Grafowe Sieci Neuronowe

Michał Sumiński, Jan Płoszaj

1. Model klasyfikacji

Do trenowania modelu wykorzystana została funkcja CrossEntropyLoss, a optymalizator to Adam z parametrem learning_rate = 0.001. Aby zapobiegać przeuczeniu zastosowano metodę early stoppingu z parametrem patience = 10.

Badając warstwy TransfomerConv oraz GATConv z rozmiarami osadzeń 1 i 2 zauważyliśmy, że TransformerConv dawał wyraźnie lepsze wyniki w każdym przypadku, dlatego do poszukiwania optymalnego modelu również użyliśmy warstw grafowych TransformerConv.

Przetestowane kombinację modelu:

Liczba warstw grafowych	Rozmiar osadzenia	Predyktor	Accuracy
4	5	Nieliniowy	78%
		(hidden_size = 4)	
4	10	Nieliniowy	77%
		(hidden_size = 4)	
4	25	Nieliniowy	51%
		(hidden_size = 4)	
4	50	Nieliniowy	51%
		(hidden_size = 4)	
4	5	Liniowy	77%
4	10	Liniowy	76%
3	5	Nieliniowy	77%
		(hidden_size = 4)	
5	5	Nieliniowy	51%
		(hidden_size = 4)	

Zatem optymalny model wyglądał następująco:

```
class CustomTransformerModelPerceptron(nn.Module):
    def __init__(self, out_channels, hidden_layer_size):
           super(CustomTransformerModelPerceptron, self).__init__()
           edge dim=3 # edge attr.size(1)
           self.conv1 = TransformerConv(dataset.num_features, 32, edge_dim=edge_dim)
self.conv2 = TransformerConv(32, 64, edge_dim=edge_dim)
self.conv3 = TransformerConv(64, 64, edge_dim=edge_dim)
self.conv4 = TransformerConv(64, out_channels, edge_dim=edge_dim)
           self.linear1 = nn.Linear(out_channels, hidden_layer_size)
self.linear2 = nn.Linear(hidden_layer_size, 2) # klasyfikacja binarna
           forward(self, data, flag):
                 x = data.x.to(dtype=torch.float32)
                 edge_index = data.edge_index
edge_attr = data.edge_attr.to(dtype=torch.float32)
                 x = self.conv1(x, edge_index, edge_attr)
x = self.relu(x)
                  x = self.conv3(x, edge_index, edge_attr)
                  x = self.relu(x)
                 x = self.conv4(x, edge index, edge attr)
                 feature = torch.mean(x, dim=0)
                 x = self.linear1(feature)
                 x = self.relu(x)
                 x = self.linear2(x)
                 return x, feature
```


Wyniki testów dla osadzeń 1 i 2 oraz ich wizualizacje:

*UWAGA: osadzenia jednoelementowe zostały przedstawione w 2D w celu lepszej czytelności wyników, współrzędna y jest wygenerowaną losową liczbą z przedziału [0,10], oczywiście wynikiem tego osadzenia jest tylko wartość współrzędnej x

TransformerConv osadzenie = 1 , Test_accuracy = 0.70, predyktor liniowy (po lewej) oraz TransformerConv osadzenie = 2 , Test_accuracy = 0.72, predyktor liniowy (po prawej)

TransformerConv osadzenie = 1 , Test_accuracy = 0.74, perceptron ukryta = 128 (po lewej) TransformerConv osadzenie = 2 , Test_accuracy = 0.74, perceptron ukryta = 128 (po prawej)

GATConv osadzenie = 1 , Test_accuracy = 0.69, predyktor liniowy (po lewej) oraz GATConv osadzenie = 2 , Test_accuracy = 0.70, predyktor liniowy (po prawej)

GATConv osadzenie = 1 , Test_accuracy = 0.625, perceptron ukryta = 4 (po lewej) oraz GATConv osadzenie = 2 , Test_accuracy = 0.68, perceptron ukryta = 128 (po prawej)

Funkcje aproksymująca (regresja) do przewidywania momentu dipolowego dla cząstek ze zbioru QM9.

LinearModel (predyktor liniowy)

PerceptronModel (predyktor nieliniowy)

```
class LinearModel(torch.nn.Module):
    def __init__(self, out_channel, dim_h):
        super().__init__()
        self.conv1 = GCNConv(dim_h, dim_h)
        self.conv2 = GCNConv(dim_h, out_channel)
        self.conv3 = GCNConv(dim_h, out_channel)
        self.lin = torch.nn.Linear(out_channel, 1)

def forward(self, data, flag):
        if flag:
            e = data.edge_index
            x = adata.x

            x = self.conv1(x, e)
            x = x.relu()
            x = self.conv2(x, e)
            x = x.relu()
            x = self.conv3(x, e)
            feature = global_mean_pool(x, data.batch)
            x = fun.dropout(feature, p=0.5, training=self.training)
            x = self.lin(x)
            return x, feature
```

Warunkiem stopu w uczeniu modeli była liczba epok, jednak, jeśli loss dla zbioru walidacyjnego w trakcie nauki był mniejszy niż globalnie najmniejszy do tej pory, to zapisywano model do pliku. Dzięki temu po osiągnięciu wymaganej liczby epok osiągano optymalny model. Do optymalizacji modelu wykorzystano algorytm Adam (torch.optim.Adam). Współczynnik uczenia (lr) został ustawiony na 0.001. Jako funkcję straty wybrano średni błąd kwadratowy (MSELoss). Jakość modelu była oceniania z użyciem miary średniego błędu bezwzględnego (MAE).

Proces wyboru optymalnej architektury dla osadzenia 1 (kolumna 1, 2) / dla osadzenia 2 (kolumna 3, 4)

- testy liczby warstw grafowych dla 30 epok, dropout=0.5, liczby warstw ukrytych = 4
 - predyktor liniowy

Liczba warstw	MAE	Liczba warstw	MAE
grafowych GCNConv		grafowych GCNConv	
2	0.723	2	0.687
3	0.704	3	0.682

o predyktor nieliniowy

Liczba warstw	MAE	Liczba warstw	MAE
grafowych GCNConv		grafowych GCNConv	
2	0.889	2	0.664
3	0.653	3	0.635

- testy liczby warstw ukrytych dla 30 epok, dropout=0.5, liczba warstw grafowych = 3, liczba osadzeń = 1, predyktor liniowy:

Liczba	MAE
warstw	
ukrytych	
4	0.704
16	0.693
64	0.651

Proces uczenia optymalnych architektur: LinearModel(100 epok, dropout=0.5, liczby warstw ukrytych = 64, 3 warstwy grafowe GCNConv, liczba osadzeń =1 (1 kolumna) i 2 (2 kolumna), predyktor liniowy

PerceptronModel (100 epok, dropout=0.5, liczby warstw ukrytych = 64, 3 warstwy grafowe GCNConv, liczba osadzeń = 1 (1 kolumna) i 2 (2 kolumna), predyktor nieliniowy

Wyniki testów dla osadzeń 1 i 2 oraz ich wizualizacje:

Zaprezentowano pary wykresów: predykcja dla zbioru testowego i osiągnięta funkcja aproksymująca:

Predyktor liniowy

Osadzenie 1, MAE = 0.654

Osadzenie 2, MAE = 0.596

Osadzenie 2, MAE=0.606

