Why are microbiome data compositional?

Vera Pawlowsky-Glahn¹ and Juan José Egozcue²

¹Emeritus Prof., Dep. Computer Science, Applied Mathematics & Statistics, University of Girona, Spain *President of the Association for Compositional Data 2015-2017*

²Emeritus Prof., Dep. Civil & Environmental Engineering, Technical University of Catalonia, Barcelona, Spain *President of the Association for Compositional Data 2017-2021*

> NORBIS Summer School 2021, Norway 20 August 2021

CoDa

What are compositional data (CoDa)?

- historically: sum constraint data, like proportions or percentages
- after 1980: strictly positive data that carry relative information
- after 2001: parts of some whole that carry relative information, equivalence classes of strictly positive, proportional vectors

representative:
$$S^D = \left\{ \mathbf{x} = [x_1, \dots, x_D] \in \mathbb{R}^D \mid x_i > 0, \sum_{i=1}^D x_i = \kappa \right\}$$

- $\mathcal{S}^D \subset \mathbb{R}^D_+ \subset \mathbb{R}^D$; $\kappa = \text{constant}$, frequently 1 or 100 CoDa need not to be closed
- scale invariant properties hold for any subcomposition*
- analyses can be based on any representative

Microbiome data: usually tables of counts or proportions

data for the hands-on session

Information in barplots of O1 and O7

Do both representations carry the same information?

- NOT in absolute scale, YES in relative scale
- counts can not be estimated from proportions
- but proportions can be estimated from counts

Important characteristics of microbiome data

microbiome data are compositional!!!

- the total number of sequenced reads depends on the capacity of the instrument and is not informative
- absolute and relative abundances carry the same relative information
- information in microbiome data is relative
- data are strictly positive or zero, never negative
- zeros may be due to undersampling, high heterogeneity, or real absence

note

- absolute abundances are not recoverable from sequence data alone
- each count is not compositional itself, but the share out of counts is

Why is the compositional nature of data a problem?

typical problems

- discrimination and clustering are affected by sequencing depth
- correlation between two taxa depends on the subcomposition considered: it is spurious (Pearson, 1897); some are necessarily negative (negative bias)
- many methods are subcompositionally incoherent

actual practice does not avoid the problems

- rarefaction and count normalization do not change the compositional nature of data, but might introduce noise
- some dissimilarities (UniFrac; Bray-Curtis; Jensen-Shannon divergence) used for clustering and discrimination are not subcompositionally coherent

Problems with compositional data

changes in proportions do not reflect changes in absolute abundance

Which is the origin of these problems?

experiments produce results (data); data can be categorical, numerical, functional, sets, ...; results are observed and recorded in a sample space **examples:** real space, positive orthant of real space, simplex, hypersphere, ...

desirable (ideal) properties of the sample space

- includes only possible results and has a structure
- a scale is defined (how are differences measured?)
- operations are defined (sum, product, shift, ...)
- a **metric** is available (angle, orthogonality, distance, ...)

an inappropriate sample space can produce spurious results!!!

Problems with compositional data

most methods assume the sample space to be $\mathcal{S}^D \subset \mathbb{R}^D$ with the usual Euclidean geometry; this can lead to nonsensical results

examples with closed (constant sum) CoDa:

- standard Euclidean distances are not dominant
- correlations are spurious
- the standard covariance matrix is singular
- Ocovariance matrices are spurious ⇒ all methods based on covariance or correlation are flawed
- Bray-Curtis dissimilarity and Unifrac (weighted and unweighted) distances are not subcompositionally coherent

spurious correlation (simulated data)

closed five simulated parts proportions in S^5

adding a large sixth component proportions in S^6

correlations between the five parts

	x1	x2	х3	x4	x5
x1	1.00	-0.99	-0.97	-0.98	0.15
x2	-0.99	1.00	0.95	0.98	-0.22
x3	-0.97	0.95	1.00	0.92	-0.21
x4	-0.98	0.98	0.92	1.00	-0.18
x5	0.15	-0.22	-0.21	-0.18	1 00

	x1	x2	хЗ	x4	х5	
x1	1.00	0.98	0.97	0.98	0.98	
x2	0.98	1.00	0.98	0.99	0.97	
x3	0.97	0.98	1.00	0.97	0.96	
x4	0.98	0.99	0.97	1.00	0.97	
x5	0.98	0.97	0.96	0.97	1.00	

spurious correlation (data for hands-on session)

Spurious correlations always appear, not only in simulated data

correlations between 5 OTUs for two closed subcompositions

20 OTU data after substitution of zeros and closure

5 OTU closed	subcomposition
--------------	----------------

	O20	O24	O25	O26	O28
O20	1.00	0.37	0.79	0.75	-0.27
O24	0.37	1.00	0.55	0.55	-0.18
O25	0.79	0.55	1.00	0.99	-0.05
O26	0.75	0.55	0.99	1.00	0.03
O28	-0.27	-0.18	-0.05	0.03	1.00

	3 O 1 O ciosea subcomposition				
	O20	O24	O25	O26	O28
O20	1.00	-0.22	0.64	0.51	-0.66
O24	-0.22	1.00	-0.43	-0.57	-0.48
O25	0.64	-0.43	1.00	0.89	-0.50
O26	0.51	-0.57	0.89	1.00	-0.32
O28	-0.66	-0.48	-0.50	-0.32	1.00

Principles underlying CoDa analysis

1. scale invariance

- scaling factors do not alter the analysis
- avoids the need for rarefaction
- ratios of components are relevant!

2. subcompositional coherence (compatibility)

- subcompositional scale invariance
- subcompositional dominance $(d_a(x_1, x_2) \ge d_a(s_1, s_2)$, distances will never decrease if additional taxa are observed)
- ratios of common parts are preserved

Aitchison geometry

$$\mathcal{S}^D(\oplus,\odot,\langle,\rangle_a)$$
 is a ($D-1$)-dimensional Euclidean space

For $\mathbf{x}, \mathbf{y} \in \mathcal{S}^D$, $\alpha \in \mathbb{R}$, \mathcal{C} the closure operation

- perturbation: $\mathbf{x} \oplus \mathbf{y} = \mathcal{C}[x_1y_1, \dots, x_Dy_D]; \ \mathbf{x} \ominus \mathbf{y} = \mathcal{C}[x_1/y_1, \dots, x_D/y_D]$
- powering: $\alpha \odot \mathbf{x} = \mathcal{C}[x_1^{\alpha}, \dots, x_D^{\alpha}]$
- inner product: $\langle \mathbf{x}, \mathbf{y} \rangle_a = \frac{1}{D} \sum_{i < j} \ln \frac{x_i}{x_j} \ln \frac{y_i}{y_j}$
- norm, distance: $\|\mathbf{x}\|_a^2 = \frac{1}{D} \sum_{i < j} \left(\ln \frac{x_i}{x_j} \right)^2$, $d_a^2(\mathbf{x}, \mathbf{y}) = \frac{1}{D} \sum_{i < j} \left(\ln \frac{x_i}{x_j} \ln \frac{y_i}{y_j} \right)^2$

Aitchison (1982, 1986), operations and distance; Pawlowsky-Glahn and Egozcue (2001), Aitchison geometry

Advantages of the Aitchison geometry

- olr-coordinates (orthonormal, isometric log-ratio coordinates, previously known as ilr) are available, e.g. balances
- operations and metrics in S^D are equivalent to ordinary operations and metrics in coordinates (principle of working in coordinates)
- Aitchison measure in S^D = Lebesgue measure in olr-coordinates in \mathbb{R}^{D-1}
- standard statistical tools can be used on olr-coordinates

Special features of the Aitchison geometry

- correlation between parts is not valid
 - ⇒ alternatives are based on proportionality
- questions need reformulation
 - ⇒ always two or more parts are involved
- questions and statements on single parts are nonsensical

classes of zeros and how to deal with them

- the part with zeros is not important for the study
 ⇒ the part should be omitted; or treat it as essential zeros
- the part is important, the zeros are essential
 ⇒ divide the sample into two or more populations, according to the presence/absence of zeros
- the part is important, the zeros are rounded zeros
 ⇒ use imputation techniques
- 2ero counts: the data are counts that can be zero, but the corresponding proportion is not zero
 - ⇒ Bayesian imputation techniques

Zeros are not parts of a composition, they are not relative to anything; they are either sampling defects or essential

The Aitchison geometry: ellipses and lines

what you see in proportions ... and in olr-coordinates

olr₁(
$$\mathbf{x}$$
) = $\sqrt{\frac{2}{3}} \log \frac{x_1}{(x_2 x_3)^{\frac{1}{2}}}$
olr₂(\mathbf{x}) = $\sqrt{\frac{1}{2}} \log \frac{x_2}{x_3}$

variation array — looking for proportionality of parts

CoDa-covariance-biplot — CoDa-form-biplot

reflects relationships between parts reflects distances between samples proportion of explained variance: 0.9080

CoDa-dendrogram — visual ANOVA for each balance

$$b_i = \sqrt{\frac{r \cdot s}{r + s}} \ln \frac{\left(\prod_{i=1}^r x_i\right)^{1/r}}{\left(\prod_{j=1}^s x_j\right)^{1/s}}$$

Concluding remarks

microbiome data are compositional!!!

- interest is (or should be) in the relative information carried by proportions
- the simplex corresponds to the set of possible observations
- an interpretable measure of difference and scale of variables is available
- a suitable, well known algebraic-geometric structure allows building coherent models
- for CoDa, it is better to think in terms of ratios

some references (I)

Aitchison J (1982): The statistical analysis of compositional data (with discussion). Journal of the Royal Statistical Society, B, 44(2), 139–177.

Aitchison J (1983): Principal component analysis of compositional data. Biometrika, 70(1), 57–65.

Aitchison J (1986): The Statistical Analysis of Compositional Data. Monographs on Statistics and Applied Probability. Chapman, London (UK).

Aitchison J; Shen SM (1980): Logistic-normal distributions. Some properties and uses. Biometrika, 67(2), 261–272.

Barceló-Vidal C; Martín-Fernández JA (2016): The Mathematics of Compositional Analysis. Austrian Journal of Statistics 45: 57–71.

Egozcue JJ; Pawlowsky-Glahn V (2005): Groups of parts and their balances in compositional data analysis. Math. Geol., 37(7), 795–828.

t Egozcue JJ; Pawlowsky-Glahn V (2006): Simplicial geometry for compositional data. In: Buccianti et al (Eds) Compositional Data Analysis in the Geosciences: From Theory to Practice. Geological Soc., London (UK), SP 264.

Egozcue JJ; Pawlowsky-Glahn V (2018): Modelling Compositional Data. The Sample Space Approach. In: Daya Sagar B et al (Eds) Handbook of Mathematical Geosciences. Springer. Cham.

Egozcue JJ; Pawlowsky-Glahn V (2019): Compositional data: the sample space and its structure. TEST (in press).

some references (II)

Egozcue JJ et al (2018): Linear Association in Compositional Data Analysis. Austrian Journal of Statistics, 47(1).

Egozcue JJ et al (2003): Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3).

Gloor GB et al (2017): Microbiome datasets are compositional: and this is not optional. Frontiers Microbiology, Mini Review article.

Lovell D et al (2015): Proportionality: A Valid Alternative to Correlation for Relative Data, PLoS Computational Biology, 11(3),

Martín-Fernández JA et al (2011): Dealing with zeros. In: Pawlowsky-Glahn and Buccianti (Eds) Compositional Data Analysis: Theory and Applications. Wiley (UK).

Mateu-Figueras G, Pawlowsky-Glahn V and Egozcue JJ (2011): The principle of working on coordinates. In Pawlowsky-Glahn, V. and Buccianti A. (Eds.) Compositional Data Analysis: Theory and Applications. Wiley (UK).

Pawlowsky-Glahn V; Egozcue JJ (2001): Geometric approach to statistical analysis on the simplex. SERRA, 15(5).

Pawlowsky-Glahn V et al (2015): Modeling and Analysis of Compositional Data, Wiley, Chichester (UK).

Rivera-Pinto J et al (2018): Balances: a new perspective for microbiome analysis. mSystems 3:e00053-18.

Tsilimigras MC; Fodor AA (2016): Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann Epidemiol, 26(5).

