IE6400 Foundations Data Analytics Engineering

Fall Semester 2024

Quiz 6: Lecture 8: Data and Sampling Distributions

Objective: To understand the concept of data and sampling distributions and apply Python programming skills to analyze and visualize these distributions.

Instructions: Use Python to solve the following problems. Ensure that you include necessary comments in your code for clarity. Submit your Python code along with the outputs.

Questions:

1. Central Limit Theorem (CLT) Simulation:

- Generate a population of 10,000 random numbers between 1 and 100.
- Randomly sample 30 numbers from this population and calculate the sample mean. Repeat this process 1,000 times.
- Plot the distribution of the 1,000 sample means. What do you observe?

2. Sampling from a Non-Normal Distribution:

- Generate a population of 10,000 numbers from an exponential distribution with a scale parameter of 2.
- Randomly sample 50 numbers from this population and calculate the sample mean. Repeat this process 500 times.
- Plot the distribution of the 500 sample means. How does the CLT apply here?

3. Confidence Intervals:

 Calculate the 95% confidence interval for the sample means from the previous question. What does this interval tell you about the population mean?

4. Sample Size and Sampling Distribution:

- Using the population from question 1, randomly sample 10 numbers and calculate the sample mean. Repeat this process 1,000 times.
- Plot the distribution of the 1,000 sample means for the sample size of 10 and compare it with the distribution from question 1 (sample size of 30).
- What do you observe about the spread of the distributions as the sample size changes?

Hints:

- Use Python libraries like numpy for numerical operations and matplotlib for plotting.
- For generating random numbers, you can use numpy.random.rand() or numpy.random.exponential().
- To calculate confidence intervals, you can use the formula: mean ± (1.96 x standard error) where standard error = standard deviation / sqrt(sample size).

IE6400 Foundations Data Analytics Engineering

Fall Semester 2024

Quiz 6: Lecture 9:

Statistical Experiments and Significance Testing

Objective: To understand the concepts of statistical experiments and significance testing and to apply Python programming skills to solve real-world statistical problems.

Problem 1: T-test

Objective: To determine if there is a significant difference between the means of two independent samples.

Problem Statement: You have been given the scores of students from two different classes for a mathematics test. Determine if there is a significant difference in the mean scores of the two classes using a t-test.

```
class_A_scores = [85, 90, 78, 92, 88, 76, 95, 87, 79, 91] class B scores = [80, 82, 88, 85, 83, 87, 84, 86, 89, 81]
```

Hint: Use the scipy.stats.ttest ind function.

Problem 2: Chi-Squared Test

Objective: To determine if there is a significant association between two categorical variables.

Problem Statement: You have been given the observed frequencies of students preferring different types of beverages in two different grades. Using a chi-squared test, determine if there is a significant association between grade level and beverage preference.

```
# Observed frequencies
# Columns: ['Tea', 'Coffee', 'Juice']
# Rows: ['Grade 10', 'Grade 11']
observed frequencies = [[30, 10, 10], [10, 30, 10]]
```

Hint: Use the scipy.stats.chi2_contingency function.

Problem 3: One-way ANOVA

Objective: To determine if there are any statistically significant differences between the means of three or more independent groups.

Problem Statement: You have been given the scores of students from three different teaching methods for a science test. Determine if there is a significant difference in the mean scores of the students taught by the various techniques using one-way ANOVA.

```
method_1_scores = [85, 87, 88, 86, 84, 85, 87]
method_2_scores = [80, 82, 81, 83, 82, 80, 81]
method_3 scores = [90, 91, 92, 90, 91, 92, 93]
```

Hint: Use the scipy.stats.f_oneway function.

Problem 4: One-sample Z-Test

Objective: To determine if there's a significant difference between the sample mean and the population mean.

Problem Statement: You have been given the scores of a sample of students from a class for an English test. The population mean score for this test is known to be 75, with a standard deviation of 10. Determine if there's a significant difference between the sample mean and the population mean using a one-sample Z-test.

```
sample_scores = [78, 76, 74, 75, 77, 76, 78, 74, 79, 75]
population_mean = 75
population_std = 10
```

Hint: You can use the formula for the Z-test or use a Python library that provides this functionality.

Problem 5: Two-sample Z-Test

Objective: To determine if there's a significant difference between the means of two independent samples when population variances are known.

Problem Statement: You have been given the scores of students from two different classes for a history test. The population variances for these two classes are known. Using a two-sample Z-test, determine if there's a significant difference between the mean scores of the two classes.

```
class_X_scores = [85, 87, 88, 86, 84, 85, 87]
class_Y_scores = [80, 82, 81, 83, 82, 80, 81]
population_variance_X = 15
population_variance_Y = 20
```

Hint: You can use the formula for the two-sample Z-test or use a Python library that provides this functionality.

Problem 6:

You are provided with a dataset containing the scores of two groups of students: Group A and Group B. These students were subjected to two different teaching methods, and their scores reflect their understanding of the material taught.

Your task is to determine if there is a significant difference in the scores between the two groups using appropriate statistical tests. Additionally, visualize the data to gain insights and interpret your findings.

Dataset:

Student ID	Group	Score
1	Α	85
2	Α	87
3	Α	82
4	Α	90
5	Α	88
6	В	78
7	В	80
8	В	79
9	В	83
10	В	81

Tasks:

- 1. Visualize the distribution of scores for both Group A and Group B. What observations can you make from the visualization?
- 2. Calculate the mean and standard deviation of scores for both groups. How do they compare?
- 3. Perform a t-test to determine if there is a significant difference in the scores between Group A and Group B. What is the p-value, and what does it indicate?
- 4. If the p-value is less than 0.05, what conclusion can you draw about the teaching methods?
- 5. Based on your analysis, which teaching methods are more effective, and why?

Problem 7:

A pharmaceutical company has developed a new drug intended to increase sleep duration. To test its effectiveness, it conducted an experiment with two groups: a control group that did not receive the drug and a treatment group that did. Both groups were asked to record their sleep duration in hours for a week.

Using appropriate statistical tests, you will determine if the drug significantly affects sleep duration. Additionally, you will visualize the data to gain insights and interpret your findings.

Dataset:

Day	Control Group (Hours)	Treatment Group (Hours)
1	7.5	8.2
2	7.8	8.4
3	7.6	8.1
4	7.7	8.3
5	7.9	8.5
6	7.8	8.2
7	7.6	8.4

Tasks:

- 1. Visualize the average sleep duration for the control and treatment groups over the week. What observations can you make from the visualization?
- 2. Calculate the overall mean sleep duration for both groups. How do they compare?
- 3. Perform a paired t-test to determine if there is a significant difference in the sleep duration between the control and treatment groups over the week. What is the pvalue, and what does it indicate?
- 4. If the p-value is less than 0.05, what conclusion can you draw about the drug's effectiveness?
- 5. Based on your analysis, do you believe the drug is effective in increasing the duration of sleep? Provide reasons for your answer.