Hidrologia Física (ERHA7017)

Aula 09 - Evaporação e Evapotranspiração

Roteiro de Aula

- ✓ Definições Básicas
- ✓ Fatores intervenientes
- ✓ Medida da Evaporação
- ✓ Medida da Evapotranspiração
- ✓ Métodos de Avaliação da Evaporação
- ✓ Métodos de Avaliação da Evapotranspiração

Definições Básicas

Evaporação: conjunto dos fenômenos de natureza física que transformam em vapor a água da superfície do solo, dos cursos de água, lagos, reservatórios de acumulação e mares.

Transpiração: é a evaporação devida à ação fisiológica dos vegetais.

Evapotranspiração: é a soma das perdas por evaporação do solo e transpiração das plantas, que ocorrem em uma superfície com cobertura vegetal.

Evapotranspiração = Evaporação + Transpiração

Definições Básicas

Evaporação e Evapotranspiração "perdas" de água na bacia, diminuindo a disponibilidade hídrica

Importância da estimativa da evaporação/evapotranspiração

- ✓ Planejamento agrícola;
- ✓ Construção e operação de reservatórios;
- ✓ Avaliação da disponibilidade hídrica de bacias, etc...

Definições Básicas

- Evapotranspiração Real (EVT_R): corresponde ao valor de evapotranspiração para as condições existentes de cobertura vegetal, umidade do solo e condições atmosféricas (condições "reais").
- Evapotranspiração Potencial (EVT_P):corresponde ao valor da evapotranspiração de uma superfície extensa, coberta por vegetação e bem suprida de água (condições "ideais").

EVT_R < EVT_P ___

Iguaçu: $EVT_P = 1120 \text{ mm}$; $EVT_B = 1050 \text{ mm}$

NE: $EVT_P > 2000 \text{ mm}$; $EVT_R = 800 \text{ mm}$

Fatores intervenientes na Evaporação

- 1. Radiação Solar
- 2. Temperatura do ar: T
- 3. Vento
- 4. Umidade relativa do ar: umidade EV
- 5. Umidade do solo: **umidade EV**

Fatores intervenientes na Evapotranspiração

Além dos anteriores:

- <u>Tipo de vegetação</u>: diferentes vegetais exigem diferentes quantidades de água para desempenho de suas funções vitais;
- Fase de crescimento da vegetação: a necessidade de água varia com o estágio de crescimento da planta.

Medida da Evaporação – Evaporímetro de Piché

Mede diretamente a evaporação (medida direta).

Localização: dentro de um abrigo meteorológico.

Medida da Evaporação – Abrigo Meteorológico

Medida da evaporação – Tanques evaporimétricos

- ✓ **Tanque Classe A:** mais utilizado no Brasil;
- ✓ Medida direta da evaporação;
- ✓ Proteção contra pássaros e animais.

Medida da evaporação – Tanques evaporimétricos

Medida da evaporação – Tanques evaporimétricos

$$\mathbf{EV}_{\text{real}} = \mathbf{K} \cdot \mathbf{EV}_{\text{tanque}}$$

$$K < 1 :. K \cong 0,7$$

O fator K procura representar as diferenças entre as condições naturais em lagos e reservatórios e as condições do tanque evaporimétrico.

Medida da evapotranspiração – Lisímetros (Medida indireta)

Obs: usa o conceito de balanço hídrico

Métodos de Avaliação da Evaporação

- ✓ Método do balanço hídrico
- ✓ Método de balanço de energia
- ✓ Métodos de transferência de massa
- ✓ Métodos combinados
- ✓ Fórmulas empíricas
- ✓ Medidas diretas de evaporação

(ver material de apoio)

Métodos de Avaliação da Evapotranspiração

Métodos: ver material de apoio

- Método do balanço hídrico
- Método de Thornthwaite (muito difundido no Brasil)
- Método de Penman-Monteith

➤ O método é baseado na equação do balanço hídrico simplificado aplicada ao período considerado:

$$EVT = P - D - \Delta S$$

onde:

EVT = evapotranspiração **real** (mm);

P = precipitação média sobre a bacia (mm);

D = volume escoado pelo exutório da bacia, expresso como uma lâmina de água distribuída uniformemente por toda a bacia (mm);

 ΔS = variação do volume armazenado (mm).

Exemplo Numérico:

Calcular as perdas anuais por evapotranspiração em uma bacia hidrográfica cuja vazão específica média de longo termo é 18 L/s/km², sabendo-se que a precipitação média anual vale 1.100 mm.

Solução:

a) Cálculo do Deflúvio (D)

$$q = 18 \frac{L/_S}{km^2} = 18 \frac{L}{s. km^2}$$

m/ano

m/ano para mm/ano

$$D = 18 \frac{10^{-3}}{\frac{1}{365,25x86400}} \times 10^{3} = \frac{18x365,25x86400}{10^{6}}$$

$$D = 568,0 \, \frac{mm}{ano}$$

Solução:

b) Cálculo da Evapotranspiração (EVT)

$$EVT = P - D - \Delta S$$

$$EVT = 1.100 - 568 - 0$$

$$EVT = 532,0 \ mm/ano$$

Solução:

b) Cálculo da Evapotranspiração (EVT)

$$EVT = P - D - \Delta S$$

problema de longo termo

$$EVT = 1.100 - 568 - 0$$

$$EVT = 532,0 \ mm/ano$$

Em termos médios:

Precipitação

1100 mm/ano (100%)

Deflúvio

568 mm/ano (51,6%)

Evapotranspiração

532 mm/ano (48,4%)

Observações:

- ✓ Avalia a <u>evapotranspiração real</u> de uma bacia hidrográfica para um período de tempo relativamente longo.
- ✓ O método exige a instalação de diversos equipamentos (linígrafos, vertedores, pluviômetros, etc...) para a avaliação de todos os termos da equação do balanço hídrico simplificado.

$$EVT_p = 16,2 \left(\frac{10T}{I}\right)^a F_c$$

onde: EVT_p = evapotranspiração potencial mensal (mm);

T = temperatura média mensal (°C);

I = índice anual de calor;

 $\mathbf{a} = \text{expoente} = \mathbf{f}(\mathbf{I});$

 $\mathbf{F_c}$ = fator de correção.

Índice anual de calor (I):

$$\mathbf{I} = \sum_{i=1}^{12} \left(\frac{\mathbf{T_i}}{5}\right)^{1,514}$$

onde: T_i = temperatura média do mês i (°C).

Expoente a:

$$a = 6,75.10^{-7} I^3 - 7,71.10^{-5} I^2 + 0,0179 I + 0,492$$

Fator de correção para o mês considerado (F_c) :

$$F_{c} = \frac{ND}{30} \frac{N}{12}$$

$$(0.78 \le F_c \le 1.29)$$

onde: **ND** = número de dias do mês;

N = número de horas do "dia" = f (latitude, época do ano).

"dia" = intervalo de tempo entre o nascer e o por do Sol.

Obs: Em geral, utiliza-se o 15º dia do mês para o cálculo de N.

- ✓ Avalia a <u>evapotranspiração potencial</u> de uma bacia hidrográfica.
- ✓ O método avalia de modo indireto a evapotranspiração já que utiliza dados de temperatura e número de horas do "dia" para a avaliação da evapotranspiração potencial.

número de horas do "dia" = intervalo de tempo entre o nascer do Sol e o por do Sol = f (*latitude*, *estação do ano*).

Tendo em vista as informações a seguir (temperaturas médias mensais e número de horas do dia médio de cada mês em Londrina/PR), calcular a **evapotranspiração potencial** para cada mês, usando as equações empíricas de <u>Thornthwaite</u>.

Mês	T(°C)	N(h)	Mês	T(°C)	N(h)
Janeiro	23,9	13,3	Julho	16,9	10,9
Fevereiro	23,5	12,7	Agosto	18,5	11,4
Março	22,4	11,6	Setembro	20,3	12,0
Abril	20,8	11,6	Outubro	20,8	12,7
Maio	17,0	11,0	Novembro	23,1	13,2
Junho	16,0	10,7	Dezembro	23,0	13,6

mês	T (°C)	N	ND	Fc	(Ti/5)^1,514	EVT _p
jan	23,9	13,3				
fev	23,5	12,7				
mar	22,4	11,6				
abr	20,8	11,6				
mai	17,0	11,0				
jun	16,0	10,7				
jul	16,9	10,9				
ago	18,5	11,4				
set	20,3	12,0				
out	20,8	12,7				
nov	23,1	13,2				
dez	23,0	13,6				
				E	VT _p (anual) =	

| =

 $\mathbf{a} =$

mês	T (°C)	N	ND	Fc	(Ti/5)^1,514	EVT _p
ian	00.0	10.0	04	1 15	10.00	104.0
jan	23,9	13,3	31	1,15	10,68	124,0
fev	23,5	12,7	28	0,99	10,41	103,0
mar	22,4	11,6	31	1,00	9,68	93,5
abr	20,8	11,6	30	0,97	8,66	76,7
mai	17,0	11,0	31	0,95	6,38	47,8
jun	16,0	10,7	30	0,89	5,82	39,3
jul	16,9	10,9	31	0,94	6,32	46,7
ago	18,5	11,4	31	0,98	7,25	59,9
set	20,3	12,0	30	1,00	8,34	75,1
out	20,8	12,7	31	1,09	8,66	86,7
nov	23,1	13,2	30	1,10	10,15	110,3
dez	23,0	13,6	31	1,17	10,08	116,3
					EVT _p (anual) =	979,3

I = 102,42

a = 2,242

Considerações Finais

- ✓ Os diferentes métodos podem apresentar resultados bastante diversos.
- ✓ Importância da observação de dados meteorológicos.
- ✓ No Paraná: 800 mm < EVT_R anual < 1100 mm.
- ✓ Para o Paraná, consultar o trabalho de Illich (1995).

Referências Bibliográficas

Illich, I. Métodos de avaliação da evaporação e evapotranspiração: análise comparativa para o estado do Paraná. Curitiba, 1995. 171 p. Dissertação de Mestrado em Engenharia Civil. Setor de Tecnologia — Centro de Hidráulica e Hidrologia Prof. Parigot de Souza — Mestrado em Engenharia Civil, Universidade Federal do Paraná.