Machine Learing

Matteo Secco

February 27, 2021

Contents

1 Supervised Learning

input x also called features or attributes

 ${\bf output} \ {\bf t} \quad {\bf also} \ {\bf called} \ {\bf targets} \ {\bf or} \ {\bf labels}$

Goal find a good approximation for $f: x \to t$

1.1 Tasks

Classification t is discrete

Regression t is continuous

Probability estimation t is a probability

1.2 When to use supervised learning?

- Human cannot perform the task
- Human can perform the task but cannot explain how
- Task changes over time
- Task is user-specific

1.3 Steps

To approximate f over the dataset \mathcal{D}

- 1. Define a loss function \mathcal{L}
- 2. Choose the hypothesis space \mathcal{H}
- 3. find $h \in \mathcal{H}$ that minimizes \mathcal{L} over \mathcal{D}

1.4 Representation, Evaluation, Optimization

Examples of representation

- Linear models
- Instance-based
- Decision trees
- Set of rules
- Graphical models
- Neural networks

- Gaussian Processes
- Support vector machines
- Model ensembles

Examples of evaluation

- Accuracy
- Precision and recall
- Squared Error
- Likelihood
- Posterior probability
- Cost/Utility
- Margin
- Entropy
- KL divergence

Examples of optimization

- Combinatorial optimization
 - e.g.: Greedy search
- Convex optimization
 - e.g.: Gradient descent
- Constrained optimization
 - e.g.: Linear programming

1.5 Supervised learning taxonomy

- Parametric vs Nonparametric
 - Parametric: fixed and finite number of parameters
 - Nonparametric: the number of parameters depends on thetraining set
- Frequentist vs Bayesian
 - Frequentist: use probabilities to model the sampling process
 - Bayesian: use probability to model uncertainty about the estimate

- Empirical Risk Minimization vs Structural Risk Minimization
 - Empirical Risk: Error over the training set
 - Structural Risk: Balance training error with model complexity
- Direct vs Generative vs Discriminative
 - Generative: learns the joint probability distribution p(x,t)
 - Discriminative: learns the conditional probability distribution p(t|x)

1.6 Learning approaches

Direct approach Learn directly f from D

Discriminative approach

- Model p(t|x)
- Marginalize to find $E[t|x] = \int t \cdot p(t|x) dt$

Generative approach

- Model p(x,t)
- Infer p(t|x) (Bayes rule)
- Marginalize to find $E[t|x] = \int t \cdot p(t|x) dt$