San Francisco | March 4–8 | Moscone Center

SESSION ID: CRYP-T07

Large Universe Subset Predicate Encryption Based on Static Assumption (without Random Oracle)

Sanjit Chatterjee

Associate Professor, Indian Institute of Science, Bangalore, India

Sayantan Mukherjee

PhD Student, Indian Institute of Science, Bangalore, India

Agenda

- Background
- Our Constructions
- Applications
- Conclusion

Background

Predicate Encryption

R: $X \times Y \rightarrow \{0, 1\}$ is a predicate. R(x,y) = 1 if $x \in X$ and $y \in Y$ satisfy R.

- Setup: Outputs mpk, msk
- KeyGen: Gets x and outputs secret key SK_x
- Encrypt: Gets y and outputs encapsulation key $\mathfrak R$ and ciphertext CT $_{y}$
- Decrypt((SK_x, x), (Ct_y, y)): Outputs \Re if R(x,y)=1

Procedure Initialize (1^{λ})	Procedure Challenge(mpk, y)
$(mpk, msk) \leftarrow Setup(1^\lambda)$ Return mpk	$\begin{array}{c} (\mathfrak{K},CT_y) \leftarrow Encrypt(mpk,y) \\ \hline Choose \ \mathfrak{K} \hookleftarrow \ \mathfrak{K} \\ \\ Return \ (\mathfrak{K},CT_y) \end{array}$
$\frac{\operatorname{Procedure} \ KeyExtract(msk, x)}{Q \leftarrow Q \cup \{x\}}$ $Return \ SK_{x} \leftarrow KeyGen(msk, x)$	$\frac{\text{Procedure Finalize}(\mathfrak{b})}{\text{Return } \left\{ R(x,y) \stackrel{?}{=} 0 \right\}_{x \in \mathbf{Q}} \land \mathfrak{b}}$

Predicate Functions

- Equality Predicate (IBE): If x = y, then R(x,y)=1
- Membership Predicate (BE): If $x \in y$, then R(x,y)=1
- Zero Inner-Product (IPE): If $\langle x,y \rangle = 0$, then R(x,y)=1

• ...

Predicate Functions

- Equality Predicate (IBE): If x = y, then R(x,y)=1
- Membership Predicate (BE): If $x \in y$, then R(x,y)=1
- Zero Inner-Product (IPE): If $\langle x,y \rangle = 0$, then R(x,y)=1

• ...

• Subset Predicate (SPE): if $x \subseteq y$, then R(x,y)=1

Subset Predicate Encryption

- Subset Predicate = multiple Membership Predicate
 - $-\Omega \subseteq \Theta \Leftrightarrow \text{for any } i \in \Omega, i \in \Theta$
 - Trivial implementation is insecure [KMM17]
- Katz et al. Presented two constructions
 - small universe constructions
 - O(n) CT and O(1) SK
 - selective secure

SPE₁

O(1) secret key, O(1) ciphertext, selective*security

SPE-I Intuition

- Set $S \equiv \text{Characteristic polynomial } P_S(z) = \prod_{i \in S} (z+i)$
- Set $\Omega \subseteq$ Set $\Theta \Leftrightarrow P_{\Omega}(z)$ divides $P_{\Theta}(z)$
- If $\Theta = \Omega \cup \Phi$ then $P_{\Theta}(z) = P_{\Omega}(z) \cdot P_{\Phi}(z) \Leftrightarrow P_{\Phi}(z) = P_{\Theta \setminus \Omega}(z)$
- Encodings:
 - Ciphertext encodes Θ as $g^{sP_{\Theta}(\alpha)}$
 - Secret key encodes Ω as $u^{1/P_{\Omega}(\alpha)}$
 - Requires canceling of $P_{\Phi}(\alpha)$ encoded in mpk
 - The constant i.e. $P_{\Phi}(0)$ gives out $e(g, u)^s$

SPE-I Construction

$\mathsf{Setup}(1^\lambda, m)$

1:
$$(p_1, p_2, p_3, G, G_T, e) \leftarrow \mathcal{G}_{sbg}(1^{\lambda}, 3)$$

2:
$$|G| = |G_T| = N = p_1 p_2 p_3$$

3: Let G_i subgroup of G of order p_i

4:
$$g_1, u \leftarrow G_1, g_3, R_{3,1}, \dots, R_{3,m} \leftarrow G_3$$

5: $\alpha, \beta \leftarrow N$, H

6:
$$msk = (\alpha, \beta, u, g_3)$$

7:
$$\mathsf{mpk} = (g_1, g_1^{\beta}, \left(G_i = g_1^{\alpha^i}\right)_{i \in [m]}, \left(U_i = u^{\alpha^i} \cdot R_{3,i}\right)_{i \in [m]}, e(g_1, u)^{\beta}, \mathsf{H})$$

$\mathsf{KeyGen}(\mathsf{msk},\Omega)$

1:
$$X_3 \leftarrow G_3$$

2:
$$P_{\Omega}(z) = \prod_{x \in \Omega} (z + x)$$

3:
$$\mathsf{SK}_{\Omega} = u^{\frac{\beta}{P_{\Omega}(\alpha)}} \cdot X_3 = u^{\frac{\beta}{\prod (\alpha + x)}} \cdot X_3$$

$\mathsf{Encrypt}(\mathsf{mpk},\Theta)$

$$1: \ s \hookleftarrow \mathbb{Z}_N$$

2:
$$P_{\Theta}(z) = \prod_{y \in \Theta} (z + y) = \sum_{i \in [0, l]} c_i z^i$$

3:
$$\mathfrak{K} = \mathsf{H}(e(g_1, u)^{s\beta}), \mathsf{C}_0 = g_1^{s\beta}$$

$$\mathsf{C}_1 = g_1^{sP_{\Theta}(\alpha)} = \left(g_1^{c_0} \prod_{i \in [I]} G_i^{c_i}\right)^s$$

4:
$$CT_{\Theta} = (C_0, C_1)$$

$\mathsf{Decrypt}((\mathsf{SK}_{\Omega}, \Omega), (\mathsf{CT}_{\Theta}, \Theta))$

1: Here
$$\Omega \subseteq \Theta$$
, Let $t = |\Theta \setminus \Omega|$

2:
$$P_{\Theta \setminus \Omega}(\alpha) = \prod_{z \in \Theta \setminus \Omega} (\alpha + z) = \sum_{i \in [0,t]} a_i \alpha^i$$

3:
$$A = e(C_0, \prod_{i \in [t]} U_i^{a_i})$$

= $e(g_1^{s\beta}, u^{P_{\Theta \setminus \Omega}(\alpha) - a_0} \cdot R_3)$

4:
$$B = e(C_1, SK_{\Omega}) = e(g_1^{sP_{\Theta}(\alpha)}, u^{\frac{\beta}{P_{\Omega}(\alpha)}})$$

5: Output
$$\mathfrak{K} = H((B/A)^{1/a_0})$$

SPE-I Correctness

$$B = e(\mathsf{C}_{1}, \mathsf{SK}_{\Omega}) = e(g_{1}^{sP_{\Theta}(\alpha)}, u^{\frac{\beta}{P_{\Omega}(\alpha)}} \cdot X_{3}) = e(g_{1}, u)^{s\beta P_{\Theta \setminus \Omega}(\alpha)}$$

$$A = e(\mathsf{C}_{0}, \prod_{i \in [t]} U_{i}^{a_{i}}) = e(g_{1}^{s\beta}, u^{P_{\Theta \setminus \Omega}(\alpha) - a_{0}}) = e(g_{1}, u)^{s\beta \left(P_{\Theta \setminus \Omega}(\alpha) - a_{0}\right)}$$

$$Then, H((B/A)^{1/a_{0}}) = H(e(g_{1}, u)^{s\beta a_{0} \cdot a_{0}^{-1}})$$

$$= H(e(g_{1}, u)^{s\beta})$$

$$= \mathfrak{K}$$

Security Proof

- Under Sub-Group Decision Problem
- Deja Q framework
- Selective security
 - Key queries are made on sets Ω_1 ={x₁,x₂}, Ω_2 ={x₂,x₃} and Ω_3 = {x₁,x₃}
 - Given SK_{Ω_1} , SK_{Ω_2} and SK_{Ω_3} ,

$$\left(\frac{\mathsf{SK}_{\Omega_1}}{\mathsf{SK}_{\Omega_2}}\right)^{(\mathsf{x}_3-\mathsf{x}_1)^{-1}} = \left(\frac{\mathsf{SK}_{\Omega_1}}{\mathsf{SK}_{\Omega_3}}\right)^{(\mathsf{x}_3-\mathsf{x}_2)^{-1}} = u^{\frac{1}{(\alpha+\mathsf{x}_1)(\alpha+\mathsf{x}_2)(\alpha+\mathsf{x}_3)}} = \mathsf{SK}_{\Omega}$$

where $\Omega = \{x_1, x_2, x_3\}$

Restriction: Key queries needs to be on cover-free sets

SPE₂

O(1) secret key, O(n) ciphertext, adaptive security

SPE-II Intuition

	small universe	large universe
identity z	h_z	$\sum_{j \in m} w_j z^j$
Encoding of set Ω (constant size)	$\sum_{z\in\Omega}h_{z}$	$\sum_{\mathbf{z}\in\Omega}\sum_{j\in m}w_{j}\mathbf{z}^{j}$
Encoding of set Θ	$\{h_z\}_{z\in\Theta}$	$\left\{ \sum_{j \in m} w_j z^j \right\}_{z \in \Theta}$

SPE-II Construction

Setup $(1^{\lambda}, m)$

1:
$$(p, \mathsf{G}_1, \mathsf{G}_2, \mathsf{G}_\mathsf{T}, e) \leftarrow \mathcal{G}_\mathsf{abg}(1^\lambda)$$

2:
$$(g_1, g_2) \leftarrow G_1 \times G_2$$
, $g_T \leftarrow G_T$

3:
$$\alpha_1, \alpha_2, c, d, (u_i, v_i)_{i \in [m]} \leftarrow \mathbb{Z}_p$$

4:
$$b \leftarrow \mathbb{Z}_p^{\times}$$
, $g_T^{\alpha} = e(g_1, g_2)^{(\alpha_1 + b\alpha_2)}$

5:
$$\left(g_1^{w_i} = g_1^{u_i + bv_i}\right)_{i \in [m]}$$
, $g_1^w = g_1^{c + bd}$

6:
$$\mathsf{msk} = (g_2, g_2^c, \alpha_1, \alpha_2, d, (u_i, v_i)_{i \in [m]})$$

7: mpk =
$$(g_1, g_1^b, (g_1^{w_i})_{i \in [m]}, g_1^w, g_T^{\alpha})$$

Encrypt(mpk, Θ)

1:
$$s,(t_i)_{i\in[m]} \leftarrow \mathbb{Z}_p$$

2:
$$\mathfrak{K} = e(g_1, g_2)^{\alpha s}, C_0 = g_1^s, C_1 = g_1^{bs}$$

$$s\left(\sum_{j \in [m]} w_j y^j + wt_i\right)$$

$$C_{2,y} = g_1$$
3: $\mathsf{CT}_{\Theta} = (\mathsf{C}_0, \mathsf{C}_1, (\mathsf{C}_{2,y}, t_y)_{y \in \Theta})$

3:
$$CT_{\Theta} = (C_0, C_1, (C_{2,y}, t_y)_{y \in \Theta})$$

$\mathsf{KeyGen}(\mathsf{msk},\Omega)$

1:
$$r \leftarrow \mathbb{Z}_p$$

2:
$$K_1 = g_2^r, K_2 = g_2^{cr}, K_4 = g_2^{dr}$$

$$\alpha_1 + r \sum_{x \in \Omega} \sum_{j \in [m]} u_j x^j$$

$$K_3 = g_2$$

$$\mathsf{K}_5 = \mathsf{g}_2^{2+r\sum\limits_{\mathsf{x}\in\Omega}\sum\limits_{j\in[m]}\mathsf{v}_j\mathsf{x}^j}$$

3:
$$SK_{\Omega} = (K_1, K_2, K_3, K_4, K_5)$$

$\mathsf{Decrypt}((\mathsf{SK}_{\Omega}, \Omega), (\mathsf{CT}_{\Theta}, \Theta))$

1:
$$A = e\left(\prod_{y_i \in \Omega} C_{2,i}, K_1\right)$$

2:
$$B = e\left(C_0, K_3 \prod_{y_i \in \Omega} K_2^{t_i}\right) e\left(C_1, K_5 \prod_{y_i \in \Omega} K_4^{t_i}\right)$$

3: Output
$$\Re = B/A$$

SPE-II Correctness

$$B = e\left(\mathsf{C}_0, \mathsf{K}_3 \prod_{y_i \in \Omega} \mathsf{K}_2^{t_i}\right) e\left(\mathsf{C}_1, \mathsf{K}_5 \prod_{y_i \in \Omega} \mathsf{K}_4^{t_i}\right),$$

$$= e\left(\mathsf{C}_0, g_2^{(\alpha_1+b\alpha_2)+r\sum\limits_{y_i\in\Omega}((u_0+bv_0)+(u_1+bv_1)y_i+\ldots+(u_m+bv_m)y_i^m)} \cdot \prod\limits_{y_i\in\Omega}g_2^{r(c+bd)t_i}\right)$$

$$= e \left(g_1^s, g_2^{s}, g_2^{(w_0 + w_1 y_i + w_2 y_i^2 + \ldots + w_m y_i^m + wt_i)} \right)$$

$$A = e\left(\prod_{y_i \in \Omega} \mathsf{C}_{2,i}, \mathsf{K}_1\right)$$

$$= e \begin{pmatrix} s \sum_{y_i \in \Omega} (w_0 + w_1 y_i + w_2 y_i^2 + \dots + w_m y_i^m + w t_i) \\ g_1 & , g_2^r \end{pmatrix}$$

SPE-II Security

$$\Omega \to \sum_{\mathsf{z} \in \Omega} \sum_{j \in [m]} u_j \mathsf{z}^j$$

$$\Omega \to \sum_{\mathbf{z} \in \Omega} \sum_{j \in [m]} u_j \mathbf{z}^j \quad \text{and} \quad \left[\Theta^* \to \left\{ \sum_{j \in [m]} u_j \mathbf{z}^j \right\}_{\mathbf{z} \in \Theta^*} \right]$$

Security $(\Omega \subseteq \Theta^*)$: Note that $\exists x \in \Omega \setminus \Theta^*$

•
$$\sum_{\mathbf{z} \in \Omega} \sum_{j \in [m]} u_j \mathbf{z}^j = \sum_{\mathbf{z} \in \Omega \setminus \{x\}} \sum_{j \in [m]} u_j \mathbf{z}^j + \sum_{j \in [m]} u_j \mathbf{x}^j$$

Argument for independence.

$$-x \notin \Theta^* \qquad \Rightarrow \sum_{j \in [m]} u_j x^j \perp \left\{ \sum_{j \in [m]} u_j z^j \right\}_{z \in \Theta^*}$$
$$-x \notin \Omega \setminus \{x\} \qquad \Rightarrow \sum_{j \in [m]} u_j x^j \perp \sum_{z \in \Omega \setminus \{x\}} \sum_{j \in [m]} u_j z^j$$

• $\sum u_i x^j$ supplies entropy $j \in [m]$

Applications

WIBE, CP-DNF

WIBE

SPE to WIBE (* in data-index):

$$-S_{id}[2i, 2i + 1] = \begin{cases} 10 & \text{if } id[i] = 1\\ 01 & \text{if } id[i] = 0\\ 11 & \text{if } id[i] = * \end{cases}$$

- Example: (1010 satisfies
$$1**0$$
) $\equiv S_{1010} \subseteq S_{1**0}$. $S_{1**0} = 10111101 = \{1, 3, 4, 5, 6, 8\}$ $S_{1010} = 10011001 = \{1, 4, 5, 8\}$

WIBE Schemes	mpk	SK	CT	pairing	Security	Assumption
BBG-WIBE [ACD ⁺ 06]	(n+4)G	(n+2)G	(n+2)G	2	adaptive	n-BDHI
Wa-WIBE [ACD ⁺ 06]	$((\ell+1)n+3)G$	(n+1)G	$((\ell+1)n+2)G$	(n+1)	adaptive	DBDH
SPE-1 [KMMS17]	$(2n+2)G_1$	$1G_2+\mathbb{Z}_p$	$(2n+1)G_1$	1	selective	<i>q</i> -BDHI
SPE-2 [KMMS17]	$(2n+1)G_1 + 2G_2$	$1G_1+1G_2$	$2nG_1+1G_2$	2	selective	DBDH
SPE ₂ based	$(2n+6)G_1$	5G ₂	$(n+2)G_1+n\mathbb{Z}_p$	3	adaptive	SXDH

CP-DNF

- SPE to CP-DNF:
 - Data-index is a DNF formula $C_1 \vee C_2 \vee \cdots C_t$ where $C_j \subseteq \mathcal{U}$.
 - Key-index is attribute set $A \subseteq \mathcal{U}$.
 - Satisfies if $\exists j \in [t]$ such that $C_j \subseteq A \iff U \setminus A \subseteq U \setminus C_j$.

- For
$$id \in \{C_1, C_2, \cdots C_t, A\}$$
, $S_{id}[i] = \begin{cases} 0 & \text{if } i \in id \\ 1 & \text{if } i \notin id \end{cases}$

DNF Schemes	mpk	SK	CT	pairing	Security	Assumption
SPE-1 [KMMS17]	$(n+2)G_1$	$G_2 + \mathbb{Z}_p$	$\gamma((n+1)G_1)$	1	selective	<i>q</i> -BDHI
SPE-2 [KMMS17]	$(n+1)G_1+2G_2$	$G_1 + G_2$	$\gamma(2nG_1+G_2)$	2	selective	DBDH
SPE ₂ based	$(n+3)G_1$	5G ₂	$\gamma((n+2)G_1+n\mathbb{Z}_p)$	3	adaptive	SXDH

Conclusion

- First large-universe SPE with O(1) CT and O(1) SK
 - Selective* secure
- First large-universe adaptive secure SPE
 - O(n) CT and O(1) SK

- Future works
 - Selective secure SPE₁
 - SPE₂ with smaller ciphertext size

Thank you

Questions?