Exam 1 Cheatsheet

Kinematics

Variable	Equation
Velocity	$v = at + v_0$
Position	$\Delta x = v_0 t + \frac{1}{2} a t^2$
Missing t	$v^2 = 2a\Delta x + v_0^2$
Missing a	$\Delta x = \frac{v + v_0}{2}t$
Missing v_0	$\Delta x = vt - \frac{1}{2}at^2$

General guidelines for solving problems

- 1. List the known and unknown quantities.
- 2. Determine the variable we are solving for and what variables are needed to solve it.
- 3. Derive an equation using those given to solve for your variables.
- 4. Plugin a numbers and don't forget units.

Vector algebra

- polar \rightarrow component: $a_x = a \cos \theta$ and $a_y = a \sin \theta$
- component \rightarrow polar: $a = \sqrt{a_x^2 + a_y^2}$ and $\tan \theta = \frac{a_y}{a_x}$
 - note that finding $\arctan \theta$ may need to check orientation of the resulting vector angle
- dot product gives a scalar that is the magnitude of a vector **B** in the direction of a vector **A**:

$$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$$
 OR $\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + \dots$

• scalar product gives a vector that is perpendicular to the two vectors:

$$\mathbf{A} \times \mathbf{B} = AB\sin\theta\hat{n}$$

where \hat{n} is a unit vector in a direction perpendicular to **A** and **B**. For component vectors

$$\mathbf{A} \times \mathbf{B} = \det \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{bmatrix} = \begin{bmatrix} a_y & a_z \\ b_y & b_z \end{bmatrix} \hat{i} + \begin{bmatrix} a_x & a_z \\ b_x & b_z \end{bmatrix} \hat{j} + \begin{bmatrix} a_x & a_y \\ b_x & b_y \end{bmatrix} \hat{k}$$
$$= (a_y b_z - b_y a_z) \hat{i} + (a_x b_z - b_x a_z) \hat{j} + (a_x b_y - b_x a_y) \hat{k}$$

Motion in two dimensions

Variable	Equation
Horizontal displacement	$\Delta x = v_0 \cos \theta t$
Vertical displacement	$\Delta y = v_0 \sin \theta t - \frac{1}{2}gt^2$
Vertical velocity	$v_y = v_0 \sin \theta - gt$
Trajectory	$\Delta y = \tan \theta \Delta x - \frac{g\Delta x^2}{2(v_0 \cos \theta)^2}$
Range	$R = \frac{v_0^2 \sin 2\theta}{g}$

Guidelines for solving problems

- 1. Simplify the problem to each dimensional component.
- 2. Solve each component with the same process as kinematics
- 3. Horizontal motion is linear and vertical motion is parabolic because acceleration is zero and a constant respectively.
- 4. Equation for range can only be used when $\Delta y = 0$, otherwise use Trajectory and solve for Δx .

Newton's Laws

1. If $\vec{F}_{\text{net}} = 0$ then $\vec{a} = 0$

2.
$$\vec{F}_{\text{net}} = m\vec{a}$$

3.
$$\vec{F}_{AB} = -\vec{F}_{BA}$$

Annecdotes on applying Newton's Laws

- 1. \vec{F}_{net} is comprised of components $F_{\text{net},x} = ma_x$, $F_{\text{net},y} = ma_y$, \vec{a} represents the acceleration of the entire system.
- 2. Draw free-body diagram for all objects in a system and solve the forces independently.
- 3. We can obtain equations for the forces acting on an objects and set up a system of equations to eliminate variables.