MTH 309 - Activity 12 More Vector Geometry

1. Fix a vector v in \mathbb{R}^2 , and consider the function

$$\operatorname{proj}_v \colon \mathbb{R}^2 \to \mathbb{R}^2$$

where $\operatorname{proj}_{v}(x)$ is the projection of x onto v.

- (a) Draw a picture depicting the vectors v, x, and $\text{proj}_v(x)$.
- (b) What is the geometric relationship between x and $\text{proj}_v(x)$? Between v and $\text{proj}_v(x)$?
- (c) Write a formula for $proj_v(x)$ in terms of v and x.
- (d) Use $\operatorname{proj}_{n}(x)$ to calculate a vector n that is perpendicular to v.
- (e) What is the relationship between span $\{v, x\}$ and span $\{v, n\}$?
- (f) Given a basis for a 2-dimensional subspace $\{v_1, v_2\}$, use projection to construct an orthonormal basis $\{b_1, b_2\}$ for the subspace.
- 2. Now consider the linear transformation $\operatorname{ref}_v(x)$ that reflects its input vector x across the line spanned by the fixed vector v.
 - (a) Write a formula for $ref_v(x)$ in terms of the vectors x and v.
 - (b) What is the matrix representation of ref_{v} ?
 - (c) Determine the eigenvalues and eigenvectors of ref_v .