1. samostatná práce

Zadání 1

1.
$$f(x) = \frac{1}{2}(x+|x|)$$
, $g(x) = \begin{cases} x & x < 0 \\ x^2 & x \ge 0 \end{cases}$. Najděte $f \circ g$ a $g \circ f$.

2. Rozložte na parciální zlomky racionální lomenou funkci $R(x) = \frac{6x^4 - 5x^3 + 37x^2 - 35x + 37}{x^5 - x^4 + 8x^3 - 8x^2 - 9x + 9}$

Rozklad jmenovatele v reálném oboru najděte pomocí Hornerova schématu. Soustavu rovnic pro neurčité koeficienty zapište v maticovém tvaru, její řešení můžete najít pomocí Maple (nebo jiného softwaru).

- 3. Najděte asymptoty grafu funkce $f(x) = x^2 \left(\frac{\pi}{4} \arctan \frac{x^2}{x^2 4} \right)$.
- 4. Načrtněte graf funkce spojité na na $\mathbb{R} \{1\}$, pro kterou platí:

$$f(0) = f(-1) = 0$$
, $\lim_{x \to 1} f(x) = \infty$, $\lim_{x \to -\infty} f(x) = -2$, $f'(0) = -2$, $\lim_{x \to -1} f'(x) = \infty$,

$$f''(x) > 0$$
 pro $x \in (-\infty, -1), x \in (0, 1)$ a $x \in (1, \infty), f''(x) < 0$ pro $x \in (-1, 0), x \in (-1, 0)$

přímka y = -x je asymptota pro $x \to \infty$.

Do obrázku nakreslete všechny asymptoty a tečny ke grafu funkce v bodě $\,x=0\,$ a $\,x=-1\,$.

V grafu červeně vyznačte $f^{-1}(\{0\})$.

Pomocí získaného grafu načrtněte do dalších obrázků grafy funkcí |f(|x|)| a |f(-x)|.