Small Open Economy Extension (IRBC)

Macro II - Fluctuations - ENSAE, 2024-2025

Pablo Winant

2025-03-19

Introduction and Basic Facts

What are the classical reasons to open economy to trade?

trade integration

- trade integration
 - taste for variety

- trade integration
 - taste for variety
 - comparative advantage

- trade integration
 - taste for variety
 - comparative advantage
- financial integration

- trade integration
 - taste for variety
 - comparative advantage
- financial integration
 - smooth shock / insurance

From RBC to IRBC

RBC models have been very successful at matching Business Cycles

- (temporary) victory against keynesian view that short term fluctuations result from demand shocks
- so successful that facts at odd with theoretical predictions have been called "puzzles"

From RBC to IRBC

RBC models have been very successful at matching Business Cycles

- (temporary) victory against keynesian view that short term fluctuations result from demand shocks
- so successful that facts at odd with theoretical predictions have been called "puzzles"

It didn't take long before the same methodology was applied to International Business Cycles

From RBC to IRBC

RBC models have been very successful at matching Business Cycles

- (temporary) victory against keynesian view that short term fluctuations result from demand shocks
- so successful that facts at odd with theoretical predictions have been called "puzzles"

It didn't take long before the same methodology was applied to International Business Cycles

Seminal Paper:

 International Real Business Cycles, Backus, Kehoe, Kydland (1992) (freshwater economists)

Very successful methodology:

facts at odd with theoretical predictions have been called "puzzles"

IRBC Facts

Properties of Business Cycles in OECD Economies

	Std. Dev. (%)		Ratio	of Sta	ndard hat of	Autocorr.	Correlation with Output							
Country	y	nx	С	x	g	n	z	у	с	x	g	nx	n	z
Australia	1.45	1.23	.66	2.78	1.28	.34	1.00	.60	.46	.68	.15	01	.12	.98
Austria	1.28	1.15	1.14	2.92	.36	1.23	.84	.57	.65	.75	24	46	.58	.65
Canada	1.50	.78	.85	2.80	.77	.86	.74	.79	.83	.52	23	26	.69	.84
France	.90	.82	.99	2.96	.71	.55	.76	.78	.61	.79	.25	30	.77	.96
Germany	1.51	.79	.90	2.93	.81	.61	.83	.65	.66	.84	.26	11	.59	.93
Italy	1.69	1.33	.78	1.95	.42	.44	.92	.85	.82	.86	.01	68	.42	.96
Japan	1.35	.93	1.09	2.41	.79	.36	.88	.80	.80	.90	02	22	.60	.98
Switzerland	1.92	1.32	.74	2.30	.53	.71	.67	.90	.81	.82	.27	68	.84	.93
U.K.	1.61	1.19	1.15	2.29	.69	.68	.88	.63	.74	.59	.05	19	.47	.90
U.S.	1.92	.52	.75	3.27	.75	.61	.68	.86	.82	.94	.12	37	.88	.96
Europe	1.01		.83	2.09	.47	.85	.98	.75	.81	.89	.10	25	.32	.85

Notes: Statistics are based on Hodrick-Prescott filtered data. Variables are: y, real output; c, real consumption; x, real fixed investment; g, real government purchases; nx, ratio of net exports to output, both at current prices; n, civilian employment; z, Solow residual, defined in text. Except for the ratio of net exports to output, statistics refer to logarithms of variables. Data are quarterly from the OECD's Quarterly National Accounts, except employment, which is from the OECD's Main Economic Indicators. The sample period is 1970:1 to 1990:2.

Figure 1: Moments

From Kehoe, Kydland (1995)

IRBC Facts

Figure 2: Moments

International Comovements in OECD Economies

		Correlation with Same U.S. Variable							
Country	у	с	x	g	n	z			
Australia	.51	19	.16	.23	18	.52			
Austria	.38	.23	.46	.29	.47	.17			
Canada	.76	.49	01	01	.53	.75			
France	.41	.39	.22	20	.26	.39			
Germany	.69	.49	.55	.28	.52	.65			
Italy	.41	.02	.31	.09	01	.35			
Japan	.60	.44	.56	.11	.32	.58			
Switzerland	.42	.40	.38	.01	.36	.43			
United Kingdom	.55	.42	.40	04	.69	.35			
Europe	.66	.51	.53	.18	.33	.56			

Notes: See Table 1.

Figure 3: Comoments

Domestically:

output more variable than consumption

Figure 4: Moments

Figure 5: Comoments

Domestically:

- output more variable than consumption
- output autocorrelated

Figure 4: Moments

Internationally:

Figure 5: Comoments

Figure 4: Moments

Figure 5: Comoments

Domestically:

- output more variable than consumption
- output autocorrelated
- productivity strongly procyclical

Figure 4: Moments

Figure 5: Comoments

Domestically:

- output more variable than consumption
- output autocorrelated
- productivity strongly procyclical
- trade balance strongly countercyclcal

Figure 4: Moments

Figure 5: Comoments

Domestically:

- output more variable than consumption
- output autocorrelated
- productivity strongly procyclical
- trade balance strongly countercyclcal
- positive comovements in output

Figure 4: Moments

Figure 5:

Domestically:

- output more variable than consumption
- output autocorrelated
- productivity strongly procyclical
- trade balance strongly countercyclcal
- positive comovements in output

Internationally:

smaller comovements in consumption

Figure 4: Moments

Figure 5: Comoments

Domestically:

- output more variable than consumption
- output autocorrelated
- productivity strongly procyclical
- trade balance strongly countercyclcal
- positive comovements in output

- smaller comovements in consumption
 - ► Backus-Kehoe-Kydland puzzle

Figure 4: Moments

Figure 5: Comoments

Domestically:

- output more variable than consumption
- output autocorrelated
- productivity strongly procyclical
- trade balance strongly countercyclcal
- positive comovements in output

- smaller comovements in consumption
 - ► Backus-Kehoe-Kydland puzzle

Figure 4: Moments

Figure 5:

Domestically:

- output more variable than consumption
- output autocorrelated
- productivity strongly procyclical
- trade balance strongly countercyclcal
- positive comovements in output

Internationally:

- > smaller comovements in consumption
 - ► Backus-Kehoe-Kydland puzzle

Can we replicate these moments with a BC model?

Modeling a Small Open Economy

Endowment model

Representative agents maximizes:

$$\begin{aligned} \max_{c_t} \sum_{t=0}^{\infty} \beta^t u(c_t) \\ c_t + a_t \leq y_t + (1+r)a_{t-1} \end{aligned}$$

Endowment economy:

- \blacktriangleright income $(y_t)_t$ is exogenously given
- ▶ for simplicity we assume it is deterministic

Small open economy:

- **open**: can save a_t which yields $a_{t+1}(1+r)$ in the next period
- ightharpoonup small: country takes world interest rate r as given (no effect on world prices)

We solve this problem with the terminal conditions:

- $ightharpoonup a_{-1}$ given¹
 - 1. a. . . .

We get the lagrangian:

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^t u(c_t) + \sum_{t=0}^{\infty} \beta^t \lambda_t \left(y_t + (1+r)a_{t-1} - c_t - a_t \right)$$

First order conditions:

$$u'(c_t) = \lambda_t$$
 (1)

$$\lambda_t = \beta(1+r)\lambda_{t+1}$$
 (2)

$$c_0 = \frac{r}{1+r} \left\{ (1+r)a_{-1} + \sum_{t=0}^{\infty} \frac{y_t}{(1+r)^t} \right\}$$

We get the lagrangian:

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^t u(c_t) + \sum_{t=0}^{\infty} \beta^t \lambda_t \left(y_t + (1+r)a_{t-1} - c_t - a_t \right)$$

First order conditions:

$$u'(c_t) = \lambda_t$$
 (1)

$$\lambda_t = \beta(1+r)\lambda_{t+1}$$
 (2)

$$c_0 = \frac{r}{1+r} \left\{ (1+r)a_{-1} + \sum_{t=0}^{\infty} \frac{y_t}{(1+r)^t} \right\}$$

We get the lagrangian:

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^t u(c_t) + \sum_{t=0}^{\infty} \beta^t \lambda_t \left(y_t + (1+r)a_{t-1} - c_t - a_t \right)$$

First order conditions:

$$u'(c_t) = \lambda_t$$
 (1)

$$\lambda_t = \beta(1+r)\lambda_{t+1}$$
 (2)

$$c_0 = \frac{r}{1+r} \left\{ (1+r)a_{-1} + \sum_{t=0}^{\infty} \frac{y_t}{(1+r)^t} \right\}$$

We get the lagrangian:

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^t u(c_t) + \sum_{t=0}^{\infty} \beta^t \lambda_t \left(y_t + (1+r)a_{t-1} - c_t - a_t \right)$$

First order conditions:

$$u'(c_t) = \lambda_t$$
 (1)

$$\lambda_t = \beta(1+r)\lambda_{t+1}$$
 (2)

$$c_0 = \frac{r}{1+r} \left\{ (1+r)a_{-1} + \sum_{t=0}^{\infty} \frac{y_t}{(1+r)^t} \right\}$$

Current Account

Reminders on Current Account

The **trade balance** is exports-imports (here $y_t - c_t$) The **current account** is trade balance + net factor payments (here $y_t - c_t + ra_{t-1}$) Positive current account: additional lending to the rest of the world.

Current Account

Reminders on Current Account

The **trade balance** is exports-imports (here $y_t - c_t$) The **current account** is trade balance + net factor payments (here $y_t-c_t+ra_{t-1}$) Positive **current account**: additional lending to the rest of

the world.

Using the formula from before

$$CA_0 = a_{-1}r + (1 - \frac{r}{1+r})y_0 - \frac{r}{1+r} \left\{ \sum_{t \geq 1}^{\infty} \frac{y_t}{(1+r)^t} \right\}$$

How does the current account reacts to income shocks?

- current account responds positively to temporary shock in income
- and to nows about future income shocks:

Unit root

Still with the same formula:

$$c_0 = \frac{r}{1+r} \left\{ (1+r)a_{-1} + \sum_{t=0}^{\infty} \frac{y_t}{(1+r)^t} \right\}$$

What is the effect of an increase in a_{-1} ?

- consumption rises permanently
- a_t is constant, equal to a_{-1}
- agent consumes small amount \$r\$ corresponding to interes
 - this will correspond to a unit root in the solution

Adding capital

We add capital and production to our endowment economy:

$$y_t = z_t k_{t-1}^{\alpha}$$

$$k_t = (1-\delta)k_{t-1} + i_t$$

The aggregate resource constraint becomes:

$$a_t + c_t + i_t = (1+r)a_{t-1} + y_t$$

Now maximize $\sum_t \beta^t U(c_t)$

Adding capital

We add capital and production to our endowment economy:

$$y_t = z_t k_{t-1}^{\alpha}$$

$$k_t = (1-\delta)k_{t-1} + i_t$$

The aggregate resource constraint becomes:

$$a_t + c_t + i_t = (1+r)a_{t-1} + y_t$$

Now maximize $\sum_{t} \beta^{t} U(c_{t})$

We get first order conditions

$$\lambda_t = \beta \lambda_{t+1} (1+r)$$

$$\lambda_t = \beta \lambda_{t+1} \left[(1-\delta) + z_{t+1} f'(k_t) \right]$$

where λ_t is lagrange multiplier associated to budget constraint.

Adding capital: optimality conditions

Since $\lambda_t > 0$ (constraint is always binding), we get:

$$(1-\delta) + z_{t+1} f'(k_t) = 1+r$$

$$k_t = \left(\frac{r+\delta}{\alpha z_{t+1}}\right)^{\frac{1}{\alpha-1}}$$

and investment

$$i_t = \left(\frac{r+\delta}{\alpha z_{t+1}}\right)^{\frac{1}{\alpha-1}} - (1-\delta) \left(\frac{r+\delta}{\alpha z_t}\right)^{\frac{1}{\alpha-1}}$$

Adding capital: optimality conditions

Since $\lambda_t > 0$ (constraint is always binding), we get:

$$(1 - \delta) + z_{t+1} f'(k_t) = 1 + r$$

$$k_t = \left(\frac{r+\delta}{\alpha z_{t+1}}\right)^{\frac{1}{\alpha-1}}$$

and investment

$$i_t = \left(\frac{r+\delta}{\alpha z_{t+1}}\right)^{\frac{1}{\alpha-1}} - (1-\delta) \left(\frac{r+\delta}{\alpha z_t}\right)^{\frac{1}{\alpha-1}}$$

Here investment is fully determined by productivity shocks

too simple: no international dependence

Add friction to the investment

A possible solution: change the resource constraint such that adjusting capital is costly

For instance:

$$a_t + c_t + i_t + \frac{\omega}{2} \frac{(k_t - k_{t-1})^2}{k_t} = (1+r)a_{t-1} + zf(k_{t-1})$$

$$k_t = (1-\delta)k_{t-1} + i_t$$

where ω is an adjustment friction.

Add friction to the investment

A possible solution: change the resource constraint such that adjusting capital is costly

For instance:

$$a_t + c_t + i_t + \frac{\omega}{2} \frac{(k_t - k_{t-1})^2}{k_t} = (1+r)a_{t-1} + zf(k_{t-1})$$

$$k_t = (1-\delta)k_{t-1} + i_t$$

where ω is an adjustment friction.

Typically, ω is chosen so that the model replicates $\frac{Var(i_t)}{Var(y_t)}$ from the data.

Add friction to the investment

A possible solution: change the resource constraint such that adjusting capital is costly

For instance:

$$a_t + c_t + i_t + \frac{\omega}{2} \frac{(k_t - k_{t-1})^2}{k_t} = (1+r)a_{t-1} + zf(k_{t-1})$$

$$k_t = (1 - \delta)k_{t-1} + i_t$$

where ω is an adjustment friction.

Typically, ω is chosen so that the model replicates $\frac{Var(i_t)}{Var(y_t)}$ from the data.

Cf tutorial.

A benchmark Small Open Economy Model

A benchmark Small Open Economy Model

Stephanie Schmitt-Grohe and Martin Uribe.

Figure 6: Stephanie Schmitt Grohe and Martin Uribe

Closing Small Economy Models, Schmitt Grohe and Uribe (2003), JIE

- small open economy model with production, consumption-leisure tradeoff and capital adjustment costs
 - ► = RBC+open+adj costs
- perform some moments matching
- compare different ways of stationarizing

The model

$$\max_{c_t, n_t} \sum_{t=0}^{\infty} \beta^t u(c_t, n_t)$$

$$\begin{split} c_t + k_t + a_t &= y_t + g_t - \frac{\omega}{2} (k_t - k_{t-1})^2 + (1 - \delta) k_{t-1} + (1 + r^\star + \pi(a_{t-1})) a_{t-1} \\ \\ y_t &= f(k_{t-1}, n_t, z_t) \end{split}$$

$$z_{t+1} = \rho z_t + \epsilon_{t+1}$$

and

$$u(c,n) = \frac{1}{1-\sigma} \left(c^{\psi} (1-n)^{1-\psi} \right)^{1-\sigma}$$

The model

$$\max_{c_t,n_t} \sum_{t=0}^{\infty} \beta^t u(c_t,n_t)$$

$$\begin{aligned} c_t + k_t + a_t &= y_t + g_t - \frac{\omega}{2} (k_t - k_{t-1})^2 + (1 - \delta) k_{t-1} + (1 + r^\star + \pi(a_{t-1})) a_{t-1} \\ y_t &= f(k_{t-1}, n_t, z_t) \end{aligned}$$

$$z_{t+1} = \rho z_t + \epsilon_{t+1}$$

and

$$u(c,n) = \frac{1}{1-\sigma} \left(c^{\psi} (1-n)^{1-\psi} \right)^{1-\sigma}$$

The term π is there to make the model stationary.

How to make the distribution stationary?

The solution of the model exhibits a unit root:

$$a_t = a_{t-1} + \dots$$
 other variables in t-1 + shocks in t

How to make the distribution stationary?

The solution of the model exhibits a unit root:

$$a_t = a_{t-1} + \ldots {\rm other} \ {\rm variables} \ {\rm in} \ {\rm t\text{-}} 1 + {\rm shocks} \ {\rm in} \ {\rm t}$$

Problem:

- there isn't a unique deterministic steady-state
- the ergodic distribution of the model variables is not defined

This raises practical issues (notably for estimation) for the *linear* model.

no unconditional moments

How to get rid of the unit root?

General idea:

introduce a force that pulls the level of foreign assets towards equilibrium

Schmitt Grohe and Uribe (2003) consider many options:

debt-elastic interest rate:

$$1 + r = 1 + r^* + \pi(a_d)$$

- \blacktriangleright π can be understood as a risk premium on rising debt
- endogenous time-discount (aka Usawa preferences)

$$\beta(c_t) = (1 + c_t)^{-\chi}$$

costs of adjustment for international portfolios

How to get rid of the unit root?

General idea:

introduce a force that pulls the level of foreign assets towards equilibrium

Schmitt Grohe and Uribe (2003) consider many options:

debt-elastic interest rate:

$$1 + r = 1 + r^* + \pi(a_d)$$

- \blacktriangleright π can be understood as a risk premium on rising debt
- endogenous time-discount (aka Usawa preferences)

$$\beta(c_t) = (1 + c_t)^{-\chi}$$

costs of adjustment for international portfolios

SGU show that the choice of the stationarization device has little effect for the dynamics (moments) of most variables

Calibration

Parameters	Values		
σ	2		
ψ	1.45		
α	0.32		
ω	0.028		
r	0.04		

Parameters	Values		
δ	0.1		
ho	0.42		
$\frac{ ho}{\sigma^2}$	0.0129		
A^{\star}	-0.7442		
χ	0.000742		

Results

Fig. 1. Impulse response to a unit technology shock in Models 1–5. Note. Solid line: Endogenous discount factor model; Squares: Endogenous discount factor model without internalization; Dashed line: Debre-lastic interest rate model; Dash-dotted line: Portfolio adjustment cost model; Dotted line: complete asset markets model; Circles: Model without stationarity inducing elements.

Figure 7: Impulse Response Function

Table 3 Observed and implied second moments

	Data	Model 1	Model 1a	Model 2	Model 3	Model 4
Volatilities:						
std(y,)	2.8	3.1	3.1	3.1	3.1	3.1
std(c,)	2.5	2.3	2.3	2.7	2.7	1.9
std(i,)	9.8	9.1	9.1	9	9	9.1
std(h,)	2	2.1	2.1	2.1	2.1	2.1
$std\left(\frac{tb_t}{y_t}\right)$	1.9	1.5	1.5	1.8	1.8	1.6
$\operatorname{std}\left(\frac{ca_i}{y_i}\right)$		1.5	1.5	1.5	1.5	
Serial correlations:						
corr(y,, y,_1)	0.61	0.61	0.61	0.62	0.62	0.61
$corr(c_i, c_{i-1})$	0.7	0.7	0.7	0.78	0.78	0.61
$corr(i_i, i_{i-1})$	0.31	0.07	0.07	0.069	0.069	0.07
$corr(h_e, h_{e-1})$	0.54	0.61	0.61	0.62	0.62	0.61
$corr\left(\frac{tb_t}{y_t}, \frac{tb_{t-1}}{y_{t-1}}\right)$	0.66	0.33	0.32	0.51	0.5	0.39
$\operatorname{corr}\left(\frac{ca_{t}}{y_{t}}, \frac{ca_{t-1}}{y_{t-1}}\right)$		0.3	0.3	0.32	0.32	
Correlations with o						
$corr(c_i, y_i)$	0.59	0.94	0.94	0.84	0.85	1
$corr(i_i, y_i)$	0.64	0.66	0.66	0.67	0.67	0.66
corr(h _i , y _i)	0.8	1	1	1	1	1
$corr\left(\frac{tb_i}{y_i}, y_i\right)$	-0.13	-0.012	-0.013	-0.044	-0.043	0.13
$corr\left(\frac{ca_i}{y_i}, y_i\right)$		0.026	0.025	0.05	0.051	

Note. The first column was taken from Mendoza (1991). Standard deviations are measured in percent per year.

Figure 8: Moments (from SGU)

Conclusions

- The model matches unconditional correlations fairly well
 - ▶ The stationarization device has little effect on the moments
- Unconditional correlations are not that great
 - a limitation of the moment matching method?
- Correlation of consumption with output is too high
 - and probably cross-correlation of consumption too low
 - still the Backus-Kehoe-Kydland puzzle...