

W207 Spring 2024

Nicholas Lin, Rex Gao, Yoni Nackash

Problem Statement & Motivation

Our objective is to develop a machine-learning based classifier for classifying musical genres using audio characteristics.

Can be used in both track recommendation system for users and automated tagging in the track

database

Dataset & Variables

Kaggle dataset about music tracks from Spotify's web API Contains 114 genres with 1000 tracks each for 114,000 total tracks

- Categorical variables: track_id, key, time_signature, track_genre
 - o Text variables: artists, album name, track name
- Quantitative variables: popularity, duration_ms, danceability, energy, loudness, speechiness, acousticness, instrumentalness, liveness, valence, tempo
- Binary variables: mode and explicit

EDA & Initial Feature Engineering

- Most features are on varying scales
 - Normalization needed
- Binarized explicit and mode
- One hot encoded key
- Small sample of songs longer than the average song
- Binned Popularity & Duration
- Processed data: 112 genres

- No redundant features extremely correlated with each other (~1.0)
- Notable Correlations
 - Acousticness & Energy (-0.73)
 - Acousticness & Loudness (-0.58)
 - Loudness & Energy (0.76)
 - Valence & Danceability (0.51)
 - Speechiness & Explicit features have a weak positive correlation - maybe a good indicator for "Rap"

Baseline Model

- Uneven class distribution
- Using a DummyClassifier
 - Stratified Strategy
 - Accuracy = ~1%
 - Highest precision for a genre = ~3%
- Highlights the room for improvement

31% Testing Accuracy

- One of the simplest multi-class classifiers
- No training step
- 31% accuracy with 32 nearest neighbors weighted using inverted Manhattan distance

Predicted Label

- Subjectivity of music labeling songs can have many influences and styles
- Genre overlap that our model would not be able to identify
 - o Pop vs K-Pop vs J-Pop vs Mandopop
- Possible solution → higher-level genre categorization
- First categorization experiment: K-Means Clustering. Generate mutually exclusive clusters of similar genres

Manual Genre Categorization

- Second Experiment: Manual genre categorization
- Through investigation and research, most prolific genres:
 - Rock, Pop, Electronic Dance Music, Hip-Hop/R&B, Country, Classical, and Latin & Reggaeton
- Mapped a subset of genres from our data to these categories
- Rebalanced so genre categories contained equal number of samples

Classical

Hip-Hop and R&B

Electronic Dance Music

Latin & Reggaeton

Rock

Number of Samples in Each Genre Category

2000

72%Testing Accuracy

72% accuracy with 12 nearest neighbors weighted on inverted Manhattan

distance

		Confusion Matrix							
	Classical	217	21	1	2	11	12	4	
True Label	Country	20	182	6	2	14	7	11	
	ectronic Dance Music	0	8	165	16	4	16	20	
	Hip-Hop and R&B	0	3	8	182	7	55	9	
	Latin & Reggaeton	1	18	5	15	180	11	8	
	Pop	6	14	16	19	7	186	10	
	Rock	2	17	32	14	16	31	151	
		Classical	Country	Electronic Dance Music	Hip-Hop and R&B	ପ Latin & Reggaeton	Pop	Rock	

Decision Trees

70%
Validation Accuracy

Validation accuracy of ~70% through decision forest of 17 estimators and max depth of 8.

		Confusion Matrix							
	Classical	193	30	0	3	11	10	3	
True Label	Country	17	177	7	13	13	18	9	
	ectronic Dance Music	0	9	188	14	6	25	21	
	Hip-Hop and R&B	0	5	10	181	0	50	0	
	Latin & Reggaeton	2	22	6	54	158	13	2	
	Рор	3	9	7	37	0	177	5	
	Rock	2	10	27	11	11	31	161	
		Classical	Country	Electronic Dance Music	property Hip-Hop and R&B	ত্র Latin & Reggaeton	Pop	Rock	

Neural Network – Single Layer

- Baseline Neural Network Model
- Input Layer Output layer
- Room for hyperparameter tuning

75% Validation Accuracy

- Experimented with additional hidden layers → best performance with two hidden layers: 256 + 128 nodes
- Hyperparameter tuning → adjusted learning rate (0.1) and number of epochs (15)
- Next steps → continue to explore confusion matrix

		Confusion Matrix							
	Classical	231	19	0	2	7	7	2	
	Country	18	186	7	3	11	8	9	
	Electronic Dance Music	0	4	184	18	4	8	11	
True Label	Hip-Hop and R&B	0	4	12	194	11	38	5	
	Latin & Reggaeton	8	12	4	26	173	9	6	
	Рор	9	15	18	42	15		4	
	Rock	2	12	29	17	15	25	163	
		Classical	Country	Electronic Dance Music	Properties of the Hip-Hop and R&B	Latin & Reggaeton	Рор	Rock	

Conclusion

- With accuracies of 70-75% in all of our approaches, we suspect we reached an upper limit on the insight/information found in the data set.
 - Musical genres can overlap and influence one another in the real world
- Future exploration:
 - Language tagging
 - More in-depth investigation on genre categories
 - Potential still available for raw genres

Thank You

- Data Preprocessing: Nick, Rex, Yoni
- EDA: Nick, Rex, Yoni
- Feature Engineering: Nick, Rex, Yoni
- Baseline Model: Nick
- K-nearest Neighbors: Rex
- K-means Clustering: Yoni, Rex
- Research & Categorization: Nick, Rex, Yoni
- Decision Trees: Yoni
- Neural Networks: Nick, Yoni

- Dataset: https://www.kaggle.com/datasets/maharshipandya/-spotify-tracks-dataset
- https://rateyourmusic.com/genres/
- https://blog.novecore.com/top-10-most-popular-music-genres/
- https://www.statista.com/chart/30575/share-of-us-respondents-that-listens-to-different-music-genres/
- https://mastersofmedia.hum.uva.nl/blog/2011/04/26/visualising-music-the-problems-with-genre-classification/
- https://musicmachinery.com/2013/09/22/5025/

NeurIPS Checklist

1. Author Questions

- a. Yes the introduction of our notebook, as well as the introduction slide of this presentation, mention the scope and contributions.
- b. Yes we have read the ethics review guidelines, and ensure our work conforms to them.
- c. Yes our team discussed the issue of potential cultural appropriation we wanted to avoid accidentally grouping certain genres that we may not be fully familiar with into higher level categories that may not accurately represent the underlying music. For the purposes of this project, we chose to include a subset of the existing genres that we are knowledgeable on.
- d. Yes our notebook, as well as this presentation, includes mentions of limitations.
- 2. Theoretical Result Questions N/A for all questions

3. Experimental Questions

- a. Yes all code, data, and instructions are linked in: (Github notebook)
- b. Yes training details are mentioned in both slides and our notebook
- c. N/A testing statistical significance not included
- d. Yes experiments were run using our local machines: One 14-core CPU, 40GB memory, 1 GPU

4. Asset Questions

- a. Yes citations included in notebook as well as References slide
- b. Yes license: Open Data Commons, mentioned in our notebook
- c. No Open Data Commons license is open for public use
- d. Yes License: Open Data Commons, mentioned in our notebook
- e. Yes Data doesn't include personally identifiable information. It is possible that certain track / artist / album names contain explicit content, however we dropped all textual fields from our dataset, except genre.
- 5. Research with Human Subject Questions: N/A for all questions

Code Submission

Link to GitHub repo

