18 In 1977 a fifth quark, named the bottom quark, was discovered by particle physicists. The table shows the particles in the standard model known at that time.

Quarks		Leptons		
up	down	electron	electron neutrino	
strange	charm	muon	muon neutrino	
bottom		tau		

) (i)	Explain why the existence of a sixth quark was predicted.	(3)
		••••••
(ii)	A short time after formation, most quarks combine to make particles known as hadrons. There are two categories of hadron.	
	Name the two categories of hadron.	(1)
		(1)

ticle experiments may direct beams of particles at stationary targets or collide ms of particles travelling in opposite directions.	
Explain the advantage of colliding beams of particles.	
	(4)
In the collider experiment, the protons and anti-protons each had total energy 900 GeV.	
Calculate the maximum kinetic energy, in joules, of a top quark produced in this experiment.	
rest energy of top quark = 173 GeV	
	(3)

SEA

	(iii)	Deduce whether a top quark with kinetic energy 1.2×10^{-7} J is travelling at a	
		relativistic speed.	
		rest mass of top quark = 173GeV/c^2	
			(3)
(c) Mo	ost types of quark form hadrons on a timescale of 10^{-23} s. The top quark does not m hadrons because its lifetime is only 10^{-25} s.	
		student suggests that, if the top quarks travelled at relativistic speeds, it could be ssible for them to form hadrons.	
	As	sess this suggestion.	
			(2)