Identifying Inventory Scrap Reduction Opportunities

ISYE 492 Senior Design Project Spring 2023

Felix Morales, Lia Cappellari, Miteb Aloqab

Inside Thermo Fisher: A Closer Look

- Thermo Fisher is a top supplier of scientific instruments, reagents, consumables, and software services
- Thermo Fisher manages a vast and ever-expanding product portfolio
- ❖ Thermo Fisher offers tens of millions of unique SKUs
- Large production batches are generated due to high demand for SKUs from customers
- Thermo Fisher employs automated and manual methods to collect and store historical data

Why Our Initial Approaches Fell Short

- Finding commonalities in a scrapped SKU was difficult due to high variance in scrap quantity, types of SKUs, reasoning, and other variables over time
- Our first strategies didn't account for a scraps quantity being relative to its usage
- Despite being able to identify highly scrapped items, their scrap value was very low
- ❖ A SKU can be multiple variants of the same variable such as WXYZ
- Overlap in reasons for scrap, such as Forecasting and Overbought, further complicated analysis

The Overlooked Cost & Impact of Scrap

- Thermo Fisher faces a significant challenge: high customer demand leads to massive scrap, costing tens of millions annually. Our main objective is to identify opportunities to reduce scrap
- Scrap is diverse and can be defined through:
 - Devaluation Costs: Value of items can fall quickly and steeply when held in inventory
 - Obsolescence Costs: Inventory can lose its value when new products are introduced
 - Defective Materials: Products can be scrapped due to defects in the materials used to make them

Fiscal Year	2018	2019	2020	2021	2022	2023
Value	\$43M	\$326M	\$47M	\$72M	\$86M	\$10M

Identifying Specific SKUs with High Scrap Values

SKU Number	Display Value	Scrap Quantity	Fiscal Year	Cause of Scrap	Branch Code
A33502	\$282,622,673	2,188,112	2019	Null	US03
100103376	\$ 1,669,466	70,000	2021	Null	LT01
A48105	\$ 1,460,730	2,001	2022	Quality Issue	GB01

Identifying Specific SKUs with High Scrap Values

SKU Number	Display Value	Scrap Quantity	Fiscal Year	Cause of Scrap	Branch Code
A33502	\$282,622,673	2,188,112	2019	Null	US03
100103376	\$ 1,669,466	70,000	2021	Null	LT01
A48105	\$ 1,460,730	2,001	2022	Quality Issue	GB01

Creating Tables and Ordering by Scrap Quantity

SKU Number	Display Value	Scrap Quantity	Fiscal Year	Cause of Scrap	Branch Code
MT36814	\$ 0	199,605,000	2021	Overbought	US15
MT34080	\$ 9990	99,898,341	2018	Overbought	US15
100094872	\$ 333,555	66,300,000	2022	Misalignment	LT01

Relating Scrapped SKUs to a SKUs Usage to Determine Proportionality

Product Group	2018	2019	2020	2021	2022
1C7	\$ 242,693	\$ 180,820	\$ 138,725	\$ 174,794	\$ 295,997
ANT	\$ 1,106,337	\$ 526,835	\$ 633,667	\$ 256,692	\$ 1,172,656
FCR	\$ 2,129,282	\$ 1,593,957	\$ 3,316,388	\$ 1,593,147	\$ 1,487,461

- Looked for Product Group Codes (a family of SKUs) scrapped consistently for 5 years
- FCR was chosen to analyze due to its consistently high scrap value
- The goal was to only pull SKUs from the usage data that were FCR coded SKUs present in scrap data
- Now that we had a scrapped SKUs usage, we could identify opportunities to lower a safety stock If a SKU had a high on hand inventory and scrap rate, but low usage

A Sequence of Examining Variables Over Time to Spot Trends

- ❖ WXYZ: A variable that represents a SKUs usage and order volume
- Since 2018, "Z-Strangers" scrap volume has increased by 30 million (left)
- From 2018 to 2022, the same Z-Stranger category has decreased in value (right)

A Sequence of Examining Variables Over Time to Spot Trends

- Reasons for scrap can vary forecasting, quality issue, defect, and more
- Looking at Z-Strangers alone, overbought is the primary reason for scrap (left)
- ❖ However, overbought was not the cause for Z-Strangers to decrease in value
- The quantity of overbought scrap is not proportional to it scrap value (right)

Key Takeaways From Our Initial Approaches

- There is no single reason for high scrap values and quantities, are changes annually
- ❖ Although some SKUs are highly scrapped, their scrap values can be little to none
- 23% of scrapped SKUs had missing values (NAs) for the reasoning

Key Takeaways From Our Initial Approaches

- There is no single reason for high scrap values and quantities, are changes annually
- ❖ Although some SKUs are highly scrapped, their scrap values can be little to none
- ❖ 23% of scrapped SKUs had missing values (NAs) for the reasoning
- The top 3 reasons for scrap value was Forecasting, NULL, and Overbought. Each display value over 30M and accounting for 61% of all scrap value

Reason	Value	Percentage Value	Percentage Quantity
Forecast	\$ 107,198,744	35%	7%
Null	\$ 41,319,387	14%	7%
Overbought	\$ 36,043,700	12%	42%

Key Takeaways From Our Initial Approaches

- There is no single reason for high scrap values and quantities, are changes annually
- ❖ Although some SKUs are highly scrapped, their scrap values can be little to none
- ❖ 23% of scrapped SKUs had missing values (NAs) for the reasoning
- The top 3 reasons for scrap value was Forecasting, NULL, and Overbought. Each display value over 30M and accounting for 61% of all scrap value
- The top 3 reasons for scrap quantity was Overbought, Raw Material, and Defects. Each quantity over 80M and accounting for 62% of all scrap quantity

Reason	Value	Percentage Value	Percentage Quantity
Forecast	\$ 107,198,744	35%	7%
Null	\$ 41,319,387	14%	7%
Overbought	\$ 36,043,700	12%	42%

Reason	Quantity	Percentage Value	Percentage Quantity
Overbought	431,565,031	12%	42%
Raw Material	113,386,438	2%	11%
Defect	88,860,208	5%	9%

Rethinking Our Plan: Navigating the Complexity of Scrap Using Clustering

- Utilized k-means clustering to create a "Priority List" of SKUs to focus on
- Hypothesis: SKUs belonging to the same cluster, should behave similarly and therefore have similar amounts of scrap
- ❖ Variables used to cluster the SKUs include:
 - ➤ Branch Code
 - ➤ WXYZ
 - Sales Rank Code
 - BOM Dependency
 - Usage of previous year

Clustering Outcomes

Clustering Outcomes

Explanation of "Delta" (Δ)

^{*} This histogram is for demonstration purposes only

Top 10 Outliers of Cluster 1

SKU Number	Unit Cost	Delta *	Financial Opportunity **
100015737	\$ 18.71	8,177	\$153,006
100040578	\$ 1.80	48,993	\$87,996
PPC1007	\$ 0.82	32,333	\$26,607
100022824	\$ 1.99	10,740	\$21,335
100021400	\$ 1.14	18,676	\$21,300
100020691	\$ 16.56	1,127	\$18,668
100026499	\$ 0.87	19,513	\$16,920
100036589	\$ 1.19	11,912	\$14,164
100038835	\$ 2.70	4,664	\$12,592
100022934	\$ 0.65	18,591	\$12,145

^{*} The difference between the scrap quantity of the outlier SKU and the 95% quantity point of the non-outlier SKUs

^{**} The unit cost amount multiplied by the delta value to get the potential monetary value of decreasing the scrap quantity of that SKU to be within the 95% interval

Investigating Top Outliers: Insights from Cluster 1

SKU = 100022934

SKU Number	100022934	
Year	2022	
Scrap Reason	Expired	
Total Scrap	8415	

Investigating Top Outliers: Insights from Cluster 1

SKU = PPC1007

Year	Quality Issue	Dry Lines	Fibers	NULL	Welding
2018	2	1	1	15	148
2019	0	0	0	7	163
2020	0	0	0	3	132
2021	0	0	0	2	143
2022	0	0	0	2	145

Potential Savings Across Clusters

Cluster	Potential Savings for Top 10 SKUs	1% Savings	5% Savings	15% Savings	25% Savings
1	\$384,732	\$3,847	\$19,237	\$57,710	\$96,183
2	\$293,959	\$2,940	\$14,698	\$44,094	\$73,490
3	\$282,018	\$2,820	\$14,101	\$42,303	\$70,505
4	\$1,269,673	\$12,697	\$63,484	\$190,451	\$317,418
5	\$2,428,416	\$24,284	\$121,421	\$364,262	\$607,104
***		•••	•••	•••	
Total	\$7,777,899	\$77,779	\$388,895	\$1,166,685	\$1,944,475

A Future Tool for Screening

- ❖ A dynamic tool to pinpoint abnormally highly scrapped SKUs
- Will automatically create clusters based on the data being uploaded
- Thermo Fisher can choose settings to cater towards their preferences
- Helps ThermoFisher save time and resources rather than manually clustering

Conclusion

- Although scrap cannot be completely eliminated, there are many opportunities to reduce it
- ♦ Initial strategies to tackle excessive scrap involved a manual approach
- Some approaches fell short due to missing information and changes in a SKU's characteristics over time
- Clustering automatically groups SKUs into similar categories, which allows for more accurate prediction of outliers
- A dynamic screening tool for highly scrapped SKUs can save time and resources for Thermo Fisher
- Addressing the overlooked cost and impact of scrap can save Thermo Fisher millions annually

