CRC - Error Detection & Error Correction

Name – Sangita Ghosh

Stream - CSE

Year - 3rd

Semester - 6th

Roll No. - 16800117029

Subject - Computer Network Assignment

Data Link Layer

Definition of Error:

Networks must be able to transform data from once device to another with complete accuracy. While the transmission data can be corrupted, for reliable communication errors must be detected and corrected.

Types of Errors

Redundancy

 To detect or correct errors, redundant bits of data must be added

Detection/Correction Techniques

- Parity Checks
- Checksumming methods
- Cyclic redundancy checks

Parity Checks

- Parity Bit (PB)
- One additional bit per character
- Even parity Odd Parity

How many bit errors can PB detect?

10001110 --- 10101110 => error!

10001110 --- □ 10100110 => No error detected !!!

Conclusion – 1 PB can only detect an odd number of errors!

Single Bit Error Correction

Parity for each character(byte=line) + parity for each column (set of data bytes sent)

Example - Single Bit Error Correction

no errors

Hamming - Correctable single bit error

Cyclic Redundancy Checksum (CRC)

- •CRC error detection method treats packet of data to be transmitted as a large polynomial
- Transmitter
 - •Using polynomial arithmetic, divides polynomial by a given generating polynomial
- Quotient is discarded
 - •Remainder is "attached" to the end of message

Cyclic Redundancy Checksum (continued)

- •Message (with the remainder) is transmitted to the receiver
- •Receiver divides the message and remainder by same generating polynomial
- •If a remainder not equal to zero results □ error during transmission
- •If a remainder of zero results □ error during transmission

CRC Encoder/Decoder

CRC-

Frame : 1101011011

Generator: 10011

Message after 4 zero bits are appended: 110101110110000

Transmitted frame: 11010110111110

Checksums

- A checksum "adds" together "chunks" of data
- The "add" operation may not be normal integer addition
- The chunk size is typically 8, 16, or 32 bits
- We'll discuss:
- Integer addition "checksum"
- One's complement "checksum"
- Fletcher Checksum
- Adler Checksum
- ATN Checksum (AN/466)

Error Correction

- Two methods
 - Retransmission after detecting error
 - □ Forward error correction (FEC)

Number of Redundant Bits

Number of data bits k	Number of redundancy bits	Total bits $k+r$
1	2	3
2	3	5
3	3	6
4	3	7
5	4	9
6	4	10
7	4	11

Hamming Code

- ☐ Simple, powerful FEC
- Widely used in computer memory

error-correcting bits

Redundant Bit Calculation

 r_1 will take care of these bits.

11		9		7		5		3		1
d	d	d	r_8	d	d	d	r_4	d	r_2	r_1

 r_2 will take care of these bits.

11	10			7	6			3	2	
d	d	d	r_8	d	d	d	Γ_4	d	r_2	$r_{\rm l}$

 r_4 will take care of these bits.

 r_8 will take care of these bits.

11	10	9	8							
d	d	d	r_{g}	d	d	d	r_4	d	r_2	r_{l}

Example: Hamming Code

Name – Sangita Ghosh Stream – CSE Year – 3rd Semester – 6th Roll No. – 16800117029 Subject – Computer Network Assignment

THANK YOU