Exercice 1. Modélisation et simplexe

On considère un boulanger qui possède 3 types de farines : farine de blé, farine d'avoine et de seigle.

Il peut produire 2 types de baguettes qui demandent différentes quantités de farine :

	Blé	Avoine	Seigle	Prix
Baguette 1	100g	100g	100g	1,5€
Baguette 2	200g	50g	0g	2€
Stock	10kg	4kg	3kg	

- 1. Modéliser ce problème sous forme de programme linéaire.
- 2. Quel est le lien entre l'optimum de ce PL et l'optimum du PL relaxé (où les variables sont entières au lieu d'être réelles)?
- 3. Résoudre ce PL par l'algorithme du simplexe.
- 4. Écrire le dual de ce PL. Interprétation économique : supposons qu'un investisseur veuille acheter tout le stock de farine du boulanger. Quel est le prix d'achat minimum que le boulanger pourrait accepter ?

Exercice 2. Pavage

On considère une grille $n \times p$ que l'on souhaite paver (c'est-àdire recouvrir sans chevaucher) avec un maximum de "L". Par exemple, un carré 5×5 peut-être être pavé avec 8 "L":

Dans cet exemple, il n'y a qu'une case qui n'est pas recouverte (celle en haut à gauche).

- 1. Est-ce que le pavage de l'exemple est optimal?
- 2. Modéliser ce problème sous forme d'un PLNE P.
- 3. (Travail à faire à la maison) Résoudre P avec python-mip.
- 4. Quel est l'optimum du relaxé de P?
- 5. Écrire le dual P' de P et l'interpréter géométriquement.
- 6. Quelle est la valeur optimum du dual? Et du dual relaxé?

Exercice 3. Modélisations

En utilisant des variables binaires (0 ou 1), modéliser les problèmes suivants sous forme de programme linéaire :

- 1. Sac à dos: On a des objets de poids $p_1, ..., p_n$ et de valeur $v_1, ..., v_n$. On veut en mettre un maximum dans un sac à dos de capacité C.
- 2. Coloriage de graphe : On veut connaître le nombre minimum de couleur pour colorier les sommets d'un graphe de façon à ce que 2 sommets adjacents soient de couleur différente.
- 3. Warehouse location : Une chaîne de restaurant

Exercice 4. Big M

La fameuse technique du « Big M » consiste à introduire une grosse constante pour modéliser une contrainte linéaire.

- 1. Supposons que l'on ait deux variables entières $x,y\geq 0$. Transformer la contrainte (non-linéaire) $x=0 \implies y=0$ en une contrainte linéaire en introduisant une grosse constante M.
- 2. Faire de même pour $x \neq y$.