Álgebra Universal e Categorias

Exercícios - Folha 9 -

57. Considere a categoria C definida pelo diagrama seguinte

Indique, caso exista:

- (a) Um monomorfismo de C.
- (b) Um morfismo que não seja um epimorfismo de C.
- (c) Um bimorfismo de C.
- (d) Um isomorfismo de C.

58. Considere o diagrama seguinte

Sabendo que os quatro trapézios deste diagrama são comutativos, mostre que:

- (a) Se o quadrado mais pequeno é comutativo, então o quadrado maior também é comutativo.
- (b) Se e é um epimorfismo, m é um monomorfismo e o quadrado maior é comutativo, então o quadrado pequeno também é comutativo.
- 59. Sejam ${\bf C}$ uma categoria e $f:A\to B$ e $g:B\to C$ morfismos em ${\bf C}$. Mostre que:
 - (a) Se f e g são invertíveis à esquerda (respetivamente, direita), então $g \circ f$ é invertível à esquerda (respetivamente, direita).
 - (b) Se $g \circ f$ é invertível à esquerda (respetivamente, direita), então f é invertível à esquerda (respetivamente, g é invertivel à direita).
- 60. Sejam ${\bf C}$ uma categoria e $f:A\to B$ um morfismo em ${\bf C}$. Mostre que:
 - (a) Se f é invertível à esquerda, então f é um monomorfismo.
 - (b) Se f é invertível à direita, então f é um epimorfismo.
- 61. Sejam $\mathbf C$ uma categoria e $f:A\to B$ e $g:B\to C$ morfismos em $\mathbf C$. Mostre que se $g\circ f$ é um monomorfismo e f é invertível à direita, então g é um monomorfismo.
- 62. Sejam ${\bf C}$ uma categoria e $f:A\to B$ e $g:B\to C$ morfismos em ${\bf C}$. Mostre que se f e g são isomorfismos, então $g\circ f$ é um isomorfismo e o seu inverso é $f^{-1}\circ g^{-1}$.
- 63. Mostre que as seguintes condições sobre uma categoria ${f C}$ são equivalentes:
 - (I1) Todo o morfismo em C é invertível à direita;
 - (I2) Todo o morfismo em C é invertível à esquerda;

- (I3) Todo o morfismo em ${\bf C}$ é invertível.
- 64. Seja $f:A\to B$ um isomorfismo numa categoria ${\bf C}$. Para cada objeto $C\in {\rm Obj}({\bf C})$, mostre que a função $f_C: {\rm hom}(B,C)\to {\rm hom}(A,C)$ definida por $f_C(g)=gf$ é uma bijeção.
- 65. Mostre que na categoria **Poset**, um morfismo é um monomorfismo (respetivamente, epimorfismo) se e só se for injetivo (respetivamente, sobrejetivo).
- 66. Mostre que se C_1 e C_2 são duas categorias com objetos terminais (iniciais), então $C_1 \times C_2$ também tem objetos terminais (iniciais).
- 67. Mostre que se uma categoria tem objeto zero, então todo o objeto inicial (terminal) é objeto zero. Deduza que a categoria **Set** não tem objetos zero.
- 68. Seja ${f C}$ uma categoria com objeto inicial I e com objeto terminal T. Mostre que se $f:T\to I$ é um morfismo em ${f C}$, então f é um isomorfismo. Conclua que I e T são objetos zero.