

Nombre	Nota
14011101 C	110th iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

3^a. prueba parcial

24 de Julio de 2018

En todos los ejercicios, justifique cada paso con la mayor claridad posible

1. (a) Probar que los conjuntos

$$B_1 = \{1, x-1, (x-1)^2\}$$
 y $B_2 = \{1, x-3, (x-3)^2\}$. son bases del conjunto $\mathbf{P^2(x)}$ de todos los polinomios en la variable x de grado menor o igual a 2. (0,5 puntos)

- (b) Hallar la matriz de pasaje de un sistema de coordenadas en la base B_1 a otro en la base B_2 . (1.0 puntos)
- (c) Trabajando con matrices, exprese al polinomio $p(x) = 2 x + x^2$ en la base B_2 . Compruebe el resultado anterior reemplazando las coordenadas en la combinación lineal directamente. (0.5 puntos)
- **2.** (a) Determine una base y la dimensión del subespacio S_1 de \mathbb{R}^3 generado por el conjunto de vectores:

$$Gen S_1 = \{(-2, 1, 2)(1, 0, -3)(6, -2, -10)\}$$
 (0.5 puntos)

(b) Dado el espacio vectorial

$$S_2=\{(x,y,z)\in R^3,\ 2x-y-z=0\}$$
 encuentre una base y la dimensión del subespacio vectorial $S_1\cap S_2$ (1.0 puntos)

- (c) Encuentre la dimensión del subespacio S_1+S_2 vinculándola con las dimensiones de los subespacios S_1 , S_2 , $S_1\cap S_2$ ¿Es la suma de subespacios S_1+S_2 una suma directa? Explique brevemente. (0.5 puntos)
- **3.** (a) Dado los vectores $\vec{a} = (1, -1, 0)$ y $\vec{b} = (2, k, 0)$, encuentre el valor de k que hace que el espacio vectorial E_1 generado por $\{\vec{a}, \vec{b}\}$ sea de dimensión 1. (0.5 puntos)
 - (b) ¿Qué plano del espacio se genera si k=3? (0.5 puntos)
 - (c) En ese último caso, encuentre una base ortonormal de E_1 que contenga un vector colineal con (1, -1, 0). (1.0 puntos)

det
$$(3)$$
 $B_1 = \{(1,0,0)(-1,1,0)(1,-2,1)\}$

det (3) $B_1 = \{(1,0,0)(-1,1,0)(1,-2,1)\}$

det (3) $B_1 = \{(1,0,0)(-1,1,0)(1,-2,1)\}$

det (3) $B_1 = \{(1,0,0)(-3,1,0)(9,-6,1)\}$
 $B_2 = \{(1,0,0)(-3,1,0)(9,-6,1)\}$

det (3) $B_2 = \{(1,0,0)(-3,1,0)(9,-6,1)\}$

det (3) $B_3 = \{(1,0,0)(-3,1,0)(9,-6,1)\}$
 $A_1 = \{(1,0,0)(-3,1,0)(9,-6,1)\}$

det (3) $B_2 = \{(1,0,0)(-3,1,0)(9,-6,1)\}$
 $A_1 = \{(1,0,0)(-3,1,0)(9,-6,1)\}$
 $A_2 = \{(1,0,0)(-3,1,0)(9,-6,1)\}$
 $A_3 = \{(1,0,0)(-3,1,0)(9,-6,1)\}$
 $A_4 = \{(1,0,0)(1,0)(1,0)(1,0)(1,0)(1,0)$
 $A_4 = \{(1,0,0)(1,0)(1,0)(1,0)(1,0)$
 $A_4 = \{(1,0,0)(1,0)(1,0)(1,0)(1,0)(1,0)$
 $A_4 = \{(1,0,0)(1,0)(1,0)(1,0)(1,0)$
 $A_4 = \{(1,0,0)(1,0)(1,0)(1,0)(1,0)$
 $A_4 = \{(1,0,0)(1,0)(1,0)(1,0)(1,0)$
 $A_4 = \{(1,0,0)(1,0)(1,0)(1,0)(1,0)$
 $A_4 = \{(1,0,0)(1,0)(1,0)(1,0)$
 $A_4 = \{(1,0,0)(1,0)(1,0)(1,0)(1,0)$
 $A_$

$$\frac{1}{2}(x) = 8 + 5x - 15 + x^2 - 6x + 9$$

$$\frac{1}{2}(x) = 2 - x + x^2$$
Se comprue ba que está bien

Fercion 2:
(a)
$$S_1 = \{(-2,1,2)(1,0,-3)(6,-2,-10)\}$$

 $\begin{pmatrix} -2 & 1 & 6 \\ 1 & 0 & -2 \\ 2 & -3 & -10 \end{pmatrix}$ $F_2' = 2F_2 - F_1$ $\begin{cases} -2 & 1 & 6 \\ 0 & 1 & 2 \\ 0 & -2 & -4 \end{pmatrix}$ $F_3' = F_3 + 2F_2$
 $\begin{cases} F_3' = F_3 + F_1 \end{cases}$ $\begin{cases} F_3' = F_3 + 2F_2 \end{cases}$ $\begin{cases} -2,1,2 \end{pmatrix} (1,0,-3)$
(b) S_2 es un plano \Rightarrow dim $S_2 = 2$

S₁ es el conjunto de puntos:

$$(x, y_1 z) = \alpha(-2, 1, 2) + \beta(1, 0; 3)$$

 $(x, y_1 z) = \alpha(-2, 1, 2) + \beta(2, 0; 3)$
 $(x = -2x + \beta)$
 $(x = -2x + 2y = \beta)$

Sumendo:
$$\begin{cases} 32: 2x - y - z = 0 \\ 52: 2x - y - z = 0 \end{cases} \Rightarrow \begin{cases} x = \alpha \\ 7x + 3y \end{cases} = 0 \Rightarrow \begin{cases} x = \alpha \\ y = -\frac{7}{3}\alpha \end{cases}$$

$$Z = \frac{11}{3}\alpha$$

$$S_1 \cap S_2 = \left\{ (x, y, z) = (x, -\frac{5}{3}x, \frac{11}{3}x) \right\}$$

 $(x, y, z) = \frac{x}{3} (3, -5, 11) - \left[\dim(S_1 \cap S_2) \right]$

(c)
$$[\dim(S_1 + S_2) = \dim S_1 + \dim S_2 - \dim(S_1 \cap S_2)]$$

 $\dim(S_1 + S_2) = 2 + 2 - 1 = 3$
No es suma directa parque $\dim(S_1 \cap S_2) \neq 0$

Ejerziao 3:

(2) Debera' ser
$$(2, k, 0) = x(1, -1, 0)$$

Debera se
$$(3)$$
 $=$ (4)

(c)
$$\overline{U_{2}} = (1,-1,0)$$

 $\overline{U_{2}} = (2,3,0) - \frac{(1,-1,0)(2,3,0)}{(1,-1,0)} \cdot (1,-1,0)$
 $\overline{U_{2}} = (2,3,0) - \frac{2-3+0}{1+1+0} \cdot (1,-1,0)$
 $\overline{U_{2}} = (2,3,0) + \frac{1}{2}(1,-1,0)$
 $\overline{U_{2}} = (\frac{5}{2},\frac{5}{2},0) = \frac{5}{2}(1,1,0)$

$$\overline{v_1} = (1, -1, 0) \qquad \overline{v_2} = (1, 1, 0)$$
=alto nomolizar:
$$\overline{u_1} = \frac{\overline{v_1}}{\|\overline{v_1}\|} = \frac{(1, -1, 0)}{\sqrt{1^2 + 1^2 + 0^2}} = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$$

$$\overline{u_2} = \frac{\overline{v_2}}{\|\overline{v_2}\|} = \frac{(1, 1, 0)}{\sqrt{2}} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right)$$

$$\overline{u_2} = \frac{\overline{v_2}}{\|\overline{v_2}\|} = \frac{(1, 1, 0)}{\sqrt{2}} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right)$$