Discrete Mathematics Review PART II

Liu Ziwei Fall Term 2019

refer to Qiu Tianyu

Contents

Functions

- Function Properties
- Counting Sets
- Morphisms & Isomorphisms
- Fixed Points

Function Properties

Definitions

- 1.function f: A->B (p89)
 - ·relation
 - ·uniqueness

2.
$$f''C = \{y | \exists x (x \in C \land (x, y) \in f)\} \subseteq ranf \subseteq B (P90)$$

3.
$$f \upharpoonright C = \{(x,y) | \exists x (x \in C \land (x,y) \in f)\} \subseteq f \text{ (P90)}$$

4.injective functions (p90)

5.composing functions
$$g \circ f = \{(x,y) \mid \exists z ((x,z) \in f \land (z,y) \in g)\}$$
 (P91)

- 6. inverses $f^{-1} = \{(x, y) \in B \times A \mid (y, x) \in f\}$ (P93)
- 7. identity function $id_A = \{(x, y) \in A \times A \mid x = y\}$ (P94)
- 8. surjective functions (P95)
- 9. bijection: both injective and surjective (P95)

Function Properties

Inverse Functions & Identity Functions (P94)

Lemma

Let $f: A \to B$ be a function. The relation f^{-1} is a function with $dom f^{-1} = ranf$ and $ranf^{-1} = A$ if and only if f is injective. Moreover, f^{-1} is injective and $f^{-1} \circ f = id_A$ $f \circ f^{-1} = id_{ran\ f}$.

Proof.

Suppose $f: A \rightarrow B, w, x \in A; y, z \in B$

- 1. Given that f^{-1} is a function, then (according to the definition of function) for all $y \in B$ and for all $w, x \in A$ if $(y, x) \in f^{-1}$ and $(y, w) \in f^{-1}$, then w = x. This is also the definition of injection for f.
- 2. Given that f is injective, conversely we can have f^{-1} is a function as well as f^{-1} is injective.
- 3. For all $a \in A$, $b \in B$, if $(a, b) \in f$, then $(b, a) \in f^{-1}$, $f^{-1}(f(a)) = f^{-1}(b) = a$, $f(f^{-1}(b)) = f^{-1}(a) = b$

Cardinality (P96)

Lemma

If $f: A \to B$ and $g: B \to C$ are bijections, then $g \circ f$ is a bijection.

Proof.

For all $z \in C$, there exists a unique y that $(y,z) \in g$. Similarly, for all $y \in B$, there exists a unique X that $(x,y) \in f$. This means for all $z \in C$, there exists a unique x that $(x,z) \in g \circ f$, thus $g \circ f$ is a bijection.

Definitions

- 1. equal cardinality: bijection
- 2. small or equal cardinality: injection

If $|A| \leq |B|$, then |A| = |C| for some $C \subseteq B$.

Examples for Cardinality (P97-p98) e.g.

- 1. $|\mathbb{N}| = |2\mathbb{N}| (f : \mathbb{N} \to \mathbb{N}, f(n) = 2n)$
- 2. $|\mathbb{N}| = |\mathbb{N} \setminus \{1\}|$ since

$$f: \mathbb{N} \to \mathbb{N}, f(n) = \begin{cases} 0 & n=0\\ n+1 & n>0 \end{cases}$$

3. $|\mathbb{Z}| = |\mathbb{N} \setminus \{1\}|$ since

$$f: \mathbb{N} \to \mathbb{N}, f((-1)^k n) = \begin{cases} 0 & n=0\\ 2n+k & n>0 \end{cases}$$

Theorem

 $|\mathbb{Z}| = |\mathbb{N}|$ (according to e.g.2 and e.g.3)

Countable Sets & Infinite Sets (P99-P100)

Definitions

For a set A

- 1. *infinite*: $f: A \rightarrow A$ is injective but not surjective.
- 2. countable: $|A| \leq |N|$.
- 3. countably infinite: both countable and infinite.

Countable Sets & Infinite Sets (P99-P100)

Lemma

If $f: A \to B$ and $g: B \to C$ are injective functions, then $g \circ f$ is an injective function.

Proof.

 $f': A \to ranf$, f' = f is a bijection. $g': ranf \to ran(g \circ f)$, g' = g is a bijection. Thus $g' \circ f': A \to ran(g \circ f)$ is a bijection. Thus $g \circ f: A \to C$ is an injection.

Lemma

If B is a countable set and $A \subseteq B$ then A is countable.

Proof.

 $|A| \le |B| \le |\mathbb{N}|$ (we can construct an injective function $f: A \to B, f(x) = x$ for $x \in A$)

Cantor's Pairing Function (P102)

Theorem

$$|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$$

Proof.

Cantor Pairing Function

$$\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

$$\pi(x,y) = \frac{1}{2}(x+y)(x+y+1)+y$$

L

Theorem

Cantor's Pairing Function $\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is a bijection (according to the figure on the right).

Cantor's Theorem (P104)

Definition

|A| < |B|: exists injective functions, exists no bijective functions

Theorem

If A is a set, then there is no injection $f : \mathcal{P}(A) \to A$.

Proof.

This is a proof by contradiction. Let A be a set. Suppose that $f:\mathcal{P}(A)\to A$ is an injection. Since f is injective, $f^{-1}:ranf\to\mathcal{P}(A)$ is a bijection. Let $Z=\{x\in ranf\,|x\notin f^{-1}(x)\}$. Note that $Z\subseteq A$, and let z=f(Z). Now if $z\in f^{-1}(z)=Z$, then $z\notin f^{-1}(z)$, which is a contradiction. And if $z\notin f^{-1}(z)$, then $z\in Z=f^{-1}(z)$, which is a contradiction (recall Russell's Paradox).

Cantor's Theorem (P104)

```
Corollary (Cantor's Theorem) If A is a set, then |A| < |\mathcal{P}(A)|.
```

Proof.

The function $f = \{(x, \{x\}) \in A \times \mathcal{P}(A) | x \in A\}$ is an injection.

Uncountable Sets (P105)

Definition

```
For a set A: uncountable: not countable (|A| > |\mathbb{N}|, recall the definition of countable)
```

Cantor's Paradox in Naive Set Theory: If V is the set of all sets, then $\mathcal{P}(V) \subseteq V$, which leads to a contradiction.

Morphisms & Isomorphisms

Morphisms & Isomorphisms (P106-P107)

- ▶ isomorphism: $(x,y) \in R$ iff $(f(x),f(y)) \in S$ (f is a bijection)
- ▶ homomorphism: $if(x,y) \in R$, then $(f(x),f(y)) \in S$

Isomorphisms are definitely homomorphisms.

Order-Preserving Functions (P108)

order-perserving: $f: P_1 \longrightarrow P_2$, for all $x, y \in P_1$, if $x \preceq_1 y$, then $f(x) \preceq_2 f(y)$

*Can compare with monotone function in Calculus.

e.g.

- (i) Let $a \in \mathbb{N}$ with $a \neq 0$. The function $f : \mathbb{N} \longrightarrow \mathbb{N}$ defined by f(x) = ax is order-preserving from $(\mathbb{N}, |)$ to $(\mathbb{N}, |)$
- (ii) If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is an increasing function, then f is order-preserving from (\mathbb{R}, \leq) to (\mathbb{R}, \leq)
- (iii) The function $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ given by f(n) = n-1 is order-preserving from (\mathbb{Z}, \leq) to (\mathbb{Z}, \leq) , but $g: \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by g(n) = -n is NOT

Fixed Points (P109)

Definition: f(x) = x

e.g.

- (iii) The function $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by f(x) = x + 1 has no fixed points.
- (iv) The function $f: \mathscr{P}(\mathbb{N}) \longrightarrow \mathscr{P}(\mathbb{N})$ defined by $f(X) = X \setminus \{0\}$ has the property that if $A \subseteq \mathbb{N}$ is such that $0 \notin A$, then A is a fixed point of f.

Tarski-Knaster Theorem (P110-P111)

Theorem

Let (L, \preceq) be a complete lattice. If $f : (L, \preceq) \to (L, \preceq)$ is an order-preserving function, then f has a (least) fixed point.

Proof.

Let $f:(L, \preceq) \to (L, \preceq)$ be order preserving. Consider $X = \{x \in L | f(x) \preceq x\}$ and $a \in \bigwedge X$ Claim I: If $x \in X$, then $f(x) \in X$. To see this, let $x \in X$. Therefore $f(x) \preceq x$. Since f is order preserving, $f(f(x)) \preceq f(x)$. This shows that $f(x) \in X$.

Claim II: f(a) is a lower bound on X. Since f is order preserving. $f(a) \leq f(x)$. Since $f(x) \leq x$, it follows that $f(a) \leq x$. It follows from Claim II that $f(a) \leq a$, because a is the g.l.b. of X. Therefore $a \in X$. So, by Claim I, $f(a) \in X$. Therefore $a \leq f(a)$ and a = f(a). So a is a fixed point of f.

Schroder-Bernstein Theorem (P112)

Theorem

Let A and B be sets. If there exists $f: A \to B$ that is injective and $g: B \to A$ that is injective, then there exists a bijection $h: A \to B$. Proof.

Let $f:A\longrightarrow B$ and $g:B\longrightarrow A$ be injective functions. We know that $(\mathscr{P}(A),\subseteq)$ is a complete lattice. Define $F:\mathscr{P}(A)\longrightarrow \mathscr{P}(A)$ by

$$F(X) = A \backslash g''(B \backslash f''X)$$

F(X) is the complement of points in A mapped to by g from the points that are not in the range of f restricted to X. Think about this and convince yourself that a fixed point of this function is what we need! Claim I: F is order-preserving. To see this, let $Y \subseteq Z \subseteq A$. So $f''Y \subseteq f''Z$ and $B \setminus f''Z \subseteq B \setminus f''Y$. Therefore $g''(B \setminus f''Z) \subseteq g''(B \setminus f''Y)$. And so

$$F(Y) = A \backslash g''(B \backslash f''Y) \subseteq A \backslash g''(B \backslash f''Z)$$

Schroder-Bernstein Theorem (P112)

Proof.

(Continued.) By Tarski-Knaster, F has a fixed point. Let $X \subseteq A$ be such that F(X) = X.

Let $C = \operatorname{ran} g$. So $g^{-1}: C \longrightarrow B$ is an injection and $A \setminus X \subseteq C$. Define

If
$$|A| \leq |B|$$
 and $|B| \leq |A|$, then $|A| = |B|$.

Now, dom h = A. We have ran $(g^{-1} \upharpoonright (A \backslash X)) = B \backslash f''X$, so ran h = B. Therefore $h : A \longrightarrow B$ is a bijection.

Corollary

If
$$|A| \leq |B|$$
 and $|B| \leq |A|$, then $|A| = |B|$.