EXERCICES SUPPLÉMENTAIRES

Exercice 1. (Tribu de Borel) Dans cet exercice, on va montrer soigneusement l'existence de la tribu de Borel, la plus petite tribut $\mathcal{B}_{\mathbb{R}^d}$ contenant tous les ouverts de \mathbb{R}^d .

- 1. Soit E un ensemble.
 - a. Soit \mathcal{T} un ensemble de tribus sur E. Montrer que l'intersection $\bigcap_{A \in \mathcal{T}} A$ est une tribu sur E.
 - b. Soit $\mathcal{F} \subseteq \mathcal{P}(E)$ un ensemble de parties de E. Posons $\mathcal{T} := \{ \text{tribu } \mathcal{A} \mid \mathcal{F} \subseteq \mathcal{A} \}$ l'ensemble de tribus sur E contenant \mathcal{F} . Montrer que $T \neq \emptyset$, et l'intersection $\bigcap_{\mathcal{A} \in \mathcal{T}} \mathcal{A}$ appartient à \mathcal{T} et c'est la plus petite tribu contenant \mathcal{F} .
- 2. En déduire l'existence de la tribu de Borel.

Remarque 1. On peut définir la tribu de Borel \mathcal{B}_E sur tous les espaces topologique E.

Exercice 2. (Applications boréliennes) On dit que un sous-ensemble $B \subseteq \mathbb{R}^d$ est borélien si $B \in \mathcal{B}_{\mathbb{R}^d}$.

Définition 2. Une application $f: \mathbb{R}^d \to \mathbb{R}^{d'}$ est dite borélienne si pour tout ouvert $U \subseteq \mathbb{R}^{d'}$, on a $f^{-1}(U) \subseteq \mathbb{R}^d$ appartient à la tribu de Borel.

- 1. Montrer que tout sous-ensemble borélien $B \subseteq \mathbb{R}^d$ est mesurable par définition. En déduire que toute fonction $f : \mathbb{R}^d \to \mathbb{R}$ borélienne est mesurable.
- 2. Montrer que toute application continue $f: \mathbb{R}^d \to \mathbb{R}^{d'}$ est borélienne.
- 3. Soit $f: \mathbb{R}^d \to \mathbb{R}^{d'}$ une application borélienne. Le but de ce sous-exercice est de montrer que

Lemme 3. Pour tout sous-ensemble borélien $B \subseteq \mathbb{R}^{d'}$, le sous-ensemble $f^{-1}(B) \subseteq \mathbb{R}^{d}$ l'est aussi (cf. la définition d'application continue).

Posons $\mathcal{B}' := \{ B \subseteq \mathbb{R}^{d'} \mid f^{-1}(B) \in \mathcal{B}_{\mathbb{R}^d} \}.$

- a. Montrer que pour tout ouvert $U \subseteq \mathbb{R}^{d'}$, on a $U \in \mathcal{B}'$.
- b. Montrer que \mathcal{B}' est une tribu sur $\mathbb{R}^{d'}$.
- c. En déduire que $\mathcal{B}_{\mathbb{R}^{d'}} \subseteq \mathcal{B}'$ par la définition de la tribu de Borel. Conclure.
- 4. Montrer que pour toute fonction mesurable $f: \mathbb{R}^d \to \mathbb{R}$ et tout sous-ensemble borélien $B \subseteq \mathbb{R}$, le sous-ensemble $f^{-1}(B) \subseteq \mathbb{R}^d$ est mesurable [Indication: comme la preuve de Lemme 3, $\mathcal{B}' := \{B \subseteq \mathbb{R} \mid f^{-1}(B) \subseteq \mathbb{R}^d \text{ est mesurable}\}$ est une tribu sur \mathbb{R}].
- 5. En déduire que, pour toute application borélienne $f: \mathbb{R}^d \to \mathbb{R}^{d'}$ et toute fonction mesurable $g: \mathbb{R}^{d'} \to \mathbb{R}$, la composée $g \circ f: \mathbb{R}^d \to \mathbb{R}$ est mesurable.

Exercice 3. (Ensemble de Cantor) Considérons l'ensemble $E = \{\sum_{j=0}^{\infty} a_j 3^{-j} \mid (a_j) \in \{0,1\}^{\mathbb{N}}\} \subseteq \mathbb{R}$. Le but de cet exercice est de montrer que $\lambda(E) = 0$ et que E est infini non dénombrable, et d'étudier une généralisation.

Soit $\mathcal{F} \subseteq \mathbb{R}$ l'ensemble de tous les fermés qui s'écrivent comme une réunion finie disjointe d'intervalles fermés bornés. Considérons l'application $T: \mathcal{F} \to \mathcal{F}, \bigsqcup_{j=1}^m \left[a_j, b_j\right] \mapsto \bigsqcup_{j=1}^m \left(\left[a_j, \frac{2\,a_j + b_j}{3}\right] \sqcup \left[\frac{a_j + 2\,b_j}{3}, b_j\right]\right)$.

- 1. Montrer que pour tout $F \in \mathcal{F}$, on a $\lambda(F) < +\infty$.
- 2. Déterminer T([0,1]), $T^2([0,1])$ et $T^3([0,1]),$ où $T^m:=\underbrace{T\circ T\circ \cdots \circ T}_m$ pour tout $m\in\mathbb{N}$ $(T^0:=\mathrm{id}).$
- 3. Montrer que pour tout $F \in \mathcal{F}$, on a $T(F) \subseteq F$ et $\lambda(T(F)) = \frac{2}{3}\lambda(F)$.
- 4. Montrer que $E = \bigcap_{n=0}^{\infty} T^n([0,1])$, et en déduire que $\lambda(E) = 0$.
- 5. On rappelle que

Théorème 4. (Lebesgue) Une fonction $f:[0,1] \to \mathbb{R}$ est Riemann-intégrable si et seulement si f est bornée et presque partout continue.

Montrer que la fonction indicatrice $1_E:[0,1]\to\mathbb{R}$ est Riemann-intégrable.

- 6. Considérons l'application $T_{\alpha}: \mathcal{F} \to \mathcal{F}, \bigsqcup_{j=1}^{m} [a_j, b_j] \mapsto \bigsqcup_{j=1}^{m} \left(\left[a_j, \frac{(1+\alpha) a_j + (1-\alpha) b_j}{2} \right] \sqcup \left[\frac{(1-\alpha) a_j + (1+\alpha) b_j}{2}, b_j \right] \right)$ pour tout $\alpha \in]0, 1[$.
 - a. Montrer que pour tout $\alpha \in]0,1[$ et $F \in \mathcal{F}$, on a $T_{\alpha}(F) \subseteq F$ et $\lambda(T_{\alpha}(F)) = (1-\alpha)\lambda(F)$.

- b. Soit $(\alpha_n)_{n\in\mathbb{N}}\in]0,1[\mathbb{N}$ une suite de réels dans]0,1[. Montrer que $\lambda(\bigcap_{n=0}^{\infty}T_{\alpha_n}\circ T_{\alpha_{n-1}}\circ \cdots \circ T_{\alpha_0}([0,1]))=\prod_{n=0}^{\infty}(1-\alpha_n)$.
- c. Trouver une CNS t.q. la fonction indicatrice $1_{\bigcap_{n=0}^{\infty} T_{\alpha_n} \circ \cdots \circ T_{\alpha_0}([0,1])}$ soit Riemann-intégrable.

Exercice 4. (Lemme de Fatou) Soient $E \subseteq \mathbb{R}^d$ une partie mesurable, $(f_n : \mathbb{R}^d \to \overline{\mathbb{R}}_+)_{n \in \mathbb{N}}$ une suite de fonctions mesurables et $f : \mathbb{R}^d \to \overline{\mathbb{R}}_+$ une fonction mesurable t.q. $f_n(x) \to f(x)$ p.p. $x \in E$. En utilisant le théorème de Beppo-Levi, montrer que $\int_E f \leq \lim_{n \to \infty} \inf_{k \geq n} \int_E f_n$.

Exercice 5. (Théorème de différentiation) On rappelle que

Théorème 5. Soit $f \in C^0([a,b])$ une fonction continue. Alors la fonction $F: x \mapsto \int_a^x f(t) dt$ est dérivable sur [a,b] dont la dérivée est f.

On va étudier ses généralisations.

Définition 6. Soit $f \in \mathcal{L}^1(\mathbb{R}^d)$ une fonction localement intégrable. La moyenne sur un ensemble borné mesurable E est donné par $\operatorname{Avg}_E(f) := (\lambda(E))^{-1} \int_E f$.

Le but de cet exercice est de montrer que

Théorème 7. (Lebesgue) Soit $f \in \mathcal{L}^1(\mathbb{R}^d)$. Alors on a

$$\lim_{r \to 0^+} \operatorname{Avg}_{B(x,r)}(f) = f(x)$$

 $p.p. \ x \in \mathbb{R}^d$, où B(x,r) est la boule ouverte $\{y \in \mathbb{R}^d \mid d(x,y) < r\}$.

- 1. Montrer que pour toute fonction continue $f \in C(\mathbb{R}^d)$ et tout $x \in \mathbb{R}^d$, on a $\lim_{r \to 0^+} \operatorname{Avg}_{B(x,r)}(f) = f(x)$.
- 2. En utilisant la formule de changement de variables, montrer que $\lambda(B(x,r)) = r^d \lambda(B(0,1))$ pour tout $x \in \mathbb{R}^d$ et tout $r \in \mathbb{R}_{>0}$.
- 3. Soit \mathcal{B} un ensemble fini de boules dans \mathbb{R}^d , c'est-à-dire, \mathcal{B} est une partie finie de $\{B(x,r) \mid x \in \mathbb{R}^d, r \in \mathbb{R}_{>0}\}$. Le but de ce sous-exercice est de montrer que

Lemme 8. (Vitali) Il existe une partie $\mathcal{B}' \subseteq \mathcal{B}$ de boules disjointes t.q.

$$\bigcup_{B\in\mathcal{B}}B\subseteq\bigcup_{B(x,r)\in\mathcal{B}'}B(x,3\,r)$$

Écrivons $\mathcal{B} = \{B(x_1, r_1), B(x_2, r_2), \dots, B(x_n, r_n)\}$ t.q. $r_1 \ge r_2 \ge \dots \ge r_n$. On execute l'algorithme suivant:

Algorithme 1

```
\mathcal{B}' \leftarrow \varnothing
Pour i de 1 jusqu'à n avec un pas de 1
Si \forall C \in \mathcal{B}' \colon C \cap B(x_i, r_i) = \varnothing
\mathcal{B}' \leftarrow \mathcal{B}' \cup C
Fin si
Fin pour
```

- a. Montrer que pour tout $B(x_i, r_i) \notin \mathcal{B}'$, il existe j < i t.q. $B(x_i, r_i) \subseteq B(x_j, 3r_j)$.
- b. En déduire Lemme 8.
- 4. Soit $f \in \mathcal{L}^1_{loc}(\mathbb{R}^d)$. Le but de cet exercice est d'étudier la fonction maximale Mf de Hardy-Littlewood (version centrée)

$$(Mf)(x) := \sup_{r>0} \operatorname{Avg}_{B(x,r)}(|f|) = \sup_{r>0} \frac{1}{\lambda(B(x,r))} \int_{B(x,r)} |f|$$

pour tout $x \in \mathbb{R}^d$.

- a. Montrer que pour tout $\alpha \in \mathbb{R}$, la partie $\{Mf > \alpha\} \subseteq \mathbb{R}^d$ est ouverte.
- b. On fixe $\alpha \in \mathbb{R}_{>0}$ et une partie compacte $K \subseteq \{Mf > \alpha\}$.
 - i. Montrer qu'il existe un ensemble fini \mathcal{B} de boules t.q. $K \subseteq \bigcup_{B \in \mathcal{B}} B$, et pour tout $B \in \mathcal{B}$, on a $\int_{\mathcal{B}} |f| > \alpha \lambda(B)$.
 - ii. En utilisant Lemme 8, montrer qu'il existe une partie $\mathcal{B}' \subseteq \mathcal{B}$ de boules disjointes, t.q. $\lambda(K) \leq 3^n \sum_{B \in \mathcal{B}'} \lambda(B)$.
 - iii. En déduire que $\lambda(K) \leq 3^n \alpha^{-1} \int_{\mathbb{R}^d} |f|$.
- c. En utilisant la subdivision dyadique, montre qu'il existe une suite croissante (K_n) de parties compactes de $\{Mf > \alpha\}$, t.q. $\lim_{n\to\infty} \lambda(K_n) = \lambda(\{Mf > \alpha\})$. En déduire que $\lambda(\{Mf > \alpha\}) \leq 3^n \alpha^{-1} \int_{\mathbb{R}^d} |f|$ pour tout $\alpha \in \mathbb{R}_{>0}$.

5. Fixons $f \in \mathcal{L}^1(\mathbbm{R}^d)$ et $\varepsilon > 0$. On admet qu'il existe une fonction $\varphi \in C^0_c(\mathbbm{R}^d)$ t.q. $\int_{\mathbbm{R}^d} |f - \varphi| \le \varepsilon$. Considérons

$$\operatorname{osc}_{g}(x) := \lim_{r \to 0^{+}} \sup_{r' \in]0, r[} \operatorname{Avg}_{B(x, r')}(|g|)$$

pour toute $g \in \mathcal{L}^1(\mathbb{R}^d)$ et tout $x \in \mathbb{R}^d$.

- a. Montrer que $\operatorname{osc}_f(x) \leq \operatorname{osc}_{\varphi}(x) + \operatorname{osc}_{f-\varphi}(x)$ pour tout $x \in \mathbb{R}^d$.
- b. Montrer que $\operatorname{osc}_{\varphi}(x) = 0$ pour tout $x \in \mathbb{R}^d$. Donc $\operatorname{osc}_f(x) \leq \operatorname{osc}_{f-\varphi}(x)$ pour tout $x \in \mathbb{R}^d$.
- c. Montrer que pour toute $g \in \mathcal{L}^1(\mathbb{R}^d)$, on a $\operatorname{osc}_g(x) \leq Mg(x)$ pour tout $x \in \mathbb{R}^d$.
- d. Montrer que $\lambda(\{\operatorname{osc}_f(x)>\alpha\}) \leq \lambda(\{\operatorname{osc}_{f-\varphi}(x)>\alpha\}) \leq 3^n\,\alpha^{-1}\,\varepsilon$ pour tout $\alpha>0$.
- e. Montrer que $\lambda(\{\operatorname{osc}_f(x)>0\})=0$. En déduire Théorème 7.