Sprawozdanie laboratorium metody numeryczne Lab 9 - Aproksymacja Padego funkcji $exp(-x^2)$

Jędrzej Szostak

1. Cel ćwiczenia

Zapoznanie się z metodą aproksymacji funkcji Padego.

2. Opis problemu

Aproksymacja to zastępowanie funkcji inną funkcją przy pomocy innej funkcji, tak aby wartości ich były jak najbardziej zbliżone. Naszym zadaniem na zajęciach było przeprowadzenie aproksymacji padego funkcji:

$$f(x) = exp(-x^2) \tag{1}$$

Przybliżenie Padego funkcji f(x) polega na aproksymacji funkcji wymiernej określonej wzorem:

$$R_{N,M}(x) = \frac{P_N(x)}{Q_M(x)} = \frac{\sum_{i=0}^{N} a_i x^i}{\sum_{i=0}^{M} b_i x^i}$$
 (2)

z $b_0 = 1$. W tym celu rozwijamy f(x) w szereg Maclaurina:

$$f(x) = \sum_{k=0}^{\infty} c_k x^k \tag{3}$$

,a następnie przyrównujemy pochodne f(x) oraz $R_{N,M}(x)$ dla rzędu k=0,1,...,N+M:

$$\frac{d^{k}R_{N,M}(x)}{dx^{k}} \Big|_{x=0} = \frac{d^{k}f(x)}{dx^{k}} \Big|_{x=0}$$
 (4)

Warunki te generują układ równań:

$$\sum_{m=1}^{N} b_m \cdot c_{N-m+k} = -c_{N+k}, \ k = 1, 2, ..., N$$
 (5)

$$\begin{bmatrix} c_{N-M+1} & c_{N-M+2} & \dots & c_{N} \\ c_{N-M+2} & c_{N-M+3} & \dots & c_{N+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{N} & c_{N+1} & \dots & c_{N+M-1} \end{bmatrix} \begin{bmatrix} b_{M} \\ b_{M-1} \\ \vdots \\ b_{1} \end{bmatrix} = \begin{bmatrix} -c_{N+1} \\ -c_{N+2} \\ \vdots \\ -c_{N+M} \end{bmatrix}$$

który trzeba rozwiązać aby znaleźć współczynniki $\overline{b}=[b_0,b_1,...,b_M]$, a następnie wyznaczamy współczynniki a,z relacji:

$$a_i = \sum_{j=0}^{i} c_{i-j} \cdot b_j, \ i = 0, 1, ..., N$$
 (6)

3. Opis metody

Naszym zadaniem było wyznaczenie aproksymacji Padego funkcji $exp(-x^2)$ kolejno dla par (N, M) = (2, 2), (4, 4), (6, 6), (2, 4), (2, 6), (2, 8). W tym celu wykonujemy następujące kroki. Współczynniki szeregu Maclaurina (c_k) otrzymujemy

bezpośrednio z rozwinięcia funkcji $exp(-x^2)$:

$$\sum_{p=0}^{\infty} (-1)^{p} \left(\frac{x^{2p}}{p!}\right) = \sum_{k=0}^{\infty} c_{k} \cdot x^{k}$$
 (7)

Rozwiązujemy układ równań $A \cdot \overline{x} = \overline{y}$, gdzie

$$A_{i,j} = c_{N-M+i+j+1} y_i = -c_{N+1+i},$$
 (8)

 $gdzie\ i,\ j=0,1,...,M-1$

Z kolei współczynniki b obliczamy z zależności:

$$b_0 = 1$$

$$b_{M-i} = x_i \tag{9}$$

Mając te wartości ze wzoru (2) obliczamy wartości $R_{N,M}(x)$.

4. Wyniki

Aproksymację wykonaliśmy dla funkcji $f(x) = exp(-x^2)$ w przedziale $x \in [-5,5]$ kolejno dla (N, M) = (2,2), (4,4), (6,6), (2,4), (2,6), (2,8). Wyniki i porównanie do f(x) przedstawiliśmy na poniższych rysunkach:

Rysunek 1. Aproksymacja Padego funkcji $exp(-x^2)$ dla N = 2, M = 2.

Rysunek 2. Aproksymacja Padego funkcji $exp(-x^2)$ dla N = 4, M = 4.

Rysunek 3. Aproksymacja Padego funkcji $exp(-x^2)$ dla N = 6, M = 6.

Rysunek 4. Aproksymacja Padego funkcji $exp(-x^2)$ dla N = 2, M = 4.

Rysunek 5. Aproksymacja Padego funkcji $exp(-x^2)$ dla N = 2, M = 6.

Rysunek 6. Aproksymacja Padego funkcji $exp(-x^2)$ dla N = 2, M = 8.

5. Wnioski

Metoda aproksymacja Padego jest efektywna dla dobrze dobranych współczynników N i M i dobrze uwarunkowaną numerycznie. Widzimy, że działa najlepiej dla największej różnicy pomiędzy wartościami N i M, ale tak naprawdę metoda działa bardzo dobrze niezależnie od współczynników w środku przedziału, różnice pojawiają się dopiero na jego krańcach. W naszym przypadku dla N = 2 i M =8 otrzymujemy dopasowanie prawie identyczne z funkcją wejściową. Można też zauważyć, że funkcja ta działa bardzo dokładnie dla niewielkich wartości M i N.