22

ヒープの作成

1 ヒープ (heap)

- 次のような規則で2分木を配列で表現し、親<子、または、親>子となるようなデータ構造。
- ①根の番号を1とする。
- ②節kの左の子の番号を2kとする。
- ③節kの右の子の番号を2k+1とする。

(例) 親>子の例

2 流れ図

この流れ図は、親>子の関係を持つヒープを作っている。

3 ヒープへのデータの挿入

- 新たなデータをヒープに挿入する場合は、次の手順で行う。
- ①ヒープを構成する配列の末尾の次の要素に新データを設定し、子とする。
- ②番号÷2で親の番号を求める。
- ③親と子のデータを比較し、大小関係が逆なら交換する。
- ④根に到達するか、大小関係が正しくなるまで、親を子として、②~④を繰り返す。

4 ヒープ作成の様子

件数=8		データ	20	50	10	30	70	40	60	80	
データ	子	親	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
50	2	1	50	20	10	30	70	40	60	80	図(1
10	3	1	50	20	10	30	70	40	60	80	図2
30	4	2	50	30	10	20	70	40	60	80	図(3
	2	1	50	30	10	20	70	40	60	80	
70	5	2	50	70	10	20	30	40	60	80	図4
	2	1	70	50	10	20	30	40	60	80	
40	6	3	70	50	40	20	30	10	60	80	図(5
	3	1	70	50	40	20	30	10	60	80	
60	7	3	70	50	60	20	30	10	40	80	図6
	3	1	70	50	60	20	30	10	40	80	
80	8	4	70	50	60	80	30	10	40	20	図(7
	4	2	70	80	60	50	30	10	40	20	
	2	1	80	70	60	50	30	10	40	20	

(注) 図は、次のページに示す。

ポインタを使わず木構造を表すヒープ

木構造を表すために、通常は、**ポインタ**を用います。**ヒープ**は、データを格納する 配列の添字に規則を設けることで、ポインタを用いずに木構造を表現します。

ある節の添字がkなら、 $k \div 2$ (小数点以下切り捨て) で親の添字がわかります。たとえば、k=5なら5÷2=2で親は2番です。

逆に、子の番号は2kと2k+1ですから、 $5\times2=10$ 番と $5\times2+1=11$ 番です。

データの挿入や削除を行う場合には、ポインタを用いるのに比べて、若干の手間が かかります。

次のページにヒープの図を示しています。トレース表とあわせてよく見ておきましょう。

ヒープは、子の添字を2で割ると親の添字がわかります。

5 ヒープヘデータが挿入される図

図① 50を挿入

図② 10を挿入

図③ 30を挿入

図④ 70を挿入

図⑤ 40を挿入

2 末尾に挿入し、親と比較して親が小さければ入れ替える

20だけのデータに、50を挿入する場合、まず末尾(2番)に挿入します。 $2\div 2=1$ 番で親の番号がわかりますから、親のデータ20と比較し、20のほうが小さいので交換します。次に10を3番に挿入すると、 $3\div 2=1$ (少数切捨て)で親の番号がわかり、1番の50と比較します。大小関係があっているのでそのままです。

このようにして、新しいデータを挿入しながら、大小関係を比較してヒープを作る ことができます。

図①~⑦までをよく見ておきましょう。

このヒープを利用したヒープソートは、次のページで説明します。