Goldstern's principle about unions of null sets

Tatsuya Goto

Kobe University

October 27, 2022 at RIMS Set Theory Workshop 2022

Goldstern's theorem

(full domination order) For $x, x' \in \omega^{\omega}$, define a relation $x \leq x'$ by $(\forall n \in \omega)(x(n) \leq x'(n))$.

In 1993, Martin Goldstern proved the following theorem

Goldstern's theorem

Let (Y, μ) be a Polish probability space. Let $A \subseteq \omega^{\omega} \times Y$ be a Σ_1^1 set. Assume that for each $x \in \omega^{\omega}$,

$$A_x := \{ y \in Y : (x, y) \in A \}$$

has measure 0. Also, assume $(\forall x, x' \in \omega^{\omega})(x \leq x' \Rightarrow A_x \subseteq A_{x'})$. Then $\bigcup_{x \in \omega^{\omega}} A_x$ has also measure 0.

He used the Shoenfield absoluteness theorem and the random forcing to show this theorem.

Goldstern's theorem

(full domination order) For $x, x' \in \omega^{\omega}$, define a relation $x \leq x'$ by $(\forall n \in \omega)(x(n) \leq x'(n))$.

In 1993, Martin Goldstern proved the following theorem.

Goldstern's theorem

Let (Y, μ) be a Polish probability space. Let $A \subseteq \omega^{\omega} \times Y$ be a Σ_1^1 set. Assume that for each $x \in \omega^{\omega}$,

$$A_{\mathsf{x}} := \{ \mathsf{y} \in \mathsf{Y} : (\mathsf{x}, \mathsf{y}) \in \mathsf{A} \}$$

has measure 0. Also, assume $(\forall x, x' \in \omega^{\omega})(x \leq x' \Rightarrow A_x \subseteq A_{x'})$. Then $\bigcup_{x \in \omega^{\omega}} A_x$ has also measure 0.

He used the Shoenfield absoluteness theorem and the random forcing to show this theorem.

Goldstern's theorem

(full domination order) For $x, x' \in \omega^{\omega}$, define a relation $x \leq x'$ by $(\forall n \in \omega)(x(n) \leq x'(n))$.

In 1993, Martin Goldstern proved the following theorem.

Goldstern's theorem

Let (Y, μ) be a Polish probability space. Let $A \subseteq \omega^{\omega} \times Y$ be a Σ_1^1 set. Assume that for each $x \in \omega^{\omega}$,

$$A_x := \{ y \in Y : (x, y) \in A \}$$

has measure 0. Also, assume $(\forall x, x' \in \omega^{\omega})(x \leq x' \Rightarrow A_x \subseteq A_{x'})$. Then $\bigcup_{x \in \omega^{\omega}} A_x$ has also measure 0.

He used the Shoenfield absoluteness theorem and the random forcing to show this theorem.

Definition

Let Γ be a pointclass. Then $\mathsf{GP}(\Gamma)$ means the following statement: Let (Y,μ) be a Polish probability space and $A\subseteq\omega^\omega\times Y$ be in Γ . Assume that for each $x\in\omega^\omega$, A_x has measure 0. Also suppose that $(\forall x,x'\in\omega^\omega)(x\leq x'\Rightarrow A_x\subseteq A_{x'})$. Then $\bigcup_{x\in\omega^\omega}A_x$ has also measure 0.

Goldstern's theorem says that $GP(\mathbf{\Sigma}_1^1)$ holds. Note that if Γ is a sufficiently high pointclass (that is if $\mathbf{\Delta}_1^1 \subseteq \Gamma$), then we can assume that (Y, μ) is the Cantor space with the standard measure.

Definition

Let Γ be a pointclass. Then $\mathsf{GP}(\Gamma)$ means the following statement: Let (Y,μ) be a Polish probability space and $A\subseteq\omega^\omega\times Y$ be in Γ . Assume that for each $x\in\omega^\omega$, A_x has measure 0. Also suppose that $(\forall x,x'\in\omega^\omega)(x\leq x'\Rightarrow A_x\subseteq A_{x'})$. Then $\bigcup_{x\in\omega^\omega}A_x$ has also measure 0.

Goldstern's theorem says that $GP(\Sigma_1^1)$ holds.

Note that if Γ is a sufficiently high pointclass (that is if $\Delta_1^1 \subseteq \Gamma$), then we can assume that (Y, μ) is the Cantor space with the standard measure.

Definition

Let Γ be a pointclass. Then $\mathsf{GP}(\Gamma)$ means the following statement: Let (Y,μ) be a Polish probability space and $A\subseteq\omega^\omega\times Y$ be in Γ . Assume that for each $x\in\omega^\omega$, A_x has measure 0. Also suppose that $(\forall x,x'\in\omega^\omega)(x\leq x'\Rightarrow A_x\subseteq A_{x'})$. Then $\bigcup_{x\in\omega^\omega}A_x$ has also measure 0.

Goldstern's theorem says that $GP(\mathbf{\Sigma}_1^1)$ holds. Note that if Γ is a sufficiently high pointclass (that is if $\mathbf{\Delta}_1^1 \subseteq \Gamma$), then we can assume that (Y, μ) is the Cantor space with the standard measure.

(almost domination order) For $x, x' \in \omega^{\omega}$, define a relation $x \leq^* x'$ by $(\exists m \in \omega)(\forall n \geq m)(x(n) \leq x'(n))$.

Definition

Let Γ be a pointclass. Then $\mathsf{GP}^*(\Gamma)$ means the following statement: Let (Y,μ) be a Polish probability space and $A \subseteq \omega^\omega \times Y$ be in Γ . Assume that for each $x \in \omega^\omega$, A_x has μ -measure 0. Also suppose that $(\forall x, x' \in \omega^\omega)(x \leq^* x' \Rightarrow A_x \subseteq A_{x'})$. Then $\bigcup_{x \in \omega^\omega} A_x$ has also μ -measure 0.

Clearly $GP(\Gamma) \Rightarrow GP^*(\Gamma)$.

Lemma

(almost domination order) For $x, x' \in \omega^{\omega}$, define a relation $x \leq^* x'$ by $(\exists m \in \omega)(\forall n \geq m)(x(n) \leq x'(n))$.

Definition

Let Γ be a pointclass. Then $\mathsf{GP}^*(\Gamma)$ means the following statement: Let (Y,μ) be a Polish probability space and $A\subseteq\omega^\omega\times Y$ be in Γ . Assume that for each $x\in\omega^\omega$, A_x has μ -measure 0. Also suppose that $(\forall x,x'\in\omega^\omega)(x\leq^*x'\Rightarrow A_x\subseteq A_{x'})$. Then $\bigcup_{x\in\omega^\omega}A_x$ has also μ -measure 0.

Clearly $GP(\Gamma) \Rightarrow GP^*(\Gamma)$.

Lemma

(almost domination order) For $x, x' \in \omega^{\omega}$, define a relation $x \leq^* x'$ by $(\exists m \in \omega)(\forall n \geq m)(x(n) \leq x'(n))$.

Definition

Let Γ be a pointclass. Then $\mathsf{GP}^*(\Gamma)$ means the following statement: Let (Y,μ) be a Polish probability space and $A\subseteq\omega^\omega\times Y$ be in Γ . Assume that for each $x\in\omega^\omega$, A_x has μ -measure 0. Also suppose that $(\forall x,x'\in\omega^\omega)(x\leq^*x'\Rightarrow A_x\subseteq A_{x'})$. Then $\bigcup_{x\in\omega^\omega}A_x$ has also μ -measure 0.

Clearly $GP(\Gamma) \Rightarrow GP^*(\Gamma)$.

Lemma

(almost domination order) For $x, x' \in \omega^{\omega}$, define a relation $x \leq^* x'$ by $(\exists m \in \omega)(\forall n \geq m)(x(n) \leq x'(n))$.

Definition

Let Γ be a pointclass. Then $\mathsf{GP}^*(\Gamma)$ means the following statement: Let (Y,μ) be a Polish probability space and $A\subseteq\omega^\omega\times Y$ be in Γ . Assume that for each $x\in\omega^\omega$, A_x has μ -measure 0. Also suppose that $(\forall x,x'\in\omega^\omega)(x\leq^*x'\Rightarrow A_x\subseteq A_{x'})$. Then $\bigcup_{x\in\omega^\omega}A_x$ has also μ -measure 0.

Clearly $GP(\Gamma) \Rightarrow GP^*(\Gamma)$.

Lemma

Main Result

The symbol "all" denotes the class of all subsets of Polish spaces.

Theorem

GP(all) is independent from ZFC.

Theorem

Assume CH. Then $\neg GP(all)$ holds.

Proof. Let $\langle x_{\alpha} : \alpha < \omega_1 \rangle$ be a cofinal increasing sequence in $(\omega^{\omega}, <^*)$. And let $\langle y_{\alpha} : \alpha < \omega_1 \rangle$ be an enumeration of 2^{ω} . Then the set A defined by the following equation witnesses $\neg GP(all)$:

$$A_{x} = \{ y_{\beta} : \beta < \alpha_{x} \},$$

where $\alpha_x = \min\{\alpha : x <^* x_\alpha\}$.

Theorem

Assume CH. Then $\neg GP(all)$ holds.

Proof. Let $\langle x_\alpha : \alpha < \omega_1 \rangle$ be a cofinal increasing sequence in $(\omega^\omega, <^*)$. And let $\langle y_\alpha : \alpha < \omega_1 \rangle$ be an enumeration of 2^ω . Then the set A defined by the following equation witnesses $\neg \mathsf{GP}(\mathsf{all})$:

$$A_{x} = \{y_{\beta} : \beta < \alpha_{x}\},\$$

where $\alpha_x = \min\{\alpha : x <^* x_\alpha\}.$

Refining the last proof, we get the following theorem.

Theorem

Assume that at least one of the following three conditions holds: $add(\mathcal{N}) = \mathfrak{b}$, $non(\mathcal{N}) = \mathfrak{b}$ or $non(\mathcal{N}) = \mathfrak{d}$. Then $\neg \mathsf{GP}(\mathsf{all})$ holds.

```
\begin{split} \operatorname{add}(\mathcal{N}) &:= \min\{\kappa : \text{the null ideal is not } \kappa\text{-additive}\} \\ \operatorname{non}(\mathcal{N}) &:= \min\{|A| : A \subseteq 2^\omega, A \text{ does not have measure } 0\} \\ \operatorname{\mathfrak{b}} &:= \min\{|F| : F \subseteq \omega^\omega, \neg (\exists g \in \omega^\omega) (\forall f \in F) \ f <^* \ g\} \\ \operatorname{\mathfrak{d}} &:= \min\{|F| : F \subseteq \omega^\omega, (\forall g \in \omega^\omega) (\exists f \in F) \ g <^* \ f\} \end{split}
```

Assume that at least one of the following three conditions holds: $add(\mathcal{N}) = \mathfrak{b}$, $non(\mathcal{N}) = \mathfrak{b}$ or $non(\mathcal{N}) = \mathfrak{d}$. Then $\neg GP(all)$ holds.

```
\begin{array}{l} \operatorname{add}(\mathcal{N}) := \min\{\kappa : \text{the null ideal is not } \kappa\text{-additive}\} \\ \operatorname{non}(\mathcal{N}) := \min\{|A| : A \subseteq 2^\omega, A \text{ does not have measure } 0\} \\ \mathfrak{b} := \min\{|F| : F \subseteq \omega^\omega, \neg (\exists g \in \omega^\omega)(\forall f \in F) \text{ } f <^* g\} \\ \mathfrak{d} := \min\{|F| : F \subseteq \omega^\omega, (\forall g \in \omega^\omega)(\exists f \in F) \text{ } g <^* f\} \end{array}
```


Consistency of GP(all)

Theorem

If ZFC is consistent then so is ZFC + GP(all).

In fact, "The Laver model" satisfies GP(all).

equal to \aleph_2 in the Laver model

equal to \aleph_1 in the Laver model

Null tower

Definition (null tower)

We call a sequence $\langle A_{\alpha} : \alpha < \kappa \rangle$ a **null tower** if it is an increasing sequence of measure 0 sets such that its union does not have measure 0.

Lemma

Assume that $\mathfrak{b}=\mathfrak{d}$ and let both of these be κ . Then the following are equivalent.

- **1** There is a null tower of length κ .
- ② ¬ GP(all).

Null tower

Definition (null tower)

We call a sequence $\langle A_{\alpha} : \alpha < \kappa \rangle$ a **null tower** if it is an increasing sequence of measure 0 sets such that its union does not have measure 0.

Lemma

Assume that $\mathfrak{b} = \mathfrak{d}$ and let both of these be κ . Then the following are equivalent.

- **1** There is a null tower of length κ .
- \bigcirc ¬ GP(all).

Laver forcing

Definition (Laver forcing)

 $\mathbb{L} = \{ p : p \text{ is a perfect subtree of } \omega^{<\omega}$ and all nodes in p above the stem have infinitely many successors $\}$

Elements in $\mathbb L$ are ordered by the inclusion.

Property of Laver forcing

- L is proper.
- L adds a dominating real.
- ullet L (and csi of L) preserve Lebesgue outer measure.

Laver forcing

Definition (Laver forcing)

 $\mathbb{L} = \{ p : p \text{ is a perfect subtree of } \omega^{<\omega}$ and all nodes in p above the stem have infinitely many successors $\}$

Elements in $\mathbb L$ are ordered by the inclusion.

Property of Laver forcing

- ullet L is proper.
- ullet L adds a dominating real.
- ullet L (and csi of L) preserve Lebesgue outer measure.

Reflection Lemma

Lemma

Assume CH. Let $\langle P_{\alpha}, \dot{Q}_{\alpha} : \alpha < \omega_2 \rangle$ be a countable support iteration of proper forcing notions such that

$$\Vdash_{\alpha} |\dot{Q}_{\alpha}| \leq \mathfrak{c} \quad \text{(for all } \alpha < \omega_2 \text{)}.$$

Let $\langle \dot{X}_{\alpha}: \alpha < \omega_2 \rangle$ be a sequence of P_{ω_2} -names such that

$$\Vdash_{\omega_2} (\forall \alpha < \omega_2)(\dot{X}_{\alpha} \text{ has measure 0}).$$

Then the set

$$S = \{ \alpha < \omega_2 : \mathsf{cf}(\alpha) = \omega_1 \text{ and}$$

 $\Vdash_{\omega_2} (\langle \dot{X}_\beta \cap V[\dot{G}_\alpha] : \beta < \alpha \rangle \in V[\dot{G}_\alpha] \text{ and}$
 $(\forall \beta < \alpha)(\dot{X}_\beta \cap V[\dot{G}_\alpha] \text{ has measure } 0)^{V[\dot{G}_\alpha]})$

is stationary in ω_2 .

Reflection Lemma

Lemma

Assume CH. Let $\langle P_{\alpha}, Q_{\alpha} : \alpha < \omega_2 \rangle$ be a countable support iteration of proper forcing notions such that

$$\Vdash_{\alpha} |\dot{Q}_{\alpha}| \leq \mathfrak{c} \quad \text{(for all } \alpha < \omega_2 \text{)}.$$

Let $\langle \dot{X}_{\alpha}: \alpha < \omega_2 \rangle$ be a sequence of P_{ω_2} -names such that

$$\Vdash_{\omega_2} (\forall \alpha < \omega_2)(X_{\alpha} \text{ has measure 0}).$$

Then the set

$$S = \{ \alpha < \omega_2 : \mathsf{cf}(\alpha) = \omega_1 \text{ and}$$

 $\Vdash_{\omega_2} (\langle \dot{X}_{eta} \cap V[\dot{G}_{lpha}] : eta < lpha
angle \in V[\dot{G}_{lpha}] \text{ and}$
 $(orall eta < lpha)(\dot{X}_{eta} \cap V[\dot{G}_{lpha}] \text{ has measure } 0)^{V[\dot{G}_{lpha}]}) \}$

is stationary in ω_2 .

Main theorem

Theorem

Assume CH. Let $\langle P_{\alpha}, \dot{Q}_{\alpha} : \alpha < \omega_2 \rangle$ be the countable support iteration such that

$$\Vdash_{\alpha} \dot{Q}_{\alpha} = \mathbb{L} \ \ ext{(for all } \alpha < \omega_2 ext{)}.$$

Then

$$\Vdash_{\omega_2} \mathsf{GP}(\mathsf{all}).$$

In particular, if ZFC is consistent then so is ZFC + GP(all).

• By the fact that $\Vdash_{\omega_2} \mathfrak{b} = \mathfrak{d} = \omega_2$, it is sufficient to show that

- Let G be a (V, P_{ω_2}) -generic filter. In V[G], consider an increasing sequence $\langle A_{\alpha} : \alpha < \omega_2 \rangle$ of measure 0 sets.
- By the lemma, we can find a stationary set $S \subseteq \omega_2$ such that for all $\alpha \in S$, $cf(\alpha) = \omega_1$ and $(\langle A_\beta \cap V[G_\alpha] : \beta < \alpha \rangle \in V[G_\alpha]$ and $(\forall \beta < \alpha)((A_\beta \cap V[G_\alpha])$ has measure $0)^{V[G_\alpha]}$.
- For $\alpha \in S$, put $B_{\alpha} := \bigcup_{\beta < \alpha} A_{\beta} \cap V[G_{\alpha}]$. Then we have $\bigcup_{\alpha < \omega_2} B_{\alpha} = \bigcup_{\alpha < \omega_2} A_{\alpha}$.

• By the fact that $\Vdash_{\omega_2} \mathfrak{b} = \mathfrak{d} = \omega_2$, it is sufficient to show that

- Let G be a (V, P_{ω_2}) -generic filter. In V[G], consider an increasing sequence $\langle A_{\alpha} : \alpha < \omega_2 \rangle$ of measure 0 sets.
- By the lemma, we can find a stationary set $S \subseteq \omega_2$ such that for all $\alpha \in S$, $cf(\alpha) = \omega_1$ and $(\langle A_\beta \cap V[G_\alpha] : \beta < \alpha \rangle \in V[G_\alpha]$ and $(\forall \beta < \alpha)((A_\beta \cap V[G_\alpha])$ has measure $0)^{V[G_\alpha]}$.
- For $\alpha \in S$, put $B_{\alpha} := \bigcup_{\beta < \alpha} A_{\beta} \cap V[G_{\alpha}]$. Then we have $\bigcup_{\alpha < \omega_2} B_{\alpha} = \bigcup_{\alpha < \omega_2} A_{\alpha}$.

• By the fact that $\Vdash_{\omega_2} \mathfrak{b} = \mathfrak{d} = \omega_2$, it is sufficient to show that

- Let G be a (V, P_{ω_2}) -generic filter. In V[G], consider an increasing sequence $\langle A_{\alpha} : \alpha < \omega_2 \rangle$ of measure 0 sets.
- By the lemma, we can find a stationary set $S \subseteq \omega_2$ such that for all $\alpha \in S$, $cf(\alpha) = \omega_1$ and $(\langle A_\beta \cap V[G_\alpha] : \beta < \alpha \rangle \in V[G_\alpha]$ and $(\forall \beta < \alpha)((A_\beta \cap V[G_\alpha])$ has measure $0)^{V[G_\alpha]}$.
- For $\alpha \in S$, put $B_{\alpha} := \bigcup_{\beta < \alpha} A_{\beta} \cap V[G_{\alpha}]$. Then we have $\bigcup_{\alpha < \omega_2} B_{\alpha} = \bigcup_{\alpha < \omega_2} A_{\alpha}$.

• By the fact that $\Vdash_{\omega_2} \mathfrak{b} = \mathfrak{d} = \omega_2$, it is sufficient to show that

- Let G be a (V, P_{ω_2}) -generic filter. In V[G], consider an increasing sequence $\langle A_{\alpha} : \alpha < \omega_2 \rangle$ of measure 0 sets.
- By the lemma, we can find a stationary set $S \subseteq \omega_2$ such that for all $\alpha \in S$, $cf(\alpha) = \omega_1$ and $(\langle A_\beta \cap V[G_\alpha] : \beta < \alpha \rangle \in V[G_\alpha]$ and $(\forall \beta < \alpha)((A_\beta \cap V[G_\alpha])$ has measure $0)^{V[G_\alpha]}$.
- For $\alpha \in S$, put $B_{\alpha} := \bigcup_{\beta < \alpha} A_{\beta} \cap V[G_{\alpha}]$. Then we have $\bigcup_{\alpha < \omega_2} B_{\alpha} = \bigcup_{\alpha < \omega_2} A_{\alpha}$.

• By the fact that $\Vdash_{\omega_2} \mathfrak{b} = \mathfrak{d} = \omega_2$, it is sufficient to show that

- Let G be a (V, P_{ω_2}) -generic filter. In V[G], consider an increasing sequence $\langle A_{\alpha} : \alpha < \omega_2 \rangle$ of measure 0 sets.
- By the lemma, we can find a stationary set $S \subseteq \omega_2$ such that for all $\alpha \in S$, $cf(\alpha) = \omega_1$ and $(\langle A_\beta \cap V[G_\alpha] : \beta < \alpha \rangle \in V[G_\alpha]$ and $(\forall \beta < \alpha)((A_\beta \cap V[G_\alpha])$ has measure $0)^{V[G_\alpha]}$.
- For $\alpha \in S$, put $B_{\alpha} := \bigcup_{\beta < \alpha} A_{\beta} \cap V[G_{\alpha}]$. Then we have $\bigcup_{\alpha < \omega_2} B_{\alpha} = \bigcup_{\alpha < \omega_2} A_{\alpha}$.

- Fix $\alpha \in S$. We now prove that B_{α} is also a measure 0 set in $V[G_{\alpha}]$. Let α' be the successor of α in S. Then B_{α} is a measure 0 set in $V[G_{\alpha'}]$. Since the quotient forcing $P_{\alpha'}/G_{\alpha}$ is a countable support iteration of the Laver forcing, this forcing preserves positive outer measure. So B_{α} is also a measure 0 set in $V[G_{\alpha}]$.
- For each $\alpha \in S$, take an Borel code $c_{\alpha} \in \omega^{\omega}$ of a measure 0 set such that $B_{\alpha} \subseteq \hat{c}_{\alpha}$ in $V[G_{\alpha}]$. Since $cf(\alpha) = \omega_1$, each c_{α} appears a prior stage. Then by Fodor's lemma, we can take a stationary set $S' \subseteq \omega_2$ that is contained by S and $\beta < \omega_2$ such that $(\forall \alpha \in S')(c_{\alpha} \in V[G_{\beta}])$.
- But the number of reals in $V[G_{\beta}]$ is \aleph_1 , so we can take $S'' \subseteq S'$ unbounded in ω_2 and c such that $(\forall \alpha \in S'')(c_{\alpha} = c)$. Then we have $\bigcup_{\alpha < \omega_2} A_{\alpha} \subseteq \hat{c}$ in V[G]. So $\bigcup_{\alpha < \omega_2} A_{\alpha}$ has measure 0.

- Fix $\alpha \in S$. We now prove that B_{α} is also a measure 0 set in $V[G_{\alpha}]$. Let α' be the successor of α in S. Then B_{α} is a measure 0 set in $V[G_{\alpha'}]$. Since the quotient forcing $P_{\alpha'}/G_{\alpha}$ is a countable support iteration of the Laver forcing, this forcing preserves positive outer measure. So B_{α} is also a measure 0 set in $V[G_{\alpha}]$.
- For each $\alpha \in S$, take an Borel code $c_{\alpha} \in \omega^{\omega}$ of a measure 0 set such that $B_{\alpha} \subseteq \hat{c}_{\alpha}$ in $V[G_{\alpha}]$. Since $cf(\alpha) = \omega_1$, each c_{α} appears a prior stage. Then by Fodor's lemma, we can take a stationary set $S' \subseteq \omega_2$ that is contained by S and $\beta < \omega_2$ such that $(\forall \alpha \in S')(c_{\alpha} \in V[G_{\beta}])$.
- But the number of reals in $V[G_{\beta}]$ is \aleph_1 , so we can take $S'' \subseteq S'$ unbounded in ω_2 and c such that $(\forall \alpha \in S'')(c_{\alpha} = c)$. Then we have $\bigcup_{\alpha < \omega_2} A_{\alpha} \subseteq \hat{c}$ in V[G]. So $\bigcup_{\alpha < \omega_2} A_{\alpha}$ has measure 0.

- Fix $\alpha \in S$. We now prove that B_{α} is also a measure 0 set in $V[G_{\alpha}]$. Let α' be the successor of α in S. Then B_{α} is a measure 0 set in $V[G_{\alpha'}]$. Since the quotient forcing $P_{\alpha'}/G_{\alpha}$ is a countable support iteration of the Laver forcing, this forcing preserves positive outer measure. So B_{α} is also a measure 0 set in $V[G_{\alpha}]$.
- For each $\alpha \in S$, take an Borel code $c_{\alpha} \in \omega^{\omega}$ of a measure 0 set such that $B_{\alpha} \subseteq \hat{c}_{\alpha}$ in $V[G_{\alpha}]$. Since $\mathrm{cf}(\alpha) = \omega_1$, each c_{α} appears a prior stage. Then by Fodor's lemma, we can take a stationary set $S' \subseteq \omega_2$ that is contained by S and $\beta < \omega_2$ such that $(\forall \alpha \in S')(c_{\alpha} \in V[G_{\beta}])$.
- But the number of reals in $V[G_{\beta}]$ is \aleph_1 , so we can take $S'' \subseteq S'$ unbounded in ω_2 and c such that $(\forall \alpha \in S'')(c_{\alpha} = c)$. Then we have $\bigcup_{\alpha < \omega_2} A_{\alpha} \subseteq \hat{c}$ in V[G]. So $\bigcup_{\alpha < \omega_2} A_{\alpha}$ has measure 0.

- Fix $\alpha \in S$. We now prove that B_{α} is also a measure 0 set in $V[G_{\alpha}]$. Let α' be the successor of α in S. Then B_{α} is a measure 0 set in $V[G_{\alpha'}]$. Since the quotient forcing $P_{\alpha'}/G_{\alpha}$ is a countable support iteration of the Laver forcing, this forcing preserves positive outer measure. So B_{α} is also a measure 0 set in $V[G_{\alpha}]$.
- For each $\alpha \in S$, take an Borel code $c_{\alpha} \in \omega^{\omega}$ of a measure 0 set such that $B_{\alpha} \subseteq \hat{c}_{\alpha}$ in $V[G_{\alpha}]$. Since $cf(\alpha) = \omega_1$, each c_{α} appears a prior stage. Then by Fodor's lemma, we can take a stationary set $S' \subseteq \omega_2$ that is contained by S and $\beta < \omega_2$ such that $(\forall \alpha \in S')(c_{\alpha} \in V[G_{\beta}])$.
- But the number of reals in $V[G_{\beta}]$ is \aleph_1 , so we can take $S'' \subseteq S'$ unbounded in ω_2 and c such that $(\forall \alpha \in S'')(c_{\alpha} = c)$. Then we have $\bigcup_{\alpha < \omega_2} A_{\alpha} \subseteq \hat{c}$ in V[G]. So $\bigcup_{\alpha < \omega_2} A_{\alpha}$ has measure 0.

Related results (1)

Theorem

Assume ZF + AD. Then GP(all) holds.

Corollary (of the local version of the theorem)

- **1** If ZFC + "there is a measurable cardinal" is consistent, then so is ZFC + GP(Σ_2^1) + ¬ GP(Δ_3^1).
- **②** For every $n \ge 1$, if ZFC + "there are n many Woodin cardinals" is consistent, then so is ZFC + GP(Σ_{n+1}^1) + ¬GP(Δ_{n+2}^1).

Theorem

In Solovay models, GP(all) holds

Related results (1)

Theorem

Assume ZF + AD. Then GP(all) holds.

Corollary (of the local version of the theorem)

- 1 If ZFC + "there is a measurable cardinal" is consistent, then so is ZFC + $GP(\Sigma_2^1)$ + $\neg GP(\Delta_3^1)$.
- **2** For every $n \ge 1$, if ZFC + "there are n many Woodin cardinals" is consistent, then so is ZFC + GP(Σ_{n+1}^1) + \neg GP(Δ_{n+2}^1).

Theorem

In Solovay models, GP(all) holds

Related results (1)

Theorem

Assume ZF + AD. Then GP(all) holds.

Corollary (of the local version of the theorem)

- 1 If ZFC + "there is a measurable cardinal" is consistent, then so is ZFC + $GP(\Sigma_2^1)$ + $\neg GP(\Delta_3^1)$.
- **2** For every $n \ge 1$, if ZFC + "there are n many Woodin cardinals" is consistent, then so is ZFC + GP(Σ_{n+1}^1) + \neg GP(Δ_{n+2}^1).

Theorem

In Solovay models, GP(all) holds.

Related results (2)

Theorem

 Σ_2^1 Lebesuge measurability implies $GP(\Sigma_2^1)$. Moreover, $GP(\Delta_2^1)$ implies that for every real a there is a dominating real over L[a]. In particular, V = L implies $\neg GP(\Delta_2^1)$.

Related results (2)

Theorem

 Σ_2^1 Lebesuge measurability implies $GP(\Sigma_2^1)$. Moreover, $GP(\Delta_2^1)$ implies that for every real a there is a dominating real over L[a]. In particular, V = L implies $\neg \mathsf{GP}(\mathbf{\Delta}_2^1)$.

- 1 Is $ZFC + (c \ge \aleph_3) + GP(all)$ consistent?
- **2** Is $ZFC + (\mathfrak{b} < \mathfrak{d}) + GP(all)$ consistent?
- 3 Does V = L imply $\neg GP(\Pi_1^1)$?
- (Assuming an inaccessible cardinal) is there a model of ZF satisfying that every set of reals is Lebesgue measurable and ¬GP(all) holds?
- **6** For some $n \ge 2$ (or for every $n \ge 2$), can we separate $GP(\mathbf{\Sigma}_{n+1}^1)$ and $GP(\mathbf{\Sigma}_n^1)$ without using large cardinals?
- **6** Can we separate each of the implications $\Sigma_2^1(\mathbb{B}) \to \mathsf{GP}(\Sigma_2^1) \to \mathsf{GP}(\Delta_2^1) \to \Sigma_2^1(\mathbb{L})$?

- 1 Is $ZFC + (c \ge \aleph_3) + GP(all)$ consistent?
- **2** Is $ZFC + (\mathfrak{b} < \mathfrak{d}) + GP(all)$ consistent?
- 3 Does V = L imply $\neg GP(\Pi_1^1)$?
- (Assuming an inaccessible cardinal) is there a model of ZF satisfying that every set of reals is Lebesgue measurable and ¬GP(all) holds?
- **6** For some $n \ge 2$ (or for every $n \ge 2$), can we separate $GP(\mathbf{\Sigma}_{n+1}^1)$ and $GP(\mathbf{\Sigma}_n^1)$ without using large cardinals?
- **6** Can we separate each of the implications $\Sigma_2^1(\mathbb{B}) \to \mathsf{GP}(\Sigma_2^1) \to \mathsf{GP}(\Delta_2^1) \to \Sigma_2^1(\mathbb{L})$?

We think it holds in the model obtained by adding \aleph_3 random reals over Laver model.

Actually "The reflection lemma" for this model has been showed. But we don't know the remaining forcing seen from the intermediate stage preserves outer measure.

- 1 Is $ZFC + (c \ge \aleph_3) + GP(all)$ consistent?
- 2 Is $ZFC + (\mathfrak{b} < \mathfrak{d}) + GP(all)$ consistent?
- 3 Does V = L imply $\neg GP(\Pi_1^1)$?
- (Assuming an inaccessible cardinal) is there a model of ZF satisfying that every set of reals is Lebesgue measurable and ¬GP(all) holds?
- **6** For some $n \ge 2$ (or for every $n \ge 2$), can we separate $GP(\Sigma_{n+1}^1)$ and $GP(\Sigma_n^1)$ without using large cardinals?
- **6** Can we separate each of the implications $\Sigma_2^1(\mathbb{B}) \to \mathsf{GP}(\Sigma_2^1) \to \mathsf{GP}(\Delta_2^1) \to \Sigma_2^1(\mathbb{L})$?

We think it holds in the model obtained by adding \aleph_3 random reals over Laver model Actually "The reflection lemma" for this model has been showed. But we don't know the remaining forcing seen from the intermediate stage preserves outer measure.

- 1 Is $ZFC + (c \ge \aleph_3) + GP(all)$ consistent?
- **2** Is $ZFC + (\mathfrak{b} < \mathfrak{d}) + GP(all)$ consistent?
- 3 Does V = L imply $\neg GP(\Pi_1^1)$?
- (Assuming an inaccessible cardinal) is there a model of ZF satisfying that every set of reals is Lebesgue measurable and ¬GP(all) holds?
- **5** For some $n \ge 2$ (or for every $n \ge 2$), can we separate $GP(\mathbf{\Sigma}_{n+1}^1)$ and $GP(\mathbf{\Sigma}_n^1)$ without using large cardinals?
- **6** Can we separate each of the implications $\Sigma_2^1(\mathbb{B}) \to \mathsf{GP}(\Sigma_2^1) \to \mathsf{GP}(\Delta_2^1) \to \Sigma_2^1(\mathbb{L})$?

We considered the possibility that GP(all) implies $\mathfrak{b} = \mathfrak{d}$, but it did not work. If we consider this consistency to be true, then this is a more difficult problem than the first item.

- 1 Is $ZFC + (c \ge \aleph_3) + GP(all)$ consistent?
- 2 Is $ZFC + (\mathfrak{b} < \mathfrak{d}) + GP(all)$ consistent?
- **3** Does V = L imply $\neg GP(\Pi_1^1)$?
- (Assuming an inaccessible cardinal) is there a model of ZF satisfying that every set of reals is Lebesgue measurable and ¬GP(all) holds?
- **5** For some $n \ge 2$ (or for every $n \ge 2$), can we separate $GP(\mathbf{\Sigma}_{n+1}^1)$ and $GP(\mathbf{\Sigma}_n^1)$ without using large cardinals?
- **6** Can we separate each of the implications $\Sigma_2^1(\mathbb{B}) \to \mathsf{GP}(\Sigma_2^1) \to \mathsf{GP}(\Delta_2^1) \to \Sigma_2^1(\mathbb{L})$?

Perheps ZFC proves $GP(\Pi_1^1)$. Actually, for a set A satisfying the assumption of $GP(\Pi_1^1)$, isn't $\bigcup_{x \in \omega^{\omega}} A_x$ provably- Δ_2^1 ?

- 1 Is $ZFC + (c \ge \aleph_3) + GP(all)$ consistent?
- 2 Is $ZFC + (\mathfrak{b} < \mathfrak{d}) + GP(all)$ consistent?
- 3 Does V = L imply $\neg GP(\Pi_1^1)$?
- (Assuming an inaccessible cardinal) is there a model of ZF satisfying that every set of reals is Lebesgue measurable and ¬GP(all) holds?
- **5** For some $n \ge 2$ (or for every $n \ge 2$), can we separate $GP(\Sigma_{n+1}^1)$ and $GP(\Sigma_n^1)$ without using large cardinals?
- **6** Can we separate each of the implications $\Sigma_2^1(\mathbb{B}) \to \mathsf{GP}(\Sigma_2^1) \to \mathsf{GP}(\Delta_2^1) \to \Sigma_2^1(\mathbb{L})$?

Can we use the model or the idea used in Shelah's consistency proof for LM $+ \neg BP$?

- **1** Is ZFC + (\mathfrak{c} ≥ \aleph_3) + GP(all) consistent?
- 2 Is $ZFC + (\mathfrak{b} < \mathfrak{d}) + GP(all)$ consistent?
- 3 Does V = L imply $\neg GP(\Pi_1^1)$?
- (Assuming an inaccessible cardinal) is there a model of ZF satisfying that every set of reals is Lebesgue measurable and ¬GP(all) holds?
- **6** For some $n \ge 2$ (or for every $n \ge 2$), can we separate $GP(\Sigma_{n+1}^1)$ and $GP(\Sigma_n^1)$ without using large cardinals?
- **6** Can we separate each of the implications $\Sigma^1_2(\mathbb{B}) \to \mathsf{GP}(\Sigma^1_2) \to \mathsf{GP}(\Delta^1_2) \to \Sigma^1_2(\mathbb{L})$?

For n = 2, we should consider the model obtained by forcing MA over L. The idea of the Raisonnier filter could be used.

Or Harrington's model of MA + $(c = \aleph_2)$ + "there is Δ_3^1 wellorder of \mathbb{R} " could be used.

- **1** Is $ZFC + (\mathfrak{c} \geq \aleph_3) + GP(all)$ consistent?
- 2 Is $ZFC + (\mathfrak{b} < \mathfrak{d}) + GP(all)$ consistent?
- 3 Does V = L imply $\neg GP(\Pi_1^1)$?
- (Assuming an inaccessible cardinal) is there a model of ZF satisfying that every set of reals is Lebesgue measurable and ¬GP(all) holds?
- **5** For some $n \ge 2$ (or for every $n \ge 2$), can we separate $GP(\mathbf{\Sigma}_{n+1}^1)$ and $GP(\mathbf{\Sigma}_n^1)$ without using large cardinals?
- **6** Can we separate each of the implications $\Sigma^1_2(\mathbb{B}) \to \mathsf{GP}(\Sigma^1_2) \to \mathsf{GP}(\Delta^1_2) \to \Sigma^1_2(\mathbb{L})$?

We should consider the Hechler model first.

References and acknowledgments

[Gol93] Martin Goldstern. "An Application of Shoenfield's Absoluteness Theorem to the Theory of Uniform Distribution.". In: Monatshefte für Mathematik 116.3-4 (1993), pp. 237–244.

The preprint of our research: arXiv:2206.08147

In this research, we received advices from Yasuo Yoshinobu, Takayuki Kihara, Jörg Brendle, Daisuke Ikegami and Martin Goldstern.

This work was supported by JSPS KAKENHI Grant Number JP22J20021.