

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	18/01/2020	18:30

Espacio para la etiqueta identificativa con el código personal del **estudiante**.

Examen

Este enunciado corresponde también a las siguientes asignaturas:

• 81.518 - Fundamentos de computadores

Ficha técnica del examen

- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura matriculada.
- Debes pegar una sola etiqueta de estudiante en el espacio correspondiente de esta hoja.
- No se puede añadir hojas adicionales, ni realizar el examen en lápiz o rotulador grueso.
 - Tiempo total: 2 horas Valor de cada pregunta: Prob. 1: 20%; Prob. 2: 35%; Prob. 3: 35%; Prob 4: 10%
- En el caso de que los estudiantes puedan consultar algún material durante el examen, ¿cuáles son?:
- En el caso de poder usar calculadora, de que tipo? NINGUNA
- En el caso de que haya preguntas tipo test: ¿descuentan las respuestas erróneas? NO ¿Cuánto?

Indicaciones específicas

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	18/01/2020	18:30

Enunciados

PROBLEMA 1 [20%]

- a) [10%] Dados los valores B = 111011 y C = 000101, que representan dos números binarios enteros expresados en complemento a 2 con 6 bits, calculad B + C usando el mismo formato. ¿Se produce desbordamiento?
 - Hagamos la suma de los dos números:

```
111111 (acarreo
111011 (B
+000101 (C
000000
```

- En Ca2 ignoramos el acarreo en el bit más significativo y el resultado será 00000000
- No se produce desbordamiento porque hemos hecho una suma de números de signo diferente
- b) [10%] Dado el formato de coma flotante siguiente:

S	Exponente	Э	Mantisa		
13	12	8	7		0

Donde:

- El bit de signo, S, vale 0 para cantidades positivas y 1 para negativas.
- El exponente se representa en exceso a 16.
- Hay bit implícito.
- La mantisa está normalizada en la forma 1,X.

Representad el número 0,55(10 en este formato.

El número que queremos representar es positivo, así el bit S será 0.

Ahora aplicamos el método para encontrar la representación binaria de la parte fraccionaria:

$$0.55 \cdot 2 = 1.1$$

 $0.1 \cdot 2 = 0.2$
 $0.2 \cdot 2 = 0.4$
 $0.4 \cdot 2 = 0.8$
 $0.8 \cdot 2 = 1.6$

$$0.55_{(10} = 0.100011_{(2)}$$

0.6.2 = 1.2

Paramos porque hemos encontrado un conjunto de bits (00011) que se repetirán de forma periódica.

Para normalizar la mantisa tenemos que mover la coma 1 posición a la derecha:

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	18/01/2020	18:30

0,100011001...(2 = 1,00011001-2⁻¹

Identificamos cada campo:

- Signo positivo -> S = 0
- Exponente = -1, como debe ser representado en exceso a 16, le sumamos 16 (-1 + 16 = 15) y lo representamos en binario en 5 bits 01111
- Mantisa = 1,00011001, como tenemos bit implícito sólo tenemos que almacenar 00011001

Así, el resultado final será: 0 01111 00011001

PROBLEMA 2 [35%]

a) [15%] Escribid la expresión algebraica mínima a dos niveles de la función g, obteniéndola mediante el método de Karnaugh.

X	У	Z	W	g
0 0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0			9 1 0 x 0 0 0 x 0 0 x 0 0 1 1 1 0 1 1 1 1
0	0	0	0 1 0 1	0
0	0	1	0	Х
0	0	1	1	0
0	1	0 0 1	0	0
0	1 1 1	0	1	Х
0	1	1	0	0
0			1	0
1	1 0 0 0 0	1 0 0	0	Х
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1 1	0	1	1
1	1	0 0 1 1	0 1 0 1 0 1 0 1	Х
1	1	1	1	Х

El mapa de Karnaugh para la función *g* es el siguiente:

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	18/01/2020	18:30

De este mapa obtenemos la expresión mínima siguiente:

$$g = y'w' + yz'w + xz$$

b) [20%] Dado el circuito lógico combinacional siguiente:

Se pide rellenar la tabla de la verdad siguiente, que especifica las salidas x, y, z, w en función de las entradas a, b, c. Hay que calcular previamente los valores intermedios indicados a la tabla.

Nota: No hace falta que expliquéis textualmente como obtenéis el valor de cada señal.

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	18/01/2020	18:30

En primer lugar, escribiremos la expresión algebraica correspondiente a cada punto intermedio y la simplificaremos aplicando las leyes de De Morgan siempre que sea posible.

- i1: (c' XOR ab)'. Cuando ab=0 valdrá c y cuando ab=1 valdrá c'.
- i2: (ab OR c)'. Cuando ab=0 valdrá c' y cuando ab=1 valdrá 0.
- x: ((i1·a)·i2)'. Cuando a=0 valdrá 1 y cuando a=1 valdrá (i1·i2)'.
- *i*5: *a*' dado que la entrada *B* del sumador siempre vale 1.
- i4: Si a=0, valdrá b XOR c. Si a=1, valdrá (b XOR c)'.
- i3: bc + cin(b XOR c) = bc + a(bc XOR c). Siempre que bc=1 valdrá 1. Si no, siempre que a=1 valdrá b XOR c. El resto de casos valdrá 0.
- [z,y] es la salida de la ROM la cual contiene los valores 1,3,2,0 en las direcciones 0,1,2,3. La señal que llega a la entrada de direcciones de la ROM es [i4, i5].
- w: i3

La tabla quedará así:

а	b	C	<i>i</i> 1	i2	i3	i4	<i>i</i> 5	X	У	Z	W
0	0	0	0	1	0	1	0	1	0	1	0
0	0	1	1	0	1	0	0	1	1	0	1
0	1	0	0	1	1	0	0	1	1	0	1
0	1	1	1	0	1	1	0	1	0	1	1
1	0	0	0	1	0	1	1	1	0	0	0
1	0	1	1	0	1	0	1	1	1	1	1
1	1	0	1	0	1	0	1	1	1	1	1
1	1	1	0	0	1	1	1	1	0	0	1

PROBLEMA 3 [35%]

a) [5%] Las siguientes tablas, de salidas y de transiciones respectivamente, expresan el funcionamiento de un circuito secuencial mediante el modelo de Moore. Dibujad el grafo de estados del circuito, y explicad qué funcionalidad tiene.

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	18/01/2020	18:30

Estado	Salida
INI	00
Α	01
В	10
С	11

Estado	Entrada	Estado*
INI	Q	Α
INI	1	INI
Α	0	В
Α	1	INI
В	Q	С
В	1	INI
С	0	С
U	1	INI

El grafo de estados es el siguiente:

El grafo representa un circuito que cuenta el número consecutivo de ceros que llegan por la entrada. El contador es de 2 bits y se satura, es decir, cuando llega a 3 se mantiene este valor mientras sigan llegando ceros. Cuando llega un 1, entonces se vuelve al estado inicial, poniendo el contador a 0.

b) [15%] Se ha implementado el circuito anterior usando biestables y una memoria ROM, tal y como se muestra en la siguiente figura.

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	18/01/2020	18:30

Suponiendo que los estados se codifican tal y como se indica en la tabla, escribid en binario el contenido de las direcciones 4h, 5h y 6h de la memoria ROM

Estado	q 1 q 0		
INI	00		
А	01		
В	10		
С	11		

Dirección	Contenido		
4h	1110		
5h	0010		
6h	1111		

La palabra en la dirección 4h (100) contiene la transición desde el estado *E*2 con un valor de entrada 0, que lleva al estado *E*3 (11), y el valor de la salida en el estado *E*2 (10). La palabra en la dirección 5h (101) contiene la transición desde el estado *E*2 con un valor de entrada 1, que lleva al estado *E*0 (00), y el valor de la salida en el estado *E*2 (10). Finalmente, la palabra en la dirección 6h (110) contiene la transición desde el estado *E*3 con un valor de entrada 0, que se mantiene en el estado *E*3 (11), y el valor de la salida en el estado *E*3 (11).

c) [15%] Dado el circuito siguiente:

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	18/01/2020	18:30

Responded a estas preguntas:

- 1. Describid textualmente los contenidos que tendrá el registro RA desde el momento en que el circuito se ponga en funcionamiento.
 - El registro RA es un contador de 16 bits. A cada ciclo de reloj se incrementa en una unidad.
- 2. Describid textualmente los valores que tomará la señal *M* desde el momento en que el circuito se ponga en funcionamiento.
 - La señal *M* es la salida de 16 bits de la memoria ROM. Dado que a cada ciclo la dirección que llega a la ROM es el valor del registro RA, la señal *M* mostrará el contenido de la memoria ROM consecutivamente una palabra tras otra a cada ciclo.
- 3. Una vez puesto en marcha el circuito y manteniendo la señal *ini* = 0, ¿en qué momentos se cargará en el registro RB el valor 0000h?
 - RB se carga con un valor que depende de las entradas de control del multiplexor. Puesto que éste es de cuatro entradas, tenemos cuatro posibilidades:
 - Si m_{15:14} = 00, entonces se cargará en RB el valor 0000h si el valor anterior de RB era 0000h o bien 8000h.

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	18/01/2020	18:30

- Si m_{15:14} = 01, entonces se cargará en RB el valor 0000h si en RA hay un cero, es decir, si estamos en el primer ciclo o bien el contador había llegado al valor FFFFh un ciclo antes.
- Si $m_{15:14} = 10$, entonces se cargaría en RB el valor 0000h si *M* tuviera este valor, pero ello no es posible, porque al menos su bit de mayor peso vale 1.
- Si m_{15:14} = 11, a la salida del multiplexor habrá el valor 0000h. Pero en este caso no se carga ningún valor en RB, ya que la señal *load* vale 0.

PROBLEMA 4 [10%]

a) [5%] ¿Qué es la arquitectura de Harvard?

Una manera de construir máquinas que tienen una memoria para las instrucciones y una para los datos.

b) [5%] La memoria de un computador contiene...

...los datos y las instrucciones de los programas.