

# Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No:CCIS15110087102

# FCC REPORT

(BLE)

SHENZHEN HUAQIANG KUXIN COMMUNICATION Applicant:

TECHNOLOGY CO., LTD.

No. 1-1Meixiu Road, MeiLin, Futian, Shenzhen, Guangdong, Address of Applicant:

P.R.China

**Equipment Under Test (EUT)** 

**Product Name: Tablet** 

W10,IC-T01,IC-T02,IC-T03,IC-T04,IC-Model No.:

T05,M701,M901,M101,M116

FCC ID: 2AGLD-W10

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

11 Nov., 2015 Date of sample receipt:

Date of Test: 12 Nov., to 07 Dec., 2015

Date of report issued: 07 Dec., 2015

PASS\* **Test Result:** 

In the configuration tested, the EUT complied with the standards specified above.

#### Authorized Signature:



Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





# 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 07 Dec., 2015 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Reviewed by: Over then Date: 07 Dec., 2015

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project Engineer •





# 3 Contents

|   |                  |                                | Page |
|---|------------------|--------------------------------|------|
| 1 | cov              | ER PAGE                        | 1    |
| 2 | VER              | SION                           | 2    |
| 3 |                  | TENTS                          |      |
| 4 | TES <sup>-</sup> | Г SUMMARY                      | 4    |
| 5 |                  | ERAL INFORMATION               |      |
|   | 5.1              | CLIENT INFORMATION             |      |
|   | 5.1              | GENERAL DESCRIPTION OF E.U.T.  |      |
|   | 5.2              | TEST ENVIRONMENT AND MODE      |      |
|   | 5.4              | DESCRIPTION OF SUPPORT UNITS   |      |
|   | 5.5              | LABORATORY FACILITY            |      |
|   | 5.6              | LABORATORY LOCATION            |      |
|   | 5.7              | TEST INSTRUMENTS LIST          |      |
| 6 | TEG              | Γ RESULTS AND MEASUREMENT DATA |      |
| U |                  |                                |      |
|   | 6.1              | ANTENNA REQUIREMENT:           |      |
|   | 6.2              | CONDUCTED EMISSION             |      |
|   | 6.3              | CONDUCTED OUTPUT POWER         |      |
|   | 6.4              | OCCUPY BANDWIDTH               |      |
|   | 6.5              | Power Spectral Density         |      |
|   | 6.6              | BAND EDGE                      |      |
|   | 6.6.1            |                                |      |
|   | 6.6.2            |                                |      |
|   | 6.7              | Spurious Emission              |      |
|   | 6.7.1            | Conadoted Emission Metrodam    |      |
|   | 6.7.2            |                                |      |
| 7 | TEST             | SETUP PHOTO                    | 35   |
| 8 | EUT              | CONSTRUCTIONAL DETAILS         | 36   |





# 4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(3)     | Pass   |
| 6dB Emission Bandwidth           | 15.247 (a)(2)     | Pass   |
| Power Spectral Density           | 15.247 (e)        | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |
| Spurious Emission                | 15.205/15.209     | Pass   |

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4-2009 and ANSI C63.10:2009



# **5** General Information

### **5.1 Client Information**

| Applicant:                           | SHENZHEN HUAQIANG KUXIN COMMUNICATION TECHNOLOGY CO., LTD.           |
|--------------------------------------|----------------------------------------------------------------------|
| Address of Applicant:                | No. 1-1Meixiu Road, MeiLin, Futian,Shenzhen, Guangdong,<br>P.R.China |
| Manufacturer/ Factory:               | SHENZHEN HUAQIANG KUXIN COMMUNICATION TECHNOLOGY CO., LTD.           |
| Address of Manufacturer/<br>Factory: | No. 1-1Meixiu Road, MeiLin, Futian, Shenzhen, Guangdong, P.R.China   |

# 5.2 General Description of E.U.T.

| Product Name:          | Tablet                                                                                                                                                |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model No.:             | W10,IC-T01,IC-T02,IC-T03,IC-T04,IC-T05,M701,M901,M101,M116                                                                                            |
| Operation Frequency:   | 2402-2480 MHz                                                                                                                                         |
| Channel numbers:       | 40                                                                                                                                                    |
| Channel separation:    | 2 MHz                                                                                                                                                 |
| Modulation technology: | GFSK                                                                                                                                                  |
| Data speed :           | 1Mbps                                                                                                                                                 |
| Antenna Type:          | Internal Antenna                                                                                                                                      |
| Antenna gain:          | 2.0dBi                                                                                                                                                |
| Power supply:          | Rechargeable Li-ion Battery DC3.7V-7800mAh                                                                                                            |
| AC adapter:            | Model: MX12X8-0502000UX<br>Input:100-240V AC,50/60Hz 0.35A<br>Output:5V DC MAX2A                                                                      |
| Remark:                | Item No.: W10,IC-T01,IC-T02,IC-T03,IC-T04,IC-T05, M701, M901, M101, M116 are electrically identical, only model name and exterior color is different. |





| Operation Frequency each of channel |           |         |           |         |           |         |           |  |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|--|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |  |
| 0                                   | 2402MHz   | 10      | 2422MHz   | 20      | 2442MHz   | 30      | 2462MHz   |  |
| 1                                   | 2404MHz   | 11      | 2424MHz   | 21      | 2444MHz   | 31      | 2464MHz   |  |
| 2                                   | 2406MHz   | 12      | 2426MHz   | 22      | 2446MHz   | 32      | 2466MHz   |  |
| 3                                   | 2408MHz   | 13      | 2428MHz   | 23      | 2448MHz   | 33      | 2468MHz   |  |
| 4                                   | 2410MHz   | 14      | 2430MHz   | 24      | 2450MHz   | 34      | 2470MHz   |  |
| 5                                   | 2412MHz   | 15      | 2432MHz   | 25      | 2452MHz   | 35      | 2472MHz   |  |
| 6                                   | 2414MHz   | 16      | 2434MHz   | 26      | 2454MHz   | 36      | 2474MHz   |  |
| 7                                   | 2416MHz   | 17      | 2436MHz   | 27      | 2456MHz   | 37      | 2476MHz   |  |
| 8                                   | 2418MHz   | 18      | 2438MHz   | 28      | 2458MHz   | 38      | 2478MHz   |  |
| 9                                   | 2420MHz   | 19      | 2440MHz   | 29      | 2460MHz   | 39      | 2480MHz   |  |

### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |  |  |
|---------------------|-----------|--|--|
| The lowest channel  | 2402MHz   |  |  |
| The middle channel  | 2442MHz   |  |  |
| The Highest channel | 2480MHz   |  |  |



Report No: CCIS15110087102

### 5.3 Test environment andmode

| Operating Environment:                                                 |           |  |  |  |  |
|------------------------------------------------------------------------|-----------|--|--|--|--|
| Temperature:                                                           | 24.0 °C   |  |  |  |  |
| Humidity:                                                              | 54 % RH   |  |  |  |  |
| Atmospheric Pressure:                                                  | 1010 mbar |  |  |  |  |
| Test mode:                                                             |           |  |  |  |  |
| Operation mode Keep the EUT in continuous transmitting with modulation |           |  |  |  |  |

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

# 5.4 Description of Support Units

N/A

### 5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

### • FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

### • IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

# 5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





# 5.7 Test Instruments list

| Rad  | Radiated Emission:                        |                                   |                             |          |                         |                             |  |  |  |  |
|------|-------------------------------------------|-----------------------------------|-----------------------------|----------|-------------------------|-----------------------------|--|--|--|--|
| Item | Test Equipment                            | Manufacturer                      | Manufacturer Model No.      |          | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |  |  |
| 1    | 3m SAC                                    | SAEMC                             | 9(L)*6(W)* 6(H)             | CCIS0001 | 08-23-2014              | 08-22-2017                  |  |  |  |  |
| 2    | BiConiLog Antenna                         | SCHWARZBECK                       | VULB9163                    | CCIS0005 | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 3    | Horn Antenna                              | SCHWARZBECK                       | BBHA9120D                   | CCIS0006 | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 4    | Pre-amplifier<br>(10kHz-1.3GHz)           | HP                                | 8447D                       | CCIS0003 | 04-01-2015              | 03-31-2016                  |  |  |  |  |
| 5    | Pre-amplifier<br>(1GHz-18GHz)             | Compliance Direction Systems Inc. | PAP-1G18                    | CCIS0011 | 04-01-2015              | 03-31-2016                  |  |  |  |  |
| 6    | Pre-amplifier (18-26GHz)  Rohde & Schwarz |                                   | AFS33-18002<br>650-30-8P-44 | GTS218   | 04-01-2015              | 03-31-2016                  |  |  |  |  |
| 7    | Horn Antenna                              | ETS-LINDGREN                      | 3160                        | GTS217   | 04-01-2015              | 03-31-2016                  |  |  |  |  |
| 8    | Spectrum analyzer<br>9k-30GHz             | Rohde & Schwarz                   | FSP30                       | CCIS0023 | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 9    | EMI Test Receiver                         | Rohde & Schwarz                   | ESRP7                       | CCIS0167 | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 10   | Loop antenna                              | Laplace instrument                | RF300                       | EMC0701  | 04-01-2015              | 03-31-2016                  |  |  |  |  |

| Con  | Conducted Emission: |                         |                             |          |            |            |  |  |  |  |
|------|---------------------|-------------------------|-----------------------------|----------|------------|------------|--|--|--|--|
| Item | Test Equipment      | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |          |            |            |  |  |  |  |
| 1    | Shielding Room      | ZhongShuo Electron      | 11.0(L)x4.0(W)x3.0(H)       | CCIS0061 | 08-23-2014 | 08-22-2017 |  |  |  |  |
| 2    | EMI Test Receiver   | Rohde & Schwarz         | ESCI                        | CCIS0002 | 03-28-2015 | 03-28-2016 |  |  |  |  |
| 3    | LISN                | CHASE                   | MN2050D                     | CCIS0074 | 03-28-2015 | 03-28-2016 |  |  |  |  |
| 4    | Coaxial Cable       | CCIS                    | N/A                         | CCIS0086 | 04-01-2015 | 03-31-2016 |  |  |  |  |
| 5    | EMI Test Software   | AUDIX                   | E3                          | N/A      | N/A        | N/A        |  |  |  |  |



### 6 Test results and Measurement Data

# 6.1 Antenna requirement:

### **Standard requirement:** FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively forfixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBiprovided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

#### E.U.T Antenna:

The BLE antennais aninternal antennawhich cannot replace by end-user, the best case gain of the antennais 2.0dBi.



Page 9 of 36



# 6.2 Conducted Emission

| U | .2 Gonadotea Emission |                                                                                                                                                                                                                                                               |                                                                   |                                                           |  |  |  |  |
|---|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|
|   | Test Requirement:     | FCC Part15 C Section 15.207                                                                                                                                                                                                                                   |                                                                   |                                                           |  |  |  |  |
|   | Test Method:          | ANSI C63.4: 2009                                                                                                                                                                                                                                              |                                                                   |                                                           |  |  |  |  |
|   | TestFrequencyRange:   | 150 kHz to 30MHz                                                                                                                                                                                                                                              |                                                                   |                                                           |  |  |  |  |
|   | Class / Severity:     | Class B                                                                                                                                                                                                                                                       |                                                                   |                                                           |  |  |  |  |
|   | Receiver setup:       | RBW=9kHz, VBW=30kHz                                                                                                                                                                                                                                           |                                                                   |                                                           |  |  |  |  |
|   | Limit:                |                                                                                                                                                                                                                                                               | Limit (c                                                          | iBuV)                                                     |  |  |  |  |
|   |                       | Frequency range (MHz)                                                                                                                                                                                                                                         | Quasi-peak                                                        | Average                                                   |  |  |  |  |
|   |                       | 0.15-0.5 66 to 56* 56 to 46<br>0.5-5 56 46                                                                                                                                                                                                                    |                                                                   |                                                           |  |  |  |  |
|   |                       |                                                                                                                                                                                                                                                               |                                                                   |                                                           |  |  |  |  |
|   |                       | 5-30                                                                                                                                                                                                                                                          | 60                                                                | 50                                                        |  |  |  |  |
|   |                       | * Decreases with the logarithm                                                                                                                                                                                                                                |                                                                   |                                                           |  |  |  |  |
|   | Test procedure        | <ol> <li>The E.U.T and simulators a line impedance stabiliz 50ohm/50uH coupling imp</li> <li>The peripheral devices through a LISN that pro-</li> </ol>                                                                                                       | ration network (L.I.S.Noedance for the measure are also connected | N.), which provides a uring equipment.  to the main power |  |  |  |  |
|   |                       | with 50ohm termination. test setup and photograph                                                                                                                                                                                                             | (Please refer to the ns).                                         | block diagram of the                                      |  |  |  |  |
|   |                       | 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. |                                                                   |                                                           |  |  |  |  |
|   | Test setup:           | Refere                                                                                                                                                                                                                                                        | nce Plane                                                         |                                                           |  |  |  |  |
|   |                       | AUX Equipment E.L  Test table/Insulation plant  Remark: E.U.T. Equipment Under Test LISN Line Impedence Stabilization Test table height=0.8m                                                                                                                  | EMI<br>Receiver                                                   | er — AC power                                             |  |  |  |  |
|   | Test Uncertainty:     |                                                                                                                                                                                                                                                               |                                                                   | ±3.28 dB                                                  |  |  |  |  |
|   | Test Instruments:     | Refer to section 5.7 for details                                                                                                                                                                                                                              |                                                                   |                                                           |  |  |  |  |
|   | Test mode:            | Refer to section 5.3 for details                                                                                                                                                                                                                              |                                                                   |                                                           |  |  |  |  |
|   | Test results:         | Passed                                                                                                                                                                                                                                                        |                                                                   |                                                           |  |  |  |  |
|   |                       |                                                                                                                                                                                                                                                               |                                                                   |                                                           |  |  |  |  |

### **Measurement Data**





### Neutral:



: CCIS Shielding Room : EN 301489-QP LISN NEUTRAL Site Condition

EUT : Tablet : W10 Model Test Mode : BLE mode
Power Rating : AC 230/50Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki

Remark

|                                      | Freq  | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|--------------------------------------|-------|---------------|----------------|---------------|-------|---------------|---------------|---------|
|                                      | MHz   | −−dBuV        | ₫B             | <u>d</u> B    | dBu₹  | −dBuV         | <u>dB</u>     |         |
| 1                                    | 0.154 | 17.45         | 0.25           | 10.78         | 28.48 | 55.78         | -27.30        | Average |
| 2                                    | 0.158 | 32.18         | 0.25           | 10.78         | 43.21 | 65.56         | -22.35        | QP      |
| 3                                    | 0.230 | 31.52         | 0.25           | 10.75         | 42.52 | 62.44         | -19.92        | QP      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 0.230 | 14.85         | 0.25           | 10.75         | 25.85 | 52.44         | -26.59        | Average |
| 5                                    | 0.302 | 30.79         | 0.26           | 10.74         | 41.79 | 60.19         | -18.40        | QP      |
| 6                                    | 0.307 | 17.32         | 0.26           | 10.74         | 28.32 | 50.06         | -21.74        | Average |
| 7                                    | 0.393 | 29.35         | 0.25           | 10.72         | 40.32 | 57.99         | -17.67        | QP      |
| 8                                    | 0.661 | 29.40         | 0.20           | 10.77         | 40.37 | 56.00         | -15.63        | QP      |
| 9                                    | 0.668 | 15.20         | 0.20           | 10.77         | 26.17 | 46.00         | -19.83        | Average |
| 10                                   | 1.106 | 11.04         | 0.23           | 10.88         | 22.15 | 46.00         | -23.85        | Average |
| 11                                   | 2.044 | 10.48         | 0.29           | 10.96         | 21.73 | 46.00         | -24.27        | Average |
| 12                                   | 2.213 | 26.78         | 0.29           | 10.95         | 38.02 | 56.00         | -17.98        | QP      |





### Line:



Trace: 5

Site : CCIS Shielding Room Condition : EN 301489-QP LISN LINE

EUT : Tablet Model : W10

Model : W1U
Test Mode : BLE mode
Power Rating : AC 230/50Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

| Freq  | Read<br>Level                                                                                           | LISN<br>Factor                                                                                                                                                    | Cable<br>Loss                                                                                                                                                                                                                        | Level                                                                                                                                                                                                                                                                                                           | Limit<br>Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Over<br>Limit                | Remark                                  |
|-------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------|
| MHz   | dBu√                                                                                                    | ₫B                                                                                                                                                                | dB                                                                                                                                                                                                                                   | dBu₹                                                                                                                                                                                                                                                                                                            | dBu√                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dB                           |                                         |
| 0.154 | 22.43                                                                                                   | 0.27                                                                                                                                                              | 10.78                                                                                                                                                                                                                                | 33.48                                                                                                                                                                                                                                                                                                           | 55.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -22.30                       | Average                                 |
| 0.158 | 38.16                                                                                                   | 0.27                                                                                                                                                              | 10.78                                                                                                                                                                                                                                | 49.21                                                                                                                                                                                                                                                                                                           | 65.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -16.35                       | QP                                      |
| 0.227 | 36.01                                                                                                   | 0.27                                                                                                                                                              | 10.75                                                                                                                                                                                                                                | 47.03                                                                                                                                                                                                                                                                                                           | 62.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -15.54                       | QP                                      |
| 0.230 | 22.83                                                                                                   | 0.27                                                                                                                                                              | 10.75                                                                                                                                                                                                                                | 33.85                                                                                                                                                                                                                                                                                                           | 52.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -18.59                       | Average                                 |
| 0.302 | 33.79                                                                                                   | 0.26                                                                                                                                                              | 10.74                                                                                                                                                                                                                                | 44.79                                                                                                                                                                                                                                                                                                           | 60.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -15.40                       | QP                                      |
| 0.307 | 19.32                                                                                                   | 0.26                                                                                                                                                              | 10.74                                                                                                                                                                                                                                | 30.32                                                                                                                                                                                                                                                                                                           | 50.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -19.74                       | Average                                 |
| 0.595 | 13.44                                                                                                   | 0.25                                                                                                                                                              | 10.77                                                                                                                                                                                                                                | 24.46                                                                                                                                                                                                                                                                                                           | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -21.54                       | Average                                 |
| 0.661 | 30.37                                                                                                   | 0.23                                                                                                                                                              | 10.77                                                                                                                                                                                                                                | 41.37                                                                                                                                                                                                                                                                                                           | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -14.63                       | QP                                      |
| 0.668 | 15.17                                                                                                   | 0.23                                                                                                                                                              | 10.77                                                                                                                                                                                                                                | 26.17                                                                                                                                                                                                                                                                                                           | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -19.83                       | Average                                 |
| 1.511 | 27.32                                                                                                   | 0.26                                                                                                                                                              | 10.92                                                                                                                                                                                                                                | 38.50                                                                                                                                                                                                                                                                                                           | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -17.50                       | QP                                      |
| 2.121 | 11.61                                                                                                   | 0.26                                                                                                                                                              | 10.95                                                                                                                                                                                                                                | 22.82                                                                                                                                                                                                                                                                                                           | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -23.18                       | Average                                 |
| 2.213 | 30.81                                                                                                   | 0.26                                                                                                                                                              | 10.95                                                                                                                                                                                                                                | 42.02                                                                                                                                                                                                                                                                                                           | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -13.98                       | QP                                      |
|       | Freq<br>0.154<br>0.158<br>0.227<br>0.230<br>0.302<br>0.307<br>0.595<br>0.661<br>0.668<br>1.511<br>2.121 | Read<br>Freq Level  MHz dBuV  0.154 22.43 0.158 38.16 0.227 36.01 0.230 22.83 0.302 33.79 0.307 19.32 0.595 13.44 0.661 30.37 0.668 15.17 1.511 27.32 2.121 11.61 | Read LISN Freq Level Factor  MHz dBuV dB  0.154 22.43 0.27 0.158 38.16 0.27 0.227 36.01 0.27 0.230 22.83 0.27 0.302 33.79 0.26 0.307 19.32 0.26 0.595 13.44 0.25 0.661 30.37 0.23 0.668 15.17 0.23 1.511 27.32 0.26 2.121 11.61 0.26 | Read LISN Cable Level Factor Loss  MHz dBuV dB dB  0.154 22.43 0.27 10.78 0.158 38.16 0.27 10.78 0.227 36.01 0.27 10.75 0.230 22.83 0.27 10.75 0.302 33.79 0.26 10.74 0.307 19.32 0.26 10.74 0.595 13.44 0.25 10.77 0.661 30.37 0.23 10.77 0.668 15.17 0.23 10.77 1.511 27.32 0.26 10.92 2.121 11.61 0.26 10.95 | Read LISN Loss         Cable Level           Freq         dBuV         dB         dB         dB         dBuV           0.154         22.43         0.27         10.78         33.48           0.158         38.16         0.27         10.78         49.21           0.227         36.01         0.27         10.75         47.03           0.230         22.83         0.27         10.75         33.85           0.302         33.79         0.26         10.74         44.79           0.307         19.32         0.26         10.74         30.32           0.595         13.44         0.25         10.77         24.46           0.661         30.37         0.23         10.77         41.37           0.668         15.17         0.23         10.77         26.17           1.511         27.32         0.26         10.92         38.50           2.121         11.61         0.26         10.95         22.82 | Read LISN Cable Limit   Line | Read LISN Cable   Limit Over Line Limit |

#### Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss



# **6.3 Conducted Output Power**

| Test Requirement: | FCC Part15 C Section 15.247 (b)(3)                                    |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2                    |  |  |  |  |
| Limit:            | 30dBm                                                                 |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |  |  |
| Test results:     | Passed                                                                |  |  |  |  |

### Measurement Data

| Test CH | Maximum PK Conducted Output Power (dBm) | Limit(dBm) | Result |
|---------|-----------------------------------------|------------|--------|
| Lowest  | -0.24                                   |            |        |
| Middle  | 0.11                                    | 30.00      | Pass   |
| Highest | -0.13                                   |            |        |

Test plot as follows:





# Lowest channel



# Date: 7.DEC.2015 15:47:11 Middle channel



Highest channel



# 6.4 Occupy Bandwidth

| Test Requirement: | FCC Part15 C Section 15.247 (a)(2)                                    |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10:2009 and KDB558074v03r03 section 8.1                      |  |  |  |  |
| Limit:            | >500kHz                                                               |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |  |  |
| Test results:     | Passed                                                                |  |  |  |  |

### Measurement Data

| Test CH | 6dB Emission Bandwidth<br>(MHz) | Limit(kHz) | Result |
|---------|---------------------------------|------------|--------|
| Lowest  | 0.76                            |            |        |
| Middle  | 0.75                            | >500       | Pass   |
| Highest | 0.74                            |            |        |

| Test CH | 99% Occupy Bandwidth (MHz) | Limit(kHz) | Result |
|---------|----------------------------|------------|--------|
| Lowest  | 1.07                       |            |        |
| Middle  | 1.07                       | N/A        | N/A    |
| Highest | 1.07                       |            |        |

Test plot as follows:



### 6dB EBW



Date: 7.DEC.2015 15:42:00

### Lowest channel



Date: 7.DEC.2015 15:41:10

### Middle channel



Date: 7.DEC.2015 15:40:09

Highest channel



### 99% OBW



Date: 7.DEC.2015 15:36:43

### Lowest channel



Date: 7.DEC.2015 15:38:34

### Middle channel



Date: 7.DEC.2015 15:39:03

Highest channel





# 6.5 Power Spectral Density

| Test Requirement: | FCC Part15 C Section 15.247 (e)                                       |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10:2009 and KDB558074v03r03 section 10.2                     |  |  |  |  |
| Limit:            | 8dBm                                                                  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |  |  |
| Test results:     | Passed                                                                |  |  |  |  |

### Measurement Data

| Test CH | Power Spectral Density (dBm) | Limit(dBm) | Result |
|---------|------------------------------|------------|--------|
| Lowest  | -1.28                        |            |        |
| Middle  | -0.22                        | 8.00       | Pass   |
| Highest | -0.41                        |            |        |

Test plots as follow:





Date: 7.DEC.2015 15:42:51

### Lowest channel



Date: 7.DEC.2015 15:43:15

### Middle channel



Date: 7.DEC.2015 15:43:43

Highest channel





# 6.6 Band Edge

### 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10:2009 and KDB558074v03r03 section 13                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |

Test plots as follow:





Date: 17.NOV.2015 20:52:28

### Lowest channel



Highest channel





### 6.6.2 Radiated Emission Method

|                     | on Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Requirement:   | FCC Part15 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Section 15.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 and                                                                                                                        | d 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |  |
| Test Method:        | ANSI C63.10: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2009 and KDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 558                                                                                                                        | 8074v03r0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 section 1                                                                                                                                                                                       | 2.1                                                                                                                                                                                                                                                                                                |  |
| TestFrequencyRange: | 2.3GHz to 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |  |
| Test site:          | Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Distance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |  |
| Receiver setup:     | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                              | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VBW                                                                                                                                                                                               | Remark                                                                                                                                                                                                                                                                                             |  |
|                     | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pove 1GHz Peak RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | 1MHz<br>1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3MHz<br>3MHz                                                                                                                                                                                      | Peak Value Average Value                                                                                                                                                                                                                                                                           |  |
| Limit:              | Frequ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lin                                                                                                                          | nit (dBuV/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                   | Remark                                                                                                                                                                                                                                                                                             |  |
|                     | Above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                   | Average Value                                                                                                                                                                                                                                                                                      |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                   | Peak Value                                                                                                                                                                                                                                                                                         |  |
| Test Procedure:     | the ground todeterming.  The EUT of antenna, we tower.  The antenna, we the ground Both horizy make the scase and meters and to find the specified of the EUT have 10de to the EUT have 10de to the EUT to the tode to the EUT to the tode to the EUT to the | dat a 3 meter one the position was set 3 met whichwas mount on the position on the position of | cambon of the ers a unted arried at the litical principle. It is significant was adding a was an Maxibe Electing orted d ber | per. The tane highest away from I on the to I from one maximum polarization, the EU as tuned from the set to Period I in pear ground bed. Otherwire-tested on the high polarization in the EU in pear ground bed. Otherwire-tested on the pear to the tested of the pear to th | able was ro t radiation. the interfer p of a varia meter to for value of the ons of the all T was arran to heights from 0 degre eak Detect old Mode. k mode wa e stopped a se the emis one by one | e 0.8 meters above tated 360 degrees rence-receiving able-height antenna our meters above the field strength. Intenna are set to aged to its worst from 1 meter to 4 es to 360 degrees.  Function and s 10dB lower than and the peak values asions that did not using peak, quasi-ported in a data |  |
| Test setup:         | A A BOCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | furntable)  Gran  Test Receiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3m                                                                                                                           | Horn Ante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Antenna To                                                                                                                                                                                        | wer                                                                                                                                                                                                                                                                                                |  |
| Test Instruments:   | Refer to sectio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n 5.7 for detai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ls                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |  |
| Test mode:          | Refer to sectio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n 5.3 for detai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ls                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |  |
| Test results:       | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |  |





Test channel:Lowest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Tablet : W10 EUT Model

Test mode : BLE-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki

Remark

|     |                      |      | Antenna<br>Factor |            |           |        | Limit<br>Line |           |  |
|-----|----------------------|------|-------------------|------------|-----------|--------|---------------|-----------|--|
|     | MHz                  | dBuV | <u>dB</u> /m      | <u>d</u> B | <u>dB</u> | dBuV/m | dBuV/m        | <u>dB</u> |  |
| 1 2 | 2390.000<br>2390.000 |      |                   |            |           |        |               |           |  |





Test channel:Lowest

Vertical:



Site

Condition

EUT Test mode : BLE-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
Remark Model

Rema

| lemarı |                      | Read  | Antenna | Cable     | Preamp    |                     | Limit               | Over       |        |
|--------|----------------------|-------|---------|-----------|-----------|---------------------|---------------------|------------|--------|
|        | Freq                 | Level | Factor  | Loss      | Factor    | Level               | Line                | Limit      | Remark |
| -      | MHz                  | dBu∀  |         | <u>dB</u> | <u>dB</u> | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ | <u>d</u> B |        |
|        | 2390.000<br>2390.000 |       |         |           |           | 53.27<br>41.44      |                     |            |        |





Test channel:Highest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Tablet : W10 EUT Model Test mode : BLE-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

Remark

|     | Freq                 |       | Antenna<br>Factor |            |           |                     | Limit<br>Line       |            | Remark |
|-----|----------------------|-------|-------------------|------------|-----------|---------------------|---------------------|------------|--------|
|     | MHz                  | —dBu∜ |                   | <u>d</u> B | <u>dB</u> | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ | <u>d</u> B |        |
| 1 2 | 2483.500<br>2483.500 |       |                   |            |           | 54.45<br>42.27      |                     |            |        |





Test channel:Highest

Vertical:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet Condition

Model : W10
Test mode : BLE-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
Remarb EUT

Remark

| *************************************** | Freq                 |      | Antenna<br>Factor |            |    |                |        |           |  |
|-----------------------------------------|----------------------|------|-------------------|------------|----|----------------|--------|-----------|--|
| -                                       | MHz                  | dBu₹ | dB/m              | <u>d</u> B | dB | dBuV/m         | dBuV/m | <u>dB</u> |  |
|                                         | 2483.500<br>2483.500 |      |                   |            |    | 52.97<br>42.25 |        |           |  |





# 6.7 Spurious Emission

### 6.7.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2009 and KDB558074 section 11                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |

Test plot as follows:



### Lowest channel



Date: 20.NOV.2015 02:52:57

#### 30MHz~25GHz

### Middle channel



Date: 20.NOV.2015 02:54:23

30MHz~25GHz



### Highest channel



Date: 20.NOV.2015 02:55:35

30MHz~25GHz



### 6.7.2 Radiated Emission Method

| Test Requirement:   | FCC Part15 C S                                                                                                                                     | Section 15.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 and 15.205                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:        | FCC Part15 C Section 15.209 and 15.205<br>ANSI C63.10:2009                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| TestFrequencyRange: | 9KHz to 25GHz                                                                                                                                      | 9KHz to 25GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Test site:          | Measurement D                                                                                                                                      | istance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Receiver setup:     | Frequency Detector RBW VBW Remark  30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| ·                   | Peak 1MHz 3MHz Peak Value                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                     | Above 1GHz Peak 1MHz 3MHz Peak V                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                     | Above IGIIZ                                                                                                                                        | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1MHz                                                                                                                                                                                                                   | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average Value                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Limit:              | Frequency                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit (dBuV/m                                                                                                                                                                                                          | @3m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remark                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                     | 30MHz-88MHz                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.0                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                     | 88MHz-216MHz                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.5                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                     | 216MHz-960MH                                                                                                                                       | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.0                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                     | 960MHz-1GHz                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54.0                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                     | Above 1GHz                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54.0                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average Value                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                     |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.0                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak Value                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Test Procedure:     | the ground todetermine  The EUT antenna, we tower.  The antenre the ground Both horized make the new to find the rest-results of the EUT have 10dB | at a 3 meter of the position was set 3 method was mountained and verneasurement of the rotatable maximum reasurement suspected en the rotatable maximum reasurement of the rotatable representation of the r | camber. The of the highes leters away funted on the to varied from ore the maximutical polarizations in the Ena was tuned ewas turned funding.  In Maximum Hothe EUT in peresting could boorted. Otherwood bere-tested | table was retradiation. Trom the incorp of a variance meter to the importance of the incorp of the i | le 0.8 meters above rotated 360 degrees terference-receiving able-height antenna of four meters above of the field strength, antenna are set to terranged to its worst of from 1 meter to 4 dees to 360 degrees etect Function and the peak values hissions that did not be using peak, quasi-reported in a data |  |  |  |  |  |

Project No.:CCIS151100871RF











### **Below 1GHz**

Horizontal:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Tablet : W10 Model Test mode : BLE mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

Remark

| SHIP TIE              |          |       |                   |       |       |        |               |               |    |
|-----------------------|----------|-------|-------------------|-------|-------|--------|---------------|---------------|----|
|                       | Freq     |       | Antenna<br>Factor |       |       |        | Limit<br>Line | Over<br>Limit |    |
| _                     | MHz      | —dBu₹ | <u>d</u> B/m      |       |       | dBuV/m | dBuV/m        | dB            |    |
| 1                     | 59.649   | 48.51 | 12.73             | 0.69  | 29.77 | 32.16  | 40.00         | -7.84         | QP |
| 1<br>2<br>3<br>4<br>5 | 119.856  | 55.73 | 10.48             | 1.12  | 29.39 | 37.94  | 43.50         | -5.56         | QP |
| 3                     | 213.015  | 54.94 | 10.97             | 1.45  | 28.75 | 38.61  | 43.50         | -4.89         | QP |
| 4                     | 239.987  | 57.24 | 12.09             | 1.58  | 28.59 | 42.32  | 46.00         | -3.68         | QP |
| 5                     | 392.095  | 47.38 | 14.87             | 2.09  | 28.75 | 35.59  | 46.00         | -10.41        | QP |
| 6                     | 480, 528 | 44.52 | 16.07             | 2, 35 | 28.92 | 34.02  | 46.00         | -11.98        | QP |





### Vertical:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : Tablet Condition

EUT Model : W10 Test mode : BLE mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki

Re

| emark                 | :<br>Freq |       | Antenna<br>Factor |            |           |                     | Limit<br>Line | Over<br>Limit | Remark |
|-----------------------|-----------|-------|-------------------|------------|-----------|---------------------|---------------|---------------|--------|
| -                     | MHz       | dBu∇  | dB/m              | d <u>B</u> | <u>dB</u> | $\overline{dBuV/m}$ | dBuV/m        | <u>dB</u>     |        |
| 1                     | 61.562    | 53.81 | 12.03             | 0.71       | 29.77     | 36.78               | 40.00         | -3.22         | QP     |
| 2                     | 119.856   | 54.30 | 10.48             | 1.12       | 29.39     | 36.51               | 43.50         | -6.99         | QP     |
| 3                     | 239.987   | 46.41 | 12.09             | 1.58       | 28.59     | 31.49               | 46.00         | -14.51        | QP     |
| 4                     | 426.521   | 44.89 | 15.50             | 2.19       | 28.83     | 33.75               | 46.00         | -12.25        | QP     |
| 2<br>3<br>4<br>5<br>6 | 480.528   | 49.14 | 16.07             | 2.35       | 28.92     | 38.64               | 46.00         | -7.36         | QP     |
| 6                     | 640.611   | 40.23 | 18.60             | 2.76       | 28.81     | 32.78               | 46.00         | -13.22        | QP     |



### **Above 1GHz**

| Т                  | Test channel:           |                             |                       | Lowest                   |                   | vel:                   | Peak                  |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4804.00            | 49.56                   | 31.53                       | 10.57                 | 40.24                    | 51.42             | 74.00                  | -22.58                | Vertical     |
| 4804.00            | 49.34                   | 31.53                       | 10.57                 | 40.24                    | 51.20             | 74.00                  | -22.80                | Horizontal   |

| Т                  | Test channel:           |                             |                       | Lowest                   |                   | vel:                   | Average               |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4804.00            | 39.75                   | 31.53                       | 10.57                 | 40.24                    | 41.61             | 54.00                  | -12.39                | Vertical     |
| 4804.00            | 39.66                   | 31.53                       | 10.57                 | 40.24                    | 41.52             | 54.00                  | -12.48                | Horizontal   |

| Т                  | est channel             | :                           | Middle                |                          | Le                | vel:                   | Peak                  |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4884.00            | 49.85                   | 31.58                       | 10.66                 | 40.15                    | 51.94             | 74.00                  | -22.06                | Vertical     |
| 4884.00            | 49.72                   | 31.58                       | 10.66                 | 40.15                    | 51.81             | 74.00                  | -22.19                | Horizontal   |

| Т                  | Test channel:           |                             |                       | Middle                   |                   | vel:                   | Average               |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4884.00            | 39.65                   | 31.58                       | 10.66                 | 40.15                    | 41.74             | 54.00                  | -12.26                | Vertical     |
| 4884.00            | 39.51                   | 31.58                       | 10.66                 | 40.15                    | 41.60             | 54.00                  | -12.40                | Horizontal   |

| Test channel:      |                         |                             | Highest               |                          | Le                | vel:                   | Peak                  |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4960.00            | 49.97                   | 31.69                       | 10.73                 | 40.03                    | 52.36             | 74.00                  | -21.64                | Vertical     |
| 4960.00            | 49.82                   | 31.69                       | 10.73                 | 40.03                    | 52.21             | 74.00                  | -21.79                | Horizontal   |

| Test channel:      |                         |                             | Highest               |                          | Le                | vel:                   | Average               |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4960.00            | 39.68                   | 31.69                       | 10.73                 | 40.03                    | 42.07             | 54.00                  | -11.93                | Vertical     |
| 4960.00            | 39.54                   | 31.69                       | 10.73                 | 40.03                    | 41.93             | 54.00                  | -12.07                | Horizontal   |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366