Arithmetic Algorithms and ALU Design

Mainak Chaudhuri
Indian Institute of Technology Kanpur

Sketch

- Abstract model of computer
- ALU architecture
- · Arithmetic algorithms
 - Overflow detection in addition and subtraction
 - Integer multiplication
 - Integer division
 - Floating-point addition
 - Floating-point multiplication

2

Abstract model of computer

- Computer has an ISA
- The implementation of the ISA is an abstract five-state synchronous FSM
 - Each state change happens on posedge clock
 - State 0: fetch the instruction pointed to by program counter from memory; update program counter to point to the next instruction
 - State 1: decode the instruction to extract various fields and read source register operands
 - State 2: execute the instruction in ALU; compute address of load/store instructions; update program counter if control transfer instruction
 - State 3: access memory if load/store instruction
 - State 4: write result to destination register if the instruction produces a result

Abstract model of computer

- Fetching an instruction requires accessing memory with the program counter as addr.
- Decoding an instruction for MIPS is simple due to small number of formats and fixed position of the register specifiers
- Reading operands from register file requires exercising the read ports
- Executing an instruction and computing address of a load/store instruction requires an arithmetic logic unit (ALU)
- Load/store instructions access memory with the computed address
- Writing result to register file requires exercising the write ports

_

ALU architecture

- ALU is responsible for executing the core of the MIPS instructions
 - Everything except load/store instructions
- ALU takes two inputs for most instructions and produces a result that may or may not get written to a destination register
 - For example, control transfer instructions do not write to a general-purpose register, but writes to the program counter
- ALUs are of two kinds: integer and floatingpoint
 - The floating-point ALU is often referred to as the floating-point unit (FPU)

Integer ALU architecture

- · Components of the integer ALU
 - Adder/subtractor
 - · Executes add, addu, sub, subu, addi, addiu
 - Computes target of conditional branch instructions
 - Computes address of load/store instructions
 - Multiplier
 - · Executes mult, multu
 - Divider
 - · Executes div, divu
 - Logic gate array
 - Executes and, nor, or, xor, andi, ori, xori, lui
 - Comparator and branch subunit
 - Executes slt, sltu, slti, sltiu
 - Executes the comparison part of beq, bne, bgez, bgtz, bltz, blez

Integer ALU architecture

- Components of the integer ALU
 - Shifter
 - Executes sll, sllv, sra, srav, srl, srlv
 - Naïve implementation would shift by one bit position in every clock cycle
 - Inefficient for arbitrary shift amounts
 - Barrel shifters can shift an operand by arbitrary amount in time no more than an addition takes
 - Multiplexer (part of branch subunit)
 - Selects between branch target and PC+4 depending on the output of the comparison part of cond. branch
 - Data movement unit (part of multiplier/divider)
 - Executes mflo, mfhi, mtlo, mthi
 - Some designs do not consider the shifter, multiplier, and divider as part of the ALU

Overflow detection in MIPS

- MIPS ISA offers two types of arithmetic instructions for addition and subtraction
 - One type detects overflows (add, sub, addi) and the other doesn't (addu, subu, addiu)
 - Whether overflow should be detected in arithmetic operations is a part of the HLL specification
 - MIPS ISA can support both types of HLLs
 - If add/sub overflow is supposed to be detected, MIPS raises an exception on arithmetic overflow
 - · Saves PC in EPC
 - Saves all general-purpose and floating-point registers in memory
 - Jumps to a fixed handler which examines cause and status registers to invoke the appropriate exception handler

Overflow detection in MIPS

- Arithmetic overflow exception
 - On completion of the handler
 - Restore all general-purpose and floating-point registers from memory
 - Compute EPC+4 and move it to \$k0 or \$k1 (same as \$26 and \$27)
 - These two registers are reserved for use of operating system (e.g., interrupt, exception, system call handlers)
 - These two registers are not preserved across handlers
 - Execute jr \$k0 or jr \$k1 depending on where EPC+4 is
- Overflow detection is also possible in software
 - Not very relevant for MIPS addition/subtraction
 - Important for processors that cannot detect overflow in hardware

Overflow detection in software

- Software cannot access the carry bits into and out of the most significant bit position
 - So, cannot compare these to detect overflow
- Observation
 - In signed addition, an overflow is detected if and only if the operands have the same sign and the result has sign opposite of the operand
 - If the operands have opposite signs, the result is guaranteed to have smaller magnitude than the larger magnitude operand and hence, there cannot be an overflow
 - In signed subtraction, an overflow is detected if and only if the operands have opposite signs and the result has sign opposite of the first operand
 - If the operands have the same sign, the result is guaranteed to have smaller magnitude than the larger magnitude operand

Overflow detection in software

 Code for detecting overflow in signed addition (\$t0 = \$t1 + \$t2)

```
addu $t0, $t1, $t2  # no overflow exception

xor $t3, $t1, $t2

slt $t3, $t3, $0  # $t3 is 1 iff signs of $t1, $t2 differ

bne $t3, $0, no_overflow

xor $t3, $t0, $t1

slt $t3, $t3, $0  # $t3 is 1 iff signs of $t0, $t1 differ

bne $t3, $0, overflow_handler

no_overflow: ...
```

. . .

Overflow detection in software

- Unsigned addition and subtraction
 - Overflow is detected if and only if the magnitude of the result exceeds the maximum representable unsigned value
 - 232 1 for 32-bit processors
- Code for detecting overflow in unsigned addition (\$t0 = \$t1 + \$t2)

```
addu $t0, $t1, $t2  # no overflow exception nor $t3, $t1, $0  # $t3 has 2^{32} - $t1 - 1 sltu $t3, $t3, $t2  # $t3 has 1 iff $t1 + $t2 > 2^{32} - 1 bne $t3, $0, overflow_handler
```

– Note that the comparison must be unsigned (sltu) so that 2^{32} - \$t1 – 1 and \$t2 are treated as unsigned operands

Multiplication algorithm

- One operand is called the multiplicand and the other is called the multiplier
 - m-bit multiplicand and n-bit multiplier lead to (m+n)-bit product
- Paper-pencil algorithm (assume unsigned operands)

Multiplication algorithm

- Paper-pencil algorithm (unsigned operands)
 - Multiplicand = $(a_{m-1}a_{m-2}...a_0) = A$
 - Multiplier = $(b_{n-1}b_{n-2}...b_0) = \sum_{i=0}^{n-1} b_i 2^i$
 - Product = $A.b_0 + A.b_1.2 + A.b_2.2^2 + ...$
 - The left shift operations are needed to take care of the multiplications by 2ⁱ
 - The ith partial product = $(b_i ? A << i : 0)$
 - Leads to a simple multiplication algorithm that in each step produces one partial product by inspecting a bit position of the multiplier and accumulates the partial product into a product register
 - We will refer to the ith bit of multiplier as multiplier[i]

Faster multiplication

- In the basic algorithm, n additions are done sequentially because we have used only one adder
- · Consider the following grouping
 - Product = $(A.b_0 + A.b_1.2) + (A.b_2.2^2 + A.b_3.2^3) + (A.b_4.2^4 + A.b_5.2^5) + ...$
 - The additions in the parentheses can be done in parallel after appropriately shifting the multiplicand (requires n/2 adders)
 - The results of these n/2 additions can be further paired and combined in n/4 adders
 - Overall, n 1 additions would be arranged in a binary tree and the multiplication requires log₂n cycles (can be done with n/2 adders)

Signed multiplication

- Negate the negative operands and do the multiplication
- If the signs of the operands are opposite, negate the multiplication result
- MIPS has both signed and unsigned multiplication
 - mult instruction treats operands as signed
 - multu treats operands as unsigned
- MIPS offers no hardware support for detecting overflow in multiplication
 - If needed, must be done in software

21

Booth's multiplication algorithm

- Due to Andrew Booth [1951]
- · Handles both unsigned and signed operands
- Basic observation
 - Let the multiplicand be A and let the multiplier be $b_{n-1}b_{n-2}...b_0=000...011...100...0$ where the block 1's ranges from b_p to b_q with p < q
 - Therefore, the multiplier is $2^{q+1} 2^p$ and the product is (A << (q+1)) (A << p)
 - Can be generalized by representing the multiplier as addition of disjoint blocks of 1's
- Append $b_{-1} = 0$ at the end of the multiplier
- Assume that both multiplicand and multiplier are in two's complement representation

Booth's multiplication algorithm

- Algorithm
 - Initialize product register to 0
 - Scan the multiplier from b_0 to b_{n-1}
 - When examining b_i , if $b_i == b_{i-1}$, keep scanning
 - When examining b_i , if b_i is 1 and b_{i-1} is 0, subtract (A << i) from product register
 - When examining $b_{i},$ if b_{i} is 0 and $b_{i\text{-}1}$ is 1, add (A << i) to the product register
 - If i==n − 1, stop. Final product is in two's complement representation.

Booth's multiplication algorithm

- Observations
 - In the worst case, needs n addition operations when the multiplier has an alternating bit pattern i.e., 0101...01
 - If b_{n-1} is 1 (negative multiplier), the last operation done on the product would be a subtraction
 - Will result in a positive product, if the multiplicand is also negative; otherwise the product is negative
- Booth's algorithm can be implemented in two stages
 - First stage scans the multiplier and prepares the addition/subtraction operands
 - Second stage does the additions and subtractions in a binary tree of adders as in the fast multiplication algorithm

Division algorithm

- Suppose dividend (A) = (a_{m-1}a_{m-2}...a₀), divisor (B) = (b_{n-1}b_{n-2}...b₀)
- Problem statement: find Q and R such that A=BQ + R and R < B
 - We will assume unsigned A and B to start with
 - Clearly the maximum length of Q is m n + 1 if $m \ge n$; otherwise Q is 0 and R = A
 - Mathematically, we want $\sum_{i=0}^{m-1} a_i 2^i = \sum_{i=0}^{n-1} b_i 2^i \sum_{i=0}^{m-n} q_i 2^i + \sum_{i=0}^{n-1} r_i 2^i$
 - The usual division algorithm proceeds by computing q_i 's starting from the most significant bit i.e., q_{m-n}

Division algorithm

- · Steps in usual division algorithm
 - 1. Place A above B such that their most significant bits are aligned
 - This may require shifting B to the left by m n positions (equivalent to multiplying B by 2^{m-n})
 - E.g., suppose A = 1001010, B = 1000 (m=7, n=4) A = 1001010

B' = 1000000 (shifted B)

- 2a. If B' is less than or equal to A, subtract B' from A and assign Q = (Q << 1) | 1, A = the result of subtraction, B' = B' >> 1 (to compute next lower q_i; notice the similarity with polynomial division)
- 2b. If B' > A, shift B' to the right by one bit position and assign Q = (Q << 1) [Q gets a 0 bit]
- Repeat step 2a or 2b m n + 1 times, each time producing one bit of Q; R is residual A at the end

Division algorithm

• Execution of the usual algorithm (iteration 1)

Q = 0

0001010 \leftarrow new A Q = 1 0100000 \leftarrow new B'

Division algorithm

• Execution of the usual algorithm (iteration 2)

28

Division algorithm

• Execution of the usual algorithm (iteration 3)

29

Division algorithm

• Execution of the usual algorithm (iteration 4) $A = 0001010 \qquad Q = 100$

```
B' = 0001000
-----
0000010 \leftarrow new A Q = 1001
0000100 \leftarrow new B'
```

- Done executing four iterations (m n + 1 iterations)
- Quotient is 1001 and remainder is residual A i.e., $10\,$
- Each iteration computes one coefficient q_i (either 0 or 1) of the polynomial q_i2ⁱ by equating the leading powers of residual A and B

Division algorithm

- The first step of aligning the divisor and dividend is important for the main division algorithm to work correctly
 - In a processor, A and B will be in two 32-bit registers to begin with
 - The first step requires computing m n and shifting B to the left by m – n bits
 - How to compute m and n quickly from A and B?
 - This is essentially a search problem that searches for the most significant non-zero bit in a given binary string

Division algorithm

- Critical path of one iteration involves a comparison and a subtraction
 - Left shift and OR, right shift, increment can all be done in parallel with subtraction
- A variant of this algorithm always subtracts, then checks if the remainder is negative and if yes, restores the remainder
 - Known as restoring division algorithm
 - Checking if remainder is negative requires comparing only the most significant bit
 - Critical path now involves a subtraction, a negative check, and an addition

Non-restoring division algorithm

- · Why is this correct?
 - Suppose in iteration#k of restoring division, r-d turns out to be negative, so we restore r
 - In iteration#k+1 of restoring division, we compute r
 d/2 (note that d is shifted right)
 - In non-restoring division's iteration#k, we keep r-d (which is negative) and in iteration#k+1, we do r-d+d/2 yielding r-d/2, which is same as the value of the remainder in restoring division after iteration#k+1
 - The quotient is adjusted in iteration#k+1 by first making the last shifted bit 0 and then shifting in a 1
- Critical path = sign bit check; (addition or subtraction || Quotient update || divisor shift || iteration increment) [";" → seq., "||" → parallel]

Non-restoring division algorithm

- Hardware implementation
 - Directly follows from the algorithm
 - It is possible to combine {remainder, quotient} in a single register of size m bits
 - At the beginning, the entire register is occupied by the m-bit dividend and quotient is zero
 - At the end, the least significant m n bits along with the last quotient bit will be the final quotient and the remaining n bits will contain the remainder
 - Justifies why Lo contains quotient and Hi contains remainder in MIPS division instructions' result
 - Key observation: instead of shifting the divisor to the right in each iteration, the same effect can be achieved by shifting the dividend to the left

Division algorithm (A shifted left)

• Execution of the usual algorithm (iteration 1)

39

Division algorithm (A shifted left)

• Execution of the usual algorithm (iteration 2)

```
A,Q = 0010101 Q = 1
B' = 1000000
No subtraction
0101010 \leftarrow \text{new A,Q} Q = 10
```

Division algorithm (A shifted left)

• Execution of the usual algorithm (iteration 3)

```
A,Q = 0101010 Q = 10

B' = 1000000

No subtraction
1010100 \leftarrow \text{new A,Q} Q = 100
```

Division algorithm (A shifted left)

• Execution of the usual algorithm (iteration 4)

- Done executing four iterations (m n + 1 iterations)
- The remainder appears in upper 4 bits (n=4) of residual {A,Q} and quotient is the concatenation of the lower 3 bits (m - n = 3) of residual {A, Q} and the last bit of quotient

42

Signed division

- Suppose A and B are positive and we have A
 BQ + R
- So, -A = -BQ R is the expected result of dividing -A by B
- Rule: remainder must have the same sign as the dividend

Signed division

- Signed division algorithm
 - Convert the negative operand(s) to their positive value(s) and use any unsigned division algorithm
 - If both operands were positive originally, stop
 A = BO + R
 - If both operands were negative originally, negate remainder
 - $\cdot -A = -BQ + (-R)$
 - If dividend was negative and divisor was positive, negate both quotient and remainder
 - -A = B(-Q) + (-R)
 - If dividend was positive and divisor was negative, negate quotient
 - A = -B(-Q) + R

Signed division

- MIPS has both signed and unsigned division
 - div instruction treats operands as signed
 - divu treats operands as unsigned
- Faster division algorithms are non-trivial
 - The subtractions cannot be done in parallel
 - Fast algorithms try to predict quotient bits and detect and correct mispredictions on the fly

46

Floating-point addition

- Assume that the operands are represented in IEEE 754 format
- Step 1: Align exponents of the operands by shifting significand of the smaller number to the right (recall significand = 1.mantissa)
- Step 2: Add significands
 - Use 2's complement integer arithmetic ignoring the binary point
 - If result is negative, convert to its positive value
 - Put back the binary point after addition and assign the sign bit depending on the result's sign
- Step 3: Normalize the sum
 - Shift right and increase exponent OR shift left and decrease exponent $_{\scriptscriptstyle 47}$

Floating-point addition

- Step 4: If overflow or underflow detected, raise exception
- Step 5: Round mantissa of the normalized sum to fit the precision
 - This may make the result unnormalized e.g.,
 1.11111...1 in binary becomes 10.00000...0 after half-way rounding rule is applied
- If not normalized, repeat steps 3, 4, 5; else stop
- Precision could be lost in intermediate computations e.g., during shifting significand
 - To avoid this, IEEE 754 standard recommends use of three additional bits in intermediate representations (guard bit, round bit, sticky bit)

Use of guard, round, sticky bits

- The guard and round bits extend the mantissa by two bits
- The sticky bit appears after the round bit and is set to 1 if any bit to the right of the round bit is 1
- These bits improve the precision of arithmetic whenever the significand needs to be shifted to the right
 - These bits retain a few mantissa bits which would otherwise get dropped
- If the normalization step needs to shift the significand to the left, these bits will start contributing to the precision of the mantissa

19

Floating-point addition

- Example: 0.5 + (-0.4375)
 - $-0.5 = 1.000 \times 2^{-1}$, $-0.4375 = -1.110 \times 2^{-2}$
- Step 1: Align exponents
 - -1.110 x 2⁻² = -0.111 x 2⁻¹
- · Step 2: Add significands
 - -1.000 + (-0.111)
 - -1000 + 1001 = 0001 (2' complement)
 - 0.001 after putting back the binary point
- Step 3: Normalize
 - $0.001 \times 2^{-1} = 1.000 \times 2^{-4} = 0.0625$
 - No overflow or underflow because exponent is within legitimate range; no need to round also.

Floating-point multiplication

- Step 1: Add the biased exponents of the operands and subtract the bias to get the new biased exponent
- Step 2: Multiply significands
 - Use unsigned integer multiplication algorithm ignoring the binary point
 - Put the binary point after N bit positions from right where N is the sum of the lengths of the mantissa of two operands
- Step 3: Normalize the product
- Step 4: If overflow or underflow detected, raise exception
- Step 5: Round the product; if product is not normalized, repeat steps 3, 4, 5

Floating-point multiplication

- Step 6: If the signs of the operands are same, the product is assigned positive sign; otherwise the product is negative
- Example: 0.5 x (-0.4375)
 - $(1.000 \times 2^{-1}) \times (-1.110 \times 2^{-2})$
 - New biased exponent = (127 1) + (127 2) 127 = 124 = (127 3)
 - Actual exponent -3
 - Multiply significands: $1000 \times 1110 = 1110000$
 - Put back binary point: 1.110000
 - Unsigned product = 1.110×2^{-3}
 - Already normalized and no overflow
 - · No need to round
 - Final product = $-1.110 \times 2^{-3} = -0.21875$