数学试题(一)参考答案

1. C【详解】复数
$$\frac{1+2i}{i} = \frac{-(1+2i)i}{i \times (-i)} = 2-i$$
 ,所以虚部为 -1 .

2. C【详解】若 $l//\alpha$, 且 $m//\alpha$, 则l与m可能平行,可能相交,可能异面,A选项错误;

若 $\alpha \perp \beta$, $m//\alpha$, $n \perp \beta$, 则 $m \leq n$ 可能平行, 可能相交, 可能异面, B 选项错误;

两条平行直线,其中一条与平面垂直,则另一条也与平面垂直,C选项正确;

若 $m \perp n$, $m \perp \alpha$, $n / / \beta$, 则 α 与 β 可能平行可能相交, D选项错误.故选: C

3. C【详解】由函数图象可得:
$$T = \frac{2\pi}{\omega} = 4\left(\frac{2\pi}{3} + \frac{\pi}{3}\right)$$
, 解得 $\omega = \frac{1}{2}$, 由于点 $\left(-\frac{\pi}{3}, 0\right)$ 在函数图象

上且为五点作图法的第一个点,可得 $\frac{1}{2}$ × $\left(-\frac{\pi}{3}\right)$ + θ = $0+2k\pi,k$ \in Z解得 θ = $\frac{\pi}{6}+2k\pi,k$ \in Z

当
$$k = 0$$
 时,可得 $\theta = \frac{\pi}{6}$

4.D【详解】因为
$$\tan 2\alpha = \frac{\cos \alpha}{2 - \sin \alpha}$$
,所以 $\frac{2 \tan \alpha}{1 - \tan^2 \alpha} = \frac{\cos \alpha}{2 - \sin \alpha}$,

即
$$\frac{2\sin\alpha\cos\alpha}{\cos^2\alpha-\sin^2\alpha} = \frac{\cos\alpha}{2-\sin\alpha}$$
 , 因为 $\alpha \in \left(0,\frac{\pi}{2}\right)$, 所以 $\cos\alpha > 0$, $\sin\alpha > 0$,

所以 $4\sin\alpha - \sin^2\alpha = \cos^2\alpha$,因为 $\sin^2\alpha + \cos^2\alpha = 1$,所以 $4\sin\alpha = 1$,解得 $\sin\alpha = \frac{1}{4}$.

5. B【详解】由题意得,在直角 $\triangle ABC$ 中, $\angle ACB = 45^{\circ}$,所以 BC = AB,

在直角
$$\triangle ABD$$
 , $\angle ADB = 30^{\circ}$, 所以 $\frac{AB}{BD} = \tan 30^{\circ}$, 即 $BD = \sqrt{3}AB$,

在 $\triangle BCD$ 中, $\angle BCD = 120^{\circ}$, CD = 112 ,

由余弦定理得 $BD^2 = BC^2 + CD^2 - 2BC \cdot CD \cos 120^\circ$,

即 $3AB^2 = AB^2 + 112^2 - 2 \times 112 \cdot (-\frac{1}{2}) \cdot AB$,因为 AB > 0,所以解得 AB = 112.

即大运塔 AB 的高为112m.

6. B

由题意可得正四棱台的截面图,如图所示,且 B_1BDD_1 为等腰梯形,过点 B_1 做 $B_1M \perp BD$,过点 D_1 做 $D_1N \perp BD$,由线面角的定义可知,侧棱 BB_1 与底面 ABCD 所成角即为 $\angle B_1BM$,

由条件可得,
$$BB_1=1$$
 , $B_1D_1=\sqrt{2}$, $BD=2\sqrt{2}$, 则 $B_1D_1=MN=\sqrt{2}$, $BM=BD=\frac{\sqrt{2}}{2}$,则

$$B_1M = \sqrt{1^2 - \left(\frac{\sqrt{2}}{2}\right)^2} = \frac{\sqrt{2}}{2}$$
,所以 ΔB_1BM 为等腰直角三角形,

所以
$$\angle B_1BM = 45^\circ$$
,即 $\sin \angle B_1BM = \frac{\sqrt{2}}{2}$.

7. D【详解】因为 $\vec{a} = (-1,1), \vec{b} = (4,3),$

所以
$$\vec{a}$$
 在 \vec{b} 上的投影向量为 $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \cdot \frac{\vec{b}}{|\vec{b}|} = \frac{-4+3}{16+9} (4,3) = \left(-\frac{4}{25}, -\frac{3}{25}\right)$,

8. C【详解】依题意得
$$g(x) = f(x + \frac{\pi}{2}) = \sin\left[\omega\left(x + \frac{\pi}{2}\right)\right] = \sin\left(\omega x + \frac{\omega \pi}{2}\right)$$
,

由己知得
$$g(0) = \sin \frac{\omega \pi}{2} = 1$$
,所以 $\frac{\omega \pi}{2} = 2k\pi + \frac{\pi}{2}$, $k \in \mathbb{Z}$,

所以
$$\omega = 4k+1$$
, $k \in \mathbb{Z}$, $g(x) = \sin \left[(4k+1)x + \frac{(4k+1)\pi}{2} \right] = \cos \left[(4k+1)x \right]$, $k \in \mathbb{Z}$,

对于 A, $g(-x) = \cos \left[-(4k+1)x \right] = \cos \left[(4k+1)x \right] = g(x)$,且 g(x) 的定义域关于原点对称,所以 g(x) 为偶函数,故 A 正确;

对于 B ,
$$g(-\frac{\pi}{2}) = \cos \frac{-(4k+1)\pi}{2} = \cos \frac{\pi}{2} = 0$$
 , $k \in \mathbb{Z}$, 故 B 正确;

对于 C, 当 $\omega = 5$ 时, k = 1, $g(x) = \cos 5x$, 由 g(x) = 0, 得 $\cos 5x = 0$, 得 $5x = n\pi + \frac{\pi}{2}$, $x = \frac{n\pi}{5} + \frac{\pi}{10}$, $n \in \mathbb{Z}$,

因为
$$x \in \left[0, \frac{\pi}{2}\right]$$
, 所以 $x = \frac{\pi}{10}$ 或 $x = \frac{3\pi}{10}$ 或 $x = \frac{\pi}{2}$, 则 $g(x)$ 在 $\left[0, \frac{\pi}{2}\right]$ 上恰有 3 个零点,故 C 不正确;

对于 D, 由
$$2k\pi \le (4k+1)x \le 2k\pi + \pi$$
, $k \in \mathbb{Z}$, 得 $\frac{2k\pi}{4k+1} \le x \le \frac{(2k+1)\pi}{4k+1}$, $k \in \mathbb{Z}$,

所以
$$\left[0,\frac{\pi}{4}\right]\subseteq \left[\frac{2k\pi}{4k+1},\frac{(2k+1)\pi}{4k+1}\right],\ k\in\mathbb{Z}$$
,所以 $k=0$,所以 $\omega=1$,故 D 正确.

9. AC【详解】由向量 $\vec{a} = (\sqrt{2}, 1), \vec{b} = (\cos \theta, \sin \theta)$,

对于 A 中,由 $\vec{a} \perp \vec{b}$,可得 $\sqrt{2}\cos\theta + \sin\theta = 0$,所以 $\tan\theta = \frac{\sin\theta}{\cos\theta} = -\sqrt{2}$,所以 A 正确;

对于 B 中, 若 $\theta = \frac{\pi}{2}$, 可得 $\vec{b} = (0,1)$, 则 $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 1$, $\vec{a} \cdot \vec{b} = 1$,

可得 $\cos \langle \vec{a}, \vec{b} \rangle = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{\sqrt{3}}{3}$,所以 B 错误;

对于 C 中,当 \vec{a} 与 \vec{b} 同向时,此时 $|\vec{a}+\vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|$, $(|\vec{a}|+|\vec{b}|)^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|$,即 $\langle \vec{a}, \vec{b} \rangle = 0$ 时,使得 $|\vec{a}+\vec{b}| = |\vec{a}| + |\vec{b}|$ 成立,所以 C 正确;

对于 D 中,由 $\vec{a} = (\sqrt{2}, 1)$,则与 \vec{a} 共线的单位向量为 $\pm \frac{\vec{a}}{|\vec{a}|} = \pm \frac{1}{\sqrt{3}} (\sqrt{2}, 1)$,

即 $\left(\frac{\sqrt{6}}{3}, \frac{\sqrt{3}}{3}\right)$ 或 $\left(-\frac{\sqrt{6}}{3}, -\frac{\sqrt{3}}{3}\right)$,所以 D 错误.

10. ABC【详解】对于 A,由余弦定理可得 $c = \sqrt{a^2 + b^2 - 2ab\cos C} = \sqrt{16 + 4 - 2 \times 4 \times 2 \times \frac{1}{2}} = 2\sqrt{3}$,

由于 $a^2 = b^2 + c^2$, 故 $\triangle ABC$ 为直角三角形, A 正确,

对于 B, :: 三角形的三边长分别为 a = 5, b = 7, c = 8,

∴
$$\cos B = \frac{5^2 + 8^2 - 7^2}{2 \times 5 \times 8} = \frac{1}{2}$$
, ∴ $B \in (0, \pi)$, ∴ $B = \frac{\pi}{3}$, $idder A + C = \frac{2\pi}{3}$,

则该三角形最大角与最小角之和为 $\frac{2\pi}{3}$,B正确,

对于 C,由正弦定理可得 $\frac{4\sqrt{3}}{\frac{\sqrt{3}}{2}} = \frac{4}{\sin B}$ Þ $\sin B = \frac{1}{2}$,由于 $B \in \left(0, \frac{\pi}{3}\right)$, 故 $B = \frac{\pi}{6}$, C 正确,

对于 D,由 $\frac{c}{b} < \cos A$ 可得

 $c < b\cos A \Rightarrow \sin C < \sin B \cos A \Rightarrow \sin (B + A) = \sin B \cos A + \cos B \sin A < \sin B \cos A$,

所以 $\cos B \sin A < 0$,由于 $A, B \in (0,\pi)$,所以 $\sin A > 0$,进而 $\cos B < 0$,故 $B \in \left(\frac{\pi}{2},\pi\right)$,因此三角

形为钝角三角形, D错误, 故选: ABC

11. ABD【详解】连接 BC_1 ,易知 $BC_1 \perp B_1C$,又正方体中 $C_1D_1 \perp$ 平面 BCC_1B_1 ,

从而有 $C_1D_1 \perp B_1C_1C_1D_1 \cap BC_1 = C_1$, $B_1C \perp$ 平面 BD_1C_1 ,

从而得 $B_1C \perp BD_1$, 异面直线 BD_1 与 B_1C 所成的角大小为 90° , A正确;

正方体中 $DD_1 \perp$ 平面ABCD,则 $DD_1 \perp BD,DD_1 \perp CD$,

同理 $BC \perp CD$, $BC \perp CD_1$,

∴四面体 D_1DBC 的四个面都是直角三角形,B正确;

由 $BC \perp CD$, $BC \perp CC_1$, 知 $\angle DCC_1$ 二面角 $D_1 - BC - B_1$ 的平面角是,

为 45° ,即二面角 $D_1 - BC - B_1$ 为 45° ,C错误;

易知BD,的中点是正方体外接球和内切球的球心,

又外接球半径为 $\frac{\sqrt{3}}{2}$. 内切球半径这 $\frac{1}{2}$,

- : 內切球上一点与外接球上一点的距离的最小值为 $\frac{\sqrt{3}-1}{2}$,D正确. 故选: ABD.
- 12. 【详解】因为圆柱形容器底面直径与母线均为 2,

所以该容器可内置的最大球与圆柱的侧面和上下底面都相切,且球的直径为 2, 所以球的半径 r=1 ,

所以该球的体积为
$$\frac{4}{3}\pi r^3 = \frac{4}{3}\pi \times 1^3 = \frac{4}{3}\pi$$
, 故答案为: $\frac{4}{3}\pi$

13. 【详解】由辅助角公式得 $\sin \alpha + 3\cos \alpha = \sqrt{10}\sin(\alpha + \varphi)$,

其中
$$\cos \varphi = \frac{\sqrt{10}}{10}, \sin \varphi = \frac{3\sqrt{10}}{10}$$

即
$$\sin(\alpha + \varphi) = 1$$
,则 $\alpha + \varphi = \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$,

故
$$\sin \alpha = \sin \left(\frac{\pi}{2} - \varphi + 2k\pi \right) = \cos \varphi = \frac{\sqrt{10}}{10}, \quad k \in \mathbb{Z}.$$
故答案为: $\frac{\sqrt{10}}{10}$

14. 【详解】如图,取 AD 的中点 M,则 $\overrightarrow{PA} + \overrightarrow{PD} = 2\overrightarrow{PM}$,

故
$$\overrightarrow{PQ}\cdot(\overrightarrow{PA}+\overrightarrow{PD})=2\overrightarrow{PQ}\cdot\overrightarrow{PM}$$
.

又因为 PM 为梯形 ABCD 的中位线,故 $\left| \overrightarrow{PM} \right| = \frac{2+4}{2} = 3$,

过 A、B 作 PM 的垂线,垂足分别为 H_1 、 H_2 ,

在Rt
$$\triangle AMH_1$$
中, $\left|\overrightarrow{AM}\right| = \frac{1}{2} \times \frac{1}{\cos 60^{\circ}} = 1$, $\angle AMH_1 = 60^{\circ}$,故 $\left|\overrightarrow{MH_1}\right| = \frac{1}{2}$,

同理 $\left|\overrightarrow{PH_2}\right| = \frac{1}{2}$,根据数量积的几何意义可知

$$\overrightarrow{PQ} \cdot (\overrightarrow{PA} + \overrightarrow{PD}) = 2\overrightarrow{PQ} \cdot \overrightarrow{PM} = 2 | \overrightarrow{PQ} | \cos \angle MPQ \cdot | \overrightarrow{PM} |,$$

当
$$Q$$
 位于 A 点时, $|\overrightarrow{PQ}|\cos \angle MPQ$ 最大为 $3 + \frac{1}{2} = \frac{7}{2}$,

此时
$$\overrightarrow{PQ} \cdot \left(\overrightarrow{PA} + \overrightarrow{PD}\right)$$
 取到最大值为 $2 \times \frac{7}{2} \times 3 = 21$,

当
$$Q$$
 位于 B 点时, $|\overrightarrow{PQ}|\cos\angle MPQ$ 最小为 $-\frac{1}{2}$,

此时
$$\overrightarrow{PQ} \cdot (\overrightarrow{PA} + \overrightarrow{PD})$$
 取到最小值为 $2 \times (-\frac{1}{2}) \times 3 = -3$,

故
$$\overrightarrow{PQ}\cdot(\overrightarrow{PA}+\overrightarrow{PD})\in[-3,21]$$
,故答案为: $\left[-3,21\right]$

15. (1) 由余弦定理有
$$a^2 + b^2 - c^2 = 2ab\cos C$$
, 对比已知 $a^2 + b^2 - c^2 = \sqrt{2}ab$,

可得
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{\sqrt{2}ab}{2ab} = \frac{\sqrt{2}}{2}$$
, 因为 $C \in (0,\pi)$, 所以 $\sin C > 0$,

从丽
$$\sin C = \sqrt{1 - \cos^2 C} = \sqrt{1 - \left(\frac{\sqrt{2}}{2}\right)^2} = \frac{\sqrt{2}}{2}$$

又因为
$$\sin C = \sqrt{2}\cos B$$
,即 $\cos B = \frac{1}{2}$,注意到 $B \in (0,\pi)$,所以 $B = \frac{\pi}{3}$.

(2) 由 (1) 可得
$$B = \frac{\pi}{3}$$
, $\cos C = \frac{\sqrt{2}}{2}$, $C \in (0,\pi)$, 从而 $C = \frac{\pi}{4}$, $A = \pi - \frac{\pi}{3} - \frac{\pi}{4} = \frac{5\pi}{12}$,

$$\overline{\text{mi}} \sin A = \sin \left(\frac{5\pi}{12} \right) = \sin \left(\frac{\pi}{4} + \frac{\pi}{6} \right) = \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \times \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4} ,$$

由正弦定理有
$$\frac{a}{\sin\frac{5\pi}{12}} = \frac{b}{\sin\frac{\pi}{3}} = \frac{c}{\sin\frac{\pi}{4}}$$
,从而 $a = \frac{\sqrt{6} + \sqrt{2}}{4} \cdot \sqrt{2}c = \frac{\sqrt{3} + 1}{2}c, b = \frac{\sqrt{3}}{2} \cdot \sqrt{2}c = \frac{\sqrt{6}}{2}c$,

由三角形面积公式可知, $\triangle ABC$ 的面积可表示为

$$S_{\Delta ABC} = \frac{1}{2}ab\sin C = \frac{1}{2} \cdot \frac{\sqrt{3}+1}{2}c \cdot \frac{\sqrt{6}}{2}c \cdot \frac{\sqrt{2}}{2} = \frac{3+\sqrt{3}}{8}c^2$$
,

由己知 $\triangle ABC$ 的面积为 $3+\sqrt{3}$, 可得 $\frac{3+\sqrt{3}}{8}c^2=3+\sqrt{3}$, 所以 $c=2\sqrt{2}$.

16. (1) 连接 AE, 由点 P 是弧 CE 的中点, 可得 O 为 EC 的中点, 又 Q 是 AC 的中点, 则 $AE \parallel QO$,

又AE 二平面ABEF, QO 二平面ABEF, 则OQ // 平面ABEF;

(2) 由点 P 是弧 CE 的中点,可得 $BP \perp EC$,又 $AB \perp BC$, $AB \perp BE$,

 $BC \cap BE = B$, $BC, BE \subset \text{Ψm} BCPE$, $\text{则} AB \perp \text{Ψm} BCPE$,

又 EC \subset 平面 BCPE,则 $AB \perp EC$,又 $AB \cap BP = B$, $AB,BP \subset$ 平面 ABP

则 EC 上平面 ABP ,又 $AP \subset$ 平面 ABP ,则 $AP \perp CE$.

17. (1) 由题意可知
$$\begin{cases} A+b=33 \\ -A+b=19 \end{cases}$$
, 解得 $\begin{cases} A=7 \\ b=26 \end{cases}$

所以 $y = 7\sin(\omega t + \varphi) + 26(\omega > 0, |\varphi| < \pi, t \in [0, 24)$),因为 $\frac{T}{2} = 14 - 2$,得 T = 24,

所以
$$\frac{2\pi}{\omega} = 24$$
, 得 $\omega = \frac{\pi}{12}$, 所以 $y = 7\sin\left(\frac{\pi}{12}t + \varphi\right) + 26(|\varphi| < \pi, t \in [0, 24])$,

因为当
$$t = 14$$
 时, $y = 33$,所以 $33 = 7\sin\left(\frac{\pi}{12} \times 14 + \varphi\right) + 26$,所以 $\sin\left(\frac{7\pi}{6} + \varphi\right) = 1$,

所以
$$\frac{7\pi}{6} + \varphi = \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$$
 , 得 $\varphi = -\frac{2\pi}{3} + 2k\pi, k \in \mathbb{Z}$, 因为 $|\varphi| < \pi$, 所以 $\varphi = -\frac{2\pi}{3}$,

所以
$$y = 7\sin\left(\frac{\pi}{12}t - \frac{2\pi}{3}\right) + 26(t \in [0, 24])$$

(2)
$$ext{ discrete Theorem 12} + 26 \ge 26$$
, $ext{ discrete Theorem 12} = 3 + 26 \ge 26$, $ext{ discrete Theorem 12} = 3 + 26 \ge 26$,

所以
$$2k\pi \le \frac{\pi}{12}t - \frac{2\pi}{3} \le \pi + 2k\pi, k \in \mathbb{Z}$$
, 所以 $2k\pi + \frac{2\pi}{3} \le \frac{\pi}{12}t \le \frac{5\pi}{3} + 2k\pi, k \in \mathbb{Z}$,

解得 $24k+8 \le t \le 20+24k, k \in \mathbb{Z}$, 因为 $t \in [0,24)$, 所以 $8 \le t \le 20$,

因为考试时间为每天上午 7: 40-12: 00,下午 14: 30-17: 00,晚上 19: 00-20: 15,所以每天考试期间教室内的空调要开 4+2.5+1=7.5 小时.

18. (1) 连接 AC 交 DB 于点 O, 连接 OP.

在底面 ABCD中,因为 AB//CD,且 AB = 2CD,由 $\triangle ABO \hookrightarrow \triangle CDO$,可得 $\frac{AO}{CO} = \frac{AB}{CD} = 2$,

因为
$$AP = 2PS$$
, 即 $\frac{AP}{PS} = 2$, 所以在 $\triangle CAS$ 中, $\frac{AO}{OC} = \frac{AP}{PS} = 2$, 所以 $OP//CS$,

又因为OP \subset 平面PBD, SC $\not\subset$ 平面PBD, 所以SC//平面PBD.

(2) 设CD的中点为M,连接AM、SM,

因为 $\angle CDA = 60^{\circ}$, AD = CD = 2, 所以 $\triangle CDA$ 为等边三角形, 所以 $AM \perp CD$,

又 SA 上 平面 ABCD , CD 二 平面 ABCD , 所以 SA 上 CD , SA \cap AM = A , SA , AM \subset 平面 SAM ,

所以CD 上平面SAM,SM \subset 平面SAM,所以CD \bot SM,

所以 $\angle SMA$ 为二面角S-DC-A的平面角,

SA 上平面 ABCD, $AM \subset$ 平面 ABCD, 所以 $SA \perp AM$,

在 Rt
$$\triangle SMA$$
 中 $SA = SP + AP = 3$, $AM = \sqrt{3}$,

所以
$$\tan \angle SMA = \frac{SA}{AM} = \sqrt{3}$$
,所以 $\angle SMA = 60^{\circ}$,

即二面角S-DC-A的大小为 60° ;

(3) 因为AB//CD, $\angle CDA = 60^{\circ}$, 所以 $\angle DAB = 120^{\circ}$,

所以
$$S_{\triangle ABD} = \frac{1}{2} AD \times AB \sin \angle DAB = \frac{1}{2} \times 2 \times 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3}$$
,

在
$$\triangle PBD$$
中 $PD = \sqrt{AP^2 + AD^2} = \sqrt{2^2 + 2^2} = 2\sqrt{2}$, $PB = \sqrt{AP^2 + AB^2} = \sqrt{2^2 + 4^2} = 2\sqrt{5}$,

$$BD = \sqrt{AD^2 + AB^2 - 2AD \cdot AB\cos \angle DAB} = \sqrt{2^2 + 4^2 - 2 \times 2 \times 4 \times \left(-\frac{1}{2}\right)} = 2\sqrt{7},$$

所以 $PD^2 + PB^2 = BD^2$,即 $PD \perp PB$,

所以
$$S_{\triangle PBD} = \frac{1}{2}PB \times PD = \frac{1}{2} \times 2\sqrt{2} \times 2\sqrt{5} = 2\sqrt{10}$$
,

设点 A 到平面 PBD 的距离为 d ,则 $V_{A-PBD}=V_{P-ABD}$,即 $\frac{1}{3}S_{_{\triangle}PBD}\cdot d=\frac{1}{3}S_{_{\triangle}ABD}\times PA$,

即
$$d = \frac{S_{\triangle ABD} \times PA}{S_{\triangle PBD}} = \frac{2\sqrt{3} \times 2}{2\sqrt{10}} = \frac{\sqrt{30}}{5}$$
,即点A 到平面 PBD 的距离为 $\frac{\sqrt{30}}{5}$.

19. (1) 证明: 因为N为AC的中点,M为BC的中点,

所以
$$\overrightarrow{BN} = \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{BC}) = \frac{1}{2}\overrightarrow{BA} + \overrightarrow{BM}$$
,

因为B, P, N三点共线,所以设 $\overrightarrow{BN} = \lambda \overrightarrow{BP}$,所以 $\lambda \overrightarrow{BP} = \frac{1}{2} \overrightarrow{BA} + \overrightarrow{BM}$,

所以
$$\overrightarrow{BP} = \frac{1}{2\lambda} \overrightarrow{BA} + \frac{1}{\lambda} \overrightarrow{BM}$$
 ,因为 $A, P, M \equiv$ 点共线,所以 $\frac{1}{2\lambda} + \frac{1}{\lambda} = 1$,得 $\lambda = \frac{3}{2}$,

所以
$$\overrightarrow{BN} = \frac{3}{2}\overrightarrow{BP}$$
,所以 $\overrightarrow{BP} + \overrightarrow{PN} = \frac{3}{2}\overrightarrow{BP}$,所以 $\overrightarrow{BP} = 2\overrightarrow{PN}$,所以 $BP: PN = 2:1$;

(2) 在
$$\triangle ABC$$
 中, $AB = 2, BC = 2\sqrt{3}, \angle BAC = 60^{\circ}$,

由余弦定理得
$$\cos \angle BAC = \frac{AB^2 + AC^2 - BC^2}{2AB \cdot AC}$$
,

所以
$$\frac{1}{2} = \frac{4 + AC^2 - 12}{4AC}$$
 , 整理得 $AC^2 - 2AC - 8 = 0$, 解得 $AC = 4$ 或 $AC = -2$ (舍去),

所以
$$AB^2 + BC^2 = 4 + 12 = 16 = AC^2$$
, 所以 $AB \perp BC$,

由 (1) 可知
$$\overrightarrow{PN} = \frac{1}{3} \overrightarrow{BN} = \frac{1}{3} \times \frac{1}{2} (\overrightarrow{BA} + \overrightarrow{BC}) = \frac{1}{6} (\overrightarrow{BA} + \overrightarrow{BC})$$

$$\overrightarrow{PM} = \frac{1}{3}\overrightarrow{AM} = \frac{1}{3} \times \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC}) = \frac{1}{6} (2\overrightarrow{AB} + \overrightarrow{BC}) = -\frac{1}{3} \overrightarrow{BA} + \frac{1}{6} \overrightarrow{BC},$$

所以
$$\left|\overrightarrow{PN}\right| = \frac{1}{6}\left(\left|\overrightarrow{BA} + \overrightarrow{BC}\right|\right) = \frac{1}{6}\sqrt{\overrightarrow{BA}^2 + 2BA \cdot BC + \overrightarrow{BC}^2} = \frac{1}{6}\sqrt{4 + 12} = \frac{2}{3}$$

$$\left| \overrightarrow{PM} \right| = \left| -\frac{1}{3} \overrightarrow{BA} + \frac{1}{6} \overrightarrow{BC} \right| = \sqrt{\frac{1}{9} \overrightarrow{BA}^2 - \frac{1}{9} \overrightarrow{BA} \cdot \overrightarrow{BC} + \frac{1}{36} \overrightarrow{BC}^2} = \sqrt{\frac{4}{9} + \frac{12}{36}} = \frac{\sqrt{7}}{3},$$

$$\overrightarrow{PM} \cdot \overrightarrow{PN} = \frac{1}{6} \left(-\frac{1}{3} \overrightarrow{BA} + \frac{1}{6} \overrightarrow{BC} \right) \cdot \left(\overrightarrow{BA} + \overrightarrow{BC} \right) = \frac{1}{6} \left(-\frac{1}{3} \overrightarrow{BA}^2 - \frac{1}{3} \overrightarrow{BA} \cdot \overrightarrow{BC} + \frac{1}{6} \overrightarrow{BC} \cdot \overrightarrow{BA} + \frac{1}{6} \overrightarrow{BC}^2 \right)$$

$$= \frac{1}{6} \times (-\frac{1}{3} \times 4 + \frac{1}{6} \times 12) = \frac{1}{9}, \quad \text{IT U} \cos \angle MPN = \frac{\overrightarrow{PM} \cdot \overrightarrow{PN}}{\left| \overrightarrow{PM} \right| \cdot \left| \overrightarrow{PN} \right|} = \frac{\frac{1}{9}}{\frac{2}{3} \times \frac{\sqrt{7}}{3}} = \frac{\sqrt{7}}{14},$$

(3) 因为
$$\overrightarrow{PB} = -\overrightarrow{BP} = -\frac{2}{3}\overrightarrow{BN} = -\frac{1}{3}(\overrightarrow{BA} + \overrightarrow{BC})$$
,

$$\overrightarrow{PC} = \overrightarrow{PN} + \overrightarrow{NC} = \frac{1}{6}(\overrightarrow{BA} + \overrightarrow{BC}) + \frac{1}{2}\overrightarrow{AC} = \frac{1}{6}(\overrightarrow{BA} + \overrightarrow{BC}) + \frac{1}{2}(\overrightarrow{BC} - \overrightarrow{BA}) = -\frac{1}{3}\overrightarrow{BA} + \frac{2}{3}\overrightarrow{BC} \ ,$$

所以
$$\overrightarrow{PB} \cdot \overrightarrow{PC} = -\frac{1}{3}(\overrightarrow{BA} + \overrightarrow{BC}) \cdot \left(-\frac{1}{3}\overrightarrow{BA} + \frac{2}{3}\overrightarrow{BC}\right)$$

$$= -\frac{1}{3} \left(-\frac{1}{3} \overrightarrow{BA}^2 + \frac{2}{3} \overrightarrow{BC} \cdot \overrightarrow{BA} - \frac{1}{3} \overrightarrow{BC} \cdot \overrightarrow{BA} + \frac{2}{3} \overrightarrow{BC}^2 \right)$$

$$= -\frac{1}{3} \times \left(-\frac{1}{3} \times 2^2 + \frac{2}{3} \times 12 \right) = -\frac{20}{9}.$$