FISEVIER

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Hierarchical nickel sulfide/carbon nanotube nanocomposite as a catalytic material toward triiodine reduction in dye-sensitized solar cells

Man-Ning Lu ^a, Chao-Shuan Dai ^b, Sheng-Yen Tai ^a, Tsung-Wu Lin ^{b, *}, Jeng-Yu Lin ^{a, *}

- ^a Dept. of Chemical Engineering, Tatung University, No. 40, Sec. 3, Chungshan North Rd., Taipei City 104, Taiwan
- ^b Dept. of Chemistry, Tunghai University, No. 181, Sec. 3, Taichung Port Rd., Taichung City 40704, Taiwan

HIGHLIGHTS

- Ni₃S₂/MWCNT-NC was synthesized via a facile glucose-assisted hydrothermal method.
- Annealed Ni₃S₂/MWCNT-NC CE showed improved catalytic activity for I₃⁻ reduction.
- Ni₃S₂ and conductive MWCNTs imparted high catalytic activity and stability to the catalyst.
- The DSC with the annealed Ni₃S₂/ MWCNT-NC CE reached an efficiency of 6.87%.
- Ni₃S₂/MWCNT-NC CE served as an inexpensive and promising alternative to Pt CE for DSCs.

$A\ R\ T\ I\ C\ L\ E\ I\ N\ F\ O$

Article history: Received 10 April 2014 Received in revised form 18 June 2014 Accepted 7 July 2014 Available online 24 July 2014

Keywords:
Nickel sulfide
Carbon nanotubes
Nanocomposite
Counter electrode
Dye-sensitized solar cells

G R A P H I C A L A B S T R A C T

ABSTRACT

In this study, Ni_3S_2 nanoparticles are successfully decorated on the backbone of conductive multi-walled carbon nanotubes (denoted as $Ni_3S_2/MWCNT-NC$) via a facile glucose-assisted hydrothermal method and employed as a counter electrode (CE) in dye-sensitized solar cells (DSCs). It is noteworthy that the use of glucose in the hydrothermal reaction plays a crucial role in the formation of the nanocomposite structure. Nevertheless, a thick layer of amorphous carbon derived from the hydrothermal carbonization of glucose covers Ni_3S_2 nanoparticle surface, and thus may inhibit the contact of active sites in Ni_3S_2 nanoparticles with electrolyte. It is found that the partial amorphous carbon on $Ni_3S_2/MWCNT-NC$ can be effectively removed after annealing at 400 °C in a nitrogen atmosphere, which further increases the active sites of Ni_3S_2 nanoparticles on MWCNTs and therefore improves the electrocatalytic activity of the $Ni_3S_2/MWCNT-NC$ CE. As a result, the DSC with the $Ni_3S_2/MWCNT-NC$ CE yields a cell efficiency of 6.87%, which is higher than those of DSCs based on the Ni_3S_2 CE (5.77%) and MWCNT CE (3.76%). Because the $Ni_3S_2/MWCNT-NC$ CE based DSC shows a comparable photovoltaic performance to the DSC using the Pt CE (7.24%), $Ni_3S_2/MWCNT-NC$ CE may serve as a promising alternative to Pt CE for DSCs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since dye-sensitized solar cell (DSC) was reported by Grätzel and co-workers in 1991, it has become one of most promising photovoltaic devices due to its inherent virtues of simple

^{*} Corresponding authors. Fax: +886 225861939.

E-mail addresses: twlin@thu.edu.tw (T.-W. Lin), jylin@ttu.edu.tw, d923615@gmail.com (J.-Y. Lin).

preparation, low cost and relatively high photovoltaic cell efficiency (PCE) [1,2]. Typically, a DSC comprises a dye-sensitized TiO₂ nanocrystalline film as a photoanode, a counter electrode (CE), and an electrolyte traditionally containing a triiodide/iodide (I₃/I⁻) redox couple. As one of the crucial and indispensable component in DSCs, CEs serve to collect electrons from external circuit and accelerate the I_3^- reduction reaction. Therefore, a CE with the characteristics of both excellent electrocatalytic activity and high electrical conductivity is desirable [3]. Up to now, noble Pt metal with high conductivity and electrocatalytic activity has been widely used as a CE material. Nevertheless, Pt is very expensive and easily corroded by I₃/I⁻ based redox electrolyte, thus possibly resulting in the restriction for large-scale production of DSCs in the future. Nowadays, a great deal of efforts have been made to explore Pt-like alternatives such as carbonaceous materials [4–12], conducting polymers, [13] transition metal oxides [14], nitrides [15], carbide [16,17], and sulfides [18–22].

Carbonaceous materials including carbon black, [4] graphite, [5] activated carbon, [6,7] carbon nanotubes (CNTs) [8-10], and graphene [11,12] have also been regarded as the potential alternatives for Pt due to their features of low cost, reasonable electrontransport ability, and high corrosion resistance. Among them, multi-walled carbon nanotubes (MWCNTs) have attracted much attention due to their exceptional specific surface area, high electrical conductivity, excellent mechanical strength and good thermal/chemical stability [23]. However, their intrinsically electrocatalytic activity for I₃ reduction is not satisfactory owing to the limited number of active sites for I₃ reduction on MWCNT surface. [24] To further increase the active sites for I₃ reduction and improve the PCE of CNT-based DSCs, extensive studies have been recently focused on decorating the surface of CNTs with intrinsically electrocatalytic nanoparticles such as metal oxides, nitrides and sulfide [25-27]. For example, Zhang et al. [28] reported that the synthesis of the transparent conducting oxide (TCO)-free and Pt-free CE involves that the single-walled CNTs (SWCNTs) were spray-coated onto a glass substrate to form a thin film and then NiS precursor dispersed onto the resulting SWCNT film was annealed in argon to obtain the composite CE. Nevertheless, the DSC based on Ni₃S₂/SWCNT composite CE only provided a conversion efficiency of 2.76%. Very recently, Xiao et al. [29] prepared NiS/MWCNT composite CE by electrophoretic deposition of MWCNTs on Ti substrate and followed by the electrodeposition of NiS onto MWCNTs. The DSC assembled with the NiS/MWCNT/Ti CE achieved an impressive cell efficiency of 7.90%. However, the aforementioned nickel sulfide/CNT composites were prepared via two-step method which possibly results in that nickel sulfide is only deposited on the top surface of CNT layer or the inhomogeneous coating of nickel sulfides on the whole conductive CNT network.

In this study, we develop a facile one-pot hydrothermal method to directly grow the Ni_3S_2 nanoparticles on MWCNT backbones. In this hydrothermal synthesis, the addition of glucose can serve as the binder to allow the homogeneous dispersion of Ni_3S_2 nanoparticles on the MWCNT surface. We used this hierarchical $Ni_3S_2/MWCNT$ nanocomposite (denoted as $Ni_3S_2/MWCNT$ -NC) as the CE material in DSCs and characterized its electrocatalytic activity towards the reduction of I_3 to I^- . Due to the synergetic effect of Ni_3S_2 and MWCNTs, the DSC assembled with $Ni_3S_2/MWCNT$ -NC CE shows the improved photovoltaic performance and excellent long-term stability.

2. Experimental section

2.1. Synthesis of Ni₃S₂/MWCNT-NC

The multi-walled CNTs were purchased from Thomas Swan & Co. Ltd. The diameters of CVD synthesized MWCNTs range from 10

to 20 nm and their wall thicknesses range from 3 to 6 nm. The purchased MWCNT product consisted of low inorganic residue (5 wt %) and 70 wt % nanotube contents. The purification of MWCNTs was achieved by refluxing MWCNTs (0.5 g) in concentrated nitric acid (100 mL) at 120 °C for 12 h. After the reaction, the MWCNT precipitate was filtered off, washed with distilled water, and dried in air. For the synthesis of Ni₃S₂/MWCNT-NC, acid-treated MWCNTs (7.5 mg) and glucose (90 mg) were added to the mixture solution of ethanol (9 mL) and distilled water (1 mL). The mixed solution was sonicated for 20 min to make a homogeneous dispersion and then nickel chloride (195 mg), thiourea (76 mg), and 1 mL of ammonia were added to the MWCNT dispersion. The mixture was then transferred to a stainless-steel autoclave (20 mL capacity). After sealing, the autoclave was heated to 180 °C for 12 h and then cooled to room temperature. Finally, the precipitate was filtered off, washed with distilled water, and dried in air. In a separate experiment, the Ni₃S₂ powder was also synthesized using the glucose-assisted hydrothermal method. Except for the addition of MWCNTs, the synthetic procedures for Ni₃S₂ powder are the same as those for Ni₃S₂/MWCNT-NC. For the synthesis of the mixture of Ni₃S₂ and MWCNTs, the synthetic procedures for Ni₃S₂/ MWCNT-NC were followed except for the addition of glucose in the hydrothermal reaction. As shown in Fig. S1, Ni₃S₂ particles are separated from MWCNTs and there is no coating of amorphous carbon on the mixture when glucose is absent in the hydrothermal synthesis.

2.2. Fabrication of DSCs

The TiO_2 films (0.16 cm²) with a bilayer structure composed of a dense layer (~12 µm, ETERDSC Ti 2105, Eternal Chemical CO.) and a scattering layer (~2 µm, ETERDSC Ti 2325, Eternal Chemical CO.) were fabricated on the ultrasonically cleaned FTO glass substrates $(7 \Omega \text{ sq}^{-1}, \text{ NSG})$ by using the screen-printing technique. The TiO₂ films were sintered at 450 °C for 30 min, and then subsequently cooled to 80 °C. Then, the sintered TiO₂ films were immersed in the 0.3 mM N719 dye (Everlight Chemical Industry Co.) for 12 h at a room temperature. The dye-sensitized TiO₂ photoanodes were assembled with CEs into sandwich-type configuration and sealed with hot-melt Surlyns (DuPont, 30 µm). After that, the redox electrolyte containing 1 M 1,3-dimethylimidazolium iodide (Merck), 0.5 M 4-tert-butylpyridine (Aldrich), 0.15 M iodine (J.T. Baker), and 0.1 M guanidine thiocyanate (Aldrich) in 3methoxypropionitrile (Acros) was injected into the sandwichtype cells via the predrilled holes on the CEs.

To prepare CEs, the active materials including Ni_3S_2 , MWCNTs, and Ni_3S_2 /MWCNT-NC, were mixed with acetylene black and polyvinyldifluoride in a weight ratio of 8:1:1. The aforementioned mixture was added to *N*-methyl-2-pyrrolidone and the resulting slurry was grounded for 2 h. Then, the obtained slurry was coated onto the drilled FTO glass substrates by the doctor-blading technique to form the films with a thickness ca. of 4 μ m. Finally, the coated FTO glass was sintered in a N_2 atmosphere at 400 °C for 1 h. For comparison, 100 nm thick Pt film was sputtered onto a FTO lass substrate as a CE by a DC sputtering instrument (ULVAC).

2.3. Material characterizations

A field-emission transmission electron microscope (TEM, JEOL JEM-2100F, operated at 200 kV with a point-to-point resolution of 0.19 nm) equipped with an energy dispersive spectrometer (EDS) was used to obtain the information on the microstructures and the chemical compositions. The X-ray powder diffraction (XRD) pattern of the composite was obtained from Philips X'Pert Pro MPD. All thermogravimetric analysis (TGA) experiments were performed

using a Pyris 1 TGA (Perkin Elmer) with N₂ as a purge gas at a flow rate of 100 sccm. The samples were heated from room temperature to 400 °C at a heating rate of 5 °C min⁻¹, and then held at that temperature for 1 h. The Brunauer-Emmett-Teller (BET) specific surface area was analyzed using a CBET-201A (Porous Materials, Inc.) analyzer by nitrogen absorption. The following electrochemical measurements were carried out using a CHI614d potentiostat. The cyclic voltammetry (CV) was performed in 3methoxypropionitrile solution consisting of 50 mM LiI, 10 mM I₂, and 50 mM LiClO₄ using a three-electrode system, in which the asprepared CE, a Pt sheet and a Pt wire served as the working, counter and reference electrodes, respectively. The electrochemical impedance spectroscopy (EIS) measurements were conducted using the symmetric configuration cells composed of two identical CEs. EIS measurements were performed at the zero bias voltage using a potentiostat (IM6, Zahner) equipped with a frequency analyzer (Thales). An AC voltage with 5 mV amplitude in a frequency range of 0.1 Hz-50 kHz was applied The Nyquist plots were fitted by the software ZSimpWin version 3.1. The photovoltaic characteristics of DSCs were analyzed under the light exposure (100 mW cm⁻², Yamashita Denso YSS-150A, AM 1.5G) which was calibrated with a radiant power/energy meter (Oriel, 70260).

3. Results and discussion

Fig. 1a shows the typical TEM image of Ni₃S₂/MWCNT-NC. It is clear to see that conductive MWCNTs can serve as the backbone where the Ni₃S₂ nanoparticles with the diameters ranging from 10 to 80 nm are deposited. The high surface area of MWCNTs allows a number of Ni₃S₂ nanoparticles to be homogeneously deposited onto the MWCNT surface. When MWCNTs are absent in the hydrothermal synthesis, the diameters of the as-synthesized Ni₃S₂ particles range from 0.5 to 4 µm (Fig. S2). This drastic size difference highlights the important role of MWCNTs as an effective substrate for the growth of nanomaterials. The previous studies of the graphene or CNT based composites have verified that the carbon nanomaterials with high surface area can serve as a good substrate to avoid the aggregation of deposited materials [30,31], which is consistent with our finding. It is noteworthy that the use of glucose in the hydrothermal reaction plays a crucial role in the formation of the hierarchical structure. As shown in Fig. 1b a thick layer of amorphous carbon (1-3 nm) derived from the hydrothermal carbonization of glucose covers both MWCNT and Ni₃S₂ nanoparticle surface and thus serves as a binder to assist the growth of nanoparticles along the longitudinal axis of MWCNTs [32]. In contrast, the sample prepared without glucose is a mixture of MWCNTs and Ni₃S₂ particles, in which the MWCNTs just act as wires that connect Ni₃S₂ particles (Fig. S1). Based on these observations, it is clear that glucose plays a crucial role in the formation of the Ni₃S₂/MWCNT-NC. The previous study of the growth of MoS₂ nanosheets on the CNT backbone has suggested that glucose might mediate the formation of MoS₂ nanosheets with smaller size and it could meanwhile serve as a binder to help the MoS₂ nanosheets to grow on the surface of CNTs with uniform coverage along the longitudinal axis [33]. Furthermore, our previous study has proved that the irregularly shaped Ni₃S₂ particles on MWCNTs are actually consisted of nanoparticles with the smaller size [32]. In the hydrothermal reaction, the growth mechanism of Ni₃S₂ nanoparticles on MWCNTs may involve that the amorphous carbon produced by the hydrothermal carbonization of glucose is intercalated between the small-sized nanoparticles. In other words, the amorphous carbon serves as a binder for the assembly of Ni₃S₂ nanoparticles. Finally, the Ni₃S₂ particles with diameters of several tens of nanometers are attached onto the MWCNT surface via the assistance of carbonaceous glue. However, the presence of the amorphous carbon on Ni₃S₂ nanoparticles may act as a passive layer, which inhibits the contact of active sites in Ni₃S₂ nanoparticles with the electrolyte. Our previous study has demonstrated that the activity of Ni₃S₂/MWCNT-NC towards hydrogen evolution can be significantly enhanced when the layer of amorphous carbon on Ni₃S₂ nanoparticles is partly removed by base treatment [34]. On the other hand, the complete removal of amorphous carbon may damage the intimate contact between the Ni₃S₂ nanoparticles and the MWCNTs, which deteriorates the delivery of the electrons from MWCNTs to the Ni₃S₂ nanoparticles. In this study, it is found that the annealing Ni₃S₂/MWCNT-NC in a nitrogen atmosphere at 400 °C is an effective method to remove a part of amorphous carbon in Ni₃S₂/MWCNT-NC.

Fig. 2a shows the typical TGA curve for the mixture of Ni₃S₂ and MWCNTs. Due to no use of glucose in a hydrothermal reaction, the weight loss of the mixture of Ni₃S₂ and MWCNTs is ca. 14% after TGA experiment. In contrast, Ni₃S₂/MWCNT-NC shows much more weight loss (37%) than the mixture of Ni₃S₂ and MWCNTs due to the decomposition of amorphous carbon at the high temperature. To further characterize the composition of the annealed composite, XRD measurement was carried out. As shown Fig. 2b, all the identified peaks except the (002) reflection of MWCNTs can be attributed to the Ni₃S₂ phase (JCPDS card No. 30-0863), suggesting that no oxide formation occurs during annealing process. Fig. 2c shows the typical TEM image of Ni₃S₂/MWCNT-NC after annealing treatment. It is observed that Ni₃S₂ nanoparticles are still firmly attached onto MWCNT surface and the density of Ni₃S₂ nanoparticles on MWCNTs seems to remain unchanged. Furthermore, the extensive high resolution TEM analyses (Fig. 2d) reveal that the

Fig. 1. (a) TEM and (b) high resolution TEM images of Ni₃S₂/MWCNT-NC.

Fig. 2. (a) TGA curves of Ni₃S₂/MWCNT-NC and the mixture of Ni₃S₂ and MWCNTs. (b) XRD pattern, (c) TEM, and (d) High resolution TEM images of the annealed Ni₃S₂/MWCNT-NC.

amorphous carbon on MWCNTs and Ni_3S_2 nanoparticles are partly removed after annealing treatment, which increases the exposure of the active sites in Ni_3S_2 nanoparticles. As shown in Fig. S3, the EDS analysis of the annealed $Ni_3S_2/MWCNT$ -NC displays the presence of C, Ni and S elements and the atomic ratio of Ni to S is estimated to be 3.0:2.0.

To compare the electrocatalytic activities of as-prepared and annealed Ni₃S₂/MWCNT-NC CEs, CV measurements were conducted under the same conditions. As shown in Fig. 3a, two typical pairs of oxidation and reduction peaks can be clearly observed for the annealed Ni₃S₂/MWCNT-NC CE. The resultant positive pair is assigned to the redox reaction of I_2/I_3^- (3 $I_2 + 2e^- \leftrightarrow 2I_3^-$) and the negative pair is ascribed to the redox reaction of I_3^-/I^- ($I_3^- + 2e^- \leftrightarrow 3I^-$). In contrast, no redox peaks is observed for the asprepared Ni₃S₂/MWCNT-NC CE. This result suggests that the partial removal of the amorphous carbon formed on Ni₃S₂/MWCNT-NC

leads to increasing the exposure of the active sites in Ni_3S_2 nanoparticles, which enhances the electrocatalytic activity of $Ni_3S_2/MWCNT$ -NC CE. The electrocatalytic activity of annealed $Ni_3S_2/MWCNT$ -NC CE is further compared with those of pristine Ni_3S_2 , MWCNT, and Pt CEs. As shown in Fig. 3b, two pairs of redox peaks are observed for all CEs. Since the function of CE is mainly responsible for catalyzing the reduction of I_3 to I^- in a typical DSC, the characteristics of the negative redox pair are at the focus of our investigation. It is noteworthy that the annealed $Ni_3S_2/MWCNT$ -NC CE shows the higher redox peak current densities than the pristine Ni_3S_2 , MWCNT and Pt CEs. To investigate the origin for the relatively high current densities of the annealed $Ni_3S_2/MWCNT$ -NC CE, BET specific surface area (σ) for pristine Ni_3S_2 , MWCNT, and $Ni_3S_2/MWCNT$ -NC powders were measured and summarized in Table 1. It can be found that $Ni_3S_2/MWCNT$ -NC possesses the larger BET specific surface area of 137.6 m^2 g^{-1} than those of pristine Ni_3S_2

Fig. 3. (a) CV curves of I_2/I_3^- system for the as-prepared and annealed $Ni_3S_2/MWCNT$ -NC CEs. (b) CV curves of I_2/I_3^- system for the Pt, Ni_3S_2 , MWCNT, and the annealed $Ni_3S_2/MWCNT$ -NC CEs.

Table 1BET specific surface area and electrochemical parameters for the Pt, Ni₃S₂, MWCNT, and Ni₃S₂/MWCNT-NC CEs.

	$\sigma/\mathrm{m}^2~\mathrm{g}^{-1}$	$\Delta E_{\rm p}/{ m mV}$	$R_{\rm s}/\Omega$	$R_{\rm ct}/\Omega$	$Z_{\rm N}/\Omega$	$J_0/\text{mA cm}^{-2}$
Pt	_	224	9.14	6.82	2.48	3.11
Ni_3S_2	32.3	729	12.78	15.21	50.61	0.83
MWCNT	105.8	746	10.15	22.82	21.37	0.25
Ni ₃ S ₂ /MWCNT-NC	137.6	252	10.76	9.11	26.73	2.66

 $(32.3 \text{ m}^2 \text{ g}^{-1})$ and MWCNT $(105.8 \text{ m}^2 \text{ g}^{-1})$. Therefore, the enhancement in the current densities of Ni₃S₂/MWCNT-NC CE can be attributed to the fact that the Ni₃S₂ nanoparticles well-dispersed on the surface of MWCNT remarkably increase the number of catalytic sites for I₃ reduction. Additionally, another factor to evaluate the electrocatalytic activity of a CE is the potential separation between oxidation and reduction peaks ($\Delta E_{\rm p}$), which is inversely associated with the electrochemical rate constant of a redox reaction [35,36]. The annealed Ni₃S₂/MWCNT-NC CE possesses a relatively lower ΔE_p (252 mV) than the pristine Ni₃S₂ CE (729 mV) and the MWCNT CE (746 mV), and this ΔE_p value is even comparable to that of the Pt CE (224 mV). Compared with the pristine Ni₃S₂ CE, the higher current densities and faster electrochemical rate of the annealed Ni₃S₂/MWCNT-NC CE can be attributed to its excellent intrinsic electrocatalytic activity and electrical conductivity. These results reveal the synergetic effects of the Ni₃S₂ and MWCNTs on catalyzing the I₃ reduction reaction, which can efficiently reduce the polarization resistance and increase the active catalytic sites [37,38].

To further get the deep insights into the electrocatalytic activities of the pristine Ni₃S₂, MWCNT, Ni₃S₂/MWCNT-NC and Pt CEs, EIS and Tafel polarization measurements were performed with symmetrical configuration composed of two identical CEs (CE/ redox electrolyte/CE). Fig. 4a presents the Nyquist plots of various symmetrical cells where the composition of the redox electrolyte is the same as that used in DSCs. Furthermore, the equivalent circuit used to simulate the Nyquist plots of various symmetrical cells is shown in Fig. S4. This equivalent circuit contains ohmic series resistance (R_s) , charge-transfer resistance (R_{ct}) , constant phase element (CPE) at the CE/electrolyte interface, and Nernst diffusion impedance (Z_N) of the I_3^-/I^- redox couple in the bulk electrolyte. The fitted results are listed in Table 1. In Fig. 4a, the intercept of the semicircle on the real axis is assigned to the R_s . The R_{ct} , a direct parameter to evaluate the electrocatalytic activity of a CE, can be estimated as half of the value of the real component of impedance at the high-frequency region semicircle, whereas the semicircle in low-frequency region represents the Z_N of the I_3^-/I^- redox couple in the electrolyte [39]. Due to the combination with highly conductive MWCNTs, the Ni₃S₂/MWCNT-NC CE shows a lower R_s (10.76 Ω) compared to the pristine Ni_3S_2 (12.78 Ω). Additionally, it is noteworthy that the Ni₃S₂/MWCNT-NC CE shows a lower R_{ct} (9.11 Ω) than the pristine Ni₃S₂ (15.21 Ω) and MWCNT (22.82 Ω) CEs and this $R_{\rm ct}$ value is even comparable to that of Pt CE (6.82 Ω). This low $R_{\rm ct}$ can be attributed to the synergetic effects of the highly conductive MWCNT framework and the highly electrocatalytic Ni₃S₂ nanoparticles [25,40,41]. Moreover, the Z_N of the I_3^-/I^- redox couple in the electrolyte is remarkably reduced when the MWCNT framework is combined with Ni₃S₂, indicating the improvement of electrolyte penetration in CEs [26,42]. Several previous studies have proved that the use of MWCNT composite as a CE material provide some advantages [25-27,40] Firstly, the high surface area and electrical conductivity of MWCNTs not only provides the numerous sites for loading electrocatalytic Ni₃S₂ nanoparticles but also improves the electron transport, Furthermore, the interconnected MWCNT network facilitates the penetration of redox electrolyte. To further investigate the stability of Ni₃S₂/MWCNT-NC CE, the freshly prepared dummy cells and the 20-days aged ones were analyzed by EIS. As shown in Fig. 4b, a slight decrease in R_{ct} value is observed after aging for 20 days, which is possibly attributed to the better contact or the enhanced I3 reduction reaction at electrolyte/CE interface. [43] This result signifies that the Ni₃S₂/MWCNT-NC CE is electrochemically stable in the corrosive I_3^-/I^- based electrolyte.

To further prove the results from EIS analyses, Tafel-polarization measurements were carried out. Fig. 5 shows the Tafel-polarization curves of symmetrical cells based on Pt, Ni₃S₂, MWCNT, and Ni₃S₂/MWCNT-NC CEs. Generally, the exchange current density (J_0) can be obtained in the Tafel region, which is determined from the intersection of the cathodic branch and the equilibrium potential line. J_0 values for the individual CEs are summarized in Table 1. In theory, J_0 value inversely depends on the $R_{\rm ct}$ value, as illustrated in Eq. (1) [44].

$$J_0 = \frac{RT}{nFR_{\rm ct}} \tag{1}$$

where R is the gas constant, T is the absolute temperature, F is the Faraday constant, and n is the number of electrons involved in the reaction at the electrolyte/CE interface. Compared with the pristine Ni₃S₂ (0.83 mA cm⁻²) and MWCNT (0.25 mA cm⁻²) CEs, the Ni₃S₂/MWCNT-NC CE possesses an enhanced J_0 value (2.66 mA cm⁻²) and this value is close to that of Pt CE (3.11 mA cm⁻²). The variance tendency of the $R_{\rm ct}$ value calculated from the J_0 value for the Pt, Ni₃S₂, MWCNT and Ni₃S₂/MWCNT-NC CEs is in accordance with that obtained in the EIS measurements. Moreover, the limiting diffusion zone located at the very high potential zone is associated with the transport of electrolyte, in which the limiting current density ($J_{\rm lim}$) can be determined from the intersection of the

Fig. 4. (a) Nyquist plots of the symmetrical cells assembled with the Pt, Ni_3S_2 , MWCNT, and $Ni_3S_2/MWCNT$ -NC CEs. (b) Nyquist plots of the symmetrical cells based on the fresh and 20-day aged $Ni_3S_2/MWCNT$ -NC CEs.

Fig. 5. Tafel polarization curves of the symmetrical cells assembled with the Pt, Ni_3S_2 , MWCNT, and Ni_3S_2 /MWCNT-NC CEs.

cathodic branch with the y axis. Basically, J_{lim} is positively related with the diffusion coefficient (D) of I_3^- in terms of Eq. (2), in which δ is the spacer thickness, C is the I_3^- concentration, n is the number of electrons involved in the I_3^- reduction, and F is the Faraday constant. The D value illustrates the diffusion character of the I_3^- redox species in the electrolyte [45]. As a result, the diffusion coefficients of the I_3^- species for the pristine Ni_3S_2 and $Ni_3S_2/MWCNT-NC$ CEs were evaluated to be 1.97×10^{-5} and 2.28×10^{-5} cm 2 s $^{-1}$, respectively. The improved diffusion behavior of I_3^- species in the $Ni_3S_2/MWCNT-NC$ CE may be ascribed to the fact that the introduction of porous MWCNT framework facilitates the electrolyte penetration in CEs, as suggested by the EIS results.

$$J_{\lim} = \frac{2nFC}{\delta}D\tag{2}$$

Fig. 6 shows the photocurrent density—photovoltage curves of the DSCs fabricated with Pt, Ni₃S₂, MWCNT and Ni₃S₂/MWCNT-NC CEs. The corresponding photovoltaic parameters including open-circuit (V_{oc}), short-circuit current (J_{sc}), fill factor (FF), and cell efficiency (η) are also summarized in Table 2. With regarded to the DSC assembled with the MWCNT CE, its η value is only 3.76%. This poor

Fig. 6. Typical photocurrent—photovoltage curves of DSCs assembled with the Pt, Ni_3S_2 , MWCNT, and $Ni_3S_2/MWCNT$ -NC CEs, respectively.

Table 2 Photovoltaic parameters of the DSCs based on the Pt, Ni_3S_2 , MWCNT, and $Ni_3S_2/MWCNT$ -NC CFs.

	$J_{\rm sc}/{\rm mA~cm^{-2}}$	$V_{\rm oc}/V$	FF	η (%)
Pt	14.16 ± 0.08	0.76 ± 0.01	0.67 ± 0.01	7.24 ± 0.13
Ni_3S_2	12.88 ± 0.31	0.76 ± 0.01	0.58 ± 0.02	5.77 ± 0.07
MWCNT	12.41 ± 0.17	0.72 ± 0.02	0.42 ± 0.02	3.76 ± 0.05
Ni ₃ S ₂ /MWCNT-NC	13.96 ± 0.24	0.77 ± 0.01	0.63 ± 0.01	6.87 ± 0.12

 η value is mainly attributed to its limited electrocatalytic activity for I_3 reduction [46]. As for the Ni₃S₂ CE, Ni₃S₂ particles not only are seriously aggregated together but also lack the conductive paths for electron transport in the CE, thus leading to the decrease in the number of electrocatalytic sites and the increase in the resistance for electron transport [40,47]. As expected, the Ni₃S₂ CE based DSC shows the low η value of 5.77% due to the decreased $J_{\rm sc}$ and FF values. Compared with Ni₃S₂ and MWCNT CE based DSCs, the $Ni_3S_2/MWCNT$ -NC CE based DSC shows a higher η value (6.87%) due to the great contribution from the improved FF and I_{sc} values. For the $Ni_3S_2/MWCNT$ -NC based DSC, the increase in J_{sc} value may be attributed to the fact that the large active surface area of CE increases the total current of the I^-/I_3^- redox reaction and therefore facilitates the transport of the generated electrons from photoanode to CE [19,40,41,48]. Furthermore, the enhancement in the FF value of the Ni₃S₂/MWCNT-NC based DSC can be explained by the decrease in the internal resistance elements (R_s , R_{ct} and Z_N) [49,50]. Due to the superior electrical conductivity of MWCNTs, the Ni₃S₂/ MWCNT-NC CE shows a low R_s value, which promotes the collection of electrons from the external circuit. On the other hand, its small R_{ct} due to the synergistic effects of the increased number of electrocatalytic active sites of Ni₃S₂ nanoparticles and the conductive MWCNT framework suggests the enhanced electron transfer from the CE to the I_3^- ions at the CE/electrolyte interface. Furthermore, the low Z_N value for the Ni₃S₂/MWCNT-NC CE implies that the decoration of Ni₃S₂ nanoparticles on the porous MWCNT network can shorten the ionic diffusion path and thus improve the ionic diffusion flux. On the basis of the aforementioned effects, Ni₃S₂/MWCNT-NC CE based DSC shows a comparable photovoltaic performance to the sputtered Pt CE based DSC (η =7.24%). Fig. S5 further displays the long-term stability results for the DSCs based on the Pt and Ni₃S₂/MWCNT-NC CEs, in which the obtained conversion efficiency of the DSCs were recorded in every two days over a period of two weeks. It is found that the DSC based on the Ni₃S₂/ MWCNT-NC CE shows comparable conversion efficiency to that using the Pt CE even after two weeks, indicating its reasonable stability in the long-term operation. This result is also consistent with the aforementioned long-term EIS results.

4. Conclusions

We have successfully synthesized Ni₃S₂/MWCNT-NC through a facile hydrothermal method. It is found that the amorphous carbon produced in situ by the hydrothermal carbonization of glucose covers both MWCNT and Ni₃S₂ nanoparticle surface, and therefore serves as a binder to assist the decoration of Ni₃S₂ nanoparticles onto MWCNT surface. We also found the post-annealing treatment is an effective approach to remove the partial amorphous carbon on Ni₃S₂/MWCNT-NC, which increases the active sites of Ni₃S₂ nanoparticles. Compared with the Ni₃S₂ and MWCNT CEs, the Ni₃S₂/MWCNT-NC CE obviously shows an improved electrocatalytic activity. This result is ascribed to the synergetic effects of the fast electron-transfer of the MWCNTs and highly electrocatalytic activity of Ni₃S₂ nanoparticles. Moreover, the Ni₃S₂ nanoparticles highly dispersed on MWCNTs provides more active sites for I₃

reduction and the network of $Ni_3S_2/MWCNT$ -NC facilitates the redox electrolyte diffusion within the CE. Therefore, the DSC assembled with the $Ni_3S_2/MWCNT$ -NC CE exhibits an impressive PCE of 6.87%, which is significantly higher than those of the DSCs based on the Ni_3S_2 CE (5.77%) and MWCNTs CE (3.76%). Because the $Ni_3S_2/MWCNT$ -NC CE based DSC shows a comparable photovoltaic performance to the DSC assembled with the Pt CE (7.24%), $Ni_3S_2/MWCNT$ -NC CE may serve as an inexpensive and promising alternative to Pt CE for DSCs.

Acknowledgments

Supports from National Science Council Taiwan (102-2221-E-036-034 and 102-2113-M-029-001-MY2) are greatly appreciated by the authors.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jpowsour.2014.07.041.

References

- [1] B. O'regan, M. Grätzel, Nature 353 (1991) 737-739.
- [2] H.C. Weerasingle, F. Huang, Y.B. Cheng, Nano Energy 2 (2013) 174–189.
- [3] W.J. Lee, E. Ramasamy, D.Y. Lee, Sol. Energy Mater. Sol. Cells 92 (2008) 814–818.
- [4] T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, M.J. Grätzel, J. Electrochem. Soc. 153 (2006) A2255—A2261.
- [5] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J.I. Nakamura, K. Murata, Sol. Energy Mater. Sol. Cells 79 (2003) 459–469.
- [6] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L.Q. Chen, Q. Meng, Electrochem. Commun. 9 (2007) 596–598.
- [7] W.J. Lee, E. Ramasamy, D.Y. Lee, J.S. Song, ACS Appl. Mater. Interfaces 1 (2009) 1145–1149.
- [8] P. Brown, K. Takechi, P.V. Kamat, J. Phys. Chem. C 112 (2008) 4776–4782.
- [9] J.G. Nam, Y.J. Park, B.S. Kim, J.S. Lee, Scr. Mater. 62 (2010) 148-150.
- [10] G. Zhu, L. Pan, T. Lu, X. Liu, T. Lv, T. Xu, Z. Sun, Electrochim. Acta 56 (2011) 10288–10291.
- [11] Y. Peng, J. Zhong, K. Wang, B. Xue, Y.B. Cheng, Nano Energy 2 (2013) 235-240.
- [12] X. Wang, L. Zhi, K. Mullen, Nano Lett. 8 (2008) 323-327.
- [13] A.F. Nogueira, C. Longo, M.A.D. Paoli, Chem. Rev. 248 (2004) 1455-1468.
- [14] E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, J.R. Durrant, J. Am. Chem. Soc. 125 (2003) 475–482.
- [15] G.R. Li, J. Song, G.L. Pan, X.P. Gao, Energy Environ. Sci. 4 (2011) 1680–1683.
- [16] M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, X. Hagfeldt, M. Grätzel, T. Ma, J. Am. Chem. Soc. 134 (2012) 3419—3428.
- [17] M. Wu, X. Lin, A. Hagfeldt, T. Ma, Angew. Chem. Int. Ed. 50 (2011) 3520–3524.
- [18] A. Kaniyoor, S. Ramaprabhu, Nano Energy 1 (2012) 757-763.

- [19] J.Y. Lin, J.H. Liao, S.W. Chou, Electrochim. Acta 56 (2011) 8818-8826.
- [20] M. Wu, Y. Wang, X. Lin, N. Yu, L. Wang, L. Wang, A. Hagfeldtc, T. Ma, Phys. Chem. Chem. Phys. 13 (2011) 19298—19301.
- [21] S.A. Patil, P.Y. Kalode, R.S. Mane, D.V. Shinde, A. Doyoung, C. Keumnam, M.M. Sung, S.B. Ambade, S.H. Han, Dalton Trans. (2014), http://dx.doi.org/ 10.1039/C3DT53356E.
- [22] H. Bi, W. Zhao, S. Sun, H. Cui, T. Lin, F. Huang, X. Xie, M. Jiang, Carbon 61 (2013) 116–123.
- [23] H.Y. Wang, F.M. Wang, Y.Y. Wang, C.C. Wan, B.J. Hwang, R. Santhanam, J. Rick, J. Phys. Chem. C 115 (2011) 8439–8446.
- [24] E. Ramasamy, W.J. Lee, D.Y. Lee, J.S. Song, Electrochem. Commun. 10 (2008) 1087–1089.
- [25] G.R. Li, F. Wang, J. Song, F.Y. Xiong, X.P. Gao, Electrochim. Acta 65 (2012) 216—220.
- [26] J. Song, G.R. Li, F.Y. Xiong, X.P. Gao, J. Mater. Chem. 22 (2012) 20580–20585.
- [27] J.Y. Lin, J.H. Liao, T.Y. Hung, Electrochem. Commun. 13 (2011) 977—980.
- [28] L. Zhang, H.K. Mulmudi, S.K. Batabyal, Y.M. Lam, S.G. Mhaisalkar, Phys. Chem. Chem. Phys. 14 (2012) 9906–9911.
- Y. Xiao, J. Wu, J.Y. Lin, G. Yue, J. Lin, M. Huang, Y. Huang, Z. Lan, L. Fan, J. Mater. Chem. A 1 (2013) 13885—13889.
 Y. Yan, X. Ge, Z. Liu, J.Y. Wang, J.M. Lee, X. Wang, Nanoscale 5 (2013)
- 7768–7771. [31] H. Wang, J.T. Robinson, G. Diankov, H. Dai, J. Am. Chem. Soc. 132 (2010)
- [31] H. Wang, J.T. Robinson, G. Diankov, H. Dai, J. Am. Chem. Soc. 132 (2010) 3270—3271.
- [32] C.S. Dai, P.Y. Chien, J.Y. Lin, S.W. Chou, W.K. Wu, P.H. Li, K.Y. Wu, T.W. Lin, ACS Appl. Mater. Interfaces 5 (2013) 12168–12174.
- [33] S. Ding, J.S. Chen, X.W. Lou, Chem. Eur. J. 17 (2011) 13142–13145.
- [34] T.W. Lin, C.J. Liu, C.S. Dai, Appl. Catal. B (2014), http://dx.doi.org/10.1016/ j.apcatb.2014.02.017.
- [35] Q. Li, J. Wu, Q. Tang, Z. Lan, P. Li, J. Lin, L. Fan, Electrochem. Commun. 10 (2008) 1299–1302.
- [36] J.Y. Lin, C.Y. Chan, S.W. Chou, Chem. Commun. 49 (2013) 1440-1442.
- [37] Z. Lan, J. Wu, J. Lin, M. Huang, J. Mater. Chem. 22 (2012) 3948–3954.
- [38] J.Y. Lin, S.Y. Tai, S.W. Chou, J. Phys. Chem. C 118 (2014) 823–830.
- [39] S. Gagliardi, L. Giorgi, R. Giorgi, N. Lisi, T.D. Makris, E. Salernitano, A. Rufoloni, Superlattices Microstruct. 46 (2009) 205–208.
- [40] S.Y. Tai, C.J. Liu, S.W. Chou, F.S.S. Chien, J.Y. Lin, T.W. Lin, J. Mater. Chem. 22 (2012) 24753–24759.
- [41] Z. Li, F. Gong, G. Zhou, Z.S. Wang, J. Phys. Chem. C 117 (2013) 6561–6566.
- [42] Q.W. Jiang, G.R. Li, F. Wang, X.P. Gao, Electrochem. Commun. 12 (2010) 924–927
- [43] C. Bu, Y. Liu, Z. Yu, S. You, N. Huang, L. Liang, X.Z. Zhao, ACS Appl. Mater. Interfaces 5 (2013) 7432—7438.
- [44] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, second ed., John Wiley & Sons, New York, 2001, p. 115.
- [45] M.K. Wang, A.M. Anghel, B. Marsan, N.C. Ha, N. Pootrakulchote, S.M. Zakeeruddin, M.J. Grätzel, J. Am. Chem. Soc. 131 (2009) 15976–15977.
- [46] A. Kongkanand, R.M. Dominguez, P.V. Kamat, Nano Lett. 7 (2007) 676-680.
- 47] F. Gong, X. Xu, Z. Li, G. Zhou, Z.X. Wang, Chem. Commun. 49 (2013) 1437–1439.
- [48] J.Y. Lin, W.Y. Wang, Y.T. Lin, S.W. Chou, ACS Appl. Mater. Interfaces 6 (2014) 3357–3364.
- [49] L. Han, N. Koide, Y. Chiba, A. Islam, R. Komiya, N. Fuke, A. Fukui, R. Yamanaka, Appl. Phys. Lett. 86 (2005) 213501.
- [50] F. Malara, M. Manca, L.D. Marco, P. Pareo, G. Gigli, ACS Appl. Mater. Interfaces 3 (2011) 3625–3632.