

Analisis Eksplorasi Data **Pemeriksaan Sebaran Data**

Prodi Sarjana Statistika dan Sains Data

QQ Plot

- Plot Kuantil-Kuantil
- Theoretical QQ Plot
- Scatter plot antara quantil data dengan quantil berdasarkan sebaran hipotetik tertentu
- Digunakan untuk mengidentifikasi apakah sebaran data mengikuti sebaran hipotetik yang digambarkan
- Pola garis lurus mengindikasikan hal tersebut

QQ Plot

- Tahapan pembuatan
 - Urutkan data $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$.
 - Hitung pi = (i 0.5)/n
 - Untuk sebaran hipotetik tertentu, hitung $Q_i = F^{-1}(p_i)$ dengan F adalah fungsi sebaran kumulatif, dengan kata lain Q_i adalah sebuah nilai sehingga $P(Y \le Q_i) = p_i$
 - Plot x_(i) vs Q_i

QQ-Plot Normal (normal QQ-plot)

- Tahapan pembuatan
 - Urutkan data $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$.
 - Hitung pi = (i 0.5)/n
 - Tentukan skor normal Z, untuk setiap p_i
 - Plot x_(i) vs Z_i
- Digunakan untuk melihat apakah distribusi data mengikuti sebaran normal

1	14.0	0.0185	-2.08536
2	15.0	0.0556	-1.59322
3	16.1	0.0926	-1.32496
4	16.2	0.1296	-1.12814
5	16.6	0.1667	-0.96742
6	16.7	0.2037	-0.82846
7	16.8	0.2407	-0.70392
8	17.2	0.2778	-0.58946
9	17.2	0.3148	-0.48225
10	17.3	0.3519	-0.38033
11	17.4	0.3889	-0.28222
12	17.6	0.4259	-0.18676
13	17.7	0.4630	-0.09297
14	18.2	0.5000	-1.4E-16
15	19.2	0.5370	0.092972
16	19.4	0.5741	0.186756
17	20.2	0.6111	0.282216
18	21.0	0.6481	0.380326
19	21.8	0.6852	0.482248
20	22.0	0.7222	0.589456
21	22.8	0.7593	0.703922
22	23.1	0.7963	0.828465
23	23.4	0.8333	0.967422
24	23.9	0.8704	1.128144
25	24.3	0.9074	1.324958
26	26.4	0.9444	1.593219
27	29.4	0.9815	2.085356

QQPlot Normal untuk Data yang Mengikuti Sebaran Normal Histogram of y Normal Q-Q Plot

y <- rnorm(1000, 3,1) hist(y, breaks=30, col="green") qqnorm(y) qqline(y, col = "red")

QQPlot Normal untuk Data yang Sebarannya Menjulur ke Kanan

QQPlot Normal untuk Data yang Sebarannya Menjulur ke Kiri

Goodness of Fit Test

- Uji formal untuk apakah suatu gugus data mengikuti sebaran hipotetik tertentu
- H0: data mengikuti sebaran hipotetik
- H1: data tidak mengikuti sebaran hipotetik
- Chi-Square test, didasarkan pada perbandingan frekuensi amatan antara data empirik dengan kondisi jika sebarannya mengikuti fungsi kepekatan/massa peluang tertentu
- Kolmogorov-Smirnov test, didasarkan pada perbandingan antara fungsi sebaran kumulatif empirik dan fungsi sebaran kumulatif hipotetik

Chi-Square Test

• Membandingkan frekuensi amatan (observed, O) dengan frekuensi harapan (expected, E) berdasarkan sebaran tertentu

$$\chi_{hitung}^2 = \sum_{i=1}^p \frac{(O_i - E_i)^2}{E_i}$$

- χ^2_{hitung} mengikuti sebaran χ^2 dengan derajat bebas (p 1)
- Ingat! Ada beberapa batasan kevalidan uji ini...

(pelajari di berbagai sumber bacaan terkait hal ini)

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^2 = \chi^2_{\alpha}$.

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^2_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188

Chi-Square Test

• Ilustrasi: Apakah data berikut mengikuti sebaran Normal?

```
20.6
                20.0
                          21.1 18.0
                                      20.5
                                            20.3
18.5
     21.3
          20.3
                                                 20.3
                                                       19.3
                                                            20.9
                                                                  21.3
19.3
     20.2
          20.7
                20.4
                     20.5
                          20.2
                                 20.6
                                      18.2
                                            20.4 20.4
                                                       19.3
                                                            20.9
                                                                  22.5
19.1
     20.1 19.9 19.2 19.3 19.4 18.4
                                      22.9
                                            20.8
                                                 20.5
                                                       19.3
                                                            19.7
                                                                  20.8
20.1 18.6 21.2 20.2 19.5 19.9 20.9
                                     20.6 19.9 20.9 20.7
                                                            20.8 19.2
```

H0: data menyebar normal

H1: data tidak menyebar normal

H0: data menyebar Normal(?, ?)

H1: data tidak menyebar Normal(?, ?)

H0: data menyebar Normal(mu=20.2, sigma=0.972)

Chi-Square Test

H0: data menyebar Normal(mu=20.2, sigma=0.972)

Peluang Normal							
Selang Nilai	Frekuensi	sesuai H0	Ekspektasi	χ^2 hitung			
18-19	5	0.11761	6.115714	0.203544			
19-20	14	0.319512	16.61465	0.411466			
20-21	27	0.370859	19.28467	3.086720			
21-22	4	0.163252	8.48909	2.373862			
22-23	2	0.027061	1.40718	0.249745			

$$\chi_{hitung}^2 = \sum_{i=1}^p \frac{(O_i - E_i)^2}{E_i}$$
$$= 6.33$$

Kolmogorov-Smirnov Test

- Melakukan pengujian kesesuaian sebaran data dengan sebaran yang dihipotesiskan
- Yang dilakukan adalah membandingkan fungsi sebaran kumulatif empirik berdasarkan data dengan fungsi sebaran kumulatif dari sebaran hipotetik
- Fungsi sebaran empirik: S(x)
- Fungsi sebaran hipotetik: F*(x)

Andaikan X_1, X_2, \ldots, X_n adalah suatu contoh acak. Fungsi sebaran kumulatif empirik dari data adalah S(x) yang nilainya adalah persentase dari data yang kurang atau sama dengan x, untuk setiap nilai x, $-\infty$ $< x < \infty$. Atau kita tuliskan sebagai

$$S(x) = \frac{1}{n} \sum_{i=1}^{n} I_{\{x_i \le x\}}$$

Statistik uji dari KS-test ini adalah D, yaitu nilai terbesar (supremum) dari selisih antara S(x) dan F*(x)

$$D = \sup_{x} |F^*(x) - S(x)|$$

Critical values for the Kolmogorov-Smirnov Test for goodness of fit

For completely specified continuous distributions:

$1 - \alpha$	0.9	0.95	0.99
n			
1	0.950	0.975	0.995
2	0.776	0.842	0.929
3	0.636	0.708	0.829
4	0.565	0.624	0.734
5	0.510	0.563	0.669
6	0.468	0.520	0.617
7	0.436	0.483	0.576
8	0.410	0.454	0.542
9	0.387	0.430	0.513
10	0.369	0.409	0.489
11	0.352	0.391	0.468
12	0.338	0.375	0.450
13	0.325	0.361	0.432
14	0.314	0.349	0.418
15	0.304	0.338	0.404
16	0.295	0.327	0.392
17	0.286	0.318	0.381
18	0.279	0.309	0.371
19	0.271	0.301	0.361
20	0.265	0.294	0.352

$1 - \alpha$	0.9	0.95	0.99
n			
21	0.259	0.287	0.344
22	0.253	0.281	0.337
23	0.247	0.275	0.330
24	0.242	0.269	0.323
25	0.238	0.264	0.317
26	0.233	0.259	0.311
27	0.229	0.254	0.305
28	0.225	0.250	0.300
29	0.221	0.246	0.295
30	0.218	0.242	0.290
31	0.214	0.238	0.285
32	0.211	0.234	0.281
33	0.208	0.231	0.277
34	0.205	0.227	0.273
35	0.202	0.224	0.269
> 35	$\frac{1.224}{\sqrt{n}}$	$\frac{1.358}{\sqrt{n}}$	$\frac{1.628}{\sqrt{n}}$

Kolmogorov-Smirnov Test

• Ilustrasi: Apakah data berikut mengikuti sebaran Normal(mu=20.2, sigma=0.972)?

```
18.5
    21.3 20.3
               20.0
                    20.6 21.1 18.0
                                    20.5 20.3 20.3
                                                    19.3
                                                          20.9
                                                               21.3
                          20.2
                               20.6
                                    18.2
                                          20.4 20.4
                                                    19.3
19.3
     20.2
          20.7
               20.4
                     20.5
                                                          20.9
                                                               22.5
                     19.3 19.4 18.4 22.9 20.8 20.5
19.1 20.1
         19.9
               19.2
                                                    19.3
                                                          19.7 20.8
20.1 18.6
         21.2 20.2
                    19.5 19.9 20.9
                                    20.6 19.9 20.9
                                                    20.7
                                                          20.8 19.2
```

H0: data menyebar Normal(mu=20.2, sigma=0.972)

Kolmogorov-Smirnov Test

• Ilustrasi: Apakah data berikut mengikuti sebaran Normal(mu=20.2, sigma=0.972)?

```
18.5
    21.3 20.3
               20.0
                    20.6 21.1 18.0
                                    20.5 20.3 20.3
                                                    19.3
                                                          20.9
                                                               21.3
                          20.2
                               20.6
                                    18.2
                                          20.4 20.4
                                                    19.3
19.3
     20.2
          20.7
               20.4
                     20.5
                                                          20.9
                                                               22.5
                     19.3 19.4 18.4 22.9 20.8 20.5
19.1 20.1
         19.9
               19.2
                                                    19.3
                                                          19.7 20.8
20.1 18.6
         21.2 20.2
                    19.5 19.9 20.9
                                    20.6 19.9 20.9
                                                    20.7
                                                          20.8 19.2
```

H0: data menyebar Normal(mu=20.2, sigma=0.972)

					7
i	X		S(x)	F(x)	abs(S-F)
1	18	1	0.019231	0.011806	0.007424
2	18.2	2	0.038462	0.019814	0.018648
3	18.4	3	0.057692	0.032024	0.025669
4	18.5	4	0.076923	0.040148	0.036775
5	18.6	5	0.096154	0.049873	0.046281
6	19.1	6	0.115385	0.128883	0.013498
7	19.2	8	0.153846	0.151785	0.002061
8	19.2	8	0.153846	0.151785	0.002061
9	19.3	13	0.25	0.177242	0.072758
10	19.3	13	0.25	0.177242	0.072758
11	19.3	13	0.25	0.177242	0.072758
12	19.3	13	0.25	0.177242	0.072758
13	19.3	13	0.25	0.177242	0.072758
14	19.4	14	0.269231	0.205241	0.06399
15	19.5	15	0.288462	0.235712	0.05275
16	19.7	16	0.307692	0.303485	0.004207
17	19.9	19	0.365385	0.378797	0.013412
18	19.9	19	0.365385	0.378797	0.013412

Dst.... D = 0.1203 D kritis = 0.1883 Terima H0

ks.test()

> ks.test(data, "pnorm", 20.2, 0.972)

One-sample Kolmogorov-Smirnov test

data: data

D = 0.12033, p-value = 0.4388

alternative hypothesis: two-sided

Terima Kasih

Inspiring Innovation with Integrity in Agriculture, Ocean and Biosciences for a Sustainable World