

NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA-769008 END SEMESTER EXAMINATION, 2022

SESSION: 2021 – 2022 (Spring) B. Tech. 8th / M. Tech. 2ndSemester Answer any FIVE questions including Q1.

Subject code: CS6404 **Subject Name:** Software Testing **Dept. Code:** CS **No. of pages:** 2 **Full Marks:** 100 **Duration:** 3hours

Q1. 2x10 = 20

- a. What is the difference between progressive testing and regressive testing?
- b. What are the different regression testing types? Briefly explain them.
- c. Write any two key elements of test management?
- d. What is the difference between verification and validation of software?
- e. Suppose, a test suite T contains 100 tests of which 20 are modification-revealing for programs P and P' and the technique M selects 8 of these 20 tests. Calculate the inclusiveness of M relative to P, P', and T.
- f. State Weyukar's Anti-composition axiom.
- g. For cluster level testing, which UML 2.x diagram is most suitable?
- h. What do you understand by test log? Why is it used?
- i. What do you mean by sprint? What is the normal duration of a sprint?
- j. What do you mean by XSS?Why it is considered as a threat to the web based applications.

Q2. 10x2 = 20

- a) Why regression test prioritization is used? Briefly explain the steps of regression test prioritization technique. Suggest some priority categories / levels based on which a given set of test cases can be prioritized.
- b) What do you mean by dynamic slice? Consider the following code segment and test cases. Find the dynamic slice and test cases to rerun, if
 - i. S₁₀ is changed to "sum = a*b+sum; "
 - ii. S₅ is changed to "sum = sum*b;"
 - iii. S₈ is changed to "sum = sum*a;"

```
Begin
       read (a,b);
s1:
S2:
S2.1:
        sum=0;
        I=0;
       if (a==0)
s3:
S4:
             print(b);
S5:
              sum+=b;
S6:
       else if(b==0)
s7:
              print(a);
s8:
              sum+=a;
s9:
       else
s10:
              sum=a+b+sum;
s10.1
                     I=25;
s10.2
       print(I);
       endif
S11:
S12:
      print(sum);
```

End

Test Case	a	b	sum
T1	0	4	4
T2	67	0	67
T3	23	23	46

Q3.

Consider the details of the following Medical Shop Management System.

	9	1 0 /	
Sl. No.	Functionality	Function ID in SRS	Test Cases
1	Login the System	F3.4	T1
2	View Inventory Details	F3.5	T2
3	Order Medicine	F3.6	T3
4	Manage Inventory	F3.7	T4
5	Exit the System	F3.8	T5

20

Develop the test specification, test log, test incident report and test summary report for 'View Inventory Details' functionality.

Q4. $10 \times 2 = 20$

- a) Why APFD metric is used? Consider a program with 10 faults and a test suite of 10 test cases as shown below. Calculate its APFD values with the following order of test suite:
 - i. (T1,T2,T3,T4,T5,T6,T7,T8,T9,T10)
 - ii. (T2,T1,T3,T4,T5,T6,T7,T8,T9,T10)
 - iii. (T1,T2,T5,T4,T3,T6,T9,T8,T7,T10)

	T1	T2	Т3	T4	T5	Т6	T7	T8	Т9	T10
F1					Х			Х		
F2		Х	Х	Х		Х				
F3	Х	Х	Х	Х			Х	Х		
F4						Х				Х
F5	Х		Х		Х	Х		Х		Х
F6					Х	Х	Х		Х	
F7									Х	
F8		Х		Х		Х			Х	Х
F9	Х									Х
F10			X	X					X	Х

b) What do you mean by fault exposing potential (FEP)? It depends on which factors? Discuss an approach for prioritizing test cases using the concept of FEP of a test case. The following table shows the FEP estimates of a program. Prioritize the test cases using FEP.

Statement	FEP(s,t) values					
	Test case 1	Test case 2	Test case 3			
1	0.5	0.5	0.3			
2	0.4	0.5	0.4			
3		0.01	0.4			
4		1.3				
5						
6	0.3					
7	0.6		0.1			
8		0.8	0.2			
9			0.6			

Q5. $10 \times 2 = 20$

- a) What are the implications of encapsulation, inheritance, polymorphism, and dynamic binding features of an object-oriented program in satisfactory testing of the program?
- b) Briefly explain behavioral integration testing. Draw the state chart diagram for a Credit Card object. Generate behavioral test cases for Credit Card using the state chart diagram.

Q6. $10 \times 2 = 20$

- a) Explain the differences between traditional software and web based software? Discuss the challenges in testing for web-based software.
- b) Explain interface testing and content testing for web-based systems.

Q7. $10 \times 2 = 20$

- a) Briefly discuss Scrum as an agile software development framework.
- b) Explain how testing is carried out in the different phases of Scrum?