Tensors for signal and frequency estimation in subspace-based methods: when they are useful?

Nikita Khromov, Nina Golyandina

St. Petersburg State University Department of Statistical Modeling

25.09.2025, CDAM'2025

Introduction to Singular Spectrum Analysis (SSA)

SSA - family of methods for time series analysis

Problems that can be solved by SSA-related methods:

- Signal extraction
- Frequency estimation
- Smoothing and Noise reduction
- Signal decomposition (Trend and Periodicity extraction)
- Forecasting
- Missing data imputation
- Change in structure detection
- Many others. . .

SSA References

Books:

- J.Elsner and A.Tsonis. Singular Spectrum Analysis: A New Tool in Time Series Analysis, Plenum, 1996.
- N.Golyandina, V.Nekrutrin and A.Zhigljavsky. Analysis of Time Series Structure: SSA and Related Techniques, CRC Press, 2001.
- S.Sanei and H.Hassani. Singular Spectrum Analysis for Biomedical Signals, CRC Press, 2016.
- N.Golyandina, A.Korobeynikov and A.Zhigljavsky. Singular spectrum analysis with R, Springer, 2018.
- N.Golyandina and A.Zhigljavsky. Singular Spectrum Analysis for Time Series, Springer, 2013, 2020 (2nd Edition).

Implementations:

- R Package: Rssa https://CRAN.R-project.org/package=Rssa
- Python Package: PyRssa (Python wrapper over Rssa) https://pypi.org/project/pyrssa/

Decomposition and Estimation Example

Data: Coordinates of Earth pole motion [IERS EOP 14 C04] Raw data:

As complex time series:

Decomposition and Estimation Example

Decomposition of time series:

- Low-frequency component + high-frequency component
- Signal + noise
- ullet Trend + Seasonality + Noise

Extracted signal:

Signal parameters estimates:

Period (Days)	Change rate
365.41	$-5.5 \cdot 10^{-6}$
433.10	$-2.2 \cdot 10^{-5}$
$\rightarrow \infty$	$2.7 \cdot 10^{-5}$

SSA Algorithm: Embedding

Input: time series $X = (x_1, x_2, \dots, x_N)$, window length L, signal rank r.

9 Embedding. Constructing the *L-Trajectory* Hankel matrix $\mathbf{X} \in \mathbb{C}^{L \times K}$ from the series X, where K = N - L + 1:

$$\mathbf{X} = \mathcal{T}^{(L)}(\mathsf{X}) = \begin{pmatrix} x_1 & x_2 & x_3 & \dots & x_K \\ x_2 & x_3 & x_4 & \dots & x_{K+1} \\ x_3 & x_4 & x_5 & \dots & x_{K+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & x_{L+2} & \dots & x_N \end{pmatrix}$$

Why not embed into a higher order array (tensor)?

SSA Algorithm: Decomposition, Grouping, Reconstruction

- ② **Decomposition**. Constructing the singular value decomposition (SVD) of the matrix \mathbf{X} : $\mathbf{X} = \sum_{j=1}^{\operatorname{rank} \mathbf{X}} \sqrt{\lambda_j} U_j V_j^{\mathrm{H}} = \sum_{j=1}^{\operatorname{rank} \mathbf{X}} \widehat{\mathbf{X}}_j$ where \mathbf{H} denotes Hermitian conjugation, U_j and V_j are left and right singular vectors of \mathbf{X} , $\sqrt{\lambda_j}$ its singular values in descending order.
- **3 Grouping**. Grouping the terms $\widehat{\mathbf{X}}_j$ from the decomposition related to the signal: $\mathbf{S} = \sum_{j=1}^r \widehat{\mathbf{X}}_j = \Pi_r \mathbf{X}$, where Π_r is the projector onto the space of matrices with rank not greater than r.
- **Quantity Reconstruction**. Applying projection onto the space of Hankel matrices: $\widetilde{\mathbf{S}} = \Pi_{\mathcal{H}} \widehat{\mathbf{S}}$, and return to the series form: $\widetilde{\mathsf{S}} = \left(\mathcal{T}^{(L)}\right)^{-1}(\widetilde{\mathbf{S}})$

SSA-Rank of a Series

Definition

Series X has rank d < N/2 in terms of SSA, if the rank of its L-trajectory matrix equals d for any L such that $d \leqslant \min(L, N-L+1)$. If such d exists, then X is called a series of finite rank.

If the signal S is a series of finite rank, then it is generally recommended to use ${\rm rank}(S)$ as parameter r in the SSA method

Series rank examples

- rank of S with $s_n = A \exp(\alpha n)$, $\alpha \in \mathbb{C}$, equals 1
- rank of S with $s_n = A\sin(2\pi\omega n + \varphi)$, $0 < \omega < 1/2$, equals 2

Signal Model

What we consider a signal $S = (s_1, s_2, \dots, s_N)$:

- The trajectory matrix $\mathbf{S} = \mathcal{T}^{(L)}(\mathsf{S})$ is rank-deficient (\Longrightarrow the time series is of some finite rank: $\mathrm{rank}(\mathsf{S}) = r$)
- Any signal S can be represented in the form of a finite sum:

$$s_n = \sum_j p_j(n) \exp(\alpha_j n + i2\pi\omega_j n),$$

where $p_j(n)$ is a polynomial in n

• Real case:

$$s_n = \sum_j p_j(n) \exp(\alpha_j n) \sin(2\pi\omega_j n + \varphi_j),$$

ESPRIT method estimates factors $lpha_j$ and frequencies ω_j

ESPRIT Algorithm: General Idea

Consider a signal S with elements s_n :

$$s_n = \sum_{j=1}^{2} \exp(\alpha_j n + i(2\pi\omega_j n + \varphi_j)) = A_1 z_1^n + A_2 z_2^n$$

where
$$A_j = \exp(\mathrm{i}\varphi_j)$$
, $z_j = \exp(\alpha_j + \mathrm{i}2\pi\omega_j)$

Signal subspace basis is given by

$$\mathbf{M} = egin{pmatrix} z_1 & z_2 \ z_1^2 & z_2^2 \ dots & dots \ z_1^L & z_2^L \end{pmatrix} \Rightarrow \overline{\mathbf{M}} = \underline{\mathbf{M}} egin{pmatrix} z_1 \ & z_2 \end{pmatrix} \Rightarrow \underline{\mathbf{M}}^- \overline{\mathbf{M}} = egin{pmatrix} z_1 \ & z_2 \end{pmatrix}$$

where M denotes M without the first row, \underline{M} — without the last \underline{M}^- denotes the pseudoinverse of \underline{M}

ESPRIT Algorithm

Input: same as in SSA: X, L, r

- **1** Embedding. $\mathbf{X} = \mathcal{T}^{(L)}(X)$
- ② Decomposition. $\mathbf{X} = \sum_{j=1}^{\mathrm{rank}\,\mathbf{X}} \sqrt{\lambda_j} U_j V_j^{\mathrm{H}}$, $\mathbf{U}_r = [U_1:U_2:\ldots:U_r]$
- **§** Estimation. Finding eigenvalues z_j of matrix $\underline{\mathbf{U}}_r^- \overline{\mathbf{U}}_r$ From $z_j = \exp(\alpha_j + \mathrm{i} 2\pi \omega_j)$ parameters α_j and ω_j can be found

Multi-Channel Time Series, MSSA

$$\mathbf{X} = \left(\mathbf{X}^{(1)}, \, \mathbf{X}^{(2)}, \, \dots, \, \mathbf{X}^{(P)} \right), \qquad \mathbf{X}^{(p)} = \left(x_1^{(p)}, \, x_2^{(p)}, \, \dots, \, x_N^{(p)} \right) - \text{channels}$$

The only change in the algorithms — Embedding step:

$$\mathbf{X} = \mathcal{T}_{\text{MSSA}}^{(L)}(\mathsf{X}) = \left[\mathbf{X}^{(1)} : \mathbf{X}^{(2)} : \dots : \mathbf{X}^{(P)}\right],$$
$$\mathbf{X}^{(p)} = \mathcal{T}^{(L)}(\mathsf{X}^{(p)})$$

When to choose MSSA over SSA for each channel:

- All channels have "similar" structure
- "Supporting" channels with lower noise level

MSSA Trajectory Matrix

$$X = (X^{(1)}, X^{(2)}, \dots, X^{(P)}), \qquad X^{(p)} = (x_1^{(p)}, x_2^{(p)}, \dots, x_N^{(p)})$$

But why limit yourself to matrices? Matrix is just a 2D tensor

Introducing Tensors to the Algorithm

Tensor SVD Extensions:

- Higher-Order SVD (HOSVD)
- Canonical Polyadic Decomposition (CPD)
- T-SVD
- $(L_r, L_r, 1)$ -Decomposition

Reminder: Trajectory Matrix

Single-Channel:

$$\mathcal{T}^{(L)}(\mathsf{X}) = \begin{pmatrix} x_1 & x_2 & x_3 & \dots & x_K \\ x_2 & x_3 & x_4 & \dots & x_{K+1} \\ x_3 & x_4 & x_5 & \dots & x_{K+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & x_{L+2} & \dots & x_N \end{pmatrix}$$

Multi-Channel:

$$\mathcal{T}_{\mathrm{MSSA}}^{(L)}(\mathsf{X}) = \begin{pmatrix} x_1^{(1)} & x_2^{(1)} & \dots & x_K^{(1)} & x_1^{(2)} & x_2^{(2)} & \dots & x_K^{(2)} & \dots \\ x_2^{(1)} & x_3^{(1)} & \dots & x_{K+1}^{(1)} & x_2^{(2)} & x_3^{(2)} & \dots & x_{K+1}^{(2)} & \dots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \dots \\ x_L^{(1)} & x_{L+1}^{(1)} & \dots & x_N^{(1)} & x_L^{(2)} & x_{L+1}^{(2)} & \dots & x_N^{(2)} & \dots \end{pmatrix}$$

Mapping Single-Channel Time Series to a Tensor

Mapping Multi-Channel Time Series to a Tensor

$$\begin{aligned} &\mathsf{X} = \left(\mathsf{X}^{(1)}, \, \mathsf{X}^{(2)}, \, \dots, \, \mathsf{X}^{(P)}\right), \, \mathsf{X}^{(p)} = (x_1^{(p)}, \, x_2^{(p)}, \, \dots, \, x_N^{(p)}) \\ &\mathsf{X} \mapsto \mathcal{T}_{\mathrm{T-MSSA}}^{(L)}(\mathsf{X}) = \mathcal{X} \in \mathbb{C}^{P \times L \times K}, \, K = N - L + 1 \end{aligned}$$

Some Tensor Decompositions

Unlike in matrix case, there exist several definitions of tensor ranks and SVD generalizations based on them.

Definition (Tensor rank)

Tensor \mathcal{A} has rank 1, if there exist vectors B, C and D such that $\mathcal{A} = B \circ C \circ D$, where \circ denotes an outer product.

Tensor \mathcal{A} has rank R, if it can be represented as a sum of R rank-1 tensors: $\mathcal{A} = \sum_{i=1}^{R} \mathcal{B}_i$, rank(\mathcal{B}_i) = 1, and such R is minimal.

The representation of a tensor as a sum of R rank-1 tensors is called Canonical Polyadic Decomposition (CPD).

- Considered for signal extraction in [Kouchaki, Sanei (2013)]
- Does not provide any form of orthogonality of components
- Requires to know the tensor rank in advance
- No connection between signal SSA-rank and the rank of a trajectory tensor

Some tensor decompositions

Definition

n-mode vectors of a tensor \mathcal{A} are vectors obtained from \mathcal{A} by varying the index of the n-th direction and keeping the other indices fixed (analog of rows and columns of a matrix).

n-rank of a tensor \mathcal{A} , denoted by $R_n = \operatorname{rank}_n(\mathcal{A})$, is the dimension of the linear space spanned by the n-mode vectors.

`HOSVD`:
$$\mathcal{A} = \sum_{i=1}^{R_1} \sum_{l=1}^{R_2} \sum_{k=1}^{R_3} z_{ilk} U_i^{(1)} \circ U_l^{(2)} \circ U_k^{(3)}$$

- Considered for signal parameter estimation in [Papy et al. (2005)], [Papy et al. (2009)]
- Provides orthogonality of components
- ullet Does not require any prior knowledge about tensor n-ranks
- There is a proven connection between number of components and signal SSA-rank

Higher-Order SVD. Higher-Order Orthogonal Iterations

$$SVD(\mathbf{X}) = \sum_{j=1}^{\text{rank}(\mathbf{X})} \sqrt{\lambda_j} U_j V_j^{\text{H}}$$

$$HOSVD(\mathcal{X}) = \sum_{i=1}^{\text{rank}_1(\mathcal{X})} \sum_{l=1}^{\text{rank}_2(\mathcal{X})} \sum_{k=1}^{\text{rank}_3(\mathcal{X})} z_{ilk} U_i^{(1)} \circ U_l^{(2)} \circ U_k^{(3)}$$

•
$$\widetilde{\mathbf{X}} = \sum_{j=1}^{R} ... \Rightarrow \left\| \mathbf{X} - \widetilde{\mathbf{X}} \right\|_{F} = \min_{\operatorname{rank}(\widehat{\mathbf{X}}) \leqslant R} \left\| \mathbf{X} - \widehat{\mathbf{X}} \right\|_{F}$$

•
$$\widetilde{\mathcal{X}} = \sum_{i=1}^{R_1} \sum_{l=1}^{R_2} \sum_{k=1}^{R_3} \ldots \Rightarrow \left\| \mathcal{X} - \widetilde{\mathcal{X}} \right\|_F \geqslant \min_{\operatorname{rank}_m(\widehat{\mathcal{X}}) \leqslant R_m} \left\| \mathcal{X} - \widehat{\mathcal{X}} \right\|_F$$

Truncation of SVD is optimal, but truncation of HOSVD is not Iterative algorithm for finding optimal approximation – HOOI

T-SSA, T-MSSA and T-ESPRIT with HOSVD

Input: time series X, window length: (I,L) for single-channel or L for multi-channel, signal ranks $(r_1,\,r_2,\,r_3)$, d — estimation dimension for HO-ESPRIT.

- ② Decomposition & Approximation. Using (r_1, r_2, r_3) $\mathcal{X} \mapsto \operatorname{Trunc}(\operatorname{HOSVD}(\mathcal{X})) = \widetilde{\mathcal{S}} \text{ or } \mathcal{X} \mapsto \operatorname{HOOI}(\mathcal{X}) = \widetilde{\mathcal{S}}$
- Reconstruction or Estimation.
 - Reconstruction. $S = \mathcal{T}^{-1}\left(\Pi_{\mathcal{H}_T}(\widetilde{\mathcal{S}})\right)$, $\Pi_{\mathcal{H}_T}$ projector onto the space of Hankel tensors
 - Estimation. Finding eigenvalues z_j of matrix $\underline{\mathbf{U}}^-\overline{\mathbf{U}}$, where $\mathbf{U} = \mathbf{U}_d = \left[U_1^{(d)}: U_2^{(d)}: \ldots: U_{r_d}^{(d)}\right]$. From $z_j = \exp(\alpha_j + \mathrm{i} 2\pi\omega_j)$ factors α_j and frequencies ω_j of the signal can be found

Single-Channel Series Comparison

$$x_n = e^{\alpha_1 n} e^{2\pi i \omega_1 n} + e^{\alpha_2 n} e^{2\pi i \omega_2 n} + \zeta_n$$

 ζ_n — Complex white gaussian noise, $D(\zeta_n)=0.04^2$, $\omega_1=0.2$, $\omega_2=0.22$, $\alpha_1=\alpha_2=0$ (same results for $\alpha_1=\alpha_2<0$ and $\alpha_1<\alpha_2<0$).

RMSE results with respect to parameters choice:

Parameters estimation

	Best	Worst	Mean
T-ESPRIT	0.0012	0.0033	0.0016
ESPRIT	0.0013	0.0140	0.0031

T-method is better

Signal extraction

	Best	Worst	Mean
T-SSA			0.020
SSA	0.018	0.031	0.021

T-method is worse with optimal parameter choice but better on average

Multi-Channel Series Comparison

$$x_n^{(m)}=a_1^{(m)}e^{2\pi\mathrm{i}\omega_1n}+a_2^{(m)}e^{2\pi\mathrm{i}\omega_2n}+\zeta_n^{(m)},$$
 $\zeta_n^{(m)}$ — Complex white gaussian noise, $\mathrm{D}\left(\zeta_n^{(m)}\right)=0.2^2,$ $\omega_1=0.2,~\omega_2=0.22$

RMSE results with respect to parameters choice:

Parameters estimation

	Best	Worst	Mean
T-M-ESPRIT	5.33e-04	9.99e-04	6.16e-04
M-ESPRIT	5.36e-04	1.80e-03	7.13e-04

T-method is better

Signal extraction

	Best	Worst	Mean
T-MSSA	0.065	0.068	0.066
MSSA	0.066	0.152	0.086

T-method is better

Dtack Modifications

Possible problem for ESPRIT: components with close frequencies can mix into one in the presence of noise. Solution: using Dstack mapping.

Consider $X = (x_1, x_2, ..., x_N)$, $M = \lfloor N/D \rfloor$, then

$$\operatorname{Dstack}_{D}(\mathsf{X}) = \mathcal{D}_{D}(\mathsf{X}) = \begin{bmatrix} x_{1} & x_{2} & \dots & x_{D} \\ x_{D+1} & x_{D+2} & \dots & x_{2D} \\ x_{2D+1} & x_{2D+2} & \dots & x_{3D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{(M-1)D+1} & x_{(M-1)D+2} & \dots & x_{MD} \end{bmatrix}$$

$$\begin{array}{c|cccc} \mathsf{Dstack}\text{-SSA} & \mathsf{X} \mapsto \mathbf{X} = \mathcal{T}_{\mathrm{MSSA}}^{(L)} \left(\mathcal{D}_{D}(\mathsf{X})\right) \\ \hline \mathsf{Dstack}\text{-T-SSA} & \mathsf{X} \mapsto \mathcal{X} = \mathcal{T}_{\mathrm{T-MSSA}}^{(L)} \left(\mathcal{D}_{D}(\mathsf{X})\right) \end{array}$$

Undersampling: $\omega \mapsto \hat{\omega} = D\omega \implies |\omega| \leqslant \frac{1}{2D}$ is required

Single-Channel Series Comparison with Dstack

$$x_n=\cos(2\pi\omega_1 n)+\cos(2\pi\omega_2 n)+\xi_n$$

$$\omega_1=0.02,\,\omega_2=0.0205,\,\xi_n$$
 — white gaussian noise, $\mathrm{D}(\xi_n)=\sigma^2$

RMSE results with respect to parameters choice:

• Parametes estimation, $\sigma = 0.2$

	Best	Worst	Mean	
ESPRIT	4.98e-05	5.66e-05	5.32e-05	T-method
Dstack-ESPRIT	5.30e-05	7.63e-05	6.24e-05	is worse
T-Dstack-ESPRIT	5.40e-05	6.24e-05	5.86e-05	

• Parametes estimation, $\sigma = 0.6$

	Best	Worst	Mean
ESPRIT	0.101	0.138	0.115
		0.011	
T-Dstack-ESPRIT	0.003	0.005	0.004

T-method is better

Single-Channel Series Comparison with Dstack

$$x_n=\cos(2\pi\omega_1n)+\cos(2\pi\omega_2n)+\xi_n$$
 $\omega_1=0.02,~\omega_2=0.0205,~\xi_n$ — white gaussian noise, $\mathrm{D}(\xi_n)=\sigma^2$

RMSE results with respect to parameters choice:

• Signal extraction, $\sigma = 0.2$

	Best	Worst	Mean
SSA	0.020	0.021	0.021
Dstack-SSA	0.052	0.066	0.057
T-Dstack-SSA			

T-method is worse

• Signal extraction, $\sigma = 0.6$

	Best	Worst	Mean
SSA	0.086	0.095	0.090
Dstack-SSA	0.175	0.208	0.189
T-Dstack-SSA	0.175	0.179	0.178

T-method is worse

Results and Fututre Work

Results:

- Tensor-based methods are generally less dependent on the parameters choice, and has lower minimal and maximal RMSEs except for single-channel signal extraction case, where basic SSA has lower minimal RMSE
- Mean and median RMSE are close for both methods in the single-channel case but in the multi-channel case tensor methods have advantage
- Tensor methods with applying Dstack mapping can be useful for estimation of parameters in presence of strong noise

Future Work:

- Trying other tensor decompositions (CPD, T-SVD)
- Implementation of tensor modifications for other SSA-based methods
- . . .

Algorithms Complexities

$$\mathcal{X} \in \mathbb{C}^{I \times L \times K}$$
, $\mathbf{X} \in \mathbb{C}^{\hat{L} \times \hat{K}}$, $I < L < K$, $\hat{L} < \hat{K}$, $I + L + K = N + 2$, $\hat{L} + \hat{K} = N + 1$

- $\mathrm{SVD}(\mathbf{X})$: $O(\hat{L}^2\hat{K})$, or $O(r\hat{L}\hat{K})$ if only need r-rank approximation, or $O(rN\log(N))$ if \mathbf{X} is Hankel
- $\begin{array}{l} \bullet \ \, \operatorname{HOSVD}(\mathcal{X}) \colon \\ O(ILKN), \\ \text{or} \ \, O(ILK(r_1+r_2+r_3)) \ \, \text{if only need} \ \, (r_1,r_2,r_3) \text{-rank approximation,} \\ \text{or} \ \, O((r_1+r_2+r_3)I(L+K)\log(L+K)) \ \, \text{if} \ \, \mathcal{X} \ \, \text{is Hankel} \\ \end{array}$