Presentation 12-04

Florian Stijven

11-4-2022

Introduction

- Interval censoring versus right censoring in Ovarian data set:
 - Goodness of fit
 - Sensitivity analysis
- Gaussian copula model adapted for Pr(PFS = OS) > 0
 - Analysis of Ovarian data set with this adapted model

2/15

Section 1

Interval vs. Right Censoring

3/15

Goodness of Fit (Right Censoring)

Very long survival for small subgroup

Goodness of Fit (Right Censoring)

- Sample from fitted models
 - censoring times sampled from corresponding estimated distribution
- Lack of fit

5 / 15

Goodness of Fit (Interval Censoring)

max OS: 20 yearsmax PFS: 15 years

6 / 15

Goodness of Fit (Interval Censoring)

• Again clear lack of fit

Comparison of Sensitivity Analysis

Section 2

Adapted Gaussian Copula Model

9 / 15

Model Description

- ullet Gaussian Copula model with TTP (T_1) instead of PFS (T_1^*)
- OS corresponds to T₂
- Latent value for T_1 if $T_1 > T_2$
- model for (TTP, OS) induces model for (PFS, OS): $T_1^* = \min(T_1, T_2)$
 - if $T_1 > T_2$: $Pr(T_1^* = t, T_2 = t) = Pr(T_1 > t, T_2 = t) = f_{\infty}(t)$
 - if $T_1 \leq T_2$: $Pr(T_1^* = t_1, T_2 = t_2) = Pr(T_1 = t, T_2 = t)$

Time to non-terminal event, T₁ T₁ = ∞

Presentation 12-04

Goodness of Fit

- Survival function for TTP $(Pr(T_1 > t_1))$ not observable (latent variable)
 - Survival function for PFS is observable
 - $Pr(T_1^* > t_1) = Pr(\min(T_1, T_2) > t_1) = Pr(T_1 > t_1, T_2 > t_1)$

Presentation 12-04

11 / 15

11-4-2022

Goodness of Fit (ctd.)

• Much better fit than when ignoring time-orderings

12 / 15

Sensitivity Analysis

$$\rho_{\Delta} = cor(q_{S_1} - q_{S_0}, q_{T_1} - q_{T_0}) = \frac{\rho_{S_0, T_0} + \rho_{S_1, T_1} - \rho_{S_0, T_1} - \rho_{S_1, T_0}}{2\sqrt{(1 - \rho_{T_0, T_1})(1 - \rho_{S_0, S_1})}}$$

Sensitivity Analysis for rho_delta

13 / 15

Sensitivity Analysis (ctd.)

$$\rho_{sp} = cor(R(\Delta S), R(\Delta T))$$

$$\tau = P((\Delta S_1 - \Delta S_2)(\Delta T_1 - \Delta T_2) > 0) - P((\Delta S_1 - \Delta S_2)(\Delta T_1 - \Delta T_2) < 0)$$

14 / 15

Sensitivity Analysis (ctd.)

