GRASP (GRIPS Aspect Program) Requirements Document

A software requirements specifications (SRS) document for the aspect computer to be used on GRIPS

UC Berkeley Space Sciences Lab GRIPS (Gamma-Ray Imager/Polarimeter for Solar Flares) Gordon Hurford Maxwell Chung Nick Scozzaro

Updated as of: July 13, 2010

Abstract

Table of Contents

1 Introduction	4
2 Architecture	
Figure 1: GRASI's Architecture	
3 Application Flow Diagram	
Figure 2: GRASP Flow Diagram	
4 Commands List	
5 Timing and Accuracy Requirements	
5.1 Timing Accuracy Required for Relative Roll	
Figure 3: Sample Pitch Marks	
6 Compression Schemes	
6.1 Level 0	
Figure 4: Level 0 Compression	
Figure 5: Choosing Which Part of the Image to Work With	
6.2 Level 1	
Figure 6: Level 1 Compression	
6.3 Level 2	
Figure 7: Level 2 Compression	
6.4 Level 3	
Figure 8: Level 3 Compression	
6.5 Level 4	
Figure 9: Level 4 Compression	
6.6 Level 5	
Figure 10: Level 5 Compression	
6.7 Level 6	
Figure 11: Level 6 Compression	
6.8 Level 7	
Figure 12: Level 7 Compression	
7 GRASP Builds	
7.1 Version 0	
Table 1: Parameters Used in Summer 2009	
8 Assumptions	
9 References.	

Introduction 1

GRASP (**GR**IPS **As**pect **P**rogram) is the onboard application to be used with the **GRIPS** (Gamma-Ray Imager/Polarimeter for Solar Flares) test balloon.

- GRASP must start automatically and go into "ready mode"
- GRASP must always be enabled to receive:
 - commands; for example: START and STOP
 - parameters; for example: Δt , exposure time, analysis choice, strategy ID, values concerning phasing and cadence (1 to 10 Hz), QL (quick load) selection ($t_1 - t_2$, Δt , type)
- default parameters must be used if no options are taken
- timing input: TBD
 - NTP (network time protocol): synchronizes clock to a maximum accuracy of 200 µs in LANs
 - can NTP co-exist with other commands?
- images are acquired to "memory"
- output is analyzed/selected
 - "real time" pitch and yaw: (x, y) coordinate pairs
 - onboard storage: compressed data

2 Architecture

Figure 1: GRASI's Architecture

Application Flow Diagram

Figure 2: GRASP Flow Diagram

4 Commands List

Timing and Accuracy Requirements

5.1 Timing Accuracy Required for Relative Roll

Sample calculation:

given a diameter of 50 cm, circumference $\approx 1500 \text{ mm}$ with a finest grid pitch of 1 mm and desired accuracy of 1/20 of a pitch, pitch accuracy reaches 1/(20 * 1500) = 1/30000 rotation supposing 4 seconds elapse per revolution, timing accuracy reaches 4000 ms / $30000 \approx 0.1$ ms

Figure 3: Sample Pitch Marks

Compression Schemes

Because GRASP will be working with a lot of data, compression schemes must be implemented to ensure that unimportant data is not stored.

6.1 Level 0

Figure 4: Level 0 Compression

Level 0 compression does not alter the data and sends full 1 MB pictures.

The remaining compression schemes first choose which part of the image to work with:

1) Use "scan lines" to determine where target area is.

2) Box target area and discard data of no use.

Figure 5: Choosing Which Part of the Image to Work With

Once the boxed area is acquired, a number of compression schemes can be further applied. These schemes vary in levels of compression.

6.2 Level 1

Figure 6: Level 1 Compression

Level 1 compression does not further compress the extracted box.

6.3 Level 2

Figure 7: Level 2 Compression

Level 2 compression uses histograms to find the average background value, subtracts the value from the image, and then finds the centroid of whatever remains. Background noise is negligible.

6.4 Level 3

Figure 8: Level 3 Compression

Level 3 compression is similar to level 2 compression but finds a better estimate of where the center of the sun is.

6.5 Level 4

Figure 9: Level 4 Compression

Level 4 compression stores one or more vertical and horizontal strips of data.

6.6 Level 5

Figure 10: Level 5 Compression

Level 5 compression stores a few small strips of data, each with an estimated size of 2 bytes.

6.7 Level 6

Level 6 compression captures a choice of 2 to 6 points at each limb, fits the points to a polynomial, and then stores the x-position where the polynomial crosses a threshold. About 4 4-byte floating-point numbers are stored.

6.8 Level 7

Figure 12: Level 7 Compression

Level 7 compression finds a very accurate estimate of the center of the sun.

7 GRASP Builds

7.1 Version 0

Uses only one camera and level 0 compression. Default parameters are used. The following parameters produced good results when the camera was tested in the summer of 2009:

exposure length (μs)	bit depth	filter	aperture
70	32	yes	1.6
220000	32	yes	16

Table 1: Parameters Used in Summer 2009

- 8 Assumptions
- 9 References