Aula Prática 8

ASA 2021/2022

Q1 (T1 06/07 II.1) Considere o grafo da figura.

Indique os valores de d e π para cada vértice quando faltam extrair dois nós da fila de prioridade na execução do algoritmo de Dijkstra a partir do vértice c.

Q2 (T1 08/09 II.3) Considere o grafo da figura.

	$V_{\mathbf{t}}$	V.	V,	Vy	V=	Ve
d	0	3	z	81	6	9
兀	pit	V,	٧ţ	1/4 V5	٧,	VIS
Q:	1	1	3	4 5	6	
	8			6		
	七日		6			
Q:	5 4	6				
Q: 4	16					

- a. Indique os valores de d e π para cada vértice imediatamente após a aplicação do procedimento RELAX sobre todos os arcos com origem no vértice v_5 , durante a execução algoritmo de Dijkstra a partir do vértice v_1 .
- b. Indique os valores de *d* e π para cada vértice imediatamente após serem processados 5 arcos durante a execução do algoritmo para cáteulo de caminhos mais curtos de origem única em grafos dirigidos acíclicos (DAGs) a partir do vértice *v*₁. Deve considerar a ordenação topológica mais pequena por ordem lexicográfica.

1

	V.	V.	V,	٧,	Vs	V ₆
d	0	3	ı	8	6	
n	HIL	٧,	V,	Ve	٧,	

Q3 (R1 08/09 II.3) Considere a execução do algoritmo de Johnson, sobre o grafo dirigido e pesado da figura abaixo. Indique o valor dos pesos dos arcos, após o procedimento de repesa-

Q4 (R1 06/07 II.1) Considere o grafo da figura.

Indique os valores de d e π para todos os vértices após duas iteraçõess do ciclo principal do algoritmo de Bellman-Ford. Considere como fonte o vértice b e que uma ordem lexicográfica para o tratamento dos arcos (ou seja, ordem alfabética dos nós de partida e, dentre estes, ordem alfabética dos nós de chegada).

Q5 (CLRS Ex. 25.3-1) Use Johnson's algorithm to find the shortest paths between all pairs of vertices in the graph. Show the values of h and \hat{w} computed by the algorithm.

Q6 (**R1 08/09 II.2**) Considere os algoritmos para o cálculo de caminhos mais curtos. Indique se cada uma das seguintes afirmações é verdadeira (V) ou falsa (F).

- a. O algoritmo de Bellman-Ford permite detectar ciclos negativos.
- b. Se a relaxação dos arcos de um grafo dirigido e acíclico for efectuada de acordo com a ordenação topológica dos respectivos vértices, é possível determinar os caminhos mais curtos de fonte única em tempo $\Theta(V+E)$.
- c. No algoritmo de Dijkstra, quando um vértice u é extraído da fila de prioridade, d[u] e $\pi[u]$ já têm o respectivo valor final, mesmo em grafos contendo arcos com peso negativo.
- d. O algoritmo de Dijkstra produz os valores finais correctos, mesmo que o ciclo principal seja executado apenas |V|-2 vezes.
- e. Se num grafo existir mais do que um componente fortemente ligado (SCC), têm obrigatoriamente que existir dois vértices u e v, tal que $\delta(u,v) = \infty$.
- f. Os caminhos mais curtos obedecem sempre à desigualdade triangular.
- g. Em grafos em que os pesos dos arcos sejam todos diferentes e inteiros positivos, existe apenas um caminho mais curto entre qualquer par de vértices.
- h. O tempo de execução do algoritmo de Bellman-Ford é $O(VE^2)$.

O(VE) & O(VE2)