Univerza v Ljubljani

Fakulteta za matematiko in fiziko

Finančni praktikum

Največja konveksna množica znotraj konveksne množice

Avtorji: Jure Sternad Rok Rozman Jaša Pozne

Mentorja: prof. dr. Sergio Cabello doc. dr. Janoš Vidali

Ljubljana, 9. januar 2022

Kazalo

1	Nav	odilo		2
2	Opi	s problema		2
3	Def	niranje konveksne množice Q		2
4	Eks	perimenti		3
	4.1	Enakostraničen trikotnik	 	4
		4.1.1 Enakostraničen trikotnik - brez rotacij	 	4
		4.1.2 Enakostraničen trikotnik - z rotacijami	 	5
	4.2	Kvadrat	 	6
		4.2.1 Kvadrat - brez rotacij	 	6
		4.2.2 Kvadrat - z rotacijami	 	6
		4.2.3 Primerjava eksperimentov brez in z rotacijami	 	7
	4.3	Krog	 	8
	4.4	Čas izvajanja algoritmov		
5	Zak	ljuček		10

1 Navodilo

Če imamo podana konveksna mnogokotnika P in Q v koordinatni ravnini, potem je problem odločanja ali se P lahko preslika v Q linearen program (izvedljivosti). Poleg tega je problem odločanja za koliko lahko P največ povečamo, da je lahko v Q, tudi linearen program. V primeru, da je P disk, je to tudi linearen program.

2 Opis problema

Naša naloga je, da naredimo eksperimente, v katerih bomo poiskali največje možne kvadrate, diske, enakostranične trikotnike . . . , ki jih lahko preslikamo tako, da so znotraj danega konveksnega mnogokotnika. Eksperimente bomo reševali s pomočjo linearnega programiranja. Poleg tega bomo ločili primere, ko P lahko rotiramo; v tem primeru bomo ločili več različnih rotacij. Za reševanje problema bomo uporabljali programski jezik Sage.

Za lažje razumevanje so spodaj navedene še definicije.

Definicija 1. Konveksen poligon P je tak poligon, za katerega velja, da pri poljubni izbiri dveh točk p in q iz poligona P, daljica pq, ki povezuje omenjeni točki v celoti leži v poligonu P.

Definicija 2. Translacije so preslikave oblike $\tau(\vec{x}) = \vec{x} + \vec{a}$ za nek $a \in \mathbb{R}$.

Definicija 3. Rotacije so preslikave oblike $\tau(\vec{x}) = R_{\phi}\vec{x} + \vec{a}$ za nek $\phi \in (0, 2\pi)$ in $\vec{a} \in \mathbb{R}$. Takšna preslikava ustreza rotaciji za kot ϕ okoli točke v ravnini, ki je določena z enačbo $\tau(\vec{x}) = x$.

3 Definiranje konveksne množice Q

Projekta smo se lotili tako, da smo najprej s pomočjo linearnega programiranja definirali konveksno množico Q s predpisom

$$a_i x + b_i y \le c_i$$
$$i = 1, \dots, n$$

n predstavlja število pogojev s katerimi definiramo množico Q.

4 Eksperimenti

Kot navodilo zahteva, smo izvedeli eksperimente za tri like - krog, enakostraničen trikotnik in kvadrat. Pri slednjih smo upoštevali možnost rotacije likov.

Tako je bil cilj naših eksperimentov najti tak že v naprej natančno določen lik, da bo le-ta znotraj množice Q imel kar se da veliko ploščino.

Pri eksperimenitih na enakostraničnem trikotniku in kvadratu (brez rotacij), smo uporabili algoritem

```
# Nastavimo p za linearen program v katerem iscemo najvecjo skalo.
p = MixedIntegerLinearProgram(maximization=True)
p.set_objective(p['k'])
# Z dvema for zankama se sprehodimo po tockah zrcaljenega lika
# in polravninah lika v katerega zrcalimo.
for xi, yi in tocke:
    for ai, bi, ci in zip(a, b, c):
        # Dodamo pogoj v p.
        p.add_constraint(ai * (p['k'] * xi + p['x']) + bi * (p['k'] * p.solve()
```

ki za vhodne podatke prejme podatke v obliki $\vec{a} = [a_1, a_2, ..., a_n]$ za a,b,c in krajišča likov $tocke = [(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)]$ ter vrne skalar k, ki predstavlja količino za koliko se bo lik povečal/zmanjšal, in koordinati x in y, ki predstavljata preslikavo lika v množico Q.

V primeru, ko smo pri eksperimentih upoštevali še rotacije smo uporabili sledeč algoritem.

```
\# Nastavimo p za linearen program v katerem iscemo najvecjo skalo.
p = MixedIntegerLinearProgram (maximization=True)
\# S \ kot \ in \ t \ belezimo \ najvecjo \ skalo \ in \ kot
\# pri katerem se ta zgodi.
kot = None
t = 0
\# Shranimo si stevilo tock in definiramo nov seznam tocke2.
dolzina = len(tocke)
tocke2=list (range (dolzina))
p. set_objective(p['k'])
\# S for zanko se sprehodimo po kotih od 1 do 360 stopinj.
for j in range (1,360):
    # Pri vsakem kotu si shranimo nova ogljisca zarotiranega lika
    \# v tocke2.
    for k in range(len(tocke)):
        xii = (\cos(j*pi/180)*tocke[k][0] - \sin(j*pi/180)*tocke[k][1])
        yii = (\sin(j*pi/180)*tocke[k][0] + \cos(j*pi/180)*tocke[k][1])
```

```
tocke2[k] = [xii, yii]
        # Za vsako tocko dodamo pogoje.
    for xi, yi in tocke2:
        for ai, bi, ci in zip(a, b, c):
            p.add_constraint(ai * (p['k'] * xi + p['x']) +
             bi * (p['k'] * yi + p['y']) \le ci)
    r = p.solve()
    # Ce naletimo na vecjo skalo, si jo shranimo skupaj s kotom
    # in ogljisci prezrcaljenega lika.
    if r > t:
        t = r
        kot = j
        k, x, y = p.get_values(p['k']), p.get_values(p['x']),
        p.get_values(p['y'])
        nove_tocke = []
        for tocka in tocke2:
            tocka[0] = (tocka[0]*k+x).numerical_approx()
            tocka[1] = (tocka[1]*k +y).numerical_approx()
            nove_tocke.append(tocka)
    p.remove_constraints(range(p.number_of_constraints()))
print(t,kot,k,x,y,nove_tocke)
```

Ta poleg vseh že omenjenih lastnosti prvega algoritma hkrati upošteva še vse možne rotacije.

4.1 Enakostraničen trikotnik

4.1.1 Enakostraničen trikotnik - brez rotacij

Prvi eksperiment smo opravili za enakostranični trikotnik brez rotacij. Tako potrebne pogoje kot točke smo si izmislili.

Algoritem je poiskal največji možen trikotnik znotraj konveksne množice Q tako, da je vsa tri ogljišča enakostraničnega trikotnika preslikal v Q za (x, y), pri tem pa celoten lik povečal/zmanjšal za skalar k.

Vhodni podatki prvega eksperimenta so bili $\vec{a} = [-8, 9, -4, -3, 5], \vec{b} = [1, 2, -7, 5, -9], \vec{c} = [13, 23, 20, 13, 15]$ in tocke = [(10.4, 8.6), (10.6, 8), (11.1019615, 8.4732052)].

4.1.2 Enakostraničen trikotnik - z rotacijami

Drugi eksperiment smo ponovno izvedli za enakostraničen trikotnik, le da tokrat z rotacijami. Začetne pogoje smo si ponovno izmislili ter z že prej opisanim algoritmom iskali optimalno rešitev.

Vhodni podatki drugega eksperimenta so bili $\vec{a} = [-8, 9, -4, -3, 5], \vec{b} = [1, 2, -7, 5, -9], \vec{c} = [13, 23, 20, 13, 15]$ in tocke = [(10.4, 8.6), (10.6, 8), (11.1019615, 8.4732052)].

4.2 Kvadrat

Tudi pri eksperimentih s kvadratom smo izvedli dva preizkusa - brez in z rotacijami. Ker je linearni program enak tako za enakostraničen trikotnik kot kvadrat, smo tudi tukaj uporabili že opisana algoritma.

4.2.1 Kvadrat - brez rotacij

Vhodni podatki tako že tretjega eksperimenta so bili $\vec{a} = [-8, 9, -4, -3, 5], \vec{b} = [1, 2, -7, 5, -9], \vec{c} = [13, 23, 20, 13, 15]$ in tocke = [(10, 1), (6, 3), (8, 7), (12, 5)].

4.2.2 Kvadrat - z rotacijami

Vhodni podatki četrtega eksperimenta pa $\vec{a} = [-8, 9, -4, -3, 5], \vec{b} = [1, 2, -7, 5, -9], \vec{c} = [13, 23, 20, 13, 15]$ in tocke = [(10, 1), (6, 3), (8, 7), (12, 5)].

4.2.3 Primerjava eksperimentov brez in z rotacijami

Če ponovimo oba eksperimenta z istimi vhodnimi podatki hitro opazimo pričakovano vidno razliko med ploščinama likov. Tako lahko logično sklepamo, da je metoda z rotacijami učinkovitejša.

4.3 Krog

Za eksperiment s krogom smo potrebovali nov algoritem, saj ima krog neskončno število točk, ki jih je potrebno preverit, posledično pa algoritem, ki je deloval v primeru enakostraničnega trikotnika in kvadrata v tem primeru ne deluje. Ideja algoritma je krožnico razdeliti na 360 točk ter potem za vsako preveriti ali ustreza predpisanemu linearnemu pogoju.

```
\# kroq = [sredisce, radij]
# Nastavimo p za linearni program.
p = MixedIntegerLinearProgram (maximization=True)
p. set_objective(p['k'])
\# Z x0 in y0 oznacimo sredisce kroga.
x0, y0 = krog[0]
radij = krog[1]
# Sredisce kroga postavimo v koordinatno izhodisce in nato tocko,
# ki je na poziciji (sredisce,0) zarotiramo za
# 360 stopinj okoli izhodisca,
# za vsako stopinjo posebej.
# Na ta nacin dobimo dober priblizek za krog.
tocke = [(0,0), radij]
for j in range (1,360):
    xi = tocke[1] * cos(j*pi/180)
    yi = tocke[1] * sin(j*pi/180)
    # Pri vsaki rotaciji tocke dodamo v linearni program pogoj,
    \# ki \ vkljucuje \ to \ tocko.
```

```
for ai, bi, ci in zip(a, b, c):
    p.add_constraint(ai * (p['k'] * xi + p['x']) +
    bi * (p['k'] * yi + p['y']) <= ci)
p.solve()</pre>
```

Vhodni podatki petega in tako zadnjega eksperimenta so bili $\vec{a} = [-8, 9, -4, -3, 5],$ $\vec{b} = [1, 2, -7, 5, -9],$ $\vec{c} = [13, 23, 20, 13, 15]$ in krog = [(7, 7), 3].

4.4 Čas izvajanja algoritmov

5 Zaključek