

概述:

本电路为高性能、具有四个独立的运算放大器,内含相位补偿电路,适用于收录机和音调系统作音调均衡网络,也用于其他场合。

主要特点:

- 无需外接相位补偿电路
- 电源电压范围宽: 单电源时, Vcc=3~30V, 双 电源时, Vcc=±1.5V~15V
- 功耗电流小:Icc=0.6mA(典型)(RL=∞)
- 输入电压范围可接近地电平

SOP14

内部电路图

原理简介

引出端功能符号

引出端序号	功能	符 号	引出端序号	功能	符 号
1	输出1	out ₁	8	输出3	OUT ₃
2	反向输入1	IN- (1)	9	反向输入3	IN- (3)
3	正向输入1	IN+ (2)	10	正向输入3	IN+ (3)
4	电源	Vcc	11	地	GND
5	正向输入2	IN+ (2)	12	正向输入4	IN+ (4)
6	反向输入2	IN- (2)	13	反向输入4	IN- (4)
7	输出 2	OUT ₂	14	输出 4	OUT ₄

- 1 - 2016-5-6

极限值(绝对最大额定值,若无其它规定,Tamb=25℃)

参数	符 号	测试条件额定值		单 位
电源电压	Vcc		32	V
差动输入电压	VID		32	V
最大输入电压	Vin		-0.3~32	V
允许功耗	Pd		400	mW
工作温度	Topr		0~+70	$^{\circ}$ C
贮存温度	Tstg		-55~+125	$^{\circ}$

电特性 (若无其它规定, Vcc=5V, Tamb=25℃)

参数	符号	测试条件	最小植	典型值	最大值	单位
失调输入电压	Vio	Vcc=5V,Vo=1.4V	-5		5	mV
输入失调电流	Iıo	Vcc=5V,Vo=1.4V			100	nA
输入偏置电流	IBA	Vcc=5V,Vo=1.4V			250	nA
共模输入电压范围	VICM		0		Vcc-1.5	V
共模抑制比	Kcmr	Vcc=15V,Vo=1.4V	65			dB
强信号电压增益	Gv	Vcc=15V,RL \geqslant 2 k Ω	85			
输出电压范围	Vo		0		Vcc-1.5	V
电源纹波抑制比	PSRR	Vcc=5~30V,Vo=1.4V	67			dB
通道分离	Cs	f=1kHz~20kHz		120		dB
消耗电流(1)	Icc	Vcc=3V	0.2		1.2	
消耗电流(2)	Icc	Vcc=32V	0.3		3	mA
输出电流(1)	Io	Vin ⁺ =1V,Vin ⁻ =0V	20			mA
输出电流(2)	Io	Vin ⁺ =0V,Vin ⁻ =1V	10			mA

测试原理图(注: NULL 指零放大器)

IBA= (Vf4-Vf3) /2R (1+R2/R1) 输入偏置电流 IBA 测试图

 CMR=20log | (Ec1-Ec2) (1+R2/R1) / (Vf5-Vf6 |

 共模抑制比 CMR 及共模输入电压范围 VICM 测试图

Gv=(Ek1-Ek2)(1+R2/R1)/(Vf8-Vf7) 电压增益 Gv 测试图

PSRR (+) =20log | (Vcc1-Vcc2) (1+R2/R1) / (Vf9-Vf10) | PSRR (-) =20log | (Vee1-Vee2) (1+R2/R1) / (Vf11-Vf12 | 电源纹波抑制比 PSRR 测试图

消耗电流 Icc 及输出电流 Io 测试图

通道分离度 Cs 测试图

SW: A Cs $(A\rightarrow B) = 20\log (R2*VoA) / (R1*VoB)$

SW: B Cs (B \rightarrow A) =20log (R2*Vo_B) / (R1*Vo_A)

应用图

LM324用于五频率音调控制电路

- 4 - 2016-5-6

特性曲线

