

Mecânica e Campo Eletromagnético DEPARTAMENTO DE FÍSICA Ano letivo 2022/2023

Relatório

BOBINAS DE HELMHOLTZ

Autores:

[104322] [Inês Almeida da Silva] [99567] [Alessandro Signor]

Turma [PL1] Grupo [2]

Data [2/12/2022] Docente [Sandra Correia]

Resumo: Neste relatório, são respondidas às questões sobre a preparação do trabalho e análise e tratamento de dados.

Índice

Sumário	3
Introdução	3
Parte A - Calibração da sonda de Hall	4
Parte B – Verificação do princípio da sobreposição para o campo magnético	4
Parte B.1 – Ligar apenas uma das bobinas	5
Parte B.2 – Ligar ambas as bobinas em série	5
Apresentação de resultados	5
Análise de Resultados	9
Erros experimentais:	9
Erro valores experimentais:	9
Precisão valor experimental:	10
Conclusão	11
Bibliografia	11

Sumário

Este trabalho experimental tem como objetivos a calibração de uma sonda de efeito de Hall por meio de um solenoide padrão, medir o campo magnético ao longo do eixo de duas bobinas estreitas e estabelecer a configuração de Helmholtz e medir o campo magnético ao longo dessas verificando no fim o princípio da sobreposição.

Introdução

A produção de campos magnéticos é feita através de correntes elétricas e cargas em movimento, o cálculo do campo magnético produzido por uma corrente pode ser feito através da **Lei de Ampère**. Nesta atividade experimental tendo um solenoide finito(solenoide-padrão) onde, o comprimento é muito maior que o raio (l >> R). Usamos a expressão $B_{sol} = \mu_0 \frac{N}{l} l_s$, onde N/l o número de espiras por unidade de comprimento do solenoide, Is, a corrente elétrica que o percorre e a constante $\mu 0$ é a permeabilidade magnética do vácuo ($4\pi \times 10$ -7 Tm/A).

No caso das bobinas de Helmholtz, que sendo constituídas por dois enrolamentos em que R >>l, permitem criar no espaço entre esses enrolamentos um campo magnético muito mais uniforme do que o campo devido a apenas um deles. Para isto se verificar é necessário que estas estejam situadas entre si a uma distância igual ao seu raio. Nesta situação calculamos uma expressão para o campo magnético criado pelas bobinas num ponto genérico, através da expressão

$$B(x) = \frac{\mu_0}{2} \frac{I \cdot R^2}{(R^2 + x^2)^{3/2}} .$$

Para medir os campos magnéticos, é utilizado o efeito que este campo produz em cargas elétricas em movimento. Através da ação de uma força magnética, num semicondutor os portadores de carga vão alterar a sua trajetória, acumulando-se na face inferior do semicondutor, produzindo uma diferença de potencial entre as faces do mesmo e assim dando origem ao campo elétrico. Ficando ainda sujeitos a uma força que se opõe à força magnética. A Tensão de Hall (diferença de potencial que se originou entre as duas faces do semicondutor) é calculada na situação de equilíbrio em que as duas forças se igualam e é dada pela expressão $qE=q\frac{V_H}{h}=qvB \rightarrow V_H=vhB$. Como já referido a corrente através do semicondutor é dada pelo fluxo de portadores de carga através da superfície perpendicular à direção da corrente então vamos ter que a tensão de Hall é proporcional à corrente de Hall. Através desta noção vamos usar nesta experiência uma sonda de Hall, calibrada para medir o campo magnético que utiliza o efeito de Hall permitindo medir e sondar os valores do campo magnético.

Procedimento experimental

Neste capítulo explicamos passo a passo como realizar a experiência. Decidimos usar o programa Microsoft Excel para o registo de todos os dados, pois é uma ferramenta muito poderosa, versátil e eficaz, o que nos facilita bastante o trabalho.

Escrever cuidados a ter durante a experiência para melhorar as condições de medida.

Parte A - Calibração da sonda de Hall

Registámos o número de espiras do solenoide.

Conectámos o circuito como descrito no guião. Verificámos que tudo estava bem conectado antes de ligarmos a fonte de alimentação. Depois de ligado, calibrámos o amplificador (manipulando um potenciómetro) de modo a que o voltímetro (ligado ao mesmo) apresente 0mV. (a sonda deveria estar exatamente a meio do solenoide)

De seguida colocámos o reóstato no seu valor máximo e registámos a intensidade do circuito dada no amperímetro. (em amperes)

Registámos vários valores com resistências diferentes (incrementando a resistência exponencialmente), até atingirmos o limite máximo de intensidade do reóstato (0.50A).

Parte B – Verificação do princípio da sobreposição para o campo magnético

Para esta parte da experiência substituímos o solenoide padrão por duas bobinas em disposição geométrica adequada, de modo a ficarem separadas a uma distância, R, igual ao seu raio (configuração de Helmholtz).

Ao longo da experiência certificámo-nos de que as bobinas se mantinham sempre na mesma posição. Para tal evitávamos mexer nas mesmas e mediamos a distâncias entre elas antes de cada registo.

Figura 1 Esquema da montagem experimental disponível na aula.

Na Figura 1 podemos ver um esquema da montagem da experiência. Esta esquema tem 3 tipos de configurações:

- A azul apenas a bobina 1 está ligada que corresponde à parte B.1 da experiência.
- A verde apenas a bobina 2 está ligada que corresponde à parte B.1 da experiência.
- A verde e laranja ou azul e laranja ficam ambas as bobinas ligadas em série, que corresponde à última parte, B.2, da experiência.

Parte B.1 – Ligar apenas uma das bobinas

Para esta subparte da experiência ligámos apenas uma das bobinas.

Tal como na experiência anterior, tivemos todo o cuidado de verificar que o circuito estava bem conectado antes de ligarmos a fonte de alimentação.

Depois de ligada a fonte de alimentação e antes de registarmos os dados, certificámo-nos de que a intensidade da corrente se mantinha a um valor fixo de 0.50A.

Por fim registámos o campo magnético criado pela bobina ao longo do seu eixo, de centímetro a centímetro. (posição e tensão de Hall)

Repetimos o mesmo procedimento para a outra bobina.

Parte B.2 – Ligar ambas as bobinas em série

Para esta parte repetimos o mesmo procedimento que na parte B.1, exceto com as duas bobinas ligadas em série. Também tivemos o cuidado de que ambas as bobinas se mantinham na mesma posição.

Apresentação de resultados

Calibração da sonda de Hall			
I(A)±0.001A mV±0.1mV		V±0.0001V	
0.013	0.2	0.0002	
0.020	0.6	0.0006	
0.029	1.8	0.0018	

0.038	3.1	0.0031
0.047	4.3	0.0043
0.063	6.6	0.0066
0.083	9.4	0.0094
0.113	13.6	0.0136
0.156	19.8	0.0198
0.206	26.8	0.0268
0.253	33.5	0.0335
0.327	43.9	0.0439
0.444	60.2	0.0602

Bobina A isolada			
X(cm±0.05cm)	Y(mV±0.1mV)	Y(V±0.0001V)	BH(x)
24.00	10.2	0.0102	0.00031607
25.00	12.6	0.0126	0.00039044
26.00	16.9	0.0169	0.00052368
27.00	22.1	0.0221	0.00068481
28.00	30.3	0.0303	0.0009389
29.00	39.6	0.0396	0.00122708
30.00	46.9	0.0469	0.00145329
31.00	46.8	0.0468	0.00145019
32.00	39.2	0.0392	0.00121469
33.00	30.1	0.0301	0.00093271
34.00	21.8	0.0218	0.00067551
35.00	16.1	0.0161	0.00049889
36.00	12.3	0.0123	0.00038114
37.00	9.8	0.0098	0.00030367
38.00	8.1	0.0081	0.00025099
39.00	6.8	0.0068	0.00021071
40.00	5.9	0.0059	0.00018282
41.00	5.3	0.0053	0.00016423

Bobina B isolada			
X(cm±0.05cm)	Y(mV±0.1mV)	Y(V±0.0001V)	BH(x)
24.00	5.1	0.0051	0.00015803
25.00	5.6	0.0056	0.00017353
26.00	6.5	0.0065	0.00020141
27.00	7.7	0.0077	0.0002386
28.00	9.6	0.0096	0.00029747
29.00	12.3	0.0123	0.00038114
30.00	15.6	0.0156	0.0004834
31.00	21.9	0.0219	0.00067861
32.00	30.6	0.0306	0.0009482
33.00	42.5	0.0425	0.00131694

34.00	49.9	0.0499	0.00154625
35.00	44.8	0.0448	0.00138821
36.00	33.6	0.0336	0.00104116
37.00	23.9	0.0239	0.00074059
38.00	17.0	0.0170	0.00052678
39.00	12.9	0.0129	0.00039973
40.00	10.2	0.0102	0.00031607
41.00	7.9	0.0079	0.0002448

Bobinas em série			
X(cm±0.05cm)	Y(mV±0.1mV)	Y(V±0.0001V)	BH(x)
24.00	10.7	0.0107	0.00033156
25.00	12.9	0.0129	0.00039973
26.00	16.9	0.0169	0.00052368
27.00	22.6	0.0226	0.0007003
28.00	31.8	0.0318	0.00098538
29.00	45.1	0.0451	0.00139751
30.00	56.8	0.0568	0.00176006
31.00	61.9	0.0619	0.00191809
32.00	60.9	0.0609	0.0018871
33.00	60.5	0.0605	0.00187471
34.00	59.6	0.0596	0.00184682
35.00	50.9	0.0509	0.00157723
36.00	38.6	0.0386	0.0011961
37.00	28.0	0.0280	0.00086763
38.00	20.4	0.0204	0.00063213
39.00	15.4	0.0154	0.0004772
40.00	12.0	0.0120	0.00037184
41.00	9.6	0.0096	0.00029747

Figura 2 Parte A - Calibração da sonda de Hall - Registo da tensão (V) para os diferentes valores de I_s no solenoide padrão

Não é perfeito, mas verifica-se o princípio da sobreposição do campo magnético. Houve algum tipo de erro na medição.

Análise de Resultados

Determinação da constante (Cc) da sonda de Hall

$$B = CcVH$$

Obtemos:

$$C_C = \frac{N}{l} \frac{\mu_0}{m}$$

Substituindo as constantes obtemos:

$$C_C = 3460 \cdot \frac{0.00000125664}{0.1406} = 0.030986918$$

Estimação do número de espiras da bobina de Helmholtz:

$$\frac{B_{Max}}{B(0)} = \frac{B_{Max}}{\frac{\mu_0}{2} \cdot \frac{I \cdot R^2}{(R^2 + 0^2)^{\frac{3}{2}}}} = \frac{B_{Max}}{\frac{\mu_0}{2} \cdot \frac{I}{R}}$$

$$=\frac{0.0019}{\frac{0.0000125664 \cdot 0.496}{2 \cdot 0.0375}} \approx 229 \pm 7 \text{ espiras}$$

Erros experimentais:

Erro do declive
$$\Delta m = |m| \sqrt{\frac{\frac{1}{r^2} - 1}{N - 2}} = |0.1406| \sqrt{\frac{\frac{1}{0.9999^2} - 1}{13 - 2}} = 0.00055152$$

Erro valores experimentais:

$$\Delta Cc = \left| \frac{\partial cc}{\partial m} \right| \Delta m + \left| \frac{\partial cc}{\partial \frac{N}{l}} \right| \Delta \frac{N}{L} = \left(\frac{\mu_0}{m^2} \cdot \frac{N}{l} \right) \Delta m + \left(\frac{\mu_0}{m} \right) \Delta \frac{N}{l}$$
$$= \left(\frac{4\pi \times 10^{-7}}{(0.1406)^2} \cdot 3467 \right) \cdot 0.000515 + \left(\frac{4\pi \times 10^{-7}}{0.1406} \right) \cdot 60 = 0.0006$$

 $(Cc \pm \Delta Cc) = 0.0310 \pm 0.0006$

$$\Delta Bexp = \left| \frac{\partial Bexp}{\partial cc} \Delta Cc \right| + \left| \frac{\partial Bexp}{\partial V_H} \Delta V_H \right| = \left| V_H \cdot \Delta Cc \right| + \left| Cc \cdot \Delta V_H \right| = \left| 0.0619 \cdot 0.0006 \right| + \left| 0.0310 \cdot 0.0001 \right| = \left| 0.00004 \, \mathrm{T} \right|$$

$$\begin{split} \Delta Bteo &= \left| \frac{\partial Bteo}{\partial Cc} \Delta Cc \right| + \left| \frac{\partial Bexp}{\partial V_H} \Delta V_H \right| = \left| \frac{\mu_0}{2R} \cdot \Delta I \right| + \left| -1 \cdot \frac{\mu_0 \cdot I}{2 \cdot R^2} \cdot \Delta R \right| \\ &= \left| \frac{4\pi \times 10^{-7}}{2 \cdot 0.0375} \cdot 0.001 \right| + \left| -1 \cdot \frac{4\pi \times 10^{-7} \cdot 0.496}{2 \cdot 0.0375^2} \cdot 0.0005 \right| = 1 \times 10^{-7} \, T \end{split}$$

$$\begin{split} \Delta \, n \acute{u}mero \, espiras &= \left| \frac{\partial N}{\partial Bexp} \Delta Bexp \right| + \left| \frac{\partial N}{\partial Bteo} \Delta Bteo \right| \\ &= \left| \frac{1}{Bteo} \cdot \Delta Bexp \right| + \left| -1 \cdot \frac{Bexp}{(Bteo)^2} \cdot \Delta Bteo \right| \\ &= \left| \frac{1}{0.00000831} \cdot 0.00004 \right| + \left| -1 \cdot \frac{0.0019}{(0.00000831)^2} \cdot 1 \times 10^{-7} \right| = 7 \, espiras \end{split}$$

 $(número\ espiras\ \pm\ \Delta número\ espiras) = 229\ \pm\ 7\ espiras$

Precisão valor experimental:

Erro relativo
$$Cc(\%) = \frac{\Delta Cc}{Cc} \times 100 = \frac{0.0006}{0.0310} \times 100 = 1.9355 \%$$

Erro relativo número espiras(%) =
$$\frac{\Delta n \text{úmero espiras}}{n \text{úmero espiras}} \times 100 = \frac{7}{229} \times 100 = 3 \%$$

Uma vez que o cálculo dos erros relativos para os resultados foram inferior a 10%, podemos considerar que os resultado foram precisos.

A maior fonte de erro terão sido as medições e o próprio erro humano.

Conclusão

Com este trabalho concluímos várias ideias:

- A tensão de Hall, V_H , é proporcional à corrente de Hall, que percorre o material e ao campo magnético, |B|. Assim, para um dado valor de I_H , constante, V_H é proporcional a B. Podemos confirmar este facto através do gráfico $V_H = f(I_S)$ (Figura 2).
- Houve algum tipo de erro na experiência, muito provavelmente um erro de medição, pois não se verifica muito bem o princípio da sobreposição.
- O Excel é uma ferramenta excelente para físicos.

Bibliografia

[1] Guião análise de dados, sebenta 2012-13

[2] Serway, R. A., Physics for Scientist and Engineers with modern Physics, 2000, Saunder College Publishing.