Bodyfat prediction

Y. Tang, H. Xia, Y. Zheng

University of Wisconsin-Madison

February 4, 2019

Introduction

- dataset: Y=body fat Percentage; X=14 physical measurements
- model: a two-term nonlinear model

Summary of variables

Min. : 53.75 Min. : 74.93
1st Qu.: 72.12 1st Qu.:173.35
Median : 80.06 Median :177.80
Mean : 81.16 Mean :178.18
3rd Qu.: 89.36 3rd Qu.:183.51
Max. :164.72 Max. :197.49

four weird records

39	weight=164.72 lbs
42	height=74.93 inch
79	age=81 years old
182	bodyfat=0

Consistency of BMI versus HEIGHT and WEIGHT

$$BMI = \frac{WEIGHT}{(\frac{HEIGHT}{100})^2}$$

We change the height of 42th but retain 39th and 79th because it seems that the 79th is a normal thin old man, the 39th is a very heavy man which follows the bmi equation.

Consistency between DENSITY and BODYFAT

Variable Selection

Forward stepwise variables selection based on AIC

Num. of Variables	Variables Selected	AIC
1	Abdomen	757.29
2	Abdomen, Weight	712.53
3	Abdomen, Weight, Wrist	706.45
4	Abdomen, Weight, Wrist, Forearm	702.18

Bodyfat, Abdomen, Weight, Wrist Relationships

Interaction Effect

Model Comparison

Model	Adj.R-squared	MSE
m2_ridge	0.7127	16.69
m3	0.7185	16.16
m5	0.7258	15.80

Model Comparison

Final Model

$$Bodyfat(\%) = -45.3249 + 0.9092 \times Abdomen(cm)$$
$$-0.0133 \times Weight(kg) \times Wrist(cm)$$

	Estimate	Std.Error	t.value	P.value
Intercept	-45.3249	2.573	-17.62	2e-16
ABDOMEN	0.9092	0.047	19.42	2e-16
WEIGHT : WRIST	-0.0133	0.002	-8.22	1.14e-14

Model Diagnostic

Normality Assumption
 H₀: the residual follows normal distribution.

Homoscedasticity Assumption
 H₀: homoscedasticity vs H₁:variance residuals vary with the level of fitted values

Shapiro-Wilk normality test	Non-constant Variance Score Test
W = 0.99056 p-value = 0.1039	Chisquare = 0.0001924752 , Df = 1 p = 0.98893

Model Diagnostic

Robustness
 rlm(formula = BODYFAT ~ ABDOMEN + WEIGHT : WRIST)

	coefficients from m5	coefficients from rlm5
Intercept	-45.325	-46.652
ABDOMEN	0.909	0.922
WEIGHT : WRIST	-0.013	-0.013

The coefficients of the robust model5 are very close to those of the previous model5, which means model5 is robust to some extent.

Rules of thumb

$$Bodyfat(\%) = -45.3249 + 0.9092 \times Abdomen(cm)$$

 $-0.0133 \times Weight(kg) \times Wrist(cm)$

$$\textit{Bodyfat}(\%) = -45 + 0.91 \times \textit{Abdomen}(\textit{cm}) - 0.013 \times \textit{Weight}(\textit{kg}) \times \textit{Wrist}(\textit{cm})$$

Explain the practical meaning of this model:
 For a 75 kg man whose abdomen is 85 cm, wrist is 18 cm, his
 predicted bodyfat is around 14.97%. There is a 95% probability that
 his bodyfat is between 14.35% and 15.59%. Second model is a
 simpler one to calculate bodyfat, it predicts this person has 14.8%
 bodyfat.

Thank you!