Strong Principle of Mathematical Induction

- Read carefully pages 161 through 164 (section 6.4)
- Some key questions to answer:
 - 1. What does the *strong principle of mathematical induction* state? How is it different from the other principles of mathematical induction?
 - 2. What does the more general version of the strong principle of mathematical induction say?
 - 3. What are recursively defined sequences? How is the strong principle of mathematical induction related to them?
 - 4. If a sequence is defined recursively by $a_1 = 1$, $a_2 = 4$, $a_n = 2a_{n-1} a_{n-2} + 2$ for all $n \ge 3$, then show that in fact $a_n = n^2$ for all n.
 - 5. Show that for each integer $n \ge 8$ there are nonnegative integers a, b such that n = 3a + 5b.
 - 6. The Fibonacci numbers are defined via the recursive relation $F_1 = 1$, $F_2 = 1$, then for each $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$.
 - Define the number $\varphi = \frac{1+\sqrt{5}}{2}$, and also denote $\bar{\varphi} = \frac{1-\sqrt{5}}{2}$. Show that both φ and $\bar{\varphi}$ satisfy the equation $x^2 = x + 1$. (this is technically not directly related to the Fibonacci numbers). φ is known as the *golden ratio* and has many interesting properties.
 - Show more generally that for every $n \ge 2$ both φ and $\bar{\varphi}$ satisfy the equation $x^n = x^{n-1} + x^{n-2}$.
 - Show by the principle of strong induction that for every $n \ge 1$ we have $F_n = \frac{1}{\varphi \bar{\varphi}} \left(\varphi^n \bar{\varphi}^n \right)$. If you think about it for a minute, it's remarkable that this formula even produces integers.
- Practice problems from section 6.4 (page 167): 6.41, 6.43, 6.44, 6.45
- Challenge: 6.46, 6.47