	$\sigma_1^{\#1}{}_+\alpha_\beta$	$\sigma_1^{\#_2^2}$	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1^{\text{-}}\alpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1}^{\#1}{}_{\alpha}$	$\tau_{1}^{\#2}{}_{\alpha}$
$\sigma_{1}^{\#1} + \alpha \beta$	341 t2+2	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 (2r_1 + r_5) (t_1 + t_2))}$	$i \sqrt{2} k(t_1 - 2t_2)$ $(1 + k^2) (3t_1 t_2 + 2k^2 (2t_1 + t_5) (t_1 + t_2))$	0	0	0	0
$\sigma_{1}^{#2} + \alpha \beta$	(1+)	$\frac{6k^{2}(2r_{1}+r_{5})+t_{1}+4t_{2}}{(1+k^{2})^{2}(3t_{1}t_{2}+2k^{2}(2r_{1}+r_{5})(t_{1}+t_{2}))}$		0	0	0	0
$t_1^{#1} + \alpha \beta$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	$-\frac{i k (6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))}$	$\frac{k^2 (6k^2 (2r_1 + r_5) + t_1 + 4t_2)}{(1 + k^2)^2 (3t_1t_2 + 2k^2 (2r_1 + r_5)(t_1 + t_2))}$	0	0	0	0
$\sigma_{1}^{\#1} \dagger^{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
$\sigma_{1}^{\#2} +^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2k^2(r_1+r_5)+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1} +^{\alpha}$	0	0	0	0	0	0	0
$t_{1}^{#2} + \alpha$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_2^{\sharp 1}{}_{lphaeta\chi}$
$\sigma_{2}^{\sharp 1} \dagger^{\alpha \beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1}$ † $^{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}lphaeta\chi}^{\#1}$
$\omega_{2}^{\#1} \dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

	#	1	1	3	3	3	2	16
Source constraints	SO(3) irreps	$\tau_0^{\#_+^2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha = 0$	$t_1^{\#1}{}^{\alpha} == 0$	$t_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#2}{}^{\alpha\beta} == 0$	$t_{2+}^{\#1}\alpha\beta - 2ik\sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

	$\omega_{0}^{\#1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0}^{#1}\dagger$	$-\bar{l} \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{ ext{#} ext{1}}\dagger$	0	0	0	t_2

Lagrangian density

 $\begin{array}{|c|c|c|c|c|c|}\hline -t_1 & \omega_i^{\alpha i} & \omega_{\kappa \alpha}{}^{\kappa} - \frac{1}{3} t_1 & \omega_i^{\kappa \lambda} & \omega_{\kappa \lambda}{}^{i} + \frac{2}{3} t_2 & \omega_i^{\kappa \lambda} & \omega_{\kappa \lambda}{}^{i} + \frac{1}{3} t_1 & \omega_{\kappa \lambda}{}^{i} & \omega_{\kappa \lambda}{}^{\kappa} + \frac{1}{3} t_1 & \omega_{\kappa \lambda}{}^{i} & \omega_{\kappa \lambda}{}^{\kappa} + \frac{1}{3} t_1 & \omega_{\kappa \lambda}{}^{i} & \omega_{\kappa \lambda}{}^{\kappa} + \frac{1}{3} t_2 & \omega_{\kappa \lambda}{}^{i} & \omega_{\kappa \lambda}{}^{\kappa} + f^{\alpha \beta} & \tau_{\alpha \beta} + \omega^{\alpha \beta \chi} & \sigma_{\alpha \beta \chi} - r_5 \partial_i \omega^{\kappa \lambda}{}_{\kappa} \partial^i \omega_{\lambda}{}^{\alpha}{}_{\alpha} - \frac{2}{3} r_1 \partial^\beta \omega^{\theta \alpha}{}_{\kappa} \partial_\theta \omega_{\alpha \beta}{}^{\kappa} - \frac{2}{3} r_1 \partial_\theta \omega_{\alpha \beta}{}^{\kappa} \partial_\kappa \omega^{\theta \alpha \beta} - r_5 \partial_\alpha \omega_{\lambda}{}^{\alpha}{}_{\theta} \partial_\kappa \omega^{\theta \kappa \lambda} + \\ r_5 \partial_\theta \omega_{\lambda}{}^{\alpha}{}_{\alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - r_5 \partial_\alpha \omega_{\lambda}{}^{\alpha}{}_{\theta} \partial_\kappa \omega^{\kappa \lambda \theta} + 2 r_5 \partial_\theta \omega_{\lambda}{}^{\alpha}{}_{\alpha} \partial_\kappa \omega^{\kappa \lambda \theta} - \frac{1}{3} t_1 \partial^\alpha f_{\theta \kappa} \partial^\kappa f_{\alpha}{}^{\theta} + \frac{1}{6} t_2 \partial^\alpha f_{\theta \kappa} \partial^\kappa f_{\alpha}{}^{\theta} - \frac{1}{3} t_1 \partial^\alpha f_{\kappa} \partial^\kappa f_{\alpha}{}^{\kappa} + \frac{1}{3} t_1 \partial^\alpha f_{\kappa} \partial^\kappa f_{\alpha}{}^{\kappa} + \frac{1}{3} t_1 \omega_{\kappa \lambda}{}^{\kappa} \partial^\kappa f_{\alpha}{}^{\eta} + 2 t_1 \partial^\alpha f_{\kappa} \partial^\kappa f_{\alpha}{}^{\kappa} + \frac{1}{3} t_1 \omega_{\kappa \lambda}{}^{\kappa} \partial^\kappa f_{\alpha}{}^{\eta} - \frac{1}{3} t_1 \omega_{\kappa \lambda}{}^$

$f_{1^{-}\alpha}^{\#2}$	0	0	0	$i k t_1$	0	0	0
$f_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha} f_{1}^{\#1}{}_{\alpha} f_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{\imath}kt_1$
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}$ \bar{i} k $(t_1 + t_2)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$\omega_1^{\#2}_{+}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1+}^{\#1} + \alpha \beta \left[\frac{1}{6} \left(6 k^2 \left(2 r_1 + r_5 \right) + t_1 + 4 t_2 \right) \right]$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} + \alpha \beta$	$\omega_{1}^{\#2} + \alpha^{\beta}$	$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\omega_1^{\#1} +^\alpha$	$\omega_1^{\#2} \dagger^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{lpha}$

	Massive partic	le
	Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+6r_1(t_1^2+2t_2^2)+3r_5(t_1^2+2t_2^2)}{(2r_1+r_5)(t_1+t_2)(-3t_1t_2+4r_1(t_1+t_2)+2r_5(t_1+t_2))} > 0$
_ ?	Polarisations:	3
- :	Square mass:	$-\frac{3t_1t_2}{2(2r_1+r_5)(t_1+t_2)} > 0$
	Spin:	1
	Parity:	Even

Massive partic	le
Pole residue:	$-\frac{1}{r_1} > 0$
့ Polarisations:	5
Square mass:	$-\frac{t_1}{2r_1} > 0$
Spin:	2
Parity:	Odd

(No massless particles)

Unitarity conditions