

الإطار المرجعي الجيوديسي الفلسطيني الجديد PALESTINIAN GEODETIC REFERENCE FRAME PAL-GRF2023

بدال اعام

مشروع "تطوير الإطار الجيوديسي الوطني الفلسطيني (PAL-GRF)", يعتبر هذا المشروع من مهام و مسؤوليات سلطة الأراضي الفلسطينية (PLA) بموجب المادة رقم (5) من القرار بقانون رقم (6) لعام 2010 بشأن سلطة الأراضي ، المؤسسة الوطنية المسؤولة عن تسجيل الممتلكات والمعاملات ذات الصلة ، وإدارة ممتلكات الدولة ، و توثيق وحفظ معلومات الملكية العقارية , و تنظيم مهنة المساحة والمكاتب العقارية وتطوير قاعدة معلومات البيانات العقارية وتحديثها لاعتمادها أساساً للنظام الجغرافي الوطني .

تشكل البنية التحتية الجيوديسية القاعدة الرئيسية لأي أعمال فنية مرتبطة بالمواقع . من الضروري إنشاء بنية تحتية جيوديسية حديثة على مستوى الدولة لإنتاج خرائط مساحية وطبو غرافية حديثة و دقيقة مواكبة للعصر .

تمكن الشبكة الجيوديسية الدقيقة والمتناسقة من تسجيل جميع المعلومات المكانية بشكل منهجي لدمجها في إنتاج الخرائط، وأنظمة المعلومات العقارية، والأعمال المساحية، ونظم المعلومات الجغرافية (GIS)، ومشاريع أخرى تستخدم البيانات الجيومكانية. تعتبر البيانات الجيوديسية الناتجة عن الشبكة الجيوديسية، أساسية لتطوير نظم المعلومات الجغرافية وتشكل أحد المكونات الرئيسية للبنية التحتية الوطنية للبيانات المكانية (NSDI).

النظام الجيوديسي الفلسطيني ، مثل باقي أنحاء العالم ، تم إنشاؤه في البداية باستخدام تقنيات المسح الكلاسيكية ، لكنه لم يتم دمجه بعد مع الأنظمة الجيوديسية العالمية بالمعنى الحديث . تم إنشاء شبكة التثليث الظاهرة في الشكل المجاور و شبكة الارتفاعات بواسطة قسم المسح في فلسطين في عهد الإنتداب البريطاني منذ حوالي 100 عام .

Palestine 1923-Grid

هذه الشبكات لا تلبي دقة المعايير المطلوبة اليوم ولا تفي باحتياجات تحديد المواقع الحديثة لأسباب عديدة مثل انخفاض دقة المواقع و تدمير جزء كبير من النقاط. تمت الإشارة إلى هذه المشكلة من قبل فريق العمل المعني بالجيوديسيا (تقرير دولة فلسطين القطري، أغسطس 2020) الذي ذكر أن " جميع الشبكات الجيوديسية المتاحة في فلسطين قديمة وغير متناسقة وتسبب أخطاء كبيرة وغير منظمة ". عامل آخر مهم هو تأثير تشوه القشرة الأرضية الذي يغير مواقع النقاط بمرور الوقت في المنطقة التي تقع فيها فلسطين.

حاليًا، يعتمد تحديد المواقع الجيوديسية على محطات مرجعية تعمل بشكل مستمر (CORS) تُدار من قبل القطاع الخاص ، مع استخدام بيانات التصحيح المقدمة منها . لا يمكن القول إن هناك منهجية موحدة ومعيارية على مستوى الدولة .

يهدف تحديث الإطار المرجعي إلى معالجة مشكلة استخدام مرجع قديم للمسح ورسم الخرائط رغم تغيَّراته . اليوم، صُممت البنية التحتية الجيوديسية الحديثة لتوفير بيانات جيومكانية دقيقة وموثوقة وسريعة تلبي معايير الدقة المحددة للإحداثيات ثلاثية الأبعاد (بما في ذلك الارتفاعات الفيزيائية) وتغيراتها مع الزمن .

بناءً على تحليل البنية التحتية الجيوديسية الفلسطينية الحالية في نطاق المهام والمنهجية والتكنولوجيا، تم اتخاذ قرار بإنشاء بنية تحتية جيوديسية حديثة تتيح تحديد المواقع لجميع المستخدمين بجميع الجوانب

التحديد الجيوديسي هو عملية تحديد الإحداثيات الهندسية بالنسبة لهندسة الأرض، والارتفاعات الفيزيائية بالنسبة لمجال الجاذبية الأرضية. يجب أن تُربط مهام تحديد المواقع بالإطار الجيوديسي الوطني الفلسطيني(PAL-GRF). سيتم تعريف PAL-GRF بالنسبة للإطار المرجعي الأرضي الدولي (ITRF) ، الذي أقره الاتحاد الدولي للجيوديسيا والجيوفيزياء (IUGG). سيوفر PAL-GRF نظام تحديد المواقع الجيوديسي المشترك، الذي يشكل الأساس لاستخدام البيانات الجغرافية المرجعية ومشاركة موارد البيانات الحكومية بكفاءة ، لتشكيل الإطار الرقمي للبنية التحتية الوطنية للبيانات المكانية (NSDI).

نقاط الشبكة

تم اختيار مواقع محطات PAL-GRF من قِبَل مهندسي سلطة الأراضي الفلسطينية (PLA) بعد الزيارات الميدانية و دراسة المواقع المقترحة مع الخبراء . حيث تم اختيار 10 محطات مرشحة لأن تكون جزءاً من شبكة CORS المستقبلية ، وخضعت للدراسة خلال أعمال إنشاء الإطار الجيوديسي الوطني الفلسطيني (PAL-GRF) . تظهر مواقع محطات PAL-GRF في الأشكال أدناه .

تم اختيار مواقع المحطات في منطقة الضفة الغربية مع مراعاة الاعتبارات اللوجستية والأمنية وغيرها. جميع المحطات مزودة بأعمدة فولاذية تحتوي على ثقوب مركزية قسرية لتثبيت الأجهزة. قام مهندسو سلطة الأراضي الفلسطينية بتجهيز الأعمدة و تثبيتها و ذلك حسب المواصفات التي حددها الخبراء. تُظهر الصور المرفقة في الشكل نماذج من محطات الشبكة و تركيبها.

يتمثل أحد القيود الرئيسية للإطار الجيوديسي الوطني الفلسطيني الجديد (PAL-GRF) في تحديد الإحداثيات وفق نظام 1TRF2020. لهذا السبب، نحتاج إلى إضافة المزيد من المحطات المرجعية (fiducial stations) لتضمينها في معالجة البيانات بإحداثياتها في نظام 1TRF2020 وحقل السرعة (velocity field) المرتبط بها. تعمل الخدمة العالمية لأنظمة الأقمار الصناعية (IGS) على تشغيل عدد من المحطات الدائمة التي ترصد بيانات أنظمة الأقمار الصناعية (GNSS) بشكل مستمر وموزعة عالمياً. بالإضافة إلى ذلك، تدمج IGS بيانات من محطات CNSS أخرى تشغلها مؤسسات وطنية مختلفة في عملية المعالجة ، مما يسمح بحساب إحداثيات جميع المحطات في نظام ITRF ونشرها للاستخدام العام . كما أن بيانات GNSS المُسجلة في هذه المحطات متاحة للجميع .

من ناحية أخرى، فإن توزيع محطات IGS بالنسبة لفلسطين ليس مثالياً، نظرًا لوجود عدد محدود من المحطات في قارة أفريقيا. هذا يدفعنا إلى اختيار المزيد من المحطات المرجعية بالقرب من فلسطين . لذلك، قمنا باختيار محطات قريبة مُدرجة في حل ITRF2020، لاستخدام بياناتها وإحداثياتها وحقل السرعة في إنشاء PAL-GRF . وقد اخترنا 3 محطات من ITRF2020 وهي TELA ، ELAT ، ALO بشكل إضافي. لذا، يظهر الشكل النهائي لتوزيع المحطات حول الشبكة المحلية في الشكل أدناه.

تم تعريف الإطار الجيوديسي الوطني الفلسطيني (PAL-GRF) وفقاً لأحدث نسخة من الإطار المرجعي الأرضي الدولي (ITRF)، وهي نسخة ITRF2020 وITRF في نظام 1TRF2020 عند حقبة المختارة من ITRF في نظام 2015.0 (epoch) مذكورة في الجدول أدناه.

NAME	X (m)	Y (m)	Z (m)	v_X (mm/y)	$oldsymbol{v_Y}$ (mm/y)	$oldsymbol{v_Z}$ (mm/y)	Tectonic Plate	Network
ADIS	4913652.7609	3945922.6696	995383.3331	-0.01922	0.01671	0.01820	AFRC	IGS
BSHM	4395951.1833	3080707.2289	3433498.2609	-0.02128	0.01243	0.01670	AFRC	IGS
DRAG	4432980.6621	3149432.0930	3322110.4410	-0.01986	0.01423	0.01873	AFRC	IGS
GRAZ	4194424.1240	1162702.4605	4647245.1930	-0.01695	0.01798	0.01039	EURA	IGS
ISTA	4208830.7260	2334850.0235	4171267.0890	-0.01773	0.01609	0.01002	EURA	IGS
NICO	4359415.5352	2874117.1781	3650777.9518	-0.01817	0.01118	0.01257	EURA	IGS
MAT1	4641951.2685	1393053.8493	4133281.0073	-0.01858	0.01903	0.01460	EURA	IGS
RAMO	4514721.8549	3133507.8433	3228024.6792	-0.02100	0.01411	0.01705	ARAB	IGS
SOFI	4319372.3900	1868687.5700	4292063.8000	-0.01698	0.01874	0.00827	EURA	IGS
ZECK	3451175.6956	3060336.4325	4391958.8536	-0.02210	0.01427	0.00890	EURA	IGS
ALON	4470258.1511	3084589.7721	3332952.7759	-0.02060	0.01326	0.01676	AFRC	ITRF202 0
ELAT	4555028.6509	3180067.3419	3123164.4310	-0.02194	0.01602	0.01847	ARAB	ITRF202 0
TELA	4443535.3843	3086140.8911	3366854.2050	-0.02068	0.01357	0.01749	ARAB	ITRF202 0

الرصد و حسابات الاحداثيات

تتكون شبكة PAL-GRF من 10 محطات محلية ، حيث تم تنفيذ جميع عمليات رصد أنظمة الأقمار الصناعية العالمية (GNSS) بواسطة مهندسي سلطة الأراضي الفلسطينية (PLA). جميع محطات الشبكة مثبتة بأعمدة فولاذية مزودة بنظام تثبيت مركزي قسري (forced centering) .

خضعت محطات PAL-GRF للرصد ثلاث إلى أربع مرات. استغرقت كل جلسة رصد 8 ساعات على الأقل بشكل متزامن ، مع فترات تسجيل بيانات تبلغ 1/10/30 ثانية . ومع ذلك ، تم استخدام فاصل زمني قدره 30 ثانية مطابق لما تستخدمه IGS . تم تحويل جميع بيانات وNSS إلى صيغة RINEX لإجراء العمليات الحسابية اللاحقة. تفاصيل أجهزة الاستقبال والهوانيات ومعاملات الرصد الأخرى مُدرجة في التقرير النهائي سجلات الرصد الميدانية التي أعدها مهندسو سلطة الأراضي PLA .

يُعد قياس ارتفاع الهوائي عنصراً أساسياً في عمليات رصد GNSS ، حيث يجب تحديد الارتفاع بالنسبة إلى نقطة المرجع للهوائي (ARP). تُظهر الصورة أدناه موقع نقطة المرجع (ARP) لهوائيات شركة Trimble المستخدمة في هذا العمل. تم تحويل جميع قياسات ارتفاع الهوائي المُسجلة ميدانياً إلى ارتفاع يُقاس من نقطة المرجع (ARP) ، بناءً على المواصفات الموضحة في الصورة.

خلال حملة PAL-GRF ، جُمعت بيانات من 10 محطات GNSS . بالإضافة إلى محطات PAL-GRF ، تم الحصول على بيانات RINEX محطات PAL-GRF و PAL-GRF (انظر إلى التقرير النهائي). تمت معالجة جميع البيانات باستخدام المنتجات القياسية لمركز التحليل CODE عبر برنامج (Bernese GNSS Software (BSW52 ، مع حساب حلول يومية مُقيَّدة بشكل مرن (loosely constrained solutions) .

بعد ذلك، دُمجت جميع الحلول اليومية المُقيَّدة مرنًا (المذكورة في التقرير النهائي) مع تعريف معيار جيوديسي مناسب باستخدام برنامج ADDNEQ2 من حزمة Bernese Software أخيراً، حُصل على الحل النهائي للحملة المُقيَّد مرناً والإحداثيات النهائية لمحطات الشبكة في نظام ITRF2020 بتاريخ 02.07.2023 ، الإصدار 2023.50 . (الإحداثيات الناتجة من هذا الحل ذو القيود الدنيا-No-Net) لشبكة في نظام Translation (بناءً على المحطات المرجعية لـ IGS مُدرجة في الجداول أدناه .وكما هو معروف ، قد تختلف هذه الإحداثيات قليلًا اعتماداً على تعريف المعيار الجيوديسي، وتعكس نتائج الحملة المحددة فقط. تفاصيل ضبط الشبكة مُضمنة في التقرير النهائي.

سيتم استخدام الحلول المُقيَّدة مرناً (في المستقبل) لدمج حلول الحقب الزمنية وتقدير إحداثيات المحطات وحقل السرعة المرتبط بها. تتيح هذه الحلول إمكانية تعديل وإعادة تعريف المعيار الجيوديسي لجميع حلول الحقب الزمنية.

جدول نتائج ضبط شبكة PAL-GRF باستخدام أنظمة الأقمار الصناعية (GNSS) في الإطار المرجعي المتمركز حول الأرض والثابت بالنسبة لها ITRF2020 ، حقبة 2023.50 الإحداثيات الديكارتية X-Y-Z .

STA	X	σΧ	Y	σΥ	Z	σZ
	(m)	(m)	(m)	(m)	(m)	(m)
PL01	4396745.2369	0.0031	3104035.0189	0.0023	3411392.0666	0.0025
PL02	4389857.6104	0.0030	3129365.0367	0.0023	3396842.9549	0.0025
PL03	4428189.0284	0.0032	3095965.9625	0.0023	3377985.4341	0.0025
PL04	4415160.9898	0.0029	3146759.9405	0.0022	3347577.0491	0.0023
PL05	4436529.0924	0.0031	3115451.9894	0.0023	3349868.0962	0.0025
PL06	4415220.8422	0.0032	3124136.4718	0.0024	3370214.0992	0.0026
PL07	4441009.5692	0.0027	3128091.1964	0.0020	3333092.7445	0.0021
PL08	4450068.6336	0.0030	3143156.3151	0.0023	3306307.9263	0.0024
PL09	4469260.2971	0.0027	3119442.1118	0.0021	3303001.0263	0.0022
PL10	4454113.3760	0.0029	3129394.8574	0.0021	3314533.5676	0.0023

جدول نتائج ضبط شبكة PAL-GRF باستخدام أنظمة الأقمار الصناعية (GNSS) في الإطار المرجعي المتمركز حول الأرض والثابت 2023.50 (Ellipsoidal Coordinates Latitude-Longitude-Ellipsoidal Height) ، حقبة

STA.			Latitude Std.dev I			Longitude	Std.dev	Elip. H	Std.dev	
	d	m	S	m	d	m	S	m	m	m
PL01	32	32	33.73654	0.0011	35	13	17.42874	0.0013	140.8009	0.0032
PL02	32	23	17.74073	0.0011	35	29	1.13067	0.0013	-43.0897	0.0031
PL03	32	11	11.21786	0.0011	34	57	33.48289	0.0013	72.0734	0.0032
PL04	31	51	53.14465	0.0010	35	28	41.21388	0.0013	-242.0254	0.0030
PL05	31	53	7.23937	0.0011	35	4	39.28594	0.0013	426.3733	0.0032
PL06	32	6	0.89644	0.0011	35	16	57.31225	0.0014	678.5779	0.0033
PL07	31	42	17.32799	0.0009	35	9	34.27758	0.0012	882.5043	0.0027
PL08	31	25	23.06869	0.0011	35	14	3.07276	0.0013	568.3492	0.0031
PL09	31	23	16.25514	0.0009	34	54	50.99479	0.0012	620.0848	0.0028
PL10	31	30	29.10888	0.0010	35	5	28.73693	0.0013	922.5812	0.0030

جدول مكونات السرعة المتوقعة في محطات PAL-GRF.

Station	Longitude	Latitude	h	VX	VY	VZ	Velocity
Station	(deg)	(deg)	(m)	(m)	(m)	(m)	vector
PL01	35.22150	32.54270	140.8	-0.022	0.012	0.017	0.030
PL02	35.48364	32.38826	-43.08	-0.021	0.014	0.017	0.030
PL03	34.95930	32.18644	72.07	-0.022	0.012	0.016	0.030
PL04	35.47811	31.86476	-242.02	-0.022	0.013	0.018	0.032
PL05	35.07757	31.88534	426.37	-0.021	0.013	0.017	0.030
PL06	35.28258	32.10024	678.57	-0.021	0.014	0.017	0.031
PL07	35.15952	31.70481	882.5	-0.020	0.014	0.018	0.030
PL08	35.23418	31.42307	568.34	-0.020	0.014	0.018	0.030
PL09	34.91416	31.38784	620.08	-0.020	0.014	0.017	0.030
PL10	35.09131	31.50808	922.58	-0.020	0.014	0.018	0.030

نقاط الدرجة الثانية

لحساب معاملات تحويل المعيار الجيوديسي بين PAL-GRF وPAL1923 ، تم إجراء قياسات باستخدام أنظمة الأقمار الصناعية العالمية (GNSS) عند 53 نقطة تثليث قديمة ذات إحداثيات معروفة في إسقاط كاسيني-سولدنر وفق معيار PAL1923 . خلال هذه القياسات، تم أيضًا رصد بعض نقاط PAL-GRF المختارة بشكل متزامن. يوضح الشكل أدناه توزيع النقاط المشتركة التي أجريت عليها قياسات GNSS في جميع أنحاء البلاد . يمكن القول إن هذه النقاط المشتركة تُظهر توزيعًا جيدًا على مستوى الدولة .

تم تنفيذ قياسات GNSS عند نقاط التثليث التابعة لـ PAL1923 في 3 مجموعات وبإجمالي 14 جلسة قياس خلال الفترة من 8 أغسطس إلى 6 سبتمبر 2023 . ولضمان دقة عالية ، تم زيارة كل نقطة مرتين، مع جمع بيانات GNSS لمدة 4 ساعات على الأقل في كل زيارة . كان من الضروري أيضًا رصد محطتين على الأقل من PAL-GRF بشكل دائم لتوفير محطات مرجعية (fiducial stations)

اسقاط الخرائط وتحويل الاحداثيات

Coordinate System: PAL-GRF2023_Grid

Datum: Pal-GRF2023 (ITRF2020 epoch 2023.5)

Table 1: Projection & Ellipsoid

Parameter	Value	Notes
		Ellipsoid
Ellipsoid	GRS80	
Semi-major axis (a)	6378137.00	
Inverse flattening (f ⁻¹)	298.257 222 100 882	
Semi-minor axis (b)	6356752.31414	
		Projection
Projection Method	Transverse Mercator (TM)	
scale	1.000 003	
False Easting	220 000.00	
False Northing	500 000.00	
Central Meridian	35.2350000000	
	35° 14' 06.000000"	
Latitude of Origin	31.777 777 777	
	31° 46′ 40.000000"	

Datum Transformation Parameters:

1- Traverse, GNSS base, or network base on PAL-GRF2023 datum
The following parameters are used (Pal-GRF2023=WGS84)
Table2

Sca	ale	Rx	Ry	Rz	Tx	Ty	Tz
1.00	000	0.0	0.0	0.0	0.0	0.0	0.0

- 2- Current GNSS/GPS users & GNSS surveyed Cadastral Maps (Taswia since 2018)
- a- For the **GNSS/GPS Instruments & data collectors** using the current CORS-Network, the

transformation parameter from CORS-Networks coordinates (ITRF2000-2004.75) to PAL-GRF2023

Datum are:

Table3

scale	Rx	Ry	Rz	Tx	Ту	Tz
1.00000	0.0	0.0	0.0	-0.3889	0.2489	0.3589

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{PAL-GRF2023} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{CORS=WGS84} + \begin{bmatrix} -0.3889 \\ 0.2489 \\ 0.3589 \end{bmatrix}$$

b- GIS maps & Small-Scale maps (Pal1923 Grid)

The transformation parameters (**frame-system**) to be used in <u>GIS software</u> to convert from Pal1923_Grid to Pal-GRF2023 are:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{PAL-GRF2023=WGS8} = (1+\Delta \mathbf{m}) \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{Pal1923} + \begin{bmatrix} 0 & Rz & -Ry \\ -Rz & 0 & Rx \\ Ry & -Rx & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{Pal1923} + \begin{bmatrix} Tx \\ Ty \\ Tz \end{bmatrix}$$

Where,

Δm	Rx	Ry	Rz	Tx	Ту	Tz
-15.22329 ppm	10.07015"	8.45655"	5.37202"	-114.5200m	-79.3790m	281.6324m

إعداد قسم الجيوديسيا في سلطة الأراضي