Exerzitien II

Submit your *concise* solutions in the correct order and no later than 4:10 pm on Sept. 29, in your tutorial.

Reading suggestion: **Sums and direct sums**, Review all of Chapter 1 in Axler, and read first section of Chapter 2.

Exercise 1.

- 1. Let U_1 , U_2 be subspaces of the vector space V. Prove that their intersection $U_1 \cap U_2$ is also a subspace of V.
- 2. Let $U_1, U_2, ...$ be an infinite collection of subspaces, where each subspace U_n is labeled by a natural number $n \in \mathbb{N}$. Prove that the intersection of all the U_n is a subspace of V. In other words, show that the following is a subspace of V:

$$\bigcap_{n\in\mathbb{N}}U_n=\{x\in V\ :\ x\in U_n\ for\ all\ n\in\mathbb{N}\}$$

3. Is the union $U_1 \cup U_2$ of subspaces also a subspace? If yes, prove it, if no, give a counterexample.

Exercise 2. Let $V = \mathbb{R}^{\mathbb{R}}$ be the real vector space of functions from \mathbb{R} to \mathbb{R} . Define the "even" and "odd" functions as follows:

$$V_e := \{ f \in V \mid f(-x) = f(x) \ \forall x \in \mathbb{R} \},\$$

 $V_o := \{ f \in V \mid f(-x) = -f(x) \ \forall x \in \mathbb{R} \}.$

- 1. Prove that V_e and V_o are subspaces.
- 2. Show that the sum $V_e + V_o$ is all of V.
- 3. Prove that the sum is direct, i.e. $V = V_e \oplus V_o$.
- 4. Give the decomposition of the function $f(x) = e^x$ according to the above direct sum. That is, write f as a sum $f = f_e + f_o$, where $f_e \in V_e$ and $f_o \in V_o$. Do you recognize f_e , f_o ?

Exercise 3. Let $V = (\mathbb{F}_2)^3$, the set of triples (x, y, z) of numbers in \mathbb{F}_2 , the field with two elements. V is a vector space over \mathbb{F}_2 .

- 1. Prove that any subspace of V must have either 1, 2, 4, or 8 elements.
- 2. List all the subspaces of V with 1, 2, 4, and 8 elements.
- 3. Give a system of linear equations whose solutions give exactly the linear subspace $\{(0,0,0),(1,1,1)\}$.