

Conversational Assistants to support Heart Failure Patients: comparing a NeuroSymbolic Architecture with ChatGPT

Anuja Tayal^[1], Devika Salunke^[2], Barbara Di Eugenio^[1], Paula G. Allen-Meares^[3], Eulalia P. Abril^[4], Olga Garcia-Bedoya^[3], Carolyn Dickens^[3], Andrew D. Boyd^[2]
University of Illinois Chicago, IL, USA

[1]Department of Computer Science, [2]Department of Biomedical and Health Information Sciences, [3] Department of Medicine, [4] Department of Communications

Introduction

- LLM based dialog systems difficult to evaluate
- Do not operate within rigid strict boundaries
- Lack transparency regarding data source
- Fail to reliably follow user prompts
- Limitations are critical when facilitating medical conversations
- Human Evaluation remains gold standard [1]
- Need for controlled probing evaluations with real stakeholders
- Goal: conduct within-group user study to compare 2 versions
 - o HFFood-GPT based on GPT-4 [2]
 - o HFFood-NS- Task Oriented Dialog System (TODS) with neuro-symbolic architecture

User Study

- 20 (13 Males, 7 Females) African American Heart failure hospitalised patients
- Within-subject design patients asked 5 food questions to both systems
- Conversational: Systems can ask clarification questions
- All interactions oral- consent, system interaction
- Pre-Survey Questionnaire- Health Literacy, Digital Health Literacy
- Post-Survey Questionnaire Feedback, preference, helpfulness, likelihood of use

HFFood-GPT - Zero Shot GPT-4 based prompt

- asks users about the food type, cooking method, and portion size, one question at a time, to accurately determine the salt content.
- calculates the estimate salt content and compares it to the recommended daily intake of 2000mg.
- refrains from giving health advice and suggesting from consulting a professional for dietary guidance.
- Answers are kept under 40 words ,it only searches the data provided in the JSON
- Users do not know about the data file, so don't discuss it.

HFFood-NS

- T5 based with neuro-symbolic rules [3]
- Ability to add fail-safe
- System responses were template-based

HFFood-NS with Interaction

Evaluation

	HFFood-NS	HFFood-GPT
Avg No of Turns	3.6	3
Avg Processing Time	6.7	11.4
Avg System Words	14.5	54.5
Avg Retries	2	1.7
Avg WER	.483	.41
Task Completion	84%	62%
Salt Value Accuracy	37%	24%
Slot Accuracy	56%	89%

Intrinsic Evaluation: Comparison of 2 systems

Extrinsic Evaluation of 2 systems

- Preference- 11 HFFood-NS, 9 HFFood-GPT.
- 11 participants (55%) preferred informal terms like pinches or dashes.

	HFFood-NS
Missed Slot	27
Wrong food identified	9
System Error	8
Internet	6

Error Analysis of HFFood-NS

	HFFood-NS	HFFood-GPT
Allow Error Analysis		X
Reliable		X
Handles Complex Query	X	
Fluent	X	
Concise		X
More Constrained		X
Faster to Deploy	X	

Pros and Cons of 2 systems

Conclusions

- In-house system is more accurate, completes more tasks, less verbose,
- ChatGPT: makes fewer speech errors, requires fewer clarification questions, handles complex query more effectively
- Greater Control on LLMs needed; Neuro-symbolic methods offers solutions

Acknowledgement

DPI Cycle 1 Seed Funding Program Award, NSF award IIS 2232307

References

[1] MA Walker, DJ Litman, CA Kamm, AAbella. 1998. Evaluating spoken dialogue agents with paradise: Two case studies. Computer Speech & Language

[2] GPT-4 - Technical Report

[3] A Tayal, B Di Eugenio, D Salunke, A D. Boyd, C Dickens, E. Abril, O Garcia, P A-Meares. 2024. A Neuro-Symbolic Approach to Monitoring Salt Content in Food. In Proceedings of the First Workshop on Patient-Oriented Language Processing (CL4Health) @ LREC-COLING 24, Italia. ELRA and ICCL