ZAPDC. Ćwiczenie 2. Interpolacja metodą dwuliniowa i metodą "najbliższego sąsiada"

Lev Sergeyev

1 Przebieg ćwiczenia

Za pomocą śródowiska Matlab zaprojektowałem 6 funkcji które pozwalają na zmianę rozmiarów obrazu cyfrowego za pomocą 3 algorytmów interpolacji:

- Funkcję zmiany rozmiaru i proporcji obrazu:
 - "nearest", interpolacja funkcją prostokątną
 - "bilinear", interpolacja funkcją trójkatną
 - "keys", interpolacja funkcją Keysa
- Odpowiedniki poprzednich 3 funkcji, dokonują zmiany obrazu za pomocą wektoru(pozwala na zmianę rozmiaru, proporcji, obrotu, odbicia lustrzanego):
 - "v_ nearest"
 - "v₋ bilinear"
 - "v_ kevs"

2 Czas działania

Dla jednego obrazu przeprowadzono 6 serii interpolacji dla każdej z 6 funkcji. Zmierzono czas działania funkcji. Następnie z otrzymanych wyników została wyliczona średnia. Czas podany w sekundach.

Funkcja	Skalowanie	Skalowanie + obrót	Złożoność
nearest	0.5847	2.5189	$O((n^2)^2)$
bilinear	3.4955	9.1013	$O((n^2)^4)$
keys	11.6204	27.9314	$O((n^2)^6)$

3 Porównywanie otrzymanych obrazów

3.1 Piksele

Zmiana rozmiaru:

 $Lx = 32Lx_0$

 $Ly = 32Ly_0$

Jabłko 3.2

Wektorowe funkcje interpolujące:

 $Lx = -2.5Lx_0$

 $Ly = 1.5Ly_0$ $\Phi_{rot} = -10^{\circ}$

3.3 Siatka

 $Lx = 0.8Lx_0$ $Ly = 0.8Ly_0$ $\Phi_{rot} = 3^{\circ}$

Funkcja	Obraz
oryginał	
nearest	
bilinear	
keys	

4 Wnioski

Porównując skalowane obrazy można dojść do wniosku, że największa dokładność należy do interpolacji funkcją prostokątną — metoda "najbliższego sąsiada". Dodatkowo, przez mniejszą złożoność obliczeniową, metoda "najbliższego sąsiada" jest najszybszym algorytmem do skalowania.

Funkcje liniowej interpolacji i Keys'a pozwalają otrzymać znacznie bardziej naturalny dla człowieka obraz po skalowaniu. Dokładne porównać te dwie funkcje można za pomocą skalowania obrazu "piksele": w wyniku skalowania interpolacją dwuliniową można zauważyć "liniowość" przejść w odróżnieniu od płynnych przejść (krzywą funkcji sześciennej) interpolacji Keys'a.

Interpolacja funkcją Keysa może dać jakościowo najlepszy wynik, ale potrzebuje znacznie więcej czasu, który będzie wynosił $t_{nearest}^3$ lub $t_{bucubic}^2$.

Wadą interpolacji liniowej i Keys'a można nazwać rozmycia które mogą powstać na granicach objektów na obrazie po skalowaniu w górę. Wadą interplolacji funkcją prostokątną można nazwać zjawisko aliasingu(widoczne na "siatka") po skalowaniu w dół.

Często można zauważyć w aplikacjach do pracy z grafiką rastrową, że interpolacja najbliższym sąsiadem jest wykorzystywana dla szybkiego podglądu wyniku operacji skalowania, która następnie wykonywana jest bardziej złożonym algorytmem.