

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

SEARCH REQUEST FORM

Scientific and Technical Information Center

Requester's Full Name: Mike Meller Examiner # 69404 Date: 3/25/03
 Art Unit: 1654 Phone Number 30 84236 Serial Number: 10/056 666
 Mail Box and Bldg/Room Location: 10 A03 Results Format Preferred (circle) PAPER DISK E-MAIL

If more than one search is submitted, please prioritize searches in order of need.

Please provide a detailed statement of the search topic, and describe as specifically as possible the subject matter to be searched.
 Include the elected species or structures, keywords, synonyms, acronyms, and registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc. if known. Please attach a copy of the cover sheet, pertinent claims, and abstract.

Title of Invention: Materials for Lysosome Modulation and methods

Inventors (please provide full names): Ben A. Bahr

Earliest Priority Filing Date: 10/30/2000

For Sequence Searches Only Please include all pertinent information (parent, child, divisional, or issued patent numbers) along with the appropriate serial number.

Please Search claim 9 with respect to using the specific compound of clm. 13, if no hits, then expand to broader compds. as shown in YSO Soma 11.

RECEIVED
MAR 25 2003
SEARCHED
SERIALIZED
INDEXED
(SAC)

STAFF USE ONLY

Point of Contact:	Type of Search:	Vendor and cost where applicable
Searcher: <u>Alexandra Waclaww</u>	NA Sequence (#): STN <u>9</u>	548 ⁰⁶ Q15
Searcher Phone #: <u>Technical Info. Specialist CM1 6A02 Tel: 308-4491</u>	AA Sequence (#): Dialog _____	42
Searcher Location: _____	Structure (#): <u>3</u>	Questel/Orbit _____
Date Searcher Picked Up: <u>3-27</u>	Bibliographic _____	Dr. Link _____
Date Completed: <u>3-31</u>	Litigation _____	Lexis/Nexis _____
Searcher Prep & Review Time: <u>15</u>	Fulltext _____	Sequence Systems _____
Clerical Prep Time: _____	Patent Family _____	WWW/Internet _____
Online Time: <u>42</u>	Other _____	Other (specify) _____

Meller 10/056,666

=> d his

(FILE 'HCAPLUS' ENTERED AT 09:45:53 ON 31 MAR 2003)
DEL HIS Y

FILE 'REGISTRY' ENTERED AT 09:46:23 ON 31 MAR 2003
ACT MELLER4/A

L1 STR
L2 (3362)SEA FILE=REGISTRY SSS FUL L1
L3 STR
L4 3 SEA FILE=REGISTRY SUB=L2 SSS FUL L3

FILE 'HCAPLUS' ENTERED AT 09:47:40 ON 31 MAR 2003

L5 61 S L4
L6 18188 S LYSOSOM?
L7 15 S L5 AND L6
L8 4140 S NEURODEGENER?
L9 81338 S (NERVE OR NERVOUS OR BRAIN) (L) (DISEASE# OR DISORDER?)
L10 82480 S L9 OR L8
L11 4 S L5 AND L10
L12 17 S L7 OR L11

=> fil reg

FILE 'REGISTRY' ENTERED AT 09:49:35 ON 31 MAR 2003
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2003 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file
provided by InfoChem.

STRUCTURE FILE UPDATES: 30 MAR 2003 HIGHEST RN 500991-80-0
DICTIONARY FILE UPDATES: 30 MAR 2003 HIGHEST RN 500991-80-0

TSCA INFORMATION NOW CURRENT THROUGH MAY 20, 2002

Please note that search-term pricing does apply when
conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Experimental and calculated property data are now available. See HELP PROPERTIES for more information. See STNote 27, Searching Properties in the CAS Registry File, for complete details:
<http://www.cas.org/ONLINE/STN/STNOTES/stnotes27.pdf>

=> d que stat 14

L1 STR

Compound 13

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

Claim 13

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 16

STEREO ATTRIBUTES: NONE

L2 (3362) SEA FILE=REGISTRY SSS FUL L1

L3 STR

O=C
24 @25

REP G1=(0-1) 25

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 22

STEREO ATTRIBUTES: NONE

L4 3 SEA FILE=REGISTRY SUB=L2 SSS FUL L3

100.0% PROCESSED 79 ITERATIONS

3 ANSWERS

SEARCH TIME: 00.00.01

=> d 14 ide can 1-4

L4 ANSWER 1 OF 3 REGISTRY COPYRIGHT 2003 ACS

RN 120240-73-5 REGISTRY

CN Carbamic acid, [2-[(3-diazo-1-methyl-2-oxobutyl)amino]-2-oxo-1-(phenylmethyl)ethyl]-, phenylmethyl ester, [S-(R*,R*)]- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C22 H24 N4 O4

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1962 TO DATE)

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 110:188336

L4 ANSWER 2 OF 3 REGISTRY COPYRIGHT 2003 ACS

RN 81719-36-0 REGISTRY

CN Carbamic acid, [2-[(3-diazo-1-methyl-2-oxopropyl)amino]-2-oxo-1-(phenylmethyl)ethyl]-, phenylmethyl ester (9CI) (CA INDEX NAME)

FS 3D CONCORD

MF C21 H22 N4 O4

LC STN Files: CA, CAPLUS, USPATFULL

5 REFERENCES IN FILE CA (1962 TO DATE)
5 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE	1:	116:250833
REFERENCE	2:	105:39101
REFERENCE	3:	104:16871
REFERENCE	4:	103:22931
REFERENCE	5:	96:195703

L4 ANSWER 3 OF 3 REGISTRY COPYRIGHT 2003 ACS
RN 71732-53-1 REGISTRY
CN Carbamic acid, [(1S)-2-[(1S)-3-diazo-1-methyl-2-oxopropyl]amino]-2-oxo-1-(phenylmethyl)ethyl-, phenylmethyl ester (9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Carbamic acid, [2-[(3-diazo-1-methyl-2-oxopropyl)amino]-2-oxo-1-(phenylmethyl)ethyl-, phenylmethyl ester, [S-(R*,R*)]-
FS STEREOSEARCH
MF C21 H22 N4 O4
LC STN Files: CA, CAPLUS, CASREACT, CHEMCATS, MEDLINE, TOXCENTER, USPAT2,
USPATFULL

Absolute stereochemistry.

56 REFERENCES IN FILE CA (1962 TO DATE)
56 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE	1:	138:66184
REFERENCE	2:	137:88476
REFERENCE	3:	136:147461
REFERENCE	4:	136:79329
REFERENCE	5:	135:89548

REFERENCE 6: 134:54110
REFERENCE 7: 133:261535
REFERENCE 8: 132:347872
REFERENCE 9: 132:343360
REFERENCE 10: 131:110938

=> fil hcaplus
FILE 'HCAPLUS' ENTERED AT 09:49:47 ON 31 MAR 2003
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2003 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 31 Mar 2003 VOL 138 ISS 14
FILE LAST UPDATED: 30 Mar 2003 (20030330/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

'OBI' IS DEFAULT SEARCH FIELD FOR 'HCAPLUS' FILE

=> d que nos l12
L1 STR
L2 (3362)SEA FILE=REGISTRY SSS FUL L1
L3 STR
L4 3 SEA FILE=REGISTRY SUB=L2 SSS FUL L3
L5 61 SEA FILE=HCAPLUS ABB=ON PLU=ON L4
L6 18188 SEA FILE=HCAPLUS ABB=ON PLU=ON LYSOSOM?/OBI
L7 15 SEA FILE=HCAPLUS ABB=ON PLU=ON L5 AND L6
L8 4140 SEA FILE=HCAPLUS ABB=ON PLU=ON NEURODEGENER?/OBI
L9 81338 SEA FILE=HCAPLUS ABB=ON PLU=ON (NERVE/OBI OR NERVOUS/OBI OR BRAIN/OBI) (L) (DISEASE#/OBI OR DISORDER?/OBI)
L10 82480 SEA FILE=HCAPLUS ABB=ON PLU=ON L9 OR L8
L11 4 SEA FILE=HCAPLUS ABB=ON PLU=ON L5 AND L10
L12 17 SEA FILE=HCAPLUS ABB=ON PLU=ON L7 OR L11

=> d .ca l12 1-17

L12 ANSWER 1 OF 17 HCAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 2002:540253 HCAPLUS
DOCUMENT NUMBER: 137:88476
TITLE: Lysosome-modulating compounds, and therapeutic and other methods of use

INVENTOR(S) : Bahr, Ben A.
 PATENT ASSIGNEE(S) : USA
 SOURCE: U.S. Pat. Appl. Publ., 18 pp.
 CODEN: USXXCO
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2002094958	A1	20020718	US 2001-56666	20011029
PRIORITY APPLN. INFO.:			US 2000-244327P	P 20001030
			US 2000-254778P	P 20001211

OTHER SOURCE(S) : MARPAT 137:88476

AB Compds. and methods of use thereof for modulating lysosome function are disclosed. Also disclosed is use of the compds. to treat neurodegenerative events and to study lysosomal function. Compds. of the invention include cathepsin antagonists. Specifically claimed compds. include e.g. benzyloxycarbonyl-Phe-Ala-diazomethylketone.

IC ICM A61K038-06
 ICS A61K038-05; A61K031-655; A61K031-397; A61K031-445; A61K031-401

NCL 514018000

CC 1-11 (Pharmacology)
 Section cross-reference(s) : 9

ST cathepsin antagonist lysosome modulator
 neurodegeneration treatment; peptide deriv lysosome modulator neurodegeneration treatment

IT Glutamate receptors
 RL: BSU (Biological study, unclassified); BIOL (Biological study) (GluR1 subunit; lysosome-modulating compds., and therapeutic and other methods of use)

IT Nerve, disease
 Nervous system
 (degeneration; lysosome-modulating compds., and therapeutic and other methods of use)

IT Peptides, biological studies
 RL: BUU (Biological use, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (derivs.; lysosome-modulating compds., and therapeutic and other methods of use)

IT Esters, biological studies
 RL: BUU (Biological use, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (diazoacetyl peptidyl alkyl esters; lysosome-modulating compds., and therapeutic and other methods of use)

IT Brain
 (hippocampus; lysosome-modulating compds., and therapeutic and other methods of use)

IT Enzymes, biological studies
 RL: BSU (Biological study, unclassified); BIOL (Biological study) (lysosomal; lysosome-modulating compds., and therapeutic and other methods of use)

IT Animal tissue culture
 Dendrite (neuron)
 Drug delivery systems
 Lysosome
 Microtubule
 Nervous system agents
 Synapse

(lysosome-modulating compds., and therapeutic and other methods of use)

IT Synaptophysin
Tau factor
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(lysosome-modulating compds., and therapeutic and other methods of use)

IT Biological transport
(markers; lysosome-modulating compds., and therapeutic and other methods of use)

IT Brain
(neocortex; lysosome-modulating compds., and therapeutic and other methods of use)

IT Cytoprotective agents
(neuroprotectants; lysosome-modulating compds., and therapeutic and other methods of use)

IT Ketones, biological studies
RL: BUU (Biological use, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(peptidyl diazomethylketones; lysosome-modulating compds., and therapeutic and other methods of use)

IT Semicarbazones
RL: BUU (Biological use, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(peptidyl; lysosome-modulating compds., and therapeutic and other methods of use)

IT Synapse
(postsynapse; lysosome-modulating compds., and therapeutic and other methods of use)

IT Synapse
(presynapse; lysosome-modulating compds., and therapeutic and other methods of use)

IT 9004-08-4, Cathepsin
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(antagonists; lysosome-modulating compds., and therapeutic and other methods of use)

IT 9025-26-7, Cathepsin D 9047-22-7, Cathepsin B 71965-46-3, Cathepsin S
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(lysosome-modulating compds., and therapeutic and other methods of use)

IT 65178-14-5 71732-53-1 77180-09-7 118253-05-7 442663-68-5
442663-69-6
RL: BUU (Biological use, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(lysosome-modulating compds., and therapeutic and other methods of use)

IT 19982-08-2, Memantine
RL: PAC (Pharmacological activity); BIOL (Biological study)
(lysosome-modulating compds., and therapeutic and other methods of use)

L12 ANSWER 2 OF 17 HCAPLUS COPYRIGHT 2003/ ACS
ACCESSION NUMBER: 2002:107685 HCAPLUS
DOCUMENT NUMBER: 136:147461
TITLE: Model for Alzheimer's disease and other neurodegenerative diseases
INVENTOR(S): Lynch, Gary; Bi, Xiaoning
PATENT ASSIGNEE(S): The Regents of the University of California, USA
SOURCE: PCT Int. Appl., 154 pp.
CODEN: PIXXD2

DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2002010768	A2	20020207	WO 2001-US23894	20010731
WO 2002010768	A3	20030103		
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
US 2002048746	A1	20020425	US 2001-917789	20010731
PRIORITY APPLN. INFO.:			US 2000-222060P	P 200000731
			US 2001-283352P	P 20010413

AB The present invention provides a model for studying the development of, and/or pathologies assocd. with, neurodegenerative diseases, and agents that can alter such development and/or pathologies. The model of the invention is esp. useful as an Alzheimer's disease model. The model of the invention provides brain cells and a method for increasing neurodegenerative disease characteristics in such cells. Neurodegenerative disease characteristics are induced by various means, such as introduction of neurofibrillary tangles, phosphorylated tau, or tau fragments; modulation with cytokines; inducing microglial reactions; conversion of p35 to p25; or altering protein kinases by selectively increasing the concn. of cathepsin D to an effective level, and/or by lowering the concn. of cholesterol in such cells. The model also provides a method of reversing such effects, by inhibiting cysteine protease and mitogen-activated kinase activity, and esp., by inhibiting calpain, and/or MAP kinase.

IC ICM G01N033-68

CC 9-2 (Biochemical Methods)

ST Section cross-reference(s): 1, 14

ST Alzheimer disease neurodegenerative disease model

IT Apolipoproteins

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(E4; cellular models of Alzheimer's disease and other
neurodegenerative diseases)

IT Apolipoproteins

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(E; cellular models of Alzheimer's disease and other
neurodegenerative diseases)

IT Lipopolysaccharides

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(bacterial; cellular models of Alzheimer's disease and other
neurodegenerative diseases)

IT Alzheimer's disease

Anti-Alzheimer's agents

Disease models

Human

Inflammation

Lysosome

Mouse

Neurofibrillary tangle

(cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT Interleukin 1.beta.
Tumor necrosis factors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT Nervous system
(degeneration; cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT Brain
(entorhinal cortex; cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT Brain
(hippocampus; cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT Brain
(hypothalamus; cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT Neuroglia
(microglia; cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT Brain
(neocortex; cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT Proteins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(p25; cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT Proteins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(p35; cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT Phosphorylation, biological
(protein; cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT Transferrins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(.tau.-transferrins; cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT Amyloid
RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
(.beta.-; cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT Transforming growth factors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(.beta.-; cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT 65178-14-5 71732-53-1
RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
(cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT 54-05-7, Chloroquine 57-88-5, Cholesterol, biological studies
9025-26-7, Cathepsin D 9047-22-7, Cathepsin B 60616-82-2, Cathepsin L
73573-88-3, Mevastatin 75330-75-5, Lovastatin 78990-62-2, Calpain
79902-63-9, Simvastatin 81093-37-0, Pravastatin 93957-54-1,
Fluvastatin 109511-58-2, U0126 111694-09-8, Tau kinase 134523-00-5,
Atorvastatin 142243-02-5, MAP kinase 145599-86-6, Cerivastatin
147014-96-8, Cdk5 kinase 152121-47-6, SB203580 167869-21-8, PD98059
RL: BSU (Biological study, unclassified); BIOL (Biological study)

(cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT 110044-82-1, Calpain inhibitor I
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (cellular models of Alzheimer's disease and other neurodegenerative diseases)

IT 37353-41-6, Cysteine protease
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (inhibitors; cellular models of Alzheimer's disease and other neurodegenerative diseases)

L12 ANSWER 3 OF 17 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 2001:508062 HCAPLUS
 DOCUMENT NUMBER: 135:89548
 TITLE: An *in vitro* assay method for the study of brain aging
 INVENTOR(S): Lynch, Gary S.; Bednarski, Eric; Ribak, Charles E.;
 Gall, Christine M.
 PATENT ASSIGNEE(S): USA
 SOURCE: U.S. Pat. Appl. Publ., 9 pp.
 CODEN: USXXCO
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2001007854	A1	20010712	US 1997-787784	19970122
US 6447988	B2	20020910		

PRIORITY APPLN. INFO.: US 1997-787784 19970122

AB Cultured brain slices are treated with a free radical generator, in the presence of a lysosomal enzyme inhibitor (specifically an inhibitor of two cathepsins). The treated brain slices rapidly develop autofluorescent lipofuscin granules-a universal feature of brain aging. Other correlates of the aged brain are also induced by this treatment, thereby providing an *in vitro* model for (1) the study of brain aging; (2) assessment of anti-brain aging drugs; and (3) therapeutics directed at the clin. condition referred to as neuronal ceroid-lipofuscinosis.

IC ICM A01N001-00
 ICS A01N001-02; A01N037-18; A61K038-00; A61K038-16; G01N033-53;
 G01N033-537; G01N033-543; A61K031-70; A01N043-04

NCL 514006000

CC 9-16 (Biochemical Methods)
 Section cross-reference(s): 14

IT Aging, animal
 Animal tissue culture
 Brain
 Culture media
 Dendrite (neuron)
 Drug screening
 Gamma ray
 Hypoxia, animal
 Lysosome
 Mammal (Mammalia)
 Neuroglia
 Oxidizing agents
 Reducing agents
 Simulation and Modeling, physicochemical
 UV radiation
 (An *in vitro* assay method for the study of brain aging)

IT Enzymes, biological studies
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (lysosomal inhibitors; An in vitro assay method for the study
 of brain aging)

IT 50-81-7, Ascorbic acid, biological studies 58-27-5, Menadione 80-15-9,
 Cumene hydroperoxide 475-38-7, Naphthazarine 4685-14-7, Paraquat
 7720-78-7, Ferrous sulfate 7722-84-1, Hydrogen peroxide, biological
 studies 9001-37-0, Glucose oxidase 9002-17-9, Xanthine oxidase
 9076-44-2, Chymostatin 11062-77-4, Superoxide 55123-66-5, Leupeptin
 65178-14-5 66701-25-5, E-64 71732-53-1 94047-28-6, Cystatins
 110044-82-1, Calpain inhibitor I 110115-07-6, Calpain inhibitor II
 114014-15-2 134448-10-5D, CA-074, Me ester
 RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
 (Uses)
 (An in vitro assay method for the study of brain aging)

L12 ANSWER 4 OF 17 HCAPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 2000:688091 HCAPLUS
 DOCUMENT NUMBER: 133:261535
 TITLE: Methods for treating neurodegenerative
 disorders using aspartyl protease inhibitors
 INVENTOR(S): Ellman, Jonathan A.; Lynch, Gary; Kuntz, Irwin D.; Bi,
 Xiaoning; Lee, Christina E.; Skillman, A. Geoffrey;
 Haque, Tasir
 PATENT ASSIGNEE(S): The Regents of the University of California, USA
 SOURCE: PCT Int. Appl., 108 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2000056335	A1	20000928	WO 2000-US7804	20000324
W: AE, AG, CU, CZ, IL, IN, JP, MA, MD, MG, MK, MN, MW, SI, SK, SL, TJ, TM, TR, TT, RW: AT, BE, CH, CY, DE, DK, ES, PT, SE	AL, AM, AT, AU, AZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, KR, KZ, LC, LK, LR, LS, LT, LU, LV, NO, NZ, PL, PT, RO, RU, SD, SE, SG, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW			
EP 1178800	A1	20020213	EP 2000-916643	20000324
R: AT, BE, CH, DE, DK, ES, FR, IE, SI, LT, LV, FI, RO	GB, GR, IT, LI, LU, NL, SE, MC, PT,			
JP 2002539260	T2	20021119	JP 2000-606240	20000324
PRIORITY APPLN. INFO.:			US 1999-125958P	P 19990324
			WO 2000-US7804	W 20000324

OTHER SOURCE(S): MARPAT 133:261535

AB Non-peptide aspartyl protease inhibitors, methods for modulating the processing of an amyloid precursor protein, methods for modulating the processing of a tau-protein, and methods for treating neurodegenerative diseases are provided.

IC ICM A61K031-445
 ICS A61K031-40; A61K031-16

CC 1-11 (Pharmacology)

Section cross-reference(s): 27

ST aspartyl protease inhibitor neurodegenerative disease treatment; amyloid precursor protein processing modulation aspartyl protease inhibitor; tau protein processing modulation aspartyl protease inhibitor

IT Body fluid
 Cerebrospinal fluid
 Combinatorial library
 Nervous system agents
 (aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

IT Amyloid precursor proteins
 Tau factor
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

IT Nervous system
 (degeneration; aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

IT Brain
 (entorhinal cortex; aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

IT Brain
 (hippocampus; aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

IT Amyloid
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (.beta.-; aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

IT 9025-26-7, Cathepsin D
 RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

IT 54-05-7, Chloroquine 71732-53-1
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

IT 211114-74-8P 211114-75-9P 211114-76-0P 211114-94-2P
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

IT 192069-75-3	192069-78-6	192069-80-0	192069-83-3	192069-84-4
192069-91-3	192069-95-7	192069-96-8	192069-98-0	192069-99-1
192070-00-1	211114-70-4	211114-71-5	211114-77-1	211114-78-2
211114-81-7	211114-83-9	211114-84-0	211114-85-1	211114-86-2
211114-87-3	211114-88-4	211114-89-5	211114-90-8	211115-00-3
227031-04-1	227031-05-2	227031-06-3	227031-07-4	227031-08-5
227031-09-6	227031-10-9	227031-11-0	227031-12-1	227031-13-2
296780-76-2	296780-77-3	296780-78-4	296780-79-5	296780-80-8

296780-81-9 296780-82-0 296780-83-1 296780-84-2 296780-85-3
 296780-87-5 296780-88-6 296780-89-7 296780-90-0 296780-92-2
 296780-93-3 296780-95-5 296780-96-6 296780-98-8

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

IT 9047-22-7, Cathepsin B 60616-82-2, Cathepsin L 78169-47-8, Aspartyl protease

RL: BSU (Biological study, unclassified); BIOL (Biological study) (aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

IT 213458-69-6DP, resin-coupled 213458-69-6P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (prepn. and reaction; aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

IT 60456-21-5

RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction; aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

REFERENCE COUNT: 1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 5 OF 17 HCPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 2000:335259 HCPLUS

DOCUMENT NUMBER: 132:343360

TITLE: A method for treating tissue damaged from ischemia by using a peptidyl diazomethyl ketone

INVENTOR(S): Seyfried, Donald M.; Anagli, John

PATENT ASSIGNEE(S): Research Corporation Technologies, Inc., USA

SOURCE: PCT Int. Appl., 77 pp.

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2000027418	A2	20000518	WO 1999-US26718	19991112
WO 2000027418	A3	20000908		
W: CA, JP				
RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
EP 1131082	A2	20010912	EP 1999-963889	19991112
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI				
JP 2002529422	T2	20020910	JP 2000-580647	19991112
US 6458760	B1	20021001	US 1999-439705	19991112
PRIORITY APPLN. INFO.:			US 1998-108049P	P 19981112
			WO 1999-US26718	W 19991112

OTHER SOURCE(S): MARPAT 132:343360

AB The present invention relates to a method for treating tissue damage caused by ischemia in a patient which comprises administering to said

patient a therapeutically effective amt. of a peptidyl diazomethyl ketone which is an inhibitor of cathepsin B or cathepsin L, but which is not as an effective inhibitor of calpain relative to cathepsin B or cathepsin L or both. For example, CBZ-Phe-Ser(OBz)CHN₂ (CP-1) was prep'd. from O-benzyl-L-serine and N-.alpha.-benzyloxycarbonyl-L-phenylalanine N-hydroxysuccinimide in a yield of 80%. When given i.v. to Wistar rats, CP-1 decreased an infarct size at concns. of 10, 50, and 250 .mu.M, but not at 2 .mu.M.

IC ICM A61K038-05
 ICS A61K038-06; A61K038-55; A61P025-00; A61P009-10
 CC 1-12 (Pharmacology)
 Section cross-reference(s): 34
 IT Nervous system
 (disease; peptidyl diazomethyl ketones as inhibitors of cathepsin B or L for ischemia treatment)
 IT Brain, disease
 Heart, disease
 (ischemia; peptidyl diazomethyl ketones as inhibitors of cathepsin B or L for ischemia treatment)
 IT Brain, disease
 (stroke; peptidyl diazomethyl ketones as inhibitors of cathepsin B or L for ischemia treatment)
 IT 65178-14-5P 71732-53-1P 85680-09-7P 85680-10-0P
 85680-12-2P 114014-15-2P 114014-16-3P 114480-14-7P 116614-38-1P
 116614-45-0P 116641-98-6P 116641-99-7P 142070-20-0P 154992-43-5P
 268741-03-3P 268741-04-4P
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (peptidyl diazomethyl ketones as inhibitors of cathepsin B or L for ischemia treatment)

L12 ANSWER 6 OF 17 HCAPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 1999:449386 HCAPLUS
 DOCUMENT NUMBER: 131:70860
 TITLE: Brain aging assay
 INVENTOR(S): Lynch, Gary S.; Bednarski, Eric; Ribak, Charles E.; Gall, Christine M.
 PATENT ASSIGNEE(S): The Regents of the University of California, USA
 SOURCE: PCT Int. Appl., 28 pp
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9934781	A1	19990715	WO 1998-US1140	19980108
W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG				
AU 9862457	A1	19990726	AU 1998-62457	19980108
PRIORITY APPLN. INFO.:			WO 1998-US1140	19980108
AB Cultured brain slices are treated with a free radical generator, in the				

presence of a lysosomal enzyme inhibitor (specifically an inhibitor of two cathepsins). The treated brain slices rapidly develop autofluorescent lipofuscin granules - a universal feature of brain aging. Other correlates of the aged brain are also induced by this treatment, thereby providing an in vitro model for (1) the study of brain aging; (2) assessment of anti-brain aging drugs; and (3) therapeutics directed at the clin. condition referred to as neuronal ceroid-lipofuscinosis.

IC ICM A61K009-44

ICS C12N005-00; C12N005-02; C12Q001-00; G01N001-30; G01N033-48

CC 9-16 (Biochemical Methods)

IT Aging, animal

Animal tissue culture

Brain

Culture media

Cytoplasm

Dendrite (neuron)

Drugs

Electron microscopes

Gamma ray

Hypoxia, animal

Lysosome

Mammal (Mammalia)

Neuroglia

Neuronal ceroid lipofuscinosis

Oxidizing agents

Reducing agents

UV radiation

(brain aging assay)

IT 71732-53-1

RL: ANT (Analyte); ANST (Analytical study)

(brain aging assay)

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 7 OF 17 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1998:687413 HCAPLUS

DOCUMENT NUMBER: 130:90677

TITLE: Experimentally induced lysosomal dysfunction

disrupts processing of hypothalamic releasing factors

AUTHOR(S): Bi, Xiaoning; Pinkstaff, Jason; Nguyen, Kelly; Gall, Christine M.; Lynch, Gary

CORPORATE SOURCE: Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697-3800, USA

SOURCE: Journal of Comparative Neurology (1998), 401(3), 382-394

PUBLISHER: CODEN: JCNEAM; ISSN: 0021-9967

Wiley-Liss, Inc.

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Previous studies have shown that exptl. induced lysosomal dysfunction elicits various features of aging in the cortical telencephalon. The present study used cultured slices to test if: (1) it causes similar changes in the hypothalamus, and/or (2) modifies the processing of two releasing factors important to aging. A 2-day exposure to N-CBZ-L-phenylalanyl-L-alanine-diazomethylketone (ZPAD), a selective inhibitor of cathepsins B and L, triggered a pronounced increase in the nos. of lysosomes in the ventromedial and dorsomedial nuclei, and in lateral hypothalamus. Continued incubation with the inhibitor for 3-12 days resulted in the spread of endosomes-lysosomes into dendrites and, in the lateral hypothalamus, the formation of massive, lysosome-filled

expansions of neuronal processes (meganeurites). These effects did not occur in the arcuate nucleus, making it the first region so far examined in which lysosomal proliferation is not initiated by hydrolase inhibitors. Despite this, a dense plexus of axons and terminals in the median eminence was partially depleted of growth hormone releasing hormone (GHRH) within 48 h after addn. of ZPAD. Moreover, the inhibitor caused axonal GHRH to become collected into large puncta, an effect highly suggestive of a partial failure in axonal transport. GHRH mRNA levels were not greatly affected by 6 days of ZPAD exposure, indicating that reduced expression did not play a major role in the peptide changes seen at 48 h. Similar but less pronounced immunocytochem. changes were recorded for the somatostatin system in the arcuate and periventricular nucleus. It is concluded that lysosome dysfunction: (1) has different consequences for the arcuate nucleus than other brain regions, and (2) disrupts transport of hypothalamic releasing factors. The potential significance of the results to endocrine senescence is discussed.

CC 2-5 (Mammalian Hormones)
 ST lysosome dysfunction hypothalamic releasing factor processing
 IT Organelle (endocytic vesicle; lysosomal dysfunction induction disrupts hypothalamic releasing factor processing)
 IT Brain (hypothalamus, arcuate nucleus; lysosomal dysfunction induction disrupts hypothalamic releasing factor processing)
 IT Brain (hypothalamus, median eminence; lysosomal dysfunction induction disrupts hypothalamic releasing factor processing)
 IT Brain (hypothalamus; lysosomal dysfunction induction disrupts hypothalamic releasing factor processing)
 IT Aging, animal
 Biological transport
 Dendrite (neuron)
 Lysosome (lysosomal dysfunction induction disrupts hypothalamic releasing factor processing)
 IT 71732-53-1
 RL: ADV (Adverse effect, including toxicity); BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
 (lysosomal dysfunction induction disrupts hypothalamic releasing factor processing)
 IT 9034-39-3, Somatotropin 51110-01-1, Somatostatin-14
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (lysosomal dysfunction induction disrupts hypothalamic releasing factor processing)
 REFERENCE COUNT: 52 THERE ARE 52 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 8 OF 17 HCPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 1995:195118 HCPLUS
 DOCUMENT NUMBER: 122:3257
 TITLE: In vitro embryotoxicity of the cysteine proteinase inhibitors benzylloxycarbonyl-phenylalanine-alanine-diazomethane (Z-Phe-Ala-CHN₂) and benzylloxycarbonyl-phenylalanine-phenylalanine-diazomethane (Z-Phe-Phe-CHN₂)
 AUTHOR(S): Ambroso, Jeffrey L.; Harris, Craig
 CORPORATE SOURCE: Department Environmental Industrial Health, Univ. Michigan, Ann Arbor, MI, 48109-2029, USA

SOURCE: Teratology (1994), 50(3), 214-28
CODEN: TJADAB; ISSN: 0040-3709

PUBLISHER: Wiley-Liss
DOCUMENT TYPE: Journal
LANGUAGE: English

AB This study makes use of whole embryo culture to investigate the potential embryotoxicity of Z-Phe-Ala-CHN2 and Z-Phe-Phe-CHN2, two low mol. wt., active site-directed and irreversible inhibitors of the lysosomal cysteine proteinases. Peptidyl diazomethanes are the most specific inhibitors available for lysosomal cysteine proteinases and can be hypothesized to interrupt visceral yolk sac(VYS)-mediated nutrition during early organogenesis. When added directly to the culture medium of gestational day 10-11 rat conceptuses, both compds. inhibited lysosomal cysteine proteinase activity in the VYS in a concn.-dependent fashion that correlated with the degree of embryotoxicity obsd. Z-Phe-Ala-CHN2 and Z-Phe-Phe-CHN2 were also found to increase the protein content of the VYS, even though all other conceptual growth parameters decreased. This effect was dependent on the serum content of the culture medium and the exposure time. Histol. examn. of Z-Phe-Ala-CHN2-treated conceptuses revealed a dramatic increase in the size and no. of vacuoles in the VYS endoderm epithelium, suggestive of inhibition of VYS proteolysis. At the same time, excessive cell death was obsd. throughout the neuroepithelium and in specific regions of the mesenchyme of the corresponding embryos. This cell death manifested morphol. characteristics of apoptosis and could be detected by supravital staining with Nile Blue Sulfate. These findings provide addnl. evidence in support of the hypothesis that lysosomal cysteine proteinases play a crit. role in VYS-mediated histiotrophic nutrition and suggest that peptidyl diazomethanes may be useful in further characterization of these enzymes. The possible direct effects of these inhibitors on embryonic cells and the relationships between interruption of VYS-mediated nutritional processes and embryonic cell death are discussed.

CC 4-6 (Toxicology)

IT Apoptosis

Embryo

Lysosome

Teratogenesis

Teratogens

(cysteine proteinase inhibitors embryotoxicity)

IT 65178-14-5 71732-53-1

RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
(cysteine proteinase inhibitors embryotoxicity)

L12 ANSWER 9 OF 17 HCPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1994:212318 HCPLUS

DOCUMENT NUMBER: 120:212318

TITLE: Leishmania mexicana: proteinase activities and megasomes in axenically cultivated amastigote-like forms

AUTHOR(S): Pral, Elizabeth M. F.; Bijovsky, A. Tania; Balanco, J. M. F.; Alfieri, Silvia C.

CORPORATE SOURCE: Inst. Cienc. Biomed., Univ. Sao Paulo, Sao Paulo, 05508-900, Brazil

SOURCE: Experimental Parasitology (1993), 77(1), 62-73
CODEN: EXPAAA; ISSN: 0014-4894

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Proteinase activities and megasomes were exmd. in axenically cultivated amastigote-like forms, freshly isolated lesion amastigotes, and promastigotes. Megasomes were absent in promastigotes and present in both

amastigote stages, but they seemed to be less numerous and more homogeneous in cultured amastigote-like forms. Contrasting with the poor detection of proteinase activities in promastigote lysates, both types of amastigotes shared multiple proteinases, which were classified in two groups: (a) 60 to >100 kDa, o-phenanthroline-sensitive activities; and (b) 23- to 40-kDa cysteine proteinases, of which those resolving as 35- to 40-kDa bands in gelatin gels were more clearly visualized in lysates of cultured amastigote-like forms. Incubation of both kinds of amastigotes with 0.25 to 1.0 .mu.M of either Z-Phe-AlaCHN2 or Z-Tyr-AlaCHN2 selectively inactivated cysteine proteinases, but not the 35- to 40-kDa activities, which, again, were detected with higher intensity in cultured amastigote-like forms. The expression of the 35- to 40-kDa proteinases progressively increased when promastigotes were allowed to transform into amastigote-like forms or when lesion amastigotes were incubated at 34.degree.C for different time periods prior to exposure to Z-Phe-AlaCHN2; activities comparable to those of amastigote-like forms were attained within 24 to 48 h. The activities resistant to Z-Phe-AlaCHN2 in vivo were fully inhibited by E-64 or Z-Phe-AlaCHN2 during gelatin digestion, suggesting that the 35- to 40-kDa proteinases were mainly inactive before cell lysis. The presence of cycloheximide (at 10, 50, and 100 .mu.g/mL) during the pulse with Z-Phe-AlaCHN2 abolished the 35- to 40-kDa activities of lesion amastigotes and significantly reduced gelatin digestion by the similar enzymes of cultured amastigote-like forms. In the latter, the 35- to 40-kDa proteinases were no more detected when cycloheximide was given 60 min prior to Z-Phe-AlaCHN2. The results indicate higher rates of synthesis of the 35- to 40-kDa enzymes, and the existence of a more representative pool of inactive enzyme precursors, in cultured amastigote-like forms.

CC 10-3 (Microbial, Algal, and Fungal Biochemistry)
 IT Lysosome
 (megasome, of Leishmania mexicana amastigote-like forms)
 IT 71732-53-1 114515-99-0
 RL: BIOL (Biological study)
 (cysteine proteinases of Leishmania mexicana amastigote-like forms
 differential sensitivity to)

L12 ANSWER 10 OF 17 HCPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 1992:508969 HCPLUS
 DOCUMENT NUMBER: 117:108969
 TITLE: Inhibition of cysteine proteinases in
 lysosomes and whole cells
 AUTHOR(S): Wilcox, Donna; Mason, Robert W.
 CORPORATE SOURCE: Dep. Biochem. Nutr., Virginia Polytech. Inst. and
 State Univ., Blacksburg, VA, 24061, USA
 SOURCE: Biochemical Journal (1992), 285(2), 495-502
 CODEN: BIJOAK; ISSN: 0306-3275
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Inhibitors of cysteine proteinases have been used extensively to dissect
 the roles of these proteinases in cells. Surprisingly though, little work
 has been performed to demonstrate unequivocally that the inhibitors reach
 and inactivate their target proteinases in cell culture or in vivo. In
 the present study, the permeability of lysosomes and whole cells was
 studied. Benzylloxycarbonyl (Z)-[125I]iodo-Tyr-Ala-diazomethane (CHN2), an
 inhibitor of cathepsins L and B, has been shown to label active forms of
 these enzymes in lysosomes and whole cells. The ability of other cysteine
 proteinase inhibitors to block this labeling has been used to indicate the
 permeation of these compds. All the inhibitors were able to block
 labeling of Z-[125I]iodo-Tyr-Ala-CHN2 in lysosomal exts. In intact
 lysosomes or cells, however, only N-[N-(L-3-trans-ethoxycarbonyloxirane-2-

carbonyl)-L-leucyl]-3-methylbutylamine (E-64d), Z-Tyr-Ala-CHN₂, Z-Phe-Ala-CHN₂-carbonyl)-L-leucyl]amino-4-guanidinobutane (E-64), and leupeptin were unable to block labeling by Z-[125I]iodo-Tyr-Ala-CHN₂ in lysosomes or in cells. The ability to block labeling in lysosomes is an indication of the ability of the inhibitor to diffuse across membranes. Thus E-64 and leupeptin do not readily permeate membranes, and therefore their uptake into cells probably only occurs via pinocytosis.

CC 13-7 (Mammalian Biochemistry)
 Section cross-reference(s): 7
 ST cysteine proteinase inhibitor permeation lysosome cell;
 cathepsin inhibitor permeation lysosome; leupeptin permeation
 cell lysosome
 IT Leupeptins
 RL: BIOL (Biological study)
 (cysteine proteinase inhibition by, in lysosomes and cells,
 permeation through membrane in relation to)
 IT Animal cell
 Lysosome
 (cysteine proteinase inhibitors permeation into, degree of inhibition
 in relation to)
 IT Biological transport
 (permeation, of cysteine proteinase inhibitors into lysosomes
 and cells, degree of inhibition in relation to)
 IT 65178-14-5 66701-25-5 71732-53-1 76684-89-4 88321-09-9
 114515-99-0
 RL: BIOL (Biological study)
 (cysteine proteinase inhibition by, in lysosomes and cells,
 permeation through membrane in relation to)
 IT 9047-22-7, Cathepsin B 37353-41-6, Cysteine proteinase 60616-82-2,
 Cathepsin L
 RL: BIOL (Biological study)
 (inhibition of, in lysosomes and animal cells, permeability
 of inhibitors effect on)

L12 ANSWER 11 OF 17 HCPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 1990:136378 HCPLUS
 DOCUMENT NUMBER: 112:136378
 TITLE: Insoluble disulfide crosslinked polypeptides
 accumulate in the functionally compromised
 lysosomes of fibroblasts treated with the
 cysteine protease inhibitor E 64
 AUTHOR(S): Doherty, Fergus J.; Osborn, Natasha U.; Wassell, Julie
 A.; Laszlo, Lajos; Mayer, R. John
 CORPORATE SOURCE: Med. Sch., Univ. Nottingham, Nottingham, NG7 2UH, UK
 SOURCE: Experimental Cell Research (1989), 185(2), 506-18
 CODEN: ECREAL; ISSN: 0014-4827
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Mouse fibroblasts (3T3-L1 cells) accumulate pulse-labeled long-lived
 polypeptides in detergent- and salt-insol. aggregates when chased in the
 presence of inhibitors of lysosomal cysteine cathepsins, including E 64.
 Proteins found in the detergent- and salt-insol. fraction include
 polypeptides which are disulfide crosslinked. E 64-induced polypeptide
 aggregates cofractionate with lysosomal enzyme markers on d. gradients and
 are found in multivesicular dense bodies which by electron microscopy
 appear to be engaged in microautophagy. The results are discussed in
 relation to the possible role of polypeptide aggregation in the
 sequestration or trapping of cytoplasmic proteins by the lysosomal system.
 CC 13-2 (Mammalian Biochemistry)
 ST disulfide crosslink polypeptide lysosome fibroblast; cysteine

proteinase inhibitor fibroblast
IT Fibroblast
(disulfide-contg. polypeptide accumulation in lysosomes of,
cysteine proteinase inhibitors induction of)
IT Lysosome
(disulfide-contg. polypeptide accumulation in, of fibroblast, cysteine
proteinase inhibitors effect on)
IT Proteins, specific or class
RL: BIOL (Biological study)
(disulfide-contg., insol., accumulation of, in fibroblast
lysosomes, cysteine proteinase inhibitors induction of)
IT 54-05-7, Chloroquine 12125-02-9, Ammonium chloride, biological studies
65178-14-5 66701-25-5, E 64 71732-53-1
RL: BIOL (Biological study)
(disulfide-contg. polypeptide accumulation in fibroblast
lysosomes response to)
IT 37353-41-6, Cysteine proteinase
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(inhibitors, insol. disulfide-contg. polypeptides accumulation in
fibroblast lysosomes response to)

L12 ANSWER 12 OF 17 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1989:569914 HCAPLUS
DOCUMENT NUMBER: 111:169914
TITLE: Interaction of lysosomal cysteine
proteinases with .alpha.2-macroglobulin: conclusive
evidence for the endopeptidase activities of
cathepsins B and H
AUTHOR(S): Mason, Robert W.
CORPORATE SOURCE: Dep. Biochem., Strangeways Res. Lab., Cambridge, CB1
4RN, UK
SOURCE: Archives of Biochemistry and Biophysics (1989),
273(2), 367-74
CODEN: ABBIA4; ISSN: 0003-9861
DOCUMENT TYPE: Journal
LANGUAGE: English

AB The lysosomal cysteine proteinases, cathepsins B, H, and L, were all shown
to bind to .alpha.2-macroglobulin. The bound enzymes remained active
against low-mol.-wt. synthetic substrates and bound the
active-site-directed inhibitor, benzylloxycarbonyl-[125I]Tyr-Ala-
diazomethane. Binding of the radiolabeled inhibitor to high-mol.-wt.
protein on SDS polyacrylamide gels indicated that a proportion of the
enzymes was covalently bound to .alpha.2-macroglobulin. Cleavage
fragments of .alpha.2-macroglobulin of Mr 92,000 and 86,000 were seen for
cathepsins B, H, and L, indicating cleavage in the bait region. Binding
and cleavage were obsd. for both single-chain and 2-chain forms of
cathepsin B from human, ox, and pig livers, showing that all active forms
of cathepsins B, H, and L are endopeptidases.

CC 7-3 (Enzymes)
ST cathepsin binding alpha2 macroglobulin endopeptidase activity;
lysosome cathepsin endopeptidase activity
IT Lysosome
(cathepsins of human and lab. animal, endopeptidase activity of)
IT Michaelis constant
(of cathepsin, of human and lab. animal lysosome for
synthetic peptides)
IT Kinetics, enzymic
(of inhibition, of cathepsins of human and lab. animal lysosome
by synthetic peptide)
IT Macroglobulins

RL: BIOL (Biological study)
 (.alpha.2-, cathepsin of human and lab. animal lysosome
 binding of, endopeptidase activity of enzyme in relation to)

IT 71732-53-1
 RL: BIOL (Biological study)
 (cathepsins of human and lab. animal lysosomes inhibition by,
 kinetics of)

IT 9047-22-7, Cathepsin B 60748-73-4, Cathepsin H
 RL: BIOL (Biological study)
 (endopeptidase activity of, of human lysosome,
 .alpha.2-macroglobulin binding in relation to)

IT 65147-22-0 65286-27-3 88937-61-5
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, with cathepsins of human and lab. animal lysosome
 , kinetics of)

L12 ANSWER 13 OF 17 HCAPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 1989:529576 HCAPLUS
 DOCUMENT NUMBER: 111:129576
 TITLE: Plasmodium falciparum: inhibitors of
 lysosomal cysteine proteinases inhibit a
 trophozoite proteinase and block parasite development
 Rosenthal, Philip J.; McKerrow, James H.; Rasnick,
 David; Leech, James H.
 CORPORATE SOURCE: Dep. Med., San Francisco Gen. Hosp., San Francisco,
 CA, 94110, USA
 SOURCE: Molecular and Biochemical Parasitology (1989), 35(2),
 177-83
 CODEN: MBIPDR ISSN: 0166-6851
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB The biochemical properties of the trophozoite cysteine proteinase closely resembled those of the lysosomal cysteine proteinases cathepsin B and cathepsin L. The trophozoite proteinase had a pH optimum of 5.5-6.0, near that of both lysosomal proteinases, and it was efficiently inhibited by highly specific diazomethylketone and fluoromethylketone inhibitors of cathepsin B and cathepsin L. The trophozoite proteinase preferred peptide substrates with arginine adjacent to hydrophobic amino acids, as does cathepsin L. Micromolar concns. of the fluoromethylketone inhibitor Z-Phe-Ala-CH2F (where Z = benzyloxycarbonyl) blocked the degrdn. of Hb in the trophozoite food vacuole and prevented parasite multiplication. In previous studies much higher concns. of the inhibitor were not toxic for mice. The results provide addnl. evidence that the 28-kDa trophozoite proteinase is a food vacuole hemoglobinase and suggest that specific inhibitors of the enzyme may have potential as antimalarial drugs.

CC 7-3 (Enzymes)
 Section cross-reference(s): 1
 IT 65178-14-5 71732-53-1 105637-38-5
 RL: BIOL (Biological study)
 (cysteine proteinase of Plasmodium falciparum inhibition by, kinetics
 of, malaria therapy in relation to)

L12 ANSWER 14 OF 17 HCAPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 1986:107530 HCAPLUS
 DOCUMENT NUMBER: 104:107530
 TITLE: A group-specific inhibitor of lysosomal
 cysteine proteinases selectively inhibits both
 proteolytic degradation and presentation of the
 antigen dinitrophenyl-poly-L-lysine by guinea pig
 accessory cells to T cells

AUTHOR(S): Buus, Soeren; Werdelin, Ole
CORPORATE SOURCE: Univ. Inst. Pathol., Univ. Copenhagen, Copenhagen,
DK-2100, Den.
SOURCE: Journal of Immunology (1986), 136(2), 452-8
CODEN: JOIMA3; ISSN: 0022-1767
DOCUMENT TYPE: Journal
LANGUAGE: English

AB With the aid of highly specific inhibitors of proteinases, the role of proteolysis in the presentation of antigens by guinea pig accessory cells was examd. The proteinase inhibitor benzoyloxycarbonyl-phenylalanylalanine-diazomethyl-ketone, which selectively inhibits cysteine proteinases, was used to block this set of enzymes in cultured cells. The selective inhibition of the cysteine proteinases of antigen-presenting cells causes a profound inhibition of both the proteolytic degrdn. and the presentation of the synthetic antigen dinitrophenyl-poly-L-lysine. In contrast, the presentation of another synthetic antigen, the copolymer of L-glutamic acid and L-alanine, was enhanced by the same inhibitor. Another inhibitor, pepstatin A, which selectively blocks aspartic proteinases, did not block the presentation of dinitrophenyl-poly-L-lysine. The results identify cysteine proteinases, probably lysosomal, as one of the groups of enzymes involved in antigen processing.

CC 15-2 (Immunochemistry)
Section cross-reference(s): 7
ST antigen processing cysteine proteinase lysosome
IT Lysosome
(cysteine proteinases of, in antigen presentation by accessory cells)
IT Antigens
RL: PROC (Process)
(presentation of, by accessory cells, lysosomal cysteine proteinases in)
IT Lymphocyte
(T-, antigen presentation to, by accessory cells, lysosomal cysteine proteinases in)
IT Macrophage
(accessory cell, antigen presentation by, lysosomal cysteine proteinases in)
IT Polyamides, biological studies
RL: BIOL (Biological study)
(poly(amino acids), accessory cells presentation of antigenic, lysosomal cysteine proteinases in)
IT Tuberculins
RL: BIOL (Biological study)
(purified protein derivs., accessory cells presentation of antigenic, lysosomal cysteine proteinases in)
IT 25104-18-1D, dinitrophenyl conjugates 26655-93-6 31325-39-0
RL: BIOL (Biological study)
(accessory cells presentation of antigenic, lysosomal cysteine proteinases in)
IT 26305-03-3 71732-53-1
RL: BIOL (Biological study)
(antigen presentation by accessory cells inhibition by)
IT 37353-41-6
RL: BIOL (Biological study)
(of lysosome, in antigen presentation by accessory cells)

L12 ANSWER 15 OF 17 HCPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1984:586807 HCPLUS
DOCUMENT NUMBER: 101:186807
TITLE: Species variations amongst lysosomal cysteine proteinases

AUTHOR(S): Kirschke, Heidrun; Locnikar, Pavel; Turk, Vito
 CORPORATE SOURCE: Physiol.-Chem. Inst., Martin-Luther-Univ.
 Halle-Wittenberg, Halle/Saale, DDR-4020, Ger. Dem. Rep.
 SOURCE: FEBS Letters (1984), 174(1), 123-7
 CODEN: FEBLAL; ISSN: 0014-5793
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Properties of cathepsin L from rat liver lysosomes were compared with those of a similar enzyme, cathepsin S from beef spleen. Major characteristics of cathepsin L are the high activity against Z-Phe-Arg-methylcoumarylamide (Z = benzyloxycarbonyl) and sensitivity to the fast-reacting irreversible inhibitor Z-Phe-Phe-diazomethane. In contrast, cathepsin S hydrolyzes Z-Phe-Arg-methylcoumarylamide only slowly, and Z-Phe-Phe-diazomethane cannot be regarded as a potent inhibitor of this enzyme. The differences in the substrate specificity of cathepsin L from rat liver and cathepsin S from beef spleen are discussed in comparison with the substrate specificity of cathepsin B from rat and human liver and beef spleen.

CC 7-3 (Enzymes)
 ST cysteine proteinase lysosome specificity species; cathepsin lysosome specificity species
 IT Lysosome
 (cathepsin of, of human and lab. animal, species difference in)
 IT 71732-53-1
 RL: BIOL (Biological study)
 (cathepsin inhibition by, species specificity in)
 IT 37353-41-6
 RL: BIOL (Biological study)
 (of lysosome of human and lab. animal, specificity of, species differences in)
 IT 60616-82-2
 RL: BIOL (Biological study)
 (specifity of, of liver lysosome, species in relation to)
 IT 71965-46-3
 RL: BIOL (Biological study)
 (specifity of, of spleen lysosome, species in relation to)

L12 ANSWER 16 OF 17 HCPLUS COPYRIGHT 2003 ACS
 ACCESSION NUMBER: 1983:420350 HCPLUS
 DOCUMENT NUMBER: 99:20350
 TITLE: The thiol proteinase inhibitors, Z-Phe-PheCHN₂ and Z-Phe-AlaCHN₂, inhibit lysosomal protein degradation in isolated rat hepatocytes

AUTHOR(S): Grinde, Bjoern
 CORPORATE SOURCE: Zool. Inst., Univ. Oslo, Oslo, Norway
 SOURCE: Biochimica et Biophysica Acta (1983), 757(1), 15-20
 CODEN: BBACAO; ISSN: 0006-3002
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB The effects on protein metab. of Z-Phe-PheCHN₂ and Z-Phe-AlaCHN₂ (where Z = benzyloxycarbonyl) were exmd. in isolated rat hepatocytes. The 2 thiol proteinase inhibitors caused a drastic redn. in the degrdn. of both endogenous and endocytosed (asialofetuin) protein. The inhibition was not additive to that of the lysosomotropic base MeNH₂, indicating that Z-Phe-PheCHN₂ and Z-Phe-AlaCHN₂ only affect lysosomal degrdn. At high concns. (0.1-1 mM) both inhibitors reduced protein synthesis strongly. This finding indicates nonspecific/toxic effects, which may limit the usefulness of the inhibitors.

CC 13-7 (Mammalian Biochemistry)

ST thiol protease protein metab lysosome hepatocyte
IT Proteins
RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL
(Biological study); PROC (Process)
(metab. of, by lysosomal hepatocyte, thiol protease in
relation to)
IT Lysosome
(protein metab. by, of hepatocyte, thiol proteinase in relation to)
IT Liver, metabolism
(hepatocyte, protein metab. by lysosome of, thiol protease in
relation to)
IT 37353-41-6
RL: BIOL (Biological study)
(in protein metab., by lysosomal hepatocyte)
IT 65178-14-5 71732-53-1
RL: BIOL (Biological study)
(protein metab. by lysosomal hepatocyte in relation to)

L12 ANSWER 17 OF 17 HCAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER: 1983:176747 HCAPLUS
DOCUMENT NUMBER: 98:176747
TITLE: The regulation of proteolysis in normal fibroblasts as
they approach confluence. Evidence for the
participation of the lysosomal system
AUTHOR(S): Cockle, Sheena M.; Dean, Roger T.
CORPORATE SOURCE: Sch. Biol. Sci., Brunel Univ., Uxbridge, UB8 3PH, UK
SOURCE: Biochemical Journal (1982), 208(3), 795-800
CODEN: BIJOAK; ISSN: 0306-3275
DOCUMENT TYPE: Journal
LANGUAGE: English
AB NH₄Cl, leupeptin (I), benzyloxycarbonyl-Phe-Ala-diazomethane (II), and
pepstatin (III) all inhibited the degrdn. of intracellular proteins in
Swiss 3T3 mouse and normal human fibroblasts in both the exponential and
stationary (confluent) growth phases in nutritionally complete conditions.
The increase in proteolysis normally occurring as cells approached
confluence could be completely blocked by NH₄Cl, II, or by III in the
presence of I. These results suggest that the lysosomal system is
responsible for the regulation of proteolysis at confluence and further
confirm its role in basal proteolysis in growing cells.
CC 13-2 (Mammalian Biochemistry)
Section cross-reference(s): 6
ST lysosome fibroblast confluence proteolysis regulation
IT Fibroblast
(confluent, lysosomal regulation of proteolysis in)
IT Proteins
RL: RCT (Reactant); RACT (Reactant or reagent)
(hydrolysis of, in confluent fibroblasts, lysosomal
regulation of)
IT Lysosome
(regulation of proteolysis in confluent fibroblasts in relation to)
IT 12125-02-9, biological studies 71732-53-1
RL: BIOL (Biological study)
(proteolysis in confluent fibroblasts inhibition by)

=> d ibib abs hitstr IND L39 1-5

L39 ANSWER 1 OF 5 CAPLUS COPYRIGHT 2003 ACS on STN
 ACCESSION NUMBER: 2002:171378 CAPLUS
 DOCUMENT NUMBER: 138:66184
 TITLE: Cysteine and serine protease inhibitors block intracellular development and disrupt the secretory pathway of Toxoplasma gondii
 AUTHOR(S): Shaw, Michael K.; Roos, David S.; Tilney, Lewis G.
 CORPORATE SOURCE: Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104-6018, USA
 SOURCE: Microbes and Infection (2002), 4(2), 119-132
 CODEN: MCINFS; ISSN: 1286-4579
 PUBLISHER: Editions Scientifiques et Medicales Elsevier
 DOCUMENT TYPE: Journal
 LANGUAGE: English

~~AB A no. of cysteine and serine protease inhibitors blocked the intracellular growth and replication of Toxoplasma gondii tachyzoites. Most of these inhibitors caused only minor alterations to parasite morphol. irresp. of the effects on the host cells. However, three, cathepsin inhibitor III, TPCK and subtilisin inhibitor III, caused extensive swelling of the secretory pathway of the parasite (i.e. the ER, nuclear envelope, and Golgi complex), caused the breakdown of the parasite surface membrane, and disrupted rhoptry formation. The disruption of the secretory pathway is consistent with the post-translational processing of secretory proteins in Toxoplasma, and with the role of proteases in the maturation/activation of secreted proteins in general. Interestingly, while all parasites in an individual vacuole (the clonal progeny of a single invading parasite) were similarly affected, parasites in different vacuoles in the same host cell showed different responses to these inhibitors. Such observations imply that there are major differences in the biochem./physiol. between tachyzoites within different vacuoles and argue that adverse effects on the host cell are not always responsible for changes in the parasite. Treatment of established parasites also leads to an accumulation of abnormal materials in the parasitophorous vacuole implying that materials deposited into the vacuole normally undergo proteolytic modification or degrdn. Despite the often extensive morphol. changes, nothing resembling lysosomal bodies was seen in any treated parasites, consistent with previous observations showing that mother cell organelles are not recycled by any form of autophagic-lysosomal degrdn., although the question of how the parasite recycles these organelles remains unanswered.~~

IT 71732-53-1
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (cysteine and serine protease inhibitors block intracellular development and disrupt the secretory pathway of Toxoplasma gondii)
 RN 71732-53-1 CAPLUS
 CN Carbamic acid, [(1S)-2-[[[(1S)-3-diazo-1-methyl-2-oxopropyl]amino]-2-oxo-1-(phenylmethyl)ethyl]-, phenylmethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CC 1-5 (Pharmacology)
 ST cysteine serine protease inhibitor secretory Toxoplasma gondii
 IT Endoplasmic reticulum
 Golgi apparatus
 Parasite

Toxoplasma gondii
 (cysteine and serine protease inhibitors block intracellular development and disrupt the secretory pathway of Toxoplasma gondii)

IT Cell nucleus
 (envelope; cysteine and serine protease inhibitors block intracellular development and disrupt the secretory pathway of Toxoplasma gondii)

IT Organelle
 (rhoptry; cysteine and serine protease inhibitors block intracellular development and disrupt the secretory pathway of Toxoplasma gondii)

IT 9004-07-3, Chymotrypsin 37259-58-8, Serine protease 37353-41-6, Cysteine protease
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (cysteine and serine protease inhibitors block intracellular development and disrupt the secretory pathway of Toxoplasma gondii)

IT 59-61-0, DCI 26305-03-3, Pepstatin A 35172-59-9 55123-66-5, Leupeptin 65178-14-5 66701-25-5, E-64 71732-53-1 76684-89-4, E-64c 96551-81-4, Arphamenine A 110115-07-6 180313-87-5 180313-89-7
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (cysteine and serine protease inhibitors block intracellular development and disrupt the secretory pathway of Toxoplasma gondii)

REFERENCE COUNT: 48 THERE ARE 48 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L39 ANSWER 2 OF 5 CAPLUS COPYRIGHT 2003 ACS on STN
 ACCESSION NUMBER: 2001:799047 CAPLUS
 DOCUMENT NUMBER: 136:79329
 TITLE: Analysis of antimalarial synergy between bestatin and endoprotease inhibitors using statistical response-surface modelling
 AUTHOR(S): Gavigan, Clare S.; Machado, Stella G.; Dalton, John P.; Bell, Angus
 CORPORATE SOURCE: Department of Microbiology, Trinity College, Dublin, 2, Ire.
 SOURCE: Antimicrobial Agents and Chemotherapy (2001), 45(11), 3175-3181
 CODEN: AMACCQ; ISSN: 0066-4804
 PUBLISHER: American Society for Microbiology
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB The pathway of Hb degrdn. by erythrocytic stages of the human malarial parasite Plasmodium falciparum involves initial cleavages of globin chains, catalyzed by several endoproteases, followed by liberation of amino acids from the resulting peptides, probably by aminopeptidases. This pathway is considered a promising chemotherapeutic target, esp. in view of the antimalarial synergy obsd. between inhibitors of aspartyl and cysteine endoproteases. We have applied response-surface modeling to assess antimalarial interactions between endoprotease and aminopeptidase inhibitors using cultured P. falciparum parasites. The synergies obsd. were consistent with a combined role of endoproteases and aminopeptidases in Hb catabolism in this organism. As synergies between antimicrobial agents are often inferred without proper statistical anal., the model used may be widely applied in studies of antimicrobial drug interactions.

IT 71732-53-1
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (anal. of antimalarial synergy between bestatin and endoprotease inhibitors using statistical response-surface modeling)

RN 71732-53-1 CAPLUS
 CN Carbamic acid, [(1S)-2-[[[(1S)-3-diazo-1-methyl-2-oxopropyl]amino]-2-oxo-1-(phenylmethyl)ethyl]-, phenylmethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CC 1-5 (Pharmacology)
 ST antimalarial synergy bestatin endoprotease inhibitor modeling
 IT Antimalarials
 Plasmodium falciparum
 Simulation and Modeling, biological
 (anal. of antimalarial synergy between bestatin and endoprotease
 inhibitors using statistical response-surface modeling)
 IT Protein degradation
 (Role of Plasmodium falciparum aminopeptidase in concert with aspartyl
 and cysteine endoproteases in Hb degrdn)
 IT Hemoglobins
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (Role of Plasmodium falciparum aminopeptidase in concert with aspartyl
 and cysteine endoproteases in Hb degrdn)
 IT Drug interactions
 (synergistic; anal. of antimalarial synergy between bestatin and
 endoprotease inhibitors using statistical response-surface modeling)
 IT 39324-30-6, Pepstatin 58970-76-6, Bestatin 66701-25-5, E-64
 71732-53-1
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL
 (Biological study); USES (Uses)
 (anal. of antimalarial synergy between bestatin and endoprotease
 inhibitors using statistical response-surface modeling)
 IT 9031-94-1, Aminopeptidase 37353-41-6, Cysteine proteininase 78169-47-8,
 Aspartyl proteininase
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (Role of Plasmodium falciparum aminopeptidase in concert with aspartyl
 and cysteine endoproteases in Hb degrdn)
 REFERENCE COUNT: 34 THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS
 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L39 ANSWER 3 OF 5 CAPLUS COPYRIGHT 2003 ACS on STN
 ACCESSION NUMBER: 2000:335259 CAPLUS
 DOCUMENT NUMBER: 132:343360
 TITLE: A method for treating tissue damaged from ischemia by
 using a peptidyl diazomethyl ketone
 INVENTOR(S): Seyfried, Donald M.; Anagli, John
 PATENT ASSIGNEE(S): Research Corporation Technologies, Inc., USA
 SOURCE: PCT Int. Appl., 7x pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2000027418	A2	20000518	WO 1999-US26718	19991112
WO 2000027418	A3	20000908		
			W: CA, JP	
			RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,	
			PT, SE	
EP 1131082	A2	20010912	EP 1999-963889	19991112
			R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,	
			IE, FI	
JP 2002529422	T2	20020910	JP 2000-580647	19991112

MELLER

US 6458760	B1	20021001	US 1999-439705	19991112
PRIORITY APPLN. INFO.:			US 1998-108049P	P 19981112
			WO 1999-US26718	W 19991112

OTHER SOURCE(S): MARPAT 132:343360

AB The present invention relates to a method for treating tissue damage caused by ischemia in a patient which comprises administering to said patient a therapeutically effective amt. of a peptidyl diazomethyl ketone which is an inhibitor of cathepsin B or cathepsin L, but which is not as an effective inhibitor of calpain relative to cathepsin B or cathepsin L or both. For example, CBZ-Phe-Ser(OBz)CHN₂ (CP-1) was prep'd. from O-benzyl-L-serine and N-.alpha.-benzyloxycarbonyl-L-phenylalanine N-hydroxysuccinimide in a yield of 80%. When given i.v. to Wistar rats, CP-1 decreased an infarct size at concns. of 10, 50, and 250 .mu.M, but not at 2 .mu.M.

IT 71732-53-1P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(peptidyl diazomethyl ketones as inhibitors of cathepsin B or L for ischemia treatment)

RN 71732-53-1 CAPLUS

CN Carbamic acid, [(1S)-2-[[[(1S)-3-diazo-1-methyl-2-oxopropyl]amino]-2-oxo-1-(phenylmethyl)ethyl]-, phenylmethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IC ICM A61K038-05
ICS A61K038-06; A61K038-55; A61P025-00; A61P009-10

CC 1-12 (Pharmacology)

Section cross-reference(s): 34

ST peptidyl diazomethyl ketone cathepsin inhibitor antiischemic

IT Nervous system

(disease; peptidyl diazomethyl ketones as inhibitors of cathepsin B or L for ischemia treatment)

IT Brain, disease

Heart, disease

(ischemia; peptidyl diazomethyl ketones as inhibitors of cathepsin B or L for ischemia treatment)

IT Anti-ischemic agents

(peptidyl diazomethyl ketones as inhibitors of cathepsin B or L for ischemia treatment)

IT Dipeptides

Tripeptides

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(peptidyl diazomethyl ketones as inhibitors of cathepsin B or L for ischemia treatment)

IT Brain, disease

(stroke; peptidyl diazomethyl ketones as inhibitors of cathepsin B or L for ischemia treatment)

IT 65178-14-5P 71732-53-1P 85680-09-7P 85680-10-0P
85680-12-2P 114014-15-2P 114014-16-3P 114480-14-7P 116614-38-1P
116614-45-0P 116641-98-6P 116641-99-7P 142070-20-0P 154992-43-5P
268741-03-3P 268741-04-4P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic

MELLER

use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (peptidyl diazomethyl ketones as inhibitors of cathepsin B or L for
 ischemia treatment)

IT 9047-22-7, Cathepsin B 60616-82-2, Cathepsin L
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL
 (Biological study); PROC (Process)
 (peptidyl diazomethyl ketones as inhibitors of cathepsin B or L for
 ischemia treatment)

IT 78990-62-2, Calpain 186322-81-6, Caspase
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (peptidyl diazomethyl ketones as inhibitors of cathepsin B or L, but
 not calpain or caspase for ischemia treatment)

IT 2577-48-2 3397-32-8 4726-96-9, O-Benzyl-L-serine 7801-71-0
 18822-59-8 69538-46-1
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (prepn. of peptidyl diazomethyl ketones as inhibitors of cathepsin B or
 L for ischemia treatment)

IT 118252-98-5P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
 (Reactant or reagent)
 (prepn. of peptidyl diazomethyl ketones as inhibitors of cathepsin B or
 L for ischemia treatment)

L39 ANSWER 4 OF 5 CAPLUS COPYRIGHT 2003 ACS on STN

ACCESSION NUMBER: 1999:199087 CAPLUS

DOCUMENT NUMBER: 131:110938

TITLE: Cysteine proteinase inhibitors kill cultured
 bloodstream forms of *Trypanosoma brucei brucei*

AUTHOR(S): Troeberg, Linda; Morty, Rory E.; Pike, Robert N.;
 Lonsdale-Eccles, John D.; Palmer, James T.; McKerrow,
 James H.; Coetzer, Theresa H. T.

CORPORATE SOURCE: Department of Biochemistry, University of Natal
 (Pietermaritzburg), Scottsville, 3209, S. Afr.

SOURCE: Experimental Parasitology (1999), 91(4), 349-355
 CODEN: EXPAAA; ISSN: 0014-4894

PUBLISHER: Academic Press

DOCUMENT TYPE: Journal

LANGUAGE: English

AB *Trypanosoma brucei brucei* is a causative agent of bovine trypanosomiasis
 (nagana), a disease of considerable economic significance in much of
 Africa. Here we report investigations on the effects of various
 irreversible cysteine proteinase inhibitors, including vinyl sulfones
 (VS), peptidyl chloromethylketones (CMK), diazomethylketones, and
 fluoromethyl ketones, on the major lysosomal cysteine proteinase
 (trypanopain-Tb) of *T. b. brucei* and on in vitro-cultured bloodstream
 forms of the parasite. Many of the tested inhibitors were trypanocidal at
 low micromolar concns. Methylpiperazine urea-Phe-homoPhe-VS was the most
 effective trypanocidal agent, killing 50% of test populations at a work
 ing concn. of 0.11 .mu.M, while carbobenzoxy-Phe-Phe-CMK was the most
 trypanocidal of the methylketones with an IC50 of 3.6 .mu.M. Labeling of
 live and lysed *T. b. brucei* with biotinylated inhibitor derivs. suggests
 that trypanopain-Tb is the likely intracellular target for these
 inhibitors. Kinetic anal. of the inhibition of purified trypanopain-Tb by
 the inhibitors showed that most had kass values in the 106 M-1 s-1 range.
 We conclude that cysteine proteinase inhibitors have potential as
 trypanocidal agents and that a major target of these compds. is the
 lysosomal enzyme trypanopain-Tb. (c) 1999 Academic Press.

IT 71732-53-1

RL: BAC (Biological activity or effector, except adverse); BSU (Biological
 study, unclassified); THU (Therapeutic use); BIOL (Biological
 study); USES (Uses)

(cysteine proteinase inhibitors kill cultured bloodstream forms of
Trypanosoma brucei brucei)

RN 71732-53-1 CAPLUS

CN Carbamic acid, [(1S)-2-[[[(1S)-3-diazo-1-methyl-2-oxopropyl]amino]-2-oxo-1-(phenylmethyl)ethyl]-, phenylmethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CC 1-5 (Pharmacology)

Section cross-reference(s): 10

ST trypanocidal cysteine proteinase inhibitor Trypanosoma brucei

IT Trypanosoma brucei brucei

Trypanosomicides

(cysteine proteinase inhibitors kill cultured bloodstream forms of Trypanosoma brucei brucei)

IT 402-71-1 2364-87-6 26049-94-5 41658-44-0 52780-79-7 60525-17-9
65144-34-5 65178-14-5 71732-53-1 90302-94-6 105637-38-5
130143-19-0 211060-81-0 213822-40-3 213822-41-4 213822-42-5
213822-44-7 233277-97-9 233277-98-0 233277-99-1 233278-00-7
233278-01-8

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(cysteine proteinase inhibitors kill cultured bloodstream forms of Trypanosoma brucei brucei)

IT 37353-41-6, Cysteine proteinase 179466-48-9, Trypanopain-Tb
RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)

(cysteine proteinase inhibitors kill cultured bloodstream forms of Trypanosoma brucei brucei)

REFERENCE COUNT: 36 THERE ARE 36 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L39 ANSWER 5 OF 5 CAPLUS COPYRIGHT 2003 ACS on STN

ACCESSION NUMBER: 1999:199083 CAPLUS

DOCUMENT NUMBER: 131:110937

TITLE: Trypanosoma rangeli: killing of bloodstream forms in vitro and in vivo by the cysteine proteinase inhibitor Z-Phe-Ala-CHN2

AUTHOR(S): Scory, Stefan; Caffrey, Conor R.; Stierhof, York-Dieter; Ruppel, Andreas; Steverding, Dietmar

CORPORATE SOURCE: Abteilung Parasitologie, Hyg.-Inst., Ruprecht-Karls-Univ., Heidelberg, D-69120, Germany

SOURCE: Experimental Parasitology (1999), 91(4), 327-333
CODEN: EXPAAA; ISSN: 0014-4894

PUBLISHER: Academic Press

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Trypanosoma brucei: Killing of bloodstream forms in vitro and in vivo by the cysteine proteinase inhibitor Z-Phe-Ala-CHN 2. Cysteine proteinases were tested for their suitability as targets for chemotherapy of sleeping sickness using the peptidyl inhibitor Z-Phe-Ala-diazomethyl ketone (Z-Phe-Ala-CHN2). In vitro, the inhibitory concn. of Z-Phe-Ala-CHN2 required to reduce the growth rate by 50% was 400 times lower for culture-adapted bloodstream forms of Trypanosoma brucei than for a mouse myeloma cell line. At an inhibitor concn. of 10 M the parasites were lysed within 48 h of incubation. Parasitemia of mice infected with T. brucei decreased to undetectable levels for 3 days following treatment with 250 mg/kg Z-Phe-Ala-CHN2 on days 3 to 6 after infection. Although parasitemia returned thereafter to control levels, infected mice treated with the inhibitor survived approx. twice as long as those treated with placebo. Z-Phe-Ala-CHN2 inhibited proteinolysis in lysosomes in vitro and almost completely blocked cysteine proteinase activity in vivo. The

MELLER

results demonstrate the importance of cysteine proteinase activity for survival of *T. brucei* and suggest that such activity is an appropriate target for antitrypanosomal chemotherapy. (c) 1999 Academic Press.

IT 71732-53-1

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(killing of bloodstream forms of *Trypanosoma rangeli* in vitro and in vivo by the cysteine proteinase inhibitor Z-Phe-Ala-CHN2)

RN 71732-53-1 CAPLUS

CN Carbamic acid, [(*S*)-2-[[[*(S*)-3-diazo-1-methyl-2-oxopropyl]amino]-2-oxo-1-(phenylmethyl)ethyl]-, phenylmethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CC 1-5 (Pharmacology)

Section cross-reference(s): 10, 14

ST antitrypanosomal ZPheAlaCHN trypanosomiasis parasitemia Trypanosoma rangeli

IT Parasitemia

Trypanosoma brucei

Trypanosoma rangeli

Trypanosomicides

(killing of bloodstream forms of *Trypanosoma rangeli* in vitro and in vivo by the cysteine proteinase inhibitor Z-Phe-Ala-CHN2)

IT Infection

(trypanosomiasis; killing of bloodstream forms of *Trypanosoma rangeli* in vitro and in vivo by the cysteine proteinase inhibitor Z-Phe-Ala-CHN2)

IT 71732-53-1

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(killing of bloodstream forms of *Trypanosoma rangeli* in vitro and in vivo by the cysteine proteinase inhibitor Z-Phe-Ala-CHN2)

IT 37353-41-6, Cysteine proteinase

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)

(killing of bloodstream forms of *Trypanosoma rangeli* in vitro and in vivo by the cysteine proteinase inhibitor Z-Phe-Ala-CHN2)

REFERENCE COUNT: 42 THERE ARE 42 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

10/30/2000

MELLER

> d ibib abs hitstr ind 135

L35 ANSWER 1 OF 8 CAPLUS COPYRIGHT 2003 ACS on STN
 ACCESSION NUMBER: 2002:540253 CAPLUS
 DOCUMENT NUMBER: 137:88476
 TITLE: Lysosome-modulating compounds, and therapeutic and other methods of use
 INVENTOR(S): Bahr, Ben A.
 PATENT ASSIGNEE(S): USA
 SOURCE: U.S. Pat. Appl. Publ., 18 pp.
 CODEN: USXXCO
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2002094958	A1	20020718	US 2001-56666	20011029
PRIORITY APPLN. INFO.:			US 2000-244327P	P 200001030
			US 2000-254778P	P 200001211

OTHER SOURCE(S): MARPAT 137:88476
 AB Compds. and methods of use thereof for modulating lysosome function are disclosed. Also disclosed is use of the compds. to treat neurodegenerative events and to study Lysosomal function. Compds. of the invention include cathepsin antagonists. Specifically claimed compds. include e.g. benzylloxycarbonyl-Phe-Ala-diazomethylketone.

IT 71732-53-1
 RL: BUU (Biological use, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (Lysosome-modulating compds., and therapeutic and other methods of use)
 RN 71732-53-1 CAPLUS
 CN Carbamic acid, [(1S)-2-[[[(1S)-3-diazo-1-methyl-2-oxopropyl]amino]-2-oxo-1-(phenylmethyl)ethyl]-, phenylmethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IC ICM A61K038-06
 ICS A61K038-05; A61K031-655; A61K031-397; A61K031-445; A61K031-401
 NCL 514018000
 CC 1-11 (Pharmacology)
 Section cross-reference(s): 9
 ST cathepsin antagonist lysosome modulator neurodegeneration treatment; peptide deriv lysosome modulator neurodegeneration treatment
 IT Glutamate receptors
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (GluR1 subunit; Lysosome-modulating compds., and therapeutic and other methods of use)
 IT Nerve, disease
 Nervous system, disease
 (degeneration; Lysosome-modulating compds., and therapeutic and other methods of use)
 IT Peptides, biological studies
 RL: BUU (Biological use, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (derivs.; Lysosome-modulating compds., and therapeutic and other

- IT methods of use)
 - IT Esters, biological studies
 - RL: BUU (Biological use, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 - (diazoacetyl peptidyl alkyl esters; lysosome-modulating compds., and therapeutic and other methods of use)
 - IT Brain
 - (hippocampus; lysosome-modulating compds., and therapeutic and other methods of use)
 - IT Enzymes, biological studies
 - RL: BSU (Biological study, unclassified); BIOL (Biological study)
 - (lysosomal; lysosome-modulating compds., and therapeutic and other methods of use)
 - IT Animal tissue culture
 - Dendrite (neuron)
 - Drug delivery systems
 - Lysosome
 - Microtubule
 - Nervous system agents
 - Synapse
 - (lysosome-modulating compds., and therapeutic and other methods of use)
 - IT Synaptophysin
 - Tau factor
 - RL: BSU (Biological study, unclassified); BIOL (Biological study)
 - (lysosome-modulating compds., and therapeutic and other methods of use)
 - IT Biological transport
 - (markers; lysosome-modulating compds., and therapeutic and other methods of use)
 - IT Brain
 - (neocortex; lysosome-modulating compds., and therapeutic and other methods of use)
 - IT Cytoprotective agents
 - (neuroprotectants; lysosome-modulating compds., and therapeutic and other methods of use)
 - IT Ketones, biological studies
 - RL: BUU (Biological use, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 - (peptidyl diazomethylketones; lysosome-modulating compds., and therapeutic and other methods of use)
 - IT Semicarbazones
 - RL: BUU (Biological use, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 - (peptidyl; lysosome-modulating compds., and therapeutic and other methods of use)
 - IT Synapse
 - (postsynapse; lysosome-modulating compds., and therapeutic and other methods of use)
 - IT Synapse
 - (presynapse; lysosome-modulating compds., and therapeutic and other methods of use)
 - IT 9004-08-4, Cathepsin
 - RL: BSU (Biological study, unclassified); BIOL (Biological study)
 - (antagonists; lysosome-modulating compds., and therapeutic and other methods of use)
 - IT 9025-26-7, Cathepsin D 9047-22-7, Cathepsin B 71965-46-3, Cathepsin S.
 - RL: BSU (Biological study, unclassified); BIOL (Biological study)
 - (lysosome-modulating compds., and therapeutic and other methods of use)
 - IT 65178-14-5 71732-53-1 77180-09-7 118253-05-7 442663-68-5
 - 442663-69-6
 - RL: BUU (Biological use, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 - (lysosome-modulating compds., and therapeutic and other methods of use)
 - IT 19982-08-2, Memantine
 - RL: PAC (Pharmacological activity); BIOL (Biological study)
 - (lysosome-modulating compds., and therapeutic and other methods of use)

=> d ibib abs hitstr ind 135 2-8

L35 ANSWER 2 OF 8 CAPLUS COPYRIGHT 2003 ACS on STN
 ACCESSION NUMBER: 2002:107685 CAPLUS
 DOCUMENT NUMBER: 136:147461
 TITLE: Model for Alzheimer's disease and other neurodegenerative diseases
 INVENTOR(S): Lynch, Gary; Bi, Xiaoning
 PATENT ASSIGNEE(S): The Regents of the University of California, USA
 SOURCE: PCT Int. Appl., 154 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2002010768	A2	20020207	WO 2001-US23894	20010731
WO 2002010768	A3	20030103		
WO 2002010768	C2	20030710		
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
US 2002048746	A1	20020425	US 2001-917789	20010731
EP 1315971	A2	20030604	EP 2001-956047	20010731
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR				
PRIORITY APPLN. INFO.: US 2000-222060P P 20000731				
US 2001-283352P P 20010413				
WO 2001-US23894 W 20010731				

AB The present invention provides a model for studying the development of, and/or pathologies assocd. with, neurodegenerative diseases, and agents that can alter such development and/or pathologies. The model of the invention is esp. useful as an Alzheimer's disease model. The model of the invention provides brain cells and a method for increasing neurodegenerative disease characteristics in such cells. Neurodegenerative disease characteristics are induced by various means, such as introduction of neurofibrillary tangles, phosphorylated tau, or tau fragments; modulation with cytokines; inducing microglial reactions; conversion of p35 to p25; or altering protein kinases by selectively increasing the concn. of cathepsin D to an effective level, and/or by lowering the concn. of cholesterol in such cells. The model also provides a method of reversing such effects, by inhibiting cysteine protease and mitogen-activated kinase activity, and esp., by inhibiting calpain, and/or MAP kinase.

IT 71732-53-1
 RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
 (cellular models of Alzheimer's disease and other neurodegenerative diseases)

RN 71732-53-1 CAPLUS
 CN Carbamic acid, [(1S)-2-[[[(1S)-3-diazo-1-methyl-2-oxopropyl]amino]-2-oxo-1-(phenylmethyl)ethyl]-, phenylmethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IC ICM G01N033-68
 CC 9-2 (Biochemical Methods)
 Section cross-reference(s): 1, 14
 ST Alzheimer disease neurodegenerative disease model
 IT Apolipoproteins
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (E4; cellular models of Alzheimer's disease and other
 neurodegenerative diseases)
 IT Apolipoproteins
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (E; cellular models of Alzheimer's disease and other
 neurodegenerative diseases)
 IT Lipopolysaccharides
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (bacterial; cellular models of Alzheimer's disease and other
 neurodegenerative diseases)
 IT Alzheimer's disease
 Anti-Alzheimer's agents
 Disease models
 Human
 Inflammation
 Lysosome
 Mouse
 Neurofibrillary tangle
 (cellular models of Alzheimer's disease and other
 neurodegenerative diseases)
 IT Interleukin 1.beta.
 Tumor necrosis factors
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (cellular models of Alzheimer's disease and other
 neurodegenerative diseases)
 IT Nervous system, disease
 (degeneration; cellular models of Alzheimer's disease and
 other neurodegenerative diseases)
 IT Brain
 (entorhinal cortex; cellular models of Alzheimer's disease
 and other neurodegenerative diseases)
 IT Brain
 (hippocampus; cellular models of Alzheimer's disease and
 other neurodegenerative diseases)
 IT Brain
 (hypothalamus; cellular models of Alzheimer's disease and
 other neurodegenerative diseases)
 IT Neuroglia
 (microglia; cellular models of Alzheimer's disease and other
 neurodegenerative diseases)
 IT Brain
 (neocortex; cellular models of Alzheimer's disease and other
 neurodegenerative diseases)
 IT Proteins
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (p25; cellular models of Alzheimer's disease and other
 neurodegenerative diseases)
 IT Proteins
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (p35; cellular models of Alzheimer's disease and other

neurodegenerative diseases)

IT Phosphorylation, biological
(protein; cellular models of Alzheimer's disease and other
neur degenerative diseases)

IT Transferrins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(.tau.-transferrins; cellular models of Alzheimer's disease
and other neurodegenerative diseases)

IT Amyloid
RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
(.beta.-; cellular models of Alzheimer's disease and other
neurodegenerative diseases)

IT Transforming growth factors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(.beta.-; cellular models of Alzheimer's disease and other
neurodegenerative diseases)

IT 65178-14-5 71732-53-1
RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
(cellular models of Alzheimer's disease and other
neurodegenerative diseases)

IT 54-05-7, Chloroquine 57-88-5, Cholesterol, biological studies
9025-26-7, Cathepsin D 9047-22-7, Cathepsin B 60616-82-2, Cathepsin L
73573-88-3, Mevastatin 75330-75-5, Lovastatin 78990-62-2, Calpain
79902-63-9, Simvastatin 81093-37-0, Pravastatin 93957-54-1,
Fluvastatin 109511-58-2, U0126 111694-09-8, Tau kinase 134523-00-5,
Atorvastatin 142243-02-5, MAP kinase 145599-86-6, Cerivastatin
147014-96-8, Cdk5 kinase 152121-47-6, SB203580 167869-21-8, PD98059
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(cellular models of Alzheimer's disease and other
neurodegenerative diseases)

IT 110044-82-1, Calpain inhibitor I
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(cellular models of Alzheimer's disease and other
neurodegenerative diseases)

IT 37353-41-6, Cysteine protease
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(inhibitors; cellular models of Alzheimer's disease and other
neurodegenerative diseases)

L35 ANSWER 3 OF 8 CAPLUS COPYRIGHT 2003 ACS on STN
 ACCESSION NUMBER: 2001:508062 CAPLUS
 DOCUMENT NUMBER: 135:89548
 TITLE: An in vitro assay method for the study of brain aging
 INVENTOR(S): Lynch, Gary S.; Bednarski, Eric; Ribak, Charles E.;
 Gall, Christine M.
 PATENT ASSIGNEE(S): USA
 SOURCE: U.S. Pat. Appl. Publ., 9 pp.
 CODEN: USXXCO
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2001007854	A1	20010712	US 1997-787784	19970122
US 6447988	B2	20020910		

PRIORITY APPLN. INFO.: US 1997-787784 19970122
 AB Cultured brain slices are treated with a free radical generator, in the
 presence of a lysosomal enzyme inhibitor (specifically an inhibitor of two
 cathepsins). The treated brain slices rapidly develop autofluorescent
 lipofuscin granules-a universal feature of brain aging. Other correlates
 of the aged brain are also induced by this treatment, thereby providing an
 in vitro model for (1) the study of brain aging; (2) assessment of
 anti-brain aging drugs; and (3) therapeutics directed at the clin.
 condition referred to as neuronal ceroid-lipofuscinosis.

IT 71732-53-1

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)

(An in vitro assay method for the study of brain aging)

RN 71732-53-1 CAPLUS

CN Carbamic acid, [(1S)-2-[[[(1S)-3-diazo-1-methyl-2-oxopropyl]amino]-2-oxo-1-(phenylmethyl)ethyl]-, phenylmethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IC ICM A01N001-00

ICS A01N001-02; A01N037-18; A61K038-00; A61K038-16; G01N033-53; G01N033-537; G01N033-543; A61K031-70; A01N043-04

NCL 514006000

CC 9-16 (Biochemical Methods)

Section cross-reference(s): 14

ST brain aging lipofuscin lysozyme inhibitor model drug screening

IT Aging, animal

Animal tissue culture

Brain

Culture media

Dendrite (neuron)

Drug screening

Gamma ray

Hypoxia, animal

Lysosome

Mammal (Mammalia)

Neuroglia

Oxidizing agents

Reducing agents

Simulation and Modeling, physicochemical

UV radiation

(An in vitro assay method for the study of brain aging)

IT Radicals, biological studies

Salts, biological studies

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)

(An in vitro assay method for the study of brain aging)

IT Lipofuscins

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL

(Biological study); PROC (Process)

(autofluorescent; An in vitro assay method for the study of brain aging)

IT Enzymes, biological studies

RL: BSU (Biological study, unclassified); BIOL (Biological study)

(lysosomal inhibitors; An in vitro assay method for the study of brain aging)

IT Nerve

(neuron; An in vitro assay method for the study of brain aging)

IT Cytoplasm

(perikaryal; An in vitro assay method for the study of brain aging)

IT Amyloid

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)

(.beta.-, fragments 1-42/43 and 25-35; An in vitro assay method for the study of brain aging)

IT 9047-22-7, Cathepsin b 60616-82-2, Cathepsin l

MELLER

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (An in vitro assay method for the study of brain aging)

IT 50-81-7, Ascorbic acid, biological studies 58-27-5, Menadione 80-15-9,
 Cumene hydroperoxide 475-38-7, Naphthazarine 4685-14-7, Paraquat
 7720-78-7, Ferrous sulfate 7722-84-1, Hydrogen peroxide, biological
 studies 9001-37-0, Glucose oxidase 9002-17-9, Xanthine oxidase
 9076-44-2, Chymostatin 11062-77-4, Superoxide 55123-66-5, Leupeptin
 65178-14-5 66701-25-5, E-64 71732-53-1 94047-28-6, Cystatins
 110044-82-1, Calpain inhibitor I 110115-07-6, Calpain inhibitor II
 114014-15-2 134448-10-5D, CA-074, Me ester
 RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
 (Uses)

(An in vitro assay method for the study of brain aging)

IT 9001-92-7, Protease
 RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
 (Uses)
 (inhibitor, pig leukocyte cysteine; An in vitro assay method for the
 study of brain aging)

L35 ANSWER 4 OF 8 CAPLUS COPYRIGHT 2003 ACS on STN

ACCESSION NUMBER: 2000:688091 CAPLUS

DOCUMENT NUMBER: 133:261535

TITLE: Methods for treating neurodegenerative
 disorders using aspartyl protease inhibitors

INVENTOR(S): Ellman, Jonathan A.; Lynch, Gary; Kuntz, Irwin D.; Bi,
 Xiaoning; Lee, Christina E.; Skillman, A. Geoffrey;
 Haque, Tasir

PATENT ASSIGNEE(S): The Regents of the University of California, USA

SOURCE: PCT Int. Appl., 108 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2000056335	A1	20000928	WO 2000-US7804	20000324
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
EP 1178800	A1	20020213	EP 2000-916643	20000324
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
JP 2002539260	T2	20021119	JP 2000-606240	20000324
PRIORITY APPLN. INFO.:			US 1999-125958P	19990324
			WO 2000-US7804	W 20000324

OTHER SOURCE(S): MARPAT 133:261535

AB Non-peptide aspartyl protease inhibitors, methods for modulating the
 processing of an amyloid precursor protein, methods for modulating the
 processing of a .tau.-protein, and methods for treating
 neurodegenerative diseases are provided.

IT 71732-53-1

RL: BAC (Biological activity or effector, except adverse); BSU (Biological
 study, unclassified); BIOL (Biological study)
 (aspartyl protease inhibitors for modulating processing of amyloid
 precursor protein and of .tau. protein and for treating
 neurodegenerative disorders)

RN 71732-53-1 CAPLUS

CN Carbamic acid, [(1S)-2-[[[(1S)-3-diazo-1-methyl-2-oxopropyl]amino]-2-oxo-1-(phenylmethyl)ethyl]-, phenylmethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IC ICM A61K031-445
ICS A61K031-40; A61K031-16
CC 1-11 (Pharmacology)
Section cross-reference(s): 27
ST aspartyl protease inhibitor neurodegenerative disease treatment;
amyloid precursor protein processing modulation aspartyl protease
inhibitor; tau protein processing modulation aspartyl protease inhibitor
IT Body fluid
Cerebrospinal fluid
Combinatorial library
Nervous system agents
(aspartyl protease inhibitors for modulating processing of amyloid
precursor protein and of .tau. protein and for treating
neurodegenerative disorders)
IT Amyloid precursor proteins
Tau factor
RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL
(Biological study); PROC (Process)
(aspartyl protease inhibitors for modulating processing of amyloid
precursor protein and of .tau. protein and for treating
neurodegenerative disorders)
IT Nervous system
(degeneration; aspartyl protease inhibitors for modulating processing
of amyloid precursor protein and of .tau. protein and for treating
neurodegenerative disorders)
IT Brain
(entorhinal cortex; aspartyl protease inhibitors for modulating
processing of amyloid precursor protein and of .tau. protein and for
treating neurodegenerative disorders)
IT Brain
(hippocampus; aspartyl protease inhibitors for modulating processing of
amyloid precursor protein and of .tau. protein and for treating
neurodegenerative disorders)
IT Amyloid
RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL
(Biological study); PROC (Process)
(.beta.-; aspartyl protease inhibitors for modulating processing of
amyloid precursor protein and of .tau. protein and for treating
neurodegenerative disorders)
IT 9025-26-7, Cathepsin D
RL: BAC (Biological activity or effector, except adverse); BPR (Biological
process); BSU (Biological study, unclassified); BIOL (Biological study);
PROC (Process)
(aspartyl protease inhibitors for modulating processing of amyloid
precursor protein and of .tau. protein and for treating
neurodegenerative disorders)
IT 54-05-7, Chloroquine 71732-53-1
RL: BAC (Biological activity or effector, except adverse); BSU (Biological
study, unclassified); BIOL (Biological study)
(aspartyl protease inhibitors for modulating processing of amyloid
precursor protein and of .tau. protein and for treating
neurodegenerative disorders)
IT 211114-74-8P 211114-75-9P 211114-76-0P 211114-94-2P
RL: BAC (Biological activity or effector, except adverse); BSU (Biological
study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use);
BIOL (Biological study); PREP (Preparation); USES (Uses)

MELLER

(aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

IT 192069-75-3 192069-78-6 192069-80-0 192069-83-3 192069-84-4
 192069-91-3 192069-95-7 192069-96-8 192069-98-0 192069-99-1
 192070-00-1 211114-70-4 211114-71-5 211114-77-1 211114-78-2
 211114-81-7 211114-83-9 211114-84-0 211114-85-1 211114-86-2
 211114-87-3 211114-88-4 211114-89-5 211114-90-8 211115-00-3
 227031-04-1 227031-05-2 227031-06-3 227031-07-4 227031-08-5
 227031-09-6 227031-10-9 227031-11-0 227031-12-1 227031-13-2
 296780-76-2 296780-77-3 296780-78-4 296780-79-5 296780-80-8
 296780-81-9 296780-82-0 296780-83-1 296780-84-2 296780-85-3
 296780-87-5 296780-88-6 296780-89-7 296780-90-0 296780-92-2
 296780-93-3 296780-95-5 296780-96-6 296780-98-8
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

IT 9047-22-7, Cathepsin B 60616-82-2, Cathepsin L 78169-47-8, Aspartyl protease
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

IT 213458-69-6DP, resin-coupled 213458-69-6P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (prepn. and reaction; aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

IT 60456-21-5
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction; aspartyl protease inhibitors for modulating processing of amyloid precursor protein and of .tau. protein and for treating neurodegenerative disorders)

REFERENCE COUNT: 1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L35 ANSWER 5 OF 8 CAPLUS COPYRIGHT 2003 ACS on STN
 ACCESSION NUMBER: 1999:449386 CAPLUS
 DOCUMENT NUMBER: 131:70860
 TITLE: Brain aging assay
 INVENTOR(S): Lynch, Gary S.; Bednarski, Eric; Ribak, Charles E.;
 Gall, Christine M.
 PATENT ASSIGNEE(S): The Regents of the University of California, USA
 SOURCE: PCT Int. Appl., 28 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9934781	A1	19990715	WO 1998-US1140	19980108
W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG				
AU 9862457	A1	19990726	AU 1998-62457	19980108
PRIORITY APPLN. INFO.:			WO 1998-US1140	19980108

MELLER

AB Cultured brain slices are treated with a free radical generator, in the presence of a lysosomal enzyme inhibitor (specifically an inhibitor of two cathepsins). The treated brain slices rapidly develop autofluorescent lipofuscin granules - a universal feature of brain aging. Other correlates of the aged brain are also induced by this treatment, thereby providing an *in vitro* model for (1) the study of brain aging; (2) assessment of anti-brain aging drugs; and (3) therapeutics directed at the clin. condition referred to as **neuronal ceroid-lipofuscinosis**.

IT 71732-53-1
 RL: ANT (Analyte); ANST (Analytical study)
 (brain aging assay)

RN 71732-53-1 CAPLUS

CN Carbamic acid, [(1S)-2-[[[(1S)-3-diazo-1-methyl-2-oxopropyl]amino]-2-oxo-1-(phenylmethyl)ethyl]-, phenylmethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IC ICM A61K009-44
 ICS C12N005-00; C12N005-02; C12Q001-00; G01N001-30; G01N033-48

CC 9-16 (Biochemical Methods)

ST brain aging assay

IT Aging, animal
 Animal tissue culture
 Brain
 Culture media
 Cytoplasm
 Dendrite (neuron)
 Drugs
 Electron microscopes
 Gamma ray
 Hypoxia, animal
 Lysosome
 Mammal (Mammalia)
 Neuroglia
 Neuronal ceroid Lipofuscinosis
 Oxidizing agents
 Reducing agents
 UV radiation
 (brain aging assay)

IT Lipofuscins
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (brain aging assay)

IT Radicals, biological studies
 RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
 (brain aging assay)

IT Salts, biological studies
 RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
 (brain aging assay)

IT Nerve
 (cell body; brain aging assay)

IT Organelle
 (granule; brain aging assay)

IT Enzymes, biological studies
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (inhibitors; brain aging assay)

IT Nerve
 (neuron; brain aging assay)

IT Amyloid
 RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
 (Uses)
 (.beta.-; brain aging assay)

IT 71732-53-1
 RL: ANT (Analyte); ANST (Analytical study)
 (brain aging assay)

IT 9047-22-7, Cathepsin b 60616-82-2, Cathepsin l
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (brain aging assay)

IT 58-27-5, Menadione 80-15-9, Cumenehydroperoxide 475-38-7,
 Naphthazarine 4685-14-7, Paraquat 7722-84-1, Hydrogen peroxide,
 biological studies 9001-37-0, Glucose oxidase 9001-92-7, Protease
 9002-17-9, Xanthine oxidase 11062-77-4, Superoxide
 RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
 (Uses)
 (brain aging assay)

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L35 ANSWER 6 OF 8 CAPLUS COPYRIGHT 2003 ACS on STN
 ACCESSION NUMBER: 1998:687413 CAPLUS
 DOCUMENT NUMBER: 130:90677
 TITLE: Experimentally induced lysosomal dysfunction disrupts processing of hypothalamic releasing factors
 AUTHOR(S): Bi, Xiaoning; Pinkstaff, Jason; Nguyen, Kelly; Gall, Christine M.; Lynch, Gary
 CORPORATE SOURCE: Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697-3800, USA
 SOURCE: Journal of Comparative Neurology (1998), 401(3), 382-394
 CODEN: JCNEAM; ISSN: 0021-9967
 PUBLISHER: Wiley-Liss, Inc.
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Previous studies have shown that exptl. induced lysosomal dysfunction elicits various features of aging in the cortical telencephalon. The present study used cultured slices to test if: (1) it causes similar changes in the hypothalamus, and/or (2) modifies the processing of two releasing factors important to aging. A 2-day exposure to N-CBZ-L-phenylalanyl-L-alanine-diazomethylketone (ZPAD), a selective inhibitor of cathepsins B and L, triggered a pronounced increase in the nos. of lysosomes in the ventromedial and dorsomedial nuclei, and in lateral hypothalamus. Continued incubation with the inhibitor for 3-12 days resulted in the spread of endosomes/lysosomes into dendrites and, in the lateral hypothalamus, the formation of massive, lysosome-filled expansions of neuronal processes (meganeurites). These effects did not occur in the arcuate nucleus, making it the first region so far examined, in which lysosomal proliferation is not initiated by hydrolase inhibitors. Despite this, a dense plexus of axons and terminals in the median eminence was partially depleted of growth hormone releasing hormone (GHRH) within 48 h after addn. of ZPAD. Moreover, the inhibitor caused axonal GHRH to become collected into large puncta, an effect highly suggestive of a partial failure in axonal transport. GHRH mRNA levels were not greatly affected by 6 days of ZPAD exposure, indicating that reduced expression did not play a major role in the peptide changes seen at 48 h. Similar but less pronounced immunocytochem. changes were recorded for the somatostatin system in the arcuate and periventricular nucleus. It is concluded that lysosome dysfunction: (1) has different consequences for the arcuate nucleus than other brain regions, and (2) disrupts transport of hypothalamic releasing factors. The potential significance of the results to endocrine senescence is discussed.

IT 71732-53-1
 RL: ADV (Adverse effect, including toxicity); BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)

(lysosomal dysfunction induction disrupts hypothalamic releasing factor processing)

RN 71732-53-1 CAPLUS

CN Carbamic acid, [(1S)-2-[[[(1S)-3-diazo-1-methyl-2-oxopropyl]amino]-2-oxo-1-(phenylmethyl)ethyl]-, phenylmethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CC 2-5 (Mammalian Hormones)

ST lysosome dysfunction hypothalamic releasing factor processing

IT Organelle

(endocytic vesicle; lysosomal dysfunction induction disrupts hypothalamic releasing factor processing)

IT Brain

(hypothalamus, arcuate nucleus; lysosomal dysfunction induction disrupts hypothalamic releasing factor processing)

IT Brain

(hypothalamus, median eminence; lysosomal dysfunction induction disrupts hypothalamic releasing factor processing)

IT Brain

(hypothalamus; lysosomal dysfunction induction disrupts hypothalamic releasing factor processing)

IT Aging, animal

Biological transport

Dendrite (neuron)

Lysosome

(lysosomal dysfunction induction disrupts hypothalamic releasing factor processing)

IT 71732-53-1

RL: ADV (Adverse effect, including toxicity); BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(lysosomal dysfunction induction disrupts hypothalamic releasing factor processing)

IT 9034-39-3, Somatotropin 51110-01-1, Somatostatin-14

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(lysosomal dysfunction induction disrupts hypothalamic releasing factor processing)

REFERENCE COUNT: 52 THERE ARE 52 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L35 ANSWER 7 OF 8 CAPLUS COPYRIGHT 2003 ACS on STN

ACCESSION NUMBER: 1995:195118 CAPLUS

DOCUMENT NUMBER: 122:3257

TITLE: In vitro embryotoxicity of the cysteine proteinase inhibitors benzylloxycarbonyl-phenylalanine-alanine-diazomethane (Z-Phe-Ala-CHN₂) and benzylloxycarbonyl-phenylalanine-phenylalanine-diazomethane (Z-Phe-Phe-CHN₂)

AUTHOR(S): Ambroso, Jeffrey L.; Harris, Craig

CORPORATE SOURCE: Department Environmental Industrial Health, Univ. Michigan, Ann Arbor, MI, 48109-2029, USA

SOURCE: Teratology (1994), 50(3), 214-28
CODEN: TJADAB; ISSN: 0040-3709

PUBLISHER: Wiley-Liss

DOCUMENT TYPE: Journal

LANGUAGE: English

MELLER

AB This study makes use of whole embryo culture to investigate the potential embryotoxicity of Z-Phe-Ala-CHN2 and Z-Phe-Phe-CHN2, two low mol. wt., active site-directed and irreversible inhibitors of the lysosomal cysteine proteinases. Peptidyl diazomethanes are the most specific inhibitors available for lysosomal cysteine proteinases and can be hypothesized to interrupt visceral yolk sac(VYS)-mediated nutrition during early organogenesis. When added directly to the culture medium of gestational day 10-11 rat conceptuses, both compds. inhibited lysosomal cysteine proteinase activity in the VYS in a concn.-dependent fashion that correlated with the degree of embryotoxicity obstd. Z-Phe-Ala-CHN2 and Z-Phe-Phe-CHN2 were also found to increase the protein content of the VYS, even though all other conceptual growth parameters decreased. This effect was dependent on the serum content of the culture medium and the exposure time. Histol. examn. of Z-Phe-Ala-CHN2-treated conceptuses revealed a dramatic increase in the size and no. of vacuoles in the VYS endoderm epithelium, suggestive of inhibition of VYS proteolysis. At the same time, excessive cell death was obstd. throughout the neuroepithelium and in specific regions of the mesenchyme of the corresponding embryos. This cell death manifested morphol. characteristics of apoptosis and could be detected by supravital staining with Nile Blue Sulfate. These findings provide addnl. evidence in support of the hypothesis that lysosomal cysteine proteinases play a crit. role in VYS-mediated histiotrophic nutrition and suggest that peptidyl diazomethanes may be useful in further characterization of these enzymes. The possible direct effects of these inhibitors on embryonic cells and the relationships between interruption of VYS-mediated nutritional processes and embryonic cell death are discussed.

IT 71732-53-1

RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
(cysteine proteinase inhibitors embryotoxicity)

RN 71732-53-1 CAPLUS

CN Carbamic acid, [(1S)-2-[[[(1S)-3-diazo-1-methyl-2-oxopropyl]amino]-2-oxo-1-(phenylmethyl)ethyl]-, phenylmethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CC 4-6 (Toxicology)

ST embryotoxicity cysteine proteinase inhibitor; benzyloxycarbonyl phenylalanine alanine diazomethane embryotoxicity

IT Apoptosis

Embryo

Lysosome

Teratogenesis

Teratogens

(cysteine proteinase inhibitors embryotoxicity)

IT Deoxyribonucleic acids

Proteins, biological studies

RL: BOC (Biological occurrence); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence)

(cysteine proteinase inhibitors embryotoxicity)

IT Death

(cell, cysteine proteinase inhibitors embryotoxicity)

IT 65178-14-5 71732-53-1

RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
(cysteine proteinase inhibitors embryotoxicity)

IT 9047-22-7, Cathepsin B 37353-41-6, Cysteine proteinase 60616-82-2, Cathepsin L

MELLER

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (cysteine proteinase inhibitors embryotoxicity)

L35 ANSWER 8 OF 8 CAPLUS COPYRIGHT 2003 ACS on STN
 ACCESSION NUMBER: 1991:487955 CAPLUS
 DOCUMENT NUMBER: 115:87955
 TITLE: Alzheimer's disease amyloid .beta.-clipping enzyme (APP secretase): identification, purification, and characterization of the enzyme
 AUTHOR(S): Tagawa, kazuhiko'; Kunishita, Tatsuhide; Maruyama, Kei; Yoshikawa, Kazuaki; Kominami, Eiki; Tsuchiya, Takahide; Suzuki, Koichi; Tabira, Takeshi; Sugita, Hideo; Ishiura, Shoichi
 CORPORATE SOURCE: Natl. Inst. Neuro sci., Kodaira, Japan
 SOURCE: Biochemical and Biophysical Research Communications (1991), 177(1), 377-87
 CODEN: BBRCA9; ISSN: 0006-291X
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Alzheimer's disease (AD) is the most frequent cause of dementia, although no genetic abnormality has been identified. Recent studies have elucidated the mol. defect in AD, including the abnormal deposition of amyloid .beta. peptide (.beta./A4) in senile plaques of affected individuals. Normal brain contains the enzyme, APP secretase, which cleaves inside the .beta./A4 portion of the precursor protein (APP); abnormal processing of APP occurs in AD brain. Until now, no evidence has been provided that APP secretase is an intracellular proteinase. Two synthetic substrates of APP secretase were prep'd., both of which contain the cleavage point and are much more sensitive than substrates previously available to identify APP secretase. Using these substrates, an intracellular proteinase was found that has APP secretase activity. This proteinase has been identified as cathepsin B.
 IT 71732-53-1
 RL: BIOL (Biological study)
 (cathepsin B inhibition by, kinetics of)
 RN 71732-53-1 CAPLUS
 CN Carbamic acid, [(1S)-2-[[[(1S)-3-diazo-1-methyl-2-oxopropyl]amino]-2-oxo-1-(phenylmethyl)ethyl]-, phenylmethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CC 7-2 (Enzymes)
 Section cross-reference(s): 14
 ST amyloid precursor protein secretase cathepsin B; clipping enzyme amyloid Alzheimer; Alzheimer amyloid beta clipping enzyme
 IT Kinetics, enzymic
 (of inhibition, of cathepsin B)
 IT Glycoproteins, specific or class
 RL: BIOL (Biological study)
 (A4, amyloid, pre-, reaction of, with cathepsin B, Alzheimer's disease of human in relation to)
 IT 9047-22-7, Cathepsin B
 RL: BIOL (Biological study)
 (amyloid A4 precursor protein processing by, Alzheimer's disease of human in relation to)
 IT 71732-53-1

MELLER

RL: BIOL (Biological study)
(cathepsin B inhibition by, kinetics of)