

Design study of the high gradient magnets for a future diffraction limited light source at MAX IV

Alexey Vorozhtsov

FLS2018, March 5-9

Introduction The MAX IV magnets

LINAC: various type of NC magnets, 112 magnets

1.5 GeV lattice: 12 achromats, "magnet block" concept, 156 magnets

3 GeV ring lattice: 20 achromats, "magnet block" concept, 1320 magnets

courtesy of M. Johansson

"Magnet block" concept 3 GeV Ring

- The main structural parts of the magnet blocks are the yoke bottom and yoke top halves. Material: Armco low carbon steel.
- Gradient dipole pole, quad. and corrector pole roots machined out of the block, pole tips mounted over the coil ends.
- 6pole and 8pole magnet halves mounted into guiding slots in yoke block.
- Half-yoke cross section = 350 x 128 mm
- Lengths = ~ 2.3 m (M1, M2), ~ 2.4 m (U1-U5), ~ 3.4 m (U3)
- Weights = ~450 kg (M1, M2), ~490 kg (U1,...), ~620kg (U3)
- Magnet aperture= Ø25 mm, total power consumption ~300 kW.

courtesy of M. Johansson

3 GeV ring lattice layout

- Five unit cells and two matching cells.
 - 20 achromats x 7 cells = 140 cells total
 - Min. magnet aperture Ø= 25 mm

- 17 unit cells and two matching cells.
- 20 achromats x 19 cells = 380 cells total
- Min. magnet aperture Ø= 11 mm

- Achromat length = 26.4 m
- Ring circumference = 26.4 x 20 = 528 m

[1] Future Development Plans for the MAX IV Light Source: pushing further towards higher brightness and coherence. Pedro Fernandes Tavares, Johan Bengtsson and Åke Andersson. MAV IV Laboratory, Sweden

3 GeV ring magnets for the new lattice

Quadrupole	Magnetic Length [m]	Gradient [T/m]	Pole Tip Field [T]
		Gradient [1/111]	Rbore=5.5 mm
QF	0.075	219	1.2
QM	0.15	183	1
QFE	0.1	234	1.29
QDE	0.1	-198	1.1

Matching cell:

Sextupole	Magnetic Length [m]	Gradient [T/m²]	Pole Tip Field [T] Rbore=5.5 mm
SF	0.1	33592	1
SD	0.1	19729	0.6

Gradient Dipole	Magnetic Length [m]	Bending angle	B ₀ [T]	G [T/m]
Unit cell	0.3333	1°	0.52	-70.1
Matching cell	0.16667	0.5°	0.52	-30

QFE quadrupole Requirements and constrains

- Magnet aperture Ø ≥ 11 mm
- Field gradient = 234 T/m
- Pole field= 1.29 T (Max. value for the conventional quadrupole 1 T ÷ 1.1 T)
- Magnetic length =100 mm
- Tuning range: ± 3 %
- Good field region Ø= 6 mm
- Integrated Grad. Homogeneity Δ∫Gdz/∫Gdz: < (± few units of 10⁻⁴)
- Overall magnet height × width: ≤ (256 × 350 existing magnet block dimensions)
- The top half-yoke shall be easy to demount to allow the installation of the vacuum chamber
- "Magnet block" concept similar to the existing MAX IV R3 ring

magnet design options

- **X** "Halbach " type Permanent Magnet Quadrupole
- Strength adjustment: Mechanical (double ring, etc.)
- Closed ring structure: issue with the synchrotron light extraction
- Not applicable for the "Magnet Block" concept
- ✓ Conventional electromagnet
- ✓ Hybrid (Combination of the permanent magnet and trim coils)

07/03/2018 FLS 2018

Conventional electromagnet

"Magnet block" concept:
Pole root machined out from the half
yokes. Material: ST1010 or Armco

Pole profile shape and alignment:
Precise machining of the matting surface,
pole profile machining in situ

Main parameters				
Magnet				
Overall dimensions	300 x 256 x 152	mm³		
Half return yoke mass (length 100 mm)	17.8	kg		
Total magnet mass	52	kg		
Coil				
Number of turns / coil	21			
Conductor dimensions	6 x 6 Ø 2.5	mm		
Nominal current I _{nom} @234 T/m	140	Α		
Current density @ I _{nom}	4.6	A/mm ²		
Resistance @ 20°C	18.2	$m\Omega$		
Total power consumption	358	W		
Voltage	2.6	V		
Cooling parameters				
Cooling circuits / magnet	2			
Coolant velocity	1.1	m/s		
Cooling flow	0.3	L/min		
Pressure drop	1.6	Bar		
Temperature rise	8	K		

Pole Tip (separate pieces)
Material: Cobalt Iron alloy, Bs=2.35 T

4 water cooled coils

Conventional electromagnet

Pole Tip (CoFe alloy):

Gnom.=234 T/m at I=139.5 A (NW=2930 A)

Pole field=1.29 T

Magnet efficiency η=96.4 %

Possible to achieve Gmax.=250 T/m I=154 A, η=93.1 %

Pole Tip (AISI 1010):

G=210 T/m at I=139.5 A, (234 T/m @210 A, η=64 %)

Pole field=1.15 T

Magnet efficiency η=86.6 %

Electromagnet with Sm₂Co₁₇ inserts "Laced" quadrupole¹

- A conventional iron dominated quadrupole is at the basis
- Rare earth permanent magnet material placed between the iron poles.
- The magnetic flux due to the permanent magnets is directed to cancel the part of flux produced by the coils which does not contribute to the field gradient in the magnet aperture
- Reduces the saturation effects in the iron pole
- Max. field gradient ~ 35 % larger than in a conventional quadrupole.

^[1] K. Halbach, 'Magnet Innovations for Linacs', Proceedings of "1986 Linear Accelerator Conference", SLAC-R-303, Linac86-105, TH2-1.

^[2] A. Vorozhtsov, M. Modena, D. Tommasini, 'Design and Manufacture of a Hybrid Final Focus Quadrupole Model for CLIC', MT-22

Electromagnet with Sm₂Co₁₇ inserts

Electromagnet with the Sm₂Co₁₇ inserts

- Reduce the saturation of the Pole tip & Pole root & Return yoke: give a possibility to decrease the overall dimensions of the magnet.
- Not efficient for CoFe Pole tip @234 T/m, but extend the linear part of the excitation curve, possible to achieve the higher level of the gradient
- Significant improvement for 1010 pole, but CoFe solution gives better result even without PM inserts
 - Cost of the CoFe raw material ≤ cost of the Sm₂Co₁₇ PM blocks / magnet

Ampere-turns per pole, NW(A)

Ampere-turns per pole, N

Field gradient [T/m]

					AISI 1010+PM(1	AISI 1010+PM(2	
Pole material & Configuration	CoFe	CoFe+PM(1side)	CoFe+PM(2 sides)	AISI 1010	side)	sides)	units
Number of turns / coil	21	21	21	21	21	21	
Nominal current I _{nom} @234 T/m	140	137	136	210	156	148	Α
Current density @ Inom	4.64	4.52	4.50	6.96	5.16	4.88	A/mm ²
Total power consumption	358	341	336	805	442	396	W
Magnet efficiency η	96.4	96.7	96.8	64	86	90.1	%

Pole profile study / Field quality

- —— Profile #1 (V gap= 4.3 mm)
- ---- Profile #2 (V gap=5 mm)

5 mm - Min. vertical gap (Existing MAX IV R3 magnets)

Normal relative field components b_n [10⁻⁴] @R3 mm

Harm. #	Profile #1		Pr	ofile #2
	2D	Integrated	2D	Integrated
4	0.02	0.05	0.03	0.1
6	0.34	-3.4 (pole chamfer required)	1.35	-2.5
10	-0.61	-0.6	-5.04	-4.7

QFE magnet design

__ Hybrid magnet

Return yoke machined out from the half yokes. Yoke shape: figure of "8" to reduce the magnetic forces between 2 halves

Permanent magnet blocks: Sm2Co17, Br=1.12 T, HcB=844 kA/m 100x40x10(6 units) & 20x40x10(8 units)

Main parameters Magnet Nominal field gradient 234 T/m -6/+5Tuning range Overall dimensions 232 x 256 x 142 mm³ Total magnet mass 40 kg Magnetic force between the 2 30 kg half-yokes **Trim Coil** Number of turns / coil 60 Conductor dimensions 3 x 4 mm Max. current I_{max} 16 Α Current density @ Inom A/mm² Total power consumption 15 W

4 air cooled trim coils

Pole Tip (separate pieces)
Material: Cobalt Iron alloy,
Bs=2.35 T

Pole profile shape and alignment:
Precise machining of the matting surface, pole profile machining in situ (1st assembly without PM)

QFE Hybrid magnet 2D & 3D modelling

Permanent magnet blocks at each end of the poles to prevent the flux leakage: 20x40x10 (8 units)

PM imperfections:

1. Direction of magnetization error ± 3%:

The effect on a field quality / strength is negligible

1. Br & HcB variations from typical to min. values $Br(1.12 T \leftrightarrow 1.09 T)$, HcB (844 kA/m T \leftrightarrow 820 kA/m):

Field strength variation of \pm 1.5 % (25 % of the trim coils capability)

QFE Magnet design

Magnet type	Pros	Cons		
Pure electromagnet	Less complicated manufacturing / assembly	Large power consumption (running cost)Vibration induced by the water cooling		
Hybrid magnet	 Low power consumption Compact solution ? 	 Assembly difficulties (magnetic forces) assuming the magnet block concept Large capital cost (permanent magnet material) 		

Thank you for your attention!