

▶ Big Data Session 8: Recommender Systems

Frank Hopfgartner
Institute for Web Science and Technologies

Intended Learning Outcomes

At the end of this lecture, you will be able to:

- Explain what a recommender system is and provide examples where they are used
- Explain different recommendation types and understand their advantages and disadvantages
- Explain how recommender systems are evaluated

Outline

- Introduction
- Basics
- Collaborative Filtering
- Content-based Recommendations
- Distributed Recommender Systems

What are recommender systems?

Recommender systems help users to find **items** they were not searching for.

Items?

Example: YouTube

Example: Music

Example: News articles

And many others...

- Apartments
- Routes
- Clothes
- Shoes
- Restaurants
- Cafés
- Travels
- Scientific publications

- Programmers
- Craftsmen
- Grocery products
- Partners on online dating sites
- Friends in social networks
- Courses (E-Learning)
- • •

Why do we need recommender systems?

Recommender Engine

Create a list of recommended products (items) from a larger set of products (items).

Engine

items	score
i1	0.95
i2	0.94
i3	0.89

Recommendations

Personalised Recommendation

System requires information about user to create personalised recommendations.

Recommender
Engine

items	score
i1	0.95
i2	0.94
i3	0.89

Recommendations

Y. Koren, S. Rendle, and R. Bell. Advances in Collaborative Filtering, Recommendation Systems Handbook, pp. 91-142, 2021.

Collaborative Filtering

"word-of-mouth"

recommendation

Personalised

recommendations based on

user preferences

- Own preferences
- Others with similar taste

Collaborative Filtering

Advantages

- No information about products required
- Expensive data enrichment not necessary

Disadvantages

- No strategy to recommend similar items of a highly rated item
- Cold start problem

C. Musto, M. de Gemmis, P. Lops, F. Narducci, G. Semeraro. Semantics and Content-based Recommendations. Recommender Systems Handbook, pp. 251-298, 2021.

Content-based recommendations

- Recommend most relevant items based on content features
- Item profile is a collection of all metadata fields describing this item
- User profile is an aggregation of all item profiles of a user

Content-based recommendations

- Advantages
 - Independent from user base
 - New items can directly be recommended
 - High transparency
- Disadvantages
 - Maintenance and data cleaning costly
 - "over specialisation"
 - Cold start problem for new users

Knowledge models

Knowledge-based recommendations

- Time span plays an important role
 - five-year-old ratings for computers
 - News articles about the World Cup
 - user lifestyle or family situation changes

- Customers want to explicitly define their requirements
 - "the color of the jersey should be orange"

Knowledge-based recommendations

Advantage

Allow to narrow down recommendations

Disadvantages

- cost of knowledge acquisition
 - from domain experts
 - from users
 - from web resources
- accuracy of preference models
 - very fine granular preference models require many interaction cycles

Knowledge models

Hybrid systems

- Typical questions:
 - Which techniques should be combined?
 - How can we process recommendations of different systems?
- Advantages and Disadvantages
 - Derive from individual techniques

Outline

Introduction

Basics

- Example
- Terminology
- Recommendation task
- Rating function
- Evaluation
- Collaborative Filtering
- Content-based Recommendations
- Distributed Recommender Systems

	Pulp Fiction (1994)	Inception (2010)	Star Trek (2009)	The Matrix (1999)	Star Wars (1977)
Ben	****				
Lea					
Max					
Sara					

Ratings:

Users can rate movies

Rating scale:

- 1 5 stars; from Flop (1 star) to Top (5 stars)
- 0 stars: Movie has not been rated yet

Note:

- other interpretations possible such as "useless" to "very helpful"
- other scales possible, such as 1-10 stars, like/dislike, etc.

	Pulp Fiction (1994)	Inception (2010)	Star Trek (2009)	The Matrix (1999)	Star Wars (1977)
Ben	****				
Lea			****		
Max				****	
Sara				****	

Question:

Which movies might be interesting for Lea?

Possible answer: "The Matrix", because ...

- Max seems to have a similar taste as Lea
- Max likes "The Matrix"

	Pulp Fiction (1994)	Inception (2010)	Star Trek (2009)	The Matrix (1999)	Star Wars (1977)
Ben					
Lea			****		****
Max			****	****	
Sara				****	

	Pulp Fiction (1994)	Inception (2010)	Star Trek (2009)	The Matrix (1999)	Star Wars (1977)
Ben	5		1	4	2
Lea		2	5		5
Max	1		4	5	4
Sara		4	2	5	

	Pulp Fiction (1994)	Inception (2010)	Star Trek (2009)	The Matrix (1999)	Star Wars (1977)
Ben	5		1	4	2
Lea		2	5		5
Max	1		4	5	4
Sara		4	2	5	

	i ₁	i ₂	i ₃	i ₄	i ₅
u ₁	5		1	4	2
u ₂		2	5		5
U ₃	1		4	5	4
U ₄		4	2	5	

Terminology

	i ₁	i ₂	i ₃	i ₄	i ₅	•••	i _m
u ₁	r ₁₁		r ₁₃	r ₁₄	r ₁₅		
u ₂		r ₂₂	r ₂₃		r ₂₅		
u ₃	r ₃₁		r ₃₃	r ₃₄	r ₃₅		r _{3m}
u ₄		r ₄₂	r ₄₃	r ₄₄			
•••							
un	r _{n1}				r _{n5}		r _{nm}

users $U = \{u_1, u_2, ..., u_n\}$

items $I = \{i_1, i_2, ..., i_m\}$

scores $S = \{s_1, ..., s_k\}$ Example.: $S = \{1, ..., 5\}$; $S = \{like, dislike\}$

ratings $R = (r_{ij})$ Incomplete matrix with elements r_{ij} of S

Recommendation task

Given:

Users
$$U = \{u_1, u_2, ..., u_n\}$$

Items $I = \{i_1, i_2, ..., i_m\}$
Ratings $R = (r_{ij})$

Problem:

- Which items are interesting for the user?
- Recommendation task:
 - Learn rating function $f: U \times I \rightarrow S$ which accurately predicts ratings $f(u, i) = r_{ui}$ of items i for User u
 - Recommend User u new items i, for which f(u, i) is large.

Recommendation task

Given:

Users
$$U = \{u_1, u_2, ..., u_n\}$$

Items $I = \{i_1, i_2, ..., i_m\}$
Ratings $R = (r_{ij})$

What does learning mean?

Problem:

- Which items are interesting for the user?
- Recommendation task
 - Learn rating function $f: U \times I \rightarrow S$ which accurately predicts ratings $f(u, i) = r_{ui}$ of items i for User u
 - Recommend User u new items i, for which f(u, i) is large.

Recommendation task

Given:

Users
$$U = \{u_1, u_2, ..., u_n\}$$

Items $I = \{i_1, i_2, ..., i_m\}$
Ratings $R = (r_{ij})$

What does learning mean?

Problem:

Which items are interesting for the user?

What does accurate mean?

- Recommendation task:
 - Learn rating function $f: U \times I \rightarrow S$ which accurately predicts ratings $f(u, i) = r_{ui}$ of items i for User u
 - Recommend User u new items i, for which f(u, i) is large.

Rating function

- Given:
 - Rating function $f: U \times I \rightarrow S$

Note: We will see later how to get a rating function.

- Problem:
 - How can f be used to recommend "interesting" items to User u?
- Main principles:
 - Notation: Let I_u be the set of all items rated by User u
 - Compute f(u,i) for all items $i \in I \setminus I_u$ that User u did not rate yet
 - Sort items $i \in I \setminus I_u$ in descending order respectively f(u,i)
 - Recommend User u the first N items

Rating function

- Example for User u = Lea
 - Random-based rating function $f: U \times I \rightarrow S$
 - Recommend User u an item $i \in I \setminus I_u$ with maximum value f(u,i)

Note: Function f is not very useful but easy enough to explain the principle.

	Pulp Fiction	Inception	Star Trek	The Matrix	Star Wars
Ben	4		1	4	2
Lea	?	2	5	?	5
Max			4	5	4
Sara		4	2	5	

Rating function

Example for User u = Lea

■ Random-based rating function $f: U \times I \rightarrow S$

• Recommend User u an item $i \in I \setminus I_u$ with maximum value

f(*u*,*i*)

Compute f(u,i)

	Pulp Fiction	Inception	Star Trek	The Matrix	Star Wars
Ben	4		1	4	2
Lea	5	2	5	1	5
Max			4	5	4
Sara		4	2	5	

Rating function

Example for User u = Lea

■ Random-based rating function $f: U \times I \rightarrow S$

• Recommend User u an item $i \in I \setminus I_u$ with maximum value

f(u,i)

Sort:

1. Pulp Fiction (5)

2. The Matrix (1)

	Pulp Fiction	Inception	Star Trek	The Matrix	Star Wars
Ben	4		1	4	2
Lea	5	2	5	1	5
Max			4	5	4
Sara		4	2	5	

Rating function

- Example for User u = Lea
 - Random-based rating function $f: U \times I \rightarrow S$
 - Recommend User u an item $i \in I \setminus I_u$ with maximum value f(u,i)

Recommend Pulp Fiction

	Pulp Fiction	ception	Star Trek	The Matrix	Star Wars
Ben	4		1	4	2
Lea	5	2	5	1	5
Max			4	5	4
Sara		4	2	5	

Given:

• Rating function $f: U \times I \rightarrow S$

Problem:

How can we measure the quality of rating function f?

Root-Mean-Squared-Error (RMSE):

- Quantified discrepancy between prediction f(u,i) and rating r_{ui}
- Commonly used measurement since Netflix-Challenge
- Definition: $RMSE(f) = \sqrt{\frac{1}{|R_{test}|} \sum_{r_{ui} \in R_{tout}} (f(u,i) r_{ui})^2}$

Evaluation Example

x - Prediction f(u, i)

(x) - Rating of the users

	Pulp Fiction	Inception	Star Trek	The Matrix	Star Wars
Ben	4	3 (5)	1	4	2
Lea	5 (1)	2	5	1 (3)	5
Max	4 (2)	2 (2)	4	5	4
Sara	3 (5)	4	2	5	2 (2)

$$RMSE(f) = \sqrt{\frac{1}{7} \left(\underbrace{(3-5)^2}_{Ben} + \underbrace{(5-1)^2 + (1-3)^2}_{Lea} + \underbrace{(4-2)^2 + (2-2)^2}_{Max} + \underbrace{(3-5)^2 + (2-2)^2}_{Sara} \right)}$$

$$= \sqrt{\frac{1}{7} \left(4 + 16 + 4 + 4 + 0 + 4 + 0 \right)} = \sqrt{\frac{32}{7}}$$

$$\approx 2.14$$

Question

How can we measure the quality of rating function f if we don't know the actual rating?

- Given:
 - Incomplete rating matrix $R = (r_{ij})$
- Problem:
 - How can we measure the quality of rating function f, if we don't know the actual rating?
- Main principle
 - Split ratings $R = (r_{ij})$ in two subsets
 - Training set R_{train}, to construct rating function f (learning)
 - Test set R_{test} , to evaluate rating function f (e.g., with RMSE)
 - Compute f(u,i) for all pairs (u,i), that have one r_{ui} in R_{test}
 - Compute RMSE(f) over all ratings r_{ui} of test set R_{test}

- Example
 - Chose time point t₀
 - Classifiy ratings before t₀ as training set
 - Classifiy ratings after t₀ as test set

Training set R_{train} Test set R_{test}

	Pulp Fiction	Inception	Star Trek	The Matrix	Star Wars
Ben	4		1	4	2
Lea		2	5		5
Max			4	5	4
Sara		4	2	5	

in		Pulp Fiction	Inception	Star Trek	The Matrix	Star Wars
: R _{train}	Ben					
g set	Lea					
ining	Max				5	4
Traini	Sara		4	2	5	

		†	>
C	`	7	8
	7	ע	,
	C	7)
	ţ	7)
ŀ	Q	Ú	

		Pulp Fiction	Inception	Star Trek	The Matrix	Star Wars
	Ben	4		1	4	2
,	Lea		2	5		5
	Max			4		
	Sara					

Outline

- Introduction
- Basics

Collaborative Filtering

- Neighbourhood-based recommendations
 - User-based
 - Item-based
- Matrix factorisation
- Graph-based algorithms
- Content-based Recommendations
- Distributed Recommender Systems

• Question:

• How will I rate the movie "Pulp Fiction"?

Idea:

I like movies that my "friends" like

Prediction:

- Chose k users with a similar taste (k-nearest neighbours)
- Rating for the movie is predicted based on the ratings of my k nearest neighbours

	Pulp Fiction (1994)	Inception (2010)	Star Trek (2009)	The Matrix (1999)	Star Wars (1977)
Ben	4		1	4	2
Lea		2	5		5
Max			4	5	4
Sara		4	2	5	

	Pulp Fiction (1994)	Inception (2010)	Star Trek (2009)	The Matrix (1999)	Star Wars (1977)
Ben	4		1	4	2
Lea		2	5		5
Max			4	5	4
Sara		4	2	5	

Question: How would Ben rate the movie "Inception"?

	Pulp Fiction (1994)	Inception (2010)	Star Trek (2009)	The Matrix (1999)	Star Wars (1977)
Ben	4		1	4	2
Lea		2	5		5
Max			4	5	4
Sara		4	2	5	

Question: How would Ben rate the movie "Inception"?

Prediction:

1. Determine nearest neighbour of Ben (k = 1)

	Pulp Fiction (1994)	Inception (2010)	Star Trek (2009)	The Matrix (1999)	Star Wars (1977)
Ben	4	?	1	4	2
Lea		2	5		5
Max			4	5	4
Sara		4	2	5	

Question: How would Ben rate the movie "Inception"? Prediction:

1. Determine nearest neighbour of Ben (k = 1)

2. Predict Ben's rating for "Inception" based on Sara's rating

Prediction $f(u_2, i_4)$?

	i ₁	i ₂	i ₃	i ₄	i ₅	 i _m
u ₁	3		2	4	4	
u ₂		3	4	?	1	
u ₃			1	2	5	2
u ₄		3	5	3		
u ₅			4	5	1	1
u _n	3		4	4	2	2

A user is similar to u_2 , when there are at least two ratings with difference ≤ 1

	i ₁	i ₂	i ₃	i ₄	i ₅	•••	i _m	#
u ₁	3		2	4	4			0
u ₂		3	4	?	1		2	4
u ₃			1	2	5		2	1
u ₄		3	5	3				2
u ₅			4	5	1		1	3
u _n	3		4	4	2		2	3

- 3 NN of User u₂:
 - U₄
 - U₅
 - U_n
- All 3 NN rated Item i₄
- $f(u_2, i_4) = 4$

$$f(u_2, i_4) = \frac{1}{3} (r_{44} + r_{54} + r_{n4})$$
$$= \frac{1}{3} (3 + 5 + 4) = \frac{12}{3}$$
$$= 4$$

A user is similar to u_2 , when there are at least two ratings with difference ≤ 1

	i ₁	i ₂	i ₃	i ₄	i ₅	 i _m	#
u ₁	3		2	4	4		0
u ₂		3	4	4	1	2	4
u ₃			1	2	5	2	1
u ₄		3	5	3			2
u ₅			4	5	1	1	3
u _n	3		4	4	2	2	3

$$f(u,i) = \frac{1}{|N_i(u)|} \sum_{v \in N_i(u)} r_{vi}$$
$$= \frac{1}{k} \left(r_{v_1 i} + r_{v_2 i} + \dots + r_{v_k i} \right)$$

User u did not rate Item i yet

$$f(u(i) = \frac{1}{|N_i(u)|} \sum_{v \in N_i(u)} r_{vi}$$

$$= \frac{1}{k} (r_{v_1 i} + r_{v_2 i} + \dots + r_{v_k i})$$

k-nearest neighbours of User u, who already rated Item i

User u did not rate Item i yet

$$f(u(i) = \frac{1}{|N_i(u)|} \sum_{v \in N_i(u)} r_{vi}$$

$$= \frac{1}{k} (r_{v_1i} + r_{v_2i} + \dots + r_{v_ki})$$

Rating of neighbour v for Item i

k-nearest neighbours of User u, who already rated Item i

Item-based recommendations

• Question:

• How will I rate the movie "Pulp Fiction"?

Idea:

Exploit similarities between movies

Prediction:

- Chose k movies that received a similar rating as "Pulp Fiction" (k-nearest neighbours)
- Most likely rating for the movie is predicted based on ratings for k nearest items

Prediction $f(u_2, i_4)$?

	i ₁	i ₂	i ₃	i ₄	i ₅	•••	i _m
u ₁	3		2	4	4		
u ₂		3	4	?	1		
u ₃			1	2	5		2
u ₄		3	5	3			
u ₅			4	5	1		1
u _n	3		4	4	2		2

An item is similar to i_4 , when there are at least two ratings with a difference ≤ 1

	i ₁	i ₂	i ₃	i ₄	i ₅	 i _m
u ₁	3		2	4	4	3
u ₂	2	3	4	?	1	
u ₃			1	2	5	2
u ₄	4	3	5	3		
u ₅			4	5	1	1
u _n	3		4	4	2	5
#	3	1	3	5	1	3

- 3 NN of Item i_4 :
 - j.
 - i₃
 - i_m
- 2 NN received rating:
 - j.
 - i₃
- $f(u_2, i_4) = 3$ (compare user-based)

$$f(u_2, i_4) = \frac{1}{2} (r_{21} + r_{23})$$
$$= \frac{1}{2} (2+4) = \frac{6}{2}$$
$$= 3$$

An item is similar to i_4 , when there are at least two ratings with a difference ≤ 1

	i ₁	i ₂	i ₃	i ₄	i ₅	•••	i _m
u ₁	3		2	4	4		3
u ₂	2	3	4	3	1		
u ₃			1	2	5		2
u ₄	4	3	5	3			
u ₅			4	5	1		1
•••							
u _n	3		4	4	2		5
#	3	1	3	5	1		3

Item-based recommendations

$$f(u,i) = \frac{1}{|N_u(i)|} \sum_{j \in N_u(i)} r_{uj}$$
$$= \frac{1}{k} (r_{uj_1} + r_{uj_2} + \dots + r_{uj_k})$$

Item-based recommendations

$$f(u,i) = \frac{1}{N_u(i)} \sum_{j \in N_u(i)} r_{uj}$$

$$= \frac{1}{N_u(i)} \sum_{j \in N_u(i)} r_{uj}$$

k-nearest neighbours of Item i that User u rated Rating for neighbour j of User u

K-NN methods

Advantages

- Easy to understand and to implement
- No content analysis necessary
- Easy to generate explanations for recommendations

Disadvantages

- Sparse Data Problem
- Cold Start Problem
- Popularity Bias
- Hacking / Spam

Outline

- Introduction
- Basics
- Collaborative Filtering
- Content-based Recommendations
- Distributed Recommender Systems

• Question:

• How will I rate the movie "Pulp Fiction"?

Idea:

Recommend items that match user preferences

Approach:

- Content: Information about items
- User profile: Preferences of the user
- Learn user preferences
- Match content with user profile and recommend movie

Content-based recommendations Example

Title	Genre	Director	Actor	Storyplot	•••
Pulp Fiction	Crime Thriller	Tarantino	Travolta Thurman 	The lives of two mob hit men, a boxer, a gangster's wife, and a pair of diner bandits	

	Buscemi	Nickname	Gangster	Crime	Tarantino	Thriller	Thurman	Term
>	0	0	1	1	1	1	1	Vector
	0	0	0.8	1.2	0.7	1.2	0.5	TF-IDF

Transformation from text to Term-Vector Model and TF-IDF

Content-based recommendations Example

Title	Genre	Director	Actor	Storyplot	•••
Reservoir Dogs	Crime Thriller	Tarantino	Buscemi Keitel 	After a simple jewelry heist goes terribly wrong, the surviving criminals begin to	

	Buscemi	Nickname	Gangster	Crime	Tarantino	Thriller	Thurman	Term
>	1	1	0	1	1	1	0	Vector
	0.2	0.1	0	1.2	0.7	1.2	0	TF-IDF

Transformation from text to Term-Vector Model and TF-IDF

What are the preferences of user "Black" (User Profile)?

Pulp	Buscemi	Nickname	Gangster	Crime	Tarantino	Thriller	Thurman
Fiction	0	0	0.8	1.2	0.7	1.2	0.5
x 5	0	0	4	6	3.5	6	2.5

Reservoir	Buscemi	Nickname	Gangster	Crime	Tarantino	Thriller	Thurman
Dogs	0.2	0.1	0	1.2	0.7	1.2	0
x 4	0.8	0.4	0	4.8	2.8	4.8	0

Profile	Buscemi	Nickname	Gangster	Crime	Tarantino	Thriller	Thurman
Ø	0.4	0.2	2	5.4	3.15	5.4	1.25

Title	Genre	Director	Artist	Storyplot	•••
Slumdog Millionaire	Drama Thriller Romanze	Boyle	Khan Patel 	A Mumbai teen becomes a contestant on "Who Wants To Be A Millionaire?"	

Buscemi	Nickname	Gangster	Crime	Tarantino	Thriller	Thurman	Term
0	0	0	0	0	1	0	Vector
0	0	0	0	0	1.2	0	TF-IDF

Profile	Buscemi	Nickname	Gangster	Crime	Tarantino	Thriller	Thurman
X _u	0.4	0.2	2	5.4	3.15	5.4	1.25

Slumdog	Buscemi	Nickname	Gangster	Crime	Tarantino	Thriller	Thurman
Xi	0	0	0	0	0	1.2	0

$$sim(u,i) = \frac{x_u^T x_i}{\|x_u\| \|x_i\|}$$

sim(Mr. Black, Slumdog) ≈ 0.63

Given:

Users
$$U = \{u_1, u_2, ..., u_n\}$$

Items $I = \{i_1, i_2, ..., i_m\}$

Content $X = \{x_{i1}, ..., x_{im}\}$ (Feature vectors of content of items)

Ratings $R = (r_{ij})$

- Task:
 - Construction / Learning of rating function $f: U \times I \rightarrow S$

- Approach
 - Learn user profile
 - Determine and recommend items that are close to the user profile

$$x_u = \frac{1}{|I_u|} \sum_{i \in I_u} r_{ui} x_i$$

$$x_u = \frac{1}{|I_u|} \sum_{i \in I_u} r_{ui} x_i$$

Weighted mean of feature vectors of all items rated by User u

Note: Update user profile after rating an item

$$x_u = \frac{1}{|I_u|} \sum_{i \in I_u} r_{ui} x_i$$

Weighted mean of feature vectors of all items rated by User u

Advantanges and Disadvantages

Advantage

 Does not require user community (as opposite to collaborative filtering)

Disadvantages

- Limited Content Analysis:
 - Insufficient information about Items/User
 - No information about the quality of the items
- Over-Specialisation:
 - Algorithms tend to recommend items that are very similar
 - Example: Movies with same director, artist, genre
- Hardly any content-based recommender systems in use
 - Hybrid approaches: Collaborative filtering + content-based recommendations

Outline

- Introduction
- Basics
- Collaborative Filtering
- Content-based Recommendations
- Distributed Recommender Systems

Case study: Bloomberg Media

Real-time recommendation of news articles based on user activities

- Social media shares
- Page views

Storing user interaction data (HBase)

- 100s of millions of users
- Millions of stories/videos
- TBs of data
- Wide tables 1 row per user
- High load
- Sub-second response times
- Multiple MR jobs every few mins

Shah et al. 2016. News Recommendations at scale at Bloomberg Media: Challenges and Approaches. In *Proceedings of the 10th ACM Conference on Recommender Systems (RecSys '16)*. ACM, New York, NY, USA, 369.

Generating user models using MR framework

- Content-based recommendation
 - Parallelize recommendations over users
 - Recommendations should be based on latest news/interaction
 - Train only when user has new interactions (every 5 minutes)
- Collaborative filtering
 - User model dependent of other users
 - Train all user models frequently

Shah et al. 2016. News Recommendations at scale at Bloomberg Media: Challenges and Approaches. In *Proceedings of the 10th ACM Conference on Recommender Systems (RecSys '16)*. ACM, New York, NY, USA, 369.

Computing recommendations (in HBase)

- Query HBase
- Evaluate articles against user models
- In-memory cache
- 1000s of requests per minute
- less than 50ms response time

Shah et al. 2016. News Recommendations at scale at Bloomberg Media: Challenges and Approaches. In *Proceedings of the 10th ACM Conference on Recommender Systems (RecSys '16)*. ACM, New York, NY, USA, 369.

Case study: bol.com

Recommender system handling billions of interactions on an e-commerce platform

Relies on Spark MLLib

B. Kersbergen and S. Schelter, "Learnings from a Retail Recommendation System on Billions of Interactions at bol.com," *2021 IEEE 37th International Conference on Data Engineering (ICDE)*, Chania, Greece, 2021, pp. 2447-2452.

Summary

- Recommender Systems
 - Recommend items that a user does not know, but might be interesting for him
 - Reduces information overload by predicting relevance
 - Information need is unspecific
 - Popular approach: Learning prediction models
- Approaches
 - Collaborative filtering
 - Content-based Recommendations
- Distributed Recommender Systems