

6372424

FIG. 1A

Target sequence to be detected

FIG. 1B PART ONE: TRIGGER REACTION

FIG. 1C PART TWO: DETECTION REACTION -

FIG. 2A

Į

MAJORITY	[SEO ID NO:7]	AT GXX G G C G AT G C C T C T T C A G C C C A A G G C C G G T C C T C C T G G A C G G C C A C C A C C T G G C C T	
DHAPTAO DHAPTFL DHAPTTH	[SEO ID NO: 1] [SEO ID NO: 2] [SEO ID NO: 3]	AGGG	~ ~ 0
٠	MAJORITY	ACCOCACOTT CTT COCCCCT OAAGGGCCT CACCACCAGCCGGGGGGGAACCGGTGCAGGCGGGTCT ACGGCTT	
	DNAPTAO DNAPTFL DNAPTTH		070
	MAJORITY	C G C CAA GA G C C T C C A A G G C C C T G A A G G A G G A C C G G G C X X G G C G G T C X T C G T C T T T G A C G C C A A G	
· .	DHAPTAG DHAPTFL DHAPTTH	207 A	0 Z Z
	HAJORITY	O C C C C C C C C C C C C C C C C C C C	
•	DRAPTAO DRAPTFL DRAPTTH	277 274 275 276 276 277	640
	MAJORITY	CCCGGCAGCT CGCCCT CAT CAAGGAGCT GGT GGACCT CCT GGGGGCT T GCGCGCCT CGAGGT CCCCGGCTA	•
	DHAPTAO DHAPTFL DHAPTTB	347	V40

FIG. 2B

MAJORITY	MAJORITY ESEC ID NO:73	COAGCCGCACGACGTXCT GGCCACCCT GGCCCAAGAAGCGCGCAAAAGGAGGGGGTACGAGGT GCGCAT CCT C	
DRAPTAQ DRAPTFL GRAPTTR	CSEQ 10 NO:13 CSEQ 10 NO:23 CSEQ 10 NO:33		417 414 420
	MAJORITY	A C C C C C G A C C C C C C C C C C C C	
	DRAPTAL DRAPTFL DRAPTTR	T AAA T 6. 6. 6 A A	487 484 490
	MAJORITY	T CACCCCGGCGT GGCTTT GGGAGAAGTACGCCCT GAGGCCGGGCCAGT GOGT GGACTACCGGGCCCT GGC	
	DNAPTAG DNAPTFL DNAPTTN	A	557 554 560
	MAJORITY	GEGEGACCCCT CCGACAACCT CCCCGGGGT CAAGGGCAT CGGGGAGAGACCCGCCCXGAAGCT CCT CXAG	
	DNAPTAO DNAPTEL DNAPTER	С	627 624 630
	MAJORITY	GAGTOGOGOGOCT GCAAAACCT CCT CAAGAACCT GGACCGGGT GAAGCCCGC··· CXT CCGGGAGAGA	
	DRAPTAL DRAPTFL DRAPTTR	66	694 691 700

FIG. 2C

. 1

MAJORITY	MAJORITY ESED ID NO:73	T C C A G G C C C A C A T G G A X G C T G C T C C C T G G G G C C T C C C C
DKAPTAG DKAPTFL DKAPTTR	ESEO 10 NO:13 ESEO 10 NO:23 ESEO 10 NO:33	764
	MAJORITY	GGT GGACTT CGCCAAGX GGCGGGGGGCCGGAGCGGGCTT AGGGCCTTT CT CGAGAGGCT GGAGTTT
	DRAPTAG DRAPTEL DRAPTE	834
	MAJORITY	GOCAGECT CCT CCACCAGT I CGGCCT CCT GGAGGGCCCCCAAGGGCCCT GGAGGGCCCCCCT GGCCCCCCT
	ORAPTAG ORAPTEL ORAPTE	. А
	MAJORITY	CGGAAGGGGCCTTCGT GGGCTTTGJ CCTTT CCCGCCCCGAAGCCCATGTGGGCCGAGCTTCT GGCCCTGGC
	DNAP1AU DNAP1F1 DNAP1TR	974 T.
	MAJORITY	COCCOCCAGGGAGGCCCGGGTCCACCGGCCACCAGCCCTTTAXGGGCCTXAGGGACCTXAAGGAGGTG
	DNAPTAO DNAPTEL DNAPTTR	T. 66. 61

FIG. 2D

	1114 1120		1184 1181 1190		1254 1251 1260		1324 1321 1330		1394 1391 1400
CGGGGXCT CCT CGCCAAGGACCT GGCCGTTT T GGCCCT GAGGGAGGGCCT XGACCT CXT GCCCGGGGACG	0T A A C C A T. G C.	ACCCCAT BCT CGT CGT ACCT CGT CGG CCCT CCAACA CCACCCCCGAGGGGGGT GGCCCGGGGGTTACGG		GGGGGAGT GGACGGAGGGAKGCGGGGGGGGCCCT CCTXT CCGAGAGGCT CTT CCKGAACCT XXXGGAG	6	CCCCTTGAGGGGGAGGAGGCTCCTTTGGCTTTACCAGGAGGTGGAGAAGCCCCTTTCCCGGGTCCTGG	A. G A A	CCCACATGEAGGCCACGGGGGTXCGCCTGGACGTGGCCTACCTCCAGGCCCTXTCCCTGGAGGTGGCGGA	66. 6. 6. 7. 6. 1394 66. 6. 7. 6. 1394 67. 7. 7. 6. 1394
MAJORITY ESEO ID NO:73	[SEO 10 NO: 1] [SEO 10 NO: 2] [SEO 10 NO: 3]	MAJORITY	DNAP1A0 DNAP1FL DNAP1TR	MAJORITY	DRAPTAG DRAPTEL DRAPTTH	MAJORITY	DNAPTAG DNAPTFL DNAPTFF	MAJORITY	DNAPTAU DNAPTFI DNAPTTR
MAJORITY	DRAPTAO DRAPTEL DRAPTTR								

FIG. 2E

)

MAJORITY	MAJORITY ESEC 10 NO:73	GCA GAT CCGCCGCCT CGA GGA GGA GGT CTT COG CCT GGC GGC CCA CCCCTT CAA CCT CAA GT CCGG GGA C	
DRAPTAL DRAPTEL DRAPTTR	[SEO ID NO:1] [SEO ID NO:2] [SEO ID NO:3]	6 A. 6	1464 1461 1470
	MAJORITY	CAGCT GGAAAGGGTGCT CTTT GACGAGCT XGGGCTT CCCGCCAT GGGCAAGACGGAGAGAGACXGGCAAGC	
	DNAPTAO DNAPTEL DNAPTTR	66 66	1534 1531 1540
	MAJORITY	GCT CCA CCA GC GC GC GC GC G G G G G G G G	
	DNAPTAO DNAPTFL DNAPTTH		1604 1601 1610
	MAJORITY	GC666AGCT CACCAAGCT CAAGAACACCT ACAT X GACCCCCT GCCX BXCCT GGT CCAGCCCCAGGACGGGC	
	DKAPTAG DKAPTFL DKAPTTR	G. G	1674 1671 1680
	MAJORITY	C G C C T C C A C C C C C T T C A A C C A C A	•
	DRAPTAG DRAPTFL DRAPTTH	6. 1744 6. 1741 1750	44.1 14.0 15.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14

FIG. 2F

	1814 1811 1820		1884 1881 1890		1954 1951 1960		2024 2021 2030		2094 2091 2100:2
A GAA CAT COCOBT CCCCACCCCX CT GGGCCAGA GGAT CCGCCGGGCCTT CGT GGCCGA GGAGGGXT GGGT	6. T. 6. C.	GTTGOT GGCCCT GGACTATAGCCABATAGAGCT CCGGGT CCT GGCCCACCT CT CCGGGGACGAGCT G	A	AT CCGGGT CTT CCAGGAGGGGAGGACAT CCACACCCAGACGGCGAGCT GBAT GTT CGGCGT CCCCCCG	6	A 6 G C C G T G G C C C C G G G C G G G C C G A G A C C A T C A A C T T C G G G G T C T A C G G C A T G T C C G	A. G.G. A	CCACCECCT CT CCCAGGAGGTT GCCAT CCCCT ACGAGGAGGGGGT GGCCTT CATT GAGGGCT ACTT CCAG	TA. 6. T. T. C.C.A. T. 2094
MAJORITY ESEO ID NO:73	[SEO ID NO:1] [SEO ID NO:2] [SEO ID NO:3]	MAJORITY	DRAPTAQ DRAPTEL DRAPTTR	MAJORITY	DNAPTAO DNAPTFL DNAPTTH	MAJORITY	DNAPTAG DNAPTEL DNAPTTR	MAJORITY	DNAPTAO DNAPTFL DNAPTTR
MAJORITY	DNAPTAO DNAPTFL DRAPTTH								

FIG. 2G

	2164 2161 2170		2234 2231 2240		2304 2301 2310		2374 2371 2380		2444 2441 2450
AGETT COCCAAGGT GCGGGCCT GGATT GACAAGACCCT GGAGGGGGGGGGG	A	CCCT CTT CGG CCGC CGG CGCT A CGT CCC CGA CCT CAA CGC CCG GGT GAA GA CGG CGG CGG CG CG CG CG CG CG CG CG CG	G	GCGCAT GGCCTT CAACAT GCCCGT CCAGGCCACCCGCCGACCT CATGAAGCT GGCCAT BGT CAAGCT C	T	TI CCCCCCCCTXCAGGAAT GGGGCCAGGAT GCT CCTXCAGGT CCACGACGAGGT GGT GGT CCT CCAGGCCC	A 66 6 6 6 7 11. 6 6	SCAAAGAGGGGGGGGGGGGGGGGGGGTTTGGCCAAGGAGGTGATGGAGGGGGGTCTATCCCCTGGCGGT	. A A
MAJORITY ESED ID NO:73	[SEO ID NO:1] [SEO ID NO:2] [SEO ID NO:3]	MAJORITY	DNAPTAG DNAPTEL DNAPTER	MAJORITY	DRAPTAG DRAPTFL DRAPTTR	MAJORITY	DNAPTAG DNAPTFL DNAPTTR	MAJORITY	DRAPTAQ DRAPTFL DRAPTTR
MAJORITY	DNAPTAG DNAPTEL DRAPTTR								

FIG. 2H

MAJORITY [SEQ ID NO:7] GCCCTGGAGGTGGGGGTGGGGGAGGACTGGCTCTCCGCCAAGGAGTAG DNAPTR ESC ID NO:2]	5	ਬੂਹ :	•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	5	• •	-
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	49	• •	.
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	9	• •	•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	4	• •	•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	ວ		•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	(2)		•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	2		-
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	CJ		<u>, </u>
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	C -	• •	•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	9		•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	=		•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	AC	• •	•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	5		•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	Ä		:
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	3	• •	•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	99		•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	9	CZ .	•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	=	ني :	:
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	(<u>.</u>		:
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	ස		•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	<u>-</u>		•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	5		•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	45	• •	•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	(C)		
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	(5)		•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	A	•	
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	99	•	•
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	=======================================	•	
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	<u>ت</u> ي .	•	
(SEG 10 NO: 7] (SEG 10 NO: 1] (SEG 10 NO: 2] (SEG 10 NO: 3]	5	•	: :
•	G	•	• •
•	73	בן	3
•		<u> </u>	6
•	=		
•	=		
•			
•	2	55	: 2
MAJORE DRAPTE DRAPTE	<u>~</u>		
MAJO DRAP DRAP DRAP	=	Z I	
¥ 555	2	4	2
	Z	2 2	55

FIG. 3A

ì

MAJORITY	MAJORITY ESEO 10 NO:83	MXAM. PLFEPKGRVLLVDGHHLAYRTFFALKGLTTSRGEPVOAVYGFAKSLLKALKEDG· DAVXVVFDAK
TAG PRO TFL PRO	CSEO 10 NO:43 CSEO 10 NO:53 CSEO 10 NO:63	. RG
	MAJORITY	APSFRHEAYEAYKAGRAPTPEDFPROLALIKELVOLLGLXRLEVPOYEADDVLATLAKKAEKEGYEVRIL
	TAO PRO TFL PRO	66
	MAJORITY	TADROLYGLL SDRI AVI HPEGYLI TPAWLWEKYGL RPEDWVDYRAL XGDP SDNL PGVKGI GEKTAXKLL X
	TAG PRO TFL PRO	K
	MAJORITY	EWGSLENLLKNI BRVKP-XXREK! XAHME DLXLSXXLSXVRT DLPLEVDFAXRREPDREGLRAFLERLEF
	TAO PRO TFL PRO TTM PRO	278
	MAJORITY	GSLIHEFGLLEXPKALEEAPWPPPEGAFVGFULSRPEPMWAELLALAAARXGRVHRAXOPLXGLRDLKEV
	TAG PROTEL PROTEIN	S. S. KA. B. K. B. C. B. WE. L. D. B. 348 6. A. A. A. C. B. K. C. B. A. K. 350

FIG. 3B

XX	WG 418 KE 417 I K 420	0 6	488 487 490	9	558 557	¥	628 627 630	. 0	698 697
MAJORITY [SEO 10 NO: 8] RGLLAKOLAVLALREGLOLXPGDDPM. LAYLLDPSNTTPEGVARRYGGEWTEDAGERALLSERLFXNLXX	S 6. P A WG A A A A A A A A A	RILWLYXEVEKPLSRVLAHME AT GVRL DVAYL DAL SLEVAEEI RRLEEEVFRLAGHPFNLNSR	K	FDELGLPAI GKTEKTGKRSTSAAVLEALREAHPI VEKI LOYRELTKLKNTYI DPLPXLVHPRTG	B. L. O. S	NOTATATGRESS S PREDITORI PURTPEGORI RRAFVA E EGWXEVALDY SOI EL RVLAHES G DENL		GRDI HTOTASWMF GVPPEAVOPLMRRAAKTI NFGVLYGMSAHRLSOELAI PYEEAVAFI ERYFO	8. 6
ODDPMLLAYLLDPSNTTPEGVAR		IV LA HME AT GV RL DV AY LOAL SLE	ec	GKRST SAAVLEAL REAHPI VEKI		'NL ON! PVRT PL GOR! RRAFVAEE		PPEAVOPLMR RAAKTI NFGVLYG	S
RGLLAKOLAVLALREGLOLXF		RLEGEERLLWLYXEVEKPLSA		OLERVLFDELGLPAIGKTEKT		RLHTRFNOTATATGRLSSSDP		I RVF DE GRD! HT OT A SWMF GV	144 -
[SEQ 10 NO:8]	[SEQ 10 NO: 4] [SEQ 10 NO: 5] [SEQ 10 NO: 6]	MAJORITY	TAO PRO TFL PRO	MAJORITY	TAG PRO TFL PRO TTH PRO	MAJORITY	TAG PRO TFL PRO TTM PRO	MAJORITY	TAG PRO TEL PRO
MAJORITY	TAO PRO TFL PRO TTR PRO								

FIG. 3C

TAC PRO [SEC ID NO: 4]
[SEG ID #0:4]
4 10

Xcm / Not 1 Codons essential to polymerase AFG Nhe 1 Polymerase Bam Hi Genes for Wild-Type and Pol(-)DNAPTag Pst BstX / BstX / BstX / Domain Coding Regions: 5' Nuclease (MC) FIG. 4C 🔅 FIG. 4F 🗧 FIG. 4E \approx FIG. 4B 🔇 FIG. 4D \approx FIG. 4A

FIG. 4G 🗆

FIG. 7

The state of the s

FIG. 8

FIG. 9A

. }

FIG. 9B

The second secon

FIG. 10A

FIG. 10B

FIG. 12A

FIG. 12B

FIG. 13B

15 nt

Substrate RNA (46 nt)

5' A A GCUUGCA UGCCUGCA GGUCGA CUCUA GA GGA UCCCC 3' 3' CGT A CGGA CGT CCA GCT GA GA T CT CCT A GG 5' 30-0

FIG. 13A

RBS: Ribosome binding site

FIG. 15C

Pilot Oligonucleotide 3. प्रामामामामामामामामामामामामामामामा Substrate Strand Sy Cleavage пинивинивинивинивинивини Pilot Oligonucleotide Substrate Strand S, Oleavage

FIG. 16C FIG. 16D

Septiment of the property of the septiment of the property of

FIG. 17

FIG. 18

FIG. 19A

Sst Sst Asp 718	COCCAGGOTTTICCCAGTCACCACGTTGTAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTCGAGCTCGGTACCGGGGATCCTC SCGGTCCCAAAAGGGTCAGTGCTGCAACATTTGCTGCTCAATATGCTGAGTGATATCCCGCTTAAGCTCGAGCCATGGGCCCTTAGGTGAGAAAGGGTCAAGGTGATAGCTCGAGCCATGGGCCCCTAGGAG -47 Forward	Sal I BspM I Acc I Sph I Hind III Hind III Hind III Acadocolocaccicaccicated accidental accidence accidenc
	CCCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCA GCGGTCCCAAAAGGGTCAGTGCTGCAACATTTTGCTGCCGGT	Sal I BspM I Sph I Sph I Hind III Hinc II Hinc II Hind III TAGACTCCACCCATCCAACTCCAACTCATAGATATCACAGATATATCACAGATATATCACAGATATATCACAGATATCACAGATATCACAGATATCACAGATATATCACAGATATCACAGATATATCACAGATATATCACAGATATCACAGATATATCACAGATATATCACAGATATATCACAGATATATCACAGATATATCACAGATATATCACAGATATATCACAGATATATCACAGATATATCACAGATATATCACAGATATATCACAGATATATCACAGATATATCACAGATATATCACAGATATATCACAGATATATCACAGATATATCACAGATATATCACAGATATATCATATATAT

---48 Reverse

TCCGCTCACAATTCCACACATACGA
AGGCGAGTGTTAAGGTGTGTTGTATGCT

FIG. 21

FIG. 22A

35

FIG. 22B

FIG. 23

FIG. 24

FIG. 25A

FIG. 25B

FIG. 27

FIG. 28A

FIG. 28B

Wild-Type Substrate Mutant Substrate 1 Denature 2 Renature 3 Add cleavage agent ► = cleavage site 4 Resolve reaction products 5 Detect unique cleavage "fingerprint"

FIG. 29

FIG. 30

FIG. 31

FIG. 32

157 378 1056 1587 M 1 2 3 4 5 6 7 8 M

232323

FIG. 33

FIG. 34

- 30

(KCImM) 250 ^{ng} BN	50	50 +	40 +	30 +	20 +	10	0			
M	1	2	3	4	5	6	7	M		
2	ě									
No.			•) (, 48	/ epit/	13	, alle	******	174
		•	•	• 488	. 499	1 4986	900			102
•	e: Dr Dr		. 40				<i></i>			80 72
		600 600			. em		6898	10000	-database	42
•••	•					****	***	•••	**********	30
•						****	**			24

FIG. 35

FIG. 36

FIG. 37

FIG. 38

FIG. 39

FIG. 40

FIG. 41

FIG. 42

FIG. 43

The second secon

FIG. 44

BN TAQ \$ \$ \$

M 1234 M

FIG. 46

Months of the second of the se

FIG. 47

)

FIG. 48

5'GGCTGACAAGAAGGAAACTCGCTGAGACAGCAGGGACTTTCCACAAGGGG) 5'GGCTGACAAGGAAACTCGCTGAGATAGCAGGGACTTTCCACAAGGGG	5'GGCTGACAAGAAGGAAACTCGCTGAGATAGCAGGGACTTTCCACAAGGGG	5'GGCTGACAAGAAGGAAACTCGCTGAGACAGCAGGGACTTTCCACAAGGGGG): 79) 3'CCGACTGTTCTTCCTTTGAGGGGCCCCC	5'GGCTGACAAGAAGGAAACTCGCTGAAACAGCAGGGACTTTCCACAAGGGGG	5'GGCTGACAAGAAGGAAACTCGCTGAGACAGCAGGGACTTTCCACAAGGGG
): 76) 3'CCGACTGTTCTTCCTTTGAGCGACTCTGTCGTCCTGAAAGGTGTTCCCC): 77) 3'CCGACTGTTCTTCCTTTGAGCGACTCTATCGTCCCTGAAAGGTGTTCCCC	3: 78) 3'CCGACTGTTCTTCCTTTGAGCGACTCTATCGTCCCTGAAAGGTGTTCCCC): 80) 3'CCGACTGTTCTTCCTTTGAGCGACTTTGTCGTCCCTGAAAGGTGTTCCCC	3: 81) 3'CCGACTGTTCTTCCTTTGAGCGACTCTGTCGTCCCTGAAAGGTGTTCCCC
L.100.8-1	L.46.16-10	L.46.16-12	L19.16-3	L.CEM/251	L.36.8-3
(SEQ ID NO:	(SEQ ID NO:	(SEQ ID NO:	(SEQ ID NO:	(SEQ ID NO:	(SEQ ID NO:

FIG. 49A

----TCGGCCAGCCCTTGTGGGTGAAGA ATGTTATGGGGAGG------AGCCGGTCGGGAACACCCCACTTTCT TACAATACCCCTCC----L.46.16-10 (SEQ ID NO: 77)

----TCGGCCAGCCCTTGTGGGTGAAGA ATGTTATGGGGAGG------AGCCGGTCGGGAACACCCCACTTTCT TACAATACCCCTCC----- ATGTTACGGGGAGGTACTGGGGAGGAGCCGGTCGGGAACGCCCCCTCTCT TACAATGCCCCTCCATGACCCCTCCTCGGCCAGCCCTTGCGGGGGGGAGA

L19.16-3 (SEQ ID NO: 19)

L.46.16-12 (SEQ ID NO: 78) ATGTTACGGGGAGGTACTGGGAAGGAGCCGGTCGGGAACGCCCACTTTCT TACAATGCCCCTCCATGACCCTTCCTCGGCCAGCCCTTGCGGGTGAAGA

TACAATGCCTCTCCATGACCCCTCCTCGGCCAGCCCTTGCGGGTGAGAGA ATGTTACGGAGAGGTACTGGGGAGGAGCCGGTCGGGAACGCCCACTCTCT

> [.36.8-3 (SEQ ID NO: 81)

L.CEM/251 (SEQ ID NO:

FIG. 49B

•
\circ
0
•
∞
t
\vdash

- L.46.16-10
- L.46.16-12
- L.19.16-3
- L.CEM/251
- L.36.8-3

3 ' ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT 5 TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA

- 3 'ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT 5 'TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA
- 5 TGGTGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA 3 · ACCACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT
- 5 TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA 3 ' ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT
- 5 TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA 3 ' ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT
- 5 TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA 3 ' ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT

FIG. 49C

_
<u>. </u>
\overline{O}
$\widetilde{\circ}$
∞
t

L.46.16-10

L.46.16-12

L.19.16-

L.CEM/251

L.36.8-3

CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGTCGTGATCGTCCATC GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG

CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGTCGTGATCGTCCATC GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGCTAG

CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGTCGTGATCGTCCATC GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG

CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGTCGTGATCGTCCATC GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG

CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGTCGTGATCGTCCATC GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG

CTCCGACCGTCTAACTCGGGATCCTCCAAGAGAGGTCGTGATCGTCCATC GAGGCTGGCAGATTGAGCCCCTAGGAGGTTCTCTCCAGCACTAGCAGGTAG

FIG. 49D

-1 5'AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCGGTGCTGGG: 76) 3'TCGGACCCACACAGGGACCATCTGAGAGTGGTCGTGAACCGGCCACGACCC
8 -1 NO: 76)
L. 100. (SEQ ID

5'AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTAGCCAGTGCTGGG3'TCGGACCACTTAGCCAGTGCTGGG L. 46.16-10 (SEQ ID NO: 7

5'AGCCTGGGTGTTCCCTGCTAGAChCTCACCAGCACTTGGCCAGTGCTGGG 3'TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGTCACGACCC

5'AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCGGTGCTGGG 3'TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGCCACGACCC (62 L. 19.16-3 (SEQ ID NO:

5.AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCGGTGCTGGG 3.TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGCCACGACCC 80) (SEQ ID NO:

L. 36.8-3 5'AGCÇTGAGTGTTCCCTGCTAAACİTCTCACCAGCACTTGGCCGGTGCTGGG (SEQ ID NO: 81) 3'TCGGACTCACAAGGGACGATTTGAGAGTGGTGGTGAACCGGCCACGACCC

HAIRPIN

FIG. 49E

		300
L. 100. 8 -1	CAGAGTGCCTCCACGCTTGCT [.]	CAGAGTGGCTCCACGCTTGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC
(SEQ ID NO: 76)	GTCTCACGAGGTGCGAACGA	GTCTCAQCGAGGTGCGAACGAACTTTCTGGAGAAGTTATTCGACGC
L. 46.16-10	CAGAGTGCCTCCACGCTTGCT	CAGAGTGGCTCCACGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC
(SEQ ID NO: 77)	GTCTCACGAGGTGCGAACGA	GTCTCACGAGGTGCGAACGAATTTCTGGAGAAGTTATCGACGG
L. 46.16-12 (SEQ ID NO: 78)	CAGAGTGCCTCCACGCTTGCT GTCTCACGAGGTGCGAACGA	CAGAGTGGCTCCACGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC
L. 19.16-3	CAGAGTGCTCCACGCTTGCT	CAGAGTGGCTCCACGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC
(SEQ ID NO: 79)	GTCTCACGAGGTGCGAACGA	GTCTCACGAGGTGCGAACGAATTTCTGGAGAAGTTATTCGAGGG
L. CEM/251	CAGAGTGACTCCACGCTTGCT	CAGAGTGACTCCACGCTTGCTTAAAGCCCTCTTCAATAAAGCTĞCC
(SEQ ID NO: 80)	GTCTCACTGAGGTGCGAACGA	GTCTCAGTGAGGTGCGAACGAATTTCGGGAGAAGTTATTCGACGG
L. 36.8-3	CAGAGCGGCTCCACGCTTGCT	CAGAGCGGCTCCACGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC
(SEQ ID NO: 81)	GTCTCGCCGAGGTGCGAACGA	GTCTCGCCGAGGTGCGAACGAATTTCTGGAGAAGTTATTTCGACGG

;

)

FIG. 49F

HAIRPIN

M 1 2 3 4 5 6 7 8 9 10 11 12

FIG. 50

W 1 5 3 4 9 6 1 6 9 10 11 11 5

FIG. 51

FIG. 52

FIG. 53

FIG. 54

1

FIG. 55

j

FIG. 56

0 0 25 5 10 15 20 25 30 50 100 100 mM KCI

FIG. 57

M 1 2 3 4 5 6 7 8 9 10 11 12

FIG. 58

M 1234567891011 12

FIG. 59

FIG. 60

FIG. 61

FIG. 62

FIG. 63

FIG. 64A

FIG. 64B

FIG. 65A

FIG. 65B

FIG. 66

FIG. 67

FIG. 68

FIG. 69

FIG. 70

5' CLEAVAGE SITE

FIG. 71

)

FIG. 72

FIG. 73

MUTANT WT 1 2 3

1 2 3 4 M

FIG. 74A

ISOLATE#

M 1 2 3 4 5 M

FIG. 74B

A FIRST A FIRS

FIG. 75

)

FIG. 76

FIG. 77

}

FIG. 78

1 2 3 4 5 6 7 8

FIG. 79

1 2 3 4 5 6 7 8

FIG. 80

FIG. 81

20	100	150
GAGTGTCGTG GAGTGTCGTG GAGTGTCGTG GAGTGTCGTG GAGTGTCGTA GAGTGTCGTA	CTGCGGAACC 100 CTGCGGAACC CTGCGGAACC CTGCGGAACC CTGCGGAACC	TTGGAT- <u>A</u> AA 150 TTGGAT-CAA TTGGAT-CAA GTGGATGTAA TTGGAT- <u>A</u> AA TTGGAG-CAA
6CGTTAGTAT 6CGTTAGTAT 6CGTTAGTAT 6CGTTAGTAT 6CGTTAGTAT 6CGTTAGTAT	CCATAGTGGT CCATAGTGGT CCATAGTGGT CCATAGTGGT CCATAGTGGT	666TCCTTTC 666TCCTTTC 666TCCTTTC 666TCCTTTC 666TCCTTTC
TCTGGCCATG TCTAGCCATG TCTAGCCATG TCTAGCCATG TCTAGCCATG	CCCGGGAGAG CCCGGGAGAGAG CCCGGGAGAGAG CCCGGGAGAGAG	CAGGACGACC CAGGACGACC CAGGACGACC CAGGACGACC CGGGAGGACT
GCAGAAAGCG GCAGAAAGCG GCAGAAAGCG GCAGAAAGCG GCAGAAAGCG	GACCCCCCT GACCCCCCT GICCCCCCT GACCCCCCT GACCCCCCT GACCCCCCT	CCGGAATTGC CCGGAATTGC CCGGAATTGC CCGGAATTGC CCGGAATTGC
CTGTCTTCAC CTGTCTTCAC CTGTCTTCAC CTGTCTTCAC CTGTCTTCAC	CAGCCTCCAG CAGCCTCCAG CAGCCTCCAG CAGCCTCCAG CAGCCTCCAG	GGTGAGTACA GGTGAGTACA GGTGAGTACA GGTGAGTACA GGTGAGTACA
₩.	51	101
ID NO:121) ID NO:122) ID NO:123) ID NO:124) ID NO:125) ID NO:125)		
(SEQ I (SEQ I (SEQ I (SEQ I (SEQ I		
HCVI.1 HCV2.1 HCV3.1 HCV4.2 HCV6.1	HCV1.1 HCV2.1 HCV3.1 HCV4.2 HCV6.1	HCV1.1 HCV2.1 HCV3.1 HCV4.2 HCV6.1

FIG. 82A

200	250	
CTGCTAGCCG CTGCTAGCCG CTGCTAGCCG CTGCTAGCCG CTGCTAGCCG	TAGGGTGCCT TAGGGTGCTT TAGGGTGCTT TAGGGTGCTT TAGGGTGCTT	
CCCCCCAAGA CCCCCCAAGA CCCCCCAAGA CCCCCCAAGA CCCCCCAAGA	TACTGCCTGA TACTGCCTGA TACTGCCTGA TACTGCCTGA TACTGCCTGA	6C 282 6C 6C 6C 6C 6C
TTGGGCGTGC TTGGGCGTGC TTGGGCGTGC TTGGGCGTGC TTGGGCGTGC	GGCCTTGTGG GGCCTTGTGG GGCCTTGTGG GGCCTTGTGG GGCCTTGTGG	CGTAGACCGT CGTAGACCGT CGTAGACCGT CGTAGACCGT CGTAGACCGT
CCCGCTCAAT GCCTGGAGAT CCCGCTCAAT GCCTGGAGAT CCCGCTCAAT GCCTGGAGAT CCCGCTCAAT GCCTGGAGAT CCCACTCAAT GCCTGGAGAT	GGTCGCGAAA GGTCGCGAAA GGTCGCGAAA GGTCGCGAAA GGTCGCGAAA	CGGGAGGTCT CGGGAGGTCT CGGGAGGTCT CGGGAGGTCT CGGGAGGTCT
	AGTAGTGTTG AGTAGTGTTG AGTAGTGTTG AGTAGTGTTG AGTAGCGTTG AGTAGCGTTG	6CGAGTGCCC GCGAGTGCCC GCGAGTGCCC GCGAGTGCCC GCGAGTGCCC
151	201	251
<u>-</u>	<u>-</u>	
HCV1.1 HCV2.1 HCV3.1 HCV4.2 HCV6.1	HCVI.1 HCV2.1 HCV3.1 HCV4.2 HCV6.1	HCVI.1 HCV2.1 HCV3.1 HCV4.2 HCV6.1

FIG. 82B

FIG. 83

FIG. 84

FIG. 85A

FIG. 86

ANTISENSE STRAND

1 2 3 4

FIG. 87

09	ACACATGCAA TGTGTACGTT	110 120	AGT <u>GGCGGAC GGGTGAGTAA</u> TCACCGCCTG CCCACTCATT	180 AATACCGCAT TTATGGCGTA	240 TGCCCAGATG ACGGGTCTAC	300 TGGTCTGAGA ACCAGACTCT	360 GCAGCAGTGG <u>CGTCGTC</u> ACC CGTCGTC
50	GGCAGGCCTA CCGTCCGGAT	110	AGT <u>GGGGAC</u> TCACCGCCTG	170 AACGGTAGCT TTGCCATCGA	230 CCATCGGATG GGTAGCCTAC	290 GATCCCTAGC CTAGGGATCG	350 CCTACGGGAG GGATGCCCTC GGATGCCCTC
40	GAACGCTGGC CTTGCGACCG	100	TTTGCTGACG AAACGACTGC	160 AACTACTGGA TTGATGACCT	220 GGGCCTCTTG CCCGGAGAAC	280 CCTAGGCGAC GGATCCGCTG	340 GGTCCAGACT CCAGGTC <u>TGA</u> TGA
30	GGCTCAG GGCTCAGATT CCGAGTCTAA	06	AGCTTGCTTC TCGAACGAAG	150 GGAGGGGGAT CCTCCCCCTA	210 GGGGACCTTC CCCCTGGAAG	270 TAACGGCTCA ATTGCCGAGT	330 ACTGAGACAC TGACTCTGTG
20	GTTTGATCCT GGCTCAG GTTTGATCAT GGCTCAGATT CAAACTAGTA CCGAGTCTAA	80	AACAGGAAGA AGCTTGCTTC TTGTCCTTCT TCGAACGAAG	140 ACTGCCTGAT TGACGGACTA	200 GACCAAAGAG CTGGTTTCTC	260 GTAGGTGGGG CATCCACCCC	320 CCACACTGGA GGTGTGACCT
10	AGA AAATTGA <u>AGA</u> TTTAACTTCT	0.2	GTCGAACGGT CAGCTTGCCA	130 TGTCTGGGAA ACAGACCCTT	190 AACGTCGCAA TTGCAGCGTT	250 GGATTAGCTA CCTAATCGAT	310 GGATGACCAG CCTACTGGTC

e fortain Swort of control of the state System of the state of the state of

:

1638

ER10

FIG. 88A

1659

420	480	540	600	660	720	780
AAGAAGGCCT	TTTGCTCATT	TAATACGGAG	TGTTAAGTCA	CTTGAGTCTC	GAGGAATACC	GTGGGGAGCA
TTCTTCCGGA	AAACGAGTAA	ATTATGCCTC	ACAATTCAGT	GAACTCAGAG	CTCCTTATGG	CACCCCTCGT
410 CGCGTGTATG GCGCACATAC	430 430 440 450 460 450 460 470 480 TTGCTCATT 480 AGCGGGGGGGGG AAGGGAGTAA AGTTAATACC TTTGCTCATT AGCCCAACAT TTCATGAAAG TCGCCCTCC TTCCCTCATT TCAATTATGG AAACGAGTAA	490 530 540 540 540 520 530 530 540 540 520 530 540 540 540 540 540 540 540 540 540 54	550 550 560 570 580 590 600 600 600 580 590 590 600 600 600 600 600 600 600 600 600 6	610 620 630 640 650 660 660 650 640 650 650 660 650 600 650 600 600 600 60	670 710 720 GTAGAGGGG GTAGAATTCC AGGTGTAGCG GTGAAATGCG TAGAGATCTC GAGGAATACC CATCTCCCCC CATCTTAAGG TCCACATCGC CACTTTACGC ATCTCTAGAC CTCCTTATGG	730 770 780 780 770 780 780 770 780 770 780 770 780 770 780 770 780 770 77
400	460	520	580	640	700	760
GCAGCCATGC	AAGGGAGTAA	CTCCGTGCCA	TAAAGCGCAC	CTGCATCTGA	GTGAAATGCG	TGACGCTCAG
CGTCGGTACG	TTCCCTCATT	GAGGCACGGT	ATTTCGCGTG	GACGTAGACT	CACTTTACGC	ACTGCGAGTC
390	450	510	570	630	690	750
CAAGCCTGAT	AGCGGGGAGG	CACCGGCTAA	TTACTGGGCG	AACCTGGGAA	AGGTGTAGCG	GGACGAAGAC
GTTCGGACTA	TCGCCCTCC	GTGGCCGATT	AATGACCCGC	TTGGACCCTT	TCCACATCGC	CCTGCTTCTG
380	440	500	560	620	680	740
ACAATGGGCG	AAGTACTTTC	GCAGAAGAAG	TTAATCGGAA	CCCCGGGCTC	GTAGAATTCC	GCGGCCCCT
TGTTACCCGC	TTCATGAAAG	CGTCTTCTTC	AATTAGCCTT	GGGGCCCGAG	CATCTTAAGG	CGCCGGGGA
370 380 390 400 410 420 6GAATATTGC ACAATGGGCG CAAGCCTGAT GCAGCCATGC CGCGTGTATG AAGAAGGCCT CCTTATAAAGG TGTTACCCGC GTTCGGACTA CGTCGGTACG GCGCACATAC TTCTTCCGGA	430	490	550	610	670	730
	TCGGGTTGTA	GACGTTACCC	GGTGCAAGCG	GATGTGAAAT	GTAGAGGGGG	GGTGGCGAAG
	AGCCCAACAT	CTGCAATGGG	CCACGTTCGC	CTACACTTTA	CATCTCCCCC	CCACCGCTTC

FIG. 88B

	_	
740 740 740 740 740 740 740 740 740 740	AGGATTA	TTGTCCTAAT
	MAN ()	116
10 to 30 10 10 10 10 10 10 10 10 10 10 10 10 10	J.	

840	900	960	1020
AGGTTGTGCC	TACGGCCGCA	GTGGTTTAAT	CAGAGATGAG
TCCAACACGG	ATGCCGGCGT	CACCAAATTA	GTCTCTACTC
830	890	950	1010
GTCGACTTGG	GCCTGGGGAG	GGTGGAGCAT	CGGAAGTTTT
CAGCTGAACC	CGGACCCCTC	CCACCTCGTA	GCCTTCAAAA
820	880	940	1000
CGTAAACGAT	TAAGTCGACC	CCGCACAAGC	TTGACATCCA
GCATTTGCTA	ATTCAGCTGG	GGCGTGTTCG	AACTGTAGGT
810	870	930	990
TAGTCCACGC	GCTAACGCGT	TGACGGGGGC	TTACCTGGTC
ATCAGGTGCG	CGATTGCGCA	ACTGCCCCG	AATGGACCAG
800 GATACCCTGG CTATGGGACC	850 850 870 880 890 900 CTTGAGGCGT TAAGTCGACC GCCTGGGGAG TACGGCCGCA GAACTCCGCA CCGAAGGCCT CGATTGCGCA ATTCAGCTGG CGGACCCTC ATGCCGGCGT	920 TCAAATGAAT AGTTTACTTA	970 980 1020 1000 1010 1020 1020 1020 1030 103
840 820 830 840 840 840 820 830 840 840 840 840 840 840 840 840 840 84	850 CTTGAGGCGT GAACTCCGCA	910 920 930 940 950 960 960 950 100 950 960 960 950 960 960 960 960 950 960 950 960 950 960 950 960 950 960 950 960 950 960 960 950 960 950 950 950 950 950 950 950 950 950 95	970 TCGATGCAAC AGCTACGTTG

.a , ;

1080 CGTGTTGTGA GCACACACACT	1140
1070 GTCGTCAGCT CAGCAGTCGA	1130
1060 CTGCATGGCT GACGTACCGA	1120 ACCC
1050 GAGACAGGTG CTCTGTCCAC	100 GC AACGAGCGCA ACCC
1040 CGGGAACCGT GCCCTTGGCA	1100 6C
1030 1070 1080 AATGTGCCTT CGGGAACCGT GAGACAGGTG CTGCATGGCT GTCGTCAGCT CGTGTTGTGA TTACACGGAA GCCCTTGGCA CTCTGTCCAC GACGTACCGA CAGCAGTCGA GCACAACACT	1090

AATGTTGGGT TAAGTCCC <u>GC AACGAGCGCA ACCC</u> TTATCC TTTGTTGCCA GCGGTCCGGC TTACAACCCA ATTCAGGGCG TTGCTCGCGT TGGGAATAGG AAACAACGGT CGCCAGGCCG	
TTTGTTGCCA AAACAACGGT	
ACCCTTATCC TGGGAATAGG	
: AACGAGGGCA ; TTGCTCGCGT	
TAAGTCCC <u>GC</u> ATTCAGGGCG	
AATGTTGGGT TTACAACCCA	

190 1200 ATG ACGTCAAGTC	ATG ACGTCAAGTC ATG ACGTCAAGTC TAC TGCAGTTCAG
_	ATG GGTGGGG <u>ATG</u> CCACCCCTAC
1180	ACTGGAGGAA TGACCTCCTT
1170	CCAGTGATAA GGTCACTATT
1160	AAGGAGACTG TTCCTCTGAC
1150	ATG ACGTCAAGTC CGGGAACTG CCAGTGATAA ACTGGAGGAA GGTGGGG <u>ATG ACGTCAAGTC</u> GCCCTTGAGT TTCCTCTGAC GGTCACTATT TGACCTCCTT CCACCCTAC TGCAGTTCAG

SB-3 SB-4

FIG. 88C

1260	AAGAGAAGCG TTCTCTTCGC	1320 AGTCTGCAAC TCAGACGTTG	70 1380 CG GTGAATACGT GC CACTTATGCA GC CACTTATGCA	1440 AGAAGTAGGT TCTTCATCCA	1500 GAAGTCGTAA CTTCAGCATT	
1250	GGCGCATACA CCGCGTATGT	1310 TCCGGATTGG AGGCCTAACC	1370 GAATGCCACG CTTACGGT <u>GC</u> GC	1430 GGGTTGCAAA CCCAACGTTT	1490 TGACTGGGGT ACTGACCCCA	1550 TA
1240	GTGCTACAAT CACGATGTTA	1300 TGCGTCGTAG ACGCAGCATC	1360 TCGTGGATCA AGCACCTAGT	1420 CCATGGGAGT GGTACCCTCA	1480 TTGTGATTCA AACACTAAGT	1540 ATCACCTCCT TAGTGGAGGA
1230	GGCTACACAC CCGATGTGTG	1290 CCTCATAAAG GGAGTATTTC	1350 TCGCTAGTAA AGCGATCATT	1410 GCCCGTCACA CGGCCAGTGT	1490 TCGGGAGGGC GCTTACCACT TTGTGATTCA TGACTGGGGT AGCCCTCCCG CGAATGGTGA AACACTAAGT ACTGACCCCA	1530 CTGCGGTTGG GACGCCAACC
1220	TTACGA TTACGACCAG AATGCTGGTC	1280 AGCAAGCGGA TCGTTCGCCT	1340 GAAGTCGGAA CTTCAGCCTT	TCCGGGCCT TGTACACACC GCCCGTCACA CCATGGGAGT GGGTTGCAAA AGAAGTAGGT AGGGCCCGGA ACATGTGTGG CGGGCAGTGT GGTACCTCA CCCAACGTTT TCTTCATCCAAAAAAAAAA	1460 TCGGGAGGGC AGCCCTCCCG	CAAGGTAACC GTAGGGGAAC CTGCGGTTGG ATCACCTCCT TAGTTCCATTGG CATCCCCTTG GACGCCAACC TAGTGGAGGA AT
1210	ATCATGCCC TTACGA ATCATGCCC TTACGACCAG GGCTACACAC GTGCTACAAT GGCGCATACA AAGAGAAGCG ATCATGCCCC TTACGACCAG GGCTACACAC GTGCTACAAT GGCGCATACA AAGAGAAGCG TAGTACCGGG AATGCTGGTC CCGATGTGTG CACGATGTTA CCGCGTATGT TTCTCTTCGC	1320 1310 1320 1320 1320 1320 1320 1320	1380 1370 1380 1380 1380 1380 1380 1370 1380 1370 1380 1380 1370 1380 1380 1370 1380 1380 1380 1380 1380 1380 1380 138	1390 TCCGGGCCT TGTAC AGGCCCGGA ACATG	1450 AGGTTAACCT TCGAATTGGA	1510 CAAGGTAACC GTTCCATTGG

)

468 ACCTTTGCTCATTGACGTTACCCGCAGAAGAAGCACCGGGCTAACTCCGTGCCAGCAGCGGCGGGGATAAGCACCGGGCTAACTCCGTGCCAGCAGCGCGGGGATAAGCACCGGGCTAACTCCGTGCCAGCAGCGCGGGGATAAGCACCGGGCTAACTCCGTGCCAGCAGCGCGGG 345 CGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTG CGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGCGAAAGCCTGACGGAGCAACGCCGCGTG 476 - TGTGCACATCTTGACGGTACCTAATCAGAAAGCCACGGCTAACTACGTGCCAGCAGCGGC CGGGAGGCAGCAGTAGGGAATATTGCGCAATGGGGGAAACCCTGACGCAGCAACGCCGCGTG 407 TATGAAGAAGGCCTTCGGGTTGTAAAGTACTTTCAGCGGGGGGAGGAA-GGGAGTAAAGTTAAT 415 AGTGATGAAGGTCTTCGGATCGTAAAACTCTGTTATTAGGGAAGAACATATGTGTAAAGTAAC GAGGATGACACTTTTCGGAGCGTAAACTCCTTTTCTTAGGGAAG ----CGGGAGGCAGCAG 407 E.colirrsE E.colirrsE Cam.jejun5 E.colirrsE Cam.jejun5 Stp.aureus Cam.jejun5 Stp.aureus Stp.aureus 1659 (COMPL)

FIG. 89B

FIG. 89C

C_CTTGA_GGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGC G_CTAGT_CATCTCAGTAATGCAGCTAACGCATTAAGTGTACCGCCTGGGGAGTACGGTCGC GT_TTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGACCGC 816 848 E.colirrsE Cam.jejun5 Stp.aureus AAGGTTAAAACTCAAATGAATTGACGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATT 876 AAGATTAAAACTCAAAGGAATAGACGGGGACCCGCACAAGCGGTGGAGCATGTGGTTTAATT 909 AAGGTTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGCGGTGGAGCATGTGGTTTAATT E.colirrsE Cam.jejun5 Stp.aureus

CGAAGATACGCGAAGAACCTTACCTGGGCTTGATATCCTAAGAACCTTTTAGAGATAAGAGG CGATGCAACGCGAAGAACCTTACCTGGTCTTGACATCCACGGAAGTTTTCAGAGATGAGAAT CGAAGCAACGCGAAGAACCTTACCAAATCTTGACATCCTTTGACAACTCTAGAGATAGAGCC 938 E.colirrsE Cam.jejun5 Stp.aureus

1024 GTG--CCTTCGGG--AA-CCGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTGA 1000 GTGCTAGCTTGCTAGAA-CTTAGAGACAGGTGCTGCACGGCTGTCGTCAGCTCGTGTGTGA TTCC_CCTTCGGG___GGACAAAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTGA 1033 E.colirrsE 1024 Cam.jejun5

GATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCACGTATTTAGTTGCTAACGGTTCGG_CG GATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTAAGCTTAGTTGCCATCA_TTAAGT_≟Ţ AATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTCCGG_CG GCAACGAGCGCAACCC 1061 1092 1081 E.colirrsE Cam.jejun5 Stp.aureus **SB-1**

FIG. 89D

TCG_GGAGGGCGCTTACCACTTTGTGATTCATGACTGGGGTGAAGTCGTAACAAGGTAACCG <u>ATTGTACACCCCCCCCGTCACACCACGAGAGTTTGTAACACCCGGAAGCCGGTGGAGTĀĀCĒT</u> CTTGTACTCACCGCCCGTCACACCATGGGAGTTGATTTCACTCGAAGCCGGAATACT==AAAA 1368 1743 (compl) E.colirrsE Cam.jejun5 Stp.aureus

AC____T_AGTTACCGTCCACAGTGGAATCAGCGACTGGGGTGAAGTCGTAACAAGGTAACG TTTAGGAGCTAGCCGTCGAAGGTGGACAAATGATTGGGGTGAAGTCGTAACAAGGTAGCCG TAGGGGAACCTGCGGTTGGATCACCTCCTTA---1427 Cam.jejun5 E.colirrsE E.colirrsE Stp.aureus

E.colirrsE 1512 TAGGGGAACCTGCGGIIGGAICACCICCIIA---Cam.jejun5 1485 TAGGAGAACCTGCGGTTGGATCACCTCCT----Stp.aureus 1523 TATCGGAAGGTGCGGCTGGATCACCTCCTTTCT-

0 d ma√ d 1 de maria 1 de maria 1 de maria 1 de maria

FIG. 89F

1 2 3 4 5 6 7 8

FIG. 90

FIG. 91A

FIG. 91B

The line sets to the set of the line set of the set of

The second of th

FIG. 93

FIG. 94