计量经济学的方法论回顾

赵博

南开大学金融学院

2025年6月4日

内容概要

- 本学期所学计量经济学回顾
- 还有什么计量经济学可以学如何继续学习计量经济学
- 如何看待(利用)计量经济学

1

本学期所学计量经济学回顾

最小二乘法 Ordinary Least Squares vs. 线性回归 Linear Regression

- 最小二乘法 (Ordinary Least Squares, OLS) 是一种算法
- 线性回归 (Linear Regression, LR) 是一种**模型**(注意: 所有的那些假设, SLR, MLR 1–6, 等等, 都是对 LR 的假设, 和OLS 无关)
- 区别:
 - **模型**描述的是对现实的理解(由其他知识获得,比如哲学观、 经济理论、等等)
 - **算法**是估计这个模型的方法: OLS 利用的是最小化残差平方 和
- 人们常常说的词"做回归",实际上说的就是"用最小二乘法估计了线性回归式子"
 - 是一种方便的说法,可以理解
 - 但严格来说,混淆了这二者
 - 。 请注意这个区别,虽然以后也许不会有人强调这一点

数学和统计

• 技术上的区别:

- o LR: E(xu) = 0,是假设,不可从统计上验证的假设,来源于其他知识的假设 (同理: IV 时,E(zu) = 0 也是不可从统计上验证的假设;但注意什么是 overidentification test)
- \circ OLS: 自动给出 $\frac{1}{N}\sum_{i=1}^{N}\mathbf{x}_{i}u_{i}=\mathbf{0}$
- \circ 而大数定律说: $\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i u_i \stackrel{p}{\rightarrow} \mathrm{E}(\mathbf{x}u)$
- \circ 换句话说: 如果用了 OLS 来估计 LR,那么隐含的意思就是,你认为模型不存在导致 $E(\mathbf{x}u) \neq \mathbf{0}$ 的问题(遗漏变量 omitted variables、测量误差 measurement error、反向因果 simultaneity problem(考试时因为翻译差异的原因,保险起见,可以把英文写上))
 - 通常没有人会这么绝对,因此,稳健性检验才是重头戏

其他内容概括

- 数学
 - 矩阵代数是基础(矩阵运算更容易,考试时写矩阵代数给分)
 - 。 最优化(求 MSE 的最小值)
- 统计
 - 无偏(期望等于真值)、有效(方差计算、比较大小)、一致 (大数定律)、中心极限定理
 - t 检验, F 检验, 渐进正态分布
 - R2

- 线性、对数、量纲
- 虚拟变量
- 异方差(自相关为补充内容)
- 工具变量法
 - 遗漏变量、测量误差、反向因果
 - 两个条件: 无关性、相关性
 - 。 弱工具变量问题
 - 弱工具变量检验(不可识别检验)、工具变量外生性检验 (overidentification test),内生变量检验(Hausman test)。
 - 实践中,弱工具变量检验要报告、外生性检验要报告。不可识别检验可以不报告、内生变量检验可以不报告
 - 注意: 从根本上来说,底层的那个核心 (IV 外生) 无法检验。 因此,外生性检验、Hausman 检验,都只是一种外围的、希 望让人更放心的佐证而已,触不到核心内容

还有什么计量经济学可以学

大致分类

- 广泛地分类: 描述性 vs. 因果
 - 描述性: 统计建模思路,用一个模型来描述现象,不一定是 因果
 - 。 因果:强调 x 导致了 y,而不是反向,或者有其他的干扰
- 时间序列(课程名称通常为"金融计量经济学")例如:
 - $y_t = \alpha_0 + \alpha_1 y_{t-1} + u_t$
 - 。 对现实现象的描述(不强调因果)
 - 。 统计学其实就是这样的思路
- 既有横截面数据、又有时间数据: 面板
 - 短面板(最常见): N 大, t 小。仍然是横截面性质为主。利 用时间可以更好地观察因果(强调因果)
 - 长面板: N 小, t 大。时间序列性质为主
 - N 大、t 也大: 取决于研究的问题, 看是否用 "因果" 讨论
- "因果" 实际上是统计、或者说计量中的一套独特的语言
 - 。 不是唯一的语言
 - 因此,不要说计量经济学研究因果,机器学习不研究因果
 - 但强调 "因果"的确是计量经济学独特于统计学的地方

大致分类

- 微观计量经济学:因果;宏观计量经济学:现象。但两者会有交叉的地方
 - 如果想讨论的问题类似于:企业发行绿色债券(微观的)会 影响业绩(微观的)吗?用因果模型
 - 如果想讨论的问题类似于:货币供应(宏观的)如何影响就 业率(宏观的)或者相互影响?用时间序列模型
- 结构方程模型:基于理论进行建模
- 以上是基于建模方式的分类。
- 另外的分类方式:
 - 统计理论的不同: 频率 (frequentist) vs. 贝叶斯 (Bayesian)
 - 频率:存在客观不变的数;通过抽样估计。贝叶斯:概率是主观的;数据可以更新这个主观的判断
 - 方法论的不同: 估计 (estimation) vs. 校准 (calibration)

校准的思路

- 起源: 联立方程模型的失败 ⇒ 反思 (Lucas 批判、Sims 的 Vector Autoregression, VAR)
 - 时间序列很长、横截面不多,自然的选择就是 VAR,或者长 面板
 - 注意: 如果用 VAR 做时间序列,注意采用的语言。"因果" 此时要谨慎使用。如果想说因果,考虑用 Structural VAR
- Kydland & Prescott (1982) 实际经济周期模型 (Real Business Cycle, RBC):
 - 建立家庭效用模型 ⇒ 生产函数限定了预算约束 ⇒ 最大化效用
 - 2. 确定底层的一些参数:偏好、技术、技术冲击等:利用微观研究确定偏好;利用宏观的一些稳态变量匹配(例如消费收入比、资本收入比);自由参数,人为选定
 - 3. 用模型来产生模拟的时间序列,弄出一大堆样本
 - 4. 计算出来的数据,与真实数据对比(这种对比没有统计理论 来支撑到底是否"足够近")
- Dynamic Stochastic General Equilibrium (DSGE) 基于此发展 出来

校准 vs. 估计

表 1 产出的自相关关系

自相关阶数(k)	1	2	3	4	5	6
模拟数据	0,71	0, 45	0, 28	0, 19	0,02	-0.13
	(0.07)	(0, 12)	(0, 13)	(0.12)	(0.11)	(0.12)
真实数据	0.84	0.57	0.27	-0.01	- c. 20	-0.30

注:括号中的数据为相应的标准差,下同。资料来源:Kydland & Prescott(1982)。

表 2 模型经济与真实经济的特征值比较(美国经济。1950。1-1979、2)

	7 ⁶⁰ 8B	消费	投资	存货	小时	生产率
标准差(%)						
模拟数据	1.80	0.63	6.45	2.00	1.05	0,90
	(0, 23)	(0.09)	(0,62)	(0, 20)	(0, 13)	(0, 10)
真实敷据	1.8	1.3	5. 1	1.7	2.0	1.0
可产出的相关系数						
模拟数据		0,94	0.8	0.39	0,93	0, 90
		(0.01)	(0.04)	(0.06)	(0,01)	(0, 02)
真实敷据		0.74	0.71	0.51	0.85	0.10

資料來源:Kydland & Prescott(1982)。

- 计量:模型可以变,根据哲学观、经济理论等,改变模型,以便更符合数据
- 校准:模型就这样,对模型有十足的信心。数据是否贴合模型的结果,不 care。模型当然可以还不够好,但那是理论层面上的讨论
- 校准的方法论实际上和 Austrian 的底层方法论很像,只是 Austrian 不用数学,也不用统计学

如何继续学习计量经济学

- 做计量研究: 数学多学点
- 不做计量研究: 没必要紧跟计量发展。根据具体的问题,选择合适的计量模型。搞清楚模型的大致含义,有程序直接用程序; 没程序看一下关键的几个估计量的矩阵代数,编程套用

如何看待(利用)计量经济学

计量经济学的本质

- 计量经济学方法论本质上仍然是"非预测"的──这由社会 科学性质决定
 - 并不是不预测,所有的理论都隐含着"预测"的意思。只是 社科类预测的归因极难说清楚
- 计量经济学是"归纳法", 而不是"演绎法"
 - 看一亿只白天鹅, 也不能总结出"天鹅一定是白的"
 - 从统计上看,有可能推出"公鸡叫醒了太阳"
 - 公鸡通常在天没亮就叫,时间上在太阳升起之前(时间先后)
 - 全世界的公鸡大概都这样(样本很大)
 - 偶尔会有不叫的时候(有误差)
 - 只有明白了太阳和地球的关系,才能理解太阳升起这件事的本质。这跳出了搜集"公鸡——太阳"数据进行归纳的方法论范畴
- 真正的"因果关系",只能是从理论(演绎法)出发得到。计量经济学是一种"佐证",而不是"证明"
 - 因此,所谓的计量经济学中的"因果关系",不是真正意义上的因果关系(很多人反对这个论点,有一些人支持)

评价标准

- 这意味着:客观评价标准相对缺失(并不是完全缺失)
 - 比如,做计量模型开发:

描述已有模型不足 \rightarrow 提出统计量 \rightarrow 推出大数定律、中心极限定理 \rightarrow 做数据模拟 \rightarrow 实际数据测试

。 做应用研究:

描述问题 \rightarrow 用什么计量模型合理 \rightarrow 这种模型可能存在的问题(稳健性检验) \rightarrow 作用机制的探讨 \rightarrow 模型的意义

- 这些是标准。但这些做法本身的意义不像自然科学那样不言 自明
- 因此,评论者们(学术圈:编辑、审稿人;业界:买方)的态度很大意义上决定了产出的最终去向

- 但,请一定要做稳健性检验、机制探讨。虽然不能"证明", 但多少让人宽慰
- 这也是为什么经济学、金融学论文的核心论点通常很简单, 但篇幅那么长的原因(自然科学论文最多 10 几页)
- 不要随便找了个 x 和 y, 弄出来几颗星星, 开始大谈特谈"政策建议"

计量经济学和现实世界

- 计量经济学的核心: 很多观测值
- 现实可能只有几个观测值,但人类也可通过其他方式理解道理。
 - 历史只经历了一次。即便有些类似的历史经历了多次,但显然未必能满足大数定律的条件。但人类通过对于人性的洞察,仍能规避一些错误
- 不要把这二者混杂:
 - 。 计量上的不显著,不妨碍你获得对于问题本质的真知
 - 。 但: 有多少证据, 说多少话

欢迎入坑,少走弯路