Asymmetric

Bob

... encryption

Encryption: c = Enc(k, m)Decryption: m = Dec(k,c)**Correctness:** $\forall m \in \mathcal{M}, k \in \mathcal{K}$

Dec(k,Enc(k,m)) = m

Shorter keys

Key establishment '

Computational cost & speed

Private keys never

leave the owner

 \underline{m}

Alice

Alice

Enc

Dec

Encryption: $c = \text{Enc}(pk_B, m)$ Decryption: $m = Dec(sk_R, c)$

Correctness: $\forall m \in \mathcal{M}$, $(pk_B, sk_B) \in \mathcal{K}$ $Dec(sk_{B}, Enc(pk_{B}, m)) = m$

Terminology

k: symmetric key pk: public key

c: ciphertext sk: private (secret) key Enc: encryption alg. (pk,sk): public-private Dec: decryption alg. key pair

Cryptanalysis

m: plaintext

No. of keys

 $\boldsymbol{\mathcal{C}}$

for N bi-directional communicating parties

Each: N-1 [k]

Total: N(N-1)/2 [k]

Each: 1 [sk], N-1 [pk] VS.

Total: N [sk], N [pk]

Pages on SecuRity by Ruxandra F. Olimid