Homework 4

Math 126

Due October 8, 2021 by 5pm

Name:

Topics covered: complex integration, Cauchy's theorem, Cauchy integral formula Instructions:

- This assignment must be typed in LaTeX and submitted on Gradescope by the due date. The Gradescope entry code is V8XWRG
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.
- You may freely use any fact proved in class. In general, you should provide proof for facts that you use that were not proved in class.

Problem 1. Evaluate the following integrals.

(a) $\int_{|z|=1} \frac{e^z}{z^m} dz$ for each $-\infty < m < \infty$.

(b)
$$\int_{|z|=1} \frac{dz}{z^2(z^2-4)e^z}$$
.

Solution. \Box

Problem 2. Let f be a complex-valued function, and define g(z) = f(1/z). We say f is "continuous at infinity" if $\lim_{z\to 0} g(z)$ exists; if g is also holomorphic at 0, then we say that f is "holomorphic at infinity".

- (a) Prove that $f(z) = \frac{z^2+3}{z^4-2z+3}$ is holomorphic at infinity.
- (b) Prove that if f is holomorphic at infinity, then $\int_C f = 0$ for any circle of sufficiently large radius.

Solution. \Box

Problem 3. Fix a complex number a with nonzero imaginary part, and assume that $f: \mathbb{C} \to \mathbb{C}$ is holomorphic function and

$$f(z+1) = f(z)$$
 and $f(z+a) = f(z)$

for all $z \in \mathbb{C}$. ¹ Prove that f is constant. ² ³

Solution. \Box

Problem 4. Integrate $e^{-z^2/2}$ around a rectangle with vertices $\pm R$, $it \pm R$ and take $R \to \infty$ to show that

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/2} e^{-itx} dx = e^{-t^2/2}.$$

You may use that $\int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$, which is a famous computation.⁴

Solution.

Problem 5. Assume $f: W \to \mathbb{C}$ is holomorphic. Prove that f has an antiderivative if and only if $\int_C f(z) dz = 0$ for every closed curve $C \subset W$.

Solution. \Box

Problem 6. True or false:

(a) $\lim_{x\to 0} x \sin(1/x) = 0$.

¹Remark: What do these equations mean geometrically?

²Hint: You may want to use a fact from real analysis, similar to the one on HW2#5.

³Hint: your solution should be short.

⁴Aside: this problem shows that $e^{-x^2/2}$ is an eigenfunction for the Fourier transform with eigenvalue 1.

⁵Hint: for one direction, you need to carefully figure out how to use the Fundamental Theorem of Calculus. Warning: there is not "Fundamental Theorem of Complex Analysis."

(b) $\lim_{z\to 0} z \sin(1/z) = 0$.

Be sure to explain your answer.⁶

 \Box

⁶You may want to use L'Hoptial's rule.