## **DECISION TREE MODEL**

Bùi Tiến Lên

2023



#### **Contents**



1. Decision Tree Representation

2. Learning Algorithm

3. Generalization And Overfitting

ecision Tree

Learning Algorithm

Gini

Misclassification

And Overfitting

# **Notation**



| symbol                                                                 | meaning                |                               |                       |
|------------------------------------------------------------------------|------------------------|-------------------------------|-----------------------|
| $a, b, c, N \dots$                                                     | scalar number          |                               |                       |
| $\boldsymbol{w}, \boldsymbol{v}, \boldsymbol{x}, \boldsymbol{y} \dots$ | column vector          |                               |                       |
| $\boldsymbol{X},\boldsymbol{Y}\dots$                                   | matrix                 | operator                      | meaning               |
| $\mathbb{R}$                                                           | set of real numbers    | $w^{\intercal}$               | transpose             |
| $\mathbb Z$                                                            | set of integer numbers | XY                            | matrix multiplication |
| $\mathbb{N}$                                                           | set of natural numbers | $oldsymbol{\mathcal{X}}^{-1}$ | inverse               |
| $\mathbb{R}^D$                                                         | set of vectors         |                               |                       |
| $\mathcal{X},\mathcal{Y},\dots$                                        | set                    |                               |                       |
| $\mathcal A$                                                           | algorithm              |                               |                       |

ecision Tree

Learning Algorithm

Algorith

Misclassificati

And Overfitt

# **Learning diagram**





# **Decision Tree Representation**



#### Decision Tree Representation

Learning Algorithm

Entropy

Misclassifica

Generalization And Overfitt

## **Decision tree representation**

- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis? |
|-----|----------|-------------|----------|--------|-------------|
| D1  | Sunny    | Hot         | High     | Weak   | No ⊖        |
| D2  | Sunny    | Hot         | High     | Strong | No ⊖        |
| D3  | Overcast | Hot         | High     | Weak   | Yes ⊕       |
| D4  | Rain     | Mild        | High     | Weak   | Yes ⊕       |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes ⊕       |
|     |          |             |          |        |             |





- Classification problems
- Instances describable by attribute—value pairs
- Attributes are discrete valued
- Target function is discrete valued

# **Problem Statement**

- Hypothesis set  $\mathcal{H}$  (**finite set**, there are  $2^{2^n}$  trees for *n* binary attributes and binary target)
  - With 6 binary attributes, there are 18,446,744,073,709,551,616 trees



- Task T: to predict y from x by outputting  $\hat{y} = h_T(x) = T(x)$
- Performance measure P: classification error

# **Learning Algorithm**

- Entropy
- Gini
- Misclassification



### Which tree is best?



• Which tree would be chosen? if both trees are fitted to  $\mathcal{D} = \{(\mathbf{x}_1, y_1)...(\mathbf{x}_N, y_N)\}$ 



### Occam's Razor



#### **Principle of Occam's Razor**

The simplest model that fits the data is also the most plausible (prefer the shortest hypothesis that fits the data)

• Inductive Bias: Preference for short trees, and for those with high information gain attributes near the root

# **Top-Down Algorithm**



- if all examples have the same classification then return the classification
- else if attributes is \( \emptyred \) then return PLURALITY-VALUE(examples)
- else
  - **1.**  $A \leftarrow$  the "best" decision attribute for next node
  - **2.** Assign A as decision attribute for *node*
  - **3.** For each value of A, create new descendant of node
  - 4. Sort training examples to child nodes and repeat these steps

# **Algorithm**

Misclassification

**Top-Down Algorithm (cont.)** 



Which attribute is best?

# **Algorithm**

Misclassification





ecision Tree

# Learning Algorithm

Ent

Misclassification

Generalizatio

# **Big Picture**





#### **Information Gain**

- S is a sample of training examples
- $p_{\oplus}$  is the proportion of positive examples in S
- $p_{\ominus}$  is the proportion of negative examples in S

#### Concept 1

Entropy measures the impurity of S

$$Entropy(S) = -(p_{\oplus} \log_2 p_{\oplus} + p_{\ominus} \log_2 p_{\ominus})$$
 (1)

# **Information Gain (cont.)**

• S is a set of items with C classes, and let  $\mathbf{p} = \{p_i\}_{i=1}^C$  be the fraction of items labeled with class i in the set.

#### Concept 2

• **Entropy** measures the impurity of S

$$Entropy(S) = -\sum_{i=1}^{C} p_i \log_2 p_i$$
 (2)

# **Information Gain (cont.)**

#### Concept 3

• Average entropy on attribute A

$$AE(S,A) = \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$
 (3)

• **Information gain** is expected reduction in entropy on A

$$Gain(S, A) = Entropy(S) - AE(S, A)$$
 (4)

The best attribute is an attribute that has the highest information gain

## Gini index

#### Concept 4

• **Gini** impurity for a set of items S with C classes, and let  $\mathbf{p} = \{p_i\}_{i=1}^C$  be the fraction of items labeled with class i in the set.

$$GiniImp(S) = 1 - \sum_{i=1}^{C} p_i^2$$
 (5)

• **Gini index** on attribute A

$$GiniIndex(S, A) = \sum_{v \in Values(A)} \frac{|S_v|}{|S|} GiniImp(S_v)$$
 (6)

#### Misclassification index



#### Concept 5

• Misclassification impurity index for a set of items S with C classes, and let  $p = \{p_i\}_{i=1}^C$  be the fraction of items labeled with class i in the set.

$$MisImp(S) = 1 - \max\{p_i\}_{i=1}^{C}$$
(7)

Misclassification index on attribute A

$$MisIndex(S, A) = \sum_{v \in Values(A)} \frac{|S_v|}{|S|} MisImp(S_v)$$
 (8)

Generalization
And Overfitting

# Entropy, Gini and Misclassification





cision Tree

Learning Algorithm Entropy

Misclassification

Generalization
And Overfitting

# Example 1

• Find decision tree T given the following training data

|                 | Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis? |
|-----------------|-----|----------|-------------|----------|--------|-------------|
| Ì               | D1  | Sunny    | Hot         | High     | Weak   | No          |
|                 | D2  | Sunny    | Hot         | High     | Strong | No          |
|                 | D3  | Overcast | Hot         | High     | Weak   | Yes         |
|                 | D4  | Rain     | Mild        | High     | Weak   | Yes         |
|                 | D5  | Rain     | Cool        | Normal   | Weak   | Yes         |
|                 | D6  | Rain     | Cool        | Normal   | Strong | No          |
| $\mathcal{D} =$ | D7  | Overcast | Cool        | Normal   | Strong | Yes         |
|                 | D8  | Sunny    | Mild        | High     | Weak   | No          |
|                 | D9  | Sunny    | Cool        | Normal   | Weak   | Yes         |
|                 | D10 | Rain     | Mild        | Normal   | Weak   | Yes         |
|                 | D11 | Sunny    | Mild        | Normal   | Strong | Yes         |
|                 | D12 | Overcast | Mild        | High     | Strong | Yes         |
|                 | D13 | Overcast | Hot         | Normal   | Weak   | Yes         |
|                 | D14 | Rain     | Mild        | High     | Strong | No          |

Misclassification

# **Example 1 - Finding Decision Tree and Converting to** Rules





| IF   | $(Outlook = Sunny) \land (Humidity = High)$   | THEN | PlayTennis = No  |
|------|-----------------------------------------------|------|------------------|
| ELIF | $(Outlook = Sunny) \land (Humidity = Normal)$ | THEN | PlayTennis = Yes |
| ELIF | Outlook = Overcast                            | THEN | PlayTennis = Yes |
| ELIF | $(Outlook = Rain) \land (Wind = Strong)$      | THEN | PlayTennis = No  |
| ELIF | $(Outlook = Rain) \land (Wind = Weak)$        | THEN | PlayTennis = Yes |
| ELIF |                                               | THEN | failure          |

# **Evaluating Association Rules**



#### Concept 6

An association rule is an implication of the form  $X \to Y$  or IF X THEN Y

• Support of the association rule

$$support(X, Y) = P(X, Y) = \frac{\#count(X, Y)}{total \ samples}$$
 (9)

Confidence of the association rule

$$confidence(X \to Y) = P(Y \mid X) = \frac{\#count(X, Y)}{\#count(X)}$$
(10)

cision Tree

Learning Algorithm

Misclassification

Generalization
And Overfitting

# Example 2



• Find decision tree T given the following training data

|                             |    |     | Input attributes |     |     |      |        |      |     | Goal    |       |           |
|-----------------------------|----|-----|------------------|-----|-----|------|--------|------|-----|---------|-------|-----------|
|                             |    | Alt | Bar              | Fri | Hun | Pat  | Price  | Rain | Res | Туре    | Est   | Will Wait |
| 1                           | 1  | Yes | No               | No  | Yes | Some | \$\$\$ | No   | Yes | French  | 0-10  | Т         |
| 2                           | 2  | Yes | No               | No  | Yes | Full | \$     | No   | No  | Thai    | 30-60 | F         |
| 3                           | 3  | No  | Yes              | No  | No  | Some | \$     | No   | No  | Burger  | 0-10  | T         |
| 4                           | 4  | Yes | No               | Yes | Yes | Full | \$     | Yes  | No  | Thai    | 10-30 | T         |
| $\mathcal{D} = \frac{5}{2}$ | 5  | Yes | No               | Yes | No  | Full | \$\$\$ | No   | Yes | French  | >60   | F         |
| $\nu - \epsilon$            | 6  | No  | Yes              | No  | Yes | Some | \$\$   | Yes  | Yes | Italian | 0-10  | T         |
| 7                           | 7  | No  | Yes              | No  | No  | None | \$     | Yes  | No  | Burger  | 0-10  | F         |
| 8                           | 8  | No  | No               | No  | Yes | Some | \$\$   | Yes  | Yes | Thai    | 0-10  | T         |
| 9                           | 9  | No  | Yes              | Yes | No  | Full | \$     | Yes  | No  | Burger  | >60   | F         |
| 1                           | 10 | Yes | Yes              | Yes | Yes | Full | \$\$\$ | No   | Yes | Italian | 10-30 | F         |
| 1                           | 11 | No  | No               | No  | No  | None | \$     | No   | No  | Thai    | 0-10  | F         |
| 1                           | 12 | Yes | Yes              | Yes | Yes | Full | \$     | No   | No  | Burger  | 30–60 | T         |

Misclassification

# **Example 2 - Finding Decision Tree**





ision Tree

Learning Algorithm Entropy

Misclassification

Generalization
And Overfitti

# **Word Example**



- 1. Find decision tree T given the following training datasets
- 2. Find all **stumps** (decision tree with one node)

| #  | Vį   | Màu  | Vỏ     | Độc tính |
|----|------|------|--------|----------|
| 1  | Ngọt | Đỏ   | Nhẵn   | Không    |
| 2  | Cay  | Đỏ   | Nhẵn   | Có       |
| 3  | Chua | Vàng | Có gai | Không    |
| 4  | Cay  | Vàng | Có gai | Có       |
| 5  | Ngọt | Tím  | Có gai | Không    |
| 6  | Chua | Vàng | Nhẵn   | Không    |
| 7  | Ngọt | Tím  | Nhẵn   | Không    |
| 8  | Cay  | Tím  | Có gai | Có       |
| 9  | Cay  | Tím  | Có gai | Không    |
| 10 | Cay  | Tím  | Có gai | Có       |
| 11 | Cay  | Vàng | Có gai | Có       |

# **Generalization And Overfitting**



#### Generalization And Overfitting

# **Overfitting in Decision Tree Learning**





# **Avoiding Overfitting**



How can we avoid overfitting?

- stop growing when data split not statistically significant
- grow full tree, then post-prune

How to select "best" tree:

- Measure performance over training data
- Measure performance over separate validation data set
- Minimize

$$error(tree) + \lambda size(tree)$$

### **Continuous Valued Attributes**

Create a discrete attribute for continuous variable

- Binary node Temperature > 36 or Temperature < 36
- General node *Temperature*  $\in \{(-\infty, 0], (0, 10], (10, 20], (20, \infty)\}$

# **Continuous Valued Attributes (cont.)**

000

• Find decision tree T given the following training data

|                 | Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis? |
|-----------------|-----|----------|-------------|----------|--------|-------------|
|                 | D1  | Sunny    | 37          | High     | Weak   | No          |
|                 | D2  | Sunny    | 37          | High     | Strong | No          |
|                 | D3  | Overcast | 38          | High     | Weak   | Yes         |
|                 | D4  | Rain     | 28          | High     | Weak   | Yes         |
|                 | D5  | Rain     | 20          | Normal   | Weak   | Yes         |
|                 | D6  | Rain     | 18          | Normal   | Strong | No          |
| $\mathcal{D} =$ | D7  | Overcast | 19          | Normal   | Strong | Yes         |
|                 | D8  | Sunny    | 27          | High     | Weak   | No          |
|                 | D9  | Sunny    | 21          | Normal   | Weak   | Yes         |
|                 | D10 | Rain     | 26          | Normal   | Weak   | Yes         |
|                 | D11 | Sunny    | 26          | Normal   | Strong | Yes         |
|                 | D12 | Overcast | 27          | High     | Strong | Yes         |
|                 | D13 | Overcast | 36          | Normal   | Weak   | Yes         |
|                 | D14 | Rain     | 28          | High     | Strong | No          |

#### ecision Tree

#### Learning Algorithm

Entropy

Gini Misclassificatio

Generalization And Overfitting

```
Programming Examples
```

```
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier, plot_tree
iris = load_iris()
clf = DecisionTreeClassifier(criterion="entropy")
clf.fit(iris.data, iris.target)
plot_tree(clf, filled=True)
plt.show()
```

Misclassificat

Generalization
And Overfitting

# **Programming Examples (cont.)**





Misclassification

Generalization **And Overfitting** 

# A Learning Puzzle Revisited





#### References



Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Lê, B. and Tô, V. (2014).
Cở sở trí tuệ nhân tạo.
Nhà xuất bản Khoa học và Kỹ thuật.

Russell, S. and Norvig, P. (2021).

Artificial intelligence: a modern approach.
Pearson Education Limited.