ПРЕОБРАЗОВАНИЯ ТРИГОНОМЕТРИЧЕСКИХ ВЫРАЖЕНИЙ.

Вычислить:

1.
$$\cos^2 15^\circ + \cos^2 75^\circ$$
.

2.
$$9 \text{ tg}^2 390^\circ$$
.

3.
$$2\sqrt{3} \cot(-300^\circ)$$
.

4.
$$\cos \frac{11\pi}{3}$$
.

5.
$$\sin(-\frac{7\pi}{6})$$
.

6.
$$\sqrt{3}\cos\alpha$$
, если $\sin\alpha = \frac{1}{2}$ и $\frac{\pi}{2} < \alpha < \pi$.

7.
$$\sin \alpha$$
, если $\cos \alpha = \frac{\sqrt{3}}{2}$ и $\frac{3\pi}{2} < \alpha < 2\pi$.

8.
$$\sqrt{5}\cos\alpha$$
 если $\operatorname{tg}\alpha = \frac{1}{2}$ и $\pi < \alpha < 3\pi/2$.

9.
$$\sin \alpha$$
, если $\operatorname{tg} \alpha = -\frac{3}{4}$, и $\frac{\pi}{2} < \alpha < \pi$.

9.
$$\sin \alpha$$
, если $\operatorname{tg} \alpha = -\frac{3}{4}$, и $\frac{\pi}{2} < \alpha < \pi$.
10. $\operatorname{tg} \alpha$, если $\cos \alpha = \frac{5}{13}$, и $\frac{3\pi}{2} < \alpha < 2\pi$.

10.
$$\lg \alpha$$
, если $\cos \alpha = \frac{1}{13}$, и $\frac{1}{2} < \alpha < 2\pi$.

11. $\cos \alpha$, если $\cot \alpha = -\frac{4}{3}$, и $-\frac{\pi}{2} < \alpha < 0$.

12.
$$\cot \alpha$$
, $\cot \alpha = -\frac{2}{\sqrt{5}}$, $\pi < \alpha < \frac{3\pi}{2}$.

13.
$$\frac{3-\sin\alpha\cos\alpha}{6\cos^2\alpha-\sin^2\alpha}, \quad \text{если} \quad \operatorname{tg}\alpha=-2;$$

14.
$$289\cos 2\alpha$$
, если $\sin \alpha = -\frac{8}{17}$.

15.
$$120\sin 2\alpha$$
, если $\sin \alpha = 0, 6, \ \mu \frac{\pi}{2} < \alpha < \pi$.

16.
$$17\sin 2\alpha$$
, если $\cos \alpha = \frac{1}{\sqrt{17}}$, и $-\pi < \alpha < 0$.

17.
$$25\sin 4\alpha$$
, если $\sin \alpha = \frac{2}{\sqrt{20}}$, и $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$.

18.
$$-\sqrt{45}\sin 2\alpha$$
, если $\sin \alpha = \frac{1}{\sqrt{6}}$, и $\frac{5\pi}{2} < \alpha < 3\pi$.

19.
$$\sqrt{72}\sin 2\alpha$$
, если $\cos \alpha = \frac{1}{\sqrt{3}}$, и $\frac{3\pi}{2} < \alpha < 2\pi$.

20.
$$\sin{(\pi+2\alpha)}$$
, если $\sin{\alpha}+\cos{\alpha}=\frac{1}{\sqrt{2}}$;

21.
$$\sin x$$
, $\exp \sin \frac{x}{2} + \cos \frac{x}{2} = 0, 6$;

22.
$$51\sin 2\alpha$$
 если $tg \alpha = \frac{3}{5}$;

23.
$$\cos \alpha$$
, если $\operatorname{tg} \frac{\alpha}{2} = -3$;

24.
$$(6+12\sqrt{6})\cos(\alpha-\frac{\pi}{3})$$
, если $\cos\alpha=\frac{1}{3}$, и $\frac{3\pi}{2}<\alpha<2\pi$.

25.
$$7\sin(\alpha + \frac{\pi}{6})$$
, если $\sin \alpha = \frac{5\sqrt{3}}{14}$, и $-\frac{3\pi}{2} < \alpha < -\pi$.

26.
$$2,8\cos{(\frac{\pi}{3}+2\alpha)}, \quad \text{если} \quad \text{tg } \alpha = \frac{\sqrt{3}}{2};$$

Решите уравнения:

1.
$$\sin x = 0$$
.

2.
$$\cos x = 0$$
.

2.
$$\cos x = 0$$
. **3.** $\operatorname{tg} x = 0$.

4.
$$ctg x = 0$$
.

5.
$$\sin x = 1$$

5.
$$\sin x = 1$$
. **6.** $\cos x = -1$.

7.
$$\sin x = -\frac{1}{2}$$
.

8.
$$\cot x = \sqrt{3}$$

9.
$$\sin 3x = \frac{\sqrt{3}}{2}$$

10.
$$\cos 2x = \frac{\sqrt{3}}{2}$$

11.
$$tg \frac{2x}{5} = 1$$

12.
$$2\cos(\frac{x}{2} - \frac{\pi}{6}) = \sqrt{3}$$
.

13.
$$2\sin(3x - \frac{\pi}{4}) = -\sqrt{2}$$
.

14.
$$\sqrt{3} \operatorname{tg}(\frac{x}{3} + \frac{\pi}{3}) = 3$$

15.
$$\operatorname{ctg} \frac{\pi x^2 - \pi^0}{4} = 1.$$

4.
$$\operatorname{ctg} x = 0$$
.

5. $\operatorname{sin} x = 1$.

6. $\operatorname{cos} x = -1$.

7. $\operatorname{sin} x = -\frac{1}{2}$.

8. $\operatorname{ctg} x = \sqrt{3}$.

9. $\operatorname{sin} 3x = \frac{\sqrt{3}}{2}$.

10. $\operatorname{cos} 2x = \frac{\sqrt{3}}{2}$.

11. $\operatorname{tg} \frac{2x}{5} = 1$.

12. $2\operatorname{cos}(\frac{x}{2} - \frac{\pi}{6}) = \sqrt{3}$.

13. $2\operatorname{sin}(3x - \frac{\pi}{4}) = -\sqrt{2}$.

14. $\sqrt{3}\operatorname{tg}(\frac{x}{3} + \frac{\pi}{3}) = 3$.

15. $\operatorname{ctg} \frac{\pi x - \pi}{4} = 1$.

16. $\sqrt{3} + 2\operatorname{cos} \frac{\pi x}{9} = 0$ на промежутке $8 < x < 20$.

17. $1 - \sqrt{2}\operatorname{sin} \frac{\pi x}{4} = 0$ на промежутке $1 < x < 5$.

17.
$$1 - \sqrt{2}\sin\frac{\pi x}{4} = 0$$
 на промежутке $1 < x < 5$

Permute cucrembi:

18.
$$\begin{cases} x = \frac{\pi}{3} + \frac{2\pi n}{3}, & n \in \mathbb{Z}; \\ x = \pi k, & k \in \mathbb{Z}. \end{cases}$$
19.
$$\begin{cases} x = \frac{\pi}{4} + \frac{\pi n}{2}, & n \in \mathbb{Z}; \\ x = (-1)^k \frac{\pi}{4} + \pi k, & k \in \mathbb{Z}. \end{cases}$$
20.
$$\begin{cases} x = \pm \frac{\pi}{3} + 2\pi n, & n \in \mathbb{Z}; \\ x \neq (-1)^k \frac{\pi}{3} + \pi k, & k \in \mathbb{Z}. \end{cases}$$
21.
$$\begin{cases} \sin 2x = 0 \\ \cos \frac{x}{2} \neq 0. \end{cases}$$

Решите уравнения:

$$22. \ \frac{\cos x}{1-\sin x}=0.$$

24.
$$\frac{\cos x - 0, 5}{\cos(x + \frac{\pi}{6})} = 0.$$
26.
$$\frac{2\cos^2 x - 1}{\tan^2 x + 1} = 0.$$
28.
$$\frac{4\sin^2 x - 3}{\tan^2 x - \sqrt{3}} = 0.$$

26.
$$\frac{2\cos^2 x - 1}{\tan^2 x + 1} = 0$$

$$28. \ \frac{4\sin^2 x - 3}{\tan^2 x - \sqrt{3}} = 0.$$

23.
$$\frac{\sin(x - \frac{\pi}{4})}{\cos x - \frac{\sqrt{2}}{2}} = 0.$$
25.
$$\frac{\cos x + \frac{\sqrt{3}}{2}}{\sin x - 0, 5} = 0.$$

$$25. \ \frac{\cos x + \frac{\sqrt{3}}{2}}{\sin x - 0.5} = 0$$

27.
$$\cos x(\operatorname{tg}^2 x - \frac{1}{3}) = 0$$

27.
$$\cos x (\operatorname{tg}^2 x - \frac{1}{3}) = 0.$$

29. $\frac{4 \cos^3 x - \cos x}{\operatorname{tg} x - \sqrt{3}} = 0.$

- **30.** Найдите все корни уравнения $(2\sin x + 1)(2\sin x \sqrt{3}) = 0$, удовлетворяющие неравенству $\cos x > 0$.
- **31.** Найдите все корни уравнения $(\sqrt{2}\sin x + 1)(2\sin x 3) = 0$, удовлетворяющие неравенству $\operatorname{tg} x < 0$.
- **32.** Найдите все корни уравнения $(\operatorname{tg} x + \sqrt{3})(2\cos x 1) = 0$, удовлетворяющие неравенству $\sin x > 0$.
- **33.** Найдите все корни уравнения $(\operatorname{tg} x 1)(\sqrt{2}\sin x + 1) = 0$, удовлетворяющие неравенству $\cos x < 0.$
- **34.** Найдите все корни уравнения $(\sqrt{2}\cos x 1)(2\cos x + 1) = 0$, удовлетворяющие неравенству $\sin x < 0$.
- **35.** Найдите все корни уравнения $(2\cos x + \sqrt{3})(3\cos x + 4) = 0$, удовлетворяющие неравенству $\operatorname{tg} x > 0$.
- **36.** Найдите все корни уравнения $2\cos^2 x + \sqrt{3}\cos x = 0$, удовлетворяющие неравенству $\sin x < 0$.
- 37. Найдите все корни уравнения $\sqrt{2}\sin^2 x = \sin x$, удовлетворяющие неравенству $\cos x < \sin x$ 0.
- **38.** Найдите все корни уравнения $tg^2 x = \sqrt{3} tg x$, удовлетворяющие неравенству $\cos x < 0$.
- **39.** Найдите все корни уравнения $3 \operatorname{tg}^2 x = 1$, удовлетворяющие неравенству $\sin x < 0$.
- **40.** Найдите все корни уравнения $\cos^2 x = 1 \sin x$, удовлетворяющие неравенству $\cos x \leqslant$ 0.

Решите уравнения и найдите корни, принадлежащие указанному промежутку:

1.
$$\sin x = \frac{1}{3}$$
, $[\pi; 3\pi]$.

2.
$$3\cos x = -1$$
, $[\pi; 3\pi]$.

3.
$$\operatorname{tg} x = -2$$
, $[-2\pi; \pi]$.

4.
$$\operatorname{ctg} x = 5$$
, $[3\pi; 4\pi]$.

5.
$$\sin 3x = \sin 3$$
, $[-\pi; 0]$.

6.
$$2\sin 2x = -\frac{1}{2}$$
, $[2\pi; 3\pi]$.

7.
$$7\sin 4x + 3 = 0$$
, $[0, 5\pi; 1, 5\pi]$.

8.
$$1 - 4\cos 2x = 0$$
, $[4\pi; 5\pi]$.

9.
$$3\cos\frac{x}{3} = \frac{1}{3}$$
, $[\pi; 7\pi]$.

10.
$$\cos 5x = \cos 5$$
, $[2, 4\pi; 3\pi]$.

11.
$$4\cos 4x = -3$$
, $[-\pi; -0, 25\pi]$.

12.
$$tg 3x = 3$$
, $[-3\pi; -2\pi]$.

13.
$$(\operatorname{tg}^2 x - 2)(\operatorname{ctg} 2x + 2) = 0,$$
 $[3, 5\pi; 5\pi].$

14.
$$(-\operatorname{tg}^2 4x - 2)(4\operatorname{ctg} 4x - 12) = 0,$$
 $[5, 5\pi; 6\pi].$

15.
$$(8\sin x + 7)(5\cos^3 x + 1) = 0,$$
 $[-8\pi; -6, 5\pi].$

16.
$$(27\sin^6 x - 1)(27\cos^6 x - 8) = 0,$$
 $[2\pi; 3\pi].$

17.
$$\frac{4\operatorname{ctg}^2 x + 3\operatorname{ctg} x}{5\cos^2 x - 3\cos x} = 0,$$
 [2\pi; 4\pi].

18.
$$\frac{(41\sin^2 x - 16)(5 \operatorname{tg} x + 4)}{\sqrt{41}\cos^2 x - 5 \cos x} = 0, \qquad [2\pi; 4\pi].$$

19.
$$\frac{24 \operatorname{ctg} 2x + 7}{50 \cos^2 x - 32} = 0,$$
 [7\pi; 10\pi].

16.
$$(27 \sin^2 x - 1)(27 \cos^2 x - 8) = 0,$$
 $[2\pi, 3\pi].$
17. $\frac{4 \cot^2 x + 3 \cot x}{5 \cos^2 x - 3 \cos x} = 0,$ $[2\pi; 4\pi].$
18. $\frac{(41 \sin^2 x - 16)(5 \tan x + 4)}{\sqrt{41} \cos^2 x - 5 \cos x} = 0,$ $[2\pi; 4\pi].$
19. $\frac{24 \cot 2x + 7}{50 \cos^2 x - 32} = 0,$ $[7\pi; 10\pi].$
20. $\frac{(\cos^4 4x - \sqrt{3} \cos^3 4x)(4 \cot^4 4x - 1)}{(\sqrt{3} \sin^4 4x - \sin^3 4x)(4 \tan^4 4x + 1)} = 0,$ $[1, 5\pi; 2\pi].$

Логарифмические преобразования и вычисления.

Основные формулы $(a > 0, a \neq 1, b > 0, c > 0)$:

$$1) \quad a^{\log_a b} = b,$$

2)
$$\log_a a = 1$$

3)
$$\log_a 1 = 0;$$

4)
$$\log_a b + \log_a c = \log_a bc;$$

5)
$$\log_a b - \log_a c = \log_a \frac{b}{c};$$

$$6) \quad \log_{a^m} b^n = \frac{n}{m} \log_a b^n$$

7)
$$\log_a b = \frac{1}{\log_b a} \quad (b \neq 1);$$

4)
$$\log_a b + \log_a c = \log_a bc;$$
 5) $\log_a b - \log_a c = \log_a \frac{b}{c};$ 6) $\log_{a^m} b^n = \frac{n}{m} \log_a b$
7) $\log_a b = \frac{1}{\log_b a} \quad (b \neq 1);$ 8) $\log_a b = \frac{\log_c b}{\log_c a} \quad (c \neq 1);$ 9) $b^{\log_a c} = c^{\log_a b}.$

$$9) \quad b^{\log_a c} = c^{\log_a b}.$$

Вычислите:

1.
$$\log_2 16$$
; $\log_2 \frac{1}{8}$; $\log_2 1024$; $\log_2 1$.

2.
$$\log_{\frac{7}{3}} \frac{3}{7}$$
; $\log_{0,2} \frac{1}{25}$; $\log_{2,5} 6\frac{1}{4}$; $\log_{\frac{1}{7}} 343$.

4.
$$\log_{16} 32$$
; $\log_{625} 125$; $\log_7 7\sqrt{7}$; $\log_{4\sqrt{2}} \sqrt[5]{16}$.

5.
$$8^{\log_8 32}$$
; $4^{\log_2 7}$; $0, 5^{\log_4 \frac{1}{25}}$; $5^{\log_{\frac{1}{5}} 4}$.

6.
$$\log_{\frac{16}{9}} \log_{81} 27$$
; $\log_{125}^2 5\sqrt{5}$.

7.
$$100^{\lg 9}$$
; $7^{\log \sqrt[3]{7} \lg 1000}$; $\left(\frac{1}{9}\right)^{\log_{27} 7\sqrt{7}}$; $\left(\frac{1}{2\sqrt{2}}\right)^{\log_{64} 125}$.
8. $3^{2+\log_{3} 15}$; $4^{3+\log_{4} 3}$; $5^{3+\log_{5} 2}$; $9^{\log_{3} 4+1}$.

8.
$$3^{2+\log_3 15}$$
; $4^{3+\log_4 3}$; $5^{3+\log_5 2}$; $9^{\log_3 4+1}$.

9.
$$\lg(49^{\log_7 0,8} + 25^{\log_5 0,6}); 6^{\log_6 3+1} - 3^{\log_3 6+1}.$$

10.
$$\log_{36} 2 + \log_{36} 18$$
; $\lg 8 + \lg 125$; $\log_2 3$, $2 + \log_2 5$; $\log_3 20$, $25 + \log_3 4$.

11.
$$\log_3 54 - \log_3 6$$
; $\log_2 72 - \log_2 9$; $\log_{\sqrt{2}} 14 - \log_{\sqrt{2}} 7\sqrt{2}$; $\log_7 \log_2 16 - \log_7 28$.

12.
$$\log_5 0, 25 - 2\log_5 \frac{2}{3} + \log_5 \frac{16}{9}; \ \log_3 8 - 2\log_3 2 + \log_3 \frac{9}{2}$$

12.
$$\log_{5} 0$$
, $25 - 2\log_{5} \frac{2}{3} + \log_{5} \frac{16}{9}$; $\log_{3} 8 - 2\log_{3} 2 + \log_{3} \frac{9}{2}$.
13. $\frac{\log_{2} 27}{\log_{2} 9}$; $\frac{\log_{7} 9}{\log_{\sqrt{7}} 9}$; $\frac{\log_{5} 2 + \log_{5} 3}{\log_{5} 36}$; $\frac{\log_{5} 49}{\log_{5} 21 - \log_{25} 9}$.
14. $\frac{\log_{8} 20}{\log_{8} 5} + \log_{5} 0$, 05 ; $\frac{\log_{2} 600}{\log_{2} 12} + \log_{12} 0$, 02 .

14.
$$\frac{\log_8 20}{\log_8 5} + \log_5 0,05$$
; $\frac{\log_2 600}{\log_2 12} + \log_{12} 0,02$.

15.
$$\log_5 3 \cdot \log_3 5$$
; $\log_5 128 \cdot \log_2 125$; $49^{\frac{1}{2\log_9 7}}$; $27^{\frac{1}{\log_2 3}} + 9^{\frac{1}{\log_5 3}}$.

15.
$$\log_5 3 \cdot \log_3 5$$
; $\log_5 128 \cdot \log_2 125$; $49^{\frac{1}{2 \log_9 7}}$; $27^{\frac{1}{\log_2 3}} + 9^{\frac{1}{\log_5 3}}$.
16. $\log_2 (\log_{\sqrt{2}} 9 \cdot \log_{\sqrt{3}} 2)$; $\frac{\log_3 37}{\log_{21} 37} - \log_3 7$; $\frac{\log_{12} 30}{\log_3 30} + \log_{12} 4$; $\log_3 \sqrt{\log_5 4} + \log_9 \log_{64} 5$.

17.
$$\frac{\log_{2} 14 + \log_{2} 14 \cdot \log_{2} 7 - 2\log_{2}^{2} 7}{\log_{2} 14 + 2\log_{2} 7}; \frac{\log_{4} (\sqrt{3} - \sqrt{5})^{2} + \log_{2} (\sqrt{3} + \sqrt{5})}{27^{\frac{1}{3} - \frac{1}{2}\log_{3} 4} + 2^{\frac{1}{\log_{8} 0, 5}}}.$$
18.
$$2^{\frac{\log_{2} 5}{\log_{5} 2} - 5^{\log_{2} 5}; \ 3^{2 + \frac{\log_{3} 4}{\log_{4} 3}} - 9 \cdot 4^{\frac{1}{\log_{4} 3}} + 4^{1 + \log_{4} 25}.$$

18.
$$2^{\frac{\log_2 5}{\log_5 2}} - 5^{\log_2 5}$$
: $3^{2 + \frac{\log_3 4}{\log_4 3}} - 9 \cdot 4^{\frac{1}{\log_4 3}} + 4^{1 + \log_4 25}$.

Найдите значение выражения:

19.
$$\log_6(18a)$$
, если $\log_6 3a = 0, 3$.

20.
$$2 \lg a + \lg b$$
, если $\lg(0,001a^2b) = 2,5$.

21.
$$\log_{\sqrt[3]{a}}^2 b + \log_{\sqrt[3]{b}} a$$
, если $\log_b a = 3$.

22.
$$\log_{\frac{\sqrt{b}}{a^2}} \frac{\sqrt{a}}{\sqrt[4]{b}} + \frac{1}{4} \log_{\frac{\sqrt{b}}{a^2}} b\sqrt{a}$$
, если $\log_a b = 14$.

23.
$$\log_a b$$
, если $\log_{a^2 b}^2 ab^2 = 4$.

24.
$$\log_{ab} \frac{\sqrt{b}}{a} + \log_{\sqrt{ab}} b + \log_a \sqrt[3]{b}$$
, если $\log_{b\sqrt{a}} \frac{b}{a} = \frac{2}{5}$.

25.
$$(\log_4 6 + \log_6 4 + 2)(\log_4 6 - \log_{24} 6)\log_6 4 - \log_4 6.$$

Показательная и логарифмическая функции.

Свойства показательной функции $y = a^x, a > 0, a \neq 1$:

- (1) Область определения функции множество всех действительных чисел ($x \in \mathbb{R}$).
- (2) Область значений функции множество всех действительных положительных чисел, т.е. $a^x > 0$ для всех $x \in \mathbb{R}$.
- (3) При a > 1 функция возрастает: $x_1 < x_2 \Leftrightarrow a^{x_1} < a^{x_2}$.
- (4) При 0 < a < 1 функция убывает: $x_1 < x_2 \Leftrightarrow a^{x_1} > a^{x_2}$
- (5) $a^{x_1} = a^{x_2} \Leftrightarrow x_1 = x_2$.

$extbf{Ceoйства}$ логарифмической функции $y=\log_a x,\ a>0,\ a\neq 1:$

- (1) Область определения функции множестао всех положительных действительных чисел (x > 0).
- (2) Область значений функции множество всех действительных чисел.
- (3) При a > 1 функция возрастает: $0 < x_1 < x_2 \Leftrightarrow \log_a x_1 < \log_a x_2$.
- (4) При 0 < a < 1 функция убывает: $0 < x_1 < x_2 \Leftrightarrow \log_a x_1 > \log_a x_2$.
- (5) $\log_a x_1 = \log_a x_2 \Leftrightarrow x_1 = x_2 > 0.$
- (6) $\log_a a^x = x$ для всех $x \in \mathbb{R}$, $a^{\log_a x} = x$ для всех x > 0.

Построить графики функций:

1.
$$y = 2^x$$
; $y = 0.5^x$; $y = \log_2 x$; $y = \log_{1/2} x$.

Найти области определения функций:

$$2. \ \ y = \log_{0,2} \frac{6-x}{6+2x}.$$

3.
$$y = \sqrt{x^2 - 25} \log_{0.1} (42 + x - x^2)$$
.

4.
$$y = \log_{3+x} (x^2 - 1)$$
.

5.
$$y = \sqrt[12]{\log_9 x - 2}$$
.

6.
$$y = \log_{-\cos x} (9 - x^2)$$
.

7.
$$y = (x-3)^{\log_3(5-x)}$$
.

8.
$$y = (x-2)^{\sqrt{x^2-1}}$$

9.
$$y = \log_{x-1} \left(\frac{x}{\sqrt{9-x^2}} \right)$$

9.
$$y = \log_{x-1} \left(\frac{x}{\sqrt{9 - x^2}} \right)$$
.
10. $y = \lg (4 - x^2) \sqrt{\frac{1 + \lg^2 x}{\lg x^2} - 1}$.

11. Найдите множество значений функции

1)
$$y = 2^{\frac{1}{3^x - 1}}$$
; 2) $y = 4^{\frac{1}{1 - 2^x}}$.

Что больше:

- **12.** $\log_3 5$ или $\log_3 4, 5$?
- 13. $\log_4 25$ или $\log_4 26$?

14.
$$\log_{0,1} \frac{3}{2}$$
 или $\log_{0,1} \frac{2}{3}$?

15.
$$\log_{\sqrt{2}-1} \frac{7}{4}$$
 или $\log_{\sqrt{2}-1} \frac{8}{5}$?

16.
$$\log_5 3$$
 или $\frac{2}{3}$?

17.
$$\log_2 5$$
 или $2\frac{1}{3}$?

18.
$$\log_8 5$$
 или $\log_6 5$?

19.
$$\log_{1/3} 10$$
 или $-2\frac{1}{5}$?

Решить уравнения:

20.
$$\log_2(x+1) = 2$$
.

21.
$$\log_{0.5}(5-x) = -2$$
.

22.
$$(x^2 - 3x - 4) \log_3(3 - x) = 0.$$

23.
$$(x^2 - 5x + 6) \log_3(4x - 9) = 0.$$

24.
$$x^2 - 3^{\log_3 x} = 2$$
.

25.
$$x^2 - 6^{\log_6(2x-10)} = 8x - 6.$$

26.
$$4^{\log_2 x} = 5^{\log_5(2x+3)}$$
.

27.
$$3^{\log_3(x^2-7)} = 0.3^{\log_{0,3}(6x)}$$
.

28.
$$\log_{-x}(x+6) = 2$$
.

29.
$$\log_x(4x+12)=2$$
.

30.
$$\log_{x+1}(x^2 + 3x - 1) = 2$$
.

Решите неравенства:

1. 2(x+2) < 2x+5.

$$2. -\frac{1}{8} \leqslant \frac{2x+3}{4} \leqslant -0.25.$$

3.
$$\frac{4}{7} \leqslant \frac{1 - 3x}{4} \leqslant 1,15.$$

4.
$$\frac{x}{x-3} \leq 0$$
.

5.
$$\frac{2x+3}{3} \le 1$$
.

4.
$$\frac{7}{x} \leq 0$$
.
5. $\frac{2x+3}{x} \leq 1$.
6. $\frac{3x}{x^2-x+2} \leq 0$.

7.
$$(x+1)(x-3)(2x+1)(x-7)x > 0$$
.

8.
$$x^4 - 5x^2 + 4 \ge 0$$
.

9.
$$\frac{(x+3)(x-4)x}{(x+1)(x+2)} \le 0$$

8.
$$x^4 - 5x^2 + 4 \ge 0$$
.
9. $\frac{(x+3)(x-4)x}{(x+1)(x+2)} \le 0$.
10. $\frac{(4+x)^3(x+3)(x-1)^3(x-2)^2}{-3(-5-x)^4(16-4x)^4} > 0$.
11. $\frac{(5-2x)(x+3)}{(2x-7)(6-5x)} \le 0$.
12. $\frac{(x^2+2x-3)(x^2-16)}{(x^2-1)(x^2-9)} \ge 0$.

11.
$$\frac{(5-2x)(x+3)}{(2x-7)(6-5x)} \le 0$$

12.
$$\frac{(x^2+2x-3)(x^2-16)}{(x^2-1)(x^2-9)} \ge 0.$$

13.
$$\frac{7}{x} > \frac{x}{7}$$
.

14.
$$\frac{5}{x} - \frac{3}{3-x} < 0$$

15.
$$\frac{3x+2}{x^2+x-2} < -1$$

$$(x^{2}-1)(x^{2}-9)$$
13. $\frac{7}{x} > \frac{x}{7}$.
14. $\frac{5}{x} - \frac{3}{3-x} < 0$.
15. $\frac{3x+2}{x^{2}+x-2} < -1$.
16. $\frac{x^{2}+4x-1}{x^{2}+4x+3} \leqslant \frac{1}{x+1}$.

$$\mathbf{17.} \ \ \frac{x^3 - 8}{x^3 - 1} \leqslant \frac{x - 2}{x - 1}.$$

17.
$$\frac{x^3 - 8}{x^3 - 1} \le \frac{x - 2}{x - 1}$$
.
18. $\frac{1}{2x^2 - 5x} + \frac{4}{25 - 4x^2} \ge \frac{2}{25 + 10x}$.
19. $(x^2 + x + 1)^2 < 5x^2 + 5x - 1$.

19.
$$(x^2 + x + 1)^2 < 5x^2 + 5x - 1$$

20.
$$x(x+1)(x+2)(x+3) \le 24$$
.

21.
$$(x^2 - 3x - 2)(x^2 - 3x + 1) < 10$$
.

Задачи для самостоятельного

РЕШЕНИЯ.

1.
$$x^2 > 4$$
.

2.
$$x^2 + x + 1 > 0$$
.

3.
$$9x^2 - 6x + 1 \le 0$$
.

4.
$$(x - 2011)(2012 - x) > 0$$
.

5.
$$-\frac{7}{6} \leqslant \frac{4x-5}{9} < -0.24.$$

6.
$$\frac{4x+3}{2-0.5x} > 0.$$

7.
$$\frac{x+2}{x+1} < 2$$
.

7.
$$\frac{x+2}{x+1} < 2$$
.
8. $\frac{x^2-4x+4}{x^2-1} \le 0$.

9.
$$(x^2 - 3x - 4)x > 0$$
.

10.
$$x^4 - 13x^2 + 36 < 0$$
.

11.
$$\frac{2-3x}{2x+5} \le 0$$
.

12.
$$\frac{9}{x} > \frac{x}{4}$$
.

13.
$$\frac{x^{2} + 1}{(2x - 1)(x^{2} + 1)} \le 0.$$
14.
$$\frac{9 - x^{2}}{4x^{4} - 25} \ge 0.$$
15.
$$\frac{1}{x} + \frac{5}{x + 2} < 0.$$
16.
$$\frac{x^{2} + 2x + 3}{x^{2} - 4x + 3} > -3.$$

14.
$$\frac{9-x^2}{4x^4-25} \geqslant 0$$

15.
$$\frac{1}{x} + \frac{5}{x+2} < 0$$

16.
$$\frac{x^2+2x+3}{x^2-4x+3} > -3$$

17.
$$x^2 + \frac{1}{x^2} \ge 1, 7\left(x + \frac{1}{x}\right)$$
.

18.
$$(x^2 - x - 1)(x^2 - x - 7) < -5$$
.

Это должен знать каждый:

• $|A| < B \iff -B < A < B$;

•
$$|A| > B \iff \begin{bmatrix} A > B \\ A < -B \end{bmatrix}$$

• $|A| < |B| \iff A^2 < B^2$;

Решите неравенства:

1.
$$|x-2| > 2$$
.

2.
$$|x+1| > -3$$
.

3.
$$|x-1| \leq -4$$
.

4.
$$|x-3| < 2$$
.

5.
$$|x^2 - 1| > 0$$
.

6.
$$||x-4|-2|<1$$
.

7.
$$\frac{1}{|2-x|} > 1$$
.

8.
$$|x+2|-|x|>0$$
.

9.
$$|x^2 - 2x| \ge x$$
.

10.
$$|x^2 + 2x| \le -x$$
.

11.
$$|x^2 + 2x - 1| < 2x + 3$$
.

12.
$$|2x^2 - 9x + 15| \ge 20$$
.

13.
$$1 + x + |x^2 - x - 3| < 0$$
.

14.
$$|x-2x^2| > 2x^2 - x$$
.

15.
$$|2x - |x - 2|| < 3$$
.

16.
$$|2x+1-|3x+1|| \le x+2$$
.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО

РЕШЕНИЯ.

1.
$$|x+1| > 5$$
.

2.
$$|x^2 - 2x| \leqslant -1$$
.

3.
$$|2x-1| \leq 7$$
.

4.
$$|x^2 - 25| \le 0$$
.

5.
$$||x-5|-3| \ge 2$$
.

6.
$$|x^2 + 5x| < 6$$
.

7.
$$\left| \frac{2x-1}{x+2} \right| \le 4$$
.

8.
$$|x^2 + 6x + 8| \le -x^2 - 6x - 8$$
.

9.
$$|x^2 - 3x + 2| \ge |x - 1|$$
.

10.
$$||3x+1|+x+1| \ge 2$$
.

ИРРАЦИОНАЛЬНЫЕ НЕРАВЕНСТВА.

$$1)\sqrt{f(x)} < g(x) \iff \begin{cases} 0 \leqslant f(x) < g^2(x) \\ g(x) \geqslant 0 \end{cases} ;$$

$$(g(x) \geqslant 0)$$

$$2)\sqrt{f(x)} > g(x) \iff \begin{cases} f(x) > g^2(x) \\ g(x) \geqslant 0 \\ f(x) \geqslant 0 \\ g(x) < 0 \end{cases}$$

Решите неравенства:

1.
$$\sqrt{x-8} > 3$$
.

2.
$$\sqrt{2-4x} < 4$$
.

3.
$$\sqrt{3x-6} < 3$$
.

3.
$$\sqrt{3x-6} < 3$$
.
4. $\sqrt{\frac{3x-1}{2-x}} > 1$.

5.
$$\sqrt{2-x} < -x$$
.

6.
$$\sqrt{x+1} > x-1$$
.

7.
$$\sqrt{2x-1} < x$$
.

8.
$$\sqrt{x^2+3x+2} > 3-x$$
.

9.
$$\sqrt{x+9} > 3-x$$
.

10.
$$x-3 \ge \sqrt{9-x^2}$$
.

11.
$$\sqrt{3+4x} \ge \sqrt{6x-9}$$
.

12.
$$\sqrt{22+x}-\sqrt{3-x}<5$$
.

13.
$$\sqrt{x+2} + \sqrt{3-x} < 3$$
.

14.
$$\sqrt{x-1} + \sqrt{x+2} \geqslant 3$$
.

15.
$$\sqrt{2-\sqrt{x+3}} < \sqrt{x+4}$$
.

16.
$$\sqrt{2x+\sqrt{6x^2+1}} \leqslant x+1$$
.

17.
$$(9-x^2)\sqrt{x+4} \ge 0$$
.

18.
$$(x+10)\sqrt{x-4} \leqslant 0$$
.

19.
$$(x-12)\sqrt{x-3} \leqslant 0$$
.

20.
$$(x-3)\sqrt{x^2+x-2} \geqslant 0$$
.

Показательные неравенства.

1.
$$8^{5-\frac{x}{3}} > 4$$
.

1.
$$8^{5-\frac{x}{3}} > 4$$
.
2. $\frac{1}{8} \cdot \left(\frac{1}{2}\right)^{x(2-x)} > 8 \cdot \left(\frac{1}{2}\right)^{3x}$.
3. $\frac{(\sqrt{5})^{x-10}}{4^{x-10}} > \frac{5\sqrt{5}}{64}$.
4. $\frac{0, 2^{x+0,5}}{\sqrt{5}} > \frac{0, 04^{x}}{25}$.
5. $4^{x} - 4^{x-1} < 3$

$$3. \ \frac{(\sqrt{5})^{x-10}}{4^{x-10}} > \frac{5\sqrt{5}}{64}.$$

4.
$$\frac{0, 2^{x+0,5}}{\sqrt{5}} > \frac{0, 04^x}{25}$$

5.
$$4^x - 4^{x-1} < 3$$

6.
$$\frac{7^x - 35}{7^{x-1} + 1} \leqslant -14$$
.

7.
$$2^{x+2} - 2^{x+3} - 2^{x+4} > 5^{x+1} - 5^{x+2}$$

8.
$$9 \cdot 3^{2x+2} + 3 \cdot 3^{2x+1} - 9^x \le 89$$
.

9.
$$3^{1+x} \cdot 2^{1-x} + 3^x \cdot 2^{-x} < 10, 5.$$

10.
$$3^{x+2} \cdot 2^{1-2x} \le 20$$
.

11.
$$3^{2x-1} < 11^{3-x}$$
.

12.
$$9^{x-1} - 36 \cdot 3^{x-3} + 3 < 0$$

12.
$$9^{x-1} - 36 \cdot 3^{x-3} + 3 < 0.$$

13. $2^{2x+1} - 21 \cdot \left(\frac{1}{2}\right)^{2x+3} + 2 \ge 0.$

14.
$$2 \cdot 3^{2x^2} + 4 \leqslant 3^{x^2+2}$$
.

15.
$$0,25^{\sqrt{x}} < 2^{3-\sqrt{x}} + 25^{\log_3^{-1} 5}$$
.

16.
$$3^{\sqrt{x}} - 3^{1-\sqrt{x}} \leqslant \frac{26}{3}$$
.

17.
$$4^{\sqrt{x}} - 2^{\sqrt{x}+1} < 2^{\sqrt{x}+4} - 32$$
.

18.
$$15 \cdot 2^{2-2x} + 19 \cdot 2^{-x} > 2$$
.

19.
$$4 \cdot 3^{x+2} - 2 \cdot 5^{x+2} \le 5^{x+3} - 3^{x+3}$$
.

20.
$$5 \cdot 9^x - 18 \cdot 15^x + 9 \cdot 25^x > 0$$
.

21.
$$16^x - 2 \cdot 12^x \le 3^{2x+1}$$
.

22.
$$4^{x^2-x} - 10 \cdot 2^{x^2} + 2^{2x+4} \geqslant 0$$
.

23.
$$3^{x-1} \geqslant \frac{2-3^x}{3^x-4}$$
.

24.
$$(\sqrt{3} - \sqrt{2})^{3-x} \le (\sqrt{3} + \sqrt{2})^{\sqrt{x+3}}$$
.

25.
$$||3^x + 4x - 9| - 8| \le 3^x - 4x - 1.$$

Логарифмические неравенства.

Свойства логарифмической функции $y = \log_a x \quad (a > 0, a \neq 1)$:

- (1) Область определения функции множество всех положительных действительных чисел (x > 0).
- (2) Область значений функции множество всех действительных чисел.
- (3) При a > 1 функция возрастает: $0 < x_1 < x_2 \Longleftrightarrow \log_a x_1 < \log_a x_2$.
- (4) При 0 < a < 1 функция убывает: $0 < x_1 < x_2 \Longleftrightarrow \log_a x_1 > \log_a x_2$.
- (5) $\log_a x_1 = \log_a x_2 \iff x_1 = x_2 > 0.$
- (6) $\log_a a^x = x$ для всех $x \in \mathbb{R}$, $a^{\log_a x} = x$ для всех x > 0.
- 1. $\log_7(x-1) > \log_7(2x-5)$.
- 2. $\log_{0.7}(2x-3) > \log_{0.7}(6-x)$.
- 3. $\log_2(x^2 + 3x) \le 2$.
- $4. \log_{1/3}\left(\frac{2-3x}{x}\right) \geqslant -1.$
- 5. $\log_3(x^2-x) \le \log_3(3x+2)$.
- **6.** $\log_7 x \cdot \log_3 7 < 5$.
- 7. $\log_5 x \cdot \log_{0.3} 5 < \log_{0.3} 4$.
- 8. $\log_{1/\sqrt{5}}(x^2-0.8x) \ge 2.$
- 9. $\log_{\pi-3}(x^2+x+31) \leq \log_{\pi-3}(10x+11)$.
- **10.** $\log_{0.1}(x^2 + x 2) > \log_{0.1}(x + 3)$.
- **11.** $\log_4(x-3) + \log_2(x-3) < \frac{3}{2}$.
- 12. $\log_{\frac{1}{2}}(x-2) + \log_{\frac{1}{2}}(x+24) > -3.$
- 13. $\log_2(x-1) \leqslant 1 + \log_{0.5} x$.
- **14.** $\log_5 x + \log_{25} x < \log_{1/5} \sqrt{125}$.
- **15.** $\log_{\log_2 2}(2x-3) > 0$.
- **16.** $\log_{\frac{1}{2}} \log_2(x^2 3) > 0.$
- 17. $\log_2(\log_{1/3}(\log_5 x)) > 0.$ 18. $\left(\frac{1}{2}\right)^{\log_5(x^2-1)} > 1.$
- **19.** $\log_2(x-2) + \log_4(x-3)^2 \le 1$.
- **20.** $\log_2(x^2 3x) \le 5 + \log_{0.5}(x + 4)$.
- **21.** $\log_3(3-x) + \log_3(5-x) > \log_3(x+7)$.
- **22.** $\log_{0.1}(x-1) + \log_{0.1}(x-2) \ge \log_{0.1}(x+2)$.
- **23.** $\log_{0,3} \frac{x+10}{x-2} \le \log_{0,3} (x+3)$.
- **24.** $\log_{\sqrt{3}} \sqrt{x-1} + \log_{\frac{1}{2}} 3 \le \log_{\frac{1}{2}} (x+4) + \log_9 4$.
- **25.** $\log_2(x+3) + \log_2(x^2 4x + 1) \ge \log_2(11 x)$.
- **26.** $\log_3((x+2)(x+4)) + \log_{\frac{1}{3}}(x+2) < \frac{1}{2}\log_{\sqrt{3}}7.$
- **27.** $\log_3(x^2 + 7x + 10) + \log_{\frac{1}{2}} \frac{x+5}{9} + 1 \ge \log_3(3x^2 + 16x + 20).$
- **28.** $\log_5(x+2) + \log_5(1-x) \le \log_5((1-x)(x^2-8x-8)).$

29.
$$\log_2 \frac{3x-2}{x-1} + 3\log_8 \frac{(x-1)^3}{3x-2} < 1.$$

30.
$$10^{\lg \log_2 x} + \log_2 x \le 4$$
.

31.
$$\log_2^2(5-x) - 6\log_2(5-x) + 9 \le 0.$$

$$32. \ \frac{1}{\log_2 x - 4} > \frac{1}{\log_2 x}.$$

31.
$$\log_2^2(5-x) - 6\log_2(5-x) + 9 \le 0.$$
32. $\frac{1}{\log_2 x - 4} > \frac{1}{\log_2 x}.$
33. $\frac{4}{\lg 10x} - \frac{5}{\lg 100x} \ge 0.$
34. $\frac{\log_2 x - 5}{1 - 2\log_2 x} \ge 2\log_2 x.$
35. $\log_1 x \cdot \log_2 x + \log_1 x + 2 \le 0$

34.
$$\frac{\log_2 x - 5}{1 - 2\log_2 x} \geqslant 2\log_2 x$$

35.
$$\log_{\frac{1}{2}} x \cdot \log_{2} x + \log_{\frac{1}{2}} x + 2 \le 0.$$

36.
$$\log_{0.5}^2 x - 3 > 2|\log_{0.5} x|$$
.

37.
$$\log_9 x^2 + \log_3^2(-x) < 2$$
.

38.
$$\log_{x-4}(2x-9) \cdot \log_{2x-9} \pi \leq \log_{x-4}(x-3,8) \cdot \log_{x-3,8} 3$$
.

39.
$$\log_3 x < (\log_3 x \cdot \log_3 72 - \log_3 576) \cdot \log_{\frac{x}{2}} 3.$$

40.
$$\log_7 x \cdot \log_3 x - \log_7 3 \cdot \log_3 x \le 12 \log_7 3$$
.

41.
$$\log_3 x \cdot \log_{0.3} x + \log_3 0, 3 \cdot \log_{0.3} x > 6 \log_3 0, 3.$$

42.
$$\log_{x^2+2}(3x+12) > 1$$
.

43.
$$\log_{1-x^2}(5x+5) < 1$$
.

44.
$$(4x-1)\log_2 x \geqslant 0$$
.

45.
$$x \log_3 x - \frac{3}{\log_x 3} \le 0.$$

46.
$$x \log_2 \left(\frac{x}{3} + 2\right) \leqslant 10 \log_{\frac{1}{4}} \left(\frac{x}{3} + 2\right)$$
.

47.
$$\log_{x^2} 5 > \log_{x^2} 7$$
.

47.
$$\log_{x^2} 5 > \log_{x^2} 7$$
.
48. $\frac{\log_{27} x}{\log_3 (1 + 2x)} \leqslant \frac{\log_3 \sqrt[3]{2x + 1}}{\log_3 x}$.

49.
$$\log_x 3 < 1$$
.

50.
$$\log_{0,5}(2^x - 1) > x - 1$$
.

51.
$$\log_{3x} 3 \geqslant \log_x^2 3$$
.

52.
$$\sqrt{1 - \log_{1/2} x} < 2$$
.

53.
$$\sqrt{\log_3(9x+27)} \geqslant \log_3(x+3)$$
.

54.
$$\frac{\sqrt{2x+1}}{2+\log_{1/2}(x+1)} \geqslant 0.$$

55.
$$\log_x \log_2 (4^x - 12) \leqslant 1$$
.

56.
$$\log_x(\log_9(3^x - 9)) < 1.$$

57.
$$\log_{\frac{x}{2}}(\log_x \sqrt{3-x}) \geqslant 0.$$

58.
$$\log_8(2-x) + \log_8(x^3-x+2) \geqslant \log_8 2x^3$$
.

59.
$$\log_x(x^3 - 8x^2 + 19x - 10) > \log_x(5 - x) + \log_x(x - 2)$$
.

60.
$$x^{\lg x} < 1000x^2$$
.

61.
$$x \cdot 2^{\log_x 5} \geqslant 10$$
.

62.
$$3^{\log_3^2 x} + x^{\log_3 x} \le 162$$
.

МЕТОД РАЦИОНАЛИЗАЦИИ 1.

Если функция f(x) возрастает, то выражение f(A) - f(B) имеет такой же знак, что и выражение A - B. В частности, при $A \geqslant 0$ и $B \geqslant 0$ знаки выражений A - B и $A^2 - B^2$ совпадают.

Решите неравенства:

1.
$$(|x-1|-1)(|x-3|-2) < 0$$
.

2.
$$\frac{4|2-x|}{4-|x|} - |x-2| \le 0.$$

3.
$$\frac{1}{|x+1|-1} \geqslant \frac{2}{|x+1|-2}$$
.

4.
$$\frac{|x-1|-|2x+1|}{|x-2|-|2x+2|} \ge 0.$$

5.
$$\frac{|x-4|-2-x^2}{|2+x|-|x-6|} > 0.$$

6.
$$\frac{|4x-3|-|3x-4|}{|x^2-x-18|-|x^2+x|} \le 0.$$

7.
$$\frac{||x^2 + x| - 3| - 3}{||3x + 4| - 2| - 1} \ge 0.$$

8.
$$|x^2 - 5|x| + 4| \le |2x^2 - 3|x| + 1|$$
.

9.
$$\frac{|2x^2 - 5x| - x^2}{|3x^2 - 5x| - x^2} \le 0.$$

10.
$$\frac{|2x^2 - x - 3| - x^2 - 2x - 1}{|3x^2 + x - 2| - x^2 - 2x - 1} \le 0.$$

11.
$$\frac{(x-2)^2 - 3|x-2| - 10}{(|x-4|-5)(|3-x^2|-6)} \ge 0.$$

12.
$$\frac{(|x^2-4|-5)(|x+5|-8)}{(|x-3|-|x-1|)|x|} \ge 0.$$

13.
$$\frac{|x-3|-2}{|x|-1} \leqslant 2.$$

14.
$$\frac{\sqrt{2x^2 - 5x + 2}}{2x^2 + 6x} \leqslant 0.$$

15.
$$\frac{\sqrt{4-3x-x^2}}{2x+3} \geqslant \frac{\sqrt{4-3x-x^2}}{x+3}$$
.

16.
$$\frac{\sqrt{6+x-x^2}}{2x+5} \geqslant \frac{\sqrt{6+x-x^2}}{x+4}$$
.

17.
$$\frac{\sqrt{2x+3}+x-6}{x-5} \geqslant 3$$
.

18.
$$\frac{\sqrt{x^2-9}-\sqrt{2(5x+1)}}{\sqrt{x+3}-2} \leqslant 0.$$

19.
$$\frac{\sqrt{8-x}-|2x-1|}{\sqrt{x+7}-|2x-1|} \leqslant 1.$$

20.
$$\frac{|x+5| - \sqrt{2x+18}}{|x-4| - \sqrt{12-3x}} \ge 0.$$

21.
$$(\sqrt{3x+5}-\sqrt{x+3})(|x-4|-x^2-2)<0.$$

22.
$$\frac{\sqrt{3x^2 - 5x + 3} - \sqrt{x^2 + x + 1}}{|2x^2 - x - 1| - |12x^2 + 7x + 1|} \geqslant 0.$$

23.

$$|\sqrt{x^2+x+1}-2x-1|-|\sqrt{x^2+x+1}+2x+2|>0.$$

24.

$$\frac{\sqrt{x + \sqrt{3x - 2}} - \sqrt{x + \sqrt{2x - 3}}}{\sqrt{x - 2\sqrt{x - 1}} - \sqrt{x + 3 - 4\sqrt{x - 1}}} \le 0.$$

25.
$$\frac{\sqrt{2x^2 + x + 1} - \sqrt{x^2 + x + 1}}{\sqrt[3]{3x^2 + 4x - 2} + \sqrt[3]{3x^2 + x - 4}} \geqslant 0.$$

26.
$$\frac{|x+1| - \sqrt{5 - 2x - 2x^2}}{\sqrt[3]{x^3 + 2x^2 - 5x + 2} - x} \le 0.$$

27.

$$\frac{(\sqrt{1+2x^2}-1-x^2)\cdot(|2x+3|-|3x+2|)}{(x^2-5x+4)\cdot(\sqrt{x+5}+1-x)\cdot(x^{99}-1)} \leqslant 0.$$

28.

$$\frac{((2x-1)^5 - (x+1)^5) \cdot (\sqrt[3]{x^2 - 6} + \sqrt[3]{x})}{\sqrt{x^2 + x + 1} - \sqrt{x^2 + 2}} \leqslant 0.$$

29.
$$\frac{\sqrt[3]{(x-1)^2} - \sqrt[3]{x-1} - 2}{|x+3| - \sqrt{x^2 - 2x - 3}} \le 0.$$

30

$$\frac{(\sqrt{7-x}-x-5)\cdot(\sqrt{11-4x}-x-2,5)}{\sqrt{5+3x-2x^2}\cdot(|4x-3|-|6x+1|)}\leqslant 0.$$

МЕТОД РАЦИОНАЛИЗАЦИИ 2.

При всех допустимых значениях переменных a, b и c

• $\log_a b$ имеет такой же знак, что и выражение (a-1)(b-1);

• $\log_a b - \log_a c$ имеет такой же знак, что и выражение (a-1)(b-c);

• $a^b - a^c$ имеет такой же знак, что и выражение (a-1)(b-c).

1.
$$\frac{\log_2(2x) \cdot \log_{0,5x} x^2}{\log_{0,125x} 8} \leqslant 0.$$
3.
$$\frac{x^2 - 4}{\log_{0,5}(x^2 - 1)} < 0.$$

$$3. \ \frac{x^2 - 4}{\log_{0.5}(x^2 - 1)} < 0.$$

5.
$$\log_{\sqrt{2x^2-7x+6}}\left(\frac{x}{3}\right) > 0.$$

7.
$$\log_{\frac{2x-1}{x}} 5 < \log_{\frac{2x-1}{x}} x$$
.

9.
$$\log_{x^2}(9-8x) \geqslant 1$$
.

11.
$$\frac{\log_{2x-1}(\log_2(x^2-2x))}{\log_{2x-1}(x^2+6x+10)} \le 0.$$

13.
$$\frac{2\log_3(x^2-4x)}{\log_3 x^2} \leqslant 1.$$

15.
$$|x|^{x^2-x-2} < 1$$

$$17. \ \frac{3^x - 25}{x + 1} \leqslant \frac{3^x - 25}{x - 3}$$

17.
$$\frac{3^{x} - 25}{x + 1} \leqslant \frac{3^{x} - 25}{x - 3}.$$
19.
$$\frac{\sqrt{3^{2x+1} - 4 \cdot 3^{x} + 1}}{x^{2} - x - 6} \leqslant 0.$$

21.
$$x^2 \cdot 2^{x+2} - 12x^2 \cdot 3^x + 3^{x+1} > 2^x$$
.

23.
$$\frac{\log_2(2x^2 - 13x + 20) - 1}{\log_3(x + 7)} \le 0.$$
25.
$$\frac{\log_2(3 \cdot 2^{x - 1} - 1)}{x} \ge 1.$$

25.
$$\frac{\log_2(3 \cdot 2^{x-1} - 1)}{x} \geqslant 1$$

27.
$$x^{2-\log_2^2 x + 2\log_{1/2} x} > \frac{1}{x}$$
.

29.
$$\log_{\sqrt[3]{x-3}} \left(\frac{x-10^x}{x^2-6x+5} \right) + 3 \le 0.$$
31. $\frac{(7x-x^2+98)\sqrt{x+6}}{\log_2|x-12|-4} \ge 0.$

31.
$$\frac{(7x - x^2 + 98)\sqrt{x + 6}}{\log_2|x - 12| - 4} \geqslant 0.$$

33.
$$\log_{3x-5} 2 \leq \log_{x-1} \sqrt{2}$$
.

35.
$$\lg^2 \frac{(x-3)^2 \cdot (x-2)}{18} > \lg^2 \frac{(x-2)}{2}$$
.

$$37. \ \frac{\log_{2^{x+4}} 4}{\log_{2^{x+4}} (-8x)} \leqslant \frac{1}{\log_2 \log_{\frac{1}{2}} 2^x}.$$

39.
$$\log_{\frac{1}{36}}(22-3x) \cdot \log_{8-x} \frac{1}{6} \geqslant 1.$$

41.
$$\log_{|x-2|}(2-|x-1|)<1.$$

2.
$$\frac{\log_2(8x) \cdot \log_{0,125x} 2}{\log_{0.5x} 2} \le 0.$$

4.
$$\log_{2-x}(x+2) \cdot \log_{x+3}(3-x) \leq 0$$
.

6.
$$\log_{\frac{3x-1}{x+2}}(2x^2+x-1) \geqslant \log_{\frac{3x-1}{x+2}}(11x-6-3x^2).$$

8.
$$\log_{6x^2-5x+1} 2 > \log_{\sqrt{6x^2-5x+1}} 2$$
.

10.
$$\log_{2x+3} x^2 < 1$$
.

12.
$$\frac{\log_{0,2} \frac{1}{2x-1} + \log_5(2-x)}{\log_5(2x-1) + \log_{0,2} \frac{1}{3-2x}} \geqslant 0.$$

14.
$$\frac{2\log_5(x^2 - 5x)}{\log_5 x^2} \leqslant 1.$$

16.
$$|x+1|^{x^2+5x} \geqslant 1$$
.

18.
$$\frac{2x^2 - 11x + 15}{2^x - 6} < 0.$$

20.
$$6^x \ge 3\sqrt{3} \cdot 2^x + 32 \cdot 2^2 \cdot 3^x - 64\sqrt{108}$$
.

22.
$$\sqrt{6-x} \cdot (2 \cdot 9^{2x} - 53 \cdot 3^{2x} - 27) \geqslant 0.$$

24.
$$\frac{x+1-\log_3 9x}{1-\log_3 x} \geqslant 1$$

24.
$$\frac{x+1-\log_3 9x}{1-\log_3 x} \geqslant 1.$$
26.
$$\frac{12^x - 4^{x+1} - 3^{x+1} + 12}{x^2 - 2x + 1} < 0.$$

28.
$$(x^2+1)^{2+x} > (x^2+1)^{5x-3}$$
.

30.
$$\log_{3x+2}(6x^2 + 19x + 10) \le 3 + \frac{1}{\log_2(3x+2)}$$
.

32.
$$\log_{0,5x-2} \left(\log_4 \left(\frac{12}{\sqrt{3x-12}} \right) \right) \leqslant 0.$$

34.
$$\log_{\log_2(x/2)}(x^2 - 10x + 22) > 0$$

34.
$$\log_{\log_2(x/2)}(x^2 - 10x + 22) > 0.$$

36. $\frac{2\log_{2^{x-1}}|x|}{\log_{2^{x-1}}(x+7)} \leqslant \frac{\log_3(x+12)}{\log_3(x+7)}.$
38. $\frac{\log_{3^{x+4}}27}{\log_{3^{x+4}}(-81x)} \leqslant \frac{1}{\log_3\log_{\frac{1}{3}}3^x}.$

38.
$$\frac{\log_{3^{x+4}} 27}{\log_{3^{x+4}} (-81x)} \leqslant \frac{1}{\log_3 \log_{\frac{1}{3}} 3^x}$$
.

40.
$$\log_{|x+2|}(4+7x-2x^2) \le 2$$
.

42.
$$\frac{9}{\log_{1,9} x \log_{2,1}(x-10)^2} \geqslant \frac{(x-1)^{\log_3(x-1)}}{9 \log_{1,9} x \log_{2,1}(x-10)^2}.$$

Вариант 1

- 1. а) Решите уравнение $\sqrt{3}\left(\sin\frac{x}{2}-\cos\frac{x}{2}\right)\cdot\left(\sin\frac{x}{2}+\cos\frac{x}{2}\right)=\sin 2x.$
- б) Укажите корни, принадлежащие отрезку $[-\pi;1,5\pi]$.
- **2.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ AB=3, BC=4, $AA_1=12$. Через середину ребра AB перпендикулярно диагонали BD_1 проведена плоскость. Найдите угол, образованный этой плоскостью с основанием параллелепипеда.

Вариант 2

- 1. a) Решите уравнение $4\cos^2\frac{x}{2} 1 = \sin x + \sin 2x$.
- б) Укажите корни, принадлежащие отрезку $[-1, 5\pi; 0, 5\pi]$.
- 2. Основанием прямой призмы $ABCA_1B_1C_1$ является равнобедренный треугольник ABC, в котором AB = AC = 10, а BC = 16. Высота призмы равна 3. Точка M середина ребра A_1B_1 . Найдите угол между прямой MB и плоскостью BCC_1 .

Вариант 3

- 1. а) Решите уравнение $3\sin^2 x = \cos\left(\frac{3\pi + 2x}{2}\right)$.
- б) Укажите корни, принадлежащие отрезку $[0, 5\pi; 2\pi]$.
- **2.** Сторона основания правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$ равна 12, а высота равна 9. Найдите расстояние от точки A до плоскости A_1FD .

Вариант 1

- 1. а) Решите уравнение $\sqrt{3}\left(\sin\frac{x}{2}-\cos\frac{x}{2}\right)\cdot\left(\sin\frac{x}{2}+\cos\frac{x}{2}\right)=\sin 2x.$
- б) Укажите корни, принадлежащие отрезку $[-\pi; 1, 5\pi]$.
- **2.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ AB=3, BC=4, $AA_1=12$. Через середину ребра AB перпендикулярно диагонали BD_1 проведена плоскость. Найдите угол, образованный этой плоскостью с основанием параллелепипеда.

Вариант 2

- **1.** a) Решите уравнение $4\cos^2\frac{x}{2} 1 = \sin x + \sin 2x$.
- б) Укажите корни, принадлежащие отрезку $[-1, 5\pi; 0, 5\pi]$.
- 2. Основанием прямой призмы $ABCA_1B_1C_1$ является равнобедренный треугольник ABC, в котором AB=AC=10, а BC=16. Высота призмы равна 3. Точка M— середина ребра A_1B_1 . Найдите угол между прямой MB и плоскостью BCC_1 .

Вариант 3

- 1. а) Решите уравнение $3\sin^2 x = \cos\left(\frac{3\pi + 2x}{2}\right)$.
- б) Укажите корни, принадлежащие отрезку $[0, 5\pi; 2\pi]$.
- **2.** Сторона основания правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$ равна 12, а высота равна 9. Найдите расстояние от точки A до плоскости A_1FD .

- 1. a) Решите уравнение $6 \operatorname{tg}^2 x \frac{13}{\cos x} + 12 = 0$.
- б) Укажите корни, принадлежащие отрезку $[1, 5\pi; 3, 5\pi]$.
- **2.** Основанием прямой призмы $ABCA_1B_1C_1$ является равнобедренный треугольник ABC, в котором CB = AC = 5, а AB = 6. Высота призмы равна 24. Точка M — середина ребра AA_1 , точка K- середина ребра BB_1 . Найдите угол между плоскостью основания и плоскостью MKC_1 .
- 3. Решите систему неравенств

$$\begin{cases} 25^x - 5 \cdot 10^x + 4^{x+1} < 0, \\ \log_2^2 x \le \log_2 x. \end{cases}$$

4. Вершина равнобедренного треугольника с боковой стороной 5 и основанием 8 служит центром данной окружности радиуса 2. Найдите радиус окружности, касающейся данной и проходящей через концы основания треугольника.

Вариант 5

- 1. a) Решите уравнение $3\cos 2x + 13\sin x 9 = 0$.
- б) Укажите корни, принадлежащие отрезку $[0, 5\pi; 2, 5\pi]$.
- **2.** В основании прямой призмы $ABCDA_1B_1C_1D_1$ лежит равнобокая трапеция ABCD с основаниями $AD=20,\ BC=10$ и боковой стороной AB=13. Высота призмы равна 9. Найдите расстояние от точки C до плоскости ADC_1B_1 .
- 3. Решите систему неравенств

$$\begin{cases} \frac{3^{x+1} - 1}{\log_3 x - 2} \leqslant 0, \\ |\log_2 x - 1| \geqslant 2. \end{cases}$$

4. В равнобокой трапеции ABCD основания AD и BC равны соответственно 20 и 8, а боковая сторона равна 10. Через вершину А проведена прямая, делящая площадь трапеции в отношении 1:3 и пересекающая прямую BC в точке K. Найдите длину отрезка KC.

Вариант 6

- 1. а) Решите уравнение $\cos x = \cos \left(\frac{3\pi}{2} 2x \right)$. б) Укажите корни, принадлежащие отрезку $[-2\pi;\pi]$.
- **2.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1\ BC = 3,\ AB = AA_1 = 4.$ Найдите тангенс угла, который образует плоскость ACB_1 с гранью CDD_1C_1 .
- 3. Решите систему неравенств

$$\begin{cases} |7^x - 1| \ge 2, \\ \frac{\log_{2x-1} x}{\log_{2x-1} (9x^2 - 12x + 5)} \le 0. \end{cases}$$

4. В треугольнике ABC на стороне AB расположена точка K так, что AK:KB=3:5. На прямой AC взята точка E так, что AE=2CE. Известно, что прямые BE и CK пересекаются в точке O. Найдите площадь треугольника ABC, если площадь треугольника BOC равна 20.

- 1. а) Решите уравнение $\cos x 2\sin 2x = 1 + 4\cos \left(\frac{\pi}{2} + x\right)$.
- б) Укажите корни, принадлежащие отрезку $[0, 5\pi; 2, 5\pi]$.
- **2.** Сторона основания правильной треугольной призмы $ABCA_1B_1C_1$ равна 8, а боковое ребро равно 12. Точка K середина ребра BB_1 . Найдите расстояние от точки A_1 до плоскости ACK.
- 3. Решите систему неравенств

$$\begin{cases} x^{\log_3 x} \geqslant 9x, \\ \sqrt{4x^2 - 5x + 1} < 2x. \end{cases}$$

4. В параллелограмме острый угол равен 60° , периметр равен 30, а площадь равна $28\sqrt{3}$. Найдите радиус окружности, касающейся двух сторон и диагонали параллелограмма.

Вариант 8

- 1. a) Решите уравнение $\log_2(\cos(0, 5\pi + x) \sin x) = \frac{1}{2}$.
- б) Укажите корни, принадлежащие отрезку $[2, 5\pi; 4\pi]$.
- **2.** В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$ каждое ребро равно $2\sqrt{3}$. Определите расстояние между прямыми AD_1 и CB_1 .
- 3. Решите систему неравенств

$$\begin{cases} 4^{x+0.5} - 35 \cdot 2^x + 48 \le 0, \\ \log_x(x^2 - 7x + 12) \le 1. \end{cases}$$

4. Сторона BC прямоугольного треугольника ABC является диаметром окружности. Эта окружность пересекает гипотенузу AB в точке K. Найдите хорду BK, если известно, что площадь треугольника ABC равна 3, а один катет этого треугольника вдвое больше другого.

Вариант 9

- 1. a) Решите уравнение $6 \sin x \cos 2x + 4 = 8 \sin x + 3 \cos 2x$.
- б) Укажите корни, принадлежащие отрезку $[-2\pi; 0]$.
- 2. Основанием прямой призмы $ABCDA_1B_1C_1D_1$ является ромб со стороной $2\sqrt{3}$ и углом B, равным 120° . Найдите угол, который образует плоскость ABD_1 с основанием призмы, если известно, что расстояние между прямыми AC и B_1D_1 равно 4.
- 3. Решите систему неравенств

$$\begin{cases} 2^{|2\sqrt{3}x-1|} < 2, \\ \log_x^2 (1-x) - \frac{3}{\log_{1-x} x} + 2 \le 0. \end{cases}$$

4. Точка K делит диагональ AC квадрата ABCD в отношении 1:3. Прямые BK и CD пересекаются в точке P. Найдите площадь треугольника KPC, если сторона квадрата равна 4.