Examenul de bacalaureat 2014 Proba E.d) Fizică BAREM DE EVALUARE ŞI DE NOTARE

Varianta 2

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la 10.

A. MECANICĂ (45 puncte)

Subjectul I

Nr.ltem	Soluţie, rezolvare	Punctaj
l.1.	a	3р
2.	d	3р
3.	b	3p
4.	d	3p
5.	С	3р
TOTAL	pentru Subiectul I	15p

A. Subiectul al II-lea

II.a.	Pentru:		4p
	reprezentarea corectă a forțelor ce acționează asupra corpului 1	2p	
	reprezentarea corectă a forțelor ce acționează asupra corpului 2	2p	
b.	Pentru:		4p
	$m_1 \cdot g + F_e = T$	1p	
	$m_2 \cdot g = T$	1p	
	$F_{e} = k \cdot (\ell - \ell_{0})$	1p	
	rezultat final: $\ell = 29 \text{cm}$	1p	
C.	Pentru:		4p
	$m_2 \cdot a = m_2 \cdot g - T'$	1p	
	$m_{\mathbf{i}} \cdot \mathbf{a} = T' - m_{\mathbf{i}} \cdot \mathbf{g}$	1p	
	$a = \frac{m_2 - m_1}{m_1 + m_2} \cdot g$	1p	
	rezultat final: $a = 2 \text{m/s}^2$	1p	
d.	Pentru:		3р
	F = 2T'	2p	
	rezultat final: $F = 48N$	1p	
TOTAL	pentru Subiectul al II-lea		15p

A. Subiectul al III-lea

III.a.	Pentru:	4p
	$E = m \cdot g \cdot h $ 2p	
	$h = \ell \cdot \sin \alpha$	
	rezultat final: $E = 50 \mathrm{J}$	
b.	Pentru:	4p
	$\Delta E_c = L_{total}$	
	$\Delta E_c = \frac{m v_A^2}{2}$	
	$L_{total} = m \cdot g \cdot h - \mu \cdot m \cdot g \cdot \ell \cdot \cos \alpha $ 1p	
	rezultat final: $v_A = 8 \text{ m/s}$	

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

C.	Pentru:	3р
	$L_{F_f} = \frac{mv_B^2}{2} - \frac{mv_A^2}{2} $ 2p	
	rezultat final: $L_{F_i} = -14 \mathrm{J}$	
d.	Pentru:	4p
	$\Delta E_c = L_{F_o} $ 1p	
	$\Delta E_c = L_{F_e} $ $\Delta E_c = -\frac{mv_B^2}{2} $ 1p	
	$L_{F_e} = -\frac{kx^2}{2}$	
	rezultat final: $k = 2,5 \text{kN/m}$	
TOTAL	pentru Subiectul al III-lea	15p

	Centrul Naţional de Evaluare şi Examinare	
		5 puncte)
Subjectu Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	a	3p
2.	b	3p
3.	C	3p
4.	b	3p
5.	С	3p
	pentru Subiectul I	15p
	ctul al II-lea	
II.a.	Pentru:	4p
	$\rho_2 = m_2 / V_2 $ 2p	
	$m_2 = \mu_2 v_2 \tag{1p}$	
	rezultat final: $\rho_2 = 2.8 \text{ kg/m}^3$	
b.	Pentru:	4p
	$\mu_{am} = m_{am} / v_{am} $ 1p	
	$v_{am} = v_1 + v_2 $ 1p	
	$m_{am} = m_1 + m_2$	
	rezultat final: $\mu_{am} \cong 29,3 \text{ g/mol}$	
C.	Pentru:	4p
0.		* P
	$U_1 = v_1 C_V T_1; \ U_2 = v_2 C_V T_2$	
	rezultat final: $T = 320$ K 1p	
d.	Pentru:	3р
	$p(V_1 + V_2) = (v_1 + v_2)RT$ 2p	
	rezultat final: $p \approx 2.5 \cdot 10^5 \text{ N/m}^2$	
	pentru Subiectul al II-lea	15p
	ctul al III-lea	
III.a.	Pentru:	3р
	$\Delta U_{23} = vC_v(T_3 - T_1)$ 1p	
	$T_1 = 600 \mathrm{K}$	
	rezultat final: $\Delta U_{23} \cong -2.5 \cdot 10^4 \text{ J}$	
b.	Pentru:	4p
	$L_{total} = L_{12} + L_{23} + L_{34} + L_{41} $ 1p	
	V_2	
	$L_{12} = vRI_1 \ln \frac{2}{V_1} $	
	$L_{12} = vRT_1 \ln \frac{V_2}{V_1}$ $L_{34} = vRT_3 \ln \frac{V_1}{V_2}$ 1p	
	$L_{34} = vRT_3 \ln \frac{t_1}{V}$	
	2	
	rezultat final: $L_{total} \cong 10^4 \text{ J}$	
C.	Pentru:	4p
	$Q_{cedat} = Q_{23} + Q_{34} $ 1p	
	$Q_{23} = \nu C_V \left(T_3 - T_1 \right) $ 1p	
	V_1	
	$Q_{34} = vRT_3 \ln \frac{V_1}{V_2} $ 1p	
	rezultat final: $Q_{34} \cong -3.5 \cdot 10^4 \text{ J}$	
d.	Pentru:	/n
u.	,	4p
	$\eta = \frac{L}{Q_{primit}}$	
	$Q_{primit} = L + Q_{cedat} $ 1p	
	rezultat final: $\eta \cong 22\%$	
TOTAL	pentru Subiectul al III-lea	15p
	, eă la Fizică 3	Varianta 2

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

(45 puncte)

Subjectul I

Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	d	3р
2.	d	3р
3.	c	3р
4.	b	3р
5.	a	3р
TOTAL	pentru Subiectul I	15p

C. Subiectul al II-lea

II.a.	Pentru:	3p
	$R = R_1 + R_2 $ 2p	
	rezultat final: $R = 14 \Omega$	
b.	Pentru:	4p
	$R_2 = \rho L / S$ 2p	
	$S = \pi d^2 / 4$	
	rezultat final: $L = 0.5 \mathrm{m}$	
C.	Pentru:	4p
	$I_1 = U_1 / R_1 $	
	$Q = I_1^2 \left(R_1 + R_2 \right) \Delta t $ 2p	
	rezultat final: $Q = 8400 \text{ J}$	
d.	Pentru:	4p
	E = U 2p	
	$E = I_1(R_1 + R_2 + r)$ 1p	
	rezultat final: $r = 1\Omega$	
TOTAL	pentru Subiectul al II-lea	15p

C. Subiectul al III-lea

III.a.	Pentru:	3p
	$P_B = I_B \cdot U_B $ 2p	
	rezultat final: $I_B = 1,5 \text{ A}$	
b.	Pentru:	4p
	$P_r = I^2 \cdot r $ 2p	
	$I = \frac{E - U}{r}$	
	rezultat final: $P_r = 6 \text{ W}$	
C.	Pentru:	4p
	$\eta = \frac{P_{B}}{P_{E}}$	
	$P_E = E \cdot I$	
	rezultat final: $\eta = 37,5\%$	
d.	Pentru:	4p
	$E = I'(R' + r + R_B) $ 1p	
	$R_{B} = \frac{U_{B}^{2}}{P_{B}}$	
	$I' = I_B$	
	rezultat final: $R' = 2.5 \Omega$	
TOTAL	pentru Subiectul al III-lea	15p

D. OPTICĂ	(45 puncte)
Subjectul I	

Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	b	3р
2.	c	3р
3.	d	3р
4.	d	3р
5.	C	3р
TOTAL	pentru Subiectul I	15p

D. Subiectul al II-lea

II.a.	Pentru:	4p
	$\beta_1 = -1$	-
	$\beta_1 = x_2 / x_1$	
	$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{t_1}$	
	rezultat final: $f_1 = 10 \mathrm{cm}$	
b.	Pentru:	3р
	$d = x_2 - x_1'$	
	$\frac{1}{x_2'} - \frac{1}{x_1'} = C_2$	
	rezultat final: $-x'_2 = 5 \text{ cm}$	
c.	Pentru:	4p
	$\beta = y_2' / y_1$	
	$\beta = \beta_1 \cdot \beta_2$	
	$\beta_2 = x_2' / x_1'$	
	rezultat final: $-y_2' = 0.5 \text{cm}$	
d.	Pentru:	4p
	construcție corectă a imaginii formate de prima lentilă 2p	
TOTAL	construcție corectă a imaginii formate de a doua lentilă 2p	45
IOIAL	pentru Subiectul al II-lea	15p

D. Subiectul al III-lea

III.a.	Pentru:		4p
	$i = \frac{D \cdot \lambda}{2\ell}$	3р	
	rezultat final: $\lambda = 5 \cdot 10^{-7} \mathrm{m}$	1p	
b.	Pentru: diferența de drum optic corespunzătoare unui maxim de interferență : $\delta = k\lambda$	1p	3р
	k=2	1p	
	rezultat final: $\delta = 10^{-6}$ m	1p	
C.	Pentru:		4p
	distanța la care se află franja luminoasă de ordin 2 față de maximul central: $x_k^{\text{max}} = 2i$	1p	
	distanța la care se află a doua franjă întunecoasă față de maximul central: $x_k^{min} = 1,5 i$	1p	
	$\Delta x = x_k^{\text{max}} + x_k^{\text{min}}$	1p	
	rezultat final: $\Delta x = 3.5 \mathrm{mm}$	1p	
d.	Pentru:		4p
	deplasarea sistemului de franje: $\Delta x = \frac{eD(n-1)}{2\ell}$	2p	
	poziţia maximului de ordin 2: $x_2^{\text{max}} = 2i$	1p	
	rezultat final: $n = 1,5$	1p	
TOTAL	pentru Subiectul al III-lea		15p