SATUAN ACARA PERKULIAHAN PERANCANGAN DAN ANALISIS ALGORITMA ** (S1/TEKNIK INFORMATIKA) PTA 2010/2011

KODE:...../3 SKS

Pertemuan	Pokok Bahasan dan TIU	Sub Pokok Bahasan dan TIK	Teknik	Media	Tugas
			Pembelajaran	Pembelajaran	
1	Pendahuluan TIU: Penjelasan mengenai ruang lingkup mata kuliah, dan kompetensi mata kuliah		Tatap Muka	Papan Tulis dan OHP	
2	Teori Analisis Algoritma TIU: Mahasiswa mampu membuat algoritma yang baik	 2.1. Definisi teori algoritma 2.2. Kriteria algoritma yang baik TIK: Mahasiswa memahami pengertian algoritma untuk digunakan sebagai penyelesaian suatu masalah Mahasiwa memahami kriteria algoritma yang baik Mahasiswa memahami kegunaan dari analisis algoritma 	Tatap muka dan diskusi	Papan Tulis dan OHP	Latihan soal: Membuat algoritma yang memenuhi kriteria algoritma yang baik
3	Kompleksitas Waktu (time comlplexity) TIU: Mahasiswa mengetahui macam-macam kompleksitas waktu	3.1. Best case 3.2. Worst case 3.3. Average case TIK: Mahasiswa mampu menentukan best case, worst case dan average case dari suatu algoritma	Tatap muka dan post test	Papan Tulis dan OHP	Latihan soal : diberikan contoh algoritma • Menganalisis komplesitas waktunya berdasarkan best case, average case dan worst case
4	Notasi asimtotik TIU : Mahasiswa mampu	4.1. Notasi BIG OH 4.2. Notasi Omega 4.3. Notasi Tetha	Tatap muka dan post test	Papan Tulis dan OHP	Latihan soal : diberikan contoh algoritma

	menjelaskkan teori kompleksitas asymtotik	TIK : Mahasiswa mampu menentukan kompleksitas asymtotik dari suatu algoritma			Menganalisis komplesitas waktu asimtotik dari contoh algoritma yang ada
5 & 6	Strategi Algoritma TIU: Mahasiswa mampu memahami konsep strategi algoritma yang didasarkan pada penyelesaian solusi langsung	 Strategi solusi langsung Algoritma Brute Force Algoritma Greedy Implementasi Algorithm Greedy pada aplikasi Game Sederhana (misal: Othello) TIK: Mahasiswa mampu membedakan karakteristik dari algoritma brute Force dan Greedy Mahasiswa mampu menerapkan algoritma Brute Force dan Greedy ke dalam suatu kasus 	Tatap muka dan diskusi	Papan Tulis dan OHP	Membuat kelompok diskusi: • Mencari dan membahas suatu kasus yang menggunakan algoritma Greedy dan Brute Force • Menganalisis kompleksitas waktu dari kasus yang ada • Menganalisa algoritma Greedy pada Game Technology (misal: game Othello)
6 & 7	Strategi Algoritma TIU: Mahasiswa mampu memahami konsep strategi algoritma yang didasarkan pada pencarian ruang status	Strategi berbasis pencarian pada ruang status 6.1. Pengertian Teknik Depth First Search (DFS) 6.2. Pengertian Teknik Breadth First Search (BFS)	Tatap muka dan diskusi	Papan Tulis dan OHP	Membuat kelompok diskusi: • Mencari dan membahas suatu kasus yang menggunakan

mengimp	va mampu olementasikan konsep aplikasi game gy	 7.1. Algoritma Backtracking 7.2. Algoritma Branch and Bound 7.3. Implementasi Teknik BFS dan DFS pada aplikasi Game Technology TIK: Mahasiswa mampu membedakan teknik DFS dan BFS Mahasiswa mampu membedakan karakteristik dari algoritma Backtracking dan Branch and Bound Mahasiswa mampu menerapkan algoritma Backtracking dan Branch and Bound ke dalam suatu kasus pada aplikasi Game 			algoritma Backtracking dan Branch and Bound • Menganalisis kompleksitas waktu dari kasus yang ada • Membuat game sederhana berdasarkan teori ajar
TIU : Mahasisy memahar algoritma pada pen	Algoritma va mampu ni konsep strategi n yang didasarkan yelesaian solusi atas- op-down)	Strategi solusi atas-bawah (top-down) Algoritma Divide and Conquer TIK: Mahasiswa mampu mengenal karakteristik dari algoritma Divide and Conquer Mahasiswa mampu menerapkan algoritma Divide and Conquer kedalam suatu kasus	Tatap muka dan d∖iskusi	Papan Tulis dan OHP	Membuat kelompok diskusi: • Mencari dan membahas suatu kasus yang menggunakan algoritma Divide and Conquer • Menganalisis kompleksitas waktu dari kasus yang ada
10 Strategi	Algoritma	Strategi solusi bawah-atas (bottom-	Tatap muka	Papan Tulis dan OHP	Membuat kelompok

	TIU: Mahasiswa mampu memahami konsep strategi algoritma yang didasarkan pada penyelesaian solusi bawah-atas (bottom-up)	 up) Algoritma Dynamic Programming TIK: Mahasiswa mampu mengenal karakteristik dari algoritma Dinamic Programming Mahasiswa mampu menerapkan algoritma Dinamic Programming kedalam suatu kasus 	dan diskusi		diskusi: • mencari dan membahas suatu kasus yang menggunakan algoritma Dynamic Programming • Menganalisis kompleksitas waktu dari kasus yang ada			
	UJIAN TENGAH SEMESTER (UTS)							
11	Review UTS		Diskusi	Papan Tulis dan OHP				
12	Strategi Implementasi Graph dan Pohon TIU: Mahasiswa mampu memahami konsep implementasi graph dalam masalah Shortest Path	Shortest Path Algoritma: • Algoritma Djikstra • Algoritma Floyd-Warshall TIK: Mahasiswa dapat membandingkan kompleksitas waktu untuk masalah shortest path yang menggunakan algoritma Djikstra dan algoritma Floyd- Warshall	Tatap muka dan post test	Papan Tulis dan OHP	Latihan soal: diberikan contoh masalah shorthest path yang menggunakan algoritma djikstra dan algoritma Floyd-Warshall • Menganalisis kompleksitas waktu dari masing-masing algoritma • Membandingkan			

					kedua algoritma berdasarkan kompleksitas waktunya
13	Strategi Implementasi Graph dan Pohon TIU: Mahasiswa mampu memahami konsep implementasi graph dalam masalah minimum spanning tree	Minimum Spanning Tree: • Algoritma Prim's • Algoritma Kruskal	Tatap muka dan post test	Papan Tulis dan OHP	Latihan soal: diberikan contoh masalah minimum spanning tre yang menggunakan algoritma Prim's dan algoritma Kruskal • Menganalisis kompleksitas waktun dari masing-masing algoritma • Membandingkan kedua algoritma berdasarkan kompleksitas waktunya
UJIAN AKHIR SEMESTER (UAS)					

Referensi:

Utama

I. T. Cormen, C. Leisserson, and R. Rivest, Introduction to Algorithm, MIT Press/MGraw-Hill, 2002

- II. R. Sedgewick, Algorithms in C, 3/e, Part 1-4: Fundamentals, Sorting, Searching and Strings, Prentice Hall, 1998
- III. Robert Setiadi, Algoritma Itu Mudah, PT Prima Infosarana Media Kelompok Gramedia, Jakarta 2008
- IV. Ian Millington. Artificial Intelligence for Games. Morgan Kauffman

Pendukung

- V. R. Sedgewick, Algorithms in C, 3/e, Part 5: Graph Algorithms, Prentice Hall, 2002
- VI. Seymour, Goodman E, Introduction to the Design and Analysis of Algorithm, McGraw-Hill Inc.
- VII. An Introduction to to Game Tree Algorithm http://www.hamedahmadi.com/gametree/