Esercizi

Esame di Elementi di Logica e Strutture Discrete

Corso di Laurea in Informatica

Appello del 16.01.2023

Nome:	
Cognome:	
Matricola:	

Esercizio 1. (4 punti) Sia A un insieme non vuoto. Si consideri suddiviso in questo modo:

$$A = A_1 \cup A_2 \cup A_3$$

dove A_1 , A_2 , A_3 sono insiemi non vuoti e disgiunti a due a due: $A_1 \cap A_2 = \emptyset$, $A_2 \cap A_3 = \emptyset$, $A_1 \cap A_3 = \emptyset$. Sia R la relazione definita in questo modo:

$$\forall x, y \in A : R(x, y) \Leftrightarrow \exists i : x \in A_i \land y \in A_i$$

con i che può assumere i valori 1,2,3. Dimostrare che R è di equivalenza.

Esercizio 2. (5 punti) Sia $D_{30} \setminus \{1\} = \{2, 3, 5, 6, 10, 15, 30\}$ l'insieme dei divisori di 30, a cui è stato tolto l'elemento 1. Supponiamo di applicare a $D_{30} \setminus \{1\}$ la relazione R così definita:

$$\forall x, y \in D_{30} \setminus \{1\} : R(x, y) \Leftrightarrow x|y$$

si ricorda che x|y si legge "x divide y", ovvero $\exists m \in \mathbb{Z} : y = mx$.

- R su $D_{30} \setminus \{1\}$ è una relazione di ordine parziale?
- R su $D_{30} \setminus \{1\}$ è una relazione di ordine totale?
- R su $D_{30} \setminus \{1\}$ ha elementi minimali e massimali?

(Suggerimento: rappresentare graficamente la relazione R sull'insieme $D_{30} \setminus \{1\}$.)

Esercizio 3. (5 punti) Dimostrare per induzione che la somma dei coefficienti della potenza n-esima di un binomio è uguale a 2^n .

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

Esercizio 4. (4 punti) Usando la definizione di interpretazione $v: X \to \{0,1\}$ per la logica proposizionale, dimostrare che:

$$\models (a \land \neg a) \Rightarrow \neg (b \land \neg c) \lor \neg (a \Rightarrow c)$$

Successivamente, scrivere la tavola di verità della formula $\neg(b \land \neg c) \lor \neg(a \Rightarrow c)$.

Esercizio 5. (5 punti) Usando il metodo di deduzione naturale, dimostrare che:

$$\vdash (a \lor \neg a) \Rightarrow ((a \Rightarrow b) \lor (b \Rightarrow a))$$

Esercizio 6. (4 punti) Definire induttivamente l'insieme delle variabili libere FV(P) per le formule ben formate $P \in FBF$ della logica del I ordine.