实验报告:测量介质中的声速

郑志恒 2300012559

2024年11月25日

1 数据记录、处理与分析

1.1 共振频率的测量结果

i	1	2	3	4	5
f(kHz)	38.0	38.1	37.8	37.8	37.8
Upp(V)	5.0	8.0	4.0	6.0	3.0

测得共振频率为 37.8kHz(此时室温 24.1°C)。

1.2 驻波法测量声速

i	1	2	3	4	5	6	7	8	9	10
$x_i(mm)$	22.849	27.517	32.170	36.865	41.419	46.120	50.755	55.399	59.995	64.680
Upp(V)	1.19	0.856	0.696	0.512	0.401	0.365	0.340	0.304	0.268	0.236
$x_i^*(mm)$	64.665	59.980	55.380	50.743	46.118	41.450	36.825	32.149	27.525	22.850
Upp(V)	0.240	0.266	0.298	0.340	0.360	0.408	0.512	0.692	0.844	1.21

1.2.1 逐差法处理数据

(i) 增大时:

$$\Delta x_1 = x_6 - x_1 = 23.271$$

$$\Delta x_2 = x_7 - x_2 = 23.238$$

$$\Delta x_3 = x_8 - x_3 = 23.229$$

$$\Delta x_4 = x_9 - x_4 = 23.130$$

$$\Delta x_5 = x_{10} - x_5 = 23.261$$

有:

$$\Delta \overline{x} = 23.2258$$

测得波长有:

$$\lambda_1 = \frac{2}{5} \Delta \overline{x} = 9.290 mm$$

不确定度有:

$$\sigma_{\Delta \overline{x}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\Delta x_i - \Delta \overline{x})^2} = 0.056$$

坏值检验:

$$3\sigma_{\Lambda \overline{x}} = 0.19$$

故该测量没有坏值。

A 类不确定度:

$$\sigma_a = \frac{\sigma_{\Delta \overline{x}}}{\sqrt{n}} = 0.025mm$$

B 类不确定度:

$$\sigma_b = \frac{e}{\sqrt{3}} = 0.0023mm$$

故总的不确定度为:

$$\sigma = \frac{2}{5}\sqrt{\sigma_a^2 + \sigma_b^2} = 0.01mm$$

(ii) 减小时:

$$\Delta x_1 = x_6 - x_1 = -23.215$$

$$\Delta x_2 = x_7 - x_2 = -23.155$$

$$\Delta x_3 = x_8 - x_3 = -23.231$$

$$\Delta x_4 = x_9 - x_4 = -23.218$$

$$\Delta x_5 = x_{10} - x_5 = -23.268$$

有:

$$\Delta \overline{x} = 23.2174$$

测得波长有:

$$\lambda_2 = \frac{2}{5} \Delta \overline{x} = 9.287mm$$

不确定度有:

$$\sigma_{\Delta \overline{x}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\Delta x_i - \Delta \overline{x})^2} = 0.041$$

坏值检验:

$$3\sigma_{\Delta \overline{x}} = 0.12$$

故该测量没有坏值。

A 类不确定度:

$$\sigma_a = \frac{\sigma_{\Delta \overline{x}}}{\sqrt{n}} = 0.018mm$$

B 类不确定度:

$$\sigma_b = \frac{e}{\sqrt{3}} = 0.0023mm$$

故总的不确定度为:

$$\sigma = \frac{2}{5}\sqrt{\sigma_a^2 + \sigma_b^2} = 0.007mm$$

因此,总的波长测量值和不确定度为:

$$\lambda = (\lambda_1 + \lambda_2)/2 = 9.289mm$$

$$\sigma = 0.012mm$$

波长测量结果表达式为:

$$\lambda = (9.29 \pm 0.012)mm$$

利用公式 $v=\lambda f$ 计算波速得到 v=351.16m/s,假设信号发生器的误差不超过 0.5%,即 $\sigma_f=0.189kHz$,可以得到 $\sigma_v=\sqrt{(f\sigma)^2+(\sigma_f\lambda)^2}=1.813m/s$ 。综上,速度的测量结果为 $v=(351\pm1.8)m/s$

1.3 相位法测量声速

i	1	2	3	4	5	6	7	8	9	10
$x_i(mm)$	25.215	34.470	43.801	53.029	62.325	71.745	81.008	90.250	99.578	108.823
$x_i^*(mm)$	108.529	99.890	90.233	80.820	71.619	62.350	53.025	43.798	34.495	25.210

1.3.1 最小二乘法处理数据

(i) 增大时:

$$\sigma_x = e/\sqrt{3} = 0.0023mm$$

斜率的不确定度:

$$\sigma_k = \sqrt{(\sigma_{ka})^2 + (\sigma_{kb})^2} = 0.0027mm$$

波长的计算结果为:

$$\lambda_1 = 9.290mm$$

(ii) 减小时:

$$\sigma_x = e/\sqrt{3} = 0.0023mm$$

斜率的不确定度:

$$\sigma_k = \sqrt{(\sigma_{ka})^2 + (\sigma_{kb})^2} = 0.0028mm$$

波长的计算结果为:

$$\lambda_1 = 9.258mm$$

综上,最小二乘法的测量结果为: $\lambda = (9.274 \pm 0.0039)mm$

利用公式 $v=\lambda f$ 计算波速得到 v=350.55m/s,假设信号发生器的误差不超过 0.5%,即 $\sigma_f=0.189kHz$,可以得到 $\sigma_v=\sqrt{(f\sigma)^2+(\sigma_f\lambda)^2}=1.759m/s$ 。综上,速度的测量结果为 $v=(351\pm1.8)m/s$

1.4 气体状态法测量声速

t/°C	P/Pa	Н	Ps/Pa	
24.1	1.023×10^{5}	42%	2337.8	

$$v=331.45\sqrt{(1+\frac{t}{T})(1+\frac{0.3192Ps}{P})}=347.02m/s$$

其中:

$$\sigma_t = 0.189k$$

$$\sigma P w = \sigma P = 0.01Pa$$

$$\sigma \approx 0.06m/s$$

因此气体状态法的测量结果为:

$$v = (347.02 \pm 0.06) m/s$$

1.4.1 声波振幅随距离衰减图

图 1: 多项式拟合

前一段用二次函数拟合较为贴近,猜测声波振幅随距离增大而平方反比衰减。

2 实验讨论

误差评价:

- 1. 在极值法测量时,我发现很难找到一个长度使得峰值稳定在最大值。峰峰电压总是处于不停地振动中,因此最大峰峰电压对应的 x 的值也在变化,我认为现有的对误差的评价并没有包含该因素,且我认为这属于随机误差。
- 2. 在气体状态法测量声速时,测量结果与前两种方法测得的值差距过大(即使算上误差),我认为这是由于我使用的温度是手机 APP 记录的当地室外天气,这使得该温度与实验室中的温度存在一定区别。(且该公式本身可能并不严格)
- 3. 在观察李撒如图形时,有时为了使李撒如图形稳定在最精准的直线图形,我需要不断朝不同的方向转动螺母。因此,我认为这其中可能仍旧存在一部分回程差没有被计入。

相位法和极值法的比较:

相位法比极值法更准。误差主要来源于:

- 1. 在简谐运动的测量中,测量最大变化率点往往比测量最大值点更准
- 2. 驻波法(极值法)的测量结果受次峰的影响比较明显,而相位比较法基本不受次峰的影响。次峰的出现可能会使得极值点的位置不准确,从而影响波长的测量和最终的声速计算

频率、距离、声压是否对声速有影响(补充实验):

我选择的是频率对声速的影响,记录了在振幅为 100%,50%,25%,10% 时候对应频率和此时的声速。 实验数据如下:

100%(f=38.542kHz)	1	2	3	4	5	6
$x_i(mm)$	23.693	27.240	31.840	36.405	40.987	45.515
50%(f=38.631kHz)	1	2	3	4	5	6
$x_i(mm)$	22.680	27.215	31.793	36.337	40.950	45.440
25%(f=39.364kHz)	1	2	3	4	5	6
$x_i(mm)$	22.480	26.955	31.422	35.938	40.382	44.847
25%(f=40.174kHz)	1	2	3	4	5	6
$x_i(mm)$	22.318	26.690	31.095	35.490	39.910	44.182

测得不同频率下声速为:

f(kHz)	38.542	38.631	39.364	40.174
v(m/s)	336.43	351.70	352.18	351.34

结论:在非谐振频率下,即不是换能器的谐振频率时,测得的声速相对其他频率来说稍微偏大,这 是由于非谐振频率下次级峰导致的误差较大。

3 思考题

- 1. 为什么不测量单个的 $\lambda/2$ 或 λ , 而要测量多个? 在计算 $\lambda/2$ 或 λ 时, 将所测数据首尾相减, 再除 以 $\lambda/2$ 或 λ 的个数: 这种计算方法与逐差法比较, 哪一种较好?
- 答:测量多个波长是为了减小随机误差。如果将所测数据首尾相减再除以波长个数,相当于只利用了两个测量数据,没有尽可能利用更多的测量数据减小实验误差。逐差法尽可能地利用了更多的测量数据,因此更能减小随机误差,从而减小不确定度,使得测量和计算的结果更准确。
- 2. 用第一种方法, 为什么要在正弦波振幅为极大时进行测量? 用第二种方法, 为什么要在李萨如图形呈直线时进行测量?
- 答:用极值法测量时,波腹出现时变化比较剧烈,此时进行测长,仪器的灵敏度较高,因此选择在振幅达到最大值时进行记录;使用李撒如图形进行测量时,也是因为直线图形的辨识度较高,更容易精准地判断波长达到整数间隔时的对应位置,从而使得测量更加准确。