Nombre: Nota: /	
Lab 1 Castellano	
Parte 1: Alumnos	
1 Alumno1	
Nombre Apellido1 Apellido2	
Alumno2 Nombre Apellido1 Apellido2	

Parte 2: Ejercicio 1

Ley de Amdahl.

2

Ley de Amdahl

Cálculo de la aceleración local S

	scalarstd	scalarsse	scalarload
tiempo ejecución (user+system)	0,868	0,732	0,568

El producto escalar implementado con instrucciones SSE mejora en un factor (S): (0.868 / 0.732) = 1.1858

3

Cálculo de la fracción de tiempo local ${\it F}$

	std	sse	Aceleración global (S')	Fracción de tiempo (F)
Matrix	3,964	2,72	1,4 <u>57</u>	0,6914 (69,14%)

Cálculo experimental de la fracción de tiempo local F_{exp}

	res	Fracción de tiempo experimental (F _{exp})
matrix	1,00	0,7477

5

Compara los valores obtenidos para la fracción de tiempo empleando Amdahl (F) y experimentalmente (F_{exp}) ¿Son similares?

$$F = 0.6914 Fexp = 0.7477$$

Parte 3: Ejercicio 2

Análisis de las prestaciones de las arquitecturas.

6

Análisis de las prestaciones de las arquitecturas

Tiempos de ejecución absolutos

		Absoluto	S	
Programa / Máquina	Α	В	С	
dhrystone	5	18	0,920	
whetstone	2.5	10	0,344	
gcc	40	130	(8,273 -	+ 0,708 = 8,92)
xv	4.5	15	0,004	
Media aritmética	13	43,25	2,56225	

Tiempos de ejecución normalizados a B

	Normalizados a B		
Programa / Máquina	Α	В	С
dhrystone	18/5 = 3.6	1	
whetstone	10/2.5 = 4	1	
gcc	130/40 = 3.25	1	
xv	15/4.5 = 3.3	1	
Media geométrica	3,5375	1	

8	
	Empleando la media aritmética de los tiempos de ejecución, el computador es el más
	rápido. En concreto, es veces (un % más rápido) que el computador y veces (un
	% más rápido) que el computador
9	
	Empleando la media geométrica de los tiempos de ejecución, el computador es el más rápido. En concreto,
	es veces (un % más rápido) que el computador y veces (un % más rápido) que el computador
	% mas rabido) que el combulador