Financial Mathematics Cheat Sheet

By Marcelo Moreno Porras - Universidad Rey Juan Carlos

Capitalization and discount

	Capital	lization	Discount	
Simple	$C_n = C_0 \cdot (1 + i \cdot n)$	$i_m = \frac{i}{-}$	$C_0 = C_n(1 - d \cdot n) d_m = \frac{d}{m}$	
Sir		m	Rational $C_0 = \frac{C_n}{1 + i \cdot n}$	
punoduo	$C_n = C_0 \cdot (1+i)^n$	$i_m = (1+i)^{1/m} - 1$	$C_0 = C_n \cdot (1 - d)^n$	
Com		$i = (i_m + 1)^m - 1$		

Notes: C_n capital in t = n, C_0 capital in t = 0, n periods, m subperiods, i interest rate, d discount rate. There is also the so-called **fractional capitalization**, $i_m = \frac{j(m)}{m}$, where j(m) is the nominal interest rate payable per m.

Clearing interest formulas

Simple interest formulas	Compound interest formulas
$C_n = C_0 \cdot (1 + i \cdot n)$	$C_n = C_0 \cdot (1+i)^n$
$C_0 = \frac{C_n}{1 + i \cdot n}$	$C_0 = \frac{C_n}{(1+i)^n}$
$i = \frac{\frac{C_n}{C_0} - 1}{n}$	$i = \left(\frac{C_n}{C_0}\right)^{1/n} - 1$
$n = \frac{\frac{C_n}{C_0} - 1}{i}$	$n = \frac{\log\left(\frac{C_n}{C_0}\right)}{\log\left(1+i\right)}$

Annuities

		Unitary	Variable in geometric progression		
Temporal	Postpayable	$a_{n \mid i} = \frac{1 - (1+i)^{-n}}{i}$	$A(C;q)_{n \mid i} = \begin{cases} C \cdot \frac{1 - \left(\frac{q}{1+i}\right)^n}{1+i-q} & \text{si} q \neq 1+i\\ C \cdot \frac{n}{1+i} & \text{si} q = 1+i \end{cases}$		
		$S_{n \mid i} = a_{n \mid i} \cdot (1+i)^n$	$S(C;q)_{n \mid i} = A(C;q)_{n \mid i} \cdot (1+i)^n$		
	Prepayable	$\ddot{a}_{n \mid i} = (1+i) \cdot a_{n \mid i}$	$\ddot{A}(C;q)_{n \mid i} = (1+i) \cdot A(C;q)_{n \mid i}$		
		$\ddot{S}_{n \mid i} = (1+i) \cdot S_{n \mid i}$	$\ddot{S}(C;q)_{n \mid i} = (1+i) \cdot S(C;q)_{n \mid i}$		
Perpetual	Postpayable	$a_{\infty \restriction i} = \frac{1}{i}$	$A(C;q)_{\infty \mid i} = \begin{cases} C \cdot \frac{1}{1+i-q} & \text{si} q < 1+i\\ \text{Infinito} & \text{si} q \ge 1+i \end{cases}$		
Per	Prepayable	$\ddot{a}_{\infty \rceil i} = (1+i) \cdot a_{\infty \rceil i}$	$\ddot{A}(C;q)_{\infty \mid i} = (1+i) \cdot A(C;q)_{\infty \mid i}$		

Notes:

q = factor.

Present discounted value, example, $V_0 = C \cdot a_{n \mid i}$ Final capitalized value, example, $V_n = C \cdot S_{n \mid i}$

Amortization table

Period	Interest	Amortization	Interest	Amortization	Outstanding capital	Amortized capital	
	rate	term	payment	payment			
0	-	-	-	-	C_0	-	
t_1	i_1	a_1	$I_1 = C_0 \cdot i_1$	$A_1 = a_1 - I_1$	$C_1 = C_0 - A_1$	$M_1 = C_0 - C_1$	
t_2	i_2	a_2	$I_2 = C_1 \cdot i_2$	$A_2 = a_2 - I_2$	$C_2 = C_1 - A_2$	$M_2 = C_1 - C_2$	
t_s	i_s	a_s	$I_s = C_{s-1} \cdot i_s$	$A_s = a_s - I_s$	$C_s = C_{s-1} - A_s$	$M_s = C_{s-1} - C_s$	
t_n	i_n	a_n	$I_n = C_{n-1} \cdot i_n$	$A_n = a_n - I_n$	$C_n = C_{n-1} - A_n = 0$	$M_n = C_0 - C_n = M_{n-1} + A_n = C_0$	

Loans

	French		American	Italian	Geometric progression	
					terms	
i		Constante	-	-	-	
a		Constante;	$a_s = I_s = C_0 \cdot i_s$ si $s \neq n$	$a_{s+1} = a_s - i \cdot A$	$a = \frac{C_0}{A(1;q)_{n \mid i}}$	
		$a = \frac{C_0}{a_{n \rceil i}}$	$a_n = I_n + C_0 = C_0 \cdot i_s + C_0 \text{si} s = n$		11(1,4)n 1	
I		-	$I_{s+1} = I_s - i$		-	
	A	$A_s = A_1 \cdot (1+i)^{s-1}$	$A_s = 0$ si $s \neq n$	Constante;	-	
			$A_n = C_0$ si $s = n$	$A = \frac{C_0}{n}$		
	C	$C_0 = A_1 \cdot S_{n \mid i}$	$C_s = C_0$ si $s \neq n$	-	-	
			$C_n = 0$ si $s = n$			
Recursive	method	$C_s = C_{s-1} \cdot (1+i) - a$	-	$C_s = C_{s-1} - A$	$C_s = C_{s-1} \cdot (1+i) - a \cdot q^{s-1}$	
Prospective	method	$C_s = a \cdot a_{n-s \mid i}$	-	$C_s = C_{n-s} \cdot A$	$C_s = A(a \cdot q^s; q)_{n-s \mid i}$	
$\operatorname{Retrospective}$ $\operatorname{Prospective}$ $\operatorname{Recursive}$	method	$C_s = C_0 \cdot (1+i)^s - a \cdot S_{s \mid i}$	-	$C_s = C_0 - s \cdot A$	$C_s = C_0 \cdot (1+i)^s - S(a;q)_{s \bar{\uparrow} i}$	

Graphical analysis of loans

Suppose a loan with principal $C_0 = 10.000$ at an interest rate i = 10% ending at n = 12 in which an amount is paid in each period that will depend on the type of loan.

French loan: constant interest rate, all amortization terms are constant, amortization payments vary in geometric progression of factor (1+i):

American loan: the debtor only pays interest at the end of each period except in the last, in which he also pays the nominal amount of the loan; the payments are only interest, the live capital does not vary until the last period.

Italian loan: constant amortization payments, amortization terms and interest payments decrease in arithmetic progression $(-i \cdot A)$.

Loan with geometric progression terms: amortization terms vary in geometric progression of factor q (in this case, q = 1.05).

FM-25.01-EN - github.com/marcelomijas/financial-math-cheatsheet - CC-BY-4.0 license