Overview: This is the review of the Titanic train.csv file for week 1.

Data Preparation

```
In [98]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

from pandas import DataFrame, Series
```

Load the test file

```
In [69]: testdata=pd.read csv('train.csv')
In [70]: # Info
         testdata.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
         Data columns (total 12 columns):
         PassengerId 891 non-null int64
         Survived
                        891 non-null int64
         Pclass
                        891 non-null int64
         Name
                        891 non-null object
         Sex
                        891 non-null object
                        714 non-null float64
         Age
                        891 non-null int64
         SibSp
         Parch
                        891 non-null int64
         Ticket
                        891 non-null object
         Fare
                        891 non-null float64
         Cabin
                        204 non-null object
         Embarked
                        889 non-null object
         dtypes: float64(2), int64(5), object(5)
         memory usage: 83.6+ KB
```

In [71]: # Describe

testdata.describe()

Out[71]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [72]: # Review first five rows

testdata.head()

Out[72]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

```
In [73]: # Boxplot for Fare
  testdata.boxplot(column='Fare')
```

Out[73]: <matplotlib.axes._subplots.AxesSubplot at 0x2a88a132a58>


```
In [74]: # Histogram for Fare
testdata['Fare'].hist(bins=20)
```

Out[74]: <matplotlib.axes._subplots.AxesSubplot at 0x2a88a1d7f98>


```
In [75]: # Boxplot for Age
testdata.boxplot(column='Age')
```

Out[75]: <matplotlib.axes._subplots.AxesSubplot at 0x2a88a266e10>

Out[76]: <matplotlib.axes._subplots.AxesSubplot at 0x2a88a2c2b00>

Out[78]: -0.5494996199439078

```
In [77]: # Histogram for Class
testdata["Pclass"].value_counts().plot(kind='bar')
Out[77]: <matplotlib.axes._subplots.AxesSubplot at 0x2a88a358198>

In [78]: # Calc the correlation between Pclass and Fare
# Not surpisingly, they're negatively correlated
testdata['Pare'].corr(testdata['Pclass'])
```

```
In [102]: corr = testdata[['Survived', 'Age', 'Fare', 'Pclass', 'SibSp', 'Parch']].corr()
           sns.heatmap(corr,
                       xticklabels=corr.columns.values,
                       yticklabels=corr.columns.values)
Out[102]: <matplotlib.axes. subplots.AxesSubplot at 0x2a88b1149e8>
                                                      - 0.9
           Survived
              Age
                                                       - 0.6
              Fare
                                                       - 0.3
             Pclass
                                                       - 0.0
             SibSp
             Parch
                  Survived Age
                              Fare Pclass SibSp Parch
In [87]: # Calc the correlation between Survived and Pclass
          testdata['Survived'].corr(testdata['Pclass'])
Out[87]: -0.33848103596101475
In [88]: # Calc the correlation between Survived and Age
          testdata['Survived'].corr(testdata['Age'])
Out[88]: -0.07722109457217764
In [89]: # Calc the correlation between Survived and Fare
```

testdata['Survived'].corr(testdata['Fare'])

Out[89]: 0.25730652238496227

```
In [79]: # How many passengers were loaded at each embarkation point?
          testdata.groupby(['Embarked'])['Fare'].count()
Out[79]: Embarked
          C
                168
          Q
                77
          S
                644
          Name: Fare, dtype: int64
In [82]: | # Are there any patterns based on embarkation?
          # C embarkation is clearly higher in fare and lower in class, and more likely to survive
          testdata.groupby(['Embarked'])['Age','SibSp','Parch','Pclass','Fare', 'Survived'].mean()
Out[82]:
                               SibSp
                                               Pclass
                                                          Fare Survived
                         Age
                                        Parch
           Embarked
                 C 30.814769 0.386905 0.363095 1.886905 59.954144 0.553571
                 Q 28.089286 0.428571 0.168831 2.909091 13.276030 0.389610
                  S 29.445397 0.571429 0.413043 2.350932 27.079812 0.336957
In [83]: # Are there any patterns based on Pclass?
          testdata.groupby(['Pclass'])['Age','SibSp','Parch','Fare', 'Survived'].mean()
Out[83]:
                      Age
                             SibSp
                                     Parch
                                               Fare Survived
           Pclass
               1 38.233441 0.416667 0.356481 84.154687 0.629630
               2 29.877630 0.402174 0.380435 20.662183 0.472826
               3 25.140620 0.615071 0.393075 13.675550 0.242363
In [91]: # Are there any patterns based on Gender?
          testdata.groupby(['Sex'])['Age','SibSp','Parch','Fare','Pclass','Survived'].mean()
Out[91]:
                             SibSp
                                     Parch
                                               Fare
                                                     Pclass Survived
                      Age
             Sex
           female 27.915709 0.694268 0.649682 44.479818 2.159236 0.742038
            male 30.726645 0.429809 0.235702 25.523893 2.389948 0.188908
```