Entrega 5

Agustin Muñoz Gonzalez

27/7/2020

Preparamos el entorno.

```
rm(list=ls())
```

7. Para entregar: Implemente una función class.nopar que dado un punto x_{new} determine la clase a la que pertenece el nuevo individuo que tiene este valor en la covariable mediante la regla plug—in de Bayes \widehat{g} basada en las estimaciones no paramétricas de las densidades f_1 y f_0 usando núcleo gaussiano. Para ello entrar como input de la función implementada el punto x_{new} , los vectores de datos X_{datos} e Y_{datos} y las ventanas h_1 y h_0 : class.nopar(x_{new} , X_{datos} , Y_{datos} , h_1 , h_0).

Resolución:

Notar que por una cuestión de usar los mismos valores que toma la variable respuesta Y, llamamos f_1 a la función de densidad de la altura de un hongo de la variedad I y f_2 a la función de densidad de la altura de un hongo de la variedad II.

Por último los inputs que tomamos para la función class.nopar() son

- x para x_{new} ;
- X para X_{datos} ;
- Y para Y_{datos} ;
- h_1 para h_1 ;
- h_2 para h₀ (para usar la misma numeración que p2 y f_2).

Ahora sí, definimos la función que nos pide el ejercicio. Adentro de la función definimos también las estimaciones de las proporciones de 1's y 2's, p1 y p2 resp., y las estimaciones de f_1 y f_2, f_1_hat y f_2_hat resp.

```
# Y debe ser un vector de 1's y 2's.
class.nopar=function(x,X,Y,h_1,h_2){
    # Defimos las proporciones de 1's y 2's estimadas
    p1=length(Y==1)/length(Y)
    p2=length(Y==2)/length(Y)
# Definimos las estimaciones de f_1 y f_0
    f_1_hat=function(x,X,h){
    df <- approxfun(density(X, kernel='gaussian',bw=h))
    df(x)
}
f_2_hat=function(x,X,h){
    df <- approxfun(density(X, kernel='gaussian',bw=h))
    df(x)
}
# Definimos el clasificador por la regla de Bayes
ifelse(f_1_hat(x,X,h_1)*p1>f_2_hat(x,X,h_2)*p2,1,2)
}
```