Mikołaj Pełszyk

Analiza porównawcza ryzyka rozumianego jako oszacowanie funkcji warunkowej wariancji przy użyciu modeli klasy GARCH na portfelu kryptowalut

Spis treści

Wstęp	2
Opis zbioru danych	2
Modele GARCH	6
Modele z rodziny GARCH	12
Analiza oszacowań funkcji warunkowej wariancji w okresie in sample	19
Analiza VaR dla okresu out of sample	20
Analiza porównawcza funkcji warunkowej wariancji dla krótszego okresu in sample ora	z modelu VaR
dla dłuższego okresu out of sample	21
Wnioski	22

Wstęp

Celem niniejszej pracy jest analiza porównawcza ryzyka rozumianego jako oszacowanie funkcji warunkowej wariancji przy użyciu modeli klasy GARCH na portfelu, w którego skład wchodzą cztery wybrane kryptowaluty na podstawie zadanych kryteriów a udział procentowy każdej z nich jest proporcjonalny do kapitalizacji rynkowej.

Do analizy zostały użyte modele GARCH oraz jego rozszerzenia GARCH in-Mean oraz GARCH-t. Na podstawie wyników oszacowań parametrów, kryteriów informacyjnych oraz wyników testów na występowanie autokorelacji w kwadratach standaryzowanych reszt zostały wybrane najlepsze modele. W celach porównawczych przedstawione zostaną oszacowania funkcji warunkowej wariancji w okresie *in sample* oraz oszacowania modelu Value at Risk dla okresu *out of sample*.

Opis zbioru danych

Analizowany portfel składa się z czterech kryptowalut wybranych na podstawie inicjałów obu autorów – MONERO, POLYGON, MANA (DECENTRALAND) oraz KUSAMA. Obserwacje dzienne z okresu od 05.09.2020 do 27.05.2022 zostały pobrane ze strony coingecko.com. Do utworzenia *marketcap weighted portfolio* użyte zostały dane o cenie zamknięcia składowych portfela.

Zbudowany portfel na przestrzeni okresu in sample był zyskowny. W dniu 27.05.2022 skumulowany zwrot wyniósł 13,1%.

Na wykresie zwrotów z badanego portfela można zaobserwować zjawisko grupowania wariancji. Okresy o niższej wariancji poprzedzają okresy charakteryzujące się większą wariancją.

ACF kwadratów zwrotów z portfela

Na wykresie ACF kwadratów zwrotów badanej zmiennej można zaobserwować efekt ARCH jeżeli wartości są istotne statystycznie oraz wygasają. Na podstawie przedstawionego wykresu autor stwierdza, że w analizowanych danych występuje efekt ARCH.

Rozkład dziennych zwrotów z portfela

Histogram dziennych zwrotów z portfela przedstawia rozkład leptokurtyczny, co jest typowe dla danych finansowych. Narysowana funkcja gęstości z rozkładu normalnego pozwala zauważyć grubsze ogony rozkładu oraz koncentrację w średniej.

Kolejną metodą, aby określić czy badany rozkład jest rozkładem normalnym jest narysowanie wykresu kwantyl-kwantyl. Na przedstawionym wykresie nie ma wątpliwości, że ogony rozkładu badanej zmiennej odstają od wygenerowanego rozkładu normalnego.

```
Jarque Bera Test
data: na.omit(in_sample$total_r)
X-squared = 1642.8, df = 2, p-value < 2.2e-16</pre>
```

Dodatkowym potwierdzeniem jest wynik testu Jarque-Bera. Hipoteza zerowa o normalności rozkładu jest odrzucana na każdym poziomie istotności.

Metric	Xin_sample.total_r
nobs	600.000000
NAs	1.000000
Minimum	-0.441296
Maximum	0.333545
1. Quartile	-0.024167
3. Quartile	0.034065
Mean	0.004418
Median	0.005424
Sum	2.646441
SE Mean	0.002393
LCL Mean	-0.000281
UCL Mean	0.009117
Variance	0.003429
Stdev	0.058561
Skewness	-0.519372
Kurtosis	8.009214

```
lag Autocorrelation D-W Statistic p-value
 1
        0.19637374
                         1.607094
                                    0.006
 2
        0.15524591
                         1.688915
                                    0.026
 3
        0.10556667
                         1.787941
                                    0.062
                                    0.090
 4
        0.08151536
                         1.835812
 5
        0.37019152
                                    0.002
                         1.258150
 6
        0.07833714
                         1.841650
                                    0.114
 7
        0.03950364
                         1.918997
                                    0.326
 8
        0.04138908
                         1.915003
                                    0.304
9
        0.02547566
                         1.946569
                                    0.522
10
        0.04406623
                         1.909241
                                    0.324
```

Wyniki testu Durbina Watsona dla kwadratów zwrotów wskazują na istotną na poziomie istotności 5% autokorelację 1,2 i 5 rzędu. Na poziomie istotności 10% istotne są jeszcze autokorelacje rzędu 3 i 4.

```
ARCH LM-test; Null hypothesis: no ARCH effects
```

```
data: in_sample$total_r
Chi-squared = 111.11, df = 10, p-value < 2.2e-16</pre>
```

Wynik testu ARCH LM na występowanie efektu ARCH zarówno dla 5 i 10 opóźnień wskazuje, że należy odrzucić hipotezę zerową o braku efektu ARCH w danych na każdym poziomie istotności.

Modele GARCH

W poprzedniej części autor analizował badaną zmienną, zauważono efekt ARCH w danych. W celu wymodelowania tego efektu w pierwszej kolejności zostaną oszacowane modele GARCH(1,1) GARCH(1,2), GARCH(2,1) zarówno bez równania średniej oraz z równaniem. Ze względu na lepsze wyniki modeli z równaniem średniej dokładna analiza dotyczy tylko ich.

Model GARCH(1,1)

```
Estimate Std. Error t value Pr(>|t|)
omega 0.0001289142 8.714486e-05 1.479309 0.139057816
alpha1 0.0764795112 2.410056e-02 3.173350 0.001506909
beta1 0.8862123654 4.412350e-02 20.084815 0.000000000
```

z równaniem średniej:

```
Estimate Std. Error t value Pr(>|t|) mu 0.0045352520 2.076949e-03 2.183613 0.028990729 omega 0.0001372264 9.383619e-05 1.462404 0.143630471 alpha1 0.0806168427 2.671650e-02 3.017492 0.002548757 beta1 0.8797486584 4.877270e-02 18.037726 0.000000000
```

Parameter mu, czyli stała z równania średniej jest istotna na poziomie istotności 5%, co świadczy o tym, że warto pozostawić ją w modelu. Parametr omega jest nieistotny, jednak jest potrzebny, p-value nie jest bardzo wysokie, więc autor zdecydował o pozostawieniu modelu w takiej formie.

W celu weryfikacji poprawności zastosowanej metodyki poddano analizie wystandaryzowane reszty z modelu.

Histogram wystandaryzowanych reszt model GARCH(1,1)

data: stdres
X-squared = 179.88, df = 2, p-value < 2.2e-16</pre>

Narysowany histogram ma cechy rozkładu leptokurtycznego a w teście Jarque Bera hipoteza zerowa silnie odrzucana, co świadczy na korzyść odrzucenia hipotezy o rozkładzie normalnym badanego zbioru.

ARCH LM-test; Null hypothesis: no ARCH effects

```
data: stdres
```

Chi-squared = 9.0036, df = 10, p-value = 0.5318

Zarówno wykres ACF jak i test ARCH LM wskazują, że w resztach nie występuje efekt ARCH – został on wymodelowany z danych przy użyciu modelu GARCH(1,1) ze stałą w równaniu średniej.

Model GARCH(1,2)

```
Estimate Std. Error t value Pr(>|t|) omega 0.0001286611 0.0001048172 1.227481e+00 0.21964200 alpha1 0.0765172162 0.0309475526 2.472480e+00 0.01341791 alpha2 0.000000100 0.0494946142 2.020422e-07 0.99999984 beta1 0.8863623041 0.0625279474 1.417546e+01 0.00000000
```

z równaniem średniej:

```
Estimate Std. Error t value Pr(>|t|) mu 0.0045015703 0.0020838163 2.160253e+00 0.03075310 omega 0.0001368215 0.0001233797 1.108947e+00 0.26745317 alpha1 0.0804992519 0.0316726153 2.541604e+00 0.01103451 alpha2 0.000000100 0.0565014390 1.769866e-07 0.99999986 beta1 0.8800762627 0.0765928100 1.149032e+01 0.00000000
```

Podobnie jak w modelu GARCH(1,1) stała z równania średniej jest istotna. Rozszerzanie modelu nie przyniosło poprawy wyniku - parametr alpha 2 jest zupełnie nieistotny. Model GARCH(1,2) zarówno bez równania średniej jak i z równaniem średniej nie będzie wyborem lepszym od GARCH(1,1). Należy jednak zweryfikować poprawność zastosowanej metodyki poprzez zbadanie wystandaryzowanych reszt z modelu.

Histogram wystandaryzowanych reszt model GARCH(1,2)

Jarque Bera Test

```
data: stdres
X-squared = 180.11, df = 2, p-value < 2.2e-16</pre>
```

Histogram przedstawia rozkład leptokurtyczny, odstający od narysowanego rozkładu normalnego. Dodatkowym potwierdzeniem jest przeprowadzony test Jarque Bera w którym hipoteza zerowa o normalności rozkładu jest odrzucana.

ARCH LM-test; Null hypothesis: no ARCH effects

data: stdres
Chi-squared = 9.0246, df = 10, p-value = 0.5298

Pomimo dwóch nieistotnych oszacowań parametrów model wymodelował efekt ARCH ze zmiennej. Test ARCH LM wskazuje wysokim p-value, że hipotezy zerowej o braku efektu ARCH w szeregu nie można odrzucić. Korelogram ACF nie wskazuje istotnych wartości aż do 23 opóźnienia, podobnie jak w modelu GARCH(1,1).

Model GARCH(2,1)

```
Estimate Std. Error t value Pr(>|t|)
omega 0.0001468155 0.0000908855 1.6153897 0.106226322
alpha1 0.0870326347 0.0269788762 3.2259548 0.001255532
beta1 0.6580314961 0.2736520752 2.4046282 0.016188927
beta2 0.2120146750 0.2541949392 0.8340633 0.404245303
```

z równaniem średniej:

```
Estimate Std. Error t value Pr(>|t|) mu 0.0046593619 2.088694e-03 2.230754 0.025697433 omega 0.0001605561 9.714911e-05 1.652677 0.098396646 alpha1 0.0938596207 2.937354e-02 3.195380 0.001396467 beta1 0.6007940816 2.748738e-01 2.185709 0.028836935 beta2 0.2583019024 2.542007e-01 1.016134 0.309565620
```

W modelu GARCH(2,1) oszacowanie omega jest istotne na poziomie istotności 10% w przeciwieństwie do wcześniej przedstawianych modeli. Nowy parametr beta2 okazuje się nieistotny.

Histogram wystandaryzowanych reszt model GARCH(2,1)

Jarque Bera Test

data: stdres
X-squared = 164.19, df = 2, p-value < 2.2e-16</pre>

Podobnie jak we wcześniejszych modelach rozkład wystandaryzowanych reszt ma cechy rozkładu leptokurtycznego. Test Jarque Bera potwierdza, że nie jest to rozkład normalny, gdyż hipoteza zerowa o normalności rozkładu jest odrzucana.

ARCH LM-test; Null hypothesis: no ARCH effects

data: stdres
Chi-squared = 8.7849, df = 10, p-value = 0.5526

Wykres ACF pokazuje, że pierwsza autokorelacja jest mniejsza niż we wcześniejszych oszacowaniach. Pozostałe wnioski są takie same, podobnie dla testu ARCH LM, gdyż p-value jest bardzo zbliżone i również wskazuje, że nie ma podstaw do odrzucenia hipotezy zerowej o braku efektu ARCH.

Na podstawie niekorzystnej wartości kryteriów informacyjnych oraz niewielkiej istotności zmiennych z dalszej analizy wyłączony został model GARCH(2,2). Przeprowadzone badanie sugeruje, że spośród rozpatrywanych powyżej modeli do analizy wskazanego zbioru danych najlepiej nadaje się GARCH(1,1) w wariancie uwzględniającym równanie średniej. Spośród modeli nieuwzględniających równania średniej najlepiej wypadł również GARCH(1,1). Model ten zostanie wykorzystany w dalszej analizie porównawczej z innymi modelami z rodziny GARCH. Zanim to nastąpi zdecydowano się jednak dodatkowo na oszacowanie modelu GARCH(1,1) rozszerzonego o AR(1) w równaniu średniej.

AR(1)GARCH(1,1)

```
Estimate
                       Std. Error
                                    t value
                                                Pr(>|t|)
mu
        0.0045030337 1.868410e-03
                                    2.410089 0.015948624
       -0.1162624469 4.426612e-02 -2.626443 0.008628245
ar1
omega
        0.0001273095 8.153698e-05
                                   1.561371 0.118436124
alpha1
        0.0770356197 2.456131e-02
                                   3.136463 0.001709993
        0.8857635283 4.298014e-02 20.608672 0.000000000
beta1
```

Wyniki oszacowań wskazują, że wspomniane rozszerzenie było dobrą decyzją. Oszacowanie stałej dla równania średniej wciąż jest istotne a komponent autoregresyjny także. Alpha i Beta również są istotne na każdym poziomie istotności. Jedynie omega jest na granicy istotności 10%, jednak nie zostanie odrzucona.

Histogram wystandaryzowanych reszt model AR(1)GARCH(1,1)

Jarque Bera Test

data: stdres
X-squared = 173.85, df = 2, p-value < 2.2e-16</pre>

Rozkład wystandaryzowanych reszt z modelu dalej ma cechy rozkładu leptokurtycznego. Test Jarque Bera to potwierdza, gdyż hipoteza zerowa o normalności rozkładu została odrzucona.

ARCH LM-test; Null hypothesis: no ARCH effects

data: stdres

Chi-squared = 8.6955, df = 10, p-value = 0.5612

Wykres ACF oraz test ARCH LM wskazują jednoznacznie, że efekt ARCH został wymodelowany. Po oszacowaniu wszystkich modeli należy określić, które z nich są najlepsze pod względem kryteriów informacyjnych.

Wyniki kryteriów informacyjnych

	model	HQIC	SIC	BIC	AIC	
	k.garch12	-2.948266	-2.959781	-2.930342	-2.959693	1
	k.garch21	-2.949321	-2.960836	-2.931396	-2.960747	2
	k.garch11	-2.954628	-2.963247	-2.941184	-2.963197	3
J	k.garch12r	-2.949857	-2.964278	-2.927452	-2.964140	4
J	k.garch21r	-2.951386	-2.965807	-2.928980	-2.965669	5
I	k.garch11r	-2.956334	-2.967849	-2.938410	-2.967761	6
11	k.ar1garch	-2.961571	-2.975992	-2.939166	-2.975854	7

Spośród powyżej analizowanych modeli najlepsze wyniki zostały uzyskane dla modelu GARCH(1,1) z równaniem AR(1) w równaniu średniej. Niewiele gorzej oceniony został model GARCH(1,1) ze stałą w równaniu średniej. Modele z innymi parametrami i bez równania średniej zostały gorzej ocenione.

Modele z rodziny GARCH

Model GARCH-t(1,1)

Powyżej zostały przedstawione wyniki dla zwykłego modelu GARCH. Wiadomo, że rozkład wystandaryzowanych reszt z modelu praktycznie nigdy nie osiąga rozkładu normalnego dlatego pierwszym analizowanym rozszerzeniem jest GARCH-t. Oszacowanie dla parametru Shape wskazuje ile stopni swobody powinien mieć rozkład t-Studenta.

```
Estimate Std. Error t value Pr(>|t|) mu 0.0051237758 0.0018897111 2.711407 6.699835e-03 omega 0.0002124232 0.0001649719 1.287633 1.978737e-01 alpha1 0.0543790526 0.0295499186 1.840244 6.573246e-02 beta1 0.8832364125 0.0715570490 12.343108 0.000000e+00 shape 4.1819005004 0.7858248653 5.321670 1.028190e-07
```

Parametr Shape jest istotny na każdym poziomie istotności i wskazuje na 4 stopnie swobody. Parametry alpha1, beta1 oraz mu również są istotne. Omega przekroczyła poziom istotności.

Histogram wystandaryzowanych reszt, model GARCH-t(1,1)

Jarque Bera Test

data: stdres
X-squared = 301.14, df = 2, p-value < 2.2e-16</pre>

Podobnie jak wcześniej testy pozwalają stwierdzić, że rozkład wystandaryzowanych reszt nie jest rozkładem normalnym.

Akaike -3.061187 Bayes -3.024498 Shibata -3.061324 Hannan-Quinn -3.046904

Model ma znacznie wyższe kryteria informacyjne niż wcześniej szacowane modele.

lag Autocorrelation D-W Statistic p-value

0		F	
1	0.087094481	1.825493	0.066
2	0.027336011	1.941485	0.336
3	-0.022802648	2.041180	0.642
4	0.001315724	1.992613	0.862
5	0.120206399	1.754373	0.054
6	-0.004214581	2.002854	0.930
7	-0.030185166	2.054290	0.322

8	0.006523479	1.980474	0.844
9	0.007108346	1.978826	0.884
10	-0.003522562	1.999886	0.870

ACF of Squared Standardized Residuals

ARCH LM-test; Null hypothesis: no ARCH effects

data: stdres

Chi-squared = 15.318, df = 10, p-value = 0.1209

Zarówno test Durbina Watsona jak i test ARCH LM wskazują, że efekt ARCH został wymodelowany. P-value dla 10 badanych autokorelacji żadna nie jest istotna na poziomie 5% oraz dwie istotne na poziomie 10% istotności.

Model AR(1)-GARCH-t(1,1)

```
Estimate Std. Error t value Pr(>|t|)
mu 0.0052735075 0.0017150168 3.074901 2.105722e-03
ar1 -0.0985296679 0.0385251239 -2.557543 1.054145e-02
omega 0.0001819741 0.0001314146 1.384733 1.661342e-01
alpha1 0.0538731681 0.0264091909 2.039940 4.135629e-02
beta1 0.8929531867 0.0582280593 15.335445 0.000000e+00
shape 4.1743086943 0.7822921202 5.335997 9.502078e-08
```

Model GARCH-t z równaniem średniej AR(1) ma najlepsze kryteria informacyjne ze wszystkich badanych modeli. Parametr shape jest istotny na każdym poziomie istotności i wskazuje 4 stopnie swobody w rozkładzie t-Studenta.

Histogram wystandaryzowanych reszt model AR(1)GARCH-t(1,1)

Jarque Bera Test

data: stdres

X-squared = 264.87, df = 2, p-value < 2.2e-16

Widoczny na wykresie rozkład o cechach leptokurtycznych oraz wynik testu Jarque Bera pozwala na odrzucenie hipotezy zerowej o rozkładzie normalnym wystandaryzowanych reszt.

Akaike -3.068783 Bayes -3.024757 Shibata -3.068981 Hannan-Quinn -3.051643

Dodanie komponentu AR(1) pozytywnie wpłynęło na wartość kryteriów informacyjnych.

lag Autocorrelation D-W Statistic p-value 1 0.0803772842 1.838897 0.096 2 0.0211103074 0.442 1.953378 3 -0.0198487368 2.034693 0.676 4 0.0102976012 1.974076 0.644 5 0.1195470079 0.052 1.755106 -0.0070802977 2.007987 6 0.910 7 -0.0364103210 2.066122 0.292 8 0.0003037764 0.988 1.992275 9 0.0035274455 1.985368 0.924 10 1.998724 0.908 -0.0032641572

Test Durbina Watsona przeprowadzony na kwadratach reszt z modelu wskazuje, że wszystkie opóźnienia są nieistotne na poziomie istotności 5%.

ACF of Squared Standardized Residuals

Wykres ACF pokazuje, że opóźnienie 5 jest problematyczne. Jednak jest to jedyna istotna autokorelacja.

ARCH LM-test; Null hypothesis: no ARCH effects

data: stdres

Chi-squared = 14.158, df = 10, p-value = 0.1659

GARCH-in-Mean(1,1)

Rozpatrywany model posiada aż trzy zmienne, które nie są istotne nawet w przypadku przyjęcia 10-procentowego przedziału ufności. Najgorsza pod tym względem jest nowo dodana zmienna archm.

Jarque Bera Test

data: stdres

X-squared = 175.9, df = 2, p-value < 2.2e-16

Leptokurtyczne cechy rozkładu wystandaryzowanych reszt oraz wynik testu Jarque Bera pozwalają na odrzucenie hipotezy zerowej o rozkładzie normalnym reszt.

```
Akaike -2.964629
Bayes -2.927941
Shibata -2.964767
Hannan-Quinn -2.950346
```

Kryteria informacyjne dla modelu GARCH-in-Mean(1,1) są nieznacznie lepsze niż w przypadku standardowego wariantu modelu GARCH(1,1) i słabsze niż obliczone dla modeli z rodziny GARCH-t.

ARCH LM-test; Null hypothesis: no ARCH effects

```
data: stdres
Chi-squared = 9.5438, df = 10, p-value = 0.4814
```

Wykres ACF oraz wynik testu ARCH LM pozwalają na stwierdzenie, że wśród wystandaryzowanych reszt nie występują efekty ARCH.

Model AR(1)GARCH-in-Mean-t(1,1)

```
Std. Error
                                     t value
            Estimate
                                                 Pr(>|t|)
        0.0069931226 0.0117432376 0.5955021 5.515079e-01
mu
       -0.0985478789 0.0385050687 -2.5593482 1.048686e-02
ar1
archm
       -0.0318204934 0.2149260272 -0.1480532 8.823008e-01
omega
        0.0001755326 0.0001285314 1.3656790 1.720397e-01
alpha1
       0.0528048531 0.0260844835 2.0243779 4.293128e-02
beta1
        0.8960484707 0.0574434428 15.5987947 0.000000e+00
shape
        4.1682500435 0.7822532172 5.3285176 9.901760e-08
```

Pomimo dodania do modelu zmiennej AR(1) oraz zastosowania rozkładu t-Studenta w modelu wciąż występują zmienne nieistotne statystycznie: mu, archm oraz omega. Rozszerzenie modelu nie było zatem prawdopodobnie dobrym pomysłem.

Histogram wystandaryzowanych reszt model AR(1)GARCH-in-Mean-t(1,1)

data: stdres

X-squared = 263.73, df = 2, p-value < 2.2e-16

Leptokurtyczne cechy rozkładu wystandaryzowanych reszt oraz wynik testu Jarque Bera pozwalają także w tym przypadku na odrzucenie hipotezy zerowej o rozkładzie normalnym reszt.

Akaike -3.065480 Bayes -3.014116 Shibata -3.065749 Hannan-Quinn -3.045484

Pozytywnym skutkiem rozszerzenia modelu są za to widocznie lepsze wyniki kryteriów informacyjnych.

ACF of Squared Standardized Residuals

ARCH LM-test; Null hypothesis: no ARCH effects

data: stdres

Chi-squared = 14.645, df = 10, p-value = 0.1456

Wykres ACF oraz wynik testu ARCH LM pozwalają na stwierdzenie, że wśród wystandaryzowanych reszt nie występują efekty ARCH.

	AIC	BIC	SIC	HQIC	ARCH	model
					test	
1	-2.964629	-2.927941	-2.964767	-2.950346	0.4814	GARCH-in-Mean(1,1)
2	-2.975854	-2.939166	-2.975992	-2.961571	0.5612	AR(1) GARCH(1,1)
3	-3.065480	-3.014116	-3.065749	-3.045484	0.1456	AR(1) GARCH-in-Mean-t(1,1)
4	-3.068783	-3.024757	-3.068981	-3.051643	0.1659	AR(1) GARCH-t(1,1)

Na podstawie wyników poziomu istotności zmiennych oraz testów diagnostycznych jako trzy najlepsze modele, które rozważane będą w dalszej części analizy wybrano GARCH-in-Mean-t(1,1), AR(1) GARCH(1,1) oraz AR(1) GARCH-t(1,1). Cechują się one najkorzystniejszymi wartościami kryteriów informacyjnych oraz jedną zmienną nieistotną na poziomie 5-procentowego przedziału ufności. W każdym przypadku zmienną tą jest omega, której poziom istotności w modelach wynosi od 12 do 17 procent. Wskazane modele zostaną zestawione w analizie z podstawowym GARCH(1,1) ze stałą w równaniu średniej.

Analiza oszacowań funkcji warunkowej wariancji w okresie in sample

Poniżej przedstawiono wykresy funkcji warunkowej wariancji dla czterech wybranych modeli z rodziny GARCH:

W przypadku każdego z modeli niska wartość warunkowej wariancji w większości okresu analizy odpowiada tendencji wzrostowej skumulowanych zwrotów z portfela. Gwałtowny wzrost wartości warunkowej wariancji, obserwowany na wykresach pod koniec I połowy 2021 roku odpowiada jedynemu poważnemu spadkowi wartości skumulowanego zwrotu z portfela. Świadczy to o zależności wskazanych wartości.

Analiza VaR dla okresu out of sample

Poniżej przedstawiono oszacowania wartości narażonej na ryzyko w okresie out-of-sample dla rozpatrywanych modeli z rodziny GARCH:

Dla każdego z modeli w okresie out-of-sample wartość narażona na ryzyko została przekroczona dwukrotnie. W celu weryfikacji stabilności otrzymanych wyników zdecydowano się powtórzyć badanie na oknie 2-miesięcznym. W tym celu stworzono nową próbę in-sample (od 6 września 2020 do 25 marca 2022) i out-of-sample (od 26 marca do 26 maja 2022). W rezultacie otrzymano następujące wyniki:

Analiza porównawcza funkcji warunkowej wariancji dla krótszego okresu in sample oraz modelu VaR dla dłuższego okresu out of sample

Obliczona warunkowa wariancja w modelach GARCH dla krótszego okresu in sample cechuje się większą różnorodnością w oszacowaniach, szczególnie widoczne różnice są w połowie 2021 roku.

Rozszerzenie okresu out-of-sample nie wpłynęło na liczbę przypadków przekroczenia zakładanego poziomu VaR przez straty. Świadczy to o stabilności otrzymanych wyników oraz wyjątkowej losowości, która miała miejsce w dwóch przypadkach.

Wnioski

W badaniu przeanalizowane zostały modele GARCH do parametrów p=2 i q = 2 zarówno z uwzględnieniem równania średniej jak i bez tego równania. Wyestymowane zostały także modele GARCH-t, GARCH-in-Mean, EGARCH oraz TGARCH a następnie wybrane te z nich, które cechowały się wymodelowaniem efektu ARCH z badanego portfela oraz najlepszymi kryteriami informacyjnymi. Dla tak wyselekcjonowanych modeli zostały przedstawione wykresy funkcji warunkowej wariancji dla dwóch okresów in sample – jednym dłuższym i drugim krótszym. Wyniki uzyskane za pomocą modeli różnią się nieznacznie w przypadku dłuższego okresu in sample, w krótszym różnice są zauważalne już na samym wykresie funkcji. Dla najlepszych modeli – GARCH(1,1) z równaniem średniej, AR(1)GARCH-in-Mean-t(1,1), AR(1)GARCH(1,1) oraz AR(1)GARCH-t(1,1) został oszacowany model Value at Risk. Zarówno dla dłuższego jak i krótszego okresu in sample wyniki pokazują, że model niedoszacował straty w dwóch przypadkach, co pokazuje, że model jest dobry a przekroczenie wartości VaR było związane z wyjątkową losowością.