LWIR HgCdTe - INNOVATIVE DETECTORS IN AN INCUMBENT TECHNOLOGY

W. E. TENNANT

Rockwell International
Science Center
Thousand Oaks, California

ABSTRACT

HgCdTe is the current material of choice for high performance imagers operating at relatively high temperatures. Its lack of technological maturity compared with silicon and wide-band gap III-V compounds is more than offset by its outstanding IR sensitivity and by the relatively benign effect of its materials defects. This latter property has allowed non-equilibrium growth techniques (MOCVD and MBE) to produce device quality LWIR HgCdTe even on common substrates like GaAs and GaAs/Si. Detector performance in these exotic materials structures is comparable in many ways with devices in equilibrium-grown material. Lifetimes are similar. RoA values at 77K as high as several hundred have been seen in HgCdTe/GaAs/Si with 9.5 μm cut-off wavelength. HgCdTe/GaAs layers with ~15 μm cut-off wavelengths have given average 77K RoAs of >2. Hybrid focal plane arrays have been evaluated with excellent operability.

LWIR HgCdTe - INNOVATIVE DETECTORS IN AN INCUMBENT TECHNOLOGY

WILLIAM E. TENNANT

APRIL 24, 1990

Science Center 1049 Camino Dos Rios Thousand Oaks, CA 91360

OVERVIEW

- O PACE BACKGROUND AND MATERIALS
- O TEST DIODE PERFORMANCE AND TECHOLOLGY LIMITS
- O PRELIMINARY LWIR ARRAY DATA
- O DIRECTIONS AND CONCLUSIONS

DEFINITIONS

- CONVENTIONAL TECHNOLOGY
 - -- MCT GROWN BY LIQUID PHASE EPITAXY ON CdTe OR SIMILAR COMPOUND
- PACE (PRODUCIBLE ALTERNATIVE TO CdTe FOR EPITAXY)
 - -- ROCKWELL APPROACH TO OVERCOME MCT PRODUCIBILITY ISSUES
 - -- PACE-1: MCT GROWN BY LIQUID PHASE EPITAXY ON VAPOR PHASE EPITAXIAL CdTe/SAPPHIRE -- SUITABLE FOR SWIR (1-3 MICRONS) AND MWIR (3-5+) MICRONS
 - -- PACE-2: MCT GROWN BY VAPOR PHASE EPITAXY ON GaAs (OR EVENTUALLY Si) -- SUITABLE FOR ALL IR WAVELENGTHS

PACE-2 HAS BETTER COMPOSITIONAL UNIFORMITY THAN LPE

LWIR TACTICAL MCT DETECTOR PERFORMANCE

n + /p TEST DIODES IN HgCdTe/GaAs (PACE-2)

MTD DATA FOR 3-623 BASELINE LAYER n ON p DEVICES, ION IMPLANTED

LWIR HgCdTe/Pace-2 p/n Devices Show Higher Performance Than LPE Devices

- ARSENIC IMPLANATATION
- OMVPE HgCdTe ON GaAs

RECENT p ON n MTD PERFORMANCE CONFIRM EARLIER RESULTS

ARSENIC IMPLANT/DIFFUSION IN DOUBLE LAYER HETEROSTRUCTURE

• n ON p DIODES HAVE BETTER UNIFORMITY

EXCELLENT DIODE PERFORMANCE IN VLWIR MOCVD MCT/GaAs p ON n DIODES

Minority Carrier Lifetime

4-334, N-Type, Undoped, x=0.235, Nd=1.1 x 10^{15} cm⁻³

LIFETIMES IN SOME VACANCY DOPED PACE-2 APPROXIMATE THEORY

BEST IMPURITY DOPED PACE-2 SAMPLES SHOW THEORETICAL LIFETIMES

Performance of an LWIR MCT/GaAs Array at 50K

LWIR MOCVD HgCdTe/GaAs DIODES BEST PERFORMANCE IS AT TOP LPE LEVELS FOR 77 AND 40K

VLWIR I-V Characteristics for MOCVD Grown MCT/GaAs Detector

R₀A vs 1/T Layer 3-581, L-134, Planar lon Implanted

Temperature Dependence of the R₀A Product of a P/N Diode Fabricated from PACE-2 Material

STRATEGIC APPLICATIONS REQUIRE CONTROL OF DISLOCATION DENSITY

SAMPLE DIODES FROM PACE II 128 x 128 WAFER (ROCKWELL IR&D)

FULL PLANAR PROCESS: n/p, B-IMPLANTED, ZnS/SiO2 PASSIVATED

Pace-2 Shows D* Uniformity and Operability of LWIR Hybrid

CONCLUSIONS

- MCT HAS DEMONSTRATED THE HIGHEST PERFORMANCE OF ANY INTRINSIC AT ALL IR WAVELENGTHS
- NOVEL, ALTERNATIVE-SUBSTRATE, VPE APPROACHES CAN MEET PROGRAM GOALS WHILE ENHANCING PRODUCIBILITY AND MAKING POSSIBLE ADVANCED ARCHITECTURES
- THE PRESENT LIMITATIONS OF THE TECHNOLOGY ARE NOT FUNDAMENTAL BUT DUE TO IMMATURITY
- WE EXPECT LWIR/PACE-2 (GaAs)OR 3 (Si) TO FOLLOW A SIMILAR PATH TO PRODUCIBILITY AS THAT OF MWIR PACE-1 WHICH HAS RESULTED IN THE LARGEST (256X256) INSTRINSIC IR FPA TO DATE

