Oxidation States

How to draw a structure

Fundamentals

Hydrolysis

Oxyacid's

Oxides

Polymers

Colour

Contents:

1. All about Oxidation states

2. How to draw any structure

1. What is Oxidation State?

Charge real or imaginary acquired by an atom in a group, calculated by attributing all the electrons of the bond to the more electro negative atom

$$KMnO_4$$
 Mn^{2+} (+7)

2. Electro Negativity Order

4. What is the Oxidation State of the below elements?

$$P_4$$
, S_8 , O_2

ZERO

O.S of atoms in elementary state is ZERO

5. Max O.S = Group Number

(Except for Cu, Fe, O, F)

Min O.S = Group No. - 8

IV A to VII A only

What is the minimum oxidation of Zn, Al?

Ans: Zero

The minimum oxidation sate of metals is zero.

6. Oxygen

$$O^{2-}$$
 Oxide

$$O_2^{2-}$$
 or O^- or $-O$ – O –Per oxide

$$O_2^-$$
 or $O^{\frac{-1}{2}}$ Super oxide

7. Who exhibit Fixed Oxidation state?

I A +1

II A +2

F -1

A few other like Zn , Al

ONLY

8. Oxygen will take what ever is given Most Flexible

9. In the absence of above fixed Oxidation state

.....give (-2) to oxygen

If the other atom gets impossible O.S (higher than Max)

.....then it's a Peroxy

 $Cr_2O_7^{2-}$

Conclusions

a. Metals act as reducing agents

b. Compound in Max O.S can act as oxidising agent **ONLY**

$$KMnO_4$$
, $K_2Cr_2O_7$, HNO_3

c. Compound in min O.S can act as reducing agent ONLY

$$NH_3, H_2S, NaBH_4$$

How to Draw any structures

H, F, Cl, Br, I, O⁻...... 1 Bond
 O 2 Bonds

 SO_3

 NH_3

 H_2O

 SO_2

H

 NO_2^-

2. Any (+) in a group accepts a Lone pair of electrons.

Any (-) in a group donates a **Lone pair** of electrons.

Eg: BF_4^- , BeF_2^-

To get rid of Lone pair

Incomplete Octet

3. More than one central atom

.....Distribute Equally

4. For (N) atom only

.....If there are more than 3 bonds

.....its Dative bond

5. Try to avoid Lone pairs as much as possible

$$H_4SiO_4$$

Silicic Acid

No of -OH = No of (H) present

(Except: H_3PO_3 , H_3PO_2)

2-OH 1-OH

 H_2SO_4

 $H_4P_2O_7$

$$N_2O_3$$

 $H_2S_2O_5$

To avoid Lone pairs...at the cost of symmetry

$$\frac{11}{-5} - \frac{1}{5} - 0H$$

$$\frac{11}{0} = \frac{1}{0}$$

 H_3PO_3

$$H_3PO_2$$

