1、实验名称及目的

Matlab 控制阿克曼底盘无人车速度软硬件在环仿真: Matlab 运行多辆无人车的速度控制的软硬件在环仿真。

2、实验效果

通过 Matlab/Simulink 控制多辆无人小车实现速度控制。

3、文件目录

文件夹/文件名称	说明
CarAckermanMultiVel4.bat	多辆无人车速度控制软件在环仿真批处理文件。
CarAckermanMultiVel4.slx	多辆无人车速度控制 simulink 文件。
CarAckermanHITLRun.bat	硬件在环批处理文件
CarAckerman.dll	无控制器的阿克曼底盘小车 DLL 模型文件
Init.m	初始化文件。
RflyUdpFast.cpp	S函数编写得集群接口文件。
RflyUdpFast.mexw64	MEX 编译之后的 S 函数文件。

4、运行环境

序号	软件要求	硬件要求		
N=	私什女水	名称	数量	
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1	
2	RflySim 平台免费版	PX4 飞控 [©]	1	
3	MATLAB 2017B 及以上®	数据线	1	

- ① 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ② 须保证平台安装时的编译命令为: px4_fmu-v5_default, 固件版本为: 1.12.3。其他配套飞控请见: http://doc.rflysim.com/hardware.html

5、实验步骤

5.1、仿真环境准备

第一次使用平台调用 RflyUdpFast.cpp 文件进行仿真时,需要编译该文件。 在 Matlab 命令行窗口中输入 mex RflyUdpFast.cpp,回车。

命令行窗口

fx >> mex Rf1yUdpFast.cpp

提示 mex 编译完成。

命令行窗口

>> mex RflyUdpFast.cpp

使用 'Microsoft Visual C++ 2017' 编译。 MEX 已成功完成。

 $f_{x} >>$

文件夹中会生成一个.mexw64 后缀的文件, 完成仿真环境部署。

CarAckerman.dll	2023/11/10 14:04	应用程序扩展	218 KB
CarAckermanHITLRun.bat	2023/11/10 14:17	Windows 批处理	6 KB
CarAckermanMultiVel4.bat	2023/11/10 14:17	Windows 批处理	5 KB
CarAckermanMultiVel4.slx	2023/10/24 15:33	Simulink Model	30 KB
🖺 Init.m	2023/10/24 15:33	MATLAB Code	1 KB
Readme.docx	2023/11/10 15:17	Microsoft Word	6,641 KB
Readme.pdf	2023/11/10 17:38	Foxit PDF Reade	1,243 KB
** RflyUdpFast.cpp	2023/10/24 15:33	C++ Source	25 KB
■ RflyUdpFast.mexw64	2023/11/13 9:38	MATLAB Mex	26 KB

5.2、软件在环仿真

Step 1:

右键以管理员身份运行 CarAckermanMultiVel4.bat 批处理文件。

名称	修改日期	类型	大小
CarAckerman.dll	2023/11/10 14:04	应用程序扩展	218 KB
CarAckermanHITLRun.bat	2023/11/10 14:17	Windows 批处理	6 KB
	2023/11/10 14:17	Windows 批处理	5 KB
🚡 CarAckermanMultiVel4.slx	2023/10/24 15:33	Simulink Model	30 KB
fill Init.m	2023/10/24 15:33	MATLAB Code	1 KB
Readme.docx	2023/11/10 15:17	Microsoft Word	6,641 KB
Readme.pdf	2023/11/10 17:38	Foxit PDF Reade	1,243 KB
** RflyUdpFast.cpp	2023/10/24 15:33	C++ Source	25 KB
■ RflyUdpFast.mexw64	2023/11/13 9:38	MATLAB Mex	26 KB

Step 2:

等待 4 辆车的 CopterSim 都显示初始化完成。

```
PX4: EKF2 Estimator start initializing...
PX4: [logger] ./log/2023-07-25/06_49_47.ulg
PX4: Found firmware version: 1.12.3dev
PX4: Command ID: 512 ACCEPTED
PX4: Command ID: 512 ACCEPTED
PX4: Command ID: 512 BENIED
PX4: Command ID: 512 ACCEPTED
PX4: GPS 3D fixed & EKF initialization finished.
PX4: Enter Auto Loiter Mode!

PX4: GPS 3D fixed & EKF initialization finished.
PX4: Enter Auto Loiter Mode!

PX4: GPS 3D fixed & EKF initialization finished.
PX4: Enter Auto Loiter Mode!

PX4: GPS 3D fixed & EKF initialization finished.
PX4: Enter Auto Loiter Mode!
```


Step 3:

点击运行 CarAckermanMultiVel4.slx 控制模型,

名称	修改日期	类型	大小
CarAckerman.dll	2023/11/10 14:04	应用程序扩展	218 KB
CarAckermanHITLRun.bat	2023/11/10 14:17	Windows 批处理	6 KB
■ CarAckermanMultiVel4.bat	2023/11/10 14:17	Windows 批处理	5 KB
🔁 CarAckermanMultiVel4.slx	2023/10/24 15:33	Simulink Model	30 KB
🖺 Init.m	2023/10/24 15:33	MATLAB Code	1 KB
Readme.docx	2023/11/10 15:17	Microsoft Word	6,641 KB
Readme.pdf	2023/11/10 17:38	Foxit PDF Reade	1,243 KB
** RflyUdpFast.cpp	2023/10/24 15:33	C++ Source	25 KB
■ RflyUdpFast.mexw64	2023/11/13 9:38	MATLAB Mex	26 KB

Step 4:

观察 QGC 和 RflySim3D 中无人车的运动轨迹如下图所示 。

5.3、硬件在环仿真

Step 1:

按下图所示将飞控与计算机链接,飞控上的接口名称为 USB。

Step 2:

在 Rflytools 文件夹中打开 QGC 地面站。

🔀 3DDisplay	2023/7/27 15:02	快捷方式	1 KB
% CopterSim	2023/7/27 15:02	快捷方式	1 KB
F FlightGear-F450	2023/7/27 15:02	快捷方式	2 KB
	2023/7/27 15:02	快捷方式	2 KB
₹ Python38Env	2023/7/27 15:02	快捷方式	2 KB
2 QGroundControl	2023/7/27 15:02	快捷方式	1 KB
RflySim3D	2023/7/27 15:02	快捷方式	1 KB
📜 RflySimAPIs	2023/7/27 15:02	快捷方式	1 KB
	2023/7/27 15:02	快捷方式	1 KB
SITLRun	2023/7/27 15:02	快捷方式	2 KB
Win10WSL	2023/7/27 15:02	快捷方式	2 KB

Step 3:

点击进入左侧"固件"界面后,勾选下方"高级设置"选择自定义固件文件。

在 C:\PX4PSP\Firmware\build\px4_fmu-v5_default 这个路径下选择确认 px4_fmu-v5_default.px4 文件。

如果选择卓翼 H7 飞控的话,则在 C:\PX4PSP\Firmware\build\droneyee_zyfc-h7_default 这个路径下确认 droneyee zyfc-h7 default.px4 文件。

Step 4:

在机架界面设置机架型号为"Generic Ground Vehicle",设置完毕后重插拔飞控完成机架设置。

Step 5:

在"安全"界面,选择"HITL enabled"启动硬件在环仿真,之后在概况界面中确认配置完成后,重新插拔飞控完成设置。

Step 6:

右键以管理员身份运行 CarAckermanHITLRun.bat 批处理文件,根据提示输入对应串口号。

名称	修改日期	类型	大小
	2023/11/10 14:04	应用程序扩展	218 KB
■ CarAckermanHITLRun.bat	2023/11/10 14:17	Windows 批处理	6 KB
CarAckermanMultiVel4.bat	2023/11/10 14:17	Windows 批处理	5 KB
CarAckermanMultiVel4.slx	2023/10/24 15:33	Simulink Model	30 KB
🖺 Init.m	2023/10/24 15:33	MATLAB Code	1 KB
Readme.docx	2023/11/10 15:17	Microsoft Word	6,641 KB
Readme.pdf	2023/11/10 17:38	Foxit PDF Reade	1,243 KB
** RflyUdpFast.cpp	2023/10/24 15:33	C++ Source	25 KB
■ RflyUdpFast.mexw64	2023/11/13 9:38	MATLAB Mex	26 KB

Step 7:

随后参照 5.1 中的 Step3 到 Step4 可以进行无人车的速度控制。