Prova scritta parziale n. 1

Analisi Matematica B, 2021/22

18.12.2021

1. Determinare il carattere della serie

$$\sum_{k=0}^{+\infty} \frac{(k!)^m}{(mk)!} x^k$$

al variare di $m \in \mathbb{N}$ e di $x \in \mathbb{R}$.

2. Al variare di $\alpha \in \mathbb{R}$ calcolare, se esiste, il limite della successione definita ricorsivamente:

$$\begin{cases} a_0 = \alpha \\ a_{n+1} = \frac{a_n^2 + 2a_n}{3} \end{cases} \text{ oppure } \begin{cases} a_0 = \alpha \\ a_{n+1} = \frac{2a_n - a_n^2}{3}. \end{cases}$$

Per $\alpha=\frac{1}{2}$ e $\lambda>\frac{2}{3}$ calcolare in oltre il limite

$$\lim_{k \to +\infty} \frac{a_k}{\lambda^k}.$$

3. Al variare di $\alpha>0$ calcolare

$$\lim_{n \to +\infty} \sum_{k=1}^{n^2} \frac{1}{(n^3 + k)^{\alpha}} \quad \text{oppure} \quad \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{(n^3 + k^2)^{\alpha}}.$$