Salary and Wages Prediction

How much should I pay as an employer for a specified occupation?

Salary and Wages Prediction

Example: Human Resources Manager

- Introduction
 - Problems and Data Description
- Methodology
- Results and Discussion
- Conclusion

IntroductionProblem and Data Description

A. The Problem:

Jay is an employer who has the business size around 500 employees, his business
focuses on semiconductor and electronic product manufacturing, his factories locate
in the non-metro area, however, he would like to establish an office in New York City as
the business grows. As an employer, Jay has two concerns about the recruitment of
Human Resources Manager(HRM), 1. Labor cost 2. Competitive salaries and wages.
Therefore, he'd like to know how much he should pay for this occupation, which is
reasonable and maybe competitive in the labor market.

B. Data

 The data of Occupational Employment Statistics Survey from US Bureau of Labor Statistics will be used, and the website: www.bls.gov/oes for reference

Methodology

- The tools include: Python, Pandas, Numpy, Matplotlib.
- The steps include:
 - 1. Wrangling Data
 - 2. Exploring Data
 - 3. Model Development
 - 4.Model Evaluation and Refinement

Methdology

1.Wrangling Data

- Before wrangling the data, we should take a glance at the field description each and understand the features of the datasets.
- Check datasets shape(the number of rows and columns), information (i.e , the data types , if null values exist, and how many null values in each feature)
- Deal with null values, convert data types and pick up features related to the target

	8	Field	Field Description	NaN
	9	area	U.S. (99), state FIPS code, Metropolitan Statistical Area (MSA) or New England City and Town Area (NECTA) code, or OES-specific nonmetropolitan area code	NaN
	10	area_title	Area name	NaN
	11	area_type	Area type: 1= U.S.; 2= State; 3= U.S. Territory; 4= Metropolitan Statistical Area (MSA) or New England City and Town Area (NECTA); 6= Nonmetropolitan Area	NaN
	12	naics	North American Industry Classification System (NAICS) code for the given industry	NaN
	13	naics_title	North American Industry Classification System (NAICS) title for the given industry	NaN
	14	i_group	Industry level. Indicates cross-industry or NAICS sector, 3-digit, 4-digit, 5-digit, or 6-digit industry. For industries that OES no longer publishes at the 4-digit NAICS level, the "4-digit" designation indicates the most detailed industry breakdown available: either a standard NAICS 3-digit industry or an OES-specific combination of 4-digit industries. Industries that OES has aggregated to the 3-digit NAICS level (for example, NAICS 327000) will appear twice, once with the "3-digit" and once with the "4-digit" designation.	NaN
	15	own_code	Ownership type: 1= Federal Government; 2= State Government; 3= Local Government; 123= Federal, State, and Local Government; 235=Private, State, and Local Government; 35 = Private and Local Government; 5= Private; 57=Private, Local Government Gambling Establishments (Sector 71), and Local Government Casino Hotels (Sector 72); 58= Private plus State and Local Government Hospitals; 59= Private and Postal Service; 1235= Federal, State, and Local Government and Private Sector	NaN
	16	occ_code	The 6-digit Standard Occupational Classification (SOC) code or OES-specific code for the occupation	NaN
	17	occ_title	SOC title or OES-specific title for the occupation	NaN

Methodology

Exploring Data

 As you can see, we get a record of 395,647 rows and 31 columns in the datasets, and in view of the specified occupation is general and the industry requirement is not so significant, so we pick up the features including: area_title, occ_title,tot_emp,emp_prse, and datasets associated with average hourly wage and average annual wage.

.70]:		area_title	occ_title	tot_emp	emp_prse	h_mean	a_mean	mean_prse	h_pct10	h_pct25	h_median
	0	U.S.	Management Occupations	8054120	0.2	58.88	122480	0.1	24.03	34.35	50.80
	1	U.S.	Business and Financial Operations Occupations	8183750	0.2	37.56	78130	0.2	18.76	25.06	33.57
	2	U.S.	Computer and Mathematical Occupations	4552880	0.4	45.08	93760	0.5	21.79	30.22	42.47
	3	U.S.	Architecture and Engineering Occupations	2592680	0.5	42.69	88800	0.3	21.77	29.28	39.15
	4	U.S.	Life, Physical, and Social Science Occupations	1288920	0.7	37.28	77540	0.4	17.62	23.73	32.77

Methodology

Exploring Data

- After analysing the job of HRM, concluding the skills required and the job duties performed, we weight the job roles she/he would play, Administration(10%), Compensation and Benefits(20%), Human Resource General(50%), Training and Development (20%)
- Combined with the location information(New York-Newark-Jersey City), we filter 4 series,
 - 1. ASM(Administrative Service Managers)
 - 2. CBM(Compensation and Benefits Managers)
 - 3. HRM(Human Resources Managers)
 - 4. TDM(Training and Development Managers)

ASM

171]:	tot_emp	25070.00
	emp_prse	1.80
	h_mean	67.69
	a_mean	140800.00
	mean_prse	0.90
	h_pct10	37.09
	h_pct25	48.35
	h_median	61.67
	h_pct75	79.07
	h_pct90	0.00
	a_pct10	77150.00
	a_pct25	100570.00
	a_median	128270.00
	a_pct75	164460.00
	a_pct90	0.00

Name: New York-Newark-Jersey City, NY-NJ-PA, dtype: float64

CBM

	+-+	1650 00
72]:	tot_emp	1650.00
	emp_prse	4.10
	h_mean	87.39
	a_mean	181770.00
	mean_prse	2.80
	h_pct10	52.10
	h_pct25	63.61
	h_median	78.74
	h_pct75	0.00
	h_pct90	0.00
	a_pct10	108370.00
	a_pct25	132320.00
	a_median	163780.00
	a_pct75	0.00
	a_pct90	0.00

Name: New York-Newark-Jersey City, NY-NJ-PA, dtype: float64

	HRM					
L73]:	tot_emp emp_prse	12020.00 2.40				
	h_mean	81.77				
	a_mean	170070.00				
	mean_prse					
	h_pct10	42.31				
	h_pct25	54.26				
	h_median	73.87				
	h_pct75	98.99				
	h_pct90	0.00				
	 a_pct10	88000.00				
	a_pct25	112870.00				
	a_median	153650.00				
	a_pct75	205900.00				
	a_pct90	0.00				
	Name: New	/ York-Newark-Jersey	City,	NY-NJ-PA,	dtype:	float64

#IDN-AULINULL OCC_LITTE]--NIDJ] igioupuy(aica_Litte /imcan(TDM 174]: tot_emp 3230.00 3.60 emp_prse 80.70 h_mean 167850.00 a_mean 1.20 mean_prse h_pct10 46.48 60.46 h_pct25 h_median 75.98 94.95 h_pct75 h_pct90 0.00 96690.00 a_pct10 125750.00 a_pct25 158050.00 a_median 197500.00 a_pct75 0.00 a_pct90

Name: New York-Newark-Jersey City, NY-NJ-PA, dtype: float64

Model Development

- Then, it's time to concatenate the four series (ASM, CBM, HRM, TDM), and give it a name Merged, as we mentioned the weights each role should take, so we create a list named Weighted to store the weights.
- Next, we create a column named Budgets to store the output of the model.
- Our model is the sum of the each feature multiplied by its weights.

```
#Merged=pd.concat([ASM,CBM,HRM,TDM],axis=1)
#Merged.columns=n
#Merged['Budgets']=np.zeros(Merged.shape[0])
Weighted=[0.1,0.2,0.5,0.2]
a=[]
for x1,x2,x3,x4 in zip(Merged.iloc[:,0],Merged.iloc[:,1],Merged.iloc[:,2],Merged.iloc[:,3]):
    y=x1*Weighted[0]+x2*Weighted[1]+x3*Weighted[2]+x4*Weighted[3]
    a.append(y)
Merged['Budgets']=a
Merged
```

[166]:

	Administrative Services and Facilities Managers	Compensation and Benefits Managers	Human Resources Managers	Training and Development Managers	Budgets
tot_emp	25070.00	1650.00	12020.00	3230.00	9493.000
emp_prse	1.80	4.10	2.40	3.60	2.920
h_mean	67.69	87.39	81.77	80.70	81.272
a_mean	140800.00	181770.00	170070.00	167850.00	169039.000
mean_prse	0.90	2.80	3.60	1.20	2.690
h_pct10	37.09	52.10	42.31	46.48	44.580
h_pct25	48.35	63.61	54.26	60.46	56.779
h_median	61.67	78.74	73.87	75.98	74.046
h_pct75	79.07	0.00	98.99	94.95	76.392
h_pct90	0.00	0.00	0.00	0.00	0.000
a_pct10	77150.00	108370.00	88000.00	96690.00	92727.000
a_pct25	100570.00	132320.00	112870.00	125750.00	118106.000
a_median	128270.00	163780.00	153650.00	158050.00	154018.000
a_pct75	164460.00	0.00	205900.00	197500.00	158896.000
a_pct90	0.00	0.00	0.00	0.00	0.000

Model Evaluation and Refinement

• Due to the model we build is for predicting the salary and wage for a specified occupation, and it's customised by cases, so we don't have uniformed data to evaluate and refine the model because the characteristics of each candidate is distinctive and unique. Therefore, this essential step is skipped for the model.

Results and Discussion

• Now we can refer to the budgets for HRM, the mean of the hourly wage and the annual wage is \$81.27 and \$169,039 respectively, the median of the hourly wage and the annual wage is \$74.046 and \$154,018 respectively, also we can refer to the percentile of 10th, 25th, 50th, 75th when an employer considers how much reasonably should be paid. However, we can see the 90th is 0 ,which means that's no data available to predict it. Besides salaries and wages prediction, benefits we should also take into account when design the remuneration packages, benefits mainly covers: Insurance, holidays, vacations, retirement plan and savings, leave plans, and legally required benefits. As for insurance, especially health insurance which mainly include medical care, vision care, dental care, outpatient prescription drugs. In a word, we should keep an eye on the various factors that affect compensation and benefits, take care of the balance between the labor costs and remuneration packages.

- From the data analysis above and the diagram shows, we can conclude the points below for reference:
 - 1.The estimated average hourly wage for HRM in New York-Newark-Jersey. City, USA is \$81.27 and the median is \$74.05
 - 2.The estimated average annually wage for HRM in New York-Newark-Jersey City, USA is \$169,039 and the median is \$154,018.

<function matplotlib.pyplot.show(*args, **kw)>

<function matplotlib.pyplot.show(*args, **kw)>

