Spatial Signatures Dynamically building the built environment

Daniel Arribas-Bel*†‡ Martin Fleischmann*†§

Geographic Data Science Lab, University of Liverpool

September 2019

ABSTRACT: Blah blah blah

Key words: blah, blah, blah

*THANKS.

 † Geographic Data Science Lab, Department of Geography and Planning, University of Liverpool, Roxby Building , 74 Bedford St S , Liverpool , L69 7ZT, United Kingdom

[‡]E-mail: D.Arribas-Bel@liverpool.ac.uk; phone: +44 (0)151 795 9727; website: http://darribas.org. §E-mail: M.Fleischmann@liverpool.ac.uk@liverpool.ac.uk; website: https://martinfleischmann.net/.

1. Introduction

Fleischmann et al. (2020a) is king.

2. (Urban) form and function

Research studying urban form has a long tradition (Geddes, 1915, Trewartha, 1934), whilst urban morphology as an independent area of research has established in the 1960s. It originated independently in geography (Conzen, 1960) and architecture (Muratori, 1959), reflecting its inherently multi-disciplinary nature, which was later reinforced by the inclusion of socio-economic component in works of Panerai et al. (1997). The original methods are predominantly qualitative, and this tendency persists (Dibble, 2016). First notable quantitative approaches date to the late 1980s and 1990s, reflecting advancements in computer science and newly available data capturing built environment. Two strains of research have emerged, one based on cartographic (vector) representation of the urban environment, assessing its boundaries (Batty and Longley, 1987), street networks (Hillier, 1996, Porta et al., 2006) and other elements (Pivo, 1993). The other one based on earth observation exploiting remotely sensed data to capture the change of footprints of urban areas (Howarth and Boasson, 1983) or classification of land cover (European Environment Agency, 1990).

The distinction between two approaches based on their primary source of data can also be applied to the recent literature reflecting the state of the art of characterization of urban form. A quantitative branch of urban morphology, or urban morphometrics, working predominantly with vector representation of elements of urban form has rapidly grown and offers an abundant selection of measurable characters describing different aspects of form (Fleischmann et al., 2020b). Methods focusing on a single aspect (Porta et al., 2006) were replaced by others aiming to better reflect the complexity of urban form by combining multiple morphometric characters into a single model, often leading to a classification of some sort (Song and Knaap, 2007). The focus on classification is becoming more present in recent years, starting from small-scale studies classifying blocks and streets (Gil et al., 2012) to larger areas and higher granularity (Schirmer and Axhausen, 2015, Araldi and Fusco, 2019, Bobkova et al., 2019, Dibble et al., 2019, Jochem et al., 2020).

In parallel, advancements in remote sensing led to a range of classification frameworks based on various conceptualizations of the urban fabric. However, there is one significant difference between classification derived via morphometric characterization and the one of remote sensing origin. Where the former is mostly unsupervised (Araldi and Fusco, 2019, Schirmer and Axhausen, 2015), the latter tends towards supervised techniques, capturing classes defined prior to the analysis (Pauleit and Duhme, 2000). Two most prominent classification models used as an input (i.e. training set) are Local Climate Zones (Stewart and Oke, 2012) defining ten built-form types and seven land cover types, used by Koc et al. (2017) or Taubenböck et al. (2020), and Urban Structural Type, a generic typology based on the notion of internal homogeneity of types (Lehner and Blaschke, 2019).

However, all the methods above have certain limits, mostly related to detail, comprehensiveness and scalability, lacking at least on them. Detail reflects spatial granularity of resulting classification, where more granular, i.e. more detailed, unit has the ability to capture smaller nuances of the urban environment and better reflect local characters or a place. Methods based on a unit which can be further subdivided (Dibble et al., 2019, Jochem et al., 2020, Araldi and Fusco, 2019, Gil et al., 2012), therefore does not ensure internal homogeneity, can result in classes driven by the heterogeneity instead of the unit instead of the actual pattern of urban form. Comprehensiveness refers to the number of characters (variables) used in the classification procedure. Small sets of characters as in Bobkova et al. (2019) or Serra et al. (2018) are prone to a selection bias and will less likely reflect the complexity of the urban environment. Finally, scalability reflects the ability of the proposed method to scale up to large extents of metropolitan areas or national-level studies. While some works illustrate such a potential (Jochem et al., 2020, Schirmer and Axhausen, 2015, Bobkova et al., 2019, Araldi and Fusco, 2019), others which may overcome other issues are less likely to scale from their original limits (Dibble et al., 2019). Furthermore, computational scalability can be limited by data availability. Methods dependent on a high amount of detailed vector data (Bobkova et al., 2019) can be hardly applied in other contexts where such input is not available.

3. Spatial Signatures

3.1 Definition

3.2 Building blocks: the Enclosed Tesselation

This section proposes a novel and theoretically-informed delineation of space to support the development of spatial signatures. Since spatial signatures are conceptualised as highly granular in space, considering the ideal unit of analysis at which to measure them is of utmost importance.

An ideal unit of analysis for spatial signatures will partition space into consistent blocks of built *and* lived environment. In other words, a successful candidate will need to meet the following XXX characteristics:

3.3 Embedding form and funtion into Spatial Signatures

- 4. Illustration
- 5. Conclusions

References

- Araldi, A. and Fusco, G. (2019). From the street to the metropolitan region: Pedestrian perspective in urban fabric analysis:. *Environment and Planning B: Urban Analytics and City Science*, 46(7):1243–1263.
- Batty, M. and Longley, P. A. (1987). Fractal-based description of urban form. *Environment and Planning B: Planning and Design*, 14(1961):123–134.
- Bobkova, E., Berghauser Pont, M., and Marcus, L. (2019). Towards analytical typologies of plot systems: Quantitative profile of five European cities. *Environment and Planning B: Urban Analytics and City Science*, page 239980831988090.
- Conzen, M. R. G. (1960). Alnwick, northumberland: a study in town-plan analysis. *Transactions and Papers (Institute of British Geographers)*, (27):iii–122.
- Dibble, J., Prelorendjos, A., Romice, O., Zanella, M., Strano, E., Pagel, M., and Porta, S. (2019). On the origin of spaces: Morphometric foundations of urban form evolution. *Environment and Planning B: Urban Analytics and City Science*, 46(4):707–730.
- Dibble, J. L. (2016). *Urban morphometrics: towards a quantitative science of urban form.* PhD thesis, University of Strathclyde.
- European Environment Agency (1990). CORINE Land Cover. pages 1–163.
- Fleischmann, M., Feliciotti, A., Romice, O., and Porta, S. (2020a). Morphological tessellation as a way of partitioning space: Improving consistency in urban morphology at the plot scale. *Computers, Environment and Urban Systems*, 80:101441.
- Fleischmann, M., Romice, O., and Porta, S. (2020b). Measuring urban form: Overcoming terminological inconsistencies for a quantitative and comprehensive morphologic analysis of cities. *Environment and Planning B: Urban Analytics and City Science*, page 2399808320910444.
- Geddes, P. (1915). *Cities in evolution: an introduction to the town planning movement and to the study of civics*. London, Williams.
- Gil, J., Montenegro, N., Beirão, J. N., and Duarte, J. P. (2012). On the Discovery of Urban Typologies: Data Mining the Multi-dimensional Character of Neighbourhoods. *Urban Morphology*, 16(1):27–40.
- Hillier, B. (1996). *Space is the machine : a configurational theory of architecture.* Cambridge University Press, Cambridge.
- Howarth, P. J. and Boasson, E. (1983). Landsat digital enhancements for change detection in urban environments. *Remote sensing of environment*, 13(2):149–160.
- Jochem, W. C., Leasure, D. R., Pannell, O., Chamberlain, H. R., Jones, P., and Tatem, A. J. (2020). Classifying settlement types from multi-scale spatial patterns of building footprints. *Environment and Planning B: Urban Analytics and City Science*, page 239980832092120.
- Koc, C. B., Osmond, P., Peters, A., and Irger, M. (2017). Mapping local climate zones for urban morphology classification based on airborne remote sensing data. In 2017 Joint Urban Remote Sensing Event (JURSE), pages 1–4. IEEE.
- Lehner, A. and Blaschke, T. (2019). A Generic Classification Scheme for Urban Structure Types. *Remote Sensing*, 11(2):173.

- Muratori, S. (1959). Studi per una operante storia urbana di venezia. Palladio, 1959:1-113.
- Panerai, P., Castex, J., and Depaule, J.-C. (1997). Formes urbaines: de l'îlot à la barre. Editions Parentheses.
- Pauleit, S. and Duhme, F. (2000). Assessing the environmental performance of land cover types for urban planning. *Landscape and urban planning*, 52(1):1–20.
- Pivo, G. (1993). A taxonomy of suburban office clusters: the case of toronto. *Urban Studies*, 30(1):31–49.
- Porta, S., Crucitti, P., and Latora, V. (2006). The network analysis of urban streets: A primal approach. *Environment and Planning B: Planning and Design*, 33(5):705–725.
- Schirmer, P. M. and Axhausen, K. W. (2015). A multiscale classification of urban morphology. *Journal of Transport and Land Use*, 9(1):101–130.
- Serra, M., Psarra, S., and O'Brien, J. (2018). Social and Physical Characterization of Urban Contexts: Techniques and Methods for Quantification, Classification and Purposive Sampling. *Urban Planning*, 3(1):58–74.
- Song, Y. and Knaap, G.-J. (2007). Quantitative Classification of Neighbourhoods: The Neighbourhoods of New Single-family Homes in the Portland Metropolitan Area. *Journal of Urban Design*, 12(1):1–24.
- Stewart, I. D. and Oke, T. R. (2012). Local Climate Zones for Urban Temperature Studies. *Bulletin of the American Meteorological Society*, 93(12):1879–1900.
- Taubenböck, H., Debray, H., Qiu, C., Schmitt, M., Wang, Y., and Zhu, X. (2020). Seven city types representing morphologic configurations of cities across the globe. *Cities*, 105:102814.
- Trewartha, G. T. (1934). Japanese cities distribution and morphology. *Geographical Review*, 24(3):404–417.