Intermediate Code

 ${\bf x}$ and ${\bf y}$ can either be variables or constants, used as operands to instructions. ${\bf t}$ is a destination variable.

t = x	Simple Assignment
t = load from x	Load from and store to memory
store x to addr y	·
declare var t	Declare a new variable t.
allocate x bytes for var y	Allocate memory for y (used for allocating aggregate data
1	structures e.g. arrays).
reference var x	A non-executable instruction used internally to mark a
reference var x	variable as live at this program point.
t = &x	Address-of operator
t = ~x	Bitwise NOT
t = !x	Logical noт
t = x * y	Multiplication
t = x / y	Division
t = x % y	Modulus
t = x + y	Addition
t = x - y	Subtraction
t = x << y	Left-shift
$t = x \gg y$	Right-shift (signed-extending for signed x, zero-filling for
	unsigned x)
t = x & y	Bitwise and
$t = x \mid y$	Bitwise or
t = x ^ y	Bitwise xor
t = x && y	Logical and
t = x y	Logical or
t = x < y	Less-than comparison
t = x > y	Greater-than comparison
t = x <= y	Less-than or equal comparison
t = x >= y	Greater-than or equal comparison
t = x == y	Equality comparison
t = x != y	Not equal comparison
$t = call f(p_1, p_2, \ldots)$	Call function f with parameters p _i (either variables or
	constants)

tail-call $f(p_1, p_2,)$ return [x]	Call function f and return the result from the current function Return from the current function. The return value x is
label <l></l>	optional. Attach a label to the current program point (immediately before the next instruction).
br <1>	Unconditional branch
br < 1> if x == y	Conditional branch; executed if operands are equal.
br <l> if x != y</l>	Conditional branch; executed if operands are not equal.
t = & <sid></sid>	Static address of the string literal with id <sid></sid>
$t = (i8 \rightarrow i16) x$	Char promotions
$t = (i8 \rightarrow u16) x$	
$t = (u8 \rightarrow u16) x$ $t = (u8 \rightarrow u16) x$	
	Duomatiana ta aigmad integra
$t = (i16 \rightarrow i32) x$ $t = (u16 \rightarrow i32) x$	Promotions to signed integer
$t = (i16 \rightarrow u32) x$	Promotions to unsigned integer
$t = (u16 \rightarrow u32) x$	
$t = (i32 \rightarrow u32) x$	
$t = (i32 \rightarrow i64) x$	Promotions to signed long
$t = (u32 \rightarrow i64) x$	
$t = (i32 \rightarrow u64) x$	Promotions to unsigned long
$t = (u32 \rightarrow u64) x$	
$t = (i64 \rightarrow u64) x$	
$t = (u32 \rightarrow f32) x$	Integer to float conversions
$t = (i32 \rightarrow f32) x$ $t = (u64 \rightarrow f32) x$	
$t = (u04 \rightarrow 132) x$ $t = (i64 \rightarrow f32) x$	
$t = (u32 \rightarrow f64) x$	Integer to double conversions
$t = (i32 \rightarrow f64) x$	integer to double conversions
$t = (u64 \rightarrow f64) x$	
$t = (i64 \rightarrow f64) x$	
$t = (f32 \rightarrow f64) x$	Float to double promotion
$t = (f64 \rightarrow i32) x$	Double to int conversion
$t = (i32 \rightarrow i8) x$	Integer truncation
$t = (u32 \rightarrow i8) x$	
$t = (i64 \rightarrow i8) x$	
$t = (u64 \rightarrow i8) x$	
$t = (i32 \rightarrow u8) x$ $t = (u32 \rightarrow u8) x$	
$t = (i64 \rightarrow u8) x$ $t = (i64 \rightarrow u8) x$	
•	

Chapter 1. Intermediate Code

```
t = (u64 \rightarrow u8) x
t = (i64 \rightarrow i32) x
t = (u64 \rightarrow i32) x
t = (u32 \rightarrow *) x
                                        Conversions between integer and pointer
t = (i32 \rightarrow *) x
t = (* \rightarrow i32) x
                                        No-op
nop
break <loop_block_id>
                                        Control-flow instructions inserted by the Relooper
continue <loop_block_id>
                                        algorithm as it processes branch instructions.
end handled <multiple_block_id>
                                        Conditional control flow instructions with nested
if x == y \{\} else \{\}
                                        instructions for each branch. These are only inserted by
if x != y {} else {}
                                        the Relooper algorithm, to replace a conditional branch
                                        with conditionally setting the label variable and then
                                        branching.
```