MATHEMATICS 1S

Andrew Wilson

Joao Almeida-Domingues*

University of Glasgow January 7th, 2019 – May 24th, 2019

Contents

1 Vectors		ors	2
	1.1	Generalities	2
	1.2	Addition and Scalar Multiplication	2
	1.3	Parallel and Position vectors	4
	1.4	Collinearity and the section formula	5
_	T : 1M () O D (
2 Logical Matters & Proof		icai Matters & Proof	7

*2334590D@student.gla.ac.uk

1 Vectors

1.1 Generalities

Lecture 1 January 7th, 2019

- **1.1 definition.** A scalar is a one-component quantity that is invariant under rotations of the coordinate system, which describes the magnitude of something
- **1.2 definition.** A vector is a two-component quantity, with magnitude (a positive real number) and direction
- **1.3 remark.** If a vector has both a magnitude and direction of 0, then that vector is the zero vector. The zero vector can be thought as having no direction, or all directions
- **1.4 definition. Equality:** Two vectors are equal if they have the same magnitude and the same direction
- 1.5 remark. Every vector is unique

Proof. Let \mathbf{u} , \mathbf{v} be two vectors with magnitude λ and the same direction. Hence by $\mathbf{??}$, $\mathbf{u} = \mathbf{v}$

1.6 notation. Generally, in printed text \overrightarrow{v} or \mathbf{v} . Handwritten \underline{v} . Magnitude $|\mathbf{v}|$

1.7 definition. Unit vector is a vector of magnitude 1. There is exactly one for any given direction

1.8 notation. Generally, for a given vector \mathbf{v} , $\hat{\mathbf{v}}$

1.9 proposition. Parallelogram $\overrightarrow{AB} = \overrightarrow{DC}$, i.e Traversing left-up is the same as up-right (see proof below)

Proof. It follows from the fact that the opposite sides of a parallelogram are parallel and of equal length. Hence they are equal, by ??

1.10 proposition. Negative vectors $\overrightarrow{AB} = u \iff \overrightarrow{BA} = -u$ (see proof below)

Proof. It follows from the fact that they have the same magnitude but opposite directions \Box

1.11 proposition. Zero vector $\overrightarrow{AA} = 0$ (see proof below)

Proof. For any point A, |AA| = 0 and so $\overrightarrow{AA} = 0$

1.2 Addition and Scalar Multiplication

1.12 definition. Addition Let $\mathbf{u} = \overrightarrow{PQ}$, $\mathbf{v} = \overrightarrow{QR}.\mathbf{u} + \mathbf{v} = \overrightarrow{PR}$. nose-to-tail

1.13 remark. As per usual subtraction is simply, $\mathbf{u} + (-\mathbf{v})$

1.14 definition. Scalar Multiplication For a vector **u**, and a scalar λ . λ **u** scales the vector's magnitude by λ , and if $\lambda < 0$ inverts its direction

Lecture 2 January 8th, 2019

Properties of Addition and Multiplication

1.15 proposition. Commutative u + v = v + u (see proof below)

Proof.

$$\mathbf{u} + \mathbf{v} = [u_1, u_2, \dots, u_n] + [v_1, v_2, \dots, u_n]$$

$$= [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n] \text{ vector addition}$$

$$= [v_1 + u_1, v_2 + u_2, \dots, v_n + u_n] \text{ commutative adition of real numbers}$$

$$= [v_1, v_2, \dots, v_n] + [u_1, u_2, \dots, u_n]$$

$$= \mathbf{v} + \mathbf{u}$$

1.16 proposition. Associative $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (see proof below)

Proof.

$$\begin{aligned} (\mathbf{u} + \mathbf{v}) + \mathbf{w} &= ([u_1, u_2, \dots, u_n] + [v_1, v_2, \dots, v_n]) + [w_1, w_2, \dots, w_n] \\ &= [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n] + [w_1, w_2, \dots, w_n] (1.10) \\ &= [(u_1 + v_1) + w_1, (u_2 + v_2) + w_2, \dots, (u_n + v_n) + w_n] \text{ commutative property of scalars} \\ &= [u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \dots, u_n + (v_n + w_n)] \text{ associative addition of real numbers} \\ &= [u_1, u_2, \dots, u_n] + [v_1 + w_1, v_2 + w_2, \dots, v_n + w_n] \\ &= \mathbf{u} + \mathbf{v} + \mathbf{w} \end{aligned}$$

1.17 proposition. *Distributive* $\lambda(\mathbf{u} + \mathbf{v}) = \lambda \mathbf{u} + \lambda \mathbf{v}$ (see proof below)

Proof.

$$\lambda(\mathbf{u} + \mathbf{v}) = \lambda([u_1 + v_1, u_2 + v_2, \dots, u_n + v_n] \text{ vector addition}$$

$$= [\lambda(u_1 + v_1), \lambda(u_2 + v_2), \dots, \lambda(u_n + v_n)] \text{ scalar multiplication}$$

$$= [\lambda u_1 + \lambda v_1, \lambda u_2 + \lambda v_2, \dots, \lambda u_n + \lambda v_n] \text{ distributive for real numbers}$$

$$= \lambda \mathbf{u} + \lambda \mathbf{v}$$

Proof. 2, by a diagram

Let **u**, **v** be two non-zero vectors, and A, B, C be 3 distinct points. Then:

Let the "prime" triangle represent a λ fold enlargement of the original triangle representing the original vectors and their addition. Hence we have that,

$$OB' = \lambda(\mathbf{u} + \mathbf{v}) = OA' + A'B'$$
$$= \lambda \mathbf{v} + \lambda \mathbf{u}$$

1.3 Parallel and Position vectors

1.18 definition. Parallel: Let u, v be two non-zero vectors. Then, v is parallel to u iff $v = \lambda u$ (i.e. if they share the same or opposite directions) and $\hat{u} = \frac{1}{|u|} u$

1.19 remark. The non-zero vector is parallel to all vectors

Proof. The first part of the definition is self-evident as any scalar multiple of a vector will only alter its magnitude and/or reverse its direction. For the second part, we have that:

$$\left|\frac{1}{|\mathbf{u}|}\mathbf{u}\right| = \frac{1}{|\mathbf{u}|}|\mathbf{u}| = 1$$

Hence, we've shown that $\frac{1}{|\mathbf{u}|}|\mathbf{u}|$ is a unit vector of \mathbf{u} , which means that it only varies in magnitude, and is therefore parallel. \Box

1.20 definition. Position: Let O denote the origin, the vector from O to any point $P(\overrightarrow{OP})$ is called the position vector. For any points A and B, $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$

1.21 notation. r_p

Proof.

1.4 Collinearity and the section formula

1.22 definition. Collinear points, lie on a straight line

1.23 remark. One can test wether points are collinear by finding if their directed line segments, i.e. the vector formed starting at a point and ending at the other, are parallel.

1.24 example. Let $\overrightarrow{AB} = \mathbf{u}$, $\overrightarrow{BC} = 2\mathbf{u}$, $\overrightarrow{AC} = \mathbf{u} + 2\mathbf{u} = 3\mathbf{u}$. Hence they are all parallel to \mathbf{u} , it follows then that they are collinear.

1.25 remark.

$$AB:BC=\beta:\alpha \implies \alpha \overrightarrow{AB}=\overrightarrow{BC}$$

Setting $\lambda = \frac{\beta}{\alpha}$,

$$\overrightarrow{AB} = \lambda \overrightarrow{BC} \quad AB : BC = \lambda : 1$$

Since A, B and C are collinear, we can deduce the distance between the points using their ratio $\left(\lambda = \frac{|AB|}{|BC|}\right)$. Furthermore, for $\lambda > 0$ we have that the vectors have the same direction, hence B lies between A and C. Note however that this is not true for $\lambda < 0$

1.26 proposition. *Section Formula Let* A, B *and* P *be collinear points, s.t:*

$$AP:PB=m:n$$

Then, P has position vector

Proof.

$$n\overrightarrow{AP} = m\overrightarrow{PB}$$
 $n(\mathbf{p} - \mathbf{a}) = m(\mathbf{b} - \mathbf{p})$
 $(m+n)\mathbf{p} = m\mathbf{b} + n\mathbf{a}$
 $\mathbf{p} = \frac{m\mathbf{b} + n\mathbf{a}}{m+n}$

special case of 1.26, **1.27 corollary.** The midpoint of AB has position vector $\frac{1}{2}(\mathbf{a} + \mathbf{b})$ where m = n = 1

2 Logical Matters & Proof

- **2.1 definition. Direct Proof** It consists of an argument that starts from the hypothesis and by a sequence of logical steps ends at the conclusion
- **2.2 remark.** A common misconception is starting from the conclusion and finding something "true", by using both sides of the equation simultaneously
- 2.3 example. Prove that the product of two odd integers is also odd

Proof. Let a, b be arbitrary odd integers. Then a a = 2k + 1 and b = 2l + 1, for some $k, l \in \mathbb{Z}$. Hence,

$$ab = (2k+1)(2l+1)$$

= $4kl + 2k + 2l + 1$
= $2(2kl + k + l) + 1$

Therefore, since $2kl + k + l \in \mathbb{Z}$, ab is odd.