



# 机器学习

第二章: 机器学习基础知识

黄斐然

# 目录

- 1 机器学习的数据
- 2 机器学习的主要任务
- 3 机器学习的学习方式

● 著名的鸢尾花数据集: UC Irvine的机器学习库



#### **Iris Data Set**

Download: Data Folder, Data Set Description

Abstract: Famous database: from Fisher, 1936



| Data Set Characteristics:  | Multivariate   | Number of Instances:  | 150 | Area:               | Life       |
|----------------------------|----------------|-----------------------|-----|---------------------|------------|
| Attribute Characteristics: | Real           | Number of Attributes: | 4   | Date Donated        | 1988-07-01 |
| Associated Tasks:          | Classification | Missing Values?       | No  | Number of Web Hits: | 3858259    |

Source:

Creator:

R.A. Fisher

Donor:

Michael Marshall (MARSHALL%PLU '@' io.arc.nasa.gov)

https://archive.ics.uci.edu/ml/datasets/iris



#### 1

### 机器学习的数据

● 著名的鸢尾花数据集: Sklearn

#### The Iris Dataset

This data sets consists of 3 different types of irises' (Setosa, Versicolour, and Virginica) petal and sepal length, stored in a 150x4 numpy.ndarray

The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width.

The below plot uses the first two features. See here for more information on this dataset.



#### Examples using sklearn.datasets.load\_iris Release Highlights for Release Highlights for Plot classification Plot Hierarchical Clusterscikit-learn 0.24 scikit-learn 0.22 probability ing Dendrogram K-means Clustering The Iris Dataset Plot the decision surface Understanding the deof a decision tree on the cision tree structure iris dataset PCA example with Iris Incremental PCA Comparison of LDA and Factor Analysis (with rotation) to visualize Data-set PCA 2D projection of Iris patterns

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load\_iris.html#sklearn.datasets.load\_iris

#### 1

#### 机器学习的数据

● 著名的鸢尾花数据集: UC Irvine的机器学习库

from sklearn.datasets import load\_iris

```
iris = load_iris()
iris
```

| Classes           | 3              |
|-------------------|----------------|
| Samples per class | 50             |
| Samples total     | 150            |
| Dimensionality    | 4              |
| Features          | real, positive |
|                   |                |

| sepal length: | 4.3 | 7.9 | 5.84 |
|---------------|-----|-----|------|
| sepal width:  | 2.0 | 4.4 | 3.05 |
| petal length: | 1.0 | 6.9 | 3.76 |
| petal width:  | 0.1 | 2.5 | 1.20 |





Iris setosa



Iris versicolor



Iris virginica

#### ■ 著名的鸢尾花数据

|     | sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) | label |
|-----|-------------------|------------------|-------------------|------------------|-------|
| 126 | 6.2               | 2.8              | 4.8               | 1.8              | 2     |
| 60  | 5.0               | 2.0              | 3.5               | 1.0              | 1     |
| 31  | 5.4               | 3.4              | 1.5               | 0.4              | 0     |
| 87  | 6.3               | 2.3              | 4.4               | 1.3              | 1     |
| 125 | 7.2               | 3.2              | 6.0               | 1.8              | 2     |
| 42  | 4.4               | 3.2              | 1.3               | 0.2              | 0     |
| 131 | 7.9               | 3.8              | 6.4               | 2.0              | 2     |
| 22  | 4.6               | 3.6              | 1.0               | 0.2              | 0     |

#### ■ 著名的鸢尾花数据集

- 数据集:数据整体叫数据集(dataset)。
- <mark>样本</mark>:每一行数据可以称为一个样本 (sample),或一条数据。
- 特征:除最后一列,每一列表示数据的一个特征 (feature),数据的特征的向量的集合可用X表示。
- <mark>标签</mark>: 最后一列称为标签 (label) , 数据标签集可以用Y表示。

|   |    | sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) | lá | abel |
|---|----|-------------------|------------------|-------------------|------------------|----|------|
| 1 | 26 | 6.2               | 2.8              | 4.8               | 1.8              | 1  | 2    |
|   | 60 | 5.0               | 2.0              | 3.5               | 1.0              |    | 1    |
|   | 31 | 5.4               | 3.4              | 1.5               | 0.4              |    | 0    |
|   | 87 | 6.3               | 2.3              | 4.4               | 1.3              |    | 1    |
| 1 | 25 | 7.2               | 3.2              | 6.0               | 1.8              |    | 2    |
|   | 42 | 4.4               | 3.2              | 1.3               | 0.2              |    | 0    |
| 1 | 31 | 7.9               | 3.8              | 6.4               | 2.0              |    | 2    |
|   | 22 | 4.6               | 3.6              | 1.0               | 0.2              |    | 0    |
|   |    |                   | X                |                   |                  |    | \/   |

#### ■ 著名的鸢尾花数据集

- 特征:除最后一列,每一 列表示数据的一个特征。
- 特征向量:每一条样本的 特征组成的向量称为特征 向量。
- 特征空间:所有特征向量张成的空间称为特征空间。

|     | sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) | label          |
|-----|-------------------|------------------|-------------------|------------------|----------------|
| 126 | 6.2               | 2.8              | 4.8               | 1.8              | 2              |
| 60  | 5.0               | 2.0              | 3.5               | 1.0              | 1              |
| 31  | 5.4               | 3.4              | 1.5               | 0.4              | 0              |
| 87  | 6.3               | 2.3              | 4.4               | 1.3              | 1              |
| 125 | 7.2               | 3.2              | 6.0               | 1.8              | 2              |
| 42  | 4.4               | 3.2              | 1.3               | 0.2              | 0              |
| 131 | 7.9               | 3.8              | 6.4               | 2.0              | 2              |
| 22  | 4.6               | 3.6              | 1.0               | 0.2              | 0              |
|     |                   | X <sub>i</sub>   |                   |                  | y <sub>i</sub> |



只考虑花萼特征和前 两类鸢尾花所形成的 征空间

#### ■ 数据集分类

- 训练数据(training data): 在训练过程中使用的数据称为训练数据,每一个样例称为训练样本,全体训练样本集合称为训练集。
- 测试数据(testing data):用于测试学习得到模型的数据称为测试数据,每一个样例称为测试样本,全体测试样本集合称为测试集。
- 验证数据(Validation data)是训练模型时所保留的数据样本,我们在调整模型超参数时,需要根据它来对模型的能力进行评估。



■ 分类任务就是在标签指导下对特征空间进行切分



■ 分类任务就是在标签指导下对特征空间进行切分





#### ■ 特征可以很抽象

- 图像,每一个像素点都是特征
- 28\*28总共784、个特征
- 如果是彩色图·像,特征更多。

# 目录

- 1 机器学习的数据
- 2 机器学习的主要任务
- 3 机器学习的学习方式

■ 基本任务

分类 回归

■ 分类任务



■ 分类任务

#### MNIST数字识别数据集

- 二分类
  - 判断垃圾邮件
  - 判断信用卡是否盗刷
  - 判断股票涨还是跌
  - 检测是否是网络入侵



- ■多分类
  - 数字识别
  - 图像识别
  - 信用卡风险评级

- 多分类
  - 数字识别
  - 图像识别
  - 信用卡风险评级
  - 很多复杂的任务也能转为多分类任务



#### ■ 多分类

- 有一些算法只支持完成二分类任务
  - SVM、感知机、逻辑回归
- 但是多分类任务可以转化为多个二分类任务
- 有一些算法可以直接支持多分类任务
  - 朴素贝叶斯、决策树



- 多标签分类
  - 一个样本可以归类成多种类别,不仅限于一个。





#### ■回归

| 装修 | 面积  | 销售价格(万元) |
|----|-----|----------|
| 0  | 123 | 250      |
| 20 | 150 | 320      |
| 17 | 87  | 160      |
| 8  | 102 | 220      |

#### ■回归

- 需要预测的是一个连续的值,而非离散的 类别。
  - 房屋价格
  - 股票股价
  - 营业额预测
  - 学生成绩
- 回归和分类在某种条件下可以相互转化

| 装修 | 面积  | 销售价格(万元) |
|----|-----|----------|
| 0  | 123 | 250      |
| 20 | 150 | 320      |
| 17 | 87  | 160      |
| 8  | 102 | 220      |

■ 什么是机器学习:

#### 数据集

#### 西瓜数据集

| 编号     色泽     根蒂     敲声     好瓜       1     青绿     蜷缩     浊响     是       2     乌黑     蜷缩     浊响     是       3     青绿     硬挺     清脆     否 |                |    |    |    |    |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------|----|----|----|----|
| <ul><li>2 乌黑 蜷缩 浊响 是</li><li>3 青绿 硬挺 清脆 否</li></ul>                                                                                     | 编号             | 色泽 | 根蒂 | 敲声 | 好瓜 |
| 4 与黑 相蛭 汎阀 百                                                                                                                            | $\overline{2}$ | 乌黑 | 蜷缩 | 浊响 | 是  |

| 装修 | 面积  | 销售价格(万<br>元) |
|----|-----|--------------|
| 0  | 123 | 250          |
| 20 | 150 | 320          |
| 17 | 87  | 160          |
| 8  | 102 | 220          |

#### 归纳学习

模型

 $y=f(\cdot)$ 

#### 应用模型

#### 新样本



y=f(·)



y的结果

# 目录

- 1 机器学习的数据
- 2 机器学习的主要任务
- 3 机器学习的学习方式

- 按照学习方式的不同,机器学习可分为很多的类型:
  - 监督学习
  - 无监督学习
  - 强化学习
  - 半监督学习

#### ■ 监督学习:

- 利用一组已知标注的样本调整模型的参数,使其达到所要求性能的过程,也 称为监督训练。
- 包括分类和回归。

#### ■ 监督学习:

- 图像已经拥有了标定信息
- 银行已经积累了一定的客户信息和他们信用卡的信用情况
- 医院已经积累了一定的病人信息和他们最终确诊是否患病的情况
- 市场积累了房屋的基本信息和最终成交的金额

- 这门课程的大部分算法属于监督学习:
  - K近邻算法
  - 线性回归
  - 逻辑回归
  - 朴素贝叶斯
  - 支持向量机
  - 决策树
  - 随机森林

- 无监督学习:
  - 给机器的训练数据没有任何"标记"或者"答案"



#### ■ 无监督学习:

● 聚类分析: 让机器通过数据的特征自动去判断, 哪些数据比较像, 归到一类





#### ■ 无监督学习:

- 数据降维: 机器学习领域中的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。
- 主成分分析算法 (PCA)
- PCA是一种常见的数据分析方式, 常用于高维数据的降维,可用于提 取数据的主要特征分量。



#### ■ 无监督学习:

- 数据降维: 机器学习领域中的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。
- t-分布邻域嵌入算法 (T-SNE)
- T-SNE是一种降维技术,用于在二 维或三维的低维空间中表示高维数 据集,从而使其可视化。



#### ■ 半监督学习:

- 半监督学习是监督学习与无监督学习相结合的一种学习方法。半监督学习中一部 分数据有"标记"或者"答案",另一部分数据没有标记。
- 在很多实际问题中,只有少量的带有标记的数据,因为对数据进行标记的代价有时很高,比如在生物学中,对某种蛋白质的结构分析或者功能鉴定,可能会花上生物学家很多年的工作,而大量的未标记的数据却很容易得到。
- Self-training
- Active-learning

#### ■ 强化学习:

● 根据周围环境的情况,采取行动,根据采取行动的结果,学习行动方式。



#### 3

### 机器学习的学习方式

#### ■ 强化学习:

• 根据周围环境的情况,采取行动,根据采取行动的结果,学习行动方式。





- 按照学习方式的不同,机器学习可分为很多的类型:
  - 监督学习
  - 无监督学习
  - 强化学习
  - 半监督学习

- 机器学习还可以分为以下的类型:
  - 在线学习 (online-learning)
  - 批量学习 (batch-learning) , 也可成为离线学习。

#### ■ 批量学习:

● 一次性批量输入给学习算法,可以被形象的称为填鸭式学习。



#### ■ 批量学习:

• 优点: 简单

● 问题:如何适应环境变化?

● 解决方案: 定时重新批量学习

缺点:每次重新批量学习,运算量巨大,在某些环境变化非常快的情况下, 甚至不可能的。

#### ■ 在线学习:

● 按照顺序,循序的学习,不断的去修正模型,进行优化。



(b) Online Machine Learning

#### ■ 在线学习:

- 优点:
  - (1) 容易执行
  - (2) 对于大规模和困难模式分类问题它提供有效解。
  - (3) 随机性使得不容易陷入局部极值点
  - (4) 存储量少得多
- 缺点:
  - 学习速度慢

- 机器学习还可以分为以下的类型:
  - 参数学习
  - 非参数学习

#### ■ 参数学习:

- 参数学习算法是一类有固定数目参数,以用来进行数据拟合的算法。线性回归即使参数学习算法的一个例子。
- 一旦学习到了参数,就不再需要原有数据。



#### 3

#### 机器学习的学习方式

#### ■ 非参数学习:

- 在预测新样本值时候每次都会依赖数据集得到新的参数值,也就是说每次预测新样本都会依赖训练数据集合,所以每次得到的参数值是不确定的。
- 代表性算法为K近邻算法。



### 问题?

