STAT S4240 002, Homework 2

Brian Weinstein (bmw2148)

July 23, 2015

Problem 1: PCA

(a) Column means

```
> apply(rawData, 2, mean)
        x1        x2        x3        x4        x5
6.049104 -8.277221  4.665532  7.914270 62.138753
```

Row means

```
> apply(rawData, 1, mean)
       -0.1277116
                    20.8162864
                                 -8.8984358
                                              25.5999204
                                                          -9.7472153
  [6]
       64.0626702
                    22.0392371
                                              31.7598224 -13.8680290
                                 23.3914888
 [91]
        1.2105932
                    21.2145724
                                 -8.4896595
                                              19.0639963
                                                          20.9767512
 [96]
        3.5962333
                    22.3461063
                                  0.7145014
                                              6.3080005
                                                          64.8829556
```

The nonzero column means indicate that each variable isn't centered. In this context the row means indicate .

row means?

(b) Empirical covariance matrix

```
x1
                      x2
                                 x3
                                           x4
                                                      x5
    72.96417
               -83.90858
                          53.23708
                                     120.1162
                                                568.4105
x1
x2 -83.90858
               110.89101 -63.89570 -115.9430 -817.3388
    53.23708
              -63.89570
                          39.60282
                                      83.7386
                                                445.2511
x4 120.11620 -115.94304
                          83.73860
                                     232.1333
                                                683.5587
x5 568.41046 -817.33884 445.25112
                                     683.5587 6288.8569
```

The diagonal values tell us the variance of the variable indicated in the column (or equivalently, the row). The off-diagonal elements indicate the covariance between the two variables that intersect at that element.

(c) The eigenvalues and eigenvectors of the empirical covariance matrix sig:

```
> eigen(sig)
$values
[1] 6.557348e+03 1.868951e+02 2.038354e-01 9.775594e-04 9.373658e-05
$vectors
           [,1]
                     [,2]
                                 [,3]
                                            [,4]
                                                       [,5]
[1,]
     0.09009603 -0.3247102 -0.383470773 0.82286709
                                                  0.24957150
[2,] -0.12797842  0.1364755  0.227047683 -0.11412319
                                                  0.94890526
     0.07028767 -0.1941349 0.894987159 0.37278501 -0.13191135
     0.11077853 - 0.9008231 - 0.019718518 - 0.40719485
[4,]
                                                  0.10024632
     [5,]
                                                  0.09921159
```

Since it's a symmetric matrix, sig has the same left eigenvectors as right eigenvectors.

(d) The loadings are the eigenvectors (see part c). The scores are:

```
> data%*%t(evecs)
                                            [,3]
                [,1]
                              [,2]
                                                         [,4]
                                                                      [,5]
        -25.9233299
                                                  -8.91350845 -10.7755359
  [1,]
                     -50.96254603
                                    -4.06557021
  [2,]
         13.3064897
                      13.56908728
                                     6.16049505
                                                   0.82185440
                                                                4.8621981
  [3,]
        -37.6872799
                     -93.30323983
                                    -1.02562352 -18.15040050 -16.3848300
 [98,]
        -27.0931525
                     -38.88284377
                                    -8.26671502
                                                 -5.26069573 -10.6527232
 [99,]
        -13.1627026
                     -31.46409161
                                    -1.20277265
                                                  -5.83681744
                                                               -5.6197025
[100,]
         85.7232563
                     184.73133084
                                                 33.54024954
                                    10.16179165
                                                               36.1560703
```

(e) Proportion of variance explained

We only need one principal component. PC #1 accounts for 97% of the variance on its own, and including any additional PCs introduces more complexity than it's worth.

(f) The scores for the new observations:

```
> data2%*%t(evecs2)
                       [,2]
                                 [,3]
                                                            [,5]
            [,1]
                                               [,4]
[1,]
      -6.0639533 -65.32443 16.218208 -20.96720620
                                                     -9.5868019
[2,]
       0.6933977
                  25.72910 -7.634907
                                        8.55181447
                                                      3.0468391
[3,]
       2.0721371
                   1.97324
                            1.575201
                                        0.03853202
                                                      0.9148939
[4,] -19.8318245 -61.16333
                            1.351568 -15.86750900 -14.2082956
[5,]
      -8.6663467 -16.36235 -2.214696 -3.63623397
                                                     -5.2164795
```

where data2 has been column centered.

(g) Coordinates of the projections in the original space:

	[,1]	[,2]	[,3]	[,4]	[,5]
[1,]	19.784390	-23.98670	-4.490318	2.926516	62.37239
[2,]	8.929318	-13.05966	15.636393	19.583344	148.49230
[3,]	12.023796	-16.96235	8.788414	17.696985	126.33419
[4,]	18.112666	-18.77458	3.584542	-7.331764	64.91650
[5,]	13.426490	-16.02315	9.502113	7.001699	108.06507

Euclidean distance from the original data points.

- [1] 28.18795
- [1] 11.86206
- [1] 1.822025
- [1] 21.34198
- [1] 6.733404
- (h) The error vectors are more or less orthogonal to the direction of the first principal component. This is because the error vectors are defined as the direction from the original points to their *orthogonal projections* onto the reduced-dimension space, which, in this case, is primarily captured by the first PC.

code isn't working

Problem 2: PCA with Yale Faces B

Problem 3: James 3.7.3

(a) asdfasdf

Todo list

row means?																				1
code isn't working																				5