Course outline

course work?

Week 0

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Learning

Processes

Machines

Week 11

Week 12

Options

Types of Optimality

Semi Markov Decision

Learning with Options

Hierarchical Abstract

Quiz : Assignment 10

 Reinforcement Learning: Week 10 Feedback form

DOWNLOAD VIDEOS

Assignment Solutions

No, the answer is incorrect.

Accumulation of immediate rewards of the core MDP obtained between these choice points

Accepted Answers:

Score: 0

NPTEL Resources

Hierarchical Reinforcement

How does an NPTEL online

Announcements

About the Course

Ask a Question

Mentor **Progress**

Unit 12 - Week 10

NPTEL » Reinforcement Learning

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.	Due on 2020-04-08, 23:59
Which of the following is true about Markov and Semi Markov Options?	
In a Markov Option the option's policy depends only on the current state	
In a Semi Markov Option the option's policy can depend only on the current state	
In a Semi Markov Option, the option's policy may depend on the history since the exe- cution of the	he option began
A Semi-Markov Option is always a Markov Option but not vice versa	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
In a Markov Option the option's policy depends only on the current state	
In a Semi Markov Option the option's policy can depend only on the current state In a Semi Markov Option, the option's policy may depend on the history since the exe- cution of the option	tion
began	
 What type of solution will you get if you try to find the optimal solution consistent with the hierarchic 	cal structure of the problem
Hierarchically optimal solution	
Recursively optimal solution	
Flat optimal solution	
No, the answer is incorrect.	
Score: 0 Accepted Answers:	
Accepted Answers: Hierarchically optimal solution 3) Which if the following is a correct Bellman equation for an SMDP?	1
Accepted Answers: Hierarchically optimal solution 3) Which if the following is a correct Bellman equation for an SMDP?	1
Accepted Answers: Hierarchically optimal solution 3) Which if the following is a correct Bellman equation for an SMDP? Sete: $R(s, a, s') \implies$ reward is a function of only s , a and s' $V^*(s) = max_{a \in A(S)}[R(s, a, \tau, s') + \gamma^{\tau}P(s' s, a)V^*(s')]$	1
Accepted Answers: Hierarchically optimal solution 3) Which if the following is a correct Bellman equation for an SMDP? Size: $R(s, a, s') \implies$ reward is a function of only s, a and s' $V^*(s) = \max_{a \in A(S)} [R(s, a, \tau, s') + \gamma^{\tau} P(s' s, a) V^*(s')]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s' s, a, \tau) (R(s, a, \tau, s') + \gamma V^*(s'))]$	1
Accepted Answers: Hierarchically optimal solution 3) Which if the following is a correct Bellman equation for an SMDP? In the the following is a function of only s , a and s' $V^*(s) = \max_{a \in A(S)} [R(s, a, \tau, s') + \gamma^{\tau} P(s' s, a) V^*(s')]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s' s, a, \tau) (R(s, a, \tau, s') + \gamma V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a) (R(s, a, \tau, s') + \gamma^{\tau} V^*(s'))]$	•
Accepted Answers: Hierarchically optimal solution 3) Which if the following is a correct Bellman equation for an SMDP? Dete: $R(s, a, s') \implies$ reward is a function of only s, a and s' $V^*(s) = \max_{a \in A(S)} [R(s, a, \tau, s') + \gamma^{\tau} P(s' s, a) V^*(s')]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s' s, a, \tau) (R(s, a, \tau, s') + \gamma V^*(s'))]$	1
Accepted Answers: Hierarchically optimal solution 3) Which if the following is a correct Bellman equation for an SMDP? once: $R(s, a, s') \implies$ reward is a function of only s, a and s' $V^*(s) = \max_{a \in A(S)} [R(s, a, \tau, s') + \gamma^{\tau} P(s' s, a) V^*(s')]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s' s, a, \tau) (R(s, a, \tau, s') + \gamma V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a) (R(s, a, \tau, s') + \gamma^{\tau} V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a) (R(s, a, s') + \gamma V^*(s'))]$ No, the answer is incorrect.	1
Accepted Answers: Hierarchically optimal solution 3) Which if the following is a correct Bellman equation for an SMDP? one: $R(s, a, s') \implies$ reward is a function of only s, a and s' $V^*(s) = \max_{a \in A(S)} [R(s, a, \tau, s') + \gamma^{\tau} P(s' s, a) V^*(s')]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s' s, a, \tau) (R(s, a, \tau, s') + \gamma V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a) (R(s, a, \tau, s') + \gamma^{\tau} V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a) (R(s, a, s') + \gamma V^*(s'))]$ No, the answer is incorrect. Score: 0	
Accepted Answers: Hierarchically optimal solution 3) Which if the following is a correct Bellman equation for an SMDP? Dete: $R(s, a, s') \implies$ reward is a function of only s, a and s' $V^*(s) = \max_{a \in A(S)} [R(s, a, \tau, s') + \gamma^{\tau} P(s' s, a) V^*(s')]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s' s, a, \tau) (R(s, a, \tau, s') + \gamma V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a) (R(s, a, \tau, s') + \gamma^{\tau} V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a) (R(s, a, s') + \gamma V^*(s'))]$ No, the answer is incorrect.	
Accepted Answers: Hierarchically optimal solution 3) Which if the following is a correct Bellman equation for an SMDP? one: $R(s, a, s') \implies$ reward is a function of only s , a and s' $V^*(s) = max_{a \in A(S)}[R(s, a, \tau, s') + \gamma^{\tau}P(s' s, a)V^*(s')]$ $V^*(s) = max_{a \in A(S)}[\Sigma_{s',a}P(s' s, a, \tau)(R(s, a, \tau, s') + \gamma V^*(s'))]$ $V^*(s) = max_{a \in A(S)}[\Sigma_{s',a}P(s', \tau s, a)(R(s, a, \tau, s') + \gamma^{\tau}V^*(s'))]$ $V^*(s) = max_{a \in A(S)}[\Sigma_{s',a}P(s', \tau s, a)(R(s, a, s') + \gamma V^*(s'))]$ No, the answer is incorrect. Score: 0 Accepted Answers:	
Accepted Answers: Hierarchically optimal solution 3) Which if the following is a correct Bellman equation for an SMDP? Dete: $R(s, a, s') \implies$ reward is a function of only s, a and s' $V^*(s) = \max_{a \in A(S)} [R(s, a, \tau, s') + \gamma^{\tau} P(s' s, a) V^*(s')]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s' s, a, \tau) (R(s, a, \tau, s') + \gamma V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a) (R(s, a, \tau, s') + \gamma^{\tau} V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a) (R(s, a, s') + \gamma V^*(s'))]$ No, the answer is incorrect. Score: 0 Accepted Answers: $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a) (R(s, a, \tau, s') + \gamma^{\tau} V^*(s'))]$	
Accepted Answers: Hierarchically optimal solution 3) Which if the following is a correct Bellman equation for an SMDP? bete: $R(s, a, s') \implies$ reward is a function of only s, a and s' $V^*(s) = max_{a \in A(S)}[R(s, a, \tau, s') + \gamma^{\tau}P(s' s, a)V^*(s')]$ $V^*(s) = max_{a \in A(S)}[\Sigma_{s',a}P(s' s, a, \tau)(R(s, a, \tau, s') + \gamma V^*(s'))]$ $V^*(s) = max_{a \in A(S)}[\Sigma_{s',a}P(s', \tau s, a)(R(s, a, \tau, s') + \gamma^{\tau}V^*(s'))]$ $V^*(s) = max_{a \in A(S)}[\Sigma_{s',a}P(s', \tau s, a)(R(s, a, s') + \gamma V^*(s'))]$ No, the answer is incorrect. Score: 0 Accepted Answers: $V^*(s) = max_{a \in A(S)}[\Sigma_{s',a}P(s', \tau s, a)(R(s, a, \tau, s') + \gamma^{\tau}V^*(s'))]$ 4) In Hierarchy of Abstract Machine the core MDP state changes only when we visit a choice state	
Accepted Answers: Hierarchically optimal solution 3) Which if the following is a correct Bellman equation for an SMDP? one: $R(s, a, s') \implies$ reward is a function of only s, a and s' $V^*(s) = \max_{a \in A(S)} [R(s, a, \tau, s') + \gamma^{\tau} P(s' s, a) V^*(s')]$ $V^*(s) = \max_{a \in A(S)} [\sum_{s', a} P(s' s, a, \tau) (R(s, a, \tau, s') + \gamma V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\sum_{s', a} P(s', \tau s, a) (R(s, a, \tau, s') + \gamma^{\tau} V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\sum_{s', a} P(s', \tau s, a) (R(s, a, s') + \gamma V^*(s'))]$ No, the answer is incorrect. Score: 0 Accepted Answers: $V^*(s) = \max_{a \in A(S)} [\sum_{s', a} P(s', \tau s, a) (R(s, a, \tau, s') + \gamma^{\tau} V^*(s'))]$ 4) In Hierarchy of Abstract Machine the core MDP state changes only when we visit a choice state True False No, the answer is incorrect.	
Accepted Answers: Hierarchically optimal solution 3) Which if the following is a correct Bellman equation for an SMDP? one: $R(s, a, s') \implies$ reward is a function of only s, a and s' $V^*(s) = \max_{a \in A(S)} [R(s, a, \tau, s') + \gamma^\tau P(s' s, a)V^*(s')]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s' s, a, \tau)(R(s, a, \tau, s') + \gamma V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a)(R(s, a, \tau, s') + \gamma^\tau V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a)(R(s, a, s') + \gamma V^*(s'))]$ No, the answer is incorrect. Score: 0 Accepted Answers: $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a)(R(s, a, \tau, s') + \gamma^\tau V^*(s'))]$ 4) In Hierarchy of Abstract Machine the core MDP state changes only when we visit a choice state True False No, the answer is incorrect. Score: 0	1
Accepted Answers: Hierarchically optimal solution 3) Which if the following is a correct Bellman equation for an SMDP? be: $R(s, a, s') \implies$ reward is a function of only s, a and s' $V^*(s) = \max_{a \in A(S)} [R(s, a, \tau, s') + \gamma^{\tau} P(s' s, a) V^*(s')]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s' s, a, \tau) (R(s, a, \tau, s') + \gamma V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a) (R(s, a, \tau, s') + \gamma^{\tau} V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a) (R(s, a, s') + \gamma V^*(s'))]$ No, the answer is incorrect. Score: 0 Accepted Answers: $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a) (R(s, a, \tau, s') + \gamma^{\tau} V^*(s'))]$ 4) In Hierarchy of Abstract Machine the core MDP state changes only when we visit a choice state True False No, the answer is incorrect.	
Accepted Answers: Hierarchically optimal solution 3) Which if the following is a correct Bellman equation for an SMDP? one: $R(s, a, s') \implies \text{reward}$ is a function of only s, a and s' $V^*(s) = \max_{a \in A(S)} [R(s, a, \tau, s') + \gamma^\tau P(s' s, a) V^*(s')]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s' s, a, \tau) (R(s, a, \tau, s') + \gamma V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a) (R(s, a, \tau, s') + \gamma^\tau V^*(s'))]$ $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a) (R(s, a, s') + \gamma V^*(s'))]$ No, the answer is incorrect. Score: 0 Accepted Answers: $V^*(s) = \max_{a \in A(S)} [\Sigma_{s',a} P(s', \tau s, a) (R(s, a, \tau, s') + \gamma^\tau V^*(s'))]$ 4) In Hierarchy of Abstract Machine the core MDP state changes only when we visit a choice state ∇T True ∇T False No, the answer is incorrect. Score: 0 Accepted Answers:	

