Week 6

2025.03.25

Genome-Wide Association Study (GWAS) (全基因體關聯性分析)

• a study of a genome-wide (全基因體) set of genetic variants(基因變量) in different individuals to see if any variant(變量) is associated with a trait (性狀).

GWAS versus Mendelian disorders

• Mendelian disorder: ex. Huntington's disease (亨丁頓舞蹈症)

https://cdn.drugdiscoverynews.com/assets/articleNo/15759/almg/40650/61422-m.webp

GWAS versus Mendelian disorders-2

- GWAS: common variants common disease
 - BMI, type 2 diabetes

https://www.cdc.gov/diabetes/images/library/socialmedia/diabetesintheus_print.pdf https://images.app.goo.gl/4CPEMJGXewUafA8x6

- Compare with Mendelian disorders
 - Less concentrated within families
 - large pedigrees (Mendelian), unrelated individuals (GWAS)
 - Larger numbers of variants, genome-wide, contribute to the phenotype
 - Phenotype may be modified to non-genetic risk factors

GWAS

- 2003: Human Genome Project
- 2005: First success stories (Klein et al., 2005)
 - age-related macular degeneration (AMD)
 - 100,000 SNPs
 - 96 cases, 50 controls
- 2007: landmark GWAS (Wellcome Trust Case Control Consortium, 2007)
 - 7 complex disease (type 1 diabetes, type 2 diabetes, coronary heart disease, hypertension, bipolar disorder, rheumatoid arthritis, inflammatory bowel disease)
 - 500,000 SNPs
 - Total 2000 cases, 3000 shared controls

. 2023 Jan 11;110(2):179–194. doi: 10.1016/j.ajhg.2022.12.011

Statistical models

- Continuous trait: linear regression model
 - BMI, height, triglycerides
- Binary trait: logistic regression model
 - Type 1 diabetes, coronary artery disease, lung cancer
 - Case-control studies

Multiple testing problem

One SNP at a time

• Familywise error rate (FWER), Bonferroni correction

• False discovery rate (FDR), q-values

Manhattan plot

Manhattan skyline

曼哈頓天際線

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.hotcore.info%2Fbabki%2FRelated-Search-Manhattan-Skyline.htm&psig=AOvVaw3E5IjVcW3WM1s7P6E4o9l2&ust=1695544484837000&source=images&cd=vfe&opi=89978449&ved=0CBAQjRxqFwoTCPDTzMepwIEDFQAAAAAdAAAAABA0

https://upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Manhattan_plot_from_a_GWAS_of_kidney_stone_disease.png/1200px-Manhattan_plot_from_a_GWAS_of_kidney_stone_disease.png

Reproducibility in GWAS

Reproducibility:

the ability to confirm genetic associations with traits or diseases by replicating results across independent cohorts, populations, or studies.

- Data Quality control
 - SNPs, 3 allele type
 - Call rate, HWE, sex check, relativeness,...
- Replication: confirm findings in independent cohorts
- P-value threshold (Bonferroni correction, p-value $< 5 \times 10^{-8}$)