0	GRAPH TH	EOR	RY	+ M	ATR	ICE:	3	2.				
4.7	adjacency matrix:											
	given by the vertices of that matrix and labelled with										with	
	1 or 0 depending on adjacency. Label vertex with adjacency by											
	(i,j) - i is row, j is column.											
	(),,					ന	2)	3)	(J)	(3)	(b)	
					0	0	i	1	0	0	0	
					<u>a</u>	1	0	O	1	0	0	
	45				<u></u>	1	0	0	1	0	0	
	5				<u> </u>	0	1	ı	0	1	0	
	(Maduschid alimpia				<u> </u>	c	0	0	1	0	1	
	undirected graph				<u>6</u>	0	0	0	0	(0	
						14	00000		to's			
	, 5 ,						jacona	y mo	CINX		. 3-	
	I is adjacent to both 2 and					Can be used to find the						
	3, so in the adjacency									ā		
	matrix, 2 and 3 are denoted					number of walls between						
	by 1's (and the rest Os)						vertices. Just raise the matrix					
	to the L (length of walk) and											
	read off the matrix as (i,j)											
	Transition Matrix:											
	a matrix that shows random walks and its probabilities for											
	each step.				j-							
			0			3	_		read 1	proba	biliti	
		0	0	1	0	0			etwee			
	P = ;	i	1/3_	0	2/3	0			us Pi	Wr	iore i	
	V	2	0	7/3	0	1/3			and'i			
		3	0	0	. 1	0		column respectively				
	7						10.00		CMMILL			
						Transition matrix car						
0	Shows there is a probability of					be done for different						
	2/3 from vertex 1 to vertex2											
							lengths, L. just raise P					
							to the power L.					