

ASTRA-SIM Description

Saeed Rashidi

Ph.D. Student, School of Electrical & Computer Engineering Georgia Institute of Technology

saeed.rashidi@gatech.edu

Acknowledgments: Srinivas Sridharan (Facebook), Sudarshan Srinivasan (Intel)

Agenda

Time (CET)	Time (ET)	Topic	Presenter	
15:00 – 16:00	9:00 – 10:00	Introduction to Distributed Deep Learning Training Platforms	Tushar Krishna Saeed Rashidi	
16:00 – 17:00	10:00 – 11:00	ASTRA-sim		
17:00 – 17:10	11:00 – 11:10	Break		
17:10 – 17:50	11:10 – 11:50	Demo and Exercises	William Won and Taekyung Heo Tushar Krishna and Saeed Rashidi	
17:50 – 18:00	11:50 – 12:00	Extensions and Future Development		

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) https://astra-sim.github.io/tutorials/asplos-2022

Attention: Tutorial is being recorded

Overview

How to Model and Evaluate the Communication Effect

• It is a complex problem and can be viewed as

three layers:

- 1. Workload layer (the training loop):
 - Parallelism approach
 - Compute power
 - Communication size & type and dependency order
- 2. System layer:
 - Collective communication algorithm
 - Chunk size, schedule of collectives
- 3. Network layer:
 - Physical topology
 - Congestion control, communication protocol
 - Link BW, latency, buffers, routing algorithm

ASTRA-SIM Architecture

Workload layer:

- Supports Data-Parallel, Model-Parallel, Hybrid-Parallel training loops
- Easy to add new arbitrary training loop

System:

- Ring based, Tree-based, AlltoAll based, and multi-phase collectives
- Easy to add new collective communication

Network:

- Supports Analytical and GARNET Network simulator
- Analytical:
 - Supports hierarchical topologies
 - Each level in hierarchy can be switch, ring, FC....
 - https://github.com/astrasim/analytical/tree/develop
- GARNET:
 - Supports switch-based and torus-based topologies
 - Supports credit-based flow control
 - https://github.com/georgia-tech-synergylab/gem5 astra/tree/reorgV2
- Can add new topologies in both Analytical and GARNET

ASTRA-SIM Runtime Structure

- Each NPU is represented through separate instance of Workload, System, and Network API.
- Network API class is implemented by the network backend.

ASTRA-SIM Directory

#	rashidi1saeed Merge pull request #44	from srinivas212/master × f7e54a8 15 hours ago	335 commits
	.github/workflows	Added GitHub Actions (#30)	8 months ago
	astra-sim	CSV Writer Updated	19 hours ago
	build	gem5 is now compatible with new changes	18 hours ago
	docs/images	updated	9 months ago
	examples	run_multi example script bug fixed	18 hours ago
	extern	Merge pull request #43 from astra-sim/saeed_astra_dev	15 hours ago
	inputs	Update README.md	17 hours ago
	scripts/workload_generator	-:TESTED:-	last month
	test	Fix formatting using clang-format	9 months ago
	.clang-format	Use PyTorch .clang-format	9 months ago
	.clang-tidy	Added GitHub Actions (#30)	8 months ago
	.gitignore	Added GitHub Actions (#30)	8 months ago
	.gitmodules	Add scale sim v2 submodule	last month
	CMakeLists.txt	CMAKELists updated	yesterday
	CODEOWNERS	Modify CODEOWNERS	16 hours ago
	LICENSE	Update LICENSE	9 months ago
	README.md	Update README.md	9 months ago

Workload Layer

Workload Layer Training Loop

• Code Structure

Implements different training loops

• Different training loops can be captured using state machines.

• Different training loops can be captured using state machines.

Different training loops can be captured using state machines.

Different training loops can be captured using state machines.

Input-grad states

Different training loops can be captured using state machines.

• Different training loops can be captured using state machines.

Different training loops can be captured using state machines.

Different training loops can be captured using state machines.

Different training loops can be captured using state machines.

Different training loops can be captured using state machines.

Different training loops can be captured using state machines.

Different training loops can be captured using state machines.

Different training loops can be captured using state machines.

Different training loops can be captured using state machines.

Different training loops can be captured using state machines.

System Layer

System Layer Collective Implementation

Code Structure

System Layer Collective Implementation

- Each collective algorithm works based on a logical topology.
- Logical topologies are implemented in "system/topology/*" and instantiated in sys.cc.
- Collective algorithms are implemented in "system/topology/*" and instantiated in sys.cc.
- Collective algorithms can be implemented using state machines.

System Layer Collective Implementation

Collective algorithms can be implemented using state machines.

- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

Dim 1 queue Dim 2 queue Dim 3 queue

- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

AR: All-Reduce

RS: Reduce-Scatter

- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

AR: All-Reduce

RS: Reduce-Scatter

- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

AR: All-Reduce

RS: Reduce-Scatter

- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

AR: All-Reduce

RS: Reduce-Scatter

- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

AR: All-Reduce

RS: Reduce-Scatter

- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

AR: All-Reduce

RS: Reduce-Scatter

- There are one/multiple queue(s) per each physical network dimension.
- A collective is broken into multiple chunks and inserted into the first queue.
- Queues process chunks in-order.

AG: All-Gather

AR: All-Reduce

```
Collective Policy for
    sample_torus_sys.txt
    scheduling-policy: LIFO
    endpoint-delay: 1
    active-chunks-per-dimension: 1
    preferred-dataset-splits: 4
    boost-mode: 0
    all-reduce-implementation: ring_ring_ring
    all-gather-implementation: ring_ring_ring
     reduce-scatter-implementation: ring_ring_ring
    all-to-all-implementation: ring_ring_ring
    collective-optimization: localBWAware
10
11
```



```
Constant delay before NPU sending a message
    sample_torus_sys.txt
     scheduling-policy: LIF0
     endpoint-delay: 1
     active-chunks-per-dimension: 1
     preferred-dataset-splits: 4
     boost-mode: 0
     all-reduce-implementation: ring_ring_ring
     all-gather-implementation: ring_ring_ring
     reduce-scatter-implementation: ring_ring_ring
     all-to-all-implementation: ring_ring_ring
     collective-optimization: localBWAware
10
11
```


Max running chunks per each physical network dimension

```
sample_torus_sys.txt
     schedulin<mark>g-policy: LIFO</mark>
    endpoint-delay: 1
    active-chunks-per-dimension: 1
     preferred-dataset-splits: 4
     boost-mode: 0
     all-reduce-implementation: ring_ring_ring
     all-gather-implementation: ring_ring_ring
     reduce-scatter-implementation: ring_ring_ring
     all-to-all-implementation: ring_ring_ring
     collective-optimization: localBWAware
10
11
```



```
# of chunks to split each collective into
    sample_torus_sys.tot
     scheduling-policy: LIF0
     endpoint-delay: 1
     active-chunks-per-dimension: 1
    preferred-dataset-splits: 4
     boost-mode: 0
     all-reduce-implementation: ring_ring_ring
     all-gather-implementation: ring_ring_ring
     reduce-scatter-implementation: ring_ring_ring
     all-to-all-implementation: ring_ring_ring
     collective-optimization: localBWAware
10
11
```



```
Speed-up the simulation
    sample_torus_sys.txt
    scheduling-policy: LIFO
    endpoint-delay: 1
    active-chunks-per-dimension: 1
    preferred-dataset-splits: 4
    boost-mode: 0
    all-reduce-implementation: ring_ring_ring
    all-gather-implementation: ring_ring_ring
     reduce-scatter-implementation: ring_ring_ring
    all-to-all-implementation: ring_ring_ring
    collective-optimization: localBWAware
10
11
```



```
Hierarchical collective algorithm implementation
    sample_torus_sys.txt
     scheduling-policy: LIF0
     endpoint-delay: 1
     active-chunks-per-dimension: 1
     preferred-dataset-splits: 4
     boost-mode: 0
     all-reduce-implementation: ring_ring_ring
     all-gather-implementation: ring_ring_ring
     reduce-scatter-implementation: ring_ring_ring
     all-to-all-implementation: ring_ring_ring
     collective-optimization: localBWAware
10
11
```


Network Layer

Network Layer Structure

• Network backends are maintained separately and are imported as submodule.

Simulation Control Flow

- The main file is implemented inside network layer.
- Network layer creates corresponding System and NetworkAPI instances.
- Each system layer instance **internally** creates its workload layer instance.

Where do instantiations happen?

Analytical backend: analytical/src/main.cc

Garnet backend: garnet/gem5_astra/src/mem/ruby/network/garnet2.0/NetworkInterface.cc

Network Layer

```
void main(){
Instantiate NetworkAPI[];
Instantiate System[];
for(auto &s:system){
  s->workload.fire();
process all events();
return;
```

Garnet vs. Analytical

 Regular topologies + topology-aware collectives make traffic patterns to be congestionless (in most cases), enabling analytical backend to calculate latencies fast and accurately.

Analytical	Garnet
Supports hierarchical topologies	Supports switch-based and torus-based topologies
Each level in hierarchy can be switch, ring, FC	Supports credit-based flow control
Uses simple link latency, BW analytical model to get latency.	Performs packetization, flow control, congestion modeling, etc.
Fast	Slow for large systems & big models
Accurate when comm patterns are congestionless.	Accurate in all scenarios.

Network Input

Garnet network input

```
sample_torus.txt
    num-npus: 12
    num-packages: 6
    package-rows: 3
     topology: Torus3D
     local-rings: 2
    vertical-rings: 1
    horizontal-rings: 1
     flit-width: 2048
     local-packet-size: 4096
    package-packet-size: 4096
    tile-link-width: 256
     package-link-width: 256
13
    vcs-per-vnet: 50
14
     routing-algorithm: Ring XY
     router-latency: 1
15
     local-link-latency: 90
16
     package-link-latency: 200
18
     buffers-per-vc: 5000
     local-link-efficiency: 1.0
20
    package-link-efficiency: 1.0
21
```

Analytical network input

```
sample_Torus3D.json
       "topology-name": "Hierarchical",
       "topologies-per-dim": ["Ring", "Ring", "Ring"],
       "dimension-type": ["N", "N", "N"],
       "dimensions-count": 3,
 6
       "units-count": [2, 2, 3],
       "links-count": [2, 2, 2],
 8
       "link-latency": [10, 100, 100],
       "link-bandwidth": [32, 16, 16],
10
       "nic-latency": [0, 0, 0],
       "router-latency": [0, 0, 0],
11
       "hbm-latency": [500, 500, 500],
12
13
       "hbm-bandwidth": [370, 370, 370],
14
       "hbm-scale": [0, 0, 0]
15
```

Intra-package scale-up

Inter-package scale-up [] Package

ASTRA-SIM Run Script

A Sample Run Script

```
run_DLRM_analytical.sh ×
    #! /bin/bash -v
    # Absolue path to this script
     SCRIPT_DIR=$(dirname "$(realpath $0)")
     # Absolute paths to useful directories
     BINARY="${SCRIPT_DIR:?}"/../build/astra_analytical/build/AnalyticalAstra/bin/AnalyticalAstra
    NETWORK="${SCRIPT_DIR:?}"/../inputs/network/analytical/sample_Torus3D.json
     SYSTEM="${SCRIPT_DIR:?}"/../inputs/system/sample_torus_sys.txt
    WORKLOAD="${SCRIPT_DIR:?}"/../inputs/workload/DLRM_HybridParallel.txt
10
     STATS="${SCRIPT DIR:?}"/results/run DLRM analytical
11
12
     rm -rf "${STATS}"
13
14
    mkdir "${STATS}"
15
16
    "${BINARY}" \
    --network-configuration="${NETWORK}" \
17
    --system-configuration="${SYSTEM}" \
18
19
     --workload-configuration="${WORKLOAD}" \
20
    --path="${STATS}/" \
21
     --run-name="sample DLRM" \
22
    --num-passes=2 \
23
    --total-stat-rows=1 \
24
     --stat-row=0
25
26
```

A Sample Run Script

```
run_DLRM_analytical.sh ×
    #! /bin/bash -v
    # Absolue path to this script
    SCRIPT_DIR=$(dirname "$(realpath $0)")
    # Absolute paths to useful directories
    BINARY="${SCRIPT_DIR:?}"/../build/astra_analytical/build/AnalyticalAstra/bin/AnalyticalAstra
    NETWORK="${SCRIPT_DIR:?}"/../inputs/network/analytical/sample_Torus3D.json
    SYSTEM="${SCRIPT_DIR:?}"/../inputs/system/sample_torus_sys.txt
    WORKLOAD="${SCRIPT_DIR:?}"/../inputs/workload/DLRM_HybridParallel.txt
10
    STATS="${SCRIPT DIR:?}"/results/run DLRM analytical
11
12
     rm -rf "${STATS}"
13
14
    mkdir "${STATS}"
15
16
    "${BINARY}" \
     --network-configuration="${NETWORK}" \
17
     --system-configuration="${SYSTEM}"
18
19
    --workload-configuration="${WORKLOAD}"
20
     --path="${STATS}/" \
     --run-name="sample DLRM" \
22
    --num-passes=2 \
23
    --total-stat-rows=1 \
24
    --stat-row=0
25
26
```

ASTRA-SIM Reports

• Endtoend.csv.

Layer name	С	D	Е	F	G	Н	I	J	K	L	M	N	0
	fwd compute	wg compute	ig compute	fwd exposed	wg exposed o	ig exposed c	cfwd total cor	wg total com	ig total comr	workload fin	i total comp	total exposed	comm
conv1sample_Resnet	26.006	64.582	0	C	17.364	C	0	17.366	0	4875.201	2164.9	2710.301	
layer_64_1_c sample_Resnet	6.912	14.976	7.296	C	0	C	0	4.796	0	4875.201	_		
layer_64_1_c sample_Resnet	6.912	14.976	6.912	C	0	C	0	27.08	0	4875.201			
layer_64_1_c sample_Resnet	21.888	28.288	20.736	C	0	C	0	47.906	0	4875.201	_		
layer_64_1_c sample_Resnet	6.912	14.976	7.296	C	0	C	0	13.648	0	4875.201	_		
layer_64_2_c sample_Resnet	7.296	19.968	6.912	C	0	C	0	10.166	0	4875.201			
layer_64_2_c sample_Resnet	21.888	28.288	20.736	C	0	C	0	20.102	0	4875.201			
layer_64_2_c sample_Resnet	6.912	14.976	7.296	C	0	C	0	22.048	0	4875.201			
layer_64_3_c sample_Resnet	7.296	19.968	6.912	C	0	C	0	30.082	0	4875.201			
layer_64_3_c sample_Resnet	21.888	28.288	20.736	C	0	C	0	11.334	0	4875.201			
layer_64_3_c sample_Resnet	6.912	14.976	7.296	C	0	C	0	7.526	0	4875.201			
layer_128_1_sample_Resnet	5.184	12.288	5.184	C	0	C	0	36.03	0	4875.201			
layer_128_1_sample_Resnet	7.296	19.968	7.04	C	0	C	0	9.08	0	4875.201			
layer_128_1_sample_Resnet	12.96	13.312	11.68	C	0	C	0	28.13	0	4875.201			
layer_128_1_sample_Resnet	4.672	10.24	5.184	C	0	C	0	13.272	0	4875.201	-		
layer_128_2_sample_Resnet	5.184	8.192	4.672	C	0	C	0	30.868	0	4875.201			
layer_128_2_sample_Resnet	12.96	13.312	11.68	C	0	C	0	33.952	0	4875.201			
layer_128_2_sample_Resnet	4.672	10.24	5.184	C	0	C	0	101.056	0	4875.201			

• Endtoend.csv.

		Run nam	ne L												
	Α	Rairinan	С	D	Е	F	G	Н	1	J	K	L	M	N	0
1			fwd compute	wg compute	ig compute	fwd exposed	wg exposed	ig exposed c	c fwd total cor	wg total com	ig total comn v	vorkload fini	total comp	total exposed	comm
2	conv1	sample_Resnet	26.006	64.582	0	C	17.364	(C	17.366	0	4875.201	2164.9	2710.301	
3	layer_64_1_	csample_Resnet	6.912	14.976	7.296	C	0	(C	4.796	0	4875.201			
4	layer_64_1_	csample_Resnet	6.912	14.976	6.912	C	0	(0	27.08	0	4875.201			
5	layer_64_1_	csample_Resnet	21.888	28.288	20.736	C	0	(0	47.906	0	4875.201			
6	layer_64_1_	csample_Resnet	6.912	14.976	7.296	C	0	(C	13.648	0	4875.201			
7	layer_64_2_	csample_Resnet	7.296	19.968	6.912	C	0	(C	10.166	0	4875.201			
8	layer_64_2_	csample_Resnet	21.888	28.288	20.736	C	0	(C	20.102	0	4875.201			
9	layer_64_2_	csample_Resnet	6.912	14.976	7.296	C	0	(C	22.048	0	4875.201			
10	layer_64_3_	csample_Resnet	7.296	19.968	6.912	C	0	(C	30.082	0	4875.201			
11	layer_64_3_	csample_Resnet	21.888	28.288	20.736	C	0	(C	11.334	0	4875.201			
12	layer_64_3_	csample_Resnet	6.912	14.976	7.296	C	0	(C	7.526	0	4875.201			
13	layer_128_1	_sample_Resnet	5.184	12.288	5.184	C	0	(C	36.03	0	4875.201			
14	layer_128_1	_sample_Resnet	7.296	19.968	7.04	C	0	C	C	9.08	0	4875.201			
15	layer_128_1	_sample_Resnet	12.96	13.312	11.68	C	0	C	C	28.13	0	4875.201			
16	layer_128_1	_sample_Resnet	4.672	10.24	5.184	C	0	(C	13.272	0	4875.201			
17	layer_128_2	sample_Resnet	5.184	8.192	4.672	C	0	C	C	30.868	0	4875.201			
18	layer_128_2	sample_Resnet	12.96	13.312	11.68	C	0	C	C	33.952	0	4875.201			
19	layer_128_2	sample_Resnet	4.672	10.24	5.184	C	0	C	C	101.056	0	4875.201			

• Endtoend.csv.

Compute times (us)

	А	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0
1			fwd compute	wg compute	ig compute	fwd exposed	wg exposed o	ig exposed c	fwd total cor	wg total com	ig total comn	workload fini	total comp	total exposed	comm
2	conv1	sample_Resnet	2 <u>6.</u> 006	64.582	0	0	17.364	0	0	17.366	0	4875.201	2164.9	2710.301	
3	layer_64_1_	sample_Resnet	6.912	14.976	7.296	0	0	0	0	4.796	0	4875.201			
4	layer_64_1_	sample_Resnet	6.912	14.976	6.912	0	0	0	0	27.08	0	4875.201			
5	layer_64_1_	csample_Resnet	21.888	28.288	20.736	0	0	0	0	47.906	0	4875.201			
6	layer_64_1_	csample_Resnet	6.912	14.976	7.296	0	0	0	0	13.648	0	4875.201			
7	layer_64_2_	csample_Resnet	7.296	19.968	6.912	0	0	0	0	10.166	0	4875.201			
8	layer_64_2_	csample_Resnet	21.888	28.288	20.736	0	0	0	0	20.102	0	4875.201			
9	layer_64_2_	csample_Resnet	6.912	14.976	7.296	0	0	0	0	22.048	0	4875.201			
10	layer_64_3_	sample_Resnet	7.296	19.968	6.912	0	0	0	0	30.082	0	4875.201			
11	layer_64_3_	csample_Resnet	21.888	28.288	20.736	C	0	0	0	11.334	0	4875.201			
12	layer_64_3_	sample_Resnet	6.912	14.976	7.296	0	0	0	0	7.526	0	4875.201			
13	layer_128_1	_sample_Resnet	5.184	12.288	5.184	0	0	0	0	36.03	0	4875.201			
14	layer_128_1	_sample_Resnet	7.296	19.968	7.04	0	0	0	0	9.08	0	4875.201			
15	layer_128_1	_sample_Resnet	12.96	13.312	11.68	0	0	0	0	28.13	0	4875.201			
16	layer_128_1	_sample_Resnet	4.672	10.24	5.184	0	0	0	0	13.272	0	4875.201			
17	layer_128_2	_sample_Resnet	5.184	8.192	4.672	C	0	0	0	30.868	0	4875.201			
18	layer_128_2	_sample_Resnet	12.96	13.312	11.68	C	0	0	0	33.952	0	4875.201			
19	layer_128_2	_sample_Resnet	4.672	10.24	5.184	C	0	0	0	101.056	0	4875.201			

• Endtoend.csv.

Raw communication times (us)

	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0
1]	fwd compute	wg compute	ig compute	fwd exposed	wg exposed o	ig exposed co	fwd total con	wg total com	ig total com	workload fini	total comp	total exposed	comm
2	conv1	sample_Resnet	26.006	64.582	0	0	17.364	0	0	17 <u>.3</u> 66		4875.201	2164.9	2710.301	
3	layer_64_1_c	sample_Resnet	6.912	14.976	7.296	0	0	0	0	4.796	0	4875.201			
4	layer_64_1_c	sample_Resnet	6.912	14.976	6.912	0	0	0	0	27.08	0	4875.201			
5	layer_64_1_c	sample_Resnet	21.888	28.288	20.736	0	0	0	0	47.906	0	4875.201			
6	layer_64_1_c	sample_Resnet	6.912	14.976	7.296	0	0	0	0	13.648	0	4875.201			
7	layer_64_2_d	sample_Resnet	7.296	19.968	6.912	0	0	0	0	10.166	0	4875.201			
8	layer_64_2_d	sample_Resnet	21.888	28.288	20.736	0	0	0	0	20.102	0	4875.201			
9	layer_64_2_d	sample_Resnet	6.912	14.976	7.296	0	0	0	0	22.048	0	4875.201			
10	layer_64_3_c	sample_Resnet	7.296	19.968	6.912	0	0	0	0	30.082	0	4875.201			
11	layer_64_3_c	sample_Resnet	21.888	28.288	20.736	0	0	0	0	11.334	0	4875.201			
12	layer_64_3_c	sample_Resnet	6.912	14.976	7.296	0	0	0	0	7.526	0	4875.201			
13	layer_128_1_	sample_Resnet	5.184	12.288	5.184	0	0	0	0	36.03	0	4875.201			
14	layer_128_1_	sample_Resnet	7.296	19.968	7.04	0	0	0	0	9.08	0	4875.201			
15	layer_128_1_	sample_Resnet	12.96	13.312	11.68	0	0	0	0	28.13	0	4875.201			
16	layer_128_1_	sample_Resnet	4.672	10.24	5.184	0	0	0	0	13.272	0	4875.201			
17	layer_128_2_	sample_Resnet	5.184	8.192	4.672	0	0	0	0	30.868	C	4875.201			
18	layer_128_2_	sample_Resnet	12.96	13.312	11.68	0	0	0	0	33.952	C	4875.201			
19	layer_128_2_	sample_Resnet	4.672	10.24	5.184	0	0	0	0	101.056	0	4875.201			

• Endtoend.csv.

Exposed communication times (us)

	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0
1			fwd compute	wg compute	ig compute	fwd exposed	wg exposed o	ig exposed c	fwd total cor	wg total com	ig total comr	workload fin	i total comp	total exposed	comm
2	conv1	sample_Resnet	26.006	64.582	0	0	17. <u>36</u> 4	0	0	17.366	0	4875.201	2164.9	2710.301	
3	layer_64_1_	sample_Resnet	6.912	14.976	7.296	0	0	0	0	4.796	0	4875.201			
4	layer_64_1_	sample_Resnet	6.912	14.976	6.912	. 0	0	0	0	27.08	0	4875.201			
5	layer_64_1_	sample_Resnet	21.888	28.288	20.736	0	0	0	0	47.906	0	4875.201			
6	layer_64_1_	sample_Resnet	6.912	14.976	7.296	0	0	0	0	13.648	0	4875.201			
7	layer_64_2_	sample_Resnet	7.296	19.968	6.912	. 0	0	0	0	10.166	0	4875.201			
8	layer_64_2_	sample_Resnet	21.888	28.288	20.736	0	0	0	0	20.102	0	4875.201			
9	layer_64_2_	sample_Resnet	6.912	14.976	7.296	0	0	0	0	22.048	0	4875.201			
10	layer_64_3_	sample_Resnet	7.296	19.968	6.912	. 0	0	0	0	30.082	0	4875.201			
11	layer_64_3_	sample_Resnet	21.888	28.288	20.736	0	0	0	0	11.334	0	4875.201			
12	layer_64_3_0	sample_Resnet	6.912	14.976	7.296	0	0	0	0	7.526	0	4875.201			
13	layer_128_1	sample_Resnet	5.184	12.288	5.184	. 0	0	0	0	36.03	0	4875.201			
14	layer_128_1	sample_Resnet	7.296	19.968	7.04	. 0	0	0	0	9.08	0	4875.201			
15	layer_128_1	sample_Resnet	12.96	13.312	11.68	0	0	0	0	28.13	0	4875.201			
16	layer_128_1	sample_Resnet	4.672	10.24	5.184	. 0	0	0	0	13.272	0	4875.201			
17	layer_128_2	sample_Resnet	5.184	8.192	4.672	. 0	0	0	0	30.868	0	4875.201			
18	layer_128_2	sample_Resnet	12.96	13.312	11.68	0	0	0	0	33.952	0	4875.201			
19	layer_128_2	sample_Resnet	4.672	10.24	5.184	. 0	0	0	0	101.056	0	4875.201			

Overall Results

• Endtoend.csv.

Total compute & exposed communication times across all layers (us)

	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0
1			fwd compute	wg compute	ig compute	fwd exposed	wg exposed o	ig exposed c	fwd total cor	wg total com	ig total comr	workload fin	total comp	total exposed	comm
2	conv1	sample_Resnet	26.006	64.582	0	0	17.364	0	0	17.366	0	4875.201	2164.9	2710.301	1
3	layer_64_1_	sample_Resnet	6.912	14.976	7.296	0	0	0	0	4.796	0	4875.201			
4	layer_64_1_	sample_Resnet	6.912	14.976	6.912	0	0	0	0	27.08	0	4875.201			
5	layer_64_1_	sample_Resnet	21.888	28.288	20.736	0	0	0	0	47.906	0	4875.201			
6	layer_64_1_	sample_Resnet	6.912	14.976	7.296	0	0	0	0	13.648	0	4875.201			
7	layer_64_2_	sample_Resnet	7.296	19.968	6.912	0	0	0	0	10.166	0	4875.201			
8	layer_64_2_	sample_Resnet	21.888	28.288	20.736	0	0	0	0	20.102	0	4875.201			
9	layer_64_2_	sample_Resnet	6.912	14.976	7.296	0	0	0	0	22.048	0	4875.201			
10	layer_64_3_	sample_Resnet	7.296	19.968	6.912	0	0	0	0	30.082	0	4875.201			
11	layer_64_3_	sample_Resnet	21.888	28.288	20.736	0	0	0	0	11.334	0	4875.201			
12	layer_64_3_	sample_Resnet	6.912	14.976	7.296	0	0	0	0	7.526	0	4875.201			
13	layer_128_1	sample_Resnet	5.184	12.288	5.184	0	0	0	0	36.03	0	4875.201			
14	layer_128_1	sample_Resnet	7.296	19.968	7.04	0	0	0	0	9.08	0	4875.201			
15	layer_128_1	sample_Resnet	12.96	13.312	11.68	0	0	0	0	28.13	0	4875.201			
16	layer_128_1	sample_Resnet	4.672	10.24	5.184	0	0	0	0	13.272	0	4875.201			
17	layer_128_2	sample_Resnet	5.184	8.192	4.672	C	0	0	0	30.868	0	4875.201			
18	layer_128_2	sample_Resnet	12.96	13.312	11.68	C	0	0	0	33.952	0	4875.201			
19	layer_128_2	sample_Resnet	4.672	10.24	5.184	0	0	0	0	101.056	0	4875.201			

Overall Results

• Detailed.csv.

Average chunk queueing delay per each collective phase (us)

	Α	В	С	D	E	F	G	Н	I	J	K	L	M
1			queuing d	queuing delay phase 1	queuing delay phase 2	queuing delay phase 3	queuing delay phase 4	queuing delay phase 5	network delay phase 1	network delay phase 2	network delay phase 3	network delay phase 4	network delay phase 5
2	conv1	sample_Resnet	0	1.8795	0.5455	0	0.137	2.3579	0.035	0.018	0.005	0.018	0.035
3	layer_64_1_	sample_Resnet	0	0.453	0.03925	0	0.02725	0.2425	0.06	0.03	0.008	0.03	0.06
4	layer_64_1_	sample_Resnet	0	2.9225	2.3655	0	0.065	7.1915	0.015	0.008	0.002	0.008	0.015
5	layer_64_1_	sample_Resnet	0	6.8005	2.5125	1.2645	3.2625	6.7425	0.135	0.068	0.017	0.068	0.135
6	layer_64_1_	sample_Resnet	0	2.013	0.412	0	0.227	2.536	0.06	0.03	0.008	0.03	0.06
7	layer_64_2_	sample_Resnet	0	2.889	0.03925	0	0.02725	0.2425	0.06	0.03	0.008	0.03	0.06
8	layer_64_2_	sample_Resnet	0	5.9785	0.08275	0	0.07075	0.5485	0.135	0.068	0.017	0.068	0.135
9	layer_64_2_	sample_Resnet	0	1.901	2.947	0	0.227	4.313	0.06	0.03	0.008	0.03	0.06
10	layer_64_3_	sample_Resnet	0	5.669	1.306	0	0.227	5.954	0.06	0.03	0.008	0.03	0.06
11	layer_64_3_	sample_Resnet	0	1.5945	0.08275	0	0.07075	0.5485	0.135	0.068	0.017	0.068	0.135
12	layer_64_3_	sample_Resnet	0	0.383	0.409	0	0.227	1.108	0.06	0.03	0.008	0.03	0.06
13	layer_128_1	sample_Resnet	0	6.6015	0.4635	0	0.262	3.0585	0.477	0.239	0.06	0.239	0.477
14	layer_128_1	sample_Resnet	0	1.176	0.07225	0	0.06325	0.4915	0.12	0.06	0.015	0.06	0.12
15	layer_128_1	sample_Resnet	0	2.9015	0.31	0	0.2935	2.2045	0.537	0.269	0.068	0.269	0.537
16	layer_128_1	sample_Resnet	0	1.4375	0.14125	0	0.12925	0.9775	0.239	0.12	0.03	0.12	0.239
17	layer_128_2	sample_Resnet	0	1.3395	2.3275	0	0.905	4.1295	0.239	0.12	0.03	0.12	0.239
18	layer_128_2	sample_Resnet	0	2.9285	0.37	0	0.487	3.393	0.537	0.269	0.068	0.269	0.537
19	layer_128_2	sample_Resnet	0	6.5115	0.8545	0.8115	8.02825	20.68175	0.239	0.12	0.03	0.12	0.239
20	layer_128_3	sample_Resnet	0	4.6365	0.42475	0.01275	0.549	16.7855	0.239	0.12	0.03	0.12	0.239
24	1 120 2		^	2.0005	40.005	^	4 4 4 4	F4 00F	0.537	0.360	0.000	0.300	0 5 2 7

Overall Results

Detailed.csv.

Average message latency per each collective phase (us)

ResNet-50 Layer-Wise Raw Comm Latency

- A Torus 3D with total of 32 (2X4X4) nodes is used.
- Data parallel approach is used.
- Raw latency depends on the comm size plus the priority of each layer comm (queuing delay).

ResNet-50 Layer-Wise Compute vs. Exposed Comm Latency

Exposed comm latency is observed for the first layer.

because by the time we reach other layers except that.

first layer, their comm is already finished.

ResNet-50 Layer-Wise detailed latency

• Queue P2 is becoming the dominant factor due to very high speed of P1 (within package) that results most of the chunks get queued for the next phase (P2).

Effect of # of nodes on the Ratio of Total Compute vs Total Exposed Comm for ResNet-50

• A Torus 3D with total of 8, 16, 32, 64, 128 nodes are used.

Effect of Enhanced Compute Time per Node on the Ratio of Total Compute vs Total Exposed Comm for ResNet-50

• A Torus 3D with total of 32 nodes (2X4X4) is used.

Workload Generator

Workload Generator

- Should receive the GEMM operations (M, N, K dimensions) and the parallelization strategy as input.
- It uses SCALE-SIM simulator to find the compute times.
- Please see astra-sim/scripts/workload_generator/README.md.

Sample script to call workload generator

```
# For data-parallel
$ python3 gen_astrasim_workload_input.py \
    --datatype_size=2 \
    --mnk=mnk_inputs/example.csv \
    --num_npus=16 \
    --num_packages=2 \
    --output_file=../../inputs/workload/example_DATA.txt \
    --parallel=DATA \
    --run_name=example \
    --scalesim_config=../../extern/compute/SCALE-Sim/configs/google.cfg \
    --scalesim_path=../../extern/compute/SCALE-Sim
```

Sample MNK input file

		_	_	_	_
Δ	A	В	С	D	E
1	Layer	m	n	k	
2	MLP_Bottom	1024	128	512	
3	MLP_Bottom	1024	512	512	
4	MLP_Bottom	1024	512	512	
5	MLP_Bottom	1024	512	16	
6	MLP_Top_0	1024	1024	512	
7	MLP_Top_1	1024	512	512	
8	MLP_Top_2	1024	512	512	
9					
10					

SCALE-SIM

https://github.com/scalesim-project/scale-sim-v2

Thank you!