MATH 424 Honors Real Analysis

This is the lecture notes based on Professor Eugene Lerman's MATH 424 Honors Real Analysis course at UIUC.

Reference:

Introduction to Analysis, Rosenlicht Analysis I and Analysis II, Terence Tao

Chapter 1 Skipped

Chapter 2 The real number system

2.1 Field properties

Object Def (Field)

A set of numbers that satisfies the following properties is a field F equipped with two operations

```
\cdot:\ F	imes F	o F, (x,y)\mapsto x+y \ 	ext{and} +:\ F	imes F	o F, (x,y)\mapsto x\cdot y:
```

- 1. (COMMUTATIVITY) $\forall a, b \in F, a + b = b + a \text{ and } a \cdot b = b \cdot a$.
- 2. (ASSOCIATIVITY) $\forall a,b,c \in F,$ (a+b)+c=a+(b+c) and $(a \cdot b) \cdot c=a \cdot (b \cdot c)$
- 3. (DISTRIBUTIVITY) $\forall a,b,c \in F$, we have $a \cdot (b+c) = a \cdot b + b \cdot c$.
- 4. (EXISTENCE OF IDENTITY AND ZERO) There are distinct elements 0 and 1 of F s.t. $\forall a \in F, a+0=a \text{ and } a \cdot 1=a.$
- 5. (EXISTENCE OF INVERSES) $\forall a \in F$, there is an element of F, denoted -a, s.t. a+(-a)=0, and for all non zero $a \in F$, there is an element of F, denoted a^{-1} s.t. $a \cdot a^{-1}=1$.

And we say $(F, +, \cdot, 0, 1)$ is a field.

Field properties

#TODO

 \mathbb{R} is a special field because it is **ordered** and **complete**, so we introduce the concept of order...

2.2 Order

♦ Def (Ordered field)

An ordered field is a field F with a subset $P \subseteq F$ (positive) s.t.

- 1. 0 \notin *P*.
- 2. For any $a, b \in P$, a + b, $a \cdot b \in P$.
- 3. For any $a\in F,$ $a\neq 0$, then either $a\in P$ or $-a\in P$. i.e, $F/\{0\}=P\cup -P$, where $-P\coloneqq \{-x:\ x\in P\}$

Remark: \mathbb{C} is not ordered. (see <u>proof</u>)

Output Def (Inequality)

If (F, P) is an ordered field, then there are relations $<, \le (>, \ge)$ defined by

$$a < b \iff a - b \in P$$

$$a \le b \iff a = b \text{ or } a \le b$$

where $a, b \in F$

Order properties

O1 (Trichotomy) If $a,b\in\mathbb{R}$, then one and only one of the following statements is true:

$$a = b$$

Proof:

If we apply part iii) of order properties to a, b, then either $a - b \in P$, a - b = 0, or $a - b \in -P$, which is exactly what we want.

O2 (Transitivity) If a > b and b > c then a > c.

O3 If
$$a > b$$
 and $c > d$ then $a + c > b + d$.

O4 If
$$a > b > 0$$

#TODO

Consequently, we have:

1.
$$a \le b \iff -b \le -a$$

2.
$$\forall a, a^2 \ge 0$$

3. If
$$a \in P$$
, $b \in -P$, then $ab \in -P$ proof:

Note that $0 \le a \iff a \in P \cup \{0\}$

i)
$$a \le b \iff 0 \le b - a = -(a - b) \iff -b \le -a$$

ii) If
$$a = 0$$
, $a^2 = 0 \ge 0$. If $a > 0$, $a \cdot a = a^2 \in P$.

If $a < 0, -a \in P$, which implies that $(-a)^2 = a^2 \in P \implies a^2 > 0$.

iii) Note that $-(ab) = a \cdot (-b) \in P$, so $ab \in -P$.

Corollary: C is not an ordered field

proof:

Suppose that it is, then $1 = 1 \cdot 1 > 0 \implies -1 < 0$, but $-1 = (\sqrt{-1})^2 > 0$, contradiction.

We can then define the absolute value

♦ Def (Absolute value)

For any $a \in \mathbb{R}$, the absolute value |a| is defined by

$$|a|=egin{cases} a, & a\geq 0 \ -a, & o.\,w. \end{cases}$$

Properties of absolute value

We define the function $|\cdot|: \mathbb{R} \to [0, \infty)$, $a \mapsto |a|$ to be the absolute value of a with the following properties:

- 1. $\forall a, |a| \geq 0$
- 2. |ab| = |a||b|
- $|a^2| = |a|^2$

Note that ii) directly implies iii) by taking a = b.

Proof: trivial

Lemma (Triangle Inequality) $\forall a,b \in \mathbb{R}, |a+b| \leq |a|+|b|$

Proof:

For $x \in \mathbb{R}$, we have $x \le |x|$. Thus for $a, b \in \mathbb{R}$, $a \le |a|$, $b \le |b|$. By O3, we have $a + b \le |a| + |b|$. Similarly, $-a \le |a|$, $-b \le |b|$ and $-a - b = -(a + b) \le |a| + |b|$. Note that for any $x, y \in \mathbb{R}$, $x \le y$ and $-x \le y$ implies that $|x| \le y$, thus $|a + b| \le |a| + |b|$

Corollary $||a| - |b|| \le |a - b|$

Proof:

$$|a| = |a - b + b| \le |a - b| + |b| \implies |a| - |b| \le |a - b|$$
. Similarly, $|b| - |a| \le |b - a| = |a - b|$, so $||a| - |b|| \le |a - b|$

Def (Distance/ metric ...)

There is a function $d: \mathbb{R} \times \mathbb{R} \to [0, \infty)$ defined by d(a, b) = |a - b| that makes \mathbb{R} a metric space.

2.3 Least upper bound Properties

♦ Def (Bounded from above)

A subset $S \subseteq \mathbb{R}$ is **bounded from above** if $\exists a \in \mathbb{R}$ s.t. $s \leq a, \forall s \in S$. Any such a is an **upper bound** of S.

Solution Def (Least Upper Bound/ Supremum)

Suppose $S \subseteq \mathbb{R}$ is bounded from above, then a number $a \in \mathbb{R}$ is a least upper bound if the following two conditions are satisfied:

- 1. a is an upper bound of S
- 2. If b is an upper bound of S, then $a \leq b$. We denote a = sup(S) = lub(S). If S is not bounded from above, then we say $sup(S) = \infty$.

Completeness Axiom of LUB

Any nonempty subset $S \subseteq \mathbb{R}$ bounded from above has a l.u.b.

Similarly, we can define a lower bound and greatest lower bound/ infimum for S, where $\inf(S) = -\sup(-S)$, and $-S = \{-s \mid s \in S\}$.

So does the completeness axiom work for lower bound.

Lemma 2.3.1 $\forall x \in \mathbb{R}, \exists n \in \mathbb{R} \text{ s.t. } x < n.$

Proof:

Suppose not, then $\exists x_0 \in \mathbb{R}$ s.t. $n \leq x_0$, $\forall n \in \mathbb{R}$. By Completeness, $a = \sup(\mathbb{R})$ exists and is not equal to ∞ . Then $\forall n, n+1 \leq a$. But then $\forall n, n \leq a-1$, contradicting that a is a l.u.b.

Corollary 2.3.2 $\forall x \in \mathbb{R}, \exists n \in \mathbb{R} \text{ s.t. } \frac{1}{n} < \varepsilon.$

Proof:

By 2.1, $\exists n \in \mathbb{N} \text{ s.t. } \frac{1}{\varepsilon} < n.$

Corollary 2.3.3 $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z} \text{ s.t. } n \leq x \leq n+1.$

Proof:

#TODO

Consequence $\forall a \in \mathbb{R}, a \geq 0$, if for all $\delta > 0, a < \delta$, then a = 0.

Proof:

If a > 0, $\exists n \in \mathbb{N}$ s.t. $\frac{1}{n} < a$, contradiction.

Theorem 2.3.4 (\mathbb{Q} is dense in \mathbb{R}) $\forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists r \in \mathbb{Q} \text{ s.t. } |x - r| < \varepsilon$.

Proof:

We fix $x, \varepsilon > 0$. By 2.2, $\exists N \in \mathbb{N}$ s.t. $\frac{1}{N} < \varepsilon$. By 2.3, $\exists n \in \mathbb{Z}$ s.t. $n < Nx \le n+1$. So $\frac{n}{N} \le x < \frac{n+1}{N}$, so $0 \le x < \frac{1}{N} \le \varepsilon$ by choice of N. Thus $|x - \frac{n}{N}| < \varepsilon$, where $\frac{n}{N}$ is the desired rational r.

Chapter 3 Metric spaces

3.1 Metric space

♦ Def (Metric Space)

A metric space is a set E together with a function $d: E \times E \to [0, \infty)$ s.t. $\forall x, y \in E$

$$1. d(x,y) = 0 \iff x = y$$

- $2. \ d(x,y) = d(y,x)$
- 3. $d(x,z) \le d(x,y) + d(y,z)$ (Triangle Inequality)

The metric space is a pair (E, d), where d is called the metric. ex.

1.
$$(E=\mathbb{R},d=|x-y|)$$

2. (
$$E: any \ set, d = egin{cases} 1, x
eq y \ 0, x = y \end{cases}$$

3.
$$(E=\mathbb{C},d((x+iy),(u+iy))=|(x+iy)-(u+iv)|=\sqrt{(x-u)^2-(y-v)^2},$$
 and we define $d_2(x,y)=\sqrt{\sum_{i=1}^n(x_i-y_i)^2}$

4.
$$(E=\mathbb{R},d_1(x,y)=\sum |x_i-y_i|),\,d_1$$
 is also called the Taxi/ Manhattan metric. Also, we define $d_\infty(x,y)=max\{|x_1-y_1|,\cdots,|x_n-y_n|\}$

Remark: If (E,d) is a metric space, $\tilde{E}\subseteq E$, then $(\tilde{E},\tilde{d}=d|_{\tilde{E} imes\tilde{E}})$ is also a metric space.

\triangle Def (l^2 norm)

The l^2 norm on \mathbb{R}^n is the function $\|\cdot\|_2:\mathbb{R}^n \to [0,\infty)\ \|x\|_2 = \sqrt{\sum x_i^2}$.

Note: the l^2 norm is actually the distance from the point to the origin. Also, recall the definition of $\underline{d2}$ and we see $d_2(x,y) = \|x-y\|_2$

Cauchy-Schwarz Inequality $\forall x,y \in \mathbb{R}, |\sum x_i y_i| \leq \|x\|_2 \cdot \|y\|_2$

Proof:

If either x=0 or y=0, then we have $0 \le 0$. Now suppose $x \ne 0, y \ne 0$. Then $\forall \alpha \in \mathbb{R}$, we have $x-\alpha y=(x_1-\alpha y_1,\cdots,x_n-\alpha y_n)$. By definition of norm there is

$$0 \le \|x - \alpha y\|^2 = \sum (x_i - \alpha y_i)^2 = \sum (x_i^2 - 2\alpha x_i y_i + \alpha^2 y_i^2) = \|x\|^2 - 2\alpha \sum x_i y_i + \alpha^2 \|y\|^2$$
. Now we take $\alpha = \pm \frac{\|x\|}{\|y\|}$, then the inequality becomes

$$0 \leq \|x\|^2 \pm 2 rac{\|x\|}{\|y\|} \sum x_i y_i \pm ig(rac{\|x\|}{\|y\|}ig)^2 \|y\|^2 = 2 \|x\|^2 \mp 2 rac{\|x\|}{\|y\|} \sum x_i y_i$$

And we have $\pm \sum x_i y_i \le \|x\| \|y\|$, and thus $|\sum x_i y_i| \le \|x\|_2 \cdot \|y\|_2$.

 d_2 : the Euclidean metric

Theorem 3.1 (Triangle Inequality for d_2) $\forall x, y \in \mathbb{R}^n$, $||x+y||_2 \le ||x||_2 + ||y||_2$. Consequently, $\forall x, y, z \in \mathbb{R}^n$, $d_2(x, z) \le d_2(x, y) + d_2(y, z)$

 $\forall x, y, z \in \mathbb{R}$, $a_2(x, z) \leq a_2(x, y)$

Proof:

1.
$$||x+y||^2 = \sum (x_i+y_i)^2 = \sum (x_i^2+2x_iy_i+y_i^2) \le ||x||^2+2||x|||y||+||y||^2 = (||x||+|y||)^2$$
 (the inequality part comes from Cauchy-Schwarz).

2.
$$d(x,z) = \|x-z\|_2 = \|(x-y) + (y-z)\| \le \|x-y\| + \|y-z\| = d(x,y) + d(y,z)$$
.

Corollary 3.1.2 (\mathbb{R}^n, d_2) is a metric space.

Proof:

By Theorem 3.1 we've proven the triangle inequality for d_2 . Now if $d_2(x,y)=0$, then $\sqrt{\sum (x_i-y_i)^2}=0$, which implied that $x_i-y_i=0, \forall i$, thus x=y. $d_2(x,y)=\sqrt{\sum (x_i-y_i)^2}=\sqrt{\sum (y_i-x_i)^2}=d_2(y,x)$, which ends our proof.

3.2 Open and closed sets

Now we continue our discussion about metric space by introducing a new concept, the open/closed ball.

Open ball and closed ball)

Let (E,d) be a metric space, an **open ball** centered at $x \in E$ of radius r > 0 is the set

$$B_r(x) \equiv B(x,r) := \{y \in E | d(x,y) < r\}.$$

Similarly, a **closed ball** centered at $x \in E$ of radius r > 0 is the set

$$\overline{B_r(x)} \equiv \overline{B(x,r)} := \{y \in E | d(x,y) \leq r\}.$$

- 1. $E = \mathbb{R}^2, d = d_2$.
- 2. $E = \mathbb{R}^2$, $d = d_{\infty} = \max\{|x_1 y_1|, |x_2 y_2|\}$, $B_r(0) = \{y \in \mathbb{R}^2 |y_1| < r, |y_2| < r\}$, and this is a square of side length r.
- 3. $E = [0,2], d(x,y) = |x-y|, B_1(2) = (1,2]$
- 4. E: a set, $d(x,y)=egin{cases} 1,&x
 eq y \ 0,&x=y \end{cases}$ $B_2(x)=E$, $B_1(x)=\{x\}$

Open set)

A subset U of a metric space (E, d) is open if $\forall x \in U, \exists r > 0$ s.t. $B_r(x) \subseteq U$.

Ex.
$$E = \mathbb{R}$$
, $U = (a, b)$, $d = \min\{|a - x|, |b - x|\}$

♦ Def (Closed set)

A subset C of a metric space (E,d) is closed if the complement of C, $C^c = E \setminus C := \{x \in E | x \notin C\}$ is open.

Ex.
$$E = \mathbb{R}, C = [0, 1].$$

Remark: $[0,1) \in \mathbb{R}$ is neither closed nor open.

E,\varnothing are both open and closed

7 Theorem 3.2.1

Let (E, d) be a metric space, then

- 1. \forall collection $\{U_i\}_{i\in I}$ of open sets in $E, \cup_{i\in I} U_i$ is open.
- 2. $\forall k, \forall$ open sets $U_1, \ldots, U_k, U_1 \cup \ldots \cup U_k$ is open, i.e., **finite** union of open sets are open.
- 3. Open balls are open.

Proof:

- 1) Suppose $x\in \cup_{i\in I}U_i$, then $x\in U_{i0}$ for some $i_0\in I$. Since U_i is open, $\exists\ r>0$ s.t. $B_r(x)\subseteq U_{i0}\subseteq \cup U_i$.
- 2) Suppose U_1, \ldots, U_k are open and $x \in \cap_{i=1}^k U_i$. Then $\forall i, \exists r_i > 0$ s.t. $B_{ri}(x) \subseteq U_i$. Let $r = \min\{r_1, \ldots, r_k\}$, then $B_r(x) \subseteq \cap_{i=1}^k U_i$.
- 3) Given $y \in B_r(x)$, d(x,y)=r. We have $\delta=r-d(x,y)>0$. Then $\forall z \in B_\delta(x)$, $d(x,z) \leq d(x,y)+d(y,z) < d(x,y)+\delta=d(x,y)+(r-d(x,y))=r$. So $z \in B_r(x)$ and

 $B_{\delta}(x) \subseteq B_r(x), B_r(x)$ is open. (see Figure 3.2.1 below).

Figure 3.2.1

Remark: we need the number of intersections in (2) to be finite. If not, the infimum can be 0. Consider $E = \mathbb{R}$, $d(x,y) = |y-x|, U = (-\frac{1}{n}, \frac{1}{n})$. Then $\bigcup U_n = \{0\}$. But under the standard metric, any open ball centered at 0 *must* contain some number greater than and less than 0, which is a contradiction.

Remark. An **open rectangle** in \mathbb{R}^n is a set $U = (a_1 \times b_1) \times (a_2 \times b_2) \times \cdots \times (a_n \times b_n), a_i < b_i, i = 1, 2, \dots, n$.

It is open. $\forall x=(x_1,\cdots,x_n)\in U$, let $r=\frac{1}{2}\min\{|a_i-x_i|,|b_i-x_i|\}$, then $B_r(x)\subseteq U$. Similarly, $F=[a_1\times b_1]\times [a_2\times b_2]\times \cdots \times [a_n\times b_n]$ is closed.

Def (bounded)

A subset $\varnothing \neq S \subseteq E$ of a metric space (E,d) is bounded if $\exists x \in E, r > 0$ s.t. $S \subseteq B_r(x)$.

Ex. [a,b) is bounded, $x=0, r=\max\{|a|,|b|\}+1$, while $[0,\infty)$ is not.

$$\text{Ex. } E=\{a\}\neq\varnothing \text{ s.t. } d(x,y)=\begin{cases} 1, x\neq y \\ 0, x=y \end{cases} \text{ Then for all } U\subseteq E \text{, for any } x\in E \text{, we have } U\subseteq B_2(x).$$

Remark. $\{d(x,s)|s\in S\}$ is bounded above by r.

Remark. Any subset of a bounded metric space E is bounded.

7 Theorem 3.2.2

Suppose $\varnothing \neq S \subseteq \mathbb{R}$ is closed and bounded. Then $\inf S$, $\sup S$ exist and are $\inf S$

Proof:

We show that $\sup S$ exists and $\sup S \in S$. Since S is bounded, S is bounded from above. Since also $S \neq \varnothing$, $L = \sup S$ exists. If $L \notin S$, then $L \in \mathbb{R} \setminus S$, which is open. But then $\exists r > 0$ s.t. $B_r(L) = (L - r, L + r) \subseteq \mathbb{R} \setminus S$, so we have $(L, \infty) \subseteq \mathbb{R} \setminus S$ and $(L - r, \infty) \subseteq \mathbb{R} \setminus S$. Hence, for all $s \in S$, $s \leq L - r < L - \frac{r}{2}$, which means that $L - \frac{r}{2}$ is also a lower bound, contradicting that L is the

supremum.

For inf S, argue for -S.

3.3 Convergent sequences

♦ Def (Sequence)

A sequence in a set E is a function $S : \mathbb{N} \to E$.

Notation: $S = \{S_i\}_{i=1}^{\infty} = \{s_1, ..., s_n, ...\}$ or just (s_n) .

Objective Def (Convergent)

Let (E,d) be metric space and (S_n) a sequence. We say S_n converges to $L \in E$ if $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t. for all n > N, $d(s_n, L) < \varepsilon \equiv s_n \in B_{\varepsilon}(L)$.

We write $S_n \to L$ or $\lim_{n \to \infty} S_n = L$ and we say S_n is convergent, L is a limit of S_n .

Ex. $E = \mathbb{R}$, $S_n = \frac{1}{n}$, $S_n \to 0$. proof: Given $\varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t. $\frac{1}{\varepsilon} < N$. Then for all n > N, we have $\frac{1}{n} < \frac{1}{N} < \varepsilon$.

Lemma 3.3.1 A sequence $\{S_n\}$ in (E,d) converges to $L \iff \forall$ open set $U \subseteq E$ with $L \in U$, $\exists N \in \mathbb{N}$ s.t. for all n > N, $s_n \in U$.

Proof:

Lemma 3.3.2 Convergent sequences are bounded.

Proof:

Suppose $S_n \to L$ in a metric space (E,d). Since $S_n \to L$, $\exists N \in \mathbb{N}$ s.t. $\forall n > N$, $s_n \in B_r(L)$. Let $r = \max\{d(s_1,L),\ldots,d(s_N,L),1\} + 1$. Then $s_n \in B_r(L)$ for all n.

Proposition Let S_n be a sequence in the metric space (E, d). If $S_n \to L_1$ and $S_n \to L_2$, then $L_1 = L_2$. Proof:

We have N,N' s.t. $\forall n>N, d(s_n,L_1)<\varepsilon/2, d(s_n,L_2)<\varepsilon/2$. Thus for $n>\max\{N,N'\},$ $d(L_1,L_2)\leq d(L_1,s_n)+d(L_2,s_n)=\varepsilon/2\cdot 2=\varepsilon.$

Proposition Suppose $S_n \to L$, S_{nk} is a subsequence of S_n . Then $S_{nk} \to L$.

Proof:

Let s_{n_k} denote a subsequence of sn. Note that $n_k \ge k$ for all k. This easy to prove by induction: in fact, $n_1 \ge 1$ and $n_k \ge k$ implies $n_{k+1} > n_k \ge k$ and hence $n_{k+1} \ge k+1$. Let $\lim s_n = L$ and let $\epsilon > 0$. Then

there exists N so that n>N implies $|s_n-L|<\epsilon$. Now $k>N\Longrightarrow |s_{n_k}-L|<\epsilon$. Therefore: $\lim_{k\to\infty}s_{n_k}=L$.

Lemma 3.3.3 Suppose C is closed in (E,d), $\{S_n\}$ a sequence in C $(\forall n, s_n \in C)$ and $s_n \to L$. Then $L \in C$.

Conversely, if \forall convergent $\{s_n\}$ in C, $\lim s_n \in C$, then C is closed.

Proof:

 (\Longrightarrow) Suppose C is closed, $\{S_n\}$ is a sequence in C and $s_n \to L$. Suppose $L \notin C$, then $\exists r > 0$ s.t. $B_r(L) \subseteq E \setminus C$ since $E \setminus C$ is open. Since $s_n \to L$, $\exists N \in \mathbb{N}$ s.t. $s_n \in B_r(L)$ for all n > N, contradiction, since $s_n \in L$ and $B_r(L) \cap C = \emptyset$.

 (\longleftarrow) We prove the contrapositive. Suppose C is not closed, then $E\setminus C$ is not open. $\Longrightarrow \exists p\in E\setminus C$ s.t. $\forall r>0, B_r(p)\not\subset E\setminus C, B_r(p)\cap C\neq\varnothing$. In particular, $\forall n\in\mathbb{N}, \exists x_n\in B_{1/n}(p)\cap C$. Then $\{x_n\}$ is a sequence with $d(x_n,p)<\frac{1}{n}$. Given $\varepsilon>0,\exists N$ s.t. $\frac{1}{N}<\varepsilon$. Hence for all $n>N, d(x_n,p)<\frac{1}{n}<\frac{1}{N}<\varepsilon$, which suggests that $x_n\to p\notin C$. So we prove that if C is not closed, then \exists a sequence $\{x_n\}\subseteq C$ with $x_n\to p\notin C$.

Proposition Suppose $\{a_n\}, \{b_n\}$ are two sequences in $\mathbb{R}, a_n \to a, b_n \to b$. Then

- 1. $a_n + b_n \rightarrow a + b$
- 2. $a_n \cdot b_n \rightarrow a \cdot b$
- 3. $\forall c \in \mathbb{R}, ca_n \to ca$
- 4. If $b \neq 0$ and $b_n \neq 0$ for all n, then $\frac{a_n}{b_n} \rightarrow \frac{a}{b}$
- 5. If $a_n \leq b_n$ for all n, then $a \leq b$.

#TODO

Proof:

For (2), take it with the fact that convergent sequences are bounded and take $\varepsilon = \varepsilon/2M$, where M is and upper bound for both of the sequence.

Objective Def (Inferior, Closure, Boundary)

Let (E, d) be a metric space, $S \subseteq E$ a subset, then:

Interior $(S) \equiv S^{\circ} = \cup_{O \subseteq S} O$, where O is an open set, is the largest open set contained in S.

Closure(S) $\equiv \overline{S} \equiv \bigcap_{S \subseteq C} C$, where C is a closed set, is the smallest closed set containing S.

Boundary $(S) \equiv \overline{S} \setminus C^{\circ} = \delta S$.

Ex. $E=\mathbb{R}, d(x,y)=|x-y|, S=\mathbb{Q}. \ \forall \ q\in\mathbb{Q}, \ \forall r>0, \ B_r(q)=(q-r,q+r)\cap (\mathbb{R}\setminus\mathbb{Q})\neq\varnothing. \ \text{So} \ \not\exists r \ \text{s.t.} \ B_r(q)\subseteq\mathbb{Q}. \ \text{Thus} \ \mathbb{Q}^\circ=\varnothing. \ \overline{\mathbb{Q}}=\mathbb{R}. \ \delta S=\mathbb{R}.$

Ex. $E = \{-1, 0, 1\} \subseteq \mathbb{R}, d(x, y) = |x - y|$. $B_1(0) = \{0\}$. $B_1(0)$ is open and closed. $\overline{B_1(0)} = B_1(0)$. But $\{y \in E \mid d(y, 0) \le 1\} = E$.

Theorem

Let (E, d) be a metric space, $S \subseteq E$, then

- 1. $S^{\circ} = \{x \in S | \exists \varepsilon > 0, \ s. \ t. \ B_{\varepsilon}(x) \subseteq S\}, \varepsilon > 0$
- 2. $E \setminus \overline{S} = (E \setminus S)^{\circ}$
- 3. $\overline{S} = \{x \in E | \exists \ a \ sequence \{s_n\} \subseteq S \ with \ s_n \to x \}$
- 4. $\delta S = (E \setminus S^\circ) \cap (E \setminus (E \setminus S^\circ))$
- 5. $E = S^{\circ} \sqcup \delta S \sqcup (E \setminus S)^{\circ}$. E is the disjoint union of the interior of S, boundary of S, and exterior of S.

Ex. $S = \{\frac{1}{n} | n \in \mathbb{N}\} \subseteq \mathbb{R}$. $S^{\circ} = \varnothing$, $\overline{S} = S \cap \{0\}$, $\delta S = \overline{S} \setminus S^{\circ} = S \cup \{0\}$, $Ext(S) = (\mathbb{R} \setminus S)^{\circ} = \mathbb{R} \setminus \overline{S}$ Proof:

- 1) Suppose $x \in S^{\circ}$. Since S° is open, $\exists r > 0$ s.t. $B_r(x) \subseteq S^{\circ} \subset S \Longrightarrow x \in \{x' \in S | \exists r > 0 \text{ s.t. } B_r(x') \subseteq S\}$. Then $\exists r \text{ s.t. } B_r(x) \subseteq S$. Note that $B_r(x)$ is an open set, so we have open sets $\subseteq S^{\circ}, x \in S$.
- $2)\ E\setminus \overline{S} = E\setminus \cap_{C\ closed, S\subseteq C} C = \cup_{E\setminus C\ open, E\setminus C\subseteq E\setminus S} (E\setminus C) = \cup_{O\ open, O\subseteq E\setminus S} O = (E\setminus S)^\circ = Ext(S)$
- 3) Suppose $x \in \overline{S}$, then $E \setminus \overline{S} = (E \setminus S)^{\circ}$. If $x \notin (E \setminus S)^{\circ}$, then $\forall r, B_r(x) \not\subseteq E \setminus S$. Then $\forall r, B_r(x) \cup S \neq \varnothing$, so $\forall r, \exists S_r \in B_r(x) \cup S$). Let $r = \frac{1}{n}$, then $\forall n, S_n \in B_{1/n}(x) \cap S$ and $S_n \to x$. Conversely, if $\{S_n\} \subseteq S$, $S_n \to x$, then $x = \lim S_n \in \overline{S}$ since $\{S_n\} \subseteq \overline{S}$ and \overline{S} is closed.
- $4)\ \delta S = \overline{S} \setminus S^\circ = \overline{S} \cap (E \setminus S^\circ) = (E \setminus (E \setminus S^\circ)) \cap (E \setminus S^\circ) = (2) = (E \setminus Ext(S)) \cap (E \setminus S^\circ)$
- 5) $E = (E \setminus \overline{S}) \sqcup \overline{S} = (E \setminus S)^{\circ} \sqcup (\delta S) \sqcup (S^{\circ})$

Monotone sequences in $\mathbb R$

Def (increasing/ decreasing sequence)

A sequence $\{a_n\} \subseteq \mathbb{R}$ is increasing if $a_1 \le a_2 \le \cdots \le a_n \cdots$. Similarly, $\{a_n\} \subseteq \mathbb{R}$ is decreasing if $a_1 \ge a_2 \ge \cdots \ge a_n \cdots$. Note that the constant sequence is both increasing and decreasing.

Def (monotone sequence)

A sequence is monotone if it is increasing or decreasing.

Example 2 Theorem (Bounded monotone sequences converges)

Any bounded monotone sequences in \mathbb{R} converges.

Proof:

Suppose $\{a_n\}$ is increasing and bounded. Then $S=\{a_n|n\in\mathbb{N}\}$ is bounded above. Since \mathbb{R} is complete, $L:=\sup S$ exists. We claim that $a_n\to L$. To see this, notice that for all $\varepsilon>0, L-\varepsilon< L\implies \exists N\ s.\ t.\ L-\varepsilon\leq a_n\leq L\ \text{for}\ n\geq N$, then $L-\varepsilon\leq a_N\leq a_n\leq L\implies a_n\in B_\varepsilon(L)$.

For the cases when the sequence is bounded from below, we argue that for infimum.

Object (Divergent)

A sequence $\{a_n\}\subseteq\mathbb{R}$ diverges to $+\infty$ if $\forall M\in\mathbb{R}, \exists N\in\mathbb{N}$ s.t. for all $n>N, a_n>M$. A sequence $\{b_n\}\subseteq\mathbb{R}$ diverges to $-\infty$ if $\forall M\in\mathbb{R}, \exists N\in\mathbb{N}$ s.t. for all $n>N, a_n< M$.

7 Theorem

A monotone sequence in $\mathbb R$ either converges or diverges to $\pm \infty$

Proof:

If $\{a_n\}$ is increasing and not bounded, it diverges to $+\infty$.

lim sup and lim inf

Remark: Suppose $\{S_n\}, \{T_n\}$ are two bounded sequences, $T \subseteq S$. then $\sup T \le \sup S$, $\inf T \ge \inf S$. Proof:

Suppose $\{S_n\}$ is a sequence bounded above. Then $V_N := \sup\{S_n | n \ge N\}$ exists and since $\{S_n | n \ge N+1\} \subseteq \{S_n | n \ge N\}$, $V_{N+1} \le V_N$, $\forall N$, so $\{V_n\}$ is monotone, hence either converges or diverges to infinity.

Solim sup and lim inf

Let $\{S_n\}$ be a sequence bounded above. Then $\forall N, V_N := \sup\{S_n | n \geq N\}$. We define

$$\limsup S_n := \lim V_n = \lim_{n o \infty} \sup \{S_n | n \geq N \}$$

which may be infinity or a number.

Similarly, if the sequence is bounded below, we define

$$\liminf S_n := \lim V_n = \lim_{n o \infty} \inf \{ S_n | n \geq N \}$$

Ex.
$$S_n = (-1)^n, V_N = \sup\{(-1)^n | n \ge N\} = 1$$
. $S_n = -n, V_N = \sup\{-n | n \ge N\} = -N, V_N \to -\infty$
Remark. $\inf\{S_n | n \ge N\} \le S_N \le \sup\{S_n | n \ge N\}$

Remark. Given $\{S_n\}$ not bounded above, $\sup\{S_n|n\geq N\}=+\infty$. $\limsup S_n:=+\infty$. Similar definition for \liminf .

Ex. $S_n = (-1)^n n$, $\limsup S_n = +\infty$, $\liminf S_n = -\infty$

1 Theorem

Let $\{S_n\}$ be a sequence in $\mathbb R$

- 1. If $\{S_n\} \to \pm \infty$ or converges, then $\liminf S_n = \lim S_n = \limsup S_n$.
- 2. If $\liminf S_n = \limsup S_n$ (could be $\pm \infty$), then $\liminf S_n = \lim S_n = \limsup S_n$.

Proof:

1) Let $L=\lim S_n$. Then $\forall \varepsilon>0, \exists N$ s.t. $\forall n\geq N, |S_n-L|<\varepsilon/2$, or, equivalently,

 $L - \varepsilon/2 < L < L + \varepsilon/2$. Then $\forall M \geq N$,

 $L-\varepsilon < L-\varepsilon/2 \le \inf\{S_n|n\ge M\} \le \sup\{S_n|n\ge M\} \le L+\varepsilon/2 < L+\varepsilon$. Hence we have

 $\lim\inf S_n=L=\lim\sup S_n.$

2) If $\liminf S_n = L = \limsup S_n$, then $\forall \varepsilon > 0, \exists N$ s.t. for all $M \geq N$,

 $L-arepsilon < \inf\{S_n|n\geq M\} \leq S_M \leq \sup\{S_n|n\geq M\} < L+arepsilon \implies S_n o L$

3.4 Completeness

Solution Def (Cauchy Sequences)

A sequence $\{S_n\}$ in a metric space (E,d) is Cauchy if $\forall \varepsilon>0, \exists N \text{ s.t. } \forall n,m>N, d(s_n,s_m)<arepsilon$

Lemma 3.4.1 Any convergent sequence $\{S_n\}$ in (E, d) is Cauchy.

Proof: Suppose $s_n \to L$ in (E,d), then given $\varepsilon > 0$, $\exists N$ s.t. for n > N, $d(s_n,L) < \varepsilon/2$. For n,m > N,

 $d(s_n,s_m) \leq d(s_n,L) + d(s_m,L) = arepsilon/2 \cdot 2 = arepsilon.$

Ex. $S_n = \sum_{k=1}^n \frac{1}{k}$, $\lim S_n = \sum_{k=1}^\infty \frac{1}{k}$. Claim: it is not Cauchy.

 $s_{2n} - s_n = \frac{1}{n+1} + \dots + \frac{1}{n+n} \ge \frac{1}{2n} + \dots + \frac{1}{2n} = \frac{1}{2}$. Hence $\not\equiv N$ s.t. for $2n, n > N, |s_{2n} - s_n| < 1/2$. It is not epsilon-close.

Remark. There are (E, d) where Cauchy sequence need not have a limit in E.

Consider $E=\mathbb{R}\setminus\{0\}, d=|x-y|$. Then $S_n=rac{1}{n} o L=0\in\mathbb{R}$, but $L
ot\in\mathbb{R}\setminus\{0\}$

Def (Completeness)

A metric space (E,d) is complete if every Cauchy sequences converges.

We want to show that. 1) \mathbb{R} , \mathbb{R}^n are complete. 2) Any subset of a complete metric space is complete. (see below)

Lemma 3.4.2 Let (E, d) be a metric space and $\{S_n\}$ a Cauchy sequence in E. Then $\{S_n\}_{n\in\mathbb{N}}$ is bounded.

Since it is a Cauchy sequence, $\exists N$ s.t. for $m, n \geq N, d(s_n, s_m) < 1$. Let $r = \max\{d(s_1, s_n), \cdots d(s_{N-1}, s_N), 1\} + 1$, then $\forall k, d(s_n, s_k) < r$.

Lemma 3.4.3 Suppose $\{S_n\}$ is a Cauchy sequence and $\{S_{n_k}\}$ is a convergent subsequence with $S_{n_k} \to L$. Then $S_n \to L$ as well.

Proof:

Since $S_{n_k} \to L$, $\forall \varepsilon > 0$, $\exists k$ s.t. $d(S_{n_l}, L) < \varepsilon/2$, $\forall l > k$. Since $\{S_n\}$ is a Cauchy sequence. Then $\exists N$ s.t. for n, m > N, $d(s_n, s_m) \le \varepsilon/2$. Then for $n > \max\{N, k\} = M$, $d(s_n, s_{n_M}) \le \varepsilon/2$ since $n_M \ge M \ge N$ and $d(s_{n_M}, L) < \varepsilon/2$. Then $d(s_n, L) \le d(s_n, s_{n_M}) + d(s_{n_M}, L) = \varepsilon$

Lemma 3.4.4 Any closed subsets C of a complete metric space (E, d) is complete.

Proof:

Let $\{S_n\}$ be a Cauchy sequence in E with respect to metric d. Then $\{S_n\}$ is a Cauchy sequence in E. Since E is complete, $\{S_n\}$ converges to some limit $L \in E$. Since $\{S_n\} \subseteq C$ and C is closed, we have $L \in C$ and thus C is complete.

We then show that \mathbb{R} , \mathbb{R}^n are complete. Let's start with \mathbb{R} .

${\mathscr O}$ Theorem (Bolzano–Weierstrass in ${\mathbb R}$)

Let $\{S_n\}$ be a bounded sequence in \mathbb{R} , $L = \limsup S_n$. Then there is a subsequence $\{S_{n_k}\}$ s.t. $S_{n_k} \to L$.

Proof:

Let $V_N := \sup\{s_n | n \geq N\}$, then by definition $L = \lim_{N \to \infty} V_N$. Then $\forall \varepsilon > 0, \exists k \text{ s.t.}$

 $N \geq k \implies L - \varepsilon < V_N < L + \varepsilon$. Also, $\exists i \text{ s.t. } L - \varepsilon < s_i \leq V_N < L + \varepsilon$.

When $\varepsilon = 1$, $\exists K_1$ s.t. for $n_1 \geq K_1$, $L-1 < s_{n_1} < L+1$

When $\varepsilon=1/2,\, \exists K_2 ext{ s.t. for } n_2 \geq K_2,\, L-1/2 < s_{n_2} \leq V_{n_2} < L+1/2$

If we replace K_2 by $\max\{K_2, n_1+1\}$, we may assume that $n_2 \geq K_2 > n_1$.

Then continuing the construction we will get a sequence $n_1 < n_2 < \cdots < n_k < n_{k+1} < \cdots$ so that $L-1/k < s_{n_k} < L+1/k$, $\forall k$, hence $s_{n_k} \to L$.

Note: 1/k comes from the construction of $\varepsilon=1/k$

Corollary 3.4.6 (\mathbb{R} , d) is complete.

Proof:

Let $\{S_n\} \subseteq \mathbb{R}$ be Cauchy. Then by Lemma 3.4.2, it is bounded. By Bolzano-Weierstrass $\{S_n\}$ has a convergent subsequence $\{S_{n_k}\}$. By Lemma 3.4.3, $S_n \to \lim S_{n_k} \in \mathbb{R}$.

Now recall some useful metric in \mathbb{R}^n :

$$egin{aligned} d_2(x,y) &:= \sqrt{\sum_i (x_i - y_i)^2} \ d_1(x,y) &:= \sum_i |x_i - y_i| \ d_\infty(x,y) &= \max_{1 \leq i \leq n} |x_i - y_i| \end{aligned}$$

Lemma 3.4.7 (\mathbb{R}^n , d_1) is complete.

Proof:

Let $x^{(k)}=\{(x_1^{(k)},x_2^{(k)},\cdots x_n^{(k)})\}_{k=1}^\infty$ be a Cauchy sequence in \mathbb{R}^n with respect to d_1 . Note that $\forall j$ we have $|x_j-y_j|\leq \sum_{i=1}^n|x_i-y_i|=d_1(x,y)$ for all $x,y\in\mathbb{R}^n$. Hence $\forall j,\exists N$ s.t. $k,l>N\implies \varepsilon>d_1(x^{(k)},x^{(l)})\geq |x_j^{(k)}-x_j^{(l)}|,$ so $\{x_1^{(k)}\},\cdots,\{x_n^{(k)}\}$ are a convergent sequences in \mathbb{R} . Since \mathbb{R} is complete, $\forall j,\exists L_j$ s.t. $x_j^{(k)}\to L_j$. Hence $\exists N_j$ s.t. $k>N_j\implies |x_j^{(k)}\to L_j|<\varepsilon/n$. Then $\forall N>\max\{N_1,\cdots,N_n\}$

$$d((L_1,L_2,\cdots,L_n),x^{(k)}) = \sum_{j=1}^n |L_j-x_j^{(k)}| < rac{arepsilon}{n} + rac{arepsilon}{n} + rac{arepsilon}{n} + rac{arepsilon}{n} = arepsilon$$

Hence $x^{(k)} o L = (L_1, \cdots, L_n) \in \mathbb{R}^n$ with respect to d_1 and thus complete.

Theorem (Bolzano–Weierstrass in \mathbb{R}^n)

Let $\{s_n\}$ be a bounded sequence in \mathbb{R}^n , then $\{s_n\}$ has a convergent subsequence.

Proof:

Let $\{x^m\}$ be a bounded sequence in \mathbb{R}^n . The sequence $\{x_1^m\}$ of first components of the terms of $\{x^m\}$ is a bounded real sequence, which has a convergent subsequence $\{x_1^{mk}\}$. Let $\{x^{mk}\}$ be the corresponding subsequence of $\{x^m\}$. Then the sequence $\{x_2^{mk}\}$ of second components of $\{x^{mk}\}$ is a bounded sequence of real numbers, so it too has a convergent subsequence, and we again have a corresponding subsequence of $\{x^{mk}\}$ (and therefore of $\{x^m\}$), in which the sequences of first and second components both converge. Continuing for n iterations, we end up with a subsequence $\{z^m\}$ of $\{x^m\}$ in which the sequences of first, second, ..., nth components all converge, and therefore the subsequence $\{z^m\}$ itself converges in \mathbb{R}^n .

Def (Norm)

A norm on \mathbb{R}^n is a function $\mathbb{R}^n o \mathbb{R}, x \mapsto \|x\|$ so that

- 1. $||x|| \ge 0$ and $||x|| = 0 \iff x = 0$
- 2. $\lambda \|x\| = \lambda \|x\|, \forall \lambda \in \mathbb{R}, x \in \mathbb{R}^n$
- 3. $||x + y|| \le ||x|| + ||y||$

Lemma 3.4.8 Let $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$ be a norm. Then $d: \mathbb{R}^n \times \mathbb{R}^n \to [0, \infty)$, $d(x, y) = \|x - y\|$ is a metric.

Def (Equivalent norm and metric)

Two norms $\|\cdot\|, \|\cdot\|'$ are equivalent on \mathbb{R}^n if $\exists c_1, c_2 > 0$ s.t. $\forall x \in \mathbb{R}^n$

$$|c_1||x|| \le ||x||' \le c_2||x||$$

two metrics d, d' are equivalent on a set E if $\exists c_1, c_2 > 0$ s.t. $\forall x, y \in E$

$$c_1d(x,y) \leq d'(x,y) \leq c_2d(x,y)$$

Note that c_1, c_2 here are constants.

Theorem 3.4.9 $\frac{1}{n} ||x||_1 \le ||x||_\infty \le ||x||_2 \le ||x||_1$ for all $x \in \mathbb{R}^n$

Proof:

Fix $x \in \mathbb{R}^n$, then $\|x\|_{\infty} = \max\{|x_1|, \cdots, |x_n|\}$, so $\exists j$ s.t. $\|x\|_{\infty} = |x_j|$. But then $|x_j| = \sqrt{x_j^2} \le \sqrt{x_i^2} = \|x\|_2$. $(\|x\|)^2 = \sum_j |x_j|^2 \le (\sum_j |x_j|)^2 = (\|x\|_1)^2$, so we have $\|x\|_2 \le \|x\|_1$. $n\|x\|_{\infty} = |x_j| + |x_j| + \cdots + |x_j| \ge |x_1| + |x_2| + \cdots + |x_n| = \|x\|_1$, which ends our proof. Remark. Suppose $\|\cdot\|$, $\|\cdot\|'$ are two equivalent norms, then $\exists c_1, c_2 > 0$ s.t. $\forall z \in \mathbb{R}^n$, $c_1\|z\| \le \|z\|' \le c_2\|z\|$. Then $\forall x, y \in \mathbb{R}^n$, $\forall x \in \mathbb{R}^n$, $c_1\|x - y\| \le \|x - y\|' \le c_2\|x - y\|$, so the two metric $d = \|x - y\|$, $d' = \|x - y\|'$ are equivalent.

Lemma 3.4.10 Suppose $d, d': E \to [0, \infty)$ are two equivalence metric.

- 1. $\{S_n\}$ a Cauchy sequence with respect to $d \iff \{S_n\}$ is a Cauchy sequence with respect to d'.
- 2. $\{S_n\}\subseteq E$ converges with respect to $d\iff \{S_n\}$ converges with respect to d'. Proof:
 - 1) Since d,d' are equivalent, $\exists c_1,c_2>0$ s.t. $c_1d(x,y)\leq d'(x,y)\leq c_2d(x,y), \forall x,y$. Suppose $\{S_n\}$ is a Cauchy sequence with respect to d. Then given $\varepsilon>0$, $\exists N$ s.t.

$$n,m \geq M \implies d'(s_n,s_m) < c_1 \varepsilon$$
, and then $n,m \geq N$, $d(s_n,s_m) \leq \frac{1}{c} d'(s_n,s_m) < c_1 d'(s_n,s_m) < c_1 < \frac{1}{c_1} c_1 \varepsilon = \varepsilon$. The converse is similar.

Corollary 3.4.11 $(\mathbb{R}^n, d_2), (\mathbb{R}^n, d_{\infty})$ are complete: Cauchy sequences converge.

Proof:

Suppose $d: \mathbb{R}^n \times \mathbb{R}^n \to [0, \infty)$ is a metric equivalent to d_1 , and $\{S_n\}$ is a Cauchy sequence with respect to d. Then $\{S_n\}$ is a Cauchy sequence with respect to d_1 , hence converges, hence converges with respect to d. Since d_2, d_∞ are equivalent to d_1 , we are done.

*Topology

Recall if (E,d) is a metric space, then we have a notion of an open set O: E is open $\iff \forall x \in O, \exists r(x) = r > 0 \text{ s.t. } B_{r(x)}(x) \subseteq O.$

We prove 3 properties of open sets: 1) \emptyset , E are open. 2) If O, O' are open then so is $O \cap O'$. 3) If $\{O_{\alpha}\}_{{\alpha}\in A}$ is a collection of open sets, then $\bigcup_{{\alpha}\in A}O_{\alpha}$ is open.

Def (Topology)

A topology \mathcal{T} on a set X is a collection of subset of X (so $\mathcal{T} \subseteq \mathbb{P}(X)$,where $\mathbb{P}(X)$ is the power set) whose elements are called "open sets" s.t.

- $1. \varnothing, X \in \mathcal{T}$
- 2. If $O, O' \in \mathcal{T}$, then $O \cap O' \in \mathcal{T}$.
- 3. $\forall \{O_{\alpha}\}_{\alpha \in A} \subseteq \mathcal{T}$, then $\cup_{\alpha \in A} O_{\alpha} \in \mathcal{T}$.

Note: \mathbb{R}^n comes with the standard topology and metric (d_2)

Note: the "open set" here does not necessarily have anything to do with metric.

We proved: if (E, d) is a metric space, then there is a topology \mathcal{T}_d with associated to d.

Def (Topological space)

A topological space is a pair (X, \mathcal{T}) , where \mathcal{T} is a topology on a set X.

Lemma 3.4.12 Let d, d' be two equivalent metric on a set E, then $\mathcal{T}_d = \mathcal{T}_{d'}$, i.e., they give rise to the same topology.

Proof:

It's enough to show that $\mathcal{T}_d \subseteq \mathcal{T}_{d'}$, then by the same argument $T_{d'} \subseteq T_d$.

Since d,d' are equivalent, $\exists c>0$ s.t. $cd(x,y)\leq d'(x,y), \forall x,y$. Suppose $O\subseteq \mathcal{T}_d$ an open set, then $\forall x\in O, \exists r(x)$ s.t. $B^d_{r(x)}(x)\subseteq O$. If $y\in B^{d'}_{cr}(x)$ (another ball risen by d' centered at x). then $cr>d'(x,y)(def\ of\ y\in B^{d'}_{r(x)}(x))\geq cd(x,y)\implies d(x,y)< r\implies y\in B^d_{r(x)}(x)$ $\Longrightarrow\ B^d_{r(x)}(x)\subseteq B^d_{r(x)}(x)\subseteq O$. Since x is arbitrary, $O\in \mathcal{T}_{d'}$, which gives $\mathcal{T}_d\subseteq \mathcal{T}_{d'}$

Def (Convergent sequence in a topological space)

Let (X, \mathcal{T}) be a topological space, $\{S_n\} \subseteq X$ a sequence. Then $S_n \to L \in X$ if \forall open set $U \subseteq X$ with $L \in U$, $\exists N \text{ s.t. } n > N \implies S_n \in U$.

Exercise: If $\mathcal{T} = \mathcal{T}_d$ for some metric d, then the two notions of convergence agree.

Corollary 3.4.13 Let E be a set, d, d' two equivalent metric, then $S_n \to L \in E$ with respect to d $\iff S_n \to L \in E$ with respect to d'.

3.5 Compactness

note: def different from the book

Def (Open cover)

Let (X, \mathcal{T}) be a topological space, $K \subseteq X$ a subset, then an open cover of K is a collection of open sets $\{O_{\alpha}\}_{\alpha \in A} \subseteq \mathbb{P}(X)$ s.t. $K \subseteq \bigcup_{\alpha \in A} O_{\alpha}$.

Ex. $\{(n, n+2)\}_{n\in\mathbb{Z}}$ is an open cover of \mathbb{R}

Ex. (E, d) metric space, $\{B_{1-1/n}(x)\}_{n\in\mathbb{N}}$ is an open cover in \mathbb{R} .

Objective Def (Compactness)

A subset K of a topological space (X,\mathcal{T}) is compact if for every open cover $\{U_{\alpha}\}_{\alpha\in A}$ of K, $\exists n,\alpha_1,\ldots\alpha_n\in A \text{ s.t. } K\subseteq U_{\alpha_1}\cup\cdots\cup U_{\alpha_n}$

Any open over has a finite open subcover that covers the subset

Ex. any finite set $\{x_1,\ldots,x_n\}$ is compact. if $\{U_\alpha\}_{\alpha\in A}$ is an open cover, then $\forall i,\exists \alpha_i$ s.t. $x_i\in U_{\alpha_i}$ and then $\{x_1,\ldots,x_n\}\subseteq U_{\alpha_1}\cup\cdots\cup U_{\alpha_n}$

Counter(?) example: \mathbb{R} is not compact: $\{(n, n+2)\}_{n\in\mathbb{Z}}$ is an open cover with no finite subcover.

Counter(?) example 2: $\mathbb{N} \subseteq \mathbb{R}$ is not compact. $\{U_i = (i-1/2, i+1/2)\}_{i \in \mathbb{N}}$ is an open cover of \mathbb{N} no finite subcover.

Counter(?) example 3: E = a set. d(x,y) = 1 for $x \neq y$. This is the "discrete metric". Then every set is bounded. If $K \subseteq E$ is a set, then $\{\{x\}\}_{x \in K}$ is an open cover of K. So K is compact $\implies K$ is finite.

Remark. to prove compactness is to prove an open subcover.

Lemma 3.5.1 Let (X, \mathcal{T}) be a topological space, $K \subseteq X$ compact, $C \subseteq X$ closed. Then $K \cap C$ is compact.

Proof:

Suppose $\{U_{\alpha}\}_{\alpha\in A}$ is an open cover of $K\cap C$. Then $X\setminus C\cup \{U_{\alpha}\}_{\alpha\in A}$ is an open cover of K. Since K is compact, $\exists \alpha_1, \cdots, \alpha_n$ s.t. $K\subseteq (K\setminus C)\cup U_{\alpha_1}\cup \cdots \cup U_{\alpha_n}$,

 $(K = (K \cap C) \cup (K \setminus C) \subseteq (X \setminus C) \cup (X \setminus C) \cup_{\alpha \in A} U_{\alpha})$ which implies that $K \cap C \subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$, and we are done.

Theorem 3.5.2 Let (E, d) be a metric space. If $K \subseteq E$ is compact, then K is closed and bounded. Proof:

(K is bounded) Choose any $x \in E$, then $E = \bigcup_{n=1}^{\infty} B_n(x)$, so $\{B_n(x)\}_{n=1}^{\infty}$ is an open cover of K. So $\exists n_1 < n_2 < \dots < n_k$ s.t. $K \subseteq B_{n1}(x) \cap \dots \cap B_{nk}(x) = B_{nk}(x)$

(K is closed) If K = E, we are done, K is closed since $\emptyset = E \setminus K$ is open. If $K \neq E$, let $x \in E \setminus K$, then $K \subseteq E \setminus \{x\}$. $U_r = E \setminus \overline{B_r}(x)$ is open for all r. Now consider the union.

 $\bigcup_{r>0}(E\setminus \overline{B_r}(x))=E\setminus \cap_{r>0}\overline{B_r}(x)=E\setminus \{x\}\supseteq K\implies \{U_r\}_{r>0}$ is an open cover of K. Since K is compact, $\exists r_1<\dots< r_k$ s.t. $K\subseteq U_{r1}\cup\dots\cup U_{rk}=E\setminus (\overline{B_{r1}}(x)\cap\dots\cap\overline{B_{rk}}(x))=E\setminus \overline{B_{r1}}(x)$ (since it is closed) $\Longrightarrow B_{r1}(k)\cap K=\varnothing\implies E\setminus K$ is open.

The converse is false by simply taking any metric that is bounded: d = min(|x-y|, 1), R: closed and bounded, but not compact. Since every singletons $\{x\}$ is closed and open, there is no finite subcover of any infinite set.

Remark. In (\mathbb{R}^n, d_2) a metric space is compact \iff it is closed and bounded

Remark. In general, compact sets need not be closed.

Ex. $X = \{a, b\}, \mathcal{T} = (X, \emptyset, \{a\})$. $K = \{a\}$ is compact (finite) but not closed since $X \setminus K = \{b\} \notin \mathcal{T}$ Note that singletons are compact since they are finite.

Theorem 3.5.3 Let X be a topological space, $K_1 \supseteq K_2 \supseteq \cdots \supseteq K_n \supseteq \cdots$ a sequence of compact sets, then $K = \bigcap_{n=1}^{\infty} K_n \neq \emptyset$ (and compact: since the intersection sets in K_1)

Note: $X = \mathbb{R}$, $K_n = [0, \infty)$, $\bigcap_{n \ge 1} K_n = \emptyset$. $U_n = (0, 1/n)$, $\bigcap U_n = \emptyset$. Such examples don't hold because they are not closed.

Theorem 3.5.4 Let X be a topological space, $K_1 \supseteq K_2 \supseteq \cdots \supseteq K_n \supseteq \cdots$ sequences of nonempty nested closed compact sets. Then $\bigcap_{i=1}^{\infty} K_i \neq \emptyset$.

Proof:

Suppose $\bigcap_{i=1}^{\infty} K_i = \emptyset$. Then $E = E \setminus \bigcap_{i=1}^{\infty} K_i = \bigcup_{i=1}^{\infty} (E \setminus K_i)$. We get an open cover $\{E \setminus K_n\}_{n=1}^{\infty}$ of E and of K_1 . Since K_1 is compact, $\exists n_1 < n_2 < \cdots < n_l$ s.t.

$$K \subseteq (E \setminus K_1) \cup \cdots \cup (E \setminus K_{n_l}) = E \setminus \cap_{i=1}^l K_{n_i} = E \subseteq K_{n_l}$$
. But $K_{n_l} \subseteq K_1$, contradiction.

Objection Def (Sequentially compact)

A subset K of a topological space is sequentially compact if every sequence in K has a convergent subsequence whose limit is in K.

Ex 3.5.1. Suppose $K \subseteq \mathbb{R}^n$ is closed and bounded. Then K is sequentially compact:

Proof:

Every bounded sequence $\{s_n\}$ in K has a convergent subsequence $\{s_{n_k}\}$ by Bolzano-Weierstrass since Kisbounded. Since \$K is closed, $L = \lim_{n \to \infty} \{s_{n_k}\} \in K$.

Lemma 3.5.5 Suppose (E, d) is a metric space and $K \subseteq E$ is compact, then K is sequentially compact.

Let $\{S_n\}$ be a sequence in K. We argue that (1) $\exists x \in K$ s.t. $\forall \varepsilon > 0$, $\{n | s_n \in B_{\varepsilon}(x)\}$ is infinite, and this (1) implies that there is a subsequence $\{S_{n_k}\}$ that converges to x. Take $\varepsilon = 1, 1/2, 1/3 \cdots$ and find $n_1 < n_2 < \cdots < n_k \cdots$ s.t. $S_{n_k} \in B_{1/n}(x)$. To see (1), suppose it is false. Then $\forall x \in K$,

 $\exists \varepsilon = \varepsilon(x) \text{ s.t. } \{n | s_n \in B_{\varepsilon(x)}(x)\} \text{ is finite. Then } \{B_{\varepsilon(x)}(x)\}_{x \in K} \text{ is an open cover of } K. \text{ Since } K \text{ is compact, } \exists x_1, \dots x_l \in K \text{ s.t. } K \subseteq B_{\varepsilon(x_1)}(x_1) \cap \dots \cap B_{\varepsilon(x_l)}(x_l). \text{ But then } \{n | s_n \in B_{\varepsilon(x_1)}(x_1) \cup \dots \cup B_{\varepsilon(x_l)}(x_l)\} \text{ is finite, a contradiction.}$

Objective Def (Totally bounded)

A subset K of a metric space (E,d) is totally bounded if $\forall s > 0, \exists x_1, \dots, x_n \in K$ s.t. $K \subseteq B_{\varepsilon}(x_1) \cap \dots \cap B_{\varepsilon}(x_n)$. i.e., $\forall \varepsilon > 0, K$ can be covered by finitely many balls of radius ε .

Lemma 3.5.6 Suppose (E, d) is a metric space, $K \subseteq E$ sequentially compact. Then (K, d) is complete and totally bounded.

Proof:

Suppose $\{S_n\} \in K$ is Cauchy. Since K is sequentially compact, $\{S_n\}$ has a convergent subsequence and since $\{S_n\}$ is Cauchy, $\{S_n\}$ converges to $L = \lim S_{n_k}$ #question . Suppose K is not totally bounded, then $\exists \varepsilon > 0$ s.t. K cannot be covered by finitely many ε balls $\Longrightarrow \exists x_1 \in K$ s.t. $K \setminus B_\varepsilon(x_1) \neq \varnothing$. Then $\exists x_2 \in K \setminus B_\varepsilon(x_1)$ s.t. $K \setminus (B_\varepsilon(x_1) \cup B_\varepsilon(x_2)) \neq \varnothing$ $\exists x_n \in K \setminus (B_\varepsilon(x_1) \cup \cdots \cup B_\varepsilon(x_{n-1}))$ s.t. $K \setminus (B_\varepsilon(x_1) \cup \cdots \cup B_\varepsilon(x_{n-1})) \neq \varnothing$ (*). We get a sequence $\{x_n\}$ in K with $d(x_n, x_m) \geq \varepsilon$ for all $n \neq m$. Then $\{x_n\}$ has no Cauchy subsequence $\Longrightarrow \{x_n\}$ has no convergent subsequences. This contradicts sequential compactness.

*: This is a recursive definition, $\{x_n\}$ is infinite.

Lemma 3.5.7 Let (E, d) be a metric space, $K \subseteq E$ complete and totally bounded, then K is compact. Proof:

Suppose \exists an open cover $\{U_{\alpha}\}_{{\alpha}\in A}$ of K with no finite subcover. Since K is totally bounded, K can be covered with finitely many balls of radius $1. \implies \exists x_0 \in K$ s.t. $B_1(x_0)$ cannot be covered by finitely many U_{α} . There is a finite cover of K by balls of radius $1/2 \implies \exists x_1$ s.t. $B_{1/2}(x_1) \cap B_1x_0 \neq \emptyset$ and $B_{1/2}(x_1)$ cannot be covered by finitely many U_{α} . Proceeding this way we get a sequence $x_0, x_1, \dots, x_n, \dots$ s.t. $B_{1/2^n}(x_n) \cap B_{1/2^{n-1}}(x_{n-1})$, and each $B_{1/2^n}(x_n)$ cannot be covered by finitely manny U_{α} s. Then

 $d(x_n,x_{n+k}) \leq d(x_n,x_{n+1}) + d(x_{n+1},x_{n+2}) + \cdots + d(x_{n+k-1},x_{n+k}) < \frac{1}{2^{n-1}}(1+\frac{1}{2}+\cdots+\frac{1}{2^k}) < \frac{1}{2^{n-2}}$ Thus $\{x_n\}$ is Cauchy. Since K is complete, $x_n \to y$ for some $y \in K$. Since $\{U_\alpha\}_{\alpha \in A}$ is a cover, $\exists \alpha_0$ s.t. $y \in U_{\alpha_0}$. Since U_{α_0} is open, $\exists r > 0$ s.t. $B_r(y_0) \subseteq U_{\alpha_0}$. Since $x_n \to y$, $\exists n$ s.t. $x_n \in B_{r/2}(y)$ and $\frac{1}{2^n} < \frac{r}{2}$. $B_{1/2^n}(x_n) \subseteq B_r(y) \subseteq U_{\alpha_0}$. But according to the construction of $B_{1/2^n}(x_n)$, we get a contradiction.

Summary

For a subset K of a metric space, $(1) \Longrightarrow (2)$, $(2) \Longrightarrow (3)$, $(3) \Longrightarrow (1)$, thus TFAE

- 1. K is compact
- 2. K is sequentially compact

3. *K* is compete and totally bounded.

Theorem (Heine-Borel)

A subset K of \mathbb{R}^n is compact \iff K is closed and bounded.

Proof:

 (\Longrightarrow) is true for any metric space.

(\iff) Suppose K is closed and bounded, then by Ex 3.5.1, K is sequentially compact and hence compact.

Ex. \mathbb{R} , $d = \min(1, |x - y|)$. (\mathbb{R}, d) is bounded but not totally bounded since it's complete but not compact. $B_{1/2}^d(x) = (x - 1/2, x + 1/2), \forall x$ and \mathbb{R} cannot be covered by finitely many balls of radius 1/2. Thus only in (\mathbb{R}, d_2) or $(d_1$ or $d_{\infty})$ bounded \Longrightarrow totally bounded.

Chapter 4 Continuous functions

4.1 Continuity

♦ Def (Continuous at a point)

Let (E,d), (E',d') be two metric space. A function $f: E \to E'$ is continuous at $p \in E$ if $\forall \varepsilon > 0$, $\exists \delta > 0$ so that $\forall x \in E, d(x,p) < \delta \implies d'(f(x),f(p)) < \varepsilon$. i.e. $f(B^d_\delta(p)) \subseteq B^{d'}_\varepsilon(f(p))$

Remark. think of " $\delta - \varepsilon$ close"

♦ Def (Continuous function)

A function $f: E \to E'$ is continuous if it is continuous at every point p of E.

Ex 1. (E,d) a metric space, $q \in E$ a point, $f: E \to \mathbb{R}$, f(p) = d(p,q). Then f is continuous at every $p \in E$: $|f(x) - f(p)| = |d(x,q) - d(p,q)| \le d(x,q)$. So $\forall \varepsilon > 0, d(x,p) < \varepsilon \implies |f(x) - f(p)| < \varepsilon = \delta$. Ex 2. $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} 1, x \ rational \\ 0, x \ irrational \end{cases}$ is not continuous at any $p \in \mathbb{R}$. To see this, $\forall p \in \mathbb{R}$, $\delta > 0$, $B_{\delta}(p) = (p - \delta, p + \delta)$ contains both rationals and irrationals. If p is rational, then f(p) = 1 and $\forall \delta > 0$, $\exists x \in B_{\delta}(1)$ s.t. f(x) = 0. Then for all $\varepsilon < 1$ (1/2, for example), no matter which δ we choose, $|x - p| < \delta \iff |f(x) - 1| < 1/2$. Similar problem happens if f(p) = 0.

Theorem 4.1.1

 $f:(E,d)\to (E',d')$ is continuous $\iff \forall U\subseteq E',U$ open, $f^{-1}(U)$ is open.

Proof:

 (\Longrightarrow) Suppose f is continuous, $U\subseteq E'$ open, then $\forall p\in f^{-1}(U), f(p)\in U\Longrightarrow\exists \varepsilon>0$ s.t. $B_{\varepsilon}(f(p))\subseteq U$. Since f is continuous at $p,\exists \delta>0$ s.t. $f(B_{\delta}(p))\subseteq B_{\varepsilon}(f(p))$, which implies that $f(B_{\delta}(p))\subseteq U$, and thus $B_{\delta}(p)\subseteq f^{-1}(U)$. Since $p\in f^{-1}(U)$ is arbitrary, $f^{-1}(U)$ is open. (\longleftarrow) Suppose $\forall U\subseteq E', U$ open, $f^{-1}(U)$ is open. Given $p\in E$ and $\varepsilon>0$, $B_{\varepsilon}(f(p))$ is open in E. Since $p\in f^{-1}(f(p))\subseteq f^{-1}(B_{\varepsilon}(f(p)))$ and $f^{-1}(B_{\varepsilon}(f(p)))$ is open, $\exists \delta>0$ s.t. $f(B_{\delta}(p))\subseteq B_{\varepsilon}(f(p))$ and f is continuous at p.

some helpful extensions:

 (\Longrightarrow) Suppose f is continuous and U is an open subset of E'. We want to show that $f^{-1}(U)$ is open. Let $p \in f^{-1}(U)$, then $f(p) \in U$ since f is continuous. Since U is open, $\exists \varepsilon > 0$ s.t. $B_{\varepsilon}(p) \subseteq E'$ is open. Since f is continuous at p, $\exists \delta > 0$ s.t. if $d(p,x) < \delta$, then $d'(f(p),f(x)) < \varepsilon$, i.e., if $x \in B_{\delta}(p)$, then $f(x) \in B_{\varepsilon}(p) \subseteq E'$. Hence $f(p) \in B_{\varepsilon}(p) \subseteq U$ and that $B_{\delta}(p) \subseteq f^{-1}(U)$. Since p is any point of $f^{-1}(U)$, the set $f^{-1}(U)$ is open.

Corollary 4.1.2 $f:(E,d)\to (E',d')$ is continuous $\iff \forall C\subseteq E', C \text{ closed}, f^{-1}(C)$ is closed.

Def (Continuous function)

A map/function $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ between two topological spaces is continuous if $\forall U\in\mathcal{T}'$, U open, $f^{-1}(U)\in\mathcal{T}$. i.e., preimages of open sets are open.

Remark. Theorem 4.1.1 says that the notion of continuity of a map depends only on the topologies: If d_1, d_2 are two metrics s.t. $\mathcal{T}_{d_1} = \mathcal{T}_{d_2}, d'_1, d'_2$ are two metrics s.t. $\mathcal{T}_{d'_1} = \mathcal{T}_{d'_2}$. Then $f: (E, d_1) \to (E', d'_1)$ is continuous iff $f: (E, d_2) \to (E', d'_2)$ is continuous.

Theorem 4.1.3 The composite of two continuous maps is continuous. If $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$, $g:(Y,\mathcal{T}_Y)\to (Z,\mathcal{T}_Z)$ are continuous, then $g\circ f:(X,\mathcal{T}_X)\to (Z,\mathcal{T}_Z)$ is continuous. Proof:

Suppose $W \subseteq Z$ is open, then $g^{-1}(W) \subseteq Y$ is open $\implies f^{-1}(g^{-1}(W))$ is open in X. But $f^{-1}(g^{-1}(W)) = (f \circ g)^{-1}(W)$, so $(f \circ g)^{-1}(W)$ is open in X and hence $f \circ g$ is continuous.

Theorem 4.1.4 Images of compact sets under continuous functions are compact. If $f: X \to Y$ is continuous and $K \subseteq X$ is compact, then $f(X) \subseteq Y$ is compact. Proof:

Let $\{U_{\alpha}\}_{{\alpha}\in A}$ be an open cover of f(K), then $\{f^{-1}(U_{\alpha})\}_{{\alpha}\in A}$ is an open cover of K. Since K is compact, $\exists \alpha_1 \cdots \alpha_n \text{ s.t. } K \subseteq f^{-1}(U_{\alpha_1}) \cup \cdots \cup f^{-1}(U_{\alpha_n}) \implies f(K) \subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_n} \text{ and } f(K) \text{ is compact.}$

Corollary 4.1.5 Let (E, d) be a metric space, X a topological space, $K \subseteq X$ compact and $f: X \to E$ is continuous, then f(k) is complete, totally bounded, sequentially compact and closed.

Corollary 4.1.6 Suppose X is a topological space, $f: X \to \mathbb{R}$ continuous and $K \subseteq X$ compact, then $\exists x_1, x_2 \in X$ s.t. $\forall x \in X, f(x_1) \leq f(x) \leq f(x_2)$. i.e., f achieves maximum and minimum on X. Proof:

f(K) is closed and bounded in \mathbb{R} , hence $\exists x_1, x_2 \in \mathbb{R}$ s.t. $f(x_1) = \inf(f(K)), f(x_2) = \sup(f(K))$

4.2 Continuity and Limits

Def (Cluster point of a topological space)

Let X be a topological space, $S \subseteq X$ a subspace, then $x \in X$ is a cluster point of S if \forall open set U with $x \in U$, $(U \setminus \{x\}) \cap S$ is nonempty. If E is a metric space, x is a cluster point of S iff \exists a sequence $\{S_n\} \subseteq S \setminus \{x\}$ s.t. $s_n \to x$.

Ex. $S = \{0\} \cup [1,2] \subseteq \mathbb{R}$, d(x,y) = |x-y|. 0 is not a cluster point. Every $x \in [1,2]$ is a cluster point of S.

Def (Cluster point of a metric space)

Suppose (E,d), (E',d') are metric spaces, $A \subseteq E$, $f:A \to E'$, p is a cluster point of A. Then

$$\lim_{x o p}f(x)=q$$

If orall arepsilon>0 , $\exists \delta>0$ s.t. $x\in A\cap B_\delta(p), x
eq p, d'(f(x),q)<arepsilon$

Remarks.

- (1) $p \in A$ is not necessary. i.e., f(p) need not be defined.
- (2) Even if $p \in A$ we are requiring $f(p) = \lim_{x \to p} f(x)$

Ex.
$$f:\mathbb{R} o\mathbb{R}, f(x)=1, x=0, f(x)=0, o.$$
 $w.$ Then $\lim_{x\in o 0}f(x)=0
eq 1=f(0).$

Lemma 4.2.1 E, E' metric spaces, p cluster point of E. Then $f: E \to E'$ is continuous at $p \iff \lim_{x \to p} f(x) = f(p)$.

Proof:

#TODO

Note that if p is not a cluster point, then $\exists r$ s.t. $B_r(p) \setminus \{p\} \cap E = \emptyset$. i.e. $B_r(p) = \{p\}$. And then any $f: E \to E'$ is continuous at p.

Theorem 4.2.2 E, E' metric spaces, $f: E \to E'$ is continuous at $p \in E \iff \forall$ sequences $\{S_n\} \in E$ with $S_n \to p$, we have $f(s_n) \to f(p)$.

Proof:

 (\Longrightarrow) Suppose $S_n \to p$ and f is continuous. Then given $\varepsilon > 0$, $\exists \delta > 0$ s.t.

$$d(x,p) < \delta \implies d'(f(x),f(p)) < \varepsilon$$
. Since $S_n \to p$, $\exists N$ s.t. if $n \ge N$,

$$d(x,p) < \delta \implies d'(f(x),f(p)) < \varepsilon \implies f(p) o f(x)$$

(\iff) We prove the contrapositive. Suppose f is not continuous at p. We construct $\{S_n\}$ s.t. $S_n \to p$ but $f(S_n) \nrightarrow f(p)$. Since f is not continuous at p, $\exists \varepsilon_0 > 0$ s.t. $\forall \delta > 0$, $\exists x_r \in B_\delta(p)$ with $f(x_r) \notin B_{\varepsilon_0}(f(p))$. Let $S_n = x_{1/n}$. Then $s_n \in B_{1/n}(p)$ (hence $s_n \to p$) and $f(s_n) \notin B_{\varepsilon_0}(f(p))$ (hence $f(s_n) \nrightarrow f(p)$)

Theorem 4.2.3 Suppose $f, g : (E, d) \to \mathbb{R}$ are continuous at $p \in E$. Then $f + g, f \cdot g$ are continuous at p. If $g(p) \neq 0$, f/g is also continuous.

Proof:

Suppose $S_n \to p$, then $f(s_n) \to f(p), g(s_n) \to g(p)$. Hence $(f+g)(s_n) = f(s_n) + g(s_n) \to f(p) + g(p) \implies f+g$ is continuous. Other proofs are similar.

Theorem 4.2.4 Suppose $f=(f_1,\cdots,f_n):E\to\mathbb{R}^n$ is a function, $p\in E$. Then f is continuous at $p\iff f_1\cdots f_n$ are all continuous at p.

Proof:

A sequence $t_k=(t_k^{(1)},\cdots,t_n^{(n)}) o\mathbb{R}^n$ converges to $q=(q_1,\cdots,q_n)\in\mathbb{R}^n\iff t_k^{(k)} o q^{(i)}, i=1,2,\cdots n.$

Uniform continuity

Def (Uniformly continuous)

 $f:(E,d)\to (E',d')$ is uniformly continuous if $\forall \varepsilon>0,\,\exists \delta=\delta_{\varepsilon}>0$ s.t.

$$d(x,p) < \delta \implies d'(f(x),f(p)) < arepsilon, orall x, p$$

Ex. $f(x)=x^2$. $f:[0,\infty)\to\mathbb{R}$ is not uniformly continuous.

Proof: $|f(x)-f(y)|=x^2-y^2=|x-y||x+y|\geq 2\cdot \min(x,y)\cdot |x-y|$. There for $\forall \delta$ if $x,y>\frac{1}{\delta}$ and $|x-y|=\delta/2$. We have $|f(x)-f(y)|\geq 2\cdot \frac{1}{\delta}\cdot \frac{\delta}{2}=1$.

Lemma 4.2.5 Suppose $f: E \to E'$ is uniformly continuous, then for any Cauchy sequences $\{S_n\}$ in E, $f(s_n)$ is Cauchy.

Proof:

Since f is uniformly continuous, $\forall \varepsilon > 0$, $\exists \delta$ s.t. $d(x,y) < \delta \implies d'(f(x),f(p)) < \varepsilon$. Fix $\varepsilon > 0$ and choose δ . Since $\{S_n\}$ is Cauchy, $\exists N$ s.t. $n,m \geq N \implies d(s_n,s_m) < \delta$. And then $d'(f(s_n),f(s_m)) < \varepsilon$.

Ex. $f:(0,1)\to\mathbb{R}, f(x)=\sin(1/x)$. Claim: f is not uniformly continuous. Reason: $S_n=\frac{1}{\pi/2+n\pi}\to 0$, not in (0,1) but still Cauchy. $f(s_n)=\sin(\frac{\pi}{2}+n\pi)=(-1)^n$. So f is not uniformly continuous.

Theorem 4.2.6 Suppose $f: E \to E'$ is continuous and E is compact, then f is uniformly continuous. Proof:

Given ε we want $\delta = \delta_{\varepsilon}$ s.t. $d(x,y) < \delta \implies d(f(x),f(y)) < \varepsilon$. Since f is continuous, $\forall x, \exists \delta_x$ s.t. $d(x,y) < \delta_x \implies d'(f(x),f(y)) < \varepsilon/2$. $\{B_{\delta_{x/2}}(x)\}_{x \in E}$ is an open cover of $E \implies \exists n,x_1,\cdots,x_n$ s.t. $E = B_{\delta_{x1}/2} \cup \cdots \cup B_{\delta_{x_n}/2}(x_n)$. Let $\delta = \min(\delta x_1/2,\cdots \delta x_n/2)$. Suppose $d(p,q) < \delta$. Then $q \in B_{\delta x_i/2}(x)$ for some i. Then $d(p,x_i) \leq d(p,q) + d(q,x_i) < \delta + \delta_{x_1}/2 \leq \delta_{x_i}$. $p \in B_{\delta_{x_i}}(x_i)$. Since $p,q \in B_{\delta_{x_i}}(x_i)$, $d'(f(p),f(q)) \leq d'(f(p),f(x_i)) + d'(f(x_i),f(p)) < \varepsilon/2 + \varepsilon/2 = \varepsilon$.

Def (Pointwise continuity)

 $\{f_n:(E,d)\to (E',d')\}_{n=1}^\infty$ sequence of functions between two metric spaces. The sequence $\{f_n\}$ converges pointwise to $f:E\to E'$ if $\forall p\in E,\, f_n(p)\to f(p)$

Pointwise limit of continuous functions need not be continuous.

Def (Uniform convergence)

$$\begin{split} \{f_n:(E,d)\to(E',d')\}_{n=1}^\infty \text{a sequence of functions between two metric spaces, } A\subseteq E \text{ a subspace.} \\ f_n\to f \text{ uniformly on } A \text{ if } \forall \varepsilon>0, \, \exists N \text{ s.t. } n\geq N \implies d'(f_n(p),f(p))<\varepsilon, \forall p\in A. \\ \text{Equivalently, } \forall \varepsilon>0, \, \exists N \text{ s.t. } n\geq N \implies \sup\{d'(f_n(p),f(p))|p\in A\}<\varepsilon. \\ \lim_{n\to\infty}\sup\{d'(f_n(p),f(p))|p\in A\}=0 \end{split}$$

Ex. $f_n(x)=x^n, f_n:[0,1]\to [0,1]$ on A=[0,a]. $a<1, f_n$ converges uniformly. Check $\sup\{|x^n-0|:0\le x\le a\}=a^n\to 0.$ $\{f_n\}$ converges to 0 on [0,1) but not uniformly, $\sup\{|x^n-0|:0\le x\le 1\}=1\to 0$ Ex. $f_n(x)=\frac{nx}{1+n^2x^2}, f_n:\mathbb{R}\to\mathbb{R}$. Since $f_n(0)=0, \forall n$, and for $x\ne 0, |\frac{nx}{1+n^2x^2}|\le |\frac{nx}{n^2x^2}|=\frac{1}{n|x|}_{n\to\infty}\to 0$. Note that $f_n(\frac{1}{n})=\frac{n/n}{1+n^2/n^2}=\frac{1}{2}\to 0$, so $\{f_n\}$ is not uniformly convergent.

Def (Uniformly Cauchy)

A sequence of functions $\{f_n: E \to E'\}_{n \in \mathbb{N}}$ is uniformly Cauchy on $A \subseteq E$ if $\forall \varepsilon > 0$, $\exists N$ with $n, m \geq N \implies \sup\{d'(f_n(x), f_m(x)) | x \in A\} < \varepsilon$

Theorem Let $\{f_n : E \to E'\}_{n \in \mathbb{N}}$, E' complete, then $\{f_n\}$ converges uniformly on $A \iff \{f_n\}$ is uniformly Cauchy.

Proof:

 $(\Longrightarrow) \ \text{Suppose} \ f_n \to f \ \text{uniformly on} \ A. \ \text{Then} \ \forall \varepsilon > 0, \exists N \ \text{s.t. for} \ n \geq N, \\ \sup\{d'(f_n(x),f(x))|x \in A\} < \varepsilon/3. \ \text{Then} \ \forall n,m \geq N, \ \forall x \in A, \\ d'(f_n(x),f_m(x)) \leq d'(f_n(x),f(x)) + d'(f_m(x),f(x)) < \varepsilon/3 + \varepsilon/3, \ \text{which suggests that} \\ \sup\{d'(f_n(x),f_m(x))|x \in A\} \leq \frac{2}{3}\varepsilon < \varepsilon. \\ (\Longleftrightarrow) \ \text{Suppose} \ \{f_n\} \ \text{is uniformly Cauchy on} \ A. \ \text{Then} \ \forall x \in A, \{f_n(x)\} \ \text{is Cauchy. Since} \ E' \ \text{is} \\ \text{complete, we can define} \ f:A \to E' \ \text{by} \ f(x) = \lim_{n \to \infty} f_n(x). \ \text{We now argue:} \ f_n \to f \ \text{is uniformly on} \\ A. \ \text{Recall that} \ \forall x \in E', h:E' \to [0,\infty), h(p) = d'(x,p) \ \text{is continuous. Since} \ \{f_n\} \ \text{is uniformly Cauchy} \\ \text{on} \ A, \ \text{given} \ \varepsilon > 0, \exists N \ \text{s.t. if} \ m,n \geq N, \ \text{then} \ \sup\{d'(f_n(x),f_m(x))|x \in A\} < \varepsilon/2. \ \text{Fix} \ n \geq N, \ \text{then} \\ d'(f_n(x),f(x)) = d'(f_n(x),\lim_{m \to \infty} f_m(x)) = \lim_{m \to \infty} d'(f_n(x),f_m(x)) \leq \sup_{m \geq n} d'(f_m(x),f_n(x)) \\ < \varepsilon. \ \text{Hence} \ \forall n \geq N, \sup\{d'(f_n(x),f(x))|x \in A\} \leq \varepsilon/2 < \varepsilon. \\ \end{cases}$

Theorem Uniform limit of continuous functions is continuous.

Proof:

Suppose $\{f_n: E \to E'\}$ converges uniformly on all of E. Fix $p \in E$, we prove that f is continuous on p. For $\forall x \in E, \forall n \in \mathbb{N}, d'(f(p), f(x)) \leq d'(f(p), f_n(p)) + d'(f_n(p), f_n(x)) + d'(f_n(x), f(x))$. Given $\varepsilon > 0$, we want to show: $\exists \delta > 0$ s.t. if $d(x,p) < \delta$, then $d'(f(x), f(p)) < \varepsilon$. Since $f_n \to f$ converges uniformly, $\exists N$ s.t. for $n \geq N$, $d'(f_n(y), f(y)) < \varepsilon/3, \forall y \in E$. Since f_N is continuous at $p, \exists \delta > 0$ s.t. if $d(x,p) < 0, d'(f_N(x), f_N(p)) < \varepsilon/3$. Then $\forall x$ with $d(x,p) < \delta$, $d'(f(p), f(x)) \leq d'(f(p), f_n(p)) + d'(f_n(p), f_n(x)) + d'(f_n(x), f(x)) < \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon$

Def (Bounded function)

Let (E,d),(E',d') be two metric spaces, a function $f:E\to E'$ is bounded if $f(E)\subseteq E'$ is bounded.

Notation: $C(E,E')=\{f:E o E'|f\ bounded\ and\ continuous\}$

Exercise. if $f,g: E \to E'$ are bounded, then $\{d'(f(x),g(x))|x \in E\}$ is bounded. Define $D: C(E,E') \times C(E,E') \to [0,\infty)$ by $D(f,g) = \sup\{d'(f(x),g(x))|x \in E\}$ Exercise. D is a metric. Then $f_n \to f$ in $(C(E,E'),D) \iff f_n \to f$ uniformly convergent.

Chapter 5 Differentiation

Chapter 6 Riemann Integrals

Chapter 7 Interchange of limit operations