101 : Groupe opérant sur un ensemble. Exemples d'applications.

Dans cette leçon, G désigne un groupe de neutre 1, et X désigne un ensemble.

I. Action d'un groupe sur un ensemble

A. Définitions et premiers exemples

Définition 1 ([R] 19, [U] 27). Une action de G sur X est une application $G \times X \to X$ définie par $(g, x) \mapsto g \cdot x$ vérifiant

- 1. $\forall (g, g') \in G^2, \forall x \in X, g' \cdot (g \cdot x) = (g'g) \cdot x$
- 2. $\forall x \in X, 1 \cdot x = x$

Pour signigier que G agit sur X, on note $G \circlearrowleft X$.

Exemple 2 ([R] 19, [U] 28). — $\mathfrak{S}(X) \circlearrowleft X$ par $\sigma \cdot x = \sigma(x)$

- Si E est un espace vectoriel, alors $GL(E) \circlearrowleft E$ par $\varphi \cdot x = \varphi(x)$
- $(g,x)\mapsto x$ est une action de G sur X, appelée action triviale.

Proposition 3 ([R] 19, [U] 28). La donnée d'une action $(g,x)\mapsto g\cdot x$ de G sur X équivaut à la donnée d'un morphisme $\varphi:G\to\mathfrak{S}(X),\ g\mapsto [x\mapsto g\cdot x],\ appelé$ morphisme associé à l'action de G sur X.

Définition 4 ([R] 19/21, [U] 29). *Soit* $x \in X$. *Alors* :

- L'orbite de x est l'ensemble $Orb(x) = \{g \cdot x \mid g \in G\}$ (aussi noté $G \cdot x$);
- Le stabilisateur de x est l'ensemble $Stab(x) = \{g \in G \mid g \cdot x = x\}.$

Proposition 5 ([U] 34/37). 1. $G \circlearrowleft G$ par $g \cdot h = ghg^{-1}$ (on l'appelle action par conjugaison). Le stabilisateur de $h \in G$ est appelé centralisateur de h, et est noté C(h).

2. G agit sur l'ensemble de ses sous-groupes par $g \cdot H = gHg^{-1}$ (action par conjugaison). Le stabilisateur de $H \leq G$ est appelé normalisateur de H, et est noté N(H).

Définition 6 ([R] 20, [U] 29/31). On dit que l'action de G sur X est transitive si elle n'a qu'une seule orbite, i.e. si $\forall (x,y) \in X^2, \ \exists \ g \in G : g = g \cdot x.$

On dit que l'action de G sur X est fidèle si φ est injective.

Exemple 7 ([U] 31). — $\mathfrak{S}_n \circlearrowleft \llbracket 1, n \rrbracket$ transitivement par $\sigma \cdot i = \sigma(i)$

- $G \circlearrowleft G$ fidèlement par $g \cdot h = gh$ (on l'appelle action par translation à gauche)
- Soit H un sous-groupe de G. L"'action de G sur G/H définie par $g \cdot xH = gxH$, appelée action par translation à gauche, est transitive.

Proposition 8 ([R] 21). Pour tout $x \in X$, Stab(x) est un sous-groupe de G.

Proposition 9 ([U] 30). $xRy \iff \exists g \in G : g = g \cdot x$ définit une relation d'équivalence sur X dont les classes sont les orbites de l'action de G sur X.

Corollaire 10 ([U] 30). Les orbites partitionnent X.

Exemple 11 ([U] 41). Soit $\sigma \in \mathfrak{S}_n$. Le groupe $\langle \sigma \rangle$ agit sur $[\![1,n]\!]$ par $\sigma^k \cdot i = \sigma^k(i)$. Les orbites non ponctuelles sont les supports des cylches dans la décomposition en produit de cycles à supports disjoints de σ .

Dans cette leçon, G désigne un groupe de neutre 1, et X B. Cas d'un groupe et d'un ensemble finis

Dans ce paragraphe, on suppose G et X finis. On pose $n = \operatorname{Card}(G)$.

Théorème 12 (de Caylay - [R] 21, [U] 31). G s'identifie à un sous-groupe de \mathfrak{S}_n .

Proposition 13 ([R]?, [U]?). $\forall (x,y) \in X^2, y \in Orb(x) \implies \exists g \in G : Stab(y) = g Stab(x)g^{-1}.$

Théorème 14 (Relation orbite-stabilisateur - [R] 21). Pour tout $x \in X$, $G/\operatorname{Stab}(x)$ et $\operatorname{Orb}(x)$ sont équipotents (cela reste vrai si G est infini). Par conséquent,

$$Card(G) = Card(Stab(x)) Card(Orb(x))$$

Théorème 15 (Équation aux classes - [R] 21). Soit $\{x_1, \ldots, x_r\}$ un système de représentants pour les orbites. Alors.

$$\operatorname{Card} X = \sum_{i=1}^{r} \operatorname{Card}(\operatorname{Orb}(x_i)) = \sum_{i=1}^{r} \frac{\operatorname{Card} G}{\operatorname{Card}(\operatorname{Stab}(x_i))}$$

Exemple 16 ([R] 22). Si Card G est une puissance d'un nombre premier, alors son centre $Z(G) := \{g \in G \mid \forall h \in G, ghg^{-1} = h\}$ n'est pas réduit à $\{1\}$.

Corrolaire ([R] 23): tout groupe d'ordre p^2 avec p premier est abélien.

Théorème 17 (Formule de Burnside - [R] 35). L'action de G sur X possède $\frac{1}{\operatorname{Card} G} \sum_{g \in G} \operatorname{Card}(\operatorname{Fix}(g))$ orbites, où $\operatorname{Fix}(g) = \{x \in X \mid g \cdot x = x\}.$

Exemple 18 ([C] 132). En moyenne, une permutation de [1, n] tirée aléatoirement a 1 point fixe.

Exemple 19 ([C] 132). Si G n'est pas abélien, alors la probabilité de tirer simultanément deux éléments qui commutent vaut $\frac{k}{n}$, avec k le nombre de classes de conjugaison de G.

Théorème 20 (de Cauchy - [R] 23). Soit p un nombre premier. Si $p \mid \operatorname{Card} G$, alors G admet un élément d'ordre p.

II. Applications

A. En géométrie : les isométries des polytopes

Théorème 21 ([R] 94). L'ensemble des isométries du plan conservant un triangle équilatéral est un groupe isomorphe à \mathfrak{S}_3 .

Proposition 22 ([R] 82). Soit C un cube. L'ensemble des isométries de l'espace conservant C est un groupe, noté Is(C). On note $Is^+(C)$ le sous-groupe de C formé de rotations.

Théorème 23 ([R] 85). $Is^+(\mathcal{C}) \cong \mathfrak{S}_4$ et $Is(\mathcal{C}) \cong \mathfrak{S}_4 \times \mathbb{Z}/2\mathbb{Z}$.

Théorème 24 ([R] 95). En notant \mathcal{T} le tétraèdre régulier, on a $Is^+(\mathcal{T}) \cong \mathcal{A}_4$ et $Is(\mathcal{T}) \cong \mathfrak{S}_4$.

B. Du côté des matrices

Dans ce paragraphe, K désigne un corps. On fixe $(n, m) \in (\mathbb{N}^*)^2$.

Proposition 25 ([R] 184/185/199/195/206). Les applications suivantes sont des actions :

- 1. Translation à gauche : $GL_n(K) \times \mathcal{M}_{n,m}(K) \rightarrow \mathcal{M}_{n,m}(K), (P,A) \mapsto PA$
- 2. Translation à droite : $GL_n(K) \times \mathcal{M}_{n,m}(K) \to \mathcal{M}_{n,m}(K)$, $(P,A) \mapsto AP^{-1}$
- 3. Similitude (ou conjugaison) : $GL_n(K) \times \mathcal{M}_n(K) \to \mathcal{M}_n(K), (P, A) \mapsto PAP^{-1}$
- 4. Équivalence (ou action de Steiniz) : $(GL_n(K) \times GL_m(K)) \times \mathcal{M}_{n,m}(K) \rightarrow \mathcal{M}_{n,m}(K),$ $((P,Q),A) \mapsto PAQ^{-1}$
- 5. Congruence: $GL_n(K) \times \mathcal{M}_n(K) \to \mathcal{M}_n(K), (P, A) \to {}^tPAP$

Proposition 26 ([R] 184/185/?/195/207). Dans l'ordre de la proposition précédente, les orbites sont caractérisées par :

- 1. le noyau de A
- 2. l'image de A
- 3. les molynômes minimal et caractéristique de A
- 4. Ca dépend de K...

Exemple 27. Diag(1,2,2) et Diag(1,1,2) ont même polynôme minimal mais ne sont pas semblables : il faut donc bien les deux informations!

C. Théorèmes de Sylow

Dans ce paragraphe, on se donne p premier, et on note $\operatorname{Card} G = p^{\alpha} m, \ m \wedge p = 1.$

Définition 28 ([U] 85). Un p-Sylow de G est un sous-groupe de G de cardinal p^{α} .

 $\operatorname{Syl}_p(G)$ désigne l'ensemble des p-Sylow de G, et $n_p:=\operatorname{Card}(\operatorname{Syl}_p(G)).$

Théorème 29 (de Sylow - [U] 87). Soit G un groupe d'ordre $p^{\alpha}m, m \wedge p = 1$. Alors,

- 1. $\operatorname{Syl}_p(G) \neq$
- 2. G agit transitivement $\sup_{p}(G)$ par conjugaison
- 3. $n_p \equiv 1 [p]$

Définition 30. On dit que G est simple si les seuls sousgroupes de G distingués (i.e. fixe par l'action par conjugaison de G) sont $\{1\}$ et G.

Théorème 31 ([S] 277). Si G est simple et d'ordre 60, alors $G \cong \mathcal{A}_5$.

Développements

- Développement 1 : Théorème 23
- Développement 2 : Théorème 31

Références

- U Théorie des groupes, Félix Ulmer
- R Mathématiques pour l'agrégation Algèbre et géométrie, Jean-Étienne Rombaldi, 2e édition
- S Algèbre pour la licence 3, Szpirglas
- C Carnets de voyage en Algébrie, Caldero

FIGURE : Isometries du cube

4/4

105 : Groupe des permutations d'un ensemble fini. Applications.

I. Permutations d'un ensemble fini

A. Introduction

Définition 1 ([R] 37). Soit E un ensemble. On note $\mathfrak{S}(E)$ l'ensemble des bijections de E dans E. On l'appelle groupe symétrique de E. On notera plus simplement $\mathfrak{S}_n = \mathfrak{S}(\llbracket 1, n \rrbracket)$. On appelle permutation de E un élément de $\mathfrak{S}(E)$.

Proposition 2. $\mathfrak{S}(E)$ est un groupe pour la composition, de neutre l'identité de E.

Proposition 3 ([R] 39). Si E et F sont deux ensembles équipotents, alors $\mathfrak{S}(E)$ et $\mathfrak{S}(F)$ sont isomorphes (en tant que groupes).

Proposition 4 ([R] 39). Pour $n \geq 3$, \mathfrak{S}_3 n'est pas commutatif.

Dans toute la suite, on étudiera \mathfrak{S}_n pour $n \geq 3$.

Proposition 5 ([R] 40). $\#\mathfrak{S}_n = n!$

Notation ([U] 41). *Soit* $\sigma \in \mathfrak{S}_n$. *On représentera* σ *par la matrice* $2 \times n$:

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

B. Action naturelle de \mathfrak{S}_n sur $[\![1,n]\!]$, conséquences

Proposition 6 ([U] 41). \mathfrak{S}_n agit naturellement sur [1, n] par $\sigma \cdot i = \sigma(i)$. Le morphisme associé est l'identité de \mathfrak{S}_n .

Définition 7 ([U] 42). On note $Fix(\sigma)$ l'ensemble des points fixes de $\sigma \in \mathfrak{S}_n$. Son complémentaire dans [1,n] est appelé support de σ , et est noté $Supp(\sigma)$.

Proposition 8 ([U] 43). Soit $\sigma \in \mathfrak{S}_n$. Le sous-groupe $\langle \sigma \rangle$ agit sur [1, n] par restriction de l'action de \mathfrak{S}_n . Les orbites de cette action sont appelées σ -orbites. La réunion des σ -orbites ponctuelles est $\operatorname{Fix}(\sigma)$. Les σ -orbites non ponctuelles partitionnent $\operatorname{Supp}(\sigma)$.

Exemple 9. Soit $\sigma = (\frac{1}{2} \, \frac{2}{3} \, \frac{3}{5} \, \frac{4}{5})$. On a Supp $(\sigma) = \{1, 2\} \sqcup \{4, 5\} = \langle \sigma \rangle \cdot \{1\} \sqcup \langle \sigma \rangle \cdot \{4\}$.

Définition 10 ([U] 43). Un k-cycle $(2 \le k \le n)$ est une permutation n'ayant qu'une seule σ -orbite non ponctuelle $\{i_1,\ldots,i_k\}$. On la note $\sigma=(i_1,\ldots,i_k)$ pour signifier que $\forall j \notin \{i_1,\ldots,i_k\}, \ \sigma(j)=j \ \text{et} \ \sigma(i_j)=i_{j+1} \ \text{en regardant les}$ indices modulo k.

Un 2-cycle est appelé transposition.

Proposition 11 ([U] 43).
$$(i_1, i_2, ..., i_k)$$

 $(i_2, i_3, ..., i_k, i_1) = \cdots = (i_k, i_1, i_2, ..., i_{k-1})$

Proposition 12. Un k-cycle est d'ordre k.

C. Décomposition d'une permutation, conséquences

Proposition 13 ([U] 42). Deux permutations à supports disjoints commutent.

Théorème 14 ([U] 43). Toute permutation se décompose de manière unique (à l'ordre des facteurs près) comme produit de cycles à supports disjoints.

Algorithme 15 ([U] 43). Pour trouver une telle décomposition, il suffit de trouver les r-orbites.

- 1. On calcule $\sigma(1), \sigma^2(1), \ldots$ justqu'à trouver $\sigma^{k_1}(1) = 1$ (NB: $k_1 \leq n$);
- 2. On pose $i_2 = \min[1, n] \setminus (\langle \sigma \rangle \cdot \{1\})$, et de même on calcule $\sigma(i_2), \sigma^2(i_2), \ldots$ jusqu'à trouver $\sigma^{k_2}(i_2) = i_2$;
- 3. On itère jusqu'à épuiser [1, n].

 $\begin{array}{lll} On & a & alors & \sigma & = & (1,\sigma(1),\ldots,\sigma^{k_1-1}(1)) & \circ \\ (i_2,\sigma(i_2),\ldots,\sigma^{k_2-1}(i_2)) \circ \cdots \circ (i_j,\sigma(i_j),\ldots,\sigma^{k_j-1}(i_j)) & \end{array}$

Exemple 16. $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 1 & 6 & 5 \end{pmatrix} = (1, 3, 4)(5, 6)$

Proposition 17 ([R] 44). $(i_1, ..., i_k) = (i_1, i_2)(i_2, i_3)...(i_{k-1}, i_k)$

Corollaire 18 ([R] 44). Les transpositions engendrent \mathfrak{S}_n .

Proposition 19 ([R] 45). $\mathfrak{S}_n = \langle (i, i+1), 1 \leq i \leq n \rangle = \langle (1, i), 2 \leq i \leq n \rangle = \langle (1, 2), (1, 2, ..., n) \rangle$

Définition 20 ([U] 45). On appelle type de $\sigma \in \mathfrak{S}_n$ la liste croissante des cardinaux des σ -orbites.

Exemple 21. Le type de $(1,2,5)(3,4)(7,8) \in \mathfrak{S}_8$ est la liste [1,2,2,3].

Proposition 22 ([U] 46). Deux permutations sont conjuguées dans \mathfrak{S}_n si, et seulement si, elles ont le même type. Cela décrit donc les classes de conjugaison de \mathfrak{S}_n .

Proposition 23 ([U] 45). Si σ est du type $[l_1, \ldots, l_k]$, alors $\operatorname{ord}(\sigma) = l_1 \vee \cdots \vee l_k$.

D. Signature dune permutation, groupe alterné

Proposition 24 ([R] 47). Il existe un unique morphisme $\varepsilon: \mathfrak{S}_n \to \{\pm 1\}$ qui envoie les transpositions sur -1. On appelle signature de σ la quantité $\varepsilon(\sigma)$.

Corollaire 25. La signature d'un k-cycle est $(-1)^{k+1}$.

Proposition 26 ([R] 48). $\forall \sigma \in \mathfrak{S}_n$,

$$\varepsilon(\sigma) = \prod_{1 \le i \le j \le n} \frac{\sigma(j) - \sigma(i)}{j - i}$$

En particulier, la signature mesure le nombre d'inversions.

Définition 27 ([R] 48). On appelle n-ième groupe alterné le sous-groupe $A_n = \text{Ker}(\varepsilon)$. C'est l'ensemble des permutations dîtes paires.

Exemple 28. $A_3 = \{id, (1,2,3), (1,3,2)\}.$

Proposition 29. $\#A_n = \frac{n!}{2}$

Théorème 30 ([R] 49). Pour $n \ge 3$, les 3-cycles engendrent A_n , et y sont conjugués.

Théorème 31 ([R] 50). Pour $n \geq 5$, A_n n'admet pas de sous-groupe distingué non trivial.

trique

A. En géométrie : les isométries des polytopes

Théorème 32 ([R] 94). L'ensemble des isométries du plan conservant un triangle équilatéral est un groupe isomorphe à \mathfrak{S}_3 .

Proposition 33 ([R] 82). Soit C un cube. L'ensemble des isométries de l'espace conservant C est un groupe, noté Is(C). On note $\operatorname{Is}^+(\mathcal{C})$ le sous-groupe de $\operatorname{Is}(\mathcal{C})$ formé des rotations.

Théorème 34 ([R] 85). Is⁺(
$$\mathcal{C}$$
) $\cong \mathfrak{S}_4$ et Is(\mathcal{C}) $\cong \mathfrak{S}_4 \times \mathbb{Z}/2\mathbb{Z}$.

Théorème 35 ([R] 95). En notant \mathcal{T} le tétraèdre régulier, on $a : \operatorname{Is}(\mathcal{T}) \cong \mathfrak{S}_4 \text{ et } \operatorname{Is}^+(\mathcal{T}) \cong \mathcal{A}_4.$

Chez les (actions de) groupes

Théorème 36 (de Cayley - [R] 53). Tout groupe fini d'ordre n est isomorphe à un sous-groupe de \mathfrak{S}_n .

Proposition 37. Comme pout tout corps (commutatif) K, $\mathfrak{S}_n \circlearrowleft GL_n(K)$, tout groupe de garde n est isomorphe à un sous-groupe de $GL_n(K)$.

Exemple 38. Soit $D_{2\times 4}$ le groupe des isométries du carré. Comme $\#D_{2\times 4}=8$, $D_{2\times 4}$ est isomorphe à un sous-groupe de \mathfrak{S}_8 . Noton φ un tel isomorphisme. Comme $D_{2\times 4}=\langle r,s\rangle$ $où \operatorname{ord}(r) = 4$, $\operatorname{ord}(s) = 2$ et $\operatorname{ord}(rs) = 2$, on $a \in \varphi(s) = 2$ $\varepsilon \circ \varphi(rs) = -1$, $donc \ \varepsilon \circ \varphi(r) = 1$.

C. Polynômes symétriques

Définition 39 ([R] 55). Un polynôme symétrique est un polynôme $P \in K[X_1, ..., X_n]$ tel que $\forall \sigma \in \mathfrak{S}_n$, $P(X_{\sigma(1)},\ldots,X_{\sigma(n)})=P(X_1,\ldots,X_n).$

Définition 40 ([R] 55). Les polynômes symétriques élémentaires sont les

$$\Sigma_{k,n} = \sum_{1 \le i_1 \le \dots \le i_k \le n} X_{i_1} \dots X_{i_k} \in K[X_1, \dots, X_n]$$

Théorème 41 (ADMIS - [R] 55). Pour tout polynôme symétrique $P \in K[X_1, \ldots, X_n]$, il existe un unique polynôme $Q \in$ $K[X_1,\ldots,X_n]$ tel que $P(X_1,\ldots,X_n)=Q(\Sigma_{1,n},\ldots,\Sigma_{n,n}).$

D. En algèbre (multi-)linéaire

Dans ce paragraphe, E est un \mathbb{K} -espace vectoriel de dimension finie n. On fixe une base $\mathcal{B} = (e_1, \dots, e_n)$ de E.

Définition 42 ([R] 545). Une forme k-linéaire sur E est une application $\varphi: E^k \to \mathbb{K}$ telle que pour tout $i \in [1, n]$, pour tout $(x_1,\ldots,x_k)\in E^k$, $\varphi(x_1,\ldots,x_{i-1},\cdot,x_{i+1},\ldots,x_k)$ est linéaire.

On note $\bigotimes^k E^*$ l'ensemble des formes k-linéaires sur E.

Proposition 43 ([R] 546). $(e_{i_1}^* \otimes \cdots \otimes e_{i_k}^*)_{1 \leq i_1 < \cdots < i_k \leq n}$ est une base $de \bigotimes^k E^*$, où pour $(x_1, ..., x_k) \in E^k$, $e_{i_1}^* \otimes \cdots \otimes e_{i_k}^* (x_1, ..., x_k) = e_{i_1}^* (x_1) ... e_{i_k}^* (x_k)$.

Définition 44 ([R] 546). Une forme k-linéaire alternée est une forme k-linéaire $\varphi \in \bigotimes^k E^*$ telle que $\forall \sigma \in \mathfrak{S}_k$, $\forall (x_1, \dots, x_k) \in E^k, \ \varphi(x_{\sigma(1)}, \dots, x_{\sigma(k)}) = \varepsilon(\sigma)\varphi(x_1, \dots, x_k).$

On note $\bigwedge^k E^*$ l'espace des formes k-linéaires alternées sur E.

II. Quelques applications du groupe symé- Proposition 45. $(e_{i_1}^* \wedge \cdots \wedge e_{i_k}^*)_{1 \le i_1 \le \cdots \le i_k \le n}$ est une base $de \bigwedge^k E^*, \quad où \quad pour \quad (x_1, \dots, x_k) \in E^k, \quad e_{i_1}^* \wedge \dots \wedge e_{i_k}^*(x_1, \dots, x_k) = \sum_{\sigma \in \mathfrak{S}_k} \varepsilon(\sigma) e_{i_1}^*(x_{\sigma(1)}) \dots e_{i_k}^*(x_{\sigma(k)}).$

Corollaire 46. On $a \dim \left(\bigwedge^k E^* \right) = \binom{n}{k}$.

Définition 47. On appelle déterminant dans la base \mathcal{B} l'unique forme n-linéaire alternée $\det_{\mathcal{B}}$ sur E vérifiant $\det_{\mathcal{B}}(\mathcal{B}) = 1$. (La fammille $(\det_{\mathcal{B}})$ est une base de $\bigwedge^n E^*$.)

Proposition 48 ([R] 547). $\forall (x_1,\ldots,x_n) \in$ $\det_{\mathcal{B}}(x_1,\ldots,x_n) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) e_1^*(x_{\sigma(1)}) \ldots e_n^*(x_{\sigma(n)}).$

E. Résultats en probabilités

Définition 49 ([R] 51). On appelle dérangement une permutation sans point fixes.

Proposition 50. Notons d_n le nombre de dérangements de $[\![1,n]\!]$. Alors $d_n=n!\sum_{k=0}^n\frac{(-1)^k}{k!}$. En particulier, la probabilité de choisir un dérangement en tiant au hasard une permutation de [1, n] tend vers $\frac{1}{e}$ quand $n \to +\infty$.

Proposition 51 ([C]). Soit X la variable aléatoire qui compte le nombre de points fixes d'une permutation aléatoirement choisie dans \mathfrak{S}_n . Alors $\mathbb{E}[X] = \mathbb{V}[X] = 1$.

F. Groupes simples d'ordre 60

Dans ce paragraphe, on se donne p premier, et on note $\#G = p^{\alpha}m, m \wedge p = 1.$

Définition 52 ([U] 85). Un p-Sylow de G est un sous-groupe de G de cardinal p^{α} .

Notation. $Syl_n(G)$ désigne l'ensemble des p-Sylow de G, et $n_p = \# \operatorname{Syl}_p(G).$

Théorème 53 (de Sylow - [U] 87). Soit G un groupe d'ordre $p^{\alpha}m$, p premier et $m \wedge p = 1$.

- 1. $\operatorname{Syl}_p(G) \neq \emptyset$
- 2. G agit transitivement sur $Syl_n(G)$ par conjugaison
- 3. $n_p \equiv 1 [p] (donc \ n_p \mid m)$.

Définition 54. On dit que G est simple si les seuls sousgroupes de G distingués (i.e. fixe par l'action par conjugaison $de G) sont \{1\} et G.$

Théorème 55 ([S] - 277). Si G est simple et d'ordre 60, alors $G\cong \mathcal{A}_5$.

Développements

- Développement 1 : Théorème 34
- Développement 2 : Théorème 55

- R Mathématiques pour l'agrégation Algèbre et géométrie, Jean-Étienne Rombaldi, 2e édition
- U Théorie des groupes, Félix Ulmer
- S Algèbre pour la licence 3, Szpirglas
- C Carnets de voyage en Algébrie, Caldero

 ${\bf FIGURE}~1.1-{\bf Isom\'etries~du~cube}$

106 : Groupe linéaire d'un espace vectoriel de dimension finie E, sous-groupes de GL(E). Applications

Dans cette leçon, K est un corps commutatif, et E est un K-espace vectoriel de dimension finie $n \geq 1$.

I. Endomorphismes inversibles d'un espace vectoriel

A. Introduction au groupe linéaire

- **Théorème 1** ([Rb] 139). L'ensemble $\mathcal{L}(E)$ des endomorphismes de E est un anneau pour + et \circ , dont le groupe des inversibles est noté GL(E), et est appelé groupe linéaire de E.
- Similairement, l'ensemble $\mathcal{M}_n(K)$ des matrices carrées de taille $n \times n$ est un anneau pour + et \times , dont le groupe des inversibles est noté $GL_n(K)$, appelé groupe linéaire d'ordre n sur K.

Remarque 2 ([Rb] 140). Étant donnée une base \mathcal{B} , l'application $u \mapsto \operatorname{Mat}_{\mathcal{B}}(u)$ induit un isomorphisme entre GL(E) et $GL_n(K)$.

Définition 3 ([Rb] 141). On note SL(E) (resp. $SL_n(K)$) le noyau du morphisme det de GL(E) (resp. $GL_n(K)$) dans K^{\times} . On l'appelle groupe spécial linéaire de E (resp. groupe spécial linéaire d'ordre n sur K).

Théorème 4 ([Rb] 140). Soit $u \in \mathcal{L}(E)$. Comme dim $E < +\infty$, sont équivalentes :

- 1. $u \in GL(E)$
- 2. (a) u est injectif
 - (b) $\text{Ker } u = \{0\}$
 - (c) $\exists v \in \mathcal{L}(E) : v \circ u = \mathrm{id}_E$
- 3. (a) u est surjectif
 - (b) $\operatorname{Im} u = E$
 - (c) $\exists v \in \mathcal{L}(E) : u \circ v = \mathrm{id}_E$
- 4. L'image par u d'une base de E est une base de E
- 5. $det(u) \neq 0$

Remarque 5. Un matrice A est inversible si, et seulement si, ses colonnes forment une base de K^n , et si, et seulement si, ses lignes forment une base de K^n .

Définition 6. On dit que $u \in \mathcal{L}(E)$ est une homothétie de rapport $\lambda \in K^{\times}$ si $\forall x \in E$, $u(x) = \lambda x$.

Proposition 7. Une homothétie de rapport $\lambda \in K^{\times}$ est inversible, d'inverse l'homothétie de rapport $1/\lambda$.

Proposition 8 ([Rb] e168). Les homothéties sont les seuls endomorphismes à stabiliser toute droite.

B. Opérations élémentaires

Soit $A \in \mathcal{M}_n(K)$. On note L_1, \ldots, L_p les lignes de A, et C_1, \ldots, C_n ses colonnes.

Définition 9 ([Bu] 315-317). Soient $\alpha \in K^{\times}$, $(i, j) \in [1, n]^2$ tel que $i \neq j$ et $\sigma \in \mathfrak{S}_n$. On définit les matrices suivantes :

- Matrice de dilatation $D_i(\alpha) = \text{diag}(1,\ldots,1,\alpha,1,\ldots,1) \in GL_n(K)$ (α est à la i-ième position)
- Matrice de transvection $T_{i,j}(\alpha) = I_n + \alpha E_{i,j} \in GL_n(K)$
- Matrice de permutation $P_{\sigma} = (\delta_{i,\sigma(j)})_{1 \leq i,j \leq n} \in GL_n(K)$

Définition 10. On définit les opérations élémentaires sur les colonnes :

- $-C_i \leftarrow \alpha C_i$: on remplace C_i par αC_i
- $C_i \leftarrow C_i + \alpha C_j$: on remplace C_i par $\alpha C_i + \alpha C_j$
- $-C_i \longleftrightarrow C_i$: on échange C_i et C_i

Théorème 11 ([Bu] 315-318). On a les correspondances suivantes entre opérations élémentaires et multiplication matricielle :

- $-D_i(\alpha)A \iff L_i \longleftarrow \alpha L_i$
- $-T_{i,j}(\alpha)A \iff L_i \longleftarrow L_i \alpha L_j$
- $-P_{(i,j)}A \iff L_i \longleftrightarrow L_j$

et

- $-AD_i(\alpha) \iff C_i \longleftarrow \alpha C_i$
- $-AT_{i,j}(\alpha) \iff C_i \longleftarrow C_i \alpha C_j$
- $-AP_{(i,j)} \iff C_i \longleftrightarrow C_j$

Proposition 12. $\sigma \mapsto P_{\sigma}$ est un morphisme de groupes injectif de \mathfrak{S}_n dans $GL_n(K)$.

II. Structure de GL(E), sous-groupe orthogonal

A. Structure de groupe

Théorème 13 (Pivot de Gauss - [Rb] 191). Pour toute matrice de rang r, il existe une suite d'opérations élémentaires qui transforme cette matrice en la matrice $J_{n,r} = \operatorname{diag}(I_r, O_{n-r})$. Plus précisément, si $\operatorname{rg} A = n$, alors il existe $\sigma \in \mathfrak{S}_n$ et des matrices de transvection T_1, \ldots, T_p telles que $A = P_{\sigma}T_1 \ldots T_pD_{\alpha}$ où D_{α} est la matrice de dilatation D_{α} de rapport $\alpha = \det A$.

Corollaire 14 ([Rb] 154, 153). — Les matrices de transvection et de dilatation engendrent $GL_n(K)$;

— Les matrices de transvection engendrent $SL_n(K)$.

Corollaire 15 ([Rb] 141). $GL(E)/SL(E) \cong K^{\times}$

Corollaire 16 ([Rb] 141). — $Z(GL(E)) = K^{\times} id_E$ (c'est l'ensemble des homothéties);

 $- Z(SL(E)) = \mathbb{U}_n(K) \operatorname{id}_E, \ où \ \mathbb{U}_n(K) \{ \lambda \in K^{\times} \mid \lambda^n = 1 \}.$

B. Le groupe spécial orthogonal

Soit q une forme quadratique sur E, de forme polaire φ . Supposons car $K \neq 2$.

Définition 17 ([P] 123-124). — Le groupe orthogonal de (E,q) est $O(q) = \{u \in \mathcal{L}(E) \mid q \circ u = q\}$

- Le groupe spécial orthogonal de (E,q) est $SO(q) = \{u \in O(q) \mid \det u = 1\}$
- Lorsque φ est le produit scalaire canonique relativement à une base donnée, on note $O(E) = O(q) = \{u \in \mathcal{L}(E) \mid {}^tu \circ u = \mathrm{id}_E\}$ et $SO(E) = SO(q) = \{u \in O(E) \mid \det u = 1\}$.
- $On \quad note \quad également \qquad O_n(K) = \{M \in \mathcal{M}_n(K) \mid {}^tMM = I_n\} \qquad et \\ SO_n(K) \{M \in O_n(K) \mid \det M = 1\}.$

Proposition 18 ([Rb] 722). Si \mathcal{B} est une base orthonormale de E, alors $u \in O(E) \iff \operatorname{Mat}_{\mathcal{B}}(u) \in O_n(K)$.

Théorème 19 (de réduction des isométries - [Rb] 727). Soit $u \in O(\mathbb{R}^n)$. Il existe une base orthonormale \mathcal{B} de \mathbb{R}^n telle que $\operatorname{Mat}_{\mathcal{B}}(u) = \operatorname{diag}(R(\theta_1), \dots, R(\theta_r), \varepsilon_1, \dots, \varepsilon_p)$ où $R(\theta_i) = \begin{pmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{pmatrix}$ et $\varepsilon_i = \pm 1$.

Remarque 20 ([P] 146). $SO_2(\mathbb{R}) = \{R(\theta) \mid \theta \in \mathbb{R}\} \cong \mathbb{R}/2\pi\mathbb{Z}$.

Théorème 21 ([C] 50). Soient p premier, $r \ge 1$ et $q = p^r$.

$$SO_2(\mathbb{F}_q) \cong \begin{cases} \mathbb{Z}/(q-1)\mathbb{Z} & si-1 \ est \ un \ carr\'e \ mod \ q \\ \mathbb{Z}/(q+1)\mathbb{Z} & sinon \end{cases}$$

Définition 22 ([P] 125). Soit $u \in O(q)$ telle que $u^2 = \mathrm{id}_E$. On dit que u est une réflexion si $\dim(\mathrm{Ker}(u+\mathrm{id}_E))=1$, i.e. si u est une symétrie par rapport à un hyperplan.

On dit que u est une renversement $si \dim(\operatorname{Ker}(u+\operatorname{id}_E)) = 2$, i.e. $si\ u$ est une symétrie par rapport à un plan.

On suppose désormais que E est un \mathbb{R} -espace vectoriel de dimension finie $n \geq 1$, et que q est définie positive.

Théorème 23 ([P] 143). Tout élément de O(q) est produit d'au plus n réflexions.

Lemme 24. Si $n \geq 3$, alors pour toutes réflexions τ_1 et τ_2 , il existe deux renversements σ_1 et σ_2 tels que $\tau_1\tau_2 = \sigma_1\sigma_2$.

Théorème 25. Pour $n \geq 3$, tout élément de SO(q) est produit d'au plus n renversements.

Remarque 26. Ces théorèmes restent vrais si E est un espace vectoriel de dimension finie sur un corps K de caractéristique $\neq 2$, et si q est non dégénérée (Cartan, Dieudonné).

III. Topologie dans GL(E)

Dans ce paragraphe, K désigne \mathbb{R} ou \mathbb{C} .

Proposition 27 ([Rb] 160-161). GL(E) est ouvert dans $(\mathcal{L}(E), \|\|\cdot\|\|)$ et $u \mapsto u^{-1}$ est continue.

Proposition 28. $-GL_n(\mathbb{C})$ et $SL_n(K)$ sont connexes; $-GL_n(\mathbb{R})$ a deux composantes connexes.

Proposition 29. $O_n(\mathbb{R})$ et $SO_n(\mathbb{R})$ sont compacts.

Théorème 30 (Décomposition polaire - [Rb] 740).

$$O_n(\mathbb{R}) \times S_n^{++}(\mathbb{R}) \to GL_n(\mathbb{R})$$

 $(H, S) \mapsto HS$

est un homéomorphisme.

Développements

- Développement 1 : Théorème 21
- Développement 2 : Théorème 23, Lemme 24 et Théorème
 25

- Rb Mathématiques pour l'agrégation Algèbre et géométrie, Jean-Étienne Rombaldi, 2e édition
- P Cours d'algèbre, Perrin
- B Algèbre et géométrie : CAPES et Agrégation, Pierre Burg
- C Nouvelles histoires hédonistes de groupes et géométries, P. Caldero, J. Germoni

120 : Anneaux $\mathbb{Z}/n\mathbb{Z}$. Applications.

Dans toute la leçon, $n \in \mathbb{N} \setminus \{0,1\}$ et p est un nombre D. Le corps $\mathbb{Z}/p\mathbb{Z}$ premier.

I. L'anneau $\mathbb{Z}/n\mathbb{Z}$

A. Rappels d'arithmétique des entiers

Théorème 1 (division euclidienne - [R] 279). $\forall (a,b) \in$ \mathbb{Z}^2 , $\exists ! (q,r) \in \mathbb{Z}^2$:

$$\begin{cases} a = bq + r \\ 0 \le r < |b| \end{cases}$$

Définition 2 ([R] 279). Soit $(a,b) \in \mathbb{Z}^2$. On dit que a est congru à b modulo n, et on note $a \equiv b[n]$ si n divise b-a.

Proposition 3 ([R] 280). Soit $(a, b, c, d) \in \mathbb{Z}^4$ tel que $a \equiv$ b[n] et $c \equiv d[n]$. Alors $a + c \equiv b + d[n]$ et $ac \equiv bd[n]$.

B. Construction

Lemme 4. Tout idéal de \mathbb{Z} est principal, et admet un unique générateur positif.

Définition 5 ([R] 280). Le quotient de l'anneau $(\mathbb{Z}, +, \times)$ par son idéal $n\mathbb{Z}$ est l'anneau noté $\mathbb{Z}/n\mathbb{Z}$. On note \overline{a} l'image de $a \in \mathbb{Z} \ dans \ \mathbb{Z}/n\mathbb{Z}$.

Remarque 6. $\bar{a} = \bar{b} \iff a \equiv b[n]$

Proposition 7 ([R] 280). $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$, et les lois sont données par Prop 3 et Rq 6.

C. Structure d'anneau

Proposition 9 ([R] 283). L'ensemble des inversibles $\mathbb{Z}/n\mathbb{Z}$ est:

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\overline{k} \in \mathbb{Z}/n\mathbb{Z} \mid k \wedge n = 1\}$$

L'ensemble des diviseurs de O de $\mathbb{Z}/n\mathbb{Z}$ est :

$$D_0\left(\mathbb{Z}/n\mathbb{Z}\right) = \mathbb{Z}/n\mathbb{Z} \setminus \left[\left(\mathbb{Z}/n\mathbb{Z}\right)^{\times} \cup \{0\}\right]$$

Exemple 10. $(\mathbb{Z}/8\mathbb{Z})^{\times} = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}, \text{ et } D_0(\mathbb{Z}/8\mathbb{Z}) =$ $\{\overline{2},\overline{4},\overline{6}\}.$

Proposition 11 ([R] 241 et 281). Les idéaux propres de $\mathbb{Z}/n\mathbb{Z}$ sont les $d\mathbb{Z}/n\mathbb{Z}$ avec $d \mid n, d \notin \{1, n\}$. De plus, $(d\mathbb{Z}/n\mathbb{Z},+)\cong (\mathbb{Z}/\frac{n}{d}\mathbb{Z},+).$

Corollaire 12. $\mathbb{Z}/n\mathbb{Z}$ est principal.

Corollaire 13. L'ensemble des générateurs de $\mathbb{Z}/n\mathbb{Z}$ est $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Exemple 14. Les idéaux propres de $\mathbb{Z}/6\mathbb{Z}$ sont $2\mathbb{Z}/6\mathbb{Z}$ et $3\mathbb{Z}/6\mathbb{Z}$, respectivement isomorphes à $\mathbb{Z}/3\mathbb{Z}$ et $\mathbb{Z}/2\mathbb{Z}$.

Proposition 15 ([R] 295-282). $\forall n, m \geq 2$,

$$\operatorname{Hom}_{ar}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/(n \wedge m)\mathbb{Z},$$

$$\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times},$$

$$\operatorname{Hom}_{Ann}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z}) \cong \begin{cases} \{k \mod n \mapsto k \mod m\} & \textit{ si } m \mid n \\ \emptyset & \textit{ sinon} \end{cases}$$

Théorème 16. Les assertions suivantes sont équivalentes :

- 1. $\mathbb{Z}/n\mathbb{Z}$ est un corps;
- 2. $\mathbb{Z}/n\mathbb{Z}$ est intègre;
- 3. n est premier.

Corollaire 17 ([R] 292). $(\mathbb{Z}/p\mathbb{Z})^{\times} \cong \mathbb{Z}/(p-1)\mathbb{Z}$.

Contre-exemple 18. C'est très faux pour n non premier! $(\mathbb{Z}/8\mathbb{Z})^{\times} = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ n'a même pas 7 éléments!

II. Structure de $(\mathbb{Z}/n\mathbb{Z})^{\times}$

A. Préambule : le théorème des restes chinois

Théorème 19 (des restes chinois - [R] 285). Soit $(a_1,\ldots,a_d)\in (\mathbb{N}\setminus\{0,1\})^d$. Les entiers, a_1,\ldots,a_d sont deux à deux premiers si, et seulement si, les anneaux $\mathbb{Z}/a_1 \dots a_d\mathbb{Z}$ et $\mathbb{Z}/a_1\mathbb{Z}\times\cdots\times\mathbb{Z}/a_d\mathbb{Z}$ sont isomorphes.

Le cas échéant, il existe $(u_1, \ldots, u_d) \in \mathbb{Z}^d$ tel que $\sum_{i=1}^d a_i b_i =$ 1, où $b_i = \frac{a_1...a_d}{a_i}$. L'application:

$$\overline{\varphi}: \mathbb{Z}/a_1 \dots a_d \mathbb{Z} \to \mathbb{Z}/a_1 \mathbb{Z} \times \dots \times \mathbb{Z}/a_d \mathbb{Z}$$

 $x \mod a_1 \dots a_d \mapsto (x \mod a_1, \dots, x \mod a_d)$

est un isomorphisme d'anneaux, de réciproque :

Exemple 8.
$$\mathbb{Z}/3\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}\} = \{\overline{9}, \overline{64}, \overline{-7}\}, \text{ et on } a \overline{1} + \overline{2} = \overline{1+2} = \overline{0}, \text{ mais aussi } \overline{1} \times \overline{2} = \overline{1\times 2} = \overline{2}.$$

$$\overline{\varphi}^{-1} : (x_1 \mod a_1, \dots, x_d \mod a_d) \mapsto \sum_{i=1}^d x_i a_i b_i \mod a_1 \dots a_d$$

B. Fonction indicatrice d'Euler

Définition 20 ([R] 283). L'indicatrice d'Euler est : φ : $n \mapsto$ $\# (\mathbb{Z}/n\mathbb{Z})^{\times} = \# \{k \in [1, n] \mid k \wedge n = 1\}.$

Exemple 21. $\varphi(8) = 4$ d'après Exemple 10.

Proposition 22 ([R] 288). Si $a \wedge b = 1$, alors $\varphi(ab) =$ $\varphi(a)\varphi(b)$. Pour tout $\alpha \in \mathbb{N}^*$, $\varphi(p^{\alpha}) = p^{\alpha-1}(p-1)$.

Corollaire 23 ([R] 288). Si $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ est la décomposition de n en produit de facteurs premiers, alors :

$$\varphi(n) = \prod_{i=1}^{r} p^{\alpha_i - 1} (p - 1) = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right)$$

Exemple 24. $\varphi(90) = \varphi(3^2)\varphi(2)\varphi(5) = 3(3-1)(2-1)(5-1)$ 1) = 24

Théorème 25 (d'Euler - [R] 283). $Si \ a \wedge n = 1$, $alors \ a^{\varphi(n)} \equiv$

Théorème 26 (de Fermat - [R] 284). Si $a \wedge p = 1$, alors $a^{p-1}=1$ [p]. De manière générale, $a^p\equiv a$ [p].

Proposition 27 ([R] 284).

$$n = \sum_{d|n} \varphi(d)$$

Théorème 28 ([R] 292). Si $p \geq 3$, alors $\forall \alpha \geq 1$, $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$ est cyclique.

Théorème 29 (ADMIS - [R] 294). $(\mathbb{Z}/n\mathbb{Z})^{\times}$ est cyclique si, et seulement si, $n \in \{2, 4, p^{\alpha}, 2p^{\alpha}\}$ avec $p \geq 3$ (premier) et $\alpha \geq 1$.

III. Applications

A. Résolution de systèmes de congruence

Théorème 30 ([R] 290). L'équation $ax \equiv b[n]$ d'inconnue $x \in \mathbb{Z}$ admet des solutions si, et seulement si, $a \wedge n \mid b$.

Le cas échéant, $S(ax \equiv b[n]) = \frac{b}{a \wedge n} x_0 + \frac{n}{a \wedge n} \mathbb{Z}$, où x_0 est une solution particulière de l'équation.

Remarque 31. Le théorème des restes chinois permet de résoudre des systèmes de congruences.

Exemple 32 ([R] 291).
$$S\left(\begin{cases} x \equiv 2 \ [4] \\ x \equiv 3 \ [5] \\ x \equiv 1 \ [9] \end{cases}\right) = 118 + 180\mathbb{Z}$$

Remarque 33 ([R] 291).
$$S\left(\begin{cases} x \equiv x_1 [a_1] \\ x \equiv x_2 [a_2] \end{cases}\right) = \begin{cases} \emptyset & si \ a_1 \land a_2 \nmid x_1 - x_2 \\ x_0 + (a_1 \lor a_2)\mathbb{Z} & sinon \end{cases}$$

B. Carrés de $\mathbb{Z}/p\mathbb{Z}$

Soit $c: \overline{x} \in \mathbb{Z}/p\mathbb{Z} \mapsto \overline{x}^2$. On s'intéresse à Im c.

Proposition 34. Tous les éléments de $\mathbb{Z}/2\mathbb{Z}$ sont des carrés.

On supposera désormais $p \geq 3$.

Proposition 35 ([R] 426). Soit $l : \overline{x} \in \mathbb{Z}/p\mathbb{Z} \mapsto \overline{x}^{\frac{p-1}{2}}$.

- $-\forall \overline{x} \in \mathbb{Z}/p\mathbb{Z}, \ c \circ l(\overline{x}) = l \circ c(\overline{x}) = \overline{1}$
- $\operatorname{Ker} c = \operatorname{Im} l = \{\pm 1\} \ et \ \operatorname{Im} c = \operatorname{Ker} l.$

Corollaire 36. Il y a $\frac{p+1}{2}$ carrés dans $\mathbb{Z}/p\mathbb{Z}$.

Théorème 37 (de Wilson - [R] 325). n est premier \iff $(n-1)! \equiv -1$ [n]

Proposition 38 ([P] 75). -1 est un carré modulo p si, et seulement si, $p \equiv 1$ [4]. Le cas échéant $-1 \equiv (2 \times 3 \times \cdots \times \frac{p-1}{2})^2$ [p].

Théorème 39 (des deux carrés de Fermat - [P] 56). p s'écrit comme somme de deux carrés d'entiers si, et seulement si, p = 2 ou $p \equiv 1$ [4].

C. Algorithme de chiffrement RSA

Algorithme 40 ([G] 37). Alice veut envoyer à Bob un message représenté par un nombre entier m, en tout sécurité.

- Bob choisit en secret deux nombres premiers distincts p et q et calcule leur produit n = pq.
- Il choisit ensuite un entier $c < \varphi(n) = (p-1)(q-1)$ premier à $\varphi(n)$.
- Il trouve ensuite un entier d tel que $cd \equiv 1 [\varphi(n)]$.
- La clé publique de Bob est (n, c), qu'il donne à Alice, et sa clé privée est (n, d), qu'il garde secrète.
- Alice envoie à Bob le message $m^c \mod n$.
- Pour décoder le message, Bob calcule $(m^c)^d \equiv m[n]$.

Développements

- Développement 1 : Théorème 19 (restes chinois) et exemple 32
- Développement 2 : Théorème 28 (cyclicité des inversibles de $\mathbb{Z}/p^{\alpha}\mathbb{Z}$)

- Rb Mathématiques pour l'agrégation Algèbre et géométrie, Jean-Étienne Rombaldi, 2e édition
- P Cours d'algèbre, Perrin
- G Les maths en tête Algèbre et probabilités, Xavier Gourdon, 3e édition

121: Nombres premiers. Applications.

Pour un entier n, Div(n) désigne l'ensemble des diviseurs II. Tests de primalité positifs de n.

I. Résultats fondamentaux sur les nombres premiers

A. Notion de nombre premier, propriétés élémentaires

Définition 1 ([R] 303). On dit que $p \in \mathbb{N}$ est premier si $Div(p) = \{1, p\}$. On dit que n est composé si $n \neq 0$ et si $\exists a \in \mathbb{N} \setminus \{1, n\} : a \mid n.$

Dans la suite, \mathcal{P} désignera l'ensemble des nombres premiers.

Lemme 2 (d'Euclide). $\forall (a,b) \in \mathbb{N}^2, \forall p \in \mathcal{P}, p \mid ab \implies (p \mid ab)$ a) ou $(p \mid b)$.

Lemme 3 ([R] 303). $\forall n \geq 2, \exists p \in \mathcal{P} : p \mid n$

Proposition 4 ([R] 304). Tout entier composé n admet un facteur premier entre 2 et \sqrt{n} .

Théorème 5 (fondamental de l'Arithmétique - [R] 306). $\forall n \in \mathbb{N}^*, \exists ! (v_p(n))_{n \in \mathcal{P}} \in \mathbb{N}^{\mathcal{P}} :$

$$n = \prod_{p \in \mathcal{P}} p^{v_p(n)}$$

Cette écriture est appelée "(la) décomposition en produit de facteurs premieres de n".

Définition 6 ([R] 306). Dans la décomposition en produit de facteurs premiers de n, l'entier $v_p(n)$ $(p \in \mathcal{P})$ est appelé valuation p-adique de n.

Proposition 7 ([R] 307). $\forall (a,b) \in (\mathbb{N}^*)^2$, $a \mid b \iff \forall p \in \mathbb{N}^*$ $\mathcal{P}, v_p(a) \leq v_p(b)$

Proposition 8 ([R] 319). $\forall (a,b) \in (\mathbb{N}^*)^2, v_p(ab) = v_p(a) + v_p(ab) = v_p(a) + v_p(ab) = v_p(ab) + v_p(ab) + v_p(ab) = v_p(ab) + v_p(ab)$

Proposition 9 ([R] 307). $\forall (a,b) \in (\mathbb{N}^*)^2$, $\forall p \in \mathcal{P}$.

$$v_p(a \lor b) = \max(v_p(a), v_p(b))$$

$$v_n(a \wedge b) = \min(v_n(a), v_n(b))$$

B. Répartition des nombres premiers

Théorème 10 (Euclide - [R] 305). Il existe une infinité de nombres premiers.

Théorème 11 (de la progression arithmétique, Dirichlet, ADMIS). Pour tout $(a,b) \in (\mathbb{N}^*)^2$ tel que $a \wedge b = 1$, il existe une infinité de nombres premiers congrus à a modulo b.

Conjecture 12 (des nombres premiers jumaux). Il existe une infinité de nombres premiers p tels que p+2 est premier.

Proposition 13. Il existe des intervalles de longueur arbitrairement grande ne contenant aucun nombre premier.

Théorème 14 (Bertrand - ADMIS - [R] 325). Il existe toujours un nombre premier compris entre n'importe quel entier naturel non nul et son double.

Théorème 15 (des nombres premiers - ADMIS - [R] 308).

$$\#\mathcal{P} \cap [\![1,n]\!] \sim_{x \to +\infty} \frac{n}{\ln n}$$

Proposition 16 (Crible d'Ératosthène - ANNEXE). Le procédé suivant permet de trouver la liste croissante des nombres premiers : on part de la liste des entiers plus grands que 2. À chaque itération, on garde le plus petit nombre, et on supprime tous ses multiples.

Proposition 17. n est premier si, et seulement si, $\forall d < 1$ $|\sqrt{n}|$, $d \nmid n$. La complexité au pire de ce test est donc en $O(\sqrt{n})$.

Théorème 18 (de Fermat). Si p est premier, alors $\forall a \in \mathbb{N}$, $a \wedge p = 1 \implies a^{p-1} \equiv 1[p].$

Remarque 19. On en déduit donc un test de non primalité.

Définition 20 ([R] 329). Un nombre n composé satisfaisant le test du théorème de Fermat est appelé nombre de Carmichaël.

Exemple 21 ([R] 329). 561 est un nombre de Carmichaël.

Théorème 22 (de Korselt - [R] 330). n est un nombre de Carmichaël si, et seulement si, pour tout diviseur premier p $de \ n, \ (p-1) \mid (n-1) \ et \ p^2 \nmid n.$

Théorème 23 (de Wilson - [R] 326). n est premier si, et seulement si, $(n-1)! \equiv -1 [n]$. C'est un test de primalité qui requiert n-1 multiplications dans $\mathbb{Z}/n\mathbb{Z}$.

III. Applications des nombres premiers

A. Fonctions spéciales

Définition 24 ([R] 283). L'indicatrice d'Euler $est: \varphi: n \mapsto$ $\# (\mathbb{Z}/n\mathbb{Z})^{\times} = \# \{k \in [1, n] \mid k \wedge n = 1\}.$

Proposition 25 ([R] 288). $\forall (a,b) \in (\mathbb{N}^*)^2$, $a \wedge b = 1$, alors $\varphi(ab) = \varphi(a)\varphi(b)$. Pour tout $\alpha \in \mathbb{N}^*$, $\varphi(p^{\alpha}) = p^{\alpha-1}(p-1)$.

Corollaire 26 ([R] 288). $\forall n \in \mathbb{N}^*$,

$$\varphi(n) = \prod_{\substack{p \in \mathcal{P} \\ v_p(n) \ge 1}} p^{v_p(n)-1}(p-1) = n \prod_{\substack{p \in \mathcal{P} \\ v_p(n) \ge 1}} \left(1 - \frac{1}{p}\right)$$

Définition 27. La fonction ζ de Riemann est définie par :

$$\zeta: \ \{z\in\mathbb{C}\mid\Re(z)>1\}\to\mathbb{C}$$

$$s\mapsto\sum_{n=0}^{+\infty}\frac{1}{n^s}$$

Proposition 28 ([KG] 461). On a:

$$\zeta(s) = \prod_{p \in \mathcal{P}} \frac{1}{1 - \frac{1}{p^s}}$$

Cette écriture est appelé "produit eulérien".

Théorème 29 ([KG] 461, [R] 343). $\sum_{p \in \mathcal{P}} \frac{1}{p} = +\infty$

Définition 30 ([R] 331). La fonction de Moëbius est définie E. En théorie des groupes

$$\mu: n \in \mathbb{N}^* \mapsto \begin{cases} 1 & \text{si } n = 1 \\ (-1)^r & \text{si } n = p_1 \dots p_r, \text{ avec } p_1, \dots, p_r \text{ distinct} \mathbf{Proposition 41 ([R] 22). Si un p-groupe G agit sur un ensemble fini X, alors $\#X \equiv \#X^G[p]$ où X^G est l'ensemble des éléments de X fine ner l'action de G.}$$

Théorème 31 (Cesàro - ADMIS [R] 334). La probabilité de choisir au hasard $r \geq 2$ entiers entre 1 et n qui sont premiers entre eux vaut $\frac{1}{\zeta(r)}$.

B. Algorithme de chiffrement RSA

Théorème 32 (d'Euler - [R] 283). $\forall (a,b) \in (\mathbb{N}^*)^2$, $si \ a \wedge n =$ 1, alors $a^{\varphi(n)} \equiv 1 [n]$.

De la complexité des tests de primalité découle la grande difficulté de la recherche de la décomposition en produit de facteurs premiers d'un entier donné. Ce principe est à la base de la sécurité de l'algorithme de chiffrement RSA, détaillé ci-dessous:

Algorithme 33 ([G] 37). Alice veut envoyer à Bob un message représenté par un nombre entier m, en tout sécurité.

- Bob choisit en secret deux nombres premiers distincts p et q et calcule leur produit n = pq.
- Il choisit ensuite un entier $c < \varphi(n) = (p-1)(q-1)$ premier à $\varphi(n)$.
- Il trouve ensuite un entier d tel que $cd \equiv 1 [\varphi(n)]$.
- La clé publique de Bob est (n,c), qu'il donne à Alice, et sa clé privée est (n,d), qu'il garde secrète.
- Alice envoie à Bob le message $m^c \mod n$.
- Pour décoder le message, Bob calcule $(m^c)^d \equiv m[n]$.

C. Corps finis

Définition 34 ([R] 415). La caractéristique d'un anneau A est l'unique générateur positif du noyau du morphisme $\varphi: \mathbb{Z} \to A, \ n \mapsto n1_A.$

Lemme 35 ([R] 415). La caractéristique d'un corps est nulle ou première.

Exemple 36. $\mathbb{Z}/p\mathbb{Z}$ est un corps de caractéristique p.

Théorème 37 ([R] 421). Il existe un corps fini de cardinal q si, et seulement si, q est une puissance d'un nombre premier. Le cas échéant, un tel corps est unique à isomorphisme près, et on note \mathbb{F}_q le corps fini à q éléments. Par ailleurs, $p = \operatorname{car} \mathbb{F}_q$ est un nombre premier, et q est une puissance de p.

D. Le théorème des deux carrés de Fermat

Lemme 38 ([P] 75). -1 est un carré dans \mathbb{F}_p si, et seulement $si, p \equiv 1 [4].$

Théorème 39 (des deux carrés de Fermat - [P] 56). Soit $E = \{n \in \mathbb{N}^* \mid \exists (a,b) \in \mathbb{N}^2 : n = a^2 + b^2\} \text{ Alors, } n \in E \iff$ $\forall p \in \mathcal{P}, p \equiv 3 [4] \implies v_p(n) \text{ est pair.}$

Définition 40 ([R] 22). Un p-groupe est un groupe de cardinal une puissance de p.

des éléments de X fixes par l'action de G.

Corollaire 42 ([R] 23). Le centre d'un p-groupe n'est pas trivial.

Définition 43 ([U] 85). Soit G un groupe fini de cardinal $p^{\alpha}m, m \wedge p = 1$. Un p-Sylow de G est un sous-p-groupe de G de cardinal p^{α} .

Théorème 44 (de Sylow - ADMIS [U] 87). Soit G un groupe d'ordre $p^{\alpha}m$, $m \wedge p = 1$. Alors,

- 1. $\operatorname{Syl}_n(G) \neq$
- 2. G agit transitivement sur $Syl_n(G)$ par conjugaison

Théorème 45 ([R] 292). Si $p \geq 3$, alors $\forall \alpha \geq 1$, $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$ est cyclique.

Proposition 46 ([R] 23). Tout groupe d'ordre p² est abélien.

Développements

- Développement 1 : Lemme 38, et théorème 39
- Développement 2 : Théorème 45 (cyclicité des inversibles $de \mathbb{Z}/p^{\alpha}\mathbb{Z}$

- Rb Mathématiques pour l'agrégation Algèbre et géométrie, Jean-Étienne Rombaldi, 2e édition
 - U Théorie des groupes, Félix Ulmer
- G Les maths en tête Algèbre et probabilités, Xavier Gourdon, 3e édition
- KG De l'intégration aux probabilités, Olivier Garet, Aline Kurtzmann, 2e édition augmentée

Crible d'ÉRATOSTHÈNE

414

FIGURE 1.2 – Crible d'Eratosthène

123 : Corps finis. Applications.

I. Des corps finis

A. Prérequis sur les extensions de corps

Soit L/M/K une tour d'extensions de corps (commutatifs).

Proposition/Définition 1 ([P] 65). Lest un K-espace vectoriel, sa dimension est appelée degré de L/K, et est notée [L:K].

Théorème 2 (de la base téléscopique - [P] 65). Soient $(e_i)_{i\in I}$ une base K-base de M et $(f_j)_{j\in K}$ une M-base de L, alors $(e_if_j)_{(i,j)\in I\times J}$ est une K-base de L. En particulier, $[L:K]=[L:M]\times [M:K]$ (dans $\mathbb{N}\cup\{+\infty\}$).

Définition 3 ([P] 70). Soit $P \in K[X]$ non constant. Supposons P irréductible sur K. On dit que L est un corps de rupture (CDR) de P sur K s'il existe $\alpha \in L$ tel que $P(\alpha) = 0$ et $L = K(\alpha)$.

On dit que L est un corps de décomposition (CDD) de P sur K s'il existe $(\alpha_1, \ldots, \alpha_n) \in L^n$ tel que $L = K(\alpha_1, \ldots, \alpha_n)$ et P est scindé sur L.

Théorème 4 ([P] 70-71). P admet un unique corps de rupture à K-isomorphisme près. Plus précisément, $K[X]/\langle P \rangle$ est un corps de rupture de P sur K.

P admet un unique corps de décomposition D à Kisomorphisme près. Celui-ci vérifie $[D:K] \leq \deg(P)!$.

B. Construction des corps finis : existence et unicité

Dans ce paragraphe K désigne un corps fini commutatif.

Exemple 5. Soit p un nombre premier. L'anneau $(\mathbb{Z}/p\mathbb{Z}, +, \times)$ est un corps fini commutatif. On le note \mathbb{F}_p .

Théorème/Définition 6 ([P] 72). Il existe un nombre premier p rendant le diagramme suivant commutatif :

L'entier p est appelé caractéristique de K notée car K et \mathbb{F}_p est appelé sous-corps premier de K. C'est le plus petit sous-corps de K.

On notera p la caractéristique de K.

Corollaire 7 ([P] 72). $\#K = p^{[K : \mathbb{F}_p]}$

Remarque 8. Il n'existe pas de corps fini commutatif à 6 éléments!

Lemme/Définition 9 ([P] 73). Fr : $K \to K$, $x \mapsto x^p$ est un morphisme de corps, appelé morphisme de Fröbenius.

Théorème 10 ([P] 73). Soient $r \in \mathbb{N}^*$, p premier et $q = p^r$. Il existe un corps fini commutatif à q éléments. Un tel corps est un CDD de $X^q - X$. En particulier, les classes d'isomorphisme de corps finis commutatifs sont caractérisées par le cardinal de ces derniers. On note \mathbb{F}_q un représentant de la classe d'isomorphisme des corps finis commutatifs à q éléments.

Théorème 11 (de Wedderburn - [P] 82). Tout corps fini est commutatif.

Exemple 12. $\mathbb{F}_4 = \mathbb{F}_2[X]/\langle X^2 + X + 1 \rangle = \{0, 1, \overline{X}, 1 + \overline{X}\}.$ $\mathbb{F}_9 = \mathbb{F}_3[X]/\langle X^3 + X^2 + X + 1 \rangle.$

C. Proprriétés des corps finis

Soient p un nombre premier, $r \in \mathbb{N}^*$ et $q = p^r$.

Proposition 13 (FIG. 1). $\forall (m,n) \in (\mathbb{N}^*)^2$, $\mathbb{F}_{p^n} \subseteq \mathbb{F}^{p^m} \iff n \mid m$.

Proposition 14 ([P] e73). — $\overline{\mathbb{F}_p} = \bigcup_{n \in \mathbb{N}^*} \mathbb{F}_{p^n}$ est une clôture algébrique de \mathbb{F}_p .

— Si K est une extension de \mathbb{F}_q , alors $\mathbb{F}_q = \{x \in K \mid \underline{x}^q = x\}$. En particulier, \mathbb{F}_q est l'unique souscorps de $\overline{\mathbb{F}_p}$ de cardinal q.

Théorème 15 ([P] 74). \mathbb{F}_q^{\times} est cyclique.

Proposition 16 ([P] 73). Fr est un automorphisme de \mathbb{F}_q .

Théorème 17 ([R] 425). Le groupe des automorphismes de \mathbb{F}_q est cyclique d'ordre r, engendré par Fr.

Remarque 18. Pour tout $\theta \in \mathbb{F}_q$, il existe $d \in \mathbb{N}^*$ tel que $\operatorname{Fr}^d(\theta) = \theta^{dp} = \theta$. Le polynôme minimal de θ sur \mathbb{F}_p est $\prod_{k=1}^d \left(X - \operatorname{Fr}^k(\theta)\right)$.

Exemple 19. Soit $\beta = \overline{X}^2 + \overline{X} \in \mathbb{F}_2[X]/\langle X^4 + X + 1 \rangle$. On $a P_{\beta,\mathbb{F}_2} = X^2 + X + 1$.

II. Carrés dans un corps fini

Soient p un nombre premier impair, $r \in \mathbb{N}^*$ et $q = p^r$. On pose $c : \mathbb{F}_q \to \mathbb{F}_q$, $x \mapsto x^2$ et $l : \mathbb{F}_q \to \mathbb{F}_q$, $x \mapsto x^{\frac{q-1}{2}}$.

Proposition 20. Im $l = \operatorname{Ker} c = \{\pm 1\}$ et $\operatorname{Ker} l = \operatorname{Im} c = \{x^2 \mid x \in \mathbb{F}_q^{\times}\}.$

Corollaire 21 (Critère d'Euler - [P] 75). $x \in \mathbb{F}_q^{\times}$ est un carré si, et seulement si $x^{\frac{q+1}{2}} = 1$.

Corollaire 22 ([P] 74). Il y a $\frac{q-1}{2}$ carrés inversibles dans \mathbb{F}_q (et $\frac{q+1}{2}$ carrés).

Proposition 23 ([P] 74). Tous les éléments de \mathbb{F}_{2^r} sont des carrés.

Proposition 24 ([P] 75). -1 est un carré dans \mathbb{F}_p si, et seulement si, $p \equiv 1$ [4].

Application 25 ([P] 56). p est la somme de deux carrés si, et seulement si, p = 2 ou $p \equiv 1$ [4].

Définition 26 ([R] 428). Le symbole de Legendre de $a \in \mathbb{Z}$ modulo p est défini par :

$$\left(\frac{a}{b}\right) = \begin{cases} 0 & si \ a \in p\mathbb{Z} \\ 1 & si \ a \ est \ un \ carr\'e \ inversible \ modulo \ p \\ -1 & sinon \end{cases}$$

Proposition 27 ([R] 428). $\forall a \in \mathbb{Z}, \left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}$. En particulier, $\left(\frac{\cdot}{p}\right)$ est un morphisme du groupe \mathbb{F}_p^{\times} .

Proposition 28 ([R] 431-434). Soit $a \in \mathbb{F}_p^{\times}$. L'équation de $ax^2 = 1$ $a + \left(\frac{a}{p}\right)$ solutions dans \mathbb{F}^p .

Théorème 29 (Loi de réciprocité quadratique - [R] 431-434). Soient p et q deux nombres premiers impairs distincts.

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

Application 30. $\left(\frac{11}{23}\right) = \left(\frac{23}{11}\right)(-1)^{11\cdot 5} = -\left(\frac{1}{11}\right) = -1 \ donc$ 11 n'est pas un carré modulo 23.

Proposition 31 ([R] e438, [C] 307).
$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$$

Proposition 32. Soit $(a,b,c) \in \mathbb{F}_q^3$ avec $a \neq 0$. L'équation $ax^2+bx+C=0$ dans \mathbb{F}_q possède des solutions si, et seulement si, b^2-4ac est un carré dans \mathbb{F}_q . Le cas échéant, si $\delta \in /IF_p$ vérifie $\delta^2=b^2-4ac$, alors les solutions de cette équation sont $\frac{-b\pm\delta}{2a}$.

Remarque 33. Dans \mathbb{F}_{2r} , l'équation $ax^2 + bx + c = 0$ est bien plus difficile à résoudre, en dehors des cas triviaux!

III. Algèbre (bi)linéaire sur les corps finis

Soient p un nombre premier impair, $r \in \mathbb{N}^*, q = p^r$ et $n \in \mathbb{N}$.

Proposition 34 ([R] 155). —
$$\#GL_n(\mathbb{F}_q) = (q^n - 1)(q_n - q) \dots (q^n - q^{n-1}) = q^{\frac{n(n-1)}{2}} \prod_{k=1}^n (q^k - 1)$$

— $\#SL_n(\mathbb{F}_q) = \#GL_n(\mathbb{F}_q)/(q-1)$

Théorème 35 ([C] 50).

$$SO_2(\mathbb{F}_q) \cong \begin{cases} \mathbb{Z}/(q-1)\mathbb{Z} & si-1 \ est \ un \ carr\'e \ mod \ q \\ \mathbb{Z}/(q+1)\mathbb{Z} & sinon \end{cases}$$

Remarque 36.
$$SO_2(\mathbb{F}_{2^r}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \mathbb{F}_{2^r} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, puis $SO_2(\mathbb{F}_{2^r}) \cong (\mathbb{Z}/2\mathbb{Z})^r$.

Soit E un \mathbb{F}_q -espace vectoriel de dimension finie.

Définition 37 ([R] 463). Le discriminant d'une forme quadratique f sur E est l'image de son déterminant dans une base quelconque modulo les carrés de \mathbb{F}_q^{\times} .

Théorème 38 ([R] e482). Il y a deux classes d'équivalence de formes quadratiques non-dégénérées sur E. Plus précisément, soient $\alpha \in \mathbb{F}_q^{\times}$ qui n'est pas un carré, et f une forme quadratique sur, de matrice M dans la base canonique.

- Si det M est un carré dans \mathbb{F}_p^{\times} , alors M est congruente à la matrice diag $(1, 1, \ldots, 1, 1)$.
- Sinon, M est congruente à diag $(1, 1, ..., 1, \alpha)$.

Application 39. Loi de réciprocité quadratique (Thm 29).

IV. Polynômes et corps finis

Théorème 40 (Critère d'Eisenstein - [P] 76). Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{Z}[X]$. Soit p un nombre premier. Si $p \nmid a_n$, si $\forall k \in [0, n-1]$, $p \mid a_k$ et $p^2 \nmid a_0$, alors P est irréductible dans $\mathbb{Q}[X]$.

Exemple 41. Pour tout p premier, $\Phi_p = X^{p+1} + \cdots + X + 1$ est irréductible sur \mathbb{Q} .

Théorème 42 ([P] 77). Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{Z}[X]$, $n \geq 1$, $a_n \neq 0$. Soit $p \in \mathbb{Z}$ premier. Si $p \nmid a_n$ et si l'image \overline{P} de P dans $\mathbb{F}_p[X]$ est irréductible, alors P est irréductible sur \mathbb{Z} .

Remarque 43. La réciproque est fausse : considérer $X^4 + 1$.

Développements

- Développement 1 : Proposition 28, et théorème 29 : loi de réciprocité quadratique (par les formes quadratiques)
- Développement 2 : Théorème 35

- R Mathématiques pour l'agrégation Algèbre et géométrie, Jean-Étienne Rombaldi, 2e édition
- P Cours d'algèbre, Perrin
- C Nouvelles histoires hédonistes de groupes et géométries, P. Caldero, J. Germoni

Figure 1.3 – Diagramme des extensions de corps finis

141 : Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.

Soient A un anneau unitaire intègre commutatif, et L/K une extension de corps commutatif. Soit $P \in A[X]$.

I. Polynômes irréductibles

A. Notion d'irréductibilité pour les polynômes

Définition 1 ([R] 370). On dit que P est irréductible sur A si $P \notin A[X]^{\times} = A^{\times}$, si $P \neq 0$ et si : $\forall (P_1, P_2) \in A[X]^2$, $P = P_1P_2 \implies P_1 \in A^{\times}$ ou $P_2 \in A^{\times}$.

Exemple 2 ([R] 370). Tout polynôme de degré 1 est irréductible; et les polynômes réels de degré 2 de discriminant < 0 sont irréductibles.

Proposition 3 ([R] 371). — Si $P \in K[X]$ est irréductible et si deg P > 1, alors P n'a pas de racine dans K.

— $Si \ P \in K[X]$ n'a pas de racine dans K et $si \deg P \leq 3$, alors P est irréductible $sur \ K$.

Exemple 4. $-(x^2+1)^2$ est réductible sur \mathbb{R} et sans racine dans \mathbb{R} .

— Les polynômes irréductibles de petit degré de $\mathbb{F}_2[X]$ sont $X, X+1, X^2+X+1$.

B. Proprétés de A[X]

Proposition 5 ([R] 374). A[X] euclidien \iff A[X] principal \iff A est un corps.

Proposition 6 ([R] e375). Si $P \in K[X]$ est irréductible, alors $K[X]/\langle P \rangle$ est un corps.

On suppose A factoriel.

Définition 7 ([S] 547-548; [P] 51). Le contenu de $P \in A[X] \setminus \{0\}$, noté c(P), est un PGCD des coefficients de P. On dit que P est primitif $si\ c(P) \in A^{\times}$.

Théorème 8 ([P] 51; [S] 548). Soit $P \in A[X]$ primitif non constant. P est irréductible dans $A[X] \iff A$ est irréductible dans K[X].

Exemple 9. Soient a_1, \ldots, a_n des entiers distincts. Le polynôme $(X - a_1) \ldots (X - a_n) - 1$ est irréductible sur \mathbb{Q} .

Lemme 10. Un produit de polynômes primitifs est primitif.

Lemme 11 (de Gauss - [S] 548; [P] 51). c(PQ) = c(P)c(Q)

Théorème 12 ([R] 358; [S] 548; [P] 51). A[X] est factoriel $\iff A$ est factoriel.

C. Critères d'irréductibilité

Théorème 13 (Critère d'Eisenstein - [S] 549; [P] 76). Ecrivons $P = \sum_{k=0}^{n} a_k X^k$, $a_n \neq 0$. S'il existe $p \in A$ premier non nul tel que $\forall k \in [1, n-1]$, $p \mid a_k$, $p^2 \nmid a_0$ et $p \nmid a_n$, alors P est irrductible dans Frac(A)[X].

Exemple 14. $\forall n \geq 2, \ \forall d \in \mathbb{N}^* \ sans \ facteur \ carr\'e, \ X^n - d$ est irr\'eductible dans $\mathbb{Z}[X]$.

Théorème 15 ([P] 77). Soit I un idéal de A. Ecrivons $P = \sum_{k=0}^{n} a_k X_k$, $a_n \neq 0$. Si $a_n \not\equiv 0 \mod I$ et si P mod I est irréductible dans (A/I)[X] alors P est irréductible dans A[X].

Exemple 16 ([P] 77). Pour tout p premier, $X^p - X - 1$ est irréductible sur \mathbb{Q} .

II. Polynômes et extensions de corps

Soient L et K deux corps commutatifs. Soit $P \in K[X]$.

A. Extensions de corps, éléments algébriques

Définition 17 ([P] 65). On dit que L est une extension de K, et on note L/K, si $K \subseteq L$.

Proposition/Définition 18 ([P] 65). L est un K-espace vectoriel dont on note [L:K] la dimension, que l'on appelle degré de l'extension L/K. On dit que L/K est finie si [L:K] est fini.

Théorème 19 (de la base téléscopique - [P] 65). Soient $(e_i)_{i\in I}$ une base K-base de M et $(f_j)_{j\in K}$ une M-base de L, alors $(e_if_j)_{(i,j)\in I\times J}$ est une K-base de L.

Corollaire 20 (Multiplicativité des degrés - [P] 65). $[L:K] = [L:M] \times [M:K]$

Définition 21 ([P] 66). On dit que $\alpha \in L$ est algébrique sur K s'il existe $P \in K[X]$ tel que $P(\alpha) = 0$. Sinon, on dit que α est transcendant.

Théorème/Définition 22 ([P] 66). Si $\alpha \in L$ est algébrique sur K, alors $\{P \in K[X] \mid P(\alpha) = 0\}$ est un idéal non nul, qui donc admet un unique générateur unitaire $P_{\alpha,K}$ appelé polynôme minimal de α sur K.

Notation. $K[\alpha] = \{P(\alpha) \mid P \in K[X]\}$

Théorème 23 ([P] 66). Soit $\alpha \in L$. Sont équivalentes :

- 1. α est algébrique sur K
- 2. $K[\alpha] = K(\alpha)$
- 3. $K[\alpha]$ est un K-espace vectoriel de dimension finie.

Le cas échéant, deg $P_{\alpha,L} = [K(\alpha) : K]$.

B. Corps de rupture et de décomposition

Définition 24 ([P] 70). Supposons P irréductible. On dit que L est un corps de rupture de P sur K s'il existe $\alpha \in L$ tel que $P(\alpha) = 0$ et $L = K(\alpha)$.

Théorème 25 ([P] 70). Supposons P irréductible. Le corps $K[X]/\langle P \rangle$ est un corps de rupture de P sur K, et c'est le seul à isomorphisme près.

Exemple 26. \mathbb{C} peut être défini comme $\mathbb{R}[X]/\langle X^2+1\rangle$.

Application 27. Si P est irréductible et si $\deg P \wedge [L:K]$, alors P est irréductible sur L.

Définition 28 ([P] 71). On dit que L est un corps de décomposition de P sur K si P est sciendé sur L et si $L = K(\alpha_1, \ldots, \alpha_n)$ avec $\alpha_1, \ldots, \alpha_n$ les racines de P.

Théorème 29 (P 71). Il existe un corps de décomposition IV. Polynômes irréductibles des corps finis de P sur K, unique à isomorphisme près.

Exemple 30 ([P] 72). $\mathbb{Q}(j, \sqrt[3]{2})$ est un corps de décomposition de $X^3 - 2$ sur \mathbb{Q} .

Théorème 31 (de l'élément primitif - [P] 87). Toute extension finie d'un corps de caractéristique nulle est monogène.

C. Clôture algébrique

Définition 32 ([P] 67). On dit que K est algébriquement clos si tout polynôme non nul de K[X] est scindé, et si Kn'admet pas d'extension algébrique non triviale.

Définition 33 ([P] 72). On dit que L est une clôture algébrique de K si c'est une extension de K algébrique et algébriquement close.

Exemple 34 ([P] 68-72). — \mathbb{C} est algébriquement clos (théorème de d'Alembert-Gauss);

— \mathbb{C} est une clôture algébrique de \mathbb{R} .

Exemple 35 ([G] 94). Si L est algébriquement clos, alors l'ensemble des éléments de L algébriques sur K est un corps algébriquement clos.

Théorème 36. K admet une unique clôture algébrique à isomorphisme près.

III. Polynôme cyclotomiques

On note $\mathbb{U} := \{z \in \mathbb{C} \mid z^n = 1\}$ le groupe des racines complexes n-ièmes de l'unité, et μ_n^* l'ensemble de ses générateurs (que l'on appelle racines primitives n-ièmes de l'unité).

Définition 37 ([P] 80; [R] 385). Pour $n \in \mathbb{N}^*$, on définit le n-ième polynôme cyclotomique :

$$\Phi_n = \prod_{\zeta \in \mu_n^*} X - \zeta$$

Proposition 38 ([P] 80-83; [R] 386). On a les propriétés suivantes:

- Pour $\zeta_n \in \mu_n^*$,

$$\Phi_n = \prod_{\substack{k=1\\k \land n-1}}^n X - \zeta_n^k$$

- $-X^n-1=\prod_{d\mid n}\Phi_d$
- $\Phi_n \in \mathbb{Z}[X]$

Exemple 39 ([P] 81). — Pour p premier, $\Phi_p = X^{p-1} +$

$$\Phi_1 = X - 1, \, \Phi_4 = X^2 + 1, \, \Phi_6 = X^2 - X + 1, \, \Phi_8 = X^4 + 1$$

Théorème 40 ([P] 82-83; [R] 392). Soit $\zeta_n \in \mu_n^*$. Le poly $n\hat{o}me \ minimal \ de \ \zeta_n \ sur \ \mathbb{Q} \ est \ \Phi_n.$

Corollaire 41. Φ_n est irréductible sur \mathbb{Q} et $[\mathbb{Q}(\zeta):\mathbb{Q}] =$ $\varphi(n)$.

Définition 42 ([R] 331). La fonction de Moëbius est définie

$$\mu: n \in \mathbb{N}^* \mapsto \begin{cases} 1 & \text{si } n = 1\\ (-1)^r & \text{si } n \text{ est le produit de } r \text{ facteurs premiers di} \\ 0 & \text{sinon} \end{cases}$$

Théorème 43 (Formule d'inversion de Moëbius = [R] 333). Soient $(u_n)_{n\in\mathbb{N}^*} \in \mathbb{R}^{\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*} \in \mathbb{R}^{\mathbb{N}^*}$. Si $\forall n \in \mathbb{N}^*$, $u_n = \sum_{d|n} v_d$, alors $\forall n \in \mathbb{N}^*$, $v_n = \sum_{d|n} \mu(\frac{n}{d})u_d$.

Théorème 44 ([R] 423). $P_n := X^{p^n} - X = \prod_{d|n} \prod_{\mathcal{U}_d(p)} P$ où $\mathcal{U}_d(p)$ est l'ensemble des polynômes irréductibles unitaires de degré d de $\mathbb{F}_n[X]$.

Corollaire 45 ([R] 424). $\#\mathcal{U}_n(p) = \frac{1}{n} \sum_{d|n} \mu(\frac{n}{d}) p^d$

Développements

- Développement 1 : Lemme de Gauss 11
- Développement 2 : Théorème 40 et Corollaire 41
- Développement 2 : Théorème 43, Théorème 44 et Corollaire 45

- R Mathématiques pour l'agrégation Algèbre et géométrie, Jean-Étienne Rombaldi, 2e édition
- P Cours d'algèbre, Perrin
- G Les maths en tête Algèbre et probabilités, Xavier Gourdon, 3e édition
- S Algèbre pour la licence 3, Szpirglas

142 : PGCD et PPCM, algorithmes de calcul. Applications.

I. Notion de PGCD et de PPCM dans différents types d'anneaux

Dans cette section, A est un anneau intègre (commutatif) et $(a, b, a_1, \ldots, a_r) \in A^{r+2}$.

A. Première définition, existence, cas des anneaux factoriels

Définition 1. Si $a_1, \ldots, a_r \neq 0$, alors sous réserve d'existence, on appelle PGCD (resp. PPCM) de a_1, \ldots, a_r , noté $a_1 \wedge \cdots \wedge a_R$ ou $\operatorname{pgcd}(a_1, \ldots, a_r)$ (resp. $a_1 \vee \cdots \vee a_r$ ou $\operatorname{ppcm}(a_1, \ldots, a_r)$) un plus grand minorant (resp. un plus grand majorant) de $\{a_1, \ldots, a_r\}$ pour la relation (binaire) de divisibilité. On pose par ailleurs $0 \wedge 0 = 0 \vee a = 0$.

En particulier, le PGCD et le PPCM sont associatifs et commutatifs : $a \wedge b = b \wedge a$ et $a_1 \wedge a_2 \wedge a_3 \wedge a_4 \wedge a_5 = (a_1 \wedge a_2) \wedge (a_3 \wedge a_4) \wedge a_6$.

Remarque 2. Les PGCD (resp. PPCM) de a_1, \ldots, a_r sont tous associés. L'écriture $d = a_1 \wedge \cdots \wedge a_r$ est un abus signifiant que d est \underline{un} PGCD de a_1, \ldots, a_r .

Proposition 3 ([R] 246). Si a et b ont un PPCM alors ils ont un PGCD $a \wedge b = ab(a \vee b)^{-1}$.

Exemple 4. 3 et $2 + i\sqrt{5}$ ont un PGCD mais pas de PPCM dans $\mathbb{Z}[i\sqrt{5}]$. 4 et $2 + 2i\sqrt{3}$ n'ont pas de PGCD dans $\mathbb{Z}[i\sqrt{3}]$.

Définition 5. On dit que a_1, \ldots, a_r sont premiers entre eux (dans leur ensemble) si $a_1 \wedge \cdots \wedge a_r = 1$. On dit que a_1, \ldots, a_r sont deux à deux premiers entre eux si $\forall (i,j) \in [\![1,n]\!]^2, i \neq j \implies a_i \wedge a_j = 1$.

Théorème 6 (de Gauss - [R] 247). $\forall (a, b, c) \in A^3$, $a \mid bc \ et$ $a \wedge b = 1 \implies a \mid c$.

Proposition 7 ([R] 246). Si toute paire d'éléments de A admet un PGCD (on dit alors que A est un anneau à PGCD), alors toute paire d'éléments de A admet un PPCM, et la réciproque est vraie.

Proposition 8 ([P] 49). Supposons A factoriel, notons \mathcal{P} un système complet de représentants des irréductibles de A. Alors :

$$\prod_{p\in\mathcal{P}} p^{\min(v_p(a),v_p(b))} \text{ est un } PGCD \text{ de } a \text{ et } b.$$

$$\prod_{p\in\mathcal{P}} p^{\max(v_p(a),v_p(b))} \text{ est un PPCM de } a \text{ et } b.$$

Définition 9. Si $A = \mathbb{Z}$ (resp. A = K[X], K un corps), alors le PGCD de a et b est l'unique PGCD de a et b qui est positif (resp. unitaire).

B. Situation dans les anneaux principaux

On suppose A principal.

Proposition 10. $m \in A$ est un PPCM de a et b si, et seulement si, $aA \cap bA = mA$.

 $d \in A$ est un PGCD de a et b si, et seulement si, aA+bA=dA.

Théorème 11 (de Bézout). $(\exists (u,v) \in A^2 \ au + bv = 1) \iff a \land b = 1$

Remarque 12. $\forall (a,b) \in A^2$, $\exists (u,v) \in A^2 : au + bv = 1$. Le théorème de Bézout indique que la réciproque est vraie si $a \wedge b = 1$ (contre-exemple : $3 \times (2) + 2 \times (-2) = 2$, mais $3 \wedge 2 \neq 2$).

Définition 13 ([R] 247). Un couple $(u, v) \in A^2$ tel que $a \wedge b = au + bv$ est appelé couple de Bézout de (a, b), et l'égalité est appelée relation de Bézout.

Application 14. Résolution de ax + by = c avec $a \wedge b = 1$.

Application 15. Lemme des noyaux : soit $(P,Q) \in K[X]^2$ tel que $P \wedge Q = 1$. Soient V un K-espace vectoriel de dimension finie. Pour tout endomorphisme f de V; $\operatorname{Ker}((PQ)(f)) = \operatorname{Ker}(P(f)) \bigoplus \operatorname{Ker}(Q(f))$.

Théorème 16 (des restes chinois - [R] 250). Si a_1, \ldots, a_d sont non nuls, non inversibles et deux à deux premiers entre eux, alors :

$$\overline{\varphi}: x \, mod \, a_1 \dots a_d \mapsto (x \, mod \, a_1, \dots, x \, mod \, a_d)$$

est un isomorphisme d'anneaux de $A/\langle a_1 \dots a_r \rangle$ dans $A/\langle a_1 \rangle \times \dots A/\langle a_r \rangle$.

Posons $a = a_1 \dots a_r$ et pour $j \in [1, r]$, $b_j = \frac{a}{a_j}$. Il existe $(u_1, \dots, u_r) \in A^r$ tel que $\sum_{i=1}^r u_i b_i = 1$. La réciproque de $\overline{\varphi}$ s'exprime alors :

$$\overline{\varphi}^{-1}: (x_1 \, mod \, a_1, \dots, x_d \, mod \, a_d) \mapsto \sum_{i=1}^d x_i a_i b_i \, mod \, a_1 \dots a_d$$

Application 17 ([R] 291). Résolution d'un système de congruence.

Exemple 18 (Interpolation de Lagrange). Soient $x_1, \ldots, x_n \in K$ deux à deux distincts et $y_1, \ldots, y_n \in K^n$. Un polynôme interpolateur des x_i en y_i est une solution du système :

$$\{\forall i \in [1, n], P \equiv y_i [X - x_i]\}$$

Exemple 19. Recherche de $P \in (\mathbb{Z}/5\mathbb{Z})[X]$ tel que $P(\overline{0}) = \overline{2}$, $P(\overline{1}) = \overline{0}$, $P(\overline{2}) = \overline{1}$ de degré minimal.

Proposition 20 ([R] 298). $\forall (n,m) \in \mathbb{N}^2_{\geq 2}, \ \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} \cong \mathbb{Z}/n \wedge m\mathbb{Z} \times \mathbb{Z}/n \vee \mathbb{Z}$

II. Algorithmes de calcul dans un anneau eculidien

Dans cette section, A est supposé euclidien. Soit $(a,b) \in A \times A \setminus \{0\}$.

A. Algorithmes d'Euclide

Lemme 21 (d'Euclide - [R] 264). Si a = bq + r avec $(q, r) \in A^2$, alors $a \wedge b = b \wedge r$.

Algorithme 22 (d'Euclide - [R] 264). Posons $r_{-1}=a$ et $r_0=b$, et pour $n\geq 1$, r_n est un reste d'une division euclidienne de r_{n-2} par r_{n-1} si $r_{n-1}\neq 0$, et $r_n=0$ sinon.

Il existe $N \in \mathbb{N}$ tel que $\forall n \geq N+1, r_n = 0$; de plus, $a \wedge b = r_n$.

Exemple 23. $M_n \wedge M_m = M_{n \wedge m}$, $où(n,m) \in \mathbb{N}^2$ et $M_n = 2^n - 1$.

$$(X^{n}-1) \wedge (X^{m}-1) = X^{n \wedge m} - 1.$$

Algorithme 24 (d'Euclide étendu - [R] 265). Soit $(q_n)_{n\geq 1}$ une quite de quotients dans l'algorithme d'Euclide, soit N le rang du dernier reste non nul. On peut trouver un couple de Bézout en "remontant" l'algorithm d'Euclide, i.e. en écrivant $a \wedge b = r_N = r_{N-2} - q_N r_{N-1}$, puis en y substituant $r_{N-1} = r_{N-3} - q_{N-1} r_{N-2}$, puis en y substituant $r_{N-2} = r_{N-4} - q_{N-2} r_{N-3}$, etc. jusqu'à exprimer $a \wedge b$ sous la forme $a \wedge b = af(q_1, \ldots, q_N) + bg(q_1, \ldots, q_n)$.

Application 25. Calcul d'un inverse dans un corps de rupture : soit $K = \mathbb{Q}[X]/\langle X^2 - X - 1 \rangle \cong \mathbb{Q}(\varphi)$. Dans $K, (2\varphi + 1)^{-1} = 2\varphi - 3$.

Proposition 26.
$$Gl_2(\mathbb{Z})$$
 agit $sur \mathbb{Z}^2$ $par \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \alpha a + \beta b \\ \gamma a + \delta b \end{pmatrix}$

Les orbites de cette action sont les $E_d = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{Z}^2 \mid a \wedge b = d \right\}, d \in \mathbb{N}.$

Corollaire 27. D'après l'algorithme d'Euclide, $\forall (a,b) \in \mathbb{Z}^2$, $\exists P \in GL_2(\mathbb{Z}) : P \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \wedge b \\ 0 \end{pmatrix}$

Application 28. Soit $a = (a_1, \ldots, a_n)$ un vecteur de \mathbb{Z}^n . On peut compléter (a) en une \mathbb{Z} -base de \mathbb{Z}^n si, et seulement si, $a_1 \wedge \cdots \wedge a_n = 1$.

B. Du côté de \mathbb{Z} et K[X], un point sur la complexité

Dans le cas de la division euclidienne dans \mathbb{Z} , on impose aux restes d'être positifs, ce qui rend les reste et quotient uniques.

Théorème 29 (de LAMÉ - [D] 38). Supposons que $a > b \ge 1$. Soient $(F_k)_k$ la suite de FIBONACCI débutant à 0, et $k \in \mathbb{N}$ tel que $b < F_{k+1}$. L'algorithme d'EUCLIDE pour a et b termine en moins de k étapes.

Remarque 30. Cette majoration est optimale : considérer $a = F_{k+1}$, $b = F_k$.

Algorithme 31 (PGCD binaire - [D] 36). Supposons $a \ge b \ge 0$. La fonction suivante :

PGCD_binaire(a,b):
Si a = 0: renvoyer b
Si $2 \mid a$ et $2 \mid b$: renvoyer $2 \times \text{PGCD_binaire}(a/2, b/2)$ Si $2 \mid a$ et $\text{non}(2 \mid b)$: renvoyer PGCD_binaire(a/2, b)Si $\text{non}(2 \mid a)$ et $2 \mid b$: renvoyer PGCD_binaire(a, b/2)Sinon: renvoyer PGCD_binaire((a - b)/2, b)appliquée à (a, b) renvoie $a \wedge b$.

Remarque 32. Algorithme 31 se termine en au plus $\lceil \log_2(a) \rceil$ récursions.

Proposition 33. Soit $(P,Q) \in K[X]^2$ tel que $n := \deg P \ge \deg Q \ge 1$. L'algorithme d'EUCLIDE appliqué à P et Q termine en au plus n étapes.

III. Applications en arithmétique et en théorie des groupes

A. (Systèmes d') équations diophantiennes linéaires

Définition 34 ([G] 163). Soit $M \in \mathcal{M}_{n,m}(IZ)$. On dit que M est sous forme normale d'HERMITE si elle est sous la forme :

où les pivots p_i (i.e. les premiers coefficients non-nuls sur chaque ligne) sont strictement positifs, et les coefficients au dessus de chaque pivot sont positifs et inférieurs au pivot.

Algorithme 35 (d'HERMITE - [G] 164). Soit $M \in \mathcal{M}_{n,m}(\mathbb{Z}) \setminus \{0\}$. On définit $\delta_{i_0,j}(M) = \min\{|M_{i,j}| : i \geq i_0, M_{i,j} \neq 0\}$. L'algorithme d'HERMITE :

Soit $i_0=1$. Tant que $i_0< n$: soit $j_0=\min\{1\leq j\leq m\mid \delta_{i_0,j}(M)\neq 0\}$

Si $\forall i > i_0, M_{i,j_0} = 0$, alors $L_{i_0} \longleftarrow sg(M_{i_0,j_0})L_{i_0}$, et pour i allant de 1 à $i_0 - 1$, $L_i \longleftarrow L_i - q_iL_{i_0}$ où q_i est le quotient de la division euclidienne de M_{i,j_0} par M_{i_0,j_0} . On remplace i_0 par $i_0 + 1$

Sinon, soit $k \in \llbracket i_0, n \rrbracket$ tel que $|M_{k,j_0}|$ soit non nul et minimal. On effectue $L_i \longleftrightarrow L_{i_0}$ puis, pour i allant de $i_0 + 1$ à $n, L_i \longleftarrow L_i - q_i L_{i_0}$

transforme M sous une forme normale d'HERMITE M_H . En particulier, il existe $P \in GL_n(\mathbb{Z})$ telle que $M_H = PM$.

Application 36. Résolution d'un système d'équations diophantiennes linéaires.

Exemple 37. Cas d'une seule équation linéaire $(E) : \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}^T \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = b \text{ avec } a_1 \wedge \cdots \wedge a_n = 1.$ $D'après \quad Cor \quad 24, \quad il \quad existe \quad P \in GL_4(\mathbb{Z}) \quad telle \quad que$ $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}^T P = \begin{pmatrix} a_1 \wedge \cdots \wedge a_n \\ 0 \\ \vdots \\ 0 \end{pmatrix}^T = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^T$ $De \ l\grave{a}, \ (E) \iff \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix}^T \begin{pmatrix} \tilde{x}_1 \\ \vdots \\ \tilde{x}_n \end{pmatrix} = b \iff \tilde{x}_1 = b \ o\grave{u}$ $\begin{pmatrix} \widetilde{x}_1 \\ \vdots \\ \widetilde{x}_n \end{pmatrix} = P^{-1} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ $Donc \ S(E) = \left\{ P \begin{pmatrix} \frac{1}{x_1} \\ \vdots \\ \vdots \end{pmatrix} \mid (x_2, \cdots, x_n) \in \mathbb{Z}^{n-1} \right\}$

B. Un théorème de LIOUVILLE

Théorème 38 (de LIOUVILLE - [FGN] 179, [R] 404). L'équation $P^n + Q^n + R^n = 0$ n'admet pas de solution non triviale (i.e. P, Q, R non associées) dans $\mathbb{C}[X]$ dès lors que $n \geq 3$.

C. Quelques résultats en théorie des groupes

Soit G un groupe fini. On note $\operatorname{ord}(g)$ l'ordre de $g \in G$.

Proposition 39 ([R] 9). L'exposant de G ($\max_{g \in G} \operatorname{ord}(g)$) vaut $\operatorname{ppcm} \left(\{ \operatorname{ord}(g) \}_{g \in G} \right)$.

Lemme 40 ([R] 29). Soit $n \in \mathbb{N} \setminus \{0, 1\}$, soit $\overline{d} \in \mathbb{Z}/n\mathbb{Z}$. On $a \operatorname{ord}(\overline{d}) = \frac{n^d}{n \wedge d}$.

Théorème 41 (de structure des groupes abéliens finis - [R] 28). Supposons G abélien, de cardinal au moins 2. Il existe $(d_1, \ldots, d_s) \in (\mathbb{N} \setminus \{0,1\})^s$ tels que :

$$G \cong \mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_s\mathbb{Z}, \quad d_1 \mid d_2 \mid \cdots \mid d_s$$

Les entiers d_1, \ldots, d_s sont appelés facteurs invariants de G. Ils sont uniques et déterminent la classe d'isomorphisme de G

Exemple 42. Soit p un nombre premier. Un groupe abélien d'ordre p^2 est isomorphe à $\mathbb{Z}/p^2\mathbb{Z}$ ou $(\mathbb{Z}/p\mathbb{Z})^2$.

Développements

- Développement 1 : Théorème des restes chinois 16 et Exemple de calcul 19.
- Développement 2 : Théorème de Liouville 38

- R Mathématiques pour l'agrégation Algèbre et géométrie, Jean-Étienne Rombaldi, 2e édition
- P Cours d'algèbre, Perrin
- D Cours d'algèbre, Michel Demazure
- FGN Oraux X-ENS Algèbre 1, Serge Francinou, Hervé Gianella, Serge Nicolas
 - G $Algèbre\ I$ Groupes, corps et théorie de Galois, Daniel Guin, Thomas Hausberger

148 : Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

Dans toute cette leçon, E désigne espace vectoriel sur un corps K. On ne rappellera pas les éléments de la théorie des espaces vectoriels.

I. Théorie de la dimension finie

A. Familles libres, familles génératrices, bases Soit $\mathcal{F} \subseteq E$.

Définition 1 ([Gr] 11-11-10-13). On dit que \mathcal{F} est libre $si: \forall (\overrightarrow{v_1}, \dots, \overrightarrow{v_n}) \in \mathcal{F}^n, \forall (\lambda_1, \dots, \lambda_n) \in K^n,$

$$\sum_{k=1}^{n} \lambda_k \overrightarrow{v_k} = \overrightarrow{0} \implies \lambda_1 = \dots = \lambda_n = 0$$

On dit que \mathcal{F} est liée si \mathcal{F} n'est pas libre.

On dit que \mathcal{F} est génératrice (de E) si tout vecteur de E peut s'écrire comme combinaison linéaire finie de vecteurs de \mathcal{F} .

On dit que $\mathcal F$ est une base de E si $\mathcal F$ est à la fois libre et génératrice.

Exemple 2. — $Dans \mathbb{R}^2$:

- $-\{(1,1),(1,-1)\}$ est génératrice et libre;
- $-\{(0,1),(1,0),(2,5)\}$ est génératrice et liée;
- $-\{(-4,3)\}\ est\ non\ génératrice\ et\ libre;$
- $-\{(1,1),(2,2)\}$ est non génératrice et liée;

[Gr] 14 La famille $\{(0,\ldots,1,\ldots,0)\}_{i\in \llbracket 1,n\rrbracket}$ est une base de $K^n,$ appelée base canonique.

Proposition 3 ([Gr] 13). $\mathcal{F} = \{\} \subseteq E \text{ est une base de } E \text{ si,}$ et seulement si, $\forall x \in E, \exists!(\lambda_1, \ldots, \lambda_n) \in K^n : x = \lambda_1 \overrightarrow{v_1} + \cdots + \lambda_k \overrightarrow{v_n}$

Proposition 4 ([Gr] 14). $-\{x\}$ est libre $\iff x \neq 0$

- Toute sur-famille d'une famille génératrice (resp. liée) est génératrice (resp. liée)
- Toute sous-famille d'une famille libre est libre
- Une famille contenant le vecteur nul est liée

B. Dimension d'un espace vectoriel

Définition 5 ([Gr] 11). On dit que E est de dimension finie si E admet une famille génératrice finice.

Exemple 6. $-K^n$ est un K-espace vectoriel de dimension finie, contrairement à K[X].

— \mathbb{R} est un \mathbb{Q} -espace vectoriel de dimension infinie.

Lemme 7 (de STEINIZ - [Gr] 17). Si $\mathcal{G} \subset E$ est finie et génératrice, alors toute famille de E contenant plus de $\#\mathcal{G}$ éléments est liée.

Théorème/Définition 8 ([Gr] 17). Si E est de dimension finie, alors toutes les bases de E ont le même cardinal (fini), que l'on appelle dimension de E, et que l'on note $\dim_K(E)$ ou $\dim(E)$ s'il n'y a pas d'ambiguité sur K.

À partir de maintenant, on suppose E de dimension finie.

Théorème 9 ([Gr] 18). $\mathcal{B} \subseteq E$ est une base de $E \iff \mathcal{B}$ est libre et $\#\mathcal{B} = \dim(E) \iff \mathcal{B}$ est génératrice et $\#\mathcal{B} = \dim(E)$.

Théorème 10 ([Gr] 19). Si F est un sous-espace vectoriel de E, alors F est de dimension finie, et $\dim(F) \leq \dim(E)$ avec égalité si, et seulement si, E = F.

Théorème 11 (des bases extraites et incomplètes - [Gr] 19). Soient $\mathcal{L} \subseteq E$ libre et $\mathcal{G} \subseteq E$ génératrice telles que $\mathcal{L} \subseteq (G)$. Alors il existe une base \mathcal{B} de E telle que $\mathcal{L} \subseteq \mathcal{B} \subseteq \mathcal{G}$.

Corollaire 12. Tout espace vectoriel de dimension finie admet une base.

Proposition 13 ([Gr] 63). Soit F un espace vectoriel de dimension finie. Les espaces vectoriels E et F sont isomorphes si, et seulement si, $\dim(E) = \dim(F)$.

Exemple 14. Soit $(a_0, \ldots, a_{p-1}) \in \mathbb{C}^p$. L'application $y \mapsto (y(0), y'(0), \ldots, y^{(p-1)}(0))$ est un isomorphisme entre $S_{\mathbb{R}}(E) = \{ y \in C^p(\mathbb{R}, \mathbb{C}) \mid y^{(p)} = a_{p-1}y^{(p-1)} + \cdots + a_0y \}$ et \mathbb{C}^p . Par conséquent, $\dim(S_{\mathbb{R}}(E)) = p$.

Proposition 15 ([Gr] 22). Soient $E_1, ..., E_p$ supplémentaires dans E. Si $\mathcal{B}_1, ..., \mathcal{B}_p$ sont des bases de $E_1, ..., E_p$, alors $\mathcal{B} = \mathcal{B}_1 \sqcup \cdots \sqcap \mathcal{B}_p$ est une base de E, dite adaptée à la décomposition $E = E_1 \bigoplus \cdots \bigoplus E_p$.

Corollaire 16 ([Gr] 22). $\dim(E \bigoplus F) = \dim(E) + \dim(F)$

Proposition 17 ([Gr] 23).

$$E = E_1 \bigoplus E_2 \iff \begin{cases} E = E_1 + E_2 \\ \dim(E) = \dim(E_1) + \dim(E_2) \end{cases}$$
$$\iff \begin{cases} E_1 \cap E_2 = \{ \overrightarrow{0} \} \\ \dim(E) = \dim(E_1) + \dim(E_2) \end{cases}$$

C. Calculs de dimensions

Dans ce paragraphe, F est un espace vectoriel de dimension finie.

Théorème 18 (Formule de Grassmann - [Gr] 24). $\dim(E + F) = \dim(E) + \dim(F) - \dim(E \cap F) < +\infty$

Proposition 19 ([Gr] 18). $\dim(E \times F) = \dim(E) + \dim(F) < +\infty$

Proposition 20. $\dim(\mathcal{L}(E,F)) = \dim(E) \times \dim(F) < +\infty$

D. Extensions de corps

Dans ce paragraphe, F/L/K est une tour d'enxtensions de corps.

Définition 21 ([P] 65). On appelle degré de L/K l'entier $[L:K] = \dim_K(L)$.

Théorème 22 (de la base téléscopique - [P] 65). Supposons F/L et L/K de degrés finis : elles admettent alors des bases $\{f_1, \ldots, f_n\}$ et $\{e_1, \ldots, e_p\}$ respectivement.

La famille $\{e_i f_j\}_{\substack{1 \leq i \leq p \\ 1 \leq j \leq n}}$ est une base de F/K, et donc $[F:K] = [F:L] \cdot [L:K]$.

Définition 23 ([P] 66). On dit que $\alpha \in L$ est algébrique sur $K \text{ s'il existe } P \in K[X] \setminus \{0\} \text{ tel que } P(\alpha) = 0.$

Le cas échéant, on définit le polynôme minimal de α sur K comme étant l'unique générateur unitaire de l'idéal $\{P \in K[X] \mid P(\alpha) = 0\}$, appelé idéal annumateur de α .

Notation 24 ([P] 66). Soit $\alpha \in L$. On pose $K[\alpha] =$ $\{P(\alpha) \mid P \in K[X]\}\ et\ K(\alpha = \operatorname{Frac}(K[\alpha])).$

Théorème 25 ([P] 66). Soit $\alpha \in L$. Sont équivalentes :

- 1. α est algébrique sur K
- 2. $K[\alpha] = K(\alpha)$
- 3. $[K[\alpha]:K]<+\infty$

Le cas échéant, $[K[\alpha]:K]$ est le degré du polynôme minimal $de \alpha sur K$.

II. Rang d'une application linéaire, d'une matrice, d'une famille

A. Définitions - formule du rang et conséquences

Dans ce paragraphe, on se donne F de dimension finie, $u \in$ $\mathcal{L}(E,F)$, une base $\mathcal{B}=(e_1,\ldots,e_n)$ de E, et $(x_1,\ldots,x_r)\in E^r$.

Définition 26 ([Gr] 61,82). 1. Le rang de u est l'entier rg(u) = dim(Im(u));

2. Le rang de $\{x_1,\ldots,x_r\}$ est l'entier $\operatorname{rg}(x_1,\ldots,x_r)=$ $\dim(\operatorname{Vect}(x_1,\ldots,x_r)).$

Proposition 27 ([Gr] e82). $rg(u) = rg(u(e_1), ..., u(e_n))$

Théorème 28 (du rang - [Gr] 64). $\dim(E) = \dim(\operatorname{Ker}(u)) +$ rg(u)

Théorème 29 ([Gr] 65). $Si \dim(F) = \dim(E)$, alors u $bijective \quad \Longleftrightarrow \quad u \;\; injective \quad \Longleftrightarrow \quad u \;\; surjective \quad \Longleftrightarrow \quad$ $\exists v \mathcal{L}(F, E) : u \circ v = \mathrm{id}_E \iff \exists v \in \mathcal{L}(E, F) : v \circ u = \mathrm{id}_F.$

Exemple 30 ([Gr] 65). Ce n'est pas vrai en dimension infi $nie: dans K[X], P \mapsto P'$ est surjective mais pas injective.

Proposition 31. $-\forall v \in GL(E), \operatorname{rg}(u \circ v) = \operatorname{rg}(u)$ $-- \forall w \in GL(F), \ \operatorname{rg}(w \circ u) = \operatorname{rg}(u)$

Corollaire 32. Le rang est invariant par équivalence.

B. Le cas particulier des matrices

Soit $A \in \mathcal{M}_{n,p}(K)$. Notons C_1, \ldots, C_p ses colonnes et L_1, \ldots, L_n ses lignes.

Définition 33 ([Gr] 33). Le rang de A est l'entier rg(A) = $\dim (\{AX \mid X \in \mathcal{M}_{n,1}(X)\}) = \operatorname{rg}(C_1, \dots, C_p).$

Proposition 34 ([Gr] 82). Le rang d'une application linéaire est le rang de sa matrice dans n'importe quel couple de bases.

Théorème 35 ([Go] 128). $\operatorname{rg}(A) = r \implies A$ est équivalente à $J_{n,p,r} := \begin{pmatrix} I_r & 0_{p-r} \\ 0_{n-r} & 0_* \end{pmatrix}$.

Corollaire 36 ([Go] 128). Deux matrices sont équivalentes si, et seulement si, elles ont le même rang.

Remarque 37 ([Go] 128). Pour déterminer le rang de A en pratique, on utilise l'algorithme du pivot de Gauss pour transformer A en $J_{n,p,r}$.

Théorème 38 ([Gr] 83). $rg(A) = rg({}^{t}A)$

Théorème 39 ([Go] 128). Le rang de A est la taille de sa plus grande sous-matrice inversible, donc l'ordre de son plus grand mineur non nul.

Corollaire 40. Si L/K est une extension de K, alors $\operatorname{rg}_K(A) = \operatorname{rg}_L(A)$.

III. Applications

A. Formes quadratiques réelles

Théorème 41 (Loi d'inertie de Sylvester - [R] 476). Soient E est un \mathbb{R} -espace vectoriel de dimension finie n>0, et q est une forme quadratique sur E. Soit $\mathcal{B} = \{e_1, \ldots, e_n\}$ une base de E orthogonale pour q. Quitte à renuméroter \mathcal{B} , supposons que $q(e_1) > 0, \ldots, q(e_s) > 0, q(e_{s+1}) < 0, \ldots, q(e_{s+t}) < 0$ $0, q(e_{s+t+1}) = \cdots = q(e_n) = 0$. Le couple (s,t) ne dépend alors pas du choix de la base orthogonale : on l'appelle signature de q.

Théorème 42. La classe de congruence d'une forme quadratique réelle ne dépend que du rang et de la signature.

B. Réduction des endomorphismes

Dans ce paragraphe, on fixe $u \in \mathcal{L}(E)$.

Proposition/Définition ([R]604). $\{P \in K[X] \mid P(u) = 0_{\mathcal{L}(E)}\}$ est un idéal non nul : son unique générateur unitaire est appelé polynôme minimal de u. On le note μ_u .

Théorème 44 ([R] 683). u est diagonalisable $\iff \mu_u$ est sciendé à racines simples.

Dans le groupe suivant, E est un espace euclidien et $u \in$ $\mathcal{L}(E)$.

Définition 45 ([R] 743). On dit que u est normal si $uu^* =$ u^*u où u^* est l'adjoint de u.

Lemme 46 ([R] 745). Si u est normal, $\exists P_1, \ldots, P_r$ sont de dimension 1 ou 2, deux à deux orthogonaux et stables par u tels que $E = P_1 \bigoplus \cdots \bigoplus P_r$.

Théorème 47. Si u est normal, alors il existe une base or-

Theoreme 47. So
$$u$$
 est normal, alors u existe une base orthonormée \mathcal{B} de E telle que $\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} D & & \\$

blocs, avec D diagonale et les R_k de la forme $\begin{pmatrix} a_k & -b_k \\ b_k & a_k \end{pmatrix}$ $b_k \neq 0$.

Développements

- Développement 1 : Loi inertie Sylvester 41 et Th 42.
- Développement 2 : Lemme 46 et Théorème 47

- R Mathématiques pour l'agrégation Algèbre et géométrie, Jean-Étienne Rombaldi, 2e édition
- P Cours d'algèbre, Perrin
- Gr Algèbre linéaire, Joseph Grifone, 6e édition, 2e version
- Go Les maths en tête Algèbre et Probabilités, Xavier Gourdon, 3e édition

149 : Déterminant. Exemples et applications.

Dans cette leçon, K désigne un corps, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , et E est un \mathbb{K} -espace vectoriel de dimension finie $n \geq 1$. On fixe une base $\mathcal{B} = (e_1, \dots, e_n)$ de E.

I. Les notions de déterminants

A. Des formes multilinéaires au déterminant d'une famille de vecteurs

Définition 1 ([Go] 140). Une forme k-linéaire sur E est une application $\varphi: E^k \to \mathbb{K}$ telle que pour tout $i \in [1, k]$, pour tout $(x_1, \ldots, x_k) \in E^k$, $\varphi(x_1, \ldots, x_{i-1}, \cdot, x_{i+1}, \ldots, x_k)$ est linéaire. On note $\bigotimes^k E^*$ l'ensemble des formes k-linéaires sur E.

Proposition 2. $(e_{i_1}^* \otimes \cdots \otimes e_{i_k}^*)_{1 \leq i_1 \leq \cdots \leq i_k \leq n}$ est une base de $\bigotimes^k E^*$, où pour $(x_1, \ldots, x_k) \in E^k$, $e_{i_1}^* \otimes \cdots \otimes e_{i_k}^* (x_1, \ldots, x_k) = e_{i_1}^* (x_1) \cdots e_{i_k}^* (x_k)$.

Définition 3 ([Go] 140-141). Une forme k-linéaire alternée est une forme k-linéaire $\varphi \in \bigotimes^k E^*$ telle que $\forall \sigma \in \mathfrak{S}_k$, $\forall (x_1, \ldots, x_k) \in E^k$, $\varphi(x_{\sigma(1)}, \ldots, x_{\sigma(k)}) = \varepsilon(\sigma)\varphi(x_1, \ldots, x_k)$.

On note $\bigwedge^k E^*$ l'espace des formes k-linéaires alternées sur E.

Proposition 4. $(e_{i_1}^* \wedge \cdots \wedge e_{i_k}^*)_{1 \leq i_1 < \cdots < i_k \leq n}$ est une base de $\bigwedge^k E^*$, où pour $(x_1, \ldots, x_k) \in E^k$, $e_{i_1}^* \wedge \cdots \wedge e_{i_k}^* (x_1, \ldots, x_k) = \sum_{\sigma \in \mathfrak{S}_k} \varepsilon(\sigma) e_{i_1}^* (x_{\sigma(1)}) \ldots e_{i_k}^* (x_{\sigma(k)})$.

Corollaire 5. On $a \dim \left(\bigwedge^k E^* \right) = \binom{n}{k}$.

Définition 6 ([Go] 141). On appelle déterminant dans la base \mathcal{B} l'unique forme n-linéaire alternée $\det_{\mathcal{B}}$ sur E vérifiant $\det_{\mathcal{B}}(\mathcal{B}) = 1$. (La fammille $(\det_{\mathcal{B}})$ est une base de $\bigwedge^n E^*$.)

Proposition 7 ([Go] 141). $\forall (x_1, \dots, x_n) \in E^n$, $\det_{\mathcal{B}}(x_1, \dots, x_n) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) e_1^*(x_{\sigma(1)}) \dots e_n^*(x_{\sigma(n)})$.

Corollaire 8 ([Go] 141). Soient $\varphi \in \bigwedge_n E^*$ et \mathcal{B}' une autre base de E. On a $\varphi = \varphi(\mathcal{B}) \det_{\mathcal{B}}$, en particulier on a donc $\det_{\mathcal{B}'} = \det_{\mathcal{B}'}(\mathcal{B}) \det_{\mathcal{B}'}$.

Proposition 9 ([Go] 141-142). Soit $(x_1, ..., x_n) \in E^n$. Sont équivalentes :

- 1. (x_1,\ldots,x_n) est liée;
- 2. Pour toute base \mathcal{B} de E, $\det_{\mathcal{B}}(x_1,\ldots,x_n)=0$;
- 3. Il existe une base \mathcal{B} de E telle que $\det_{\mathcal{B}}(x_1,\ldots,x_n)=0$.

B. Déterminant d'une matrice carrée, d'un endomorphisme

Soient
$$u \in \mathcal{L}(E)$$
 et $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$.

Définition 10 ([Go] 142). $Si\ C_1, \ldots, C_n\ sont\ les\ colonnes\ de\ A,\ alors:$

$$\det(A) := \det \varepsilon(C_1, \dots, C_n) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}$$

où \mathcal{E} déisgne la base canonique de K^n .

Proposition 11 ([Go] 142). Soient $\lambda \in K$ et $B \in \mathcal{M}_n(K)$.

- 1. det(A) ne change pas si on ajoute à une colonne une combinaison linéaire des autres colonnes;
- 2. $\det(A^T) = \det(A)$
- 3. $\det(\lambda A) = \lambda^n \det(A)$
- 4. det(AB) = det(A) det(B)
- 5. $A \in GL_n(K) \iff \det(A) \neq 0 \ (auquel \ cas, \ \det(A^{-1}) = \det(A)^{-1})$

Définition 12 ([Go] 142). Le déterminant de u, défini par : $\det(u) = \det_{\mathcal{B}}(u(e_1), \dots, u(e_n)) = \det(\operatorname{Mat}_{\mathcal{B}}(u))$ ne dépend pas du choix de \mathcal{B} .

C. Propriétés analytiques

Proposition 13 ([Rv] 83). $A \mapsto \det A$ est polynomiale en les coefficients de A (relativement à la base canonique de $\mathcal{M}_n(K)$), donc lisse.

Corollaire 14. $GL_n(\mathbb{K})$ est ouvert dans $\mathcal{M}_n(\mathbb{K})$, et $SL_n(\mathbb{R})$ est fermé.

Proposition 15 ([Rv] 83). $\forall x \in \mathcal{M}_n(\mathbb{R}), \forall H \in \mathcal{M}_n(\mathbb{R}), d(\det)(X)(H) = \operatorname{tr}(\operatorname{Com}(X)^T H), où \operatorname{Com}(X) \text{ est rappelée dans le paragraphe II.B.}$

II. Calcul pratique d'un déterminant

A. Cas simples, pivot de Gauss

Notation 16 ([Go] 142). On note |A| le determinant d'une matrice carrée A.

Proposition 17 ([Go] 106). $-\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

$$- \begin{vmatrix} a & b & c \\ d & e & f \\ i & j & k \end{vmatrix} = aek + bfi + djc - cei - fja - bdk$$
 (règle de SARRUS)

Lemme 18 ([Go] 142). Si $A = (a_{i,j})_{1 \le i,j \le 1}$ est triangulaire, alors $\det(A) = a_{1,1}a_{2,2} \dots a_{n,n}$.

Algorithme 19 (pivot de GAUSS). Pour calculer le déterminant d'une matrice, on peut la transformer en une matrice triangulaire par des opérations élémentaires sur les lignes et les colonnes :

- la transvection $(C_i \longrightarrow C_i + \lambda C_j)$ ne change pas le déterminant:
- la permutation $(C_i \longleftrightarrow C_j)$ change le signe du déterminant;
- la dilatation $(C_i \Longrightarrow \alpha C_i)$ change le déterminant d'un facteur α .

Exemple 20.

$$\begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 1$$

Théorème 21 ([Go] 142). Le déterminant d'une =atrice triangulaire par blocs est égal au produit des déterminants des blocs diagonaux.

B. Mineurs, cofacteurs et développements

Soient
$$A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(K)$$
.

Définition 22 ([Go] 142). Soit $(i,j) \in [1,n]^2$. On appelle mineur d'indice (i, j) de A le déterminant de la matrice extraite de A en supprimant sa i-ième ligne et sa j-ième colonne. On note $\Delta_{i,j}$ ce mineur.

On appelle cofacteur d'indice (i,j) de A la quantité $A_{i,j} =$ $(-1)^{i+j} \Delta_{i,j}$.

On appelle comatrice de A la matrice Com(A) = $(A_{i,j})_{1\leq i,j\leq n}$.

Par rapport à la i-ième ligne : $\det A = \sum_{i=1}^{n} a_{i,j} A_{i,j}$

— Par rapport à la j-ième colonne : $\det A = \sum_{i=1}^n a_{i,j} A_{i,j}$

Exemple 24.
$$\begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 0 \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} - 0 \cdot \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} + (-1) \cdot \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} = 1 - 0 + 0 = 1$$

Théorème 25 (Formule de la comatrice - [Go] 143). $A\operatorname{Com}(A)^T = \operatorname{Com}(A)^T A = \det(A)I_n$

C. Déterminants remarquables

Exemple 26 (déterminant circulant - [Go] 143; [IP] 388). Pour tout $(a_1,\ldots,a_n)\in\mathbb{C}^n$,

$$\begin{vmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{vmatrix} = \prod_{k=1}^n P(\omega^k)$$

$$où \ \omega = e^{\frac{2i\pi}{n}} \ et \ P = \sum_{i=0}^{n-1} a_{i+1} X^i$$

Application 27 (FIG 1 - [IP] 388). Soient z_1, \ldots, z_n des complexes qui sont les affixes des points M_1, \ldots, M_n . On définit une suite de polygônes du plan comme suivant :

- $P_0 = M_1 \dots M_n$
- Pour $n \geq 1$, P_n est le polygône dont les sommets sont les milieux des arêtes de P_{n-1} . Alors $(P_n)_n$ converge vers l'isobarycentre de P_0 .

Exemple 28 (déterminant de Vandermonde - [Go] 143). Pour tout $(a_1,\ldots,a_n)\in K^n$,

$$\begin{vmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{vmatrix} = \prod_{1 \le i, j \le n} a_i - a_j$$

III. Applications des déterminants...

A. ...en algèbre linéaire

Remarque 29 ([BMP] 181). On étend la formule explicite du déterminant au cas des matrices à coefficients dans un anneau intègre A. Si $M \in \mathcal{M}_n(A)$, alors $\det(M) \in A$, et par plongement de A dans Frac(A), les propriétés dékà vues $restent\ vraies.$

Définition 30 ([Go] 172). Le polynôme caractéristique de $A \in \mathcal{M}_n(K)$ est $\chi_A = \det(XI_n - A)$.

Le polynôme caractéristique d'un endomorphisme est celui de sa matrice dans n'importe quelle base.

Proposition 31 ([Go] 159; [C] 47). $- \forall A \in \mathcal{M}_n(K)$, $Sp(A) = \chi_A^{-1}(\{0\})$

$$- \ \forall (A,B) \in \mathcal{M}_n(\mathbb{C}), \ \chi_{AB} = \chi_{BA}$$

Théorème 32 (de Cayley-Hamilton - [M2] 81). $\forall A \in$ $\mathcal{M}_n(\mathbb{K}), \ \chi_A(A) = 0.$

Théorème 33 (Systèmes de Cramer - [Gr] 145). Soient **Théorème 23** (Formules de développement d'un déterminant A[GGIASK) et $B \in K^n$. On note A_1, \ldots, A_n les colonnes de A. La solution de AX = B est donnée par $X = (x_1, \ldots, x_n)$

$$\forall i \in [1, n], \quad x_i = \frac{\det(A_1, \dots, A_{i-1}, B, A_{i+1}, \dots, A_n)}{\det(A)}$$

B. ...en calcul intégral

Théorème 34 (de changement de variable - ADMIS - [BP] 255-256). Soient U et V deux ouverts de \mathbb{R}^n , et $\varphi: U \to \mathbb{R}^n$ V un C^1 -difféomorphisme. Pour tout fonction $f:V\to\mathbb{R}^+$ borélienne,

$$\int_{U} f \circ \varphi(u) \cdot |\det(d\varphi(u))| du = \int_{V} f(v) dv$$

Application 35. $\forall \alpha > 0, \int_{\mathbb{R}} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}$

Théorème 36 ([BMP] 184). Notons λ la mesure de LE-BESGUE sur \mathbb{R}^n . Pour tous $X \subseteq \mathbb{R}^n$ mesurable ett $u \in \mathcal{L}(\mathbb{R}^n)$, $\lambda(u(X)) = |\det(u)| \cdot \lambda(X)$

Corollaire 37 (FIG. 3 - [BMP] 184). Soit $(v_1, \ldots, v_n) \in \mathbb{R}^n$, notons $\mathcal{P}(v_1,\ldots,v_n) = \{\sum_{i=1}^n \lambda_i v_i \mid 0 \leq \lambda_i \leq 1\}$ le parallélotope engendré par v_1, \ldots, v_n . On a $\lambda(\mathcal{P}(v_1, \ldots, v_n)) =$ $|\det(v_1,\ldots,v_n)|$.

C. ...en géométrie

Dans ce paragraphe, $(E, \langle \cdot | \cdot \rangle)$ est un K-espace préhilber-

Définition 38 ([Go] 274). *Soit* $(x_1, \ldots, x_n) \in E^n$. *On appelle* matrice de Gram de x_1, \ldots, x_n la matrice $M_G(x_1, \ldots, x_n) =$ $(\langle x_i \mid x_j \rangle)_{1 \leq i,j \leq n}, \ et$ déterminant de Gram de x_1,\dots,x_n sont déterminant $G(x_1, \ldots, x_n)$.

Théorème 39 ([Go] 275). Soient F un sous-espace vectoriel $de\ E,\ et\ \mathcal{B}=(e_1,\ldots,e_n)\ une\ base\ de\ F.\ Alors,\ \forall x\in E,$ $d(x, F)^2 = \frac{G(e_1, \dots, e_n, x)}{G(e_1, \dots, e_n)}.$

Théorème 40 (inégalités de HADAMARD - [Go] 275). On a :

- 1. $\forall (x_1, \dots, x_n) \in E^n, G(x_1, \dots, x_n) \leq ||x_1||^2 \dots ||x_n||^2$
- $2. \ \forall (x_1, \dots, x_n) \in (\mathbb{C}^n)^n, \quad |\det(x_1, \dots, x_n)|$ $||x_1||_2 \dots ||x_n||_2$

De plus, dans les deux points, il y a égalité si, et seulement $si, (x_1, \ldots, x_n)$ est orthogonale.

Développements

- Développement 1 : Exemple 26 et Application 27.
- Développement 2 : Théorèmes 39 et 40

- R
v $Petit\ guide\ du\ calcul\ différentiel,$ François Rouvière, 4
e édition
- IP L'oral à l'agrégation de mathématiques, Lucas Issenmann, Timothée Pecatte
- M2 Algèbre linéaire. Réduction des endomorphismes, Roger Mansuy, Rached Mneimné, 3e édition
- Gr Algèbre linéaire, Joseph Grifone, 6e édition, 2e version
- Go Les maths en tête Algèbre et Probabilités, Xavier Gourdon, 3e édition
- BMP Objectif Agrégation, Vincent Beck, Jérôme Malick, Gabriel Peyré, 2e édition
 - BP Théorie de l'intégration, Marc Briane, Gilles Pagès, 7e édition
 - C Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier

Figure 1.4 - s

151 : Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.

Soient K un corps commutatif, E un K-espace vectoriel de dimension $n \geq 1$ et $u \in \mathcal{L}(E)$. Soit F un sous-espace vectoriel de E.

I. Stabilité d'un sous-espace par un endomorphisme

A. Introduction

Définition 1 ([M2] 17). On dit que F est stable par u (ou u-stable) si $u(F) \subseteq F$.

Exemple 2 ([M2] 17). On a:

- $-\{0\}$, Ker(u), Im(u) et E sont stables par u.
- $-\forall P \in K[X], \operatorname{Ker}(P(u)) \ et \operatorname{Im}(P(u)) \ sont \ stables \ par \ u.$

Proposition 3 ([M2] 17). Soit $v \in \mathcal{L}(E)$. Si v commute avec u, alors pour tout $P \in K[X]$, Ker(P(u)) et Im(P(u)) sont stables par u.

Remarque 4. En particulier, $\forall \lambda \in K$, $E_{\lambda}(u) := \operatorname{Ker}(u - \lambda \operatorname{id}_{E})$ est stable par u, et par tout endomorphisme qui commute avec u.

Proposition 5 ([M2] e17). Soit $E = F \bigoplus G$ une décomposition de E, soit \mathcal{B} une base de E adaptée à cette décomposition, notion $\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ par blocs. Alors F (resp. G) est stable par u si, et seulement si, C = 0 (resp. B = 0).

Corollaire 6 ([M2] e120). F est stable par u si, et seulement si, F^{\perp} est stable par tu . (NB: $\operatorname{Mat}_{\mathcal{B}^*}(^tu) = {}^t\operatorname{Mat}_{\mathcal{B}}(u)$).

B. Notion d'endomorphisme induit

Définition 7 ([M2] 17). Si F est stabe par u, alors on dispose de l'endomorphisme induit par u sur $F: u_F: F \to F$, $x \mapsto u(x)$.

Proposition 8 ([M2] 55, 18). Si F est stable par u, alors $\chi_{u_F} \mid \chi_u \text{ et } \pi_{u_F} \mid \pi_u$.

Corollaire 9 ([M2] 93). Si F est stable par u et si u est diagonalisable (resp. trigonalisable, resp. nilpotent), alors u_F aussi.

Proposition 10 ([M2] 55, 18). Si $E = F_1 \oplus \cdots \oplus F_p$ est une décomposition de E en somme de sous-espaces stables, alors : $\chi_u = \chi_{u_{F_1}} \cdots \chi_{u_{F_p}}$ et $\pi_u = \pi_{u_{F_1}} \vee \cdots \vee \pi_{u_{F_p}}$.

II. Application à la réduction des endomorphismes

Lemme 11 (des noyaux - [M2] 43). $\forall (P,Q) \in K[X]^2, P \land Q = 1 \implies \operatorname{Ker}((PQ)(u)) = \operatorname{Ker}(P(u)) \bigoplus \operatorname{Ker}(Q(u))$

A. Diagonalisation, trigonalisation

Théorème 12 (de Cayley-Hamilton - [M2] 82). $\chi_u(u) = 0_{\mathcal{L}(E)}$

Corollaire 13. $E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} \operatorname{Ker} \left((u - \lambda \operatorname{id}_E)^{\mu_{\lambda_u}(\lambda)} \right)$ est une décomposition de E en somme de sous-espaces stables.

 $\begin{array}{lll} \textbf{Proposition} & \textbf{14} & ([\text{M2}] & 84). & \textit{\'{E}crivons} & \chi_u & = \\ \prod_{\lambda \in \operatorname{Sp}(u)} \left(X_{\lambda} \right)^{m(\lambda)} & \textit{et posons} & E_{\lambda}(u) & = \operatorname{Ker}(\lambda \operatorname{id}_E - u). \\ \textit{Pour tout } \lambda \in \operatorname{Sp}(u), \ 1 \leq \dim(E_{\lambda}(u)) \leq m(\lambda). \end{array}$

Théorème 15 ([R] 683; [M2] 90-93). On a :

- u est diagonalisable $\iff \pi_u$ est sciendé à racines simples \iff il existe P annulateur de u sciendé à racines simples $\iff \chi_u$ est sciendé et $\forall \lambda \in \operatorname{Sp}(u)$, $\dim(E_{\lambda}(u)) = \mu_{\chi_u}(\lambda)$.
- u est trigonalisable $\iff \chi_u$ est scindé \iff il existe un polynôme scindé qui annule u.

Théorème 16 (de réduction simultanée - [M2] 94,107). Soit $(u_i)_{i\in I} \in \mathcal{L}(E)^I$ une famille d'endomorphismes qui commutent deux à deux. Si tous les u_i , $i\in I$ sont diagonalisables (resp. trigonalisables), alors il existe une base de E qui diagonalise (resp. trigonalise) simultanément tous les u_i , $i\in I$.

Lemme 17 ([R] 743). Il existe un sous-espace de E de dimension 1 ou 2 stable par u.

B. Cas des endomorphismes normaux

Dans l'encadré suivant, on suppose u normal

Lemme 18 ([R] 743). Si F est un sous-espace de E stable par u, alors F^{\perp} est stable par u.

Lemme 19 ([R] 744). Il existe des sous-espaces P_1, \ldots, P_r de E stables par u, de dimension 1 ou 2, deux à deux orthogonaux, tels que

$$E = P_1 \bigoplus^{\perp} \cdots \bigoplus^{\perp} P_r$$

Lemme 20 (PAS DEV - [R] 745). $Si \ n = \dim E = 2$, alors :

- Si u admet une valeur propre réelle, alors u est diagonalisable dans une base orthonormée,
- Sinon, pour toute base orthonormée \mathcal{B} de E, il existe $(a,b) \in \mathbb{R}^2$ tel que $b \neq 0$ et $\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$.

Théorème 21 (de réduction des endomorphismes normaux - [R] 745). Il existe une base orthonormée \mathcal{B} de E telle que, par blocs, $\operatorname{Mat}_{\mathcal{B}}(u) = \operatorname{diag}(D_p, R_1, \dots, R_r)$, où $D_p \in \mathcal{M}_n(\mathbb{R})$ est diagonale, $\forall i \in [1, n], \exists (a_i, b_i) \in \mathbb{R}^2 : b_i \neq 0$ et $R_i = \begin{pmatrix} a_i & -b_i \\ b_i & a_i \end{pmatrix}$ et p + 2r = n.

Corollaire 22 (théorème spectral - [R] 746 (734)). Tout endomorphisme auto-adjoint se diagonalise dans une base orthonormée.

Corollaire 23 ([R] 727). Si u est orthogonal, alors il existe Références une base de E dans laquelle la matrice de u est de la

une base de E dans laquelle la matrice de u est de la R Mathématiques pour l'agrégation - Algèbre et géométrie, Jean-Étienne Rombaldi, 2e édition forme, par blocs :
$$\begin{pmatrix} I_p & & & \\ & -I_q & & \\ & & \ddots & \\ & & \ddots & \\ & & & \ddots & \\ & & & \\ \sin(\theta_k) & \cos(\theta_k) \end{pmatrix}, \quad où \quad R_k = M2 \quad Algèbre \ linéaire. \quad Réduction \ des \ endomorphismes, Roger \\ Mansuy, Rached Mneimné, 3e édition \\ \begin{pmatrix} \cos(\theta_k) & -\sin(\theta_k) \\ \sin(\theta_k) & \cos(\theta_k) \end{pmatrix}$$

Proposition 24. Si u est une rotation et que $\dim(E)$ est impaire, alors $Ker(u - id_E) \neq \{0\}$.

II. Application à la décomposition des endomorphismes

A. Décomposition de JORDAN des endomorphismes nilpotents

Définition 25 ([M2] 143). On appelle bloc de JORDAN de taille d la matrice :

$$J_d := \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 1 \\ 0 & \cdots & \cdots & 0 \end{pmatrix}$$

Pour $\lambda = (\lambda_1, \dots, \lambda_r) \in \mathbb{N}^r$, on pose $J_{\lambda} =$ $\operatorname{diag}(J_{\lambda_1},\ldots,J_{\lambda_r}).$

Théorème 26 (décomposition de Jordan des endomorphismes nilpotents - [M2] 144). Supposons u nilpotent d'indice λ_1 . Il existe $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r$ telle que $\lambda_1 + \cdots + \lambda_r = n$, et \mathcal{B} une base de E telle que $\operatorname{Mat}_{\mathcal{B}}(u) = J_{\lambda_1, \dots, \lambda_r}$. Cette décomposition est unique.

B. Décomposition de DUNFORD

Théorème 27 (décomposition de DUNFORD - [M2] 141; [R] 613). Si u est trigonalisable, alors il existe un unique couple $(d,n) \in \mathcal{L}(E)^2$ tel que u = d + n, $d \circ n = n \circ d$, d est diago $nalisable\ et\ n\ est\ nilpotent.$

Corollaire 28 ([R] 634). Sur $K = \mathbb{R}$ ou $K = \mathbb{C}$, e^u est diagonalisable si, et seulement si, u l'est.

C. Une application : le critère de diagonalisabilité de Klarès

Théorème 29 (critère de Klarès - [M2] 154). Posons $ad_u: v \in \mathcal{L}(E) \mapsto u \circ v - v \circ u$. Si u est trigonalisable, alors: $u \ diagonalisable \iff \operatorname{Ker}(ad_u) = \operatorname{Ker}(ad_u^2)$

Développements

- Développement 1 : Lemmes 17, 18, 19 et Théorème ??.
- Développement 2 : Théorème 29

155: Exponentielle de matrices. Applications.

Dans cette leçon, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , $n \in \mathbb{N}^*$ et $(A, B) \in$ $\mathcal{M}_n(\mathbb{K})^2$. On fixe une norme d'algèbre $\|\cdot\|$ sur $\mathcal{M}_n(\mathbb{K})$. On suppose connu et maîtrisé le calcul matriciel élémentaire.

Théorème/Définition 1 ([R] 761). La série $\sum_{k \in \mathbb{N}} \frac{A^k}{k!}$ converge normalement sur tout compact. Sa somme est appelée exponentielle de A, et est notée $\exp(A)$ ou e^A .

Exemple 2 ([R] 761). $\forall (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$, $\exp(\operatorname{diag}(\lambda_1, \dots, \lambda_n)) = \operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n})$. En particulier, $\exp(0_n) = I_n$ et $\exp(I_n) = e \cdot I_n$.

Exemple 3. $\forall \theta \in \mathbb{R}, R(\theta) := \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} =$ $\exp\left(\begin{pmatrix} 0 & -\theta \\ \theta & 0 \end{pmatrix}\right)$

I. Propriétés algébriques de l'exponentielle matricielle

Proposition 4. Si A et B commutent, alors $\exp(A+B) =$ $\exp(A)\exp(B)$. (NB: la réciproque est vraie!) et $\exp(A)$ et $\exp(B)$ commutent.

Contre-exemple 5. $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ ne commutent pas, et $e^A e^B = \begin{pmatrix} e & e \\ 0 & 1/e \end{pmatrix} \neq \begin{pmatrix} e & 1/e \\ 0 & 1/e \end{pmatrix} = e^B e^A$.

Corollaire 6. $\exp(\mathcal{M}_n(\mathbb{K})) \subseteq GL_n(\mathbb{K}), \ et \ \exp(A)^{-1} =$ $\exp(-A)$.

Proposition 7 ([R] 761-762). On a les propriétés suivantes :

- $-\forall P \in GL_n(\mathbb{K}), P \exp(A)P^{-1} = \exp(PAP^{-1})$
- $-t\exp(A) = \exp(tA)$
- $-\det(\exp(A)) = e^{\operatorname{tr}(A)}$
- $-\overline{\exp(A)} = \exp(\overline{A})$

Corollaire 8. $\exp(\mathcal{A}_n(\mathbb{K})) \subseteq O_n(\mathbb{K}), \text{ avec } \mathcal{A}_n(\mathbb{K}) =$ $\{M \in \mathcal{M}_n(\mathbb{K}) \mid {}^t M = -M\}.$

Remarque 9. On peut montrer que $\exp(A_n(\mathbb{R})) = SO_n(\mathbb{R})$.

Proposition 10. Si A est diagonalisable, alors Sp(exp(A)) = $\exp(\operatorname{Sp}(A)).$

Théorème 11. On a :

- $-\exp(A) \in \mathbb{K}_{n-1}[A]$ et commute avec A.
- $\mathbb{R}_{n-1}[\exp(A)].$

Remarque 12. Pour $A = \begin{pmatrix} 0 & 0 \\ 0 & 2i\pi \end{pmatrix} \in \mathcal{M}_2(\mathbb{C}), \text{ on } a$ $\exp(A) = I_2 \text{ donc pour tout } P \in \mathbb{C}[X], P(\exp(A)) =$ $P(1)I_2 \neq A$.

II. L'exponentielle d'une matrice en pratique matricielle

A. Quelques méthodes de calcul

Proposition 13. Supposons Adiagonalisable. $\in \mathbb{K}^n$ et Pexiste $(\lambda_1,\ldots,\lambda_n)$

que
$$A = P\begin{pmatrix} \lambda_1 \\ \ddots \\ \lambda_n \end{pmatrix} P^{-1}; \quad alors \quad \exp(A) = P\begin{pmatrix} e^{\lambda_1} \\ \ddots \\ e^{\lambda_n} \end{pmatrix} P^{-1}.$$

Théorème 14 (décomposition de DUNFORD - [R] 613). Si A est trigonalisable, alors il existe un unique $(D, B) \in \mathcal{M}_n(\mathbb{K})^2$ tel que D est diagonalisable, N est nilpotente, D et N commutents, et A = D + N. De plus, $(D, N) \in K[A]^2$.

Proposition 15. Si A est nilpotente d'indice r, alors $\exp(A) = \sum_{k=0}^{r-1} \frac{A^k}{k!}$.

Proposition 16 ([R] 765). Si A est trigonalisable, et si A =D+N est la décomposition de DUNFORD de A, alors $e^A=$ $e^D + e^D(e^N - I_n).$

En particulier, e^D est diagonalisable et $e^D(e^N-I_n)$ est nilpotente, et ce sont les éléments de la décomposition de Dun-FORD $de e^A$.

Proposition 17 ([R] 778). $(I_n + \frac{A}{k})^k \rightarrow_{k \to +\infty} \exp(A)$

Remarque 18. Cela fournit une méthode pour approcher numériquement l'exponentielle d'une matrice, toutefois bien moins efficace qu'un calcul direct.

B. Application: résolution d'EDO linéaires à coéfficients constants

Proposition 19 ([Gr] 378). $t \mapsto e^{tA}$ est lisse sur \mathbb{R} , de dé $riv\acute{e}e \ t \mapsto Ae^{tA} = e^{tA}A.$

Proposition 20 ([Gr] e378). L'unique solution du problème de Cauchy

$$\begin{cases} Y' = AY \\ Y(t_0) = Y_0 \end{cases}$$

pour $t_0 \in \mathbb{R}$, $Y \in \mathcal{M}_{n,1}(\mathbb{R})$, est $t \mapsto e^{(t-t_0)A}Y_0$.

Exemple problème $\begin{cases} Y' = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} Y, \quad Y(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad admet\ pour\ (unique)\ so$ lution $t \mapsto \exp\left(t \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = e^t \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = e^t \begin{pmatrix} t \\ 1 \end{pmatrix}.$

Proposition 22 (formule de Duhamel). Soient $B: \mathbb{R} \to \mathbb{R}$ — Si A est diagonalisable et $\mathbb{K} = \mathbb{R}$, alors $A \in \mathcal{M}_{n,1}\mathbb{R}$ continue, $t_0 \in \mathbb{R}$ et $Y_0 \in \mathcal{M}_{n,1}(\mathbb{R})$. L'unique solution du problème de CAUCHY $\{Y' = AY + B; Y(t_0) = Y_0\}$

$$t \mapsto e^{(t-t_0)A} Y_0 + \int_{t_0}^t e^{(t-s)A} B(s) ds$$

III. Propriétés analytiques de l'exponentielle

A. Injectivité, surjectivité

Il Théorème 23 ([R] 769). L'application exp : $\mathcal{M}_n(\mathbb{C}) \rightarrow$ $\in O_n(\mathbb{K})$ tels $GL_n(\mathbb{C})$ est surjective, non injective.

Contre-exemple 24. $\forall k \in \mathbb{Z}, \exp(2i\pi kI_n) = I_n$

Théorème 25. L'application exp : $\mathcal{M}_n(\mathbb{R}) \to GL_n(\mathbb{R})$ n'est ni surjective, ni injective. Plus précisément,

- $-\exp(\mathcal{M}_n(\mathbb{R})) = \{M^2 \mid M \in GL_n(\mathbb{R})\} \neq GL_n(\mathbb{R})$
- Exemple 3 justifie la non-injectivité

Remarque 26. Comme $\det(\exp(A)) = e^{\operatorname{tr}(A)} > 0$, on $a \det^{-1}(\mathbb{R}^-) \cap \exp(\mathcal{M}_n(\mathbb{R})) = \emptyset$.

Proposition 27 ([R] e768-777). Notons $\mathcal{N}_n(\mathbb{R})$ l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{R})$. L'application $\exp : \mathcal{N}_n(\mathbb{R}) \to GL_n(\mathbb{R})$ est injective.

Notons $\Delta_n(\mathbb{R})$ l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{R})$. L'application $\exp: \Delta_n(\mathbb{R}) \to GL_n(\mathbb{R})$ est injective.

Application 28 ([R] 777). $\exp(A)$ est diagonalisable si, et seulement si, A l'est.

Théorème 29 ([C] 357). L'application $\exp: S_n(\mathbb{R}) \to S_n^{++}(\mathbb{R})$ est un homéomorphisme.

Théorème/Définition 30 ([R] 766-768). Si $A \in \mathcal{B}(I_n, 1)$, alors $\sum_{n\geq 1} (-1)^{n-1} \frac{A^n}{n}$ converge normalement sur tout compact. Sa somme est notée $\ln(I_n+A)$, et est appelée logarithme de A.

Remarque 31. On $a \ln(I_n) = 0_n$.

Théorème 32 (ADMIS). L'application exp : $\mathcal{N}_n(\mathbb{C}) \to I_n + \mathcal{N}_n(\mathbb{C})$ est une bijection de réciproque ln.

B. Régularité

Théorème 33 (ADMIS - [Rv] 306). exp est lisse sur $\mathcal{M}_n(\mathbb{R})$.

Proposition 34. La différentielle de exp en $X \in \mathcal{M}_n(\mathbb{R})$ est :

$$d(\exp)(X): H \mapsto \left(\sum_{n=0}^{+\infty} \frac{[\cdot, X]^n}{(n+1)!}\right)(H)$$

 $où [\cdot, X] : H \mapsto [H, X] = HX - XH.$

Corollaire 35. exp induit un C^1 -difféomorphisme local d'un voisinage de 0_n sur un voisinage de I_n .

Développements

- Développement 1 : Théorème 29
- Développement 2 : Proposition 34

- R Mathématiques pour l'agrégation Algèbre et géométrie, Jean-Étienne Rombaldi, 2e édition
- C Nouvelles histoires hédonistes de groupes et géométries I, P. Caldero, J. Germoni
- Gr Algèbre linéaire, Joseph Grifone, 6e édition, 2e version
- Rv Petit guide du calcul différentiel, François Rouvière, 4e édition

156: Endomorphismes trigonalisables. Endomorphismes nilpotents.

Développements

- Gr Algèbre linéaire, Joseph Grifone, 6e édition, 2e version
- M2 Algèbre linéaire. Réduction des endomorphismes, Roger Mansuy, Rached Mneimné, 3e édition
 - R Mathématiques pour l'agrégation Algèbre et géométrie, Jean-Étienne Rombaldi, 2e édition
- Go Les maths en tête Algèbre et probabilités, Xavier Gourdon, 3e édition
- C Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier