

Kryptologie

Klasická kryptografie: Substituční šifry II

Strategický projekt UTB ve Zlíně, reg. č. CZ.02.2.69/0.0/0.0/16_015/0002204

Obsah prezentace

- Polygrafická substituce
 - Playfair (anglický čtverec)
 - Bifid/Trifid
 - Hillova šifra
- Ostatní substituce
 - Polybiův čtverec
 - Tabulkové substituce (tzv. jedno a dvoumístné šifry)
 - Autokláv (Autoklíč)

1. Polygrafické substituce

- Digramová šifra (šifrují se vždy 2 písmena)
- Využití klíčového slova
- o Používá tabulku 5x5 nutno vynechat jeden znak,
 - \circ v CZ jazyce: V = W (K = Q)
 - o v EN jazyce I = J

 V každém digramu musí být různé znaky - pokud není splněno, vložíme vhodný znak např. "x".

 Při lichém počtu znaků v OT (až po případném doplnění znaku do stejné dvojice!!) doplníme na konci zvoleným znakem.

povinné → povinne → po vi nx nx ex

- Do tabulky nejprve zapíšeme heslo (klíč).
- Opakující znaky hesla jsou vynechány. ALFA → ALF
- o Tabulky doplníme podle abecedy s vynecháním znaků již použitých v hesle.
- Tabulka pojme 25 znaků => jeden znak vynecháme

P	E	Т	R	K
L	-	С	A	В
D	F	G	Н	М
N	0	Q	S	U
V	W	X	Υ	Z

Příklad dle: [1]

 Jestliže leží dva znaky na stejném řádku, každé se nahradí písmenem ležícím o jedno napravo.

 Pokud je písmeno úplně vpravo, nahradí se prvním na stejném řádku (rotace na řádku).

Např.:

CA -> AB

FM → GD

 Jestliže leží dva znaky ve stejném sloupci, každé se nahradí písmenem ležícím o jedno níže.

 Pokud je písmeno úplně dole, nahradí se prvním ve stejném sloupci (rotace ve sloupci).

P	Е	_	R	K
L		C	Α	В
D	F	G	Н	М
N	0	Q	S	U
V	W	X	Υ	Z

Např.:

EI → IF

CX → GT

 Jestliže leží dva znaky na různých řádcích a sloupcích, každé se nahradí písmenem ležícím na stejném řádku, ale ve sloupci jako druhé z dvojice.

Hledáme tak protilehlou diagonálu obdélníku.

Šifrovací pomůcka: První je řádek, potom sloupec.

Р	E	R	_K	
L	ı	С	Α	В
D	F G		Н	М
N	0	0 Q		U
V	W	Х	Υ	Z

Např.:

KO → EU

Šifrovací pomůcka: První je řádek, potom sloupec.

Р	E	T	T R				
L	_	C	A	В			
D	F	G	Н	М			
N	O	Q	S	U			
V	W	X	Υ	Z			

Např.:

IS → AO

- Šifra "playfair" typu.
- Opět i zde je využito klíčového slova.
- Používá tabulku 5x5 nutno vynechat jeden znak.
 - o používáme v **CZ jazyce** V = W a v **EN jazyce** I = J
- Slova OT dělíme po pěticích.
- o Pro každý znak pod sebe zapisujeme souřadnice **řádek sloupec**.

o Pro každý znak pod sebe zapisujeme souřadnice **řádek sloupec**.

	1	2	3	4	5
1	P	Е	Т	R	K
2	L	ı	С	Α	В
3	D	F	G	Н	М
4	N	0	Q	S	U
5	V	W	X	Υ	Z

 Následně vzniklé pětice čísel spojíme a znovu rozdělíme do dvojic a vyhledáme odpovídající znaky, které představují šifru.

Příklad dle: [1]

Šifrování

	1	2	3	4	5
1	Р	E	T	R	K
2	L	ı	С	Α	В
3	D	F	G	Н	М
4	N	0	Q	S	C
5	V	W	X	Υ	Z

Zašifrovaná první pětice:

34	21	11	23	52
Н	П	P	С	W

Dešifrování

	1	2	3	4	5
1	P	ш	Т	R	K
2	L	ı	С	Α	В
3	D	F	G	Н	М
4	N	0	Q	S	U
5	V	W	X	Υ	Z

OT d o c k e
ř. 3 4 2 1 1
sl. 1 2 3 5 2

Zašifrovaná první pětice:

34	21	11	23	52
Ξ	L	Р	U	W

Směr dešifrování:

- Podobný princip má šifra Trifid [1].
- o Zápis do trojrozměrné tabulky o 27 prvcích (tři tabulky vrstvy o rozměru 3x3).
- Každý znak je reprezentován trojicí čísel (č.vrstvy, řádek, sloupec).

Polygrafické substituce: Hillova Šifra

- Matematická šifra
- Znaky abecedy převedeme na čísla 0 25
- Klíčem je náhodně zvolená matice *A*:
 - je stupně n (n řádků, n sloupců)
 - o nesmí být singulární => determinant nesmí být roven nule
- \circ Text rozdělíme do bloků o délce $m{n}$ a převedeme na číselné vektory $m{v}$

Polygrafické substituce: Hillova Šifra

- Matice A a vektor v
 - Abeceda:

Α	В	U	D	Ш	F	G	Ι	—	っ	K	لــ	Μ	Z	0	Р	Q	R	S	H	כ	>	W	Χ	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

o Klíč:

$$\begin{pmatrix} F & A & I \\ U & T & B \\ K & R & Y \end{pmatrix} \approx \begin{pmatrix} 5 & 0 & 8 \\ 20 & 19 & 1 \\ 10 & 17 & 24 \end{pmatrix} = A$$

OT: EVA
$$\approx \begin{pmatrix} 4 \\ 21 \\ 0 \end{pmatrix} = v$$

Polygrafické substituce: Hillova Šifra

• Determinant matice A

$$A = \begin{pmatrix} 5 & 0 & 8 \\ 20 & 19 & 1 \\ 10 & 17 & 24 \end{pmatrix}, \det A = 3395 \Rightarrow \det A \neq 0$$

Nejedná se o singulární matici => řádky matice jsou lineárně nezávislé => můžeme pokračovat

Zdroj výpočtu: [2]

Postup

- \circ Nejprve provedeme výpočet $A \cdot v$ (násobení matice vektorem)
- \circ Následně provedeme ($A \cdot v$) mod 26 (aplikace modulární aritmetiky)

Hillova šifra – výpočet $A \cdot v$

Výpočet

$$A \cdot v = \begin{pmatrix} 5 & 0 & 8 \\ 20 & 19 & 1 \\ 10 & 17 & 24 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 21 \\ 0 \end{pmatrix} = \begin{pmatrix} 20 \\ 479 \\ 397 \end{pmatrix}$$

o aplikace mod 26

$$(A \cdot v) \mod 26 = {20 \choose 479} \mod 26 = {20 \choose 11 \choose 7}$$

$$\check{S}T = \begin{pmatrix} 20\\11\\7 \end{pmatrix} = \begin{pmatrix} U\\L\\H \end{pmatrix}$$

20 mod 26 = 20 479 mod 26 = 11 397 mod 26= 7

Postup

- \circ Nejprve provedeme výpočet $A^{(-1)} \cdot št$ (násobení inverzní matice vektorem)
- \circ Následně provedeme ($A \cdot št$) mod 26 (aplikace modulární aritmetiky)

○ inverzní matice A^(-1)

Pro inverzní matici platí:

$$A^{-1} \cdot A = I$$
, kde I je jednotková matice

Input:
$$\begin{pmatrix} \frac{439}{3395} & \frac{136}{3395} & -\frac{152}{3395} \\ -\frac{94}{679} & \frac{8}{679} & \frac{31}{679} \\ \frac{30}{679} & -\frac{17}{679} & \frac{19}{679} \end{pmatrix} \cdot \begin{pmatrix} 5 & 0 & 8 \\ 20 & 19 & 1 \\ 10 & 17 & 24 \end{pmatrix}$$
Result:
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 \circ inverzní matice A^{-1}

$$A^{-1} = \begin{pmatrix} \frac{439}{3395} & \frac{136}{3395} & -\frac{152}{3395} \\ -\frac{94}{679} & \frac{8}{679} & \frac{31}{679} \\ \frac{30}{679} & -\frac{17}{679} & \frac{19}{679} \end{pmatrix}$$

Vytkneme společnou část všech prvků matice:

$$\begin{pmatrix} \frac{439}{3395} & \frac{136}{3395} & -\frac{152}{3395} \\ -\frac{94}{679} & \frac{8}{679} & \frac{31}{679} \\ \frac{30}{679} & -\frac{17}{679} & \frac{19}{679} \end{pmatrix} = \frac{1}{3395} \begin{pmatrix} 439 & 136 & -152 \\ -470 & 40 & 155 \\ 150 & -85 & 95 \end{pmatrix}$$

\circ úprava A^{-1}

$$A^{-1} = \frac{1}{3395} \begin{pmatrix} 439 & 136 & -152 \\ -470 & 40 & 155 \\ 150 & -85 & 95 \end{pmatrix} = 3395^{-1} \begin{pmatrix} 439 & 136 & -152 \\ -470 & 40 & 155 \\ 150 & -85 & 95 \end{pmatrix} =$$

$$= 7 \begin{pmatrix} 439 & 136 & -152 \\ -470 & 40 & 155 \\ 150 & -85 & 95 \end{pmatrix} = \begin{pmatrix} 3073 & 952 & -1064 \\ -3290 & 280 & 1085 \\ 1050 & -595 & 665 \end{pmatrix}$$

○ Aplikace modulární aritmetiky (mod 26) na inverzní matici A^(-1):

$$A^{-1} \bmod 26 = \begin{pmatrix} 3073 & 952 & -1064 \\ -3290 & 280 & 1085 \\ 1050 & -595 & 665 \end{pmatrix} \bmod 26 = \begin{pmatrix} 5 & 16 & 2 \\ 12 & 20 & 19 \\ 10 & 3 & 15 \end{pmatrix}$$

 \circ výpočet $(A^{-1} \cdot \check{s}t)$ mod 26

$$A^{-1} \cdot \check{\mathbf{s}}t = \begin{pmatrix} 5 & 16 & 2 \\ 12 & 20 & 19 \\ 10 & 3 & 15 \end{pmatrix} \begin{pmatrix} 20 \\ 11 \\ 7 \end{pmatrix} = \begin{pmatrix} 290 \\ 593 \\ 338 \end{pmatrix}$$

Aplikace mod 26:

$$(A^{-1} \cdot \check{s}t) \mod 26 = {290 \choose 593} \mod 26 = {4 \choose 21 \choose 0}$$

o Výsledek:
$$\begin{pmatrix} 4 \\ 21 \\ 0 \end{pmatrix} = \begin{pmatrix} E \\ V \\ A \end{pmatrix}$$

2. Ostatní substituce

Ostatní substituce: Přehled

- o Více šifer za jedno písmeno (Tabulka 4 x 7 jedno a dvojmístné šifry a jiné)
- Autoklíč
- Využití nomenklátorů, klamačů, zkomolenin
- Knižní šifra

Ostatní substituce - Polybiův čtverec

Polybiův čtverec je velmi jednoduchá šifra. Jde pouze o to, seřadit abecedu do čtvercové tabulky 5 × 5 a očísloval její řádky a sloupce.

Každé písmeno původního textu pak nahrazuji dvojice písmen:

- o nejprve číslo řady,
- o pak číslo sloupce.

Ostatní substituce - Polybiův čtverec

Jednoduše se vepíše abeceda s vynecháním háčků, čárek a písmen Ch a W.

Někdy se vynechává Q, méně obvyklou možností je vynechat písmeno J (resp. považovat J a I za stejné písmeno), podobně jako se činí u šifry Playfair.

	1	2	3	4	5
1	A	В	C	D	E
2	F	G	Н	ı	J
3	K	L	М	N	0
4	Р	Q	R	S	T
5	J	٧	X	Υ	Z

Ostatní substituce - Polybiův čtverec

Ostatní Substituce - Tabulka 5 x 10

	1	2	3	4	5	6	7	8	9	0
1	Α	Á	В	С	Č	D	Ď	E	É	Ě
2	F	G	Н	I	Í	J	K	L	М	N
3	Ň	0	Ó	Р	Q	R	Ř	S	Š	Т
4	Ť	U	Ú	Ů	V	W	Х	Υ	Ý	Z
5	Ž	;	"	,	1	•	+	?	!	

Otevřený text: PRAHAOJEKRÁSNÁ

Souřadnice z tabulky: 34 36 11 23 11 50 26 18 50 27 36 12 38 20 12

Ostatní Substituce - Tabulka 4 x 7

		1	2	3	4	5	6
7	Α	В	С	D	E	F	G
8	Н	I	J	K	L	М	N
9	0	Р	Q	R	S	Т	U
0	V	W	X	Υ	Z	1	+

Čísla 0, 7, 8, 9 znamenají řádky!

Otevřený text:

Souřadnice z tabulky:

Z	l	Т	R	Α	М	I	Z	Α	V	0	L	E	J
04	81	95	93	7	85	81	04	7	0	9	84	74	82

Šifrovaný text: **04819 59378 58104 70984 7482**

Ostatní substituce - Autokláv (Autoklíč)

Jedná se o modifikaci Polyalfabetické substituční šifry, jejímž cílem bylo zabránit opakování klíčového slova (tedy slabině).

Existují 2 verze:

- Autokláv OT: Klíčové slovo slouží k "nastartování" substituce, dále se jako klíčové slovo používá samotný otevřený text.
- Autokláv ŠT: Klíčové slovo slouží k "nastartování" substituce, dále se jako klíčové slovo používá samotná šifra.

Ostatní substituce - Autokláv (Autoklíč)

Autokláv "OT"

OT:	Α	Н	0	J	Р	Ε	Р	0
Klíč:	K	L	_	С	Α	Н	0	<u></u>
ŠT:	K	S	W	L	Р	L	D	X

Autokláv "ŠT"

OT:	Α	Ξ	0	う	Р	Е	Р	0
Klíč:	K	L		С	K	S	W	L
ŠT:	K	S	W	L	Z	W	П	Z

Ostatní substituce - SMS šifra

Příklad:

3 33 55 88 5 444 9999 2 7 666 9999 666 777 66 666 7777 8

Ostatní substituce - SMS šifra

- Jednoduchá "Mobilní" šifra
- Substituční šifra
- Každému znaku je přiřazen odpovídající počet stisků alfanumerické klávesnice mobilního telefonu - jako při psaní SMS bez slovníku (T9 a jiné...)
- A = jeden stisk dvojky (tj. A=2)
- E = dva stisky trojky (tj. E=33)
- 0 ...

Seznam odkazů

- [1] HANŽL, Tomáš, Radek PELÁNEK a Ondřej VÝBORNÝ. Šifry a hry s nimi: kolektivní outdoorové hry se šiframi. Praha: Portál, 2007. ISBN 978-80-7367-196-9.
- [2] Wolfram Aplha. [online]. Dostupné z: https://www.wolframalpha.com/
- [3] JANEČEK, Jiří. Odhalená tajemství šifrovacích klíčů minulosti: ruční šifry. Praha: Naše vojsko, 1994. Mozaika (Naše vojsko). ISBN 80-206-0462-6.

Děkuji za pozornost

Strategický projekt UTB ve Zlíně, reg. č. CZ.02.2.69/0.0/0.0/16_015/0002204