0

Agora um módulo M finitamente gerado sobre A é um quociente de um módulo livre de posto finito: se $M = A\omega_1 + \cdots + A\omega_n$. temos uma sobrejeção

$$A^n \to M$$

 $(a_1, \dots, a_n) \mapsto a_1 \omega_1 + \dots + a_n \omega_n$

e novamente pelo item anterior M é noetheriano.

6.2 Teorema da base de Hilbert

Nesta seção, provaremos o principal resultado deste capítulo, o teorema da base de Hilbert. Como corolário imediato, concluiremos que toda álgebra finitamente gerada sobre $\mathbb Z$ ou sobre um corpo k é automaticamente noetheriana. Em particular, obtemos finalmente a prova de que conjuntos algébricos podem ser sempre definidos por um número finito de polinômios.

Teorema 6.2.1 Seja A um anel noetheriano. Então

- 1. A/\mathfrak{a} é noetheriano para todo ideal $\mathfrak{a} \subseteq A$;
- 2. se $S \subseteq A$ é um conjunto multiplicativo, então $S^{-1}A$ é noetheriano;
- 3. (Base de Hilbert) A[x] e A[x] são noetherianos;
- 4. qualquer A-álgebra finitamente gerada B é noetheriana.

DEMONSTRAÇÃO:

- 1. Segue diretamente do teorema 6.1.6 na página 182.
- 2. Seja $\rho: A \to S^{-1}A$ o mapa de localização. Se $\mathfrak{b}_0 \subseteq \mathfrak{b}_1 \subseteq \cdots$ é uma cadeia ascendente de ideais em $S^{-1}A$, então $\rho^{-1}\mathfrak{b}_0 \subseteq \rho^{-1}\mathfrak{b}_1 \subseteq \cdots$ é uma cadeia ascendente de ideais em A; por hipótese, $\rho^{-1}\mathfrak{b}_i = \rho^{-1}\mathfrak{b}_{i+1}$ para $i \gg 0$. Mas isto significa que $\mathfrak{b}_i = \mathfrak{b}_{i+1}$ para $i \gg 0$ pelo teorema 4.3.1 na página 126, logo $S^{-1}A$ é noetheriano.

3. Mostremos que qualquer ideal $\mathfrak{a}\subseteq A[x]$ é finitamente gerado. Para cada inteiro $d\geq 0$, defina o ideal em A

$$\mathfrak{c}_d \stackrel{\mathrm{def}}{=} \left\{ a \in A \;\middle|\; \begin{array}{c} a \; \text{\'e} \; \text{coeficiente l\'ider de algum} \\ f(x) \in \mathfrak{a} \; \text{de grau} \; d \end{array} \right\} \cup \left\{ 0 \right\}$$

Dados $r, s \in A$ e polinômios $f(x), g(x) \in \mathfrak{a}$ de grau d, temos que $rf(x) + sg(x) \in \mathfrak{a}$ é de grau $\leq d$, donde segue que $\mathfrak{c}_d \subseteq A$ é de fato um ideal. Além disso, de $f(x) \in \mathfrak{a} \implies xf(x) \in \mathfrak{a}$ concluímos ainda que $\mathfrak{c}_d \subseteq \mathfrak{c}_{d+1}$. Como A é noetheriano, obtemos portanto uma cadeia ascendente estacionária (digamos a partir de $d \geq D$) de ideais finitamente gerados de A

$$\mathfrak{c}_0 \subseteq \mathfrak{c}_1 \subseteq \mathfrak{c}_2 \subseteq \cdots \subseteq \mathfrak{c}_D = \mathfrak{c}_{D+1} = \mathfrak{c}_{D+2} = \cdots$$

Para cada $d=0,1,\ldots,D$, escolha um conjunto finito $S_d\subseteq \mathfrak{a}$ de polinômios de grau d cujos coeficientes líderes geram \mathfrak{c}_d e seja $S=\bigcup_{0\leq d\leq D}S_d$ (um subconjunto finito de \mathfrak{a}). Mostremos que S gera \mathfrak{a} .

Seja $\mathfrak{s} \subseteq A[x]$ o ideal gerado por S. Claramente $\mathfrak{s} \subseteq \mathfrak{a}$. Reciprocamente, dado $f(x) \in \mathfrak{a}$, vamos mostrar por indução em $d = \deg f(x)$ que $f(x) \in \mathfrak{s}$, o que é evidente se f(x) = 0. Suponha $d \geq 0$. Se $d \leq D$, existe uma combinação A-linear dos polinômios em S_d com mesmo coeficiente líder de f(x). E se d > D, como $\mathfrak{c}_d = \mathfrak{c}_D$, existe uma combinação A-linear dos polinômios em $\{x^{d-D} \cdot p(x) \mid p(x) \in S_D\}$ com mesmo coeficiente líder de f(x). Assim, em ambos os casos, existem monômios $m_i(x) = c_i x^{e_i}$ ($c_i \in A$) e polinômios $p_1(x), \ldots, p_n(x) \in S$ tais que f(x) e $m_1(x)p_1(x) + \cdots + m_n(x)p_n(x)$ têm o mesmo grau d e mesmo coeficiente líder, de modo que

$$\deg(f(x) - m_1(x)p_1(x) - \dots - m_n(x)p_n(x)) < d = \deg f(x)$$

Por hipótese de indução, $f(x)-m_1(x)p_1(x)-\cdots-m_n(x)p_n(x) \in \mathfrak{s}$, logo $f(x) \in \mathfrak{s}$, como desejado.

A demonstração para $A[\![x]\!]$ é análoga; a única diferença é que, no lugar do grau, utilizamos a função $v\colon A[\![x]\!]\setminus\{0\}\to\mathbb{N}$ dada por (c.f. exemplo 10.1.4 na página 252)

$$v\left(\sum_{n\geq 0} a_n x^n\right) = \min\{n \in \mathbb{N} \mid a_n \neq 0\}$$

de modo que o "termo inicial" $a_n \neq 0$ com n mínimo passa a fazer o papel de "coeficiente líder". Assim, dado um ideal $\mathfrak{a} \subseteq A[x]$, para cada $d \geq 0$ consideramos agora os ideais de A

$$\mathfrak{c}_d = \{ a \in A \mid \text{existe } ax^d + a_{d+1}x^{d+1} + a_{d+2}x^{d+2} + \dots \in \mathfrak{a} \} \cup \{0\}$$

que formam uma cadeia ascendente de ideais finitamente gerados, estacionária para $d \geq D$. Novamente sendo $S_d \subseteq \mathfrak{a}$ um subconjunto finito de séries da forma $ax^d + a_{d+1}x^{d+1} + \cdots$ cujos termos iniciais a geram \mathfrak{c}_d e sendo $S = \bigcup_{0 \leq d \leq D} S_d = \{p_1(x), \ldots, p_n(x)\}$. temos que S gera \mathfrak{a} . Para isto, dado $f(x) \in \mathfrak{a}$, construímos $g_1(x), \ldots, g_n(x) \in A[\![x]\!] = \operatorname{proj lim}_{r \in \mathbb{N}} A[x]/(x^r)$ tais que

$$f(x) = g_1(x)p_1(x) + \cdots + g_n(x)p_n(x)$$

definindo $g_i(x)$ mod x^r indutivamente em r. Detalhes são deixados como exercício para o leitor.

4. Por indução, temos que o teorema da base de Hilbert implica que $A[x_1, \ldots, x_n]$ é noetheriano. O resultado agora segue pelo item (1) já que B é quociente de $A[x_1, \ldots, x_n]$: se B é gerado sobre A por $\omega_1, \ldots, \omega_n$, temos uma sobrejeção de A-álgebras

$$A[x_1,\ldots,x_n] \twoheadrightarrow B$$

 $x_i \mapsto \omega_i$

Sendo $\mathfrak a$ o kernel desta sobrejeção, temos $B\cong A[x_1,\ldots,x_n]/\mathfrak a.$

Observação 6.2.2 O produto tensorial de álgebras noetherianas sobre um anel noetheriano nem sempre é noetheriano. Verifique, por exemplo, que $\mathbb{C} \otimes_{\mathbb{Q}} \mathbb{C}$ e $\mathbb{C}[\![x]\!] \otimes_{\mathbb{C}} \mathbb{C}[\![y]\!]$ não são noetherianos.

6.3 Álgebras e módulos de presentação finita

Nesta seção, apresentamos a noção "relativa" de anel noetheriano.

6.3.1 Definição Seja A um anel qualquer (não necessariamente noetheriano).