

Managing Large, Uncertain Data Repositories with Probabilistic Graphical Models

Daisy Zhe Wang⁺, Eirinaios Michelakis⁺, Minos Garofalakis^{*+}, Joseph M. Hellerstein⁺

University of California Berkeley⁺, Yahoo! Research^{*} 25th August 2008, VLDB

Uncertainty in Real Systems

Sensor Networks

DBLife
Yahoo!/PSOX

IBM/Avatar/SystemT

Social Networks

Data Integration Systems

State of the Art – Probabilistic Data Management

- Machine Learning Research
 - Decision Tree, CRF Model
 - Bayesian Network
 - Probabilistic Relational Model

Machine Learning Approach

State of the Art – Probabilistic Data Management

- Machine Learning Research
 - Bayesian Network, Markov Network
 - Probabilistic Relational Model
 - Markov Network Model
- Probabilistic/Uncertain Database Research
 - MystiQ System [Dalvi&Suciu04]
 - Trio System [Wid05, Das06]
 - MauveDB [D&M, 2006]
 - MayBMS [ICDE07]

BayesStore Data Model

- 1. Incomplete Relation -- **R**^p
- 2. Distribution over Possible Worlds **F**

Sensor1(<u>Time(T)</u>, <u>Room(R)</u>, <u>Sid</u>, <u>Temperature(Tp)</u> p, Light(L) p)

Incomplete Relation of Sensor1^p

†1

†2

†3

†4

†5

†6

Ŧ	尽	Sid	Tpp	ЦP
1	11	11	Hot	X1
1	11	22	Cold	Dr#K
1	11	33	X2	X3
1	2	11	X4	Bret
1	2	22	Hot	X5
1	2	33	X6	X7

Probabilistic Distribution of Sensor1^p

$$F = Pr[X_1, ..., X_7]$$

N: number of missing values |X|: size of the domain

$$|F| = \Theta(|X|^N)$$

The Skyscrapers Example

For all sensor in all rooms at all timestamp, Light and Temperature readings are correlated.

Light

Temperature

Definitions

First-order Factor: A family of local models, which share the same structure and conditional probability table(CPT).

BayesStore Data Type: The input and output abstract data type of queries in BayesStore, which consists of data and model.

Possible Worlds

F as a First-order Bayesian Network (I)

Sensor1^p

	T	R	Sid	Tp ^p	Lp
†1	1	1	1	H	X1
†2	1	1	2	Cold	Drk
†3	1	1	3	X2	X3
†4	1	2	1	X	Brt
† 5	1	2	2	Hot	X5
† 6	1	2	3	X6	X7
† 7	2	1	1		X8
†8	2	1	2	Cold	Drk
† 9	2	1	3	X9	X10
†10	2	2	1	X	Brt
†11	2	2	2	Hot	X12
†12	2	2	3	X13	X14

Stripe (FO Variable) Definitions

All Tp values in Sensor1^p with Sid=1

F as a First-order Bayesian Network (I)

Sensor1^p

	Т	R	Sid	Tpp	Lр
†1	1	1	1	To an	X1
†2	1	1	2	(Dr
†3	1	1	3		X
†4	1	2	1		Ві
† 5	1	2	2		X
† 6	1	2	3		X7
†7	2	1	1		X
†8	2	1	2	(Di
†9	2	1	3		X1
†10	2	2	1		Bi
†11	2	2	2		X1
†12	2	2	3)	X ¹

Stripe (FO Variable) Definitions

All Tp values in Sensor1^p with Sid=1

All Tp values in Sensor1^p with Sid=2

All Tp values in Sensor1^p with Sid !=2

All Tp values in Sensor1^p

All L values in Sensor1^p

F as a First-order Bayesian Model

Mapping between Stripes

F as a First-order Bayesian Model

First-order Factor Definitions

Тр	L	р
Cold	Brt	0.1
Hot	Brt	0.9
Hot	Drk	0.1
Cold	Drk	0.9

Tp1	Tp2	р
Cold	Cold	0.1
Cold	Hot	0.9
Hot	Hot	0.1
Hot	Cold	0.9

Тр	р
Cold	0.6
Hot	0.4

Query Semantics

Query Algebra

- Selection over Incomplete Relation R^p
- Selection over Model M_{FOBN}

Sensor1^p Sensor1^p R Sid Tpp Lр †1 **X1** Hot Tp=Cold †2 sRid TJpp þp Cold Drk **†3 X3** 3 **X2** Drk **†2 Brt X4** †4 3 **X2 X3 X5 ±**5 2 -Hot †4 **X4 Brt †**6 2 3 **X6 X7 †**6 3 **X6 X7**

- Selection over Incomplete Relation R^p
- Selection over Model M_{FOBN}

- Selection over Incomplete Relation R^p
- Selection over Model M_{FOBN}

Probabilistic Distribution F_{FOBN} of Sensor1^p

- Selection over Incomplete Relation R^p
- Selection over Model M_{FOBN} Sensor1(\underline{T} , R, \underline{Sid} , Tp^p , L^p , $\underline{Exist(E)^p}$) $F_{FOBN} \text{ of Sensor1}^p$

Project & Join

Project

- Project over Incomplete Relation projected attributes and correlated attributes
- Project over Model retrieve only part of the model relevant to the projected attributes

Join

- Join over Incomplete Relations with deterministic join condition (e.g. Sensor1.Sid = Sensor2.Sid)
- Join over Models by merging the local models for Exist^p attribute
- Probabilistic selection with probabilistic join condition (e.g. Sensor1.Light^p = Sensor2.Light^p)

Optimizations (I)

- Selection over Incomplete Relation R^p
 - BayesBall Algorithm
 - Model based Filtering

Optimizations (II)

†2

†3

†4

†5

†6

†7

†8

†9

†10

†11

†12

- Selection over Incomplete Relation R^p
 - BayesBall Algorithm
 - Model based Filtering
- Simple First-order Inference Technique
 - Sharing

(t3.Tp)—	→(t3.L)
(10.19)	(10.15)

Sensor1^p

Т	R	Sid	Tp ^p	Lp
1	1	1	Hot	X1
1	1	2	Cold	Drk
1	1	3	X2	X3
1	2	1	X4	Brt
1	2	2	Hot	X5
1	2	3	X6	X7
2	1	1	Hot	X8
2	1	2	Cold	Drk
2	1	3	X9	X10
2	2	1	X11	Brt
2	2	2	Hot	X12
2	2	3	X13	X14

Evaluation – Selection Algorithms

PlainSel: Selection over Incomplete Relation

BayesBallSel: Stop Transitive Closure using Bayes Ball Algorithm

ModelFilterSel: Filter tuples with zero satisfying probability using Model

FullSel: Both BayesBall and ModelFilter Optimizations are used

Evaluation – Inference Algorithms

First-order model enables the first-order inference optimizations.

Current and Future Work

- First-order Inference & Model Learning
- Full System Implementation
- Aggregation Operators
- Query Optimizations
- Lineage Compression
- API Design

Questions?

Backup Slides

Life of a Query

