CAMERA CALIBRATION USING ITERATIVE REFINEMENT WITH DENSITY FUNCTION SELECTION OVER CONCENTRIC RINGS, CHESSBOARD AND ASYMMETRIC DISKS PATTERNS

STUDENTS:

LÓPEZ CÁCERES, JORGE ROBERTO MAURICIO CONDORI, MANASSES ANTONI

PROFESSOR:

DSC MANUEL EDUARDO LOAIZA FERNÁNDEZ

Universidad Católica de San Pablo Master in Computer Science

17 DE MARZO, 2018

DETECTION AND TRACKING STEP

DENSITY DISTRIBUTION

The sector density method include quad segmentation over scene, in our case we define 4x5 sectors due the window size and proportion. To set the maximum number of points per zone or density (p), we establish a maximum number of frames to use in calibration process (N_{frames}) , then based on number of elements per arrange $(N_{arrange})$ and total number of sections $(N_{sections})$, we define equation 1:

$$p = \frac{N_{frames} * N_{arrange}}{N_{sections}} \tag{1}$$

Algorithm Density Distribution (Vector of IFrames):

```
p = N_{frames} * N_{arrange}/N_{sections}

for S = 1 to N_{sections} do

for F = 1 to N_{frames} do

Evaluate density with Iframes[F]

if Pass evaluation then

Add frame to OFrames

end if

end for

return Vector of OFrames
```

DENSITY DISTRIBUTION ALGORITHM

NO SAMPLED DISTRIBUTION: CONCENTRIC RING

ITERATIVE REFINEMENT – CORRECTED IMAGES

ITERATIVE REFINEMENT – FRONTO PARALLEL

RESULTS: LIFECAM CAMERA

P	F_x	F_y	C_x	C_y	Coll	RMS			
	$N_F = 25$								
0	598.095	593.730	348.270	235.708	0.0056899	0.4408			
1	619.877	615.677	359.883	217.080	0.0041629	0.2495			
2	587.567	582.977	310.336	222.569	0.0052875	0.2555			
	$N_F = 35$								
0	588.038	589.47	315.49	228.460	0.0054542	0.7608			
1	622.340	625.00	340.08	205.049	0.0048213	0.1734			
2	615.420	617.19	325.00	223.590	0.0054572	0.1817			

TABLE 1. LIFECAM CALIBRATION RESULTS

- **(Cx, Cy)**: is a principal point that is usually at the image center.
- **(Fx, Fy)** : focal lengths expressed in pixel units.
- **Coll**: is collinearity calculated using average deviation of points from vectors formed with arrange corners.
- **RMS**: Root Mean Squar error from *OpenCV* **calibratecamera** function.
- N_F : Number of frames.
- **P**: Patter Concentric rings (2), Assimetric disks (1) and Chessboard (0)

RESULTS: PS3 CAMERA

P	F_x	F_y	C_x	C_y	Coll	RMS			
	$N_F = 25$								
0	850.705	840.663	270.959	289.313	0.0067586	0.3721			
1	859.836	858.969	367.794	259.614	0.0043134	0.2918			
2	842.759	836.334	340.519	249.733	0.0022995	0.2956			
	$N_F = 35$								
0	854.051	856.016	348.220	250.09	0.0068142	0.2254			
1	845.390	846.885	338.313	248.68	0.0044587	0.2104			
2	844.195	847.380	340.606	260.84	0.0024955	0.2012			

TABLE 2. PS3 CALIBRATION RESULTS

- **(Cx, Cy)**: is a principal point that is usually at the image center.
- **(Fx, Fy)** : focal lengths expressed in pixel units.
- **Coll**: is collinearity calculated using average deviation of points from vectors formed with arrange corners.
- **RMS**: Root Mean Squar error from *OpenCV* **calibratecamera** function.
- N_{E} : Number of frames.
- **P**: Patter Concentric rings (2), Assimetric disks (1) and Chessboard (0)

RESULTS: DENSITY FUNCTION

P	F_x	F_y	C_x	C_y	Coll	RMS
			$N_F =$	25		
0	598.095	593.730	348.270	235.708	0.0056899	0.4408
1	619.877	615.677	359.883	217.080	0.0041629	0.2495
2	587.567	582.977	310.336	222.569	0.0052875	0.2555
			N_F =	25		
0	850.705	840.663	270.959	289.313	0.0067586	0.3721
1	859.836	858.969	367.794	259.614	0.0043134	0.2918
2	842.759	836.334	340.519	249.733	0.0022995	0.2956
P			_ ~			
F	F_x	F_y	C_x	C_y	Cl	RMS
r			$C_T = \text{Lif}$	·	L	
0	607.510	601.122	$C_T = \text{Lif}$ 355.519	eCam 238.528	0.0066566	0.4881
0	607.510 598.650	601.122 599.681	$C_T = \text{Lif}$ 355.519 361.555	eCam 238.528 216.388	0.0066566 0.0046648	0.4881 0.2450
0	607.510	601.122	$C_T = \text{Lif}$ 355.519 361.555 311.889	238.528 216.388 226.199	0.0066566	0.4881
0 1 2	607.510 598.650 586.771	601.122 599.681 581.560	$C_T = \text{Lif}$ 355.519 361.555 311.889 $C_T = 1$	238.528 216.388 226.199 PS3	0.0066566 0.0046648 0.0049612	0.4881 0.2450 0.2291
0 1 2	607.510 598.650 586.771 808.407	601.122 599.681 581.560 798.441	$C_T = \text{Lif}$ 355.519 361.555 311.889 $C_T = 1$ 283.756	238.528 216.388 226.199 PS3 248.286	0.0066566 0.0046648 0.0049612 0.0050957	0.4881 0.2450 0.2291 0.4330
0 1 2 0 1	607.510 598.650 586.771 808.407 878.781	601.122 599.681 581.560 798.441 883.128	C_T = Lift 355.519 361.555 311.889 C_T = 1 283.756 395.578	238.528 216.388 226.199 PS3 248.286 319.782	0.0066566 0.0046648 0.0049612 0.0050957 0.0043304	0.4881 0.2450 0.2291 0.4330 0.3084
0 1 2 0 1 2	808.407 878.781 844.247	601.122 599.681 581.560 798.441 883.128 837.769	C_T = Lift 355.519 361.555 311.889 C_T = 3 283.756 395.578 344.901	238.528 216.388 226.199 PS3 248.286 319.782 253.990	0.0066566 0.0046648 0.0049612 0.0050957	0.4881 0.2450 0.2291 0.4330 0.3084 0.2982

RESULTS: ITERATIVE REFINEMENT

	Chessboard		Assi	m. disks	Concc. rings	
I	RMS	Coll	RMS	Coll	RMS	Coll
1	0.4408	0.0056899	0.2495	0.0041629	0.2554	0.0052875
2	0.4740	0.0057268	0.2178	0.0040713	0.2240	0.0049633
3	0.5177	0.0074094	0.2392	0.0045387	0.2305	0.0049960
4	0.5126	0.0081552	0.2190	0.0050206	0.2318	0.0047513
5	0.5276	0.0067847	0.2351	0.0038565	0.2260	0.0049553
6	0.4881	0.0066566	0.2448	0.0046648	0.2291	0.0049612

TABLE 4. ITERATIVE REFINEMENT CALIBRATION RESULTS USING DENSITY DISTRIBUTION CAPTION FOR LIFECAM CAMERA

	Chessboard		Assi	m. disks	Concc. rings	
I	RMS	Coll	RMS	Coll	RMS	Coll
1	0.3721	0.0067586	0.2918	0.0043134	0.2956	0.0022995
2	0.4424	0.0055703	0.3284	0.0044416	0.2958	0.0022504
3	0.4137	0.0047987	0.3249	0.0046165	0.3006	0.0023319
4	0.3735	0.0058645	0.3136	0.0046498	0.2975	0.0023014
5	0.4806	0.0060481	0.2894	0.0047778	0.2967	0.0023171
6	0.4329	0.0050957	0.3084	0.0043304	0.2982	0.0023091

TABLE 5. ITERATIVE REFINEMENT CALIBRATION RESULTS USING DENSITY DISTRIBUTION CAPTION FOR PS3 CAMERA

CONCLUSIONS

- As seen in the results, the asymmetric circles and rings patterns are better than the chessboard because they reduce the error by detecting their centers instead of edges and vertices, which usually tend to fail. This generates an error in the calibration calculus obtaining very variable and distant results. This phenomenon is corrected using the iterative method but it does not apply to the rest of patterns.
- Between the assymetric circles and concentric rings, the last one have several concentric circles that help reduce the error when calculating the centers of the pattern.
- The iterative method does not imply a great advantage (in comparison with results obtained selection density function), it helps to reduce the error but it is not very significant, only in cases of cameras with greater distortion it is possible to appreciate like in ps3 case and for patterns that do not have much noise like concentric rings.