Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики

Розширення мови SIPL: Масиви

Виконав:

студент першого року магістратури

групи ШІ-1

Боровик Олег Миколайович

Синтаксис (БНФ)

Таблиця 1:

Ліва частина правила – метазмінна	Права частина правила	Ім'я правила
<програма> ::=	begin <оператор> end	NP1
<оператор> ::=	<pre><</pre>	NS1-NS8
<вираз> ::=	<uc><uc><uc><uc><uc><uc><uc><uc><uc><uc></uc></uc></uc></uc></uc></uc></uc></uc></uc></uc>	NA1 NA6
<умова> ::=	<вираз> = <вираз> <вираз> > <вираз> <умова> ∨<умова> l<умова> (<умова>)	NB1 NB5
<масив>::=	<вираз> <вираз>,<масив>	NM1
<елемент масиву> ::=	<змінна масиву>[<вираз>]	NE1
<змінна масиву> ::=	M_A N_A	NA

<змінна> ::=	M N	NV
<число> ::=	1 0 1 2 3	NN

Таблиця 2:

Метазмінна	Синтаксична категорія	Нова метазмінна
<програма>	Prog	Р
<оператор>	Stm	S
<вираз>	Aexp	а
<умова>	Вехр	b
<змінна>	Var_N	х
<число>	Num	n
<елемент масиву>	Сехр	е
<змінна масиву>	Var_A	m
<масив>	Dexp	L

У наведених позначеннях БНФ мови SIPL набуває такого вигляду:

Таблиця 3:

таолици о.		
Ліва частина правила – метазмінна	Права частина правила	Ім'я правила
P::=	begin S end	P1
S::=	$x := a \mid m_1 := m_2 \mid m := [L]$	S1–S6
	$ e := a S_1; S_2 $ if b then S_1 else $S_2 $	
	while b do S begin S end skip	
a::=	$n \mid x \mid e \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \mid (a)$	A1– A6
b::=	$a_1 = a_2 a_1 > a_2 b_1 \lor b_2 \exists b (b)$	B1 – B5
e :=	m[a]	ArrE
L::=	a a,L	Arr
x::=	M N	NV
m :=	M_A N_A	NA
n::=	1 0 1 2 3	NN

Отримали багатоосновну алгебру даних мови SIPL_Arr:

A_Int_Bool_State_Arr = <Int, Bool, State, Arr; add, sub, mult, or, neg, eq, gr, index, =>x, x=>, =>m, m=>, \hat{n} , id, ∇ >

Композиційна семантика

Визначимо тепер класи функцій, які будуть задіяні при визначенні семантики SIPL_Arr:

- 1. N-арні операції над базовими типами:
 - FNA = $Int^n \rightarrow Int$ n-арні арифметичні функції (операції);
 - FNB = $Bool^n \rightarrow Bool n$ -арні булеві функції (операції);
 - FNAB = Int ⁿ→ Bool n-арні функції (операції) порівняння над булевими типами даних;

- FNArr = Int, $Arr \rightarrow Int$ 2-арна функція (операція) індексування масиву
- 2. Функції над станами змінних:
 - FA = State → Int номінативні арифметичні функції;
 - FB = State → Bool номінативні предикати;
 - FArr = State → Arr номінативні функції над масивами
- FS = State \rightarrow State біномінативні функції-перетворювачі (трансформатори) станів Отримали алгебру функцій (програмну алгебру): A Prog Arr = <FNA, FNB, FNAB, FNArr, FA, FB, FArr, FS; S^n , AS^n , ASM^m , •, IF, WH, x = >, m = 1

A_Prog_Arr = <FNA, FNB, FNAB, FNArr, FA, FB, FArr, FS; S^n , AS^n , AS^m , ASM^m , \bullet , IF, WH, x =>, m = >, id >

Формули для обчислення композицій і функцій алгебри A_Prog_Arr:

Таблиця 4:

Композиція	Формула обчислення	Ім'я формули
Суперпозиція	$(S^n(f,g1,\ldots,gn))(st) = f(g1(st),\ldots,gn(st))$	AF_S
Присвоювання	$AS^{x}(fa)(st) = st orall [x o fa(st)]$ $AS^{m}(fa)(st) = st orall [m o fa(m)]$ $ASM^{m}(fa_{1},fa_{2})(st) = st orall [m o [m^{0},m^{1},,m^{i-1},fa_{2}(st),m^{i+1},m^{n-1}]],$ де $i = fa_{1}(st),$ $n -$ кількість елементів у m	AF_AS AF_AS_Arr AF_AS_ArrE
Послідовне виконання	$fs_1 \bullet fs_2(st) = fs_2(fs_1(st))$	AF_SEQ
Умовний оператор	$IF(fb,fs_1,fs_2)(st) = fs_1(st)$, якщо $fb(st) = true$, $fs_2(st)$, якщо $fb(st) = false$	AF_IF
Цикл	$WH(fb,fs)(st) = st_n$, де $st_0 = st$, $st_1 = fs(st_0)$, $st_2 = fs(st_1), \ldots$, $st_n = fs(st_{n-1})$, Причому $fb(st_0) = true$, $fb(st_1) = true$,, $fb(st_{n-1}) = true$, $fb(st_n) = false$.	AF_WH
Функція розіменування	$x \Rightarrow (st) = st(x)$ $m \Rightarrow (st) = st(m)$	AF_DNM_N AF_DNM_Arr
Тотожна функція	id(st) = st	AF_ID

Програма мови SIPL може бути перетворена на семантичний терм (терм програмної алгебри), який задає її семантику (семантичну функцію), перетвореннями такого типу:

• sem P: Prog -> TFS;

- sem_S: Stm -> TFS;
- sem_A: Aexp -> TFA;
- sem B: Bexp -> TFB.
- sem_Arr: State -> TFArr

де TFS, TFS, TFA, TFB, TFArr задають відповідні множини термів

Правила перетворення програми на семантичний терм:

Таблиця 5:

Правило заміни	Назва правила
$sem_P: Prog \rightarrow FS$ задається правилами:	
$sem_P(begin \ S \ end) = sem_S(S)$	NS_Prog
sem_S : $Stm o FS$ задається правилами:	
$sem_S(x:=a) = AS^{x}(sem_A(a))$	NS_Stm_As
$sem_S(S_1;S_2) = sem_S(S_1) \bullet sem_S(S_2)$	NS_Stm_Seq
$sem_S(m:=[a_1,,a_n])$	NS_Stm_ArIni
$= AS^{m}(sem_Arr([a_1,, a_n]))$	
$sem_S(m[a_1]:=a_2)$	NS_Stm_ArAs
$= ASM^m (sem_A(a_1), sem_A(a_2))$	
$sem_S(if \ b \ then \ S_1 \ else \ S_2) = IF(sem_B(b), sem_S(S_1),$	NS_Stm_If
$sem_S(S_2)$)	NC C. WI
$sem_S(while\ b\ do\ S) = WH(sem_B(b), sem_S(S))$	NS_Stm_Wh
$sem_S(begin\ S\ end) = (sem_S(S))$	NS_Stm_Op
sem_S(skip)=id	NS_Stm_skp

sem_A : $Aexp o FA$ задається правилами:	
$sem_A(n) = \bar{n}$	NS_A_Num
$sem_A(x)=x\Longrightarrow$	NS_A_Var
$sem_A(a_1+a_2)=S^2(add, sem_A(a_1), sem_A(a_2))$	NS_A_Add
$sem_A(a_1-a_2)=S^2(sub, sem_A(a_1), sem_A(a_2))$	NS_A_Sub
$sem_A(a_1*a_2)=S^2(mult, sem_A(a_1), sem_A(a_2))$	NS_A_Mult
$sem_A(a_1 \div a_2) = S^2(div, sem_A(a_1), sem_A(a_2))$	NS_A_Div
$sem_A((a)) = sem_A(a)$	NS_A_Par
$sem_A(m[a]) = S^2(index, m, sem_A(a))$	NS_A_index
sem_B : $Bexp o FB$ задається правилами:	·
sem_B(true)=true	NS_B_true
sem_B(false)= false	NS_B_false
$sem_B(a_1 < a_2) = S^2(less, sem_A(a_1), sem_A(a_2))$	NS_B_less
$sem_B(a_1 \le a_2) = S^2(less, sem_A(a_1), sem_A(a_2))$	NS_B_less
$sem_B(a_1=a_2)=S^2(eq, sem_A(a_1), sem_A(a_2))$	NS_B_eq
$sem_B(a_1 \neq a_2) = S^2(neq, sem_A(a_1), sem_A(a_2))$	NS_B_neq
$sem_B(a_1 \ge a_2) = S^2(geq, sem_A(a_1), sem_A(a_2))$	NS_B_geq
$sem_B(a_1 > a_2) = S^2(gr, sem_A(a_1), sem_A(a_2))$	NS_B_gr
$sem_B(b_1 \lor b_2) = S^2(or, sem_B(b_1), sem_B(b_2))$	NS_B_or
$sem_B(b_1 \land b_2) = S^2(and, sem_B(b_1), sem_B(b_2))$	NS_B_and
$sem_B(\neg b)=S^1(neg, sem_B(b))$	NS_B_neg
$sem_B((b)) = sem_B(b)$	NS_B_Par
sem_Arr : $Arr_exp o FArr$ задається правилами:	
$sem_Arr((m)) = sem_Arr(m)$	NS_Arr_Par
$sem_Arr(m)=m\Longrightarrow$	NS_Arr_Var
$sem_Arr([a_1, a_2,, a_n])$	NS_Arr_seq
$= [sem_A(a_1), sem_A(a_2), \dots, sem_A(a_n)]$	

```
Побудуємо семантичний терм програми REVERSE_Arr(M, n), обернення масиву (для зручності
відступимо від правил іменування змінних заданих в БНФ):
sem_P(REVERSE_Arr) = sem_P(begin
                                                                  i := 0;
                                                                  halfLen := n / 2;
                                                                  while i < halfLen do
                                                                               begin
                                                                                             temp := M[i];
                                                                                             M[i] := M[n-i-1];
                                                                                             M[n-i-1] := temp;
                                                                                             i := i + 1;
                                                                               end
                                                              end)=
sem_S(i := 0; halfLen := n / 2; while i < halfLen do begin temp := M[i]; M[i] := M[n-i-1]; M[n-i-1] :=
temp; i := i + 1; end) =
sem_S(i := 0) • sem_S(halfLen := n / 2) • sem_S(while i < halfLen do begin temp := M[i]; M[i] :=
M[n-i-1]; M[n-i-1] := temp; i := i + 1; end) =
AS^{i}(sem\_A(0)) \bullet AS^{halfLen} (sem_A(n / 2)) \bullet WH(sem_B(i < halfLen), sem_S(begin temp := M[i];
M[i] := M[n-i-1]; M[n-i-1] := temp; i := i + 1; end)) =
AS^{i}(\overline{0}) \bullet AS^{halfLen}(S^{2}(div, sem\_A(n), sem\_A(2))) \bullet WH(S^{2}(less, sem\_A(i), sem\_A(halfLen)),
sem S((temp := M[i]; M[i] := M[n-i-1]; M[n-i-1] := temp; i := i + 1;)) =
AS^{i}(\overline{0}) \bullet AS^{halfLen}(S^{2}(div, n \Rightarrow, \overline{2})) \bullet WH(S^{2}(less, i \Rightarrow, halfLen \Rightarrow), sem_S(temp := 
M[i]) \bullet sem_S(M[i] := M[n-i-1]) \bullet sem_S(M[n-i-1] := temp) \bullet sem_S(i := i + 1)) =
AS^{i}(\overline{0}) \bullet AS^{halfLen}(S^{2}(div, n \Rightarrow, \overline{2})) \bullet WH(S^{2}(less, i \Rightarrow, halfLen \Rightarrow),
AS^{temp}(\text{sem A}(M[i])) \bullet ASM^{M}(\text{sem A}(i), \text{sem A}(M[n-i-1])) \bullet ASM^{M}(\text{sem A}(n-i-1),
sem A(temp)) • AS^{i}(sem A(i + 1))) =
AS^{i}(\overline{0}) \bullet AS^{halfLen}(S^{2}(div, n \Rightarrow, \overline{2})) \bullet WH(S^{2}(less, i \Rightarrow, halfLen \Rightarrow),
AS^{temp}(S^2(index, M, sem\_A(i))) \bullet ASM^M(i \Rightarrow, S^2(index, M, sem\_A(n-i-1))) \bullet ASM^M(S^2(sub, M, sem\_A(i))) \bullet ASM^M(sub, M, sem\_A(i)))
sem A(n-i), sem A(1), temp\Rightarrow) • AS^{i}(S^{2}(add, sem A(i), sem A(1)))) =
```

```
AS^{i}(\overline{0}) \bullet AS^{halfLen}(S^{2}(div, n \Rightarrow, \overline{2})) \bullet WH(S^{2}(less, i \Rightarrow, halfLen \Rightarrow),
AS^{temp}(S^2(index, M, i \Rightarrow)) \bullet ASM^M(i \Rightarrow,
S^2(index, M, S^2(sub, S^2(sub, sem_A(n), sem_A(i)), sem_A(1)))) \bullet ASM^M(S^2(sub, S^2(sub, sem_A(n), sem_A(n)))) \bullet ASM^M(S^2(sub, sem_A(n), sem_A(n))))
sem_A(n), sem_A(i)), sem_A(1)), temp\Rightarrow) • AS<sup>i</sup>(S<sup>2</sup>(add, i\Rightarrow,\overline{1})))
AS^{i}(\overline{0}) \bullet AS^{halfLen}(S^{2}(div, n \Rightarrow, \overline{2})) \bullet WH(S^{2}(less, i \Rightarrow, halfLen \Rightarrow),
AS^{temp}(S^2(index, M, i \Rightarrow)) \bullet ASM^M(i \Rightarrow,
S^2(\text{index}, M, S^2(\text{sub}, S^2(\text{sub}, n \Rightarrow, i \Rightarrow), \bar{1}))) \bullet ASM^M(S^2(\text{sub}, S^2(\text{sub}, n \Rightarrow, i \Rightarrow), \bar{1}), \bar{1})
temp\Rightarrow) • AS<sup>i</sup>(S<sup>2</sup>(add, i\Rightarrow,\overline{1})))
Обчислимо семантичний терм програми REVERSE Arr при [M \mapsto [1, 2, 3, 4, 5], n \mapsto 5]:
AS^{i}(\overline{0}) \bullet AS^{halfLen}(S^{2}(div, n \Rightarrow, \overline{2})) \bullet WH(S^{2}(less, i \Rightarrow, halfLen \Rightarrow),
\mathsf{AS}^{\mathsf{temp}}(S^2(\mathsf{index}, \mathsf{M}, \mathsf{i} \Rightarrow)) \bullet \mathsf{ASM}^\mathsf{M}(\mathsf{i} \Rightarrow,
S^2(\text{index}, M, S^2(\text{sub}, S^2(\text{sub}, n \Rightarrow, i \Rightarrow), \bar{1}))) \bullet ASM^M(S^2(\text{sub}, S^2(\text{sub}, n \Rightarrow, i \Rightarrow), \bar{1}), \bar{1})
temp\Rightarrow) • AS<sup>i</sup>(S<sup>2</sup>(add, i\Rightarrow,\overline{1})))
([M \mapsto [1, 2, 3, 4, 5], n \mapsto 5])
Задля зручності спочатку обчислимо перші два вирази:
AS^{i}(\overline{0}) \bullet AS^{halfLen} (S^{2}(div, n \Rightarrow, \overline{2})) ([M \mapsto [1, 2, 3, 4, 5], n \mapsto 5]) =
AS^{halfLen}(S^{2}(div, n \Rightarrow, \bar{2}))(AS^{i}(\bar{0})([M \mapsto [1, 2, 3, 4, 5], n \mapsto 5])) =
AS^{halfLen}(S^2(div, n \Rightarrow, \bar{2})) ([M \mapsto [1, 2, 3, 4, 5], n \mapsto 5] \nabla [i \mapsto \bar{0} ([M \mapsto [1, 2, 3, 4, 5], n \mapsto 5])]) =
AS^{halfLen} (S^2(div, n \Rightarrow \bar{2})) ([M \mapsto [1, 2, 3, 4, 5], n \mapsto 5] \nabla [i\mapsto0])=
AS^{halfLen}(S^2(div, n \Rightarrow ,\bar{2})) ([M \mapsto [1, 2, 3, 4, 5], n \mapsto 5, i \mapsto 0]) =
AS^{halfLen} (S^2(div, n \Rightarrow, \overline{2})) ([M \mapsto [1, 2, 3, 4, 5], n \mapsto 5, i\mapsto0])=
[M \mapsto [1, 2, 3, 4, 5], n \mapsto 5, i \mapsto 0] \nabla [halfLen \mapsto S^2(div, n \Rightarrow \bar{2}) ([M \mapsto [1, 2, 3, 4, 5], n \mapsto 5, i \mapsto 0])] =
[M \mapsto [1, 2, 3, 4, 5], n \mapsto 5, i \mapsto 0] \nabla [halfLen \mapsto div(5,2)] =
```

 $[M \mapsto [1, 2, 3, 4, 5], n \mapsto 5, i \mapsto 0] \nabla [halfLen \mapsto 2] =$

$$[M \mapsto [1, 2, 3, 4, 5], n \mapsto 5, i \mapsto 0, halfLen \mapsto 2]$$

І далі обчислюємо WH:

WH(S²(less, i⇒, halfLen⇒), AS^{temp}(S²(index, M, i⇒)) • ASM^M(i⇒, S²(index, M, S²(sub, S²(sub, n⇒,i⇒), $\bar{1}$))) • ASM^M(S²(sub, S²(sub, n⇒,i⇒), $\bar{1}$), temp⇒) • ASⁱ(S²(add, i⇒, $\bar{1}$))) ([M \mapsto [1, 2, 3, 4, 5], n \mapsto 5, i \mapsto 0, halfLen \mapsto 2]) Перша ітерація:

Обчислюємо умову:

$$S^2(less, i \Rightarrow, halfLen \Rightarrow) ([M \mapsto [1, 2, 3, 4, 5], n \mapsto 5, i \mapsto 0, halfLen \mapsto 2]) =$$

less(i
$$\Rightarrow$$
, halfLen \Rightarrow) ([M \mapsto [1, 2, 3, 4, 5], n \mapsto 5, i \mapsto 0, halfLen \mapsto 2]) =

less(0, 2) = true

Умова виконується, обчислюємо тіло виразу:

$$\begin{split} &\mathsf{AS}^{\mathsf{temp}}(\mathsf{S}^2(\mathsf{index},\mathsf{M},\mathsf{i}\Rightarrow)) \bullet \mathsf{ASM}^\mathsf{M}(\mathsf{i}\Rightarrow,\\ &\mathsf{S}^2(\mathsf{index},\mathsf{M},\mathsf{S}^2(\mathsf{sub},\mathsf{S}^2(\mathsf{sub},\mathsf{n}\Rightarrow,\mathsf{i}\Rightarrow),\bar{1}))) \bullet \mathsf{ASM}^\mathsf{M}(\mathsf{S}^2(\mathsf{sub},\mathsf{S}^2(\mathsf{sub},\mathsf{n}\Rightarrow,\mathsf{i}\Rightarrow),\bar{1}),\\ &\mathsf{temp}\Rightarrow) \bullet \mathsf{AS}^\mathsf{i}(\mathsf{S}^2(\mathsf{add},\mathsf{i}\Rightarrow,\bar{1})) \ ([\mathsf{M}\mapsto[1,2,3,4,5],\mathsf{n}\mapsto5,\mathsf{i}\mapsto0,\mathsf{halfLen}\mapsto2]) \end{split}$$

Оскільки тіло містить 4 послідовних вирази, тому, щоб не плутатись в дужках, обчислимо їх окремо:

$$AS^{temp}(S^2(index, M, i \Rightarrow))$$
 ([M \mapsto [1, 2, 3, 4, 5], n \mapsto 5, i \mapsto 0, halfLen \mapsto 2])=

$$[\mathsf{M} \mapsto [1,2,3,4,5], \mathsf{n} \mapsto \mathsf{5}, \mathsf{i} \mapsto \mathsf{0}, \mathsf{halfLen} \mapsto \mathsf{2}] \nabla [\mathsf{temp} \mapsto \mathsf{S}^2(\mathsf{index},\mathsf{M},\mathsf{i} \Rightarrow) ([\mathsf{M} \mapsto [1,2,3,4,5], \mathsf{n} \mapsto \mathsf{5}, \mathsf{i} \mapsto \mathsf{0}, \mathsf{halfLen} \mapsto \mathsf{2}])] =$$

$$[\mathsf{M} \mapsto [1,2,3,4,5], n \mapsto 5, \mathsf{i} \mapsto 0, \mathsf{halfLen} \mapsto 2] \ \nabla \ [\mathsf{temp} \mapsto \mathsf{index}([1,2,3,4,5],0)] = 0$$

$$[\mathsf{M} \mapsto [1,2,3,4,5], \, n \mapsto 5, i \mapsto 0, \, \mathsf{halfLen} \mapsto 2] \; \nabla \; [\mathsf{temp} \, \mapsto \! 1] =$$

$$[M \mapsto [1, 2, 3, 4, 5], n \mapsto 5, i \mapsto 0, halfLen \mapsto 2, temp \mapsto 1]$$

 $\mathsf{ASM}^{\mathsf{M}}(\mathsf{i} \Rightarrow, \mathsf{S}^2(\mathsf{index}, \mathsf{M}, \mathsf{S}^2(\mathsf{sub}, \mathsf{S}^2(\mathsf{sub}, \mathsf{n} \Rightarrow, \mathsf{i} \Rightarrow), \bar{1}))) \ ([\mathsf{M} \mapsto [1, 2, 3, 4, 5], \mathsf{n} \mapsto \mathsf{5}, \mathsf{i} \mapsto \mathsf{0}, \mathsf{halfLen} \mapsto \mathsf{2}, \mathsf{temp} \mapsto \mathsf{1}]) =$

```
[\mathsf{M} \mapsto [1,2,3,4,5], \, \mathsf{n} \mapsto \mathsf{5}, \mathsf{i} \mapsto \mathsf{0}, \, \mathsf{halfLen} \mapsto \mathsf{2}, \mathsf{temp} \mapsto \mathsf{1}] \, \nabla \, [\mathsf{M} \mapsto [\mathsf{S}^2(\mathsf{index},\mathsf{M},\mathsf{S}^2(\mathsf{sub},\mathsf{S}^2(\mathsf{sub},\mathsf{n} \Rightarrow,\mathsf{i} \Rightarrow),\,\bar{1})) \,,\, \mathsf{2},\, \mathsf{3},\, \mathsf{4},\, \mathsf{5}] \, ([\mathsf{M} \mapsto [1,2,3,4,5],\, \mathsf{n} \mapsto \mathsf{5},\, \mathsf{i} \mapsto \mathsf{0}, \, \mathsf{halfLen} \mapsto \mathsf{2},\, \mathsf{temp} \mapsto \mathsf{1}])] =
```

 $[\mathsf{M} \mapsto [1,2,3,4,5], \, \mathsf{n} \mapsto \mathsf{5}, \mathsf{i} \mapsto \mathsf{0}, \, \mathsf{halfLen} \mapsto \mathsf{2}, \mathsf{temp} \mapsto \mathsf{1}] \, \nabla \, [\mathsf{M} \mapsto [\mathsf{index}(\mathsf{M},\mathsf{sub}(\mathsf{sub}(\mathsf{n} \Rightarrow, \mathsf{i} \Rightarrow), \overline{\mathsf{1}}))) \, , \, \mathsf{2}, \\ \mathsf{3}, \, \mathsf{4}, \, \mathsf{5}] \, ([\mathsf{M} \mapsto [\mathsf{1}, \mathsf{2}, \mathsf{3}, \mathsf{4}, \mathsf{5}], \, \mathsf{n} \mapsto \mathsf{5}, \, \mathsf{i} \mapsto \mathsf{0}, \, \mathsf{halfLen} \mapsto \mathsf{2}, \mathsf{temp} \mapsto \mathsf{1}])] =$

$$[M \mapsto [1, 2, 3, 4, 5], n \mapsto 5, i \mapsto 0, halfLen \mapsto 2, temp \mapsto 1] \nabla [M \mapsto [index([1, 2, 3, 4, 5], sub(sub(5, 0), 1))), 2, 3, 4, 5])] =$$

$$[M \mapsto [1, 2, 3, 4, 5], n \mapsto 5, i \mapsto 0, halfLen \mapsto 2, temp \mapsto 1] \nabla [M \mapsto [5, 2, 3, 4, 5])] =$$

$$[M \mapsto [5, 2, 3, 4, 5], n \mapsto 5, i \mapsto 0, halfLen \mapsto 2, temp \mapsto 1]$$

 $\mathsf{ASM}^\mathsf{M}(\mathsf{S}^2(\mathsf{sub},\,\mathsf{S}^2(\mathsf{sub},\,\mathsf{n} \Rightarrow,\mathsf{i} \Rightarrow),\,\bar{1}),\,\mathsf{temp} \Rightarrow)\,([\mathsf{M} \mapsto [5,2,3,4,5],\,\mathsf{n} \mapsto 5,\mathsf{i} \mapsto 0,\,\mathsf{halfLen} \mapsto 2,\,\mathsf{temp} \mapsto 1]) =$

Обрахуємо індекс:

$$S^2(\text{sub}, S^2(\text{sub}, n \Rightarrow, i \Rightarrow), \overline{1})$$
 ([M \mapsto [5, 2, 3, 4, 5], n \mapsto 5, i \mapsto 0, halfLen \mapsto 2, temp \mapsto 1]) = sub(sub(5, 0), 1) = 4

= $[M \mapsto [5, 2, 3, 4, 5], n \mapsto 5, i \mapsto 0$, halfLen \mapsto 2, temp \mapsto 1] $\nabla [M \mapsto [5, 2, 3, 4, \text{temp} \Rightarrow]$ ($[M \mapsto [5, 2, 3, 4, \text{temp} \Rightarrow]$)] =

$$[\mathsf{M} \mapsto [\mathsf{5}, \mathsf{2}, \mathsf{3}, \mathsf{4}, \mathsf{5}], \, \mathsf{n} \mapsto \mathsf{5}, \mathsf{i} \mapsto \mathsf{0}, \, \mathsf{halfLen} \mapsto \mathsf{2}, \mathsf{temp} \mapsto \mathsf{1}] \, \, \nabla \, [\mathsf{M} \mapsto [\mathsf{5}, \mathsf{2}, \mathsf{3}, \mathsf{4}, \mathsf{1}]] =$$

$$[\mathsf{M} \mapsto [\mathsf{5},\mathsf{2},\mathsf{3},\mathsf{4},\mathsf{1}], \mathsf{n} \mapsto \mathsf{5},\mathsf{i} \mapsto \mathsf{0}, \mathsf{halfLen} \mapsto \mathsf{2}, \mathsf{temp} \mapsto \!\! \mathsf{1}]$$

$$AS^{i}(S^{2}(add, i \Rightarrow, \overline{1})([M \mapsto [5, 2, 3, 4, 1], n \mapsto 5, i \mapsto 0, halfLen \mapsto 2, temp \mapsto 1])=$$

 $[\mathsf{M} \mapsto [\mathsf{5}, \mathsf{2}, \mathsf{3}, \mathsf{4}, \mathsf{1}], \, \mathsf{n} \mapsto \mathsf{5}, \mathsf{i} \mapsto \mathsf{0}, \, \mathsf{halfLen} \mapsto \mathsf{2}, \mathsf{temp} \mapsto \mathsf{1}] \, \nabla \, [\mathsf{i} \mapsto \mathsf{S}^2(\mathsf{add}, \, \mathsf{i} \Rightarrow, \overline{\mathsf{1}})([\mathsf{M} \mapsto [\mathsf{5}, \mathsf{2}, \mathsf{3}, \mathsf{4}, \mathsf{1}], \, \mathsf{n} \mapsto \mathsf{5}, \, \mathsf{i} \mapsto \mathsf{0}, \, \mathsf{halfLen} \mapsto \mathsf{2}, \, \mathsf{temp} \mapsto \mathsf{1}])] =$

$$[\mathsf{M} \mapsto [\mathsf{5}, \mathsf{2}, \mathsf{3}, \mathsf{4}, \mathsf{1}], \, \mathsf{n} \mapsto \mathsf{5}, \mathsf{i} \mapsto \mathsf{0}, \, \mathsf{halfLen} \mapsto \mathsf{2}, \mathsf{temp} \mapsto \mathsf{1}] \, \, \forall \, \, [\mathsf{i} \mapsto \mathsf{add}(\mathsf{0}, \mathsf{1})] = \mathsf{1}$$

$$[\mathsf{M} \mapsto [\mathsf{5}, \mathsf{2}, \mathsf{3}, \mathsf{4}, \mathsf{1}], \, \mathsf{n} \mapsto \mathsf{5}, \mathsf{i} \mapsto \mathsf{0}, \, \mathsf{halfLen} \mapsto \mathsf{2}, \, \mathsf{temp} \mapsto \mathsf{1}] \, \nabla \, [\mathsf{i} \mapsto \mathsf{1}] = \mathsf{1}$$

$$[\mathsf{M} \mapsto [\mathsf{5},\mathsf{2},\mathsf{3},\mathsf{4},\mathsf{1}],\,\mathsf{n} \mapsto \mathsf{5},\mathsf{i} \mapsto \mathsf{1},\,\mathsf{halfLen} \mapsto \mathsf{2},\mathsf{temp} \mapsto \!\!\mathsf{1}]$$

Перша ітерація закінчена. Перевіряємо умову другої ітерації:

$$S^2(less, i \Rightarrow, halfLen \Rightarrow) ([M \mapsto [5, 2, 3, 4, 1], n \mapsto 5, i \mapsto 1, halfLen \mapsto 2, temp \mapsto 1]) =$$

less(i
$$\Rightarrow$$
, halfLen \Rightarrow) ([M \mapsto [5, 2, 3, 4, 1], n \mapsto 5, i \mapsto 1, halfLen \mapsto 2, temp \mapsto 1]) =

less(1, 2) = true

Умова виконується, обчислюємо тіло виразу (послідовно):

$$AS^{temp}(S^2(index, M, i\Rightarrow))$$
 ([M \mapsto [5, 2, 3, 4, 1], n \mapsto 5, i \mapsto 1, halfLen \mapsto 2, temp \mapsto 1])=

$$[\mathsf{M} \mapsto [5,2,3,4,1], \, \mathsf{n} \mapsto 5, \mathsf{i} \mapsto 1, \, \mathsf{halfLen} \mapsto 2, \, \mathsf{temp} \mapsto 1] \, \nabla \, [\mathsf{temp} \mapsto S^2(\mathsf{index},\,\mathsf{M},\,\mathsf{i} \Rightarrow) \, ([\mathsf{M} \mapsto [1,2,3,4,5],\, \mathsf{n} \mapsto 5, \mathsf{i} \mapsto 0, \, \mathsf{halfLen} \mapsto 2])] =$$

$$[M \mapsto [5, 2, 3, 4, 1], n \mapsto 5, i \mapsto 1, halfLen \mapsto 2, temp \mapsto 1] \nabla [temp \mapsto index([1, 2, 3, 4, 5], 1)] =$$

$$[M \mapsto [5, 2, 3, 4, 1], n \mapsto 5, i \mapsto 1, halfLen \mapsto 2, temp \mapsto 1] \nabla [temp \mapsto 2] =$$

$$[M \mapsto [5, 2, 3, 4, 1], n \mapsto 5, i \mapsto 1, halfLen \mapsto 2, temp \mapsto 2]$$

 $\mathsf{ASM}^\mathsf{M}(\mathsf{i} \Rightarrow, \, \mathsf{S}^2(\mathsf{index}, \, \mathsf{M}, \, \mathsf{S}^2(\mathsf{sub}, \, \mathsf{S}^2(\mathsf{sub}, \, \mathsf{n} \Rightarrow, \mathsf{i} \Rightarrow), \, \bar{1}))) \, ([\mathsf{M} \mapsto [5, 2, 3, 4, 1], \, \mathsf{n} \mapsto 5, \, \mathsf{i} \mapsto 1, \, \mathsf{halfLen} \mapsto 2, \, \mathsf{temp} \mapsto 2]) =$

 $[M \mapsto [5, 2, 3, 4, 1], n \mapsto 5, i \mapsto 1, halfLen \mapsto 2, temp \mapsto 2] \nabla [M \mapsto [5, index(M, sub(sub(n \Rightarrow, i \Rightarrow), \bar{1}))),$ 3, 4, 5] $([M \mapsto [5, 2, 3, 4, 1], n \mapsto 5, i \mapsto 1, halfLen \mapsto 2, temp \mapsto 2])] =$

 $[M \mapsto [5, 2, 3, 4, 1], n \mapsto 5, i \mapsto 1, halfLen \mapsto 2, temp \mapsto 2] \nabla [M \mapsto [5, index([5, 2, 3, 4, 1], sub(sub(5, 1), 1))), 3, 4, 5])] =$

$$[\mathsf{M} \mapsto [\mathsf{5}, \mathsf{4}, \mathsf{3}, \mathsf{4}, \mathsf{1}], \, \mathsf{n} \mapsto \mathsf{5}, \mathsf{i} \mapsto \mathsf{1}, \, \mathsf{halfLen} \mapsto \mathsf{2}, \mathsf{temp} \mapsto \! \mathsf{2}]$$

 $\mathsf{ASM}^\mathsf{M}(\mathsf{S}^2(\mathsf{sub},\,\mathsf{S}^2(\mathsf{sub},\,\mathsf{n} \Rightarrow,\mathsf{i} \Rightarrow),\,\bar{1}),\,\mathsf{temp} \Rightarrow)\,([\mathsf{M} \mapsto [5,4,3,4,1],\,\mathsf{n} \mapsto 5,\mathsf{i} \mapsto 1,\,\mathsf{halfLen} \mapsto 2,\,\mathsf{temp} \mapsto 2]) =$

Обрахуємо індекс:

$$S^2(\text{sub}, S^2(\text{sub}, n \Rightarrow, i \Rightarrow), \overline{1}) ([M \mapsto [5, 4, 3, 4, 1], n \mapsto 5, i \mapsto 1, \text{halfLen} \mapsto 2, \text{temp} \mapsto 2]) = \text{sub}(\text{sub}(5, 1), 1) = 3$$

= $[M \mapsto [5, 4, 3, 4, 1], n \mapsto 5, i \mapsto 1, \text{ halfLen } \mapsto 2, \text{ temp } \mapsto 2] \nabla [M \mapsto [5, 4, 3, \text{ temp} \Rightarrow, 1] ([M \mapsto [5, 4, 3, 4, 1], n \mapsto 5, i \mapsto 1, \text{ halfLen } \mapsto 2, \text{ temp } \mapsto 2]])] =$

 $[M \mapsto [5, 4, 3, 4, 1], n \mapsto 5, i \mapsto 1, halfLen \mapsto 2, temp \mapsto 2] \nabla [M \mapsto [5, 4, 3, 2, 1]] =$

 $[M \mapsto [5, 4, 3, 2, 1], n \mapsto 5, i \mapsto 1, halfLen \mapsto 2, temp \mapsto 2]$

 $\mathsf{AS}^{\mathsf{i}}(\mathsf{S}^2(\mathsf{add},\,\mathsf{i} \Rightarrow, \bar{1}) \; ([\mathsf{M} \mapsto [\mathsf{5},\,\mathsf{4},\,\mathsf{3},\,\mathsf{2},\,\mathsf{1}],\,\mathsf{n} \mapsto \mathsf{5},\,\mathsf{i} \mapsto \mathsf{1},\,\mathsf{halfLen} \mapsto \mathsf{2},\,\mathsf{temp} \mapsto \mathsf{2}]) =$

 $[\mathsf{M} \mapsto [5,4,3,2,1], \mathsf{n} \mapsto 5,\mathsf{i} \mapsto 1, \mathsf{halfLen} \mapsto 2, \mathsf{temp} \mapsto 2] \ \nabla \ [\mathsf{i} \mapsto \mathsf{S}^2(\mathsf{add}, \, \mathsf{i} \Rightarrow, \overline{1})([\mathsf{M} \mapsto [5,4,3,2,1], \mathsf{n} \mapsto 5,\mathsf{i} \mapsto 1, \mathsf{halfLen} \mapsto 2, \mathsf{temp} \mapsto 2])] =$

 $[M \mapsto [5, 4, 3, 2, 1], n \mapsto 5, i \mapsto 1, halfLen \mapsto 2, temp \mapsto 2] \nabla [i \mapsto add(1, 1)] =$

 $[M \mapsto [5, 4, 3, 2, 1], n \mapsto 5, i \mapsto 1, halfLen \mapsto 2, temp \mapsto 2] \nabla [i \mapsto 2] =$

 $[M \mapsto [5, 4, 3, 2, 1], n \mapsto 5, i \mapsto 2, halfLen \mapsto 2, temp \mapsto 2]$

Друга ітерація закінчена. Перевіряємо умову третьої ітерації:

 $S^2(less, i \Rightarrow, halfLen \Rightarrow) ([M \mapsto [5, 4, 3, 2, 1], n \mapsto 5, i \mapsto 2, halfLen \mapsto 2, temp \mapsto 2]) =$

less(i \Rightarrow , halfLen \Rightarrow) ([M \mapsto [5, 4, 3, 2, 1], n \mapsto 5, i \mapsto 2, halfLen \mapsto 2, temp \mapsto 2]) =

less(2, 2) = false

Умова не виконується, програма закінчує своє виконання, кінцевий стан:

 $[M \mapsto [5, 4, 3, 2, 1], n \mapsto 5, i \mapsto 2, halfLen \mapsto 2, temp \mapsto 2]$

Як бачимо, масив М обернувся правильно.

Операційна семантика

Таблиця 6:

Назва правила	Правило операційної семантики
Γ	Іравила для програми та операторів:
PR	$\langle S, st \rangle \mapsto st'$
	$\overline{<\mathbf{begin}\ S\ \mathbf{end}, st>\mapsto st'}$
AS	$\langle a, st \rangle \mapsto n$
	$\overline{\langle x := a, st \rangle \mapsto st \nabla[x \mapsto n]}$
SEQ	$\langle S_1, st \rangle \mapsto st_1, \qquad \langle S_2, st_1 \rangle \mapsto st_2$
	$\langle S_1; S_2, st \rangle \mapsto st_2$
IFtrue	$\langle b, st \rangle \mapsto true, \qquad \langle S_1, st \rangle \mapsto st'$
	$<$ if b then S_1 else $S_2, st > \mapsto st'$

IF <i>false</i>	$\langle b, st \rangle \mapsto false, \qquad \langle S_2, st \rangle \mapsto$	st'
	$<$ if b then S_1 else $S_2, st > \mapsto st'$	
WHfalse	$\langle b, st \rangle \mapsto false$	
	$\overline{<\mathbf{while}\ b\ \mathbf{do}\ S, st>\mapsto st}$	

WHtrue	$\langle b, st \rangle \mapsto true$	
	$ \langle S, st \rangle \mapsto st$ "	
	$ $ < while b do S , st "> $\mapsto st$ '	
	$<$ while b do S , $st > \mapsto st'$	
BEG	$\langle S, st \rangle \mapsto st'$	
	$\overline{<\mathbf{begin}\ S\ \mathbf{end}, st>\mapsto st'}$	
skip	$\langle skip, st \rangle \mapsto st$	
	Правила для виразів:	
Num	$\langle n, st \rangle \mapsto n$	
Var	$\langle x, st \rangle \mapsto st(x)$	
A+	$\langle a_1, st \rangle \mapsto n_1, \qquad \langle a_2, st \rangle \mapsto n_2$	
	$\langle a_1 + a_2, st \rangle \mapsto add(n_1, n_2)$	
A–	$\langle a_1, st \rangle \mapsto n_1, \qquad \langle a_2, st \rangle \mapsto n_2$	
	$ = \langle a_1 - a_2, st \rangle \mapsto sub(n_1, n_2) $	
A*	$\langle a_1, st \rangle \mapsto n_1, \qquad \langle a_2, st \rangle \mapsto n_2$	
	$ = \underbrace{\langle a_1 * a_2, st \rangle \mapsto mult(n_1, n_2)} $	

A()	$\langle a, st \rangle \mapsto n$
	$\overline{\langle (a), st \rangle \mapsto n}$
	Правила для умов:
B=	$\langle a_1, st \rangle \mapsto r_1, \qquad \langle a_2, st \rangle \mapsto r_2$
	$\langle a_1 = a_2, st \rangle \mapsto eq(r_1, r_2)$
B>	$\langle a_1, st \rangle \mapsto r_1, \qquad \langle a_2, st \rangle \mapsto r_2$
	$\langle a_1 \rangle a_2, st \rangle \mapsto gr(r_1, r_2)$
BV	$\langle b_1, st \rangle \mapsto r_1, \qquad \langle b_2, st \rangle \mapsto r_2$
	$\langle b_1 \lor b_2, st \rangle \mapsto or(r_1, r_2)$
D	
B¬	$\langle b, st \rangle \mapsto r$

В¬	$\langle b , st \rangle \mapsto r$
	$\overline{\langle \neg b , st \rangle} \mapsto neg(r)$
B()	$\langle b, st \rangle \mapsto r$
	$\langle (b), st \rangle \mapsto r$

Також додаються додаткові правила для масивів:

Arr	$\langle m, st \rangle \mapsto st(m)$
AS_Arr	$ <[L], st > \mapsto m` $ $< m \coloneqq [L], st > \mapsto st \nabla [m \mapsto m`] $
Ar_seq	$\frac{< a_0, st > \mapsto r_0 \dots < a_{n-1}, st > \mapsto r_{n-1}}{< [a_0, \dots a_{n-1}], st > \mapsto [r_0, \dots r_{n-1}]}$
AS_ind	$ < a_1, st > \mapsto r_1 \qquad < a_2, st > \mapsto r_2 \\ < m[a_1\} \coloneqq a_2, st > \mapsto st \nabla \left[m \mapsto \left[m_0, \dots, m_{r_1-1}, \ r_2, m_{r_1+1}, \dots m_{n-1} \right] \right. \\ \text{де } m_i - \text{елементи масива, } n - \text{кількість елементів} $
A_ind	

Операційну семантику для даного розширення мови SIPL позначатимемо $Sem_P_Arr_{CO}(S)$. Приклад побудови в операційній семантиці дерева обчислення програми REVERSE__ARR можна знайти в прикріпленому документі.

Доведення еквівалентності

композиційної та операційної семантик

Теорема (про еквівалентність композиційної та операційної семантик програм мови *SIPL*). Для довільної програми P мови SIPL її композиційна семантика збігається з її операційною семантикою, тобто $sem_P(P) = Sem_P_{OP}(P)$.

Доведення. Спочатку доводимо, що для довільного арифметичного виразу a, виразу з масивами w та довільної умови b маємо, що $sem_A(a) = Sem_P_Arr_{CO}(a)$, $sem_Arr(w) = Sem_P_Arr_{CO}(w)$ та $sem_B(b) = Sem_P_Arr_{CO}(b)$.

Використовуємо індукцію за структурою a, w та b. Твердження випливає з правил обох семантик, які задані у **таблицях 5** та **6**, оскільки дані правила задають однакові значення для складових a, w та b.

Рівність семантик на рівні даних слугує базою індукції за структурою для доведення $sem_S(S) = Sem_P_Arr_{CO}(S)$. Припустимо, що семантики збігаються для семантичного терма та дерева виведення рівня k. Для доведення рівності на рівні k+1 потрібно довести еквівалентність кожної пари правил.

Доведемо для присвоєння елементу масива значення, інші правила доводяться аналогічно.

В композиційній семантиці маємо:

$$sem_S(m[a_1]:=a_2) = ASM^m (sem_A(a_1), sem_A(a_2))$$

В операційній:

3 припущення індукції маємо:

$$sem_{A(a_1)} = \langle a_1, st \rangle \mapsto r_1 \text{ Ta } sem_{A(a_2)} = \langle a_2, st \rangle \mapsto r_2$$

Операція ASM^m визначена як:

Де fa_1, fa_2 — номінативні арифметичні функції, які відповідають a_1, a_2 .

За припущенням індукції маємо $fa_1(st) = r_1$, $fa_2(st) = r_2$, з чого випливає еквівалентність правил присвоєння елементу масива значення у композиційній та операційній семантиках.

Аксіоматична семантика

Таблиця 7:

Правило виведення	Позначення правила
$\{P[x \mapsto a]\} x := a \{P\}$	AS
$\{P[m \mapsto [m_0,, m_{a_1-1}, a_2, m_{a_1+1}, m_{n-1}]\}$	AS_ind
$m[a_1] := a_2 \{P\}$	
${P[m_1 \mapsto m_2]}m_1 := m_2 {P}$	AS_arr
$\{P\}$ skip $\{P\}$	skip
$\{P\}\ S1\{Q\},\{Q\}\ S2\{R\}$	S
${P}$ S1; S2 ${R}$	
$\{b \land P\}S1\{Q\}, \{\neg b \land P\}S2\{Q\}$	IF
$\{P\}$ if b then S1 else $S2\{Q\}$	
$\{b \wedge P\} S \{P\}$	WH
$\{P\}$ while b do S $\{\neg b \land P\}$	
{ <i>P</i> `} <i>S</i> { <i>Q</i> `}	
{ <i>P</i> } <i>S</i> { <i>Q</i> } '	C
якщо $P \Rightarrow P`, Q` \Rightarrow Q$	
${P}S{Q}$	BE
$\{P\}$ begin S end $\{Q\}$	