Lie Group & Lie Algebra

Jack Feng

May 10, 2019

1 Review of Group Theory

Definition 1.1. A group G is a set of element $\{g\}$ which defines the product with the following properties:

- 1. $(g_1g_2)g_3 = g_1(g_2g_3);$
- 2. \exists the identity element $e \in G$,s. t. eg = ge = g, $\forall g \in G$;
- 3. $\forall g \in G, \exists g^{-1} \text{ s. t. } g^{-1}g = gg^{-1} = e.$

Definition 1.2. If subset H with the identical product of G forms a group, then H is the **subgroup** of G.

Example 1.1. \mathbb{R} is a group, which performs the product of addition:

$$x \circ y := x + y;$$

the identity element is θ . One of its subgroup is θ .

Definition 1.3. Given two groups G and G', if there exists a mapping $\mu: G \to G'$ which conserves the group's product, i.e. $\mu(g_1g_2) = \mu(g_1)\mu(g_2) \ \forall g_1, g_2 \in G$, then the two groups are **homomorphism**.

Definition 1.4. If the mapping μ between two groups G and G' is a one-one onto mapping (surjection), then the two groups are **isomorphism**.

Example 1.2. Adjoined isomorphism: given a group G and a certain element g, if there exists a mapping

$$I_g: G \to G,$$

$$I_g(h) := ghg^{-1}, \ \forall h \in G,$$

then the this mapping is an adjoined isomorphism.

Proof. 1. Homomorphism. By definition,

$$I_q(h_1h_2) = g(h_1h_2)g^{-1} = gh_1g^{-1}gh_2g^{-1} = I_q(h_1)I_q(h_2)$$

2. Isomorphism. The inverse mapping writes

$$I_g^{-1}(h') = I_g^{-1}(ghg^{-1}) = h = g^{-1}h'g;$$

it transforms in the same way, thus this mapping is isomorphism.

Definition 1.5. Given two group G and G', the direct product group $G \times G'$ is formed by the set $\{(g,g')\}$, where $g \in G$, $g \in G'$. The product in the new group can define with the help of the product of the original group:

$$(g_1, g_1')(g_2, g_2') := (g_1g_2, g_1'g_2')$$

2 Basic Definition of Lie Group

Definition 2.1. A Lie group is a group which is also a manifold satisfying the following two conditions:

- (a) Group product $G \times G \to G$ is C^{∞} ;
- (b) The Inverse mapping $G \to G$ is C^{∞} .

Example 2.1. \mathbb{R} is a 1-dimensional Lie Group.

Example 2.2. $\mathbb{R}^2 \equiv R \times R$ is a 2 dimensional Lie Group. \mathbb{R}^n is a nth-dimensional Lie Group.

Example 2.3. Diffeomorphism group of a single parameter: a mapping $\phi : \mathbb{R} \times M \to M$ forms a one-dimensional Lie group:

$$G \equiv \{ \phi_t : M \xrightarrow{diff} M | t \in \mathbb{R} \}.$$

Definition 2.2. If a homomorphism mapping μ is C^{∞} , then this mapping is lie group homomorphism.

Definition 2.3. Lie group isomorphism is a diffeomorphism.

Definition 2.4 (Left Translation). A left translation mapping $L_g: G \to G$ is defined as

$$L_a(h) := gh, \ \forall h \in G,$$

Some properties are listed below:

- 1. L_e is an identical mapping.
- 2. $L_{gh} = L_g \circ L_h$.

Proof.

$$L_{ab}(h') = qhh' = qL_{b}(h') = L_{a}(L_{b}(h')).$$

3. $L_q^{-1} = L_{q^{-1}}$.

4. L_q is a diffeomorphism.

Definition 2.5 (Left invariant vector field). Given a vector field \bar{A} in group G, if there exists a mapping $L_{g*}\bar{A} = \bar{A}$, $\forall g \in G$ and $\bar{A}|_h$, then this vector field is **left invariant**. More especially, this can be described as a diffeomorphism:

$$(L_{g*}\bar{A})_{gh} = L_{g*}\bar{A}_h = \bar{A}_{gh},$$

where $(L_{g*}\bar{A})_{gh}$ is the left translated field \bar{A} at point gh and \bar{A}_h is the vector field at point h.

The set of left invariant vector field is a linear vector space \mathscr{L} .

Theorem 2.1. The set of tangant vector A of the identical element V_e and the left invariant space \mathcal{L} are isomorphism.

Proof. Define the mapping $\eta: A \to \bar{A} \equiv \eta(A)$. Thus, $\bar{A}_g := L_{g*}A$, $\forall g \in G$. There is no doubt that $\bar{A}_e = A$. Since two vector fields are isomorphism when they are linear and the mapping is one-one onto, we can easily see that the operator L_{g*} is linear.

One-one: $\bar{A} = \bar{B} \Rightarrow \bar{A}_e = \bar{B}_e \Rightarrow A = B$.

Onto: $\forall \bar{A} \in \mathcal{L}$, fix this vector in identical element e, then $\bar{A}_e = A$ is an identical mapping.

3 Lie Algebras

Definition 3.1. An algebra is a vector space \mathcal{V} with a product $\mathcal{V} \times \mathcal{V} \to \mathcal{V}$. In Lie algebra, the product is **Lie Bracket**, which satisfies the following conditions:

- 1. Antisymmetric condition: [A, B] = -[B, A];
- 2. Jacobi identity: [A, [B, C]] + [C, [A, B]] + [B, [A, C]] = 0;

where $A, B, C \in \mathcal{V}$.

Example 3.1. 3-dimensional Euclidean Space $(\mathbb{R}^3, \delta_{ab})$ is a Lie Algebra in which the product writes

$$[\boldsymbol{v_1}, \boldsymbol{v_2}] := \boldsymbol{v_1} \times \boldsymbol{v_2},$$

where $\mathbf{v_1}, \mathbf{v_2} \in (\mathbb{R}^3, \delta_{ab})$.

Proof. Antisymmetric condition: $[v_2, v_1] := v_2 \times v_1 = -v_1 \times v_2 = -[v_1, v_2].$ Jacobi identity:

$$\begin{split} & [\boldsymbol{u}, [\boldsymbol{v}, \boldsymbol{w}]] + [\boldsymbol{w}, [\boldsymbol{u}, \boldsymbol{v}]] + [\boldsymbol{v}, [\boldsymbol{w}, \boldsymbol{u}]] \\ = & \boldsymbol{u} \times (\boldsymbol{v} \times \boldsymbol{w}) + \boldsymbol{w} \times (\boldsymbol{u} \times \boldsymbol{v}) + \boldsymbol{v} \times (\boldsymbol{w} \times \boldsymbol{u}) \\ = & \boldsymbol{v}(\boldsymbol{u} \cdot \boldsymbol{w}) - \boldsymbol{w}(\boldsymbol{u} \cdot \boldsymbol{v}) + \boldsymbol{u}(\boldsymbol{w} \cdot \boldsymbol{v}) - \boldsymbol{v}(\boldsymbol{w} \cdot \boldsymbol{u}) + \boldsymbol{w}(\boldsymbol{v} \cdot \boldsymbol{u}) - \boldsymbol{u}(\boldsymbol{v} \cdot \boldsymbol{w}) = 0 \end{split}$$

Example 3.2. The set of all the m-dimensional square matrices $\mathcal{M} = \{M\}$ is a Lie Algebra in which the product writes

$$[A, B] := AB - BA, \ \forall A, B \in \mathcal{M}.$$

Example 3.3. The set of all the left invariant vector fields \mathcal{L} is a Lie Algebra in which the product writes

$$[\bar{A}, \bar{B}] = \bar{A}\bar{B} - \bar{B}\bar{A}, \ \forall \bar{A}, \bar{B} \in \mathcal{M}.$$

A property: $L_{g*}[\bar{A}, \bar{B}] = [L_{g*}\bar{A}, L_{g*}\bar{B}] = [\bar{A}, \bar{B}].$

Definition 3.2. Lie Algebra homomorphism is the mapping β which conserves lie bracket, i.e.

$$\beta[A, B] = [\beta(A), \beta(B)]$$

Lie Algebra Isomorphism defines similarly.

Noted that the tangent vector set of identical element V_e and the left invariant space \mathcal{L} are isomorphism, we can show that they are lie algebra isomorphism by defining the Lie Bracket in V_e :

$$[A, B] := [\bar{A}, \bar{B}]_e$$

then we can claim that mapping η conserves lie bracket.

Proof.

$$\eta([A, B]) = \eta([\bar{A}, \bar{B}]_e) = L_{e*}[\bar{A}, \bar{B}] = [\bar{A}, \bar{B}] = [\eta(A), \eta(B)].$$

Theorem 3.1. Given a Lie Group G, we can define a Lie Algebra \mathcal{G} as the tangent vector space V_e of identical element e or the left-invariant vector space \mathcal{L} . Given a Lie Algebra \mathcal{G} , we can find several Lie Groups, among which there is a unique simply connected group.

Example 3.4. The Lie Algebra of the Lie Group \mathbb{R} is also \mathbb{R} . Another Group is Group S(1) with the product defined as

$$\exp(\phi_1) \cdot \exp(\phi_2) = \exp(\phi_1 + \phi_2).$$

Nevertheless, \mathbb{R} and S(1) are not isomorphism, for the different topological form, more specifically, the former one is simply connected, but the latter is not. The Lie Algebra of S(1) is also \mathbb{R} .

4 One Parameter Subgroups & Exponential Maps

Definition 4.1. Given a Lie Group G, if there exists a C^{∞} mapping satisfying $\gamma : \mathbb{R} \to G$ as well as the condition $\gamma(s+t) = \gamma(s)\gamma(t), \ \forall s,t \in \mathbb{R}$, then this mapping γ is the one parameter subgroup of Lie Group G.

Actually, γ is definitely violating the definition of group. Thus, the very subgroup is the set satisfying $\{\gamma(t)|t\in\mathbb{R}\}$. In addition, the condition $\gamma(s+t)=\gamma(s)\gamma(t)$ resemble the definition of homomorphism $\mu(g_1g_2)=\mu(g_1)\mu(g_2)$ and \mathbb{R} is also a special Lie group.

Some properties of one param. subgroups:

- 1. Identical element: $\gamma(0)$;
- 2. Inverse element: $\gamma(t)^{-1} = \gamma(-t)$.

We denote the tangant vector at point s of a curve $\gamma(t)$ as

$$\bar{A}|_{\gamma(s)} = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=s}\gamma(t),$$

i.e., $\gamma(t)$ is the **integral curve** of $\bar{A}|_{\gamma(t)}$. Through a point in group G, there exists a unique integral curve that is not continuable. If the domain of the param of a integral curve is \mathbb{R} , then the vector field \bar{A} is **uniform**.

Definition 4.2. Any integral curves of left invariant vector field is a one param. subgroup, and vice versa.