TUTORATO - Serie di funzioni, serie di potenze in campo complesso e in campo reale, sviluppi in serie di potenze di funzioni razionali, funzioni trascendenti in C

Esercizio 1: Per ciascuna delle seguenti serie di funzioni di variabile reale si determinino gli insiemi di convergenza semplice e assoluta e si studi la convergenza uniforme.

$$(2) \sum_{m=0}^{\infty} (x^2 + x + 1)^m$$

$$I_s = I_a = \left\{ x \in \mathbb{R} : |x^2 + x + 1| < 1 \right\}$$

$$\Rightarrow I_s = I_m = (-1, 0)$$

$$\begin{array}{c|c} (b) & \stackrel{\sim}{>} & e^{-x} \\ \hline & 2 + n|x| \end{array}$$

$$f_n(x) = \frac{e^{-x}}{2 + n|x|} \sim \frac{e^{-x}}{n|x|} \quad \text{for } n \to \infty \quad \text{se } x \neq 0$$

$$\sum_{n=0}^{\infty} \frac{1}{n} = \infty \implies \sum_{n=0}^{\infty} f_n(x) = \infty$$

$$\sum f_n(o) = \sum \frac{1}{2} = \infty$$

$$\implies$$
 $I_s = I_a = \phi$.

(c)
$$\frac{(-1)^{n}}{n^{2} + (\log n)^{2}}$$

$$f_{n}(x) = \frac{(-1)^{n}}{n^{2} + (\log n)^{2}}$$

$$\forall x < 0 \quad n^{x} \rightarrow 0 \quad e \quad (log n)^{x} \rightarrow 0 \quad \text{fun} \rightarrow \infty$$
Ominshi $f_{i}(x) \rightarrow 0$

Se x = 0 $f_n(0) = \left(-1\right)^n / 0$. Dunque $I_s \subset (0, \infty)$. L'acome $\frac{n}{\log_1 n} \to \infty$, si ha she $|f_n(x)| \sim \frac{1}{n^x} \text{ for } n \rightarrow \infty$. Quind $I_a = (1, \infty)$. Essendo la mocessione 1 decrescente, fur l'eibniz $\sum f_n(x)$ converge fur ogni x> 0. Quind: $I_s = (0, \infty)$, $I_a = (1, \infty)$. Porto $S(x) = \sum_{i=2}^{\infty} f_n(x)$ e $S_n(x) = \sum_{i=2}^{\infty} f_n(x)$, dollar owne de resto data dal criterio di Ceibrit assiamo de $\left| A_n(x) - S(x) \right| \leq \left| f_{n+1}(x) \right| \leq \left| f_{n+1}(S) \right| \quad \forall x \geq \delta > 0$ Essendo f_{n+1}(6) = 0 otterriamo de Efn converge uniformente in (5,00) 48>0 (ma non in (0,00)), (d) $\sum_{n=1}^{\infty} \frac{(-1)^n e^{nx}}{n}$ Chiamo $f_n(x) = \frac{(-1)^m e^{nx}}{n}$ Se x>0 fn(x) n >> co fe x = 0 $f_n(x) = \frac{(-1)^m}{n}$ e $\sum_{n=0}^{\infty} f_n(0)$ converge me non assolutaunte Se x <0 |fn(x)| < (e-|x|)^m ∑ |fn(x)| < ∞ fe $x \in (-\infty, -5]$ con 5 > 0 allow $|f_n(x)| \le (e^{-5})^m$ convergente totale Parindi convergente uniforme in (-∞)-8] ¥5>0

L' què provace convergente uniforme in (-0, 0] usando le stra del susto data del criterio di Leiburit (fu ché le serie à a termini di segue alterno). $Detta_{s(x)} = \sum_{n=1}^{\infty} (-1)^n \frac{e^{nx}}{n} = s_n(x) = \sum_{k=1}^{\infty} (-1)^k \frac{e^{kx}}{k}$ n he che $\left| S(x) - S_n(x) \right| \le \left| f_{n+1}(x) \right| = \frac{e^{(m+1)x}}{m+1} \le \frac{1}{m+1} \quad \forall x \in (-\infty, 0]$ $\Rightarrow \sup_{x \notin b} |s_n(x) - s(x)| \Rightarrow 0 \text{ cioè convergenza unif.}$ $\text{in } (-\infty, 0]$ (e) $\sum_{m=1}^{\infty} \frac{x}{x^4 + 3n^4}$ Chinno $f_n(x) = \frac{x}{x^4 + 3n^4}$ e ossum cle f_n è contino de $(R \text{ in } (R) = f_n(x) \rightarrow 0 \text{ for } x \rightarrow \pm \infty$. Calcolo Mn = max (fn(x)). Essendo fu dispari, barte considure f_n(x) fu x>0. considuere $f_n(x)$ for x > 0. $f'_n(x) = \frac{x^4 + 3n^4 - 4x^4}{(x^4 + 3n^4)^2} = 0$ for x > 0 $(x^4 + 3n^4)^2$ $(x^4 + 3n^4)^2$ so x = 40 so x = n. $f_n(n) = \frac{n}{n^4 + 3n^4} = \frac{1}{4n^3}$ => Mn = 4n3 - Essendo Z Mn < so concludo de E for converge totalmente in R. Quiroli Is=Ia=IR e ni he convergenta uniforme in IR.

$$(f) \sum_{n=1}^{\infty} \frac{\log (1+nx)}{(n^2x+n^2)} definite in \left(-\frac{1}{n}, \infty\right).$$

$$f_n(x) = \frac{\log (1+nx)}{m^2x+n^2} definite in \left(-\frac{1}{n}, \infty\right).$$

$$\int_{n\geq 1} (-\frac{1}{n}, \infty) = [0, \infty) = S'$$

$$\int_{n\geq 1} (-\frac{1}{n}, \infty) = [0, \infty) = S'$$

$$\int_{n\geq 1} (-\frac{1}{n}, \infty) = [0, \infty) = S'$$

$$\int_{n\geq 1} (-\frac{1}{n}, \infty) = [0, \infty) = S'$$

$$\int_{n\geq 1} (-\frac{1}{n}, \infty) = [0, \infty) = S'$$

$$\int_{n\geq 1} (-\frac{1}{n}, \infty) = \int_{n\geq 1} (-\frac{1}{$$

 $\bigcap_{n=1}^{\infty} S_n = (0, \infty) \cdot Devo consideran volo x30$ fn(x) > 0 \tag{\tau} \tag{\tau} \tag{\tau}. $\log (1+\epsilon) \leq \epsilon \qquad \forall \epsilon > 0 \qquad \Longrightarrow \qquad \int_{\mathbf{n}} f_{\mathbf{n}}(\mathbf{x}) \leq \frac{\mathbf{n} \times \mathbf{n}}{\mathbf{n} \times \mathbf{n}} = \frac{1}{\mathbf{x}^{\mathbf{n}-1}} \leq \frac{1}{(1+\epsilon)^{\mathbf{n}-1}}$ $\Rightarrow \frac{1}{1+\epsilon} \int_{-\infty}^{\infty} \frac{1}{$ Se $0 < x \le 1$ $f_n(x) \ge \frac{\log(1+nx)}{n}$ $e \ge \frac{\log(1+nx)}{n}$ divinge. $\Rightarrow I_S = I_a = (1, \infty)$ $e \text{ convergenza miniforme in } [1+\epsilon, \infty)$ $\forall \epsilon > 0$ $e \text{ me non in } (1, \infty)$. $(j) \sum_{n=1}^{\infty} n^{x} x^{n}$ Chiamo f(x) = mxxn. I ha che $f_n(x)$ $\xrightarrow{}_{n}$ $\xrightarrow{}_{n$ Per x = -1 $f_n(x) = \frac{(-1)^m}{n}$ e la suie converge ma non assolut. Pu $|x| \leq \delta \leq 1$ $|f_n(x)| \leq n^{\delta} \delta^n = \sum_{n=1}^{\infty} n^{\delta} \delta^n \geq \infty$ = Σ for converge totalm. in $[-\delta, \delta]$ M-test Dunque $I_S = \begin{bmatrix} -1 & 1 \end{pmatrix}$, $I_a = \begin{pmatrix} -1 & 1 \end{pmatrix}$. Converginta uniforme in (-8, 8] 4800. Posso provare anche convergenta uniforme in $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$; Sie $J(x) = \sum_{n=1}^{\infty} f_n(x)$ $e s_n(x) = \sum_{k=1}^n f_k(x)$, Per $x \in (-1, -\frac{1}{2}] \sum_{k=1}^n f_k(x)$ e uns serie a termini d' segus alters

holte | fnn(x) | \le | fn(x) | \mathral{Y}n, \mathral{Y} \times \le \le -1, -\frac{1}{2} \mathral{J}. \mathral{Infath} $\frac{\left|f_{n+1}(x)\right|}{\left|f_{n}(x)\right|} = \frac{\left(n+1\right)^{x}\left|x\right|^{m+1}}{n^{x}\left|x\right|^{m}} = \left(\frac{n+1}{n}\right)^{x}\left|x\right| \leq \left(\frac{n+1}{n}\right)^{\frac{1}{2}} \leq 1$ moltre f_n(x) -> 0 fu m -> 0 -Lons dunque sodolisfatte le conditioni del criterio d' Leibniz e postanno stimar il resto nel modo seguente $\left| S(x) - S_n(x) \right| \leq \left| f_{n+1}(x) \right| = \left(n+1 \right)^{x} \left| x \right|^{m+1} \leq \left(n+1 \right)^{-\frac{\pi}{2}}$ \Rightarrow $s(x) - s(x) | \rightarrow 0$ X F (-1, -1) lungue & fn couverge mi]. in [-1, -\frac{1}{2}] Dato che converge mit in $\begin{bmatrix} -\frac{1}{2} \\ 5 \end{bmatrix}$ $\forall \delta \in (0,1)$ possions concluder de Efn converge uniform in[-1,8] $\forall \in (0,1)$

Esercizio 2: Delle seguenti serie di potenze in campo complesso si determini quanto specificato. (a) $\sum_{i=1}^{\infty} \frac{(n!)^2}{(2n)!} z^n$ disce di convergenter $\left| \frac{a_{n+1}}{a_n} \right| = \frac{\left((n+1)! \right)^2}{\left(2n_1 2 \right)!} \frac{(2n)!}{(n!)^2} = \frac{(n+1)^2}{(2n+2)} \longrightarrow \frac{1}{4}$ => R=4 D= { = C: 1=1<4 }. $(b) \sum_{n=0}^{\infty} \frac{(1-2i)^n}{(2-1)^n}$ $\sqrt[n]{|a_n|} = \frac{|1-2i|^n}{\sqrt[n]{n}\sqrt[n]{n^2+1}} = \frac{(\sqrt{5})^n}{\sqrt[n]{n}\sqrt[n]{n^2+1}} \longrightarrow \infty$ La serie enverge solo in z=1. $(c) \sum \frac{n}{m!+i} z^n$ $\left|\frac{a_{n+1}}{a_n}\right| = \frac{m+1}{\lfloor (m+1)! + i \rfloor} = \frac{m+1}{m} = \frac{m+1}{m} = \frac{m+1}{\lfloor (m+1)! \rfloor} = 0$ $I_{\varsigma} = I_{a} = C \quad \text{convergense wif. } \text{mi dischi } \{ \xi \in C : |\xi| \le R \}$ ₩2>0. $(d) \sum_{i=1}^{n} (4n^2 + \sqrt{n} - 2n)(2-i)^n$ $a_{n} = \frac{4n^{2} + \sqrt{n} - 4n^{2}}{\sqrt{4n^{2} + \sqrt{n} + 2n}} \sim \frac{1}{4\sqrt{n}} \Longrightarrow \left| \frac{a_{n+1}}{a_{n}} \right| \longrightarrow 1$

	Esercizi			_				_		-						
5	seguenti	serie di	poter	ıze in	camp	o rea	ale. St	udiari	ne ino	itre la	conv	erger	nza ur	iitorm	e.	
	80															
((2) \(\sum_{n=}^{2} \)	(ر× (۱ .	^												
	n=	i \ h!	/													
							1	Α	<u>Ι</u>							
	×o	= 0 /	a	\ = \frac{\}{10}	- 1 1	, -	_ =	lim	ant	브 =	: 1	<u> </u>		R =	1	
)	x = ±	1	0.				A A M	211	عمدا	lu :	rl t	em	~ue		
	h	メこさ	: 1	la i	sene	700			8	σ						
		low			٠.	inh	inte	Mu	-							
	ger		- 700	0		ſ										
		_	_ /		,	\~	PA G	}- ∧	100 is p	440	(~7	27	∀re	: 10.	1).	
	15	= I _a -	- (-	', ',	/ /	ono	ryen	10- 10	F		L 5	<u>J</u>	•	()	,	_
	∞		n													
([) 5	(x-1)	_													
	$\bigg) \sum_{2}^{\infty}$	(log n	$)^{m}$													
		_				_			- M -							
	<i>,</i> –	1 , a,	-	1	_		_	lim	آلة ا	a.i =	i him		- =	0 =	? R= ∞	9
	χ -	7 7 20%	(1	20(10	n)	R	-	h -) 00	V	7()	h →> A	o lo	ท			
												U				
	Т -	- T _	(TZ	0.47	0 100 A A	2-	1000	1. 1	, F.	r rl	A,	2 > 0	,			
	Ja-	= I _s =	"\ 1		The state of the s	wi to	70000	J. 7.		1						
	င္ဝ															
(0)	1934	^ + ·	3 n	x-2) m										
ر	/	("			,	,										
				200				1.	~	1	a		, ,			
	x = 6	2 ,	ans	= 8'''	+9"	,	- :	- him	V la	1 =	J	\Rightarrow	12 = ig			
	1		1 1		ا ۾		~ .	3	- /·	u di	- il	te	سنا	۔د		
	m>	< = 2	j g	/~~u	ر	~ <i>C</i>		Jur	- T							_
			, ,				m	[~]	(, a	^						
	gen	uvle	dil	la :	Serie	(8	+ .) (王 1)		/ >	0.				
	0		/	10					gn	'						
	I _a =	- Is =	(17	17)	Cow	, un	n). 1	n /	17+8	: 19	- 8]	1/2	->0	•	
	gen Ia=		` J	<i>y</i>				0		J	g	ر				
			1				1									

 $d) \sum_{1}^{\infty} \frac{n e^{-n}}{n^{2}+1} \times n$ $X_0 = 0 \qquad a_n = \frac{ne^{-n}}{n^2 + 2} \qquad \sqrt[n]{|a_n|} = \sqrt[n]{\frac{n}{n^2 + 2}} e^{-1} \implies R = e.$ $\sum \frac{me^{-n}}{n^2+1}e^m = \sum \frac{m}{n^2+1} diverge \sum \frac{ne^{-n}}{n^2+1} (-e)^n = \sum (-1)^n \frac{n}{n^2+1}$ $\frac{d}{dx} \left(\frac{x}{x^2 + 1} \right) = \frac{x^2 + 1 - 2x^2}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2} \le 0 \quad \text{for } x > 1$ => le mac. n è dicreseente => la serie conveye fu l'eibnit. aninhi Is = (-e, e), Ta = (-e, e) Convergura uniforme in [-e, &] tr<e.

Esercizio 4. Ricordando che $\sum_{n=1}^{\infty} \frac{x^n}{n} = -\ell_n \chi(1-x)$ fu $x \in (-1, 1)$

si determini l'insieme di convergenza semplice e la funzione somma delle seguenti serie e se ne discuta l'uniforme convergenza:

a)
$$\sum_{n=1}^{\infty} \frac{1}{n \times n} = \sum_{t=\frac{1}{x}}^{\infty} \frac{t^n}{n} = -l_2(1-\frac{1}{x})$$

$$+ \frac{1}{x} = -l_2(1-\frac{1}{x})$$

$$+ \frac{1}{x} = -l_2(1-\frac{1}{x})$$

$$+ \frac{1}{x} = -l_2(1-\frac{1}{x})$$

$$T = (-\infty, -1] \cup (1, \infty)$$

$$T = (-\infty, -1] \cup (1, \infty)$$

$$\frac{1}{n} = \frac{(-1)^n}{n+1} (3x-2)^n = \frac{\infty}{2} \frac{(2-3x)^n}{n+1} = \frac{1}{2-3x} = \frac{\infty}{2} \frac{(2-3x)^{n+1}}{2-3x} = \frac{1}{2-3x} = \frac{\infty}{2} \frac{(2-3x)^n}{2-3x} = \frac{1}{2-3x} = \frac{\infty}{2} \frac{(2-3x)^n}{2-3x} = \frac{1}{2-3x} = \frac{1}{2} \frac{\infty}{2} \frac{(2-3x)^n}{2-3x} = \frac{1}{2-3x} = \frac{1}{2} \frac{\infty}{2} \frac{(2-3x)^n}{2-3x} = \frac{1}{2} \frac{\infty}{2} \frac{\infty}{2} \frac{(2$$

$$= -\frac{1}{2 \cdot 3 \times 0} \left(1 - 2 + 3 \times \right) = \frac{1}{3 \times 2} \log_{3}(3 \times -1) - \text{Pu} \times = \frac{2}{3} \text{ vale } 1.$$

$$\times \neq \frac{2}{3}, -1 \leq 2 - 3 \times < 1$$

La functione source =
$$f(x) = \begin{cases} 1 & x = 2/3 \\ eog(3x-1) & x \in (\frac{1}{3}, \frac{2}{3}) \cup (\frac{2}{3}, 1] \end{cases}$$

Convergenta uniforme in
$$\left[\frac{1}{3}+\epsilon,1\right]$$
 $\forall \epsilon>0$.

C)
$$\frac{1}{n(n+1)}$$

So che $-\log(1-x) = \frac{\infty}{n} \frac{x^n}{n} \text{ in } [-1,1) \text{ con convergentar}$
uniforme in $[-1, 7] \forall r \in (0,1)$.

So che
$$-\log(1-x) = \geq \frac{\lambda}{n}$$
 in $\lfloor -1, 1 \rfloor$ con converge

$$\Rightarrow \int_{0}^{x} - \log(1-\epsilon) dt = \int_{0}^{x} \sum_{n=1}^{\infty} \frac{t^{n}}{n} dt = \sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{x} t^{n} dt =$$

$$= \sum_{n=1}^{\infty} \frac{x^{n+1}}{n} = x \sum_{n=1}^{\infty} \frac{x^{n}}{M(n+1)}$$

$$= \sum_{n=1}^{\infty} \frac{x^{n}}{M(n+1)} = x \sum_{n=1}^{\infty} \frac{x^{n}}{M(n+1)}$$

$$= \sum_{n=1}^{\infty} \frac{x^{n}}{M(n+1)} = x \sum_{n=1}^{\infty} \frac{x^{n}}{M(n+1)}$$

$$= \sum_{n=1}^{\infty} \frac{x^{n}}{M(n+1)} = x \sum_{n=1}^{\infty} \frac{x^{n}}{M(n+1)}$$

holte
$$\int_0^x - \log(1-t) dt = -t \log(1-t) \left(-\int_0^x \frac{t}{1-t} dt = -t \log(1-t)\right)$$

$$= - \times \log (1-x) + \int_{0}^{\infty} \left(\frac{1-t}{1-t} - \frac{1}{1-t}\right) dt =$$

$$= - \times \log (1-x) + x + \log (1-x) = x + (1-x) \log (1-x)$$

$$\sum_{n=1}^{\infty} \frac{x^{n}}{n(n+1)} = 1 \pm \frac{1-x}{x} \log_{2}(1-x)$$

$$\sum_{n=1}^{\infty} \frac{x^{n}}{n(n+1)} = 1 \pm \frac{1-x}{n(n+1)} = 1 \pm \frac{1-x}{n(n+1$$

Esercizio 6.

- (i) Data la serie di potenze ∑ n x in campo reale, se ne determini l'intervallo di
- (ii) Si deduca lo sviluppo in serie di potenze centrato in 0 della funzione $(x) = \frac{1}{(1-x)^2}$ per /x/21
- (iii) Si determini lo stesso sviluppo richiesto al punto (ii) usando la serie prodotto secondo Cauchy.

(i)
$$\frac{1}{R} = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{n} = 1 \implies R = 1$$

Je $x = \pm 1$ (a serie non converge (il termine punele non è infaitavono). Quindi $I_s = (-1, 1)$

Detta $S(x) = \sum_{n=1}^{\infty} n x^n$ n' la convergenta unif. in $[-\pi, \pi]$ Vre (0,1)

aminh for x 70

$$\frac{S(x)}{x} = \sum_{n=0}^{\infty} \frac{d}{dx} (x^n) = \frac{d}{dx} \sum_{n=0}^{\infty} x^n = \frac{d}{dx} \frac{1}{1-x} = \frac{1}{(1-x)^2}$$
furthi $\sum_{n=0}^{\infty} x^n$ converge manif.

a 1/2 in (-12 12) ∀12 € (0,1)

$$= 3 (x) = \frac{x}{(1-x)^2} \quad \forall x \in (-1,1) \quad (valuande for x = 0).$$

(ii) Da (i) segue lu
$$\frac{1}{(1-x)^2} = \frac{1}{x} \sum_{n=0}^{\infty} n \times n = \frac{1}{x} \sum_{n=1}^{\infty} n \times n = \frac{1}{x} \sum_{n=1}^{\infty}$$

$$= \sum_{n=0}^{\infty} (n+1)x$$

$$(iii) \frac{1}{(1-x)^2} = \frac{1}{1-x} \cdot \frac{1}{1-x} = \left(\sum_{n=0}^{\infty} x^n\right) \left(\sum_{n=0}^{\infty} x^n\right) = \sum_{n=0}^{\infty} c_n x^n$$

dove
$$c_n = \sum_{k=0}^{m} a_k b_{n-k}$$
 con $a_k = 1$ e $b_{n-k} = 1$ $\forall k$.

=>
$$c_n = \sum_{0}^{n} 1 = m+1$$
 $ci_0 = \frac{1}{(1-x)^2} = \sum_{0}^{\infty} (n+1) \times^n \forall x \in (-1,1).$

Esercizio 7. Scrivere le funzioni di variabile complessa cosh z, sinh z, cos z, sin z in serie di potenze complesse (con centro in 0). Inoltre verificare le seguenti identità in campo complesso: a) $(e^{2})^{n} = e^{n2} (n \in \mathbb{Z})$ b) cosh 2 - sunh 2 = 1 c) cos2 + sin2 = 1 d) cos z = cosh iz e) sin = - i sinh it a) se n=0 e w ∈ C 1 {0} w = 1 - holtre e = L Se $n = 1, 2, \cdots$ $(e^2)^m = e^2 \cdot e^2 \cdot \cdots \cdot e^2 = e^{m^2}$ $= e^{m^2}$ Se n = -1 $(e^{\frac{2}{7}})^{-1} = \frac{1}{2}$ - holte $e^{\frac{2}{7}}e^{-\frac{2}{7}} = e^{\frac{2}{7}} = e^{-\frac{1}{7}}$ = $e^{-\frac{1}{6}} = \frac{1}{6^2} = (e^2)^{-\frac{1}{2}}$ $\int_{e^{2}} n = -2, -3, \dots \qquad (e^{2})^{m} = (e^{2})^{m} = \frac{1}{(e^{2})^{m}} = \frac{1}{e^{[n]2}}$ = e | n = n = . b) $\cosh^2 z - \sinh^2 z = \left(e^{\frac{7}{2} + e^{-\frac{7}{2}}}\right)^2 - \left(e^{\frac{7}{2} - e^{-\frac{7}{2}}}\right)^2 = e^{\frac{27}{4} + e^{-\frac{7}{4}}} + e^{\frac{7}{4}}$ $-\frac{e^{2t}+e^{-2t}-2}{4}=1$ c) $\cos^2 t + \sin^2 t = \left(\frac{e^{i\frac{2}{4}} - i\frac{2}{4}}{2}\right)^2 + \left(\frac{e^{-i\frac{2}{4}} - e^{-i\frac{2}{4}}}{2i}\right)^2 = \frac{2it - 2it}{4} + 2it$ d) $cos = \frac{e^{iz} + e^{-iz}}{2} = cosh iz$ e) $\sin z = \frac{e^{i2} - e^{-i2}}{2i} = \frac{1}{i} \sinh i2 = -i \sinh i2$.

Esercizio 8. Verificare che re z = x + i y con x, y e IR allow e² = e x (cosy + i siny) Desume che dato WE C l'equasione et = W non la soluzioni in C se W=0 mentre ne lue infinite se w 40. $e^{\overline{t}} = e^{x+iy} = e^{x} e^{ig} = e^{x} (\cos y + i \sin y)$ $|\vec{e}| = e^{\times} \neq 0 \quad \forall z \in C \quad \text{ferelie} \quad e^{\times} \in (0, \infty).$ Fissato WE C W # D scrivo W = pei con p= | W | e O E (o 2m) $\forall k \in \mathbb{Z}$ chiams $z_k = \ln \rho + i(2k\pi + 0)$ e ottengo clu $e^{\frac{2}{k}} = e^{\ln \rho} \left[\cos \left(2k\pi + o \right) + i \sin \left(2k\pi + o \right) \right] = \rho e^{i\sigma} = w.$