

DHARMSINH DESAI UNIVERSITY, NADIAD **FACULTY OF TECHNOLOGY**

B.TECH. SEMESTER V [Information Technology] **SUBJECT: (IT 511) Theory of Automata and Formal Language**

Examination : Third Sessional Seat No.

: 9/10/2017 Date Day :Monday Time : : to :00 Max. Marks : 36

INSTRUCTIONS:

- Figures to the right indicate maximum marks for that question.
- The symbols used carry their usual meanings

۷.		The symbols used early their usual meanings.					
3.		Assume suitable data, if required & mention them clearly. Draw neat sketches wherever necessary.					
4.	Draw						
Q.1		Do as directed.			[12]		
	(a)	Turing machine is more powerful than:					[01]
	. /			2) Push down automata	3) Both (1) and (2)	4) None of these	-
	(b)	 A Turing machine(TM) cannot solve halting problem Set of recursively enumerable language is closed under union 					[01]
		3) A finite state machine with 3 stacks is more powerful than finite state machine with 2					
		stacks					
		4) Context sensitive grammar can be recognized by a linearly bounded memory machine					F0.4
	(c)						[01]
		1) Finite State Automaton 2) Linear bounded automaton					
	(1)	3) Pushdown automaton 4) Both 2 and 3					FO 1
	(d)	Assume statements S1 and S2 defined as:					[01]
		S_1 : L_2 - L_1 is recursive enumerable where L_2 and L_1 are recursive and recursive enumerable respectively.					
		S2: The set of all Turing machines is countable. Which of the following is true?					
			is correct and S2 is not correct. 2) Both S1 and S2 are correct.				
	3) Both S1 and S2 are not correct. 4) S1 is not correct and S2 is correct.						
	(e)	Consider three decision problems P_1 , P_2 and P_3 . It is known that P_1 is decidable and P_2 is					[02]
	()	undecidable. Which one of the following is TRUE?					-
		1)	P ₃ is decidable	e if P_1 is reducible to P_3	2) P ₃ is undecidable if F	P_3 is reducible to P_2	
		3)	P ₃ is undecida	ble if P ₂ is reducible to P ₃	4) P ₃ is decidable if P ₃ i	is reducible to P ₂ 's	
		,	complement			_	
	(f)						[02]
	(-)	 For every non-deterministic Turing machine, there exists an equivalent deterministic Turing machine. Turing recognizable languages are closed under union and complementation. 					L*-
	3) Turing decidable languages are closed under intersection and complemen						
		4) Turing recognizable languages are closed under union and intersection.					
		5)		roblem for Turing machin			
		6) determining whether a context-free grammar is ambiguous is un-decidable					
		7)	Given two arb	arbitrary context-free grammar, G_1 and G_2 , it is undecidable if $L(G_1)$			
	 = L(G₂) 8) Given two regular grammars G₁ and G₂, it is undecidable whether L(G₁) = L(G₂) 						
	(g)	$\begin{array}{l} L_1 = \{a^{n+m} \ b^n \ c^m n, \ m \geq 0\} \\ L_2 = \{a^{n+m} \ b^{n+m} \ c^m n, \ m \geq 0\} \end{array}$					[02]
	$L_3 = \{a^{n+m} b^{n+m} c^{m+n} n, m \ge 0\}$						
			of these langua	_	2) 7 17	A) T	
		1)	L_1 only	2) L_3 only	3) L_1 and L_2	4) L_2 and L_3	

1) $L_1 \cap L_2$ is a DCFL

4) $L_1 \cap L_2 \cap L_3$ is recursively enumerable

[02]

Let L₁ be a regular language and L₂ a deterministic CFL. L₃ is recursively enumerable but not

2) $L_3 \cap L_1$ is recursive

recursive. Which one of the following statement is FALSE?

- (a) Explain in detail all components of Chomsky hierarchy. [06]
- (b) Write short note on: Universal Turing machine and other variations of TM. [06]

(c)

If L is a CFL, then $\exists p$ (pumping length) such that $\forall z \in L$, if $|z| \ge p$ then $\exists u, v, w, x, y$ such

+ 05]

[01

that z = uvwxy and

1. $|vwx| \le p$ 2. |vx| > 0 3. $\forall i \ge 0$, $uv^i wx^i y \in L$.

What is the above theorem popularly known as?

Use it to prove the following language is non context free.

 $L=\{a^ib^jc^id^j\mid i,j\geq=0\}$. Assume $z=a^pb^pc^pd^p$ belongs to L, to prove your claim.

Q-3 (a) Consider TM depicted in Figure 1 and answer following questions with reference to it:- In figure 1, "B" indicates Blank symbol on tape.

1) Give the informal working logic of Turing machine. [02]

- 2) Is given TM Decider? Justify. [02]
- 3) What is the corresponding language used by TM? [02]
- 4) Give trace of the machine on appropriate input. [02]

(b) Explain with example any one Undecidable problem.

[04]

OR

Q.3

(a) How to find time complexity of Turing machine? Explain with example.

[04]

(b)

Consider TM designed as follows-

 $Q = \{q_0, q_1, q_2, q_3, q_f\}$ where q_0 is the start state and q_f the only final state.

 $\Sigma = \{1\} \Gamma = \{1, 1, \square\}$ where \square is the blank tape symbol, and δ is defined as follows:

$$\begin{array}{ll} \delta(q_0,1) = (q_0,1,R) & \delta(q_1,1) = (q_2,1,R) \\ \delta(q_0,\square) = (q_1,\square,L) & \delta(q_2,1) = (q_2,1,R) \\ \delta(q_1,1) = (q_1,1,L) & \delta(q_2,\square) = (q_3,1,R) \\ \delta(q_3,\square) = (q_1,1,L) & \delta(q_1,\square) = (q_f,\square,R) \end{array}$$

- 1) Give the pictorial representation of above TM.
- 2) Explain the informal logic of above Turing machine.
- 3) Show trace on some appropriate input string.

[02]

[03]

[03]