Classification of Satellite Images with Convolutional Neural Network

Dataset

- 27.000 satellite images
- referenced in 10 classes
- jpeg format
- 64 × 64 px
- RGB

Modelling

Training and Validation Loss

epoch

alidation Loss

1.0

0.9

Accuracy 80

0.6

0.8

Cross Entropy 9.0

0.2

0.0

- 4 convolutional layers
- Max pooling after each layer
- Additional Dense layer and Dropout before the final layer

Model	Loss	Accuracy	
Own configuration	0.3176	0.8893	
Transfer learning (pretrained weights)			
MobileNetV2	0.5232	0.8474	
VGG16	0.4214	0.8528	ļ
Fine-tuning (about 1/3 of (last) layers unfrozen/retrained)			
MobileNetV2	0.4929	0.8420	
VGG16	0.2257	0.9250	
Image augmentation in addition to fine-tuned models (against overfitting)			
MobileNetV2	0.3492	0.8870	
VGG16	0.2788	0.9093	
Early stopping (stop training when there is no improvement in validation loss)			
VGG16	0.2661	0.9143	

- 500

- 400

- 300

- 200

- 100

VGG16 fine-tuned (last 5 layers retrained) with image augmentation and early stopping

Segmentation

Class Activation Map

- The last convolutional layer produces K feature maps that are pooled and linearly transformed to produce a score for each class
- CAM computes the linear combination of the final feature maps using the learned weights of the final layer, normalized to lie between 0 and 1 for visualization
- CAM = W1A1 + W2A2 + W3A3+...+WnAn

Sources:

 EuroSAT: A land use and land cover classification dataset based on Sentinel-2 satellite images

http://madm.dfki.de/downloads

- TensorFlow: Transfer learning with a pretrained ConvNet <u>https://www.tensorflow.org/tutorials/images/transfer_learning</u>
- Plotting CNN architecture:
 http://alexlenail.me/NN-SVG/AlexNet.html
- CNN Heat Maps: Class Activation Mapping (CAM)
 https://glassboxmedicine.com/2019/06/11/cnn-heat-maps-class-activation-mapping-cam/