

DISTINTAS HIPOTESIS DE CARGA

F,q y segmentos, en

r,q y segmentos, en valor absoluto.			μ, , ,
SOLICITACION	MOMENTOS DE EMPOTRAMIENTO PERFECTO	REACCIONES EN LOS APOYOS	DIAGRAMA DE MOMENTOS FLECTORES
F	μ= <u>Fab(l+b)</u> 2l ²	$R_{A} = \frac{Fb}{2l} (3 - \frac{b^{2}}{l^{2}})$ $R_{B} = \frac{Fa^{2}}{2l^{2}} (3 - \frac{a}{l})$	
$\downarrow \frac{1}{2} \downarrow \frac{1}{2} \downarrow$	μ= 3 Fl	$R_{A} = \frac{11}{16} F$ $R_{B} = \frac{5}{16} F$	
F F	μ= <mark>3Fa (l−a)</mark> 2 l	$R_{A} = \frac{F}{2} \left[2 + 3 \frac{\alpha}{l} \left(1 - \frac{\alpha}{l} \right) \right]$ $R_{B} = \frac{F}{2} \left[2 - 3 \frac{\alpha}{l} \left(1 - \frac{\alpha}{l} \right) \right]$	a + a
F F F F F F F F F F	μ= <u>15</u> Fl	$R_{a} = \frac{63}{32} F$ $R_{b} = \frac{33}{32} F$	

DISTINTAS HIPOTESIS DE CARGA

F,q y segmentos, en valor absoluto.

F,q y segmentos, en valor absoluto.

DISTINTAS HIPOTESIS DE CARGA

F,qy segmentos, en valor absoluto.

valor absoluto.			
SOLICITACION	MOMENTOS DE EMPOTRAMIENTO PERFECTO	REACCIONES EN LOS APOYOS	DIAGRAMA DE MOMENTOS FLECTORES
†	$\mu_{A} = \frac{QC}{12l} (3l^2 - 4c^2)$	R _▲ ≖qc	
C C	μ _ε = - <u>q c</u> (3ℓ²-4c²)	R _® =qc	$\frac{1}{2}$ -c
†	$\mu_A = 2qc \left(a \frac{b^2}{2} - \frac{c^2}{1^2} \frac{3b-1}{3}\right)$	$R_{A} = 2qc \left[1 - 3 \frac{a^{2}}{l^{2}} \frac{c^{2}}{l^{2}} + 2 \frac{a}{l} \left(\frac{a^{2}}{l^{2}} + \frac{c^{2}}{l^{2}} \right) \right]$	
	$\mu_{e} = -2qc(b\frac{a^{2}}{l^{2}} - \frac{c^{2}}{l^{2}} \frac{3a - l}{3})$	$R_{B} = 2q c \left[3\frac{\alpha^{2}}{l^{2}} + \frac{c^{2}}{l^{2}} - 2\frac{\alpha}{l} \cdot \frac{(\alpha^{2} + c^{2})}{(l^{2} + l^{2})} \right]$	g-c b-c
†	µ ₄ = ⁵ / ₉₆ q l ²	R <u>a ≃ ^{q (} 4</u>	
+ 2 + 2 +	µ• <u>≈ 5</u> q ℓ²	R _B ≖ <u>4</u>	$\frac{1}{2}$
†	$\mu_{A} = \frac{q L^2}{30}$	R ₄ =3/20 qt	_
+ +	μ _e =-	$R_{\mathbf{a}} = \frac{7}{20} q l$	

DISTINTAS HIPOTESIS DE CARGA

F, q y segmentos , en valor absoluto.

valor absoluto.	,		μ _α ι μ _α
SOLICITACION	MOMENTOS DE EMPOTRAMIENTO PERFECTO	REACCIONES EN LOS APOYOS	DIAGRAMA DE MOMENTOS FLECTORES
+	$\mu_{A} = \frac{q q^{2}}{30} \left[10 - \frac{q}{l} (15 - 6 \frac{q}{l}) \right]$	$R_{A} = \frac{q_{0}}{20} \left[10 - \frac{a^{2}}{l^{2}} (15 - 8 \frac{a}{l}) \right]$	
<u> </u> a	$\mu_{B} = -\frac{q}{20l} (5 - 4\frac{q}{l})$	$R_B = \frac{a a^3}{20 l^2} (15 - 8 \frac{a}{l})$	0
†	$ \mu_{A} = \frac{9b^{3}}{601} (5 - 3\frac{b}{1}) $	$R_A = \frac{9 b^3}{2012} (5 - \frac{2b}{l})$	
a b	$\mu_{a} = -\frac{q b^2}{60} \left[3 \frac{b^2}{l^2} + 10 \frac{a}{l} \right]$	$R_{B} = \frac{q.b}{20} \left[10 - \frac{b^{2}}{l^{2}} (5 - 2\frac{b}{l}) \right]$	
carga parabélica	μ _A = <u>ql²</u>	$R_{\mathbf{k}} = \frac{q \mathbf{i}}{3}$	
$\frac{1}{2}$ $\frac{1}{2}$	μ _e =- q1 ²	$R_{\Theta} = \frac{q!}{3}$	1 2
m ·	$\mu_{A} = m \frac{b}{l} \left(2 - 3 \frac{b}{l} \right)$	R _A =m ^{6ab} l ³	
a b	$\mu_{\mathbf{b}} = \mathbf{m} \cdot \frac{\mathbf{d}}{\mathbf{l}} (2 - 3 \cdot \frac{\mathbf{d}}{\mathbf{l}})$	R _B = -m <u>6ab</u>	

VIGA EN VOLADIZO

VIGA APOYADA EMPOTRADA DISTINTAS HIPOTESIS DE CARGA

F, qy segmentos en valor absoluto

DISTINTAS HIPOTESIS DE CARGA

F, q y segmentos, en valor absoluto

DISTINTAS HIPOTESIS DE CARGA

F, q y segmentos , en valor absoluto

SOLICITACION	MOMENTOS DE EMPOTRAMIENTO PERFECTO	REACCIONES EN LOS APOYOS	DIAGRAMA DE MOMENTOS FLECTORES
— (Z)	μ = m 2	$R_A = \frac{3}{2} \frac{m}{l}$ $R_B = -\frac{3}{2} \frac{m}{l}$	

CALCULO DEL MOMENTO DE EMPOTRAMIENTO DE UNA VIGA APOYADA-EMPOTRADA EN FUNCION DE LOS MOMENTOS DE EMPOTRAMIENTO PERFECTO.

VIGA EN VOLADIZO

