Example: 9.8 The Sower-Free RLC Limit: underdamped (19349 8#Ed HM)

Find an expression for $v_{c}(t)$ valid for $t \neq 0$. t = 0 t

$$\frac{V_{1}}{11} - I_{T} = 0$$

$$So \ U_{1} = 11 I_{T}$$

$$V_{1} - V_{T} = 3 \hat{c} = + 3 I_{T}$$

$$11 I_{T} - V_{T} = 3 I_{T}$$

$$V_{T} = 8\Gamma_{T}$$
 $V_{T} = 8\Gamma_{T}$
 $V_{T} = 8\Gamma_{T}$
 $V_{T} = 8\Gamma_{T}$

Here $R_{eq} = 8\Gamma_{T}$
 $V_{T} = 8\Gamma_{T}$

- Gorth (349) — Example 9.8"

So
$$x = \frac{B}{2 \times 5} = 0.8$$
 (exponential deeping coefficient)

and $w_0 = \frac{1}{\sqrt{5 \times 2 \times 10^{-3}}} = 10$ (resonant frequency)

As $x < w_0$ so it is an underdomped case.

Hence $V_c(t) = e^{-xt} \left(A_1 C_0 w_0 t + A_2 Siw_0 t \right)$

where $x < 0.8$

and $w_0 = \int_0^{\infty} w_0^2 - \alpha^2 = \int_0^{\infty} 100 - 0.64$
 $w_1 = 9.968$

- So $v_c(t) = e^{-0.8t} \left(A_1 C_0 9.968 t + A_2 Siw_0 9.968 t \right) - A$

To determize A_1 and A_2 , we find $v_c(t)$ at $v_c(t) = 0$.

So $v_c(t) = \int_0^{\infty} x_0 dt = \int$

-contd (349)

Substituting in (A)

$$U_{L}(o) = -5 = 1(A_{1} \times 1 + A_{2} \times 0)$$

So $A_{1} = -5$

- Hence (A) becomes

 $U_{Z}(t) = e^{-0.8t} \left(-5C_{0}.9.968t + A_{2}S_{1}.9.968t\right)$

- Taking the derivative at evaluating at $t = 0$ yields.

$$\frac{dU_{c}}{dt} = 4 + 9.968A_{2} \qquad (B)$$

- Now $\hat{z} = -C dU_{c} = 0$ because $\hat{z}_{L}(\tilde{o}) = 0$

Putting in (B)

 $0 = 4 + 9.968A_{2}$

So $A_{Z} = -\frac{4}{9.968} = -0.4013 \text{ V}$

- Therefore $U_{c}(t) = -e^{-0.8t} \left(5C_{0}9.968t + 0.4013 \text{ Si. } 9.968t\right)$, V

for $t > 0$.