Машинное обучение

Преобразование данных. Часть 2

Материалы > Анализ и обработка данных

Во второй части рассмотрим нелинейные преобразования количественных данных.

Продолжим работу в том же блокноте⊕

Нелинейные преобразования

Нелинейные преобразования, как уже было сказано, меняют структуру распределения.

```
# вновь подгрузим полный датасет boston
boston = pd.read_csv('/content/boston.csv')
```

Логарифмическое преобразование

Смысл преобразования

Рассмотрим график логарифмической функции.

```
# построим график логарифмической функции
    x = np.linspace(0.05, 100, 100)
3
    y = np.log(x)
4
   ax = plt.axes()
5
6
7
    plt.xlim([-5, 105])
8
    plt.ylim([-1, 5])
9
10
    ax.hlines(y = 0, xmin = -5, xmax = 105, linewidth = 1, color = 'k')
11
    ax.vlines(x = 0, ymin = -1, ymax = 5, linewidth = 1, color = 'k')
12
13
    plt.plot(x, y)
14
15
    # возьмем произвольные промежутки между малыми
16
    ax.vlines(x = 2, ymin = 0, ymax = np.log(2), linewidth = 2, color = 'g', linestyles =
17
    ax.vlines(x = 4, ymin = 0, ymax = np.log(4), linewidth = 2, color = 'g', linestyles =
18
    ax.hlines(y = np.log(2), xmin = 0, xmax = 2, linewidth = 2, color = 'g', linestyles =
19
    ax.hlines(y = np.log(4), xmin = 0, xmax = 4, linewidth = 2, color = 'g', linestyles =
20
21
   # и большими значениями
22
   ax.vlines(x = 60, ymin = 0, ymax = np.log(60), linewidth = 2, color = 'g', linestyles
    ax.vlines(x = 80, ymin = 0, ymax = np.log(80), linewidth = 2, color = 'g', linestyles
23
    ax.hlines(y = np.log(60), xmin = 0, xmax = 60, linewidth = 2, color = 'g', linestyles
24
    ax.hlines(y = np.log(80), xmin = 0, xmax = 80, linewidth = 2, color = 'g', linestyles
```

Стр. 1 из 18 17.01.2025 17:50

По оси х располагаются значения до трансформации, по оси у — после. Ценность логарифмического преобразования в том, что:

- расстояние между небольшими значениями увеличивается;
- расстояние между большими значениями наоборот уменьшается.

И, таким образом, это преобразование делает скошенное распределение более симметричным и приближенным к нормальному. Замечу, что, как видно из графика, в общем случае преобразование возможно только для положительных исходных значений.

Скошенное вправо распределение

В силу описанной выше особенности логарифмическое преобразование чаще применяют к **скошенным вправо** (right-skewed) распределениям. В этих распределениях бо́льшая часть наблюдений находится как раз в диапазоне меньших значений.

```
1
    fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (8,4))
2
3
    sns.histplot(x = boston.LSTAT, bins = 15, ax = ax[0])
4
    ax[0].set_title('Скошенное вправо распределение')
5
6
    sns.histplot(x = np.log(boston.LSTAT),
7
                 bins = 15, color = 'green',
8
                 ax = ax[1])
9
    ax[1].set_title('Log transformation')
10
    plt.tight_layout()
11
12
    plt.show()
```


Стр. 2 из 18

Количественно оценим изменения в скошенности и островершинности (то есть сосредоточенности значений вокруг среднего) распределения.

Коэффициент ассиметрии

Первое свойство измеряется **коэффициентом ассиметрии** (skewness), который в нормальном распределении должен быть равен нулю. При этом,

- положительные значения говорят о скошенности вправо (positively или right-skewed);
- отрицательные, о скошенности влево (negatively или left-skewed).

```
# импортируем необходимые функции
from scipy.stats import skew, kurtosis

# рассчитаем ассиметричность до и после преобразования
skew(boston.LSTAT), skew(np.log(boston.LSTAT))

1 (0.9037707431346133, -0.3192822699479382)
```

Выраженная скошенность вправо превратилась в меньшую скошенность влево.

Коэффициент эксцесса

Коэффициент эксцесса (kurtosis) измеряет островершинность распределения. Можно сказать, что эксцесс показывает сосредоточенность (плотность) значений вокруг среднего.

По формуле Фишера (Fisher's definition) для нормального распределения значение этого коэффициента также равно нулю. Одновременно,

- положительные значения говорят о большей сосредоточенности значений около среднего (острая вершина);
- отрицательные о наличии более «тяжелых хвостов» (плоская вершина).

```
1 # рассчитаем коэффициент эксцесса до и после преобразования
2 kurtosis(boston.LSTAT), kurtosis(np.log(boston.LSTAT))
1 (0.476544755729746, -0.4390590293275558)
```

Вершина сменилась с более острой на более плоскую.

График нормальной вероятности

Наконец с помощью **графика нормальной вероятности** (normal probability plot) мы можем визуально оценить, приблизилось ли распредеделение к нормальному.

```
1 # построим графики нормальной вероятности
2 from scipy.stats import probplot
3
```

Стр. 3 из 18 17.01.2025 17:50

```
fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (8,4))
5
6
    probplot(boston.LSTAT, dist = 'norm', plot = ax[0])
7
    ax[0].set_title('Скошенное вправо распределение')
8
9
    probplot(np.log(boston.LSTAT), dist = 'norm', plot = ax[1])
10
    ax[1].set_title('Log transformation')
11
12
    plt.tight_layout()
13
    plt.show()
```


Разумеется, логарифмическое преобразование снижает эффект выбросов «справа».

```
fig, ax = plt.subplots(1, 2, figsize = (12,6))
sns.scatterplot(x = boston_outlier.LSTAT, y = boston_outlier.MEDV, ax = ax[0]).set(titls.sns.scatterplot(x = np.log(boston_outlier.LSTAT), y = np.log(boston_outlier.MEDV), ax =
```


Скошенное влево распределение

Логарифмическое преобразование, скорее всего, не подойдет для скошенного влево распределения, потому что здесь наоборот большая часть наблюдений находится в правой части диапазона. Применив лог-преобразование, мы только увеличим скошенность.

```
fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (8,4))

sns.histplot(x = boston.AGE, bins = 15, ax = ax[0])

аx[0].set_title('Скошенное влево распределение')
```

Стр. 4 из 18 17.01.2025 17:50

Посмотрим на коэффициент ассиметрии, коэффициент эксцесса и график нормальной вероятности.

```
1 skew(boston.AGE), skew(np.log(boston.AGE))
 1 (-0.5971855948016143, -1.6706835909283215)
 1 kurtosis(boston.AGE), kurtosis(np.log(boston.AGE))
 1 (-0.97001392664039, 2.907332087827127)
  1
       fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (8,4))
  2
  3
      probplot(boston.AGE, dist = 'norm', plot = ax[0])
  4
       ax[0].set_title('Скошенное влево распределение')
  5
  6
       probplot(np.log(boston.AGE), dist = 'norm', plot = ax[1])
  7
       ax[1].set_title('Log transformation')
  8
  9
       plt.tight_layout()
 10
      plt.show()
                                               Log transformation
       Скошенное влево распределение
  140
  120
                                    Ordered Values
  100
Ordered Values
   80
   60
                                      3
   40
   20
```

Как мы видим, показатели только ухудшились.

Theoretical quantiles

Большие значения

Дополнительно замечу, что даже если распределение скошено вправо, но в нем присутствуют

Theoretical quantiles

Стр. 5 из 18 17.01.2025 17:50

только большие (удаленные от нуля) значения, то логарифмическое преобразование может не приблизить распределение к нормальному, поскольку эффект расширения и сжатия на больших значениях менее заметен.

Логарифм нуля и отрицательных значений

Так как логарифм нуля и отрицательных значений неопределен, при наличии нулевых значений мы можем **добавить к значениям константу** (например, $\log(x+0.001)$).

```
1 # в переменной ZN есть нулевые значения
2 # добавим небольшую константу
3 np.log(boston.ZN + 0.0001)[:5]

1 0 2.890377
2 1 -9.210340
3 2 -9.210340
4 3 -9.210340
5 4 -9.210340
6 Name: ZN, dtype: float64
```

Так как в данном случае мы все-таки произвольным образом меняем исходные данные, то можно использовать **преобразование обратного гиперболического синуса** (inverse hyperbolic sine (IHS) transformation).

$$IHS(x) = \ln \left(x + \sqrt{x^2 + 1}
ight)$$

Дополнительным преимуществом такого подхода является то, что мы можем преобразовывать любые действительные числа (а не только неотрицательные).

Основание логарифма

Чем меньше основание логарифма (2 < e < 10), тем больше диапазон преобразованных значений. Это можно наблюдать на графиках логарифмических функций, где функция с бо́льшим основанием становится «плоской» быстрее.

```
1
    x = np.linspace(0.05, 100, 500)
2
    y_2 = np.log2(x)
3
    y_{ln} = np.log(x)
    y_10 = np.log10(x)
4
5
6
    plt.plot(x, y_2, label = 'log2')
7
    plt.plot(x, y_ln, label = 'ln')
8
    plt.plot(x, y_10, label = 'log10')
9
10
    plt.legend()
11
    plt.show()
```

Стр. 6 из 18 17.01.2025 17:50

При этом разумеется в целом логарифмическое преобразование с любым основанием действует примерно одинаково.

Линейная взаимосвязь

Многие процессы удобно моделировать с помощью линейных моделей. И хотя, как мы увидим в следующем разделе, можно использовать линейную модель с полиномиальными коэффициентам, зачастую проще наоборот «выправить» (straighten) сами данные.

```
1
    # визуально оценим "выпрямление" данных
2
    fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (8,4))
3
4
    sns.scatterplot(x = boston.LSTAT, y = boston.MEDV, ax = ax[0])
5
    ax[0].set_title('Изначальное распределение')
6
7
    sns.scatterplot(x = np.log(boston.LSTAT), y = boston.MEDV, ax = ax[1])
8
    ax[1].set_title('Log transformation')
9
    plt.tight_layout()
10
11
12
    plt.show()
```


В качестве метрики линейности взаимосвязи можно использовать коэффициент линейной корреляции Пирсона (максимизация коэффициента корреляции означает максимизацию линейности).

```
# посмотрим, как изменится корреляция, если преобразовать

# одну, вторую или сразу обе переменные

boston['LSTAT_log'] = np.log(boston['LSTAT'])

boston['MEDV_log'] = np.log(boston['MEDV'])

boston[['LSTAT', 'LSTAT_log', 'MEDV', 'MEDV_log']].corr()
```

Стр. 7 из 18

	LSTAT	LSTAT_log	MEDV	MEDV_log
LSTAT	1.000000	0.944031	-0.737663	-0.805034
LSTAT_log	0.944031	1.000000	-0.815442	-0.822960
MEDV	-0.737663	-0.815442	1.000000	0.953155
MEDV_log	-0.805034	-0.822960	0.953155	1.000000

Как мы видим, в данном случае коэффициент корреляции будет наибольшим в том случае, когда мы преобразовываем обе переменные (-0.82).

Если вы преобразовываете целевую переменную, важно выполнить обратное преобразования после формирования прогноза. Для операции взятия натурального логарифма обратным преобразованием будет возведение числа Эйлера в степень преобразованного числа.

$$y = ln(x) \rightarrow x = e^y$$

```
1  # сравним исходный датасет и лог-преобразование + обратную операцию
2  # (округлим значения, чтобы ошибка округления не мешала сравнению)
3  boston.MEDV.round(2).equals(np.exp(np.log(boston.MEDV)).round(2))
1  True
```

Примечание. Логарифмическое преобразование также легко интерпретировать. Например, снижение на -0.162 функции натурального логарифма свидетельствует о снижении на 15% в исходных данных вне зависимости от их масштаба.

Преобразование квадратного корня

Рассмотрим преобразование с помощью квадратного корня (square root transformation).

```
1    x = np.linspace(0, 30, 300)
2    y = np.sqrt(x)
3    plt.plot(x, y);
```


В целом, как видно из формы кривой, такое преобразование действует аналогично логарифмическому, однако менее агрессивно. С другой стороны, его без изменений можно применять к нулевым значениям.

Стр. 8 из 18

Лестница степеней Тьюки

Помимо преобразования квадратного корня (то есть возведение в $\frac{1}{2}$ степени) можно пробовать и другие показатели. Для того чтобы понять, какое преобразование окажется наиболее удачным, используют **лестницу степеней Тьюки** (Tukey's Ladder of Powers).

λ	-2	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	2
y	$\frac{1}{x^2}$	$\frac{1}{x}$	$\frac{1}{\sqrt{x}}$	$\log x$	\sqrt{x}	\boldsymbol{x}	x^2

По сути, мы по очереди применяем каждое из значений λ и смотрим, что получится. Здесь важно вставить несколько примечаний:

- вместо возведения в нулевую степень применяется логарифмическое преобразование;
- если переменная принимает отрицательные значения, то после, например, возведения в квадрат и обратного преобразования, такое значение потеряет смысл;
- если параметр λ принимает отрицательные значения, то зависимость переворачивается; например, если y=x это возрастающая зависимость, то $\frac{1}{x}$ убывающая; преодолеть это можно, прописав что $-(x^{\lambda})$, если $\lambda<0$.

```
1
    x = np.linspace(0.05, 30, 300)
2
3
4
    y1 = x ** (-1)
5
    y2 = -(x ** (-1))
6
7
    fig, ax = plt.subplots(nrows = 1, ncols = 3, figsize = (12,4))
8
9
    ax[0].plot(x, y0);
    ax[0].set_title('Изначальное распределение')
10
11
12
    ax[1].plot(x, y1);
    ax[1].set_title('Negative lambda')
13
14
15
    ax[2].plot(x, y2);
16
    ax[2].set_title('Solution')
17
18
    plt.tight_layout()
19
20
    plt.show()
```


Тогда,

Стр. 9 из 18 17.01.2025 17:50

1 (0, -0.824)

$$y = egin{cases} x^{\lambda} & ext{if } \lambda > 0 \ \log x & ext{if } \lambda = 0 \ -(x^{\lambda}) & ext{if } \lambda < 0 \end{cases}$$
 $\lambda \qquad || \qquad -2 \qquad -1 \qquad -rac{1}{2} \qquad 0 \qquad rac{1}{2} \qquad 1 \qquad 2$ $y \qquad || \qquad -rac{1}{x^{2}} \qquad -rac{1}{x} \qquad -rac{1}{\sqrt{x}} \qquad \log x \qquad \sqrt{x} \qquad x \qquad x^{2}$

Этот инструмент удобно использовать, когда нужно «выправить» нелинейную взаимосвязь между переменными, например, в задаче линейной регрессии. Напишем функцию, которая на вход будет принимать признак и целевую переменную и выдавать оптимальную λ и соответствующий ей коэффициент корреляции.

```
1
    def tukey(x, y):
2
3
       x, y = x.to_numpy(), y.to_numpy()
4
5
       # в lambdas поместим возможные степени
6
       lambdas = [-2, -1, -1/2, 0, 1/2, 1, 2]
7
       # в corrs будем записывать получающиеся корреляции
8
       corrs = []
9
10
       # в цикле последовательно применим каждую lambda
11
       for 1 in lambdas:
12
13
        if 1 < 0:
14
           # рассчитаем коэффициент корреляции Пирсона и добавим результат в corrs
           corrs.append(np.corrcoef(x ** 1, y ** 1)[0][1])
15
16
        elif 1 == 0:
17
           corrs.append(np.corrcoef(np.log(x + np.sqrt(x**2 + 1)),
18
19
                                    np.log(y + np.sqrt(y**2 + 1)))[0][1])
20
21
         else:
           corrs.append(np.corrcoef(-(x ** 1), -(y ** 1))[0][1])
22
23
24
       # теперь найдем индекс наибольшего значения корреляции
25
       idx = np.argmax(np.abs(corrs))
26
27
       # выведем оптимальную lambda и соответствующую корреляцию
28
       return lambdas[idx], np.round(corrs[idx], 3)
1 tukey(boston.LSTAT, boston.MEDV)
```

Оптимальным будет логарифмическое преобразование. Применим функцию к нескольким признакам с положительными значениями.

```
for col in boston[['CRIM', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'LSTAT']
2
     print(str(col) + '\t' + str(tukey(boston[col], boston.MEDV)))
    CRIM
            (0, -0.593)
1
2
   NOX
           (-0.5, -0.526)
          (2, 0.724)
   AGE
           (0.5, -0.402)
5
   DIS
           (-1, 0.489)
    RAD
           (0, -0.44)
6
7
    TAX
           (-0.5, -0.558)
   PTRATIO
8
              (0.5, -0.509)
9
   LSTAT
             (0, -0.824)
```

Посмотрим на корреляцию изначальных переменных.

Стр. 10 из 18 17.01.2025 17:50

```
1 boston[['CRIM', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'LSTAT', 'MEDV']].
1
              -0.39
2
    NOX
              -0.43
3
    RM
               0.70
4
    AGF
              -0.38
5
    DIS
               0.25
6
    RAD
              -0.38
7
    TAX
              -0.47
8
    PTRATIO
             -0.51
9
    LSTAT
              -0.74
10
   MEDV
               1.00
11 Name: MEDV, dtype: float64
```

Для дальнейшей работы отберем RM, PTRATIO и LSTAT. Выполним необходимые преобразования.

```
1
    boston_transformed = {}
2
3
    boston_transformed['RM'] = boston.RM ** 2
4
    boston_transformed['PTRATIO'] = np.sqrt(boston.PTRATIO)
5
    boston_transformed['LSTAT'] = np.log(boston.LSTAT)
6
    boston_transformed['MEDV'] = boston.MEDV
7
8
    boston_transformed = pd.DataFrame(boston_transformed,
9
                                       columns = ['RM', 'PTRATIO', 'LSTAT', 'MEDV'])
10
    boston_transformed.head()
11
```

	RM	PTRATIO	LSTAT	MEDV
0	43.230625	3.911521	1.605430	24.0
1	41.229241	4.219005	2.212660	21.6
2	51.624225	4.219005	1.393766	34.7
3	48.972004	4.324350	1.078410	33.4
4	51.079609	4.324350	1.673351	36.2

Построим модель линейной регрессии на исходных и преобразованных данных и рассчитаем коэффициент детерминации.

```
from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(boston[['RM', 'PTRATIO', 'LSTAT']], boston.MEDV)
model.score(boston[['RM', 'PTRATIO', 'LSTAT']], boston.MEDV)

model.score(boston[['RM', 'PTRATIO', 'LSTAT']], boston.MEDV)

model = LinearRegression()
model.fit(boston_transformed[['RM', 'PTRATIO', 'LSTAT']], boston_transformed.MEDV)
model.score(boston_transformed[['RM', 'PTRATIO', 'LSTAT']], boston_transformed.MEDV)

nodel.score(boston_transformed[['RM', 'PTRATIO', 'LSTAT']], boston_transformed.MEDV)

nodel.score(boston_transformed[['RM', 'PTRATIO', 'LSTAT']], boston_transformed.MEDV)
```

Еще одним вариантом было бы применение различных преобразований к признаку и целевой переменной. В частности, Тьюки и Мостеллер предложили следующее правило выпуклости (Tukey and Mosteller's Bulging Rule).

 Y^3 Y^2

Стр. 11 из 18 17.01.2025 17:50

В данном случае преобразования выбираются в зависимости от четырех приведнных на схеме форм зависимости данных.

Теперь рассмотрим более сложные, но близкие по смыслу к лестнице Тьюки степенные преобразования (power transformations) Бокса-Кокса и Йео-Джонсона.

Преобразование Бокса-Кокса

Приведем формулу преобразования Бокса-Кокса (Box-Cox transformation).

$$y_i^{(\lambda)} = egin{cases} rac{y_i^{\lambda}-1}{\lambda} & ext{if } \lambda
eq 0 \ \ln y_i & ext{if } \lambda = 0 \end{cases}$$

Очевидно, что преобразуемые значения y_i могут быть только положительными. Параметр λ выбирается методом наибольшего (максимального) правдоподобия (maximum likelihood method). Его рассмотрение выходит за рамки сегодняшнего занятия.

```
1
   from sklearn.preprocessing import PowerTransformer
2
3
   pt = PowerTransformer(method = 'box-cox')
4
5
   # найдем оптимальный параметр лямбда
   pt.fit(boston[['LSTAT']])
6
7
8
   pt.lambdas_
1 array([0.22776737])
1
   # преобразуем данные
   bc_pt = pt.transform(boston[['LSTAT']])
2
3
4
   # метод .transform() возвращает двумерный массив
5
   bc_pt.shape
1 (506, 1)
1
    # сравним изначальное распределение и распределение после преобразования Бокса-Кокса
2
    fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (8,4))
3
4
    sns.histplot(x = boston.LSTAT, bins = 15, ax = ax[0])
5
    ax[0].set_title('Изначальное распределение')
6
7
    # так как на выходе метод .transform() выдает двумерный массив,
8
    # его необходимо преобразовать в одномерный
9
    sns.histplot(x = bc_pt.flatten(),
10
                 bins = 15, color = 'green',
```

Стр. 12 из 18 17.01.2025 17:50


```
1
    # оценим изменение взаимосвязи после преобразования Бокса-Кокса
2
    fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (8,4))
3
4
    sns.scatterplot(x = boston.LSTAT, y = boston.MEDV, ax = ax[0])
5
    ax[0].set_title('Изначальное распределение')
6
7
    # можно использовать функцию power_transform(),
8
    # она действует аналогично классу, но без estimator
    sns.scatterplot(x = power_transform(boston[['LSTAT']], method = 'box-cox').flatten(),
9
                     y = power_transform(boston[['MEDV']], method = 'box-cox').flatten(),
10
11
                     ax = ax[1]
12
    ax[1].set_title('Box-Cox transformation')
13
14
    plt.tight_layout()
15
16
    plt.show()
```



```
# посмотрим на достигнутый коэффициент корреляции
pd.DataFrame(power_transform(boston[['LSTAT', 'MEDV']], method = 'box-cox'),
columns = [['LSTAT', 'MEDV']]).corr()
```

```
LSTAT MEDV

LSTAT 1.000000 -0.830424

MEDV -0.830424 1.000000
```

```
# сравним корреляцию признаков с целевой переменной
# после преобразования Бокса-Кокса
MEDV_bc = power_transform(boston[['MEDV']], method = 'box-cox').flatten()
```

Стр. 13 из 18 17.01.2025 17:50

```
for col in boston[['CRIM', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'LSTAT']
5
     col_bc = power_transform(boston[[col]], method = 'box-cox').flatten()
6
     print(col + '\t' + str(np.round(np.corrcoef(col_bc, MEDV_bc)[0][1], 3)))
7
1
   CRIM
           -0.528
2
   NOX
          -0.5
3
   RM
         0.64
   AGE
         -0.452
   DIS 0.392
   RAD -0.403
7
   TAX
          -0.538
   PTRATIO
8
              -0.522
9 LSTAT
            -0.83
1
    # возьмем признаки RM, PTRATIO, LSTAT и целевую переменную MEDV
2
    # и применим преобразование
3
    pt = PowerTransformer(method = 'box-cox')
    boston_bc = pt.fit_transform(boston[['RM', 'PTRATIO', 'LSTAT', 'MEDV']])
4
   boston_bc = pd.DataFrame(boston_bc, columns = ['RM', 'PTRATIO', 'LSTAT', 'MEDV'])
6
7
   # построим линейную регрессию
8
   # в данном случае показатель чуть хуже, чем при лестнице Тьюки
9
    model = LinearRegression()
    model.fit(boston_bc[['RM', 'PTRATIO', 'LSTAT']], boston_bc.MEDV)
10
    model.score(boston_bc[['RM', 'PTRATIO', 'LSTAT']], boston_bc.MEDV)
1 0.7331845210304999
   # посмотрим на лямбды
pt.lambdas_
1 array([0.44895975, 4.35021552, 0.22776736, 0.2166209])
   # выполним обратное преобразование
2
   pd.DataFrame(pt.inverse_transform(boston_bc),
                columns = ['RM', 'PTRATIO', 'LSTAT', 'MEDV']).head()
3
```

	RM	PTRATIO	LSTAT	MEDV
0	6.575	15.3	4.98	24.0
1	6.421	17.8	9.14	21.6
2	7.185	17.8	4.03	34.7
3	6.998	18.7	2.94	33.4
4	7.147	18.7	5.33	36.2

Преобразование Йео-Джонсона

Преобразование Йео-Джонсона (Yeo-Johnson transformation) позволяет работать с нулевыми и отрицательными значениями.

$$y = egin{cases} ((y+1)^{\lambda}-1)/\lambda & ext{if } \lambda
eq 0, y \geq 0 \ \log(y+1) & ext{if } \lambda = 0, y \geq 0 \ -[(-y+1)^{(2-\lambda)}-1]/(2-\lambda) & ext{if } \lambda
eq 2, y < 0 \ -\log(-y+1) & ext{if } \lambda = 2, y < 0 \end{cases}$$

Попробуем преобразование Йео-Джонсона.

Стр. 14 из 18 17.01.2025 17:50

```
fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (8,4))
1
2
3
    sns.histplot(x = boston_outlier.LSTAT, bins = 15, ax = ax[0])
4
    ax[0].set_title('Изначальное распределение')
5
6
    sns.histplot(x = power_transform(boston[['LSTAT']], method = 'yeo-johnson').flatten(),
7
                 bins = 15, color = 'green',
8
                 ax = ax[1]
9
    ax[1].set_title('Yeo-Johnson transformation')
10
11
    plt.tight_layout()
12
    plt.show()
```



```
1
    # посмотрим, как изменится линейность взаимосвязи
2
    fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (8,4))
3
4
    sns.scatterplot(x = boston.LSTAT, y = boston.MEDV, ax = ax[0])
5
    ax[0].set_title('Изначальное распределение')
6
7
    sns.scatterplot(x = power_transform(boston[['LSTAT']], method = 'yeo-johnson').flatter
8
                     y = power_transform(boston[['MEDV']], method = 'yeo-johnson').flatten(
9
                    ax = ax[1]
    ax[1].set_title('Yeo-Johnson transformation')
10
11
12
    plt.tight_layout()
13
14
    plt.show()
```



```
1
    # возьмем те же признаки и целевую переменную, преобразуем их
2
    # преобразование Йео-Джонсона является методом по умолчанию
3
    pt = PowerTransformer()
    boston_yj = pt.fit_transform(boston[['RM', 'PTRATIO', 'LSTAT', 'MEDV']])
4
5
    boston_yj = pd.DataFrame(boston_yj, columns = ['RM', 'PTRATIO', 'LSTAT', 'MEDV'])
6
7
    # построим модель
8
    model = LinearRegression()
9
    model.fit(boston_yj.iloc[:, :3], boston_yj.iloc[:, -1])
```

Стр. 15 из 18 17.01.2025 17:50

```
10 | model.score(boston_yj.iloc[:, :3], boston_yj.iloc[:, -1])
1 | 0.7333775808517045
```

QuantileTransformer

При **квантильном преобразовании** (quantile transformation) исходным данным присваивается квантильный ранг в целевом (равномерном или нормальном) распределении. Этот ранг и есть новая преобразованная оценка.

Особенность такого преобразования заключается в том, что новое распределение никак не связано с исходным. Рассмотрим пример преобразования данных с выбросами.

```
from sklearn.preprocessing import QuantileTransformer
2
3
    # приведем переменные с выбросами (!) к нормальному распределению
4
    # с помощью квантиль-функции
5
    qt = QuantileTransformer(n_quantiles = len(boston_outlier),
6
                              output_distribution = 'normal',
7
                              random_state = 42)
8
9
    # для каждого из столбцов вычислим квантили нормального распределения,
10
    # соответствующие заданному выше количеству квантилей (n_quantiles)
11
    # и преобразуем (тар) данные к нормальному распределению
12
    boston_qt = pd.DataFrame(qt.fit_transform(boston_outlier),
13
                              columns = boston_outlier.columns)
14
15
    # посмотрим на значения, на основе которых будут рассчитаны квантили
16
   qt.quantiles_[-5:]
1
   array([[34.77, 50. ],
2
          [36.98, 50. ],
3
           [37.97, 50. ],
4
           [45., 70.],
5
           [50. , 72. ]])
1
   # посмотрим на соответствующие им квантили нормального распределения
   qt.references_[-5:]
1 array([0.99211045, 0.99408284, 0.99605523, 0.99802761, 1.
                                                                     1)
   # рассчитаем предпоследнее значение с помощью библиотеки scipy
2
   from scipy.stats import norm
3
   norm.ppf(0.99802761, loc = 0, scale = 1)
1 2.8825440308212347
   # сравним с преобразованными значениями
2 boston_qt.LSTAT.sort_values()[-5:]
1
   373
           2.413985
   414
          2.517047
3
   374
          2.656761
4
   506
          2.882545
   507
          5.199338
5
6 Name: LSTAT, dtype: float64
1
    # выведем результат
2
    fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (8,4))
3
4
    sns.histplot(x = boston\_outlier.LSTAT, bins = 15, ax = ax[0])
5
    ax[0].set_title('Изначальное распределение')
6
```

Стр. 16 из 18 17.01.2025 17:50


```
1 # посмотрим, выправилась ли взаимосвязь
2 plt.scatter(boston_qt.LSTAT, boston_qt.MEDV);
```


1 -0.7661930913306837

Исходя из преобразованных значений (посмотрите на значение с индексом 507) и точечной диаграммы мы видим, что эффект выбросов сохранился.

```
1  max(boston_qt.LSTAT), max(boston_qt.MEDV)
1 (5.19933758270342, 5.19933758270342)
   # сравним исходную корреляцию
   boston_outlier[['LSTAT', 'MEDV']].corr().iloc[0,1]
1 -0.5772033139947359
   # с корреляцией после преобразования
2 boston_qt.corr().iloc[0,1]
1 -0.7037287662365327
1
    # посмотрим на корреляцию после преобразования Йео-Джонсона
    boston_yj = pd.DataFrame(power_transform(boston_outlier, method = 'yeo-johnson'),
2
3
                            columns = boston_outlier.columns)
4
    boston_yj.corr().iloc[0,1]
```

Стр. 17 из 18 17.01.2025 17:50

Подведем итог

На сегодняшнем занятии мы рассмотрели линейные и нелинейные способы преобразования количественных данных.

Ответы на вопросы

Bonpoc. Не очень понял применение формулы евклидова расстояния на занятии по кластерному анализу.

Ответ. На занятии по кластеризации мы измеряли с помощью евклидова расстояния дистанцию между двумя векторами, здесь же мы использовали формулу для расчета длины одного и того же вектора.

Стр. 18 из 18