

Miria M. Finckenor

NASA Marshall Space Flight Center, Huntsville, AL 35812 USA,

miria.finckenor@nasa.gov

National Space & Missile Materials Symposium Chantilly, VA June 2015

- Description
- Estimated environment
- Contamination
- ISS Vehicle Materials
- Discussion of MAPTIS database

Materials International Space Station Experiment-8

- Deployed May 20, 2011 on STS-134
- Located on Express Logistics Carrier-2 (ELC-2)
- Retrieved July 9, 2013
- Returned to Earth May 2014 on SpaceX Dragon CRS-3

MSFC flew two passive sample trays on nadir side. Total of 96 samples.

MISSE-8 nadir side with MSFC passive trays in lower right.

Pre-flight

Post-flight

Atomic Oxygen Fluence 3.6 \pm 0.1 \times 10¹⁹ atoms/cm² Determined by mass loss and thickness loss of Kapton HN Very low fluence due to nadir location and ISS shielding

MISSE-8 Nadir Samples Hemispherical View

Grazing Atomic Oxygen Erosion

Exposed Area

Protected by holder

Ultraviolet Radiation Exposure – exact dose unknown at this time

UV darkening observed on beta cloth, ionic liquid epoxy samples, part markings, and others

This suggests a minimum of 500 equivalent sun hours (ESH).

Ionic liquid epoxy – Flight

Control

Ultraviolet Radiation Exposure

Atomic oxygen erosion rate of Teflon related to UV ESH

From "Analysis of Metallized Teflon™ Thin Film Materials Performance on Satellites" by Gary Pippin, Eugene Normand, Suzanne Woll, and Rachel Kamenetzky, Journal of Spacecraft and Rockets vol. 41, no. 3, pp 322-325, May 2004

Erosion yield $(10^{-24} \text{ cm}^3/\text{atom}) = 0.0532 * \text{ln (ESH)} - 0.165$

MISSE-8 erosion yield was calculated by using the mass loss of silverized Teflon samples and the AO fluence of 3.6 \times 10¹⁹ atoms/cm²

This gives 800 ± 300 ESH.

The majority of the solar UV exposure on the MISSE-8 nadir was likely Earth-reflected, with less short wavelength UV. If we assume similar parameters as MISSE-5 nadir, this gives 320 direct solar ESH and a total of 1050 ESH (direct plus Earth-reflected).

Contamination

- Concern prior to the STS-134 flight that the Alpha Magnetic Spectrometer AMS-2 would significantly outgas onto MISSE-8 and other line-of-sight hardware.
 - White silicone paint, unbaked composites, polypropylene fleece
- Predicted deposition on MISSE-8 nadir and wakefacing experimental sample trays was 40-100 Angstroms per year in addition to normal ISS background of 130 Å/yr.

MISSE-8 MgF2 Window Transmission Compared to MISSE-7 Wake

Contamination

- Very little observed on MgF2 and fused silica windows, certainly less than 250 $\hbox{\normalfont\AA}$
- Glenn Research Center's analysis of Second Single Events Upset Xilinx-Sandia Experiment (SEUXSE) hardware in agreement
- "Comparison of Spacecraft Contamination Models with Well-Defined Flight Experiment" by Gary Pippin, NASA/CR-1998-208800
 - ESCA analysis of Long Duration Exposure Facility trays E10 (ram), A4 (wake), and C6 (in between, some AO exposure)
 - Contaminant fixing on aluminum strongly dependent on AO fluence

Contamination

- On the other hand, MISSE-8 AZ93 slightly increased in solar absorptance from 0.17 to 0.18.
 - Coating was thinner than specification; ordinarily AZ93 solar absorptance is 0.15
- Surface morphology may affect contaminant fixing, as the smooth optical windows and silver/Teflon film did not have any contamination.
- Optical properties not a significant factor since AZ93 α/ϵ = 0.198 compared to silver/Teflon α/ϵ = 0.103, so silver/Teflon would have been a cooler surface.

ISS Vehicle Materials

- Beta cloth, from ISS batch and from Sheldahl
- Davlyn fiberglass sleeve
- Permacel and Intertape
- Solar array scrimcloth
- Thermal control and static dissipative coatings
- Indium tin oxide / Kapton

MISSE-8 Beta Cloth

Davlyn fiberglass sleeve

- Some bleaching noted in reflectance curves, not really apparent by visual inspection
- Mass loss indicates possible erosion of sizing

Flight

Control

MISSE-8 Davlyn Fiberglass Sleeve

Permacel and Intertape Glass Cloth Tapes

- Permacel P-213 tape is obsolete, Intertape 4617 is substitute for sharp edge mitigation and other protective uses on ISS hardware.
- Even though MISSE-8 had low AO fluence, mass loss indicates same level of protection for Kapton underneath.
- Permacel solar absorptance slightly increased from 0.48 to 0.5 l
- Intertape solar absorptance negligible change from 0.62 to 0.63.

Solar array scrim cloth

- Higher than expected erosion rate
 - \circ ~6 x 10⁻²⁴ cm³/atom
- Slightly higher optical properties

 α increased from 0.65 to 0.68 ϵ increased from 0.88 to 0.90

Thermal Control Coatings

MISSE-8		Preflight	Postflight	Δ
AZ400 white, low outgassing silicone	α	0.17	0.17	-
	ε	0.87	0.88	+0.01
AZ-2000-ICW white, inorganic, conductive	α	0.26	0.25	-0.01
	ε	0.92	0.92	•
AZ-2000-LSW white, low outgas silicone, static-dissipative	α	0.28	0.30	+0.02
	ε	0.90	0.90	-
AZ-2100-IECW white, inorganic, conductive	α	0.25	0.27	+0.02
	ε	0.91	0.91	-
AZ-3700 on Kapton with 966 adhesive	α	0.28	0.25	-0.03
	ε	0.31	0.36	+0.05

White coatings did not change or had slight increase in absorptance similar to AZ93 due to contamination. AZ-3700 similar to MISSE-7 results.

Thermal Control Coatings

MISSE-8		Preflight	Postflight	Δ
MLS-85-SB-C, black, low outgassing silicone, conductive	α	0.97	0.96	-0.01
	ε	0.91	0.91	-
RM-550-LSB, black, low outgassing silicone, nonconductive	α	0.97	0.96	-0.01
	ε	0.90	0.90	-
RM-550-LSB-H, black, low outgassing silicone, high gloss	α	0.97	0.96	-0.01
	ε	0.91	0.91	-
RM-550-LSB-C, black, low outgassing silicone, conductive	α	0.96	0.95	-0.01
	ε	0.89	0.89	-
RM-550-IB black, inorganic, non-conductive	α	0.97	0.97	-
	ε	0.90	0.90	-

Black coatings did not change significantly.

Indium tin oxide on Kapton

- PN146635-001 "1500 $\Omega/\text{sq.}$ " sample and Multek ITO/SiO₂/Kapton unaffected
 - \circ Control and flight PN 146635-001 was 1300 1400 Ω/sq
 - Control and flight ITO/SiO₂/Kapton 10 20 KΩ/sq
- Control newer Multek ITO/Kapton was 20 30 K Ω /sq, flight was 60 K Ω /sq., no visible change in appearance
- Older PN I 46635-003 "20 K Ω /sq." sample had same appearance of scratches, same degradation in conductivity, same degradation in solar absorptance as on MISSE-7

Control Samples

Flight Samples

ITO/SiOx/Kapton, newer ITO/Kapton, ITO/Kapton I500 Ω /sq., ITO/Kapton 20K Ω /sq.

MISSE-8 Indium Tin Oxide / Kapton / Al film

STATUS OF THE MISSE DATA BASE

- Data base contains in excess of 3200 records, with information on individual materials specimens and hardware.
 - Each individual record indicates if the individual specimen did or did not survive the flight.
 - Over 800 records with erosion yield, optical properties, or other specific data
- Records include environmental exposure estimates and preflight, on-orbit, and post-flight NASA-provided images.
- Several hundred documents, or references to specific documents, are included in the data base.
- Access to documents containing SBU or ITAR designated information is restricted. (Such information is not included in individual records.)

More MISSE on MAPTIS

- Will make improvements based on user responses/ comments/metrics
 - Metrics include what programs are using MAPTIS, so please don't be shy if you log in and get the query screen.
- Will continue to work with organizations to obtain more MISSE data.

For access to MAPTIS

http://maptis.nasa.gov/Request.aspx and fill out the form.

To add MISSE data to MAPTIS – miria.finckenor@nasa.gov

or MAPTISsupport@mail.nasa.gov

Be sure to specify whether your information is unlimited access or ITAR-restricted/proprietary/ export-controlled.

Acknowledgments

- NRL/Rob Walters, Phil Jenkins, and Susie LaCava for MISSE-8 integration
- MSFC/FP10 Annette Sledd and Ginger Flores, and JSC/OA Dr. Julie Robinson for their support
- Dr. Gary Pippin for his continued support of MISSE even after retirement
- JSC/ES411 Dr. John Alred and Dr. Mary Jane O'Rourke, and Boeing/Houston Dr. Johnny Golden for ISS Vehicle materials samples
- MSFC/EM60/Teresa Miller and MITS/Ben Henrie and Ginger Pierce on the MAPTIS team
- MSFC/EM10/Chip Moore for thickness loss measurements
- MSFC/ESSSA/Curtis Bahr for laboratory support