MATH 750 HW # 3

MARIO L. GUTIERREZ ABED

Ex 3-22) If A is a Jordan-measurable set and $\varepsilon > 0$, show that there is a compact Jordan-measurable set $C \subset A$ such that $\int_{A \setminus C} 1 < \varepsilon$.

Proof. Before proceeding with our proof let us prove the following lemma:

Lemma 1. If A is a closed rectangle, then $C \subset A$ is Jordan measurable iff for every $\varepsilon > 0$, there is a partition P of A such that

$$\sum_{S \in \mathbb{S}_1} v(S) - \sum_{S \in \mathbb{S}_2} v(S) < \varepsilon$$

where S_1 consists of all subrectangles intersecting C and S_2 consists of all subrectangles contained in C.

Proof of Lemma 1. (\Rightarrow) Suppose C is Jordan measurable, so that its boundary has measure 0 (and hence content 0). Let $\varepsilon > 0$ and choose a finite set S_i for i = 1, ..., n of open rectangles the sum of whose volumes is less than ε and such that the S_i form a cover of the boundary of C. Let P be a partition of A such that every subrectangle of P is either contained within each S_i or does not intersect it. This P satisfies the condition in the statement of the problem.

(\Leftarrow) Suppose that for every $\varepsilon/2 > 0$, there is a partition P as in the statement of the problem. Then by replacing the rectangles with slightly larger ones, one can obtain the same result except now we will have ε in place of $\varepsilon/2$ and the S_i will be open rectangles. This shows that the boundary of C is of content 0; hence C is Jordan measurable, as desired.

Now we are ready to provide our proof:

Let B be a closed rectangle containing A and apply $Lemma\ 1$ with A as the Jordan measurable set. Let P be the partition as in the lemma and define

$$C = \bigcup_{S \in \mathcal{S}_2} S.$$

Then $C \subset A$ and clearly C is Jordan measurable. Moreover, we have

$$\int_{A\setminus C} 1 < \sum_{S\in\mathcal{S}_1} v(S) - \sum_{S\in\mathcal{S}_2} v(S) < \varepsilon,$$

which yields our desired result.

Ex 3-32) Let $f: [a,b] \times [c,d] \to \mathbb{R}$ be continuous and suppose $D_2 f$ is continuous. Define $F(y) = \int_a^b f(x,y) \, dx$. Prove *Leibnitz's rule*: $F'(y) = \int_a^b D_2 f(x,y) \, dx$.

[Hint:
$$F(y) = \int_a^b f(x, y) dx = \int_a^b \left(\int_c^y D_2 f(x, y) dy + f(x, c) \right) dx.$$
]

Proof. Using the hint provided, we have the following:

$$F'(y) = \lim_{h \to 0} \frac{F(y+h) - F(y)}{h}$$

$$= \lim_{h \to 0} \frac{\int_a^b \int_y^{y+h} D_2 f(x,y) \, dy \, dx}{h}$$

$$= \lim_{h \to 0} \frac{\int_y^{y+h} \int_a^b D_2 f(x,y) \, dx \, dy}{h}$$

$$= \lim_{h \to 0} \frac{\int_c^{y+h} \int_a^b D_2 f(x,y) \, dx \, dy - \int_c^y \int_a^b D_2 f(x,y) \, dx \, dy}{h}$$

$$= \int_a^b D_2 f(x,y) \, dx.$$