1 • Derivation

$$\begin{split} U &= K_{mech} + K_{rot} \\ mgh &= \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 \\ mgh &= \frac{1}{2}mv^2 + \frac{1}{2}I\frac{v^2}{r^2} \\ mgh &- \frac{1}{2}mv^2 = \frac{1}{2}I\frac{v^2}{r^2} \end{split}$$

By graphing $mgh - \frac{1}{2}mv^2$ on the y-axis and $\frac{v^2}{r^2}$ on the x-axis, the constant slope of $\frac{1}{2}I$ can be obtained, which can be doubled to obtain I.

Having measured the radius and the mass, the theoretical moment of inertia was found using $I = \frac{2}{5}mr^2$:

Radius (m)	Mass (kg)	Theoretical Moment of Inertia (kgm^2)
$1.27 \cdot 10^{-2}$	$6.7 \cdot 10^{-2}$	$4.32 \cdot 10^{-6}$

2 • Procedure

- 1. Mass ball and measure ball radius.
- 2. Attach one end of ramp to pole.
- 3. Release ball and record time for ball to reach ground.
- 4. Repeat for three trials at same pole attachment height to obtain average time.
- 5. Repeat for four different pole attachment heights.

3 • Results

The slope of the graph is $1.35 \cdot 10^{-6} \frac{kg \cdot m^2}{s^2}$, which can be doubled to obtain an I value of $2.70 \cdot 10^{-6} \frac{kg \cdot m^2}{s^2}$, which is within an order of magnitude of the theoretical moment of inertia.