

100mW Stereo Headphone Amplifier

- Operating from Vcc=2V to 5.5V
- 100mW into 16Ω at 5V
- 38mW into 16Ω at 3.3V
- 11.5mW into 16Ωat 2V
- Switch ON/OFF click reduction circuitry
- High power supply rejection ratio: 85dB at 5V
- High signal-to-noise ratio: 110dB(A) at 5V
- High crosstalk immunity: 100dB (F=1kHz)
- Rail-to-rail input and output
- Unity-gain stable
- Available in SO-8, MiniSO-8 & DFN8

Description

The TS482 is a dual audio power amplifier able to drive a 16 or 32Ω stereo headset down to low voltages.

It is delivering up to 100mW per channel (into 16Ω loads) of continuous average power with 0.1% THD+N from a 5V power supply.

The unity gain stable TS482 can be configured by external gain-setting resistors.

Applications

- Stereo headphone amplifier
- Optical storage
- Computer motherboard
- PDA, organizers & notebook computers
- High-end TV, set-top box, DVD players
- Sound cards

Order Codes

Part Number	Temperature Range	Package	Packing	Marking
TS482ID/IDT		SO-8	Tube or Tape & Reel	
TS482IST	-40, +85°C	miniSO-8	Tape & Reel	4821
TS482IQT		DFN8	ιαρε α πεει	

 November 2005
 Rev 2

 1/26

1 Absolute Maximum Ratings

Table 1. Key parameters and their absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	V
V _i	Input Voltage	-0.3 to V _{CC} +0.3	V
T _{oper}	Operating Free Air Temperature Range	-40 to + 85	°C
T _{stg}	Storage Temperature	-65 to +150	°C
Tj	Maximum Junction Temperature	150	°C
R _{thja}	Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8	175 215 70	°C/W
Pd	Power Dissipation ⁽²⁾ SO-8 MiniSO-8 DFN8	0.71 0.58 1.79	W
ESD	Human Body Model (pin to pin)	2	kV
ESD	Machine Model - 220pF - 240pF (pin to pin)	200	V
Latch-up	Latch-up Immunity (all pins)	200	mA
	Lead Temperature (soldering, 10sec)	250	°C
	Lead Temperature (soldering, 10sec) for lead-free	260	°C
	Output Short-Circuit Duration	see note ⁽³⁾	

^{1.} All voltages values are measured with respect to the ground pin.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	2 to 5.5	V
R_{L}	Load Resistor	>= 16	Ω
CL	Load Capacitor $R_L = 16 \text{ to } 100\Omega$ $R_L > 100\Omega$	400 100	pF
Vicm	Common Mode Input Voltage Range	G _{ND} to V _{CC}	V
R _{thja}	Thermal Resistance Junction to Ambient SO-8 MiniSO-8 DFN8 ⁽¹⁾	150 190 41	°C/W

^{1.} When mounted on a 4-layer PCB.

^{2.} Pd has been calculated with Tamb = 25°C, Tjunction = 150°C.

^{3.} Attention must be paid to continuous power dissipation. Exposure of the IC to a short circuit on one or two amplifiers simultaneously can cause excessive heating and the destruction of the device.

2 Electrical Characteristics

Table 3. Electrical characteristics when V_{CC} = +5V, GND = 0V, T_{amb} = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply Current No input signal, no load		5.5	7.2	mA
V _{IO}	Input Offset Voltage (V _{ICM} = V _{CC} /2)		1	5	mV
I _{IB}	Input Bias Current (V _{ICM} = V _{CC} /2)		200	500	nA
Po	Output Power $THD+N=0.1\% \ Max, \ F=1kHz, \ R_L=32\Omega$ $THD+N=1\% \ Max, \ F=1kHz, \ R_L=32\Omega$ $THD+N=0.1\% \ Max, \ F=1kHz, \ R_L=16\Omega$ $THD+N=1\% \ Max, \ F=1kHz, \ R_L=16\Omega$	60 95	65 67.5 100 107		mW
THD + N	Total Harmonic Distortion + Noise (A_v =-1) ⁽¹⁾ $R_L = 32\Omega, P_{out} = 60 \text{mW}, \ 20 \text{Hz} \le 20 \text{kHz}$ $R_L = 16\Omega, P_{out} = 90 \text{mW}, \ 20 \text{Hz} \le 20 \text{kHz}$		0.03 0.03		%
PSRR	Power Supply Rejection Ratio ($A_v=1$), inputs floating $F=100Hz$, $Vripple=100mVpp$		85		dB
I _O	Max Output Current THD +N < 1%, R_L = 16 Ω connected between out and $V_{CC}/2$	106	120		mA
Vo	Output Swing $V_{OL} \colon R_L = 32\Omega$ $V_{OH} \colon R_L = 32\Omega$ $V_{OL} \colon R_L = 16\Omega$ $V_{OH} \colon R_L = 16\Omega$	4.45 4.2	0.4 4.6 0.55 4.4	0.48 0.65	V
SNR	Signal-to-Noise Ratio (Filter Type A, A_v =-1) $R_L = 32\Omega$, THD +N < 0.2%, 20Hz \leq F \leq 20kHz	95	110		dB
Crosstalk	Channel Separation, $R_L = 32\Omega$ $F = 1 \text{kHz}$ $F = 20 \text{Hz to } 20 \text{kHz}$ $\text{Channel Separation, } R_L = 16\Omega$ $F = 1 \text{kHz}$ $F = 20 \text{Hz to } 20 \text{kHz}$		100 80 100 80		dB
C _I	Input Capacitance		1		pF
GBP	Gain Bandwidth Product ($R_L = 32\Omega$)	1.35	2.2		MHz
SR	Slew Rate, Unity Gain Inverting ($R_L = 16\Omega$)	0.45	0.7		V/µs

^{1.} Fig. 68 to 79 show dispersion of these parameters.

Table 4. Electrical characteristics when V_{CC} = +3.3V, GND = 0V, T_{amb} = 25°C (unless otherwise specified) ⁽¹⁾

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply Current No input signal, no load		5.3	7.2	mA
V _{IO}	Input Offset Voltage (V _{ICM} = V _{CC} /2)		1	5	mV
I _{IB}	Input Bias Current (V _{ICM} = V _{CC} /2)		200	500	nA
Po	Output Power $THD+N=0.1\% \ Max, \ F=1kHz, \ R_L=32\Omega$ $THD+N=1\% \ Max, \ F=1kHz, \ R_L=32\Omega$ $THD+N=0.1\% \ Max, \ F=1kHz, \ R_L=16\Omega$ $THD+N=1\% \ Max, \ F=1kHz, \ R_L=16\Omega$	23 36	27 28 38 42		mW
THD + N	Total Harmonic Distortion + Noise $(A_v=-1)^{(1)}$ $R_L = 32\Omega$, $P_{out} = 16mW$, $20Hz \le F \le 20kHz$ $R_L = 16\Omega$, $P_{out} = 35mW$, $20Hz \le F \le 20kHz$		0.03 0.03		%
PSRR	Power Supply Rejection Ratio ($A_v=1$), inputs floating $F=100Hz$, $Vripple=100mVpp$		80		dB
I _O	Max Output Current $THD \ +N < 1\%, \ R_L = 16\Omega \ connected \ between \ out \ and \ V_{CC}/2$	64	75		mA
Vo	Output Swing $V_{OL} \colon R_L = 32\Omega$ $V_{OH} \colon R_L = 32\Omega$ $V_{OL} \colon R_L = 16\Omega$ $V_{OH} \colon R_L = 16\Omega$	2.85 2.68	0.3 3 0.45 2.85	0.38 0.52	V
SNR	Signal-to-Noise Ratio (Filter Type A, A_V =-1) $R_L = 32\Omega$, THD +N < 0.2%, 20Hz \leq F \leq 20kHz	92	107		dB
Crosstalk	Channel Separation, $R_L = 32\Omega$ F = 1 kHz F = 20 Hz to $20 kHzChannel Separation, R_L = 16\OmegaF = 1 kHzF = 20 Hz$ to $20 kHz$		100 80 100 80		dB
CI	Input Capacitance		1		pF
GBP	Gain Bandwidth Product ($R_L = 32\Omega$)	1.2	2		MHz
SR	Slew Rate, Unity Gain Inverting ($R_L = 16\Omega$)	0.45	0.7		V/µs

^{1.} Fig. 68 to 79 show dispersion of these parameters.

^{1.} All electrical values are guaranteed with correlation measurements at 2V and 5V.

Table 5. Electrical characteristics when V_{CC} = +2.5V, GND = 0V, T_{amb} = 25°C (unless otherwise specified)⁽²⁾

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply Current No input signal, no load		5.1	7.2	mA
V _{IO}	Input Offset Voltage (V _{ICM} = V _{CC} /2)		1	5	mV
I _{IB}	Input Bias Current (V _{ICM} = V _{CC} /2)		200	500	nA
Po	Output Power $THD+N=0.1\%\ Max,\ F=1kHz,\ R_L=32\Omega$ $THD+N=1\%\ Max,\ F=1kHz,\ R_L=32\Omega$ $THD+N=0.1\%\ Max,\ F=1kHz,\ R_L=16\Omega$ $THD+N=1\%\ Max,\ F=1kHz,\ R_L=16\Omega$	12.5 17.5	13.5 14.5 20.5 22		mW
THD + N	Total Harmonic Distortion + Noise $(A_v=-1)^{(1)}$ $R_L = 32\Omega$, $P_{out} = 10$ mW, 20 Hz $\leq F \leq 20$ kHz $R_L = 16\Omega$, $P_{out} = 16$ mW, 20 Hz $\leq F \leq 20$ kHz		0.03 0.03		%
PSRR	Power Supply Rejection Ratio ($A_v=1$), inputs floating $F=100Hz$, $Vripple=100mVpp$		75		dB
I _O	Max Output Current THD +N < 1%, R_L = 16 Ω connected between out and $V_{CC}/2$	45	56		mA
V _O	Output Swing $V_{OL} \colon R_L = 32\Omega$ $V_{OH} \colon R_L = 32\Omega$ $V_{OL} \colon R_L = 16\Omega$ $V_{OH} \colon R_L = 16\Omega$	2.14 1.97	0.25 2.25 0.35 2.15	0.325 0.45	V
SNR	Signal-to-Noise Ratio (Filter Type A, A_V =-1) $R_L = 32\Omega$, THD +N < 0.2%, 20Hz \leq F \leq 20kHz	89	102		dB
Crosstalk	Channel Separation, $R_L=32\Omega$ $F=1kHz$ $F=20Hz \ to \ 20kHz$ Channel Separation, $R_L=16\Omega$ $F=1kHz$ $F=20Hz \ to \ 20kHz$		100 80 100 80		dB
C _I	Input Capacitance		1		pF
GBP	Gain Bandwidth Product ($R_L = 32\Omega$)	1.2	2		MHz
SR	Slew Rate, Unity Gain Inverting ($R_L = 16\Omega$)	0.45	0.7		V/µs

^{1.} Fig. 68 to 79 show dispersion of these parameters.

^{2.} All electrical values are guaranteed with correlation measurements at 2V and 5V.

Table 6. Electrical characteristics when $V_{CC} = +2V$, GND = 0V, $T_{amb} = 25$ °C (unless otherwise specified)

Symbol	Parameter Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply Current No input signal, no load		5	7.2	mA
V _{IO}	Input Offset Voltage (V _{ICM} = V _{CC} /2)		1	5	mV
I _{IB}	Input Bias Current (V _{ICM} = V _{CC} /2)		200	500	nA
Po	Output Power $THD+N=0.1\% \ Max, \ F=1kHz, \ R_L=32\Omega$ $THD+N=1\% \ Max, \ F=1kHz, \ R_L=32\Omega$ $THD+N=0.1\% \ Max, \ F=1kHz, \ R_L=16\Omega$ $THD+N=1\% \ Max, \ F=1kHz, \ R_L=16\Omega$	7 9.5	8 9 11.5 13		mW
THD + N	Total Harmonic Distortion + Noise $(A_v=-1)^{(1)}$ $R_L = 32\Omega$, $P_{out} = 6.5$ mW, 20 Hz $\leq F \leq 20$ kHz $R_L = 16\Omega$, $P_{out} = 8$ mW, 20 Hz $\leq F \leq 20$ kHz		0.02 0.025		%
PSRR	Power Supply Rejection Ratio ($A_v=1$), inputs floating $F=100Hz$, $Vripple=100mVpp$		75		dB
I _O	Max Output Current THD +N < 1%, $R_L = 16\Omega$ connected between out and $V_{CC}/2$	33	41.5		mA
Vo	Output Swing $V_{OL}: R_L = 32\Omega$ $V_{OH}: R_L = 32\Omega$ $V_{OL}: R_L = 16\Omega$ $V_{OH}: R_L = 16\Omega$	1.67 1.53	0.24 1.73 0.33 1.63	0.295	V
SNR	Signal-to-Noise Ratio (Filter Type A, A_v =-1) $R_L = 32\Omega$, THD +N < 0.2%, 20Hz \leq F \leq 20kHz	88	101		dB
Crosstalk	Channel Separation, $R_L = 32\Omega$ F = 1 kHz F = 20 Hz to $20 kHzChannel Separation, R_L = 16\OmegaF = 1 kHzF = 20 Hz$ to $20 kHz$		100 80 100 80		dB
CI	Input Capacitance		1		pF
GBP	Gain Bandwidth Product ($R_L = 32\Omega$)	1.2	2		MHz
SR	Slew Rate, Unity Gain Inverting (R _L = 16Ω)	0.42	0.65		V/µs

^{1.} Fig. 68 to 79 show dispersion of these parameters.

Table 7. Components description

Components	Functional Description
Rin	Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = $1 / (2 \times Pi \times Rin \times Cin)$)
Cin	Input coupling capacitor which blocks the DC voltage at the amplifier input terminal
Rfeed	Feed back resistor which sets the closed loop gain in conjunction with Rin
Cs	Supply Bypass capacitor which provides power supply filtering
Cb	Bypass capacitor which provides half supply filtering
Cout	Output coupling capacitor which blocks the DC voltage at the load input terminal This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x Cout))
Rpol	These 2 resistors form a voltage divider which provide a DC biasing voltage (Vcc/2) for the 2 amplifiers.
Av	Closed loop gain = -Rfeed / Rin

Table 8. Index of graphics

Description	Figure	Page
Open loop gain and phase vs. frequency response	Figure 1 to 10	Page 9 to 10
Phase and Gain Margin vs. Power Supply Voltage	Figure 11 to 20	Page 10 to 12
Output power vs. power supply voltage	Figure 21 to 23	Page 12
Output power vs. load resistance	Figure 24 to 27	Page 12 to 13
Power dissipation vs. output power	Figure 28 to 31	Page 13 to 14
Power derating vs. ambient temperature	Figure 32	Page 14
Current consumption vs. power supply voltage	Figure 33	Page 14
Power supply rejection ratio vs. frequency	Figure 34	Page 14
THD + N vs. output power	Figure 35 to 49	Page 14 to 17
THD + N vs. frequency	Figure 50 to 54	Page 17
Signal to noise ratio	Figure 55 to 58	Page 18
Equivalent input noise voltage vs. frequency	Figure 59	Page 18
Output voltage swing vs. power supply	Figure 60	Page 18
Crosstalk vs. frequency	Figure 61 to 65	Page 19
Lower cut off frequency vs. output capacitor	Figure 66	Page 19
Lower cut off frequency vs. input capacitor	Figure 67	Page 20
Typical distribution of TDH + N	Figure 68 to 79	Page 20 to 22

Figure 1. Open loop gain and phase vs. frequency response

Figure 2. Open loop gain and phase vs. frequency response

Figure 3. Open loop gain and phase vs. frequency response

Figure 4. Open loop gain and phase vs. frequency response

Figure 5. Open loop gain and phase vs. frequency response

Figure 6. Open loop gain and phase vs. frequency response

Figure 7. Open loop gain and phase vs. frequency response

Figure 8. Open loop gain and phase vs. frequency response

Figure 9. Open loop gain and phase vs. frequency response

Figure 10. Open loop gain and phase vs. frequency response

Figure 11. Phase margin vs. power supply voltage Figure 12. Phase margin vs. power supply voltage

Figure 13. Phase margin vs. power supply voltage Figure 14. Gain margin vs. power supply voltage

Figure 15. Phase margin vs. power supply voltage Figure 16. Gain margin vs. power supply voltage

Figure 17. Phase margin vs. power supply voltage Figure 18. Gain margin vs. power supply voltage

Figure 19. Phase margin vs. power supply voltage Figure 20. Gain margin vs. power supply voltage

Figure 21. Output power vs. power supply voltage Figure 22. Output power vs. power supply voltage

Figure 23. Output power vs. power supply voltage Figure 24. Output power vs. load resistance

Figure 25. Output power vs. load resistance

Figure 26. Output power vs. load resistance

Figure 27. Output power vs. load resistance

Figure 28. Power dissipation vs. output power

Figure 29. Power dissipation vs. output power Figure 30. Power dissipation vs. output power

125

Figure 31. Power dissipation vs. output power Figure 32. Power derating vs. ambient temperature

Figure 33. Current consumption vs. power supply voltage

Figure 34. Power supply rejection ratio vs. frequency

Figure 35. THD + N vs. output power

10
RL = 8Ω
F = 20Hz
Av = -1
BW < 125kHz
Tamb = 25°C
Vcc=2.6V
Vcc=3.3V
Vcc=5V

O.01
10
Output Power (mW)

Figure 36. THD + N vs. output power

Figure 37. THD + N vs. output power

Figure 38. THD + N vs. output power

Figure 39. THD + N vs. output power

Figure 40. THD + N vs. output power

Figure 41. THD + N vs. output power

Figure 42. THD + N vs. output power

Figure 43. THD + N vs. output power

Figure 44. THD + N vs. output power

Figure 45. THD + N vs. output power

Figure 46. THD + N vs. output power

Figure 47. THD + N vs. output power

Figure 48. THD + N vs. output power

57

Figure 49. THD + N vs. output power

Figure 50. THD + N vs. frequency

Figure 51. THD + N vs. frequency

Figure 52. THD + N vs. frequency

Figure 53. THD + N vs. frequency

Figure 54. THD + N vs. frequency

Figure 55. Signal to noise ratio vs. power supply with unweighted filter (20Hz to 20kHz)

Figure 56. Signal to noise ratio vs. power supply with unweighted filter (20Hz to 20kHz)

110 Av = -1 108 THD+N < 0.2% Tamb = 25°C 106 Signal to Noise Ratio (dB) 104 102 RL=600Ω 100 98 96 94 92 90 E 2.0 2.5 3.5 3.0 4.0 4.5 5.0 Power Supply (V)

Figure 57. Signal to noise ratio vs. power supply with A weighted filter

Figure 58. Signal to noise ratio vs. power supply with A weighted filter

Figure 59. Equivalent input noise voltage vs. frequency

Figure 60. Output voltage swing vs. power supply

Figure 61. Crosstalk vs. frequency

100 80 ChB to ChA Crosstalk (dB) ChA to ChB 60 RL=8Ω 40 Vcc=5V Pout=100mW Av=-1 20 Bw < 125kHz Tamb=25°C 10000 20k 20 1000

Frequency (Hz)

Figure 62. Crosstalk vs. frequency

Figure 63. Crosstalk vs. frequency

Figure 64. Crosstalk vs. frequency

Figure 65. Crosstalk vs. frequency

Figure 66. Lower cut off frequency vs. output capacitor

Figure 67. Lower cut off frequency vs. input capacitor

Figure 68. Typical distribution of TDH + N

Figure 69. Best case distribution of THD + N

Figure 70. Worst case distribution of THD + N

Figure 71. Typical distribution of TDH + N

Figure 72. Best case distribution of THD + N

Figure 73. Worst case distribution of THD + N Figure 74. Typical distribution of TDH + N

Figure 75. Best case distribution of THD + N Figure 76. Worst case distribution of THD + N

Figure 77. Typical distribution of TDH + N

Figure 78. Best case distribution of THD + N

Figure 79. Worst case distribution of THD + N

3 Package Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

3.1 SO-8 Package

SO-8 MECHANICAL DATA

DIM.		mm.			inch	
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.04		0.010
A2	1.10		1.65	0.043		0.065
В	0.33		0.51	0.013		0.020
С	0.19		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
E	3.80		4.00	0.150		0.157
е		1.27			0.050	
Н	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k	8° (max.)					
ddd			0.1			0.04

3.2 MiniSO-8 Package

miniSO-8 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.1			0.043
A1	0.05	0.10	0.15	0,002	0,004	0.006
A2	0.78	0.86	0.94	0,031	0,031	0,037
b	0.25	0.33	0.40	0.010	0.13	0.013
С	0.13	0.18	0.23	0.005	0.007	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
E	4.75	4.90	5.05	0.187	0.193	0.199
E1	2.90	3.00	3.10	.0114	0.118	0.122
е		0.65			0.026	
К	0°		6°	0°		6°
L	0.40	0.55	0.70	0.016	0.022	0.028
L1			0.10			0.004

3.3 DFN8 Package

DFN8 (3x3) MECHANICAL DATA

DIM.	mm.			inch		
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	0.80	0.90	1.00	31.5	35.4	39.4
A1		0.02	0.05		0.8	2.0
A2		0.70			27.6	
А3		0.20			7.9	
b	0.18	0.23	0.30	7.1	9.1	11.8
D	2.875	3.00	3.125		118.1	
D2	2.23	2.38	2.48	87.8	93.7	97.7
E	2.875	3.00	3.125		118.1	
E2	1,49	1.64	1,74	58.7	64,6	68,5
е		0.50			19.7	
L	0.30	0.40	0.50	11.8	15.7	19.7

Revision history TS482

4 Revision history

Date	Revision	Changes
June 2003	1	Initial release.
Nov. 2005	2	The following changes were made in this revision: - Lead temperature for lead-free added see <i>Table 1: Key parameters</i> and their absolute maximum ratings on page 2. - Formatting changes throughout.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners

 $\hbox{@ 2005 STM}{}$ icroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

