

ALGEBRAISCHE STRUKTUREN: RINGE/KÖRPER EULERSCHE PHI-FUNKTION

* Ring oder Körper? Welche Mengen bilden einen Ring oder Körper?

rung oder Korper: Weiche Weigen bilden einen itnig oder Korper:				
	(R,+) abelschee Gruppe (R,•) Halbstruppe +/6: Distributivität	(R/ 903:) abelsche Gonpae		
a) $(\mathbb{N}, +, \cdot)$	$(R_{j+}): 0 \notin \mathbb{N} \text{ (Neutri-RCh)} \times \\ \times -2 \notin \mathbb{N} \text{ (min. Elch eu.)} \\ \rightarrow (R_{j+}) \text{ keine Gruppe}$	×		
b) $(\mathbb{Z}, +, \cdot)$	✓	× 2 \$ 1 da \(\frac{1}{2} \) \(\R\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
c) $(\mathbb{Q}, +, \cdot)$	✓	(da Inversen labei!)		
d) $(\mathbb{R}, +, \cdot)$	<i></i>			
e) $(\mathbb{Z}_5,+,\cdot)$	/	J 5 prim!		
f) $(\mathbb{Z}_4,+,\cdot)$	<u> </u>	× 4 <u>wicht</u> prim! (2.8. \(\frac{7}{2}\) nicht miverh.) 78\(\frac{7}{2}\)(2,9) = 2 \(\frac{1}{2}\)		
g) $(\mathbb{Z}_n,+,\cdot)$	/	(2) Sv folls u prim x folls u prim		

	Ring?	Körper?
a) $(\mathbb{N}, +, \cdot)$		
b) $(\mathbb{Z}, +, \cdot)$		
c) $(\mathbb{Q}, +, \cdot)$		
$\mathrm{d})\;(\mathbb{R},+,\cdot)$		
e) $(\mathbb{Z}_5, +, \cdot)$		
f) $(\mathbb{Z}_4,+,\cdot)$		
g) $(\mathbb{Z}_n, +, \cdot)$		

Invertierbarkeitskriterium. Welche Restklassen in \mathbb{Z}_{21} sind invertierbar (bzgl. ·) ?

Lösung.

$$a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/7$
 $a \text{ Welf. von } 3/7 \text{ Lat } gT 3/$

Inverses berechnen. Was ist $\overline{8}^{-1}$ in \mathbb{Z}_{21} ?

Lösung.
$$\frac{1}{8} \cdot \frac{1}{1} = \frac{1}{1} \iff 8 \times = 1 + \frac{1}{2} \cdot 21 \iff 8 \times + 21 \cdot \frac{1}{2} = 1$$

$$\frac{1}{8}$$
 = \times = $\frac{1}{8}$

[Probe:
$$\overline{g}.\overline{g} = \overline{69} = \overline{1}$$
 in \mathbb{Z}_{21}]

Eulersche Phi-Funktion. Wie kann man z.B.
$$\varphi(21)$$
 bestimmen?

Laut Definition ist $\varphi(21) := \text{Anz. der inv. File. in } \mathbb{Z}_{21} = \left| \left\{ \bar{\mathbf{a}} \in \mathbb{Z}_{21} \mid \bar{\mathbf{a}} \text{ invertishar} \right\} \right| \stackrel{\text{S.o.}}{=} 12$

Bei kleinen Zahlen, wie 21, kann man also die invertierbaren Restklassen zählen (s.o.), aber wie kann man das effizient für beliebig Zahlen berechnen?

Rechenregeln für die Eulersche Phi-Funktion.

Beweis. i) $\mathbb{Z}_p = \{\overline{N}, \overline{1}, \overline{2}, \overline{3}, \dots, \overline{p-1}\}$ $p-1 \text{ Strick wit } \text{ set} (\alpha, p) = 1, \text{ da } p \neq a \text{ we gen } a = 1, \dots, p-1 < p$

$$ii) \ \mathbb{Z}_{p^{k}} = \{ \overline{\mathbb{N}}, \overline{1}, \dots, \overline{\mathbb{N}^{p}}, \dots, \overline{\mathbb{N}^{p}}, \dots, \overline{\mathbb{N}^{p}}, \dots, \overline{\mathbb{N}^{p}}, \dots, \overline{\mathbb{N}^{p}}, \dots, \overline{\mathbb{N}^{p^{k}}} = \overline{p^{k}} = \overline{0} \}$$

$$g_{\mathfrak{F}} \mathsf{T}(\mathfrak{I}_{p}, \mathfrak{I}_{p}^{k}) \neq 1 \iff \mathfrak{p} \mid \mathfrak{a} \iff \mathfrak{a} \text{ Vielfaches von } \mathfrak{p} \quad (\mathfrak{p}^{k-1} - \mathbb{N}^{p^{k-1}} - \mathbb{N}^{p^{k-1}})$$

$$\mathcal{U}(\mathfrak{p}^{k}) = \text{Alle} - \text{widthin} = \mathfrak{p}^{k} - \mathfrak{p}^{k-1}$$

iii) Am Beispiel: m = 3 und n = 7, also $m \cdot n = 21$:

$$\mathbb{Z}_{21} = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}, \overline{11}, \overline{12}, \overline{13}, \overline{14}, \overline{15}, \overline{16}, \overline{17}, \overline{18}, \overline{19}, \overline{20}, \overline{21} = \overline{0}\}$$
(Nelf. van 3 4.3 23 3.3 4.3 27 $\overline{4.3}$ 27 Shuck Vielf. van 7 $\overline{4.3}$ 27 $\overline{4.3}$ 28 $\overline{4.3}$ 29 $\overline{4.3}$ 29

$$= (3-1) \cdot (7-1) = \varphi(3) \cdot \varphi(7)$$

Algemen H.

Berechnung der Eulerschen Phi-Funktion. Berechnen Sie mit den RR:

1.
$$\varphi(21)$$

3.
$$\varphi(7^3)$$

5.
$$\varphi(81.675)$$

2.
$$\varphi(30)$$

4.
$$\varphi(40)$$

Lösung.

Strategie: Bilde PFZ von n & wende RR an:

1.
$$\psi(21) \stackrel{\text{iii}}{=} \psi(3) \cdot \psi(7) = 2.6 = 12$$
 (vgl. Aufgabe "Invert. hrit," zenvor)

3.7 2 6

2.
$$\varphi(30) \stackrel{\text{(ii)}}{=} \varphi(2) \cdot \varphi(3) \varphi(5) = 8$$
2. 35
11 (2) 11 (3) 11 (4) 11 (5) 11 (7)

3.
$$\varphi(\vec{\tau}^3) = \frac{\pi^3}{3^{43}} = \frac{7}{49}^2 = 294$$

$$= \underbrace{(7-1)}_{6} \cdot \underbrace{7^{2}}_{49} = 294$$

4.
$$\varphi(40) = \varphi(2^3) \cdot \varphi(5) = 16$$

5.
$$\psi(81.675) = \psi(3^3) \psi(5^2) \psi(11^2) = 18.20.110$$

 $\frac{3}{3.5^2} \cdot 11^2 = \frac{(3^3 - 3^2)}{21} \cdot \frac{(5^2 - 5)}{9} \cdot \frac{(11^2 - 11)}{25} = \frac{39.600}{121}$