

《信号与系统》课程

实验报告

学	院	信息科学与工程学院
专	业	111
班	级	XXXX
学	号	XXX
姓	名	XXX
指导教	师	XXX
	,	
完成日	期	xxx 年 xxx 月 xxx 日

实验三 连续时间周期信号的傅里叶级数

1.1 实验目的

- (1) 掌握连续时间周期信号的傅里叶级数的展开和合成,理解吉布斯现象;
- (2) 掌握周期矩形脉冲信号的频谱及脉冲宽度、周期对周期信号频谱的影响。

1.2 实验原理(或实验方法)

- 1.2.1 信号的频谱
- 1.2.2 矩形脉冲信号的频谱

1.3 实验内容

(1) 周期信号的傅里叶级数的展开和合成

画出如下图对称方波 (取 E = 1、T = 1),并采用有限项傅里叶级数对原函数进行逼近,画出对称方波的 1、3、5、7、9、11 次谐波的傅里叶级数合成波形,观察吉布斯现象。

图 1:

- (2) 周期矩形脉冲信号的频谱结构与波形参数 (τ, T) 之间关系 (教材 P81)
 - (a) 取 $E = 1, \tau = 1, T = 5\tau$ 画出周期矩形脉冲及其傅里叶级数的频谱 (图 3-8(b));
 - (b) 取 $E = 1, \tau = 1$, 画出图 3-8(a);
 - (c) 取 $E = 1, \tau = 1$, 画出图 3-8(c);

1.4 思考题

- (1) $\frac{\tau}{T} = 1/4$ 的矩形脉冲信号在哪些谐波分量上幅度为零?请画出基波信号频率为 5KHz 的矩形脉冲信号的频谱图。
- (2) 要提取一个 $\frac{\tau}{T} = 1/4$ 的矩形脉冲信号的基波和 2、3 次谐波,以及 4 次以上的高次谐波,可以选用几个什么类型(低通?带通? …)的滤波器?
- (3) 方波信号在哪些谐波分量上幅度为零?请画出信号频率为2KHz的方波信号的频谱图。
- (4) 要完整的恢复出原始矩形脉冲信号,各次谐波幅度要成什么样的比例关系?

1.5 实验收获与心得