UNIVERSIDADE FEDERAL DE MINAS GERAIS Escola de Engenharia Curso de Bacharelado em Engenharia de Sistemas

Cleyton Luan Nobre Assis 2021019815 Maria Clara Oliveira Domingos Ruas 2021019572 Raphael Henrique Braga Leivas 2020028101

Laboratório de Circuitos Eletrônicos e Projetos - Prática 2

SUMÁRIO

1	OBJ	JETIVO	S		 	-			-						3
2	INTI	RODUÇ	ÃO		 										4
3	DES	ENVO	LVIMENTO		 										6
	3.1	Experi	mento 4												6
		3.1.1	Descrição												6
		3.1.2	Resultados Obtidos												6
		3.1.3	Discussão												7
	3.2	Experi	mento 5												7
		3.2.1	Descrição												7
		3.2.2	Resultados Obtidos												7
		3.2.3	Discussão												8
4	CON	ICLUS	ÃO		 										10

1 OBJETIVOS

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

2 INTRODUÇÃO

A Figura 1 é um exemplo de figura referenciável.

Figura 1 – Panda EXEMPLO

Fonte: elaboração própria.

A Tabela 1 é um exemplo de tabela referenciável.

Tabela 1 – Exemplo TABELA.

Tipo	Interface	Implementação					
	Potência do Drone	Conector JST-XH de 2 pinos J7					
Entradas	Comando do Drone	Conector JST-XH de 2 pinos J9					
Entradas	Regulagem Alta Tensão	Potenciômetro em J2					
	Regulagem Taxa de Fluxo	Potenciômetro em J8					
	Status	Conector JST-XH de 2 pinos J9					
Saídas	Alta Tensão	Conectores banana J3 e J1					
	Líquido	Seringa da bomba projetada					

Fonte: elaboração própria.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur

auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

3 DESENVOLVIMENTO

3.1 Experimento 4

3.1.1 Descrição

Nesse experimento, vamos adicionar um AmpOp com realimentação no regulador de tensão para tentar atenuar o efeito de carga visto nos experimentos anteriores. O circuito montado está exibido na Figura 2.

IF A = A + VCC A = A + VCC

Figura 2 - Circuito para o experimento 4.

Fonte: elaboração própria.

3.1.2 Resultados Obtidos

A Tabela 2 mostra os resultados obtidos no experimento.

Tabela 2 – Parâmetros elétricos obtidos no Experimento 4.

$R_L \ [\Omega]$	V_o	V_{in}	I_L [mA]	P_L [mW]
100 k	15.02	5.03	0.15	2.25
10 k	15.02	5.02	1.5	22.53
1 k	14.85	5.03	14.85	220.5
470	14.87	5.03	31.6	469.9
270	10.5	5.03	38.88	408.2

Usando $R_L=10$ k Ω , temos que a tensão V_o varia no intervalo $0.15 \le V_o \le 17.7$ V quando variamos o trimpot em toda a sua faixa de operação. Para entender por que isso acontece, seja V_x o nó entre os resistores R_1 e R_2 na malha de realimentação do AmpOp U4. Por análise nodal, temos

$$\frac{V_x - V_o}{R_2} + \frac{V_x - 0}{R_1} + 0 = 0$$

Pelo curto-circuito virtual do AmpOp, temos $V_x = V_{in}$ do trimpot. Logo,

$$\frac{V_{in} - V_o}{R_2} + \frac{V_{in}}{R_1} = 0$$

$$V_o = V_{in} \left(1 + \frac{R_2}{R_1} \right) \tag{3.1}$$

Assim, quando trimpot está na configuração mínima, temos $V_{in}=0$ e portanto V_o tende a zero. Quando o trimpot está no máximo, $V_{in}=V_z=5.8$ V. Assim,

$$V_o = 5.8 (1 + 2) = 17.4 \text{ V}$$

3.1.3 Discussão

Comparando os dados obtidos na Tabela 2 com os demais experimentos, vemos que a tensão na carga continua a cair quando reduzimos o valor da carga (isto é, quando aumentamos a corrente drenada pela carga). Contudo, segundo (3.1), isso não deveria acontecer uma vez que V_{in} no diodo zener permanece constante. Isso ocorre devido à limitação da corrente de saída máxima do AmpOp, que para o TL071 é de $I_{OS}=40$ mA. Assim, note que o valor de V_o na Tabela 2 se reduz de modo que a corrente I_L de saída do AmpOp fica limitada em 40 mA para o resistor de 270 Ω .

3.2 Experimento 5

3.2.1 Descrição

Por fim, nesse experimento vamos adicionar um BJT na saída do AmpOp para reduzir o problema da corrente de saída do AmpOp visto no experimento 4. Assim, a carga drena corrente através do BJT diretamente da fonte de alimentação, de modo que a saída do AmpOp vai na base do BJT, drenando pouca corrente. O circuito montado está exibido na Figura 3.

3.2.2 Resultados Obtidos

A Tabela 3 mostra os resultados obtidos no experimento.

Tabela 3 – Parâmetros elétricos obtidos no Experimento 5. P(I) = P(I) = P(I) P(I

$R_L \left[\Omega\right]$	V_o [mA]	I_L [MA]	I_E [MA]	P_L [mW]	P_{TBJ} [mW]
100 k	15.00	0.15	0.55	2.25	5.5
10 k	14.98	1.5	2.05	22.47	20.5
1 k	14.98	14.98	15.5	224.4	155
470	14.97	31.85	32.35	476.8	323.5
270	14.96	55.4	55.9	581.7	559

Figura 3 – Circuito para o experimento 5.

Fonte: elaboração própria.

Para o cálculo de I_E , somamos a parcela $I_{fb}=V_{in}/R_1$ à I_L . Como V_{in} é constante em $V_{in}=5.03$ V como vimos no experimento anterior, estamos sempre somando uma parcela de $I_{fb}=500~\mu$ A à I_L .

Além disso, V_{CE} no BJT é dada por $V_{CE}=V_{CC}-V_o$, sendo usada no cálculo de P_{TBJ} via $P_{TBJ}=V_{CE}I_E$.

3.2.3 Discussão

Podemos agora considerar um caso mais realista em que V_{CC} possui um ripple senoidal de amplitude 2 V, simulando esse caso no LTSpice com o circuito da Figura 4, obtendo o resultado da Figura 5.

Vemos na Figura 5 que a saída ainda possui um ripple, mas o ripple foi reduzido de uma amplitude de 2 V em Vcc para menos de 0.2 V, menos de 10% do ripple da entrada. Repetindo a simulação para diferentes valores de R_L , obtemos os dados da Tabela 4.

Tabela 4 – Resultados da simulação do caso realista to experimento 5.

$R_L [\Omega]$	V_o Médio [V]	Ripple V_o [V]
100 k	14.98	0.18
10 k	14.98	0.18
1 k	14.98	0.18
470 k	14.98	0.18
270	14.79	0.18

Figura 4 – Simulação do experimento 5 para Vcc com ripple.

Fonte: elaboração própria.

Fonte: elaboração própria.

Vemos que os valores de V_o médio e ripple não variam conforme a carga, sendo uma característica ideal para uma fonte de tensão.

4 CONCLUSÃO

Tendo em vista os objetivos da prática, foi possível verificar na prática os efeitos que o diodo zener, o BJT e o AmpOp possuem na regulagem na tensão de saída.

Em particular, vimos como os efeitos indesejados da queda de tensão na carga - causada pelo aumento do dreno de corrente pela carga - pode ser atenuada pela presença do AmpOp com realimentação, de modo que o regulador de tensão a Zener e BJT, apesar de simples, possui essa limitação.