Cours: Polynômes

2

3

5

7

7 7

8 9

Table des matières

1	\mathbf{L} 'algèbre $\mathbb{K}[X]$	
	1.1	Définition
	1.2	Substitution
	1.3	Degré d'un polynôme
	1.4	Racines, fonctions polynomiales
	1.5	Polynôme dérivé
2	$\textbf{Arithm\acute{e}tique dans} \mathbb{K}[X]$	
	2.1	Relation de divisibilité, division euclidienne
	2.2	Plus grand commun diviseur
	2.3	Algorithme d'Euclide
	2.4	Relation de Bézout
	2.5	Lemme de Gauss
	2.6	Plus petit commun multiple
	2.7	Polynômes irréductibles
3		
	3.1	Racines multiples
	3.2	Théorème fondamental de l'algèbre
	3.3	Fonctions symétriques élémentaires

1 L'algèbre $\mathbb{K}[X]$

1.1 Définition

Définition 1. Soit \mathbb{K} un corps. Alors il existe une algèbre commutative $\mathbb{K}[X]$ et un élément $X \in \mathbb{K}[X]$ appelé indéterminée tels que :

— Pour tout $P \in \mathbb{K}[X]$, il existe $n \in \mathbb{N}$ et $a_0, \ldots, a_n \in \mathbb{K}$ tels que

$$P = a_0 + a_1 X + \dots + a_n X^n$$

où, par abus de notation, $a_0 = a_0 \cdot 1_{\mathbb{K}[X]} = a_0 X^0$.

— Pour tout $n \in \mathbb{N}$ et $a_0, \ldots, a_n \in \mathbb{K}$

$$a_0 + a_1 X + \dots + a_n X^n = 0 \implies a_0 = \dots = a_n = 0$$

On l'appelle algèbre des polynômes à coefficients dans \mathbb{K} .

Remarques:

 \Rightarrow Soit $P \in \mathbb{K}[X]$, $a_0, \ldots, a_n \in \mathbb{K}$ et $b_0, \ldots, b_m \in \mathbb{K}$ tels que $P = a_0 + a_1X + \cdots + a_nX^n$ et $P = b_0 + b_1X + \cdots + b_mX^m$. Si on prolonge les définitions des suites a et b en posant

 $a_k = 0$ pour k > n et $b_k = 0$ pour k > m, alors les suites (a_k) et (b_k) sont égales. On dit que les a_k sont les coefficients du polynôme P.

- \Rightarrow Deux polynômes sont égaux si et seulement si ils ont les mêmes coefficients.
- \Rightarrow Les coefficients d'un produit de deux polynômes se calculent par la formule

$$\left[\sum_{k=0}^{n} a_k X^k\right] \cdot \left[\sum_{k=0}^{m} b_k X^k\right] = \sum_{k=0}^{n+m} \left(\sum_{l=0}^{k} a_{k-l} b_l\right) X^k$$

Exercice:

 \Rightarrow Soit $n \in \mathbb{N}$. Montrer que

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

1.2 Substitution

Définition 2. Soit \mathcal{A} une \mathbb{K} -algèbre, $x \in \mathcal{A}$ et $P = a_0 + a_1 X + \cdots + a_n X^n \in \mathbb{K}[X]$. On définit P(x) par :

$$P(x) = a_0 1_{\mathcal{A}} + a_1 x + \dots + a_n x^n \in \mathcal{A}$$

On dit que l'on a substitué l'élément $x \in A$ à l'indéterminée X.

Remarques:

 \Rightarrow Si \mathcal{A} une \mathbb{K} -algèbre et $x \in \mathcal{A}$, l'application φ de $\mathbb{K}[X]$ dans \mathcal{A} qui à P associe P(x) vérifie

$$\begin{split} \forall P,Q \in \mathbb{K}[X] \quad \forall \lambda,\mu \in \mathbb{K} \qquad \left(\lambda P + \mu Q\right)(x) &= \lambda P\left(x\right) + \mu Q\left(x\right) \\ \forall P,Q \in \mathbb{K}[X] \qquad \left(PQ\right)(x) &= P\left(x\right)Q\left(x\right) \\ 1_{\mathbb{K}[X]}\left(x\right) &= 1_{\mathcal{A}} \end{split}$$

On dit que c'est un morphisme d'algèbre.

 \Rightarrow Si $x \in \mathcal{A}$ et $n \in \mathbb{N}^*$, le calcul naïf de x^n nécessite n-1 multiplications dans \mathcal{A} . Si $P = a_0 + a_1 X + \cdots + a_n X^n \in \mathbb{K}[X]$, le calcul de P(x) nécessite donc n(n-1)/2 multiplications dans \mathcal{A} . Cependant, si on écrit

$$P(x) = ((\cdots((a_nx + a_{n-1})x + a_{n-2})x + \cdots + a_2)x + a_1)x + a_0$$

le calcul de P(x) nécessite n-1 multiplications dans \mathcal{A} . Cette méthode de calcul est connue sous le nom d'algorithme de Hörner.

 \Rightarrow On dit qu'un polynôme P est un polynôme annulateur de $x \in \mathcal{A}$ lorsque P(x) = 0. Par exemple, si $\mathbb{K} = \mathbb{Q}$ et $\mathcal{A} = \mathbb{R}$, $P = X^2 - 2$ est un polynôme annulateur de $\sqrt{2}$. Si E est un \mathbb{K} -espace vectoriel et si $s \in \mathcal{L}(E)$ est une symétrie, alors $P = X^2 - 1$ est un polynôme annulateur de s.

 \Rightarrow On dit qu'un élément $z \in \mathbb{C}$ est algébrique lorsqu'il existe un polynôme non nul $P \in \mathbb{Q}[X]$ tel que P(z) = 0. Par exemple $z_1 = (1 + \sqrt{5})/2$ est algèbrique car $P_1 = X^2 - X - 1 \in \mathbb{Q}[X]$ est un polynôme annulateur de z_1 . De même, j est algèbrique car $P_2 = X^3 - 1 \in \mathbb{Q}[X]$ est un polynôme annulateur de j.

Lorsqu'on effectue des calculs avec un nombre algébrique z, il est souvent plus économe en calculs d'exploiter le fait que P(z) = 0 plutôt que de remplacer z par sa valeur. Par exemple, si $x = (1 + \sqrt{5})/2$, en exploitant le fait que $x^2 = x + 1$, on a

$$\left(\frac{1+\sqrt{5}}{2}\right)^3 = x^3 = x \cdot x^2 = x(x+1) = x^2 + x = 2x + 1 = 2 + \sqrt{5}$$

Comme $x^2 - x - 1 = 0$, on a x(x - 1) = 1, donc 1/x = (x - 1), donc

$$\frac{1}{\left(\frac{1+\sqrt{5}}{2}\right)} = \frac{1}{x} = x - 1 = \frac{-1+\sqrt{5}}{2}$$

 \Rightarrow On dit qu'un élément de \mathbb{C} est transcendant lorsqu'il n'est pas algébrique. On peut montrer (mais c'est difficile) que e et π sont transcendants.

Exercice:

 \implies Montrer que $1+\sqrt{7}$ et $\sqrt{2}+\sqrt{5}$ sont algébriques.

Définition 3. Soit $P, Q \in \mathbb{K}[X]$. On définit le polynôme $P \circ Q$ par :

$$P \circ Q = P(Q)$$

Remarque:

 \Rightarrow Si $P \in \mathbb{K}[X]$, P(X) = P. Un polynôme peut donc indifféremment être noté P ou P(X).

Définition 4. Soit $P \in \mathbb{K}[X]$. On dit que :

- -P est pair lorsque P(-X) = P(X)
- -P est impair lorsque P(-X) = -P(X)

Proposition 1. Soit $P \in \mathbb{K}[X]$. Alors:

- P est pair si et seulement si ses coefficients d'indices impairs sont nuls.
- P est impair si et seulement si ses coefficients d'indices pairs sont nuls.

1.3 Degré d'un polynôme

Définition 5. Soit $P \in \mathbb{K}[X]$. On définit le degré de P que l'on note $\deg P$ par :

- Si P = 0, on pose $\deg P = -\infty$.
- Sinon, il existe $n \in \mathbb{N}$ et $a_0, \ldots, a_n \in \mathbb{K}$ tels que :

$$P = a_0 + a_1 X + \dots + a_n X^n$$
 et $a_n \neq 0$

De plus n et les a_0, \ldots, a_n sont uniques; on pose alors $\deg P = n$. Le coefficient a_n est appelé coefficient dominant de P.

Remarques:

 \Rightarrow Un polynôme $P \in \mathbb{K}[X]$ est de degré inférieur ou égal à $n \in \mathbb{N}$ si et seulement si il existe $a_0, \ldots, a_n \in \mathbb{K}$ tels que :

$$P = \sum_{k=0}^{n} a_k X^k$$

 \Rightarrow On dit qu'un polynôme P est constant lorsqu'il existe $\lambda \in \mathbb{K}$ tel que $P = \lambda$, c'est-à-dire lorsque son degré est inférieur ou égal à 0.

Proposition 2. Soit $P, Q \in \mathbb{K}[X]$ et $n \in \mathbb{N}$.

— Soit $\lambda, \mu \in \mathbb{K}$. Si deg $P \leq n$ et deg $Q \leq n$, alors :

$$deg(\lambda P + \mu Q) \leqslant n$$

— Soit $\lambda \in \mathbb{K}^*$ et $\mu \in \mathbb{K}$. Si deg P = n et deg Q < n, alors :

$$\deg\left(\lambda P + \mu Q\right) = n$$

Remarque:

 \Rightarrow Lorsque P et Q sont des polynômes de degré n, il est possible que P+Q soit de degré strictement inférieur à n. Par exemple P=X+1 et Q=-X sont de degré 1 mais P+Q=1 est de degré 0.

Exercice:

 \Rightarrow Soit $P \in \mathbb{K}[X]$. Calculer le degré de P(X+1) - P(X).

Définition 6. Soit $n \in \mathbb{N}$. On note $\mathbb{K}_n[X]$ l'ensemble des polynômes de degré inférieur ou égal à n.

Remarques:

- \Rightarrow Si $n\in\mathbb{N},$ $\mathbb{K}_n[X]$ est stable par combinaison linéaire.
- \Rightarrow Si $n \ge 1$, $\mathbb{K}_n[X]$ n'est pas stable par produit. En effet, $X^n \in \mathbb{K}_n[X]$ mais $X^{2n} = X^n \cdot X^n \notin \mathbb{K}_n[X]$.

Proposition 3. Soit $P, Q \in \mathbb{K}[X]$. Alors:

$$\deg(PQ) = \deg P + \deg Q$$

Remarques:

- \Rightarrow Si $P \in \mathbb{K}[X]$ est non nul et si $n \in \mathbb{N}$, alors $\deg(P^n) = n \deg P$.
- \Rightarrow Si $P \in \mathbb{K}[X]$ et $Q \in \mathbb{K}[X]$ n'est pas constant, alors $\deg(P \circ Q) = \deg(P) \deg(Q)$.

Proposition 4. $\mathbb{K}[X]$ est une algèbre intègre :

$$\forall P, Q \in \mathbb{K}[X] \quad PQ = 0 \implies [P = 0 \quad ou \quad Q = 0]$$

Proposition 5. Les éléments inversibles de $\mathbb{K}[X]$ sont les polynômes de degré 0, c'est-à-dire les polynômes constants non nuls.

Définition 7. On dit qu'un polynôme non nul U est unitaire lorsque son coefficient dominant est égal à 1. Tout polynôme P non nul s'écrit de manière unique sous la forme $P = \lambda P_u$ où $\lambda \neq 0$ et P_u est unitaire. Lorsque P = 0, on pose par convention $P_u = 0$.

1.4 Racines, fonctions polynomiales

Définition 8. Soit $P \in \mathbb{K}[X]$. On appelle racine de P tout élément $\alpha \in \mathbb{K}$ tel que $P(\alpha) = 0$.

Remarques:

- \Rightarrow La notion de racine dépend du corps considéré. En effet, si on le considère comme élément de $\mathbb{C}[X]$, les racines de $(X^2-2)(X^2+1)$ sont $\sqrt{2}, -\sqrt{2}, i, -i$. Considéré comme élément de $\mathbb{R}[X]$, ses racines sont $\sqrt{2}, -\sqrt{2}$. Enfin il n'a aucune racine si on le considère comme un élément de $\mathbb{Q}[X]$.
- \Rightarrow Si \mathbb{K} est un sous-corps de \mathbb{L} , $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{L}$, on dit que α est une racine de P sur \mathbb{L} lorsque $P(\alpha) = 0$.
- ⇒ Les polynômes de degré 1 admettent une unique racine.
- ⇒ D'après le théorème des valeurs intermédiaires, tout polynôme réel de degré impair admet (au moins) une racine réelle.

Proposition 6. Si $n \in \mathbb{N}$, tout polynôme de degré n admet au plus n racines.

${\bf Remarques:}$

- \Rightarrow On en déduit qu'un polynôme de degré inférieur ou égal à n admettant n+1 racines deux à deux distinctes est nul. De même, si deux polynômes de degrés inférieurs ou égaux à n prennent la même valeur en n+1 points deux à deux distincts, alors ils sont égaux.
- ⇒ Un polynôme admettant une infinité de racines est donc nul. De même, deux polynômes prenant la même valeur sur un ensemble infini sont égaux.

Exercices:

- \Rightarrow Montrer que les polynômes de $\mathbb{K}[X]$ tels que P(X) = P(X+1) sont les polynômes constants.
- \Rightarrow Montrer qu'il n'existe pas de polynôme $P \in \mathbb{C}[X]$ tel que, pour tout $z \in \mathbb{C}$, $P(z) = \overline{z}$.
- \Rightarrow On se donne n+1 éléments de \mathbb{K} deux à deux distincts x_0, x_1, \ldots, x_n et $y_0, \ldots, y_n \in \mathbb{K}$. Montrer qu'il existe un unique polynôme P de degré inférieur ou égal à n tel que

$$\forall k \in [0, n] \quad P(x_k) = y_k$$

On dit que P est le polynôme interpolateur de Lagrange associé aux familles (x_k) et (y_k) .

Définition 9. On dit qu'une application $f : \mathbb{K} \to \mathbb{K}$ est une fonction polynomiale lorsqu'il existe $P \in \mathbb{K}[X]$ tel que :

$$\forall x \in \mathbb{K} \quad f(x) = P(x)$$

Proposition 7. Si \mathbb{K} est infini, l'application de l'algèbre $\mathbb{K}[X]$ dans l'algèbre $\mathcal{F}(\mathbb{K}, \mathbb{K})$, qui au polynôme P associe la fonction polynomiale \tilde{P} , est injective.

Remarques:

- ⇒ Cette proposition permet, lorsque K est infini, d'identifier polynômes et fonctions polynomiales. C'est pourquoi certains énoncés se permettent de confondre polynômes et fonctions polynomiales, identification que nous ne ferons que lorsque l'énoncé le demande explicitement.
- Arr Cette proposition est fausse lorsque le corps $\mathbb K$ est fini. En effet, si $\mathbb K = \{a_1, \dots, a_n\}$, le polynôme

$$P = \prod_{k=1}^{n} (X - a_k)$$

est non nul car $\deg P = n$, mais la fonction polynomiale associée est nulle.

1.5 Polynôme dérivé

Définition 10. Soit $P = a_0 + a_1X + \cdots + a_nX^n \in \mathbb{K}[X]$. On définit le polynôme dérivé de P par :

$$P' = a_1 + 2a_2X + \dots + na_nX^{n-1}$$
$$= \sum_{k=1}^{n} ka_kX^{k-1}$$

Remarque:

 \Rightarrow Dans le cas où $\mathbb{K} = \mathbb{R}$, la fonction polynomiale associée à P' est la dérivée de la fonction polynomiale associée à P.

Proposition 8. Soit $P, Q \in \mathbb{K}[X]$ et $\lambda, \mu \in \mathbb{K}$. Alors:

$$(\lambda P + \mu Q)' = \lambda P' + \mu Q'$$
 $(PQ)' = P'Q + PQ'$ et $(P \circ Q)' = Q'(P' \circ Q)$

Définition 11. Soit $P \in \mathbb{K}[X]$. On définit par récurrence la dérivée n-ième de P par :

$$-P^{(0)} = P$$

$$- \forall n \in \mathbb{N} \quad P^{(n+1)} = \left[P^{(n)} \right]'$$

Remarque:

 \Rightarrow Soit $n \in \mathbb{N}$. Alors

$$\forall k \in \mathbb{N} \quad (X^n)^{(k)} = \begin{cases} \frac{n!}{(n-k)!} X^{n-k} & \text{si } k \leq n \\ 0 & \text{sinon} \end{cases}$$

En particulier, si $P = a_0 + a_1 X + \cdots + a_n X^n \in \mathbb{K}[X]$, alors

$$\forall k \in \mathbb{N} \quad P^{(k)}\left(0\right) = k! a_k$$

Proposition 9. Soit $P, Q \in \mathbb{K}[X]$ et $n \in \mathbb{N}$

— Soit $\lambda, \mu \in \mathbb{K}$. Alors:

$$(\lambda P + \mu Q)^{(n)} = \lambda P^{(n)} + \mu Q^{(n)}$$

— On a:

$$(PQ)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(n-k)} Q^{(k)}$$

Cette formule est appelée formule de Leibnitz.

Exercice:

 \Rightarrow Calculer $(X^2P)^{(n)}$ en fonction des dérivées successives de P.

Proposition 10. Soit $P \in \mathbb{K}[X]$. Alors:

- $\operatorname{deg} P' = \operatorname{deg} (P) 1 \operatorname{si} \operatorname{deg} P \geqslant 1.$
- $\deg P' = -\infty \ sinon.$

Remarques:

- \Rightarrow P' = 0 si et seulement si P est constant.
- \Rightarrow Pour tout $P \in \mathbb{K}[X]$, $\deg P' \leqslant \deg(P) 1$.
- ⇒ Soit $P \in \mathbb{K}[X]$ et $n \in \mathbb{N}$. Alors le degré de $P^{(n)}$ est égal à $\deg(P) n$ si $\deg P \geqslant n$ et à $-\infty$ sinon. En particulier, quel que soit $P \in \mathbb{K}[X]$, $\deg P^{(n)} \leqslant \deg(P) n$.

Proposition 11. Soit P un polynôme de degré inférieur ou égal à n et $\alpha \in \mathbb{K}$. Alors :

$$P = \sum_{k=0}^{n} \frac{P^{(k)}(\alpha)}{k!} (X - \alpha)^{k}$$

2 Arithmétique dans $\mathbb{K}[X]$

2.1 Relation de divisibilité, division euclidienne

Définition 12. Soit $A, B \in \mathbb{K}[X]$. On dit que A divise B lorsqu'il existe $P \in \mathbb{K}[X]$ tel que B = PA.

Remarque:

 \Rightarrow Si $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$, $X - \alpha$ divise P si et seulement si α est une racine de P.

Proposition 12. La relation de divisibilité

- est réflexive : $\forall A \in \mathbb{K}[X]$ A|A
- est transitive: $\forall A, B, C \in \mathbb{K}[X]$ [A|B et $B|C] \Longrightarrow A|C$
- n'est pas antisymétrique. Cependant :

$$\forall A, B \in \mathbb{K}[X] \quad [A|B \quad et \quad B|A] \quad \Longleftrightarrow \quad [\exists \lambda \in \mathbb{K}^* \quad A = \lambda B]$$

Si tel est le cas, on dit que A et B sont associés.

Proposition 13. Soit $A,B,C\in\mathbb{K}[X]$ et $P,Q\in\mathbb{K}[X]$, alors :

$$[A|B \ et \ A|C] \implies A|(PB+QC)$$

Proposition 14. Soit $A, B \in \mathbb{K}[X]$.

— $Si B \neq 0$, alors:

$$A|B \implies \deg A \leqslant \deg B$$

— $Si\ A|B\ et\ deg\ A=deg\ B$, alors $A\ et\ B\ sont\ associ\'es$.

Définition 13. Soit $A, B \in \mathbb{K}[X]$ avec $B \neq 0$. Alors, il existe un unique couple $(Q, R) \in \mathbb{K}[X]$ tel que :

$$A = QB + R$$
 et $\deg R < \deg B$

Remarques:

- \Rightarrow Si $A, B \in \mathbb{K}[X]$ et $B \neq 0$, alors B divise A si et seulement si le reste de la division euclidienne de A par B est nul.
- \Rightarrow Si B est un polynôme annulateur non nul de x et $A \in \mathbb{K}[X]$, alors A(x) = R(x) où R est le reste de la division euclidienne de A par B. En effet

$$A(x) = Q(x)\underbrace{B(x)}_{=0} + R(x)$$

 \Rightarrow Il est parfois utile de connaître le reste de la division euclidienne de A par B sans calculer son quotient.

Par exemple, si $A = X^n$ et B = (X - 1)(X - 2), le reste R de la division euclidienne de A par B est de degré inférieur ou égal à 1 donc il existe $a, b \in \mathbb{R}$ tels que R = aX + b. Comme A = QB + R, on en déduit que A(1) = Q(1)B(1) + R(1). Comme B(1) = 0, on a A(1) = R(1). De même A(2) = R(2). Donc

$$\begin{cases} a+b=1\\ 2a+b=2^n \end{cases}$$

on en déduit que $a=2^n-1$ et $b=2-2^n$. Donc $R=(2^n-1)X+(2-2^n)$. Cette méthode fonctionne dès que le polynôme B, de degré n, admet n racines deux à deux distinctes. Si $A=X^n$ et $B=(X-1)^2$, le reste R de la division euclidienne de A par B est de degré inférieur ou égal à 1 donc il existe $a,b\in\mathbb{R}$ tels que R=aX+b. Comme plus haut, A(1)=R(1). En dérivant la relation A=QB+R, on obtient A'=B'Q+BQ'+R'. Puisque 1 est racine de B et de B', on en déduit que A'(1)=R'(1). Donc

$$\begin{cases} a+b=1\\ a=n \end{cases}$$

On en déduit que a = n et b = 1 - n, donc R = nX + (1 - n).

Exercices:

- \Rightarrow Calculer $x^5 + x^4 1$ où $x = (1 + \sqrt{5})/2$.
- \Rightarrow Montrer que le polynôme $P = X^3 + pX + q \in \mathbb{R}[X]$ admet 3 racines réelles deux à deux distinctes si et seulement si $4p^3 + 27q^2 < 0$.

2.2 Plus grand commun diviseur

Définition 14. Soit $A, B \in \mathbb{K}[X]$. Il existe un unique polynôme unitaire ou nul P tel que :

- -P|A et P|B
- $\forall Q \in \mathbb{K}[X] \quad [Q|A \quad et \quad Q|B] \Longrightarrow Q|P$

On l'appelle pgcd (plus grand commun diviseur) de A et de B et on le note pgcd (A,B), (A,B) ou $A \wedge B$.

Remarque:

- \Rightarrow Soit $A, B \in \mathbb{K}[X]$. Si l'un des deux polynômes est non nul, le pgcd de A et B est le polynôme unitaire de plus grand degré qui divise A et B.
- \Rightarrow Si $\alpha, \beta \in \mathbb{K}$ sont distincts, alors $(X \alpha) \wedge (X \beta) = 1$.

Proposition 15. On a :

$$\begin{split} \forall A \in \mathbb{K}[X] & A \wedge 0 = A_u \\ \forall A \in \mathbb{K}[X] & A \wedge 1 = 1 \\ \forall A, B \in \mathbb{K}[X] & A \wedge B = 0 \Longleftrightarrow [A = 0 \quad et \quad B = 0] \end{split}$$

Proposition 16. On a:

$$\forall A, B \in \mathbb{K}[X] \qquad A \wedge B = B \wedge A$$

$$\forall A, B \in \mathbb{K}[X] \quad \forall \lambda, \mu \in \mathbb{K}^* \qquad A \wedge B = (\lambda A) \wedge (\mu B) = A_u \wedge B_u$$

$$\forall A, B, P \in \mathbb{K}[X] \qquad (PA) \wedge (PB) = P_u (A \wedge B)$$

Définition 15. Soit $A_1, \ldots, A_n \in \mathbb{K}[X]$. Il existe un unique polynôme unitaire ou nul P tel que :

- $\ \forall i \in [1, n] \quad P|A_i$
- $\ \forall Q \in \mathbb{K}[X] \quad [\forall i \in [\![1,n]\!] \quad Q|A_i] \Longrightarrow Q|P$

On l'appelle pgcd (plus grand commun diviseur) de la famille (A_1, \ldots, A_n) et on le note pgcd (A_1, \ldots, A_n) , ou $A_1 \wedge \cdots \wedge A_n$.

Remarque:

 \Rightarrow Le pgcd d'une famille (A_1,\ldots,A_n) de polynômes ne dépend pas de l'ordre de ces derniers.

Proposition 17. Soit $A_1, \ldots, A_n \in \mathbb{K}[X]$ et $p \in [1, n-1]$. Alors

$$A_1 \wedge \cdots \wedge A_n = (A_1 \wedge \cdots \wedge A_p) \wedge (A_{p+1} \wedge \cdots \wedge A_n)$$

2.3 Algorithme d'Euclide

Proposition 18. Soit $A, B, P \in \mathbb{K}[X]$. Alors :

$$A \wedge B = A \wedge (B + PA) = (A + PB) \wedge B$$

En particulier, si $B \neq 0$ et R est le reste de la division euclidienne de A par B, on a :

$$A \wedge B = B \wedge R$$

Exercice:

 \Rightarrow Calculer $A \wedge B$ où $A = X^4 - X^3 + X^2 + X - 2$ et $B = X^3 + X^2 - X - 1$.

Proposition 19. Soit \mathbb{L} un corps, \mathbb{K} un sous-corps de \mathbb{L} et P et $Q \in \mathbb{K}[X]$. Alors :

- P divise Q dans $\mathbb{K}[X]$ si et seulement si P divise Q dans $\mathbb{L}[X]$.
- Les pgcd et ppcm de P et de Q dans $\mathbb{K}[X]$ sont les mêmes que ceux dans $\mathbb{L}[X]$.

2.4 Relation de Bézout

Proposition 20. Si $A, B \in \mathbb{K}[X]$, il existe $U, V \in \mathbb{K}[X]$ tels que :

$$UA + VB = A \wedge B$$

Remarques:

- \Rightarrow Les polynômes U et V sont appelés polynômes de Bézout.
- Arr Le couple (U, V) n'est pas unique. En effet, si $(U_0, V_0) \in \mathbb{K}[X]^2$ est un couple de polynômes de Bézout, alors pour tout $P \in \mathbb{K}[X]$, $(U_0 + PB, V_0 PA)$ en est un autre.

Exercice:

 \Rightarrow Calcul d'un couple de polynômes de Bezout pour $A = (X - 1)^2$ et $B = (X + 2)^2$.

Définition 16. Soit $A, B \in \mathbb{K}[X]$. On dit que A et B sont premiers entre eux lorsque $A \wedge B = 1$.

Remarques:

 \Rightarrow Deux polynômes premiers entre eux n'admettent aucune racine commune. Cependant, la réciproque est fausse. En effet, si $\mathbb{K} = \mathbb{R}$, $P = X^2 + 1$ n'admet aucune racine réelle, donc aucune racine commune avec lui-même. Pourtant $P \land P = P \neq 1$.

Exercice:

 \Rightarrow Montrer que si A et B sont premiers entre eux, il en est de même pour A-B et A+B.

Proposition 21. Soit $A, B \in \mathbb{K}[X]$. Alors A et B sont premiers entre eux si et seulement si il existe $U, V \in \mathbb{K}[X]$ tels que :

$$UA + VB = 1$$

Remarque:

 \Rightarrow Nous avons déjà vu que le couple $(U,V) \in \mathbb{K}[X]^2$ n'est pas unique. Cependant, si A et B sont premiers entre eux et non constants, il existe un unique couple $(U,V) \in \mathbb{K}[X]^2$ de polynômes de Bézout tel que deg $U < \deg B$ et $\deg V < \deg A$. On peut vérifier que c'est le couple donné par l'algorithme d'Euclide.

Proposition 22.

- Soit $A, B, C \in \mathbb{K}[X]$ tels que $A \wedge B = 1$ et $A \wedge C = 1$. Alors $A \wedge (BC) = 1$.
- Plus généralement, si $A \in \mathbb{K}[X]$ est premier avec chaque élément d'une famille de polynômes $B_1, \ldots, B_n \in \mathbb{K}[X]$, alors A est premier avec leur produit.
- Soit $A, B \in \mathbb{K}[X]$ deux polynômes premiers entre eux et $m, n \in \mathbb{N}$. Alors $A^m \wedge B^n = 1$.

Définition 17. Soit $A_1, \ldots, A_n \in \mathbb{K}[X]$.

— On dit que A_1, \ldots, A_n sont deux à deux premiers entre eux lorsque

$$\forall i, j \in [1, n] \quad i \neq j \Longrightarrow A_i \land A_j = 1$$

— On dit que A_1, \ldots, A_n sont premiers entre eux dans leur ensemble lorsque

$$A_1 \wedge \cdots \wedge A_n = 1$$

Remarques:

 \Rightarrow Si les polynômes A_1, \ldots, A_n sont deux à deux premiers entre eux, alors ils sont premiers entre eux dans leur ensemble. Cependant, la réciproque est fausse. Par exemple, les polynômes $A_1 = (X-2)(X-3)$, $A_2 = (X-1)(X-3)$ et $A_3 = (X-1)(X-2)$ sont premiers entre eux dans leur ensemble mais ne sont pas deux à deux premiers entre eux.

Proposition 23. Soit $A_1, \ldots, A_n \in \mathbb{K}[X]$. Alors A_1, \ldots, A_n sont premiers entre eux dans leur ensemble si et seulement si il existe $U_1, \ldots, U_n \in \mathbb{K}[X]$ tels que

$$U_1 A_1 + \dots + U_n A_n = 1$$

2.5 Lemme de Gauss

Proposition 24. Soit $A, B, C \in \mathbb{K}[X]$. Alors:

$$[A|BC \ et \ A \land B = 1] \implies A|C$$

Remarque:

 \Rightarrow Si $A, B \in \mathbb{K}[X]$ sont premiers entre eux et le couple $(U_0, V_0) \in \mathbb{K}[X]^2$ est tel que $U_0A + V_0B = 1$, l'ensemble des couples de polynômes de Bézout pour A et B est

$$\{(U_0 + PB, V_0 - PA) : P \in \mathbb{K}[X]\}$$

Proposition 25.

- Soit $A, B, C \in \mathbb{K}[X]$. On suppose que A|C, B|C et $A \wedge B = 1$. Alors AB|C.
- Plus généralement si $A \in \mathbb{K}[X]$ est divisé par chaque élément d'une famille $B_1, \ldots, B_n \in \mathbb{K}[X]$ de polynômes deux à deux premiers entre eux, alors il est divisé par leur produit.

2.6 Plus petit commun multiple

Définition 18. Soit $A, B \in \mathbb{K}[X]$. Il existe un unique polynôme unitaire ou nul P tel que :

- -A|P et B|P
- $\forall Q \in \mathbb{K}[X] \quad [A|Q \quad et \quad B|Q] \Longrightarrow P|Q$

On l'appelle ppcm (plus petit commun multiple) de A et de B et on le note ppcm (A, B), ou $A \vee B$.

Proposition 26. On a :

$$\forall A \in \mathbb{K}[X] \qquad A \vee 0 = 0$$

$$\forall A \in \mathbb{K}[X] \qquad A \vee 1 = A_u$$

$$\forall A, B \in \mathbb{K}[X] \qquad A \vee B = 0 \Longleftrightarrow [A = 0 \quad ou \quad B = 0]$$

Proposition 27. On a:

$$\begin{split} \forall A, B \in \mathbb{K}[X] & A \vee B = B \vee A \\ \forall A, B \in \mathbb{K}[X] & \forall \lambda, \mu \in \mathbb{K}^* & A \vee B = (\lambda A) \vee (\mu B) = A_u \vee B_u \\ \forall A, B, P \in \mathbb{K}[X] & (PA) \vee (PB) = P_u \, (A \vee B) \end{split}$$

Proposition 28. Soit $A, B \in \mathbb{K}[X]$.

- Si $A \wedge B = 1$, alors:

$$A \vee B = (AB)_u$$

— De manière générale :

$$(A \wedge B)(B \vee A) = (AB)_u$$

2.7 Polynômes irréductibles

Définition 19. On dit qu'un polynôme $P \in \mathbb{K}[X]$ de degré supérieur ou égal à 1 est irréductible lorsque ses seuls diviseurs sont les polynômes associés à 1 ou à P.

Remarques:

- \Rightarrow Un polynôme P de degré supérieur ou égal à 1 est irréductible si et seulement si ses diviseurs sont de degré 0 ou de même degré que P.
- \Rightarrow Si $\alpha \in \mathbb{K}$, $P = X \alpha$ est irréductible.
- \Rightarrow Un polynôme $P \in \mathbb{K}[X]$ de degré inférieur ou égal à 3 n'admettant aucune racine dans \mathbb{K} est irréductible. En particulier, les polynômes de $\mathbb{R}[X]$ de degré 2 dont le discriminant est strictement négatif sont irréductibles.
- \Rightarrow Cependant, il existe des polynômes $P \in \mathbb{K}[X]$ n'admettant aucune racine dans \mathbb{K} et qui ne sont pas irréductibles. Par exemple le polynôme $P = (X^2 + 1)^2$ n'admet aucune racine dans \mathbb{R} sans être irréductible.

Proposition 29. Soit P un polynôme irréductible et $A \in \mathbb{K}[X]$. Alors P|A ou $P \wedge A = 1$.

Proposition 30. Soit $P \in \mathbb{K}[X]$ un polynôme irréductible.

 $-Si A, B \in \mathbb{K}[X]$:

$$P|AB \iff [P|A \ ou \ P|B]$$

— Plus généralement, P divise un produit si et seulement si il divise un de ses facteurs.

Proposition 31. Tout polynôme non constant admet un diviseur irréductible.

Remarque:

⇒ En particulier, un polynôme est associé à 1 si et seulement si il n'admet aucun diviseur irréductible.

Proposition 32. Soit $A \in \mathbb{K}[X] \setminus \{0\}$. Alors, il existe $\lambda \in \mathbb{K}^*$, P_1, \ldots, P_r des polynômes unitaires irréductibles deux à deux distincts et $\alpha_1, \ldots, \alpha_r \in \mathbb{N}^*$ tels que :

$$A = \lambda \prod_{k=1}^{r} P_k^{\alpha_k}$$

De plus, à permutation près des P_k , cette décomposition est unique.

Définition 20. Lorsque $A \in \mathbb{K}[X] \setminus \{0\}$ et P est polynôme unitaire irréductible, on appelle valuation de P relativement à A et on note $\operatorname{Val}_P(A)$ le plus grand $\alpha \in \mathbb{N}$ tel que $P^{\alpha}|A$.

Remarques:

- \Rightarrow Si $A \in \mathbb{K}[X] \setminus \{0\}$, il n'existe qu'un nombre fini de polynômes unitaires irréductibles P tels que $\operatorname{Val}_P(A) \neq 0$. Ce sont les polynômes unitaires irréductibles apparaissant dans la décomposition de A en polynômes irréductibles.
- \Rightarrow Si $\lambda \in \mathbb{K}^*$ est le coefficient dominant de A, la décomposition de n en polynômes unitaires irréductibles s'écrit

$$A = \lambda \prod_{P \in \mathcal{I}} P^{\operatorname{Val}_P(A)}$$

où \mathcal{I} désigne l'ensemble des polynômes unitaires irréductibles de $\mathbb{K}[X]$.

Proposition 33. *Soit* $A, B \in \mathbb{K}[X] \setminus \{0\}$ *. Alors*

— A|B si et seulement si

$$\forall P \in \mathcal{I} \quad \operatorname{Val}_{P}(A) \leqslant \operatorname{Val}_{P}(B)$$

— Le pgcd et le ppcm de A et B est donné par les relations

$$\forall P \in \mathcal{I} \quad \operatorname{Val}_{P}(A \wedge B) = \min \left(\operatorname{Val}_{P}(A), \operatorname{Val}_{P}(B) \right)$$

$$\operatorname{Val}_{P}(A \vee B) = \max \left(\operatorname{Val}_{P}(A), \operatorname{Val}_{P}(B) \right)$$

Exercice:

 \Rightarrow Soit A et $B \in \mathbb{C}[X]$ deux polynômes premiers entre eux. Montrer que si AB est un carré, alors il en est de même pour A et B.

3 Racines d'un polynôme

3.1 Racines multiples

Proposition 34. Soit $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$. Alors α est une racine de P si et seulement si $X - \alpha$ divise P.

Remarque:

 \Rightarrow Si $P=a_0+a_1X+\cdots+a_nX^n\in\mathbb{Z}[X]$ et x=p/q est une racine rationnelle de P mise sous forme irréductible, alors $q|a_n$ et $p|a_0$. Cette relation nous permet de trouver les racines rationnelles de P. Par exemple, si $P=2X^3+5X^2+X-3$ et p/q est une racine rationnelle de P mise sous forme irréductible, alors q|2 et p|3 donc $p\in\{-3,-1,1,3\}$ et $q\in\{1,2\}$. Réciproquement, on constate que seul -3/2 est une racine de P. On peut donc factoriser P par 2X+3. On obtient $P=(2X+3)(X^2+X-1)$, ce qui permet d'obtenir toutes les racines de P.

Définition 21. Soit $\alpha \in \mathbb{K}$ une racine du polynôme non nul $P \in \mathbb{K}[X]$. On appelle ordre de α relativement à P le plus grand entier $\omega \in \mathbb{N}^*$ tel que $(X - \alpha)^{\omega} | P$. Les racines d'ordre 1 sont appelées racines simples et celles d'ordre $\omega \geq 2$ sont appelées racines multiples.

Remarques:

- \Rightarrow Pour simplifier l'énoncé des théorèmes suivants, on dira qu'un élément $\alpha \in \mathbb{K}$ est une racine d'ordre nul de P lorsqu'il n'est pas racine de P. Avec cette extension de définition, l'ordre de α relativement à P n'est rien d'autre que la valuation de $X \alpha$ relativement à P.
- \Rightarrow Le scalaire $\alpha \in \mathbb{K}$ est une racine d'ordre $\omega \in \mathbb{N}$ de P si et seulement si il existe $Q \in \mathbb{K}[X]$ tel que $P = (X \alpha)^{\omega} Q$ et $Q(\alpha) \neq 0$.

Proposition 35. Soit $P \in \mathbb{K}[X]$ un polynôme non nul et $\alpha \in \mathbb{K}$. Si α est racine d'ordre $\omega \in \mathbb{N}^*$ de P, α est racine d'ordre $\omega - 1$ de P'.

Proposition 36. Soit $P \in \mathbb{K}[X]$ un polynôme non nul, $\alpha \in \mathbb{K}$ et $\omega \in \mathbb{N}$. Alors les deux assertions suivantes sont équivalentes :

- α est racine d'ordre ω de P.
- $-P(\alpha) = 0, P'(\alpha) = 0, \dots, P^{(\omega-1)}(\alpha) = 0 \text{ et } P^{(\omega)}(\alpha) \neq 0.$

Exercice:

 \Rightarrow Calculer l'ordre de 1 relativement à $P = X^4 - 2X^3 + 2X^2 - 2X + 1$.

Proposition 37. Soit $P \in \mathbb{R}[X]$ et $\alpha \in \mathbb{C}$. Alors, lorsqu'on considère P comme élément de $\mathbb{C}[X]$:

- $-\alpha$ est racine de P si et seulement si $\overline{\alpha}$ est racine de P.
- Si tel est le cas, α et $\overline{\alpha}$ ont même ordre relativement à P.

Proposition 38. Soit $P \in \mathbb{K}[X]$ un polynôme non nul et $\alpha_1, \ldots, \alpha_r$ des racines de P deux à deux distinctes d'ordres respectifs $\omega_1, \ldots, \omega_r \in \mathbb{N}^*$. Alors, il existe $Q \in \mathbb{K}[X]$ tel que :

$$P = (X - \alpha_1)^{\omega_1} \cdots (X - \alpha_r)^{\omega_r} Q$$

En particulier $\omega_1 + \cdots + \omega_r \leq n$. On dit que P admet au plus n racines comptées avec leur ordre de multiplicité.

Définition 22. Soit $P \in \mathbb{K}[X]$ un polynôme non nul de degré $n \in \mathbb{N}$. On suppose que P admet r racines $\alpha_1, \ldots, \alpha_r$ deux à deux distinctes d'ordres respectifs $\omega_1, \ldots, \omega_r \in \mathbb{N}^*$ avec $\omega_1 + \cdots + \omega_r = n$. Alors, en notant $\lambda \in \mathbb{K}^*$ le coefficient dominant de P, on a

$$P = \lambda \prod_{k=1}^{r} (X - \alpha_k)^{\omega_k}$$

On dit alors que P est scindé.

Remarque:

ightharpoonup La notion de polynôme scindé dépend du corps considéré. Par exemple le polynôme $P=(X^2+1)^2$ est scindé sur $\mathbb C$ alors qu'il ne l'est pas sur $\mathbb R$.

Définition 23. Soit $P \in \mathbb{K}[X]$ un polynôme non nul de degré $n \in \mathbb{N}$. On suppose que P admet n racines $\alpha_1, \ldots, \alpha_n$ deux à deux distinctes. Alors, elles sont simples et en notant $\lambda \in \mathbb{K}^*$ le coefficient dominant de P, on a

$$P = \lambda \prod_{k=1}^{n} (X - \alpha_k)$$

On dit alors que P est scindé simple.

Exercice:

 \Rightarrow Soit $n \in \mathbb{N}^*$. Factoriser $X^n - 1$ sur $\mathbb{C}[X]$.

Définition 24. Soit $x_1, \ldots, x_{n+1} \in \mathbb{K}$ deux à deux distincts et $y_1, \ldots, y_n, y_{n+1} \in \mathbb{K}$. Alors, il existe un unique polynôme P de degré inférieur où égal à n tel que

$$\forall i \in [1, n+1] \quad P(x_i) = y_i$$

On l'appelle polynôme interpolateur de Lagrange associé aux familles (x_1, \ldots, x_{n+1}) et (y_1, \ldots, y_{n+1}) .

Proposition 39. Soit $x_1, \ldots, x_{n+1} \in \mathbb{K}$ deux à deux distincts. Pour tout $i \in [1, n+1]$, on note L_i le polynôme définit par

$$L_i = \prod_{\substack{k=1\\k\neq i}}^{n+1} \frac{X - x_k}{x_i - x_k}$$

Si $y_1, \ldots, y_{n+1} \in \mathbb{K}$, alors le polynôme interpolateur de Lagrange P associé aux familles (x_1, \ldots, x_{n+1}) et (y_1, \ldots, y_{n+1}) est donné par

$$P = \sum_{i=1}^{n+1} y_k L_k$$

Remarque:

 \Rightarrow Soit $x_1, \ldots, x_{n+1} \in \mathbb{K}$ deux à deux distincts, $y_1, \ldots, y_{n+1} \in \mathbb{K}$ et $P \in \mathbb{K}[X]$. Alors

$$\forall i \in [1, n+1] \quad P(x_k) = y_k$$

si et seulement si il existe un polynôme $Q \in \mathbb{K}[X]$ tel que

$$P = \sum_{i=1}^{n+1} y_k L_k + Q \prod_{k=1}^{n+1} (X - x_k)$$

3.2 Théorème fondamental de l'algèbre

Théorème 1. Tout polynôme de $\mathbb{C}[X]$ de degré supérieur ou égal à 1 admet (au moins) une racine dans \mathbb{C} .

Exercice:

 \Rightarrow Soit $P \in \mathbb{C}[X]$ est de degré supérieur ou égal à 1. Montrer que l'application \tilde{P} de \mathbb{C} dans \mathbb{C} qui à z associe P(z) est surjective.

Proposition 40. Les polynôme unitaires irréductibles de $\mathbb{C}[X]$ sont les $X - \alpha$ avec $\alpha \in \mathbb{C}$.

Remarques:

- \Rightarrow Soit P et Q deux polynômes non nuls de $\mathbb{C}[X]$. Alors P divise Q si et seulement si pour toute racine α de P, α est racine de Q et son ordre relativement à P est inférieur ou égal à son ordre relativement à Q.
- \Rightarrow Deux polynômes non nuls de $\mathbb{C}[X]$ sont égaux si et seulement si ils ont le même coefficient dominant et les mêmes racines avec les mêmes ordres de multiplicité.
- \Rightarrow Dans $\mathbb{C}[X]$, deux polynômes sont premiers entre eux si et seulement si ils n'admettent aucune racine commune. En particulier, deux polynômes de $\mathbb{R}[X]$ sont premiers entre eux si et seulement si ils n'admettent aucune racine complexe en commun.

Exercices:

- \implies Montrer que $X^2 + 1$ divise $X^n + X$ si et seulement si $n \equiv 3$ [4].
- \Rightarrow Soit $n, m \in \mathbb{N}$. Montrer que $(X^n 1) \wedge (X^m 1) = X^{n \wedge m} 1$.

Proposition 41. Soit $P \in \mathbb{C}[X]$ un polynôme non nul. Alors, il existe $\alpha_1, \ldots, \alpha_r \in \mathbb{C}$ deux à deux distincts, $\omega_1, \ldots, \omega_r \in \mathbb{N}^*$ et $\lambda \in \mathbb{C}^*$ tels que :

$$P = \lambda \prod_{k=1}^{r} (X - \alpha_k)^{\omega_k}$$

De plus, à permutation près de α_k , cette décomposition est unique. En particulier, les polynômes non nuls de $\mathbb{C}[X]$ sont scindés.

Remarques:

- \Rightarrow En pratique, cette décomposition est équivalente à la recherche du coefficient dominant de P, de ses racines et de leur ordre de multiplicité.
- \Rightarrow Sur \mathbb{C} , un polynôme de degré $n \in \mathbb{N}$ admet exactement n racines comptées avec leur ordre de multiplicité.
- \Rightarrow Un polynôme non nul $P \in \mathbb{C}[X]$ est scindé simple si et seulement si P et P' sont premiers entre eux.

Proposition 42. Les polynômes unitaires irréductibles de $\mathbb{R}[X]$ sont les :

- $-X \alpha \ avec \ \alpha \in \mathbb{R}$
- $-X^2 + bX + c \ avec \ \Delta = b^2 4c < 0$

Proposition 43. Soit $P \in \mathbb{R}[X]$ un polynôme non nul. Alors, il existe $\alpha_1, \ldots, \alpha_r \in \mathbb{R}$ deux à deux distincts, $\omega_1, \ldots, \omega_r \in \mathbb{N}^*$, $(b_1, c_1), \ldots, (b_s, c_s) \in \mathbb{R}^2$ deux à deux distincts tels que $\Delta_l = b_l^2 - 4c_l < 0$ pour tout $l \in [1, s], \omega'_1, \ldots, \omega'_s \in \mathbb{N}^*$ et $\lambda \in \mathbb{R}^*$ tels que :

$$P = \lambda \prod_{k=1}^{r} (X - \alpha_k)^{\omega_k} \prod_{l=1}^{s} (X^2 + b_l X + c_l)^{\omega'_l}$$

De plus, à permutation près des α_k et des (b_l, c_l) , cette décomposition est unique.

Remarque:

 \Rightarrow En pratique, si on a effectué la décomposition de $P \in \mathbb{R}[X]$ en produit de polynômes unitaires irréductibles dans $\mathbb{C}[X]$, il suffit de regrouper les racines conjuguées et de développer ces produits pour obtenir la décomposition dans $\mathbb{R}[X]$. En effet, si $\alpha \in \mathbb{C}$

$$(X - \alpha)(X - \overline{\alpha}) = X^2 - 2\operatorname{Re}(\alpha)X + |\alpha|^2 \in \mathbb{R}[X]$$

Cependant, il est parfois possible d'aboutir plus rapidement à la décomposition dans $\mathbb{R}[X]$ en utilisant les identités algébriques.

Exercices:

- \Rightarrow Factoriser $X^6 1$ et $X^4 + 1$ sur $\mathbb{R}[X]$.
- \Rightarrow Soit $n \in \mathbb{N}^*$. Factoriser $X^n 1$ sur $\mathbb{R}[X]$.

3.3 Fonctions symétriques élémentaires

Remarque:

 \Rightarrow Soit $\alpha, \beta, \gamma \in \mathbb{K}$. Alors

$$(X - \alpha)(X - \beta)(X - \gamma) = X^3 - (\alpha + \beta + \gamma)X^2 + (\alpha\beta + \alpha\gamma + \beta\gamma)X - \alpha\beta\gamma$$

On introduit donc les quantités $\sigma_1=\alpha+\beta+\gamma,\ \sigma_2=\alpha\beta+\alpha\gamma+\beta\gamma$ et $\sigma_3=\alpha\beta\gamma$. Remarquons que ces expressions sont symétriques en α,β,γ , c'est-à-dire qu'elles sont invariantes par permutation de ces 3 variables. On peut montrer que réciproquement toute expression polynomiale symétrique en α,β,γ peut s'exprimer comme un polynôme en ces 3 quantités. Par exemple $x=\alpha^2+\beta^2+\gamma^2$ est symétrique en α,β,γ et on remarque que

$$\sigma_1^2 = (\alpha + \beta + \gamma)^2$$

$$= \alpha^2 + \beta^2 + \gamma^2 + 2(\alpha\beta + \alpha\gamma + \beta\gamma)$$

$$= x + 2\sigma_2$$

donc
$$x = \sigma_1^2 - 2\sigma_2$$
.

Définition 25. Soit $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$. On définit les polynômes symétriques élémentaires en les variables $\alpha_1, \ldots, \alpha_n$ par :

$$\sigma_1 = \alpha_1 + \dots + \alpha_n
\sigma_2 = \sum_{i_1 < i_2} \alpha_{i_1} \alpha_{i_2}
\vdots
\sigma_n = \alpha_1 \dots \alpha_n$$

Plus précisément, pour tout $k \in [1, n]$

$$\sigma_k = \sum_{i_1 < \dots < i_k} \alpha_{i_1} \cdots \alpha_{i_k}$$

Remarque:

 \Rightarrow Comme dans le cas vu plus haut dans le cas où n=3, on peut montrer que tout polynôme justifie leur appellation de polynômes symétriques élémentaires.

Proposition 44. Soit $P \in \mathbb{K}[X]$ un polynôme scindé de degré n :

$$P = a_0 + a_1 X + \dots + a_n X^n \quad (a_n \neq 0)$$
$$= \lambda \prod_{k=1}^n (X - \alpha_k) \quad (\lambda = a_n)$$

les α_k n'étant pas forcément deux à deux distincts. Alors :

$$\forall k \in [1, n] \quad \sigma_k = (-1)^k \frac{a_{n-k}}{a_n}$$

Exercices:

 \Rightarrow Soit $z_1, z_2, z_3 \in \mathbb{C}$ les racines de $2X^3 + 3X^2 + X + 1$. Calculer

$$a = \sum_{k=1}^{3} z_k^2$$
 $b = \sum_{k=1}^{3} z_k^3$ $c = \sum_{k=1}^{3} \frac{1}{z_k}$

symétrique en les $\alpha_1, \ldots, \alpha_n$ s'écrit comme un polynôme en les $\sigma_1, \ldots, \sigma_n$. Cette propriété \Rightarrow Montrer que si $n \geqslant 2$, la somme des racines n-ièmes de l'unité est nulle et le produit des racines *n*-ièmes de l'unité est égal à $(-1)^{n-1}$.