## PREDICTING CAR ACCIDENT SEVERITY

DANA ANDREA

## PREDICTING ACCIDENT SEVERITY IS KEY FOR FIRST RESPONDERS

- Firetruck accidents rank as the second leading cause of on-the-job deaths for firefighters.
- Approximately 500 firefighters are involved in fatal firetruck crashes every year; on average, 1 in 100 of those occupants die as a result of the crash.
- Between 2006 and 2016, more than one police officer per week was killed on average from a collision or from being struck directly by another vehicle.
- More than 10,000 ambulance-related collisions occur annually; from 1993 to 2010, approximately 97 EMS technicians were killed in collisions.

#### DATA ACQUISITION

- The data used in this project contains 194,673 records of motor vehicle accidents and corresponding weather conditions from Seattle, WA.
- The date range for these accidents is from 2004-2020.
- This dataset was provided by Coursera.

#### DATA CLEANSING

- Remove excess identifier columns
- Convert NaN values to "Unknown"
- Remove Person Count Outliers (limit to accidents involving 5 persons or less)



## WEATHER CONDITION IMPACT ON ACCIDENT SEVERITY

| ROADCOND   | Dry   | Ice   | Oil   | Other | Sand/Mud/Dirt | Snow/Slush | Standing Water | Unknown | Wet   |
|------------|-------|-------|-------|-------|---------------|------------|----------------|---------|-------|
| SEVERITY_1 | 47.5% | 59.4% | 48.7% | 46.1% | 46.3%         | 68.9%      | 50.0%          | 80.2%   | 46.3% |
| SEVERITY_2 | 52.5% | 40.6% | 51.3% | 53.9% | 53.7%         | 31.1%      | 50.0%          | 19.8%   | 53.7% |

| WEATHER    | Blowing<br>Sand/Dirt | Clear | Fog/Smog/Smoke | Other | Overcast | Partly<br>Cloudy | Raining | Severe<br>Crosswind | Sleet/Hail/Freezing<br>Rain | Snowing | Unknown |
|------------|----------------------|-------|----------------|-------|----------|------------------|---------|---------------------|-----------------------------|---------|---------|
| SEVERITY_1 | 51.9%                | 47.4% | 46.0%          | 71.2% | 48.1%    | 25.0%            | 45.7%   | 53.8%               | 54.4%                       | 66.0%   | 79.6%   |
| SEVERITY_2 | 48.1%                | 52.6% | 54.0%          | 28.8% | 51.9%    | 75.0%            | 54.3%   | 46.2%               | 45.6%                       | 34.0%   | 20.4%   |

| LIGHTCOND  | Dark - No Street Lights | Dark - Street Lights Off | Dark - Street Lights On | Dark - Unknown Lighting | Dawn  | Daylight | Dusk  | Other | Unknown |
|------------|-------------------------|--------------------------|-------------------------|-------------------------|-------|----------|-------|-------|---------|
| SEVERITY_1 | 60.2%                   | 55.1%                    | 50.4%                   | 50.0%                   | 45.8% | 46.3%    | 45.7% | 60.3% | 80.0%   |
| SEVERITY_2 | 39.8%                   | 44.9%                    | 49.6%                   | 50.0%                   | 54.2% | 53.7%    | 54.3% | 39.7% | 20.0%   |

### JUNCTION TYPE ANALYSIS



# COLLISION TYPE ANALYSIS



# COLLISION TYPE ANALYSIS



### K-NEAREST NEIGHBOR AND LOGISTIC REGRESSION

```
In [29]: from sklearn import metrics
    print("Train set Accuracy: ", metrics.accuracy_score(y_train, neigh.predict(X_train)))
    print("Test set Accuracy: ", metrics.accuracy_score(y_test, yhat))

Train set Accuracy: 0.6619509020127964
    Test set Accuracy: 0.6560565870910698
```

```
In [33]: from sklearn.metrics import jaccard_similarity_score
    jaccard_similarity_score(y_test, yhat)
```

Out[33]: 0.6957461440220061

#### CONCLUSION

- K-nearest neighbor yields 66% accuracy
- Logistic Regression yields 70% accuracy
- The insights gained from this model is that accidents involving pedestrians and cyclists at intersections and midblock are the most severe in terms of personal injury.
- This means that in order to reduce accident damage, first responders should be concentrated in locations where pedestrians and cyclists are common like city centers, school zones, city parks, etc.