Задание на вторую неделю.

№1

1) Рефлексивность: $A \leq_p A$, т. к. если взять f(x) = x, то условие сводимости очевидно выполняется.

Транзитивность: Пусть $f_1(x)$ функция приведения от A к B, а $f_2(x)$ функция приведения от B к C. Тогда из определения сводимости:

$$x \in A \Leftrightarrow f_1(x) \in B \Leftrightarrow f_2(f_1(x)) \in C$$
.

Значит композиция этих функций $f_2\circ f_1$ сведет полиномиально(т. к. f_2 и f_1 вычисляются за полиномиальное время) A к $C. \Rightarrow A \leq_p C$, ч. т. д. .

- 2) Приведем алгоритм проверки принадлежности x к языку L:
 - Вычислить f(x). Полиномиальная сложность.
 - Проверить принадлежность f(x) к языку В. Полиномиальная сложность, т. к. $B \in P$.
 - Из определения сводимости, если оказалось, что $f(x) \in B$, то $x \in A$, иначе x не принадлежит A.

Таким образом, алгоритм имеет полиномиальную сложность, $\Rightarrow A \in P$.

3) Пусть $f_1(x)$ функция приведения от A к B, вычисляемая за полиномиальное время. Т. к. $B \in \mathsf{NP}$, то существует алгоритм V с полиномиальным временем работы, такой что $x \in B \Leftrightarrow \exists s : V(x,s) = 1$. Введем новый алгоритм верификации $V_1 \colon V_1(x,s) = V(f(x),s)$. Тогда из определений сводимости и NP языка:

$$x \in A \Leftrightarrow f(x) \in B \Leftrightarrow \exists s : V(f(x), s) = 1 \Leftrightarrow \exists s : V_1(x, s) = 1 \Leftrightarrow A \in \mathsf{NP},$$
 ч. т. д. .

N_{2}

1) Заметим, что язык является пустым, т. к. если в графе есть хотя бы один треугольник, то он не является двудольным (три смежные

вершины невозможно раскрасить правильно в два цвета). Значит, язык полиномиален, т. к. проверка принадлежности к нему занимает O(1) (для любого x ответ: нет).

- 2) Воспользуемся алгоритмом из курсов алгоритмов для проверки графа на связность с помощью обхода в глубину (во время обхода считаем количество посещенных вершин, если после завершения алгоритма оно совпало с количеством вершин, то граф связен, иначе не связен), который работает за полиномиальное от длины входа время. После еще раз запустим поиск в глубину для выявления циклов (во время обхода будем при входе в вершину окрашивать ее в красный, если в какой-то момент придем в уже красную вершину, то граф содержит цикл, если же алгоритм завершится, и таких вершин не найдется, то в графе нет циклов). По результатам двух обходов можно определить принадлежность языку. ⇒ язык принадлежит Р.
- 3) Длина входа n^2 . В матрице порядка n можно выбрать 2018^2 различных квадратных подматриц размером n-2018 (2018 способов выбрать, сколько оступить слева и справа по горизонтали, чтобы суммарный отступ был на 2018, и аналогично по вертикале). Для каждой такой подматрцы сравним все ее элементы с единицами: это займет $O((n-2018)^2) = O(n^2)$. Таким образом, за $2018^2 \cdot O(n^2)$, полиномиальное от длины входа время, можно проверить, есть ли в матрице единичная подматрица размером n-2018, а это определяет принадлежность матрицы языку. \Rightarrow Данный язык принадлежит классу P.

№4

2)Предположим, что $L \in \mathsf{NP}$. Тогда существует алгоритм V с полиномиальным временем работы, такой что $x \in L \Leftrightarrow \exists s : V(x,s) = 1$. Пусть $x \in L^*$, тогда x можно разбить на некоторый упорядоченный набор c слов из L. Обратно, если для x существует такое разбиение c, то $x \in L^*$.

Рассмотрим алгоритм $V_1(x,S)$, принимающий на вход слово x и аргумент S, состоящий из упорядоченного набора слов c из языка L, разбивающего слово x, и сертификатов s(c), соответствующих данным словам(т.к. эти слова принадлежат L, то такие сертификаты обязательно найдутся). Работа алгоритма заключается в том, чтобы

проверить, что упорядоченный набор слов c, состоит из слов языка L(это он делает с помощью соответстующих сертификатов s(c) и верификации V за полиномиальное время) и что он является разбиением слова x(сложность этого O(|x|)).

Из сказанного вначале следует, что если x не принадлежит L^* , то для него нельзя подобрать такое c, а значит и S, такое чтобы $V_1(x,S)=1$. А если $x\in L^*$, то такое c, а значит и S подобрать можно. При этом длина c будет полиномиальна(даже равна ей) от длины входа, соответствующие им сертификаты будут также полиномиальной длины(из определения $L\in NP$), а число сертификатов равно числу слов в разбиении, т. е. не более длины входа. Таким образом, длина подобранного S, равная c+s(c), полиномиальна от длины входа. Значит $x\in L^*\Leftrightarrow \exists S: V_1(x,S)=1. \Rightarrow L^*\in NP$. А сертификатом принадлежности служит описанный выше набор величин S.

1) Пусть $L \in P$. Предположим, что для слова длиной $\mathfrak n$ мы умеем проверять принодлежность языку L^* полиномиальным алгоритмом. Построим алгоритм для слова $\mathfrak x$ длиной $\mathfrak n+1$:

Слово лежит в $L^* \iff$ у него есть такой префикс, что он лежит в языке L, а оставшаяся часть слова(без этого префикса, дальше будем называть ее окончанием) лежит в L^* (усл. (1)).

Будем перебирать пары слов: (префикс, соответствующее окончание), по длине (начиная с префикса длины 1 до |x|), проверяя у каждой такой пары принадлежит ли префикс языку L(это полиномиальное действие) и принадлежит ли окончание языку L^* (тоже полином по предположению). Перебрав всевозможные пары(т. е. |x| штук), проверим выполнимость для данного слова усл. (1), а оно определяет принадлежность слова языку. Таким образом, мы построили полиномиальный алгоритм проверки принадлежности языку L^* для слова длины n+1.

Заметим, что для слова длины 1 мы уже умеем строить искомый полиномиальный алгоритм, т. к. однобуквенное слово принадлежит $L^* \Longleftrightarrow$ это слово принадлежит L.

 \Rightarrow Для слова любой длины существует полиномиальный алгоритм проверки принадлежности к L*. \Rightarrow L* \in P, ч. т. д. .

№5

Пусть дана система линейных уравнений. Введем алгоритм верификации R(x,s), который принимает на вход систему линейных уравнений x и число s, и проверяет, что x несовместна. Это можно сделать по модифицированному алгоритму Гаусса из задачи три за полиномиальное время. Т.е. R(x,s) не зависит от s. Тогда $x \in L \Leftrightarrow \exists s$ (например, можно всегда брать сертификат s=0): $R(x,s)=1. \Rightarrow E \in NP$.

F

№6

- 1) Возьмем в качестве сертификата делитель $1 < d \le M$, его длина $\le \log N$, а алгоритм верификации V((N,M),s) будет проверять, что $d \le M$ (сложность этого, побитовое сравнение, $O(\log M)$) и что N делится на d(сложность $O(n^2)$). Очевидно, что $x \in L_f \Leftrightarrow \exists s : V((N,M),s) = 1$. $\Rightarrow L_f \in NP$.
- 2) $L_{\text{nef}} = \overline{L_f} = \{(N,M) \in \mathbb{Z}^2 \mid 1 < M < N$ и $(N,d) = 1 \ \forall d: 1 < d \leq M\} \cup \overline{L_0}$, где $L_0 = \{(N,M) \in \mathbb{Z}^2 \mid 1 < M < N\}$. Пусть алгорити V(x,s) принимает на вход x: пару чисел (N,M) = x, и набор чисел $s = n_1, n_2, \ldots, n_k$. При этом V(x,s) = 1, тогда и только тогда, когда x лежит в $\overline{L_0}$ ИЛИ выполняются одновременно следующие условия (1) (3):
 - 1. $N = n_1 \cdot n_2 \dots \cdot n_k$
 - 2. $\forall i: 1 \leq i \leq k \to n_i \in Pr$, где Pr язык простых чисел.
 - $3. \ \forall i: 1 \leq i \leq k \rightarrow n_i > M.$

Оценим сложность работы алгоритма. Проверка принадлежности х языку $\overline{L_0}$ занимает $O(\log N + \log M)$. Для проверки условия (1) необходимо перемножить числа $n_1, \dots n_k$. Чисел больших единицы не более $\log_2 N$, а значит операцию умножения, сложность которой $O(\log^2 N)$, надо повторить не более $\log N$. Т.е. сложность проверки (1): $O(\log^c N)$. Для проверки условия (2) достаточно полиномиального алгоритма: доказано, что язык простых чисел принадлежит классу P, а значит необходимо провести не более $\log_2 N$ полиномиальных проверок на простоту. Условие (3) проверяется за $O(\log N)$ сравнений, т. е. за

 $O(\log^2 N)$. Таким образом, сложность алгоритма V(x,s) полиномиальная.

Если $x\in L_{nef}/\overline{L_0}$, то за s можно взять разложение N на простые множители и V(x,s)=V((M,N),s) будет равно 1, т. к. условия (1)-(2) очевидно выполняются, а если предполить, что условие 3 не пыполнено для некоторого n_i , то N делится на $1\le n_i\le M$, а значит $x\in L_f=\overline{L_{nef}}$, а это невозможно. При этом длина $s=O(\log N\log N)$, полиномиальна. Если $x\in\overline{L_0}$, то можно взять любое s и получим, V(x,s)=1.

Если $x \in L_f$, то у N есть делитель d:1 < d < M. Предположим, что для такого x нашлось $s:V(x,s)=1, s=n_1, n_2, \ldots, n_k$. Тогда, т. к. $d \leq M < n_i \forall i$ и n_i простые, то $(n_i,d)=1 \forall i$. Но тогда $(N,d)=(n_1\ldots n_k,d)=1$. Противоречие. \Rightarrow такого s не существует. $\Rightarrow x \in L_{nef} \Leftrightarrow \exists s:V((N,M),s)=1. \Rightarrow L_{nef} \in NP$.

Из пунктов 1) и 2) получаем, что $L_f \in Np \cap Co - NP$.

Nº8

Пусть n длина регулярного выражения, будем считать ее длину входа n+|w|. Из курса ТРЯП, мы знаем операции с автоматами, которые эквивалентны регульным операциям (как построить автомат для сложения, звезды Клина, и переумножения языков автоматы которых уже построены). Т. е. можно построить автомат по регулярному выражению и это займет полиномиальное время. Так же можно рекурсивно показать, что количество вершин в построенном так автомате не более 2n.

Тогда пусть алгоритм преобразует данное рег. выражение в автомат с K=O(2n) вершинами. Теперь задача сводится к проверки, допускается ли автоматом данное слово w. Вудем поочередно считывать символы слова, и записывать для каждого i-го символа: сначало в "состояния этого символа": S(i), все возможные состояния, в которые можно перейти по i-му символу из состояний S(i-1), а затем добавим еще состояния из e-замыкания уже добавленных вершин. При i=0 S(i) содержит состояния из e-замыкания множества начальных состояний. Сложность такой операции для каждого символа равна произведению числа состояний в S(i-1) (их не больше K) и нахождением для фиксированного состояния, куда из него можно перейти

по данному символу(или e), это делается проверкой существования такого перехода (за O(1)) для каждого из оставшихся K-1 состояния. То есть для каждого символа слова сложность $O(n^2)$. Общая сложность: $O(n^2 \cdot |w|)$. $w \in L$, если в состояние S(|w|) будет хотя бы одно финальное состояние, иначе w не лежит в L. Проверка этого займет O(n).

Таким образом, данный алгоритм решает задачу за $O(n^2 \cdot |w|)$, где n длина регулярного выражения.

№7

1) Покажем сводимость $\Gamma\Pi(GP)$ к $\Gamma L (GC)$. Пусть f(x), принимающая на вход граф G, выдает на выходе граф G_1 , полученный из графа G добавлением новой вершины V_N , соединенной со всеми остальными вершинами графа.

Если $G \in GP$, то очевидно, что $f(G) \in GC$: рассмотрим в графе G_1 путь, который является гамильтоновым в G, соединим начальную и конечную вершину пути с V_N . Получим, гамильтонов цикл.

Если $G_1=f(G)\in GC$, то в ней есть вершина V_N , которая соединена ребрами со всеми остальными. Запустим гамильтонов цикл из этой вершин(если таких вершин несколько, то можно проверить для каждой), обозначим за V_1 вершину, в которую цикл приходит из V_s и за V_f , из которой он возвращается в V_N . Заметим, что часть цикла между посещением вершин V_s и V_f является гамильтоновым путем в графе $G. \Rightarrow G \in GPf(G) \in GC$. Т. е. ГП сводится к ГП. Функция полиномиальна, сложность равна сложности добавления в матрицу смежности новой строки.

2) Сводимость ГЦ к ГП. Пуст $f(G) = G_1$, где G_1 полученный из G следующим образом:

Добавим в G новую вершину V_N . Возьмем произвольную вершину G V_0 и соединим вершину V_N новыми ребрами со всеми вершинами, которые соединены ребром с V_0 . Также соединим V_N и V_0 между собой ребром. Добавим вершины V_s и V_f и соединим их ребрами с V_0 и V_N соответственно.

Если $G \in GC$, то покажем, что $f(G) = G_1$ имеет гамильтонов путь: Из V_s в V_0 , далее так как G_1 включает в себя все элементы G из V_0 , а $G \in GC$, то можно обойти все вершины графа, кроме V_N, V_f, V_s , по одному разу и вернуться в V_0 . Сделаем это. Далее из V_0 в V_N , а из V_N в V_f . Таким образом, гамильтонов путь явно найден. $\Rightarrow G \in GC \Rightarrow f(G) \in GP$.

Если $f(G) \in GP$, то покажем, что $G \in GC$:

Т. к. в графе $G_1=f(G)$ вершины V_f и V_s имеют нечетную степень, то эти вершины должны быть концами гамильтонова пути. Для определенности V_s начало, V_f конец. Однозначно определяется первое и последние ребро этого пути V_fV_N и V_sV_0 . Если отбросить эти ребра и вершины V_f, V_N , то в оставшемся графе будет существовать гамильтонов путь с началов в V_0 и конце V_f . Т. к. каждую(начальная и конечная уже не совпадают) вершину можно пройти только один раз, то ребра V_nV_0 в данном пути не будет. Уберем это ребро, рассматриваемый путь от этого не изменится. Т. к. V_N и V_0 абсолютно симметричны, то их можно совместить. Тогда рассматриваемый гамильтонов путь превратится в гамильтонов цикл. Заметим, что преобразованный граф это $f^{-1}(G_1) = G$, т.к. все приведенные преобразования были обратными преобразованиями функции $f(x_f)$ Значит, $G \in GC$.

 \Rightarrow G \in GCf(G) \in GP. Т. е. ГЦ сводится полиномиально(добавление трех новых вершин и соответствующих ребер имеет полиномиальную сложность: добавление трех строк в матрицу смежности) к $\Gamma\Pi$.