EletroMagnetismo

MEFT 2020-2021

Prof. Pedro Abreu pedro.t.abreu@técnico.ulisboa.pt

22ª Aula

Resumo das equações de Fresnel e coeficientes r e t;

Troca de fase na reflexão;

Pode uma onda não ser refletida nem transmitida?

Energia refletida e Reflectância R;

Energia transmitida e Transmitância T;

Conservação da Energia;

Expressão de R,T em função de γ_i , R_\perp , R_\parallel , T_\perp , T_\parallel .

Há duas atitudes para encarar a Natureza: como se não houvessem milagres, e como se tudo fosse um milagre.

Albert Einstein [Prémio Nobel 1921]

Coeficientes de Fresnel n₂ > n₁

Coeficientes de Fresnel n₁ > n₂

22° Aula Teórica, 2°F, 24/Maio, #38+ Z = E x Fi = H E x B = Ho E x B Oi! Drie $\frac{2}{2} = \left| \frac{1}{2} \right| \stackrel{?}{e_{k}} = \frac{1}{2} \stackrel{?}{E_{0}} \stackrel{?}{Cos} \stackrel{?}{(...)} \stackrel{?}{e_{k}}$ $\frac{1}{2} = \left| \frac{1}{2} \right| \stackrel{?}{e_{k}} = \frac{1}{2} \stackrel{?}{E_{0}} \stackrel{?}{$ ti=Poténcia incidente=A. I. cos Oi (=</f> Pr = v refletida=A·Invoson Pt = " transmitida = A-Itcos Ot. DEFINE-SE: REFLETANCIA = Pr. AIROSOR = In Eon = re
REFLETANCIA = Pr. AIROSOR II Eoi = re TRANSMITÂNCIA = T = Pt = AItCOSOt = ItCOSOt M2 COSOt Fot AI; COSO; I M4 COSO; E0; $e/\frac{\text{Est}}{\text{Esi}} = t^2 = 5$ $f = t^2$ $\frac{M_2 \cos \theta_t}{M_1 \cos \theta_i}$ Se 0;>0 (e <0; RT) => mz = sen0; = n1 = sen0; = $2 \quad T = t^2 \cdot \frac{\tan \theta_i}{\tan \theta_t} \quad Se = DT = t^2 \frac{m_2}{m_1}$

$$t = \underbrace{\text{Eot}}_{\text{Eoi}} \quad R = \underbrace{\text{Eon}}_{\text{Eoi}} \quad \underbrace{\text{Eoi}_{\text{Art}}}_{\text{Art}} \underbrace{\text{Foi}_{\text{Art}}}_{\text{Art}} \underbrace{\text{Ar$$

Refletância e Transmitância $n_2 > n_1$

Refletância e Transmitância

$$n_1 > n_2$$

Refletância e Transmitância

$$R \neq R_{\perp} + R_{\parallel}$$

Lembrete:
$$R \neq R_{\perp} + R_{\parallel}$$
 $T \neq T_{\perp} + T_{\parallel}$

mas com
$$\gamma_i = \arctan \frac{E_{0i\perp}}{E_{0i\parallel}}$$
 $\left(0 < \theta_i < \frac{\pi}{2}\right)$

$$\left(0<\theta_i<\frac{\pi}{2}\right)$$

Plano de incidência

$$(\vec{k}_i, \vec{n})$$

 $R = R_{\parallel} \cos^2 \gamma_i + R_{\perp} \sin^2 \gamma_i$

Plano de Polarização

$$T = T_{\parallel} \cos^2 \gamma_i + T_{\perp} \sin^2 \gamma_i$$

(mas so
$$\theta_i = 0$$
, $R = R_1 = R_1$, $T = T_1 = T_1$)

Re $E_{0i} = 0$, $E_{0i} = R_1$, $E_{0i} = R_1$, $E_{0i} = R_2$, $E_{0i} = R_2$, $E_{0i} = R_1$, $E_{0i} = R_2$, E_{0i