Homework #3

A problem on the Polya urn...

Let initially a box contain 2 red and 1 blue ball. At each step we draw a random ball from the box, and add 2 balls of the same color back. What is the probability that after 3 steps there will be 4 red and 2 blue balls in the box? (note: the answer might not be uniform because we start from 2 red and 1 blue, and not like it was in class)

1.5 BAYES' RULE

1.5.3

$$P(bad) = 0.2$$

$$P(pass|bad) = 0.1$$

$$P(good|pass) =?$$

$$= \frac{\#(goodpass)}{\#(pass)}$$

$$= \frac{0.8}{(0.8 * 1) + (0.2 * 0.1)}$$

$$= \frac{0.8}{0.82}$$

$$= 0.97561$$

$$= 0.98$$

(b)

$$P(bad) = 0.2$$

$$P(pass|bad) = 0.1$$

$$P(bad|pass) =?$$

$$= \frac{\#(badpass)}{\#(pass)}$$

$$= \frac{0.2 * 0.1}{(0.8 * 1) + (0.2 * 0.1)}$$

$$= \frac{0.02}{0.82}$$

$$= 0.02439$$

$$= 0.02$$

1.5.7

(a) As shown in Example 1 we already have the probabilities for white...

$$P(\text{Box 1} \mid \text{white}) = \frac{6}{23}$$

$$P(\text{Box 2} \mid \text{white}) = \frac{8}{23}$$

$$P(\text{Box 3} \mid \text{white}) = \frac{9}{23}$$

Now using the same method we must find for black as well...

$$P(\text{Box 1} | \text{black}) = \frac{6}{13}$$

$$P(\text{Box 2} | \text{black}) = \frac{4}{13}$$

$$P(\text{Box 3} | \text{black}) = \frac{3}{13}$$

If we pick the highest posterior probability for both the chance of use being right over the long run is...

$$P(\text{Box 1} \mid \text{white}) * P(\text{white}) + P(\text{Box 1} \mid \text{black}) * P(\text{black})$$

$$\frac{9}{23} * \frac{23}{36} + \frac{6}{13} * \frac{13}{36}$$

$$\frac{5}{12}$$

(b) This is problem 7c. Sorry for the confusion on ordering... In this case the posterior probabilities will change ...

$$P(\text{Box 1} \mid \text{white}) = \frac{9}{23}$$

$$P(\text{Box 2} \mid \text{white}) = \frac{6}{23}$$

$$P(\text{Box 3} \mid \text{white}) = \frac{27}{92}$$

Now using the same method we must find for black as well...

$$P(\text{Box 1} | \text{black}) = \frac{9}{13}$$

$$P(\text{Box 2} | \text{black}) = \frac{3}{13}$$

$$P(\text{Box 3} | \text{black}) = \frac{9}{52}$$

If we pick the highest posterior probability for both the chance of use being right over the long run is...

$$P(\text{Box 1} \mid \text{white}) * P(\text{white}) + P(\text{Box 1} \mid \text{black}) * P(\text{black})$$

$$\frac{27}{92} * \frac{23}{36} + \frac{9}{13} * \frac{13}{36}$$

$$\frac{7}{16}$$

1.6 SEQUENCE OF EVENTS

1.6.6

(a) First we can assume that the probability for r = 1 and r > 8 is 0.

This is because in the case of r = 1 there is no way of rolling the same number since you have not rolled at least twice.

The case for r > 8 is 0 as well since there are only six sides of a dice. There has to be a number that is repeated in this case since there isn't more (different options) the roll can output. . .

All other options are computed below . . .

Table for all rolls...

r	computation	result
1	0	0
2	$\left(\frac{6}{6}\right)*\left(\frac{1}{6}\right)$	$\frac{1}{6}$
3	$\left(\frac{6}{6}\right)*\left(\frac{5}{6}\right)*\left(\frac{2}{6}\right)$	$\frac{5}{18}$
4	$(\frac{6}{6})*(\frac{5}{6})*(\frac{4}{6})*(\frac{3}{6})$	$\frac{5}{18}$
5	$(\frac{6}{6})*(\frac{5}{6})*(\frac{4}{6})*(\frac{3}{6})*(\frac{4}{6})$	5 27
6	$(\frac{6}{6})*(\frac{5}{6})*(\frac{4}{6})*(\frac{3}{6})*(\frac{2}{6})*(\frac{5}{6})$	$\frac{25}{324}$
7	$\left(\frac{6}{6}\right) * \left(\frac{5}{6}\right) * \left(\frac{4}{6}\right) * \left(\frac{3}{6}\right) * \left(\frac{2}{6}\right) * \left(\frac{1}{6}\right) * \left(\frac{6}{6}\right)$	$\frac{5}{324}$
$r \geq 8$	0	0

The logic behind this is for example take r=4. We can see that the first roll will not matter so there are 6 possible outcomes out of 6, which is represented by the first fraction. However, the next roll must be anything **except** that number chosen. This means the next probability is $\frac{5}{6}$. This process is done again to get $\frac{4}{6}$. However, for the last step we want to repeat one of the numbers already chosen. This means that we currently have three options to choose from, which gives us $\frac{3}{6}$. Multiply all these probabilities will give the result of $\frac{5}{18}$.

(b)
$$p_1 + p_2 + ... + p_1 0 = 1$$

This must be true because for a six-sided die there are only six options. The number must repeat for rolls of 7 above and it is zero for the middle layers of r. This equation covers all possibilities which is why it must equate to 1.

(c)

$$p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8 + p_9 + p_10 = 1$$
$$0 + \frac{1}{6} + \frac{5}{18} + \frac{5}{18} + \frac{5}{27} + \frac{25}{324} + \frac{5}{324} + 0 + 0 + 0 = 1$$

1.6.8

(a) We can solve this problem by looking at this equation...

Proof.

$$P(B_{12} \cap B_{23}) = P(\text{all have the same birthday})$$

Let's look at it seperatly...

$$P(B_{12}) = \frac{365}{365} * \frac{1}{365}$$

$$P(B_{23}) = \frac{365}{365} * \frac{1}{365}$$

$$P(\text{all have the same birthday}) = \frac{365}{365} * \frac{1}{365} * \frac{1}{365}$$

Based on the multiplication rule for independent events...

$$P(B_{12} \cap B_{23}) = P(\text{all have the same birthday})$$

$$\frac{365}{365} * \frac{1}{365} * \frac{365}{365} * \frac{1}{365} = \frac{365}{365} * \frac{1}{365} * \frac{1}{365}$$

$$\frac{1}{365^2} = \frac{1}{365^2}$$

Because this equality holds for independent events we can say that they are independent.

(b) *Proof.* This is not independent. The B_{12} and B_{23} implies that B_{13} based on the definition. Also using the same logic as above the equation will be ... $\frac{1}{365^2} = \frac{1}{365^3}$ which is not true.

2.1 DISTRIBUTIONS

2.1.7

(a) We can do this with Binomial Distribution. However, we are missing some information. We have n, k, but we must calculate p...

Ways to win...

Opponent	Me	#ways
1	2,3,4,5,6	5
2	3,4,5,6	4
3	4,5,6	3
4	5,6	2
5	6	1
6	N/A	0

Total number of ways to win = 15
Total combinations = 36

$$P(winning) = p = \frac{5}{12}$$

Let us apply Binomial Distribution ...

$$P(k \text{ success in } n \text{ trials}) = \binom{n}{k} p^k q^{n-k}$$

$$P(4 \text{ success in 5 trials}) = \binom{5}{4} \left(\frac{5}{12}\right)^4 \left(\frac{7}{12}\right)^1$$

However we must also look at 5 since the question was at least 4...

$$P(k \text{ success in } n \text{ trials}) = \binom{n}{k} p^k q^{n-k}$$

$$P(4 \text{ success in 5 trials}) = \binom{5}{5} \left(\frac{5}{12}\right)^5 \left(\frac{7}{12}\right)^0$$

The two Probabilities added together is 0.10047 The probability of winning at least 4 times is **0.10047**

2.1.10

(a)

$$P(k-1 \text{ heads } | k-1 \text{ or } k \text{ heads})$$

$$= \frac{P(k-1 \text{ heads }) \cap P(k-1 \text{ or } k \text{ heads})}{P(k-1 \text{ or } k \text{ heads})}$$

$$= \text{ the numerator will equate to just } P(k-1 \text{ heads})$$

$$\text{ this is because the definition of intersection}$$

$$= \frac{P(k-1 \text{ heads })}{P(k-1 \text{ or } k \text{ heads})}$$

$$= \text{ The denominator will equate to the addition of the two or cases}$$

$$= \frac{P(k-1 \text{ heads })}{P(k-1 \text{ heads }) + P(k \text{ heads })}$$

$$= \frac{\binom{n}{k-1}}{\binom{n}{k-1} + \binom{n}{k}}$$

$$= \frac{\binom{n!}{(k-1)!(n-k-1)!}}{\binom{n!}{(k-1)!(n-k-1)!}} * \frac{n!}{(k)!(n-k)!}$$

$$= \frac{k}{k+n-k+1}$$

(b) This is 1- above ...

$$1 - \frac{k}{n+1}$$
$$\frac{n+1-k}{n+1}$$

 $=\frac{k}{n+1}$

2.5 RANDOM SAMPLING

2.5.2

(a)

$$P(\ \text{First is red}\) = \frac{26}{52}$$

$$P(\ \text{Second is Black}\) = \frac{26}{51}$$

$$P(\ \text{Third is Black}\) = \frac{25}{50}$$

$$P(\ \text{First card is red and the second two black}\) = \frac{13}{102}$$

$$= \textbf{0.12745}$$

(b) For this problem we can use the formula given on page 125 for sampling without replacement!

$$P(1 \text{ red and 2 black}) = \frac{\binom{26}{1} * \binom{26}{2}}{\binom{52}{3}}$$
$$= \frac{\frac{26 * 26 * 25 * 25}{2}}{\frac{52 * 51 * 50}{3 * 2}}$$
$$= \frac{39}{102}$$
$$= \frac{13}{34}$$
$$= 0.38235$$

(c) We can use the above procedure to find the Probability when there is 1 red, 2 red, or 3 red.

$$P(1 \text{ red and 2 black}) = \frac{\binom{26}{1} * \binom{26}{2}}{\binom{52}{3}}$$

$$= \frac{\frac{26*26*25}{2}}{\frac{52*51*50}{3*2}}$$

$$= \frac{39}{102}$$

$$= \frac{13}{34}$$

$$= 0.38235$$

$$P(2 \text{ red and } 1 \text{ black}) = \frac{\binom{26}{2} * \binom{26}{1}}{\binom{52}{3}}$$

$$= \frac{\frac{26*26*25}{2}}{\frac{52*51*50}{3*2}}$$

$$= \frac{39}{102}$$

$$= \frac{13}{34}$$

$$= 0.38235$$

the next 3 red is just ...

$$P(3 \text{ red and } 0 \text{ black}) = \frac{26}{52} * \frac{25}{51} * \frac{24}{50}$$

$$= \frac{2}{17}$$

$$= 0.11764$$

Summing all those probabilities together you get 0.88235

2.5.7

- (a) This is the probability of choosing consecutive 4 black balls. $\frac{50}{80}*\frac{49}{79}*\frac{48}{78}*\frac{47}{77}=\textbf{0.1456}$
- (b) This the probability of choosing exactly three black balls is ... $\frac{50}{80}*\frac{49}{79}*\frac{48}{78}*\frac{30}{77}*4=$ 0.3717
- (c) The probability that the first red ball appears on the last draw is ... $\frac{50}{80}*\frac{49}{79}*\frac{48}{78}*\frac{30}{77}=$ 0.0929