# Title

# Contents

| 1        | Exa               | act diagonalization of the two-site Hubbard model                                                                                                                                               | 2  |
|----------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|          | 1.1               | Symmetries of the problem                                                                                                                                                                       | 2  |
|          | 1.2               | Partitioning the Hilbert space                                                                                                                                                                  | 4  |
|          | 1.3               | N=1                                                                                                                                                                                             | 4  |
|          |                   | $1.3.1 	 S_z^{tot} = -1 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 $                                                                                             | 5  |
|          |                   | $1.3.2 	 S_z^{tot} = +1 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 $                                                                                             | 5  |
|          | 1.4               | N=3                                                                                                                                                                                             | 6  |
|          |                   | $1.4.1 	 S_z^{tot} = -1 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 $                                                                                             | 6  |
|          |                   | $1.4.2 	 S_z^{tot} = +1 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 $                                                                                             | 6  |
|          | 1.5               | N=4                                                                                                                                                                                             | 6  |
|          | 1.6               | N=2                                                                                                                                                                                             | 7  |
|          |                   | $1.6.1 	 S_z^{tot} = \pm 1 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	$                                                                                           | 7  |
|          |                   | $1.6.2 	 S_z^{tot} = 0 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	 \dots 	$                                                                                               | 7  |
|          | 1.7               | The total spectrum                                                                                                                                                                              | 8  |
| <b>2</b> | E <sub>ve</sub>   | est diagonalization of the Anderson melocule                                                                                                                                                    | 9  |
| _        | 2.1               | symmetries of the problem                                                                                                                                                                       | 9  |
|          | $\frac{2.1}{2.2}$ | N=1                                                                                                                                                                                             | 9  |
|          | 2.2               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                            | 9  |
|          |                   | $\begin{array}{lll} 2.2.1 & S_{tot} = & 1 & \dots & \dots & \dots & \dots & \dots & \dots \\ 2.2.2 & S_{tot}^z = +1 & \dots & $ | 10 |
|          | 2.3               | N=3                                                                                                                                                                                             | 10 |
|          | 2.0               | $2.3.1  S_{tot}^z = -1  \dots  \dots  \dots  \dots  \dots  \dots$                                                                                                                               | 10 |
|          |                   | $\begin{array}{lll} 2.3.1 & S_{tot} = 1 & \dots & \dots & \dots \\ 2.3.2 & S_{tot}^z = +1 & \dots & \dots & \dots & \dots & \dots \\ \end{array}$                                               | 10 |
|          | 2.4               | N=2                                                                                                                                                                                             | 11 |
|          | 2.1               | $2.4.1  S_{tot}^z = \pm 1  \dots  \dots  \dots  \dots  \dots  \dots$                                                                                                                            | 11 |
|          |                   | $\begin{array}{llll} 2.4.2 & S_{tot}^2 = 0 & \dots &$                                                                           | 11 |
|          | 2.5               | The total spectrum                                                                                                                                                                              | 12 |
|          |                   | 1                                                                                                                                                                                               |    |
| 3        |                   | ck diagonalization of a Fermionic Hamiltonian in single Fermion num-                                                                                                                            |    |
|          |                   | occupancy basis                                                                                                                                                                                 | 12 |
|          | 3.1               | The Problem                                                                                                                                                                                     | 12 |
|          |                   | Warming Up - Writing the Hamiltonian as blocks                                                                                                                                                  | 13 |
|          | 3.3               | Proof of the theorem                                                                                                                                                                            | 14 |
|          | 3.4               | Determining the $U_{N\sigma}$                                                                                                                                                                   | 19 |
|          | 3.5               | A corrolary: $\left[\hat{G}_e(\hat{E}_{N\sigma}), \hat{E}_{N\sigma}\right] = 0 \dots \dots \dots \dots \dots \dots \dots \dots$                                                                 | 21 |
|          | 3.6               | A Simple Example                                                                                                                                                                                | 22 |
|          |                   | 3.6.1 The Eigenstates                                                                                                                                                                           | 24 |
|          | 3.7               | Applying the RG on the Hubbard dimer                                                                                                                                                            | 25 |
|          |                   | 3.7.1 Eigenvectors of $\hat{n}_{1\uparrow} = 1$ sector                                                                                                                                          | 27 |

# 1 Exact diagonalization of the two-site Hubbard model

The Hamiltonian

$$\mathcal{H} = -t \sum_{\sigma} \left( c_{1\sigma}^{\dagger} c_{2\sigma} + c_{2\sigma}^{\dagger} c_{1\sigma} \right) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} - \mu \hat{N}$$
(1)

 $a_a$  I have two lattice sites, indexed by 1 and 2, occupied by electrons.  $\mu$  is the chemical potential,  $c_{i\sigma}^{\dagger}$  and  $c_{i\sigma}$  are the fermionic creation and annihilation operators at the i<sup>th</sup> site, with spin-index  $\sigma$ .  $\sigma$  can take values  $\uparrow$  and  $\downarrow$ , denoting spin-up and spin-down states respectively.  $\hat{n}_{i\sigma} = c_{i\sigma}^{\dagger} c_{i\sigma}$  is the number operator for the  $i^{th}$  site and at spin-index  $\sigma$ ; it counts the number of fermions with the designated quantum numbers.  $\hat{N} = \sum_{i\sigma} \hat{n}_{i\sigma}$  is the total number operator; it counts the total number of fermions at all sites and spin-indices. t is the hopping strength; the more the t, the more are the electrons likely to hop between sites. U is the on-site repulsion cost; it represents the increase in energy when two electrons occupy the same site.

#### 1.1 Symmetries of the problem

The following operators commute with the Hamiltonian.

1. Total number operator:  $\left[\mathcal{H}, \hat{N}\right] = 0$ .

*Proof.* The last term in the Hamiltonian is the number operator itself. Ignoring that, there are three terms that I need to individually consider.

•  $c_{1\sigma}^{\dagger}c_{2\sigma}$ 

$$\begin{bmatrix}
c_{1\sigma}^{\dagger}c_{2\sigma}, \hat{n}_{i\sigma'}
\end{bmatrix} = \begin{bmatrix}
c_{1\sigma}^{\dagger}c_{2\sigma}, c_{i\sigma'}^{\dagger}c_{i\sigma'}
\end{bmatrix} 
= c_{1\sigma}^{\dagger} \begin{bmatrix}
c_{2\sigma}, c_{i\sigma'}^{\dagger}c_{i\sigma'}
\end{bmatrix} + \begin{bmatrix}
c_{1\sigma}^{\dagger}, c_{i\sigma'}^{\dagger}c_{i\sigma'}
\end{bmatrix} c_{2\sigma} 
= \delta_{i,2} c_{1\sigma}^{\dagger} \begin{bmatrix}
c_{2\sigma}, c_{2\sigma'}^{\dagger}c_{2\sigma'}
\end{bmatrix} + \delta_{i,1} \begin{bmatrix}
c_{1\sigma}^{\dagger}, c_{1\sigma'}^{\dagger}c_{1\sigma'}
\end{bmatrix} c_{2\sigma} 
= \delta_{i,2} c_{1\sigma}^{\dagger} \begin{cases}
c_{2\sigma}, c_{2\sigma'}^{\dagger}
\end{cases} c_{2\sigma'} - \delta_{i,1}c_{1\sigma'}^{\dagger} \begin{cases}
c_{1\sigma'}, c_{1\sigma}^{\dagger}
\end{cases} c_{2\sigma} 
= \delta_{\sigma,\sigma'}c_{1\sigma}^{\dagger}c_{1\sigma} (\delta_{i,2} - \delta_{i,1})$$
(2)

The third line follows because the electrons on different sites are distinguishable and hence, the creation and anhillation operators of different sites will commute among themselves. Therefore,

$$\left[c_{1\sigma}^{\dagger}c_{2\sigma}, \hat{N}\right] = \sum_{i\sigma'} \left[c_{1\sigma}^{\dagger}c_{2\sigma}, \hat{n}_{i\sigma'}\right] = c_{1\sigma}^{\dagger}c_{1\sigma} \sum_{i=\{1,2\}} \left(\delta_{i,2} - \delta_{i,1}\right) = 0 \tag{3}$$

•  $c_{2\sigma}^{\dagger}c_{1\sigma}$ : Since the operator  $\hat{N}$  is symmetric with respect to the site indices 1 and 2, I can go through the last proof again with the site indices 1 and 2 exchanged and since the proof does not depend on the site indices, this commutator will also be zero.

•  $\hat{n}_{i\uparrow}\hat{n}_{i\downarrow}$ :

Therefore, 
$$\left[\hat{n}_{i\uparrow}\hat{n}_{j\downarrow},\hat{N}\right] = \sum_{j,\sigma} \left[\hat{n}_{i\uparrow}\hat{n}_{j\downarrow},\hat{n}_{j\sigma}\right] = 0$$

The total Hamiltonian is just a sum of the three terms; since the number operator commutes individually with these terms, it obviously commutes with the total Hamiltonian.  $\Box$ 

2. Magnetization operator:  $\hat{S}_{tot}^z \equiv \frac{1}{2} \sum_i (\hat{n}_{i\uparrow} - \hat{n}_{i\downarrow}), \ \left[ \mathcal{H}, \hat{S}_{tot}^z \right] = 0.$ 

*Proof.* The magnetization operator can be rewritten as  $\hat{S}_{tot}^z = \frac{1}{2} \sum_i (\hat{n}_{i\uparrow} + \hat{n}_{i\downarrow} - 2\hat{n}_{i\downarrow}) = \hat{N} - 2 \sum_i \hat{n}_{i\downarrow}$ . Since  $\hat{N}$  commutes with  $\mathcal{H}$ , I just need to prove that  $[\mathcal{H}, \sum_i \hat{n}_{i\downarrow}]$ . From eq. 2,

$$\left[c_{1\sigma}^{\dagger}c_{2\sigma}, \sum_{i} \hat{n}_{i\downarrow}\right] = c_{1\downarrow}^{\dagger}c_{1\downarrow} \sum_{i=\{1,2\}} \left(\delta_{i,2} - \delta_{i,1}\right) = 0 \tag{5}$$

Again using the symmetry of the magnetization operator with the exchange of indices, its obvious that  $\left[c_{2\sigma}^{\dagger}c_{1\sigma}, \sum_{i} \hat{n}_{i\downarrow}\right] = 0$ 

Using eq. 4,  $[\hat{n}_{i\uparrow}\hat{n}_{i\downarrow}, \hat{n}_{i\downarrow}] = 0.$ 

Finally,  $[N, \hat{n}_{i\downarrow}] = \sum_{j\sigma} [\hat{n}_{j\sigma}, \hat{n}_{i\downarrow}] = [\hat{n}_{i\uparrow}, \hat{n}_{i\downarrow}] = c^{\dagger}_{i\uparrow} c_{i\uparrow} c^{\dagger}_{i\downarrow} c_{i\downarrow} - c^{\dagger}_{i\downarrow} c_{i\downarrow} c^{\dagger}_{i\uparrow} c_{i\uparrow} = 0$ . Since  $\hat{S}^z_{tot}$  commutes with each part individually, it commutes with the total Hamiltonian.

3. Two-site parity operator  $\hat{P}$ : The action of  $\hat{P}$  is defined as follows. If  $|\Psi_{\alpha\beta}\rangle$  is a wavefunction with site indices  $\alpha$  and  $\beta$ ,

$$\hat{P} |\Psi(\alpha, \beta)\rangle = |\Psi(\beta, \alpha)\rangle \tag{6}$$

That is, it operates on each electron and reverses it's site indices.

*Proof.* I now rewrite the Hamiltonian by explcitly showing the two site indices:

$$\mathcal{H}(\alpha,\beta) = -t \sum_{\sigma} (c^{\dagger}_{\alpha\sigma} c_{\beta\sigma} + c^{\dagger}_{\beta\sigma} c_{\alpha\sigma}) + U(n_{\alpha\uparrow} n_{\alpha\downarrow} + n_{\beta\uparrow} n_{\beta\downarrow}) - \mu \sum_{\sigma} (n_{\alpha\sigma} + n_{\beta\sigma})$$
 (7)

Its obvious that  $\mathcal{H}$  is symmetric in the site indices:  $\mathcal{H}(\alpha, \beta) = \mathcal{H}(\beta, \alpha)$ . This means that the eigenvalues also have this symmetry. Let  $|\Phi(\alpha, \beta)\rangle$  be an eigenstate of  $\mathcal{H}(\alpha, \beta)$  with eigenvalue  $E(\alpha, \beta)$ . Then,

$$\hat{P}\mathcal{H} |\Phi(\alpha,\beta)\rangle = E(\alpha,\beta)\hat{P} |\Phi(\alpha,\beta)\rangle = E(\beta,\alpha) |\Phi(\beta,\alpha)\rangle 
= \mathcal{H} |\Phi(\beta,\alpha)\rangle = \mathcal{H}\hat{P} |\Phi(\alpha,\beta)\rangle 
\implies \mathcal{H}\hat{P} |\Phi(\alpha,\beta)\rangle = \hat{P}\mathcal{H} |\Phi(\alpha,\beta)\rangle$$
(8)

Since any general wavefunction can be expanded in terms of these wavefunctions and since both the operator are linear, the above result will also hold for a general wavefunction  $|\Psi(\alpha,\beta)\rangle$ :

$$\mathcal{H}\hat{P} |\Psi(\alpha,\beta)\rangle = \hat{P}\mathcal{H} |\Psi(\alpha,\beta)\rangle \implies [\mathcal{H},\hat{P}] = 0$$
 (9)

## 1.2 Partitioning the Hilbert space

The Hamiltonian commutes with the three operators. This means that is possible to simultaneously diagonalize these four operators:  $\mathcal{H}, \hat{N}, S_z^{tot}, \hat{P}$ . I will be able to label the eigenstates of the total Hamiltonian using the eigenvalues of these operatos. First take the total number operator.  $\hat{N}$  can take four values for a two-site system, 1 through 4. The eigenstates labelled by a particular number, say N=2 will be orthogonal to the eigenstates labelled by another number, say N=4. This means each eigenvalue of  $\hat{N}$  will have a distinct subspace orthogonal to the other values of  $\hat{N}$ . I will be able to diagonalize each such subspace independently of each other, because they will not have any overlap. This feature enables us to block-diagonalize the total Hamiltonian into four blocks, each block belonging to each value  $\hat{N}$ .

Inside each block, I will be able to repeat the procedure by next using the eigenvalues of  $S_z^{tot}$ . Each block of the Hamiltonian will again break up to smaller blocks for each value of the total magnetization. The eigenvalues of parity operator provide a further partitioning of the blocks of magnetization.

From this point, all the states I will work with will necessarily be eigenfunctions of N, so it doesn't make sense to keep the last term in the Hamiltonian,  $\mu \hat{N}$ . I redefine the Hamiltonian by absorbing this term:  $\mathcal{H} \to \mathcal{H} + \mu \hat{N} = -t \sum_{\sigma} \left( c_{1\sigma}^{\dagger} c_{2\sigma} + c_{2\sigma}^{\dagger} c_{1\sigma} \right) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$ . This will keep the eigenvectors unaltered, but will increase the eigenvalues by  $\mu N$ , where N is the number of particles in the eigenstate I are considering.

#### 1.3 N = 1

For writing the state kets, I use the following notation:  $|\uparrow,\downarrow\rangle$  means electron on site 1 has spin up and that on site 2 has spin-down.  $|\downarrow,0\rangle$  means electron on site 1 has spin-down and there is no electron on site 2.

For one electron on two lattice sites, I start by writing down the eigenstates of  $S_z^{tot}$ . For odd number of electrons, zero magnetization is not possible. So,

•  $S_z^{tot} = -1: |\downarrow, 0\rangle, |0, \downarrow\rangle$ 

•  $S_z^{tot} = +1: |\uparrow, 0\rangle, |0, \uparrow\rangle$ 

Each eigenvalue will have a separate subspace and can be separately diagonalized. I need to find the matrix elements of  $\mathcal{H}$  in these eigenkets. Since there is no possibility of two electrons occupying same site, I ignore the U-term for the time being.

### 1.3.1 $S_z^{tot} = -1$

Let us first see the action of the Hamiltonian on the eigenfunctions with  $S_z^{tot} = -1$ .

$$\mathcal{H} |\downarrow, 0\rangle = -t c_{2\downarrow}^{\dagger} c_{1\downarrow} |\downarrow, 0\rangle = -t |0, \downarrow\rangle$$

$$\mathcal{H} |0, \downarrow\rangle = -t c_{1\downarrow}^{\dagger} c_{2\downarrow} |0, \downarrow\rangle = -t |\downarrow, 0\rangle$$
(10)

We get the following matrix for this tiny subspace of the Hamiltonian:

$$|\downarrow,0\rangle \qquad |0,\downarrow\rangle |\downarrow,0\rangle \begin{pmatrix} 0 & -t \\ -t & 0 \end{pmatrix}$$
 (11)

The eigenvalues and eigenvectors of this matrix are  $\frac{|\downarrow,0\rangle\pm|0,\downarrow\rangle}{\sqrt{2}}$ , with eigenvalues  $\mp t$ . These are also the eigenvalues of the parity operator, as expected.

$$\hat{P}(|\downarrow,0\rangle + |0,\downarrow\rangle) = |0,\downarrow\rangle + |\downarrow,0\rangle \implies \hat{P} = 1$$

$$\hat{P}(|\downarrow,0\rangle - |0,\downarrow\rangle) = |0,\downarrow\rangle - |\downarrow,0\rangle \implies \hat{P} = -1$$
(12)

# 1.3.2 $S_z^{tot} = +1$

Now I look at the spin-up states.

$$\mathcal{H} |\uparrow, 0\rangle = -t c_{2\uparrow}^{\dagger} c_{1\uparrow} |\uparrow, 0\rangle = -t |0, \uparrow\rangle$$

$$\mathcal{H} |0, \uparrow\rangle = -t c_{1\uparrow}^{\dagger} c_{2\uparrow} |0, \uparrow\rangle = -t |\uparrow, 0\rangle$$
(13)

Clearly, this gives the same matrix as the spin-down states:

$$|\uparrow,0\rangle \quad |0,\uparrow\rangle 
|\uparrow,0\rangle \begin{pmatrix} 0 & -t \\ -t & 0 \end{pmatrix}$$

$$(14)$$

and hence similar eigenfunctions:  $\frac{|\uparrow,0\rangle\pm|0,\uparrow\rangle}{\sqrt{2}}$ , with eigenvalues  $\mp t$ .

#### 1.4 N=3

I once again write down the eigenstates of  $S_z^{tot}$ , this time with three electrons.

- $S_z^{tot} = -1: |\uparrow\downarrow,\downarrow\rangle, |\downarrow,\uparrow\downarrow\rangle$
- $S_z^{tot} = +1: |\uparrow\downarrow,\uparrow\rangle, |\uparrow,\uparrow\downarrow\rangle$

**1.4.1** 
$$S_z^{tot} = -1$$

$$\mathcal{H} |\uparrow\downarrow,\downarrow\rangle = -tc_{2\uparrow}^{\dagger} c_{1\uparrow} |\uparrow\downarrow,\downarrow\rangle + U |\uparrow\downarrow,\downarrow\rangle = -t |\downarrow,\uparrow\downarrow\rangle + U |\uparrow\downarrow,\downarrow\rangle 
\mathcal{H} |\downarrow,\uparrow\downarrow\rangle = -tc_{1\uparrow}^{\dagger} c_{2\uparrow} |\downarrow,\uparrow\downarrow\rangle + U |\downarrow,\uparrow\downarrow\rangle = -t |\uparrow\downarrow,\downarrow\rangle + U |\downarrow,\uparrow\downarrow\rangle$$
(15)

$$|\uparrow\downarrow,\downarrow\rangle \qquad |\downarrow,\uparrow\downarrow\rangle$$

$$|\uparrow\downarrow,\downarrow\rangle \left( \begin{array}{cc} U & -t \\ -t & U \end{array} \right)$$

$$(16)$$

This matrix has eigenvalues  $U \mp t$ , and corresponding eigenvectors  $\frac{|\uparrow\downarrow,\downarrow\rangle\pm|\downarrow,\uparrow\downarrow\rangle}{\sqrt{2}}$ 

**1.4.2** 
$$S_z^{tot} = +1$$

$$\mathcal{H} |\uparrow\downarrow,\uparrow\rangle = -tc_{2\downarrow}^{\dagger} c_{1\downarrow} |\uparrow\downarrow,\uparrow\rangle + U |\uparrow\downarrow,\uparrow\rangle = tc_{2\downarrow}^{\dagger} c_{1\downarrow} |\downarrow\uparrow,\uparrow\rangle + U |\uparrow\downarrow,\uparrow\rangle = t |\uparrow,\downarrow\uparrow\rangle + U |\uparrow\downarrow,\uparrow\rangle = -t |\uparrow,\uparrow\downarrow\rangle + U |\uparrow\downarrow,\uparrow\rangle \mathcal{H} |\uparrow,\uparrow\downarrow\rangle = -tc_{1\downarrow}^{\dagger} c_{2\downarrow} |\uparrow,\uparrow\downarrow\rangle + U |\uparrow,\uparrow\downarrow\rangle = tc_{1\downarrow}^{\dagger} c_{2\downarrow} |\uparrow,\downarrow\uparrow\rangle + U |\uparrow,\uparrow\downarrow\rangle = t |\downarrow\uparrow,\uparrow\rangle + U |\uparrow,\uparrow\downarrow\rangle = -t |\uparrow\downarrow,\uparrow\rangle + U |\uparrow,\uparrow\downarrow\rangle$$

$$(17)$$

$$|\uparrow\downarrow,\uparrow\rangle \begin{pmatrix} U & -t \\ -t & U \end{pmatrix}$$

$$|\uparrow\uparrow,\uparrow\downarrow\rangle \begin{pmatrix} U & -t \\ -t & U \end{pmatrix}$$

$$(18)$$

This matrix has eigenvalues  $U \mp t$ , and corresponding eigenvectors  $\frac{|\uparrow\downarrow,\uparrow\rangle\pm|\uparrow,\uparrow\downarrow\rangle}{\sqrt{2}}$ 

#### 1.5 N=4

With four electrons, the only possible state is  $|\uparrow\downarrow,\uparrow\downarrow\rangle$ . Its easy to find the eigenvalue. Since all states are filled, no hopping can take place, so the hopping term is zero. Therefore,

$$\mathcal{H}\left|\uparrow\downarrow,\uparrow\downarrow\right\rangle = 2U\left|\uparrow\downarrow,\uparrow\downarrow\right\rangle \tag{19}$$

So,  $|\uparrow\downarrow,\uparrow\downarrow\rangle$  is an eigenvector with eigenvalue 2U.

#### 1.6 N=2

This is the eigenvalue that has the largest subspace.

•  $S_z^{tot} = -1: |\downarrow,\downarrow\rangle$ 

•  $S_z^{tot} = +1: |\uparrow,\uparrow\rangle$ 

•  $S_z^{tot} = 0$ :  $|\uparrow,\downarrow\rangle$ ,  $|\downarrow,\uparrow\rangle$ ,  $|0,\uparrow\downarrow\rangle$ ,  $|\uparrow\downarrow,0\rangle$ 

## 1.6.1 $S_z^{tot} = \pm 1$

These two subspaces have a single state each, so they are obviously eigenstates. Since they both have identical spins on both sites, the hopping term is 0, and the U-term is also zero because of single occupation. As a result, they both have zero eigenvalue

$$\mathcal{H}|\downarrow,\downarrow\rangle = \mathcal{H}|\uparrow,\uparrow\rangle = 0 \tag{20}$$

# 1.6.2 $S_z^{tot} = 0$

This subspace has four eigenvectors,

$$|\uparrow,\downarrow\rangle$$
,  $|\downarrow,\uparrow\rangle$ ,  $|0,\uparrow\downarrow\rangle$ ,  $|\uparrow\downarrow,0\rangle$  (21)

so it is not possible to directly diagonalize this subspace. First we organize these states into eigenstates of parity. It is easy by inspection.

$$\hat{P}(|\uparrow,\downarrow\rangle \pm |\downarrow,\uparrow\rangle) = \pm (|\uparrow,\downarrow\rangle \pm |\downarrow,\uparrow\rangle)$$

$$\hat{P}(|\uparrow\downarrow,0\rangle \pm |0,\uparrow\downarrow\rangle) = \pm (|\uparrow\downarrow,0\rangle \pm |0,\uparrow\downarrow\rangle)$$
(22)

I have the parity eigenstates for this subspace, so its most convenient to work in the basis of these eigenstates

•  $\hat{P} = 1 : \frac{|\uparrow,\downarrow\rangle + |\downarrow,\uparrow\rangle}{\sqrt{2}}, \qquad \frac{|\uparrow\downarrow,0\rangle + |0,\uparrow\downarrow\rangle}{\sqrt{2}}$ 

•  $\hat{P} = -1: \frac{|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle}{\sqrt{2}}, \qquad \frac{|\uparrow\downarrow,0\rangle - |0,\uparrow\downarrow\rangle}{\sqrt{2}}$ 

Each eigenvalue subspace can now be diagonalized separately. First I look at the eigenstates of  $\hat{P} = 1$ . I find the matrix of  $\mathcal{H}$  in the subspace spanned by these two vectors and then diagonalize that subspace.

$$\mathcal{H} \frac{|\uparrow,\downarrow\rangle + |\downarrow,\uparrow\rangle}{\sqrt{2}} = -\frac{t}{\sqrt{2}} \left\{ \left( c_{1\downarrow}^{\dagger} c_{2\downarrow} + c_{2\uparrow}^{\dagger} c_{1\uparrow} \right) |\uparrow,\downarrow\rangle + \left( c_{1\uparrow}^{\dagger} c_{2\uparrow} + c_{2\downarrow}^{\dagger} c_{1\downarrow} \right) |\downarrow,\uparrow\rangle \right\}$$

$$= -\frac{t}{\sqrt{2}} \left\{ |\downarrow\uparrow,0\rangle + |0,\uparrow\downarrow\rangle + |\uparrow\downarrow,0\rangle + |0,\downarrow\uparrow\rangle \right\} = 0$$

$$\mathcal{H} \frac{|\uparrow\downarrow,0\rangle + |0,\uparrow\downarrow\rangle}{\sqrt{2}} = -\frac{t}{\sqrt{2}} \left\{ \left( c_{2\uparrow}^{\dagger} c_{1\uparrow} + c_{2\downarrow}^{\dagger} c_{1\downarrow} \right) |\uparrow\downarrow,0\rangle + \left( c_{1\uparrow}^{\dagger} c_{2\uparrow} + c_{1\downarrow}^{\dagger} c_{2\downarrow} \right) |0,\uparrow\downarrow\rangle \right\} + U \frac{|\uparrow\downarrow,0\rangle + |0,\uparrow\downarrow\rangle}{\sqrt{2}}$$

$$= -\frac{t}{\sqrt{2}} \left\{ |\downarrow,\uparrow\rangle - |\uparrow,\downarrow\rangle + |\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle \right\} + U \frac{|\uparrow\downarrow,0\rangle + |0,\uparrow\downarrow\rangle}{\sqrt{2}} = U \frac{|\uparrow\downarrow,0\rangle + |0,\uparrow\downarrow\rangle}{\sqrt{2}}$$

$$(23)$$

We get the following matrix

$$\frac{\frac{|\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle}{\sqrt{2}}}{\frac{|\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle}{\sqrt{2}}} \begin{pmatrix} 0 & 0 \\ 0 & U \end{pmatrix}$$

$$\frac{|\uparrow\downarrow,0\rangle+|0,\uparrow\downarrow\rangle}{\sqrt{2}} \begin{pmatrix} 0 & U \end{pmatrix}$$
(24)

As it appears, the subspace is already diagonal in the eigenbasis of  $\hat{P}$ . The  $\hat{P}=1$  eigenstates are eigenstates of  $\mathcal{H}$ , with eigenvalues 0 and U. Next I look at the eigenstates of  $\hat{P}=-1$ .

$$\mathcal{H} \frac{|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle}{\sqrt{2}} = -\frac{t}{\sqrt{2}} \left\{ \left( c_{1\downarrow}^{\dagger} c_{2\downarrow} c_{1\uparrow}^{\dagger} \right) |\uparrow,\downarrow\rangle - \left( c_{1\uparrow}^{\dagger} c_{2\uparrow} + c_{2\downarrow}^{\dagger} c_{1\downarrow} \right) |\downarrow,\uparrow\rangle \right\}$$

$$= -\frac{t}{\sqrt{2}} \left\{ |\downarrow\uparrow,0\rangle + |0,\uparrow\downarrow\rangle - |\uparrow\downarrow,0\rangle - |0,\downarrow\uparrow\rangle \right\}$$

$$= 2t \frac{|\uparrow\downarrow,0\rangle - |0,\uparrow\downarrow\rangle}{\sqrt{2}}$$

$$\mathcal{H} \frac{|\uparrow\downarrow,0\rangle - |0,\uparrow\downarrow\rangle}{\sqrt{2}} = -\frac{t}{\sqrt{2}} \left\{ \left( c_{2\uparrow}^{\dagger} c_{1\uparrow} + c_{2\downarrow}^{\dagger} c_{1\downarrow} \right) |\uparrow\downarrow,0\rangle - \left( c_{1\uparrow}^{\dagger} c_{2\uparrow} + c_{1\downarrow}^{\dagger} c_{2\downarrow} \right) |0,\uparrow\downarrow\rangle \right\} + U \frac{|\uparrow\downarrow,0\rangle + |0,\uparrow\downarrow\rangle}{\sqrt{2}}$$

$$= -\frac{t}{\sqrt{2}} \left\{ |\downarrow,\uparrow\rangle - |\uparrow,\downarrow\rangle - |\uparrow,\downarrow\rangle + |\downarrow,\uparrow\rangle \right\} + U \frac{|\uparrow\downarrow,0\rangle + |0,\uparrow\downarrow\rangle}{\sqrt{2}}$$

$$= 2t \frac{|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle}{2} + U \frac{|\uparrow\downarrow,0\rangle - |0,\uparrow\downarrow\rangle}{\sqrt{2}}$$

$$\frac{|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle}{\sqrt{2}} \begin{pmatrix} 0 & 2t \\ 0 & 2t \\ 0 & 2t \end{pmatrix}$$

$$\frac{|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle}{\sqrt{2}} \begin{pmatrix} 0 & 2t \\ 2t & U \end{pmatrix}$$

$$(26)$$

This subspace is not automatically diagonal, but is easily diagonalized. The eigenvectors are

$$\frac{1}{N_{\pm}} \left\{ 2t \frac{(|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle)}{\sqrt{2}} + \frac{U \pm \sqrt{U^2 + 16t^2}}{2} \frac{(|\uparrow\downarrow,0\rangle - |0,\uparrow\downarrow\rangle)}{\sqrt{2}} \right\}$$

$$N_{\pm} = \left\{ \frac{U}{2} \left[ U \pm \sqrt{U^2 + 16t^2} \right] + 16t^2 \right\}^{\frac{1}{2}} \tag{27}$$

with eigenvalues  $\frac{U\pm\sqrt{U^2+16t^2}}{2}$  respectively.

# 1.7 The total spectrum

The final spectrum is already obtained. One final thing to do is to just add the respective values of  $-\mu N$  to the eigenvalues.

# 2 Exact diagonalization of the Anderson molecule

The Hamiltonian

$$\mathcal{H} = -t \sum_{\sigma} \left( c_{1\sigma}^{\dagger} c_{2\sigma} + c_{2\sigma}^{\dagger} c_{1\sigma} \right) + U \hat{n}_{1\uparrow} \hat{n}_{1\downarrow} + \epsilon_s \sum_{\sigma} \hat{n}_{2\sigma} + \epsilon_d \sum_{\sigma} \hat{n}_{1\sigma}$$
 (28)

I have two lattice sites, indexed by 1 and 2, occupied by electrons.  $\mu$  is the chemical potential,  $c_{i\sigma}^{\dagger}$  and  $c_{i\sigma}$  are the fermionic creation and annihilation operators at the i<sup>th</sup> site, with spin-index  $\sigma$ .  $\sigma$  can take values  $\uparrow$  and  $\downarrow$ , denoting spin-up and spin-down states respectively.  $\hat{n}_{i\sigma} = c_{i\sigma}^{\dagger} c_{i\sigma}$  is the number operator for the  $i^{th}$  site and at spin-index  $\sigma$ ; it counts the number of fermions with the designated quantum numbers.  $\hat{N} = \sum_{i\sigma} \hat{n}_{i\sigma}$  is the total number operator; it counts the total number of fermions at all sites and spin-indices. t is the hopping strength; the more the t, the more are the electrons likely to hop between sites. U is the on-site repulsion cost; it represents the increase in energy when two electrons occupy the same site. The model has on-site repulsion only for the first site. The sites have energies of  $\epsilon_s$  and  $\epsilon_s$  respectively.

# 2.1 Symmetries of the problem

The following operators commute with the Hamiltonian.

- 1. Total number operator:  $\left[\mathcal{H}, \hat{N}\right] = 0$ .
- 2. Magnetization operator:  $\left[\mathcal{H}, \hat{S}_{tot}^{z}\right] = 0.$
- 3. Total Spin Operator: Total spin angular momentum operator,

$$\hat{S}_{tot}^2 = (\hat{S}_{tot}^x)^2 + (\hat{S}_{tot}^y)^2 + (\hat{S}_{tot}^y)^2 = \hat{S}_{tot}^+ \hat{S}_{tot}^- - \hbar \hat{S}_{tot}^z + (\hat{S}_{tot}^z)^2$$
(29)

Since all the terms in the Hamiltonian are spin-preserving (all events conserve the number of particles having a definite spin  $\sigma$ ), total angular momentum will be conserved. It's obvious that the number operator term do so. The hopping term does so as well;  $c_{i\sigma}^{\dagger}c_{j\sigma}$  destroys a particle of spin  $\sigma$  and creates a particle of the same spin; the total angular momentum remain conserved in the process, although the number of particles at a particular site is not conserved. Thus,  $\left[\hat{S}_{tot}^2, \mathcal{H}\right] = 0$ .

## 2.2 N = 1

- $S_{tot}^{z}=-1: |\downarrow,0\rangle, |0,\downarrow\rangle$
- $S_{tot}^z = +1: |\uparrow, 0\rangle, |0, \uparrow\rangle$

# **2.2.1** $S_{tot}^z = -1$

Let us first see the action of the Hamiltonian on the eigenfunctions with  $S_{tot}^z = -1$ .

$$\mathcal{H} |\downarrow, 0\rangle = \epsilon_d |\downarrow, 0\rangle - t |0, \downarrow\rangle \mathcal{H} |0, \downarrow\rangle = \epsilon_s |0, \downarrow\rangle - t |\downarrow, 0\rangle$$
(30)

We get the following matrix for this tiny subspace of the Hamiltonian:

$$|\downarrow,0\rangle \qquad |0,\downarrow\rangle |\downarrow,0\rangle \begin{pmatrix} \epsilon_d & -t \\ -t & \epsilon_s \end{pmatrix}$$
 (31)

Eigenvalues:  $\frac{1}{2} \left[ \epsilon_d + \epsilon_s \pm \sqrt{(\epsilon_d - \epsilon_s)^2 + 4t^2} \right]$ . For  $\epsilon_s = \epsilon_d + \frac{U}{2}$  and  $\Delta = \sqrt{U^2 + 16t^2}$ , eigenvalues,  $\lambda_{\pm} = \epsilon_d + \frac{1}{4}(U \pm \Delta)$ . The eigenvectors are  $\frac{1}{N_{\pm}} \left( t \mid \downarrow, 0 \right) - \frac{1}{4}(U \pm \Delta) \mid 0, \downarrow \rangle \right)$ , where  $N_{\pm}^2 = t^2 + (\frac{U \pm \Delta}{4})^2$ 

# **2.2.2** $S_{tot}^z = +1$

$$\mathcal{H} |\uparrow, 0\rangle = \epsilon_d |\uparrow, 0\rangle - t |0, \uparrow\rangle \mathcal{H} |0, \uparrow\rangle = \epsilon_s |0, \uparrow\rangle - t |\uparrow, 0\rangle$$
(32)

Clearly, this gives the same matrix as the spin-down states. So, the eigenvalues will be exactly the same, and the eigenvectors will be correspondingly modified in the new basis. eigenvectors:  $\frac{1}{N_{+}}(t\mid\uparrow,0\rangle+(\epsilon_{d}-\lambda_{\pm})\mid0,\uparrow\rangle)$ 

#### 2.3 N=3

- $S_{tot}^z = -1: |\uparrow\downarrow,\downarrow\rangle, |\downarrow,\uparrow\downarrow\rangle$
- $S_{tot}^z = +1: |\uparrow\downarrow,\uparrow\rangle, |\uparrow,\uparrow\downarrow\rangle$

# **2.3.1** $S_{tot}^z = -1$

$$\mathcal{H} |\uparrow\downarrow,\downarrow\rangle = -t |\downarrow,\uparrow\downarrow\rangle + (2\epsilon_d + \epsilon_s + U) |\uparrow\downarrow,\downarrow\rangle \mathcal{H} |\downarrow,\uparrow\downarrow\rangle = -t |\uparrow\downarrow,\downarrow\rangle + (2\epsilon_s + \epsilon_d) |\downarrow,\uparrow\downarrow\rangle$$
(33)

$$|\uparrow\downarrow,\downarrow\rangle \qquad |\downarrow,\uparrow\downarrow\rangle |\uparrow\downarrow,\downarrow\rangle \begin{pmatrix} 2\epsilon_d + \epsilon_s + U & -t \\ -t & 2\epsilon_s + \epsilon_d \end{pmatrix}$$
(34)

Again setting  $\epsilon_s = \epsilon_d + \frac{U}{2}$ , eigenvalues:  $3\epsilon_d + \frac{5}{4}U \pm \frac{1}{4}\Delta$ . Corresponding eigenvectors  $\frac{1}{N_{\pm}}(t\mid\uparrow\downarrow,\downarrow\rangle - \frac{1}{4}(U\pm\Delta)\mid\downarrow,\uparrow\downarrow\rangle)$ 

# **2.3.2** $S_{tot}^z = +1$

$$\mathcal{H} |\uparrow\downarrow,\uparrow\rangle = -t |\uparrow,\uparrow\downarrow\rangle + (2\epsilon_d + \epsilon_s + U) |\uparrow\downarrow,\uparrow\rangle \mathcal{H} |\uparrow,\uparrow\downarrow\rangle = -t |\uparrow\downarrow,\uparrow\rangle + (2\epsilon_s + \epsilon_d) |\uparrow,\uparrow\downarrow\rangle$$
 (35)

Again the same matrix. Hence the eigenvalues are same. Eigenvectors are  $\frac{1}{N_{\pm}}(t \mid \uparrow \downarrow, \uparrow) - \frac{1}{4}(U \pm \Delta) \mid \uparrow, \uparrow \downarrow \rangle$ 

#### 2.4 N=2

This is the eigenvalue that has the largest subspace.

•  $S_{tot}^z = -1: |\downarrow,\downarrow\rangle$ 

•  $S_{tot}^z = +1: |\uparrow,\uparrow\rangle$ 

•  $S_{tot}^z = 0$ :  $|\uparrow,\downarrow\rangle$ ,  $|\downarrow,\uparrow\rangle$ ,  $|0,\uparrow\downarrow\rangle$ ,  $|\uparrow\downarrow,0\rangle$ 

#### **2.4.1** $S_{tot}^z = \pm 1$

These two subspaces have a single state each, so they are obviously eigenstates. Since they both have identical spins on both sites, the hopping term is 0, and the U-term is also zero because of single occupation. As a result, they both have zero eigenvalue

$$\mathcal{H}|\downarrow,\downarrow\rangle = \mathcal{H}|\uparrow,\uparrow\rangle = \epsilon_s + \epsilon_d \tag{36}$$

#### **2.4.2** $S_{tot}^z = 0$

This subspace has four eigenvectors,

$$|\uparrow,\downarrow\rangle$$
,  $|\downarrow,\uparrow\rangle$ ,  $|0,\uparrow\downarrow\rangle$ ,  $|\uparrow\downarrow,0\rangle$  (37)

so it is easier to first find eigenstates of  $S_{tot}^2$ . Since these are states with zero  $S^z$ ,  $S_{tot}^2$  for these states is just  $S^+S^-$ 

$$S^{+}S^{-}|\uparrow,\downarrow\rangle = S^{+}S^{-}|\downarrow,\uparrow\rangle = |\uparrow,\downarrow\rangle + |\downarrow,\uparrow\rangle$$
  

$$S^{+}S^{-}|\uparrow\downarrow,0\rangle = S^{+}S^{-}|0,\uparrow\downarrow\rangle = 0$$
(38)

The eigenstates are

$$\frac{|\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle}{\sqrt{2}}(S_{tot}^2=1), \quad \left\{\frac{|\uparrow,\downarrow\rangle-|\downarrow,\uparrow\rangle}{\sqrt{2}}, |\uparrow\downarrow,0\rangle, |0,\uparrow\downarrow\rangle\right\}(S_{tot}^2=0)$$
 (39)

 $S_{tot}^2=1$  immediately delivers an eigenstate:

$$\mathcal{H}\frac{|\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle}{\sqrt{2}} = (\epsilon_d + \epsilon_s) \left(\frac{|\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle}{\sqrt{2}}\right) \tag{40}$$

Next I diagonalize the subspace  $S_{tot}^2 = 0$ .

$$\mathcal{H}\frac{|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle}{\sqrt{2}} = (\epsilon_d + \epsilon_s) \left(\frac{|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle}{\sqrt{2}}\right) + \sqrt{2}t(|\uparrow\downarrow,0\rangle - |0,\uparrow\downarrow\rangle)$$

$$\mathcal{H}|\uparrow\downarrow,0\rangle = (2\epsilon_d + U)|\uparrow\downarrow,0\rangle + \sqrt{2}t\frac{|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle}{\sqrt{2}}$$

$$\mathcal{H}|0,\uparrow\downarrow\rangle = (2\epsilon_d + U)|0,\uparrow\downarrow\rangle - \sqrt{2}t\frac{|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle}{\sqrt{2}}$$

$$(41)$$

We get the following matrix

$$\begin{pmatrix}
2\epsilon_d + \frac{U}{2} & \sqrt{2}t & -\sqrt{2}t \\
\sqrt{2}t & 2\epsilon_d + U & 0 \\
-\sqrt{2}t & 0 & 2\epsilon_d + U
\end{pmatrix}$$
(42)

The eigenvectors are

- $|\uparrow\downarrow,0\rangle |0,\uparrow\downarrow\rangle : 2\epsilon_d + U$
- $\frac{U-\Delta}{4\sqrt{2}t}\frac{|\uparrow,\downarrow\rangle-|\downarrow,\uparrow\rangle}{\sqrt{2}}-|\uparrow\downarrow,0\rangle+|0,\uparrow\downarrow\rangle:2\epsilon_d+\frac{3}{4}U+\frac{1}{2}\Delta(\frac{U}{2},t)$
- $\frac{U+\Delta}{4\sqrt{2}t}\frac{|\uparrow,\downarrow\rangle-|\downarrow,\uparrow\rangle}{\sqrt{2}}-|\uparrow\downarrow,0\rangle+|0,\uparrow\downarrow\rangle:2\epsilon_d+\frac{3}{4}U-\frac{1}{2}\Delta(\frac{U}{2},t)$

## 2.5 The total spectrum

The final spectrum is already obtained. One final thing to do is to just add the respective values of  $-\mu N$  to the eigenvalues.

# 3 Block diagonalization of a Fermionic Hamiltonian in single Fermion number occupancy basis

#### 3.1 The Problem

You have a system of N spin-half fermions. The corresponding Hamiltonian  $\mathcal{H}_{2N}$  comprises 2N fermionic single particle degrees of freedom defined in the number occupancy basis of  $\hat{n}_{i\sigma} = c_{i\sigma}^{\dagger} c_{i\sigma}$ , for all  $[i\sigma] \in [1, N] \times [\sigma, -\sigma]$ . The corresponding Hilbert space has a dimension of  $2^{2N}$ . i represents some external degree of freedom like site-index for electrons on a lattice or the electron momentum if we go to momentum-space. This Hamiltonian is in general non-diagonal in the occupancy basis of a certain degree of freedom  $N\sigma$ .  $N\sigma$  can be taken to be any degree of freedom, like say, the first lattice site or the largest momentum (Fermi momentum for a fermi gas). Equivalenty, for a general  $\mathcal{H}$ ,  $[\mathcal{H}, \hat{n}_{N\sigma}] \neq 0$ . The goal is to diagonalize this Hamiltonian.

**Theorem 1.** This Hamiltonian can be transformed using a certain unitary transformation  $\hat{U}_{N\sigma}$ , into  $\overline{\mathcal{H}} = \hat{U}_{N\sigma}\mathcal{H}\hat{U}_{N\sigma}^{\dagger}$  such that this transformed Hamiltonian is diagonal in the occupancy basis of  $\hat{n}_{N\sigma}$ . A rephrased statement is, there exists a unitary operator  $\hat{U}_{N\sigma}$  such that  $\left[\hat{U}_{N\sigma}\mathcal{H}_{2N}\hat{U}_{N\sigma}^{\dagger}, \hat{n}_{N\sigma}\right] = 0$ .

#### 3.2 Warming Up - Writing the Hamiltonian as blocks

The Hamiltonian  $\mathcal{H}_{2N}$  in general has off-diagonal terms and can be written as the following general matrix in the occupancy basis of  $N\sigma$ :

$$\mathcal{H}_{2N} = \begin{pmatrix} |1\rangle & |0\rangle \\ \langle 1| \begin{pmatrix} H_1 & H_2 \\ \\ \\ H_3 & H_4 \end{pmatrix}$$

$$(43)$$

where  $|1\rangle \equiv |\hat{n}_{N\sigma} = 1\rangle$  (occupied). Note that the  $H_i$  are not scalars but matrices(blocks), of dimension half that of  $\mathcal{H}_{2N}$ , that is  $2^{2N-1}$ . Its clear that since, for example,  $H_2 = \langle 1|\mathcal{H}_{2N}|0\rangle$ , we have

$$\mathcal{H}_{2N} = H_1 \hat{n}_{N\sigma} + c_{N\sigma}^{\dagger} H_2 + H_3 c_{N\sigma} + H_4 (1 - \hat{n}_{N\sigma}) \tag{44}$$

Its trivial to check that this definition of  $\mathcal{H}_{2N}$  indeed gives back the mentioned matrix elements. The expression for these matrix elements is quite easy to calculate. First, we define the partial trace over the subspace  $N\sigma$ 

$$Tr_{N\sigma}(\mathcal{H}_{2N}) \equiv \sum_{|N\sigma\rangle} \langle N\sigma | \mathcal{H}_{2N} | N\sigma \rangle$$
 (45)

The sum is over the possible states of  $N\sigma$ , that is,  $\hat{n}_{N\sigma} = 0$  and  $\hat{n}_{N\sigma} = 1$ . Applying this partial trace to equation 44, after multiplying throughout with  $\hat{n}_{N\sigma}$  from the right, gives

$$Tr_{N\sigma}\left(\mathcal{H}_{2N}\hat{n}_{N\sigma}\right) = Tr_{N\sigma}\left[H_{1}\hat{n}_{N\sigma}\hat{n}_{N\sigma} + c_{N\sigma}^{\dagger}H_{2}\hat{n}_{N\sigma} + H_{3}c_{N\sigma}\hat{n}_{N\sigma} + H_{4}(1-\hat{n}_{N\sigma})\hat{n}_{N\sigma}\right]$$
(46)

Recall the following:  $\hat{n}_{N\sigma}^2 = \hat{n}_{N\sigma}$ ,  $(1 - \hat{n}_{N\sigma})\hat{n}_{N\sigma} = 0$ .

Also, since  $H_i$  are matrix elements with respect to  $\hat{n}_{N\sigma}$ , they will commute with the creation and annihilation operators. Hence,  $Tr_{N\sigma}(c_{N\sigma}^{\dagger}H_2\hat{n}_{N\sigma}) = H_2Tr_{N\sigma}(c_{N\sigma}^{\dagger}\hat{n}_{N\sigma}) = 0$ , because  $c_{N\sigma}^{\dagger}\hat{n}_{N\sigma} = 0$ .

Lastly,  $Tr_{N\sigma}(H_3c_{N\sigma}\hat{n}_{N\sigma}) = H_3Tr_{N\sigma}(c_{N\sigma}\hat{n}_{N\sigma}) = H_3Tr_{N\sigma}(\hat{n}_{N\sigma}c_{N\sigma}) = 0$ , because  $\hat{n}_{N\sigma}c_{N\sigma} = 0$ . So,

$$Tr_{N\sigma}\left(\mathcal{H}_{2N}\hat{n}_{N\sigma}\right) = Tr_{N\sigma}\left[H_1\hat{n}_{N\sigma}\right] = H_1Tr_{N\sigma}\hat{n}_{N\sigma} = H_1 \tag{47}$$

This gives the expression for  $H_1$ . Similarly, by taking partial trace of  $\mathcal{H}(1-\hat{n}_{N\sigma})$ ,  $\mathcal{H}c_{N\sigma}$  and  $c_{N\sigma}^{\dagger}\mathcal{H}$ , we get the expressions for all the blocks. They are listed here.

$$H_{1} \equiv \hat{H}_{N\sigma,e} = Tr_{N\sigma} \left[ \mathcal{H}_{2N} \hat{n}_{N\sigma} \right]$$

$$H_{2} \equiv \hat{T}_{N\sigma,e-h} = Tr_{N\sigma} \left[ \mathcal{H}_{2N} c_{N\sigma} \right]$$

$$H_{3} \equiv T_{N\sigma,e-h}^{\dagger} = Tr_{N\sigma} \left[ c_{N\sigma}^{\dagger} \mathcal{H}_{2N} \right]$$

$$H_{4} \equiv \hat{H}_{N\sigma,h} = Tr_{N\sigma} \left[ \mathcal{H}_{2N} (1 - \hat{n}_{N\sigma}) \right]$$

$$(48)$$

We get the following block decomposition of the Hamiltonian.

$$\mathcal{H}_{2N} = \begin{pmatrix} |1\rangle & |0\rangle & |1\rangle & |0\rangle \\ \langle 1| \begin{pmatrix} \hat{H}_{N\sigma,e} & \hat{T}_{N\sigma,e-h} \\ T_{N\sigma,e-h}^{\dagger} & \hat{H}_{N\sigma,h} \end{pmatrix} = \begin{pmatrix} |1\rangle & |1\rangle & |Tr_{N\sigma}[\mathcal{H}_{2N}\hat{n}_{N\sigma}] & |Tr_{N\sigma}[\mathcal{H}_{2N}c_{N\sigma}] \\ \langle 0| \begin{pmatrix} Tr_{N\sigma}[\mathcal{H}_{2N}\hat{n}_{N\sigma}] & |Tr_{N\sigma}[\mathcal{H}_{2N}c_{N\sigma}] \\ |Tr_{N\sigma}[c_{N\sigma}^{\dagger}\mathcal{H}_{2N}] & |Tr_{N\sigma}[\mathcal{H}_{2N}(1-\hat{n}_{N\sigma})] \end{pmatrix}$$
(49)

$$\mathcal{H}_{2N} = Tr_{N\sigma} \left[ \mathcal{H}_{2N} \hat{n}_{N\sigma} \right] \hat{n}_{N\sigma} + c_{N\sigma}^{\dagger} Tr_{N\sigma} \left[ \mathcal{H}_{2N} c_{N\sigma} \right] + Tr_{N\sigma} \left[ c_{N\sigma}^{\dagger} \mathcal{H}_{2N} \right] c_{N\sigma} + Tr_{N\sigma} \left[ \mathcal{H}_{2N} (1 - \hat{n}_{N\sigma}) \right] (1 - \hat{n}_{N\sigma})$$

$$(50)$$

#### 3.3 Proof of the theorem

Define an operator  $\hat{P}_{N\sigma} = \hat{U}_{N\sigma}^{\dagger} \hat{n}_{N\sigma} \hat{U}_{N\sigma}$ . This is the roated version of the number operator. What this does will be apparent from the following demonstration.

$$\begin{bmatrix} \mathcal{H}_{2N}, \hat{P}_{N\sigma} \end{bmatrix} = \begin{bmatrix} \mathcal{H}_{2N}, \hat{U}_{N\sigma}^{\dagger} \hat{n}_{N\sigma} \hat{U}_{N\sigma} \end{bmatrix} = \mathcal{H}_{2N} \hat{U}_{N\sigma}^{\dagger} \hat{n}_{N\sigma} \hat{U}_{N\sigma} - \hat{U}_{N\sigma}^{\dagger} \hat{n}_{N\sigma} \hat{U}_{N\sigma} \mathcal{H}_{2N} 
= \hat{U}_{N\sigma}^{\dagger} \overline{\mathcal{H}_{2N}} \hat{n}_{N\sigma} \hat{U}_{N\sigma} - \hat{U}_{N\sigma}^{\dagger} \hat{n}_{N\sigma} \overline{\mathcal{H}_{2N}} \hat{U}_{N\sigma} = \hat{U}_{N\sigma}^{\dagger} [\mathcal{H}_{2N}, \hat{n}_{N\sigma}] \hat{U}_{N\sigma} 
= 0$$
(51)

We see that  $\hat{P_{N\sigma}}$  is the operator that commutes with the original Hamiltonian. Note that here we are not transforming the Hamiltonian. Instead we are changing the single particle basis;  $\hat{P_{N\sigma}}$  is not the single-particle occupation basis  $\hat{n}_{N\sigma}$ , rather a unitarily transformed version of that. This operator projects out the eigensubspaces of the diagonal Hamiltonian.  $\hat{n}_{N\sigma}\mathcal{H}_{2N}\hat{n}_{N\sigma}$  will project out the subspace of the Hamiltonian in which the particle states are occupied, but since the  $\mathcal{H}_{2N}$  is not diagonal, these will not be the eigensubspace. Instead,  $\hat{P_{N\sigma}}\mathcal{H}_{2N}\hat{P_{N\sigma}}$  will project out the eigensubspace.

Both the approaches are mathematically equivalent; the matrix of  $\mathcal{H}_{2N}$  in the basis of  $\hat{P}_{N\sigma}$  and the matrix of  $\overline{\mathcal{H}_{2N}}$  in the basis of  $\hat{n}_{N\sigma}$  will be identical; they will both be block-diagonal with the same blocks in the diagonal.

 $\hat{P_{N\sigma}}$  also has the following properties:

• 
$$\hat{P_{N\sigma}}^2 = \hat{U}_{N\sigma}^{\dagger} \hat{n}_{N\sigma}^2 \hat{U}_{N\sigma} = \hat{U}_{N\sigma}^{\dagger} \hat{n}_{N\sigma} \hat{U}_{N\sigma} = \hat{P_{N\sigma}}$$

• 
$$\hat{P_{N\sigma}}(1 - \hat{P_{N\sigma}}) = \hat{U}_{N\sigma}^{\dagger} \hat{n}_{N\sigma} (1 - \hat{n}_{N\sigma}) \hat{U}_{N\sigma} = 0$$

Let the block-diagonal form of the Hamiltonian be

$$\overline{\mathcal{H}_{2N}} = \begin{pmatrix} \hat{E_{N\sigma}} & 0\\ 0 & \hat{E_{N\sigma}} \end{pmatrix}$$
(52)

The block diagonal equations for  $\overline{\mathcal{H}_{2N}}$  are then, very simply,:

$$\frac{\overline{\mathcal{H}_{2N}}}{\overline{\mathcal{H}_{2N}}} |1\rangle = \hat{E_{N\sigma}} |1\rangle 
\overline{\mathcal{H}_{2N}} |0\rangle = \hat{E_{N\sigma}} |0\rangle$$
(53)

 $|1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$  is the eigenstate of  $\hat{n}_{N\sigma}$  for the occupied state. Similarly,  $|0\rangle$  is the vacant eigen-

state. The goal is to construct expressions for the blocks  $\hat{E_{N\sigma}}$  and  $\hat{E_{N\sigma}'}$ .

Its easy to see that if any matrix  $\hat{A}$  is written in the basis of some operator  $\hat{m}$ ,  $\hat{m}\hat{A}\hat{m}$  returns the upper diagonal element of  $\hat{A}$  and  $(1-\hat{m})\hat{A}(1-\hat{m})$  returns the lower diagonal element. For example, to get the upper diagonal element,

$$\hat{A} = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} \implies \hat{m}\hat{A}\hat{m} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \tag{54}$$

Similarly,

$$\hat{m}\hat{A}(1-\hat{m}) = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}, (1-\hat{m})\hat{A}\hat{m} = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}, (1-\hat{m})\hat{A}(1-\hat{m}) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
(55)

We hence have the equation

$$\hat{n}_{N\sigma}\overline{\mathcal{H}_{2N}}\hat{n}_{N\sigma} = \hat{P_{N\sigma}}\mathcal{H}_{2N}\hat{P_{N\sigma}} = \begin{pmatrix} \hat{E_{N\sigma}} & 0\\ 0 & 0 \end{pmatrix}$$

$$(1 - \hat{n}_{N\sigma})\overline{\mathcal{H}_{2N}}(1 - \hat{n}_{N\sigma}) = (1 - \hat{P_{N\sigma}})\mathcal{H}_{2N}(1 - \hat{P_{N\sigma}}) = \begin{pmatrix} 0 & 0\\ 0 & E_{N\sigma}^{\hat{i}} \end{pmatrix}$$

$$(56)$$

Here, we have used the fact that the diagonal blocks remain invariant under unitary transformations.

Define two matrices diagonal in  $\hat{n}_{N\sigma}$ :

$$\mathcal{H}' = \hat{E_{N\sigma}} \otimes \mathbf{I} = \begin{pmatrix} \hat{E_{N\sigma}} & 0\\ 0 & \hat{E_{N\sigma}} \end{pmatrix}$$
 (57)

$$\mathcal{H}'' = E_{N\sigma}^{\hat{i}} \otimes \mathbf{I} = \begin{pmatrix} E_{N\sigma}^{\hat{i}} & 0\\ 0 & E_{N\sigma}^{\hat{i}} \end{pmatrix}$$
 (58)

This enables us to derive the following equation between  $\mathcal{H}_{2N}$  and  $\mathcal{H}'$ :

$$\mathcal{H}_{2N}\hat{P_{N\sigma}} = \mathcal{H}_{2N}\hat{U}_{N\sigma}^{\dagger}\hat{n}_{N\sigma}\hat{U}_{N\sigma} = \hat{U}_{N\sigma}^{\dagger}\overline{\mathcal{H}_{2N}}\hat{n}_{N\sigma}\hat{U}_{N\sigma} = \hat{U}_{N\sigma}^{\dagger}\begin{pmatrix}\hat{E_{N\sigma}} & 0\\ 0 & 0\end{pmatrix}\begin{pmatrix}1 & 0\\ 0 & 0\end{pmatrix}\hat{U}_{N\sigma}$$

$$= \hat{U}_{N\sigma}^{\dagger} \begin{pmatrix} \hat{E_{N\sigma}} & 0 \\ 0 & \hat{E_{N\sigma}} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \hat{U}_{N\sigma} = \hat{U}_{N\sigma}^{\dagger} \hat{E_{N\sigma}} \otimes \mathbb{I} \hat{n}_{N\sigma} \hat{U}_{N\sigma} = \hat{E_{N\sigma}} \otimes \mathbb{I} \hat{U}_{N\sigma}^{\dagger} \hat{n}_{N\sigma} \hat{U}_{N\sigma} = \mathcal{H}' \hat{P_{N\sigma}}$$

$$(59)$$

$$\therefore \mathcal{H}_{2N} \hat{P_{N\sigma}} = \mathcal{H}' \hat{P_{N\sigma}} \tag{60}$$

Similar; y, performing the calculation with  $\mathcal{H}''$  gives

$$\therefore \mathcal{H}_{2N}(1 - \hat{P_{N\sigma}}) = \mathcal{H}''(1 - \hat{P_{N\sigma}}) \tag{61}$$

A general unitary matrix  $\hat{U}_{N\sigma}$  has the form (in basis of  $\hat{n}_{N\sigma}$ )

$$\hat{U}_{N\sigma} = \begin{bmatrix}
e^{\iota\phi_1}\cos\theta & e^{\iota\phi_2}\sin\theta \\
-e^{-\iota\phi_2}\sin\theta & e^{-\iota\phi_1}\cos\theta
\end{bmatrix}$$
(62)

This provides a form for the matrix of the projection operator in the basis of  $\hat{n}_{N\sigma}$ :

$$\hat{P}_{N\sigma} = \hat{U}_{N\sigma}^{\dagger} \hat{n}_{N\sigma} \hat{U}_{N\sigma} = \begin{bmatrix} e^{-\iota\phi_{1}} \cos \theta & -e^{\iota\phi_{2}} \sin \theta \\ e^{-\iota\phi_{2}} \sin \theta & e^{\iota\phi_{1}} \cos \theta \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} e^{\iota\phi_{1}} \cos \theta & e^{\iota\phi_{2}} \sin \theta \\ -e^{-\iota\phi_{2}} \sin \theta & e^{-\iota\phi_{1}} \cos \theta \end{bmatrix} \\
= \begin{bmatrix} \cos^{2}\theta & \cos\theta \sin\theta e^{-\iota(\phi_{1} - \phi_{2})} \\ \cos\theta \sin\theta e^{\iota(\phi_{1} - \phi_{2})} & \sin^{2}\theta \end{bmatrix} \tag{63}$$

The diagonal terms represent the particle(occupied) and hole(vacant) contributions; owing to symmetry, we set them equal  $\cos^2 \theta = \sin^2 \theta = \frac{1}{2}$ . Call the off-diagonal elements  $\hat{\eta}_{01}$  and  $\hat{\eta}_{01}^{\dagger}$ . The final form becomes

$$\hat{P_{N\sigma}} = \frac{1}{2} \begin{bmatrix} 1 & \hat{\eta}_{01}^{\dagger} \\ \hat{\eta}_{01} & 1 \end{bmatrix} = \frac{1}{2} \left( \mathbf{I} + \eta_{N\sigma} + \eta_{N\sigma}^{\dagger} \right)$$

$$(64)$$

$$\mathbf{I} - \hat{P_{N\sigma}} = \frac{1}{2} \begin{bmatrix} 1 & -\hat{\eta}_{01}^{\dagger} \\ -\hat{\eta}_{01} & 1 \end{bmatrix} = \frac{1}{2} \left( \mathbf{I} - \eta_{N\sigma} - \eta_{N\sigma}^{\dagger} \right)$$
 (65)

 $\hat{\eta}_{N\sigma} = \hat{\eta}_{01} c_{N\sigma}$  is the electron to hole transition operator.  $\hat{\eta}_{N\sigma}^{\dagger} = \hat{\eta}_{01}^{\dagger} c_{N\sigma}$  is the hole to electron transition operator. Hence, they are defined to have some pretty obvious properties.

- 1.  $\hat{\eta}_{N\sigma}^2 = \eta_{N\sigma}^{\hat{\dagger}}^2 = 0$ : once an electron or hole has undergone transition, there is no other to transition.
- 2.  $(1 \hat{n}_{N\sigma})\hat{\eta}_{N\sigma}\hat{n}_{N\sigma} = \eta_{N\sigma}$ : this is expected from the fact that  $\hat{\eta}_{N\sigma}$  acts with non-zero result only states of particle-number 1, and hence,  $\hat{n}_{N\sigma}$  will just give 1; after the action of  $\hat{\eta}_{N\sigma}$ , we will get a state with hole (particle-number zero), so  $(1 \hat{n}_{N\sigma})$  will just give 1.
- 3.  $\hat{n}_{N\sigma}\hat{\eta}_{N\sigma}(1-\hat{n}_{N\sigma})=0$ : this is expected because  $1-\hat{n}_{N\sigma}$  will give non-zero result only on hole states, but those states will give zero when acted upon by  $\hat{\eta}_{N\sigma}$ , because there won't be any electron to transition from.

These defining properties have many corrolaries in terms of properties of  $\hat{\eta}_{N\sigma}$ :

- $\hat{n}_{N\sigma}\hat{\eta}_{N\sigma} = \hat{\eta}_{N\sigma}^{\dagger}\hat{n}_{N\sigma} = 0$ : act with  $\hat{n}_{N\sigma}$  from left on property 2.
- $\hat{\eta}_{N\sigma}(1-\hat{n}_{N\sigma})=(1-\hat{n}_{N\sigma})\hat{\eta}_{N\sigma}^{\dagger}=0$ : act with  $1-\hat{n}_{N\sigma}$  from right on property 2.
- $\hat{\eta}_{N\sigma}\hat{n}_{N\sigma} = (1 \hat{n}_{N\sigma})\hat{\eta}_{N\sigma} = \eta_{N\sigma}$ : act with  $\hat{n}_{N\sigma}$  from right on property 2.

To construct the diagonalised Hamiltonian and get some properties of the  $\eta_{N\sigma}$ , we will use equations 60 and 61.

First of all, 
$$\mathcal{H}_{2N}\hat{P}_{N\sigma} = \mathcal{H}'P_{N\sigma} \implies \hat{n}_{N\sigma}\mathcal{H}_{2N}\hat{P}_{N\sigma}(1-\hat{n}_{N\sigma}) = \hat{n}_{N\sigma}\mathcal{H}'\hat{P}_{N\sigma}(1-\hat{n}_{N\sigma}).$$

The RHS simplifies as

$$\hat{P}_{N\sigma}(1 - \hat{n}_{N\sigma}) = \frac{1}{2}(1 + \eta + \eta^{\dagger})(1 - \hat{n}_{N\sigma}) = \frac{1}{2}(1 + \eta^{\dagger})(1 - \hat{n}_{N\sigma}) \qquad (\because \eta_{N\sigma}(1 - \hat{n}_{N\sigma}) = 0)$$

$$\therefore \hat{n}_{N\sigma}\mathcal{H}'\hat{P}_{N\sigma}(1 - \hat{n}_{N\sigma}) = \frac{1}{2}\hat{n}_{N\sigma}\mathcal{H}'(1 + \eta^{\dagger}_{N\sigma})(1 - \hat{n}_{N\sigma}) = \frac{1}{2}\mathcal{H}'\eta^{\dagger}_{N\sigma} \quad (\because \hat{n}_{N\sigma}\eta^{\dagger}(1 - \hat{n}_{N\sigma}) = \eta^{\dagger})$$
(66)

The LHS simplifies as

$$\hat{n}_{N\sigma}\mathcal{H}_{2N} = (\hat{n}_{N\sigma}H_{e}\hat{n}_{N\sigma} + \hat{n}_{N\sigma}c^{\dagger}\hat{T} + \hat{n}_{N\sigma}\hat{T}^{\dagger}c + \hat{n}_{N\sigma}H_{h}(1 - \hat{n}_{N\sigma}))$$

$$= H_{e}\hat{n}_{N\sigma} + c^{\dagger}\hat{T} \qquad (67)$$

$$\left(\because \hat{n}_{N\sigma}c^{\dagger} = c^{\dagger}, \hat{n}_{N\sigma}\hat{T}^{\dagger}c = \hat{T}^{\dagger}\hat{n}_{N\sigma}c = 0, \hat{n}_{N\sigma}H_{h}(1 - \hat{n}_{N\sigma}) = H_{h}\hat{n}_{N\sigma}(1 - \hat{n}_{N\sigma}) = 0\right)$$

$$\therefore \hat{n}_{N\sigma} \mathcal{H}_{2N} \hat{P}(1 - \hat{n}_{N\sigma}) = \frac{1}{2} (H_e \hat{n}_{N\sigma} + c^{\dagger} \hat{T}) (1 + \eta^{\dagger}) (1 - \hat{n}_{N\sigma}) 
= \frac{1}{2} (H_e \hat{n}_{N\sigma} + H_e \hat{n}_{N\sigma} \eta^{\dagger} + c^{\dagger} T + c^{\dagger} T \eta^{\dagger}) (1 - \hat{n}_{N\sigma}) 
= \frac{1}{2} H_e \hat{n}_{N\sigma} \eta^{\dagger} (1 - \hat{n}_{N\sigma}) + c^{\dagger} T (1 - \hat{n}_{N\sigma}) + \frac{1}{2} c^{\dagger} T \eta^{\dagger} (1 - \hat{n}_{N\sigma}) 
= \frac{1}{2} H_e \hat{n}_{N\sigma} \eta^{\dagger} + \frac{1}{2} c^{\dagger} T 
(\because \eta^{\dagger} (1 - \hat{n}_{N\sigma}) = \eta^{\dagger}, c^{\dagger} (1 - \hat{n}_{N\sigma}) = c^{\dagger}, c^{\dagger} \eta^{\dagger} = 0)$$
(68)

Combining the final equations of 66 and 68, we get

$$c_{N\sigma}^{\dagger} \hat{T}_{N\sigma} + H_e \hat{n}_{N\sigma} \eta_{N\sigma}^{\dagger} = \mathcal{H}' \eta_{N\sigma}^{\dagger} \implies \eta_{N\sigma}^{\dagger} = \frac{1}{\mathcal{H}' - H_e \hat{n}_{N\sigma}} c_{N\sigma}^{\dagger} \hat{T}_{N\sigma}$$
 (69)

Defining  $\hat{G}_e(\hat{E}_{N\sigma}) = \frac{1}{\mathcal{H}' - H_e \hat{n}_{N\sigma}}$ 

$$\eta_{N\sigma}^{\dagger} = \hat{G}_e(\hat{E}_{N\sigma})c_{N\sigma}^{\dagger}\hat{T}_{N\sigma} \tag{70}$$

This expresses the electron-hole transition operator in terms of the eigenblock  $\hat{E}_{N\sigma}$ .

The expression for  $\eta$  is obtained using  $(1 - \hat{n}_{N\sigma})\mathcal{H}_{2N}\hat{P}\hat{n}_{N\sigma} = (1 - \hat{n}_{N\sigma})\mathcal{H}'\hat{P}\hat{n}_{N\sigma}$ 

$$\hat{P}\hat{n}_{N\sigma} = \frac{1}{2}(1 + \eta + \eta^{\dagger})\hat{n}_{N\sigma} = \frac{1}{2}(\hat{n}_{N\sigma} + \eta) \quad \left(\because \eta \hat{n}_{N\sigma} = \eta, \eta^{\dagger} \hat{n}_{N\sigma} = 0\right)$$
 (71)

$$(1 - \hat{n}_{N\sigma})\mathcal{H}_{2N} = (H_h(1 - \hat{n}_{N\sigma}) + \hat{T}^{\dagger}c) \tag{72}$$

$$(1 - \hat{n}_{N\sigma})\mathcal{H}_{2N}\hat{P}\hat{n}_{N\sigma} = \frac{1}{2}H_{h}(1 - \hat{n}_{N\sigma})\eta + \frac{1}{2}\hat{T}^{\dagger}c\hat{n}_{N\sigma} + \frac{1}{2}\hat{T}^{\dagger}c\eta = \frac{1}{2}H_{h}(1 - \hat{n}_{N\sigma})\eta + \frac{1}{2}\hat{T}^{\dagger}c$$

$$(\because c\hat{n}_{N\sigma} = c, c\eta = 0)$$
(73)

$$(1 - \hat{n}_{N\sigma})\mathcal{H}'\hat{P}\hat{n}_{N\sigma} = \frac{1}{2}\mathcal{H}'(1 - \hat{n}_{N\sigma})\eta = \frac{1}{2}\mathcal{H}'\eta \tag{74}$$

Combining 73 and 74, we get

$$\eta_{N\sigma} = G_h(\hat{E}_{N\sigma})\hat{T}_{N\sigma}^{\dagger}c_{N\sigma} \tag{75}$$

where  $G_h(\hat{E}_{N\sigma} = \frac{1}{\mathcal{H}' - H_h(1 - \hat{n}_{N\sigma})}$ 

The expression for the eigenblock  $\hat{E}_{N\sigma}$  is obtained using  $\hat{n}_{N\sigma}\mathcal{H}_{2N}\hat{P}\hat{n}_{N\sigma} = \hat{n}_{N\sigma}\mathcal{H}'\hat{P}\hat{n}_{N\sigma}$ 

$$\hat{n}_{N\sigma}\mathcal{H}_{2N}\hat{P}\hat{n}_{N\sigma} = \frac{1}{2}(H_{e}\hat{n}_{N\sigma} + c^{\dagger}\hat{T})(\hat{n}_{N\sigma} + \eta) = \frac{1}{2}\left(H_{e}\hat{n}_{N\sigma} + H_{e}\hat{n}_{N\sigma}\eta + c^{\dagger}T\hat{n}_{N\sigma} + c^{\dagger}T\eta\right)$$

$$= \frac{1}{2}\left(H_{e}\hat{n}_{N\sigma} + c^{\dagger}T\eta\right)$$

$$\left(\because \hat{n}_{N\sigma}\eta = 0, c^{\dagger}\hat{T}\hat{n}_{N\sigma} = \hat{T}c^{\dagger}\hat{n}_{N\sigma} = 0\right)$$

$$\hat{n}_{N\sigma}\mathcal{H}'\hat{P}\hat{n}_{N\sigma} = \frac{1}{2}\hat{n}_{N\sigma}\mathcal{H}'(\hat{n}_{N\sigma} + \eta) = \frac{1}{2}\left(\hat{n}_{N\sigma}\mathcal{H}'\hat{n}_{N\sigma} + \hat{n}_{N\sigma}\mathcal{H}'\eta\right) = \frac{1}{2}\hat{E}_{N\sigma}\hat{n}_{N\sigma}$$

$$\left(\because \hat{n}_{N\sigma}\mathcal{H}'\hat{n}_{N\sigma} = \hat{E}\hat{n}_{N\sigma}, \hat{n}_{N\sigma}\mathcal{H}'\eta = \mathcal{H}'\hat{n}_{N\sigma}\eta = 0\right)$$

$$(76)$$

Combining,

$$\hat{E}_{N\sigma}\hat{n}_{N\sigma} = H_e\hat{n}_{N\sigma} + c_{N\sigma}^{\dagger}\hat{T}_{N\sigma}\eta_{N\sigma}$$
(77)

The expression for the lower eigenblock  $\hat{E}'_{N\sigma}$  is obtained by repeating the last stuff with  $\mathcal{H}''$ :

$$\mathcal{H}_{2N}(1-\hat{P}) = \mathcal{H}''(1-\hat{P})$$

$$\implies (1-\hat{n}_{N\sigma})\mathcal{H}_{2N}(1-\hat{P})(1-\hat{n}_{N\sigma}) = (1-\hat{n}_{N\sigma})\mathcal{H}''(1-\hat{P})(1-\hat{n}_{N\sigma})$$
(78)

Now,

$$(1 - \hat{P})(1 - \hat{n}_{N\sigma}) = \frac{1}{2}(1 - \eta - \eta^{\dagger})(1 - \hat{n}_{N\sigma}) = \frac{1}{2}\left((1 - \hat{n}_{N\sigma}) - \eta^{\dagger}\right)$$
(79)

Therefore,

$$(1 - \hat{n}_{N\sigma})\mathcal{H}_{2N}(1 - \hat{P})(1 - \hat{n}_{N\sigma}) = \frac{1}{2}(H_{h}(1 - \hat{n}_{N\sigma}) + \hat{T}^{\dagger}c)(1 - \hat{n}_{N\sigma} - \eta^{\dagger})$$

$$= \frac{1}{2}\left(H_{h}(1 - \hat{n}_{N\sigma}) - \hat{T}^{\dagger}c\eta^{\dagger}\right)$$

$$(\because (1 - \hat{n}_{N\sigma})\eta^{\dagger} = 0, c(1 - \hat{n}_{N\sigma}) = 0)$$

$$(1 - \hat{n}_{N\sigma})\mathcal{H}''(1 - \hat{P})(1 - \hat{n}_{N\sigma}) = \frac{1}{2}(1 - \hat{n}_{N\sigma})H''(1 - \hat{n}_{N\sigma}) = \frac{1}{2}\hat{E}'(1 - \hat{n}_{N\sigma})$$
(80)

Combining the last two equations,

$$\hat{E}'_{N\sigma}(1-\hat{n}_{N\sigma}) = H_h(1-\hat{n}_{N\sigma}) - \hat{T}^{\dagger}_{N\sigma}c_{N\sigma}\eta^{\dagger}_{N\sigma}$$
(81)

# 3.4 Determining the $\hat{U}_{N\sigma}$

The starting equation for the above construction was equation 60. That will also provide an expression for the  $\hat{U}_{N\sigma}$ . Operating equation 60 to the right of  $|1\rangle$  (occupied eigenstate of

 $\hat{n}_{N\sigma}$ ) gives

$$\mathcal{H}_{2N}\hat{P}_{N\sigma}|1\rangle = \hat{E}_{N\sigma} \otimes \mathbf{I} \hat{P}_{N\sigma}\mathcal{H}_{2N}|1\rangle = \hat{E}_{N\sigma}\hat{P}_{N\sigma}|1\rangle$$

$$\Longrightarrow \mathcal{H}_{2N}\hat{U}_{N\sigma}^{\dagger}\hat{n}_{N\sigma}\hat{U}_{N\sigma}|1\rangle = \hat{E}_{N\sigma}\hat{U}_{N\sigma}^{\dagger}\hat{n}_{N\sigma}\hat{U}_{N\sigma}|1\rangle \qquad \text{(substituting expression of } \hat{P}_{N\sigma}\text{)}$$

$$\Longrightarrow \hat{U}_{N\sigma}\mathcal{H}_{2N}\hat{U}_{N\sigma}^{\dagger}\hat{n}_{N\sigma}\hat{U}_{N\sigma}|1\rangle = \hat{U}_{N\sigma}\hat{E}_{N\sigma}\hat{U}_{N\sigma}^{\dagger}\hat{n}_{N\sigma}\hat{U}_{N\sigma}|1\rangle \qquad \text{(operating } \hat{U}_{N\sigma} \text{ from left}\text{)}$$

$$\Longrightarrow \overline{\mathcal{H}_{2N}}\hat{n}_{N\sigma}\hat{U}_{N\sigma}|1\rangle = \hat{U}_{N\sigma}\hat{E}_{N\sigma}\hat{U}_{N\sigma}^{\dagger}\hat{n}_{N\sigma}\hat{U}_{N\sigma}|1\rangle \qquad \text{(82)}$$

Compare the last equation with 53. In order to satisfy the first equation of 53, we need the following two equations,

$$\hat{n}_{N\sigma}\hat{U}_{N\sigma} |1\rangle \propto |1\rangle 
\hat{U}_{N\sigma}\hat{E}_{N\sigma}\hat{U}_{N\sigma}^{\dagger} = E_{N\sigma}$$
(83)

The second equations says

$$\left[E_{N\sigma}, \hat{U}_{N\sigma}\right] = 0 \tag{84}$$

The  $\hat{U}_{N\sigma}$  that satisfies the first equation is  $\hat{U}_{N\sigma} = \kappa \left(1 - \hat{\eta} + \hat{\eta}^{\dagger}\right)$ .  $\kappa$  is a constant determined by the unitarity condition  $\hat{U}_{N\sigma}\hat{U}_{N\sigma}^{\dagger} = \mathbf{I}$ . To check that this satisfies 83,

$$\hat{n}_{N\sigma}\hat{U}_{N\sigma}|1\rangle = \begin{pmatrix} \mathbf{I} & 0 \\ 0 & 0 \end{pmatrix} \kappa \begin{pmatrix} \mathbf{I} & \eta_{01}^{\dagger} \\ -\eta_{01} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ 0 \end{pmatrix}$$

$$= \kappa \begin{pmatrix} \mathbf{I} \\ 0 \end{pmatrix} \propto |1\rangle$$
(85)

To find  $\kappa$ ,

$$\hat{U}_{N\sigma}\hat{U}_{N\sigma}^{\dagger} = \kappa^{2} \begin{pmatrix} \mathbf{I} & \eta_{01}^{\dagger} \\ -\eta_{01} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{I} & -\eta_{01}^{\dagger} \\ \eta_{01} & \mathbf{I} \end{pmatrix} = \kappa^{2} \begin{pmatrix} \mathbf{I} + \eta_{01}^{\dagger} \eta_{01} & 0 \\ 0 & \mathbf{I} + \eta_{01}^{\dagger} \eta_{01} \end{pmatrix}$$

$$= \kappa^{2} \begin{pmatrix} \mathbf{I} + \eta_{01}^{\dagger} \eta_{01} & 0 \\ 0 & \mathbf{I} + \eta_{01}^{\dagger} \eta_{01} \end{pmatrix} = 2\kappa^{2} \begin{pmatrix} \mathbf{I} & 0 \\ 0 & \mathbf{I} \end{pmatrix} \left( \text{check } ??, ?? \text{ for } \eta_{01}^{\dagger} \eta_{01}, \eta_{01} \eta_{01}^{\dagger} \right)$$

$$\implies \kappa = \frac{1}{\sqrt{2}}$$

$$\hat{U}_{N\sigma} = \frac{1}{\sqrt{2}} \left( 1 - \hat{\eta} + \hat{\eta}^{\dagger} \right) \tag{87}$$

# **3.5** A corrolary: $\left[\hat{G}_e(\hat{E}_{N\sigma}), \hat{E}_{N\sigma}\right] = 0$

First note,

$$\hat{T}_{N\sigma,e-h}^{\dagger} \left[ \hat{E}_{N\sigma}, \hat{G}_e(\hat{E}_{N\sigma}) \right] = T_{N\sigma,e-h}^{\dagger} \hat{E}_{N\sigma} \hat{G}_e(\hat{E}_{N\sigma}) - T_{N\sigma,e-h}^{\dagger} \hat{G}_e(\hat{E}_{N\sigma}) \hat{E}_{N\sigma}$$
(88)

Now,

$$T_{N\sigma,e-h}^{\dagger} \hat{G}_e(\hat{E}_{N\sigma}) \hat{E}_{N\sigma} = \hat{\eta}_{01} \hat{E}_{N\sigma} \tag{89}$$

Also,

$$T_{N\sigma,e-h}^{\dagger}\hat{E}_{N\sigma}\hat{G}_{e}(\hat{E}_{N\sigma}) = T_{N\sigma,e-h}^{\dagger} \left[ \hat{H}_{N\sigma,e} + \hat{T}_{N\sigma,e-h}\hat{\eta}_{01} \right] \hat{G}_{e}(\hat{E}_{N\sigma})$$

$$= T_{N\sigma,e-h}^{\dagger} \left[ \hat{H}_{N\sigma,e}\hat{G}_{e}(\hat{E}_{N\sigma}) + \hat{T}_{N\sigma,e-h}\hat{G}_{h}(\hat{E}_{N\sigma})\hat{T}_{N\sigma,e-h}^{\dagger}\hat{G}_{e}(\hat{E}_{N\sigma}) \right]$$

$$= T_{N\sigma,e-h}^{\dagger}\hat{H}_{N\sigma,e}\hat{G}_{e}(\hat{E}_{N\sigma}) + T_{N\sigma,e-h}^{\dagger}$$

$$= T_{N\sigma,e-h}^{\dagger}\hat{H}_{N\sigma,e}\hat{G}_{e}(\hat{E}_{N\sigma}) + T_{N\sigma,e-h}^{\dagger}$$

$$(90)$$

The last line follows because  $\hat{T}_{N\sigma,e-h}\hat{G}_h(\hat{E}_{N\sigma})\hat{T}^{\dagger}_{N\sigma,e-h}\hat{G}_e(\hat{E}_{N\sigma})=1$ . From ??, we have

$$\hat{E}_{N\sigma} - \hat{H}_{N\sigma,e} = \hat{T}_{N\sigma,e-h}\hat{\eta}_{01} \implies \hat{G}_{e}^{-1}(\hat{E}_{N\sigma}) = \hat{T}_{N\sigma,e-h}\hat{G}_{h}(\hat{E}_{N\sigma})\hat{T}_{N\sigma,e-h}^{\dagger}$$

$$\implies \mathbf{1} = \hat{T}_{N\sigma,e-h}\hat{G}_{h}(\hat{E}_{N\sigma})\hat{T}_{N\sigma,e-h}^{\dagger}\hat{G}_{e}(\hat{E}_{N\sigma})$$
(91)

Continuing from 90,

$$T_{N\sigma,e-h}^{\dagger}\hat{E}_{N\sigma}\hat{G}_{e}(\hat{E}_{N\sigma}) = T_{N\sigma,e-h}^{\dagger}\hat{H}_{N\sigma,e}\hat{G}_{e}(\hat{E}_{N\sigma}) + T_{N\sigma,e-h}^{\dagger}$$

$$= \hat{H}_{N\sigma,h}T_{N\sigma,e-h}^{\dagger}\hat{G}_{e}(\hat{E}_{N\sigma}) + T_{N\sigma,e-h}^{\dagger}$$
(92)

The last line follows from equation ??:

$$\hat{T}_{N\sigma,e-h}^{\dagger}\hat{G}_{e}(\hat{E}_{N\sigma}) = \hat{G}_{h}(\hat{E}_{N\sigma})\hat{T}_{N\sigma,e-h}^{\dagger} 
\Longrightarrow (\hat{E}_{N\sigma} - \hat{H}_{N\sigma,h})\hat{T}_{N\sigma,e-h}^{\dagger} = \hat{T}_{N\sigma,e-h}^{\dagger}(\hat{E}_{N\sigma} - \hat{H}_{N\sigma,e}) 
\Longrightarrow \hat{E}_{N\sigma}\hat{T}_{N\sigma,e-h}^{\dagger} - \hat{H}_{N\sigma,h}\hat{T}_{N\sigma,e-h}^{\dagger} = \hat{T}_{N\sigma,e-h}^{\dagger}\hat{E}_{N\sigma} - \hat{T}_{N\sigma,e-h}^{\dagger}\hat{H}_{N\sigma,e} 
\Longrightarrow \hat{H}_{N\sigma,h}\hat{T}_{N\sigma,e-h}^{\dagger} = \hat{T}_{N\sigma,e-h}^{\dagger}\hat{H}_{N\sigma,e} \qquad \left(:\hat{E}_{N\sigma}\hat{T}_{N\sigma,e-h}^{\dagger} = \hat{T}_{N\sigma,e-h}^{\dagger}\hat{E}_{N\sigma}\right)$$
(93)

Again continuing from 92,

$$T_{N\sigma,e-h}^{\dagger}\hat{E}_{N\sigma}\hat{G}_{e}(\hat{E}_{N\sigma}) = \hat{H}_{N\sigma,h}T_{N\sigma,e-h}^{\dagger}\hat{G}_{e}(\hat{E}_{N\sigma}) + T_{N\sigma,e-h}^{\dagger}$$

$$= \hat{H}_{N\sigma,h}\hat{G}_{h}(\hat{E}_{N\sigma})T_{N\sigma,e-h}^{\dagger} + T_{N\sigma,e-h}^{\dagger} \qquad \text{(from eq ??)}$$

$$= \hat{H}_{N\sigma,h}\hat{G}_{h}(\hat{E}_{N\sigma})T_{N\sigma,e-h}^{\dagger} + T_{N\sigma,e-h}^{\dagger}G_{e}(\hat{E}_{N\sigma})T_{N\sigma,e-h}G_{h}(\hat{E}_{N\sigma})T_{N\sigma,e-h}^{\dagger} \qquad \text{(from eq 91)}$$

$$= \left(\hat{H}_{N\sigma,h} + T_{N\sigma,e-h}^{\dagger}G_{e}(\hat{E}_{N\sigma})T_{N\sigma,e-h}\right)\hat{G}_{h}(\hat{E}_{N\sigma})T_{N\sigma,e-h}^{\dagger}$$

$$= \left(\hat{H}_{N\sigma,h} + T_{N\sigma,e-h}^{\dagger}\hat{\eta}_{01}\right)\hat{G}_{h}(\hat{E}_{N\sigma})T_{N\sigma,e-h}^{\dagger}$$

$$= \hat{E}_{N\sigma}\hat{G}_{h}(\hat{E}_{N\sigma})T_{N\sigma,e-h}^{\dagger}$$

$$= \hat{E}_{N\sigma}\hat{\eta}_{01}$$

Therefore,

$$T_{N\sigma,e-h}^{\dagger}\hat{E}_{N\sigma}\hat{G}_{e}(\hat{E}_{N\sigma}) = \hat{E}_{N\sigma}\hat{\eta}_{01} \tag{95}$$

Substituting equations 89 and 95 in equation 88, we have

$$\hat{T}_{N\sigma,e-h}^{\dagger} \left[ \hat{E}_{N\sigma}, \hat{G}_{e}(\hat{E}_{N\sigma}) \right] = \hat{E}_{N\sigma} \hat{\eta}_{01} - \hat{\eta}_{01} \hat{E}_{N\sigma} = \left[ \hat{E}_{N\sigma}, \hat{\eta}_{01} \right] 
= 0$$
(from equation 84)

Therefore,

$$\left[\hat{E}_{N\sigma}, \hat{G}_e(\hat{E}_{N\sigma})\right] = 0 \tag{97}$$

## 3.6 A Simple Example

$$\mathcal{H} = -t \left( c_2^{\dagger} c_1 + c_1^{\dagger} c_2 \right) + V \hat{n}_1 \hat{n}_2 - \mu (\hat{n}_1 + \hat{n}_2) \quad \hat{n}_i = c_i^{\dagger} c_i = \begin{pmatrix} V - 2\mu & 0 & 0 & 0 \\ 0 & -\mu & -t & 0 \\ 0 & -t & \mu & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
(98)

The basis used is the ordered set  $\{|11\rangle, |10\rangle, |01\rangle, |00\rangle\}$ 

For this problem, we take  $N\sigma \equiv 1$ . 1 refers to the first site. First step is to represent the Hamiltonian in block matrix form (equation 49).

$$\hat{H}_{1,e} = Tr_1[\mathcal{H}\hat{n}_1] 
= Tr_1[V\hat{n}_1\hat{n}_2 - \mu(\hat{n}_1 + \hat{n}_2)] \quad (c \text{ and } c^{\dagger} \text{ will not conserve the eigenvalue of } \hat{n}) 
= V\hat{n}_2 - \mu(1 + \hat{n}_2) \quad (Tr_1[V\hat{n}_1\hat{n}_2] = VTr_1[\hat{n}_1]\hat{n}_2 = V\hat{n}_2) 
= (V - 2\mu)\hat{n}_2 - \mu(1 - \hat{n}_2)$$
(99)

Next is calculation of  $\hat{H}_{1,h}$ :

$$\hat{H}_{1,h} = Tr_1[\mathcal{H}(1-\hat{n}_1)] = -\mu \hat{n}_2 \tag{100}$$

Next is calculation of  $T_{1,e-h}$ .

$$T_{1,e-h} = Tr_1[\mathcal{H}c_1]$$

$$= Tr_1[-tc_1^{\dagger}c_2c_1] = -tc_2 \quad \text{(the only term that conserves eigenvalue of } \hat{n})$$
(101)

Therefore,  $T_{1,e-h}^{\dagger}=-tc_{2}^{\dagger}.$  The block matrix form becomes

$$\mathcal{H} = \begin{pmatrix} (V - 2\mu)\hat{n}_2 - \mu(1 - \hat{n}_2) & -tc_2 \\ -tc_2^{\dagger} & -\mu\hat{n}_2 \end{pmatrix}$$
 (102)

The block-diagonal form is, as usual,  $\overline{\mathcal{H}} = \begin{pmatrix} \hat{E}_1 & 0 \\ 0 & \hat{E}'_1 \end{pmatrix}$ 

The expression of  $\eta^{\dagger}$  is  $\hat{\eta}^{\dagger} = \hat{G}_e c_1^{\dagger} \hat{T}_{1,e-h} = G_e c_1^{\dagger} (-tc_2)$ . Hence,  $\eta = -tc_2^{\dagger} c_1 G_e^{\dagger}$ . Since  $H_e^{\dagger} = H_e$  for this problem, we have  $\eta = -tc_2^{\dagger} c_1 G_e$ . It was proved in the formalism that  $\eta^{\dagger} \eta = \hat{n}_1$ . Therefore,

$$t^{2}G_{e}c_{1}^{\dagger}c_{2}c_{2}^{\dagger}c_{1}G_{e} = \hat{n}_{1} \implies t^{2}\hat{n}_{1}(1-\hat{n}_{2}) = \hat{n}_{1}\{G_{e}^{-1}\}^{2} = \hat{n}_{1}(\mathcal{H}'-H_{e}\hat{n}_{1})^{2}$$

$$\implies t^{2}\hat{n}_{1}^{2}(1-\hat{n}_{2})^{2} = (\mathcal{H}'\hat{n}_{1}-H_{e}\hat{n}_{1})^{2}$$

$$\implies \mathcal{H}'\hat{n}_{1} = H_{e}\hat{n}_{1} + t\hat{n}_{1}(1-\hat{n}_{2}) = (V-2\mu)\hat{n}_{1}\hat{n}_{2} + (t-\mu)\hat{n}_{1}(1-\hat{n}_{2})$$
(103)

This equation gives the upper block of the diagonalised Hamiltonian. Why the upper block? Because it is multiplied by  $\hat{n}_1$ , and hence can give non-zero contribution only in the upper block. It is also obvious that the upper block itself is internally diagonal in  $\hat{n}_2$ ; this is seen from the fact that the expression of  $\mathcal{H}'\hat{n}_1$  has no  $c_2$  or  $c_2^{\dagger}$ , only  $\hat{n}_2$ . The term multiplying  $\hat{n}_2$  becomes the upper matrix element in the block of  $\hat{n}_2$ , while that multiplying  $1 - \hat{n}_2$  becomes the lower element. Summarizing,

$$\overline{\mathcal{H}} = \mathcal{H}'\hat{n}_1 + \mathcal{H}''(1 - \hat{n}_1) = \begin{pmatrix} V - 2\mu & 0 & & \\ & & \mathbf{0}_{2x2} & \\ & 0 & t - \mu & \\ & & \mathbf{0}_{2x2} & & (\hat{E}'_1)_{2x2} \end{pmatrix}$$
(104)

The  $\hat{E}'$  is the contribution from  $\mathcal{H}''$ ; just as  $\mathcal{H}\hat{n}_1$  gives the upper block contribution,  $\mathcal{H}''$ 

gives the lower contribution. And since  $\mathcal{H}'' = \begin{pmatrix} \hat{E}' & 0 \\ 0 & \hat{E}' \end{pmatrix}$ , we end up with  $\hat{E}'$  in the lower

block of  $\overline{\mathcal{H}}$ . It still remains to compute  $\mathcal{H}''(1-\hat{n}_1) = \hat{E}'(1-\hat{n}_1)$ . But that is easy because we already have the expression for that, equation 81.

$$E_1'(1-\hat{n}_1) = H_h(1-\hat{n}_1) - \hat{T}_1^{\dagger}c_1\eta^{\dagger} = -\mu(1-\hat{n}_1)\hat{n}_2 - t^2c_2^{\dagger}c_1G_ec_1^{\dagger}\hat{c}_2$$
 (105)

This is the expression for the lower block. But to get the final matrix elements, we need to resolve it in  $\hat{n}_2$ . That is, the upper matrix element of the lower block will be  $\langle 01 | E'(1-\hat{n}_1) | 01 \rangle$  and the lower element will be  $\langle 00 | E'(1-\hat{n}_1) | 00 \rangle$ . The bra and ket are written in the notation  $\langle n_1, n_2 |, |n_1, n_2 \rangle$ . Since this is the lower block in the representation of  $\hat{n}_1$ ,  $n_1$  will always be zero while calculating the elements of  $\hat{E}'$ .  $n_2 = 1(0)$  means the upper(lower) diagonal element. Similarly,  $\langle 01 | E'(1-\hat{n}_1) | 00 \rangle$  is an off-diagonal element.

It is easy to see that the off-diagonal terms will be zero. The lower diagonal term will also be zero:  $\hat{n}_2 | n_1, 0 \rangle = c_2 | n_1, 0 \rangle = 0$ . Thus the only non-zero term is

$$\langle 01 | E'(1 - \hat{n}_1) | 01 \rangle = -\mu - t^2 \langle 10 | G_e | 10 \rangle$$
 (106)

Now,

$$\langle 10 | G_e^{-1} | 10 \rangle = \langle 10 | H' - (V - \mu) \hat{n}_1 \hat{n}_2 + \mu \hat{n}_1 | 10 \rangle$$

$$= \langle 10 | \mathcal{H}' | 10 \rangle + \mu = \langle 10 | \mathcal{H}' \hat{n}_1 | 10 \rangle + \mu$$

$$= \langle 10 | (V - 2\mu) \hat{n}_1 \hat{n}_2 + (t - \mu) \hat{n}_1 (1 - \hat{n}_2) | 10 \rangle + \mu$$

$$= t - \mu + \mu = t$$

$$\therefore \langle 10 | G_e | 10 \rangle = \frac{1}{t}$$
(107)

Therefore,  $\langle 01|E'(1-\hat{n}_1)|01\rangle = -\mu - t^2\frac{1}{t} = -\mu - t$ . The final diagonalized matrix becomes

$$\overline{\mathcal{H}} = \begin{pmatrix} |11\rangle & |10\rangle & |01\rangle & |00\rangle \\ (V - 2\mu) & 0 & 0 & 0 \\ 0 & (t - \mu) & 0 & 0 \\ 0 & 0 & -(\mu + t) & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(108)$$

#### 3.6.1 The Eigenstates

The unitarily transformed Hamiltonian,  $\overline{\mathcal{H}}$  is diagonal in the basis of  $\hat{n}$ . This implies that the eigenstates of the original Hamiltonian  $\mathcal{H}$  are the unitarily transformed versions of the eigenkets of  $\hat{n}$ :

$$\mathcal{H}(\hat{U}_{N\sigma}^{\dagger}|n_1,n_2\rangle) = \hat{U}_{N\sigma}^{\dagger}\overline{\mathcal{H}}|n_1,n_2\rangle = \hat{U}_{N\sigma}^{\dagger}E_{n_1,n_2}|n_1,n_2\rangle = E_{n_1,n_2}(\hat{U}_{N\sigma}^{\dagger}|n_1,n_2\rangle)$$
(109)

To find the eigenvectors  $\hat{U}_{N\sigma}^{\dagger} | n_1, n_2 \rangle$ , we need to find the  $\hat{U}_{N\sigma}$ . From equation 87, we have  $\hat{U}_{N\sigma} = \frac{1}{\sqrt{2}} \left( 1 + \hat{\eta}^{\dagger} - \hat{\eta} \right)$ .

To get the eigenstates of  $\mathcal{H}$ , I act with  $U^{\dagger}$  on the eigenstates  $(|n_1, n_2\rangle)$ :

$$\hat{U}_{N\sigma}^{\dagger}|11\rangle = |11\rangle \tag{110}$$

$$\hat{U}_{N\sigma}^{\dagger}|00\rangle = |00\rangle, \tag{111}$$

$$\hat{U}_{N\sigma}^{\dagger} |10\rangle = \frac{1}{2} (|10\rangle - \eta |10\rangle) = \frac{1}{2} (|10\rangle + tc_2^{\dagger} c_1 \hat{G}_e |10\rangle) = \frac{1}{2} (|10\rangle + tc_2^{\dagger} c_1 \frac{1}{t} |01\rangle) 
= \frac{1}{2} (|10\rangle + |01\rangle)$$
(112)

$$\hat{U}_{N\sigma}^{\dagger} |01\rangle = \frac{1}{2} \left( |01\rangle + \eta^{\dagger} |01\rangle \right) = \frac{1}{2} \left( |01\rangle - t\hat{G}_e c_1^{\dagger} c_2 |01\rangle \right) = \frac{1}{2} \left( |01\rangle - |10\rangle \right) \tag{113}$$

The eigenstates come out to be (upto a normalization):

$$|00\rangle |10\rangle + |01\rangle |01\rangle - |10\rangle |11\rangle$$
 (114)

## 3.7 Applying the RG on the Hubbard dimer

$$\mathcal{H} = -t \sum_{\sigma} (c_{1\sigma}^{\dagger} c_{2\sigma} + c_{2\sigma}^{\dagger} c_{1\sigma}) + U \left( \hat{n}_{1\uparrow} \hat{n}_{1\downarrow} + \hat{n}_{2\uparrow} \hat{n}_{2\downarrow} \right)$$

$$H_{e} = Tr_{\hat{n}_{1\uparrow}} (\mathcal{H} \hat{n}_{1\uparrow}) = U (\hat{n}_{1\downarrow} + \hat{n}_{2\uparrow} \hat{n}_{2\downarrow}) - t (c_{1\downarrow}^{\dagger} c_{2\downarrow} + c_{2\downarrow}^{\dagger} c_{1\downarrow})$$

$$H_{h} = Tr_{\hat{n}_{1\uparrow}} (\mathcal{H} (1 - \hat{n}_{1\uparrow})) = U \hat{n}_{2\uparrow} \hat{n}_{2\downarrow} - t (c_{1\downarrow}^{\dagger} c_{2\downarrow} + c_{2\downarrow}^{\dagger} c_{1\downarrow})$$

$$T = Tr_{\hat{n}_{1\uparrow}} (\mathcal{H} c_{1\uparrow}) = -t c_{2\uparrow}$$

$$T^{\dagger} = Tr_{\hat{n}_{1\uparrow}} (c_{1\uparrow}^{\dagger} \mathcal{H}) = -t c_{2\uparrow}^{\dagger}$$

$$\eta_{1\uparrow}^{\dagger} = G_{e} c_{1\uparrow}^{\dagger} T = -t \hat{G}_{e} c_{1\uparrow}^{\dagger} c_{2\uparrow} = -t (\mathcal{H}'_{1\uparrow} - H_{e} \hat{n})^{-1} c_{1\uparrow}^{\dagger} c_{2\uparrow}$$

$$\therefore \eta_{1\uparrow} = -t c_{2\uparrow}^{\dagger} c_{1\uparrow} (\mathcal{H}'_{1\uparrow} - H_{e} \hat{n})^{-1}$$

$$\eta_{1\uparrow}^{\dagger} \eta_{1\uparrow} = \hat{n}_{1\uparrow} \implies t^{2} (1 - \hat{n}_{2\uparrow}) = (\mathcal{H}'_{1\uparrow} - H_{e} \hat{n}_{1\uparrow})^{2} \hat{n}_{1\uparrow} \implies \mathcal{H}'_{1\uparrow} \hat{n}_{1\uparrow} = H_{e} \hat{n}_{1\uparrow} + t (1 - \hat{n}_{2\uparrow}) \hat{n}_{1\uparrow}$$

$$\mathcal{H}'_{1\uparrow} \hat{n}_{1\uparrow} = U \hat{n}_{1\uparrow} (\hat{n}_{1\downarrow} + \hat{n}_{2\uparrow} \hat{n}_{2\downarrow}) + t \hat{n}_{1\uparrow} (1 - \hat{n}_{2\uparrow} - c_{1\downarrow}^{\dagger} c_{2\downarrow} - c_{1\downarrow} c_{2\downarrow}^{\dagger}) \tag{115}$$

The upper block is not diagonal, and has to be further diagonalised. The block is given by

$$\hat{E}_{1\uparrow} = \langle \hat{n}_{1\uparrow} = 1 | \mathcal{H}'_{1\uparrow} \hat{n}_{1\uparrow} | \hat{n}_{1\uparrow} = 1 \rangle = U(\hat{n}_{1\downarrow} + \hat{n}_{2\uparrow} \hat{n}_{2\downarrow}) + t(1 - \hat{n}_{2\uparrow} - c^{\dagger}_{1\downarrow} c_{2\uparrow} - c^{\dagger}_{2\uparrow} c_{1\downarrow})$$

$$\tag{117}$$

To calculate the eigenvalues of the upper block, we take  $\hat{E}_{1\uparrow}$  as the new Hamiltonian  $\mathcal{H}_{1\downarrow}$  and this time trace out  $\hat{n}_{1\downarrow}$ .

$$H_{e} = Tr_{\hat{n}_{1\downarrow}}(\mathcal{H}_{1\downarrow}\hat{n}_{1\downarrow}) = U(1 + \hat{n}_{2\uparrow}\hat{n}_{2\downarrow}) + t(1 - \hat{n}_{2\uparrow})$$

$$H_{h} = U\hat{n}_{2\uparrow}\hat{n}_{2\downarrow} + t(1 - \hat{n}_{2\uparrow})$$

$$T = -tc_{2\downarrow}$$

$$T^{\dagger} = -tc_{2\downarrow}^{\dagger}$$

$$\eta_{1\downarrow}^{\dagger} = \hat{G}_{e}c_{1\downarrow}^{\dagger}T = -t\hat{G}_{e}c_{1\downarrow}^{\dagger}c_{2\downarrow}$$

$$\Rightarrow \eta_{1\downarrow} = -tc_{2\downarrow}^{\dagger}c_{1\downarrow}\hat{G}_{e}$$

$$(118)$$

Then,

$$\eta_{1\downarrow}^{\dagger}\eta_{1\downarrow} = \hat{n}_{1\downarrow} \implies \mathcal{H}'_{1\downarrow}\hat{n}_{1\downarrow} = H_e\hat{n}_{1\downarrow} + t\hat{n}_{1\downarrow}(1 - \hat{n}_{2\downarrow}) = U\hat{n}_{1\downarrow}(1 + \hat{n}_{2\uparrow}\hat{n}_{2\downarrow}) + 2t\hat{n}_{1\downarrow}(1 - \hat{n}_{2\downarrow})$$
(119)

This gives the upper block of the  $\hat{n}_{1\uparrow} = 1$  sector (that is, the  $\hat{n}_{1\uparrow} = 1$ ,  $\hat{n}_{1\downarrow} = 1$  sector); the matrix element is given by  $\hat{E}_{1\downarrow} = \langle \hat{n}_{1\downarrow} = 1 | \mathcal{H}'_{1\downarrow} \hat{n}_{1\downarrow} | \hat{n}_{1\downarrow} = 1 \rangle$ 

$$E_{\hat{n}_{1\downarrow}} = U(\hat{n}_{2\uparrow}\hat{n}_{2\downarrow} + 1) + 2t(1 - \hat{n}_{2\downarrow}) = \begin{pmatrix} 2U & & & \\ & U + 2t & & \\ & & & U \\ & & & U \end{pmatrix}$$

$$U + 2t$$

$$(120)$$

The lower block of  $\hat{n}_{1\uparrow} = 1 \operatorname{sector}(\hat{n}_{1\uparrow} = 1, \hat{n}_{1\downarrow} = 0)$ , that is,  $E'_{1\downarrow}$ , can again be determined using the formula for the lower blocks.

$$\mathcal{H}_{1\downarrow}''\hat{n}_{1\downarrow} = H_h(1 - \hat{n}_{1\downarrow}) - T^{\dagger}c_{1\downarrow}\eta_{1\downarrow}^{\dagger} = H_h(1 - \hat{n}_{1\downarrow}) - t^2c_{2\downarrow}^{\dagger}c_{1\downarrow}G_ec_{1\downarrow}^{\dagger}c_{2\downarrow}$$
(121)

The matrix element,  $\hat{E}'_{1\downarrow} = \langle \hat{n}_{1\downarrow} = 0 | \mathcal{H}''(1 - \hat{n}_{1\downarrow}) | \hat{n}_{1\downarrow} = 0 \rangle = H_h - t^2 c_{2\downarrow}^{\dagger} \langle 1 | G_e | 1 \rangle c_{2\downarrow}$ 

$$\langle 1 | G_e^{-1} | 1 \rangle = \langle 1 | \mathcal{H}'_{1\downarrow} - H_e \hat{n}_{1\downarrow} | 1 \rangle = \langle 1 | \mathcal{H}'_{1\downarrow} \hat{n}_{1\downarrow} - H_e \hat{n}_{1\downarrow} | 1 \rangle = t(1 - \hat{n}_{2\downarrow})$$

$$\therefore \hat{E}'_{1\downarrow} = H_h - t c_{2\downarrow}^{\dagger} \frac{1}{1 - \hat{n}_{2\downarrow}} c_{2\downarrow} = H_h - t \hat{n}_{2\downarrow} = U \hat{n}_{2\uparrow} \hat{n}_{2\downarrow} + t(1 - \hat{n}_{2\uparrow} \hat{n}_{2\downarrow})$$
(122)

$$E'_{1\downarrow} = H_h - t\hat{n}_{2\downarrow} = U\hat{n}_{2\uparrow}\hat{n}_{2\downarrow} + t(1 - \hat{n}_{2\uparrow}\hat{n}_{2\downarrow}) = \begin{pmatrix} U - t & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -t \end{pmatrix}$$
(123)

The  $\hat{n}_{1\uparrow} = 1$  part of the diagonalised Hamiltonian is

$$E'_{1\hat{n}_{1\downarrow}} = \begin{pmatrix} 2U & & & & \\ & U + 2t & & & \\ & & U & & \\ & & U + 2t & & \\ & & & 2U - t & & \\ & & & & U - t & \\ & & & & U \end{pmatrix}$$

$$(124)$$

#### 3.7.1 Eigenvectors of $\hat{n}_{1\uparrow} = 1$ sector

To get the first eight eigenvectors, I first find the eigenvectors in the space of  $\hat{n}_{1\downarrow}$ . There are 8 eigenvectors in the space of  $\hat{n}_{1\downarrow}$ , that is  $|\hat{n}_{1\downarrow}, \hat{n}_{2\uparrow}, \hat{n}_{2\downarrow}\rangle$ . The  $\eta$  for this space is

$$\eta_{1\downarrow} = -tc_{2\downarrow}^{\dagger}c_{1\downarrow}\hat{G}_e, \ \eta_{1\downarrow}^{\dagger} = -t\hat{G}_e c_{1\downarrow}^{\dagger}c_{2\downarrow}$$
(125)

The required eigenvectors are  $U_{1\downarrow}^{\dagger} |\hat{n}_{1\downarrow}\hat{n}_{2\uparrow}\hat{n}_{2\downarrow}\rangle = \frac{1}{2}(1 - \eta_{1\downarrow} + \eta_{1\downarrow}^{\dagger}) |\hat{n}_{1\downarrow}\hat{n}_{2\uparrow}\hat{n}_{2\downarrow}\rangle$ Note that  $\eta$  acting on  $|\hat{n}_{1\downarrow}\hat{n}_{2\uparrow}\hat{n}_{2\downarrow}\rangle$  will give non-zero only when  $\hat{n}_{1\downarrow} = 1$ ,  $\hat{n}_{2\downarrow} = 0$  and  $\eta^{\dagger}$  will give non-zero only when  $\hat{n}_{1\downarrow} = 0$ ,  $\hat{n}_{2\downarrow} = 1$ .

$$\eta_{1\downarrow}^{\dagger} |0, \hat{n}_{2\uparrow}, 1\rangle = -t \hat{G}_{e} |1, \hat{n}_{2\uparrow}, 0\rangle = \frac{-t}{\mathcal{H}'_{1\downarrow} - H_{e} \hat{n}_{1\downarrow}} |1, \hat{n}_{2\uparrow}, 0\rangle = \frac{-t}{\mathcal{H}'_{1\downarrow} \hat{n}_{1\downarrow} - H_{e} \hat{n}_{1\downarrow}} |1, \hat{n}_{2\uparrow}, 0\rangle \\
= \frac{-t}{t \hat{n}_{1\downarrow} (1 - \hat{n}_{2\downarrow})} |1, \hat{n}_{2\uparrow}, 0\rangle = -|1, \hat{n}_{2\uparrow}, 0\rangle \tag{126}$$

Similarly,

$$\eta_{1\downarrow} |1, \hat{n}_{2\uparrow}, 0\rangle = -tc_{2\downarrow}^{\dagger} c_{1\downarrow} \hat{G}_e |1, \hat{n}_{2\uparrow}, 0\rangle = -tc_{2\downarrow}^{\dagger} c_{1\downarrow} \frac{1}{t} |1, \hat{n}_{2\uparrow}, 0\rangle = -|0, \hat{n}_{2\uparrow}, 1\rangle$$

$$(127)$$

Therefore,

$$U_{1\downarrow}^{\dagger} |1, \hat{n}_{2\uparrow}, 0\rangle = (1 - \eta_{1\downarrow}) |1, \hat{n}_{2\uparrow}, 0\rangle = |1, \hat{n}_{2\uparrow}, 0\rangle + |0, \hat{n}_{2\uparrow}, 1\rangle$$

$$U_{1\downarrow}^{\dagger} |0, \hat{n}_{2\uparrow}, 1\rangle = (1 + \eta_{1\downarrow}^{\dagger}) |0, \hat{n}_{2\uparrow}, 1\rangle = |0, \hat{n}_{2\uparrow}, 1\rangle - |1, \hat{n}_{2\uparrow}, 0\rangle$$

$$U_{1\downarrow}^{\dagger} |1, \hat{n}_{2\uparrow}, 1\rangle = |1, \hat{n}_{2\uparrow}, 1\rangle$$

$$U_{1\downarrow}^{\dagger} |0, \hat{n}_{2\uparrow}, 0\rangle = |0, \hat{n}_{2\uparrow}, 0\rangle$$

$$(128)$$

Eigenvectors for  $\hat{n}_{1\uparrow} = 1$  sector:

| $\hat{n}_{1\downarrow}$ | $\hat{n}_{2\uparrow}$ | $\hat{n}_{2\downarrow}$ | Eigenvector                 | Eigenvalue |
|-------------------------|-----------------------|-------------------------|-----------------------------|------------|
| 1                       | 1                     | 1                       | $ 111\rangle$               | 2U         |
| 1                       | 1                     | 0                       | $ 110\rangle +  011\rangle$ | U+2t       |
| 1                       | 0                     | 1                       | $ 101\rangle$               | U          |
| 1                       | 0                     | 0                       | $ 100\rangle +  001\rangle$ | U+2t       |
| 0                       | 1                     | 1                       | $ 011\rangle -  110\rangle$ | U-t        |
| 0                       | 1                     | 0                       | $ 010\rangle$               | 0          |
| 0                       | 0                     | 1                       | $ 001\rangle -  100\rangle$ | 0          |
| 0                       | 0                     | 0                       | 000⟩                        | -t         |

Now we need to find the eigenvectors in the space of  $\hat{n}_{1\uparrow}=1$ . To do this, we will act with  $U_{1\uparrow}^{\dagger}$  on the previously obtained eigenvectors.

$$\eta_{1\uparrow}^{\dagger} = -t\hat{G}_{e}c_{1\uparrow}^{\dagger}c_{2\uparrow}, \ \eta_{1\uparrow} = -tc_{2\uparrow}^{\dagger}c_{1\uparrow}\hat{G}_{e}$$

$$\eta_{1\uparrow}^{\dagger} | \hat{n}_{1\uparrow} = 0, \hat{n}_{1\downarrow}, \hat{n}_{2\uparrow} = 1, \hat{n}_{2\downarrow}\rangle = -|1, \hat{n}_{1\downarrow}, 0, \hat{n}_{2\downarrow}\rangle$$

$$\eta_{1\uparrow} | \hat{n}_{1\uparrow} = 1, \hat{n}_{1\downarrow}, \hat{n}_{2\uparrow} = 0, \hat{n}_{2\downarrow}\rangle = -|0, \hat{n}_{1\downarrow}, 1, \hat{n}_{2\downarrow}\rangle$$
(129)

Applying these on the previously obtained eigenvectors give

| $\hat{n}_{1\uparrow}$ | $\hat{n}_{1\downarrow}$ | $\hat{n}_{2\uparrow}$ | $\hat{n}_{2\downarrow}$ | Eigenvector                                                   | Match? | Evalue(Exact Evalue)                |
|-----------------------|-------------------------|-----------------------|-------------------------|---------------------------------------------------------------|--------|-------------------------------------|
| 1                     | 1                       | 1                     | 1                       | $ 1111\rangle$                                                | Y      | 2U(same)                            |
| 1                     | 1                       | 1                     | 0                       | 1110 angle +  1011 angle                                      | Y      | U+2t(U-t)                           |
| 1                     | 1                       | 0                     | 1                       | 1101 angle -  0111 angle                                      | Y      | $\mathrm{U}(\mathrm{U}\mathrm{+t})$ |
| 1                     | 1                       | 0                     | 0                       |                                                               | N      | U+2t(U+t)                           |
| 1                     | 0                       | 1                     | 1                       | 1011 angle -  1110 angle                                      | Y      | U-t()                               |
| 1                     | 0                       | 1                     | 0                       | 1010⟩                                                         | Y      | $0(\mathrm{same})$                  |
| 1                     | 0                       | 0                     | 1                       | $   1001\rangle -  1100\rangle -  0011\rangle +  0110\rangle$ | N      | 0()                                 |
| 1                     | 0                       | 0                     | 0                       | $ 1000\rangle -  0010\rangle$                                 | Y      | -t(t)                               |

|           | Exact Diagonalization of Hubbard Dimer |           |                                     |                                                                                                                                                                                                                                          |  |  |
|-----------|----------------------------------------|-----------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\hat{N}$ | $S_z^{tot}$                            | $\hat{P}$ | E                                   | $ \Phi angle$                                                                                                                                                                                                                            |  |  |
| 0         | -                                      | -         | 0                                   | 0,0 angle                                                                                                                                                                                                                                |  |  |
|           | -1                                     | 1         | -t- $\mu$                           | $rac{ \downarrow,0 angle+ 0,\downarrow angle}{\sqrt{2}}$                                                                                                                                                                                |  |  |
| 1         | 1                                      | -1        | $	au$ - $\mu$                       | $rac{ \downarrow,0 angle -  0,\downarrow angle}{\sqrt{2}}$                                                                                                                                                                              |  |  |
|           | 1                                      | 1         | -t-μ                                | $\frac{ \uparrow,0 angle+ 0,\uparrow angle}{\sqrt{2}}$                                                                                                                                                                                   |  |  |
|           | _                                      | -1        | t- $\mu$                            | $rac{\ket{\uparrow,0}\!-\!\ket{0,\uparrow}}{\sqrt{2}}$                                                                                                                                                                                  |  |  |
|           | -1                                     | 1         | $0$ - $2\mu$                        | $ \downarrow,\downarrow angle$                                                                                                                                                                                                           |  |  |
|           |                                        | 1         | $0$ - $2\mu$                        | $\frac{ \uparrow,\downarrow\rangle+ \downarrow,\uparrow\rangle}{\sqrt{2}}$                                                                                                                                                               |  |  |
| 2         | 0                                      | 1         | $	ext{U-}2\mu$                      | $\frac{ \uparrow\downarrow,0\rangle+ 0,\uparrow\downarrow\rangle}{\sqrt{2}}$                                                                                                                                                             |  |  |
|           |                                        | -1        | $\frac{U+\sqrt{U^2+16t^2}}{2}-2\mu$ | $\frac{1}{N_{\pm}} \left\{ 2t \frac{( \uparrow,\downarrow\rangle -  \downarrow,\uparrow\rangle)}{\sqrt{2}} + \frac{U \pm \sqrt{U^2 + 16t^2}}{2} \frac{( \uparrow\downarrow,0\rangle -  0,\uparrow\downarrow\rangle)}{\sqrt{2}} \right\}$ |  |  |
|           |                                        | -1        | $\frac{U-\sqrt{U^2+16t^2}}{2}-2\mu$ | $\frac{1}{N_{-}} \left\{ 2t \frac{( \uparrow,\downarrow\rangle -  \downarrow,\uparrow\rangle)}{\sqrt{2}} + \frac{U - \sqrt{U^2 + 16t^2}}{2} \frac{( \uparrow\downarrow,0\rangle -  0,\uparrow\downarrow\rangle)}{\sqrt{2}} \right\}$     |  |  |
|           | 1                                      | 1         | $0$ - $2\mu$                        | $ \uparrow,\uparrow angle$                                                                                                                                                                                                               |  |  |
|           | -1                                     | 1         | U-t-3 $\mu$                         | $\frac{ \uparrow\downarrow,\downarrow\rangle+ \downarrow,\uparrow\downarrow\rangle}{\sqrt{2}}$                                                                                                                                           |  |  |
| 3         |                                        | -1        | U+t-3 $\mu$                         | $\frac{ \uparrow\downarrow,\downarrow\rangle- \downarrow,\uparrow\downarrow\rangle}{\sqrt{2}}$                                                                                                                                           |  |  |
|           | 1                                      | 1         | U-t-3 $\mu$                         | $\frac{ \uparrow\downarrow,\uparrow\rangle+ \uparrow,\uparrow\downarrow\rangle}{\sqrt{2}}$                                                                                                                                               |  |  |
|           |                                        | -1        | $U+t-3\mu$                          | $\frac{ \uparrow\downarrow,\uparrow\rangle- \uparrow,\uparrow\downarrow\rangle}{\sqrt{2}}$                                                                                                                                               |  |  |
| 4         | 0                                      | 1         | $2	ext{U-}4\mu$                     | $ \!\!\uparrow\downarrow,\uparrow\downarrow\rangle$                                                                                                                                                                                      |  |  |

| $\hat{N}$ | $S_{tot}^z$ | E                                                                            | $ \Phi angle$                                                                                                                                                              |  |
|-----------|-------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0         | -           | 0                                                                            | $ 0,0\rangle$                                                                                                                                                              |  |
| 1         | -1          | $\epsilon_d + \frac{1}{4}(U \pm \Delta)$                                     | $\frac{1}{N_{\pm}} \left( t \mid \downarrow, 0 \rangle - \frac{1}{4} (U \pm \Delta) \mid 0, \downarrow \rangle \right)$                                                    |  |
|           | 1           | $\epsilon_d + \frac{1}{4}(U \pm \Delta)$                                     | $\frac{1}{N_{\pm}} \left( t \mid \downarrow, 0 \rangle - \frac{1}{4} (U \pm \Delta) \mid 0, \downarrow \rangle \right)$                                                    |  |
|           | -1          | $2\epsilon_d + \frac{U}{2}$                                                  | $ \downarrow,\downarrow angle$                                                                                                                                             |  |
|           | 1           | $2\epsilon_d + \frac{U}{2}$                                                  | $ \uparrow,\uparrow angle$                                                                                                                                                 |  |
| 2         | 0           | $2\epsilon_d + \frac{U}{2}$                                                  | $\frac{ \uparrow,\downarrow\rangle+ \downarrow,\uparrow\rangle}{\sqrt{2}}$                                                                                                 |  |
|           |             | $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$                               | $\frac{ \uparrow\downarrow,0\rangle+ 0,\uparrow\downarrow\rangle}{\sqrt{2}}$                                                                                               |  |
|           |             | $\frac{1}{2\epsilon_d + \frac{3}{4}U \pm \frac{1}{2}\Delta(\frac{U}{2}, t)}$ | $\frac{U \mp \Delta}{4\sqrt{2}t} \frac{ \uparrow,\downarrow\rangle -  \downarrow,\uparrow\rangle}{\sqrt{2}} -  \uparrow\downarrow,0\rangle +  0,\uparrow\downarrow\rangle$ |  |
| 3         | -1          | $3\epsilon_d + \frac{5}{4}U \pm \frac{1}{4}\Delta$                           | $\frac{1}{N_{\pm}}(t\mid\uparrow\downarrow,\downarrow\rangle - \frac{1}{4}(U\pm\Delta)\mid\downarrow,\uparrow\downarrow\rangle)$                                           |  |
|           | 1           | $3\epsilon_d + \frac{5}{4}U \pm \frac{1}{4}\Delta$                           | $\frac{1}{N_{\pm}}(t\mid\uparrow\downarrow,\downarrow\rangle - \frac{1}{4}(U\pm\Delta)\mid\downarrow,\uparrow\downarrow\rangle)$                                           |  |
| 4         | 0           | $2(\epsilon_s + \epsilon_d) + U$                                             | $ \uparrow\downarrow,\uparrow\downarrow\rangle$                                                                                                                            |  |