Prof. Jefferson T. Oliva

Aprendizado de Máquina e Reconhecimento de Padrões (AM28CP)
Engenharia de Computação
Departamento Acadêmico de Informática (Dainf)
Universidade Tecnológica Federal do Paraná (UTFPR)
Campus Pato Branco

Sumário

- Análise Discriminante Linear e Quadrática
- Exemplo de Classificação
- Redução de Dimensionalidade Utilizando Análise Discriminante Linear

Introdução

- A análise discriminante é um método estatístico de análise multivariada utilizado para identificar diferenças entre grupos
 - Relacionamento entre uma variável dependente (e.g. classe/alvo) e variáveis independentes
 - Obtenção da combinação linear de variáveis independentes com maior discriminação entre grupos
 - Introduzida por Fisher em 1936
 - Exemplos de métodos
 - Análise discriminante linear (LDA linear discriminant analysis)
 - Análise discriminante quadrática (QDA quadratic discriminant analysis)

Introdução

- LDA e QDA são derivamos de modelos probabilísticos simples
- Provabilidades
 - P(A): probabilidade de ocorrência do evento A
 - p(x): função de densidade de probabilidade (pdf) para uma variável x
 - p(X): pdf para um vetor de variáveis aleatórias X
- Probabilidades condicionais:
 - P(A|B): probabilidade condicional de A dado B
 - P(x|B) e P(X|B)

4

Sumário

- LDA é uma técnica de aprendizado de máquina supervisionado que tem o propósito de separar grupos ou classes de dados com base em combinações lineares de características
 - Generalização do discriminante linear de Fisher
- Dadas características (atributos) de um grande conjunto de treinamento para a classe ω_i
- Cada um desses padrões de treinamento tem um valor x diferente para as características
 - Probabilidade condicional da classe: $p(x|\omega_i)$

• Com que frequência os exemplos de classe ω_i apresentam a característica x?

Outlook			Temperature		Humidity		Windy			Play	
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	64, 68,	65, 71,	65, 70,	70, 85,	False	6	2	9	5
Overcast	4	0	69, 70,	72, 80,	70, 75,	90, 91,	True	3	3		
Rainy	3	2	72,	85,	80,	95,					
Sunny	2/9	3/5	$\mu = 73$	μ =75	μ =79	μ =86	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	σ =6.2	$\sigma = 7.9$	$\sigma = 10.2$	σ =9.7	True	3/9	3/5		
Rainy	3/9	2/5									

- Classificação
 - Dado um vetor de características X, qual a probabilidade do mesmo pertencer a uma classe ω_i ? $P(\omega_i, X)$

- Durante o treinamento, é dada $p(X|\omega_i)$ (a priori), as o que é desejável seria $p(\omega_i|X)$ (a posteriori)
- Teorema de Bayes
 - Forma geralmente apresentada

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Contexto deste material

$$P(\omega_i|X) = \frac{P(X|\omega_i)P(\omega_i)}{P(X)}$$

$$P(\omega_i|X) = \frac{P(X|\omega_i)P(\omega_i)}{P(X)}$$

- $P(X|\omega_i)$: probabilidade ou verossimilhança condicionada à classe
- $P(\omega_i)$: probabilidade *a priori*
- P(X): evidência (geralmente ignorada)
- $P(\omega_i|X)$: probabilidade posteriori

- Estrutura de classificadores baseados em análise discriminante (linear e quadrática)
 - Treinamento: estimar $p(X|\omega_i)$ de cada classe
 - Conhecimento a priori: estimar $p(\omega_i)$ da população em geral
- Classificação
 - Extração de características (X) para o novo padrão
 - ullet Calcular probabilidades *a posteriori* $P(\omega_i|X)$ para cada classe
 - Atribuir uma classe ao novo padrão para o que obteve maior valor de $P(\omega_i|X)$

- Suposição de de normalidade
 - Para as análises discriminantes linear e quadrática, assume-se que $p(x|\omega_i)$ tenha sido modelada como uma distribuição Gaussiana multivariada
 - Probabilidades condicionais de classe normalmente distribuídas (1D)

- De probabilidades para discriminantes: caso 1-D
 - Desejável maximizar: $P(\omega_i|X) = \frac{p(X|\omega_i)P(\omega_i)}{p(x)}$
 - O mesmo que maximizar: $p(X|\omega_i)P(\omega_i)$
 - Que para uma distribuição normal é: $\frac{1}{\sqrt{2\pi\sigma_i}}e^{-\frac{1}{2}(X-\mu_i)^2/\sigma_i^2}P(\omega_i)$
 - Aplicação do logaritmo na base 2: $\log_2 \frac{1}{\sqrt{2\pi}} \log_2 \sigma_i \frac{1}{2} (X \mu_i)^2 / \sigma_i^2 + \log_2 P(\omega_i)$
 - Remoção de constantes: $\log_2 P(\omega_i) \log_2 \sigma_i \frac{1}{2} (X \mu_i)^2 / \sigma_i^2$

$$p(x|\omega_i) = \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{1}{2}(x-\mu_i)^2/\sigma_i^2}$$

- De probabilidades para discriminantes: múltiplas características
 - O termo-chave para uma distribuição normal 1-D é a distância ao quadrado da média em desvios-padrão: $(X \mu)^2/\sigma_i^2$
 - A modelagem acima pode ser estendida para múltiplas características por meio da normalização da distância de cada atributo pelo respectivo desvio-padrão
 - Em seguida, utilizar a classificação pela distância mínima
 - Essa normalização é também denominada como naïve Bayes por ignorar relações entre características

Distribuição Gaussiana multivariada

$$p(\mathbf{x}) = \left(\frac{1}{\sqrt{2\pi}}\right)^{d} \frac{1}{|\mathbf{C}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m})^{T} \mathbf{C}^{-1}(\mathbf{x} - \mathbf{m})}$$
$$= (2\pi)^{-d/2} |\mathbf{C}|^{-1/2} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m})^{T} \mathbf{C}^{-1}(\mathbf{x} - \mathbf{m})}$$

- Para a classificação multiclasse, cada classe ω_i tem um vetor de médias (m_i) e uma matriz de covariância (C_i)
 - Dessa forma, as probabilidades condicionais de classe são das pela equação abaixo:

$$p(X|\omega_i) = (2\pi)^{-\frac{d}{2}} |C_i|^{-\frac{1}{2}} e^{-\frac{1}{2}(X-m_i)^T C_i^{-1}(X-m_i)}$$

- De probabilidades para discriminantes: caso N-D
 - Desejável maximizar: $P(\omega_i|X) = \frac{p(X|\omega_i)P(\omega_i)}{p(X)}$
 - O mesmo que maximizar: $p(X|\omega_i)P(\omega_i)$
 - O mesmo que maximizar: $\log_2 p(X|\omega_i) + \log_2 P(\omega_i)$
 - Que para uma distribuição normal é: $-\frac{d}{2}\log_2 2\pi \frac{1}{2}\log_2 |C_i|$

$$-\frac{2}{2}\log_2 2\pi - \frac{1}{2}\log_2 |C_i| -\frac{1}{2}(X - m_i)^T C_i^{-1}(X - m_i) + \log_2 P(\omega_i)$$

• Maximize: $\log_2 P(\omega_i) - \frac{1}{2} \log_2 |C_i| - \frac{1}{2} (X - m_i)^T C_i^{-1} (X - m_i)$

$$p(\mathbf{x}|\omega_i) = (2\pi)^{-d/2} |\mathbf{C}_i|^{-1/2} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T \mathbf{C}_i^{-1}(\mathbf{x} - \mathbf{m}_i)}$$

- Distância de Mahalanobis
 - A expressão $(X m_i)^T C_i^{-1} (x m_i)$ pode ser também definido como $||x m_i||_{C^{-1}}^2$
 - Por mais que pareça uma distância quadrática (como a Euclidiana), a inversa da matriz de covariância C^{-1} atua como uma métrica
 - O reconhecimento de padrões usando distribuições normais multivariadas é simplesmente um classificador de distância mínima (de Mahalonobis)!
 - Temos 3 casos de matriz de covariância a serem considerados

- Caso 1: matriz de identidade (naïve Bayes)
 - Suponha que a matriz de covariância para todas as classes seja uma matriz identidade: $C_i = I$ ou $C_i = \sigma^2 I$
 - Se os dados estão normalizados por meio do método z-score e não estão correlacionados, a matriz de correlação é a matriz identidade com desvio padrão unitário unitário

$$g_i(X) = -\frac{1}{2}(X - m_i)^T(X - m_i) + \log_2 P(\omega_i)$$

- Supondo que todas as classes sejam igualmente prováveis a priori: $g_i(X) = -\frac{1}{2}(X m_i)^T(X m_i)$
- Ao ignorarmos a constante $\frac{1}{2}$, temos: $g_i(X) = -(X m_i)^T (X m_i)$

• Caso 1: matriz de identidade (naïve Bayes)

- Caso 2: mesma matriz de covariância (análise discriminante linear)
 - Caso cada classe possua a mesma matriz de covariância: $g_i(X) = -\frac{1}{2}(X m_i)^T C(X m_i) + \log_2 P(\omega_i)$
 - Os loci de probabilidade constante s\u00e3o hiper-elipses orientados com os autovetores de C
 - Direções dos autovetores dos eixos da elipse
 - variância dos autovalores (comprimento do eixo ao quadrado) na direção do eixo
 - Os limites de decisão ainda são hiperplanos, embora possam não ser mais normais às linhas entre as respectivas médias de classe

 Caso 2: mesma matriz de covariância (análise discriminante linear)

- Caso 3: diferentes matrizes de covariância para cada classe (análise discriminante quadrática)
 - Suponha que cada classe tenha sua própria matriz de covariância arbitrária (o caso mais geral): $C_i \neq C_i$

$$g_i(X) = \log_2 P(\omega_i) - \frac{1}{2} \log_2 |C_i| - \frac{1}{2} (X - m_i)^T C_i^{-1} (X - m_i)$$

- Os loci de probabilidade constante para cada classe são orientados por hiper-elipses com os autovetores de C_i para essa classe
- Os limites de decisão são quadráticos, especificamente, hiper-elipses ou hiper-hiperboloides.

 Caso 3: diferentes matrizes de covariância para cada classe (análise discriminante quadrática)

 Caso 3: diferentes matrizes de covariância para cada classe (análise discriminante quadrática)

Sumário

• Treinamento: determinar médias e matriz de covariâncias

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T \mathbf{C}(\mathbf{x} - \mathbf{m}_i) + \log P(\omega_i)$$
 Classificação:
$$\mathbf{x} = \begin{bmatrix} 3 & 7 \end{bmatrix} \qquad P(i \mid \mathbf{x}) = (\mathbf{x} - \boldsymbol{\mu}_i)^T \mathbf{C}^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - 2\ln(P(i))$$

• Classe 1:
$$P(1 \mid \mathbf{x}) = (\begin{bmatrix} 3 & 7 \end{bmatrix} - \begin{bmatrix} 3.05 & 6.38 \end{bmatrix})^T \begin{pmatrix} 4.9129 & 0.6705 \\ 0.6705 & 0.5980 \end{pmatrix} (\begin{bmatrix} 3 & 7 \end{bmatrix} - \begin{bmatrix} 3.05 & 6.38 \end{bmatrix}) + 1.1192$$

 $\mu_1 = \begin{bmatrix} 3.05 & 6.38 \end{bmatrix}$ $P(1) = 4/7$

• Classe2:
$$P(2 \mid \mathbf{x}) = (\begin{bmatrix} 3 & 7 \end{bmatrix} - \begin{bmatrix} 2.67 & 4.73 \end{bmatrix})^T \begin{pmatrix} 4.9129 & 0.6705 \\ 0.6705 & 0.5980 \end{pmatrix} (\begin{bmatrix} 3 & 7 \end{bmatrix} - \begin{bmatrix} 2.67 & 4.73 \end{bmatrix}) + 1.6946$$

 $\mu_2 = \begin{bmatrix} 2.67 & 4.73 \end{bmatrix}$

$$\mathbf{g}_{i}(\mathbf{x}) = \log P(\omega_{i}) - \frac{1}{2} \log |\mathbf{C}_{i}| - \frac{1}{2} (\mathbf{x} - \mathbf{m}_{i})^{T} \mathbf{C}_{i}^{-1} (\mathbf{x} - \mathbf{m}_{i})$$

$$\mathbf{x}_{classel} = \begin{bmatrix} 2.95 & 6.63 \\ 2.53 & 7.79 \\ 3.57 & 5.65 \\ 3.16 & 5.47 \end{bmatrix} \quad C_{1} = \begin{pmatrix} 0.1876 & -0.4127 \\ -0.4127 & 1.1372 \end{pmatrix} \qquad C_{1}^{-1} = \begin{pmatrix} 26.3961 & 9.5785 \\ 9.5785 & 4.3552 \end{pmatrix}$$

$$\mathbf{\mu}_{1} = \begin{bmatrix} 3.05 & 6.38 \end{bmatrix} \quad P(1) = 4/7$$

$$\mathbf{x}_{classe2} = \begin{bmatrix} 2.58 & 4.46 \\ 2.16 & 6.22 \\ 3.27 & 3.52 \end{bmatrix} \quad C_{2} = \begin{pmatrix} 0.3141 & -0.7308 \\ -0.7308 & 1.8785 \end{pmatrix} \qquad C_{2}^{-1} = \begin{pmatrix} 33.5580 & 13.0550 \\ 13.0550 & 5.6111 \end{pmatrix}$$

$$\mathbf{\mu}_{2} = \begin{bmatrix} 2.67 & 4.73 \end{bmatrix} \quad P(2) = 3/7$$

• QDA: P(1|x)=-0.8791; P(2|x)=50.9385
• x é da classe 2

$$g_i(\mathbf{x}) = \log P(\omega_i) - \frac{1}{2} \log |\mathbf{C}_i| - \frac{1}{2} (\mathbf{x} - \mathbf{m}_i)^T \mathbf{C}_i^{-1} (\mathbf{x} - \mathbf{m}_i)$$

- Fisher: P(1|x)=1.3198; P(2|x)=6.3157 • $x \in \text{da classe 2}$ $g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T \mathbf{C}(\mathbf{x} - \mathbf{m}_i) + \log P(\omega_i)$
- Bayes: P(1|x)=1.5061; P(2|x)=6.9564 • x é da classe 2 $g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T(\mathbf{x} - \mathbf{m}_i)$

Sumário

- A redução de dimensionalidade tem a finalidade de facilitar a visualização e o processamento de conjuntos de exemplos com várias características (multidimensional)
- A LDA busca maximizar a separabilidade entre as classes
- Passo-a-passo para a redução de dimensionalidade usando LDA:
 - Cálculo das médias para cada classe
 - 2 Obtenção da matriz de dispersão intra-classe
 - Obtenção da matriz de dispersão entre-classe
 - 4 Geração de autovalores e autovetores
 - Seleção dos autovetores com maiores autovalores
 - 6 Projeção dos dados em novo espaço

- Passo 1: cálculo das médias para cada classe
 - Para cada classe ω_i , obter o vetor de médias: $m_i = \frac{1}{N_i} \sum_{x \in \omega_i} x$
 - Cálculo da média global: $m = \frac{1}{N} \sum_{i=1}^{N} x_i$
- Passo 2: obtenção da matriz de dispersão intra-classe (S_W)
 - Determinar o quanto os dados estão dispersos dentro de cada classe, onde t é o número total de classes:

$$S_W = \sum_{i=1}^t \sum_{x \in \omega_i} (x - m_i)(x - m_i)^T$$

- Passo 3: obtenção da matriz de dispersão entre-classe (S_B)
 - Determinação de quanto as médias das classes diferem da média global

$$S_B = \sum_{i=1}^{\tau} N_i (m_i - m)(m_i - m)^T$$

- Passo 4: geração de autovalores e autovetores
 - Para a obtenção da matriz de projeção W, maximizar a razão:

$$J(W) = \frac{W^T S_B W}{^T S_W W}$$

- Problema de autovalores generalizados, resultando em $S_W^{-1}S_Bw=\lambda w$, onde:
 - w são autovetores
 - ullet λ são autovalores

- Passo 5: seleção dos autovetores com maiores autovalores
 - Seleção dos k maiores autovalores, onde k < d
 - A matriz W_k terá dimensão $d \times k$
- Passo 6: projeção dos dados em novo espaço

$$X_{reduzido} = X.W_k$$

Considerações Finais

- Atributos
 - Numéricos e simétricos
 - Suportam probabilidades a priori
 - Assume que atributos s\u00e3o igualmente importantes
 - Seleção de atributos
- Capacidade de classificar padrões com valores ausentes
- Robusto a outliers e atributos irrelevantes
- Complexidade computacional entre O(n) e $O(n^3)$

Considerações Finais

- Hipótese de dependência entre atributos
- Determinístico
- Não paramétrico
- Pode ter melhor desempenho em comparação com o Naïve Bayes, especialmente caso sejam utilizados atributos correlacionados

Referências I

BISHOP, C. M.

Pattern Recognition and Machine Learning.

Springer, 2006.

CASANOVA, D.

LDA and QDA. Aprendizado de Máquina.

Slides. Engenharia de Computação. Dainf/UTFPR, 2020.

DUDA R., Hart P., STORK D.

Pattern Classification.

Willey Interscience, 2002.

MENOTTI D.

Classificação. Aprendizado de Máquinas.

Slides. Especialização em Engenharia Industrial 4.0. UFPR, 2020.

Referências II

- MITCHELL T.

 Machine Learning.

 WCB McGraw-Hill, 1997.
- RASCHKA, S.; MIRJALILI, V. *Python Machine Learning. Packt*, 2017.