[86.03/66.25] Dispositivos Semiconductores 1er Cuatrimestre 2020

Transistor MOS

- 1. Polarización
- 2. Modelo de Pequeña Señal

Enunciado

Para el circuito de la figura y los siguientes datos:

- $|V_T| = 0.8 \text{ V}, \, \mu_P C'_{OX} = 80 \, \mu \text{A/V}^2$
- W = 32 μ m, L = 4 μ m, λ = 0.02 V^{-1} , γ^2 = 0.5 V
- $R_{G1} = 130 \text{ k}\Omega$, $R_{G2} = 370 \text{ k}\Omega$ $R_{D} = 18 \text{k}\Omega$, $V_{DD} = 5 \text{ V}$

hallar

- El punto de polarización
- 2. El modelo de pequeña señal
- 3. La variación de corriente de Drain al variar 1 mV la v_{qs}

Enunciado

Para el circuito de la figura y los siguientes datos:

- $|V_T| = 0.8 \text{ V}, \, \mu_P C'_{OX} = 80 \, \mu \text{A}/\text{V}^2$
- W = 32 μ m, L = 4 μ m, λ = 0.02 V^{-1} , γ^2 = 0.5 V
- $R_{G1} = 130 \text{ k}\Omega$, $R_{G2} = 370 \text{ k}\Omega$ $R_{D} = 18 \text{k}\Omega$, $V_{DD} = 5 \text{ V}$

hallar

- El punto de polarización
- 2. El modelo de pequeña señal
- 3. La variación de corriente de Drain al variar 1 mV la $v_{\rm gs}$

La polarización la la calculamos

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \,\mu\text{A}$ $V_{DS} = -3.46 \text{V}$

 $V_T = -0.8 \text{ V, k} = 320 \text{ }\mu\text{A}/\text{V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A, V}_{DS-sat} = -0.5 \text{V}$ $\begin{aligned} &\frac{Datos}{|V_T|} = 0.8 \text{ V}, \ \mu_P \text{C'}_{ox} = 80 \ \mu\text{A/V}^2 \\ &\text{W} = 32 \ \mu\text{m}, \ \text{L} = 4 \ \mu\text{m} \\ &\lambda = 0.02 \ \text{V}^{-1}, \ \gamma^2 = 0.5 \ \text{V} \\ &\text{R}_{G1} = 130 \ \text{k}\Omega, \ \text{R}_{G2} = 370 \ \text{k}\Omega \\ &\text{R}_D = 18 \text{k}\Omega, \ \text{V}_{DD} = 5 \ \text{V} \end{aligned}$

Enunciado

Para el circuito de la figura y los siguientes datos:

- $|V_T| = 0.8 \text{ V}, \, \mu_P C'_{OX} = 80 \, \mu \text{A}/\text{V}^2$
- W = 32 μ m, L = 4 μ m, λ = 0.02 V^{-1} , γ^2 = 0.5 V
- $R_{G1} = 130 \text{ k}\Omega$, $R_{G2} = 370 \text{ k}\Omega$ $R_{D} = 18 \text{k}\Omega$, $V_{DD} = 5 \text{ V}$

hallar

- El punto de polarización
- 2. El modelo de pequeña señal
- 3. La variación de corriente de Drain al variar 1 mV la v_{qs}

Enunciado

VDD

RG1

$$V_T = -0.8 \text{ V, k} = 320 \text{ } \mu\text{A/V}^2$$

$$I_{Dsat} = -80 \text{ } \mu\text{A, V}_{DS-sat} = -0.5 \text{V}$$

 $\begin{aligned} & \underline{\text{Datos}} \\ |\text{V}_{\text{T}}| &= 0.8 \text{ V}, \, \mu_{\text{P}}\text{C'}_{\text{ox}} = 80 \, \mu\text{A/V}^2 \\ & \text{W} = 32 \, \mu\text{m}, \, \text{L} = 4 \, \mu\text{m} \\ & \lambda = 0.02 \, \text{V}^{-1}, \, \gamma^2 = 0.5 \, \text{V} \\ & \text{R}_{\text{G1}} = 130 \, \text{k}\Omega, \, \text{R}_{\text{G2}} = 370 \, \text{k}\Omega \\ & \text{R}_{\text{D}} = 18 \text{k}\Omega, \, \text{V}_{\text{DD}} = 5 \, \text{V} \end{aligned}$

Para el circuito de la figura y los siguientes datos:

•
$$|V_T| = 0.8 \text{ V}, \, \mu_P C'_{OX} = 80 \, \mu \text{A/V}^2$$

• W = 32
$$\mu$$
m, L = 4 μ m, λ = 0.02 V^{-1} , γ^2 = 0.5 V

•
$$R_{G1} = 130 \text{ k}\Omega$$
, $R_{G2} = 370 \text{ k}\Omega$ $R_{D} = 18 \text{k}\Omega$, $V_{DD} = 5 \text{ V}$

hallar

M1

- El punto de polarización
- 2. El modelo de pequeña señal
- 3. La variación de corriente de Drain al variar 1 mV la $v_{\rm gs}$

$$V_{GS} = -1.3 \text{ V}$$
 $I_{D} = -85.5 \text{ } \mu\text{A}$
 $V_{DS} = -3.46 \text{ V}$

$$V_T = -0.8 \text{ V, k} = 320 \text{ }\mu\text{A/V}^2$$

 $I_{Dsat} = -80 \text{ }\mu\text{A, V}_{DS-sat} = -0.5 \text{V}$

<u>Utilizamos 2 modelos de pequeña señal:</u>

- Uno para frecuencias bajas o medias
- Otro para frecuencias altas: Se agregan las capacidades.

$$V_{GS} = -1.3 \text{ V}$$
 $I_{D} = -85.5 \text{ } \mu\text{A}$
 $V_{DS} = -3.46 \text{ V}$

$$V_T = -0.8 \text{ V, k} = 320 \text{ } \mu\text{A/V}^2$$

 $I_{Dsat} = -80 \text{ } \mu\text{A, V}_{DS-sat} = -0.5 \text{V}$

```
\begin{aligned} & \underline{Datos} \\ |V_T| &= 0.8 \text{ V}, \ \mu_P C^{\prime}_{ox} = 80 \ \mu\text{A/V}^2 \\ & W &= 32 \ \mu\text{m}, \ L = 4 \ \mu\text{m} \\ & \lambda = 0.02 \ V^{-1}, \ \gamma^2 = 0.5 \ V \\ & R_{G1} &= 130 \ k\Omega, \ R_{G2} = 370 \ k\Omega \\ & R_D &= 18k\Omega, \ V_{DD} = 5 \ V \end{aligned}
```


<u>Utilizamos 2 modelos de pequeña señal:</u>

- Uno para frecuencias bajas o medias
- Otro para frecuencias altas: Se agregan las capacidades.

Una vez tenemos que tenemos el punto de trabajo, el MPS es independiente del circuito externo.

$$V_{GS} = -1.3 \text{ V}$$
 $I_{D} = -85.5 \text{ } \mu\text{A}$
 $V_{DS} = -3.46 \text{ V}$

$$V_T = -0.8 \text{ V, k} = 320 \text{ } \mu\text{A/V}^2$$
 $I_{Dsat} = -80 \text{ } \mu\text{A, V}_{DS-sat} = -0.5 \text{V}$

```
\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V}, \ \mu_p \text{C'}_{ox} = 80 \ \mu \text{A/V}^2 \\ &\text{W} = 32 \ \mu \text{m}, \ \text{L} = 4 \ \mu \text{m} \\ &\lambda = 0.02 \ \text{V}^{-1}, \ \text{Y}^2 = 0.5 \ \text{V} \\ &\text{R}_{G1} = 130 \ \text{k}\Omega, \ \text{R}_{G2} = 370 \ \text{k}\Omega \\ &\text{R}_D = 18 \text{k}\Omega, \ \text{V}_{DD} = 5 \ \text{V} \end{split}
```


<u>Utilizamos 2 modelos de pequeña señal:</u>

- Uno para frecuencias bajas o medias
- Otro para frecuencias altas: Se agregan las capacidades.

Una vez tenemos que tenemos el punto de trabajo, el MPS es independiente del circuito externo.

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$ $V_{DS} = -3.46 \text{ V}$

 $V_T = -0.8 \text{ V, k} = 320 \text{ }\mu\text{A/V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A, V}_{DS-sat} = -0.5 \text{V}$

 $\begin{aligned} & \underline{Datos} \\ |V_T| &= 0.8 \text{ V}, \ \mu_P \text{C'}_{ox} = 80 \ \mu \text{A/V}^2 \\ & \text{W} = 32 \ \mu \text{m}, \ L = 4 \ \mu \text{m} \\ & \lambda = 0.02 \ \text{V}^{-1}, \ \gamma^2 = 0.5 \ \text{V} \\ & \text{R}_{G1} = 130 \ \text{k}\Omega, \ \text{R}_{G2} = 370 \ \text{k}\Omega \\ & \text{R}_D = 18 \text{k}\Omega, \ \text{V}_{DD} = 5 \ \text{V} \end{aligned}$

Para frecuencias bajas/medias

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$ $V_{DS} = -3.46 \text{ V}$

 $V_T = -0.8 \text{ V, k} = 320 \text{ }\mu\text{A}/\text{V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A, V}_{DS-sat} = -0.5 \text{V}$

 $|V_T|$ = 0.8 V, $\mu_P C'_{ox}$ = 80 $\mu A/V^2$ W = 32 μm , L = 4 μm λ = 0.02 V^{-1} , γ^2 = 0.5 V R_{G1} = 130 $k\Omega$, R_{G2} = 370 $k\Omega$

Datos

$$V_{GS} = -1.3 \text{ V}$$
 $I_{D} = -85.5 \text{ } \mu\text{A}$
 $V_{DS} = -3.46 \text{ V}$

$$V_T = -0.8 \text{ V, k} = 320 \text{ } \mu\text{A/V}^2$$

 $I_{Dsat} = -80 \text{ } \mu\text{A, V}_{DS-sat} = -0.5 \text{V}$

Para frecuencias bajas/medias

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$ $V_{DS} = -3.46 \text{ V}$

 $V_T = -0.8 \text{ V, k} = 320 \text{ } \mu\text{A/V}^2$ $I_{Dsat} = -80 \text{ } \mu\text{A, V}_{DS-sat} = -0.5 \text{V}$ $\begin{aligned} & \frac{Datos}{|V_T|} = 0.8 \text{ V}, & \mu_P \text{C'}_{ox} = 80 \text{ } \mu\text{A/V}^2 \\ & W = 32 \text{ } \mu\text{m}, \text{ } L = 4 \text{ } \mu\text{m} \\ & \lambda = 0.02 \text{ } V^{-1}, \text{ } \gamma^2 = 0.5 \text{ V} \\ & R_{G1} = 130 \text{ } k\Omega, \text{ } R_{G2} = 370 \text{ } k\Omega \\ & R_D = 18 \text{k}\Omega, \text{ } V_{DD} = 5 \text{ V} \end{aligned}$

Para frecuencias bajas/medias

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$ $V_{DS} = -3.46 \text{ V}$

 $V_T = -0.8 \text{ V}, \text{ k} = 320 \text{ }\mu\text{A}/\text{V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A}, \text{ V}_{DS-sat} = -0.5 \text{V}$

$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V, } \mu_P \text{C'}_{ox} = 80 \text{ } \mu\text{A/V}^2 \\ &\text{W} = 32 \text{ } \mu\text{m, } \text{L} = 4 \text{ } \mu\text{m} \\ &\lambda = 0.02 \text{ V}^{-1}, \, \gamma^2 = 0.5 \text{ V} \\ &\text{R}_{\text{G1}} = 130 \text{ } k\Omega, \, \text{R}_{\text{G2}} = 370 \text{ } k\Omega \\ &\text{R}_{\text{D}} = 18 \text{k}\Omega, \, \text{V}_{\text{DD}} = 5 \text{ V} \end{split}$$

 $V_{DS} = -3.46V$

 V_{τ} = -0.8 V, k = 320 μ A/V² $I_{Dsat} = -80 \mu A, V_{DS-sat} = -0.5 V$

Datos $|V_T| = 0.8 \text{ V}, \ \mu_P \text{C'}_{ox} = 80 \ \mu \text{A/V}^2$ $W = 32 \mu m, L = 4 \mu m$ $\lambda = 0.02 \text{ V}^{-1}, \, \gamma^2 = 0.5 \text{ V}$ R_{G1} = 130 k Ω , R_{G2} = 370 k Ω $R_D = 18k\Omega, V_{DD} = 5 V$

Para frecuencias bajas/medias

$$I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$$

$$g_{mb} = \left. \frac{\partial I_D}{\partial V_{BS}} \right|_{O}$$

Para frecuencias bajas/medias

 $I_{D} = -85.5 \, \mu A$

 $V_{DS} = -3.46V$

 V_{τ} = -0.8 V, k = 320 μ A/V² $I_{Dsat} = -80 \mu A, V_{DS-sat} = -0.5 V$

Datos $|V_T| = 0.8 \text{ V}, \ \mu_P \text{C'}_{ox} = 80 \ \mu \text{A/V}^2$ $W = 32 \mu m, L = 4 \mu m$ $\lambda = 0.02 \text{ V}^{-1}, \, \gamma^2 = 0.5 \text{ V}$ R_{G1} = 130 k Ω , R_{G2} = 370 k Ω $R_{D} = 18k\Omega, V_{DD} = 5 V$

$$I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$$

$$g_m = \left. \frac{\partial I_D}{\partial V_{GS}} \right|_Q$$

$$g_o = \left. \frac{\partial I_D}{\partial V_{DS}} \right|_Q$$

 $I_{D} = -85.5 \mu A$ $V_{DS} = -3.46 V$ $V_T = -0.8 \text{ V}, \text{ k} = 320 \text{ }\mu\text{A}/\text{V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A}, \text{ }V_{DS-sat} = -0.5\text{V}$
$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V}, \ \mu_P \text{C'}_{ox} = 80 \ \mu\text{A/V'}^2 \\ &\text{W} = 32 \ \mu\text{m}, \ L = 4 \ \mu\text{m} \\ &\lambda = 0.02 \ \text{V'}^1, \ \gamma^2 = 0.5 \ \text{V} \\ &\text{R}_{G1} = 130 \ \text{k}\Omega, \ \text{R}_{G2} = 370 \ \text{k}\Omega \\ &\text{R}_D = 18 \text{k}\Omega, \ \text{V}_{DD} = 5 \ \text{V} \end{split}$$

Para frecuencias bajas/medias

Para frecuencias bajas/medias

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$

 $V_{DS} = -3.46V$

 $V_T = -0.8 \text{ V}, \text{ k} = 320 \text{ }\mu\text{A}/\text{V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A}, \text{ }V_{DS-sat} = -0.5\text{V}$
$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V, } \mu_P \text{C'}_{ox} = 80 \text{ } \mu\text{A/V}^2 \\ &\text{W} = 32 \text{ } \mu\text{m, } \text{L} = 4 \text{ } \mu\text{m} \\ &\lambda = 0.02 \text{ V}^{-1}, \, \gamma^2 = 0.5 \text{ V} \\ &\text{R}_{\text{G1}} = 130 \text{ } k\Omega, \, \text{R}_{\text{G2}} = 370 \text{ } k\Omega \\ &\text{R}_{\text{D}} = 18 \text{k}\Omega, \, \text{V}_{\text{DD}} = 5 \text{ V} \end{split}$$

$$I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$$

$$g_m = \left. \frac{\partial I_D}{\partial V_{GS}} \right|_Q$$

$$_{nb} = \left. \frac{\partial I_D}{\partial V_{BS}} \right|_Q$$

$$g_o = \left. \frac{\partial I_D}{\partial V_{DS}} \right|_Q$$

$$r_0 = \frac{1}{2}$$

Para frecuencias bajas/medias

V_{GS} = -1.3 V I_D = -85.5 μΑ

 $V_{DS} = -3.46V$

 $V_T = -0.8 \text{ V}, \text{ k} = 320 \text{ }\mu\text{A}/\text{V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A}, \text{ }V_{DS-sat} = -0.5\text{V}$
$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V, } \mu_P \text{C'}_{ox} = 80 \text{ } \mu\text{A/V}^2 \\ &\text{W} = 32 \text{ } \mu\text{m, } \text{L} = 4 \text{ } \mu\text{m} \\ &\lambda = 0.02 \text{ V}^{-1}, \, \gamma^2 = 0.5 \text{ V} \\ &\text{R}_{\text{G1}} = 130 \text{ } k\Omega, \, \text{R}_{\text{G2}} = 370 \text{ } k\Omega \\ &\text{R}_{\text{D}} = 18 \text{k}\Omega, \, \text{V}_{\text{DD}} = 5 \text{ V} \end{split}$$

$$g_m = \left. \frac{\partial I_D}{\partial V_{GS}} \right|_Q$$

Para frecuencias bajas/medias

V_{GS} = -1.3 V I_D = -85.5 μA

 $V_{DS} = -3.46V$

 $V_T = -0.8 \text{ V, k} = 320 \text{ } \mu\text{A/V}^2$ $I_{Dsat} = -80 \text{ } \mu\text{A, V}_{DS-sat} = -0.5 \text{V}$

$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V}, \ &\mu_P C^{'}_{ox} = 80 \ \mu\text{A/V}^2 \\ &W = 32 \ \mu\text{m}, \ L = 4 \ \mu\text{m} \\ &\lambda = 0.02 \ V^{-1}, \ \gamma^2 = 0.5 \ V \\ &R_{G1} = 130 \ k\Omega, \ R_{G2} = 370 \ k\Omega \\ &R_D = 18k\Omega, \ V_{DD} = 5 \ V \end{split}$$

$$I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$$

$$g_m = \left. \frac{\partial I_D}{\partial V_{GS}} \right|_Q$$

$$g_m = -2k (V_{GS} - V_T) [1 - \lambda (V_{DS} - V_{DS-sat})]$$

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$ $V_{DS} = -3.46 \text{ V}$

 $V_T = -0.8 \text{ V}, \text{ k} = 320 \text{ }\mu\text{A}/\text{V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A}, \text{ }V_{DS-sat} = -0.5 \text{V}$
$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V}, \, \mu_P C'_{ox} = 80 \,\, \mu\text{A/V}^2 \\ &\text{W} = 32 \,\, \mu\text{m}, \, L = 4 \,\, \mu\text{m} \\ &\lambda = 0.02 \,\, V^{-1}, \, \gamma^2 = 0.5 \,\, V \\ &\text{R}_{G1} = 130 \,\, k\Omega, \, \text{R}_{G2} = 370 \,\, k\Omega \\ &\text{R}_D = 18k\Omega, \, V_{DD} = 5 \,\, V \end{split}$$

Para frecuencias bajas/medias

$$I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$$

$$g_m = \left. \frac{\partial I_D}{\partial V_{GS}} \right|_Q$$

$$g_m = -2k \left[\underbrace{(V_{GS} - V_T)} \left[1 - \lambda (V_{DS} - V_{DS\text{-sat}}) \right] \right]$$

 $I_{D} = -85.5 \mu A$ $V_{DS} = -3.46 V$

 $V_{GS} = -1.3 V$

 $V_T = -0.8 \text{ V}, \text{ k} = 320 \text{ }\mu\text{A/V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A}, V_{DS-sat} = -0.5 \text{V}$
$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V}, \ \mu_P C'_{ox} = 80 \ \mu\text{A/V}^2 \\ &W = 32 \ \mu\text{m}, \ L = 4 \ \mu\text{m} \\ &\lambda = 0.02 \ V^{\text{-1}}, \ \gamma^2 = 0.5 \ V \\ &R_{\text{G1}} = 130 \ k\Omega, \ R_{\text{G2}} = 370 \ k\Omega \\ &R_D = 18k\Omega, \ V_{DD} = 5 \ V \end{split}$$

Para frecuencias bajas/medias

$$I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$$

$$g_m = \left. \frac{\partial I_D}{\partial V_{GS}} \right|_Q$$

$$g_m = -2k \underbrace{(V_{GS} - V_T)}_{\text{I}} [1 - \lambda(V_{DS} - V_{DS-\text{sat}})]$$

$$g_m = 2\sqrt{-k} I_{D\text{-sat}} \left[1 - \lambda(V_{DS} - V_{DS\text{-sat}})\right]$$

Para frecuencias bajas/medias

 $I_{D} = -85.5 \mu A$ $V_{DS} = -3.46 V$

 $V_{GS} = -1.3 \text{ V}$

 $\begin{aligned} V_T &= -0.8 \text{ V, k} = 320 \text{ } \mu\text{A/V}^2 \\ I_{Dsat} &= -80 \text{ } \mu\text{A, V}_{DS-sat} = -0.5 \text{V} \end{aligned} \\ |V_T| &= 0.8 \text{ V, } \mu_P \text{C'}_{ox} = 80 \text{ } \mu\text{A/V}^2 \\ W &= 32 \text{ } \mu\text{m, L} = 4 \text{ } \mu\text{m} \\ \lambda &= 0.02 \text{ V}^{-1}, \text{ } \gamma^2 = 0.5 \text{ V} \\ R_{G1} &= 130 \text{ } k\Omega, \text{ } R_{G2} = 370 \text{ } k\Omega \\ R_D &= 18 k\Omega, \text{ } V_{DD} = 5 \text{ V} \end{aligned}$

$$I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$$

$$g_m = \left. \frac{\partial I_D}{\partial V_{GS}} \right|_Q$$

$$g_m = -2k \underbrace{(V_{GS} - V_T)} [1 - \lambda(V_{DS} - V_{DS-sat})]$$

$$g_m = 2\sqrt{-k I_{D\text{-sat}}} \left[1 - \lambda (V_{DS} - V_{DS\text{-sat}})\right]$$

 $g_m \approx 2\sqrt{-k I_{D\text{-sat}}}$

Para frecuencias bajas/medias

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$ $V_{DS} = -3.46 \text{ V}$

 $V_{T} = -0.8 \text{ V}, \text{ k} = 320 \text{ } \mu\text{A}/V^{2}$ $I_{Dsat} = -80 \text{ } \mu\text{A}, \text{ } V_{DS-sat} = -0.5 \text{V}$ $V_{T} = -0.8 \text{ V}, \text{ k} = 320 \text{ } \mu\text{A}/V^{2}$ $V_{T} = -0.8 \text{ V}, \text{ k} = 320 \text{ } \mu\text{A}/V^{2}$ $V_{T} = -0.8 \text{ V}, \text{ k} = 320 \text{ } \mu\text{A}/V^{2}$ $V_{T} = -0.8 \text{ V}, \text{ k} = 320 \text{ } \mu\text{A}/V^{2}$ $V_{T} = -0.8 \text{ V}, \text{ k} = 320 \text{ } \mu\text{A}/V^{2}$ $V_{T} = -0.8 \text{ V}, \text{ k} = 320 \text{ } \mu\text{A}/V^{2}$ $V_{T} = -0.8 \text{ V}, \text{ k} = 320 \text{ } \mu\text{A}/V^{2}$ $V_{T} = -0.8 \text{ V}, \text{ k} = 320 \text{ } \mu\text{A}/V^{2}$

 $\begin{aligned} & \underline{Datos} \\ |V_T| &= 0.8 \text{ V}, \ \mu_p \text{C'}_{ox} = 80 \ \mu \text{A/V}^2 \\ & \text{W} = 32 \ \mu \text{m}, \ \text{L} = 4 \ \mu \text{m} \\ & \lambda = 0.02 \ \text{V}^{-1}, \ \gamma^2 = 0.5 \ \text{V} \\ & \text{R}_{\text{G1}} = 130 \ \text{k}\Omega, \ \text{R}_{\text{G2}} = 370 \ \text{k}\Omega \\ & \text{R}_{\text{D}} = 18 \text{k}\Omega, \ \text{V}_{\text{DD}} = 5 \ \text{V} \end{aligned}$

$$\partial I_D$$

$$g_m = \left. \frac{\partial I_D}{\partial V_{GS}} \right|_Q$$

$$g_m = -2k \underbrace{(V_{GS} - V_T)}_{-\sqrt{\frac{-I_{D\text{-sat}}}{k}}} [1 - \lambda(V_{DS} - V_{DS\text{-sat}})]$$

$$g_m = 2\sqrt{-k I_{D\text{-sat}}} \left[1 - \lambda (V_{DS} - V_{DS\text{-sat}}) \right]$$

$$g_m \approx 2\sqrt{-k I_{D\text{-sat}}}$$

 $I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$

Para frecuencias bajas/medias

V_{GS} = -1.3 V _D = -85.5 μ*Α*

 $V_{DS} = -3.46V$

 $V_T = -0.8 \text{ V}, \text{ k} = 320 \text{ }\mu\text{A}/\text{V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A}, \text{ }V_{DS-sat} = -0.5\text{V}$
$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V, } \mu_P \text{C}'_{ox} = 80 \text{ } \mu\text{A/V}^2 \\ &\text{W} = 32 \text{ } \mu\text{m, } \text{L} = 4 \text{ } \mu\text{m} \\ &\lambda = 0.02 \text{ V}^{-1}, \text{ } \gamma^2 = 0.5 \text{ V} \\ &\text{R}_{\text{G1}} = 130 \text{ } k\Omega, \text{ R}_{\text{G2}} = 370 \text{ } k\Omega \\ &\text{R}_{\text{D}} = 18 k\Omega, \text{ V}_{\text{DD}} = 5 \text{ V} \end{split}$$

$$I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$$

$$g_{mb} = \left. \frac{\partial I_D}{\partial V_{BS}} \right|_{\zeta_0}$$

Para frecuencias bajas/medias

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$

 $V_{DS} = -3.46V$

 $V_T = -0.8 \text{ V}, \text{ k} = 320 \text{ }\mu\text{A}/\text{V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A}, \text{ V}_{DS-sat} = -0.5 \text{V}$
$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V, } \mu_P \text{C'}_{ox} = 80 \text{ } \mu\text{A/V}^2 \\ &\text{W} = 32 \text{ } \mu\text{m, } \text{L} = 4 \text{ } \mu\text{m} \\ &\text{$\lambda = 0.02 \text{ V}^{-1}$, $\gamma^2 = 0.5 \text{ V}$} \\ &\text{R}_{\text{G1}} = 130 \text{ } \text{k}\Omega, \text{R}_{\text{G2}} = 370 \text{ } \text{k}\Omega \\ &\text{R}_{\text{D}} = 18\text{k}\Omega, \text{V}_{\text{DD}} = 5 \text{ V} \end{split}$$

$$I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$$

$$= \left. \frac{\partial I_D}{\partial V_{BS}} \right|_Q$$

$$g_{mb} = \underbrace{-2 k (V_{GS} - V_T) \left[1 - \lambda (V_{DS} - V_{DS-\text{sat}})\right]}_{g_m} \left(-\frac{\partial V_T}{\partial V_{BS}}\right) \Big|_{Q}$$

Para frecuencias bajas/medias

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$

 $V_{DS} = -3.46V$

 $V_T = -0.8 \text{ V}, \text{ k} = 320 \text{ }\mu\text{A}/\text{V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A}, \text{ }V_{DS-sat} = -0.5\text{V}$
$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V}, \, \mu_P C'_{ox} = 80 \,\, \mu\text{A/V}^2 \\ &\text{W} = 32 \,\, \mu\text{m}, \, L = 4 \,\, \mu\text{m} \\ &\lambda = 0.02 \,\, V^{\text{-1}}, \, \gamma^2 = 0.5 \,\, V \\ &\text{R}_{\text{G1}} = 130 \,\, \text{k}\Omega, \, \text{R}_{\text{G2}} = 370 \,\, \text{k}\Omega \\ &\text{R}_{\text{D}} = 18 \text{k}\Omega, \, V_{\text{DD}} = 5 \,\, V \end{split}$$

$$I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$$

$$_{ab} = \left. \frac{\partial I_D}{\partial V_{BS}} \right|_Q$$

$$g_{mb} = \underbrace{-2 k \left(V_{GS} - V_T\right) \left[1 - \lambda \left(V_{DS} - V_{DS-\text{sat}}\right)\right]}_{g_m}$$

$$V_T = V_{T0} - \gamma \left(\sqrt{2 \phi_n + V_{BS}} - \sqrt{2 \phi_N}\right)$$

$$\frac{\partial V_T}{\partial V_{BS}} = -\frac{\gamma}{2} \frac{1}{\sqrt{2 \phi_n + V_{BS}}}$$

 $I_D = -85.5 \,\mu\text{A}$ $V_{DS} = -3.46 \text{V}$ $V_T = -0.8 \text{ V, k} = 320 \text{ }\mu\text{A/V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A, V}_{DS-sat} = -0.5 \text{V}$

$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V}, \ \mu_P \text{C'}_{ox} = 80 \ \mu\text{A/V}^2 \\ &W = 32 \ \mu\text{m}, \ L = 4 \ \mu\text{m} \\ &\lambda = 0.02 \ \text{V}^{-1}, \ \gamma^2 = 0.5 \ \text{V} \\ &R_{\text{G1}} = 130 \ \text{k}\Omega, \ R_{\text{G2}} = 370 \ \text{k}\Omega \\ &R_{\text{D}} = 18 \text{k}\Omega, \ V_{\text{DD}} = 5 \ \text{V} \end{split}$$

Para frecuencias bajas/medias

$$V_{GS}$$
 V_{DS}
 V_{DS}
 I_D
 I_D
 I_D
 I_D
 I_D

$$I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$$

$$= \left. \frac{\partial I_D}{\partial V_{BS}} \right|_Q$$

$$g_{mb} = \underbrace{-2 k \left(V_{GS} - V_T \right) \left[1 - \lambda \left(V_{DS} - V_{DS\text{-sat}} \right) \right]}_{g_m} \left(-\frac{\partial V_T}{\partial V_{BS}} \right) \Big|_{Q}$$

$$V_T = V_{T0} - \gamma \left(\sqrt{2 \phi_n + V_{BS}} - \sqrt{2 \phi_N} \right)$$

$$\frac{\partial V_T}{\partial V_{BS}} = -\frac{\gamma}{2} \frac{1}{\sqrt{2 \phi_n + V_{BS}}}$$

$$g_{mb} = g_m \frac{\gamma}{\sqrt{2\phi_n + V_{BS}}}$$

Para frecuencias bajas/medias

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$ $V_{DS} = -3.46 \text{ V}$

 $V_T = -0.8 \text{ V, k} = 320 \text{ } \mu\text{A}/\text{V}^2$ $I_{Dsat} = -80 \text{ } \mu\text{A, V}_{DS-sat} = -0.5 \text{V}$

$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V}, \, \mu_p \text{C'}_{ox} = 80 \,\, \mu \text{A/V}^2 \\ &\text{W} = 32 \,\, \mu \text{m}, \, \text{L} = 4 \,\, \mu \text{m} \\ &\text{$\lambda = 0.02 \,\, \text{V}^{\text{-1}}, \, \text{y}^2 = 0.5 \,\, \text{V}} \\ &\text{R}_{\text{G1}} = 130 \,\, \text{k}\Omega, \, \text{R}_{\text{G2}} = 370 \,\, \text{k}\Omega \\ &\text{R}_{\text{D}} = 18 \text{k}\Omega, \, \text{V}_{\text{DD}} = 5 \,\, \text{V} \end{split}$$

$$I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$$

$$= \left. \frac{\partial I_D}{\partial V_{BS}} \right|_Q$$

$$g_{mb} = \underbrace{-2 k \left(V_{GS} - V_T \right) \left[1 - \lambda \left(V_{DS} - V_{DS\text{-sat}} \right) \right]}_{g_m} \left(-\frac{\partial V_T}{\partial V_{BS}} \right) \Big|_Q$$

$$V_T = V_{T0} - \gamma \left(\sqrt{2 \phi_n + V_{BS}} - \sqrt{2 \phi_N} \right)$$

$$\frac{\partial V_T}{\partial V_{BS}} = -\frac{\gamma}{2} \frac{1}{\sqrt{2\phi_n + V_{BS}}}$$

$$q_{mh} = q_m \frac{\gamma}{\sqrt{2\phi_n + V_{BS}}}$$

$$g_{mb} = g_m \, \frac{\gamma}{\sqrt{2\phi_n + V_{BS}}}$$

 $I_{D} = -85.5 \mu A$ $V_{DS} = -3.46 V$ $V_T = -0.8 \text{ V}, \text{ k} = 320 \text{ }\mu\text{A}/\text{V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A}, V_{DS-sat} = -0.5 \text{V}$
$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V}, \, \mu_P C_{ox}' = 80 \, \mu\text{A/V}^2 \\ &\text{W} = 32 \, \mu\text{m}, \, L = 4 \, \mu\text{m} \\ &\lambda = 0.02 \, V^{\text{-1}}, \, \gamma^2 = 0.5 \, V \\ &\text{R}_{\text{G1}} = 130 \, \text{k}\Omega, \, \text{R}_{\text{G2}} = 370 \, \text{k}\Omega \\ &\text{R}_{\text{D}} = 18 \text{k}\Omega, \, V_{\text{DD}} = 5 \, V \end{split}$$

Para frecuencias bajas/medias

$I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$

$$g_o = \left. \frac{\partial I_D}{\partial V_{DS}} \right|_Q$$

Para frecuencias bajas/medias

V_{GS} = -1.3 V I_D = -85.5 μΑ

 $V_{DS} = -3.46V$

 $V_T = -0.8 \text{ V}, \text{ k} = 320 \text{ }\mu\text{A}/\text{V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A}, \text{ }V_{DS-sat} = -0.5\text{V}$
$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V, } \mu_P \text{C'}_{ox} = 80 \text{ } \mu\text{A/V}^2 \\ &\text{W} = 32 \text{ } \mu\text{m, L} = 4 \text{ } \mu\text{m} \\ &\lambda = 0.02 \text{ V}^{-1}, \text{ } \gamma^2 = 0.5 \text{ V} \\ &\text{R}_{G1} = 130 \text{ } k\Omega, \text{R}_{G2} = 370 \text{ } k\Omega \\ &\text{R}_D = 18 \text{k}\Omega, \text{V}_{DD} = 5 \text{ V} \end{split}$$

$$g_0 = -k \left(V_{GS} - V_T \right)^2 (-\lambda)$$

Para frecuencias bajas/medias

V_{GS} = -1.3 V I_D = -85.5 μΑ

 $V_{DS} = -3.46V$

 $V_T = -0.8 \text{ V}, \text{ k} = 320 \text{ }\mu\text{A}/\text{V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A}, \text{ V}_{DS-sat} = -0.5\text{V}$

$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V, } \mu_P \text{C'}_{ox} = 80 \text{ } \mu\text{A/V}^2 \\ &\text{W} = 32 \text{ } \mu\text{m, } \text{L} = 4 \text{ } \mu\text{m} \\ &\lambda = 0.02 \text{ V}^{-1}, \, \gamma^2 = 0.5 \text{ V} \\ &\text{R}_{\text{G1}} = 130 \text{ } k\Omega, \, \text{R}_{\text{G2}} = 370 \text{ } k\Omega \\ &\text{R}_{\text{D}} = 18 \text{k}\Omega, \, \text{V}_{\text{DD}} = 5 \text{ V} \end{split}$$

$$I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$$

$$g_0 = -k (V_{GS} - V_T)^2 (-\lambda)$$

$$g_0 = -\lambda I_{D\text{-sat}}$$

Para frecuencias bajas/medias

 $g_{mb} v_{bs}$

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$ $V_{DS} = -3.46 \text{ V}$

 $V_T = -0.8 \text{ V, k} = 320 \text{ }\mu\text{A/V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A, V}_{DS-sat} = -0.5 \text{V}$
$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V}, \ \mu_P C'_{ox} = 80 \ \mu\text{A/V}^2 \\ &\text{W} = 32 \ \mu\text{m}, \ L = 4 \ \mu\text{m} \\ &\lambda = 0.02 \ V^{\text{-1}}, \ \gamma^2 = 0.5 \ V \\ &\text{R}_{\text{G1}} = 130 \ k\Omega, \ \text{R}_{\text{G2}} = 370 \ k\Omega \\ &\text{R}_{\text{D}} = 18 k\Omega, \ V_{\text{DD}} = 5 \ V \end{split}$$

$$I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$$

$$g_o = \left. \frac{\partial I_D}{\partial V_{DS}} \right|_Q$$

$$g_0 = -k (V_{GS} - V_T)^2 (-\lambda)$$

$$g_0 = -\lambda I_{D\text{-sat}}$$

$$r_0 = \frac{1}{g_0}$$

Para frecuencias bajas/medias

 $g_{mb} v_{bs}$

V_{GS} = -1.3 V I_D = -85.5 μΑ

 $V_{DS} = -3.46V$

 $V_T = -0.8 \text{ V}, \text{ k} = 320 \text{ }\mu\text{A}/\text{V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A}, \text{ }V_{DS-sat} = -0.5\text{V}$

$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V, } \mu_P \text{C'}_{ox} = 80 \text{ } \mu\text{A/V}^2 \\ &\text{W} = 32 \text{ } \mu\text{m, } \text{L} = 4 \text{ } \mu\text{m} \\ &\lambda = 0.02 \text{ V}^{-1}, \text{ V}^2 = 0.5 \text{ V} \\ &\text{R}_{\text{G1}} = 130 \text{ k}\Omega, \text{R}_{\text{G2}} = 370 \text{ k}\Omega \\ &\text{R}_{\text{D}} = 18 \text{k}\Omega, \text{V}_{\text{DD}} = 5 \text{ V} \end{split}$$

$$I_D = -k (V_{GS} - V_T)^2 [1 - \lambda (V_{DS} - V_{DS-sat})]$$

$$g_o = \left. \frac{\partial I_D}{\partial V_{DS}} \right|_Q$$

$$g_0 = -k (V_{GS} - V_T)^2 (-\lambda)$$

$$g_0 = -\lambda I_{D\text{-sat}}$$

$$r_0 = \frac{1}{r_0}$$

Para frecuencias bajas/medias

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$ $V_{DS} = -3.46 \text{ V}$

$$\begin{split} V_T &= -0.8 \text{ V, k} = 320 \text{ } \mu\text{A/V}^2 \\ I_{Dsat} &= -80 \text{ } \mu\text{A, V}_{DS-sat} = -0.5 \text{V} \\ \end{split} \\ V_T &= 0.8 \text{ V, } \mu_p \text{C}'_{ox} = 80 \text{ } \mu\text{A/V}^2 \\ W &= 32 \text{ } \mu\text{m, L} = 4 \text{ } \mu\text{m} \\ \lambda &= 0.02 \text{ V}^{-1}, \text{ } \gamma^2 = 0.5 \text{ V} \\ R_{G1} &= 130 \text{ } k\Omega, R_{G2} = 370 \text{ } k\Omega \end{split}$$

 $R_D = 18k\Omega, V_{DD} = 5 V$

Para frecuencias bajas/medias

 V_{τ} = -0.8 V, k = 320 μ A/V² Datos $|V_T| = 0.8 \text{ V}, \ \mu_P C'_{OX} = 80 \ \mu \text{A/V}^2$ $I_{Dsat} = -80 \mu A, V_{DS-sat} = -0.5 V$ $W = 32 \mu m, L = 4 \mu m$ $\lambda = 0.02 \text{ V}^{-1}, \, \gamma^2 = 0.5 \text{ V}$ $R_{G1} = 130 \text{ k}\Omega, R_{G2} = 370 \text{ k}\Omega$ $R_D = 18k\Omega, V_{DD} = 5 V$

$$\partial I_D \mid$$

 $V_{GS} = -1.3 V$

 $I_{D} = -85.5 \, \mu A$

 $V_{DS} = -3.46V$

 $=339\,\mu\text{A/V}$

$$g_m = \frac{\partial I_D}{\partial V_{GS}} \Big|_Q = 2\sqrt{-k I_{D\text{-sat}}} \left[1 - \lambda(V_{DS} - V_{DS-sat})\right]$$

$$\approx 2\sqrt{-k\,I_{D\text{-sat}}} = 320\,\mu\text{A/V}$$

$$g_{mb} = \left.\frac{\partial I_D}{\partial V_{BS}}\right|_Q = g_m\,\frac{\gamma}{\sqrt{2\phi_n + V_{BS}}} = 293\,\mu\text{A/V}$$

 $g_o = \frac{\partial I_D}{\partial V_{DS}}\Big|_{Q} = -\lambda I_{D\text{-sat}} = 1.6 \,\mu\text{A/V} \rightarrow r_o = 625 \,\text{k}\Omega$

Para frecuencias bajas/medias

 $V_T = -0.8 \text{ V}, k = 320 \mu\text{A/V}^2$ Datos $|V_T| = 0.8 \text{ V}, \ \mu_D C'_{OV} = 80 \ \mu\text{A/V}^2$ $I_{Dsat} = -80 \mu A, V_{DS-sat} = -0.5 V$ $W = 32 \mu m, L = 4 \mu m$ $\lambda = 0.02 \text{ V}^{-1}, \, \gamma^2 = 0.5 \text{ V}$ $R_{G1} = 130 \text{ k}\Omega, R_{G2} = 370 \text{ k}\Omega$ $R_D = 18k\Omega, V_{DD} = 5 V$

$$V_{GS}$$
 V_{DS}
 V_{DS}
 I_D
 I_D
 I_D
 I_D

$$\partial I_{\mathcal{D}} \mid$$

 $V_{GS} = -1.3 \text{ V}$

 $I_D = -85.5 \, \mu A$

 $V_{DS} = -3.46V$

$$g_m = \frac{\partial I_D}{\partial V_{GS}}\Big|_Q = 2\sqrt{-k I_{D\text{-sat}}} \left[1 - \lambda(V_{DS} - V_{DS\text{-sat}})\right]$$

$$OV_{GS}\mid_{Q}$$
 = $339\,\mu\mathrm{A/V}$ No tengo lo datos,

$$\approx 2\,\sqrt{-k\,I_{D\text{-sat}}} = 320\,\mu\text{A/V} \qquad \begin{array}{c} \text{as i que tomo} \\ \text{N}_{\text{D}} = 10^{\text{15}}\text{cm}^{\text{-3}} \\ \text{Tal que} \\ \phi_{\text{n}} = 279.9~\text{mV} \end{array}$$

$$g_{mb} = \frac{\partial I_D}{\partial V_{BS}} \Big|_{Q} = g_m \underbrace{\sqrt{2\phi_n + V_{BS}}}_{\sqrt{2\phi_n + V_{BS}}} = 293 \,\mu\text{A/V}$$

$$g_o = \frac{\partial I_D}{\partial V_{DS}} \Big|_{Q} = -\lambda \, I_{D\text{-sat}} = 1.6 \,\mu\text{A/V} \rightarrow r_o = 625 \,\text{k}\Omega$$

Para frecuencias altas

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$ $V_{DS} = -3.46 \text{ V}$

 $V_T = -0.8 \text{ V, k} = 320 \text{ }\mu\text{A/V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A, V}_{DS-sat} = -0.5 \text{V}$
$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \text{ V, } \mu_P \text{C'}_{ox} = 80 \text{ } \mu \text{A/V}^2 \\ &\text{W} = 32 \text{ } \mu \text{m, L} = 4 \text{ } \mu \text{m} \\ &\lambda = 0.02 \text{ V}^{-1}, \text{ } \text{ } \text{V}^2 = 0.5 \text{ V} \\ &\text{R}_{G1} = 130 \text{ } \text{k} \Omega, \text{ R}_{G2} = 370 \text{ } \text{k} \Omega \\ &\text{R}_D = 18 \text{k} \Omega, \text{ } \text{V}_{DD} = 5 \text{ V} \end{split}$$

Para frecuencias altas

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$ $V_{DS} = -3.46 \text{ V}$

 $V_T = -0.8 \text{ V, k} = 320 \text{ }\mu\text{A/V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A, V}_{DS-sat} = -0.5 \text{V}$
$$\begin{split} &\frac{Datos}{|V_T|} = 0.8 \ V, \ \mu_P C'_{ox} = 80 \ \mu A/V^2 \\ &V = 32 \ \mu m, \ L = 4 \ \mu m \\ &\lambda = 0.02 \ V^{-1}, \ \gamma^2 = 0.5 \ V \\ &R_{G1} = 130 \ k\Omega, \ R_{G2} = 370 \ k\Omega \\ &R_D = 18k\Omega, \ V_{DD} = 5 \ V \end{split}$$

$$C_{gs} = \frac{\partial Q}{\partial V_{GS}} \Big|_{Q}$$

$$C_{gd} = \frac{\partial Q}{\partial V_{GD}} \Big|_{Q}$$

$$C_{db} = \frac{\partial Q}{\partial V_{DB}} \Big|_{Q}$$

$$\frac{\partial Q}{\partial Q} \Big|_{Q}$$

¿Para qué se utiliza el Modelo e Pequeña Señal?

El MPS *modela* mediante elementos lineales el comportamiento del transistor alrededor del punto de trabajo. Si trabajamos en su rango de validez, nos liberamos de las ecuaciones no lineales de I_D y V_{GS} y es más fácil resolver el circuito.

¿Para qué se utiliza el Modelo e Pequeña Señal?

El MPS *modela* mediante elementos lineales el comportamiento del transistor alrededor del punto de trabajo. Si trabajamos en su rango de validez, nos liberamos de las ecuaciones no lineales de I_D y V_{GS} y es más fácil resolver el circuito.

 V_{GS} = -1.3 V I_{D} = -85.5 μ A V_{DS} = -3.46V V_{DS} = -3.46V $V_{T} = -0.8 \text{ V, k} = 320 \ \mu\text{A/V}^{2}$ $I_{Dsat} = -80 \ \mu\text{A, V}_{DS-sat} = -0.5 \text{V}$ $g_{m} = 320 \ \mu\text{A/V}, g_{mb} = 293$ $\mu\text{A/V}$

 $r_0 = 625 \text{ k}\Omega$, $C_{0s} = 1.4 \text{x} 10^{17} \mu\text{F}$

 $\begin{aligned} &\frac{Datos}{|V_T|} = 0.8 \text{ V, } \mu_P \text{C}'_{ox} = 80 \text{ } \mu\text{A/V}^2 \\ &\text{W} = 32 \text{ } \mu\text{m, L} = 4 \text{ } \mu\text{m} \\ &\lambda = 0.02 \text{ V}^{-1}\text{, } \gamma^2 = 0.5 \text{ V} \\ &\text{R}_{\text{G1}} = 130 \text{ } k\Omega\text{, R}_{\text{G2}} = 370 \text{ } k\Omega \\ &\text{R}_{\text{D}} = 18 \text{k}\Omega\text{, V}_{\text{DD}} = 5 \text{ V} \end{aligned}$

Enunciado

 $\begin{aligned} & \frac{\text{Datos}}{|\text{V}_{\text{T}}|} = 0.8 \text{ V, } \mu_{\text{p}} \text{C'}_{\text{ox}} = 80 \text{ } \mu \text{A/V}^2 \\ & \text{W} = 32 \text{ } \mu \text{m, L} = 4 \text{ } \mu \text{m} \\ & \lambda = 0.02 \text{ V}^{-1}, \text{ } \gamma^2 = 0.5 \text{ V} \\ & \text{R}_{\text{G1}} = 130 \text{ } \text{k} \Omega, \text{ R}_{\text{G2}} = 370 \text{ } \text{k} \Omega \\ & \text{R}_{\text{D}} = 18 \text{k} \Omega, \text{ V}_{\text{DD}} = 5 \text{ V} \end{aligned}$

Para el circuito de la figura y los siguientes datos: '

•
$$|V_T| = 0.8 \text{ V}, \ \mu_P C'_{OX} = 80 \ \mu \text{A/V}^2$$

• W = 32
$$\mu$$
m, L = 4 μ m, λ = 0.02 V^{-1} , γ^2 = 0.5 V

•
$$R_{G1} = 130 \text{ k}\Omega$$
, $R_{G2} = 370 \text{ k}\Omega$ $R_{D} = 18 \text{k}\Omega$, $V_{DD} = 5 \text{ V}$

hallar

- El punto de polarización
- 2. El modelo de pequeña señal
- 3. La variación de corriente de Drain al variar 1 mV la $v_{\rm gs}$

 $\begin{aligned} & \underline{Datos} \\ |V_T| &= 0.8 \text{ V}, \ \mu_P C'_{ox} = 80 \ \mu\text{A/V}^2 \\ & W &= 32 \ \mu\text{m}, \ L = 4 \ \mu\text{m} \\ & \lambda = 0.02 \ V^{-1}, \ \gamma^2 = 0.5 \ V \\ & R_{G1} &= 130 \ k\Omega, \ R_{G2} = 370 \ k\Omega \\ & R_D &= 18k\Omega, \ V_{DD} = 5 \ V \end{aligned}$

Simplificamos el modelo de pequeña señal

 $\begin{aligned} & \underline{\text{Datos}} \\ |V_{\text{T}}| = 0.8 \text{ V}, \mu_{\text{p}} \text{C'}_{\text{ox}} = 80 \text{ μA/V}^2 \\ & \text{W} = 32 \text{ μm, L} = 4 \text{ μm} \\ & \lambda = 0.02 \text{ V}^{-1}, \text{ } \text{γ}^2 = 0.5 \text{ V} \\ & \text{R}_{\text{G1}} = 130 \text{ k}\Omega, \text{R}_{\text{G2}} = 370 \text{ k}\Omega \\ & \text{R}_{\text{D}} = 18 \text{k}\Omega, \text{V}_{\text{DD}} = 5 \text{ V} \end{aligned}$

Simplificamos el modelo de pequeña señal

Se puede considerar frecuencias bajas o medias.

Enunciado:

3. La variación de corriente de Drain al variar 1 mV la $v_{\rm qs}$

$$V_{GS} = -1.3 \text{ V}$$
 $I_{D} = -85.5 \text{ } \mu\text{A}$
 $V_{DS} = -3.46 \text{ V}$

Simplificamos el modelo de pequeña señal

Se puede considerar frecuencias bajas o medias.

B y S cortocircuitados

$$V_{GS} = -1.3 \text{ V}$$
 $I_{D} = -85.5 \mu\text{A}$
 $V_{DS} = -3.46 \text{V}$

Simplificamos el modelo de pequeña señal

$$V_{GS} = -1.3 \text{ V}$$
 $I_{D} = -85.5 \text{ } \mu\text{A}$
 $V_{DS} = -3.46 \text{ V}$


```
\begin{aligned} & \underline{Datos} \\ |V_T| &= 0.8 \text{ V}, \ \mu_P \text{C'}_{ox} = 80 \ \mu \text{A/V}^2 \\ & \text{W} = 32 \ \mu \text{m}, \ \text{L} = 4 \ \mu \text{m} \\ & \lambda = 0.02 \ \text{V}^{-1}, \ \text{V}^2 = 0.5 \ \text{V} \\ & \text{R}_{\text{G1}} = 130 \ \text{k}\Omega, \ \text{R}_{\text{G2}} = 370 \ \text{k}\Omega \\ & \text{R}_{\text{D}} = 18 \text{k}\Omega, \ \text{V}_{\text{DD}} = 5 \ \text{V} \end{aligned}
```


Simplificamos el modelo de pequeña señal

 $\begin{aligned} & \underline{Datos} \\ |V_T| &= 0.8 \text{ V}, \ \mu_P \text{C'}_{ox} = 80 \ \mu\text{A/V}^2 \\ & W &= 32 \ \mu\text{m}, \ L = 4 \ \mu\text{m} \\ & \lambda = 0.02 \ \text{V}^{-1}, \ \gamma^2 = 0.5 \ \text{V} \\ & R_{G1} &= 130 \ \text{k}\Omega, \ R_{G2} = 370 \ \text{k}\Omega \\ & R_D &= 18 \text{k}\Omega, \ V_{DD} = 5 \ \text{V} \end{aligned}$

 $\begin{aligned} & \underline{Datos} \\ |V_T| = 0.8 \ V, \ \mu_P C^{\prime}_{ox} = 80 \ \mu A/V^2 \\ & W = 32 \ \mu m, \ L = 4 \ \mu m \\ & \lambda = 0.02 \ V^{-1}, \ \gamma^2 = 0.5 \ V \\ & R_{G1} = 130 \ k\Omega, \ R_{G2} = 370 \ k\Omega \\ & R_D = 18k\Omega, \ V_{DD} = 5 \ V \end{aligned}$


```
\begin{aligned} & \underline{Datos} \\ |V_T| &= 0.8 \text{ V, } \mu_P \text{C'}_{ox} = 80 \text{ } \mu \text{A/V}^2 \\ & W = 32 \text{ } \mu \text{m, } L = 4 \text{ } \mu \text{m} \\ & \lambda = 0.02 \text{ V}^{-1}, \text{ } \gamma^2 = 0.5 \text{ V} \\ & R_{\text{G1}} = 130 \text{ } k\Omega, \text{ } R_{\text{G2}} = 370 \text{ } k\Omega \\ & R_D = 18k\Omega, \text{ } V_{DD} = 5 \text{ V} \end{aligned}
```


Ahora sí pasamos al circuito de pequeña señal:

Dejamos las fuentes de señal


```
\begin{aligned} & \frac{Datos}{|V_T|} = 0.8 \ V, \ \mu_P C'_{ox} = 80 \ \mu A/V^2 \\ & W = 32 \ \mu m, \ L = 4 \ \mu m \\ & \lambda = 0.02 \ V^{-1}, \ \gamma^2 = 0.5 \ V \\ & R_{G1} = 130 \ k\Omega, \ R_{G2} = 370 \ k\Omega \\ & R_D = 18k\Omega, \ V_{DD} = 5 \ V \end{aligned}
```


- Dejamos las fuentes de señal
- Pasivamos las fuentes de continua

$$V_{GS} = -1.3 \text{ V}$$
 $I_{D} = -85.5 \text{ } \mu\text{A}$
 $V_{DS} = -3.46 \text{ V}$


```
\begin{aligned} & \frac{Datos}{|V_T|} = 0.8 \text{ V, } \mu_P \text{C'}_{ox} = 80 \text{ } \mu\text{A/V}^2 \\ & W = 32 \text{ } \mu\text{m, } L = 4 \text{ } \mu\text{m} \\ & \lambda = 0.02 \text{ } V^{-1}, \text{ } \gamma^2 = 0.5 \text{ V} \\ & R_{G1} = 130 \text{ } k\Omega, \text{ } R_{G2} = 370 \text{ } k\Omega \\ & R_D = 18k\Omega, \text{ } V_{DD} = 5 \text{ V} \end{aligned}
```


- Dejamos las fuentes de señal
- Pasivamos las fuentes de continua
- Capacitores = Circuitos cerrados

$$V_{GS} = -1.3 \text{ V}$$
 $I_{D} = -85.5 \text{ } \mu\text{A}$
 $V_{DS} = -3.46 \text{ V}$


```
\begin{aligned} & \underline{Datos} \\ |V_T| = 0.8 \ V, \ \mu_P C^{\prime}_{ox} = 80 \ \mu A/V^2 \\ & W = 32 \ \mu m, \ L = 4 \ \mu m \\ & \lambda = 0.02 \ V^{-1}, \ \gamma^2 = 0.5 \ V \\ & R_{G1} = 130 \ k\Omega, \ R_{G2} = 370 \ k\Omega \\ & R_D = 18k\Omega, \ V_{DD} = 5 \ V \end{aligned}
```


- Dejamos las fuentes de señal
- Pasivamos las fuentes de continua
- Capacitores = Circuitos cerrados
- Utilizamos el modelo de pequeña señal

 $V_{GS} = -1.3 \text{ V}$

 $V_{T} = -0.8 \text{ V}, \text{ k} = 320 \text{ } \mu\text{A/V}^{2}$

Datos

La variación de corriente de Drain al variar 1 mV la $v_{\rm qs}$

 $V_{GS} = -1.3 V$ $I_{D} = -85.5 \, \mu A$ $V_{DS} = -3.46V$

 $V_T = -0.8 \text{ V}, k = 320 \mu\text{A/V}^2$ I_{Dsat} = -80 μ A, V_{DS-sat} = -0.5V

 $g_m = 320 \mu A/V, g_{mh} = 293$

 $r_0 = 625 \text{ k}\Omega$, $C_{qs} = 1.4 \times 10^{17} \mu\text{F}$

μA/V

Datos $|V_T| = 0.8 \text{ V}, \, \mu_P C'_{OX} = 80 \, \mu \text{A/V}^2$ $W = 32 \mu m, L = 4 \mu m$ $\lambda = 0.02 \text{ V}^{-1}, \, \gamma^2 = 0.5 \text{ V}$ $R_{G1} = 130 \text{ k}\Omega, R_{G2} = 370 \text{ k}\Omega$ $R_D = 18k\Omega$, $V_{DD} = 5 V$

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$ $V_{DS} = -3.46 \text{ V}$

 $V_T = -0.8 \text{ V}, \text{ k} = 320 \text{ }\mu\text{A/V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A}, \text{ }V_{DS-sat} = -0.5 \text{V}$

 $g_m = 320 \mu A/V, g_{mb} = 293 \mu A/V$

 r_{o} = 625 k Ω , C_{gs} = 1.4x10¹⁷ μ F

 $\begin{aligned} & \underline{Datos} \\ |V_T| &= 0.8 \text{ V}, \ \mu_p \text{C}'_{ox} = 80 \ \mu \text{A/V}^2 \\ & \text{W} = 32 \ \mu \text{m}, \ \text{L} = 4 \ \mu \text{m} \\ & \lambda = 0.02 \ \text{V}^{-1}, \ \gamma^2 = 0.5 \ \text{V} \\ & \text{R}_{\text{G1}} = 130 \ \text{k}\Omega, \ \text{R}_{\text{G2}} = 370 \ \text{k}\Omega \\ & \text{R}_{\text{D}} = 18 \text{k}\Omega, \ \text{V}_{\text{DD}} = 5 \ \text{V} \end{aligned}$

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \, \mu A$ $V_{DS} = -3.46V$

 $V_T = -0.8 \text{ V}, k = 320 \mu\text{A/V}^2$ $I_{Dsat} = -80 \mu A, V_{DS-sat} = -0.5 V$ $g_m = 320 \mu A/V, g_{mh} = 293$

μA/V

 $r_0 = 625 \text{ k}\Omega$, $C_{0s} = 1.4 \text{x} 10^{17} \mu\text{F}$

La variación de corriente de Drain al variar 1 my la v

Datos $|V_T| = 0.8 \text{ V}, \, \mu_P C'_{OX} = 80 \, \mu \text{A/V}^2$ $W = 32 \mu m, L = 4 \mu m$ $\lambda = 0.02 \text{ V}^{-1}, \, \gamma^2 = 0.5 \text{ V}$ $R_{G1} = 130 \text{ k}\Omega, R_{G2} = 370 \text{ k}\Omega$ $R_{D} = 18k\Omega, V_{DD} = 5 V$

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$ $V_{DS} = -3.46 \text{ V}$

 $V_T = -0.8 \text{ V}, \text{ k} = 320 \text{ }\mu\text{A}/\text{V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A}, V_{DS-sat} = -0.5 \text{V}$

 $g_m = 320 \mu A/V, g_{mb} = 293 \mu A/V$

 $r_0 = 625 \text{ k}\Omega$, $C_{qs} = 1.4 \times 10^{17} \mu\text{F}$

La variación de corriente de Drain al variar 1 mV la v i_{x}

 $W = 32 \ \mu m, \ L = 4 \ \mu m$ $\lambda = 0.02 \ V^{-1}, \ \gamma^2 = 0.5 \ V$ $R_{G1} = 130 \ k\Omega, \ R_{G2} = 370 \ k\Omega$ $R_{D} = 18k\Omega, \ V_{DD} = 5 \ V$

 $|V_T| = 0.8 \text{ V}, \mu_P C'_{ox} = 80 \mu \text{A/V}^2$

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \mu\text{A}$ $V_{DS} = -3.46 \text{V}$

 $V_T = -0.8 \text{ V, k} = 320 \text{ μA/V}^2$ $I_{Dsat} = -80 \text{ μA, V}_{DS-sat} = -0.5 \text{V}$ $V_T = -0.8 \text{ V, k} = 320 \text{ μA/V}$ $V_T = -0.8 \text{ V, k} = 320 \text{ μA/V}$ $V_T = -0.8 \text{ V, k} = -0.5 \text{V}$ $V_T = -0.8 \text{V, k} = -0.5 \text{V}$ $V_T = -0.8 \text{$

 $\begin{aligned} & \frac{Datos}{|V_T|} = 0.8 \text{ V, } \mu_p \text{C'}_{ox} = 80 \text{ } \mu \text{A/V}^2 \\ & \text{W} = 32 \text{ } \mu \text{m, L} = 4 \text{ } \mu \text{m} \\ & \lambda = 0.02 \text{ } V^{-1}, \text{ } \gamma^2 = 0.5 \text{ V} \\ & \text{R}_{G1} = 130 \text{ } k\Omega, \text{ } \text{R}_{G2} = 370 \text{ } k\Omega \\ & \text{R}_D = 18 k\Omega, \text{ } V_{DD} = 5 \text{ V} \end{aligned}$

La variación de corriente de Drain al variar 1 mV la v_{xx}

La variación de corriente de Drain al variar 1 mV la v_{sa}

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$ $V_{DS} = -3.46 \text{ V}$

 $V_T = -0.8 \text{ V}, \text{ k} = 320 \text{ }\mu\text{A/V}^2$ $I_{Dsat} = -80 \text{ }\mu\text{A}, \text{ }V_{DS-sat} = -0.5 \text{V}$

 g_{m} = 320 μ A/V, g_{mb} = 293 μ A/V

 r_o = 625 kΩ , C_{gs} = 1.4x10¹⁷μF

 $\begin{aligned} & \underline{\text{Datos}} \\ |\mathsf{V_T}| &= 0.8 \; \mathsf{V}, \; \mu_{\text{P}} \mathsf{C'}_{\text{ox}} = 80 \; \mu \text{A/V}^2 \\ & \mathsf{W} = 32 \; \mu \text{m}, \; \mathsf{L} = 4 \; \mu \text{m} \\ & \lambda = 0.02 \; \mathsf{V}^{-1}, \; \mathsf{\gamma}^2 = 0.5 \; \mathsf{V} \\ & \mathsf{R}_{\text{G1}} = 130 \; \mathsf{k} \Omega, \; \mathsf{R}_{\text{G2}} = 370 \; \mathsf{k} \Omega \\ & \mathsf{R}_{\text{D}} = 18 \mathsf{k} \Omega, \; \mathsf{V}_{\text{DD}} = 5 \; \mathsf{V} \end{aligned}$

$$i_d = i_x - i_{r_o}$$
$$i_x = -g_m \, v_{gs}$$

$$i_{r_o} = \frac{v_{ds}}{r_o}, \quad v_{ds} = i_x \left(r_o / / R_D \right) \approx i_x R_D = g_m v_{gs} R_D$$

$$i_d = -g_m v_{gs} \left(1 + \frac{(r_o//R_D)}{r_o} \right) \approx -g_m v_{gs} = -320 \,\text{nA}$$

 $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \text{ } \mu\text{A}$ $V_{DS} = -3.46 \text{V}$ $V_{DS} = -3.46 \text{V}$

La variación de corriente de Drain al variar 1 mV la variar 1 mV l $\leq RG1 \leq RG2$ $i_d = i_x - i_{r_o}$ $i_x = -g_m v_{qs}$ $i_{r_o} = \frac{v_{ds}}{r_o}, \quad v_{ds} = i_x (r_o / / R_D) \approx i_x R_D = g_m v_{gs} R_D$

 $i_d = -g_m v_{gs} \left(1 + \frac{(r_o//R_D)}{r_o} \right) \approx -g_m v_{gs} = -320 \,\text{nA}$

= -0.8 V, k = 320 μA/V² = -80 μA, V_{DS-sat} = -0.5 V = 320 μA/V, g_{mb} = 293 μA/V P_{G1} = 1.4x10¹⁷μF P_{DS-sat} = -0.5 V P_{G1} = 130 kΩ, P_{G2} = 370 kΩ P_{DS-sat} = 1.4x10¹⁷μF

$$v_{ds} \approx -g_m \, v_{gs} \, R_D = -5.76 \,\mathrm{mV}$$

 $V_T = -0.8 \text{ V}, k = 320 \mu\text{A/V}^2$ $I_{Dsat} = -80 \mu A, V_{DS-sat} = -0.5 V$ μA/V

 $I_{D} = -85.5 \, \mu A$ $V_{DS} = -3.46V$ $g_m = 320 \mu A/V, g_{mh} = 293$ La variación de corriente de Drain al variar 1 mV la v r_{c} = 625 kΩ , C_{cos} = 1.4x10¹⁷μF

 $V_{GS} = -1.3 \text{ V}$

 $W = 32 \mu m, L = 4 \mu m$ $\lambda = 0.02 \text{ V}^{-1}, \, \gamma^2 = 0.5 \text{ V}$ $R_{G1} = 130 \text{ k}\Omega, R_{G2} = 370 \text{ k}\Omega$ $R_D = 18k\Omega, V_{DD} = 5 V$

Datos $|V_T| = 0.8 \text{ V}, \ \mu_D C'_{OV} = 80 \ \mu\text{A/V}^2$

 $i_{r_o} = \frac{v_{ds}}{r}, \quad v_{ds} = i_x (r_o / / R_D) \approx i_x R_D = g_m v_{gs} R_D$ $i_d = -g_m v_{gs} \left(1 + \frac{(r_o//R_D)}{r_o} \right) \approx -g_m v_{gs} = -320 \,\text{nA}$ $v_{ds} \approx -g_m v_{gs} R_D = -5.76 \,\mathrm{mV}$

 $V_{\tau} = -0.8 \text{ V}, k = 320 \mu\text{A/V}^2$ $V_{GS} = -1.3 \text{ V}$ $I_{D} = -85.5 \, \mu A$ $V_{DS} = -3.46V$ uA/V $r_0 = 625 \text{ k}\Omega$, $C_{\alpha s} = 1.4 \text{x} 10^{17} \mu\text{F}$

 $|V_T| = 0.8 \text{ V}, \ \mu_D C'_{OV} = 80 \ \mu\text{A/V}^2$ $I_{Dsat} = -80 \mu A, V_{DS-sat} = -0.5 V$ $W = 32 \mu m, L = 4 \mu m$ $\lambda = 0.02 \text{ V}^{-1}, \, \gamma^2 = 0.5 \text{ V}$ $g_m = 320 \mu A/V, g_{mh} = 293$ $R_{G1} = 130 \text{ k}\Omega, R_{G2} = 370 \text{ k}\Omega$ $R_D = 18k\Omega, V_{DD} = 5 V$

Datos

La variación de corriente de Drain al variar 1 mV la v

 $i_D(t) = I_D - i_d(t) = -(88.5 - 0.32 u(t)) \,\mu\text{A}$ $i_d = i_x - i_{r_0}$ $v_{DS}(t) = V_{DS} + v_{ds}(t) = -(3.46 + 0.00576 u(t)) V$ $i_x = -g_m v_{as}$ $i_{r_o} = \frac{v_{ds}}{r}, \quad v_{ds} = i_x (r_o / / R_D) \approx i_x R_D = g_m v_{gs} R_D$

 $i_d = -g_m v_{gs} \left(1 + \frac{(r_o//R_D)}{r_o} \right) \approx -g_m v_{gs} = -320 \,\text{nA}$

Recordemos que solo vale cuando ...

 $v_{ds} \approx -g_m v_{gs} R_D = -5.76 \,\mathrm{mV}$

4. Extra: Como conseguir la variación de 1 mV sobre $v_{\rm gs}$

4. Extra: Como conseguir la variación de 1 mV sobre $v_{\rm gs}$

4. Extra: Como conseguir la variación de 1 mV sobre $v_{\rm gs}$

POLARIZACIÓN

4. Extra: Como conseguir la variación de 1 mV sobre v_{gs}

5. Extra: Simulación

5. Extra: Simulación

FIN