Name: Modukuri Sumanth Kumar

S/R No.: 17025

Tools

- Tensorflow 2.x
- Keras
- Python 3.x

Observations

This is a basic classification problem of FizzBuzz with 4 classes, training on [101, 1000] & testing on [1, 100].

Here when I talk about "BASE", it implies the Number base in which the encoding for the input was done. I wanted to test which BASE works best for this problem, and which

• Model Configurations

2 Layer Model

```
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(1024, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(CLASS_SIZE, activation='softmax')
```

Result:

BASE (encoding)	EPOCHS	ACCURACY in % (on test data)
2	100	95
2	200	97
2	300	97
3	100	94
3	200	96
3	300	96

We see that 2 layers with Dropout is performing very good with few hundred EPOCHS. But I wanted to test if it is better to use multiple layers, as in is it helping me get better results than 1 layer model.

1 Layer Model

```
tf.keras.layers.Dense(1024, activation='relu'),
tf.keras.layers.Dense(CLASS_SIZE, activation='softmax')
```

Result:

BASE (encoding)	EPOCHS	ACCURACY inn % (on test data)
2	100	97
2	300	100
3	100	85
3	300	96

With Increasing EPOCHs we get equivalent if not better results in 1-layer than in the 2-layer Model. So continuing with 1-layer Model.

• BASE finding

For this I ran 1000 EPOCHs for each BASE to get the best one.

Result:

Inferences:

- O BASE = 2 performs the best, gives 100% accuracy on test data
- All BASE values that are multiples of 3 perform better than others (except 2) because data has more multiples of 3 to label
- All BASE values that are multiples of 5 perform better than prime numbers (except 2 & 3) because data has more multiples of 5 to label and prime numbers don't have a correlation with the data

 Not using DROPOUT helps in this case as it actually learns the pattern of the data and that is what is required to get perfect results

Optimizer

I observed that amongst "Adam", "SGD" & "RMSprop", "RMSprop" worked the best for this data set.

Loss

As we are solving a classification problem here, it is recommended to use "categorical_crossentropy"

Activation

For Hidden layers I observed that "relu" gave better performance over other activation functions like "softmax" & "tanh"

And for Output Layer, the best activation function was "softmax"

Henceforth We can conclude that to get the best results on the test data we can use the following:

- EPOCHS = 1000
- BASE = 2
- Model: 1-Layer No Dropout Model
- Optimizer: "RMSprop"
- Loss: "categorical crossentropy"
- Hidden layer activation: "relu"
- Output Layer activation: "softmax"

Points:

- Model with Encoding Base = 2 gives better accuracy than Encoding Base = 3
- Adding Dropout in the model gave worse results
- Accuracy with 1000 Epochs is 100 % on test data
- Increasing the number of levels in the model did not achieve 100 % accuracy on the test data