#### Título presentación

#### Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia



17 de septiembre de 2024

## Agenda



- Dispersión: El concepto
- Parámetro de Impacto
- Oispersión Hiperbólica
- 4 Sección
- Sección



• La dispersión (scattering) en un campo de fuerza central consiste en la desviación de la trayectoria de una partícula con energía E>0 debida a la interacción en un potencial V(r)





• La dispersión (scattering) en un campo de fuerza central consiste en la desviación de la trayectoria de una partícula con energía E>0 debida a la interacción en un potencial V(r)



• Consideremos una partícula de masa M situada en el foco f y una partícula con masa  $m \ll M(\mu \approx m)$  incidente desde  $r \to \infty$ 



• La dispersión (scattering) en un campo de fuerza central consiste en la desviación de la trayectoria de una partícula con energía E>0 debida a la interacción en un potencial V(r)



- Consideremos una partícula de masa M situada en el foco f y una partícula con masa  $m \ll M(\mu \approx m)$  incidente desde  $r \to \infty$
- La partícula describe una trayectoria abierta desde  $r=\infty$  hasta  $r=r_{\min}$  y retorna a  $r=\infty$ , cambiando la dirección de su velocidad.



• La dispersión (scattering) en un campo de fuerza central consiste en la desviación de la trayectoria de una partícula con energía E>0 debida a la interacción en un potencial V(r)



- Consideremos una partícula de masa M situada en el foco f y una partícula con masa  $m \ll M(\mu \approx m)$  incidente desde  $r \to \infty$
- La partícula describe una trayectoria abierta desde  $r=\infty$  hasta  $r=r_{\min}$  y retorna a  $r=\infty$ , cambiando la dirección de su velocidad.
- El ángulo entre la dirección del vector velocidad inicial v<sub>0</sub> y la dirección del vector velocidad final v<sub>f</sub> se denomina ángulo de dispersión, que denotaremos por χ

### Parámetro de Impacto



• La energía inicial de la partícula en  $r=\infty$  es  $E={1\over 2}mv_0^2$ 

### Parámetro de Impacto



- La energía inicial de la partícula en  $r=\infty$  es  $E=\frac{1}{2}mv_0^2$
- El parámetro de impacto b es la distancia perpendicular entre la dirección de la velocidad inicial  $\mathbf{v}_0$  de la partícula incidente y la recta paralela que pasa por el centro del potencial V(r)



### Parámetro de Impacto



- La energía inicial de la partícula en  $r=\infty$  es  $E={1\over 2}mv_0^2$
- El parámetro de impacto b es la distancia perpendicular entre la dirección de la velocidad inicial  $\mathbf{v}_0$  de la partícula incidente y la recta paralela que pasa por el centro del potencial V(r)



• Los datos claves para la dispersión con campos centrales son b y E.



• La magnitud del momento angular de la partícula será  $L = rp \sin(\pi - \theta) = mv_0 r \sin \theta = mv_0 b \Rightarrow L^2 = m^2 v_0^2 b^2 = 2Emb^2$ 



- La magnitud del momento angular de la partícula será  $L = rp \sin(\pi \theta) = mv_0 r \sin \theta = mv_0 b \Rightarrow L^2 = m^2 v_0^2 b^2 = 2Emb^2$
- Si  $V(r)=-\frac{k}{r}$ , la órbita con E>0 es una hipérbola,  $\frac{q}{r}=1+e\cos\theta$ , con  $q=\frac{L^2}{mk}=\frac{2Eb^2}{k}$  y  $e=\sqrt{1+\frac{2El^2}{mk^2}}=\sqrt{1+\left(\frac{2Eb}{k}\right)^2}>1$



- La magnitud del momento angular de la partícula será  $L = rp \sin(\pi \theta) = mv_0 r \sin \theta = mv_0 b \Rightarrow L^2 = m^2 v_0^2 b^2 = 2Emb^2$
- Si  $V(r)=-\frac{k}{r}$ , la órbita con E>0 es una hipérbola,  $\frac{q}{r}=1+e\cos\theta$ , con  $q=\frac{L^2}{mk}=\frac{2Eb^2}{k}$  y  $e=\sqrt{1+\frac{2El^2}{mk^2}}=\sqrt{1+\left(\frac{2Eb}{k}\right)^2}>1$
- Entonces:  $r_{\min} = \frac{q}{1+e}$ , para  $\theta = 0$  y  $r_{\max} \to \infty$  para  $\cos \theta_{\max} = -\frac{1}{e} \Rightarrow \frac{\pi}{2} < \theta_{\max} < \pi$



- La magnitud del momento angular de la partícula será  $L = rp \sin(\pi \theta) = mv_0 r \sin \theta = mv_0 b \Rightarrow L^2 = m^2 v_0^2 b^2 = 2Emb^2$
- Si  $V(r)=-\frac{k}{r}$ , la órbita con E>0 es una hipérbola,  $\frac{q}{r}=1+e\cos\theta$ , con  $q=\frac{L^2}{mk}=\frac{2Eb^2}{k}$  y  $e=\sqrt{1+\frac{2El^2}{mk^2}}=\sqrt{1+\left(\frac{2Eb}{k}\right)^2}>1$
- Entonces:  $r_{\min} = \frac{q}{1+e}$ , para  $\theta = 0$  y  $r_{\max} \to \infty$  para  $\cos \theta_{\max} = -\frac{1}{e} \Rightarrow \frac{\pi}{2} < \theta_{\max} < \pi$
- El ángulo de dispersión  $\chi$  entre las asíntotas es  $\chi = 2\theta_{\text{máx}} \pi$ .



- La magnitud del momento angular de la partícula será  $L = rp \sin(\pi \theta) = mv_0 r \sin \theta = mv_0 b \Rightarrow L^2 = m^2 v_0^2 b^2 = 2Emb^2$
- Si  $V(r)=-\frac{k}{r}$ , la órbita con E>0 es una hipérbola,  $\frac{q}{r}=1+e\cos\theta$ , con  $q=\frac{L^2}{mk}=\frac{2Eb^2}{k}$  y  $e=\sqrt{1+\frac{2El^2}{mk^2}}=\sqrt{1+\left(\frac{2Eb}{k}\right)^2}>1$
- Entonces:  $r_{\text{mín}} = \frac{q}{1+e}$ , para  $\theta = 0$  y  $r_{\text{máx}} \to \infty$  para  $\cos \theta_{\text{máx}} = -\frac{1}{e} \Rightarrow \frac{\pi}{2} < \theta_{\text{máx}} < \pi$
- El ángulo de dispersión  $\chi$  entre las asíntotas es  $\chi = 2\theta_{\text{máx}} \pi$ .
- Esto es  $\cos\left(\frac{\chi}{2} + \frac{\pi}{2}\right) = \cos\theta_{\text{máx}} \Rightarrow \sin\left(\frac{\chi}{2}\right) = \frac{1}{e}$





- La magnitud del momento angular de la partícula será  $L = rp \sin(\pi \theta) = mv_0 r \sin \theta = mv_0 b \Rightarrow L^2 = m^2 v_0^2 b^2 = 2Emb^2$
- Si  $V(r)=-\frac{k}{r}$ , la órbita con E>0 es una hipérbola,  $\frac{q}{r}=1+e\cos\theta$ , con  $q=\frac{L^2}{mk}=\frac{2Eb^2}{k}$  y  $e=\sqrt{1+\frac{2El^2}{mk^2}}=\sqrt{1+\left(\frac{2Eb}{k}\right)^2}>1$
- Entonces:  $r_{\min} = \frac{q}{1+e}$ , para  $\theta = 0$  y  $r_{\max} \to \infty$  para  $\cos \theta_{\max} = -\frac{1}{e} \Rightarrow \frac{\pi}{2} < \theta_{\max} < \pi$
- $\bullet$  El ángulo de dispersión  $\chi$  entre las asíntotas es  $\chi = 2\theta_{\rm m\acute{a}x} \pi$
- Esto es  $\cos\left(\frac{\chi}{2} + \frac{\pi}{2}\right) = \cos\theta_{\text{máx}} \Rightarrow \sin\left(\frac{\chi}{2}\right) = \frac{1}{e}$



Oumuamua
https://science.nasa.gov/solar-system/comets/oumuamua/ogo

# Título transparencia





# Título transparencia

