Assignment 1 — White-Box Attack (FGSM)

Submission Instructions

This assignment is due **Sunday**, **September 21**, **2025**, **by 11:59 pm**. Please submit your solutions via Canvas. You should submit a PDF of your write-up along with the complete source code. Please do not include blurry scanned/photographed equations, as they are difficult for us to grade.

Late Submission Policy

The late submission policy for assignments will be as follows unless otherwise specified:

- 1. 75% credit within 0-48 hours after the submission deadline.
- 2. 50% credit within 48-96 hours after the submission deadline.
- 3. 0% credit 96 hours after the submission deadline

Overview

Implement and evaluate **Fast Gradient Sign Method (FGSM)** attacks under an $L\infty$ threat model on two architectures (ResNet-18, ViT) and two datasets (MNIST, CIFAR-10). Compare targeted vs. untargeted objectives and report robustness metrics with clear, reproducible experiments.

Learning goals

- Understand $L\infty$ and targeted vs. untargeted objectives
- Implement FGSM correctly
- Evaluate robustness across architectures (ResNet-18 vs. ViT) and datasets (MNIST vs. CIFAR-10)

Datasets & models

- **Datasets:** MNIST (28×28), CIFAR-10 (32×32)
- Models (both datasets): ResNet-18 and a ViT (tiny/small)

Tips

• ViT on small images: use a small ViT configured for 32×32 (CIFAR-10) and 28×28 (MNIST), or upsample to 224 and use ViT-Tiny/16. Keep parameters modest.

Tasks

- 1. Train or load baseline models
 - MNIST: \geq 95% clean accuracy

- o CIFAR-10: ResNet-18 ≈ **85%+**, ViT ≈ **80%+** (*Targets, not hard requirements; report your actual clean accuracy.*)
- 2. Implement FGSM (L ∞) from scratch
- 3. Calibrate ε (L ∞)

Evaluate $\varepsilon \in \{1/255, 2/255, 4/255, 8/255\}.$

- 4. Evaluate on a fixed test subset (e.g., 1,000 images) for each (dataset × model):
 - o Clean Accuracy
 - o Robust Accuracy under untargeted FGSM for each ε
 - Attack Success Rate (ASR)
 - o **Targeted ASR** for two target choices: (i) random target, (ii) least-likely class (chosen from clean logits)

Deliverables

- 1. **Code** (FGSM implementation + evaluation script) and a short **README** with exact commands to reproduce results.
- 2. **2–4 page write-up** including:
 - o Table (per dataset/model): Clean Acc; Robust Acc at $ε ∈ {1,2,4,8}/255$; ASR (untargeted); Targeted ASR (random & least-likely)
 - o **Figure (required):** for each dataset/model and attack type, show **Original** | **Perturbation** | **Adversarial** for selected samples (e.g., 10 examples at ε =8/255). Visualize the perturbation as the **difference**, scaled for visibility (e.g., ×10), with labels/confidences.
 - Brief analysis (≤1 page): differences between ResNet-18 and ViT, targeted vs. untargeted behavior, notable failure cases or sensitivities (e.g., normalization, ε).

Rubric (100 pts)

- Correct FGSM (untargeted & targeted) 30
- Experimental (metrics complete, ε sweep, fixed subset) 25
- Results quality (clear tables/plots, per-ε trends) 20
- Visualizations (original/perturbation/adversarial with labels/confidence) 15
- Clarity & reproducibility (seeds, versions, README, exact commands) 10