TD 01 : Décomposition en valeurs singulières

Fondements du Machine Learning, L3 IM2D

Septembre 2024

Exercice 1.1: Valeurs propres et valeurs singulières

Soit $U\Sigma V^{\mathrm{T}}$ une SVD de $A\in\mathbb{R}^{m\times n}$ avec $U=[u_1\ldots u_m]$, $V=[v_1\ldots v_n]$, et $\sigma_i=[\Sigma]_{ii}$ pour tout $1\leq i\leq \min(m,n)$.

- a) Montrer que $Av_i = \sigma_i u_i$ et $A^T u_i = \sigma_i v_i$. pour tout $1 \le i \le \min(m, n)$.
- b) En déduire un lien entre les valeurs propres de $A^{\mathrm{T}}A$ et les valeurs singulières de A.
- c) Si rang(A) = r, que peut-on dire des valeurs singulières ?

Exercice 1.2: Carrés de matrices

Soit $A \in \mathbb{R}^{n \times n}$ une matrice définie positive (donc symétrique). Soit $P\Lambda P^T$ une décomposition en valeurs propres de A, avec P orthogonale et Λ diagonale à coefficients diagonaux ordonnés par ordre croissant $\Lambda_{11} \geq \Lambda_{22} \geq \cdots \geq \Lambda_{nn}$.

- a) Donner une décomposition en valeurs singulières de ${m A}$ basée sur la décomposition en valeurs propres ci-dessus.
- b) Soit $B \in \mathbb{R}^{n \times n}$ telle que $B^2 = A$ et $B \succ 0$. Donner une décomposition en valeurs propres et une décomposition en valeurs singulières de B en fonction de celles de A.
- c) Que vaut B^TB ? Retrouver alors le lien entre les valeurs propres de B^TB et les valeurs singulières de B.

Exercice 1.3: SVD et factorisation QR

On appelle factorisation QR d'une matrice $X \in \mathbb{R}^{m \times n}$ toute décomposition de la forme X = QR, où $Q \in \mathbb{R}^{m \times m}$ est orthogonale et R est triangulaire supérieure, c'est-à-dire que $[R]_{ij} = 0$ si i > j.

- a) Pour toute matrice orthogonale $C \in \mathbb{R}^{m \times m}$, donner une décomposition en valeurs singulières de CX en fonction de la SVD de X.
- b) En déduire une décomposition en valeurs singulières de R en fonction de la SVD de X de la question a).

Exercice 1.4: Normes et valeurs singulières

On définit sur $\mathbb{R}^{m \times n}$ la norme matricielle induite et la norme de Frobenius :

$$orall oldsymbol{A} \in \mathbb{R}^{m imes n}, \left\{ egin{array}{ll} \|oldsymbol{A}\| & := & \max_{oldsymbol{x} \in \mathbb{R}^n} rac{\|oldsymbol{A} x\|}{\|oldsymbol{x}\|} \ \|oldsymbol{A}\|_F & := & \sqrt{\sum_{\substack{1 \leq i \leq m \ 1 \leq j \leq n}} [oldsymbol{A}]_{ij}^2}. \end{array}
ight.$$

- a) En utilisant une décomposition en valeurs singulières de A, montrer que $\|A\| = \sigma_1$, où σ_1 désigne la plus grande valeur singulière de la matrice A. Indication: Utiliser le fait que si $Q \in \mathbb{R}^{\ell \times \ell}$ est une matrice orthogonale, on a $\|Ux\| = \|x\|$ pour tout $x \in \mathbb{R}^{\ell}$.
- b) Si A est carrée et diagonalisable, que vaut ||A|| ?
- c) Avec les notations de la question a), montrer également que

$$\|oldsymbol{A}\|_F = \sqrt{\sum_{i=1}^{\min(n,m)} \sigma_i^2}$$

où $\sigma_1 \geq \cdots \geq \sigma_{\min(n,m)}$ sont les valeurs singulières de A.

Exercice 1.5: Preuve constructive de la SVD

Soit une matrice $X \in \mathbb{R}^{m \times n}$ non nulle.

- a) En utilisant la définition de $\|X\|$, trouver $v_1 \in \mathbb{R}^n$ et $u_1 \in \mathbb{R}^m$ tels que $\|u_1\| = 1, \|v_1\| = 1$ et $Xv_1 = \sigma_1 u_1$, où $\sigma_1 = \|X\|$.
- b) Prouver alors qu'il existe $oldsymbol{U}_1$ et $oldsymbol{V}_1$ telles que

$$m{X} = m{U}_1 m{X}_1 m{V}_1^{\mathrm{T}}, \qquad m{X}_1 = \left[egin{array}{c|c} \sigma_1 & m{w}^{\mathrm{T}} \\ \hline 0 & m{Y}_1 \end{array}
ight].$$

en précisant les dimensions de U_1, V_1, w, Y_1 .

- c) Montrer que $\left\| m{X}_1 \left[egin{array}{c} \sigma_1 \\ m{w} \end{array} \right] \right\| \geq (\sigma_1^2 + m{w}^{\mathrm{T}} m{w})$. En utilisant la valeur de $\| m{X}_1 \|$, en déduire que $m{w} = m{0}$.
- d) Conclure.

Exercice 1.6: SVD tronquée

Soit $m{X} \in \mathbb{R}^{m \times n}$ de rang r, $m{U} m{\Sigma} m{V}^{\mathrm{T}}$ une SVD réduite de $m{X}$ avec $\sigma_1 > \cdots > \sigma_r > 0$.

- a) On considère la *SVD* tronquée $m{X}_k = m{U}_k m{\Sigma}_{k,k} m{V}_k^{\mathrm{T}}$. Evaluer $\|m{X} m{X}_k\|_F^2$.
- b) Application : Supposons que $\sigma_i^2 = \frac{1}{2^i} \ \forall i=1,\ldots,m$. Pour tout $\epsilon>0$, déterminer le plus petit k tel que $\|{m X}-{m X}_k\|_F^2 \leq \epsilon^2$.