

TD14

TD 14 / GÉNÉRER UN SIGNAL PÉRIODIQUE

Correction

Exercice 1 - Génération de signaux numériques

Notions abordées

⊳ Génération d'un signal à l'aide d'un microcontroleur.

On souhaite obtenir un signal sinusoïdal à une fréquence de 5 kHz.

1. Proposez une solution « simple » pour répondre à ce cahier des charges (sans utiliser de GBF).

Réponse

On peut utiliser un signal carré, généré par un microcontroleur par exemple :

Code utilisant un ticker pour générer des interruptions à intervalle régulier :

```
DigitalOut signal(D10);
Ticker tik;
void gene_signal(void){
    signal = !signal;
}
int main() {
    tik.attach(&gene_signal, 0.0001);
    //frequence de 10 kHz pour demi-periode du signal while(1);
}
```

Réponse

On filtre ensuite ce signal carré, avec un filtre actif d'ordre 2 par exemple ou un filtre à capacité commutée d'ordre plus élevé. La fréquence de coupure doit être d'environ 5 kHz (pour ne conserver que le fondamental du signal carré).

On s'intéresse au schéma fonctionnel suivant :

2. Expliquez à quoi servent les différents blocs.

Réponse

Dans le système numérique, on utilise un tableau de données de N échantillons.

On génére ensuite un **compteur à une cadence donnée** (fréquence égale F_e à la fréquence voulue du signal périodique F_{sig} multipliée par le nombre d'échantillons à générer par période N) pilotant un **multiplexeur** permettant d'amener successivement chacun des échantillons au convertisseur numérique-analogique (DAC ou CNA).

Les échantillons numériques sont ensuite **convertis par ce DAC** (qui peut être interne sur certains microcontroleurs), générant ainsi une tension analogique.

Le filtre **Passe-bas** est un filtre de reconstruction, permettant de supprimer les composantes fréquentielles liées à l'échantillonnage. On le prendra égale à $F_e/2$ (ou moins - avec F_e la fréquence d'échantillonnage).

Le filtre **Passe-haut** peut servir à supprimer une éventuelle composante continue ajoutée pour réaliser la conversion numérique-analogique (la plupart du temps limitée à des tensions uniquement positives et ne permettant pas de traiter des signaux alternatifs ou à composante moyenne nulle).

On souhaite un minimum de 16 points par période.

3. Quelle est la fréquence minimale à laquelle doivent être produits les échantillons?

Réponse

Si on souhaite un signal à $F_{sig}=5\,\mathrm{kHz}$ en sortie, il faut avoir une fréquence d'échantillonnage de $F_e=N\cdot F_{sig}=80\,\mathrm{kHz}.$

4. Proposez une méthode pour générer le tableau d'échantillons.

Réponse

Mathématiquement, on souhaite avoir une période d'un signal sinusoïdal sur 16 points.

On va donc remplir un tableau de nombres réels avec les valeurs suivantes :

$$tab[i] = \sin \frac{2 \cdot \pi \cdot i}{N}$$

pour i allant de 0 à 15.

Exercice 2 - Multiplexeurs / Démultiplexeurs

Notions abordées

 ${\,\vartriangleright\,}$ Etude d'un composant standard de la logique combinatoire

On souhaite utiliser un système de multiplexage pour pouvoir transporter des informations numériques à l'aide d'un minimum de fils de transmission (voir schéma suivant - pour 4 émetteurs et 4 récepteurs).

La ligne sera alors occupée par chacun des émetteurs de manière équitable (à savoir 1/4 du temps pour le cas de 4 émetteurs). On parle alors de multiplexage temporel.

- 1. Rappelez le fonctionnement d'un multiplexeur et d'un démultiplexeur. On s'intéressera en particulier aux entrées de contrôle (non présentes sur le schéma).
- 2. Quel élément faut-il alors ajouter pour que l'entrée E0 soit systématiquement transmise à la sortie S0, l'entrée E1 à la sortie S1, etc.?
- 3. Si on souhaite transmettre les informations à une vitesse de 40 MHz, à quelle vitesse doit-on faire changer les entrées du multiplexeur et les sorties du démultiplexeur?
- 4. Quels signaux doivent également être transmis entre l'émetteur et le récepteur?

X -> depend de la dechnologie

Exercice 1

la sortie. John evec un démux mois à l'onvers.

Pour selectionner parmi N = 2º entres, il faut alors p entres de selection

Si on souhaite que Bo soit toujours fransmire à so, il faul que les entrées de sélection soient communes. Il faudra donc transmettre les informations à et b.

Pour que successivement en envoie en sur so, puis en sur sa ... iffaut ajouter un compteur sur 2 bits

3 autres, nous uhliserons le principe du multiplexage temporel

where $a^{-1}\Delta T = \frac{1}{F} = \frac{Te}{4} \longrightarrow F = 4.Fe$

soit 160 Mity

A Necessite une synchronisation pour être sur que le va sur so

Exercice 3 - Compteur / Diviseur de fréquence

Notions abordées

▶ Etude des composants standards de la logique séquentielle

Bascule D / Séquentielle

On donne la « table de vérité » d'une bascule D ci-dessous.

D	Н	Q_{n+1}	fonction
0	↑	0	mise à 0
1	↑	1	mise à 1

Pour un chronogramme de D comme le suivant (avec ici une horloge périodique), tracer superposé au diagramme de D le chronogramme de la sortie, Q(t), d'une autre couleur de crayon . Y a-t-il besoin de tracer l'autre sortie ?

Mise en cascade

On cascade deux bascules D comme suit :

- 1. Montrez le fonctionnement de ce système. Quel est son rôle?
- 2. Généralisez à N bascules.

On boucle à présent une bascule D sur elle-même.

- 3. Quelle est la fréquence observée sur la sortie Q si CLK est périodique? Dépend-elle du rapport cyclique de CLK?
- 4. Que se passe-t-il si on cascade plusieurs blocs de ce type? Généralisez à N bascules.

Exercice 4 - Fonctionnement d'un Ticker

Notions abordées

On s'intéresse au schéma ci-après :

1. Que fait le dispositif « PSC » au signal CLK en fonction des deux entrées du MUX, A et B? (huit bascules D avec sorties Q et complémentaire)

On s'intéresse à présent au système suivant :

- 2. Que produit sur sa sortie S le dispositif CNTN ci-contre en fonction de CLK et de N?

 On implémente la chaine suivante : fo=CLK puis PSC(AB) puis CNTN(b15...b0) puis signal S

 La fréquence de l'horloge d'entrée est fo= 14 MHz.
- 3. Quelles sont les fréquences accessibles sur S via le choix de N, pour ABb= 00? Même question pour les trois autres choix de ABb?
- 4. Combien de façon y a-t-il de réaliser les fréquences de signal S suivantes : fS=200 Hz, 20 Hz, 2 Hz?
- 5. Quel est l'avantage (en termes de marge de modification) de viser la plus grande division de PSC? de viser la plus petite?

Si on veut $fs = 200 \, \text{Hz}$, on peut choisir $AB = (01) \, \text{ou} (10) \, \text{ou} (11)$ Pour $AB = (01) \longrightarrow M = \frac{1135 \, \text{MHz}}{4200 \, \text{Hz}} = 8750 \longrightarrow 200 \, \text{Hz}$ exactement

Pour $AB = (10) \longrightarrow M = \frac{213 \, \text{Hz}}{200 \, \text{Hz}} = 1033,75 \longrightarrow 200 \, \text{Hz}$ exactement

Pour $AB = (11) \longrightarrow M = \frac{55 \, \text{Mz}}{200 \, \text{Hz}} = 273, 4 \longrightarrow 200 \, \text{Hz}$ non exact

Pour fs = 20 Hz -> AB = (10) on (11) Pour Fs = 2Hg -> AB = (11)

Ton vise M le plus grand possible pour avoir une meilleure précision sur la fréquence de sortie

Exercice

A NE PAS TRAITER