Link Prediction on Evolving Data using Tensor Factorization

Stephan Spiegel
Technical University Berlin

Outline

- Link Prediction
- Singular Value Decomposition
- Tensor Factorization
- Link Prediction using Tensor Factorization
- Evaluation

Link Prediction

Link Prediction

Kleinberg, J. and Liben-Nowell, D.: The Link Prediction Problem for Social Networks Strogatz, S. H.: Exploring complex networks. In: Nature, 410, S. 268–276

Link Prediction

Correct Links at Time t₁

precision = #correct links / #new links = 2/3

precision = #correct links / #new links = 1/3

Kleinberg, J. and Liben-Nowell, D.: The Link Prediction Problem for Social Networks Strogatz, S. H.: Exploring complex networks. In: Nature, 410, S. 268–276

Link Prediction Algorithms

- Neighbor-Based
 - Common Neighbors
 - Preferential Attachment
- Link-Based
 - Katz
- Semantic
 - K-Nearest Neighbors
- Psychological
 - Theory of Balance
 - Theory of Status

Kleinberg, J. and Liben-Nowell, D.: The Link Prediction Problem for Social Networks
Lim, E., Liu, H., Ma, N., Nguyen, V. & Sun, A.: Trust relationship prediction using online product review data
Bauckhage, C., Kunegis, J. & Lommatzsch, A.: The Slashdot Zoo: Mining a social network with negative edges
Huttenlocher, D., Kleinberg, J. & Leskovec, J.: Predicting positive and negative links in online social networks
Huttenlocher, D., Kleinberg, J. & Leskovec, J.: Signed networks in social media
Grossman, L.: How Computers Know What We Want - Before We Do

Link Prediction using Singular Value Decomposition

ER-Diagram

Bipartite Graph

Feature Matrix

Singular Value Decomposition

$$R_{m \times n} = U_{m \times k} \cdot S_{k \times k} \cdot V_{k \times n}^{T}$$

Evaluation

Hydra: A Hybrid Recommender System. Stephan Spiegel, Jerome Kunegis and Fang Li. Workshop on Complex Networks in Information and Knowledge Management, 2009.

Tensor Factorization

Tensor Factorization - Preliminaries

"Tensor Decompositions and Applications" - Tamara G. Kolda, Brett W. Bader - SIAM'09

Tensor Factorization - Preliminaries

[&]quot;Tensor Decompositions and Applications" - Tamara G. Kolda, Brett W. Bader - SIAM'09

CANDECOMP/Parafac Decomposition

$$\mathfrak{X} pprox \sum_{r=1}^R \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$$

$$x_{ijk} \approx \sum_{r=1}^{R} a_{ir} b_{jr} c_{kr}$$
 $\qquad \qquad \mathfrak{X} \approx \sum_{r=1}^{R} \lambda_r \ \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r = [\![\boldsymbol{\lambda} \ ; \mathbf{A}, \mathbf{B}, \mathbf{C}]\!].$

"Tensor Decompositions and Applications" - Tamara G. Kolda, Brett W. Bader - SIAM'09

Link Prediction using Tensor Factorization

Link Prediction on Evolving Data

Kleinberg, J. and Liben-Nowell, D.: The Link Prediction Problem for Social Networks Strogatz, S. H.: Exploring complex networks. In: Nature, 410, S. 268–276

Tensor Factorization / Parafac

$$X \in \mathbb{R}^{I \times J \times (K+1)} \Rightarrow \lambda \in \mathbb{R}^R; A \in \mathbb{R}^{I \times R}; B \in \mathbb{R}^{J \times R}; C \in \mathbb{R}^{(K+1) \times R}$$

$$x_{i,j,K+1} \approx \sum_{r=1}^{R} \lambda_r (a_{i,r} \cdot b_{j,r} \cdot c_{K+1,r})$$

Exponential Smoothing

Fig. 2. Temporal Trends in Time Factor Matrix of Wiki-Edit-Ar and Facebook-Links dataset, where the 4th point is extrapolated by Exponential Smoothing

Examined Data Sets

DATASET	STRUCTURE	#ENTRIES	#MODE1	#MODE2	#SLICES
wiki-edit-viwiki	$user \times page \times time$	2262679	13766	303867	~ 4
wiki-edit-skwiki	$user \times page \times time$	2526392	7229	215638	~ 6
wiki-edit-glwiki	$user \times page \times time$	1315066	2850	91594	~ 7
wiki-edit-elwiki	$user \times page \times time$	1569075	8049	97149	~ 8
wiki-edit-arwiki	$user \times page \times time$	4000735	25692	510033	~ 4
movielens-10m-ut	$user \times tags \times time$	95580	2795	12553	~ 4
movielens-10m-ui	$user \times item \times time$	95580	3097	6367	~ 8
movielens-10m-ti	$tags \times item \times time$	95580	12775	6190	~ 4
internet-growth	$page \times page \times time$	104824	20689	20689	~ 3
facebook-wosn-wall	$user \times user \times time$	876993	30839	30839	~ 14
facebook-wosn-links	$user \times user \times time$	1545686	57356	57356	~ 13
epinions	$user \times user \times time$	19793847	91596	91596	~ 5
enron	$user \times user \times time$	1149884	64145	64145	~ 9
bibsonomy-2ut	$user \times tags \times time$	2555080	4804	167963	~ 8
bibsonomy-2ui	$user \times item \times time$	2555080	1345	335335	~ 4
bibsonomy-2ti	$tags \times item \times time$	2555080	155264	571768	~ 2

$$\#slices = \frac{\#entries}{2*max(\#mode1, \#mode2)}$$

Examined Data Sets

Tensor Factorization

References

- "Applied Multiway Data Analysis" Pieter M.
 Kroonenberg Wiley & Sons
- "Unsupervised Multiway Data Analysis: A Literature Study" - Evrim Acar, Bulent Yener - TKDE'09
- "Tensor Decompositions and Applications" Tamara G.
 Kolda, Brett W. Bader SIAM'09

Tools

"Matlab Tensor Toolbox" - Sandia National Laboratories