

Mathematik 3

Fouriertransformation Wintersemester 2013/14

Fouriertransformation

Fouriertransformation

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \omega t} dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \cdot e^{j \omega t} d\omega$$

Schreibweise

$$F(\omega) = \mathcal{F}(f(t))$$
 $F(\omega) \leftarrow f(t)$

Konvergenz

$$\int_{-\infty}^{\infty} |f(t)|^2 dt < \infty$$

$$f(t)$$
 gerade

$$F(\omega) = 2 \cdot \int_{0}^{\infty} f(t) \cdot \cos(\omega t) dt$$

$$f(t)$$
 ungerade

$$F(\omega) = -2j \cdot \int_{0}^{\infty} f(t) \cdot \sin(\omega t) dt$$

Rechteck

Zeitfunktion

$$f(t) = \begin{cases} 1 & \text{für } -a \le t \le a \\ 0 & \text{sonst} \end{cases}$$

Fouriertransformation

$$F(\omega) = \frac{2}{\omega} \sin(\omega \, a)$$

Rechenregeln der Fouriertransformation

	Originalbereich	Bildbereich
Linearität	$c_1 \cdot f_1(t) + c_2 \cdot f_2(t)$	$c_1 \cdot F_1(\omega) + c_2 \cdot F_2(\omega)$
Ähnlichkeitssatz	$f(a t)$ $(a \neq 0, reell)$	$\frac{1}{ a } \cdot F\left(\frac{\omega}{a}\right)$
Verschiebung	$f(t-t_0)$ $(t_0 \text{ reell})$	$e^{-j\omega t_0} \cdot F(\omega)$
Dämpfung	$e^{j\omega_0t}\cdot f(t)$	$F(\omega-\omega_0)$
Faltung	$f_1(t) * f_2(t) =$ $= \int_{-\infty}^{\infty} f_1(u) \cdot f_2(t-u) du$	$F_1(\omega) \cdot F_2(\omega)$
Multiplikation	$f_1(t) \cdot f_2(t)$	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} F_1(v) \cdot F_2(\omega - v) dv$
Vertauschungssatz	$f(t) \leadsto F(\omega) \Rightarrow$	$F(t) \leadsto 2\pi \cdot f(-\omega)$

Rechenregeln der Fouriertransformation

- → Mit diesen Regeln kann die Fouriertransformation zur Lösung von Differentialgleichungen verwendet werden.
- → In der Technik wird hierfür jedoch meist die Laplacetransformation eingesetzt

	Originalbereich	Bildbereich
Ableitung	$f'(t)$ $f''(t)$ \vdots $f^{n}(t)$	$(j\omega) \cdot F(\omega)$ $(j\omega)^{2} \cdot F(\omega) = -\omega^{2} \cdot F(\omega)$ \vdots $(j\omega)^{n} \cdot F(\omega)$
Integration	$\int_{-\infty}^{t} f(u)du$	$\frac{1}{j\omega} \cdot F(\omega)$

Fouriertransformation

Original funktion $f(t)$	Bildfunktion $F(\boldsymbol{\omega})$
$\sigma(t-a) - \sigma(t-b) = \begin{cases} 1 & a \le t \le b \\ 0 & \text{sonst} \end{cases}$	$j \cdot \frac{e^{j b \omega} - e^{-j a \omega}}{\omega}$
$\sigma(t+a) - \sigma(t-a) = \begin{cases} 1 & t \le a \\ 0 & \text{sonst} \end{cases}$	$\frac{2 \cdot \sin(a \omega)}{\omega}$
$\sigma(t+a) - \sigma(t) = \begin{cases} 1 & -a \le t \le 0 \\ 0 & \text{sonst} \end{cases}$	$j \cdot \frac{1 - e^{j \cdot a \cdot \omega}}{\omega}$
$\sigma(t) - \sigma(t - a) = \begin{cases} 1 & 0 \le t \le a \\ 0 & \text{sonst} \end{cases}$	$j \cdot \frac{e^{-j a \omega} - 1}{\omega}$
$\begin{cases} a - t & t \le a \\ 0 & \text{sonst} \end{cases}$	$\frac{2\cdot(1-\cos(\alpha\omega))}{\omega^2}$
$\frac{1}{a^2 + t^2}$	$\frac{\pi}{a} \cdot e^{-a \omega }$
$\frac{t}{a^2 + t^2}$	$\begin{cases} j\pi \cdot e^{-a \omega } & \omega < 0 \\ 0 & \omega = 0 \\ -j\pi \cdot e^{-a \omega } & \omega > 0 \end{cases}$

Fouriertransformation

Original funktion $f(t)$	Bildfunktion $F(\omega)$
$e^{-a t }$	$\frac{2 a}{a^2 + \omega^2}$ 1
$e^{-at}\cdot\sigma(t)$	$\frac{1}{a+j \omega}$
$t \cdot e^{-a t} \cdot \sigma(t)$	$\frac{1}{(a+j\;\omega)^2}$
$e^{-a t^2}$	$\sqrt{\frac{\pi}{a}} \cdot e^{-\frac{\omega^2}{4a}}$
$\frac{\sin(a\ t)}{t}$	$\begin{cases} \pi & \omega < a \\ \pi/2 & \omega = a \\ 0 & \omega > a \end{cases}$
$e^{-at} \cdot \sin(bt) \cdot \sigma(t)$	$\frac{b}{(a+j\;\omega)^2+b^2}$
$e^{-at} \cdot \cos(bt) \cdot \sigma(t)$	$\frac{a+j\omega}{(a+j\omega)^2+b^2}$

Verallgemeinerte Fouriertransformation

Original funktion $f(t)$	Bildfunktion $F(oldsymbol{\omega})$
$\delta(t)$	1
$\delta(t+a)$	$e^{j a \omega}$
$\delta(t-a)$	$e^{-j a \omega}$
e ^{j a t}	$2\pi \cdot \delta(\omega - a)$
$e^{-j a t}$	$2\pi \cdot \delta(\omega + a)$
$\cos(a t)$	$\pi[\delta(\omega+a)+\delta(\omega-a)]$
$\sin(a t)$	$\int \pi[\delta(\omega+a)-\delta(\omega-a)]$
$\delta(t+a) + \delta(t-a)$	$2 \cdot \cos(a \omega)$
$\delta(t+a) - \delta(t-a)$	$2j \cdot sin(a \omega)$

Zeitbeschränktes Cosinus-Signal

$$y(t) = \cos(1 \cdot t); -2.5\pi \le t \le 2.5\pi$$

$$y(t) = \cos(1 \cdot t) + \cos(2 \cdot t); -2.5\pi \le t \le 2.5\pi$$

$$y(t) = \cos(1 \cdot t) + \cos(1.2 \cdot t); -2.5\pi \le t \le 2.5\pi$$

Die beiden Peaks "verschmelzen"

$$y(t) = \cos(1 \cdot t) + \cos(1.2 \cdot t); \quad -10\pi \le t \le 10\pi$$

Erst mit einem größeren Fenster sind beide Frequenzen erkennbar

 $y(t) = \cos(1 \cdot t) + \cos(2 \cdot t)$ mit Hanning-Fenster $[-2,5\pi;2,5\pi]$

Glatterer Verlauf

 $y(t) = \cos(1 \cdot t) + \cos(1.2 \cdot t)$ mit Hanning-Fenster $[-2.5\pi; 2.5\pi]$

Die beiden Peaks "verschmelzen" auch mit dem Hanning-Fenster

 $y(t) = \cos(1 \cdot t) + \cos(1.2 \cdot t)$ mit Hanning-Fenster $[-15\pi; 15\pi]$

Erst mit einem größeren Fenster sind beide Frequenzen erkennbar

Vergleich von Fensterfunktionen

Lösung von Differentialgleichungen im Bildbereich

Systembeschreibung mit Fouriertransformation

Frequenzgang: Übertragung Sinusförmiger Signale

Eingangsgröße

$$u(t) = u_0 \cdot \sin(\omega_0 t)$$

Ausgangsgröße

$$y(t) = |G(\omega_0)| \cdot u_0 \cdot \sin(\omega_0 t + \varphi(\omega_0))|$$

- Selbe Frequenz
- Amplitude multipliziert mit $|G(\omega_0)|$
- Phasenverschiebung $\varphi(\omega_0) = \arg(G(\omega_0))$

"Einheit" Dezibel

Verhältnis zweier Leistungs- / Energiegrößen

$$L = \log\left(\frac{P_1}{P_2}\right) B = 10 \cdot \log\left(\frac{P_1}{P_2}\right) dB$$

Feldgrößen

 \rightarrow Leistungsgrößen hängen von den Feldgrößen quadratisch ab, z. B. $P = R \cdot I^2$

$$L = \log\left(\frac{F_1^2}{F_2^2}\right) \mathbf{B} = \log\left(\left(\frac{F_1}{F_2}\right)^2\right) \mathbf{B} = 2 \cdot \log\left(\frac{F_1}{F_2}\right) \mathbf{B} = 20 \cdot \log\left(\frac{F_1}{F_2}\right) \mathbf{dB}$$

 \rightarrow Bezug auf feste Basis $F_2 = 1$

$$L = 20 \cdot \log(F_1) dB$$

Betrag des Frequenzgangs in Dezibel

$$|G(\omega)|_{dB} = 20 \cdot \log|G(\omega)|$$

Beispiel: Frequenzgang Tiefpass erster Ordnung

Beispiel: Frequenzgang Tiefpass erster Ordnung

$$G(\omega) = \frac{1}{1+j\ \omega}$$