Assignment -3 Python Programming

Assignment Date	29 September 2022
Student Name	ABIMANYU
Student Roll Number	720819106002
Maximum Marks	2 Marks

import pandas as pd

2.Loading the Dataset

df=pd.read_csv(r"C:\Users\Arjun\Downloads\abalone.csv")
df

	Se	X	Leng	th Di	ameter	Heig	ght	Whole	weight	Shucked	weight	\
0		М	0.4	.55	0.365	0.6	95		0.5140		0.2245	
1		Μ	0.3	50	0.265	0.6	990		0.2255		0.0995	
2		F	0.5	30	0.420	0.1	L35		0.6770		0.2565	
3		Μ	0.4	40	0.365	0.1	L25		0.5160		0.2155	
4		Ι	0.3	30	0.255	0.6	980		0.2050		0.0895	
417	2	F	0.5	65	0.450	0.1	L65		0.8870		0.3700	
417	'3	Μ	0.5	90	0.440	0.1	L35		0.9660		0.4390	
417	4	Μ	0.6	00	0.475	0.2	205		1.1760		0.5255	
417	5	F	0.6	25	0.485	0.1	L50		1.0945		0.5310	
417	6	Μ	0.7	10	0.555	0.1	L95		1.9485		0.9455	
	V	'isc	era	weight	Shell	weig	ght	Rings				
0				0.1010		0.15	500	15				
1				0.0485		0.07	700	7				
2				0.1415		0.21	L00	9				
3				0.1140		0.15	550	10				
4				0.0395		0.05	550	7				
417	2			0.2390		0.24	190	11				
417	'3			0.2145		0.26	505	10				
417	4			0.2875		0.30	980	9				
417	5			0.2610		0.29	960	10				
417	6			0.3765		0.49	950	12				

[4177 rows x 9 columns]

3.Performing Visualizations.

3.1 UNI-variant analysis

import seaborn as sns

sns.displot(df.Diameter)

<seaborn.axisgrid.FacetGrid at 0x29f9a84b280>

sns.distplot(df.Rings)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)


```
import matplotlib.pyplot as plt
plt.pie(df.Sex.value_counts(),[0,0.1,0],labels=["Male","Infant","Female"],aut
opct="%1.1f%%",colors=["blue","green","red"])
plt.title("SEX")
plt.show()
```


3.2 BI-variant analysis

sns.lineplot(df["Whole weight"],df.Diameter)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Whole weight', ylabel='Diameter'>

sns.lineplot(df.Height,df.Rings)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Height', ylabel='Rings'>

3.3 MULTI-variate analysis

sns.pointplot(df.Rings ,df.Height ,data=df,hue='Sex')

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Rings', ylabel='Height'>

4. Perform descriptive statistics on the dataset

0.093500

0.171000

df.describe()

25%

50%

	Length	Diameter	Height	Whole weight	Shucked weight	\
count	4177.000000	4177.000000 41	77.000000	4177.000000	4177.000000	
mean	0.523992	0.407881	0.139516	0.828742	0.359367	
std	0.120093	0.099240	0.041827	0.490389	0.221963	
min	0.075000	0.055000	0.000000	0.002000	0.001000	
25%	0.450000	0.350000	0.115000	0.441500	0.186000	
50%	0.545000	0.425000	0.140000	0.799500	0.336000	
75%	0.615000	0.480000	0.165000	1.153000	0.502000	
max	0.815000	0.650000	1.130000	2.825500	1.488000	
	Viscera weigh	t Shell weight	Ri	ngs		
count	4177.00000	0 4177.000000	4177.000	900		
mean	0.18059	4 0.238831	9.933	684		
std	0.10961	4 0.139203	3.224	169		
min	0.00050	0.001500	1.000	900		

8.000000

9.000000

0.130000

0.234000

75%	0.253000	0.329000	11.000000
max	0.760000	1.005000	29.000000

5. Check for Missing values and deal with them.

df.isnull().sum()

Sex 0
Length 0
Diameter 0
Height 0
Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight 0
Rings 0

dtype: int64

6. Find the outliers and replaing the outliers

sns.boxplot(df.Length)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Length'>

a01=df.Length.quantile(0.015)

import numpy as np
df["Length"]=np.where(df.Length<=a01,df.Length.median(),df.Length)
sns.boxplot(df.Length)</pre>

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Length'>

sns.boxplot(df.Diameter)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Diameter'>

a02=df.Length.quantile(0.01)
df["Diameter"]=np.where(df.Diameter<=a01,df.Diameter.median(),df.Diameter)
sns.boxplot(df.Diameter)</pre>

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Diameter'>

sns.boxplot(df.Height)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Height'>


```
a09=df["Height"].quantile(0.01)
df["Height"]=np.where(df.Height<=a09,df.Height.median(),df.Height)
a10=df.Height.quantile(0.99)
df["Height"]=np.where(df.Height>=a10,df.Height.median(),df.Height)
sns.boxplot(df.Height)
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Height'>

sns.boxplot(df["Whole weight"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Whole weight'>


```
a03=df["Whole weight"].quantile(0.99)
df["Whole weight"]=np.where(df["Whole weight"]>=a03,df["Whole weight"])
sns.boxplot(df["Whole weight"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

```
warnings.warn(
```

<AxesSubplot:xlabel='Whole weight'>

sns.boxplot(df["Shucked weight"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Shucked weight'>


```
a04=df["Shucked weight"].quantile(0.98)
df["Shucked weight"]=np.where(df["Shucked weight"]>=a04,df["Shucked
weight"].median(),df["Shucked weight"])
```

sns.boxplot(df["Shucked weight"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Shucked weight'>

sns.boxplot(df["Viscera weight"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Viscera weight'>


```
a05=df["Viscera weight"].quantile(0.99)
df["Viscera weight"]=np.where(df["Viscera weight"]>=a05,df["Viscera weight"]>=a05,df["Viscera weight"])
sns.boxplot(df["Viscera weight"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version
0.12, the only valid positional argument will be `data`, and passing other
arguments without an explicit keyword will result in an error or
misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Viscera weight'>

sns.boxplot(df["Shell weight"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Shell weight'>


```
a06=df["Shell weight"].quantile(0.99)
df["Shell weight"]=np.where(df["Shell weight"]>=a05,df["Shell
weight"].median(),df["Shell weight"])
sns.boxplot(df["Shell weight"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version
0.12, the only valid positional argument will be `data`, and passing other
arguments without an explicit keyword will result in an error or
misinterpretation.

```
warnings.warn(
```

<AxesSubplot:xlabel='Shell weight'>

sns.boxplot(df["Rings"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Rings'>


```
a07=df["Rings"].quantile(0.01)
df["Rings"]=np.where(df.Rings<=a07,df.Rings.median(),df.Rings)
a08=df.Rings.quantile(0.95)
df["Rings"]=np.where(df.Rings>=a08,df.Rings.median(),df.Rings)
sns.boxplot(df["Rings"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Rings'>

Adding the target variable

df["Age"]=df.Rings+1.5

df

	Sex	Length	Diameter	Height	Whole	weight	Shucked weight	١
0	М	0.455	0.365	0.095		0.5140	0.2245	
1	М	0.350	0.265	0.090		0.2255	0.0995	
2	F	0.530	0.420	0.135		0.6770	0.2565	
3	М	0.440	0.365	0.125		0.5160	0.2155	
4	I	0.330	0.255	0.080		0.2050	0.0895	
		• • •		• • •				
4172	F	0.565	0.450	0.165		0.8870	0.3700	
4173	М	0.590	0.440	0.135		0.9660	0.4390	
4174	М	0.600	0.475	0.205		1.1760	0.5255	
4175	F	0.625	0.485	0.150		1.0945	0.5310	
4176	М	0.710	0.555	0.195		1.9485	0.3360	
	Vis	cera wei	ght Shell	weight	Rings	Age		
0	0.1010		010	0.1500	15.0	16.5		
1		0.0	485	0.0700	7.0	8.5		
2		0.1	415	0.2100	9.0	10.5		

```
3
            0.1140
                         0.1550
                                  10.0 11.5
4
            0.0395
                         0.0550
                                 7.0 8.5
                                 ... ...
4172
            0.2390
                         0.2490
                                  11.0 12.5
4173
            0.2145
                                 10.0 11.5
                         0.2605
4174
            0.2875
                         0.3080
                                 9.0 10.5
4175
            0.2610
                         0.2960
                                 10.0 11.5
4176
            0.3765
                         0.2340
                                 12.0 13.5
```

[4177 rows x 10 columns]

7. Check for Categorical columns and perform encoding

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
df.Sex=le.fit_transform(df.Sex)

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	\
0	2	0.455	0.365	0.095	0.5140	0.2245	
1	2	0.350	0.265	0.090	0.2255	0.0995	
2	0	0.530	0.420	0.135	0.6770	0.2565	
3	2	0.440	0.365	0.125	0.5160	0.2155	
4	1	0.330	0.255	0.080	0.2050	0.0895	

	Viscera weight	Shell weight	Rings	Age
0	0.1010	0.150	15.0	16.5
1	0.0485	0.070	7.0	8.5
2	0.1415	0.210	9.0	10.5
3	0.1140	0.155	10.0	11.5
4	0.0395	0.055	7.0	8.5

8. Split the data into dependent and independent variables

x=df.drop(["Age"],axis="columns")
x

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	\
0	2	0.455	0.365	0.095	0.5140	0.2245	·
1	2	0.350	0.265	0.090	0.2255	0.0995	
2	0	0.530	0.420	0.135	0.6770	0.2565	
3	2	0.440	0.365	0.125	0.5160	0.2155	
4	1	0.330	0.255	0.080	0.2050	0.0895	
			• • •	• • •	• • •	• • •	
4172	0	0.565	0.450	0.165	0.8870	0.3700	

```
4173
            0.590
                       0.440
                               0.135
                                             0.9660
                                                              0.4390
4174
        2
            0.600
                       0.475
                               0.205
                                             1.1760
                                                              0.5255
4175
        0
            0.625
                       0.485
                               0.150
                                             1.0945
                                                              0.5310
4176
                       0.555
        2
            0.710
                               0.195
                                             1.9485
                                                              0.3360
      Viscera weight Shell weight
                                      Rings
0
               0.1010
                             0.1500
                                       15.0
1
               0.0485
                             0.0700
                                        7.0
2
              0.1415
                             0.2100
                                        9.0
3
               0.1140
                             0.1550
                                       10.0
4
               0.0395
                             0.0550
                                        7.0
. . .
                  . . .
                                 . . .
                                        . . .
4172
              0.2390
                             0.2490
                                       11.0
4173
              0.2145
                             0.2605
                                       10.0
4174
              0.2875
                             0.3080
                                        9.0
4175
               0.2610
                             0.2960
                                       10.0
4176
              0.3765
                             0.2340
                                       12.0
[4177 rows x 9 columns]
y=df.Age
У
0
        16.5
1
         8.5
2
        10.5
3
        11.5
4
         8.5
        . . .
        12.5
4172
4173
        11.5
4174
        10.5
4175
        11.5
4176
        13.5
Name: Age, Length: 4177, dtype: float64
```

9. Scaling the independent variables

from sklearn.preprocessing import scale
x_scaled=pd.DataFrame(scale(x),columns=x.columns)

10. Split the data into training and testing

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x_scaled,y,test_size=0.3,rando
m_state=10)
```

11.Build the model

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
```

12.Train the mdoel

```
lr.fit(x_scaled,y)
LinearRegression()
```

13.Test the model

```
lr.predict(x_test)
array([ 8.5, 11.5, 9.5, ..., 12.5, 10.5, 12.5])
lr.score(x_train,y_train)
1.0
lr.score(x_test,y_test)
1.0
```