Tutorial-3: Determinants CZ1104 2020-2021

Presented by: Svetlana (Lana) Obraztsova

Problem-1: Determinant scaling

Required:

If a 3×3 matrix A has |A|=-1, find $\left|\frac{1}{2}A\right|$, |-A|, $\left|A^2\right|$, $\left|A^{-1}\right|$.

Problem-1: Determinant scaling

Required:

If a 3×3 matrix A has |A| = -1, find $\left| \frac{1}{2}A \right|$, |-A|, $\left| A^2 \right|$, $\left| A^{-1} \right|$.

Recall two properties:
$$\begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$
 and $|AB| = |A| |B|$

- (a) $\left|\frac{1}{2}A\right|=\frac{1}{2^3}\left|A\right|=-\frac{1}{8}$, since each of 3 rows was multiplied by $\frac{1}{2}$
- (b) $|-A| = (-1)^3 |A| = 1$, same as above
- (c) $A^2 = AA \Rightarrow |A^2| = |A||A| = 1$
- (d) $AA^{-1} = I \Rightarrow 1 = |I| = |AA^{-1}| = |A||A^{-1}| \Rightarrow |A^{-1}| = \frac{1}{|A|} = -1$

Problem-2: Determinant of a triangular matrix

Required:

Reduce
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 2 \end{bmatrix}$$
 to U to find $\det A$ as the product of pivots.

Problem-2: Determinant of a triangular matrix

Required:

Reduce
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 2 \end{bmatrix}$$
 to U to find $\det A$ as the product of pivots.

Solution: Bad solution

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 2 \end{bmatrix} \xrightarrow{r_3 \leftarrow r_2 - r_3} \begin{bmatrix} \boxed{1} & 1 & 1 \\ 0 & \boxed{1} & 2 \\ 0 & 0 & \boxed{1} \end{bmatrix}$$

$$|A| =$$
 product of pivots $= 1$

Problem-2: Determinant of a triangular matrix

Required:

Reduce
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 2 \end{bmatrix}$$
 to U to find $\det A$ as the product of pivots.

Solution: Good solution

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 2 \end{bmatrix} \xrightarrow{r_3 \leftarrow r_3 - r_2} \begin{bmatrix} 1 & 1 & 1 \\ 0 & \boxed{1} & 2 \\ 0 & 0 & \boxed{-1} \end{bmatrix}$$

$$|A| =$$
 product of pivots $= -1$

Problem-3: Skew symmetric matrix determinant

Required:

Using variables a,b,c, construct a 3×3 skew-symmetric matrix $(A=-A^T)$. Show that the determinant of such a matrix is equal to 0.

Problem-3: Skew symmetric matrix determinant

Required:

Using variables a,b,c, construct a 3×3 skew-symmetric matrix $(A=-A^T)$. Show that the determinant of such a matrix is equal to 0.

Solution: Explicit

All diagonal elements are equal to their negative value $\Rightarrow diag(A) = \vec{0}$.

$$A = \begin{bmatrix} 0 & b & -c \\ -b & 0 & -a \\ c & a & 0 \end{bmatrix} \Rightarrow |A| = 0 \cdot 0 \cdot 0 + a \cdot (-b) \cdot (-c) + (-a) \cdot b \cdot c$$
$$-(c \cdot 0 \cdot (-c) + (-b) \cdot b \cdot 0 + 0 \cdot (-a) \cdot a)$$
$$= 0$$

Problem-3: Skew symmetric matrix determinant

Required:

Using variables a,b,c, construct a 3×3 skew-symmetric matrix $(A=-A^T)$. Show that the determinant of such a matrix is equal to 0.

Solution: Implicit

Since
$$A$$
 is skew-symmetric $|A| = \left| -A^T \right| = (-1)^3 \left| A^T \right| = -\left| A^T \right|$ But $|A| = \left| A^T \right|$ always. \therefore must hold $|A| = -\left| A^T \right| = -\left| A \right|$. $\therefore |A| = 0$.

Problem-4: Determinants and Geometry (part 1)

Required:

Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (1,3,0), (-2,0,2) and (-1,3,-1).

Problem-4: Determinants and Geometry (part 1)

Required:

Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (1,3,0), (-2,0,2) and (-1,3,-1).

Solution:

The parallelepiped is determined by the columns of
$$A = \begin{bmatrix} 1 & -2 & -1 \\ 3 & 0 & 3 \\ 0 & 2 & -1 \end{bmatrix}$$

 \therefore The folume of the parallelepiped is abs (|A|) = abs(-18) = 18

Problem-5: Determinants and Geometry (part 2)

Required:

Let S be the tetrahedron in \mathbb{R}^3 with vertices at the vectors $0, e_1, e_2, e_3$ and let S' be the tetrahedron with vertices at vectors $0, v_1, v_2, v_3$.

- (a) Find the standard matrix for the linear transformation that maps S to $S^{\prime}.$
- (b) Find a formula for the volume of the tetrahedron S'. Recall, volume of a tetrahedron $= (1/3) \times (\text{area of base}) \times \text{height}$.

Problem-5: Determinants and Geometry (part 2)

Required:

Let S be the tetrahedron in \mathbb{R}^3 with vertices at the vectors $0, e_1, e_2, e_3$ and let S' be the tetrahedron with vertices at vectors $0, v_1, v_2, v_3$.

(a) Find the standard matrix for the linear transformation that maps S to $S^{\prime}.$

Solution:

The standard matrix for this transformation is

$$A = [T(e_1) \ T(e_2) \ T(e_3)] = [v_1 \ v_2 \ v_3]$$

Problem-5: Determinants and Geometry (part 2)

Required:

Let S be the tetrahedron in \mathbb{R}^3 with vertices at the vectors $0, e_1, e_2, e_3$ and let S' be the tetrahedron with vertices at vectors $0, v_1, v_2, v_3$.

(b) Find a formula for the volume of the tetrahedron S'. Recall, volume of a tetrahedron $= (1/3) \times (\text{area of base}) \times \text{height}$.

Solution:

Volume of $S = (1/3) \times (\text{area of base}) \times \text{height}$

Area of base
$$=\frac{1}{2}\times 1\times 1$$

$$\therefore \operatorname{Vol}(S) = \frac{1}{3} \times \frac{1}{2} \times 1 = \frac{1}{6}$$

$$\therefore \operatorname{Vol}(S') = A \cdot \operatorname{Vol}(S) = \frac{1}{6} |A|$$