

Estruturas de dados II Árvore B+

André Tavares da Silva andre.silva@udesc.br

Conceitos da árvores B+

- É uma variação da estrutura da árvore B
- Características e principais diferenças para as árvores B:
 - Todas as chaves são mantidas em folhas;
 - As chaves são repetidas em nós não folha que formam índices;
 - As folhas são ligadas oferecendo um caminho sequencial para percorres as chaves;
 - Os nós folhas apontam para os registros em arquivo. Isso permite que os dados e os índices sejam armazenados em arquivos separados.
- Ordem da árvore
 - O número máximo de chaves representa ordem da árvore
 - Todo nó tem no máximo M-1 chaves e no mínimo M/2 (50%) de ocupação
 - Essa característica é válida para M>3, já que se com M=3, quando dividir sempre ficará uma chave única em algum nó (diferente da árvore B que sempre perde um nó ao dividir).

Árvores B+

- Possui complexidade de tempo logarítmo
 - Acesso aleatório: O(log n)
 - Inserção: O(log n)
 - Remoção: O(log n)
- Aumenta a eficiência da localização do próximo registro
 - Acesso sequencial é de O(1) em vez de O(log n)
- Não é necessário manter nenhum ponteiro de registro em nós não folha
 - Somente os nós folha apontam para os registros
 - Nós não folha só guardam o valor da chave de busca

Utilização da árvores B+

- Banco de Dados
 - Muitos Bancos de Dados são construídos usando o mecanismo de Árvores B+: SQLServer, Oracle, PostgreSQL, MariaDB, SQLite,...
- Sistemas de Arquivos
 - Sistemas de arquivos como ReiserFS, XFS e JFS2 usam Árvores B+ para operações de leitura e escrita em blocos de disco.
- Sistemas de gerência de dados
 - Sistemas como CouchDB, Tokyo Cabinet, Tokyo Tyrant,....

Operações em árvores B+

- A inserção de uma nova chave em uma árvore B+ é semelhante a inserção em uma árvore B:
 - Inicia localizando o nó folha que deverá ser adicionada a chave
 - Passos
 - Localizar a folha dentro da qual a chave deve ser inserida;
 - Localizar a posição de inserção dentro da folha;
 - Inserir a chave;
 - Se após a inserção a folha estiver completa, realizar a partição (divisão) da página
 - Para a divisão, as M-1 chaves são divididas em dois grupos:
 - As M/2 chaves menores ficam na folha esquerda;
 - As demais chaves ficam na folha da direita;
 - A menor chave da direita é **copiada** para o nó pai.

Exemplo

3	11	25	

Split!

3	8	11	25

- Pode-se usar três arquivos:
 - Um para armazenar os metadados
 - Ponteiro para raiz da árvore
 - Flag indicando se a raiz é folha
 - Um arquivo para armazenar os índices (nós internos)
 - Um arquivo para armazenar os dados (folhas)

- O arquivo de índice é estruturado em nós (blocos/páginas);
- Contém os nós internos da árvore;
- Cada nó possui:
 - Um inteiro m representando o número de chaves no nó;
 - Flag indicando se aponta para nó folha (dados) ou não (índices);
 - Ponteiro para nó pai (para facilitar implementação);
 - \circ P₀, (s₁,p₁),(s₂,p₂),...,(s_m,p_m), onde
 - s_x é uma chave
 - p_x é um ponteiro para uma página dentro do arquivo

- O arquivo de dados é estruturado em nós (blocos/páginas);
- Contém os nós folhas da árvore;
- Cada nó possui:
 - Um inteiro m representando o número de registros no nó;
 - Ponteiro para nó pai (para facilitar implementação);
 - Ponteiro para a próxima página;
 - *m* registros.

- Se um sistema de arquivo tem tamanho de bloco de B bytes e as chaves a serem armazenadas têm tamanho de k bytes, a árvore B+ mais eficiente é com ordem mínima (50% de M) de d = (B/k)-1
- Exemplo prático:
 - Tamanho do bloco B em disco de 4096 bytes;
 - Tamanho da chave k de 4 bytes (inteiro, por exemplo);
 - o d = (4096 / 4) 1 = 2023
- Qual o tamanho da ordem máxima nessa situação?
 - \circ M = 2*d = 2046

- As funções de inclusão e remoção devem garantir que as ordem máximas (M-1) e mínimas (M/2) da árvore sejam respeitadas (para M>3);
- Em algumas implementações os nós folhas podem possuir M elementos (overflow só ocorre com valor maior que M). Alguns autores consideram que os nós folha (dados) possam ter tamanho distinto dos nós de índice;
- Nós de índice também podem ser representados como nos slides sobre árvores B (diferente dos nós folha):

Estruturas de dados II Árvore B+

André Tavares da Silva andre.silva@udesc.br