NATURAL LANGUAGE PROCESSING

Hyperparameter Tuning in Pytorch

Contents

- I. Types of Hyperparameters
- 2. Hyperparameter Optimization Steps
- 3. Further Hyperparameters
 - a. Accumulation Steps
 - b. Random Seed
 - c. Number of Evaluation
- 4. Wandb

Type of Hyperparameters

- Model-free hyperparameters
 - Learning rate
 - Batch size per gpu
 - Training epoch
 - Learning rate scheduler(Warm up steps, lambda, step size ...)
 - Optimizer (beta1, beta2 in Adam)
 - Weight initialization
 - Early stop strategy
 - Regularization
 - Dropout
 - Perturbation or noise for an input
 - ...

Type of Hyperparameters

- Model hyperparameters
 - Kernel size
 - number of layer
 - number of hidden units
 - number of embedding units
 - pooling
 - activation function

Type of Hyperparameters

Model free & Model hyperparameters

- Learning rate x Batch size per gpu x Training epoch x Learning rate scheduler (Warmup steps, lambda, step size...) x Optimizer (+beta I, beta 2 in Adam) x Weight initialization x Early stop strategy x Regularization x Dropout x Kernel size x number of layer x number of hidden units x number of embedding units x pooling layer x activation function x....
- training time for a model

Hyperparameter Optimization

- Hyperparameters Optimization
 - Grid Search
 - Random Search
 - Bayesian

- (Maybe for researchers) Best practice for hyperparameters optimization
 - Learning rate, Learning rate, Learning rate
 - Batch size

- I. Check initial loss
- 2. Overfit a small sample
- 3. Find learning rate that makes loss go down
- 4. Coarse grid, train for I~5 epochs
- 5. Refine grid, train longer than step 4
- 6. Look at loss curves

I. Check initial loss

a. Turn off learning rate scheduler and train a model

I. Check initial loss

2. Overfit a small sample

- a. Try to train to high training accuracy on a small sample of training data (~5-10 minibatches); fiddle with architecture, learning rate, weight initialization
- b. Loss not going down? LR too low, bad initialization
- c. Loss explodes to Inf or NaN? LR too high, bad initialization

- I. Check initial loss
- 2. Overfit a small sample
- 3. Find learning rate that makes loss go down
 - a. Use the architecture from the previous step, use all training data, turn on small weight decay, find a learning rate that makes the loss drop significantly within ~ 100 iterations
 - b. Good learning rates to try: Ie-I, Ie-2, Ie-3, Ie-4

- I. Check initial loss
- 2. Overfit a small sample
- 3. Find learning rate that makes loss go down
- 4. Coarse grid, train for I~5 epochs
 - a. Choose a few values of learning rate and weight decay around what worked from Step 3, train a few models for ~I-5 epochs.
 - b. Good weight decay to try: Ie-4, Ie-5, 0

- additional
 - Make possible batch sizes larger

- I. Check initial loss
- 2. Overfit a small sample
- 3. Find learning rate that makes loss go down
- 4. Coarse grid, train for 1~5 epochs
- 5. Refine grid, train longer than step 4
 - a. Pick best models from Step 4, train them for longer (~10-20 epochs) without learning rate decay

- I. Check initial loss
- 2. Overfit a small sample
- 3. Find learning rate that makes loss go down
- 4. Coarse grid, train for I~5 epochs
- 5. Refine grid, train longer than step 4
- 6. Look at loss curves

Look at Learning Curves

I) Look at the training learning curves

Look at Learning Curves

2) Look at the training & validation learning curves

Hyperparameter Optimization

- Tips for Geeks who struggle for state of the art performance or want to beat competitors
 - Train your model with the largest batch size that memory allows in single gpu
 - Evaluate as many checkpoints as possible
 - Before the test, combine train set and validation set and train the model with the combined dataset
 - Do ensemble
 - The hyperparameters configuration of competitors who use similar model is a good starting point
 - Use MLOps tool (e.g., wandb)

- I) Accumulation steps
- 2) Random seed
- 3) Number of evaluation

I) Accumulation steps

 16 batch with no accumulation vs 4 batch with 4 accumulation step, which can result in better performance?

```
predictions = model(inputs)  # Forward pass
loss = loss_function(predictions, labels) # Compute loss function
loss.backward()  # Backward pass
predictions = model(inputs) # Optimizer step
predictions = model(inputs) # Forward pass with new parameters

pytorch_training.py hosted with ♥ by GitHub
```

```
model.zero grad()
                                                         # Reset gradients tensors
     for i, (inputs, labels) in enumerate(training set):
         predictions = model(inputs)
                                                          # Forward pass
        loss = loss_function(predictions, labels)
                                                          # Compute loss function
         loss = loss / accumulation steps
                                                          # Normalize our loss (if averaged)
         loss.backward()
                                                         # Backward pass
 6
        if (i+1) % accumulation_steps == 0:
                                                         # Wait for several backward steps
             optimizer.step()
                                                         # Now we can do an optimizer step
 8
                                                         # Reset gradients tensors
             model.zero grad()
             if (i+1) % evaluation steps == 0:
                                                         # Evaluate the model when we...
                 evaluate model()
11
                                                          # ...have no gradients accumulated
gradient_accumulation.py hosted with \ by GitHub
```

2) Random Seed

- There is a promising seeds
- These seeds can be distinguished early in training

3) Number of evaluation

Expected validation performance as the number of evaluation increases

How to control randomness?

- random.seed()
- np.random.seed()
- torch.manual_seed()
- torch.cuda.manual_seed() / torch.cuda.manual_seed_all()
- torch.backends.cudnn.deterministic = True
- torch.backends.cudnn.benchmark = False
- torch.use deterministic algorithms(True)
- If you use CUDA tensors, we need to set the environment variable
 CUBLAS_WORKSPACE_CONFIG according to <u>CUDA documentation</u>

Wandb

- Experiment Tracking: https://docs.wandb.ai/quickstart
- Hyperparameter tuning: https://docs.wandb.ai/guides/sweeps

References

• http://cs23In.stanford.edu/slides/2019/cs23In_2019_lecture08.pdf