Convolutional Neural Networks

Overview

Last time:

- Multilayer perceptron
- Backpropagation

Today:

- Review of MLPs/Backpropagation
- CNNs: neural networks for images

Note

• There are no lecture notes for today's material

Notation

$$Z^{(Q)} = Z^{(Q)}(x)$$

$$\alpha^{(Q)} = \alpha^{(Q)}(x)$$

• Input layer

$$z^{(0)} = \chi \in \mathbb{R}^d$$

• Hidden layers: $1 \le \ell < L$

$$a^{(\ell)} = W^{(\ell)} z^{(\ell-1)}$$
 where $z^{(\ell)} = \sigma(a^{(\ell)})$ applied elementwise $z^{(\ell)} = \sigma(a^{(\ell)})$ applied $z^{(\ell)} = \sigma(a^{(\ell)})$ applied $z^{(\ell)} = \sigma(a^{(\ell)})$ applied $z^{(\ell)} = \sigma(a^{(\ell)})$ applied $z^{(\ell)} = \sigma(a^{(\ell)})$

$$W^{(l)} = \left[\omega_{ij}^{(l)} \right]$$

$$d_{l} \times d_{l-1}$$

• If bias desired, prepend a 1 to any $z^{(\ell)}$, $0 \le \ell < L$, and add column of weights to beginning of $\boldsymbol{W}^{(\ell+1)}$

• Output layer

$$f(x) = a^{(L)}$$

followed by *identity activation*

• Evaluation of the output from the input is called

forward propagation

$\chi = \begin{bmatrix} \chi_1 \\ -2 \end{bmatrix} = 2^{n} \text{Illustration of Notation}$ $Z^{(n)} = W^{(n)} Z^{(n)} = S^{(n)} Z^{(n)} =$

Backprop

```
Forward pass:
        Using current weights \boldsymbol{\theta} compute f(\boldsymbol{x}_n)
        and store intermediate values a_{ni}^{(\ell)}, z_{ni}^{(\ell)}
Initialize backward pass:
        For i = 1 to d_L
               Compute \tilde{\delta}_{ni}^{(L)}
        End
Backward pass:
        For \ell = \overline{L} - 1 downto 1
               For i = 1 to d_{\ell}

\delta_{ni}^{(\ell)} = \sum_{k} \delta_{nk}^{(\ell+1)} w_{ki}^{(\ell+1)} \sigma'(a_{ni}^{(\ell)})
                       For j = 1 to d_{\ell-1}
\frac{\partial R_n(\boldsymbol{\theta})}{\partial w_{ij}^{(\ell)}} \longleftarrow \delta_{ni}^{(\ell)} z_{nj}^{(\ell-1)}
                               w_{ij}^{(\ell)} \longleftarrow w_{ij}^{(\ell)} - \eta \frac{\partial R_n(\boldsymbol{\theta})}{\partial w_{ij}^{(\ell)}}
                        End
                End
        End
```

Poll

For an MLP with ReLU activation, a subgradient is guaranteed to exist at every iteration of backprop.

- (A) True
- (B) False

Convolutions

- Basically a sliding window
- Figure assumes a *stride* (shift increment) of 1, but larger strides are possible
- The filter is also called a

Input

Poll

What would be the output size with a stride of 2?

- (A) 2×2
- (B) 3×3
- (C) 4×4
- (D) 5×5

0	0	0	0	0	0	0	1	3	1
0	1	1	1	1	0	0	3	2	3
0	1	0	0	1	0	0	1	3	1
0	1	1	1	1	0	0	Fi	lter	_
0	1	0	0	1	0	0			
0	1	1	1	1	0	0			
0	0	0	0	0	0	0			

								1		
0	0x1	0x3	0x1	0	0	0	8	9		
0	1x3	1x2	1x3	1	0	0				
0	1x1	0x3	0x1	1	0	0				
0	1	1	1	1	0	0				
0	1	0	0	1	0	0				
0	1	1	1	1	0	0	0	utp	ut	
0	0	0	0	0	0	0		1		

Input

Filters are Feature Extractors

Figure: https://developer.nvidia.com/discover/convolution

Padding

0	0	0	0	0	0	0
0	2	4	9	1	4	0
0	2	1	4	4	6	0
0	1	1	2	9	2	0
0	7	3	5	1	3	0
0	2	3	4	8	5	0
0	0	0	0	0	0	0

1	2	3
-4	7	4
2	-5	1

Filter / Kernel

21	59	37	-19	2
30	51	66	20	43
-14	31	49	101	-19
59	15	53	-2	21
49	57	64	76	10

Feature

Image

Demo

https://cs231n.github.io/convolutional-networks/

Channels

- Color images have three channels.
- When there are multiple channels, the filter is actually three dimensional, where the depth of the fiter is the number of channels.
- The convolution is still *two-dimensional*. Hence the output of the convolution is still two-dimensional.

https://ai.stackexchange.com/questions/5769/in-a-cnn-does-each-new-filter-have-different-weights-for-each-input-channel-or

Convolutional Layers

- The initial layer in a CNN is the input image.
- A convolutional layer is a hidden layer formed by applying several convolutions (each with its own filter) to the previous layer.
- Filter coefficients are the weights to be learned
- # of weights into a layer = (filter $H \times W \times D$) × (# of filters)

Conv. Layers are not Fully Connected and Weights are Shared

v, C)	
Vz C		
V ₃ ()	
V4 (_	
V5 ()	
V6 (
V7 ()	
V8 ()	
Va (

V_1	V ₂	V ₃
V_4	V ₅	V ₆
V ₇	V ₈	V ₉

W ₁	W ₂		G_1	G ₂
W ₃	W ₄	=	G₃	G ₄

- () G1
- () G2
- () G3
- O 64

Pooling/Downsampling Layer

- Commonly combined with convolutional layers
- Applies to each channel separately
- Common implementation for images: $max \ pooling$, 2×2 window, stride of 2 (no parameters to learn)
- No weights to learn in the pooling layer itself
- Shrinks layers leading to fewer weights to learn in subsequent layers
- Subsequent learned features have lower spatial resolution, but higher spatial scope

Convolutional Neural Networks

- Combination of convolutional, pooling, and fully connected layers
- Backprop extends naturally to CNNs
- Major breakthrough: LeNet5 (Yann LeCun et. al, 1998) for hand-written digit recognition
- CNNs now used in Facebook's face recognition system, self driving cars, and many other object recognition systems

Figure: https://becominghuman.ai/what-exactly-does-cnn-see-4d436d8e6e52

Example: VGG16

VGG16 proposed by K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition". Figure: https://neurohive.io/en/popular-networks/vgg16/

Poll

Poll

Learned Filters

- Why convolutions (sliding windows)?
 - Fewer weights (as mentioned previously)
 - Salient features are often spatially localized
- Pooling layers lead to "multi-resolution" features
- Below are some filters from VGG16 (trained on a very large image dataset called ImageNet)
- Layers roughly correspond to level of detail.
- Weights are learned

Deep Learning

Enabled by

- Graphics processing units (GPUs): parallel floating-point calculators with 100s-1000s of cores
- Large, public databases such as ImageNet (Fei Fei Li, 2009) which has over 14 million *labeled* examples and 20 thousand classes of objects
- New training strategies
 - Dropout
 - Modifications of SGD (e.g., Adam)
- New architectural elements
 - Residual connections
 - Layer normalization
 - Batch normalization
- Rectified linear units and other activation functions (helps with vanishing gradient problem)

AlexNet

- The big breakthrough
- Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton (2012)
- Reduced error rate on ImageNet from 26% to 16%
- Used GPUs, dropout, ReLU, which have since become standard

Residual Networks

- "Residual connections"
- Helps with vanishing gradients; gradient propagates directly back to earlier layers

• Addition is performed before applying activation function

ResNet

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, "Deep Residual Learning for Image Recognition," CVPR 2015

Final Thoughts

- CNNs: neural networks for images
- Feedforward but not fully connected; train with backpropagation

Dilated Convolutions

https://www.researchgate.net/figure/Dilated-convolution-On-the-left-we-have-the-dilated-convolution-with-dilation-rate-r_fig2_320195101A