01-02 学年第二学期

《几何与代数》期终试题解答

一 (30%) 填空题:

2. 设矩阵
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 1 \\ 1 & 3 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 5 & 6 \\ 0 & 0 & 7 \end{bmatrix}$, 则行列式 $|AB^{-1}| = \underline{-1/70}$.

3. 若向量组 α_1 , α_2 , α_3 线性无关,则当参数 $k \neq 1$ 时, $\alpha_1 - \alpha_2$, $k\alpha_2 - \alpha_3$, $\alpha_3 - \alpha_1$ 也线性无关.

4. 矩阵
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
的伴随矩阵 $A^* = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

- 5. 设矩阵 A 及 A+E 均可逆,且 $G=E-(A+E)^{-1}$ (其中 E 表示单位矩阵),则 $G^{-1}=\underline{E+A^{-1}}$.
- 6. 与向量 $\alpha = (1, 0, 1), \beta = (1, 1, 1)$ 均正交的单位向量为 $\pm (-\sqrt{2}/2, 0, \sqrt{2}/2)$.
- 7. 四点 A(1,1,1), B(1,1,x), C(2,1,1), D(2,y,3) 共面的充分必要条件是 x=1 或 y=1.
- 8. 设实二次型 $f(x_1, x_2, x_3) = x_1^2 + kx_2^2 + 2x_2x_3 + x_3^2$, 则当k满足条件k > 1时,为 $f(x_1, x_2, x_3) = 1$ 是椭球面;则当k满足条件k = 1时,为 $f(x_1, x_2, x_3) = 1$ 是柱面.

二 (8%) 记 π 为由曲线 $\begin{cases} z=y^2-3 & \text{ if } z=0 \end{cases}$ 绕 z-轴旋转所产生的旋转曲面, π 2 为以 π 4 与平面 π 3:

x+y+z=1 的交线为准线,母线平行于z-轴的柱面. 试给出曲面n 及n 的方程,并画出n 被n3 所截有界部分在 xOy 平面上的投影区域的草图(应标明区域边界与坐标轴的交点).

解: π_1 的方程为 $z = x^2 + y^2 - 3$. 联立 $\begin{cases} z = x^2 + y^2 - 3 \\ x + y + z = 1 \end{cases}$, 消去 z 得 π_2 的方程: $x^2 + y^2 + x + y - 4 = 0$.

 π_2 在 xOy 平面上的投影曲线的方程为 $(x+\frac{1}{2})^2+(y+\frac{1}{2})^2=\frac{9}{2}$.

na被na所截有界部分在xOy平面上的投影区域的草图如下面的右图所示:

登录 http://math.seu.edu.cn/resume/zhangxiaoxiang/index.htm 可下载本试题解答的电子文档.

 Ξ (8%) 求经过直线 $\begin{cases} x+2y-z=2 \\ -x+y-2z=1 \end{cases}$ 且与 xOy 平面垂直的平面方程.

解: (法一) 设所求的平面方程为 $(x+2y-z-2)+\lambda(-x+y-2z-1)=0$, 即

$$(1-\lambda)x + (2+\lambda)y - (1+2\lambda)z - (2+\lambda) = 0$$

因为它与xOy 平面垂直,所以其法向量 $\{(1-\lambda),(2+\lambda),(1+2\lambda)\}$ 与向量 $\{0,0,1\}$ 垂直。

因而 $1+2\lambda=0$,即 $\lambda=-1/2$. 于是得所求平面的方程: $\frac{3}{2}x+\frac{3}{2}y-\frac{3}{2}=0$,化简得:

$$x + y = 1$$

所求平面的法向量应垂直于{-3,3,3}和{0,0,1},因而可取为

$$\left\{ \begin{vmatrix} 3 & 3 \\ 0 & 1 \end{vmatrix}, \begin{vmatrix} 3 & -3 \\ 1 & 0 \end{vmatrix}, \begin{vmatrix} -3 & 3 \\ 0 & 0 \end{vmatrix} \right\} = \{3, 3, 0\}.$$

在直线 $\begin{cases} x+2y-z=2 \\ -x+y-2z=1 \end{cases}$ 上取一点(0,1,0),由此可得所求平面的方程: 3x+3(y-1)=0. 化简 得:

$$x + y = 1$$

(法三) 所求平面为直线 $\begin{cases} x+2y-z=2 \\ -x+y-2z=1 \end{cases}$ 到 xOy 平面上的投影平面. 因而从 $\begin{cases} x+2y-z=2 \\ -x+y-2z=1 \end{cases}$ 中消去z, 得x + y = 1. 这就是所求平面的方程.

四 (12%) 求矩阵方程 XA = 2X + B 的解,其中 $A = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 2 & -1 \end{bmatrix}$.

解: (法一) 原方程可化为 X(A-2E) = B, 其中 E 表示单位矩阵. $A-2E = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

$$A-2E$$
 的行列式 $|A-2E|=-1$,伴随矩阵 $(A-2E)^*=\begin{bmatrix} -1 & -1 & 1 \ 0 & 1 & 0 \ 0 & 0 & -1 \end{bmatrix}$.

因而
$$(A-2E)^{-1} = \begin{bmatrix} 1 & 1 & -1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

于是
$$X = B(A-2E)^{-1} = \begin{bmatrix} -1 & 0 & 1 \ 3 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \ 0 & -1 & 0 \ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 2 \ 3 & 1 & -4 \end{bmatrix}.$$

(注意 X 未必等于 $(A-2E)^{-1}B!$)

(法二) 原方程可化为 X(A-2E) = B, 其中 E 表示单位矩阵. $A-2E = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

$$\begin{bmatrix} A-2E \\ B \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 1 \\ 3 & 2 & -1 \end{bmatrix} \xrightarrow{\text{初等列变换}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & 2 \\ 3 & 1 & -4 \end{bmatrix} = \begin{bmatrix} E \\ B(A-2E)^{-1} \end{bmatrix}.$$

于是
$$X = B(A-2E)^{-1} = \begin{bmatrix} -1 & -1 & 2 \\ 3 & 1 & -4 \end{bmatrix}$$
.

五 (12%) 设线性方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 3x_2 + 5x_3 + 5x_4 = 2 \\ -x_2 + px_3 - 2x_4 = q \\ 3x_1 + 2x_2 + x_3 + (p+3)x_4 = -1 \end{cases}$$

- 1. 问: 当参数 p,q 满足什么条件时, 方程组无解; 有唯一解; 有无穷多解?
- 2. 当方程组有无穷多解时, 求出其通解.

解:
$$[A,b] =$$

$$\begin{bmatrix}
 1 & 1 & 1 & 1 & 0 \\
 1 & 3 & 5 & 5 & 2 \\
 0 & -1 & p & -2 & q \\
 3 & 2 & 1 & p+3 & -1
 \end{bmatrix}$$

 初等行变换

$$\begin{bmatrix}
 1 & 1 & 1 & 1 & 0 \\
 0 & 1 & 2 & 2 & 1 \\
 0 & 0 & p+2 & 0 & q+1 \\
 0 & 0 & 0 & p+2 & 0
 \end{bmatrix}$$
 = $[\tilde{A}, \tilde{b}]$.

由此可见, 当参数 p = -2 且 $q \neq -1$ 时, 秩(A) = 2, 而秩[A, b] = 3, 此时方程组无解; 当参数 $p \neq -2$ 时, 秩(A) = 4, 此时方程组有唯一解;

当参数 p = -2 且 q = -1 时, 秩(A) =秩[A, b] = 2, 此时方程组无穷多解,

由此可得方程组的通解 $\begin{cases} x_1 = x_3 + x_4 - 1 \\ x_2 = -2x_3 - 2x_4 + 1 \\ x_3 = x_3 \text{ (自由未知量)}, \\ x_4 = x_4 \text{ (自由未知量)} \end{cases}$

即
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -2 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} (c_1, c_2 为任意数).$$

六 (12%) 设矩阵
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 3 & -1 & 2 & 0 \\ 1 & -3 & k & -2 \end{bmatrix}$$
. 已知秩 $(A) = 2$.

- 1. 求参数 k 的值:
- 2. 求一个 4×2 矩阵 B, 使得 AB = 0, 且秩(B) = 2;
- 3. 问是否存在秩大于 2 的矩阵 M 使得 AM = 0? 为什么?

解:
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 3 & -1 & 2 & 0 \\ 1 & -3 & k & -2 \end{bmatrix}$$
 初等行变换
$$\begin{bmatrix} 1 & 0 & 3/4 & 1/4 \\ 0 & 1 & 1/4 & 3/4 \\ 0 & 0 & k & 0 \end{bmatrix}.$$

因为秩(A) = 2, 所以参数 k = 0. 此时可得齐次线性方程组 $Ax = \theta$ 的一个基础解系:

$$\xi_1 = \begin{bmatrix} -3/4 \\ -1/4 \\ 1 \\ 0 \end{bmatrix}, \ \xi_2 = \begin{bmatrix} -1/4 \\ -3/4 \\ 0 \\ 1 \end{bmatrix}.$$

于是可取矩阵 $B = \begin{bmatrix} -3 & -1 \\ -1 & -3 \\ 4 & 0 \\ 0 & 4 \end{bmatrix}$ 使得 AB = O,且秩(B) = 2.

由于任何一个满足 AM = 0 的矩阵 M 的列向量组都可以由 ξ_1 , ξ_2 线性表示,所以这样的矩阵 M 的秩一定 ≤ 2 . 因而不存在秩大于 2 的矩阵 M 使得 AM = 0.

七 (12%) 设实对称矩阵 $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & k & 0 \\ 1 & 0 & 0 \end{bmatrix}$ 与 $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & l & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 相似.

- 1. 求参数 k,l 的值;
- 2. 求一正交阵 Q,使得 $Q^{T}AQ = B$.
- 解: 1. 因为实对称矩阵 A 与 B 相似,所以 -k = |A| = |B| = l 且 k = 迹(A) = 迹(B) = 2 + l. 由此可得 k = 1, l = -1.

2.
$$|\lambda E - A| = \begin{vmatrix} \lambda & 0 & -1 \\ 0 & \lambda - 1 & 0 \\ -1 & 0 & \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda + 1),$$

由 $(E-A)x = \theta$ 可得 A 的对应于 $\lambda = 1$ 的两个特征向量 $\xi_1 = [1, 0, 1]^T$, $\xi_2 = [0, 1, 0]^T$, 由 $(-E-A)x = \theta$ 可得 A 的对应于 $\lambda = -1$ 的一个特征向量 $\xi_3 = [1, 0, -1]^T$,

$$\Leftrightarrow Q = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \end{bmatrix}$$
,则 Q 为正交阵且 $Q^{T}AQ = B$.

八 (6%) 已知 n 阶方阵 A 相似于对角阵,并且 A 的特征向量均是矩阵 B 的特征向量. 证明: AB = BA.

证明: 因为 n 阶方阵 A 相似于对角阵,所以 A 有 n 个线性无关的特征向量,设为 $p_1, p_2, ..., p_n$,对应的特征值设为 $\lambda_1, \lambda_2, ..., \lambda_n$.

又因为A 的特征向量均是矩阵B 的特征向量,所以B 也有n 个线性无关的特征向量 $p_1, p_2, ..., p_n$,对应的特征值设为 $t_1, t_2, ..., t_n$. (注意 A 与B 的特征值未必相等!)

则 $AP = P\Lambda$, BP = PT, $\Lambda T = T\Lambda$.

于是 $AB = (P\Lambda P^{-1})(PTP^{-1}) = P\Lambda TP^{-1} = PT\Lambda P^{-1} = (PTP^{-1})(P\Lambda P^{-1}) = B\Lambda$.

噼里啪啦地编辑着这份 Word 文档,

感觉自己在玩电子游戏(做 PowerPoint 课件时, 更是如此),

心情是快乐的.

但愿您也能分享到我的快乐!~~~

我也试图努力把它做得好看一些,

因为在我看来,

出自我手中的东西都是我精心雕刻的艺术品,

尽管它还不够完美.

人们常说: 予人玫瑰, 手留余香.

我所喜欢的,

正是那淡淡的余香给我带来的晚风般的惬意.....

02-03 学年第二学期

《几何与代数》期终试题解答

一 填空题(每小题 3 分, 共 36 分):

1.
$$\left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix} \begin{bmatrix} 5 & 1 & -3 \end{bmatrix} \right\}^{2002} = \begin{bmatrix} -5 & -1 & 3\\0 & 0 & 0\\-10 & -2 & -6 \end{bmatrix};$$

$$2. \begin{bmatrix} 2 & 3 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & 3 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 1/2 \end{bmatrix};$$

- 3. 若 A 是正交矩阵, 则行列式 $|A^{3}A^{T}| = 1$;
- 4. 空间四点 A(1,1,1), B(2,3,4), C(1,2,k), D(-1,4,9) 共面的充分必要条件是 k=3;
- 5. 点 P(2,-1,1)到直线 $l: \frac{x-1}{2} = \frac{y+1}{-2} = \frac{z}{1}$ 的距离为<u>1</u>;
- 6. 若 4 阶方阵 A 的秩为 2, 则伴随矩阵 A*的秩为 0;
- 7. 若可逆矩阵 P 使 AP = PB, $B = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$, 则方阵 A 的特征多项式为 $(\lambda-1)(\lambda-3)$;
- 8. 若 3 阶方阵 A 使 I-A, 2I-A, A+3I 都不可逆, 则 A 与对角阵 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$ 相似(其中 I 是

3 阶单位矩阵):

9. 若
$$A = \begin{bmatrix} 0 & 1 & 1 \\ x & 1 & y \\ 1 & -2 & 0 \end{bmatrix}$$
与对角阵相合,则 $(x, y) = (1, -2)$.

- 10. 设 $A = [A_1, A_2, A_3, A_4]$, 其中列向量 A_1, A_2, A_4 线性无关, $A_3 = 2A_1 A_2 + A_4$, 则齐次线 性方程组 $Ax = \theta$ 的一个基础解系是 $\xi = [2, -1, -1, 1]^T$;
- 11. 设 A, B 都是 3 阶方阵, AB = O, r(A) r(B) = 2, 则 r(A) + r(B) = D; (A) 5: (B) 4;(C) 3: (\mathbf{D}) 2;
- 12. 设 n 阶矩阵 A 满足 $A^2 = 2A$, 则以下结论中未必成立的是 B.
 - (A) A-I 可逆,且 $(A-I)^{-1} = A-I$; (B) A = O 或 A = 2I; (C) 若 2 不是 A 的特征值,则 A = O; (D) |A| = 0 或 A = 2I.

二 计算题(每小题 8 分, 共 24 分)

13.
$$\begin{vmatrix} 2 & 0 & 1 & 5 \\ 1 & 1 & 0 & 1 \\ 1 & 2 & -3 & 1 \\ 3 & 0 & 1 & 2 \end{vmatrix} \times (-1) = \begin{vmatrix} 2 & 0 & 1 & 5 \\ 1 & 1 & 0 & 1 \\ 1 & 2 & -3 & 1 \\ 1 & 0 & 0 & -3 \end{vmatrix} \times (-1) = \begin{vmatrix} 2 & 0 & 1 & 5 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & -3 & 0 \\ 1 & 0 & 0 & -3 \end{vmatrix} \times (-1) = -\begin{vmatrix} 0 & 1 & 11 \\ 1 & 0 & 4 \\ 0 & 1 & -3 & 0 \\ 1 & 0 & 0 & -3 & -4 \end{vmatrix} = \begin{vmatrix} 1 & 11 \\ -3 & -4 \end{vmatrix} = 29.$$

14. 求直线 l: $\frac{x-2}{2} = \frac{y-1}{1} = \frac{z+1}{2}$ 在平面 π : x + y - 2z + 1 = 0 上的垂直投影直线方程.

解: 过直线 l 且垂直于平面 π 的平面 π_1 的法向量必垂直于向量 $\{2,1,2\}$ 和 $\{1,1,-2\}$,

因而可取为
$$\left\{\begin{vmatrix} 1 & 2 \\ 1 & -2 \end{vmatrix}, \begin{vmatrix} 2 & 2 \\ -2 & 1 \end{vmatrix}, \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix}\right\} = \{-4, 6, 1\}.$$

又因为减过直线 1上的点(2,1,-1),由此可得平面减的点法式方程

$$-4(x-2)+6(y-1)+(z+1)=0$$

整理得

$$4x - 6y - z - 3 = 0$$

于是可得直线 l: $\frac{x-2}{2} = \frac{y-1}{1} = \frac{z+1}{2}$ 在平面 π : x + y - 2z + 1 = 0 上的垂直投影直线的一

般方程: $\begin{cases} x+y-2z+1=0\\ 4x-6y-z-3=0 \end{cases}$.

解: 原方程可化为 X(A-I) = AB, 其中 I 表示单位矩阵

于是可得
$$X = AB(A-I)^{-1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1/2 & 0 & -1 \end{bmatrix}, X^2 = \begin{bmatrix} 3/2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3/2 \end{bmatrix} = \frac{3}{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$X^{99} = (X^2)^{49}X = \begin{array}{ccc} \frac{3^{49}}{2^{49}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1/2 & 0 & -1 \end{bmatrix} = \begin{array}{ccc} \frac{3^{49}}{2^{49}} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1/2 & 0 & -1 \end{bmatrix}.$$

(注意 X 未必等于 $(A-I)^{-1}AB!$)

三 计算题, 解答题(3 小题共 32 分).

16. 设向量组
$$\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 2 \\ 1 \\ 1 \\ a \end{bmatrix}$, $\beta = \begin{bmatrix} 2 \\ 5 \\ -3 \\ b \end{bmatrix}$. $V = L(\alpha_1, \alpha_2, \alpha_3)$ 是由 $\alpha_1, \alpha_2, \alpha_3$ 生成

的空间. 已知维 $(V) = 2, \beta \in V$.

(1) 求 a, b; (2) 求 V 的一个基,并求 β 在此基下的坐标; (3) 求 V 的一个标准正交基.

$$[A]$$
 $[A]$ $[A]$

因为维 $(V) = 2, \beta \in V$. 所以 a - 6 = b + 2 = 0, 即 a = 6, b = -2.

(2) 由上述初等行变换的结果可知 α_1 , α_2 构成V的一个基, 且 $\beta=3\alpha_1-\alpha_2$.

$$(3) \Rightarrow \beta_1 = \alpha_1, \beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix} - \frac{3}{6} \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \\ 2 \end{bmatrix},$$

再单位化得 V 的一个标准正交基

$$\varepsilon_1 = \frac{\sqrt{6}}{6} \begin{bmatrix} 1\\2\\-1\\0 \end{bmatrix}, \quad \varepsilon_2 = \frac{\sqrt{2}}{6} \begin{bmatrix} 1\\0\\1\\4 \end{bmatrix}.$$

17. 用正交变换化简二次曲面方程:

$$x_1^2 + x_2^2 - 4x_1x_2 - 2x_1x_3 - 2x_2x_3 = 1$$

求出正交变换和标准形,并指出曲面类型.

解: 二次型
$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 - 4x_1x_2 - 2x_1x_3 - 2x_2x_3$$
 的矩阵 $A = \begin{bmatrix} 1 & -2 & -1 \\ -2 & 1 & -1 \\ -1 & -1 & 0 \end{bmatrix}$.

$$A$$
 的特征多项式 $|\lambda I-A|=egin{array}{cccc} \lambda-1 & 2 & 1 \ 2 & \lambda-1 & 1 \ 1 & 1 & \lambda \ \end{array}=(\lambda-3)(\lambda-1)(\lambda+2).$

A 的特征值 $\lambda_1 = 3$, $\lambda_2 = 1$, $\lambda = -2$.

由 $(\lambda I - A)x = \theta$ 求得 A 的对应于 $\lambda_1 = 3$, $\lambda_2 = 1$, $\lambda = -2$ 的特征值向量:

$$\xi_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad \xi_2 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \quad \xi_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

它们已经两两正交,单位化得 $p_1 = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $p_2 = \frac{\sqrt{6}}{6} \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$, $p_3 = \frac{\sqrt{3}}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

令 x = Py,则原二次曲面的方程化为 $3y_1^2 + y_2^2 - 2y_3^2 = 1$. 可见该二次曲面为单叶双曲面.

- 18. 设 D 为由 yOz 平面中的直线 z = 0,直线 z = y ($y \ge 0$)及抛物线 $y + z^2 = 2$,围成的平面 区域. 将 D 绕 y 轴旋转一周得旋转体Ω.
 - (1) 画出平面区域 D 的图形;
 - (2) 分别写出围成 Ω 的两块曲面 S_1, S_2 的方程;
 - (3) 求 S_1, S_2 的交线 l 在 zOx 平面上的投影曲线 C 的方程;
 - (4) 画出 S_1, S_2 和 l, C 的图形.
- 解: (1) 平面区域 D 的图形如右图所示:
 - (2) Ω由锥面 S_1 : $y = \sqrt{x^2 + z^2}$ 和旋转抛物面 S_2 : $y = 2 x^2 z^2$ 围成.
 - (3) 由 $y = \sqrt{x^2 + z^2}$ 和 $y = 2 x^2 z^2$ 消去 y 得 $x^2 + z^2 = 1$. 由此可得 S_1 , S_2 的交线 l 在 zOx 平面上的投影曲线 C 的方程: $\begin{cases} x^2 + z^2 = 1 \\ y = 0 \end{cases}$
 - (4) S_1 , S_2 和 l, C 的图形如右图所示:

四 证明题,解答题(每小题 4 分, 共 8 分).

19. 设 η 是线性方程组 Ax = b 的一个解, $b \neq \theta$, ξ_1 , ξ_2 是导出组 $Ax = \theta$ 的基础解系. 证明: η , $\xi_1 + \eta$, $\xi_2 + \eta$ 线性无关.

证明: 因为 $A\eta = b \neq \theta$, 所以 η 不是线性方程组 $Ax = \theta$ 的解.

而 ξ_1 , ξ_2 是 $Ax = \theta$ 的基础解系,故 η , ξ_1 , ξ_2 线性无关,否则 η 能由 ξ_1 , ξ_2 线性表示,从而是线性方程组 $Ax = \theta$ 的解,矛盾!

假若 $k_1\eta + k_2(\xi_1+\eta) + k_3(\xi_2+\eta) = \theta$, 则 $(k_1 + k_2 + k_3)\eta + k_2\xi_1 + k_3\xi_2 = \theta$.

于是 $(k_1 + k_2 + k_3) = k_2 = k_3 = 0$, 即 $k_1 = k_2 = k_3 = 0$.

所以 η , $\xi_1+\eta$, $\xi_2+\eta$ 线性无关.

- 20. 设 α 是 3 维非零实列向量, $||\alpha|| = \sqrt{2}$. 又 $A = \alpha \alpha^{T}$.
 - (1) 求 A 的秩; (2) 求 A 的全部特征值;
 - (3) 问 A 是否与对角阵相似? (4) 求 $I A^3$ |.

解: (1) 设
$$\alpha = [a, b, c]^{T} \neq \theta$$
, 则 $A = \alpha \alpha^{T} = \begin{bmatrix} aa & ab & ac \\ ba & bb & bc \\ ca & cb & cc \end{bmatrix} \neq O$, 且秩(A) = 1.

(2) 设 $\beta \neq \theta$ 是 A 的对应于特征值 λ 的特征向量. 即 $\alpha \alpha^{T} \beta = \lambda \beta$.

若 $\alpha^{T}\beta = 0$, 则 $\lambda\beta = \alpha\alpha^{T}\beta = \theta$, 而 $\beta \neq \theta$, 故 $\lambda = 0$.

此时, β 是 $\alpha^T x = 0$ 的解向量. 而秩(α^T) = 1,

故 $\alpha^T x = 0$ 的每个基础解系均由两个线性无关的解向量构成。

即对应于 $\lambda = 0, A$ 有两个线性无关的特征向量,

若 $\alpha^{T}\beta \neq 0$, 则由 $\alpha\alpha^{T}\beta = \lambda\beta$ 可得 $\alpha^{T}\alpha\alpha^{T}\beta = \lambda\alpha^{T}\beta$. 从而 $\lambda = \alpha^{T}\alpha$.

此时,由于 $\alpha\alpha^{T}\alpha = \lambda\alpha$.故可取 $\beta = \alpha$ 作为对应于 $\lambda = \alpha^{T}\alpha$ 的特征向量.

综上所述, A 的全部特征值有: $\lambda = 0$ 和 $\lambda = \alpha^{T} \alpha = ||\alpha||^{2} = 4$.

(**另解**) 因为 $A^2 = (\alpha \alpha^T)(\alpha \alpha^T) = \alpha(\alpha^T \alpha)\alpha^T = 4\alpha \alpha^T = 4A$,

所以 $A^2-4A=0$, 即 $\lambda^2-4\lambda$ 是 A 的零化多项式,

因而 A 的所有可能的特征值有: 0,4.

注意到秩(A) = 1, 可见都是A 的全部特征值有0(二重)和4.

(3) 由(2)可见 A 有 3 个线性无关的特征向量, 所以 A 与对角阵相似.

(**另解**) 因为实矩阵 $A^{T} = (\alpha \alpha^{T})^{T} = (\alpha^{T})^{T} \alpha^{T} = \alpha \alpha^{T} = A$, 所以 A 与对角阵相似.

(4) 由(2)可见存在 3 阶可逆矩阵
$$P$$
,使 $P^{-1}AP = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4 \end{bmatrix}$.

因此
$$|I - A^3| = |P^{-1}||I - A^3||P| = |(P^{-1}IP - P^{-1}A^3P)| = |I - (P^{-1}AP)^3|$$

$$= \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1 - 4^3.$$

If you want something badly enough

You must let it go free

If it comes back to you

Tt's nours

If it doesn't

You really never had it, anyway

03-04 学年第二学期

《几何与代数》期终试题解答

一 (24%) 填空题:

- 1. 若向量 $\vec{\alpha} = \vec{i} + a\vec{j} \vec{k}$, $\beta = b\vec{i} + \vec{j} + \vec{k}$, $\vec{\gamma} = \vec{k}$ 共面, 则参数 a, b 满足 ab = 1.
- 2. 过点 P(1, 2, 1) 且包含 x 轴的平面方程为 y 2z = 0.
- 3. 已知矩阵 A 满足 $A^2 + 2A 3I = 0$,其中 I 表示单位矩阵,则 A 的逆矩阵 $A^{-1} = \frac{1}{3}(A+2I)$.
- 4. 设矩阵 $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 1 \\ 1 & 3 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 5 & 6 \\ 0 & 0 & 7 \end{bmatrix}$, 则行列式 $|A^2B^{-1}| = \underline{1/70}$.
- 5. 设向量组 $\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 1 \\ k \\ -1 \end{bmatrix}$, 则当参数 k = 0 时, α_1 , α_2 , α_3 线性相关.
- 6. 向量空间 R^2 中向量 $\eta = (2,3)$ 在 R^2 的基,与 $\alpha = (1,1)$ $\beta = (0,1)$ 下的坐标为(2,1).
- 7. 满足下述三个条件的一个向量组为(-2, 1, 0), (1, 0, -1), 这三个条件是: ①它们是线性 无关的; ②其中的每个向量均与 $\alpha=(1,2,1)$ 正交; ③凡与 α 正交的向量均可由它们线性 表示.
- 8. 已知 2×2 矩阵 $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$,若对任意的 2 维列向量 η 有 $\eta^{T}A\eta=0$,则 a,b,c,d满足条件 a=d=0,b=-c.

二 (12%) 假设矩阵
$$A, B$$
 满足 $A-B=AB$, 其中 $A=\begin{bmatrix}0 & -2 & 0\\1 & -2 & 0\\-1 & 2 & 0\end{bmatrix}$, 求 B .

解: (法一) 由
$$A - B = AB$$
 得 $(A+I)B = A$, 其中 I 表示单位矩阵. $A+I = \begin{bmatrix} 1 & -2 & 0 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{bmatrix}$.

$$A+I$$
 的行列式 $|A+I|=1$,伴随矩阵 $(A+I)^*=\begin{bmatrix} -1 & 2 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$. 因而 $(A+I)^{-1}=\begin{bmatrix} -1 & 2 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.

于是
$$B = (A+I)^{-1}A = \begin{bmatrix} -1 & 2 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -2 & 0 \\ 1 & -2 & 0 \\ -1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}.$$

(注意 B 未必等于 $A(A+I)^{-1}$!)

(法二) 由
$$A - B = AB$$
 得 $(A+I)B = A$, 其中 I 表示单位矩阵. $A+I = \begin{bmatrix} 1 & -2 & 0 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{bmatrix}$.

$$[A+I,A] = \begin{bmatrix} 1 & -2 & 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & 1 & -2 & 0 \\ -1 & 2 & 1 & -1 & 2 & 0 \end{bmatrix} \xrightarrow{\text{institute}} \begin{bmatrix} 1 & 0 & 0 & 2 & -2 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \end{bmatrix} = [I,(A+I)^{-1}A]$$

于是
$$B = (A+I)^{-1}A = \begin{bmatrix} 2 & -2 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$
.

- 三 (15%) 设向量 $\alpha_1 = (a, 2, 10)^T$, $\alpha_2 = (-2, 1, 5)^T$, $\alpha_3 = (-1, 2, 4)^T$, $\beta = (2, b, c)^T$, 问当参数 a, b, c 满足什么条件时
 - 1. β 能用 α_1 , α_2 , α_3 唯一线性表示?
 - 2. β 不能用 α_1 , α_2 , α_3 线性表示?
 - 3. β 能用 α_1 , α_2 , α_3 线性表示,但表示方法不唯一?求这时 β 用 α_1 , α_2 , α_3 线性表示的一般表达式.

解: 令
$$A = [\alpha_3, \alpha_2, \alpha_1] = \begin{bmatrix} -1 & -2 & a \\ 2 & 1 & 2 \\ 4 & 5 & 10 \end{bmatrix}$$
, (注: 这里把 α_3 放在第一列纯粹是为了方便)

$$[A, \beta] = \begin{bmatrix} -1 & -2 & a & 2 \\ 2 & 1 & 2 & b \\ 4 & 5 & 10 & c \end{bmatrix} \xrightarrow{\text{NSFTEM}} \begin{bmatrix} 1 & 2 & -a & -2 \\ 0 & -3 & 2+2a & b+4 \\ 0 & 0 & 8+2a & c-b+4 \end{bmatrix} = [\tilde{A}, \tilde{\beta}]$$

- 1. 当参数 $a \neq -4$ 时, 秩(A) = 3, 此时 β 能用 α_1 , α_2 , α_3 唯一线性表示。
- 2. 当参数 a = -4, 而 $b c \neq 4$ 时, 秩(A) = 2, 秩(A, β) = 3, 此时 β 不能用 α_1 , α_2 , α_3 线性表示.
- 3. 当参数 a = -4,且 b c = 4 时,秩(A) =秩 $(A, \beta) = 2$,此时 β 能用 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,但表示方法不唯一.

这时
$$[\tilde{A}, \tilde{\beta}] = \begin{bmatrix} 1 & 2 & 4 & -2 \\ 0 & -3 & -6 & b+4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 初等行变换
$$\begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 2 & 2(b+1)/3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

由此可得 $Ax = \beta$ 的通解 $\begin{cases} x_1 = -2 \\ x_2 = -2x_3 + 2(b+1)/3, \\ x_3 = x_3 \end{cases}$ 由此可得 $Ax = \beta$ 的通解 $\begin{cases} x_1 = -2 \\ x_2 = -2x_3 + 2(b+1)/3, \\ x_3 = x_3 \end{cases}$

因而 β 用 α_1 , α_2 , α_3 线性表示的一般表达式为

$$\beta = t\alpha_1 + [-2t + 2(b+1)/3]\alpha_2 - 2\alpha_3$$

其中t为任意数.

四 (8%) 设实二次型 $f(x,y,z) = x^2 + y^2 + z^2 + 2axy + 2ayz$. 问: 实数 a 满足什么条件时, 方程 f(x,y,z) = 1 表示直角坐标系中的椭球面?

解: 实二次型
$$f(x, y, z) = x^2 + y^2 + z^2 + 2axy + 2ayz$$
 的矩阵 $A = \begin{bmatrix} 1 & a & 0 \\ a & 1 & a \\ 0 & a & 1 \end{bmatrix}$.

A 的顺序主子式
$$a_{11} = 1 > 0$$
; $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = 1 - a^2$; $|A| = 1 - 2a^2$.

f(x, y, z) = 1 表示直角坐标系中的椭球面当且仅当 A 正定,当且仅当 A 的顺序主子式全为正数,即 $a^2 < 1/2$.

- 五 (12%) 设 3 阶方阵 A 的特征值为 2, -2, 1, 矩阵 $B = aA^3 4aA + I$.
 - 1. 求参数 a 的值, 使得矩阵 B 不可逆.
 - 2. 问矩阵 B 是否相似于对角阵? 请说明你的理由.
- \mathbf{p} : 1. 因为 3 阶方阵 \mathbf{p} 有 3 个不同的特征值 2, -2, 1, 所以存在可逆矩阵 \mathbf{p} , 使得

$$P^{-1}AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

于是
$$P^{-1}BP = P^{-1}(aA^3 - 4aA + I)P = a(P^{-1}AP)^3 - 4a(P^{-1}AP) + I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 - 3a \end{bmatrix}$$
.

因而矩阵 B 不可逆当且仅当|B| = 0,而 $|B| = |P^{-1}BP| = 1 - 3a$. 所以当 a = 1/3 时,矩阵 B 不可逆.

- 2. 由 1 可知矩阵 B 相似于对角阵.
- 六 (12%) 已知二次曲面 S_1 的方程为 $z = 3x^2 + y^2$, S_2 的方程为 $z = 1 x^2$.
 - 1. 问: S_1 与 S_2 分别属于哪一类二次曲面?
 - 2. 求 S_1 与 S_2 的交线在 xOy 平面上的投影曲线方程;
 - 3. 画出由 S_1 与 S_2 所围成的立体的草图.
- \mathbf{R} : 1. S_1 与 S_2 分别属于椭圆抛物面和抛物柱面.
 - 2. 由 $z = 3x^2 + y^2$ 和 $z = 1 x^2$ 消去 z 得 S_1 与 S_2 的交线 在 xOy 平面上的投影曲线方程:

$$\begin{cases} 4x^2 + y^2 = 1\\ z = 0 \end{cases}$$

3. 由 S_1 与 S_2 所围成的立体的草图如右图所示:

七 (10%) 设 3×3 实对称矩阵 A 的秩为 2, 并且 AB = C, 其中 $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{bmatrix}$ 与 $C = \begin{bmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$.

求 A 的所有特征值及相应的特征向量; 并求矩阵 A 及 A^{9999} .

解:因为A是3阶矩阵,且秩为2,所以|A|=0,因而有一个特征值为0.

又因为
$$AB = C$$
, 其中 $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{bmatrix}$ 与 $C = \begin{bmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$, 令 $p_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $p_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$,

则 $Ap_1 = -p_1$, $Ap_2 = p_2$, 可见 p_1 , p_2 分别是 A 的对应于 $\lambda = -1$ 和 $\lambda = 1$ 的特征向量. 由于 A 是 3×3 的实对称矩阵,所以对应于特征值 0 的特征向量与 p_1 , p_2 正交,

由此可得对应于特征值 0 的一个特征向量 $p_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

$$A^{9999} = (P \Lambda P^{-1})^{9999} = P \Lambda^{9999} P^{-1} = P \Lambda P^{-1} = A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

八 (7%) 证明题:

- 1. 设 η_1 , η_2 , ..., η_t 是齐次线性方程组 $Ax = \theta$ 的线性无关的解向量, β 不是其解向量. 证明: β , β + η_1 , β + η_2 , ..., β + η_t 也线性无关.
- 证明: 因为 η_1 , η_2 , ..., η_t 是齐次线性方程组 $Ax = \theta$ 的线性无关的解向量, β 不是其解向量. 所以 β , η_1 , η_2 , ..., η_t 线性无关,否则 β 能由 η_1 , η_2 , ..., η_t 线性表示,从而是线性方程组 $Ax = \theta$ 的解,矛盾!

假若 $k_1\beta + k_2(\beta + \eta_1) + k_3(\beta + \eta_2) + \dots + k_{t+1}(\beta + \eta_t) = \theta$,

则 $(k_1 + k_2 + k_3 + ... + k_{t+1})\beta + k_2\eta_1 + k_3\eta_2 + ... + k_{t+1}\eta_t = \theta$. 于是 $(k_1 + k_2 + k_3 + ... + k_{t+1}) = k_2 = k_3 = ... = k_{t+1} = 0$, 即 $k_1 = k_2 = k_3 = ... = k_{t+1} = 0$. 所以 β , $\beta + \eta_1$, $\beta + \eta_2$, ..., $\beta + \eta_t$ 线性无关.

2. 设 $A \in n$ 阶正定矩阵, 证明: |I+A| > 1, 其中 $I \in n$ 阶单位矩阵. 证明: 因为 $A \in n$ 阶正定矩阵, 所以 A 的特征值 $\lambda_1, \lambda_2, ..., \lambda_n$ 都是正数.

因为
$$A \in n$$
 阶正定矩阵,所以 A 的特征值 $\lambda_1, \lambda_2, ..., \lambda_n$ 都是正数.

于是存在可逆矩阵 P ,使得 $P^{-1}AP = \Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$

因而 $|I+A| = |P^{-1}||I+A||P| = |P^{-1}(I+A)P| = |I+P^{-1}AP| = \begin{bmatrix} 1+\lambda_1 & 0 & \cdots & 0 \\ 0 & 1+\lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1+\lambda_n \end{bmatrix}$

$$= (1+\lambda_1)(1+\lambda_2)...(1+\lambda_n) > 1.$$

生活的辩证法就是这样; 当苦难压来时, 只有具备善良的愿望,坚定信念的人; 只有不计回报, 只求奉献的人; 只有坚强不屈, 不折不挠的人, 才有希望越过苦难, 收获甘甜。 苦难的尽头将是; 你不期而遇的幸福, 不曾李望的甘甜。

——摘自《知音》1999.5 下半月版

04-05 学年第二学期

《几何与代数》期终试题解答

一 (24%)填空题:

- 1. 以点 A(1,1,2), B(-2,-1,1), C(-1,1,-1)为顶点的三角形的面积为 $\sqrt{101}/2$;
- 2. 设 3 阶矩阵 $A = [\alpha_1, \alpha_2, \alpha_3], B = [\alpha_2 + \alpha_3, \alpha_1 2\alpha_3, \alpha_1].$ 若 A 的行列式|A| = 3,则 B 的行列式|B| = -6.
- 3. 若向量 $\alpha = (1, 0, 1), \beta = (2, 1, -1), \gamma = (-1, 1, k)$ 共面,则参数 $k = \underline{-4}$;
- 4. 若 A 为 n 阶方阵,则方阵 $B = \begin{bmatrix} I & O \\ A & 2I \end{bmatrix}$ 的逆矩阵 $B^{-1} = \begin{bmatrix} I & O \\ -\frac{1}{2}A & \frac{1}{2}I \end{bmatrix}$ (其中 I 是 n 阶单位矩阵, O 是 n 阶零矩阵);
- 5. 已知向量 $\eta = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ 是矩阵 $A = \begin{bmatrix} a & 1 & 1 \\ 2 & 0 & 1 \\ -1 & 2 & 2 \end{bmatrix}$ 的特征向量,则参数 $a = \underline{1}$,相应的特征值等于_3;
- 6. 假设矩阵 $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$,则在实矩阵 $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$, $E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $F = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}$ 中,与A 相抵的有 B, C, D, F; 与A 相似的有 F; 与A 相合的有 B, C;

二 (8%) 计算行列式

$$\begin{vmatrix} 1 & 2 & x & 1 \\ x & 1 & x & x \\ x & x & 1 & x \\ x & x & x & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & x-1 & 0 \\ x & 1-x & 0 & 0 \\ x & 0 & 1-x & 0 \\ x & 0 & 0 & 1-x \end{vmatrix} \xrightarrow{\text{\underline{BBH}}} (1-x) \begin{vmatrix} 1 & 1 & x-1 \\ x & 1-x & 0 \\ x & 0 & 1-x \end{vmatrix}$$

$$= (1-x)^{2} \begin{vmatrix} 1 & 1 & -1 \\ x & 1-x & 0 \\ x & 0 & 1 \end{vmatrix} = (1-x)^{2} (1-x-x^{2}).$$

解: 原方程可化为
$$X(3I-A) = B$$
, 其中 I 表示单位矩阵, $3I-A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$,

$$\begin{bmatrix} 3I-A \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ -1 & 0 & 1 \\ 1 & 2 & -1 \\ 2 & -1 & 0 \end{bmatrix}$$
 初等列变换
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & -1 \\ 3/2 & -1/2 & 0 \end{bmatrix} = \begin{bmatrix} I \\ B(3I-A)^{-1} \end{bmatrix}.$$

于是可得
$$X = B(3I - A)^{-1} = \begin{bmatrix} 1 & 1 & -1 \\ 3/2 & -1/2 & 0 \end{bmatrix}$$
. (注意 X 未必等于($3I - A$) ^{-1}B !)

四 (14%) 假设矩阵
$$A = \begin{bmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{bmatrix}, \theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, b = \begin{bmatrix} a \\ 1 \\ 1 \end{bmatrix}.$$

- 1. 已知齐次线性方程组 $Ax = \theta$ 的基础解系中含有两个线性无关的解向量,试确定这时参数 λ 的值,并求这时 $Ax = \theta$ 的一个基础解系.
- 2. 若在非齐次线性方程组 Ax = b 的解集中存在两个线性无关的解向量,但不存在更多的线性无关的解向量,试确定这时参数 $\lambda Q a$ 的值,并求这时 Ax = b 的通解.

解: 1.
$$A = \begin{bmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{bmatrix} \xrightarrow{\text{初等行变换}} \begin{bmatrix} 1 & 1 & \lambda \\ 0 & \lambda - 1 & 0 \\ 0 & 0 & 1 - \lambda^2 \end{bmatrix}$$
.

因为齐次线性方程组 $Ax = \theta$ 的基础解系中含有两个线性无关的解向量、

所以秩(A) = 1,因而
$$\lambda = 1$$
.此时 $\begin{bmatrix} 1 & 1 & \lambda \\ 0 & \lambda - 1 & 0 \\ 0 & 0 & 1 - \lambda^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

由此可得 $Ax = \theta$ 的一个基础解系:

$$\xi_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \quad \xi_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

2. 若非齐次线性方程组 Ax = b 的解集中有两个线性无关的解向量,但不存在更多的线性 无关的解向量,则 $Ax = \theta$ 的基础解系中只有一个线性无关的解向量. 所以秩(A,b) = 秩(A) = 2. 此时 $\lambda = -1$.

$$[A,b] = \begin{bmatrix} -1 & 1 & 1 & a \\ 0 & -2 & 0 & 1 \\ 1 & 1 & -1 & 1 \end{bmatrix} \xrightarrow{\text{institution}} \begin{bmatrix} 1 & 0 & -1 & 3/2 \\ 0 & 1 & 0 & -1/2 \\ 0 & 0 & 0 & a+2 \end{bmatrix}.$$

可见 a = -2, Ax = b 化为 $\begin{cases} x_1 - x_3 = 3/2 \\ x_2 = -1/2 \end{cases}$, 于是 Ax = b 的通解为:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = c \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3/2 \\ -1/2 \\ 0 \end{bmatrix} (c 为任意数).$$

五 (10%) 已知直线 l 过点 P(1,1,3), 与平面 $\pi: x+y-z=1$ 平行, 且与直线 λ :

 $\frac{x}{1} = \frac{y}{2} = \frac{z-1}{1}$ 相交. 求直线 l 的方向向量, 并写出直线 l 的方程.

解: 过点 P(1, 1, 3)且与平面 π : x + y - z = 1 平行的平面方程为: (x-1) + (y-1) - (z-3) = 0, 即: x + y - z = -1.

把直线 λ 的参数方程: x = t, y = 2t, z = t+1 代入 x + y - z = -1 得 t = 0.

故直线 λ 与平面 x+y-z=-1 的交点为 Q(0,0,1),且点直线 PQ 平行于平面 π 因此直线 I 的方向向量可取为 $\{1-0,1-0,3-1\}=\{1,1,2\}$.

直线 l 的方程为 $\frac{x}{1} = \frac{y}{1} = \frac{z-1}{2}$.

六 (10%) 假设二次曲面 π_1 的方程为: $x^2 + 4y^2 = 2z$; 平面 π_2 的方程为: x = z - 1.

1. π_1 与 π_2 的交线向 xOy 平面作投影所得的投影曲线 l 的方程为. $\begin{cases} (x-1)^2 + 4y^2 = 3 \\ z = 0 \end{cases}$.

该投影曲线绕 x 轴旋转所得的旋转曲面 π 的方程为 $(x-1)^2 + 4y^2 + 4z^2 = 3$.

2. 在坐标系(1)中画出投影曲线 / 的草图(请给坐标轴标上名称). 👢

解: 投影曲线 l 的草图如(1)所示.

3. 在坐标系(2)中画出 n_1 与 n_2 所围成的立体的草图 (请给坐标轴标上名称).

解: 四 与应 所围成的立体的草图如(2)所示.

(1) 投影曲线 l 的草图

(2) 四与亚所围成的立体的草图

七 (14%)设二次型 $f(x_1, x_2, x_3) = -x_1^2 + 2x_2^2 - x_3^2 + 2kx_1x_3$.

- 1. 试就参数 k 不同的取值范围, 讨论二次曲面 $f(x_1, x_2, x_3) = 1$ 的类型.
- 2. 假设 k > 0. 若经正交变换 x = Qy, $f(x_1, x_2, x_3)$ 可化成标准形 $2{y_1}^2 + 2{y_2}^2 4{y_3}^2$, 求参数 k 及一个合适的正交矩阵 Q.

解: 1. 二次型
$$f(x_1, x_2, x_3) = -x_1^2 + 2x_2^2 - x_3^2 + 2kx_1x_3$$
 的矩阵 $A = \begin{bmatrix} -1 & 0 & k \\ 0 & 2 & 0 \\ k & 0 & -1 \end{bmatrix}$.

A 的特征多项式
$$|\lambda I - A| = \begin{vmatrix} \lambda + 1 & 0 & -k \\ 0 & \lambda - 2 & 0 \\ -k & 0 & \lambda + 1 \end{vmatrix} = (\lambda - 2)(\lambda + 1 - k)(\lambda + 1 + k).$$

A 的特征值 $\lambda_1 = 2$, $\lambda_2 = k - 1$, $\lambda_3 = -1 - k$.

H4 14 EE E24 1,142 11 1,143 111						
	k 的取值	k < -1	k = -1	-1 < k < 1	k = 1	k > 1
	$\lambda_2 = k - 1$	< 0	< 0	< 0	= 0	> 0
	$\lambda_3 = -1 - k$	> 0	= 0	< 0	< 0	< 0
	$f(x_1, x_2, x_3) = 1$ 的类型	单叶双曲面	双曲柱面	双叶双曲面	双曲柱面	单叶双曲面

2. 若经正交变换 X = QY, $f(x_1, x_2, x_3)$ 可化成标准形 $2y_1^2 + 2y_2^2 - 4y_3^2$. 则 A 的特征值 $\lambda_1 = 2$, $\lambda_2 = k - 1 = 2$, $\lambda_3 = -1 - k = -4$. 即 k = 3. 此时由($\lambda_i I - A$) $x = \theta$ 求得 A 的分别对应于 $\lambda_1 = \lambda_2 = 2$ 和 $\lambda_3 = -4$ 的特征值向量

它们已经两两正交,单位化得 $p_1 = \frac{\sqrt{2} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}}{2}, \quad p_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad p_3 = \frac{\sqrt{2} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}}{2}.$

四 (10%)证明题.

1. 假设 n 维向量 $\beta_1 = a\alpha_1 + b\alpha_2$, $\beta_2 = c\alpha_1 + d\alpha_2$. 若 β_1 , β_2 线性无关. 证明: α_1 , α_2 线性无关, 且行列式 $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$.

证明: $\diamondsuit A = [\alpha_1, \alpha_2], B = [\beta_1, \beta_2], C = \begin{bmatrix} a & c \\ b & d \end{bmatrix}, 则 B = AC.$

所以秩 $(B) \le$ 秩(A)} ≤ 2 , 秩 $(B) \le$ 秩(C)} ≤ 2 .

若 β_1 , β_2 线性无关,则秩(B) = 2. 因而秩(A) =秩(C) = 2.

所以 α_1 , α_2 线性无关,且行列式 $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$.

2. 假设A, B 都是n 阶实对称矩阵, 并且, A 的特征值均大于a, B 的特征值均大于b, 证明: A+B 的特征值均大于a+b.

证明:由假设条件可知,存在n阶可逆矩阵P,使得

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix},$$

其中, λ_1 , λ_2 , ..., $\lambda_n > a$. 于是

$$P^{-1}(A-aI)P = \begin{bmatrix} \lambda_1 - a & 0 & \cdots & 0 \\ 0 & \lambda_2 - a & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n - a \end{bmatrix},$$

其中, I 是 n 阶单位矩阵, λ_1 -a, λ_2 -a, ..., λ_n -a > 0. 所以 A-aI 是正定矩阵. 类似的, B-bI 也是正定矩阵. 因而对于任意的 n 维向量 x,

 $x^{T}(A+B-(a+b)I)x = x^{T}(A-aI)x + x^{T}(B-bI)x > 0.$

这就是说,A+B-(a+b)I 也是正定矩阵. 因此其特征值都大于 0. 下面设 λ 是 A+B 的任意一个特征值,则 $\lambda-(a+b)$ 是 A+B-(a+b)I 的特征值,故 $\lambda-(a+b)>0$,即 $\lambda>a+b$.

◆ **½** ◆ **≦** ◆ **⑤** ◆

保护环境

节约资源

关爱弱者

05-06 学年第二学期

《几何与代数》期终试题解答

一 (24%)填空题:

1. 过点P(1,0,1)且与直线 $\frac{x}{2} = \frac{y-1}{1} = \frac{z}{1}$ 垂直的平面的方程为2x + y + z - 3 = 0;

2.
$$\begin{aligned} \begin{aligned} \begin{al$$

- 3. 直角坐标系中向量 $\alpha = (1, 1, 2)$ 与 $\beta = (1, 0, 1)$ 的向量积为(1, 1, -1);
- 4. 若3×3矩阵A的秩为2, α_1 , α_2 是线性方程组Ax = b的解向量, 并且 $\alpha_1 + \alpha_2 = (2, 2, 4)^T$, $\alpha_1 \alpha_2 = (0, 1, 1)^T$, 则Ax = b的通解是 $x = k(0, 1, 1)^T + (1, 3/2, 5/2)^T$.
- 5. 设A是3×3矩阵,若矩阵I + A, 2I A, $\overline{2I 3A}$ 均不可逆(其中I表示3阶单位矩阵),则行列式|A| = -4/3.

- 8. 设 α 是n维列向量(n > 1),则n阶方阵 $A = \alpha \alpha^{T}$ 的行列式|A|的值为<u>0</u>.

解:
$$[A, I, C] = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 1 & 3 \\ 0 & 2 & 1 & 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & -1 & -1 \end{bmatrix}$$
 初等行变换

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 0 & 1/2 & 1/2 & 1/2 & -1/2 \\ 0 & 0 & 1 & 0 & 0 & -1 & 1 & 1 \end{bmatrix} = [I, A^{-1}, A^{-1}C],$$

$$[B, I] = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \end{bmatrix}$$
 初等行变换

$$\begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 3/2 & -1/2 \end{bmatrix} = [I, B^{-1}].$$

于是可得
$$A^{-1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1/2 & 1/2 \\ 0 & 0 & -1 \end{bmatrix}, B^{-1} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix},$$

$$X = \begin{bmatrix} A & O \\ O & B \end{bmatrix}^{-1} \begin{bmatrix} C \\ O \end{bmatrix} = \begin{bmatrix} A^{-1} & O \\ O & B^{-1} \end{bmatrix} \begin{bmatrix} C \\ O \end{bmatrix} = \begin{bmatrix} A^{-1}C \\ O \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 1/2 & -1/2 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

- 三 (12%) 设向量组 α_1 , α_2 , α_3 线性无关, 问:参数l, m满足什么条件时, 向量组 $\alpha_1 + l\alpha_2$, $\alpha_2 + m\alpha_3$, $\alpha_1 + \alpha_3$ 也线性无关?
- 解: 因为向量组 α_1 , α_2 , α_3 线性无关, 所以秩(α_1 , α_2 , α_3) = 3. 向量组 $\alpha_1 + l\alpha_2$, $\alpha_2 + m\alpha_3$, $\alpha_1 + \alpha_3$ 线性无关等价于秩($\alpha_1 + l\alpha_2$, $\alpha_2 + m\alpha_3$, $\alpha_1 + \alpha_3$) = 3.

$$\overline{\mathbb{m}}(\alpha_1 + l\alpha_2, \alpha_2 + m\alpha_3, \alpha_1 + \alpha_3) = (\alpha_1, \alpha_2, \alpha_3)P,$$
其中 $P = \begin{bmatrix} 1 & 0 & 1 \\ l & 1 & 0 \\ 0 & m & 1 \end{bmatrix}$

并且有秩 $(\alpha_1 + l\alpha_2, \alpha_2 + m\alpha_3, \alpha_1 + \alpha_3) \le$ 秩 $(P) \le 3$.

所以向量组 $\alpha_1 + l\alpha_2$, $\alpha_2 + m\alpha_3$, $\alpha_1 + \alpha_3$ 线性无关 \Leftrightarrow 秩(P) = 3 \Leftrightarrow 行列式(P| = 1 + $lm \neq 0$ $\Leftrightarrow lm \neq -1$.

四 (14%) 已知空间直角坐标系中三平面的方程分别为:

$$\pi_1$$
: $x + y + 2z = 1$, π_2 : $x + \lambda y + z = 2$, π_3 : $\lambda x + y + z = 1 + \lambda$.

- 1. 问: \(\alpha\) 取何值时这三个平面交于一点? 交于一直线? 没有公共交点?
- 2. 当它们交于一直线时, 求该直线的方程.

$$\mathbf{pr}: \mathbf{1}. \ \diamondsuit A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & \lambda & 1 \\ \lambda & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & \lambda & 1 & 2 \\ \lambda & 1 & 1 & 1 + \lambda \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & \lambda & 1 & 2 \\ \lambda & 1 & 1 & 1+\lambda \end{bmatrix} \xrightarrow{\text{初等行变换}} \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & \lambda - 1 & -1 & 1 \\ 0 & 0 & \lambda & -1 \end{bmatrix} = C.$$

这三个平面交于一点 \Leftrightarrow 秩(A) = 秩(B) = 3 $\Leftrightarrow \lambda \neq 0$ 且 $\lambda \neq 1$.

这三个平面交于一直线 \Leftrightarrow 秩(A) = 秩(B) = 2 \Leftrightarrow λ = 1.

这三个平面没有公共交点 \Leftrightarrow 秩(A) < 秩(B) \Leftrightarrow $\lambda = 0$.

2. 当这三个平面交于一直线时, λ=1,

$$C = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{\text{初等行变换}} \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

于是可得交线的方程为 $\begin{cases} x+y=3\\ z=-1 \end{cases}$.

五 (12%) 已知
$$3\times3$$
矩阵 $A=\begin{bmatrix} -1 & 0 & 0 \\ -a & 2 & a+3 \\ -a-3 & 0 & a+2 \end{bmatrix}$ 有一个二重特征值.

- 1. 试求参数a的值, 并讨论矩阵A是否相似于对角阵.
- 2. 如果A相似于对角阵, 求可逆矩阵P, 使 $P^{-1}AP = \Lambda$ 是对角阵.

解: 1.
$$A$$
的特征多项式| $\lambda I - A$ | = $\begin{vmatrix} \lambda + 1 & 0 & 0 \\ a & \lambda - 2 & -a - 3 \\ a + 3 & 0 & \lambda - a - 2 \end{vmatrix}$ = $(\lambda + 1)(\lambda - 2)(\lambda - a - 2)$.

A的特征值为 $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = a + 2$.

因为A有一个二重特征值,所以 $\lambda_3 = -1$ 或2,即a = -3或0.

当
$$a = -3$$
时, $\lambda_3 = \lambda_1 = -1$, $-I - A = \begin{bmatrix} 0 & 0 & 0 \\ -3 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,秩 $(-I - A) = 1$,

因而 $\lambda_3 = \lambda_1 = -1$ 有2个线性无关的特征向量,此时A相似于对角阵.

当
$$a=0$$
时, $\lambda_3=\lambda_2=2$, $2I-A=\begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & -3 \\ 3 & 0 & 0 \end{bmatrix}$,秩($2I-A$)=2,

因而 $\lambda_3 = \lambda_2 = 2$ 只有1个线性无关的特征向量,此时A不相似于对角阵,

2. 当a = -3时, (-I - A)x = 0的基础解系可取为

$$\xi_1 = (1, -1, 0)^T, \, \xi_2 = (0, 0, 1)^T,$$

它们已经正交,单位化得 $p_1 = (1/\sqrt{2}, -1/\sqrt{2}, 0)^T, p_2 = (0, 0, 1)^T$.

$$2I - A = \begin{bmatrix} 3 & 0 & 0 \\ -3 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}, (2I - A)x = 0$$
的基础解系可取为

$$\xi_3 = (0, 1, 0)^{\mathrm{T}}$$

$$\xi_3 = (0, 1, 0)^{\mathrm{T}},$$
 $\Leftrightarrow p_3 = \xi_3 = (0, 1, 0)^{\mathrm{T}}, \quad \text{则}P = (p_1, p_2, p_3)$ 可逆,且 $P^{-1}AP = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$

六 (12%) 假设A, B是实对称矩阵. 证明: 分块矩阵 $M = \begin{bmatrix} A & O \\ O & B \end{bmatrix}$ 是正定矩阵的充分必要条

件A, B都是正定矩阵.

证明: (充分性)

[方法一]

A, B都是正定矩阵

⇒ 对于任意非零的列向量X, Y(其中X, Y的维数分别等于A, B的阶数), 有

$$X^{\mathrm{T}}AX > 0, Y^{\mathrm{T}}BY > 0$$

⇒ 对于任意非零的列向量 $Z = \begin{bmatrix} X \\ Y \end{bmatrix}$ (其中X, Y, Z的维数分别等于A, B, M的阶数), $Z^{T}MZ = [X^{T}, Y^{T}] \begin{bmatrix} A & O \\ O & B \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} = X^{T}AX + Y^{T}BY > 0$

$$Z^{T}MZ = [X^{T}, Y^{T}]\begin{bmatrix} A & O \\ O & B \end{bmatrix}\begin{bmatrix} X \\ Y \end{bmatrix} = X^{T}AX + Y^{T}BY > 0$$

⇒ M是正定矩阵.

[方法二]

A, B都是正定矩阵

- ⇒ A 的特征值 $\lambda_1, ..., \lambda_s$ 以及B 的特征值 $\mu_1, ..., \mu_t$ 都大于零(其中s, t分别为A, B的
- $\Rightarrow M = \begin{bmatrix} A & O \\ O & B \end{bmatrix}$ 的特征值 $\lambda_1, ..., \lambda_s, \mu_1, ..., \mu_t$ 都大于零
- \Rightarrow *M* 是正定矩阵.

[方法三]

A, B都是正定矩阵

 \Rightarrow 存在可逆矩阵P, Q使得 $P^{T}AP = I_s$, $Q^{T}BQ = I_t$, (其中 I_s , I_t 为单位矩阵,阶数分别与A, B的阶数相同)

$$\Rightarrow$$
 存在可逆矩阵 $\begin{bmatrix} P & O \\ O & Q \end{bmatrix}$, 使得

$$\begin{bmatrix} P & O \\ O & Q \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} A & O \\ O & B \end{bmatrix} \begin{bmatrix} P & O \\ O & Q \end{bmatrix} = \begin{bmatrix} P^{\mathrm{T}} & O \\ O & Q^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} A & O \\ O & B \end{bmatrix} \begin{bmatrix} P & O \\ O & Q \end{bmatrix} = \begin{bmatrix} P^{\mathrm{T}}AP & O \\ O & Q^{\mathrm{T}}BQ \end{bmatrix} = \begin{bmatrix} I_{s} & O \\ O & I_{t} \end{bmatrix}$$

⇒ M是正定矩阵.

[方法四]

A, B都是正定矩阵

⇒ 存在可逆矩阵P, Q使得 $A = P^TP$, $B = Q^TQ$ (其中P, Q的阶数分别与A, B的阶数相同)

⇒ 存在可逆矩阵
$$\begin{bmatrix} P & O \\ O & Q \end{bmatrix}$$
, 使得
$$M = \begin{bmatrix} A & O \\ O & B \end{bmatrix} = \begin{bmatrix} P^{\mathrm{T}}P & O \\ O & O^{\mathrm{T}}O \end{bmatrix} = \begin{bmatrix} P & O \\ O & O \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} P & O \\ O & O \end{bmatrix}$$

⇒ M是正定矩阵.

[方法五]

A, B都是正定矩阵

 $\Rightarrow A, B$ 的各阶顺序主子式都大于零

$$\Rightarrow M = \begin{bmatrix} A & O \\ O & B \end{bmatrix}$$
的各阶顺序主子式都大于零

(事实上,设A,B的阶数分别为s,t; Δ_k 是M的k阶顺序主子式,则当k小于或等于s时, Δ_k 也是A的k阶顺序主子式,因而大于零;当k大于s时, $\Delta_k = |A|\Delta_{k-s}$,其中 Δ_{k-s} 是B的k-s阶顺序主子式,因而 Δ_k 大于零) $\Rightarrow M$ 是正定矩阵.

(必要性)

[方法一]

M是正定矩阵

⇒ 对于任意非零的列向量Z(其中Z的维数等于M的阶数),有 $Z^TMZ > 0$

 \Rightarrow 对于任意非零的列向量X, Y(其中X, Y的维数分别等于A, B的阶数), $Z_1 = \begin{bmatrix} X \\ \theta \end{bmatrix}$ 和

 $Z_2 = \begin{bmatrix} \theta \\ Y \end{bmatrix}$ 都非零(其中 Z_1 , Z_2 的维数都等于M的阶数, θ 为相应的零向量),于是有

$$X^{T}AX = [X^{T}, \theta^{T}]\begin{bmatrix} A & O \\ O & B \end{bmatrix}\begin{bmatrix} X \\ \theta \end{bmatrix} = Z_{1}^{T}MZ_{1} > 0,$$

$$Y^{T}BY = [\theta^{T}, Y^{T}]\begin{bmatrix} A & O \\ O & B \end{bmatrix}\begin{bmatrix} \theta \\ Y \end{bmatrix} = Z_{2}^{T}MZ_{2} > 0$$

⇒ A, B都是正定矩阵.

[方法二]

设A的特征值为 λ_1 , ..., λ_s , B的特征值 μ_1 , ..., μ_t (其中s, t分别为A, B的阶数), 则M 的特征值为 λ_1 , ..., λ_s , μ_1 , ..., μ_t . 若M是正定矩阵,则 λ_1 , ..., λ_s , μ_1 , ..., μ_t 都大于零,因而A, B都是正定矩阵.

[<u>方法三</u>]

设A,B的阶数分别为s,t.

若M是正定矩阵,则存在s+t阶可逆矩阵U使得

$$U^{T}MU = \begin{bmatrix} I_{s} & O \\ O & I_{t} \end{bmatrix}$$
(其中 I_{s} , I_{t} 分别为 s , t 阶单位矩阵)

将
$$U$$
分块为 $\begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix}$, 其中 U_{11} , U_{22} 分别为 s , t 阶矩阵,

$$\mathbb{M}\begin{bmatrix} I_s & O \\ O & I_t \end{bmatrix} = U^{\mathsf{T}} M U = \begin{bmatrix} U_{11}^{\mathsf{T}} & U_{21}^{\mathsf{T}} \\ U_{12}^{\mathsf{T}} & U_{22}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} A & O \\ O & B \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix} = \begin{bmatrix} U_{11}^{\mathsf{T}} A U_{11} & O \\ O & U_{22}^{\mathsf{T}} B U_{22} \end{bmatrix}.$$

因而 U_{11} , U_{22} 都可逆,且 $U_{11}^{\mathrm{T}}AU_{11} = I_s$, $U_{22}^{\mathrm{T}}BU_{22} = I_t$. 所以A, B都是正定矩阵.

[方法四]

设A,B的阶数分别为s,t.

于是, 我们可以断言A, B的各阶顺序主子式都大于零.

事实上, 假若A有一个k阶顺序主子式 $\Delta_k \leq 0$,

由于 Δ_k 也是M的k阶顺序主子式,这就与M是正定矩阵矛盾!

假若A的各阶顺序主子式都大于零,而B有一个k阶顺序主子式 $\Delta_k \leq 0$,

则M的s + k阶顺序主子式的值等于 $|A|\Delta_k \le 0$ (注意行列式|A| > 0).

这又与M是正定矩阵矛盾!

所以A, B都是正定矩阵.

- 七 (8%)由与平面z = -1及点M(0, 0, 1)等距离运动的动点P(x, y, z)所生成的曲面记为 π_1 ,将 yOz平面上曲线 $\begin{cases} y^2 + z = 5 \\ x = 0 \end{cases}$ 以z轴为旋转轴所生成的旋转曲面记为 π_2 . 则
 - 1. π_1 的方程为 $4z = x^2 + y^2$.
 - 2. π_2 的方程为 $x^2 + y^2 + z = 5$.
 - 3. π_1 与 π_2 的交线在xOy平面上的投影曲线方程是 $\frac{x^2+y^2=4}{2}$.
 - 4. 在右边的坐标系中画出由这两个曲面所围成的 有限立体的简图.

八 (6%)证明题.

1. 若 2×2 矩阵A的行列式|A| < 0. 证明: A一定相似于对角阵.

证明: 设A的特征值为 λ_1 , λ_2 , 则 $\lambda_1\lambda_2 = |A| < 0$.

所以礼和心是异号的两个实数.

而A的阶数恰好为2、因而A一定相似于对角阵。

2. 假设 $n \times n$ 实对称矩阵A的特征值为 $\lambda_1, \ldots, \lambda_n, \alpha$ 是A的属于特征值 λ_1 的单位特征向量,矩阵 $B = A - \lambda_1 \alpha \alpha^T$. 证明: B的特征值为 $0, \lambda_2, \ldots, \lambda_n$.

证明:由假设条件可知,存在n阶正交矩阵 $P = [\alpha, \alpha_2, ..., \alpha_n]$,使得

$$P^{-1}AP = P^{T}AP = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix},$$

于是

$$P^{T}BP = P^{T}(A - \lambda_{1}\alpha\alpha^{T})P = P^{T}AP - \lambda_{1}P^{T}(\alpha\alpha^{T})P = P^{T}AP - \lambda_{1}(P^{T}\alpha)(\alpha^{T}P)$$

$$= \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix} - \lambda_{1} \begin{pmatrix} \alpha^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} \alpha)(\alpha^{T}[\alpha, \alpha_{2}, ..., \alpha_{n}])$$

$$= \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix} - \lambda_{1} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} [1, 0, ..., 0]$$

$$= \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix} - \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}.$$

GOOD LUCK!