CSC236 tutorial exercises, Week #8

Here are your tutorial sections:

Surname	Time	Room	TA
A-K	Friday 11	SS1088	Zhaowei
L-Tg	Friday 11	SS2105	Hamed
hoTh $-$ Z	Friday 11	BA2175	Gal
A–L	Friday noon	AB114	Wen
M–Z	Friday noon	BF323	Lauren
A-K	Friday 1	BA1170	Ammar
L-Tg	Friday 1	AB107	Alex
hoTh $-$ Z	Friday 1	AB114	Shems
A-K	Thursday 8	BA2139	Zach
L-Tg	Thursday 8	BA2185	Ekansh
\parallel Th–Z	Thursday 8	BA2195	Danniel

These exercises are meant to give you practice applying the Master Theorem to divide-and-conquer algorithms.

- 1. A non-empty array A with integer entries has the property that no odd number occurs at a lower index than an even number. Devise a divide-and-conquer algorithm for finding the highest index of an even number element, or -1 if A has no elements that are even numbers. Use the Master Theorem to bound the asymptotic time complexity of your algorithm.
- 2. Consider this informal algorithm for QuickSort of a non-empty array A of distinct integers
 - (a) Choose a pivot, p from A in constant time
 - (b) Partition A into A_{p^-} consisting of elements less than p, [p] itself, and A_{p^+} consisting of elements greater than p. Recursively QuickSort A_{p^-} and A_{p^+}
 - (c) Concatenate the sorted version of A_{p^+} , [p], and the sorted version of A_{p^+}

Write a recurrence T, for the time complexity of QuickSorting A. Assume the worst (that the constant-time choice of a pivot is consistently unlucky), and use repeated substitution to find a closed form for T. Assume the best (that the constant-time choice of a pivot is consistently lucky) and use the Master Theorem to bound T.