Boston Crime Dataset - 1st Draft

```
In [56]: # Importing pandas and numpy libraries
import pandas as pd
import numpy as np

# Read csv file into a pandas dataframe.
crime = pd.read_csv('C:/crime.csv',encoding = 'unicode_escape')

# Using set_option(),changing the default number of rows and columns to be dis played.
pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)

# Taking a look at the first few rows of the dataset.
crime.head()
```

C:\Anaconda\lib\site-packages\IPython\core\interactiveshell.py:2785: DtypeWar
ning: Columns (6) have mixed types. Specify dtype option on import or set low
memory=False.

interactivity=interactivity, compiler=compiler, result=result)

Out[56]:

	INCIDENT_NUMBER	OFFENSE_CODE	OFFENSE_CODE_GROUP	OFFENSE_DESCRI
0	1182080058	2403	Disorderly Conduct	DISTURBING THE P
1	1182080053	3201	Property Lost	PROPERTY - LOST
2	1182080052	2647	Other	THREATS TO DO BO HARM
3	1182080051	413	Aggravated Assault	ASSAULT - AGGRA\ - BATTERY
4	1182080050	3122	Aircraft	AIRCRAFT INCIDEN

Data Cleaning Process:

```
In [58]:
         crime.isnull().sum()
                                     # sum of the missing values in each column
Out[58]: INCIDENT NUMBER
                                       0
          OFFENSE CODE
                                       0
          OFFENSE_CODE_GROUP
                                       0
         OFFENSE DESCRIPTION
                                       0
         DISTRICT
                                    1774
          REPORTING_AREA
                                  326765
          SHOOTING
         OCCURRED_ON_DATE
                                       0
         YEAR
                                       0
         MONTH
                                       0
         DAY_OF_WEEK
                                       0
         HOUR
                                       0
                                      93
         UCR PART
          STREET
                                   10977
          Lat
                                   20632
          Long
                                   20632
          Location
                                       0
          dtype: int64
In [59]:
         # Removing the columns which are insignificant
          for column in crime:
              if(crime[column].count() < 100000):</pre>
```

crime.drop([column], axis = 1, inplace = True)

Out[59]:

crime.head()

	INCIDENT_NUMBER	OFFENSE_CODE	OFFENSE_CODE_GROUP	OFFENSE_DESCRI	
0	1182080058	2403	Disorderly Conduct	DISTURBING THE P	
1	1182080053	3201	Property Lost	PROPERTY - LOST	
2	1182080052	2647	Other	THREATS TO DO BO	
3	1182080051	413	Aggravated Assault	ASSAULT - AGGRAV - BATTERY	
4	1182080050	3122	Aircraft	AIRCRAFT INCIDEN	
4	4				

```
In [60]: crime.isnull().sum()
Out[60]: INCIDENT_NUMBER
                                      0
         OFFENSE_CODE
                                      0
         OFFENSE_CODE_GROUP
                                      0
         OFFENSE DESCRIPTION
                                      0
         DISTRICT
                                  1774
         REPORTING_AREA
                                      0
         OCCURRED_ON_DATE
                                      0
         YEAR
                                      0
         MONTH
                                      0
                                      0
         DAY_OF_WEEK
                                      0
         HOUR
                                     93
         UCR_PART
         STREET
                                 10977
          Lat
                                 20632
                                 20632
          Long
                                      0
          Location
         dtype: int64
In [61]: # Filling the columns with fillna method
          crime.fillna({
             'UCR_PART': 'N/A',
              'DISTRICT': 'N/A',
              'STREET': 'N/A',
              'Lat' : 'N/A',
              'Long' : 'N/A'
```

Out[61]:

}, inplace= True)
crime.head()

	INCIDENT_NUMBER	OFFENSE_CODE	OFFENSE_CODE_GROUP	OFFENSE_DESCRI
0	1182080058	2403	Disorderly Conduct	DISTURBING THE P
1	1182080053	3201	Property Lost	PROPERTY - LOST
2	1182080052	2647	Other	THREATS TO DO BO HARM
3	1182080051	413	Aggravated Assault	ASSAULT - AGGRA\ - BATTERY
4	1182080050	3122	Aircraft	AIRCRAFT INCIDEN

In [62]: # Deleting 'REPORTING_AREA' variable as it is insignificant for the data analy
 sis.
 del crime['REPORTING_AREA']
 crime.head()

Out[62]:

	INCIDENT_NUMBER	OFFENSE_CODE	OFFENSE_CODE_GROUP	OFFENSE_DESCRI
0	1182080058	2403	Disorderly Conduct	DISTURBING THE P
1	1182080053	3201	Property Lost	PROPERTY - LOST
2	1182080052	2647	Other	THREATS TO DO BO HARM
3	1182080051	413	Aggravated Assault	ASSAULT - AGGRA\ - BATTERY
4	1182080050	3122	Aircraft	AIRCRAFT INCIDEN

In [63]: crime.isnull().sum() Out[63]: INCIDENT_NUMBER 0 OFFENSE_CODE 0 OFFENSE CODE GROUP 0 OFFENSE_DESCRIPTION 0 DISTRICT 0 OCCURRED_ON_DATE 0 YEAR 0 MONTH 0 DAY_OF_WEEK 0 HOUR 0 UCR_PART 0 **STREET** Lat 0 Long Location 0

The above output shows that all the Null values have been taken care of.

dtype: int64

In [64]: # Specifying 'INCIDENT_NUMBER' column to use as index. crime.set_index('INCIDENT_NUMBER', inplace = True) crime.head()

Out[64]:

	OFFENSE_CODE	OFFENSE_CODE_GROUP	OFFENSE_DESCRIPTI
INCIDENT_NUMBER			
1182080058	2403	Disorderly Conduct	DISTURBING THE PEA
1182080053	3201	Property Lost	PROPERTY - LOST
1182080052	2647	Other	THREATS TO DO BOD HARM
1182080051	413	Aggravated Assault	ASSAULT - AGGRAVAT - BATTERY
l182080050	3122	Aircraft	AIRCRAFT INCIDENTS

In [65]: # Renaming few column names crime.rename(columns={'INCIDENT_NUMBER': 'Incident_Number', 'OFFENSE_CODE': 'O ffense_Code', 'OFFENSE_CODE_GROUP':'Offense_Code_Group', 'OFFENSE_DESCRIPTION' : 'Offense_Description', 'DISTRICT': 'District', 'OCCURRED_ON_DATE':'Occured_o n_Date', 'YEAR': 'Year', 'MONTH':'Month', 'DAY_OF_WEEK':'Day_of_Week', 'HOUR': 'Hour', 'STREET':'Street'}, inplace=True) crime.head()

Out[65]:

	Offense_Code	Offense_Code_Group	Offense_Description	District
INCIDENT_NUMBER				
1182080058	2403	Disorderly Conduct	DISTURBING THE PEACE	E18
1182080053	3201	Property Lost	PROPERTY - LOST	D14
1182080052	2647	Other	THREATS TO DO BODILY HARM	B2
1182080051	413	Aggravated Assault	ASSAULT - AGGRAVATED - BATTERY	A1
1182080050	3122	Aircraft	AIRCRAFT INCIDENTS	A7

In [66]: # Checking for Duplicate Values

crime.duplicated().sum()

Out[66]: 968

In [67]: # Removing all the Duplicate Values from the dataset.

crime.drop_duplicates(keep=False, inplace=True)

crime.head()

Out[67]:

	Offense_Code	Offense_Code_Group	Offense_Description	District
INCIDENT_NUMBER				
I182080058	2403	Disorderly Conduct	DISTURBING THE PEACE	E18
I182080053	3201	Property Lost	PROPERTY - LOST	D14
I182080052	2647	Other	THREATS TO DO BODILY HARM	B2
I182080051	413	Aggravated Assault	ASSAULT - AGGRAVATED - BATTERY	A1
I182080050	3122	Aircraft	AIRCRAFT INCIDENTS	A7
1				•

Now that the Data is cleaned, We can perform Data Visualization process to answer all the important questions.

In [68]: # Importing datetime, matplotlib and seaborn libraries.

import os

import csv

from datetime import datetime

import matplotlib as mpl

import matplotlib.pyplot as plt

import matplotlib.patches as mpatches

from matplotlib import cm

import seaborn as sns

```
In [69]: #Functions for visulization.
         def create list number crime(name column, list unique):
             # list unique = df[name column].unique()
              i = 0
             list number = list()
             while i < len(list_unique):</pre>
                  list number.append(len(crime.loc[crime[name column] == list unique[i
          ]]))
                  i += 1
             return list_unique, list_number
In [70]: | # pie_plot def function
         def pie plot(list number, list unique):
              plt.figure(figsize=(20,10))
              plt.pie(list_unique,
                  labels=list number,
                  autopct='%1.1f%%',
                  shadow=True,
                  startangle=140)
              plt.axis('equal')
              plt.show()
              return 0
In [71]: # bar code
         def bar chart(list number, list unique):
             objects = list_unique
             y pos = np.arange(len(objects))
              performance = list number
              plt.figure(figsize=(20,10))
              plt.bar(y pos, performance, align='center', alpha=0.5)
             plt.xticks(y_pos, objects)
              plt.ylabel('Number')
             plt.show()
```

Q. How the Crime has Changed Over Years?

A. Total number of crime for each year using Pie Graph

return 0

In [72]: list_unique_year, list_number_year = create_list_number_crime('Year',crime['Ye
ar'].unique())
pie_plot(list_unique_year, list_number_year)

Out[72]: 0

Total number of crime for each year using Bar Plot.

Out[73]: 0

After analyzing the Pie and Bar charts of crime committed each year, we can conclude that crime has occured most in the year 2017. But in the year 2018, crimes in Boston has decreased by a good margin which indicates a positive sign.

B. Total number of Crime: Month Wise

Out[75]: 0

After observing the above bar plot of crimes occurring month wise, we can conclude that the most number of crimes have occurred in the month of 'August'.

C. Total number of crime for each day of week

In [76]: #5.4. Total number crime for each day of week

day_of_week = ('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturd
ay', 'Sunday')

list_unique_day, list_number_day = create_list_number_crime('Day_of_Week',day_
of_week)

#pie_plot(list_unique_day,list_number_day)
bar_chart(list_number_day,list_unique_day)

Out[76]: 0

The above bar plot shows that crimes occur most on Friday.

D. Total number of crime for each hour

In [78]: bar_chart(list_number_hour,list_unique_hour)

We can clearly observe that most of the crimes have occured in the 17th hour of

the day followed by 18th which means Evening Time is clearly a bit unsafe.

Q. Which are the Most Safe & Unsafe Streets in Boston Between the period of 2015 - 2018 ?

E. Bar plot of crimes committed on the streets of Boston

a. in the year 2015:

In [79]: plt.figure(figsize=(20,10))
 crime['Street'].loc[crime['Year']==2015].value_counts()[:20].plot.bar()
 plt.show()

Bar plot of crimes committed on the streets of Boston

b. in the year 2016:

In [80]: plt.figure(figsize=(20,10))
 crime['Street'].loc[crime['Year']==2016].value_counts()[1:20].plot.bar()
 plt.show()

Bar plot of crimes committed on the streets of Boston

c. in the year 2017:

In [81]: plt.figure(figsize=(20,10))
 crime['Street'].loc[crime['Year']==2017].value_counts()[:20].plot.bar()
 plt.show()

Bar plot of crimes committed on the streets of Boston d. in the year 2018:

In [82]: plt.figure(figsize=(20,10))
 crime['Street'].loc[crime['Year']==2018].value_counts()[:20].plot.bar()
 plt.show()

After observing the bar plot of crimes committed on the streets of Boston in all the four years (2015-2018), it

can be observed that 'Washington St' is the street where maximum number of crimes has occured every year

and the Safest streest in Boston are "ADAMS ST", "NEWBURY ST", "CAMBRIDGE ST".

F. Bar plot of crimes occuring at Day or Night:

```
In [83]: # Creating New Variable: Day
    crime['Day'] = 0

In [84]: # Creating New Variable: Night
    crime['Night'] = 0
```

```
In [85]: # Day or night for 1st month
         crime['Day'].loc[(crime['Month'] == 1) & (crime['Hour'] >= 6) & (crime['Hour']
          <= 18)] = 1
         # Day or night for 2nd month
         crime['Day'].loc[(crime['Month'] == 2) & (crime['Hour'] >= 6) & (crime['Hour']
          <= 18)] = 1
         # Day or night for 3rd month
         crime['Day'].loc[(crime['Month'] == 3) & (crime['Hour'] >= 6) & (crime['Hour']
          <= 18)] = 1
         # Day or night for 4th month
         crime['Day'].loc[(crime['Month'] == 4) & (crime['Hour'] >= 6) & (crime['Hour']
          <= 18)] = 1
         # Day or night for 5th month
         crime['Day'].loc[(crime['Month'] == 5) & (crime['Hour'] >= 6) & (crime['Hour']
          <= 18)] = 1
         # Day or night for 6th month
         crime['Day'].loc[(crime['Month'] == 6) & (crime['Hour'] >= 6) & (crime['Hour']
          <= 18)] = 1
         # Day or night for 7th month
         crime['Day'].loc[(crime['Month'] == 7) & (crime['Hour'] >= 6) & (crime['Hour']
          <= 18)] = 1
         # Day or night for 8th month
         crime['Day'].loc[(crime['Month'] == 8) & (crime['Hour'] >= 6) & (crime['Hour']
          <= 18)] = 1
         # Day or night for 9th month
         crime['Day'].loc[(crime['Month'] == 9) & (crime['Hour'] >= 6) & (crime['Hour']
          <= 18)] = 1
         # Day or night for 10th month
         crime['Day'].loc[(crime['Month'] == 10) & (crime['Hour'] >= 6) & (crime['Hour']
         ] <= 18)] = 1
         # Day or night for 11th month
         crime['Day'].loc[(crime['Month'] == 11) & (crime['Hour'] >= 6) & (crime['Hour'
         ] <= 18)] = 1
         # Day or night for 12th month
         crime['Day'].loc[(crime['Month'] == 12) & (crime['Hour'] >= 6) & (crime['Hour'
         ] <= 18)] = 1
         C:\Anaconda\lib\site-packages\pandas\core\indexing.py:189: SettingWithCopyWar
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/st
         able/indexing.html#indexing-view-versus-copy
           self._setitem_with_indexer(indexer, value)
```

```
In [86]: crime['Night'].loc[crime['Day']==0]=1
```

C:\Anaconda\lib\site-packages\pandas\core\indexing.py:189: SettingWithCopyWar
ning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/st able/indexing.html#indexing-view-versus-copy self._setitem_with_indexer(indexer, value)

```
In [87]: plt.figure(figsize=(16,8))
    crime['Night'].value_counts().plot.bar()
    plt.show()
```


In the above Bar Plot, '0': 'Night' and '1': represents 'Day'. We can interpret that majority of the Crimes in Boston occur at night.

Modeling of Dataset

Multi classification

```
In [ ]: Y - OFFENSE_CODE_GROUP

X - 'DISTRICT','MONTH','DAY_OF_WEEK', 'HOUR','Lat','Long', 'OFFENSE_CODE_GROU
P','Day','Night'
```

file:///C:/IDS%20%20Project.html 17/21

```
In [88]: crime['Offense Code Group'].value counts().head(15)
Out[88]: Motor Vehicle Accident Response
                                              38106
         Larceny
                                              26552
         Medical Assistance
                                              24099
         Investigate Person
                                              19114
         Other
                                              18542
         Drug Violation
                                              16813
         Simple Assault
                                              16239
         Vandalism
                                              15692
         Verbal Disputes
                                              13478
         Towed
                                              11591
         Investigate Property
                                              11331
         Larceny From Motor Vehicle
                                              11073
                                              10067
         Property Lost
         Warrant Arrests
                                               8408
                                               8000
         Aggravated Assault
         Name: Offense_Code_Group, dtype: int64
In [89]: list_offense_code_group = ('Motor Vehicle Accident Response',
                                      'Larceny',
                                      'Medical Assistance',
                                      'Investigate Person',
                                      'Other',
                                      'Drug Violation',
                                      'Simple Assault',
                                      'Vandalism',
                                      'Verbal Disputes',
                                      'Towed',
                                      'Investigate Property',
                                      'Larceny From Motor Vehicle'
                                      'Property Lost'
                                      'Warrant Arrests'
                                      'Aggravated Assault'
                                     )
In [90]:
         crime model = pd.DataFrame()
In [91]: i = 0
         while i < len(list offense code group):
              crime model = crime model.append(crime.loc[crime['Offense Code Group'] ==
          list offense code group[i]])
              i+=1
In [92]: list_column = ['District','Month','Day_of_Week',
                          'Hour', 'Lat', 'Long', 'Offense Code Group', 'Day', 'Night']
         crime model = crime model[list column]
In [93]:
```

```
In [94]: # DISTRICT
         crime model['District'] = crime model['District'].map({
             'B3':1,
             'E18':2,
             'B2':3,
             'E5':4,
             'C6':5,
             'D14':6,
             'E13':7,
             'C11':8,
             'D4':9,
             'A7':10,
             'A1':11,
             'A15':12
         })
         crime model['District'].unique()
Out[94]: array([nan, 6., 5., 8., 3., 2., 11., 10., 1., 7., 9., 4., 12.])
In [95]: # MONTH
         crime_model['Month'].unique()
Out[95]: array([10, 9, 8, 5, 7, 6, 3, 4, 11, 12, 1, 2], dtype=int64)
In [96]: # DAY OF WEEK
         crime model['Day of Week'] = crime model['Day of Week'].map({
             'Tuesday':2,
             'Saturday':6,
             'Monday':1,
             'Sunday':7,
             'Thursday':4,
             'Wednesday':3,
             'Friday':5
         })
         crime model['Day of Week'].unique()
Out[96]: array([3, 2, 1, 7, 4, 5, 6], dtype=int64)
In [97]: # HOUR
         crime model['Hour'].unique()
Out[97]: array([20, 19, 15, 16, 14, 9, 17, 11, 22, 8, 7, 0, 23, 21, 10, 18, 12,
                 2, 6, 13, 5, 4, 3, 1], dtype=int64)
```

```
In [98]: # Lat, Long
crime_model[['Lat', 'Long']].head()
```

Out[98]:

Lat	Long
42.3207	-71.0568
42.3443	-71.1578
42.316	-71.0904
42.33	-71.0385
42.3109	-71.0577
	42.3207 42.3443 42.316 42.33

```
In [99]:
          crime model.fillna(0, inplace = True)
In [100]: x = crime model[['District','Month','Day of Week','Hour','Lat','Long','Day','N
           ight']]
In [101]: y = crime_model['Offense_Code_Group']
In [102]: y.unique()
Out[102]: array(['Motor Vehicle Accident Response', 'Larceny', 'Medical Assistance',
                  'Investigate Person', 'Other', 'Drug Violation', 'Simple Assault',
                  'Vandalism', 'Verbal Disputes', 'Towed', 'Investigate Property'],
                dtype=object)
In [103]: y = y.map({
               'Motor Vehicle Accident Response':1,
               'Larceny':2,
               'Medical Assistance':3,
               'Investigate Person':4,
               'Other':5,
               'Drug Violation':6,
               'Simple Assault':7,
               'Vandalism':8,
               'Verbal Disputes':9,
               'Towed':10,
               'Investigate Property':11,
               'Larceny From Motor Vehicle':12
           })
```

Split data into Training set and Test set for further Model Prediction.

(190401, 8) (190401, (21156, 8) (21156,)