Math 220 Section 108 Lecture 16

1st November 2022

Source: https://personal.math.ubc.ca/~PLP/auxiliary.html

R={(1,2)3 ? Fram(1+1/2 !! bas there is no (6,4) & (a,c) to prove !+ false

Introduction to Relations

Definition (Definition 9.1.1 of PLP)

Let A be a set. Then a relation \mathbf{R} on A is a subset $R \subset A \times A$. If the ordered pair $(x,y) \in \mathbf{R}$, we denote this as $x\mathbf{R}y$, while if $(x,y) \notin \mathbf{R}$, we denote this as $x\mathbf{R}y$

Example (1)

The symbol > can be thought of as a relation ${\bf R}$ on ${\mathbb Z}.$

For example, since we know that 5 > 4, this means that we can write $5\mathbf{R}4$ and also $(5,4) \in \mathbf{R} \subset \mathbb{Z} \times \mathbb{Z}$.

In contrast, since $4 \not> 4$, we have $4\cancel{R}4$ and $(4,4) \not\in \mathbb{R}$.

Example (2)

Another example of a relation on \mathbb{Z} is simply

$$\mathbf{R} = \{(1,2), (18,37), (1,-80)\}.$$

Relations

1. Let $A = \{1, 2, 3, 6\}$. Write out the relation **R** that expresses " \not " (does not divide) on A as a set of ordered pairs.

Note: We need to make sure that we are not leaving any one of the ordered pairs out. If we do, it is not the same relation anymore.

$$A = \{(2,3,6)\}$$

 $A = \{(2,1), (3,1), (6,1), (3,2), (6,2), (6,3)\}$
 $(2,3)$ $= \{(3,1), (6,1), (3,2), (6,2), (6,3)\}$

(Continued) 1. Let $A = \{1, 2, 3, 6\}$. Write out the relation **R** that expresses "\" (does not divide) on A as a set of ordered pairs.

Old final question

2. Determine which of the following relations, \mathbf{R} , are reflexive, symmetric and transitive on the given set A. (We call a relation that satisfies all 3 properties, an **equivalence relation**.) Prove your answers.

$$\mathbf{X} \mathbf{R} = \{(x,y) \in \mathbb{R} \times \mathbb{R} \colon y = x^2\} \text{ on } A = \mathbb{R}.$$

R = {(1,1), (2,2), (3,3), (1,2), (2,1), (1,3), (3,1)} on
$$A = \{1,2,3\}$$
.

(s)
$$\mathbf{R} = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} : 3 \text{ divides } a-b\} \text{ on } A = \mathbb{Z}.$$

(Continued) 2. Determine which \mathbf{R} are equivalence relations on A.

- **b** $\mathbf{R} = \{(1,1), (2,2), (3,3), (1,2), (2,1), (1,3), (3,1)\}$ on $A = \{1,2,3\}$.
- $\mathbf{R} = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : \text{3 divides } a b\} \text{ on } A = \mathbb{Z}.$

Relations

3. Define a relation on \mathbb{Z} as $a\mathbf{R}b$ if $3\mid (2a-5b)$. Is \mathbf{R} reflexive, symmetric, transitive? Justify your answer.

Symmetric

$$3m = 2a - 5b$$
 $50, 3m + 5b = 2a$
 $2a - 3m = 56$
 $50, 5b - 2a = -3(m)$
 $2b - 2a = -3(m+b)$
 $2b - 5a = -3(m+b+a)$
 $50, 3 \mid 2b - 5a$

(Continued) 3. Define a relation on \mathbb{Z} as $a\mathbf{R}b$ if $3\mid (2a-5b)$. Is \mathbf{R} reflexive, symmetric, transitive? Justify your answer.

Relations

- 4. Let $\mathcal R$ and $\mathcal R'$ be two relations on the same set A. Prove or disprove the following.
 - ① If $\mathcal R$ and $\mathcal R'$ are transitive, then the relation $\widehat{\mathcal R}$ defined as $\widehat{\mathcal R}=\mathcal R\cup\mathcal R'$ is transitive.
- If $\mathcal R$ and $\mathcal R'$ are transitive, then the relation $\widehat{\mathcal R}$ defined as $\widehat{\mathcal R}=\mathcal R\cap\mathcal R'$ is transitive.

(Continued) 4. Let \mathcal{R} and \mathcal{R}' be two relations on A. Prove or disprove:

o If \mathcal{R} and \mathcal{R}' are transitive, then $\widehat{\mathcal{R}} = \mathcal{R} \cup \mathcal{R}'$ is transitive.

(6) If $\mathcal R$ and $\mathcal R'$ are transitive, then $\widehat{\mathcal R}=\mathcal R\cap\mathcal R'$ is transitive.

تح

SF (a,b), (b,c) & RNR', Men (a,b), (b,c) &R So, (a,c) &R Sheuce (a,c) &RNR' & it's +xaugitire

Primes

5. Let p be a prime number and let a,b be integers. Then prove that $p|ab \Rightarrow p|a$ or p|b.

Hint: Bézout's lemma may be useful:

Lemma (Lemma 9.5.7 of PLP)

Given $a, b \in \mathbb{Z}$, not both zero, there exist $x, y \in \mathbb{Z}$ such that

$$ax + by = \gcd(a, b).$$

Assume plab

If pla, we are done

If pla, we are done

If pla, gcd (p,a)=1. Bezont's lemma implies

Jan,zeZs+jan+py=1. So, abn+pby=b.

Since plab, we have ab=pk for some keZ. So, pkn+pby

and so p(kn+by)=b So, p|b Since kn+by=2=b

(Continued) 5. Let p be a prime number and let a, b be integers. Then prove that $p|ab \Rightarrow (p|a)$ or (p|b).

Relations - old exam question

- 6. A relation \mathbf{R} on \mathbb{Z} is defined by $a\mathbf{R}b$ if $7a^2 \equiv 2b^2 \pmod{5}$.
- (a) Prove that R is an equivalence relation.
- (b) Determine the distinct equivalence classes [0] and [1], simplify your answer as much as possible.

Hint: The previous example will be useful here.

- (Continued) 6. A relation **R** on \mathbb{Z} is defined by $a\mathbf{R}b$ if $7a^2 \equiv 2b^2 \pmod{5}$.
- (a) Prove that R is an equivalence relation.
- (b) Determine the distinct equivalence classes [0] and [1].