

Hybrid Methods for Simulation of Muon Ionization Cooling Channels

J. Kunz, P. Snopok¹ Illinois Institute of Technology M. Berz, K. Makino Michigan State University ¹ also at Fermi National Accelerator Laboratory

ABSORBERS

Recently, COSY Infinity [1] has been outfitted with new simulations tools for matter-dominated lattices [2], with the application of cooling absorbers as the motivation. Some of these results are reproduced here.

Excellent agreement has been achieved between COSY, G4Beamline [3], and ICOOL [4] for pencil beams of $p=(100,\,200,\,300,\,400)$ MeV/c through liquid hydrogen absorbers of lengths $L=(1,\,10,\,100)$ mm. Shown below is an example of this agreement at typical cooling cell parameters: $p=200~{\rm MeV}/c$, $L=100~{\rm mm}$.

More comparisons using Gaussian beams are shown in the right column.

REFERENCES

- [1] M. Berz and K. Makino. COSY Infinity Beam Physics Manual, 2013. Version 9.1.
- [2] J. Kunz et al. The advancement of cooling absorbers in cosy infinity. In Proceedings of the 6^{th} International Particle Accelerator Conference, 2015.
- [3] Tom Roberts. G4beamline. http://www.muonsinternal.com/muons3/G4beamline, 2014. Version 2.15w.
- [4] R.C. Fernow et. al. Icool. http://www.cap.bnl.gov/ICOOL/fernow/readme.html, 2012. Version 3.30.
- [5] D. Attwood *et al.* The scattering of muons in low z materials. *NIM*, 251, 2006.

MUSCAT SIMULATION

Moreover, COSY has been compared to the experimental results of the Muon Scattering Experiment [5]. Agreement has been shown for Be @ 3.73 mm, LH @ 159 mm, and LH @ 109 mm, with the last result reproduced below.

MAGNETIC COILS

For compact magnetic solenoids, COSY uses the procedure CMSTP (Compact Magnetic Solenoid Thick Piece). Ten one-meter long rectilinear cooling channel cells consisting of two postive current coils at z=175,325 mm and two negative current coils at z=675,825 mm was benchmarked against G4Beamline's coil/solenoid combination routines. The initial distribution was a grid of muons with transverse ranges x=(-100,100) mm, y=(-100,100) mm. The result can be seen below.

THE MICE CELL

MICE was simulated in-parts by COSY and G4Beamline. The initial distribution can be seen in the table below, along with the results of these separate simulations.

Initial Beam Parameters			
Parameter	Value		
Style	Gaussian on-axis		
Total count	10^4		
σ_x, σ_y	32 mm		
$\sigma_{P_x}, \sigma_{P_y}$	19 MeV/c		
σ_{P_z}	29 MeV/ <i>c</i>		
P_z	200 MeV/c		

The absorber was a cylindrical lithium hydride block of 65 mm.

The coils (as seen in the MICE layout figure) were simulated to and from the scintillating-fibre trackers.

Coil parameters are summarized in the table below.

Coil Parameters					
Coil Name	z (mm)	Length (mm)	Inner R (mm)	Outer R (mm)	Current (A/mm ²)
End2	∓3200	111	258	326	±126
Center	∓3250	1314	258	280	±148
End1	∓1700	111	258	319	±133
Match2	∓1300	199	258	289	±132
Match1	∓861	201	258	304	±133
Focus	∓202	213	268	362	±104

CURRENT CHALLENGES

- Superimposing the absorber and magnetic coils in COSY is underway.
- Some configurations use tilted coils for generating dispersion at the absorbers, those need to be implemented in COSY.
- Differences in the COSY RF kick versus the G4Beamline pillbox model need to be explored and addressed, potentially by implementing a new lattice element in COSY.