인공지능/머신러닝 기초

Module 3: Linear Regression

기계학습

Regression Classification Clustering

단순선형회귀분석

Simple Linear Regression

회귀분석이란?

대학 운동부 학생들의 신체검사 자료 신입생 A가 들어왔다.(키는 175cm이다) 예상 몸무게는 얼마인가?

회귀분석이란?

대학 운동부 학생들의 신체검사 자료 신입생 A가 들어왔다.(키는 175cm이다) 예상 몸무게는 얼마인가?

회귀분석법

당신은 엘리스의

데이터 사이언티스트다.

데이터: 광고 분석과 판매량

목표: FB 광고에 얼마를 투자하면…

상품이 얼마나 팔릴까?

방법: 데이터를 가장 잘 설명하는 어떤 선을 하나 찾는다.

변수 표기

N: 데이터의 개수

X: Input; 데이터/Feature

"광고료"

Y: Output; 해답/응답

"판매량"

(x⁽ⁱ⁾, y⁽ⁱ⁾): i번째 데이터

X	Y
230.1	22.1
44.5	10.4
17.2	9.3
151.5	18.5
180.8	12.9
8.7	7.2
57.5	11.8
:	:

광고료 (만원): X

문제정의

 $X \qquad Y$

데이터: N개의 FB 광고 예산과 판매량

목표: 광고에 얼마를 투자했을 때 얼마나 팔릴까?

X	Y
230.1	22.1
44.5	10.4
17.2	9.3
151.5	18.5
180.8	12.9
8.7	7.2
57.5	11.8
	:

문제정의

 $X \qquad Y$

데이터: N개의 FB 광고 예산과 판매량

목표: 광고에 얼마를 투자했을 때 얼마나 팔릴까?

가정: TV 광고 예산과 판매량은 선형적 관계를 가진다 $Y \sim eta_0 X + eta_1$

230.1	22.1
44.5	10.4
17.2	9.3
151.5	18.5
180.8	12.9
8.7	7.2
57.5	11.8

문제: 어떤 β_0 , β_1 이 좋은 것인가?

실습 1: 기울기와 절편

$$Y \sim \beta_0 X + \beta_1$$

아이디어:

완벽한 예측은 불가능하다.

각 데이터 (x(i), y(i)) 의 실제 값과

모델이 예측하는 값을 최소한으로 하자!

어떻게?

$$Y \sim \beta_0 X + \beta_1$$

$$Y \sim \beta_0 X + \beta_1$$

$$Y \sim \beta_0 X + \beta_1$$

i번째데이터 $(x^{(i)}, y^{(i)})$ 에 대해:

실제 값: $y^{(i)}$

예측 값: $\beta_0 x^{(i)} + \beta_1$

차이:

전체 모델의 차이:

$$Y \sim \beta_0 X + \beta_1$$

i번째데이터 $(x^{(i)}, y^{(i)})$ 에 대해:

실제 값: $y^{(i)}$

예측 값: $\beta_0 x^{(i)} + \beta_1$

‡[0]: $y^{(i)} - (\beta_0 x^{(i)} + \beta_1)$

전체 모델의 차이: $\sum_i^N y^{(i)} - (\beta_0 x^{(i)} + \beta_1)$

반례

해결

문제 재정의

$$Y \sim \beta_0 X + \beta_1$$

전체 모델의 차이: $\sum_{i}^{N} (y^{(i)} - (\beta_0 x^{(i)} + \beta_1))^2$ "Loss function"

이 차이를 최소로 하는 β_0 , β_1 을 구하자.

$$\arg\min_{\beta_0,\beta_1} (y^{(i)} - (\beta_0 x^{(i)} + \beta_1))^2$$

실습 2: Loss function

산 정상 오르기

산 정상이 되는 지점을 찾고 싶다.

아무 곳에서나 시작했을 때, 가장 정상을 빠르게 찾아가는 방법은?

가정

- 정상의 위치는 알 수 없다.
- 현재 나의 위치와 높이를 알 수 있다.
- 내 위치에서 일정 수준 이동할 수 있다.

산 정상 오르기

산 정상이 되는 지점을 찾고 싶다.

아무 곳에서나 시작했을 때, 가장 정상을 빠르게 찾아가는 방법은?

방법

- 현재 위치에서 가장 경사가 높은 쪽
 을 찾는다.
- 오르막 방향으로 일정 수준 이동한다.
- 더 이상 높이의 변화가 없을 때까지 반복!

거꾸로 된 산을 내려가기

데이터를 가장 잘 설명하는 β_0 , β_1 을 구하자

- = 예측 값과 실제 값의 차이를 최소로 만드는 값을 구하자
 - = Loss function을 최소로 만드는 β_0 , β_1 을 구하자

$$L(\beta_0, \beta_1) = \sum_{i}^{N} (y^{(i)} - (\beta_0 x^{(i)} + \beta_1))^2$$

거꾸로 된 산을 내려가기

$$L(\beta_0, \beta_1) = \sum_{i}^{N} (y^{(i)} - (\beta_0 x^{(i)} + \beta_1))^2$$

실습 3: Scikit-learn을 이용한 회귀분석

/* elice */

문의 및 연락처

academy.elice.io contact@elice.io facebook.com/elice.io blog.naver.com/elicer