

Catch Compositional Generalization in Deep Learning: Model, Meaning and Data

Qian Liu (qian.liu@buaa.edu.cn)

On Behalf of MSRA DKI Team

Alibaba Invited Talk @ 2021.09.16

Content

- 1 What is Compositional Generalization
- 2 Model: Learning Analytical Expressions
- 3 Meaning: Semantic Structure in Code
- 4 Data: Potential of Monolingual Data

The current state of AI programmers

Compositional Generalization

 The compositionality of programs ⇒ huge search space of programs

 Compositional Generalization: human intelligence exhibits the algebraic capacity to dynamically recombine exist

Infinite use of finite means.

— Noam Chomsky

Compositional Generalization in Cognition

Compositional generalization is an ability to recombine known parts to understand novel sentences which have never been encountered before.

Catch Compositional Generalization in Deep Learning: Model, Meaning and Data - Qian

Compositional Generalization in NL2Code

The Simplified version of the CommAI Navigation (SCAN) is a **synthetic** benchmark (Lake & Baroni. 2018) with navigation commands and action sequences.

自然语言 导航动作序列

训练集

run twice \implies RUN RUN

jump and walk \implies JUMP WALK

测试集 run and jump twice ⇒ RUN JUMP JUMP

Compositional Generalization in NL2Code

CFQ (Compositional Freebase Questions) is a **realistic** benchmark (Keysers et al. 2020) that comprehensively measure compositional generalization on KBQA.

Measuring Compositional Generalization

The SCAN benchmark is split in **handcraft ways** to form the challenges:

Add jump

jump walk twice walk around left

Train

Test

jump around left

No complex command of jump in training

Around Right

turn around left turn opposite right walk around left

turn around right

"around right" is held out from the training set

Length Generalization

look around left twice look around left twice after look

look around left twice after look around left

Train: length of the action sequence is shorter than 24 actions; Test: all action sequences longer than or equal to 24 actions.

Measuring Compositional Generalization

The CFQ benchmark is split based on automatic algorithms which highlight properties that intuitively correlate with compositional structure:

- (1) Similar atom distribution: All test atoms occur in train, and Distribution of atoms is similar between train and test.
- (2) Different compound distribution: Distribution of compounds is different between train and test.

Train Test

Who directed Inception? Who produced Inception?

Did Greta Gerwig produce Goldfinger?

Did Greta Gerwig direct Goldfinger?

Measuring Compositional Generalization

The SCAN split distribution

The CFQ split distribution

Credit: Russin et al. 2020

Credit: Keysers et al. 2020

A Promising Direction

Datasets

- ✓ **SCAN** (Lake & Baroni, ICML'18)
- ✓ CFQ (Keysers et al, ICLR'20)
- ✓ COGS (Kim & Linzen, EMNLP'20)
- ✓ Grounded SCAN (Ruis et al, NeurIPS'20)

- ✓ CGPS (Li et al, EMNLP'19)
- ✓ Meta Seq2Seq (Brenden M. Lake, NeurIPS'19)
- ✓ Permutation Equivariant Seq2Seq (Gordon et al, ICLR'20)
- ✓ GECA (Jacob Andreas, ACL'20)

. .

Far From Compositional Generalization

No model can successfully solve compositional challenges on SCAN!

Model	Add Jump	Around Right	Length
Seq2Seq	1.2	2.5	13.8
CNN	69.2	56.7	0.0
Syntactic Attention (Russin et al. 2019)	91.0	28.9	15.2
CGPS (Li et al. 2019)	98.8	83.2	20.3
GECA (Jacob Andreas. 2020)	86.0	82.0	-
Meta Seq2Seq (Brenden M. Lake. 2019)	99.9	99.9	16.6
Equivariant Seq2Seq (Gordon et al. 2020)	99.1	92.0	15.9

*green models trained w/o extra resources

*blue models trained with extra resource

Opportunities: from the perspective of ML

Model: Cooperative Modules

Compositional Generalization by Learning Analytical Expressions [NeurIPS'20]

Meaning: Semantic Structure in Code

Hierarchical Poset Decoding for Compositional Generalization in Language [NeurIPS'20]

• Data: Potential of Monolingual Data

Revisiting Iterative Back-Translation from the Perspective of Compositional Generalization [AAAI'20]

Content

- 1 What is Compositional Generalization
- Model: Cooperative Modules
- 3 Meaning: Semantic Structure in Code
- 4 Data: Potential of Monolingual Data

Model on Compositionality

The compositionality of language constitutes an algebraic system, of the sort that can be captured by symbolic functions with variable slots (M. Baroni, 2019).

Learn Analytical Expressions

The understanding of "run opposite left after walk twice" can be regarded as a hierarchical application of symbolic functions.

LANE: Memory-Augmented Model

We propose a memory-augmented neural model to achieve compositional generalization by automatically learning the above analytical expressions.

LANE: Memory-Augmented Model

Our model understands via interaction between Composer, Solver and Memory.

Composer: Find Expressions by Merging

Composer gradually merges elements of the input until a recognizable source analytical expression appears, just as building a binary tree from bottom to top

The Training is Challenging!

Challenges

(i) Discrete Action, Non-differentiable.

(ii) Sparse Reward, Hard to Train.

Solutions

(i) Hierarchical Reinforcement Learning.

(ii) Curriculum Learning.

Evaluate on SCAN

Evaluate on Longer Inputs

Languages license a theoretically infinite set of sentences due to compositionality, and our model maintains a perfect trend as the input length increases.

Extend to More Realistic Scenarios

SCAN aims to raise the attention on compositional generalization, which simplifies the compositional generalization issue under real scenarios.

CFQ (NL-to-SPARQL)

x Did a male film director edit and direct Star Wars?

Y SELECT count (*) WHERE {

?x0 ns:film.director.film m_06mmr . ?x0 ns:film.editor.film m_06mmr .

?x0 ns:people.person.gender m_05zppz }

COGS (NL-to-Logic)

x Charlotte was given the cake on a table.

Y cake(x_4); give.recipient (x_2, Charlotte)

AND give.theme(x_2,x_4)

AND cake.nmod.on(x_4, x_7)

AND table(x_7)

GEOQuery (NL-to-SQL)

x What state has the largest area?

Y SELECT state.name FROM state WHERE state.area =

(SELECT MAX(state.area) FROM state)

Part I. Model

Compositional Generalization by Learning Analytical Expressions [NeurIPS'20]

- The key for compositionality is to regard language as an algebraic system, which be captured by analytical expressions.
- Learning analytical expressions can be modeled as the joint optimization of three cooperative modules.
- Latent discrete actions between modules can be tackled by the combination of hierarchical reinforcement learning and curriculum learning.

Content

- 1 What is Compositional Generalization
- 2 Model: Cooperative Modules
- Meaning: Semantic Structure in Code
- 4 Data: Potential of Monolingual Data

Partial Permutation Invariance

- Semantics is usually invariant to permute some components in code.
- There are many equivalent meaning representations, but current deep learning decoders just select one certain order as the target for optimization.

```
SELECT DISTINCT ?x0 WHERE {
    ?x0 PRODUCE [M2] .
    ?x0 FOUND [M0] .
    ?x0 NATIONALITY ns:m.0d0vqn
    ?x0 NATIONALITY ns:m.0d0vqn
}

SELECT DISTINCT ?x0 WHERE {
    ?x0 FOUND [M0] .
    ?x0 PRODUCE [M2] .
}
```

Decoding Order

Imposing additional ordering constraints increases learning complexity, thus limiting compositional generalization.

Semantic Meaning as Poset

- Poset (Partially Ordered SET)
 - Poset is a set with a partial order relation (reflexive, antisymmetric, and transitive).
 - Every poset can take the form of a DAG (Directed Acyclic Graph).
- Decode a poset, rather than a sequence/tree.

Hierarchical Poset Decoding

Evaluate on CFQ

Models	MCD1	MCD2	MCD3
LSTM+Attention (Keysers et al., 2020)	28.9%	5.0%	10.8%
Transformer (Keysers et al., 2020)	34.9%	8.2%	10.6%
Universal Transformer (Keysers et al., 2020)	37.4%	8.1%	11.3%
LSTM+Attention (with simplified SPARQL expression) Transformer (with simplified SPARQL expression)	42.2%	14.5%	21.5%
	53.0%	19.5%	21.6%
Seq2Tree (Dong and Lapata, 2016)	24.3%	4.1%	6.3%
CGPS (Li et al., 2019)	4.81%	1.04%	1.82%
Hierarchical Poset Decoding with Seq2Seq-based sketch prediction with Seq2Tree-based sketch prediction w/o Hierarchical Mechanism	79.6% 74.3% 75.7% 21.3%	59.6% 45.7% 40.9% 6.4%	67.8% 50.2% 51.1% 10.1%

Part II. Meaning

Hierarchical Poset Decoding for Compositional Generalization in Language [NeurIPS'20]

- Poset structure in semantics is a key factor for compositional generalization in language.
- Hierarchical Poset Decoding on the formal language can significantly enhance the compositional generalization (CFQ 18.9→69.0).

Content

- 1 What is Compositional Generalization
- 2 Model: Cooperative Modules
- 3 Meaning: Semantic Structure in Code
- Data: Potential of Monolingual Data

Monolingual Data on Compositionality

- NL-Code parallel data are limited and expensive.
- NL/Code monolingual data are cheap and abundant.

Unlabeled programs

Revisiting Iterative Back-Translation

 Dual structure for exploiting large-scale monolingual data (natural language utterances & programs)

Models	MCD1	MCD2	MCD3
LSTM+Attn	28.9 ± 1.8	5.0 ± 0.8	10.8 ± 0.6
Transformer	34.9 ± 1.1	8.2 ± 0.3	10.6 ± 1.1
Uni-Transformer	37.4 ± 2.2	8.1 ± 1.6	11.3 ± 0.3
CGPS	13.2 ± 3.9	1.6 ± 0.8	6.6 ± 0.6
T5-11B	61.4 ± 4.8	30.1 ± 2.2	31.2 ± 5.7
GRU+Attn (Ours)	32.6 ± 0.22	6.0 ± 0.25	9.5 ± 0.25
+mono30	64.8 ± 4.4	$\textbf{57.8} \pm \textbf{4.9}$	64.6 ± 4.9
+mono100	83.2 ± 3.1	71.5 ± 6.9	81.3 ± 1.6
+transductive	88.4 ± 0.7	81.6 ± 6.5	88.2 ± 2.2

Workflow of iterative back-translation

Self-cleaning of pseudo-parallel data

Results on CFQ: good compositional generalization

Reference

- [1]. Lake et al. Human few-shot learning of compositional instructions. In CogSci 2019.
- [2]. Lake & Baroni. Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks. In ICML 2018.
- [3]. Keysers et al. Measuring Compositional Generalization: A Comprehensive Method on Realistic Data. In ICLR 2020.
- [4]. Russin et al. Compositional generalization by factorizing alignment and translation. In EMNLP 2020 Student Workshop.
- [5]. Kim & Linzen COGS: A compositional generalization challenge based on semantic interpretation. In EMNLP 2020.
- [6]. Ruis et al. A Benchmark for Systematic Generalization in Grounded Language Understanding. In NeurIPS 2020.
- [7]. Li et al. Compositional Generalization for Primitive Substitutions. In EMNLP 2019.
- [8]. Brenden M. Lake. Compositional generalization through meta sequence-to-sequence learning. In NeurIPS 2019.
- [9]. Gordon et al. Permutation Equivariant Models for Compositional Generalization in Language. In ICLR 2020.
- [10]. Jacob Andreas. Good-Enough Compositional Data Augmentation. In ACL 2020.
- [11]. M. Baroni. Linguistic generalization and compositionality in modern artificial neural networks. In Phil. Trans. R. Soc. B. 2019.
- [12]. Dong and Lapata. Language to Logical Form with Neural Attention. In ACL 2016.

Thanks & QA