

3-STATE HEX BUFFERS

These devices are high speed hex buffers with 3-state outputs. They are organized as single 6-bit or 2-bit/4-bit, with inverting or non-inverting data (D) paths. The outputs are designed to drive 15 TTL Unit Loads or 60 Low Power Schottky loads when the Enable (E) is LOW.

When the Output Enable (E) is HIGH, the outputs are forced to a high impedance "off" state. If the outputs of the 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

SN54/74LS365A SN54/74LS366A SN54/74LS367A SN54/74LS368A

3-STATE HEX BUFFERS
LOW POWER SCHOTTKY

ORDERING INFORMATION

SN54LSXXXJ Ceramic SN74LSXXXN Plastic SN74LSXXXD SOIC

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current — High	54 74			-1.0 -2.6	mA
loL	Output Current — Low	54 74			12 24	mA

SN54/74LS365A • SN54/74LS366A SN54/74LS367A • SN54/74LS368A

SN54/74LS365A HEX 3-STATE BUFFER WITH COMMON 2-INPUT NOR ENABLE

TRUTH TABLE

II	IPUT	OUTPUT	
E ₁	E ₂	ם	OUTFUT
L	L	L	L
L	L	Н	Н
Н	Х	Х	(Z)
X	Н	Х	(Z)

SN54/74LS366A HEX 3-STATE INVERTER BUFFER WITH COMMON 2-INPUT NOR ENABLE

TRUTH TABLE

IN	IPUT	S	OUTPUT
E ₁	E ₂	D	OUTFUT
L	L	L	Н
L	L	Н	L
Н	Х	Х	(Z)
Х	Н	Х	(Z)

SN54/74LS367A HEX 3-STATE BUFFER SEPARATE 2-BIT AND 4-BIT SECTIONS

TRUTH TABLE

INP	JTS	OUTPUT
Е	D	OUTFUT
L	L	L
L	Н	Н
Н	Х	(Z)

SN54/74LS368A HEX 3-STATE INVERTER BUFFER SEPARATE 2-BIT AND 4-BIT SECTIONS

TRUTH TABLE

	INP	JTS	OUTPUT			
	E	D	OUTPUT			
	L	L	Н			
ı	L	Н	L			
ı	Н	Χ	(Z)			

SN54/74LS365A • SN54/74LS366A SN54/74LS367A • SN54/74LS368A

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Tes	t Conditions
V _{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
VIL	Input LOW Voltage	54			0.7	V		t LOW Voltage for
▼IL	input LOW Voltage	74			0.8	v	All Inputs	
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} =	= –18 mA
VOH	Output HIGH Voltage	54	2.4	3.4		V		= MAX, V _{IN} = V _{IH}
VOH	Output Filori Voltage	74	2.4	3.1		V	or V _{IL} per Truth	Table Table
Val	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 12 mA V _{CC} = V _{CC} MIN,	
V _{OL}	Output LOVV Voltage	74		0.35	0.5	٧	I _{OL} = 24 mA	VIN = VIL or VIH per Truth Table
lozh	Output Off Current HIGH				20	μΑ	V _{CC} = MAX, V _{OUT} = 2.7 V	
lozL	Output Off Current LOW				-20	μΑ	V _{CC} = MAX, V _{OUT} = 0.4 V	
l	Institution of the second				20	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V	
ін н	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
	In <u>pu</u> t LOW Current E Inputs				-0.4	mA	V _{CC} = MAX, V _{IN}	= 0.4 V
IIL	D Inputs				-20	μΑ	V _{CC} = MAX, V _{IN} = 0.5 V Either E Input at 2.0 V	
					-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V Both E Inputs at 0.4 V	
los	Short Circuit Current (Note	1)	-40		-225	mA	V _{CC} = MAX	
Icc	Power Supply Current LS365A, 367A LS366A, 368A				24	mA V _{CC} = MAX		
					21			

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V)

		Limits							
		LS36	LS365A/LS367A LS366A		6A/LS	368A			
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
^t PLH ^t PHL	Propagation Delay		10 9.0	16 22		7.0 12	15 18	ns	C _L = 45 pF,
[†] PZH [†] PZL	Output Enable Time		19 24	35 40		18 28	35 45	ns	R _L = 667 Ω
[†] PHZ [†] PLZ	Output Disable Time			30 35			32 35	ns	C _L = 5.0 pF

Case 648-08 N Suffix 16-Pin Plastic

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.
 751B-01 IS OBSOLETE, NEW STANDARD
 751B-03.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
P	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION "L" TO CENTER OF LEADS WHEN
 FORMED PARALLEL.
- DIMENSION "B" DOES NOT INCLUDE MOLD
- ROUNDED CORNERS OPTIONAL. 648-01 THRU -07 OBSOLETE, NEW STANDARD

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	18.80	19.55	0.740	0.770	
В	6.35	6.85	0.250	0.270	
С	3.69	4.44	0.145	0.175	
D	0.39	0.53	0.015	0.021	
F	1.02	1.77	0.040	0.070	
G	2.54	BSC	0.100 BSC		
Н	1.27	BSC	0.050 BSC		
J	0.21	0.38	0.008	0.015	
K	2.80	3.30	0.110	0.130	
L	7.50	7.74	0.295	0.305	
M	0°	10°	0°	10°	
S	0.51	1.01	0.020	0.040	

- OTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION LTO CENTER OF LEAD WHEN

- 5. DIMENSION I TO CENTER OF LEAD WHEN FORMED PARALLEL.
 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.
 5. 620-01 THRU -08 OBSOLETE, NEW STANDARD
- 620-09.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MIN MAX		MAX	
Α	19.05	19.55	0.750	0.770	
В	6.10	7.36	0.240	0.290	
С		4.19	_	0.165	
D	0.39	0.53	0.015	0.021	
Е	1.27	BSC	0.050 BSC		
F	1.40	1.77	0.055	0.070	
G	2.54	BSC	0.100 BSC		
J	0.23	0.27	0.009	0.011	
K	_	5.08	_	0.200	
L	7.62	BSC	0.300	BSC	
M	0°	15°	0°	15°	
N	0.39	0.88	0.015	0.035	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

