Bounds for the quantifier depth in two-variable logics

Christoph Berkholz	Andreas Krebs	Oleg Verbitsky
RWTH Aachen	Uni Tübingen	HU Berlin

HIGHLIGHTS, Paris, 20 September, 2013

Definitions

 G, H, \ldots will be binary structures (typically, vertex-colored graphs).

A sentence Φ distinguishes G from H if $G \models \Phi$ while $H \not\models \Phi$.

$$D^2(G,H) = \text{the min quantifier depth of such } \Phi \in FO^2$$
.

$$A^2(G,H) = \text{the min alternation depth of such } \Phi \in \mathrm{FO}^2.$$

$$D^2(n) = \max D^2(G, H),$$

$$A^2(n) = \max A^2(G, H),$$

where \max is over n-element G and H distinguishable in FO^2 .

Bounds for $A^2(n)$ and $D^2(n)$

Theorem

$$\frac{1}{8}n - 2 < A^2(n) \le D^2(n) \le n + 1$$

Remark

The upper bound due to Immerman and Lander 1990 (stabilization of color refinement)

$A^2(n) > \frac{1}{8}n - 2$

$$A^2(n) > \frac{1}{8}n - 2$$

$$A^2(n) > \frac{1}{8}n - 2$$

$$A^2(n) > \frac{1}{8} n - 2$$

$$A^2(n) > \frac{1}{8}n - 2$$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall \forall$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall \forall$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: ∃∀∀

$$A^2(n) > \frac{1}{8}n - 2$$

moves: ∃∀∃

$$A^2(n) > \frac{1}{8}n - 2$$

moves: ∃∀∃

$$A^2(n) > \frac{1}{8}n - 2$$

moves: ∃∀∃

$$A^2(n) > \frac{1}{8}n - 2$$

moves: ∃∀∃∀

$$A^2(n) > \frac{1}{8}n - 2$$

moves: ∃∀∃∀

$$A^2(n) > \frac{1}{8}n - 2$$

moves: ∃∀∃∀

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall \exists \forall \exists$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall \exists \forall \exists$

$$A^2(n) > n/4 - 1$$

$$A^2(n) > \frac{1}{8}n - 2$$

Assumption://Spoiler/pebbles/along/edges.

moves: ∃∀∃∀∃

 $A^2(n) > n/8 - 2$: Consider 2G and 2H

$A^2(n) > \log_3 n - 2$ over trees

Question

How tight is this lower bound?

Remark

If $k \geq 3$, then over trees

$$\log_{k+1} n - 2 < A^k(n) \le D^k(n) < (k+3)\log_2 n.$$

Existential-positive two-variable logic

Let $D^2_{\exists,+}(n)$ be the variant of $D^2(n)$ for existential-positive FO^2 .

Theorem

$$\frac{1}{6}(n-10)^2 < D_{\exists,+}^2(n) \le n^2 + 1.$$

Remarks

- ► The result can be extended to any fragment of FO² with bounded number of alternations.
- ▶ Upper bound: If Spoiler is going to move one of the pebbles, the rest of the game is determined by the position $(u,v) \in V(G) \times V(H)$ of the other pebble. If the play is optimal and finite, the same position (u,v) never occurs twice.

$$D^2_{\exists,+}(n) = \Omega(n^2)$$

 ${\cal G}$ and ${\cal H}$ are "co-wheels" with coprime lenghts n-1 and n

$$D^2_{\exists,+}(n) = \Omega(n^2)$$

 ${\cal G}$ and ${\cal H}$ are "co-wheels" with coprime lenghts n-1 and n

$$D^2_{\exists,+}(n) = \Omega(n^2)$$

 ${\cal G}$ and ${\cal H}$ are "co-wheels" with coprime lenghts n-1 and n

$$D^2_{\exists,+}(n) = \Omega(n^2)$$

$$D^2_{\exists,+}(n) = \Omega(n^2)$$

G and H are "co-wheels" with coprime lenghts n-1 and n

Application of $D^2_{\exists,+}(n) = \Omega(n^2)$

Theorem

All algorithms for the Arc Consistency problems that are based on constraint propagation

take time $\Omega(n^3)$ (and this bound is tight).

Further work

What about FO³? Well,

$$A^{3}(n) \le D^{3}(n) \le n^{2} + 1,$$

 $D^{3}_{\exists,+}(n) \le n^{4} + 1$

and we are working hard on lower bounds...

Further work

What about FO^3 ? Well,

$$A^{3}(n) \le D^{3}(n) \le n^{2} + 1,$$

 $D^{3}_{\exists,+}(n) \le n^{4} + 1$

and we are working hard on lower bounds...

Thank you for your attention!