Sílabo de Curso

I. Datos Informativos

a. Curso/Taller: Internet de las cosas nivel 1

b. **Duración:** 8 sesiones de 2 horas y 30 minutos

c. Dependencia: EPICS

d. **Público objetivo:** Desarrolladores de software, jefes de TI, alumnos de Computación y sistemas, público en general.

e. **Metodología:** El taller es 25% teórico y 75% práctico.

-

II. Sumilla.

loT (Internet de las Cosas) es un campo emergente donde los campos de aplicación surgen y se fortalecen más,por tanto la necesidad importante de expertos en loT irá creciendo de forma exponencial en un futuro próximo.

El presente curso busca guiar y fortalecer los conocimientos de los participantes en la aplicación e identificación de infraestructura.

III. Objetivos

a. General

 Sembrar y fortalecer los conocimientos básicos para trabajar e implementar soluciones tecnológicas con IoT.

b. Específicos

- Conocer las capas que comprende el loT.
- Desarrollar de manera práctica soluciones IoT en cada Capa que lo comprende.
- Conocer la infraestructura y capital humano necesario para implementar una solución IoT.

IV. Programación de Contenidos

Sesión 1:

- ✓ Presentación y bienvenida a los participantes
- ✓ IoT de consumo
- ✓ infraestructura para implementar IoT
- ✓ Presentación de proyecto de proyecto integral.
- ✓ Materiales de proyecto

Sesión 2:

- ✓ Herramientas de software.
- ✓ Sensores y actuadores.
- ✓ Circuitos electrónicos con sensores y actuadores

Sesión 3:

- ✓ Controladores y sus características.
- ✓ ARDUINO y el MartinoShield.
- ✓ algoritmos con arduino, haciendo uso de sensores y actuadores.

Sesión 4:

- ✓ Módulos WIFI
- ✓ servidor web con ESP8266
- ✓ Introducción a plataformas IoT

Sesión 5:

- ✓ Uso de Blink con ESP8266
- ✓ Uso de AdafruitIO con ESP8266
- ✓ Uso de Ubidots con ESP8266
- ✓ Planteamiento de proyecto final

Sesión 6:

- ✓ Uso de Blink con ESP8266.
- ✓ Uso de AdafruitIO con ESP8266.
- ✓ Uso de Ubidots con ESP8266.
- ✓ Planteamiento de proyecto final.

Sesión 7:

- ✓ Introducción a AWS y Azure.
- ✓ Desarrollo de proyecto Final.

Sesión 8:

- ✓ Cómo implementar IoT con Infraestructura local.
- ✓ Presentación de proyectos finales.
- (*)Se le brindará todos los componentes electrónicos necesarios a cada participante, para el desarrollo de las clases y proyecto final.
- (*)Martino Shield, es una plataforma electrónica desarrollada en el FabLab USMP. (*)Los materiales brindados serán dados en calidad de préstamo, hasta que finalice el curso.

V. Evaluación

La calificación del participante será:

PF = Trabajo final funcionando 70% + Sustentación 30%.

*PF promedio final.

VI. Materiales incluidos.

- ✓ Arduino UNO.
- ✓ Martino Shield.
- ✓ ESP8266.
- ✓ Sensores y actuadores
- ✓ componentes electrónicos varios