Redpanda vs Apache Kafka

v1.0

7Last

Versioni

Ver.	Data	Redattore	Verificatore	Descrizione
1.0 0.3 0.2	2024-04-23 2024-04-23 2024-04-22	Elena Ferro Elena Ferro Matteo Tiozzo	Antonio Benetazzo	Aggiunte conclusioni Correzioni e aggiunte Benchmark, Tabella riassun- tiva
0.1	2024-04-22	Elena Ferro	Antonio Benetazzo	

Indice

1	Intro	oduzione	3				
	1.1	Apache Kafka	3				
	1.2	Redpanda	3				
2	Van	ntaggi di Redpanda	4				
	2.1	Performance	4				
	2.2	Costi	4				
	2.3	Semplicità di configurazione	4				
	2.4	BYOC (Bring Your Own Cluster)	4				
	2.5	Compatibilità con API di Kafka	4				
	2.6	Self-healing	4				
3	Van	ntaggi di Apache Kafka	6				
	3.1	Maturità	6				
	3.2	Licenza	6				
	3.3	Comunità e supporto	6				
	3.4	Integrazione con altri servizi	6				
	3.5	Scalabilità	6				
	3.6	Protocollo di replicazione	7				
4	Ben	nchmark	8				
5	Tab	riassuntiva 10					
6	Cor	nclusioni	12				
ır	Idic	ce delle tabelle					
	1	Riassunto del confronto tra <i>Apache Kafka</i> e <i>Redpanda</i>	11				
Ir	dic	ce delle immagini					
	1	Architettura di Kafka con ZooKeeper	5				
	2	Confronto di latenza tra Kafka e Redpanda con e senza <i>fsync.</i>	7				
	3	Risultati del benchmark di latenza.	8				
	4	Costo relativo di esecuzione di Redpanda vs Kafka	9				

1 Introduzione

Questo documento si pone l'obiettivo di confrontare Redpanda e Apache Kafka. In particolare, verranno analizzate le caratteristiche, i vantaggi e gli svantaggi delle due piattaforme.

1.1 Apache Kafka

Apache Kafka è una piattaforma di *streaming* di dati scritta in Java e Scala. È stato originariamente sviluppato da LinkedIn e successivamente donato alla Apache Software Foundation.

1.2 Redpanda

Redpanda (ex Vectorized) è una piattaforma di *streaming* di dati sviluppata in C++. È un'alternativa ad Apache Kafka, progettata per offrire prestazioni elevate mantenendo la compatibilità con le API e il protocollo di Kafka.

2 Vantaggi di Redpanda

2.1 Performance

Redpanda è scritto in C++ e utilizza il framework Seastar, offrendo un'architettura threadper-core ad alte prestazioni. Ciò permette di ottenere un'elevata throughput e latenze costantemente basse, evitando cambi di contesto e blocchi. Inoltre, è progettato per sfruttare l'hardware moderno, tra cui unità NVMe, processori multi-core e interfacce di rete ad alta velocità.

2.2 Costi

Anche per carichi di lavoro ridotti, l'utilizzo di Kafka può essere <u>fino a 3 volte più costoso</u> rispetto a Redpanda. Per carichi di lavoro più complessi, questa differenza può aumentare fino a 5 volte o più.

2.3 Semplicità di configurazione

Il binario di Redpanda include, oltre al *message broker*, anche un *proxy* HTTP e uno *schema registry*.

2.4 BYOC (Bring Your Own Cluster)

Redpanda offre una terza opzione oltre alla gestione autonoma di un *cluster* di *streaming* dati e all'utilizzo di un servizio *cloud* completamente gestito: *Bring Your Own Cluster* (BYOC). Questa alternativa consente agli utenti finali di implementare una soluzione parzialmente gestita dal fornitore nella propria infrastruttura (come il proprio *data center* o il proprio *VPC cloud*).

2.5 Compatibilità con API di Kafka

Redpanda è progettato per essere compatibile con le API di Kafka, consentendo di utilizzare i *client* Kafka esistenti senza modifiche.

2.6 Self-healing

Redpanda è self-healing e redistribuisce continuamente i dati e la *leadership* tra i nodi per mantenere il *cluster* in uno stato ottimale mentre il *cluster* evolve o quando i nodi

falliscono.

Figure 1: <u>Architettura di Kafka con ZooKeeper</u>

3 Vantaggi di Apache Kafka

3.1 Maturità

Redpanda è stato rilasciato per la prima volta nel 2019, mentre Apache Kafka nel 2011. Quest'ultimo dunque ha potuto svilupparsi e stabilizzarsi nel tempo, raggiungendo un livello di maturità più elevato rispetto a Redpanda.

Ne consegue dunque che Kafka è maggiormente diffuso e utilizzato in ambienti di produzione.

3.2 Licenza

Apache Kafka è rilasciato con la licenza *open source* Apache 2.0, la quale consente di utilizzare, modificare e distribuire il software liberamente. Al contrario, sia l'edizione *community* che quella *enterprise* di Redpanda hanno licenza Business Source License (BSL), che nonostante renda il codice sorgente disponibile, impone delle restrizioni sull'utilizzo e la distribuzione del software.

3.3 Comunità e supporto

Kafka ha una vasta e attiva comunità di sviluppatori, che forniscono supporto, risorse e strumenti per estendere e migliorare il progetto. La sua documentazione è molto completa e ben strutturata, con numerosi tutorial, guide e risorse online per imparare ad utilizzarlo.

Redpanda al contrario ha una comunità più piccola e meno attiva, con un numero ridotto di risorse disponibili.

3.4 Integrazione con altri servizi

Kafka è supportato da una vasta gamma di strumenti e librerie di terze parti che lo integrano con altri sistemi e servizi

(con cui tuttavia <u>Redpanda è compatibile</u>).

3.5 Scalabilità

Redpanda dimostra bassa latenza e alto throughput su *workload* semplici. Tuttavia esso è stato studiato per essere ottimizzato per il *random 10*, e non per il *sequential 10* come

Kafka.

Questo significa che in situazioni con un alto numero di produttori, un utilizzo del disco superiore al 30%, l'abilitazione delle chiavi dei messaggi, l'abilitazione di TLS o l'esecuzione per più di 24 ore, le prestazioni di Redpanda possono degradarsi significativamente.

3.6 Protocollo di replicazione

Il protocollo Raft utilizzato da Redpanda per la replicazione e la scrittura su disco è sincrona.

Nei sistemi Linux *fsync* garantisce che i dati siano persistiti in modo sincrono, tuttavia è un'operazione costosa in termini di prestazioni.

Apache Kafka può essere configurato per utilizzare anche un protocollo di replicazione asincrono, che non richiede l'utilizzo di *fsync*. Nonostante ciò, Redpanda è in grado di garantire prestazioni migliori rispetto a Kafka, come mostrato nel grafico sottostante.

Figure 2: Confronto di latenza tra Kafka e Redpanda con e senza fsync.

4 Benchmark

Seguono i risultati dei *benchmark* effettuati dal team di sviluppo di Redpanda, che confrontano le prestazioni dei due strumenti.

1GB/sec: End-to-End Latency Percentiles: lower is better

Kafka - 6 Nodes (2x more hardware) 6000 5000 4000 Latency (ms) 3000 2000 Kafka - 9 Nodes (3x more hardware) 1000 Redpanda - 3 Nodes p99.999 p51.022 p90.000 p99.900 Percentile Kafka - 6 Nodes Kafka - 9 Nodes Redpanda - 3 Nodes

Figure 3: Risultati del benchmark di latenza.

Annual Operating Costs - Redpanda and Apache Kafka

Figure 4: Costo relativo di esecuzione di Redpanda vs Kafka.

5 Tabella riassuntiva

Paragone	Apache Kafka	Redpanda
Adozione	Utilizzato da migliaia di	Non chiaro quante
	compagnie (tra cui	organizzazioni lo usino.
	LinkedIn, Airbnb, e Netflix)	Adottato da Cisco e
		Vodafone.
Community	Migliaia di contributori	Community più piccola
		ed emergente.
Maturità	Stabile, sviluppato dal	Emergente, lanciato nel
	2011	2019.
Documentazione, risorse	Documentazione	Documentazione
	dettagliata, forum,	dettagliata, ma non
	tutorial, e corsi online	altrettante risorse. Tutorial
		creati dal team di
		Redpanda.
Client	Ampia varietà di <i>client</i>	Lista di client
	per i principali linguaggi	ufficialmente testati, ma
	di programmazione	<u>qualsiasi client Kafka è</u>
		compatibile.
CLIs	Include un set di strumenti	Include rpk ,
	per gestire i topic,	un'interfaccia per gestire
	messaggi, cluster	topic, messaggi,
		debugging, interazione
		con Redpanda Cloud.
Monitoraggio	Richiede configurazioni di	Integrato direttamente
	sistemi di monitoraggio	con Prometheus e
	(JMX, Grafana,	Grafana.
	Prometheus)	

Paragone	Apache Kafka	Redpanda
Architettura	Complesso da	Facile da installare e
	configurare e gestire su	configurare,
	larga scala. Solo a partire	indipendente da
	dalla versione 3.4.0 è	Zookeeper, integrato con
	possibile eseguirlo senza	una web UI (<u>Redpanda</u>
	ZooKeeper.	<u>Console</u>).
Licenza	Open source, Apache 2.0	Edizioni <i>Community</i> e
		Enterprise, BSL (Business
		Source License).
Deploy self-hosted	Bare-metal, macchine	Bare-metal, macchine
	virtuali, <i>cloud</i> , <u>Docker</u> ,	virtuali, <i>cloud</i> , <u>Docker</u> ,
	Kubernetes	Kubernetes
Managed deploy	Numerosi servizi di terze	Offre 3 opzioni: <i>cluster</i>
	parti, come Confluent	dedicati gestiti da
	Cloud, AWS MSK	Redpanda, BYOC (<i>Bring</i>
		Your Own Cloud), cluster
		serverless su architettura
		gestita da Redpanda.
Schema registry integrato	No	Sì
Protocollo di replicazione	Sincrono o asincrono	Sincrono
Modello di contribuzione	Open source, supporto	Sviluppato solamente dal
	dalla community e da	<i>team</i> di Redpanda
	aziende	

Tabella 1: Riassunto del confronto tra *Apache Kafka* e *Redpanda*

6 Conclusioni

Kafka e Redpanda sono due strumenti molto simili, ma rispondono ad esigenze differenti. Nel caso si debba gestire un progetto in ambiente di produzione, Kafka è la scelta ottimale, in quanto è più stabile, testato e affidabile. Redpanda invece si presta meglio per progetti più semplici e con carichi di dati minori. Inoltre, risulta maggiormente adatto a utenti meno esperti, in quanto richiede meno configurazioni.

In secondo luogo, un altro aspetto da considerare è la licenza: Kafka è *open source*, mentre Redpanda è un prodotto commerciale; nel caso di budget limitato, Kafka risulta dunque più conveniente.

Nelle valutazioni per la scelta dello strumento più adatto, è importante tenere conto che i *benchmark* sono stati fatti dai creatori dei *software* perciò potrebbero essere stati effettuati in maniera da favorirli.

Ai fini della realizzazione del *Proof of Concept* non sono richieste prestazioni elevate, perciò pensiamo che sia sufficiente utilizzare Redpanda. Essendo questo il primo approccio a questo tipo di tecnologia per alcuni membri del gruppo, Redpanda permetterebbe a tutti i componenti di apprenderne il funzionamento in modo più semplice e veloce.

Data la compatibilità tra le due tecnologie, in un secondo momento si potrebbe facilmente passare a Kafka, senza dover riscrivere il codice.

Infine, nel caso in cui il progetto dovesse evolvere oltre il *Minimum Viable Product*, riterremmo più opportuno passare a Kafka.