BIONLP AND ITS APPLICATIONS

Shankai Yan (NCBI/NIH)

Homepage: skyan.me

Lecture Materials:

skyan.me/lectures/online/bionlp-intro

What is BioNLP

Biomedical Natural Language Processing, Biomedical Text Mining

Knowledge extraction from text in biomedical/clinical field

Objective: Facilitate understanding and decision making in computational way

Subfield of bioinformatics

Common: sequence data

Difference: alphabet

Data

Data is generated by human

Biomedical Literature

Clinical Notes

i2b2

 Textual Description in Knowledge Database

NLP Tasks

Basic Tasks:

- □ Tokenization (paragraph, sentence, words)
- □ POS Tagging (noun, verb, adj), Lemmatization, Stem
- □ Dependency Parsing

Advance Tasks:

- □ Name Entity Recognition (PubTator)
- ☐ Information Retrieval (PubMed)
- □ Document classification (Multi-class & Multi-label)
- □ Information Extraction

Protein-Protein-Interaction

Gene-Gene-Interaction

Drug-Drug-Interaction

Biological Event

□ Question Answering

NER

Online Tools

API Calling

Write your own code

Export Annotations

Export our annotated publications in batches of up to 100 in GET or 1000 in POST, in BioC, publicator or JSON formats. To programmatically retrieve text-mined results in PubTator, one can use web queries as follows:

https://www.ncbi.nlm.nih.gov/research/pubtator-api/publications/export/[Format]?[Type]=[Identifiers]&concepts=[Bioconcepts]

Parameters

F	Parameter	Description
		pubtator (pubtator)
	ormat	biocxml (BioC-XML)
F	Offilat	biocjson (BioC-JSON)

NER Methods Dictionary-based ML-based

Deep Learning Model (PhenoTagger[1])

[1] Luo, L., **Yan, S**., Lai, P. T., Veltri, D., Oler, A., Xirasagar, S., ... & Lu, Z. (2021). PhenoTagger: a hybrid method for phenotype concept recognition using human phenotype ontology. *Bioinformatics*, *37*(13), 1884-1890.

Example of Document ClassificationCancer Hallmark Annotation[2]

... Genes that were overexpressed in OM3 included oncogenes, cell cycle regulators, and those involved in signal transduction, whereas genes for DNA repair enzymes and inhibitors of transformation and metastasis were suppressed. In arsenic-treated cells, multiple DNA repair proteins were overexpressed. ... [3]

- [2] **Yan, Shankai**, and Ka-Chun Wong. "Elucidating high-dimensional cancer hallmark annotation via enriched ontology." *Journal of biomedical informatics* 73 (2017): 84-94.
- [3] Bae, Dong-Soon, et al. "Characterization of gene expression changes associated with MNNG, arsenic, or metal mixture treatment in human keratinocytes: application of cDNA microarray technology." *Environmental Health Perspectives* 110.suppl 6 (2002): 931-941.

- Activating invasion and metastasis (IM)
- Genomic instability and mutation (GI)
- Sustaining proliferative signaling (PS)
- Evading growth suppressors (GS)

Multi-label Classification

Example of IEBacteria Gene Interaction Extraction[4]

[4] Yan, Shankai, and Ka-Chun Wong. "Context awareness and embedding for biomedical event extraction." Bioinformatics 36.2 (2020): 637-643. [5] Weir, J; Predich, M; Dubnau, E; Nair, G; Smith, I. (1991). Regulation of spo0H, a gene coding for the Bacillus subtilis sigma H factor. J. Bacteriol. vol. 173 (2) p. 521-529

TRIGGER-BASED APPROACH

- Extract lexical features from text
- Construct word
 matrix, edge matrix
 and label matrices.

Preprocessing

Classifiers Training

- Multiclass
- TriggerClassification
- Edge Classification

- Annotate the triggers
- Induce relation records

Post-processing

Non-Trigger Approach

Deep Learning Approach [4]

[4] **Yan, Shankai**, and Ka-Chun Wong. "Context awareness and embedding for biomedical event extraction." Bioinformatics 36.2 (2020): 637-643.

Difference from Conventional NLP Tasks

- ☐ Contains Biomedical Symbols,
 - **Punctuations, Terms**
- ☐ The writers are from the
 - biomedical/clinical expertise group
- □ Different Corpus/Context

Leaderboard

[6] Wang, Alex, et al. "GLUE: A multi-task benchmark and analysis platform for natural language understanding." arXiv preprint arXiv:1804.07461 (2018).

[7] Peng, Yifan, **Shankai Yan**, and Zhiyong Lu. "Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets." arXiv preprint arXiv:1906.05474 (2019).

	Metrics	SOTA*	ELMo	BioBERT	Our BERT			
Task					Base (P)	Base (P+M)	Large (P)	Large (P+M)
MedSTS	Pearson	83.6	68.6	84.5	84.5	84.8	84.6	83.2
BIOSSES	Pearson	84.8	60.2	82.7	89.3	91.6	86.3	75.1
BC5CDR-disease	F	84.1	83.9	85.9	86.6	85.4	82.9	83.8
BC5CDR-chemical	F	93.3	91.5	93.0	93.5	92.4	91.7	91.1
ShARe/CLEFE	F	70.0	75.6	72.8	75.4	77.1	72.7	74.4
DDI	F	72.9	78.9	78.8	78.1	79.4	79.9	76.3
ChemProt	F	64.1	66.6	71.3	72.5	69.2	74.4	65.1
i2b2	F	73.7	71.2	72.2	74.4	76.4	73.3	73.9
HoC	F	81.5	80.0	82.9	85.3	83.1	87.3	85.3
MedNLI	acc	73.5	71.4	80.5	82.2	84.0	81.5	83.8
Total			78.8	80.5	82.2	82.3	81.5	79.2

Feature Extraction:

Tokenization, Bag-of-Words, Normalization

Tokenization, Word Embeddings, Language Model

Methods

Classification/Regression/ Model:

SVM/RandomForest

Language Model/Encoder:

LSTM/CNN/BERT

Traditional Machine Learning Methods

Handcrafted Features

Tokens

Part-of-speech

Entity type

Grammatical function tag

Distance in the parse tree

Classifical ML models

Support Vector Machine (SVM)

Bayesian Classifier

Multi-layer Perception (MLP)

Ensemble Classifiers (Random

Forest, Extra Trees, etc.)

SOTA Deep Learning Methods

Word Embedding / Language Model (Pre-trained)

Sequence to Vector

Encoder:

- Bag of Embedding
- RNN/LSTM/GRU
- CNN

Classifier:

- Linear
- MLP

Packages

NLTK: simple text processing

SpaCy: Pipeline

Stanza: Pipeline

Gensim: Word/Doc Embedding

Hugging Face (Transformers): SOTA Model

Text Mining on Knowledge Databases

Experiment Repositories:

GEO/DECIPHER

Ontology:

GO/HPO

DATA DESCRIPTION IN GEO

OBJECTIVE

PROBLEM Gene1 Drug2 Gene2 Drug1 Disease1 Disease2

Sample Clustering

$$SJ(S_a, S_b) = \frac{J(S_a^{up}, S_b^{up}) + J(S_a^{down}, S_b^{down}) - J(S_a^{up}, S_b^{down}) - J(S_a^{down}, S_b^{up})}{2}$$

Signature a

- Gene₁
- Gene₂
- Gene₃
- Gene_{n-1}
- Gene_n

$S_a^{up} = \{ Up\text{-regulated Genes} \}$

$$S_a^{down} = \{ Down-regulated Genes \}$$

Differential Gene Expression Analysis

Signature b

- Gene₁
- Gene₂
- Gene₃
- :
- Gene_{n-1}
- Genen

$$S_b^{up} = \{\text{Up-regulated Genes}\}\$$

$$S_b^{down} = \{ Down-regulated Genes \}$$

Signed Jaccard Similarity $SJ(S_a, S_b)$

RESULTS

GSE CLASSIFICATION RESULT

ROC Curve

PRC Curve

	UDT-RF ^[2]	UDT-ET	UDT-AB	UDT-GB	UDT- RbfSVM
Accuracy	0.68	0.63	0.65	0.68	0.56
Precision	0.81	0.83	0.79	0.82	0.62
Recall	0.77	0.69	0.75	0.75	0.58
F score	0.79	0.75	0.77	0.78	0.60

[2] Yan, S. and Wong, K.-C. (2017). Elucidating high-dimensional cancer hallmark annotation via enriched ontology. Journal of Biomedical Informatics, 73, 84–94

GSM CLASSIFICATION RESULT

ROC Curve

PRC Curve

	UDT-RF ^[1]	UDT-ET	UDT-AB	UDT-GB	UDT- RbfSVM
Accuracy	0.96	0.96	0.85	0.87	0.66
Precision	0.95	0.96	0.85	0.89	0.51
Recall	0.94	0.94	0.75	0.76	0.37
F score	0.94	0.95	0.79	0.80	0.30

CLUSTERING RESULT

Euclidean Distance

CLUSTERING RESULT

Thank You