Dados do Plano de Trabalho								
	Avaliação da estabilidade de filmes de BiVO ₄ para aplicação em sensores fotoeletroquímicos							
Modalidade de bolsa solicitada:	PIBIC							
	SÍNTESE E CARACTERIZAÇÃO DE SEMICONDUTORES PARA APLICAÇÃO COMO SENSORES E BIOSSENSORES FOTOELETROQUÍMICOS							

1. OBJETIVOS

O objetivo geral do projeto é avaliar a estabilidade fotoeletroquímica dos filmes de BiVO₄ para aplicação como sensores. Como objetivos específicos, destacam-se: 1) Avaliar o efeito do tipo de eletrólito de suporte e pH do meio sobre a resposta fotoeletroquímica e estabilidade do BiVO₄; 2) Analisar a estabilidade temporal do filmes de BiVO₄ em condições de potencial de circuito aberto e polarização; 3) Estudar a estabilidade da resposta fotoeletroquímica dos filmes de BiVO₄, iluminado com lâmpadas LEDs de diferentes comprimentos de onda; 4) Construir curvas de calibração para determinação de sulfito.

2. METODOLOGIA

Os experimentos serão realizados em célula eletroquímica convencional em vidro, com janela de quartzo e com tampa em Teflon[®]. O eletrodo de trabalho consistirá nas placas de FTO de 1 cm² modificadas com BiVO₄, o eletrodo auxiliar será uma placa de platina embutida em tubo de vidro e fixada com resina Araldite[®], e, por último, o eletrodo de Ag/AgCl/Cl⁻ em meio de KCl saturado será utilizado como referência. Nesse contexto, os ensaios eletroquímicos serão realizados usando potenciostato/galvanostato PGSTAT 204 (Autolab, Eco Chemie) acoplado com o módulo FRA32M, controlado por computador, empregando o programa NOVA 2.0. A fonte de radiação consistirá em LEDs comerciais de luz branca, azul, verde, amarela e vermelha, para promover a fotogeração do par elétron/lacuna na superfície do semicondutor. Os filmes de BiVO₄ serão obtidos utilizando inicialmente a solução Bi(NO₃)₃.5H₂O 0,020 mol L⁻¹ + KNO₃ 0,1 mol L⁻¹ dissolvidos em etilenoglicol. O Bi será eletrodepositado com carga fixa de 20 mC cm⁻², aplicando E = -1,8 V, obtendo-se o eletrodo FTO/Bi. A segunda etapa consistirá na adição de uma alíquota (50 μL cm⁻²) de solução aquosa de NH₄VO₃ 0,150 mol L⁻¹ sobre o FTO/Bi. Na sequência, o eletrodo será levado para forno para calcinação, empregando a rampa de aquecimento de 2 °C min⁻¹ até 500 °C, após 1 hora nessa temperatura, o sistema será resfriado a uma taxa de 2 °C min⁻¹. Finalmente, o eletrodo será deixado em solução de NaOH 1,0 mol L⁻¹ sob agitação magnética por 5 minutos para remoção do excesso de V₂O₅. Os eletrólitos que serão empregados nos testes de estabilidade consistem em soluções de Na₂SO₄, tampões acetato e borato. Nesse momento, serão realizados experimentos de potencial de circuito aberto, voltametria linear, amperometria e espectroscopia de impedância eletroquímica, com e sem iluminação. Após a obtenção das condições de maior estabilidade fotoeletroquímica, serão construídas curvas de calibração para o sulfito (solução estoque $1.0 \times 10^{-4} \text{ mol L}^{-1}$ de Na_2SO_3) empregando a técnica de amperometria aliado ao método de adição de padrão.

3. CRONOGRAMA DE ATIVIDADES

As atividades a serem realizadas pelo estudante são:

- AT1. Treinamento básico para desenvolvimento de trabalhos na área de eletroquímica;
- AT2. Construção dos filmes de BiVO₄ depositados sobre FTO;
- AT3. Estudo do efeito de parâmetros experimentais (diferentes eletrólitos e pH) na resposta fotoeletróquimica do BiVO₄;
- AT4. Avaliação do efeito da iluminação com lâmpadas LEDs de diferentes comprimentos de onda sobre a resposta fotoeletroquímica dos filmes de BiVO₄;
- AT4. Construção das curvas analíticas para sulfito sobre BiVO₄;
- AT5. Elaboração de artigo;
- AT6. Revisão bibliográfica;
- AT7. Elaboração do relatório.

Nº			2019			2020						
- 1	08	09	10	11	12	01	02	03	04	05	06	07
AT1	X	X										
AT2		X	X	X								
AT3			X	X	X	X	X	X				
AT4								X	X	X		
AT5											X	X
AT6	X	X	X	X	X	X	X	X	X	X	X	X
AT7											X	X