

Red Hat Enterprise Linux 10-beta

Composing, installing, and managing RHEL for Edge images

Creating, deploying, and managing Edge systems with RHEL10

Last Updated: 2025-03-05

Red Hat Enterprise Linux 10-beta Composing, installing, and managing RHEL for Edge images

Creating, deploying, and managing Edge systems with RHEL10

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java [®] is a registered trademark of Oracle and/or its affiliates.

XFS [®] is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL [®] is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack [®] Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use the RHEL image builder tool to compose customized RHEL `rpm-ostree` images optimized for Edge. Then, you can remotely install, and securely manage and scale deployments of the images on Edge servers.

Table of Contents

RHEL BETA RELEASE	. 3
CHAPTER 1. INTRODUCING RHEL FOR EDGE IMAGES 1.1. DIFFERENCE BETWEEN RHEL RPM IMAGES AND RHEL FOR EDGE IMAGES 1.2. ADDITIONAL RESOURCES	. 4 5
CHAPTER 2. AUTOMATICALLY PROVISIONING AND ONBOARDING RHEL FOR EDGE DEVICES WITH FDO	
	7
2.1. THE FIDO DEVICE ONBOARDING (FDO) PROCESS	7
2.2. FDO AUTOMATIC ONBOARDING TECHNOLOGIES	9
2.3. AUTOMATICALLY PROVISIONING AND ONBOARDING RHEL FOR EDGE DEVICES	10
2.4. GENERATING KEY AND CERTIFICATES	11
2.5. INSTALLING AND RUNNING THE MANUFACTURING SERVER	12
2.6. INSTALLING, CONFIGURING, AND RUNNING THE RENDEZVOUS SERVER	15
2.7. INSTALLING, CONFIGURING, AND RUNNING THE OWNER SERVER	16
2.8. AUTOMATICALLY ONBOARDING A RHEL FOR EDGE DEVICE BY USING FDO AUTHENTICATION	18

RHEL BETA RELEASE

Red Hat provides Red Hat Enterprise Linux Beta access to all subscribed Red Hat accounts. The purpose of Beta access is to:

- Provide an opportunity to customers to test major features and capabilities prior to the general availability release and provide feedback or report issues.
- Provide Beta product documentation as a preview. Beta product documentation is under development and is subject to substantial change.

Note that Red Hat does not support the usage of RHEL Beta releases in production use cases. For more information, see the Red Hat Knowledgebase solution What does Beta mean in Red Hat Enterprise Linux and can I upgrade a RHEL Beta installation to a General Availability (GA) release?.

CHAPTER 1. INTRODUCING RHEL FOR EDGE IMAGES

A RHEL for Edge image is an **rpm-ostree** image that includes system packages to remotely install RHEL on Edge servers.

The system packages include:

- Base OS package
- Podman as the container engine
- Additional RPM Package Manager (RPM) content

Differently from RHEL images, RHEL for Edge is an immutable operating system, that is, it contains a **read-only** root directory with the following characteristics:

- The packages are isolated from root directory.
- Each version of the operating system is a separate deployment. Therefore, you can roll back the system to a previous deployment when needed.
- Offers efficient updates over the network.
- Supports multiple operating system branches and repositories.
- Contains a hybrid rpm-ostree package system

You can deploy a RHEL for Edge image on Bare Metal, Appliance, and Edge servers.

You can compose customized RHEL for Edge images using the RHEL image builder tool. You can also create RHEL for Edge images by accessing the edge management application in the Red Hat Hybrid Cloud Console platform and configure automated management.

Use the edge management application to simplify how to provision and register your images. To learn more about the edge management, see the Create RHEL for Edge images and configure automated management documentation.

WARNING

Using RHEL for Edge customized images that were created by using the **RHEL image builder** on-premise version is not supported in the edge management application. See Edge management supportability.

The edge management application supports building and managing only the edge-commit and edge-installer image types.

Additionally, you cannot use the FIDO Device Onboarding (FDO) process with images that you create by using the edge management application.

With a RHEL for Edge image, you can achieve the following benefits:

Atomic upgrades

You know the state of each update, and no changes are seen until you reboot your system.

Custom health checks and intelligent rollbacks

You can create custom health checks, and if a health check fails, the operating system rolls back to the previous stable state. Include modules here.

Container-focused workflow

The image updates are staged in the background, minimizing any workload interruptions to the system.

Optimized Over-the-Air updates

You can make sure that your systems are up-to-date, even with intermittent connectivity, thanks to efficient over-the-air (OTA) delta updates.

1.1. DIFFERENCE BETWEEN RHEL RPM IMAGES AND RHEL FOR EDGE IMAGES

You can create RHEL system images in traditional package-based RPM format and also as RHEL for Edge (**rpm-ostree**) images.

You can use the traditional package-based RPMs to deploy RHEL on traditional data centers. However, with RHEL for Edge images you can deploy RHEL on servers other than traditional data centers. These servers include systems where processing of large amounts of data is done closest to the source where data is generated, the Edge servers.

The RHEL for Edge (**rpm-ostree**) images are not a package manager. They only support complete bootable file system trees, not individual files. These images do not have information regarding the individual files such as how these files were generated or anything related to their origin.

The **rpm-ostree** images need a separate mechanism, the package manager, to install additional applications in the /**var** directory. With that, the **rpm-ostree** image keeps the operating system unchanged, while maintaining the state of the /**var** and /**etc** directories. The atomic updates enable rollbacks and background staging of updates.

Refer to the following table to know how RHEL for Edge images differ from the package-based RHEL RPM images.

Table 1.1. Difference between RHEL RPM images and RHEL for Edge images

Key attributes	RHEL RPM image	RHEL for Edge image
OS assembly	You can assemble the packages locally to form an image.	The packages are assembled in an OSTree which you can install on a system.
OS updates	You can use dnf update to apply the available updates from the enabled repositories.	You can use rpm-ostree upgrade to stage an update if any new commit is available in the OSTree remote at /etc/ostree/remotes.d/. The update takes effect on system reboot.
Repository	The package contains DNF repositories	The package contains OSTree remote repository

User access permissions	Read write	Read-only (/ usr)
Data persistence	You can mount the image to any non tmpfs mount point	/etc & /var are read/write enabled and include persisting data.

1.2. ADDITIONAL RESOURCES

• Interactively installing RHEL from installation media

CHAPTER 2. AUTOMATICALLY PROVISIONING AND ONBOARDING RHEL FOR EDGE DEVICES WITH FDO

You can build a RHEL for Edge Simplified Installer image, and provision it to a RHEL for Edge image. The FIDO Device Onboarding (FDO) process automatically provisions and onboards your Edge devices, and exchanges data with other devices and systems connected on the networks.

IMPORTANT

Red Hat provides the **FDO** process as a Technology Preview feature and should run on secure networks. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. See Technology Preview Features Support Scope on the Red Hat Customer Portal for information about the support scope for Technology Preview features.

2.1. THE FIDO DEVICE ONBOARDING (FDO) PROCESS

The FIDO Device Onboarding (FDO) is the process that:

- Provisions and onboards a device.
- Automatically configures credentials for this device. The FDO process is an automatic onboarding mechanism that is triggered by the installation of a new device.
- Enables this device to securely connect and interact on the network.

With FIDO Device Onboarding (FDO), you can perform a secure device onboarding by adding new devices into your IoT architecture. This includes the specified device configuration that needs to be trusted and integrated with the rest of the running systems. The FDO process is an automatic onboarding mechanism that is triggered by the installation of a new device.

The FDO protocol performs the following tasks:

- Solves the trust and chain of ownership along with the automation needed to securely onboard a device at scale.
- Performs device initialization at the manufacturing stage and late device binding for its actual use. This means that actual binding of the device to a management system happens on the first boot of the device without requiring manual configuration on the device.
- Supports automated secure devices onboarding, that is, zero touch installation and onboarding that does not need any specialized person at the edge location. After the device is onboarded, the management platform can connect to it and apply patches, updates, and rollbacks.

With FDO, you can benefit from the following:

- FDO is a secure and simple way to enroll a device to a management platform. Instead of embedding a Kickstart configuration to the image, FDO applies the device credentials during the device first boot directly to the ISO image.
- FDO solves the issue of late binding to a device, enabling any sensitive data to be shared over a secure FDO channel.

• FDO cryptographically identifies the system identity and ownership before enrolling and passing the configuration and other secrets to the system. That enables non-technical users to power-on the system.

To build a RHEL for Edge Simplified Installer image and automatically onboard it, provide an existing OSTree commit. The resulting simplified image contains a raw image that has the OSTree commit deployed. After you boot the Simplified installer ISO image, it provisions a RHEL for Edge system that you can use on a hard disk or as a boot image in a virtual machine.

The RHEL for Edge Simplified Installer image is optimized for unattended installation to a device and supports both network-based deployment and non-network-based deployments. However, for network-based deployment, it supports only UEFI HTTP boot.

The FDO protocol is based on the following servers:

Manufacturing server

- 1. Generates the device credentials.
- 2. Creates an Ownership voucher that is used to set the ownership of the device, later in the process.
- 3. Binds the device to a specific management platform.

Owner management system

- 1. Receives the Ownership voucher from the Manufacturing server and becomes the owner of the associated device.
- 2. Later in the process, it creates a secure channel between the device and the Owner onboarding server after the device authentication.
- 3. Uses the secure channel to send the required information, such as files and scripts for the onboarding automation to the device.

Service-info API server

Based on Service-info API server's configuration and modules available on the client, it performs the final steps of onboarding on target client devices, such as copying SSH keys and files, executing commands, creating users, encrypting disks and so on

Rendezvous server

- Gets the Ownership voucher from the Owner management system and makes a mapping of the device UUID to the Owner server IP. Then, the Rendezvous server matches the device UUID with a target platform and informs the device about which Owner onboarding server endpoint this device must use.
- 2. During the first boot, the Rendezvous server will be the contact point for the device and it will direct the device to the owner, so that the device and the owner can establish a secure channel.

Device client

This is installed on the device. The Device client performs the following actions:

- 1. Starts the queries to the multiple servers where the onboarding automation will be executed.
- 2. Uses TCP/IP protocols to communicate with the servers.

At the **Device Initialization**, the device contacts the Manufacturing server to get the FDO credentials, a set of certificates and keys to be installed on the operating system with the Rendezvous server endpoint (URL). It also gets the Ownership Voucher, that is maintained separately in case you need to change the owner assignment.

- 1. The Device contacts the Manufacturing server
- 2. The Manufacturing server generates an Ownership Voucher and the Device Credentials for the Device.
- 3. The Ownership Voucher is transferred to the Owner onboarding server.

At the **On-site onboarding**, the Device gets the Rendezvous server endpoint (URL) from its device credentials and contacts Rendezvous server endpoint to start the onboarding process, which will redirect it to the Owner management system, that is formed by the Owner onboarding server and the Service Info API server.

- 4. The Owner onboarding server transfers the Ownership Voucher to the Rendezvous server, which makes a mapping of the Ownership Voucher to the Owner.
- 5. The device client reads device credentials.
- 6. The device client connects to the network.
- 7. After connecting to the network, the Device client contacts the Rendezvous server.
- 8. The Rendezvous server sends the owner endpoint URL to the Device Client, and registers the device.
- 9. The Device client connects to the Owner onboarding server shared by the Rendezvous server.
- 10. The Device proves that it is the correct device by signing a statement with a device key.
- 11. The Owner onboarding server proves itself correct by signing a statement with the last key of the Owner Voucher.
- 12. The Owner onboarding server transfers the information of the Device to the Service Info API server.
- 13. The Service info API server sends the configuration for the Device.
- 14. The Device is onboarded.

2.2. FDO AUTOMATIC ONBOARDING TECHNOLOGIES

Following are the technologies used in context to FDO automatic onboarding.

Table 2.1. OSTree and rpm-ostree terminology

Technology	Definition
UEFI	Unified Extensible Firmware Interface.
RHEL	Red Hat® Enterprise Linux® operating system

Technology	Definition
rpm-ostree	Background image-based upgrades.
Greenboot	Healthcheck framework for systemd on rpm -ostree.
Osbuild	Pipeline-based build system for operating system artifacts.
Container	A Linux® container is a set of 1 or more processes that are isolated from the rest of the system.
Coreos-installer	Assists installation of RHEL images, boots systems with UEFI.
FIDO FDO	Specification protocol to provision configuration and onboarding devices.

2.3. AUTOMATICALLY PROVISIONING AND ONBOARDING RHEL FOR EDGE DEVICES

To build a RHEL for Edge Simplified Installer image and automatically onboard it, provide an existing OSTree commit. The resulting simplified image contains a raw image that has the OSTree commit deployed. After you boot the Simplified installer ISO image, it provisions a RHEL for Edge system that you can use on a hard disk or as a boot image in a virtual machine.

The RHEL for Edge Simplified Installer image is optimized for unattended installation to a device and supports both network-based deployment and non-network-based deployments. However, for network-based deployment, it supports only UEFI HTTP boot.

Automatically provisioning and onboarding a RHEL for Edge device involves the following high-level steps:

- 1. Install and register a RHEL system
- 2. Install RHEL image builder
- 3. By using RHEL image builder, create a blueprint with customizations for RHEL for a **rhel-edge-container** image type.

```
name = "rhel-edge-container"
description = "Minimal RHEL for Edge Container blueprint"
version = "0.0.1"
```

- 4. Import the RHEL for Edge Container blueprint in RHEL image builder
- 5. Create a RHEL for Edge Container image
- 6. Use the RHEL for Edge Container image to serve the OSTree commit, which will be later used when building the RHEL for Edge Simplified Installer image type

7. Create a blueprint for and **edge-simplified-installer** image type with customizations for storage device path and FDO customizations

```
name = "rhel-edge-simplified-installer-with-fdo"

description = "Minimal RHEL for Edge Simplified Installer with FDO blueprint"

version = "0.0.1"

packages = []

modules = []

groups = []

distro = ""

[customizations]

installation_device = "/dev/vda"

[customizations.fdo]

manufacturing_server_url = "http://10.0.0.2:8080"

diun_pub_key_insecure = "true"
```

- 8. Build a simplified installer RHEL for Edge image
- 9. Download the RHEL for Edge simplified installer image
- 10. At this point, the FDO server infrastructure should be up and running, and the specific onboarding details handled by the **service-info API** server, that is part of the owner's infrastructure, are configured
- 11. Install the simplified installer ISO image to a device. The FDO client runs on the Simplified Installer ISO and the UEFI directory structure makes the image bootable.
- 12. The network configuration enables the device to reach out to the manufacturing server to perform the initial device credential exchange.
- 13. After the system reaches the endpoint, the device credentials are created for the device.
- 14. The device uses the device credentials to reach the Rendezvous server, where it checks the cryptographic credentials based on the vouchers that the Rendezvous server has, and then the Rendezvous server redirects the device to the Owner server.
- 15. The device contacts the Owner server. They establish a mutual trust and the final steps of onboarding happen based on the configuration of the Service-info API server. For example, it installs the SSH keys in the device, transfer the files, create the users, run the commands, encrypt the filesystem, and so on.

2.4. GENERATING KEY AND CERTIFICATES

To run the FIDO Device Onboarding (FDO) infrastructure, you need to generate keys and certificates. FDO generates these keys and certificates to configure the manufacturing server. FDO automatically generates the certificates and **.yaml** configuration files when you install the services, and re-creating them is optional. After you install and start the services, it runs with the default settings.

IMPORTANT

Red Hat provides the **fdo-admin-tool** tool as a Technology Preview feature and should run on secure networks. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. See Technology Preview Features Support Scope on the Red Hat Customer Portal for information about the support scope for Technology Preview features.

Prerequisites

• You installed the **fdo-admin-cli** RPM package

Procedure

1. Generate the keys and certificates in the /etc/fdo directory:

\$ for i in "diun" "manufacturer" "device-ca" "owner"; do fdo-admin-tool generate-key-and-cert \$i: done

\$ Is keys device_ca_cert.pem device_ca_key.der diun_cert.pem diun_key.der manufacturer cert.pem manufacturer key.der owner cert.pem owner key.der

2. Check the key and certificates that were created in the /etc/fdo/keys directory:

\$ tree keys

You can see the following output:

- device ca cert.pem
- device ca key.der
- diun_cert.pem
- diun_key.dre
- manufacturer_cert.pem
- manufacturer_key.der
- owner_cert.pem
- owner_key.pem

Additional resources

• See the fdo-admin-tool generate-key-and-cert —help(1) manual page

2.5. INSTALLING AND RUNNING THE MANUFACTURING SERVER

The **fdo-manufacturing-server** RPM package enables you to run the Manufacturing Server component of the FDO protocol. It also stores other components, such as the owner vouchers, the manufacturer keys, and information about the manufacturing sessions. During the device installation, the Manufacturing server generates the device credentials for the specific device, including its GUID, rendezvous information and other metadata. Later on in the process, the device uses this rendezvous information to contact the Rendezvous server.

IMPORTANT

Red Hat provides the **fdo-manufacturing-server** tool as a Technology Preview feature and should run on secure networks because Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. See Technology Preview Features Support Scope on the Red Hat Customer Portal for information about the support scope for Technology Preview features.

To install the **manufacturing server** RPM package, complete the following steps:

Procedure

- 1. Install the **fdo-admin-cli** package:
 - # dnf install -y fdo-admin-cli
- 2. Check if the **fdo-manufacturing-server** RPM package is installed:
 - \$ rpm -qa | grep fdo-manufacturing-server --refresh
- 3. Check if the files were correctly installed:
 - \$ *ls /usr/share/doc/fdo*SSSS

You can see the following output:

Output: manufacturing-server.yml owner-onboarding-server.yml rendezvous-info.yml rendezvous-server.yml serviceinfo-api-server.yml

- 4. Optional: Check the content of each file, for example:
 - \$ cat /usr/share/doc/fdo/manufacturing-server.yml
- 5. Configure the Manufacturing server. You must provide the following information:
 - The Manufacturing server URL
 - The IP address or DNS name for the Rendezvous server
 - The path to the keys and certificates you generated. See Generating key and certificates. You can find an example of a Manufacturing server configuration file in the /usr/share/doc/fdo/manufacturing-server.yml directory. The following is a manufacturing server.yml example that is created and saved in the /etc/fdo directory. It contains paths to the directories, certificates, keys that you created, the Rendezvous server IP address and the default port.

```
session_store_driver:
 Directory:
  path: /etc/fdo/stores/manufacturing_sessions/
ownership_voucher_store_driver:
 Directory:
  path: /etc/fdo/stores/owner_vouchers
public_key_store_driver:
 Directory:
  path: /etc/fdo/stores/manufacturer keys
bind: "0.0.0.0:8080"
protocols:
 plain_di: false
 diun:
  mfg string type: SerialNumber
  key_type: SECP384R1
  allowed_key_storage_types:
   - Tpm
   - FileSystem
  key_path: /etc/fdo/keys/diun_key.der
  cert_path: /etc/fdo/keys/diun_cert.pem
rendezvous_info:
 - deviceport: 8082
  ip address: 192.168.122.99
  ownerport: 8082
  protocol: http
manufacturing:
 manufacturer cert path: /etc/fdo/keys/manufacturer cert.pem
 device cert ca private key: /etc/fdo/keys/device ca key.der
 device_cert_ca_chain: /etc/fdo/keys/device_ca_cert.pem
 owner_cert_path: /etc/fdo/keys/owner_cert.pem
 manufacturer_private_key: /etc/fdo/keys/manufacturer_key.der
```

- 6. Start the Manufacturing server.
 - a. Check if the systemd unit file are in the server:

systemctl list-unit-files | grep fdo | grep manufacturing fdo-manufacturing-server.service disabled

b. Enable and start the manufacturing server.

systemctl enable --now fdo-manufacturing-server.service

c. Open the default ports in your firewall:

```
# firewall-cmd --add-port=8080/tcp --permanent
# systemctl restart firewalld
```

d. Ensure that the service is listening on the port 8080:

ss -ltn

7. Install RHEL for Edge onto your system using the simplified installer.

Additional resources

- The manufacturing-server.yml example
- FDO automatic onboarding terminology

2.6. INSTALLING, CONFIGURING, AND RUNNING THE RENDEZVOUS SERVER

Install the **fdo-rendezvous-server** RPM package to enable the systems to receive the voucher generated by the Manufacturing server during the first device boot. The Rendezvous server then matches the device UUID with the target platform or cloud and informs the device about which Owner server endpoint the device must use.

Prerequisites

- You created a **manufacturer cert.pem** certificate. See Generating key and certificates.
- You copied the manufacturer_cert.pem certificate to the /etc/fdo/keys directory in the Rendezvous server.

Procedure

1. Install the **fdo-rendezvous-server** RPM packages:

dnf install -y fdo-rendezvous-server

 Create the rendezvous-server.yml configuration file, including the path to the manufacturer certificate. You can find an example in /usr/share/doc/fdo/rendezvous-server.yml. The following example shows a configuration file that is saved in /etc/fdo/rendezvous-server.yml.

```
storage_driver:
Directory:
path: /etc/fdo/stores/rendezvous_registered
session_store_driver:
Directory:
path: /etc/fdo/stores/rendezvous_sessions
trusted_manufacturer_keys_path: /etc/fdo/keys/manufacturer_cert.pem
max_wait_seconds: ~
bind: "0.0.0.0:8082"
```

3. Check the Rendezvous server service status:

systemctl list-unit-files | grep fdo | grep rende fdo-rendezvous-server.service disabled disabled

- a. If the service is stopped and disabled, enable and start it:
 - # systemctl enable --now fdo-rendezvous-server.service
- 4. Check that the server is listening on the default configured port 8082:

ss -ltn

5. Open the port if you have a firewall configured on this server:

```
# firewall-cmd --add-port=8082/tcp --permanent
# systemctl restart firewalld
```

2.7. INSTALLING, CONFIGURING, AND RUNNING THE OWNER SERVER

Install the **fdo-owner-cli** and **fdo-owner-onboarding-server** RPM package to enable the systems to receive the voucher generated by the Manufacturing server during the first device boot. The Rendezvous server then matches the device UUID with the target platform or cloud and informs the device about which Owner server endpoint the device must use.

Prerequisites

- The device where the server will be deployed has a Trusted Platform Module (TPM) device to encrypt the disk. If not, you will get an error when booting the RHEL for Edge device.
- You created the **device_ca_cert.pem**, **owner_key.der**, and **owner_cert.pem** with keys and certificates and copied them into the /**etc/fdo/keys** directory.

Procedure

1. Install the required RPMs in this server:

dnf install -y fdo-owner-cli fdo-owner-onboarding-server

2. Prepare the **owner-onboarding-server.yml** configuration file and save it to the /**etc/fdo**/ directory. Include the path to the certificates you already copied and information about where to publish the Owner server service in this file.

The following is an example available in /usr/share/doc/fdo/owner-onboarding-server.yml. You can find references to the Service Info API, such as the URL or the authentication token.

```
ownership voucher store driver:
 Directory:
  path: /etc/fdo/stores/owner_vouchers
session store driver:
 Directory:
  path: /etc/fdo/stores/owner_onboarding_sessions
trusted_device_keys_path: /etc/fdo/keys/device_ca_cert.pem
owner_private_key_path: /etc/fdo/keys/owner_key.der
owner_public_key_path: /etc/fdo/keys/owner_cert.pem
bind: "0.0.0.0:8081"
service info api url: "http://localhost:8083/device info"
service info api authentication:
 BearerToken:
  token: Kpt5P/5flBkaiNSvDYS3cEdBQXJn2Zv9n1D50431/lo=
owner addresses:
 - transport: http
  addresses:
   - ip_address: 192.168.122.149
```

3. Create and configure the Service Info API.

a. Add the automated information for onboarding, such as user creation, files to be copied or created, commands to be executed, disk to be encrypted, and so on. Use the Service Info API configuration file example in /usr/share/doc/fdo/serviceinfo-api-server.yml as a template to create the configuration file under /etc/fdo/.

```
service info:
 initial_user:
  username: admin
  sshkeys:
  - "ssh-rsa AAAA...."
 - path: /root/resolv.conf
  source_path: /etc/resolv.conf
 commands:
 - command: touch
  args:
  - /root/test
  return stdout: true
  return stderr: true
 diskencryption_clevis:
 disk_label: /dev/vda4
  binding:
   pin: tpm2
   config: "{}"
  reencrypt: true
 additional_serviceinfo: ~
bind: "0.0.0.0:8083"
device_specific_store_driver:
 Directory:
  path: /etc/fdo/stores/serviceinfo_api_devices
service_info_auth_token: Kpt5P/5flBkaiNSvDYS3cEdBQXJn2Zv9n1D50431/lo=
admin_auth_token: zJNoErq7aa0RusJ1w0tkTjdITdMCWYkndzVv7F0V42Q=
```

4. Check the status of the systemd units:

```
# systemctl list-unit-files | grep fdo
fdo-owner-onboarding-server.service disabled disabled
fdo-serviceinfo-api-server.service disabled disabled
```

a. If the service is stopped and disabled, enable and start it:

```
# systemctl enable --now fdo-owner-onboarding-server.service
# systemctl enable --now fdo-serviceinfo-api-server.service
```


NOTE

You must restart the **systemd** services every time you change the configuration files.

5. Check that the server is listening on the default configured port 8083:

ss -ltn

6. Open the port if you have a firewall configured on this server:

```
# firewall-cmd --add-port=8081/tcp --permanent
# firewall-cmd --add-port=8083/tcp --permanent
# systemctl restart firewalld
```

2.8. AUTOMATICALLY ONBOARDING A RHEL FOR EDGE DEVICE BY USING FDO AUTHENTICATION

To prepare your device to automatically onboard a RHEL for Edge device and provision it as part of the installation process, complete the following steps:

Prerequisites

- You built an OSTree commit for RHEL for Edge and used that to generate an edge-simplifiedinstaller artifact.
- Your device is assembled.
- You installed the **fdo-manufacturing-server** RPM package. See Installing the manufacturing server package.

Procedure

- 1. Start the installation process by booting the RHEL for Edge simplified installer image on your device. You can install it from a CD-ROM or from a USB flash drive, for example.
- Verify through the terminal that the device has reached the manufacturing service to perform
 the initial device credential exchange and has produced an ownership voucher.
 You can find the ownership voucher at the storage location configured by the
 ownership_voucher_store_driver: parameter at the manufacturing-sever.yml file.

The directory should have an **ownership_voucher** file with a name in the GUID format which indicates that the correct device credentials were added to the device.

The onboarding server uses the device credential to authenticate against the onboarding server. It then passes the configuration to the device. After the device receives the configuration from the onboarding server, it receives an SSH key and installs the operating system on the device. Finally, the system automatically reboots, encrypts it with a strong key stored at TPM.

Verification

After the device automatically reboots, you can log in to the device with the credentials that you created as part of the FDO process.

 Log in to the device by providing the username and password you created in the Service Info API.