Apprentissage de classes déséquilibrées HAX907X - Apprentissage statistique

SAWADOGO Kader GERMAIN Marine LABOURAIL Célia MARIAC Damien

Université Montpellier Département de Mathématique

17 octobre 2025

- Contexte
- 2 Problématique
- Méthodes
- 4 Limites des méthodes
- 6 Application
- 6 Conclusion

Problème du déséquilibre et motivation du projet

Un jeu de données très déséquilibré

- \bullet CréditCard : 284 807 transactions, dont seulement 492 fraudes (0,17 %).
- ⇒ Les modèles ont tendance à ignorer la classe minoritaire.

Illustration du problème

Modèle	Recall	Precision	F1-score
Régression Logistique	0.59	0.89	0.70
Random Forest (200 arbres)	0.60	0.95	0.85

- Contexte
- 2 Problématique
- Méthodes
- 4 Limites des méthodes
- 6 Application
- 6 Conclusion

Les classes déséquilibrées

Problème : difficulté à prédire la classe minoritaire

 \Rightarrow Le modèle a tendance à ignorer cette classe.

Exemple général

- 99% vs 1%.
- ullet Un modèle naı̈f prédit la classe majoritaire à une précision de 99 %.
- Mauvais modèle.

Problématique scientifique

Comment atténuer le déséquilibre des classes pour améliorer la performance réelle du modèle?

- Contexte
- 2 Problématique
- Méthodes
- 4 Limites des méthodes
- 6 Application
- 6 Conclusion

Random Over-sampling

Table – Jeu de données après sur-échantillonnage (ROS)

Х	label	source
1	0	original
2	0	original
3	0	original
4	0	original
5	0	original
6	0	original
7	0	original
8	1	original
9	1	original
10	1	original
8	1	duplicated
9	1	duplicated
10	1	duplicated
8	1	duplicated

Random Under-sampling

Table – Jeu de données après sous-échantillonnage (RUS)

X	label	source
1	0	supprimé
2	0	supprimé
3	0	supprimé
4	0	original
5	0	original
6	0	original
7	0	original
8	1	original
9	1	original
10	1	original

Figure – Schéma de SMOTE

Figure – Schéma de SMOTE

Figure – Schéma de SMOTE

Figure – Schéma de SMOTE

Figure – Schéma de SMOTE

Notations

- n : nb total d'observations
- n_{min}: nb d'observations minoritaires
- d : dimension (nb de variables)

- k : nb de plus proches voisins
- M : nb de points synthétiques générés

Étapes dominantes & complexité (naïf)

- **Q** Recherche des k-PPV (vers tous les points) : coût d'une distance $\mathcal{O}(d) \Rightarrow$ comparaison à n points $\mathcal{O}(n\,d) \Rightarrow$ pour n_{\min} points minoritaires $\boxed{\mathcal{O}(n_{\min}\,n\,d)}$.
- **2 Génération** : $x_{\text{new}} = x_i + \lambda(x_j x_i)$, $\lambda \sim \mathcal{U}(0, 1)$

 $\mathcal{O}(Md)$

Synthèse

 $T_{\text{SMOTE}} = \mathcal{O}(n_{\min} n d) + \mathcal{O}(M d)$

(recherche kNN dominante).

- Contexte
- 2 Problématique
- Méthodes
- 4 Limites des méthodes
- 6 Application
- 6 Conclusion

ROS

Overfitting

RUS

Perte d'information

SMOTE

- Temps de calculs
- Création de points aberrants
- Hyperparamètre k
- Variables qualitatives

SMOTE

Points aberrants

- Contexte
- 2 Problématique
- Méthodes
- 4 Limites des méthodes
- 6 Application
- 6 Conclusion

Méthode	Transactions normales	Fraudes
ROS (Over-Sampling)	284 315	284 315
RUS (Under-Sampling)	492	492
SMOTE	284 315	284 315

Comparaison des méthodes de rééchantillonnage (Régression Logistique)

Méthode	Accuracy	Recall	Balanced Accuracy
RUS	0.956	0.959	0.956
ROS	0.949	0.977	0.949
SMOTE	0.981	0.992	0.970

- Contexte
- 2 Problématique
- Méthodes
- 4 Limites des méthodes
- 6 Application
- 6 Conclusion

Bilan général des méthodes

Méthode	Points forts	Limites
ROS	Simplicité, conserve	Overfitting, grand
	toutes les données	volume de données
RUS	Rapide et réduit le	perte d'information
	biais	et représentativité
SMOTE	Données	Coût élevé, sensible
	synthétiques variées	aux outliers

Aucune méthode n'est universelle :

le choix dépend du jeu de données et du modèle.

Conclusion et perspectives

- Pour notre jeu de données, la méthode la plus efficace est SMOTE.
- Pour aller plus loin : il serait pertinent de combiner des méthodes existantes ou de pondérer les modèles.

Merci pour votre attention!