Programming Assignment 3

Ruilin Jin (rxj420@case.edu)

Problem a Please see the python code for implementation.

Problem b Here I used 32, 64, 128, and 256 as my batch sizes.

Problem c Here's the plot:

Problem d Here's the plot:

Problem e GPUs I used:

(base) ulab@ulab-2rtx:~\$ nvidia-smi Tue Nov 21 14:35:35 2023									
NVIDIA-SMI 535.113.01									
GPU Fan	Name Temp	Perf				Bus-Id Disp.A Memory-Usage		Uncorr. ECC Compute M. MIG M.	
===== 0 41% 	NVIDIA 28C	TITAN P8	RTX	2W /		+=====================================		N/A Default N/A	
1 40%	NVIDIA 26C	P8		15W /	/ 280W	00000000:02:00.0 Off 174MiB / 24576MiB	0%	N/A	
+ Proce	Processes:								
 	ID	ID						Usage	
0 0 0 0 0	N/A N/A	N/A N/A	930 1360 84988 85131 86615 930	G G G	/usr/ /opt/ 09	lib/xorg/Xorg bin/gnome-shell teamviewer/tv_bin/Team 80027,1616595384048401: on,SpareRendererForSit lib/xorg/Xorg	8868,262144	137MiB 26MiB 4MiB 36MiB 26MiB 4MiB	

Problem f

Batch size directly affects training speed. With a larger batch size, more data is processed at once, leading to faster epochs because the GPU can parallelize the workload efficiently. However, this is up to a point where the GPU memory is maximized without being overloaded. Beyond that point, too large a batch size can slow down training due to memory swapping or may not fit into GPU memory at all.

The trend between training on 1 GPU versus 2 GPUs generally shows that training with 2 GPUs is faster due to parallel processing. However, the speedup is not always linear due to overhead from communication and synchronization between GPUs.

Problem g

With 2 GPUs, the training speed observed is faster compared to using just 1 GPU. The reasons include increased parallelism, as both GPUs can process separate batches of data simultaneously, effectively doubling the computational throughput, assuming there's efficient scaling and the neural network model is large enough to benefit from the extra GPU. However, for very small models or batch sizes, the overhead of managing multiple GPUs can outweigh the speed benefits.

Reference

- 1. Keskar, Nitish Shirish, et al. "On large-batch training for deep learning: Generalization gap and sharp minima." arXiv preprint arXiv:1609.04836 (2016).
- 2. Shen, Xiaoqi, et al. "Effects of patchwise sampling strategy to three-dimensional convolutional neural network-based Alzheimer's disease classification." Brain Sciences 13.2 (2023): 254.
- 3. https://medium.com/mini-distill/effect-of-batch-size-on-training-dynamics-21c14f7a716e
- 4. https://www.sciencedirect.com/science/article/pii/S2405959519303455