

Automating Data Science on Spark:

A Bayesian Approach

Vu Pham, Huan Dao, Christopher Nguyen San Francisco, June 8th 2016

Data Science is So MANUAL!

Agenda

- I. For Hyper-parameter Tuning
- 2. For "Automating" Data Science on Spark
- 3. Experiments

Bayesian Optimization for Hyper-parameter Tuning

What if...

K-means	K
Neural Network	# of layers, dropout, momentum
Random Forest	Feature set, # of trees, max depth
SVM	Regularization term (C)
Gradient Descent	Learning rate, number of iterations

Manual Search

Grid Search

Random Search

Hyper-parameters tuning

Maximize a utility functions over hyper-parameter space:

Hyper-parameter Space Performance on Validation Set

How to intelligently select the next configuration?

(Given the observations in the past)

Bayesian Inference

Bayesian Optimization Explained

- Incorporate a prior over the space of possible objective functions (GP)
- Combine the prior with the likelihood to obtain a posterior over function values given observations
- Select next configuration to evaluate based on the posterior
 - According to an acquisition function

Bayesian Optimization Explained

expensive

multi-modal

noisy

blackbox

Bayesian Optimization for "Automating" Data Science on Spark

Spark

Machines doing part of Data Science

A generic Machine Learning pipeline

ot

Pipeline on DDF and BayesOpt

Client uses Bayesian Optimizer to select the hyper-parameters of the pipeline so that it maximizes the performance on a validation set

Pipeline on DDF and BayesOpt

```
train_ddf = session.get_ddf(...)
valid ddf = session.get ddf(...)
optimizer = SpearmintOptimizer(chooser_name='GPEIperSecChooser',
     max finished jobs=max iters, grid size=5000, ..)
best params, trace = auto model(
      optimizer, train_ddf, 'arrdelay',
      classification=True,
      excluded_columns=['actualelapsedtime', 'arrtime', 'year'],
      validation ddf=val ddf)
```

Experimental Results

Experiment 1: SF Crimes

Dates	Category	Descript	DayOfWeek	PdDistrict	Resolution	Address	х	Y
2015-05-13 23:53:00	WARRANTS	WARRANT ARREST	Wednesday	NORTHERN	ARREST, BOOKED	OAK ST / LAGUNA ST	-122.4258	37.7745
2015-05-13 23:53:00	OTHER OFFENSES	TRAFFICVIOLATION ARREST	Wednesday	NORTHERN	ARREST, BOOKED	OAK ST / LAGUNA ST	-122.4258	37.7745
2015-05-13 23:33:00	OTHER OFFENSES	TRAFFICVIOLATION ARREST	Wednesday	NORTHERN	ARREST, BOOKED	VANNESS AV / GREENWICH ST	-122.4243	37.8004

Hyper-parameter	Туре	Range
Number of hidden layers	INT	1,2,3
Number of hidden units	INT	64, 128, 256
Dropout at the input layer	FLOAT	[0, 0.5]
Dropout at the hidden layers	FLOAT	[0,0.75]
Learning rate	FLOAT	[0.01, 0.1]
L2 Weight decay	FLOAT	[0, 0.01]
Logloss on the validation set		
Running time (hours) ~ 40 iterations		

Hyper-parameter	Туре	Range	Spearmint
Number of hidden layers	INT	1, 2, 3	2
Number of hidden units	INT	64, 128, 256	256
Dropout at the input layer	FLOAT	[0, 0.5]	0.423678
Dropout at the hidden layers	FLOAT	[0,0.75]	0.091693
Learning rate	FLOAT	[0.01, 0.1]	0.025994
L2 Weight decay	FLOAT	[0, 0.01]	0.00238
Logloss on the validation set			2.1502
Running time (hours) ~ 40 iterations			15.8

Experiment 1: SF Crimes dataset

Hyper-parameter	Туре	Range	Spearmint	∑ SIGOPT
Number of hidden layers	INT	1, 2, 3	2	3
Number of hidden units	INT	64, 128, 256	256	256
Dropout at the input layer	FLOAT	[0, 0.5]	0.423678	0.3141
Dropout at the hidden layers	FLOAT	[0,0.75]	0.091693	0.0944
Learning rate	FLOAT	[0.01, 0.1]	0.025994	0.0979
L2 Weight decay	FLOAT	[0, 0.01]	0.00238	0.0039
Logloss on the validation set			2.1502	2.14892
Running time (hours) ~ 40 iterations			15.8	20.1

SF Crimes - Time to results

Spark

Experiment #2: Airlines data

Year	1987-2008	DepDelay	departure delay, in minutes
Month	1-12	Origin	origin IATA airport code
DayofMonth	1-31	Dest	destination IATA airport code
DayOfWeek	I (Monday) - 7 (Sunday)	Distance	in miles
DepTime	actual departure time	Taxiln	taxi in time, in minutes
CRSDepTime	scheduled departure time	TaxiOut	taxi out time in minutes
ArrTime	actual arrival time	Cancelled	was the flight cancelled?
CRSArrTime	scheduled arrival time	CancellationCode	reason for cancellation
UniqueCarrier	unique carrier code	Diverted	I = yes, 0 = no
FlightNum	flight number	CarrierDelay	in minutes
TailNum	plane tail number	WeatherDelay	in minutes
ActualElapsedTime	in minutes	NASDelay	in minutes
CRSElapsedTime	in minutes	SecurityDelay	in minutes
AirTime	in minutes	LateAircraftDelay	in minutes

Experiment #2

Hyperparameter	Туре	Range	BayesOpt
Number of SVD dimensions	INT	[5, 100]	98
Top feature percentage	FLOAT	[0.1, 1]	0.8258
k (# of clusters)	INT	[1, 6]	2
Number of trees (RF)	INT	[50, 500]	327
Max. depth (RF)	INT	[1, 20]	12
Min. instances per node (RF)	INT	[1, 1000]	414
F1-score on validation set			0.8736

- I. Bayesian Optimization for Hyper-parameter Tuning
- 2. Bayesian Optimization for
 - "Automating" Data Science on Spark
- 3. Experiments

- Blogpost: http://goo.gl/PFyBKI
- Open-source: spearmint, hyperopt, SMAC, AutoML
- Commercial: Whetlab, SigOpt, ...

CHECK IT OUT!

- http://goo.gl/PFyBKI
- https://www.arimo.com
- @arimoinc @pentagoniac @phvu

