Тренировочная работа №2 по МАТЕМАТИКЕ 11 класс

13 декабря 2023 года Вариант MA2310211 (профильный уровень)

Выполнена: ФИС	класс	

Инструкция по выполнению работы

Работа по математике состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1-12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Справочные материалы

 $\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$ $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$ $\sin (\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$ $\cos (\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$

Математика. 11 класс. Вариант МА2310211

Часть 1

2

Ответом к каждому из заданий 1—12 является целое число или конечная десятичная дробь. Запишите ответы к заданиям в поле ответа в тексте работы.

1	Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна 30°? Ответ дайте в градусах.
	Ответ:
2	Длины векторов \vec{a} и \vec{b} равны 8 и 15 соответственно, а угол между ними равен 120°. Найдите скалярное произведение $\vec{a}\cdot\vec{b}$.
	Ответ:
3	Найдите объём многогранника, вершинами которого являются точки B , C , D , E , B_1 , C_1 , D_1 , E_1 правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$, площадь основания которой равна 5, а боковое ребро равно 14.
	Ответ:
4	В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что разница выпавших очков равна 1 или 2.
	Ответ:
5	На фабрике керамической посуды 10 % произведённых тарелок имеют дефект. При контроле качества продукции выявляется 60 % дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Ответ округлите до сотых.
	Ответ:

6 Решите уравнение $\sqrt{63-2x} = -x$. Если уравнение имеет больше одного корня, в ответе запишите больший из корней.

Ответ: .

7 Найдите значение выражения $\frac{\left(7a^2\right)^3\cdot(2b)^2}{\left(14a^3b\right)^2}$ при $a = \log_2 7$ и $b = \log_2 14$.

Ответ: ______.

В На рисунке изображён график функции y = f'(x) — производной функции f(x), определённой на интервале (-4;10). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = -x - 20 или совпадает с ней.

Ответ:

Ответ: ______.

Теплоход проходит по течению реки до пункта назначения 320 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 2 км/ч, стоянка длится 4 часа, а в пункт отправления теплоход возвращается через 40 часов после отплытия из него. Ответ дайте в км/ч.

Ответ: ______.

На рисунке изображён график функции $f(x) = ax^2 + bx + c$, где числа a, b и c целые. Найдите значение f(1).

Ответ:

 12
 Найдите
 наибольшее
 значение
 функции
 $y = 55x - 52\sin x + 40$

 на отрезке
 $\left[-\frac{\pi}{2}; 0 \right]$.

Ответ: .

Часть 2

5

Для записи решений и ответов на задания 13–19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- 13
- а) Решите уравнение $5\sin 2x 5\sqrt{2}\sin x + 16\cos x 8\sqrt{2} = 0$.
- б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{7\pi}{2}; -2\pi\right]$.
- 14

В правильной треугольной пирамиде SABC сторона основания AB равна 8, а боковое ребро SA равно 5. На рёбрах AB и SC отмечены точки L и N соответственно, причём AL: LB = SN: NC = 1:3. Плоскость α содержит прямую LN и параллельна прямой BC.

- а) Докажите, что плоскость α параллельна прямой SA.
- б) Найдите угол между плоскостями а и SBC.
- 15

Решите неравенство $\frac{x^3 - 64}{|x - 4|} - x|x - 4| \ge 0$.

16

В июле 2025 года планируется взять кредит в банке на сумму 600 тысяч рублей на 10 лет. Условия его возврата таковы:

- в январе 2026, 2027, 2028, 2029 и 2030 годов долг возрастает на 20 % по сравнению с концом предыдущего года;
- в январе 2031, 2032, 2033, 2034 и 2035 годов долг возрастает на 15 % по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить часть долга;
- в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года;
- к июлю 2035 года кредит должен быть полностью погашен.

Найдите общую сумму выплат после полного погашения кредита.

- Диагонали равнобедренной трапеции ABCD с основаниями AD и BC перпендикулярны. Окружность с диаметром AD пересекает боковую сторону CD в точке M, а окружность с диаметром CD пересекает основание AD в точке N. Отрезки AM и CN пересекаются в точке P.
 - а) Докажите, что точка P лежит на диагонали BD трапеции ABCD.
 - б) Найдите расстояние от точки P до боковой стороны AB , если BC=3 , AD=21 .
- 18 Найдите все значения a, при каждом из которых неравенство $2a(a+1)-3(a+1)\left(3^{x-1}-1\right) \le 3\left(x^2-4x\right)\left(3^{x-1}-1\right)-2ax^2+8ax$ имеет решения на промежутке [0;1).
- 19 Есть четыре коробки: в первой коробке находятся 105 камней, во второй 106, в третьей 107, а в четвёртой коробке камней нет. За один ход берут по одному камню из любых трёх коробок, всего три камня, и кладут в оставшуюся. Сделали некоторое количество таких ходов.
 - а) Мог ли в первой коробке оказаться 101 камень, во второй 106, в третьей 107, а в четвёртой 4?
 - б) Могло ли во второй коробке оказаться 318 камней?
 - в) Какое наибольшее число камней могло оказаться в первой коробке?

math100.ru
Ответы на тренировочные варианты 2310209-2310212 (профильный уровень) от 13.12.2023

	1	2	3	4	5	6	7	8	9	10	11	12
2310209	157	60	80	0,17	0,043	9	4,5	3	20	3	- 33	19
2310210	139	90	120	0,03	0,031	7	1,5	4	12	2	- 46	14
2310211	105	- 60	35	0,5	0,96	- 9	7	3	3000	18	11	40
2310212	125	- 65	42	0,25	0,84	- 8	5	2	4000	24	34	24

Критерии оценивания заданий с развёрнутым ответом

- 13
- а) Решите уравнение $5\sin 2x 5\sqrt{2}\sin x + 16\cos x 8\sqrt{2} = 0$.
- б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{7\pi}{2}; -2\pi\right]$.

Решение.

а) Преобразуем уравнение:

$$10\sin x \cos x - 5\sqrt{2}\sin x + 16\cos x - 8\sqrt{2} = 0;$$

$$(5\sin x + 8)(2\cos x - \sqrt{2}) = 0,$$

откуда следует, что $\cos x = \frac{\sqrt{2}}{2}$ или $\sin x = -\frac{8}{5}$.

Уравнение $\sin x = -\frac{8}{5}$ решений не имеет, а из уравнения $\cos x = \frac{\sqrt{2}}{2}$ получим

$$x = \pm \frac{\pi}{4} + 2\pi k$$
, $k \in \mathbb{Z}$.

б) C помощью числовой окружности отберём корни, принадлежащие отрезку $\left[-\frac{7\pi}{2};-2\pi\right]$.

Получим число $-\frac{9\pi}{4}$.

Ответ: a)
$$-\frac{\pi}{4} + 2\pi k$$
, $k \in \mathbb{Z}$; $\frac{\pi}{4} + 2\pi n$, $n \in \mathbb{Z}$; 6) $-\frac{9\pi}{4}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте а.	1
ИЛИ	
Получены неверные ответы из-за вычислительной ошибки, но при	
этом имеется верная последовательность всех шагов решения обоих	
пунктов: пункта a и пункта δ	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

© СтатГрад 2023-2024 уч. г.

- В правильной треугольной пирамиде SABC сторона основания AB равна 8, а боковое ребро SA равно 5. На рёбрах AB и SC отмечены точки L и N соответственно, причём AL: LB = SN: NC = 1:3. Плоскость α содержит прямую LN и параллельна прямой BC.
 - а) Докажите, что плоскость α параллельна прямой SA.
 - б) Найдите угол между плоскостями а и SBC.

Решение.

а) Пусть плоскость α пересекает ребро SB в точке M . Поскольку прямая BC параллельна плоскости α , прямые MN и BC параллельны, а значит,

$$SM:MB=SN:NC=AL:LB$$
.

Следовательно, прямые LM и SA параллельны. Таким образом, плоскость α , содержащая прямую LM, параллельна прямой SA.

б) Пусть точка H — середина ребра BC. Тогда медианы AH и SH треугольников ABC и SBC соответственно являются их высотами, а значит, плоскость ASH перпендикулярна прямой BC.

Следовательно, плоскость ASH перпендикулярна плоскости α , параллельной прямой BC, и плоскости SBC, содержащей прямую BC. Значит, искомый угол равен углу между прямой l, по которой пересекаются плоскости α и ASH, и прямой SH. Так как прямая l параллельна прямой AS, этот угол равен углу ASH или смежному с ним.

В треугольнике *ASH* имеем:

$$AS = 5$$
, $AH = 4\sqrt{3}$, $SH = \sqrt{SB^2 - BH^2} = \sqrt{SB^2 - \frac{BC^2}{4}} = 3$.

По теореме косинусов

$$\cos \angle ASH = \frac{SA^2 + SH^2 - AH^2}{2 \cdot SA \cdot SH} = \frac{25 + 9 - 48}{2 \cdot 5 \cdot 3} = -\frac{7}{15}$$

Ответ: б) $\arccos \frac{7}{15}$.

Содержание критерия					
Имеется верное доказательство утверждения пункта а, и	3				
обоснованно получен верный ответ в пункте δ					
Получен обоснованный ответ в пункте δ .	2				
ИЛИ					
Имеется верное доказательство утверждения пункта а, и при					
обоснованном решении пункта δ получен неверный ответ из-за					
арифметической ошибки					

© СтатГрад 2023-2024 уч. г.

Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки.	
И́ЛІЙ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, приведённых	0
выше	
Максимальный балл	3

Решите неравенство
$$\frac{x^3 - 64}{|x - 4|} - x|x - 4| \ge 0$$
.

Решение.

Преобразуем левую часть неравенства:

$$\frac{x^3 - 64 - x(x - 4)^2}{|x - 4|} \ge 0; \quad \frac{(x - 4)(x^2 + 4x + 16 - x^2 + 4x)}{|x - 4|} \ge 0;$$
$$\frac{8(x - 4)(x + 2)}{|x - 4|} \ge 0.$$

Отсюда получаем, что $x \le -2$ или x > 4.

Otbet: $(-\infty; -2], (4; +\infty).$

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Обоснованно получен ответ, отличающийся от верного	1
исключением точки – 2.	
ИЛИ	
Получен неверный ответ из-за вычислительной ошибки, но при	
этом имеется верная последовательность всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- В июле 2025 года планируется взять кредит в банке на сумму 600 тысяч рублей на 10 лет. Условия его возврата таковы:
 - в январе 2026, 2027, 2028, 2029 и 2030 годов долг возрастает на 20 % по сравнению с концом предыдущего года;
 - в январе 2031, 2032, 2033, 2034 и 2035 годов долг возрастает на 15 % по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить часть долга;
 - в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года;
 - к июлю 2035 года кредит должен быть полностью погашен.

Найдите общую сумму выплат после полного погашения кредита.

Решение.

3

По условию долг перед банком (в тысячах рублей) по состоянию на июль 2025–2035 годов должен уменьшаться до нуля следующим образом:

600; 540; 480; 420; 360; 300; 240; 180; 120; 60; 0.

В январе каждого года с 2026 по 2030 долг возрастает на 20 %, а в январе каждого года с 2031 по 2035 — на 15 %, значит, последовательность размеров долга (в тысячах рублей) в январе 2026—2035 годов такова:

720; 648; 576; 504; 432; 345; 276; 207; 138; 69.

Таким образом, выплаты (в тысячах рублей) должны быть следующими: 180; 168; 156; 144; 132; 105; 96; 87; 78; 69.

Значит, общая сумма выплат (в тысячах рублей) составит

180 + 168 + 156 + 144 + 132 + 105 + 96 + 87 + 78 + 69 = 1215.

Ответ: 1,215 млн рублей.

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Верно построена математическая модель	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- 17 Диагонали равнобедренной трапеции ABCD с основаниями AD и BC перпендикулярны. Окружность с диаметром AD пересекает боковую сторону CD в точке M, а окружность с диаметром CD пересекает основание AD в точке N. Отрезки AM и CN пересекаются в точке P.
 - а) Докажите, что точка $\,P\,$ лежит на диагонали $\,BD\,$ трапеции $\,ABCD\,$.
 - б) Найдите расстояние от точки P до боковой стороны AB, если BC = 3, AD = 21.

Решение.

а) Точка M лежит на окружности с диаметром AD, поэтому прямая AMперпендикулярна прямой CD, т. е. AM высота треугольника АСД. Аналогично CN — высота треугольника ACD. Пусть О — точка пересечения диагоналей трапеции. По условию задачи прямая DO перпендикулярна прямой AC, значит, DO — третья высота треугольника ACD. Высоты треугольника пересекаются Д в одной точке, следовательно, точка Pпересечения высот AM и CN лежит на прямой OD, а значит, на диагонали BD.

5

б) Точка N — основание высоты трапеции, опущенной на основание AD,

$$DN = \frac{1}{2}(AD - BC) = \frac{1}{2}(21 - 3) = 9$$
, $AN = \frac{1}{2}(AD + BC) = \frac{1}{2}(21 + 3) = 12$.

Трапеция равнобедренная, а её диагонали перпендикулярны, поэтому $\angle CAD = \angle ADB = 45^{\circ}$.

Значит,
$$BP = BC\sqrt{2} = 3\sqrt{2}$$
, $AO = \frac{AD}{\sqrt{2}} = \frac{21}{\sqrt{2}}$, $CN = AN = 12$.

По теореме Пифагора $AB = CD = \sqrt{DN^2 + CN^2} = \sqrt{12^2 + 9^2} = 15$.

Растояние от точки P до боковой стороны AB равно высоте PHтреугольника APB, опущенной на сторону AB, а так как AO также высота этого треугольника, получаем, что $AB \cdot PH = BP \cdot AO$.

Следовательно,
$$PH = \frac{BP \cdot AO}{AB} = \frac{3\sqrt{2} \cdot \frac{21}{\sqrt{2}}}{15} = \frac{21}{5} = 4,2$$
.

Ответ: б) 4.2.

Содержание критерия					
Имеется верное доказательство утверждения пункта a , и	3				
обоснованно получен верный ответ в пункте δ					
Получен обоснованный ответ в пункте δ .	2				
ИЛИ					
Имеется верное доказательство утверждения пункта а, и при					
обоснованном решении пункта δ получен неверный ответ из-за					
арифметической ошибки					

Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, приведённых	0
выше	
Максимальный балл	3

Найдите все значения a, при каждом из которых неравенство $2a(a+1)-3(a+1)(3^{x-1}-1) \le 3(x^2-4x)(3^{x-1}-1)-2ax^2+8ax$ имеет решения на промежутке [0;1).

Решение.

Рассмотрим неравенство как квадратное относительно a.

$$2a(a+1)-3(a+1)\left(3^{x-1}-1\right)-3\left(x^2-4x\right)\left(3^{x-1}-1\right)+2ax^2-8ax \le 0;$$
$$\left(2a-3\left(3^{x-1}-1\right)\right)\left(a+x^2-4x+1\right) \le 0.$$

графики функций $a = \frac{3^x - 3}{2}$ Изобразим

и $a = -x^2 + 4x - 1$ на плоскости xOa. Общие точки графиков — (0;-1) и (2;3), что можно проверить подстановкой их координат

в уравнения $a = \frac{3^{x}-3}{2}$ и $a = -x^{2} + 4x - 1$.

Больше двух точек быть не может в силу противоположной выпуклости данных кривых. На промежутке [0;1) решения неравенства есть

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений а,	3
отличающееся от искомого только включением точки $a=2$	
С помощью верного рассуждения получено множество значений	2
$-1 \le a \le 3$, возможно, не включая концы.	
ИЛИ	
Получен неверный ответ из-за вычислительной ошибки, но при	
этом верно выполнены все шаги решения	
Задача верно сведена к исследованию возможного значения корней	1
уравнения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

Есть четыре коробки: в первой коробке находятся 105 камней, во второй — 106, в третьей — 107, а в четвёртой коробке камней нет. За один ход берут по одному камню из любых трёх коробок, всего три камня, и кладут в оставшуюся. Сделали некоторое количество таких ходов.

- а) Мог ли в первой коробке оказаться 101 камень, во второй 106, в третьей 107, а в четвёртой 4?
- б) Могло ли во второй коробке оказаться 318 камней?
- в) Какое наибольшее число камней могло оказаться в первой коробке?

Решение.

- а) Пусть 2 раза из первых трёх коробок переложили камни в четвёртую. Тогда в первой коробке оказалось 103 камня, во второй 104 камня, в третьей 105 камней, а в четвёртой 6 камней. Если после этого переложить камни из первой, третьей и четвёртой коробок во вторую, то в первой коробок во окажется 102 камня, во второй 107, в третьей 104, а в четвёртой 5. Если после этого переложить камни из первой, второй и четвёртой коробок в третью, то в первой коробок во окажется 101 камень, во второй 106, в третьей 107, а в четвёртой 4.
- б) Если во второй коробке оказалось 318 камней, то в первой, в третьей и в четвёртой коробках не осталось камней.

Пусть в какой-то момент в коробках оказалось a, b, c и d камней соответственно. Тогда после одного хода в коробках могло оказаться либо a-1, b-1, c-1 и d+3 камня, либо a-1, b-1, c+3 и d-1 камень, либо a-1, b+3, c-1 и d-1 камень, либо a+3, b-1, c-1 и d-1 камень соответственно. Заметим, что разность между количествами камней в третьей и в первой коробках либо не изменилась, либо изменилась на a+1. Сначала разность количеств камней в третьей и в первой коробках равнялась a+1.

© СтатГрад 2023-2024 уч. г.

Следовательно, ни в какой момент она не могла стать равной 0. Значит, в этих двух коробках всегда разное число камней. Следовательно, во второй коробке не могло оказаться 318 камней.

в) Сначала разность количеств камней в любых двух коробках не делится на 4. Следовательно, ни в какой момент в двух коробках не могло оказаться одинаковое число камней. Значит, во второй, в третьей и в четвёртой коробках не меньше 0+1+2=3 камней суммарно, а в первой коробке не больше 315 камней.

Покажем, что в первой коробке могло оказаться 315 камней. Пусть 27 раз из первых трёх коробок переложили камни в четвёртую. Тогда в первой коробке оказалось 78 камней, во второй — 79, в третьей — 80, а в четвёртой — 81. Если после этого 79 раз переложить камни из второй, третьей и четвёртой коробок в первую, то в первой коробке окажется 315 камней, во второй — 0 камней, в третьей — 1 камень, а в четвёртой — 2 камня.

Ответ: а) да; б) нет; в) 315.

Содержание критерия	Баллы
Обоснованно получены верные ответы в пунктах a , δ и ϵ	4
Обоснованно получен верный ответ в пункте e , и обоснованно получен верный ответ в пункте e или f	3
Обоснованно получены верные ответы в пунктах а и б.	2
ИЛИ	
Обоснованно получен верный ответ в пункте в	
Обоснованно получен верный ответ в пункте a или δ	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4