Computational Microelectronics L21

Sung-Min Hong

smhong@gist.ac.kr

Semiconductor Device Simulation Laboratory, GIST

Level-set

Level-set equation

- Instead of motion of boundary points,
 - We calculate the change of the level-set function, $\Phi(\mathbf{r},t)$:

$$\frac{\partial \Phi(\mathbf{r}, t)}{\partial t} = -\mathbf{v}(\mathbf{r}, t) \cdot \nabla \Phi(\mathbf{r}, t)$$

(The velocity, $\mathbf{v}(\mathbf{r}, t)$, describes the interface movement.) (Be careful with the negative sign.)

– Since Φ is a signed-distance, it can be simplified as

$$\frac{\partial \Phi(\mathbf{r}, t)}{\partial t} = -v_{normal}(\mathbf{r}, t)$$

 $(v_{normal}(\mathbf{r},t))$ is the normal component of $\mathbf{v}(\mathbf{r},t)$.)

When $v_{normal} = 0.1$ nm sec⁻¹,

- After 10 sec, Φ decreases 1 nm everywhere.
 - -Shapes after 10 sec and 20 sec.
 - It is getting bigger.

When $v_{normal} = -0.1 \text{ nm sec}^{-1}$,

- After 10 sec, Φ increases 1 nm everywhere.
 - -Shapes after 10 sec and 20 sec.
 - It is getting smaller.

Another example

A small hole

-Since it is not convex, we need a better algorithm to determine the interior/exterior points.

When $v_{normal} = 0.1$ nm sec⁻¹,

The hole is disappearing.

Homework#21

- Due: AM08:00, December 3
- Problem#1
 - Using a constanct surface normal velocity, write your own level-set code.
 - Test your program with your own examples.

Thank you for your attention!