## EE150 Signals and Systems Spring 2020 – Midterm

2 pages, 4 questions, and 100 points in total.

**08:15 AM** – **10:00 AM**, Tuesday, May 19, 2020

1. (10 + 10 points)

a) For each statement, state (in the following table) if they are true (T) or false (F).

i) All memoryless systems are causal systems.

ii) The inverse of a causal LTI system is always causal.

iii) If an LTI system is causal, then it is stable.

iv) y[n] = 3x[n] + 5 is a linear system.

v)  $y(t) = \int_{-\infty}^{2t} x(\tau) d\tau$  is time-invariant.

| i) | ii) | iii) | iv) | v) |
|----|-----|------|-----|----|
|    |     |      |     |    |

b) Consider the system  $y(t) = \frac{d}{dt}x(t)$ . State (in the following table) if the system is: causal, linear, time-invariant, invertible, stable.

| causal | linear | time-invariant | stable |
|--------|--------|----------------|--------|
|        |        |                |        |

2. (15 + 15 points) Calculate the following two convolutions

a) Determine  $f_1(t) = [u(t) - u(t-1)] * [u(t-1) - u(t-2)]$ , where u(t) is the unit step function.

b) Determine  $f_2(t) = x_0(t) * x_1(t)$ , when  $x_0(t)$  and  $x_1(t)$  are given in the following figure.



3. (10 + 10 points) In this problem, we derive two important properties of the continuous-time Fourier series: the multiplication property and Parseval's relation. Let x(t) and y(t) both be continuous-time periodic signals having period  $T_0$  and with Fourier series representations given by  $(\omega_0 = 2\pi/T_0)$ 

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}, \qquad y(t) = \sum_{k=-\infty}^{\infty} b_k e^{jk\omega_0 t}.$$

1

a) Let z(t) = x(t)y(t) and its Fourier series be represented as  $z(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$ . Show that the Fourier series coefficients of the signal z(t) are given by the following discrete convolution

$$c_k = \sum_{n = -\infty}^{\infty} a_n b_{k-n}.$$

b) Let  $y(t) = x^*(t)$  and  $x^*(t)$  denotes the conjugate of x(t). Express  $b_k$  in terms of  $a_k$  and use the result of (a) to prove the following Parseval's relation for periodic signals:

$$\frac{1}{T_0} \int_0^{T_0} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2.$$

- 4. (10 + 10 + 10 points)
  - a) In the lecture, we derived the transform of  $x(t) = e^{-at}u(t)$ , where u(t) is the unit step function. Using the linearity and scaling properties, derive the Fourier transform of  $e^{-a|t|} = x(t) + x(-t)$ .
  - b) Using part (a) and the duality property, determine the Fourier transform of  $1/(1+t^2)$ .
  - c) If

$$y(t) = \frac{1}{1 + (3t)^2}$$

find the Fourier transform of y(t).