2020 Capstone Design

시각장애인을 위한 버스 보조기

Contents

01 문제 인식

-프로젝트 동기

-프로젝트 목적

02 문제 해결

-프로젝트 아이디어

-개발 환경

-전체 구성도

-기능 구현

03 향후 일정

-개발 일정

-역할 분담

-목표

01 문제 인식

프로젝트 동기

❖ 시각장애인에게도 대중교통 이용이 편리할까?

시각장애인, '버스 어디에 섰는지 몰라' 탑승 어려워

버스정류장 음성안내 서비스, 시각장애인에겐 '무용지물' 차량마다 다른 교통카드 단말기 및 하차벨도 시정 필요

등록일 [2014년07월03일 20시 16분]

대중교통 강국일까? "시각장애인 버스 이용 여전히 어렵다"

음 류기용기자 ○ 승인 2019.12.09 09:17 ○ 댓글1

"버스 여러 대 오면 어떤 것 탈지 몰라... 솔루션 개발 절실" 지난 10월 '교통약자 이동편의 증진법' 시행됐지만 여전히 불편

프로젝트 동기

- 국내 시각장애인 255만여명, 현재 활동 중인 안내견 60마리
- 안내견은 버스 번호를 읽을 수 없다

점자

- 점자를 해독할 수 있는 시각장애인은 전체의 12%에 불과
- 점자촉지도 설치율 17% 불과, 10곳 중 3곳 해독 불가

지팡이

- 내부가 좁은 버스에서 제 기능을 할 수 없다

프로젝트 동기

❖ 안내견과 점자, 지팡이 이외의 방법으로 시각장애인의 대중교통 이용을 도울 수 있는 방법?

사람의 눈을 닮은 depth camera를 이용해 시각장애인의 눈이 되어주자!

Depth Camera?

- ➤ Computational Camera의 한 종류
- ➤ 피사체로부터 렌즈를 통해 들어오는 이미지를 재가공한다.

2D

인물, 사물, 그리고 배경 풍경을 찍고 그에 따른 이미지, 영상 제공

3D

기존의 픽셀의 RGB, 채도, contrast 정보 뿐 아니라 픽셀의 깊이 정보 습득

프로젝트 목적

➤ 기존 제품 사례

안경에 초소형 카메라를 달아 손가락으로 가리키는 곳의 텍스트 정보를 음성으로 안내한다.

- ❖ 오어캠 가격은 2500달러로 한화로 약 309만원
- ❖ depth camera가 아닌 일반 초소형 카메라 사용
- ❖ 거리 측정x, 버스 내부의 정보 제공에 한계o

WeWALK

사용자 주변의 장애물을 감지해 위험을 경고하고 터치패드를 통해 스마트폰을 제어하는 스마트 지팡이

- ♦ 위워크 가격은 499달러로 한화로 약 61만원
- ❖ depth camera가 아닌 초음파 사용
- ❖ 지팡이를 사용하기 때문에 버스와 같은 좁은 공간에서 사용이 어려움

프로젝트 목적

❖ 다음과 같은 문제점을 해결하여 시각장애인도 버스를 편하게 이용할 수 있도록 한다.

승차 전

버스 정류장의 위치, 버스 **번호**를 알 수 없어 버스에 승차하기까지 많은 시간이 소요된다

승차 시

버스의 위치 및 **탑승위치**를 파악하지 못한다

탑승 중

단말기 태그의 위치를 알 수 없어 어려움을 겪는다

빈 좌석을 알 수 없어 서서 가야만 한다

하차 시

하차벨과 **출구**의 위치를 파악하지 못해 하차 시 어려움을 겪는다

02 문제 해결

프로젝트 아이디어

프로젝트 아이디어 탑승전

2 버스 진입전 버스번호 안내

3 버스 진입후 입구 안내

프로젝트 아이디어 탑승후

프로젝트 아이디어 하차시

Language

Device

Application

Platform

전체 구성도

• Object Detection

localization + classification

2-Stage Detector - Regional Proposal와 Classification이 순차적으로 이루어짐.

Faster-RCNN

SSD

- Object Detection
 - 1) Faster-RCNN
 - Faster Regions with CNN features

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun

- Object Detection
 - 2) SSD
 - Single Shot MultiBox Detector

SSD: Single Shot MultiBox Detector

Wei Liu¹, Dragomir Anguelov², Dumitru Erhan³, Christian Szegedy³, Scott Reed⁴, Cheng-Yang Fu¹, Alexander C. Berg¹

• 숫자인식 알고리즘

1) OCR

- Optical Character Recognition, 광학 문자 인식 기술
- Matlab으로 구현

OCR depth camera로 촬영 이미지 capture Matlab 툴 설치 전처리 영상에서 글자 검출, USB 웹캠라이브러리 이미지를 grayscale로 바꿈 **Computer Vision** 이미지 얻기 인식 밝기와 명암대비 크게 **Tool Box** 픽셀값 2진화(0,1) 얼룩제거, 라인제거, 레이아웃 분석

- 숫자인식 알고리즘
 - 2) Open CV + Tessearact
 - Open CV: 이미지처리 라이브러리
 - Tessearact : 광학 문자 인식 엔진

19<u>오 7777</u> 글자(숫자) 인식

Open CV

Tessearact

- 거리측정 알고리즘
 - 3D Depth 인식 기술
 - Stereo-type

두 개의 2D 이미지 센서를 결합하여 만든 입체영상. 측정 대상과의 거리를 측정하기 위해 한 쌍의 거의 동일한 카메라를 사용하여 카메라들 사이의 시점 불일치를 이용한다.

Application

03 향후 일정

개발 일정

	3	4			5		6						
	4	1	2	3	4	5	1	2	3	4	1	2	3
제안서 작성													
데이터 수집													
숫자 인식 알고리즘													
물체 인식 알고리즘													
거리 측정 알고리즘													
앱 제작													
앱과 카메라 연동													
테스트													
오류수정													

역할 분담

김해린	깃허브 관리, 단말기 데이터 수집&어노테이션, object detection(faster-rcnn), 거리측정, 앱 진동 기능 구현
백소현	발표, 하차벨 데이터 수집&어노테이션, object detection(ssd), 숫자인식, 앱 음성 기능 구현
이세미	총괄, 빈좌석 데이터 수집&어노테이션, object detection(ssd), 거리측정, 앱 학습모델 연동
이세정	ppt 관리, 버스 출입구 데이터 수집&어노테이션, object detection(faster-rcnn), 숫자인식, 앱 UI

개인 개발 일정(김해린)

구현	진행률	시작일	종료일	기간
기획 제안서	100%	2020-03-27	2020-04-04	9일
단말기 데이터	100%	2020-04-02	2020-04-06	5일
객체인식 학습	0%	2020-04-06	2020-05-17	6주
거리측정 알고리즘	0%	2020-04-06	2020-05-17	6주
앱 구현	0%	2020-05-04	2020-05-22	2주
테스트 및 오류 수정	0%	2020-06-01	2020-06-21	3주

개인 개발 일정(백소현)

구현	진행률	시작일	종료일	기간
기획 제안서	완료	2020-03-27	2020-04-04	9일
하차벨 데이터	70%	2020-04-02	2020-04-06	5일
객체 인식	0%	2020-04-06	2020-05-17	6주
숫자 인식	10%	2020-04-06	2020-05-17	6주
앱 구현	0%	2020-05-04	2020-05-22	2주
테스트 및 오류 수정	0%	2020-06-01	2020-06-21	3주

개인 개발 일정(이세미)

구현	진행률	시작일	종료일	기간
기획 제안서	100%	2020-03-27	2020-04-04	9일
좌석 데이터 수집	80%	2020-04-02	2020-04-06	5일
객체인식 학습	0%	2020-04-06	2020-05-17	6주
거리측정 알고리즘	0%	2020-04-06	2020-05-17	6주
앱 구현	0%	2020-05-04	2020-05-22	2주
테스트 및 오류 수정	0%	2020-06-01	2020-06-21	3주

개인 개발 일정(이세정)

구현	진행률	시작일	종료일	기간
기획 제안서	100%	2020-03-27	2020-04-04	9일
버스 출입구 데이터	100%	2020-04-02	2020-04-06	5일
숫자 인식 알고리즘	10%	2020-04-06	2020-05-17	6주
객체 인식 알고리즘	0%	2020-04-06	2020-05-17	6주
앱 구현	0%	2020-05-04	2020-05-22	2주
테스트 및 오류 수정	0%	2020-06-01	2020-06-21	3주

프로젝트 목표

팀	실용성 있는 제품을 제작함으로써 해커톤에 출전하고 싶습니다.
김해린	Depth camera로 사물인식, 거리측정 알고리즘을 개발하고 이를 실생활 문제에 적용시켜 보고싶습니다.
백소현	실제 카메라를 접목한 움직이는 영상을 처리하는 인공지능 활용 능력을 키우고 싶습니다.
이세미	이 프로젝트를 진행하며 depth camera를 접해보고 영상 정보 데이터 처리 방법에 대하여 공부하여 실무 능력을 키우고 싶습니다.
이세정	depth camera를 우리가 생각한 문제에 적용시켜 실생활에 도움되는 인공지능 서비스를 만들고 이 결과로 실무 역량도 강화시키고 싶습니다.

감사합니다

김해린 백소현 이세미 이세정