1 Introduction

- 10-bit PWM controller written in Verilog
- SPI control interface
- Spread-spectrum output
- Configurable number of channels

1.1 Design hierarchy

Figure 1: Design hierarchy

Figure 2: Top-level module symbol

1.2 Ports description

Port	Description				
clk_i	Clock input				
nrst_i	Reset input (negative)				
spi_clk_i	SPI clock				
spi_mosi_i	SPI MOSI				
spi_miso_o	SPI MISO				
spi_ncs_i	SPI chip select				

Table 1: Module ports description

2 Control interface

The device is meant to be controller via SPI control interface. Each SPI transaction consists of two bytes: a command byte and a data byte.

Figure 3: Generic SPI transaction

Figure 4: SPI read diagram

Figure 5: SPI write diagram

Figure 6: Command structure

Field	Description
RW[7]	Read/write. Set to 1 when performing a read transaction.
CH[6:2]	Channel. Refers to instance of pwm module within the top-level architecture.
ADDR[1:0]	Target register address.

Table 2: Command structure

3 Register map

Address	Description
0x00	Control register
0x01	Duty cycle upper byte
0x02	Duty cycle lower byte

Table 3: Register address mapping

Field	EN	_					DEV			
Default	0		_					00		
R/W	RW		_					W		
	7	6	5	1	0					

Table 4: Control register

Field	Description
EN	Enable pwm instance
DEV	Set duty cycle deviation

Table 5: Control register fields

Field	_						DC[9:8]		
Default			00						
R/W		_						W	
	7 6 5 4 3 2							0	

Table 6: Duty cycle upper byte

Field	DC[7:0]								
Default		00000000							
R/W	RW								
	7	7 6 5 4 3 2 1 0							

Table 7: Duty cycle lower byte

4 PWM spectrum

The following table describes possible PWM duty cycle parameters.

Control.DEV bits	Max. duty cycle de	Average duty cycle length, cycles	
00	0%	0	255
01	1%	7	258
10	3%	31	270
11	12%	127	318

Table 8: PWM duty cycle characteristics

Figure 7: Duty cycle length distribution