Design a D flip-flop with asynchronous reset.

CODE:

```
`timescale 1ns / 1ps
module dff(
input d, clk, reset,
output reg q,
output q0);
always@(posedge clk or posedge reset)begin
  if(reset)
    q<=0;
  else
    q<=d;
end
assign q0 = ^q;
endmodule
```

```
TESTBENCH:
`timescale 1ns / 1ps
module dff tb();
reg d, clk, reset;
wire q, q0;
dff uut(d,clk,reset,q,q0);
initial begin
  clk = 0;
end
always #5 clk = ^{\sim}clk;
initial begin
  reset = 1;
  #5 reset = 0;
end
initial begin
  d = 0;
  #20 d = 1;
  #15 d = 0;
end
initial begin
  $monitor("Time: %0t | d: %b | clk: %b | reset: %b | q: %b | q0: %b",
        $time, d, clk, reset, q, q0);
end
endmodule
```

						4	2.400	ns	
Name	Value	0.000 ns	 10.000 ns	20.000 ns	30.000 ns	40.00	0 ns		50.000 ns
¹ ⊌ d	0								
[™] clk	0								
₩ reset	0								
1 6 q	0								
¼ q0	1								