ED5340 - Data Science: Theory and Practise

L17 - Linear Regression: Univariate

Ramanathan Muthuganapathy (https://ed.iitm.ac.in/~raman)

Course web page: https://ed.iitm.ac.in/~raman/datascience.html

Moodle page: Available at https://courses.iitm.ac.in/

Supervised Leaning

- Ground truth data Input feature / output (\mathbf{x}, \mathbf{y}) are the knowns
- Use a model / hypothesis as h(w)
- Develop an error / cost / loss function $J(w) = J(\mathbf{y}, \bar{\mathbf{y}}) = J(\mathbf{y}, h(w))$
- The weights are identified by
 - $\min J(w)$
- Essentially, ML problem is now reduced to an optimization problem.
- Weights are identified using Optimization.

Supervised Leaning

- Ground truth data Input feature / output (x, y) are the knowns
- Use a model / hypothesis as h(w) and cost function J(w)

Input (x)

Hypothesis h(w)

Loss function J(w)

Weights / Parameters

Supervised Leaning

- (x, y) (Sq. ft, Price)
- Datapoints / Training samples

•
$$\mathbf{x} = (x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)})$$

•
$$\mathbf{y} = (y^{(1)}, y^{(2)}, y^{(3)}, \dots, y^{(m)})$$

• *m* training sample

Goal: Approximation that fits the data

•
$$\mathbf{x} = (x^{(1)}, x^{(2)}, x^{(3)}, \dots x^{(m)})$$

•
$$\mathbf{y} = (y^{(1)}, y^{(2)}, y^{(3)}, \dots, y^{(m)})$$

 Look at the data, a straight line fit is probably good

Goal: Approximation that fits the data

- Hypothesis function
- $h_w(x) = w_0 + w_1 x$
- Goal: Determine weights (w_0, w_1)
- w_0 bias

Some candidates

Ramanathan Muthuganapathy, Department of Engineering Design, IIT Madras

Case of best fit!

Cost function

Ramanathan Muthuganapathy, Department of Engineering Design, IIT Madras

Predicted values

•
$$\mathbf{x} = (x^{(1)}, x^{(2)}, x^{(3)}, \dots x^{(m)})$$

•
$$\mathbf{y} = (y^{(1)}, y^{(2)}, y^{(3)}, \dots, y^{(m)})$$

•
$$\bar{\mathbf{y}} = (\bar{y}^{(1)}, \bar{y}^{(2)}, \bar{y}^{(3)}, \dots \bar{y}^{(m)})$$

•
$$\bar{y}^{(i)} = h_w(x^{(i)}) = w_0 + w_1 x^{(i)}$$

• Goal: Determine weights (w_0, w_1)

Cost function

- Minimize the distance between $(\mathbf{y}, \overline{\mathbf{y}})$
- $(\bar{y}^{(i)} y^{(i)})^2$ for every sample
- Compute the sum
- Take the average

Cost function

• Minimize the distance between $(\mathbf{y}, \bar{\mathbf{y}})$

$$J(\mathbf{y}, \bar{\mathbf{y}}) = \sum_{i=1}^{m} \frac{1}{2m} (\bar{y}^{(i)} - y^{(i)})^2$$

Cost function

• Minimize the distance between $(\mathbf{y}, \bar{\mathbf{y}})$

•
$$J(w) = J(\mathbf{y}, \bar{\mathbf{y}}) = J(\mathbf{y}, h(w))$$

$$J(w) = \sum_{i=1}^{m} \frac{1}{2m} (\bar{y}^{(i)} - y^{(i)})^2$$

$$J(w) = \sum_{i=1}^{m} \frac{1}{2m} (h_w(x^{(i)}) - y^{(i)})^2$$

Cost function

$$J(w) = \sum_{i=1}^{m} \frac{1}{2m} (h_w(x^{(i)}) - y^{(i)})^2$$

$$J(w) = \sum_{i=1}^{m} \frac{1}{2m} (w_0 + w_1 x^{(i)} - y^{(i)})^2$$

$$x^{(1)} \qquad \text{Sa.} \qquad (x)$$

$$(w_0 = ?, w_1 = ?)$$

Minimize the cost function

$$J(w) = \sum_{i=1}^{m} \frac{1}{2m} (w_0 + w_1 x^{(i)} - y^{(i)})^2$$
 • min $J(w)$

Example data

Example data

Plotting the cost function
$$J(w) = \sum_{i=1}^{m} \frac{1}{2m} (w_0 + w_1 x^{(i)} - y^{(i)})^2$$

Linear Regression - Cost function

$$J(w) = \sum_{i=1}^{m} \frac{1}{2m} (w_0 + w_1 x^{(i)} - y^{(i)})^2 \quad (w_0 = 0, w_1 = \text{varying})$$

Ramanathan Muthuganapathy, Department of Engineering Design, IIT Madras

Linear Regression - Cost function

 $J(w) = \sum_{i=1}^{m} \frac{1}{2m} (w_0 + w_1 x^{(i)} - y^{(i)})^2 \quad w_0 & w_1 \text{ are varying})$

Linear Regression - Cost function

 $J(w) = \sum_{i=1}^{m} \frac{1}{2m} (w_0 + w_1 x^{(i)} - y^{(i)})^2 \quad w_0 & w_1 \text{ are varying})$

Ramanathan Muthuganapathy, Department of Engineering Design, IIT Madras

$$J(w) = \sum_{i=1}^m \frac{1}{2m} (w_0 + w_1 x^{(i)} - y^{(i)})^2$$
 Find $\nabla J(w_0, w_1) = \left(\frac{\partial J}{\partial w_0}, \frac{\partial J}{\partial w_1}\right)$

Find
$$\nabla J(w_0,w_1)=\left(\frac{\partial J}{\partial w_0},\frac{\partial J}{\partial w_1}\right)$$

$$J(w) = \sum_{i=1}^{m} \frac{1}{2m} (w_0 + w_1 x^{(i)} - y^{(i)})^2$$

• Find
$$\nabla J(w_0,w_1)=\left(\frac{\partial J}{\partial w_0},\frac{\partial J}{\partial w_1}\right)$$

$$J(w) = \sum_{i=1}^{n} \frac{1}{2m} (w_0 + w_1 x^{(i)} - y^{(i)})^2$$

$$Find \nabla J(w_0, w_1) = \left(\frac{\partial J}{\partial w_0}, \frac{\partial J}{\partial w_1}\right)$$

$$\frac{\partial J}{\partial w_0} = \frac{1}{m} \sum_{i=1}^{m} (w_0 + w_1 x^{(i)} - y^{(i)})$$

$$\frac{\partial J}{\partial w_0} = \frac{1}{m} \sum_{i=1}^{m} (w_0 + w_1 x^{(i)} - y^{(i)})$$

$$\frac{\partial J}{\partial w_1} = \frac{1}{m} \sum_{i=1}^{m} (w_0 + w_1 x^{(i)} - y^{(i)}) x^{(i)}$$

$$J(w) = \sum_{i=1}^{m} \frac{1}{2m} (w_0 x^{(0)} + w_1 x^{(i)} - y^{(i)})^2, x^{(0)} = 1$$

$$Find \nabla J(w_0, w_1) = \left(\frac{\partial J}{\partial w_0}, \frac{\partial J}{\partial w_1}\right)$$

$$\frac{\partial J}{\partial w_0} = \frac{1}{m} \sum_{i=1}^{m} (w_0 x^{(0)} + w_1 x^{(i)} - y^{(i)}) x^{(0)}$$

Find
$$\nabla J(w_0, w_1) = \left(\frac{\partial J}{\partial w_0}, \frac{\partial J}{\partial w_1}\right)$$

$$\frac{\partial J}{\partial w_0} = \frac{1}{m} \sum_{i=1}^{m} (w_0 x^{(0)} + w_1 x^{(i)} - y^{(i)}) x^{(0)}$$

$$\frac{\partial J}{\partial w_1} = \frac{1}{m} \sum_{i=1}^{m} (w_0 x^{(0)} + w_1 x^{(i)} - y^{(i)}) x^{(i)}$$

- Starting point $w^* = (w_0^*, w_1^*)$
- Compute J, $-\nabla J$ at $w_k^* = w^*$.
- Update w's
 - $w_{k+1}^* = w_k^* \alpha_k \nabla J$ (Fix a value for α_k (= 0.01), learning rate)
- Check for stopping criteria
- Else continue the iteration

Gradient descent

Learning rate

- Update w's
 - $\bullet \ w_1^{k+1} = w_1^k \alpha_k \nabla J$
 - w_1^{k+1} will decrease

Gradient descent

Learning rate

- Update w's
 - $\bullet \ w_1^{k+1} = w_1^k \alpha_k \nabla J$
 - w_1^{k+1} will increase

Machine Learning Refined

• https://github.com/jermwatt/machine_learning_refined