АНАЛИЗ ДИНАМИКИ ВЫРАБОТКИ ЛОКАЛЬНОЙ ВОДОПЛАВАЮЩЕЙ ЗОНЫ КОЛЛЕКТОРА

И. Г. Соловьёв, А. А. Казаков

(Институт проблем освоения Севера СО РАН; Тюменский государственный нефтегазовый университет)

Ключевые слова: нефтяная скважина, конусообразование, подошвенная вода, анизотропия, гидропроводность, коэффициент нефтеизвлечения Keyword: oil well, water-coning, bottom water, dynamic model, inflow model, anisotropy, water permeability, oil recovery factor

Успехи технологий многостволового наклонно направленного бурения и обустройства скважин системами глубинной автоматики видоизменяют взгляды и подходы к целям и алгоритмам регулирования притоками по данным оперативного контроля глубинных переменных состояния забоя и прискважинных зон [1-4]. Разработка методик конструирования систем оперативного регулирования требует создания адекватных гидродинамических моделей, отвечающих темповости исполнительных механизмов, а также более строгому, формальному, определению целей регулировки.

Особую группу вопросов образуют задачи управления притоками для скважин с явными проявлениями конусов подошвенной воды. Рассмотренная ниже динамическая модель конусообразования развивает некоторые ранее опубликованные результаты [5,6]. Основное внимание настоящих исследований уделено модели комплексного анализа замещения локально-продуктивной водоплавающей зоны коллектора посредством единичной вертикальной скважины [7] (рис.1). Рассматриваемый участок характеризуется следующими параметрами: S – площадь участка, $\tau_S = \beta_k mV$ – гидроупругий объём вмещающих пустот [8] (β_k – коэффициент гидроупругости, m – пористость, V = SH_k – объём продуктивной зоны участка), H_k – осреднённая мощность участка, $p_{\Pi\Pi}$ – среднепластовое давление на контуре участка, приведенное к горизонтали кровли коллектора, L – глубина погружения забоя под кровлю, R_k – радиус контура питания внутри участка.

Рис.1 Геометрическая схема водоплавающей зоны коллектора

Выделены следующие переменные состояния * (см. рис.1):

H — уровень поднимающегося зеркала воды (мощность нефтеносной зоны); $W_M = m \frac{1}{3} \pi (H-L)_+ (R_k^2 - (H-L)_+^2)$ — предельный объём наполнения конуса **), W — реальный объём конуса воды; p_k — давление за контуром питания, приведённое к уровню кровли; $q_{\Pi\Pi} = w_{\Pi\Pi} (p_{\Pi\Pi} - p_k)$ — суммарный приток на участок вследствие заводнения и краевого (подошвенного) питания; q_L — плоскорадиальный приток в забой на интервале погружения L; $q_1 + q_2$ — приток радиально-сферической зоны; q_B — отбор воды из вершины конуса; p — давление в забое на уровне кровли.

Основываемся на классических моделях линейной стационарной фильтрации [8] однофазной несжимаемой жидкости для плоскорадиальной и радиально-сферической схем притоков (рис.2):

$$q_{\Gamma} = \alpha_{R0} \Delta p$$
, $q_{\Phi} = \alpha_{\Phi 0} \Delta p$,

где
$$\Delta p = p_k - p$$
 , $\alpha_{R0} = 2\pi \frac{k}{\mu} \frac{R_k}{\ln R_k - \ln r_c}$, $\alpha_{\Phi 0} = 2\pi \frac{k}{\mu} \frac{R_k r_c}{R_k - r_c}$,

введём параметр пропорции η , устанавливающий связь между коэффициентами продуктивности:

$$\alpha_{R0} = \eta \alpha_{\Phi 0} \,. \tag{1}$$

^{*)} Зависимость значений переменных состояния от времени подразумевается «по умолчанию».

 $^{^{**}}$) $x(t)_{\scriptscriptstyle\perp}$ – положительная часть графика x(t).

Рис. 2. Схемы плоскорадиального и радиально-сферического притоков

Тогда коэффициент продуктивности в смешанной структуре притока (см. рис.1) определим следующими условиями:

$$w_{\Gamma} = \eta \alpha_{\phi 0} \frac{L}{R_{L}}, \ w_{\phi} = \alpha_{\phi 0} \frac{H_{k} - L}{R_{L}}, \ H_{k} - L \leq R_{k}.$$

Для учёта анизотропных свойств фильтрации по горизонтали α_{Γ} и вертикали α_{B} введём характеристику радиальной гидропроводности в направлении $\nu = \frac{H-L}{R_{L}}$, $H < H_{k}$,

$$\alpha_{\nu} = \alpha_{\Gamma} (1 - \nu) + \alpha_{B} \nu , \ \nu \in [0, 1]. \tag{2}$$

Тогда соответствующая гидропроводность усечённой сферы (см. рис.1) оценивается интегралом

$$w_{\Phi} = \int_{0}^{v_{k}} (\alpha_{\Gamma}(1-v) + \alpha_{B}v) dv = \alpha_{\Gamma}v_{k} + \frac{1}{2}(\alpha_{B} - \alpha_{\Gamma})v_{k}^{2},$$

где $v_k = (H_k - L)/R_k$, в случае $H_k - L < R_k$, иначе $v_k < 1$. Универсальная запись такого условия для любого H имеет вид

$$v = 1 - \left(1 - \frac{H - L}{R_k}\right) \tag{3}$$

Ранее введенные выражения для коэффициентов продуктивности соответствуют равенствам:

$$w_{\Gamma} = \eta \alpha_{\Gamma} v_{L}, \ w_{\Phi} = \alpha_{\Gamma} v_{k} + \frac{1}{2} (\alpha_{B} - \alpha_{\Gamma}) v_{k}^{2}, \ v_{L} = L/R_{k}$$

$$\tag{4}$$

и в случае $H_k - L \ge R_k$ имеем $w_{\Phi} = (\alpha_B - \alpha_{\Gamma})/2$.

Зона сферического притока в условиях конусообразования разделена на сегменты притока воды $W_{\phi 2}$ и нефти $W_{\phi}-W_{\phi 2}$ (см.рис.1). Гидропроводность водного сегмента для конуса предельного размера W_{M} рассчитывается по интегралу: $w_{\phi 2}^{+}=\int\limits_{-\infty}^{v_{k}}\alpha_{v}dv$.

С учётом (3) имеем

$$w_{\Phi 2}^{+} = \alpha_{\Gamma} (v_{k} - v_{+}) + \frac{1}{2} (\alpha_{B} - \alpha_{\Gamma}) (v_{k}^{2} - v_{+}^{2}). \tag{5}$$

Однако реальный размер «клювообразного» конуса W меньше предельного. Уровень сближения с предельным размером W_M при прочих равных условиях определяется двумя величинами:

- уровнем относительной высоты V_+ ;
- потенциалом депрессии $\Delta p = p_k p$, уменьшенным на величину потерь на трение участка ствола длиной L , погружённого под кровлю, что отражается записью

$$\Delta p_{\Phi} = p_k - p - r_L L q \,,$$

где r_L — удельное гидросопротивление линеаризованной модели участка ствола скважины, q — объёмный расход жидкости в стволе. С учётом поправочного множителя искомая гидропроводность водного сегмента описывается выражением

$$w_{\Phi 2} = \frac{\Delta p - r_L L q}{k_0 \nu_+ + \Delta p - r_L L q} w_{\Phi 2}^+, \tag{6}$$

где k_0 – настроечный коэффициент, определяемый ниже. Отсюда приток воды в конус с учётом гидростатики восходящего

$$q_2 = \frac{\Delta p - r_L L q}{k_0 \nu_+ + \Delta p - r_L L q} q_{k+} + q_{k-}, \tag{7}$$

где по аналогии с [6] имеем

$$q_{k} = (1 + \eta_{B} \beta_{2}) w_{\phi 2}^{+} \left(\Delta p - r_{L} L q - \Delta p_{0} \nu_{+} \left(1 - \left(1 - \frac{\beta_{2}}{\beta_{\Pi}} \right)_{+} \right) \right). \tag{8}$$

Здесь $\Delta p_0 = R_k (\gamma_B - \gamma_H)$, $\beta_2 = W/W_M$ — переменная относительного заполнения, β_H — доля заполнения до касания вершиной конуса забоя скважины, $(1+\eta_B\beta_2)$ — множитель, учитывающий изменение (чаще увеличение) фазной проницаемости обводнённых зон. Состояние $q_k < 0$ соответствует условию отключения скважины ($\Delta p \to 0$) и постепенной (медленной) разгрузке конуса $\beta_2 \to 0$ под действием гравитационных сил до уровня подошвенной воды.

Динамика наполнения и опорожнения конуса в условиях вариаций уровня H , то есть переменной ν (3), вводится балансовым уравнением для переменной β_2 вида ($D \coloneqq d/dt$ – оператор дифференцирования по времени)

$$W_M D\beta_2 = q_2 - q_{B2}, (9)$$

где q_2 – приток воды в конус согласно (7), (8), а q_{B2} – отток из вершины, после касания забоя скважины:

$$q_{B2} = 1_W \beta_2 q_{k+}. \tag{10}$$

Индикатор касания определяется условием:

$$1_W = egin{cases} 1 \text{, если } eta_2 > eta_\Pi, \ 0 \text{, иначе.} \end{cases}$$

Приведённые соотношения позволяют сформулировать следующий результат.

<u>Утверждение</u>. В рамках обозначений (см. рис.1), введённых определений и соотношений $(1 \div 10)$, динамика замещения локальной зоны коллектора с подошвенным вытеснением нефти водой описывается системой уравнений

$$\begin{cases} W_{M}D\beta_{2} = \left(\frac{\Delta p - r_{L}Lq}{k_{0}\nu_{+} + \Delta p - r_{L}Lq} - 1_{W}\beta_{2}\right)q_{k+} + q_{k-}, \\ \tau_{H}D\nu = -q_{H}, \\ \tau_{S}Dp_{k} = w_{\Pi\Pi}(p_{\Pi\Pi} - p_{k}) - q, \end{cases}$$

$$(11)$$

где $au_H = mR_KS$ — емкостная составляющая замещения, $w_{\Pi\Pi}$ — гидропроводность внешнего (подошвенного) притока, $q_H = q_{H1} + q_{H2}$ — суммарный отбор нефти с долевыми составляющими плоскорадиального $q_{H1} = w_{\Gamma 1} (\Delta p - 0.5 r_L L q)$, $w_{\Gamma 1} = \eta \alpha_{\Gamma} (v_L + v_-)$ и сферического $q_{H2} = (w_{\Phi} - w_{\Phi 2}) (\Delta p - r_L L q)$ притоков, $q = q_H + q_B$ — суммарный отбор жидкости, в котором доля воды $q_B = q_{B1} + q_{B2}$ имеет составляющие сферического притока q_{B2} (10) и плоскорадиального притоков:

$$q_{B1} = -(1 + \eta_B)\eta \alpha_\Gamma \nu_-(\Delta p - 0.5r_L Lq), \qquad (12)$$

параметр k_0 из условия непрерывности переменной β_2 в точке касания конуса $\beta_2 = \beta_\Pi$ определяется равенством

$$k_0 = \frac{1 - \beta_{II}}{\beta_{II}} \Delta p_0.$$

Примечание.

• С достижением условия $\nu \le 0$ полной обводнённости полусферы имеем

$$\beta_2 = 1 \, , \; W_M = 0 \, , \; w_{\varPhi 2} = w_{\varPhi 2}^+ = w_{\varPhi} \, , \;$$

вследствие чего

$$q_{H} = w_{\Gamma 1} (\Delta p - 0.5 r_{L} L q),$$

$$q_{B} = (1 + \eta_{B}) (w_{\Phi} (\Delta p - r_{L} L q) - \eta \alpha_{\Gamma} v_{-} (\Delta p - 0.5 r_{L} L q)),$$

анализ динамики замещения упрощается, так как первое уравнение системы (11) заменяется условием $\beta_2 = 1$.

ullet В соотношениях плоскорадиальных притоков q_{H1} и q_{B1} средние потери на трение потенциала депрессии,

приведённые к уровню кровли $\Delta p = p_k - p$, в сравнении с потерями для сферического притока на уровне L, уменьшаются в два раза, чем и объясняется множитель 0.5.

Представим систему (11) в виде функционального блока объекта управления (рис. 3), где выделены

- входы, подлежащие выбору: $\langle L, \Delta p \rangle$;
- переменные состояния выхода: $\langle \beta_2(t), \nu(t), p_k(t), q_H(t), q_B(t) \rangle$;
- начальная уставка обводнённости: H(0);
- параметры пласта и флюида: $\langle p_{\Pi\!\Pi}, H_k, S, w_{\Pi\!\Pi}, \tau_S, m, \gamma_B \gamma_H \rangle$;
- настроечные параметры фильтрации: $\langle \alpha_{\varGamma}, \alpha_{B}, \eta, \eta_{B}, \beta_{\varPi}, r_{L}, R_{k} \rangle$.

Рис. 3.
Функциональная схема модели локального участка коллектора (см. рис. 1)

Эффективность процесса выработки участка оценим соотношением

$$J_{1} = \int_{0}^{T} c_{H} q_{H}(t) - c_{\Im}(q_{H}(t) + q_{B}(t)) dt, \qquad (13)$$

в котором c_H — цена продажи нефти, $c_{\mathfrak{I}}$ — эксплуатационные затраты на поддержание пластового давления и извлечения газожидкостной смеси из пласта с расходом $q(t) = q_H(t) + q_B(t)$.

Оптимальный режим эксплуатации в этом случае соответствует следующему условию:

$$J_1 \to \max, L \in [0, H_k], \Delta p \in [0, \Delta p^+].$$

Способы отражения желаемых (оптимальных) режимов эксплуатации далеко не однозначны. Данные вычислительного эксперимента по разработке участка с параметрами (табл.1) при постоянной депрессии $\Delta p = 10\,M\Pi a$ и начальном уровне воды $H(0) = 22,5\,\mathrm{M}$ (табл. 2) отражены графиками на рис.4 (t_{Π} – период безводной эксплуатации скважины).

Таблица 1 Исходные данные вычислительного эксперимента

$p_{\Pi\!\!/\!\!1}$	H_k	S	$w_{\Pi\!\!/\!\!1}$		$ au_S$		m	$\gamma_B - \gamma$	$\gamma_B - \gamma_H$		r_L	
МПа	M	m ²	$M^3/(cyT \cdot M\Pi a)$		$M^3/(cyT \cdot M\Pi a)$		-	Н/м	H/M^3		(сут·МПа)/ M^4	
20	30	$1,0875\cdot 10^4$	20		904,8		0,2	0,4·10	0,4·10 ⁻²		6,67·10 ⁻⁴	
$lpha_{arGamma}$		$\alpha_{\scriptscriptstyle B}$		η	$\eta_{\it B}$	eta_{II}		R_k	(H	$C_{\mathfrak{I}}$	
$M^3/(cyт \cdot M\Pi a)$		$м^3/(cyт \cdot M\Pi a)$		I	_	-		M	p.		p.	
4		0,5		5	2	0,3		40	50	000	500	

Таблица 2

Результаты вычислительного эксперимента

L	J_1	Т КИН		$Q_{\mathcal{K}}$	Q_H	Q_B	t_{II}
M	p.	сут	_	м ³	\mathbf{M}^3	M^3	сут
0	242 547 115,68	3616,5	0,76693	132769,22	37531,63	95237,58	321,0
1,4	305 735 227,71	3224,0	0,94097	154751,04	46048,63	108702,41	283,0
4,5	339 206 005,88	1679,5	0,90985	106054,09	44526,01	61528,08	216,0
6,9	333 028 034,34	1281,0	0,88614	100624,33	43365,24	57259,09	176,0
20	245 792 504,83	711,0	0,76157	126903,08	37269,56	89633,52	25,5
30	176 540 861,84	628,0	0,66670	149725,00	32626,59	117098,41	0

Рис.4. Графическое представление результатов вычислительного эксперимента

Если к ключевым показателям эффективности отнести факторы: J_1 – прибыли, KVH , Q_B – объёма добытой попутной воды и T – период эксплуатации, то, согласно данным эксперимента, оптимальная величина вскрытия L по названным факторам

 $\langle J_1, KV\!H, Q_B, T \rangle$ неодинакова:

 $\langle L_1, T_1 \rangle = \arg\max J_1 = \langle 4.5, 1680 \rangle$,

 $\langle L_2, T_2 \rangle = \arg\max \hat{E}\hat{E}\hat{I} = \langle 1.5, 3224 \rangle,$

 $\langle L_3, T_3 \rangle = \arg \min Q_B = \langle 6.9, 1281 \rangle.$

Результаты оптимального вскрытия L_* и связанные с ними показатели эффективности сильно зависят от параметров анизотропии α_Γ/α_B , соотношений фазных проницаемостей η_B и объёма извлекаемых запасов, приуроченных к скважине.

Список литературы

- 1. Конопжински М., Аджайи А. Оптимизация поведения коллектора с помощью скважинных технических средств с развитыми логико-информационными возможностями // Нефтегазовые технологии. 2004. № 5. С.8-13.
- 2. Решения и развитие интеллектуальной технологии мониторинга и управления механизированным фондом скважин /В. В. Жильцов, А. В. Дударев, В. П. Демидов и др. // Нефтяное хоз-во. 2006. № 10. С.12-14.
- 3. Соловьев И.Г. Концептуальные основы и системные принципы управления гибкими автоматизированными технологиями нефтедобычи. // Изв. вузов. Нефть и газ. 2004. №5. С.62-69.
- 4. Going W. S., Thigpen B. L., Chok P. M. и др. Intelligent-Well Technology: Are we Ready for Closed-Loop Control? // SPE Journal. 2007. paper 99834.
- 5. Казаков А. А., Соловьёв И. Г. Модель динамики конусообразования подошвенной воды нефтяной скважины // Вестн. кибернетики. 2009. Вып. 8. С.4-11.
- 6. Соловьёв И. Г., Казаков А. А. Конечномерная аппроксимация гидродинамики радиального притока к скважине с подошвенной водой // Автоматизация, телемеханизация и связь в нефтяной промышленности. М.,2009. №8. С.20-24.
 - 7. Мищенко И.Т. Скважинная добыча нефти. Москва: Изд-во «Нефть и газ» РГУ нефти и газа им. И. М. Губкина, 2003 год. 816 с.
 - 8. Маскет М. Течение однородных жидкостей в пористой среде. М.; Ижевск: Ин-т компьютерных исследований, 2004. 628 с.

Сведения об авторах

Соловьёв И. Г., к.т.н., доцент, старший научный сотрудник, Институт проблем освоения Севера СО РАН, тел.: 8-922-260-92-59, е-mail: solovyev@ikz.ru

Казаков А. А., аспирант, Тюменский государственный нефтегазовый университет, тел.: 8-905-820-16-64, e-mail: kazakov-a-a@yandex.ru

Solovyev I. G., PhD., professor, senior staff scientist, Institute of Northern Development SB RAS, 8-922-260-92-59, e-mail: solovyev@ikz.ru Kazakov A. A., post-graduate student, TSOGU, 8-905-820-16-64, e-mail: kazakov-a-a@yandex.ru