

DSBA Open QA Study

Open-Domain Question Answering Paper Review 3

고려대학교 산업경영공학과

Data Science & Business Analytics Lab

발표자 : 허재혁

- 01 Introduction
- 02 DenSPI
- 03 PullNet

DenSPI: Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index 논문 소개

Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index

Minjoon Seo^{1,5*} Jinhyuk Lee^{6*} Tom Kwiatkowski²,
Ankur P. Parikh² Ali Farhadi^{1,3,4} Hannaneh Hajishirzi^{1,3}
University of Washington¹ Google Research² Allen Institute for AI³ XNOR.AI⁴
Clova AI, NAVER⁵ Korea University⁶
{minjoon,ali,hannaneh}@cs.washington.edu
{tomkwiat,aparikh}@google.com jinhyuk_lee@korea.ac.kr
82 citations

- 1. 기존 Retriever + Reader로 구성된 two-stage를 one-stage로 줄임
- 2. Query-agnostic indexable representation 제안
- 3. DrQA [Chen et al., 2017] 대비 6,000배 연산량 감소, 44배 빠른 추론 속도 (CPU)

01

DenSPI: Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index 방법론

- ✓ Phrase Index를 통해 Document에 대한 Retriever 과정 없이 바로 query와 비교
- ✓ Dense (통사적, 의미적 정보) + Sparse (어휘적 정보)를 함께 사용하여 phrase vector 구성

DenSPI: Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index 방법론

- ✓ Text Encoder의 output token dimension을 네 등분해서 start, end, coherency vector로 사용
- ✓ Target span의 start index 부분의 start vector와 end index 부분의 end vector 그리고 coherence scaler를 이용하여 phrase vector 구성
- ✓ Dense embedding model은 SQuAD v1.1 로 학습

01

DenSPI: Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index 방법론

- ✓ Text Encoder의 output token dimension을 네 등분해서 start, end, coherency vector로 사용
- ✓ Question의 경우 [CLS] token output을 통해 계산

DenSPI: Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index 방법론

Sparse Vector

- ✓ DrQA 의 방식 기반으로 사용 [Chen et al. 2017]
- ✓ TF-IDF document & paragraph vector (Wikipedia)
- ✓ Unigram & Bigram (dim = 17 M)

DenSPI: Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index 방법론

- ✔ Wikipedia: 3 billion tokens, 60 billion phrases (phrase 당 4 KB) 총 240 TB
- ✓ Pointer, Filtering, Quantization을 통해 연산 비용 감소

Indexing

- ✓ Pointer: start, end vector 재사용
 - 240 TB -> 12 TB
- ✓ Filter: single layer binary classifier로 start, end vector만 추출
 - 12 TB -> 4.5 TB
- ✓ Quantization: float 32 -> int8 (4 bytes -> 1 byte)
 - 4.5 TB -> 1.5 TB

01

DenSPI: Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index 방법론

- ✓ 검색 방법에 따라 실험 비교
- ✓ 결론적으로 Hybrid 가 성능 대비 속도 측면에서 가장 효율적인 방법

Search

- ✓ Sparse-first Search
- ✓ Dense-first Search
 - ✓ Faiss 사용 -> reranking sparse vector
- ✓ Hybrid
 - ✓ Start index 만 사용해서 먼저 탐색 -> reranking 결과 리스트

DenSPI: Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index 실험

- ✓ 초 당 처리하는 단어 수가 DrQA에 비해 약 6,000 배 빠름 + 성능도 높음
- ✓ 그러나 BERT-Large에 비해 성능이 낮음 (decomposability gap)
- ✓ Quenstion에 대한 golden answer(phrase)가 없는 SQuAD-Open 데이터에 대해 더 다양한 문서 탐색 가능

SQuAD v1.1

	Model	EM	F1	W/s
Original	DrQA BERT-Large	69.5 84.1	78.8 90.9	4.8K 51
Query- Agnostic	LSTM+SA LSTM+SA+ELMo DENSPI (dense only) + Linear layer + Indep. encoders - Coherency scalar	49.0 52.7 73.6 66.9 65.4 71.5	59.8 62.7 81.7 76.4 75.1 81.5	- 28.7M - - -

SQuAD-Open

	F1	EM	s/Q	#D/Q
DrQA	-	29.8	35	5
\mathbb{R}^3	37.5	-	-	-
Paragraph ranker	-	30.2	-	20
Multi-step reasoner	39.2	31.9	-	-
MINIMAL	42.5	34.7	-	10
BERTserini	46.1	38.6	115	-
Weaver	-	42.3	-	25
DENSPI-SFS	42.5	33.3	0.60	5
DENSPI-DFS	35.9	28.5	0.51	815
-sparse scale=0	16.3	11.2	0.40	815
DENSPI-Hybrid	44.4	36.2	0.81	817

DenSPI: Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index 한계점

✓ 독립적인 인코딩 방식으로 인해 기존 방식 대비 속도는 빠르지만 성능 차이 존재

Decomposability gap

$$\hat{a} = \operatorname*{argmax}_{a} F_{\theta}(a, q, d)$$
 기존 방식

$$\hat{a} = \operatorname*{argmax}_{a} G_{\theta}(q) \cdot H_{\theta}(a,d)$$
 Query-agnostic

question과 answer/document 간 attention 정보가 없음

DenSPI: Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index 궁금

- 1. Pointer에서 재사용의 의미: 같은 토큰에 해당하는 embedding vector를 재사용한다?
 - Context에 따라 같은 단어여도 다른 embedding vector를 가지기 때문에 이런 의미가 아닌 것 같다고 생각

Indexing

- ✓ Pointer: start, end vector 재사용
- ✓ Filter: single layer binary classifier로
 start, end vector만 추출

DenSPI: Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index 궁금

- 2. Filter 의미: answer phrase가 아닌 것 같은 vector를 저장하고 있을 필요가 없어짐
 - Dense embedding model 학습을 통해 phrase indexing을 하기 위해 binary classifier로 하는 방법 말고 기존에는 어떤 방법 사용?

Indexing

- ✓ Pointer: start, end vector 재사용
- ✓ Filter: single layer binary classifier로
 start, end vector만 추출

PullNet: Open Domain Question Answering with Iterative Retrieval on Knowledge Bases and Text 논문 소개

PullNet: Open Domain Question Answering with Iterative Retrieval on Knowledge Bases and Text

Haitian Sun Tania Bedrax-Weiss William W. Cohen Google AI Language

{haitiansun, tbedrax, wcohen}@google.com

101 citations

- 1. Knowledge Bases와 Text를 통해 학습하는 GRAFT-Net을 기반으로 발전
- 2. 반복적으로 Knowledge bases와 Text를 통해 graph를 확장하여 retrieve 하는 방식
- 3. Multi-hop QA에 적합한 모델

PullNet: Open Domain Question Answering with Iterative Retrieval on Knowledge Bases and Text 방법론

GRAFT-Net 과 차이점

- ✓ Heuristic하게 graph를 구성하지 않음
 - ▶ 필요 이상으로 크게 구성될 수 있음
 - ▶ 정답이 그래프 안에 포함되지 않을 수 있음
- ✓ Knowledge Bases와 Corpus로부터 그래프를 확장함

PullNet: Open Domain Question Answering with Iterative Retrieval on Knowledge Bases and Text 방법론

- Document로 부터 entity 탐지를 위해 entity linker [Ji et al., 2014] 를 사용
- ✓ 여기서 document는 single sentence를 의미
- Graph-CNN은 question-answer pair를 통해 학습

Algorithm 1 PullNet

- 1: Initialize question graph G_a^0 with question q and question Quenstion 만으로 subgraph 구성 entities, with $\mathcal{V}^0 = \{e_{q_i}\}$ and $\mathcal{E}^0 = \emptyset$. 2: **for** $t = 1, \dots, T$ **do** Classify and select the entity nodes in the graph with 학습된 Graph-CNN을 통해 나타낸 node representation으로 subgraph 내 entity 중 확장해야하는 probability larger than ϵ entity를 상위 k개 선택 $\{v_{e_i}\}=$ classify_pullnodes (G_a^t,k) for all v_e in $\{v_{e_i}\}$ do 4: Perform pull operation on selected entity nodes Lucene [McCandless et al., 2010] (IDF 기반 retrieval system)으로 document 추출 5: $\{v_{d_i}\}= \text{pull_docs}(v_e,q)$ Question을 구성하는 각 token을 LSTM에 입력값으로 넣어 last-state representation과 relation에 대한 embedding vector를 통해 유사도 계산하여 추출 (상위 k개 인지 언급 x) $\{v_{f_i}\}= \text{pull-facts}(v_e,q)$ 6: for all v_d in $\{v_{d_s}\}$ do Look-up table 활용 Extracted entities in new document nodes $\{v_{e(d)_i}\}=$ pull_entities (v_d) Entity linker를 통해 document에서 entity 추출 8:
- for all v_f in $\{v_{f_i}\}$ do
 - Extract head and tail of new fact nodes 해당 fact node들로 부터 subject entity 인지 object entity인지 반환 $\{v_{e(f)_i}\}=$ pull_headtail (v_f)
- 10: Add new nodes and edges to question graph

$$G_q^{t+1} = \operatorname{update}\left(G_q^t\right)$$
 위에서 찾은 entity들을 더해서 edge 생성하여 subgraph 업데이트

11: Select entity node in final graph that is the best answer

$$v_{
m ans} = exttt{classify_answer}\left(G_q^T
ight)$$

학습된 Graph-CNN으로 subgraph 내의 entity 중 answer 예측

PullNet: Open Domain Question Answering with Iterative Retrieval on Knowledge Bases and Text 실험

✓ Multi-hop 에 대해 높은 성능 향상이 있음을 보임

	Meta	MetaQA (1-hop) / wikimovies			MetaQA (2-hop)			MetaQA (3-hop)				
	KB	Text	50% KB	50% KB + Text	KB	Text	50% KB	50%KB + Text	KB	Text	50% KB	50% KB + Text
KV-Mem*	96.2	75.4	63.6	75.7	82.7	7.0	41.8	48.4	48.9	19.5	37.6	35.2
GraftNet*	97.0	82.5	64	91.5	94.8	36.2	52.6	69.5	77.7	40.2	59.2	66.4
PullNet (Ours)	97.0	84.4	65.1	92.4	99.9	81.0	52.1	90.4	91.4	78.2	59.7	85.2
KV-Mem	93.9	76.2	-	-	_	_	_	_	_	_	_	-
GraftNet	96.8	86.6	68.0	92.6	_	_	_	_	_	_	_	_
VRN	97.5	_	_	_	89.9	_	_	_	62.5	_	_	_

	WebQuestionsSP					
	KB	Text	50%	50% KB		
	KD		KB	+ Text		
KV-Mem*	46.7	23.2	32.7	31.6		
GraftNet*	66.4	24.9	48.2	49.7		
PullNet (Ours)	68.1	24.8	50.3	51.9		
GraftNet	67.8	25.3	47.7	49.9		
NSM	69.0 (F1)	-	_	_		

	Complex WebQuestions (dev)				
	KB	Text	50%	50% KB	
	KD	Text	KB	+ Text	
KV-Mem*	21.1	7.4	14.8	15.2	
GraftNet*	32.8	10.6	26.1	26.9	
PullNet (Ours)	47.2	13.1	31.5	33.7	

PullNet: Open Domain Question Answering with Iterative Retrieval on Knowledge Bases and Text 실험

- ✓ Knowledge Bases 으로 PullNet이 금방 정답 entity를 찾아낼 수 있음을 보임
- ✓ GRAFT-Net에 비해 학습이 더 잘 되는 것을 보임

EOD