Stochastic Calculus Notes

Cliff

October 14, 2021

1 General Probability Theory

1.1 Infinite Probability Spaces

Definition 1 (σ – algebra). Let Ω be a nonempty set, and let \mathcal{F} be a collection of sub-sets of Ω . We say that \mathcal{F} is a σ – algebra provided that:

- (i) the empty set ϕ belongs to F
- (ii) whenever a set A belongs to F, its complement A^c also belongs to F, and
- (iii) whenever a sequence of sets $A_1, A_2, ...$ belongs to F, their union $\bigcup_{n=1}^{\infty} A_n$ also belongs to \mathcal{F} .

Definition 2 (Probability measure). Let Ω be a nonempty set, and let \mathcal{F} be a collection of sub-sets of Ω . A probability measure \mathbb{P} is a function that, to every set $A \in \mathcal{F}$, assigns a number in [0,1], called the probability of A and written $\mathbb{P}(A)$. We require:

- (i) $\mathbb{P}(\Omega) = 1$, and
- (ii)(countable additivity) whenever $A_1, A_2, ...$ is a sequence of disjoint sets in \mathcal{F} , then

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$

The triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a **probability space**.

Definition 3 (Almost surely (a.s.)). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. If a set $A \in \mathcal{F}$ satisfies $\mathbb{P}(A) = 1$, we say that the event A occurs almost surely.

1.2 Random variables and Distributions

Definition 4 (Random variable). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A random variable is a real-valued function X defined on Ω with the property that for every Borel subset B of \mathbb{R} , the subset of Ω given by

$${X \in B} = {\omega \in \Omega; X(\omega) \in B}$$

is in the sigma – algebra \mathcal{F} . (We sometimes also permit a random variable to take the value $+\infty$ and $-\infty$)

Definition 5 (Distribution measure). Let X be A random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. The distribution measure of X is the probability measure μ_X that assigns to each Borel subsets B of \mathbb{R} The mass

$$\mu_X(B) = \mathbb{P}\{X \in B\}$$

Theorem 1. The relationship between cdf and distribution measure

$$F(x) = \mathbb{P}\{X \le x\} = \mu_X(-\infty, x], x \in \mathbb{R}$$

$$\mu_X(x, y) = \mu_X(-\infty, y) - \mu_X(-\infty, x] = F(y) - F(x)$$

$$\mu_X[a, b] = \lim_{x \to \infty} \mu_X(a - \frac{1}{n}) = F(b) - \lim_{n \to \infty} (a - \frac{1}{n})$$

$$\mu_X[a, b] = \lim_{x \to \infty} \mu_X(a - \frac{1}{n}) = \mathbb{P}\{a \le X \le b\} = \int_a^b f(x) dx$$

1.3 Expectations

Theorem 2. Let X be a random variable on probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

(i) If X takes only finitely many values $y_0, y_1, ..., y_n$, then

$$\int_{\Omega} X(\omega) d\mathbb{P}(\omega) = \sum_{k=0}^{n} y_k \mathbb{P}\{X = y_k\}$$

(ii) (Integrability) The random variable X is integrable if and only if

$$\int_{\Omega} |X(\omega)| d\mathbb{P}(\omega) < \infty$$

Now let Y be another random variable

(iii) (Comparison) If $X \leq Y$ almost surely, and if $\int_{\Omega} X(\omega) d\mathbb{P}(\omega)$ and $\int_{\Omega} Y(\omega) d\mathbb{P}(\omega)$ are defined, then

$$\int_{\Omega} X(\omega) d\mathbb{P}(\omega) \le \int_{\Omega} Y(\omega) d\mathbb{P}(\omega)$$

and if X = Y

$$\int_{\Omega} X(\omega) d\mathbb{P}(\omega) = \int_{\Omega} Y(\omega) d\mathbb{P}(\omega)$$

(iv) (Linearity) If α and β are real constants and X and Y are integrable, or if α and β are nonnegative constants and X and Y are nonnegative, then

$$\int_{\Omega} (\alpha X(\omega) + \beta Y(\omega)) d\mathbb{P}(\omega) = \alpha \int_{\Omega} X(\omega) d\mathbb{P}(\omega) + \beta \int_{\Omega} Y(\omega) d\mathbb{P}(\omega)$$

Definition 6 (Expectation). Let X be a random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. The expectation of X is defined to be

$$\mathbb{E} = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$$

This definition make sense if X is integrable or $X \geq 0$ a.s.

Theorem 3. Let X be a random variable on probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

(i) If X takes only finitely many values $x_0, x_1, ..., x_n$, then

$$\mathbb{E}X = \sum_{k=0}^{n} x_k \mathbb{P}\{X = x_k\}$$

(ii) (Integrability) The random variable X is integrable if and only if

$$\mathbb{E}|X| < \infty$$

Now let Y be another random variable

(iii) (Comparison) If $X \leq Y$ almost surely, and if $\mathbb{E}X$ and $\mathbb{E}Y$ are defined, then

$$\mathbb{E}X \leq \mathbb{E}Y$$

and if X = Y

$$\mathbb{E}X = \mathbb{E}Y$$

(iv) (Linearity) If α and β are real constants and X and Y are integrable, or if α and β are nonnegative constants and X and Y are nonnegative, then

$$\mathbb{E}(\alpha X(\omega) + \beta Y(\omega)) = \alpha \mathbb{E}X(\omega) + \beta \mathbb{E}Y(\omega)$$

Definition 7 (Lebesgue measure). Let $\mathcal{B}(\mathbb{R})$ be the σ -algebra of Borel subsets of \mathbb{R} . The lebesgue measure on \mathbb{R} , which we denote by $\mathcal{L}: \mathcal{B}(\mathbb{R}) \to [0, \infty)$, assigns to each set $B \in \mathcal{B}(\mathbb{R})$ a number in $[0, +\infty)$ or the value ∞ so that

- (i) $\mathcal{L}[a,b] = b a$ whenever $a \leq b$, and
- (ii) if $B_1, B_2,...$ is a sequence of disjoint sets in $\mathcal{B}(\mathbb{R})$, then we have the countable additivity property

$$\mathcal{L}\left(\cup_{n=1}^{\infty} B_n\right) = \sum_{n=1}^{\infty} \mathcal{L}(B_n)$$

Definition 8 (Borel measurable). Let f(x) be a real-valued function defined on \mathbb{R} . If and only if for every Borel subsets B of \mathbb{R} , the set $\{x; f(x) \in B\}$ is also a Borel subset B of \mathbb{R} . The function f(x) is called Borel-measurable.

Theorem 4 (Comparsion of Riemann and Lebesgue intergals).

- (i) The Riemann intergal is defined iff the point where f(x) is not continuous has Lebesgue measure equals zero.
- (ii) If the Riemann intergal is defined then the Riemann and Lebesgue integral agree.

1.4 Convergence of Integrals

Definition 9 (Converge almost surely).

Let $X_1, X_2, ...$ be a sequence of r.v.s defined on the same on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, we say $X_1, X_2, ...$ converge to another r.v. X a.s if and only if

$$\mathbb{P}(\omega \in \Omega; \lim_{n=0}^{\infty} X_n(\omega) = X(\omega)) = 1$$

or

$$\forall \varepsilon > 0, \qquad \mathbb{P}(\lim_{n \to \infty} |X_n(\omega) - X(\omega)| > \varepsilon) = 0$$

example 1 (Law of Large Numbers).

$$X_1, X_2, ..., X_n \sim F_X(x)$$
$$E(X) = \mu$$

$$WLLN-\bar{X} \to^p \mu \Leftrightarrow \lim_{n\to\infty} \mathbb{P}(|\bar{X} - \mu| > \varepsilon) = 0$$

$$SLLN-\bar{X} \to a.s. \ \mu \Leftrightarrow \mathbb{P}(\lim_{n\to\infty} |\bar{X} - \mu| > \varepsilon) = 0$$

Theorem 5 (Converge almost every).

Let $f_1, f_2, ...$ be a sequence of real-valued, Borel-measurable functions defined on \mathbb{R} . Let f be another real-valued, Borel-measurable function defined on \mathbb{R} , we say $f_1, f_2, ... \to f$ a.e.

$$\lim_{n \to \infty} f_n = f \quad a.e.$$

if and only if

$$\forall \varepsilon > 0, \qquad \mathcal{L}(\lim_{n \to \infty} |f_n(x) - f(x)| > \varepsilon) = 0$$

example 2. Let $f_n = \frac{n}{2\pi}e^{-\frac{nx^2}{2}}$, and it is easy to see f is a pdf of normal with $\frac{1}{2}$ variance.

Obviously, given f(x) = 0

$$\mathcal{L}(\lim_{n\to\infty} f_n(x) \to 0) = 1$$

and

$$\mathcal{L}(\lim_{n \to \infty} \int_{-\infty}^{+\infty} f_n(x) dx \to 1) = 1$$

however, we know $\int_{-\infty}^{+\infty} f(x)dx = 0$, so we can conclude

$$\lim_{n \to \infty} \int_{-\infty}^{+\infty} f_n(x) dx \neq \int_{-\infty}^{+\infty} \lim_{n \to \infty} f_n(x) dx \quad (a.e.)$$

Theorem 6 (Montone convergence).

Let $X_1, X_2, ...$ be a sequence of r.v.s converging almost surly to another r.v. X. If

$$0 \le X_1 \le X_2 \le \dots \quad a.s.,$$

then

$$\lim_{n\to\infty} \mathbb{E} X_n = \mathbb{E} X$$

Let $f_1, f_2, ...$ be a sequence of Borel-measurable functions converging almost surly to another Borel-measurable function f. If

$$0 \le f_1 \le f_2 \le \dots \quad a.e.,$$

then

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}f_ndx=\int_{-\infty}^{\infty}fdx$$

Recall countable additivity in (i) of Thm. 3

Corollary 1. Suppose the nonegative random r.v. X takes countable many values $x_0, x_1, ...$ Then

$$\mathbb{E}X = \sum_{k=0}^{\infty} x_k \mathbb{P}(X = x_k)$$

Theorem 7 (Dominated convergence).

Let $X_1, X_2, ...$ be a sequence of r.v.s converging almost surly to another r.v. X. If there is another r.v. Y such that $\mathbb{E}Y < \infty$ and $|X_n| \le Y$ a.s., then

$$\lim_{n \to \infty} \mathbb{E} X_n = \mathbb{E} X$$

Let $f_1, f_2, ...$ be a sequence of Borel-measurable functions converging almost surly to another Borel-measurable function f.

If there is another function g(x) such that $\int_{-\infty}^{\infty} g(x) < \infty$ and $|f_n(x)| \le g(x)$ a.e., then

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f_n dx = \int_{-\infty}^{\infty} f dx$$

1.5 Computation of Expectations

Theorem 8.

Let X be a random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let g be a Borel-measurable function on \mathbb{R} . Then if

$$\mathbb{E}|g(X)| = \int_{\mathbb{R}} |g(X)| d\mu_X(x) < \infty,$$

$$\mathbb{E}g(X) = \int_{\mathbb{R}} g(X) d\mu_X(x)$$

Proof. Recall the definition of expectation $\mathbb{E} = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$ we should proof the integral w.r.t distribution measure gives the same result as integral w.r.t. probability measure on Ω .

Step 1: Indicator function

$$\mathbb{EI}_{B}(X) = \int_{\Omega} \mathbb{I}_{B}(X(\omega)) d\mathbb{P}(\omega)$$
$$= 0 \cdot \int_{B_{c}} d\mathbb{P}(\omega) + 1 \cdot \int_{B} d\mathbb{P}(\omega)$$
$$= \mathbb{P}\{X \in B\} = \mu_{X}(B)$$

in another side,

$$\int_{\mathbb{R}} \mathbb{I}_B(x) d\mu_X(x) = 0 \cdot \int_{x \notin B} d\mu_X(x) + 1 \cdot \int_{x \in B} d\mu_X(x)$$
$$= \mu_X(B)$$

Step 2: Nonnegative simple functions

Given a simple function g(x)

$$g(x) = \sum_{k=1}^{n} \alpha_k \mathbb{I}_{B_k}(x),$$

$$\mathbb{E}g(X) = \mathbb{E}\sum_{k=1}^{n} \alpha_{k} \mathbb{I}_{B_{k}}(x) = \sum_{k=1}^{n} \alpha_{k} \mathbb{E}\mathbb{I}_{B_{k}}$$

use conclusion from step 1, it holds in simple nonnegative function. Step 3: Nonnegative Borel-measurable function

Define Borel-sets $B=\{x;\frac{k}{2^n}\leq g(x)<\frac{k+1}{2^n}\}, k=0,1,2,...,4^n-1$ Then we have a partition

$$0 < \frac{1}{2^n} < \frac{2}{2^n} < \dots < \frac{4_n}{2^n} = 2^n$$

we can see the range of partition goes to infinite.

From this construction we can get a simple function

$$g_n(x) = \sum_{k=0}^{4^n - 1} \frac{k}{2^n} \mathbb{I}_{B_{k,n}}(x)$$

satisfy $0 \le g_1 \le g_2 \le ... \le g_n$, and from step 2, we know

$$\mathbb{E}g_n(X) = \int_{\mathbb{R}} g_n(x) d\mu_X(x)$$

Using MCT, we have

$$\int_{\mathbb{R}} g(x) d\mu_X(x) = \lim_{n \to \infty} \int_{\mathbb{R}} g_n(x) d\mu_X(x) = \lim_{n \to \infty} \mathbb{E} g_n(x) = \mathbb{E} \lim_{n \to \infty} g_n(x) = \mathbb{E} g(X)$$

Step 4: General Borel-measurable function

Let g(x) be a general Borel-measurable function,

$$g^{+}(x) = max\{g(x), 0\}$$
 and $g^{-} = max\{-g(x), 0\}$
 $\mathbb{E}g^{+}(x) = \int_{\mathbb{R}} g^{+}(x)d\mu_{X}(x) < \infty,$
 $\mathbb{E}g^{-}(x) = \int_{\mathbb{R}} g^{-}(x)d\mu_{X}(x) < \infty,$

In the end by linearity,

$$\mathbb{E}g(x) = \mathbb{E}g^{+}(x) - \mathbb{E}g^{-}(x)$$

Theorem 9. Let X be a random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let g be a Borel-measurable function on \mathbb{R} . Suppose that X has a density $f(\mu_X(B) = \int_B f(x) dx)$. Then if

$$\mathbb{E}|g(X)| = \int_{-\infty}^{\infty} |g(x)| f(x) dx < \infty$$

is finite and well-defined,

$$\mathbb{E}g(X) = \int_{-\infty}^{\infty} g(x)f(x)dx$$

1.6 Change of measure

Theorem 10.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let Z be: (i) $\mathbb{P}\{Z > 0\} = 0$; (ii) $\mathbb{E}Z = 1$. For $A \in \mathcal{F}$, define

$$\widetilde{\mathbb{P}}(A) = \int_{A} Z(\omega) d\mathbb{P}(\omega)$$

Then $\tilde{\mathbb{P}}$ is a probability measure. Furthermore, if X is a nonnegative random variable, then

$$\tilde{\mathbb{E}}X = \mathbb{E}[XZ]$$

If Z is almost surly strictly positive, we also have

$$\mathbb{E}Y = \tilde{\mathbb{E}} \left[\frac{Y}{Z} \right]$$

for every nonnegative random variable Y.

Definition 10 (Measure equivalent).

Let Ω be a nonempty set and \mathcal{F} a σ -algebra of subsets of Ω . Two probability measures \mathbb{P} and $\tilde{\mathbb{P}}$ on (Ω, \mathcal{F}) are said to be equivalent if they agree which sets in \mathcal{F} have probability zero.

Definition 11 (Radon-Nikodym derivative).

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $\tilde{\mathbb{P}}$ be another probability measure on (Ω, \mathcal{F}) that is equivalent to \mathbb{P} , and let Z be an almost surly positive random variable that relates \mathbb{P} and $\tilde{\mathbb{P}}$ via

$$\widetilde{\mathbb{P}}(A) = \int_{A} Z(\omega) d\mathbb{P}(\omega)$$

Then Z is called the Radon-Nikodym derivative of $\tilde{\mathbb{P}}$ w.r.t \mathbb{P} , and we write

$$Z = \frac{d\tilde{\mathbb{P}}}{d\mathbb{P}}$$

Theorem 11 (Radon-Nikodym). Let \mathbb{P} and $\tilde{\mathbb{P}}$ be equivalent probability measures defined on (Ω, \mathcal{F}) . Then there exists an almost surly positive random variable Z such that $\mathbb{E}Z = 1$ and

$$\tilde{\mathbb{P}} = \int_A Z(\omega) d\mathbb{P}(\omega)$$
 for every $A \in \mathcal{F}$

2 Information and Conditioning

2.1 Information and $\sigma - algebra$

Definition 12 (Filtration).

Let Ω be a nonempty set. Let T be a fixed positive number, and assume that for each $t \in [0,T]$ there is a σ -algebra $\mathcal{F}(t)$. Assume further that if $s \leq t$, then every set in $\mathcal{F}(s)$ is also in $\mathcal{F}(t)$. Then we call the collection of σ -algebras $\mathcal{F}(t), 0 \leq t \leq T$, a filtration.

$$\mathcal{F}(t_1) \subset \mathcal{F}(t_2) \subset \mathcal{F}(t_3)..., \quad for \ t_1 \leq t_2 \leq ...$$

Definition 13 $(\sigma(X))$.

Let X be a random variable defined on a nonempty sample space Ω . The σ – algebra generated by X, denoted $\sigma(X)$, is the collection of all subsets of Ω of the form $\{X \in B\}$, where B ranges over the Borel subsets \mathbb{R} , $\mathcal{B}(\mathbb{R})$.

Definition 14 ($\mathcal{G}-measurable$).

Let X be a random variable defined on a nonempty sample space Ω . Let \mathcal{G} be a σ -algebra of subsets of Ω . If every set in $\sigma(X)$ is also in \mathcal{G} , we say that X is \mathcal{G} -measurable. And can be written as:

$$\sigma(X) \subset \mathcal{G}$$

Definition 15 (Adapted stochastic process).

Let Ω be a nonempty sample space equipped with a filtration $\mathcal{F}(t)$, $0 \le t \le T$. Let X(t) be a collection of random variables indexed by $t \in [0,T]$. We say this collection of random variables is an adapted stochastic process if, for each t, the random variable X(t) is $\mathcal{F}(t)$ – measurable.

2.2 Independence

Definition 16 (Independence of two σ -algebras). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let \mathcal{G} and \mathcal{H} be $sub - \sigma - algebras$ of $\mathcal{F}(i.e., the sets in <math>\mathcal{G}$ and the sets in \mathcal{H} are also in \mathcal{F}). We say these two σ -algebras are independent under probability measure \mathbb{P} if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) \text{ for all } A \in \mathcal{G}, B \in \mathcal{H}$$

Let X and Y be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. We say these two random variables are independent if the σ -algebras they generate, $\sigma(X)$ and $\sigma(Y)$, are independent. We say that the random variable X is independent of the σ -algebra \mathcal{G} if $\sigma(X)$ and \mathcal{G} are independent.

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) \text{ for all } A \in \sigma(X), B \in \sigma(Y)$$

Definition 17 (General case in Independence). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3, \ldots$ be a sequence of sub- σ -algebras of \mathcal{F} . For a fixed positive integer n, we say y. that the n σ -algebras $\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_n$ are independent if

$$\mathbb{P}(A_1 \cap A_2 \cap \dots \cap A_n) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2) \cdot \dots \cdot \mathbb{P}(A_n)$$
for all $A_1 \in \mathcal{G}_1, A_2 \in \mathcal{G}_2, \dots, A_n \in \mathcal{G}_n$

Let $X_1, X_2, X_3,...$ be a sequence of random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. We say the n random variables $X_1, X_2,..., X_n$ are independent if the σ -algebras $\sigma(X_1)$ $\sigma(X_2),...,\sigma(X_n)$ are independent. We say the full sequence of σ -algebras $\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3,...$ is independent if, for every positive integer n, the n σ -algebras $\mathcal{G}_1, \mathcal{G}_2,...,\mathcal{G}_n$ are independent. We say the full sequence of random variables $X_1, X_2, X_3,...$ is independent if, for every positive integer n, the n random variables $X_1, X_2,..., X_n$ are independent.

Theorem 12. Let X and Y be independent random variables, and let f and g be Borel-measurable functions on \mathbb{R} . Then f(X) and g(Y) are independent random variables.

For two Borel-measurable functions, their value are independent iff their independent variable are independent.

Proof.
$$\forall A \in \sigma(X), A = \{\omega \in \Omega; X(\omega) \in C\}$$

$$\forall A \in \sigma(f(X)), A = \{\omega \in \Omega; f(X(\omega)) \in E\}$$

Since we have
$$C = \{X \in \mathbb{R}; f(X) \in E\}, A \in \sigma(X) \Rightarrow \sigma(f(X)) \subset \sigma(X).$$

Let B be in the σ -algebra generated by g(Y). This σ -algebra is a sub σ -algebra of $\sigma(Y)$, so $B \in \sigma(Y)$. since X and Y are independent, we have $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

Definition 18 (Joint Distribution). Let X and Y be random variables. The pair of random variables (X,Y) takes values in the plane \mathbb{R}^2 , and the joint distribution measure of (X,Y) is given by

$$\mu_{X,Y}(C) = \mathbb{P}\{(X,Y) \in C\} \quad \text{for all Borel sets} \quad C \subset \mathbb{R}^2$$

This is a probability measure (i.e., a way of assigning measure between 0 and 1 to subsets of \mathbb{R}^2 so that $\mu_{X,Y}(\mathbb{R}^2) = 1$ and the countable additivity property The joint cumulative distribution function of (X,Y) is

$$F_{X,Y}(a,b) = \mu_{X,Y}((-\infty,a] \times (-\infty,b]) = \mathbb{P}\{X \le a, Y \le b\}, a \in \mathbb{R}, b \in \mathbb{R}\}$$

We say that a nonnegative, Borel-measurable function $f_{X,Y}(x,y)$ is a joint density for the pair of random variables (X,Y) if

$$\mu_{X,Y}(C) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{I}_{C}(x,y) f_{X,Y}(x,y) dy dx$$

for all Borel sets $C \subset \mathbb{R}^2$

Definition 19 (Joint density function). We say that a nonnegative, Borel-measurable function $f_{X,Y}(x,y)$ is a joint density for the pair of random variables (X,Y) if

$$\mu_{X,Y}(C) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{I}_{C}(x,y) f_{X,Y}(x,y) dy dx \text{ for all Borel sets } C \subset \mathbb{R}^{2}$$

Condition holds iff

$$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx \text{ for all } a \in \mathbb{R}, b \in \mathbb{R}$$

Theorem 13. Let X and Y be random variables. The following conditions are equivalent.

(i) X and Y are independent.

(ii) The joint distribution measure factors:

$$\mu_{X,Y}(A \times B) = \mu_X(A) \cdot \mu_Y(B)$$
 for all Borel subsets $A \subset \mathbb{R}, B \subset \mathbb{R}$

(iii) The joint cumulative distribution factors:

$$F_{XY}(a,b) = F_X(a) \cdot F_Y(b)$$
 for all $a \in \mathbb{R}, b \in \mathbb{R}$

(iv) The joint moment-generating function factors:

$$\mathbb{E}e^{uX+vY} = \mathbb{E}e^{uX} \cdot \mathbb{E}e^{vY}$$

for all $u \in \mathbb{R}, v \in \mathbb{R}$ for which the expectations are finite.

If there is a joint density, each of the conditions above is equivalent to the following.

(iv) The joint density factors:

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$
 for almost every $x \in \mathbb{R}, y \in \mathbb{R}$

The conditions above imply but are not equivalent to the following.

(vi) The expectation factors:

$$\mathbb{E}[XY] = \mathbb{E}X \cdot \mathbb{E}Y,$$

$$provided \ \mathbb{E}|XY| < \infty$$

2.3 Discrete-Time Martingale

Definition 20 (Martingale). $\{X_n, n \geq 0\}$ is a martingale (or sub- or supermartingale) w.r.t. $\{\mathcal{F}_n\}$ if

- 1. $E|X_n| < \infty$
- 2. $\{X_n\}$ is adapted to $\{\mathcal{F}_n\}$
- 3. $E(X_{n+1} \mid \mathcal{F}_n) = X_n \text{ (or } \geq X_n \text{ or } \leq X_n) \text{ for all } n$

example 3 (Doob's martingale). Let Z be a r.v with $E(|Z|) < \infty$, and $Y_n = E(Z|\mathcal{F}_n)$, we have Y_n is a martingale.

Proof.

1.

$$E(|Y_n|) = E(|E(Z|\mathcal{F}_{n-1})|) \le E(E(|Z||\mathcal{F}_{n-1})) = E(||Z|) < \infty$$
 (1)

2.

$$Y_n \in \mathcal{F}_n \tag{2}$$

3.

$$E(Y_{n+1}|\mathcal{F}_n) = E(E(Z|\mathcal{F}_{n+1})|\mathcal{F}_n) = E(Z|\mathcal{F}_n) = Y_n \tag{3}$$

Theorem 14 (Doob's decomposition theorem). $\{Y_n\}$ is a submartingale, then

$$Y_n = Y_0 + M_n + A_n, \quad n \ge 0$$

$$Y_n = Y_0 + \sum_{k=1}^n (Y_k - Y_{k-1})$$

$$Y_0 + \sum_{k=1}^n (Y_k - E(Y_k \mid \mathcal{F}_{k-1})) + \sum_{k=1}^n (E(Y_k \mid \mathcal{F}_{k-1}) - Y_{k-1})$$

where

- • M_n is a martingale with $M_0 = 0$
- A_n is an increasing predictable process with $A_0 = 0$
- This decomposition is unique.

3 Brownian Motion

3.1 Reflection Principle

Theorem 15 (Reflecion Equality).

$$P(W(t) < \omega, \tau_m < t) = P(W(t) > 2m - \omega)$$

Reflection Equality.

$$P(W(t) > 2m - \omega) = P(W(t) > 2m - \omega | \tau_m < t) P(\tau_m < t) + P(W(t) > 2m - \omega | \tau_m > t) P(\tau_m > t)$$

where $P(W(t) > 2m - \omega | \tau_m \ge t) P(\tau_m \ge t) = 0$ So.

$$\begin{split} P(W(t) > 2m - \omega) = & P(W(t) > 2m - \omega | \tau_m < t) P(\tau_m < t) \\ &= P(W(t) < \omega | \tau_m < t) P(\tau_m < t) [Reflection] \\ &= P(W(t) < \omega, \tau_m < t) \end{split}$$

3.2 Stochastic Calculus

3.2.1 $It\hat{o}$ Integrals

Define an function f: f(x,y) and its difference df(x,y),

$$df = f_x dx + f_y dy + \frac{1}{2} f_{xx} dx dx + f_{xy} dx dy + \frac{1}{2} f_{yy} dy dy + \frac{1}{3!} f_{xxx} (dx)^3 + \frac{2}{3!} f_{xxy} dx dx dy + \frac{2}{3!} f_{xyy} dx dy dy + \frac{1}{3!} f_{yyy} (dy)^3 + \dots$$
(4)

if x, y are continuous differentiate functions, $(dx)^2, dxdy, (dy)^2 = 0$,

if x is an $It\hat{o}$ process and y is a continuous differentiate function, dxdy, $(dy)^2=0$ and $(dx)^2\neq 0$

if x, y are $It\hat{o}$ processes, $(dx)^2, dxdy, (dy)^2 \neq 0$

And $(dx)^3$, $(dy)^3$, (dxdxdy), (dxdydy) = 0 in all three above cases.

3.2.2 BSM partial differential equation

Considering a hedging portfolio X(t) with stock and money account, and an option $c(t, S_t)$.

Assume the underlying stock is S_t and its dynamics defined as fellows,

$$dS_t = \alpha S_t dt + \sigma S_t dW_t \tag{5}$$

then let's denote the stocks holding at t,

$$dX_t = \underbrace{\Delta_t dS_t}_{\text{Earnings from the stock price}} + \underbrace{r(X_t - \Delta_t S_t) dt}_{\text{Earnings from the money account}}$$
 (6)

We can get and pde that

$$d(e^{-rt}X_t) = d(e^{-rt}c(t, S_t))$$
(7)

and combing the **initial condition** $X_0 = c(0, S_0)$,

$$X_T = X_0 + \int_0^T d(e^{-rt}X_t) = c(0, S_0) + \int_0^T d(e^{-rt}c(t, S_t)) = c(t, S_t)$$
 (8)

Finally, we can compute $d(e^{-rt}X_t) = d(e^{-rt}c(t, S_t))$

$$d(e^{-rt}X_t) = \Delta_t \left[(\alpha - r)e^{-rt}S_t dt + \sigma e^{-rt}S_t dW_t \right]$$

$$d(e^{-rt}X_{t}) = \Delta_{t} \left[(\alpha - r)e^{-rt}S_{t}dt + \sigma e^{-rt}S_{t}dW_{t} \right]$$

$$= \Delta_{t}d(e^{-rt}S_{t}) = d(e^{-rt}c(t, S_{t}))$$

$$= e^{-rt} \left[-rc(t, S_{t}) + c_{t}(t, S_{t}) + \alpha S_{t}c_{x}(t, S_{t}) + \frac{1}{2}\sigma^{2}S_{t}^{2}c_{xx}(t, S_{t}) \right] dt$$

$$+ e^{-rt}\sigma S_{t}c_{x}(t, S_{t})dW_{t}$$
(9)

we can simplify the equation as

$$\Delta_t \left[(\alpha - r)e^{-rt}S_t dt + \sigma e^{-rt}S_t dW_t \right]
= e^{-rt} \left[-rc(t, S_t) + c_t(t, S_t) + \alpha S_t c_x(t, S_t) + \frac{1}{2}\sigma^2 S_t^2 c_{xx}(t, S_t) \right] dt
+ e^{-rt}\sigma S_t c_x(t, S_t) dW_t$$
(10)

The above equation means we can hedge the underlying randomness through holding $c_x(t, S_t)$ shares of underlying, which is $\Delta_t = c_x(t, S_t)$

after substitute the $c_x(t,S_t)$ into Δ_t and cancel dW_t terms,

$$c_x(t, S_t) \left[(\alpha - r)e^{-rt} S_t dt \right]$$

$$= e^{-rt} \left[-rc(t, S_t) + c_t(t, S_t) + \alpha S_t c_x(t, S_t) + \frac{1}{2} \sigma^2 S_t^2 c_{xx}(t, S_t) \right] dt$$
(11)

becomes

$$-rS_{t}c_{x}(t, S_{t})dt = \left[-rc(t, S_{t}) + c_{t}(t, S_{t}) + \frac{1}{2}\sigma^{2}S_{t}^{2}c_{xx}(t, S_{t})\right]dt$$
(12)

we reformat it and get the Black-Scholes-Merton Equation.

$$-rc(t, S_t) = rS_t c_x(t, S_t) + c_t(t, S_t) + \frac{1}{2}\sigma^2 S_t^2 c_{xx}(t, S_t)$$
 (13)

with **terminal condition** $c(T, x) = (x - K)^+$.