1) An open capillary tube is brought into contact with a reservoir of water and the water rises to a final height, H_{max} , as shown below.

Data: L_{capillary} = 0.1 [m], μ_{water} = 0.001 [$Pa \cdot s$], $\sigma_{water-air}$ =0.072 [N/m], D_c = 500 [μm], ρ_{water} =1000[kg/m^3]), $g = 9.81[<math>m/s^2$]

Show all your work on a separate page and state all the assumptions that you made.

- a) As the water level approaches H_{max} , determine the rising meniscus velocities [m/s] at points 1, 2 and 3.
- b) What is the maximum volume of water, $V_{max}[m^3]$, in the capillary after the capillary is lifted above the reservoir.
- c) Sketch a graph of H [m] vs. velocity [m/s] for the rising meniscus velocity.