CMSC452 Elementary Theory of Computation

Michael Li

Contents

1	DFA $(Q, \Sigma, \delta, s, F)$	2
2	NFA $(Q, \Sigma, \Delta, s, F)$	3
3	Regex 3.1 Trex	4
4	Number of States	5
5	Pumping Lemma	6
6	CFG (N, Σ, R, S)	7

1 **DFA** $(Q, \Sigma, \delta, s, F)$

Modulo: $L = \{w \colon \#_a(w) \equiv 3 \pmod{5}\}$

Intersection:
$$L = \{w : \#_a(w) \equiv 3 \pmod{5} \land \#_b(w) \equiv 2 \pmod{3}\}$$

 $Q = \{0, \dots, 4\} \times \{0, \dots, 2\}$
 $\Sigma = \Sigma$
 $\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$
 $s = (0, 0)$
 $F = F_1 \times F_2$

Expanded Notation: Number written in base 10 with mod 7

 $10^0 \pmod{7} = 1$

 $10^1 \pmod{7} = 3$

 $10^2 \pmod{7} = 2$

 $10^3 \pmod{7} = 6$

 $10^4 \pmod{7} = 4$

 $10^5 \pmod{7} = 5$

 $10^6 \pmod{7} = 1$

 $Q = \{0, \dots, 6\} \times \{0, \dots, 5\}$ Keep track of weighted sum (mod 7) and track digit placement (mod 6) $\Sigma = \{0, \dots, 9\}$

 $\delta(a,0), i) = (a+1*i \pmod{7}, 1)$

 $\delta(a,1), i) = (a + 3 * i \pmod{7}, 2)$

 $\delta(a,2), i) = (a + 2 * i \pmod{7}, 3)$

 $\delta(a,3), i) = (a+6*i \pmod{7}, 4)$

 $\delta(a,4),i) = (a+4*i \pmod{7},5)$

 $\delta(a,5), i) = (a + 5 * i \pmod{7}, 0)$

s = (0, 0)

Minimum Number of DFA States Proof: a^n requires n states

By pigeonhole principle, if a DFA requires n-1 states, 2 of the states, $q_i, q_j \ (i \neq j)$, must be the same. Then

$$a^i a^{n-i} = a^n \neq a^j a^{n-i}$$

Thus contradiction is reached and DFA requires at least n states.

DFA Complementation: $L(Q, \Sigma, \delta, s, Q - F)$

DFA Capabilities

- DFA can track $a(w) \pmod{17}$
- DFA cannot track a(w)
- If DFA M exists and L(M) = L, then L is regular

2 NFA $(Q, \Sigma, \Delta, s, F)$

Important: $\Delta \colon Q \times (\Sigma \cup \{e\}) \to 2^Q$ is a set of possible resultant states

Union: $L = \{w \colon \#_a \equiv 0 \pmod{3} \lor w \colon \#_b \equiv 0 \pmod{4} \}$

Not Equivalent Modulo: $a^n : n \not\equiv 0 \pmod{15}$

Equivalent of $L = \{w : \#_a \not\equiv 0 \pmod{3} \lor w : \#_a \not\equiv 0 \pmod{5}\}$

Equivalent Modulo: $a^n : n \equiv 0 \pmod{15}$

This requires 15 states. Proof using pigeon hole principle.

Converting NFA to DFA: result DFA will have $\leq 2^n$ states

1. Remove e-transitions and create a new transition function Δ_1

$$\Delta_1(q,\sigma) = \bigcup_{0 \le i,j \le n} \Delta(q,e^i \sigma e^j)$$

2. Define DFA that recognizes NFA $M(Q, \Sigma, \Delta_1, s, F)$

DFA $(2^Q, \Sigma, \delta, \{s\}, F')$ will keep track of the **set of states** the NFA could be in

$$\delta \colon 2^Q \times \Sigma = 2^Q$$

$$\delta(A,\sigma) = \bigcup_{q \in A} \Delta_1(q,\sigma)$$

$$F' = \{A \colon A \cap F \neq \emptyset\}$$

Complement:

Complement with NFA is difficult because we can't flip normal/final states. Instead we have to

- 1. Convert n-NFA to 2^n -DFA
- 2. Take complement of DFA $\implies 2^n$ -DFA
- 3. So we have a 2^n NFA

NFA Capabilities:

• If NFA M exists and L(M) = L, then L is regular

3 Regex

- 1. Base Case: contains e and $\sigma \in \Sigma$
- 2. If α and β are regular, then $\alpha \cup \beta$ and $\alpha\beta$ are regular
- 3. α is regular then α^* is regular

 $L(\alpha)$ is the set of strings generate from a regex α

$\mathbf{Proof}\ \mathbf{Regex}\subseteq \mathbf{NFA}$

Base Case: e and $\{\sigma\}$ have NFAs

IH: Assume for every regex β with $|\beta|$; n, $L(\beta)$ is recognized by an NFA

IS: Show α is a regex, with $|\alpha| = n$

- Case 1: $\alpha = \alpha_1 \cup \alpha_2$. Since $|\alpha_1|, |\alpha_2| < n$, we can apply IH and generate NFAs N_1 and N_2 such that $L(N_1) \cup L(N_2) = L(\alpha)$
- Case 2: similar for $\alpha = \alpha_1 \circ \alpha_2$
- Case 3: similar for $\alpha = \alpha_1^*$

Thus, $regex \subseteq NFA \subseteq DFA$

Proof DFA \subseteq Regex

For the sake of the proof, we can extend $\delta\colon Q\times\Sigma^*\to Q$ to handle strings so $\delta(q,w)$ state we end up at if we start at q and input w

Key idea is for every pair of states (i, j), we find the regex that represents the string that takes from state i to state j

 $R(i, j, k) = \{w : \delta(i, w) = j \text{ using only states } \{1, \dots, k\} \}$

Base case: R(i, j, 0) for $1 \le i, j \le n$. Strings with no intermediary state so a single transition or i = j and string is e

$$R(i,j,0) = \begin{cases} \{\sigma \colon \delta(i,\sigma) = j\} & i \neq j \\ \{\sigma \colon \delta(i,\sigma) = j\} \cup \{e\} & i = j \end{cases}$$

IH: Assume for $1 \le i, j \le n, R(i, j, k - 1)$ is a regex

IS: Prove for all $1 \le i, j \le n$, R(i, j, k) is a regex

$$R(i, j, k) = R(i, j, k - 1) \cup R(i, k, k - 1) \circ R(k, k, k - 1)^* \circ R(k, j, k - 1)$$

Capabilities of Regex

- Regex can't cleanly represent complement, although it is regular: idea is to convert n-NFA to 2^n -DFA, take the complement, then convert to a 2^{2^n} regex
- Regex can't cleanly represent intersection, although it is regular: idea is to convert to an NFA then convert back to regex

3.1 Trex

- 1. Base Case: contains e and $\sigma \in \Sigma$
- 2. If α and β are regular, then $\alpha \cup \beta$ and $\alpha\beta$ are regular
- 3. α is regular then α^* is regular
- 4. If α is a trex and $n \in \mathbb{N}$ then α^n takes $O(\lg n)$ space

4 Number of States

Small NFA: $L = \{a^i : i \neq 500\}$

• For $i \geq 501$, use

Frobenius Theorem: for all $z \ge xy - x - y + 1$ there is $c, d \in \mathbb{N}$ such that z = cx + cy For all $z \ge 500 = 51 * 11 - 51 - 11 + 1$, there is a $c, d \in \mathbb{N}$ such that z = cx = cy Thus, $z + 1 \ge 501 = 51 * 11 - 51 - 11 + 2$ and we create an NFA for this

• For $i \leq 499$, use the following property of coprimes: Let $\{q_1, \ldots, q_k\}$ be a set of coprimes such that $\prod_{i=1}^k q_i \geq n$ Then the set of i such that:

 $i \not\equiv n \pmod{q_1}$

. . .

 $i \not\equiv n \pmod{q_k}$

Contains $\{1, \ldots, n-1\}$ but does not contain n

This will take $O((\log n)^2 \log \log n)$ to represent using NFAs

Above, (mod 7). Below (mod 8). Left (mod 9)

Proof $\Sigma^* a \Sigma^n$ Requires 2^{n+1} DFA States

Number of States DFA/NFA/Regex:

Closure Property	DFA	NFA	Regex
$L_1 \cup L_2$	n_1n_2	$n_1 + n_2 + 1$	$L_1 + L_2$
$L_1 \cap L_2$	$n_1 n_2$	$n_1 n_2$	X
$L_1 \circ L_2$	X	$n_1 + n_2$	$L_1 + L_2$
\overline{L}	n	X	X
$\parallel L^*$	X	n+1	L+1

Pumping Lemma 5

If L is regular then there exists n_0, n_1 such that for all $w \in L$ where $|w| \ge n_0$, there exists an x, y, zsuch that

- w = xyz and $y \neq e$
- $|xy| \le n_1$ (aka xy is short)
- for all $i \geq 0$, $xy^iz \in L$

To prove L is not regular need to find some i such that $xy^iz \notin L$

Example: $L = \{a^n b^n : n \in \mathbb{N}\}$ not regular

Let xy contain only a's so

 $x = a^{m_1}$

 $y = a^{m_2}$

 $z = a^{n - m_1 - m_2} b^n$

Take i=2 then

$$a^{m_1+2m_2+n-m_1-m_2}b^n = a^{n+m_1}b^n$$

which is clearly not in L

Example: $L = \{w : \#_a(w) \neq \#_b(w)\}$ not regular

Pumping Lemma doesn't work b/c there's not way of controlling the number of a output However we know that $L_2 = \{w : \#_a(w) = \#_b(w)\}$ is not regular so we can take the complement of L_2 , which will be not regular.

Example: $L = \{a^{n^2} : n \in \mathbb{N}\}$ not regular Let $x = a^{n_1}, y = a^{n_2},$ and $z = a^{n_3}$ so

$$a^{n_1}(a^{n_2})^i a^{n_3} \in L$$

So $\forall i \geq 0, n_1 + in_2 + n_3$ is a square $(n_1 + n_3) = x^2$

$$(n_1 + n_3) = x^2$$

$$(n_1 + n_3) + n_2 \ge (x+1)^2$$

 $(n_1+n_3)+n_i\geq x^2+2ix+i^2\implies \frac{(n_1+n_3)}{i}+n_2\geq i$ so LHS decreases while RHS grows so this can't hold for all i

Example: $L = \{a^n b^m : n > m\}$ not regular

Revise pumping lemma to bound |yz| then do pumping on the b's

Example: $L = \{a^{n_1}b^mc^{n_2}\}$ not regular

Let $w = a^n b^{n-1} c^n$ and $x = a^{n_1}, y = a^{n_2} z = a^{n-n_1-n_2} b^{n-1} c^n$. Take i = 0. Then

$$xu^0z = a^{n-n_1}b^{n-1}c^n$$

 $\#_a$ on the left side is clearly \leq than $\#_b$, which is (n-1). Thus $xy^0z \notin L$.

6 CFG (N, Σ , R, S)

Not CFL Examples

- $\{a^nb^nc^n\}$
- $\{a^{n^2}\}$
- If $L \subseteq a^*$ and L is not regular, then L is not context free
- $L_1 \cap L_2$
- \bullet \overline{L}

$\mathbf{Proof}\;\mathbf{Regex}\subseteq\mathbf{CFG}$

Base case $|\alpha| = 1$ then σ or e are both CFL's

IH: For regex β with $|\beta| < n$ there exists a CFG G such that $L(\beta) = L(G)$

IS: Take a regex α with $|\alpha| = n$

Case 1: $\alpha = \beta_1 \cup \beta_2$. By IH, β_1 and β_2 are CFL, and by closure under \cup , $L(\alpha)$ is a CFL

Case 2: Similar closure for $\alpha = \beta_1 \circ \beta_2$

Case 3: Similar closure for $\alpha = \beta^*$

Chomsky Normal Form

- 1. $A \to BC$ where $A, B, C \in N$
- 2. $A \to \sigma$ where $A \in N, \sigma \in \Sigma$
- 3. $S \rightarrow e$ where S is the start state

Difference between DFA, NFA, CFG Sizes: $L = \{a, b\}^* a \{a, b\}^n$

DFA requires $\Theta(2^n)$

NFA requires $n + \Theta(1)$

CFG requires $\Theta(\lg(n))$

CFG can be constructed by having $L = L_1 \circ L_2$ where

• $L_1 = \{a, b\}^*a$ which requires 5 rules:

$$A \to AS$$

$$S \to BS$$

$$S \to a$$

$$A \rightarrow a$$

$$B \to b$$

• $L_2 = \{a, b\}^n$ which can be constructed in $\lg(n)$ rules assuming n is a power of 2:

$$S \to S_1 S_2$$

$$S_1 \rightarrow S_2 S_2$$

. . .

$$S_{\lg(n)} \to a$$

$$S_{\lg(n)} \to b$$