Após executar o algoritmo passando um MAX = 10, obtemos a seguinte saída:

Defina o va	lor de MAX:			
400				
n	k	kth	1-quickSort	2-minHeap
10	6	734504423	0,002545	0,001436
20	8	-751642935	0,000178	0,000113
30	11	-160119525	0,000246	0,000091
40	5	-1923070145	0,000441	0,000062
50	43	1641768253	0,000273	0,000179
60	24	-322281698	0,000273	0,000117
70	20	-1135182051	0,000426	0,000220
80	33	-223634930	0,000314	0,000130
90	75	1507796105	0,000344	0,000110
100	66	763407451	0,000382	0,000093
110	41	-741996183	0,000307	0,001685
120	13	-1875270930	0,000335	0,000105
130	98	1092096429	0,000382	0,000062
140	8	-1768342551	0,000266	0,000022
150	16	-1823521731	0,000374	0,000046
160	146	1568352241	0,000523	0,000084
170	81	-177683377	0,000320	0,000062
180	96	693981444	0,000380	0,000105
190	160	1456954135	0,000410	0,000191
200	19	-1651187460	0,000538	0,000047
210	100	178971488	0,001048	0,000129
220	214	2048224240	0,002150	0,000220
230	46	-1133616074	0,000606	0,000077
240	5	-2009399815	0,000674	0,000051
250	8	-1978717800	0,000486	0,000115
260	180	889608347	0,000668	0,000094
270	9	-1921419225	0,001028	0,000054
280	157	337898440	0,000666	0,000066
290	191	695996363	0,000738	0,000101
300	7	-2070540596	0,000880	0,000062
310	225	902854291	0,000556	0,000101
320	222	969207795	0,000609	0,000111
330	102	-801112245	0,000584	0,000489
340	164	-157984383	0,001084	0,000105
350	204	273491518	0,000699	0,000109
360	122	-742560427	0,000577	0,000086
370	181	-283930897	0,000601	0,000103
380	145	-515149190	0,000634	0,000095
390	139	-534043878	0,000722	0,000096
400	204	-139972281	0,000718	0,000135

Essa saída pode ser vista num gráfico da seguinte forma:

Tempos de execução dos algoritmos

n