Trabajo Práctico n°10

Flujo sobre cuerpos sumergidos

Objetivo del Práctico:

Este práctico está destinado a:

Estudiar los efectos que ejerce un fluido sobre un cuerpo sumergido en el Estudiar las fuerzas de sustentación y arrastre

Bibliografía sugerida:

- "Mecánica de los Fluidos" de Victor Streeter y Benjamín Wylie
- "Introducción a la Mecánica de fluidos" de James John y William Haberman
- "Mecánica de Fluidos" de Irving Shames
- "Mecánica Elemental de Fluidos" de Hunter y Rouse
- "Mecánica de los Fluidos" de E. Brun, A. Martinot Lagarde y J. Mathieu

Problema N°1

Un cilindro, de diámetro 1,2 m y de largo 7,5 m, gira a 20 rpm. El eje del cilindro es perpendicular a una corriente de aire. La velocidad de la corriente es de 3,6 m/s y tiene una densidad de 1,295 kg/m³. Suponiendo que no hay resbalamiento entre el cilindro y el flujo circulante hallar:

- a) Valor de la circulación, Γ
- b) La fuerza transversal, o de elevación, F_L
- c) Los puntos de estancamiento, f

Problema N°2

Dada un ala con una cuerda de C=1.83 m, y una envergadura L=11m, y considerando un ángulo de ataque $\alpha=5.4$. Encontrar el peso que puede soportar el ala a una altitud de 300 msnm cuando la velocidad de la corriente de aire en una zona no perturbaba es $V_{inf}=91$ m/s y su densidad es 0.91 kg/m³.

Considerar:

 $C_{L} = 0.8$

Problema N°3

Determinar el empuje ascensional y horizontal cuando la velocidad de la corriente fluida sobre el ala de un avión es de 320 km/h. La cuerda del ala, C=2 m y su envergadura es de, L=10 m. El ángulo de ataque es tal que la relación, F_L/F_d es máxima. Considerar la densidad del aire 1,1 kg/m³

Problema N°4

Determinar la velocidad de caída de un grano de arena (densidad relativa 2,56) en un tanque de agua a 15°C, para diámetro de grano de 0,25 mm

Considerar: Cd=24/Re

Peso especifico agua= 9790 N/m³ Viscosidad = 10.02 10⁻⁴ N.s/m²

- Grafica extraída de "Mecánica Elemental de Fluidos" de Hunter y Rouse