

Sahi Prep Hai Toh Life Set Hai

QUADRILATERAL Part-2

Agenda Jeoscales Trajezium'

Kite

RHOM BUS

Def: Rhombus is a parallelogram in which adjacent sides are equal.

PROPERTIES OF RHOM BUS

1. All sides of rhombus are equal.

2. (i) Diagonals of a rhombus bisect each other at 90°.

Rosson ABC

ABC

> In Isosceles Medlan _ , Altitude

(ii) Diagonals of a rhombus are angle bisector.

3. Diagonals of a rhombus need not be equal.

ABCD'IS a Rhombur Let 0 's one rangle of Blombur 040 <90 Sino/2 = co = s sino/2 JAC= 258h0/2 J 6802 2 52 (09 0/5

4. ABCD is a rhombus and one of the angle of rhombus is θ , where $0^{\circ} < \theta < 90^{\circ}$

Length of longer diagonal =
$$2s\cos\frac{\theta}{2}$$

Length of shorter diagonal =
$$\frac{2s\sin\frac{\theta}{2}}{2}$$

Eg. If perimeter of rhombus is 40 cm and one of its angle is 120°. Find the length of longer diagonal.

Sin 60 =
$$\frac{1}{2}$$
 $95 = 90$
 $5 = 100$
 $5 = 100$
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60

5. ABCD is a rhombus and D_1 and D_2 are the diagonals of rhombus and S is the side of rhombus.

$$D_1^2 + D_2^2 = 4S^2$$

6.

Area of Rhombus =
$$\frac{1}{2}D_1D_2$$

$$= S^2 \cdot \sin\theta$$

Where, θ is one of the angle of rhombus.

9 10 10

Area of Phombur

Soo. Sin o

S

7.

MAOST ABOUT ACOUSTANDON

ΔBAO≅ ΔBCO≅ ΔDCO™ DDAO

8. Figure formed by joining the mid point of all sides of a rhombus is RECTANGLE.

EFGH - Rectargle

RECTANGLE

Def: A parallelogram in which one angle is 90°.

Parallelogram + Ore Angle = 90

PROPERTIES OF RECTANGLE

1. All angles of a rectangle are right angle.

2. Diagonals of a rectangle are equal.

$$AC = \sqrt{LtB^2}$$

$$BD = \sqrt{LtB^2}$$

- (i) Diagonals of a rectangle bisect each other but not necessarily at 90°.
 - (ii) Diagonals of a rectangle need not be angle bisector.

UNDERSTANDING OF A RECTANGLE FIGURE

gradeup 4. If O is any point in the interior of rectangle ABCD, then

$$(OA)^2 + (OC)^2 = (OB)^2 + (OD)^2$$

gradeup

878 . esc Eg. ABCD is a rectangle and O is only point in the interior of rectangle ABCD. If OA = 3 cm, OB = 4 cm, OC = 5 cm, find the value of OD = ??

$$(AO)^{2} + (CO)^{2} = (BO)^{2} + (DO)^{2}$$

$$9 + 25 = 16 + (DO)^{2}$$

$$18 = (DO)^{2}$$

$$DO = 352 cm$$

Perimeter of rectangle (P) = 2(L + B)

Area of rectangle (A) $= L \cdot B$

Diagonal of rectangle (D)

$$=\sqrt{\boldsymbol{L^2}+\boldsymbol{B^2}}$$

Important relationship between P, A & D of rectangle.

$$\mathbf{P^2} = \mathbf{4} ig(\mathbf{D^2} + \mathbf{2} \mathbf{A} ig)$$

Eg. If diagonal of rectangle is 14 cm and its area is 68 cm². Find its perimeter.

$$P = 4(D + dA)$$

$$P = 4(196 + d.68)$$

$$P^{2} = 4(33d)$$

$$P = \sqrt{4.4-83}$$

$$P = \sqrt{4.4-83}$$

6. Angle bisectors of a rectangle forms a square.

7. Figure formed by joining the mid-point of all sides of a rectangle is rhombus.

SQUARE

Def:

- (1) Quadrilateral + all sides are equal + all angles are equal.
- (2) Regular polygon of 4 sides.
 - (3) Rectangle in which adjacent sides are equal.
 - (4) Rhombus + one angle = 90°

DETAILED ANALYSIS OF SQUARE FIGURE

Perimeter = 45

Anea:
$$S^2$$
 $= \frac{D_{lagoral}^2}{2}$
 $S_{lagoral} = \sqrt{2-5}$

Figure formed by joining the mid-points of all sides of a square is a square.

For a given perimeter of a quadrilateral, square will have maximum area.

Eg. A quadrilateral whose perimeter = 120 cm Find maximum area of quadrilateral.

Property	Rhombus	Rectangle	Square
Diagonals bisect each other	✓	✓	✓
Diagonals bisect each other at 90°	✓	×	✓
Diagonals are angle bisector	✓	×	✓
Diagonals are equal	×	✓	✓

Figure formed by joining mid-points of all sides of a:

 Quadrilateral
 →
 Parallelogram

 Parallelogram
 →
 Parallelogram

 Rhombus
 →
 Rectangle

 Rectangle
 →
 Rhombus

 Square
 →
 Square

Def: A quadrilateral in which one pair of side is parallel.

1. In a trapezium ABCD, if AB | CD, then

$$\angle A + \angle D = \angle B + \angle C = 180^{\circ}$$

Eg. If 4 angles of a quadrilateral are in the ratio 5:8:13:16, then what can be the name of the quadrilateral?

- (a) Parallelogram
- (c) Trapezium

- (b) Rectangle (d) None of these

2. Area of trapezium = $\frac{1}{2} \times (Sum \text{ of parallel sides}) \times Distance between them = <math>\frac{1}{2} \times (AB + CD) \times H$

3. If diagonals AC and BD of a trapezium intersect each other at O, where AB | CD, then $\triangle AOB \sim \triangle COD$.

$$\frac{(i)}{-} = \frac{AO}{CO} - \frac{BO}{CD} - \frac{AR}{CD}$$

(11) area of
$$\triangle$$
 AOB = $\begin{pmatrix} AB \\ CD \end{pmatrix}$

Eg. In a trapezium ABCD (AB | | CD), diagonals AC & BD intersect each other at O and AB = 2 CD.

Eg. ABCD is a trapezium where AD | BC. The diagonals AC and BD intersect each other at a point O. If AO = 3, CO = x - 3, BO = 3x - 19 and DO = x - 5, the value of x is:

$$\frac{3}{x-3} = \frac{x-5}{3x+9}$$

Eg. ABCD is a trapezium, AB | CD and AC and BD intersect each other O. If area of $\triangle AOB = 90 \text{ cm}^2$ and area of $\triangle COD = 40 \text{ cm}^2$.

Find area of \triangle BOC.

area of
$$\triangle AOD$$
 = $\frac{90}{40}$

area of $\triangle COD$ = $\frac{9}{40}$
 $\frac{(BO)^2}{AO} = \frac{9}{4}$
 $\frac{80}{AO} = \frac{3}{2}$

.

4. ABCD is a trapezium where AB | CD.

M, N are points on AD and BC in such a way that MN | AB.

then
$$\frac{DM}{MA} = \frac{CN}{NB}$$

5. ABCD is a trapezium where AB | CD. M, N are mid-points on AD and BC

then (i) MN | AB

(ii)
$$MN = \frac{1}{2}(AB + CD)$$

MM - Aredian of Trapezium ABCD

Eg. ABCD is a trapezium where AB | CD.

M, N are mid-points on AD and BC.

If AB = 20 cm and CD = 12 cm.

Find Area of DCNM: Area of M NBA

gradeup

Eg. ABCD is a trapezium where AB | CD.

M , N are points on AD and BC in such a way that M N \mid | AB.

V. Jup

If DM : MA = 3:2, DC = 18 cm, AB = 30 cm. Find the value of MN.

IX

Detailed App

IN D D A B

MR 11 AB

In DBCD

MKUCD

MN-WETKN

$$\frac{MN4 - 2.18 + 3.30}{3+2}$$

$$= \frac{126}{3} = \frac{2.5.2}{3}$$

Geoff
$$\frac{3}{5}, 12$$

$$\frac{5}{7-2}$$

$$= (7-2)$$

$$(8+7-2) = 25-2$$

MM = ??

37 + 3 x 19 10 41-2

•

6.
$$(AC)^2 + (BD)^2 = (AD)^2 + (BC)^2 + 2(AB) (CD)$$

Sum of square of diagonals = Sum of squares of non-parallel sides + 2 (product of parallel sides)

7. ABCD is a trapezium, where AB | CD. M, N are mid-points of AC and BD,

then
$$MN = \frac{1}{2}|AB - CD|$$

gradeup

Given

ABCD is a trapyrium ABITCD

M, M are mid pts of

ACY BD

DDMC S DAMK

MM= I (AB-0) To prove

DMC = AKMA (ASA) Const -> Join DK

DM=KM

DDKS

Mrs mid be of DK

MN = = (CB)

8. Figure formed by joining mid-point of all sides of the trapezium is a parallelogram.

ISOSCELES TRAPEZIUM

Def: A trapezium in which non-parallel sides are equal.

$$AD = BC$$

gradeup

In Isosceles trapezium where AB | CD

Cyclic trapezium is always an Isosceles Trapezium.

KITE

Kite is a quadrilateral in which two pairs of adjacent sides are of equal length and the diagonals intersect each other at right angles.

(2)
$$\angle AOB = \angle BOC = \angle COD = \angle DOA = 90^{\circ}$$

$$(4) \angle A = \angle C$$

Area of Kite
$$=\frac{1}{2}D_1D_2$$

Eg. The area of the rectangle is 80 cm², what is the area of the kite?

Eg. HATS is a kite with diagonals that intersect at C. \angle TSC = 32°. Find \angle SHC.

Sahi Prep Hai Toh Life Set Hai

Practise topic-wise quizzes

Keep attending live classes

