

Devoir de synthèse de Physique

2ème année, Janvier 2017 : Correction et barême

1 Optimisation d'un circuit résonant	Total : 5.5 + Bonus 0.5
1-On $a: \underline{u_s} = \underline{Ri}$ et $\underline{i} = \frac{\underline{u_e}}{R + R_b + j(L\omega - \frac{1}{c\omega})}$ $Ce \ qui \ donne: \underline{H} = \frac{\underline{u_s}}{\underline{u_e}} = \frac{R}{R + R_b + j(L\omega - \frac{1}{c\omega})} \ (accepter \ un \ pont \ diviseur$	0.5
Ce qui donne : $\underline{H} = \frac{\underline{\underline{u}_e}}{\underline{\underline{u}_e}} = \frac{1}{R + R_b + j(L\omega - \frac{1}{c\omega})}$ (accepter un pont diviseur de tension).	
La norme de \underline{H} est maximale pour $\omega_0^2=\frac{1}{LC}$ donc $\omega_0=\sqrt{\frac{1}{LC}}$	0.25
$A.N. C = 0.25 \ \mu F$	0.25
2 - $R > rac{R_b G_{min}}{1 - G_{min}}$ soit 90 $arOmega$	0.25
3 - $R < rac{L\omega_0}{Q_{min}} - R_b$ soit 116 $arOmega$	0.25
2 - $R > rac{R_b G_{min}}{1 - G_{min}}$ soit 90 Ω 3 - $R < rac{L\omega_0}{Q_{min}} - R_b$ soit 116 Ω 4 - $rac{R_b G_{min}}{1 - G_{min}} < R < rac{L\omega_0}{Q_{min} - R_b}$ soit 90 $\Omega < R <$ 116 Ω	0.5 pour les deux A.N.
5- C'est correct, le gain est égal à 0.9, bande passante à $\frac{G_{max}}{\sqrt{2}} = 0.64 = >$	Gain : 0.25,
200 Hz = 1100-900 Hz, facteur de qualité = $1000/200 = 5$	Bande
	passante : 0.5, facteur de
	qualité : 0.5
6- On ne peut pas diminuer R sinon le gain chute	0.25
Il faut augmenter L	Augmenter $L:$
$=>$ solénoïde avec davantage de spires (mais R_b va augmenter)	0.25
Ou alors insérer un matériau avec un μ plus grand = noyau magnétique	noyau : 0.25
	Bonus : plus de
	spires : 0.25
	Bonus : R_b
	augmente si N
	augmente : 0.25
7- Gain inchangé	0.25
Inductance multipliée par $100: L' = 100L = 10 H$	0.25
Soit $Q = \frac{L'\omega_0}{R + R_b} = 100Q$	0.25
8- On observe un meilleur facteur de qualité : normal	0.25
mais aussi une diminution du gain max : anormal	0.25
$=>$ on peut penser que le R_b de la bobine a changé, il a augmenté!	0.25

2 Influence des courants de Foucault sur les performances d'un circuit résonant	10,5 + Bonus 0,5
9- L'introduction du matériau magnétique ne change pas la symétrie du système. Dans ces conditions, et dans le cas de matériaux LHI, les équations de Maxwell restent les mêmes que dans le vide, mais les perméabilités μ_0 sont remplacées par μ dans toutes les expressions.	0,5
$10 - r \vec{ot}(\vec{E}_1) = -rac{\partial \vec{B_1}}{\partial t}$: la dérivée temporelle de $\vec{B_1}$ n'étant pas nulle (car il est sinusoïdal, variant avec le temps), le rotationnel de l'est pas non plus et donc un champ \vec{E} apparaît dans tout l'espace où $\vec{B_1}$ est non nul.	0.75
On est dans un cas d'induction statique	0.25
$11 - r\vec{ot}(\vec{E}_1) = \frac{1}{r} (\frac{\partial (rE_{1\theta})}{\partial r} - \frac{\partial E_{1r}}{\partial \theta}) \ \vec{u}_z$	0.25
E_{1r} est nul car on sait que le champ est le long de \vec{u}_{θ}	0.25
$il\ reste: rac{1}{r}(rac{\partial}{\partial r}(rE_{1 heta})) = -j\omega \underline{B_{1z}} \ E_{1 heta} = -jrac{r}{2}\omega \underline{B_{1z}} + rac{A}{r}\ o\grave{u}\ A\ est\ une\ constante.$	0.5
Pour éviter que le champ diverge en $r=0$, on prend $A=0$ (champ nul sur l'axe)	0.25
Le champ $ec{E_1}$ s'écrit donc : $ec{E_1} = -jrac{r}{2}\omega \underline{B_{1z}}ec{u_ heta}$	0.25
12 - Comme le noyau de fer doux est conducteur, un courant $ec{j_f} = \gamma ec{E}$ apparaît, donc	0.25
$ec{j}_f = -j\gammarac{r}{2}\omega \underline{B_{1z}}ec{u_ heta} donc ec{j}_f = -j\gammarac{r}{2}\omega\mu n\underline{i}ec{u_ heta}$	0.25
On a donc $K = \frac{1}{2}\omega\gamma\mu n$	0.25
$13 ext{-} ec{rot}(ec{B}_2) = -j\mu K r \underline{i} ec{u}_{ heta}$ Le rotationnel de $ec{B}_2$ n'a qu'une composante le long de $ec{u}_{ heta}$ car la densité de courant est le long de cet axe. On a donc $\dfrac{\partial B_{2r}}{\partial z} - \dfrac{\partial B_{2z}}{\partial r} = -j\mu K r \underline{i}$	0.25
L'invariance en z impose : $-\frac{\partial B_{2z}}{\partial r} = -j\mu K r \underline{i}$, on ne peut donc calculer que la composante en z . Donc $\underline{B_{2z}} = +j\mu K \frac{r^2}{2} \underline{i} + A$	0.25
Donc $\underline{B_{2z}} = +j\mu K \frac{1}{2}i + A$ Avec les conditions aux limites : $B_{2z}(a) = 0$ On a $\underline{A} = -j\mu K \frac{a^2}{2}i$	0.25
$Donc: \underline{B_{2z}} = \frac{j\mu K}{2} \underline{i}(r^2 - a^2)$	0.25
14- Le champ $\vec{B_2}$ étant non constant dans l'espace du solénoïde, le flux se calcule par intégration : $d\underline{\varphi_{21}} = nl \ \vec{B_2}. d\vec{S} : nl \ représente \ le \ nombre \ total \ de \ spires \ du \ solénoïde.$ On prend $dS = 2\pi r dr$ ou $d^2S = r dr \ d\phi$	0.75 (0.25 si nl oublié)
on a donc: $\underline{\varphi_{21}} = nl \int\limits_0^a \frac{j\mu K}{2} \underline{i} (r^2 - a^2) . 2\pi r dr = jnl\mu K \pi \underline{i} \left[\frac{r^4}{4} - a^2 \frac{r^2}{2} \right]_0^a = -jnl\pi \mu K \frac{a^4}{4} \underline{i}$	1

15- De l'expression de φ_{12} on tire la valeur de la force électromotrice	
induite par $\underline{\vec{B_2}}$:	0.75 (0.25 en
$e_{21} = -\frac{d\varphi_{12}}{dt} = -\omega n l \pi \mu K \frac{a^4}{4} \underline{i}$	cas d'erreur de
— dt · 4 -	signe)
16 - Schéma de la tension \underline{u} aux bornes de l'inductance pure $L,$ la	
résistance interne R_b et de la fem $\underline{e_{12}}$. On \underline{a} :	
$\underline{u} = j\omega L\underline{i} + R_b\underline{i} - e_{21} = j\omega L\underline{i} + R_b\underline{i} + \omega nl\pi\mu K\frac{a^4}{4}\underline{i}$	
$i \xrightarrow{R_b i} jL\omega i \xrightarrow{\underline{e_{21}}}$	Schéma : 0.5
	<u>u</u> : 0.5 (0 si
	erreur de signe)
ш	
17- La force électromotrice se comporte donc comme un terme résistif	
(tension proportionnelle à et en phase avec \underline{i}):	
$R_f = nl\pi\mu\omega K \frac{a^4}{4}$	Expression de
Justification rigoureuse : composante issue de l'induction en phase avec	$R_f: 0.75$
le courant = composante résistive	Bonus pour une
	justification
18- A.N.	rigoureuse : 0.5
On a $K = \frac{1}{2}\omega\gamma\mu n = 118.4$ SI	0.25
$\frac{2}{Donc} R_f = 41.3 \Omega$	0.25
19- D'après la première section : $Q=rac{L'\omega_0}{R+R_b}$. Dès lors qu'une résistance	
est ajoutée dans un circuit résonant, le coefficient de qualité baisse et	
devient $Q=rac{L'\omega_0}{R+R_b+R_f}$. C'est bien ce qu'on observe.	0.5+0.5 (cette
$egin{aligned} De \ plus \ G(\omega_0) &= rac{R}{R+R_f+R_b} \sim 0.66 \ \emph{(application numérique non)} \end{aligned}$	question peut être faite sans le
$R+R_f+R_b$ demandée) : le gain diminue à la résonance en présence de R_f	résultat des
activities, the gain attitude and resolution on prosonor de 107	calculs)

	6 + Bonus 1
3 Détection des séismes	
20- Ondes acoustiques <u>sphériques</u> centrées sur le foyer avec un signal $u(r,t)=f(t-r/c)/r$ qui décroît avec la distance r au foyer	sphériques : 0.5 expression : 0.5
comme indiqué sur le schéma . Avec un sol homogène l'amplitude en surface donc les dégâts sont a	max de dégâts : 0.5
priori maximaux à l'épicentre mais accepter aussi qu'ils le soient au débouché de la faille en surface. L'onde P, longitudinale, est l'analogue de l'onde de surpression dans un	Onde P longitudinale : 0.25 Onde S
piston. L'onde S est transversale, ce qui est le propre des solides (les liquides et	transversale :
les gaz ne peuvent pas transmettre de cisaillement). 21- L'onde P parvient à l'instant $x/c_P + cte = 15 \text{ h } 52 \text{ min } 15 \text{ s}$ l'onde S à $x/c_S + cte = 15 \text{ h } 52 \text{ min } 40 \text{ s } (accepter une certaine plage)$	0.25
$d'où x(\frac{1}{c_S} - \frac{1}{c_p}) = \Delta t = 25 \text{ s}$	0.5 0.5
et $x = c_S c_P \Delta t/(c_P - c_S) = 300$ km 22- $e^{-(t/\tau)} = 1/100$ si $t = 4, 6$ $\tau = 4, 6$ s. Accepter 5 τ comme souvent utilisé en physique.	0.5
A 6 km/s ça fait un train de longueur 27,6 km voire 30 km si 5 T Schéma : onde pseudopériodique entre deux exponentielles croissantes de $(r = 270 \ km, \ u = 0)$ à $(r = 300 \ km, \ u = U_o)$	0.5 0.5
QUEOE DUTRAIN 12 - 3 cohom 2 - 3 cohom 3 cohom 3 cohom 3 cohom 4 cohom 3 cohom 4 cohom 3 cohom 4 cohom 4 cohom 5 cohom 6 cohom 6 cohom 6 cohom 7 cohom 6 cohom 7 cohom 6 cohom 7 cohom 7 cohom 7 cohom 8 cohom	
23- Les trois stations fournissent des distances station / foyer (A, d_A) , (B, d_B) , (C, d_C) selon la question 2 il faut donc rechercher le foyer sous terre, idéalement au point d'intersection des 3 sphères de centres A , B , C et de rayons d_A , d_B , d_C .	1
Avec les incertitudes expérimentales il faudra rechercher dans un volume défini par le recouvrement 2 à 2 des différentes boules.	Bonus : 1
Plus le temps va passer, plus des distances à d'autres stations de surveillance sur le globe vont être connues, permettant de raffiner le calcul. En outre, la littérature nous apprend que les ondes P voyagent à une vitesse comprise entre 1 et $14 \ km/s$ selon la nature des roches ou fluides traversés, et que les ondes S voyagent entre 1 et $8 \ km/s$ selon les	
roches traversées. Chaque séisme enregistré par le réseau mondial de sismographes permet d'étalonner les temps de parcours en provenance d'un foyer donné dans l'écorce terrestre et de perfectionner les modèles de simulation tenant compte des hétérogénéités.	
TOTAL GENERAL 4	22