END-TO-END AUDIO-ASSISTED LIP-READING USING LSTM

CS 577 Final Project Spring 19'

Serg Masis

Srirakshith Betageri

A20427420 A20414667

End to End Lip Reading

- Lip reading is difficult because of homophemes.
- Bear and Pear sound the same.
- Audio during training improves performance.

Our Main Paper

DeepMind Oxford VGG

BBC Dataset

Proposed Solution

Spell: Audio Video Decoding

Watch: Video Encoding

Watch

Listen

Mel-frequency cepstrum coefficients

Spell

Our Dataset

- 500 hours of video
- 4004 mp4 files
- 224x224 resolution at 25fps
- 16 bit Single Channel
- 16 kHz format
- 11 GB of data

Data Preparation

Implementation and Training

- Weights for CNN were initialised using weights from SyncNet
- Watch and Listen LSTMs have cell size of 256 each
- Spell LSTM has a cell size of 512
- Attention Network has a hidden size of 512 with a max length of 800
- Initial Learning rate of 0.1, with reduction of 10% when training error did not improve over 2000 iterations.

Results

Can deep learning help solve lip reading?

New research paper shows Al easily beating humans, but there's still lots of work to be done

By James Vincent | Nov 7, 2016, 12:50pm EST

Researchers from Google's AI division DeepMind and the University of Oxford have used artificial intelligence to create the most accurate lip-reading software ever. Using thousands of hours of TV footage from the BBC, scientists trained a neural network to annotate video footage with 46.8 percent accuracy. That might not seem that impressive at first — especially compared to AI accuracy rates when transcribing audio — but tested on the same footage, a professional human lip-reader was only able to get the right word 12.4 percent of the time.

The research follows similar work published by a separate group at the University of Oxford <u>earlier this month</u>. Using related techniques, these scientist were able to create a lip-reading program called LipNet that <u>achieved 93.4 percent accuracy in tests</u>, compared to 52.3 percent human accuracy. However, LipNet was only tested on specially-recorded footage

Demo

Bad predictions due to model that predicts probabilities on a character-basis made worse by poor frame rate and worse sound quality

Stack

GTX 1070

References

- http://www.robots.ox.ac.uk/~vqq/data/lip_reading/lrs3.html
- https://towardsdatascience.com/sequence-to-sequence-model-introduction-and -concepts-44d9b41cd42d
- https://pytorch.org/
- https://stackoverflow.com/
- https://skymind.ai/wiki/attention-mechanism-memory-network
- Chung, J.S., Senior, A.W., Vinyals, O., & Zisserman, A. (2017). <u>Lip Reading Sentences in the Wild</u>. 2017
 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3444-3453. (ISBN: 978-1-5386-0457-1).
- Afouras, T., Chung, J.S., & Zisserman, A. (2018). <u>LRS3-TED: a large-scale dataset for visual speech recognition</u>. CoRR, abs/1809.00496.

THANK YOU!

