« Parametric Abstraction »

Patrick Cousot

École normale supérieure 45 rue d'Ulm, 75230 Paris cedex 05, France

> Patrick.Cousot@ens.fr www.di.ens.fr/~cousot

NSAD'05 — Paris, France — Friday 21 Jan. 2005

Content

 Abstract domains	. :
Example abstract domain: Symbolic execution	. 6
 Parametric abstract domains	12
 Generation of execution examples by parametric	
symbolic execution	19

Abstract Domains

Static Analysis

- Static analysis computes an overapproximation A of an abstract semantics $\mathsf{lfp}^{\sqsubseteq}_{-}\mathcal{F}\sqsubseteq A$ where $F\in\mathcal{D}\mapsto\mathcal{D}$
- A compositional approach is preferable:
 - The abstract domain \mathcal{D} is defined by combination of elementary abstract domains L
 - The abstract transformer \mathcal{F} is defined inductively (e.g. by induction on the program syntax) by composition of elementary abstract transformers f ...

This structure $\langle L, \sqsubseteq, \perp, \ldots, f \rangle$... leads to the idea of Abstract Domain/Abstract Algebra.

Abstract Domain

A mathematical structure/programming language module defining:

- A concrete semantic domain D (representing program computations)
- A set L = of (encodings) of computation properties
- A set of abstract operations, including:
 - a lattice structure: $\sqsubseteq \bot \top \sqcup \sqcap$
 - (forward/backward) transformers $f \in L^n \mapsto L$
 - convergence accelerators \triangle
- a meaning $\gamma \in L \mapsto \wp(D)$

Symbolic Execution

Example: Symbolic Execution

From [1, Sec. 3.4.5]:

Program

Symbolic execution tree

References

- [1] P. Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique de programmes. Thèse d'État ès sciences mathématiques, Université scientifique et médicale de Grenoble, Grenoble, 21 mars 1978.
- [2] J.C. King. Symbolic Execution and Program Testing, CACM 19:7(385-394), 1976.

- An abstract interpretation
- The abstract properties of L have the form:

$$\prod_{c \in ext{Control}} \{ \langle Q_i, \; E_i
angle \; | \; i \in extstyle \Delta_c \}$$

(where Q_i is a path condition and E_i is a valuation in terms of initial values \bar{x}) with concretization

$$\{\langle c,\ x
angle \mid \exists ar{x}: igvee_{Q_i(ar{x})} \land x = E_i(ar{x})\} \ i \in \Delta_c$$

- Test transformer:

$$egin{aligned} ext{test} \llbracket b
rbracket (\{\langle Q_i, \ E_i
angle \ | \ i \in arDelta_c \}) = \ \{\langle Q_i \wedge b[x ackslash E_i(ar{x})], \ E_i
angle \ | \ i \in arDelta_c \} \end{aligned}$$

– Assignment transformer:

$$ext{assign} \llbracket x := e(x)
rbracket (\{\langle Q_i, \, E_i
angle \mid i \in arDelta_c \}) = \ \{ \langle Q_i, \, e[x ackslash E_i(ar{x})]
angle \mid i \in arDelta_c \}$$

- Program:

```
{1} *
    tantque x≥y faire
{2}
    x:=x-y;
{3}
    refaire;
{4}
```

- Program transformer \mathcal{F} :

```
\begin{cases} P_1 = \{\langle vrai, x, y \rangle\} \\ P_2 = test(\lambda(x,y).[x \ge y])(P_1 \text{ ou } P_3) \\ P_3 = affectation(\lambda(x,y).[x-y,y])(P_2) \\ P_4 = test(\lambda(x,y).[x < y])(P_1 \text{ ou } P_3) \end{cases}
```

- Fixpoint iteration:

```
\begin{cases} P_1^2 = \{ \langle vrai, x, y \rangle \} \\ P_2^2 = \{ \langle (x \ge y), x, y \rangle, \langle ((x \ge y) \text{ et } (x \ge 2y)), x - y, y \rangle \} \\ P_3^2 = \{ \langle (x \ge y), x - y, y \rangle, \langle ((x \ge y) \text{ et } (x \ge 2y)), x - 2y, y \rangle \} \\ P_4^2 = \{ \langle (x < y), x, y \rangle, \langle (x < 2y), x - y, y \rangle \} \end{cases}
```

. . .

Principle of Parametric Abstraction

Parametric Abstraction

All abstract elements can be expressed in similar symbolic parametric form:

$$L = \{e(p) \mid p \in P\}$$

where the set P of parameters is either numerical or symbolic

- The fixpoint approximation $\exists A \in L : \text{Ifp } F \sqsubseteq A$ that is the lattice constraint $\exists p \in P : A = e(p) \land F(A) \sqsubseteq A$ can be expressed as sufficient parametric constraints on the parameters $p \in P$

Solving the Parametric Constraints

- by sample executions (e.g. runtime generation of invariants [3])
- by random interpretation [4]
- by using constraint solvers (e.g. [5])

References

- [3] M.D. Ernst, J. Cockrell, W.G. Griswold and D. Notkin. Dynamically Discovering Likely Program Invariants to Support Program Evolution. IEEE Transactions on Software Engineering, v.27 n.2, p.99–123, February 2001
- [4] S. Gulwani and G.C. Necula. Discovering affine equalities using random interpretation. 30th ACM POPL, p.74–84, January 2003
- [5] A. Aiken. Introduction to Set Constraint-Based Program Analysis. SCP 35(1999):79-111, 1999.

Example of Numerical Parametric Abstraction

Affine equalities Karr[76]

– Abstract domain:

$$L = \{\langle a_0, \ldots, a_n \rangle \mid \forall i = 0, \ldots, n : a_i \in \mathbb{R}\}$$

– Concretization:

$$\gamma(\langle a_0,\,\ldots,\,a_n
angle)=\{\langle x_1,\,\ldots,\,x_n
angle\mid a_0+\sum_{i=0}^n a_i.x_i=0\}$$

Example of Numerical Parametric Constraints

$$\{a_1x+b_1y+c_1=0\}$$
 $a_1=b_1=c_1=0$
 $x:=0; y:=0;$
 $\{a_2x+b_2y+c_2=0\}$ $c_2=0$
While ?? do
 $\{a_3x+b_3y+c_3=0\}$ $a_3=a_2=a_5, b_3=b_2=b_5,$
 $x:=x+1$ $c_3=c_2=c_5$
 $\{a_4x+b_4y+c_4=0\}$ $a_4=a_3, b_4=b_3, c_4=c_3-a_3$
 $y:=y-1$
 $\{a_5x+b_5y+c_5=0\}$ $a_5=a_4, b_5=b_4, c_5=c_4+b_4$
od $a_6=a_2=a_5, b_6=b_2=b_5,$
 $\{a_6x+b_6y+c_6=0\}$ $c_6=c_2=c_5$

© P. Cousot

Solutions of the Example Parametric Constraints

for all $a \in \mathbb{R}$:

$$\{0x + 0y + 0 = 0\}$$
 $x:=0; y:=0;$
 $\{ax + ay + 0 = 0\}$
while ?? do
 $\{ax + ay + 0 = 0\}$
 $x:=x+1$
 $\{ax + ay - a = 0\}$
 $y:=y-1$
 $\{ax + ay + 0 = 0\}$
od
 $\{ax + ay + 0 = 0\}$

Other Examples of Numerical Parametric Constraints Taken From VMCAI'05 and NSAD'05

– VMCAI'05:

- Jérôme Feret. The arithmetic-geometric progression abstract domain
- Sriram Sankaranarayanan, H.B. Spipma, Z. Manna. Scalable Analysis of Linear Systems Using Mathematical Programming

- NSAD'05:

- H. Seidl, M. Petter. *Infering polynomial invariants* with Polyinvar.

Example of Application to the Generation of Execution Examples

The Problem...

- Find an example of execution satisfying given specifications
- Examples:
 - Automatic test data generation
 - Automatic generation of an alarm example
 - Automatic generation of a false alarm example (abstraction refinement)

Abstraction from Above and from Below

- Examples:
 - Over-approximation: invariance
 - Under-approximation: execution example
- Formally: dual
- What about under-approximation?:
 - Finite state: trivial
 - Infinite state: nothing done in static analysis
 - difficulty with dual widening/ narrowing

Parametric Symbolic Execution

1: B := (X>=Y); - ASTREE signals a potential error at point
2: if (B) { 3: when X = 0
3: Y := 1 / X; - An iterated forward/backward polyhedral analysis yields a necessary path condition to reach point 3: with X = 0

Parametric trace	Path condition	Parameter constraints	
$1:\langle B_1, X_1, Y_1\rangle$	$X_1=0 \wedge Y_1 \leq 0$	$X_1 = X_2, Y_1 = Y_2$	
$2:\langle B_2, X_2, Y_2 \rangle$	$B_2=true\wedge X_2=0$	$B_2 = B_3, X_2 = X_3, Y_2 = Y_3$	
$3:\langle B_3, X_3, Y_3 \rangle$	$B_3 = true \wedge X_3 = 0$	$B_3 = B_4, X_3 = X_4$	
$4:\langle B_4, X_4, Y_4 \rangle$	$B_4 = true \wedge X_4 = 0$		

Solution (a.o.): $B_1 = \text{true}, X_1 = 0, Y_1 = -1000$

Handling Tests

- Tests can be handled by case analysis
- Nondeterminism yield parametric symbolic execution trees:

A; if (B) { C; } else { D; }; E

 \longrightarrow backtracking (e.g.)

Handling loops: (1) by Syntactic Unrolling

1: while (X>0){	Param. trace	Path cond.	Parameter constraints
2: $X = X - Y;$	$1:\langle X_1, Y_1\rangle$		$X_1 > 0, X_1 = X_2, Y_1 = Y_2$
<pre>3: } 4: assert(X==0);</pre>	$2\!:\!\langle X_2,\;Y_2 angle$	$X_2 \geq Y_2$	$X_2=X_3+Y_3,\ Y_2=Y_3$
Solution (a.o.)	$3:\langle X_3, Y_3\rangle$	$X_3 \geq 0$	$X_3 = X_4, Y_3 = Y_4$
with 2 loop un- rollings: $X_1 = 2$	1: $\langle X_4, Y_4 \rangle$		$X_4 > 0, X_4 = X_5, Y_4 = Y_5$
$Y_1 = 1$	$2:\langle X_5, Y_5 \rangle$	$X_5 \geq Y_5$	$X_5=X_6+Y_6,Y_5=Y_6$
	$3:\langle X_6^{\!\scriptscriptstyle 6},\; Y_6 angle$	$X_6 \geq 0$	$X_6 = X_7, Y_6 = Y_7$
	$1:\langle X_7^7,\ Y_7 angle$		$X_7 < Y_7, \ X_7 = X_8, \ Y_7 = Y_8$
	$4:\langle X_8, Y_8\rangle$	$X_8+1\leq Y_8$	$X_8=0$

Handling Loops: (2) by Bounded Syntactic Unrolling

 Add a distance (from origin/to end) extra parameter to path elements:

$$\langle Q_0, E_0, 0 \rangle \langle Q_1, E_1, 1 \rangle \ldots \langle Q_{n-1}, E_{n-1}, n-1 \rangle \langle Q_n, E_n, n \rangle$$

- Consider the k-limiting parametric symbolic execution tree made up of all paths of length up to k and corresponding concrete constraints
- Strengthen by global reachability constraints and iterated forward/backward analysis of the symbolic execution tree
- Solve minimizing the path length

Handling Loops: (3) by Semantic Unrolling

1:	while $(X>0)$ {	Param. trace	Path cond.	Parameter constraints
2:	X = X-Y;	$1:\langle X_1^i,\;Y_1^i angle$		$X_1^i>0, X_1^i=X_2^i, Y_1^i=Y_2^i$
3: 4:	<pre>} assert(X==0);</pre>	$2\!:\!\langle X_2^i,\;Y_2^i angle$	$X_2^i \geq Y_2^i$	$X_{2}^{i}=X_{3}^{i}+Y_{3}^{i} ext{, }Y_{2}^{i}=Y_{3}^{i}$
		$3\!:\!\langle X_3^i,\;Y_3^i angle$	$X_3^i \geq 0$	$X_3^i=X_1^{i+1},\ Y_3^i=Y_1^{i+1}$
		• • •	$i=0\dots n$	
		$1:\langle X_1^n,\ Y_1^n angle$		$igg X_1^n < Y_1^n, \ X_1^n = X_4, \ Y_1^n = Y_4$
		$4:\langle X_4,\ Y_4 angle$	$X_4+1\leq Y_4$	$X_4=0$

Trial and error solvers choose n = 1, 2, 3, ... which amounts to loop unrolling. Forward/backward abstract interpretation? Random interpretation? Symbolic computation (à la Maple)?

Conclusion

- Very/extremely preliminary ongoing work
- More to do:
 - Think more about the formalization of parametric symbolic execution as an abstraction from below
 - Produce an implementation to allow for experimentation
 - Worry about floats 1 (symbolically, à la Miné [6]?) and very long loop unrollings

References

[6] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. ESOP'04, LNCS 2986, p. 3-17, Springer.

¹ Rounding must be handled in the same way in the program and the solver

THE END, THANK YOU

