

MULTIVARIATE STATISTICAL ANALYSIS PROBLEM SET 2

Exercise 1

Consider the data set psych, which contains 24 psychological tests $(t_i, \forall i \in \{1, ..., 24\})$ administered to 301 students, with ages ranging from 11 to 16, in a suburb of Chicago:

- the 1^{st} group is made of 156 students (74 boys, 82 girls) from the *Pasteur School*;
- the 2nd group is made of 145 students (72 boys, 73 girls) from the *Grant-White School*.

```
psych_0 = read.table("data/psych.txt", header = T)
dim_p = dim(psych_0)
colnames(psych_0) = c(c("case", "sex", "age"), paste0("t_", 1:(dim_p[2] - 4)), "group")
psych_0[2] = tolower(unlist(psych_0[2]))
psych_0[28] = tolower(unlist(psych_0[28]))
```

case	sex	age	t_1	t_2	t_3	t_4	t_5	t_6	t_7	t_8	t_9	t_10	t_11	t_12	t_13
1	m	13.1	20	31	12	3	40	7	23	22	9	78	74	115	229
2	f	13.6	32	21	12	17	34	5	12	22	9	87	84	125	285
3	f	13.1	27	21	12	15	20	3	7	12	3	75	49	78	159
4	\mathbf{m}	13.2	32	31	16	24	42	8	18	21	17	69	65	106	175
5	f	12.2	29	19	12	7	37	8	16	25	18	85	63	126	213
6	f	14.1	32	20	11	18	31	3	12	25	6	100	92	133	270
t_14	t_	_15 1	_16	t_17	t	18	t_19	t_20	\mathbf{t}_{-}	_21	t_22	t_23	t_2	4 gro	up
170		86	96	6		9	16	3		14	34	5	2	4 pas	teur
184		85	100	12	1	12	10	-3		13	21	1	1:	2 pas	teur
170		85	95	1		5	6	-3		9	18	7	20	0 pas	teur
181		80	91	5		3	10	-2		10	22	6	19	9 pas	teur
187		99	104	15	1	14	14	29		15	19	4	20	0 pas	teur
164		84	104	6		6	14	9		2	16	10	2	2 pas	teur

The 24 tests corresponds to the following subjects:

	test
t_1	visual perception
t_2	cubes
t_3	paper form board
t_4	flags
t_{-5}	general information
t_6	paragraph comprehension
t_7	sentence completion
t_8	word classification
t_9	word meaning

	test
t_10	addition
t_11	code
t_12	counting dots
t_13	straight-curved capitals
t_114	word recognition
$t_{-}15$	number recognition
t_16	figure recognition
t_17	object-number
t_18	number-figure
t_19	figure-word
t_20	deduction
t_21	numerical puzzles
t_22	problem reasoning
t_23	series completion
t_24	arithmetic problems

Note that that the variable case is does not give any important information as it only corresponds to an enumeration of the students who were tested in sequential order (containing some gaps probably due to the absence of data for some of the students).

1.1

In performing the factor analysis we are interested only in the 24 variables corresponding to the psychological tests, hence we remove the variables case, age and sex from our dataset. Moreover, we are asked to use only the Grant-White students data, so we subset the remaining data frame according to the request.

```
psych_1 = psych_0[, 4:28]
gw = subset(psych_1, group == "grant", select = -group)
```

Before starting fitting the model, we first scale our dataset and then take a look at the correlation matrix of our data. Indeed correlation between variables is the object of interest in *Factor Analysis*. Since we have a very large number of variables, we choose not to display the values of the matrix directly, but we rather visualize them with a plot.

```
gws = scale(gw)
cor_gws = cor(gws)
dim_gws = dim(gws)
colnames(cor_gws) = paste0("$t[", 1:(dim_p[2] - 4), "]")
rownames(cor_gws) = colnames(cor_gws)
par(family = "serif")
corrplot.mixed(cor_gws, upper = "pie",
    upper.col = COL2("BrBG"), lower.col = COL2("BrBG"),
    number.cex = 0.4, tl.col = "black", tl.cex = 0.7, cl.cex = 0.7)
```


$$neg_cor_gws = ((24^2 - sum(sign(cor_gws))) / 2) / 2$$

From the correlation matrix we can note that:

- all the correlation except for neg_cor_gws = 1 are positive, moreover the majority of them is less than 0.5:
- by just looking at the correlation matrix it is difficult to guess whether 5 or 6 common factors are an appropriate choice or not.

In order to obtain the maximum likelihood solution for m=5 and m=6 factors in R we can use the built-in function factanal().

Before proceeding with the computation, we would like to recall that the maximum likelihood method, unlike the principal component method, relies on the necessary assumption of normality of the common factors (\mathbf{F}) and of the specific error terms (ε) . In particular, if $\mathbf{F} = (F_1, \dots, F_m)$ and $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$ are normally distributed, then

$$X = LF + \varepsilon \sim \mathcal{N}(\mu, \Sigma)$$
, with $L \in \mathbb{R}^{p \times m}$.

We can check the normality by observing that our input data $x \in \mathbb{R}^{24}$, which was reviously rescaled, actually comes from a $X \sim \mathcal{N}(0, I)$.

For this purpose we look at the Q-Q plot of the squared Mahalanobis distances vs a χ^2_{24} .

The plot shows that the variables jointly seem to follow a gaussian behaviour: except for the last 3 points, which create a heavy right tail the other points lies on the Q-Q line.

We now proceed with the computation of the maximum likelihood solution, first with m=5 factors, then with m=6 factors (without any rotation):

```
faml_5 = factanal(gws, factors = 5, rotation = "none")
load_5 = faml_5$loadings[, ]
```

	Factor1	Factor2	Factor3	Factor4	Factor5
t_1	0.5549	-0.0032	0.4659	-0.1495	0.0015
t_2	0.3444	-0.0287	0.2917	-0.0563	0.1250
t_3	0.3734	-0.1422	0.4267	-0.1045	0.0418
t_4	0.4634	-0.1044	0.3032	-0.1128	0.1482
t_5	0.7226	-0.2536	-0.2249	-0.0756	-0.0044
t_6	0.7208	-0.3742	-0.1685	-0.0139	-0.1453
t_{-7}	0.7278	-0.3355	-0.2323	-0.1317	0.0131
t_8	0.6917	-0.1442	-0.0421	-0.1066	0.0801
t_9	0.7232	-0.4245	-0.1967	0.0169	-0.0214
t_10	0.5182	0.6034	-0.3795	0.0411	0.1158
t_{-11}	0.5701	0.3495	-0.0240	0.0649	-0.3670
t_12	0.4872	0.5444	0.0052	-0.1179	0.1277
t_13	0.6305	0.3467	0.2011	-0.3833	-0.2058
$t_{-}14$	0.3929	-0.0013	0.0648	0.3688	-0.2378
$t_{-}15$	0.3456	0.0268	0.1282	0.3678	-0.1281
t_16	0.4559	0.0247	0.3781	0.2755	-0.0855
t_{-17}	0.4530	0.1283	0.0333	0.4382	-0.1130
t_18	0.4749	0.2521	0.2182	0.2588	0.0177
t_19	0.4179	0.0511	0.1376	0.1964	-0.0669
t_20	0.5961	-0.1672	0.1806	0.1546	0.2271
t_21	0.5741	0.2267	0.1539	0.0252	0.1590
t_22	0.5946	-0.1395	0.1803	0.1287	0.0982
t_23	0.6650	-0.0636	0.2131	0.0332	0.2445
t_24	0.6571	0.1864	-0.1262	0.1451	0.1292

faml_6 = factanal(gws, factors = 6, rotation = "none")
load_6 = faml_6\$loadings[,]

	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
t_1	0.5486	0.0039	0.4562	-0.1968	-0.0599	0.0333
t_2	0.3388	-0.0273	0.3009	-0.1585	0.0715	0.2322
t_3	0.3725	-0.1392	0.4443	-0.1107	0.0336	-0.2323
t_4	0.4600	-0.1066	0.3043	-0.1332	0.1257	-0.0871
t_5	0.7243	-0.2605	-0.2170	-0.0734	-0.0261	0.0920
t_6	0.7240	-0.3674	-0.1557	0.0278	-0.1458	0.0009
t7	0.7329	-0.3539	-0.2340	-0.0919	0.0229	-0.1481
t_8	0.6953	-0.1550	-0.0401	-0.1049	0.0908	-0.2071
t_9	0.7277	-0.4211	-0.1804	0.0539	-0.0332	0.0922
t_10	0.5131	0.5871	-0.3853	-0.0239	0.1601	0.0291
t_11	0.5786	0.3898	-0.0434	0.0797	-0.4217	0.1269
t_12	0.4816	0.5361	-0.0146	-0.1655	0.1279	-0.1027
t_{-13}	0.6175	0.3280	0.1533	-0.3573	-0.2278	-0.1395
t_{-14}	0.3978	0.0305	0.0803	0.3532	-0.1307	0.0058
t_{-15}	0.3494	0.0578	0.1457	0.3323	-0.0393	0.0969
t_16	0.4568	0.0562	0.3879	0.2097	-0.0402	0.0753
t_17	0.4744	0.1802	0.0697	0.5696	0.0082	-0.2565
t_18	0.4783	0.2777	0.2330	0.2208	0.0730	0.0072
t_19	0.4218	0.0713	0.1544	0.1842	-0.0259	-0.0171
t_20	0.5961	-0.1556	0.2009	0.0750	0.2310	0.0915
t_21	0.5706	0.2318	0.1513	-0.0958	0.1371	0.2158
t_22	0.5970	-0.1208	0.1977	0.0858	0.0702	0.1688
t_23	0.6616	-0.0583	0.2287	-0.0376	0.2257	0.0688
t_24	0.6561	0.1904	-0.1127	0.0757	0.1584	0.0672

It is remarkable that in the case m=5 all but two variables load on the first factor higher than on any other. This makes any factor interpretation very difficult, at least without applying any rotation to the loadings. We will discuss it in more detail in the next point.

Then we proceed with the computation of the proportion of total sample variance due to each factor. We recall that the proportion of total sample variance due to the $k^{\rm th}$ factor is defined as

$$\operatorname{prop_var}(k) = \frac{\sum_{j=1}^{p} \hat{l}_{j,k}^{2}}{\operatorname{trace}(\boldsymbol{S})},$$

with $\hat{\pmb{L}} = \left(\hat{l}_{j,k}\right)_{\substack{j=1,\dots p\\k=1,\dots,m}}$ factor loadings and \pmb{S} sample covariance matrix.

Due to the scaling performed at the beginning of the computation in our case trace (S) = size(S) = 24 (it is indeed a sample correlation matrix).

prop_var_5 = colSums(load_5^2) / dim_gws[2]

	Factor1	Factor2	Factor3	Factor4	Factor5
prop_var_5	0.3159	0.0698	0.0548	0.04	0.0223

prop_var_6 = colSums(load_6^2) / dim_gws[2]

	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
prop_var_6	0.3168	0.0711	0.0563	0.0417	0.0212	0.0175

We could get the associated cumulative proportion of total sample variance by applying the cumsum() function to the previous 2 variables. However, these computations are also performed as a part of the output of the command factanal(), together with the sum of the squares of the loadings:

faml_5

	Factor1	Factor2	Factor3	Factor4	Factor5
ss_load_5	7.5813	1.6743	1.3161	0.9589	0.5351
$prop_var_5$	0.3159	0.0698	0.0548	0.0400	0.0223
cum_var_5	0.3159	0.3856	0.4405	0.4804	0.5027

faml_6

	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
ss_load_6	7.6024	1.7068	1.3515	1.0000	0.5086 0.0212 0.5071	0.4192
prop_var_6	0.3168	0.0711	0.0563	0.0417		0.0175
cum_var_6	0.3168	0.3879	0.4442	0.4859		0.5245

Both models seem to fit very poorly. A general criterion, for the choice of the number of factors is to take the smallest m such that the total proportion of variance due to the m factors is at least 80%. However, in both our cases (m=5,6), the models explain about 50% (respectively 50.27% and 52.45%) of the total variance collectively. Hence, the result is not satisfactory.

Next, as requested, we report below the specific variances $(\psi_j)_{j=1}^{24}$, again for both m=5 and m=6. In this case we directly exploit the output of factanal() in order not to have to recalculate the values of the specific variances of the factors by hand. We report the results of the computation below:

psi_5 = faml_5\$uniquenesses

t_1	t_2	t_3	t_4	t_5	t_6	t7	t_8	t_9	t_10	t_11	t_12
0.4526	0.7766	0.6456	0.6477	0.3573	0.2907	0.2863	0.4812	0.2573	0.2082	0.4134	0.4361
t_13	t_14	t_15	t_16	t_17	t_18	t_19	t_20	t_21	t_22	t_23	t_24
0.2525	0.6489	0.7118	0.5654	0.5724	0.596	0.7607	0.5086	0.5695	0.5683	0.4474	0.4799

psi_6 = faml_6\$uniquenesses

t_1	t_2	t_3	t_4	t_5	t_6	t_7	t_8	t_9	t_10	t_11	t_12
0.4474	0.7098	0.5771	0.6433	0.346	0.2946	0.2519	0.4288	0.2481	0.2164	0.3111	0.4262
t_13	t_14	t_15	t_16	t_17	t_18	t_19	t_20	t_21	t_22	t_23	t_24
0.2885	0.6925	0.732	0.5864	0.3473	0.5857	0.7583	0.5128	0.5233	0.5491	0.4494	0.4853

Finally, we need to assess the accuracy of the approximations of the correlation matrices. For this purpose, for both models we analyse the residual matrix given by the difference between the actual correlation matrix, \mathbf{R} , and the correlation matrix given by the approximation performed by the maximum likelihood method,

i.e.
$$\mathbf{S} = \hat{\mathbf{L}}\hat{\mathbf{L}}^T + \hat{\mathbf{\Psi}}$$
, where $\hat{\mathbf{\Psi}} = \operatorname{diag}\left((\psi_j)_{j=1}^{24}\right)$.

We first compare the squared Frobenius norm of the approximation matrices with the sum of the squares of the neglected eigenvalues, i.e. $\sum_{i=m+1}^{\text{size}(S)} \lambda_i^2$, in order to check if the following inequality is fulfilled:

$$\left\|oldsymbol{R} - \left(\hat{oldsymbol{L}}\hat{oldsymbol{L}}^T + \hat{oldsymbol{\Psi}}
ight)
ight\|_{ ext{F}}^2 \leq \sum_{i=m+1}^{ ext{size}(oldsymbol{S})} \lambda_i^2.$$

Then, we compare the two squared Frobenius norms in order to see which approximation is more accurate.

```
eig = eigen(cor_gws)$values
residual_5 = cor_gws - (load_5 %*% t(load_5) + diag(psi_5))
eig_negl_5 = eig[(5 + 1):dim_gws[2]]
comparison_5 = c(sum(residual_5^2), sum(eig_negl_5^2))
```

	ss_residual_5	ss_eig_negl_5
comparison_5	0.7335	5.7823

Then we repeat the same computation for m = 6:

```
residual_6 = cor_gws - (load_6 %*% t(load_6) + diag(psi_6))
eig_negl_6 = eig[(6 + 1):dim_gws[2]]
comparison_6 = c(sum(residual_6^2), sum(eig_negl_6^2))
```

	ss_residual_6	ss_eig_negl_6
comparison_6	0.602	4.9392

We get

m = 5: $0.7335059 \le 5.7822848$ m = 6: $0.6020222 \le 4.9391922$

so the inequality is satisfied. Moreover, it is evident that in both cases the approximation error of the correlation matrix is not negligible.

We can therefore conclude that both choices are acceptable, but in some sense inaccurate. The improvement given by the choice of m=6 is not particularly significant, hence we tend to prefer m=5. Indeed the last factor obtained with m=6 accounts only for the 1.75% of the total sample variance and the difference between the squared Frobenius norms of the residual matrices shares the same order of magnitude.

1.2

We now have to give an interpretation to the common factors in the m=5 solution. Without any rotation the loadings are pretty difficult to comprehend. Indeed, as we noticed in the previous point, when m=5 almost all variables load on the first factor higher than on the other four factors. Therefore, a rotation may help in the interpretation process. As requested, we perform the Varimax rotation.

```
faml_5_var = factanal(gws, factors = 5, rotation = "varimax")
load_5_var = faml_5_var$loadings[, ]
```

	Factor1	Factor2	Factor3	Factor4	Factor5
t_1	0.1654	0.6549	0.1250	0.1810	0.2066
t_2	0.1079	0.4416	0.0871	0.0954	0.0024

	Factor1	Factor2	Factor3	Factor4	Factor5
t_3	0.1341	0.5595	-0.0473	0.1115	0.0934
t_4	0.2305	0.5333	0.0895	0.0811	0.0124
t_5	0.7383	0.1893	0.1916	0.1486	0.0547
t_6	0.7724	0.1867	0.0318	0.2477	0.1243
t_7	0.7983	0.2140	0.1427	0.0883	0.0502
t_8	0.5710	0.3429	0.2391	0.1275	0.0423
t_9	0.8079	0.2024	0.0332	0.2188	-0.0072
t_10	0.1807	-0.1082	0.8451	0.1803	0.0264
t_11	0.1952	0.0661	0.4233	0.4365	0.4177
t_12	0.0297	0.2322	0.6944	0.1022	0.1285
t_13	0.1863	0.4329	0.4793	0.0775	0.5382
$t_{-}14$	0.1846	0.0614	0.0443	0.5522	0.0797
t_{-15}	0.1043	0.1223	0.0586	0.5089	-0.0028
t_16	0.0698	0.4061	0.0559	0.5087	0.0540
t_17	0.1543	0.0716	0.2104	0.5947	-0.0269
t_18	0.0323	0.2999	0.3219	0.4576	0.0043
t_19	0.1563	0.2209	0.1440	0.3785	0.0451
t_20	0.3728	0.4614	0.1265	0.2930	-0.1939
t_21	0.1717	0.3980	0.4312	0.2382	-0.0004
t_22	0.3637	0.4232	0.1139	0.3204	-0.0689
t_23	0.3615	0.5421	0.2482	0.2307	-0.1147
t_24	0.3680	0.1786	0.4952	0.3208	-0.0683

We choose not to visualize the results in a plot since there are too many factors and variables and therefore it would not have been helpful.

After the rotation, things become a little better: as expected, the loadings are in general smaller or larger than the previous ones, and this facilitates the interpretation of the factors. In particular:

- 1. the variables t_5 , t_6 , t_7 , t_8 and t_9 load highly on the first common factor. The psychological tests associated to these variables primarly assess the language-related capacities of an individual, including reading comprehension, vocabulary knowledge, word associations, sentence construction and general knowledge. Hence, we can interpret the first factor as *verbal ability*;
- 2. the second factor is determined by the variables from t_1 to t_4 togheter with t_{20} , t_{22} and t_{23} . The first four tests measure the spatial ability of an individual, while the last three tests assess the logical ability of an individual. Hence, we choose to assign the second factor the label *logical and spatial ability*;
- 3. the variables t_{10} and t_{12} load highly on the third factor, which is also determined by the variables t_{21} and t_{24} . They refer to psychological tests that assess cognitive capacities related to numerical processing, mathematical reasoning and arithmetic skills. We refer to the fourth factor as numerical/mathematical ability;
- 4. the variables from t_{14} to t_{19} determine the fourth common factor. The tests associated to these variables measure an individual's capacity of recognising numbers, words and figures and of making associations between them. Hence, the fourth factor can be interpreted as recognition and association ability;
- 5. the fifth factor is solely determined by the variable t_{13} . Hence we label the factor as its representative test, i.e. straight-curved capitals. It is immediate to observe that it is the only factor without an abstract meaning. This could be due to the fact that proportion of variance explained by the factor is 0.026, which is too low to have a significative impact.

Finally it is remarkable that the variable t_{11} loads uniformly on the last three common factors hence it influences them similarly. This could be reasonable taking into account the psychological test associated with the variable.

Before we move to the next step we want to underline that we decided not to fix a threshold value to assess significance of factor loadings. This choice is motivated by the fact that the total sample variance explained by the 5 factors is only 50.27%. Indeed this leads to the shortage of very high loadings and at the same time allows the presence of variables that have not much influence on any factor. Moreover by doing so we obtained a partition of our variables among the factors (with the only minor exception given by t_{11}).

1.3

We report below the scatterplot of the first two factor scores for the m=5 solution obtained by the regression method, as requested.

It seems there is no particular correlation between the two factors. In fact, if we compute it we obtain 0.074.

- 1.4
- 1.5

Exercise 2

code

- 2.1
- 2.2
- 2.3
- 2.4
- 2.5 (optional)