Computation of Harmonics

Let the Fourier series for the function y = f(x) is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$$
 (1)

where
$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) \cdot dx$$
; $a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cdot \cos nx \cdot dx$; $b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cdot \sin nx \cdot dx$ (2)

Let the function is given by a graph or a table; then the mean value of the function y = f(x) over the range (a, b) is $\frac{1}{b-a} \int_a^b f(x) \cdot dx$.

... The equation (2) gives
$$a_0 = 2 \times \frac{1}{2\pi} \int_0^{2\pi} f(x) \cdot dx = 2$$
 [mean value of $f(x)$ in $(0, 2\pi)$];

$$a_n = 2 \times \frac{1}{2\pi} \int_0^{2\pi} f(x) \cdot \cos nx \cdot dx = 2[\text{mean value of } f(x) \cdot \cos nx \text{ in } (0, 2\pi)];$$
 (3)

$$b_n = 2 \times \frac{1}{2\pi} \int_0^{2\pi} f(x) \cdot \sin nx \cdot dx = 2[\text{mean value of } f(x) \cdot \sin nx \text{ in } (0, 2\pi)];$$

In (1), the term $(a_1 \cos x + b_1 \sin x)$ is called the fundamental or **first harmonic**, the term $(a_2 \cos 2x + b_2 \sin 2x)$ is called the **second harmonic**, and so on.

Example 1. The displacement y of a part of a mechanism is tabulated with corresponding angular movement x° of the crank. Express y as a Fourier series neglecting the harmonic above the third:

x°	0	30	60	90	120	150	180	210	240	270	300	330
у	1.80	1.10	0.30	0.16	0.50	1.30	2.16	1.25	1.30	1.52	1.76	2.00

Solution: Let the Fourier series up to the third harmonic representing y in $(0, 2\pi)$ be

$$y = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + a_3 \cos 3x + b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + \dots$$
 (1)

To evaluate the coefficients, we form the following table.

x°	$\cos x$	sin x	$\cos 2x$	$\sin 2x$	$\cos 3x$	$\sin 3x$	у	$y\cos x$	y sin x	$y\cos 2x$	$y \sin 2x$	$y\cos 3x$	$y \sin 3x$
л							,						
0	1.00	0.00	1.00	0.00	1	0	1.80	1.80	0.00	1.80	0.00	1.80	0.00
30	0.87	0.50	0.50	0.87	0	1	1.10	0.96	0.55	0.55	0.96	0.00	1.10
60	0.50	0.87	-0.50	0.87	-1	0	0.30	0.15	0.26	-0.15	0.26	-0.30	0.00
90	0.00	1.00	-1.00	0.00	0	-1	0.16	0.00	0.16	-0.16	0.00	0.00	-0.16
120	-0.50	0.87	-0.50	-0.87	1	0	0.50	-0.25	0.43	-0.25	-0.43	0.50	0.00
150	-0.87	0.50	-0.50	-0.87	0	1	1.30	-1.13	0.65	0.65	-1.13	0.00	1.30
180	-1.00	0.00	1.00	0.00	-1	0	2.16	-2.16	0.00	2.16	-0.00	-2.16	0.00
210	-0.87	-0.50	0.50	0.87	0	-1	1.25	-1.09	-0.63	0.63	1.09	0.00	-1.25
240	-0.50	-0.87	-0.50	0.87	1	0	1.30	-0.65	-1.13	-0.65	1.13	1.30	0.00
270	0.00	-1.00	-1.00	0.00	0	1	1.52	0.00	-1.52	-1.52	0.00	0.00	1.52
300	0.50	-0.87	-0.50	-0.87	-1	0	1.76	0.88	-1.53	-0.88	-1.53	-1.76	0.00
330	0.87	-0.50	0.50	-0.87	0	-1	2.00	1.74	-1.00	1.00	-1.74	0.00	-2.00
						$\sum =$	15.15	-3.76	0.25	-1.39	3.18	0.51	-0.62

$$a_0 = 2 \times \frac{\sum y}{12} = \frac{15.15}{6} = 2.53; \qquad a_1 = 2 \times \frac{\sum y \cos x}{12} = \frac{0.25}{6} = 0.04;$$

$$a_2 = 2 \times \frac{\sum y \cos 2x}{12} = \frac{3.18}{6} = 0.53; \qquad a_3 = 2 \times \frac{\sum y \cos 3x}{12} = \frac{-0.62}{6} = -0.10;$$

$$b_1 = 2 \times \frac{\sum y \sin x}{12} = \frac{-3.76}{6} = -0.63; \qquad b_2 = 2 \times \frac{\sum y \sin 2x}{12} = \frac{-1.39}{6} = -0.23;$$

$$b_3 = 2 \times \frac{\sum y \sin 3x}{12} = \frac{0.51}{6} = 0.085.$$

Substituting the values of a_0 , a_1 , a_2 , a_3 , b_1 , b_2 & b_3 (1), we get $y = 1.26 + 0.04 \cos x + 0.53 \cos 2x - 0.10 \cos 3x - 0.63 \sin x - 0.23 \sin 2x + 0.85 \sin 3x +$

Example 2. The following table gives the variations of periodic current over a period.

t Sec	0	<i>T</i> /6	<i>T</i> /3	<i>T</i> /2	2 <i>T</i> /3	5 <i>T</i> /6	T
A Amp.	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

Show that there is a direct current part of 0.75 Amp. In the variable current and obtain the amplitude of the first harmonic.

Solution: The length of the interval is T. $\therefore C = \frac{T}{2}$

Then the Fourier Series is

$$A = \frac{a_0}{2} + a_1 \cos\left(\frac{2\pi t}{T}\right) + a_2 \cos\left(\frac{4\pi t}{T}\right) + a_3 \cos\left(\frac{6\pi t}{T}\right) + b_1 \sin\left(\frac{2\pi t}{T}\right) + b_2 \sin\left(\frac{4\pi t}{T}\right) + b_3 \sin\left(\frac{6\pi t}{T}\right) + \dots$$
(1)

To evaluate the coefficients, we form the following table.

t	$\frac{2\pi t}{T}$	$\cos\left(\frac{2\pi t}{T}\right)$	$\sin\!\left(\frac{2\pi t}{T}\right)$	A	$A\cos\left(\frac{2\pi t}{T}\right)$	$A\sin\left(\frac{2\pi t}{T}\right)$
0	0	1.0	0.000	1.98	1.980	0.000
T/6	$\frac{\pi}{3}$	0.5	0.866	1.30	0.650	1.126
T/3	$\frac{2\pi}{3}$	-0.5	0.866	1.05	-0.525	0.909
T/2	π	-1.0	0.000	1.30	-1.300	0.000
2T/3	$\frac{4\pi}{3}$	-0.5	-0.866	-0.88	0.440	0.762
5T/6	$\frac{5\pi}{3}$	0.5	-0.866	-0.25	-0.125	0.217
			$\sum =$	4.5	1.12	3.014

$$a_0 = 2 \times \frac{\sum A}{6} = \frac{4.5}{3} = 1.5; \qquad a_1 = 2 \times \frac{\sum A \cos\left(\frac{2\pi t}{T}\right)}{6} = \frac{1.12}{3} = 0.373;$$

$$b_1 = 2 \times \frac{\sum A \sin\left(\frac{2\pi t}{T}\right)}{6} = \frac{3.014}{3} = 1.005.$$

The direct current part in the variable current is $\frac{a_0}{2} = 0.75$ and amplitude of the first harmonic is $\sqrt{\left(a_1^2 + b_1^2\right)} = \sqrt{\left(0.373\right)^2 + \left(1.005\right)^2} = 1.072$.

Example 3. Obtain the first three coefficients in the Fourier cosine series for y, where y is given in the following table:

х	0	1	2	3	4	5
у	4	8	15	7	6	2

Solution: Taking the interval as 60° , we have

$oldsymbol{ heta}^{\circ}$	0	60	120	180	240	300
х	0	1	2	3	4	5
y	4	8	15	7	6	2

Fourier cosine series in the interval $(0, 2\pi)$ is

$$y = \frac{a_0}{2} + a_1 \cos \theta + a_2 \cos 2\theta + a_3 \cos 3\theta + \dots$$
 (1)

$oldsymbol{ heta}^{\circ}$	$\cos \theta$	$\cos 2\theta$	$\cos 3\theta$	у	$y\cos\theta$	$y\cos 2\theta$	$y\cos 3\theta$
0	1.0	1.0	1	4	4	4	4
60	0.5	-0.5	-1	8	4	-4	-8
120	-0.5	-0.5	1	15	-7.5	-7.5	15
180	-1.0	1.0	-1	7	-7	7	-7
240	-0.5	-0.5	1	6	-3	-3	6
300	0.5	-0.5	-1	2	1	-1	-2
			$\sum =$	42	-8.5	-4.5	8

$$a_0 = 2 \times \frac{\sum y}{6} = \frac{42}{3} = 14; \qquad a_1 = 2 \times \frac{\sum y \cos \theta}{6} = \frac{-8.5}{3} = -2.8;$$

$$a_2 = 2 \times \frac{\sum y \cos 2\theta}{6} = \frac{-4.5}{3} = -1.5; \quad a_3 = 2 \times \frac{\sum y \cos 3\theta}{6} = \frac{8}{3} = 2.7.$$

Substituting the values of a_0 , a_1 , a_2 & a_3 (1), we get $y = 7 - 2.8 \cos \theta - 1.5 \cos 2\theta + 2.7 \cos 3\theta + ...$

Example 4. The tuning moment T is given for a series of values of the crank angle $\theta = 75^{\circ}$.

$oldsymbol{ heta}^{\circ}$	0	30	60	90	120	150	180
T	0	5224	8097	7850	5499	2626	0

Obtain the first four terms in a series of sines to represent T and calculate T for $\theta = 75^{\circ}$.

Solution: Let the Fourier sine series to represent T in $(0, \pi)$ is

$$T = b_1 \sin \theta + b_2 \sin 2\theta + b_3 \sin 3\theta + b_4 \sin 4\theta + \dots$$
 (1)

$oldsymbol{ heta}^{\circ}$	$\sin \theta$	$\sin 2\theta$	$\sin 3\theta$	$\sin 4\theta$	T	$T\sin\theta$	$T\sin 2\theta$	$T \sin 3\theta$	$T \sin 4\theta$
0	0	0	0	0	0	0	0	0	0
30	0.500	0.866	1	0.866	5224	2627	4524	5224	4524
60	0.866	0.866	0	-0.866	8097	7012	7012	0	-7012
90	1.000	0	-1	0	7850	7850	0	-7850	0
120	0.866	-0.866	0	0.866	5499	4762	-4762	0	4762
150	0.500	-0.866	1	-0.866	2626	1313	-2274	2626	-2274
					$\sum =$	23550	4500	-8	0

$$b_{1} = 2 \times \frac{\sum y \sin \theta}{6} = \frac{23550}{3} = 7850; \qquad b_{2} = 2 \times \frac{\sum y \sin 2\theta}{6} = \frac{4500}{3} = 1500;$$

$$b_{3} = 2 \times \frac{\sum y \sin 3\theta}{6} = \frac{-8}{3} = -2.7; \qquad b_{4} = 2 \times \frac{\sum y \sin 4\theta}{6} = \frac{0}{3} = 0.$$

Substituting the values of b_1 , b_2 , b_3 & b_4 (1), we get

 $y = 7850 \sin \theta + 1500 \sin 2\theta - 2.7 \sin 3\theta + 0 \sin 4\theta + \dots$

At
$$\theta = 75^{\circ}$$
: $y = 7850 \sin(75) + 1500 \sin 2(75) - 2.7 \sin 3(75) + 0 \sin 4(75) + ...$
 $\approx 7850(-0.39) + 1500(-0.71) - 2.7(-0.93)$

Therefore y(75) = -4124.

Exercise 1. The following values of y give the displacement in inches of a certain machine part for the rotation x of the flywheel. Expand y in terms of a Fourier series.

x	0	$\frac{\pi}{6}$	$\frac{2\pi}{6}$	$\frac{3\pi}{6}$	$\frac{4\pi}{6}$	$\frac{5\pi}{6}$
у	0	92	14.4	17.8	17.3	11.7

Exercise 2. Obtain the constant term and coefficients of the first sine and cosine terms in the Fourier expansion of y as given in the following table:

x	0	1	2	3	4	5
у	9	18	24	28	26	20