Traffic Tunneling & Overlay Networks

Arquitetura de Redes Avançadas

Traffic Tunnel Concept

Main purposes

- Guarantee that a packet that reaches a network node will reach a specific secondary network node independently of the intermediary nodes routing processes,
- Guarantee the delivery of a packet to a remote node when the intermediary nodes do not support the original packet network protocol, and,

SPs can use to give networks to clients and lefine policies bandwith, etc.)

Define a virtual channel that adds additional data transport features in order to provide differentiated QoS, security requirements and/or optimized routing.

 Achieved by adding, at the tunnel entry point, one or more protocol headers to the original packets to handle their delivery to the tunnel exit point.

Original Packet

Tunnel End-Points

Delivery protocol(s)

Source: A address

Destination: B address

Original protocol(s)

Source: X address Destination: Y address Data

Virtual Tunnel Interface (VTI)

- Logical construction that creates a virtual network interface that can be handled as any other network interface within a network equipment.
- A tunnel does not require to have any network addresses other the ones already bound to the end-point router.
- However, most implementations impose that a network address must be bound to a tunnel interface in order to enable IP processing on the interface.
 - The tunnel interface may have a explicitly bound network address or reuse an address of another interface already configured on the router.

```
#interface Tunnel 1
#ip address 10.1.1.1 255.255.255.252
#ipv6 address 2001:A:A::1/64
#ip unnumbered FastEthernet0/0
#ipv6 unnumbered FastEthernet0/0
#ip ospf cost 10
#ipv6 ospf 1 area 0
#tunnel mode ipip
#tunnel source FastEthernet0/0
#tunnel destination 200.2.2.2
```

VTI Requirements

- A numeric identifier,
- A bounded IP address, this will enable IP processing,
 - Add the tunnel interface to the routing table and allow routing via the interface,
- A defined mode or type of tunnel,
 - Availability of tunnel models depends on the Router model, operating software and licenses.
- Tunnel source,
 - Defined as the name of the local interface or IPv4/IPv6 address depending on the type of the tunnel.
- Tunnel destination,
 - Defined as a domain name or IPv4/IPv6 address depending on the type of the tunnel.
 - This definition is not mandatory for all types of tunnels because in some cases the tunnel end-point is determined dynamically.
- May optionally have additional configurations for routing, security and QoS purposes.

Loopback Interfaces as End-Points

- Loopback interface is another logical construction that creates a virtual network interface completely independent from the remaining physical and logical router network interfaces.
- The main propose of a loopback interface is to provide a network address to serve as router identifier in remote network configurations and distribute algorithms.

The main advantage of using loopback interfaces as tunnel end-points, is the creation of a tunnel not bounded to any individual network card/link that may fail.

Loopback 0
10.1.1.1/32

Router A

Router B

IP Tunnel Types

- IPv4-IPv4
 - Original IPv4 packets are delivered using IPV4 as network protocol.
- IPv6-IPv4
 - Original IPv6 packets are delivered using IPv4 as network protocol.
- IPv4-IPv6
 - Original IPv4 packets are delivered using IPv6 as network protocol.
- IPv6-IPv6
 - Original IPv6 packets are delivered using IPv6 as network protocol.
- GRE IPv4
 - Original packets protocol (any network protocol) is defined by GRE header and delivered using IPv4 as network protocol.
- GRE IPv6
 - Original packets protocol (any network protocol) is defined by a GRE header and delivered using IPv6 as network protocol.

Overlay Network

- An overlay network can be defined as a virtual network defined over another network.
 - For a specific purpose like private transport/routing policies, QoS, security.
- The underlying network can be physical or also virtual.
 - May result in multiple layers of overlay networks.
- When any level of privacy protocol is present on an overlay network is designated by Virtual Private Network (VPN).

Full/Partial Overlay Mesh

Routing Through/Between Tunnels

Static Routes

```
#ip route 192.168.2.0 255.255.255.0 Tunnel1
#ip route 192.168.2.0 255.255.255.0 10.1.1.2
#ipv6 route 2001:A:1::/64 Tunnel1
#ipv6 route 2001:A:1::/64 2001:0:0::2
#ip route 192.168.2.100 255.255.255.255 10.1.1.2
#ipv6 route 2001:A:1::100/128 2001:0:0::2
```


Route-maps

```
#access-list 100 permit ip host 192.168.1.100 192.168.2.0 255.255.255.0
#route-map routeT1
#match ip address 100
#set ip next-hop 10.1.1.2
#interface FastEthernet0/1
#ip policy route-map routeT1
```

Dynamic Routing

- Multiple (distinct) routing processes.
 - One per overlay network, and
 - One for the underlying network.

```
#router ospf 1
#network 200.1.1.0 0.0.0.255 area 0
#network 200.0.0.1 0.0.0.0 area 0
#router ospf 2
#network 10.0.0.0 0.255.255.255 area 0
#network 192.168.0.0 0.0.255.255 area 1
```

Multipoint Tunnels

- In a scenario with many nodes to interconnect, the simpler and more efficient approach is to have a single tunnel that interconnect multiple nodes - a multipoint tunnel.
- Directly connect using a single virtual overlay IP network, defined within a multipoint tunnel.
- In a multipoint tunnel scenario, the delivery header address is determined based on the address of the next hop within the overlay network.
- Address mapping between overlay and underlying network addresses may be statically defined or dynamically obtained.

Next Hop Resolution Protocol (NHRP)

- NHRP allows to map a tunnel interface IP address (overlay network) to the respective underlying network interface IP address.
- NHRP tunnel requires that all intervening nodes should be able to find a path to any of the other nodes.
- Each node should at least know one other overlay node (and respective overlay and underlaying addresses) through which he will try to find the other nodes address mappings.
 - Next Hop Server (NHS).
- Moreover, all nodes must be configured in a way that all nodes have at least one valid path to all other nodes - forming a partial mesh.

NHRP Information Exchange

If "10.1.1.3 - 203.0.0.1" entry not on RouterB NHRP mapping