Module-1

Introduction to Finite Automata

Models of Computation

Computation

Example:
$$f(x) = x^3$$

$$f(x) = x^3$$

temporary memory

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

input memory

$$x=2$$

output memory

Program memory

compute x * x

CPU

$$x^2 * x$$

temporary memory

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

input memory

$$x=2$$

$$f(x) = 8$$

output memory

Program memory

compute
$$x * x$$

CPU

$$x^2 * x$$

Automata theory is the study of abstract machines and automata.

The computational problems can be solved using them.

It is a theory in theoretical computer science and discrete mathematics

Automaton

Different Kinds of Automata

Automata are distinguished by the temporary memory

• Finite Automata: no temporary memory

· Pushdown Automata: stack

· Turing Machines: random access memory

Finite Automaton

Example: Vending Machines (small computing power)

Pushdown Automaton

Example: Compilers for Programming Languages (medium computing power)

Turing Machine

Examples: Any Algorithm (highest computing power)

Power of Automata

Finite
Pushdown
Automata
Automata

Machine

Solve more
computational problems

Turing
Machine

Applications of finite automata

- For the designing of lexical analysis of a compiler which breaks the input text into logical units like identifiers, keywords etc.
- > For recognizing the pattern using regular expressions.
- > For the designing of the combination and sequential circuits.
- > Software for designing and checking the behavior of digital circuits.
- Used in text editors.
- > For the implementation of spell checkers.
- Software for scanning large bodies of text like web pages to find occurrence of words, phrases and other patterns.
- > Software to verify all types that have finite number of distinct states such as communications protocols for secure exchange of information.

Applications of Push Down Automata

- For designing the parsing phase of a compiler (Syntax Analysis).
- > For implementation of stack applications.
- > For evaluating the arithmetic expressions.
- > For solving the Tower of Hanoi Problem.

Applications of Turing machine

- > For solving any recursively enumerable problem.
- > For understanding complexity theory.
- > For implementation of neural networks.
- > For implementation of Robotics Applications.
- > For implementation of artificial intelligence.

General Concepts of Automata Theory

- Symbol
- Alphabet
- Strings
- Empty Strings
- Length of the string
- Power of an Alphabet
- Concatenation of two strings
- Languages

Alphabets and Strings

Symbol: a, b, 1, 2, 3, 0, etc.

• We will use small alphabets: $\Sigma = \{a,b\}$

Strings a

ab

abba

baba

aaabbbaabab

$$u = ab$$

$$v = bbbaaa$$

$$w = abba$$

String Operations

$$w = a_1 a_2 \cdots a_n$$

$$v = b_1 b_2 \cdots b_m$$

abba

bbbaaa

1. Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

abbabbbaaa

2. Reverse

$$w = a_1 a_2 \cdots a_n$$

$$w^R = a_n \cdots a_2 a_1$$

3. String Length

$$w = a_1 a_2 \cdots a_n$$

Length:
$$|w| = n$$

ababaaabbb

bbbaaababa

Examples:

$$|abba| = 4$$

$$|aa|=2$$

$$|a|=1$$

4. Length of Concatenation

$$|uv| = |u| + |v|$$

Example:

$$u = aab$$
, $|u| = 3$
 $v = abaab$, $|v| = 5$

$$|uv| = |aababaab| = 8$$

 $|uv| = |u| + |v| = 3 + 5 = 8$

5. Empty String

• A string with no letters: λ or ϵ

• Observations: $|\mathcal{A}| = 0$

$$\lambda w = w\lambda = w$$

$$\lambda abba = abba\lambda = abba$$

6. Substring

Substring of string:

a subsequence of consecutive characters

String	Substring
abbab	ab
<u>ab</u> bab	abba
<u>abba</u> b	b
abbab	bbab

7. Prefix and Suffix

abbab

Prefixes Suffixes

abbab

a bbab

ab bab

abb ab

abba b

abbab 7

8. Another Operation

$$w^n = \underbrace{ww\cdots w}_n$$

• Example: $(abba)^2 = abbaabba$

• Definition: $w^0 = \lambda$

$$(abba)^0 = \lambda$$

9. The * Operation

 Σ^* the set of all possible strings from Σ alphabet

$$\Sigma = \{a, b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

10. The + Operation

 Σ^+ : the set of all possible strings from alphabet Σ except $\, \lambda \,$

$$\Sigma = \{a, b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

$$\Sigma^+ = \Sigma * - \lambda$$

$$\Sigma^{+} = \{a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

Languages

A language is a set of strings

- String: A sequence of letters
 - Examples: "cat", "dog", "house", ...
 - Defined over an alphabet:

$$\Sigma = \{a, b, c, \dots, z\}$$

• A language is any subset of $\Sigma *$

Example:

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,...\}$$

Languages:

```
\{\lambda\}
\{a,aa,aab\}
\{\lambda,abba,baba,aa,ab,aaaaaa\}
```


Note that

$$\emptyset = \{ \} \neq \{\lambda\}$$

$$|\{\ \}| = |\varnothing| = 0$$

$$|\{\lambda\}| = 1$$

String length
$$|\lambda| = 0$$

Another Example

An infinite language

$$L = \{a^n b^n : n \ge 0\}$$

λ ab aabb aaaaabbbbb

$$\equiv L$$

 $abb \notin L$

Operations on Languages

1. The usual set operations

$${a,ab,aaaa} \cup {bb,ab} = {a,ab,bb,aaaa}$$

 ${a,ab,aaaa} \cap {bb,ab} = {ab}$
 ${a,ab,aaaa} - {bb,ab} = {a,aaaa}$

Complement:
$$\overline{L} = \Sigma^* - L$$

$$\overline{\{a,ba\}} = \{\lambda,b,aa,ab,bb,aaa,\ldots\}$$

2. Reverse

Definition:
$$L^R = \{ w^R : w \in L \}$$

Examples: $\{ab, aab, baba\}^R = \{ba, baa, abab\}$ $L = \{a^n b^n : n \ge 0\}$

$$L^R = \{b^n a^n : n \ge 0\}$$

3. Concatenation

- Definition: $L_1L_2=\{xy:x\in L_1,y\in L_2\}$

• Example: $\{a,ab,ba\}\{b,aa\}$

 $=\{ab,aaa,abb,abaa,bab,baaa\}$

4. Another Operation

• Definition: $L^n = \underbrace{LL \cdots L}_n$

$${a,b}^3 = {a,b}{a,b}{a,b} =$$

 ${aaa,aab,aba,abb,baa,bab,bba,bbb}$

 $L^{0} = \{\lambda\}$

Special case:

$$\{a,bba,aaa\}^0 = \{\lambda\}$$

More Examples

$$L = \{a^n b^n : n \ge 0\}$$

$$L^{2} = \{a^{n}b^{n}a^{m}b^{m} : n, m \ge 0\}$$

$$aabbaaabbb \in L^2$$

5. Star-Closure (Kleene *)

Definition:
$$L^* = L^0 \cup L^1 \cup L^2 \cdots$$

$$\{a,bb\}^* =$$

• Example: $\{a,bb\}^* = \begin{cases} \lambda, \\ a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$

6. Positive Closure

Definition:
$$L^{+} = L^{1} \cup L^{2} \cup \cdots$$
$$= L * -\{\lambda\}$$
$$\{a,bb\}^{+} = \begin{cases} a,bb,\\ aa,abb,bba,bbb,\\ aaa,aabb,abba,abbb,\ldots \end{cases}$$

Language Recognizers : An example of Finite Automata

An automaton is an abstract model of a digital computer.

Finite Automata(FA) is the simplest machine to recognize patterns.

Finite Automaton

Representation of Finite Automata

Finite Automata is represented by -

- 1. Transition Graph
- 2. Transition Table
- 3. Regular Expression

Transition Graph

Initial Configuration

Input String

a b b a

Reading the Input

a b b a

Input finished

accept

Rejection

a b a

Input finished

Another Rejection

 λ

Another Example

Input finished

Rejection Example

b | a | b |

Input finished

Languages Accepted by FAs

Definition:

The language L(M) contains all input strings accepted by M

$$L(M)$$
 = { strings that bring M to an accepting state}

Example

$$L(M) = \{abba\}$$

M

Example

$$L(M) = \{\lambda, ab, abba\}$$

Example

$$L(M) = \{a^n b : n \ge 0\}$$

Formal Definition

Finite Automaton (FA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state

Input Alphabet Σ

•
$$\Sigma = \{a,b\}$$

Set of States Q $Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$

Initial State q_0

•

Set of Accepting States F

•
$$F = \{q_4\}$$

Transition Function δ

$$\delta: Q \times \Sigma \to Q$$

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Transition Table

δ	а	b
$\rightarrow q_0^{\bullet}$	q_1	q ₅
q_1	q ₅	92
92	q_5	<i>q</i> ₃
<i>q</i> ₃	<i>q</i> ₄	q ₅
<i>q</i> ₄	q ₅	q ₅
q_5^*	q ₅	q ₅

Extended Transition Function δ^*

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta * (q_0, ab) = q_2$$

$$\delta * (q_0, abba) = q_4$$

$$\delta * (q_0, abbbaa) = q_5$$

Observation: if there is a walk from q to q' with label $\mathcal W$ then

$$\delta * (q, w) = q'$$

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

Example: There is a walk from q_0 to q_5 with label abbbaa

$$\delta * (q_0, abbbaa) = q_5$$

Recursive Definition

$$\delta * (q, \lambda) = q$$

$$\delta * (q, w\sigma) = \delta(\delta * (q, w), \sigma)$$

$$\delta * (q, w\sigma) = q'$$

$$\delta * (q, w\sigma) = \delta(q_1, \sigma)$$

$$\delta * (q, w\sigma) = \delta(q_1, \sigma)$$

$$\delta * (q, w\sigma) = \delta(\delta * (q, w), \sigma)$$

$$\delta * (q, w) = q_1$$

$$\Rightarrow \mathsf{PRESIDENCY}$$

$$\delta * (q_0, ab) =$$

$$\delta(\delta * (q_0, a), b) =$$

$$\delta(\delta(\delta * (q_0, \lambda), a), b) =$$

$$\delta(\delta(q_0, a), b) =$$

$$\delta(q_1, b) =$$

$$q_2$$

$$q_1 \qquad b \qquad a, b$$
PRESUGATION (q_1) b \q_2 b \q_3 a \q_4

Check the string acceptance of abba

```
• \delta^*(qo,abba) = \delta(\delta^*(q0,abb), a)
                  =\delta(\delta(\delta^*(q_0,a_b),b),a)
                  = \delta(\delta(\delta(\delta(\delta^*(q0,a),b),b),a)
                  = \delta(\delta(\delta(\delta(\delta(\delta^*(q0,\lambda),a),b),b),a)
                  = \delta(\delta(\delta(\delta(q_0,a),b),b),a)
                  =\delta(\delta(\delta(q1,b),b),a)
                  =\delta(\delta(q2,b),a)
                  =\delta(q3,a)
                  =q4 € F
```

String abba is accepted as q4 is a final state

Language Accepted by FAs

• For a FA $M = (Q, \Sigma, \delta, q_0, F)$

• Language accepted by : M

•
$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

Example

L(M)= { all strings with prefix ab }

L=strings with substring '101' over {0, 1}

Example

```
L(M) = \{ all strings without substring 001 \}
```


Example

$$L(M) = \{awa : w \in \{a,b\}^*\}$$

Regular Languages

- Definition:
- ullet A language L is regular if there is
- FA M such that L = L(M)
- Observation:
- All languages accepted by FAs
- form the family of regular languages

•

Examples of regular languages:

```
\{abba\} \{\lambda, ab, abba\}
\{awa: w \in \{a,b\}^*\} \ \{a^nb: n \ge 0\}
\{ all strings with prefix ab\}
{ all strings without substring 001 }
There exist automata that accept these
Languages
```


There exist languages which are not Regular:

Example:
$$L=\{a^nb^n:n\geq 0\}$$

There is no FA that accepts such a language

(we will prove this later in the class)

Deterministic Finite Automata

- Every State should have transition over every input symbol
- There should be only One next state for each transition
- DFA is defined as

$$M = (Q, \Sigma, \delta, q_0, F)$$

Design DFA that accepts language L= $\{ w : |w| \mod 3 = 0 \}$ over $\sum = \{a, b\}$

Solution

- \gt Strings accepted= { ϵ , aaa, bbb, aba, aab, bab, aaabbb, ababab, ...}
- >Strings rejected= {a, b, ab, ba, abab, baba, bbaa, aaabb, ...}
- >Transition Diagram

Consider Sample String : a a b ↑

Consider Sample String: a a b ↑

Consider Sample String: a a b ↑

- **≻**Consider Sample String : a a b
- > String is accepted

Acceptance State

Consider Another Sample String: baba

Consider Another Sample String: baba

➤ Consider Another Sample String : b a b a

Consider Another Sample String: baba

DFA Example

- **≻**Consider Another Sample String: **b** a b a
- > String is rejected

Rejection State

DFA Example

- >DFA Tuples $M=(Q, \Sigma, \delta, q0, F)$
- $ightharpoonup Q = \{q0, q1, q4\}$
- $\triangleright \Sigma = \{a, b\}$
- $\succ \delta$ = Transition function represented by Transition table
- ➤ q0= Initial State
- F= {q0} → Acceptance State

DFA Example

► Transition Table

Σ Q	а	b
_ * q0	q1	q1
q1	q4	q4
q4	q0*	q0*

DFA - Starts with a, $\Sigma = \{a,b\}$

• L= { a,aa,ab,aaa,aab,aba,....}

DFA - Starts with ab , $\Sigma = \{a,b\}$

• L= { ab,aba,abb,....}

DFA - Starts with aa , $\Sigma = \{a,b\}$

• L = { aa,aab,aaba,....}

DFA - Starts with aba, $\Sigma = \{a,b\}$

• L={ aba,abaa,abab,abaaa,...}

DFA - Starts with 101, $\Sigma = \{0,1\}$

• L={ 101,1010,1011,101101,...}

Ends with a

• L={a,aa,ba,aaa,aba,...}

Ends with 1, $\Sigma = \{0,1\}$

• L={ 1,01,11,...}

Ends with ab
• L={ab,aab,bab,aaab,bbbbab,abab,...}

Ending with bab

DFA – Ends with 111, $\Sigma = \{0,1\}$

DfA – Substring 101
• L={ 101,0101,1101,1010,1011,00010111,...}

DFA- Contains 111

• L={ 111,0111,11111,000111000,111111000,...}

DFA – Contains 1011

• L= { 1011,01011,11011,00010111,...}

DFA- Even no of 0s, $\Sigma = \{0,1\}$ or n0(w)mod2=0

• L={ λ , 1,1111,00,0000,11100,1110000,0000111,...}

Transitio n	0	1
*->q0	q1	q0
q1	qo	q1

DFA- strings with even number of 0's over {0, 1}

DFA – Odd no of 0's, $\Sigma = \{0,1\}$ or n0(w)mod2=1

• L={ 0,01,1110,000,00001111,...}

L=PFAbbbpaawymad3=Bb $\Sigma={a,b}$

DFA- nb(w)mod4=1, Σ ={ a,b}

DfA - n1(w)mod3=2, Σ ={ 0,1}

Dfa -lwlmod2=0,

DfA - lwlmod2=1

L={a,b,aaa,aba,aab,baa,bbb,baba,bba,....

DFA –lwlmod3=0, Σ ={ 0,1}

DFA: string with even number of 0's & odd number of 1's over {0, 1}

No of a's is even and no of b's oddeo

No of a's is odd and no of b's even=oe

No of a's is odd and no of b's odd-oo

No of a's is even and no of b's evenee

NFA Definition

NFA is defined as $M=(Q, \sum, \delta, q0, F)$

Where, Q= set of states

 Σ = input alphabet

δ = transition function **δ**: Q X ($\Sigma \cup \{\epsilon\}$) $\rightarrow 2^Q$

q0→ Start / Initial State

 $F \rightarrow$ set of acceptance state

NFA Example

Design NFA that accepts language of strings ending with ab/ba over $\Sigma = \{a, b\}$

Solution

- >Strings accepted= {ab, ba, abab, baba, bbab, aaaba, ...}
- \gt Strings rejected= { ϵ , a, b, aa, bb, aaa, abb, aaabbb, ...}
- >Transition Diagram

NFA to DFA Conversion Example

Convert NFA to DFA that accepts language of strings ending with ab/ba over $\Sigma = \{a, b\}$

Solution

- **▶** Draw NFA for given language
- **➤** Convert that NFA into DFA using subset construction method

NFA to DFA Conversion Example

- Using Subset Construction Method
- Consider {q0} as Start State
- $\succ \delta(q0, a) = \{q0 \ q1\}$ newly formed state
- > $\delta(\{q0 \ q1\}, a) = \delta(q0, a) \cup \delta(\{q1, a\})$ = $\{q0, q1\} \cup \{\emptyset\}$ = $\{q0 \ q1\}$
- > $\delta(\{q0 \ q1\}, b) = \delta(q0, b) \cup \delta(\{q1, b\})$ = $\{q0, q3\} \cup \{q2\}$ = $\{q0 \ q2 \ q3\}$

NFA	а	b
q0	{q0, q1}	{q0, q3}
q1	-	{q2}
q2	-	-
q3	{q4}	-
q4	-	-

DFA	a	b
q0	{q0 q1}	{q0 q3}
{q0 q1}	{q0 q1}	{q0 q2 q3}

NFA to DFA Conversion Example

```
Using Subset Construction Method
                                                                                    NFA
                                                                                                                 b
                                                                                                 a
Consider {q0} as Start State
                                                                                            {q0, q1}
                                                                                                            {q0, q3}
                                                                                    q0
\succ \delta(q0, a) = \{q0 q1\} newly formed state
                                                                                                               {q2}
\succ \delta(\{q0 q1\}, a) = \delta(q0, a) \cup \delta(\{q1, a\})
                                                                                    q1
                    = \{q0, q1\} \cup \{\emptyset\}
                                                                                    q2
                    = \{q0 q1\}
                                                                                               {q4}
                                                                                    q3
\succ \delta(\{q0 q1\}, b) = \delta(q0, b) \cup \delta(\{q1, b\})
                                                                                    q4
                    = \{q0, q3\} \cup \{q2\}
                    = \{q0 q2 q3\}
                                                                            DFA
                                                                                                                b
                                                                                               a
{q0 q2 q3} is newly formed state
\succ \delta(\{q0 \ q2 \ q3\}, a) = \delta(q0, a) \cup \delta(\{q2, a\}) \cup \delta(\{q3, a\})
                                                                                          {q0 q1}
                                                                                                           {q0 q3}
                                                                             q0
                    = \{q0, q1\} \cup \{\emptyset\} \cup \{q4\}
                                                                         {q0 q1}
                                                                                          {q0 q1}
                                                                                                        {q0 q2 q3}
                    = \{q0 q1 q4\}
\delta(\{q0\ q2\ q3\},\ b) = \delta(q0,\ b) \cup \delta(\{q2,\ b\}) \cup \delta(\{q3,\ b\})  \{q0\ q2\ q3\} \{q0\ q1\ q4\}
```


 $= \{q0, q3\} \cup \{\emptyset\} \cup \{\emptyset\} = \{q0 q3\}$

{q0 q3}

```
ightharpoonup \{q0 \ q3\} \text{ is newly formed state}

ightharpoonup \delta(\{q0, a\}) \cup \delta(\{q3, a\})
= \{q0, q1\} \cup \{q4\}
= \{q0 \ q1 \ q4\}
```

$\delta(\{q0 \ q3\}, \ b) = \delta(q0, \ b) \cup \delta(\{q3, \ b\})$
$= \{q0, q3\} \cup \{\emptyset\}$
={q0 q3}

NFA	а	b
q0	{q0, q1}	{q0, q3}
q1	-	{q2}
q2	-	-
q3	{q4}	-
q4	-	-

DFA	a	b
q0	{q0 q1}	{q0 q3}
{q0 q1}	{q0 q1}	{q0 q2 q3}
{q0 q2 q3)	{q0 q1 q4}	{q0 q3}
{q0 q3}	{q0 q1 q4}	{q0 q3}


```
    {q0 q3} is newly formed state
    δ({q0 q3}, a)= δ(q0, a)υ δ({q3, a})
        ={q0, q1} υ {q4}
        ={q0 q1 q4}
    δ({q0 q3}, b)= δ(q0, b)υ δ({q3, b})
        ={q0, q3} υ {Ø}
        ={q0 q3}
    {q0 q1 q4} is newly formed state
```

NFA	а	b
q0	{q0, q1}	{q0, q3}
q1	-	{q2}
q2	-	-
q3	{q4}	-
q4	-	-

$\delta(\{q0\ q1\ q4\},\ a) = \delta(q0,\ a) \cup \delta(\{q1,\ a\}) \cup \delta(\{q4,\ a\})$
$= \{q0, q1\} \cup \{\emptyset\} \cup \{\emptyset\}$
$= \{q0 q1\}$

$\delta(\{q0\ q1\ q4\},\ b)=\delta(q0,\ b)\cup\delta(\{q1,\ b\})\cup\delta(\{q4,\ b\})$
={q0, q3} u {q2} u {Ø}
={q0 q2 q3}

a})		
DFA	a	b
q0	{q0 q1}	{q0 q3}
(q0 q1)	{q0 q1}	{q0 q2 q3}
{q0 q2 q3)	{q0 q1 q4}	{q0 q3}
{q0 q3}	{q0 q1 q4}	{q0 q3}
{q0 q1 q4}	{q0 q1}	{q0 q2 q3}

o
q3}
2 q3}
q3}
q3}
2 q3}
a
h
2 q q3 q3 2 q

*∈***-NFA Example**

 ϵ - NFA allows transition on null string or no inputs

It means machine can make transition without input

∈-NFA Example

Design ϵ -NFA that accepts language of strings ending with ab/ba over $\Sigma = \{a, b\}$

Solution

- >Strings accepted= {ab, ba, abab, baba, bbab, aaaba, ...}
- >Strings rejected= $\{\epsilon$, a, b, aa, bb, aaa, abb, aaabbb, ... $\}$
- >Transition Diagram

Convert the following ϵ -NFA to DFA

Solution

- \triangleright Find ϵ -closure of each state
- ► Convert that *\(\epsilon \)* NFA into DFA using subset construction method

 ϵ - Closure: of a state qi is the set of states including qi, also states having ϵ -transitions from state qi and so on...

ε- Closure of state qi includes:

-qi

-set of states reachable from qi over €- move

-set of states reachable from states of state qi over ϵ - move and

so on...

- \triangleright ϵ -closure of state is define as a set of states that includes
- that state itself
- set of states reachable from state Q over ε-transaction
- set of states reachable from existing states in ϵ -closure over ϵ -transaction and so on...

States	€-closure
q0	{q0}
q1	{q1, q2}
q2	{q2}

- Using Subset Construction Method
- Consider ε-closure of {q0}= {q0} asStart State
- a-successor of {q0}
 - = ϵ -closure (δ (q0, a))
 - $= \epsilon$ -closure ({q0,q1})
 - = ϵ -closure (q0) \cup ϵ -closure (q1)
 - $= \{q0\} \cup \{q1, q2\}$
 - $= \{q0,q1,q2\}$
- b-successor of {q0}
 - $= \epsilon$ -closure ($\delta(q0, b)$)={ \emptyset }

DFA	a	b
{q0}	{q0 q1 q2}	{Ø}

- Using Subset Construction Method
- Consider {q0 q1 q2} as a new state
- > a-successor of {q0 q1 q2}
 - = ϵ -closure ($\delta(q0, a) \cup \delta(q1, a) \cup \delta(q2, a)$)
 - $= \epsilon \text{-closure } (\{q0 \ q1\} \cup \{\emptyset\} \cup \{q2\})$
 - $= \epsilon$ -closure ({q0 q1 q2})
 - = ϵ -closure (q0) \cup ϵ -closure (q2)
 - $= \{q0\} \cup \{q0, q1\} \cup \{q2\} = \{q0,q1,q2\}$
- b-successor of {q0 q1 q2}
 - ϵ -closure (δ (q0, b) \cup δ (q1, b) \cup δ (q2, b))
 - = ϵ -closure ({Ø} \cup {q1 q2} \cup {Ø})
 - $= \epsilon$ -closure ({q1 q2})
 - $= \epsilon$ -closure (q1) $\cup \epsilon$ -closure (q2) = {q1 q2} \cup {q2}={q1 q2}

DFA	a	b
{q0}	{q0 q1 q2}	{Ø}
{q0 q1 q2}	{q0 q1 q2}	{q1 q2}

- Using Subset Construction Method
- Consider {q1 q2} as a new state
- a-successor of {q1 q2}
 - = ϵ -closure ($\delta(q1, a) \cup \delta(q2, a)$)
 - = ϵ -closure ({Ø} \cup {q2})
 - = ϵ -closure ({q2})
 - $= \{q2\}$
- b-successor of {q1 q2}
 - ϵ -closure ($\delta(q1, b) \cup \delta(q2, b)$)
 - = ϵ -closure ({q1 q2} \cup {Ø})
 - = ϵ -closure ({q1 q2})
 - = ϵ -closure (q1) υ ϵ -closure (q2) = {q1 q2} υ {q2}={q1 q2}

DFA	а	b
{q0}	{q0 q1 q2}	{Ø}
{q0 q1 q2}	{q0 q1 q2}	{q1 q2}
{q1 q2)	{q2}	{q1 q2}

- Using Subset Construction Method
- Consider {q2} as a new state
- ightharpoonup a-successor of {q2} = ε-closure (δ (q2, a)) = ε-closure ({q2}) = {q2}
- b-successor of $\{q2\}$ = ϵ -closure ($\delta(q2, b)$) = ϵ -closure ($\{\emptyset\}$) = $\{\emptyset\}$

DFA	а	b
{q0}	{q0 q1 q2}	{Ø}
{q0 q1 q2}	{q0 q1 q2}	{q1 q2}
{q1 q2)	{q2}	{q1 q2}
{q2}	{q2}	{Ø}

DFA	a	b
{q0}	{q0 q1 q2}	{Ø}
{q0 q1 q2}	{q0 q1 q2}	{q1 q2}
{q1 q2)	{q2}	{q1 q2}
{q2}	{q2}	{Ø}
	$\rightarrow q_0$	$\frac{a}{b}$

Minimization of DFA Example

Minimize the following DFA

DFA	0	1
→ A	В	С
В	В	D
С	В	С
D	В	E
E *	В	С

Minimization of DFA Example

Minimize the following DFA

- **►** Use State Equivalence Method
- ➤ Write 0'Equivalence as {A, B, C, D} {E}
- ➤ Write 1'Equivalence {A, B, C} {D} {E}
- ➤ Write 2'Equivalence {A, C} {B} {D} {E}
- ➤ Write 3'Equivalence {A, C} {B} {D} {E}

DFA	0	1
→ A	В	С
В	В	D
С	В	С
D	В	E
E*	В	С

Minimization of DFA Example

Minimize the following DFA

- **►** Use State Equivalence Method
- ➤ Write 0'Equivalence as

$$\{A, B, C, D\} \{E\}$$

- ➤ Write 1'Equivalence
 - ${A, B, C} {D} {E}$
- **≻Write 2'Equivalence**
 - ${A, C} {B} {D} {E}$
- **➤ Write 3'Equivalence**
 - ${A, C} {B} {D} {E}$

DFA	0	1
→A,C	В	С
В	В	D
D	В	E
E*	В	С

