معادلات ديفرانسيل

فهرست مطالب

۵ معادلات دیفرانسیل ۵ واع معادلات دیفرانسیل ۶ اربرد معادلات دیفرانسیل ۶ برتبه ی معادلات دیفرانسیل ۸ معیف خطی بودن ۹ عریف خطی بودن ۹ برجه ی معادله ی دیفرانسیل ۱۰ بواب معادله دیفرانسیل ۱۰ بواع جواب معادله ی دیفرانسیل ۱۰ بواع جواب معادله ی دیفرانسیل مرتبه ی اول ۱۱ ال حل معادلات دیفرانسیل مرتبه ی اول ۱۲ بواع معادلات دیفرانسیل مرتبه ی اول ۱۲ بوش های حل انتگرال ۱۲ بوش های حل انتگرال ۱۲ بعادله ی دیفرانسیل مرتبه ی اول همگن ۱۳ بعادله ی دیفرانسیل مرتبه ی اول همگن ۱۳ بواب معادله ی دیفرانسیل خطی مرتبه ی اول ۲۷ بعدلات دیفرانسیل خطی مرتبه ی دوم غیر همگن ۲۷ بواب معادله ی دیفرانسیل خطی مرتبه ی دوم غیر همگن ۲۷ بواب معادله ی دیفرانسیل خطی مرتبه ی دوم غیر همگن ۲۷	ناهيم	ம	١
۱۹, ryc a salckler c sakılımıştı ١٩, ryc a salckler c sakılımıştı ١٩, ryc a salckler c sakılımıştı ١٩, ryc a salckle a c sakılımıştı ١٩, ryc a salckle a c sakılımıştı ١٩, ryc a salckler a c sakılımıştı ١٩, ryc a salckler a c sakılımıştı ١٩, ryc a sakılımıştı ١٩, ryc a sakılımıştı ١١, ryc a sakılımıştı ١١	ت ت	۱.۱	
۸ ۸ عریف خطی بودن ۸ عریف خطی بودن ۹ رجه ی معادله ی دیفرانسیل 9 فهوم دسته منحنی ۱۰ تواب معادله دیفرانسیل ۱۰ بواع جواب معادله ی دیفرانسیل ۱۰ تغیر مستقل و متغیر وابسته ۱۱ ال ۱۱ ال ۱۱ اول حل معادلات دیفرانسیل مرتبه ی اول ۱۲ ال ۱۲ عادلات دیفرانسیل جدا شدنی ۱۲ عادله ی دیفرانسیل جدا شدنی ۱۷ عادله ی دیفرانسیل مرتبه ی اول همگن ۱۹ عادله ی دیفرانسیل کمل ۱۹ عادله ی دیفرانسیل کمل ۲۵ عادله ی دیفرانسیل خطی مرتبه ی اول ۲۷ ت دیفرانسیل مرتبه ی دوم ۱۹ ت دیفرانسیل مرتبه ی دوم ۱۹ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲۷ ۲	۱ ان	۱.۲	
۸ ۹ رجه ی معادله ی دیفرانسیل 9 فهوم دسته منحنی 9 نواب معادله دیفرانسیل 10 نواع جواب معادله ی دیفرانسیل 10 تغیر مستقل و متغیر وابسته 11 ت دیفرانسیل مرتبه ی اول 11 ال حل معادلات دیفرانسیل مرتبه ی اول 11 ال حل معادلات دیفرانسیل جدا شدنی 12 ال حل معادلات دیفرانسیل جدا شدنی 14 ال حل معادلات دیفرانسیل مرتبه ی اول همگن 19 عادله ی دیفرانسیل مرتبه ی اول همگن 19 عادله ی دیفرانسیل کامل 19 عادله ی دیفرانسیل خطی مرتبه ی اول 10 عادله ی دیفرانسیل خطی مرتبه ی اول 10 ت دیفرانسیل مرتبه ی دوم 10 عادله ی دیفرانسیل خطی مرتبه ی اول 10 ت دیفرانسیل مرتبه ی دوم 10 ت دیفرانسیل مرتبه ی دوم 10 ت دیفرانسیل مرتبه ی دوم 10 عادلات دیفرانسیل خطی مرتبه ی دوم 10 عدلات دیفرانسیل مرتبه ی دوم 10 دوم 10 ال مرتبه ی دوم 10 ال مرتبه ی دوم 10 ال مرتبه ی دوم 10 ال می دوم <td>۲ ک</td> <td>۱.۲</td> <td></td>	۲ ک	۱.۲	
۹ فهوم دسته منحنی ۱۰ فهوم دسته منحنی ۱۰ اواب معادله دیفرانسیل ۱۰ اوع جواب معادله ی دیفرانسیل ۱۰ ال حیفرانسیل مرتبه ی اول ۱۱ ال حیفرانسیل مرتبه ی اول ۱۱ ال حل معادلات دیفرانسیل مرتبه ی اول ۱۲ ال حل معادلات دیفرانسیل جدا شدنی ۱۲ ال حل معادلات دیفرانسیل مرتبه ی اول همگن ۱۲ ال عادله ی دیفرانسیل مرتبه ی اول همگن ۱۳ عادله ی دیفرانسیل کامل ۲۳ عادله ی دیفرانسیل کامل ۲۳ عادله ی دیفرانسیل خطی مرتبه ی اول ۲۵ ال حیفرانسیل مرتبه ی دوم ۱۹ ال حیفرانسیل خطی مرتبه ی دوم ۱۹	۴ م	۱.	
۹ فهوم دسته منحنی ۱۰ فهوم دسته منحنی ۱۰ اواب معادله دیفرانسیل ۱۰ اوع جواب معادله ی دیفرانسیل ۱۰ ال حیفرانسیل مرتبه ی اول ۱۱ ال حیفرانسیل مرتبه ی اول ۱۱ ال حل معادلات دیفرانسیل مرتبه ی اول ۱۲ ال حل معادلات دیفرانسیل جدا شدنی ۱۲ ال حل معادلات دیفرانسیل مرتبه ی اول همگن ۱۲ ال عادله ی دیفرانسیل مرتبه ی اول همگن ۱۳ عادله ی دیفرانسیل کامل ۲۳ عادله ی دیفرانسیل کامل ۲۳ عادله ی دیفرانسیل خطی مرتبه ی اول ۲۵ ال حیفرانسیل مرتبه ی دوم ۱۹ ال حیفرانسیل خطی مرتبه ی دوم ۱۹	۵ ت	۱.	
١٥ ١٥ ١٥ ١٥ تغير مستقل و متغير وابسته ١٥ ت ديفرانسيل مرتبه ي اول ١١ ١١ ١١		۲.۱	
۱۰ ۱۰ regly pelp pale pale pale paragram paragram paragram paragram pale paragram pale pale pale pale pale pale pale pale	۷ م	'. 1	
١٥ ا٠ ١٠ ١٠ ١٠ ١٠ ١١ <t< td=""><td>۸ ج</td><td>1</td><td></td></t<>	۸ ج	1	
ا۱ دیفرانسیل مرتبه ی اول ۱۱ ۱۱ ۱۷ ۱۲ ۱۷ ۱۲ ۱۷ ۱۲ ۱۷ ۱۷ ۱۹ ۱۹ ۱۹ <	۰ از	۱.۱	
۱۱ ا۱۱ ا۱۲ ا	ه ۱۰	۱.۰	
۱۲ حل معادلات دیفرانسیل جدا شدنی ۱۲ عادلات دیفرانسیل جدا شدنی ۱۲ وش های حل انتگرال ۱۷ عادله ی دیفرانسیل مرتبه ی اول همگن ۱۹ عادله ی دیفرانسیل همگن ۲۳ عادله ی دیفرانسیل کامل ۲۳ عواب معادله ی دیفرانسیل کامل ۲۵ عادله ی دیفرانسیل خطی مرتبه ی اول ۲۷ عادلات دیفرانسیل مرتبه ی دوم ۲۷ عادلات دیفرانسیل خطی مرتبه ی دوم ۲۷	عادلان	ಒ	۲
عادلات دیفرانسیل جدا شدنی	۱ از	۲.	
۱۲ ۱۲ ۱۷ ۱۷ ۱۹ <t< td=""><td>۲ ر</td><td>۲.</td><td></td></t<>	۲ ر	۲.	
عادله ی دیفرانسیل مرتبه ی اول همگن		۲.	
عادله ی دیفرانسیل مرتبه ی اول همگن	۴ ر	۲.	
عادله ی دیفرانسیل کامل		۲.	
عواب معادله ی دیفرانسیل کامل ۲۵	۶ م		
عادله ی دیفرانسیل خطی مرتبه ی اول		۲.	
عادله ی دیفرانسیل خطی مرتبه ی اول		۲. ۲.	
عادلات دیفرانسیل خطی مرتبه ی دوم	۷ م		
عادلات دیفرانسیل خطی مرتبه ی دوم	۷ م ۸ ج	۲.	
• **	۷ م ۸ ج ۹ م	.۲ .۲ .۲	۳
	۷ م ۸ ج ۹ م	۲. ۲. ۲.	ሥ

۴ فهرست مطالب

۲۹	تعریف وابسته خطی	۳.۳
۲۹	تعریف دترمینان رونسکین دو تابع	۴.۳
۳۰	معادله دیفرانسیل خطی مرتبه ی دوم با ضرایب ثابت و همگن	
۳۵	معادلات دیفرانسیل خطی همگن مرتبه ی دلخواه n با ضرایب ثابت	۶.۳
۳۵	۱.۶.۳ حالت اول	
٣٧	۲.۶.۳ حالت دوم	
٣٨	۳.۶.۳ حالت سوم	
٣٨	۴.۶.۳ حالت چهارم	
۳٩	معادلات دیفرانسیل مرتبه ی دوم خطی با ضرایب ثابت غیر همگن	٧.٣
۴,	۱.۷.۳ روش ضرایب نامعین	
۴۷	ل لاپلاس برای حل معادلات دیفرانسیل	۱ تبدیل
۴۷	تعریف تبدیل لاپلاس	۱.۴
۵۲	فرمولهای عکس ُلاپلاس	۲.۴
۵۲	عکس تبدیلات لاپلاس را محاسبه کنید	۳.۴
۵۴	تبديل لاپلاس مشتق	
۵۴	۱.۴.۴ حالت اول	

فصل ۱

مفاهیم و مقدمات معادلات دیفرانسیل

۱.۱ تعریف معادله ی دفرانسیل

- رابطه ی بین یک تابع و مشتق های آن
- معادله ای که خود تابع و مشتق آن تابع در آن حضور داشته باشند
 - معادله $\leftarrow y = 2x$ •
 - نامعادله $\leftarrow y \geq 2x$ •

۲.۱ انواع معادلات دیفرانسیل

- ODE : Ordinary Differential Equations
- PDE : Partitionary Differential Equations

در معادله ی دیفرانسیل نیازی نیست که حتماً تابع باشد ، اما مشاق تابع حتماً باید باشد . مثل :

- $y + y' = 5 \cdot$
- $y'' + y' = 0 \cdot$
 - y'y''=7 •

۳.۱ کاربرد معادلات دیفرانسیل

- سقوط آزاد اجسام
- به دست آوردن دمای مرکز خورشید

مثال

فاصله ی گلوله در ثانیه ی t ام از مبدا چقدر است ؟

$$h(t) = S = \mathsf{t}$$
 مكان در لحظه ي

$$h'(t) = rac{ds}{dt} \;\; = V = \;\; \mathsf{t}$$
 سرعت در لحظه ی

$$h''(t)=rac{dv}{dt}=rac{d^2s}{dt^2}\quad=a=\quad$$
t شتاب در لحظه ی

به دست آوردن شتاب گرانش (g) در سقوط آزاد ؟

$$\sum F = ma \to mg - kv = ma$$

$$\to mg = ma + kv$$

$$\to g = a + \frac{k}{m}v$$

$$\to g = S'_t + \frac{k}{m}S''_t$$

- معادلات دیفرانسیل Ordinary برای توابع یک متغیرہ است
- معادلات دیفرانسیل Partitionary برای توابع چند متغیره است که دارای مشتق ضمنی با جزیی هستند

نماد معادلات ديفرانسيل معمولي

$$F(x, y', y'', \dots, y^n) = 0 \cdot$$

۴.۱ مرتبه ی معادلات دیفرانسیل

بالاترین مرتبه ی مشتق موجود در معادله ی دیفرانسیل را مرتبه ی معادله ی دیفرانسیل می نامیم .

۵.۱ تعریف خطی بودن

معادله ی دیفرانسیل به فرم :

$$a_n(x)y^n + a_{n-1}(x)y^{n-1} + \dots + a_1(x)y^1 + a_0(x)y = g(x)$$

. باشند a(x) فقط بر حسب x باشند خطی نامیده می شود به شرطی که در آن ضرایب

مثال

معادله ی دیفرانسیل زیر غیر خطی است . زیرا ضرایب فقط بر حسب x نیست .

$$y''' + \underbrace{2y}y'' + y = 2x$$

مثال

معادله ی دیفرانسیل زیر غیر خطی است . زیرا مشتق توان بیشتر از ۱ یا توان منفی نباید داشته باشد

$$\underbrace{(y''')^2}_{} + 2xy'' + y = 2x$$

معادله ی دیفرانسیل زیر خطی است .

$$y'' + xy' = 4x$$

۶.۱ درجه ی معادله ی دیفرانسیل

توان بالاترین مشتق (توان مرتبه) ، درجه ی معادله ی دیفرانسیل نامیده می شود .

فرق چند جمله ای و چند ضابطه ای

• معادله ی زیر یک چند جمله ای است

$$f(x) = 3x^5 + 4x^2 + 5$$

• معادله ی زیر یک چند ضابطه ای است اما چند جمله ای نیست ، چون در چند جمله ای x باید آزاد باشد

$$f(x) = \sin x + \sqrt{x} + \frac{1}{x} - 2$$

۷.۱ مفهوم دسته منحنی

در معادله ی

$$y = F(x, c)$$

به ازای مقادیر مختلفی که c اختیار می کند ، منحنی های بی شماری رسم می شوند ، به این دلیل به آن دسته منحنی می گوییم .

۸.۱ جواب معادله دیفرانسیل

هر تابعی که در معادله ی دیفرانسیل صدق کند جواب آن نامیده می شود .

$$y' = \cos x \to y = \sin x$$
$$y'' + y = x \to y = x$$

۹.۱ انواع جواب معادله ی دیفرانسیل

- جواب عمومی : یک خانواده ی n پارامتری از جوابهای یک معادله ی دیفرانسیل مرتبه ی n ام .
- جواب خصوصی : با مقدار دهی به پارامتر ها می توان جواب خصوصی معادله ی دیفرانسیل را به دست آورد .
- جواب غیر عادی : منحنی نمایش آن بر تمام منحنی های جواب عمومی مماس باشد .

۱۰.۱ متغیر مستقل و متغیر وابسته

در تابع

$$y = f(x)$$

به x متغیر مستقل و به y متغیر وابسته می گوییم .

فصل ۲

معادلات دیفرانسیل مرتبه ی اول

به معادلات دیفرانسیل به فرم کلی

$$F(x, y, y') = 0$$

معادلات ديفرانسيل مرتبه ي اول مي گوييم .

۱.۲ انواع معادلات دیفرانسیل مرتبه ی اول

- مجزا (جدا شدنی)
 - همگن
 - كامل
- خطی مرتبه ی اول
- خطی مرتبه ی دوم

۲.۱ روال حل معادلات دیفرانسیل

- تشخیص
 - حل

۳.۲ معادلات دیفرانسیل جدا شدنی

اگر y' = f(x,y) را بتوان به صورت

$$f(x)dx + g(y)dy = 0$$

نوشت ، در این صورت به آن معادله ی جداشدنی می گویند . برای به دست آوردن جواب عمومی این معادله ی دیفرانسیل کافی است از طرفین معادله انتگرال بگیریم .

$$\int f(x)dx + \int g(y)dy = \int 0$$

۴.۲ روش های حل انتگرال

- از طریق مشتق
 - جز به جز

$$\int fg' = fg - \int f'g$$

- تجزیه ی کسر ها
 - تغيير متغير

$$y^2 = u$$

$$2ydy=du$$

$$y' = \frac{x}{y}$$

$$y' = \frac{x}{y} \to \frac{dy}{dx} = \frac{x}{y}$$

$$\to ydy = xdx$$

$$\to \int ydy = \int xdx$$

$$\to \frac{y^2}{2} = \frac{x^2}{2} + C$$

$$\to y^2 = 2\left(\frac{x^2}{2} + C\right) = x^2 + 2C$$

$$\to y^2 = x^2 + 2C$$

نکته :

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

$$y' = \frac{2x + xy}{x^2 + 4}$$

$$y' = \frac{2x + xy}{x^2 + 4} \rightarrow \frac{dy}{dx} = \frac{x(y+2)}{x^2 + 4}$$

$$\Rightarrow \frac{dy}{y+2} = \frac{xdx}{x^2 + 4}$$

$$\Rightarrow \int \frac{dy}{y+2} = \int \frac{xdx}{x^2 + 4}$$

$$\Rightarrow x^2 + 4 = u$$

$$\Rightarrow 2xdx = du$$

$$\Rightarrow xdx = \frac{1}{2}du$$

$$\Rightarrow \int \frac{dy}{y+2} = \int \frac{1}{2}\frac{du}{u}$$

$$\Rightarrow \ln(y+2) = \frac{1}{2}(\ln u + \ln c)$$

$$\Rightarrow \ln(y+2) = \frac{1}{2}(\ln cu)$$

$$\Rightarrow \ln(y+2) = \ln(cu)^{\frac{1}{2}}$$

$$\Rightarrow y+2 = \sqrt{cu}$$

$$\Rightarrow y+2 = \sqrt{c(x^2 + 4)}$$

$$e^{y^2}(x^2 + 2x + 1) = -(xy + y)y'$$

$$y' \cot x = 2 + y \to \frac{dy}{dx} \times \frac{\cos x}{\sin x} = 2 + y$$

$$\to \frac{dy}{2 + y} = \frac{\sin x}{\cos x} dx$$

$$\to \cos x = u$$

$$\to -\sin x dx = du$$

$$\to \ln(y + 2) = -\ln\cos x + \ln c$$

$$\to \ln(y + 2) = \ln\frac{c}{\cos x}$$

$$\to y + 2 = \frac{c}{\cos x}$$

$$y' = \frac{(1+y^2)}{xy(1+x^2)}$$

$$y' = \frac{(1+y^2)}{xy(1+x^2)} \to \frac{dy}{dx} = \frac{(1+y^2)}{xy(1+x^2)}$$
$$\to \frac{ydy}{1+y^2} = \frac{dx}{x(1+x^2)}$$

$$1 + y^{2} = u$$

$$2ydy = du$$

$$ydy = \frac{1}{2}du$$

$$1 + x^{2} = w$$

$$2xdx = dw$$

$$-xdx = -\frac{1}{2}dw$$

$$\frac{1}{x(1+x^2)} = \frac{A}{x} + \frac{Bx+C}{1+x^2} = \frac{A+Ax^2+Bx^2+Cx}{x(1+x^2)} = \frac{(A+B)x^2+Cx+A}{x(1+x^2)}$$

$$\to A = 1$$

$$\to A+B=0 \to B=-1$$

$$\to C=0$$

$$\to \frac{1}{x(1+x^2)} = \frac{1}{x} + \frac{-x}{1+x^2}$$

$$\frac{ydy}{1+y^2} = \frac{dx}{x} - \frac{xdx}{1+x^2} = \frac{1}{2}\frac{du}{u} = \frac{dx}{x} - \frac{1}{2}\frac{dw}{w}$$

$$\to \frac{1}{2}\ln u = \ln x - \frac{1}{2}\ln w$$

$$\to \frac{1}{2}\ln (1+y^2) = \ln x - \frac{1}{2}\ln 1 + x^2$$

$$\to \ln \sqrt{1+y^2} + \ln \sqrt{1+x^2} = \ln x$$

$$\to \ln \sqrt{1+y^2}\sqrt{1+x^2} = \ln x$$

$$\to \sqrt{1+y^2}\sqrt{1+x^2} = x$$

$$\to (1+y^2) \times (1+x^2) = x^2$$

۵.۲ معادله ی دیفرانسیل مرتبه ی اول همگن

به تعریف تابع همگن : تابع f(x,y) یک تابع همگن از درجه ی n نامیده می شود اگر به ازای هر t مثبت در این رابطه صدق کند .

$$t > 0 \rightarrow f(tx, ty) = t^n f(x, y)$$

مثال

تابع زیر همگن از درجه ی ۲ می باشد .

$$f(x,y) = x^{2} + xy + y^{2}$$

$$\to f(tx, ty) = (tx)^{2} + (tx)(ty) + (ty)^{2}$$

$$= t^{2}x^{2} + t^{2}xy + t^{2}y^{2}$$

$$= t^{2}(x^{2} + xy + y^{2})$$

$$= t^{2}f(x, y)$$

نكته

• درجه ی n می تواند کسری یا صفر نیز باشد .

مثال

 $\frac{1}{2}$ همگن از درجه ی

$$f(x,y) = \sqrt{x} \sin \frac{x}{y}$$

$$f(tx,ty) = \sqrt{tx} \sin \frac{tx}{ty}$$

$$= \sqrt{t} \sqrt{x} \sin \frac{x}{y}$$

$$= \sqrt{t} f(x,y)$$

$$= t^{\frac{1}{2}} f(x,y)$$

مثال

همگن از درجه ی صفر

$$f(x,y) = \frac{x}{x+y}$$

$$f(tx,ty) = \frac{tx}{tx+ty}$$

$$= \frac{tx}{t(x+y)}$$

$$= \frac{x}{x+y}$$

$$= t^0 \frac{x}{x+y}$$

۶.۲ معادله ی دیفرانسیل همگن

را همگن می نامیم هرگاه درجه ی همگنی آن صفر باشد ، برای حل معادله ی دیفرانسیل y'=f(x,y) همگن از تغییر متغیر متغیر y=vx استفاده می کنیم ، با این تغییر متغیر ، معادله ی دیفرانسیل همگن به یک معادله دیفرانسیل مجزا تبدیل می شود .

$$y = vx$$
$$dy = vdx + xdv$$

مثال

همگن بودن معادله ی دیفرانسیل زیر را بررسی می کنیم .

$$2xydy + (x^2 - y^2)dx = 0$$

روش اول :

$$2xydy + (x^{2} - y^{2})dx = 0 \to 2xydy = (x^{2} - y^{2})dx$$

$$\to \frac{dy}{dx} = \frac{y^{2} - x^{2}}{2xy}$$

$$f(tx, ty) = \frac{t^{2}y^{2} - t^{2}x^{2}}{2 \times tx \times ty} = \frac{t^{2}(y^{2} - x^{2})}{t^{2}2xy}$$

$$= \frac{(y^{2} - x^{2})}{2xy}$$

$$= t^{0} \frac{(y^{2} - x^{2})}{2xy}$$

$$\to n = 0$$

روش دوم :

$$f_1(x,y) = 2xy \to f_1(tx,ty) = 2txty$$
$$= t^2 \times 2xy$$
$$= t^2 f_1(x,y)$$
$$\to n = 2$$

$$f_2(x,y) = x^2 - y^2 \rightarrow f_2(tx, ty) = t^2 x^2 - t^2 y^2$$
$$= t^2 (x^2 - y^2)$$
$$= t^2 f_2(x, y)$$
$$\rightarrow n = 2$$

$$2xydy + (x^2 - y^2)dx = 0$$

$$y = vx$$
$$dy = vdx + xdv$$

$$(y^2 + 2xy)dx - x^2dy = 0$$

$$f_1(x,y) = y^2 + 2xy \to f_1(tx,ty) = t^2y^2 + 2.tx.ty$$
$$= t^2y^2 + t^2.2xy$$
$$= t^2(y^2 + 2xy)$$
$$= t^2f_1(x,y)$$

$$f_2(x,y) = -x^2 \to f_2(tx,ty) = -t^2x^2$$

= $t^2(-x^2)$
= $t^2f_2(x,y)$

یس معادله ی دیفرانسیل همگن می باشد .

$$y = vx$$
$$dy = vdx + xdv$$

$$((vx)^{2} + 2x \cdot vx)dx - x^{2}(vdx + xdv) = 0$$

$$\rightarrow (v^{2}x^{2} + 2vx^{2})dx - vx^{2}dx - x^{3}dv = 0$$

$$\rightarrow v^{2}x^{2}dx + 2vx^{2}dx - vx^{2}dx - x^{3}dv = 0$$

$$\rightarrow v^{2}x^{2}dx + vx^{2}dx - x^{3}dv = 0$$

$$\rightarrow x^{2}(v + v^{2})dx - x^{3}dv = 0$$

$$\rightarrow \dot{x}(v + v^{2}) \quad \dot{x}^{3}$$

$$\rightarrow \frac{x^{2}}{x^{3}}dx - \frac{1}{v + v^{2}}dv = 0$$

$$\rightarrow \frac{dx}{x} - \frac{dv}{v + v^{2}}$$

$$\rightarrow \frac{dx}{x} - \frac{dv}{v(1 + v)} = 0$$

$$\frac{1}{v(1+v)} = \frac{A}{v} + \frac{B}{1+v}$$

$$= \frac{A+A.v+B.v}{v(1+v)}$$

$$= \frac{(A+B)v+A}{v(1+v)}$$

$$\to A=1$$

$$\to A+B=0 \to B=-1$$

$$\to \frac{1}{v(1+v)} = \frac{1}{v} - \frac{1}{1+v}$$

$$\frac{dx}{x} - \left(\frac{dv}{v} - \frac{dv}{1+v}\right) = 0$$

$$\frac{dx}{x} - \frac{dv}{v} + \frac{dv}{1+v} = 0$$

$$\frac{dx}{x} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{x} - \ln v + \ln \frac{1+v}{1+v} = \ln c$$

$$\frac{dx}{x} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{x} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{x} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{x} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{x} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{x} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{x} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{x} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{x} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v = \ln c$$

$$\frac{dx}{v} - \ln v + \ln 1 + v =$$

۷.۲ معادله ی دیفرانسیل کامل

معادله ی y'=f(x,y) می تواند به فرم خطی

$$M(x,y)dx + N(x,y)dy = 0$$

: تبدیل شود و این معادله کامل نامیده می شود اگر F(x,y) وجود داشته باشد که

$$\frac{\partial F(x,y)}{\partial x} = M(x,y)$$

 $\mathsf{M}(\mathsf{x}_{'}\mathsf{y})$ و شده x و شده کرفته شده نسبت به x

9

$$\frac{\partial F(x,y)}{\partial y} = N(x,y)$$

N(x,y) و شده y و شده گرفته شده نسبت به و مشتق گرفته شده از

۸.۲ جواب معادله ی دیفرانسیل کامل

$$F(x,y) = \int M(x,y)dx + \int (N-scentences\ without\ x)dy$$

چگونگی ساختن یک معادله ی دیفرانسیل کامل

$$F(x,y) = x^2 + xy + y^2$$

$$\frac{\partial F}{\partial x} = 2x + y$$

$$\frac{\partial F}{\partial y} = x + 2y$$

در نتیجه معادله ی دیفرانسیل زیر یک معادله ی دیفرانسیل کامل است .

$$(2x+y)dx + (x+2y)dy = 0$$

نكته

برای اینکه متوجه شویم معادله ی دیفرانسیل

$$M(x,y)dx + N(x,y)dy = 0$$

معادله ی دیفرانسیل کامل است ، باید تساوی زیر برقرار باشد .

$$(M(x,y)dx)dy = (N(x,y)dy)dx$$

یعنی از M(x،y) که مشتق F نسبت به x است ، بار دیگر نسبت به y مشتق می گیریم . و از N(x،y) که مشتق F نسبت به y است ، بار دیگر نسبت به x مشتق میگیریم . و این دو باید با هم برابر باشند .

$$(-3x^2y + \sin x)dx - (x^3y)dy = 0$$

$$M(x,y) = -3x^{2}y + \sin x \to \frac{\partial M}{\partial y} = -3x^{2}$$
$$N(x,y) = -x^{3} - y \to \frac{\partial N}{\partial x} = -3x^{2}$$

$$F(x,y) = \int M(x,y)dx + \int (N-scentences\ without\ x)dy$$

$$\int e^x \sin y dx - \int 3x^2 dx + \int \frac{1}{3} y^{\frac{-1}{3}} dy$$

$$= \sin y e^x - 3 \times \frac{x^3}{3} + \frac{1}{3} \times \frac{y^{\frac{-2}{3}+1}}{\frac{-2}{3}+1} + C$$

$$= e^x \cdot \sin y - x^3 + \frac{1}{3} \times \frac{y^{\frac{1}{3}}}{\frac{1}{3}} + C = F(x, y)$$

۹.۲ معادله ی دیفرانسیل خطی مرتبه ی اول

$$a_1(x)y' + a_2(x)y = r(x)$$

۲ شرط برای خطی بودن :

- مشتق ها توانشان ۱ باشد .
- تمام ضرایب مشتق بر حسب x باشد .

برای به دست آوردن جواب عمومی باید فرم معادله را به فرم استاندارد تبدیل کنیم . فرم معادله استاندارد به صورت زیر می باشد .

$$y' + p(x)y = q(x)$$

جواب معادله دیفرانسیل خطی مرتبه ی اول در صورتی که معادله را به صورت استاندارد در بیاوریم به صورت زیر می باشد .

$$y(x) = e^{-\int p(x)dx} \left[\int q(x)e^{\int p(x)dx} dx + C \right]$$

$$y' - xy = x$$

این معادله استاندارد است و داریم :

$$p(x) = -x \quad q(x) = x$$

$$y(x) = e^{-\int p(x)dx} \left[\int q(x)e^{\int p(x)dx} dx + C \right]$$
$$= e^{-\int -xdx} \left[\int xe^{\int -xdx} dx + C \right]$$
$$= e^{\frac{x^2}{2}} \left[\int xe^{-\frac{x^2}{2}} dx + C \right]$$

$$-\frac{x^2}{2} = u$$
$$-\frac{1}{2} \times 2xdx = du$$
$$-xdx = du$$
$$xdx = -du$$

$$= e^{-u} \left[\int e^{u} du + C \right]$$

$$= e^{-u} \left[e^{u} + C \right]$$

$$= e^{-u} . e^{u} + c . e^{-u}$$

$$= e^{0} + c . e^{-u}$$

$$= 1 + c . e^{-u}$$

$$= 1 + c . e^{\frac{x^{2}}{2}}$$

فصل ۳

معادلات دیفرانسیل مرتبه ی دوم

۱.۳ معادلات دیفرانسیل خطی مرتبه ی دوم

خطی یعنی :

• توان ۱

• ضریب بر حسب x

فرم كلى معادلات ديفرانسيل خطى مرتبه ي دوم به صورت زير مي باشد .

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = f(x)$$
 $a_2(x) \neq 0$

و فرم استاندارد آن به صورت زیر است :

$$\frac{a_2(x)}{a_2(x)}y'' + \frac{a_1(x)}{a_2(x)}y' + \frac{a_0(x)}{a_2(x)}y = \frac{f(x)}{a_2(x)}$$

$$y'' + p(x)y' + q(x)y = r(x)$$

اگر $r(x) \neq 0$ می شود معادله ی دیفرانسیل مرتبه ی دوم خطی غیر همگن اگر $r(x) \neq 0$ می شود معادله ی دیفرانسیل مرتبه ی دوم خطی همگن

نكته

. تابع y(x)=0 به ازای هر x ای همواره جواب معادله دیفرانسیل همگن می باشد

سوال

آیا این معادله جواب غیرصفر دیگری هم دارد ؟ بله ، اصطلاحاً به آن ترکیب جوابها می گوییم :

$$c_1y_1(x) + c_2y_2(x)$$

۲.۳ جواب معادله ی دیفرانسیل خطی مرتبه ی دوم غیر همگن

در صورتی که $y_1(x)$ جواب معادله ی دیفرانسیل

$$y'' + p(x)y' + q(x)y = r(x)$$

و $y_2(x)$ و جواب معادله ی دیفرانسیل

$$y'' + p(x)y' + q(x)y = 0$$

باشد .

آنگاه جواب معادله ی دیفرانسیل مرتبه ی دوم خطی غیر همگن برابر است با

$$y_1(x) + y_2(x)$$

نكته

برای به دست آوردن جواب عمومی معادله ی دیفرانسیل خطی مرتبه ی دوم باید پیش نیاز های زیر را بدانیم :

- وابستگی خطی
- استقلال خطی

۳.۳ تعریف وابسته خطی

. اگر دو تابع f(x) و g(x) مضرب ثابتی از هم باشند ، در این صورت وابسته خطی نامیده می شوند

$$f(x) = k.g(x)$$

مثال

تابع $f(x)=2x^2$ و $g(x)=x^2$ وابسته خطی هستند زیرا

$$2x^2 = 2 \times x^2$$

تابع $f(x)=e^{2x}$ و $g(x)=e^{3x}$ مستقل خطی هستند زیرا با هیچ ضریب ثابتی با هم مساوی در نمی آیند .

- می توان برای تشخیص وابستگی خطی یا استقلال خطی از دترمینان رونسکین استفاده کرد
 - در صورتی که دترمینان رونسکین برابر با صفر نبود دو تابع مستقل خطی اند
 - در صورتی که دترمینان رونسکین برابر با صفر بود دو تابع وابسته خطی هستند

۴.۳ تعریف دترمینان رونسکین دو تابع

$$w(f \circ g) = \begin{vmatrix} f(x) & g(x) \\ f'(x) & g'(x) \end{vmatrix} = f(x)g'(x) - g(x)f'(x)$$

مثال

: دو تابع $g(x)=e^{3x}$ و $f(x)=e^{2x}$ مستقل خطی اند زیرا

$$\begin{vmatrix} e^{2x} & e^{3x} \\ 2e^{2x} & 3e^{3x} \end{vmatrix} = 3e^{5x} - 2e^{5x} = e^{5x} \neq 0$$

: دو تابع $g(x)=x^2$ و $f(x)=2x^2$ دو تابع

$$\begin{vmatrix} 2x^2 & x^2 \\ 4x & 2x \end{vmatrix} = 4x^3 - 4x^3 = 0$$

دو تابع وابسته خطی هستند اگر و تنها اگر

$$w(y_1(x), y_2(x)) = 0$$

دو تابع مستقل خطی هستند اگر و تنها اگر

$$w(y_1(x), y_2(x)) \neq 0$$

سوال

وابستگی خطی و استقلال خطی چه کمکی برای تعیین جواب عمومی معادله دیفرانسیل مرتبه ی دوم خطی همگن یا غیر همگن می کند ؟

اگر $y_1(x)$ و $y_2(x)$ دو جواب مستقل خطی باشند ، جواب عمومی معادله دیفرانسیل مرتبه ی دوم خطی برابر است با :

$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$

۵.۳ معادله دیفرانسیل خطی مرتبه ی دوم با ضرایب ثابت و همگن

$$y'' + py' + qy = 0$$

y'' + 3y' + 5y = 0: مثل

برای حل ابتدا معادله مشخصه ی آن را تشکیل می دهیم (از مشتق خلاص می شویم)

$$y'' + py' + qy = 0$$

$$y'' \to r^{2}$$

$$y' \to r$$

$$y' \to r$$

$$y \to r^{2} + pr + q = 0$$

$$y'' \to r$$

- اگر $0 < \Delta$ معادله ۲ ریشه ی غیر برابر دارد
 - اگر $\Delta=0$ معادله ۲ ریشه ی برابر دارد
 - اگر $\Delta < 0$ معادله ۲ ریشه ی مختلط دارد

اگر $\Delta>0$ باشد ، معادله مشخصه ۲ ریشه ی حقیقی متمایز (r_1,r_2) دارد و جواب عمومی معادله دیفرانسیل مرتبه ی دوم خطی برابر است با :

$$y_1 = e^{r_1 x}$$

$$y_2 = e^{r_2 x}$$

$$\Rightarrow y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

$$y'' - y' - 6y = 0$$

$$\begin{cases} y(0) = 2\\ y'(0) = -4 \end{cases}$$

$$y'' - y' - 6y = 0 \Rightarrow r^2 - r - 6 = 0$$

$$\Delta = b^2 - 4ac = (-1)^2 - 4(1)(-6) = 25$$

$$r = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-(-1) \pm \sqrt{25}}{2(1)} = \frac{1 \pm 5}{2} = \begin{cases} \frac{6}{2} = 3\\ -\frac{4}{2} = -2 \end{cases}$$

جواب عمومی :

$$y_1(x) = e^{3x}$$

$$y_2(x) = e^{-2x}$$

$$\Rightarrow y(x) = c_1 e^{3x} + c_2 e^{-2x}$$

$$\Rightarrow y'(x) = 3c_1e^{3x} - 2c_2e^{-2x}$$

$$y(0) = 3 y'(0) = -4$$
 \Rightarrow $c_1 + c_2 = 3 3c_1 - 2c_2 = -4$ \Rightarrow $2c_1 + 2c_2 = 6 3c_1 - 2c_2 = -4$

$$5c_1 = 2 \rightarrow c_1 = \frac{2}{5}$$

$$c_1 + c_2 = 3 \rightarrow \frac{2}{5} + c_2 = 3 \rightarrow c_2 = 3 - \frac{2}{5} = \frac{15}{5} - \frac{2}{5} \rightarrow c_2 = \frac{13}{5}$$

جواب خصوصی :

$$y(x) = \frac{2}{5}e^{3x} + \frac{13}{5}e^{-2x}$$

مثال

$$y'' - 4y = 0 \begin{cases} y(0) = 0 \\ y'(0) = 3 \end{cases}$$

$$r^2 - 4 = 0 \Rightarrow r^2 = 4 \Rightarrow r = \pm 2$$

جواب عمومی :

$$y_1(x) = e^{2x}$$

$$y_2(x) = e^{-2x}$$

$$\Rightarrow y(x) = c_1 e^{2x} + c_2 e^{-2x}$$

$$\Rightarrow y'(x) = 2c_1e^{2x} - 2c_2e^{-2x}$$

$$y(0) = 0 y'(0) = 3$$
 \Rightarrow $c_1 + c_2 = 0 2c_1 - 2c_2 = 3$ \Rightarrow $2c_1 + 2c_2 = 0 2c_1 - 2c_2 = 3$

$$4c_1 = 3 \rightarrow c_1 = \frac{3}{4}$$

$$c_1 + c_2 = 0 \to c_2 = -\frac{3}{4}$$

جواب خصوصی :

$$y(x) = \frac{3}{4}e^{2x} - \frac{3}{4}e^{-2x}$$

اگر $0=\Delta$ باشد ، در این صورت معادله ی دیفرانسیل مرتبه ی دوم خطی همگن جواب عمومی به فرم زیر دارد (فرض کنید ریشه ی تکراری r باشد) اگر r دوبار تکرار شود :

$$y(x) = (c_1 + c_2 x)e^{rx}$$

اگر r سه بار تکرار شود :

$$y(x) = (c_1 + c_2 x + c_3 x^2)e^{rx}$$

$$y'' + 4y' + 4y = 0$$

$$y'' + 4y' + 4y = 0 \Rightarrow = r^2 + 4r + 4 = 0$$

$$\Delta = b^2 - 4ac = 4^2 - 4 \times 1 \times 4 = 16 - 16 = 0$$

$$r = -\frac{b}{2a} = -\frac{4}{2} = -2$$

جواب عمومی :

$$y(x) = (c_1 + c_2 x)e^{-2x}$$

اگر $\Delta < 0$ باشد ، آنگاه معادله مشخصه دو ریشه ی مختلط دارد

$$\begin{cases} r_1 = \alpha + \beta i \\ r_2 = \alpha - \beta i \end{cases}$$

در این صورت جواب عمومی به فرم زیر است :

$$y(x) = e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x)$$

$$y'' + 2y' + 4y = 0$$

$$y'' + 2y' + 4y = 0 \Rightarrow r^2 + 2r + 4 = 0$$

$$\Delta = b^2 - 4ac = 2^2 - 4 \times 4 = 4 - 16 = -12$$

$$r = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-2 \pm \sqrt{-12}}{2} = \frac{-2 \pm 2\sqrt{-3}}{2} = -1 \pm \sqrt{-3} = -1 \pm \sqrt{3}i \Rightarrow \begin{cases} \alpha = -1 \\ \beta = \sqrt{3} \end{cases}$$

جواب عمومی:

$$y(x) = e^{-x}(c_1 \cos \sqrt{3}x + c_2 \sin \sqrt{3}x)$$

۶.۳ معادلات دیفرانسیل خطی همگن مرتبه ی دلخواه n با ضرایب ثابت

۱.۶.۳ حالت اول

معادله ی مشخصه دارای n ریشه ی متمایز $r_1, r_2, r_3, \dots, r_n$ باشد ، در این صورت فرم جواب عمومی به صورت زیر می باشد .

$$y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x} + \dots + c_n e^{r_n x}$$

مثال

$$y''' - 2y'' - 5y' + 6y = 0$$

$$y''' - 2y'' - 5y' + 6y = 0 \rightarrow r^3 - 2r^2 - 5r + 6 = 0$$

نكته

مجموع ضرایب مساوی صفر می باشد

$$1 - 2 - 5 + 6 = 0$$

. پس یکی از ریشه ها r=1 می باشد ، پس معادله بر r-1 بخش پذیر می باشد

$$\Rightarrow (r-1)(r^2 - r - 6) = 0 \to \begin{cases} r - 1 = 0 \to r = 1\\ r^2 - r - 6 = 0 \end{cases}$$
$$r^2 - r - 6 = 0$$
$$\Delta = b^2 - 4ac = (-1)^2 - 4 \times 1 \times (-6) = 1 + 24 = 25$$
$$r = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-(-1) \pm \sqrt{25}}{2 \times 1} = \frac{1 \pm 5}{2} = \begin{cases} \frac{6}{2} = 3\\ \frac{4}{-2} = -2 \end{cases}$$

جواب عمومی :

$$\Rightarrow y(x) = c_1 e^x + c_2 e^{3x} + c_3 e^{-2x}$$

$$y''' - 2y'' - 3y' = 0$$

$$y''' - 2y'' - 3y' = 0 \to r^3 - 2r^2 - 3r = 0 \to r(r^2 - 2r - 3) = 0 \to \begin{cases} r = 0 \\ r^2 - 2r - 3 = 0 \end{cases}$$

$$\Delta = b^2 - 4ac = (-2)^2 - 4 \times (-3) = 4 + 12 = 16$$

$$r = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-(-2) \pm \sqrt{16}}{2 \times 1} = \frac{2 \pm 4}{2} = \begin{cases} \frac{6}{2} \\ \frac{2}{2} \end{cases}$$

$$\Rightarrow y(x) = c_1 e^{0 \times x} + c_2 e^{3x} + c_3 e^{-1 \times x}$$

۲.۶.۳ حالت دوم

حالت دوم : اگر معادله مشخصه دارای m ریشه تکراری از n ریشه باشد

مثال

$$y^{(4)} - 6y''' + 12y'' - 8y' = 0$$

$$y^{(4)} - 6y''' + 12y'' - 8y' = 0$$

$$\rightarrow r^4 - 6r^3 + 12r^2 - 8r = 0$$

$$\rightarrow r(r^3 - 6r^2 + 12r - 8) = 0$$

$$\Rightarrow \begin{cases} r = 0 \\ r^3 - 6r^2 + 12^r - 8 = 0 \end{cases}$$

 $r^3 - 6r^2 + 12^r - 8 = 0$: اتحاد مکعب

اتحاد مكعب:

$$(a - b)^3 = (a - b)(a - b)(a - b)$$
$$= a^3 - 3a^2b - 3ab^2 - b^3$$

$$\Rightarrow r^3 - 6r^2 + 12r - 8 = 0$$

$$\Rightarrow (r - 2)^3 = 0 \Rightarrow \begin{cases} r = 2 \\ r = 2 \\ r = 2 \end{cases}$$

$$y(x) = c_1 e^{0 \times x} + (c_2 + c_3 x + c_4 x^2) e^{2x}$$

۳.۶.۳ حالت سوم

حالت سوم : معادله مشخصه ريشه ي مختلط هم داشته باشد .

مثال

$$y^{(4)} + 4y'' = 0$$

$$y^{(4)} + 4y'' = 0 \rightarrow r^4 + 4r^2 = 0 \rightarrow r^2(r^2 + 4) = 0 \rightarrow \begin{cases} r^2 = 0 \\ r^2 + 4 = 0 \end{cases}$$

$$r^{2} + 4 = 0 \rightarrow r^{2} = -4 \rightarrow r = \pm \sqrt{-4} \rightarrow r = \pm 2i \rightarrow r = 0 + 2i \rightarrow \begin{cases} \alpha = 0 \\ \beta = 2 \end{cases}$$

جواب عمومی :

$$y(x) = (c_1 + c_2 x)e^{0 \times x} + e^{0 \times x}(c_3 \cos 2x + c_4 \sin 2x)$$

۴.۶.۳ حالت چهارم

حالت چهارم : مختلط تکراری هم در بین ریشه ها وجود دارد .

$$y^{(5)} + 2y''' + y' = 0$$

$$y^{(5)} + 2y''' + y' = 0$$

$$\to r^5 + 2r^3 + r = 0$$

$$\to r(r^4 + 2r^2 + 1) = 0$$

$$\Rightarrow \begin{cases} r = 0 \\ r^4 + 2r^2 + 1 = 0 \to (r^2 + 1)^2 = 0 \to (r^2 + 1)(r^2 + 1) = 0 \end{cases}$$

$$\Rightarrow (r^2+1)(r^2+1) = 0 \Rightarrow \begin{cases} r^2+1 = 0 \rightarrow r^2 = -1 \rightarrow r = \pm i \rightarrow r = 0 \pm i \\ r^2+1 = 0 \rightarrow r^2 = -1 \rightarrow r = \pm i \rightarrow r = 0 \pm i \end{cases} \Rightarrow \begin{cases} \alpha = 0 \\ \beta = 1 \end{cases}$$

جواب عمومی :

$$y(x) = c_1 e^{0 \times x} + e^{0 \times x} ((c_2 + c_3 x) \cos x + (c_4 + c_5 x) \sin x)$$

۷.۳ معادلات دیفرانسیل مرتبه ی دوم خطی با ضرایب ثابت غیر همگن

$$y'' + py' + qy = r(x)$$

جواب عمومی این نوع معادلات دیفرانسیل برابر مجموع جواب عمومی بخش همگن و جواب خصوصی بخش غیر همگن است .

$$\mathbf{y}$$
همگن $\mathbf{y} \Rightarrow \mathbf{y} = \mathbf{y}_{\text{aa}} + \mathbf{y}_{\text{aa}}$ غیر-همگن

$$y(x) = y_h(x) + y_p(x)$$

که $y_p(x)$ جواب عمومی بخش همگن و $y_p(x)$ جواب خصوصی بخش غیر همگن است روش های مختلفی برای به دست آوردن جواب خصوصی بخش غیر همگن وجود دارد از جمله :

- ضرایب نامعین
- (operator) عملگر
 - سری

۱.۷.۳ روش ضرایب نامعین

از این روش فقط در مورد معادلات خطی با ضرایب ثابت می توان استفاده کرد ، قابل ذکر است (r(x باید تابعی باشد که در حالت های مختلف ذکر می شود .

در هر یک از حالات و یا ترکیبی از آنها y_p به تناسب آن حالت به صورت یک تابع با ضرایب نامعین نوشته می شود .

پس از آن با قرار دادن y_p در معادله دیفرانسیل و هم ارز قرار دادن با سمت راست معادله ضرایب مجهول به دست می آید .

حالت های مختلف (r(x که با روش ضرایب نامعین حل می شوند

r(x) به فرم یک چند جمله ای از درجه ی n باشد

$$y_p = \ \chi^m \ imes$$
 (n-یک-چند-جمله-ای-کامل-از-درجه-ی)

m تعداد ریشه های صفر معادله مشخصه می باشد

$$y'' - 9y = 1$$

 $: y_h(x)$ به دست آوردن

$$r^{2} - 9 = 0 \rightarrow r^{2} = 9 \rightarrow r = \pm 3$$

 $\rightarrow y_{h}(x) = c_{1}e^{3x} + c_{2}e^{-3x}$

 $: y_p(x)$ به دست آوردن

$$r(x) = 1 \to r(x) = 1 \times x^{0} \Rightarrow n = 0$$

$$\Rightarrow y_{p}(x) = x^{0} \times A \Rightarrow \begin{cases} y_{p}(x) = A \\ y'_{p} = 0 \\ y''_{p} = 0 \end{cases}$$

$$\Rightarrow y'' - 9y = 1 \to 0 - 9A = 1 \to A = -\frac{1}{9}$$

جواب عمومی معادله ی دیفرانسیل مرتبه ی دوم خطی غیر همگن :

$$\Rightarrow y(x) = c_1 e^{3x} + c_2 e^{-3x} + -\frac{1}{9}$$

مثال

$$y'' - 4y = 2x^2 - 3$$

. همانطور که میبینید $\mathbf{r}(\mathbf{x})$ چند جمله ای از درجه ی ۲ می باشد $y_h(x)$ به دست آوردن

$$r^{2} - 4 = 0 \rightarrow r^{2} = 4 \rightarrow r = \pm 2$$

 $\Rightarrow y_{h}(x) = c_{1}e^{2x} + c_{2}e^{-2x}$

 $: y_p(x)$ به دست آوردن

$$y_p(x) = x^0 \times (Ax^2 + Bx + C) = (Ax^2 + Bx + C)$$
$$y'_p(x) = 2Ax + B$$
$$y''_p(x) = 2A$$

$$y'' - 4y = 2x^{2} - 3$$

$$2A - 4(Ax^{2} + Bx + C) = 2x^{2} - 3$$

$$2A - 4Ax^{2} - 4Bx - 4C = 2x^{2} - 3$$

$$-4Ax^{2} - 4Bx + 2A - 4C = 2x^{2} - 3$$

$$\Rightarrow \begin{cases}
-4A = 2 \Rightarrow A = -\frac{1}{2} \\
-4B = 0 \Rightarrow B = 0 \\
2A - 4C = -3 \Rightarrow -1 - 4C = -3 \Rightarrow -4C = -2 \Rightarrow C = \frac{1}{2}
\end{cases}$$

$$\Rightarrow y_{p}(x) = -\frac{1}{2}x^{2} + \frac{1}{2}$$

$$y(x) = c_1 e^{2x} + c_2 e^{-2x} - \frac{1}{2}x^2 + \frac{1}{2}$$

مثال

$$y'' - y' = 2x$$

. پند جمله ای $\mathbf{r}(\mathbf{x})$ از درجه ی ۱ می باشد $y_h(x)$ به دست آوردن

$$y'' - y' = 0 \to r^2 - r = 0 \to r(r - 1) = 0 \to \begin{cases} r = 0 \\ r = 1 \end{cases}$$

$$\Rightarrow y_h(x) = c_1 e^{0 \times x} + c_2 e^{1 \times x} = c_1 + c_2 e^x$$

 $:y_p(x)$ به دست آوردن

$$y_p(x) = x^1 \times (Ax + B) = Ax^2 + Bx$$
$$y'_p(x) = 2Ax + B$$
$$y''_p(x) = 2A$$

$$y'' - y' = 2x \rightarrow 2A - 2Ax - B = 2x \rightarrow -2Ax + 2A - B = 2x$$

$$\Rightarrow \begin{cases}
-2A = 2 \rightarrow A = -1 \\
2A - B = 0 \rightarrow -2 - B = 0 \rightarrow B = -2
\end{cases}$$

$$\Rightarrow y_p(x) = -x^2 - 2x$$

$$\Rightarrow y(x) = c_1 + c_2 e^x - x^2 - 2x$$

اگر $\mathbf{r}(\mathbf{x})$ به صورت $\mathbf{r}(\mathbf{x})$ باشد

که در آن M(x) یک چند جمله ای از درجه ی n می باشد . در این صورت جواب خصوصی پیشنهادی به صورت زیر می باشد .

$$y_p = x^m imes e^{tx} imes$$
 (میک-چند-جمله-ای-کامل-از-درجه-ی-۱)

m تعداد t در ریشه های معادله مشخصه می باشد .

مثال

$$y'' - 5y' + 6y = 5e^x$$

همانطور که میبینید ، داریم :

$$5e^{1\times x} \to t = 1$$

 $: y_h(x)$ به دست آوردن

$$y'' - 5y' + 6y = 0 \to r^2 - 5r + 6 = 0$$

$$\to \Delta = b^2 - 4ac = (-5)^2 - 4(6) = 25 - 24 = 1$$

$$r = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{5 \pm 1}{2} = \begin{cases} \frac{6}{2} = 3\\ \frac{4}{2} = 2 \end{cases}$$

$$\Rightarrow y_h(x) = c_1 e^{3x} + c_2 e^{2x}$$

 $: y_p(x)$ به دست آوردن

$$y_p = x^0 e^x(A) = Ae^x$$
$$y'_p = Ae^x$$
$$y''_p = Ae^x$$

$$y'' - 5y' + 6y = 5e^x \rightarrow Ae^x - 5Ae^x + 6Ae^x = 5e^x$$

$$\rightarrow 2Ae^x = 5e^x$$

$$\rightarrow 2A = 5 \rightarrow A = \frac{5}{2}$$

جواب عمومی :

$$y(x) = c_1 e^{3x} + c_2 e^{2x} + \frac{5}{2} e^x$$

مثال

$$y'' + 3y' + 2y = e^{-2x}$$

همانطور که میبینید ، داریم :

$$M(x) = 1 \quad t = -2$$

به دست آوردن (*y_h(x*

$$y'' + 3y' + 2y = 0 \to r^2 + 3r + 2 = 0$$

$$\to \Delta = b^2 - 4ac = 3^2 - 4(2) = 9 - 8 = 1$$

$$\to r = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-3 \pm 1}{2} = \begin{cases} -\frac{4}{2} = -2\\ -\frac{2}{2} = -1 \end{cases}$$

 $: y_p(x)$ به دست آوردن

$$y_p(x) = x^1 e^{-2x} (A) = Ax e^{-2x}$$

$$y'_p(x) = (Ae^{-2x} + -2e^{-2x}Ax) = Ae^{-2x} - 2Ax e^{-2x}$$

$$y''_p(x) = -2Ae^{-2x} - 2(Ae^{-2x} - 2Ax e^{-2x})$$

$$= -2Ae^{-2x} - 2Ae^{-2x} + 4Ax e^{-2x}$$

$$= -4Ae^{-2x} + 4Ax e^{-2x}$$

$$y'' + 3y' + 2y = e^{-2x}$$

$$\to -4Ae^{-2x} + 4Axe^{-2x} + 3(Ae^{-2x} - 2Axe^{-2x}) + 2Axe^{-2x} = e^{-2x}$$

$$\to -4Ae^{-2x} + 4Axe^{-2x} + 3Ae^{-2x} - 6Axe^{-2x} + 2Axe^{-2x} = e^{-2x}$$

$$\to -Ae^{-2x} = e^{-2x} \to -A = 1 \to A = -1$$

$$\to y_p(x) = Axe^{-2x} \Rightarrow y_p(x) = -xe^{-2x}$$

جواب عمومی معادله دیفرانسیل مرتبه ی دوم خطی غیر همگن :

$$y(x) = c_1 e^{-2x} + c_2 e^{-x} - x e^{-2x}$$

فصل ۴

تبدیل لاپلاس برای حل معادلات دیفرانسیل

۱.۴ تعریف تبدیل لاپلاس

$$L[f(t)] = F(s) = \int_0^\infty e^{-st} \times f(t)dt$$

$$L\left[f(t)\right] = F(s)$$

$$f(t) = L^{-1} \left[F(s) \right]$$

$$f(t) = 1$$
 FV

$$L[1] = F(s) = \int_0^\infty e^{-st} \times 1 \times dt$$

$$= \lim_{u \to \infty} \int_0^4 e^{-st} dt$$

$$= \lim_{u \to \infty} \left[-\frac{1}{s} e^{-st} \right]_0^u$$

$$= \lim_{u \to \infty} \left[-\frac{1}{s} e^{-su} - \left(-\frac{1}{s} e^{-s \times 0} \right) \right]$$

$$= \lim_{u \to \infty} \left[-\frac{1}{s} e^{-su} + \frac{1}{s} \right]$$

$$= \frac{1}{s}$$

نكته

$$\lim_{x \to +\infty} e^x = +\infty \qquad \qquad \lim_{x \to +\infty} e^{-x} = 0$$

$$\lim_{x \to -\infty} e^x = 0 \qquad \qquad \lim_{x \to -\infty} e^x = +\infty$$

$$f(t) = k$$

$$L[k] = F(s) = \int_0^{+\infty} e^{-st} \times k \times dt = k \times \int_0^{+\infty} e^{-st} dt = k \times \frac{1}{s} = \frac{k}{s}$$

$$L[1] = \frac{1}{s}$$

$$L[k] = \frac{k}{s}$$

$$L[k \times f(t)] = k \times L[f(t)]$$

$$L[f(t) + g(t)] = L[f(t)] + L[g(t)]$$

$$f(t) = t$$

$$\begin{split} L[t] &= F(s) = \int_0^\infty e^{-st}.tdt = \int_0^\infty te^{-st}dt \\ &= \lim_{u \to \infty} \int_0^u te^{-st}dt \\ f &= t \qquad g' = e^{-st} \\ f' &= t \qquad g = -\frac{1}{s}e^{-st} \\ \int fg' &= fg - \int f'g \\ &= \lim_{u \to \infty} \left[t \times -\frac{1}{s}e^{-st} \right]_0^u - \int_0^u -\frac{1}{s}e^{-st}dt \\ \lim_{u \to \infty} \left[-\frac{t}{s}e^{-st} \right]_0^u + \frac{1}{s} \int_0^u e^{-st}dt \\ \lim_{u \to \infty} \left[-\frac{u}{s}e^{-st} - \left(-\frac{0}{s} \times e^{-s \times 0} \right) + \frac{1}{s} \times \left(-\frac{1}{s}e^{-st} \right)_0^u \right] \\ \lim_{u \to \infty} \left[-\frac{u}{s}e^{-st} + \frac{1}{s} \left(-\frac{1}{s}e^{-st} - \left(-\frac{1}{s}e^{-s \times 0} \right) \right) \right] \\ &= \lim_{u \to \infty} \frac{1}{s} \times \frac{1}{s} \\ &= \frac{1}{s^2} \end{split}$$

$$L[t] = \frac{1}{s^2}$$

$$f(t) = e^{at} \qquad t \ge 0$$

$$L[e^{at}] = F(s) = \int_0^\infty e^{at} dt = \int_0^\infty e^{(a-s)t} dt$$

$$= \lim_{u \to \infty} \int_0^\infty e^{(a-s)t} dt$$

$$= \lim_{u \to \infty} \left[\frac{1}{a-s} e^{(a-s)t} \right]_0^u$$

$$= \lim_{u \to \infty} \left[\frac{1}{a-s} e^{(a-s)u} - \left(\frac{1}{a-s} e^{(a-s) \times 0} \right) \right]$$

$$if \ s > 0 \rightarrow a < s \rightarrow a - s < 0$$

$$\Rightarrow \frac{-1}{a-s} = \frac{1}{s-a}$$
; $s > a$

$$L\left[e^{at}\right] = \frac{1}{s-a} \; ; \; s>0$$

$$f(t) = 8e^{2t} - e^{-t} + t$$

$$\begin{split} L[f(t)] &= L[8e^{2t} - e^{-t} + t] \\ &= L[8e^{2t}] - L[e^{-t}] + L[t] \\ &= 8L[e^{2t}] - L[e^{-t}] + L[t] \\ &= 8 \times \frac{1}{s-2} - \frac{1}{s-(-1)} + \frac{1}{s^2} \\ &= \frac{8}{s-2} - \frac{1}{s+1} + \frac{1}{s^2} \end{split}$$

$$f(t) = t^a \quad ; \quad a > -1$$

$$L[t^a] = \frac{a!}{s^{a+1}}$$
 $L[t^a] = \frac{\Gamma(a+1)}{s^{a+1}}$

مثال

$$f(t) = \sin at$$

$$L[\sin at] = \frac{a}{s^2 + a^2}$$

$$f(t) = \cos at$$

$$L[\cos at] = \frac{s}{s^2 + a^2}$$

۲.۴ فرمولهای عکس لایلاس

$$L^{-1}[F(s)] \qquad F(s)$$

$$L^{-1}\left[\frac{1}{s}\right] = 1 \qquad L[1] = \frac{1}{s}$$

$$L^{-1}\left[\frac{k}{s}\right] = k \qquad L[k] = \frac{k}{s}$$

$$L^{-1}\left[\frac{1}{s^2}\right] = t \qquad L[t] = \frac{1}{s^2}$$

$$L^{-1}\left[\frac{1}{s-a}\right] = e^{at} \quad L[e^{at}] = \frac{1}{s-a} ; s > a$$

$$L^{-1}\left[\frac{a!}{s^{a+1}}\right] = t^a \qquad L[t^a] = \frac{a!}{s^{a+1}}$$

۳.۴ عکس تبدیلات لایلاس را محاسبه کنید

$$F(s) = \frac{1}{s^2 + s - 2}$$

$$s^{2} + s - 2 = 0$$

$$\Delta = b^{2} - 4ac = 1^{2} - 4(-2) = 1 + 8 = 9$$

$$s = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-1 \pm 3}{2} = \begin{cases} \frac{2}{2} = 1\\ \frac{-4}{2} = -2 \end{cases}$$

$$\frac{1}{s^2 + s - 2} = \frac{1}{(s - 1)(s + 2)}$$

$$= \frac{A}{s - 1} + \frac{B}{s + 2}$$

$$= \frac{As + 2A + Bs - B}{(s - 1)(s + 2)}$$

$$= \frac{(A + B)s + 2A - B}{(s - 1)(s + 2)}$$

$$\begin{cases} A + B = 0 \to A = -B \\ 2A - B = 1 \to -2B - B = 1 \to -3B = 1 \to B = -\frac{1}{3} \to A = \frac{1}{3} \end{cases}$$

$$F(s) = \frac{\frac{1}{3}}{s-1} + \frac{-\frac{1}{3}}{s+2}$$

$$L^{-1}[F(s)] = L^{-1} \left[\frac{\frac{1}{3}}{s-1} \right] + L^{-1} \left[\frac{-\frac{1}{3}}{s+2} \right]$$

$$= \frac{1}{3}L^{-1} \left[\frac{1}{s-1} \right] + (-\frac{1}{3})L^{-1} \left[\frac{1}{s+2} \right]$$

$$= \frac{1}{3}e^t - \frac{1}{3}e^{-2t}$$

كاربرد تبديل لاپلاس

بعد از معرفی تبدیل لاپلاس و عکس تبدیل لاپلاس برای حل معادلات دیفرانسیل از آنها استفاده می کنیم .

- ۱. تبدیل لاپلاس مشتق
- ۲. تبدیل لاپلاس انتگرال
- ۳. مشتق تبدیل لایلاس
- ۴. انتگرال تبدیل لایلاس
- از ۴ حالت فوق ، فعلاً به شماره ی ۱ می پردازیم .

۴.۴ تبدیل لاپلاس مشتق

۱.۴.۴ حالت اول

اگر تبدیل لاپلاس مشتق مرتبه ی اول را حساب کنیم ، به فرم زیر تعیین می شود .

$$L\left[f'(t)\right] = sL\left[f(t)\right] - f(0)$$

به کمک تبدیل لایلاس جواب مسئله با شرط اولیه ی زیر را تعیین کنید

$$y' + 2y = 4t$$
; $y(0) = 5$

$$L[y' + 2y] = L[4t]$$
$$L[y'] + 2L[y] = 4L[t]$$

$$L[y'] = sL[y] - y(0)$$

$$sL[y] - y(0) + 2L[y] = 4L[t]$$

$$(s+2)L[y] - 5 = 4 \times \frac{1}{s^2} \quad ; L[y] = Y(s)$$

$$(s+2)Y(s) = \frac{4}{s^2} + 5$$

$$Y(s) = \frac{4}{s^2(s+2)} + \frac{5}{s+2}$$

$$L[y(t)] = Y(s)$$
 $L^{-1}[Y(s)] = y(t)$

$$\frac{4}{s^2(s+2)} = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s+2}$$

$$= \frac{As+B}{s^2} + \frac{C}{s+2}$$

$$= \frac{(As+B)(s+2) + Cs^2}{s^2(s+2)}$$

$$= \frac{As^2 + 2As + Bs + 2B + Cs^2}{s^2(s+2)}$$

$$= \frac{(A+C)s^2 + (2A+B)s + 2B}{s^2(s+2)}$$

$$2B = 4 \rightarrow B = 2$$
$$2A + 2 = 0 \rightarrow A = -1$$
$$A + C = 0 \rightarrow C = 1$$

 $= -1 + 2t + e^{-2t} + 5 \times e^{-2t}$

$$y' - y = \sin t - \cos t + e^t$$
; $y(0) = -2$

$$L[y' - y] = L[\sin t - \cos t + e^t]$$

$$L[y'] - L[y] = L[\sin t] - L[\cos t] + L[e^t]$$

$$L[y'] = sL[y] - y(0)$$

$$sL[y] - y(0) - L[y] = L[\sin t] - L[\cos t] + L[e^t]$$

$$(s-1)L[y] + 2 = \frac{a}{s^2 + a^2} - \frac{s}{s^2 + a^2} + \frac{1}{s-1}$$

$$(s-1)L[y] = \frac{a}{s^2 + a^2} + -\frac{s}{s^2 + a^2} + \frac{1}{s-1} - 2$$

$$L[y] = \frac{a}{(s^2 + a^2)(s-1)} - \frac{s}{(s^2 + a^2)(s-1)} + \frac{1}{(s-1)^2} - \frac{2}{s-2}$$

$$\sin t \Rightarrow a = 1$$
 $\cos t \Rightarrow a = 1$

$$L[y] = \frac{1}{(s-1)(s^2+1)} - \frac{s}{(s-1)(s^2+1)} + \frac{1}{(s-1)^2} - \frac{2}{s-1}$$

$$L[te^t] = \frac{1}{(s-1)^2}$$

$$Y(s) = \frac{1}{(s-1)(s^2+1)} - \frac{s}{(s-1)(s^2+1)} + \frac{1}{(s-1)^2} - \frac{2}{s-1}$$

$$\frac{1}{(s-1)(s^2+1)} = \frac{A}{s-1} + \frac{Bs+C}{s^2+1}$$

$$= \frac{A(s^2+1) + (Bs+C)(s-1)}{(s-1)(s^2+1)}$$

$$= \frac{As^2 + A + Bs^2 - Bs + Cs - C}{(s-1)(s^2+1)}$$

$$= \frac{(A+B)s^2 + (C-B)s + A - C}{(s-1)(s^2+1)}$$

$$A - C = 1 \rightarrow A = C + 1 \rightarrow -B = B + 1 \rightarrow 2B = -1 \rightarrow B = \frac{-1}{2}$$

$$C - B = 0 \rightarrow C = B \rightarrow C = \frac{-1}{2}$$

$$A + B = 0 \rightarrow A = -B \rightarrow A = \frac{1}{2}$$

$$\Rightarrow \frac{1}{(s-1)(s^2+1)} = \frac{\frac{1}{2}}{s-1} + \frac{\frac{-1}{2}s - \frac{1}{2}}{s^2+1}$$

$$\frac{s}{(s-1)(s^2+1)} = \frac{A}{s-1} + \frac{Bs+C}{s^2+1}$$
$$= \frac{(A+B)s^2 + (C-B)s + A - C}{(s-1)(s^2+1)}$$

$$A - C = 0 \rightarrow A = C \rightarrow C = \frac{1}{2}$$

$$A + B = 0 \rightarrow A = -B$$

$$C - B = 1 \rightarrow C = B + 1 \rightarrow A = B + 1$$

$$\rightarrow -B = B + 1 \rightarrow -2B = 1 \rightarrow B = \frac{-1}{2}$$

$$\rightarrow A = \frac{1}{2}$$

$$\frac{s}{(s-1)(s^2+1)} = \frac{\frac{1}{2}}{s-1} + \frac{\frac{-1}{2}s + \frac{1}{2}}{s^2+1}$$

$$L^{-1}[Y(s)] = L^{-1} \left[\frac{1}{(s-1)(s^2+1)} \right] - L^{-1} \left[\frac{s}{(s-1)(s^2+1)} \right] + L^{-1} \left[\frac{1}{(s-1)^2} \right] - L^{-1} \left[\frac{2}{s-1} \right]$$

$$= L^{-1} \left[\frac{\frac{1}{2}}{s-1} + \frac{\frac{-1}{2}s - \frac{1}{2}}{s^2+1} \right] - L^{-1} \left[\frac{\frac{1}{2}}{s-1} + \frac{\frac{-1}{2}s + \frac{1}{2}}{s^2+1} \right] + L^{-1} \left[\frac{1}{(s-1)^2} \right] - L^{-1} \left[\frac{2}{s-1} \right]$$

$$= -L^{-1} \left[\frac{1}{s^2+1} \right] + L^{-1} \left[\frac{1}{(s-1)^2} \right] - L^{-1} \left[\frac{2}{s-1} \right]$$

$$= -\sin t + te^t - 2e^t$$