Advanced Calc. Homework 12

Colin Williams

November 18, 2020

24.1

Let $f_n(x) = \frac{1 + 2\cos^2(nx)}{\sqrt{n}}$. Prove carefully that (f_n) converges uniformly to 0 on \mathbb{R} .

Proof.

Let's begin by fixing $\varepsilon > 0$ and examining $|f_n(x) - 0|$ for $x \in \mathbb{R}$:

$$|f_n(x) - 0| = |f_n(x)| = \left| \frac{1 + 2\cos^2(nx)}{\sqrt{n}} \right|$$

$$= \frac{|1 + 2\cos^2(nx)|}{|\sqrt{n}|}$$

$$\leq \frac{|1| + |2\cos^2(nx)|}{\sqrt{n}}$$

$$= \frac{1 + 2|\cos(nx)|^2}{\sqrt{n}}$$

$$\leq \frac{1 + 2}{\sqrt{n}}$$

$$= \frac{3}{\sqrt{n}}$$

by Triangle Inequality

since $|\cos(\theta)| \le 1$ for all θ

Thus, if we set $N:=\frac{9}{\varepsilon^2}$, we can obtain:

$$|f_n(x) - 0| \le \frac{3}{\sqrt{n}}$$

$$< \frac{3}{\sqrt{N}}$$

$$= \frac{3}{\sqrt{9/\varepsilon^2}}$$

$$= \frac{3}{3/\varepsilon} = \varepsilon$$

from above

for all n > N

Thus, we have shown the existence of N (that does not depend on x) such that $|f_n(x) - 0| < \varepsilon$ for all $x \in \mathbb{R}$ and all n > N, proving that (f_n) converges uniformly to 0 on \mathbb{R} .

24.2

For $x \in [0, \infty)$, let $f_n(x) = \frac{x}{n}$.

- (a) Find $f(x) = \lim f_n(x)$.
 - $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \frac{x}{n} = 0$. Thus, $f(x) \equiv 0$.
- (b) Determine whether $f_n \to f$ uniformly on [0,1].

• First, note that for $x \in [0,1]$, $f_n(x) = \frac{x}{n} \le \frac{1}{n}$. Thus, fixing $\varepsilon > 0$ and choosing $N := \frac{1}{\varepsilon}$ yields

$$|f_n(x) - 0| = |f_n(x)| = \left|\frac{x}{n}\right| \le \left|\frac{1}{n}\right|$$
 as discussed above
$$= \frac{1}{n}$$

$$< \frac{1}{N}$$
 for all $n > N$
$$= \frac{1}{1/\varepsilon} = \varepsilon$$

- Therefore, we have shown the existence of N (that does not depend on x) such that $|f_n(x) 0| < \varepsilon$ for all $x \in [0,1]$ and all n > N, proving that (f_n) converges uniformly to 0 on [0,1].
- (c) Determine whether $f_n \to f$ uniformly on $[0, \infty)$.
 - Suppose (for contradiction) that $f_n \to f$ uniformly on $[0, \infty)$. This means that taking $\varepsilon = 1$, there exists some N such that $\left|\frac{x}{n}\right| < 1$ for all n > N. In particular, we need to have $\left|\frac{x}{N+1}\right| < 1$. However, taking x = N+2 yields $\frac{x}{N+1} > 1$ violating the assumption that $f_n \to f$ uniformly. Thus, f_n does not converge uniformly to 0 on $[0, \infty)$

24.3

For $x \in [0, \infty)$, let $f_n(x) = \frac{1}{1 + x^n}$.

- (a) Find $f(x) = \lim_{n \to \infty} f_n(x)$.
 - First, note that $x^n \to 0$ for $x \in [0,1)$, $x^n \to 1$ for x=1 and $x^n \to \infty$ for x>1. Thus,

$$f(x) = \begin{cases} 1 & \text{for } x \in [0, 1) \\ \frac{1}{2} & \text{for } x = 1 \\ 0 & \text{for } x > 1 \end{cases}$$

- (b) Determine whether $f_n \to f$ uniformly on [0,1].
 - Theorem 24.3 tells us that if $f_n \to f$ uniformly on a set S, then if each f_n is continuous on S, we must have that f is continuous on S as well. However, each f_n is indeed continuous since the numerator, 1, and the denominator, $1 + x^n$, are both continuous functions (and the denominator never equals 0). Additionally, it is clear that f above is not continuous on [0,1] since it has a discontinuity as x=1. Thus, this convergence cannot be uniform by the contrapositive to Theorem 24.3.
- (c) Determine whether $f_n \to f$ uniformly on $[0, \infty)$.
 - If we had uniform continuity on $[0, \infty)$, then in particular, we would have uniform continuity on [0, 1]. However, we showed in the previous question that this is not the case. Thus, this convergence cannot be uniform

24.4

For $x \in [0, \infty)$, let $f_n(x) = \frac{x^n}{1 + x^n}$.

- (a) Find $f(x) = \lim_{n \to \infty} f_n(x)$.
 - Using the same analysis on x^n as we did in the last question, we can see that

$$f(x) = \begin{cases} 0 & \text{for } x \in [0, 1) \\ \frac{1}{2} & \text{for } x = 1 \\ 1 & \text{for } x > 1 \end{cases}$$

- (b) Determine whether $f_n \to f$ uniformly on [0,1].
 - We will again use the contrapositive to Theorem 24.3. Note that each f_n is continuous since x^n and $1+x^n$ are both continuous functions and $1+x^n \neq 0$ for all $x \in [0,1]$. However, f is clearly not continuous on [0,1] since f has a discontinuity at x=1. Thus, this convergence cannot be uniform by the contrapositive to Theorem 24.3.

- (c) Determine whether $f_n \to f$ uniformly on $[0, \infty)$.
 - Since this convergence is not uniform on [0,1], it cannot be uniformly convergent on $[0,\infty)$, so this convergence cannot be uniform

24.5

For $x \in [0, \infty)$, let $f_n(x) = \frac{x^n}{n + x^n}$.

- (a) Find $f(x) = \lim_{n \to \infty} f_n(x)$.
 - Once again, using the same analysis on x^n , we can see that for $x \le 1$, $f_n \to 0$. However, for x > 1, we need to consider:

$$\lim_{n \to \infty} \frac{x^n}{n + x^n} = \lim_{n \to \infty} \frac{1}{1 + n/x^n} = 1$$

since $n/x^n \to 0$ as exponential terms

grow faster than linear terms with base > 1

• Thus, we can define f as

$$f(x) = \begin{cases} 0 & \text{for } x \in [0, 1] \\ 1 & \text{for } x > 1 \end{cases}$$

- (b) Determine whether $f_n \to f$ uniformly on [0,1].
 - Let's fix $\varepsilon > 0$ and examine $|f_n(x) f(x)| = |f_n(x) 0| = |f_n(x)|$ for $x \in [0, 1]$:

$$|f_n(x)| = \left| \frac{x^n}{n + x^n} \right|$$

$$= \frac{|x^n|}{|n + x^n|}$$

$$= \frac{x^n}{n + x^n}$$
 since the numerator and denominator are both positive
$$\leq \frac{1}{n + x^n}$$
 since $x \leq 1$

$$\leq \frac{1}{n + 0}$$
 since $x \geq 0$

$$= \frac{1}{n}$$

• Thus, choosing $N := 1/\varepsilon$ yields:

$$|f_n(x)| \le \frac{1}{n}$$
 by the above comments
$$< \frac{1}{N}$$
 for all $n > N$
$$= \frac{1}{1/\varepsilon} = \varepsilon$$

- Therefore, we have shown the existence of N (that does not depend on x) such that $|f_n(x) 0| < \varepsilon$ for all $x \in [0,1]$ and all n > N, proving that f(x) = 0 (that does not depend on x) such that
- (c) Determine whether $f_n \to f$ uniformly on $[0, \infty)$.
 - First, note that each f_n is continuous on $[0, \infty)$ since x^n and $n+x^n$ are both continuous functions and $n+x^n \neq 0$ for all $x \in [0, \infty)$. However, f is not continuous on $[0, \infty)$ since f has different left and right limits at the point x = 1, thus x = 1 is a discontinuity. Thus, by applying the contrapositive of Theorem 24.3, we can conclude that this convergence is not uniform

3

24.6

Let
$$f_n(x) = \left(x - \frac{1}{n}\right)^2$$
 for $x \in [0, 1]$.

(a) Does the sequence (f_n) converge pointwise on the set [0,1]? If so, give the limit function.

• To determine this, lets examine the limit:

$$\lim_{n \to \infty} \left(x - \frac{1}{n} \right)^2 = \lim_{n \to \infty} \left(x^2 - \frac{2x}{n} + \frac{1}{n^2} \right)$$
$$= \left(x^2 - 2x(0) + 0 \right)$$
$$= x^2$$

- Thus, yes, the sequence converges pointwise to $f(x) = x^2$
- (b) Does (f_n) converge uniformly on [0,1]? Prove your assertion.
 - Let's fix $\varepsilon > 0$ and examine $|f_n(x) f(x)|$:

$$|f_n(x) - f(x)| = \left| \left(x - \frac{1}{n} \right)^2 - x^2 \right|$$

$$= \left| x^2 - \frac{2x}{n} + \frac{1}{n^2} - x^2 \right|$$

$$= \left| \frac{1}{n^2} - \frac{2x}{n} \right|$$

$$\leq \left| \frac{1}{n^2} \right| \qquad \text{since } \frac{2x}{n} \geq 0 \text{ for } x \in [0, 1]$$

$$= \frac{1}{n^2} \qquad \text{since } \frac{1}{n^2} > 0$$

• Thus, choosing $N := 1/\sqrt{\varepsilon}$ yields:

$$|f_n(x) - f(x)| \le \frac{1}{n^2}$$
 by the above comments
$$< \frac{1}{N^2}$$
 for all $n > N$
$$= \frac{1}{(1/\sqrt{\varepsilon})^2}$$

$$= \frac{1}{1/\varepsilon} = \varepsilon$$

• Therefore, we have shown the existence of N (that does not depend on x) such that $|f_n(x) - x^2| < \varepsilon$ for all $x \in [0, 1]$ and all n > N, proving that (f_n) converges uniformly to x^2 on [0, 1].

25.2

Let $f_n(x) = \frac{x^n}{n}$. Show (f_n) is uniformly convergent on [-1,1] and specify the limit function.

Proof.

I claim that the limit function is 0. I will prove this by using the definition of uniform continuity. Let $\varepsilon > 0$ and examine $|f_n(x) - 0| = |f_n(x)|$:

$$|f_n(x)| = \left| \frac{x^n}{n} \right|$$

$$= \frac{|x|^n}{n}$$

$$\leq \frac{1}{n} \qquad \text{since } |x| \leq 1 \text{ for all } x \in [-1, 1]$$

Thus, choosing $N := 1/\varepsilon$ yields:

$$|f_n(x)| \le \frac{1}{n}$$
 by the above comments $< \frac{1}{N}$ for all $n > N$ $= \frac{1}{1/\varepsilon} = \varepsilon$

Therefore, we have shown the existence of N (that does not depend on x) such that $|f_n(x) - 0| < \varepsilon$ for all $x \in [-1, 1]$ and all n > N, proving that (f_n) converges uniformly to 0 on [-1, 1].

25.3

Let $f_n(x) = \frac{n + \cos(x)}{2n + \sin^2(x)}$ for all real numbers x.

- (a) Show (f_n) converges uniformly on \mathbb{R} .
 - I will show this by using the definition of uniform continuity. First, to find our desired limit function, note:

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{n + \cos(x)}{2n + \sin^2(x)} = \lim_{n \to \infty} \frac{1 + \cos(x)/n}{2 + \sin^2(x)/n} = \frac{1}{2}$$

• Let $\varepsilon > 0$ and examine $|f_n(x) - \frac{1}{2}|$:

$$\left| f_n(x) - \frac{1}{2} \right| = \left| \frac{n + \cos(x)}{2n + \sin^2(x)} - \frac{1}{2} \right|$$

$$= \left| \frac{2n + 2\cos(x)}{2(2n + \sin^2(x))} - \frac{2n + \sin^2(x)}{2(2n + \sin^2(x))} \right|$$

$$= \frac{|2\cos(x) - \sin^2(x)|}{|4n + 2\sin^2(x)|}$$

$$\leq \frac{|2\cos(x)| + |-\sin^2(x)|}{4n + 2\sin^2(x)}$$

$$\leq \frac{2+1}{4n + 2\sin^2(x)}$$

$$\leq \frac{3}{4n}$$

by Triangle Inequality

since $|\cos(\theta)| \le 1$ and $|\sin(\theta)| \le 1$ for all θ

since $4n + 2\sin^2(x) \ge 4n$ for all x

• Thus, if we choose $N := 3/(4\varepsilon)$, we obtain:

$$\left| f_n(x) - \frac{1}{2} \right| \le \frac{3}{4n}$$

$$< \frac{3}{4N}$$

$$= \frac{3}{4 \cdot (3/(4\varepsilon))}$$

$$= \frac{3}{3/\varepsilon} = \varepsilon$$

by the above comments

for all n > N

- Therefore, we have shown the existence of N (that does not depend on x) such that $\left|f_n(x) \frac{1}{2}\right| < \varepsilon$ for all $x \in \mathbb{R}$ and all n > N, proving that $\left|f_n(x) \frac{1}{2}\right| < \varepsilon$ for all $x \in \mathbb{R}$ and all $x \in \mathbb{R}$ are the following that $\left|f_n(x) \frac{1}{2}\right| < \varepsilon$ for all $x \in \mathbb{R}$ and all $x \in \mathbb{R}$ are the following that $\left|f_n(x) \frac{1}{2}\right| < \varepsilon$ for all $x \in \mathbb{R}$ and all $x \in \mathbb{R}$ are the following that $\left|f_n(x) \frac{1}{2}\right| < \varepsilon$ for all $x \in \mathbb{R}$ and all $x \in \mathbb{R}$ are the following that $\left|f_n(x) \frac{1}{2}\right| < \varepsilon$ for all $x \in \mathbb{R}$ and all $x \in \mathbb{R}$ are the following that $\left|f_n(x) \frac{1}{2}\right| < \varepsilon$ for all $x \in \mathbb{R}$ and all $x \in \mathbb{R}$ are the following that $\left|f_n(x) \frac{1}{2}\right| < \varepsilon$ for all $x \in \mathbb{R}$ and all $x \in \mathbb{R}$ are the following that $\left|f_n(x) \frac{1}{2}\right| < \varepsilon$ for all $x \in \mathbb{R}$ and all $x \in \mathbb{R}$ are the following that $\left|f_n(x) \frac{1}{2}\right| < \varepsilon$ for all $x \in \mathbb{R}$ and all $x \in \mathbb{R}$ are the following that $\left|f_n(x) \frac{1}{2}\right| < \varepsilon$ for all $x \in \mathbb{R}$ and all $x \in \mathbb{R}$ for $x \in \mathbb{R}$ and $x \in \mathbb{R}$ for $x \in \mathbb{R}$ and $x \in \mathbb{R}$ for $x \in \mathbb{R}$ for
- (b) Calculate $\lim_{n\to\infty} \int_2^7 f_n(x) \ dx$

•

$$\lim_{n\to\infty} \int_2^7 f_n(x) \ dx = \int_2^7 \lim_{n\to\infty} f_n(x) \ dx \qquad \text{by Theorem 25.2 and the uniform convergence of } (f_n)$$

$$= \int_2^7 \frac{1}{2} \ dx \qquad \qquad \text{since } \frac{1}{2} \text{ is the limit function of } (f_n)$$

$$= \frac{x}{2} \Big|_{x=2}^{x=7}$$

$$= \frac{7}{2} - \frac{2}{2} = \boxed{\frac{5}{2}}$$

25.5

Let (f_n) be a sequence of bounded functions on a set S, and suppose $f_n \to f$ uniformly on S. Prove f is a bounded function on S.

Proof.

Assume that $f_n \to f$ uniformly on S and that each f_n is a bounded function. By the uniform convergence of f_n , we know that (for $\varepsilon = 1$) there exists some N such that for all n > N, we have $|f_n(x) - f(x)| < 1$ for all $x \in S$. Thus, in particular this must hold for n = N + 1. Additionally, since all f_n are bounded functions, we must have that f_{N+1} is bounded, say $|f_{N+1}(x)| \le M$ for all $x \in S$ and M > 0. Thus, we can do the following:

$$\begin{split} |f_{N+1}(x)-f(x)| &< 1\\ \iff |f(x)-f_{N+1}(x)| &< 1\\ \iff f_{N+1}(x)-1 &< f(x) &< 1+f_{N+1}(x) & \text{by Exercise 3.7(b)}\\ \implies -|f_{N+1}(x)|-1 &< f(x) &< 1+|f_{N+1}(x)| & \text{since } a \leq |a| \text{ for all } a \in \mathbb{R}\\ \iff |f(x)| &< 1+|f_{N+1}(x)| & \text{by Exercise 3.7(a)}\\ &\leq 1+M & \text{by the boundedness of } f_{N+1} \end{split}$$

Thus, we have shown that |f(x)| < 1 + M for all $x \in S$, so this means f is bounded and one possible upper bound is 1 + M.

25.6

- (a) Show that if $\sum |a_k| < \infty$, then $\sum a_k x^k$ converges uniformly on [-1,1] to a continuous function.
 - First, observe that $|a_k x^k| = |a_k| |x|^k \le |a_k|$ since $x \in [-1,1]$. Thus, by the Weierstrass M-Test (25.7), the series $\sum a_k x^k$ converges uniformly on [-1,1]. Furthermore, since the function $g_k(x) = a_k x^k$ is a continuous function for all k, then we can use Theorem 25.5 to conclude that $\sum a_k x^k$ represents a continuous function on S.
- (b) Does $\sum_{n=1}^{\infty} \frac{1}{n^2} x^n$ represent a continuous function on [-1,1]?
 - By part (a) of this question, $\sum_{n=1}^{\infty} \frac{1}{n^2} x^n$ will converge uniformly to a continuous function on [-1,1] if $\sum \left| \frac{1}{n^2} \right|$ is finite. However, by Theorem 15.1, we know that $\sum \frac{1}{n^p}$ converges if and only if p > 1. Thus, our desired series converges, so yes, the series represents a continuous function on [-1,1]

25.7

Show $\sum_{n=1}^{\infty} \frac{1}{n^2} \cos(nx)$ converges uniformly on \mathbb{R} to a continuous function.

Proof.

Let (M_n) be a sequence of nonnegative real numbers such that $M_n = \frac{1}{n^2}$. Furthermore, we know from Theorem 15.1 that $\sum M_n$ converges and we know that

$$\left| \frac{1}{n^2} \cos(nx) \right| = \left| \frac{1}{n^2} \right| |\cos(nx)| \le \frac{1}{n^2} = M_n$$
 for all $x \in \mathbb{R}$

since $|\cos(\theta)| \leq 1$ for all $\theta \in \mathbb{R}$. Thus, by Weierstrass M-Test (25.7), we can conclude that $\sum_{n=1}^{\infty} \frac{1}{n^2} \cos(nx)$ converges uniformly on \mathbb{R} . Therefore, since $g_n(x) = \frac{1}{n^2} \cos(nx)$ is continuous (by the continuity of $\cos(\cdot)$), we can use Theorem 25.5 to finally say that $\sum_{n=1}^{\infty} \frac{1}{n^2} \cos(nx)$ represents a continuous function.

25.8

Show $\sum_{n=1}^{\infty} \frac{x^n}{n^2 2^n}$ has radius of converge 2 and the series converges uniformly to a continuous function on [-2,2].

Proof.

Recall that the radius of convergence, R of a power series $\sum a_n x^n$ is equal to $\frac{1}{\beta}$ where $\beta = \limsup |a_n|^{1/n}$ or $\beta = \lim \left| \frac{a_{n+1}}{a_n} \right|$

if the limit exists. I will use this second definition of β to find that:

$$\beta = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{n^2 2^n}{(n+1)^2 2^{n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{1}{2} \left| \frac{n}{n+1} \right|^2$$

$$= \frac{1}{2} \cdot \left(\lim_{n \to \infty} \frac{n}{n+1} \right)^2$$

$$= \frac{1}{2} \cdot \left(\lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} \right)^2$$

$$= \frac{1}{2} \cdot \left(\frac{1}{1+0} \right)^2 = \frac{1}{2}$$

Thus, R=2, just as desired. I will now examine if the series conberges at $x=\pm 2$. For x=2, the series becomes $\sum_{n=1}^{\infty} \frac{2^n}{n^2 2^n} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ which we know converges by Theorem 15.1. Alternatively, for x=-2, we have $\sum_{n=1}^{\inf ty} \frac{(-2)^n}{n^2 2^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ which converges by the Alternating Series Test. Therefore, the interval of convergence for this series is indeed [-2,2]. We now need to show that this convergence is uniform and the limiting function is continuous. Note that for $M_n = \frac{1}{n^2}$, we have that

$$\left| \frac{x^n}{n^2 2^n} \right| = \frac{|x|^n}{|n^2 2^n|} \le \frac{2^n}{n^2 2^n} = \frac{1}{n^2} = M_n$$
 for all $x \in [-2, 2]$

Thus, since $\sum M_n$ converges (as we have already shown), then we can use the Weierstrass M-Test (25.7) to conclude that $\sum_{n=1}^{\infty} \frac{x^n}{n^2 2^n}$ converges uniformly on [-2,2]. Furthermore, since the function $g_n(x) = \frac{x^n}{n^2 2^n}$ is continuous for all n, then we can use Theorem 25.5 to also conclude that the series we are interested in represents a continuous function on [-2,2]. \square

25.9

- (a) Let 0 < a < 1. Show the series $\sum_{n=0}^{\infty} x^n$ converges uniformly on [-a, a] to $\frac{1}{1-x}$.
 - Notice that $|x^n| = |x|^n \le a^n$ for all $x \in [-a, a]$. Furthermore, $\sum a^n$ converges quite easily by the Root Test (since $\limsup |a^n|^{1/n} = a < 1$). Therefore, the Weierstrass M-Test (25.7) tells us that $\sum_{n=1}^{\infty} x^n$ converges uniformly for all $x \in [-a, a]$. Furthermore, since we know that the convergence is uniform, we can examine the value of this series as follows:

Let
$$f_k(x) = \sum_{n=0}^k x^n$$

$$\Rightarrow x f_k(x) = \sum_{n=0}^k x^{n+1} = \sum_{n=1}^{k+1} x^n$$

$$\Rightarrow f_k(x) - x f_k(x) = \sum_{n=0}^k x^n - \sum_{n=1}^{k+1} x^n = 1 + \sum_{n=1}^k x^n - \sum_{n=1}^k x^n - x^{k+1}$$

$$\Rightarrow f_k(x)(1-x) = 1 - x^{k+1}$$

$$\Rightarrow f_k(x) = \frac{1-x^{k+1}}{1-x}$$

$$\Rightarrow \sum_{n=0}^{\infty} x^n = \lim_{k \to \infty} f_k(x) = \lim_{k \to \infty} \frac{1-x^{k+1}}{1-x} = \frac{1}{1-x}$$
since $|x| < 1 \implies x^{k+1} \to 0$

- Thus, the series does indeed converge uniformly on [-a, a] and the limiting function is as desired
- (b) Does the series $\sum_{n=0}^{\infty} x^n$ converge uniformly on (-1,1) to $\frac{1}{1-x}$? Explain.

• Exercise 25.5 told us that if a sequence of functions (f_n) on a set S is bounded and $f_n \to f$ uniformly on S, then f must also be bounded on S. Thus, the contrapositive to this statement would say that if (f_n) is a bounded sequence of functions on S such that $f_n \to f$, but f is not bounded on S, then this convergence must not be uniform. However, we can see that $f(x) = \frac{1}{1-x}$ is not bounded on (-1,1) since if we were to claim there exists some M > 0 such that $f(x) \le M$ for all $x \in (-1,1)$, then we can consider $x_0 = 1 - \frac{1}{2M} \in (-1,1)$ to get $f(x_0) = \frac{1}{1-(1-(1/2M))} = \frac{1}{1/2M} = 2M > M$. Thus, f cannot possibly be bounded, so Exercise 25.5 tells us that this convergence is not uniform on (-1,1).