25.1 Test the 3 possible shrinking-core mechanisms to see which is consistent with the following reported data

$$X_{8} = 0.875$$
 at $t = 1 hr$

$$X_{8} = 1.000$$
 at $t = 1 hr$

$$X_{8} = 1.000$$
 at $t = 1 hr$

$$X_{8} = 7/8$$
 at $t = 0.5$

Since the shape of the solids is not specified assume to start with that they are spherical. Then from Table 1

If film diffusion controls: $\frac{t}{T} = X_B$ but from the data: 0.5 = 0.875 -- this doesn't agree, so we reject this mechanism

If ash diffusion controls: $\frac{t}{T} = 1 - 3(1 - \chi_B)^{2/3} + 2(1 - \chi_B)$ again from the data $0.5 \stackrel{?}{=} 1 - 3(\frac{1}{8})^{2/3} + 2(\frac{1}{8}) = 0.5 \cdots$ this agrees

Now before we feel that all is solved let us try the third mechanism. Who knows, maybe it too will fit. So

If surface reaction controls: $\frac{t}{T} = 1 - (1 - x_B)^{1/3}$ & again from the data: $0.5 \stackrel{?}{=} 1 - (\frac{1}{2})^{1/3}$... amazing, this also fits!

So here we have a coincidence where both reaction & ash diffusion mechanisms fit the data

Note - Figure 9 or 10 shows that the data were taken at the precise point where the ash diffusion curve crosses the reaction controlling curve.

- If we try the equations for flat plate or cylindrical pellets we find that neither will fit the data.

25.3 Here we have shrinking particles, hence only 2 possible resistances, film diffusion & surface reaction. Since we are told that we can ignore film diffusion we are left with reaction controlling alone. So solve for this case.

From Table 1 pg 580 we have for reaction controlling $\frac{t}{T} = 1 - (1 - \chi_B)^{V_3}$ - where $T = \frac{\Gamma_B R_o}{b \, k. \, C_A}$

but $P_B = \frac{2.2 \, \text{gm/cm}^3}{12 \, \text{gm/mol}} = 0.183 \, \text{mol/cm}^3$

 $C_{Ag} = \frac{|mo|}{22400 \text{ cm}^3} \cdot \frac{273}{273+900} \cdot 0.08 = 8.30 \times 10^{-7} \text{ mol/cm}^3$

for the reaction C+Oz -> Coz -- b=1

Replacing these quantities in the T expression gives

$$T = \frac{(0.183)(0.5)}{(1)(20)(8.3\times10^{-7})} = 5510 \sec = 1.53 \text{ hr}$$

25.5 Let 1 refer to particles of size R } then 72=31, --- (0)

Now T = Mash + Mrxn ---- (i) T2 = T2ash + T2 rxn ---- (ii)

But Teash = 4 Mash -----(iii)
Terxn = 2 Mirxn ---- (IV)

So (ii) & (iv) & (o) in (ii) gives 34 = 4710sh + 2710xn --- (v)

From (i) and (v) we find Mach = MIXN

os the % contribution of ash diffusion for R = 50%

			guess ash diffusion co	ontrols of guess reaction controls
de	XB	+	$\frac{R^{2}\left[1-3(1-x_{B})^{\frac{2}{3}}+2(1-x_{B})\right]}{\frac{1}{2}}$	
- Participants	Egyptopolisi	4	0,0625	0.125
1.5	1	6	0.0938	0.125
~enethterfall/chidragesovavavojes		A titled on mortunary companyons		(same value)

& chemical reaction controls

25.9

			€ a.sh	reaction controls		
de	Xe	**************************************	$\frac{R^{2}}{t} \left[1 - 3(1 - x_{B})^{\frac{2}{3}} + 2(1 - x_{B}) \right]$	R[1-(1-X8)/3]		
1	1	200	1.25 ×10-3	2.5×10 ⁻³		
1.5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	450	1.25 × 10-3	1.67×10-3		
			same same)		

25.11 Plot assuming that reaction, and then ash diffusion controls

t, hr	d		Ve"		
-> U	0.180	0.347	0.453	0.567	0.733
XB	0.45	0.68	0.80	0.95	0.98
1-(1-x8)/3	0.1807		0.4152		- 0
1-3(1-x8) 3+2(1-x8)	0.0861	0.2365	0.3740	0.6429	0.8190

From the above plat