النهايات و الاتصال

[- النهابة المنتهبة

x_0 النهاية ا عند -1

أ- <u>النهاية 0 عند 0</u>

تمرين

$$g(x) = \frac{x^3}{|x|}$$
 نعتبر الدالتين f و g حيث g حيث $f(x) = x^2$

- f أ مثل مبيانيا f
- orall arepsilon au > 0ب بین مبیانیا أن -arepsilon = -arepsilon = -arepsilon = -arepsilon = -arepsilon = -arepsilonبین مبیانیا أن
 - ج) بین ذلك جبریا
 - g مثل مبيانيا (1 -2 -2

$$orall arepsilon \succ 0 \quad \exists lpha \succ 0 / \quad g(\left] - lpha; lpha \left[- \{0\} \right] \subset \left] - arepsilon; arepsilon \right]$$
بين مبيانيا أن

ج) بين ذلك جبريا 3- أتمم الجدول التالي

		النائي
g(x)	f(x)	x
		-10^{-2}
		-10^{-5}
		-10^{-100}
///////////////////////////////////////	///////////////////////////////////////	0
		10^{-100}
		10^{-5}
		10^{-2}

ملاحظة:

نلاحظ كلما اقترب x من 0 يقترب f(x) من 0، بل أكثر كلما كان x يؤول إلى 0 فان f(x) يؤول إلى 0 نقول إن نهاية f(x) هي 0 عندما يؤول x إلى 0

$$\lim_{x \to 0} f(x) = 0$$
 نکتب

g نفس الملاحظة على الدالة

تعريف

0لتکن f دالة معرفة على مجال مفتوح منقط مرکزه

نقول إن نهاية f هي 0 عندما يؤول x إلى 0 إذا وفقط إذا كان

$$\forall \varepsilon \succ 0 \quad \exists \alpha \succ 0 \quad \forall x \in D_f \quad 0 \prec |x| \prec \alpha \Longrightarrow |f(x)| \prec \varepsilon$$

$$\lim_{x \to 0} f(x) = 0$$
 نکتب

ملاحظة

$$\lim_{x \to 0} f(x) = 0 \Leftrightarrow \lim_{x \to 0} |f(x)| = 0 *$$

 $\lim_{x\to 0} g(x) = 0$ فان $\lim_{x\to 0} f(x) = 0$ و $\lim_{x\to 0} f(x) = 0$ فان على مجال مفتوح منقط مركزه $\lim_{x\to 0} f(x) = 0$ و $\lim_{x\to 0} f(x) = 0$

$$\forall a \in \mathbb{R} \quad \forall n \in \mathbb{N}^*$$

$$\lim_{x\to 0} ax^n = 0$$

$$\lim_{x \to 0} a\sqrt{x} = 0$$

خاصىة

 $\lim_{x \to 0} u(x) = 0$ و کان $|f(x)| \le u(x)$ فان اذا وجد مجال I مفتوح منقط مرکزه u(x) بحیث

$$\lim_{x\to 0} f(x) = 0$$

لبرهان

$$I =]-\beta; \beta[-\{0\}]$$
 ليكن $\beta \succ 0$ و

$$\forall x \in]-\beta; \beta[-\{0\}] \quad |f(x)| \le u(x)$$
 لدينا

 $\forall \varepsilon \succ 0 \quad \exists \alpha \succ 0 \quad \forall x \in D_f \quad 0 \prec |x| \prec \alpha \Rightarrow |u(x)| \prec \varepsilon$ وحيث أن $\lim_{x \to 0} u(x) = 0$ فان

$$\forall \varepsilon \succ 0 \quad \exists \lambda \succ 0 \quad \forall x \in D_f \quad 0 \prec |x| \prec \lambda \Longrightarrow \begin{cases} |u(x)| \prec \varepsilon \\ |f(x)| \leq u(x) \end{cases} \quad \lambda = \inf(\alpha; \beta)$$
 نعتبر

 $\forall \varepsilon \succ 0 \quad \exists \lambda \succ 0 \quad \forall x \in D_f \quad 0 \prec |x| \prec \lambda \Rightarrow |f(x)| \prec \varepsilon$ و بالتالي

$$\lim_{x \to 0} f(x) = 0$$
 إذن

<u>:مرىن</u>

$$\lim_{x \to 0} \frac{x}{x+1} = 0 \quad ; \quad \lim_{x \to 0} x \sin \frac{1}{x} = 0$$
 بين أن

 x_0 ب- النهاية ا عند

 x_0 لتكن f دالة معرفة على مجال مفتوح منقط مركزه

 x_0 حدسيا: f(x) تؤول إلى عندما يؤو ل

0 من h عندما يقترب x من x عندما عندما عندما

O حیث f(x)-l فان $h=x-x_0$ حیث $d=x-x_0$

$$0$$
 اقترب من $f(x_0+h)-l$

 x_0 لتكن f دالة معرفة على مجال مفتوح منقط مركزه

0نقول إن نهاية f هي f هي مي الحدما يؤول x إذا وفقط إذا كان نهاية الدالة f هي f هي معدما يؤول h إلى h

$$\lim_{x \to x_0} f(x) = l$$
 نکتب

ملاحظة

$$\lim_{x \to x_0} f(x) = l \Leftrightarrow \lim_{h \to 0} f(x_0 + h) = l *$$

$$\lim_{x \to x_0} f(x) = l \Leftrightarrow \lim_{x \to x_0} f(x) - l = 0 *$$

غند النهاية وحيدة x_0 فان هذه النهاية وحيدة *

$$\lim_{x \to x_0} f(x) = l \Leftrightarrow \lim_{x \to x_0} f(x) - l = 0 *$$

$$\forall a \in \mathbb{R} \quad \forall n \in \mathbb{N}^* \quad \lim_{x \to x_0} a (x - x_0)^n = 0 *$$

$$\lim_{x \to 4} \frac{2x-1}{x-3} = 9$$
 تمرین بین أن

$$\lim_{x \to x_0} u(x) = 0$$
 اذا وجد مجال $|f(x) - l| \le u(x)$ بحيث $|f(x) - l| \le u(x)$ و كان $\lim_{x \to x_0} f(x) = l$ فان $\lim_{x \to x_0} f(x) = l$

<u>تمرىن</u>

$$\lim_{x \to 0} 2 + x^2 \cos \frac{1}{x} = 2$$
 بين أن

$$\lim_{x \to x_0} |f(x)| = |l| \quad \text{eid} \quad \lim_{x \to x_0} f(x) = l$$
اِذا کان

 x_0 لتكن \tilde{f} دالة معرفة على مجال مفتوح مركزه تكون f متصلة في x_0 إذا وفقط إذا كان $\lim_{x \to x_0} f(x) = f(x_0)$

أمثلة

 $(n \in \mathbb{N}^* \quad a \in \mathbb{R})$ الدوال $x \to ax^n$ الدوال الدوال الثابتة متصلة في كل نقطة من مجموعة تعريفها 0 الدالة $|x| \to \sqrt{|x|}$ متصلة في

اصطلاح

إذا كانت f دالة معرفة على مجال مفتوح مركزه x_0 و كانت غير متصلة في x_0 فإننا نقول إن f متقطعة x_0 في

<u>تمرين</u>

$$\begin{cases} f(x) = \frac{x^2 - 1}{x - 1} & x \neq 1 \\ f(1) = 2 \end{cases}$$

نعتبر f دالة معرفة على $\mathbb R$ بـ

أدرس اتصال f في 1

البرهان

 \mathbb{R} لتكن P دالة حدودية و x_0 عنصر من

$$P(x) - P(x_0) = (x - x_0)Q(x)$$
 نعلم أنه توجد حدودية Q حيث نفترض أن

$$\begin{split} \left|Q(x)\right| & \leq |a_n| \left|x^n\right| + \left|a_{n-1}\right| \left|x^{n-1}\right| + \ldots + \left|a_1\right| \left|x\right| + \left|a_0\right| \ Q(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \\ \left|Q(x)\right| & \leq M(\left|x^n\right| + \left|x^{n-1}\right| + \ldots + \left|x\right| + 1) \text{ ago } i \in \{0;1\ldots;n\} \text{ cut } \left|a_i\right| \text{ with } M$$
 ليكن M أكبر الأعداد
$$\left|x\right| < \alpha \text{ ago } \alpha = \sup\left(\left|x_0 - 1\right|; \left|x_0 + 1\right|\right) \text{ g} \ x_0 - 1 < x < x_0 + 1 \\ \left|Q(x)\right| & \leq M(\alpha^n + \alpha^{n-1} + \ldots + \alpha + 1) \text{ equit } \left|Q(x)\right| \leq M(\alpha^n + \alpha^{n-1} + \ldots + \alpha + 1) \end{split}$$
 في نصع
$$\left|x - x_0\right| \left|Q(x)\right| \leq k \left|x - x_0\right| \text{ gais } k = M(\alpha^n + \alpha^{n-1} + \ldots + \alpha + 1) \end{split}$$
 نصع
$$\left|x - x_0\right| \left|Q(x)\right| \leq k \left|x - x_0\right| \text{ gais } k = M(\alpha^n + \alpha^{n-1} + \ldots + \alpha + 1) \end{split}$$

وبالتالي
$$\left|P(x)-P(x_0)\right| \leq k\left|x-x_0\right|$$
 وبالتالي $\lim_{x \to x_0} P(x) = P(x_0)$ فان $\lim_{x \to x_0} k\left|x-x_0\right| = 0$ و حبث أن

 x_0 إذن P متصلة في

$$\lim_{x \to 5} \frac{x^3 - 4x^2 - 4x - 5}{x - 5} \quad ; \quad \lim_{x \to 1} \frac{3x^2 - 5x + 2}{x - 1} \qquad \lim_{x \to 2} \left| x^2 - 7x - 2 \right| \quad ; \quad \lim_{x \to -1} 3x^2 + 4x - 2$$

$$\lim_{x\to 2} \left| x^2 - 7x - 2 \right|$$
 ; $\lim_{x\to -1} 3x^2 + 4x - 2$

د- تمديد بالاتصال

$$1$$
 الدالة $f: x \to \frac{x^2 - 1}{x - 1}$ غير معرفة في

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} x + 1 = 2$$
 ولدينا

$$1$$
 ننطبق على f في $\mathbb{R}-\{1\}$ ومتصلة في 1

$$1$$
 الدالة g المعرفة بـ $x \neq 1$ الدالة g المعرفة بـ $g(x) = \frac{x^2-1}{x-1}$ الدالة $g(x) = \frac{x^2-1}{x-1}$ ومتصلة في $g(x) = \frac{x^2-1}{x-1}$

f نقول ان g تمدید بالاتصال لدالة نقول ان

 x_0 لتكن f دالة غير معرفة في x_0 لكن لها نهاية f في

$$f$$
 الدالة g المعرفة بـ $g(x)=f(x)$ هي دالة متصلة في $g(x)=f(x)$ الدالة $g(x_0)=l$

 x_0 في

<u>تمرین</u>

أعط تمديدا بالاتصال لدالة f في x_0 في الحالتين

$$\begin{cases} f(x) = x \sin \frac{1}{x^2} \\ x_0 = 0 \end{cases}$$

$$\begin{cases} f(x) = \frac{3x^2 + 2x - 8}{x + 2} \\ x_0 = -2 \end{cases}$$

-3 النهاية على اليمين- النهاية على اليسار -3
$$f(x) = \frac{|x-1|(x+2)}{x-1}$$
 بعتبر الدالة f المعرفة بـ

(
$$C_f$$
 أنشئ) $D_f = \mathbb{R} - \{1\}$

g(x)=x+2 حيث g على g1;+ ∞ على على g1;+ π

$$\lim_{x \to 1} g(x) = \lim_{x \to 1} x + 2 = 3$$
 ونعلم أن $g(x) = \lim_{x \to 1} x + 2 = 3$ نقول ان نهاية f هي $g(x) = 1$ نقول ان نهاية f

$$\lim_{\substack{x \to 1 \\ x \to 1}} f(x) = 3$$
 و نکتب $\lim_{x \to 1^+} f(x) = 3$

h(x) = -x - 2 نلاحظ أن قصور الدالة f على f على f على f نلاحظ أن قصور الدالة f على *

$$\lim_{x \to 1} h(x) = \lim_{x \to 1} -x - 2 = -3$$
 ونعلم أن

1 نقول ان نهایة f هي 3- على بسار

$$\lim_{\substack{x \to 1 \\ x \prec 1}} f(x) = -3$$
 و نکتب $\lim_{x \to 1^{-}} f(x) = -3$

تعريف

 $lpha \succ 0$ لتكن f دالة معرفة على مجال من نوع $x_0; x_0 + lpha$ حيث f

نقو ل ان $a\succ 0$ تقبل النهاية $a\succ 0$ على يمين x_0 إذا كان قصورها على x_0 تقبل النهاية t على يمين مع

 $\lim_{x o x_0^+} f(x) = l$ و نکتب x_0 و نکتب x_0 عند الله معرفة على مجال مفتوح منقط منقط مرکزه x_0 تکون نهایتها ا

$$\lim_{\substack{x \to x_0 \\ x \succ x_0}} f(x) = l$$
 أو

بالمثل نعرف النهاية على اليسار

خاصية

$$\lim_{x \to x_0} f(x) = l \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = l$$

<u>تمرين</u>

أدرس نهاية الدالة f في x_0 في الحالتين التاليتين $\overline{}$

$$\begin{cases} f(x) = \frac{x^3 + 2|x|}{x} \\ x_0 = 0 \end{cases}$$

$$\begin{cases} f(x) = x^2 + 4x + 4 & x > -2 \\ f(x) = 2x^2 + 2x & x \le -2 \\ x_0 = -2 \end{cases}$$

نتائج

 $\lim_{x \to x_0^+} f(x) = f(x_0)$ تکون f متصلة على يمين x_0 إذا وفقط إذا کان

 $\lim_{x \to x_0^-} f(x) = f(x_0)$ تكون f متصلة على يسار x_0 إذا وفقط إذا كان

 x_0 تكون f متصلة في x_0 إذا وفقط إذا كان تكون f متصلة على يمين على يمين وعلى يسار

تمرين

$$\begin{cases} f(x) = x^3 + ax & x > -1 \\ f(x) = -x + 1 & x \le -1 \end{cases}$$

-1 حدد a لكي تكون f متصلة في -1

ادرس اتصال f في الحالتين -2

$$x_0 = 0 \quad ; \quad \begin{cases} f(x) = x \sin \frac{1}{x} & x > 0 \\ f(x) = x^2 - x & x \le 0 \end{cases}$$

$$x_0 = 2$$
 ;
$$\begin{cases} f(x) = 2x + 1 & x > 2 \\ f(x) = x^2 - 1 & x \le 2 \end{cases}$$

<u>4- الاتصال في محال</u>

تعريف

[a;b] لتكن f دالة معرفة على

 $\left]a;b
ight[$ تكون f متصلة على $\left]a;b
ight[$ إذا وفقط إذا كانت متصلة في كل نقطة من

a تكون a متصلة على a إذا وفقط إذا كانت متصلة في كل نقطة من a ومتصلة على يمين b ومتصلة على يسار b

 $\left[a;b\right]$ و على المثل نعرف الاتصال على المثل نعرف الاتصال

ملاحظة

التمثيل المبياني لدالة متصلة على $\left[a;b
ight]$ هو خط متصل طرفاه النقطتين اللتين

$$(b; f(b))$$
 و $(a; f(a))$ احداثیتیهما

II-<u>النهاية المنتهية عند</u> ∞+ <u>أو عند</u> ∞–

1- النهاية 0 عند ∞+

<u>تمرین</u>

$$f(x) = \frac{1}{x}$$
 نعتبر الدالة f حيث

$$C_f$$
 أرسم -1

2- أتمم الجدول التالي و ماذا تلاحظ

x	10^{100}	10^{10^9}	$10^{10^{12}}$	$10^{10^{100}}$
f(x)				

3- بين أن

$$\forall \varepsilon \succ 0 \quad \exists B \succ 0 \quad f\big(\big]B; +\infty\big[\big) \subset \big] - \varepsilon; \varepsilon\big[$$

ر-لىكن 0 ≾:

$$x \succ B \Rightarrow |f(x)| \prec \varepsilon$$
 نبحث عن $B \succ 0$ نبحث عن

$$\forall x \succ 0 \quad |f(x)| \prec \varepsilon \Leftrightarrow \frac{1}{x} \prec \varepsilon \Leftrightarrow x \succ \frac{1}{\varepsilon}$$
 Levi

$$B = \frac{1}{\varepsilon}$$
 $\exists \delta$

$$\forall \varepsilon \succ 0 \quad \exists B \succ 0 \quad x \succ B \Rightarrow |f(x)| \prec \varepsilon$$
 للحصول

$$+\infty$$
 نقول إن $f(x)$ تؤول الى 0 عندما يؤول $f(x)$

$$\lim_{x\to +\infty} f(x) = 0$$
 نکتب

تعريف

$$a;+\infty$$
لتكن f يحتوي حيز تعريفها على مجال من نوع f

نقول إذا كان الى
$$0$$
 عندما يؤول الى الى الدا وفقط إذا كان $f(x)$

$$\lim_{x \to +\infty} f(x) = 0$$
 نکتب $\forall \varepsilon \succ 0 \quad \exists B \succ 0 \quad x \succ B \Rightarrow |f(x)| \prec \varepsilon$

خاصیات

خاصىة1

$$\forall (k;n) \in \mathbb{R} \times \mathbb{N}^*$$
 $\lim_{x \to +\infty} \frac{k}{x^n} = 0$; $\lim_{x \to +\infty} \frac{k}{\sqrt{x}} = 0$

خاصىة2

يدا وجد مجال على شكل $a;+\infty$ بحيث

$$\lim_{x \to +\infty} f(x) = 0$$
 فان $\lim_{x \to +\infty} u(x) = 0$ وكان $\forall x \in]a; +\infty[$ $|f(x)| \le u(x)$

$$\lim_{x \to +\infty} \frac{7}{4x^2 + 3}$$
 أحسب

$$\lim_{x \to +\infty} \frac{7}{4x^2 + 3} = 0$$
 فان $\lim_{x \to +\infty} \frac{7}{x^2} = 0$ وحيث $\left| \frac{7}{4x^2 + 3} \right| \le \frac{7}{x^2}$ ومنه $4x^2 + 3 > x^2$

 $a;+\infty$ ر نوع حيز تعريفها على مجال من نوع fنقول إن f(x) تؤول الى l عندما يؤول x إذا وفقط نقول إن $\forall \varepsilon \succ 0 \quad \exists B \succ 0 \quad x \succ B \Rightarrow |f(x) - l| \prec \varepsilon$ إذا كان $\lim_{x \to +\infty} f(x) = l$ نکتب

$$\lim_{x \to +\infty} \frac{x^2 - 2}{x^2 + 1} = 1$$
 بين أن

$-\infty$ <u>عند l عند 3</u>

 $]-\infty;a$ یحتوی حیز تعریفها علی مجال من نوع f

 $\lim_{x \to +\infty} f(-x) = l$ نقول إن f(x) تؤول إلى f(x) عندما يؤول x إلى عندما يؤول إلى الم

$$\lim_{x \to -\infty} f(x) = l$$
 نکتب

ملاحظات

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x)$$
 زوجية فان $f(x)$ زوجية -

$$\lim_{x \to -\infty} f(x) = -\lim_{x \to +\infty} f(x)$$
 فردية فان - إذا كانت f فردية

<u>III- النهايات المنتهية والترتيب</u>

خاصىة1

 x_0 لتكن f دالة معرفة على مجال مفتوح منقط I مركزه $l \geq 0$ إذا كان $I \geq 0$ و f موجبة على I فان

خاصىة2

 x_0 لتكن f دالة معرفة على مجال مفتوح منقط مركزه

 $\forall x \in J \ f\left(x\right) \times l \succ 0$ بحیث $t \neq 0$ فانه یوجد مجال مفتوح منقط $t \neq 0$ بحیث $t \neq 0$ بحیث $t \neq 0$ إذا كان

خاصىة3

 x_0 و g دا لتان معرفتان على مجال مفتوح منقط I مركزه g

 $l \geq l$ ' و کان $f \geq g$ و کان و $\lim_{x \to x_0} g(x) = l$ و کان و $\lim_{x \to x_0} f(x) = l$ إذا کان

خاصىة4

 x_0 و g و h دوا \overline{U} مورفة عى مجال مفتوح منقط I مركزه f

 $\lim_{x \to x_0} h(x) = l$ غلی I فان $f \ge h \ge g$ وکان $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = l$ إذا كان

<u>IV- العمليات على النهايات المنتهية</u>

و g دالتان لکل منهما نهایة منتهیة في g و g عدد حقیقي g و f و g و

$$\lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \times \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} |f(x)| = \left| \lim_{x \to x_0} f(x) \right|$$

$$\lim_{x \to x_0} |f(x)| = \left| \lim_{x \to x_0} f(x) \right|$$

$$\lim_{x \to x_0} \sqrt{f(x)} = \sqrt{\lim_{x \to x_0} f(x)}$$

$$\lim_{x \to x_0} f(x) = \sqrt{\lim_{x \to x_0} f(x)}$$

$$\lim_{x \to x_0} f(x) = \sqrt{\lim_{x \to x_0} f(x)}$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$$

 $x_0 = -\infty$ و $x_0 = +\infty$ ملاحظة الخاصيات تبقى صالحة في

٧- العمليات على الدوال المتصلة

خاصیات

- x_0 مجموع دالتين متصلتين في x_0 هي دالة متصلة في -*
 - x_0 جداء دالتين متصلتين في x_0 هي دالة متصلة في *
- x_0 في عدد حقيقي هي دالة متصلة في x_0 في عدد حقيقي هي دالة متصلة *
- x_0 فان الدالتين $\frac{f}{g}$ و $\frac{1}{g}$ متصلتان في $g(x_0) \neq 0$ فان الدالتين g و دا لتين متصلتان في x_0
- x_0 متصلة في مركزه x_0 ومتصلة في x_0 فان دالة \sqrt{f} متصلة في -*
- ادا کانت f متصلة وکانتx o f(ax+b) دالة معرفة على مجال مفتوح مرکزه*- اذا کانت f
 - x_0 متصلة في $x \to f(ax+b)$

نتيجة

كل دالة جدرية متصلة على مجموعة تعريفها

<u>تذكير</u> الدالة الجدرية هي خارج دالتين حدوديتين <u>تمارين</u>

$$\lim_{x \to 2} \frac{x - \sqrt{3x - 2}}{x - 2} \quad ; \quad \lim_{x \to 1} \sqrt{x^2 + 5x - 2} \qquad \qquad \lim_{x \to 1} \frac{3x^2 - 5x + 2}{x^2 - 1} \quad ; \quad \lim_{x \to 3} \frac{x^2 - x}{x^2 + x - 6} \quad \Rightarrow \quad -1$$

2- أدرس اتصال الدوال

$$t(x) = \frac{2x^2 - 3x}{|x|} \qquad \begin{cases} h(x) = 2x^2 - x & x > 1 \\ h(x) = -x^2 + 2 & x \le 1 \end{cases} \qquad g(x) = x^2 - 1 + \sqrt{x - 2} \qquad f(x) = \frac{2x^2 - 3x + 1}{x^2 - x}$$

<u>VI - الدوال المثلثية</u>

$$\forall x \in \left| \frac{-\pi}{2}; \frac{\pi}{2} \right| \quad \left| \sin x \right| \le \left| \tan x \right|$$
نقبل النتيجة

 $x \to \tan x$ و $x \to \cos x$ و $x \to \sin x$

$$\lim_{x\to 0} \sin x = 0$$
 و منه $\lim_{x\to 0} \left|x\right| = 0$ و $\forall x \in \left[\frac{-\pi}{2}; \frac{\pi}{2}\right]$ ومنه *

0 ومنه الدالة $x \to \sin(ax + b)$ متصلة في

$$0$$
 إذن الدالة $x \to \sin x$ متصلة في $\lim_{x \to 0} \cos x = \lim_{x \to 0} 1 - 2\sin^2 \frac{x}{2} = 1*$

$$0$$
اذن $x \to \cos x$ متصلة في

$$\lim_{x \to 0} \tan x = \lim_{x \to 0} \frac{\sin x}{\cos x} = 0$$

$$0$$
 متصلة في $x \to \tan x$

$$x_0 \in \mathbb{R}$$
 ليكن *

$$\lim_{x \to x_0} \sin x = \lim_{h \to 0} \sin(x_0 + h)$$

$$= \lim_{h \to 0} [\sin x_0 \cosh + \sinh \cos x_0]$$

$$= \sin x_0 \cos 0 + \sin 0 \cos x_0 = \sin x_0$$

$$x_0$$
 متصلة في $x \to \sin x$

<u>خاصىة</u>

 \mathbb{R} و $x \to \cos x$ متصلتان في $x \to \sin x$

$$\mathbb{R}-\left\{rac{\pi}{2}+k\pi/k\in\mathbb{Z}
ight\}$$
 الدالة $x o an x$ متصلة في حيز تعريفها

نتائد

 \mathbb{R} الدالتان $x o \cos(ax+b)$ و $x o \sin(ax+b)$ متصلتان في

الدالة $x \to \tan(ax+b)$ متصلة في حيز تعريفها

2- <u>نهابات اعتبادية هامة</u>

$$\lim_{x\to 0} \frac{\sin x}{x}$$
 نحدد

$$x \neq 0$$
 حيث $\frac{1}{|\tan x|} \leq \frac{1}{|x|} \leq \frac{1}{|\sin x|}$ ومنه $\forall x \in \left[\frac{-\pi}{2}; \frac{\pi}{2} \right]$ $\left[|\sin x| \leq |x| \leq |\tan x| \right]$ لدينا

$$\left|\cos x\right| \le \left|\frac{\sin x}{x}\right| \le 1$$
 وبالتالي $\left|\frac{\sin x}{\tan x}\right| \le \frac{\left|\sin x\right|}{\left|x\right|} \le \frac{\left|\sin x\right|}{\left|\sin x\right|}$ وبالتالي

 $\lim_{x\to 0} \frac{\sin x}{x} = 1$ و حيث أن $\lim_{x\to 0} \cos x = 1$ و $\lim_{x\to 0} \cos x = 1$ و حيث أن

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x^2} = \lim_{x \to 0} \frac{1}{2} \times \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^2 = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \times \frac{1}{\cos x} = 1 *$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$
 g

$$\lim_{x\to 0} \frac{\tan x}{x} = 1$$

9

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\tan ax}{ax} = 1$$

2- أتمم الجدول التالي

 $10^{-10^9} \quad 10^{-10^{12}} \quad 10^{-10^{100}}$

$$\lim_{x \to 0} \frac{\sin ax}{ax} = 1$$

$$\lim_{x \to 0} \frac{\sin x}{\sin 3x} \quad , \quad \lim_{x \to 0} \frac{\sin^2 x}{3x^2}$$

$$\lim_{x \to 0} \frac{\sin x}{\sin 3x} \quad \lim_{x \to 0} \frac{\sin^2 x}{3x^2} \qquad \lim_{x \to 0} \frac{\sin 3x}{4x} \quad \lim_{x \to 0} \frac{\sin 3x}{3x} \quad \lim_{x \to 0} \frac{\cos 2x}{1 + \sin x}$$

$$\lim_{x \to 0} \frac{\cos 4x - \cos 2x}{\sin 4x + \sin 2x}$$

 10^{-100}

f(x)

$$\lim_{x \to 0} \frac{\cos 4x - \cos 2x}{\sin 4x + \sin 2x} \qquad \lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{x - \frac{\pi}{4}} \qquad \lim_{x \to 0} \frac{1 - \cos 2x}{x} \qquad \lim_{x \to 0} \frac{\tan 3x}{\sin 2x}$$

$$\lim_{x\to 0} \frac{\tan 3x}{\sin 2x}$$

$$f(x) = \frac{1}{|x|}$$
 نعتبر

$$C_f$$
 أنشى أ-1

ماذا تلاحظ (بین ذلك)

مرکزه f دالة معرفة على مجال مفتوح منقط مرکزه f *

$$\lim_{x \to 0} f(x) = +\infty \Leftrightarrow (\forall A \succ 0) \quad (\exists \alpha \succ 0) \quad (\forall x \in D_f) \quad 0 \prec |x| \prec \alpha \Rightarrow f(x) \succ A$$

 x_0 لتكن f دالة معرفة على مجال مفتوح منقط مركزه

$$\lim_{x \to x_0} f(x) = +\infty \iff \lim_{h \to 0} f(x_0 + h) = +\infty$$

 x_0 لتكن f دالة معرفة على مجال مفتوح منقط مركزه

$$\lim_{x \to x_0} f(x) = -\infty \Leftrightarrow \lim_{x \to x_0} -f(x) = +\infty$$

خاصية

$$\lim_{x \to 0} \frac{k}{|x^n|} = +\infty \qquad ; \quad \lim_{x \to 0} \frac{k}{\sqrt{|x|}} = +\infty \qquad \qquad n \in \mathbb{N}^* \qquad ; \quad k \in \mathbb{R}^{+^*} \quad \text{ Lim}$$

 $.\,]a;+\infty[$ دالة معرفة على مجال من نوع *

$$\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow (\forall A \succ 0) \quad (\exists B \succ 0) \quad \forall x \in D_f \quad x \succ B \Rightarrow f(x) \succ A$$

خاصية

$$\lim_{x \to +\infty} f(x) = -\infty \Leftrightarrow \lim_{x \to +\infty} -f(x) = +\infty$$

حاصىة

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(-x)$$

النهايات والترتيب

$$\lim_{x \to x_0} f(x) = +\infty$$
 فان $\lim_{x \to x_0} u(x) = +\infty$ و کان $f(x) \ge u(x)$, I فان $x \to x_0$

$$\lim_{x \to x_0} f\left(x\right) = -\infty$$
 فان $\lim_{x \to x_0} u\left(x\right) = -\infty$ و کان $\lim_{x \to x_0} u\left(x\right) = -\infty$ فان $\lim_{x \to x_0} f\left(x\right) \leq u\left(x\right)$, I فان $\lim_{x \to x_0} u\left(x\right) = -\infty$

aملاحظة الخاصيات السابقة تبقى صالحة عند ∞ أو عند ∞ أو عند x_0 على اليمين أو عند x_0 على a على اليسار مع تعويض a على التوالي بالمجالات a a اليسار مع تعويض a على النهايات اللامنتهية a -VIII- العمليات على النهايات اللامنتهية

g تعتبر دالتين f و

عند x_0 أو عند x_0 على اليمين أو عند x_0 على اليسار أو عند ∞ أو عند أ

أ- نهاية محموع

f+g نهایة	زهایة g	f نهایه
+∞	+∞	$l \neq 0$ l
-∞	-∞	$l \neq 0$ l
+∞	+∞	+∞
-∞	-∞	$-\infty$
شکل غیر محدد	-∞	+∞

<u>ں- نھاںۃ جداء</u>

f imes g نهایه	g نهایة	f نهایه
∞مع وضع إشارة ا	+∞	$l \neq 0$ l
l مع وضع عكس إشارة ∞	∞	$l \neq 0$ l
شکل غیر محدد	+∞	0
شکل غیر محدد	-∞	0
+∞	+∞	+∞
+∞	∞	-∞
-∞	$-\infty$	+∞

<u>ملاحظه:</u>

لحساب نهایة λf حیث $\lambda \in \mathbb{R}$ یمکن اعتبار λf کجداء الدالة الثابتة $\lambda \to \lambda$ التي نهایتها هي λ و الدالة $x \to \lambda$

$\frac{f}{g}$ نهایه	نهایة g	نهایة ƒ
0	+∞	l
0	-∞	l
l مع وضع إشارة ∞	0+	$l \neq 0$ حيث l
l مع وضع عكس إشارة $^{\infty}$	0-	$l \neq 0$ حيث l
شکل غیر محدد	0	0
شکل غیر محدد	+∞	+∞
شکل غیر محدد	-∞	-∞
شکل غیر محدد	-∞	+∞
l مع وضع إشارة ∞	<i>l</i> ≠ 0 حيث <i>l</i>	+∞
l مع وضع عكس إشارة ∞	$l \neq 0$ حيث l	-∞

\sqrt{f} نهایة	f نهایة
+∞	+∞

$$\frac{1}{1}$$
 دالة القوة الصحيحة $\lim_{x \to +\infty} x^n = +\infty \qquad n \in \mathbb{N}^*$ ليكن

$$\lim_{x \to -\infty} x^n = +\infty$$
 اذا كان n زوجي فان -

$$\lim_{x \to -\infty} x^n = -\infty$$
 اذا كان n فردي فان -

نتيجة

$$\lim_{x \to \pm \infty} \frac{1}{x^n} = 0 \qquad n \in \mathbb{N}^*$$
ليكن

$$\begin{split} f\left(x\right) &= a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \\ f\left(x\right) &= a_n x^n \left(1 + \frac{a_{n-1}}{a_n x} + \ldots + \frac{a_1}{a_n x^{n-1}} + \frac{a_0}{a_n x^n}\right) \\ &\lim_{x \to +\infty} f\left(x\right) = \lim_{x \to +\infty} a_n x^n \text{ else } \lim_{x \to +\infty} \left[1 + \frac{a_{n-1}}{a_n x} + \ldots + \frac{a_1}{a_n x^{n-1}} + \frac{a_0}{a_n x^n}\right] = 1 \end{split}$$

نهاية دالة حدودية عند ما يؤول x إلى $\infty+$ أو $\infty-$ هي نهاية حدها الأعلى درجة

أمثلة

$$\lim_{x \to +\infty} -4x^5 + 3x^2 - 5x + 1 = \lim_{x \to +\infty} -4x^5 = -\infty$$

$$\lim_{x \to -\infty} -3x^7 + 7x^3 - x + 31 = \lim_{x \to -\infty} -3x^7 = +\infty$$

3- الدالة الحدرية

نهایة دالة جدریة عند ما یؤول x الی ∞ أو ∞ هي نهایة خارج حدیها الأكبر درجة

أمثلة

$$\lim_{x \to +\infty} \frac{-4x^5 + 3x^2 - 5x + 1}{3x^2 - x + 1} = \lim_{x \to +\infty} \frac{-4x^5}{3x^2} = \lim_{x \to +\infty} \frac{-4}{3}x^3 = -\infty$$

$$\lim_{x \to -\infty} \frac{-3x^7 + 7x^3 - x + 31}{x^9 + 3x^2 - 4} = \lim_{x \to -\infty} \frac{-3x^7}{x^9} = \lim_{x \to -\infty} \frac{-3}{x^2} = 0$$

$$\lim_{x \to +\infty} \frac{7x^5 + 3x^2 - 5x + 1}{3x^5 - x^4 + 1} = \lim_{x \to +\infty} \frac{7x^5}{3x^5} = \frac{7}{3}$$

تمارين

حدد النهايات

$$\lim_{x \to 1} \frac{x^2 + x - 2}{2x^2 + x - 3} ; \lim_{x \to -1} \frac{x + 1}{x^2 - 2x - 3}$$

$$\lim_{x \to -1} \frac{\sqrt{x + 5} - 2}{x + 1} : \lim_{x \to 2} \frac{x^2 - x - 6}{x - 2}$$

$$\lim_{x \to 1} \frac{3x - 2}{x^2 - 3x + 2} : \lim_{x \to 0^+} \left(\frac{1}{x^2} - \frac{1}{x^3}\right)$$

$$\lim_{|x| \to +\infty} \sqrt{x^2 - 2} - x : \lim_{x \to +\infty} \frac{\sqrt{x^2 + 2} + 3x}{2x - 1}$$

$$\lim_{x \to 0} \frac{\sqrt{x + 4} - 2}{x^2 - x} : \lim_{x \to +\infty} \frac{2x^2 - 2}{\sqrt{x - 1}}$$

$$\lim_{x \to +\infty} \frac{\sqrt{x + 3} - 4}{x} : \lim_{x \to +\infty} \frac{-2x}{\sqrt{x + 1} - 4}$$