Homework Assignment 1

Due in class, Wednesday Feb 7th

SDS 384-11 Theoretical Statistics

- 1. Given densities p_n and q_n with respect to some measure μ , let X be distributed according to the distribution with density p_n . Define the likelihood ratio $L_n(X)$ as $L_n(X) = q_n(X)/p_n(X)$ for $p_n(X) > 0$. $L_n(X) = 1$. if $p_n(X) = q_n(X) = 0$ and $L_n(X) = \infty$ otherwise. Show that the likelihood ratio is a uniformly tight sequence. $E[|L_n(X)|] = E[L_n(X)] = \int_{x:p_n(x)\geq 0} \frac{q_n(x)}{p_n(x)} p_n(x) dx \leq 1$. So for $\epsilon > 0$, take $P(L_n \geq 1/\epsilon) \leq \epsilon$ for all n. So its UT.
- 2. Consider a sequence of iid random variables $\{X_n\}$ such that $X_i \sim Beta(\theta, 1)$, where $\theta > 0$. Let \bar{X}_n denote the sample mean. The method of moments estimator of θ is $\hat{\theta}_n = \bar{X}_n/(1-\bar{X}_n)$. Derive the asymptotic distribution of $\sqrt{n}(\hat{\theta}_n \theta)$. Recall that the expectation of a $beta(\beta, 1)$ random variable is $\theta/(1+\theta)$. So $\bar{X}_n \stackrel{P}{\to} \theta/(1+\theta)$ and variance $\sigma^2 = \frac{\theta}{(\theta+1)^2(\theta+2)}$. Now

$$\sqrt{n}(\hat{\theta}_n - \theta) = \sqrt{n} \left(\frac{\bar{X}_n}{1 - \bar{X}_n} - \theta \right)$$
$$= \sqrt{n}(1 + \theta) \frac{\bar{X} - \frac{\theta}{1 + \theta}}{1 - \bar{X}}$$

Using CLT we have $\sqrt{n}(\bar{X} - \frac{\theta}{1+\theta}) \stackrel{d}{\to} N(0, \sigma^2)$. $1 - \bar{X} \stackrel{P}{\to} 1/(1+\theta)$. So $\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\to} N(0, \theta(\theta+1)^2/(\theta+2)$.

3. Derive the following one sided improvement of Chebyshev's inequality for a random variable X with variance σ^2 and any t>0

$$P(X - E[X] \ge t) \le \frac{\sigma^2}{\sigma^2 + t^2} \tag{1}$$

Take E[X] = 0 WLOG.

$$P(X \ge t) = P((X + u)^2 \ge (t + u)^2) \le \frac{\sigma^2 + u^2}{(t + u)^2}$$

Minimizing the RHS w.r.t $u \ge 0$ gives the answer.

- 4. If $X_n \stackrel{d}{\to} X \sim Poisson(\lambda)$, is it necessarily true that $E[g(X_n)] \to E[g(X)]$?
 - (a) $g(x) = 1(x \in (0, 10))$ g(x) is discontinuous at 0 and 10, and $P(X \in \{0, 10\}) \neq 0$. So our theorem does not apply. We will create a counter-example. Let $X_n = X + 1/n$. $E[g(X_n)] = P(X \in (-1/n, 10 - 1/n)) \rightarrow P(X \in [0, 9])$. On the other hand $E[g(X)] = P(X \in [1, 9])$.

- (b) $g(x) = e^{-x^2} e^{-x^2}$ is continuous and bounded, so the Portmanteau theorem proves that the expectation converges.
- (c) g(x) = sgn(cos(x)) [sgn(x) = 1 if x > 0, -1 if x < 0 and 0 if x = 0.] g(x) is discontinuous at $(\pi/2, 3\pi/2, ...)$. However since X takes values in integers, we can safely say that $E[g(X_n)] \to E[g(X)]$
- (d) $g(x) = x \ g(x)$ is continuous but unbounded. So lets find a counter example. Let $X_n = X$ with probability 1 1/n and $X_n = n$ with probability 1/n. So $X_n \stackrel{P}{\to} X$ and $X_n \stackrel{d}{\to} X$. But $E[g(X_n)] = \lambda(1 1/n) + 1 \to \lambda + 1$, but $E[g(X)] = \lambda$.
- 5. Consider n i.i.d random variables $\{X_n\}$ uniformly distributed on the set of n points $\{1/n,2/n,\ldots,1\}$. Show that $X_n \stackrel{d}{\to} X$ where $X \sim Uniform(0,1)$. Does $X_n \stackrel{P}{\to} X$? WLOG let $x \in [i/n,(i+1)/n].P(X_n \leq x) = i/n \to x$ as $n \to \infty$. So X_n is converging in distribution to a Uniform r.v. Remember that convergence in probability also implies convergence in the Cauchy sense, i.e. $P(|X_m X_n| \geq \epsilon) \leq P(|X_m X| + |X_n X| \geq \epsilon) \leq P(|X_m X| \geq \epsilon/2) + P(|X_n X| \geq \epsilon/2) \to 0$ for $m, n \to \infty$ if $X_n \stackrel{P}{\to} X$.

In this case however, $P(|X_m - X_n| \ge \epsilon) \not\to 0$ since X_m, X_n are independent.

So tt is clear, that the sequence is non convergent in a Cauchy sense, since the sequence is iid. Another way to think about this is to look at a partial converse of convergence in probability. This states that a sequence converges in probability iff for every sequence, there is a subsequence that converges a.s. In our case, there is no such subsequence, and hence the sequence does not converge in probability.