Topics in Analysis and Linear Algebra

Le Chen

le.chen@emory.edu

mory University Atlanta GA

Last updated on July 26, 2021

 $\begin{array}{c} {\rm Summer~Bootcamp~for}\\ {\rm Emory~Biostatistics~and~Bioinformatics}\\ {\rm PhD~Program} \end{array}$

July 22 - 28, 2021

Chapter 1. Mathematical Logics

Chapter 2. Set Theory

Chapter 3. Real Number System and Calculus

Chapter 4. Topics in Linear Algebra

1

Chapter 3. Real Number System and Calculus

This part is mostly based on Chapter 2 of

J. McDonald and N. Weiss, A course in real analysis, Academic Press, 2005.

Chapter 3. Real Number System and Calculus

- § 3.1 Real number system
- \S 3.2 Sequences of real numbers
- § 3.3 Open and closed sets
- § 3.4 Real-valued functions
- § 3.5 Liminf and limsup of sets
- § 3.6 Some techniques in calculus

Chapter 3. Real Number System and Calculus

§ 3.1 Real number system

- § 3.2 Sequences of real numbers
- § 3.3 Open and closed sets
- § 3.4 Real-valued functions
- § 3.5 Liminf and limsup of sets
- § 3.6 Some techniques in calculus

What is a real number?

5

¹Image from Wikipedia.

²Image from

Real number system can be formulated in three groups of axioms

- (F) Field Axioms
- (O) Order Axioms
- (C) Completeness Axioms

Real number system can be formulated in three groups of axioms

- (F) Field Axioms
- (O) Order Axioms
- (C) Completeness Axioms

Real number system can be formulated in three groups of axioms

- (F) Field Axioms
- (O) Order Axioms
- (C) Completeness Axioms

Let $x, y, z \in \mathbb{R}$. Then we have that

(F1)
$$x + y = y + x$$
 and $xy = yx$. (Commutative)

(F2)
$$(x+y)+z=x+(y+z)$$
 and $(xy)z=x(yz)$. (Associative)

(F3)
$$x(y+z) = xy + xz$$
. (Distributive

(F4) There exit $0, 1 \in \mathbb{R}$ with $0 \neq 1$ such that for all $x \in \mathbb{R}$

$$x + 0 = x$$
 and $x \cdot 1 = x$. (Identities)

(F5) For each $x \in \mathbb{R}$, there exits a $-x \in \mathbb{R}$ such that x + (-x) = 0 and, if $x \neq 0$, there exits an $x^{-1} \in \mathbb{R}$ such that $xx^{-1} = 1$. (Inverses

2

Let $x, y, z \in \mathbb{R}$. Then we have that

(F1)
$$x + y = y + x$$
 and $xy = yx$. (Commutative)

(F2)
$$(x + y) + z = x + (y + z)$$
 and $(xy)z = x(yz)$. (Associative)

(F3)
$$x(y+z) = xy + xz$$
. (Distributive

(F4) There exit $0, 1 \in \mathbb{R}$ with $0 \neq 1$ such that for all $x \in \mathbb{R}$

$$x + 0 = x$$
 and $x \cdot 1 = x$. (Identities)

(F5) For each $x \in \mathbb{R}$, there exits a $-x \in \mathbb{R}$ such that x + (-x) = 0 and, if $x \neq 0$, there exits an $x^{-1} \in \mathbb{R}$ such that $xx^{-1} = 1$. (Inverses)

R

Let $x, y, z \in \mathbb{R}$. Then we have that

(F1)
$$x + y = y + x$$
 and $xy = yx$. (Commutative)

(F2)
$$(x + y) + z = x + (y + z)$$
 and $(xy)z = x(yz)$. (Associative)

(F3)
$$x(y+z) = xy + xz$$
. (Distributive)

(F4) There exit $0, 1 \in \mathbb{R}$ with $0 \neq 1$ such that for all $x \in \mathbb{R}$

$$x + 0 = x$$
 and $x \cdot 1 = x$. (Identities)

(F5) For each $x \in \mathbb{R}$, there exits a $-x \in \mathbb{R}$ such that x + (-x) = 0 and, if $x \neq 0$, there exits an $x^{-1} \in \mathbb{R}$ such that $xx^{-1} = 1$. (Inverses

R

Let $x, y, z \in \mathbb{R}$. Then we have that

(F1)
$$x + y = y + x$$
 and $xy = yx$. (Commutative)

(F2)
$$(x + y) + z = x + (y + z)$$
 and $(xy)z = x(yz)$. (Associative)

(F3)
$$x(y+z) = xy + xz$$
. (Distributive)

(F4) There exit $0, 1 \in \mathbb{R}$ with $0 \neq 1$ such that for all $x \in \mathbb{R}$

$$x + 0 = x$$
 and $x \cdot 1 = x$. (Identities)

(F5) For each $x \in \mathbb{R}$, there exits a $-x \in \mathbb{R}$ such that x + (-x) = 0 and, if $x \neq 0$, there exits an $x^{-1} \in \mathbb{R}$ such that $xx^{-1} = 1$. (Inverses

R

Let $x, y, z \in \mathbb{R}$. Then we have that

(F1)
$$x + y = y + x$$
 and $xy = yx$. (Commutative)

(F2)
$$(x + y) + z = x + (y + z)$$
 and $(xy)z = x(yz)$. (Associative)

(F3)
$$x(y+z) = xy + xz$$
. (Distributive)

(F4) There exit $0, 1 \in \mathbb{R}$ with $0 \neq 1$ such that for all $x \in \mathbb{R}$

$$x + 0 = x$$
 and $x \cdot 1 = x$. (Identities)

(F5) For each $x \in \mathbb{R}$, there exits a $-x \in \mathbb{R}$ such that x + (-x) = 0 and, if $x \neq 0$, there exits an $x^{-1} \in \mathbb{R}$ such that $xx^{-1} = 1$. (Inverses)

2

(O1)
$$x < y$$
 and $y < z$ implies that $x < z$. (Transitive)

- (O2) x < y implies that x + z < y + z.
- (O3) x < y and z > 0 implies that xz < yz.
- (O4) Exactly one of x = y, x < y, and x > y holds. (Trichotomous)

(O1)
$$x < y$$
 and $y < z$ implies that $x < z$. (Transitive)

- (O2) x < y implies that x + z < y + z.
- (O3) x < y and z > 0 implies that xz < yz.
- (O4) Exactly one of x = y, x < y, and x > y holds. (Trichotomous)

(O1)
$$x < y$$
 and $y < z$ implies that $x < z$. (Transitive)

- (O2) x < y implies that x + z < y + z.
- (O3) x < y and z > 0 implies that xz < yz.
- (O4) Exactly one of x = y, x < y, and x > y holds. (Trichotomous)

(O1)
$$x < y$$
 and $y < z$ implies that $x < z$. (Transitive)

- (O2) x < y implies that x + z < y + z.
- (O3) x < y and z > 0 implies that xz < yz.
- (O4) Exactly one of x = y, x < y, and x > y holds. (Trichotomous)

$$\sup A, \quad \sup_{x \in A} x, \quad \text{or} \quad \sup \{x : x \in A\}.$$

$$\sup A, \quad \sup_{x \in A} x, \quad \text{or} \quad \sup \{x : x \in A\}.$$

$$\sup A, \quad \sup_{x \in A} x, \quad \text{or} \quad \sup \{x : x \in A\}.$$

$$\sup A, \quad \sup_{x \in A} x, \quad \text{or} \quad \sup \{x : x \in A\}.$$

$$\sup A, \quad \sup_{x \in A} x, \quad \text{or} \quad \sup \{x : x \in A\}.$$

$$\sup A, \quad \sup_{x \in A} x, \quad \text{or} \quad \sup \{x : x \in A\}.$$

$$\sup A, \quad \sup_{x \in A} x, \quad \text{or} \quad \sup \{x : x \in A\}.$$

$$\sup A, \quad \sup_{x \in A} x, \quad \text{or} \quad \sup \{x : x \in A\}.$$

$$\sup A, \quad \sup_{x \in A} x, \quad \text{or} \quad \sup\{x : x \in A\}.$$

$$\sup A, \quad \sup_{x \in A} x, \quad \text{or} \quad \sup \{x : x \in A\}.$$

$$\sup A, \quad \sup_{x \in A} x, \quad \text{or} \quad \sup \{x : x \in A\}.$$

$$\sup A, \quad \sup_{x \in A} x, \quad \text{or} \quad \sup \{x : x \in A\}.$$

$$\sup A, \quad \sup_{x \in A} x, \quad \text{or} \quad \sup\{x : x \in A\}.$$

$$\sup A, \quad \sup_{x \in A} x, \quad \text{or} \quad \sup \{x : x \in A\}.$$

$$\sup A, \quad \sup_{x \in A} x, \quad \text{or} \quad \sup\{x : x \in A\}.$$

$$\sup A, \quad \sup_{x \in A} x, \quad \text{or} \quad \sup\{x: x \in A\}.$$

Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence and $a\in\mathbb{R}$. Then

$$\sup_{n} x_{n} \le a \iff \forall n, x_{n} \le a$$

$$\sup_{n} x_{n} < a \iff \forall n, x_{n} < a$$

$$a < \sup_{n} x_{n} \iff \exists n, x_{n} > a$$

$$a \le \sup_{n} x_n \iff \exists n, x_n \ge a$$

$$\inf A$$
, $\inf_{x \in A} x$, or $\inf \{x : x \in A\}$.

$$\inf A$$
, $\inf_{x \in A} x$, or $\inf \{x : x \in A\}$.

$$\inf A$$
, $\inf_{x \in A} x$, or $\inf \{x : x \in A\}$.

$$\inf A$$
, $\inf_{x \in A} x$, or $\inf \{x : x \in A\}$.

$$\inf A$$
, $\inf_{x \in A} x$, or $\inf \{x : x \in A\}$.

$$\inf A$$
, $\inf_{x \in A} x$, or $\inf \{x : x \in A\}$.

$$\inf A$$
, $\inf_{x \in A} x$, or $\inf \{x : x \in A\}$.

$$\inf A$$
, $\inf_{x \in A} x$, or $\inf \{x : x \in A\}$.

$$\inf A$$
, $\inf_{x \in A} x$, or $\inf \{x : x \in A\}$.

$$\inf A$$
, $\inf_{x \in A} x$, or $\inf \{x : x \in A\}$.

$$\inf A$$
, $\inf_{x \in A} x$, or $\inf \{x : x \in A\}$.

$$\inf A$$
, $\inf_{x \in A} x$, or $\inf \{x : x \in A\}$.

$$\inf A$$
, $\inf_{x \in A} x$, or $\inf \{x : x \in A\}$.

$$\inf A$$
, $\inf_{x \in A} x$, or $\inf \{x : x \in A\}$.

$$\inf A, \quad \inf_{x \in A} x, \quad \text{or} \quad \inf \{x: \ x \in A\}.$$

Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence and $a\in\mathbb{R}$. Then

$$a \le \inf_{n} x_n \qquad \iff \forall n, \ x_n \ge a$$
 $a < \inf_{n} x_n \qquad \iff \forall n, \ x_n > a$
 $\inf_{n} x_n < a \quad \iff \exists n, \ x_n < a$

$$a \le \inf_{n} x_n \le a \iff \exists n, x_n \le a$$

E.g.
$$\sup[0,1) = 1$$
 and $\inf[0,1) = 0$.

 \mathbb{N} has no least upper bound, but $\inf \mathbb{N} = 1$

Let
$$A=\{x: x^2<3\}$$
. Then
$$\sup_{x\in A} x=\sqrt{3} \quad \text{and} \quad \inf_{x\in A} x=-\sqrt{3}$$

E.g.
$$\sup[0,1) = 1$$
 and $\inf[0,1) = 0$.

 $\mathbb N$ has no least upper bound, but $\inf \mathbb N=1.$

Let
$$A=\{x: x^2<3\}$$
. Then
$$\sup_{x\in A} x=\sqrt{3} \quad \text{and} \quad \inf_{x\in A} x=-\sqrt{3}$$

E.g.
$$\sup[0,1) = 1$$
 and $\inf[0,1) = 0$.

 \mathbb{N} has no least upper bound, but $\inf \mathbb{N} = 1$.

Let
$$A = \{x: x^2 < 3\}$$
. Then
$$\sup_{x \in A} x = \sqrt{3} \quad \text{and} \quad \inf_{x \in A} x = -\sqrt{3}.$$

1. Archimedean principle

For each $x \in \mathbb{R}$, there is an $n \in \mathbb{N}$ such that n > x.

2. Density of the irrational numbers

Between any two real numbers there is an irrational number.

3. Density of the rational numbers

Between any two real numbers there is an rational number.

1. Archimedean principle

For each $x \in \mathbb{R}$, there is an $n \in \mathbb{N}$ such that n > x.

- Density of the irrational numbersBetween any two real numbers there is an irrational number.
- 3. Density of the rational numbers

 Between any two real numbers there is an rational number

1. Archimedean principle

For each $x \in \mathbb{R}$, there is an $n \in \mathbb{N}$ such that n > x.

2. Density of the irrational numbers

Between any two real numbers there is an irrational number.

3. Density of the rational numbers

Between any two real numbers there is an rational number.

1. Archimedean principle

For each $x \in \mathbb{R}$, there is an $n \in \mathbb{N}$ such that n > x.

2. Density of the irrational numbers

Between any two real numbers there is an irrational number.

3. Density of the rational numbers

Between any two real numbers there is an rational number.

1. Archimedean principle

For each $x \in \mathbb{R}$, there is an $n \in \mathbb{N}$ such that n > x.

2. Density of the irrational numbers

Between any two real numbers there is an irrational number.

3. Density of the rational numbers

Between any two real numbers there is an rational number.

1. Archimedean principle

For each $x \in \mathbb{R}$, there is an $n \in \mathbb{N}$ such that n > x.

2. Density of the irrational numbers

Between any two real numbers there is an irrational number.

3. Density of the rational numbers

Between any two real numbers there is an rational number.

1. Archimedean principle

For each $x \in \mathbb{R}$, there is an $n \in \mathbb{N}$ such that n > x.

2. Density of the irrational numbers

Between any two real numbers there is an irrational number.

3. Density of the rational numbers

Between any two real numbers there is an rational number.

Extended Real Number System

Def. The *extended real numbers* $\mathbb{R}^* := \mathbb{R} \cup \{-\infty, \infty\}$.

 $\infty - \infty$ cannot be defined (HW).

Extended Real Number System

Def. The *extended real numbers* $\mathbb{R}^* := \mathbb{R} \cup \{-\infty, \infty\}$.

$x \in \mathbb{R}$	$X + \infty = \infty + X = \infty$	$\mathbf{X} - \infty = -\infty + \mathbf{X} = -\infty$
x > 0	$\mathbf{X} \cdot \mathbf{\infty} = \mathbf{\infty} \cdot \mathbf{X} = \mathbf{\infty}$	$\mathbf{X} \cdot (-\infty) = (-\infty) \cdot \mathbf{X} = -\infty$
$\mathbf{x} = 0$	$0\cdot\infty=\infty\cdot0=0$	$0 \cdot (-\infty) = (-\infty) \cdot 0 = 0$
x < 0	$\mathbf{X} \cdot \mathbf{\infty} = \mathbf{\infty} \cdot \mathbf{X} = -\mathbf{\infty}$	$\mathbf{X} \cdot (-\infty) = (-\infty) \cdot \mathbf{X} = \infty$
	$\infty + \infty = \infty$	$(-\infty) + (-\infty) = -\infty$
$x=\infty$	$\infty\cdot\infty=\infty$	$(-\infty)\cdot(-\infty)=\infty$
	$\infty \cdot (-\infty) = (-\infty) \cdot \infty = -\infty$	

 $\infty - \infty$ cannot be defined (HW)

Extended Real Number System

Def. The *extended real numbers* $\mathbb{R}^* := \mathbb{R} \cup \{-\infty, \infty\}$.

$x \in \mathbb{R}$	$\mathbf{X} + \infty = \infty + \mathbf{X} = \infty$	$\mathbf{X} - \infty = -\infty + \mathbf{X} = -\infty$
x > 0	$\mathbf{X} \cdot \mathbf{\infty} = \mathbf{\infty} \cdot \mathbf{X} = \mathbf{\infty}$	$\mathbf{X} \cdot (-\infty) = (-\infty) \cdot \mathbf{X} = -\infty$
$\mathbf{x} = 0$	$0\cdot\infty=\infty\cdot0=0$	$0 \cdot (-\infty) = (-\infty) \cdot 0 = 0$
x < 0	$\mathbf{X} \cdot \mathbf{\infty} = \mathbf{\infty} \cdot \mathbf{X} = -\mathbf{\infty}$	$\mathbf{X} \cdot (-\infty) = (-\infty) \cdot \mathbf{X} = \infty$
	$\infty + \infty = \infty$	$(-\infty) + (-\infty) = -\infty$
$x=\infty$	$\infty\cdot\infty=\infty$	$(-\infty)\cdot(-\infty)=\infty$
	$\infty \cdot (-\infty) = (-\infty) \cdot \infty = -\infty$	

 $\infty - \infty$ cannot be defined (HW).

Def. Let a and b be extended real numbers such that a < b. Then the intervals on \mathbb{R}^* with endpoints a and b are as follows:

$$(a,b) = \{x \in \mathbb{R}^* : a < x < b\}$$

$$[a,b) = \{x \in \mathbb{R}^* : a \le x < b\}$$

$$(a,b] = \{x \in \mathbb{R}^* : a < x \le b\}$$

$$[a,b] = \{x \in \mathbb{R}^* : a \le x \le b\}$$

If both a and b are in \mathbb{R} , these intervals are the **bounded intervals** in \mathbb{R} . Otherwise, if either $a = -\infty$ or $b = \infty$, then these intervals are unbounded intervals.

Def. Let a and b be extended real numbers such that a < b. Then the intervals on \mathbb{R}^* with endpoints a and b are as follows:

$$(a,b) = \{x \in \mathbb{R}^* : a < x < b\}$$

$$[a,b) = \{x \in \mathbb{R}^* : a \le x < b\}$$

$$(a,b] = \{x \in \mathbb{R}^* : a < x \le b\}$$

$$[a,b] = \{x \in \mathbb{R}^* : a \le x \le b\}$$

If both a and b are in \mathbb{R} , these intervals are the bounded intervals in \mathbb{R} .

Otherwise, if either $a=-\infty$ or $b=\infty$, then these intervals are unbounded intervals

Def. Let a and b be extended real numbers such that a < b. Then the intervals on \mathbb{R}^* with endpoints a and b are as follows:

$$(a,b) = \{x \in \mathbb{R}^* : a < x < b\}$$

$$[a,b) = \{x \in \mathbb{R}^* : a \le x < b\}$$

$$(a,b] = \{x \in \mathbb{R}^* : a < x \le b\}$$

$$[a,b] = \{x \in \mathbb{R}^* : a \le x \le b\}$$

If both a and b are in \mathbb{R} , these intervals are the bounded intervals in \mathbb{R} . Otherwise, if either $a=-\infty$ or $b=\infty$, then these intervals are unbounded intervals.

- a) If $A = \emptyset$, then $\sup A = -\infty$ and $\inf A = \infty$
- b) If A is bounded above in \mathbb{R} , then $\sup A \in \mathbb{R}$; otherwise, $\sup A = \infty$.
- c) If A is bounded below in \mathbb{R} , then $\inf A \in \mathbb{R}$; otherwise, $\inf A = -\infty$

- a) If $A = \emptyset$, then $\sup A = -\infty$ and $\inf A = \infty$.
- b) If A is bounded above in \mathbb{R} , then $\sup A \in \mathbb{R}$; otherwise, $\sup A = \infty$.
- c) If A is bounded below in \mathbb{R} , then $\inf A \in \mathbb{R}$; otherwise, $\inf A = -\infty$

- a) If $A = \emptyset$, then $\sup A = -\infty$ and $\inf A = \infty$.
- b) If A is bounded above in \mathbb{R} , then $\sup A \in \mathbb{R}$; otherwise, $\sup A = \infty$.
- c) If A is bounded below in \mathbb{R} , then $\inf A \in \mathbb{R}$; otherwise, $\inf A = -\infty$

- a) If $A = \emptyset$, then $\sup A = -\infty$ and $\inf A = \infty$.
- b) If A is bounded above in \mathbb{R} , then $\sup A \in \mathbb{R}$; otherwise, $\sup A = \infty$.
- c) If A is bounded below in \mathbb{R} , then $\inf A \in \mathbb{R}$; otherwise, $\inf A = -\infty$.

- a) $\inf \mathbb{N} = 1$ and $\sup \mathbb{N} = \infty$.
- b) $\inf \mathbb{Z} = -\infty$ and $\sup \mathbb{Z} = \infty$.
- c) If I is an interval in \mathbb{R}^* with endpoints a and b, $a \le b$. Then $\inf I = a$ and $\sup I = b$.

- a) $\inf \mathbb{N} = 1$ and $\sup \mathbb{N} = \infty$.
- b) inf $\mathbb{Z} = -\infty$ and sup $\mathbb{Z} = \infty$
- c) If I is an interval in \mathbb{R}^* with endpoints a and b, $a \le b$. Then $\inf I = a$ and $\sup I = b$.

- a) $\inf \mathbb{N} = 1$ and $\sup \mathbb{N} = \infty$.
- b) $\inf \mathbb{Z} = -\infty$ and $\sup \mathbb{Z} = \infty$.
- c) If l is an interval in \mathbb{R}^* with endpoints a and b, $a \le b$. Then $\inf l = a$ and $\sup l = b$.

- a) $\inf \mathbb{N} = 1$ and $\sup \mathbb{N} = \infty$.
- b) inf $\mathbb{Z} = -\infty$ and sup $\mathbb{Z} = \infty$.
- c) If I is an interval in \mathbb{R}^* with endpoints a and b, $a \le b$. Then $\inf I = a$ and $\sup I = b$.

 $\ensuremath{\mathsf{HW}}$ Ex. 2.10 and 2.11 on p. 43.

Chapter 3. Real Number System and Calculus

- § 3.1 Real number system
- § 3.2 Sequences of real numbers
- § 3.3 Open and closed sets
- § 3.4 Real-valued functions
- § 3.5 Liminf and limsup of sets
- § 3.6 Some techniques in calculus

Def. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers. We say that the real number $L \in \mathbb{R}$ is the *limit* of this sequence³, namely,

$$\lim_{n\to\infty}x_n=L$$

if and only if for every real number $\epsilon > 0$, there exists a natural number N such that for all n > N, we have $|x_n - L| < \epsilon$.

Def'

$$\lim_{n\to\infty} x_n = L \iff \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \in \mathbb{N} \ s.t. \ (n \ge N \to |x_n - L| < \epsilon)$$

³In this case, we say that $\{x_n\}_{n=1}^{\infty}$ is *convergent*. Otherwise, we say that $\{x_n\}_{n=1}^{\infty}$ is *divergent*.

Def. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers. We say that the real number $L \in \mathbb{R}$ is the *limit* of this sequence³, namely,

$$\lim_{n\to\infty}x_n=L$$

if and only if for every real number $\epsilon > 0$, there exists a natural number N such that for all n > N, we have $|x_n - L| < \epsilon$.

Def'.

$$\lim_{n\to\infty} x_n = L \iff \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \in \mathbb{N} \ s.t. \ (n \ge N \to |x_n - L| < \epsilon)$$

³In this case, we say that $\{x_n\}_{n=1}^{\infty}$ is *convergent*. Otherwise, we say that $\{x_n\}_{n=1}^{\infty}$ is *divergent*.

E.g. $\{(n-1)/n\}_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty}(n-1)/n=1$.

$$\{(-1)^n\}_{n=1}^{\infty}$$
 is divergent

$$\left\{n^2\right\}_{n=1}^{\infty}$$
 is divergent.

E.g.
$$\{(n-1)/n\}_{n=1}^{\infty}$$
 is convergent and $\lim_{n\to\infty}(n-1)/n=1$.

$$\{(-1)^n\}_{n=1}^{\infty}$$
 is divergent.

$$\left\{n^2\right\}_{n=1}^{\infty}$$
 is divergent.

E.g. $\{(n-1)/n\}_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} (n-1)/n = 1$.

$$\{(-1)^n\}_{n=1}^{\infty}$$
 is divergent.

$$\left\{n^2\right\}_{n=1}^{\infty}$$
 is divergent.

- The sequence converges to a finite real number as in the previous definition.
- (ii) For each $M \in \mathbb{R}$, there exits an $N \in \mathbb{N}$ such that for all $n \geq N$, $x_n > M$
- (iii) For each $M \in \mathbb{R}$, there exits an $N \in \mathbb{N}$ such that for all n > N, $x_0 < M$

- (i) We say that the sequence converges in \mathbb{R} or the limit exits and is finite.
- (ii) We say the sequence converges to ∞ and write $\lim_{n\to\infty} x_n = \infty$.
- (iii) We say the sequence converges to $-\infty$ and write $\lim_{n\to\infty} x_n = -\infty$.

- The sequence converges to a finite real number as in the previous definition.
- (ii) For each $M \in \mathbb{R}$, there exits an $N \in \mathbb{N}$ such that for all n > N, $x_n > M$
- (iii) For each $M \in \mathbb{R}$, there exits an $N \in \mathbb{N}$ such that for all n > N, $x_n < M$

- (i) We say that the sequence converges in \mathbb{R} or the limit exits and is finite.
- (ii) We say the sequence converges to ∞ and write $\lim_{n\to\infty} x_n = \infty$.
- (iii) We say the sequence converges to $-\infty$ and write $\lim_{n\to\infty} x_n = -\infty$.

- Def. A sequence of real numbers $\{a_1, a_2, \dots\}$ is said to *converge in* \mathbb{R}^* if one of the following three conditions hold:
 - The sequence converges to a finite real number as in the previous definition.
 - (ii) For each $M \in \mathbb{R}$, there exits an $N \in \mathbb{N}$ such that for all n > N, $x_n > M$
- (iii) For each $M \in \mathbb{R}$, there exits an $N \in \mathbb{N}$ such that for all n > N, $x_n < M$

- (i) We say that the sequence converges in \mathbb{R} or the limit exits and is finite.
- (ii) We say the sequence converges to ∞ and write $\lim_{n\to\infty} x_n = \infty$.
- (iii) We say the sequence converges to $-\infty$ and write $\lim_{n\to\infty} x_n = -\infty$.

- Def. A sequence of real numbers $\{a_1, a_2, \dots\}$ is said to *converge in* \mathbb{R}^* if one of the following three conditions hold:
 - The sequence converges to a finite real number as in the previous definition.
 - (ii) For each $M \in \mathbb{R}$, there exits an $N \in \mathbb{N}$ such that for all n > N, $x_n > M$.
 - (iii) For each $M \in \mathbb{R}$, there exits an $N \in \mathbb{N}$ such that for all n > N, $x_n < M$

- (i) We say that the sequence converges in \mathbb{R} or the limit exits and is finite.
- (ii) We say the sequence converges to ∞ and write $\lim_{n\to\infty} x_n = \infty$.
- (iii) We say the sequence converges to $-\infty$ and write $\lim_{n\to\infty} x_n = -\infty$.

- The sequence converges to a finite real number as in the previous definition.
- (ii) For each $M \in \mathbb{R}$, there exits an $N \in \mathbb{N}$ such that for all $n \geq N$, $x_n > M$.
- (iii) For each $M \in \mathbb{R}$, there exits an $N \in \mathbb{N}$ such that for all $n \geq N$, $x_n < M$.

- (i) We say that the sequence converges in \mathbb{R} or the limit exits and is finite.
- (ii) We say the sequence converges to ∞ and write $\lim_{n\to\infty} x_n = \infty$.
- (iii) We say the sequence converges to $-\infty$ and write $\lim_{n\to\infty} x_n = -\infty$.

- The sequence converges to a finite real number as in the previous definition.
- (ii) For each $M \in \mathbb{R}$, there exits an $N \in \mathbb{N}$ such that for all n > N, $x_n > M$.
- (iii) For each $M \in \mathbb{R}$, there exits an $N \in \mathbb{N}$ such that for all $n \geq N$, $x_n < M$.

- (i) We say that the sequence converges in \mathbb{R} or the limit exits and is finite.
- (ii) We say the sequence converges to ∞ and write $\lim_{n\to\infty} x_n = \infty$.
- (iii) We say the sequence converges to $-\infty$ and write $\lim_{n\to\infty} x_n = -\infty$.

- The sequence converges to a finite real number as in the previous definition.
- (ii) For each $M \in \mathbb{R}$, there exits an $N \in \mathbb{N}$ such that for all n > N, $x_n > M$.
- (iii) For each $M \in \mathbb{R}$, there exits an $N \in \mathbb{N}$ such that for all $n \geq N$, $x_n < M$.

- (i) We say that the sequence converges in \mathbb{R} or the limit exits and is finite.
- (ii) We say the sequence converges to ∞ and write $\lim_{n\to\infty} x_n = \infty$.
- (iii) We say the sequence converges to $-\infty$ and write $\lim_{n\to\infty} x_n = -\infty$.

- The sequence converges to a finite real number as in the previous definition.
- (ii) For each $M \in \mathbb{R}$, there exits an $N \in \mathbb{N}$ such that for all $n \geq N$, $x_n > M$.
- (iii) For each $M \in \mathbb{R}$, there exits an $N \in \mathbb{N}$ such that for all $n \geq N$, $x_n < M$.

- (i) We say that the sequence converges in \mathbb{R} or the limit exits and is finite.
- (ii) We say the sequence converges to ∞ and write $\lim_{n\to\infty} x_n = \infty$.
- (iii) We say the sequence converges to $-\infty$ and write $\lim_{n\to\infty} x_n = -\infty$.

E.g. $\{(n-1)/n\}_{n=1}^{\infty}$ converges in \mathbb{R} .

$$\left\{ (-1)^n \right\}_{n=1}^{\infty}$$
 does not converge in \mathbb{R}^* .

$$\left\{n^2\right\}_{n=1}^{\infty}$$
 converges in \mathbb{R}^* and $\lim_{n\to\infty}n^2=\infty$.

E.g. $\{(n-1)/n\}_{n=1}^{\infty}$ converges in \mathbb{R} .

$$\{(-1)^n\}_{n=1}^{\infty}$$
 does not converge in \mathbb{R}^* .

$$\left\{n^2\right\}_{n=1}^{\infty}$$
 converges in \mathbb{R}^* and $\lim_{n\to\infty}n^2=\infty$

E.g. $\{(n-1)/n\}_{n=1}^{\infty}$ converges in \mathbb{R} .

$$\{(-1)^n\}_{n=1}^{\infty}$$
 does not converge in \mathbb{R}^* .

$$\left\{n^2\right\}_{n=1}^{\infty} \text{ converges in } \mathbb{R}^* \text{ and } \lim_{n \to \infty} n^2 = \infty.$$

Monotone sequence

Def. If $x_1 \le x_2 \le \cdots$, then $\{x_n\}_{n=1}^{\infty}$ is said to be *nondecreasing*.

If
$$x_1 \geq x_2 \geq \cdots$$
, then $\{x_n\}_{n=1}^{\infty}$ is said to be **nonincreasing**

 $\{X_n\}_{n=1}^{\infty}$ is said to be **monotone** if it is either nondecreasing or nonincreasing.

Monotone sequence

Def. If $x_1 \le x_2 \le \cdots$, then $\{x_n\}_{n=1}^{\infty}$ is said to be *nondecreasing*.

If
$$x_1 \ge x_2 \ge \cdots$$
, then $\{x_n\}_{n=1}^{\infty}$ is said to be *nonincreasing*.

 $\{X_n\}_{n=1}^{\infty}$ is said to be **monotone** if it is either nondecreasing or nonincreasing.

Monotone sequence

Def. If $x_1 \le x_2 \le \cdots$, then $\{x_n\}_{n=1}^{\infty}$ is said to be *nondecreasing*.

If
$$x_1 \ge x_2 \ge \cdots$$
, then $\{x_n\}_{n=1}^{\infty}$ is said to be *nonincreasing*.

 $\{x_n\}_{n=1}^{\infty}$ is said to be *monotone* if it is either nondecreasing or nonincreasing.

E.g. $\{(n-1)/n\}_{n=1}^{\infty}$ is monotone and it is nondecreasing.

$$\{(-1)^n\}_{n=1}^{\infty}$$
 is not monotone.

$$\{n^2\}_{n=1}^{\infty}$$
 is monotone and it is nondecreasing.

E.g. $\{(n-1)/n\}_{n=1}^{\infty}$ is monotone and it is nondecreasing.

$$\left\{(-1)^n\right\}_{n=1}^{\infty}$$
 is not monotone.

$$\left\{n^2\right\}_{n=1}^{\infty}$$
 is monotone and it is nondecreasing

E.g. $\{(n-1)/n\}_{n=1}^{\infty}$ is monotone and it is nondecreasing.

$$\{(-1)^n\}_{n=1}^{\infty}$$
 is not monotone.

$$\left\{n^2\right\}_{n=1}^{\infty}$$
 is monotone and it is nondecreasing.

Moreover, we have the following:

a) If $\{X_n\}_{n=1}^{\infty}$ is nondecreasing, then

$$\lim_{n\to\infty} x_n = \sup\{x_n: n\in\mathbb{N}\}.$$

In particular, $\{x_n\}_{n=1}^{\infty}$ converges in $\mathbb R$ if it is bounded above and is ∞ otherwise.

b) If $\{x_n\}_{n=1}^{\infty}$ is nonincreasing, then

$$\lim_{n\to\infty} x_n = \inf\{x_n: n\in\mathbb{N}\}.$$

Thm Any monotone sequence $\{x_n\}_{n=1}^{\infty}$ of real numbers converges in \mathbb{R}^* . Moreover, we have the following:

a) If $\{x_n\}_{\infty}^{\infty}$, is nondecreasing, then

$$\lim_{n\to\infty} x_n = \sup\{x_n: n\in\mathbb{N}\}$$

In particular, $\{x_n\}_{n=1}^{\infty}$ converges in $\mathbb R$ if it is bounded above and is ∞ otherwise.

b) If $\{x_n\}_{n=1}^{\infty}$ is nonincreasing, then

$$\lim_{n\to\infty} x_n = \inf\{x_n: n\in\mathbb{N}\}.$$

Moreover, we have the following:

a) If $\{x_n\}_{n=1}^{\infty}$ is nondecreasing, then

$$\lim_{n\to\infty} x_n = \sup\{x_n: \ n\in\mathbb{N}\}.$$

In particular, $\{x_n\}_{n=1}^{\infty}$ converges in $\mathbb R$ if it is bounded above and is ∞ otherwise.

b) If $\{x_n\}_{n=1}^{\infty}$ is nonincreasing, then

$$\lim_{n\to\infty} x_n = \inf\{x_n: n\in\mathbb{N}\}.$$

Moreover, we have the following:

a) If $\{x_n\}_{n=1}^{\infty}$ is nondecreasing, then

$$\lim_{n\to\infty} x_n = \sup\{x_n:\ n\in\mathbb{N}\}.$$

In particular, $\{x_n\}_{n=1}^{\infty}$ converges in $\mathbb R$ if it is bounded above and is ∞ otherwise.

b) If $\{x_n\}_{n=1}^{\infty}$ is nonincreasing, then

$$\lim_{n\to\infty} x_n = \inf\{x_n: n\in\mathbb{N}\}.$$

Moreover, we have the following:

a) If $\{x_n\}_{n=1}^{\infty}$ is nondecreasing, then

$$\lim_{n\to\infty} x_n = \sup\{x_n:\ n\in\mathbb{N}\}.$$

In particular, $\{x_n\}_{n=1}^{\infty}$ converges in $\mathbb R$ if it is bounded above and is ∞ otherwise.

b) If $\{x_n\}_{n=1}^{\infty}$ is nonincreasing, then

$$\lim_{n\to\infty} x_n = \inf\{x_n:\ n\in\mathbb{N}\}.$$

Moreover, we have the following:

a) If $\{x_n\}_{n=1}^{\infty}$ is nondecreasing, then

$$\lim_{n\to\infty} x_n = \sup\{x_n:\ n\in\mathbb{N}\}.$$

In particular, $\{x_n\}_{n=1}^{\infty}$ converges in $\mathbb R$ if it is bounded above and is ∞ otherwise.

b) If $\{x_n\}_{n=1}^{\infty}$ is nonincreasing, then

$$\lim_{n\to\infty} x_n = \inf\{x_n: \ n\in\mathbb{N}\}.$$

Proof. We will prove the case when $\{x_n\}_{n=1}^{\infty}$ is nondecreasing. The nonincreasing case can be proved in a similar way.

As $\sup_n x_n$ always exists in \mathbb{R}^* , we need to consider two cases:

Case I: $\sup_n x_n \in \mathbb{R}$

Case II: $\sup_n x_n = \infty$

Let's prove Case I here. Let $X = \sup_n x_n$. In order to show that $\lim_n x_n = x$, by monotonicity, we need to show that

$$\forall \epsilon > 0 \,\exists N \,\forall n \, \text{ s.t. } (n \geq N) \to (x - a_n \leq \epsilon).$$

Proof. We will prove the case when $\{x_n\}_{n=1}^{\infty}$ is nondecreasing. The nonincreasing case can be proved in a similar way.

As $\sup_{n} x_n$ always exists in \mathbb{R}^* , we need to consider two cases:

Case I: $\sup_n x_n \in \mathbb{R}$

Case II: $\sup_n x_n = \infty$

Let's prove Case I here. Let $x = \sup_n x_n$. In order to show that $\lim_n x_n = x$, by monotonicity, we need to show that

$$\forall \epsilon > 0 \,\exists N \,\forall n \, \text{ s.t. } (n \geq N) \to (x - a_n \leq \epsilon).$$

As $\sup_{n} X_{n}$ always exists in \mathbb{R}^{*} , we need to consider two cases:

Case I: $\sup_n x_n \in \mathbb{R}$

Case II: $\sup_n x_n = \infty$

Let's prove Case I here. Let $x = \sup_n x_n$. In order to show that $\lim_n x_n = x$, by monotonicity, we need to show that

$$\forall \epsilon > 0 \,\exists N \,\forall n \, \text{ s.t. } (n \geq N) \to (x - a_n \leq \epsilon).$$

As $\sup_{n} x_n$ always exists in \mathbb{R}^* , we need to consider two cases:

Case I: $\sup_n x_n \in \mathbb{R}$

Case II: $\sup_n x_n = \infty$

Let's prove Case I here. Let $X = \sup_n X_n$. In order to show that $\lim_n X_n = X$, by monotonicity, we need to show that

$$\forall \epsilon > 0 \,\exists N \,\forall n \, \text{ s.t. } (n \geq N) \to (x - a_n \leq \epsilon).$$

As $\sup_{n} X_{n}$ always exists in \mathbb{R}^{*} , we need to consider two cases:

Case I: $\sup_n x_n \in \mathbb{R}$

Case II: $\sup_{n} x_n = \infty$

Let's prove Case I here. Let $x = \sup_n x_n$. In order to show that $\lim_n x_n = x$, by monotonicity, we need to show that

$$\forall \epsilon > 0 \ \exists N \ \forall n \ \text{s.t.} \ (n \ge N) \to (x - a_n \le \epsilon).$$

As $\sup_{n} X_{n}$ always exists in \mathbb{R}^{*} , we need to consider two cases:

Case I: $\sup_{n} x_n \in \mathbb{R}$

Case II: $\sup_{n} x_n = \infty$

Let's prove Case I here. Let $x = \sup_n x_n$. In order to show that $\lim_n x_n = x$, by monotonicity, we need to show that

$$\forall \epsilon > 0 \ \exists N \ \forall n \ \text{s.t.} \ (n \ge N) \to (x - a_n \le \epsilon).$$

$$\exists \epsilon > 0 \ \forall N \ \exists n \ \text{s.t.} \ (n \geq N) \land (x - a_n > \epsilon).$$

Hence, there are infinitely many terms falling below $X - \epsilon$. Since $\{X_n\}$ is nondecreasing, this implies all a_n fall below $X - \epsilon$, i.e.,

$$a_n < x - \epsilon$$
, for all $n \ge 1$

which is equivalent to $\sup_n x_n < x - \epsilon$. This contradicts with the fact that $\sup_n x_n = x$.

Therefore

$$\lim_{n} X_{n} = X = \sup_{n} X_{n}.$$

20

$$\exists \epsilon > 0 \ \forall N \ \exists n \ \text{s.t.} \ (n \geq N) \land (x - a_n > \epsilon).$$

Hence, there are infinitely many terms falling below $\mathbf{x} - \mathbf{\epsilon}$.

Since $\{x_n\}$ is nondecreasing, this implies all a_n fall below $x - \epsilon$, i.e.,

$$a_n < x - \epsilon$$
, for all $n \ge 1$

which is equivalent to $\sup_n x_n < x - \epsilon$. This contradicts with the fact that $\sup_n x_n = x$.

Therefore

$$\lim_n X_n = X = \sup_n X_n$$

$$\exists \epsilon > 0 \ \forall N \ \exists n \ \text{s.t.} \ (n \geq N) \land (x - a_n > \epsilon).$$

Hence, there are infinitely many terms falling below $\textit{X}-\epsilon.$

Since $\{x_n\}$ is nondecreasing, this implies all a_n fall below $x - \epsilon$, i.e.,

$$a_n < x - \epsilon$$
, for all $n \ge 1$.

which is equivalent to $\sup_n x_n < x - \epsilon$. This contradicts with the fact that $\sup_n x_n = x$.

Therefore.

$$\lim_n X_n = X = \sup_n X_n.$$

$$\exists \epsilon > 0 \ \forall N \ \exists n \ \text{s.t.} \ (n \geq N) \land (x - a_n > \epsilon).$$

Hence, there are infinitely many terms falling below $X - \epsilon$.

Since $\{x_n\}$ is nondecreasing, this implies all a_n fall below $x - \epsilon$, i.e.,

$$a_n < x - \epsilon$$
, for all $n \ge 1$.

which is equivalent to $\sup_n x_n < x - \epsilon$. This contradicts with the fact that $\sup_n x_n = x$.

Therefore,

$$\lim_n x_n = x = \sup_n x_n.$$

E.g. $\{(n-1)/n\}_{n=1}^{\infty}$ is nondecreasing and converges in \mathbb{R} . It is bounded above.

$$\{(-1)^n\}_{n=1}^{\infty}$$
 is not monotone.

$$\left\{n^2\right\}_{n=1}^{\infty}$$
 is nondecreasing, does not converge in \mathbb{R} , converges in \mathbb{R}^* .

E.g. $\{(n-1)/n\}_{n=1}^{\infty}$ is nondecreasing and converges in \mathbb{R} . It is bounded above.

$$\{(-1)^n\}_{n=1}^{\infty}$$
 is not monotone.

 $\left\{n^2\right\}_{n=1}^{\infty}$ is nondecreasing, does not converge in $\mathbb{R},$ converges in \mathbb{R}^*

E.g. $\{(n-1)/n\}_{n=1}^{\infty}$ is nondecreasing and converges in \mathbb{R} . It is bounded above.

$$\{(-1)^n\}_{n=1}^{\infty}$$
 is not monotone.

$$\left\{n^2\right\}_{n=1}^{\infty}$$
 is nondecreasing, does not converge in $\mathbb{R},$ converges in $\mathbb{R}^*.$

Def. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

- a) A real number x is said to be a *cluster point* of $\{x_n\}_{n=1}^{\infty}$ if for each $\epsilon > 0$ and $N \in \mathbb{N}$, there exists an $n \geq N$ such that $|x x_n| < \epsilon$.
- b) ∞ is a cluster point of $\{x_n\}_{n=1}^{\infty}$ if for each $M \in \mathbb{R}$ and $N \in \mathbb{N}$, there exits an n > N such that $x_n > M$.
- c) $-\infty$ is a cluster point of $\{x_n\}_{n=1}^{\infty}$ if for each $M \in \mathbb{R}$ and $N \in \mathbb{N}$, there exits an $n \geq N$ such that $x_0 < M$.

$$\forall \epsilon \,\forall N \,\exists n \quad (n \ge N) \to (|x - x_n| < \epsilon). \tag{1}$$

Def. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

- a) A real number \overline{x} is said to be a *cluster point* of $\{x_n\}_{n=1}^{\infty}$ if for each $\epsilon > 0$ and $N \in \mathbb{N}$, there exists an $n \geq N$ such that $|x x_n| < \epsilon$.
- b) ∞ is a cluster point of $\{x_n\}_{n=1}^{\infty}$ if for each $M \in \mathbb{R}$ and $N \in \mathbb{N}$, there exits an $n \geq N$ such that $x_n > M$.
- c) $-\infty$ is a cluster point of $\{x_n\}_{n=1}^{\infty}$ if for each $M \in \mathbb{R}$ and $N \in \mathbb{N}$, there exits an $n \geq N$ such that $x_n < M$.

$$\forall \epsilon \,\forall N \,\exists n \quad (n \ge N) \to (|x - x_n| < \epsilon). \tag{1}$$

Def. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

- a) A real number x is said to be a cluster point of $\{x_n\}_{n=1}^{\infty}$ if for each $\epsilon > 0$ and $N \in \mathbb{N}$, there exists an $n \geq N$ such that $|x x_n| < \epsilon$.
- b) ∞ is a cluster point of $\{x_n\}_{n=1}^{\infty}$ if for each $M \in \mathbb{R}$ and $N \in \mathbb{N}$, there exits an $n \geq N$ such that $x_n > M$.
- c) $-\infty$ is a cluster point of $\{x_n\}_{n=1}^{\infty}$ if for each $M \in \mathbb{R}$ and $N \in \mathbb{N}$, there exits an $n \geq N$ such that $x_n < M$.

$$\forall \epsilon \,\forall N \,\exists n \quad (n \ge N) \to (|x - x_n| < \epsilon). \tag{1}$$

Def. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

- a) A real number x is said to be a cluster point of $\{x_n\}_{n=1}^{\infty}$ if for each $\epsilon > 0$ and $N \in \mathbb{N}$, there exists an $n \geq N$ such that $|x x_n| < \epsilon$.
- b) ∞ is a cluster point of $\{x_n\}_{n=1}^{\infty}$ if for each $M \in \mathbb{R}$ and $N \in \mathbb{N}$, there exits an $n \geq N$ such that $x_n > M$.
- c) $-\infty$ is a cluster point of $\{x_n\}_{n=1}^{\infty}$ if for each $M \in \mathbb{R}$ and $N \in \mathbb{N}$, there exits an $n \geq N$ such that $x_n < M$.

$$\forall \epsilon \,\forall N \,\exists n \quad (n \ge N) \to (|x - x_n| < \epsilon). \tag{1}$$

Def. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

- a) A real number x is said to be a cluster point of $\{x_n\}_{n=1}^{\infty}$ if for each $\epsilon > 0$ and $N \in \mathbb{N}$, there exists an $n \geq N$ such that $|x x_n| < \epsilon$.
- b) ∞ is a cluster point of $\{x_n\}_{n=1}^{\infty}$ if for each $M \in \mathbb{R}$ and $N \in \mathbb{N}$, there exits an $n \geq N$ such that $x_n > M$.
- c) $-\infty$ is a cluster point of $\{x_n\}_{n=1}^{\infty}$ if for each $M \in \mathbb{R}$ and $N \in \mathbb{N}$, there exits an $n \geq N$ such that $x_n < M$.

$$\forall \epsilon \,\forall N \,\exists n \quad (n \ge N) \to (|x - x_n| < \epsilon). \tag{1}$$

Def. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

- a) A real number x is said to be a cluster point of $\{x_n\}_{n=1}^{\infty}$ if for each $\epsilon > 0$ and $N \in \mathbb{N}$, there exists an $n \geq N$ such that $|x x_n| < \epsilon$.
- b) ∞ is a cluster point of $\{x_n\}_{n=1}^{\infty}$ if for each $M \in \mathbb{R}$ and $N \in \mathbb{N}$, there exits an $n \geq N$ such that $x_n > M$.
- c) $-\infty$ is a cluster point of $\{x_n\}_{n=1}^{\infty}$ if for each $M \in \mathbb{R}$ and $N \in \mathbb{N}$, there exits an $n \geq N$ such that $x_n < M$.

$$\forall \epsilon \ \forall N \ \exists n \quad (n \ge N) \to (|x - x_n| < \epsilon).$$
 (1)

E.g.1 $\{(n-1)/n\}_{n=1}^{\infty}$ has one cluster point: 1.

$$\{(-1)^n\}_{n=1}^{\infty}$$
 has two cluster points: -1 and $+1$.

$$\{n^2\}_{n=1}^{\infty}$$
 has one cluster point: $+\infty$.

E.g.1 $\{(n-1)/n\}_{n=1}^{\infty}$ has one cluster point: 1.

 $\{(-1)^n\}_{n=1}^{\infty}$ has two cluster points: -1 and +1.

 $\{n^2\}_{n=1}^{\infty}$ has one cluster point: $+\infty$

E.g.1 $\{(n-1)/n\}_{n=1}^{\infty}$ has one cluster point: 1.

 $\{(-1)^n\}_{n=1}^{\infty}$ has two cluster points: -1 and +1.

 $\left\{n^2\right\}_{n=1}^{\infty}$ has one cluster point: $+\infty$.

E.g.2 Consider the sequence $\{2, 1, 0, 2, 2, \frac{1}{2}, 2, 3, \frac{2}{3}, 2, 4, \frac{3}{4}, \cdots\}$, that is,

$$x_n = \begin{cases} (n-3)/n & \text{if } n \equiv 0 \pmod{3} \\ 2 & \text{if } n \equiv 1 \pmod{3} \\ (n+1)/3 & \text{if } n \equiv 2 \pmod{3} \end{cases}$$

It has three cluster points: $1, 2, \infty$.

E.g.3 Let $\{r_n\}_{n=1}^{\infty}$ be an enumeration of the rational numbers. By the density of the rational numbers, every extended real number is a cluster point of the sequence $\{r_n\}_{n=1}^{\infty}$.

Proof Suppose that $\{x_n\}$ is a convergent sequence and let x be its limit, namely, $\lim_{n\to\infty} x_n = x$. We need to prove:

- (1) x is a cluster point.
- (2) x is the only cluster point of $\{x_n\}$.

We also need to consider two cases:

Case I: $x \in \mathbb{R}$.

Case II: $x = \infty$ or $-\infty$.

We will focus on Case I only.

Now we first prove (1).

Proof Suppose that $\{x_n\}$ is a convergent sequence and let x be its limit, namely, $\lim_{n\to\infty}x_n=x$. We need to prove:

- (1) X is a cluster point
- (2) x is the only cluster point of $\{x_n\}$.

We also need to consider two cases:

Case I: $x \in \mathbb{R}$.

Case II: $X = \infty$ or $-\infty$.

Proof Suppose that $\{x_n\}$ is a convergent sequence and let x be its limit, namely, $\lim_{n\to\infty} x_n = x$. We need to prove:

- (1) x is a cluster point.
- (2) x is the only cluster point of $\{x_n\}$.

We also need to consider two cases:

Case I: $x \in \mathbb{R}$.

Case II: $X = \infty$ or $-\infty$.

Proof Suppose that $\{x_n\}$ is a convergent sequence and let x be its limit, namely, $\lim_{n\to\infty} x_n = x$. We need to prove:

- (1) x is a cluster point.
- (2) x is the only cluster point of $\{x_n\}$.

We also need to consider two cases:

Case I: $x \in \mathbb{R}$.

Case II: $X = \infty$ or $-\infty$.

Proof Suppose that $\{x_n\}$ is a convergent sequence and let x be its limit, namely, $\lim_{n\to\infty} x_n = x$. We need to prove:

- (1) x is a cluster point.
- (2) x is the only cluster point of $\{x_n\}$.

We also need to consider two cases:

Case I: $x \in \mathbb{R}$.

Case II: $X = \infty$ or $-\infty$.

We will focus on Case I only

Proof Suppose that $\{x_n\}$ is a convergent sequence and let x be its limit, namely, $\lim_{n\to\infty} x_n = x$. We need to prove:

- (1) x is a cluster point.
- (2) x is the only cluster point of $\{x_n\}$.

We also need to consider two cases:

Case I: $x \in \mathbb{R}$.

Case II: $X = \infty$ or $-\infty$

Proof Suppose that $\{x_n\}$ is a convergent sequence and let x be its limit, namely, $\lim_{n\to\infty} x_n = x$. We need to prove:

- (1) x is a cluster point.
- (2) X is the only cluster point of $\{X_n\}$.

We also need to consider two cases:

Case I: $x \in \mathbb{R}$.

Case II: $x = \infty$ or $-\infty$.

Proof Suppose that $\{x_n\}$ is a convergent sequence and let x be its limit, namely, $\lim_{n\to\infty} x_n = x$. We need to prove:

- (1) x is a cluster point.
- (2) X is the only cluster point of $\{X_n\}$.

We also need to consider two cases:

Case I: $x \in \mathbb{R}$.

Case II: $x = \infty$ or $-\infty$.

We will focus on Case I only.

Now we first prove (1).

Proof Suppose that $\{x_n\}$ is a convergent sequence and let x be its limit, namely, $\lim_{n\to\infty} x_n = x$. We need to prove:

- (1) x is a cluster point.
- (2) X is the only cluster point of $\{X_n\}$.

We also need to consider two cases:

Case I: $x \in \mathbb{R}$.

Case II: $x = \infty$ or $-\infty$.

We will focus on Case I only.

Now we first prove (1).

Once for all rest
$$\lim_{n} x_{n} = x \qquad \forall \epsilon \; \exists N \; \forall n \; (n \geq N) \to (|x_{n} - x| < \epsilon)$$

$$x \text{ is a cluster point of } \{x_{n}\} \qquad \forall \epsilon \; \forall \widetilde{N} \; \exists \widetilde{n} \; (\widetilde{n} \geq \widetilde{N}) \land (|x_{\widetilde{n}} - x| < \epsilon)$$
 Infinite games

Once for all rest
$$\lim_{n} x_{n} = x \qquad \forall \epsilon \; \exists N \; \forall n \; (n \geq N) \to (|x_{n} - x| < \epsilon)$$

$$x \text{ is a cluster point of } \{x_{n}\} \qquad \forall \epsilon \; \forall \widetilde{N} \; \exists \widetilde{n} \; (\widetilde{n} \geq \widetilde{N}) \land (|x_{\widetilde{n}} - x| < \epsilon)$$
 Infinite games

Once for all rest $\lim_{n} x_{n} = x \qquad \forall \epsilon \; \exists N \; \forall n \; \; (n \geq N) \to (|x_{n} - x| < \epsilon)$ $\downarrow ??$ $x \text{ is a cluster point of } \{x_{n}\}$ $\forall \epsilon \; \forall \widetilde{N} \; \exists \widetilde{n} \; \; (\widetilde{n} \geq \widetilde{N}) \land (|x_{\widetilde{n}} - x| < \epsilon)$ Infinite games

Once for all rest
$$\forall \epsilon \; \exists N \; \forall n \; (n \geq N) \to (|x_n - x| < \epsilon)$$

$$\forall \epsilon \; \exists N \; \forall n \; (n \geq N) \to (|x_n - x| < \epsilon)$$

$$\forall \epsilon \; \forall \widetilde{N} \; \exists \widetilde{n} \; (\widetilde{n} \geq \widetilde{N}) \land (|x_{\widetilde{n}} - x| < \epsilon)$$
 Infinite games

(1) is proved by choosing any $\tilde{n} \ge \max \left(\tilde{N}, N \right)$.

By choosing any $\epsilon < |x - y|/2$, we see that

- 1. In the ϵ -neighborhood of γ , there are infinitely many terms.
- 2. In the ϵ -neighborhood of x, all but finite many terms are here.

Cluster pt. Limit pt.

By choosing any $\epsilon < |x - y|/2$, we see that

- 1. In the ϵ -neighborhood of γ , there are infinitely many terms.
- 2. In the ϵ -neighborhood of X, all but finite many terms are here. Contradiction!

Cluster pt. Limit pt.

By choosing any $\epsilon < |x - y|/2$, we see that

- 1. In the ϵ -neighborhood of y, there are infinitely many terms.
- 2. In the ϵ -neighborhood of X, all but finite many terms are here. Contradiction!

Cluster pt. Limit pt.

By choosing any $\epsilon < |x - y|/2$, we see that

- 1. In the ϵ -neighborhood of y, there are infinitely many terms.
- 2. In the ϵ -neighborhood of x, all but finite many terms are here.

Contradiction!

Cluster pt. Limit pt.

By choosing any $\epsilon < |x - y|/2$, we see that

- 1. In the ϵ -neighborhood of y, there are infinitely many terms.
- 2. In the $\epsilon\text{-neighborhood}$ of $\boldsymbol{x},$ all but finite many terms are here.

Contradiction!

Cluster pt. Limit pt.

By choosing any $\epsilon < |x - y|/2$, we see that

- 1. In the ϵ -neighborhood of y, there are infinitely many terms.
- 2. In the ϵ -neighborhood of x, all but finite many terms are here.

Contradiction!

A few more properties

- 1. A sequence is convergent iff each subsequence is convergent.
- 2. Sandwich theorem: If $x_n \le c_n \le b_n$ for all n > N and $x_n \to L$ and $b_n \to L$, then $c_n \to L$.

A few more properties

- 1. A sequence is convergent iff each subsequence is convergent.
- 2. Sandwich theorem: If $x_n \le c_n \le b_n$ for all n > N and $x_n \to L$ and $b_n \to L$, then $c_n \to L$.

Limit superior and limit inferior

Def. The *limit inferior* of a sequence $\{x_n\}_{n=1}^{\infty}$ is defined as

$$\liminf_{n\to\infty} x_n := \sup_n \left(\inf_{m\geq n} x_m\right) \in \mathbb{R}^*.$$

The *limit superior* of $\{x_n\}_{n=1}^{\infty}$ is defined as

$$\limsup_{n\to\infty} x_n := \inf_n \left(\sup_{m\geq n} a_m\right) \in \mathbb{R}^*$$

Limit superior and limit inferior

Def. The *limit inferior* of a sequence $\{x_n\}_{n=1}^{\infty}$ is defined as

$$\liminf_{n\to\infty} x_n := \sup_n \left(\inf_{m\geq n} x_m\right) \in \mathbb{R}^*.$$

The *limit superior* of $\{x_n\}_{n=1}^{\infty}$ is defined as

$$\limsup_{n\to\infty} x_n := \inf_n \left(\sup_{m\geq n} a_m\right) \in \mathbb{R}^*.$$

Remark Since the sequences $\{y_n\}_{n=1}^{\infty}$ and $\{z_n\}_{n=1}^{\infty}$ defined as

$$y_n := \sup_{m \geq n} x_m \quad \text{and} \quad z_n := \inf_{m \geq n} x_m,$$

are, respectively, nonincreasing and nondecreasing, we see that

$$\inf_{n} y_{n} = \inf_{n} \sup_{m \geq n} x_{m} = \limsup_{x \to \infty} x_{n}$$
$$\sup_{n} z_{n} = \sup_{n} \inf_{m \geq n} x_{m} = \liminf_{x \to \infty} x_{n}.$$

Hence.

$$\limsup_{n\to\infty} x_n = \lim_{n\to\infty} \sup_{m\geq n} x_m \quad \text{and} \quad \liminf_{n\to\infty} x_n = \lim_{n\to\infty} \inf_{m\geq n} x_m$$

Remark Since the sequences $\{y_n\}_{n=1}^{\infty}$ and $\{z_n\}_{n=1}^{\infty}$ defined as

$$y_n := \sup_{m \geq n} x_m$$
 and $z_n := \inf_{m \geq n} x_m$,

are, respectively, nonincreasing and nondecreasing, we see that

$$\inf_{n} y_{n} = \inf_{n} \sup_{m \geq n} x_{m} = \limsup_{x \to \infty} x_{n}$$

$$\sup_{n} z_{n} = \sup_{n} \inf_{m \geq n} x_{m} = \liminf_{x \to \infty} x_{n}.$$

Hence

$$\limsup_{n\to\infty} x_n = \lim_{n\to\infty} \sup_{m\geq n} x_m \quad \text{and} \quad \liminf_{n\to\infty} x_n = \lim_{n\to\infty} \inf_{m\geq n} x_m$$

Remark Since the sequences $\{y_n\}_{n=1}^{\infty}$ and $\{z_n\}_{n=1}^{\infty}$ defined as

$$y_n := \sup_{m \geq n} x_m$$
 and $z_n := \inf_{m \geq n} x_m$,

are, respectively, nonincreasing and nondecreasing, we see that

$$\inf_{n} y_{n} = \inf_{n} \sup_{m \geq n} x_{m} = \limsup_{x \to \infty} x_{n}$$

$$\sup_{n} z_{n} = \sup_{n} \inf_{m \geq n} x_{m} = \liminf_{x \to \infty} x_{n}.$$

Hence,

$$\limsup_{n\to\infty} x_n = \lim_{n\to\infty} \sup_{m\geq n} x_m \quad \text{and} \quad \liminf_{n\to\infty} x_n = \lim_{n\to\infty} \inf_{m\geq n} x_m.$$

⁴Image from Wikipedia.

Thm $\limsup_{n\to\infty} x_n = x \in \mathbb{R}$ if and only if x is the smallest real number such that for any positiver real number $\epsilon > 0$, there exits a natural number N such that $x_n < x + \epsilon$ for all n > N.

 $\liminf_{n\to\infty} x_n = x \in \mathbb{R}$ if and only if x is the largest real number such that for any positiver real number $\epsilon > 0$, there exits a natural number N such that $x_n > x + \epsilon$ for all n > N.

Thm $\limsup_{n\to\infty} x_n = x \in \mathbb{R}$ if and only if x is the smallest real number such that for any positiver real number $\epsilon > 0$, there exits a natural number N such that $x_n < x + \epsilon$ for all n > N.

 $\lim \inf_{n\to\infty} x_n = x \in \mathbb{R}$ if and only if x is the largest real number such that for any positiver real number $\epsilon > 0$, there exits a natural number N such that $x_n > x + \epsilon$ for all n > N.

Thm $\limsup_{n\to\infty} x_n = x \in \mathbb{R}$ if and only if x is the smallest real number such that for any positiver real number $\epsilon > 0$, there exits a natural number N such that $x_n < x + \epsilon$ for all n > N.

 $\liminf_{n\to\infty} x_n = x \in \mathbb{R}$ if and only if x is the largest real number such that for any positiver real number $\epsilon > 0$, there exits a natural number N such that $x_n > x + \epsilon$ for all n > N.

Thm $\limsup_{n\to\infty} x_n = x \in \mathbb{R}$ if and only if x is the smallest real number such that for any positiver real number $\epsilon > 0$, there exits a natural number N such that $x_n < x + \epsilon$ for all n > N.

 $\liminf_{n\to\infty} x_n = x \in \mathbb{R}$ if and only if x is the largest real number such that for any positiver real number $\epsilon > 0$, there exits a natural number N such that $x_n > x + \epsilon$ for all n > N.

$$\liminf_{n\to\infty} x_n = -1 \quad \text{and} \quad \limsup_{n\to\infty} x_n = 1.$$

Variations

$$X_n = (-1)^n \frac{n+5}{n}$$

$$x_n = 3 + \sin(n\pi) \frac{n^2}{n^2 + 8}$$

Similar examples

$$x_n = \sin\left(\frac{n\pi}{3}\right)$$

$$\liminf_{n\to\infty} x_n = -1 \quad \text{and} \quad \limsup_{n\to\infty} x_n = 1.$$

Variations

$$X_n = (-1)^n \frac{n+5}{n}$$

$$x_n = 3 + \sin(n\pi) \frac{n^2}{n^2 + 8}$$

Similar examples

$$x_n = \sin\left(\frac{n\pi}{3}\right)$$

$$\liminf_{n\to\infty} x_n = -1 \quad \text{and} \quad \limsup_{n\to\infty} x_n = 1.$$

Variations

$$x_n = (-1)^n \frac{n+5}{n}$$

$$x_n = 3 + \sin(n\pi) \frac{n^2}{n^2 + 8}$$

Similar examples

$$x_n = \sin\left(\frac{n\pi}{3}\right)$$

$$\liminf_{n\to\infty} x_n = -1 \quad \text{and} \quad \limsup_{n\to\infty} x_n = 1.$$

Variations

$$x_n = (-1)^n \frac{n+5}{n}$$

$$x_n = 3 + \sin(n\pi) \frac{n^2}{n^2 + 8}$$

Similar examples

$$x_n = \sin\left(\frac{n\pi}{3}\right)$$

$$\liminf_{n\to\infty} x_n = -1 \quad \text{and} \quad \limsup_{n\to\infty} x_n = 1.$$

Variations

$$x_n = (-1)^n \frac{n+5}{n}$$

$$x_n = 3 + \sin(n\pi) \frac{n^2}{n^2 + 8}$$

Similar examples

$$x_n = \sin\left(\frac{n\pi}{3}\right)$$

$$\liminf_{n\to\infty} x_n = -1 \quad \text{and} \quad \limsup_{n\to\infty} x_n = 1.$$

Variations

$$x_n = (-1)^n \frac{n+5}{n}$$

$$x_n = 3 + \sin(n\pi) \frac{n^2}{n^2 + 8}$$

Similar examples

$$x_n = \sin\left(\frac{n\pi}{3}\right)$$

E.g.2 Consider the sequence $\{2, 1, 0, 2, 2, \frac{1}{2}, 2, 3, \frac{2}{3}, 2, 4, \frac{3}{4}, \cdots\}$, that is,

$$x_n = \begin{cases} (n-3)/n & \text{if } n \equiv 0 \pmod{3} \\ 2 & \text{if } n \equiv 1 \pmod{3} \\ (n+1)/3 & \text{if } n \equiv 2 \pmod{3} \end{cases}$$

It has three cluster points: $1, 2, \infty$, among which

$$\lim_{n\to\infty}\inf x_n=1\quad \text{and}\quad \limsup_{n\to\infty}x_n=\infty.$$

E.g.3 Let $\{r_n\}_{n=1}^{\infty}$ be an enumeration of the rational numbers. By the density of the rational numbers, every extended real number is a cluster point of the sequence $\{r_n\}_{n=1}^{\infty}$, amount which

$$\liminf_{n\to\infty} r_n = -\infty$$
 and $\limsup_{n\to\infty} r_n = +\infty$

E.g.2 Consider the sequence $\{2, 1, 0, 2, 2, \frac{1}{2}, 2, 3, \frac{2}{3}, 2, 4, \frac{3}{4}, \cdots\}$, that is,

$$x_n = \begin{cases} (n-3)/n & \text{if } n \equiv 0 \pmod{3} \\ 2 & \text{if } n \equiv 1 \pmod{3} \\ (n+1)/3 & \text{if } n \equiv 2 \pmod{3} \end{cases}$$

It has three cluster points: $1, 2, \infty$, among which

$$\liminf_{n\to\infty} x_n = 1 \quad \text{and} \quad \limsup_{n\to\infty} x_n = \infty.$$

E.g.3 Let $\{r_n\}_{n=1}^{\infty}$ be an enumeration of the rational numbers. By the density of the rational numbers, every extended real number is a cluster point of the sequence $\{r_n\}_{n=1}^{\infty}$, amount which

$$\lim_{n\to\infty}\inf r_n=-\infty\quad\text{and}\quad \limsup_{n\to\infty}r_n=+\infty.$$

- (a) $\liminf x_n$ is the smallest cluster point of $\{x_n\}_{n=1}^{\infty}$.
- (b) $\limsup x_n$ is the largest cluster point of $\{x_n\}_{n=1}^{\infty}$.

- (a) $\liminf x_n$ is the smallest cluster point of $\{x_n\}_{n=1}^{\infty}$.
- (b) $\limsup x_n$ is the largest cluster point of $\{x_n\}_{n=1}^{\infty}$.

- (a) $\liminf x_n$ is the smallest cluster point of $\{x_n\}_{n=1}^{\infty}$.
- (b) $\limsup x_n$ is the largest cluster point of $\{x_n\}_{n=1}^{\infty}$.

- (a) $\liminf x_n$ is the smallest cluster point of $\{x_n\}_{n=1}^{\infty}$.
- (b) $\limsup x_n$ is the largest cluster point of $\{x_n\}_{n=1}^{\infty}$.

Properties

1.

$$\inf_n X_n \leq \liminf_{n \to \infty} X_n \leq \limsup_{n \to \infty} X_n \leq \sup_n X_n$$

2. A sequence $\{x_n\}_{n=1}^{\infty}$ of real numbers **converges in** \mathbb{R}^* if and only if it has exactly one cluster point. In such cases, the limit of the sequence is the unique cluster point. In other words,

$$\liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n = c \iff \lim_{n\to\infty} x_n = c.$$

Properties

1.

$$\inf_n X_n \leq \liminf_{n \to \infty} X_n \leq \limsup_{n \to \infty} X_n \leq \sup_n X_n$$

2. A sequence $\{x_n\}_{n=1}^{\infty}$ of real numbers converges in \mathbb{R}^* if and only if it has exactly one cluster point. In such cases, the limit of the sequence is the unique cluster point. In other words,

$$\lim_{n\to\infty}\inf x_n=\limsup_{n\to\infty}x_n=c\quad\Longleftrightarrow\quad \lim_{n\to\infty}x_n=c.$$

E.g. For all $\epsilon > 0$, the interval

$$\left(\liminf_{n\to\infty} x_n - \epsilon, \ \limsup_{n\to\infty} x_n + \epsilon\right)$$

contains all but finitely many numbers in $\{x_n\}$.

⁵Image is from Wikipedia.

E.g. (Continued) Similarly, if

$$\liminf_{n\to\infty} x_n < \limsup_{n\to\infty} x_n,$$

then for all ϵ with

$$0 < \epsilon < \frac{1}{2} \left(\limsup_{n \to \infty} x_n - \liminf_{n \to \infty} x_n \right),\,$$

infinitely many numbers in $\{x_n\}$ fall outside of the interval

$$\left(\liminf_{n\to\infty} x_n - \epsilon, \lim \sup_{n\to\infty} x_n + \epsilon\right).$$

As we have seen that

A sequence of real numbers converges in \mathbb{R}^* if and only if it has exactly one cluster point.

There is another famous criterion for a sequence to converge in $\mathbb R$

Cauchy Criterion

As we have seen that

A sequence of real numbers converges in \mathbb{R}^* if and only if it has exactly one cluster point.

There is another famous criterion for a sequence to converge in \mathbb{R}

Cauchy Criterion

As we have seen that

A sequence of real numbers converges in \mathbb{R}^* if and only if it has exactly one cluster point.

There is another famous criterion for a sequence to converge in \mathbb{R} :

Cauchy Criterion

⁶Images from Wikipedia.

Def.' A sequence $\{x_n\}_{n=1}^{\infty}$ is *Cauchy* iff

$$\forall \epsilon > 0 \,\exists N \in \mathbb{N} \,\forall m, n \geq N \,\{|x_n - x_m| < \epsilon\}.$$

Thm (Cauchy Criterion)

A sequence of real numbers converges in \mathbb{R} iff it is Cauchy.

Def.' A sequence $\{x_n\}_{n=1}^{\infty}$ is *Cauchy* iff

$$\forall \epsilon > 0 \,\exists N \in \mathbb{N} \,\forall m, n \geq N \,\{|x_n - x_m| < \epsilon\}.$$

Thm (Cauchy Criterion)

A sequence of real numbers converges in $\mathbb R$ iff it is Cauchy.

Def.' A sequence $\{x_n\}_{n=1}^{\infty}$ is *Cauchy* iff

$$\forall \epsilon > 0 \,\exists N \in \mathbb{N} \,\forall m, n \geq N \,\{|x_n - x_m| < \epsilon\}.$$

Thm (Cauchy Criterion)

A sequence of real numbers converges in \mathbb{R} iff it is Cauchy.

Def.' A sequence $\{x_n\}_{n=1}^{\infty}$ is *Cauchy* iff

$$\forall \epsilon > 0 \,\exists N \in \mathbb{N} \,\forall m, n \geq N \,\{|x_n - x_m| < \epsilon\}.$$

Thm (Cauchy Criterion)

A sequence of real numbers converges in \mathbb{R} iff it is Cauchy.

- (i) The consecutive terms become arbitrarily close to each other as $n \to \infty$.
- (ii) The sequence is not Cauchy.

Sol. (i) This is because

$$a_{n+1} - a_n = \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}} \to 0$$
, as $n \to \infty$.

$$\neg (\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall m, n \ge N \ \{|x_n - x_m| < \epsilon\}$$

$$\iff \exists \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists m, n \ge N \ \{|x_n - x_m| > \epsilon\}$$

- (i) The consecutive terms become arbitrarily close to each other as $n \to \infty$.
- (ii) The sequence is not Cauchy.

Sol. (i) This is because

$$a_{n+1} - a_n = \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}} \to 0$$
, as $n \to \infty$.

$$\neg (\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall m, n \ge N \ \{|x_n - x_m| < \epsilon\}$$

$$\iff \exists \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists m, n \ge N \ \{|x_n - x_m| > \epsilon\}$$

- (i) The consecutive terms become arbitrarily close to each other as $n \to \infty$.
- (ii) The sequence is not Cauchy.

Sol. (i) This is because

$$a_{n+1} - a_n = \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}} \to 0$$
, as $n \to \infty$.

$$\neg (\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall m, n \ge N \ \{|x_n - x_m| < \epsilon\}\}$$

$$\iff \exists \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists m, n \ge N \ \{|x_n - x_m| > \epsilon\}\}$$

- (i) The consecutive terms become arbitrarily close to each other as $n \to \infty$.
- (ii) The sequence is not Cauchy.

Sol. (i) This is because

$$\textbf{\textit{a}}_{n+1}-\textbf{\textit{a}}_n=\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{2\sqrt{n}}\to 0,\quad \mathrm{as}\ n\to\infty.$$

$$\neg (\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall m, n \ge N \ \{|x_n - x_m| < \epsilon\})$$

$$\iff \exists \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists m, n \ge N \ \{|x_n - x_m| > \epsilon\}$$

- (i) The consecutive terms become arbitrarily close to each other as $n \to \infty$.
- (ii) The sequence is not Cauchy.

Sol. (i) This is because

$$a_{n+1} - a_n = \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}} \to 0$$
, as $n \to \infty$.

(ii) To show $\{a_n\}_{n=1}^{\infty}$ is not Cauchy, let's negate the statement as follows:

$$\neg (\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall m, n \ge N \ \{|x_n - x_m| < \epsilon\})$$

$$\iff \exists \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists m, n \ge N \ \{|x_n - x_m| > \epsilon\}$$

53

Sol. (Continued) Let's choose $\epsilon = 1$. For any $N \in \mathbb{N}$, we need to find $m, n \geq N$ such that

$$|\mathbf{a}_n - \mathbf{a}_m| \geq 1.$$

$$|a_n - a_m| = \sqrt{4N} - \sqrt{N} = \sqrt{N}(\sqrt{4} - 1) = \sqrt{N} > 1 = \epsilon.$$

Sol. (Continued) Let's choose $\epsilon=1.$ For any $N\in\mathbb{N},$ we need to find $m,n\geq N$ such that

$$|a_n - a_m| \ge 1.$$

Indeed, let's choose m = N and n = 4N

$$|a_n - a_m| = \sqrt{4N} - \sqrt{N} = \sqrt{N}(\sqrt{4} - 1) = \sqrt{N} \ge 1 = \epsilon.$$

E.g.

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=\boldsymbol{e}.$$

Variation

$$\lim_{n \to \infty} \left(1 + \operatorname{Small} \right)^{\operatorname{Large}} = e^{\lim_{n \to \infty} \operatorname{Small} \times \operatorname{Larg}}$$

E.g.

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=\boldsymbol{e}.$$

Variation

$$\lim_{n\to\infty} \left(1+\mathrm{Small}\right)^{\mathrm{Large}} = \boldsymbol{e}^{\lim_{n\to\infty} \mathrm{Small}\times \mathrm{Large}}$$

HW Ex. 2.15, 2.17 (a), 2.18, 2.19, 2.22, 2.29.

Chapter 3. Real Number System and Calculus

- § 3.1 Real number system
- § 3.2 Sequences of real numbers
- § 3.3 Open and closed sets
- § 3.4 Real-valued functions
- § 3.5 Liminf and limsup of sets
- § 3.6 Some techniques in calculus

Def. A subset $O \subset \mathbb{R}$ is said to be an *open set* if for each $x \in O$, there exits an r > 0 such that $(x - r, x + r) \subset O$.

E.g. (a, b) with $-\infty \le a < b \le \infty$ is an open set, which are called *open* interval intervals.

(0,1] is not an open set.

Let K be a nonempty countable subset of \mathbb{R} . Then K cannot be an open set. For example, \mathbb{N} , \mathbb{Q} , \mathbb{Z} are not open sets.

 \mathbb{Q}^{c} – the set of irrational numbers – is not an open set

- E.g. (a, b) with $-\infty \le a < b \le \infty$ is an open set, which are called *open* interval intervals.
 - (0,1] is not an open set.

Let K be a nonempty countable subset of \mathbb{R} . Then K cannot be an open set. For example, \mathbb{N} , \mathbb{Q} , \mathbb{Z} are not open sets.

 \mathbb{Q}^c – the set of irrational numbers – is not an open set

E.g. (a, b) with $-\infty \le a < b \le \infty$ is an open set, which are called *open interval intervals*.

(0,1] is not an open set.

Let K be a nonempty countable subset of \mathbb{R} . Then K cannot be an open set. For example, \mathbb{N} , \mathbb{Q} , \mathbb{Z} are not open sets.

 \mathbb{Q}^c – the set of irrational numbers – is not an open set

E.g. (a,b) with $-\infty \le a < b \le \infty$ is an open set, which are called *open interval intervals*.

(0,1] is not an open set.

Let K be a nonempty countable subset of \mathbb{R} . Then K cannot be an open set. For example, \mathbb{N} , \mathbb{Q} , \mathbb{Z} are not open sets.

 \mathbb{Q}^{c} – the set of irrational numbers – is not an open set.

Properties

- 1. \mathbb{R} and \emptyset are open sets.
- 2. If A and B are open sets, so is $A \cap B$. (finite intersection)
- 3. If $\{O_i\}_{i\in I}$ is a collection of open sets, then $\bigcup_{i\in I} O_i$ is open.

(arbitrary union)

Properties

- 1. \mathbb{R} and \emptyset are open sets.
- 2. If A and B are open sets, so is $A \cap B$.

(finite intersection)

3. If $\{O_i\}_{i\in I}$ is a collection of open sets, then $\bigcup_{i\in I} O_i$ is open

(arbitrary union)

Properties

- 1. \mathbb{R} and \emptyset are open sets.
- 2. If A and B are open sets, so is $A \cap B$. (finite intersection)
- 3. If $\{O_i\}_{i\in I}$ is a collection of open sets, then $\bigcup_{i\in I} O_i$ is open.

(arbitrary union)

Def. Let $E \subset \mathbb{R}$. A real number x is called a *limit point* of E if for each $\epsilon > 0$, there is a $y \in E$ such that $|y - x| < \epsilon$.

The set of all limit point of E, denoted \overline{E} , is called the **closure** of E.

Def. Let $E \subset \mathbb{R}$. A real number x is called a *limit point* of E if for each $\epsilon > 0$, there is a $y \in E$ such that $|y - x| < \epsilon$.

The set of all limit point of E, denoted \overline{E} , is called the *closure* of E.

E.g. $\overline{\mathbb{R}} = \mathbb{R}$ and $\overline{\emptyset} = \emptyset$.

Let $a, b \in \mathbb{R}$ such that a < b. Then

$$\overline{(a,b)} = \overline{(a,b]} = \overline{[a,b)} = \overline{[a,b]} = [a,b].$$

$$\overline{\mathbb{N}} = \mathbb{N} \text{ and } \overline{\mathbb{Z}} = \mathbb{Z}.$$

$$\overline{\mathbb{Q}} = \mathbb{R} \text{ and } \overline{\mathbb{Q}^c} = \mathbb{R}$$

E.g.
$$\overline{\mathbb{R}} = \mathbb{R}$$
 and $\overline{\emptyset} = \emptyset$.

Let $a, b \in \mathbb{R}$ such that a < b. Then

$$\overline{(a,b)} = \overline{(a,b]} = \overline{[a,b)} = \overline{[a,b]} = [a,b].$$

$$\overline{\mathbb{N}} = \mathbb{N} \text{ and } \overline{\mathbb{Z}} = \mathbb{Z}.$$

$$\overline{\mathbb{Q}} = \mathbb{R} \text{ and } \overline{\mathbb{Q}^c} = \mathbb{R}$$

E.g.
$$\overline{\mathbb{R}} = \mathbb{R}$$
 and $\overline{\emptyset} = \emptyset$.

Let $a, b \in \mathbb{R}$ such that a < b. Then

$$\overline{(a,b)} = \overline{(a,b]} = \overline{[a,b)} = \overline{[a,b]} = [a,b].$$

$$\overline{\mathbb{N}} = \mathbb{N} \text{ and } \overline{\mathbb{Z}} = \mathbb{Z}.$$

$$\overline{\mathbb{Q}} = \mathbb{R} \text{ and } \overline{\mathbb{Q}^c} = \mathbb{R}$$

E.g.
$$\overline{\mathbb{R}} = \mathbb{R}$$
 and $\overline{\emptyset} = \emptyset$.

Let $a, b \in \mathbb{R}$ such that a < b. Then

$$\overline{(a,b)} = \overline{(a,b]} = \overline{[a,b)} = \overline{[a,b]} = [a,b].$$

$$\overline{\mathbb{N}} = \mathbb{N} \text{ and } \overline{\mathbb{Z}} = \mathbb{Z}.$$

$$\overline{\mathbb{Q}} = \mathbb{R} \text{ and } \overline{\mathbb{Q}^c} = \mathbb{R}.$$

E.g.
$$\overline{\mathbb{R}} = \mathbb{R}$$
 and $\overline{\emptyset} = \emptyset$.

Let $a, b \in \mathbb{R}$ such that $a < \underline{b}$. Then

$$\overline{(a,b)} = \overline{(a,b]} = \overline{[a,b)} = \overline{[a,b]} = [a,b].$$

$$\overline{\mathbb{N}} = \mathbb{N} \text{ and } \overline{\mathbb{Z}} = \mathbb{Z}.$$

$$\overline{\mathbb{Q}} = \mathbb{R} \text{ and } \overline{\mathbb{Q}^c} = \mathbb{R}.$$

Def. A subset $F \subset \mathbb{R}$ is said to be a *closed set* if $\overline{F} = F$, i.e, F contains all its limit points.

E.g. \mathbb{R} and \emptyset are both open and closed.

Intervals such as [a, b], $[a, \infty)$, $(-\infty, b]$ with $a, b \in \mathbb{R}$ are closed sets. They are called *closed intervals*.

 \mathbb{N} and \mathbb{Z} are closed sets.

The sets of rationals \mathbb{Q} and irrationals \mathbb{Q}^c are neither open nor close.

If A is a finite subset of \mathbb{R} , then A is a close set.

E.g. \mathbb{R} and \emptyset are both open and closed.

Intervals such as [a, b], $[a, \infty)$, $(-\infty, b]$ with $a, b \in \mathbb{R}$ are closed sets. They are called *closed intervals*.

 \mathbb{N} and \mathbb{Z} are closed sets.

The sets of rationals \mathbb{Q} and irrationals \mathbb{Q}^c are neither open nor close.

If A is a finite subset of \mathbb{R} , then A is a close set.

E.g. \mathbb{R} and \emptyset are both open and closed.

Intervals such as [a,b], $[a,\infty)$, $(-\infty,b]$ with $a,b\in\mathbb{R}$ are closed sets. They are called *closed intervals*.

 \mathbb{N} and \mathbb{Z} are closed sets.

The sets of rationals \mathbb{Q} and irrationals \mathbb{Q}^c are neither open nor close.

If A is a finite subset of \mathbb{R} , then A is a close set.

E.g. \mathbb{R} and \emptyset are both open and closed.

Intervals such as [a, b], $[a, \infty)$, $(-\infty, b]$ with $a, b \in \mathbb{R}$ are closed sets. They are called *closed intervals*.

 \mathbb{N} and \mathbb{Z} are closed sets.

The sets of rationals \mathbb{Q} and irrationals \mathbb{Q}^c are neither open nor close.

If A is a finite subset of \mathbb{R} , then A is a close set.

E.g. \mathbb{R} and \emptyset are both open and closed.

Intervals such as [a, b], $[a, \infty)$, $(-\infty, b]$ with $a, b \in \mathbb{R}$ are closed sets. They are called *closed intervals*.

 \mathbb{N} and \mathbb{Z} are closed sets.

The sets of rationals $\mathbb Q$ and irrationals $\mathbb Q^c$ are neither open nor close.

If A is a finite subset of \mathbb{R} , then A is a close set.

0. A set is open if and only if its complement is closed.

1

- 1. \mathbb{R} and \emptyset are closed sets.
- 2. If A and B are closed sets, so is $A \cup B$. (finite union
- 3. If $\{F_i\}_{i\in I}$ is a collection of closed sets, then $\bigcap_{i\in I} F_i$ is closed.

0. A set is open if and only if its complement is closed.

1

- 1. \mathbb{R} and \emptyset are closed sets.
- 2. If A and B are closed sets, so is $A \cup B$. (finite

3. If $\{F_i\}_{i\in I}$ is a collection of closed sets, then $\bigcap_{i\in I} F_i$ is closed.

0. A set is open if and only if its complement is closed.

1

- 1. \mathbb{R} and \emptyset are closed sets.
- 2. If A and B are closed sets, so is $A \cup B$. (finite union)
- 3. If $\{F_i\}_{i\in I}$ is a collection of closed sets, then $\bigcap_{i\in I} F_i$ is closed.

0. A set is open if and only if its complement is closed.

1

- 1. \mathbb{R} and \emptyset are closed sets.
- 2. If A and B are closed sets, so is $A \cup B$. (finite union)
- 3. If $\{F_i\}_{i\in I}$ is a collection of closed sets, then $\bigcap_{i\in I} F_i$ is closed.

Def. Let $G \subset D \subset \mathbb{R}$.

(a) G is said to be open in D if for each $x \in G$, there is an r > 0 such that $(x - r, x + r) \cap D \subset G.$

(b) G is said to be **closed** in D if $D \setminus E$ is open in D

Def. Let $G \subset D \subset \mathbb{R}$.

(a) G is said to be open in D if for each $x \in G$, there is an r > 0 such that $(x - r, x + r) \cap D \subset G.$

(b) G is said to be **closed** in D if $D \setminus E$ is open in D

Def. Let $G \subset D \subset \mathbb{R}$.

(a) G is said to be open in D if for each $x \in G$, there is an r > 0 such that $(x - r, x + r) \cap D \subset G.$

(b) G is said to be *closed in D* if $D \setminus E$ is open in D.

E.g.

D	G	Is G open in $\mathbb R$	Is G open in D
[0, 2]	[0, 1)	Neither open nor closed	open
[0, 2]	[0, 1]	closed	closed
N	$A\subset\mathbb{N}$	closed	open

Chapter 3. Real Number System and Calculus

- § 3.1 Real number system
- § 3.2 Sequences of real numbers
- § 3.3 Open and closed sets
- § 3.4 Real-valued functions
- § 3.5 Liminf and limsup of sets
- § 3.6 Some techniques in calculus

Def. A *real-valued function* is a function whose range is a subset of \mathbb{R} . If $f: \Omega \to \mathbb{R}$, we say that f is a *real-valued function on* Ω .

Def. Algebraic operations: Let f, g be real-valued functions on Ω and let $\alpha \in \mathbb{R}$. Then for all $x \in \Omega$,

$$(f+g)(x) := f(x) + g(x)$$
$$(\alpha f)(x) := \alpha f(x)$$
$$(f \cdot g)(x) := f(x)g(x)$$

Def. A *real-valued function* is a function whose range is a subset of \mathbb{R} . If $f: \Omega \to \mathbb{R}$, we say that f is a *real-valued function on* Ω .

Def. Algebraic operations: Let f, g be real-valued functions on Ω and let $\alpha \in \mathbb{R}$. Then for all $x \in \Omega$,

$$(f+g)(x) := f(x) + g(x)$$
$$(\alpha f)(x) := \alpha f(x)$$
$$(f \cdot g)(x) := f(x)g(x)$$

(Local) Continuity

Def. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. f is *continuous at a point c* if the limit of f(x), as x approaches c, exits and is equal to f(c).

Def'. (Epsion-delta definition) The function f is **continuous at a point c** i

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in \mathbb{R} \ \{ |x - c| \le \delta \to |f(x) - f(c)| \le \epsilon \}$$

(Local) Continuity

Def. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. f is continuous at a point c if the limit of f(x), as x approaches c, exits and is equal to f(c).

Def'. (Epsion-delta definition) The function f is continuous at a point c if

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall \mathbf{x} \in \mathbb{R} \ \{ |\mathbf{x} - \mathbf{c}| \le \delta \to |f(\mathbf{x}) - f(\mathbf{c})| \le \epsilon \}$$

Here is a more abstract definition of continuous functions:

Thm let $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$. Then f is continuous on D if and only if $f^{-1}(O)$ is open in D for each open set O in \mathbb{R} .

Here is a more abstract definition of continuous functions:

Thm let $D \subset \mathbb{R}$ and $f : D \to \mathbb{R}$. Then f is continuous on D if and only if $f^{-1}(O)$ is open in D for each open set O in \mathbb{R} .

Def. f is left-continuous at c if Del. f is right-continuous a

$$\lim_{x\to c+} f(x) = f(c)$$

Def. f is left-continuous at c if

Def. f is right-continuous at c i

$$\lim_{x\to c+} f(x) = f(c)$$

 $\lim_{x \to c -} f(x) = f(c)$

Def. f is left-continuous at c if

$$\lim_{x\to c+} f(x) = f(c)$$

$$\lim_{x\to c-}f(x)=f(c)$$

Def. f is left-continuous at c if

$$\lim_{x\to c+} f(x) = f(c)$$

Def. f is right-continuous at c if

$$\lim_{x\to c-}f(x)=f(c)$$

f is upper semi-continuous at x_0

$$\liminf_{x\to x_0} f(x) \ge f(x_0)$$

 $\limsup f(x) \le f(x_0)$

 $f(x_0)$ can be all points at or below the blue point

 $I(x_0)$ can be all points at or above the blue point.

f is upper semi-continuous at x_0

$$\liminf_{x\to x_0} f(x) \ge f(x_0)$$

 $\limsup f(x) \le f(x_0)$

 $f(x_0)$ can be all points at or below the blue point

 $I(x_0)$ can be all points at or above the blue point.

$\liminf_{x\to x_0} f(x) \ge f(x_0)$

 $f(x_0)$ can be all points at or below the blue point.

ls <mark>upper semi-continuous at x</mark>o

$\liminf_{x\to x_0} f(x) \ge f(x_0)$

 $f(x_0)$ can be all points at or below the blue point.

ls <mark>upper semi-continuous at x</mark>o

$$\liminf_{x \to x_0} f(x) \ge f(x_0)$$

 $f(x_0)$ can be all points at or below the blue point.

f is upper semi-continuous at x_0 if

$$\limsup_{x\to x_0} f(x) \le f(x_0)$$

 $f(x_0)$ can be all points at or above the blue point

$$\liminf_{x \to x_0} f(x) \ge f(x_0)$$

 $f(x_0)$ can be all points at or below the blue point.

f is upper semi-continuous at x_0 if

$$\limsup_{x\to x_0} f(x) \le f(x_0)$$

 $f(x_0)$ can be all points at or above the blue point

$$\liminf_{x \to x_0} f(x) \ge f(x_0)$$

 $f(x_0)$ can be all points at or below the blue point.

f is upper semi-continuous at x_0 if

 $f(x_0)$ can be all points at or above the blue point.

(Global) Uniform Continuity

Def. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Let I be an interval of \mathbb{R} . Then f is uniformly continuous over I if for every real number $\epsilon > 0$, there exits a real number $\delta > 0$ such that for every $x, y \in I$ with $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$.

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in I \ \forall y \in I \ \{|x - y| < \delta \rightarrow |f(x) - f(y)| < \epsilon \}$$

(Global) Uniform Continuity

Def. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Let I be an interval of \mathbb{R} . Then f is uniformly continuous over I if for every real number $\epsilon > 0$, there exits a real number $\delta > 0$ such that for every $x, y \in I$ with $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$.

$$\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x \in I \,\forall y \in I \,\{|x - y| < \delta \rightarrow |f(x) - f(y)| < \epsilon\}$$

$$\forall \epsilon > 0 \ \forall x \in I \ \exists \delta > 0 \ \{|x - x_0| < \delta \rightarrow |f(x) - f(x_0)| < \epsilon\}$$

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x \in I \; \forall y \in I \; \{|x - y| < \delta \to |f(x) - f(y)| < \epsilon \}$$
 Π_3 -form

$$\forall \epsilon > 0 \ \forall x \in I \ \exists \delta > 0 \ \{|x - x_0| < \delta \to |f(x) - f(x_0)| < \epsilon\}$$
 Π_2 -form

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in I \ \forall y \in I \ \{|x - y| < \delta \to |f(x) - f(y)| < \epsilon\}$$

$$\Pi_3\text{-form}$$

$$\forall \epsilon > 0 \ \forall x \in I \ \exists \delta > 0 \ \{|x - x_0| < \delta \to |f(x) - f(x_0)| < \epsilon\}$$
 Π_2 -form

$$\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x \in I \,\forall y \in I \,\{|x - y| < \delta \to |f(x) - f(y)| < \epsilon\}$$

$$\forall \epsilon > 0 \ \forall x \in I \ \exists \delta > 0 \ \{|x - x_0| < \delta \to |f(x) - f(x_0)| < \epsilon\}$$

$$\Pi_2\text{-form}$$

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x \in I \; \forall y \in I \; \{|x-y| < \delta \to |f(x)-f(y)| < \epsilon\}$$

$$\Pi_3\text{-form}$$

- Prop. 1 Every uniformly continuous function is continuous, but the converse does not hold.
 - Ex. $f(x) = x^3$ is a continuous functions on $I = \mathbb{R}$. Show that f is no uniformly continuous on $I = \mathbb{R}$.
 - Sol. In order to show f is not uniformly continuous on I, we need to show

$$\neg \bigg(\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x \in I \,\forall y \in I \,\{ |x - y| < \delta \to |f(x) - f(y)| < \epsilon \} \bigg)$$

- $\Leftrightarrow \exists \epsilon > 0 \,\forall \delta > 0 \,\exists x \in I \,\exists y \in I \,\neg \, \{|x y| < \delta \rightarrow |f(x) f(y)| < \epsilon \}$
- $\Leftrightarrow \exists \epsilon > 0 \ \forall \delta > 0 \ \exists x \in I \ \exists y \in I \ \neg \{ \neg \{ |x y| < \delta \} \lor |f(x) f(y)| < \epsilon \}$
- $\Leftrightarrow \exists \epsilon > 0 \ \forall \delta > 0 \ \exists x \in I \ \exists y \in I \ \{|x y| < \delta \land |f(x) f(y)| \ge \epsilon\}$

Properties

- Prop. 1 Every uniformly continuous function is continuous, but the converse does not hold.
 - Ex. $f(x) = x^3$ is a continuous functions on $I = \mathbb{R}$. Show that f is not uniformly continuous on $I = \mathbb{R}$.
 - Sol. In order to show f is not uniformly continuous on I, we need to show

$$\neg \left(\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x \in I \,\forall y \in I \,\left\{ |x - y| < \delta \to |f(x) - f(y)| < \epsilon \right\} \right)$$

- $\Leftrightarrow \exists \epsilon > 0 \,\forall \delta > 0 \,\exists x \in I \,\exists y \in I \,\neg \, \{|x y| < \delta \rightarrow |f(x) f(y)| < \epsilon\}$
- $\Leftrightarrow \exists \epsilon > 0 \ \forall \delta > 0 \ \exists x \in I \ \exists y \in I \ \neg \{ \neg \{ |x y| < \delta \} \ \lor |f(x) f(y)| < \epsilon \}$
- $\Leftrightarrow \exists \epsilon > 0 \ \forall \delta > 0 \ \exists x \in I \ \exists y \in I \ \{|x y| < \delta \land |f(x) f(y)| \ge \epsilon$

Properties

- Prop. 1 Every uniformly continuous function is continuous, but the converse does not hold.
 - Ex. $f(x) = x^3$ is a continuous functions on $I = \mathbb{R}$. Show that f is not uniformly continuous on $I = \mathbb{R}$.
 - Sol. In order to show f is not uniformly continuous on I, we need to show

$$\neg \left(\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x \in I \,\forall y \in I \,\left\{ |x - y| < \delta \to |f(x) - f(y)| < \epsilon \right\} \right)$$

- $\Leftrightarrow \exists \epsilon > 0 \,\forall \delta > 0 \,\exists x \in I \,\exists y \in I \,\neg \, \{|x y| < \delta \rightarrow |f(x) f(y)| < \epsilon\}$
- $\Leftrightarrow \exists \epsilon > 0 \,\forall \delta > 0 \,\exists x \in I \,\exists y \in I \,\neg \, \{\neg \,\{|x y| < \delta\} \,\lor \,|f(x) f(y)| < \epsilon\}$
- $\Leftrightarrow \exists \epsilon > 0 \, \forall \delta > 0 \, \exists x \in I \, \exists y \in I \, \{ |x y| < \delta \wedge |f(x) f(y)| \ge \epsilon \}$

Sol. (Continued) In other words, we need to find $\epsilon > 0$ such that no matter how small $\delta > 0$ is chosen, we can always find out $x, y \in I$ with $|x - y| < \delta$ and $|f(x) - f(y)| \ge \epsilon$.

Let's choose $\epsilon = 1$. For any $\delta > 0$, we can choose

$$x = \frac{1}{\sqrt{\delta}}$$
 and $y = \frac{1}{\sqrt{\delta}} + \frac{\delta}{3}$.

Then we see that

$$|x - y| \le \delta$$

and

$$|f(x) - f(y)| = |x^3 - y^3|$$

$$= |x - y| \times |x^2 + xy + y^2|$$

$$\ge \frac{\delta}{3} \times \left(\frac{1}{(\sqrt{\delta})^2} + \frac{1}{\sqrt{\delta}} \times \frac{1}{\sqrt{\delta}} + \frac{1}{(\sqrt{\delta})^2}\right)$$

Sol. (Continued) In other words, we need to find $\epsilon > 0$ such that no matter how small $\delta > 0$ is chosen, we can always find out $x, y \in I$ with $|x - y| < \delta$ and $|f(x) - f(y)| \ge \epsilon$.

Let's choose $\epsilon = 1$. For any $\delta > 0$, we can choose

$$x = \frac{1}{\sqrt{\delta}}$$
 and $y = \frac{1}{\sqrt{\delta}} + \frac{\delta}{3}$.

Then we see that

$$|x-y| \leq \delta$$

and

$$|f(x) - f(y)| = |x^3 - y^3|$$

$$= |x - y| \times |x^2 + xy + y^2|$$

$$\ge \frac{\delta}{3} \times \left(\frac{1}{(\sqrt{\delta})^2} + \frac{1}{\sqrt{\delta}} \times \frac{1}{\sqrt{\delta}} + \frac{1}{(\sqrt{\delta})^2}\right)$$

$$= 1 = \epsilon.$$

77

Prop. 2 If l is compact ⁷ set such as l = [a, b], then

f is continuous at all points in $I \iff f$ is uniformly continuous on I.

E.g. f(x) = 1/x is not uniformly continuous on (0,1). $f(x) = x^3$ is uniformly continuous on [-1,1] but neither on \mathbb{R} nor on $[0,\infty)$.

⁷namely, bounded and closed

Prop. 2 If l is compact ⁷ set such as l = [a, b], then

f is continuous at all points in $I \iff f$ is uniformly continuous on I.

E.g. f(x) = 1/x is not uniformly continuous on (0, 1).

 $f(x) = x^3$ is uniformly continuous on [-1, 1] but neither on \mathbb{R} nor on $[0, \infty)$.

⁷namely, bounded and closed

Prop. 2 If I is compact ⁷ set such as I = [a, b], then

f is continuous at all points in $I \iff f$ is uniformly continuous on I.

E.g. f(x) = 1/x is not uniformly continuous on (0, 1).

 $f(x) = x^3$ is uniformly continuous on [-1,1] but neither on $\mathbb R$ nor on $[0,\infty)$.

⁷namely, bounded and closed

Why does it matter at all?

Answer: Uniformly continuous functions map Cauchy sequences to Cauchy sequences.

Thm Let $f: \mathbb{R} \to \mathbb{R}$ be a uniformly continuous function and let $\{x_n\}_{n=1}^{\infty}$ be a Cauchy sequence. Then $\{f(x_n)\}_{n=1}^{\infty}$ is also a Cauchy sequence.

Why does it matter at all?

Answer: Uniformly continuous functions map Cauchy sequences to Cauchy sequences.

Thm Let $f: \mathbb{R} \to \mathbb{R}$ be a uniformly continuous function and let $\{x_n\}_{n=1}^{\infty}$ be a Cauchy sequence. Then $\{f(x_n)\}_{n=1}^{\infty}$ is also a Cauchy sequence.

Notation For $D \subset \mathbb{R}$, let C(D) denote the set of continuous functions defined on D.

Thm (Algebra of C(D)) Let $D \subset \mathbb{R}$. Then the collection C(D) of continuous functions on D is an algebra of functions, that is, for all $f, g \in C(D)$ and $\alpha \in \mathbb{R}$,

$$f + g \in C(D)$$

 $\alpha f \in C(D)$
 $f \cdot g \in C(D)$

Remark Can one add one more operation in this algebra: Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions in C(D), under what condition the limit $f_n \to f$ is closed?

Notation For $D \subset \mathbb{R}$, let C(D) denote the set of continuous functions defined on D.

Thm $(Algebra\ of\ C(D))$ Let $D \subset \mathbb{R}$. Then the collection C(D) of continuous functions on D is an algebra of functions, that is, for all $f,g\in C(D)$ and $\alpha\in\mathbb{R}$,

$$f + g \in C(D)$$

 $\alpha f \in C(D)$
 $f \cdot g \in C(D)$

Remark Can one add one more operation in this algebra: Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions in C(D), under what condition the limit $f_n \to f$ is closed?

Notation For $D \subset \mathbb{R}$, let C(D) denote the set of continuous functions defined on D.

Thm (Algebra of C(D)) Let $D \subset \mathbb{R}$. Then the collection C(D) of continuous functions on D is an algebra of functions, that is, for all $f, g \in C(D)$ and $\alpha \in \mathbb{R}$,

$$f + g \in C(D)$$

 $\alpha f \in C(D)$
 $f \cdot g \in C(D)$

Remark Can one add one more operation in this algebra: Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions in C(D), under what condition the limit $f_n \to f$ is closed?

Def. $\{f_n\}_{n=1}^{\infty}$ be a sequence of real-valued functions on Ω , namely, $f_n:\Omega\to\mathbb{R}$ for each $n\in\mathbb{N}$.

We say that $\{f_n\}_{n=1}^{\infty}$ converges pointwise on Ω if for each $x \in \Omega$, the sequence $\{f_n(x)\}_{n=1}^{\infty}$ of real numbers converges in \mathbb{R} .

Def. $\{f_n\}_{n=1}^{\infty}$ be a sequence of real-valued functions on Ω , namely, $f_n: \Omega \to \mathbb{R}$ for each $n \in \mathbb{N}$.

We say that $\{f_n\}_{n=1}^{\infty}$ converges pointwise on Ω if for each $x \in \Omega$, the sequence $\{f_n(x)\}_{n=1}^{\infty}$ of real numbers converges in \mathbb{R} .

E.g.

- (a) $f_n \in C(\mathbb{R})$ defined as $f_n = (1 + x/n)^n$. Then f_n converges pointwise on \mathbb{R} to $f(x) = e^x$. It is clear that $f \in C(\mathbb{R})$.
- (b) Let D = [0, 1] and $f_n \in C(D)$ be defined as $f_n = x^n$. Then f_n converges pointwise to

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

It is clear that $f \not\in C(D)$

E.g.

- (a) $f_n \in C(\mathbb{R})$ defined as $f_n = (1 + x/n)^n$. Then f_n converges pointwise on \mathbb{R} to $f(x) = e^x$. It is clear that $f \in C(\mathbb{R})$.
- (b) Let D = [0, 1] and $f_n \in C(D)$ be defined as $f_n = x^n$. Then f_n converges pointwise to

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

It is clear that $f \notin C(D)$.

E.g.

- (a) $f_n \in C(\mathbb{R})$ defined as $f_n = (1 + x/n)^n$. Then f_n converges pointwise on \mathbb{R} to $f(x) = e^x$. It is clear that $f \in C(\mathbb{R})$.
- (b) Let D = [0,1] and $f_n \in C(D)$ be defined as $f_n = x^n$. Then f_n converges pointwise to

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

It is clear that $f \not\in C(D)$.

Def. Let \mathcal{F} be a collection of real-valued functions on Ω . We say that \mathcal{F} is closed under pointwise limits if whenever $\{f_n\}_{n=1}^{\infty} \subset \mathcal{F}$ and $f_n \to f$ pointwise on Ω , then $f \in \mathcal{F}$.

We say that $\{f_n\}_{n=1}^{\infty}$ converges uniformly to the real-valued function f on Ω , if

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N \ \forall x \in \Omega \ |f_n(x) - f(x)| < \epsilon$$

written as $f_n \to f$ uniformly.

$$\forall x \in \Omega \mid \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N \mid |f_n(x) - f(x)| < \epsilon$$

We say that $\{f_n\}_{n=1}^{\infty}$ converges uniformly to the real-valued function f on Ω , if

$$\boxed{\forall \epsilon > 0 \,\exists N \in \mathbb{N} \,\forall n \geq N} \,\forall x \in \Omega \,|f_n(x) - f(x)| < \epsilon,$$

written as $f_n \to f$ uniformly.

$$\forall x \in \Omega \ \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N \ |f_n(x) - f(x)| < \epsilon$$

We say that $\{f_n\}_{n=1}^{\infty}$ converges uniformly to the real-valued function f on Ω , if

$$\boxed{\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N} \ \forall x \in \Omega \ |f_n(x) - f(x)| < \epsilon,$$

written as $f_n \to f$ uniformly.

$$\forall x \in \Omega \ \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N \ |f_n(x) - f(x)| < \epsilon$$

We say that $\{f_n\}_{n=1}^{\infty}$ converges uniformly to the real-valued function f on Ω , if

$$\boxed{\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N} \ \forall x \in \Omega \ |f_n(x) - f(x)| < \epsilon,$$

written as $f_n \to f$ uniformly.

$$\forall x \in \Omega \ \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N \ ||f_n(x) - f(x)| < \epsilon,$$

Prop. Let $D \subset \mathbb{R}$. Suppose that $\{f_n\}_{n=1}^{\infty} \subset C(D)$ and that $f_n \to f$ uniformly. Then $f \in C(D)$.

Proof.

Prop. Let $D \subset \mathbb{R}$. Suppose that $\{f_n\}_{n=1}^{\infty} \subset C(D)$ and that $f_n \to f$ uniformly. Then $f \in C(D)$.

Proof.

Prop. Let $D \subset \mathbb{R}$. Suppose that $\{f_n\}_{n=1}^{\infty} \subset C(D)$ and that $f_n \to f$ uniformly. Then $f \in C(D)$.

Proof.

Therefore, the collection C(D) of real-valued continuous functions is closed under: +, \cdot , scalar multiplication, and uniform convergence.

Chapter 3. Real Number System and Calculus

- § 3.1 Real number system
- § 3.2 Sequences of real numbers
- § 3.3 Open and closed sets
- § 3.4 Real-valued functions
- § 3.5 Liminf and limsup of sets
- § 3.6 Some techniques in calculus

Some part of subsection is taken from Chapter 1 Section 4 of $\it P.\,Billingsley,$ Probability and Measure, Wiley, 1995.

Def. For a sequence $A_1, A_2 \cdots$ of sets, define the *limits superior and inferior* of the sequence $\{A_n\}$ as

$$\lim\sup_{n}A_{n}:=\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_{k},\quad \text{and}\quad \lim\inf_{n}A_{n}:=\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}A_{k}.$$

Remark Both $\limsup_{n} A_n$ and $\liminf_{n} A_n$ are sets

Def. For a sequence $A_1, A_2 \cdots$ of sets, define the *limits superior and inferior* of the sequence $\{A_n\}$ as

$$\limsup_n A_n := \bigcap_{n=1}^\infty \bigcup_{k=n}^\infty A_k, \quad \text{and} \quad \liminf_n A_n := \bigcup_{n=1}^\infty \bigcap_{k=n}^\infty A_k.$$

Remark Both $\limsup_n A_n$ and $\liminf_n A_n$ are sets.

$$\begin{array}{c|c} \text{set} & \text{logic} \\ \hline \cap & \forall \\ \bigcup & \exists \end{array}$$

$$\omega \in \limsup_{n} A_{n} \iff \omega \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}$$

$$\iff (\forall n \geq 1) \ (\exists k \geq n) \ \omega \in A_{k}$$

$$\iff \omega \text{ lies in } \text{infinitely many of the } A_{n}$$

$$\lim \sup_{n} A_{n} = [A_{n} \text{ i.o.}]$$

$$\begin{array}{c|c} \text{set} & \text{logic} \\ \hline \bigcap & \forall \\ \bigcup & \exists \end{array}$$

$$\omega \in \limsup_{n} A_{n} \iff \omega \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}$$

$$\iff (\forall n \geq 1) (\exists k \geq n) \ \omega \in A_{k}$$

$$\iff \omega \text{ lies in } \underline{infinitely many of the } A_{n}$$

$$\lim\sup_n A_n = [A_n \quad \text{i.o.}]$$

$$\begin{array}{c|c} \text{set} & \text{logic} \\ \hline \bigcap & \forall \\ \bigcup & \exists \end{array}$$

$$\omega \in \limsup_{n} A_{n} \iff \omega \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}$$

$$\iff (\forall n \geq 1) (\exists k \geq n) \ \omega \in A_{k}$$

$$\iff \omega \text{ lies in } \text{infinitely many of the } A_{n}$$

$$\lim\sup_n A_n = [A_n \quad \text{i.o.}]$$

$$\begin{array}{c|c} \text{set} & \text{logic} \\ \hline \bigcap & \forall \\ \bigcup & \exists \end{array}$$

$$\omega \in \liminf_{n} A_{n} \iff \omega \in \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}$$
 $\iff (\exists n \geq 1) \ (\forall k \geq n) \ \omega \in A_{k}$
 $\iff \omega \text{ lies in } \textit{all but finitely many of the } A_{n}$

$$\liminf_n A_n = [A_n \text{ all but finitely many}]$$

$$\begin{array}{c|c} \text{set} & \text{logic} \\ \hline \bigcap & \forall \\ \bigcup & \exists \end{array}$$

$$\omega \in \liminf_{n} A_{n} \iff \omega \in \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}$$

$$\iff (\exists n \geq 1) \ (\forall k \geq n) \ \omega \in A_{k}$$

$$\iff \omega \text{ lies in all but finitely many of the } A_{n}$$

$$\lim \inf_{n} A_{n} = [A_{n} \quad \text{all but finitely many}]$$

$$\begin{array}{c|c} \text{set} & \text{logic} \\ \hline \bigcap & \forall \\ \bigcup & \exists \end{array}$$

$$\omega \in \liminf_{n} A_{n} \iff \omega \in \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}$$

$$\iff (\exists n \geq 1) \ (\forall k \geq n) \ \omega \in A_{k}$$

$$\iff \omega \text{ lies in all but finitely many of the } A_{n}$$

$$\lim\inf_n A_n = \left[\begin{array}{cc} A_n & \text{all but finitely many} \end{array} \right]$$

Def. If both $\limsup_n A_n$ and $\liminf_n A_n$ exist and are equal, then the *limit set* of the sequence $\{A_n\}$ is defined to be

$$\lim_n A_n := \lim \sup_n A_n = \lim \inf_n A_n,$$

which is also often written as $A_n \to A$

Def. If both $\limsup_n A_n$ and $\liminf_n A_n$ exist and are equal, then the *limit set* of the sequence $\{A_n\}$ is defined to be

$$\lim_n A_n := \lim \sup_n A_n = \lim \inf_n A_n,$$

which is also often written as $A_n \to A$.

Properties

(i) By De Morgan's law,

$$\lim\inf_{n}A_{n}=\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}A_{k}=\bigcup_{n=1}^{\infty}\left(\bigcup_{k=n}^{\infty}A_{k}^{c}\right)^{c}=\left(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_{k}^{c}\right)^{c}=\left(\limsup_{n}A_{n}^{c}\right)^{c}$$

Properties

(ii) Monotone increasing and decreasing sets:

$$\begin{pmatrix}
\bigcap_{k=n}^{\infty} A_k \\
\bigcap_{k=n}^{\infty} A_k
\end{pmatrix} \uparrow \quad \left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k\right) = \lim \inf_{n} A_n \implies \lim_{n \to \infty} \bigcap_{k=n}^{\infty} A_k = \lim \inf_{n} A_n$$

$$\bigcap_{k=n}^{\infty} A_k$$

$$\bigcap_{n=1}^{\infty} A_k$$

$$\bigcap_{k=n}^{\infty} A_k$$

$$\bigcap_{n=1}^{\infty} A_k$$

$$\bigcap_{k=n}^{\infty} A_k$$

$$\bigcap_{n=1}^{\infty} A_k$$

$$\bigcap_{k=n}^{\infty} A_k$$

$$\bigcap_{n=1}^{\infty} A_k$$

14

Interpretation Under a Probability Space

Suppose that $\{A_n\}$ are events from a probability space (Ω, \mathbb{P})

(i) The above Property (ii) can be translated to a probability statement:

$$\mathbb{P}\left(\bigcap_{k=n}^{\infty} A_{k}\right) \uparrow \mathbb{P}\left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}\right) = \mathbb{P}\left(\liminf_{n} A_{n}\right)$$

$$\downarrow \land \qquad \liminf_{n \to \infty} \mathbb{P}(A_{n})$$

$$\downarrow \land \qquad \lim_{n \to \infty} \sup \mathbb{P}(A_{n})$$

$$\downarrow \land \qquad \lim_{n \to \infty} \sup \mathbb{P}(A_{n})$$

$$\mathbb{P}\left(\bigcup_{k=n}^{\infty} A_{k}\right) \downarrow \mathbb{P}\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}\right) = \mathbb{P}\left(\limsup_{n} A_{n}\right)$$

(ii) Borel Cantelli lemma

$$\sum_{n} \mathbb{P}(A_n) \text{ converges} \quad \Rightarrow \quad \mathbb{P}(A_n \text{ i.o.}) = 0.$$

Proof.

$$\begin{aligned} 1 &\geq \mathbb{P}\left(A_n^c \text{ all but finitely many}\right) = 1 - \mathbb{P}\left(\left\{A_n^c \text{ all but finitely many}\right\}^c\right) \\ &= 1 - \mathbb{P}\left(A_n \text{ i.o.}\right) \\ &= 1 - \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{k \geq n} A_k\right) \\ &\geq 1 - \lim_{n \to \infty} \sum_{k=n}^{\infty} \mathbb{P}(A_k) \\ &= 1 - 0 = 1. \end{aligned}$$

(ii) Borel Cantelli lemma

$$\sum_n \mathbb{P}(A_n) \ \mathrm{converges} \quad \Rightarrow \quad \mathbb{P}(A_n \ \mathrm{i.o.}) = 0.$$

Proof.

$$\begin{split} 1 \geq \mathbb{P}\left(A_n^c \text{ all but finitely many}\right) &= 1 - \mathbb{P}\left(\left\{A_n^c \text{ all but finitely many}\right\}^c\right) \\ &= 1 - \mathbb{P}\left(A_n \text{ i.o.}\right) \\ &= 1 - \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{k \geq n} A_k\right) \\ &\geq 1 - \lim_{n \to \infty} \sum_{k = n}^{\infty} \mathbb{P}(A_k) \\ &= 1 - 0 = 1. \end{split}$$

Exercise

(i) Let
$$A_n = \left(-\frac{1}{n}, 1 - \frac{1}{n}\right]$$
:

$$A_{1} = (-1,0]$$

$$A_{2} = \left(-\frac{1}{2}, \frac{1}{2}\right]$$

$$A_{3} = \left(-\frac{1}{3}, \frac{2}{3}\right]$$

$$A_{4} = \left(-\frac{1}{4}, \frac{3}{4}\right]$$

$$\vdots \qquad \vdots$$

$$A_{100} = \left(-\frac{1}{100}, \frac{99}{100}\right]$$

$$\vdots \qquad \vdots$$

Show that

$$\lim \sup_{n} A_{n} = \lim \inf_{n} A_{n} = [0, 1).$$

Exercise

(i) Let
$$A_n = \left(-\frac{1}{n}, 1 - \frac{1}{n}\right]$$
:

$$A_{1} = (-1,0]$$

$$A_{2} = \left(-\frac{1}{2}, \frac{1}{2}\right]$$

$$A_{3} = \left(-\frac{1}{3}, \frac{2}{3}\right]$$

$$A_{4} = \left(-\frac{1}{4}, \frac{3}{4}\right]$$

$$\vdots \qquad \vdots$$

$$A_{100} = \left(-\frac{1}{100}, \frac{99}{100}\right]$$

$$\vdots \qquad \vdots$$

Show that

$$\lim \sup_{n} A_n = \lim \inf_{n} A_n = [0, 1).$$

$$\lim\inf_n A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \left(-\frac{1}{k}, \frac{k-1}{k} \right] = \bigcup_{n=1}^{\infty} \left[0, \frac{n-1}{n} \right] = [0, 1)$$

and

$$\lim\sup_{n} A_{n} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \left(-\frac{1}{k}, \frac{k-1}{k} \right] = \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 \right) = [0, 1)$$

Finally,

$$\lim \sup_{n} A_{n} = \lim \inf_{n} A_{n} = [0, 1).$$

00

$$\lim\inf_{n} A_{n} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \left(-\frac{1}{k}, \frac{k-1}{k} \right] = \bigcup_{n=1}^{\infty} \left[0, \frac{n-1}{n} \right] = [0, 1)$$

and

$$\lim\sup_n A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \left(-\frac{1}{k}, \frac{k-1}{k} \right] = \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 \right) = [0, 1).$$

Finally.

$$\lim \sup_{n} A_{n} = \lim \inf_{n} A_{n} = [0, 1).$$

$$\lim\inf_{n} A_{n} = \bigcup_{n=1}^{\infty} \bigcap_{k=0}^{\infty} \left(-\frac{1}{k}, \frac{k-1}{k} \right] = \bigcup_{n=1}^{\infty} \left[0, \frac{n-1}{n} \right] = [0, 1)$$

and

$$\lim\sup_n A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \left(-\frac{1}{k}, \frac{k-1}{k} \right] = \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 \right) = [0, 1).$$

Finally,

$$\lim\sup_n A_n = \lim\inf_n A_n = [0,1).$$

00

Exercise

(ii) Let
$$A_n = \left(\frac{(-1)^n}{n}, 1 - \frac{(-1)^n}{n}\right]$$
:

Show that $\lim_{n} A_{n}$ doesn't exist by demonstrating that

$$\lim\inf_n A_n = (0,1) \subset [0,1] = \lim\sup_n A_n$$

Exercise

(ii) Let
$$A_n = \left(\frac{(-1)^n}{n}, 1 - \frac{(-1)^n}{n}\right]$$
:

Show that $\lim_{n} A_{n}$ doesn't exist by demonstrating that

$$\lim\inf_n A_n = (0,1) \subset [0,1] = \lim\sup_n A_n.$$

$$\begin{aligned} & \lim \inf_{n} A_{n} \\ &= \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \left(\frac{(-1)^{k}}{k}, \frac{k - (-1)^{k}}{k} \right] \\ &= \left\{ \bigcup_{n=1,3,5}^{\infty} \bigcap_{k=n}^{\infty} \left(\frac{(-1)^{k}}{k}, \frac{k - (-1)^{k}}{k} \right] \right\} \bigcup \left\{ \bigcup_{n=2,4,6}^{\infty} \bigcap_{k=n}^{\infty} \left(\frac{(-1)^{k}}{k}, \frac{k - (-1)^{k}}{k} \right] \right\} \\ &= \left\{ \bigcup_{n=1,3,5}^{\infty} \left(\frac{1}{n+1}, \frac{n}{n+1} \right] \right\} \bigcup \left\{ \bigcup_{n=2,4,6}^{\infty} \left(\frac{1}{n}, \frac{n-1}{n} \right] \right\} \\ &= (0,1) \cup (0,1) \\ &= (0,1) \end{aligned}$$

Sol. (continued) Similarly,

$$\begin{split} & \limsup_{n} A_{n} \\ &= \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \left(\frac{(-1)^{k}}{k}, \frac{k - (-1)^{k}}{k} \right] \\ &= \left\{ \bigcap_{n=1,3,5}^{\infty} \bigcup_{k=n}^{\infty} \left(\frac{(-1)^{k}}{k}, \frac{k - (-1)^{k}}{k} \right] \right\} \bigcap \left\{ \bigcap_{n=2,4,6}^{\infty} \bigcup_{k=n}^{\infty} \left(\frac{(-1)^{k}}{k}, \frac{k - (-1)^{k}}{k} \right] \right\} \\ &= \left\{ \bigcap_{n=1,3,5}^{\infty} \left(-\frac{1}{n}, \frac{n+1}{n} \right] \right\} \bigcap \left\{ \bigcap_{n=2,4,6}^{\infty} \left(-\frac{1}{n+1}, \frac{n+2}{n+1} \right] \right\} \\ &= [0,1] \cap [0,1] \\ &= [0,1] \end{split}$$

101

HW (Ex. 1.8 (c) on p. 11 of McDonald and Weiss) Let

$$A_n = \begin{cases} \left[0, 1 + \frac{1}{n}\right] & \text{if } n \text{ is an even integer,} \\ \left[-1 - \frac{1}{n}, 0\right] & \text{if } n \text{ is an odd integer.} \end{cases}$$

Determine $\liminf_{n\to\infty} A_n$ and $\limsup_{n\to\infty} A_n$.

Solution:

$$\liminf_{n \to \infty} A_n = \{0\} \subset [0,1] = \limsup_{n \to \infty} A_n$$

HW (Ex. 1.8 (c) on p. 11 of McDonald and Weiss) Let

$$A_n = \begin{cases} \left[0, 1 + \frac{1}{n}\right] & \text{if } n \text{ is an even integer,} \\ \left[-1 - \frac{1}{n}, 0\right] & \text{if } n \text{ is an odd integer.} \end{cases}$$

Determine $\liminf_{n\to\infty} A_n$ and $\limsup_{n\to\infty} A_n$.

Solution:

$$\liminf_{n\to\infty} A_n = \{0\} \subset [0,1] = \limsup_{n\to\infty} A_n$$

Chapter 3. Real Number System and Calculus

- § 3.1 Real number system
- § 3.2 Sequences of real numbers
- § 3.3 Open and closed sets
- § 3.4 Real-valued functions
- § 3.5 Liminf and limsup of sets
- § 3.6 Some techniques in calculus

Examples

- 1. $\int_0^1 \tan^{-1}(x) dx$
- 2. $\int_0^x t^2 e^t dt$
- 3. $\int e^x \sin(x) dx$

Examples

- 1. $\int_0^1 \tan^{-1}(x) dx$
- 2. $\int_0^x t^2 e^t dt$
- 3. $\int e^x \sin(x) dx$

Examples

- 1. $\int_0^1 \tan^{-1}(x) dx$
- 2. $\int_0^x t^2 e^t dt$
- 3. $\int e^x \sin(x) dx$

Examples

- 1. $\int_0^1 \tan^{-1}(x) dx$
- 2. $\int_0^x t^2 e^t dt$
- 3. $\int e^x \sin(x) dx$

Examples

- 1. *e*^x
- $2. \sin(x)$
- 3. e^{x^2}

Examples

- 1. *e*^x
- 2. sin(x)
- 3. e^{x}

Examples

- 1. *e*^x
- 2. sin(x)
- 3. e^{x^2}

Examples

- 1. *e*^x
- 2. sin(x)
- 3. e^{x^2}