Math Test 1 Notes

Sum from 1 to n:

Formula:

$$Sum = n(n+1) ext{2Sum} = rac{n(n+1)}{2}$$

Example:

$$1+2+\ldots+300=300\times3012=45,1501+2+\ldots+300=\frac{300\times301}{2}=45,150$$

To sum from a to b:

$$b(b+1)2-(a-1)a2\frac{b(b+1)}{2}-\frac{(a-1)a}{2}$$

Set Formulas

1. Union:

$$n(A\cup B)=n(A)+n(B)-n(A\cap B)n(A\cup B)=n(A)+n(B)-n(A\cap B)$$

2. Disjoint Sets:

$$A\cap B=\emptyset \Rightarrow n(A\cup B)=n(A)+n(B)A\cap B=\emptyset \Rightarrow n(A\cup B)=n(A)+n(B)$$

3. Three Sets (Inclusion-Exclusion):

$$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C) + n(A \cap$$

4. Intersection via Union:

$$n(A\cap B)=n(A)+n(B)-n(A\cup B)n(A\cap B)=n(A)+n(B)-n(A\cup B)$$

5. Union via Differences:

$$n(A\cup B)=n(A-B)+n(B-A)+n(A\cap B)n(A\cup B)=n(A-B)+n(B-A)+n(A\cap B)$$

Subsets:

- A set with n elements has 2n2ⁿ subsets (including Ø\emptyset).
- Example:

$$A=w,y\Rightarrow\emptyset,w,y,w,yA=\{w,y\}\Rightarrow\emptyset,\{w\},\{y\},\{w,y\}$$

Finding Factors

Example: 63

- 1. Start with 1 and 63.
- 2. Test integers up to

$$63 pprox 7.9 \sqrt{63} pprox 7.9$$

3. Factor pairs: (1,63), (3,21), (7,9) **All factors:** 1, 3, 7, 9, 21, 63

Divisibility Rules

Number	Rule
2	Last digit is even
3	Sum of digits divisible by 3
4	Last two digits form number divisible by 4
5	Ends in 0 or 5
6	Divisible by 2 and 3
8	Last 3 digits form number divisible by 8
9	Sum of digits divisible by 9
10	Ends in 0
12	Divisible by 3 and 4

Consecutive Primes: Only 2 and 3 are consecutive.

LCM and GCF

LCM (Least Common Multiple):

- 1. Prime factor both numbers
- 2. Use highest powers of all primes

**Example:

$$96 = 2^{5} \times 3$$
 $60 = 2^{2} \times 3 \times 5$ $LCM = 2^{5} \times 3 \times 5$ $= 480$

GCF (Greatest Common Factor):

- 1. Prime factor both numbers
- 2. Use lowest powers of common primes

**Example:

$$260 = 2^2 \times 5 \times 13$$
 $156 = 2^2 \times 3 \times 13$ $GCF = 2^2 \times 13 = 52$

Diffie-Hellman-Merkle Key Exchange

Given: M = 77, n = 99, a = 55, b = 66

$$A=M^{a}modn=77^{55}mod99 \ B=M^{b}modn=77^{66}mod99 \ KeyK=B^{a}modn=A^{b}modn$$

RSA Encryption & Decryption

$$C=M^e(mod\ n)$$

To compute the ciphertext C use:

$$C=M^e(mod\ n)$$

Given:

$$n=91 \pmod{modulus}$$
 $e=11$

Step-by-step calculation:

The encrypted message is 45.

Given: p = 17, q = 5, e = 19, C = 65 find the smallest natural number for the decryption exponent and the message M

$$M = C^d (mod \ n)$$

To get the decryption exponent

Calculate the Modulus

$$n=pq=85$$
 $l=(p-1)(q-1)$ $=16{ imes}4=64$

Find d:

$$d=rac{lx+1}{e}$$
 $d=rac{64x+1}{119}$

Try many numbers, start from 1 and go up until whole number:

$$x = 8:$$
 $d = \frac{64(8) + 1}{119}$ $= 27$

The smallest natural number for the decryption exponent **d** is: 27

Decrypt: for M

$$M = C^d mod \ n = 65^{27} mod \ 85$$

Use exponentiation by squaring:

Binary of 27: $11011 \rightarrow 1 + 2 + 8 + 16$

$$65^{1}mod\ 85 \equiv 65\ mod\ 85 \ which\ is\ just \equiv 65$$
 $65^{2}\ mod\ 85 \equiv 8565\ mod\ 85 \equiv 60\ mod\ 85$
 $65^{8}\ mod\ 85 \equiv 8565\ mod\ 85 \equiv 50\ mod\ 85$
 $65^{16}mod\ 85 \equiv 8565\ mod\ 85 \equiv 35\ mod\ 85$

Summary:

$$(65 \times 60 \times 50 \times 35) \ mod \ 85$$

Final:

Reduce mod each time.

$$35 \times 50 \ mod \ 85 = 1750 \ mod \ 85 = 50$$

So the result, 50, goes to multiply the next number

$$50 \times 60 = 3000 mod \ 85 = 2550 \times 60 = 3000 \mod 85 = 25$$

The result 25 goes to multiply the next number

$$25 \times 65 = 1625 \mod 85 = 1025 \times 65 = 1625 \mod 85 = 10$$

Plaintext Message M = 10