Поиск аномалий

Смоляков Дмитрий

Skoltech

Содержание

- 1. Что такое аномалии?
- 2. KDD-99
- 3. Оценка качества
- 4. Методы детектирования аномалий

Дополнительные материалы и презентация https://github.com/sklef/datastart

Что такое аномалии?

Определение аномалии/выброса [Howkins, 1980]

"An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism"

KDD-99

- · Симуляция 9 недель работы U.S. Airforce LAN
- Содержит примеры атак
- Более 7 миллионов записей
- 22 вида атак

Можно выделить три группы признаков

TCP Dump	Экспертные признаки	Окно в 2 секунды
duration	login attempt	serror rate
protocol type	sudo attempt	same srv rate
flag	root login	diff srv rate
etc	etc	etc

Подготовка признаков

- Численные значения нормировались
- · Категориальных признаки кодировались One Hot Encoding

Финальный размер

- Порядка 7млн наблюдений
- Размерность 118

Задача

Задача

Находить атаки, имея на руках только информацию о нормальном функционировании

Решение

- Строим модель детектирования аномалий
- Аномальные наблюдения считаем атаками

Оценка качества

Precision/Recall

Precision =
$$\frac{TP}{TP+FP}$$

Доля верных сигналов тревоги

Recall =
$$\frac{TP}{TP+FN}$$

Доля найденных поломок

F1 =
$$2 \cdot \frac{precision \cdot recall}{precision + recall}$$

Среднее гармоническое precision и recall

$$F\beta = (1 + \beta^2) \cdot \frac{precision \cdot recall}{\beta^2 precision + recall}$$

Взвешенное среднее гармоническое precision и recall

Кривая Precision/Recall

Если алгоритм детектирования аномалий позволяет выдавать степень уверенности, то в зависимости от порога отсечения можно получить разные значение precision и recall

Искусственная разметка

Если данных об аномалиях нет, их можно сгенерировать самому

- Априорные знания об аномалиях можно выразить через их распределение
- Если никаких сведений нет, можно воспользоваться равномерным распределением

Методы детектирования аномалий

Elliptic Envelope

Считаем, что данные из нормального распределения

$$p(x|\mu, \Sigma) = \frac{\exp\left(-\frac{(x-\mu)^T \Sigma^{-1}(x-\mu)}{2}\right)}{(2\pi)^{\frac{n}{2}} det(\Sigma)}$$

Используем робастную оценку ковариационной матрицы

Elliptic Envelope

Elliptic Envelope

Pros:

- Прост в использовании
- Легко интерпретировать

Cons:

- Применим только для унимодальных распределений
- Плохо работает с коллинеарными данными

На каждой итерации производим случайное разбиение по случайному признаку. Чем меньше требуется разбиений, чтобы изолировать наблюдение тем более оно аномально

Время обучения	22s
Время на предсказание	28s
Precision/Recall AUC	0.994

Pros:

- Легко параллелится
- Робастные результаты

Cons:

• Плохо интерпретируем

Оценивает локальную плотность на основе информации о ближайших соседях. Чем отдаленнее точка – тем более она аномальная

Время обучения	1s
Время на предсказание	40min
Precision/Recall AUC	0.984

Pros:

- Нет параметрических предположений
- Хорошо работает для низкоразмерных данных

Cons:

- Страдает от проклятья размерности
- Нужно хранить всю выборку
- Вычислительно сложный

Пытается отделить наблюдения от точки начала координат. Позволяет использовать ядровые методы

Работает только в случае ядер, которые соответствуют отображению на поверхность некоторой гиперсферы

Время обучения	1h 40m
Время на предсказание	1h
Precision/Recall AUC	0.999

Pros:

- Теоретическая обоснованность
- Нет явных предположений о распределении
- Можно применять не только к объектам из \mathbb{R}^n
- Результат сильно зависит от качества ядер

Cons:

- Вычислительно сложный
- Приходится хранить часть выборки
- Результат сильно зависит от качества ядер

PCA

- Используем линейный метод снижения размерности
- Считаем расстояние от точек до линейного подпространства

PCA

Время обучения	2.96c
Время на предсказание	2.02c
Precision/Recall AUC	0.996

Pro:

- Хорошо работает на высокоразмерных данных
- Эффективно считается
- Хорошо интерпретируется

Cons:

- Неявно подразумевает нормальное распределение
- Не работает для нелинейных случаев

SVDD+

Детектирования аномалий с применением привилегированной информации

- Обычные наблюдения $(x_1, ..., x_l)$
- Дополнительные наблюдения (x_1^*, \dots, x_l^*)
- Обучение происходит на парах (x_i, x_i^*)
- \cdot Детектирование происходит только на (x_i)

Можно выделить три группы признаков

TCP Dump	Экспертные признаки	Окно в 2 секунды
duration	login attempt	serror rate
protocol type	sudo attempt	same srv rate
flag	root login	diff srv rate
etc	etc	etc

SVDD+

Данные

- Базовые признаки использовались, как основное пространство
- Признаки на основе окна и советов экспертов использовались в качестве привилегированного пространства

Параметры алгоритма

- · Для всех экспериментов фиксируем u=0.1
- Использовалась гауссово ядро

Оценка результатов

- Использовалась перекрестная проверка по пяти блокам
- · Считаем AUC Precision/Recall

Результаты

