CHAPTER 1

Computational Type Theories

As alluded to at the end of the previous chapter, we may add a judgement $M \in A$ which deals directly with the objects M which verify the propositions (or types) P. We will develop a full theory of dependent types in the sense of Martin-Löf 1979.

1. The judgments of a computational type theory

Because we will need to consider the introduction of types which do not have a trivial (intensional) equality relation, we must first amend the meaning explanations for some of our judgements, and add a few new forms of judgement. First, we will refer to *types* rather than *propositions* in order to emphasize the generality of the theory; in some places, the word *set* is used instead.

The meaning of hypothetical and general judgement are the same as in the previous chapter, and so we will not reproduce them here.

The first form of judgement is A type, and its meaning explanation is as follows:

To know A type is to know what counts as a canonical verification of A and when two such verifications are equal.

The next form of judgement is $M \in A$, which remains the same as before: To know $M \in A$ (presupposing A type) is to know an M' such that $M \Rightarrow M'$ and M' is a canonical verification of A.

We'll need to add new judgements for equality (equality of types, and equality of verifications). For equality of types $A = B \ type$, there are a number of possible meaning explanations, but we'll use the one that Martin-Löf used starting in 1979¹:

To know A = B type (presupposing A type and B type) is to know $|_{M} M \in B$ ($M \in A$) and $|_{M} M \in A$ ($M \in B$), and moreover $|_{M,N} M = N \in B$ ($M = N \in A$) and $|_{M,N} M = N \in A$ ($M = N \in A$).

In other words, two types are equal when they have the same canonical verifications, and moreover, the same equality relation over their canonical verifications.

1

 $^{^1\}mathrm{This}$ meaning explanation was a bandoned in Constable's Computational Type Theory for practical reasons.

Now, because we are allowing the definition of types with arbitrary equivalence relations, we cannot use plain hypothetico-general judgement in the course of defining our types. For instance, if we were going to try and define the function type $A \supset B$ in the same way as we did in the previous chapter, we would permit "functions" which are not in fact functional, i.e. they do not take equal inputs to equal outputs. As such, we will need to bake functionality (also called extensionality) into the definition of functions, and since we will need this in many other places, we elect to simplify our definitions by baking it into a single judgement which is meant to be used instead of hypothetico-general judgement.

The judgement which expresses simultaneously generality, hypothesis and functionality has been written in multiple ways. Martin-Löf has always written it as $\mathcal{J}(\Gamma)$, but this is a confusing notation because it appears as though it is merely a hypothetical judgement (but it is much more, as will be seen). Very frequently, it is written with a turnstile, $\Gamma \vdash \mathcal{J}$, and in the early literature surrounding Constable's Computational Type Theory and Nuprl, it was written $\Gamma \gg \mathcal{J}$; we choose this last option to avoid confusion with a similar judgement form which appears in proof-theoretic, intensional type theories.

This judgement must be defined simultaneously with two other judgements, $\boxed{\Gamma \ ctx}$ (" Γ is a context") and $\boxed{x \# \Gamma}$ ("x is fresh in Γ).

To know Γ ctx is to know that $\Gamma \Rightarrow \cdot$, or it is to know a variable x and an expression A such that $\Gamma \Rightarrow \Gamma', x \in A$ and $\Gamma' \gg A$ type, and $x \# \Gamma$.

To know $x \# \Gamma$ is to know that $\Gamma \Rightarrow \cdot$, or it is to know a variable y (which is not x) and an expression A such that $\Gamma \Rightarrow \Gamma', x \in A$ and $x \# \Gamma'$.

In other words contexts are inductively generated by the following grammar:

We will say that $\Gamma \gg \mathcal{J}$ is only a judgement under the presuppositions that Γ ctx and that \mathcal{J} is a categorical judgement of the form A type or $M \in A$. Its meaning explanation must be given separately for each kind of conclusion.

Preliminarily, for any context Γ , let $\vec{\Gamma}_0$ represent the sequence of its variables and let $\vec{\Gamma}_1$ represent the sequence of their types. Then, when we use a sequence in place of an expression in a judgement, it is meant as a shorthand for an iterated judgement over the entire sequence.

Now we may begin giving the meaning explanations for $\Gamma \gg \mathcal{J}$, starting with typehood with respect to a context:

To know $\Gamma \gg A$ type is to know $|_{\vec{M}} [\vec{M}/\vec{\Gamma}_0] A$ type $(\vec{M} \in \vec{\Gamma}_1)$, and moreover, to know

$$|_{\vec{M} \ \vec{N}} [\vec{M}/\vec{\Gamma}_0] A = [\vec{N}/\vec{\Gamma}_0] A \ type \ (\vec{M} = \vec{N} \in \vec{\Gamma}_1)$$

This is quite noisy, so let us expand it:

To know $\Gamma \gg A$ type is to know that for any arbitrary sequence of values \vec{M} such that you know $\vec{M} \in \vec{\Gamma}_1$, then you know that the substitution of \vec{M} for the variables $\vec{\Gamma}_0$ in A is a type (i.e. it is a family of types defined over the types $\vec{\Gamma}_1$); moreover, that this family of types is functional with respect to Γ .

Then we can explain type equality with respect to a context:

To know $\Gamma \gg A = B$ type is to know

$$|_{\vec{M}}[\vec{M}/\vec{\Gamma}_0]A = [\vec{M}/\vec{\Gamma}_0]B \ type \ (\vec{M} \in \vec{\Gamma}_1)$$

and moreover, to know

$$|_{\vec{M} \ \vec{N}} [\vec{M}/\vec{\Gamma}_0] A = [\vec{N}/\vec{\Gamma}_0] B \ type \ (\vec{M} = \vec{N} \in \vec{\Gamma}_1)$$

Next, membership with respect to a context is explained:

To know $\Gamma \gg L \in A$ is to know

$$|_{\vec{M}}\,[\vec{M}/\vec{\Gamma}_0]L\in[\vec{M}/\vec{\Gamma}_0]A\ (\vec{M}\in\vec{\Gamma}_1)$$

and moreover, to know

$$|_{\vec{M} \ \vec{N}} [\vec{M}/\vec{\Gamma}_0] L = [\vec{N}/\vec{\Gamma}_0] L \in [\vec{M}/\vec{\Gamma}_0] A \ (\vec{M} = \vec{N} \in \vec{\Gamma}_1)$$

Finally, member equality with respect to a context has an analogous explanation:

To know $\Gamma \gg L = L' \in A$ is to know

$$|_{\vec{M}}\,[\vec{M}/\vec{\Gamma}_0]L = [\vec{M}/\vec{\Gamma}_0]L' \in [\vec{M}/\vec{\Gamma}_0]A\;(\vec{M} \in \vec{\Gamma}_1)$$

and moreover, to know

$$|_{\vec{M},\vec{N}} \, [\vec{M}/\vec{\Gamma}_0] L = [\vec{N}/\vec{\Gamma}_0] L' \in [\vec{M}/\vec{\Gamma}_0] A \ (\vec{M} = \vec{N} \in \vec{\Gamma}_1)$$

The simultaneous definition of multiple judgements may seem at first concerning, but it can be shown to be non-circular by induction on the length of the context Γ .

2. The definitions of types