Exercise Sheet 4: Advanced Linear Algebra Topics Template

Introduction

1 Advanced Linear Algebra Topics

1.1 Example Problem

Let V be a vector space with inner product $\langle \cdot, \cdot \rangle$. Show that the orthogonal complement of a subspace W of V is also a subspace of V.

Solution

Let W be a subspace of V. The orthogonal complement of W, denoted W^{\perp} , is defined as:

$$W^{\perp} = \{ \mathbf{v} \in V \mid \langle \mathbf{v}, \mathbf{w} \rangle = 0 \text{ for all } \mathbf{w} \in W \}.$$

To show that W^{\perp} is a subspace of V, we need to verify three conditions:

- 1. The zero vector is in W^{\perp} : Since $\langle \mathbf{0}, \mathbf{w} \rangle = 0$ for any $\mathbf{w} \in W$, $\mathbf{0}$ is in W^{\perp} .
- 2. Closure under addition: Let $\mathbf{v}_1, \mathbf{v}_2 \in W^{\perp}$. Then, for any $\mathbf{w} \in W$:

$$\langle \mathbf{v}_1 + \mathbf{v}_2, \mathbf{w} \rangle = \langle \mathbf{v}_1, \mathbf{w} \rangle + \langle \mathbf{v}_2, \mathbf{w} \rangle = 0 + 0 = 0,$$

so $\mathbf{v}_1 + \mathbf{v}_2$ is in W^{\perp} .

3. Closure under scalar multiplication: Let c be a scalar and $\mathbf{v} \in W^{\perp}$. Then, for any $\mathbf{w} \in W$:

$$\langle c\mathbf{v}, \mathbf{w} \rangle = c \langle \mathbf{v}, \mathbf{w} \rangle = c \cdot 0 = 0,$$

so $c\mathbf{v}$ is in W^{\perp} .

Since all three conditions are satisfied, W^{\perp} is a subspace of V.