Anomaly Detection Algorithm: Building and Evaluating

Overview

In building an anomaly detection algorithm, we aim to identify anomalies in a dataset. The algorithm is based on the Gaussian distribution and involves the following steps:

Step 1: Choose Features

- 1. Training Set (x1 through xm):
 - Each example x has n features.
 - Example: In aircraft engine manufacturing, features could include heat and vibrations.

Step 2: Density Estimation

- 2. Model for p(x):
 - Assume features are statistically independent (though the algorithm can work even if they aren't).
 - Probability p(x) modeled as the product of individual feature probabilities:

$$p(x) = \prod_{j=1}^n p(x_j)$$

- Each feature \boldsymbol{x}_j is modeled by a Gaussian distribution:

$$p(x_j) = rac{1}{\sqrt{2\pi}\sigma_j}e^{-rac{(x_j-\mu_j)^2}{2\sigma_j^2}}$$

Density estimation

Training set: $\{\vec{\mathbf{x}}^{(1)}, \vec{\mathbf{x}}^{(2)}, ..., \vec{\mathbf{x}}^{(m)}\}$ Each example $\vec{\mathbf{x}}^{(i)}$ has n features

$$\frac{x_2}{x_1} \qquad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Step 3: Parameter Estimation

- 3. Estimate Parameters (μ_j , σ_j^2):
 - ullet μ_j is the average of feature x_j over all examples.
 - σ_j^2 is the average squared difference between x_j and μ_j .

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

$$\sigma_j^2 = rac{1}{m} \sum_{i=1}^m (x_j^{(i)} - \mu_j)^2$$

Step 4: Anomaly Detection

- 4. Decision Rule:
 - Given a new example $x_{
 m test}$:
 - \circ Compute $p(x_{ ext{test}})$ using the product of individual feature probabilities.
 - $\circ \:$ If $p(x_{ ext{test}}) < \epsilon$, flag as an anomaly.

Anomaly detection algorithm

- 1. Choose n features x_i that you think might be indicative of anomalous examples.
- 2. Fit parameters $\mu_1, \dots, \mu_n, \sigma_1^2, \dots, \sigma_n^2$

$$\mu_{j} = \frac{1}{m} \sum_{i=1}^{m} x_{j}^{(i)} \qquad \sigma_{j}^{2} = \frac{1}{m} \sum_{i=1}^{m} (x_{j}^{(i)} - \mu_{j})^{2}$$

Vectorized formula

$$\vec{\mu} = \frac{1}{m} \sum_{i=1}^{m} \vec{\mathbf{x}}^{(i)} \qquad \vec{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \dots \\ \mu_n \end{bmatrix}$$

3. Given new example x, compute p(x):

$$p(x) = \prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j^2) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_j} exp(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2})$$

Anomaly if $p(x) < \varepsilon$

Parameter Choices

- Choosing Features:
 - Select features believed to indicate anomalous behavior.
- Choosing ϵ :
 - \circ ϵ is a threshold to determine when an example is flagged as anomalous.
 - Typically chosen based on cross-validation on a labeled validation set.

Evaluation

- How to know if the algorithm is working well?
 - Use labeled data (with anomalies marked) to evaluate algorithm performance.
 - Metrics:
 - True Positive (TP), False Positive (FP), False Negative (FN), True Negative (TN).
 - Precision, Recall, F1 Score.
 - $\,\blacksquare\,$ Adjust ϵ to balance precision and recall based on application requirements.

Example Evaluation

- Parameters:
 - $\circ \ \epsilon = 0.02$
- Test Examples:
 - $\circ~~x_{ ext{test}_1}$: $p(x_{ ext{test}_1}) pprox 0.4$ (Not flagged as anomaly)
 - $\circ~x_{ ext{test}_2}$: $p(x_{ ext{test}_2}) pprox 0.0021$ (Flagged as anomaly)

• Conclusion:

 \circ Algorithm correctly identifies $x_{ ext{test}_2}$ as an anomaly and ignores $x_{ ext{test}_1}$.

Next Steps

In the next video, we'll explore parameter tuning, choosing an appropriate ϵ , and refining the anomaly detection system for optimal performance.