'-f)/f$

$$y'/y = D'/D$$

 $y'/y = (D'-f)/f$

$$\frac{1}{D}, +\frac{1}{D} = \frac{1}{f}$$

Any point satisfying the thin lens equation is in focus.

Depth of Field

How can we control the depth of field?

Changing the aperture size affects depth of field

- A smaller aperture increases the range in which the object is approximately in focus
- But small aperture reduces amount of light need to increase exposure

Varying the aperture

Large aperture = small DOF

Small aperture = large DOF

Field of View

28mm

85mm

50mm

Field of View

300mm

What does FOV depend on?

135mm

A. Efros

Field of View

FOV depends on focal length and size of the camera retina

$$\varphi = \tan^{-1}(\frac{d}{2f})$$

Smaller FOV = larger Focal Length

Field of View / Focal Length

Large FOV, small f Camera close to car

Small FOV, large f Camera far from the car

Approximating an affine camera

The dolly zoom

Continuously adjusting the focal length while the camera moves away from (or towards) the subject

http://en.wikipedia.org/wiki/Dolly_zoom

Dolly zoom

Dolly zoom

Pinhole camera model

$$(X,Y,Z) \mapsto (fX/Z,fY/Z)$$

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} = \begin{bmatrix} f & & & 0 \\ & f & & 0 \\ & & 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

$$x = PX$$

Principal point

- Principal point (p): point where principal axis intersects the image plane (origin of normalized coordinate system)
- Normalized coordinate system: origin is at the principal point
- Image coordinate system: origin is in the corner
- How to go from normalized coordinate system to image coordinate system?

Principal point offset

principal point:

$$(p_x, p_y)$$

$$(X,Y,Z) \mapsto (fX/Z + p_x, fY/Z + p_y)$$

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} fX + Zp_x \\ fY + Zp_y \\ Z \end{pmatrix} = \begin{bmatrix} f & p_x & 0 \\ f & p_y & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Principal point offset

principal point:

$$(p_x, p_y)$$

$$\begin{pmatrix} fX + Zp_{x} \\ fY + Zp_{y} \\ Z \end{pmatrix} = \begin{bmatrix} f & p_{x} \\ f & p_{y} \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$K = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix}$$
 calibration matrix

$$P = K[I \mid 0]$$

Pixel coordinates

Pixel size:
$$\frac{1}{m_x} \times \frac{1}{m_y}$$

m_x pixels per meter in horizontal direction, m_{ν} pixels per meter in vertical direction

$$K = \begin{bmatrix} m_x & & \\ & m_y & \\ & & 1 \end{bmatrix} \begin{bmatrix} f & & p_x \\ & f & p_y \\ & & 1 \end{bmatrix} = \begin{bmatrix} \alpha_x & & \beta_x \\ & \alpha_y & \beta_y \\ & & 1 \end{bmatrix}$$
 pixels/m m pixels

Camera rotation and translation

In general, the camera coordinate frame will be related to the world coordinate frame by a rotation and a translation

coords. of a point in world frame (nonhomogeneous)

Camera rotation and translation

In non-homogeneous coordinates:

$$\widetilde{\mathbf{X}}_{\mathrm{cam}} = \mathbf{R} \left(\widetilde{\mathbf{X}} - \widetilde{\mathbf{C}} \right)$$

$$\mathbf{X}_{\text{cam}} = \begin{bmatrix} \mathbf{R} & -\mathbf{R}\widetilde{\mathbf{C}} \\ \mathbf{0} & 1 \end{bmatrix} \begin{pmatrix} \widetilde{\mathbf{X}} \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{R}\widetilde{\mathbf{C}} \\ \mathbf{0} & 1 \end{bmatrix} \mathbf{X}$$

$$x = K[I \mid 0]X_{cam} = K[R \mid -R\tilde{C}]X$$
 $P = K[R \mid t], \quad t = -R\tilde{C}$

$$P = K[R \mid t], \qquad t = -R\tilde{C}$$

Camera parameters

Intrinsic parameters

- Principal point coordinates
- Focal length
- Pixel magnification factors

$$K = \begin{bmatrix} m_x & & \\ & m_y & \\ & & 1 \end{bmatrix} \begin{bmatrix} f & p_x \\ & f & p_y \\ & & 1 \end{bmatrix} = \begin{bmatrix} \alpha_x & \beta_x \\ & \alpha_y & \beta_y \\ & & 1 \end{bmatrix}$$

Camera parameters

Intrinsic parameters

- Principal point coordinates
- Focal length
- Pixel magnification factors
- Skew (non-rectangular pixels)

$$K = \begin{pmatrix} \alpha_x & \gamma & \beta_x \\ 0 & \alpha_y & \beta_y \\ 0 & 0 & 1 \end{pmatrix}$$

Radial Distortion

Caused by imperfect lenses

Deviations are most noticeable near the edge of the lens

Fisheye lenses

Camera parameters

Intrinsic parameters

- Principal point coordinates
- Focal length
- Pixel magnification factors
- Skew (non-rectangular pixels)
- Radial distortion

$$K = \begin{pmatrix} \alpha_x & \gamma & \beta_x \\ 0 & \alpha_y & \beta_y \\ 0 & 0 & 1 \end{pmatrix}$$

Lazebnik

Radial distortion

Polynomial model

$$\begin{pmatrix} x_d \\ y_d \end{pmatrix} = L(\tilde{r}) \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix}$$

$$L(r) = 1 + \kappa_1 r + \kappa_2 r^2 + \kappa_3 r^3 + \dots$$

radial distortion

Distortion

Other models combine radial and tangential distortion

$$x_{d} = \begin{bmatrix} x_{d}(1) \\ x_{d}(2) \end{bmatrix} = (1 + kc(1) r^{2} + kc(2) r^{4} + kc(5) r^{6}) x_{n} + dx$$

$$dx = \begin{bmatrix} 2 kc(3) x y + kc(4) (r^{2} + 2x^{2}) \\ kc(3) (r^{2} + 2y^{2}) + 2 kc(4) x y \end{bmatrix}$$

Camera parameters

Intrinsic parameters

- Principal point coordinates
- Focal length
- Pixel magnification factors
- Skew (non-rectangular pixels)
- Radial distortion

Extrinsic parameters

 Rotation and translation relative to world coordinate system

Camera calibration

Camera calibration

Given n points with known 3D coordinates X_i and known image projections x_i , estimate the camera parameters

Camera calibration: Linear method

$$\lambda \mathbf{x}_{i} = \mathbf{P}\mathbf{X}_{i} \qquad \mathbf{x}_{i} \times \mathbf{P}\mathbf{X}_{i} = \mathbf{0} \qquad \begin{bmatrix} x_{i} \\ y_{i} \\ 1 \end{bmatrix} \times \begin{bmatrix} P_{1}^{T} \mathbf{X}_{i} \\ P_{2}^{T} \mathbf{X}_{i} \\ P_{3}^{T} \mathbf{X}_{i} \end{bmatrix} = \mathbf{0}$$

$$\mathbf{a} \times \mathbf{b} = [\mathbf{a}]_{\times} \mathbf{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -X_i^T & y_i X_i^T \\ X_i^T & 0 & -x_i X_i^T \\ -y_i X_i^T & x_i X_i^T & 0 \end{bmatrix} \begin{pmatrix} P_1 \\ P_2 \\ P_3 \end{pmatrix} = 0$$

Two linearly independent equations

Camera calibration: Linear method

$$\begin{bmatrix} 0^{T} & X_{1}^{T} & -y_{1}X_{1}^{T} \\ X_{1}^{T} & 0^{T} & -x_{1}X_{1}^{T} \\ \cdots & \cdots & \cdots \\ 0^{T} & X_{n}^{T} & -y_{n}X_{n}^{T} \\ X_{n}^{T} & 0^{T} & -x_{n}X_{n}^{T} \end{bmatrix} \begin{pmatrix} P_{1} \\ P_{2} \\ P_{3} \end{pmatrix} = 0 \qquad Ap = 0$$

- P has 11 degrees of freedom (12 parameters, but scale is arbitrary)
- One 2D/3D correspondence gives us two linearly independent equations
- Homogeneous least squares
- 6 correspondences needed for a minimal solution

Camera calibration: Linear method

Advantages: easy to formulate and solve Disadvantages

- Doesn't directly tell you camera parameters
- Doesn't model radial distortion
- Can't impose constraints, such as known focal length and orthogonality

Non-linear methods are preferred

- Define error as difference between projected points and measured points
- Minimize error using Newton's method or other nonlinear optimization

Calibration Object

Use precisely known 3D points

Shortcoming: Not flexible

Intrinsic Calibration with Planes

Intrinsic Calibration with Planes

Use only one plane

- Print a pattern on a paper
- Attach the paper on a planar surface
- Show the plane freely a few times to the camera

Advantages

- Flexible
- Robust

Implementation in OpenCV or Matlab toolbox: http://www.vision.caltech.edu/bouguetj/calib_doc/

[Z. Zhang. Flexible Camera Calibration by Viewing a Plane from Unknown Orientations. ICCV99 1

Camera Model

66

Calibration process

Extrinsic parameters

Plane projection

For convenience, assume the plane at z = 0.

The relation between image points and model points is then given by a homography **H**:

$$s\widetilde{\mathbf{m}} = \mathbf{H}\widetilde{\mathbf{M}}$$
 with $\mathbf{H} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix}$ $\mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$

Recall: Image rectification

What do we get from one image?

We can obtain two equations in 6 intermediate homogeneous parameters.

Given H, which is defined up to a scale factor,

And let $\mathbf{H} = \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix}$, we have

$$\begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix} = \lambda \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix}$$

This yields

$$\mathbf{h}_{1}^{T} \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_{2} = 0$$

$$\mathbf{h}_{1}^{T} \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_{1} = \mathbf{h}_{2}^{T} \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_{2}$$

Linear Equations

Let

$$\mathbf{B} = \mathbf{A}^{-T} \mathbf{A}^{-1} = \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{bmatrix} \longleftrightarrow \mathbf{symmetric}$$

Define $\mathbf{b} = \begin{bmatrix} B_{11} & B_{12} & B_{22} & B_{13} & B_{23} & B_{33} \end{bmatrix}$ up to a scale factor

Rewrite

$$\mathbf{h}_1^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_2 = 0$$

$$\mathbf{h}_1^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_1 = \mathbf{h}_2^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_2$$

as linear equations:

$$\begin{bmatrix} \mathbf{v}_{12}^T \\ (\mathbf{v}_{11} - \mathbf{v}_{22})^T \end{bmatrix} \mathbf{b} = \mathbf{0} \quad \mathbf{v}_{ij} = \begin{bmatrix} h_{i1}h_{j1}, h_{i1}h_{j2} + h_{i2}h_{j1}, h_{i2}h_{j2}, \\ h_{i3}h_{j1} + h_{i1}h_{j3}, h_{i3}h_{j2} + h_{i2}h_{j3}, h_{i3}h_{j3} \end{bmatrix}^T$$

Camera parameters

Intrinsic camera parameters

$$v_{0} = (B_{12}B_{13} - B_{11}B_{23})/(B_{11}B_{22} - B_{12}^{2})$$

$$\lambda = B_{33} - [B_{13}^{2} + v_{0}(B_{12}B_{13} - B_{11}B_{23})]/B_{11}$$

$$\alpha = \sqrt{\lambda/B_{11}}$$

$$\beta = \sqrt{\lambda B_{11}/(B_{11}B_{22} - B_{12}^{2})}$$

$$c = -B_{12}\alpha^{2}\beta/\lambda$$

$$u_{0} = cv_{0}/\alpha - B_{13}\alpha^{2}/\lambda$$

$$A = \begin{pmatrix} \alpha & c & u_{0} \\ 0 & \beta & v_{0} \\ 0 & 0 & 1 \end{pmatrix}$$

Rotation and translation

$$\mathbf{r}_1 = \lambda \mathbf{A}^{-1} \mathbf{h}_1, \ \mathbf{r}_2 = \lambda \mathbf{A}^{-1} \mathbf{h}_2, \ \mathbf{r}_3 = \mathbf{r}_1 \times \mathbf{r}_2, \ \mathbf{t} = \lambda \mathbf{A}^{-1} \mathbf{h}_3$$

$$\lambda = 1/\|\mathbf{A}^{-1} \mathbf{h}_1\| = 1/\|\mathbf{A}^{-1} \mathbf{h}_2\|$$

Distortion

Distortion model ((x,y) undistorted image coordinates):

$$\ddot{x} = x + x[k_1(x^2 + y^2) + k_2(x^2 + y^2)^2]$$

$$\ddot{y} = y + y[k_1(x^2 + y^2) + k_2(x^2 + y^2)^2]$$

Converted to pixels by:

$$\begin{aligned}
\ddot{u} &= u_0 + \alpha \ddot{x} + c \ddot{y} \\
\ddot{v} &= v_0 + \beta \ddot{y}
\end{aligned} \qquad \mathsf{A} = \begin{pmatrix} \alpha & c & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\ddot{u} = u + (u - u_0)[k_1(x^2 + y^2) + k_2(x^2 + y^2)^2]$$

$$\ddot{v} = v + (v - v_0)[k_1(x^2 + y^2) + k_2(x^2 + y^2)^2]$$

i.e. distortion model centered at u_0 and v_0 .

Distortion

Distortion model ((x,y) undistorted image coordinates):

$$\ddot{x} = x + x[k_1(x^2 + y^2) + k_2(x^2 + y^2)^2]$$

$$\ddot{y} = y + y[k_1(x^2 + y^2) + k_2(x^2 + y^2)^2]$$

Centered at u_0 and v_0 :

$$\ddot{u} = u + (u - u_0)[k_1(x^2 + y^2) + k_2(x^2 + y^2)^2]$$

$$\ddot{v} = v + (v - v_0)[k_1(x^2 + y^2) + k_2(x^2 + y^2)^2]$$

Solution:

$$\begin{bmatrix} (u-u_0)(x^2+y^2) & (u-u_0)(x^2+y^2)^2 \\ (v-v_0)(x^2+y^2) & (v-v_0)(x^2+y^2)^2 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} \breve{u}-u \\ \breve{v}-v \end{bmatrix}$$

$$\mathbf{b}$$

$$\mathbf{k} = (\mathbf{D}^T \mathbf{D})^{-1} \mathbf{D}^T \mathbf{d}$$

Non-linear optimization

In practice, closed-form solution is used for initialization of non-linear optimization problem

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \|\mathbf{m}_{ij} - \breve{\mathbf{m}}(\mathbf{A}, k_1, k_2, \mathbf{R}_i, \mathbf{t}_i, \mathbf{M}_j)\|^2$$

Solved with Levenberg-Marquardt algorithm.

Without skew at least 2 images are needed, the more the better.

Summary

- Show the plane under n different orientations (n > 1)
- Estimate the n homography matrices (analytic solution followed by MLE)
- Solve analytically the 6 intermediate parameters (defined up to a scale factor)
- Extract the five intrinsic parameters
- Compute the extrinsic parameters
- Refine all parameters with MLE

Experimental results

/12/2025

Extracted corner points

Reprojection error

Number of images

Table 1: Results with real data of 2 through 5 images

nb	2 images			3 images			4 images			5 images		
	initial	final	σ	initial	final	σ	initial	final	σ	initial	final	σ
α	825.59	830.47	4.74	917.65	830.80	2.06	876.62	831.81	1.56	877.16	832.50	1.41
β	825.26	830.24	4.85	920.53	830.69	2.10	876.22	831.82	1.55	876.80	832.53	1.38
γ	0	0	0	2.2956	0.1676	0.109	0.0658	0.2867	0.095	0.1752	0.2045	0.078
u_0	295.79	307.03	1.37	277.09	305.77	1.45	301.31	304.53	0.86	301.04	303.96	0.71
v_0	217.69	206.55	0.93	223.36	206.42	1.00	220.06	206.79	0.78	220.41	206.59	0.66
k_1	0.161	-0.227	0.006	0.128	-0.229	0.006	0.145	-0.229	0.005	0.136	-0.228	0.003
k_2	-1.955	0.194	0.032	-1.986	0.196	0.034	-2.089	0.195	0.028	-2.042	0.190	0.025
RMS	0.761	0.761 0.295		0.987	0.393		0.927	0.361		0.881	0.335	

Correction of Radial Distortion

Original image

Capture images

Click on four corners, corners extracted automatically

Extrinsic parameters

Reprojection error

Multi-view geometry problems

Structure: Given projections of the same 3D point in two or more images, compute the 3D coordinates of that

Multi-view geometry problems

Stereo correspondence: Given a point in one of the images, where could its corresponding points be in the

Multi-view geometry problems

Motion: Given a set of corresponding points in two or more images, compute the camera parameters

Triangulation

Given projections of a 3D point in two or more images (with known camera matrices), find the coordinates of the point

Triangulation

We want to intersect the two visual rays corresponding to x_1 and x_2 , but because of noise and numerical errors, they don't meet exactly

Triangulation: Geometric approach

Find shortest segment connecting the two viewing rays and let X be the midpoint of that segment

Triangulation: Linear approach

$$\lambda_1 x_1 = P_1 X$$
 $x_1 \times P_1 X = 0$ $[x_{1x}]P_1 X = 0$
 $\lambda_2 x_2 = P_2 X$ $x_2 \times P_2 X = 0$ $[x_{2x}]P_2 X = 0$

Cross product as matrix multiplication:

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = [\mathbf{a}_{\times}]\mathbf{b}$$

Triangulation: Nonlinear approach

Find X that minimizes

$$d^{2}(x_{1}, P_{1}X) + d^{2}(x_{2}, P_{2}X)$$

Two-view geometry

Epipolar geometry

- Baseline line connecting the two camera centers
- Epipolar Plane plane containing baseline (1D family)
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center

Epipolar geometry

- Baseline line connecting the two camera centers
- Epipolar Plane plane containing baseline (1D family)
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- **Epipolar Lines** intersections of epipolar plane with image planes (always come in corresponding pairs)

Example: Converging cameras

Example: Motion parallel to image plane UNIVERSITÄT BONN

Example: Motion perpendicular to image UNIVERSITÄT BONN plane

Example: Motion perpendicular to image UNIVERSITÄT BONN plane

Example: Motion perpendicular to image

UNIVERSITÄT <mark>BONN</mark>

plane

Epipole has same coordinates in both images.

Points move along lines radiating from e: "Focus of expansion"

Epipolar constraint

If we observe a point x in one image, where can the corresponding point x' be in the other image?

Epipolar constraint

Potential matches for x have to lie on the corresponding epipolar line *l*'.

Potential matches for x' have to lie on the corresponding epipolar line I.

Epipolar constraint example

Epipolar constraint: Calibrated case

- Assume that the intrinsic and extrinsic parameters of the cameras are known
- We can multiply the projection matrix of each camera (and the image points) by the inverse of the calibration matrix to get normalized image coordinates
- We can also set the global coordinate system to the coordinate system of the first camera. Then the projection matrix of the first camera is [I | 0].

Epipolar constraint: Calibrated case

- X' is X in the second camera's coordinate system
- Projections of X and X' by homogeneous vectors x and x'
- The vectors x, t, and Rx' are coplanar

From geometry to algebra

$$X = RX' + T$$

$$T \times X =$$
Normal to the plane

 $= \mathbf{T} \times \mathbf{R} \mathbf{X}'$

$$\mathbf{X} \cdot (\mathbf{T} \times \mathbf{X}) = \mathbf{X} \cdot (\mathbf{T} \times \mathbf{RX'})$$
$$= 0$$

Kristen Grauman

Epipolar constraint: Calibrated case

Essential Matrix

(Longuet-Higgins, 1981)

Epipolar constraint: Calibrated case

- E x' is the epipolar line associated with x' (I = E x')
- E^Tx is the epipolar line associated with x (I' = E^Tx)
- E e' = 0 and $E^{T}e = 0$
 - E is singular (rank two)
- E has five degrees of freedom

Essential matrix example: parallel

cameras

$$\mathbf{R} =$$

$$T =$$

$$\mathbf{E} = [\mathbf{T}_{\mathbf{x}}]\mathbf{R} =$$

$$\mathbf{p} = [x, y, f]$$

 $\mathbf{p'} = [x', y', f]$

$$\mathbf{p'}^{\mathrm{T}}\mathbf{E}\mathbf{p} = 0$$

For the parallel cameras, image of any point must lie on same horizontal line in each image plane.

Epipolar constraint: Uncalibrated case

The calibration matrices K and K' of the two cameras are unknown

We can write the epipolar constraint in terms of unknown normalized coordinates:

$$\hat{x}^T E \hat{x}' = 0 \qquad x = K \hat{x}, \quad x' = K' \hat{x}'$$

Epipolar constraint: Uncalibrated case

$$\hat{x} = K^{-1}x$$

$$\hat{x}' = K'^{-1}x'$$

Fundamental Matrix

(Faugeras and Luong, 1992)

Epipolar constraint: Uncalibrated case

- F x' is the epipolar line associated with x'(I = F x')
- F^Tx is the epipolar line associated with $x(I' = F^Tx)$
- Fe' = 0 and $F^{T}e = 0$
- F is singular (rank two)
- F has seven degrees of freedom

Lazebnik

The eight-point algorithm

$$x = (u, v, 1)^T, x' = (u', v', 1)^T$$

THE EIGHT-POINT AIGORD
$$x = (u, v, 1)^{T}, \quad x' = (u', v', 1)^{T}$$

$$(u, v, 1) \begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{pmatrix} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0$$

$$(uu', uv', u, vu', vv', v, u', v', 1) \begin{pmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{pmatrix}$$

$$\begin{pmatrix} u_1u_1' & u_1v_1' & u_1 & v_1u_1' & v_1v_1' & v_1 & u_1' & v_1' \\ u_2u_2' & u_2v_2' & u_2 & v_2u_2' & v_2v_2' & v_2 & u_2' & v_2' \\ u_3u_3' & u_3v_3' & u_3 & v_3u_3' & v_3v_3' & v_3 & u_3' & v_3' \\ u_4u_4' & u_4v_4' & u_4 & v_4u_4' & v_4v_4' & v_4 & u_4' & v_4' \\ u_5u_5' & u_5v_5' & u_5 & v_5u_5' & v_5v_5' & v_5 & u_5' & v_5' \\ u_6u_6' & u_6v_6' & u_6 & v_6u_6' & v_6v_6' & v_6 & u_6' & v_6' \\ u_7u_7' & u_7v_7' & u_7 & v_7u_7' & v_7v_7' & v_7 & u_7' & v_7' \\ u_8u_8' & u_8v_8' & u_8 & v_8u_8' & v_8v_8' & v_8 & u_8' & v_8' \end{pmatrix} \begin{pmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \end{pmatrix} = -\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
 Minimize:
$$\sum_{i=1}^{N} (x_i^T F x_i')^2$$
 under the constraint
$$F_{33} = 1$$
 under the constraint
$$F_{33} = 1$$

Minimize:

$$\sum_{i=1}^{N} (x_i^T F x_i')^2$$

under the constraint

The eight-point algorithm

• Meaning of error $\sum_{i=1}^{N} (x_i^T F x_i')^2$:

sum of Euclidean distances between points x_i and epipolar lines Fx'_i (or points x'_i and epipolar lines F^Tx_i) multiplied by a scale factor

Nonlinear approach: minimize

$$\sum_{i=1}^{N} \left[d^{2}(x_{i}, F x_{i}') + d^{2}(x_{i}', F^{T} x_{i}) \right]$$

Problem with eight-point algorithm

$$\begin{pmatrix} u_1u'_1 & u_1v'_1 & u_1 & v_1u'_1 & v_1v'_1 & v_1 & u'_1 & v'_1 \\ u_2u'_2 & u_2v'_2 & u_2 & v_2u'_2 & v_2v'_2 & v_2 & u'_2 & v'_2 \\ u_3u'_3 & u_3v'_3 & u_3 & v_3u'_3 & v_3v'_3 & v_3 & u'_3 & v'_3 \\ u_4u'_4 & u_4v'_4 & u_4 & v_4u'_4 & v_4v'_4 & v_4 & u'_4 & v'_4 \\ u_5u'_5 & u_5v'_5 & u_5 & v_5u'_5 & v_5v'_5 & v_5 & u'_5 & v'_5 \\ u_6u'_6 & u_6v'_6 & u_6 & v_6u'_6 & v_6v'_6 & v_6 & u'_6 & v'_6 \\ u_7u'_7 & u_7v'_7 & u_7 & v_7u'_7 & v_7v'_7 & v_7 & u'_7 & v'_7 \\ u_8u'_8 & u_8v'_8 & u_8 & v_8u'_8 & v_8v'_8 & v_8 & u'_8 & v'_8 \end{pmatrix} \begin{pmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \end{pmatrix} = - \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Problem with eight-point algorithm

								(F_{11})	\ /	(1)
50906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81	F_{12}) [1
2692.28	131633.03	176.27	6196.73	302975.59	405.71	15.27	746.79	l		1
16374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81	F_{13}		Ι
91183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65	F_{21}		1
48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15	F_{22}		1
64786.04	546559.67	813.17	1998.37	6628.15	9.86	202.65	672.14	F_{23}		1
16407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64	F_{31}		1
35384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48) (1
								$\setminus F_{32}$	/ \	L L

- Poor numerical conditioning
- Can be fixed by rescaling the data

The normalized eight-point algorithm

(Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute F from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of F and throw out the smallest singular value)
- Transform fundamental matrix back to original units: if T and T' are the normalizing transformations in the two images, than the fundamental matrix in original coordinates is T^T F T'

Comparison of estimation algorithms

	8-point	Normalized 8-point	Nonlinear least squares
Av. Dist. 1	2.33 pixels	0.92 pixel	0.86 pixel
Av. Dist. 2	2.18 pixels	0.85 pixel	0.80 pixel

Lazebnik

From epipolar geometry to camera calibration

- Estimating the fundamental matrix is known as "weak calibration"
- If we know the calibration matrices of the two cameras, we can estimate the essential matrix: E = K^TFK'
- The essential matrix gives us the relative rotation and translation between the cameras, or their extrinsic parameters

UNIVERSITÄT BONN