

Dinámica (FIS1514)

Roce viscoso

Felipe Isaule

felipe.isaule@uc.cl

Lunes 23 de Septiembre de 2024

Resumen clase anterior

- Definimos la fuerza de roce estático.
- Definimos la fuerza de roce dinámico.

Clase 13: Roce viscoso

Roce viscoso.

- Bibliografía recomendada:
 - Meriam (3.4, 3.5).
 - Hibbeler (13.4).

Fuerza de roce viscoso

• El **roce viscoso** corresponde a la **resistencia** que ejerce un **fluido** al movimiento de una partícula en la **dirección del movimiento**.

$$\vec{F}_v = -c \, v^n \hat{\vec{v}} \,,$$

donde c es la **constante de viscosidad** y n es un parámetro que depende del fluido y del movimiento.

- El roce viscoso siempre apunta en la dirección **opuesta** al movimiento relativo de la partícula con respecto al fluido.
- En particular, a **velocidades bajas** la fuerza viscosa es **lineal** con la rapidez:

$$\vec{F}_v = -c\vec{v} \,.$$

• Un cuerpo de masa m cae por el aire y es afectado por la gravedad y la viscosidad c del aire. Encuentre la ecuación de movimiento y la velocidad con respecto al tiempo si el cuerpo es soltado desde el reposo.

• Un cuerpo de masa m cae por el aire y es afectado por la gravedad y la viscosidad c del aire. Encuentre la ecuación de movimiento y la velocidad con respecto al tiempo si el cuerpo es soltado desde el reposo.

Ecuaciones de movimiento

$$F_y = F_v - mg = ma_y$$

$$F_v = -c v \longrightarrow \left[-c\dot{y} - mg = m\ddot{y} \right]$$

Intentamos encontrar
$$v(t)$$
 \longrightarrow $m \frac{dv}{dt} = -c \, v - m g$

$$\int_0^v \frac{dv'}{v' + mg/c} = -\int_0^t \frac{c}{m} dt'$$

$$\longrightarrow v(t) = \frac{mg}{c} \left(e^{-ct/m} - 1 \right)$$

• Un cuerpo de masa m cae por el aire y es afectado por la gravedad y la viscosidad c del aire. Encuentre la ecuación de movimiento y la velocidad con respecto al tiempo si el cuerpo es soltado desde el reposo.

La **rapidez alcanza un máximo**. Es decir, la **aceleración tiende a cero**.

Esta rapidez máxima se conoce como velocidad terminal.

• Un cuerpo de masa m cae por el aire y es afectado por la gravedad y la viscosidad c del aire. Encuentre la ecuación de movimiento y la velocidad con respecto al tiempo si el cuerpo es soltado desde el reposo.

La **rapidez alcanza un máximo**. Es decir, la **aceleración tiende a cero**.

Esta rapidez máxima se conoce como velocidad terminal.

Tarea: Resolver con el eje *y* apuntando hacia abajo.

- Un cuerpo de masa m es lanzado **verticalmente hacia arriba** con **rapidez inicial** v_0 y en presencia de la **gravedad** terrestre. El aire ejerce un **roce viscoso** F=-cv. El movimiento del cuerpo es vertical. Determine:
- El tiempo que tarda la partícula en llegar a su punto más alto.
- → La altura máxima que alcanza el cuerpo.

Hint:
$$\int \frac{x}{x+A} dx = x - A \ln(A+x)$$

- Un cuerpo de masa m es lanzado **verticalmente hacia arriba** con **rapidez inicial** v_0 y en presencia de la **gravedad** terrestre. El aire ejerce un **roce viscoso** F=-cv. El movimiento del cuerpo es vertical. Determine:
- El tiempo que tarda la partícula en llegar a su punto más alto.

DCL

Ecuaciones de movimiento

$$F_y = F_v - mg = ma_y$$

$$F_v = -cv \longrightarrow \boxed{-c\dot{y} - mg = m\ddot{y}}$$

Igual al ejemplo anterior pero con límites de integración distintos.

$$\longrightarrow \int_{v_0}^{v} \frac{dv'}{v' + mg/c} = -\int_0^t \frac{c}{m} dt' \longrightarrow v(t) = \left(v_0 + \frac{mg}{c}\right) e^{-\frac{ct}{m}} - \frac{mg}{c}$$

Altura máxima :
$$v^* = 0$$
 \longrightarrow $t^* = \frac{m}{c} \ln \left(\frac{v_0 + mg/c}{mg/c} \right)$

- Un cuerpo de masa m es lanzado **verticalmente hacia arriba** con **rapidez inicial** v_0 y en presencia de la **gravedad** terrestre. El aire ejerce un **roce viscoso** F=-cv. El movimiento del cuerpo es vertical. Determine:
- → La altura máxima que alcanza el cuerpo.

$$-c\dot{y} - mg = m\ddot{y} \longrightarrow \int_0^y dy' = -\frac{m}{c} \int_{v_0}^v \frac{v'dv'}{v' + mg/c}$$

$$\longrightarrow y = \frac{m}{c} \left[v_0 - v + \frac{mg}{c} \ln\left(\frac{mg/c + v}{mg/c + v_0}\right) \right]$$

Altura máxima :
$$v^* = 0$$
 \longrightarrow $y_{\text{max}} = \frac{m}{c} \left[v_0 + \frac{mg}{c} \ln \left(\frac{mg/c}{mg/c + v_0} \right) \right]$

Hint:
$$\int \frac{x}{x+A} dx = x - A \ln(A+x)$$

- Un cuerpo de masa m es lanzado **verticalmente hacia arriba** con **rapidez inicial** v_0 y en presencia de la **gravedad** terrestre. El aire ejerce un **roce viscoso** F=-bv. El movimiento del cuerpo es vertical. Determine:
- El tiempo que tarda la partícula en llegar a su punto más alto.
- → La altura máxima que alcanza el cuerpo.
- → <u>Tarea:</u> Resolver estos problemas con otras fuerzas de roce, por ejemplo $F=-bv^2$.

• Un bloque de masa m se encuentra sobre la superficie de un **plano inclinado** con un ángulo θ con respecto a la horizontal. El bloque es afectado por un **roce viscoso cuadrático** en la **rapidez** y con **constante** c conocida. Si el bloque parte del reposo, encuentre la rapidez terminal.

Ecuaciones de movimiento

$$x: \quad F_x = mg\sin\theta - c\dot{x}^2 = m\ddot{x}$$

$$y: \quad F_y = N - mg\cos\theta = 0$$

Intentamos integrar la ecuación en *x*:

$$\longrightarrow mg\sin\theta - c\dot{x}^2 = m\frac{d\dot{x}}{dt}$$

$$\longrightarrow \frac{d\dot{x}}{\dot{x}^2 - mg\sin\theta/c} = -\frac{c}{m}dt$$

• Un bloque de masa m se encuentra sobre la superficie de un **plano inclinado** con un ángulo θ con respecto a la horizontal. El bloque es afectado por un **roce viscoso cuadrático** en la **rapidez** y con **constante** c conocida. Si el bloque parte del reposo, encuentre la rapidez terminal.

Si θ =0, v_{max} =0 ya que el bloque no se mueve.

Si θ = $\pi/2$ se recupera la caída libre.

Resumen

- Hemos definido la fuerza de roce viscoso.
- Hemos resuelto ejemplos con roce viscoso lineal y cuadrático.
- Hemos terminado la unidad de dinámica.