Granice za Remzijeve brojeve i primene

Mihailo Milenković, Dejan Gjer, Bojana Čakarević15.1.2020

Sadržaj

1	Predgovor	3
2	$\mathbf{U}\mathbf{vod}$	3
3	Gornja ograničenja za Remzijeve brojeve	5
4	Donja ograničenja za Remzijeve brojeve	8
5	Primene Remzijeve teoreme	12

1 Predgovor

2 Uvod

Remzijeva teorija je oblast matematike koja se bavi ulsovima pod kojim se red mora pojaviti. Najjednostavnija teorema ovog tipa jeste Dirihleov princip:

Definicija 2.1. Za prirodan broj n > 0 definišemo

$$\underline{n} := \{1, 2, \dots, n\}.$$

Neka je dat skup X i neka je $r \in \mathbb{N} \setminus \{0\}$.

Bojenje skupa X sa r boja je funkcija $\chi:X\to r$ Podskup $Y\subseteq X$ nazivano monohromatskim (u odnosu na χ), ako je

$$\forall y_1, y_2 : \chi(y_1) = \chi(y_2)$$

Teorema 2.1 (Dirihleov Princip). Neka je A konačan skup i neka je 0 < r < |A|. Ako svaki element skupa A obojimo sa jednom od datih r boja, onda su najmanje dva elementa objena istom bojom.

Dirihleov princip se može dodatno uopštiti u sledeće tvrđenje:

Teorema 2.2 (Uopšteni Dirihleov princip). Neka su dati $n, r \in \mathbb{N}$, kao i $l_1, \ldots, l_r \in \mathbb{N} \setminus \{0\}$, gde je

$$l_1 + \ldots + l_r \le n + r - 1.$$

Tada za svako bojenje $\chi:\underline{n}\to\underline{r}$ postoje $i\in\underline{r}$,
takvo da važi $|\chi^{-1}(i)|\geq l_i$

Dirihleov princip i uopšteni Dirihleov princip služe kao osnova za sve teoreme Remzijevog tipa.

Osnovna teorema Remzijeve teorije je Remzijeva teorema za grafove:

Definicija 2.2. Za skup X i prirodan broj k > 0 definišemo

$$[X]^k := \{Y \subseteq X | |Y| = k\}.$$

Pišemo

$$n \to (l_1, \ldots, l_r)$$

ako za svako bojenje $\chi:[\underline{n}]^2$ postoje $i\in\underline{r}$ i $T\subseteq\underline{n}$ sa $|T|=l_i$, takvi da je $[T]^2$ u odnosu na χ i-monohromatsko.

Teorema 2.3 (Remzijeva Teorema za grafove). Neka $l_1, l_2 \in \mathbb{N}$. Tada postoji n, takvo da važi

$$n \to (l_1, l_2)$$

Definicija 2.3. Najmanji broj \boldsymbol{n} za koji važi

$$n \rightarrow (l_1, l_2)$$

naziva se Remzijev broj i označavamo ga sa $R(l_1, l_2)$.

Remzijeva teorema se može proširiti na bojenja grafova sa više boja, kao i na hipergrafove itd...

Tačne vrednosti Remzijevih brojeva se teško računaju i uglavnom su samo ograničeni intervalima. Trenutno je poznato 9 Remzijevih brojeva za $l_1, l_2 > 2$.

$R(l_1, l_2)$	1	2	3	
1	1	1	1	1
2	1	2	3	
3	1	3		
	1			

Tablica 1: $R(l_{1,2} = 1, 2$

$R(l_1, l_2)$	3	4	5	6
3	6	9	14	18
4	9	18		
5	14			
6	18			

Tablica 2: $R(l_{1,2} > 2)$

Teorema 2.4.

$$R(l_1, 1) = (1, l_2) = 1$$

Teorema 2.5.

$$R(l,2) = R(2,l) = l$$

3 Gornja ograničenja za Remzijeve brojeve

Teorema 3.1. Dirihleov opšti princip govori o tome da ako su dati $n, k \in \mathbb{N} \setminus \{0\}$ gde je $l_1 + l_2, \ldots, +l_k \leq n + k - 1$, za svako bojenje $\varphi : n \to r$ postoji $i \in k$, takvo da važi $|\varphi^{-1} \geq l_i|$.

Dokaz.

$$n, k \in \mathbb{N} \setminus \{0\}$$
$$l_1, l_2, \dots, l_k \in \mathbb{N} \setminus \{0\}$$
$$l_1, l_2, \dots, l_k \le n + k - 1$$

Iz ovoga sledi $\forall \varphi : (1, 2, ..., n) \to (1, 2, ..., k)(\exists i)(|\varphi^{-1}(i) \ge l_i|)$. Ako pretpostavimo suprotno, odnosno da ovo važi za svako i dobijamo izraz:

$$l_i \ge |\varphi^{-1}(i)| + 1$$

$$\sum_{i=1}^{k} l_i \ge n + k$$

Sada bi trebalo da sledi n+k>n+k-1 što je kontradikcija. Time je Dirihleov princip dokazan. \Box

Teorema 3.2.

$$R(l_1, l_2) \le R(l_2 - 1, l_1) + R(l_2, l_1 - 1)$$

Dokaz. Iz (...) znamo da $R(2,l_1)=l_1$ i $R(2,l_2)=l_2$. Koristeći induciju potvrđujemo da ovo važi i za svako t i s takvo da $t\leq l_2$ i $s< l_2$ ili $s\leq l_1$ i $t< l_2$.

Pretpostavimo sada suprotno, tj. da važi tvrđenje $R(l_1, l_2) \ge R(l_2 - 1, l_1) + R(l_2, l_1 - 1)$, odnosno da postoji graf sa $R(l_1, l_2)$ čvorova koji ne sadrži podgraf izomorfan sa K_{l_2} niti podgraf izomorfan sa K_{l_1} .

Neka je u proizvoljan broj čvorova grafa G, broj njemu susednih čvorova označićemo sa N, a broj nesusednih čvorova biće M. To se drugačije može zapisati kao $M=V(G)-N_G(u)-u$. Kako ne bi važilo da graf G sadrži podgraf izomorfan sa K_{l_2-1} mora da važi $N \leq R(l_2-1,l_1)-1$, a samim tim i $M \leq R(l_2,l_1-1)-1$. Ukupan broj čvorova n jednak je zbiru navedenog (čvora u, kao i njegovih susednih i nesusednih čvorova).

$$n = N + M + 1$$

$$n = R(l_2 - 1, l_1) - 1 + R(l_2, l_1 - 1) - 1 + 1$$

$$n = R(l_2 - 1, l_1) + R(l_2, l_1 - 1) - 1$$

Dobijeni izraz je kontradikcija, te sledi tačno tvrđenje ove teoreme. □

Teorema 3.3. Ako su $R(l_2, l_1 - 1)$ i $R(l_2 - 1, l_1)$ parni brojevi, važi stroga nejednakost, odnosno:

$$R(l_1, l_2) < R(l_2 - 1, l_1) + R(l_2, l_1 - 1)$$

Dokaz. Uzmimo da su $R(l_1-1,l_2)$ i $R(l_1,l_2-1)$ parni brojevi. Posmatramo graf G sa n+1 čvorova, odnosno $n=R(l_2-1,l_1)+R(l_2,l_1-1)-1$. Treba pokazati da postoji neki podgraf M koji ima l_2 medjusobno povezanih ili podgraf N sa l_1 medjusobno nepovezanih čvorova. Broj čvorova neparnog stepena je u svakom grafu paran, a kako su $R(l_2-1,l_2)$ i $R(l_2,l_1-1)$ parni brojevi, n je neparan. Iz toga zaključujemo da graf G sadrži barem jedan čvor parnog stepena. Uzmimo da je to proizvoljan čvor v. Ako je njegov stepen veći ili jednak $R(l_2-1,l_1)$ onda neki podgraf indukovan njegovim susednim čvorovima može sadržati novi podgraf sa l_2-1 povezanih čvorova (Ako njima dodamo povezani v čvor, biće ih l_2 , te dobijamo naš podrgaf M), ili l nepovezanih čvorova (što je zapravo podgraf N).

U suprotnom, ako je stepen ovih čvorova strogo manji do $R(l_2-1,l_1)$, onda važi i $d_G(V) \leq R(l_2-1,l_1)-2$. Kada toj činjenici dodamo da je $n=R(l_2-1,l_1)+R(l_2,l_1-1)-1$ sledi da je broj nesusednih čvorova čvora v veći ili jednak sa $R(l_2,l_1-1)$. Iz ove nejednakosti možemo zaključiti da podgraf indukovan ovim čvorovima sadrži ili gorepomenuti podgraf M (jer sadrži l_2 povezanih čvorova) ili podrgaf sa l_1-1 nepovezanih čvorova. Ukoliko njemu dodamo čvor v koji nije povezan, dobijamo l_1 nepovezanih čvorova, odnosno podgraf N.

Time smo dokazali pretpostavku da sko su brojevi $R(l_1-1,l_2)$ i $R(l_1,l_2-1)$ parni, onda svaki graf sa n+1 čvorova sadrži ili M ili N podgraf. Iz toga sledi stroga nejednakost $R(l_1,l_2) < R(l_2-1,l_1) + R(l_2,l_1-1)$ jer je $R(l_1,l_2) \le n$.

Teorema 3.4.

$$R(l_1, l_2) \le \binom{l_1 + l_2 - 2}{l_1 - 1}$$

Dokaz. Kod ovog dokaza koristićemo indukciju. Naša baza biće da dokažemo da nejednakost važi za $l_1=l_2=2,$ odnosno

$$R(2,2) \le \binom{2+2-2}{2-1}$$
$$\binom{2 \le 2}{1}$$
$$2 \le 2$$

Pretpostavimo sada da važi $\forall (l_1, l_2)$ pri čemu je $l_1 + l_2 \geq 4$.

$$l_1, l_2 \ge 2$$

$$l_1 + l_2 = n + 1$$

$$R(l_1, l_2) \le R(l - 1, l_2) + R(l_1, l_2 - 1)$$

$$R(l_1, l_2) \le {l_1 - 1 + l_2 - 2 \choose l_1 - 1 - 1} + {l_1 + l_2 - 1 - 2 \choose l_1 - 1}$$

$$R(l_1, l_2) \le {l_1 + l_2 - 3 \choose l_1 - 2} + {l_1 + l_2 - 3 \choose l_1 - 1}$$

$$R(l_1, l_2) \le \binom{l_1 + l_2 - 2}{l_1 - 1}$$

Prvu nejednakost dokazali smo , a samu jednakost upotreom Paskalovog identiteta $\binom{n}{l_2}=\binom{n-1}{l_2-1}+\binom{n-1}{l_2}.$

Teorema 3.5. Za $k \geq 2$ važi

$$R(l_1, l_2, ..., l_k) \le 2 + \sum_{i=1}^{k} (R(l_1, l_2, ..., l_{i-1}, l_i - 1, l_{i+1}, ..., l_k) - 1)$$

Neka su $l_1, l_2, l_3, ..., l_k \in \mathbb{N}$. Tada postoji neki Remzijev broj, neko n, za koje važi $n \to (l_1, l_2, l_3, ..., l_k)$ odnosno da postoji kompletan graf G obojen sa k boja, pri čemu je l_i grana obojena istom bojom za neko $1 \le i \le k$. Najmanje n za koje ovo važi označićemo kao $R(l)_k$.

Dokaz. Ova teorema dokazuje se slično kao teorema 2.1. samo što sada imamo kboja. Neka je

$$r_1 = R(l_1 - 1, l_2, \dots, l_k)$$

$$r_2 = R(l_1, l_2 - 1, \dots, l_k)$$

$$\vdots$$

$$r_k = R(l_1, l_2, \dots, l_k - 1)$$

Odredimo n za koje sigurno važi da je

$$n \to (l_1, l_2, \dots, l_k)$$

Posmatrajmo proizvoljan graf G sa n čvorova u kojem su grane obojene u k boja. U njemu uočimo proizvoljan čvor u. Tada u ima n-1 suseda sa kojima je povezan granama različitih boja. Odredimo koje vrednosti n zadovoljavaju osobinu da među n-1 suseda čvora u sigurno možemo pronaći r_1 čvorova povezanih sa u u prvoj boji ili r_2 čvorova povezanih sa u u drugoj boji ili ... ili r_k čvorova povezanih sa u u k-toj boji. Na osnovu uopštenog Dirihleovog principa dobijamo da n zadovoljava nejednakost

$$r_1 + r_2 + \dots r_k \le (n-1) + k - 1$$
 (1)

Ako je ispunjen ovaj uslov sigurno možemo pronaći bar jednu boju i tako da je čvor u povezan sa bar r_i suseda u toj boji. Obeležimo podgraf indukovan sa tih r_i čvorova sa H. Ako se u njemu nalazi j-monohromatski K_{l_j} , gde $j \neq i$ onda se on nalazi i u G. U suprotnom mora se pojaviti K_{l_i-1} koji dodavanjem čvora u u grafu G postaje K_{l_i} . Na osnovu ovoga zaključujemo da je $n \to (l_1, l_2, \ldots, l_k)$, a samim tim

$$R(l_1, l_2, \dots, l_k) \le n,$$

gde je najmanje n koje zadovoljava uslove nejednakosti (1)

$$n = 2 - k + r_1 + r_2 + \dots + r_k = 2 + \sum_{i=1}^{k} (r_i - 1)$$

iz čega sledi tražena nejednakost.

4 Donja ograničenja za Remzijeve brojeve

Teorema 4.1. Neka su dati prirodni brojevi n i k, takvi da $n \ge k > 0$. Ako je

$$\binom{n}{k} 2^{1 - \binom{k}{2}} < 1,$$

onda važi R(k,k) > n.

Dokaz. Posmatrajmo proizvoljno bojenje grana grafa K_n u dve boje - crvenu i plavu takvo da je verovatnoća da je grana uv u grafu obojena crvenom bojom jednaka verovatnoći da je obojena plavom bojom i iznosi

$$P(uv \text{ je crvena}) = P(uv \text{ je plava}) = \frac{1}{2}.$$

Prvo ćemo odrediti verovatnoću da je neki k-podskup K_k početnog grafa monohromatski. Sa M_s označimo događaj da je K_k monohromatski. Kako nam od svih mogućih bojenja ovog k-podskupa odgovaraju samo dva gde su sve grane isključivo crvene ili plave dobijamo da je

$$P(M_s) = 2\left(\frac{1}{2}\right)^{\binom{k}{2}} = 2^{1-\binom{k}{2}}.$$

Odredimo sada verovatnoću da se u celom K_n grafu nalazi monohromatski K_k podskup i označimo taj događaj sa A. U celom grafu ima $\binom{n}{k}$ ovakvih podskupova koje ćemo označiti sa S. Ipak pošto događaj da je neki K_k monohromatski nije nezavisan u odnosu na to da su ostali podskupovi S monhromatski dobijamo

$$P(A) = P(\bigcup_{|S|=k} M_S) \le \sum_{|S|=k} P(M_S) = \binom{n}{k} 2^{1-\binom{k}{2}}.$$

Iz ovoga sledi da ako je $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$ onda važi i P(A) < 1, čime dobijamo da pri ovakvim bojenjima grafa K_n postojanje monohromatskog K_k nije garantovano, tj. postoji bojenje koje ga ne sadrži i odatle da je R(k,k) > n.

Posledica 4.1.1. Za svako $k \geq 3$ važi

$$R(k,k) > 2^{\frac{k}{2}}.$$

Dokaz. Ako je $n \geq 2^{\frac{k}{2}}$, gde je n takvo da $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$, dobijamo

$$R(k,k) > n \ge 2^{\frac{k}{2}}.$$

U suprotnom kada je $n < 2^{\frac{k}{2}}$ na osnovu dokaza Teoreme 4.1 imamo:

$$P(\bigcup_{|S|=k} M_S) \le \binom{n}{k} 2^{1-\binom{k}{2}} \le \frac{n^k}{k!} 2^{1-\binom{k}{2}} < \frac{\left(2^{\frac{k}{2}}\right)^k 2^{1-\frac{k(k-1)}{2}}}{k!} = \frac{2^{\frac{k+2}{2}}}{k!}.$$

Sada još treba dokazati da za svako $k \geq 3$ važi $\frac{2^{\frac{k+2}{2}}}{k!} < 1$, tj. $2^{\frac{k+2}{2}} < k!$ i ovo možemo dokazati pomoću matematičke indukcije.

• Baza indukcije Za k = 3 dobijamo

$$2^{\frac{5}{2}} = 5,66 < 6 = 3!$$

- Indukcijska hipoteza Pretpotstavimo da za neko $k \in \mathbb{N}$ važi $2^{\frac{k+2}{2}} < k!$.
- Indukcijski korak

$$2^{\frac{k+3}{2}} = 2^{\frac{k+2}{2}}\sqrt{2} < k!\sqrt{2} < (k+1)k! = (k+1)!$$

Odakle sledi tvrđenje.

Posledica 4.1.2. Za svako $k \in \mathbb{N}$ važi

$$R(k,k) > \frac{1}{e\sqrt{2}}k\sqrt{2^k}$$

Dokaz. Neka je Nnajmanje n za koje važi $\binom{n}{k}2^{1-\binom{k}{2}}\geq 1.$ Tada je

$$R(k,k) \ge N = (N^k)^{\frac{1}{k}} > \left(\frac{N!}{k!(N-k)!}k!\right)^{\frac{1}{k}} = \left(\binom{N}{k}k!\right)^{\frac{1}{k}}$$
$$R(k,k) > \left(2^{\binom{k}{2}-1}k!\right)^{\frac{1}{k}} = 2^{\frac{k}{2}-\frac{1}{k}-\frac{1}{2}}(k!)^{\frac{1}{k}}$$

Sada ćemo iskoristiti Stirlingovu aproksimaciju za faktorijal $k! \sim \left(\frac{k}{e}\right)^k \sqrt{2\pi k}$, kada $k \longrightarrow +\infty$ i činjenicu da je $k! \geq \left(\frac{k}{e}\right)^k \sqrt{2\pi k}$ za svako $k \in \mathbb{N}$. Odatle dobijamo

$$R(k,k) > \frac{k2^{\frac{k}{2}}}{e\sqrt{2}} \left(\left(\frac{\pi}{2}\right)^{\frac{1}{2k}} k^{\frac{1}{2k}} \right)$$

Kako uvek važi $\left(\frac{\pi}{2}\right)^{\frac{1}{2k}}k^{\frac{1}{2k}}>1$ kada uvrstimo to u nejednakost dobijamo

$$R(k,k) > \frac{k2^{\frac{k}{2}}}{e\sqrt{2}}$$

što je i trebalo dokazati.

Teorema 4.2. Neka su dati prirodni brojevi n, k i l, takvi da $n \ge k > 0$ i $n \ge l > 0$. Ako za neki broj $p, 0 \le p \le 1$ važi

$$\binom{n}{k} p^{\binom{k}{2}} + \binom{n}{l} (1-p)^{\binom{l}{2}} < 1$$

onda je R(k, l) > n

Dokaz. Dokaz ove teoreme je sličan dokazu prethodne Teoreme 3.1. Neka je verovatnoća da je proizvoljna grana uv u grafu K_n crvena jednaka p. Tada je verovatnoća da je ona plava jednaka 1-p, pa možemo pisati

$$P(uv \text{ je crvena}) = p, P(uv \text{ je plava}) = 1 - p, \forall uv \in E(K_n)$$

Neka je S potpun k-elementan poskup, a T potpun l-elementan poskup grafa K_n . Označimo sa A_S događaj da je neki podskup S monohromatski crven, a B_T događaj da je poskup T monohromatski plav. Onda je ukupna verovatnoća da u grafu K_n postoji monohromatski obojen K_k u crveno ili K_l u plavo jednaka

$$P\left(\bigcup_{|S|=k} A_S \cup \bigcup_{|T|=l} B_T\right) \le \sum_{|S|=k} P(A_S) + \sum_{|T|=l} P(B_T) \le \binom{n}{k} p^{\binom{k}{2}} + \binom{n}{l} (1-p)^{\binom{l}{2}}$$

Ako postoji p za koji je krajnji izraz manji od 1, onda zaključujemo da postoji K_n koji sadrži potpuno crveni K_k ili potpuno plavi K_l , pa mora biti R(k,l) > n

Teorema 4.3. Neka su dati prirodni brojevi n, m i k tako da je $1 \le k \le n-2$. Tada je

$$R(m,n) \ge R(m,n-k) + R(m,k+1) - 1.$$

Dokaz. Neka je $r_1=R(m,n-k)$ i $r_2=R(m,k+1)$ i bez umanjenja opštosti prva boja crvena, a druga plava. Posmatrajmo grafove $G_1=K_{r_1-1}$ i $G_2=K_{r_2-1}$, takve da su im sve grane obojene u crvenu ili plavu boju i da G_1 ne sadrži nijedan crveni K_m i nijedan plavi K_{n-k} , a G_2 ne sadrži nijedan crveni K_m ni plavi K_{k+1} podgraf. Primetimo da na osnovu definicije Remzijevih brojeva ovakvi grafovi siguro postoje. Neka je $G=G_1 \nabla G_2$, tako da svaku granu uv, gde $u \in V(G_1)$ i $v \in V(G_2)$ obojimo u plavo. Sada vidimo da je $G=K_{r_1+r_2-2}$ i kako su sve dodate grane između grafova G_1 i G_2 plave, jasno je da G ne sadrži crveni K_m . Sa druge strane najveći monohromatski plavi kompletan podgraf nema više od (n-k-1)+(k+1-1)=n-1 čvorova, pa graf G sigurno ne sadrži ni plavi K_n . Odavde sledi $R(m,n)>r_1+r_2-2$ odakle dobijamo traženu nejednakost.

Posledica 4.3.1. Neka su dati prirodni brojevi m i $n \geq 3$. Tada je

$$R(m,n) > R(m,n-1) + m - 1.$$

Dokaz. Direktnom zamenom k=1 u prethodnoj teoremi dobijamo izraz.

Teorema 4.4. Neka su dati prirodni brojevi $m, n \geq 2$. Tada važi

$$R(m,n) > R(m,n-1) + 2m - 3.$$

Dokaz. Neka je r=R(m,n-1) i $G_1=K_{r-1}$ takav da ne sadrži crveni K_m i plavi K_{n-1} . Dokažimo da G_1 sigurno sadrži K_{m-1} . Pretpotstavimo suprotno. Tada u G_1 možemo dodati čvor u i povezati ga sa svima ostalima crvenom bojom. Neka je k takvo da je K_k najveći monohromatski crven podgraf grafa G_1 . Tada ako mu dodamo čvor u on postaje K_{k+1} . Ako je k < m-1 tj. k+1 < m onda graf nastao dodavanjem čvora u na ovaj način ima r čvorova i ne sadrži ni crveni K_m ni plavi K_{n-1} , što je kontradikcija sa izborom r.

U daljem delu dokaza koristićemo samo činjenicu da onda postoji i crven K_{m-2} . Obeležimo njegove čvorove sa u_1,u_2,\ldots,u_{m-2} . Obeležimo sada sa G_2 graf koji nastaje dodavanjem još m-2 čvorova v_1,v_2,\ldots,v_{m-2} , tako da G_2 bude K_{r+m-3} i gde su nove dodate grane incidentne sa v čvorovima obojene na sledeći način. Za svako i povezaćemo u_i i v_i plavom granom, a za svako $i\neq j$ u_i i v_j povežemo crveno, i v_i sa v_j takođe crveno. Za svako $x\in V(G_1)$ i $x\notin \{u_1,u_2,\ldots,u_{m-2}\}$ povežimo v_i i x istom bojom kao i što je grana xu_i . Na osnovu ovog bojenja jasno je da se neko v_i može nalaziti u nekom crvenom monohromatskom kompletnom podgrafu G_2 akko se na njegovom mestu u G_1 nalazio u_i . Pošto je u_iv_i plavo oni se zajedno ne mogu nalaziti u njemu pa G_2 ne sadrži crveni K_m . Sa druge strane se K_{n-1} može pojaviti. Jasno je da on mora sadržati bar jedan od čvorova iz $\{v_1,v_2,\ldots,v_{m-2}\}$, ali pošto su svaka dva čvora iz tog skupa povezana crveno, dobijamo da svaki K_{n-1} mora sadržati tačno jedan čvor v_i i njegov parnjak u_i .

Konstruišimo sada graf G_3 dodavanjem još m-1 čvorova $w_1, w_2, \ldots, w_{m-1}$ u graf G_2 koji su povezani na sledeći način. Za svako $i \neq j$ $w_i w_j$ je crveno, $w_i y$ je plavo za svako y koje nije u_j, v_j ili w_j . Za svako i i j $u_i w_j$ je crveno za $i \geq j$, dok je u suprotnom plavo. Sa druge strane bojimo $v_i w_j$ crveno za i < j, a u suprotnom u plavo. Da bismo završili dokaz potrebno je još pokazati da ovako dobijeni graf $G_3 = K_{r+2m-4}$ ne sadrži crveni K_m ni plavi K_n .

Pretpotstavimo suprotno, prvo da postoji crveni K_m . Tada se u njemu mora nalaziti bar jedan w_i , jer G_2 ne sadrži takav podgraf. Kako je svaki w_i povezan plavo sa svakim y koje nije među u i v čvorovima, sledi da se K_m sastoji isključivo od njih i w čvorova. Neka je k indeks najmanjeg, a l indeks najvećeg w čvora u K_m . Tada se u posmatranom K_m nalazi ne više od l-k+1 w čvorova. Pored toga svako u_i , mora ispunjavati uslov $i \geq l$, a svako v_i , uslov i < k. Zato dobijamo da je maksimalan broj čvorova u crvenom K_m jednak (l-k+1)+(m-1-l)+(k-1)=m-1. Kontradikcija.

Pretpotstavimo sada da postoji plavi K_n . Kako su svi w čvorovi povezani međusobno crveno, a bar jedan se mora nalaziti u datom K_n , onda je to tačno jedan w_i . To znači da je posmatrani K_n dobijen dodavanjem čvora w_i na već postojeći K_{n-1} iz G_2 . Ipak već smo dokazali da se u svakom takvom K_{n-1} nalazi tačno jedan par čvorova u_j i v_j . Odatle dobijamo da su i $w_i u_j$ i $w_i v_j$ povezani plavo, što je nemoguće zbog izbora bojenja grana incidentnih sa w_i . Kontradikcija.

Tako dobijamo da postoji K_{r+2m-4} takav da ne sadrži ni crveni K_m ni plavi K_n pa mora važiti $R(m,n) \geq R(m,n-1) + 2m - 3$.

5 Primene Remzijeve teoreme

Teorema 5.1. Za svako $k \in \mathbb{N} \setminus \{0\}$ postoji neko $n_0 \in \mathbb{N}$, takvo da za svako bojenje $\chi : n \to k$ postoje brojevi $x, y, z \in n$ sa osobinom

$$x + y = z$$
 i $\chi(x) = \chi(y) = \chi(z)$

Dokaz. Neka je $n\in\mathbb{N},\,n+1\geq R(3)_k=\underbrace{(3,3,\ldots,3)}_{\text{k puta}}.$ Tada ono indukuje sledeće

bojenje:

$$\chi^*: [\underline{n+1}]^2 \to \underline{k}: \{i,j\} \mapsto \chi(|i-j|)$$

Zbog $n+1 \to \underbrace{(3,3,\ldots,3)}_{\text{k puta}}$, postoje i_1,i_2 i i_3 obojeni istom bojom, odnosno

$$\chi^*(\{i_1, i_2\}) = \chi^*(\{i_1, i_3\}) = \chi^*(\{i_2, i_3\})$$
. Neka je:

$$x := i_1 - i_2, \ y := i_2 - i_3 \ i \ z := i_1 - i_3$$

Imamo
$$x, y, z \in \{1, ..., n\}$$
 i $x - y = i_1 - i_2 + i_2 - i_3 = i_1 - i_3 = z$.

Teorema 5.2. Za sve $m \in \mathbb{N} \setminus \{0\}$ postoji neko $n_0 \in \mathbb{N}$, takvo da za sve proste brojeve $p > n_0$ jednačina

$$x^m + y^m \equiv z^m \pmod{p}$$

ima netrivijalna rešenja. (Rešenje je trvijalno ako $x \cdot y \cdot z \equiv 0 \pmod{p}$)

Dokaz. Neka je $n_0 = R(3)_m + 1$. Neka je g generator grupe \mathbb{Z}_p^* (g postoji zbog cikličnosti grupe \mathbb{Z}_p^*). Svaki elemenat $x \in \mathbb{Z}_p^*$ možemo zapisati x kao g^a . Imamo a = mj + i, za $0 \le i < m$, tako da je $x = g^{mj+i}$. Posmatrajmo bojenje koje boji elemenat x skupa \mathbb{Z}_p^* u boju i ako je $x = g^{mj+i}$. Na osnovu Šurove teoreme (5.1), postoje a, b i c obojeni istom bojom, takvi da važi a + b = c, odnoso eksponenti a, b i c su kongrueni po modulu m. Dakle,

$$q^{mj_a+i} + q^{mj_b+i} = q^{mj_c+i}$$

Neka su $x=g^{j_a},\,y=g^{j_b}$ i $z=g^{j_c}.$ Množenjem gornje jednačine sa g^{-i} dobijamo $x^m+y^m=z^m$

Teorema 5.3. Za svaki prirodan broj $n \geq 3$ postoji broj N(n) takav da bilo koji skup od bar N tačaka u ravni u opštem položaju sadrži konveksan n-tougao

Dokaz. Za n=4 dokazaćemo da N=5 zadovoljava uslove. Posmatrajmo 5 tačaka A,B,C,DiE. Ako je najmanji konveksni mnogougao petougao ili četvorougao, dokaz je trivijalan. U suprotnom, neka je najmanji takav mnogougao

trouga
o $ABC.\ D$ i Ese onda nalaze unutar $ABC.\ 2$ tačke o
dA,Bi Cse moraju nalaziti sa jedne strane prave
 DE. Neka su to Ai C. Tada je
 ACDEtraženi četvorougao.

Neka je X skup od bar $R_4(n,5)$ tačaka u opštem položaju. Na osnovu Remzijeve teoreme za hipergrafove $(\ref{eq:constraint})$ znamo da je ovaj broj konačan. Obojimo sve četvoročlane podskupove tačaka u plavo ako je četvorougao koje obrazuju konveksan ili u crveno ako je konkavan. Pošto ima ukupno $R_4(n,5)$ tačaka, mora postojati ili n-točlani skup tačaka čiji su svi četvoročlani podskupovi plave boje (konveksni) ili petočlani skup tačaka čiji su svi četvoročlani podskupovi crvene boje. Dokazali smo da među 5 tačaka u opštem položaju mora postojati konveksan četvorougao, dakle mora postojati n-točlani skup tačaka tako da su svi četvorouglovi koje oni obrazuju knoveksni, odnosno konveksan n-toguao od n tačaka. Dakle traženi N postoji i važi $N \leq R_4(n,5)$

Definicija 5.1. Polugrupa **S** je uređen par (S, \cdot) , takav da važi

$$\cdot: S \times S \to S$$
 i $\forall x, y, z \in S: x \cdot (y \cdot z) = (x \cdot y) \cdot z$.

S je grupa ako dodatno važi:

$$\exists e \in S \ \forall s \in S : e \cdot s = s \cdot e = s \quad \mathbf{i}$$

$$\forall s \in S \ \exists t \in S : s \cdot t = t \cdot s = e$$

Definicija 5.2. Element s polugrupe $S = (S, \cdot)$ je idempotentan, ako je $s \cdot s = s$

Teorema 5.4. Neka je $\mathbf{S}=(S,\cdot)$ konačna polugrupa. Tada \mathbf{S} sadrži bar jedan idempotentan element.

Dokaz. Neka je S konačna polugrupa čiji je konačan generišući skup A. Izaberimo beskonačnu reč $a_1a_2\ldots$ nad A. Posmatrajmo bojenje grafa $0,1,2,\ldots$ koje boji granu izmedju i i j, $i \leq j$ u sliku $a_{i+1}\ldots a_j$ u S. Na osnovu Remzijeve teoreme za beskonačne grafove $(\ref{eq:short})$, moraju postojati i < j < k izmedju kojih se nalaze grane iste boje, odnosno

$$a_{i+1} \dots a_j = a_{j+1} \dots a_k = a_{i+1} \dots a_k = a_{i+1} \dots a_j \cdot a_{j+1} \dots a_k = a_{i+1} \dots a_j \cdot a_{i+1} \dots a_j$$

Dakle, elemenat $a_{i+1} \dots a_j$ je idempotentan.

Literatura

- [1] M. Aigner, G. M. Ziegler. Proofs from The BOOK. Springer, 1998.
- [2] R. L. Graham, J. Nešetřil, S. Butler. The Mathematics of Paul Erdős II. Springer, 1990.
- [3] Chung, F.R.K., R.L. Graham, R.M. Wilson. A survey of Bounds for Classical Ramsey Numbers Journal of graph theory, 1989.
- [4] J.G.Kalbfleisch. Upper Bounds for Some Ramsey Numbers Journal of combinatorial theory, 1967.
- [5] P. Erdos G. Szekeresz A combinatorial problem in geometry Compositio Mathematica, tome 2, 1935
- [6] M. Steed. Some theorems and applications of Ramsey Theory