第3章e:函数的极值与最大值最小值

数学系 梁卓滨

2019-2020 学年 I

Outline

1. 函数的极值及其求法

2. 函数的最大值最小值

We are here now...

1. 函数的极值及其求法

2. 函数的最大值最小值

● 若对 x₀ 附近的点 x,都成立

$$f(x) < f(x_0)$$

● 若对 x₀ 附近的点 x,都成立

$$f(x) < f(x_0)$$

则称 x_0 为 f(x) 的一个极大值点, $f(x_0)$ 为 f(x) 的一个极大值.

● 若对 x₀ 附近的点 x,都成立

$$f(x) < f(x_0)$$

则称 x_0 为 f(x) 的一个极大值点, $f(x_0)$ 为 f(x) 的一个极大值.

• 若对 x_0 附近的点 x,都成立

$$f(x) > f(x_0)$$

● 若对 x₀ 附近的点 x,都成立

$$f(x) < f(x_0)$$

则称 x_0 为 f(x) 的一个极大值点, $f(x_0)$ 为 f(x) 的一个极大值.

若对 x₀ 附近的点 x,都成立

$$f(x) > f(x_0)$$

则称 x_0 为 f(x) 的一个极小值点, $f(x_0)$ 为 f(x) 的一个极小值.

• 若对 x_0 附近的点 x,都成立

$$\frac{\dot{\Box}}{f(x)} < f(x_0)$$

则称 x_0 为 f(x) 的一个极大值点, $f(x_0)$ 为 f(x) 的一个极大值.

● 若对 x₀ 附近的点 x,都成立

$$f(x) > f(x_0)$$

则称 x_0 为 f(x) 的一个极小值点, $f(x_0)$ 为 f(x) 的一个极小值.

• 若对 x_0 附近的点 x,都成立

$$f(x) < f(x_0)$$

则称 x_0 为 f(x) 的一个极大值点, $f(x_0)$ 为 f(x) 的一个极大值.

● 若对 x₀ 附近的点 x,都成立

$$f(x) > f(x_0)$$

则称 x_0 为 f(x) 的一个极小值点, $f(x_0)$ 为 f(x) 的一个极小值.

• 若对 x_0 附近的点 x,都成立

$$f(x) < f(x_0)$$

$$a \quad x_1 \quad x_2 \quad x_3 \quad b$$

则称
$$x_0$$
 为 $f(x)$ 的一个极大值点, $f(x_0)$ 为 $f(x)$ 的一个极大值.

● 若对 x₀ 附近的点 x,都成立

$$f(x) > f(x_0)$$

则称 x_0 为 f(x) 的一个极小值点, $f(x_0)$ 为 f(x) 的一个极小值.

注 区间的端点排除在极值点定义之外:设 f(x) 定义在闭区间 [a, b] 上,在端点 x = a 和 x = b 的开邻域上,f(x) 不是都有定义,故不是极值点.

3e 极值与最值 2/12 ⊲ 1

• x = 0 是 $y = -x^2$ 的极大值点.

•
$$x = 0$$
 是 $y = -x^2$ 的极大值点.

• x = 0 是 y = |x| 的极小值点.

•
$$x = 0$$
 是 $y = -x^2$ 的极大值点.

•
$$x = 0$$
 是 $y = -x^2$ 的极大值点.

•
$$x = 0$$
 是 $y = |x|$ 的极小值点.

• x = 0 不是 $y = x^3$ 的极值点.

•
$$x = 0$$
 是 $y = -x^2$ 的极大值点.

• x = 0 是 y = |x| 的极小值点.

•
$$x = 0$$
 是 $y = -x^2$ 的极大值点.

• x = 0 是 y = |x| 的极小值点.

•
$$x = 0$$
 不是 $y = x^3$ 的极值点.

问题 如何求出函数 f(x) 的极值点? 例如

$$f(x) = (x-4)(x+1)^{\frac{2}{3}}.$$

回忆

费马引理 设函数 f(x) 在 x_0 处可导,则

 x_0 是极值点 \Rightarrow x_0 是驻点,即 $f'(x_0) = 0$.

回忆

费马引理 设函数 f(x) 在 x_0 处可导,则

 x_0 是极值点 \Rightarrow x_0 是驻点,即 $f'(x_0) = 0$.

注

1. 逆命题不成立: 驻点 ≠ 极值点.

回忆

费马引理 设函数 f(x) 在 x_0 处可导,则

 x_0 是极值点 \Rightarrow x_0 是驻点,即 $f'(x_0) = 0$.

注

1. 逆命题不成立: 驻点 ≠ 极值点. 例如 $f(x) = x^3$, x = 0 是驻点,但不是极值点.

回忆

费马引理 设函数 f(x) 在 x_0 处可导,则

 x_0 是极值点 \Rightarrow x_0 是驻点,即 $f'(x_0) = 0$.

注

- 1. 逆命题不成立: 驻点 ≠ 极值点. 例如 $f(x) = x^3$, x = 0 是驻点,但不是极值点.
- 2. 极值点可以不可导;不可导的极值点不是驻点.

回忆

费马引理 设函数 f(x) 在 x_0 处可导,则

 x_0 是极值点 \Rightarrow x_0 是驻点,即 $f'(x_0) = 0$.

注

- 1. 逆命题不成立: 驻点 ≠ 极值点. 例如 $f(x) = x^3$, x = 0 是驻点,但不是极值点.
- 2. 极值点可以不可导;不可导的极值点不是驻点. 例如 f(x) = |x|,x = 0 是极值点,但不是驻点,原因是 f(x) 在 x = 0 处不可导.

(1) 求出 f'(x),并求出驻点,以及不可导点.

(1) 求出 f'(x),并求出驻点,以及不可导点。

- **(1)** 求出 *f'*(*x*),并求出驻点,以及不可导点
- (2) 设 x_0 是上述求出的点,判断 f' 在 x_0 左、右邻域的正负:

- (1) 求出 f'(x),并求出驻点,以及不可导点
- (2) 设 x_0 是上述求出的点,判断f' 在 x_0 左、右邻域的正负:

x ₀ 左邻域	x ₀ 右邻域	
f' > 0	f' < 0	
f' < 0	f' > 0	
f' 同号		

- (1) 求出 f'(x), 并求出驻点, 以及不可导点.
- (2) 设 x_0 是上述求出的点,判断f' 在 x_0 左、右邻域的正负:

x ₀ 左邻域	x ₀ 右邻域		
f' > 0	f' < 0	<u></u>	
f' < 0	<i>f'</i> > 0		
f' 同号			

- **(1)** 求出 *f'*(*x*),并求出驻点,以及不可导点
- (2) 设 x_0 是上述求出的点,判断f' 在 x_0 左、右邻域的正负:

x ₀ 左邻域	x ₀ 右邻域		
<i>f'</i> > 0	f' < 0	<u></u>	⇒ x ₀ 是极大值点
f' < 0	f' > 0		
f' 同号			

- **(1)** 求出 *f'*(*x*),并求出<mark>驻点</mark>,以及不可导点
- (2) 设 x_0 是上述求出的点,判断f' 在 x_0 左、右邻域的正负:

x ₀ 左邻域	x ₀ 右邻域		
<i>f'</i> > 0	f' < 0	<u></u>	⇒ x ₀ 是极大值点
f' < 0	f' > 0	<u></u>	
f' 同号			

- **(1)** 求出 *f'*(*x*),并求出<mark>驻点</mark>,以及不可导点
- (2) 设 x_0 是上述求出的点,判断f' 在 x_0 左、右邻域的正负:

		=	
x ₀ 左邻域	x ₀ 右邻域		
f' > 0	f' < 0	<u> </u>	⇒ x ₀ 是极大值点
f' < 0	f' > 0	<u>x</u> 0	⇒ x ₀ 是极小值点
f' 同号			

- **(1)** 求出 *f'*(*x*),并求出<mark>驻点</mark>,以及不可导点
- (2) 设 x_0 是上述求出的点,判断f' 在 x_0 左、右邻域的正负:

		=	
x ₀ 左邻域	x ₀ 右邻域		
f' > 0	f' < 0	<u></u>	⇒ x ₀ 是极大值点
f' < 0	f' > 0	<u></u>	⇒ x ₀ 是极小值点
f′ [ः	司号	单调函数	

- **(1)** 求出 *f'*(*x*),并求出<mark>驻点</mark>,以及不可导点
- (2) 设 x_0 是上述求出的点,判断f' 在 x_0 左、右邻域的正负:

		=	
x ₀ 左邻域	x ₀ 右邻域		
f' > 0	f' < 0		⇒ x ₀ 是极大值点
f' < 0	f' > 0	<u></u>	⇒ x ₀ 是极小值点
f' [司号	单调函数	⇒ x ₀ 不是极值点

- (1) 求出 f'(x),并求出驻点,以及不可导点.
- (2) 设 x_0 是上述求出的点,判断f' 在 x_0 左、右邻域的正负:

x ₀ 左邻域	x ₀ 右邻域		
f' > 0	f' < 0		⇒ x ₀ 是极大值点
f' < 0	f' > 0	<u></u>	⇒ x ₀ 是极小值点
f' 同号		单调函数	⇒ x ₀ 不是极值点

例1 求函数 $f(x) = (x-4)(x+1)^{\frac{2}{3}}$ 的极值.

例1 求函数 $f(x) = (x-4)(x+1)^{\frac{2}{3}}$ 的极值.

例1 求函数 $f(x) = (x-4)(x+1)^{\frac{2}{3}}$ 的极值.

解 1. 求导数

$$y' = (x+1)^{\frac{2}{3}} + (x-4) \cdot \frac{2}{3} (x+1)^{-\frac{1}{3}}$$

例1 求函数 $f(x) = (x-4)(x+1)^{\frac{2}{3}}$ 的极值.

解 1. 求导数

$$y' = (x+1)^{\frac{2}{3}} + (x-4) \cdot \frac{2}{3} (x+1)^{-\frac{1}{3}} = \frac{5}{3} (x-1)(x+1)^{-\frac{1}{3}}$$

解 1. 求导数

$$y' = (x+1)^{\frac{2}{3}} + (x-4) \cdot \frac{2}{3} (x+1)^{-\frac{1}{3}} = \frac{5}{3} (x-1)(x+1)^{-\frac{1}{3}}$$

所以驻点 x = 1,不可导点 x = -1.

解 1. 求导数

$$y' = (x+1)^{\frac{2}{3}} + (x-4) \cdot \frac{2}{3} (x+1)^{-\frac{1}{3}} = \frac{5}{3} (x-1)(x+1)^{-\frac{1}{3}}$$

所以驻点 x = 1,不可导点 x = -1.

解 1. 求导数

$$y' = (x+1)^{\frac{2}{3}} + (x-4) \cdot \frac{2}{3} (x+1)^{-\frac{1}{3}} = \frac{5}{3} (x-1)(x+1)^{-\frac{1}{3}}$$

所以驻点 x = 1,不可导点 x = -1.

解 1. 求导数

$$y' = (x+1)^{\frac{2}{3}} + (x-4) \cdot \frac{2}{3} (x+1)^{-\frac{1}{3}} = \frac{5}{3} (x-1)(x+1)^{-\frac{1}{3}}$$

所以驻点 x = 1,不可导点 x = -1.

$$y' > 0 \qquad y' < 0$$

解 1. 求导数

$$y' = (x+1)^{\frac{2}{3}} + (x-4) \cdot \frac{2}{3} (x+1)^{-\frac{1}{3}} = \frac{5}{3} (x-1)(x+1)^{-\frac{1}{3}}$$

所以驻点 x = 1,不可导点 x = -1.

$$y' > 0 \qquad y' < 0 \qquad y' > 0$$

解 1. 求导数

$$y' = (x+1)^{\frac{2}{3}} + (x-4) \cdot \frac{2}{3}(x+1)^{-\frac{1}{3}} = \frac{5}{3}(x-1)(x+1)^{-\frac{1}{3}}$$

所以驻点 x = 1,不可导点 x = -1.

2. 判定导数的正负:

$$y' > 0 \qquad y' < 0 \qquad y' > 0$$

所以 x = -1 是极大值点, f(-1) = 0 是极大值;

3e 极值与最值

解 1. 求导数

$$y' = (x+1)^{\frac{2}{3}} + (x-4) \cdot \frac{2}{3}(x+1)^{-\frac{1}{3}} = \frac{5}{3}(x-1)(x+1)^{-\frac{1}{3}}$$

所以驻点 x = 1,不可导点 x = -1.

2. 判定导数的正负:

$$y' > 0 \qquad y' < 0 \qquad y' > 0$$

所以
$$x = -1$$
 是极大值点, $f(-1) = 0$ 是极大值;

$$x = 1$$
 是极小值点, $f(1) = -3 \cdot 4^{\frac{1}{3}}$ 是极小值.

3e 极值与最值

- (1) 求出 f'(x),并求出驻点 x_0 .
- (2) 判断 $f''(x_0)$ 的正负:

- (1) 求出 f'(x),并求出驻点 x_0 .
- (2) 判断 $f''(x_0)$ 的正负:

$f''(x_0) < 0$	
$f''(x_0) > 0$	
$f^{\prime\prime}(x_0)=0$	

- (1) 求出 f'(x),并求出驻点 x_0 .
- (2) 判断 $f''(x_0)$ 的正负:

$f''(x_0) < 0$	
$f''(x_0) > 0$	
$f^{\prime\prime}(x_0)=0$	

- (1) 求出 f'(x),并求出驻点 x_0 .
- (2) 判断 $f''(x_0)$ 的正负:

$f''(x_0) < 0$	<u></u>	⇒ x ₀ 是极大值点
$f''(x_0) > 0$		
$f^{\prime\prime}(x_0)=0$		

- (1) 求出 f'(x),并求出驻点 x_0 .
- (2) 判断 $f''(x_0)$ 的正负:

$f''(x_0) < 0$	<u></u>	⇒ x ₀ 是极大值点
$f''(x_0) > 0$	<u></u>	
$f^{\prime\prime}(x_0)=0$		

- (1) 求出 f'(x),并求出驻点 x_0 .
- (2) 判断 $f''(x_0)$ 的正负:

$f''(x_0) < 0$	<u></u>	⇒ x ₀ 是极大值点
$f''(x_0) > 0$	<u></u>	⇒ x ₀ 是极小值点
$f^{\prime\prime}(x_0)=0$		

- (1) 求出 f'(x),并求出驻点 x_0 .
- (2) 判断 $f''(x_0)$ 的正负:

$f''(x_0) < 0$	<u></u>	⇒ x ₀ 是极大值点
$f''(x_0) > 0$	<u></u>	⇒ x ₀ 是极小值点
$f^{\prime\prime}(x_0)=0$		结论不定

假设f(x)具有二阶导数,则,有以下的求解方法:

- (1) 求出 f'(x),并求出驻点 x_0 .
- (2) 判断 $f''(x_0)$ 的正负:

例2 求 $f(x) = (x^2 - 1)^3 + 1$ 的极值.

解 1. 求驻点 $f' = 6x(x^2 - 1)^2$

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$
 \Rightarrow $x = 0, \pm 1$.

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$
 \Rightarrow $x = 0, \pm 1$.

驻点	f''	
x = 0		
x = -1		
x = 1		

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$
 \Rightarrow $x = 0, \pm 1$.

驻点	$f'' = 6(x^2 - 1)(5x^2 - 1)$	
x = 0		
x = -1		
x = 1		

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$
 \Rightarrow $x = 0, \pm 1$.

驻点	$f'' = 6(x^2 - 1)(5x^2 - 1)$	
x = 0	f'' = 6 > 0	
x = -1		
x = 1		

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$
 \Rightarrow $x = 0, \pm 1$.

驻点	$f'' = 6(x^2 - 1)(5x^2 - 1)$	
x = 0	f'' = 6 > 0	⇒ 极小值点
x = -1		
x = 1		

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$
 \Rightarrow $x = 0, \pm 1$.

驻点	$f'' = 6(x^2 - 1)(5x^2 - 1)$	
x = 0	f'' = 6 > 0	⇒ 极小值点
x = -1	f''=0	
x = 1		

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$
 \Rightarrow $x = 0, \pm 1$.

驻点	$f'' = 6(x^2 - 1)(5x^2 - 1)$	
x = 0	f'' = 6 > 0	⇒ 极小值点
x = -1	f''=0	⇒ 第二判别法失效
x = 1		

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$
 \Rightarrow $x = 0, \pm 1$.

驻点	$f'' = 6(x^2 - 1)(5x^2 - 1)$	
x = 0	f'' = 6 > 0	⇒ 极小值点
x = -1	f''=0	⇒ 第二判别法失效
x = 1	f''=0	

$$\mathbf{H}$$
 1. 求驻点 $f' = 6x(x^2 - 1)^2 = 0 \Rightarrow x = 0, \pm 1$.

驻点	$f'' = 6(x^2 - 1)(5x^2 - 1)$	
x = 0	f'' = 6 > 0	⇒ 极小值点
x = -1	f''=0	⇒ 第二判别法失效
x = 1	$f^{\prime\prime}=0$	⇒ 第二判别法失效

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$
 \Rightarrow $x = 0, \pm 1$.

2. 利用第二判别法

驻点	$f'' = 6(x^2 - 1)(5x^2 - 1)$	
x = 0	f'' = 6 > 0	⇒ 极小值点
x = -1	f''=0	⇒ 第二判别法失效
x = 1	f'' = 0	⇒ 第二判别法失效

驻点	左邻域	右邻域	
x = -1			
x = 1			

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$
 \Rightarrow $x = 0, \pm 1$.

2. 利用第二判别法

驻点	$f'' = 6(x^2 - 1)(5x^2 - 1)$	
x = 0	f'' = 6 > 0	⇒ 极小值点
x = -1	f''=0	⇒ 第二判别法失效
x = 1	f''=0	⇒ 第二判别法失效

驻点	左邻域	右邻域	
x = -1	<i>f</i> ′ < 0		
x = 1			

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$
 \Rightarrow $x = 0, \pm 1$.

2. 利用第二判别法

驻点	$f'' = 6(x^2 - 1)(5x^2 - 1)$	
x = 0	f'' = 6 > 0	⇒ 极小值点
x = -1	f''=0	⇒ 第二判别法失效
x = 1	f''=0	⇒ 第二判别法失效

驻点	左邻域	右邻域	
x = -1	<i>f</i> ′ < 0	<i>f</i> ′ < 0	
x = 1			

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$
 \Rightarrow $x = 0, \pm 1$.

2. 利用第二判别法

驻点	$f'' = 6(x^2 - 1)(5x^2 - 1)$	
x = 0	f'' = 6 > 0	⇒ 极小值点
x = -1	f''=0	⇒ 第二判别法失效
<i>x</i> = 1	f''=0	⇒ 第二判别法失效

驻点	左邻域	右邻域	
x = -1	<i>f</i> ′ < 0	<i>f</i> ′ < 0	⇒ 非极值点
x = 1			

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$
 \Rightarrow $x = 0, \pm 1$.

2. 利用第二判别法

驻点	$f'' = 6(x^2 - 1)(5x^2 - 1)$	
x = 0	f'' = 6 > 0	⇒ 极小值点
x = -1	f''=0	⇒ 第二判别法失效
x = 1	f''=0	⇒ 第二判别法失效

驻点	左邻域	右邻域	
x = -1	<i>f</i> ′ < 0	<i>f</i> ′ < 0	⇒ 非极值点
x = 1	<i>f'</i> > 0		

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$
 \Rightarrow $x = 0, \pm 1$.

2. 利用第二判别法

驻点	$f'' = 6(x^2 - 1)(5x^2 - 1)$	
x = 0	f'' = 6 > 0	⇒ 极小值点
x = -1	f''=0	⇒ 第二判别法失效
<i>x</i> = 1	f''=0	⇒ 第二判别法失效

驻点	左邻域	右邻域	
x = -1	<i>f</i> ′ < 0	<i>f</i> ′ < 0	⇒ 非极值点
x = 1	<i>f'</i> > 0	<i>f'</i> > 0	

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$
 \Rightarrow $x = 0, \pm 1$.

2. 利用第二判别法

驻点	$f'' = 6(x^2 - 1)(5x^2 - 1)$	
x = 0	f'' = 6 > 0	⇒ 极小值点
x = -1	f''=0	⇒ 第二判别法失效
x = 1	f''=0	⇒ 第二判别法失效

驻点	左邻域	右邻域	
x = -1	<i>f</i> ′ < 0	<i>f</i> ′ < 0	⇒ 非极值点
x = 1	<i>f'</i> > 0	<i>f'</i> > 0	⇒ 非极值点

解 1. 求驻点
$$f' = 6x(x^2 - 1)^2 = 0$$
 \Rightarrow $x = 0, \pm 1$.

2. 利用第二判别法

驻点	$f'' = 6(x^2 - 1)(5x^2 - 1)$	
x = 0	f'' = 6 > 0	⇒ 极小值点
x = -1	f''=0	⇒ 第二判别法失效
x = 1	f''=0	⇒ 第二判别法失效

3. 利用第一判别法判断 $x = \pm 1$

驻点	左邻域	右邻域	
x = -1	<i>f</i> ′ < 0	<i>f</i> ′ < 0	⇒ 非极值点
x = 1	<i>f'</i> > 0	<i>f'</i> > 0	⇒ 非极值点

所以只有 x = 0 是极值点,是极小值点,f(0) = 0 是极小值.

例3 求 $f(x) = x^3 - 3x^2 - 9x - 5$ 的极值.

解 1. 求驻点

$$f' = 3x^2 - 6x - 9 = 3(x - 3)(x + 1)$$

解 1. 求驻点

$$f' = 3x^2 - 6x - 9 = 3(x - 3)(x + 1) = 0 \Rightarrow x = -1, 3.$$

解 1. 求驻点

$$f' = 3x^2 - 6x - 9 = 3(x - 3)(x + 1) = 0 \Rightarrow x = -1, 3.$$

驻点	f''	
x = -1		
<i>x</i> = 3		

解 1. 求驻点

$$f' = 3x^2 - 6x - 9 = 3(x - 3)(x + 1) = 0 \Rightarrow x = -1, 3.$$

驻点	$f^{\prime\prime}=6x-6$	
x = -1		
<i>x</i> = 3		

解 1. 求驻点

$$f' = 3x^2 - 6x - 9 = 3(x - 3)(x + 1) = 0 \Rightarrow x = -1, 3.$$

驻点	$f^{\prime\prime}=6x-6$	
x = -1	f'' = -12 < 0	
<i>x</i> = 3		

解 1. 求驻点

$$f' = 3x^2 - 6x - 9 = 3(x - 3)(x + 1) = 0 \Rightarrow x = -1, 3.$$

驻点	$f^{\prime\prime}=6x-6$	
x = -1	f'' = -12 < 0	⇒ 极大值
<i>x</i> = 3		→ 极小值

解 1. 求驻点

$$f' = 3x^2 - 6x - 9 = 3(x - 3)(x + 1) = 0 \Rightarrow x = -1, 3.$$

2. 利用第二判别法

驻点	$f^{\prime\prime}=6x-6$	
x = -1	f'' = -12 < 0	⇒ 极大值
<i>x</i> = 3	f'' = 12 > 0	⇒ 极小值

所以 x = -1 是极大值点, f(-1) = 0 是极大值;

解 1. 求驻点

$$f' = 3x^2 - 6x - 9 = 3(x - 3)(x + 1) = 0 \Rightarrow x = -1, 3.$$

2. 利用第二判别法

驻点	$f^{\prime\prime}=6x-6$	
x = -1	f'' = -12 < 0	⇒ 极大值
<i>x</i> = 3	f'' = 12 > 0	→ 极小值

所以 x = -1 是极大值点,f(-1) = 0 是极大值; x = 3 是极小值点,f(3) = -32 是极小值.

We are here now...

1. 函数的极值及其求法

2. 函数的最大值最小值

$$f(x) \le f(x_0)$$

则称 x_0 是最大值点, $f(x_0)$ 是最大值

$$f(x) \le f(x_0) \quad (\Im f(x) \ge f(x_0))$$

则称 x_0 是最大值点, $f(x_0)$ 是最大值

$$f(x) \le f(x_0)$$
 ($g(x) \ge f(x_0)$)

则称 x_0 是最大值点, $f(x_0)$ 是最大值(或 x_0 是最小值点, $f(x_0)$ 最小值).

$$f(x) \le f(x_0) \quad (\Im f(x) \ge f(x_0))$$

则称 x_0 是最大值点, $f(x_0)$ 是最大值(或 x_0 是最小值点, $f(x_0)$ 最小值).

回忆 定义在闭区间 [a,b] 上的连续函数 f(x) 存在最大值和最小值.

$$f(x) \le f(x_0) \quad (\Im f(x) \ge f(x_0))$$

则称 x_0 是最大值点, $f(x_0)$ 是最大值(或 x_0 是最小值点, $f(x_0)$ 最小值).

回忆 定义在闭区间 [α ,b] 上的连续函数 f(x) 存在最大值和最小值.

问题 如何求出最大值点和最小值点?

$$f(x) \le f(x_0)$$
 ($g(x) \ge f(x_0)$)

则称 x_0 是最大值点, $f(x_0)$ 是最大值(或 x_0 是最小值点, $f(x_0)$ 最小值).

回忆 定义在闭区间 [a,b] 上的连续函数 f(x) 存在最大值和最小值.

问题 如何求出最大值点和最小值点?

分析

最值点x₀

$$f(x) \le f(x_0)$$
 ($g(x) \ge f(x_0)$)

则称 x_0 是最大值点, $f(x_0)$ 是最大值(或 x_0 是最小值点, $f(x_0)$ 最小 值).

回忆 定义在闭区间 [a,b] 上的连续函数 f(x) 存在最大值和最小值.

问题 如何求出最大值点和最小值点?

$$f(x) \le f(x_0)$$
 ($g(x) \ge f(x_0)$)

则称 x_0 是最大值点, $f(x_0)$ 是最大值(或 x_0 是最小值点, $f(x_0)$ 最小 值).

回忆 定义在闭区间 [a,b] 上的连续函数 f(x) 存在最大值和最小值.

问题 如何求出最大值点和最小值点?

分析
$$\exists d \leq x_0 = a, b$$

$$\exists d \leq x_0 \in \{a, b\} \Rightarrow x_0 \in \{d \leq a\}$$

$$f(x) \le f(x_0)$$
 ($\mathfrak{A}f(x) \ge f(x_0)$)

则称 x_0 是最大值点, $f(x_0)$ 是最大值(或 x_0 是最小值点, $f(x_0)$ 最小 值).

回忆 定义在闭区间 [a,b] 上的连续函数 f(x) 存在最大值和最小值.

问题 如何求出最大值点和最小值点?

$$\int \mathfrak{g} x_0 = a, k$$

最值点 x_0 \begin{cases} 或 $x_0 = a, b \end{cases}$ 或 $x_0 \in \{a, b\} \subset \{$ 發点、不可导点 $\}$

$$f(x) \le f(x_0)$$
 ($g(x) \ge f(x_0)$)

则称 x_0 是最大值点, $f(x_0)$ 是最大值(或 x_0 是最小值点, $f(x_0)$ 最小 值).

回忆 定义在闭区间 [a,b] 上的连续函数 f(x) 存在最大值和最小值.

问题 如何求出最大值点和最小值点?

$$\exists x_0 = a, b$$

 $\exists x_0 = a, b$ 最值点 x_0 或 $x_0 = a, b$ 或 $x_0 \in \{a, b\}$ 或 $x_0 \in \{b, c\}$ 或 $x_0 \in \{b, c\}$ 可导点}

总而言之,

{最值点} c {端点,驻点,不可导点}

$$f(x) \le f(x_0)$$
 ($g(x) \ge f(x_0)$)

则称 x_0 是最大值点, $f(x_0)$ 是最大值(或 x_0 是最小值点, $f(x_0)$ 最小 值).

回忆 定义在闭区间 [a,b] 上的连续函数 f(x) 存在最大值和最小值.

问题 如何求出最大值点和最小值点?

分析

最值点
$$x_0$$
 $\begin{cases} \vec{\mathrm{u}} x_0 = a, b \\ \vec{\mathrm{u}} x_0 \in (a, b) \end{cases} \Rightarrow x_0 \in \{ \text{极值点} \} \subset \{ \text{驻点、不可导点} \}$

总而言之, {最值点} ⊂ {端点,驻点,不可导点}

比较这些点的函数值大小,得出最值点.

设f(x) 在闭区间[a,b]上连续,除有限个点外可导.

此时可按以下步骤求出最值点:

设 f(x) 在闭区间 [a,b] 上连续,除有限个点外可导.

此时可按以下步骤求出最值点:

(1) 求出函数所有驻点,不可导点,和区间端点 *a*, *b* 一起列出来最为可疑最值点.

设 f(x) 在闭区间 [a, b] 上连续,除有限个点外可导.

此时可按以下步骤求出最值点:

- (1) 求出函数所有驻点,不可导点,和区间端点 a, b 一起列出来最为可疑最值点.
- (2) 比较这些点的函数值,最大(小)者即为最大(小)值点.

设 f(x) 在闭区间 [a,b] 上连续,除有限个点外可导.

此时可按以下步骤求出最值点:

- (1) 求出函数所有驻点,不可导点,和区间端点 a, b 一起列出来最为可疑最值点.
- (2) 比较这些点的函数值,最大(小)者即为最大(小)值点.

例1 求 $f(x) = x^3 - 3x^2 + 7$ 在区间 [-2, 3] 上的最值.

设f(x) 在闭区间 [a,b] 上连续,除有限个点外可导.

此时可按以下步骤求出最值点:

- (1) 求出函数所有驻点,不可导点,和区间端点 a, b 一起列出来最为可疑最值点.
- (2) 比较这些点的函数值,最大(小)者即为最大(小)值点.

例1 求 $f(x) = x^3 - 3x^2 + 7$ 在区间 [-2, 3] 上的最值.

解 1. 求驻点: $f'(x) = 3x^2 - 6x = 0 \Rightarrow x = 0, 2$.

设 f(x) 在闭区间 [a,b] 上连续,除有限个点外可导.

此时可按以下步骤求出最值点:

- (1) 求出函数所有驻点,不可导点,和区间端点 α, b 一起列出来最为可疑最值点.
- (2) 比较这些点的函数值,最大(小)者即为最大(小)值点.

例1 求 $f(x) = x^3 - 3x^2 + 7$ 在区间 [-2, 3] 上的最值.

解 1. 求驻点: $f'(x) = 3x^2 - 6x = 0 \Rightarrow x = 0, 2$. (没有不可导点)

设f(x) 在闭区间 [a,b] 上连续,除有限个点外可导.

此时可按以下步骤求出最值点:

- (1) 求出函数所有驻点,不可导点,和区间端点 a, b 一起列出来最为可疑最值点.
- (2) 比较这些点的函数值,最大(小)者即为最大(小)值点.

例1 求
$$f(x) = x^3 - 3x^2 + 7$$
 在区间 [-2, 3] 上的最值.

解 1. 求驻点:
$$f'(x) = 3x^2 - 6x = 0 \Rightarrow x = 0, 2$$
. (没有不可导点)

设f(x) 在闭区间 [a,b] 上连续,除有限个点外可导.

此时可按以下步骤求出最值点:

- (1) 求出函数所有驻点,不可导点,和区间端点 a, b 一起列出来最为可疑最值点.
- (2) 比较这些点的函数值,最大(小)者即为最大(小)值点.

例1 求
$$f(x) = x^3 - 3x^2 + 7$$
 在区间 [-2,3] 上的最值.

解 1. 求驻点:
$$f'(x) = 3x^2 - 6x = 0 \Rightarrow x = 0, 2$$
. (没有不可导点)

设f(x) 在闭区间 [a,b] 上连续,除有限个点外可导.

此时可按以下步骤求出最值点:

- (1) 求出函数所有驻点,不可导点,和区间端点 a, b 一起列出来最为可疑最值点.
- (2) 比较这些点的函数值,最大(小)者即为最大(小)值点.

例1 求
$$f(x) = x^3 - 3x^2 + 7$$
 在区间 [-2, 3] 上的最值.

$$\mathbf{H}$$
 1. 求驻点: $f'(x) = 3x^2 - 6x = 0 \Rightarrow x = 0, 2$. (没有不可导点)

可见最大值是7,最小值是-13.

设f(x) 在闭区间 [a,b] 上连续,除有限个点外可导.

此时可按以下步骤求出最值点:

- (1) 求出函数所有驻点,不可导点,和区间端点 a, b 一起列出来最为可疑最值点.
- (2) 比较这些点的函数值,最大(小)者即为最大(小)值点.

例1 求
$$f(x) = x^3 - 3x^2 + 7$$
 在区间 [-2,3] 上的最值.

$$\mathbf{H}$$
 1. 求驻点: $f'(x) = 3x^2 - 6x = 0 \Rightarrow x = 0, 2$. (没有不可导点)

可见最大值是7,最小值是-13.

例 2 求 $f(x) = x^4 - 2x^2 + 5$ 在区间 [-2, 3] 上的最值.

例2 求 $f(x) = x^4 - 2x^2 + 5$ 在区间 [-2, 3] 上的最值.

例2 求 $f(x) = x^4 - 2x^2 + 5$ 在区间 [-2,3] 上的最值.

解 1. 求驻点: $f'(x) = 4x^3 - 4x = 0 \Rightarrow x = 0, \pm 1$.

例2 求 $f(x) = x^4 - 2x^2 + 5$ 在区间 [-2,3] 上的最值.

解 1. 求驻点: $f'(x) = 4x^3 - 4x = 0 \Rightarrow x = 0, \pm 1$. (没有不可导点)

例 2 求
$$f(x) = x^4 - 2x^2 + 5$$
 在区间 [-2, 3] 上的最值.

解 1. 求驻点:
$$f'(x) = 4x^3 - 4x = 0 \Rightarrow x = 0, \pm 1$$
. (没有不可导点)

例 2 求
$$f(x) = x^4 - 2x^2 + 5$$
 在区间 [-2, 3] 上的最值.

解 1. 求驻点:
$$f'(x) = 4x^3 - 4x = 0 \Rightarrow x = 0, \pm 1$$
. (没有不可导点)

 2. 比较函数值:
 x | -2 | -1 | 0 | 1 | 3

 f(x) | 13 | 4 | 5 | 4 | 68

例 2 求
$$f(x) = x^4 - 2x^2 + 5$$
 在区间 [-2, 3] 上的最值.

解 1. 求驻点:
$$f'(x) = 4x^3 - 4x = 0 \Rightarrow x = 0, \pm 1$$
. (没有不可导点)

可见最大值是68,最小值是4.