Mecánica Vectorial (MECG-1001): Lección 02

Semestre: 2017-2018 Término II Instructor: Luis I. Reyes Castro Paralelo: 08

Problema 2.1. En el ensamble mostrado en la siguiente figura la barra AB tiene una velocidad angular constante de 4 rad/s en el sentido de las manecillas del reloj.

Complete las siguientes actividades:

a) 4 Puntos: Encuentre las velocidades angulares de las barras BD y DE.

Solución: Primero tomamos algunos datos:

$$\hat{r}_{AB} = (-1, 0)$$
 $r_{AB} = (-7, 0)$ in
 $\hat{r}_{ED} = (-0.9648, +0.2631)$
 $r_{ED} = (-11, +3)$ in
 $\hat{r}_{BD} = (0, -1)$
 $r_{BD} = (0, -8)$ in
 $\omega_{AB} = -4 \hat{k} \text{ rad/s}$
 $\alpha_{AB} = 0 \text{ rad/s}^2$

Luego, reconocemos que las velocidades de A y B se relacionan con la velocidad angular de la barra AB de la siguiente manera:

$$v_B = v_A + \omega_{AB} \times r_{AB} = \begin{bmatrix} 0 \\ +28 \end{bmatrix}$$
 in/s

Similarmente, vemos que las velocidades de D y E se relacionan con la velocidad angular de la barra DE de la siguiente manera:

$$v_{D} = v_{E} + \omega_{DE} \times r_{ED} = \begin{bmatrix} -3 \omega_{DE} \\ -11 \omega_{DE} \end{bmatrix} \text{ in/s}$$

Finalmente, vemos que las velocidades de B y D se relacionan con la velocidad angular de la barra BD de la siguiente manera:

$$\mathbf{v_D} = \mathbf{v_B} + \boldsymbol{\omega_{BD}} \times \mathbf{r_{BD}}$$

$$= \begin{bmatrix} 0 \\ +28 \end{bmatrix} + \begin{bmatrix} +8 \,\omega_{BD} \\ 0 \end{bmatrix} = \begin{bmatrix} +8 \,\omega_{BD} \\ +28 \end{bmatrix} \text{ in/s}$$

Igualando las dos expresiones anteriores para la velocidad en D, tenemos:

$$\begin{bmatrix} -3\,\omega_{DE} \\ -11\,\omega_{DE} \end{bmatrix} = \begin{bmatrix} +8\,\omega_{BD} \\ +28 \end{bmatrix}$$

$$\implies -11\,\omega_{DE} = +28$$

$$\implies \omega_{DE} = -2.546\,\hat{k}\,\operatorname{rad/s}$$

$$\implies \omega_{BD} = +0.9546\,\hat{k}\,\operatorname{rad/s}$$

b) 4 Puntos: Encuentre las aceleraciones angulares de las barras BD y DE.

Solución: Primero, reconocemos que las aceleraciones de A y B se relacionan con la aceleración angular de la barra AB de la siguiente manera:

$$a_B = a_A + \alpha_{AB} \times r_{AB} - \omega_{AB}^2 r_{AB}$$

= $\mathbf{0} + \mathbf{0} - (-4)^2 \begin{bmatrix} -7 \\ 0 \end{bmatrix} = \begin{bmatrix} +112 \\ 0 \end{bmatrix} \text{ in/s}^2$

Similarmente, vemos que las aceleraciones de D y E se relacionan con la velocidad y aceleración angular de la barra DE de la siguiente manera:

$$\mathbf{a_D} = \mathbf{a_E} + \alpha_{DE} \times \mathbf{r_{ED}} - \omega_{DE}^2 \mathbf{r_{ED}}$$

$$= \mathbf{0} + \begin{bmatrix} -3\alpha_{DE} \\ -11\alpha_{DE} \end{bmatrix} - (-2.546)^2 \begin{bmatrix} -11 \\ +3 \end{bmatrix}$$

$$= \begin{bmatrix} +71.30 - 3\alpha_{DE} \\ -19.47 - 11\alpha_{DE} \end{bmatrix} \text{ in/s}^2$$

Finalmente, vemos que las aceleraciones de B y D se relacionan con la velocidad y aceleración angular de la barra BD de la siguiente manera:

$$\mathbf{a_D} = \mathbf{a_B} + \alpha_{BD} \times \mathbf{r_{BD}} - \omega_{BD}^2 \mathbf{r_{BD}}$$

$$= \begin{bmatrix} +112 \\ 0 \end{bmatrix} + \begin{bmatrix} +8\alpha_{BD} \\ 0 \end{bmatrix} - (+0.9543)^2 \begin{bmatrix} 0 \\ -8 \end{bmatrix}$$

$$= \begin{bmatrix} +112 + 8\alpha_{BD} \\ +7.286 \end{bmatrix} \text{ ft/s}^2$$

Igualando las dos expresiones anteriores para la aceleración en D, tenemos:

$$\begin{bmatrix} +71.30 - 3 \alpha_{DE} \\ -19.47 - 11 \alpha_{DE} \end{bmatrix} = \begin{bmatrix} +112 + 8 \alpha_{BD} \\ +7.286 \end{bmatrix}$$

$$\Rightarrow -19.47 - 11 \alpha_{DE} = +7.286$$

$$\Rightarrow \alpha_{DE} = -2.4324 \, \hat{k} \, \text{rad/s}^2$$

$$\Rightarrow \alpha_{BD} = -4.1754 \, \hat{k} \, \text{rad/s}^2$$

Problema 2.2. [6 Puntos] Dos discos uniformes y dos cilindros están ensamblados de la manera como se muestra en la siguiente figura. El disco A pesa 20 lb y el disco B pesa 12 lb. Si el sistema se suelta desde el reposo, encuentre las aceleraciones angulares de los discos y las aceleraciones translacionales de los cilindros.

Problema 2.3. [4 Puntos] La plataforma de 9 kg está soportada, como se muestra en la siguiente figura, por dos discos uniformes que ruedan sin deslizarse en todas las superficies de contacto. La masa de cada disco es de 6 kg y el radio de 80 mm. Si se sabe que el sistema está inicialmente en reposo, determine la velocidad de la plataforma después de que ésta se haya desplazado 250 mm.

Problema 2.4. Dos barras ligeras idénticas AB y BC se sueldan entre si para formar un mecanismo en forma de L, el cual se presiona contra un resorte en D y se suelta desde la posición indicada, tal como se muestra en la siguiente figura. Se sabe que el ángulo máximo de rotación del mecanismo en su movimiento subsecuente es de 90 $^{\circ}$ en sentido contrario al de las manecillas del reloj.

Complete las siguientes actividades:

- a) 1 Punto: Calcule la inercia del ensamble alrededor de B.
- b) 5 Puntos: Determine la magnitud de la velocidad angular del mecanismo cuando pasa por la posición en la que la barra AB forma un ángulo de $30\,^{\circ}$ con la horizontal.