1. Системы одновременных уравнений (СОУ)

Все экономические переменные можно разделить на два типа:

- 1) экзогенные (независимые) экономические переменные, значения которых определяются вне модели;
- 2) эндогенные (зависимые) экономические переменные, значения которых определяются внутри модели в результате одновременного взаимодействия соотношений, образующих модель.

В правильно составленной спецификации содержится столько уравнений, сколько эндогенных переменных включается в модель. При наличии хотя бы одной экзогенной переменной модель называется *открытой*, в противном случае — *замкнутой*.

Лаговыми называются экзогенные и эндогенные переменные экономической модели, датированные предыдущими моментами времени и находящиеся в уравнении с текущими переменными.

Предопределенными называются лаговые и текущие экзогенные переменные, а также лаговые эндогенные переменные.

Для описания сложных экономических систем, включающих несколько экономических объектов, как правило, используются не отдельные уравнения, а системы уравнений. Системы могут включать как тождества, так и регрессионные уравнения (поведенческие уравнения). Отдельные регрессионные уравнения могут включать в себя как объясняющие (экзогенные) переменные (регрессоры), так и объясняемые переменные из других уравнений системы. Такие системы получили название систем одновременных уравнений.

Поведенческие уравнения — это уравнения, описывающие поведение эндогенных переменных в зависимости от предопределенных переменных в зависимости от предопределенных и включающие параметры.

Пример. Модель равновесия спроса и предложения на конкурентном рынке

 $Cnpoc\ D = a_0 + a_1 p, a_1 < 0, (1)$ - при увеличении цены спрос падает.

Предложение $S = b_0 + b_1 p, b_1 > 0$, (2) - при увеличении цены предложение растет.

Спрос равен предложению D = S(3).

Уравнения (1) и (2) регрессионные, а (3) – это тождество.

Все три переменные в модели (D, S, p) являются экзогенными. Поэтому модель будет замкнутой.

Если добавить в уравнение спроса в качестве переменной доход, то получим.

Cnpoc $D = a_0 + a_1 p + a_2 x, a_1 < 0, a_2 > 0$ (4) - при увеличении дохода спрос растет.

Система из уравнений (4), (2), (3) представляет собой спецификацию состояния равновесия на рынке товаров первой необходимости. Переменная

x определяется вне модели, т.е. является экзогенной, поэтому модель равновесия с учетом дохода будет открытой.

Если производители при определении объемов продаж ориентируются на цены предыдущего периода, то получим *паутинообразную* спецификацию модели равновесия.

Cnpoc
$$D_t = a_0 + a_1 p_t + a_2 x_t, a_1 < 0, a_2 > 0$$
 (5)

Предложение $S_t = b_0 + b_1 p_{t-1}, b_1 > 0$ - используется лаговая переменная цена Спрос равен предложению $D_t = S_t$.

Переменные (x, p_{t-1}) являются предопределенными. Включим случайные возмущения в спецификацию модели.

Cnpoc
$$D_t = a_0 + a_1 p_t + a_2 x_t + u_t, a_1 < 0, a_2 > 0$$
 (6)

Предложение $S_t = b_0 + b_1 p_{t-1} + v_t, b_1 > 0$

Спрос равен предложению $D_t = S_t$.

Случайные возмущения вроде (u_t, v_t) добавляются в поведенческие уравнения и не добавляются в уравнения тождества.

1.1. Структурная форма модели

Введем следующие обозначения:

 Y_t - вектор-столбец текущих значений эндогенных переменных.

 X_t - расширенный вектор-столбец предопределенных переменных, значения которых известны к моменту t;

Ви Γ - матрицы коэффициентов структурной формы модели (структурные коэффициенты);

 $\boldsymbol{\varepsilon}_t$ - вектор-столбец текущих возмущений.

$$Y_{t} = \begin{bmatrix} y_{1t} \\ y_{2t} \\ \dots \\ y_{mt} \end{bmatrix}, \quad X_{t} = \begin{bmatrix} x_{1t} \\ x_{2t} \\ \dots \\ x_{kd} \end{bmatrix}, \quad \varepsilon_{1} = \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \dots \\ \varepsilon_{1n} \end{bmatrix},$$

$$\mathbf{B} = \begin{bmatrix} \boldsymbol{\beta}_{11} & \boldsymbol{\beta}_{12} & \dots & \boldsymbol{\beta}_{1m} \\ \boldsymbol{\beta}_{21} & \boldsymbol{\beta}_{22} & \dots & \boldsymbol{\beta}_{2m} \\ \dots & \dots & \dots & \dots \\ \boldsymbol{\beta}_{m1} & \boldsymbol{\beta}_{m2} & \dots & \boldsymbol{\beta}_{mm} \end{bmatrix}, \quad \boldsymbol{\Gamma} = \begin{bmatrix} \boldsymbol{\gamma}_{11} & \boldsymbol{\gamma}_{12} & \dots & \boldsymbol{\gamma}_{1k} \\ \boldsymbol{\gamma}_{21} & \boldsymbol{\gamma}_{22} & \dots & \boldsymbol{\gamma}_{2k} \\ \dots & \dots & \dots & \dots \\ \boldsymbol{\gamma}_{m1} & \boldsymbol{\gamma}_{m2} & \dots & \boldsymbol{\gamma}_{mk} \end{bmatrix}.$$

Тогда структурную форму модели можно записать следующим образом.

$$\mathbf{B}Y_t + \mathbf{\Gamma}X_t = \mathbf{\varepsilon}_t$$

$$\begin{aligned} & \beta_{11}y_{1t} + \beta_{12}y_{2t} + ... + \beta_{1m}y_{mt} + \gamma_{11}x_{1t} + \gamma_{12}x_{2t} + ... + \gamma_{1k}x_{kt} = \varepsilon_{1t} \\ & \beta_{21}y_{1t} + \beta_{22}y_{2t} + ... + \beta_{2m}y_{mt} + \gamma_{21}x_{1t} + \gamma_{22}x_{2t} + ... + \gamma_{2k}x_{kt} = \varepsilon_{2t} \\ & ... \end{aligned}$$

 $\beta_{m1}y_{1t} + \beta_{m2}y_{2t} + ... + \beta_{mm}y_{mt} + \gamma_{m1}x_{1t} + \gamma_{m2}x_{2t} + ... + \gamma_{mk}x_{kt} = \varepsilon_{mt}.$

Пример

Представим спецификацию (6) паутинной модели равновесного рынка в структурной форме.

$$D_t - a_0 - a_1 p_t - a_2 x_t = u_t, a_1 < 0, a_2 > 0$$

$$S_t - b_0 - b_1 p_{t-1} = v_t, b_1 > 0$$

$$D_t - S_t = 0$$

Тогда вектор эндогенных переменных $Y_t = (D_t, S_t, p_t)$, а экзогенных $X_t = (1; p_{t-1}; x_t)$.

Матрицы структурных коэффициентов и вектор возмущений состоят из следующих элементов:

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & -a_1 \\ 0 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix}, \ \ \boldsymbol{\Gamma} = \begin{pmatrix} -a_0 & 0 & -a_2 \\ -b_0 & -b_1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \boldsymbol{\varepsilon}_t = \begin{bmatrix} u_t \\ v_t \\ 0 \end{pmatrix}.$$

1.2. Приведенная форма модели

Деление переменных на экзогенные и эндогенные должно быть проведено вне модели. Одно из основных требований к экзогенным переменным — некоррелированность векторов X_t и $\mathbf{\epsilon}_t$ в каждом наблюдении t . Будем предполагать, что

- 1) $M(\mathbf{\varepsilon}_t) = 0$;
- 2) $Cov(\mathbf{\epsilon}_t, \mathbf{\epsilon}_t) = \mathbf{\Omega}$, при чем матрица $\mathbf{\Omega}$ не зависит от t и положительно определена;
- 3) при $t \neq s$ $Cov(\mathbf{\varepsilon}_t, \mathbf{\varepsilon}_s) = 0$;
- 4) матрица В невырождена (т.е. её обратная матрица существует).

Т.к. выполняется условие (4), то мы можем умножить обе части равенства $\mathbf{B}Y_t + \mathbf{\Gamma}X_t = \mathbf{\epsilon}_t$ на \mathbf{B}^{-1} , тогда $\mathbf{B}^{-1}\mathbf{B}Y_t + \mathbf{B}^{-1}\mathbf{\Gamma}x_t = \mathbf{B}^{-1}\mathbf{\epsilon}_t$, из чего получим приведенную форму модели COV:

$$Y_t = -\mathbf{B}^{-1} \mathbf{\Gamma} x_t + \mathbf{B}^{-1} \mathbf{\varepsilon}_t = \mathbf{\Pi} x_t + \mathbf{v}_t, \tag{7}$$

где $\Pi = -\mathbf{B}^{-1}\mathbf{\Gamma}$, а $\mathbf{v}_t = \mathbf{B}^{-1}\mathbf{\varepsilon}_t$. Элементы матрицы Π называются коэффициентами приведенной формы.

Способ оценки структурных коэффициентов через оценки коэффициентов приведенной формы называется косвенным методом наименьших квадратов ILS (Indirect Least Squares). Примеры

Построим приведенную форму для модели (6).

$$D_{t} - a_{0} - a_{1} p_{t} - a_{2} x_{t} = u_{t}$$

$$S_{t} - b_{0} - b_{1} p_{t-1} = v_{t}$$

$$D_{t} - S_{t} = 0$$

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & -a_{1} \\ 0 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix}, \quad \mathbf{\Gamma} = \begin{pmatrix} -a_{0} & 0 & -a_{2} \\ -b_{0} & -b_{1} & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathbf{\varepsilon}_{t} = \begin{bmatrix} u_{t} \\ v_{t} \\ 0 \end{bmatrix}.$$

Найдем матрицу \mathbf{B}^{-1} . Она будет существовать, если $\det(\mathbf{B}) = a_1 \neq 0$.

Отсюда
$$\mathbf{B}^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ -1/a_1 & 1/a_1 & 1/a_1 \end{pmatrix},$$

$$\mathbf{\Pi} = -\mathbf{B}^{-1}\mathbf{\Gamma} = -\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ -1/a_1 & 1/a_1 & 1/a_1 \end{pmatrix} \times \begin{pmatrix} -a_0 & 0 & -a_2 \\ -b_0 & -b_1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

$$\boldsymbol{\Pi} = \begin{pmatrix} b_0 & b_1 & 0 \\ b_0 & b_1 & 0 \\ \frac{b_0 - a_0}{a_1} & b_1/a_1 & -a_2/a_1 \end{pmatrix}, \quad \boldsymbol{v}_t = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ -1/a_1 & 1/a_1 & 1/a_1 \end{pmatrix} \times \begin{bmatrix} u_t \\ v_t \\ 0 \end{bmatrix} = \begin{bmatrix} v_t \\ v_t \\ \frac{v_t - u_t}{a_1} \end{bmatrix}.$$

Модель формирования национального дохода Кейнса

Исследуемым экономическим объектом является закрытая национальная экономика без государственного вмешательства. Основные переменные модели Y, C, I, где Y - уровень совокупного выпуска (национальный доход), C- объем потребления, I- величина инвестиций. Задание

- А. Составить спецификацию макромодели, позволяющей объяснить величины Y (национального дохода) и C (объем потребления) уровнем инвестиций I с учетом следующих предпосылок экономической теории:
- 1) потребление возрастает с увеличением совокупного выпуска, причем рост потребления происходит медленнее роста совокупного выпуска;
- 2) в закрытой экономике без государственного вмешательства потребление и инвестиции в сумме равны совокупному выпуску (тождество системы национальных счетов).

Решение

1) C = a + bY, 0 < b < 1, a > 0, где a - автономное потребление, b-предельная склонность к потреблению.

2)
$$Y = C + I$$
.

Тогда структурная форма модели имеет вид:

$$\begin{pmatrix} -b & 1 \\ 1 & -1 \end{pmatrix} \begin{bmatrix} Y \\ C \end{bmatrix} + \begin{pmatrix} -a & 0 \\ 0 & -1 \end{pmatrix} \begin{bmatrix} 1 \\ I \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

где
$$\begin{bmatrix} Y \\ C \end{bmatrix}$$
 - вектор эндогенных переменных, $\begin{bmatrix} 1 \\ I \end{bmatrix}$ - вектор экзогенных

переменных. Структурная форма имеет два уравнения, сколько и эндогенных переменных.

Б. Уточнить спецификацию модели, учитывая, что текущее потребление зависит от совокупного выпуска предыдущего периода. Решение

$$C_t = a + bY_{t-1}, \quad 0 < b < 1, \quad a > 0$$

 $Y_t = C_t + I_t$

где Y_{t-1} - лагированная предопределенная переменная, поэтому структурная форма будет следующей.

$$\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{bmatrix} Y_t \\ C_t \end{bmatrix} + \begin{pmatrix} -a & -b & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} 1 \\ Y_{t-1} \\ I_t \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

В. Уточнить спецификацию включением случайного возмущения. Решение

$$\begin{split} C_t &= a + bY_{t-1} + \mathbf{\varepsilon}_t, \quad 0 < b < 1, \quad a > 0 \\ Y_t &= C_t + I_t \end{split}$$

где $\mathbf{\epsilon}_t$ - случайное возмущение, учитывающее влияние не включенных в данное уравнение факторов.

$$\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{bmatrix} Y_t \\ C_t \end{bmatrix} + \begin{pmatrix} -a & -b & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} 1 \\ Y_{t-1} \\ I_t \end{bmatrix} = \begin{bmatrix} \boldsymbol{\varepsilon}_t \\ 0 \end{bmatrix}.$$

Г. Составить приведенную форму спецификации. *Решение*

$$\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \Rightarrow \mathbf{B}^{-1} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \mathbf{\Gamma} = \begin{pmatrix} -a & -b & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow$$

$$\mathbf{\Pi} = -\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} -a & -b & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b & -1 \\ a & b & 0 \end{pmatrix}, \mathbf{v}_t = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{bmatrix} \mathbf{\epsilon}_t \\ \mathbf{\epsilon}_t \end{bmatrix}$$

Тогда приведенная форма модели имеет вид

$$\begin{bmatrix} Y_t \\ C_t \end{bmatrix} = \begin{pmatrix} a & b & -1 \\ a & b & 0 \end{pmatrix} \begin{bmatrix} 1 \\ Y_{t-1} \\ I_t \end{bmatrix} + \begin{bmatrix} \mathbf{\varepsilon}_t \\ \mathbf{\varepsilon}_t \end{bmatrix}.$$

1.3. Корреляция с ошибкой

Как ранее отмечалось, предполагается, что в каждом уравнении экзогенные переменные не коррелированы с ошибкой. В то же время эндогенные переменные, стоящие в правых частях уравнений, как правило, имеют нулевую корреляцию с ошибкой в соответствующем уравнении. Пример

Для модели равновесия докажем коррелированность эндогенных переменных с возмущениями.

Спрос
$$D_t = a_0 + a_1 p_t + a_2 x_t + u_t, a_1 < 0, a_2 > 0$$
 (8)
Предложение $S_t = b_0 + b_1 p_t + v_t, b_1 > 0$

Спрос равен предложению $D_t = S_t$.

Тогла

$$b_0 + b_1 p_t + v_t = a_0 + a_1 p_t + a_2 x_t + u_t \Rightarrow p_t = \frac{a_2 x_t}{b_1 - a_1} + \frac{u_t - v_t}{b_1 - a_1} + \frac{a_0 - b_0}{b_1 - a_1} = \pi_{11} x_t + \pi_{01} + \mathbf{\epsilon}_{1t}$$

$$\pi_{11} \qquad \mathbf{\epsilon}_{1t} \qquad \pi_{01}$$

Отсюда

$$D_{t} = S_{t} = b_{0} + b_{1} p_{t} + v_{t} = b_{0} + b_{1} \frac{a_{2} x_{t}}{b_{1} - a_{1}} + b_{1} \frac{u_{t} - v_{t}}{b_{1} - a_{1}} + b_{1} \frac{a_{0} - b_{0}}{b_{1} - a_{1}} + v_{t} = \frac{b_{1} a_{2} x_{t}}{b_{1} - a_{1}} + \frac{b_{1} u_{t} - a_{1} v_{t}}{b_{1} - a_{1}} + \frac{a_{0} b_{1} - b_{0} a_{1}}{b_{1} - a_{1}} = \pi_{12} x_{t} + \pi_{02} + \varepsilon_{2t}$$

$$\pi_{12} \qquad \varepsilon_{2t} \qquad \pi_{02}$$

Приведенная форма модели будет иметь следующий вид.

$$p_{t} = \mathbf{\pi}_{11} x_{t} + \mathbf{\pi}_{01} + \mathbf{\varepsilon}_{1t}$$
$$D_{t} = \mathbf{\pi}_{12} x_{t} + \mathbf{\pi}_{02} + \mathbf{\varepsilon}_{2t}$$

Найдем ковариацию (учтем, что $Cov(x_t, v_t) = 0$, т.к. x_t - это экзогенная переменная.

$$\begin{split} &Cov(p_t, v_t) = Cov \left(\frac{a_2 x_t}{b_1 - a_1} + \frac{u_t - v_t}{b_1 - a_1} + \frac{a_0 - b_0}{b_1 - a_1}, v_t \right) = \\ &= Cov \left(\frac{a_2 x_t}{b_1 - a_1}, v_t \right) + Cov \left(\frac{u_t - v_t}{b_1 - a_1}, v_t \right) + Cov \left(\frac{a_0 - b_0}{b_1 - a_1}, v_t \right) = \\ &= 0 + Cov \left(\frac{u_t - v_t}{b_1 - a_1}, v_t \right) + 0 = \frac{Cov \left(u_t, v_t \right) - Var(v_t)}{b_1 - a_1} \neq 0 \end{split}$$

Это приводит к смещенности и несостоятельности МНК-оценок.

Выводы

- 1) Переменные в системах одновременных уравнений делятся на экзогенные и эндогенные. Первые отличаются от вторых тем, что в каждом уравнении они некоррелированы с соответствующей ошибкой.
- 2) Из-за наличия корреляции между эндогенными переменными и ошибками непосредственное применение метода наименьших квадратов к структурной форме модели приводит к смещенным и несостоятельным оценкам структурных коэффициентов.
- 3) Коэффициенты приведенной формы модели могут быть состоятельно оценены методом наименьших квадратов. Эти оценки могут быть использованы для оценивания структурных параметров (косвенный метод наименьших квадратов). При этом возможны три ситуации:
- структурный коэффициент однозначно выражается через коэффициенты приведенной системы
- структурный коэффициент допускает несколько разных оценок косвенного метода наименьших квадратов,
- структурный коэффициент не может быть выражен через коэффициенты приведенной системы.
- В последнем случае соответствующее структурное уравнение является неидентифицируемым. Неидентифицируемость уравнения не связана с числом наблюдений.
- 4) Экзогенные переменные онжом использовать В качестве инструментальных. В том случае, когда оценка косвенного метода единственна, оценкой, она совпадает c полученной помощью инструментальных переменных.

1.4. Проверка на идентифицируемость

Перенумеруем коэффициенты в первом уравнении при X и при Y так, чтобы в начале были ненулевые коэффициенты. Пусть для Y в уравнении имеется q ненулевых коэффициентов, а для X имеется p ненулевых коэффициентов.

$$\beta^* = \{ \beta_{11}, \beta_{12}, ..., \beta_{1q} \}$$
$$\gamma^* = \{ \gamma_{11}, \gamma_{12}, ..., \gamma_{1p} \}$$

Тогда первое уравнение структурной формы СОУ можно записать так $\beta^{*T}y^* + \gamma^{*T}x^* = \varepsilon_1 \, .$

Представим матрицу Π размером $m \times k$ в виде блочной матрицы

$$\begin{split} \boldsymbol{\Pi} &= \begin{pmatrix} \boldsymbol{\Pi}_1^* \mid \boldsymbol{\Pi}_2^* \\ ----- \\ \boldsymbol{m} - \boldsymbol{q} \begin{bmatrix} \boldsymbol{\Pi}_1^* \mid \boldsymbol{\Pi}_2^* \end{bmatrix}, \text{ где } \begin{bmatrix} \boldsymbol{\Pi}_1^* \end{bmatrix} = \boldsymbol{q} \times \boldsymbol{p}, \ \begin{bmatrix} \boldsymbol{\Pi}_2^* \end{bmatrix} = \boldsymbol{q} \times (k-\boldsymbol{p}), \\ \boldsymbol{p} & k-\boldsymbol{p} \\ \begin{bmatrix} \boldsymbol{\Pi}_1^{**} \end{bmatrix} = (m-\boldsymbol{q}) \times \boldsymbol{p}, \ \begin{bmatrix} \boldsymbol{\Pi}_2^* \end{bmatrix} = (m-\boldsymbol{q}) \times (k-\boldsymbol{p}). \end{split}$$

Для каждого уравнения СОУ свое разбиение на блочные матрицы. Тогда уравнения СОУ для приведенной формы будет иметь вид

$$\begin{bmatrix} y \\ y^{**} \end{bmatrix} = \begin{bmatrix} \Pi_1^* \mid \Pi_2^* \\ ----- \\ \Pi_1^{**} \mid \Pi_2^{**} \end{bmatrix} * \begin{bmatrix} x \\ x^{**} \end{bmatrix} + \nu ,$$

 $\Pi = -B^{-1}\Gamma$, откуда $B\Pi = -\Gamma$.

Для первых строк матриц B и Γ получаем равенство

$$\begin{bmatrix} \boldsymbol{\beta}^* \\ \mathbf{0}_{m-q} \end{bmatrix}^T * \begin{bmatrix} \boldsymbol{\Pi}_1^* \mid \boldsymbol{\Pi}_2^* \\ ----- \\ \boldsymbol{\Pi}_1^{**} \mid \boldsymbol{\Pi}_2^{**} \end{bmatrix} = - \begin{bmatrix} \boldsymbol{\gamma}^* \\ \mathbf{0}_{k-p} \end{bmatrix}.$$

Отсюда получаем соотношения

$$\beta^{*^{T}} \Pi_{1}^{*} = -\gamma^{*}$$

$$\beta^{*^{T}} \Pi_{2}^{*} = 0_{k-p}$$

Второе соотношение представляет собой систему (k-p) линейных уравнений с (q-1) переменными (один из элементов вектора β^* в силу условия нормировки равен единице, т.е. одно из β^* известно). Если из этой системы найти β^* , то их можно подставим в первое соотношение, чтобы найти γ^* . Для того чтобы параметры β^* можно было выразить через элементы матрицы Π_2^* необходимо, чтобы число уравнений второго соотношения было не меньше числа переменных, т.е. выполнялось неравенство $k-p \ge q-1$. Это неравенство носит название **порядковое** условие (order condition) и является лишь необходимым условием идентифицируемости.

Так как при выполнении порядкового условия уравнения второго соотношения могут оказаться линейно зависимыми. Из общей теории линейных уравнений известно, что для разрешимости второго соотношения необходимо и достаточно, чтобы матрица Π_2^* имела ранг q-1: $rank(\Pi_2^*) = q-1$ Это равенство называется ранговым условием (rank condition) и оно является необходимым и достаточным условием

идентифицируемости уравнения. Если k-p=q-1 то уравнения точно идентифицируемы. Если k-p>q-1, то уравнения сверхидентифицируемы (их можно задать несколькими способами).

1.5. Косвенный метод наименьший квадратов (КМНК)

KMHK (Indirect Least Squares, ILS) используется для оценки точно идентифицируемых уравнений. КМНК состоит из следующих этапов:

- 1) по структурной форме строится приведенная форма;
- 2) определяются МНК-оценки параметров приведенной формы;
- 3) по МНК-оценкам приведенной формы вычисляются оценки параметров структурной формы.

Получается, что для оценки структурных параметров в КМНК используются МНК-оценки для приведенной формы, поэтому его называют косвенным.

Для того, чтобы найти структурные параметры используется система уравнений:

$$B\Pi = -\Gamma \leftrightarrow B\Pi + \Gamma = 0$$

Пусть
$$\overline{B} = \begin{bmatrix} B \mid \Gamma \end{bmatrix}$$
. Тогда систему можно записать $\overline{B} \begin{bmatrix} II \\ I \end{bmatrix} = 0$, где $\ I$ -

единичная матрица размера $k \times k$.

Тогда для і-того уравнения системы должно выполняться:

$$\begin{cases} \overline{B}_i \begin{bmatrix} \Pi \\ I \end{bmatrix} = 0 \\ rank(\Pi_2^{\ *}) = q-1 \quad (\text{точная идентифицируемость}) \\ b_{ii} = 1 \quad (ycловиенормировки) \end{cases}$$

Можно показать, что если i -е уравнение точно идентифицируемо и выполнено условие нормализации, то система имеет единственное решение. По теореме Слуцкого полученные оценки структурных параметров являются состоятельными, т.к. состоятельны оценки коэффициентов приведенной формы. Однако КМНК нельзя использовать при сверхидентифицируемости уравнения.

1.6. Двухшаговый МНК

Первое уравнение СОУ можно представить в виде

$$y_{1t} = -\beta_{12}y_{2t} - \dots - \beta_{1q}y_{qt} - \gamma_{11}x_{1t} - \gamma_{12}x_{2t} - \dots - \gamma_{1p}x_{pt} + \varepsilon_{1t}, \quad t = 1, \dots, n.$$

Обозначим

$$\begin{aligned} y_1 &= \begin{bmatrix} y_{11} \\ y_{12} \\ \dots \\ y_{1n} \end{bmatrix}, \ \ Y_1 &= \begin{bmatrix} y_{21} & y_{31} & \dots & y_{q1} \\ y_{22} & y_{32} & \dots & y_{q2} \\ \dots & \dots & \dots & \dots \\ y_{2n} & y_{3n} & \dots & y_{qn} \end{bmatrix}, \ \ X_1 &= \begin{bmatrix} x_{11} & x_{21} & \dots & x_{p1} \\ x_{12} & x_{22} & \dots & x_{p2} \\ \dots & \dots & \dots & \dots \\ x_{1n} & x_{2n} & \dots & x_{pn} \end{bmatrix}, \\ \beta_1 &= \begin{bmatrix} -\beta_{12} \\ -\beta_{13} \\ \dots \\ -\beta_{1q} \end{bmatrix}, \\ \gamma_1 &= \begin{bmatrix} -\gamma_{11} \\ -\gamma_{12} \\ \dots \\ -\gamma_{1p} \end{bmatrix}, \ \ \varepsilon_1 &= \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \dots \\ \varepsilon_{1n} \end{bmatrix}, \ \ X &= \begin{bmatrix} x_{11} & x_{21} & \dots & x_{k1} \\ x_{12} & x_{22} & \dots & x_{k2} \\ \dots & \dots & \dots & \dots \\ x_{1n} & x_{2n} & \dots & x_{kn} \end{bmatrix}. \end{aligned}$$

Тогда

$$y_1 = Y_1 \beta_1 + X_1 \gamma_1 + \varepsilon_1.$$

Элементы матрицы Y_1 корреллированы с вектором ошибок ε_1 , поэтому непосредственное применение МНК приведет к смещенным и несостоятельным оценкам. В таких случаях целесообразно воспользоваться инструментальными переменными (в 2МНК это экзогенные переменные). Этапы двухшагового МНК (Two Stage Least Squares 2SLS):

1) проводится регрессия каждого столбца матрицы Y_1 на все экзогенные переменные, т.е. рассматривается регрессия вида

$$Y_1 = X \Pi_1 + V ,$$

где $\, \varPi_1 \,$ - матрица коэффициентов приведенной формы размера $k \times (q-1)$

- 2) с помощью МНК находится матрица оценок параметров $\hat{H_1}$, строится прогнозное значение $\hat{Y_1} = X\hat{\Pi}_1$.
- 3) осуществляется регрессия $y_1 = Y_1\beta_1 + X_1\gamma_1 + \varepsilon_1$ с заменой Y_1 на $\hat{Y_1}$, т.е. строятся МНК-оценки структурных параметров β_1 и γ_1 в регрессии $y_1 = \hat{Y_1}\beta_1 + X_1\gamma_1 + \varepsilon_1$.

В отличие от КМНК, 2МНК дает оценки параметров и в случае сверхидентифицируемости. В случае точной идентифицируемости 2МНК-оценка совпадает с КМНК-оценкой параметров СОУ. 2МНК дает эффективные оценки если в качестве инструментальных переменных используются любые линейные комбинации матрицы X.