Indian Institute of Technology Patna

Department of Computer Science and Engineering

End Semester Examination, Autumn 2017-18

Discrete Mathematics (CS-206)

Full Marks: 60 Date: 20/11/2017 Time: 3 hours

Instructions:

- 1. Write your name, roll number in the answer sheet.
- 2. Marks for every question is shown with the question.
- 3. Write your roll number in every extra sheet you take.
- Explanation for each answer is mandatory. No marks will be given for answers without proper explanation.
- Q1. Prove by Mathematical Induction clearly indicating each steps

[4+6 marks]

- a) $\frac{1}{1*5} + \frac{1}{5*9} + \frac{1}{9*13} + \dots + \frac{1}{(4n-3)*(4n+1)} = \frac{n}{4n+1}$
- b) $f_{n-1} * f_{n+1} = (f_n)^2 + (-1)^n$, where f_n refers to the Fibonacci sequence.
- Q2. Solve the following questions with proper explanation.

[2+4+4 marks]

- a) For two sets $X = \{-1, 1, \Lambda\}$, $Y = \{8, 9, B\}$ $f(x) = x^3 + 9$ is a bijection from X to Y. What's the value of A+B?
- b) Let f(x) and g(x) be functions. Prove, using contradiction method, that if f(g(x)) is one-to-one, then g(x) is one-to-one. That is, suppose that g(x) were not one-to-one and derive that f(g(x)) cannot be one-to-one.
- c) Let X, Y be two sets where X = {1, 2, 3, 4, 5, 6} and Y = {a, b, c, d}. F denote the set of all possible functions defined from X to Y. Let g be randomly chosen from F. What is the probability of g being onto?
- Q3. Solve the following questions with proper explanation.

[3+2+5 marks]

- a) Use rules of inference to show that if $\forall x (P(x) \lor Q(x)), \forall x (\neg Q(x) \lor S(x)), \forall x (R(x) \to \neg S(x)), \text{ and } \exists x \neg P(x) \text{ are true, then } \exists x \neg R(x) \text{ is true.}$
- b) Prove that if n is a positive integer, then n is even if and only if 7n + 4 is even.
- c) In a room there are only two types of people, namely type A and type B. Type A always tells the truth and type B always lies. You give a fair coin to a person, without knowing which type he is from and tell her/him to toss it and hide the result till you ask for it. Upon asking, the person replies the following:

"The result of the toss is head if and only if I am lying."

What is the result of the toss? Justify using Propositional Logic.

Q4. Solve the following questions with proper explanation.

[3+3+4 marks]

- a) If G is a group in which $(ab)^i = a^i b^i$ for three consecutive integers i for all $a,b \in G$. Show that G is abelian.
- b) Let (Z, *) be an algebraic structure where Z is the set of integers and the operation * is defined by n * m = max(n, m). Check whether (Z, *) is a monoid?
- c) (G, +) and (H, *) are two groups that are defined over the field of real numbers and are related with via function $f: G \to H$, such that $f(x) = e^x$. Prove that G and H are isomorphic to each other.

Q5. Solve the following questions related to poset and Hasse diagram.

[2+2+4+2 marks]

- a) Find the number of edges formed by the Hasse diagram for the relation $R = \{(a, b) : a \subseteq b\}$ created on the set $A = \{1, 2, 3\}$.
- b) Find the number of edges formed by the Hasse diagram for the relation $S = \{(a, b) : a \text{ divides } b\}$ created on the set $B = \{2, 3, 6, 12, 15, 48, 120, 240\}$.
- c) A total order \leq on a set S is a partial order along with one more condition: $\forall a, b \in S, a \leq b \text{ or } b \leq a$. A partial order is defined on a set $S = \{x, a_1, a_2, a_3, \dots, a_n, y\}$ such that $x \leq a_i$, $\forall i$ and $a_i \leq y$, $\forall i$, where $n \geq 1$. What is the number of total orders on the set S (in terms of n) which contain the partial order $\leq S$?
- d) Let there be two partial ordering; $S1 = [\{1, 3, 6, 9, 12\}, divides]$ and $S2 = [\{1, 5, 25, 125\}, divides]$. Check whether S1 and S2 is/are lattice/s or not.

Q6. Solve the following questions with proper explanation.

[6+4 marks]

- a) Show that isomorphism of simple graphs is an equivalence relation.
- b) Check whether the following graph is planar or not. Justify your claim.

