Homework 2 Addison Boyer

Exercise 21. Prove that each graph G contains a bipartite graph with at least half as many edges.

Proof. Consider the random graph G^* formed by assigning the vertices of G to one of two vertex partitions V_1 or V_2 with random and uniform probability $p = \frac{1}{2}$. An edge $xy \in G$ appears as a cross edge in G^* exactly when x and y are assigned to different vertex partitions. As the vertices of G are assigned independently, the probability an edge xy is a cross edge in G^* is also $p = \frac{1}{2}$.

Let X be the random variable that records the number of cross edges in G*. Consider the expected value of X and let m be the number of edges in G*

$$Ex[X] = \sum_{xy \in E(G^*)} p(xy) = \frac{m}{2}$$

By the probabilistic method \exists a graph G with $X \geq E[X] = \frac{m}{2}$. Take such a graph and remove all edges between vertices in the same classes, and we have the desired bipartite graph with at least half as many edges.

Exercise 31. Show that for any k-vertex tree T_k that $ex(n,T_k) \leq (k-1)n$.

Assume to the contrary for the sake of a contradiction i.e. $\exp(n,T_k) > (k-1)n$. Let G be an n-vtx graph with greater than (k-1)n edges, and average degree d. It is clear that d is

$$> \frac{2|E(G)|}{n} = \frac{2(k-1)n}{n}$$

By exercise 30, G has a subgraph H with minimum degree

$$\delta(H) > \frac{2(k-1)n}{2n} = k - 1$$

Claim: H contains T_k .

Proof. As H has $\delta(H) \geq k$ it follows that $|V(H)| \geq k$ as well.

Consider the following procedure.

- 1. Pick a vertex $v \in V(H)$
- 2. Start walking greedily to a neighbor of v such that the next step doesn't create a cycle. This vertex is the new v.
- 3. Repeat step (2) k-2 more times.

Observe:

- 1. We are able to execute step (2) successfully at each iteration as $\delta(H) \geq k$ and we can walk to a vertex that hasn't been visited yet, thus preventing the creation of a cycle.
- 2. As we iterated k-1 times our walk has k-1 edges, and from (1) is cycle-free.

This is the definition of a k-tree or T_k , which is a contradiction \divideontimes . Therefore our supposition was false and

$$ex(n, T_k) \le (k-1)n$$

Exercise 34. Show that there exists an n-vertex graph G with no cycle of length $\leq g$ and $\frac{1}{12}n^{1+1/g}$ edges.

Proof. The construction is probabilistic with the deletion method. Consider the probability space of random graphs with edge probability

$$p = n^{1/g - 1}$$

The expected number of edges is

$$\binom{n}{2}p \ge \frac{1}{4}n^{1+1/g}$$

The expected number of cycles C_k , $(k \leq g)$ is

$$\frac{n(n-1)(n-2)...(n-g+1)}{6g}p^g \le \frac{1}{6g}n^g p^g \le \frac{1}{12}n^{1+1/g}$$

Let X be the random variable defined by the number of edges minus the number of copies of $C_k, k \leq g$. Thus, by linearity of expectation we have

$$E[X] \ge \frac{1}{12} n^{1+1/g}$$

By the probabilistic method, there exists a graph G with $X \geq E[X]$ If we remove an edge from each $C_k, k \leq g$ we are left with an n-vertex C_k -free graph with $e(G) \geq \frac{1}{12} n^{1+1/g}$. \square

Exercise 40. Show that the regularity lemma holds for graphs on n < M vertices.

Proof. The regularity lemma is trivially true when n < M, and does not reveal much useful information about the graph. Consider partitioning the vertices into singleton classes (i.e. r = m) to get Szemerédi partition P. Consider a pair of classes $(V_1, V_2) \in P$.

Claim: All pairs (V_1, V_2) are ϵ -regular

1. xy is an edge $x \in V_1, y \in V_2$.

$$d(V_1, V_2) = \frac{e(V_1, V_2)}{|V_1||V_2|} = \frac{1}{1} = 1$$

$$d(V_1', V_2') = \frac{e(V_1', V_2')}{|V_1'||V_2'|} = \frac{1}{1} = 1$$

$$|d(V_1, V_2) - d(V_1', V_2')| = |1 - 1| = 0 < \epsilon \checkmark$$

2. xy is not an edge $x \in V_1, y \in V_2$.

$$d(V_1, V_2) = \frac{e(V_1, V_2)}{|V_1||V_2|} = \frac{0}{1} = 0$$

$$d(V_1', V_2') = \frac{e(V_1', V_2')}{|V_1'||V_2'|} = \frac{0}{1} = 0$$

$$|d(V_1, V_2) - d(V_1', V_2')| = |0 - 0| = 0 < \epsilon \checkmark$$

All pairs of classes are ϵ -regular, and the regularity lemma holds for n < M.

Exercise 41. Show that the regularity lemma holds for n-vertex graphs with $o(n^2)$ many edges when n is large.

Proof. Consider what happens to the density between classes as n tends towards infinity. Let A, B be pairs of classes in the Szemerédi partition P created by partitioning the vertex set of an n-vertex graph G into r parts.

$$d(A,B) = \frac{e(A,B)}{|A||B|}$$

Observe the following

$$e(A,B) = o(n^2)$$

and

$$|A||B| = \frac{n^2}{r^2}$$

As r is fixed, when n get's large the bottom term r^2 becomes negligible and n^2 dominates. Therefore, the density

$$d(A,B) = \frac{e(A,B)}{|A||B|} = \frac{o(n^2)}{O(n^2)} \to 0$$

and the number of ϵ -regular pairs tends towards $\binom{r}{2}$. Therefore, when n is large enough there are eventually $\leq \epsilon r^2$ pairs that are not ϵ -regular, and the regularity lemma holds for n-vertex graphs with $o(n^2)$ many edges (for n large enough).

Exercise 42. Suppose G is a bipartite graph with classes A and B each of size n. Show that if the maximum degree of G is at most $\epsilon^2 n$ then the pair (A,B) is ϵ -regular.

Proof. In order for the pair (A, B) to satisfy epsilon regularity the following must be true

$$|d(A,B) - d(A',B')| < \epsilon$$

 $\forall A' \subset A, B' \subset B \text{ such that } |A'| > \epsilon |A|, |B'| > \epsilon |B|.$

It will suffice to show that neither d(A, B) nor d(A', B') exceed epsilon.

1.

$$d(A, B) = \frac{e(A, B)}{|A||B|} = \frac{e(A, B)}{n^2}$$

As the maximum degree of a vertex in G is $\epsilon^2 n$

$$e(A, B) \le \epsilon^2 n^2$$

and we get that

$$d(A, B) \le \frac{\epsilon^2 n^2}{n^2} = \epsilon^2 < \epsilon$$

2.

$$d(A', B') = \frac{e(A', B')}{|A'||B'|}$$

As the maximum degree of a vertex in G is ϵn^2

$$e(A', B') \le \epsilon^2 n|A'|$$

This gives

$$d(A', B') \le \frac{\epsilon^2 n |A'|}{|A'||B'|} = \frac{\epsilon^2 n}{|B'|}$$

By epsilon regularity

$$|B'| > \epsilon |B| = \epsilon n$$

Therefore,

$$d(A',B')<\frac{\epsilon^2n}{\epsilon n}=\epsilon$$

Combining bounds 1 and 2 we get the following

$$|d(A,B) - d(A',B')| < \epsilon$$

which is the theorem!

Exercise 46. Suppose G is a graph where each edge is in exactly one triangle. Use the triangle removal lemma to show that the number of edges in G is $o(n^2)$.

Proof. First, observe that as each edge is in exactly one triangle the number of triangles in G is exactly $\frac{1}{3}m$, where m = |E(G)|. The triangle removal lemma states that if a graph G contains fewer than βn^3 triangles it can be made triangle free with the removal of relatively few edges (fewer than αn^2 edges to be exact).

Consider removing edges from G to make it triangle free. It can be made triangle free by removing one edge from each triangle. As each edge is apart of exactly 1 triangle, we remove exactly $\frac{m}{3}$ edges. The triangle removal lemma tells us that there were fewer than βn^3 triangles, and therefore m is $o(n^2)$.

Exercise 53. Show that if a bipartite graph is ϵ -regular, then the complement (of the edges between the classes) is also ϵ -regular.

Proof. Let G be such a graph, and observe the relationship between the densities of class $A, B \in G$ and their respective complements $\overline{A}, \overline{B} \in \overline{G}$

$$d(A,B) + d(\overline{A}, \overline{B}) = 1$$

rearranging terms gives

$$d(A, B) = 1 - d(\overline{A}, \overline{B})$$

By epsilon regularity we know that for the two classes $A, B \in G$ we have have

$$|d(A,B) - d(A',B')| < \epsilon$$

 $\forall A' \subset A, B' \subset B \text{ such that } |A'| > \epsilon |A| \text{ and } |B'| > \epsilon |B|.$

We would like to show the same for the compliments of A, B and we know

$$|d(A,B) - d(A',B')| < \epsilon$$

Substituting $1 - d(\overline{A}, \overline{B})$ for d(A, B), and $1 - d(\overline{A'}, \overline{B'})$ for d(A', B') gives

$$|1 - d(\overline{A}, \overline{B}) - (1 - d(\overline{A'}, \overline{B'}))| > \epsilon$$

Simplifying gives

$$|d(\overline{A'}, \overline{B'}) - d(\overline{A}, \overline{B})| < \epsilon$$

Which gives the theorem.