Lecture 19: Hypothesis testing framework

Ciaran Evans

General framework for hypothesis tests

Definition: Let $\theta \in \mathbb{R}^p$ be some parameter of interest. A **hypothesis** is a statement about θ . The goal of a hypothesis test is to compare two competing hypotheses:

$$H_0: \theta \in \Theta_0 \qquad H_A: \theta \in \Theta_1$$

Outcomes

$$H_0: \theta \in \Theta_0 \qquad H_A: \theta \in \Theta_1$$

The test either **rejects** H_0 or **fails to reject** H_0 . Possible outcomes:

Goal

	H_0 is true	H ₀ is false
fail to reject reject	correct decision type I error	type II error correct decision

Goal: Minimize type II error rate, subject to control of type I error rate

Constructing a test

$$H_0: \theta \in \Theta_0$$
 $H_A: \theta \in \Theta_1$

Constructing a test

Given observed data $X_1, ..., X_n$:

- 1. Calculate a test statistic $T_n = T(X_1, ..., X_n)$
- 2. Choose a rejection region $\mathcal{R} = \{(x_1, ..., x_n) : \text{ reject } H_0\}$
- 3. Reject H_0 if $(X_1,...,X_n) \in \mathcal{R}$

Example: $X_1,...,X_n$ iid with mean μ and variance σ^2

Power function

Suppose we reject H_0 when $(X_1,...,X_n) \in R$. The **power function** $\beta(\theta)$ is

$$\beta(\theta) = P_{\theta}((X_1, ..., X_n) \in R)$$

Example

 $X_1,...,X_n$ iid from a population with mean μ and variance σ^2 .

$$H_0: \mu = \mu_0$$
 $H_A: \mu \neq \mu_0$

Rejecting H_0

$$H_0: \theta \in \Theta_0$$
 $H_A: \theta \in \Theta_1$

Question: A hypothesis test rejects H_0 if $(X_1, ..., X_n)$ is in the rejection region \mathcal{R} . Are there any issues if we only use a rejection region to test hypotheses?

p-values

$$H_0: \theta \in \Theta_0 \qquad H_A: \theta \in \Theta_1$$

Given α , we construct a rejection region \mathcal{R} and reject H_0 when $(X_1,...,X_n) \in \mathcal{R}$. Let $(x_1,...,x_n)$ be an observed set of data.

Definition: The **p-value** for the observed data $(x_1, ..., x_n)$ is the smallest α for which we reject H_0 .

p-values

Suppose we have a test which rejects H_0 when $T(X_1,...,X_n)>c_{\alpha}$, where c_{α} is chosen so that

$$\sup_{\theta \in \Theta_0} \beta(\theta) = \sup_{\theta \in \Theta_0} P_{\theta}(T(X_1, ..., X_n) > c_{\alpha}) = \alpha$$

Let $x_1, ..., x_n$ be a set of observed data.

Theorem: The p-value for the set of observed data $x_1, ..., x_n$ is

$$p = \sup_{\theta \in \Theta_0} P_{\theta}(T(X_1, ..., X_n) > T(x_1, ..., x_n))$$

Proof of theorem