Lab #1 (Boolean Logic)

HINT: Don't THINK like a human, THINK like a chip! Simply "run" the expression!

Name: Lou Agulav
Section/Time:

Date: **Sep 4 1010**

KEY:

Symbol		+	\overline{n}
Meaning	AND	OR	NOT (n)

Complete the following table:

	х	0	0	1	1	
	У	0	1	0	1	
Function	Expression		Result			
CONSTANT 0	0	0	0	0	D	
x AND y	$x \cdot y$	F	F	F	T	
x AND (NOT y)	$x \cdot \overline{y}$	F	F	T	F	
x	x	F	F	T	T	
(NOT x) AND y	$\overline{x} \cdot y$	F	τ	F	F	
у	у	F	Τ	F	T	
x XOR y	$x \cdot \overline{y} + \overline{x} \cdot y$	F	T	T	F	
x OR y	x + y	F	T	T	Т	
x NOR y	$\overline{x+y}$	T	F	F	F	
Equivalence (x == y)	$x \cdot y + \overline{x} \cdot \overline{y}$					
NOTy	\overline{y}	T	F	T	F	
IF y THEN x	$x + \overline{y}$	F	F	T	T	
NOT x	\overline{x}	T	T	F	F	
IF x THEN y	$\overline{x} + y$	F	F	F	T	
x NAND y	$\overline{x \cdot y}$	τ	Τ	Т	F	
CONSTANT 1	1	1	1	1	1	