Akshath Raghav Ravikiran

J 765-404-8121 **☑** araviki@purdue.edu **in** linkedin.com/in/akshathrr **۞** github.com/AkshathRaghav

Education

Purdue University

West Lafayette, IN || August 2022 – December 2025

Bachelor of Science in Computer Engineering

GPA: 3.81

Activities: Purdue E-Lab (Prof. Culurciello, Multi-Modal AI Research), Purdue CVES (Prof. Yung-Hsiang Lu, SWE Research)

Research Papers

Time-Driven Fire Risk Forecasting: Leveraging Historical Trends for Enhanced Seasonal Modeling (Jain, Ravikiran, et al.) Outlined architecture for fire-risk-forecasting system achieving 90%+ accuracies vs. govt. forecasts.

Experience

TensorFlow Model Developer

August 2023 - Present

Google ML X Purdue Duality Lab (Prof. James Davis, Purdue-ECE)

West Lafayette, IN

- Re-engineering the state-of-the-art MaskFormer computer-vision model to publish into Google's TensorFlow Model Garden for codebase re-use by users globally, alongside optimal pre-trained weights.
- Conducted experiments on GPUs & TPUs to ensure layer precision across the meta-architecture and implemented functions to ensure data consistency through the dataloader. Working on the evaluation module, including the implementation of panoptic inference metrics for accurate model assessment.

Data Science Intern

March 2023 - July 2023

Ambee (Climate Intelligence)

Bangalore, India

- Built a global <u>forest-fire forecasting system</u>, from prototype to production, that remains integrated into Ambee's proprietary **API** dashboard. Developed modularized components implemented within an end-to-end **AWS** lifecycle (Spark, Glue, S3) ensuring tri-monthly forecast generation, complimented by robust **ETL pipelines** (Docker).
- Co-authored a white paper outlining unique strategies targeting historical Fire Weather Index, enhancing a **Boosted** Multi-Target RF Regressor's performance to surpass government forecasts (NIFC & CWFIS) in risk classification.

Data Science Lead

December 2022 – April 2023

Lightning Wildfire Lab (Prof. Yuan Wang, Purdue-EAPS X NASA)

West Lafayette, IN

- Supervised codebase development for short-term wildfire forecasting; Responsible for bundling netCDF data on the basis of spatio-temporal features to package into LSTM, CNN and ConvLSTM deep learning models.
- Automated API requests for large scale fire data collection from USGS and Copernicus; Developed scripts using Xarray,
 GeoPandas and netCDF4 to process Landsat and GeoTIFF data from NASA/NOAA satellites.

Projects

Amazon OpenSearch Service

Jinja2, OpenSearchBenchmark, AWS EC2, Docker

- Reworked the workload generation process within the **official macrobenchmarking framework**, enabling custom features for user-defined workloads. **Defined** documentation for creating performance benchmarks on hosted indices.
- Enhanced extraction efficiency (upto 41.65%) by deploying **multi-process** capabilities for simultaneous data retrieval from clusters, ensuring optimal **throughput** and accelerated performance.

AutoRecruit - HackHarvard '23

 $Django,\ Modal,\ ElevenLabs,\ Deepgram,\ OpenCV2$

- Implemented a context-mapped knowledge graph (KG) using **NLP** to help an LLM dynamically generate interview questions and evaluate applicants while considering real-time context, simulating a human-centric interview experience.
- Fine-tuned an MLP for audio analysis and integrated **DeepFace** for emotion detection, deploying these through Modal. Integrated React and Django using WebSockets for real-time speech transcription with **Deepgram** & used **ElevenLabs** for streaming text responses.

genCollab - CalHacks '23

Flask, Discord, OpenAI, Redis

- Built genCollab to wrap around **Discord** for AI-assisted project collaboration, enabling automatic roadmap development and role-based task allocation, specifically for use within open-source servers to evolve community development.
- Engineered a end-to-end **RAG** pipeline on **Redis**-scraped data to ensure that Llama 2 generates code that's integratable into an evolving codebase; utilized a hierarchical memory system to enhance context gathering using tree-traversal.

Technical Skills

Languages: Python, C, Java, JavaScript, MATLAB, R, PostgreSQL

 $\textbf{Frameworks}: \ \text{TensorFlow}, \ \text{PyTorch}, \ \text{Keras}, \ \text{Xarray}, \ \text{Matplotlib}, \ \text{GeoPandas}, \ \text{OpenCV2}, \ \text{ONNX}, \ \text{Django}, \ \text{Node.js}$

Tools: Linux, Docker, DVC, MLFlow, ZenML, Azure OpenAI, Redis, Elasticsearch, DynamoDB, AutoCAD

Cloud Utilities: Google Cloud Console (Compute), Amazon Web Services (ECS, S3, Lambda, Glue, Spark, Athena)