

TUTORIAL 9: COUNTER APPLIED KNOWLEDGE QUESTIONS

PDS0101: INTRODUCTION TO DIGITAL SYSTEMS TRI 2, 2022-2023

Adder binary addition

Draw parallel adder for 4 t 10 using halfadder and full adder 0100 1010

Counter

Async counter
Only the first FF
get signal from
main clock

Sync counter
All FF get
Signal from
Main clock

Async counter

NGT 3 6if Asyn counter

3 67 Counter

Sync Counter

period

duty cycle

/ PGT / NG7

mod -12

Show how an asynchronous counter with a modulus of 12 can be constructed using flip-flops (JK)

$$0 - 11$$
; reset 12 (1100)

Mod-12 = how many FF needed??

Mod-12 requires 4 FFs minimum to implement

Counter recycles HERE

STATE	COUNT	Q_3	Q ₂	Q ₁	Qo
1	0	0	0	0	0
2	1	0	0	0	1
3	2	0	0	1	0
4	3	0	0	1	1
5	4	0	1	0	0
6	5	0	- 1	0	1
7	6	0	- 1	1	0
8	7	0	- 1	1	1
9	8	1	0	0	0
10	9	1	0	0	1
11	10	1	0	1	0
12	11	1	0	1	1
13	12	→ 1	1	0	0
14	13	1	1	0	1
15	14	1	1	1	0
16	15	1	1	1	1

CLEAR / RESET

Show how an asynchronous counter with a modulus of 12 can be constructed

Show how an asynchronous counter with a modulus of 12 can be constructed using flip-flops COUNT UNTIL 1011 RESET/CLEAR 1100

Show how an asynchronous counter with a modulus of 12 can be constructed using timing diagram

Show how an asynchronous counter with a modulus of 12 can be constructed using timing diagram

For the ripple counter shown below, show the complete timing diagram for

Clock Pulse	Q ₁	Q ₀
0	0	0
1	0	1
2	1	0
3	1	1
4	0	0
5	0	1
6	1	0
7	1	1
8	0	0

For the **ripple counter** shown below, show the complete **timing diagram** for the **outputs** at \mathbf{Q}_0 and \mathbf{Q}_1 for **eight clock pulses**

For the **counter** below, show the complete **timing** diagram for the **output** waveforms at Q_{0} , Q_1 and

Clock Pulse	Q ₂	Q ₁	Qo
0			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			

For the counter below, show the complete timing diagram for the output waveforms at Q_0 , Q_1 and Q_2 for sixteen clock pulses

CURRENT - NEXT TABLE(JK TRANSITION TABLE)

Outp	ut	Input				
Current	Next	J	K			
0	0	0	×			
0	1	j	χ			
1	0	X	1			
- 1	1	X	0			

Input

$$J = 1$$
; $k = 0$
 $J = 1$; $K = 1$
 $J = 1$; $K = x$

$$J = 1$$
; $k = 0$
 $J = 0$; $J = 0$
 $J = x$; $k = 0$

Design a counter to produce the following cyclic sequence $00 \rightarrow 10 \rightarrow 01 \rightarrow 11$

STEP 1: DRAW TRANSITION STATE DIAGRAM

STEP 2: COMPLETE CURRENT-NEXT TABLE

CURREN	NT STATE	NEXT STATE			
A	В	A	В		
0	0	1	0		
1	0	0	1		
0	1	1	1		
1	1	0	0		

Design a counter to produce the following cyclic sequence $00 \rightarrow 10 \rightarrow 01 \rightarrow 11$

STEP 3: COMPLETE JK PARTS IN THE TABLE

CURRENT STATE		NEXT STATE		JK INPUT				
A	В	A	В	JA	K _A	J _B	K _B	
0	0	1	0	1	X	0	X	
1	0	0	1	X	1	1	X	
0	1	1	1	1	X	X	0	
1	1	0	0	X	1	X	1	

Design a counter to produce the following cyclic sequence $00 \rightarrow 10 \rightarrow 01 \rightarrow 11$

STEP 4: SIMPLIFY WITH K-MAP

CUR STA	RENT ATE	JK INPUT					
A	В	JA	KA	JB	K _B		
0	0	1	X	0	X		
1	0	X	1	1	X		
0	1	1	X	X	0		
1	1	X	1	X	1		

Design a counter to produce the following cyclic sequence $00 \rightarrow 10 \rightarrow 01 \rightarrow 11$

STEP 5: DRAW CIRCUIT

Alter the counter from (4) so that it only implements the stages 11, 01 and 10 in cycle

STEP 1: DRAW TRANSITION STATE DIAGRAM

STEP 2: COMPLETE CURRENT - NEXT TABLE

CURREN	NT STATE	NEXT STATE			
Q ₁	Qo	Q_1	Q_0		
1	1	0	1		
0	1	1	0		
1	0	1	1		
0	0	X	X		

Alter the counter from (4) so that it only implements the stages 11,01 and 10 in cycle

STEP 3: COMPLETE JK PARTS IN THE TABLE

CURRENT STATE		NEXT STATE		JK INPUT				
Q_1	Qo	Qı	Qo	J ₁	K ₁	Jo	K _o	
1	1	0	1	X	1	X	0	
0	1	1	0	1	X	X	1	
1	0	1	1	Х	0	1	X	
0	0	X	X	X	Х	X	X	

Alter the counter from (4) so that it only implements the stages 11, 01 and 10 in cycle

STEP 4: SIMPLIFY WITH K-MAP

	RENT ATE	JK INPUT					
Q ₁	Q ₀	J ₁	K 1	Jo	Ko		
1	1	X	1	X	0		
0	1	1	X	X	1		
1	0	X	0	1	X		
0	0	X	X	X	X		

Alter the counter from (4) so that it only implements the stages 11, 01 and 10 in cycle

STEP 5: DRAW CIRCUIT

APPLIED KNOWLEDGE QUESTIONS

7. Design a counter using J-K FFs that follow the cyclic sequence 4,5,7,1,3. Find the minimum number of FFs required to implement the counter and any unwanted FF sequences in the counter go to 4

DecimalBinary								
Q	0	O	O					
	0	0						
2	O		0					
3	0							
4	_	0	G					
5		O						
6	1		0					
7								

STEP 2: COMPLETE CURRENT-NEXT TABLE STEP 3: COMPLETE JK PARTS IN THE TABLE

Present

CURRENT STATE		NEXT STATE		FF2		FF1		FF0			
A	В	С	A	В	С	J _A	K _A	J _B	K _B	J _C	K _C
0	0	0		D	O	1	×	0	X	0	X
0	0	1	0	1		0	X		X	×	0
0	1	0		0	0		Х	×		0	X
0	1	1	1	0	0	_	X	X	1	×	
1	0	0		0		X	0	0	X		X
1	0	1		1	1	×	0		X	×	0
1	1	0	(0	O	X	0	×	1	0	X
1	1	1	D	0		×	1	×	1	×	0

		TPUT SITIONS Q _{N+1}		-FLOP PUTS <i>K</i>
	0 — 0 — 1 —	$0 \longrightarrow 1 \longrightarrow 0 \longrightarrow 1$	0 1 X X	X X 1 0
000	<i>(</i>)	010	(110	9)
<u> </u>	× 10	00)		
			01)	
ر ا ٥		111	+	

00)	101
101	
111	001

STEP 4: SIMPLIFY WITH K-MAP

CURRENT STATE			FF2	
А	В	С	J _A	K _A
0	0	0		Х
0	0	1	0	X
0	1	0	1	Х
0	1	1	1	Х
1	0	0	Х	0
1	0	1	Х	0
1	1	0	Х	0
1	1	1	X	1

JA	=	C	+	B

XIX

1 *1*

$$K^{A} = BC$$

STEP 4: SIMPLIFY WITH K-MAP

CURRENT STATE			FF1	
А	В	С	J _B	K _B
0	0	0	0	Х
0	0	1	1	Х
0	1	0	Х	1
0	1	1	Х	1
1	0	0	0	Х
1	0	1	1	Х
1	1	0	Х	1
1	1	1	Х	1

STEP 4: SIMPLIFY WITH K-MAP

CURRENT STATE			FFO	
А	В	С	JC	K _C
0	0	0	0	Х
0	0	1	Х	0
0	1	0	0	Х
0	1	1	Х	1
1	0	0	1	Х
1	0	1	Х	0
1	1	0	0	Х
1	1	1	Х	0

