MTH 311 Lab 1

Brandyn Tucknott

26 September 2024

- 1. For each $n \ge 1$, let $S_n = \sum_{k=1}^n \frac{1}{k}$.
 - (a) Prove that $S_{2n} \geq \frac{1}{2} + S_n$ for all $n \geq 1$.

Proof. First, we can rewrite the inequality as

$$S_{2n} \ge S_n + \frac{1}{2} \longrightarrow$$

$$S_{2n} - S_n \ge \frac{1}{2}.$$

Substituting in the definition of S_n , we get

$$\sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \ge \frac{1}{2} \longrightarrow$$

$$\sum_{k=n+1}^{2n} \frac{1}{k} \ge \frac{1}{2}.\tag{1}$$

From here, if we can show that (1) is true, then we are done. With this in mind, notice that the LHS of (1) is bounded by the value $\frac{1}{2n}$, namely that

$$\sum_{k=n+1}^{2n} \frac{1}{k} \ge \sum_{k=n+1}^{2n} \frac{1}{2n} = n \cdot \frac{1}{2n} = \frac{1}{2}.$$

We conclude that $S_{2n} \geq S_n + \frac{1}{2}$ for all $n \geq 1$.

(b) Let $A = \{S_n : n \ge 1\}$. Is A bounded above? Solution.

No, A is not bounded above because $\lim_{n\to\infty} S_n$ diverges since S_n is a harmonic series. Because it diverges, there is no value $x\in\mathbb{R}$ such that $x\geq S_n$ for all n.

- 2. Assume 0 < r < 1, and let $S_n = \sum_{k=0}^n r^k$.
 - (a) Show that

$$S_n = \frac{1 - r^{n+1}}{1 - r}$$

for all $n \geq 1$.

Proof. Consider the expression $S_n - rS_n$. We can write this using the definition of S_n as

$$S_n - rS_n = \sum_{k=0}^n r^k - r \sum_{k=0}^n r^k \longrightarrow$$

$$S_n - rS_n = \sum_{k=0}^n r^k - \sum_{k=0}^n r^{k+1} \longrightarrow$$

$$S_n - rS_n = \sum_{k=0}^n r^k - \sum_{k=1}^{n+1} r^k \longrightarrow$$

$$S_n - rS_n = 1 - r^{n+1} \longrightarrow$$

$$S_n (1 - r) = 1 - r^{n+1} \longrightarrow$$

$$S_n = \frac{1 - r^{n+1}}{1 - r}.$$

We conclude that $S_n = \frac{1-r^{n+1}}{1-r}$ when 0 < r < 1 and $S_n = \sum_{k=0}^n r^k$.

(b) Let $A = \{S_n : n \ge 1\}$. Is A bounded above? Explain why or why not. Solution.

Since S_n is a geometric series with a base 0 < r < 1, we know that S_n converges as n tends to infinity. Because of this, we know that A is bounded above, in particular $sup(A) = \frac{1}{1-r}$.