

Embedded System Project 2

미래자동차공학과 김나영 2022075478

미래자동차공학과 이호연 2020044466

미래자동차공학과 김경호 2020058513

Department of Automotive Engineering Hanyang University

목차

- 1. 프로젝트 목표
- 2. 전체 흐름 요약
- 3. 주요 기술
- 4. 겪은 어려운 점

프로젝트 목표 – ADAS : ACC

● Project 1에서 아쉬웠던 점

"정확한 거리 인식의 한계"
bounding box의 세로 길이만을
기준으로 대략적으로 판단

● Project 1에서 심화 (확장, 개선)

정확한 거리 계산 응용 기술 → ACC (Adaptive Cruise Control)

프로젝트 목표 – ADAS : ACC

- ADAS(Advanced Driver-Assistance System) system
 - **♦ Adaptive Cruise Control (ACC)**
 - ◆ 앞 차와의 거리를 유지하면서 자동으로 속도 조절
 - 사용자가 설정한 속도로 정속 주행이 가능하도록 제어
 - 전방 차량이 감지될 경우, TTC(Time to collision)를 유지하며 감속
 - 전방 차량이 사라지면 다시 설정 속도로 회복

전체 흐름 요약

주요 기술 - Perception

Stereo depth estimation

- Camera Calibration
 - OpenCV의 stereoCalibrate() 사용
 - 두 카메라의 Intrinsic/Extrinsic matrix -> 카메라 정렬 보정
- ◆ Depth estimation
 - OpenCV의 StereoBM (Block Matching) 알고리즘 사용
 - Disparity로부터 Depth 계산 $Depth = \frac{f_x \times B}{disparity}$, B: baseline
 - YOLO detection bbox에 해당하는 disparity에서 계산

Lane prediction

- ◆ Alexnet → ResNet18 모델 사용
 - 일반화 성능이 높고 추론 속도 빠름

모델	Test MSE	FLOPs	파라미터 수	추론 시간
Alexnet	0.0104401643	7.27 GMAC	57.01 M	0.01907 s
ResNet18	0.001960151	18.95 GMAC	11.18 M	0.02064 s
ResNet50	0.0021892965	42.92 GMAC	23.51 M	0.03133 s

겪은 어려운 점 - Perception

● Disparity Map의 잡음이 심함

- ◆ block window의 크기: 5 → 17
- ◆ bounding box에 해당하는 disparity 중 outlier data 샘플링
 - NaN 값 제거, bounding box의 중앙 부분만 평균 계산

● Stereo depth estimation 연산 시간

- ◆ OpenCV CUDA 활성화: 0.09 s → 0.06 s
- ◆ 5 frame에 한 번 실행되도록

주요 기술 - Planning & Control

Adaptive Cruise Control (ACC)

- ◆ 앞 차와의 간격을 적절하게 유지하는 시스템
- ◆ Time To collision (TTC) 기반 거리 유지
 - target distance = default distance + 0.3 * current speed
- ◆ 커브구간에서는 앞 차량을 지나치게 의식하지 않도록 ROI 설정
- ◆ 신호등이 존재할 때, 신호 위반하는 차량을 계속 따라가지 않도록 함

Autonomous Emergency Braking (AEB)

- ◆ 교차로에서 가로질러오는 차량 발견 시 정지
- ◆ 전방 차량과의 적정 안전거리 유지 실패 시 정지

● 횡방향 PI 제어

- ◆ waypoint와 이미지의 중심선과의 error → error가 0이 되도록 PI제어 활용
- ◆ Throttle 값에 steering 비율을 반영하여 L, R 모터에 다른 출력으로 전달

● 종방향 PI 제어

◆ target distance와 추정한 depth의 error → error 0이 되도록 PI 제어 활용

겪은 어려운 점 - Planning & Control

- 극저속 상황에서 제어의 불안정 극복
 - ◆ 극저속 주행 시 throttle을 출력하여도 차량이 움직이지 않는 현상 발생
 - I항을 통해 이를 극복하려 하였으나 한계 존재
 - → 차가 움직이지 않는 최대 throttle값을 실험적으로 측정, 제어 command 발행 직전 default 값 합산 후 출력
- 근거리에서의 불안정한 stereo depth estimation 결과
 - ◆ 근거리에서의 disparity 불안정한 issue → estimation error
 - ◆ 근거리 상황 판단 보조 → bbox size 비교를 추가
 - 다만, false positive 상황에서도 신뢰성을 확보하기 위해 confidence 기준을 크게 설정

