FACTORIZACIÓN

CASO I: Factor Común

ax + bx = x(a+b)

CASO III : Trinomio Cuadrado Perfecto $(a+b)^2 = a^2 + 2ab + b^2$ $(a-b)^2 = a^2 - 2ab + b^2$

CASO IV : Diferencia de Cuadrados $a^2 - b^2 = (a - b)(a + b)$

CASO V : Trinomio Cuadrado por Adición y Sustracción

Siempre son tres términos, el primer y tercer término deben ser positivos y las raíces deben ser múltiplos de 4.

CASO VI : Trinomio de la Forma: $x^2 + bx + c$

$$x^{2} + bx + c = (x + m)(x + n)$$

$$x^{2} - bx + c = (x - m)(x - n)$$

$$x^{2} + bx - c = (x + m)(x - n)$$

Donde: m = b + c y $n = b \times c$ "b" y "c" con su signo respectivo

CASO VIII: Cubo Perfecto de un Binomio $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

CASO IX : Suma o Diferencia de Cubos $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$

CASO X : Suma o Diferencia de dos Potencias Iguales $a^5 + b^5 = (a + b)(a^4 - a^3b + a^2b^2 - ab^3 + b^4)$

 $a^{3} + b^{3} = (a + b)(a^{4} - a^{3}b + a^{2}b^{2} - ab^{3} + b^{4})$ $a^{5} - b^{5} = (a - b)(a^{4} + a^{3}b + a^{2}b^{2} + ab^{3} + b^{4})$

El grado de las raíces deben ser impares.

PRODUCTOS NOTABLES

1. $(a+b)^2 + (a-b)^2 = 2(a^2 + b^2)$

$$(a+b)^2 - (a-b)^2 = 4ab$$

3. $(a+b+c)^2 =$ $a^2+b^2+c^2+2ab+2ac+2bc$

$$(a+b+c)^3 = a^3 + b^3 + c^3 + 3(a+b)(b+c)(a+c)$$

5.
$$(x+a)(x+b)(x+c) = x^3 + (a+b+c)x^2 + (ab+bc+ac)$$

6.
$$(a^2 + ab + b^2)(a^2 - ab + b^2) = (a^4 - a^2b^2 + b^4)$$

7.
$$(a+b+c)(a^2+b^2+c^2-ab-b-ac)$$

= $a^3+b^3+c^3+3abc$

9. Si
$$a + b + c = 0 \rightarrow a^3 + b^3 + c^3 = 3abc$$

10.
$$a^2 + b^2 + c^2 = ab + bc + ac$$

RADICACIÓN

$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b} , \quad \sqrt[n]{\frac{a}{b}} = \sqrt[n]{a} , \quad \sqrt[m]{\sqrt[n]{a}} = \sqrt[n-m]{a}$$

Radicales Dobles

1^{ra} Forma:

$$\sqrt{a \pm \sqrt{b}} = \frac{\sqrt{a+c}}{2} \pm \frac{\sqrt{b+c}}{2}$$

Donde: $c = \sqrt{a^2 - b}$

2^{da} Forma:

$$\sqrt{a \pm 2\sqrt{b}} = \sqrt{m} \pm \sqrt{n}$$

Donde: a = m + n y $b = m \cdot n$

PROGRESIONES

PROGRESIÓN ARITMÉTICA (P.A.)

Formula General:

$$a_n = a_1 + (n-1) \cdot d$$

Donde:

 a_n : Término enésimo de la P.A.

 a_1 : Primer término de la P.A.

n: Número de términos de la P.A.

d: Diferencia de la P.A.

Suma de Términos de una P.A.

$$S_n = \frac{n(a_1 + a_n)}{2}$$
 ó $S_n = \frac{n[2a_1 + (n-1) \cdot d]}{2}$

Términos Centrales en una P.A. (Interpolación)

$$t_c = \frac{a_1 + a_n}{2}$$
 , si n es impar

$$t_{\mathcal{C}_1} = \frac{a_1 + a_n - d}{2}$$
 ó $t_{\mathcal{C}_2} = \frac{a_1 + a_n + d}{2}$, si n es par

PROGRESIÓN GEOMÉTRICA (P.G.)

Formula General:

$$a_n = a_1 \cdot r^{n-1}$$

Donde:

 a_n : Término enésimo de la P.G.

 a_1 : Primer término de la P.G.

n: Número de términos de la P.G.

r: Razón de la P.G.

Suma de Términos de una P.G.

$$S_n = \frac{a_1 - r \cdot a_n}{1 - r} \qquad \text{\'o} \qquad S_n = a_1 \cdot \frac{1 - r^n}{1 - r}$$

Términos Centrales en una P.G. (Interpolación)

$$t_c = \sqrt{a_1 \cdot a_n}$$
 , si n es impar

$$t_{c_1} = \sqrt{\frac{a_1 \cdot a_n}{2}}$$
 ó $t_{c_2} = \sqrt{a_1 \cdot a_n \cdot r}$, si n es par

LEYES DE EXPONENTES

Base $\longleftarrow a^n \longrightarrow \text{Exponente}$

$$1. \quad a^m \cdot a^n =$$

$$2. (a \cdot b)^n = a^n \cdot$$

3.
$$\frac{a^m}{a^n} = a^{m-n}$$
 4. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

4.
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

5.
$$(a^m)^n = a^{m \cdot n}$$

6.
$$a^0 = 1$$

$$7. \quad a^{-n} = \frac{1}{a^n}$$

7.
$$a^{-n} = \frac{1}{a^n}$$
 8. $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$

9.
$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[m n]{a} = a^{\frac{n}{m}}$$

10.
$$\sqrt[m]{a^n} = (\sqrt[m]{a})^n = a^{\frac{n}{m}}$$

11.
$$a^x = a^y \to x =$$
 12. $a^x = b^x \to x =$

12.
$$a^x = b^x \to x =$$

$$13. \ \underline{a^a = b^b \rightarrow a = b}$$

LOGARITMOS $\log_a b \longrightarrow \text{Número}$

1.
$$\log_a a^x = x$$
 2. $\log_a a = 1$

$$2. \quad \log_a a = 1$$

$$3. \quad a^{\log_a x} = x$$

3.
$$a^{\log_a x} = x$$
 4. $\ln x = \log_e x$

5.
$$\log_a b = \frac{1}{\log_b a}$$
 6. $\log_a b = \frac{\log_c b}{\log_c a}$

$$\log_a b = \frac{\log_c b}{\log_c a}$$

$$7. \quad \log_a b^n = n \cdot \log_a b$$

$$8. \quad \log_{a^m} b^n = \frac{n}{m} \cdot \log_a b$$

9.
$$\log_a(x \cdot y) = \log_a x + \log_a y$$

$$10. \quad \log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$$

11.
$$\log_a b = x \to b = a^x$$

12.
$$\log_a M = \log_a N \to M = N$$

13.
$$\log_a antilog_a N = N$$

14.
$$colog_a b = -log_a b$$

TRIGONOMETRÍA

Funciones Trigonométricas

$$sen \beta = \frac{Cateto \ Opuesto}{Hipotenusa} = \frac{C.O.}{H.}$$

$$\cos \beta = \frac{Cateto\ Adyacente}{Hipotenusa} = \frac{C.\ A.}{H.}$$

$$\tan \beta = \frac{Cateto\ Opuesto}{Cateto\ Adyacente} = \frac{C.\ O.}{C.\ A.}$$

Teorema de Pitágoras

$$c^2 = a^2 + b^2$$

Área de un Triángulo:

$$A = \frac{base * altura}{2} = \frac{b * a}{2}$$

Perímetro de un Tripangulo: Suma de

$$P = a + b + c$$

Suma de Angulos:

$$\alpha + \beta + \theta = 180^{\circ}$$

Lev de Senos:

$$\frac{a}{\operatorname{sen}\alpha} = \frac{b}{\operatorname{sen}\beta} = \frac{c}{\operatorname{sen}\theta}$$

Lev de Cosenos:

$$a^{2} = b^{2} + c^{2} - 2 \cdot b \cdot c \cdot \cos \alpha$$

$$b^{2} = a^{2} + c^{2} - 2 \cdot a \cdot c \cdot \cos \beta$$

$$c^{2} = a^{2} + b^{2} - 2 \cdot a \cdot b \cdot \cos \theta$$

IDENTIDADES TRIGONOMÉTRICAS

1.
$$csc\beta = \frac{1}{sen\beta}$$

2.
$$sec\beta = \frac{1}{cos\beta}$$

3.
$$\cot \beta = \frac{1}{\tan \beta}$$

4.
$$tan\beta = \frac{sen\beta}{cos\beta}$$
 5. $cot\beta = \frac{cos\beta}{sen\beta}$

$$5. cot\beta = \frac{cos\beta}{sen\beta}$$

6.
$$sen^2\beta + cos^2\beta = 1$$

$$sen^2\beta = 1 - cos^2\beta$$
 $cos^2\beta = 1 - sen^2\beta$

7.
$$sec^2\beta - tan^2\beta = 1$$

$$sec^2\beta = 1 + tan^2\beta$$
 $tan^2\beta = 1 - sec^2\beta$

8.
$$csc^2\beta - cot^2\beta = 1$$

$$csc^2\beta = 1 + cot^2\beta$$
 $cot^2\beta = csc^2\beta - 1$

9.
$$sen(\alpha \pm \beta) = sen\alpha cos\beta \pm sen\beta cos\alpha$$

10.
$$cos(\alpha \pm \beta) = cos\alpha cos\beta \mp sen\alpha sen\beta$$

11.
$$tan(\alpha \pm \beta) = \frac{tan\alpha \pm tan}{1 \mp tan\alpha tan\beta}$$

12.
$$sen(2\beta) = 2sen\beta cos\beta$$

13.
$$cos(2\beta) = cos^2\beta - sen^2\beta$$

14.
$$sen^2\beta = \frac{1-cos(2\beta)}{2}$$

14.
$$sen^2\beta = \frac{1-cos(2\beta)}{2}$$
 15. $cos^2\beta = \frac{1+cos(2\beta)}{2}$

16.
$$sen^2\left(\frac{\beta}{2}\right) = \frac{1-cos}{2}$$

16.
$$sen^2\left(\frac{\beta}{2}\right) = \frac{1-cos\beta}{2}$$
 17. $cos^2\left(\frac{\beta}{2}\right) = \frac{1+cos\beta}{2}$

18.
$$sen\alpha sen\beta = \frac{1}{2}[cos(\alpha - \beta) - cos(\alpha + \beta)]$$

19.
$$sen\alpha cos\beta = \frac{1}{2}[sen(\alpha - \beta) + sen(\alpha + \beta)]$$

20.
$$\cos\alpha\cos\beta = \frac{1}{2}[\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

21.
$$sen(-\beta) = -sen\beta$$

22.
$$cos(-\beta) = cos\beta$$

23.
$$tan(-\beta) = -tan\beta$$

COCIENTES NOTABLES

$$\frac{a^n \pm b^n}{a + b}$$

Es una división EXACTA

De manera general:

$$\frac{a^m \pm b^q}{a^p \pm b^r}$$

As

Un C.N. cumple: $\frac{m}{p} = \frac{q}{r} = n$

n: Número de términos del C.N.

Es decir: Si $m = p \cdot n$ y $q = r \cdot n$ Entonces:

$$\frac{a^{m} \pm b^{q}}{a^{p} \pm b^{r}} = \frac{a^{p \cdot n} \pm b^{r \cdot n}}{a^{p} \pm b^{r}} = \frac{(a^{p})^{n} \pm (b^{r})^{n}}{a^{p} \pm b^{r}}$$

Haciendo: $a^p = x$ y $b^r = y$ Resulta:

$$\frac{x^n \pm x^n}{x \pm y}$$

1. Para n par \acute{o} impar:

$$\frac{x^n - y^n}{x - y} = x^{n-1} + x^{n-2} \cdot y + \dots + y^{n-1}$$

2. Para *n* impar:

$$\frac{x^n + y^n}{x + y} = x^{n-1} - x^{n-2} \cdot y + \dots + y^{n-1}$$

3. Para n par:

$$\frac{x^n - y^n}{x + y} = x^{n-1} - x^{n-2} \cdot y + \dots - y^{n-1}$$

4. No es una división exacta: $\frac{x^n+y^n}{x-y}$

Para el término de lugar k en el desarrollo del C.N.:

5.
$$\frac{x^n - y^n}{x - y}$$
, es: $t_k = a^{n-k} \cdot b^{k-1}$

6.
$$\frac{x^n \pm y^n}{x+y}$$
, es: $t_k = (-1)^{k+1} \cdot a^{n-k} \cdot b^{k-1}$

Para términos centrales del C.N.:

7. Si
$$n$$
 es par: $k_1 = \frac{n}{2}$; $k_2 = \frac{n}{2} + 1$

8. Si
$$n$$
 es impar: $k = \frac{n+1}{2}$

CONJUNTOS

Los Conjuntos se denotan de manera general con letras mayúsculas:

$$A, B, \dots, Z$$

Los Elementos de un Conjunto se denotan de manera general con letras minúsculas:

 a, b, \dots, z

PERTENENCIA: elemento ∈ Conjunto

 $a \in A$

DETERMINACIÓN DE UN CONJUNTO

- Por Extensión: Se nombre los elementos del conjunto.
- Por Comprensión: Se menciona la propiedad que caracteriza a todos los elementos.

CONJUNTOS ESPECIALES

- Conjunto Unitario: Conjunto con un elemento $A = \{x \mid x^2 = 0\}$ ó $A = \{0\}$
- Conjunto Vacío: Conjunto sin elementos se denota: $\phi = \{\}$
- Conjunto Universal: Conjunto del cual se generan otros conjuntos, se denota: U

RELACIONES ENTRE CONJUNTOS

Inclusión: Se lee "A esta incluido en B"

$$A \subset B \leftrightarrow \forall x/x \in A \rightarrow x \in B$$

Igualdad: Se lee "A es igual a B"

$$A = B \leftrightarrow A \subset B \land B \subset A$$

 Conjunto Partes: Se lee "conjunto partes de A"

$$P(A) = \{X \mid X \subset A\}$$

0 bien:

$$X \in P(A) \leftrightarrow X \subset A$$

PROGRESIONES

PROGRESIÓN ARITMÉTICA (P.A.)

Formula General:

$$a_n = a_1 + (n-1) \cdot d$$

Donde:

 a_n : Término enésimo de la P.A.

 a_1 : Primer término de la P.A.

n: Número de términos de la P.A.

d: Diferencia de la P.A.

Suma de Términos de una P.A.

$$S_n = \frac{n(a_1 + a_n)}{2}$$
 ó $S_n = \frac{n[2a_1 + (n-1)\cdot d]}{2}$

Términos Centrales en una P.A. (Interpolación)

$$t_c = \frac{a_1 + a_n}{2}$$
 , si n es impar

$$t_{\mathcal{C}_1} = rac{a_1 + a_n - d}{2}$$
 ó $t_{\mathcal{C}_2} = rac{a_1 + a_n + d}{2}$, si n es par

PROGRESIÓN GEOMÉTRICA (P.G.)

Formula General:

$$a_n = a_1 \cdot r^{n-1}$$

Donde:

 a_n : Término enésimo de la P.G.

 a_1 : Primer término de la P.G.

n: Número de términos de la P.G.

r: Razón de la P.G.

Suma de Términos de una P.G.

$$S_n = \frac{a_1 - r \cdot a_n}{1 - r} \quad \text{\'o} \quad S_n = a_1 \cdot \frac{1 - r^n}{1 - r}$$

Términos Centrales en una P.G. (Interpolación)

$$t_c = \sqrt{a_1 \cdot a_n}$$
 , si n es impar

$$t_{c_1} = \sqrt{rac{a_1 \cdot a_n}{2}}$$
 ó $t_{c_2} = \sqrt{a_1 \cdot a_n \cdot r}$,si n es par

OPERACIONES DE CONJUNTOS	
UNIÓN:	
INTERSECCIÓN	
COMPLEMENTO	
DIFERENCIA	
DIFERENCIA SIMÉTRICA	
UNIÓN	