Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

INF/UFG - LFA 2021/1 - H. Longo

(1 - 1 de 143

Roteiro

INF/UFG - LFA 2021/1 - H. Longo

Variações de PDA's (43 - 58 de 1499)

PDA atômico

Definição 1.14

- A transição de um PDA acarreta três ações: processar um símbolo da cadeia, retirar um símbolo da pilha e colocar outro símbolo na pilha.
- Um PDA é chamado de atômico se cada transição causa apenas uma dessas ações.
- ► Transições em um PDA atômico têm a forma:

$$(s_i, \varepsilon) \in \delta(s_i, a, \varepsilon)$$

 $(s_i, \varepsilon) \in \delta(s_i, \varepsilon, a)$

 $(s_i, a) \in \delta(s_i, \varepsilon, \varepsilon)$

PDA atômico

Teorema 1.15

▶ Se P é um PDA, então existe um PDA atômico P' com $\mathcal{L}(P') = \mathcal{L}(P)$.

Demonstração.

- ▶ Para construir P', cada transição não atômica de P deve ser trocada por uma sequência de transições atômicas.
 - ▶ Dada a transição $(s_j, b) \in \delta(s_i, a, a)$ de P, são necessários dois novos estados s_1 e s_2 e as transições:

$$(s_1, \varepsilon) \in \delta(s_i, a, \varepsilon),$$

$$\delta(s_1,\varepsilon,a)=\{(s_2,\varepsilon)\},$$

$$\delta(s_2, \varepsilon, \varepsilon) = \{(s_i, b)\}.$$

PDA atômico

Teorema 1.15

▶ Se P é um PDA, então existe um PDA atômico P' com $\mathcal{L}(P') = \mathcal{L}(P)$.

Demonstração.

- ▶ De forma similar, uma transição que consiste na mudança de estado e que acarreta apenas duas ações, pode ser trocada por uma sequência de duas transições atômicas.
- ► A remoção de todas transições não atômicas produz um PDA atômico equivalente.

INF/UFG - LFA 2021/1 - H. Longo

Variações de PDA's (46 - 58 de 1499

Transição estendida

Definição 1.16

- Uma transição estendida, em um PDA, empilha uma cadeia de caracteres e não apenas um único símbolo.
 - **E**x.: a transição $(s_j,bcd) \in \delta(s_i,u,a)$ empilha bcd, com b ficando no topo da pilha.
- Um PDA estendido é aquele que contém transições estendidas.

INF/UFG - LFA 2021/1 - H. Longo

Variações de PDA's (47 - 58 de 1499)

Transição estendida

Teorema 1.17

▶ Se P é um PDA estendido, então existe um PDA P' com $\mathcal{L}(P') = \mathcal{L}(P)$.

Demonstração.

- Para construir P', cada transição estendida em P deve ser trocada por uma sequência de transições.
 - Por exemplo, dada a transição $(s_j,bcd) \in \delta(s_i,u,a)$ de P, em P' são necessários dois novos estados s_1 e s_2 e as transições:

$$(s_1, d) \in \delta(s_i, u, a),$$

$$\delta(s_1, \varepsilon, \varepsilon) = \{(s_2, c)\},$$

$$\delta(s_2, \varepsilon, \varepsilon) = \{(s_j, b)\}.$$

Transição estendida

Exemplo 1.18

►
$$L = \{a^i b^{2i} \mid i \ge 1\}.$$

PDA	PDA atômico	PDA estendido
$S = \{s_0, s_1, s_2\}$	$S = \{s_0, s_1, s_2, s_3, s_4\}$	$S = \{s_0, s_1\}$
$\delta(s_0, a, \varepsilon) = \{(s_2, a)\}\$	$\delta(s_0, a, \varepsilon) = \{(s_3, \varepsilon)\}\$	$\delta(s_0, a, \varepsilon) = \{(s_0, aa)\}\$
$\delta(s_2, \varepsilon, \varepsilon) = \{(s_0, a)\}$	$\delta(s_3, \varepsilon, \varepsilon) = \{(s_2, a)\}$	$\delta(s_0, b, a) = \{(s_1, \varepsilon)\}\$
$\delta(s_0,b,a) = \{(s_1,\varepsilon)\}\$	$\delta(s_2, \varepsilon, \varepsilon) = \{(s_0, a)\}$	$\delta(s_1, b, a) = \{(s_1, \varepsilon)\}\$
$\delta(s_1,b,a) = \{(s_1,\varepsilon)\}\$	$\delta(s_0,b,\varepsilon) = \{(s_4,\varepsilon)\}$	
	$\delta(s_4, \varepsilon, a) = \{(s_1, \varepsilon)\}\$	
	$\delta(s_1,b,\varepsilon) = \{(s_4,\varepsilon)\}$	

Transição estendida

Exemplo 1.18

► $L = \{a^i b^{2i} \mid i \ge 1\}.$

► PDA:

▶ PDA atômico:

PDA estendido:

INF/UFG - LFA 2021/1 - H. Longo

Variações de PDA's (50 – 58 de 1499)

Aceitação por estado final

Definição 1.19

▶ Seja o PDA $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle$. A aceitação da cadeia $w \in \Sigma^*$ é definida por estado final se existe um processamento

$$[s_0, w, \varepsilon] \stackrel{*}{\longmapsto} [s_i, \varepsilon, \alpha],$$

onde $s_i \in F$ e $\alpha \in \Gamma^*$.

- Definir aceitação em termos do estado final ou da configuração da pilha não altera o conjunto de linguagens reconhecidas pelos autômatos finitos.
- ▶ A linguagem aceita por estado final é denotada \mathcal{L}_F .

INF/UFG - LFA 2021/1 - H. Longo

Variações de PDA's (51 - 58 de 1499)

Aceitação por estado final

Lema 1.20

▶ Se $\mathcal{L}(P)$ é a linguagem aceita pelo PDA $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle$, com aceitação definida por estado final, então existe um PDA P' que aceita $\mathcal{L}(P)$, com aceitação definida por estado final e pilha vazia.

Demonstração.

INF/UFG - LFA 2021/1 - H. Longo

- $P' = \langle \Sigma, \Gamma, S \cup \{s_f\}, s_0, \delta', \{s_f\} \rangle.$
- $\blacktriangleright\,$ a função δ' é igual à função δ acrescida das transições:

$$\delta'(s_i, \varepsilon, \varepsilon) = \{(s_f, \varepsilon)\}, \quad \forall \ s_i \in F;$$

$$\delta'(s_f, \varepsilon, a) = \{(s_f, \varepsilon)\}, \quad \forall \ a \in \Gamma.$$

Aceitação por estado final

Lema 1.20

▶ Se $\mathcal{L}(P)$ é a linguagem aceita pelo PDA $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle$, com aceitação definida por estado final, então existe um PDA P' que aceita $\mathcal{L}(P)$, com aceitação definida por estado final e pilha vazia.

Demonstração.

- ► Seja o processamento $[s_0, w, \varepsilon] \stackrel{*}{\underset{P}{\longmapsto}} [s_i, \varepsilon, \alpha]$ que aceita w por estado final.
- ► O equivalente em P' é:

$$[s_0, w, \varepsilon] \stackrel{*}{\vdash_p} [s_i, \varepsilon, \alpha] \stackrel{}{\vdash_{p'}} [s_f, \varepsilon, \alpha] \stackrel{*}{\vdash_{p'}} [s_f, \varepsilon, \varepsilon].$$

Aceitação por estado final

Lema 1.20

Se $\mathcal{L}(P)$ é a linguagem aceita pelo PDA $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle$, com aceitação definida por estado final, então existe um PDA P' que aceita $\mathcal{L}(P)$, com aceitação definida por estado final e pilha vazia.

Demonstração.

- As novas transições não levam P' a aceitar cadeias que não pertençam à $\mathcal{L}(P)$:
 - O único estado final de P' é s_f, o qual é alcançável a partir de qualquer estado final de P.
 - ightharpoonup As transições a partir de s_f desempilham símbolos, mas não processam a cadeia de entrada.

INF/UFG - LFA 2021/1 - H. Longo

Variações de PDA's (54 – 58 de 1499)

Aceitação por pilha vazia

Definição 1.21

Seja o PDA $P = \langle \Sigma, \Gamma, S, s_0, \delta \rangle$. A aceitação da cadeia $w \in \Sigma^*$ é definida por pilha vazia se existe um processamento

$$[s_0, w, \varepsilon] \stackrel{+}{\longmapsto} [s_i, \varepsilon, \varepsilon],$$

onde não há restrição quanto ao estado s_i de parada do processamento.

- É necessário pelo menos uma transição para permitir a aceitação de linguagens que não contenham a cadeia vazia.
- ▶ A linguagem aceita por pilha vazia é denotada \mathcal{L}_E .

INF/UFG - LFA 2021/1 - H. Longo

Variações de PDA's (55 - 58 de 1499)

Aceitação por pilha vazia

Lema 1.22

▶ Se $\mathcal{L}(P)$ é a linguagem aceita pelo PDA $P = \langle \Sigma, \Gamma, S, s_0, \delta \rangle$, com aceitação definida por pilha vazia, então existe um PDA P' que aceita $\mathcal{L}(P)$, com aceitação definida por estado final e pilha vazia.

Demonstração.

►
$$P' = \langle \Sigma, \Gamma, S \cup \{s'_0\}, s'_0, \delta', S \rangle$$
, onde:

$$\delta'(s_i, a, x) = \delta(s_i, a, x) \in \delta'(s'_0, a, x) = \delta(s_0, a, x),$$

$$\forall s_i \in S, a \in \Sigma \cup \{\varepsilon\} \in x \in \Gamma \cup \{\varepsilon\}.$$

▶ Os processamentos de P e P' são idênticos, exceto que o estado inicial de P é s_0 e o inicial de P' é s'_0 .

Aceitação por pilha vazia

Lema 1.22

▶ Se $\mathcal{L}(P)$ é a linguagem aceita pelo PDA $P = \langle \Sigma, \Gamma, S, s_0, \delta \rangle$, com aceitação definida por pilha vazia, então existe um PDA P' que aceita $\mathcal{L}(P)$, com aceitação definida por estado final e pilha vazia.

Demonstração.

- ► Todo processamento em *P'*, de comprimento um ou maior, que para com pilha vazia também para em um estado final.
- ▶ Como s'_0 não é final, ε é aceito por P' só se é aceita por P.
- ▶ Portanto, $\mathcal{L}(P') = \mathcal{L}_E(P)$.

INF/UFG – LFA 2021/1 – H. Longo Variações de PDA's (56 – 58 de 1499) INF/UFG – LFA 2021/1 – H. Longo Variações de PDA's (57 – 58 de 1499)

Linguagens aceitas por PDA's

Teorema 1.23

- ► As três condições a seguir são equivalentes:
 - 1. a linguagem $\mathcal{L}(P)$ é aceita pelo PDA P;
 - 2. existe um PDA P_1 tal que $\mathcal{L}_F(P_1) = \mathcal{L}(P)$; e
 - 3. existe um PDA P_2 tal que $\mathcal{L}_E(P_2) = \mathcal{L}(P)$.

INF/UFG - LFA 2021/1 - H. Longo Variações de PDA's (58 - 58 de 1499)

Livros texto

Discrete and Combinatorial Mathematics - An Applied Introduction. Addison Wesley, 1994.

How To Prove It – A Structured Approach. Cambridge University Press, 1996.

J. E. Hopcroft; J. Ullman.

Introdução à Teoria de Autômatos, Linguagens e Computação.

T. A. Sudkamp.

Languages and Machines – An Introduction to the Theory of Computer Science. Addison Wesley Longman, Inc. 1998.

J. Carroll; D. Long.
Theory of Finite Automata – With an Introduction to Formal Languages.

Introduction to the Theory of Computation.
PWS Publishing Company, 1997.

H. R. Lewis; C. H. Papadimitriou Elementos de Teoria da Computação.

Bookman, 2000.

INF/UFG - LFA 2021/1 - H. Longo Bibliografia (1499 - 1499 de 1499)