Q1.

Since we use simple uniform hashing, the average number of elements that hash to the same array would be $\alpha = \frac{n}{m}$, where n is the total number of elements in the hash table, and m is the number of slots.

- (a). Given that we use sorted arrays as the chaining components for the hash table: On average, the time complexity for search would be $O(1+\log(\alpha))$, Here, O(1) is the time taken to compute h(k), and $O(\log(\alpha))$ is the time to search for the key inside the array at slot h(k). We achieve logarithmic runtime as we could perform binary search on the sorted array, since arrays allow random access. However, if α is very small, we would not have much benefit from the usual way of using linked list as the chaining component (runtime being $O(1+\alpha)$). But in the case that $n \gg m$, then the runtime would improve.
- (b). Given that we need to run a merge sort every time we insert an element: On average, the time complexity for insertion would be $O(1+\alpha\log(\alpha))$, where O(1) is the time to compute h(k), and $O(\alpha\log(\alpha))$ is the time to perform the merge sort on the array at slot h(k). If we do not keep track of the current number of elements in the array, then we also have an additional cost of $O(\alpha)$ to search to the end for an empty spot, otherwise it would just take O(1) time to append. Yet in the end, the insertion time would be worse than the original scheme of using linked lists, as it only costs O(1) time to add the key to the front of the linked list.
- (c). Deletion with sorted arrays would remain the same as using linked lists, i.e. $O(1 + \alpha)$. O(1) is the time to compute h(k), and $O(\alpha)$ is the total cost for deletion. To delete, we first need to search for the key, so it takes $O(\log(\alpha))$ to perform binary search, then remove the key by shifting all elements greater than the deleted key one slot to the left. In the worst case, the deleted key is the first element, so we need to shift all the remaining elements, which is $O(\alpha)$. Since $O(\log(\alpha)) \in O(\alpha)$, we have the overall cost for search-delete-shift as $O(\alpha)$. With linked lists, deletion is also $O(\alpha)$. We need to traverse the list to search for the previous element of the target, then change its pointer to the next $O(\alpha)$, and free memory for the target $O(\alpha)$. In the worst case, the target is the last element, so we require $O(\alpha)$.

Q2.

His claim is not correct for all situations. There is no guarantee that the leaves of a complete binary tree are on the same level. There could be missing right-most nodes on the last level. As illustrated in Figure 1, all internal nodes of a complete binary tree have two children, but the leaves here are not on the same level, meaning that if we color all nodes as black, the number of black nodes from root to a leaf is not the same for all paths. This violates the red black tree property:

For each node, all paths from this node to each of its leaves contain the same number of black nodes.

Hence, it is not a red black tree in this case.

Figure 1: missing right-most nodes

However, if we have a perfect binary tree, which is a complete binary tree with all leaves on the same level (assuming leaves are nil), then it is valid red black tree:

- 1. the root is black
- 2. leaves are black nils
- 3. there is no consecutive red nodes along any path since there are no red nodes at all
- 4. all paths from a node to its leaves contain the same number of black nodes.

Q3.

An avl tree is a self balancing binary search tree that has the property that, for any node x in the tree, x has at most two children, and $x.left.key \le x.key \le x.right.key$. Although for an avl tree, we might need rotation for insertion and deletion operations in order to maintain the balance factor, we still guarantee that the bst property holds. So the node with the minimum key is the left-most node in the tree. We could find it by traversing down the tree from the root, and always choosing the left subtree to traverse, until we find the left subtree to be nil, then the current node contains the minimum key. Similarly, the node with the maximum key is the right-most node in the tree. Beginning from the root, we always traverse the right subtree, until the right subtree is nil, then the current node contains the maximum key.

Q5.

(a). Sub-problems: We use slightly different sub-problems. We find the longest strictly decreasing sequence(LDS) of the prefixes of the original sequence, where the LDS is ended with the last element(box size) of the prefix. We also find the length of such LDS. A solution to the original problem would be a longest sequence among all solutions to the sub-problems.

Relation between sub-problems:

• On LDS:

Suppose $P_i = [(r_1, h_1), (r_2, h_2), \dots, (r_i, h_i)]$ is the input sequence, then a LDS that ends with the element (r_i, h_i) , is built from a LDS that ends with (r_k, h_k) for $k \in [1, i - 1]$ where $r_k > r_i$ and $h_k > h_i$. There could be multiple k's that form the longest subsequence. As formula, LDS (P_i)

longest($[(r_i, h_i)]$, longest (LDS(P_k) + $[(r_i, h_i)]$)). Here '+' means concatenation of two sequences, $\sum_{\substack{k \in [1,i-1] \\ r_k > r_i \wedge h_k > h_i}}^{k \in [1,i-1]}$ and P_k is the sequence $[(r_1, h_1), (r_2, h_2), \dots, (r_k, h_k)]$.

• On the length of LDS:

$$dp[i] = \begin{cases} 1 & i = 1\\ \max(1, \max_{\substack{k \in [1, i-1] \\ r_k > r_i \land h_k > h_i}} (1 + dp[k])) & i > 1 \end{cases}$$

dp[i] is the length of the LDS of P_i and the last element of the LDS is (r_i, h_i)

(b) Let P denote the input sequence $[(r_1, h_1), (r_2, h_2), \dots, (r_n, h_n)]$. In the following psuedocode, we access the i^{th} element (box size) in P by P[i], and access r_i by P[i].r and h_i by P[i].h.

```
Algorithm 1 Bottom-up Longest Strictly Decreasing Sequence(P)
```

```
\triangleright dp[i] stores the length of LDS with P[i] as the last element
 1: let dp[1..n] be an empty array
2: let prev[1..n] be an empty array
                                                      \triangleright prev[i] stores the index of the previous element of P[i]
3: for i = 1 to n do
       dp[i] = 1
4:
       prev[i] = i
5:
       for k = 1 to i - 1 do
 6:
           if P[k].r > P[i].r and P[k].h > P[i].h and 1 + dp[k] > dp[i] then
 7:
 8:
               dp[i] = 1 + dp[k]
               prev[i] = k
9:
           end if
10:
       end for
11:
12: end for
13: int l = 0
14: int idx
15: for i = 1 to n do
       if dp[i] > l then
16:
           l = dp[i]
                                                                              \triangleright l will store the length of LDS(P)
17:
           idx = i
                                                           \triangleright idx is the index of the last element in the LDS(P)
18:
       end if
19:
20: end for
21: let O[1..l] be the output sequence
22: while idx \neq prev[idx] do
       O[l] = P[idx]
23:
       idx = prev[idx]
24:
       l = l - 1
25:
26: end while
27: O[l] = P[idx]
28: return O
```

(c). Time complexity is $O(n^2)$. The computation of length of LDS that ends with each element of P requires two for loops (at line 3-12). The outer loop iterates through each element of the original sequence which serves as the last element of the LDS, and the inner loop searches for the previous LDS that ends with element of greater size than the current last element. The total number of operations at line 6 is $\sum_{i=1}^{n} i - 1 = \frac{n(n-1)}{2} = O(n^2)$. The loop body is just constant time operations, so the total cost is $O(n^2)$. Line 15-20 searches for the longest sequence among all LDS that ends with a particular element. This takes another O(n) time. Line 21-28 outputs the sequence by tracing from the last element to the first. This takes at most O(n) time since the sequence is at most of length n. The total time complexity would therefore be $O(n^2) + O(n) + O(n) = O(n^2)$.

Q6.

(a). Given that k_i is the number of proposals for the i^{th} approach, and m_{ij} is the funding requested for the j^{th} proposal for the i^{th} approach, where $j \in [1, k_i]$. We would use a dp table to compute the choices of proposals. In the following psuedocode, entry dp[i][j] is a pair of values $\langle x, y \rangle$ where x is a funding sum (potentially many possibilities) requested by the previous (i-1) approaches, given that j is the exact funding requested by all i approaches; and the second value j is the corresponding index of the proposal for the i^{th} approach such that j is the reason for keeping the fund sum of the previous j approaches that sum to j exactly, dp[i][j] would be $\langle 0,0\rangle$. The reason for keeping the fund sum of the previous j approaches that sum to back trace the selected proposals at the end.

Algorithm 2 Set of proposals (n, F, m)

```
1: let dp[1..n][1..F] be an empty table
                                                                       \triangleright assume all entries are initialized to \langle 0, 0 \rangle
 2: for j = 1 to k_1 do
        dp[1][m_{1i}] = \langle 0, j \rangle
                                                                         ▷ initialize the pair for the first approach
 3:
 4: end for
 5: for i = 1 to n - 1 do
       for j = 1 to F do
 6:
           if dp[i][j] \neq \langle 0, 0 \rangle then
 7:
               for y = 1 to k_{i+1} do
 8:
                   if j + m_{(i+1)y} < F then
 9:
                       dp[i+1][j+m_{(i+1)y}] = \langle j, y \rangle
10:
                   end if
11:
               end for
12:
           end if
13:
        end for
14:
15: end for
16: let seqProposals[1..n] be the indices of the selected proposals
17: let regFund[1..n] be the fund requested by the selected proposals
18: let totalFund be the total fund distributed
19: for j = F to 1 do
20:
       if dp[n][j] \neq \langle 0,0 \rangle then
                                                         ▷ check the last row for the maximum fund distributed
           totalFund = j
21:
           sum = i
22:
           for i = n to 1 do
                                                                                           ▶ back trace the sequence
23:
               seqProposals[i] = dp[i][sum].second
24:
               reqFund[i] = m_{i(seqProposals[i])}
25:
               sum = dp[i][sum].first
26:
           end for
27:
28:
           break
        end if
29:
30: end for
31: return totalFund, seqProposals, reqFund
```

(b). Time complexity is $O(F \times \sum_{i=1}^{n} k_i)$. In line 5-15, there are 3 for loops. The for loop at line 5 and for loop at line 8 sums to be $\sum_{i=1}^{n-1} k_{i+1} = \sum_{i=2}^{n} k_i = O(\sum_{i=1}^{n} k_i)$. This is then multiplied by F because of the for loop at line 6. The loop body is constant time operation, so line 5-15 is $O(F \times \sum_{i=1}^{n} k_i)$. The initialization cost at line 2-3 costs another $O(k_1)$ operations, and to output the final set of proposals at line 19-30, we have to traverse the last row of the dp table, which would at most iterate F times if there is no solution. If there is a solution, then we have another O(n) operations to trace backwards the sequence of proposals. Hence, in sum there should be $O(F \times \sum_{i=1}^{n} k_i) + O(k_1) + O(F) + O(n)$, which is dominated by $O(F \times \sum_{i=1}^{n} k_i)$. Notice that if we also count the initialization cost at line 1, which is $O(n \times F)$ as

the dimension of the table is $n \times F$, in the end we still get $O(F \times \sum_{i=1}^{n} k_i)$ as the time complexity since $n \leq \sum_{i=1}^{n} k_i$.

(d). Empirical analysis:

This plotted graph is based on a data set of 100 samples. We observe a linear relationship between the time taken in ms, and the number $(F \times \sum_{i=1}^{n} k_i)$. The best fit line has a R^2 coefficient of 0.975, which means that the linear model fits the data set well. Hence, we could conclude that the time complexity of the algorithm is some constant times $F \times \sum_{i=1}^{n} k_i$, and hence there is $c, n_0 > 0$ such that $T(n) \le c(F \times \sum_{i=1}^{n} k_i)$ for all $n \ge n_0$. Time complexity is therefore $O(F \times \sum_{i=1}^{n} k_i)$ and the empirical analysis matches with our theoretical analysis.