$\begin{array}{c} \text{The ANSI C} \\ \textbf{Time-Frequency Toolbox} \end{array}$

Manuel Davy, Emmanuel Roy November 15, 2000

Contents

1	1 Introduction				
2	Installation	2			
	2.1 Installation for use with Matlab				
	2.2 Installation of the source files	3			
3	Functions description				
	3.1 Translated functions	4			
	3.2 New functions	4			
A	Reference guide for the new functions	6			
В	Source files	12			

2 INSTALLATION

1 Introduction

The ANSI C Time-Frequency toolbox is a package aimed at computing time-frequency representations. One the one hand, it is an extension of the Time-Frequency toolbox for use with Matlab http://crttsn.univ-nantes.fr/ auger/tftb.html, since it provides some accelerated functions, and new ones. On the other hand, this package provides C language sources that can be included in any program.

Most of the functions are similar to those programmed in the *Time-Frequency toolbox for* use with Matlab, and can be used in a similar way. As it is programmed in C language, its use with Matlab requires a ANSI C language compiler, compatible with your version of Matlab.

WARNING: THIS DISTRIBUTION IS A BETA VERSION, WHICH MAY HAVE BUGS! THE AUTHORS DECLINE RESPONSIBILITY FOR ANY PROBLEM CAUSED BY THIS PACKAGE

2 Installation

When you have uncompressed the file Ctftb.zip or Ctftb.tar.gz, the directory Ctftbx has been created. This directory contains this documentation file, the compilation script tftbinst.m and two directories containing the source src and help files hlpfiles.

2.1 Installation for use with Matlab

The installation for use with Matlab requires a ANSI C language compiler, compatible with Matlab. Before starting the installation of the ANSI C Time-Frequency toolbox, you need to know how the installation program will proceed.

1. The file system.h will be automatically generated in src. It will contain a string specifying which system you use, such as

#define SYSTEME UNIX

if you use UNIX or LINUX. If you use Windows or MacOs, system.h will contain

#define SYSTEME WINDOWS

- 2. a directory, Ctftb, will be created in the current directory Ctftbx.
- 3. The C files will be compiled. This results in a set of files with a system-specific extension, such as .dll for Windows, .mexlx for Linux, ... (The default extension of mex files on your system, is displayed by the Matlab function mexext.m).
- 4. The generated mex files will be moved to the directory Ctftb. The help files (Files with the same name and the corresponding mex file e.g. filename.dll but with a .m extension e.g. filename.m) will also be copied in Ctftb.
- 5. This ends the compilation step.

To proceed to the installation, do as follows:

1. Uncompress this package.

- 2. If you have never compiled C language programs under Matlab, then start Matlab and type mex -setup. If you have any problem at this step, please consult the Matlab documentation. It is recommended to try to compile an example program, such as yprime.c (typing mex yprime.c), provided in your Matlab distribution in \$MATLABROOT/extern/examples/mex/, where \$MATLABROOT is the directory in which Matlab is installed on your computer (type matlabroot under Matlab). Try to run the compiled file. If any problem occurs at this step, please consult your Matlab documentation.
- 3. Change directory to Ctftbx.
- 4. Type tftbinst. You will first have to indicate which system you use. The toolbox is compiled. The executable files and help files are moved to Ctftb.
- 5. Before the installation is completed, the files contained in the directory Ctftb must be moved to their final location. There are several possibilities:
 - **Local installation** Move all the files in Ctftb in you Matlab preference directory (type prefdir under Matlab to know the name of this directory). The C Time-Frequency toolbox is now ready to use.
 - Multi-User installation Move the directory Ctftb in \$MATLABROOT/toolbox/ (you must have write authorization for this step e.g. on Unix systems, you must be root). Then, still with write authorization, start Matlab, and type

```
addpath(fullfile(matlabroot,'toolbox','Ctftb'))
path2rc
```

This last command saves the new path, and should return 0 to indicate that the path has been saved.

- 6. The installation is completed.
- 7. Run Ctftbdemo for a demo.

2.2 Installation of the source files

The C language source files are in the directory src. You may copy it wherever you need. There is no other installation to do in the present version of the toolbox.

3 Functions description

This toolbox provides two types of functions:

- some functions, already existing in the *Time-Frequency toolbox for use with Matlab*. This functions have been re-programmed in C language for the sake of computational efficiency
- Some new functions

3.1 Translated functions

Most of the functions in this package are similar to their Matlab version (in the *Time-Frequency toolbox for use with Matlab*). However, there are two main differences:

- The Trace possibility is not implemented.
- The computation of cross-Time-frequency representations is not yet available.

Some other differences concern Ctfrsp, Ctfrstft, Ctfrrsp, Please read the corresponding help files. Table 1 displays the correspondence between Matlab and C Time-Frequency functions. Please report to Time-Frequency toolbox for use with Matlab Reference guide and to the corresponding help files.

Function name	Equivalent function name
in this toolbox	in the Matlab toolbox
Cambifunb	ambifunb
Chtl	htl
Ctfrgrd	tfrgrd
Ctfrbj	tfrbj
Ctfrbud	tfrbud
Ctfrcw	tfrwv
Ctfrmh	tfrmh
Ctfrmhs	tfrmhs
Ctfrmmce	tfrmmce
Ctfrpage	tfrpage
Ctfrpmh	tfrpmh
Ctfrppage	tfrppage
Ctfrpwv	tfrpwv
Ctfrri	tfrri
Ctfrridb	tfrridb
Ctfrridbn	tfrridbn
Ctfrridh	tfrridh
Ctfrridt	tfrridt
Ctfrrsp	tfrrsp
Ctfrsp	tfrsp
Ctfrspwv	tfrspwv
Ctfrstft	tfrstft
Ctfrwv	tfrwv
Ctfrzam	tfrzam
Cwindow	window

Table 1: Correspondence between the function programmed in this toolbox, and functions in the $Time-Frequency\ toolbox\ for\ use\ with\ Matlab$

3.2 New functions

Some new Functions have been created in this toolbox. Table 2 on the next page displays the name and a brief description of these time-frequency functions. These functions are described

3.2 New functions 5

in Appendix A on the following page.

Name of the function	Brief description
Caf2tfr Given the ambiguity function of a signal, and a	
	(in the ambiguity plane), compute the corresponding TFR
Ctfrdist	Computes Time-Frequency distances between two TFRs
Ctfrker	Creates a TFR kernel, in the ambiguity plane
Ctfrreas	Reassigns a TFR, given a field reassignment vectors

Table 2: New time-frequency functions in this toolbox.

A Reference guide for the new functions

Caf2tfr

Purpose

Given a TFR kernel and the narrow-band ambiguity function of a signal, this function computes the corresponding TFR.

Synopsis

TFR=Caf2tfr(AF,KERNEL);

Description

Caf2tfr computes the double Fourier transform of the product ambiguity function \times kernel:

$$C_x^{\phi}(t,f) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathcal{A}_x(\xi,\tau) \phi(\xi,\tau) e^{j2\pi(\tau f - \xi t)} d\xi d\tau$$

where $C_x^{\phi}(t, f)$ is the TFR of the signal x, with kernel ϕ , A_x is the ambiguity function of x, ξ is the Doppler, τ is the delay (lag).

Name	Description	Default value
AF	Ambiguity function of the signal (size : $N \times N$, where N is	
	the number of points in the analyzed signal)	
KERNEL	matrix containing the TFR kernel (same size as the ambi-	
	guity function)	
TFR	Time-frequency representation, with the frequency bins	
	stored in the rows and the time bins stored in the columns	
	(same size as the ambiguity function and the kernel matri-	
	ces)	

The ambiguity Matrix MUST be computed as shown in example, with the following lag vector and number of frequency bins: AF=Cambifunb(x,-N/2+1:N/2,N). Other way of computing the TFR would produce an inaccurate result.

Example

Computation of a the TFR of a FM signal, with a Radially Gaussian kernel

```
t=1:128;
sig=exp(sqrt(-1)*2*pi*(0.3+0.2*t+0.001*t.^2))+randn(1,128);
af=Cambifunb(sig,-63:64,128);
kernel=Ctfrker(128,128,'rgk',[.2 1 1]);
TFR=Caf2tfr(af,kernel);
imagesc(1:128,linspace(0,0.5,128),TFR);
axis xy; xlabel('time'); ylabel('frequency')
```

Ctfrdist

Purpose

Computes time-frequency distance measures between TFRs.

Synopsis

```
dist=Ctfrdist(TFR1,TFR2,dist_name)
dist=Ctfrdist(TFR1,TFR2,dist_name,dist_coef)
```

Description

Ctfrdist computes several time-frequency distance measures between two TFRs

Name	Description	Default value
TFR1	First TFR	_
TFR2	Second TFR, with the same number of columns and rows as	
	TFR1	
${\tt dist_name}$	Name of the distance measure to use	
distcoef	distance parameters, required for some distance measures	
dist	Computed distance	_

Possible distance names are: Where $C_1(t, f)$ is the first TFR, $C_2(t, f)$ is the second TFR,

Name	parameter	Expression
'Lq'	q	$\left[\int\int \mathcal{C}_1(t,f) - \mathcal{C}_2(t,f) ^q dtdf\right]^{\frac{1}{q}}$
'Quadratic'	_	$\int \int \mathcal{C}_1(t,f) - \mathcal{C}_2(t,f) ^2 dt df$
'Correlation'	_	$1 - \frac{2\iint \mathcal{C}_1(t,f)\mathcal{C}_2(t,f)dtdf}{\ \mathcal{C}_1\ ^2 + \ \mathcal{C}_2\ ^2}$
'Kolmogorov'	_	$\int \int \mathbf{N}C_1(t,f) - \mathbf{N}C_2(t,f) \ dtdf$
'Kullback'	_	$\iint (\mathbf{N}\mathcal{C}_1(t,f) - \mathbf{N}\mathcal{C}_2(t,f)) \log \frac{\mathbf{N}\mathcal{C}_1(t,f)}{\mathbf{N}\mathcal{C}_2(t,f)} dt df$
'Chernoff'	m	$-\log\left[\int\int \mathbf{N}\mathcal{C}_1(t,f)^m\cdot\mathbf{N}\mathcal{C}_2(t,f)^{1-m}dtdf\right]$
'Matusita'	_	$\left \left[\iint \left \mathbf{N} \mathcal{C}_1(t,f)^{1/m} - \mathbf{N} \mathcal{C}_2(t,f)^{1/m} \right ^m dt df \right]^{\frac{1}{m}} \right $
'NLq'	q	$\left[\int\int \mathbf{N}\mathcal{C}_1(t,f)-\mathbf{N}\mathcal{C}_2(t,f) ^q\ dtdf ight]^{rac{1}{q}}$
'LSD'	q	$\left[\int \int \log \mathbf{N} \mathcal{C}_1(t,f) - \log \mathbf{N} \mathcal{C}_2(t,f) ^q dt df\right]^{\frac{1}{q}}$
'Jensen'	m	see [1]

and NC(t, f) denotes the normalization of the TFR as

$$\mathbf{N}\mathcal{C}(t,f) = \frac{|\mathcal{C}(t,f)|}{\int \int |\mathcal{C}(s,\nu)| \ ds d\nu}$$

Example

Distance between two Wigner-Ville distribution of the same FM signal, with different noise realizations

```
t=1:128;
sig=exp(sqrt(-1)*2*pi*(0.3+0.2*t+0.001*t.^2))+randn(1,128);
```

```
TFR1=Ctfrwv(sig);
sig=exp(sqrt(-1)*2*pi*(0.3+0.2*t+0.001*t.^2))+randn(1,128);
TFR2=Ctfrwv(sig);
d=Ctfrdist(TFR1,TFR2,'Kolmogorov')
d=Ctfrdist(TFR1,TFR2,'Jensen',3)
d=Ctfrdist(TFR1,TFR2,'Chernoff',0.5)
```

Reference

- [1] O. Michel, R.G. Baraniuk and P. Flandrin, "Time-Frequency Based Distance and Divergence Measure," *IEEE Int. Symp. on TFTS*, 1994, pp. 64-67
- [2] M. Basseville, "Distance measures for signal processing and pattern recognition," Signal Processing, No. 4, Vol. 18, December 1989, pp.349-369
- [3] M. Davy, C. Doncarli and G.F. Boudreaux-Bartels: "Improved Optimization of Time-Frequency based Signal Classifiers", *IEEE Signal Processing Letters*, January 2001.

Purpose

Generates a TFR kernel in the ambiguity plane, given a kernel shape.

Synopsis

KERNEL=Ctfrker(NDOPPLER,NDELAY,KER_name); KERNEL=Ctfrker(NDOPPLER,NDELAY,KER_name,parameters);

Description

Ctfrker generates a TFR kernel matrix in the ambiguity plane, given a kernel shape. This matrix can be used in e.g. Caf2tfr

Name	Description	Default value
NDOPPLER	Number of Doppler bins, i.e. number of rows in the output	
	matrix	
KERNEL	Number of delay bins, i.e. number of columns in the output	
	matrix	
KER_name	name of the kernel shape	
parameters	kernel parameters	
KERNEL Output matrix, containing the kernel, with the Doppler bins		
	stored in the rows and the delay bins stored in the columns.	

Possible kernel names are:

Name	parameters	Expression	Ref
'WV'	_	1	
'spectro'	window h	$[\mathcal{A}_h(\xi, au)]^\star$	
'rgk'	c	2	
	a_1,\ldots,a_n	$e^{-\frac{\rho}{2\sigma(\theta)^2}} \text{ where } \sigma(\theta) = c + \sum_{p=1}^{n} \left[a_p \cos(2p\theta) + b_p \sin(2p\theta) \right]$	[1]
	b_1,\ldots,b_n	$\sum_{p=1}^{p} \left[\sup_{x \in \mathbb{R}^{n}} \cos(-px) + \sup_{x \in \mathbb{R}^{n}} \sin(-px) \right]$	
		$\begin{bmatrix} -\frac{1}{\sigma} \prod_{k=1}^{n} (\xi \cos \theta_k + \tau \sin \theta_k)^2 \\ e \end{bmatrix}$	
, , ,	0 0	$= \frac{-\sigma}{\sigma} \prod_{k=1}^{\kappa} (\varsigma \cos v_k + \tau \sin v_k)$	[0]
'gmcwk'	$\sigma, \theta_1 \dots \theta_n$	$e^{\kappa-1}$	[2]
'mtek'	α, β, γ	$-\pi \left\{ \left[\left(\frac{\tau}{2} \right)^2 \left(\frac{\xi}{2} \right)^{2\alpha} + \left(\frac{\tau}{2} \right)^{2\alpha} \left(\frac{\xi}{2} \right)^2 + 2rA \right]^2 \right\}^{\lambda}$	[3]
	r, au_0, u_0, λ	$e^{\sigma k=1} \\ e^{-\pi \left\{ \left[\left(\frac{\tau}{\tau_0} \right)^2 \left(\frac{\xi}{\xi_0} \right)^{2\alpha} + \left(\frac{\tau}{\tau_0} \right)^{2\alpha} \left(\frac{\xi}{\xi_0} \right)^2 + 2rA \right]^2 \right\}^{\lambda}} \text{ where } A = \left(\left[\tau \xi / \tau_0 \xi_0 \right]^{\beta} \right)^{\gamma}$	

where θ and ρ are the polar coordinates in the ambiguity plane $(\rho^2 = \xi^2 + \tau^2, \tan(\theta) = \xi/\tau)$, with τ the delay and ξ the Doppler.

Example

See the function Caf2tfr

Reference

- [1] M. Davy, C. Doncarli and G.F. Boudreaux-Bartels: "Improved Optimization of Time-Frequency based Signal Classifiers", *IEEE Signal Processing Letters*, January 2001.
- [2] X.-G. Xia. Y. Owechko, B. H. Soffer and R. M. Matic, "On Generalized-Marginals Time-Frequency Distributions," *IEEE Trans. on Signal Processing*, No. 11, Vol. 44, 1996, pp.2882-2886.

[3] H. Costa and G.F. Boudreaux-Bartels, "Design of Time-Frequency Representations Using a Multiform, Tiltable Exponential Kernel," *IEEE Trans. on Signal Processing*, No. 10, Vol. 43, 1995, pp.2283-2301.

${\tt Ctfrreas}$

Purpose

Reassigns the pixels of a TFR, given a field of reassignment vectors

Synopsis

TFR_R=Ctfrreas(TFR,field_time,field_freq);

Description

Ctfrreas reassigns the TFR pixels according to a field of reassignment vectors. The pixel that should be reassigned outside the TFR matrix are, in the time direction, left along the edges (time=0 or time = max_time); and in the frequency direction, a circular rotation is done.

Name	Description	Default value
TFR	TFR to be reassigned	
${\tt field_time}$	Time component of the field of reassignment vectors	
$field_freq$	Frequency component of the field of reassignment vectors	
TFR_R Reassigned Time-frequency representation, with the fre-		
	quency bins stored in the rows and the time bins stored	
	in the columns	

Example

Alternative method for spectrogram reassignment

[1] E. Chassande-Mottin, F. Auger, P. Flandrin, "On the statistics of spectrogram reassignment vectors," Multidimensional Systems and Signal Processing, Vol. 9, No. 4, pp. 355-362, 1999

12 B SOURCE FILES

B Source files

Help files (.m files)

Caf2tfr.m	Ctfrdist.m	Ctfrgrd.m	Ctfrpmh.m	Ctfrridbn.m
Ctfrstft.m	Cambifunb.m	Ctfrker.m	Ctfrppage.m	Ctfrridh.m
Ctfrwv.m	Chtl.m	Ctfrmh.m	Ctfrpwv.m	Ctfrridt.m
Ctfrzam.m	Ctfrbj.m	Ctfrmhs.m	Ctfrreas.m	Ctfrrsp.m
Cwindow.m	Ctfrbud.m	Ctfrmmce.m	Ctfrri.m	Ctfrsp.m
Ctfrcw.m	Ctfrpage.m	Ctfrridb.m	Ctfrspwv.m	Contents.m

Installation program (.m file)

tftbinst.m

Include files (.h files)

tftb.h system.h

C/Matlab Interface programs (.c files)

Caf2tfr.c	Ctfrdist.c	Ctfrgrd.c	Ctfrpmh.c	Ctfrridbn.c
Ctfrstft.c	Cambifunb.c	Ctfrker.c	Ctfrppage.c	Ctfrridh.c
Ctfrwv.c	Chtl.c	Ctfrmh.c	Ctfrpwv.c	Ctfrridt.c
Ctfrzam.c	Ctfrbj.c	Ctfrmhs.c	Ctfrreas.c	Ctfrrsp.c
Cwindow.c	Ctfrbud.c	Ctfrmmce.c	Ctfrri.c	Ctfrsp.c
Ctfrcw.c	Ctfrpage.c	Ctfrridb.c	Ctfrspwv.c	

Computation programs (.c files)

File name	Matlab interface	Purpose
af.c	Cambifunb.c	Computes the ambiguity function
af2tfr.c	Caf2tfr.c	Given a kernel and an ambiguity function, com-
		putes the corresponding TFR
bj.c	Ctfrbj.c	Computes the Born-Jordan distribution
bud.c	Ctfrbud.c	Computes the Butterworth distribution
create_window.c	Cwindow.c	Creates a window of given shape
CW.C	Ctfrcw.c	Computes the Choi-Williams distribution
distance.c	Ctfrdist.c	Computes Time-Frequency distance measures be-
		tween two TFRs
divers.c		A set of various basic functions
gradient.c		Computes the gradient of a matrix
grd.c	Ctfrgrd.c	Computes the generalized Rectangular distribution
hough.c	Chtl.c	Computes the Hough transform of an image
kernel.c	Ctfrker	Creates a kernel of a given type in the ambiguity
		plane
mh.c	Ctfrmh.c	Computes the Margenau-Hill distribution
mhs.c	Ctfrmhs.c	Computes the Margenau-Hill-Spectrogram distri-
		bution
mmce.c	Ctfrmmce.c	Computes the Minimum mean cross-entropy com-
		bination of spectrograms
page.c	Ctfrpage.c	Computes the Page distribution
pmh.c	Ctfrpmh.c	Computes the pseuso Margenau-Hill distribution
ppage.c	Ctfrppage.c	Computes the pseudo Page distribution
pwv.c	Ctfrpwv.c	Computes the pseudo Wigner-Ville distribution
reas_spectro.c	Ctfrrsp.c	Computes the reassigned spectrogram
reassign.c	Ctfrreas.c	Reassigns a TFR, given the field of reassignment
		vectors
ri.c	Ctfrri.c	Computes the Rihacek distribution
ridb.c	Ctfrridb.c	Computes the reduced Interference Distribution
		with Bessel kernel
ridbn.c	Ctfrridbn.c	Computes the reduced Interference Distribution
		with binomial kernel
ridh.c	Ctfrridh.c	Computes the reduced Interference Distribution
		with Hanning kernel
ridt.c	Ctfrridt.c	Computes the reduced Interference Distribution
		with Triangular kernel
sp.c	Ctfrsp.c	Computes the Spectrogram
spwv.c	Ctfrspwv.c	Computes the smoothed pseudo Wigner-Ville dis-
		tribution
stft.c	Ctfrstft	Computes the Short Time Fourier Transform
WV.C	Ctfrwv.c	Computes the Wigner-Ville distribution
zam.c	Ctfrzam.c	Computes the Zao-Atlas-Marks distribution