

QUÍMICA GENERAL

LEYES EMPÍRICAS DE GASES IDEALES SOLUCIONES

OBJETIVOS

Analizar y comprender las leyes empíricas de los gases ideales y aplicar sus ecuaciones en los diferentes procesos.

Comprender y explicar las disoluciones, sus componentes y clasificación.

CONTENIDO

- 1. Leyes empíricas de los gases ideales. Definición y características.
- 2. Ley de Boyle y Mariotte: Proceso isotérmico.
- 3. Ley de Charles: Proceso isobárico.
- 4. Ley de Gay-Lussac: Proceso isocórico
- 5. Ecuación combinada de los gases ideales.
- 6. Solución: Definición, componentes, características, importancia y clasificación.

LEYES EMPÍRICAS DE LOS GASES IDEALES

PV = nRT

1) LEYES EMPÍRICAS DE LOS GASES IDEALES

Las leyes empíricas son relaciones que se derivan de la observación y se originan directamente de la experimentación. Las leyes empíricas que estudiaremos y sus características son:

A) Ley de Boyle y Mariotte : Proceso isotérmico (T: constante).

B) Ley de Charles : Proceso isobárico (P: constante).C) Ley de Gay-Lussac : Proceso isocórico (V: constante).

Los llamados gases ideales o perfectos cumplen totalmente estas leyes.

2) Ley de Boyle y Mariotte (1662)

El volumen de un gas es inversamente proporcional a la presión absoluta (al mantener constantes la temperatura y la masa del gas).

 $V \propto 1/P$ (m y T son constantes)

$$V = k/P$$

$$P_{_1} \cdot V_{_1} = P_{_2} \cdot V_{_2}$$

Un volumen de 380mL de aire se midió a la presión de 640mmHg. Calcúlese el volumen(en mL) que ocupará a una presión de 760mmHg manteniendo la temperatura constante.

- A) 280 mL
- B) 300
- C) 320
- D) 160
- E) 420

Rpta: C

Suponga que se transfiere 4 litros de gas metano a una presión de 570Torr a un recipiente de volumen 2,40 litros. ¿Cuál es la presión final(en atm) del metano si el cambio ocurre a temperatura constante? Dato: 1atm= 760 torr.

- A) 0,75 atm
- B) 1,75
- C) 1,50
- D) 1,75
- E) 1,25

Rpta: E

Una cantidad de gas ocupa un volumen de 80 cm³ a una presión de 750 mm Hg. ¿Qué volumen ocupará a una presión de 1,2 atm. si la temperatura no cambia? Dato: 1atm = 760 mmHg

- A) 68,7 cm³
- B) 60,7
- C) 65,8
- D) 61,2
- E) 71,2

Rpta: C

3) <u>Ley de Charles</u> (1787)

El volumen de un gas es directamente proporcional a la temperatura absoluta (al mantener constantes la presión y la masa del gas).

 $V \propto T$ (m y P son constantes)

Una muestra de gas nitrógeno ocupa 117mL a 100°C.¿A qué temperatura(°C) debería el gas ocupar 234mL si la presión no cambia?

- A) 746 °C
- B) 473
- C) 353
- D) 537
- E) 200

Rpta: B

Se colectó un volumen de 473mL de oxígeno a 27°C¿Qué volumen(mL) ocupará dicho gas oxígeno a 173°C, a presión constante?

- A) 873,27 mL
- B) 773,16
- C) 853,26
- D) 703,19
- E) 873,14

Rpta: D

El volumen inicial de una cierta cantidad de gas es de 200 cm³ a la temperatura de 20°C. Calcular el volumen a 90°C si la presión permanece constante.

- A) 273,27 cm³
- B) 373,16
- C) 253,26
- D) 247,78
- E) 273,14

Rpta: D

4) Ley de Gay-Lussac (1802)

La presión absoluta de un gas es directamente proporcional a la temperatura absoluta (al mantener constantes el volumen y la masa del gas).

$P \propto T (m y V son constantes)$

El aire en un tanque se encontraba a una presión de 640mmHg y 23°C. Se expuso al sol con lo que su temperatura aumentó a 48°C. ¿Cuál fue la presión(mmHg) que se presentó entonces en el tanque?

- A) 523,23 mmHg
- B) 633,15
- C) 843,27
- D) 793,18
- E) 694,05

Rpta: E

Es peligroso que los envases de aerosoles se expongan al calor. Si una lata de fijador para el cabello a una presión de 4 atmósferas y a una temperatura ambiente de 27°C se arroja al fuego y el envase alcanza los 402°C.¿Cuál será su nueva presión(atm) que se presentó entonces en el envase?

- A) 7 atm
- B) 8
- C) 9
- D) 6
- E) 10

Rpta: C

Una cierta cantidad de gas se encuentra en un recipiente cerrado a la presión de 790 mmHg cuando la temperatura es de 25°C. Calcular la presión que alcanzará si la temperatura sube hasta los 200°C.

- A) 1055,1 mmHg
- B) 1800,2
- C) 1023,4
- D) 1050,1
- E) 1034,3

Rpta: A

5) ECUACIÓN COMBINADA DE LOS GASES IDEALES

Ecuación general de los gases ideales

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} = \dots = \frac{P_i V_i}{T_i} = \text{Cte.}$$

Los neumáticos de un coche deben estar a 20°C y 1,8 atm de presión. Con el movimiento se calientan hasta 50°C, aumentando su volumen de 50 a 50,5 litros ¿Cuál será la presión(atm) del neumático tras la marcha?

- A) 1,35 atm
- B) 1,74
- C) 1,54
- D) 1,96
- E) 1,22

Rpta: D

Se libera una burbuja de 25mL del tanque de oxígeno de un buzo que se encuentra a una presión de 4 atmósferas y a una temperatura de 11°C.¿Cuál es el volumen(mL) de la burbuja cuando ésta alcanza la superficie del océano, dónde la presión es de 760mmHg y la temperatura es de 18°C ? Dato: 1atm = 760 mmHg

- A) 105,3 atm
- B) 186,7
- C) 109,5
- D) 106,8
- E) 102,5

Rpta: E

SOLUCIONES

SOLUCIÓN o DISOLUCIÓN

Llamada también mezcla **homogénea** (una sola fase) de dos o más sustancias cuya composición es variable. También se puede definir como una mezcla homogénea formada por un disolvente y uno o varios solutos.

SOLUTO

+

SOLVENTE

=

SOLUCIÓN (disolución)

(disolvente)

Es la sustancia o sustancia(s) que se disuelve(n) o se dispersa(n). Se encuentra(n) en menor proporción.

O medio dispersante:

Se encuentra en mayor proporción y no cambia de estado al formarse la disolución.

Es la mezcla homogénea resultante.

IMPORTANCIA DE LAS DISOLUCIONES

La disolución es un proceso que permite que sustancias se mezclen y distribuyan, lo que es fundamental para la vida.

Importancia en la naturaleza:

- El agua disuelve sustancias nutritivas que viajan por la sangre y llegan a las células.
- La mayoría de las reacciones químicas que mantienen la vida ocurren en disolución.

Importancia en la industria y la medicina:

- Se utilizan para diluir muestras, realizar reacciones químicas, y almacenar y preservar muestras y reactivos.
- La disolución de un fármaco es importante para su biodisponibilidad y eficacia terapéutica.

Importancia en el transporte:

 Las disoluciones permiten transportar sustancias de un lugar a otro, facilitando la distribución de recursos y nutrientes.

Cuanto mayor es la concentración salina de una solución mejor conduce la electricidad y mayor es su **conductividad eléctrica**.

Estado físico de las sustancias sin mezclar			Estado físico del material	Ejemplos	
Soluto		Disolvente	Disolución		
gaseoso		gaseoso	gaseoso*	aire	Oxígeno disuelto en nitrógeno
líquido	en	gaseoso		aire húmedo	Agua disuelta en nitrógeno
gaseoso		liquido	liquido	bebidas gaseosas	Dióxido de carbono disuelto en agua
líquido	en	liquido		anticongelante	Etilenglicol disvelto en agua
sólido		liquido		agua endulzada	Azúcar disuelta en agua
gaseoso		sólido	sólido	maiz palomero	Vapor de agua disuelto en almidón
liquido	en	sólido		amalgama dental	Mercurio disuelto en plata
sólido		sólido		soldadura	Estaño disuelto en plomo

Fuente: Conceptos base de la Química, Sosa P., p.21

^{*} No hay disoluciones de un sólido en un disolvente gaseoso.

CLASIFICACIÓN DE LAS SOLUCIONES

- 1. Insaturadas: Contienen menos soluto que el máximo permitido.
- 1a. Diluidas: La cantidad de soluto es pequeña en comparación con la cantidad que se puede disolver.
- 1b. Concentradas: La cantidad de soluto se acerca a la cantidad total que se puede disolver.
- 1. 2. Saturadas: Si se disuelve la cantidad máxima de soluto.
- 2. 3. Sobresaturadas: La cantidad de soluto es mayor a la concentración de saturación.

SIMULADOR DE DISOLUCIONES

https://phet.colorado.edu/sims/html/concentration/latest/concentration_all.html?locale=es

CUESTIONARIO DE SOLUCIONES

- 1) ¿Qué es una solución (o disolución)?
- 2) ¿Qué significa que los componentes de una disolución pierden sus características individuales?
- 3) ¿Qué es solución acuosa?
- 4) ¿Es falso o verdadero que las mezclas de gases, tales como la atmósfera, a veces también se consideran como soluciones?
- 5) ¿Qué les sucede a las sales, los ácidos y las bases cuando se disuelven en el agua?
- 6) Dar 3 características de las soluciones (o disoluciones).
- 7) ¿Qué es soluto y cuáles son sus características?
- 8) ¿Qué es solvente y cuáles son sus características?
- 9) ¿Cómo se explica el carácter homogéneo de las soluciones y la imposibilidad de separar sus componentes por medios mecánicos?
- 10) En base a su concentración, ¿cómo se clasifican las disoluciones?
- 11) Si sabemos que cuando diluimos 36 gramos de sal de mesa en 100 gramos de agua a 20°C, la solución queda saturada, ¿qué pasaría si intentamos disolver 38 gramos de sal en 100 gramos de agua?

LECCIONES APRENDIDAS

- 1. ¿Qué son las leyes empíricas de los gases ideales?
- 2. ¿Cuáles son las leyes empíricas de los gases ideales?
- 3. ¿En qué consiste cada proceso de las leyes empíricas?
- 4. ¿Cómo aplicar las ecuaciones de cada proceso del gas ideal?
- 5. ¿Qué son las soluciones y sus componentes?

Bibliografía

- ✓ Brown T. Química. La ciencia central .novenaEdición. Prentice Hall INC. México. 2010
- ✓ Chang, R. Química. España. 11va Edición. Ed. Mc Graw Hill Interamericana 2013.
- ✓ Brown, LeMay, Bursten, Murphy. Química La Ciencia Central. Décimo primera edición. Pág. 392 y ss.
- ✓ El estado gaseoso https://youtu.be/oDeR59aA44E

