Commodity Price Changes in Gaza

```
In [395... # Step 1: Import the necessary libraries
import pandas as pd
import matplotlib.pyplot as plt

In [396... # Step 2: Load the dataset
file_path = 'C:/Users/faraz/Downloads/Niksun/ml_datasets/War_21st Century_Is
commodity_data = pd.read_excel(file_path)
commodity_data.head()
```

Out[396...

		Unnamed: 0	commodity name (arabic)	amount (arabic)	commodity name (english)	amount (english)	average price before 7 October 2023	avera price aft 7 Octob 20
	0	11100102	أرز حبة طويلة الياسمين تايلند - 1 كغم	كغم 1	rice (1 kg)	1 kg	7.727273	9.0000
	1	11100206	طحين أبيض - مطاحن السلام - محلي	كغم 50	flour (50 kg)	50 kg	91.000000	150.0000
	2	11100301	خبز ابيض كماج- محلي	كغم 1	bread (3 kg)	3 kg	7.000000	8.0000
	3	11220102	دجاج طازج دون الريش - محلي	كغم 1	chickens (1 kg)	1 kg	16.000000	16.6153
	4	11430001	بيض دجاج أبيض - محلي	كرتونة / 2 كغم	eggs (2 kg)	2 kg	13.333333	18.0000

 $5 \text{ rows} \times 21 \text{ columns}$

Step 3: Preprocess the data

We will check for missing values, handle them, and make sure the 'Date' column is in datetime format.

```
In [397... print(commodity_data.columns)
```

```
'commodity name (arabic)',
                                     'amount (arabic)'
                            'commodity name (english)',
                                    'amount (english)'
                 'average price before 7 October 2023',
                  'average price after 7 October 2023',
                  'Monthly Percent Change % (Oct-Sep)',
                                   2023-11-01 00:00:00,
                'Monthly Percent Change % (Nov.-Oct.)',
                                   2023-12-01 00:00:00,
                  'Monthly Percent Change % (Nov-Dec)',
                                   2024-01-01 00:00:00,
                  'Monthly Percent Change % (Dec-Jan)',
                                   2024-02-01 00:00:00,
                  'Monthly Percent Change % (Jan-Feb)',
                                   2024-03-01 00:00:00,
                  'Monthly Percent Change % (Feb-Mar)',
                                   2024-04-01 00:00:00,
                  'Monthly Percent Change % (Mar-Apr)',
                                  'Acumulative change'],
              dtype='object')
In [398... # Checking for missing values
         commodity data.isnull().sum()
Out[398... Unnamed: 0
                                                   0
          commodity name (arabic)
                                                   0
          amount (arabic)
                                                   0
          commodity name (english)
                                                   0
          amount (english)
                                                   0
          average price before 7 October 2023
                                                   0
          average price after 7 October 2023
                                                   0
          Monthly Percent Change % (Oct-Sep)
                                                   0
                                                   0
          2023-11-01 00:00:00
                                                   0
          Monthly Percent Change % (Nov.-Oct.)
          2023-12-01 00:00:00
                                                   0
          Monthly Percent Change % (Nov-Dec)
                                                   0
                                                   0
          2024-01-01 00:00:00
          Monthly Percent Change % (Dec-Jan)
                                                   0
                                                   0
          2024-02-01 00:00:00
                                                   0
          Monthly Percent Change % (Jan-Feb)
                                                   0
          2024-03-01 00:00:00
          Monthly Percent Change % (Feb-Mar)
                                                   0
          2024-04-01 00:00:00
                                                   0
          Monthly Percent Change % (Mar-Apr)
                                                   0
                                                   0
          Acumulative change
          dtype: int64
In [399... # Dropping the 'commodity name (arabic)', amount arabic column
         commodity data = commodity data.drop(columns=['Unnamed: 0','commodity name
         commodity data.head()
         #Removing Extra Information from Commodity Name
         commodity data['commodity name (english)'] = commodity data['commodity name
```

'Unnamed: 0',

Index([

Out[399...

Month Perce Change (Nov-O	Nov-23	Monthly Percent Change % (Oct- Sep)	average price after 7 October 2023	Price-7th October	Amount	Commodity Name	
-6.80272	8.938776	0.164706	9.000000	7.727273	1 kg	rice	0
3.625000	204.375000	0.648352	150.000000	91.000000	50 kg	flour	1
-1.278977	8.000000	0.142857	8.000000	7.000000	3 kg	bread	2
2.638889	21.000000	0.038462	16.615385	16.000000	1 kg	chickens	3
7.361111	31.250000	0.350000	18.000000	13.333333	2 kg	eggs	4
1.227273	38.000000	0.113360	33.846154	30.400000	3 liters	oil	5
-1.966527	4.000000	0.943089	4.979167	2.562500	1 kg	lemons	6
-2.18750(5.468750	0.435897	7.000000	4.875000	1 kg	apples	7
-2.407407	5.125000	0.350000	6.750000	5.000000	1 kg	tomatoes	8
-3.191489	4.000000	0.516129	5.875000	3.875000	1 kg	zucchinis	9

Step 4: Add New Features

We will create new features like moving averages and price changes to better understand the trends.

```
In [400...
```

```
commodity data['average pri
                                              commodity data['average pri
commodity data['% Nov-Dec'] = ((commodity data['Dec-23'] -
                                                        commodity data['N
                                                        commodity data['N
commodity data['% Dec-Jan'] = ((commodity data['Jan-24'] -
                                                        commodity data['[
                                                        commodity data['[
commodity data['% Jan-Feb'] = ((commodity data['Feb-24'] -
                                                        commodity data[']
                                                        commodity data['J
commodity data['% Feb-Mar'] = ((commodity data['Mar-24'] -
                                                        commodity data['F
                                                        commodity_data['F
commodity data['% March-April'] = ((commodity data['Apr-24'] -
                                                        commodity data['N
                                                        commodity data['N
# Display the updated dataframe with the new price change feature
commodity_price_change =commodity_data[['Commodity Name','Amount','Price
commodity price change head(10)
```

Out[400...

	Commodity Name	Amount	Price-7th October	% Sept- Oct	% Oct-Nov	% Nov-Dec	% С
0	rice	1 kg	7.727273	16.470588	-6.802721e-01	44.748858	0.
1	flour	50 kg	91.000000	64.835165	3.625000e+01	303.669725	24.
2	bread	3 kg	7.000000	14.285714	-1.332268e-13	0.000000	-25.
3	chickens	1 kg	16.000000	3.846154	2.638889e+01	39.682540	0.
4	eggs	2 kg	13.333333	35.000000	7.361111e+01	92.000000	-10.
5	oil	3 liters	30.400000	11.336032	1.227273e+01	62.280702	50.
6	lemons	1 kg	2.562500	94.308943	-1.966527e+01	66.666667	27.
7	apples	1 kg	4.875000	43.589744	-2.187500e+01	0.000000	357.
8	tomatoes	1 kg	5.000000	35.000000	-2.407407e+01	31.707317	-21.
9	zucchinis	1 kg	3.875000	51.612903	-3.191489e+01	50.000000	0.

```
In [404... # Calculate the standard deviation (volatility) of the monthly prices for ea
month_columns = ['Nov-23','Dec-23','Jan-24','Feb-24','Mar-24','Apr-24']
commodity_data['Price Volatility'] = commodity_data[month_columns].std(axis=
# Display the price volatility
commodity_data[['Commodity Name', 'Price Volatility']].head(20)
```

17

18

	Commodity Name	Price Volatility
0	rice	1.632993
1	flour	328.576574
2	bread	1.496698
3	chickens	3.402069
4	eggs	33.503731
5	oil	22.602631
6	lemons	6.425301
7	apples	11.178069
8	tomatoes	1.988656
9	zucchinis	6.644076
10	eggplants	3.913444
11	chili pepper	8.321658
12	bell pepper	5.347486
13	cucumbers	2.709551
14	dry onions	13.828315
15	potato	2.960230
16	mineral water bottle	0.270994

gasoline

19 passenger travel expenses

diesel

```
In [405...
         # Define a dictionary to group commodities (you can adjust this to fit your
          commodity groups = {
              'rice': 'grains',
'flour': 'grains',
              'bread': 'grains',
              'chickens': 'proteins',
              'eggs': 'proteins',
              'oil': 'oils',
              'lemons': 'fruits',
              'apples': 'fruits',
              'tomatoes': 'vegetables',
              'zucchinis': 'vegetables',
              'eggplants': 'vegetables',
              'chili pepper': 'vegetables',
              'bell pepper': 'vegetables',
              'cucumbers': 'vegetables',
              'dry onions': 'vegetables',
              'potato': 'vegetables',
              'mineral water bottle': 'beverages',
              'gasoline': 'fuel',
```

60.089295

2.352107

0.000000

```
'diesel': 'fuel',
    'passenger travel expenses (north to the center)': 'services',
    'passenger travel expenses (north to the south)': 'services',
    'biscuits': 'snacks',
    'Crushed bulgur': 'grains',
    'Crushed dry freekeh': 'grains',
    'Fresh Veal': 'proteins',
    'Fresh Lamb With Bone': 'proteins',
    'Baby Milk Powder': 'dairy',
    'Cheese': 'dairy',
    'Pure white sugar': 'sweets',
    'White Table Salt': 'condiments',
    'white yeast': 'baking essentials',
    'Ground coffee': 'beverages',
    'White Canned Cooked Beans': 'canned foods',
    'Egyptian beans medames': 'grains',
    'crushed red lentils': 'grains',
    'Tomato Paste': 'canned foods',
    'Marlboro Cigarettes': 'tobacco',
    'L-M cigarettes': 'tobacco',
    'Gas Cylinder': 'fuel',
    'Potable water distributed using tankers ': 'water distribution',
    'Potable water distributed using tankers': 'water distribution',
    'Potable water distributed using tankers ': 'water distribution'
}
# Apply the commodity grouping based on the cleaned commodity names
commodity data['Commodity Group'] = commodity data['Commodity Name'].map(com
# Display the grouped data
commodity data[['Commodity Name', 'Commodity Group']].head(10)
```

Out [405...

8

0 rice grains 1 flour grains 2 bread grains 3 chickens proteins 4 proteins eggs 5 oil oils 6 fruits lemons 7 fruits apples

vegetables

vegetables

Commodity Name Commodity Group

Step 5: Visualize the Data

tomatoes

zucchinis

Now, we will create 5 different visualizations to explore the commodity price trends.

```
import matplotlib.pyplot as plt
import pandas as pd

# Assuming commodity_data is your dataframe

# Calculating the average price of each commodity
average_prices = commodity_data.groupby('Commodity Name')['average price aft

# Plotting the bar chart for average prices of each commodity
plt.figure(figsize=(20, 8))
average_prices.plot(kind='bar', color='skyblue')

plt.title('Intial Commodity Prices')
plt.xlabel('Commodity')
plt.ylabel('Average Price')
plt.xticks(rotation=45)
plt.grid(axis='y')

plt.tight_layout()
plt.show()
```


This notebook was converted to PDF with convert.ploomber.io