EEM 323 ELECTROMAGNETIC WAVE THEORY II

REVIEW ELECTROMAGNETIC WAVE THEORY I

2013 – 2014 FALL SEMESTER

Prof. S. Gökhun Tanyer

DEPARTMENT OF ELECTRICAL-ELECTRONICS ENGINEERING FACULTY OF ENGINEERING, BASKENT UNIVERSITY

KAYNAKÇA

Üniversitemizde kaynak kitap olarak kullanılmakta olan ve D. Cheng tarafından yayınlanmış kitaplardan aynen faydalanılmıştır.

Kaynağı belirtilmeyen ve Dr. S. G. Tanyer tarafından hazırlanmamış olan tüm şekil, tablo, eşitlik ve denklemler vb., *Course Outline* dokümanında yer alan kaynaklardan alınmıştır. Copyright problemlerinden dolayı bu dokümana erişim imkanı sağlanamayacaktır. Doğrudan kaynağın kendisine erişilmesi gerekmektedir.

Ders kapsamında paylaşılan dosyaların basılı ve/veya bilgisayar sürümleri, <u>sadece</u> <u>Başkent Üniversitesi öğrencilerinin</u> kullanımı için hazırlanmıştır. Dokümana erişim sağlayan kişiler tarafından kopyalanması, internet vb. ortamlarda yayınlanması, ancak dokümanın sahibinin izni ile mümkündür.

REVIEW OF ELECTROMAGNETIC WAVE THEORY I EEM224

We will review 'Static E and H Fields' in this lecture:

Second Edition

Field and Wave Electromagnetics

David K. Cheng

Life Fellow, I.E.E.; Fellow, I.E.E.; C. Eng.

SOURCES FOR ELECTRIC FIELD

Vector Analysis

Vector addition, subtraction, ...

Vector Cross Product

Product of Three Vectors

Orthogonal Coordinate Systems

- Caartesian
- Cylindrical
- Spherical

Vector and scalar integrals

Gradient of a scalar field

Divergence of a vector field, Flux

Curl of a vector field

Static Electric Fields

Charles-Augustin de Coulomb (1736 – 1806)

ELECTRIC FORCE

COULOMB'S LAW

GAUSS'S LAW AND APPLICATIONS:

Carl Friedrich Gauss (1777-1855)

ELECTRIC POTENTIAL:

CONDUCTORS IN STATIC ELECTRIC FIELD DIELECTRICS IN STATIC ELECTRIC FIELD **EQUIVALENT CHARGE DISTRIBUTIONS OF POLARIZED DIELECTRICS ELECTRIC FLUX DENSITY (D) DIELECTRIC CONSTANT**

BOUNDARY CONDITIONS FOR ELECTROSTATIC FIELDS

CAPACITANCE AND CAPACITORS

ELECTROSTATIC ENERGY AND FORCES

ELECTROSTATIC FIELDS

TORQUE:

Solution of Electrostatic Problems

LAPLACE'S EQUATION

POISSON'S EQUATION

Pierre-Simon Laplace (1749-1827)

Siméon Poisson (1781-1840)

METHOD OF IMAGES

BOUNDARY – VALUE PROBLEMS

Steady Electric Currents

CURRENT DENSITY

OHM'S LAW

Georg Simon Ohm (1789-1854)

OHM'S LAW

RESISTANCE

ELECTROMOTIVE FORCE

KIRCHOFF'S VOLTAGE AND CURRENT LAW

Gustav Kirchhoff (1824-1887)

James Prescott Joule (1818-1889)

POWER DISSIPATION, JOULE'S LAW

BOUNDARY CONDITIONS FOR CURRENT DENSITY

RESISTANCE CALCULATIONS

Static Magnetic Fields

VECTOR MAGNETIC POTENTIAL

Jean-Baptiste Biot (1774-1862)

Félix Savart (1791-1841)

BIOT – SAVART LAW AND APPLICATIONS

MAGNETIC DIPOLE

SCALAR MAGNETIC POTENTIAL

MAGNETIZATION AND EQUIVALENT CURRENT DENSITIES

EQUIVALENT MAGNETIZATION CHARGE DENSITIES

MAGNETIC FIELD INTENSITY, RELATIVE PERMEABILITY

ANALOGOUS RELATIONS

MAGNETIC CIRCUITS BEHAVIOR OF MAGNETIC MATERIALS

BOUNDARY CONDITIONS FOR MAGNETOSTATIC FIELDS

INDUCTANCE AND INDUCTORS

MAGNETIC ENERGY

André-Marie Ampère (1775-1836)

MAGNETIC FORCE

MAGNETIC FORCE