Fast method to fit a C^1 piecewise-Bézier function to manifold-valued data points: how suboptimal is the curve obtained on the sphere \mathbb{S}^2 ?

P.-Y. Gousenbourger, P.-A. Absil, L. Jacques pierre-yves.gousenbourger@uclouvain.be

Université catholique de Louvain, ICTEAM

GSI2017 - November 7th, 2017

The wind field estimation

Outline

Fast

(but suboptimal?)

method

... and reminders on Bézier.

Accurate

(but less efficient)

method

... and a short comparison.

Smooth fitting with Bézier (in \mathbb{R}^n)

Each segment is a Bézier curve smoothly connected! Unknowns : b_i^- , b_i^+ , p_i .

Reconstruction : the De Casteljau algorithm

Example on the sphere

Where to place the control points?

Optimal control points on the Euclidean space

$$\min_{p_0, b_i^-, b_i^+, p_n} \int_0^n \|\ddot{\mathfrak{B}}(t; p_0, b_i^-, b_i^+, p_n)\|^2 dt + \lambda \sum_{i=0}^n \|\frac{d_i}{d_i} - p_i\|_2^2$$
s.t. $p_i = \frac{b_i^- + b_i^+}{2}$

Quadratic polynomial in p_0 , b_i^- , b_i^+ and p_n .

$$x_i = \sum_{j=0}^n q_{ij}(\lambda) \frac{\mathbf{d_j}}{\mathbf{d_j}}$$

Control points on manifolds

■ The control points are given by :

$$x_i = \sum_{j=0}^{n} q_{i,j}(\lambda) d_j$$

■ These points are invariant under translation, *i.e.*:

$$\mathbf{x}_i - \mathbf{d}^{ref} = \sum_{j=0}^n q_{i,j}(\lambda)(d_j - \mathbf{d}^{ref})$$

On manifolds: representation of x_i in the **tangent space** of d^{ref} with the **Log**, as $a - b \Leftrightarrow \text{Log}_b(a)$

$$v_i = \operatorname{Log}_{\boldsymbol{d^{ref}}}(x_i) = \sum_{i=0}^n q_{i,j}(\lambda) \operatorname{Log}_{\boldsymbol{d^{ref}}}(d_j)$$

■ Back to the manifold with the **Exp**: $x_i = \text{Exp}_{d^{ref}}(v_i)$, where $d^{ref} = d_i$ if x_i is b_i^- , p_i , b_i^+ .

Example on the sphere and on SO(3)

Outline

Fast

(but suboptimal?)

method

... and reminders on Bézier.

Accurate

(but less efficient)

method

... and a short comparison.

A discrete function to solve

$$f = \underbrace{\int_{0}^{n} \|\ddot{\mathfrak{B}}(t)\|_{\mathcal{M}}^{2} dt}_{\text{"mean square acceleration"}} + \underbrace{\lambda \sum_{i=0}^{n} d^{2}(p_{i}, d_{i})}_{\text{"fidelity"}}$$

$$\widetilde{f} = \sum_{k=1}^{M-1} \Delta \tau \underbrace{d_{2,\Delta\tau}^2 \left(\mathfrak{B}(t_{k-1}), \mathfrak{B}(t_k), \mathfrak{B}(t_{k+1}) \right)}_{\text{second order finite differences}} + \lambda \sum_{i=0}^{n} d^2(p_i, d_i), \boxed{\widetilde{x}^*}$$

Optimisation without derivative (Manopt)

Future work : gradient descent ?

Core question:

$$\nabla_{b_i} d_{2,\Delta\tau}^2 \left(\mathfrak{B}(t_{k-1}), \mathfrak{B}(t_k), \mathfrak{B}(t_{k+1}) \right)$$

Chain rule of geodesics:

- $\nabla d_2^2(x,y,z)$: Bačák et al. ¹
- ∇q : Jacobi fields

^{1.} Bacak, Bergmann, Steidl, and Weinmann, A Second Order Nonsmooth Variational Model for Restoring Manifold-valued Images, SIAM Journal on Computing 38 (2016), no. 1, 567-597.

Any questions?

Fast method to fit a C^1 piecewise-Bézier function to manifold-valued data points: how suboptimal is the curve obtained on the sphere S^2 ?

P.-Y. Gousenbourger, P.-A. Absil, L. Jacques pierre-yves.gousenbourger@uclouvain.be

Université catholique de Louvain, ICTEAM

GSI2017 - November 7th, 2017