Reply to Office Action Dated: 28 May 2006

Docket No.: QA0237-US -DIV1

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A method of treating one or more conditions associated with p38 kinase activity comprising administering to a patient in need thereof at least one compound having the formula (I):

$$R_{2}$$
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{6}
 R_{1}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{6}
 R_{1}
 R_{1}
 R_{2}

or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein:

R₃ is hydrogen, methyl, perfluoromethyl, methoxy, halogen, cyano or NH₂;

X is selected from
$$-O$$
, $-OC(=O)$, $-S$, $-S(=O)$, $-SO_2$, $-C(=O)$, $-CO_2$, $-NR_{10}$, $-NR_{10}C(=O)$, $-NR_{10}C(=O)$, $-NR_{10}C(=O)$, $-NR_{10}CO_2$, $-NR_{10}SO_2$, $-NR_{10}SO_2$, $-NR_{10}SO_2$, $-NR_{10}SO_2$, $-NR_{10}SO_2$, $-SO_2NR_{10}$, $-SO_2NR_{10}$, $-C(=O)NR_{10}$, halogen, nitro, and cyano, or X is absent;

Z is selected from O, S, N, and CR₂₀, wherein when Z is CR₂₀, said carbon atom may form an optionally-substituted bicyclic aryl or heteroaryl with R₄ and R₅;

$$R_1 \text{ is hydrogen, } -CH_3, -OH, -OCH_3, -SH, -SCH_3, -OC(=O)R_{21}, -S(=O)R_{22}, -SO_2R_{22}, \\ -SO_2NR_{24}R_{25}, -CO_2R_{21}, -C(=O)NR_{24}R_{25}, -NH_2, -NR_{24}R_{25}, -NR_{21}SO_2NR_{24}R_{25}, \\ -NR_{21}SO_2R_{22}, -NR_{24}C(=O)R_{25}, -NR_{24}CO_2R_{25}, -NR_{21}C(=O)NR_{24}R_{25}, \text{ halogen, nitro, or cyano;}$$

R₂ is selected from:

- a) hydrogen, provided that R_2 is not hydrogen when X is -S(=O), $-SO_2$, $-NR_{10}CO_2$, or $-NR_{10}SO_2$;
- b) alkyl, alkenyl, and alkynyl optionally substituted with up to four R_{26} or pentafluoroalkyl;
- c) aryl and heteroaryl optionally substituted with up to three R₂₇; and

Reply to Office Action Dated: 28 May 2006

Docket No.: QA0237-US -DIV1

d) heterocyclo and cycloalkyl optionally substituted with keto (=O), up to three R₂₇, and/or having a carbon-carbon bridge of 3 to 4 carbon atoms; or

- e) R₂ is absent if X is halogen, nitro or cyano;
- (i) R₄ is substituted aryl, aryl substituted with NHSO₂alkyl, substituted heteroaryl, or an optionallysubstituted bicyclic 7-11 membered saturated or unsaturated carbocyclic or heterocyclic ring, and

R₅ is hydrogen, alkyl, or substituted alkyl, except when Z is O or S, R₅ is absent, or alternatively,

- (ii) R₄ and R₅ taken together with Z form an optionally-substituted bicyclic 7-11 membered aryl or heteroaryl;
- R₆ is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heterocyclo, substituted heterocyclo, $-NR_7R_8$, $-OR_7$, or halogen;
- R₁₀ and R₁₁ are independently selected from hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclo, and substituted heterocyclo;
- R₇, R₈, R₂₁, R₂₄, and R₂₅ are independently selected from hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heterocylco, and substituted heterocyclo;
- R₂₀ is hydrogen, lower alkyl, or substituted alkyl, or R₂₀ may be absent if the carbon atom to which it is attached together with R₄ and R₅ is part of an unsaturated bicyclic aryl or heteroaryl;
- R₂₂ is alkyl, substituted alkyl, aryl, substituted aryl, heterocyclo, or substituted heterocyclo;
- R₂₆ is selected from halogen, trifluoromethyl, haloalkoxy, keto (=O), nitro, cyano, -SR₂₈, -OR₂₈, $-NR_{28}R_{29}$, $-NR_{28}SO_2$, $-NR_{28}SO_2R_{29}$, $-SO_2R_{28}$, $-SO_2NR_{28}R_{29}$, $-CO_2R_{28}$, $-C(=O)R_{28}$, $-C(=O)NR_{28}R_{29}$, $-OC(=O)R_{28}$, $-OC(=O)NR_{28}R_{29}$, $-NR_{28}C(=O)R_{29}$, $-NR_{28}CO_{2}R_{29}$, $=N-C(=O)R_{28}R_{29}$, $-NR_{28}CO_{2}R_{29}$, $-NR_{28}CO_{2$ OH, =N-O-alkyl; aryl optionally substituted with one to three R₂₇; cycloalkyl optionally substituted with keto(=O), one to three R₂₇, or having a carbon-carbon bridge of 3 to 4 carbon atoms; and heterocyclo optionally substituted with keto (=0), one to three R₂₇, or having a carbon-carbon bridge of 3 to 4 carbon atoms; wherein R₂₈ and R₂₉ are each independently selected from hydrogen, alkyl, alkenyl, aryl, aralkyl, C₃₋₇cycloalkyl, and C₃₋₇heterocycle, or may be taken together to form a C₃₋₇heterocycle; and wherein each R₂₈ and R₂₉ in turn is optionally substituted with up to two of alkyl, alkenyl, halogen, haloalkyl, haloalkoxy, cyano, nitro, amino, hydroxy, alkoxy, alkylthio, phenyl, benzyl, phenyloxy, and benzyloxy; and

Reply to Office Action Dated: 28 May 2006

Docket No.: QA0237-US -DIV1

R₂₇ is selected from alkyl, R₃₂, and C₁₋₄alkyl substituted with one to three R₃₂, wherein each R₃₂ group is independently selected from halogen, haloalkyl, haloalkoxy, nitro, cyano, -SR₃₀, -OR₃₀, -NR₃₀R₃₁, -NR₃₀SO₂, -NR₃₀SO₂R₃₁, -SO₂R₃₀, -SO₂NR₃₀R₃₁, -CO₂R₃₀, -C(=O)R₃₀, -C(=O)NR₃₀R₃₁, -OC(=O)R₃₀, -OC(=O)NR₃₀R₃₁, -NR₃₀C(=O)R₃₁, -NR₃₀CO₂R₃₁, and a 3 to 7 membered carbocyclic or heterocyclic ring optionally substituted with alkyl, halogen, hydroxy, alkoxy, haloalkyl, haloalkoxy, nitro, amino, or cyano, wherein R₃₀ and R₃₁ are each independently selected from hydrogen, alkyl, alkenyl, aryl, aralkyl, C₃₋₇cycloalkyl, and heterocycle, or may be taken together to form a C₃₋₇heterocycle.

2. (Currently Amended) The method of claim 1 comprising administering to the patient at least one compound having the formula (I), or a pharmaceutically acceptable salt, prodrug or solvate thereof, wherein:

 R_3 is methyl, $-CF_3$, or $-OCH_3$;

X is selected from
$$-C(=O)$$
-, $-CO_2$ -, $-NR_{10}$ -, $-NR_{10}C(=O)$ -, $-NR_{10}CO_2$ -, $-NR_{10}SO_2$ -, $-SO_2NR_{10}$ -, and $-C(=O)NR_{10}$ -, or X is absent;

Z is N;

R₂ is hydrogen, C₂₋₆alkyl, C₁₋₄alkyl substituted with up to four R₂₆, pentafluoroalkyl, or aryl or heteroaryl optionally substituted with up to two R₂₇;

 R_4 is phenyl substituted with one R_{12} and zero to three R_{13} ;

 R_{5} and R_{10} independently are selected from hydrogen and lower alkyl;

R₁₂ is carbamyl, sulfonamido, arylsulfonylamine, or ureido, each of which is optionally substituted with up to two of hydroxy, alkyl, substituted alkyl, alkoxy, aryl, substituted aryl, and aralkyl, or alkylsulfonylamine;

R₁₃ at each occurrence is independently selected from alkyl, substituted alkyl, halo,

trifluoromethoxy, trifluoromethyl,
$$-OR_{14}$$
, $-C(=O)$ alkyl, $-OC(=O)$ alkyl, $-NR_{15}R_{16}$, $-SR_{15}$, $-NO_2$, $-CN$, $-CO_2R_{15}$, $-CONH_2$, $-SO_3H$, $-S(=O)$ alkyl, $-S(=O)$ aryl, $-NHSO_2$ -aryl- $-R_{17}$, $-NHSO_2$ -alkyl, $-SO_2NHR_{17}$, $-CONHR_{17}$, and $-NHC(=O)NHR_{17}$;

 R_{14} is hydrogen, alkyl, or aryl;

R₁₅ is hydrogen or alkyl;

R₁₆ is hydrogen, alkyl, aralkyl, or alkanoyl; and

Reply to Office Action Dated: 28 May 2006

Docket No.: QA0237-US -DIV1

R₁₇ is hydrogen, hydroxy, alkyl, substituted alkyl, alkoxy, aryl, substituted aryl, or aralkyl.

3. (Currently Amended) A method of treating one or more conditions associated with p38 kinase activity comprising administering to a patient in need thereof at least one compound having the formula (I):

$$R_{3}$$
 R_{4}
 Z
 R_{5}
 R_{5}
 R_{1}
 R_{6}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{6}
 R_{1}
 R_{1}

or a pharmaceutically acceptable salt, prodrug or solvate thereof, wherein:

R₃ is hydrogen, methyl, perfluoromethyl, methoxy, halogen, cyano or NH₂;

X is selected from
$$-O$$
, $-OC(=O)$, $-S$, $-S(=O)$, $-SO_2$, $-C(=O)$, $-CO_2$, $-NR_{10}$, $-NR_{10}C(=O)$, $-NR_{10}C(=O)$, $-NR_{10}C(=O)$, $-NR_{10}C(=O)$, $-NR_{10}CO_2$, $-NR_{10}SO_2$, $-NR_{10}SO_2$, $-NR_{10}SO_2$, $-NR_{10}SO_2$, $-SO_2NR_{10}$, $-SO_2NR_{10}$, $-C(=O)NR_{10}$, halogen, nitro, and cyano, or X is absent;

Z is O, S, N, or CR_{20} ;

$$R_1 \text{ is hydrogen, } -CH_3, -OH, -OCH_3, -SH, -SCH_3, -OC(=O)R_{21}, -S(=O)R_{22}, -SO_2R_{22}, \\ -SO_2NR_{24}R_{25}, -CO_2R_{21}, -C(=O)NR_{24}R_{25}, -NH_2, -NR_{21}SO_2NR_{24}R_{25}, -NR_{21}SO_2R_{22}, \\ -NR_{24}C(=O)R_{25}, -NR_{24}CO_2R_{25}, -NR_{21}C(=O)NR_{24}R_{25}, \text{ halogen, nitro, or cyano;}$$

- R₂ is hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heterocyclo, substituted heterocyclo, aralkyl, substituted aralkyl, or heterocycloalkyl, or substituted heterocycloalkyl, or when X is halo, nitro or cyano, R₂ is absent, provided that R₂ is not hydrogen when X is -S(=O)-, -SO₂-, -NR₁₀CO₂-, or -NR₁₀SO₂-;
- R₄ is substituted aryl, aryl substituted with NHSO₂alkyl, substituted heteroaryl, or an optionally-substituted bicyclic 7-11 membered saturated or unsaturated carbocyclic or heterocyclic ring system;

R₅ is hydrogen, alkyl, or substituted alkyl, except that when Z is O or S, R₅ is absent;

R₆ is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heterocyclo, substituted heterocyclo,

 $-NR_7R_8$, $-OR_7$, or halogen;

Reply to Office Action Dated: 28 May 2006

Docket No.: QA0237-US -DIV1

R₇, R₈, R₁₀, R₁₁, R₂₁, R₂₄, and R₂₅ are independently selected from hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heterocyclo, and substituted heterocyclo;

R₂₀ is hydrogen, lower alkyl, or substituted alkyl; and

R₂₂ is alkyl, substituted alkyl, aryl, substituted aryl, heterocyclo, or substituted heterocyclo.

4. (Currently Amended) The method of claim 3 comprising administering to the patient at least one compound of formula (I), in which R₄, R₅ and Z are represented by R₄ and R₅ taken together with Z form:

$$\underset{\sim}{\text{HIN}} \stackrel{(R_{13})_n}{\underset{\sim}{\text{A}}}$$

or a pharmaceutically acceptable salt, prodrug or solvate thereof, wherein:

R₁₂ is attached to any available carbon atom of phenyl ring A and is selected from carbamyl, sulfonamido, arylsulfonylamine, and ureido, each of which is optionally substituted with up to one of hydroxy, alkyl, substituted alkyl, alkoxy, aryl, substituted aryl, and aralkyl, or C₁.

4alkylsulfonylamine;

 R_{13} is attached to any available carbon atom of phenyl ring A and at each occurrence is independently selected from alkyl, substituted alkyl, halo, trifluoromethoxy, trifluoromethyl, $-OR_{14}, -C(=O)alkyl, -OC(=O)alkyl, -NR_{15}R_{16}, -SR_{15}, -NO_2, -CN, -CO_2R_{15}, -CONH_2, \\ -SO_3H, -S(=O)alkyl, -S(=O)aryl, -NHSO_2-aryl-R_{17}, -NHSO_2C_{1-4}alkyl, -SO_2NHR_{17}, \\ -CONHR_{17}, and -NHC(=O)NHR_{17};$

R₁₄ is hydrogen, alkyl, or aryl;

R₁₅ is hydrogen or alkyl;

R₁₆ is hydrogen, alkyl, aralkyl, or alkanoyl; and

 R_{17} is hydrogen, hydroxy, alkyl, substituted alkyl, alkoxy, aryl, substituted aryl, or aralkyl; and n is 0, 1, 2 or 3.

Reply to Office Action Dated: 28 May 2006

Docket No.: QA0237-US -DIV1

5. (Currently Amended) The method of claim 3 comprising administering to the patient at least one compound having the formula (II):

$$R_3$$
 R_5
 N
 R_6
 R_1
 R_1
 R_1
 R_1
 R_1
 R_1
 R_1
 R_1
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4
 R_6
 R_6
 R_1
 R_1
 R_2
 R_1
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4
 R_5
 R_6
 R_6

or a pharmaceutically acceptable salt, prodrug, or solvate thereof, wherein:

R₃ is methyl or CF₃;

X is
$$-C(=O)NR_{10}$$
, $-NR_{10}C(=O)$, or $-C(=O)$, or $-CO_2$;

R₁ is hydrogen, -CH₃, -OH, -OCH₃, halogen, nitro, or cyano;

Y is
$$-C(=O)NH-$$
, $-NHC(=O)NH-$, $-NHSO_2-$, or $-SO_2NH-$;

R₁₀ is hydrogen or lower alkyl;

 R_{18} is selected from hydrogen, alkyl, alkoxy, aryl, and aryl substituted with one to three R_{19} , except that when Y is -NHSO₂-, R_{18} is C_{1-4} alkyl, aryl or aryl substituted with R_{19} ;

R₁₃ is attached to any available carbon atom of phenyl ring A and at each occurrence is independently selected from alkyl, substituted alkyl, halo, trifluoromethoxy, trifluoromethyl,

$$-OR_{14}$$
, $-C(=O)$ alkyl, $-OC(=O)$ alkyl, $-NR_{15}R_{16}$, $-SR_{15}$, $-NO_2$, $-CN$, $-CO_2R_{15}$, $-CONH_2$,

$$-SO_{3}H, -S(=O)alkyl, -S(=O)aryl, -NHSO_{2}-aryl-R_{17}, -NHSO_{2}C_{1-4}alkyl, -SO_{2}NHR_{17}, -NHSO_{2}C_{1-4}alkyl, -SO_{2}C_{1-4}alkyl, -SO_$$

-CONHR₁₇, and -NHC(=O)NHR₁₇;

 R_{14} , R_{15} , R_{16} and R_{17} are hydrogen or alkyl;

R₁₉ at each occurrence is selected from alkyl, halo, trifluoromethoxy, trifluoromethyl, hydroxy, alkoxy, alkanoyl, alkanoyloxy, thiol, alkylthio, ureido, nitro, cyano, carboxy, carboxyalkyl, carbamyl, alkoxycarbonyl, alkylthiono, arylthiono, arylsulfonylamine, sulfonic acid, alkysulfonyl, sulfonamido, and aryloxy, wherein each group R₁₉ may be further substituted by hydroxy, alkyl, alkoxy, aryl, or aralkyl; and

n is 0, 1 or 2.

Reply to Office Action Dated: 28 May 2006

Docket No.: QA0237-US -DIV1

6. (Currently Amended) The method of claim 3, comprising administering to the patient at least one compound having the formula (Ia), (Ib), or (Ic):

or a pharmaceutically acceptable salt, prodrug or solvate thereof, wherein:

R₃ is methyl or CF₃;

R_{2a} and R_{2c} are independently selected from hydrogen, C₂₋₆alkyl, substituted C₁₋₄alkyl, aryl, substituted aryl, benzyl, and substituted benzyl;

R_{2b} is heterocyclo or substituted heterocycle; and

 R_{10} is hydrogen or lower alkyl.

- 7. (Original) The method according to claim 1 wherein the one or more conditions associated with p38 kinase are selected from inflammatory disorders.
- 8. (Original) The method of claim 7, in which the inflammatory disorder is selected from asthma, adult respiratory distress syndrome, chronic obstructive pulmonary disease, chronic pulmonary inflammatory disease, diabetes, inflammatory bowel disease, osteoporosis, psoriasis, graft vs. host rejection, atherosclerosis, and arthritis including rhematoid arthritis, psoriatic arthritis, traumatic arthritis, rubella arthritis, gouty arthritis and osteoarthritis.

9-11. (Canceled)

Reply to Office Action Dated: 28 May 2006

Docket No.: QA0237-US -DIV1

specific inhibitors of the p38 MAPK's would empirically inhibit production of tumor necrosis factor (TNF)- α and interleukin (IL)-1 by lipopolysaccharide (LPS)-stimulated Cells. *Saklatvala* at 372. Hence, one skilled in the art would logically recognize that the presently claimed compounds would be expected to treat inflammatory-related diseases in general and the specific disorders discussed hereinbelow. In fact, Saklatvala states, "any inflammation strongly dependent upon the two primary cytokines (i.e., TNF- α and IL-1) will be reduced by p38 blockade." *Id.* at 376. Moreover, it is recognized that a "large body of evidence from preclinical studies indicates a crucial role of p38- α MAPK in inflammation." S. Kumar, et al., "p38 MAP Kinases: Key Signalling Molecules As Therapeutic Targets for Inflammatory Diseases," Nature Reviews: Drug Discovery, Vol. 2, Sept. 2003, 717-726, 722.

Not only has p38 inhibitor compounds been implicated in inflammatory disease in general, but such compounds, including the compounds taught in the instant invention, are known by those skilled in the art to be effective in treating the disorders identified in Claim 8.

TNF-α inhibitors are known to treat arthritis and psoriatic arthritis. P.J Mease, et al., "Psoriatic Arthritis Treatment: Biological Response Modifiers," Ann. Rheum. Dis., 2005, 64 (Suppl. II), ii78-ii82; and S. Kumar, et al. at 725. TNF-α inhibitors have been shown to reduce symptoms and signs of ankylosing spondylitis as well as improve the patients' quality of life while reducing serious toxicities. J.C. Davis, Jr., "Understanding the Role of Tumor Necrosis Factor Inhibition in Ankylosing Spondylitis," Seminars in Arthritis and Rheumatism, 34:668-677 (2004).

The TNF-α inhibitors Etanercept, Infliximals and Adalimumab, among others, have been shown to be effective in clinical trials to treat psoriasis patients. K.A. Papp, "The Long-term Efficacy and Safety of new Biological Therapies for Psoriasis," Arch Dermatol. Res., 298: 7-15 (2006); and *Mease*, et al., at ii78, ii81. It is also known to one skilled in the art that TNF-α plays a pivotal role in psoriasis and that p38 is activated in lesional psoriatic skin. C. Johansen, et al., "Protein Expression of TNF-α in Psoriatic Skin is Regulated at a posttranscriptional Level by MAPK-Activated Protein Kinase 2," The Journal of Immunology, 176, 1431-1438, 1431 (2006); and C. Johansen, et al., "The Mitogen-Activated Protein Kinase p38 and ERK ½ are Increased in Lesional Skin," Brit. Journal of Dermatology, 152, 37-42 (2005).