Ćwiczenie 51. Współczynnik załamania światła dla ciał stałych

Cel ćwiczenia

Wyznaczenie współczynnika załamania światła dla ciał stałych metodą pomiaru grubości pozornej płytki za pomocą mikroskopu.

Wprowadzenie

Gdy wiązka światła przechodzi przez dwa ośrodki o różnych własnościach optycznych, to na powierzchni granicznej częściowo zostaje odbita, częściowo zaś przechodzi do drugiego środowiska, ulegając załamaniu.

Prawo załamania

$$\frac{\sin\theta_1}{\sin\theta_2} = n. \tag{1}$$

zostało sformułowane przez Snelliusa w XVII wieku. Wielkość *n* jest stałą, zwaną współczynnikiem załamania ośrodka 2 względem ośrodka 1. Współczynnik załamania zależy od długości fali światła padającego. Z tego względu załamanie może być wykorzystane do rozłożenia wiązki światła na składowe o różnych długościach fali (barwach).

Prawa odbicia i załamania są słuszne dla całego widma fal elektromagnetycznych. Można je wyprowadzić z równań Maxwella. Z zasady Huygensa wynika, że współczynnik załamania n jest stosunkiem prędkości światła w każdym z ośrodków

$$n = \frac{\mathbf{v}_2}{\mathbf{v}_1} \,. \tag{2}$$

Wskutek załamania światła odległości przedmiotów umieszczonych w środowisku optycznie gęstszym obserwowane z powietrza wydają się mniejsze. Szyba sprawia wrażenie cieńszej, niż jest w rzeczywistości, przedmioty w wodzie wydają się bliższe powierzchni itd. Aby to wyjaśnić, wystarczy prześledzić bieg promieni wychodzących z punktu O położonego na dolnej powierzchni płytki płaskorównoległej (rys. 1).

Rys. 1. Powstanie pozornego obrazu O₁ punktu O leżącego na dolnej powierzchni płytki płaskorównoległej

Promień OA prostopadły do powierzchni granicznej wychodzi bez załamania, natomiast OB tworzy z prostopadłą wewnątrz szkła kąt β , a w powietrzu kąt α , większy od β wskutek załamania. Obserwowane promienie wychodzące z płytki są rozbieżne, ich przedłużenia przecinają się w punkcie O_1 tworząc obraz pozorny. Odległość O_1A równa h stanowi pozorną grubość płytki, podczas gdy AO = d jest grubością rzeczywistą.

W naszym eksperymencie patrzymy na płytkę przez mikroskop prawie prostopadle do powierzchni płytki. Obydwa kąty α i β są w rzeczywistości małe. Dla małych kątów zachodzi

$$\frac{\sin \alpha}{\sin \beta} \approx \frac{\alpha}{\beta} \approx \frac{\operatorname{tg} \alpha}{\operatorname{tg} \beta}.$$
 (3)

Z zależności trygonometrycznych dla trójkątów ABO oraz ABO' otrzymujemy

$$\frac{\operatorname{tg} \alpha}{\operatorname{tg} \beta} = \frac{\frac{AB}{h}}{\frac{AB}{d}} = \frac{d}{h} = n. \tag{4}$$

Stąd wynika sposób eksperymentalnego wyznaczenia *n*. Pozorną grubość płytki *h* wyznaczamy mierząc przesunięcie tubusa mikroskopu między położeniami ostrego widzenia kresek umieszczonych na obu powierzchniach płytki. Współczynnik załamania jest stosunkiem rzeczywistej i pozornej grubości płytki.

W obranej metodzie wyznaczania współczynnika załamania światła jest wykorzystywana właściwość mikroskopu, polegająca na tym, że posiada on wąski przedział głębi ostrości i znaczne powiększenie. Przesunięcie związane z nastawieniem ostrości na górną i dolną powierzchnię płytki mierzy czujnik zegarowy sprzężony z mechanizmem przesuwu tubusa mikroskopu. Dzięki temu można łatwo i dokładnie zmierzyć grubość pozorną h.

Schemat budowy mikroskopu i zasadę powstawania obrazu przedstawiono na rysunku 2. Elementami, dla których mierzymy *n*, są płytki płaskorównoległe ze szkła, pleksiglasu etc.

Rys. 2. Schemat mikroskopu: **Ob** – obiektyw, **Ok** – okular.