Многокритериальная оптимизация режимов работы котельного отделения электростанции

Студент: Кузьмин Артем Юрьевич

Руководитель: Романова Татьяна Николаевна

Цель и задачи работы

Цель работы — проведение многокритериальной оптимизации режимов работы котельного отделения электростанции на примере котельного отделения ТЭЦ-20 Мосэнерго .

Решаемые задачи:

- 1. Анализ предметной области.
- 2. Выделение параметров, необходимых для построения математической модели.
- 3. Формулирование критериев оптимизации
- 4. Формулирование целевой функции многокритериальной оптимизации
- 5. Построение математической модели
- 6. Разработка метода многокритериальной оптимизации
- 7. Разработка алгоритма, реализующего данный метод
- 8. Исследование разработанного метода и сравнение полученных результатов с другими известными результатами

Введение

Проблема энергосбережения в настоящее время представляет собой стратегическое направление деятельности не только отдельных предприятий, но и экономической политики государства в целом. Одним из основных важнейших направлений энергосбережения является снижение затрат топливных ресурсов на производство энергии.

Критерии оптимизации

Задача оптимизации состоит в нахождении:

- определение оптимального состава очереди котлоагрегатов,
- паровых нагрузок,
- топлива, используемого каждым из котлов.

В качестве критериев оптимизации режимов работы котлоагрегатов выделим:

- расход газа -> min,
- расход жидкого топлива (мазута) -> min,
- финансовые затраты на используемое топливо -> **min**,
- коэффициент полезного действия (КПД) группы котлоагрегатов -> max.

Параметры, учитываемые в математической модели

- 1. Вид, марка и характеристики сжигаемого топлива;
- 2. параметры, определяемые при тепловом расчете котельных агрегатов;
- 3. нормативные характеристики и параметры, определяемые при режимно наладочных испытаниях энергоагрегатов;
- 4. корректирующие параметры, замеряемые в процессе эксплуатации при текущем режиме работы;
- 5. входные управляемые переменные: состав загружаемых агрегатов; паровая нагрузка для каждого агрегата.
- 6. выходные параметры: оптимальный состав загружаемых агрегатов; оптимальная паровая нагрузка для каждого агрегата.

Критерий КПД группы котлоагрегатов

Функцию критерия КПД группы котлоагрегатов представим в следующем виде:

$$\eta_K = \frac{\sum_{i=1}^n \eta_{Ki\Gamma}(D_{Ki}) * Q_{Ki\Gamma}(D_{Ki}) + \sum_{j=1}^m \eta_{KjM}(D_{Kj}) * Q_{KjM}(D_{Kj})}{\sum_{i=1}^n Q_{Ki\Gamma}(D_{Ki}) + \sum_{j=1}^m Q_{KjM}(D_{Kj})}$$

Где $\{D_k\}$ = $\{D_{k1}, D_{k2}, \dots, D_{kn}\}$ – вектор паропроизводительностей п котлоагрегатов; $\eta_{Ki}(D_{Ki})$ – КПД полезного действия і-го котлоагрегата; $Q_{Ki}(D_{Ki})$ – теплопроизводительность і-го агрегата.

Критерий расхода газа

Функцию критерия расхода газа представим в следующем виде:

$$B^{\Gamma}(\{D_k\}) = \sum_{i=1}^n B_i^{\Gamma}(D_{Ki})$$

где $B_i^{\mbox{\tiny газ}}(D_{Ki})$ — расход газа для обеспечения текущей паропроизводительности D_{Ki} і-ым парогенератором; $\{D_k\}=\{D_{k1},D_{k2}$, ..., $D_{kn}\}$ — вектор паропроизводительностей п котлоагрегатов, работающих на газе.

Критерий расхода мазута

Функцию критерия расхода мазута представим в следующем виде:

$$B^{M}(\{D_{k}\}) = \sum_{i=1}^{m} B_{i}^{M}(D_{Ki})$$

где $B_i^{\mathrm{M}}(D_{Ki})$ — расход газа для обеспечения текущей паропроизводительности D_{Ki} інм парогенератором; $\{D_k\}=\{D_{k1},D_{k2},\dots,D_{km}\}$ — вектор паропроизводительностей m котлоагрегатов, работающих на мазуте.

Критерий финансовых затрат на используемое топливо

Функцию критерия финансовых затрат на используемое топливо представим в следующем виде:

$$F_{M+\Gamma}(\{Dk\}) = \sum_{i=1}^{n} B_{\Gamma i}(D_{Ki}) * p_{\Gamma} + \sum_{i=1}^{m} B_{\Gamma i}(D_{Ki}) * p_{M}$$

Где $p_{\rm M}$ – цена на мазут; $\{D_k\}=\{D_{k1},D_{k2}$, ..., D_{km} } – вектор паропроизводительностей m котлоагрегатов, работающих на жидком топливе (мазуте). $B_{\rm M}i(D_{Ki})$ – расход мазута (тонн /час) для обеспечения паропроизводительности D_{Ki} тонн/час.

Где p_Γ — цена на газ; $\{D_k\}=\{D_{k1},D_{k2}$, ... , D_{kn} $\}$ — вектор паропроизводительностей п котлоагрегатов, работающих на газе. $B_{\Gamma i}(D_{Ki})$ — расход газа (тыс. м³ /час) для обеспечения паропроизводительности D_{Ki} тонн/час.

Ограничения

1. Диапазоны рабочей производительности для каждого из котлоагрегатов

$$D_{Ki}^{min} \leq D_{Ki} \leq D_{Ki}^{max}, \qquad i = 1..(n+m)$$

Где D_{Ki}^{min} — минимально возможная паропроизводительность і-го котлоагрегата; D_{Ki}^{max} — максимально возможная паропроизводительность і-го котлоагрегата; D_{Ki} — текущая паропроизводительность і-го котлоагрегата.

2. Суммарная паропроизводительность группы котлоагрегатов

$$\sum_{i=1}^{n+m} D_{Ki} = D_k$$

Где D_{Ki} — паропроизводительность і-го котлоагрегата; D_k — суммарная паропроизводительность группы работающих котлоагрегатов.

Задача оптимизации

$$\begin{cases} B^{\Gamma}(\{D_{k}\}) = \sum_{i=1}^{n} B_{i}^{\Gamma}(D_{Ki}) \to min; \\ B^{M}(\{D_{k}\}) = \sum_{i=1}^{m} B_{i}^{M}(D_{Ki}) \to min; \\ F_{M+\Gamma}(\{Dk\}) = \sum_{i=1}^{n} B_{\Gamma i}(D_{Ki}) * p_{\Gamma} + \sum_{i=1}^{m} B_{\Gamma i}(D_{Ki}) * p_{M} \to min; \\ \eta_{K} = \frac{\sum_{i=1}^{n} \eta_{Ki\Gamma}(D_{Ki}) * Q_{Ki\Gamma}(D_{Ki}) + \sum_{j=1}^{m} \eta_{KjM}(D_{Kj}) * Q_{KjM}(D_{Kj})}{\sum_{i=1}^{n} Q_{Ki\Gamma}(D_{Ki}) + \sum_{j=1}^{m} Q_{KjM}(D_{Kj})} \to max; \end{cases}$$

Метод многокритериальной оптимизации

Разработанный метод состоит из двух шагов:

- формирование множества возможных векторных критериев;
- выбор наилучшего векторного критерия из множества возможных.

Формирование множества возможных векторных критериев

Каждый из n котлоагрегатов может находиться в одном из состояний:

- Выключен;
- Работает на газе;
- Работает на мазуте;

Всего таких комбинаций 3^n .

Для каждой из комбинаций проверяется, может ли она обеспечить выполнение заданной суммарной паропроизводительности:

$$\sum_{i=1}^n D_{Ki}^{min} \leq D_k \leq \sum_{i=1}^n D_{Ki}^{max},$$

где *m* – количество работающих котлов в данной комбинации.

Формирование множества возможных векторных критериев

• В случае удовлетворения комбинации заданному ограничению — проведение «локальной» оптимизации. В противном случае комбинация не рассматривается.

• Сохранение вектора

$$f_i = (B^{\Gamma}(\{D_k\})_i, B^{M}(\{D_k\})_i, F_{M+\Gamma}(\{D_k\})_i, \eta_{K_i}),$$

состоящего из значений выделенных критериев, полученных в результате многокритериальной оптимизации, проведенной для текущей комбинации.

«Локальная» оптимизация

Оптимизация с помощью метода прямых выборочных процедур с уменьшением интервала поиска.

 D_K — суммарная паропроизводительность, которую должна обеспечивать очередь котлоагрегатов.

Необходимо определить n-1 переменных D_{Ki} , где n-k количество котлоагрегатов в очереди. Переменная D_{Kn} определяется из соотношения:

$$D_{Kn} = D_k - \sum_{i=1}^{n-1} D_{Ki}.$$

Выбор начальных решений

Выбор начальных решений, входящий в состав метода прямых выборочных процедур:

$$x_i^0 = \frac{x_i + \overline{x_i}}{2}, i = 1, \dots, n.$$

Для решения поставленной задачи такой выбор начальных решений **не подходит.**

Контрпример:

$$\begin{array}{ll} D_k = 500 \text{ T/H}; \\ -\text{ (K1) } (90 \text{ T/H} \leq D_k^1 \leq 170 \text{ T/H}). & D_K^1 = \frac{90 + 170}{2} = 130 \text{ T/H}; \\ -\text{ (K2) } (90 \text{ T/H} \leq D_k^2 \leq 170 \text{ T/H}). & D_K^2 = \frac{90 + 170}{2} = 130 \text{ T/H}; \\ -\text{ (K3) } (90 \text{ T/H} \leq D_k^3 \leq 170 \text{ T/H}). & D_K^3 = 500 - D_K^1 - D_K^2 = 240 \text{ T/H}. \end{array}$$

Для D_K^3 получаем недопустимое значение.

Необходимо разработать другой алгоритм выбора начальных решений.

Выбор начальных решений

Формирование множества возможных векторных критериев

После расчета всех комбинаций, получим множество возможных решений:

$$U = \begin{cases} f_1 = \left(B^{\Gamma}(\{D_k\})_1, B^{M}(\{D_k\})_1, F_{M+\Gamma}(\{Dk\})_1, \eta_{K_1}\right) \\ f_2 = \left(B^{\Gamma}(\{D_k\})_2, B^{M}(\{D_k\})_2, F_{M+\Gamma}(\{Dk\})_2, \eta_{K_2}\right) \\ \dots \\ f_n = \left(B^{\Gamma}(\{D_k\})_n, B^{M}(\{D_k\})_n, F_{M+\Gamma}(\{Dk\})_n, \eta_{K_n}\right) \end{cases}$$

Выбор наилучшего векторного критерия

Выбор наиболее подходящего векторного критерия из множества состоит из двух этапов:

- построение множества Парето;
- сужение множества Парето на основе информации о коэффициентах относительной важности критериев;
- применение метода целевого программирования для выбора оптимального векторного критерия.

Множество Парето

(Лицо, принимающее решение) ЛПР должно быть заинтересовано в максимизации каждой из функций

$$f_1, f_2, ..., f_m,$$

участвующих в задаче.

Таким образом, критерии расхода газа, мазута и финансовых затрат на используемое топливо

$$(B^{\Gamma}(\{D_k\}), B^{M}(\{D_k\}), F_{M+\Gamma}(\{Dk\}))$$

будем включать в математическую модель со знаком минус.

Сужение множества Парето

Коэффициенты относительной важности критериев:

$$\theta_{ij} = \frac{w_j^*}{w_i^* + w_j^*}$$
 , $(0 < \theta_{ij} < 1)$.

Менее важный j-й критерий в общем списке критериев $f_1,\ f_2,...,f_m$ необходимо заменить новым, вычисленным по формуле:

$$\theta_{ij}f_i + (1 - \theta_{ij})f_j.$$

Метод целевого программирования

В пространстве R^m задано непустое множество U, которое называют множеством идеальных векторов. Данное множество считается недостижимым, т.е. выполняется равенство:

$$U \cap Y = \emptyset$$
,

Где Y — множество возможных векторов.

Задается метрика — числовая функция $\rho = \rho(y, z)$, которая каждой паре векторов у, z сопоставляет неотрицательное число, называемое расстоянием между векторами у и z.

Оптимальным объявляется такое решение $x^* \in X$, для которого выполняется равенство :

$$\inf_{y \in U} \rho(f(x^*), y) = \min_{x \in X} \left(\inf_{y \in U} \rho(f(x^*), y) \right).$$

$$\rho(y, O_4) = \sum_{i=1}^4 y_i^2.$$

В 2012 году в рамках проекта «Инновация 4 Generation» компанией ЗАО «Крок инкорпорейтед» была разработана и введена в эксплуатацию на ТЭЦ-20 Мосэнерго система моделирования и оптимизации режимов работы электростанции (далее «СМиОР»), в состав которой входит бизнес процесс «I4Plan», отвечающий за определение планового состава оборудования и оптимального распределения нагрузок между энергоагрегатами.

Во время эксплуатации «СМиОР» достигнут экономический эффект в виде сокращения потребности в топливе на 3.28%, из которых:

- 0.6% за счет выбора оптимального планового состава оборудования
- 0.56% за счет оптимизации распределения топлива между котлоагрегатами.

Данные результаты позволяют рассматривать внедренную на ТЭЦ-20 Мосэнерго «СМиОР» применимой к решению подобного рода задач оптимизации.

Зависимости расхода газа котлом «К4» от паровой нагрузки.

U-критерий Манна-Уитни:

$$U = n_1 * n_2 + \frac{n_x * (n_x + 1)}{2} - T_x.$$

Nº	Расход газа («I4Plan»), [тыс.нм ³ /час]	Ранг «I4Plan»	Расход газа (разработанный программный продукт), [тыс.нм ³ /час]	Ранг значений разработанного программного продукта
1	10,42	2	10,24	1
2	11,31	4	11,1	3
3	14,63	6	14,39	5
4	15,83	9	15,56	7
5	15,99	10	15,72	8
Сумма рангов		31		24

$$T_{\chi}$$
 = 31. Тогда $U=9$. $U>U_{\mathrm{Kp}}$

Рассмотрены ситуации:

- «обычная»
- «приоритет одного вида топлива»

Ситуация – «Обычная».

	Режим работы («I4Plan»)		Режим работы (разработанное ПО)	
Котлоагрегат	Состояние	Паровая нагрузка, [тонн/час]	Состояние	Паровая нагрузка, [тонн/час]
K1	Выкл.	0	Выкл.	0
К2	Выкл.	0	Выкл.	0
КЗ	Выкл.	0	Выкл.	0
К4	Газ	220	Газ	218
K5	Газ	219	Газ	209
К6	Газ	219	Газ	211
Расход газа, [тыс.нм ³ /час]	50,051		50,043	
Расход мазута, [тонн/час]	0		0	
Финансовые затраты на топливо, [руб./час]	174278,66		174249,73	
КПД группы котлоагрегатов, [%]	93,78		93,803	

Ситуация – «Приоритет одного вида топлива».

Зависимость значения критерия расхода газа от коэффициента относительной важности расхода газа по отношению к другим критериям.

Ситуация – «Приоритет одного вида топлива».

Зависимость значения критерия расхода мазута от коэффициента относительной важности расхода газа по отношению к другим критериям.

Ситуация – «Приоритет одного вида топлива».

Зависимость финансовых затрат на топливо от коэффициента относительной важности расхода газа по отношению к другим критериям.

Ситуация – «Приоритет одного вида топлива».

Зависимость значения критерия КПД очереди котлоагрегатов от коэффициента относительной важности расхода газа по отношению к другим критериям.

Заключение

В результате работы:

- 1. Проведен анализ предметной области.
- 2. Выделены параметры, необходимые для построения математической модели,
- 3. Сформулированы критерии оптимизации,
- 4. Сформулирована целевая функция многокритериальной оптимизации,
- 5. Построена математическая модель,
- 6. Разработан метод многокритериальной оптимизации,
- 7. Разработан алгоритм, реализующий данный метод,
- 8. Проведено исследование разработанного метода.