MA323 - Monte Carlo Simulation

Lab - 2

NAVEEN KUMAR A G 210123075

1. Consider the recursion:

$$U_{i+1} = (U_{i-17} - U_{i-5})$$

In the event that $U_i < 0$, set $U_i = U_i + 1$.

(a) Use linear congruence generator to generate the first 17 values of U_i.

For
$$a = 6$$
, $b = 0$ and $x_0 = 10$

- (b) Then generate the values of $U_{18},\,U_{19},\,...,\,U_N$ for $N=1,000,\,10,000,\,$ and 100,000 based on the recursion above.
- (c) For each N, plot histogram. What are your observations?

$$N = 1,000$$

N = 10,000

Seed: 10, samples: 10000

250

150

100

0.4

0.6

0.8

1.0

N = 100,000

0

0.0

0.2

(d) For each N, plot (U $_i,\,U_{i\,+\,1}).$ What are your observations?

N = 1,000

N = 10,000

N = 100,000

Observations: Two plots each having 1,000, 10,000, and 100,000 samples. The values used for generating the first 17 numbers using Linear Congruence Generator (LCG) are: a = 6, b = 0, m = 11, x0 = 10. Next, Lagged Fibonacci Generator (LFG) is used to generate further sequences of numbers.

Histograms:

- 1) It can be concluded that the numbers generated by LFG are not as uniform as in [0, 1) as the numbers generated by LCG.
- 2) As the sample size is increased, the distribution of the 'randomly generated numbers' becomes more uniform.

Scatterplots:

- 1) It is observed that the (U_i, U_{i+1}) plot has not definite pattern as there was with LCG. This implies that the sequence of numbers generated by LFG is more random than LCG.
- 2) The density of the plots on increasing the sample size implies that the uniformity of LFG increases.

2. Consider the exponential distribution with CDF

$$F(x) = 1 - e^{-x/\theta}, x \ge 0,$$

where $\theta > 0$.

- (a) Generate X_1, X_1, \ldots, X_N from the above distribution for N = 10, 100, 1000, 10000, 100000.
- (b) For each value of N, plot the empirical CDF of these generated values, and the actual distribution function (using the above formula).

$$\Theta = 5$$

$$N = 10$$

$$N = 100$$

N = 1,000

N = 10,000

N = 100,000

(c) Provide the corresponding values of the sample mean and variance. Compare the values of mean and variance to see whether they converge to actual values.

For Θ = 5, actual mean and variance are 5 and 25 respectively.

	Mean	Variance
N		
10.0	5.134850	19.421265
100.0	5.463334	31.870798
1000.0	5.119377	25.123556
10000.0	4.970293	24.806548
100000.0	4.985525	24.989454

3. Consider the Arcsin law with the distribution:

$$F(x) = \frac{2}{\pi} \arcsin \sqrt{x} , \ 0 \le x \le 1.$$

- (a) Generate X_1, X_2, \ldots, X_N from the above distribution for N = 10, 100, 1000, 10000, 100000.
- (b) For each value of N, plot the empirical CDF of these generated values, and the actual distribution function (using the above formula).

N = 10

N = 100

N = 1,000

N = 10,000

N = 100,000

(c) Provide the corresponding values of the sample mean and variance.

Mean Variance

N		
10.0	0.533022	0.136034
100.0	0.517740	0.125749
1000.0	0.510495	0.122916
10000.0	0.497866	0.124823
100000.0	0.499259	0.124405

4. Using the algorithm to generate random variables from a discrete distribution, generate 100000 random numbers from a discrete uniform distribution on $\{1, 3, 5, \ldots, 9999\}$. Tabulate the frequency of each observed values.

