Homework 6

Problem 1. Prove that

(a) $\left(1 + \frac{1}{n}\right)^n \le e \text{ for all } n \ge 1.$

(b)
$$\left(1+\frac{1}{n}\right)^{n+1} \geq e \text{ for all } n \geq 1.$$

(c) Using (a) and (b), conclude that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$.

Solution.

(a)
$$\left(1 + \frac{1}{n}\right)^n \le \left(e^{\frac{1}{n}}\right)^n = e$$
.

(b)
$$\left(1 + \frac{1}{n}\right)^{n+1} = \left(\frac{n+1}{n}\right)^{n+1} = \left(\frac{1}{\frac{n}{n+1}}\right)^{n+1} = \left(\frac{1}{1 - \frac{1}{n+1}}\right)^{n+1} \ge \left(e^{\frac{1}{n+1}}\right)^{n+1} = e.$$

(c)
$$:\lim_{n\to\infty} \frac{\left(1+\frac{1}{n}\right)^n}{\left(1+\frac{1}{n}\right)^{n+1}} = 1 :\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1}.$$

While
$$e \stackrel{(b)}{\leq} \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \left(1 + \frac{1}{n}\right) \stackrel{(a)}{\leq} e \cdot \lim_{n \to \infty} \frac{1}{n} = e$$
.

Problem 2. *Prove* Bernoulli's inequality: for each natural number n and for every real $x \ge -1$, we have $(1 + x)^n \ge 1 + nx$.

Solution. Apply binomial theorem to the left.

Problem 3. Which of the following statements about graph G and H are true?

- 1. G and H are isomorphic if and only if for every map $f: V(G) \to V(H)$ and for any two vertices $u, v \in V(G)$, we have $\{u, v\} \in E(G) \Leftrightarrow \{f(u), f(v)\} \in E(H)$.
- 2. G and H are isomorphic if and only if there exists a bijection $f: E(G) \rightarrow E(H)$.
- 3. If there exists a bijection $f: V(G) \to V(H)$ such that every vertex $u \in V(G)$ has the same degree as f(u), then G and H are isomorphic.

- 4. If G and H are isomorphic, then there exists a bijection $f: V(G) \to V(H)$ such that every vertex $u \in V(G)$ has the same degree as f(u).
- 5. If G and H are isomorphic, then there exists a bijection $f: E(G) \to E(H)$.
- 6. G and H are isomorphic if and only if there exists a map $f: V(G) \rightarrow V(H)$ such that for any two vertices $u, v \in V(G)$, we have $\{u, v\} \in E(G) \Leftrightarrow \{f(u), f(v)\} \in E(H)$.
- 7. Every graph on n vertices is isomorphic to some graph on the vertex set $\{1, 2, ..., n\}$.
- 8. Every graph on $n \ge 1$ vertices is isomorphic to infinitely many graphs.

Solution. 4,5,7,8. □

Problem 4. How many graphs on the vertex set $\{1, 2, ..., 2n\}$ are isomorphic to the graph consisting of n vertex-disjoint edges (i.e. with edge set $\{\{1,2\},\{3,4\},...,\{2n-1,2n\}\}$?

Solution.
$$\frac{(2n\cdot(2n-1))((2n-2)\cdot(2n-3))\cdots(2\cdot 1)}{2^n\cdot n!}=(2n-1)(2n-3)\cdot\cdots 5\cdot 3.$$

Problem 5. Construct an example of a sequence of length n in which each term is some of the numbers 1, 2, ..., n-1 and which has an even number of odd terms, and yet the sequence is not a graph score. Show why it is not a graph score.

Solution. E.g. (1, 1, 3, 3, 4). Use the Score theorem to prove that it cannot be a graph score.

Problem 6. Let G be a graph with 9 vertices, each of degree 5 or 6. Prove that it has at least 5 vertices of degree 6 or at least 6 vertices of degree 5.

Solution. x be the number of vertex in G with $deg_G(x) = 6$. Obviously $x \ge 5$ or $x \le 4$.

- 1. If $x \ge 5$ then the first part of the argument is true.
- 2. Otherwise $(x \le 4)$. As the other vertices in graph G are of degree 5, there are at least $9 x \ge 5$ such vertices. According to the hand-shake lemma, there must be even number of odd-degree vertices. Thus there should be at least 6 vertices with degree 5.