

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΟΜΕΑΣ ΜΗΧΑΝΙΚΗΣ, ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΚΑΙ ΥΛΙΚΩΝ

Ηρώων Πολυτεχνείου 5, Κτίριο Θεοχάρη Πολυτεχνειούπολη Ζωγράφου, 157 73 Ζωγράφου

Δρ Σταύρος Κ. Κουρκουλής, Καθηγητής Πειραματικής Μηχανικής

Τηλέφωνα: +210 772 1313, +210 772 1263 (γραφείο)

+210 772 4025, +210 772 4235, +210 772 1317, +210 7721310 (εργαστήρια)

Τηλεομοιότυπο (Fax): +210 7721302

Διεύθυνση ηλεκτρονικού ταχυδρομείου (e-mail): stakkour@central.ntua.gr

MHXANIKH I (ΣΤΑΤΙΚΗ)

8^η σειρά ασκήσεων: Αναγωγή συστημάτων δυνάμεων και ροπών

Άσκηση 1

Αντικαταστήστε τη δύναμη **F** του Σχ.1, που έχει μέτρο 4kN και δρα στο σημείο A, με μια ισοδύναμη δύναμη και μια ροπή στο σημείο C.

Ασκηση 2

Στις κορυφές κύβου ακμής 1 m ασκούνται οι τέσσερεις δυνάμεις που φαίνονται στο Σχ. 2. Τα μέτρα τους είναι F_1 =400 N, F_2 =400 N, F_3 =400 $\sqrt{3}$ N και F_4 =400 $\sqrt{2}$ N. Να αναχθεί το σύστημα στο απλούστερο δυνατό.

Άσκηση 3

Η τετραγωνικής βάσης (α=4 m) κανονική πυραμίδα ΚΑΒΓΔ του Σχ.3 έχει ύψος ΟΚ=6 m. Στην πυραμίδα δρουν τρεις δυνάμεις. Η $\mathbf{F_1}$ μέτρου 4 N κατά μήκος της ακμής AB, η $\mathbf{F_2}$ μέτρου 3 N κατά μήκος της διαμέσου ΚΗ του τριγώνου ΚΒΓ και η $\mathbf{F_3}$ μέτρου 3 N κατά μήκος της ακμής ΓΚ.

1. Να αναχθεί το σύστημα των τριών δυνάμεων $\{F_1, F_2, F_3\}$ σε σύστημα μίας δύναμης και μίας ροπής $\{R, \Sigma M\}$ στο σημείο K.

- 2. Να υπολογισθεί η γωνία μεταξύ των **R** και **ΣΜ**.
- **4.** Να υπολογισθεί η ροπή της **R** ως προς την ευθεία ΑΜ (Μ το μέσο του ύψους ΚΟ της πυραμίδας).

Άσκηση 4

Στο ορθογώνιο παραλληλεπίπεδο του $\Sigma \chi.4$ δρουν τρεις δυνάμεις. Η $\mathbf{F_1}$ μέτρου 2 kN κατά μήκος της διαγωνίου $\mathrm{B}\Delta$, η $\mathbf{F_2}$ μέτρου 4 kN κατά μήκος της κυρίας διαγωνίου $\mathrm{A}\Delta$ και η $\mathbf{F_3}$ μέτρου 3 kN κατά μήκος της $\mathrm{O}\mathrm{G}$ (G το γεωμετρικό κέντρο του τριγώνου $\mathrm{O}\mathrm{B}\Gamma$).

- Να αναχθεί το σύστημα των δυνάμεων {F₁,F₂,F₃} σε σύστημα δύναμης και ροπής {R,ΣM} στο σημείο Ο.
- 2. Να υπολογισθεί η γωνία μεταξύ των **R** και Σ**M**.
- Να υπολογισθεί η συνιστώσα της ΣΜ που είναι παράλληλη με την R.
- **4.** Να υπολογισθεί η συνιστώσα της **R** που είναι κάθετη στο επίπεδο (ΟΔΗ).
- **5.** Να υπολογισθεί η ροπή της **R** ως προς την ευθεία BG.

Ασκηση 5

Να αναχθεί το σύστημα των δύο δυνάμεων του παραπλεύρως Σχ.5 (αμφότερες μέτρου 4 kN) στο απλούστερο δυνατόν.

Άσκηση 6

Να αναχθεί το σύστημα των τριών δυνάμεων $\overrightarrow{F_1}, \overrightarrow{F_2}, \overrightarrow{F_3}$ (Σχ. 6), οι οποίες έχουν μέτρα 6, 3, 2 kN, αντιστοίχως, στο απλούστερο δυνατόν.

Δίνεται: Ακτίνα βάσεως κώνου 2 m, ύψος κώνου 4 m, NK=NB.

Άσκηση 7

Δίνεται σύστημα δύο δυνάμεων $\mathbf{F_1}$, $\mathbf{F_2}$ (μέτρων 4 και 3 kN, αντιστοίχως) και δύο ροπών $\mathbf{M_1}$, $\mathbf{M_2}$ (μέτρων 3 και 2 kNm, αντιστοίχως). Ο φορέας της $\mathbf{M_1}$ (θετικών συνιστωσών) σχηματίζει ίσες γωνίες και με τους τρεις άξονες του συστήματος αναφοράς του $\Sigma \chi$.7.

- **α.** Να αναχθεί το σύστημα στο απλούστερο δυνατό ισοδύναμο.
- β. Να προσδιορισθεί το σημείο του επιπέδου (xy) στο οποίο θα ασκείται η συνισταμένη του ως άνω αναχθέντος συστήματος.

The mone: $\begin{cases} 800x + 1200 = 0 \end{cases}$ $\begin{cases} y = -1200 = 241200 = 600 = 152 + 152 = 152$ Ma y=0 => 1,57=1,500 ≥=1 JEuri Apa la ontero (siva 20 k(0,54, 1,5-1,5=, Z)

POENE KA . EMI = 0 (=) [931,48(1,52-1,5)+644(1-2)]=061

=1 647,22=-647,22+644-644==06,3,227=3,226, Z=1=14=0.

Aea ((0.54,0,1)

Teliud so ocompa andonoiera aco de fra Sovatin R nou amerca no K FE D= où +1200/ - 800/ New fra pond rapallande de aux de ED 1 = où +368, 52j-244,2 û Nm

 $F_{2} = |F_{2}| \cdot \hat{k}_{H} = 3(0(1+0)316) - 0,949\hat{k}) = 0(1+0)948(-2,847\hat{k})$ $F_{3} = |F_{3}| \cdot F_{N} = 3(0,302(-0)302) + 0,905\hat{k}) = 0,906(-0,906) + 2,715\hat{k}$

$$|\vec{k}| = 2\hat{i} - 2\hat{j} - 6\hat{i}$$

$$|\vec{k}| = 2\hat{i} - 2\hat{j} - 6\hat{i}$$

$$|\vec{k}| = 2\hat{i} \times \hat{F}_{1}^{2} = |\hat{i}| \qquad |\hat{j}| = 24\hat{i} + 0\hat{j} + 9\hat{i}$$

$$|\vec{k}| = 2\hat{i} \times \hat{F}_{1}^{2} = |\hat{i}| \qquad |\hat{j}| = 24\hat{i} + 0\hat{j} + 9\hat{i}$$

$$|\vec{k}| = 2\hat{i} \times \hat{F}_{1}^{2} = |\hat{i}| \qquad |\hat{j}| = 24\hat{i} + 0\hat{j} + 8\hat{i} \qquad |\hat{k}| = 24\hat{i} + 0\hat{i} + 0\hat{$$

4) AN = -22 +29 +32 => (AN) = 517 = 4,123 m => AN =-0,485 +0,485 +0,728 h H poni zus P us reas zo A: $\frac{M_{A}^{2} = A_{X} \times P = |\hat{1}|}{-2} \times P = |\hat{1}| = |$ = (-0,264 - 0,252) = - (0,264 - 29,436) = + (-0,084 - 9,812) = = -0,516 2+29,1729 - 9,8962 H pani ens P us Mos The ELDER AM: MAM = (MF. AN) AM = (0,485.0,516+0,485.29,172-9,896.0,728) AN = = (0,25 + 14,148 - 7,204) AM = 7,194 (-0,485)+0,485) +0,728û)= = - 3,489 (+ 5,237 2

 $|\vec{F}| = 4\pi N | \vec{O}_{6} - 2\hat{i} + 667\hat{j} + 2\hat{i} = |\vec{O}_{6}| = 7,24m \Rightarrow \vec{O}_{6} = 0,276\hat{i} + 0,921\hat{j} + 0,276\hat{n} m$ $|\vec{F}_{3}| = 3\pi N | \vec{O}_{6} - 2\hat{i} + 667\hat{j} + 2\hat{i} = |\vec{O}_{6}| = 7,24m \Rightarrow \vec{O}_{6} = 0,276\hat{i} + 0,921\hat{j} + 0,276\hat{n} = 0,828\hat{i} + 2,763\hat{j} + 0,828\hat{i} \times N$ $|\vec{G}_{1}| = 3\pi N | \vec{O}_{6} - 2\hat{i} + 66\hat{i} = |\vec{O}_{6}| = |\vec{O}_{6}| + 0,921\hat{j} + 0,276\hat{n} = 0,828\hat{i} + 2,763\hat{j} + 0,828\hat{i} \times N$ $|\vec{G}_{1}| = 3\pi N | \vec{O}_{6} - 2\hat{i} + 8\hat{j} + 6\hat{n} = |\vec{O}_{6}| = |\vec{O}_{7}| + 2 \Rightarrow \vec{O}_{7} + 2 \Rightarrow \vec{O$

$$|\overrightarrow{DB} = 4\overrightarrow{0} + 8\overrightarrow{0} + 0\overrightarrow{A}, \quad \overrightarrow{OA} = 4\overrightarrow{0} + 0\overrightarrow{0} + 0\overrightarrow{A} = 4\overrightarrow{0} + 0\overrightarrow{0} + 0\overrightarrow{A} = 4\overrightarrow{0} + 0\overrightarrow{A} + 0\overrightarrow{A} = 4\overrightarrow{0} + 0\overrightarrow{0} + 0\overrightarrow{0} = 4\overrightarrow{0} = 4\overrightarrow{0} + 0\overrightarrow{0} = 4\overrightarrow{0} + 0\overrightarrow{0} = 4\overrightarrow{0} + 0\overrightarrow{0} = 4\overrightarrow{0} = 4\overrightarrow{0} = 4\overrightarrow{0} + 0\overrightarrow{0} = 4\overrightarrow{0} = 4\overrightarrow$$

3) $\hat{k} = \hat{k} = -0.231\hat{i} + 0.751\hat{j} + 0.618\hat{i} \times N$ H readoling the EM or \hat{k} : $\hat{E}M_{ij} = (\hat{E}M_{i} \cdot \hat{k}) \cdot \hat{k} = (-13.312 \cdot 0.231 - 15.568 \cdot 0.751 + 20.768 \cdot 0.618)\hat{k} = (-3.075 - 11.691 + 12.835)\hat{k} = -1.931 (-6.231\hat{i} + 0.751\hat{j} + 0.618\hat{i}) = 0.446\hat{i} - 1.45\hat{j} - 1.193\hat{i}$

4)
$$\overrightarrow{OH} = 4\frac{1}{4} + 8\frac{1}{9} + 6\hat{\lambda}$$
, $\overrightarrow{OR} = \frac{1}{4} + 8\frac{1}{9} + 6\hat{\lambda}$
 $\overrightarrow{B} = \overrightarrow{OH} \times \overrightarrow{OR} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 4 & 1 & 6 \\ 0 & 8 & 6 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 8 & 6 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 6 & 1 & 1 \\ 0 & 8 & 6 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 6 & 1 & 1 \\ 0 & 8 & 6 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 6 & 1 & 1 \\ 0 & 8 & 6 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 6 & 1 & 1 \\ 0 & 8 & 1 & 1 \\ 0 & 8 & 6 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 6 & 1 & 1 \\ 0 & 8 & 1 & 1 \\ 0 & 8 & 1 & 1 \\ 0 & 8 & 1 & 1 \\ 0 & 8 & 1 & 1 \\ 0 & 8 & 1 & 1 \\ 0 & 8 & 1 & 1 \\ 0 & 8 & 1 & 1 \\ 0 & 1 &$

Apa Fi-1Fil- RM = 4(0,2742 +0,158] -0,9492)= 1,096 2 +0,632j-3,7962 uai Fz=(Fj. 10 = 4(-0,2242 to,387) -0,8942)=-0,8962 +1,548 g²-3,5762 √2 = 0,5√ -0,866 j -1û Apa $M_{k}^{2} = K_{k}^{2} \times F_{k}^{2} = 1$ $\int_{-0.856}^{1} \frac{1}{1.548} = 1.576$ $\int_{-0.856}^{1} \frac{1}{1.548} = 1.576$ = (3,097 +1,548)î - (-1,788 -0,896)î + (0,774 -0,776)î = = 4,645 + 2,684) -0,002 k KNm Menagéen en Ez 200 K un Apostorin en ME oro siste des B=Fi+F2 = 0,2i+2,18j-7,372n KN ven SN=HR=4,645i+2,684j-0,002û KNm [] = 7,69 KN => P= 0,0262 +0,283 }-99592 Avalder zou EU de soo souisses fin a ropallan van fin undern son EN, = (5) P = 6,026.4,645 + 2,684.0,283 + 0,959.0,002) P=(0,121+0,76+0,002) P= = 0,883 (0,026 +0,283 j-0,959 h) = 0,023 t+0,25 j-0,847 h Apa EM = EM - EM, = 4,6220 + 2,434 j +0,845 h

>) 0=0 END (3) => 36,86 x + == 15,17 c) Z= 15,17-36,86x (3) => 9-10,9x=-4,225 cg y=10,9x -4,225 Apa Au = x2+(10,9x+4,225) + (3+36,86x-15,17) = -x2+(4,225-10,9x) + (36,86x-12,17) u Nona AK- EMI = 0 00 -x.4, 622 + 2A34(4,22)-10,9x)+0,845 (36,86x-12,17)=0 (G) -4,622x + 10,284 - 26,531x +31,198x-10,284 -0 G c, 31/40x - 31, 15.0x = 0 0=0 dea Enal no Eliezan vou dea inopya Euleta oron jupo cenu orona propia va teraminista em Rivere va aradoipel a radera pond.

Heoni 2Ns F3 us news 200: = or for +3,464 is Meranina zus Fifi no O non réposite 715 conés zons ne réas R=FAF2+F3 = -0,5710-1,01g-2,682~ (N=)[R=2,922KN=R=-0,1950-9,346g-0,918 C EN= NE + NE =10,728 2 toj +3,4640 Avadiu zw EN 02 2 overwes EN, nou EN, noghthur van autem onv Parisoya. EN,= (50.2)2-(10,728.0,195-3,464.0,918,).2-(-2052-3,18)2---5,272 (-0,1950-0,346j-99180)=1,028 2+1,824 j+4,84 h Apa Die = EW - EW = 9,70-1,824) -1,3762 Yaxxw ontoo 1 (x,y, 7) zézoio wore: M= - EMI = -9, 7/2+1,824/3+1,376/ 10=-xi-yj-zû $\frac{1}{100} = \frac{1}{100} \times \frac{1}{100} = \frac{1}$

Menagépo The Fino A non poodera oro oisofa um Mã Apa Exw P = 10 +4,4 j -5,20 Evions EXM. $R_2 = \delta \hat{t} + \delta \hat{t} + 2\hat{n}$ Enw cibos pe fraginco OE, 2018 10 n Me leponoren rainer on OB ΘE= 31+39+30 => | ΘE|= 5,196-, ΘE=0,577 1 +0,577 1 +0,577 1 +0,5770 Aca R= R/OE= 30E = 1,7312+1,7312 New SM- M, +M2 + M= -3,0692+1,7322+3,7322 1P= 6885 KN = P= 0,1451+0,639j-0,7552 Avadim zom ED ve tio ouroraver, tra repúblich (EM) untra valez (EM2) nortra EMU = (EM. 2) R=(-0,145.3,069+0,639.1,732-0,755.3,732) R=(-0,445+1,107-2,818) R= -2156- P=-2156, (0,1450 +0,639) -0,7550) =-0,3130 -1,378) +1,6280 Aco EMI = EMI - EMI - - 2,7552 +3,110 \$ +2,1042 Yàxus oupers K(x,y,z) ZEZOIS WORE ME = - EM = 2,7550 -3,110j-2,1040 RA = -xî -yj + (6-2)û