IoT Communication Homework 3

物联网通信作业3

201616070320 | **物联网**1603 | **郭治洪** 使用 MarkDown 书写 | MathJax 提供数学公式支持

1. 请解释取样定理,请说明其重要性为何?

低通抽样定理

低通抽样是指频带被限制在 $0\sim f_H$ 范围的信号的抽样,该信号也称带限信号, f_H 指信号的上限截止频率(最高频率),因此低通信号的带宽为 $B=f_H$ 。

低通抽样定理也成为带限信号抽样定理,该定理可以描述为:对于一个频率范围 $[0,f_H]$ 内的时间连续信号 x(t),若以抽样频率 $f_s \geq 2f_H$ 对其均匀抽样 ,则 x(t) 被 $x_s(nT_s)$ 完全确定,或者说抽样信号 $x_s(nT_s)$ 将 无失真的恢复出 x(t) 。

 T_s 称为抽样周期或者取样间隔, $T_s=1/f_s$, $1/2f_H$ 称为奈奎斯特间隔, $2f_H$ 称为奈奎斯特速率。奈奎斯特间隔是能够是唯一确定连续信号 x(t) 的最大抽样间隔;奈奎斯特速率是能够唯一确定连续信号 x(t) 的最小抽样频率。

在领域中,我们一般用角频率 ω 表示频率, $\omega=2\pi f$ 。抽样频率和抽样周期可以表示为

$$\omega_s=2\pi f_s, T_s=rac{2\pi}{\omega_s}$$

带通抽样定理

带通信号是指信号的频率限制在 $[f_L,f_H]$ 范围的信号,其中 f_L 为下限截止频率(最低频率), f_H 为上限截止频率(最高频率), 信号的带宽为 $B=f_H-f_L$ 。 带通信号的最小的抽样频率为

$$f_s = 2B + rac{2(f_H - nB)}{n}$$

式中,n 取小于 f_H/B 的最大整数 (当 f_H 恰好是 B 整数倍时,取 n 为 f_H/B) 。

2. 模拟信号常见的幅度调制有哪几种,请表说明并比较其大致原理与特性。

名 称:	简介:	特点:
AM 常规 调幅	使用无线电载波传输信息。	用包络检波的方法很容易恢复原始调制信号,但是处理不当容易失真。

名 称:	简介:	特点:
DSB- SC 双带制裁 制被输	使得频率关于 载波频率对称 分布,且将载 波电平降低到 最低程度的传 输方式。	要求对于解调,解调振荡器的频率和相位必须与调制振荡器完全相同,否则将发生失真或衰减。
SSB 单边 带调 制	调幅技术输出 的调制信号带 宽为源信号的 两倍。	它可以避免带宽翻倍,同时避免将能量浪费在载波上,不过因为设备变得复杂,成本也会增加。
VSB 残留 边带 调制	介于单边带调制与双边带调制之间的一种调制方式。	它既克服了DSB信号占用频带宽的问题,又解决了单边带滤波器不易实现的难题。 在残留边带调制中,除了传送一个边带外,还保留了另外一个边带的一部分。对于具有低频及直流分量的调制信号,用滤波法实现单边带调制时所需要的过渡带无限陡的理想滤波器,在残留边带调制中已不再需要,这就避免了实现上的困难。

3. 我们在课堂上介绍了许多种数字基带信号的码型,请将你的学号转成二进制数字,并举出四种不同的码型,将你转出来的二进制数字画成编码波形。

DEC	BIN
70320	0001 0001 0010 1011 0000

可能存在问题,不准确。

4. 请比较几种不同的数字调制特色,并将结果绘成表格呈现。

数字 调制 类型	特色
数字 振幅 调制 ASK	电路简单,抗噪声差,有二进制的2ASK和和多进制的ASK两种技术。通过不同的进制进行相位 调制。
数字 频率 调 FSK 制	发送端使用不同的频率的高频载波对应数字信号的不同状态,解调也是使用使用不同的频率借条,在载波频率发生变化时,相邻两个波形相位连续性未知,为此可以分为CPFSK连续相位和相位不连续DPFSK,抗噪声较ASK较好,适用于中低速数据传输,但是带宽占用宽。
数字 相位 调制 PSK	通过二进制的数字基带信号控制高频载波的相位变化,从而实现调制。有两种绝对移相PSK和相对移相DPSK。绝对移相相位数值的大小,相对移项是相位变化的多少。它具有抗干扰能力强,频带利用率高,广泛应用。

5. 要传送四个比特的信息,且传送过程须能容忍一个错误,请问至少要传送多少比特,并说明你的理由。

由公式得

$$d_0 \ge 2t + 1, d_0 \ge t + e + 1$$

其中 t 是纠正错误的个数,e 是检查错误的个数, d_0 是码的最小距离。

由题意 $d_0 \geq 3$,因此需要至少最小三位才能满足题目意思。