- Resumen
- 2 Actividad
- Silicio
- 4 Siliceno
- Silicano

Resumen

En esta presentación se reportan los resultados la actividad 1 del proyecto de investigación en Nanociencia, que tiene como soporte la Teoría Funcional de la Densidad (DFT) y se usó Quantum Espresso para su desarrollo.

Figure: Quantum Espresso, software utilizado para realizar el presente trabajo. Hoy en día es una herramienta muy vérsatil para investigadores que se adentran en la ciencia de materiales.

Resultados,

Se encontraron los parametros de red del silicio, siliceno y silicano, los cálculos mostraron que se encontraban cercanos a 5.47, 3.892 y 3.92 amstrongs, respectivamente. Ádemas se hicieron cálculos de bandas y densidad de estados para el siliceno y el silicano.

- Resumen
- 2 Actividad
- Silicio
- 4 Siliceno
- Silicano

Actividad

Simulación estructural y electrónica del silicio.

Objetivos:

- Optimización de ecutwfc
- Optimización de ecutrho
- Optimización de puntos k
- Optimización de parámetro de red

Figure: Celda unitaria del silicio.

Simulación estructural y electrónica del Siliceno.

Objetivos:

- Optimización de puntos k
- Optimización de parámetro de red
- Cálculo de bandas
- Densidad de estados

Figure: Celda unitaria del siliceno.

Simulación estructural y electrónica del Silicano.

Objetivos:

- Optimización de ecutwfc
- Optimización de ecut
- Optimización de puntos k
- Optimización de parámetro de red
- Cálculo de bandas
- Densidad de estados

Figure: Celda unitaria del silicano.

Figure: Celda unitaria del silicano.

Silicio, siliceno y silicano.

 Hacer una búsqueda en la literatura (artículos cientificos) de los parámetros estructurales (parámetro de red, longitud de enlacee, ángulos) y propiedades electrónicas (estructura de bandas electrónicas, densidad de estados electrónicos) del silicio, siliceno y silicano.

- Resumen
- 2 Actividad
- Silicio
- Siliceno
- Silicano

Silicio

Figure: El parámetro de red es de 5.4700 amstrongs.

- Resumen
- Actividad
- Silicio
- Siliceno
- Silicano

Siliceno

Párametro de red

Figure: La longitud del enlace mostrado es de 3.8600 amstrongs.

Estructura electrónica de bandas (sin considerar el spin)

Figure: Estructura de bandas del Siliceno.

Figure: Gráfica que nos muestra la densidad de estados del siliceno, sin considerar el spin.

Figure: Gráfica que nos muestra la densidad de estados en los orbitales del siliceno, sin considerar el spin [UP].

Figure: Gráfica que nos muestra la densidad de estados en los orbitales del siliceno, sin considerar el spin [DOWN].

Estructura electrónica de bandas (considerando el spin)

Figure: Gráfica que nos muestra la densidad de estados del siliceno, considerando el spin.

Figure: Gráfica que nos muestra la densidad de estados en los orbitales del siliceno, considerando el spin [UP].

Figure: Gráfica que nos muestra la densidad de estados en los orbitales del siliceno, considerando el spin [DOWN].

- Resumen
- Actividad
- Silicio
- Siliceno
- Silicano

Silicano

Figure: Estructura cristalina del Siliceno obtenida del archivo input con Xcrysden [Celda primitiva]

Parámetro de red

Figure: Gráfica que nos muestra la energía total del sistema contra la variación del parámetro red, nos centramos en el intervalo [3.885, 3.895]

Observación: La energía se minimiza cuando el parámetro de red toma el valor de 3.92.

Estructura electrónica de bandas

Figure: Gráfica que nos muestra la estructura de bandas del siliceno, cuyo cálculo fue elaborado por cuenta propia

Figure: Gráfica que nos muestra la estructura de bandas del silicano [a)Siliceno y b) germanecio]

Densidad de estados (sin considerar el spin)

Figure: Gráfica que nos muestra la densidad de estados del siliceno, sin considerar el spin.

Densidad de estados por nivel órbital (sin considerar el spin)

Figure: Gráfica que nos muestra la densidad de estados en los orbitales del silicano, sin considerar el spin. [UP]

Figure: Gráfica que nos muestra la densidad de estados en los orbitales del silicano, sin considerar el spin. [DOWN]

Densidad de estados por elemento(sin considerar el spin)

Figure: Gráfica que nos muestra la densidad de estados por elemento, sin considerar el spin. [UP]

Figure: Gráfica que nos muestra la densidad de estados por elemento, sin considerar el spin. [DOWN]

Densidad de estados

Figure: Gráfica que nos muestra la densidad de estados del siliceno, sin considerar el spin.

Densidad de estados por nivel órbital

Figure: Gráfica que nos muestra la densidad de estados en los orbitales del silicano, sin considerar el spin. [UP]

Figure: Gráfica que nos muestra la densidad de estados en los orbitales del silicano, sin considerar el spin. [DOWN]

Densidad de estados por elemento

Figure: Gráfica que nos muestra la densidad de estados por elemento, sin considerar el spin. [UP]

Figure: Gráfica que nos muestra la densidad de estados por elemento, sin considerar el spin. [DOWN]