Lecture 5

Screw Motion

Figure 1: 42 axis

- Compound Operation: rotation then translation
- Notation n_p , where the atom is rotated by $\frac{2\pi}{n}$ anticlockwise and shifted upwards by $\frac{p}{n}T$, where T is the lattice repeat
- Note that if n and p have common factors, the final angle of the same particle at z=0 and z=T are different, so each "layer" has more than 1 atom, as lattices have to repeat

Space Group Lattice Symbols

- A: A-face centred
- B: B-face centred
- C: C-face centred

Space Group Symbols

• a: glide vector along a

• b: glide vector along b

 $\bullet\,$ c: glide vector along c

• n: diagonal glide plane

• d: diamond glide plane

Space Group P4

• p4 plane group stretched vertically

Multiplicity	Wyckoff letter	Site symmetry	Coordinates of equivalent positions
4	d	1	$\overline{(x,y,z),(\overline{x},\overline{y},z),(\overline{y},x,z),(y,\overline{x},z)}$
2	\mathbf{c}	2	$(0,\frac{1}{2},z),(\frac{1}{2},0,z)$
1	b	4	$(\frac{1}{2},\frac{1}{2},z)$
1	a	4	$(\tilde{0},\tilde{0},z)$

Space Group P41

3.5.1.1.1.1.	Wyckoff	Site	Coordinates of equivalent
Multiplicity	letter	symmetry	positions
4	\mathbf{a}	1	$(x,y,z),(\overline{x},\overline{y},z),(\overline{y},x,z),(y,\overline{x},z)$

Complete Specification of Any 2-D or 3-D Crystal Structure

• Lattice Parameters

- p, c, etc

 $\bullet \ \ {\rm Space} \ {\rm Group} \ {\rm Symbol}$

-2, 4, 6, etc

• List of atom types and coordinates (Wyckoff letter)

\mathbf{AuCu}

Structure 4 Prototype: AuCu

 $\begin{array}{ll} \textit{SBS/PS:} \ L1_0 \ / \text{tP4 (or tP4 with centered cell)} & \textit{SG \# 123:} \ \textbf{P4/mmm} \ (D^1_{4h}) \\ \textit{Lattice complex:} \ Au \ @ \ 2e(0,\frac{1}{2},\frac{1}{2}); \ Cu \ @ \ 1a(0,0,0) \ \text{and} \ 1c(\frac{1}{2},\frac{1}{2},0) \\ \end{array}$

- tP4 $P \frac{4}{m} \frac{2}{m} \frac{2}{m}$ Wyckoff letters e at $(0, \frac{1}{2}, \frac{1}{2})$ a at (0, 0, 0)- c at $(\frac{1}{2}, \frac{1}{2}, 0)$