APUNTES DE LOGICA DIFUSA

CONJUNTOS DE CANTOR CLARAMENTE DEFINIDOS (CRISP)

$$x \in A$$

$$A = \{x \mid x \in A\}$$

$$x_A = \{0,1\}$$

 x_A Es la función característica

 $x_A = 0$ Si $x \notin A$ $x_A = 1$ Si $x \in A$

CONJUNTOS DIFUSOS (FUZZY)

X Elemento del conjunto μ Función de pertenencia al conjunto

$$\widetilde{x} \in \widetilde{A}$$
 $\widetilde{A} = \left\{ \widetilde{x} \mid \widetilde{x} \in \widetilde{A}, 0 \le \mu(x) \le 1 \right\}$
 $\mu(x) = [0,1]$

$$\widetilde{A} = \big\{ (1,0.1), (2,0.2), (3,0.1), (4,0.5), (5,0.), (6,0.1), (7,0.1), (8,0.1), (9,0.1), (10,0.1) \big\}$$

A: Números cercanos a 5 comprendidos del 1 al 10.

$$\widetilde{A} = \sum_{i=1}^{n} \frac{\mu(x)}{x_i}$$
 Notación de Zadeh conjuntos discretos

 $\widetilde{A} = \int_{x}^{\mu(x)}$ Notación de Zadeh conjuntos continuos

$$\widetilde{A} = \frac{0.1}{1} + \frac{0.2}{2} + \frac{0.1}{3} + \frac{0.5}{4} + \frac{0.2}{5} + \frac{0.1}{6} + \frac{0.7}{7} + \frac{1}{8} + \frac{0.3}{9} + \frac{1}{10}$$

"es una simple notación, en realidad no se tiene que realizar la suma aritmética"

CONJUNTOS DIFUSOS

N: núcleo del conjunto

$$N = \{x \mid x \in \widetilde{A}; \mu_{\widetilde{A}}(x) = 1\}$$

L: límites

$$L = \left\{ x \mid x \in \widetilde{A}; 0 \le \mu(x) \le 1 \right\}$$

S: Soporte

$$S = \left\{ x \mid x \in \widetilde{A}; 0 \le \mu(x) \le 1 \right\}$$

$$\mu(x) \ne 0$$

 $x \in X$: x es un elemento del conjunto x. $x \notin X$: x no es un elemento del conjunto x.

 $A \subset X$: A es un subconjunto de B.

 $A \subseteq X$: A esta plenamente contenido en B.

P(x): Potencia del conjunto "es el conjunto de todos los conjuntos posibles en X"

C(x): Cardinalidad que es el número de todos los conjuntos posibles en X.

Ejemplo:

$$A = \{a,b,c\}$$
 n=3

$$P(A) = \{\{a,b,c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a\}, \{b\}, \{c\}, \{\phi\}\}\}$$

$$C(A) = 2^{n} = 2^{3} = 8$$

OPERADORES

 $A \cup B = \{x \mid x \in A, \forall, x \in B\}$

 $A \cap B = \{x \mid x \in A, \land, x \in B\}$

/: DIFERENCIA $A/B = \{x \in A, \land, x \notin B\}$

-: COMPLEMENTO $\overline{A} = \{x \mid x \notin A, x \in X\}$

LEYES DE LOS CONJUNTOS

CONMUTATIVIDAD $A \cup B = B \cup A$ $A \cap B = B \cap A$

ASOCIATIVIDAD $A \cup (B \cup C) = (A \cup B) \cup C \qquad \qquad A \cap (B \cap C) = (A \cap B) \cap C$

DISTRIBUTIVIDAD $A \cup (B \cap C) = (A \cup B) \cup (A \cup B)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap B)$

IDEM POTENCIA $A \cup A = A$ $A \cup \phi = A$ $A \cap \phi = \phi$

TRANSITIVIDAD Sí $A \subseteq B \subseteq C$ Entonces $A \subseteq C$

INVOLUCION $\overline{A} = A$ (al parecer no se muestra la

doble raya.)

LEYES DE DE MORGAN $\frac{\overline{A \cup B} = \overline{A} \cap \overline{B}}{\overline{A} \cap B} = \overline{A \cup B}$

LEY DEL MEDIO $A \cup \overline{A} = X$

 $A \cup A = X$ EXCLUIDO

LEY De LA $A \cap \overline{A} = \phi$

LOGICA DIFUSA - 3 de 27

CONTRADICCION

CONJUNTOS DIFUSOS

 $A; B; A \subseteq X; B \subseteq X$

Universo bien definido

OPERADORES

 $\cap : \quad \mathsf{INTERSECCION} \quad \overset{\mathcal{A}}{\mathcal{L}} \cap \overset{\mathcal{B}}{\mathcal{B}} \qquad \mu_{\overset{\mathcal{A}}{\mathcal{L}} \cup \overset{\mathcal{B}}{\mathcal{B}}}(x) = \left\{ \left. \mu_{\overset{\mathcal{A}}{\mathcal{A}}}(x) \wedge \mu_{\overset{\mathcal{B}}{\mathcal{B}}}(x) \right\} \qquad \mu_{\overset{\mathcal{A}}{\mathcal{A}} \cap \overset{\mathcal{B}}{\mathcal{B}}}(x) = MIN \left(\left. \mu_{\overset{\mathcal{A}}{\mathcal{A}}}(x), \mu_{\overset{\mathcal{B}}{\mathcal{B}}}(x) \right) \right\}$

-: COMPLEMENTO \overline{A} $\mu_{\overline{A}}(x) = 1 - \mu_{A}(x)$

EJEMPLOS:

(HACER GRAFICAS)

SEA

$$A = \frac{0.2}{1} + \frac{0.6}{2} + \frac{1}{3} + \frac{0}{4} + \frac{0}{5}$$

$$B = \frac{0}{1} + \frac{0.7}{2} + \frac{0.4}{3} + \frac{0.2}{4} + \frac{1}{5}$$

$$\underbrace{ \mathcal{A} \cup \mathcal{B} = \frac{MAX(0.2,0)}{1} + \frac{MAX(0.6,0.7)}{2} + \frac{MAX(1,0.4)}{3} + \frac{MAX(0,0.2)}{4} + \frac{MAX(0,1)}{5} }_{ A \cup \mathcal{B} = \frac{0.2}{1} + \frac{0.7}{2} + \frac{1}{3} + \frac{0.2}{4} + \frac{1}{5} }_{ S \cup \mathcal{B} = \frac{MIN(0.2,0)}{1} + \frac{MIN(0.6,0.7)}{2} + \frac{MIN(1,0.4)}{3} + \frac{MIN(0,0.2)}{4} + \frac{MIN(0,1)}{5} }_{ S \cup \mathcal{B} = \frac{0}{1} + \frac{0.6}{2} + \frac{0.4}{3} + \frac{0}{4} + \frac{0}{5} }_{ S \cup \mathcal{B} = \frac{0}{1} + \frac{0.6}{2} + \frac{0.4}{3} + \frac{0}{4} + \frac{0}{5} }_{ S \cup \mathcal{B} = \frac{0}{1} + \frac{0.6}{2} + \frac{0.4}{3} + \frac{0}{4} + \frac{0}{5} }_{ S \cup \mathcal{B} = \frac{0}{1} + \frac{0.6}{2} + \frac{0.4}{3} + \frac{0}{4} + \frac{0}{5} }_{ S \cup \mathcal{B} = \frac{0}{1} + \frac{0.6}{2} + \frac{0.4}{3} + \frac{0}{4} + \frac{0}{5} }_{ S \cup \mathcal{B} = \frac{0}{1} + \frac{0.6}{2} + \frac{0.4}{3} + \frac{0}{4} + \frac{0}{5} }_{ S \cup \mathcal{B} = \frac{0}{1} + \frac{0.6}{2} + \frac{0.4}{3} + \frac{0}{4} + \frac{0}{5} }_{ S \cup \mathcal{B} = \frac{0}{1} + \frac{0.6}{2} + \frac{0.4}{3} + \frac{0}{4} + \frac{0}{5} }_{ S \cup \mathcal{B} = \frac{0}{1} + \frac{0.6}{2} + \frac{0.4}{3} + \frac{0.4}{4} + \frac{0}{5} }_{ S \cup \mathcal{B} = \frac{0}{1} + \frac{0.6}{2} + \frac{0.4}{3} + \frac{0.4}{4} + \frac{0.2}{5} }_{ S \cup \mathcal{B} = \frac{0}{1} + \frac{0.6}{2} + \frac{0.4}{3} + \frac{0.4}{4} + \frac{0.2}{5} }_{ S \cup \mathcal{B} = \frac{0}{1} + \frac{0.6}{2} + \frac{0.4}{3} + \frac{0.4}{4} + \frac{0.2}{5} }_{ S \cup \mathcal{B} = \frac{0.4}{2} + \frac{0.4}{3} + \frac{0.4}{3} + \frac{0.4}{4} + \frac{0.2}{5} }_{ S \cup \mathcal{B} = \frac{0.4}{2} + \frac{0.4}{3} + \frac{0.4}{3} + \frac{0.4}{4} + \frac{0.2}{5} }_{ S \cup \mathcal{B} = \frac{0.4}{2} + \frac{0.4}{3} + \frac{0.4}{3}$$

$$\overline{\underline{A}} = \frac{1 - 0.2}{1} + \frac{1 - 0.6}{2} + \frac{1 - 1}{3} + \frac{1 - 0}{4} + \frac{1 - 0}{5}$$

$$\overline{\underline{A}} = \frac{0.8}{1} + \frac{0.4}{2} + \frac{0}{3} + \frac{1}{4} + \frac{1}{5}$$

y de esta manera podemos calcular lo siguiente:

$$A \cap \overline{A} = \frac{0.2}{1} + \frac{0.4}{2} + \frac{0}{3} + \frac{0}{4} + \frac{0}{5}$$

$$\underline{A} \cap \overline{\underline{A}} = \frac{0.2}{1} + \frac{0.4}{2}$$

Al conjunto de candidatos a operadores para la conjunción difusa (y) se les llama **normas t,** para la disyunción difusa (o) se les llama **normas S** o **conormas t.**

Un operador de normas t dado por t(x,y) es una función de mapeo [0,1]x[0,1] a [0,1] que satisface las siguientes condiciones para cualquier w,x,y,z que pertenece a [0,1]

Normas t

1. (0,0)=0	t(x,1)=t(1,x)=x
2. $t(x,y) \le t(z,w)$	$si x \le z y y \le w$
3. $t(x,y) = t(y,x)$	conmutatividad
4. $t(x,t(y,z)) = t(t(x,y),z)$	asociatividad

Normas s

1.
$$(1,1) = 1$$

$$S(x,0) = S(0,X) = X$$
2. $S(x,y) \le S(z,w);$
$$si \ x \le z \quad y \quad y \le z$$
3. $S(x,y) = S(y,x)$ conmutatividad monotonicidad

Fuzzy logic

The new computer science and how is changing our World

Mcneil

Iriedeberg 1993

Simon & Schuster

Fuzzy thinking

Bart kosko

1994 hyperion

PROBLEMA EJEMPLO

C= "casa comfortable para familia de 4 personas"

c= grado de comfort / número de recámaras

Respuesta en clase

$$\overline{C} = \frac{0.15}{1} + \frac{0.5}{2} + \frac{0.85}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$$

Respuesta bibliografía alemana:

$$C = \frac{0.2}{1} + \frac{0.5}{2} + \frac{0.8}{3} + \frac{1}{4} + \frac{0.7}{5} + \frac{0.3}{6}$$

Tarea:

Encontrar los tipos de operadores para la and (y) y para la or (o)

Usando matlab graficar:

$$\mu_{\underline{A}}(x) = \frac{1}{\left(1 + \frac{x}{5}\right)^3}$$

$$\mu_{B}(x) = \frac{1}{1+3(x-5)^{2}}$$

$$0 \le x \le 20$$

GRAFICAR

Ą,

 $\frac{\underline{B}}{\underline{A}},$ $\frac{\underline{\overline{B}}}{\underline{B}}$

 $A \cup B$

 $B \cap \overline{B}$

Código en matlab

x=[0:0.1:20];

 $muA=((1+x/5).^3).^-1;$

 $muB=(1+3*(x-5).^2).^-1;$

plot(x,muA)

plot(x,muB)

 $muA_neg=1-((1+x/5).^3).^{-1};$

 $muB_neg=1-(1+3*(x-5).^2).^-1;$

plot(x,muA_neg)

plot(x,muB_neg)

A_union_B=max(muA,muB);

plot(x,A_union_B)

A_interseccion_B=min(muA,muB);

plot(x,A_interseccion_B)

A_neg_union_B_neg=max(muA_neg,muB_neg);

plot(x,A_neg_union_B_neg)

 $A_neg_inters_B_neg=min(muA_neg,muB_neg);$

plot(x,A_neg_inters_B_neg)

A_inters_A_neg=min(muA,muA_neg);

plot(x,A_inters_A_neg)

 $B_inters_B_neg=min(muB,muB_neg);$

plot(x,B_inters_B_neg)

A

LOGICA DIFUSA - 9 de 27

JNAM, FACULTAD DE INGENIERÍA
CARLOS
APUNTES LOGICA DIFUSA, ING. ROBERTO MACÍAS PERÉZ
08/P8

SANTIAGO CRUZ 21/08/2006 16:55

₿,

Graficas de A de B

LOGICA DIFUSA - 13 de 27

$$\underline{B}\cap \overline{\underline{B}}$$

$$x_1$$
 y_2

$$x_2$$
 z_2

 \mathcal{Y}_3

$$z_3$$

R relaciona X con Y S relaciona Y con Z T relaciona X con Z

Max-min
$$T = R \circ S$$

Max-prod $T = R \bullet S$

$$\begin{aligned} x_T(x_i, z_i) &= V_{y \in Y} \big[x_R(x_i, y_i) \land x_S(y_i, z_i) \big] \\ x_T(x_i, z_i) &= \max \big[\min \big(x_R(x_i, y_i), x_S(y_i, z_i) \big) \big] \end{aligned}$$

RELACIONES DIFUSAS

Si
$$\underline{A} \subseteq X$$
 y $\underline{B} \subseteq Y$

$$R \subseteq A \times B$$

$$A \times B \subseteq X \times Y$$

$$\mu_{\underline{R}}(x, y) = \mu_{\underline{A} \times \underline{R}}(x, y) = \min \left(\mu_{\underline{A}}(x), \mu_{\underline{B}}(x) \right)$$

Diagrama sagital

$$\tilde{R} = \begin{vmatrix}
0.8 & 0.6 & 0.1 \\
0.5 & 0.3 & 0.2
\end{vmatrix}$$

Matriz de relación R, entre X y Y

Ejemplo:

LOGICA DIFUSA - 16 de 27

Sea:

$$\tilde{A} = \frac{0.2}{x_1} + \frac{0.6}{x_2} + \frac{0.1}{x_3} \qquad \qquad \tilde{A} = \begin{vmatrix} 0.2 \\ 0.5 \\ 0.1 \end{vmatrix}$$

$$\tilde{B} = \frac{0.3}{y_1} + \frac{0.9}{y_2} \qquad \qquad \tilde{B} = \begin{vmatrix} 0.3 \\ 0.9 \end{vmatrix}$$

$$\tilde{R} = \begin{vmatrix} \min \left[\mu(x_1), \mu(y_1) \right] & \min \left[\mu(x_1), \mu(y_2) \right] \\ \min \left[\mu(x_2), \mu(y_1) \right] & \min \left[\mu(x_2), \mu(y_2) \right] \\ \min \left[\mu(x_3), \mu(y_1) \right] & \min \left[\mu(x_3), \mu(y_2) \right] \end{vmatrix}$$

$$R = \begin{vmatrix} \min[0.2, 0.3] & \min[0.2, 0.9] \\ \min[0.5, 0.3] & \min[0.5, 0.9] \\ \min[0.1, 0.3] & \min[0.1, 0.9] \end{vmatrix}$$

$$\tilde{R} = \begin{vmatrix}
0.2 & 0.2 \\
0.3 & 0.5 \\
0.1 & 0.1
\end{vmatrix}$$

$$\overline{R_{se} = \left\{R_{se1}, R_{se2}, \dots, R_{se1}\right\}}$$

$$I_a = \{I_{a1}, I_{a2}, \dots I_{am}\}$$

$$N = \{N_1, N_2, N_3, \dots, N_p\}$$

$$R = R_{se} \times I_{a}$$

$$S = I_a \times N$$

$$R_{se}(\%) = \frac{0.3}{30} + \frac{0.6}{60} + \frac{1}{100} + \frac{0.2}{120}$$

$$\underline{I}_a\left(\%\right) = \frac{0.2}{20} + \frac{0.4}{40} + \frac{0.6}{60} + \frac{0.8}{80} + \frac{1}{100} + \frac{0.1}{120}$$

$$N(RPM) = \frac{0.33}{500} + \frac{0.67}{1000} + \frac{1}{1500} + \frac{0.15}{1800}$$

$$R = \begin{bmatrix}
20 & 40 & 60 & 80 & 100 & 120 \\
30 & 0.2 & 0.3 & 0.3 & 0.3 & 0.3 & 0.1 \\
60 & 0.2 & 0.4 & 0.6 & 0.6 & 0.6 & 0.1 \\
100 & 0.2 & 0.4 & 0.6 & 0.8 & 1 & 0.1 \\
120 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.1
\end{bmatrix}$$

ojo, primera y segunda columna.

$$\tilde{S} = \begin{bmatrix} 500 & 1000 & 1500 & 1800 \\ 20 & 0.2 & 0.2 & 0.2 & 0.15 \\ 40 & 0.33 & 0.4 & 0.4 & 0.15 \\ 60 & 0.33 & 0.6 & 0.6 & 0.15 \\ 80 & 0.33 & 0.67 & 0.8 & 0.15 \\ 100 & 0.33 & 0.67 & 1 & 0.15 \\ 120 & 0.1 & 0.1 & 0.1 & 0.1 \end{bmatrix}$$

 $0.2000 \quad 0.1500 \quad 0.1500 \quad 0.1500 \quad 0.1500 \quad 0.1000$

R =

0.2000	0.3000	0.3000	0.3000	0.3000	0.1000
0.2000	0.4000	0.6000	0.6000	0.6000	0.1000
0.2000	0.4000	0.6000	0.8000	1.0000	0.1000
0.2000	0.2000	0.2000	0.2000	0.2000	0.1000

S =

0.2000	0.2000	0.2000	0.1500
0.3300	0.4000	0.4000	0.1500
0.3300	0.6000	0.6000	0.1500
0.3300	0.6700	0.8000	0.1500
0.3300	0.6700	1.0000	0.1500
0.1000	0.1000	0.1000	0.1000

Preposición difusa en el universo del discurso

 $T(P) = \mu(x)$: Grado de verdad de $ilde{\mathcal{P}}$

 $0 \le \mu(x) \le 1$

CONECTIVOS

Si P y Q son proporciones difusas en el mismo universo X, entonces P y Q se pueden unir mediante conectivos.

 $P \vee Q \qquad T(P \vee Q) = MAX[T(P), T(Q)]$ ۷: Disyunción

 $P \wedge Q \qquad T(P \wedge Q) = MIN[T(P), T(Q)]$ ۸: Conjunción

Negación

 $\begin{array}{ll} \overline{P} & T\left(\overline{P}\right) = 1 - T\left(P\right) \\ P \to Q & T\left(P \to Q\right) = T\left(\overline{P} \lor Q\right) = MAX[1 - T\left(P\right), \left(Q\right)] \end{array}$ Implicación

LA IMPLICACION

Las preposiciones en dos universos diferentes:

Sea P una preposición en A

Sea Q una preposición en B

 $Q \in \underline{B}$ $P \in A$

 $B \subset Y$ $A \subset X$ $R = P \rightarrow Q$

 $\underline{\mathcal{R}} = \left(\underline{\mathcal{A}} \times \underline{\mathcal{B}} \right) \cup \left(\underline{\overline{\mathcal{A}}} \times Y \right)$ $T \left(\underline{\mathcal{P}} \to \underline{\mathcal{Q}} \right) = T \left(\underline{\overline{\mathcal{P}}} \vee \underline{\mathcal{Q}} \right) = MAX \left\{ \min[T(\underline{\mathcal{A}}), T(\underline{\mathcal{B}})], 1 - T(\underline{\overline{\mathcal{A}}}) \right\}$

EJEMPLO

Una compañía ha inventado un nuevo producto, y se desea realizar una evaluación de su potencial comercial, en función de su originalidad, y del tamaño del mercado. Obtener la implicación $\underline{\mathcal{A}} \to \underline{\mathcal{B}}$

 $A \subseteq X$: Originalidad

 $B \subseteq Y$: Tamaño del mercado

$$A = \frac{0}{1} + \frac{0.6}{2} + \frac{1}{3} + \frac{0.2}{4}$$

$$\mathcal{A} = \frac{0}{1} + \frac{0.4}{2} + \frac{1}{3} + \frac{0.8}{4} + \frac{0.3}{5} + \frac{0}{6}$$

$$\mathcal{R} = (\mathcal{A} \times \mathcal{B}) \cup (\overline{\mathcal{A}} \times Y)$$

$$\mu_{\underline{R}}(x,y) = MAX \left\{ \min \left[\mu_{\underline{A}}(x), \mu_{\underline{B}}(x) \right], 1 - \mu_{\underline{A}}(x) \right\}$$

$$\begin{array}{c}
 a_1 \\
 a_2 \\
 a_3 \\
 a_4
 \end{array}
 \begin{bmatrix}
 0 \\
 0.6 \\
 1 \\
 0.2
 \end{bmatrix}
 \qquad \begin{array}{c}
 \bar{a}_1 \\
 \bar{a}_2 \\
 \bar{a}_3
 \end{array}
 \begin{bmatrix}
 1 \\
 0.4 \\
 0 \\
 0.8
 \end{bmatrix}$$

$$b_1 \quad b_2 \quad b_3 \quad b_4 \quad b_5 \quad b_6$$

$$\mathcal{B} = \begin{bmatrix} 0 & 0.4 & 1 & 0.8 & 0.3 & 0 \end{bmatrix}$$

$$b_1$$
 b_2 b_3 b_4 b_5 b_6
 $Y = 1$ 1 1 1 1 1

Variables lingüísticas

Vamos a usar variables lingüísticas, que puedan ser de tres tipos:

- 1. Juicios de asignación
- 2. Juicios condicionales maduro
- 3. Juicios incondicionales
- Ejemplos: x es grande, x es pequeña
- Ejemplos: IF el jitomate es rojo THEN el jitomate es

Ejemplos: Ordenes, asignaciones.

FALTA 18 y 19

Conjuntos Difusos

Versiones acampanadas

(FALTAN TRES GRAFICAS)

Conjuntos convexos normales

Los conjuntos convexos son aquellos cuya función de membresía es: estrictamente creciente o decreciente, o creciente y luego decreciente. Los conjuntos normales son aquellos en los que por lo menos existe un elemento del universo con un grado de pertenencia unitario.

(FALTAN DOS GRAFICAS)

Métodos para definir los conjuntos difusos

Al definir conjuntos, es conveniente manejar números impares de conjuntos, además es conveniente que los cruces ocurran solamente entre dos conjuntos y el punto de intersección con una $\mu(x)=0.5$

Los métodos para definir conjuntos difusos son:

- Intuición
- Inferencia
- Ordenación por rango
- Conjuntos difusos angulares
- Redes neuronales
- · Por algoritmos genéticos

INTUICION

Conocimiento inmediato de un objeto, también se ha definido como el conocimiento inmediato de una verdad.

Ejemplo:

Definir los conjuntos difusos para las temperaturas: fría, fresca, agradable, tibia, caliente, muy caliente.

INFERENCIA

Acción y efecto de inferir (deducir una cosa a partir de otra)

Ejemplo:

Sea U_T el universo de los triángulos, donde A, B, y C son los ángulos internos de los triángulos.

$$U_{T} = \left\{ \begin{pmatrix} A, B, C \end{pmatrix} \mid A \quad B, B \quad C, A \quad 0, B \quad 0, C \quad 0; A + B + C = 180 \right\}$$

ahora definimos los conjuntos difusos para triángulos:

 \underline{I} : Aproximadamente isósceles $\mu_I(A,B,C) = 1 - \min(A-B,B-C) \div 60$

 \underline{R} : Aproximadamente rectángulo $\mu_{\underline{R}}(A,B,C) = 1 - |A-90| \div 90$

 $\underline{\mathcal{E}}$: Aproximadamente equilátero $\mu_{\underline{\mathcal{E}}}(A,B,C) = 1 - (A-C) \div 180$

LOGICA DIFUSA - 24 de 27

 $I_{\mathbb{R}}^{\mathbf{r}}$: Aproximadamente isósceles y rectángulos $\mu_{I_{\mathbb{R}}}(A,B,C) = \min \left[\mu_{I_{\mathbb{R}}}(A,B,C), \mu_{I_{\mathbb{R}}}(A,B,C)\right]$

 $Q: \qquad \qquad \text{Otros triángulos} \qquad \quad \mu_{Q}\left(\left.A,B,C\right) = 1 - M\!A\!X\left[\left.\mu_{\underline{I}}\left(\left.A,B,C\right),\mu_{\underline{R}}\left(\left.A,B,C\right),\mu_{\underline{E}}\left(\left.A,B,C\right)\right.\right]\right]$

ORDENACION POR RANGO

EJEMPLO:

Una empresa de la industria de la moda desea conocer que colores prefiere la gente para ello se realizó una encuesta en la que se preguntaba que color prefiere. Mediante los datos obtenidos de la encuesta, ordenar los colores por rango de acuerdo a su porcentaje de preferencia.

	Rojo	naranj	Amarill	verde	azul	totales	rango	%	μ
		a	0						
Rojo	-	517	525	545	661	2248	2	22.48	0.946
Naranja	483	-	841	477	576	2377	1	23.77	1
Amarill	475	159	-	534	614	1782	4	17.82	0.75
0									
Verde	455	523	466	-	643	2087	3	20.87	0.878
Azul	339	424	386	357	-	1506	5	15.06	0.634
Total						10000		100	

rango	color	%	μ
1	Naranja	23.77	1
2	Rojo	22.48	0.946
3	Verde	20.87	0.878
4	Amarill	17.82	0.75
	0		
5	azul	15.06	0.634

Falta grafica de barras

CONJUNTOS DIFUSOS ANGULARES

Faltan graficas

DIFUSION

La difusión es el proceso en el cual, mediante conjuntos difusos, se obtiene un valor difuso a partir de un valor no difuso (crisp)

Ejemplos:

Usando los conjuntos obtenidos por el método de la intuición, hacer la difusión para x=23 [°C] y x=27[°C]

Insertar graficas

temperatura	μ(x=23[°C])	μ(x=27[°C])
Fría .	0	0
Fresca	0	0
Agradable	0.4	0
Tibia	0.6	0.6
Caliente	0	0.4
Muy caliente	0	0

Con los conjuntos obtenidos por el método de la inferencia, obtener los valores difusos para el triángulo cuyos ángulos internos son: A=85, B=50, y C=45.

$$\mu_{r}(85,50,45) = 1 - \frac{\min(85 - 50,50 - 45)}{60}$$

$$\mu_{r}(85,50,45) = 1 - \frac{\min(35,5)}{60}$$

$$\mu_{r}(85,50,45) = 1 - \frac{5}{60}$$

$$\mu_{r}(85,50,45) = 1 - 0.083 = 0.917$$

$$\mu_{R}(85,50,45) = 1 - |85 - 90|$$

$$\mu_{R}(85,50,45) = 1 - \frac{5}{90}$$

$$\mu_{R}(85,50,45) = 1 - 0.056 = 0.944$$

$$\mu_{\underline{E}}(85,50,45) = 1 - \frac{(85 - 45)}{180}$$

$$\mu_{\underline{E}}(85,50,45) = 1 - \frac{40}{180}$$

$$\mu_{E}(85,50,45) = 1 - 0.222 = 0.788$$

$$\mu_{IR}(85,50,45) = \min(0.917,0.944)$$
$$\mu_{IR}(85,50,45) = 0.917$$

$$\mu_{\varrho} (85, 50, 45) = \max(0.917, 0.944, 0.778)$$

$$\mu_{\varrho} (85, 50, 45) = 0.944$$

(falta grafica de triangulo)