Q1 Problem 13.1.1 Show that $p(x) = x^3 + 9x + 6$ is irreducible in $\mathbb{Q}[x]$. Let θ be a root of p(x). Find the inverse of $1 + \theta$ in $\mathbb{Q}(\theta)$.

Since $p(x) \in \mathbb{Z}[x]$ is monic with $3 \mid 9$ and $3 \mid 6$, but $3^2 = 9 \nmid 6$, Eisenstein's Criterion for $\mathbb{Z}[x]$ tells us that p(x) is irreducible in $\mathbb{Q}[x]$. Applying the Euclidean algorithm to p(x) and x + 1, we find

$$p(x) = x^3 + 9x + 6 = (x+1)(x^2 - x + 10) - 4.$$

Then in $\mathbb{Q}(\theta) \cong \mathbb{Q}[x]/(p(x))$, we have $p(\theta) = 0$, so

$$0 = (\theta + 1)(\theta^2 - \theta + 10) - 4.$$

Hence, $(1+\theta)^{-1} = (\theta^2 - \theta + 10)/4$.

Q2 Problem 13.2.7 Prove that $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2},\sqrt{3})$ [one is obvious, for the other consider $(\sqrt{2}+\sqrt{3})^2$, etc.]. Conclude that $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}]=4$. Find an irreducible polynomial satisfied by $\sqrt{2}+\sqrt{3}$.

Clearly, $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$. To show the opposite inclusion, it suffices to show that $\sqrt{2}, \sqrt{3} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Let $a = \sqrt{2} + \sqrt{3}$, then

$$\frac{1}{2}(a^2 - 5)a - 2a = \frac{1}{2}(2 + 2\sqrt{2}\sqrt{3} + 3 - 5)a - 2a$$
$$= \sqrt{2}\sqrt{3}(\sqrt{2} + \sqrt{3}) - 2a$$
$$= 2\sqrt{3} + 3\sqrt{2} - 2\sqrt{2} - 2\sqrt{3}$$
$$= \sqrt{2}.$$

Hence, $\sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$, which also gives us $\sqrt{3} = a - \sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Therefore, $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

We now have that

$$\mathbb{O}(\sqrt{2} + \sqrt{3}) = \mathbb{O}(\sqrt{2}, \sqrt{3}) = (\mathbb{O}(\sqrt{2}))(\sqrt{3}),$$

SO

$$[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = [(\mathbb{Q}(\sqrt{2}))(\sqrt{3}) : \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2[(\mathbb{Q}(\sqrt{2}))(\sqrt{3}) : \mathbb{Q}(\sqrt{2})].$$

The degree of $\sqrt{3}$ in the field $\mathbb{Q}(\sqrt{2})$ is the degree of a minimal polynomial of $\sqrt{3}$ in the same field. We will show that x^2-3 is a minimal polynomial for $\sqrt{3}$. Since x^2-3 is monic and has $\sqrt{3}$ as a root, then it remains to show that it is irreducible in $\mathbb{Q}(\sqrt{2})$. Since its degree is 2, then it is irreducible in $\mathbb{Q}(\sqrt{2})$ if and only if it has a root in $\mathbb{Q}(\sqrt{2})$. Suppose for contradiction that $a+b\sqrt{2}$ is such a root, i.e., $a,b\in\mathbb{Q}$. Then

$$3 = (a + b\sqrt{2})^2 = a^2 + 2ab\sqrt{2} + 2b^2.$$

If a=0, then $\sqrt{3}=b\sqrt{2}$. In which case we would have $\sqrt{6}=2b$, implying that $\sqrt{6}$ is rational, which is not the case. If b=0, then $\sqrt{3}=a$ is a rational number, which is also not the case. So both a and b are nonzero, implying that

$$\frac{3 - a^2 - 2b^2}{2ab} = \sqrt{2}$$

is a rational number, which is not the case. Therefore, x^2-3 has no roots, and is therefore irreducible, in $\mathbb{Q}(\sqrt{2})$. Hence,

$$[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = 2[(\mathbb{Q}(\sqrt{2}))(\sqrt{3}) : \mathbb{Q}(\sqrt{2})] = 4.$$

We know that such a polynomial in $\mathbb{Q}[x]$ must be of degree 4, so we consider

$$(\sqrt{2} + \sqrt{3})^4 = 49 + 20\sqrt{6}.$$

Also knowing that $(\sqrt{2} + \sqrt{3})^2 = 5 + 2\sqrt{6}$, then we see that

$$(\sqrt{2} + \sqrt{3})^4 - 10(\sqrt{2} + \sqrt{3})^2 = -1.$$

So the polynomial $x^4 - 10x^2 + 1 \in \mathbb{Q}[x]$ is monic, irreducible, and has $\sqrt{2} + \sqrt{3}$ as a root.

Q3 Let K/F be a field extension and $\alpha_1, \ldots, \alpha_n \in K$. Show that

$$F(\alpha_1,\ldots,\alpha_n)=(F(\alpha_1,\ldots,\alpha_{n-1}))(\alpha_n).$$

(The LHS is the subfield generated by $\alpha_1, \ldots, \alpha_n$ over F. The RHS is the subfield generated by α_n over the field $F(\alpha_1, \ldots, \alpha_{n-1})$.

Proof. By definition, F(S) is the intersection of all subfields of K containing $F \cup S$. So

$$F \cup \{\alpha_1, \dots, \alpha_{n-1}\} \subseteq F(\alpha_1, \dots, \alpha_{n-1}) \subseteq (F(\alpha_1, \dots, \alpha_{n-1}))(\alpha_n).$$

And since $\alpha_n \in (F(\alpha_1, \dots, \alpha_{n-1}))(\alpha_n)$, we conclude that

$$F \cup \{\alpha_1, \dots, \alpha_n\} \subseteq (F(\alpha_1, \dots, \alpha_{n-1}))(\alpha_n).$$

And since $(F(\alpha_1,\ldots,\alpha_{n-1}))(\alpha_n)$ is a subfield of K, then this tells us that

$$F(\alpha_1,\ldots,\alpha_n)\subseteq (F(\alpha_1,\ldots,\alpha_{n-1}))(\alpha_n).$$

Now since $F(\alpha_1, \ldots, \alpha_n)$ is a subfield of K containing F and the elements $\alpha_1, \ldots, \alpha_{n-1}$, then we have the inclusion

$$F(\alpha_1, \ldots, \alpha_{n-1}) \subseteq F(\alpha_1, \ldots, \alpha_n).$$

And since $F(\alpha_1, \ldots, \alpha_n)$ also contains α_n , then in fact

$$(F(\alpha_1,\ldots,\alpha_{n-1}))(\alpha_n)\subseteq F(\alpha_1,\ldots,\alpha_n),$$

giving us equality.

Q4 Let K/F be a field extension and $\alpha, \beta \in K$. Suppose that $[F(\alpha) : F]$ and $[F(\beta) : F]$ are both finite.

(a) Show that
$$[F(\alpha):F] \ge [F(\alpha,\beta):F(\beta)]$$
.

Proof. Since $[F(\alpha):F] < \infty$, then α is algebraic over F and a minimal polynomial $m_{\alpha,F}(x) \in F[x]$. Since $F \subseteq F(\beta)$, then we also have $m_{\alpha,F}(x) \in (F(\beta))[x]$, so $m_{\alpha,F(\beta)}(x) \mid m_{\alpha,F}(x)$, giving us

$$[F(\alpha,\beta):F(\beta)] = [(F(\beta))(\alpha):F(\beta)] = \deg m_{\alpha,F(\beta)}(x) \le \deg m_{\alpha,F}(x) = [F(\alpha):F].$$

(b) Show that $[F(\alpha, \beta) : F] \leq [F(\alpha) : F][F(\beta) : F]$, and the equality holds if $[F(\alpha) : F]$ and $[F(\beta) : F]$ are coprime.

Proof. Since the result of (a) holds for both α and β and the degree of a field extension is always at least 1, then we have

$$[F(\alpha, \beta) : F] \le [F(\alpha) : F][F(\beta) : F].$$

Suppose $n = [F(\alpha) : F]$ and $m = [F(\beta) : F]$ are coprime. Then since $F(\alpha, \beta)/F$ is a finite extension and $F(\alpha)$ and $F(\beta)$ are subfields, then both n and m divide $k = [F(\alpha, \beta) : F]$. And since they are coprime, $nm \mid k$. And since $k \leq nm$, then we must have k = nm.

(c) Given
$$\alpha_1, \ldots, \alpha_n \in K$$
 with $[F(\alpha_j) : F], 1 \le j \le n$, all finite, show that
$$[F(\alpha_1, \ldots, \alpha_n) : F] \le [F(\alpha_1) : F][F(\alpha_2) : F] \cdots [F(\alpha_n) : F].$$

Proof. For induction on n, (b) gives us the base case. Now suppose the inequality holds for n-1. We first see that

$$[(F(\alpha_1,\ldots,\alpha_{n-1})(\alpha_n):F(\alpha_1,\ldots,\alpha_{n-1})]\leq [F(\alpha_n):F],$$

since the minimal polynomial of α_n in F is also a polynomial in $F(\alpha_1, \ldots, \alpha_{n-1})$ with α_n as a root. Hence, the minimal polynomial of α_n in the latter field must have degree at most $[F(\alpha_n):F]$, which is to say that the above inequality holds. With this and the inductive hypothesis, we find

$$[F(\alpha_{1},...,\alpha_{n}):F] = [(F(\alpha_{1},...,\alpha_{n-1})(\alpha_{n}):F]$$

$$= [F(\alpha_{1},...,\alpha_{n-1}):F][(F(\alpha_{1},...,\alpha_{n-1})(\alpha_{n}):F(\alpha_{1},...,\alpha_{n-1})]$$

$$\leq [F(\alpha_{1}):F] \cdots [F(\alpha_{n-1}):F][F(\alpha_{n}):F].$$