S5K3H7YX EVT0.2

1/3.2" 8M / FHD 30 fps CMOS Image Sensor

Revision 0.23 June 2012

SAMSUNG Confidential

samsung / ellen.piao at 09:37,2012.09.24

Data Sheet

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise.

Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

For updates or additional information about Samsung products, contact your nearest Samsung office.

All brand names, trademarks and registered trademarks belong to their respective owners.

© 2012 Samsung Electronics Co., Ltd. All rights reserved

Important Notice

Samsung Electronics Co. Ltd. ("Samsung") reserves the right to make changes to the information in this publication at any time without prior notice. All information provided is for reference purpose only. Samsung assumes no responsibility for possible errors or omissions, or for any consequences resulting from the use of the information contained herein.

This publication on its own does not convey any license, either express or implied, relating to any Samsung and/or third-party products, under the intellectual property rights of Samsung and/or any third parties.

Samsung makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Samsung assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation any consequential or incidental damages.

Customers are responsible for their own products and applications. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts.

Samsung products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Samsung product could reasonably be expected to create a situation where personal injury or death may occur. Customers acknowledge and agree that they are solely responsible to meet all other legal and regulatory requirements regarding their applications using Samsung products notwithstanding any information provided in this publication. Customer shall

Copyright © 2012 Samsung Electronics Co., Ltd.

Samsung Electronics Co., Ltd. San #24 Nongseo-Dong, Giheung-Gu Yongin-City, Gyeonggi-Do, Korea 446-711

Contact Us: image@samsung.com

Home Page: http://www.samsungsemi.com

indemnify and hold Samsung and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim (including but not limited to personal injury or death) that may be associated with such unintended, unauthorized and/or illegal use.

WARNING No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Samsung. This publication is intended for use by designated recipients only. This publication contains confidential information (including trade secrets) of Samsung protected by Competition Law, Trade Secrets Protection Act and other related laws, and therefore may not be, in part or in whole, directly or indirectly publicized, distributed, photocopied or used (including in a posting on the Internet where unspecified access is possible) by any unauthorized third party. Samsung reserves its right to take any and all measures both in equity and law available to it and claim full damages against any party that misappropriates Samsung's trade secrets and/or confidential information.

警告 本文件仅向经韩国三星电子株式会社授权的人员提供,其内容含有商业秘密保护相关法规规定并受其保护的三星电子株式会社商业秘密,任何直接或间接非法向第三人披露、传播、复制或允许第三人使用该文件全部或部分内容的行为(包括在互联网等公开媒介刊登该商业秘密而可能导致不特定第三人获取相关信息的行为)皆为法律严格禁止。此等违法行为一经发现,三星电子株式会社有权根据相关法规对其采取法律措施,包括但不限于提出损害赔偿请求。

Trademarks

All brand names, trademarks and registered trademarks belong to their respective owners.

- ARM and Thumb are registered trademarks of ARM Limited.
- JTAG is a registered trademark of JTAG Technologies, Inc.
- I²C is a trademark of Phillips Semiconductor Corp.
- MIPI is registered trademarks of the Mobile Industry Processor Interface (MIPI) Alliance.

All other trademarks used in this publication are the property of their respective owners.

SAMSUNG Confidential

samsung / ellen.piao at 09:37,2012.09.24

Chip Handling Guide

Precaution against Electrostatic Discharge

When using semiconductor devices, ensure that the environment is protected against static electricity:

- 1. Wear antistatic clothes and use earth band.
- 2. All objects that are in direct contact with devices must be made up of materials that do not produce static electricity.
- 3. Ensure that the equipment and work table are earthed.
- 4. Use ionizer to remove electron charge.

Contamination

Do not use semiconductor products in an environment exposed to dust or dirt adhesion.

Temperature/Humidity

Semiconductor devices are sensitive to:

- Environment
- Temperature
- Humidity

High temperature or humidity deteriorates the characteristics of semiconductor devices. Therefore, do not store or use semiconductor devices in such conditions.

Mechanical Shock

Do not to apply excessive mechanical shock or force on semiconductor devices.

Chemical

Do not expose semiconductor devices to chemicals because exposure to chemicals leads to reactions that deteriorate the characteristics of the devices.

Light Protection

In non- Epoxy Molding Compound (EMC) package, do not expose semiconductor IC to bright light. Exposure to bright light causes malfunctioning of the devices. However, a few special products that utilize light or with security functions are exempted from this guide.

Radioactive, Cosmic and X-ray

Radioactive substances, cosmic ray, or X-ray may influence semiconductor devices. These substances or rays may cause a soft error during a device operation. Therefore, ensure to shield the semiconductor devices under environment that may be exposed to radioactive substances, cosmic ray, or X-ray.

EMS (Electromagnetic Susceptibility)

Strong electromagnetic wave or magnetic field may affect the characteristic of semiconductor devices during the operation under insufficient PCB circuit design for Electromagnetic Susceptibility (EMS).

Revision History

Revision No.	Date	Description	Author (s)
0.01	August 11, 2011	Initial Release	Yoel Yaffe
0.02	August 22, 2011	 External clock frequency updated to 54Mhz-6Mhz Power-up timing updated Analog gain control and ADC resolution description Add note on PLL_S 	Yoel Yaffe
0.03	August 22, 2011	 Device operating modes updated (3.1) SPI Max frequency updated to 18 MHz ISP functional description updated (11.5) Mechanical shutter figures updated 	Yoel Yaffe
0.04 SAN san	Sep 7, 2011 15 15 15 15 15 15 15 15 15	 Important Notice updated Trademark page added Figure 4: Pixel Array Information – updated Table 18: Absolute max rating updated Receiver characteristics removed SPI section updated Analog gain control updated MCLK timing description format updated Parallel I/F AC spec updated Color Matrix read only registers removed Added few missing registers 	Yoel Yaffe
0.05	Sep 20, 2011	 Operation Modes updated Power-up sequence updated Power consumption updated based on updated simulations Add frame timing change examples 	Yoel Yaffe
0.06	Sep 21, 2011	Formatting updates	Yoel Yaffe
0.07	Oct 30, 2011	 Typo update for context switch Register address correction Figure 26: remove corrupted frame 	Yoel Yaffe
0.08	Oct 30, 2011	Limit spec to FHD 30fps for EVT0Operating conditions: Power supply limits changes.	Yoel Yaffe
0.09	Nov 6, 2011	 Unit fix in DC Characteristics AC Characteristics updated Update power-up/down sequence in case POR_PWDN is High Update <u>5.5.1 Integration Time Control (Electronic Shutter Control)</u> 	Yoel Yaffe
0.10	Nov 13, 2011	Update VDDA range 2.7-3V, VDDD range 1.15-1.3V	Yoel Yaffe
0.11	Dec 22, 2011	 Model id description updated Update <u>8.1.1.2 Mechanical Shutter Frame Timing</u> 	Yoel Yaffe

Revision No.	Date	Description	Author (s)
		 Configuration Change Description updated for pin #84, #85, #95 	
0.12	Dec 27, 2011	nvm_charge_pump_lvl register description for NVM x1.5 charge pump setting added to <u>11.1.2 Configuration</u> Registers 2 [0xD0003000 to 0xD0003FFF]	Yoel Yaffe
0.13	Dec 28, 2011	Formatting updates	Yoel Yaffe
0.14	Jan 6, 2012	Context switch feature removed	Yoel Yaffe
0.15	Jan 8, 2012	Figures 26-30 updated	Yoel Yaffe
0.16	Feb 12, 2012	 <u>6.1.2 SPI Sequences</u> updated <u>7.1 Power-Up Sequence</u> updated 	Yoel Yaffe
0.17	Mar 7, 2012	 10.3 DC Characteristics updated with max current 11.1.1 Configuration Registers 1 [0xD00000000 to 0xD0001FFF] updated for EVT0.2 11.1.2 Configuration Registers 2 [0xD0003000 to 0xD0003FFF] updated for EVT0.2 	Yoel Yaffe
0.18	Apr 30, 2012	10.3 DC Characteristics – Dynamic power updated based on mass-production data	Yoel Yaffe
0.19	Apr 30, 2012	<u>Table 9 </u>	Yoel Yaffe
0.20	May 3, 2012	Table 9	Yoel Yaffe
0.21	May 8, 2012	<u>Table 9 </u>	Yoel Yaffe
0.22	May 10, 2012	<u>Table 9 </u>	Yoel Yaffe
0.23	June 7, 2012	10.3 DC Characteristics – Updated VDDA max current spec	Yoel Yaffe

Table of Contents

1 PRODUCT OVERVIEW	12
1.1 Introduction	12
1.2 Features	
1.3 Block Diagram	
1.4 Device Operating Modes	15
2 PAD CONFIGURATION	16
2.1 Pad Description	17
3 PIXEL ARRAY INFORMATION	21
4 FUNCTIONAL OPERATION MODES	22
5 VIDEO TIMING	
5.1 Overview	
5.1 Overview	
5.3 Horizontal Mirror and Vertical Flip	
5.4 Sub-Sampled Readout	27
5.4.1 Averaged Sub-sampled Readout	27
5.5 Frame Rate Control (Virtual Frame)	28
5.5.1 Integration Time Control (Electronic Shutter Control)	
5.6 PLL and Clock Generator	29
5.6.2 Master Clock Waveform Diagram	
6 CONTROL INTERFACE	33
6.1 SPI Control Interface	33
6.1.1 SPI Timing Definitions	
6.1.2 SPI Sequences	36
6.2 Camera Control Interface (CCI)	37
7 POWER UP/DOWN SEQUENCE	42
7.1 Power-Up Sequence	
7.2 Power-Down Sequence	
7.3 Software Standby Mode Sequence	47
8 FUNCTIONAL FEATURES	48
8.1 Frame Timing Control	
8.1.1 Frame Timing Control Configuration	
8.1.1.1 Rolling Shutter Frame Timing Configuration Change	
8.1.1.2 Mechanical Shutter Frame Timing Configuration Change	
8.1.1.3 Settings Affecting Frame Timing	
8.2.1 Analog to Digital Converter (ADC)	53
8.2.2 Analog Gain Control	

	8.2.3 ADC Resolution	53
	8.3 Embedded Line	54
	8.4 ISP (Image Signal Processor)	54
	8.4.1 Dual Correlated Double Sampling Statistics	54
	8.4.2 Analog Dark Level Correction	54
	8.4.3 Periodic Offset Mismatch Correction	54
	8.4.4 Global Offset Correction (GOS)	54
	8.4.5 Lens Shading Correction	54
	8.4.6 Module to Module Shading Variation Correction	
	8.4.7 Periodic Gain Mismatch Correction	
	8.4.8 Static Despeckle	
	8.4.9 Image Downscaling	
	8.4.10 DPCM/PCM Image Compression	
	8.4.11 Output Formatting	
	8.5 Temperature Sensor	
	8.6 General Purpose IO Control	
	8.7 System	
	8.7.1 Clock System	
	8.7.2 Reset System	
	8.7.3 CPU Sub-System	
	8.7.4 I2C Slave/SPI	
	8.7.5 Memory System	
	8.8 NVM OTP Memory	
	8.8.1 OTP Read/Write Procedure	
	8.9 Global Reset Single Frame	
	8.9.1 Global Reset - Single Frame	
	8.9.2 Global Reset – with Frame Truncation	61
	compune / ollon pigo of 00:27 2012 00 24	
9 (OUTPUT DATA INTERFACE	62
5 (
10	ELECTRICAL CHARACTERISTICS	66
	10.1 Absolute Maximum Rating	
	10.2 Operating Conditions	
	10.3 DC Characteristics	
	10.4 AC Characteristics	
	10.5 TX Driver Characteristics	
	10.6 Parallel DATA IO Characteristics	73
11	REGISTER DESCRIPTION	7/
• •		
	11.1 Configuration Registers	
	11.1.1 Configuration Registers 1 [0xD0000000 to 0xD0001FFF]	74
	11.1.2 Configuration Registers 2 [0xD0003000 to 0xD0003FFF]	
	11.1.3 Configuration Registers 3 [0xD000F000 to 0xD000FFFF]	109
12	MECHANICAL	440
ıZ		
	12.1 Package Specification	110

List of Figures

Figure Number	Title	Page Number
Figure 1	Function Block Diagram	14
Figure 2	System State Diagram	
Figure 3	Pad Configuration	
Figure 4	Pixel Array Information	
Figure 5	Video Timing Overview	23
Figure 6	Window of Interest on Pixel Array	24
Figure 7	Horizontal Mirror and Vertical Flip	26
Figure 8	Example of Sub-Sampled Readout	
Figure 9	Virtual Frame Format Example	28
Figure 10	Clock System Block Diagram	29
Figure 11	Clock Relationships	30
Figure 12	PLL Frequency Synthesis	31
Figure 13	Master Clock Waveform Diagram	32
Figure 14	SPI Control Interface	33
Figure 15	SPI WRITE Timing Diagram Mode 11	34
Figure 16	SPI READ Timing Diagram Mode 11	
Figure 17	SPI WRITE/READ Mode 00	35
Figure 18	SPI WRITE sequence (1 cycle)	36
Figure 19	SPI READ	36
Figure 20	12C Timing	37
Figure 21	I2C Write Timing Example	38
Figure 22	I2C Read Timing Example	39
Figure 23	I2C Read Multiple Timing Example	
Figure 24	Power-Up Sequence (Serial Output Case)	44
Figure 25	Power-Down Sequence (Serial Output Case)	46
Figure 26	Example - case (a); Preserve frame timing without outputting the corrupted frame to host	48
Figure 27	Example - case (b); Preserve frame timing and output corrupted frame	49
Figure 28	Example - case (c); Timing abort: After end of readout and VBLANK	49
Figure 29	Example - case (d); Timing abort: After frame readout ends but before VBLANK time	50
Figure 30	Example - case (e); Timing abort: Immediate abort (including during frame read out)	50
Figure 31	Mechanical Shutter Single Frame	60
Figure 32	Mechanical Shutter with Frame Truncation	61
Figure 33	CSI-2 and CCI Transmitter and Receiver Interface	63
Figure 34	Four Lane Transmitter and Four Lane Receiver Example	63
Figure 35	Low Level Protocol Packet Overview	64
Figure 36	Long Packet Structure	64
Figure 37	RAW10 Transmission	
Figure 38	RAW10 Frame Format	65
Figure 39	Setup and Hold Time for Data, VSYNC and HSYNC with Reference to PCLK	73

List of Tables

Table Number	Title	Page Number
Table 1	Operating Mode Summary	15
Table 2	Pad Description	17
Table 3	Typical Functional Operation Modes	22
Table 4	Typical Functional Operation Modes for MIPI @ 660Mbits/lane	22
Table 5	PLL Component Output Frequency	31
Table 6	SPI/I2C PAD Sharing	33
Table 7	SPI WRITE/READ Timing Specification	35
Table 8	I2C Standard Mode Timing Specifications	37
Table 9	I2C Fast Mode Timing Specifications	
Table 10	I2C ID Address (XCE Pad)	
Table 11	Power-Up Sequence Timing Constraints (Serial Output Case)	43
Table 12	Power-Down Sequence Timing Constraints (Serial Output Case)	45
Table 13	Frame Timing Transition Options	
Table 14	Rolling Shutter Frame Timing Transition Options	51
Table 15	Mechanical Shutter Frame Timing Transition Options	51
Table 16	Parameters that Cause Frame Timing Change if Modified	
Table 17	Analog Gain (AG) Control	53
Table 18	GPIO Functional Table	
Table 19	Mechanical Shutter Single Frame	
Table 20	Mechanical Shutter with Frame Truncation	
Table 21	Absolute Maximum Rating Operating Conditions	66
Table 22	Operating Conditions	67
Table 23	DC Characteristics	68
Table 24	AC Characteristics	70
Table 25	TX HS Transmitter DC Specifications	71
Table 26	TX HS Transmitter AC Specifications	71
Table 27	TX LP Transmitter DC Specifications	71
Table 28	TX LP Transmitter AC Specifications	72
Table 29	AC Characteristics (Parallel Mode)	73

List of Conventions

Register RW Access Type Conventions

Туре	Definition	Description
R	Read Only	The application has permission to read the Register field. Writes to read-only fields have no effect.
W	Write Only	The application has permission to write in the Register field.
RW	Read & Write	The application has permission to read and writes in the Register field. The application sets this field by writing 1'b1 and clears it by writing 1'b0.

Register Value Conventions

Expression	Description		
Х	Undefined bit		
X	Undefined multiple bits		
?	Undefined, but depends on the device or pin status		
Device dependent	The value depends on the device		
Pin value	The value depends on the pin status		

Reset Value Conventions

Reset Value Conventions	/ ellen.piao at 09:37.2012.09.24				
Expression	Description				
0	Clears the register field				
1	Sets the register field				
X	Don't care condition				

Warning: Some bits of control registers are driven by hardware or write operation only. As a result the indicated reset value and the read value after reset might be different.

1

Product Overview

1.1 Introduction

The S5K3H7YX is a highly integrated 8M pixel camera chip that includes a CMOS image sensor (CIS), image correction functionality and serial transmission using 4-lane MIPI. It is designed for fast yet low power operation, delivering full resolution capture at 30 frames per second (fps) and full field of view (16:9) FHD video at 30fps. It is fabricated by the SAMSUNG 90 nm back side illumination (BSI) CMOS image sensor process developed for imaging applications to realize a high-efficiency and low-power photo sensor. The sensor consists of 3264×2448 effective pixels that meet with the 1/3.2-inch optical format.

The CIS has on-chip 10-bit ADC arrays to digitize the pixel output and on-chip Correlated Double Sampling (CDS) to drastically reduce Fixed Pattern Noise (FPN). It incorporates on-chip camera functions such as lens shading correction, defect correction, exposure setting, white balance setting, image scaling and image data compression.

It is programmable through a CCI or SPI serial interface and includes on-chip one-time programmable (OTP) none-volatile memory (NVM).

The S5K3H7YX is suitable for a low-power camera module with a 2.8 V/1.2 V power supply.

samsung / ellen.piao at 09:37,2012.09.24

1.2 Features

- 8Mp sensor with 1/3.2"optics
- Pixel size: 1.4 μm
- Effective resolution: 3264 (H) × 2448 (V)
- · Electronic rolling shutter and global reset
- Support digital video stabilization margins in FHD/HD video modes
- Frame rate:
 - Capture: 8M-4:3 30 fps (2640 Mbps)
 - FHD video: 6M-16:9 30 fps (1980 Mbps)/2.7M (16:9) 30 fps (990 Mbps)
 - HD video: 1.5M-16:9 120 fpsHigh speed: QVGA 240 fps
- Interfaces:
 - Fine interface frequency control using additional dedicated PLL for EMI avoidance and integration flexibility.
 - MIPI CSI2 four lanes (1Gbps per lane)
 - 10-bit parallel video interface, with reduced frame rate
 - Output formats: RAW8 (using DPCM/PCM compression), RAW10, RAW12 (for test only)
- · Control interface:
 - SPI interface Three-wire serial communication circuit up to 18 MHz.
 - I2C-compatible Two-wire serial communication circuit up to 400 kHz.
- Xenon/LED flash
- Mechanical shutter
- 8 Kbit on-chip OTP memory to support defect corrections, chip ID and module-to-module compensation.
- Analog gain x16
- Vertical and horizontal flip mode
- Continuous frame capture mode
- 2/2, 4/4 average/average sub sampling readout
- Pixel elimination readout function
- x1.5, x2, x3, x4 Bayer downscaler function
- Lens shading correction function
- Bad pixel correction
- On-chip temperature sensor
- Built-in test pattern generation
- Supply voltage: 2.8 V for analog and 2.8 V or 1.8 V for I/O, 1.2 V for digital core supply
- Operating temperature: 30 °C to + 70 °C

1.3 Block Diagram

The S5K3H7YX is a progressive-scan sensor that generates a stream of pixel data at a constant frame rate. It uses an on-chip phase-locked loop (PLL) to generate all internal clocks from a single master input clock running between 6 MHz and 54 MHz. Output interface clocks may be generated by dedicated PLL for maximal flexibility in interface frequency and for EMI avoidance. The maximum pixel rate is 3960 Mbps at MIPI 4-lane, corresponding to the pixel rate of 396 MHz at CSI-2 RAW10.

The block diagram of the sensor is shown in *Figure 1*.

Figure 1 Function Block Diagram

The image sensor has an on-chip ADC. A column parallel ADC scheme is used for low-power analog processing.

The analog output signal of each pixel includes some temporal random noise caused by the pixel reset action and some fixed pattern noise caused by the in-pixel amplifier offset deviation. To eliminate these noise components, a Correlated Double Sampling (CDS) circuit is used before converting to digital.

The output from the ADC is a 10-bit value for each pixel in the array. The ADC output passes through a digital processing signal chain, which provides further data path corrections and applies digital gain. Digital scaling is performed before most digital processing to allow quadratic scale power reduction for core power in video modes. A shading correction block is used to compensate for color/brightness shading introduced by the lens or CRA curve mismatch. Low power, bad pixel correction block is used to fix pre-defined defects that are not handled perfectly by the host ISP bad pixel correction block such as bad pixel clusters and small level outliers. Additional functionality is provided that includes a deterministic pattern generator, a PCM/DPCM compressor and a MIPI CSI-2 frame formatter with embedded line support.

The sensor is interfaced using a set of control and status registers that can be used to control many aspects of the sensor behavior, including frame size, exposure and gain setting. These registers can be accessed through a CCI interface.

1.4 Device Operating Modes

The Sensor module has four operating modes (<u>Table 1</u>). Moving from one mode to another is achieved by issuing the appropriate mode command via the CCI serial control interface, the RSTN (XSHUTDOWN) signal changing state and the power supplies. By default, S5K3H7YX powers up with the CSI-2 serial data interface enabled. <u>Figure 2</u> defines the valid mode changes for the sensor module.

Power State	Description		
Power-off	Power supplies are turned off.		
Hardware Standby No communication with the sensor is possible. Internal core power shut-off by external VDDD power down.			
CCI/SPI communication with sensor is possible. Core power is on. Entry to SW standby mode is either by mode_select or by software_reset CCI comm			
Streaming	The sensor module is fully powered and is streaming image data on the CSI-2 bus.		

Table 1 Operating Mode Summary

Figure 2 System State Diagram

Pad Configuration

Figure 3 Pad Configuration

2.1 Pad Description

Table 2 Pad Description

Pad No	Pad Name	I/O	Description
83	RSTN	I	Master Reset, Active low (XSHUTDOWN)
59	MCLK	1	Input external 6-54Mhz clock
49	I2C_SPI_N_SEL	I	SPI/IIC Select (1: IIC, 0: SPI)
51	XCE	IOD	SPI mode: Serial communication enable / IIC mode: IIC slave address selection (0: 20h/21h 1: 5Bh/5Ah)
50	SDO	IOZ	SPI mode: Serial Data output (SPI) / IIC mode: leave open
48	SDI	IOD	SPI mode: Serial communication data input / IIC mode: IIC data
56	SCK	IOD	SPI mode: Serial communication clock input (SPI) / IIC mode: IIC input clock
12	GPIO_1	IOZ	General purpose I/Os: Input function: STRB_IN / GPI, Output function: STRB_OUT / Xenon / GPO / Pixel Data Output [1] in RAW 12
11	GPIO_2	IOZ	General purpose I/Os: Input function: STRB_IN / GPI, Output function: STRB_OUT / Xenon / GPO / Pixel Data Output [0] (LSB) in RAW 12
10	GPIO_33 Ung / e	IOZ	General purpose I/Os: Input function: STRB_IN / GPI, Output function: STRB_OUT / Xenon / GPO
73	M_DPCLK	AIO	MIPI clock lane positive
74	M_DNCLK	AIO	MIPI clock lane negative
77	M_DPDATA0	AIO	MIPI data lane 0 positive
78	M_DNDATA0	AIO	MIPI data lane 0 negative
75	M_DPDATA1	AIO	MIPI data lane 1 positive
76	M_DNDATA1	AIO	MIPI data lane 1 negative
71	M_DPDATA2	AIO	MIPI data lane 2 positive
72	M_DNDATA2	AIO	MIPI data lane 2 negative
69	M_DPDATA3	AIO	MIPI data lane 3 positive
70	M_DNDATA3	AIO	MIPI data lane 3 negative
60	PLL_FLT	AIO	Test: PLL Monitor PAD
87	VPP_CID	AIO	OTP Input Power mode: Programming Voltage (6.5V External VPP option); For read, VPP is tied to 2.8V or floating. Output Monitor mode: VPP monitors output during test mode.
109	VPAD	AIO	Test: Voltage monitoring
108	REFIN	AIO	Test: Reference signal of ADC sat test

Pad No	Pad Name	I/O	Description
107	SIGIN1	AIO	Test: Signal 1 of ADC sat test
106	SIGIN2	AIO	Test: Signal 2 of ADC sat test
105	VNCP	AIO	Test: Voltage doubler negative power
104	VNTG	AIO	Test: Boosted negative TG voltage
103	VTG	AIO	Test: Boosted TG voltage
102	VRG	AIO	Test: Boosted RG voltage
101	VFDB	AIO	Test: Boosted FD voltage
100	VCP	AIO	Voltage doubler positive power. Connect to 0.1uF cap.
19	VSYNC	IOZ	Vertical sync output for parallel and MIPI interface (optional)
18	HSYNC	IOZ	Horizontal sync output
17	PCLK	IOZ	Pixel clock output
39	D0	IOZ	Pixel Data Output (LSB in 10-bit mode)
38	D1	IOZ	Pixel Data Output (LSB in 9-bit mode)
37	D2	IOZ	Pixel Data Output (LSB in 8-bit mode)
36	D3	IOZ	Pixel Data Output
35	D4	IOZ	Pixel Data Output
30	D5	IOZ	Pixel Data Output
29	D6	IOZ	Pixel Data Output
28	D7 1113 UTI 9 7 C	IOZ	Pixel Data Output
27	D8	IOZ	Pixel Data Output
26	D9	IOZ	Pixel Data Output (MSB in all modes)
9	TST	1	Test: EDS test configuration pin. Tie low in normal operation
95	POR_PWDN	1	POR circuit power down (low - POR is active, high - POR is disabled). From EVT0.1: Analog Ground. (Pin is disabled - POR off)
94	POR	AO	Test: POR monitor
33	VDD12_1	Р	Digital Core Power (1.2V)
24	VDD12_2	Р	Digital Core Power (1.2V)
20	VDD12_3	Р	Digital Core Power (1.2V)
13	VDD12_4	Р	Digital Core Power (1.2V)
2	VDD12_5	Р	Digital Core Power (1.2V)
1	VDD12_6	Р	Digital Core Power (1.2V)
117	VDD12_7	Р	Digital Core Power (1.2V)
116	VDD12_8	Р	Digital Core Power (1.2V)
92	VDD12_9	Р	Digital Core Power (1.2V)
91	VDD12_10	Р	Digital Core Power (1.2V)

SAMSUNG ELECTRONICS

Pad No	Pad Name	I/O	Description
81	VDD12_11	Р	Digital Core Power (1.2V)
58	VDD12_12	Р	Digital Core Power (1.2V)
53	VDD12_13	Р	Digital Core Power (1.2V)
47	VDD12_14	Р	Digital Core Power (1.2V)
43	VDD12_15	Р	Digital Core Power (1.2V)
89	VDD12_16	Р	Digital Core Power (1.2V)
45	VDD12_17	Р	Digital Core Power (1.2V)
80	VDD12_MIPI_1	Р	Mipi Digital Power (1.2V)
68	VDD12_MIPI_2	Р	Mipi Digital Power (1.2V)
66	VDD12_PLL_1	Р	PLL Digital Power (1.2V)
61	VDD12_PLL_2	Р	PLL Digital Power (1.2V)
64	VDDA_PLL_1	Р	PLL Analog Power (2.8V)
63	VDDA_PLL_2	Р	PLL Analog Power (2.8V)
8	VDDA_ATOP_1	Р	Analog Power (2.8V)
7	VDDA_ATOP_2	Р	Analog Power (2.8V)
111	VDDA_ATOP_3	Р	Analog Power (2.8V)
110	VDDA_ATOP_4	Р	Analog Power (2.8V)
97	VDDA_DBLR_1	Р	Analog Power (2.8V)
96	VDDA_DBLR_2	7	Analog Power (2.8V) - 27 2012 00 24
86	VDDA_CID	Р	OTP Analog Power Read: 2.8V / Write (charge pump x1.5): 2.6V-2.9V / Write (charge pump x1): 3V-3.3V
23	VDDIO_1	Р	IO Voltage (1.8V / 2.8V)
16	VDDIO_2	Р	IO Voltage (1.8V / 2.8V)
55	VDDIO_3	Р	IO Voltage (1.8V / 2.8V)
41	VDDIO_4	Р	IO Voltage (1.8V / 2.8V)
32	VDDIO_6	Р	IO Voltage (1.8V / 2.8V)
85	VDDIO_PMG	Р	IO Voltage (1.8V / 2.8V)
34	GND_1	G	Digital Ground
25	GND_2	G	Digital Ground
21	GND_3	G	Digital ground
14	GND_4	G	Digital Ground
4	GND_5	G	Digital Ground
3	GND_6	G	Digital Ground
115	GND_7	G	Digital Ground

SAMSUNG ELECTRONICS

Pad No	Pad Name	I/O	Description
114	GND_8	G	Digital Ground
93	GND_9	G	Digital Ground
82	GND_10	G	Digital Ground
57	GND_11	G	Digital Ground
52	GND_12	G	Digital Ground
46	GND_13	G	Digital Ground
42	GND_14	G	Digital Ground
88	GND_16	G	Digital Ground
44	GND_17	G	Digital Ground
79	VSS_MIPI_1	G	MIPI Ground
67	VSS_MIPI_2	G	MIPI Ground
65	GND_PLL_1	G	MIPI Ground
62	GND_PLL_2	G	PLL Ground
6	GNDA_ATOP_1	G	Sensor Analog Ground
5	GNDA_ATOP_2	G	Sensor Analog Ground
113	GNDA_ATOP_3	G	Sensor Analog Ground
112	GNDA_ATOP_4	G	Sensor Analog Ground
90	GNDA_CID	G	Sensor Analog Ground (for OTP)
99	GNDA_DBLR_1	G	Sensor Analog Ground
98	GNDA_DBLR_2	G	Sensor Analog Ground
40	GNDIO_1	G	IO Ground
22	GNDIO_2	G	IO Ground
15	GNDIO_3	G	IO Ground
54	GNDIO_4	G	IO Ground
31	GNDIO_6	G	IO Ground
84	GNDIO_PMG	G	IO Ground

3 Pixel Array Information

3

Pixel Array Information

Figure 4 Pixel Array Information

NOTE: Top view on chip.

Displayed image will be flipped.

Functional Operation Modes

S5K3H7YX can support a wide range of operation modes.

Operation mode is function of several mode parameters such as:

- Interface bandwidth
- Requested sensor output size and sensor operation mode
- CIS output size and number of bits per pixel e.g. RAW10, RAW8+ (8 bit in DPCM/PCM compression)
- Required VBlank time
- Power consumption limitations e.g. use single PLL, limited MIPI lanes, system lower power modes.

Typical operation modes and related typical settings are presented in this table.

Table 3 Typical Functional Operation Modes

		est Frame Horizontal FOV loss	CiS Output Output Parameters			Sensor Output						MIPI Parameters			
Mode	Best Frame Rate		Output Width		VBlank	Output Bittage	Bit Clk	WOI Width	H Analog Scale		WOI Height	V Analog Scale	V Dig Scale	Num. Lanes	Cont. Clk
8M 4:3	30.00	0%	3264	2448	3000	10	940	3264	1	1	2448	_ 1	1	3	Yes
6M 16:9	60.12	0%	3264	1836	250	10	1000	3264	1	1	1836	1	1	4	Yes
6M 16:9	30.02	0%	3264	1836	9500	10	880	3264	17	\cap 1 \cap .	1836	\cap 1	$\bigcirc 1/$	4	Yes
2.7M 16:9 (D.I.S)	60.06	0%	2176	1224	570	10	1000	3264	O1	1.5	1836	UD.	1.5	2	Yes
2.7M 16:9 (No D.I.S)	60.06	12%	1920	1080	2500	10	1000	2880	1	1.5	1620	1	1.5	2	Yes
FHD (Win)	60.09	41%	1920	1080	2500	10	1000	1920	1	1	1080	1	1	2	Yes
HD 1.5M (D.I.S)	120.11	0%	1632	918	250	10	880	3264	2	1	1836	2	1	3	Yes
VGA+	120.73	0%	816	612	250	10	880	3264	4	1	2448	4	1	1	Yes
VGA (Win)	120.36	22%	640	480	1990	10	880	2560	4	1	1920	4	1	1	Yes
QVGA+	240.23	0%	400	306	1390	10	880	3264	8	1	2448	8	1	1	Yes
OVGA (Win)	240.23	22%	320	240	1960	10	880	2560	8	1	1920	8	1	1	Yes

In case of constraint such as for example use of max MIPI 660Mbits/lane modes will be different;

Table 4 Typical Functional Operation Modes for MIPI @ 660Mbits/lane

	Best Frame Rate	Horizontal FOV loss	CiS Output		Output Parameters		Sensor Output						MIPI Parameters		
Mode			Output Width	Output Height	VBlank [uS]	Output Bittage	Bit Clk [Mhz]	WOI Width	H Analog Scale	H Dig Scale	WOI Height	V Analog Scale	V Dig Scale	Num. Lanes	Cont. Clk
8M 4:3	30.06	0%	3264	2448	1000	10	660	3264	1	1	2448	1	1	4	Yes
6M 16:9	60.12	0%	3264	1836	250	10	1000	3264	1	1	1836	1	1	4	Yes
6M 16:9	30.12	0%	3264	1836	9000	10	660	3264	1	1	1836	1	1	4	Yes
2.7M 16:9 (D.I.S)	60.06	0%	2176	1224	570	10	660	3264	1	1.5	1836	1	1.5	3	Yes
2.7M 16:9 (No D.I.S)	60.06	12%	1920	1080	2500	10	660	2880	1	1.5	1620	1	1.5	3	Yes
FHD (Win)	60.09	41%	1920	1080	2500	10	660	1920	1	1	1080	1	1	3	Yes
HD 1.5M (D.I.S)	120.11	0%	1632	918	250	10	660	3264	2	1	1836	2	1	4	Yes
VGA+	120.73	0%	816	612	250	10	660	3264	4	1	2448	4	1	2	Yes
VGA (Win)	120.36	22%	640	480	1990	10	660	2560	4	1	1920	4	1	1	Yes
QVGA+	240.23	0%	400	306	1390	10	660	3264	8	1	2448	8	1	1	Yes
QVGA (Win)	240.23	22%	320	240	1960	10	660	2560	8	1	1920	8	1	1	Yes

NOTE: 16:9 60 fps modes are not supported in EVT0. Please contact SEC for more information.

5 Video Timing

S5K3H7YX_DS_REV0.23 (Preliminary Spec)

5.1 Overview

The output image size is a function of the size of the addressed region of the pixel array and the sub-sampling programmed factor. *Figure 5* shows the video timing overview.

Figure 5 Video Timing Overview

5.2 Pixel Array Addresses

Addressable pixel array is defined as the pixel address range to be read. The addressable pixel array can be assigned anywhere on the pixel array. The addressed region of the pixel array is controlled by the h_addr_start, v_addr_start, h_addr_end and v_addr_end register.

Figure 6 Window of Interest on Pixel Array

SAMSUNG Confidential

samsung / ellen.piao at 09:37,2012.09.24

5.3 Horizontal Mirror and Vertical Flip

The pixel data is normally read out from left to right in the horizontal direction and from top to bottom in the vertical direction. By changing the mirror/flip mode, the read-out sequence can be reversed, and the resulting image can be flipped like a mirror image. Pixel data is then read out from right to left in horizontal mirror mode and from bottom to top in vertical flip mode. The horizontal mirror and the vertical flip mode can be programmed by the image orientation register.

The sensor module supports four possible pixel readout orders, as described in the sections below:

a) Standard Readout

The addressed region of the horizontal pixel data output is controlled by the x_addr_start and x_output_width registers. The addressed region of the vertical pixel data output is controlled by the y_addr_start and y_output_depth registers.

b) Horizontally Mirrored Readout

The addressed region of the horizontal pixel data output is controlled by the x_addr_end, and x_output_width registers, and the vertical pixel data output is the same as that of the standard readout.

c) Vertical Flipped Readout

The horizontal pixel data output is same as that of the standard readout, and the addressed region of the vertical pixel data output is controlled by the y_addr_end and y_output_depth registers.

d) Horizontally Mirrored and Vertically Flipped Readout

The addressed region of the horizontal pixel data output is controlled by the x_addr_end and x_output_width registers. The addressed region of the vertical pixel data output is controlled by the y_addr_end and y_output_depth registers.

samsung / ellen.piao at 09:37,2012.09.24

Figure 7 Horizontal Mirror and Vertical Flip

5.4 Sub-Sampled Readout

By programming the x and y odd and even increment registers (x_even_inc, x_odd_inc, y_even_inc, y_odd_inc), the sensor can be configured to read out sub-sampled pixel data.

Figure 8 Example of Sub-Sampled Readout

5.4.1 Averaged Sub-sampled Readout

By programming the averaged sub-sampling enable register, the sensor can be configured to read out pixel data that has been averaged with adjacent pixels.

5.5 Frame Rate Control (Virtual Frame)

The line rate and the frame rate can be changed by varying the size of the virtual frame. The virtual frame's width and depth are controlled by the line_length_pck and frame_length_lines register. The horizontal and vertical blanking times (horizontal blanking time: line_length_pck – x_output_size, vertical blanking time: frame_length_lines – y_output_size) should meet system requirements.

Frame rate = vt_pix_clk/(frame_length_lines × line_length_pck)

Figure 9 Virtual Frame Format Example

5.5.1 Integration Time Control (Electronic Shutter Control)

The pixel integration time is controlled by the shutter operation. During the shutter operation, the amount of time – integration time – is determined by the column Step Integration Time Control Register (fine_integration_time) and the line Step Integration Time Control Register (coarse_integration_time). The total integration time of the sensor module can be calculated using the following formula:

 $Total_integration_time = \{coarse_integration_time \times line_length_pck + fine_integration_time + const\} \times pclk \\ period[sec]$

const parameter is calculated internally according to sensor settings and is fixed per sensor configuration. const parameter can be checked for any configuration by read of reg_gtg_aig_tx_ptr1 register (0xF470).

5 Video Timing

5.6 PLL and Clock Generator

The S5K3H7YX clock system uses system phase-locked loop (PLL), system clock dividers, output PLL, and output clock dividers to generate all internal clocks from a single master input clock running between 6 MHz and 54 MHz.

Output interface clocks may be generated by the System PLL. In this case the Output PLL will be powered-down and overall system power reduced.

Alternatively dedicated Output PLL may be used for maximal flexibility in interface frequency and for EMI avoidance. The maximum PLL VCO frequency is 1 GHz.

Clock dividers are used to generate all system clocks from one or two PLL sources.

The charge pump clock and the ADC clock are used for A/D conversion circuits, pixel clock and pixel clock/2 are used for pixel processing and sensor control. Bit clock and output clock are set according to the required output rate.

Figure 10 Clock System Block Diagram

5.6.1 Clock Relationships

The host provides the external input clock (with values varying between 6-54 MHz) in addition to setting dividers and multipliers in order to get the required video timing and output pixel clocks.

Figure 11 Clock Relationships

Figure 12 PLL Frequency Synthesis

$$PLL_CLK = EXTCLK \times \left[\frac{M}{P} \times \frac{1}{2^{S}}\right]$$

NOTE: PLL_S = 0 and is not controllable. Post dividers are used for lower frequency synthesis.

Table 5 PLL Component Output Frequency

Parameter	Min. Typ. N		Max.	Unit	Remarks			
Input frequency range	601	ı <u>Fia</u>	54	MHz	EXTCLK frequency range			
Reference frequency range	3	1. <u>p</u> ra	6	MHz	Output of pre-divider (Fref)			
VCO frequency range	500	_	1000	MHz	Output of PLL multiplier VCO oscillation range (Fvco)			
PLL output frequency range	31.25	-	1000	MHz	Output of PLL post scaler. Minimum value is just for test. (S \geq 4)			

NOTE: For more information about the PLL and clock system control, refer to the application note.

5.6.2 Master Clock Waveform Diagram

Figure 13 Master Clock Waveform Diagram

MCLK is the input clock to the S5K3H7YX sensor, sometimes refer as EXTCLK.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Comment
MCLK clock frequency	EXTCLK	6	_	54	MHz	_
MCLK period	tp	18.52	41.6	166.6	no	_
MCLK rise/fall time	tr/tf	70	_	6	ns	-
MCLK jitter (periodic)	Tjitter			200	ps	2
MCLK jitter (peak-to-peak)	1			0.1 V _{CLK}	V	
samsung /	ellen.	olao at	09:37	,2012	.09.24	•

Control Interface

S5K3H7YX control is done using register writes.

S5K3H7YX can be configured using the I2C_SPI_N_SEL pin, to be controlled using the Camera Control Interface (CCI) or SPI control interface.

Table 6 SPI/I2C PAD Sharing

SPI	I2C					
SDI	SDA					
SCK	SCL					
XCE	I2C_ID					
SDO	-					
I2C_SPI_N_SEL						

6.1 SPI Control Interface

The S5K3H7YX may use the SPI interface for control registers communication.

SPI interface is described in the diagram below.

Figure 14 SPI Control Interface

The following table describes SPI signals:

Pin Name	Description					
XCE	Serial communication enable					
SCK	Serial communication clock input					
SDI	Serial data input					
SDO	Serial data output					

If it is not necessary to read the control registers and chip ID, the SDO pad can be left unconnected.

The SPI control interface implemented in S5K3H7YX will be presented in detail in the next section.

6.1.1 SPI Timing Definitions

Figure 15 SPI WRITE Timing Diagram Mode 11

Figure 16 SPI READ Timing Diagram Mode 11

Description	Symbol	Min.	Тур.	Max.	Unit	
MCLK (external clock) Frequency	Fext	6	_	54	MHz	
	F ⁽¹⁾	_	_	Fext/3	IVITZ	
SPI clock frequency	F (2)	_	_	10		
	F (3)	_	_	18		
SPI clock period	Т	1/F	_	_	nSec	
SPI clock duty cycle	Tdc	45	_	55	%	
XCE negedge to SCK edge	Txce2ck	Т	_	_		
SCK posedge to XCE edge	Tck2xce	2T	-	_		
SCK to SDI setup time	Tsck2di	7	-	_	nSec	
SCK to SDI hold time	Thck2di	5	_	_		
SCK to SDO setup time	Tsck2do	T/2-20	_	_		
SCK to SDO hold time	Thck2do	T/2	_	_		

Table 7 SPI WRITE/READ Timing Specification

NOTE:

- 1. External clock is used
- 2. PLL stable. Internal system clock set to > 60 MHz.
- 3. PLL stable. Internal system clock set to max 110 MHz

Figure 17 SPI WRITE/READ Mode 00

6.1.2 SPI Sequences

Figure 18 SPI WRITE sequence (1 cycle)

Figure 19 SPI READ

SAMSUNG Confidential

samsung / ellen.piao at 09:37,2012.09.24

6.2 Camera Control Interface (CCI)

S5K3H7YX supports the Camera Control Interface (CCI), which is an I2C fast-mode compatible interface for controlling the transmitter. S5K3H7YX always acts as a slave in the CCI bus. CCI is capable of handling several slaves in the bus, but multi-master mode is not supported. Typically, only the receiver and transmitter are connected to the CCI bus. This makes a pure SW implementation possible.

Typically the CCI is separate from the system I2C bus, but I2C-compatibility ensures that it is also possible to connect the transmitter to the system I2C bus. CCI is a subset of the I2C protocol, including the minimum combination of obligatory features for the I2C slave device specified in the I2C specification. Therefore, transmitters complying with the CCI specification can also be connected to the system I2C bus. However, it is important to ensure that the I2C masters do not try to utilize these I2C features, which are not supported in transmitters complying with the CCI specification. Each transmitter conformed to the CCI specification may have additional features implemented to support I2C.

Figure 20 I2C Timing

Table 8 I2C Standard Mode Timing Specifications

Symbol	Parameter	Min.	Max.	Unit	
-	SCL clock frequency	0	100	kHz	
T1	Hold time for START condition	4.0	_	0	
T2	Setup time for STOP condition	4.0	_	μS	
T3	Data setup time	250	_	ns	
T4	Data hold time	0	3.45		
T5	High period of the SCL clock	4.0	_		
T6	Low period of the SCL clock	4.7	_	μS	
T7	Bus free time between STOP and START conditions	4.7	_		
_	Rise time for both SDA and SCL signals -		1000	20	
_	Fall time for both SDA and SCL signals	_	300	ns	
СВ	Capacitive load for each bus line	_	400	pF	

Symbol	Parameter	Min.	Max.	Unit	
_	SCL clock frequency	0	400	kHz	
T1	Hold time for START condition	0.6	_	0	
T2	Setup time for STOP condition	0.6	_	μS	
ТО	Data setup time, external clock (MCLK) 12 Mhz and above	0.1	_	μS	
13	Data setup time, external clock (MCLK) below 12 Mhz		-	μS	
T4	Data hold time	0	0.9		
T5	High period of the SCL clock	0.6	-		
T6	Low period of the SCL clock	1.3	_	μS	
T7	Bus free time between STOP and START conditions	1.3	_	1	
_	Rise time for both SDA and SCL signals	-	300		
_	 Fall time for both SDA and SCL signals 		300	ns	
СВ	Capacitive load for each bus line	_	400	pF	

Table 9 I2C Fast Mode Timing Specifications

Figure 21 I2C Write Timing Example

NOTE: The device address can be changed by pin configuration of I2C_ID, as described in the pad description.

Figure 22 I2C Read Timing Example

NOTE: The device address can be changed by the pin configuration of I2C_ID, as described in the pad description.

Figure 23 I2C Read Multiple Timing Example

NOTE: The device address can be changed by the pin configuration of I2C_ID, as described in the pad description.

It is possible to configure up to two I2C slave addresses using I2C_ID pins.

Table 10 I2C ID Address (XCE Pad)

XCE	Slave Address (7-bit + Read Mode)	Slave Address (7-bit + Write Mode)	Comment
0	0010_0001b/21h	0010_0000b/20h	Address 1
1	0101_1011b/5Bh	0101_1010b/5Ah	Address 2

SAMSUNG Confidential

7

Power Up/Down Sequence

7.1 Power-Up Sequence

The digital and analog supply voltages can be powered up in any order, e.g., VDDD/VDDIO then VDDA or VDDA/VDDIO then VDDD.

On power up, RSTN (XSHUTDOWN) should be low when the power supplies are brought up, then the sensor module will go into hardware standby mode.

The assertion of RSTN ensures that the CCI/SPI register values are initialized correctly to their default values. The MCLK clock can either be initially low and then enabled during software standby mode or MCLK can be a free running clock.

NOTE: (1) At hardware standby mode external VDDD should be OFF.

- (2) For minimal SW standby power external clock (MCLK) should be off
- (3) In case Software standby mode is desired after power up it should be initiated by register configuration (see S5K3H7YX application notes for details)

SAMSUNG Confidential

Table 11 Power-Up Sequence Timing Constraints (Serial Output Case)

Constant	Label	Min.	Max.	Unit
VDDA/VDDD/VDDIO rising time	tO	VDDA/VDDD/VDDIO may rise in any order. The rising separation can vary from 0ns to indefinite. If RSTN is high during VDDD rising then VDDD max rising time is 2000 ns		ns
RSTN (XSHUTDOWN) rising to VDDD rising	t1	0.0	VDDD rising and RSTN	
VDDD rising to RSTN (XSHUTDOWN) rising	t2	0.0	rising can be in any order	
RSTN (XSHUTDOWN) rising and VDDD rising to first I2C transaction (1)	t3	9600 ⁽²⁾ 12,500 ⁽³⁾	-	MCLK cycles
Minimum No. of MCLK (EXTCLK) cycles prior to the first I2C transaction	t4	9600 ⁽²⁾ 12,500 ⁽³⁾	-	
PLL startup/lock time	t5	_	1	
Entering streaming mode – first frame start sequence (fixed part)	t6	_	10	ms
Entering streaming mode – first frame start sequence (variable part)	t7	The delay is the coarse integration time value		lines
DPHY Recovery Time (TWAKEUP)	t8	1 –		ma
DPHY Initialization Period (TINIT)	t9	0.1		ms

NOTE:

- 1 In case Software standby mode is desired after power up it should be initiated by register configuration (see S5K3H7YX application notes for details)
- 2. I2C/SPI access to tuning registers and T&P memory: t3, t4 = 9600 MCLK cycles.
- 3. I2C/SPI access to Chip ID from NVM, tuning registers and T&P memory: t3, t4 = 12,500 MCLK cycles.

Figure 24 Power-Up Sequence (Serial Output Case)

7.2 Power-Down Sequence

The digital and analog supply voltages can be powered down in any order, e.g., VDDD/VDDIO then VDDA or VDDA/VDDIO then VDDD.

Similar to the power-up sequence, the MCLK (EXTCLK): input clock may be either gated or continuous.

If the CCI/SPI command to exit streaming is received while a frame of valid active data is being output, then the sensor module must wait for the frame end code before entering software standby mode.

If the CCI/SPI command to exit streaming mode is received during the inter frame time, then the sensor module must enter software standby mode immediately.

Table 12 Power-Down Sequence Timing Constraints (Serial Output Case)

Constant	Label	Min.	Max.	Unit
Enter Software Standby CCI command – Device in Software Standby mode	tO	If outputting a frame of MIPI, the data waits for the MIPI frame end code before entering software standby; otherwise enter software standby mode immediately.		1
Minimum number of MCLK (EXTCLK) cycles after the last I2C transaction or MIPI frame end code.	t1	512	_	MCLK
Last I2C Transaction or MIPI frame end code – RSTN (XSHUTDOWN) falling	t2	512	-	cycles
RSTN (XSHUTDOWN) falling to VDDD falling	t3	0.0	RSTN falling and VDDD	
VDDD falling to RSTN (XSHUTDOWN) falling	t4	0.0	falling can be in any order	
VDDA/VDDD/VDDIO falling time	1 a 0 a	VDDA/VDDD/VDDIO may fall in any order. The rising separation can vary from 0 ns to indefinite		ns

NOTE: For minimal power at hardware standby mode external VDDD should be OFF.

Figure 25 Power-Down Sequence (Serial Output Case)

7 Power Up/Down Sequence

7.3 Software Standby Mode Sequence

Entering software standby mode is the same as entering hardware standby mode but without RSTN (XSHUTDOWN) assertion to low and without applying external VDDD power down.

SAMSUNG Confidential

8

Functional Features

8.1 Frame Timing Control

When sensor frame timing configuration change is requested by host (Refer to section <u>8.1.1.3 Settings Affecting Frame Timing</u>) by register setting with "group parameter hold" request, S5K3H7YX firmware detects the change and forces frame timing change in one of the following options:

- a) Preserve frame timing without outputting the corrupted frame to host (skip frame)
- b) Preserve frame timing and output corrupted frame
- c) Timing abort: After end of readout and VBLANK (14,000 system cycles 254.5uSec @55Mhz before a new frame starts).
- d) Timing abort: After frame readout ends but before VBLANK time.
- e) Timing abort: Immediate abort (including during frame read out).

Frame timing examples may be found in the following figures;

Figure 26 Example - case (a); Preserve frame timing without outputting the corrupted frame to host

Figure 27 Example - case (b); Preserve frame timing and output corrupted frame

Figure 28 Example - case (c); Timing abort: After end of readout and VBLANK

Figure 29 Example - case (d);
Timing abort: After frame readout ends but before VBLANK time

Figure 30 Example - case (e);
Timing abort: Immediate abort (including during frame read out).

8.1.1 Frame Timing Control Configuration

Table 13 Frame Timing Transition Options

	Timing Transition Type	Description
1	REQ_NO_ABORT_CORRUP_FRAME	Preserve timing and output the corrupted frame
2	REQ_NO_TIMING_ABORT	Preserve timing skip the corrupted frame
3	REQ_ABORT_ON_END_FRAME	Abort after end of timing frame
4	REQ_ABORT_ON_END_RO	Abort after frame read out ends
5	REQ_IMMEDIATE_ABORT	Abort immediately, even during frame read out (NOTE)

NOTE: The abort immediately has 3 exceptions where the command response will be delayed slightly:

- a. Command detected during first 10 timing lines: In this case, firmware will delay the actual abort after the dark lines are finished, and OUTIF transmitted the MIPI short packet "frame-start".
- b. Command detected during last 10 readout lines: In this case, firmware will delay the actual abort after readout ends (in order to prevent problematic timing of internal firmware interrupts).
- c. Command detected during last 10 timing lines (just before frame ends anyway): In this case, firmware will delay the actual abort after normal API registers read that happens anyway around this time.

8.1.1.1 Rolling Shutter Frame Timing Configuration Change

Table 14 Rolling Shutter Frame Timing Transition Options

	Timing Transition Type	Setting
1	REQ_NO_ABORT_CORRUP_FRAME	general_setup_mask_corrupted_frames = 0
2	REQ_NO_TIMING_ABORT	general_setup_mask_corrupted_frames = 1
3	REQ_ABORT_ON_END_FRAME	general_setup_mask_corrupted_frames = 2
4	REQ_ABORT_ON_END_RO	general_setup_mask_corrupted_frames = 3
5	REQ_IMMEDIATE_ABORT	general_setup_mask_corrupted_frames = 4

8.1.1.2 Mechanical Shutter Frame Timing Configuration Change

Table 15 Mechanical Shutter Frame Timing Transition Options

	Timing Transition Type	Setting
1	Reserved	vendor_ms_invoke_method = 0
2	Reserved	vendor_ms_invoke_method = 1
3	REQ_ABORT_ON_END_FRAME	vendor_ms_invoke_method = 2
4	REQ_ABORT_ON_END_RO	vendor_ms_invoke_method = 3
5	REQ_IMMEDIATE_ABORT	vendor_ms_invoke_method = 4

8.1.1.3 Settings Affecting Frame Timing

These are main parameters that if changed will result in frame timing configuration change:

Table 16 Parameters that Cause Frame Timing Change if Modified

Input Size, Mirror, Binning or Line Timing	PLL Modification	If BPC is Enabled
frame_timing_x_addr_start frame_timing_x_addr_end frame_timing_y_addr_start frame_timing_y_addr_end frame_timing_line_length_pck output_data_format sub_sample_x_odd_inc sub_sample_x_even_inc sub_sample_y_odd_inc sub_sample_y_even_inc binning_mode binning_type binning_ver_bin_inc	clocks_vt_pix_clk_div clocks_vt_sys_clk_div clocks_pre_pll_clk_div clocks_pll_multiplier clocks_op_pix_clk_div clocks_op_sys_clk_div clocks_secnd_pre_pll_clk_div clocks_secnd_pll_multiplier	scaling_scale_m scaling_digital_crop_x_offset scaling_digital_crop_y_offset
general_setup_image_orientation		

SAMSUNG Confidential

8.2 Analog Sensor

8.2.1 Analog to Digital Converter (ADC)

The image sensor has an on-chip ADC. A two-channel column parallel ADC scheme is used for high-speed analog processing.

8.2.2 Analog Gain Control

The user can control the gain of the pixel signal (AG) by using the analog gain control registers.

Analog gain (AG) of up to x16 is supported.

AG precision is determined according to AnalogGainPrecision register (0x37F8).

The analogue_gain_code_global register is used to set the analog gain according to these equations:

Table 17 Analog Gain (AG) Control

AnalogGainPrecision	AG	
AnalogGainPrecision = 0 (Default)	AG = analogue_gain_code_global/32	
AnalogGainPrecision = 1	AG = analogue_gain_code_global/64	
AnalogGainPrecision = 2	AG = analogue_gain_code_global/128	
AnalogGainPrecision = 3	AG = analogue_gain_code_global/256	
SAMBUNG G	omidental	

8.2.3 ADC Resolution ng / ellen.piao at 09:37,2012.09.24

The supported ADC effective resolutions are 8/9/10-bit

8.3 Embedded Line

S5K3H7YX may be configured to generate an embedded MIPI header with frame information.

8.4 ISP (Image Signal Processor)

8.4.1 Dual Correlated Double Sampling Statistics

This mechanism of "auto calibration" collects statistical data from the analog circuits and adjusts/keeps optimal analog settings.

8.4.2 Analog Dark Level Correction

This block is responsible for row noise reduction and frame black level recovery by subtracting a weighted sum of optical black pixels. Also, the block collects temperature statistics.

8.4.3 Periodic Offset Mismatch Correction

A difference between analog circuits and channels might produce an undesired position-dependent mismatch (checkers pattern). The algorithms correct additive/offset components of periodic mismatch by adding 4 (2x2) coefficients to appropriate pixels.

8.4.4 Global Offset Correction (GOS)

The GOS compensation model is based on 5x4 grid. Bilinear interpolation is used between grid points.

8.4.5 Lens Shading Correction

The lens shading compensation model is based on Radial polynomial with additional dynamic grid compensation for error minimization. Bilinear interpolation is used between grid points.

Shading correction might change dynamically, according to illumination type.

8.4.6 Module to Module Shading Variation Correction

The shading profile may be different across modules due to variations in relative lens positioning.

During module manufacturing, on-chip OTP memory may be programmed with the shading characteristics of the specific module. The programming is done using the Samsung proprietary shading classification algorithm at the module manufacturing site.

The programmed shading characteristics are matched with the best correction scheme, which is applied to the image in order to cancel specific module shading.

8.4.7 Periodic Gain Mismatch Correction

The difference between analog circuits and channels might produce an undesired position-dependent mismatch (checkers pattern). The algorithms correct the multiplicative/gain component of periodic mismatch by applying 4 (2x2) coefficients to appropriate pixels.

8.4.8 Static Despeckle

This algorithm replaces OTP mapped, bad pixel pairs (clusters) on the raw image data, based on the neighboring pixel pattern. This algorithm prepares the image for perfect bad pixel detection and correction by the host by fixing bad pixels and pixel clusters with characteristics that are harder to detect by host.

8.4.9 Image Downscaling

The image from the sensor can be downscaled by x1.5, x2, x3, x4. Scaling is performed early in processing pipeline for maximal power reduction.

8.4.10 DPCM/PCM Image Compression

10-bit output may be compressed using DPCM/PCM 10-bit to 8-bit compression.

8.4.11 Output Formatting

Raw sensor data in Bayer format is outputted with 8 or 10-bit accuracy.

8-bit output may be uncompressed or compressed.

SAMSUNG Confidential

8.5 Temperature Sensor

S5K3H7YX integrates an on-chip temperature sensor.

The temperature value in degrees (± 5 °C accuracy) may be obtained via register read.

8.6 General Purpose IO Control

Table 18 GPIO Functional Table

	CIS VIA	Parallel DATA PATH			STROBE OUT	GPI/GPO
	Parallel	BAYER8	BAYER10	BAYER12	SIKOBE OUI	GPI/GPO
D9_PAD	CIS[10]	DOUT[7]	DOUT[9]	DOUT[11]	N/A	N/A
D8_PAD	CIS[9]	DOUT[6]	DOUT[8]	DOUT[10]	N/A	N/A
D7_PAD	CIS[8]	DOUT[5]	DOUT[7]	DOUT[9]	N/A	N/A
D6_PAD	CIS[7]	DOUT[4]	DOUT[6]	DOUT[8]	N/A	N/A
D5_PAD	CIS[6]	DOUT[3]	DOUT[5]	DOUT[7]	N/A	N/A
D4_PAD	CIS[5]	DOUT[2]	DOUT[4]	DOUT[6]	N/A	N/A
D3_PAD	CIS[4]	DOUT[1]	DOUT[3]	DOUT[5]	N/A	N/A
D2_PAD	CIS[3]	DOUT[0]	DOUT[2]	DOUT[4]	N/A	N/A
D1_PAD	CIS[2]	0	DOUT[1]	DOUT[3]	N/A	N/A
D0_PAD	CIS[1]	0	DOUT[0]	DOUT[2]	N/A	N/A
GPIO_1_PAD	CIS[0]	NOT USED	NOT USED	DOUT[1]	Flash/M.Shutter	∠ GPI/GPO
GPIO_2_PAD	NOT USED	NOT USED	NOT USED	DOUT[0]	Flash/M.Shutter	GPI/GPO
GPIO_3_PAD	NOT USED	NOT USED	NOT USED	NOT USED	Flash/M.Shutter	GPI/GPO

8.7 System

8.7.1 Clock System

Described in: 5.6 PLL and Clock Generator

8.7.2 Reset System

Reset is performed after power-up by the on-chip POR (power-on-reset) circuit.

Asynchronous HW reset is possible using the RSTN (XSHUTDOWNB) pin.

SW reset is possible using IIC/SPI register access.

8.7.3 CPU Sub-System

ARM7-based system

8.7.4 I2C Slave/SPI

The I2C and SPI control interface are high priority AHB masters. This allows CPU-independent register access.

8.7.5 Memory System

ROM/RAM on ARM7 AHB bus.

ROM code may be modified using on-chip application for FW function replacement.

8.8 NVM OTP Memory

The NVM memory module is a non-volatile OTP (one-timing programming) memory module. This module enables the saving of unique data to each chip at the production stage.

OTP memory is used to store the following unique information:

- Chip_id data production history data to be stored during die sorting
- Process-dependent calibration parameters
- Bad clusters and a tiny pixel map for despeckle
- Lens shading data classified during module production that uses and is stored in the Samsung proprietary algorithm

There are three different ways to access each NVM memory:

- Externally, using IO pads by configuring the chip to a dedicated test mode and performing full OTP memory IP write/read protocol.
- Internally, through the APB bus using the controller.
- Internally, through the APB bus by writing dedicated registers and performing full NVM write/read protocol.

8.8.1 OTP Read/Write Procedure

NOTE: Contact your FAE for more details.

8.9 Global Reset

The S5K3H7YX provides global reset mode. Global reset allows all rows to have the same integration start and end. Global reset mode is used in conjunction with the external mechanical shutter controlled by the host. The host must program following the sequence and restrictions.

There are three options of operation for the mechanical shutter mode.

- reset_mode = 0: The TG waits for the end of the read out of the current frame, and then starts the
 mechanical shutter mode.
- **reset_mode = 1:** The current rolling shutter frame is truncated at the end of the nearest line, and the mechanical shutter mode is started.
- reset_mode = 2: The MS mode will wait for the end of the timing frame.
- reset_mode = 3: Illegal.

There is 1H time uncertainty from the MS host command. All timings in the sequence are synchronized to the end of the frame (in case of tgr_glb_reset_mode = 1 it is the end of the nearest line).

SAMSUNG Confidential

8.9.1 Global Reset - Single Frame

The Mechanical Shutter mode (MS) is a special mode in the Global Management block. It is used to capture a frame in a non-rolling shutter mode by exposing all of the array lines at a specific time.

The readout process is performed as always in a line-by-line manner.

The following schematic drawing shows the MS mode from preview to MS and back to preview.

Figure 31 Mechanical Shutter Single Frame

Table 19	Mechanical Shutter	Single Frame
I abic is	Wicciiailicai Olluttei	Ullique i l'allic

Phase	Title	Description
1	Host access for MS	Host access for MS. System at preview mode.
2	Pre global reset	After preview frame is finished, additional time is required for the setting of the array global reset.
3	MS integration time	The entire array is in the integration state until readout starts. Strobe1 and strobe2 for mechanical shutter and xenon are controlled by register pulse generation.
4	MS frame readout	MS configuration frame is output.
5	Host access for preview	Host access for back to preview. Will follow with blank time for integration period.
6	MS frame readout	Integration time for first preview frame.
7	MS frame readout	First preview frame after MS.

- 1. Timing until the first capture image (X) is a multiple of the preview frame rate.
- 2. Capture image timing (Y) is a multiple of the preview frame rate.
- 3. Timing until the first preview image (Z) after capture is a multiple of the preview frame rate.
- 4. S5K3H7YX maintains a certain time between the HD and VD falling edge to data output under any conditions.
- 5. S5K3H7YX maintains a certain low period of VD within 1 V time.

8.9.2 Global Reset - with Frame Truncation

The following schematic drawing shows the MS mode from preview to MS with truncated frame:

Figure 32 Mechanical Shutter with Frame Truncation

Table 20 Mechanical Shutter with Frame Truncation

Phase	Title	Description
1	Host access for MS	Host access for MS. System in preview mode.
2	Pre global reset	After current frame is immediately truncated, additional time is required for the setting of the array global reset.
3	MS integration time	The entire array is in the integration state until readout starts. Strobe1 and strobe2 are controlled by the register for mechanical shutter and xenon pulses.
4	MS frame readout	MS configuration frame is output.
5	Host access for preview	Host access for back to preview. Will follow with blank time for the integration period.
6	MS frame readout	Integration time for the first preview frame.
7	MS frame readout	First preview frame after MS.

8.10 Test Pattern

S5K3H7YX may be configured to generate deterministic test patterns.

Output Data Interface

The S5K3H7YX MIPI CSI-2 interface is a four-lane high-speed serial interface that connects the camera sensor to a host processor. The S5K3H7YX MIPI core IP is compatible with the MIPI Alliance Standards for D-PHY, CSI2 and DSI.

The maximum high speed clock frequency of the MIPI Core is 1 GHz.

Main features:

- Main output frame rates:
- Capture: 8M-4:3 30 fps (2640 Mbps)
- FHD video: 6M-16:9 30 fps (1980 Mbps)/2.7M (16:9) 30 fps (990 Mbps)
- HD video: 1.5M-16:9 120 fps
- High speed: QVGA 240 fps
- MIPI CSI-2: Four lanes with a maximum of 1 GHz (bit clock rate) each (125 MHz byte clock).
- Supported data types: RAW,8 RAW10, RAW12
- Integrated MIPI DPHY v0.90 compatible
- MIPI transmit only
- · Support up to four data lanes, one clock lane
- ULPM ultra low power mode supported

NOTE: RAW12 for test purpose only

Figure 33 CSI-2 and CCI Transmitter and Receiver Interface

Figure 34 Four Lane Transmitter and Four Lane Receiver Example

Figure 35 Low Level Protocol Packet Overview

Figure 36 Long Packet Structure

Figure 37 RAW10 Transmission

SAMSUNG ELECTRONICS

Figure 38 RAW10 Frame Format

SAMSUNG Confidential

10

Electrical Characteristics

10.1 Absolute Maximum Rating

Table 21 Absolute Maximum Rating

Symbol	Description	Min.	Тур.	Max.	Unit
VDDD (MAX)	Digital Absolute Max (1)	- 0.3	ı	1.8	
VDDA (MAX)	Analog Absolute Max (2)	- 0.3	_	4	
VDDIO (MAX)	Parallel IO Absolute Max (3)	- 0.3	_	3.6	V
VIP	Digital Input Voltages (4)	- 0.3	_	VDDIO + 0.3	
VCAP	VCAP Analog Voltage (5)	-0.3	_	4.2	
TSTR	Storage Temperature	- 40	_	85	°C

NOTE:

- 1. Digital Supply 1.3 V + 0.5 V
- 2. Analog Supply 2.9 V + 1.1 V
- 3. Parallel IO Supply 2.9 V + 0.7 V
- 4. Digital Inputs: MCLK, RSTN, I2C_SPI_N_SEL, XCE, SDO, SDI, SCK, GPIO_1/2/3
- 5. Voltage on external analog capacitors e_{1} p_{1} p_{2} p_{3} p_{4} p_{3} p_{3} p_{4} p_{3} p_{4} p_{3} p_{4} p_{5} $p_{$

10.2 Operating Conditions

Table 22 Operating Conditions

Symbol	Description	Min.	Тур.	Max.	Unit
VDDD	Digital Power Supply (1)	1.15	1.2	1.3	
VDDA	Analog Power Supply (2)	2.7	2.8	3.0	
VDDIO	Parallel IO Supply	1.7	2.8	3.0	V
VIP	Digital Input Voltages (3)	0	_	VDDA	
VCAP	VCAP Analog Voltage	0	_	4.2	
TTEST	Test Temperature (4)	21	23	25	
TOPT	Optimum Operating Temperature (5)	5	_	40	۰.
TOPR	Normal Operating Temperature (6)	- 25	_	55	°C
TFUNC	Functional Operating Temperature (7)	- 30	_	70	

NOTE:

- Digital Supply Tolerances: Lower limit 1.2 V 50 mV, Upper Limit: 1.2 V + 100 mV
- 2. Analog Supply Tolerances: Lower limit 2.8 V 100 mV, Upper Limit: 2.8 V + 200 mV
- 3. Digital Inputs: MCLK, RSTN (XSHUTDOWN), SCL, SDA
- 4. Test Temperature image quality test conditions
- 5. Optimum Operating Temperature no visible degradation in image quality
- 6. Normal Operating Temperature camera produces acceptable images
- 7. Functional Operating Temperature camera fully functional

10 Electrical Characteristics

10.3 DC Characteristics

Table 23 DC Characteristics

 $(VANA = 2.7 \text{ V to } 3.0 \text{ V}, VIP = 1.8 \text{ V} \pm 0.1 \text{ V} \text{ (or } 2.6 \text{ V to } 3.0 \text{ V)}, T_A = -30 \text{ to } +70 ^{\circ}\text{C}, CLOAD = 20 \text{ pF})$

Characteristics	Symbol	Condition	Min.	Тур.	Max.	Unit
lanut valtage (1)	VIH	-	0.7 × VIP	_	_	V
Input voltage (1)	VIL	_	1	_	0.3 × VIP	V
Input leakage current ⁽¹⁾	IIL	VIN = VIP or VSS	– 10	_	10	μА
High level output	VOH	IOH = – 100 μA	VDIG – 0.2	_	_	
voltage ⁽²⁾	VOIT	IOH = -6, -8 mA	$0.7 \times VIO$	_	_	V
Low level output	VOL	IOL = 100 μA	-	_	0.2	v
voltage ⁽²⁾	VOL	IOL = 6, 8 mA	_	_	0.3 × VIO	
High-Z output leakage current (3)	IOZ	VOUT = VSS or VDDD	– 10	_	10	μА
Input capacitance (1)	CIN	_	-	_	5	pF
	IHWSBA	Hardware standby mode Analog (5)	_	25	-	
	IHWSBD	Hardware standby mode Digital (5)	_	-	-	
	ISWSB1A	Software standby mode Analog (6)		25	416	
DAINI	ISWSB1D	Software standby mode Digital (6)		800	26000	μΑ
samsı	ISWSB2A	Software standby mode Analog (7)	7 2012	0-0	24-	
Samo	ISWSB2D	Software standby mode Digital (7)		2000	34000	
Supply current (4)	ICTDMA	Streaming mode Analog ⁽⁸⁾ 2M@30 fps 4:3	-	37	39	
	ISTRMA	Streaming mode Analog ⁽⁹⁾ 8M@30 fps 4:3	_	44	47	
	IOTOMBO	Streaming mode Digital ⁽⁸⁾ 2M@30 fps 4:3	_	92	170	mA
	ISTRMD2	Streaming mode Digital ⁽⁹⁾ 8M@30 fps 4:3	_	126	203	
	ISTRMIO	Streaming mode Digital ⁽⁹⁾ (10) @30 fps	-	0.4	0.5	

NOTE:

- 1. Applied to MCLK, RSTN, SCL, SDA pins
- 2. Applied to SCL, SDA, PVI pins
- 3. Applied to SCL, SDA, PVI pins when in High-Z output state
- 4. Summation of currents from VDDD and VDDA
- 5. At 25deg., external clock active or not switching, External VDDD off
- 6. External clock not switching, Max @ FF/Vcc+10%,85 °C
- 7. External clock active (6 MHz)

- **10 Electrical Characteristics**
- 8. Readout of 1632x1224 binning raw Bayer image at 30 fps (full processing, 2 PLLs, MIPI 2 lane)
- 9. Readout of 3264x2448 raw Bayer image at 30 fps (full processing, 2 PLLs, MIPI 4 lane)
- 10. CLOAD = 20 pF

SAMSUNG Confidential

10.4 AC Characteristics

Table 24 AC Characteristics

(V_{ANA} = 2.7 V to 3.0 V, V_{IP} = 1.8 V \pm 0.1 V (or 2.6 V to 3.0 V), T_A = - 30 to + 70 °C)

Characteristics	Symbol	Condition	Min.	Тур.	Max.	Unit
External clock frequency (1)	fXCLK	_	6.0	_	54.0	MHz
External clock duty cycle (1)	fXDUTY	_	45	_	55	%
PLL locking time	tLOCK	_	_	200	1000	μS

NOTE:

1. Applied to MCLK pin

SAMSUNG Confidential

10.5 TX Driver Characteristics

Table 25 **TX HS Transmitter DC Specifications**

Parameter	Description	Min.	Nom.	Max.	Unit	Note
VCMTX	HS transmit static common-mode voltage	150	200	250		(1)
∆VCMTX(1,0)	VCMTX mismatch when output is Differential-1 or Differential-0	_	_	5		(2)
VOD	HS transmit differential voltage	140	200	270	mV	(1)
AVOD	VOD mismatch when output is Differential-1 or Differential-0	_	_	10		(2)
VOHHS	HS output high voltage	_	_	360		(1)
ZOS	Single ended output impedance	40	50	62.5	Ω	_
ΔZOS	Single ended output impedance mismatch	_	_	10	%	_

NOTE:

- Value when driving into load impedance anywhere in the ZID range.
- It is recommended that the implementer minimize ΔVOD and $\Delta VCMTX(1,0)$ in order to minimize radiation and optimize signal integrity.

TX HS Transmitter AC Specifications

	Table 26 TX HS Transmitter AC Specifications								
Parameter	Description	Min.	Nom.	Max.	Unit	Note			
VCMTX (HF)	Common-level variation above 450 MHz	37 2	2012	15	mVRMS	_			
VCMTX (LF)	Common-level variation between 50 to 450 MHz		_	25	mVPEAK	-			
tR and tF	20.0/ to 00.0/ rice time and fall time		_	0.3	UI	1			
ik and ir	20 % to 80 % rise time and fall time	150	_	-	ps	1			

NOTE: UI is equal to 1/(2*fh). 'fh' is the highest fundamental frequency for data transmission.

Table 27 TX LP Transmitter DC Specifications

Parameter	Description	Min.	Nom.	Max.	Unit
V _{OH}	Thevenin output high level	1.15	1.2	1.3	V
V _{OL}	Thevenin output low level	- 50	-	50	mV
Z _{OLP}	Output impedance of LP transmitter	110	_	_	Ω

10 Electrical Characteristics

Table 28	TX LP	Transmitter	AC S	pecifications
----------	-------	--------------------	------	---------------

Parameter		Description	Min.	Nom.	Max.	Unit
T_{RLP}/T_{FLP}	15 % to 85 % rise time and fall time			_	25	
T _{REOT}	30 % to 85 % rise t	ime and fall time	_	_	35	
T _{LP-PULSE-TX}	Pulse width of the LP exclusive-OR	First LP exclusive-OR clock pulse after Stop state or last pulse before Stop state	40	_	_	ns
	clock	All other pulses	20	_	_	
T _{LP-PER-TX}	Period of the LP ex	Period of the LP exclusive-OR clock			_	_
	Slew rate @ CLOAD = 20 pF		30	_	150	mV/ns
_	Slew rate @ CLOAD = 70 pF		30	_	100	IIIV/IIS
C _{LOAD}	Load capacitance		0	_	70	pF

SAMSUNG Confidential

10 Electrical Characteristics

10.6 Parallel DATA IO Characteristics

Table 29 AC Characteristics (Parallel Mode)

 $(V_{DDA} = 2.7 \text{ V to } 3.0 \text{ V}, V_{DDIO} = 1.8 \text{ V} \pm 0.1 \text{ V (or } 2.6 \text{ V to } 3.0 \text{ V}), V_{DDD} = 1.15 \text{ V to } 1.3 \text{ V}, T_A = -30 \text{ to } +70 \text{ °C})$

Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Data output clock frequency	f _{PCLK}	ı	ı	-	110	MHz
	t _{VSSUR}	VSYNC output	ı	-	3	
	t _{HSSUR}	HSYNC output	1	-	3	
Parallel Interface setup time (1) (2)	t _{VSSUF}	VSYNC output	-	_	3	2000
	t _{HSSUF}	HSYNC output	ı	-	3	nsec
	t _{DSU}	DATA output	-	_	3	
Parallel Interface hold time (1) (2)	t _{DH}	DATA output	_	_	3	
RSTN input pulse width	t _{WSHB}	RSTN = low (active)	200	_	_	μsec

NOTE:

- 1. When max PCLK is 110 MHz
- 2. Not considered external circuit loading

Figure 39 Setup and Hold Time for Data, VSYNC and HSYNC with Reference to PCLK

11

Register Description

This section describes the S5K3H7YX register map.

Vendor registers are defined for extended functionality control.

11.1 Configuration Registers

11.1.1 Configuration Registers 1 [0xD0000000 to 0xD0001FFF]

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
General	Status F	Registe	rs					
0x000 0	0x000 1	2	0x308 7	###	model_id	RO	[15:0]	Camera module model identification number
0x000 2	0x000 2	1	0x00A 2	162	revision_number_maj or	RO	[7:0]	Revision identifier of the camera module for DCC change
0x000 3	0x000 3	SUI 1	0x000 1	1	manufacturer_id	RO	[7:0]	Module manufacturers code Refer to the Manufacturer Codes Document
0x000 4	0x000 4	1	0x001 0	16	Reserved	RO	[7:0]	Reserved
0x000 5	0x000 5	1	0x00F F	255	frame_count	RO D	[7:0]	8-bit (0-255) Frame counter value
0x000 6	0x000 6	1	0x000 0	0	pixel_order	RO	[7:0]	Colour Pixel Order
0x000 7	0x000 7	1		0	Reserved			
0x000 8	0x000 9	2	0x004 0	64	data_pedestal	RO	[15:0]	Data pedestal – typically code 64 for 10-bit systems
0x000 A	0x000 B	2	0x000 0	0	general_temperature	RO D	[15:0]	Sensor temperature
0x000 C	0x000 C	1	0x000 C	12	pixel_depth	RO	[7:0]	Data pedestal – typically code 64 for 10-bit systems
0x001 0	0x001 0	1	0x000 0	0	revision_number_min or	RO	[7:0]	Refer to the Data Format Chapter
0x001	0x001	1	0x000	6	Reserved	RO	[7:0]	Reserved

SAMSUNG

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
1	1		6					
0x001 2	0x001 2	1	0x000 0	0	module_date_year	RO	[7:0]	Bits [3:0] - Last digit of manufacturing year.
0x001 3	0x001 3	1	0x000 0	0	module_date_month	RO	[7:0]	Bits [3:0] - manufacturing month
0x001 4	0x001 4	1	0x000 0	0	module_date_day	RO	[7:0]	Bits [4:0] - manufacturing day
0x001 5	0x001 5	1	0x000 1	1	module_date_phase	RO	[7:0]	Bits [2:0] • 0=TS • 1=ES • 2=CS • 3=MP
0x001 6	0x001 7	2	0x000 0	0	sensor_model_id	RO	[15:0]	
0x001 8	0x001 8	1	0x000 0	0	sensor_revision_numb er	RO	[7:0]	
0x001 9	0x001 9	1	0x000 0	0	sensor_manufacturer_ id	RO	[7:0]	Running number, starting at 0
0x001 A	0x001 A	1	0x000 0	0	sensor_firmware_version	RO	[7:0]	Running number, starting at 0
0x001 C	0x001 D	SŽII	0x000 0	elle	serial_number	RO	[15:0]	Silicon revision number
0x001 E	0x001 F	2	0x000 0	0	serial_number	RO	[15:0]	Silicon firmware version
Frame F	ormat De	escript	ion					
0x004 0	0x004 0	1	0x000 1	1	frame_format_model_t ype	RO	[7:0]	
0x004	0x004	1	0x001		frame_format_model_ subtype_row	RO	[3:0]	
1	1	ı	3		frame_format_model_ subtype_col	RO	[7:4]	
0x004	0x004	2	0x578		frame_format_descript or_0_n	RO	[11:0]	
2	3	2	8		frame_format_descript or_0_pix_code	RO	[15:1 2]	
0x004	0x004	0	0x100		frame_format_descript or_1_n	RO	[11:0]	
4	5 2	0x100 <u> </u>		frame_format_descript or_1_pix_code	RO	[15:1 2]		
0x004 6	0x004 7	2	0x544 0		frame_format_descript or_2_n	RO	[11:0]	

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
					frame_format_descript or_2_pix_code	RO	[15:1 2]	
0x004	0x004	2	0x100		frame_format_descript or_3_n	RO	[11:0]	
8	9	۷	4		frame_format_descript or_3_pix_code	RO	[15:1 2]	
0x004	0x004	2	0x000		frame_format_descript or_4_n	RO	[11:0]	
А	В	2	0		frame_format_descript or_4_pix_code	RO	[15:1 2]	
0x004	0x004	2	0x000		frame_format_descript or_5_n	RO	[11:0]	
С	D	۷	0		frame_format_descript or_5_pix_code	RO	[15:1 2]	
0x004	0x004	2	0x000		frame_format_descript or_6_n	RO	[11:0]	
E	F	2	0		frame_format_descript or_6_pix_code	RO	[15:1 2]	
0x005	0x005	2	0x000		frame_format_descript or_7_n	RO	[11:0]	dential
0	sam	SUI	ng ^o /	elle	frame_format_descript or_7_pix_code	RO	[15:1 2]	12.09.24
0x005	0x005	2	0x000		frame_format_descript or_8_n	RO	[11:0]	
2	3	2	0		frame_format_descript or_8_pix_code	RO	[15:1 2]	
0x005	0x005	,	0x000		frame_format_descript or_9_n	RO	[11:0]	
4	5	2	0		frame_format_descript or_9_pix_code	RO	[15:1 2]	
0x005	0x005	2	0x000		frame_format_descript or_10_n	RO	[11:0]	
6	7	2	0		frame_format_descript or_10_pix_code	RO	[15:1 2]	
0x005	0x005	2	0x000		frame_format_descript or_11_n	RO	[11:0]	
8	9	∠	0		frame_format_descript or_11_pix_code	RO	[15:1 2]	
0x005	0x005 B	2	0x000		frame_format_descript or_12_n	RO	[11:0]	_
А	Ď		0		frame_format_descript	RO	[15:1	

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
					or_12_pix_code		2]	
0x005	0x005	2	0x000		frame_format_descript or_13_n	RO	[11:0]	
С	D	2	0		frame_format_descript or_13_pix_code	RO	[15:1 2]	
0x005	0x005	2	0x000		frame_format_descript or_14_n	RO	[11:0]	
E	F	2	0		frame_format_descript or_14_pix_code	RO	[15:1 2]	
Analogu	ue Gain D	escrip	tion Regi	sters				
0x008 0	0x008 1	2	0x000 1	1	analogue_gain_capabi ltiy	RO	[0:0]	0 - single global alanlogue gain only, 1 - separate channel alanlogue gains only
0x008 2	0x008 3	2	0x000 0	0	RESERVED			
0x008 4	0x008 5	2	0x002 0	32	analogue_gain_code_ min	RO	[15:0]	Minimum recommended analogue gain code (dec: 32)
0x008 6	0x008 7	2	0x020 0	512	analogue_gain_code_ max	RO	[15:0]	Maximum recommended analogue gain code (dec: 512)
0x008 8	0x008 9	S ² II	0x000 1	elle	analogue_gain_code_ step	RO	[15:0]	Analogue gain code step size (dec:1)
0x008 A	0x008 B	2	0x000 0	0	analogue_gain_type	RO	[0:0]	Analogue gain type (dec:0)
0x008 C	0x008 D	2	0x000 1	1	analogue_gain_m0	RO	[15:0]	Analogue gain m0 constant (dec:m0=1)
0x008 E	0x008 F	2	0x000 0	0	analogue_gain_c0	RO	[15:0]	Analogue gain c0 constant (dec:m0=1)
0x009 0	0x009 1	2	0x000 0	0	analogue_gain_m1	RO	[15:0]	Analogue gain m1 constant (dec:m0=1)
0x009 2	0x009 3	2	0x002 0	32	analogue_gain_c1	RO	[15:0]	Analogue gain c1 constant (dec:c1=32)
Data Fo	rmat Des	criptio	n					
0x00C 0	0x00C 0	1	0x000 1	1	data_format_model_ty pe	RO D	[7:0]	0x01: 2-Byte Data Format
0x00C 1	0x00C 1	1	0x000 4	4	data_format_model_s ubtype	RO D	[7:0]	Contains the number of data format descriptors used
0x00C 2	0x00C 3	2	0x0A0 A	###	data_format_descripto r_0	RO D	[15:0]	ex) 0x0A0A: top 10-bit
0x00C 4	0x00C 5	2	0x0A0 8	###	data_format_descripto r_1	RO D	[15:0]	ex) 0x0A08: top 10-bit compressed to 8-bit, and

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description	
0x00C 6	0x00C 7	2	0x080 8	###	data_format_descripto r_2	RO D	[15:0]	ex) 0x0808: top 8-bit	
0x00C 8	0x00C 9	2	0x0C0 C	###	data_format_descripto r_3	RO D	[15:0]	ex) 0x0C0C: top 12-bit	
0x00C A	0x00C B	2	0x000 0	0	data_format_descripto r_4	RO D	[15:0]		
0x00C C	0x00C D	2	0x000 0	0	data_format_descripto r_5	RO D	[15:0]		
0x00C E	0x00C F	2	0x000 0	0	data_format_descripto r_6	RO D	[15:0]		
General	Set-up F	Registe	ers						
0x010 0	0x010 0	1	0x000 0	0	mode_select	RW	[7:0]	0 – Software Standby 1 - Streaming	
0x010 1	0x010 1	1	0x000 0	0	image_orientation	RW	[7:0]	Image orientation i.e. horizontal mirror and vertical flip	
0x010 2	0x010 2	1	0x000 0	0	Reserved	RW			
0x010 3	0x010	1	0x000 0	0	software_reset	RW	[7:0]	Software reset	
0x010 4	0x010 4	SUI 1	0x000 0	elle o	n.piao at 09 grouped_parameter_h old):37 RW	7,20 [0:0]	The grouped parameter hold register disables the consumption of integration, gain and video timing parameters 0 – consume as normal 1 - hold	
0x010 5	0x010 5	1	0x000 3	3	mask_corrupted_fram es	RW	[0:0]	Refer to Integration Time and Gain Control Chapter	
0x010 6	0x010 6	1	0x000 0	0	fast_standby_ctrl	RW	[0:0]	0 - Frame completes before mode entry.1 - Frame may be truncated before mode entry	
0x010 7	0x010 7	1	0x002 0	32	cci_address_control	RW	[7:0]	Expressed as 8 bit (e.g. 0x20 write, 0x21 read is entered as 0x20)	
Output Set-up Registers									
0x011 0	0x011 0	1	0x000 0	0	channel_identifier	RW	[3:0]	Valid Range : 0-7 for CCP2 Valid Range : 0-3 for CSI-2 Default Value = 0	
0x011 1	0x011 1	1	0x000 2	2	signalling_mode	RW	[1:0]	0 : CCP2 Data/Clock Signalling 1 : CCP2 Data/Strobe Signalling	

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description		
								2 : CSI-2(MIPI)		
0x011 2	0x011 3	2	0x0A0 A	###	data_format	RW	[15:0]	CCP Data Format: 0x0808: Top 8-b of pixel data,RAW8 0x0A08: 10-b to 8-b compression, RAW8 0x0A0A: Top 10-b of pixel data, RAW10		
0x011 4	0x011 4	1	0x000 3	3	lane_mode	RW	[7:0]	Number of CSI-2 lanes to be used Valid range: 0 (1-lane) to 3 (4-lane) Number of SLVS lanes to be used Valid only odd numbers: 1(2-lanes) to 11(12-lanes)		
Integration Time and Gain Set-up Registers										
0x012 0	0x012 0	1	0x000 0	0	gain_mode	RW	[0:0]	0 – Global Analogue Gain (Default) 1 – Per Channel Analogue Gain		
Integration Time and Gain Set-up Registers										
0x013 0	0x013	S ²	0x002 8	e40e	vana_voltage	9:37	[15:0]	Typical supplied VANA voltage		
0x013 2	0x013 3	2	0x001 2	18	vdig_voltage		[15:0]	Typical supplied VDIG voltage		
0x013 4	0x013 5	2	0x001 8	24	vio_voltage		[15:0]	Typical IO voltage		
0x013 6	0x013 7	2	0x180 0	###	extclk_frequency_mhz		[15:0]	Nominal Extclk frequency in MHz		
Integrat	ion Time	and G	ain Regis	ters						
Integrat	ion Time	Regist	ers							
0x020 0	0x020 1	2	0x0B EF	###	fine_integration_time	RW	[15:0]	Fine integration time (pixels) (dec:1000)		
0x020 2	0x020 3	2	0x09D 9	###	coarse_integration_ti me	RW	[15:0]	Coarse integration time (lines) (dec:800)		
Analogue Gain Registers										
0x020 4	0x020 5	2	0x002 0	32	analogue_gain_code_ global	RW	[15:0]	Global Analogue Gain Code (dec:1x)		
0x020 6	0x020 7	2	0x002 0	32	analogue_gain_code_ greenR	RW	[15:0]	Analogue Gain Code (dec:1x)		
0x020 8	0x020 9	2	0x002 0	32	analogue_gain_code_ red	RW	[15:0]	Red Channel Analogue Gain Code		

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
0x020 A	0x020 B	2	0x002 0	32	analogue_gain_code_ blue	RW	[15:0]	Blue Channel Analogue Gain Code
0x020 C	0x020 D	2	0x002 0	32	analogue_gain_code_ greenB	RW	[15:0]	Green (Blue Row) Analogue Gain Code
Digital C	Sain Regi	sters						
0x020 E	0x020 F	2	0x010 0	256	digital_gain_greenR	RW	[15:0]	Green (Red Row) channel digital gain value (1x)
0x021 0	0x021 1	2	0x010 0	256	digital_gain_red	RW	[15:0]	Red channel digital gain value (1x)
0x021 2	0x021 3	2	0x010 0	256	digital_gain_blue	RW	[15:0]	Blue channel digital gain value (1x)
0x021 4	0x021 5	2	0x010 0	256	digital_gain_greenB	RW	[15:0]	Green (Blue Row) channel digital gain value (1x)
Clock S	et-up Re	gisters						
0x030 0	0x030 1	2	0x000 2	2	vt_pix_clk_div	RW	[15:0]	Video Timing Pixel Clock Divider (dec:10)
0x030 2	0x030 3	2	0x000 1	1	vt_sys_clk_div	RW	[15:0]	Video Timing System Clock Divider Value (dec:4)
0x030 4	0x030 5	2	0x000 6	6	pre_pll_clk_div	RW	[15:0]	Pre PLL clock Divider Value (dec:4)
0x030 6	0x030 7	S ₂	0x008 C	140	pll_multiplier at 09	RW	[15:0]	PLL multiplier Value (dec:144)
0x030 8	0x030 9	2	0x000 8	8	op_pix_clk_div	RW	[15:0]	Output Pixel Clock Divider (dec:10)
0x030 A	0x030 B	2	0x000 1	1	op_sys_clk_div	RW	[15:0]	Output System Clock Divider Value (dec:4)
0x030 C	0x030 D	2	0x000 6	6	secnd_pre_pll_clk_div	RW	[15:0]	2nd PLL Pre PLL clock Divider Value (dec:4)
0x030 E	0x030 F	2	0x00A 6	166	secnd_pll_multiplier	RW	[15:0]	2nd PLL multiplier Value (dec:144)
Frame	Γiming Re	egister	S					
0x034 0	0x034 1	2	0x09E 8	###	frame_length_lines	RW	[15:0]	Frame Length (dec:1618)
0x034 2	0x034 3	2	0x0E6 0	###	line_length_pck	RW	[15:0]	Line Length (dec:2256)
Image S	Size Regi	sters						
0x034 4	0x034 5	2	0x000 4	4	x_addr_start	RW	[11:0]	X-address of the top left corner of the visible pixel data (dec:0)
0x034 6	0x034 7	2	0x000 4	4	y_addr_start	RW	[10:0]	Y-address of the top left corner of the visible pixel data

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
								(dec:0)
0x034 8	0x034 9	2	0x0C C3	###	x_addr_end	RW	[11:0]	X-address of the bottom right corner of the visible pixel data (dec:2079)
0x034 A	0x034 B	2	0x099 3	###	y_addr_end	RW	[10:0]	Y-address of the bottom right corner of the visible pixel data (dec:1567)
0x034 C	0x034 D	2	0x0C C0	###	x_output_size	RW	[15:0]	Width of image data output from the sensor module (dec:2080)
0x034 E	0x034 F	2	0x099 0	###	y_output_size	RW	[15:0]	Height of image data output from the sensor module (dec:1568)
Sub-Sai	mpling Re	egister	S					
0x038 0	0x038 1	2	0x000 1	1	x_even_inc	RW	[15:0]	Increment for even pixels – 0, 2, 4 etc (dec:1)
0x038 2	0x038 3	2	0x000 1	1	x_odd_inc	RW	[15:0]	Increment for odd pixels – 1, 3, 5 etc (dec:1)
0x038 4	0x038 5	2	0x000 1	1	y_even_inc	RW	[15:0]	Increment for even pixels – 0, 2, 4 etc (dec:1)
0x038 6	0x038 7	S2	0x000 1	elle	y_odd_incO at 09	RW	[15:0]	Increment for odd pixels – 1, 3, 5 etc (dec:1)
Image S	Scaling R	egister	s					
0x040 0	0x040 1	2	0x000 2	2	Scaling_mode	RW	[15:0]	0 – No scaling,1 – Horizontal Scaling, 2 – Full Scaling (both horizontal and vertical)
0x040 2	0x040 3	2	0x000 0	0	Spatial_sampling	RW	[15:0]	0 – Bayer Sampling, 1 – Cosited, 2 – Reserved
0x040 4	0x040 5	2	0x001 0	16	scale_m	RW	[15:0]	Down scale factor: M component Range: 1 to 4 upwards (dec:16) (1,1.5,2,3,4)->(16,24,32,48,64)
0x040 6	0x040 7	2	0x001 0	16	scale_n	RW	[15:0]	Down scale factor: N component, Value: 16 (fixed) (dec:16)
0x040 8	0x040 9	2	0x000 0	0	digital_crop_x_offset	RW	[15:0]	Offset from X-address of the top left corner of the visible pixel data after analog crop, bin and subsample
0x040 A	0x040 B	2	0x000 0	0	digital_crop_y_offset	RW	[15:0]	Offset from Y-address of the top left corner of the visible

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description	
								pixel data after analog crop, bin and subsample	
0x040 C	0x040 B	0	0x000 0	0	digital_crop_image_width	RW	[15:0]	Image width after digital crop	
0x040 E	0x040 F	2	0x000 0	0	digital_crop_image_he ight	RW	[15:0]	Image height after digital crop	
Image Compression Registers									
0x050 0	0x050 1	2	0x000 1	1	compression_mode	RW	[15:0]	1 – DPCM/PCM Compression - Simple Predictor, 2 – DPCM/PCM – Advanced Predictor (dec:0 – no compression)	
Test Pa	ttern Reg	isters							
0x060 0	0x060 1	2	0x000 0	0	test_pattern_mode	RW	[15:0]		
0x060 2	0x060 3	2	0x000 0	0	test_data_red	RW	[15:0]	(dec:512)	
0x060 4	0x060 5	2	0x000 0	0	test_data_greenR	RW	[15:0]	(dec:512)	
0x060 6	0x060 7	2	0x000 0	0	test_data_blue	RW	[15:0]	(dec:512)	
0x060 8	0x060 9	2	0x000 0	0	test_data_greenB	RW	[15:0]	(dec:512)	
0x060 A	0x060 B	2	0x000 0	0	horizontal_cursor_widt h	RW	[15:0]	(dec:0 – no h-cursor)	
0x060 C	0x060 D	2	0x000 0	0	horizontal_cursor_posi tion	RW	[15:0]	(dec:256)	
0x060 E	0x060 F	2	0x000 0	0	vertical_cursor_width	RW	[15:0]	(dec:0 – no v-cursor)	
0x061 0	0x061 1	2	0x000 0	0	vertical_cursor_position	RW	[15:0]	(dec:256)	
0x061 2	0x061 2	1	0x000 0	0	pattern_crc	RW	[7:0]		
0x061 3	0x061 3	1	0x000 0	0	pattern_fade_aux	RW	[7:0]		
0x061 4	0x061 4	1	0x000 0	0	pattern_fade_factor	RW	[7:0]		
0x061 5	0x061 5	1	0x000 0	0	pattern_fedtp_gradient _enable	RW	[7:0]		
0x061 6	0x061 6	1	0x000 0	0	pattern_fedtp_gradient _invert	RW	[7:0]		

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description		
0x061 7	0x061 7	1	0x000 0	0	pattern_fedtp_gradient _hor_shift	RW	[7:0]			
0x061 8	0x061 8	1	0x000 0	0	pattern_fedtp_gradient _ver_shift	RW	[7:0]			
0x061 9	0x061 9	1	0x000 0	0	pattern_fedtp_address _noise	RW	[7:0]			
0x061 A	0x061 A	1	0x000 0	0	pattern_fedtp_hor_ad dr_noise_shift	RW	[7:0]			
0x061 B	0x061 B	1	0x000 0	0	pattern_fedtp_ver_add r_noise_shift	RW	[7:0]			
0x061 C	0x061 C	1	0x000 0	0	pattern_fedtp_random _noise_right	RW	[7:0]			
0x061 D	0x061 D	1	0x000 0	0	pattern_fedtp_mode56 _shift_rigth	RW	[7:0]			
FIFO Co	onfigurati	on Reg	gisters							
0x070 0	0x070 1	2	0x000 0	0	fifo_water_mark_pixel s	RW	[15:0]	FIFO usage level triggering CCP line output		
D-PHY related timings										
0x080 0	0x080 0	SUI	0x000 0	epe	tclk_post	RW	[7:0]	Time that the transmitter shall continue sending HS clock after the Data Lane has transitioned to LP mode. The host will ensure that a suitable value is used		
0x080 1	0x080 1	1	0x000 0	0	ths_prepare	RW	[7:0]	The time to drive LP-00 before starting the HS transmission on the Data Lane.		
0x080 2	0x080 2	1	0x000 0	0	ths_zero_min	RW	[7:0]	The time to send HS-0, i.e. turn on the line termination and drive the interconnect with the HS driver, prior to sending the SoT sync sequence.		
0x080 3	0x080 3	1	0x000 0	0	ths_trail	RW	[7:0]	The time the transmitter must drive the flipped last data bit after sending the last payload data bit of an HS transmission burst. This time is required by the receiver to determine EOT.		
0x080 4	0x080 4	1	0x000 0	0	tclk_trail_min	RW	[7:0]	Time to drive the HS differential state after the last payload clock bit of an HS		

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description		
								transmission burst		
0x080 5	0x080 5	1	0x000 2	2	tclk_prepare	RW	[7:0]	Time to drive LP-00 to prepare for HS clock transmission		
0x080 6	0x080 6	1	0x000 0	0	tclk_zero_zero	RW	[7:0]	Time for lead HS-0 drive period before starting the clock.		
0x080 7	0x080 7	1	0x000 0	0	tlpx	RW	[7:0]	Length of any low-power state period		
0x080 8	0x080 8	1	0x000 0	0	dphy_ctrl	RW	[7:0]	Value 0: Automatic in use Value 1: UI control in use Value 2: register control in use		
CSI-2 B	itrate Ne	gotiatic	n Regist	ers						
0x082 0	0x082 3	4	0x000 00000	0	requested_link_bit_rat e_mbps	RW	[31:0]	Target bitrate for CSI-2 transmission		
Binning	Binning Configuration Registers									
0x090 0	0x090 0	1	0x000 0	0	binning_mode	RW	[7:0]	0 – Disabled 1 - Enabled		
0x090 1	0x090 1	SUI	0x001 1	eite	binning_type at 0	RW	[7:0]	High nibble specifies Column Binning factor Low nibble specifies Row Binning factor		
0x090 2	0x090 2	1	0x000 1	1	binning_weighting	RW	[7:0]	Bit 0 = 1 : Averaged Bit 1 = 1 : Summed (for low light) Bit 2 = 1 : Bayer-corrected Bit 3 = 1 : User-defined weighting		
Data Tra	ansfer Co	ontrol 8	k Data Re	egisters						
0x0A0 0	0x0A0 0	1	0x000 0	0	data_transfer_if_1_ctrl	RW	[7:0]	Bit 0: 1- enable. 0 - disable Bit 1: 1- write enable. 0 - read enable Bit 2: 1- clear error bits. Default value 0x00		
0x0A0 1	0x0A0 1	1	0x000 0	0	data_transfer_if_1_sta tus	RW	[7:0]	Bit 0: 1 - read_if_ready Bit 1: 1 - write_if_ready Bit 2: 1- data corrupted Bit 3: 1 - improper if usage		
0x0A0 2	0x0A0 2	1	0x000 0	0	data_transfer_if_1_pa ge_select	RW	[7:0]	Pages from 0 – 255. Default value 0x00		
0x0A0	0x0A0	1	0x000	0	data_transfer_if_1_res	RW	[7:0]			

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description		
3	3		0		erved					
0x0A0 4	0x0A4 3	64	0x000 00000	0	data_transfer_if_1_dat a	RW	64x[7 :0]	64 x 8-bit register for read or write accesses		
0x0A4 4	0x0A4 4	1	0x000 0	0	data_transfer_if_2_ctrl	RW	[7:0]	Bit 0: 1- enable. 0 - disable Bit 1: 1- write enable. 0 - read enable Bit 2: 1- clear error bits. Default value 0x00		
0x0A4 5	0x0A4 5	1	0x000 0	0	data_transfer_if_2_sta tus	RW	[7:0]	Bit 0: 1 - read_if_ready Bit 1: 1 - write_if_ready Bit 2: 1- data corrupted Bit 3: 1 - improper if usage		
0x0A4 6	0x0A4 6	1	0x000 0	0	data_transfer_if_2_pa ge_select	RW	[7:0]	Pages from 0 – 255. Default value 0x00		
0x0A4 7	0x0A4 7	1	0x000 0	0	data_transfer_if_2_res erved	RW	[7:0]			
0x0A4 8	0x0A8 7	64	0x000 00000	0	data_transfer_if_2_dat a	RW	64x[7 :0]	64 x 8-bit register for read or write accesses		
Internal	Internal Defect Correction									
0x0B0 0	0x0B0	1 SUI	0x000 0	elle	shading_correction_e nable a at 09	RW	[7:0]	0 = shading correction disabled 1 = shading correction enabled		
0x0B0 1	0x0B0 1	1	0x008 0	128	luminance_correction_ level	RW	[7:0]	Range 0 – 255 default = 128		
0x0B0 2	0x0B0 2	1	0x000 0	0	green_imbalance_filte r_enable	RW	[7:0]	0 – Green imbalance filter disabled 1 – Green imbalance filter enabled default = 1		
0x0B0 3	0x0B0 3	1	0x000 0	0	green_imbalance_filte r_weight	RW	[7:0]	Range 0 – 255 default = 128		
0x0B0 4	0x0B0 4	1	0x000 1	1	black_level_correction _enable	RW	[7:0]	0 – Black level correction disabled 1 – black level correction enabled default = 1		
0x0B0 5	0x0B0 5	1	0x000 1	1	mapped_couplet_corr ect_enable	RW	[7:0]	0 = correction disabled 1 = correction enabled default = 1		
0x0B0 6	0x0B0 6	1	0x000 0	0	single_defect_correct_ enable	RW	[7:0]	0 = correction disabled 1 = correction enabled default = 1		

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
0x0B0 7	0x0B0 7	1	0x004 0	64	single_defect_correct_ weight	RW	[7:0]	0x80 to 0xFF = limited auto 0x01 to 0x7F = manual 0x00 = bypass Default = 0x40 (mid-range)
0x0B0 8	0x0B0 8	1	0x000 0	0	dynamic_couplet_corr ect_enable	RW	[7:0]	0 = correction disabled 1 = correction enabled default = 1
0x0B0 9	0x0B0 9	1	0x004 0	64	dynamic_couplet_corr ect_weight	RW	[7:0]	0x80 to 0xFF = limited auto 0x01 to 0x7F = manual 0x00 = bypass Default = 0x40 (mid-range)
0x0B0 A	0x0B0 A	1	0x000 0	0	combined_defect_corr ect_enable	RW	[7:0]	0 – combined defect correction disabled 1 – combined defect correction enabled default = 1 in case of that there is no dedicated corrections (i.e. dyn. Couplet or dyn. Singlet)
0x0B0 B	0x0B0 B	1	0x000 0	0	combined_defect_corr ect_weight	RW	[7:0]	80 - FF = limited auto 1 - 7F = manual 0 = bypass Default = 0x40 (mid-range)
0x0B0 C	0x0B0 C	5UI 1	0x000 0	0	module_specific_corre ction_enable	RW	[7:0]	0 = correction disabled 1 = correction enabled default = 1
0x0B0 D	0x0B0 D	1	0x000 0	0	module_specific_corre ction_weight	RW	[7:0]	0x80 to 0xFF = limited auto 0x01 to 0x7F = manual 0x00 = bypass Default = 0x40 (mid-range)
0x0B0 E	0x0B0 E	1	###	###	mapped_line_defect_c orrect_enable	RW	[7:0]	0 – mapped line defect correction disabled 1 - mapped line defect correction enabled
0x0B0 F	0x0B0 F	1	###	###	mapped_line_defect_c orrect_adjust	RW	[7:0]	0x80 to 0xFF = limited auto 0x01 to 0x7F = manual 0x00 = bypass Default = 0x40 (mid-range)
0x0B1 0	0x0B1 0	1	###	###	mapped_couplet_corr ect_adjust	RW	[7:0]	0 – combined defect correction disabled 1 – combined defect correction enabled default = 1 in case of that there is no dedicated corrections (i.e. dyn.

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
								Couplet or dyn. Singlet)
0x0B1 1	0x0B1 1	1	###	###	mapped_triplet_defect _correct_enable	RW	[7:0]	80 - FF = limited auto 1 - 7F = manual 0 = bypass Default = 0x40 (mid-range)
0x0B1 2	0x0B1 2	1	###	###	mapped_triplet_defect _correct_adjust	RW	[7:0]	0 = correction disabled 1 = correction enabled default = 1
0x0B1 3	0x0B1 3	1	###	###	dynamic_triplet_defect _correct_enable	RW	[7:0]	0 – mapped triplet defect correction disabled 1 – mapped triplet defect correction enabled
0x0B1 4	0x0B1 4	1	###	###	dynamic_triplet_defect _correct_adjust	RW	[7:0]	80 - FF = limited auto 1 - 7F = manual 0 = bypass Default = 0x40 (mid-range)
0x0B1 5	0x0B1 5	SUI	ng / ###	elle ###	dynamic_line_defect_ correct_enable):37 RW	[7:0]	O – dynamic line defect correction disabled 1 - dynamic line defect correction enabled
0x0B1 6	0x0B1 6	1	###	###	dynamic_line_defect_ correct_adjust	RW	[7:0]	0x80 to 0xFF = limited auto 0x01 to 0x7F = manual 0x00 = bypass Default = 0x40 (mid-range)
EDOF (Control							
0x0B8 0	0x0B8 0	1	0x000 1	1	edof_mode	RW	[7:0]	Bit 0 – 0 EDOF disabled (default) Bit 1 – EDOF estimation type 1 enabled Bit 2 – EDOF enabled Bit 3 to 7 - reserved for future use
0x0B8 1	0x0B8 1	1	0x000 0	0	est_depth_of_field	RO D	[7:0]	This represents the estimated depth of field measured 'outwards' from the nearest focus point (mapping to distance in cm)
0x0B8 2	0x0B8 2	1	0x000 0	0	est_focus_distance	RO D	[7:0]	This represents the estimated nearest focus point (mapping

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
								to distance in cm)
0x0B8 3	0x0B8 3	1	0x008 0	128	sharpness	RW	[7:0]	Host EDOF sharpness control:- 0x80 to 0xFF = limited auto 0x01 to 0x7F = manual 0x00 = bypass
0x0B8 4	0x0B8 4	1	0x008 0	128	denoising	RW	[7:0]	Host EDOF denoising control:- 0x80 to 0xFF = limited auto 0x01 to 0x7F = manual 0x00 = bypass
0x0B8 5	0x0B8 5	1	0x008 0	128	module_specific	RW	[7:0]	Slider which can be used for any specific tuning of EDOF block not covered by the above 0x80 to 0xFF = limited auto 0x01 to 0x7F = manual 0x00 = bypass
0x0B8 6	0x0B8 7	SUI	0x000 0	o elle	depth_of_field	RW):3	[7:0] , 20	This represents the depth of field measured 'outwards' from the nearest focus point (mapping to distance in cm) 0x8000 to 0xFFFF = limited auto 0x0000 to 0x7FFF = manual
0x0B8 8	0x0B8 9	2	0x000 0	0	focus_distance	RW	[7:0]	This represents the depth of field measured 'outwards' from the nearest focus point (mapping to distance in cm) 0x8000 to 0xFFFF = limited auto 0x0000 to 0x7FFF = manual
Host AV	/B feedb	ack						
0x0B8 C	0x0B8 D	2	0x0C8 0	###	colour_temperature	RW	[15:0]	Scene colour temperature in Kelvin
0x0B8 E	0x0B8 F	2	0x000 0	0	absolute_gain_greenr	RW	[15:0]	Calculated gain for green-red channel
0x0B9 0	0x0B9 1	2	0x000 0	0	absolute_gain_red	RW	[15:0]	Calculated gain for red channel
0x0B9 2	0x0B9 3	2	0x000 0	0	absolute_gain_blue	RW	[15:0]	Calculated gain for blue channel
0x0B9 4	0x0B9 5	2	0x000 0	0	absolute_gain_greenb	RW	[15:0]	Calculated gain for greenb channel
Integrati	on Time	Param	eter Limi	t Regist	ers			

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description		
0x100 0	0x100 1	2	0x000 0	0	integration_time_capa bility	RO S	[0:0]	0 – coarse integration but NO fine integration 1 – course and smooth (1 pixel) fine integration		
0x100 2	0x100 2	1	0x000 0	0	Reserved	RO S				
0x100 3	0x100 3	1	0x000 0	0		RO S				
0x100 4	0x100 5	2	0x000 0	0	coarse_integration_ti me_min	RO S	[15:0]	Lines (dec:0)		
0x100 6	0x100 7	2	0x000 4	4	coarse_integration_ti me_max_margin	RO S	[15:0]	(Current frame length – current max coarse exp) (dec:2)		
0x100 8	0x100 9	2	0x000 0	0	fine_integration_time_ min	RO S	[15:0]	Pixels (dec:266)		
0x100 A	0x100 B	2	0x000 0	0	fine_integration_time_ max_margin	RO S	[15:0]	(Current line length – current max fine exp) (dec:466)		
Digital Gain Parameter Limit Registers										
0x108 0	0x108	2	0x000 0	0	digital_gain_capability	RO S	[0:0]	0 – none 1 – per channel digital gain		
0x108 2	0x108	S ² UI	0x000 0	elle	Reserved at 0.9	RO S	7,20	12.09.24		
0x108 4	0x108 5	2	0x010 0	256	digital_gain_min	RO S	[15:0]	Minimum recommended digital gain value		
0x108 6	0x108 7	2	0xFFF F	###	digital_gain_max	RO S	[15:0]	Maximum recommended digital gain value		
0x108 8	0x108 9	2	0x010 0	256	digital_gain_step_size	RO S	[15:0]	Defines the resolution of the digital gain control parameters.		
Pre-PLL	and PLL	. Clock	Set-up C	Capabili	ty Registers					
0x110 0	0x110 3	4	0x40C 00000	0	min_ext_clk_freq_mhz	RO S	[31:0]	Minimum external clock frequency		
0x110 4	0x110 7	4	0x428 00000	0	max_ext_clk_freq_mh z	RO S	[31:0]	Maximum external clock frequency		
0x110 8	0x110 9	2	0x000 1	1	min_pre_pll_clk_div	RO S	[15:0]	Minimum Pre PLL divider value		
0x110 A	0x110 B	2	0x003 F	63	max_pre_pll_clk_div	RO S	[15:0]	Maximum Pre PLL divider value		
0x110 C	0x110 F	4	0x404 00000	0	min_pll_ip_freq_mhz	RO S	[31:0]	Minimum PLL input clock frequency		
0x111	0x111	4	0x40C	0	max_pll_ip_freq_mhz	RO	[31:0]	Maximum PLL input clock		

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
0	3		00000			S		frequency
0x111 4	0x111 5	2	0x000 1	1	min_pll_multiplier	RO S	[15:0]	Minimum PLL multiplier
0x111 6	0x111 7	2	0x01F F	511	max_pll_multiplier	RO S	[15:0]	Maximum PLL multiplier
0x111 8	0x111 B	4	0x43F A0000	0	min_pll_op_freq_mhz	RO S	[31:0]	Minimum PLL output clock frequency
0x111 C	0x111 F	4	0x447 A0000	0	max_pll_op_freq_mhz	RO S	[31:0]	Maximum PLL output clock frequency
Video T	iming Clo	ck Set	-up Capa	ability Re	egisters			
0x112 0	0x112 1	2	0x000 1	1	min_vt_sys_clk_div	RO S	[15:0]	Minimum video timing system clock divider value
0x112 2	0x112 3	2	0x000 8	8	max_vt_sys_clk_div	RO S	[15:0]	Maximum video timing system clock divider value
0x112 4	0x112 7	4	0x43F A0000	0	min_vt_sys_clk_freq_ mhz	RO S	[31:0]	Minimum video timing system clock frequency
0x112 8	0x112 B	4	0x447 A0000	0	max_vt_sys_clk_freq_ mhz	RO S	[31:0]	Maximum video timing system clock frequency
0x112 C	0x112 F	4	0x42F 00000	0	min_vt_pix_clk_freq_ mhz	RO S	[31:0]	Minimum video timing pixel clock frequency
0x113 0	0x113	SµI	0x43D C000 0	ele	max_vt_pix_clk_freq_ mhz	RO S	[31:0]	Maximum video timing pixel clock frequency
0x113 4	0x113 5	2	0x000 1	1	min_vt_pix_clk_div	RO S	[15:0]	Minimum video timing pixel clock divider value
0x113 6	0x113 7	2	0x000 A	10	max_vt_pix_clk_div	RO S	[15:0]	Maximum video timing pixel clock divider value
Frame	Timing Pa	ramet	er Limit F	Registers	3			
0x114 0	0x114 1	2	0x006 4	100	min_frame_length_lin es	RO S	[15:0]	Minimum Frame Length allowed.
0x114 2	0x114 3	2	0xFFF F	###	max_frame_length_lin es	RO S	[15:0]	Maximum possible number of lines per Frame.
0x114 4	0x114 5	2	0x102 8	###	min_line_length_pck	RO S	[15:0]	Minimum Line Length allowed.
0x114 6	0x114 7	2	0xFFF F	###	max_line_length_pck	RO S	[15:0]	Maximum possible number of pixel clocks per line.
0x114 8	0x114 9	2	0x011 C	284	min_line_blanking_pc k	RO S	[15:0]	Minimum line blanking time in pixel clocks
0x114 A	0x114 B	2	0x003 6	54	min_frame_blanking_li nes	RO S	[15:0]	Minimum frame blanking in video tming lines

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description			
0x114 C	0x114 D	2	0x000 8	8	min_line_length_pck_ step_size	RO S	[15:0]	Minimum step size of line length pck. Typical value may be 1,2 or 4. Units: Pixel Clocks			
Output (Output Clock Set-up Capability Registers										
0x116 0	0x116 1	2	0x000 1	1	min_op_sys_clk_div	RO S	[15:0]	Minimum output system clock divider value			
0x116 2	0x116 3	2	0x000 8	8	max_op_sys_clk_div	RO S	[15:0]	Maximum output system clock divider value			
0x116 4	0x116 7	4	0x428 00000	0	min_op_sys_ck_clk_fr eq_mhz	RO S	[31:0]	Minimum output system clock frequency			
0x116 8	0x116 B	4	0x448 40000	0	max_op_sys_clk_freq _mhz	RO S	[31:0]	Maximum output system clock frequency			
0x116 C	0x116 D	2	0x000 4	4	min_op_pix_clk_div	RO S	[15:0]	Minimum output pixel clock divider value			
0x116 E	0x116 F	2	0x000 C	12	max_op_pix_clk_div	RO S	[15:0]	Maximum output pixel clock divider value			
0x117 0	0x117 3	4	0x410 00000	0	min_op_pix_clk_freq_ mhz	RO S	[31:0]	Minimum output pixel clock frequency			
0x117 4	0x117 7	4	0x430 40000	0	max_op_pix_clk_freq_ mhz	RO S	[31:0]	Maximum output pixel clock frequency			
Image S	Size Para	meter	Limit Reg	isters	n.piao at us	1.3	7,20	12.09.24			
0x118 0	0x118 1	2	0x000 0	0	x_addr_min	RO S	[15:0]	Minimum X-address of the addressable pixel array			
0x118 2	0x118 3	2	0x000 0	0	y_addr_min	RO S	[15:0]	Minimum Y-address of the addressable pixel array			
0x118 4	0x118 5	2	0x0C C8	###	x_addr_max	RO S	[15:0]	Maximum X-address of the addressable pixel array			
0x118 6	0x118 7	2	0x099 8	###	y_addr_max	RO S	[15:0]	Maximum Y-address of the addressable pixel array			
0x118 8	0x118 9	2	0x010 0	256	min_x_output_size	RO S	[15:0]	Minimum x output size in pixels			
0x118 A	0x118 B	2	0x009 0	144	min_y_output_size	RO S	[15:0]	Minimum y output size in pixels			
0x118 C	0x118 D	2	0x0C C8	###	max_x_output_size	RO S	[15:0]	Maximum x output size in pixels			
0x118 E	0x118 F	2	0x099 8	###	max_y_output_size	RO S	[15:0]	Maximum y output size in pixels			
Sub-Sai	mpling Pa	aramet	er Limit F	Register	s						
0x11C 0	0x11C 1	2	0x000 1	1	min_even_inc	RO S	[15:0]	Minimum Increment for even pixels			

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
0x11C 2	0x11C 3	2	0x000 9	9	max_even_inc	RO S	[15:0]	Maximum increment for even pixels
0x11C 4	0x11C 5	2	0x000 1	1	min_odd_inc	RO S	[15:0]	Minimum Increment for odd pixels
0x11C 6	0x11C 7	2	0x001 D	29	max_odd_inc	RO S	[15:0]	Maximum Increment for odd pixels
Image S	Scaling Pa	aramet	er Limit F	Register	S			
0x120 0	0x120 1	2	0x000 2	2	scaling_capability	RO S	[15:0]	0 – None 1 – Horizontal 2 – Full (Horizontal & Vertical)
0x120 2	0x120 3	2	0x000 0	0	reserved	RO S	[15:0]	
0x120 4	0x120 5	2	0x001 0	16	scaler_m_min	RO S	[15:0]	Down scale factor: Minimum M value
0x120 6	0x120 7	2	0x008 0	128	scaler_m_max	RO S	[15:0]	Down scale factor: Maximum M value
0x120 8	0x120 9	2	0x001 0	16	scaler_n_min	RO S	[15:0]	Down scale factor: Minimum N value
0x120 A	0x120 B	2	0x001 0	16	scaler_n_max	RO S	[15:0]	Down scale factor: Maximum N value
0x120 8	0x120 9	S2II	0x000 1	elle	spatial_sampling_cap ability	RO S	[15:0]	12.09.24
0x120 A	0x120 B	2	0x000 1	1	digital_crop_capability	RO S	[15:0]	
Image C	Compress	ion Ca	apability F	Register	S			
0x130 0	0x130 1	2	0x000 2	2	compression_capabilit y	RO S	[15:0]	0 – No Compression 1 – DPCM/PCM Compression
Colour	Matrix Re	gisters	3					
0x140 0	0x140 1	2	0x000 0	0	matrix_element_RedIn Red	RO S	[15:0]	Colour matrix parameter for Red in Red (dec:2.055)
0x140 2	0x140 3	2	0x000 0	0	matrix_element_Gree nlnRed	RO S	[15:0]	Colour matrix parameter for Green in Red (dec:-0.555)
0x140 4	0x140 5	2	0x000 0	0	matrix_element_Bluel nRed	RO S	[15:0]	Colour matrix parameter for Blue in Red (dec:-0.148)
0x140 6	0x140 7	2	0x000 0	0	matrix_element_RedIn Green	RO S	[15:0]	Colour matrix parameter for Red in Green (dec:-0.359)
0x140 8	0x140 9	2	0x000 0	0	matrix_element_Gree nInGreen	RO S	[15:0]	Colour matrix parameter for Green in Green (dec:1.578)
0x140 A	0x140 B	2	0x000 0	0	matrix_element_Bluel nGreen	RO S	[15:0]	Colour matrix parameter for Blue in Green (dec:-0.949)
0x140	0x140	2	0x000	0	matrix_element_RedIn	RO	[15:0]	Colour matrix parameter for

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
С	D		0		Blue	S		Red in Blue (dec:0.246)
0x140 E	0x140 F	2	0x000 0	0	matrix_element_Gree nlnBlue	RO S	[15:0]	Colour matrix parameter for Green in Blue (dec:-0.324)
0x141 0	0x141 1	2	0x000 0	0	matrix_element_Bluel nBlue	RO S	[15:0]	Colour matrix parameter for Blue in Blue (dec:2.250)
FIFO Ca	apability F	Registe	ers					
0x150 0	0x150 1	2	0x000 0	0	fifo_size_pixels	RO S	[15:0]	FIFO size in pixels (0 = no FIFO present)
0x150 2	0x150 3	2	0x000 0	0	fifo_support_capability	RO S	[15:0]	Value 0 – not supported Value 1 – supports derating Value 2 – supports VT/OP domain decoupling
CSI Car	pability Re	egister	s					
0x160 0	0x160 0	1	0x000 0	0	dphy_ctrl_capability	RO S	[2:0]	Bit 0 (Only UI capability) 0: UI enough. 1: register control is needed Bit 1 (Time and UI capability) 0: UI enough. 1: register control is needed Bit 2 (Time capability) 0: UI enough. 1: register control is needed
0x160 1	0x160 1	1	###	###	CSI_lane_mode_capa bility	RO S	[2:0]	Bit 0:- 1: 1-lane supported 0: 1-lane not supported Bit 1:- 1: 2-lane supported 0: 2-lane not supported Bit 2:- 1: 3-lane supported 0: 3-lane not supported Bit 2:- 1: 4-lane not supported 0: 4-lane not supported
0x160 2	0x160 2	1	###	###	CSI_signalling_mode_ capability	RO S	[2:0]	Bit 0:- 1 - CCP2 Data/Clock supported 0 - not supported Bit 1:- 1 - CCP2 Data/Strobe Signalling supported 0 - not supported Bit 2:- 1 - CSI-2 supported 0 - not supported

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description		
0x160 3	0x160 3	1	0x000 0	0	fast_standby_capabilit y	RO S	[1:0]	0 – Frame truncation not supported for rolling shutter 1 – Frame truncation supported for rolling shutter		
0x160 5	0x160 5	1	###	###	reserved	RO S				
0x160 6	0x160 6	1	###	###	reserved	RO S				
0x160 7	0x160 7	1	###	###	reserved	RO S				
0x160 8	0x160 B	4	###	###	max_per_lane_bitrate _1_lane_mode_mbps	RO S	[7:0]	32-bit unsigned iReal		
0x160 C	0x160 F	4	###	###	max_per_lane_bitrate _2_lane_mode_mbps	RO S	[7:0]	32-bit unsigned iReal		
0x161 0	0x161 3	4	###	###	max_per_lane_bitrate _3_lane_mode_mbps	RO S	[7:0]	32-bit unsigned iReal		
0x161 4	0x161 7	4	###	###	max_per_lane_bitrate _4_lane_mode_mbps	RO S	[7:0]	32-bit unsigned iReal		
Binning	Binning Capability Registers									
0x170 0	0x170 1	2	0x006 4	100	min_frame_length_lin es_bin	RO D	[15:0]	Minimum Frame Length allowed in binning mode		
0x170 2	0x170 3	SUI 2	0xFFF F	###	max_frame_length_lin es_bin	RO D	[15:0]	Maximum possible number of lines per Frame in binning mode		
0x170 4	0x170 5	2	0x0E D8	###	min_line_length_pck_ bin	RO D	[15:0]	Minimum Line Length allowed in binning mode Value: sensor dependent Units: Pixel Clocks		
0x170 6	0x170 7	2	0xFFF F	###	max_line_length_pck_ bin	RO D	[15:0]	Maximum possible number of pixel clocks per line in binning mode Value: sensor dependent Units: Pixel Clocks		
0x170 8	0x170 9	2	0x011 C	284	min_line_blanking_pc k_bin	RO D	[15:0]	Minimum line blanking time in pixel clocks in binning mode Units: Pixel Clocks		
0x170 A	0x170 B	2	0x000 0	0	fine_integration_time_ min_bin	RO D	[15:0]	Minimum fine integration time allowed in binning mode Value: sensor dependent Units: Pixels		
0x170 C	0x170 D	2	0x000 0	0	fine_integration_time_ max_margin_bin	RO D	[15:0]	Margin used to determine the maximum fine integration time allowed in binning mode.		

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
								Value: sensor dependent Units: Pixels
0x170 E	0x170 F	2	0x000 0	0	fine_integration_time_ max_margin_bin	RO D	[15:0]	Margin used to determine the maximum fine integration time allowed in binning mode. Value: sensor dependent Units: Pixels
0x171 0	0x171 0	1	0x000 1	1	binning_capability	RO S	[7:0]	0 – None 1 - Yes
0x171 1	0x171 1	1	0x000 3	3	binning_weighting_ca pability	RO S	[7:0]	0x00: averaged weighting 0x01: summed weighting 0x02: bayer weighting 0x03: module-specific weighting
0x171 2	0x171 2	1	0x000 C	12	binning_sub_types	RO S	[7:0]	N - Number of Binning subtypes available
0x171 3	0x171 3	1	0x004 2	66	binning_type_1	RO S	[7:0]	Example : 0x21 = Column x 2, Row x 1
0x171 4	0x171 4	-	0x004 4	68	binning_type_2	ROS	[7:0]	Example : $0x22 = Column \times 2$, Row x 2
0x171 5	0x171 5	Stil	0x004 8	e72e	binning_type_3	ROS	[7:0]	Example : $0x31 = Column x 3$, Row x 1
0x171 6	0x171 6	1	0x002 2	34	binning_type_4	RO S	[7:0]	Example: 0x33 = Column x 3, Row x 3
0x171 7	0x171 7	1	0x002 4	36	binning_type_5	RO S	[7:0]	Example: 0x41 = Column x 4, Row x 1
0x171 8	0x171 8	1	0x002 8	40	binning_type_6	RO S	[7:0]	Example: 0x42 = Column x 4, Row x 2
0x171 9	0x171 9	1	0x001 2	18	binning_type_7	RO S	[7:0]	Example: 0x44 = Column x 4, Row x 4
0x171 A	0x171 A	1	0x001 4	20	binning_type_8	RO S	[7:0]	Example: 0x42 = Column x 4, Row x 2
0x171 B	0x171 B	1	0x001 8	24	binning_type_9	RO S	[7:0]	Example: 0x44 = Column x 4, Row x 4
0x171 C	0x171 C	1	0x002 1	33	binning_type_10	RO S	[7:0]	Example: 0x42 = Column x 4, Row x 2
0x171 D	0x171 D	1	0x004 1	65	binning_type_11	RO S	[7:0]	Example: 0x44 = Column x 4, Row x 4
0x171 E	0x171 E	1	0x008 1	129	binning_type_12	RO S	[7:0]	Example: 0x42 = Column x 4, Row x 2
0x171	0x171	1	0x000	0	binning_type_13	RO	[7:0]	Example: 0x44 = Column x 4,

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description			
F	F		0			S		Row x 4			
Data Up	Data Upload/Download Interface Capability										
0x180 0	0x180 0	1	0x000 F	15	data_transfer_if_capa bility	RO S	[7:0]	Bit 0: 1 – interface 1 supported Bit 1: 1 – interface 2 supported Bit 2: 0 – polling not needed in reading Bit 3: 0 – polling not needed in writing 1 = internal module shading correction present			
Ideal ra	w and ED	OF Ca	apability F	Register	S						
0x190 0	0x190 0	1	0x000 3	3	shading_correction_ca pability	RO S	[7:0]	0 = internal module shading correction NOT present 1 = internal module shading correction present			
0x190 1	0x190 1	1	0x000 0	0	green_imbalance_cap ability	RO S	[7:0]	b0=1: on-module green imbalance filtering			
0x190 2	0x190 2	1	0x000	1	black_level_capability	RO S	[7:0]	b0=1: black level correction available			
0x190 3	0x190 3	SUI 1	0x000 0	elle o	module_specific_corre ction_capability	RO S	[7:0]	Bit 0: 0 – not supported. 1 – Manual supported Bit 1: 0 – not supported. 1 – Limited auto supported			

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
0x190 4	0x190 5	SUI SUI	0x000 0	elle	defect_correction_cap ability	RO s	[15:0]	b0=1: internal module mapped couplet correction available B1=1: internal module mapped couplet correction weight available B2=1: internal module dynamic couplet correction available B3=1: manual dynamic couplet correction weight adjust available B4=1: limited auto dynamic couplet correction weight adjust available B5=1: internal module dynamic single pixel defect correction available B6=1: manual dynamic single pixel defect correction weight adjust available B7=1: limited auto dynamic single pixel defect correction weight adjust available B7=1: limited auto dynamic single pixel defect correction weight adjust available B8=1: combined internal module dynamic couplet & single pixel defect correction available B9=1: manual dynamic couplet & single pixel defect correction weight adjust available B10=1: limited auto dynamic couplet & single pixel defect correction weight adjust available B10=1: limited auto dynamic couplet & single pixel defect correction weight adjust available B10=1: limited auto dynamic couplet & single pixel defect correction weight adjust available

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
0x190 6	0x190 7		0x000 0	o	module_specific_corre ction_capability	RO s	[15:0]	B0=1: internal module mapped triplet correction available B1=1: manual mapped triplet correction weight adjust available B2=1: limited auto mapped triplet correction weight adjust available B3=1: internal module dynamic triplet correction available B4=1: manual dynamic triplet correction weight adjust available B5=1: limited auto dynamic triplet correction weight adjust available B6=1: internal module dynamic line correction available B7=1: manual dynamic line correction weight ajust available B7=1: minual dynamic line correction weight ajust available B8=1: limited auto dynamic line correction weight adjust available Other bits: reserved for future extensions
0x198	Capability 0x198		0x000			RO		0 – None
0	0	1	1	1	edof_capability	S	[1:0]	1 – EDOF present
0x198 1	0x198 1	1	0x000 0	0	estimation_frames	RO S	[1:0]	0 – No estimation frames are required Other value – the number of estimation frames required
0x198 2	0x198 2	1	0x000 0	0	supports_sharpness_ adj	RO S	[1:0]	0 – Not supported 1 – Supported
0x198 3	0x198 3	1	0x000 0	0	supports_denoising_a dj	RO S	[1:0]	0 – Not supported 1 – Supported
0x198 4	0x198 4	1	0x000 0	0	supports_module_spe cific_adj	RO S	[1:0]	0 – Not supported 1 – Supported
0x198 5	0x198 5	1	0x000 0	0	supports_depth_of_fie ld_adj	RO S	[1:0]	Bit 0:-0 – not supported.1 – manual supported Bit 1:-0 – not supported.1 – limited auto supported

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
0x198 6	0x198 6	1	0x000 0	0	supports_focus_distan ce_adj	RO S	[1:0]	Bit 0:-0 – not supported. 1 – manual supported Bit 1:-0 – not supported. 1 – limited auto supported
0x198 7	0x198 7	1	0x000 1	1	colour_feedback_capa bility	RO S	[1:0]	Bit 0 – module requires Kelvin feedback Bit 1 – module requires AWB gain feedback
0x198 8	0x198 8	1	0x000 0	0	edof_support_AB_nx m	RO D	[1:0]	Bit 0 = 0 - EDOF not supported in n x m binned mode Bit 0 = 1 - EDOF supported in n x m binned mode Bit 1 = 0 - new coefficient/patch download required. Bit 1 = 1 - no coefficient/patch download required (or download has taken place)

samsung / ellen.piao at 09:37.2012.09.24

11.1.2 Configuration Registers 2 [0xD0003000 to 0xD0003FFF]

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
0x300 0	0x300 0 1 Sam	1 Sui	0x000 0	o ele	vendor_error_type GGO n.piao at 09	RW 137	[7:0] F 1 (7,20	System level error: 0 no error 1 external clock is not defiend 2 external clock is defined, but out of range 3 pre_pll_clk_div is out of range 4 pll_ip_freq is out of range 5 pll_multiplier is out of range 6 pll_op_freq is out of range 7 vt_sys_div is out of range 8 vt_pix_div is out of range 9 vt_sys_freq is out of range 10 vt_pix_freq is out of range 11 op_sys_div is out of range 12 op_pix_div is out of range 13 op_sys_freq is out of range 14 op_pix_freq is out of range 15 bad_div_vt_sys is out of range 16 bad_div_op is out of range 17 dclk_div is out of range 18 smiaRegs_rw_clocks_secnd_pre_pll_clk_div is out of range 19 smiaRegs_rw_clocks_secnd_pll_multiplier is out of range 20 Second PLL VCO is is out of range 32 two or more functions are assigned to same GPIO 40 failed to allocate BPC tables
0x300 1	0x300 1	1	0x000 0	0	vendor_pll_bypass	RW	[7:0]	Locked on enable streaming 0 PLL is operational 1 PLL is bypass
0x300 2	0x300 2	1	0x000 0	0	vendor_pll_use_exact _vt_pix_clk_div	RW	[7:0]	Locked on enable streaming 0 vt_pix_clk_div is multiplied by 4 1 vt_pix_clk_div is used "as is" (this option is useful for deviders not equal to 4,8,12)

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
0x300 3	0x300 3	1	0x000 0	0	vendor_pll_use_fixed_ dclk_div	RW	[7:0]	Determine whether searching for the minimal dclk divider possible per current state
0x300 4	0x300 4	1	0x000 2	2	vendor_pll_dclk_min_r atio_numer	RW	[7:0]	Numer/denum – the minimal frequency ratio between Dclk/SysClk
0x300 5	0x300 5	1	0x000 1	1	vendor_pll_dclk_min_r atio_denum	RW	[7:0]	Numer/denum – the minimal frequency ratio between Dclk/SysClk
0x300 6	0x300 6	1	0x000 0	0	vendor_pll_scale_up_ ext_clock	RW	[7:0]	Allows using input clock higher than 255.99MHz. For example, input clock 260MHz will be set as 0x8200 on smia register smiaRegs_rw_op_cond_extclk _frequency_mhz, and as 0x01 on this vendor register (130MHz << 1 = 260MHz).
0x300 7	0x300 7	1	0x000 0	0	vendor_pll_reserved	RW	[7:0]	#N/A
0x300 8	0x300 9	SUI 2	0x000 0	elle	vendor_sensor_offset _X	RW	[15:0]	Allow to cut off left side of output image
0x300 A	0x300 B	2	0x000 0	0	vendor_sensor_offset _y	RW	[15:0]	Allow to cut off top side of output image
0x300 C	0x300 C	1	0x000 1	1	vendor_sensor_abort_ timing_on_sw_stby	RW	[7:0]	When entering sw stby: 0 – Wait till end of timing frame before entering sw stby 1 – Abort timing frame on end of readout and enter sw stby
0x300 D	0x300 D	1	0x000 0	0	vendor_sensor_physic al_pixel_order	RW	[7:0]	Defines color of physical pixel 0,0: 0: Gr Rg / Bg Gb 1: Rg Gr / Gb Bg 2: Bg Gb / Gr Rg 3: Gb Bg / Rg Gr
0x300 E	0x300 E	1	0x000 1	1	vendor_sensor_dyna mic_aac	RW	[7:0]	Reserved.
0x300 F	0x300 F	1	0x000 0	0	vendor_sensor_disabl	RW	[7:0]	Disable Ladlc according fadlc

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
					e_ladlc_with_fadlc			state
0x301 0	0x301 0	1	0x000 0	0	vendor_sensor_out_ty pe	RW	[7:0]	0 - SMIA_OUT_VISIBLE_ONLY 1 - SMIA_OUT_VISIBLE_AND_D ARK 2 - SMIA_OUT_ALL
0x301 1	0x301 1	1	0x000 1	1	vendor_sensor_dig_h or_bin_scale_fact	RW	[7:0]	1 - No Binning 2 - Use digital binning 1:2 instead of analog binning (on the horizontal axis) 4 - Use digital binning 1:4 instead of analog binning (on the horizontal axis)
0x301 2	0x301 2	1	0x000 0	0	vendor_sensor_emb_ use_header	RW	[7:0]	Disable heading embedded line Enable heading embedded line
0x301 3	0x301 3	SUI	0x000	4 elle	vendor_sensor_emb_ header_lines	RW	[7:0]	Defines the number of embedded lines (1-4). Default value is 4.
0x301 4	0x301 4	1	0x000 0	0	vendor_sensor_emb_f ooter_lines	RW	[7:0]	Disable footering embedded line Enable footering embedded line
0x301 5	0x301 5	1	0x000 0	0	vendor_sensor_enabl e_immediate_exp	RW	[7:0]	Disable immidiate update for integration time and analog gain Enable immidiate update for integration time and analog gain
0x301 6	0x301 6	1	0x000 0	0	vendor_dyn_opt_dum my	RW	[7:0]	Reserved
0x301 7	0x301 7	1	0x000 0	0	vendor_isp_reinit	RW	[7:0]	Enable reinit of GRAS, GOS, DADLC tables 1 Update GRAS tables 2 Update GOS tables 4 Update DADLC tables 8 Prepare GRAS tables

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
0x301 8	0x301 8	1	0x000 3	3	vendor_isp_close_cloc k	RW	[7:0]	0 - CLOSE_ISP_CLOCK_NEVER 1 - CLOSE_ISP_CLOCK_ALWAY S 2 - CLOSE_ISP_CLOCK_AUTO 3 - CLOSE_ISP_CLOCK_AUTO_ POWER_SAVE
0x301 9	0x301 9	1	0x001 1	17	vendor_isp_afit_gain_ channel_mask	RW	[7:0]	Msb - Dgain channel , Lsb - Agsin Channel
0x301 A	0x301 A	1	0x000 1	1	vendor_isp_resizer_ke ep_ds_rate	RW	[7:0]	Not applicable
0x301 B	0x301 B	Sui	0x000 0	o elle	vendor_isp_resizer_ali gned	RW	[7:0]	If align is on then row length rounding up to 16 pixels for 10bit Bayer,to 8 for 12 bit and to 4 pixels for 8 bit creating line size which divide 32 bits. 14 bits are extended to 16 => 2 pixels for 32 bits -> always exist.
0x301 C	0x301 D	2	0x000 0	0	vendor_gras_nvm_ad dress	RW	[15:0	NVM address of beginning GRAS data
0x301 E	0x301 F	2	0x000 0	0	vendor_gras_load_fro m	RW	[15:0]	0 Fill up GRAS tables with zero 1 Prevent FW acess to GRAS tables, allow to load GRAS tables directly into HW regs 2 Using tables and parabolas from RAM 3 Using tables and parabolas from NVM 4 Using incremental tables from NVM
0x302 0	0x302 3	4	0x000 0	0	vendor_gras_reserved	RW	[31:0	#N/A
0x302 4	0x302 7	4	0x000 00000	0	vendor_gras_grid	RW	[31:0	Pointer to GRAS grids

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
0x302 8	0x302 B	4	0x000 00000	0	vendor_gras_para	RW	[31:0	Pointer to GRAS parameters and matrices
0x302 C	0x302 F	4	0x000 00000	0	vendor_gras_buffer	RW	[31:0]	0
0x303 0	0x303 1	2	0x000 0	0	vendor_gos_nvm_add ress	RW	[15:0]	address of GRAS data in NVM
0x303 2	0x303 3	2	0x000 0	0	vendor_gos_load_fro m	RW	[15:0]	0 Fill up GOS tables with zero 1 Prevent FW acess to GOS tables, allow to load GOS tables directly into HW regs 2 Using tables and parabolas from RAM 3 Using tables and parabolas from NVM
0x303 4	0x303 7	4	0x000 0	0	vendor_gos_reserved	RW	[31:0]	#N/A
0x303 8	0x303 B	4	0x000 00000	0	vendor_gos_address	RW	[31:0]	address of GOS data in NVM
0x303 C	0x303 F	S411	0x000 00000	ele	vendor_gos_buffer	RW	[31:0]	Pointer to GOS grids
0x304 0	0x304 3	4	0x000 00000	0	vendor_offs_gain_buff er	RW	[31:0	Reserved.
0x304 4	0x304 4	1	0x000 1	1	vendor_bpc_halt_whe n_dynamic_allocation _failed	RW	[7:0]	When true, Cause FW to halt (endless loop) if it failed to allocate all required memory for BPC tables
0x304 5	0x304 5	1	0x000 0	0	vendor_bpc_reserved	RW	[7:0]	#N/A
0x304 6	0x304 7	2	0x002 8	40	vendor_bpc_max_clus ters_in_nvm	RW	[15:0]	Maximum number of clusters in NVM (option to modify projects defaults)
0x304 8	0x304 8	1	0x000 0	0	vendor_oif_ccp2	RW	[7:0]	Enable(1)/Disable(0) CCP2 frame packing on PVI
0x304 9	0x304 9	1	0x000 0	0	vendor_oif_vsync_pul se_width	RW	[7:0]	Defines width of vsync pulse in PVI clocks
0x304 A	0x304 A	1	0x000 0	0	vendor_oif_mipi_over_	RW	[7:0]	Enable(1)/Disable(0) MIPI

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
					pvi			output over PVI
0x304 B	0x304 B	1	0x000 0	0	vendor_oif_slvs_over_ pvi	RW	[7:0]	Enable(1)/Disable(0) SLVS output over PVI
0x304 C	0x304 D	2	0x000 8	8	vendor_oif_pvi_bits	RW	[15:0]	[1:1] invert polarity of VSYNC signal [2:2] invert polarity of HSYNC signal [3:3] invert polarity of PCLK signal [12:12] outputs 8.2 or 8.4 format
0x304 E	0x304 E	1	0x000 0	0	vendor_oif_vsync_on_ frame_start	RW	[7:0]	0 VSYNC toggles on first pixel 1 VSYNC toggles on frame start
0x304 F	0x304 F	SUI 1	0x000 0	elle o	G G On. piao at 09 vendor_oif_qual_mod e	1 37 RW	f i (7,20	0 // 000 Legacy mode of continuous clock - PCLK always on 1 // 001 Qualified clock - on VSYNC rise and fall and on HSYNC valid - Legacy qualified clock 2 // 010 Qualified clock - on VSYNC rise and fall and on overlap HSYNC valid - Legacy qualified clock + new overlap HSYNC 5 // 101 Qualified clock - on HSYNC valid but no clock on VSYNC. Only on data. 6 // 110 Qualified clock - on overlap HSYNC valid but no clock on VSYNC. Only on data + overlap HSYNC.
0x305 0	0x305 0	1	0x000 1	1	vendor_oif_disable_pa ds_on_stdby	RW	[7:0]	Enable(1)/Disable(0) High-Z on PVI pads while in standby.

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
0x305 1	0x305 1	1	0x000 0	0	vendor_oif_pvi_CIS_bits	RW	[7:0]	Equvalent to HW register outregs_cis_via_pvi_vclkout_i nv_pol [0:0] Enable OUTIF cis_via_pvi testbus. This testbus is special testbus output that transmit ISP line directly from OUTIF RAM working with sys_clk. outregs_cis_via_pvi_vclkout_i nv_pol - [4:4] 0 cis_via_pvi_validv is active low/ 1 cis_via_pvi_validv is active high [5:5] 0 cis_via_pvi_validh is active low/ 1 cis_via_pvi_validh is active high [6:6] 0 cis_via_pvi_vclkout = sys_clk/ 1 cis_via_pvi_vclkout = !sys_clk
0x305 2	0x305 2	SUI	0x000 1	elle	vendor_mipi_ulpm_on _stby	RW	[7:0]	Enable(1)/Disable(0) ULPM sequence MIPI on standby
0x305 3	0x305 3	1	0x000 0	0	vendor_mipi_use_extr a_packets	RW	[7:0]	Enable(1)/Disable(0) generation line start/end short packets for MIPI protocol
0x305 4	0x305 4	1	0x002 C	44	vendor_mipi_user_typ e	RW	[7:0]	If set, MIPI data type will be set accordingly.
0x305 5	0x305 5	1	0x000 1	1	vendor_mipi_emb_eq ual_to_data	RW	[7:0]	Keep embedded line same length as pixels line: 0 - Embedded line length is shorter then data line length 1 - Embedded line length is equal to data line length

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
0x305 6	0x305 6	1	0x000 1	1	vendor_mipi_emb_in_ bytes	RW	[7:0]	Keep embedded line same length as pixels line: 0 - Each embedded line pixel is byte 1 - Each embedded line pixel is equal to data pixel
0x305 7	0x305 7	1	0x000 4	4	vendor_mipi_dphy_ma x_lanes	RW	[7:0]	Limits maximal number of enabled MIPI lines
0x305 8	0x305 8	1	0x000 1	1	vendor_mipi_vsync_o n	RW	[7:0]	Enable(1)/Disable(0) Vsync pad signal activity when in MIPI mode. Allows user to output Vsync pad when in MIPI.
0x305 9	0x305 9	1	0x006 4	100	vendor_mipi_t_init	RW	[7:0]	uSec delay after dphy enable
0x305 A	0x305 A	SUI	0x000 0	o elle	vendor_mipi_elg_mod e	RW 37	[7:0]	0 - Embedded data is presented on the MSBs of the pixel (when pixel bits is higher then 8). 1 - Embedded data is presented on the LSBs of the pixel.
0x305 B	0x305 B	1	0x000 0	0	vendor_gpios_use_12 bit_pvi	RW	[7:0]	connect D1 to GPIO1 and D0 to GPIO2
0x305 C	0x305 C	1	0x000 1	1	vendor_gpios_ms_ind ex	RW	[7:0]	defines GPIO number for mechanical shautter strobe out. Values: 0,1,2
0x305 D	0x305 D	1	0x000 2	2	vendor_gpios_flash_in dex	RW	[7:0]	defines GPIO number for flash strobe out. Values: 0,1,2
0x305 E	0x305 E	1	0x000 0	0	vendor_gpios_cmnd_g pi_index	RW	[7:0]	defines GPIO number for mechanical shutter strobe in. Values: 0,1,2
0x305 F	0x305 F	1	0x000 0	0	vendor_gpios_reserve d	RW	[7:0]	#N/A
0x306 0	0x306 0	1	0x000 0	0	vendor_dphy_reserve d_0_	RW	[7:0]	#N/A
0x306 1	0x306 1	1	0x000 0	0	vendor_dphy_reserve d_1_	RW	[7:0]	#N/A

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
0x306 2	0x306 2	1	0x000 0	0	vendor_dphy_reserve d_2_	RW	[7:0]	#N/A
0x306 3	0x306 3	1	0x000 0	0	vendor_dphy_reserve d_3_	RW	[7:0]	#N/A
0x306 4	0x306 4	1	0x000 0	0	vendor_ms_enable	RW	[7:0]	enable/disable mechanical shutter
0x306 5	0x306 5	1	0x000 1	1	vendor_ms_with_glob al_reset	RW	[7:0]	enable/disable mechanical shutter with global reset
0x306 6	0x306 6	1	0x000 0	0	vendor_ms_exp_shifte r	RW	[7:0]	Allows very long exposures when in mechanical shutter.
0x306 7	0x306 7	1	0x000 3	3	vendor_ms_invoke_m ethod	RW	[7:0]	Mechanical shutter abort readout/timing of current frame. Mechanical shutter abort timing of current frame. Mechanical shutter preserve timing of current frame.
0x306 8	0x306 B	S411	0x000 00000	ede	vendor_ms_close_bef _exp_end_pixels	RW	[31:0]	offset from global reset event to closing mechanical shutter
0x306 C	0x306 F	4	0x000 00000	0	vendor_ms_open_bef _fr_end_pixels	RW	[31:0	offset from global reset event to opening mechanical shutter
0x307 0	0x307 3	4	0x000 00000	0	vendor_ms_open_flas h_ofs_pixels	RW	[31:0	offset from global reset event to flash pulse
0x37F8	0x37F8	1	0x0000	0	AnalogGainPrecision	RW	[1:0]	Analog gain resolution control. AG = analogue_gain_code_global/ 2 ^(AnalogGainPrecision + 5)
0x3972	0x3972	1	0x0000	0	nvm_charge_pump_lvl	RW	[0]	0 = NVM: Set x1 charge pump mode 1= NVM: Set x1.5 charge pump mode

11.1.3 Configuration Registers 3 [0xD000F000 to 0xD000FFFF]

Start	Finish	Size	Reset Value Hex	Reset Value Dec	Name	Туре	Width	Description
0xF470	0xF472	2	0x00C5	197	reg_gtg_aig_tx_ptr1	RW	[13:0]	Timing generator pointer. Holding calculated exposure offset. FW controlled, do not overwrite

SAMSUNG Confidential

samsung / ellen.piao at 09:37,2012.09.24

12 Mechanical

S5K3H7YX_DS_REV0.23 (Preliminary Spec)

12.1 Package Specification

Refer to S5K3H7YX_Assembly_Guide

SAMSUNG Confidential

samsung / ellen.piao at 09:37,2012.09.24

