

Chapter 13

Digital Signatures

Digital Signature Properties

- Verify the author and time of the signature
- Authenticate the contents at the time of the signature
- It must be verifiable by third parties to resolve disputes
- Note: design of digital signature is easier than public-key encryption

Digital Signature Model

Attacks

- Key-only attack
 - The attacker (C) only knows A's public key
- Known message attack
 - C is given a set of messages and their signatures
- (Adaptive) chosen message attack
 - C can request signatures of his chosen messages from A
 - It is adaptive if a new requested message depends previous requested results

Types of Forgery

- Total break
 - C determines A's private key
- Universal forgery
 - C finds an efficient signing algorithm to construct signatures for arbitrary messages
- Selective forgery
 - C forges a signature for a particular message chosen by A
- Existential forgery
 - C forges a signature for at least one message; C has no control over the message

RSA Digital Signature

- No global parameters
- Each user A
 - Choose two large primes p and q and compute n=pq
 - Choose e with gcd(e, (p-1)(q-1))=1
 - Verification (public) key: PU_A = (e, n)
 - Compute $d = e^{-1} \mod (p-1)(q-1)$
 - Signing (private) key: PR_A = (d, n)
- RSA can be used for both encryption and digital signature. But, we must not use the same key pair for both

RSA: Sign and Verify

- Let H be a cryptographic hash function
- Sign M with $PR_A = (d, n) \rightarrow (M, s)$
 - Compute m=H(M) and s=m^d mod n
- Verify (M, s) with $PU_A = (e, n)$
 - Compute m = H(M) and m' = se mod n
 - Passed if and only m == m'

RSA: Toy Example

- $PU_A = (7, 143), PR_A = (103, 143)$
- Let M="This is a test for RSA signature".
- Assume H(M) = 35
- Sign: $s = H(M)^{103} \mod 143 = 74$
- Verify: (M, 74)
 - Pass: $74^7 \mod 143 = 35$
 - Not pass (wrong signature): 73^7 mod $143 = 83 \neq 35$
 - Not pass (wrong public key): 74¹⁷ mod 143 =68 ≠
 35

RSA: Large Numbers

- **p**=1213107243921127189732367153161244042847242763370141092563454931230196437304 2085619324197365322416866541017057361365214171711713797974299334871062829803541
- **q**=1202752425547874888595622079373451212873338780368207543365389998395517985098 8797899869146900809131611153346817050832096022160146366346391812470987105415233
- n=1459067680075833232301869393490706352924018723753571643995818710198734387990 0535893836957140267014980212181808629246742282815702292207674690654340122488967 2472407926969987100581290103199317858753663710862357656510507883714297115637342 788911463535102712032765166518411726859837988672111837205085526346618740053
- φ(n)=14590676800758332323018693934907063529240187237535716439958187101987343879
 9005358938369571402670149802121818086292467422828157022922076746906543401224889
 6483138112322799663173013977778523653015478482734788712972220585874571528916064
 59269718119268971163555070802643999529549644116811947516513938184296683521280
- e = 65537
- d=9489425009274444368228545921773093919669586065884257445497854456487674839629 8183909349419732628796167979706089172836798754993315741611138540888132754881105 8824719307758252727843790650401568062342355006724004246666565423238350292221549 3623289472138866445818789127946123407807725702626644091036502372545139713

RSA: Real

-----BEGIN PUBLIC KEY-----

MIGfMAoGCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCT21CXL6L/w4rXj2F9Yp+obexZU7UGXkWcN/mjApDjhx3xbHoJPbRCoanLzxCtYgUoQ/LiPOowntYDWtZisIMNRCb5OhrcW5gg+eoz3N836iYlhV9HYbGBDeyd/Qvbu1foMWYgqLtEuFool7DO+WL4FLABNDQRB8KZ1a1HZA+VZQIDAQAB----END PUBLIC KEY-----

----BEGIN RSA PRIVATE KEY-----

MIICXQIBAAKBgQCT21CXL6L/w4rXj2F9Yp+obexZU7UGXkWcN/mjApDjhx3xbHoJPbRCoanLzxCtY gUoQ/LiPOowntYDWtZisIMNRCb5OhrcW5gg+eoz3N836iYlhV9HYbGBDeyd/Qvbu1foMWYgqLtEu FooI7DO+WL4FLABNDQRB8KZ1a1HZA+VZQIDAQABAoGBAIoIyMG9lbxjmF9vi+2fEnl31NeMCgOu DrYpinycKPpvWvd7opiH/BcGv8EBnYXVFuO44Mg+l3omNTvz/MUcW5PoWL2UjCljdyKHUHjFZNRr +bQPiq6pKwscPXH/z9aOakPJgo1URtFW4ecIc9AdRFngdllY4zRC2LVKMpMoEWYhAkEA3sIUiX9IT LpCZxezAX41Nqlf7owxkx3QB+KdTySMj8omxz8D7zwtHKGKhkzKADRtoM65NqHYY1YrboF8ucQ QLQJBAKnmSEcPeKeldXMAwwTKbKoZFsX8GBz1kpVMIEOeZdG+jNV4SXD1X7u3Osc2AyBJ3wr1E M6zL8SUK4XJTpiRpRkCQQCvKuueJIbrVTPqrRahIOOkM+5rT6RXAQTVflejp6AhXPOVi7WDP/RUY 6twRyY4nQBphMDZ9MoX5ePG2V3BDiiNAkBUUYo7Yg1CPlZsrcsbfl6o1Ye82GDrNmD6IV690EW9 83CXnOvt2Ikbc1MDfOXOR3sfSAKAYuNpDxQOgJq2Eoo5AkBXoYSo5y5ii22BAljGrZ4v/RJ8K+oC6y5 oWBTKtoN8OR6tkpGLp/UCDMuRZJV6BvM3I77yBrsrAlzgzT/D5KrC

----END RSA PRIVATE KEY-----

RSA: RSA with SHA-256

- M = "Hello!"
- S =
 YeLxe3GMCpxom65Gn/L3DURbPx/omyS/5kJmrw3t/x98
 jgr8+2CaGxUsWUUZhPeRTI8PW82L58N7botehkHWRa
 gxkVuh2G8xnZS2Py44ytntiwLCAl3ggBoqhtqcGxP1MiP7
 frUBHuplh8/p9XGwd5v5cRNJ1KNjSbwoppPkHO8=

ElGamal Digital Signature

- Global parameters
 - prime number q
 - α : a primitive root of q, that is, α 's order is q
- Each user A generates their key
 - Chooses a secret key: 1 < X_A < q-1
 - $PR_A = (q, \alpha, X_A)$
 - Compute $Y_A = \alpha^{X_A} \mod q$
 - $PU_A = (q, \alpha, Y_A)$

ElGamal: Sign and Verify

- Let H be a cryptographic hash function
- Sign M with $PR_A = (q, \alpha, X_A) \rightarrow (M, s_1, s_2)$
 - Compute m=H(M)
 - Randomly choose k, 1<k<q and gcd(k, q-1)=1
 - Compute $s_1 = \alpha^k \mod q$ and $s_2 = k^{-1}(m-X_A s_1) \mod q-1$
- Verify (M, s_1 , s_2) with $PU_A = (q, \alpha, Y_A)$
 - Compute m = H(M)
 - Pass if and only if $\alpha^m \equiv Y_A^{S_1} s_1^{S_2} \pmod{q}$

ElGamal: Correctness

•
$$Y_A^{S_1} s_1^{S_2} \mod q$$

$$= \alpha^{X_A S_1} \alpha^{k[k^{-1}(m - X_A S_1) \mod (q - 1)]} \mod q$$

$$= \alpha^m \mod q$$

ElGamal: Toy Example

- $q=19, \alpha=10$
- PR=(19, 10, 16), PU = (19, 10, 4)
- H(M) = 14
- Sign(PR, M) \rightarrow (10⁵ mod 19, 5⁻¹(14-16x3) mod 18)=(3, 4)
 - k=5, 5⁻¹ mod 18=11
- Verify(PU, M, s₁, s₂)
 - $\alpha^{m} \mod q = 10^{14} \mod q = 16$
 - $Y_A^{s_1} s_1^{s_2} \mod q = 4^3 3^4 \mod 19 = 16$

ElGamal: Security

- Based on discrete logarithm problem
- Problem: find (α, s_1, s_2) for $\alpha^m \equiv Y_A^{s_1} s_1^{s_2} \pmod{q}$
 - Select (m, s₁) and solve s₂ for $\alpha^m = Y_A^{s_1} s_1^{s_2} \pmod{q}$
 - Select (m, s₂) and solve s₁ for $\alpha^m = Y_A^{S_1} s_1^{S_2} \pmod{q}$
 - Select (s_1, s_2) and solve m for $\alpha^m = Y_A^{s_1} s_1^{s_2} \pmod{q}$

Schnorr Signature

- Global parameters: (p, q, a)
 - Choose primes p and q, where q is a factor of p-1.
 - Typically, *p* is a 1024-bit number, and *q* is a 160-bit number
 - Choose $a \neq 1$, with $a^q \mod p = 1$
- Private (signing) key: PR_A = (p, q, a, s)
 - Choose a number s, 1<s<q-1
- Public (verification) key: PU_A = (p, q, a, v)
 - Compute v=a^{-s} mod p

Schnorr: mathematics

- p-1 = kq, where p and q are both prime
- $G = Z_p^*$: a multiplicative group with the operation on "mod p". |G|=p-1
- G_q : a subgroup of G with $|G_q|=q$.
 - Operation: "mod p"
 - $G_q = \{g^k \mod p : g \in G\}$
 - Every element 'a' in G_q
 - a^q = 1 mod p
 - a^b mod p=a^{b mod q} mod p
 - Every element a, $a \neq 1$, is a generator of G_q .

Schnorr: Sign and Verify

- Let H be a cryptographic hash function
 - $\{0,1\}^* \rightarrow \{1, 2, ..., q-1\}$
- Sign M with $PR_A = (p, q, a, s) \rightarrow (e, y)$
 - Randomly choose r, o < r < q
 - Compute x=a^r mod p
 - Compute e=H(M||x) and y=(r+se) mod q
- Verify (M, e, y) with $PU_A = (p, q, a, v)$
 - Compute x'=ayve mod p
 - Pass if and only if e == H(M||x')
- Shorter signature: |e|+|y| = 2|q| = 320 bits

Schnorr signature: Correctness

```
a<sup>y</sup>v<sup>e</sup> mod p
=
```

NIST Digital Signature: DSS

- NIST, FIPS 186
- A variant of Schnorr digital signature
 - Patent was given to Schnorr, but has expired now.
- The latest version, FIPS 186-3
 - Incorporates digital signature algorithms based on RSA and on elliptic curve cryptography

Global Public Key Components

- p prime number where 2^{L-1} $for <math>512 \le L \le 1024$ and L a multiple of 64 i.e., bit length of between 512 and 1024 bits in increments of 64 bits
- q prime divisor of (p-1), where $2^{N-1} < q < 2^N$ i.e., bit length of N bits
- $g = h^{(p-1)/q} \mod p$ where h is any integer with 1 < h < (p-1)such that $h^{(p-1)/q} \mod p > 1$

User's Private Key

x random or pseudorandom integer with 0 < x < q

User's Public Key

$$y = g^{\chi} \mod p$$

User's Per-Message Secret Number

k = random or pseudorandom integer with 0 < k < q

Signing

$$r = (g^k \bmod p) \bmod q$$

$$s = \lceil k^{-1} \big(\mathsf{H}(M) + xr \big) \rceil \bmod q$$

Signature =
$$(r, s)$$

Verifying

$$w = (s')^{-1} \bmod q$$

$$u_1 = [H(M')w] \mod q$$

$$u_2 = (r')w \mod q$$

$$v = \lceil (g^{u_1}y^{u_2}) \bmod p \rceil \bmod q$$

TEST:
$$v = r'$$

M = message to be signed H(M) = hash of M using SHA-1

M', r', s' = received versions of M, r, s

(a) Signing

(b) Veriging

DSS: Correctness

```
• Given (M, r, s), check
(gu1yu2 mod p) mod q
= (g^{H(M)w} g^{xrw} \mod p) \mod q
= (g^{w(H(M)+xr)} \mod p) \mod q
= (g^{k \mod q} \mod p) \mod q
= (g^k \mod p) \mod q
= r
```

DSS: Example

Key generation:

- $p=67=6\times11+1, q=11$
- $g=2^{(p-1)/11} \mod p=3^6 \mod 67=59$
- x=5, $y=g^x \mod p=62$
- PU=(p, q, g, y) = (67, 11, 59, 62)
- PR=(p, q, g, x) = (67, 11, 59, 5)

Signing

- Let H(M)=4, k=3
- r=g^k mod p mod q=59³ mod 67 mod 11=2
- $s=k^{-1}(H(M)+rx) \mod q=3^{-1}(4+2\times 5) \mod 11=1$
- (r,s)=(2,1)

- Verification (r', s')=(2, 1)
 - $w=s^{-1} \mod q = 1^{-1} \mod 11 = 1$
 - $u_1 = H(M) \times w \mod q = 4 \times 1 \mod 11 = 4$
 - $u_2 = r' \times w \mod q = 2 \times 1 \mod 11 = 2$
 - $v=g^{u_1} \times y^{u_2} \mod p \mod q$ = $59^4 \times 62^2 \mod 67 \mod 11$ = 2
 - Since v=r', (2,1) is a signature to H(M)

DSS: Security

- Based on computing discrete logarithm over a subgroup of size q: log_g y mod p.
 Note: ord_p(g)=q
- The per-message secret k cannot be used twice. Otherwise, given two signatures (r_1,s_1) for M_1 and (r_2,s_2) for M_2 , we have
 - $s_1=k^{-1}(H(M_1)+r_1x) \mod q$
 - $s_2=k^{-1}(H(M_2))+r_2x) \mod q$
 - Solve $x=(s_2H(M_1)-s_1H(M_2))/(r_2s_1-r_1s_2) \mod q$

RSA-PSS

- RSA drawback: no randomization in signature
 - For a signing key PR_A: One message → one signature
- RSA Probabilistic Signature Scheme, 2009, FIPS 186-3
- Introduce a randomization process
- Security is shown to be closely related to the security of the RSA algorithm itself

Message Encoding

RSA-PSS: Sign and Verify

- Treat EM as un-signed binary integer m
- Sign m with PR= $(d, n) \rightarrow s$
 - Compute s = m^d mod n
- Verfiy (M, s) with PU = (e, n)
 - Compute m' = se mod n
 - Check whether m'=m

Figure 13.7 RSA-PSS EM Verification

Summary

- Digital signatures
 - Properties
 - Attacks and forgeries
 - Digital signature requirements
 - Direct digital signature
- RSA digital signature
- ElGamal digital signature scheme
- Schnorr digital signature scheme

- NIST digital signature algorithm
 - The DSA approach
 - The digital signature algorithm
- RSA-PSS Digital Signature
 Algorithm
 - The signing operation
 - Signature verification