

SEQUENCE LISTING

<110> Caimi, Perry G.
Famodu, Omolayo O.
Lee, Jiang-Ming
Miao, Guo-Hua
Maxwell, Carl A.

<120> Disease Resistance Factors

<130> BB-1356

<140> 10/009,791
<141>

<150> 60/133,041
<151> 1999-05-07

<160> 38

<170> Microsoft Office 97

<210> 1
<211> 701
<212> DNA
<213> Zea mays

<220>
<221> unsure
<222> (389)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (457)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (531)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (591)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (637)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (658)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (693)

<223> n = A, T, C, or G

<220>

<221> unsure

<222> (699)..(700)

<223> n = A, T, C, or G

<400> 1

gcggacgcgt gggctggaaa cactttcct ggaagaaagc acaattgatg agaaagaaaa 60
tcatgatggg atccgtgagc ttgctacgag caattctgtt cttgagacac tgaatttctt 120
tctaacaatgat ctcaggcat ccccagagta tcttaccctc cttgtgcgc actgtcaacg 180
attgaaaact ctgaagatta gtgaatgtt catgcccgtat ctggtagtt tggtccgaaac 240
tgcacacaaca ctacaagagt tcgctgggtt ttcccttgaa gagcagggtc aacctgtggc 300
aagttagaaat tatgagaact actatttcc tccttactg caccgcttga gtttgcctta 360
catggaaaca aatgatatgc aaatactgnt tccatatgct actgcactta agaagttaga 420
ccttcagttt acattccctt ccacagagga tcattgnac atagttcaac gctgctccaa 480
tctggaaacc ttagaggtga gggatgtcat aggggatcgg ggactacaag ntggtgacaca 540
gacctgcagaag aaattgcata ggctcagagt agagagagga gatgatgatc nagaggtctt 600
gaggatgaac caaggttagga atttcacagg gtgggntga tgggtatagg cccaaggntg 660
gccttgggtt gacatactgg gccgataccca tgnattagnn c 701

<210> 2

<211> 194

<212> PRT

<213> Zea mays

<220>

<221> UNSURE

<222> (128)

<223> Xaa = any amino acid

<220>

<221> UNSURE

<222> (150)

<223> Xaa = any amino acid

<220>

<221> UNSURE

<222> (175)

<223> Xaa = any amino acid

<400> 2

Arg Gly Leu Glu Thr Leu Phe Leu Glu Glu Ser Thr Ile Asp Glu Lys
1 5 10 15

Glu Asn Asp Glu Trp Ile Arg Glu Leu Ala Thr Ser Asn Ser Val Leu
20 25 30

Glu Thr Leu Asn Phe Phe Leu Thr Asp Leu Arg Ala Ser Pro Glu Tyr
35 40 45

Leu Thr Leu Leu Val Arg Asn Cys Gln Arg Leu Lys Thr Leu Lys Ile
50 55 60

Ser Glu Cys Phe Met Pro Asp Leu Val Ser Leu Phe Arg Thr Ala Gln
65 70 75 80

Thr Leu Gln Glu Phe Ala Gly Ser Phe Glu Glu Gln Gly Gln Pro
85 90 95

Val Ala Ser Arg Asn Tyr Glu Asn Tyr Tyr Phe Pro Pro Ser Leu His
100 105 110

Arg Leu Ser Leu Leu Tyr Met Gly Thr Asn Asp Met Gln Ile Leu Xaa
115 120 125

Pro Tyr Ala Thr Ala Leu Lys Lys Leu Asp Leu Gln Phe Thr Phe Leu
130 135 140

Ser Thr Glu Asp His Xaa Gln Ile Val Gln Arg Cys Ser Asn Leu Glu
145 150 155 160

Thr Leu Glu Val Arg Asp Val Ile Gly Asp Arg Gly Leu Gln Xaa Gly
165 170 175

Ala Gln Thr Cys Lys Lys Leu His Arg Leu Arg Val Glu Arg Gly Asp
180 185 190

Asp Asp

<210> 3

<211> 844

<212> DNA

<213> Oryza sativa

<220>

<221> unsure

<222> (352)

<223> n = A, T, C, or G

<220>

<221> unsure

<222> (823)

<223> n = A, T, C, or G

<400> 3

atcactccaa cttaactgtt cttgcggta ggaatgtat tggagataga ggatttaggg 60
ttgttgacaga cacatgcaag aagctacaaa gactcagagt tgagcgagga gatgtatgtc 120
caggtttgc aagaagaacaa ggaggaggct ctcagtcgg gttgacaact gtagccgtag 180
gatgccgtga actggaatac atagctgcct atgtgtctga tatcacaaat gggggccctgg 240
agtctattgg gactttctgc aaaaatctt gcgacttccg tcttgcctc ctcgataagag 300
aagagaggat aacagatttgc cccttagaca atgggtgtccg tgcactgctg angggctgca 360
cgaaacttcg gaggttgct ctataacttga gaccaggggg actttcagat acaggcccttg 420
gctatattgg acagttacagt ggaattatcc aatacatgtc tctggtaat gttggggaaa 480
cagatgtatgg tctgatccgg tttgcattgg ggtgtgagaa cctgcggaaag cttgagctaa 540
ggagtttgtt cttcagtgtg caagctttag cccgcgttat acggaggatg cttccctga 600
gatacgtgtg ggtacaggcc tacaaggctt ctaagactgg tcacatctc atgctcatgg 660
caggcccttc tgaacatacg agtttacacc tcccagaaga ctggtcacga tctcatgctc 720
atggcaggcc ctcttggaaac atagagtttac cacttccacg ttctgagaat gcaaatcgaa 780
tgagagaaga tggtaaacct tggtaatat caactcagat acnctgcggaa cgtaatacgaa 840
tagg 844

<210> 4

<211> 236

<212> PRT

<213> Oryza sativa

<220>

<221> UNSURE

<222> (115)

<223> Xaa = any amino acid

<400> 4

Asn Leu Leu Val Leu Ala Val Arg Asn Val Ile Gly Asp Arg Gly Leu
1 5 10 15

Gly Val Val Ala Asp Thr Cys Lys Lys Leu Gln Arg Leu Arg Val Glu
20 25 30

Arg Gly Asp Asp Asp Pro Gly Leu Gln Glu Glu Gln Gly Gly Val Ser
35 40 45

Gln Val Gly Leu Thr Thr Val Ala Val Gly Cys Arg Glu Leu Glu Tyr
50 55 60

Ile Ala Ala Tyr Val Ser Asp Ile Thr Asn Gly Ala Leu Glu Ser Ile
65 70 75 80

Gly Thr Phe Cys Lys Asn Leu Cys Asp Phe Arg Leu Val Leu Leu Asp
85 90 95

Arg Glu Glu Arg Ile Thr Asp Leu Pro Leu Asp Asn Gly Val Arg Ala
100 105 110

Leu Leu Xaa Gly Cys Thr Lys Leu Arg Arg Phe Ala Leu Tyr Leu Arg
115 120 125

Pro Gly Gly Leu Ser Asp Thr Gly Leu Gly Tyr Ile Gly Gln Tyr Ser
130 135 140

Gly Ile Ile Gln Tyr Met Leu Leu Gly Asn Val Gly Glu Thr Asp Asp
145 150 155 160

Gly Leu Ile Arg Phe Ala Leu Gly Cys Glu Asn Leu Arg Lys Leu Glu
165 170 175

Leu Arg Ser Cys Cys Phe Ser Glu Gln Ala Leu Ala Arg Ala Ile Arg
180 185 190

Ser Met Pro Ser Leu Arg Tyr Val Trp Val Gln Gly Tyr Lys Ala Ser
195 200 205

Lys Thr Gly His Asp Leu Met Leu Met Ala Arg Pro Phe Trp Asn Ile
210 215 220

Glu Phe Thr Pro Pro Arg Arg Leu Val Thr Ile Ser
225 230 235

<210> 5

<211> 482

<212> DNA

<213> Glycine max

<400> 5

gcggaagaca cgtgtggtcg acgtggcct cgactgcgtc atcccttaca tcgacgaccc 60
caaggaccgc gacgccgttt cccaggtgtg tcgacgctgg tacgagctcg actcgctcac 120
ccgcaagcac gtcaccatcg cgctctgcta caccaccacc ccggctcgcc tccgcccgg 180
cttccgcac ctgcagtcgc tcaagctcaa gggcaagccc cgagccgcaa tggtaactt 240
gatacccgag gattggggcg gacacgtcac tccctgggtc aaagagattt ctcaagtact 300

tcgattgcct caagagcctc cacttccgcc gcatgattgt caaggattc cgatcttcag 360
aatctcgctc gtgaccgcgg tcacgtgctt cacgctctca aagcttgaca agtgctccgg 420
tttcaacaac gatggtcctt tccatatcgg gtcgctttg caaagaagtt taagagtccct 480
gt 482

<210> 6
<211> 108
<212> PRT
<213> Glycine max

<220>
<221> UNSURE
<222> (97)
<223> Xaa = any amino acid

<400> 6
Val Asp Val Val Leu Asp Cys Val Ile Pro Tyr Ile Asp Asp Pro Lys
1 5 10 15

Asp Arg Asp Ala Val Ser Gln Val Cys Arg Arg Trp Tyr Glu Leu Asp
20 25 30

Ser Leu Thr Arg Lys His Val Thr Ile Ala Leu Cys Tyr Thr Thr Thr
35 40 45

Pro Ala Arg Leu Arg Arg Arg Phe Pro His Leu Glu Ser Leu Lys Leu
50 55 60

Lys Gly Lys Pro Arg Ala Ala Met Phe Asn Leu Ile Pro Glu Asp Trp
65 70 75 80

Gly Gly His Val Thr Pro Trp Val Lys Glu Ile Ser Gln Val Leu Arg
85 90 95

Xaa Leu Lys Ser Leu His Phe Arg Arg Met Ile Val
100 105

<210> 7
<211> 794
<212> DNA
<213> Triticum aestivum

<220>
<221> unsure
<222> (270)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (356)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (675)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (689)

<223> n = A, T, C, or G

<220>
<221> unsure
<222> (702)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (729)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (743)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (752)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (761)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (769)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (777)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (783)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (785)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (790)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (793)
<223> n = A, T, C, or G

<400> 7
gtaggattga tggctgttagc tgaaggctgt cctgatttg agtactggc agtacatgtg 60
tctgacatta caaatgcagc tcttgaggct attggcgcat tcagcaaaaa cctgaacgat 120

ttccgacttg tcctgcttga tagagaggtg catataactg aactgcccct tgacaacggg 180
gttcgggctt tgctgagagg ttgcacaaa ctccggaggt ttgcattta tgtgagacct 240
ggagctctat cagatattgg ccttcttan gttggcgaa ttttagcaaga ccgtccgcta 300
catgttgctt gggaatgccg gggggcttga tggactg ctggcatttg cacgangatg 360
cccaagctt cagaaattgg agctaaggag ttgctgctt agtgaacgtg cattggcagt 420
tgcagcctta cagctgaagt cactcagata tctttgggtt caggataaca aggcatctcc 480
tactggcacc gatctcatgg caatggtacg ccccttctgg aacattgagt ttattgcacc 540
aaatcaagat gagccttgcc cagagggtca ggacagattt ggcatactac tctctgggtt 600
ggaaggcaga ttgtcctagt cagattccc tccatcgtag tggagctaa aagaccacca 660
ccagttact gacancatgt tggatcgagna accacatcg anaggaattt actacagttc 720
aattaggnt gaagctcagt aangaccatc tnatgcttga nttagggana tttgggnact 780
gtnantgcan agna 794

<210> 8
<211> 177
<212> PRT
<213> Triticum aestivum

<220>
<221> UNSURE
<222> (89)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (118)
<223> Xaa = any amino acid

<400> 8
Gly Leu Met Ala Val Ala Glu Gly Cys Pro Asp Leu Glu Tyr Trp Ala
1 5 10 15

Val His Val Ser Asp Ile Thr Asn Ala Ala Leu Glu Ala Ile Gly Ala
20 25 30

Phe Ser Lys Asn Leu Asn Asp Phe Arg Leu Val Leu Leu Asp Arg Glu
35 40 45

Val His Ile Thr Glu Leu Pro Leu Asp Asn Gly Val Arg Ala Leu Leu
50 55 60

Arg Gly Cys Thr Lys Leu Arg Arg Phe Ala Phe Tyr Val Arg Pro Gly
65 70 75 80

Ala Leu Ser Asp Leu Ala Phe Leu Xaa Leu Gly Glu Phe Ser Lys Thr
85 90 95

Val Arg Tyr Met Leu Leu Gly Asn Ala Gly Gly Ser Asp Asp Gly Leu
100 105 110

Leu Ala Phe Ala Arg Xaa Cys Pro Ser Leu Gln Lys Leu Glu Leu Arg
115 120 125

Ser Cys Cys Phe Ser Glu Arg Ala Leu Ala Val Ala Leu Gln Leu
130 135 140

Lys Ser Leu Arg Tyr Leu Trp Val Gln Gly Tyr Lys Ala Ser Pro Thr
145 150 155 160

Gly Thr Asp Leu Met Ala Met Val Arg Pro Phe Trp Asn Ile Glu Phe
165 170 175

Ile

<210> 9
<211> 426
<212> DNA
<213> Oryza sativa

<220>
<221> unsure
<222> (270)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (380)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (393)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (396)..(397)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (408)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (413)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (418)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (423)
<223> n = A, T, C, or G

<400> 9
gctgtgaggt cggccgaaggc gtgcgcgatc aagttccccca ccctcgatc gcaaggctg 60
ctcttcgtgt ggcccgacga gaatgggtgg gagaaggcca cggctaccaa gcctccgatg 120
ttaccgaaagg agtttgagga tcctgcgttc tccacggta ccatccagag ggatctgtac 180
tatggctatg atacattgtat ggagaacgtc tctgatccgt cgcatataga atttgctcac 240
cacaaggcgtca ctgggtcgaa gagatcgaan caagccttt gccaattcaa gaatggaaat 300
caaagtgggt gcaatggggg ataattcaag gggtaaaatt tctggaaaa ccctccgcat 360
caagtggcaa ctttttggtn ggcccccttg ccnatnnncac ttgaaacnaa aanttggngaa 420
atnaga 426

<210> 10
<211> 107
<212> PRT
<213> Oryza sativa

<220>
<221> UNSURE
<222> (90)
<223> Xaa = any amino acid

<400> 10
Ala Val Arg Ser Pro Lys Ala Cys Ala Ile Lys Phe Pro Thr Leu Val
1 5 10 15

Ser Gln Gly Leu Leu Phe Val Trp Pro Asp Glu Asn Gly Trp Glu Lys
20 25 30

Ala Thr Ala Thr Lys Pro Pro Met Leu Pro Lys Glu Phe Glu Asp Pro
35 40 45

Ala Phe Ser Thr Val Thr Ile Gln Arg Asp Leu Tyr Tyr Gly Tyr Asp
50 55 60

Thr Leu Met Glu Asn Val Ser Asp Pro Ser His Ile Glu Phe Ala His
65 70 75 80

His Lys Val Thr Gly Ser Lys Arg Ser Xaa Gln Ala Phe Cys Gln Phe
85 90 95

Lys Asn Gly Asn Gln Ser Trp Cys Asn Gly Gly
100 105

<210> 11
<211> 465
<212> DNA
<213> Glycine max

<220>
<221> unsure
<222> (460)
<223> n = A, T, C, or G

<400> 11
aaaccattga tggcgctccc tcactccatc tctgccttag ccaccacact cacactctcc 60
tccccataa ccaaacccca taaagttAAC ccctttccct ttccctcgaa ccgaaattca 120
caatTTTAA cgaaacAAAC ggcgaccaga agcagaAGAA acctctccct aaccCCTGCA 180
cgcgttgcgg cggcacCCtc aacgggtgaa gcccgtatcgat tataccAGA ggccgaaaAT 240
aacgaaACTG aggaAGAGTT tagcGACGAG agctttccct ctaaattcAC ttggaggGAT 300
cactggTACC ctgtctcgTT aattGAAGAT ctGAACCCTC tcttgcccAC accgtttcAG 360
cttctgggtc gtGAAATCGT gctctggTAC gacaAGTCCA tttcccaATG ggTTgCTTT 420
gatgacAAAT gccccatcg tcttgcccCT ttatctGAAN ggagg 465

<210> 12
<211> 66
<212> PRT
<213> Glycine max

<220>
<221> UNSURE

<222> (65)
<223> Xaa = any amino acid

<400> 12
Glu Ser Ser Ser Ser Lys Phe Thr Trp Arg Asp His Trp Tyr Pro Val
1 5 10 15
Ser Leu Ile Glu Asp Leu Asn Pro Leu Leu Pro Thr Pro Phe Gln Leu
20 25 30
Leu Gly Arg Glu Ile Val Leu Trp Tyr Asp Lys Ser Ile Ser Gln Trp
35 40 45
Val Ala Phe Asp Asp Lys Cys Pro His Arg Leu Ala Pro Leu Ser Glu
50 55 60

Xaa Arg
65

<210> 13
<211> 558
<212> DNA
<213> Triticum aestivum

<220>
<221> unsure
<222> (207)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (216)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (249)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (254)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (269)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (294)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (310)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (330)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (335)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (339)..(340)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (365)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (386)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (404)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (406)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (445)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (451)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (462)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (470)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (475)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (483)..(484)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (490)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (496)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (498)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (511)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (514)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (520)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (522)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (528)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (533)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (545)
<223> n = A, T, C, or G

<400> 13
ccagggcctg ctttcgat ggcctgacga gaatggatgg gacaaggcca aggccaccaa 60
gcctccaaatg ctgccgaagg agttcgatga cccggccttc tccaccgtga cgatccagag 120
ggacctttc tatgggtatg acacgttcat ggagaacgtc tctgatccct cgcatataga 180
atttgctcac cacaaggta cttggacnaag agatanagcc aagcctttgc catttaaat 240

ggaatcaant ggcnccatggg gatattcang ggcaaataacc ggcaatcctc gcancactgc 300
aactttcgan gccccttggc tatgcactgn aacanaatnn agattgacac caaattaacc 360
gattntggga gatcacaaat gggtcntatg gatttgctcc ttcnanattc caaaggccca 420
agaaaaatcg ttctattgtc cgtantgctc naaactttc antttaaatn ccacnaagga 480
tgnngaattn tccccnangt tacaacattt gncatgangc aantatctct 540
tcagnacacaa agtccgt 558

<210> 14
<211> 105
<212> PRT
<213> Triticum aestivum

<220>
<221> UNSURE
<222> (69)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (72)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (83)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (85)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (90)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (98)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (103)
<223> Xaa = any amino acid

<400> 14
Gln Gly Leu Leu Phe Val Trp Pro Asp Glu Asn Gly Trp Asp Lys Ala
1 5 10 15

Lys Ala Thr Lys Pro Pro Met Leu Pro Lys Glu Phe Asp Asp Pro Ala
20 25 30

Phe Ser Thr Val Thr Ile Gln Arg Asp Leu Phe Tyr Gly Tyr Asp Thr
35 40 45

Leu Met Glu Asn Val Ser Asp Pro Ser His Ile Glu Phe Ala His His
50 55 60

Lys Val Thr Gly Xaa Arg Asp Xaa Ala Lys Pro Leu Pro Phe Lys Met
65 70 75 80

Glu Ser Xaa Gly Xaa Trp Gly Tyr Ser Xaa Ala Asn Thr Gly Asn Pro
85 90 95

Arg Xaa Thr Ala Thr Phe Xaa Ala Pro
100 105

<210> 15
<211> 562
<212> DNA
<213> Zea mays

<220>
<221> unsure
<222> (136)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (562)
<223> n = A, T, C, or G

<400> 15
cgccgtgctc gtccgcgcgc gcccacatg ctacaggtgc tcaagctcga caagtgcctcc 60
ggcttctcaa cggacgcctt ccgcctcgctc gcccgtcct gcagatctct gagaactttg 120
ttcctggaaat aatgtntaat tgccgatgaa gggagcgaat ggctccatga actcgccgtc 180
aacaattctg ttctggtgac actgaacttc tacatgacag aactcaaagt ggagcctgccc 240
gatctggagc ttcttgcaag gaactgtaaa tcattgatt ctctgaagat gagtgactgc 300
gatctttcggtt atttgatggttttctccaaa cctccaaggc actgcaagaa ttgcgtggag 360
gcccgtttttt cgaaatcgga gactacacca agtacgaaaa ggtcaagctc ccacctaagc 420
tatgcttctt ggggggtctt accttcatgg gtaaaaacga gatgcccgtt aatctttccg 480
tattctgcgt tcgcttaaga aactggacact gcagtgactt ttccctcacc actgaagatc 540
actgtcagct taatcgctaa an 562

<210> 16
<211> 186
<212> PRT
<213> Zea mays

<220>
<221> UNSURE
<222> (46)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (111)
<223> Xaa = any amino acid

<400> 16
Arg Arg Ala Arg Pro Arg Ala Arg His Met Leu Gln Val Leu Lys Leu
1 5 10 15

Asp Lys Cys Ser Gly Phe Ser Thr Asp Ala Leu Arg Leu Val Ala Arg
20 25 30

Ser Cys Arg Ser Leu Arg Thr Leu Phe Leu Glu Glu Cys Xaa Ile Ala
35 40 45

Asp Glu Gly Ser Glu Trp Leu His Glu Leu Ala Val Asn Asn Ser Val
50 55 60

Leu Val Thr Leu Asn Phe Tyr Met Thr Glu Leu Lys Val Glu Pro Ala
65 70 75 80

Asp Leu Glu Leu Leu Ala Arg Asn Cys Lys Ser Leu Ile Ser Leu Lys
85 90 95

Met Ser Asp Cys Asp Leu Ser Asp Leu Met Val Phe Ser Lys Xaa Ser
 100 105 , 110

Lys Ala Leu Gln Glu Phe Ala Gly Gly Ala Phe Phe Glu Ile Gly Glu
115 120 125

Tyr Thr Lys Tyr Glu Lys Val Lys Leu Pro Pro Lys Leu Cys Phe Leu
130 135 140

Gly Gly Leu Thr Phe Met Gly Lys Asn Glu Met Pro Val Asn Leu Ser
 145 150 155 160

Val Phe Cys Val Arg Leu Arg Asn Trp Thr Cys Ser Thr Leu Ser Leu
 165 170 175

Thr Thr Glu Asp His Cys Gln Leu Asn Arg
180 185

<210> 17
<211> 1728
<212> DNA
<213> Zea may

<400> 17						
ccacgcgtcc	gcccacgcgt	ggctggaaa	cactttcct	ggaagaaagc	acaattgtat	60
agaaaagaaaa	tgtatgttgg	atccgtgagc	ttgctacgag	caattctgtt	tttgagacac	120
tgaatttctt	tctaacagat	ctcaggcat	ccccagagta	tcttaccctc	tttgtgcgca	180
actgtcaacg	attgaaaact	ctgaagatta	gtgaatgtt	catgcccgt	ctggtcgtt	240
tgttccgaac	tgcacaaaaca	ctacaagagt	tcgctggtgg	ttcccttggaa	gagcagggtc	300
aacctgtggc	aagttagaaat	tatgagaact	actatttcc	tccttcactg	caccgcttga	360
gtttgtctta	catgggaaca	aatgatatgc	aaatactgtt	tccatatgtc	actgcactta	420
agaagttaga	ccttcagttt	acattccctt	ccacagagga	tcattgtcg	atagttcaac	480
gctgctccaa	tctggaaacc	ttagaggta	gggatgtcat	agggatcg	ggactacaag	540
tttgtgcaca	gacctgtcaag	aaattgcata	ggctcagagt	agagagagga	gatgtatgtc	600
aaggaggtct	tgaggatgaa	caaggtagga	tttcacaggt	ggggttgtatg	gctatagccc	660
aaggctgccc	tgagttgaca	tactggcga	tacatgtatc	agacattaca	aatgcagctt	720
tagaggcagt	tggtacatgc	agcaaaaatc	ttaatgactt	ccgccttgc	ctccttgata	780
gagaagcaca	tataaccgaa	ttgccactgg	acaatgggt	tcgtgttttgc	cttagaggtt	840
gcaccaaact	acggagggtt	gcattttatg	tgagacctgg	ggcccttatct	gatgttggtc	900
ttggctatgt	tggagaattt	agtaagagta	ttcggttat	ttgtcttgg	aatgttggtg	960
aatctgataa	tggaatcata	caatttatcaa	aaggctgccc	aagcttgcaa	aaactggagg	1020
tgaggggttg	tctctttagt	gagcatgtt	tagcttggc	tgcaactacag	cttaagtac	1080
tgaggtatct	gtgggtacaa	ggattcaggt	catctccaac	tggaaactgtat	attatggcaa	1140
tggtacgccc	cttctggAAC	attgagtata	ttgttccaga	tcaagatgaa	ccttgcggcag	1200
agcataagag	acagattctg	gcataactact	ccctgtcgg	caggaggaca	gattgtcctc	1260
catcagtaac	tctgtttac	ccggcatttt	gagtgttagat	acttgcttt	tgccagactg	1320
aatctcatgg	tactaagttc	cattggtccc	actatctgt	aagtaaatgg	tccctgttct	1380
tccaattgtat	gaggacatgc	agacgttcca	gtgcaaagaa	ccccaaaggt	aagctttaag	1440
caggacggcc	agctctgaac	tgaggcttagc	tgagaacaat	catgaataacc	tgaaggcagc	1500
acttatgtca	gcttggccta	gctgtccagt	atggcatgt	aagcttacc	atctttgtt	1560

gttttggaga aacaattttg caataactac ccttggttag tgtatattat cgatttcgt 1620
tcatatgctg ttgtattgtt gtattgaaca attatgtcaa ttaat tagtc tacactctac 1680
agtctaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaag 1728

<210> 18
<211> 429
<212> PRT
<213> Zea mays

<400> 18
Thr Arg Pro Arg Thr Arg Gly Leu Glu Thr Leu Phe Leu Glu Glu Ser
1 5 10 15

Thr Ile Asp Glu Lys Glu Asn Asp Glu Trp Ile Arg Glu Leu Ala Thr
20 25 30

Ser Asn Ser Val Leu Glu Thr Leu Asn Phe Phe Leu Thr Asp Leu Arg
35 40 45

Ala Ser Pro Glu Tyr Leu Thr Leu Leu Val Arg Asn Cys Gln Arg Leu
50 55 60

Lys Thr Leu Lys Ile Ser Glu Cys Phe Met Pro Asp Leu Val Ser Leu
65 70 75 80

Phe Arg Thr Ala Gln Thr Leu Gln Glu Phe Ala Gly Gly Ser Phe Glu
85 90 95

Glu Gln Gly Gln Pro Val Ala Ser Arg Asn Tyr Glu Asn Tyr Tyr Phe
100 105 110

Pro Pro Ser Leu His Arg Leu Ser Leu Leu Tyr Met Gly Thr Asn Asp
115 120 125

Met Gln Ile Leu Phe Pro Tyr Ala Thr Ala Leu Lys Lys Leu Asp Leu
130 135 140

Gln Phe Thr Phe Leu Ser Thr Glu Asp His Cys Gln Ile Val Gln Arg
145 150 155 160

Cys Ser Asn Leu Glu Thr Leu Glu Val Arg Asp Val Ile Gly Asp Arg
165 170 175

Gly Leu Gln Val Val Ala Gln Thr Cys Lys Lys Leu His Arg Leu Arg
180 185 190

Val Glu Arg Gly Asp Asp Gln Gly Gly Leu Glu Asp Glu Gln Gly
195 200 205

Arg Ile Ser Gln Val Gly Leu Met Ala Ile Ala Gln Gly Cys Pro Glu
210 215 220

Leu Thr Tyr Trp Ala Ile His Val Ser Asp Ile Thr Asn Ala Ala Leu
225 230 235 240

Glu Ala Val Gly Thr Cys Ser Lys Asn Leu Asn Asp Phe Arg Leu Val
245 250 255

Leu Leu Asp Arg Glu Ala His Ile Thr Glu Leu Pro Leu Asp Asn Gly
260 265 270

Val Arg Ala Leu Leu Arg Gly Cys Thr Lys Leu Arg Arg Phe Ala Phe
275 280 285

Tyr Val Arg Pro Gly Ala Leu Ser Asp Val Gly Leu Gly Tyr Val Gly
290 295 300

Glu Phe Ser Lys Ser Ile Arg Tyr Met Leu Leu Gly Asn Val Gly Glu
305 310 315 320

Ser Asp Asn Gly Ile Ile Gln Leu Ser Lys Gly Cys Pro Ser Leu Gln
325 330 335

Lys Leu Glu Val Arg Gly Cys Leu Phe Ser Glu His Ala Leu Ala Leu
340 345 350

Ala Ala Leu Gln Leu Lys Ser Leu Arg Tyr Leu Trp Val Gln Gly Phe
355 360 365

Arg Ser Ser Pro Thr Gly Thr Asp Ile Met Ala Met Val Arg Pro Phe
370 375 380

Trp Asn Ile Glu Tyr Ile Val Pro Asp Gln Asp Glu Pro Cys Pro Glu
385 390 395 400

His Lys Arg Gln Ile Leu Ala Tyr Tyr Ser Leu Ala Gly Arg Arg Thr
405 410 415

Asp Cys Pro Pro Ser Val Thr Leu Leu Tyr Pro Ala Phe
420 425

<210> 19

<211> 2240

<212> DNA

<213> Oryza sativa

<400> 19

ccccgggct gcaggaattc ggcacgagct ctcccttctc ctcctttca ccaccaccac 60
caccaccagc agcagcagag agcaccatct ccatccaata atccccatgc ttgcgcacca 120
ctccggcca catcccgccg gaggaggagg aggaggagg gggtgtgctt gatccgcgt 180
cccgcttggt tgggtgggtt ggggtgaggg gggagggatg ggaggggagg caccggaggc 240
gcggcggttg gaccgcgcga tgagcttcgg cggcgcgggc agcatcccgg aggaggcgct 300
gcacactgggtg ctggggtacg tggacgaccc gcgggacagg gaggcggtgt cgctcggtg 360
ccggcgctgg caccgcacg acgcgcac gcggaaagcac gtcaccgtgc cttctgtcta 420
cgccgcgtcg cccgcgcacc tgctcgccg gttcccgccg ctggagtgc tcgcggtaa 480
ggggaaagccg cgccgcgcga tgtacgggct catcccgag gactggggcg cctacgcgcg 540
ccctgggtc gccgagctcg ccgcggcgtcg cgagtgcctc aaggcgctcc acctgcgcgc 600
catggctgtc accgacgacg acctcgccgc gtcgtccgc gcccgcggcc acatgctgca 660
ggagctcaag ctgcacaagt gtcggcgtt ctccaccgac gtcctccgcc tcgtcgcccg 720
ctcctgcaga tcaactgagaa cattatttct ggaggaatgc tcaattgtcg ataatggtag 780
tgaatggctc caagacatttgc tggcaacaa tcctgttctg gagacattga acttccacat 840
gaccgaactc acagtgggtc cagctgaccc ggagcttctc gcaaagaagt gcaagtcaact 900
aatttcatttgc aagatcagtgc actgtgactt ttcagattt attgatttt tccggatggc 960
tgcatttgc caagatttgc cgggaggggc attcatttagag caaggggagc tcactaagta 1020
tggaaatgtt aaattccctt caagactgtg ctccttaga cttacgtaca tggggacaaa 1080
cgagatgccc attatcttcc ctttctctgc attactcaag aagctggact tgcagtacac 1140
ttttctcacc actgaagatc actgccaact cattgcaaaa tgtcccaact tactagtct 1200
tgcggtgagg aatgtgattt gagatagagg attaggggtt gttcagaca catgcaagaa 1260
gctacaaaga ctcagagttt agcgaggaga tgatgatcca ggttgcaag aagaacaagg 1320
aggagtcttcaagtcgggt tgacaactgt agccgttagga tgccgtgaac tggaatacat 1380

Thr Glu Leu Thr Val Val Pro Ala Asp Leu Glu Leu Leu Ala Lys Lys
210 215 220

Cys Lys Ser Leu Ile Ser Leu Lys Ile Ser Asp Cys Asp Phe Ser Asp
225 230 235 240

Leu Ile Gly Phe Phe Arg Met Ala Ala Ser Leu Gln Glu Phe Ala Gly
245 250 255

Gly Ala Phe Ile Glu Gln Gly Glu Leu Thr Lys Tyr Gly Asn Val Lys
260 265 270

Phe Pro Ser Arg Leu Cys Ser Leu Gly Leu Thr Tyr Met Gly Thr Asn
275 280 285

Glu Met Pro Ile Ile Phe Pro Phe Ser Ala Leu Leu Lys Lys Leu Asp
290 295 300

Leu Gln Tyr Thr Phe Leu Thr Thr Glu Asp His Cys Gln Leu Ile Ala
305 310 315 320

Lys Cys Pro Asn Leu Leu Val Leu Ala Val Arg Asn Val Ile Gly Asp
325 330 335

Arg Gly Leu Gly Val Val Ala Asp Thr Cys Lys Lys Leu Gln Arg Leu
340 345 350

Arg Val Glu Arg Gly Asp Asp Asp Pro Gly Leu Gln Glu Glu Gln Gly
355 360 365

Gly Val Ser Gln Val Gly Leu Thr Thr Val Ala Val Gly Cys Arg Glu
370 375 380

Leu Glu Tyr Ile Ala Ala Tyr Val Ser Asp Ile Thr Asn Gly Ala Leu
385 390 395 400

Glu Ser Ile Gly Thr Phe Cys Lys Asn Leu Cys Asp Phe Arg Leu Val
405 410 415

Leu Leu Asp Arg Glu Glu Arg Ile Thr Asp Leu Pro Leu Asp Asn Gly
420 425 430

Val Arg Ala Leu Leu Arg Gly Cys Thr Lys Leu Arg Arg Phe Ala Leu
435 440 445

Tyr Leu Arg Pro Gly Gly Leu Ser Asp Thr Gly Leu Gly Tyr Ile Gly
450 455 460

Gln Tyr Ser Gly Ile Ile Gln Tyr Met Leu Leu Gly Asn Val Gly Glu
465 470 475 480

Thr Asp Asp Gly Leu Ile Arg Phe Ala Leu Gly Cys Glu Asn Leu Arg
485 490 495

Lys Leu Glu Leu Arg Ser Cys Cys Phe Ser Glu Gln Ala Leu Ala Arg
500 505 510

Ala Ile Arg Ser Met Pro Ser Leu Arg Tyr Val Trp Val Gln Gly Tyr
515 520 525

Lys Ala Ser Lys Thr Gly His Asp Leu Met Leu Met Ala Arg Pro Phe
530 535 540

Trp Asn Ile Glu Phe Thr Pro Pro Ser Ser Glu Asn Ala Asn Arg Met
545 550 555 560

Arg Glu Asp Gly Glu Pro Cys Val Asp Ser Gln Ala Gln Ile Leu Ala
565 570 575

Tyr Tyr Ser Leu Ala Gly Lys Arg Ser Asp Cys Pro Arg Ser Val Val
580 585 590

Pro Leu Tyr Pro Ala
595

<210> 21

<211> 2288

<212> DNA

<213> Glycine max

<400> 21

gcacgaggcc acacgttaca cagggcacta tgggtgccgg aaacaaaatcc ggatggggaaa 60
gggtgtatgt agctgttcct aggatgaata ttgtgataac agaacggcgt ttgaagcagt 120
gacgtgttac atcagtagcat cacatcacat cacgtaaata taggttaataa gctcgaaaa 180
agttttgtcg tttcacacccc atctgtttgg ccctaccatt tcctcactca tcatccccat 240
aacccattcc ccttttgcca cttgaaccaa aacctctgca cctttcttt tcactctcag 300
tctccgatcc aatatgacgg aggaacggaa cgtcgaaag acacgtgtgg tcgacgtgg 360
cctcgactgc gtcatccctt acatcgacga ccccaaggac cgccgacgccc tttcccaggt 420
gtgtcgacgc tggtagcggc tcgactcgct caccggcaag cacgtcacca tcgcgtctg 480
ctacaccacc accccggctc gcctccgccc cccgcttcccg cacctcgagt cgctcaagct 540
caagggcaag ccccgagccg caatgttcaa cttgataacc gaggattggg gcggacacgt 600
caactccctgg gtcaaagaga tttctcagta cttcgattgc ctcaagagcc tccacttccg 660
ccgcatgatt gtcaaggatt ccgatcttca gaatctcgct cgtgaccgccc gtcacgtgt 720
tcacgctctc aagcttgaca agtgctccgg tttcaccacc gatgtcttt tccatatccgg 780
tcgctttgc aagagttaa gagtcttgg tttggaggaa agctaattc ttgagaagga 840
cgagaaatgg ctacacgagc ttgcttggaa taatacagg tttgagactc tcaatttta 900
cttgacagac attgtgttg tgaagattga ggaccttggaa cttttagcta aaaattggccc 960
caacttagtg tctgtgaaac ttactgactg tgaaatactg gatcttgta acttcttaa 1020
gcatgcctct ggcgtggaaag agttttgtgg aggcacctac aacgaggaac cagaaagata 1080
ctctgctata tcattaccag caaaggatgg tcgattgggt ttaacatata ttggaaagaa 1140
ttagttgccc attgtgttca tggcagc cgtactaaaa aaattggatc tcctctatgc 1200
aatgttagac acggaggatc attgtatgtt aatccaaagg tgcacttgc tggaaagtcc 1260
tgagacaagg aatgttaattt gagatagagg gttagaggtt cttgtcggtt gttgtaagag 1320
gctaaaaagg cttaggattt aaaggggcga tgatgtcaa ggaatggagg atgaagaagg 1380
tactgtgtcc catagagggc taatagcctt gtcacaggc tggcacttgc ttgaaatacat 1440
ggctgttat gtgtctgata ttacaaatgc atctctggaa catattggaa ctcacttgc 1500
gaacctctgt gattttcgcc ttgtgttgc tgaccatggaa gagaagataa ctgatttgc 1560
acttgacaat ggggtgaggg ctctactgag gggctgtgac aagctgagga gatttgctct 1620
atatctcagg cgtggcgggt tgactgtatgt aggcccttgc tacattggac aatacagtcc 1680
aaatgtgaga tggatgtgc ttgggtatgt gggggaggtt gatgcaggc ttttggagtt 1740
cgctaaggggg tggcacttgc ttcaaaaact tgaaatgaga ggggtttat ttttcagtg 1800
acgtgcactt gctgtggctg caacacaatt gacttcttctt aggtacttgc gggtgcaagg 1860
ttatgggtgtt tctccatctg gacgtgatct ttggtaatg gtcgaccct ttttggaaat 1920
tgagttgatt ccttctagaa aggtggctac gaataccat ccagatgaga ctgttagtgc 1980
tgagcatcct gtcataattt ttgcatttca ttctcttgc gggcagagat cagatttcc 2040
agataactgtt gtcctttgg acactgccc acgtcgatcc acctagaggc cagagctgt 2100
tatataatacc agtttcttt tgggtttctt ctcccccttc atatgtgtt tctatgttcc 2160
tgctctattt ttagtgcatt ttagacaatt agtcttgc taaaggctgtg ttttcatttg 2220
aaattctgaa acgcttcccc taacgcttattt ggctccctta aaaactgaac attctcaatt 2280

ttgtgaat

2288

<210> 22

<211> 606

<212> PRT

<213> Glycine max

<400> 22

Thr Lys Thr Ser Ala Pro Phe Leu Phe Thr Leu Ser Leu Arg Ser Asn
1 5 10 15

Met Thr Glu Glu Arg Asn Val Arg Lys Thr Arg Val Val Asp Val Val
20 25 30

Leu Asp Cys Val Ile Pro Tyr Ile Asp Asp Pro Lys Asp Arg Asp Ala
35 40 45

Val Ser Gln Val Cys Arg Arg Trp Tyr Glu Leu Asp Ser Leu Thr Arg
50 55 60

Lys His Val Thr Ile Ala Leu Cys Tyr Thr Thr Pro Ala Arg Leu
65 70 75 80

Arg Arg Arg Phe Pro His Leu Glu Ser Leu Lys Leu Lys Gly Lys Pro
85 90 95

Arg Ala Ala Met Phe Asn Leu Ile Pro Glu Asp Trp Gly Gly His Val
100 105 110

Thr Pro Trp Val Lys Glu Ile Ser Gln Tyr Phe Asp Cys Leu Lys Ser
115 120 125

Leu His Phe Arg Arg Met Ile Val Lys Asp Ser Asp Leu Gln Asn Leu
130 135 140

Ala Arg Asp Arg Gly His Val Leu His Ala Leu Lys Leu Asp Lys Cys
145 150 155 160

Ser Gly Phe Thr Thr Asp Gly Leu Phe His Ile Gly Arg Phe Cys Lys
165 170 175

Ser Leu Arg Val Leu Phe Leu Glu Glu Ser Ser Ile Leu Glu Lys Asp
180 185 190

Gly Glu Trp Leu His Glu Leu Ala Leu Asn Asn Thr Val Leu Glu Thr
195 200 205

Leu Asn Phe Tyr Leu Thr Asp Ile Ala Val Val Lys Ile Glu Asp Leu
210 215 220

Glu Leu Leu Ala Lys Asn Cys Pro Asn Leu Val Ser Val Lys Leu Thr
225 230 235 240

Asp Cys Glu Ile Leu Asp Leu Val Asn Phe Phe Lys His Ala Ser Ala
245 250 255

Leu Glu Glu Phe Cys Gly Gly Thr Tyr Asn Glu Glu Pro Glu Arg Tyr
260 265 270

Ser Ala Ile Ser Leu Pro Ala Lys Leu Cys Arg Leu Gly Leu Thr Tyr
275 280 285

Ile Gly Lys Asn Glu Leu Pro Ile Val Phe Met Phe Ala Ala Val Leu
290 295 300

Lys Lys Leu Asp Leu Leu Tyr Ala Met Leu Asp Thr Glu Asp His Cys
305 310 315 320

Met Leu Ile Gln Arg Cys Pro Asn Leu Glu Val Leu Glu Thr Arg Asn
325 330 335

Val Ile Gly Asp Arg Gly Leu Glu Val Leu Gly Arg Cys Cys Lys Arg
340 345 350

Leu Lys Arg Leu Arg Ile Glu Arg Gly Asp Asp Asp Gln Gly Met Glu
355 360 365

Asp Glu Glu Gly Thr Val Ser His Arg Gly Leu Ile Ala Leu Ser Gln
370 375 380

Gly Cys Ser Glu Leu Glu Tyr Met Ala Val Tyr Val Ser Asp Ile Thr
385 390 395 400

Asn Ala Ser Leu Glu His Ile Gly Thr His Leu Lys Asn Leu Cys Asp
405 410 415

Phe Arg Leu Val Leu Leu Asp His Glu Glu Lys Ile Thr Asp Leu Pro
420 425 430

Leu Asp Asn Gly Val Arg Ala Leu Leu Arg Gly Cys Asp Lys Leu Arg
435 440 445

Arg Phe Ala Leu Tyr Leu Arg Arg Gly Gly Leu Thr Asp Val Gly Leu
450 455 460

Gly Tyr Ile Gly Gln Tyr Ser Pro Asn Val Arg Trp Met Leu Leu Gly
465 470 475 480

Tyr Val Gly Glu Ser Asp Ala Gly Leu Leu Glu Phe Ala Lys Gly Cys
485 490 495

Pro Ser Leu Gln Lys Leu Glu Met Arg Gly Cys Leu Phe Phe Ser Glu
500 505 510

Arg Ala Leu Ala Val Ala Ala Thr Gln Leu Thr Ser Leu Arg Tyr Leu
515 520 525

Trp Val Gln Gly Tyr Gly Val Ser Pro Ser Gly Arg Asp Leu Leu Val
530 535 540

Met Ala Arg Pro Phe Trp Asn Ile Glu Leu Ile Pro Ser Arg Lys Val
545 550 555 560

Ala Thr Asn Thr Asn Pro Asp Glu Thr Val Val Val Glu His Pro Ala
565 570 575

His Ile Leu Ala Tyr Tyr Ser Leu Ala Gly Gln Arg Ser Asp Phe Pro
580 585 590

Asp Thr Val Val Pro Leu Asp Thr Ala Thr Cys Val Asp Thr
595 600 605

<210> 23
<211> 577
<212> DNA
<213> Triticum aestivum

<220>
<221> unsure
<222> (296)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (409)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (415)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (452)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (495)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (546)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (549)
<223> n = A, T, C, or G

<400> 23
gaactttgtt cctgaaagaa tgtataattg ccgatgaagg gagcgaatgg ctccatgaac 60
tcgcgtcaa caattctgtt ctggtgacac tgaacttcta catgacagaaa ctcaaagtgg 120
agcctgccga tctggagctt cttgcaagga actgtaaaatc attgatttct ctgaagatga 180
gtgactgcga tctttcgat ttgattgggtt ttctccaaac ctccaaggca ctgcaagaat 240
ccgctgggag ggcgtttttt cgaagtcgga gagtacacca agtacgaaaa ggcaantccc 300
acctagctat gctcctgggg gggcctacct tcatgggtaa aaacgaatcc cgttactttc 360
cgtatccgcg tcgcttaaaa actggacctg catacacatc ctcacaacng aaatnacgtc 420
acttaacgct aaagcccaac ctacgggtct cnagggggc cggtaccaat cgccctatat 480
gatcctatac cgcnacacgg gcgtccttta cactctgacg ggaaactggg taccactaac 540
cctganaanc cttccactg gtatacaaag gccgacg 577

<210> 24
<211> 159
<212> PRT
<213> Triticum aestivum

```

<220>
<221> UNSURE
<222> (98)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (136)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (138)
<223> Xaa = any amino acid

<400> 24
Thr Leu Phe Leu Glu Glu Cys Ile Ile Ala Asp Glu Gly Ser Glu Trp
 1           5           10          15

Leu His Glu Leu Ala Val Asn Asn Ser Val Leu Val Thr Leu Asn Phe
 20          25          30

Tyr Met Thr Glu Leu Lys Val Glu Pro Ala Asp Leu Glu Leu Leu Ala
 35          40          45

Arg Asn Cys Lys Ser Leu Ile Ser Leu Lys Met Ser Asp Cys Asp Leu
 50          55          60

Ser Asp Leu Ile Gly Phe Leu Gln Thr Ser Lys Ala Leu Gln Glu Ser
 65          70          75          80

Ala Gly Arg Arg Phe Phe Arg Ser Arg Arg Val His Gln Val Arg Lys
 85          90          95

Gly Xaa Ser His Leu Ala Met Leu Leu Gly Gly Pro Thr Phe Met Gly
100         105         110

Lys Asn Glu Ser Arg Tyr Phe Pro Tyr Pro Arg Arg Leu Lys Thr Gly
115         120         125

Pro Ala Tyr Thr Ser Ser Gln Xaa Lys Xaa Arg His Leu Thr Leu Lys
130         135         140

Pro Asn Leu Arg Val Ser Arg Gly Ala Gly Thr Asn Arg Pro Ile
145         150         155

<210> 25
<211> 486
<212> DNA
<213> Triticum aestivum

<220>
<221> unsure
<222> (197)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (275)
<223> n = A, T, C, or G

```

<220>
<221> unsure
<222> (289)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (298)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (334)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (346)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (399)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (441)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (463)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (466)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (470)
<223> n = A, T, C, or G

<400> 25
cgggaaagggg gggaaatcaat ccccatgccc ccacccctcg ccggaccaga tccccggcgg 60
gccggcgccgg agccttaggc gggatgggc ggggaggccc cggagcccg cgccgtgagc 120
cgccgcgtca gcctggacgg cggcggcgtc ccggaggagg cgctgcacct ggtgctcgcc 180
tacgtggacg acccgcnca cccgcgaggcg gcctcgctgg cgtggccggc ctggcacac 240
atcgacgcgc tcacgcggaa gcacgtcacc gtgcncttct gctacgccc tgcgtccngc 300
gcgcctgctc gcgcgtttcc cgcgcctcga gtcnctcgaa gtcaanggca agcccgcc 360
gccatgtacg gtcatcccc gacgactggg ggcgcatacnc ccggccctg cgtccctgag 420
ctcgccgccc cgctcgattt nctcaaggcg gctcaacctt gcncncaan gtcgtcaccg 480
acgaca 486

<210> 26
<211> 134
<212> PRT

<213> Triticum aestivum

<220>
<221> UNSURE
<222> (38)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (64)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (69)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (72)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (84)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (88)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (119)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (127)..(128)..(129)
<223> Xaa = any amino acid

<400> 26
Met Gly Gly Glu Ala Pro Glu Pro Arg Arg Leu Ser Arg Ala Leu Ser
1 5 10 15

Leu Asp Gly Gly Val Pro Glu Glu Ala Leu His Leu Val Leu Gly
20 25 30

Tyr Val Asp Asp Pro Xaa Asp Arg Glu Ala Ala Ser Leu Ala Cys Arg
35 40 45

Arg Trp His His Ile Asp Ala Leu Thr Arg Lys His Val Thr Val Xaa
50 55 60

Phe Cys Tyr Ala Xaa Val Pro Xaa Ala Pro Ala Arg Ala Leu Pro Ala
65 70 75 80

Pro Arg Val Xaa Arg Gly Gln Xaa Gln Ala Arg Ala Ala Met Tyr Gly
85 90 95

Ser Ser Pro Thr Thr Gly Ala Pro Thr Pro Gly Pro Cys Val Pro Glu
 100 105 110

Leu Ala Ala Pro Leu Asp Xaa Leu Lys Ala Ala Gln Pro Cys Xaa Xaa
 115 120 125

Xaa Ser Ser Pro Thr Thr
 130

<210> 27
 <211> 1074
 <212> DNA
 <213> Triticum aestivum

<400> 27
 gcacgaggtt ggattgatgg ctgttagctga aggctgtcct gattttggagt actggggcagt 60
 acatgtgtct gacattacaa atgcagctct tgaggctatt ggcgcattca gcaaaaacct 120
 gaacgatttc cgacttgtcc tgcttgatag agaggtgcat ataactgaac tgccccttga 180
 caacggggtt cgggctttgc tgagaggtt caccaaactc cggagggtttg cattttatgt 240
 gagacaccttga gctctatcag atattggcct ttcttatgtt ggcgaattta gcaagacccgt 300
 ccgctacatg ttgcttggga atgcccgggg gtctgatgat ggactgctgg catttgcacg 360
 aggatgcccc agcttgcaga aattggagct aaggagttgc tgcttttagt aacgtgcatt 420
 ggcagttgca gccttacagc tgaagtcaact cagatatctt tgggtgcagg gataacaaggc 480
 atctcctact ggaccacgatc tcatggcaat ggtacgcccc ttcttggaaaca ttgagtttat 540
 tgcaccaaat caagatgagc cttggccaga gggtcaggca cagattctgg catactactc 600
 tctggcttggg gcaaggacag attgtcctca gtcagtaatt cccctccatc cgtcagttggg 660
 aagctaaaaa gaccaccacc agtttgactg tacatacatg tttgatgccca gcaaaaaccta 720
 caatgcgttta tagggacatt ccaccttaca gtgccaatta cgggactgaa agctcaagta 780
 aaagcgaccc actctgaact gccttggat ctttagggca acattttgg gtaagctgtt 840
 catctggcca acatggatat ctttggatc tacaccatt tgacatggct cggcacacgca 900
 tttttgtat aatgtgcccc gttgtatgg catttttctg ttcttggatc ttgcccactg 960
 tattttgtt ctacaaacag tattggatta gttgttgcacatctgtgaa acaatctgca 1020
 caatgtttagt tttaaccat gaatatctt aaaaaaaaaa aaaaaaaaaa aaaa 1074

<210> 28
 <211> 221
 <212> PRT
 <213> Triticum aestivum

<400> 28
 His Glu Val Gly Leu Met Ala Val Ala Glu Gly Cys Pro Asp Leu Glu
 1 5 10 15

Tyr Trp Ala Val His Val Ser Asp Ile Thr Asn Ala Ala Leu Glu Ala
 20 25 30

Ile Gly Ala Phe Ser Lys Asn Leu Asn Asp Phe Arg Leu Val Leu Leu
 35 40 45

Asp Arg Glu Val His Ile Thr Glu Leu Pro Leu Asp Asn Gly Val Arg
 50 55 60

Ala Leu Leu Arg Gly Cys Thr Lys Leu Arg Arg Phe Ala Phe Tyr Val
 65 70 75 80

Arg Pro Gly Ala Leu Ser Asp Ile Gly Leu Ser Tyr Val Gly Glu Phe
 85 90 95

Ser	Lys	Thr	Val	Arg	Tyr	Met	Leu	Leu	Gly	Asn	Ala	Gly	Gly	Ser	Asp
						100		105						110	
Asp	Gly	Leu	Leu	Ala	Phe	Ala	Arg	Gly	Cys	Pro	Ser	Leu	Gln	Lys	Leu
							115		120				125		
Glu	Leu	Arg	Ser	Cys	Cys	Phe	Ser	Glu	Arg	Ala	Leu	Ala	Val	Ala	Ala
							130		135				140		
Leu	Gln	Leu	Lys	Ser	Leu	Arg	Tyr	Leu	Trp	Val	Gln	Gly	Tyr	Lys	Ala
							145		150			155			160
Ser	Pro	Thr	Gly	Thr	Asp	Leu	Met	Ala	Met	Val	Arg	Pro	Phe	Trp	Asn
							165		170				175		
Ile	Glu	Phe	Ile	Ala	Pro	Asn	Gln	Asp	Glu	Pro	Cys	Pro	Glu	Gly	Gln
							180		185				190		
Ala	Gln	Ile	Leu	Ala	Tyr	Tyr	Ser	Leu	Ala	Gly	Ala	Arg	Thr	Asp	Cys
							195		200				205		
Pro	Gln	Ser	Val	Ile	Pro	Leu	His	Pro	Ser	Val	Gly	Ser			
							210		215				220		

<210> 29
<211> 1812
<212> DNA
<213> *Oryza sativa*

<220>
<221> unsure
<222> (1108)
<223> n = A, T, C, or G

gtctgcatcg aaggagtctt ctgcagatat taatcagcag tacacaaaga tcacgttac 1560
acccacgcag gctgaccgtt ttgtttggc attccggca tggctaagga aatttggtaa 1620
cagccaacct gactggttg gaaatcttag ccaagaagtg ttgccttcca ctgtccttc 1680
aaagcgtgag atgctagata gatatgagca gcacacactg aaatgctcat cttgcaaagg 1740
ggcataacaac gccttccaga ctctgcaaaa ggtcttcatg ggagcgcacag tggccgttct 1800
attattgctt gc 1812

<210> 30
<211> 485
<212> PRT
<213> Oryza sativa

<220>
<221> UNSURE
<222> (251)
<223> Xaa = any amino acid

<400> 30
Met Pro Val Met Ala Pro Thr Ala Ser Leu Leu Leu Ser Pro Arg Pro
1 5 10 15

Leu Pro Ala Ser Arg Arg Val Pro Ser Leu Pro Ala Leu Ser Ala Ser
20 25 30

Gly Arg Leu Arg Leu Arg Arg Ala Arg Ala Asp Thr Arg Leu Arg Val
35 40 45

Ala Ala Pro Pro Ser Val Pro Gly Glu Ala Asp Gln Ala Pro Gly Glu
50 55 60

Thr Glu Pro Ser Thr Ser Ser Ala Asp Glu Lys Phe Val Trp Arg Asp
65 70 75 80

His Trp Tyr Pro Val Ser Leu Val Glu Asp Leu Asp Pro Ser Val Pro
85 90 95

Thr Pro Phe Gln Leu Leu Asn Arg Asp Leu Val Ile Trp Lys Asp Pro
100 105 110

Lys Ser Gly Glu Trp Val Ala Leu Asp Asp Arg Cys Pro His Arg Leu
115 120 125

Ala Pro Leu Ser Glu Gly Arg Ile Asp Glu Thr Gly Cys Leu Gln Cys
130 135 140

Ser Tyr His Gly Trp Ser Phe Asp Gly Ser Gly Ala Cys Thr Arg Ile
145 150 155 160

Pro Gln Ala Ala Pro Glu Gly Pro Glu Ala Lys Ala Val Arg Ser Pro
165 170 175

Lys Ala Cys Ala Ile Lys Phe Pro Thr Leu Val Ser Gln Gly Leu Leu
180 185 190

Phe Val Trp Pro Asp Glu Asn Gly Trp Glu Lys Ala Thr Ala Thr Lys
195 200 205

Pro Pro Met Leu Pro Lys Glu Phe Glu Asp Pro Ala Phe Ser Thr Val
210 215 220

Thr Ile Gln Arg Asp Leu Tyr Tyr Gly Tyr Asp Thr Leu Met Glu Asn
225 230 235 240

Val Ser Asp Pro Ser His Ile Glu Phe Ala Xaa His Lys Val Thr Gly
245 250 255

Arg Arg Asp Arg Ala Arg Pro Leu Pro Phe Lys Met Glu Ser Ser Gly
260 265 270

Ala Trp Gly Tyr Ser Gly Ser Asn Ser Gly Asn Pro Arg Ile Ser Ala
275 280 285

Thr Phe Val Ala Pro Cys Tyr Ala Leu Asn Lys Ile Glu Ile Asp Thr
290 295 300

Lys Leu Pro Ile Phe Gly Asp Gln Lys Trp Val Ile Trp Ile Cys Ser
305 310 315 320

Phe Asn Ile Pro Met Ala Pro Gly Lys Thr Arg Ser Ile Val Cys Ser
325 330 335

Ala Arg Asn Phe Phe Gln Phe Ser Met Pro Gly Lys Ala Trp Trp Gln
340 345 350

Leu Val Pro Arg Trp Tyr Glu His Trp Thr Ser Asn Leu Val Tyr Asp
355 360 365

Gly Asp Met Ile Val Leu Gln Gly Gln Glu Lys Ile Phe Leu Ser Ala
370 375 380

Ser Lys Glu Ser Ser Ala Asp Ile Asn Gln Gln Tyr Thr Lys Ile Thr
385 390 395 400

Phe Thr Pro Thr Gln Ala Asp Arg Phe Val Leu Ala Phe Arg Ala Trp
405 410 415

Leu Arg Lys Phe Gly Asn Ser Gln Pro Asp Trp Phe Gly Asn Pro Ser
420 425 430

Gln Glu Val Leu Pro Ser Thr Val Leu Ser Lys Arg Glu Met Leu Asp
435 440 445

Arg Tyr Glu Gln His Thr Leu Lys Cys Ser Ser Cys Lys Gly Ala Tyr
450 455 460

Asn Ala Phe Gln Thr Leu Gln Lys Val Phe Met Gly Ala Thr Val Ala
465 470 475 480

Val Leu Leu Leu Leu
485

<210> 31

<211> 1930

<212> DNA

<213> Glycine max

<400> 31

gggaagaaag aaacatggaa aacttgcacg actcaactac aatctctttt atgaacacat 60
ctcattttgaa cctctataaa caaatttca aaccttaaca ctttacgaaa atcaactaaa 120
gaaaaccatt gatggcgctc ctttcactcca tctctgcctt agccaccaca cttcacactct 180

cctccccaaat	aaccaaacc	cataaaagtta	acc	cccttcc	ctttcctcg	aaccgaaatt	240
cacaatttt	aacgaaacaa	acgcgaccc	gaagcagaag	aaac	ctctcc	ctaacc	300
cacgcgtgc	ggcc	ccaccc	tcaac	cggtt	aa	gccc	360
ataacgaaac	tgaggaagag	tttagc	gacg	agacttc	ctctaaattc	acttggagg	420
atca	ctgtctcg	ttaatt	gaag	atct	gaaccc	tctctgccc	480
agcttctgg	tcgt	gaaatc	gtgct	ctgg	acgaca	aggc	540
ttgatgacaa	atgc	ccccat	cgt	cttgc	ctt	atctg	600
ggaagttgca	gtgtt	cttat	catgg	gttgc	ttt	gttgc	660
ttc	c	ctgaa	ggccc	ca	ctgtct	aa	900
ccactaggtt	cc	tac	ccagg	gt	ttgc	tgtatgg	720
gttggagaa	ag	caaagg	cc	tcc	aaatgtt	tgatgactt	780
agtttccac	gg	tcaacata	cag	cg	tatgg	ttacgata	840
atgtctctga	tc	cttctcac	at	tgagttt	ctc	atcacaa	900
gagccaaacc	tct	gccat	a	agtg	atcg	gttgc	960
atgaaggaa	cc	cacag	at	gtc	tttgc	atgttat	1020
ttgagatga	tac	caaactc	c	ctgt	atgtt	atgttat	1080
ccttcaatgt	ccc	catgg	c	ctgg	atgtt	atgttat	1140
tcttccagtt	ct	ca	ggc	ctgc	tttgc	atgttat	1200
ttgcattcaa	ttt	taa	acaa	tgc	atgtt	atgttat	1260
atggacttc	aa	ataa	agg	ta	atgtt	atgttat	1320
tcttccttc	agaa	acc	aa	gg	atgtt	atgttat	1380
tcacaccaac	ac	agg	ca	gttgc	atgtt	atgttat	1440
gcaatggcca	acc	agaatgg	tttgg	aa	atgtt	atgttat	1500
tatcaa	aa	ac	tg	atgtt	atgttat	atgttat	1560
aagcagcata	tg	agg	at	gttgc	atgtt	atgttat	1620
tttgtcaac	at	ca	gg	atgtt	atgttat	atgttat	1680
cagttgtcag	cg	oag	ccat	gttgc	atgtt	atgttat	1740
tggattacgt	g	cat	gcg	aa	atgtt	atgttat	1800
agttgttaat	ag	at	gttgc	atgtt	atgttat	atgttat	1860
aatctac	tt	aa	gttgc	atgtt	atgttat	atgttat	1920
							1930

<210> 32
<211> 563
<212> PRT
<213> Glycine max

<400> 32

Met Ala Leu Pro His Ser Ile Ser Ala Leu Ala Thr Thr Leu Thr Leu
1 5 10 15

Ser Ser Pro Ile Thr Lys Pro His Lys Val Asn Pro Phe Pro Phe Ser
20 25 30

Ser Asn Arg Asn Ser Gln Phe Leu Thr Lys Gln Thr Arg Pro Arg Ser
35 40 45

Arg Arg Asn Leu Ser Leu Thr Pro Ala Arg Val Ala Ala Pro Pro Ser
50 55 60

Thr Val Glu Ala Asp Arg Leu Tyr Pro Glu Ala Glu Asn Asn Glu Thr
65 70 75 80

Glu Glu Glu Phe Ser Asp Glu Ser Ser Ser Lys Phe Thr Trp Arg Asp
85 90 95

His Trp Tyr Pro Val Ser Leu Ile Glu Asp Leu Asn Pro Leu Leu Pro
100 105 110

Thr Pro Phe Gln Leu Leu Gly Arg Glu Ile Val Leu Trp Tyr Asp Lys
115 120 125

Ser Ile Ser Gln Trp Val Ala Phe Asp Asp Lys Cys Pro His Arg Leu
130 135 140

Ala Pro Leu Ser Glu Gly Arg Ile Asp Glu Asp Gly Lys Leu Gln Cys
145 150 155 160

Ser Tyr His Gly Trp Ser Phe Asp Gly Cys Gly Ser Cys Val Lys Ile
165 170 175

Pro Gln Ala Ser Ser Glu Gly Pro Glu Ala Arg Ala Ile Gly Ser Pro
180 185 190

Lys Ala Cys Ala Thr Arg Phe Pro Thr Leu Val Ser Gln Gly Leu Leu
195 200 205

Phe Val Trp Ala Asp Glu Asn Gly Trp Glu Lys Ala Lys Ala Ser Asn
210 215 220

Pro Pro Met Phe Pro Asp Asp Phe Asp Lys Pro Glu Phe Pro Thr Val
225 230 235 240

Asn Ile Gln Arg Asp Leu Phe Tyr Gly Tyr Asp Thr Leu Met Glu Asn
245 250 255

Val Ser Asp Pro Ser His Ile Glu Phe Ala His His Lys Val Thr Gly
260 265 270

Arg Arg Asp Arg Ala Lys Pro Leu Pro Phe Lys Met Asp Ser Arg Gly
275 280 285

Ser Trp Gly Phe Ser Gly Ala Asn Glu Gly Asn Pro Gln Ile Ser Ala
290 295 300

Lys Phe Val Ala Pro Cys Tyr Met Met Asn Lys Ile Glu Ile Asp Thr
305 310 315 320

Lys Leu Pro Val Val Gly Asp Gln Lys Trp Val Val Trp Ile Cys Ser
325 330 335

Phe Asn Val Pro Met Ala Pro Gly Lys Thr Arg Ser Ile Val Cys Ser
340 345 350

Ala Arg Asn Phe Phe Gln Phe Ser Val Pro Gly Pro Ala Trp Trp Gln
355 360 365

Val Asn Val Ile Leu Leu Phe Ala Phe Asn Phe Lys Gln Cys Ile His
370 375 380

Val Thr Gln Val Val Pro Arg Trp Tyr Glu His Trp Thr Ser Asn Lys
385 390 395 400

Val Tyr Asp Gly Asp Met Ile Val Leu Gln Gly Gln Glu Lys Ile Phe
405 410 415

Leu Ser Glu Thr Lys Glu Gly Gly Asp Ile Asn Lys Gln Tyr Thr Asn
420 425 430

Ile Thr Phe Thr Pro Thr Gln Ala Asp Arg Phe Val Leu Ala Phe Arg
435 440 445

Asn Trp Leu Arg Arg His Gly Asn Gly Gln Pro Glu Trp Phe Gly Asn
450 455 460

Ser Ser Asp Gln Pro Leu Pro Ser Thr Val Leu Ser Lys Arg Gln Met
465 470 475 480

Leu Asp Arg Phe Glu Gln His Thr Leu Lys Cys Ser Ser Cys Lys Ala
485 490 495

Ala Tyr Glu Gly Phe Gln Thr Trp Gln Lys Val Leu Ile Gly Ala Thr
500 505 510

Val Val Phe Cys Ala Thr Ser Gly Ile Pro Ser Asp Phe Gln Leu Arg
515 520 525

Val Leu Leu Ala Gly Leu Ala Val Val Ser Ala Ala Ile Ala Phe Ala
530 535 540

Leu Asn Gln Leu Gln Lys Asn Phe Glu Phe Val Asp Tyr Val His Ala
545 550 555 560

Glu Ile Asp

<210> 33
<211> 555
<212> DNA
<213> Triticum aestivum

<220>
<221> unsure
<222> (228)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (252)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (354)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (369)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (402)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (412)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (415)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (441)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (460)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (467)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (482)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (504)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (506)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (519)..(520)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (524)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (539)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (541)
<223> n = A, T, C, or G

<220>
<221> unsure
<222> (544)
<223> n = A, T, C, or G

```

<220>
<221> unsure
<222> (555)
<223> n = A, T, C, or G

<400> 34
tccacccacg ccgtcgatca cccgggtggc accaccggcg acatggatcc cctccgccta 60
ctcctccccc gcggccaggc ccagcccttg ctccgcgtcc ccaccggcg ccaagcacccg 120
agcgtcaggc cccaaactcgt cccgcggcga cgggcgcgc gccaccgcaa cggggccgcg 180
cggatgctgc cggcctcggc cgtggcgatcc gagtcgcgt ggacgganca ggagccgcca 240
tccggggaga angaggagcg gttcgactgg ctggaccagt ggtacccctt cgcccccg 300
gaggacctgg accccggcgcg cccacggcaa atgggtctgg gatccgcgtg gtanctggta 360
caacgcgng cccgcgaatg ggcgtttca caccgtgcc gnacgcctgg cncgnctcga 420
gggcgcatca caaaaaggcgg ncagtctta cacgggtgnn ctcacgnncg gggctgaatt 480
ancccaggcc cgcctcggca acgnngaaca aaacagggnn gtgnntaacc gtctgtgana 540
naanttggt ctccn 555

<210> 34
<211> 144
<212> PRT
<213> Triticum aestivum

<220>
<221> UNSURE
<222> (62)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (70)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (104)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (124)..(125)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (140)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (142)
<223> Xaa = any amino acid

<400> 34
Met Asp Pro Leu Arg Leu Leu Leu Pro Arg Ala Gln Ala Gln Pro Leu
1 5 10 15

Leu Pro Leu Pro Thr Gly Val Gln Ala Pro Ser Val Arg Pro Gln Leu
20 25 30

```

Val Pro Arg Arg Ala Arg Arg His Arg Asn Gly Ala Ala Arg Met
35 40 45

Leu Pro Ala Ser Ala Val Ala Ser Glu Ser Pro Trp Thr Xaa Gln Glu
50 55 60

Pro Pro Ser Gly Glu Xaa Glu Glu Arg Phe Asp Trp Leu Asp Gln Trp
65 70 75 80

Tyr Pro Phe Ala Pro Val Glu Asp Leu Asp Pro Ala Arg Pro Arg Gln
85 90 95

Met Val Leu Gly Ser Ala Trp Xaa Leu Val Gln Arg Gly Ala Gly Glu
100 105 110

Trp Arg Cys Ser His Arg Ala Arg Thr Pro Gly Xaa Xaa Arg Gly Arg
115 120 125

Ile Thr Lys Gly Gly Gln Ser Leu His Gly Trp Xaa His Xaa Ala Gly
130 135 140

<210> 35

<211> 1864

<212> DNA

<213> Triticum aestivum

<400> 35

gcacgaggc aatgttctag aagcacggaa gcaccgagag ataagtggca ctagtacaaa 60
gctggagcga ggaagatctc ggccccaaca aaacctcgga ccccttcctt ccacacgatc 120
ccgaggaagg aaggaaaggc agacgaaaatg cccgtgtctgg cgatgccgtc cgcctccctc 180
ccccctctt cccccggggc accggccgtc gctgcgccc tcgaccctcc cggcctcccg 240
tctcggcagc ggcattcctcc gcgtggccgc gcccacgtcg gtcccccggcg aggccggagcg 300
ggcggaggag ccgagcacga gcacgagcac ctcgcctgaa tcgtccgggg agaagttcgt 360
gtggcgggac cactggtacc cggtctcgct cgtggaggac ctggaccgcg cgcgtccac 420
cccggtccag ctccctcaacc gcgcacctcgatcatctggAAC gaccccaact cggcgactg 480
ggtcgcgtc gacgaccgct gcccgcaccg cctcgccccg ctctcggagg ggcggatcga 540
cgagacgggc ggctctcgagt gtccttacca cggctggtcc ttgcacggct cggcgctcg 600
caccaggatc ccgcaggccg cgcggggg gcccggggc cggccgggtgc gtcgcctcg 660
ggcctgcgcc accaagtcc ccaccctctt ctcccagggc ctgccttcg tctggctga 720
cgagaatgga tggacaagg ccaaggccac caagcctcca atgctgcccga aggagttcga 780
tgacccggcc ttctccaccg tgacgatcca gagggacctc ttctatgggt atgacacgtt 840
gatggagaac gtctctgatc ctcgcataat agaatttgc caccacaagg tcactggacg 900
aagagataga gccaaggctt tgccattta aatggaatca aatggatca aatggatcc 960
aggggcaaat accggcaatc ctcgcataatc tgcaacttgc gaggccctt gctatgcact 1020
gaacaaaata gagattgaca ccaaattacc gattgtggga gatcagaat gggatcata 1080
gatggctcc ttcaacatcc caatggcccc agggaaaact cgttctatttgc tctgtatgc 1140
tcgaaacttt ttccagttt caatggccagg aaaggcatgg tggcagtttgc tccctcgatg 1200
gtacgaacat tggacctaatttgcgtca cgacggcgat atgatcgatc ttcaaggcca 1260
agagaaggtt ttctctgtctg catccaagga gtcgtctgca gatgttaatc agcagttac 1320
aaagctaca ttacacccca cacaggccgaa cccatggat ttgcattcc gggcatggct 1380
acgaaaattt gaaaaatagcc agcctgactg gtatggaaat cctagccaaat atgcatttgc 1440
ttctacggc ctttcaaaatc gagagatgc agacagatac gagcagcaca cgttgcataatg 1500
ctcgccctgc agaggagcgc acaaggcctt tcagacttgc cagaagggtt tcatggggc 1560
gacgggtgtt tttggcgcga catccggat ccctgcggat gttcagctca gaatatttgc 1620
cggtgcgggt gctctggtca ggcgcgtctt ggcctatgtc ttctacgacc gccagaagca 1680
tttcgtgttt gtggactacg tgcacgctga cattgattga tttagggagat aaacattatg 1740
tatttttgtt agatcttgtt gtgggtgtgtt gtggagacat cccacgatca atcatgtgca 1800
taacctagcc aaggagtaca tatacgatcc agtgggtaca tgagatttgc ccagttatgtt 1860
gttt 1864

<210> 36
<211> 487
<212> PRT
<213> Triticum aestivum

<400> 36
Leu Arg Val Ala Ala Pro Thr Ser Val Pro Gly Glu Ala Glu Arg Ala
1 5 10 15

Glu Glu Pro Ser Thr Ser Thr Ser Pro Glu Ser Ser Gly Glu
20 25 30

Lys Phe Val Trp Arg Asp His Trp Tyr Pro Val Ser Leu Val Glu Asp
35 40 45

Leu Asp Pro Arg Val Pro Thr Pro Phe Gln Leu Leu Asn Arg Asp Leu
50 55 60

Val Ile Trp Asn Asp Pro Asn Ser Gly Asp Trp Val Ala Leu Asp Asp
65 70 75 80

Arg Cys Pro His Arg Leu Ala Pro Leu Ser Glu Gly Arg Ile Asp Glu
85 90 95

Thr Gly Gly Leu Gln Cys Ser Tyr His Gly Trp Ser Phe Asp Gly Ser
100 105 110

Gly Ala Cys Thr Arg Ile Pro Gln Ala Ala Pro Glu Gly Pro Glu Ala
115 120 125

Arg Ala Val Arg Ser Pro Arg Ala Cys Ala Thr Lys Phe Pro Thr Leu
130 135 140

Leu Ser Gln Gly Leu Leu Phe Val Trp Pro Asp Glu Asn Gly Trp Asp
145 150 155 160

Lys Ala Lys Ala Thr Lys Pro Pro Met Leu Pro Lys Glu Phe Asp Asp
165 170 175

Pro Ala Phe Ser Thr Val Thr Ile Gln Arg Asp Leu Phe Tyr Gly Tyr
180 185 190

Asp Thr Leu Met Glu Asn Val Ser Asp Pro Ser His Ile Glu Phe Ala
195 200 205

His His Lys Val Thr Gly Arg Arg Asp Arg Ala Lys Pro Leu Pro Phe
210 215 220

Lys Met Glu Ser Ser Gly Ala Trp Gly Tyr Ser Gly Ala Asn Thr Gly
225 230 235 240

Asn Pro Arg Ile Thr Ala Thr Phe Glu Ala Pro Cys Tyr Ala Leu Asn
245 250 255

Lys Ile Glu Ile Asp Thr Lys Leu Pro Ile Val Gly Asp Gln Lys Trp
260 265 270

Val Ile Trp Ile Cys Ser Phe Asn Ile Pro Met Ala Pro Gly Lys Thr
275 280 285

Arg Ser Ile Val Cys Ser Ala Arg Asn Phe Phe Gln Phe Thr Met Pro
290 295 300

Gly Lys Ala Trp Trp Gln Phe Val Pro Arg Trp Tyr Glu His Trp Thr
305 310 315 320

Ser Asn Leu Val Tyr Asp Gly Asp Met Ile Val Leu Gln Gly Gln Glu
325 330 335

Lys Val Phe Leu Ser Ala Ser Lys Glu Ser Ser Ala Asp Val Asn Gln
340 345 350

Gln Tyr Thr Lys Leu Thr Phe Thr Pro Thr Gln Ala Asp Arg Phe Val
355 360 365

Leu Ala Phe Arg Ala Trp Leu Arg Lys Phe Gly Asn Ser Gln Pro Asp
370 375 380

Trp Tyr Gly Ser Pro Ser Gln Asp Ala Leu Pro Ser Thr Val Leu Ser
385 390 395 400

Lys Arg Glu Met Leu Asp Arg Tyr Glu Gln His Thr Leu Lys Cys Ser
405 410 415

Ser Cys Arg Gly Ala His Lys Ala Phe Gln Thr Leu Gln Lys Val Phe
420 425 430

Met Gly Ala Thr Val Val Phe Gly Ala Thr Ser Gly Ile Pro Ala Asp
435 440 445

Val Gln Leu Arg Ile Leu Leu Gly Ala Gly Ala Leu Val Ser Ala Ala
450 455 460

Leu Ala Tyr Val Phe Tyr Asp Arg Gln Lys His Phe Val Phe Val Asp
465 470 475 480

Tyr Val His Ala Asp Ile Asp
485

<210> 37

<211> 592

<212> PRT

<213> Arabidopsis thaliana

<400> 37

Met Glu Asp Pro Asp Ile Lys Arg Cys Lys Leu Ser Cys Val Ala Thr
1 5 10 15

Val Asp Asp Val Ile Glu Gln Val Met Thr Tyr Ile Thr Asp Pro Lys
20 25 30

Asp Arg Asp Ser Ala Ser Leu Val Cys Arg Arg Trp Phe Lys Ile Asp
35 40 45

Ser Glu Thr Arg Glu His Val Thr Met Ala Leu Cys Tyr Thr Ala Thr
50 55 60

Pro Asp Arg Leu Ser Arg Arg Phe Pro Asn Leu Arg Ser Leu Lys Leu
65 70 75 80

Lys Gly Lys Pro Arg Ala Ala Met Phe Asn Leu Ile Pro Glu Asn Trp
85 90 95

Gly Gly Tyr Val Thr Pro Trp Val Thr Glu Ile Ser Asn Asn Leu Arg
100 105 110

Gln Leu Lys Ser Val His Phe Arg Arg Met Ile Val Ser Asp Leu Asp
115 120 125

Leu Asp Arg Leu Ala Lys Ala Arg Ala Asp Asp Leu Glu Thr Leu Lys
130 135 140

Leu Asp Lys Cys Ser Gly Phe Thr Thr Asp Gly Leu Leu Ser Ile Val
145 150 155 160

Thr His Cys Arg Lys Ile Lys Thr Leu Leu Met Glu Glu Ser Ser Phe
165 170 175

Ser Glu Lys Asp Gly Lys Trp Leu His Glu Leu Ala Gln His Asn Thr
180 185 190

Ser Leu Glu Val Leu Asn Phe Tyr Met Thr Glu Phe Ala Lys Ile Ser
195 200 205

Pro Lys Asp Leu Glu Thr Ile Ala Arg Asn Cys Arg Ser Leu Val Ser
210 215 220

Val Lys Val Gly Asp Phe Glu Ile Leu Glu Leu Val Gly Phe Phe Lys
225 230 235 240

Ala Ala Ala Asn Leu Glu Glu Phe Cys Gly Gly Ser Leu Asn Glu Asp
245 250 255

Ile Gly Met Pro Glu Lys Tyr Met Asn Leu Val Phe Pro Arg Lys Leu
260 265 270

Cys Arg Leu Gly Leu Ser Tyr Met Gly Pro Asn Glu Met Pro Ile Leu
275 280 285

Phe Pro Phe Ala Ala Gln Ile Arg Lys Leu Asp Leu Leu Tyr Ala Leu
290 295 300

Leu Glu Thr Glu Asp His Cys Thr Leu Ile Gln Lys Cys Pro Asn Leu
305 310 315 320

Glu Val Leu Glu Thr Arg Asn Val Ile Gly Asp Arg Gly Leu Glu Val
325 330 335

Leu Ala Gln Tyr Cys Lys Gln Leu Lys Arg Leu Arg Ile Glu Arg Gly
340 345 350

Ala Asp Glu Gln Gly Met Glu Asp Glu Glu Gly Leu Val Ser Gln Arg
355 360 365

Gly Leu Ile Ala Leu Ala Gln Gly Cys Gln Glu Leu Glu Tyr Met Ala
370 375 380

Val Tyr Val Ser Asp Ile Thr Asn Glu Ser Leu Glu Ser Ile Gly Thr
385 390 395 400

Tyr Leu Lys Asn Leu Cys Asp Phe Arg Leu Val Leu Leu Asp Arg Glu
405 410 415

Glu Arg Ile Thr Asp Leu Pro Leu Asp Asn Gly Val Arg Ser Leu Leu
420 425 430

Ile Gly Cys Lys Lys Leu Arg Arg Phe Ala Phe Tyr Leu Arg Gln Gly
435 440 445

Gly Leu Thr Asp Leu Gly Leu Ser Tyr Ile Gly Gln Tyr Ser Pro Asn
450 455 460

Val Arg Trp Met Leu Leu Gly Tyr Val Gly Glu Ser Asp Glu Gly Leu
465 470 475 480

Met Glu Phe Ser Arg Gly Cys Pro Asn Leu Gln Lys Leu Glu Met Arg
485 490 495

Gly Cys Cys Phe Ser Glu Arg Ala Ile Ala Ala Ala Val Thr Lys Leu
500 505 510

Pro Ser Leu Arg Tyr Leu Trp Val Gln Gly Tyr Arg Ala Ser Met Thr
515 520 525

Gly Gln Asp Leu Met Gln Met Ala Arg Pro Tyr Trp Asn Ile Glu Leu
530 535 540

Ile Pro Ser Arg Arg Val Pro Glu Val Asn Gln Gln Gly Glu Ile Arg
545 550 555 560

Glu Met Glu His Pro Ala His Ile Leu Ala Tyr Tyr Ser Leu Ala Gly
565 570 575

Gln Arg Thr Asp Cys Pro Thr Thr Val Arg Val Leu Lys Glu Pro Ile
580 585 590

<210> 38
<211> 520
<212> PRT
<213> Zea mays

<400> 38
Met Arg Ala Thr Ile Pro Ala Leu Ser Leu Leu Val Thr Pro Arg Leu
1 5 10 15

Pro Ser Leu Ala Val Pro Leu Ala Gly Gly Arg Leu Arg Glu Gly Gly
20 25 30

Arg Ser Arg Thr Arg Leu Arg Val Ala Ala Pro Thr Ser Val Pro Gly
35 40 45

Glu Ala Ala Glu Gln Ala Glu Pro Ser Thr Ser Ala Pro Glu Ser Gly
50 55 60

Glu Lys Phe Ser Trp Arg Asp His Trp Tyr Pro Val Ser Leu Val Glu
65 70 75 80

Asp Leu Asp Pro Ser Arg Pro Thr Pro Phe Gln Leu Leu Asn Arg Asp
85 90 95

Leu Val Ile Trp Lys Glu Pro Lys Ser Gly Glu Trp Val Ala Leu Asp
100 105 110

Asp Arg Cys Pro His Arg Leu Ala Pro Leu Ser Glu Gly Arg Ile Asp
115 120 125

Glu Thr Gly Cys Leu Gln Cys Ser Tyr His Gly Trp Ser Phe Asp Gly
130 135 140

Ser Gly Ala Cys Thr Lys Ile Pro Gln Ala Met Pro Glu Gly Pro Glu
145 150 155 160

Ala Arg Ala Val Arg Ser Pro Lys Ala Cys Ala Ile Lys Phe Pro Thr
165 170 175

Leu Val Ser Gln Gly Leu Leu Phe Val Trp Pro Asp Glu Asn Gly Trp
180 185 190

Glu Lys Ala Ala Ala Thr Lys Pro Pro Met Leu Pro Lys Glu Phe Glu
195 200 205

Asp Pro Ala Phe Ser Thr Val Thr Ile Gln Arg Asp Leu Phe Tyr Gly
210 215 220

Tyr Asp Thr Leu Met Glu Asn Val Ser Asp Pro Ser His Ile Glu Phe
225 230 235 240

Ala His His Lys Val Thr Gly Arg Arg Asp Arg Ala Arg Pro Leu Thr
245 250 255

Phe Arg Met Glu Ser Ser Gly Ala Trp Gly Tyr Ser Gly Ala Asn Ser
260 265 270

Gly Asn Pro Arg Ile Thr Ala Thr Phe Glu Ala Pro Cys Tyr Ala Leu
275 280 285

Asn Lys Ile Glu Ile Asp Thr Lys Leu Pro Ile Phe Gly Asp Gln Lys
290 295 300

Trp Val Ile Trp Ile Cys Ser Phe Asn Ile Pro Met Ala Pro Gly Lys
305 310 315 320

Thr Arg Ser Ile Val Cys Ser Ala Arg Asn Phe Phe Gln Phe Thr Met
325 330 335

Pro Gly Lys Ala Trp Trp Gln Leu Val Pro Arg Trp Tyr Glu His Trp
340 345 350

Thr Ser Asn Leu Val Tyr Asp Gly Asp Met Ile Val Leu Gln Gly Gln
355 360 365

Glu Lys Ile Phe Leu Ala Ala Thr Lys Glu Ser Ser Thr Asp Ile Asn
370 375 380

Gln Gln Tyr Thr Lys Ile Thr Phe Thr Pro Thr Gln Ala Asp Arg Phe
385 390 395 400

Val Leu Ala Cys Arg Thr Trp Leu Arg Lys Phe Gly Asn Ser Gln Pro
405 410 415

Glu Trp Phe Gly Asn Pro Thr Gln Glu Ala Leu Pro Ser Thr Val Leu
420 425 430

Ser Lys Arg Glu Met Leu Asp Arg Tyr Glu Gln Leu Ser Leu Lys Cys
435 440 445

Ser Ser Cys Lys Gly Ala Tyr Asn Ala Phe Gln Asn Leu Gln Lys Val
450 455 460

Phe Met Gly Ala Thr Val Val Cys Cys Ala Ala Ala Gly Ile Pro Pro
465 470 475 480

Asp Val Gln Leu Arg Leu Leu Ile Gly Ala Ala Ala Leu Val Ser Ala
485 490 495

Ala Ile Ala Tyr Ala Phe His Glu Leu Gln Lys Asn Phe Val Phe Val
500 505 510

Asp Tyr Val His Ala Asp Ile Asp
515 520