Math 114 Geometry Assignment #3

Section 2.3 Problems 7, 8, 9, 11, 13, 15, 17, 27, 29

Michael Brodskiy

*graphical figures omitted

7.) The measures of two angles in a triangle are given. Find the missing measure of the angle.

a.) 90°, 60°

 30°

b.) 120°, 40°

 20°

c.) 85°, 33°

 62°

d.) 79° , 67°

 34°

8.) The measures of $\angle A$, $\angle B$, $\angle C$ are given. Can you make a triangle $\triangle ABC$ with the given angle measures? Explain.

a.)
$$\angle A=36^\circ, \angle B=70^\circ, \angle C=66^\circ$$
 Yes, because $36+78+66=180$

a.)
$$\angle A=124^\circ, \angle B=56^\circ, \angle C=20^\circ$$
 No, because $124+56+20\neq180$

a.)
$$\angle A=36^\circ, \angle B=70^\circ, \angle C=66^\circ$$

 No, because $90\,+\,74\,+\,18\neq180$

9.) Calculate the measure of each lettered angle. Congruent angles and right angles are indicated.

$$\angle A=70^{\circ}, \angle B=130^{\circ}, \angle C=120^{\circ}, \angle D=20^{\circ}, \angle E=20^{\circ}, \angle F=80^{\circ}, \angle G=60^{\circ}, \angle H=100^{\circ}$$

- 11.) Find the missing angle measures in the quadrilaterals shown.
 - $\mathbf{a}.)$

98°

b.)

125 °

 $\mathbf{c}.)$

 120°

 $\mathbf{d}.$

$$4x - 20 = 360$$

 $x = 95$
 $\therefore 80^{\circ}, 85^{\circ}, 95^{\circ}, 100^{\circ}$

13.) Suppose that the sum of the measures of the vertex angles of a polygon is 1,620°. How many sides does the polygon have?

$$(x-2)180^{\circ} = 1620^{\circ}$$

 $\frac{(x-2)180^{\circ}}{180^{\circ}} = \frac{1620^{\circ}}{180^{\circ}}$
 $x-2=9$
 $\therefore x \text{ has } \underline{11} \text{ sides}$

15.) What is the sum of the measures of the vertex angles of a 29-sided polygon.

$$(29-2)180^{\circ} = x^{\circ}$$

 $(27)180^{\circ} = x^{\circ}$
 $\therefore x \text{ is } 4,860^{\circ}$

- 17.) For the following regular n-gons, give the measure of a vertex angle.
 - **a**.) 12-gon

$$\frac{1800}{12} = 150^{\circ}$$

b.) 16–gon

$$\frac{2520}{16} = 157.5^{\circ}$$

c.) 10-gon

$$\frac{1440}{10} = 144^{\circ}$$

d.) 20-gon

$$\frac{3240}{20} = 162^{\circ}$$

e.) 18-gon

$$\frac{2880}{18} = 160^{\circ}$$

f.) 36-gon

$$\frac{6120}{36} = 170^{\circ}$$

27.) Verify that the measure of a vertex angle in a regular polygon.

# of sides & angles	# of triangle divisions	sum of angle measures	measure of angle
3	1	180°	60°
4	2	360°	90°
5	3	540°	108°
6	4	720°	120°
8	6	1,080°	135°
10	8	1,440°	144°
n	n-2	$(n-2)(180^{\circ})$	$\frac{(n-2)180^{\circ}}{n}$

29.) From a plane at point A in the following picture, the angle of depression (the acute angle between the horizontal and the line of sight) to a control tower at point C is $20^{\circ}35'50''$, as shown. Find the measure of \angle ACB in degrees, minutes, and seconds.

$$20^{\circ} + \frac{35'}{60} + \frac{50''}{3600} \Longrightarrow 20.59^{\circ}$$

$$90^{\circ} - 20.59^{\circ} \Longrightarrow 69.41^{\circ}$$

$$69.41^{\circ} \Longrightarrow 69 + .4.60 + .01.3600$$

$$\therefore \angle ACB = 69^{\circ}24'36''$$