Secret sharing scheme and privacy homomorphism

PRESENTED BY:

MRS. S J PATEL

DEPARTMENT OF COMPUTER ENGINEERING,
NIT, SURAT

Secret Sharing: Motivation

- Suppose you and your friend accidentally discovered a map that you believe would lead you to an island full of treasure.
- You and your friend are very excited and would like to go home and get ready for the exciting journey to the great fortune.
- But the problem is,
 - Who is going to keep the map?

Secret Sharing: Motivation...

- As they don't trust each other
- Need a scheme that could make sure that the map is shared in a way so that no one would be left out in this trip.
- What would you suggest?

Secret Sharing: Motivation...

- To split the map into two pieces and make sure that both pieces are needed in order to find the island.
- You can happily go home and be assured that your friend has to go with you in order to find the island.
- This illustrates the basic concept of secret sharing.

Generalization

- Desired Properties:
 - All n parties can get together and recover secret s.
 - Less than n parties cannot recover s.
- To achieve such a sharing,
 - Split the secret into n pieces $s_1, s_2, ..., s_n$ and give one piece to each party.
- Each piece here is called a *share*.
- Called secret splitting in some literature.

Generalization...

- Every piece of information is stored as a bit string or a number on a computer.
 - need to share a bit string or a number
- For example, assume that your salary is stored as a number 12345678.
 - Now you want to split your salary into two shares for two parties.
 - A naïve approach
 - To split the salary into two parts...
 - Is the scheme satisfies the two properties ????

Attacks

- However, there is a problem !!!
 - Suppose I am the first party who gets the most significant 4 digits of your salary.
 - It is true that I don't know exactly how much your salary is, but I have a pretty good idea about the range of your salary (>= 12340000), because I have the 4 most significant digits.
- This is called Partial Information Disclosure
- What about Brute Force Attack???
 - Consider the launch of a nuclear missile where the password is shared between two generals

Attacks...

A naive way of splitting a secret could cause partial information disclosure, which might be undesirable in certain cases and fatal in others.

Partial Information Disclosure: solution

- We would like to solve the partial information disclosure problem:
 - Strengthen property 2
 - Seems counter-intuitive !!!
- But we have a solution to this.....

Partial Information Disclosure: Solution...

- Suppose two parties are going to share a secret bit string 1011. The two shares are generated as follows:
 - To generate the first bit of the two shares,
 - flip a coin
 - If the result is head, then set the first bit of the first share to 0;
 - Else set the first bit of the first share to I
 - To generate the first bit of the second share.
 - If the result of the previous coin flipping was a head, then copy the first bit of the secret.
 - Else flip the first bit of the secret and use that.
 - Repeat this random process for each bit of the secret.

Partial Information Disclosure: Solution...

- Suppose for our example where the secret bit string is 1011,
- We flip the coin 4 times and get the sequence head, tail, tail, and head.
- Now think of the two properties

Modifying Disclosure Conditions

- Now we have this nice secret splitting scheme.
- But such a secret splitting scheme may not suffice in certain cases !!!!
- Recall again the control system of a nuclear missile launch
 - There are three generals who are in charge of a missile launch.
 - A simple solution would be to give the secret code to these three generals,
 - But then it is possible for a compromised general to start a war and destroy the planet.
 - We need some sort of secret sharing here.
 - Generate 3 shares from the secret code and give one share to each general.

Modifying Disclosure Conditions...

- Now think about the attacks !!!
 - Partial Information Disclosure??
 - Brute Force Attack???
 - Attack on Availability ????
- What can happen if one general is a spy from a hostile country?
 - We're not worried about him launching the missile by himself.
 - But he can disable the missile launch capability by throwing away his share !!!!

Modifying Disclosure Conditions...

- The problem is really the availability of the secret code.
- An essential issue in this example because,
 - the capability to launch a missile depends on the availability of the secret code.
- Assuming that it is unlikely that more than I general could be compromised or unavailable
 - Now postulate the policy of your secret sharing scheme ????

(t,n) Secret Sharing

- To generalize the properties, we get (t,n) secret sharing.
- Given a secret s, to be shared among n parties, that sharing should satisfy the following properties:
 - Availability: greater than or equal to t parties can recover s
 - Confidentiality: less than t parties have no information about s.
- Can we consider secret splitting as a special case of secret sharing ????

Let's start with the design of an (2,n) scheme.

Let's say we want to share a secret s among n parties. We use some basic

geometry

(t,n) Secret Sharing...

- Each point that is picked represents a share.
- We claim that these n shares constitute an (2,n) sharing of s.
- Now think about availability and confidentiality properties ????

(t,n) Secret Sharing ...

- To show availability, we need to prove that two parties can recover the secret.
- Two parties have two shares; that is two points.
- Given these two points, how can we recover the secret?
 - We know that two points determine a line, so we can figure out the line that goes through both points.
 - Once we know the line, we know the intersection of the line with the y axis.
 - Then, we get the secret.
 - So, it only takes us two points (shares) to make the secret available.

(t,n) Secret Sharing

- What about confidentiality? We need to show that one share does not disclose any information about the secret.
- There are infinite possible lines that go through this point, and these lines intersect with the y-axis at different points, all of which yield different "secrets".
- In fact, given any possible secret, we can draw a line that goes through the secret and the given share.
- This means that with one point, no information about the secret is exposed.

- Using the same idea, can we design an (n, 3) secret sharing scheme?
- Note that the key point in the (n,2) scheme is that a line is determined by two points, but not by 1.
- Now we need a curve that is determined by three points, but not 2.

(t,n) Secret Sharing

- To generalize the scheme even further, we have a construction of an (t, n) secret sharing scheme. Now we use the curve that corresponds to a (t-1) degree polynomial
- We randomly select a curve corresponding to such a polynomial that goes through the secret on the y-axis.
- Then we select n points on the curve.
- Using the same arguments, we can show that this scheme satisfies both availability and confidentiality properties.

SHAMIR'S SECRET SHARING SCHEME

Mathematical Definition

- Goal is to divide some data D (e.g., the safe combination) into n pieces $D_1,D_2...D_n$ in such a way that:
 - Knowledge of any k or more D pieces makes D easily computable.
 - Knowledge of any k I or fewer pieces leaves D completely undetermined (in the sense that all its possible values are equally likely).
- This scheme is called (k,n) threshold scheme. If k=n then all participants are required together to reconstruct the secret.

Shamir's Secret Sharing

- To design (k,n) threshold scheme to share our secret S where k < n.
- Choose at random (k-I) coefficients $a_1, a_2, a_3 \dots a_{k-1}$, and let S be the a_0

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{k-1} x^{k-1}$$

Substituting a₀ by S

$$f(x) = S + a_1 x + a_2 x^2 + \dots + a_{k-1} x^{k-1}$$

Shamir's Secret Sharing

- Construct n points (i,f(i)) where i=1,2,...n
- Given any subset of k of these pairs, we can find the coefficients of the polynomial by interpolation, and then evaluate $a_0=S$, which is the secret.

- Let S=1234
- n=6 and k=3 and obtain random integers

$$a_1 = 166$$
 and $a_2 = 94$

$$f(x) = 1234 + 166 x + 94 x^2$$

Secret share points

$$(1,1494),(2,1942)(3,2598)(4,3402)(5,4414)(6,5614)$$

• We give each participant a different single point (both x and f(x)).

Reconstruction |

- In order to reconstruct the secret any 3 points will be enough
- Let us consider

$$(x_0) = (2,1924), (x_1, y_1) = (4,3402), (x_2, y_2) = (5,4414)$$

 $(x_1, y_2) = (2,1924), (x_1, y_1) = (4,3402), (x_2, y_2) = (5,4414)$
 $(x_1, y_2) = (5,4414)$
 $(x_2, y_2) = (5,4414)$
 $(x_1, y_2) = (1,014)$
 $(x_2, y_2) = (5,4414)$
 $(x_1, y_1) = (4,3402), (x_2, y_2) = (4,414)$
 $(x_1, y_1) = (4,414)$
 $(x$

$$(x) = 1234 + 166 x + 94 x^2$$

Security discussion

Secrecy and Integrity

- Secrecy: the adversary needs to corrupt at least k shareholders and collect their shares in order to learn the secret;
- Integrity: the adversary needs to corrupt at least n k + I shareholders to destroy or alter the secret;

Availability

- For a given k, the secret Availability increases as n increases...
- For a given n the secret's Secrecy and Integrity increase as t increases.

Security discussion...

- Information theoretically secure
- Space Efficient: the size of each share does not exceed the size of the secret
- Keeping k fixed, shares can be easily added or removed, without affecting other shares
- It is easy to change the shares, keeping the same secret
- It is possible to provide more than one share per individual: hierarchy

Homomorphic property of secret sharing

- Similar to Encryption, secret sharing schemes have homomorphic properties
 - i.e. For operations on the secret, there are corresponding operations on shares that preserve the relation between the secret and shares
- Consider Shamir's scheme
 - Let s and t be two secrets with polynomials f and g respectively
 - Now consider the sum of the secret s+t
 - Since s+t = f(0) + g(0) = (f+g)(0)
 - What can you say about polynomial (f+g) ???
- Conversely, adding the shares $[s]_i$ and $[t]_i$ gives $[s]_i + [t]_i = f(i) + g(i) = (f+g)(i)$

Homomorphic property of secret sharing ...

Now think about multiplicative homomorphism using Shamir's Secret Sharing scheme ?????

APPLICATIONS

Secure Multiparty Computation

- Yao's Millionnare Problem
 - Two millionaires, Alice and Bob, who are interested in knowing which of them is richer without revealing their actual wealth.
- This problem is analogous to a more general problem where,
- There are two numbers a and b and the goal is to solve the inequality without revealing the actual values of a and b.

Secure Multiparty Computation...

- A set of parties with private inputs wish to compute some joint function of their inputs.
- Parties wish to preserve some security properties. E.g., privacy and correctness.
- Examples: secure election protocol, Auctions, Privacy Preserving Data Mining
- Security must be preserved in the face of adversarial behavior by some of the participants, or by an external party.

$$\frac{P1}{k=3}$$

$$(x_1, x_2, x_3) = (3, 4, 2)$$

$$q1(x) = 2x^2 + x + k$$

$$S(x_1) = 94$$

$$q_1(x_3) = 2x_3^2 + (x_3) + k_94$$

 $q_1(x_3) = 2(2)^2 + 2 + 3$
 $q_1(x_3) = 13$

$$S(x_1) = 94$$

$$S(x_2)$$

$$S(x_3) = 52$$
 $S(x_3) = 52$

 $S(x_2) = 150$

$$\frac{P3}{k=3}$$

$$(x_1, x_2, x_3) = (3, 4, 2)$$

$$q3(x) = 4x^2 + 3x + k$$

$$S(x_3) = 52$$

$$S(x_3) = q_1(x_3) + q_2(x_3) + q_3(x_3)$$

$$S(x_3) = 13q_8(x_4) + 23q_2(x_3) + k = 4(2)^2 + 3(2) + 3 = 25$$

$$q_3(x_3) = 4x_3^2 + 3x_3 + k = 4(2)^2 + 3(2) + 3 = 25$$

$$\frac{P2}{k=4}$$

$$(x_1, x_2, x_3) = (3, 4, 2)$$

$$q2(x) = x^2 + 3x + k$$

$$S(x_2) = 150$$

$$q_{\S}(X_3) \equiv X_3^2 + 3X_3 + k$$

 $q_2(X_3) = (2)^2 + 3(2) + 4$
 $q_2(X_3) = 14$

P1 k=3 $(x_1, x_2, x_3) = (3, 4, 2)$ $S(x_1) = 95$ $S(x_2) = 150$ $S(x_3) = 52$ $S(x_1) = b_2 x_1^2 + b_1 x_1 + b$ $S(x_2) = b_2 x_2^2 + b_1 x_2 + b$ $S(x_3) = b_2 x_3^2 + b_1 x_3 + b_1$ $b_2(3)^2 + b_1(3) + b = 95$ $b_2(4)^2 + b_1(4) + b = 150$ $b_2(2)^2 + b_1(2) + b = 52$ $9b_2 + 3b_1 + b = 95$ $16b_2 + 4b_1 + b = 150$ $4b_2 + 2b_1 + b = 52$

$$\frac{P2}{k=4}$$

$$(x_1, x_2, x_3) = (3, 4, 2)$$

$$q2(x) = x^2 + 3x + k$$

$$S(x_1) = 95$$

$$S(x_2) = 150$$

$$S(x_3) = 52$$

$$\frac{P3}{k=3}$$

$$(x_1, x_2, x_3) = (3, 4, 2)$$

$$q3(x) = 4x^2 + 3x + k$$

$$S(x_1) = 95$$

$$S(x_2) = 150$$

$$S(x_3) = 52$$

Assignment Problems

Problem-1

Consider the (k,n) threshold secret sharing scheme of Shamir which is defined over a field F_{13} with the following parameters,

secret s=3, n=5 and k=3.

Answer the following question:

Which of the following polynomials are valid for the above secret sharing scheme?

- 1. $F(x)=5x^2+2$
- 2. F(x)=5x+2
- 3. $F(x) = 5x^2 + 3$
- 4. $F(x) = 5x^2 + 3x + 3$
- 5. $F(x) = 15x^2 + 12x + 3$
- 6. $F(x) = 12x^4 + 5x^3 + 5x^2 + 3$

Problem-2

For the given polynomial,

$$F(x) = 12x^4 + 5x^3 + 5x^2 + 3,$$

a threshold secret sharing scheme is designed.

Find out the values of k and n for the threshold (k,n) scheme of Shamir.

Problem-3

A (3,3) secret sharing scheme is designed with the following polynomial

$$F(x) = 2x^2 + x + 3$$

- Public values of party P1, P2 and P3 are 3,4 and 2 respectively.

 Answer the following questions:
- Share(s,P₁) = ?
- 2. Share(s, P_2) = ?
- 3. Share($s_{1}P_{3}$) = ?
- Given Share(s,P₁), Share(s,P₂) and Share(s,P₃) reconstruct the secret using Lagrange's interpolation.

Problem 4

Consider a Secure Multiparty Addition protocol between three parties P₁, P₂ and P₂ holding private values $s_1=3$, $s_2=4$ and $s_3=3$ respectively. The public values of parties P_1 , P_2 and P_3 are 3, 4 and 2 respectively.

Step I: Generate and exchange shares

1. Share(
$$s_1, P_1$$
) = ?
2. Share(s_1, P_2) = ?
3. Share(s_1, P_3) = ?
3. Share(s_1, P_3) = ?
3. Share(s_2, P_3) = ?

1. Share(
$$s_2, P_1$$
) = ?

Share(
$$s_2, P_3$$
) = ?

3. Share(
$$s_1, P_2$$
) = ?

$$2 \quad \text{Share(s D)} = 2$$

1. Share(
$$s_3, P_1$$
) = ?

2. Share(
$$s_3, P_2$$
) = ?

3. Share(
$$s_3, P_3$$
) = ?

Step II: Generate and exchange the sum of shares

- SumofShare(P_1) = ?
- 2. SumofShare(P_2) = ?
- SumofShare(P_3) = ?

Step III: Solve the set of equation using Lagrange's interpolation.

Problem 5

- For the Secure Multiparty Addition discussed in problem 4, consider that party P_1 behaves maliciously and sends invalid sum of shares to party P_2 and P_3 .
- i.e. Instead of sending the valid value SumOfShares_{P1} = 24 + 22 + 48 = 94, the party sends 85 instead
- What are the consequences of this malicious behaviour?
- Comment on the correctness of the protocol.

Problem 6

- For the Secure Multiparty Addition discussed in problem 4, consider that party P_1 behaves maliciously and sends invalid shares to party P_2
- i.e. Instead of sending the valid Share(s_1, P_2)=39, the party sends 21 instead
- What are the consequences of this malicious behaviour?
- Comment on the correctness of the protocol.