

So what's a graph?

It's a tuple (V, E), where

- V is a **set of vertices**
- E is a set of edges

If the edges have an orientation, the graph is **directed**, otherwise it is **undirected**

So what's a graph?

Some graphs contain more information such as:

- values on vertices
- values on edges

How to represent a graph?

Let's label the vertices from 0 to n-1

We need to find a data structure for the edges...

What about a list of couples?

Check if i and j are neighbors	O(E)
Find all neighbors of i	O(E)

 \rightarrow awfully long for such simple operations

How to represent a graph?

Another idea is to store the relations as a matrix

→ boolean, or the value on the edge if the graph has some (and a dead value like None if there is no edge between two nodes)

Check if i and j are neighbors	O(1)
Find all neighbors of i	O(n)

 \rightarrow but always takes $O(n^2)$ in memory (not suitable for big graphs)

0	1	1	0
1	0	1	0
1	1	0	1
0	0	1	0

How to represent a graph?

With adjacency lists

→ store all neighbors of each node

(there is a variant with sets, they take more memory but allow quicker adjacency check)

Check if i and j are neighbors	O(E / n) avg
Find all neighbors of i	O(E / n) avg

→ this representation is very often preferred as it is compact and efficient


```
0: [1, 2],1: [0, 2],2: [0, 1, 3],3: [2]
```

Just a few terms

- a **path** is a sequence of 2-by-2 adjacent nodes and edges
- a simple path is a path that has no repeated vertices and edges
- a **cycle** is a path starting and ending at the same node
- a connected component is a subgraph in which there exists a path between any two nodes but not with any external node

Special graphs

acyclic graph

connected graph

tree = connected + acyclic

Note on directed graphs

- their matrix isn't symmetrical
- being acyclic doesn't mean that the undirected counterpart is acyclic too
- there are two notions of connection for directed graphs:
 - weakly connected = the corresponding undirected graph is connected
 - strongly connected = there is a path in each direction for each pair of vertices

Some properties of trees...

- A tree has N-1 edges for N vertices
- A tree is a connected & acyclic graph
- Remove any edge from the tree and it disconnects the graph
- In the general case vertice can have any degree
 - Some trees are more specific : binary trees, k-trees

Conclusion

Let's have some exercises now, we'll continue this course later

Slides: Louis Sugy for INSAlgo

Helsinki trains map: HSL

The Internet in 2015: The Opte Project

Renater network: Renater