Name:	Centre/Index No:
Signature:	School:
P525/1	
CHEMISTRY	
Paper 1	
July/August 2018	
2 ³ / ₄ hours	

Uganda Advanced Certificate of Education

CHEMISTRY

Paper 1

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

Answer all questions in Section A and six questions in Section B.

All questions must be answered in the spaces provided.

The Periodic Table with relevant atomic masses is supplied at the end of the paper.

Mathematical tables (3- figure) and non-programmeable electronic calculators may be used.

Illustrate your answers with equations where applicable.

Molar gas constant, $R = 8.31 \text{JK}^{-1} \text{mol}^{-1}$

Molar volume of a gas at s.t.p. is 22.4 litres.

 $Standard\ temperature = 273\ K$

 $Standard\ pressure = 101325Nm^{-2}$

	For Examiner's Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A (46 MARKS)

State (a)	what would be observed and write equation for the reaction Manganese (II) sulphate solution is reacted with nitric act solid sodium bismuthate.	
	Observation	(01 mark)
	Equation	(01½ mark)
(b)	Excess potassium iodide is added to copper (II) nitrate;	
	Observation	(01 mark)
•••••	Equation	(01½ mark)
2.	(a) Propan -1-ol reacts with concentrated orthophosp	horic acid (H ₃ P
when	n heated to form compound Z. Write equation for the reaction hanism.	on and outline to (03 mark
when	n heated to form compound Z. Write equation for the reacti	on and outline to (03 mark
when	n heated to form compound Z. Write equation for the reaction hanism.	on and outline to (03 mark
when	n heated to form compound Z. Write equation for the reaction hanism.	on and outline to (03 mark
when	n heated to form compound Z. Write equation for the reaction hanism. Compound Z in (a) can be synthesized form a secondary	on and outline (03 mark

3.	(a) 		ine the term standard heat of formation of a substa	
(b) +218			rd enthalpy of atomization of graphite and hydroge standard enthalpy of formation of ethane is +52 l	gen are +715 and
(i)	from	gaseo	rn – Haber cycle, calculate the standard heat of fo us atoms.	(02½ marks)
	•••••	•••••		
	The 1	 mean l	bond energy for the C – H bond in 415 KJmol ⁻¹ . De mean bond energy for the C=C bond.	
	•••••			
<i>4</i>	(a)	(i)	Write the formula of the oxides of tin.	(01 mark)
	(ii)		e the oxidation states of tin each oxide.	(01 mark)
(b)	Sodi	um hy	droxide solution was added to an aqueous solution opwise until in excess.	
	(i)		e what was observed.	(01 marks)
	(ii)		te equation(s) for the reaction(s) that took place.	(02 marks)

5. (a) Draw the molecular shapes of the following species. (03 marks)

	Species	Shape	Names
(i)	NH ₄ ⁺		
(ii)	SF ₄		
(iii)	NO ₂ -		

` ′	Explain why the anion (iii) adopts the shape.	(02 marks)
• • • • • • • • •		••••••

6. (a) The structure of neoprene is;

$$* - \left(\begin{array}{ccc} H & H \\ \stackrel{\mid}{\downarrow} & \stackrel{\mid}{\downarrow} \\ CH_2C = C - C \\ \stackrel{\mid}{Cl} & \stackrel{\mid}{H} \end{array} \right)^*$$

(i) Write the structure and IUPAC name of the monomer of neoprene.

(01 mark)

(ii) When 1.10g of the monomer was polymerized, 2.59 x 10 ⁻⁴ neoprene was formed. Determine the number of monomer u	
•	marks)
	•••••

solut (a) i)	Identify solid P	(01)
ii.	What is the role of magnesium chloride?	(01 :
iii.	Write equations for the reactions that took place.	(03 n
	lution contains 2.0g of propage -1.2.3—triol in 60g of water	
		(03 ma
A so (a)	lution contains 2.0g of propane -1,2,3–triol in 60g of water; Calculate the boiling point of the solution at 760 mmHg. $(C=12, H=1, O=16, K_b for water = 0.52^{0} c mol^{-1} kg^{-1})$	(03 ma
A so (a)	lution contains 2.0g of propane -1,2,3-triol in 60g of water; Calculate the boiling point of the solution at 760 mmHg. $(C=12, H=1, O=16, K_b for water = 0.52^0 c mol^{-1} kg^{-1})$	(03 ma
A so (a)	lution contains 2.0g of propane -1,2,3-triol in 60g of water; Calculate the boiling point of the solution at 760 mmHg. $(C=12, H=1, O=16, K_b for water = 0.52^0 c mol^{-1} kg^{-1})$	(03 ma

- 9. The initial rate of the reaction between the gases NO and H₂ was measured in a series of experiments at a constant temperature and the following rate equation was determined. rate = $k[NO]^2[H_2]$
 - (a) Complete the table of data below for the reaction between NO and H₂

Experimen t	Initial [NO] / mol dm ⁻³	Initial [H ₂] / mol dm ⁻³	Initial rate / mol dm $^{-3}$ s $^{-1}$
1	3.0×10^{-3}	1.0×10^{-3}	1.8×10^{-5}
2	3.0×10^{-3}		7.2×10^{-5}
3	1.5×10^{-3}	1.0×10^{-3}	
4		0.50×10^{-3}	8.1×10^{-5}

(03 marks)

(2 marks)

	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••	•••••	•••••
	•••••	••••••	•••••		•••••	•••••	•••••	•••••
	•••••	••••••	•••••		•••••	•••••	•••••	•••••
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••	•••••	•••••
			SI	ECTION B	(54 MARI	ζS)		
10.	(a)		Y contains 50% r than Y at the s Empirical for	same tempers mula of Y .	ature and p	ressure. Det		rks)
	•••••	•••••	•••••		•••••	•••••	•••••	•••••
	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
	•••••	••••••	•••••		••••••	•••••	•••••	•••••

(b) Using the data from experiment 1, calculate a value for the rate constant, k,

and state its units.

	(ii)	Molecular formular of Y .	(03 marks)
•••••	•••••		
•••••			
•••••			
•••••			
(b)	Gas ' (i)	Y was bubbled into acidified potassium manganate (VI State what was observed.	(01 marks)
•••••			
	(ii)	Write an equation for the reaction that took place.	
•••••	•••••		
(c)	Bariu (i)	um nitrate solution was added to the resultant solution i State what was observed.	(01 marks)
•••••	(ii)	Write an ionic equation for the reaction that took pla	
		write an ionic equation for the reaction that took pla	
Nan		gent(s) which can be used to distinguish between the fo	
com	pounds	. State what would be observed if each member of the p	
the i	reagent. BaCl	l _{2(aq)} and CaCl _{2(aq)}	(03 marks)
•••••	••••••		
••••	•••••		
•••••	•••••		

(b)	CH ₃ C	CHO and CH ₃ CH ₂ CH ₂ CHO.	(03marks)
(c)	CH ₃ (CCH ₃ CH ₂ CH ₃ and CH ₃ CH ₂ CCH ₂ CH ₃	(03 marks)
	•••••		
	••••••		
•••••	•••••		
12. extra) Write the name and formula of one ore from which a	luminium is (01 mark)
	(ii)	Name two impurities in the ore.	(01 mark)
•••••	(iii)	Name a reagent used in the purification of the ore.	
	•••••		
(b)	Write ore.	e equation(s) for reactions(s) that take place during the	purification of the (4½ marks)
•••••	•••••		
•••••	••••••		
•••••	•••••		

(c)	(i) State the purpose of adding cryolite.	(½ marks)
(d)	Write an equation to show how anhydrous aluminium ch	lloride can be
pre	epared from aluminium oxide.	(1½ marks)
. Co	emplete the following equations and outline a mechanism for	the reaction.
(a)	C - H conc.HNO ₃ Conc. H ₂ SO ₄	(04 marks)
(b)	CH ₃ C≡CH excess HBr CCl ₄	(3½ marks)

	(c)	CH ₃ CH=CH ₂ +		•			(1½ marks)
14. (i)	(a) An e	Sodium benzoate quation for the hyd	lrolysis	of sodium	benzoate in		(01 mark)
(ii)	The	expression for the					
	tł	The hydrolysis considered PH of a 0.1M so $t = 1.0 \times 10^{-14} \text{mol}^2$	dium be dm ⁻⁶)	enzoate sol	ution.	s 1.6 x 10 ⁻¹⁰ n	(03 marks)
	(c)	Calculate the ma					d to 1dm ³ of 0.1M (04 marks)

15. (a) The initial rate of reaction between ester A and aqueous sodium hydroxide was measured in a series of experiments at a constant temperature. The data obtained are shown below.

Experimen t	Initial concentration of NaOH / mol dm ⁻³	Initial concentration of A / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.040	0.030	4.0×10^{-4}
2	0.040	0.045	6.0×10^{-4}
3	0.060	0.045	9.0 × 10 ⁻⁴
4	0.120	0.060	to be calculated

Use the data in the table to deduce the order of reaction with respect to **A** and the order of reaction with respect to NaOH. Hence calculate the initial rate of reaction in Experiment 4.

	with respect to				
Order	with respect to				
Λ	/aOH	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••
Initial	rate in Experimen	t			
4		•••••			
					•••••

- (b) In a further experiment at a different temperature, the initial rate of reaction was found to be $9.0 \times 10^{-3} \; \mathrm{moldm^{-3}} \; \mathrm{s^{-1}}$ when the initial concentration of \mathbf{A} was $0.020 \; \mathrm{moldm^{-3}}$ and the initial concentration of NaOH was $2.00 \; \mathrm{moldm^{-3}}$. Under these new conditions with the much higher concentration of sodium hydroxide, the reaction is first order with respect to \mathbf{A} and appears to be zero order with respect to sodium hydroxide.
- (i) Write a rate equation for the reaction under these new conditions.

		culate a value for the rate constant under these new conce its units.	
 	iii) Sug app	ggest why the order of reaction with respect to sodium hears to be zero under these new conditions.	ydroxide
 		the electronic configuration of chromium.	
(b)		sture of chromium (III) oxide and sodium peroxide was	
 	(i)	State what was observed.	(01 mark)
	(ii)	Write an equation for the reaction that took place.	(1½ marks)
(c)	Dilute (i)	e hydrochloric acid was added to chromium (III) oxide. State what was observed.	(½ mark)

	(ii)	Write an equation for the reaction that took place.	(1½ marks)
	(d)	Sodium hydroxide solution was added drop wise until in excess resultant solution in (c) followed by hydrogen peroxide solution mixture heated.	
		(i) State what was observed.	(01 mark)
		(ii) Write equation(s) for the reaction(s) that took place.	(2½ marks)
17.	(a)	Methanol is manufactured by reacting carbon and hydrogen accequation;	cording to the
		$CO_{(g)} + 2H_{2(g)} $ $CH_3OH_{(g)}$ $\Delta H = -65 \text{ KJmol}^{-1}$	
	State	the conditions necessary for optimum yield of methanol. (1½ marks)

(c) Stoichiometric amounts of carbon monoxide and hydrogen were reacted. At equilibrium 15% of the carbon monoxide had reacted;				
(i)	Calculate the number of moles of carbon m	nonoxide, hydrogen and		
	methanol present at equilibrium.	(02½ marks)		
 (ii)	If the equilibrium constant for the reaction in the system.	is 4 x 10 ⁻¹⁰ Pa ⁻² , the pressure (05 marks)		