Data Structures & Algorithms

Graph

When do we need Graphs?

- Representations of:
 - Social networks
 - Computer networks
 - Class diagrams
 - Geographic relations
 - Routes on a map

- ...

Graphs

- Formally, a graph is a pair (V, E) where:
 - V is a set of vertices (or nodes)
 - **E** is a set of edges
 - Vertices and edges can store information
 - Vertices usually hold elements
 - Edges can have a weight, and other info
- Generally: n = |V|, and m = |E|

Graphs – Flight routes

- Vertices represent airports and store the three-letter airport code
- Edges represent flight routes between two airports, store the distance of the route

Edge Types – Directed / Undirected

Directed

Vertices are ordered pairs → origin/destination

Undirected

- Vertices are unordered

Terminology - Directed Graph (Digraph)

A digraph is a graph with no undirected edges

Directed Graph - Digraph

Undirected Graph

Terminology - Weighted Graph

- A weighted graph is a graph where edges are labeled with weights
 - Weights can also be negative

- V is endpoint of a
 - *U* is **start point** of *a*

- V is endpoint of a
 - *U* is **start point** of *a*
- g is incident on Z

- V is endpoint of a
 - *U* is **start point** of *a*
- g is incident on Z
- V is adjacent to U

- V is endpoint of a
 - *U* is **start point** of *a*
- g is incident on Z
- V is adjacent to U
- V, W, and X are neighbors of U

- V is endpoint of a
 - *U* is **start point** of *a*
- g is incident on Z
- V is adjacent to U
- V, W, and X are neighbors of U
- X has degree 5

- V is endpoint of a
 - *U* is **start point** of *a*
- g is incident on Z
- V is adjacent to U
- V, W, and X are neighbors of U
- X has degree 5
 - **In-degree** is 3
 - Out-degree is 2

- V is endpoint of a
 - *U* is **start point** of *a*
- g is incident on Z
- V is adjacent to U
- V, W, and X are neighbors of U
- X has degree 5
 - **In-degree** is 3
 - Out-degree is 2
- j is a self-loop

Terminology - Paths

 A sequence of alternating vertices and edges is a path

Terminology - Paths

- A sequence of alternating vertices and edges is a path
- In a simple path all vertices and edges are distinct

Terminology - Paths

- A sequence of alternating vertices and edges is a path In a simple path all vertices and edges are distinct
- Otherwise not a simple path

Terminology - Cycles

 A cycle is a path with the same start and end vertex

Terminology - Cycles

- A cycle is a path with the same start and end vertex
- A simple cycle is a closed walk with no repeated vertices

Terminology - Cycles

- A cycle is a path with the same start and end vertex
- A simple cycle is a closed path with no repeated vertices
- Otherwise not a simple cycle

- A subgraph of a graph G = (V, E) is a graph
 S = (V^s, E^s) such that:
 - **V**^s ⊆ **V**
 - all vertices of S are a subset of vertices in G
 - $E^s \subseteq E$
 - all edges of S are a subset of G's edges
- A spanning subgraph of G is a subgraph that contains all the vertices of G

Terminology - Connectivity

 An Undirected graph is connected if there's a path between <u>every pair of</u> <u>vertices</u>

Terminology - Connectivity

 In an Undirected graph, a connected component is a connected subgraph disconnected from the rest of the graph

Terminology - Connectivity

- A Directed graph is
 - Weakly Connected, if there's an undirected path between <u>every pair of vertices</u>
 - Strongly Connected, if there's a directed path between every pair of vertices

Terminology – Trees and Forests

A tree

Not a tree

What is a tree?

Terminology – Trees and Forests

- In an Undirected graph
 - A tree is a graph that is connected, and has no cycles
 - A forest is a not connected graph without cycles
 - All connected components of forests are trees

Terminology – Trees and Forests

- In a Directed graph
 - A rooted tree (or tree) is a digraph that is weakly connected, and has no cycles and there is a root node, such that there is a single path from the root to any other node

Every node has 1
 incoming edge, except
 for the root that has no
 incoming edges

Terminology – Spanning Trees

- A spanning tree is a spanning subgraph that is a tree
 - Not unique unless the original graph is a tree

Terminology - Directed Graphs

 A directed acyclic graph (DAG) is a digraph without cycles

The Graph ADT

adjacent(G, x, y)

neighbors (G, x)

add_vertex(G, x)

remove_vertex(G, x)

 $add_edge(G, x, y)$

remove_edge(G, x, y)

get_vertex_value(G, x)

set_vertex_value(G, x, v)

get_edge_value(G, x, y)

set_edge_value(G, x, y, v)

whether there's an edge from x to y

all vertices y s.t. there's an edge from x to y

adds the vertex x

removes the vertex x

adds edge from the vertices x to y

removes edge from the vertices x to y

returns value associated with the vertex x

sets value associated with the vertex x to v

returns value associated with edge (x, y)

sets value associated with edge (x, y) to v

Graph implementations

Graph Implementations

- What to store?
 - Vertices/Edges
 - Vertex and/or edge values
- Application of the data structure
 - Find paths
 - Frequent visits to all neighbors
 - Following edges based on weights
 - Frequent mutations of the graph

Graph Implementations

- Three common implementations:
 - Edge list (array-based or linked-based)
 - Adjacency list (array+linked-based)
 - Adjacency matrix (array-based)
- Each has specific benefits and drawbacks
- Complexity of operations differ

Edge List

- An unordered list of all edges in the graph
 - Vertices stored implicitly
- Easy to:
 - Iterate over all edges
 - Find endpoints of edges
- Hard to determine:
 - If edge exists between vertices
 - The degrees of vertices
- Problem:
 - Unconnected Vertices

Edge List

- Edge contains fields for:
 - Connected vertices
 - Weight data (if weighted graph)
 - Boolean value directed/undirected
- Vertex key/values need to be stored in separate data structure

Edge List - array-based

Vertex 1

Vertex 2

weight

Directed (T/F)

U	U	U	V	Х	W	Z	Х	Υ
V	w	х	w	w	Z	х	Υ	х
3	2	1	-1	5	2	2	1	3
true								

Edge List - linked-based

Adjacency Lists

- For each vertex stores
 - edges as individual linked lists of references to each vertex's neighbors
- Easiest to implement if no information about edges is required.
 - Or needs an auxiliary edge data structure
- Easy to:
 - Add new vertices
 - Find incident edges on a vertex
- Hard to determine:
 - Whether an edge exists between two vertices

Adjacency Lists

- Vertex objects have the following fields:
 - Element data
 - List of adjacent verteces

- Edges objects keep
 - Vertex "endpoint" of the edge
 - weight

Vertex Object

Element

List<Edge>

neighbors

Vertex endpoint

weight

Adjacency Lists

List<Edge>[]

Adjacency Matrix

- Matrix: a_{ij} weight of the edge i -> j
 We can store the entries element->index in a Map

 - The matrix can also store Edge objects

	U	V	W	X	Y	Z
U	Ø	3	2	1	Ø	Ø
V	Ø	Ø	-1	Ø	Ø	Ø
W	Ø	Ø	Ø	Ø	Ø	2
X	Ø	Ø	5	Ø	1	Ø
Y	Ø	Ø	Ø	3	Ø	Ø
Z	Ø	Ø	Ø	2	Ø	Ø

Graph Operations – running time

G = (V, E), V =n, E =m n vertices, m edges	Edge List	Adjacency List	Adjacency Matrix
Space	n + m	n + m	n ²
Finding incident vertices to v	m	deg(v)	n
Determining if v is adjacent to w	m	min(deg(v), deg(w))	1
inserting a vertex	1	1	n ²
inserting an edge	1	1	1
removing vertex v	m	deg(v)	n ²
removing an edge	m	deg(v)	1

Graph Traversal

Graph Traversal

- Traversal of a graph
 - Depth-first search
 - Breadth-first search

Depth-First search

 Depth-first search (DFS): finds a path between two vertices by exploring each possible path as many steps as possible before backtracking

dfs(Vertex v):

mark **v** as visited

for each unvisited neighbor **v**_i of **v**

 $dfs(v_i)$

• **DFS** from node **U**

Visited

• **DFS** from node **U**

Visited

U-V-W

• **DFS** from node **U**

Visited

U-V-W

• **DFS** from node **U**

Visited

U-V-W

• **DFS** from node **U**

Visited

U - V - W - X

• **DFS** from node **U**

Visited

U - V - W - X

• **DFS** from node **U**

Visited

U - V - W - X

• **DFS** from node **U**

Visited

U-V-W-X-Y

• **DFS** from node **U**

Visited

U-V-W-X-Y

• **DFS** from node **U**

Visited

U-V-W-X-Y-Z

• **DFS** from node **U**

Visited

U-V-W-X-Y-Z

Breadth-First Search

- Breadth-first search (BFS) finds a path between two nodes by taking one step down all paths and then immediately backtracking
- BFS always returns the path with the fewest edges between the start and the goal vertices (shortest path for not weighted graphs)

Breadth-First Search

```
set all nodes to "not visited";
q = new Queue();
q.enqueue(initial node);
while ( q ≠ empty ) do
   x = q.dequeue();
   if (x has not been visited)
       visited[x] = true;
  for (every edge (x, y))
       if (y has not been visited)
           q.enqueue(y);
```


• BFS from node U

Dequeue(U) Enqueue(V, W, X)

• BFS from node U

Queue

₩, W, X, W

Dequeue(V) Enqueue(W)

Visited

U - V -

• BFS from node U

Queue

₩, X, W

Dequeue(W)

Visited

U-V-W-

• BFS from node U

Queue

X, W, W, Y

Dequeue(X) Enqueue(W, Y)

Visited

U-V-W-X-

• BFS from node U

Queue

₩, ₩, Υ

Visited

U - V - W - X

Dequeue(W)

Dequeue(W)

Dequeue(Y)

• BFS from node U

Queue

₩, ₩, ¥, Z

Dequeue(W)
Dequeue(W)

Dequeue(Y)

Visited

U-V-W-X-Y

Enqueue(Z)

• BFS from node U

Queue

Z

Dequeue(Z)

Visited

U-V-W-X-Y-Z

DFS, BFS runtime

 What is the runtime of DFS and BFS, in terms of the number of vertices V and the number of edges E?

- Answer: O(|V| + |E|)
 - each algorithm must potentially visit every node and/or examine every edge once.

Maastricht University

A-B-E

A - B - E - F

A - B - E - F - I

A - B - E - F - I - J

A-B-E-F-I-J-K

A-B-E-F-I-J-K-C

A-B-E-F-I-J-K-C-G

A-B-E-F-I-J-K-C-G-H

A-B-E-F-I-J-K-C-G-H-D

A-B-E-F-I-J-K-C-G-H-D

A-B-E-F-I-J-K-C-G-H-D

- During a visit on a graph from a potential root
 - If we find a node already visited
 - either a cycle or there
 are two paths from the
 start node to that node
 - NOT a tree

DFS or BFS

- We can use the BFS or DFS traversal algorithm, for a graph G, to solve the following problems in O(|V| + |E|) time:
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of *G*, find a path in *G* between them or report that no such path exists.
 - Check if a graph is a tree
 - Find **shortest paths** in a not weighted graph

Dijkstra's Algorithm

Dijkstra's Algorithm

- Given:
 - weighted directed graph with nonnegative weights
- Task:
 - finds the shortest path between two vertices
- Bonus Task:
 - Finds the shortest path from one node to all other nodes in the graph

Why not use Breath-First-Search?

Not correct for weighted graphs

Dijkstra's Algorithm

- Idea:
 - Create a table about current best way to each vertex
 - Distance
 - Previous vertex (Backpointer)
 - Improve it until it reaches the best solution
 - Select nearest not visited node
 - Update distance of its neighbours
 - Key operation: Edge relaxation

Example: Algorithm

Initialization

- Create set Q of verteces to visit (all)
- Set all distances to infinity
- Set source distance to zero
- Set all previous to null

Node	Α	В	С	D	Е	F	G
Dist.	0	8	8	8	∞	∞	8
Prev.	-	-	-	-	-	-	-

Example: Algorithm

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges

Node	A	В	С	D	E	F	G
Dist.	0	8	8	8	∞	8	8
Prev.	-	-	-	-	-	ı	-

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	E	F	G
Dist.	0	∞	∞	8	∞	8	8
Prev.	-	-	-	-	-	-	-

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	Ε	F	G
Dist.	0	8	8	8	∞	8	8
Prev.	-	-	-	-	-	-	-

Select A

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to v

Node	Α	В	C	D	E	F	G
Dist.	0	∞	8	8	∞	8	8
Prev.	-	-	-	-	-	-	-

Relax outgoing edges

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove **v** from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	Е	F	G
Dist.	0	8	8	8	∞	8	8
Prev.	-	-	-	-	-	-	-

Dist(A) + 2 = 0 + 2 = 2 <
$$\infty$$
 => Update B

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove **v** from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to v

Node	Α	В	С	D	Е	F	G
Dist.	0	2	8	8	∞	8	8
Prev.	-	Α	-	-	-	-	-

Dist(A) + 2 = 0 + 2 = 2 <
$$\infty$$
 => Update B

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	E	F	G
Dist.	0	2	8	8	8	8	∞
Prev.	1	Α	-	1	-	-	-

Dist(A) + 1 = 0 + 1 = 1 <
$$\infty$$
 => Update D

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	E	F	G
Dist.	0	2	8	1	8	8	8
Prev.	-	Α	-	Α	-	-	-

Dist(A) + 1 = 0 + 1 = 1 <
$$\infty$$
 => Update D

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to v

Node	Α	В	С	D	Е	F	G
Dist.	0	2	8	1	8	8	8
Prev.	-	Α	-	Α	-	-	-

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	E	F	G
Dist.	0	2	∞	1	8	8	8
Prev.	-	Α	-	А	-	-	-

Relax outgoing edges

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	E	F	G
Dist.	0	2	8	1	8	8	8
Prev.	-	Α	1	Α	-	-	-

Dist(D) + 2 = 1 + 2 =
$$3 < \infty$$
 => Update C

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	E	F	G
Dist.	0	2	3	1	8	8	8
Prev.	-	Α	D	Α	-	-	-

Dist(D) + 2 = 1 + 2 =
$$3 < \infty$$
 => Update C

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	Ε	F	G
Dist.	0	2	3	1	8	8	8
Prev.	-	Α	D	Α	-	-	-

Dist(D) + 8 = 1 + 8 = 9 <
$$\infty$$
 => Update F

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	E	F	G
Dist.	0	2	3	1	8	9	8
Prev.	-	Α	D	А	-	D	-

Dist(D) + 8 = 1 + 8 = 9 <
$$\infty$$
 => Update F

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	E	F	G
Dist.	0	2	3	1	8	9	∞
Prev.	-	Α	D	Α	-	D	-

Dist(D) + 4 = 1 + 4 = 5 <
$$\infty$$
 => Update G

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	E	F	G
Dist.	0	2	3	1	8	9	5
Prev.	-	Α	D	Α	-	D	D

Dist(D) + 4 = 1 + 4 = 5 <
$$\infty$$
 => Update G

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	Е	F	G
Dist.	0	2	3	1	8	9	5
Prev.	-	Α	D	Α	-	D	D

Dist(D) + 2 = 1 + 2 = 3 <
$$\infty$$
 => Update E

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	Е	F	G
Dist.	0	2	3	1	3	9	5
Prev.	-	Α	D	Α	D	D	D

Dist(D) + 2 = 1 + 2 = 3 <
$$\infty$$
 => Update E

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	E	F	G
Dist.	0	2	3	1	3	9	5
Prev.	-	Α	D	Α	D	D	D

Select B

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to v

Node	Α	В	С	D	E	F	G
Dist.	0	2	3	1	3	9	5
Prev.	-	Α	D	Α	D	D	D

Relax outgoing edges

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove **v** from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	Е	F	G
Dist.	0	2	3	1	3	9	5
Prev.	-	Α	D	Α	D	D	D

Dist(B) + 10 = 2 + 10 = 12 > 3 => Not update E

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove **v** from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to v

Node	Α	В	C	D	Е	F	G
Dist.	0	2	3	1	3	9	5
Prev.	-	Α	D	Α	D	D	D

D visited => we cannot find a shortest path

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	C	D	E	F	G
Dist.	0	2	3	1	3	9	5
Prev.	-	Α	D	Α	D	D	D

Select C

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	E	F	G
Dist.	0	2	3	1	3	9	5
Prev.	-	Α	D	Α	D	D	D

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove **v** from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	E	F	G
Dist.	0	2	3	1	3	9	5
Prev.	-	Α	D	Α	D	D	D

A visited => we cannot find a shortest path

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	E	F	G
Dist.	0	2	3	1	3	9	5
Prev.	-	Α	D	Α	D	D	D

$$Dist(C) + 5 = 3 + 5 = 8 < 9$$
 => Update F

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	E	F	G
Dist.	0	2	3	1	3	8	5
Prev.	-	Α	D	Α	D	С	D

$$Dist(C) + 5 = 3 + 5 = 8 < 9$$

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	Е	F	G
Dist.	0	2	3	1	3	8	5
Prev.	_	Α	D	А	D	С	D

Select E

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	Е	F	G
Dist.	0	2	3	1	3	8	5
Prev.	-	А	D	Α	D	С	D

Relax outgoing edges

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove **v** from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	Е	F	G
Dist.	0	2	3	1	3	8	5
Prev.	-	Α	D	Α	D	С	D

Dist(E)
$$+ 6 = 3 + 6 = 9 > 5$$

=> Don't update G

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	Е	F	G
Dist.	0	2	3	1	3	8	5
Prev.	-	А	D	Α	D	С	D

Select G

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	Е	F	G
Dist.	0	2	3	1	3	8	5
Prev.	_	А	D	Α	D	С	D

Relax outgoing edges

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	Е	F	G
Dist.	0	2	3	1	3	8	5
Prev.	-	Α	D	Α	D	С	D

$$Dist(G) + 1 = 5 + 1 = 6 < 8$$
 => Update F

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	С	D	Е	F	G
Dist.	0	2	3	1	3	6	5
Prev.	-	Α	D	Α	D	G	D

$$Dist(G) + 1 = 5 + 1 = 6 < 8$$
 => Update F

- While Q not empty
 - Select from Q node
 v with minimum
 distance
 - Remove v from Q
 - Relax all outgoing edges
 - Compute the distance of neighbors passing by v
 - If this is shorter than the current, update distance and pred to **v**

Node	Α	В	C	D	Е	F	G
Dist.	0	2	3	1	3	6	5
Prev.	-	Α	D	Α	D	G	D

Select F – No outgoing edges

Dijkstra's Algorithm - CODE

```
Dijkstra(Graph, source)
    // Initialization
     create vertex set Q
    for each vertex v in Graph
          dist[v] \leftarrow INFINITY
          prev[v] \leftarrow UNDEFINED
          add v to Q
     dist[source] \leftarrow 0
```

```
// Algorithm
while Q is not empty:
     u \leftarrow vertex in Q with min dist[u]
     remove u from Q
     for each neighbor v of u
          // only v that are still in Q
           alt \leftarrow dist[u] + length(u, v)
           if alt < dist[v]
                dist[v] \leftarrow alt
                prev[v] \leftarrow u
```

return *dist[], prev[]*

Dijkstra's Algorithm

- Dijkstra's algorithm is a greedy algorithm
 - Make choices that currently seem the best

Locally optimal does not always mean globally

optimal

Dijkstra's Algorithm

- Dijkstra's algorithm is correct because:
 - For every known vertex, recorded distance is shortest distance to that vertex from source vertex
 - For every unknown vertex v, its recorded distance is shortest path distance to v from source vertex, considering only currently known vertices and v

 Don't forget that having no negative-weighted edges is a requirement

Directed Acyclic Graphs (DAG)

- A directed acyclic graph (DAG) is a digraph without cycles
- Given a DAG, a Topological Sort outputs all vertices in an order so that no vertex appears before another vertex that points to it
- More formally, if there is a path from \mathbf{v} to \mathbf{w} , than \mathbf{v} appears before \mathbf{w} in the topological sort

$$U-V-Z-X-W-Y$$

$$Z-U-V-X-W-Y$$

$$U-Z-V-X-W-Y$$

- Why do we perform topological sorts only on DAGs?
 - If there is a cycle, there are no topological sorts
- Is there always a unique answer?
 - No, there can more topological sorts
- Do some DAGs have exactly 1 answer?
 - Yes

- Algorithm:
 - Compute in-degree of each node
 - Use queue to keep the topological sort
 - Until the graph has verteces
 - Select a vertex with in-degree = 0
 - Enqueue it in the topological sort
 - Decrement in-degree for all neighbors
 - If we cannot find a vertex with in-degree = 0
 - No topological sorts

```
Topological Sort (Graph)

create queue Q

create list L

for each vertex v in Graph

compute in_degree[v]

if in_degree[v]==0

enqueue(v)
```

```
while not empty(Q)
    v ← dequeue(Q)
    L.append(v)
    for each vertex w neighbor of v
        in_degree[w]--
        if in_degree[w]==0
        enqueue(w)
return L
```

- At the end, if L does not contains all verteces
 - No topological sorts
 - The graph has cycles

Compute in_degree

- Compute in_degree
- Enqueue U and Z

- Compute in_degree
- Enqueue U and Z

$$Q = U, Z$$

- Compute in_degree
- Enqueue U and Z

$$Q = U, Z$$

Dequeue -> U

- Compute in_degree
- Enqueue U and Z

$$Q = Z$$

- Dequeue -> U
- Decrease in-degree for neighbors

- Compute in_degree
- Enqueue U and Z

$$Q = Z$$

- Dequeue -> U
- Decrease in-degree for neighbors

- Compute in_degree
- Enqueue U and Z

$$Q = Z, V$$

- Dequeue -> U
- Decrease in-degree for neighbors
- Enqueue V

- Compute in_degree
- Enqueue U and Z

$$Q = V$$

Dequeue -> Z

- Compute in_degree
- Enqueue U and Z

$$Q = V$$

- Dequeue -> Z
- Decrease in-degree for neighbors

Enqueue U and Z

• Compute in_degree

- Q = V
- Dequeue -> Z
- Decrease in-degree for neighbors

- Compute in_degree
- Enqueue U and Z

$$Q = V, X$$

- Dequeue -> Z
- Decrease in-degree for neighbors
- Enqueue X

- Compute in_degree
- Enqueue U and Z

$$Q = X$$

Dequeue -> V

- Compute in_degree
- Enqueue U and Z

$$Q = X$$

- Dequeue -> V
- Decrease in-degree for neighbors

- Compute in_degree
- Enqueue U and Z

$$Q = X$$

- Dequeue -> V
- Decrease in-degree for neighbors

- Compute in_degree
- Enqueue U and Z

Dequeue -> X

- Compute in_degree
- Enqueue U and Z

- Dequeue -> X
- Decrease in-degree for neighbors

- Compute in_degree
- Enqueue U and Z

- Dequeue -> X
- Decrease in-degree for neighbors

- Compute in_degree
- Enqueue U and Z

Q = empty

- Dequeue -> X
- Decrease in-degree for neighbors
- Enqueue W and Y

- Compute in_degree
- Enqueue U and Z

$$Q = W, Y$$

- Dequeue -> X
- Decrease in-degree for neighbors
- Enqueue W and Y

- Compute in_degree
- Enqueue U and Z

$$Q = Y$$

- Dequeue -> W
- No neighbors

- Compute in_degree
- Enqueue U and Z

Q = empty

- Dequeue -> Y
- No neighbors

Topological Sort: U - Z - V - X - W - Y

- Running Time
 - Initialization: O(|V|+|E|) (assuming adjacency list)
 - Sum of all enqueues and dequeues: O(|V|)
 - Sum of all decrements: O(|E|) (assuming adjacency list)

So total is O(|E|+|V|)