Operating System CSC202

About Course

- Will Teach Operating system Concepts and Components
- Will Include Programing Assignments
- Example From real Operating System Linux
- Will Involve programming Using C Language

Text and Reference Books

Operating System
 Concepts, 9th editions,
 Silberschatz et al.
 Wiley.

 Modern Operating Systems, Andrew S. Tanenbaum, latest edition, .

Date	Duration	Topics Covered	Evaluation Instruments used	Signature
Week 1	3 +1	Introduction to Operating System What Operating Systems Do, Computer-System Organization, Computer-System Architecture, Operating-System Structure, Operating-System Operations, Process Management, Memory Management, Storage Management, Protection and Security, Kernel Data Structures, Computing Environments, Open-Source Operating Systems		
Week 2	3 +1	Operating-System Structures. Operating-System Services, User and Operating-System, Interface, System Calls, Types of System Calls, System Programs, Operating-System Design and Implementation, Operating-System Structure Operating-System Debugging, Operating-System Generation, System Boot		
Week 3	3 +1	Processes Process Concept , Process Scheduling, Operations on Processes, Interposes Communication, Communication in Client– Server Systems 136	Quiz 1 Assig 1	
Week 4	3 +1	Threads. Overview, Multicore Programming, Multithreading Models, Thread Libraries, Implicit Threading, Threading Issues.		
Week 5	3 +1	CPU Scheduling. Basic Concepts ,Scheduling Criteria, Scheduling Algorithms, Thread Scheduling, Multiple-Processor Scheduling, Real-Time CPU Scheduling, Operating-System Examples.		
Week 6	3 +1	Deadlocks System Model, Deadlock Characterization, Methods for Handling Deadlocks,	Quiz 2 Assig 2	
Week 7	3 +1	Deadlocks continue Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock		
Week 8	3 +1	Memory Management (Main Memory) Background, Swapping, Contiguous Memory Allocation, Segmentation, Paging ,Structure of the Page Table		
Week 9	3 +1	Memory Management (Virtual Memory) Background, Demand Paging, Copy-on-Write, Page Replacement, Allocation of Frames,		
Week 10	3 +1	Memory Management (Virtual Memory) Thrashing, Memory-Mapped Files, Allocating Kernel Memory	Quiz 3 Assig 3	
Week 11	3 +1	Storage Management (Mass-Storage Structure) Overview of Mass-Storage, Structure, Disk Structure, Disk Attachment, Disk Scheduling		
Week 12	3 +1	Storage Management (Mass-Storage Structure) Disk Management, Swap-Space Management, RAID Structure		
Week 13	3 +1	File-System Interface File Concept ,Access Methods, Directory and Disk Structure, File-System Mounting, File Sharing, Protection		
Week 14	3 +1	I/O Systems Overview , I/O Hardware, Application I/O Interface, Kernel I/O Subsystem, Transforming I/O Requests to Hardware Operations		
Week 15	3 +1	Revision		
Week 16	3 +1	Revision		

Assessment

- 2 x Quiz Marks 10
- 2 x Assignment = 10
- Class Participation = 05
- Project = 15
- Mid Exam = 20
- Final Exam = 40

Chapter 1: Introduction

Outline and Objectives

Outline

- What Operating Systems Do
- Computer-System Organization
- OS structure and operation
- Major OS Functions
 - Process Management
 - Memory Management
 - Storage Management
 - Protection and Security
- Computing Environments

Objectives

- To provide a grand tour of the major operating systems components
- To provide coverage of basic computer system

What is an operating system?

- An Operating system (OS) is a software which acts as an interface between the end user and computer hardware.
- Every computer must have at least one OS to run other programs
- An application like Chrome, MS Word, Games, etc needs some environment in which it will run and perform its task.

What is an operating system?

- A program that acts as an *intermediary* between a <u>users/applications</u> and the <u>computer hardware</u>
- Operating system functionalities/goals
 - Start/terminate/control executing user programs
 - Make system convenient to use
 - Control and coordinate use of hardware
 - Perform I/O; setup devices
 - Allocate resources
 - Use hardware efficiently
 - Implement common services

Basic components of a computer system: place of OS

A computer system can be divided into four components

- Hardware provides basic computing resources
 - CPU, memory, I/O devices
- Operating system
 - Controls and coordinates use of hardware among various applications and users
- Application programs –solve the problems of the users: use system resources
 - Word processors, compilers, web browsers, database systems, video games
- Users
 - People, machines, other computers

Operating System Definition

- No universally accepted definition
 - "Everything a vendor ships when you order an operating system" is good approximation
 - But varies wildly
- Kernel: running all the time; having most of the functionality
- Everything else: either a system program (ships with the operating system) or an application program

System programs: programs that are associated with the operating system

Computer System Organization and Operation

Computer System Organization

- Computer-system operation
 - One or more CPUs, device controllers connect through common bus providing access to shared memory
 - Concurrent execution of CPUs and devices competing for memory cycles

Computer Startup

- bootstrap program is loaded at power-up or reboot
 - Typically stored in ROM or EPROM,
 - generally known as firmware
 - Initializes all aspects of the system
 - Loads operating system kernel and starts execution
- Kernel runs and make the system ready for running applications
 - Kernel is always ready to run (always in memory)

Computer system operation: I/O and device interaction

- I/O devices and the CPU can execute concurrently
- Each device controller has a local buffer
 - Data movement (I/O) between device and local buffer (device)
 - Data movement between memory and local buffer (by CPU)
- Device controller informs CPU that it has finished its current operation or it has something by causing an interrupt

Hardware interrupts

- When interrupt occurs, hardware does the following:
 - CPU is interrupted
 - at that time application code or kernel code might be running
 - registers and the program counter saved in RAM to preserve CPU state
 - CPU starts running the respective Interrupt Service Routing (ISR)
 - (kernel routine)
 - ISR is found through interrupt vector
 - (table containing addresses of ISRs)

Direct Memory Access Structure

- With DMA, device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention
 - Only one interrupt is generated per block, rather than the one interrupt per byte

Software interrupts

- Running application software may generate interrupts as well.
 - They are called software interrupts (also called traps)
 - 1. exceptions (caused by errors)
 - 2. system calls (service request)
 - trap or syscall instruction is used

An operating system (kernel) is interrupt-driven (event driven)

Interrupt-Driven OS

Applications or System Programs running in CPU

software interrupt / trap (due to system service requests or errors)

Kernel Code

hardware interrupt

Devices

disk, keyboard, timer, network adapter...

Storage Structure

- Main memory CPU can access directly
- Secondary storage extension of main memory that provides large nonvolatile storage capacity
 - Magnetic disks
 - platters
 - The disk controller determines the interaction between the device and the computer

Storage-Device Hierarchy

Caching

- Caching copying information into faster storage system; main memory can be viewed as a last cache for secondary storage
 - Results from tradeoff between size and speed
- performed at many levels in a computer (in hardware, operating system, software)
- Cache is checked first for an item cached

 | Small | large, slow |
 | Registers | Main Memory |
 | Hardware cache | L1, L2, etc |
 | Main Memory | Hard Disk |
 | Hard Disk | Tape |

Performance of various levels of storage

Movement between levels of storage hierarchy can be explicit or implicit.

Level	1	2	3	4
Name	registers	cache	main memory	disk storage
Typical size	< 1 KB	> 16 MB	> 16 GB	> 100 GB
Implementation technology	custom memory with multiple ports, CMOS	on-chip or off-chip CMOS SRAM	CMOS DRAM	magnetic disk
Access time (ns)	0.25 - 0.5	0.5 – 25	80 – 250	5,000.000
Bandwidth (MB/sec)	20,000 - 100,000	5000 - 10,000	1000 – 5000	20 – 150
Managed by	compiler	hardware	operating system	operating system
Backed by	cache	main memory	disk	CD or tape

Computer System Architecture

Computer System Architecture: Single processor systems

- Most systems use a single general-purpose processor
 - (PDAs through mainframes)
 - Most systems have special-purpose processors as well

Computer System Architecture: Multiprocessor systems

- Multiprocessor systems growing in use and importance
 - Also known as parallel systems, tightly-coupled systems
 - Advantages include
 - 1. Increased throughput
 - 2. Economy of scale (cheaper than using multiple computers)
 - 3. Increased reliability graceful degradation or fault tolerance
 - Two types
 - 1. Asymmetric Multiprocessing
 - 2. Symmetric Multiprocessing

Symmetric Multiprocessing Architecture

In Symmetric Multiprocessing, processors shares the same memory In Asymmetric Multiprocessing, processors do not shares the same memory

A Dual Core Design

Operating System and Functionalities

Operating Systems: providing multiprogramming

- Multiprogramming needed for efficiency
 - Single user cannot keep CPU and I/O devices busy at all times
 - Multiprogramming organizes jobs (code and data) so CPU always has one to execute
 - A subset of total jobs in system is kept in memory
 - One job selected and run via job scheduling
 - OS selects which job
 - When it has to wait (for I/O for example), OS switches to another job

Operating Systems: providing time sharing

- Timesharing (multitasking) is logical extension in which CPU switches
 jobs so frequently that users can interact with each job while it is running,
 creating interactive computing
 - Response time should be < 1 second
 - program loaded in memory ⇒process
 - If several processes ready to run at the same time ⇒ CPU scheduling

- is interrupt driven
 - Hardware interrupt causes ISR to run (which is a routine of OS)
 - Software error or request creates exception or trap
 - Division by zero, for example (exception)
 - request for an operating system service (trap)

- Dual-mode operation allows OS to protect itself and other system components
 - User mode and kernel mode
 - Mode bit provided by hardware
 - user code or kernel code in different modes
 - Some machine instructions designated as privileged, only executable in kernel mode
 - System call changes mode to kernel, return from call resets it to user mode

Dual mode system operation

Transition from User to Kernel Mode and Vice Versa

- **Timer device** to prevent infinite loop / process hogging resources
 - 1) Set the timer device to interrupt after a while
 - Can be a fixed or variable time period
 - 2) CPU executes a program (a process)
 - 3) Timer device sends an interrupt after that period
 - 4) CPU starts executing timer handler: OS gains control
 - 5) OS can schedule the same process or other process
 - 6) OS sets the timer again before giving the CPU to the scheduled process

Major OS Functionalities

Memory File Device Processor Management Management Management Management Secondary 1/0 Command Security Storage Interpretation management management Communication Networking Job accounting @guru99.com Management

Reference: https://www.guru99.com/operating-system-tutorial.html#2

I/O Structure

- Application programs do I/O via OS
 - The request is done by calling a System Call (OS routine)
 - System call routine in OS performs the I/O via the help of device driver routines in OS.
 - After issuing a system call, an application may wait for the call to finish (blocking call) or may continue to do something else (non-blocking call)

Types of Operating system

- Batch Operating System
- Multitasking/Time Sharing OS
- Real Time OS
- Distributed OS
- Network OS
- Mobile OS

Batch Operating System

Multitasking/Time Sharing OS

Real Time OS

 A real time operating system time interval to process and respond to inputs is very small. Examples: Military Software Systems, Space Software Systems.

Distributed OS

Network OS

Mobile OS

Open-Source Operating Systems

- Operating systems made available in source-code format rather than just binary closed-source
- Counter to the copy protection movement
- Examples include
 - GNU/Linux,
 - BSD UNIX (FreeBSD, etc.)
 - Sun Solaris

References

- Operating System Concepts, 7th and 8th editions, Silberschatz et al. Wiley.
- Modern Operating Systems, Andrew S. Tanenbaum, 3rd edition, 2009.
- These slides are adapted/modified from the textbook and its slides:
 Operating System Concepts, Silberschatz et al., 7th and 8th editions, Wiley.
- Reference: https://www.guru99.com/operating-system-tutorial.html#2

Additional Study Material