Nom: Prénom: Classe:

## Correction de l'interrogation n°2

(Calculatrice interdite)

Exercice 1 (Questions de cours) ( / 2)

Compléter:

- 1.  $\lim_{x \to -\infty} e^x = 0$  et  $\lim_{x \to -\infty} x^4 = +\infty$ .
- 2. f est convexe sur I si et seulement si, pour tout  $x \in I$ ,  $f''(x) \ge 0$ .

**Exercice 2** ( / 2)

Dériver la fonction  $f : x \mapsto \sqrt{e^x}$  sur  $\mathbb{R}$ .

Pour tout  $x \in \mathbb{R}$ , on écrit  $f(x) = \sqrt{e^x} = \sqrt{u(x)}$  avec  $u(x) = e^x$ .

On a alors que u est dérivable sur  $\mathbb{R}$  et pour  $x \in \mathbb{R}$ , on a  $u(x) = e^x$ .

Donc pour 
$$x \in \mathbb{R}$$
, on a  $f'(x) = \frac{u'(x)}{2\sqrt{u(x)}} = \frac{e^x}{2\sqrt{e^x}} = \frac{\sqrt{e^x}}{2}$ .

**Exercice 3** ( / 3)

Voici le tableau de variation de la fonction dérivée f' d'une fonction f dérivable sur [-5, 8].



Cocher si les assertions suivantes sont vraies ou fausses (on cochera faux dès lors que l'on ne peut pas affirmer une assertion) :

|                                              | Vrai | Faux        |
|----------------------------------------------|------|-------------|
| $\mathbf{A}/f$ est croissante sur $[3,8]$ .  |      | $\boxtimes$ |
| $\mathbf{B}/f$ est positive sur $[-5, -1]$ . |      | $\boxtimes$ |
| $\mathbb{C}/f$ est concave sur $[-1,3]$ .    |      |             |

Exercice 4 ( / 3)

On définit la fonction 
$$f: x \mapsto \frac{2x^3 + 6x^2 - 9x + 1}{x^2 + x - 2}$$
 sur  $\mathbb{R} \setminus \{-2, 1\}$ .

Le but de cet exercice est de calculer  $\lim_{x\to 1} f(x)$ .

1. Expliquer pourquoi il n'est pas possible de calculer cette limite directement.

$$2x^3 + 6x^2 - 9x + 1 \xrightarrow[x \to 1]{} 2 + 6 - 9 + 1 = 0 \text{ et } x^2 + x - 2 \xrightarrow[x \to 1]{} 1 + 1 - 2 = 0.$$

On ne peut pas calculer directement la limite puisqu'un quotient dont le numérateur et le dénominateur convergent vers 0 conduit à une forme indéterminée.

**2.** On admet que pour tout  $x \in \mathbb{R}$ , on a :

$$2x^3 + 6x^2 - 9x + 1 = (x - 1)(2x^2 + 8x - 1)$$
 et  $2x^2 + x - 2 = (x - 1)(x + 2)$ 

En déduire la valeur de  $\lim_{x\to 1} f(x)$ .

D'après les informations de l'énoncé, pour  $x \in \mathbb{R} \setminus \{-2, 1\}$ , on a :

$$f(x) = \frac{(x-1)(2x^2 + 8x - 1)}{(x-1)(x+2)} = \frac{2x^2 + 8x - 1}{x+2}$$

Or 
$$2x^2 + 8x - 1 \xrightarrow[x \to 1]{} 2 + 8 - 1 = 9$$
 et  $x + 2 \xrightarrow[x \to 1]{} 1 + 2 = 3$ .  
Donc  $\lim_{x \to 1} f(x) = \frac{9}{3} = 3$ .