Eine Woche, ein Beispiel 11.14. Stiefel manifold

Ref: https://en.wikipedia.org/wiki/Stiefel_manifold

For the description of metric, see https://math.stackexchange.com/questions/1371410/geodesic-of-stiefel-manifold For the cellular structure, see https://math.stackexchange.com/questions/58041/cell-structure-on-stiefel-manifolds

Orthogonal basis = 紅正基

 $Ref: https://people.math.ethz.ch/~jagnaw/Seminar_Notes/Obstruction_theory_Stiefel_Whitney_classes.pdf$

Lemma 5 The homotopy groups of the Stiefel manifold $V_k(\mathbb{R}^n)$ for $l \leq n-k$ are

$$\pi_l(V_k(\mathbb{R}^n)) = \begin{cases} 0 & \text{if } l < n - k \\ \mathbb{Z} & \text{if } l = n - k \text{ and } k = 1 \\ \mathbb{Z} & \text{if } l = n - k \text{ is even} \\ \mathbb{Z}_2 & \text{if } l = n - k \text{ is odd and } k \neq 1. \end{cases}$$

ref:http://math.uchicago.edu/~may/REU2012/REUPapers/Fung.pdf in[Lemma 1.10], the author proved this result by the elementary argument. Really nice!

For the references on

https://projecteuclid.org/journals/journal-of-the-institute-of-polytechnics-osaka-city-university-series-a-mathematics/volume-6/issue-1/On-the-homotopy-groups-of-Stiefel-manifolds/ojm/1353054734.pdf

https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-71/issue-4/Some-homotopy-groups-of-Stiefel-manifolds/bams/1183527242.full

https://www.maths.ed.ac.uk/~viranick/papers/paechter5.pdf

they all concern only with the stable homotopy group. So in general it's quite difficult to compute the other homotopy groups.

E.g. n=5 $\begin{vmatrix}
H^{i}(V_{k}(|R^{i}), \mathbb{Z}) \\
\downarrow & 0 \\
0 & \mathbb{Z}
\end{vmatrix}$ 3 2 (\mathbb{Z} \mathbb{Z} \mathbb{Z} υ Ζ/₂Ζ/ ٥ O 7/ 71/27/ Z/27/ 0 Z 0 7/2/2 2427 7/ 7/27 7/27 7/27 7/27 7/27 7/27 0 7427 0 0 74/27 74/27 0 Z®Z/₁1 0 Z 0 0 12/27/ 12/27/ 12/27/ 0 O 11/27/ 0 O 7

E.g. n=6	0 H,(A*	(IR ⁶), <u>z</u>) 0 Z	Z Z Z	2 Z	3 Z	4 Z	S0(6) Z	6
	2					7/	74/27/	
	3 4 5		Z	Z Z	Z/ ₂₇₂ Z	Z/2Z Z/	Z/ Z/2 <u>Z</u> ZL&Z _{/2}	E E
	6		4	4		Z/ ₂₇₁	Z/27 Z(27 Z() Z/21	E V E R Y
	7 8				72	Z & Z	7	Ϋ́
	9			Z	74/271	Z & Z/12	Z/2Z/	T H I
	11					71/272	Z/12/12 Z/12	I
	12				Z	7/27 Z	ℤ⊕¾ <u>į</u>	N G
	13 14					Z	71/171 Z	
	15						Z	