Exercícios de Análise Matemática III/Cálculo Diferencial e Integral III (DM e DF - 2019/20)

Capítulo I - Equações Diferenciais (2^a parte)

Séries de Fourier e EDPs

- 1. Usando o método de separação de variáveis, determine a solução u(t,x) do problema $\begin{cases} u_t = 3u_{xx}, & 0 \le x \le \pi, t \ge 0 \\ u(t,0) = u(t,\pi) = 0, & t \ge 0 \\ u(0,x) = \sin x + \sin(3x), & 0 \le x \le \pi. \end{cases}$
- 2. Esboce o gráfico de funções $f:\mathbb{R}\to\mathbb{R}$ periódicas de período 2, se possível contínuas, tais que:
 - (i) $f(x) = x^2$ em [0, 2[; (ii) $f(x) = x^2$ em] 1, 1[; (iii) $f(x) = \sin(\pi x/2)$ em [0, 2[; (iv) $f(x) = \sin(\pi x/2)$ em] 1, 1[; (v) $f(x) = \sin(\pi x/4)$ em] 1, 1[; (vi) f(x) = x(2 x) em [0, 2[; (v) f(x) = 0 em] 1, 0[, $f(x) = \sin(\pi x)$ em [0, 1[.
- 3. Se $f \in SC(\mathbb{R})$, i.e., f é seccionalmente contínua em \mathbb{R} , e periódica de período T, mostre que

$$\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx, \quad \forall a \in \mathbb{R}.$$

(Sugestão. Com $\int_a^{a+T} = \int_a^T + \int_T^{a+T}$, efectue uma mudança de variável na 2^a parcela.)

- 4. Seja a(t) uma função contínua em \mathbb{R} e T-periódica. Verifique que as soluções da EDO y' + a(t)y = 0 são (todas) T-periódicas se e só se $\int_0^T a(t) \, dt = 0$.
- 5. (a) Determine a série de Fourier de $f(x)=\left\{\begin{array}{ll} -1, & -1\leq x<0,\\ 1, & 0\leq x\leq 1, \end{array}\right.$ e indique qual é a sua função soma.
 - (b) Determine a série de Fourier de $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = \begin{cases} 1, & -2 < x < 0, \\ x, & 0 < x < 2, \end{cases}$ e f é periódica de período 4. Sendo S(x) a soma da série, calcule S(0), S(-2), S(4), S(3), S(5), S(7/2), S(9/2), S(-15/2), S(100/3).
- 6. A série de Fourier da função x^2 definida em $[-\pi,\pi]$ é $x^2 \sim \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} \cos(nx)$.
 - a) Use esta série para mostrar que $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$
 - b) Sendo P_2 o polinómio de Fourier de ordem 2 de $f(x) = x^2$ em $[-\pi, \pi]$, escreva P_2 e determine o erro quadrático total de P_2 relativo a f no intervalo $[-\pi, \pi]$.
 - c) Escreva a série de Fourier de x^2 em [-1, 1].
 - d) Sendo a_0, a_n, b_n os coeficientes de Fourier de x^2 em $[-\pi, \pi]$, determine a_0, a_5, b_7 .

1

- 7. Determine as séries de cossenos e de senos das seguintes funções e indique as respectivas funções soma: a) 1 em [0,1]; b) x em [0,1]; c) $\sin x$ em $[0,\pi]$.
- 8. Seja $f(x) = 1 + |x 2k|, \ \forall x \in [2k 1, 2k + 1[, k \in \mathbb{Z}.$
 - (a) Prove que $f(x) = \frac{3}{2} \sum_{n>1} \frac{4}{(2n-1)^2 \pi^2} \cos((2n-1)\pi x), \ x \in \mathbb{R}.$
 - (b) Usando a alínea anterior, calcule: (i) $\sum_{n\geq 1} \frac{1}{(2n-1)^2}$; (ii) $\sum_{n\geq 1} \frac{1}{(2n-1)^4}$.
- 9. Usando a fórmula de D'Alembert, encontre a solução u = u(t, x) em \mathbb{R}^2 da **equação** das ondas $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$, $x \in [0, L]$, $t \in \mathbb{R}$ com condições iniciais: (i) u(0, x) = 0, $u_t(0, x) = x$; (ii) u(0, x) = 1, $u_t(0, x) = \cos x$.
- 10. Considere o rectângulo $R = [0,a] \times [0,b] \subset \mathbb{R}^2$ (a,b>0). Pelo método de separação de variáveis, encontre soluções $u(x,y) \not\equiv 0$ da forma u(x,y) = X(x)Y(y) da **equação de Laplace** em R com condições de fronteira nulas em três lados de R, expressas pelo sistema

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, & (x, y) \in R \\ u(x, 0) = u(x, b) = 0, & x \in [0, a], \\ u(0, y) = 0, & y \in [0, b]. \end{cases}$$

11. Usando separação de variáveis e séries de Fourier, resolva $\begin{cases} u_t = u_{xx}, & 0 \le x \le 1, t \ge 0 \\ u(t,0) = u(t,1) = 0, & t \ge 0 \\ u(0,x) = x(1-x), & 0 \le x \le 1, \end{cases}$ apresentando o resultado na forma de série.

Algumas fórmulas úteis

Série de Fourier de $f \in SC([-L, L])$:

$$f(x)$$
 $\sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\frac{n\pi}{L}x) + b_n \sin(\frac{n\pi}{L}x).$

Erro quadrático E: para P_N polinómio de Fourier de ordem N de $f \in SC([-L, L])$:

$$E^2 := ||f - P_N||^2 = ||f||^2 - L\left(\frac{a_0^2}{2} + \sum_{k=1}^N (a_k^2 + b_k^2)\right).$$

Fórmula de D'Alembert:

$$u(t,x) = \frac{1}{2} [f(x-ct) + f(x+ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) \, ds, \quad (t,x) \in \mathbb{R}^2.$$