Contents

Introduction	1
Normed Vector Spaces	1
Vector Spaces, Norms, and Basic Properties	1
	2
Series Convergence and Completeness	3
	3
	3
	4
Bounded Linear Operators	6
Proposition: Categorization of Continuous Linear Maps	7
	8
	10
	12
Pillars of Functional Analysis	14
Baire Category Theorem	15
	15
Theorem : Baire Category Theorem	15
Open Mapping Theorem	16
Theorem: Open Mapping Theorem	17
	18
	19
	20
Theorem: Closed Graph Theorem	20

Introduction

This is going to be part of the notes for my Honors thesis independent study, which will be focused on amenability and C^* -algebras. This section of notes will be focused on the essential results in functional analysis, starting from normed vector spaces, working our way up through C^* -algebras.

The primary source for this section is going to be Timothy Rainone's Functional Analysis-En Route to Operator Algebras, which has not been published yet.

I do not claim any of this work to be original.

Normed Vector Spaces

Vector Spaces, Norms, and Basic Properties

All vector spaces are defined over \mathbb{C} . Most of the information here is in my Real Analysis II notes, so I'm going to skip to some of the more important content.

Definition (Vector Space). A vector space V is a set closed under two operations

$$\begin{split} \alpha: V \times V &\to V, \ (\nu_1, \nu_2) \mapsto \nu_1 + \nu_2 \\ m: \mathbb{C} \times V &\to V, \ (\lambda, \nu) \mapsto \lambda \nu. \end{split}$$

We refer to a as addition, and m as scalar multiplication; (V, +) is an abelian ring.

Definition (Norm). A norm is a function

$$\|\cdot\|: V \to \mathbb{R}^+, x \mapsto \|x\|$$

that satisfies the following properties:

- Positive definiteness: ||v|| = 0 if and only if $v = 0_V$.
- Triangle inequality: $\|v + w\| \le \|v\| + \|w\|$.
- Absolute Homogeneity: $\|\lambda v\| = |\lambda| \|v\|$, for $\lambda \in \mathbb{C}$.

If a function $p:V\to\mathbb{R}^+$ satisfies the triangle inequality and absolute homogeneity, we say p is a seminorm.

We say the pair $(V, \|\cdot\|)$ is a normed vector space.

Definition (Balls and Spheres). Let X be a normed vector space, $x \in X$, and $\delta > 0$. Then,

$$U(x, \delta) = \{ y \in X \mid d(x, y) < \delta \}$$

$$B(x, \delta) = \{ y \in X \mid d(x, y) \le \delta \}$$

$$S(x, \delta) = \{ y \in X \mid d(x, y) = \delta \}.$$

For a normed vector space, we will use the following conventions for common sets:

$$\begin{aligned} &U_X = U(0,1) \\ &B_X = B(0,1) \\ &S_X = S(0,1) \\ &\mathbb{D} = U_\mathbb{C} \\ &\mathbb{T} = S_\mathbb{C}. \end{aligned}$$

Definition (Equivalent Norms). Two norms on V, $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{b}$ are said to be equivalent if there are two constants C_1 and C_2 such that

$$\|v\|_{a} \leq C_{1} \|v\|_{b}$$
$$\|v\|_{b} \leq C_{2} \|v\|_{a}$$

for all $v \in V$. We say $\|\cdot\|_{\mathfrak{a}} \sim \|\cdot\|_{\mathfrak{b}}$.

Examples

Example (Finite-Dimensional Vector Spaces). The vector space \mathbb{C}^n is with the p-norm is denoted ℓ_p^n , where for $p \in [1, \infty]$, the p-norm is defined by

$$||x||_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}.$$

In the case with p = 2, this gives the traditional Euclidean norm, and with $p = \infty$, this gives the sup norm:

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|.$$

Example (A Sequence Space). We let $\ell_p = \{(x_n)_n \mid x_n \in \mathbb{C}, \|x\|_p < \infty\}$ be the collection of sequences in \mathbb{C} with finite p-norm. Here,

$$\|x\|_{p} = \left(\sum_{n=1}^{\infty} |x_{n}|^{p}\right)^{1/p}.$$

In the case with $p = \infty$, this gives the sequence space ℓ_{∞} , which has norm

$$||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|.$$

Example (A Function Space). We let $\ell^{\infty}(\Omega)$ denote the set of all bounded functions $f:\Omega\to\mathbb{C}$, equipped with the norm

$$\|f\|_{\infty} = \sup_{x \in \Omega} |f(x)|.$$

If $\Omega=(\Omega,\mathcal{M},\mu)$ is a measure space, then we let $L^{\infty}(\Omega)$ be the space of μ -a.e. equal essentially bounded measurable functions, under the norm

$$\|f\|_{\infty} = \operatorname{ess\,sup} |f(x)|.$$

Series Convergence and Completeness

Proposition (Criteria for Banach Spaces): Let X be a normed vector space. The following are equivalent:

- (i) X is a Banach space.¹
- (ii) If $(x_k)_k$ is a sequence of vectors such that $\sum_{k=1}^{\infty} \|x_k\|$ converges, then $\sum_{k=1}^{\infty} x_k$ converges.
- (iii) If $(x_k)_k$ is a sequence in X such that $||x_k|| < 2^{-k}$, then $\sum_{k=1}^{\infty} x_k$ converges.

Proof. To show (i) implies (ii), for n > m > N, we have

$$||s_n - s_m|| = \left\| \sum_{k=m+1}^n x_k \right\|$$

$$\leq \sum_{k=m+1}^n ||x_k||$$

$$\leq \epsilon,$$

implying that s_n is Cauchy, and thus converges since X is complete.

Since $\sum_{k=1}^{\infty} 2^{-k}$ converges, it is clear that (ii) implies (iii).

To show (iii) implies (i), we let $(x_n)_n$ be a Cauchy sequence in X. We only need construct a convergent subsequence in order to show that $(x_n)_n$ converges.

Chose $n_1 \in \mathbb{N}$ such that for $n, m \ge n_1$, $\|x_m - x_n\| < \frac{1}{2^2}$, and inductively define $n_j > n_{j-1}$ such that $n, m \ge n_j$ implies $\|x_m - x_n\| < \frac{1}{2^{j+1}}$.

Let $y_1 = x_{n_1}$, $y_j = x_{n_j} - x_{n_{j-1}}$. Then,

$$\|y_j\| = \|x_{n_j} - x_{n_{j-1}}\|$$
 $< \frac{1}{2^j},$

so $\sum_{j=1}^{\infty}y_{j}$ converges by our assumption. By telescoping, we see that $\sum_{j=1}^{k}y_{j}=x_{n_{k}}$, so $(x_{n_{k}})_{k}$ converges.

Quotient Spaces

Let X be a normed vector space. Then, for $E \subseteq X$ a subspace, there is a quotient space X/E with the projection map $\pi: X \to X/E$, $x \mapsto x + E$. We want to make X/E into a normed space — in order to do this, we use the distance function:

$$dist_{E}(x) = \inf_{y \in E} d(x, y),$$

^IComplete normed vector space.

which is uniformly continuous. For E closed, then $dist_E(x) = 0$ if and only if $x \in E$.

Proposition (Quotient Space Norm): Let X be a normed vector space, and $E \subseteq X$ a subspace. Set

$$\|\mathbf{x} + \mathbf{E}\|_{\mathbf{X}/\mathbf{E}} = \operatorname{dist}_{\mathbf{E}}(\mathbf{x}).$$

Then,

- (1) $\|\cdot\|_{X/E}$ is a well-defined seminorm on X/E.
- (2) If E is closed, then $\|\cdot\|_{X/E}$ is a norm on X/E.
- (3) $||x + E||_{X/E} \le ||x||$ for all $x \in X$.
- (4) If E is closed, then $\pi: X \to X/E$ is Lipschitz.
- (5) If X is a Banach space and E is closed, then X/E is also a Banach space.

Proof.

(1) We will show that $\|\cdot\|_{X/E}$ is well-defined. If x + E = x' + E, $x' - x \in E$, so for every $y \in E$, $x' - x + y \in E$. Thus,

$$||x - y|| = ||x' - (x' - x + y)||$$

 $\geqslant \inf_{z \in E} ||x' - z||$
 $= ||x' + E||_{X/E}$.

Thus, $\|x + E\|_{X/E} \ge \|x' + E\|_{X/E}$, and vice versa.

Let $\lambda \in \mathbb{C} \setminus \{0\}$, and $x \in X$. Then,

$$\begin{aligned} \|\lambda(x+E)\|_{X/E} &= \|\lambda x + E\|_{X/E} \\ &= \inf_{y \in E} \|\lambda x - y\| \\ &= |\lambda| \inf_{y \in E} \|x - \lambda^{-1}y\| \\ &= |\lambda| \inf_{y' \in E} \|x - y\| \\ &= |\lambda| \|x + E\|_{X/E} \end{aligned}$$

Given $x, x' \in X$ and a fixed $\varepsilon > 0$, we have

$$\|x+E\|+\frac{\epsilon}{2}>\|x-y\|$$

for some $y \in E$, and

$$\|x' + E\| + \frac{\varepsilon}{2} > \|x' - y'\|$$

for some $y' \in E$. Thus,

$$||(x + x') - (y + y')|| \le ||x - y|| + ||x' - y'||$$

 $< \varepsilon + ||x + E|| + ||x' + E||.$

Since $y + y' \in E$, we have

$$\begin{split} \|(x+E) + (x'+E)\|_{X/E} &= \|x+x'+E\|_{X/E} \\ &\leq \|(x+x') - (y+y')\| \\ &< \epsilon + \|x+E\|_{X/E} + \|x'+E\|_{X/E} \,, \end{split}$$

meaning

$$||(x + E) + (x' + E)|| \le ||x + E|| + ||x' + E||.$$

- (2) If E is closed, and ||x + E|| = 0, then $x \in E$ so $x + E = 0_{X/E}$.
- (3) For $x \in X$,

$$||x + E||_{X/E} = \inf_{y \in E} ||x - y||$$

$$\leq ||x||.$$

(4) We have

$$\|(x + E) - (x' + E)\|_{X/E} = \|x - x' + E\|_{X/E}$$

 $\leq \|x - x'\|.$

(5) Let X be complete and $E \subseteq X$ be closed. Let $(x_k + E)_k$ be a sequence in X/E with $||x_k + E|| < 2^{-k}$. We want to show that $\sum_{k=1}^{\infty} (x_k + E)$ converges.

For each k, since $||x_k + E|| < 2^{-k}$, there exists $y_k \in E$ such that $||x_k - y_k|| < 2^{-k}$. Since X is complete, $\sum_{k=1}^{\infty} x_k - y_k$ converges.

Let $\left(\sum_{k=1}^n x_k - y_k\right)_n \to x$ in X. Applying the canonical projection map, π , to both sides, we get

$$\sum_{k=1}^{n} (x_k + E) = \sum_{k=1}^{n} \pi(x_k)$$
$$= \pi \left(\sum_{k=1}^{n} (x_k - y_k) \right)$$
$$\to \pi(x),$$

implying that $\sum_{k=1}^{\infty} (x_k + E)$ converges.

Exercise: Consider ℓ_{∞} and its closed subspace c_0 . If $\pi:\ell_{\infty}\to\ell_{\infty}/c_0$ denotes the canonical quotient map, with $(z_k)_k\in\ell_{\infty}$, show that

$$\|(z_k)_k + c_0\| = \limsup_{k \to \infty} |z_k|$$

Solution: Let $z = (z_k)_k \in \ell_{\infty}$. We define the distance

$$dist_{c_0}(z) = \inf_{t \in c_0} |z_k - t_k|.$$

Let $w \in c_c$ be defined by

$$w = (z_1, z_2, \dots, z_{n-1}, 0, 0, \dots).$$

Then,

$$||z - w||_{\infty} = \sup_{k \in \mathbb{N}} |z_k - w_k|$$
$$= \sup_{k \ge n} |z_k - w_k|,$$

meaning that

$$\operatorname{dist}_{c_c}(z) \leq \sup_{k \geq n} |z_k|.$$

Since $c_0 \supseteq c_c$, we have

$$\begin{aligned} \operatorname{dist}_{c_0}(z) & \leq \operatorname{dist}_{c_c}(z) \\ & \leq \inf_{n \geq 1} \left(\sup_{k \geq n} |z_k| \right) \\ & = \lim\sup_{k \to \infty} |z_k| \,. \end{aligned}$$

Now, we show that $\limsup_{k\to\infty} |z_k| \le \operatorname{dist}_{c_c}(z)$. Given $\varepsilon > 0$, there exists $w \in c_c$ such that

$$||z - w|| < \operatorname{dist}_{c_c}(z) + \varepsilon.$$

Additionally, for w that terminates at n-1 (i.e., is equal to 0 for all $k \ge n$), we have

$$\sup_{k \ge n} |z_k - w_k| \le \sup_{k \in \mathbb{N}} |z_k - w_k|,$$

meaning

$$\limsup_{k \to \infty} |z_k| = \inf_{n \ge 1} \left(\sup_{k \ge n} |z_k| \right)$$

$$\le \sup_{k \ge n} |z_k - w_k|$$

$$\le \sup_{k \in \mathbb{N}} |z_k - w_k|$$

$$= \|z - w\|$$

$$< \operatorname{dist}_{c_n}(z) + \varepsilon,$$

implying that

$$\limsup_{k\to\infty} |z_k| = \operatorname{dist}_{c_c}(z).$$

For $\varepsilon > 0$, let $w \in c_0$ be such that

$$||z - w|| < \operatorname{dist}_{c_0}(z) + \varepsilon/2.$$

Additionally, let $\lambda \in c_c$ such that $\|\lambda - w\| < \varepsilon/2$. Then, we have

$$\begin{aligned} \operatorname{dist}_{c_0}(z) + \varepsilon &> \|z - \lambda\| + \|\lambda - w\| \\ &\geqslant \operatorname{dist}_{c_c}(z) + \varepsilon/2 \\ &\geqslant \limsup_{k \to \infty} |z_k| \,. \end{aligned}$$

Thus, $\limsup_{k\to\infty} |z_k| \le \operatorname{dist}_{c_0}(z)$, meaning $\limsup_{k\to\infty} |z_k| = \operatorname{dist}_{c_0}(z)$.

Bounded Linear Operators

Definition (Continuous Functions). A function $f:(X,d_X)\to (Y,d_Y)$ is called Lipschitz if there is a constant C>0 such that

$$d_Y(f(x), f(x')) \leq Cd_x(x, x')$$

for all $x, x' \in X$.

If $C \le 1$, a Lipschitz map is known as a contraction.

If

$$d_{Y}(f(x), f(x')) = d_{X}(x, x')$$

for all $x, x' \in X$, then f is known as an isometry.

Proposition (Categorization of Continuous Linear Maps): Let X and Y be normed vector spaces, and let $T: X \to Y$ be a linear map. The following are equivalent:

- (i) T is continuous at 0.
- (ii) T is continuous.
- (iii) T is uniformly continuous.
- (iv) T is Lipschitz.
- (v) There exists a constant C > 0 such that $||T(x)|| \le C ||x||$ for all $x \in X$.

Definition (Bounded Linear Operator). Let X and Y be normed vector spaces, and let $T : X \to Y$ be a linear map.

(1) T is bounded if $T(B_X)$ is bounded in Y. Equivalently, T is bounded if and only if

$$\sup_{x \in B_X} \|\mathsf{T}(x)\| < \infty,$$

or that $\exists r > 0$ such that $T(B_X) \subseteq B_Y(0, r)$.

(2) The operator norm of T is the value

$$\|\mathsf{T}\|_{\mathrm{op}} = \sup_{\mathsf{x} \in \mathsf{B}_{\mathsf{X}}} \|\mathsf{T}(\mathsf{x})\|\,.$$

Lemma: Let $T: X \to Y$ be a linear map between normed vector spaces. Then,

$$\|\mathsf{T}\|_{\mathrm{op}} = \sup_{\mathsf{x} \in \mathsf{S}_{\mathsf{X}}} \|\mathsf{T}(\mathsf{x})\|$$

and for all $x \in X$,

$$||T(x)|| \le ||T||_{op} ||x||.$$

Lemma: Let $T: X \to Y$ be a bounded linear map between normed vector spaces. Then, for any $x \in X$ and r > 0,

$$r \|T\|_{op} \leqslant \sup_{y \in B(x,r)} \|T(y)\|$$

Proof. Let $C = \sup_{y \in B(x,r)} ||T(y)||$. If $z \in B(0,r)$, then z + x, $z - x \in B(x,r)$, meaning

$$2T(z) = T(z + x) + T(z - x),$$

so by the triangle inequality, we get

$$2 \|T(z)\| \le \|T(z+x)\| + \|T(z-x)\|$$

$$\le 2 \max \{ \|T(z+x)\|, \|T(z-x)\| \}$$

$$\le 2C.$$

Thus,

$$||T(z)|| \leq \sup_{y \in B(x,r)} ||T(y)||,$$

meaning

$$r \|T\|_{op} \leqslant \sup_{y \in B(x,r)} \|T(y)\|.$$

П

Remark: For a linear map $T: X \to Y$, the following are equivalent:

- (1) T is continuous.
- (2) T is bounded.
- (3) $\|T\|_{op} < \infty$.

Definition. Let X and Y be normed spaces, $T: X \to Y$ a linear map.

- (1) T is bounded below if there exists C_2 such that $||T(x)|| \ge C_2 ||x||$ for all $x \in X$.
- (2) T is bicontinuous if T is bounded and bounded below.

$$C_2 ||x|| \le ||T(x)|| \le C_1 ||x||$$

- (3) T is a bicontinuous isomorphism if T is bijective, linear, and bicontinuous. We say X and Y are bicontinuously isomorphic.
- (4) We say T is an isometric isomorphism if T is bijective, linear, and an isometry.

Example. Let ρ be the continuous surjective wrapping function $\rho:[0,2\pi]\to \mathbb{T}$, $\rho(t)=e^{\mathrm{i}t}$. There is an induced isometry

$$T_{o}: C(\mathbb{T}) \to C([0,2\pi]),$$

defined by $T_{\rho}(f)(t) = f \circ \rho(t) = f(e^{it})$.

The range of T_{ρ} is $C = \{G \in C([0, 2\pi]) \mid g(0) = g(2\pi)\}$, which means that $C(\mathbb{T})$ and C are isometrically isomorphic Banach spaces.

Proposition: Let X and Y be normed spaces, and T: $X \rightarrow Y$ be a linear map. The following are equivalent.

- (i) T is bicontinuous.
- (ii) $T: X \rightarrow Ran(T)$ is a linear isomorphism and homeomorphism.

Proof. Let T be bicontinuous. Then, T is linear, injective, and surjective onto Ran(T). Since T is continuous, T is bounded. Let S: Ran(T) \rightarrow X be defined by S(T(x)) = x. We can see that S is well-defined, since T: X \rightarrow Ran(T) is surjective, and so has a left inverse. Similarly, since $||S(T(x))|| = ||x|| \le \frac{1}{C_2} ||T(x)||$, S is continuous.

Let $S : Ran(T) \to X$ be defined by S(T(x)) = x. Since T is continuous, it is bounded, so

$$||T(x)|| \le ||T||_{op} ||x||.$$

Since S is bounded,

$$||x|| = ||S(T(x))||$$

= $||S||_{OD} ||T(x)||$,

so
$$\frac{1}{\|S\|_{op}} \|x\| \le \|T(x)\|$$
.

Corollary: Let X be a vector space with $\|\cdot\|$ and $\|\cdot\|'$ two norms. The following are equivalent:

- (i) The norms $\|\cdot\|$ and $\|\cdot\|'$ are equivalent.
- (ii) The map $id_X : (X, ||\cdot||) \rightarrow (X, ||\cdot||')$.

Proposition (Properties of Bounded Linear Operators): Let X, Y, Z be normed spaces, $T : X \to Y, S : X \to Y$, and $R : Y \to Z$ be linear maps.

(1)
$$\|\alpha T\|_{op} = |\alpha| \|T\|_{op}$$

- (2) $\|T + S\|_{op} \le \|T\|_{op} + \|S\|_{op}$
- (3) $\|T\|_{op} = 0$ if and only if T = 0
- (4) $\|R \circ T\|_{op} \le \|R\|_{op} \|T\|_{op}$
- (5) $\|id_X\|_{op} = 1$
- (6) If $E \subseteq X$ is a subspace, then $\|T|_E\|_{op} \le \|T\|_{op}$

Proof. We will prove (4) here. For $x \in B_X$, we have

$$\begin{aligned} \|R \circ \mathsf{T}(x)\| &= \|R\left(\mathsf{T}(x)\right)\| \\ &\leq \|R\|_{\mathrm{op}} \|\mathsf{T}(x)\| \\ &\leq \|R\|_{\mathrm{op}} \|\mathsf{T}\|_{\mathrm{op}} \,. \end{aligned}$$

Taking the supremum, we obtain $\|R \circ T\|_{op} \le \|R\|_{op} \|T\|_{op}$.

Recall: $\mathcal{L}(X, Y)$ is the set of all linear operators with domain X and codomain Y.

Proposition: Let X and Y be normed spaces.

- (1) The collection $\mathcal{B}(X,Y) = \left\{ T \in \mathcal{L}(X,Y) \mid ||T||_{op} < \infty \right\}$ equipped with the operator norm is a normed space known as the space of bounded linear operators between X and Y.
- (2) If Y is a Banach space, then $\mathcal{B}(X, Y)$ is a Banach space.
- (3) The continuous dual space, $X^* = \mathcal{B}(X, \mathbb{C})$ is a Banach space.

Proof. We will prove (2). Let $(T_n)_n$ be Cauchy under $\|\cdot\|_{op}$. Since Cauchy sequences are bounded, there is some C > 0 such that $\|T_n\|_{op} \le C$ for all $n \ge 1$. For $x \in X$,

$$||T_n(x) - T_m(x)|| \le ||T_n - T_m||_{op} ||x||$$
,

meaning $(T_n(x))_n$ is Cauchy in Y. Since Y is complete, we define

$$\mathsf{T}(\mathsf{x}) = \lim_{\mathsf{n} \to \infty} \mathsf{T}_\mathsf{n}(\mathsf{x})$$

in Y. If $x \in B_X$, we have

$$\begin{split} \|T(x)\| &= \left\|\lim_{n\to\infty} T_n(x)\right\| \\ &= \lim_{n\to\infty} \|T_n(x)\| \\ &\leqslant \limsup_{n\to\infty} \|T_n(x)\| \\ &\leqslant C \|x\|, \end{split}$$

meaning $\|T\|_{op} \leq C$.

Let $\varepsilon > 0$, and $N \in \mathbb{N}$ large such that $n, m \ge N$, $\|T_n - T_m\|_{op} \le \varepsilon$. For $x \in B_X$,

$$\begin{split} \|T_n(x) - T(x)\| &= \lim_{m \to \infty} \|T_n(x) - T_m(x)\| \\ &\leq \limsup_{m \to \infty} \|T_n - T_m\|_{op} \|x\| \\ &< \epsilon. \end{split}$$

Thus, $\|T - T_n\|_{op} < \varepsilon$ for all $n \ge N$.

Definition (Algebras). Let A be an algebra over C.

- (1) If A admits a norm $\|\cdot\|$ satisfying $\|ab\| \le \|a\| \|b\|$, then A is a normed algebra. If A is unital, then $\|1_A\| = 1$.
- (2) If A is complete with respect to its norm, then A is called a Banach algebra, and if A is unital, then A is a unital Banach algebra.

Lemma: In a normed algebra A, the map $\cdot: A \times A \to A$, $(a,b) \mapsto ab$ is continuous.

Proposition: Let X be a normed space. The set of bounded operators $\mathcal{B}(X, X) = \mathcal{B}(X)$ is a unital normed algebra. Moreover, if X is a Banach space, then $\mathcal{B}(X)$ is a Banach algebra.

Proposition: Let A be a unital Banach algebra, $a \in A$. The series

$$\exp(\alpha) = \sum_{n=0}^{\infty} \frac{\alpha^n}{n!}$$

converges absolutely in A. We call exp(a) the exponential of a.

- (1) $\exp(0) = 1_A$
- (2) If A is commutative, then exp(a + b) = exp(a) exp(b).
- (3) We have $\exp(a) \in GL(A)$ with $\exp(a)^{-1} = \exp(-a)$.
- (4) $\|\exp(a)\| \le \exp(\|a\|)$.

Quotient Maps

Definition. A map $f: X \to Y$ is called open if $U \subseteq X$ is open implies $f(U) \subseteq Y$ is open.

Proposition: Let X and Y be normed spaces, T: $X \to Y$ a linear map. The following are equivalent:

- (i) T is surjective and open.
- (ii) $T(U_X) \subseteq Y$ is open.
- (iii) There exists $\delta > 0$ such that $\delta U_Y \subseteq T(U_X)$.
- (iv) There exists δ such that $\delta B_Y \subseteq T(B_X)$.
- (v) There exists M > 0 such that for all $y \in Y$, there exists $x \in X$ with T(x) = y and $||x|| \le M ||y||$.

Proof. To see (i) implies (ii), if T is surjective and open, then it is clear that $T(U_X)$, which is the image of an open set, is open.

To see (ii) implies (iii), if $T(U_X)$ is open, we have $0_Y \in T(U_X)$, so there is some δ such that $U(0, \delta) \subseteq T(U_X)$, meaning $\delta U_Y \subseteq T(U_X)$.

Assuming (iii), we see that $\frac{\delta}{2}B_Y \subseteq \delta U_Y \subseteq T(U_X) \subseteq T(B_X)$.

To see (iv) implies (v), let δ be such that $\delta B_Y\subseteq T(B_X)$, and set $M=\frac{1}{\delta}$. Note that for $y\in Y,y\neq 0$, $\frac{\delta}{\|y\|}y\in \delta B_Y$, meaning $\frac{\delta}{\|y\|}y=T(x)$ for some $x\in B_X$, implying that $T\left(\frac{\|y\|}{\delta}x\right)=y$. Finally, since $x\in B_X$, $\frac{\|y\|}{\delta}\|x\|\leqslant \frac{1}{\delta}\|y\|=M\|y\|$.

To see (v) implies (i), we can see that T is surjective by the assumption. Let $U \subseteq X$ be open, $y_0 \in T(U)$. Then, there exists x_0 such that $T(x_0) = y_0$, and $\delta > 0$ such that $U(x_0, \delta) \subseteq U$. Note that $U(x_0, \delta) = x_0 + \delta U_X$, so $x_0 + \delta U_X \subseteq U$. Applying T, we get $T(x_0 + \delta U_X) \subseteq T(U)$, or $y_0 + \delta T(U_X) \subseteq T(U)$. By assumption, since given $y \in U_Y$, there exists $x \in X$ such that $\|x\| \le M \|y\|$, meaning $\|x\| \le M$, we have $U_Y \subseteq T(MU_X)$. Thus, $\frac{1}{M}U_Y \subseteq T(U_X)$, meaning $y_0 + \frac{\delta}{M}U_Y \subseteq y_0\delta T(U_X) \subseteq T(U)$, so $U_Y(y_0, \frac{\delta}{M}) \subseteq T(U)$.

Definition. Let X and Y be normed vector spaces.

- (1) A bounded linear map $T: X \to Y$ that is surjective and open is known as a quotient map.
- (2) If $T(U_X) = U_Y$, then T is called a 1-quotient map.

Exercise: If $T(B_X) = B_Y$, show that $T(U_X) = U_Y$.

Solution: Since $T(B_X) = B_Y$, it is the case that $(T(B_X))^\circ = B_Y^\circ$. Since T is an open map, T is continuous, meaning $(T(B_X))^\circ = T(B_X^\circ)$. Thus, $T(U_X) = U_Y$.

Proposition: Let X and Y be normed vector spaces with $T: X \to Y$ a quotient map. If X is a Banach space, then Y is a Banach space.

Proof. We will show that Y is complete by showing that an absolutely convergent series converges.

Let $(y_k)_k$ be a sequence in Y with $\sum_{k=1}^{\infty} \|y_k\| < \infty$. Since T is a quotient map, there is a universal M > 0 such that for all k, there is $x_k \in X$ such that $T(x_k) = y_k$ and $\|x_k\| \le M \|y_k\|$. Thus,

$$\sum_{k=1}^{\infty} \leq M \sum_{k=1}^{\infty} \|y_k\|$$

$$< \infty.$$

Since X is complete, $\sum_{k=1}^{\infty} x_k$ converges. Let $\sum_{k=1}^{\infty} x_k = x$. Then, $\left(T\left(\sum_{k=1}^{n} x_k\right)\right)_n \xrightarrow{n \to \infty} T(x)$, meaning $\sum_{k=1}^{\infty} y_k = T(x)$. Thus, $\sum_{k=1}^{\infty} y_k$ converges in Y, so Y is a Banach space.

Proposition: Let X be a normed vector space, $E \subseteq X$ a closed subspace. The canonical quotient map, $\pi : X \to X/E$ is a 1-quotient map.

Proof. We know that $\|\pi(x)\| \leq \|x\|$, meaning $\pi(U_X) \subseteq U_{X/E}$.

Let $\pi(x) = x + E \subseteq U_{X/E}$. Then, $\inf_{y \in E} ||x - y|| \le 1$, meaning there exists some y such that ||x - y|| < 1, meaning $\pi(x - y) = \pi(x)$.

Corollary: If X is a Banach space, $E \subseteq X$ a closed subspace, then X/E is a Banach space.

Corollary: Let X be a normed vector space and $E \subseteq X$ be closed. If two of X, E, X/E are complete, the third is also complete.

Proof. We have shown that if X is complete, then E is necessarily complete (since E is closed) and X/E is complete as shown above.

Let E and X/E be complete. We now want to show that X is complete. Let $(x_k)_k$ be Cauchy in X.

For each k, let $x_k = s_k + y_k$, where $y_k \in E$ and $s_k + E = \pi(x_k)$. Notice that, since x_k is Cauchy, so too is s_k , as $||s_k|| \le ||x_k||$ for all k. Additionally, for $m, n \ge N$, we have

$$||x_{m} - x_{n}|| = ||s_{m} + y_{m} - (s_{n} + y_{n})||$$

$$\leq ||s_{m} - s_{n}|| + ||y_{m} - y_{n}||$$

$$\leq \varepsilon$$

implying that $(y_k)_k$ is Cauchy in E. Since X/E and E are complete, we define $x = \lim_{k \to \infty} s_k + \lim_{k \to \infty} y_k$. Finally, for $m, n \ge N$, we have

$$||x - x_n|| = \lim_{m \to \infty} ||x_m - x_n||$$

$$\leq \varepsilon,$$

meaning $(x_k)_k \xrightarrow{k \to \infty} x$, so X is complete.

Proposition: Let X and Y be normed spaces, $E \subseteq X$ a closed subspace, and $T: X \to Y$ bounded linear with $E \subseteq \ker(T)$. Then, there exists a unique bounded linear map $\overline{T}: X/E \to Y$ such that $\overline{T} \circ \pi = T$. Moreover, \overline{T} is injective if and only if $E = \ker(T)$ and $\|\overline{T}\| = \|T\|$.

Proof. The existence and uniqueness of $\overline{T}: X/E \to Y$ such that $\overline{T} \circ \pi = T$ follows from the First Isomorphism Theorem for vector spaces, as does the fact that \overline{T} is injective and only if $\ker(T) = E$.

Let $x + E \in X/E$. For $y \in E$, we have

$$\left\| \overline{T}(x+E) \right\| = \left\| \overline{T}(x-y+E) \right\|$$
$$= \left\| T(x-y) \right\|$$
$$\leq \left\| T \right\| \left\| x-y \right\|.$$

Taking infimum over all $y \in E$, we get $\|\overline{T}(x+E)\| \le \|T\| \|x+E\|$, meaning $\|\overline{T}\| \le \|T\|$. Additionally,

$$\begin{split} \|T\| &= \left\| \overline{T} \circ \pi \right\| \\ &\leq \left\| \overline{T} \right\| \|\pi\| \\ &= \left\| \overline{T} \right\|. \end{split}$$

Theorem (First Isomorphism Theorem for Normed Vector Spaces): Let X and Y be normed vector spaces, $T \in \mathcal{B}(X,Y)$.

- (1) T is a quotient map if and only if $\overline{T}: X/\ker(T) \to Y$ is a bicontinuous isomorphism.
- (2) T is a 1-quotient map if and only if $\overline{T}: X/\ker(T) \to Y$ is an isometric isomorphism. *Proof.*
 - (1) Let $\overline{T}: X/\ker(T) \to Y$ be a bicontinuous isomorphism. Since \overline{T} is bicontinuous, it is a homeomorphism, meaning it is open and surjective. Since π is a quotient map, so too is $T: \overline{T} \circ \pi$.

Suppose T is a quotient map. Then, T is surjective, meaning \overline{T} is an isomorphism. Since T is bounded below, \overline{T} is also bounded. Let $\pi(x) = x + \ker(T) \in X/\ker(T)$, with T(x) = y. Let M be such that $\|x\| \le M \|y\|$. There is an $x' \in X$ with T(x') = y, and $\|x'\| \le M \|y\|$. Thus, $x - x' \in \ker(T)$, so $\pi(x) = \pi(x')$, meaning

$$\begin{aligned} \left\| \overline{\mathsf{T}} \circ \pi(\mathsf{x}) \right\| &= \left\| \mathsf{T} \circ \pi(\mathsf{x}') \right\| \\ &= \left\| \mathsf{y} \right\| \\ &\geqslant \mathsf{M}^{-1} \left\| \mathsf{x}' \right\| \\ &\geqslant \mathsf{M}^{-1} \left\| \pi(\mathsf{x}') \right\| \\ &= \mathsf{M}^{-1} \left\| \pi(\mathsf{x}) \right\|, \end{aligned}$$

meaning T is bounded below.

(2) Suppose $\overline{T}: X/\ker(T) \to Y$ is an isometric isomorphism. Then, \overline{T} is a 1-quotient map, and since π is a 1-quotient map, so too is $T = \overline{T} \circ \pi$.

Suppose T is a 1-quotient map. Since T is surjective, \overline{T} is an isomorphism. Since T is a 1-quotient map, $\|T\| = \sup_{x \in U_X} \|T(x)\| \le 1$, meaning $\|\overline{T}\| \le \|T\| \le 1$. Consider $S = \left(\overline{T}\right)^{-1} : Y \to X/\ker(T)$; S is also an isomorphism, so $S \circ \overline{T} == \operatorname{id}_{X/\ker(T)}$. We will now show S is a contraction, meaning \overline{T} is an isometry.

Let $y \in U_Y$. Since T is a 1-quotient map, there exists $x \in U_X$ such that T(x) = y. Then, $\overline{T}(x + \ker(T)) = T(x) = y$, meaning $S(y) = x + \ker(T)$, and

$$||S(y)|| = ||x + \ker(T)||$$

$$\leq ||x||$$

$$\leq 1,$$

meaning $||S|| \le 1$.

Proposition: Every separable Banach space is isometrically isomorphic to a quotient of ℓ_1 .

Proof. Let X be a separable Banach space. Since X is separable, so too is S_X . Let $(z_n)_n$ be norm-dense in S_X , and define

$$T: \ell_1 \to X$$
$$(\lambda_n)_n \to \sum_{n=1}^{\infty} \lambda_n z_n.$$

This series converges absolutely:

$$\sum_{n=1}^{\infty} \|\lambda_n z_n\| = \sum_{n=1}^{\infty} |\lambda_n| < \infty,$$

so this series converges in X. We can also see that T is linear; additionally, T is a contraction:

$$\begin{split} \|T((\lambda_n)_n)\| &= \left\|\sum_{n=1}^{\infty} \lambda_n z_n\right\| \\ &= \lim_{N \to \infty} \left\|\sum_{n=1}^{N} \lambda_n z_n\right\| \\ &\leq \lim_{N \to \infty} \sum_{n=1}^{N} \|\lambda_n z_n\| \\ &= \lim_{N \to \infty} \sum_{n=1}^{N} |\lambda_n| \\ &= \|(\lambda_n)_n\|. \end{split}$$

Thus, $T(U_{\ell_1}) \subseteq U_X$. To show that $T(U_{\ell}) = U_X$, we will use the following fact (which follows from the density of z_n).

Fact. For $\delta > 0$ and $x \neq 0$ in X, and $k \in \mathbb{N}$, there exists n > k such that

$$\left\| \frac{\mathbf{x}}{\|\mathbf{x}\|} - z_{\mathbf{n}} \right\| < \frac{\delta}{\|\mathbf{x}\|}$$
$$\|\mathbf{x} - (\|\mathbf{x}\|) z_{\mathbf{n}}\| < \delta$$

Let $x \in U_X$ with $x \neq 0$, and let $\varepsilon > 0$. Find n_1 such that

$$\|x-(\|x\|)z_{n_1}\|<\frac{\varepsilon}{2},$$

and set $\lambda_{n_1} = ||x||$.

We find n_2 with $n_2 > n_1$ and

$$\|(x-\lambda_{n_1}z_{n_1})-(\|x-\lambda_{n_1}z_{n_1}\|)z_{n_2}\|<\frac{\varepsilon}{2^2},$$

and set $\lambda_{n_2} = \|x - \lambda_{n_1} z_{n_1}\|$. We have

$$\|x - (\lambda_{n_1} z_{n_1} + \lambda_{n_2} z_{n_2})\| < \frac{\varepsilon}{2^2}$$

and $\lambda_{n_2} < \frac{\varepsilon}{2}$.

Inductively, we obtain the subsequence $(z_{n_k})_k$ in z_n and a sequence of scalars $(\lambda_{n_k})_k$ such that

$$\left\| x - \sum_{j=1}^k \lambda_{n_j} z_{n_j} \right\| < \frac{\varepsilon}{2^k}$$

and

$$\|\lambda_{n_k}\|<\frac{\epsilon}{2^{k-1}}.$$

Let $\lambda = (\lambda_1, \lambda_2, ...)$ with $\lambda_i = 0$ for $i \notin \{n_1, n_2, ...\}$. We can see that

$$\|\lambda_{n_1}\| = \left\|\lambda_{n_1} + \sum_{k=2}^{\infty} \lambda_{n_k}\right\|$$

$$\leq \|x\| + \sum_{k=2}^{\infty} \frac{\varepsilon}{2^{k-1}}$$

$$= \|x\| + \varepsilon.$$

We choose ε such that $||x|| + \varepsilon < 1$, meaning $\lambda \in U_{\ell_1}$.

We can also see that $\sum_{j=1}^{\infty} \lambda_{n_j} z_{n_j} = x$, meaning T is a 1-quotient map.

Pillars of Functional Analysis

The five main theorems of functional analysis are:

- Baire Category Theorem;
- Open Mapping Theorem (and Bounded Inverse Theorem);
- Closed Graph Theorem;
- Uniform Boundedness Principle;
- and the Hahn Banach Theorems:
 - Hahn-Banach-Minkowski Theorem;
 - Hahn-Banach Extension Theorem;
 - Hahn-Banach Separation Theorem.

These theorems will appear time and again as we work through the fundamentals of functional analysis.

Baire Category Theorem

Definition (Baire Space). Let $\{A_n\}_{n\geqslant 1}$ be a countable collection of open, dense subsets of a topological space X. We say X is a Baire space if

$$\bigcap_{n\geqslant 1}A_n$$

is dense for every such collection.

Definition (Meager Set). If $X = \bigcup_{n \ge 1} F_n$, where $\left(\overline{F_n}\right)^{\circ} = \emptyset$ for each n, then we say X is meager.^{II}

Proposition (Meager Spaces): If X is a Baire space, then X is nonmeager.

Proof. Suppose toward contradiction that $X = \bigcup_{n \ge 1} F_n$, with F_n all nowhere dense. Then,

$$X = \bigcup_{n \ge 1} C_n,$$

where $C_n = \overline{F_n}$ are closed with $C_n^{\circ} = \emptyset$.

Let $A_n = C_n^c$. Then, A_n is open for all n, and $\overline{A_n} = \overline{C_n^c} = (C_n^c)^\circ = X$, meaning A_n are all open and dense.

Since X is a Baire space, we know that $\bigcap_{n\geqslant 1}A_n$ is dense. However, we also have

$$\emptyset = X^{c}$$

$$= \left(\bigcup_{n \ge 1} C_{n}\right)^{c}$$

$$= \bigcap_{n \ge 1} C_{n}^{c}$$

$$= \bigcap_{n \ge 1} A_{n}.$$

Theorem (Baire Category Theorem): If (X, d) is a complete metric space, then X is a Baire space.

Proof. Let $\{A_n\}_{n\geqslant 1}$ be a collection of open dense subsets of X. Let U_0 be any ball of radius r>0, and set $B_0=\overline{U_0}$. Since $A_1\cap U_0$ is open and nonempty, it contains a closed ball B_1 with radius less than r/2.

Set $U_1 = B_1^{\circ}$. Similarly, we find a closed ball B_2 with radius less than r/4 such that $B_2 \subseteq A_2 \cap U_1$, and set $U_2 = B_2^{\circ}$.

Continuing in this manner, we find a closed ball B_n with radius less than $r/2^n$ with $B_n \subseteq A_n \cap U_{n-1}$, and the chain

$$B_0 \supseteq U_0 \supseteq B_1 \supseteq U_1 \supseteq B_2 \supseteq U_2 \supseteq \cdots.$$

Letting $(x_n)_n$ be the center of B_n , we can see that x_n forms a Cauchy sequence in X, as the distance between x_m and x_n with n > m is no more than $\frac{r}{2^{m-1}}$.

Since X is complete, $(x_n)_n \to x \in X$. We claim that x belongs to $\bigcap_{n \ge 1} B_n$.

^{II}In other words, X is meager if X is a countable union of nowhere dense subsets.

Suppose toward contradiction that $x \notin B_N$ for some $N \in \mathbb{N}$. For $n \ge N$, we have $x \notin B_n$, so $d(x_n, x) \ge dist_{B_n}(x) > 0$, which contradicts the fact that $(x_n)_n \to x$.

Thus, $x \in \bigcap_{n \geqslant 1} B_n \subseteq \bigcap_{n \geqslant 1} A_n$. Since $\bigcap_{n \geqslant 1} B_n \subseteq U_0$, we have $\left(\bigcap_{n \geqslant 1} A_n\right) \cap U_0 \neq \emptyset$, meaning $\bigcap_{n \geqslant 1} A_n$ is dense in X.

Corollary: Let *X* be an infinite-dimensional Banach space. The cardinality of the Hamel basis of *X* is uncountable.

Proof. Suppose toward contradiction that $\{b_k\}_{k\in\mathbb{N}}$ is a Hamel basis for X. For each n, set $E_n = \operatorname{span}\{b_1,\ldots,b_n\}$. Each E_n is closed, meaning $\overline{E_n} = E_n \neq X$ since X is infinite-dimensional.

Additionally, $E_n^{\circ} = \emptyset$ for each n, meaning the E_n are nowhere dense.

Since $\{b_k\}_{k\in\mathbb{N}}$ is a spanning set,

$$X = \bigcup_{n \ge 1} E_n,$$

implying that X is meager.

Exercise: Let X be a Banach space, and $Z \subseteq X$ a subspace. Is it true that $\dim(Z) = \dim(\overline{Z})$?

Solution: It is not the case that $\dim(Z)=\dim\left(\overline{Z}\right)$. For example, consider the subspace $c_c\subseteq\ell_\infty$. Then, the Hamel basis of c_c consists of e_n , which consists of 1 at index n and zero elsewhere, implying that $\dim(c_c)=\aleph_0$. However, $\overline{c_c}=c_0$, and c_0 is an infinite-dimensional Banach space, meaning that $\dim(\overline{c_c})=2^{\aleph_0}\neq\aleph_0$.

Open Mapping Theorem

A surjective continuous map between topological spaces is not necessarily an open map — however, if X and Y are Banach spaces, and $f: X \to Y$ is a surjective linear map. This is the Open Mapping theorem, which yields the result that a continuous linear bijection between Banach spaces always admits a bounded inverse.

Lemma: Let X and Y be Banach spaces, and suppose $T \in \mathcal{B}(X, Y)$.

- (1) If $U_Y \subseteq \overline{T(\delta U_X)}$ for some $\delta > 0$, then $U_Y \subseteq T(2\delta U_X)$.
- (2) If $\delta U_Y \subseteq \overline{T(U_X)}$ for some $\delta > 0$, then $\frac{\delta}{2}U_Y \subseteq T(U_X)$.

Proof.

(1) Let $y \in U_Y$. By our assumption, there exists $x_1 \in \delta U_X$ such that $||y - T(x_1)|| < 1/2$. Additionally,

$$y - T(x_1) \in \frac{1}{2}U_Y$$

$$\subseteq \frac{1}{2}\overline{T(\delta U_X)}$$

$$= \overline{T\left(\frac{\delta}{2}U_X\right)}.$$

Thus, there exists $x_2 \in \frac{\delta}{2} U_X$ such that $||(y - T(x_1)) - T(x_2)|| < \frac{1}{4}$, implying that

$$\begin{split} y - T(x_1) - T(x_2) &\in \frac{1}{4} U_Y \\ &\subseteq \overline{T\left(\frac{\delta}{4} U_X\right)}. \end{split}$$

Inductively, we have a sequence $(x_k)_k \in \frac{\delta}{2^{k-1}} U_X$ for each k, and

$$\left\| y - \sum_{j=1}^{k} T\left(x_{j}\right) \right\| < 2^{-k}.$$

We consider $\sum_{j=1}^{\infty} x_j$. Since

$$\sum_{j=1}^{\infty} ||x_j|| \le \sum_{j=1}^{\infty} \frac{\delta}{2^{j-1}}$$

$$= 2\delta$$

$$< \infty,$$

the series converges to $x \in X$ since X is complete.

Additionally, since $||x|| \le \sum_{i=1}^{\infty} ||x_i|| \le 2\delta$, we have $x \in 2\delta U_X$, and T(x) = y by the continuity of T.

(2) If
$$\delta U_y \subseteq \overline{T(U_X)}$$
, then $U_Y \subseteq \frac{1}{\delta}\overline{T(U_X)}$, so $U_Y \subseteq \overline{T(\frac{1}{\delta}U_X)}$, meaning $U_Y \subseteq T(\frac{2}{\delta}U_X)$, or $\frac{\delta}{2}U_Y \subseteq T(U_X)$.

Theorem (Open Mapping Theorem): Let X and Y be Banach spaces, $T \in \mathcal{B}(X,Y)$ surjective. Then, T is open and thus a quotient mapping.

Proof. We will show that $\delta U_Y \subseteq T(U_X)$ for some $\delta > 0$. This is enough to show that T is a quotient mapping.

We can write

$$X = n \bigcup_{n \ge 1} U_X$$

$$Y = T(X)$$

$$= \bigcup_{n \ge 1} T(nU_X)$$

since T is onto. Since Y is nonmeager, there is an $m \ge 1$ such that $\overline{T(mU_X)}^{\circ} \ne \emptyset$. There exists $y_0 \in Y$ and $\varepsilon > 0$ such that $U_Y(y_0, \varepsilon) \subseteq \overline{T(mU_X)}$. We claim that

$$\varepsilon U_{Y} = U_{Y}(0, \varepsilon)$$

 $\subseteq T(mU_{X}).$

Let $z \in \varepsilon U_Y$. Note that $y_0 + z$ and $y_0 - z$ are in $U_Y(y_0, \varepsilon)$, and

$$2z = (y_0 + z) - (y_0 - z)$$

$$\in \overline{T(mU_X)} - \overline{T(mU_X)}.$$

We write $2z = z_1 - z_2$, with $z_1, z_2 \in \overline{\mathsf{T}(\mathsf{mU}_X)}$. We can find sequences $(\mathsf{T}(x_k))_k$ and $(\mathsf{T}(x_k'))_k$ with $(\mathsf{T}(x_k))_k \to z_1$ and $(\mathsf{T}(x_k'))_k \to z_2$. Thus, we have

$$2z = \lim_{k \to \infty} \left(T(x_k) - T(x'_k) \right)$$
$$= \lim_{k \to \infty} T(x_k - x'_k),$$

where $\|x_k - x_k'\| \le 2m$. Thus, $2x \in \overline{T(mU_X)} = 2\overline{T(mU_X)}$, so $z \in \overline{T(mU_X)}$.

We now have

$$\frac{\varepsilon}{m}U_{Y}\subseteq\overline{T(U_{X})},$$

so

$$\frac{\varepsilon}{2m}U_{Y}\subseteq T\left(U_{X}\right) .$$

Setting $\delta = \frac{\varepsilon}{2m}$, we finish the proof.

If $T: X \to Y$ is bijective linear, then $T^{-1}: Y \to X$ is linear. If X = Y, we say T is invertible in the unital algebra $\mathcal{L}(X)$. However, if X and Y are normed vector spaces, we also have to be concerned with the continuity of T^{-1} .

Corollary (Bounded Inverse Theorem): Let X and Y be Banach spaces, $T: X \to Y$ is linear, bounded, and bijective. Then, $T^{-1}: Y \to X$ is also bounded.

Proof. Since T is surjective, T is open, so T^{-1} is continuous.

Example. Consider the normed space $Y = (C([0,1]), \|\cdot\|_1)$. To show that Y is not complete, we let $X = (C([0,1]), \|\cdot\|_u)$, which we know is complete.

The identity function from X to Y is bijective and bounded linear since $\|\cdot\|_1 \leq \|\cdot\|_u$. If Y were to be complete, then it would imply that the inverse map is bounded. However, since there is no C such that $\|\cdot\|_u \leq C \|\cdot\|_1$, it is not the case that Y is complete.

Definition. Let X and Y be normed spaces. A bounded linear map $T \in \mathcal{B}(X, Y)$ is called invertible if there is a bounded linear map $S \in \mathcal{B}(Y, X)$ with $T \circ S = id_Y$ and $S \circ T = id_X$. We write $T^{-1} = S$.

Corollary: Let $T \in \mathcal{B}(X, Y)$ with X and Y Banach spaces. The following are equivalent.

- (i) T is bounded below.
- (ii) T is injective and $Ran(T) \subseteq Y$ is closed.
- (iii) $T: X \to Ran(T)$ is a bicontinuous isomorphism.

Proof. For (i) to (ii), if T is bounded below, then ker T = $\{0\}$, so T is injective. Additionally, since T is bounded below, if $(T(x_n))_n$ is a Cauchy sequence in Ran(T), then

$$C \|x_n - x_m\| \le \|T(x_n - x_m)\|$$

= \|T(x_n) - T(x_m)\|,

meaning $(x_n)_n$ is a Cauchy sequence in X. Since T is continuous, $(T(x_n))_n \to T(x) \in Ran(T)$.

For (ii) to (i), since Y is complete and Ran(T) \subseteq Y is closed, Ran(T) is a Banach space, so T^{-1} : Ran(T) \to X is bounded. Thus,

$$\begin{aligned} \|x\| &= \left\| T^{-1} \left(T(x) \right) \right\| \\ &\leq \left\| T^{-1} \right\|_{\text{op}} \left\| T(x) \right\|, \end{aligned}$$

meaning $||T(x)|| \ge ||T^{-1}||_{op}^{-1} ||x||$ for all $x \in X$.

To show that (ii) is true if and only if (iii) is true, we can see that since T is bounded and T is bounded below, it is the case that T is a bicontinuous isomorphism.

Corollary: Let X and Y be Banach spaces, $T \in \mathcal{B}(X,Y)$. Then, T is invertible if and only if T is bounded below and surjective.

П

Complemented Subspaces and Direct Sums

For any normed vector spaces X and Y, we can form the product $X \oplus_p Y$ by defining $\|(x,y)\| = (\|x\|^p + \|y\|^p)^{1/p}$ for all $p \in [1, \infty)$.

A vector space Z with subspaces X and Y is called the direct sum of X and Y if

- (a) for all $z \in Z$, there exist $x \in X$ and $y \in Y$ such that z = x + y;
- (b) $X \cap Y = \{0\}.$

We write $Z = X \oplus Y$ for the internal direct sum.

Proposition: Let $(Z, \|\cdot\|_Z)$ be a Banach space, and suppose X and Y are closed subspaces of Z with $Z = X \oplus Y$. Then, $Z \cong X \oplus_p Y$ for all $p \in [1, \infty]$.

Proof. Let p = 1. Set $\phi : X \oplus_1 Y \to Z$ by taking $\phi((x,y)) = x + y$. Since $Z = X \oplus Y$, this is a bijection, hence an isomorphism. Additionally,

$$\| \Phi ((x, y)) \|_{Z} = \| x + y \|_{Z}$$

 $\leq \| x \|_{Z} + \| y \|_{Z}$
 $= \| (x, y) \|_{1},$

meaning ϕ is bounded. Thus, ϕ^{-1} is also bounded, meaning ϕ is bicontinuous. The proof is similar for all other $p \in (1, \infty]$.

Definition. If Z is a normed space, X and Y are closed subspaces of Z such that $Z = X \oplus Y$, we say Z is the topological internal direct sum of X and Y.

Definition. Let Z be a normed space, and suppose X is a closed subspace of Z. We say X is complemented in Z if there is a closed $Y \subseteq Z$ with $X \oplus Y = Z$.

Not all closed subspaces are complemented.

Proposition: Let $T: X \to Y$ be a bounded linear map between Banach spaces. If $Z \subseteq Y$ is a closed subspace such that $Y = Ran(T) \oplus Z$, then Ran(T) is closed (meaning the internal direct sum is topological).

Proof. Passing to the quotient

$$X/\ker(T) \to Y$$
, $x + \ker(T) \mapsto T(x)$,

we may assume that T is injective. The map $S: X \oplus_{\infty} Z \to Y$, S(x,z) = T(x) + z is bounded and bijective. Thus, S is bounded below, so for some C > 0, we have

$$||T(x)|| = ||S(x,0)||$$

 $\ge C ||(x,0)||_{\infty}$
 $= C ||x||,$

meaning T is bounded below, and thus has closed range.

Corollary: If X and Y are Banach spaces, and T: X \rightarrow Y is bounded Fredholm, ^{III} then T has closed range.

Proof. There is a subspace $C \subseteq Y$ with C linearly isomorphic to coker(T), and $Y = Ran(T) \oplus C$. Since T is Fredholm, dim(C) is finite, meaning C is closed. Thus, Ran(T) is closed.

^{III}A linear map is Fredholm if both ker(T) and coker(T) are finite. Here, coker(T) = Y/Ran(T).

Closed Graph Theorem

Definition. If $f: A \to B$ is a map between arbitrary sets, then the graph of f is

graph(f) =
$$\{(\alpha, f(\alpha)) \mid \alpha \in A\}$$

 $\subseteq A \times B$.

Proposition: If (X, d) and (Y, ρ) are metric spaces, and $f : (X, d) \to (Y, \rho)$ is continuous, then graph $(f) \subseteq X \times Y$ is closed under the product topology.^{IV}

Proof. Let $(x_n, f(x_n))_n$ be a sequence in graph(f) such that $(x_n, f(x_n))_n \to (x, y)$ in $X \times Y$. Then, $(x_n)_n \to x$ in X and $(f(x_n))_n \to y$ in Y.

By the continuity of f, we have $(f(x_n))_n \to f(x)$, and since limits are unique, we have f(x) = y. Thus,

$$(x,y) = (x, f(x))$$

 $\in graph(f).$

Thus, we can see that the graph of any continuous function is closed in the product topology. However, the converse fails in the general case. For instance,

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \begin{cases} \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

has a closed graph, but f is not continuous.

However, with linear maps between Banach spaces, the converse is actually true.

Theorem (Closed Graph Theorem): Let X and Y be Banach spaces, and let $T: X \to Y$ be a linear map. Then, T is continuous if and only if graph(T) $\subseteq X \times Y$ is closed with respect to the product topology on $X \times Y$.

Proof. The forward direction follows from the previous proposition.

Suppose graph(T) $\subseteq X \times Y$ is closed in the product topology. Note that the product topology coincides with the $\|\cdot\|_1$ topology, with $\|(x,y)\|_1 = \|x\| + \|y\|$. Thus, $(\operatorname{graph}(T), \|\cdot\|_1)$ is a Banach space.

Consider the projection map P: graph(T) \rightarrow X defined by P((x, T(x))) = x, which is bijective. We also have

$$||P((x, T(x)))|| = ||x||$$

$$\leq ||x|| + ||T(x)||$$

$$= ||(x, T(x))||_1,$$

meaning P is bounded. Thus, P is bicontinuous, meaning it is bounded below, so for some constant C, we have

$$||x|| = ||P((x, T(x)))||$$

 $\ge C ||(x, T(x))||_1$
 $\ge C ||T(x)||,$

meaning $||T(x)|| \le \frac{1}{C} ||x||$, so T is bounded.

 $^{^{\}text{IV}}$ The product topology is the coarsest topology on $X \times Y$ such that the projection maps π_X and π_Y are continuous.