

42088 - Projeto Industrial

Relatório do estado do projeto

Milestone 2 - Elaboração

Nome do Projeto:	Moving Pets
Empresa:	Pet Universal
Orientador da Empresa:	Eng. Luís Pinto
Data:	15/11/2022
Membros da Equipa:	Contacto principal: Bruna Pires bruna.ramos.pires@ua.pt +351 936 038 835 Membros do grupo: André Santos andre.ssantos@ua.pt +351 910 848 545 Daniel Almeida danielba@ua.pt +351 960 436 934 Gonçalo Martins goncalom23@ua.pt +351 934 554 483 João Francisco joaofpedrosa@ua.pt +351 962 478 430
Orientador:	Prof. Osvaldo Pacheco
Orientador de Aula:	Prof. Pedro Fonseca

Breve sumário do estado do projeto:

Até ao momento, uma vez concluída a fase de elaboração, o projeto já possui uma arquitetura detalhada do que será a solução a ser implementada.

Além disso, a equipa de *hardware*, responsável pela parte de sensorização do projeto, já estabeleceu conectividade entre o microcontrolador - ESP8266 - e os três sensores aplicados no projeto:

- Sensor de temperatura;
- Sensor de ritmo cardíaco e níveis de oxigénio;
- Módulo acelerómetro.

Por sua vez, a equipa de *backend*, encarregue pelo desenvolvimento de um *web service* - que permita expor numa tabela os dados recolhidos pelos sensores - encontra-se a formular a comunicação entre dois microcontroladores - ESP8266 - e visualização em dashboard de dados recebidos.

Tendo em consideração as fases de um projeto (*Inception, Elaboration, Construction* e *Transition*), bem como os objetivos principais inerentes às mesmas, e ainda a planificação destinada ao desenvolvimento

do projeto, representada no *Gantt Chart* (em anexo), que por sua vez foi desenvolvido na fase *Inception*, podemos considerar que o projeto se encontra alinhado de forma a cumprir as datas de entrega estipuladas.

No que concerne ao orçamento do projeto, este encontra-se dentro dos limites estabelecidos pela empresa *Pet Universal*. O orçamento contemplado tem em consideração possíveis danos em componentes, isto é, tem em conta um componente extra, caso exista algum percalço.

Como referido acima, o projeto está a decorrer como previsto. O único ponto ainda por ser decidido, prende-se com a definição do local onde serão integrados os sensores: se numa caixa ou se incorporados na coleira.

Esta questão surgiu pela eventualidade de surgirem dificuldades de comunicação entre a pulseira e o concentrador.

De forma a compreender qual a solução mais eficiente, o grupo desenvolverá os dois sistemas - caixa e coleira de *Kevlar* - para que seja possível testar e depreender qual irá trazer resultados mais fidedignos.

Arquitetura

Figura 1 - Solução: Diagrama de Blocos

Em relação à arquitetura do sistema, contamos com dois diagramas de blocos, que correspondem ao sistema que vai estar presente na coleira do animal, e ao concentrador, que vai permitir o envio dos variados pacotes recebidos da coleira para a internet do hospital veterinário.

No fluxograma apresentado, temos os diferentes estados que o sistema empregue na coleira irá ter. Começando pelo "DeepSleep" da ESP8266 em que esta irá estar neste modo de poupança de energia durante 5 segundo, onde irá estar desligada. Após a passagem do tempo, a ESP8266 irá ligar-se, pedir valores aos sensores (Acelerómetro, Temperatura e Oxímetro) e posteriormente criar um pacote de dados que irá ser enviado por WiFi para o concentrador. De seguida, a ESP8266 irá voltar ao estado "DeepSleep", no que resulta de 1 segundo de operação da ESP8266 no seu estado ativo, intervalado por 5 segundos inativa. Com isto, temos um consumo 192mA por dia, tendo por base que a ESP8266 irá estar ativa durante 2.4horas/dia.

Figura 2 - Solução: Fluxograma

Marcos principais

ID	Descrição	Data original para o término da tarefa	Data planeada para o término da tarefa	Data real para o término da tarefa
1	Especificação, escolha e aquisição dos sensores	2ª e 3ª semana de outubro	Data original	Data original
2	Especificação do concentrador	2ª e 3ª semana de outubro	Data original	Data original
3	Estudo e especificação do <i>layout</i> da coleira	2ª e 3ª semana de outubro	Data original	Data original
4	Design da arquitetura do sistema: Diagrama de blocos	4ª semana de outubro à 1ª semana de novembro	Data original	Data original
5	Implementação da componente de hardware: conectividade entre o microcontrolador (ESP8266) e os três sensores aplicados no projeto (sensor de temperatura, módulo acelerómetro e sensor de ritmo cardíaco e níveis de oxigénio)	2ª semana de novembro à 3ª semana de dezembro	3ª semana de novembro	3ª semana de novembro
6	Implementação do concentrador: comunicação entre microcontroladores e visualização em dashboard dos dados recebidos	2ª semana de novembro à 3ª semana de dezembro	3ª semana de novembro	-
7	Interligação Backend-Hardware	1ª, 2ª e 3ª semana de dezembro	4ª semana de novembro à 2ª semana de dezembro	-
8	Especificação da implementação do <i>hardware</i> na coleira	1ª, 2ª e 3ª semana de dezembro	Data original	-
9	Testes do produto	1ª, 2ª e 3ª semana de dezembro	Data original	-
10	Validação	4ª semana de dezembro e 1ª semana de janeiro	Data original	-
11	Montagem do produto	2ª e 3ª semana de janeiro	Data original	-

Progresso e desvio do plano

O plano inicial que o grupo idealizou para o *layout* da coleira, centrava-se no desenvolvimento de uma caixa que envolvia a componente de *hardware*, e que, posteriormente, seria integrada na coleira, como se encontra representado na figura 3. Porém, esta alternativa poderá apresentar algumas dificuldades na comunicação com o concentrador a ser desenvolvido.

Figura 3 - Protótipo inicial da coleira a desenvolver

Adicionalmente, propomos também incorporar o PCB a ser desenvolvido numa coleira composta por *Kevlar* que, por sua vez, traz mais comodidade ao animal (Figuras 4 e 5).

Figura 4 - Protótipo alternativo da coleira a desenvolver (perspetiva 1)

Figura 5 - Protótipo alternativo da coleira a desenvolver (perspetiva 2)

Uma outra opção, passa por substituir uma coleira típica por uma coleira dorsal, visto que poderá melhorar a precisão dos sensores nos animais, dado que o pelo pode interferir nos dados recolhidos.

Plano de trabalho para a próxima iteração

Tendo em conta o trabalho desenvolvido até ao momento, a próxima etapa passa por enviar os dados recolhidos pelos sensores para o concentrador a ser implementado. Em relação à implementação do *software*, falta apenas registar os valores numa base de dados em tabela.

No que respeita ao protótipo da coleira, será estudada, junto do cliente, a solução a ser implementada.

Tendo em consideração o referido, já foi desenvolvido um modelo 3D da caixa a ser integrada na coleira bem como a sua especificação.

Riscos

Em relação aos riscos, não iremos abordar os riscos de nível 4, uma vez que a probabilidade de se verificarem é muito baixa.

Começamos pelos riscos que, caso ocorram, nos vão provocar mais problemas, ou seja, os riscos de nível 2.

O primeiro ponto a referir passa pelo *software* de visualização dos dados recolhidos. Caso haja alguma falha de comunicação, que impossibilite o acesso aos dados dos sensores, não será possível mostrar ao cliente os dados sobre os animais. Em casos onde o animal tenha alguma necessidade de receber suporte após a cirurgia, a mesma não vai ser detetada rapidamente.

Outro risco a evidenciar é o desvio do objetivo inicial, isto é, com o decorrer dos trabalhos, o produto que se está a desenvolver não corresponder ao idealizado pelo cliente. Como forma de mitigar este risco, utilizamos o método *Agile*, de forma a garantir a sinergia entre o que é desenvolvido pela equipa e o que é pretendido pelo cliente.

O terceiro maior risco a abordar, passa pela existência de defeitos no *software*. Estes podem não ser detetados até à implementação total dos componentes, ou seja, durante os testes individuais podem

funcionar como pretendido, mas quando o produto estiver concluído e for testado no ambiente real, podem surgir falhas, provenientes de fatores não considerados em testes individuais dos módulos funcionais.

De forma a colmatar situações como a descrita acima, serão efetuados testes em vários ambientes reais e será feita uma revisão do código frequente.

Apontando agora os riscos de nível 3, identificamos três riscos que vão ter influência direta no desenvolvimento do trabalho.

O primeiro prende-se com a eventualidade de ocorrer um atraso na aquisição dos componentes, o que iria provocar demora no começo dos trabalhos que, por sua vez, iria afetar a calendarização planeada. Para que não surjam percalços deste género, será tido em consideração o prazo de entrega apresentado pelos sites onde encomendamos os componentes. Além disso, optámos por criar uma margem de erro na calendarização, para minimizar o efeito de eventuais imprevistos como este.

Uma situação que pode afetar o desenvolvimento do trabalho passa por existir um (ou mais) elemento(s) com dificuldade(s) de integração na equipa, o que pode afetar o desenvolvimento do projeto. De forma a colmatar esta situação, fomentamos a mobilidade dentro do grupo, o que faz com que as funções nãos sejam definitivas e possa haver permuta entre elementos.

O último risco a evidenciar prende-se com a imprecisão dos dados recolhidos pelos sensores, o que pode resultar no envio de valores falsos para a aplicação. Uma situação deste género, além de desvalorizar o produto, trará uma vertente de incerteza e desconfiança por parte dos utilizadores, que não sabem se podem confiar nos dados apresentados. Especificando, podem pensar que está tudo bem e o animal necessita de cuidados, e o inverso. Como medida para mitigar este risco, vamos testar, sempre que possível, em ambiente real.

De seguida, são apresentadas as tabelas de gestão de riscos.

Tabela 1 - Análise Inicial

		Análise Inicial				
#	Risco	Consequência	Probabilidade	Gravidade	Nível	Solução
1	Imprecisão dos dados recolhidos pelos sensores	Alertas errados para a aplicação	Ocasional	Marginal	3	Recolha de informação + Testes
2	Atrasos na aquisição dos componentes	Atraso no começo do tra- balho que irá afeta o ponto seguinte	Ocasional	Marginal	3	Ter em atenção o site para compra dos componentes
3	Calendarização inadequada	Trabalho em atraso	Ocasional	Negligenciável	3	Calendarização com margens para erro e/ou reformulação
4	Software de visualização dos dados re- colhidos desenvolvido pela empresa (tempo útil)	Não ser possível analisar os dados	Remoto	Crítico	2	Feature extra: Aplicação Móvel
5	Dificuldades na integração com a equipa	Mau ambiente durante o trabalho	Remoto	Marginal	3	Reformulação das equipas/elemento "móvel"
6	Doença Inesperada	Falta de funcionamento num dos componentes	Remoto	Negligenciável	4	Ter o trabalho sempre dentro dos prazos
7	Desvio do objetivo inicial do trabalho	Alterações de última hora	Remoto	Crítico	2	Utilizar método: Agile
8	Mudanças Orçamentais	Não obtenção do produto desenhado	Remoto	Negligenciável	4	Criar um modelo de planeamento do projeto para esclarecer possíveis custos, e ir revendo regularmente o orçamento e como vão os gastos
9	Sobrecarga/Burnout da equipa	Incumprimento de tarefas	Improvável	Marginal	4	Melhor divisão do trabalho
10	Defeitos no software que poderão não ser detetados até à sua implementação	Alterações de última hora	Ocasional	Crítico	2	Revisões dos programas e testagens sobre qualquer ambiente
11	Falta de coordenação entre as equipas	Atraso na obtenção do produto	Remoto	Negligenciável	4	Calendarização bem organizada

Tabela 2 - Análise Riscos Residuais

Análise Riscos Residuais			
Consequência	R_Likel.	R_Sever.	R_Level
Alertas com uma imprecisão de percentagem baixa	Remoto	Negligenciável	4
Atraso ainda que menor do começa dos trabalhos	Ocasional	Negligenciável	3
Ter de alterar datas	Remoto	Negligenciável	4
Nem todos os dados serem possíveis para análise	Ocasional	Marginal	3
O elemento mesmo assim não conseguir trabalhar	Improvável	Negligenciável	4
Sobrecarga de um dos elementos	Remoto	Negligenciável	4
Produto ligeiramente desviado do pretendido	Remoto	Negligenciável	4
Mais tempo gasto a reorganizar	Improvável	Negligenciável	4
Cenário de utilização inesperado	Ocasional	Marginal	3
Equipa pode continuar a ter dificuldade a realizar a tarefa	Improvável	Negligenciável	4

Estado financeiro

Tabela 3 - Orçamento

#	Categoria	Descrição	Estado	Valor/un
5	Microcontrolador	Microcontrolador com acesso ao WiFi(ESP8266)	Adquirido	5,99 €
2	Sensores	Módulo acelerómetro digital-3 ei- xos(ADXL-345)	Adquirido	4,94 €
2	Sensores	Sensor de temperatura	Adquirido	3,70 €
2	Sensores	Sensor de ritmo cardíaco e níveis de oxigenação	Adquirido	7,32 €
3	Botões e Interruptores/ Deslizantes	Interruptor deslizante 2 posições estáveis - ON-ON - 250VAC 1A (6 pinos)	Adquirido	0,73 €
2	Baterias	18650 cell	Adquirido	5,48 €
3	Baterias e Pilhas	Bateria Lítio Polímero 3.7v 500 mAh	Adquirido	7,66 €
3	Carregamento de baterias e BMS	Módulo carregador de bateria Li-lon 1A - entrada Micro-USB	Adquirido	1,96 €
3	Conversores Step Up	Step Up Módulo Boost Step Up - 0.94.2V para Adquirido		2,05 €
		5V - 40480mA		
6	Terminais	Ficha Micro-USB (fêmea)	Adquirido	0,85 €
			Total:	115,13 €

Foi adquirido um componente de cada tipo, para que fosse possível começar a realizar testes. Nesta primeira fase foi feito um investimento total de 40,68 €.

Se a testagem apresentar resultados positivos, está planeada a aquisição dos restantes componentes, para que se possa terminar o projeto com duas coleiras funcionais, o que vai culminar no orçamento total descrito na tabela acima (Tabela 3).

Contribuição do grupo

Membro do Grupo	Maior(es) Contribuição(ões)	Percentagem de trabalho (%)
Bruna Pires	- Desenvolvimento da documentação referente a três propostas de projetos; - Pesquisa: sensores a utilizar e métodos de implementação da solução idealizada; - Desenvolvimento da apresentação referente à <i>Milestone</i> 1 e <i>Milestone</i> 2; - Desenvolvimento do documento "Planeamento do Projeto"; - Participação no desenvolvimento do <i>Excel</i> "Gestão Dos Riscos"; - Participação no desenvolvimento do documento "Relatório do Estado do Projeto"; - Realização da conectividade entre o microcontrolador - ESP8266 - e o sensor de ritmo cardíaco e níveis de oxigénio e posterior testagem do mesmo.	22%
André Santos	 Pesquisa: sensores a utilizar, métodos de implementação da solução idealizada, consumos energéticos e receção de dados com o Google Sheets; Participação no desenvolvimento do documento "Visão do Projeto"; Participação no desenvolvimento do Excel "Gestão Dos Riscos"; Participação no desenvolvimento do documento "Relatório do Estado do Projeto"; Criação de um esboço no Fusion 360 do modelo da coleira. 	19%
Daniel Almeida	 - Participação no desenvolvimento do documento "Visão do Projeto"; - Participação no desenvolvimento do Excel "Gestão Dos Riscos"; - Participação no desenvolvimento do documento "Relatório do Estado do Projeto"; - Formulação da comunicação entre dois microcontroladores - ESP8266 - e visualização em dashboard de dados recebidos. 	19%
Gonçalo Martins	 Pesquisa: sensores a utilizar, métodos de implementação da solução idealizada, consumos energéticos e receção de dados com o Google Sheets; Participação no desenvolvimento do documento "Visão do Projeto"; Desenvolvimento dos diagramas de blocos presentes na apresentação referente <i>Milestone</i> 2; Participação no desenvolvimento do documento "Relatório do Estado do Projeto"; Realização da conectividade entre o microcontrolador - ESP8266 - e o sensor de temperatura bem como o módulo acelerómetro; Programação do módulo ESP8266 pela IDE do Arduíno; 	21%
João Pedrosa	 - Participação no desenvolvimento do documento "Visão do Projeto"; - Participação no desenvolvimento do Excel "Gestão Dos Riscos"; - Participação no desenvolvimento do documento "Relatório do Estado do Projeto"; - Formulação da comunicação entre dois microcontroladores - ESP8266 - e visualização em dashboard de dados recebidos. 	19%

Outras questões

Nada a assinalar.

Comentários e observações

Nada a assinalar.

Anexo 1 – Gantt Chart

