Коллаборативная фильтрация на MapReduce

Васильев Руслан ВМК МГУ, 317 группа

26 мая 2021 г.

Алгоритм

Рассмотрим один из методов, применяемых в рекомендательных системах — коллаборативную фильтрацию. Пусть имеется набор известных троек (u,i,r_{ui}) , где u — пользователь, i — объект, r_{ui} — оценка, которую пользователь ему поставил. Мы будем строить рекомендации на датасете MovieLens, поэтому далее под объектами понимаются фильмы.

Чтобы предсказать рейтинг \hat{r}_{ui} для тех фильмов, которые пользователь u еще не смотрел, можно использовать информацию о фильмах, для которых оценки его известны:

$$\hat{r}_{ui} = \frac{\sum\limits_{j \in I_u} \text{sim}(i, j) \cdot r_{uj}}{\sum\limits_{j \in I_u} \text{sim}(i, j)},$$
(1)

где I_u — множество фильмов, которым пользователь поставил оценку, sim(i, j) — мера сходства фильмов i и j:

$$sim(i, j) = max \left\{ \langle \mathbf{R}_{ij}^{i}, \mathbf{R}_{ij}^{j} \rangle, 0 \right\}.$$
 (2)

Векторы \mathbf{R}_{ij}^k , $k \in \{i, j\}$, определяются с помощью U_{ij} — множества пользователей, оценивших оба фильма i и j:

$$\mathbf{R}_{\mathbf{k}}^{\mathbf{i}\mathbf{j}} = \frac{(r_{uk} - \bar{r}_u)_{u \in U_{ij}}}{\|(r_{uk} - \bar{r}_u)_{u \in U_{ij}}\|_2}, \quad \bar{r}_u = \frac{1}{|I_u|} \sum_{k \in I_u} r_{uk}. \tag{3}$$

Таким образом, описанный *item-oriented* алгоритм рекомендации сводится к подсчету косинусной меры близости и агрегации известных оценок.

Описание данных

Будем работать с датасетом MovieLens, производя тестирование на *small*-версии. Он состоит из двух файлов:

- ratings.csv $\approx 100\,000$ строк, в каждой из которых записан пользователь, номер фильма, оценка в диапазоне от 0.5 до 5.0 и временная метка.
- movies.csv $\approx 10\,000$ строк, каждая соответствует одному фильму (номер, название и список жанров).

Реализация

Произведем предобработку, подсчет вышеописанных формул и получение итогового файла с рекомендациями в 5 этапов, каждый из которых будет выполняться в парадигме MapReduce.

Шаг 1: группировка по пользователям

На данном этапе мы получаем для каждого u словарь со всеми его оценками и фильмами. Поскольку формулы (2), (3) не зависят от шкалы, в которой считается рейтинг, он переводится в целые числа от 1 до 10.

В маппере из ratings.csv выделяются тройки (u, i, r_{ui}) , а на выходе редьюсера — мы получаем искомую агрегацию (u, (items, ratings)). Сложность по числу операций и памяти в обеих фазах — $O(UI\alpha)$, где U — количество пользователей в датасете, I — количево фильмов, α — доля известных оценок к общему числу возможных (UI).

Понятно, что если операции выполняются параллельно на M редьюсерах и R мапперах, то в сложности для времени работы или памяти одного маппера (редьюсера) возникнет коэффициент $\frac{1}{M}$ $(\frac{1}{R})$.

Далее мы считаем, что распределение r_{ui} таково, что α эквивалентно средней доле пользователей, оценивших один фильм, и средней доле фильмов, оцененных одним пользователем.

Шаг 2: подсчет sim(i, j)

Подадим на вход мапперу агрегированные по пользователю u фильмы items и оценки ratings, на выходе продублируем наборы (items, ratings) для каждого i из items, который и станет ключом для редьюсера. Причем сразу вычтем из каждого вектора рейтингов среднее значение. Таким образом, расход памяти на map-фазе составит $O(U(I\alpha)^2)$, по времени — всего потребуется произвести $UI\alpha$ итераций в циклах по items.

Редьюсеры, получая на вход для каждого ключа i в среднем αU наборов (items, ratings), строят для всех j множество U_{ij} (если оно не пусто) и вычисляют (2), (3). На выходе записываются только sim(i,j) > 0. С учетом выхода маппера, в процессе обработки сложность по памяти и времени на reduce-фазе также будет составлять $O(U(I\alpha)^2)$, но выход в худшем случае запишет в память I^2 элементов. Тем не менее исходная матрица (u,i,r_{ui}) — разреженная и в таком случае многие sim(i,j) также могут оказаться нулевыми. Мы можем оценить долю ненулевых значений sim(i,j), сделав несколько сильных предположений. Например, если считать, что все UI событий $(r_{ui} \neq 0)$ независимы, то

можно оценить:

$$\mathbb{P}(U_{ij} \neq \emptyset) = \mathbb{P}\left(\sum_{u=1}^{U} \mathbb{1}(r_{ui} \neq 0) \cdot \mathbb{1}(r_{uj} \neq 0) \neq 0\right) \\
= 1 - \mathbb{P}\left(\sum_{u=1}^{U} \mathbb{1}(r_{ui} \neq 0) \cdot \mathbb{1}(r_{uj} \neq 0) = 0\right) \\
= 1 - \left[\mathbb{P}\left(\mathbb{1}(r_{ui} \neq 0) \cdot \mathbb{1}(r_{uj} \neq 0) = 0\right)\right]^{U} \\
= 1 - \left[1 - \mathbb{P}\left(\mathbb{1}(r_{ui} \neq 0) \cdot \mathbb{1}(r_{uj} \neq 0) = 1\right)\right]^{U} \\
= 1 - \left[1 - \mathbb{P}\left(\mathbb{1}(r_{ui} \neq 0) = 1\right) \left(\mathbb{1}(r_{uj} \neq 0) = 1\right)\right]^{U} \\
= 1 - \left(1 - \alpha^{2}\right)^{U}.$$

Заметим, что при достаточно маленьких α и больших U

$$1 - (1 - \alpha^2)^U \approx 1 - (1 - \alpha^2 U) = \alpha^2 U$$
,

что совпадает с коэффициентом при I^2 для сложности по памяти и времени в процессе работы маппера и редьюсера. На выходе редьюсер сохраняет только ненулевые (положительные) значения sim(i,j) — далее будем считать, что их доля по всем (i,j) равна β , т.е. мы сохранили βI^2 значений sim(i,j), а остальные считаем равными нулю.

Шаг 3: агрегация множителей

Несложно заметить, что если бы sim(i,j) и r_{ui} были были бы плотными, то (1) сооттветствовало бы их матричному произведению r_{ui} и нормированной sim(i,j). Можем посчитать это выражение по тому же принципу.

Сначала мы соберем для всех k фильмов пары $(r_{uk}, sim(k, i))$. Заметим, что мы берем только имеющие смысл пары (ненулевые). Для этого в маппере мы считаем, во-первых, ratings.csv и будем выдавать $(k, (\langle r \rangle, u, r_{uk}))$, а, во-вторых, выход предыдущего шага который преобразуется в $(k, (\langle s \rangle, i, sim(k, i))$, где в треугольных скобках проставлен тег. Получается, на map-фазе сложность по времени и памяти составит $\alpha UI + \beta I^2$.

Редьюсер же, собрав все наборы по ключу k, будет выдавать декартово произведение — все получившиеся $(u,i,r_{uk},\sin(k,i))$. Количество таких четверок можем оценить как $I\cdot \alpha I\cdot \beta I=\alpha\beta I^3$ — этому же и будет пропорциональна сложность фазы по времени и памяти.

Шаг 4: подсчет \hat{r}_{ui}

На предыдущем этапе мы собрали все, что требуется для (1) — осталось распределить и перемножить. Маппер на данном этапе тождественный (но, формально, он отображает $(u, i, r_{uk}, \text{sim}(k, i)) \mapsto (u, i), (r_{uk}, \text{sim}(k, i))$). Редьюсер же, собрав по ключу (k, i) все множители (1), считает эту взвешенную сумму. На обоих этапах по-прежнему

сложность по времени и памяти $\alpha \beta I^3$, но на выход редьюсер уже запишет только $\hat{r_{ui}}$ — сложность по памяти будет равна O(UI).

Однако как мы понять, что оценка \hat{r}_{ui} соответствует фильму, который пользователь еще не смотрел? Для этого на самом деле во время выполнения предыдущего шага на этапе редьюсера вместо r_ui с ключом (u,i) в набор записывалось «-inf», из-за которой предсказания на этапе редьюсера 4-го шага становятся отрицательными и не дальше не выдаются.

Шаг 5: топ-100 лучших фильмов по версии Hadoop

На последнем task'e среди всех полученных \hat{r}_{ui} нужно выбрать 100 максимальных и приписать их нужному пользователю, заменив номера фильмов на названия. Поскольку размер movies.csv является небольшим (I записей) относительно \hat{r}_{ui} и всего, что происходило ранее, передадим его каждому мапперу вместе в выходом предыдущего шага. Маппер тогда только заменит номер фильма на название, выдавая (u, title(i), \hat{r}_{ui}). Далее мы воспользумся параметрами для сортировки — сначала по пользователю, затем по рейтингу и наконец по названию фильма — и в редьюсере сможем только конкатенировать первые 100 фильмов для каждого первичного ключа u. Время работы и память маппера и редьюсера — O(UI), выход редьюсера займет O(U) памяти.