Київський національний університет імені Тараса Шевченка радіофізичний факультет

Лабораторна робота № 3 **Тема:**

«Дослідження оптимізації коду з використанням векторних розширень CPU»

Роботу виконав студент 3 курсу Комп'ютерна Інженерія Стецюк Владислав

Хід роботи

1. Отримайте доступ на обчислювальний кластер для роботи з Intel Compiler

Certificate details

Distinguished name (DN): /C=UA/O=KNU/OU=People/L=FRECS/CN=Vladislav Stetsiuk

Serial number: DAC746B1B36BCFAC

Valid from: Wed, 10 Apr 2019 09:02:00

Valid to: Mon, 07 Oct 2019 09:02:00

Certificate type: Personal User Certificate

Certificate hash: e109bb6a

2. Завантажте файли Intel® C++ Compiler - Using Auto-Vectorization Tutorial (https://software.intel.com/en-us/product-code-samples?topic=20813) на свій комп'ютер та в домашню директорію користувача обчислювального кластеру.

```
KNU: :s3 [tb218 ~]$ wget https://software.intel.com/sites/default
/files/vec_samples_C_lin_20170911.tgz[]
```

```
[tb218@plus7 ~]$ tar -zxvf vec_samples_C_lin_20170911.tgz
./vec_samples/
./vec samples/license.txt
./vec samples/src/
./vec samples/src/Multiply.h
./vec samples/src/Driver.c
./vec_samples/src/Multiply.c
./vec samples/build.bat
./vec samples/vec samples 2017.sln
./vec samples/Makefile
[tb218@plus7 ~]$ cd vec_samples
[tb218@plus7 vec samples]$ ls
build.bat
                         vec samples 2013.sln
           msvs2017
license.txt readme.html vec samples 2015.sln
Makefile
                          vec samples 2017.sln
           resources
msvs2013
            src
msvs2015
            tutorial
```

3. Використовуючи інструкції в readme.html ознайомтесь та виконайте Tutorial на обчислювальному кластері.

```
KNU: :s3 [tb218 vec samples]$ ls
                         vec samples 2013.sln
             msvs2017
Makefile
build.bat
             readme.html
                         vec samples 2015.sln
license.txt resources
                         vec samples 2017.sln
msvs2013
             src
            tutorial
msvs2015
KNU: :s3 [tb218 vec samples]$ icc -O1 -std=c99 src/Multiply.c src
/Driver.c -o MatVector
KNU: :s3 [tb218 vec samples]$ ./MatVector
ROW:101 COL: 101
Execution time is 12.142 seconds
GigaFlops = 1.680282
Sum of result = 195853.999899
KNU: :s3 [tb218 vec samples]$ icc -std=c99 -02 -D NOFUNCCALL -qop
t-report=1 -qopt-report-phase=vec src/Multiply.c src/Driver.c -o M
atVector
icc: remark #10397: optimization reports are generated in *.optrpt
 files in the output location
KNU: :s3 [tb218 vec samples]$ ./MatVector
ROW:101 COL: 101
Execution time is 4.123 seconds
GigaFlops = 4.948244
Sum of result = 195853.999899
KNU: :s3 [tb218 vec samples]$ cat Multiply.optrpt
Intel(R) Advisor can now assist with vectorization and show optimi
zation
  report messages with your source code.
See "https://software.intel.com/en-us/intel-advisor-xe" for detail
S.
Begin optimization report for: matvec(int, int, double (*)[*], dou
ble *, double *)
    Report from: Vector optimizations [vec]
LOOP BEGIN at src/Multiply.c(37,5)
   remark #25460: No loop optimizations reported
   LOOP BEGIN at src/Multiply.c(49,9)
      remark #25460: No loop optimizations reported
   LOOP END
   LOOP BEGIN at src/Multiply.c(49,9)
```

```
KNU: :s3 [tb218 vec samples]$ icc -std=c99 -qopt-report=2 -qopt-r
eport-phase=vec -D NOALIAS src/Multiply.c src/Driver.c -o MatVecto
icc: remark #10397: optimization reports are generated in *.optrpt
files in the output location
KNU: :s3 [tb218 vec samples]$ ./MatVector
ROW: 101 COL: 101
Execution time is 8.315 seconds
GigaFlops = 2.453751
Sum of result = 195853.999899
KNU: :s3 [tb218 vec samples]$ cat Multiply.optrpt
Intel(R) Advisor can now assist with vectorization and show optimi
zation
  report messages with your source code.
See "https://software.intel.com/en-us/intel-advisor-xe" for detail
s.
Begin optimization report for: matvec(int, int, double (*)[*], dou
ble * restrict , double *)
   Report from: Vector optimizations [vec]
LOOP BEGIN at src/Multiply.c(37,5)
   remark #15542: loop was not vectorized: inner loop was already
vectorized
   LOOP BEGIN at src/Multiply.c(49,9)
   <Peeled loop for vectorization>
  LOOP END
   LOOP BEGIN at src/Multiply.c(49,9)
      remark #15300: LOOP WAS VECTORIZED
   LOOP END
   LOOP BEGIN at src/Multiply.c(49,9)
   <Alternate Alignment Vectorized Loop>
  LOOP END
   LOOP BEGIN at src/Multiply.c(49,9)
   <Remainder loop for vectorization>
   LOOP END
LOOP END
```

KNU: :s3 [tb218 vec_samples]\$ =>> PBS: job killed: walltime 1834
exceeded limit 1800

KNU: :s3 [tb218 vec_samples]\$ icc -std=c99 -qopt-report=4 -qopt-r
eport-phase=vec -D NOALIAS -D ALIGNED src/Multiply.c src/Driver.c
-o MatVector

icc: remark #10397: optimization reports are generated in *.optrpt files in the output location

KNU: :s3 [tb218 vec samples]\$ cat Multiply.optrpt

Intel(R) Advisor can now assist with vectorization and show optimi
zation

report messages with your source code.

See "https://software.intel.com/en-us/intel-advisor-xe" for detail s.

Intel(R) C Intel(R) 64 Compiler for applications running on Intel(
R) 64, Version 18.0.5.274 Build 20180823

Compiler options: -std=c99 -qopt-report=4 -qopt-report-phase=vec -D NOALIAS -D ALIGNED -o MatVector

Begin optimization report for: matvec(int, int, double (*)[*], dou
ble *__restrict__, double *)

Report from: Vector optimizations [vec]

LOOP BEGIN at src/Multiply.c(37,5)

remark #15542: loop was not vectorized: inner loop was already vectorized

LOOP BEGIN at src/Multiply.c(49,9)

remark #15388: vectorization support: reference a[i][j] has aligned access [src/Multiply.c(50,21)]

```
remark #15305: vectorization support: vector length 2
      remark #15399: vectorization support: unroll factor set to 4
      remark #15309: vectorization support: normalized vectorizati
on overhead 0.594
      remark #15300: LOOP WAS VECTORIZED
      remark #15448: unmasked aligned unit stride loads: 2
      remark #15475: --- begin vector cost summary ---
      remark #15476: scalar cost: 10
      remark #15477: vector cost: 4.000
      remark #15478: estimated potential speedup: 2.410
      remark #15488: --- end vector cost summary ---
  LOOP END
  LOOP BEGIN at src/Multiply.c(49,9)
  <Remainder loop for vectorization>
      remark #15388: vectorization support: reference a[i][j] has
aligned access [ src/Multiply.c(50,21) ]
      remark #15388: vectorization support: reference x[j] has ali
             [ src/Multiply.c(50,31) ]
      remark #15335: remainder loop was not vectorized: vectorizat
ion possible but seems inefficient. Use vector always directive or
 -vec-threshold0 to override
      remark #15305: vectorization support: vector length 2
      remark #15309: vectorization support: normalized vectorizati
on overhead 2.417
  LOOP END
LOOP END
```

KNU: :s1 [tb218 vec_samples]\$ icc -std=c99 -qopt-report=2 -qopt-r
eport-phase=vec -D NOALIAS -D ALIGNED -ipo src/Multiply.c src/Driv

er.c -o MatVector

```
KNU: :s1 [tb218 vec samples]$ cat ipo_out.optrpt
Intel(R) Advisor can now assist with vectorization and show optimi
zation
  report messages with your source code.
See "https://software.intel.com/en-us/intel-advisor-xe" for detail
s.
Begin optimization report for: main()
    Report from: Vector optimizations [vec]
LOOP BEGIN at src/Driver.c(152,16)
   remark #15542: loop was not vectorized: inner loop was already
vectorized
   LOOP BEGIN at src/Multiply.c(37,5) inlined into src/Driver.c(15
(9,9)
      remark #15542: loop was not vectorized: inner loop was alrea
dy vectorized
      LOOP BEGIN at src/Multiply.c(49,9) inlined into src/Driver.c
(150,9)
         remark #15300: LOOP WAS VECTORIZED
      LOOP END
      LOOP BEGIN at src/Multiply.c(49,9) inlined into src/Driver.c
(150,9)
      <Remainder loop for vectorization>
         remark #15335: remainder loop was not vectorized: vectori
zation possible but seems inefficient. Use vector always directive
```

```
LOOP BEGIN at src/Driver.c(74,5) inlined into src/Driver.c(159,5)
<Remainder loop for vectorization>
LOOP END
Begin optimization report for: init matrix(int, int, double, doubl
e (*)[102])
    Report from: Vector optimizations [vec]
LOOP BEGIN at src/Driver.c(47,5)
   remark #15542: loop was not vectorized: inner loop was already
vectorized
   LOOP BEGIN at src/Driver.c(48,9)
      remark #15300: LOOP WAS VECTORIZED
   LOOP END
   LOOP BEGIN at src/Driver.c(48,9)
   <Remainder loop for vectorization>
   LOOP END
LOOP END
LOOP BEGIN at src/Driver.c(53,9)
   remark #15300: LOOP WAS VECTORIZED
LOOP END
LOOP BEGIN at src/Driver.c(53,9)
<Remainder loop for vectorization>
LOOP END
-----
KNU: :s1 [tb218 vec samples]$ ./MatVector
ROW:101 COL: 102
Execution time is 3.995 seconds
GigaFlops = 5.107272
Sum of result = 195853.999899
```

4. Оберіть будь-яку неінтрерактивну консольну програму мовою C/C++ (унікальну в межах групи, в гуглі більше ніж 50 програм)

- а) Напишіть сценарій, що:
 - i) Компілює програму з різними оптимізаціями (-O) та виміряйте час її роботи. Якщо час досить малий вимірюйте час роботи 1000 (чи 1000000) запусків алгоритму в циклі. Час роботи можна виміряти утилітою time.
 - іі) Отримує перелік всіх розширень процесору що підтримуються
 - iii) Для кожного розширення компілює Intel-компілятором окремий варіант оптимізованого коду (наприклад -x SSE2)
 - іу) Вимірює час виконання кожного варіанта оптимізованої програми

```
:s1 [tb218 ~]$ cat date.c
#include <stdio.h>
int main()
 int daysInCurrentFebruary = 29;
int daysInJanuary = 31;
int daysInFebruary = daysInCurrentFebruary;
int daysInMarch = 31;
 int daysInApril = 30;
 int daysInMay = 31;
int daysInJune = 30;
int daysInJuly = 31;
 int daysInAugust = 31;
int daysInSeptember = 30;
int daysInOctober = 31;
int daysInNovember = 30;
int daysInNovember = 30;
int daysInDecember = 31;
int daysInFirstHalf = daysInJanuary + daysInFebruary + daysInMarch + daysInApril + daysInMay + daysInJune;
int daysInSecondHalf = daysInJuly + daysInAugust + daysInSeptember + daysInOctober + daysInNovember + daysInDecember;
printf("Days in the first half of the current year: %d\n", daysInFirstHalf);
printf("Days in the second half of the current year: %d\n", daysInSecondHalf);
printf("Days in the current year: %d\n", daysInFirstHalf + daysInSecondHalf);
return 0;
KNU: :s1 [tb218 ~]$
KNU: :s1 [tb218 ~]$ gcc date.c
KNU: :s1 [tb218 ~]$ ls
ITAC advisor compile
                               compiler_c
                                                date.c
                                                                 inspector ipsxe2019_samples_lin_20190327.tgz mkl
                                                                                                                                        tbb
a.out cluster_checker compiler_f index.html ipp
                                                                                licensing
                                                                                                                                 pstl vtune_amplifier
KNU: :s1 [tb218 ~]$ ./a.out
Days in the first half of the current year: 182
Days in the second half of the current year: 184
Days in the current year: 366
KNU:
               :s1 [tb218 ~]$ time gcc date.c
                    0m0.075s
real
                    0m0.019s
user
                    0m0.018s
Sys
               :s3 [tb218 ~]$ cat 1.sh
KNU:
#!/bin/bash
flags=( "sse4.2" "sse4.1" "sse3" "sse2" "ssse3" "avx" )
for i in "${flags[@]}"; do
                    for j in {1..3}; do
                                          gcc -O$j -m$i date.c -o Temp
                                       echo
                                       echo $i " " $i
                                       time `for i in {0..1000}; do ./Temp; done`
                    done
done
```

```
KNU: :s1 [tb218 ~]$ ./1.sh
sse4.2 1
./1.sh: line 10: Days: command not found
real 0m1.321s
user 0m0.200s
sys 0m1.111s
sse4.2 2
./1.sh: line 10: Days: command not found
real 0m1.400s
user 0m0.193s
sys 0m1.199s
sse4.2 3
./1.sh: line 10: Days: command not found
real 0m1.403s
user 0m0.156s
sys 0m1.237s
sse4.1
          1
./1.sh: line 10: Days: command not found
real
user
sys
          0m1.394s
          0m0.178s
          0m1.208s
```

```
ssse3 3
./1.sh: line 10: Days: command not found
real
user
sys
         0m0.908s
         0m0.313s
         0m0.588s
avx 1
./1.sh: line 10: Days: command not found
real 0m0.911s
user 0m0.297s
sys 0m0.606s
avx 2
./1.sh: line 10: Days: command not found
real 0m0.911s
user 0m0.309s
sys 0m0.595s
avx 3
./1.sh: line 10: Days: command not found
real
user
sys
         0m0.917s
         0m0.300s
         0m0.609s
```

	sse 4.2	sse 4.1	sse 3	sse 2	ssse 3	avx
01	1,321	1,394	0,938	0,909	0,910	0,911
02	1,400	1,406	0,911	0,909	0,911	0,911
03	1,403	1,090	0,912	0,909	0,908	0,917
Average	1,3746	1,2966	0,920	0,909	0,9096	0,913

b. Запустіть задачу **в планувальник** обчислювального кластеру 5 разів (для статистики на різних нодах)

```
[tb218@plus7 ~]$ qsub -N MyJob -l nodes=1:ppn=1,walltime=00:30:00
1.sh
2789321
[tb218@plus7 ~]$ qsub -N MyJob -l nodes=1:ppn=1,walltime=00:30:00
1.sh
2789322
```

Як бачимо з отриманих даних, найшвидше програма виконується у випадку компіляції з третім методом оптимізації та розширенням процесора sse2.

Висновок: У процесі виконання лабораторної роботи було проведена ознайомлення з обчислювальним кластером та методами оптимізації виконання програми на C/C++ . За результатами виконання було написано сценарії та звіт з відповідними скріншотами.