

BE/BAT 485/585 Remote Sensing Data and Methods Lab - 1

Instructor: Kamel Didan^{1,2}

Helpers: Dr. Armando Barreto^{1,2}

Mr. Truman Combs^{1,2}

¹BE Dept., University of Arizona, ²VIP Lab.

Scalar

- A single quantity that has magnitude only
 - For example, $x \in R$ (real numbers) or $y \in N$ (Integer Numbers)
 - Example scalar quantities:
 - Length, Area, Speed, Volume, Temperature, Pressure, Energy, Work, Power, Entropy

Vector

- A vector quantity has both magnitude and direction
 - Example: Displacement, Acceleration, Momentum, Force, Elec. Field, Magnetic field.
- Also, an ordered/indexed list of numbers/scalars
 - For example, x ∈ Rⁿ
 - Points in space where each element is a coordinate on a different axis
- Example: Height or count along a hiking trail

- Matrix: 2D Array of numbers
 - For example $X \in \mathbb{R}^{m \times n}$

		axis 1		
		0	1	2
	0	0,0	0, 1	0, 2
axis 0	1	1,0	1,1	1, 2
	2	2,0	2,1	2,2

Ex: The value of a pixel in a B/W image (or color)

- Organized into Rows vs Columns (indices)
 - RxC, LxP, i x j, etc.
 - Helps address and navigate the content

- <u>Tensor</u>: Arrays of numbers arranged on a regular grid with variables number of axes
 - Tensors are data containers and are critical and basic building blocks of modern data science & machine learning
 - A higher-order tensor can be interpreted as a multiway array, [...]
 - A tensor can be thought of as a multi-index numerical array, [...]

Figure 2: A 3rd-order tensor $\underline{\mathbf{X}} \in \mathbb{R}^{I \times J \times K}$, with entries $x_{i,j,k} =$

But they are all Tensors at the end

- 0D, 1D, 2D, 3D, nD
- Containing scalars (sometimes other forms of data)

RS Data representation...become familiar with

Become familiar with

Become familiar with

2nd order pixel tensor features are concatenated along the third mode.

Programming with Python – Quick Intro

We will use Anaconda in this Course

- Get and install the latest version of Anaconda from
 - www.anaconda.com

- Follow instructions
- We will add libraries as needed
- It is advisable to set it only for yourself
- We will also use <u>Jupyter Lab</u>
 - Like Notebook but more integrated with the browser

Intro to Jupyter Notebook and JupyterLab

Jupyter Untitled15 (unsaved changes)

- Jupyter Notebook is a web application that allows you to create and share interactive documents containing live code, equations, visualizations, and narrative text, effectively creating rich and live interactive reports.
 - Jupyter Notebook offers several different building blocks for interactive computing: the notebook, file browser, text editor, terminal, outputs, etc.
- <u>JupyterLab</u> is an integrated rich "data science" UI (very similar to Notebook) but offers more.
 - It is a natural evolution of the classic notebook and provides a more flexible and powerful way of working with the same building blocks found in the notebook.
 - Jupyterlab is 'almost' the same as Jupyter notebook but more flexible, more powerful, has more tools, and more integrated with the browser

Python 3 O

Jupyterlab - View

Then there is Spyder and PyCharm IDEs

Which one to use

- We will use <u>JupyterLab</u> but feel free to use whatever suits you
 - And you may have to be on your own at times
 - You get the same functionality and more
- Standardize our Lab work/HW and makes it easier to grade, debug, and help
 - You will always turn in your notebook (*.ipynb)
 - And we will run and see the results
 - Learn to annotate and clean your work
 - Learn to create nice scientific reports

Exercise #1: Arrays and Data Access

- Arrays and datasets
 - Create a 2D array
 - Access a single pixel value
 - Retrieve a row of data
 - Retrieve a column of data

Note: Indexes are Zero-based, so first row or column is always zero

Homework:

- Change the code to extract a 'subset/group' of values
- Create a new 2D array that contains the values from row 2-4 and columns 3-6
- Print this new array to the screen

Instructions:

- Download from D2L files:
 - BE485 UofACampus.xlsx
 - BE485 Ex1.ipynb

Exercise #2: Arrays and Data Access

- Reading data and creating Images from an Excel Table
 - Read an Excel file
 - Access the data in the Excel sheet(s)
 - Display single band/channel Images (image are 2D arrays of scalars)
 - Display an RGB Image (combine the 3 bands). That is how images are created
- Homework:
 - Using code from **Ex1**, display a window/subset that represents 'Old Main' building as an RGB image
 - You will need to define/find the extent of Old_Main
 - You can guess by estimating the corners' locations, then fine-tune it

Instructions:

- Download from D2L files:
 - BE485_UofACampus.xlsx
 - viplab_lib.py [Library]
 - BE485_Ex2.ipynb

RGB Images

RGB Image Number of rows = 751 Number of columns = 1151

Rows

