Final Project Submission Please fill out: Student name: Yeonjae Zhang Student pace: full time Scheduled project review date/time: April 22nd, 2022 Friday Instructor name: Praveen Gowtham Blog post URL: https://msyeon.blogspot.com/2022/04/imbalance-data-treatment.html Overview Banks lose moneys from loan defaulters. I will build a prediction model of loan defaulter. This model will help banks to reduce loan default risk. Import Modules Import neccesary modules. In [1]: import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from imblearn.over_sampling import SMOTE from sklearn.feature selection import SelectKBest, f classif from sklearn.pipeline import Pipeline from sklearn.pipeline import FeatureUnion from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from sklearn.impute import SimpleImputer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.metrics import accuracy_score, f1_score, plot_confusion_matrix, recall_score from imblearn.under_sampling import RandomUnderSampler, NearMiss from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.svm import LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import LabelEncoder from sklearn.linear model import SGDClassifier from imblearn.over_sampling import SMOTE pd.set option('display.max columns', None) plt.rcParams.update({'font.size': 10}) **Data Understanding** Look into the given data. In [2]: df = pd.read_csv('data/application_data.csv') In [3]: df.head() Out[3]: SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FLAG_OWN_REALTY CNT_CHILDREN AMT_INCOME_TOTAL AMT_CREDIT AMT_ANNUITY AMT_GOODS_PRICE NAMI 0 100002 M Ν 0 202500.0 406597.5 24700.5 Cash loans 351000.0 F 0 1 0 Ν Ν 100003 Cash loans 270000.0 1293502.5 35698.5 1129500.0 Υ М Υ 0 2 0 67500.0 135000.0 6750.0 135000.0 100004 Revolving loans 3 100006 0 F Ν Υ 0 135000.0 312682.5 29686.5 297000.0 Cash loans 4 0 M Ν Υ 0 121500.0 21865.5 100007 Cash loans 513000.0 513000.0 There are too many columns and missing values. In [4]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 307511 entries, 0 to 307510 Columns: 122 entries, SK_ID_CURR to AMT_REQ_CREDIT_BUREAU_YEAR dtypes: float64(65), int64(41), object(16) memory usage: 286.2+ MB In [5]: df.describe() Out[5]: SK_ID_CURR TARGET CNT_CHILDREN AMT_INCOME_TOTAL AMT_CREDIT AMT_ANNUITY AMT_GOODS_PRICE REGION_POPULATION_RELATIVE DAYS_BIRTH DAYS_EMPLOYED DAY 307511.000000 307511.000000 307511.000000 307511.000000 3.075110e+05 3.075110e+05 307499.000000 3.072330e+05 307511.000000 307511.000000 count 278180.518577 0.080729 0.417052 1.687979e+05 5.990260e+05 27108.573909 5.383962e+05 -16036.995067 63815.045904 mean 0.020868 0.272419 0.722121 102790.175348 2.371231e+05 4.024908e+05 14493.737315 3.694465e+05 0.013831 4363.988632 141275.766519 min 100002.000000 0.000000 0.000000 2.565000e+04 4.500000e+04 1615.500000 4.050000e+04 0.000290 -25229.000000 -17912.000000 **25**% 189145.500000 0.000000 0.000000 1.125000e+05 2.700000e+05 16524.000000 2.385000e+05 0.010006 -19682.000000 -2760.000000 **50%** 278202.000000 1.471500e+05 5.135310e+05 0.000000 0.000000 24903.000000 4.500000e+05 0.018850 -15750.000000 -1213.000000 **75**% 367142.500000 0.000000 1.000000 6.795000e+05 0.028663 -12413.000000 -289.000000 2.025000e+05 8.086500e+05 34596.000000 0.072508 -7489.000000 365243.000000 **max** 456255.000000 1.000000 19.000000 1.170000e+08 4.050000e+06 258025.500000 4.050000e+06 **Data Preparation** Select relevant coloumns and clean missing values. **Feature Engineering** In [6]: dummy df = pd.get dummies(df).copy() In [7]: impr_columns = abs(dummy_df.corr()).loc['TARGET', :].sort_values(axis=0, ascending=False).index[:20] In [8]: impr_df = dummy_df[impr_columns] impr df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 307511 entries, 0 to 307510 Data columns (total 20 columns): Column Non-Null Count Dtype TARGET 307511 non-null int64 EXT_SOURCE_3 246546 non-null float64 EXT_SOURCE_2 306851 non-null float64 EXT_SOURCE_1 134133 non-null float64 DAYS_BIRTH 307511 non-null int64 REGION_RATING_CLIENT_W_CITY 307511 non-null int64 REGION_RATING_CLIENT 307511 non-null int64 NAME_INCOME_TYPE_Working 307511 non-null uint8 NAME_EDUCATION_TYPE_Higher education 307511 non-null uint8 DAYS_LAST_PHONE_CHANGE 307510 non-null float64 CODE_GENDER_M 10 307511 non-null uint8 11 CODE_GENDER_F 307511 non-null uint8 12 DAYS_ID_PUBLISH 307511 non-null int64 13 REG_CITY_NOT_WORK_CITY 307511 non-null int64 14 NAME_EDUCATION_TYPE_Secondary / secondary special 307511 non-null uint8 NAME_INCOME_TYPE_Pensioner 307511 non-null uint8 16 ORGANIZATION_TYPE_XNA 307511 non-null uint8 17 FLAG_EMP_PHONE 307511 non-null int64 18 DAYS_EMPLOYED 307511 non-null int64 REG_CITY_NOT_LIVE_CITY 307511 non-null int64 dtypes: float64(4), int64(9), uint8(7) memory usage: 32.6 MB **Data Cleaning** Drop nulls. In [9]: cleaned_df = impr_df.dropna() Data Analysis Visualize what columns are considered to the related column. In [10]: corr = abs(cleaned_df.corr().iloc[0, 1:]).sort_values(ascending=False) In [11]: plt.figure(figsize=(15,10)) sns.barplot(x=corr.values, y=corr.index); plt.yticks(fontsize=18); EXT_SOURCE_3 EXT_SOURCE_1 EXT_SOURCE_2 DAYS_BIRTH NAME_EDUCATION_TYPE_Higher education REGION_RATING_CLIENT_W_CITY REGION_RATING_CLIENT NAME_EDUCATION_TYPE_Secondary / secondary special NAME_INCOME_TYPE_Working DAYS_ID_PUBLISH · DAYS_LAST_PHONE_CHANGE CODE_GENDER_M CODE_GENDER_F REG_CITY_NOT_WORK_CITY REG_CITY_NOT_LIVE_CITY ORGANIZATION_TYPE_XNA NAME_INCOME_TYPE_Pensioner FLAG_EMP_PHONE DAYS_EMPLOYED -0.075 0.100 0.125 0.175 0.025 0.050 0.150 Modeling Split data to train and test In [12]: y = cleaned df['TARGET'] X = cleaned_df.drop('TARGET', axis=1) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, stratify=y) X_train, y_train = RandomUnderSampler(random_state=7).fit_resample(X_train, y_train) **Model Selection** Find best performace model for the given data. In [13]: # Compare Scores models = {'Logistic Regression': LogisticRegression(max_iter=5000, random_state=42), 'DecisionTree': DecisionTreeClassifier(), 'KNeighbor': KNeighborsClassifier(), 'LinearSVC': LinearSVC(max_iter=5000, random_state=42), 'RandomForest': RandomForestClassifier(random state=42), print('Model Comparison') for key in models: pipe = Pipeline([('impute', SimpleImputer()),('scaler', MinMaxScaler()), ('model', models[key])]) score = cross_val_score(pipe, X_train, y_train, scoring='f1', cv=5).mean() print('----') print(f'{key} CrossValidation:', score) Model Comparison Logistic Regression CrossValidation: 0.6839157536189202 DecisionTree CrossValidation: 0.5885555852109012 KNeighbor CrossValidation: 0.6141939000467416 LinearSVC CrossValidation: 0.684085751084041 RandomForest CrossValidation: 0.6694483519795893 **Feature Selection** Find best performace feature numbers. 9 is the number of features for the highest f1 score In [14]: print('Model Comparison') for n_features in range(3, 21, 1): rtree pipe = Pipeline([('impute', SimpleImputer()),('scaler', MinMaxScaler()), ('model', LinearSVC(random state=42))]) score = cross_val_score(rtree_pipe, X_train.iloc[:, :n_features], y_train, scoring='f1', cv=5).mean() print('----') print(f'{n_features} Features CrossValidation:', score) Model Comparison _____ 3 Features CrossValidation: 0.6781234967695634 4 Features CrossValidation: 0.6787258055732138 _____ 5 Features CrossValidation: 0.6802656983490047 _____ 6 Features CrossValidation: 0.6807174395051399 7 Features CrossValidation: 0.6808175942893369 _____ 8 Features CrossValidation: 0.682652886294896 _____ 9 Features CrossValidation: 0.684203622839396 10 Features CrossValidation: 0.6838493268591591 11 Features CrossValidation: 0.6839074126959315 12 Features CrossValidation: 0.6831956854226368 13 Features CrossValidation: 0.6834754962640073 14 Features CrossValidation: 0.6835380422368255 15 Features CrossValidation: 0.6829301908727866 16 Features CrossValidation: 0.6829301908727866 17 Features CrossValidation: 0.6829863382957638 18 Features CrossValidation: 0.6836334693294848 19 Features CrossValidation: 0.684085751084041 20 Features CrossValidation: 0.684085751084041 In [15]: X_train, X_test = X_train.iloc[:, :9], X_test.iloc[:, :9] Visualize the selected features. In [16]: sns.set(rc = {'figure.figsize':(13,9)}) sns.heatmap(abs(dummy_df[impr_columns[:10]].corr()), vmax=0.2, annot=True); 0.18 0.16 0.061 0.057 0.057 0.055 TARGET - 0.175 0.19 0.21 0.012 0.013 0.066 0.022 EXT_SOURCE_3 0.18 1 0.11 0.075 0.16 0.11 0.21 0.092 0.29 0.29 0.068 0.12 0.2 EXT_SOURCE_2 - 0.150 0.19 0.21 0.6 0.12 0.12 0.19 0.14 0.13 EXT_SOURCE_1 - 0.125 0.078 0.21 0.092 0.6 0.0081 0.0094 0.12 0.083 DAYS_BIRTH - 0.100 0.061 0.012 0.29 0.12 0.0081 0.95 0.094 0.068 0.026 REGION_RATING_CLIENT_W_CITY - 0.075 0.059 0.013 0.29 0.12 0.0094 0.95 0.1 0.065 0.026 REGION_RATING_CLIENT NAME_INCOME_TYPE_Working 0.19 0.3 0.1 0.057 0.066 0.068 0.094 0.074 0.0071 - 0.050 0.022 0.14 0.12 0.057 0.12 0.068 0.065 0.074 0.0063 NAME_EDUCATION_TYPE_Higher education - 0.025 0.0071 0.0063 0.055 0.075 0.2 0.13 0.083 0.026 0.026 DAYS_LAST_PHONE_CHANGE REGION_RATING_CLIENT_W_CITY NAME_INCOME_TYPE_Working NAME_EDUCATION_TYPE_Higher education EXT_SOURCE_1 EXT_SOURCE **Model Tuning** Set the baseline for comparison In [17]: print('Baseline before Tuning') print('LinearSVC F1 CrossValidation: 0.684203622839396') Baseline before Tuning LinearSVC F1 CrossValidation: 0.684203622839396 **GridSearch Crossvalidation** 0.0005 increased from tuning In [18]: svc_pipe = Pipeline([('impute', SimpleImputer()),('scaler', MinMaxScaler()), ('model', LinearSVC(random_state=42, max_iter=10000))]) parameters = {'model C': [3, 4, 5, 6]} result = GridSearchCV(svc_pipe, parameters, cv=5, scoring='f1').fit(X_train, y_train) print('Grid Search') print(result.best_score_, result.best_params_) Grid Search 0.6847605446316545 {'model__C': 4} In [19]: final_model = result.best_estimator_ Final Score - Test Dataset In [20]: # TEST Score final_model.fit(X_train, y_train) pred = final_model.predict(X_test) print('Accuracy Score:', final_model.score(X_test, y_test)) print('F1 Score:', f1_score(y_test, pred)) print('Recall Score:', recall score(y test, pred)) plot confusion matrix(final model, X test, y test); plt.grid(None) Accuracy Score: 0.6880794218556099 F1 Score: 0.2430469441984057 Recall Score: 0.686 - 16000 - 14000 0 17480 7918 12000 10000 True label - 8000 - 6000 628 1372 - 4000 - 2000 Predicted label Apply to business Bank interest income rate: 3% Bank loan default recovery: 70% In [21]: print('From 27,398 future client') print('----') print('If approve all loans without model') borrower = 25398 default = 2000 loan = 1000000result1 = borrower*loan*0.03 - default*loan*0.3 print('Bank earned \${}'.format(result1)) print('----') print('If approve loans with model') borrower = 17480 default = 628 loan = 1000000result2 = borrower*loan*0.03 - default*loan*0.3 print('Bank earned \${}'.format(result2)) print('----') print('Earning Differecnce:', result2-result1) From 27,398 future client -----If approve all loans without model Bank earned \$161940000.0 _____ If approve loans with model Bank earned \$336000000.0 _____ Earning Differecace: 174060000.0 Conclusion If bank use our model to predict loan defaulter, bank will save 174,060,000 dollars from 27,398 future clients. In []: