IDA*

- *ID algorithm with different limit
- · Initial limit = f (so)
- · Perform DFS ignoring all nodes with
- f value greater than limit
- · Next iteration, update limit to be
 - min & value of ignored nodes
- · Space advantage of ID
- · Node efficiency + Complete + Optimal of At

Hill Climbing

- · Local search algorithm
- * Expand node with smallest h value
- · Remove all other nodes from openset

Not Complete

Enforced Hill Climbing

- · Persorm BrFS on graph rooted at Current node with goal of sinding Cany node with smaller h value.
- · Found node becomes new current node (keep track of Path between nodes)

Classical Planning Model

State Model:

- finite and discrete state space S
- **a** known initial state $s_0 \in S$
- \blacksquare a set $S_G \subseteq S$ of goal states
- **actions** $A(s) \subseteq A$ applicable in each $s \in S$
- **a** deterministic transition function s' = f(a, s) for $a \in A(s)$
- \blacksquare positive action costs c(a,s)

Conformant Planning Model

- finite and discrete state space S
- **a** set of possible initial state $S_0 \in S$
- \blacksquare a set $S_G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- **a** non-deterministic transition function $F(a, s) \subseteq S$ for $a \in A(s)$
- uniform action costs c(a, s)
- · Solution is a sequence of actions which will allow you to reach the goal state regardless of initial state or transitions. Without feedback!
- · Idea is that you could close your eyes, persorm the actions, and always end up at the goal State

Markov Decision Process MDP

- a state space S
- initial state $s_0 \in S$
- \blacksquare a set $G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each state $s \in S$
- transition probabilities $P_a(s'|s)$ for $s \in S$ and $a \in A(s)$
- **action costs** c(a, s) > 0
- Solution is a Policy: Function which tells you which action to take when you are in any given state with Feedback!
- · Optimal = minimize expected cost

Partially Observable Markov Decision Process POMDP

- states $s \in S$
- \blacksquare actions $A(s) \subseteq A$
- transition probabilities $P_a(s'|s)$ for $s \in S$ and $a \in A(s)$
- initial belief state b₀
- \blacksquare final belief state b_f
- **sensor model given by probabilities** $P_a(o|s)$, $o \in Obs$
- · Belief states are probability distributions
- · Solution is a Policy that gives actions with probabilities

 For each belief state which allows us to reach

 Sinal belief state distribution.
- · Sensor model provides known probabilistic information on each state

STRIPS

- A **problem** in STRIPS is a tuple $P = \langle F, O, I, G \rangle$:
 - F stands for set of all atoms (boolean vars) FACTS
 - O stands for set of all operators (actions)
 ACTIONS
 - \blacksquare $I \subseteq F$ stands for initial situation Initial Facts that are true
 - $G \subseteq F$ stands for goal situation Facts that must be true to not a full Set
- Operators $o \in O$ represented by
 - the Add list $Add(o) \subseteq F$ Make Facts True
 - the Delete list $Del(o) \subseteq F$ | Make Falts False
 - \blacksquare the Precondition list $Pre(o) \subseteq F$ Required Facts True

(Oh no it's) The Blocksworld

Unstach (2, y)

Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().

■ Initial state: $\{onTable(E), clear(E), ..., onTable(C), on(D, C), clear(D), ..., on(D, C), on(D, C),$ armEmpty()}.

- Goal: $\{on(E,C), on(C,A), on(B,D)\}.$
- **Actions:** stack(x, y), unstack(x, y), putdown(x), pickup(x).

Pre: \(On(x, y), arm Empry U),

clear (x) \(3 \)

Add: \(\xi \) holding (x), clear (y) \(3 \)

Stack (x,y): { Add: {on (x,y), arm Empty(), (kar(x)}} Delete & holding (N), Clearly) 3 similar or Moset Pre: { holding (x), clearly) }

Pre: at (2,1) connected (2, y, a', y')
Del: at (2,1)

