UNCLASSIFIED AD 430944

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

1430944

FERRITES, MAGNETIC, H. F.

CALACGEU BY US

Report No. 57

Contract No. 6

Signal Corps Contract: DA-36-039 SC-89222

Dept. of Army Task Number IGO-24401-A-112-02-03 (3A99-18-006-02)

Sixth Quarterly Report

1 Sep 1963 to 30 November 1963

U.S. ARMY ELECTRONICS RESEARCH AND DEVELOPMENT LABORATORY
Fort Monmouth, New Jersey

INDIANA GENERAL CORPORATION

ELECTRONICS DIVISION RESEARCH DEPARTMENT

KEASSEY, NEW JERSEY - Telephone VAlley 6-5100,

QUALIFIED REQUESTORS MAY OBTAIN COPIES OF THIS REPORT FROM ASTIA. ASTIA RELEASE TO OTS NOT AUTHORIZED.

FERRITES, MAGNETIC, H.F.

Report No. 57 Contract No. 6
Signal Corps Contract
DA-36-039
SC-89222

Tept. of Army Task Number IGO-24401-A-112-02-03 (3A99-15-006-02)

SIXTH QUARTERLY REPORT

1 September 1963 to 30 November 1963

OBJECT:

Conduct investigations and develop magnetic

high frequency core materials.

REPORTED BY: Dr. Eberhard Schwabe, Physicist - Supervisor

Dr. Kurt F. Wetzel, Chemist Daniel Sullivan, Ceramic Engineer

Charles O'Neill, Chemist

Sigismund Golian, Ceramic Engineer

TABLE OF CONTENTS

Title Page)
Table of C	Contents
List of Gr	caphs
List of Ta	ables Page 5
Abstracts	
PART I	MANGANESE-ZINC FERRITES
	SECTION A
	Effect of Vibration on Po, Q, And Temperature Coefficient of Permeability
	Time Dependence of Temperature Coefficient of Page 9
	SECTION B
	Investigation of the Effects of Particle and Grain Size on PoQ, Temperature Coefficient and Disaccommodation of Mn-Zn Ferrites in the Frequency Range, 1 kc/s to 1 mc/s Page 10
PART II	NICKEL-ZING FERRITES
	SECTION A
	Effect of Vibration on μ_0,Q , and Temperature Coefficient of Permeability Page 11
	Time Dependence of Temperature Coefficient of Permeability
	SECTION B
W/	Investigation of the Effects of Particle and Grain Size on FoQ, Temperature Coefficient and Disaccommodation of Ni-Zn Ferrites in the Frequency Range, O.1 mc/s to 500 mc/s Page 13
PART III	Research Planned for Next Quarter Page 16
PART IV	Manhours Spent on Contract for the Period: 1 September 1963 to 30 November 1963 Page 17

LIST OF GRAPHS

Harris and Harris and

<u>GRAPHS</u>	DESCRIPTION
705	FoQ vs. Frequency after 0, 10 and 100 minutes vibration for some Mn-Zn type ferrites
706	Mo and Q vs. Frequency after 0, 10 and 100 minutes vibration for some Mn-Zn ferrites
707	\$ AB/Pe vs. Temperature for material TC-5 after 0, 10 and 100 minutes vibration
708	% AF/Fo vs. Temperature for material MF-8433-1 after 0, 10 and 100 minutes vibration
709	% AP/Po vs. Temperature for material MF-8433-2 after 0, 10 and 100 minutes vibration
710	10 and 100 minutes vibration
711	\$ A\(^\mu/\mu_0\) vs. Temperature for material MF-8644-4 after 0, 10 and 100 minutes vibration
712	FoQ vs. Frequency after 0, 10 and 100 minutes vibration for some Ni-Zn type ferrites
713	Fo and Q vs. Frequency after O, 10 and 100 minutes vibration for some Ni-Zn ferrites
714	% $\Delta^{\mu/\mu}$ o vs. Temperature for material Q-1 after 0, 10 and 100 minutes vibration
715	\$ $\Delta^{\#}/^{\mu}e$ vs. Temperature for material TC-4 after 0, 10 and 100 minutes vibration
716	% Δ^{μ/μ_0} vs. Temperature for material 9001-128 after 0, 10 and 100 minutes vibration
717	\$ Δ^{μ}/μ_0 vs. Temperature for material 9002-128 after 0, 10 and 100 minutes vibration
718	% Δ^{μ}/μ_0 vs. Temperature for material 9003-128 after 0, 10 and 100 minutes vibration
719	% Δ^{μ/μ_0} vs. Temperature for material MF-9002; milling time 16 hours; calcined 1205°C

LIST OF GRAPHS (continued)

GRAPHS	DESCRIPTION	•
720	\$ AP/Po vs. Temperature for material MF-9002; time 32 hours; calcined 1205°C	milling
721	$\%$ Δ^{μ}/μ_0 vs. Temperature for material MF-9002; time 64 hours; calcined 1205°C	milling
722	\$ \$\Delta\mu\$ vs. Temperature for material MF=9002; time 128 hours; calcined 1205°C	milling
723	\$ AP/Po vs. Temperature for material MF-9002; time 16 hours; calcined 1260°C	milling
724	\$ \$\Delta\mu\$ vs. Temperature for material MF=9002; time 32 hours; calcined 1260°C	milling
The second state of the se	\$ AP/40 vs. Temperature for material Mr-9002; time 64 hours; calcined 1260°C	Biling
726	\$ AF/Fo vs. Temperature for material MF-9002; time 128 hours; calcined 1260°C	milling
727	Disaccommodation for material MF=9002; 1205°C \$ \$\Delta\P\Delta\De	calcine; d 32 hrs.
728	Disaccommodation for material MF-9002; 1205°C \$ \$\Delta\psi\psi\psi\ vs. Time at \$\alpha 25°C; milling time 64 an	calcine; d 128 hrs.
729	Disaccommodation for material MF-9002; 1260°C % ΔΨ/Ψο vs. Time at ~ 25°C; milling time 16 an	calcine;
730	Disaccommodation for material MF-9002; 1260°C \$ Δ''/μο vs. Time at ~ 25°C; willing time 64 an	calcine; d 128 hrs.

LIST OF TABLES

TABLES	DESCRIPTION				
296	The permeability change observed after 24 hours at each of three temperatures for several production and experimental ferrite materials				
297	Physical and magnetic data for material MF-9002 for varied conditions of milling and firing (1205°C calcine)				
298	Chemical analysis of material MF=9002 after calcining and milling				
299	Chemical analysis of material MF-9001-A after calcining and milling				

海域 あったる

ABSTRACTS

PART I

MANGANESE-ZINC FERRITES

SECTION A

Effect of Vibration on Fo, Q, and Temperature Coefficient of Permanbility

Certain production and experimental materials were subjected to a vibration test. μ_0 , Q and temperature curve measurements were made before and after 10 and 100 minutes vibration. No significant effect on these properties was observed that could be ascribed solely to vibration.

Time Dependence of Temperature Coefficient of Permeability

Certain production and experimental materials were measured over a 24 hour period at each of three different temperatures. Although changes in permeability were noted after each 24 hour period, no evidence was obtained to indicate that the slope of the temperature curve had changed.

SECTION B

The annualing study initially presented in Report No. 56 has been continued during this past quarter but will not be discussed until the next report.

PART II

NICKEL-ZINC FERRITES

SECTION A

Effect of Vibration on 40, Q, and Temperature Coefficient of Permeability

Certain production and experimental materials were subjected to a vibration test. Fo, Q and temperature curve measurements were made before and after 10 and 100 minutes vibration. No significant effect on these properties was observed that could be ascribed solely to vibration.

Time Dependence of Temperature Coefficient of Permeability

Certain production and experimental materials were measured over a period of 24 hours at each of three different temperatures.

ABSTRACTS (continued)

Although changes in permeability were noted after each 24 hour period no evidence was obtained to indicate that the slope of the temperature curve had changed.

SECTION B

Investigation of the Effects of Particle and Grain Sise on #oQ, Temperature Coefficient and Disaccommodation of N1-Zn Ferrites in the Frequency Range. 0.1 - 500 mc/s

The study on Ni-Zn ferrites presented in Report No. 56, Section B of Part II, was continued. Temperature soefficient data was obtained for material MF 9002 and no improvement over MF 9001 was noted. Disaccommodation data on MF 9002 was also obtained and here significant improvement was noted over MF 9001. Chemical analysis of MF 9002 was completed and the amount of iron milled into this material was found to be less than the amount of iron milled into MF 9001. Chemical analysis of MF 9001-A,64 hour milling and 128 hour milling, was also completed and the formulas obtained from the analysis agree quite closely with the formula for MF 9001, 64 hour milling. This explains in part the similarity of properties found previously. Material MF 9003 was made and several measurements of ▶o and Q were taken. This data will be completed and pre~ sented in the next report.

PART I - Mn-Zn FERRITES

SECTION A

EFFECT OF VIBRATION ON μ_0 , Q AND TEMPERATURE COEFFICIENT OF PERMEABILITY

Puring the past quarter, at the request of USAELRDL, certain production and experimental materials were subjected to a limited scope vibration test. It was hoped that some insight would be gained regarding the stability of these materials after being subjected to a stress of this sort. Ordinarily, specifications call for vibration tests at various frequencies and for varying periods of time. Our test, however, was limited to one frequency. The equipment used was a standard laboratory vibration mill which has a frequency of vibration of approximately 45 cycles per second. The samples to be vibrated were attached with masking tape to the outside of the milling jars. Two time periods were used for the vibration tests, 10 minutes and 100 minutes.

The samples selected for the test were the production material TC-5 and the experimental materials MF-8433-1, MF-8433-2, MF-8644-1 and MF-8644-4. These samples were first measured for "o and Q at 100, 200 and 400 kc/s and then measured at 100 kc/s to determine their temperature coefficient. After these measurements the samples were vibrated for 10 minutes and remeasured for "o, Q and temperature coefficient; then they were vibrated for 100 minutes and remeasured.

Graph 705 shows the results of this vibration test on the μ oQ product at various frequencies. The initial, 10 and 100 minute curves for each material are practically superimposed. Very little change is observed. In addition to the graph on the μ oQ product, the values of μ o and Q are plotted separately as a function of frequency before and after vibration and are shown in graph 706.

The temperature curves of these materials, shown in graphs 707 through 711, reveal little differences. The character of the curves for each material remains about the same, with perhaps a slight displacement observable, This displacement, however, can hardly be ascribed solely to vibration, since, simply remeasuring the materials without first vibrating them could yield differences of the same magnitude as observed in these graphs. In general, this last comment holds for all results obtained on these vibration tests.

TIME DEPENDENCE OF TEMPERATURE COEFFICIENT OF PERMEABILITY

At the request of USAELRDL the permeability of certain materials was measured over a 24 hour period at each of three different temperatures. Three Mn-Zn type materials were included in this test, the production material TC-5, and the experimental materials MF-8433-2 and MF-8644-4. These materials were initially demagnetized and then placed in the temperature chamber at 25°C. They were allowed 20 minutes to adjust to the temperature and then measured. After this initial measurement the samples were held at 25°C for 24 hours and remeasured. The temperature of the chamber was then raised to 50°C and, after allowing 20 minutes for the samples to adjust to the temperature, a measurement was taken. The samples were held for another 24 hours at this temperature, and then another measurement was taken. The chamber was then lowered to -40°C, and the same procedure as above was repeated.

Table 296 shows a tabulation of the results obtained. The data clearly shows changes in the permeability values after the 24 hour period. This, of course, was expected, since these materials are known to disaccommodate. However, it is questionable that the temperature coefficient itself has been affected, since there is no evidence from this test that the slope of the temperature curve has changed.

SECTION B

INVESTIGATION OF THE EFFECTS OF PARTICLE AND GRAIN SIZE ON PoQ, TEMPERATURE COEFFICIENT AND DISACCOMMODATION OF Mn-Zn FERRITES IN THE FREQUENCY RANGE. 1 kc/s TO 1 mc/s

The annealing study presented in Report No. 56 has been continued during this past quarter but will not be discussed until the next report.

PART II - N1-Zn FERRITES

SECTION A

EFFECT OF VIBRATION ON μ_{0} , Q AND TEMPERATURE COEFFICIENT OF PERMEABILITY

The vibration test discussed earlier in this report on page § also concerned several Ni-Zn or "Q" type materials. These materials were Q-1, Q-2 and TC-4 (all production materials), and MF-9001-128, MF-9002-128 and MF-9003-128 (experimental, non cobalt containing materials; the -128 indicating milling time in hours). Measurements were first taken of po and Q at the frequencies .8, 1.6, 3.2, 6.4 and 12.8 mc/s. Then temperature coefficient measurements were made at the frequency of 1 mc/s. Then the procedure of vibration and measurement described on page § was followed.

The $^{\mu}$ oQ product versus frequency for each vibration period is plotted in graph 712. Again, the curves show very little change. In graph 713, $^{\mu}$ o and Q are plotted separately as a function of frequency before and after vibration.

In graphs 714 through 718, the temperature curves of Q-1, TC-4, MF-9001-128, MF-9002-128 and MF-9003-128 are shown with vibration period as a parameter. The character of these curves for each material is essentially the same, and only a slight displacement is observable. The changes noted during these vibration tests are not sufficient to suggest that vibration has an influencing effect on the electrical and magnetic properties of the materials tested.

TIME DEPENDENCE OF TEMPERATURE COEFFICIENT OF PERMEABILITY

The test described on page 9 of this report also included some "Q" type materials: Q-1, TC-4, MF-9001-128 and MF-9002-128. The test included two each of the Q-1 and TC-4 samples. All samples were demagnetised prior to the test except one Q-1 and one TC-4 sample. The results are compiled in table 296.

There are definite changes in the permeability values after 24 hours. Again, however, it is questionable that the temperature coefficient itself has been affected, since there is no evidence from this test that the slope of the temperature curve has been changed. This sort of evidence would have to come from a temperature curve measurement taken on each of several days.

SECTION B

INVESTIGATION OF THE EFFECTS OF PARTICLE AND GRAIN SIZE ON POQ, TEMPERATURE COEFFICIENT AND DISACCOMMODATION OF Ni-Zn FERRITES IN THE FREQUENCY RANGE, 0.1 TO 500 MC/S

Reference Report No. 56 (Part II, Section B, page <u>20</u>). Material MF-9002 has been further investigated and measurements have been taken on disaccommodation, density, grain size, the effects of annealing, and the temperature variation of permeability. This data together with previously reported magnetic data are compiled in table <u>297</u>.

Graphs 719 through 726 show the change of permeability with temperature. Each graph is for a particular milling time of the material and contains several curves corresponding to different firing temperatures. The first four graphs concern materials calcined at 1205°C, and the next four concern the materials calcined at 1260°C. The values of $(\Delta\mu/\mu^2\Delta T)$ for the moptimum curves materials (see Report No. 56, page 23) are tabulated below.

MF-9002		1205°C C	alcine	1260°C Calcine	
	Milling Time	Firing Temp.	μ ² ΔT	Firing Temp.	μ ² ΔT
	16	1300°C	9.8	1300°C	13.6
	32	1250°C	10.7	1250°C	10.3
	64	1250°C	17.5	1250°C	16.4
	128	1215°C	18.1	1200°C	17.4

The two calcining temperatures disclose essentially equivalent results. In comparison with material MF-9001 (see Report No. 56, page 20) the $(\Delta^{\mu}/\mu^{2}\Delta^{\mu})$ values are higher except for the 128 hour milled material, which has values approximately the same.

Graphs 727 through 730 show disaccommodation curves for MF-9002. As found previously with MF-9001, the disaccommodation effect increases with increasing milling time. Generally, disaccommodation is lower for the MF-9002 materials than for the MF-9001 materials. Particularly, the best MF-9001 material showed a disaccommodation value (Δ^{μ}/μ^{2} per decimal cycle) of 107.5 ppm, while the best MF-9002 material shows a value of 72.5 ppm. The general decrease noted suggests that by increasing the Ni/Zn ratio even more, still lower disaccommodation values may be obtained. A material with a

higher Ni/Zn ratio has been prepared, MF-0003, but disaccommodation values will not be available until the next report.

In Report No. 56 the chemical analysis of MF-9001 was discussed. The analysis showed that a considerable amount of Fe₂O₃ was incorporated into the calcined ferrite material during the milling process. An increase of up to 6 weight \$\mathbb{S}\$ was observed, and this was with the 128 hour milled material. MF-9002 has also been chemically analyzed and an increase in the iron content with extended milling has again been observed. The results of this analysis are presented in table 298. The amount of milled in iron is significantly less than observed before for MF-9001, viz., by almost 35%. No reason for this is offered except to say that perhaps the amount of iron milled into the calcined material is a random phenomenon which results from the fact that all the factors affecting the milling operation are not strictly controlled, e.g., temperature, viscosity of mix, steady uninterrupted milling, etc.

The molar Ni/Zn ratios for the various millings remained fairly constant and averaged .921 for the 1205°C calcine and .969 for the 1260°C calcine. The higher value of this ratio for the 1260°C calcine can be explained by the fact that at this higher temperature a slightly greater loss of zinc was incurred.

In Report No. 56, page 22, the material MF-9001-A was discussed. This material was prepared to duplicate the formula of MF-9001 except that the iron content was adjusted so that milling for 64 hours would bring it to \sim 50 mol%. This experiment was tried in order to find out what influence this excess iron exide had on the properties of MF-9001 so that a proper evaluation of the effect of fine grain size could be made.

A chemical analysis of MF-9001-A has been completed, and the results are compiled in table 299. The analysis showed an iron content which is quite close to that obtained for MF-9001, i.e., the 64 and 128 hour milled material of MF-9001-A showed an iron content close to that for the 64 hour milled material of MF-9001, e.g.,

Milling	Fe ₂ 0 ₃ (wt%)			
Time	MF-9001	MF-9001-A		
64	70.21	69.72		
128	73.06	71.20		

This explains why the results found for both millings of MF-9001-A were so close to those found for MF-9001, 64 hour milling. An examination of the weights of material used for the starting material of MF-9001-A revealed that it was quite close to MF-9001. This means that the deficiency in iron thought to be introduced actually was not. This leaves the question still open concerning

the excess iron, and it is expected that this will be resolved during the next quarter.

During the past quarter material MF-9003 was prepared, and some Po and Q measurements were taken. These measurements are not yet complete, but they will be completed during the next quarter. Also, temperature coefficient and disaccommodation measurements will be taken.

A summary of best results in the 2-12 mc/s range is listed below.

	Q-1		MF-9001 1205°C Galcine		MF-9002 1205°C Calcine	
		, .	128 hou	r milling	128 hour	milling
:	2 mc/s	12 mc/s	2 mc/s	12 mc/s	2 mc/s	12 mc/s
40	169	210	195	250	180	220
Q	190	20	149	8.2	158	12.7
Poq	32,000	4,200	29,000	2,050	28,500	2,800
UUF (mo/s)	6.	.1	5	.1	6,	.8
y oq. Tut	91,500		81,000		83,000	
SO ALT	710 ⁱ		3400 ¹¹		330011	
TAY AL AL AL AL AL AL AL AL AL AL AL AL AL	4.8 ¹		17.411		18.1 ⁱⁱ	
S Supplement	1.7		2.0		1.3	
DA/CYCLO	140).5	107	.5	72.	5

i. -30° C to 90° C ($\Delta P/P\Delta T = 9000 \text{ from } -60^{\circ}$ C to -30° C) 11. -60°C to 90°C

PART III

RESEARCH PLANNED FOR NEXT QUARTER

Part I Mn-Zn Ferrites

- A. No future work will be done in this section.
- B. The annealing study presented in Report No. 56, Section B of Part II will be continued.

Part II Ni-2n Ferrites

- A. Variations of MT-9002 will be made using nickel compounds of differing reactivity. Short milling periods and production kilns for firing will be utilised. It is desired to see if these preparative techniques can yield a material better than MT-9002, which requires long milling to obtain optimum properties.
- B. Material MF-9003 will be further studied in regards to temperature coefficient and disaccommodation. Firing time and annealing time experiments will be conducted.

PART IV

MANHOURS SPENT ON CONTRACT FOR THE PERIOD 1 SEPTEMBER 1963 TO 30 NOVEMBER 1963

NAME	TITLE	HO URS
E. Schwabe	Physicist - Supervisor	158
K. Wetsel	Chemist	440
.C. O'Neill	Chemist	460
D. Sullivan	Ceramic Engineer	477-1/2
S. Golian	Ceramic Engineer	78
K. Sivak	Chemist, Junior	243
C. Cooper	Technician	1-1/2
J. Holden	Technician	480
E. Hozeny	Technician	238
D. Kineley	Technician	269-1/2
E. Kovacs	Technician	301-1/2
C. Lots	Technician	165
E. Szatkowski	Technician	199
M. Zudonyi	Technician	20
S. Rubarski	Laboratory Assistant	2

Central Coeff 530 09 affor 0, 10 and 100 Minutes Vibration 4 o 4 Temp.(oc) 0 i 160 11 : 후 ॐ Ö ٠ ۲ 충 20

.

18MP(00)

I C C

PABLE 296

THE PERMEABILITY CHANGE OFSBRVED APTER 24 HOURS AT EACH OF THREE TEMPERATURES

Temperature+		3.07-			25°C			5005	
Material	Initial	After 24 brs.	Change	Initial	After 24 hrs.	,⊀ Change	Initial	After 24 hrs.	Change
	3	01		3	0 1		2	40	
10-5	1245	1218	2.2	1692	1669	7-1	1788	784	0.2
VF-8433-2	815	708	1.3	1129	7/01		1,50	1105	3.9
7-7798-IW	824	805	2.3	1364	1260	3.4	1405	1376	2.1
Q-1	137	136	7.0	184	182	1.1	187	179	4.3
Q-1 (not demagnetized)	123	123	0.0	146	146	0.0	149	148	0.7
TC-4	127	127	0.0	142	140	7:1	146	139	8.4
TC-4 (not demagnetized)	104	104	0.0	108	108	0.0	110	110	0.0
MF-9001-128	142	171	0.7	172	170	7°	186	185	0.5
MF-9002-128	73	72	7.1	06	68	1.1	66	66	0.0

TABLE 297

ŗ

PHYSICAL AND MACNETIC DATA FOR MATERIAL MP-9002 FOR VARIED COMBITIONS OF FILLING AND FIRING (1205°C Calcine) 50.00 25.00 25.00 Mol Pormula (%)

Coef.	TACT	٥, بر	10.2	10.3	0	22.3	9.2	11.4	10.7	16.3	7.02		10.2	12.4	17.5	16.0	26.5		12.8	18.1	17.3	22.3	24.4
Temp.	TAS TAN	330	870	1670	2400	5200	530	1230	1930	3740	5170	-	700	1800	3700	4130	9099		930	3300	0607	5200	5870
	CYCLE-PO	115.0	6. 9	32.1	16.3	45.9	83.6	81.5	57.4	6.97	45.5	72.7	76.3	6.97	792	35.6	128.5		64.3	72.5	132.2	180.3	170.2
44 44 14	CYCLE	4.	٨.	٨.	7-	1.0	٠ ٧ ١	0,	1.0	1.1		£.	٠. بر.	.7	9.	φ,	3.2		ů,	1.3	3.1	7.7	4.1
4	GRAPH C			297					297		-				298						298		
	10-3	ō.	24.9	32.3	38.6	15.9	32.7	47.2	54.0	47.2	22.9	2.9	37.4	65.5	55.9	47.6	14.7	44.5	53.0	83.5	8	23.1	18.8
UPPER USEFUL	FREQ. (mc/s)	14.3	7.6	7.7	3.5	2.08	•	o.		3.9	•	21.0	14.8	8 0	7.7	3.5	2.9	23.8	16.2	6 ° 9	3.6	2.8	2.8
(8)	10-3	2.19	4.20	3.91	2.68	1,38	4.85	8.03	7.09	7.40	1.63	3.21	2.66	10.60	6.25	3.71	1.06	•	7.61	•	•		1.32
(8.4 mc/s)	ď	59.6	7-77	20.9	٥ ٥	5.2	79.7	67.5	33.9	16.4	2.4	68.1	3.77	66.1	54.9	11.9	3.8	83.6	66.3	o•99	16.3	°,0	6.7
3	0 2	33	95	187	297	266	61	119	209	268	301	1.7	73	160	251	312	278	75	77	202	271	5 66	273
	DENSITY (g/cc)	3.80	90.7	27.7	4.77	7.36		•	•	4.93	•	•	60.7	,	•	•	•			64.79	•	•	78.7
CRYSTAL	SIZE (+)				2.4				2.0). 1					٥.			
104	oc)	1150	1200	1250	1300	1350	1150	1200	1250	1300	1350	1100	1150	1215	1250	1300	1350	1100	1150	1215	1250	1300	1350
NITTING	TIME (HCURS)	16					. 32					79						128					

Annealed 910°C, 1 hour Report No. 56 DA - Disaccommodation

TABLE 298

CHEMICAL ANALYSIS OF MATERIAL MF-9002 AFTER CALCINING AND MILLING

Starting Formula	Wt. S	Mol \$
Fe ₂ 0 ₃ Zn0	67.42	50.30
ZnO NiO		25.25 24.45

1205°C Calcine

	Con	positio	n in wt	· •	Com	positio	n-in-no	1 5
	M	lling T	ime (hr	's.)	M.1	lling T	ime (hr)
	16	32	64	128	16	32	64	128
Fe203	68.19	69.23	69.75	71.20	51.21	52.42	53.02	54.77
2 n O	17.17	16.73	16.37	15.61	25.30	24.86	24.43	23.55
Nio	14.64	14.04	13.88	13.19	23.49	22.72	22.55	21.68

1260°C Calcine

	, Com	positio	n in wt	. %	Com	positio	n in mo	1 %
	Mi	lling T	ine (hr	s.)	Mi	lling T	ime (hr	s.)
	16	32	64	128	16	32	64	128
Fe203	67.64	68.85	70.02	70.96	50.55	51.94	53.56	54.45
ZnO	17.06	16.51	15.89	15.54	25.00	24.44	23.40	23.40
NiO	15.30	14.64	14.09	13.50	24.45	23,62	23.04	22.15

TABLE 299

CHEMICAL ANALYSIS OF MATERIAL MF-9001-A AFTER CALCINING AND MILLING

Starting F	ormula	Wt. S	Mol \$	
	Fe ₂ 0 ₃	66.89	49.88	
	2110	20.14	29.46	
	NIO	12.95	20.64	:

1205°C Calcina

	Composition	n in wt. %	Compositio	n in mol %
	Filling T:	ime (hrs.) 128	Milling T	ime (hrs.) 128
Fe ₂ 0 ₃	69.72	71.20	51.86	54.88
Z n0	18.26	17.25	29.03	26.10
NiO	12.02	11.54	19.11	19.02

UNITED STATES ARMY ELECTRONICS RESEARCH & DEVELOPMENT AGENCY STANDARD DISTRIBUTION LIST RESEARCH AND DEVELOPMENT CONTRACT REPORTS

COPIES

- OASD (R&E) ATTN: Technical Library, Room 321065, The Pentagon, Washington 25, D. C.
- Chief of Research and Development, OCS, Department of the Army, Washington 25, D. C.
- Commanding General, U.S. Army Material Command, ATTN: R&E Directorate Washington 25, D. C.

Figure 15 Comments

- Commanding General, U.S. Army Electronics Command, ATTN: AMSEL-AD Fort Monmouth, N. J.
- Director, U.S. Navel Research Laboratory, ATTN: Code 2027 Washington 25, D.C.
- Commander, Aeronautical Systems Division, ATTN: ASAFRL, Wright-Patterson Air Force Base, Ohio
- 1 Hdqs., Electronic Systems Division, ATTN: ESAL, L. G. Hanacom Field Bedford, Massachusetts
- Commander, Air Force Cambridge Research Laboratories, ATTN: CRO, L. G. Hanscom Field, Bedford, Massachusetts
- 1 Germuender, Air Force Command & Control Development Division, ATTN: CRZC, L. G. Hanscom Field, Bedford, Massachusetts
- 1 Commander, Rome Air Development Center, ATTN: RAALD, Griffiss Air Force Base, New York
- Commander, Defense Documentation Center, ATTN: TISIA, Cameron Station, Building #5, Alexandria, Virginia 22314
- 2 Chief, U. S. Army Security Agency, Arlington Hall Station, Arlington 12, Virginia
- Deputy President, U. S. Army Security Agency Board, Arlington Hall Station, Arlington 12, Virginia
- 1 Commanding Officer, Harry Diamond Laboratories, ATTN: Library, Room 211, Building #92, Washington 25, D.C.

(CONTINUED)

. <u>C</u> (OP1ES	
	1	Director, USAEGIMRADA, ATTN: ENGGM-SS, Fort Belvoir, Virginia, 22060
	1	USAELRDL SELRA/FEM, ATTN: Mr. Nathan Lipetz, Fort Monmouth, N. J.
	.1	USAELRDL Lieison Office, Rome Air Development Center, ATTN: RAOL Griffiss Air Force Base, New York
	1	Commanding Officer, U. S. Army Electronics Material Support Agency, ATTN: SELMS-ADJ., FORT MONMOUTH, N. J.
e ^c	1	Marine Corps Lieison Office, U. S. Army Electronics Dresearch & Development Laboratory, ATTN: SELRA/LNR, Fort Monmouth, N. J.
, c = 13.	1	Commanding Officer, U.S. Army Electronics Research & Development Laboratory, ATTN: Director of Research or Engineering, Fort Monmouth, N
	1	Commanding Officer, U. S. Army Electronics Research & Development Laboratory, ATTN: Technical Documents Center, Fort Monmouth, N. J.
	1 .	Commanding Officer, U. S. Army Electronics Research & Development Laboratory, ATTN: SELRA/TNR, Fort Monmouth, N. J.
•	2	Advisory Group on Electron Devices, 346 Broadway, New York 13, N.Y.
(FOR	3 RETRANS	Commanding Officer, U. S. Army Electronics Research & Development LAboratory, ATTN: SELRA/TNR, Fort Monmouth, N. J. MITTAL TO ACCREDITED BRITISH AND CANADIAN GOVERNMENT REPRESENTATIVES)
	1	Commanding General, U. S. Army Combat Development Command, ATTN: CDCMR-E, Fort Belvoir, Virginia
	1	Commanding Officer, U. S. Army Communications-Electronics Combat Development Agency, Fort Huachuca, Arizona
	1	Director, Fort Monmouth Office, U. S. Army Communications-Electronics Combat Development Agency, Building #410, Fort Monmouth, N. J.
	1	AFSC Scientific/Technical Liaison Office, U. S. Army Electronics Research & Development Laboratory, Fort Monmouth, N. J.
	1	Commanding Officer and Director, U. S. Navy Electronics Laboratory, San Diego 52, California
	1	Ordnance Corps, Frankford Arsen, Philadelphia 37, Pennsylvania, ATTN: Library Reports Section

(CONTINUED)

COPIES	
1,	Commander, Naval Ordnance Laboratory, White Cak, Silver Springs, 19, Maryland, ATTN: Library Room 1-333
1	Chief, BuAeronautics, Department of the Navy, Washington 25, D.G.
1 .	Commanding Officer, Watertown Arsenal, Watertown, Massachusetts, ATTN: OMRO
1	Commanding Officer, 9560 TSU, SIG. C., Electronics Research Unit, P.O. Box #205, Mountain View, California
1	Commanding Officer, U.S.N. Underwater Sound Laboratory, New London,
	M.I.T., Lincoln Laboratory, Division #6, Group #63, Lexington, Magay
1	Task Order No. EDG6, Engineering Research Institute, University of Michigan, Ann Arbor, Michigan, ATTN: Mr. D. M. Grimes
1	General Electric Corporation, Electronics Park, Syracuse, New York Attn: Dr. H. Rothenberg
1	M.I.T., Laboratory for Insulation Research, Cambridge 39, Mass. Attn: Librarian
1	Chu Associates, P.O. Box 387, Whitecomb Avenue, Littleton, Massachusette
1	R.C.A., Semi-Conductor & Materials Division, Somerville, N. J. Attn: Mr. G. Houser
1.	R.C.A. Laboratories, Princeton, N. J., ATTN: Mr. R. L. Harvey
1	Hughes Aircraft Company, Culver City, California, ATTN: E.M. Wallace, Head, Documents Group
*	Headquarters, U.S. Army Elcts. Research & Davelopment Agency, Fort Mormouth, N. J. ATTN: SELRA/PEM

* Remaining Copies

Best Available Copy

AlAccession Sc	UNCIASSIFIED	Af Accession No.	UNCLASSIFIED
Electronics Division, Feastey, N.J. Indiasa General Corposation Indiasa General Corposation In Electron Schools of the State S	l. Ferrite Development 2. Contract DA-36-09-039- SC-89222	Electronics Division, Fessbay, N.J. Indiana General Corporation Ir. Eberhad Schwibe, et al. Sixth Quarterly Report I September 1063 to 37 foresber 1063 I September 1063 to 37 foresber 1063 Espt., of Arry Issk Kumber 100-24401-A-112-02-03 Conduct research and develop Espretic nigh frequency core materials	l. Fertite Development 2. Contract DA-36-09-039- SC-89222
The Arreas of work include the following: Section A Vibration on Po. 9 and Terrerature Effect of Vibration on Po. 9 and Terrerature Section Of Perrenhility Time Terrerature of Terrerature Coefficient Section A Vibration on Po. 9 and Terrerature		The areas of work include the following: I Notion A Effect of Yibration on Po. 9 and Terperature Coefficient of Persebility Time Terpedence of Terperature Coefficient of Ferrechility II Section A Effect of Vibration Po. 9 and Terperature	
Coefficient of Perzenbility Itze Expendence of Serperature Coefficient of Perreability Section 1 Investigation of the Effects of Particle and Grain Size on Pos, Terperature Coefficient and Disaccompodition of XI-2n Perrites in the Prequency Hanke, C.1 mc/s to CCC rc/s		Conficient of Perkeability Time Tepredence; of Terperature Coefficient of Perseability Section R Investigation of the Effects of Particle and Grain Size on "FG, Terperature Coefficient and Disaccompodation of Ki-In Ferrites in the Frequency Range, O-1 mc/s to 500 mc/s	
AEAccession Fo	UNCIASSIFIED	ADAccession No	UNCIASSIFIED
Electronics Division, Featbey, N.J. Indians General Corporation	1, Ferrite Development	Electronica Division, Feasbey, N.J. Indiana General Cornoration	l. Ferrite Davelopment
Sixth Courterly Report Sixth Courterly Report 1 Saptember 1963 to 30 Forember 1963 Signal Corps Contract En-96-0222 Signal Corps Fortract En-96-024401-A-112-02-03 Conduct research and develop megnetic high frequency core materials	2. Contract DA-36-09-039- SC-8922	fr. Eterhard Schwabe, et al. Sith Guarterly Report. Sith Guarterly Report. Signal Corps Contract IA-56-030-SC-60222 Signal Corps Contract IA-56-030-SC-60222 Conduct research and develop magnetic high	2. Contract DA-36-09-039- SC-89222
The areas of vork include the following: Action A Martion on Po, q and Terrerature Coefficient of Perreability The Frequence of Terrerature Coefficient The Frequence of Terrerature Coefficient		The areas of work include the following: I Section A Fifted of Vibration on Po. q and Terperature Coefficient of Perpeability Ilea [ependence of Terperature Coefficient of Perseability	
II Section A Effect of Vibration on Mo. Q and Temperature Coefficient of Parmability Time Dependence of Temperature Coefficient of Permability Section E Investigation of the Effects of Particle and Grain Cix on Mos, Temperature Coefficient and Disaccommod Nation of Nation of Nations of		Effect of Wheation on Wo, Q and Terperature Coefficient of Percentility The Tereability Settion of Terperature Coefficient of Percentility Settion of the Effects of Particle and Grain Size on Wog, Terperature Coefficient and Disaccomposition of Ki-Zn Perrites in the Frequency Range, O.1 ac/s to 500 sc/s	