Problem G. Almost Arithmetical Progression

Time limit 1000 ms **Mem limit** 262144 kB

Gena loves sequences of numbers. Recently, he has discovered a new type of sequences which he called an almost arithmetical progression. A sequence is an *almost arithmetical progression*, if its elements can be represented as:

- $a_1 = p$, where p is some integer;
- $a_i = a_{i-1} + (-1)^{i+1} \cdot q$ (i > 1), where q is some integer.

Right now Gena has a piece of paper with sequence b, consisting of n integers. Help Gena, find there the longest subsequence of integers that is an almost arithmetical progression.

Sequence $s_1, s_2, ..., s_k$ is a subsequence of sequence $b_1, b_2, ..., b_n$, if there is such increasing sequence of indexes $i_1, i_2, ..., i_k$ ($1 \le i_1 < i_2 < ... < i_k \le n$), that $b_{i_j} = s_j$. In other words, sequence s can be obtained from b by crossing out some elements.

Input

The first line contains integer n ($1 \le n \le 4000$). The next line contains n integers $b_1, b_2, ..., b_n$ ($1 \le b_i \le 10^6$).

Output

Print a single integer — the length of the required longest subsequence.

Sample 1

Input	Output
2	2
3 5	

Sample 2

Input	Output
4 10 20 10 30	3

Note

In the first test the sequence actually is the suitable subsequence.

In the second test the following subsequence fits: 10, 20, 10.