UNCLASSIFIED

Registration No.

24076

Evaluating the Effectiveness of Various Blast Loading Descriptors as Occupant Injury Predictors for Underbody Blast Events

Presented at the ARL Workshop on Numerical Analysis of Human and Surrogate Response to Accelerative Loading, Jan 09 2014

Kumar B Kulkarni¹, Jaisankar Ramalingam², Ravi Thyagarajan²

¹ ESI-US Inc, Troy, MI ² US Army TARDEC, Warren, MI

UNCLASSIFIED: Distribution Statement A Approved for Public Release

09 January 2014

U.S. Army Tank Automotive Research, Development, and Engineering Center Detroit Arsenal Warren, Michigan 48397-5000

Form Approved

	CUMENTATION PAGE	OMB No. 0704-0188
data needed, and completing and reviewing this collection this burden to Department of Defense, Washington Headq	estimated to average 1 hour per response, including the time for reviewing instruction of information. Send comments regarding this burden estimate or any other aspectuarters Services, Directorate for Information Operations and Reports (0704-0188), any other provision of law, no person shall be subject to any penalty for failing to cook for the ABOVE ADDRESS.	t of this collection of information, including suggestions for reducing 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
09 JANUARY 2014	Brief at ARL Workshop on Accelerative Loading	04/01/2012 - 06/30/2013
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER W56HZV-08-C-0236
_	s of Various Blast Loading Descriptors	5b. GRANT NUMBER
as Occupant Injury Predicto	rs for Underbody Blast Events	
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
Kumar B Kulkarni Jaisankar	Ramalingam, Ravi Thyagarajan	5e. TASK NUMBER
Kulliai B Kulkai III, Jaisai kai	Kamamigam, Kavi myagarajan	WD0046 Rev 1
		5f. WORK UNIT NUMBER
		ARL/SLAD, PM/MRAP, ATEC
7. PERFORMING ORGANIZATION NAME	S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
ESI-US Inc	TARDEC/Analytics	
888 W Big Beaver Road #402		
Troy MI 48084	Warren MI 48397	
9. SPONSORING / MONITORING AGENC		10. SPONSOR/MONITOR'S ACRONYM(S)
Sponsors: UBM/T&E project (ARL/SLAD and ATE)	Monitor: C), TARDEC/Analytics	ARL/SLAD, PM/MRAP, ATEC, TARDEC
Aberdeen. MD	6501 E 11 Mile Road Warren MI 48397	11. SPONSOR/MONITOR'S REPORT NUMBER(S)
	Warren ivii 40337	#24076 (TARDEC)
12. DISTRIBUTION / AVAILABILITY STAT UNCLASSIFIED: Distribution	EMENT Statement A. Approved for Public Rei	lease, Unlimited Distribution
13. SUPPLEMENTARY NOTES		
14. ABSTRACT		
Alternatives (AoA), to quickly predict of extremely short duration events arise gases from the blast. The primary objectives	pers of military vehicles, in early phases of the concept occupant injury risk due to under body blast loading. The out of the very high vertical acceleration of vehicle durectives of this paper are to conduct an extensive paramarameter is sufficient to adequately characterize the o	ne most common occupant injuries in these e to its close proximity to hot high pressure netric study in a systematic manner so as (1)
typical blast events (0-20ms) and (2) to	o create look-up tables and/or an automated software s for both stroking and non-stroking seat systems in te	tool that decision-makers can use to quickly

DeltaV, EffectiveG,Specific Power, Blast, ROM, reduced order models, MADYMO, occupant, injury, pulse, loading, descriptor, calculator

17. LIMITATION **OF ABSTRACT**

Unlimited

18. NUMBER

60

OF PAGES

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area

Ravi Thyagarajan

586-282-6471

code)

c. THIS PAGE

Unlimited

15. SUBJECT TERMS

a. REPORT

Unlimited

16. SECURITY CLASSIFICATION OF:

b. ABSTRACT

Unlimited

TANK-AUTOMOTIVE RESEARCH DEVELOPMENT ENGINEERING CENTER

Warren, MI 48397-5000

Ground System Engineering Assessment & Assurance (GSEAA) / Analytics 09 January 2014

Evaluating the Effectiveness of Various Blast Loading Descriptors as Occupant Injury Predictors for Underbody Blast Events

By

Kumar B Kulkarni¹, Jaisankar Ramalingam², Ravi Thyagarajan²

This is a reprint of the brief presented under the same title during the ARL Workshop on "Numerical Analysis of Human and Surrogate Response to Accelerative Loading", Jan 7-9, 2014 in Aberdeen, MD.

¹ ESI-US Inc, Troy, MI

²US Army TARDEC, Warren, MI

Distribution List

- Mr. Sudhakar Arepally, Associate Director, Analytics, US Army TARDEC
- Dr. Pat Baker, Director, ARL/WMRD, Aberdeen, MD
- Mr. Craig Barker, Program Manager, UBM/T&E, SLAD, US Army Research Lab
- Mr. Ross Boelke, OCP-TECD PM, TARDEC/GSS
- Mr. Robert Bowen, ARL/SLAD, Aberdeen, MD
- Dr. Kent Danielson, Engineer Research and Development Center (ERDC), Army Core of Engineers
- Mr. Paul Decker, DARPA Deputy PM
- Mr. Matt Donohue, DASA/R&T, ASA-ALT
- Ms. Nora Eldredge, WMRD, US Army Research Lab
- Mr. Ed Fioravante, WMRD, US Army Research Lab
- Mr. Ami Frydman, WMRD, US Army Research Lab
- Mr. Mark Germundson, Deputy Associate Director, TARDEC/GSS
- Mr. Neil Gniazdowski, WMRD, US Army Research Lab
- Dr. David Gorsich, Chief Scientist, US Army TARDEC
- Dr. Chris Hoppel, WMRD, US Army Research Lab
- Mr. Jeff Jaster, Deputy Associate Director, TARDEC/GSS
- Mr. Steve Knott, Deputy Executive Director, TARDEC/GSEAA, US Army TARDEC
- Mr. Jeff Koshko, Associate Director, TARDEC/GSS, UA Army TARDEC
- Mr. Joe Kott, OCP-TECD Deputy PM, TARDEC/GSS
- Mr. Dick Koffinke, Survivability Directorate, US Army Evaluation Center
- Dr. Scott Kukuck, PM/Blast Institute, WMRD, US Army Research Lab
- Dr. David Lamb, STE/Analytics, US Army TARDEC
- Mr. Mark Mahaffey, ARL/SLAD, Aberdeen, MD
- Dr. Tom McGrath, US Navy NSWC-IHD
- Mr. Tony McKheen, Associate Director/Chief Integration Engineers, US Army TARDEC
- Mr. Kirk Miller, OCP-TECD Standards and Specifications, TARDEC/GSS
- Mr. Micheal O'Neil, MARCOR SYSCOM, USMC
- Mr. Mark Simon, Survivability Directorate, US Army Evaluation Center
- Dr. Paul Tanenbaum, Director, ARL/SLAD, Aberdeen, MD
- Dr. Doug Templeton, TARDEC/GSS
- Mr. Pat Thompson, US Army Testing and Evaluation Command (ATEC)
- Mr. Madan Vunnam, Team Leader, Analytics/EECS, US Army TARDEC
- TARDEC TIC (Technical Information Center) archives, US Army TARDEC
- Defense Technical Information Center (DTIC) Online, http://dtic.mil/dtic/

U.S. ARMY TANK AUTOMOTIVE RESEARCH, DEVELOPMENT AND ENGINEERING CENTER (TARDEC)

Workshop on Numerical Analysis of Human and Surrogate Response to Accelerative Loading Army Research Laboratory (ARL) Aberdeen, MD Jan 7-9, 2014 Evaluating the effectiveness of various blast load descriptors as occupant injury predictors for underbody blast events

Jai Ramalingam Ravi Thyagarajan Kumar Kulkarni TARDEC/Analytics

- It is a well known fact that underbody blasts have become one of the most widespread reasons for warfighter casualties in recent wars.
- Spinal injuries to occupants have particularly increased in theater from these roadside blast incidents, followed by tibia and lower leg injuries.
- The most common occupant injuries in these extremely short duration events arise out of the very high vertical acceleration of vehicle due to its close proximity to hot high pressure gases from the blast.
- It is of considerable interest to developers of military vehicles to assess occupant injury risk due to blast loading in the early phase of the design process.

Blast pulse and occupant injury

A typical blast loading pulse is triangular in shape and can be characterized by its peak acceleration (G_{peak}) or change in velocity (Δv) with or without considering the duration of the pulse (T).

Occupant injury risk is proportional to;

- 1. Peak acceleration, G_{peak} in g's
- 2. Time duration of the pulse, *T* in ms
- 3. Rate of onset of acceleration, \dot{G} in g/ms
- 4. Change in velocity, Δv , in m/s
- 5. Direction of loading
- 6. etc.

It has been shown before that there is no single input parameter which can be used to effectively assess occupant injury. However, the design community often use peak acceleration, G_{peak} or Δv to determine the severity of any given pulse.

Earlier efforts to more adequately characterize the blast loading pulses include defining dependent variables such as Effective-g (slope of the velocity profile), and Specific Power ($G_{peak} \times \Delta v$) with some success when compared against a few of the injury criteria.

- 1. To determine If a single blast loading parameter is sufficient to adequately identify the occupant injury for the duration of typical blast events (0-20ms).
- 2. Effect of pulse "shape" on the occupant injuries
- 3. To create look-up tables/response surfaces for the different injury responses
 - for both stroking and non-stroking seat systems.

Preferred response relationship

For the two notional plots above showing the same injury response shown against two different blast loading parameters (A and B including duration of the pulse T), the plot on the right (and hence that blast loading parameter) is preferred for the following reasons;

- 1. Less sensitive to change in pulse duration
- 2. Easier to establish a simple 2d relationship

Vertical drop tower test fixture

MADYMO Dynamic simulation model including Q-version of Hybrid III ATD

LSDYNA model with FTSS v7.1.6 finite element dummy

Parametric study

- A triangular blast wave pulse was applied to the vertical drop tower sled.
- 2. A total of thirteen duration levels are studied; from 2.5 ms to 60 ms.
- At each of these duration levels, peak deceleration was varied from 10g with 10g increments up to the point when Δv reached ~15m/s
- 4. A total of 230 runs were made each type of seat characteristic studied.
- Three types of seat systems are; (i)
 Rigid (ii) Seat with a baseline EA (8kN)
 and (iii) A seat with softer EA (4kN)

Recording injury metrics

Response from the dummy especially pelvic acceleration and spine compression was quite noisy and did not sustain continuously long enough for those input pulses with higher onset rates.

- For each injury criterion the data is plotted against derived input quantities, viz.,
 - 1. effective-g^{1,3}, defined as the slope of the integral of the velocity trace;

$$\mathbf{G}_{\text{eff}} = \frac{1}{\mathbf{T}} \int_0^{\mathbf{T}} a dt = \frac{V_f - V_0}{T}$$

2. Specific power², defined as;

$$S = G_{peak} \times \Delta V$$

3. $\triangle V$, defined as;

$$\Delta \mathbf{V} = \int_0^{\mathbf{T}} a dt = V_f - V_0$$

When,
$$r = 5\%$$
;

$$\mathbf{G}_{\text{eff}} = \mathbf{G}_{\text{Peak}} \left(\frac{1 + \sqrt{2r}}{2} \right)$$

Effective-g =
$$0.9^* \Delta V/T$$
' = 132
G-average = $\Delta V/T$ = 100

$$(0 \le r \le 0.5)$$

For triangular pulses used in this parametric study, the ratio of G_{eff} to G_{peak} is 0.6581 when r=0.05

Head Injury Criteria (HIC₁₅)

Observations and analysis

- None of the primary input pulse parameters considered in this study, by itself, is an indicator of occupant injury.
- One reason could be that our range of time duration of input pulses which ranged from 2.5 ms to 60 ms is too broad.
- Among the three loading parameters under consideration, Δv by itself, has the potential to be a single good indicator in the typical blast loading range of 0-20ms.
- For a wider range of *T*, any of these primary parameters in combination with the pulse duration can be used to estimate occupant injury.

Analysis of pulse duration < 20ms

- Trend lines were drawn by grouping data points based on time duration of pulses, e.g., 0-10ms, 11-20ms and 21-60ms
- Correlation coefficients (r_c) are computed and tabulated for every injury criterion against the three variables (G-average, Sp. Power and ΔV)

$$r_{c} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^{2} \sum (y - \bar{y})^{2}}}$$

where, x and y are injury criterion and input variable respectively

Head Injury Criteria (HIC₁₅) Trend

Correlation coeff. (T = 0-10ms)

				(Correlat	ion Coe	fficient	s							
			T from 0-10ms												
		G	i-averag	e	Spe	cific po	wer	ΔV							
		Rigid	EA1	EA2	Rigid	EA1	EA2	Rigid	EA1	EA2					
1	HIC @15ms	0.67	0.52	0.59	0.81	0.74	0.74	0.94	0.74	0.89					
2	Head resultant acceleration @2ms	0.73	0.63	0.65	0.79	0.77	0.77	1.00	0.85	0.96					
3	Head resultant acclelaration @0ms	0.73	0.62	0.66	0.78	0.78	0.78	1.00	0.85	0.96					
4	Neck injury criteria, N _{ij}	0.71	0.61	0.65	0.79	0.77	0.77	1.00	0.84	0.95					
5	Chest resultant acceleration @3ms	0.74	0.63	0.62	0.78	0.74	0.74	0.99	0.87	0.94					
6	Chest resultant acceleration @7ms	0.65	0.57	0.73	0.72	0.80	0.80	0.96	0.83	0.95					
7	Lumbar spine compression @30ms	0.59	-0.42	0.19	0.53	0.40	0.40	0.77	-0.65	0.30					
8	Lumbar spine compression @0ms	-0.75	-0.66	-0.68	-0.80	-0.81	-0.81	-1.00	-0.88	-0.96					
9	Pelvis vertical acceleration @7ms	-0.46	-0.23	-0.13	-0.63	-0.08	-0.08	-0.74	-0.58	-0.22					
10	DRI (Z)	0.71	0.71	0.70	0.78	0.80	0.80	1.00	0.99	0.99					

0.5 < r < 0.75
0.75 < r < 0.9
r > 0.9

Analysis and Observations

Probability of achieving r > 0.8 0-10 ms 10 - 20 ms 20 - 60 ms G-Avg 0.00 0.80 0.60 Sp. Pwr 0.20 0.83 0.77 Delta V 0.77 0.83 0.63

For rigid seat only

Pro	bability of	achieving r	> 0.8											
	0-10 ms 10 - 20 ms 20 - 60ms													
G-Avg	0.00	0.90	0.90											
Sp. Pwr	0.20	0.90	0.90											
Delta V	0.80	0.90	0.80											

- Among the three loading parameters under consideration, Δv by itself, is a single good indicator in the typical blast loading range of 0-20ms.
- A metamodel is constructed using the results from the parametric study to generate 3d response surfaces for the ten upper body injuries.
- An injury lookup table is constructed based on this parametric study using linear/quadratic regression equations.

Physical Test data - summary

												Lumbar	spine	Pelvic Z	acc., g	DRI
			Peak		0.05% ΔV,	0.95% ΔV,	0.05% T,	0.95%T,					30 ms		7 ms	
#	Test	Date	acc., g	ΔV , m/s	m/s	m/s	ms	ms	T, ms	G-avg	Eff-g	Peak	clip	Peak	clip	
1	5ms-3mps	2/17/2011	93.87	3.09	0.154	2.9353	0.632	4.659	4.43	63	70	1504.1	311.5	67.73	15.41	11.85
2	5ms-3mps-repeat	2/18/2011	87.10	2.93	0.146	2.7790	0.729	4.861	4.55	60	65	1244.7	180.9	54.38	19.97	10.45
3	5ms-4mps	2/17/2011	139.48	4.26	0.213	4.0516	0.686	4.446	4.14	87	104	2221.4	312.8	131.91	12.91	16.07
4	5ms-6mps	2/18/2011	189.00	5.52	0.276	5.2453	0.519	4.134	3.98	113	140	2730.5	205.2	189.24	8.14	19.7
5	5ms-6msp-repeat	2/18/2011	201.69	5.88	0.294	5.5883	0.548	4.162	3.98	120	149	2965.1	234.1	204.14	5.48	20.7
6	5ms-7mps	2/18/2011	237.72	6.87	0.343	6.5228	0.545	4.132	3.95	140	176	3688.4	214.9	260.74	5.81	24.29
7	20ms-3mps	2/17/2011	27.79	2.35	0.117	2.2310	0.663	10.592	10.92	48	22	1345.9	325.8	39.72	23.77	11.45
8	20ms-4mps	2/17/2011	47.80	3.81	0.191	3.6198	1.110	10.878	10.74	78	36	1935.7	374.8	74.27	25.23	16.27
9	20ms-5mps	2/17/2011	68.07	4.82	0.241	4.5764	1.275	10.262	9.89	98	49	2580.3	375.2	113.24	22.6	19.92
10	20ms-5mps-repeat	2/17/2011	65.60	4.75	0.238	4.5172	1.317	10.503	10.10	97	47	2607.1	402.1	110.3	20.44	19.68
11	5ms-10in	NA	74.25	2.78	0.139	2.6403	0.411	5.953	6.10	57	46	1466.7	200.1	91.61	4.41	10.65
12	5ms-19in	NA	112.04	3.73	0.186	3.5397	0.391	5.721	5.86	76	64	2096.3	200.2	138.97	4.74	14.52
13	5ms-30in	NA	156.53	4.90	0.245	4.6537	0.384	5.726	5.88	100	84	3015.4	171.9	187.05	5.17	18.63

	Peak Acc., g	∆ V, m/s	T, ms
Minimum	28	2.3	3.95
Maximum	238	6.9	11.04
Mean	111	4.2	6.83

Physical Test data

Peak lumbar axial compression @ 0ms vs. ΔV

A linear trend line can be seen injury data $(0 \le T \le 20 \text{ms})$ from physical tests

Injury lookup charts (Response Surface)

Injury lookup tool

#	Blast load parameters	Value	
1	Peak accleleration, G _{peak}	168	
2	Time duration of pulse, T, ms ◆	7	
3	"r" factor, % (default 5%)	12	
4	ΔV, m/s	5.77	
5	Adjusted ∆V for effective-g	4.4	
6	Adjusted time for effective-g	3.48	
7	G-Average	84	
8	Effective-g	125	

	Ossumant Initime C	ritorio	Se	at EA syste	m
	Occupant Injury C	None	OCP	OCP	
#	Criteria	Reference values	None	(15kN)	(7.5 kN)
		350, 700, 1050 (Low,			
1	HIC @15ms	moderate, high risk)	232	71	10
2	Head resultant acceleration (2ms clip)	1 50g	75.9	37.3	24.4
3	Head resultant acclelaration (Peak)	180g	81.1	39.6	25.7
4	Neck injury criteria, Nij	<1	0.65	0.28	0.18
5	Chest resultant acceleration (3ms clip	60g	78.7	34.0	22.8
6	Lumbar spine compression (Peak)	6672 N	-17,408	-7,164	-5,514
		15, 18, 23 (low,			
7	DRI _z	moderate, high risk)	25	23	18

Effect of loading paths

A typical blast pulse is modified such that every pulse yielded the same final velocity, ΔV of 8.6 m/s within the same time duration of 5 ms; i.e., same G-average of 175g

The eight pulses are;

- Typical triangular
- 2. Haversine
- 3. Sine (Scaled by $\pi/4$)
- 4. Constant
- 5. Front loaded triangular (#2)
- 6. Rear loaded triangular (#3)
- 7. Triangular with two peaks (#4)
- 8. Triangular with three peaks (#5)

The analysis also repeated for a second set of pulses with 10ms duration keeping the final velocity at 8.6m/s (G-average of 87.5g)

Effect of loading paths (T = 5ms)

T = 5ms

			Pulse i	teration	ns				HEAD			NECK	CHEST		PELVIS		LUMBAR SPINE			
				Rate of					Resultant acceleration, g				HIC	N _{ij}	Resu accelera		Z-Accele- ration, g	DRI (z),	Ax compres	I
		Peak,	Durat-	onset,	Δ V ,							CFC								
#	Pulse type	Dec., g	ion, ms	g/ms	m/s	Sp. Pwr	Eff. G	G-avg	@ 2ms	@ 0ms	@ 15 ms	1000	@ 3ms	@ 7ms	@ 7ms		@30ms	@0ms		
1	Triangular	350	5	140	8.6	3004	218	175	113.4	122.7	687	0.96	111.2	33.9	-4.9	36.4	0.0	-26.5		
2	Haversine	350	5	140	8.6	3003	235	175	113.6	122.9	689	0.96	111.7	34.9	-4.8	36.4	0.0	-26.5		
3	Sine	275	5	110	8.6	2360	210	175	113.2	122.5	679	0.96	110.7	32.6	-4.8	36.2	0.0	-26.4		
4	Constant	182	5	NA	8.6	1562	181	175	112.5	121.5	673	0.96	109.1	30.5	-4.9	36.3	0.0	-26.3		
5	Triangular #2	350	5	140	8.6	3004	212	175	113.8	123.1	689	0.97	111.3	33.8	-4.9	36.4	0.0	-26.5		
6	Triangular #3	350	5	140	8.6	3004	212	175	112.9	122.1	683	0.96	110.6	32.7	-4.9	36.4	0.0	-26.4		
7	Triangular #4	350	5	140	8.6	3004	217	175	114.0	123.4	701	0.97	111.7	33.8	-5.0	36.6	0.0	-26.6		
8	Triangular #5	350	5	140	8.6	3004	205	175	112.9	122.1	673	0.96	110.3	33.0	-4.9	36.2	0.0	-26.3		

Including "Constant" type pulse

morating constant type paids														
Mean, μ=	8.6	2743	211.2	175.0	113.3	122.5	684.3	1.0	110.8	33.2	-4.9	36.4	0.0	-26.4
Standard deviation, σ =	0.0	528	15.1	0.0	0.5	0.6	9.4	0.0	0.9	1.3	0.1	0.1	0.0	0.1
Coefficient of variation, C _v (%)	0%	19%	7%	0%	0%	1%	1%	0%	1%	4%	1%	0%	0%	0%

Excluding "Constant" type pulse

Excidenting Constant type pulse														
Mean, μ =	8.6	2912.0	215.4	175.0	113.4	122.7	685.9	1.0	111.1	33.5	-4.9	36.4	0.0	-26.5
Standard deviation, σ =	0.0	243.6	9.8	0.0	0.4	0.5	8.9	0.0	0.5	0.8	0.1	0.1	0.0	0.1
Coefficient of variation, C _v (%)	0%	8%	5%	0%	0%	0%	1%	1%	0%	2%	1%	0%	0%	0%

No path dependency of loading is observed

- There is no single blast loading parameter from an input pulse which can be used to fully determine the occupant injury risk from a blast loading over a wide range of pulse durations (0-60ms).
- Correlation coefficients distribution for Δv especially in the 0-10ms range is narrower and closer to 1 than those for Specific Power and Effective-g.
- Among the different blast pulse parameters considered in this study, Δv is the best single indicator for estimating injury criteria, for typical blast pulse duration ranges.
- Two different approaches to estimate occupant injuries as a function of Blast duration, Δv , and Seat characteristics have been employed using the results from this parametric study, namely:
 - Injury lookup tables using linear/quadratic regression equations
 - Meta-model based Response surface methodology
- Other:
 - For any given Δv and T (0-10ms), the shape of the pulse and its peak value has no significant effect on the injury criteria (excluding the constant type)
 - Trends in the test data strongly support M&S findings of this study.

- 1. "Application of mathematical modeling in potentially survivable blast threats in military vehicles" Sudhakar Arepally, Dr. David Gorsich, Karrie Hope, Stephen Gentner and Kari Dortleff 26th Army Science Conference, 1-4 December 2008, Orlando, Florida, United States
- 2. "Response of dummies to high onset rate G_z loading on sled" Nagarajan Rangarajan, Jason Moore, Paul Gromowski, James Rinaldi, Narayan Yoganandan, Frank Pintar, Dennis Mariman and B Joseph McEntire Personal Armor Systems Symposium (PASS 2012), 17-21 September 2012, Nuremberg, Germany
- "Crew Injury Risk Assessment Effective g vs. Delta V"
 James Sheng and Sudhakar Arepally Undated
 TARDEC Brief

Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Dept. of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoD, and shall not be used for advertising or product endorsement purposes.

The authors would like to thank the Underbody Blast Modeling/Methodology (UBM) program managed by ARL/SLAD and ATEC, for the provided funding which made this project possible. This material is based on R&D work supported by the U.S. Army TACOM Life Cycle Command under Contract No. W56HZV-08-C-0236, through a subcontract with Mississippi State University (MSU), and was performed for the Simulation Based Reliability and Safety (SimBRS) research program. Any opinions, finding and conclusions or recommendations in this paper are those of the author(s) and do not necessarily reflect the views of the U.S. Army TACOM Life Cycle Command.

The authors are also most grateful to Mr. Sudhakar Arepally for his reviews of this work, and for patiently providing insight to his earlier research on Effective-G [13], which served as the precursor for this project.

BACKUP SLIDES

For triangular shaped pulses studied;

$$G_{eff}$$
 (Arepally et. al.) = 0.6 * G_{peak}
 G_{eff} (Sheng et. al.) = 0.6581 * G_{peak} (when r=0.05)
 G_{avg} = 0.5 * G_{peak}

Head resultant acceleration (2ms-clip)

Head resultant acceleration (Peak)

Neck injury criteria Nii

Chest resultant acceleration (3ms-clip)

Chest resultant acceleration (7ms-clip)

Lumbar compression (30ms-clip)

Lumbar compression (Peak)

Pelvis vertical acceleration (7ms-clip)

Head resultant acc. (2ms-clip) Trend

Head resultant acc. (Peak) Trend

Neck injury criteria N_{ii} (Trend)

Chest resultant acc. (3ms-clip) Trend

Chest resultant acc. (7ms-clip) Trend

Lumbar comp. (30ms-clip) Trend

Lumbar compression (Peak) Trend

Pelvis vertical acc. (7ms-clip) Trend

Correlation coeff. (T = 10-20ms)

	Correlation Coefficients											
				T fro	om 10-2	0ms						
	G	-averag	e	Spe	cific po	wer						
	Rigid	EA1	L EA2 Rigid		EA1	EA2	Rigid	EA1	EA2			
1 HIC @15ms	0.94	0.73	0.86	0.99	0.85	0.95	0.95	0.75	0.90			
2 Head resultant acceleration @2ms	0.98	0.83	0.92	0.98	0.92	0.96	0.99	0.85	0.96			
3 Head resultant acclelaration @0ms	0.99	0.82	0.92	0.97	0.92	0.96	0.99	0.85	0.96			
4 Neck injury criteria, N _{ij}	0.97	0.81	0.92	0.98	0.92	0.97	0.99	0.84	0.96			
5 Chest resultant acceleration @3ms	0.99	0.84	0.92	0.94	0.93	0.98	0.98	0.87	0.96			
6 Chest resultant acceleration @7ms	0.94	0.90	0.95	0.96	0.89	0.91	0.98	0.89	0.93			
7 Lumbar spine compression @30ms	0.92	-0.77	0.09	0.84	-0.66	0.29	0.86	-0.82	0.04			
8 Lumbar spine compression @0ms	-0.99	-0.84	-0.92	-0.96	-0.94	-0.97	-0.98	-0.88	-0.96			
9 Pelvis vertical acceleration @7ms	-0.67	-0.55	-0.04	-0.62	-0.47	0.10	-0.76	-0.56	-0.06			
10 DRI (Z)	0.96	0.95	0.94	0.96	0.97	0.97	1.00	0.98	0.98			

0.5 < r < 0.75
0.75 < r < 0.9
r > 0.9

Correlation coeff. (T = 20-60ms)

			(Correlat	ion Coe	fficient	s		
				T fro	m 20-6	0ms			
	G	-averag	e	Spe	cific po	wer			
	Rigid	EA1	EA2	Rigid	EA1	EA2	Rigid	EA1	EA2
1 HIC @15ms	0.96	0.69	0.82	0.98	0.77	0.93	0.77	0.53	0.82
2 Head resultant acceleration @2ms	0.98	0.79	0.88	0.98	0.88	0.96	0.86	0.68	0.92
3 Head resultant acclelaration @0ms	0.98	0.79	0.87	0.98	0.88	0.96	0.85	0.68	0.92
4 Neck injury criteria, N _{ij}	0.98	0.79	0.88	0.99	0.88	0.96	0.84	0.69	0.92
5 Chest resultant acceleration @3ms	0.97	0.80	0.86	0.98	0.90	0.95	0.88	0.74	0.92
6 Chest resultant acceleration @7ms	0.96	0.90	0.69	0.98	0.93	0.76	0.92	0.85	0.89
7 Lumbar spine compression @30ms	0.16	-0.69	-0.28	0.00	-0.67	-0.21	-0.41	-0.86	-0.40
8 Lumbar spine compression @0ms	-0.99	-0.79	-0.84	-0.96	-0.89	-0.93	-0.84	-0.74	-0.95
9 Pelvis vertical acceleration @7ms	-0.91	-0.69	-0.08	-0.94	-0.70	0.02	-0.94	-0.79	-0.15
10 DRI (Z)	0.89	0.90	0.86	0.93	0.95	0.94	0.99	0.95	0.96

0.5 < r < 0.75
0.75 < r < 0.9
r > 0.9

Lumbar compression vs. Effective-g

Lumbar compression from physical tests also do not show a good relationship with Effective-g. Dependence on *T* can be observed. Good correlation with M&S data can also be seen.

Three same three pulses with a constant Δv of 4.9m/s and a duration of 20, 40 and 80ms taken from Ref 1 (Fig 14).

Effective-g for these pulses are 26.6, 13.3 and 6.65 g.

Lumbar compression (Const Av)

Lumbar compression (Const Δv)

The three lumbar compression data points do show a good linear relationship with Effective-g (Ref . 1 Fig. 16).

DRI (Const Δv)

The three DRI data points do not show a good linear relationship with Effective-g (Ref . 1 Fig. 15).

Pulses with same Effective-g

Three pulses are chosen such that peak acceleration for each is 200g and the duration of the pulses are 2.5, 5 and 10ms. Δv for these pulses are 2.45, 4.9 and 9.81 m/s. Effective-g for these pulses are all equal to 132 g.

Pulses with same Effective-g

The three example pulses have the same effective-g of 132 but the injuries are not the same.

However, both these injuries demonstrate a linear relationship with Δv .

Pulses with same Effective-g

Injury results overlaid on the results from the parametric study

A linear relationship between injury and Δv

Occupant injury dependence on *T* is observed as reported in Ref #3.

Effect of loading paths (T = 10ms)

T = 10ms

			Pulse i	teratio	ns					HEAD		NECK	СН	E ST	PEL	VIS	LUMBAR SPINE	
				Rate of					Resu acceler		HIC	N _{ij}		ıltant ation, g	Z-Accele- ration, g	DRI (z), g	Ax compres	
		Peak,	Durat-	onset,	Δ V ,							CFC						
#	Pulse type	Dec., g	ion, ms	g/ms	m/s	Sp. Pwr	Eff. G	G-avg	@ 2ms	@ 0ms	@ 15 ms	1000	@ 3ms	@ 7ms	@ 7ms		@30ms	@0ms
1	Triangular	175	10	35	8.6	1502	109	88	103.8	111.4	628	0.88	101.0	27.8	-5.9	36.4	0.0	-23.9
2	Haversine	175	10	35	8.6	1502	118	88	107.1	115.0	649	0.91	103.4	28.0	-5.5	36.4	0.0	-24.9
3	Sine	138	10	28	8.6	1180	105	88	101.7	109.1	621	0.86	99.3	29.9	-6.2	36.3	0.0	-24.1
4	Constant	91	10	NA	8.6	781	91	88	90.8	98.2	582	0.78	93.3	45.1	-20.0	36.4	0.0	-22.1
5	Triangular #2	175	10	35	8.6	1502	106	88	102.6	110.1	622	0.87	100.9	31.7	-4.8	36.4	0.0	-24.3
6	Triangular #3	175	10	35	8.6	1502	106	88	101.8	109.1	626	0.87	98.1	28.5	-8.5	36.5	0.0	-23.9
7	Triangular #4	175	10	35	8.6	1502	108	88	103.6	111.1	638	0.88	100.9	28.6	-6.0	36.7	0.0	-24.2
8	Triangular #5	175	10	35	8.6	1502	103	88	100.9	108.4	610	0.86	98.9	30.0	-6.0	36.2	0.0	-23.9

Including "Constant" type pulse

meraning constant type pane														
Mean, μ =	8.6	1372	105.6	87.5	101.5	109.1	621.9	0.9	99.5	31.2	-7.9	36.4	0.0	-23.9
Standard deviation, σ =	0.0	264	7.6	0.0	4.7	4.8	19.8	0.0	3.0	5.8	5.0	0.1	0.0	8.0
Coefficient of variation, C _v (%)	0%	19%	7%	0%	5%	4%	3%	4%	3%	18%	64%	0%	0%	3%

Excluding "Constant" type pulse

	Mean, μ =	8.6	1456.0	107.7	87.5	103.1	110.6	627.6	0.9	100.4	29.2	-6.1	36.4	0.0	-24.2
	Standard deviation, σ =	0.0	121.8	4.9	0.0	2.1	2.2	12.5	0.0	1.8	1.4	1.1	0.2	0.0	0.4
Coeffici	ient of variation, C_v (%)	0%	8%	5%	0%	2%	2%	2%	2%	2%	5%	19%	0%	0%	1%

No path dependency of loading is observed on most of the injuries except pelvic clip values

Effect of loading paths (T = 40ms)

T = 40ms

			Pulse i	teration	ns					HEAD		NECK	СН	E ST	PEL	VIS	LUMBAR	
				Rate					Resu	Itant	HIC	N ii	Resu	Itant	Z-Accele-	DRI (z),	Ax	ial
				of					acceler	ation, g		,	acceler	ation, g	ration, g	g	compres	sion, kN
		Peak,	Durat-	onset,	Δ V ,							CFC						
#	Pulse type	Dec., g	ion, ms	g/ms	m/s	Sp. Pwr	Eff. G	G-avg	@ 2ms	@ 0ms	@ 15 ms	1000	@ 3ms	@ 7ms	@ 7ms		@30ms	@0ms
1	Triangular	44	40	2	8.6	376	27	22	54.6	55.4	223	0.46	47.4	42.0	-31.6	33.7	-1.3	-11.4
2	Haversine	44	40	2	8.6	375	29	22	62.2	63.7	274	0.53	50.0	49.2	-31.2	34.4	-1.0	-12.7
3	Sine	34	40	2	8.6	295	26	22	50.7	51.2	190	0.42	44.9	42.2	-28.0	33.3	-1.6	-10.7
4	Constant	23	40	NA	8.6	195	23	22	39.4	40.0	100	0.30	35.9	34.4	-25.0	31.4	-3.5	-8.5
5	Triangular #2	44	40	2	8.6	376	27	22	52.7	54.0	221	0.45	49.3	41.0	-24.7	33.3	-1.5	-11.5
6	Triangular #3	44	40	2	8.6	376	27	22	50.6	51.0	172	0.42	45.2	44.9	-30.9	33.3	-1.5	-10.1
7	Triangular #4	44	40	2	8.6	376	27	22	53.6	54.3	212	0.45	46.1	44.1	-31.3	33.8	-1.4	-11.2
8	Triangular #5	44	40	2	8.6	376	26	22	52.4	53.6	183	0.43	40.9	39.8	-30.8	33.1	-1.7	-10.8

Including "Constant" type pulse

Mean, μ=	8.6	343	26.4	21.9	52.0	52.9	196.9	0.4	45.0	42.2	-29.2	33.3	-1.7	-10.9
Standard deviation, σ =	├	66	1.9	0.0	6.3	6.5	50.3	0.1	4.6	4.3	2.9	0.9	0.8	1.2
Coefficient of variation, C _v (%)	 	19%	7%	0%	12%	12%	26%	15%	10%	10%	10%	3%	45%	11%

Excluding "Constant" type pulse

Excluding Constant type pulse														
Mean, μ=	8.6	364.0	26.9	21.9	53.8	54.7	210.7	0.5	46.3	43.3	-29.8	33.6	-1.4	-11.2
Standard deviation, σ =	0.0	30.5	1.2	0.0	4.0	4.3	34.1	0.0	3.1	3.1	2.5	0.4	0.2	0.8
Coefficient of variation, C _v (%)	0%	8%	5%	0%	7%	8%	16%	8%	7%	7 %	9%	1%	16%	7 %

No path dependency of loading is observed except lumbar clip values and HIC₁₅