chapter 10

Simple Linear Regression and Correlation Analysis

1. Plot scatter plot เพื่อดูความสัมพันธ์ของตัวแปร X และตัวแปร Y

2. หาตัวแบบความสัมพันธ์ โดยวิธี OLS $Y = \beta_0 + \beta_1 X_i + \mathcal{E}_i$; i = 1, 2, n (10.1)

โดย Y_i คือ ตัวแปรตาม (Dependent variable)

 X_i คือ ตัวแปรอิสระ (Independent variable)

 $oldsymbol{eta}_0$ คือ ระยะตัดแกน Y หรือ Y - intercept

 $oldsymbol{eta}_{\!\scriptscriptstyle 1}$ คือ ความชั้นของเส้นถดถอย ซึ่งเป็นค่าที่แสดงอัตราการเปลี่ยนแปลงของ Yเมื่อ Xเปลี่ยนไป 1 หน่วย

3. หาตัวประมาณแบบจุด

3.1 ค่า พารามิเตอร์ $oldsymbol{eta}_{\!\scriptscriptstyle 1}$ = $b_{\scriptscriptstyle 1}$ และ $oldsymbol{eta}_{\!\scriptscriptstyle O}$ = $b_{\scriptscriptstyle O}$

$$b_0 = \overline{Y} - b_1 \overline{X}$$

$$b_{1} = \frac{n \sum_{i=1}^{n} X_{i} Y_{i} - (\sum_{i=1}^{n} X_{i})(\sum_{i=1}^{n} Y_{i})}{n \sum_{i=1}^{n} X_{i}^{2} - (\sum_{i=1}^{n} X_{i})^{2}}$$
(10.10)

ตัวอย่าง 1 ฝ่ายวิจัยของบริษัทแห่งหนึ่ง ต้องการหาความสัมพันธ์ระหว่างค่าโฆษณากับ ยอดขาย เพื่อพยากรณ์ยอดขายเดือนหน้า ถ้ากำหนดค่าโฆษณาในเดือนหน้าเป็น 450,000 บาท จึงใช้ข้อมูลค่าโฆษณาและยอดขายรายเดือนของปีที่ผ่านมาดังนี้

เดือนที่	โฆษณา (แสนบาท): X	ยอดขาย (ล้านบาท): Y
1	0.8	22
2	1.0	28
3	1.6	22
4	2.0	26
5	2.2	34
6	2.6	18
7	3.0	30
8	3.0	38
9	4.0	30
10	4.0	40
11	4.0	50
12	4.6	60

วิธีทำ จาก ตัวอย่างที่ 1

$$\sum X = 32.8$$

$$\sum Y = 398$$

$$\sum X^2 = 106.96$$

$$\sum Y^2 = 14,852$$

$$\sum XY = 1214.4$$

- สมการพยากรณ์คือ
- 🕨 ถ้างบโฆษณาเป็น 450,000 คือ 4.5 แสนบาท

 $n\sum_{i=1}^{n}X_{i}Y_{i}-(\sum_{i=1}^{n}X_{i})(\sum_{i=1}^{n}Y_{i})$

 $\frac{i=1}{n\sum_{i=1}^{n}X_{i}^{2}-\left(\sum_{i=1}^{n}X_{i}\right)^{2}}$

- ▶ อธิบายความหมาย b₀
- ightharpoonup อธิบายความหมาย b_1

$$2. b_0 = \overline{Y} - b_1 \overline{X}$$

3.2 ค่าความแปรปรวน (σ² ⇒ ทำการประมาณโดยค่าความแปรปรวนของ ตัวอย่าง

$$S^{2} = \frac{\sum Y_{i}^{2} - b_{0} \sum Y_{i} - b_{1} \sum X_{i} Y_{i}}{n - 2}$$

ดังนั้นจะได้ความคลาดเคลื่อนมาตรฐานในการประมาณค่าคือ $s=\sqrt{s^2}$

4. หาตัวประมาณแบบช่วง

4.1 ค่า พารามิเตอร์ $oldsymbol{eta}_{\scriptscriptstyle 1}$ และ $oldsymbol{eta}_{\scriptscriptstyle 0}$

ช่วงความเชื่อมั่นของ (1-lpha)100% ของ $oldsymbol{eta}_{\!\scriptscriptstyle 0}$ คือ

$$b_0 \pm t_{\alpha/2,(n-2)} S_{b_0}$$
 $\dot{B}_0 = \sqrt{\frac{S^2 \sum X_i^2}{n(\sum X_i^2 - n\overline{X}^2)}}$

ช่วงความเชื่อมั่นของ (1-lpha)100% ของ $oldsymbol{eta}_{\!\scriptscriptstyle 1}$ คือ

$$b_1 \pm t_{\alpha/2}$$
, $(n-2)$ S_{b_1} $i \hat{b}_0$ $S_{b_1} = \sqrt{\frac{S^2}{(\sum X_i^2 - n\overline{X}^2)}}$

5. ทดสอบสมมติฐานของพารามิเตอร์ $oldsymbol{eta}_1$ และ $oldsymbol{eta}_0$ ว่าควรนำไปใช้ประมาณสมการ ถดถอยหรือไม่ สามารถทำได้ 2 วิธี คือ ใช้ตัวสถิติ $\mathfrak t$ หรือใช้ ANOVA

$$H_0: eta_0 = 0$$
 $t = \frac{b_0 - eta_0}{S_{b_0}} = \frac{b_0}{S_{b_0}}$; $df = n-2$ ប្រឹត្តិខេត្ត $H_0: eta_1 = 0$ $t = \frac{b_0 - eta_0}{S_{b_0}} = \frac{b_0}{S_{b_0}}$; $df = n-2$ $H_0: eta_1 = 0$ $t = \frac{b_1 - eta_1}{S_b} = \frac{b_1}{S_b}$; $df = n-2$

ปេฏิเสธ H_0 $t < -t_{\alpha,n-2}$ หรือ $t > t_{\alpha,n-2}$

ตัวอย่างที่ 2 จากตัวอย่าง 1 จงทำการทดสอบว่าค่าโฆษณากับยอดขาย มีความสัมพันธ์กันหรือไม่ที่ระดับนัยสำคัญ 0.05

 $S = \sqrt{S^2}$

และหาช่วงเชื่อมั่น 95% ของ $oldsymbol{eta_1}$

$$b_1 \pm t_{\alpha/2,(n-2)} S_{b_1}$$

$$S_{b_1} = \sqrt{\frac{S^2}{(\sum X_i^2 - n\overline{X}^2)}}$$

หาความคลาดเคลื่อนมาตรฐานการประมาณค่า

$$S^{2} = \frac{\sum Y_{i}^{2} - b_{0} \sum Y_{i} - b_{1} \sum X_{i} Y_{i}}{n - 2}$$

$$\sum X = 32.8$$

$$\sum Y = 398$$

$$\sum X^{2} = 106.96$$

$$\sum Y^{2} = 14,852$$

$$\sum XY = 1214.4$$

ตัวอย่างที่ 2 (ต่อ) จากตัวอย่าง 1 หาช่วงเชื่อมั่น 95% ของ $oldsymbol{eta_1}$

$$b_1 \pm t_{\alpha/2}, (n-2) S_{b_1}$$
 $S_{b_1} = \sqrt{\frac{S^2}{(\sum X_i^2 - n\overline{X}^2)}}$

$$\sum X = 32.8$$

$$\sum Y = 398$$

$$\sum X^{2} = 106.96$$

$$\sum Y^{2} = 14,852$$

$$\sum XY = 1214.4$$

6. ช่วงเชื่อมั่นสำหรับค่าเฉลี่ยและค่าพยากรณ์

นำมาใช้ในการประมาณค่าแบบช่วงได้ 2 แบบคือ การประมาณค่าเฉลี่ย(mean value)ของ Y ทั้งหมด $(\mu_{Y,X})$ เมื่อกำหนดค่า X มาให้ เช่นกำหนด $X=X_0$ และการประมาณค่า Y แต่ละค่า (Individual value) เมื่อกำหนดค่า $X=X_0$

ช่วงความเชื่อมั่นสำหรับค่าเฉลี่ยของ Yเมื่อกำหนดค่า X= X

ช่วงความเชื่อมั่น (1- $oldsymbol{lpha}$)100% ของ $oldsymbol{\mu}_{Y,X}$ เมื่อกำหนดค่าX= X_0 คือ

$$\hat{Y} \pm t_{\alpha/2, n-2} S_{\hat{Y}_0}$$
 (10.26)

$$\vec{S}_{\hat{Y}_{0}}^{2} = S^{2} \left[\frac{1}{n} + \frac{(X_{0} - \overline{X})^{2}}{\sum X_{i}^{2} - n\overline{X}^{2}} \right] \vec{S}_{\hat{Y}_{0}}^{2} = \sqrt{S^{2} \left[\frac{1}{n} + \frac{(X_{0} - \overline{X})^{2}}{\sum X_{i}^{2} - n\overline{X}^{2}} \right]}$$

ช่วงความเชื่อมั่นสำหรับค่าพยากรณ์ของ $m{Y}$ เมื่อกำหนดค่า $m{X}$ = $m{X}_0$

ช่วงความเชื่อมั่น (1-lpha)100% ของ Y เมื่อกำหนดค่า $X=X_0$ คือ

$$\hat{Y} \pm t_{\alpha/2, n-2} S_{Y_0}$$
 (10.27)

เมื่อ
$$S_{Y_0}^2 = S^2 + S_{\hat{Y_0}}^2$$
 ฉะนั้น $S_{Y_0} = \sqrt{S^2 \left[1 + \frac{1}{n} + \frac{\left(X_0 - \overline{X}\right)^2}{\sum X_i^2 - n\overline{X}^2}\right]}$

ตัวอย่างที่ 3 จากตัวอย่าง 1 ถ้าผู้จัดการต้องการ**ประมาณช่วงเชื่อมั่นของยอดขายเฉลี่ย เมื่อกำหนดให้** ค่าโฆษณาเป็น 250,000 บาท ที่ระดับความเชื่อมั่น 95%

$$S^{2} = \frac{\sum Y_{i}^{2} - b_{0} \sum Y_{i} - b_{1} \sum X_{i} Y_{i}}{n - 2}$$

$$S_{\hat{Y}_0} = \sqrt{S^2 \left[\frac{1}{n} + \frac{(X_0 - \overline{X})^2}{\sum X_i^2 - n\overline{X}^2} \right]}$$

$$\hat{Y} \pm t_{\alpha/2, n-2} S_{\hat{Y}_0}$$

ตัวอย่างที่ 4 จากตัวอย่าง 1 ถ้าผู้จัดการต้องการ**ประมาณช่วงเชื่อมั่นค่าพยากรณ์ยอดขาย** เมื่อกำหนดให้ค่าโฆษณา

เป็น 250,000 บาท ที่ระดับความเชื่อมั่น 95%

$$\hat{Y} \pm t_{\alpha/2, n-2} S_{Y_0}$$

$$S_{Y_0} = \sqrt{S^2 \left[1 + \frac{1}{n} + \frac{(X_0 - \overline{X})^2}{\sum X_i^2 - n\overline{X}^2} \right]} \longrightarrow S_{Y_0}^2 = S^2 + S_{\hat{Y}_0}^2$$

สัมประสิทธิ์การตัดสินใจ (Coefficient of Determination)

$$R^{2} = \frac{(n\sum X_{i}Y_{i} - (\sum X_{i})(\sum Y_{i}))^{2}}{(n\sum X_{i}^{2} - (\sum X_{i})^{2})(n\sum Y_{i}^{2} - (\sum Y_{i})^{2})} \qquad (0 \le R^{2} \le 1)$$

- ถ้า R^2 มีค่าเข้าใกล้ 1 หมายความว่า X สามารถอธิบายการเปลี่ยนแปลงของ Y ได้ดี เนื่องจาก X และ Y มีความสัมพันธ์กันมาก หรือสมการถดถอยสามารถอธิบายค่าของ ตัวแปรตามได้ดี
- ถ้า R^2 มีค่าเข้าใกล้ 0 หมายความว่า X สามารถอธิบายการเปลี่ยนแปลงของ Y ได้ น้อย เนื่องจาก X และ Y มีความสัมพันธ์กันน้อย หรือสมการถดถอยอธิบายค่าของตัว แปรตามได้ไม่ดี

การวิเคราะห์สหสัมพันธ์เชิงเส้นอย่างง่าย

สัมประสิทธิ์สหสัมพันธ์ (Correlation coefficient) เป็นค่าที่ใช้วัดความสัมพันธิ์ ระหว่างตัวแปร 2 ตัวแปรใดๆ ว่ามีความสัมพันธ์กันมากน้อยแค่ใหน สัมประสิทธิ์ สหสัมพันธิ์ของประชากร (Population correlation coefficient) เขียนแทนด้วย ρ ใน กรณีที่ใช้ข้อมูลตัวอย่างจะประมาณค่าของ ρ ด้วยค่าสัมประสิทธิ์สหสัมพันธิ์ของ ตัวอย่าง (Sample correlation coefficient) เขียนแทนด้วย r ซึ่งมีสูตรการคำนวณ ดังต่อใปนี้

$$r = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}}$$
(10.29)

$$r = \frac{n\sum X_{i}Y_{i} - (\sum X_{i})(\sum Y_{i})}{\sqrt{(n(\sum X_{i}^{2}) - (\sum X_{i})^{2})(n(\sum Y_{i}^{2}) - (\sum Y_{i})^{2})}}$$
(10.30)

โดยค่า r จะมีค่าตั้งแต่ -1 ถึง 1 (-1 $\leq r \leq$ 1) และมีความหมายดังต่อไปนี้

- ถ้า r มีค่าเข้าเป็นบวก หมายความว่า Xและ Y มีความสัมพันธ์ในทิศทางเดียวกัน
- ถ้า r มีค่าเป็นลบ หมายความว่า Xและ Yมีความสัมพันธ์ในทิศทางตรงข้ามกัน
- ถ้า r มีค่าเข้าใกล้ 1 หมายความว่า X และ Y มีความสัมพันธ์ในทิศทางเดียวกันและมี ความสัมพันธ์กันมาก
- ถ้า r มีค่าเข้าใกล้ -1 หมายความว่า X และ Y มีความสัมพันธ์ในทิศทางตรงข้ามกันและ มีความสัมพันธ์กันมาก
- ถ้า r มีค่าเข้าใกล้ 0 หมายความว่า X และ Y มีความสัมพันธ์กันน้อย

การทดสอบสมมติฐานเกี่ยวกับค่าสัมประสิทธิ์สหสัมพันธ์ *p*

เป็นการทดสอบว่าตัวแปรอิสระ (X) และตัวแปรตาม (Y) มีความสัมพันธ์กันหรือไม่

$$H_0: \rho = 0$$

$$H_1: \rho \neq 0$$

ตัวสถิติทคสอบ คือ
$$t=\frac{(r-\rho)}{S_r}$$
 ; $df=$ n-2 $S_r=\sqrt{\frac{1-r^2}{n-2}}$ ปฏิเสธ H_0 $t<$ $t<$ t α , n - 2 หรือ $t>$ t α , n - 2

ตัวอย่าง 5 จากตัวอย่าง 1 จงทดสอบเกี่ยวกับสัมประสิทธิ์สหสัมพันธ์เพื่อตรวจสอบความสัมพันธ์ระหว่างค่า

โฆษณาและยอดขาย

$$H_0: \rho = 0$$

$$H_1: \rho \neq 0$$

$$S_r = \sqrt{\frac{1 - r^2}{n - 2}}$$

ตัวสถิติทคสอบ คือ
$$t = \frac{(r - \rho)}{S_r}$$

$$r = \frac{n\sum X_{i}Y_{i} - (\sum X_{i})(\sum Y_{i})}{\sqrt{(n(\sum X_{i}^{2}) - (\sum X_{i})^{2})(n(\sum Y_{i}^{2}) - (\sum Y_{i})^{2})}}$$

$$\sum X = 32.8$$

$$\sum Y = 398$$

$$\sum X^{2} = 106.96$$

$$\sum Y^{2} = 14,852$$

$$\sum XY = 1214.4$$

การทดสอบสมมติฐานเกี่ยวกับค่าพารามิเตอร์ในสมการถดถอยโดยใช้การวิเคราะห์ ความแปรปรวน

การทดสอบสมมติฐานเกี่ยวกับค่า eta_1 ซึ่งเป็นการทดสอบความสัมพันธ์เชิงเส้นระหว่างตัวแปร X และ Y นอกจากจะใช้ตัวสถิติทดสอบ t แล้ว ยังสามารถใช้หลักการของการวิเคราะห์ความ แปรปรวนมาทดสอบได้อีกด้วย โดยการพิจารณาแยกความผันแปรหรือความแปรปรวนทั้งหมดของ ตัวแปรสุ่ม Y ออกเป็นส่วนๆ ตามแหล่งที่มาของความผันแปร แสดงดังต่อไปนี้

$$SST = SSR + SSE \tag{10.22}$$

เมื่อ SST คือค่าความผันแปรทั้งหมดของ Y (Total Sum of Squares)

SSR คือผลบวกกำลังสองของการถคถอย (Regression Sum of Squares) หรือความผัน แปรที่สามารถอธิบายค่าได้ด้วยเส้นถดถอย (Explained Variation)

SSE คือผลบวกกำลังสองของความคลาดเคลื่อน (Error Sum of Squares)

$$SST = \sum (Y_i - \overline{Y})^2 = \sum Y^2 - n\overline{Y}^2$$

$$=\sum Y^2 - \frac{\left(\sum Y\right)^2}{n} = SYY \tag{10.23}$$

$$SSR = \sum \left(\hat{Y}_i - \overline{Y}_i\right)^2 = b_1 \left(\sum XY - n\overline{X} \ \overline{Y}\right) = b_1 SXY \tag{10.24}$$

$$= b_1^2 \left(\sum X^2 - n \overline{X}^2 \right) \tag{10.24a}$$

$$SSE = \sum (Y_i - \hat{Y}_i)^2 = SST - SSR$$
 (10.25)

สมมติฐานการทดสอบ คือ

 $H_0: \beta_1 = 0$

 $H_1: \beta_1 \neq 0$

ตาราง ANOVA

SOV	df	SS	MS	F_0
Regression	1	SSR	$MSR = \frac{SSR}{1}$	MSR MSE
Error	n-2	SSE	$MSE = \frac{SSE}{(n-2)}$	
Total	n – 1	SST		

จะปฏิเสธ H_0 : $\beta_1 = 0$ ถ้า

 F_0 ในตาราง ANOVA > $F_{\alpha,(1,n-2)}$

จากตัวอย่าง 10.1

ผลการวิเคราะห์

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.980026			
R Square Adjusted R	0.960451			
Square	0.955508			
Standard Error	2.27572			
Observations	10			

Multiple R =0.980026 คือค่าสหสัมพันธ์ (r) แต่ทิศทาง + หรือ - พิจารณาจากค่า สัมประสิทธิ์ของ X หรือค่า β_1 จากตารางด้านล่าง ค่า R Square หรือ = r^2 = 0.960451 ค่า Standard Error = σ $\sqrt{MSE} = \sqrt{5.178904} = 2.27572$ ค่า Observations คือจำนวนค่าสังเกตุ มีค่าเท่ากับ 10

ANOVA

					Significance F
	df	SS	MS	F	หรือ ค่า Sig.
Regression	1	1006.169	1006.169	194.2822	6.8E-07
Residual	8	41.43123	5.178904		
Total	9	1047.6			

ค่า significance F หรือ ค่า Sig. หรือค่า p-value ไว้พิจารณาว่าจะปฏิเสธ หรือยอมรับสมมติฐาน H_0 โดยจะ ปฏิเสธสมมติฐานเมื่อ ค่า sig. หรือค่า p-value น้อยกว่าหรือเท่ากับ ระดับนัยสำคัญ α ดังในตัวอย่างนี้กำหนดระดับนัยสำคัญ 0.05 (α =0.05) ดังนั้นใน ANOVA จึง ปฏิเสธสมมติฐาน H_0

	Coefficients (ค่าสัมประสิทธิ์)	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	154.725	2.373452	65.18987	3.41E-12	149.2519	160.1982
X	-6.58143	0.472176	-13.9385	6.8E-07	-7.67027	-5.49259

 $eta_{0} = 154.725$ ส่วนเบี่ยงเบนมาตรฐาน $S_{eta_{0}} = 2.373$

สามารถหาช่วงความเชื่อมั่นคือของ eta_0 มีค่าเท่ากับ (149.2519, 160.1982)

 $H_0: eta_0 = 0$ $H_1: eta_0 \neq 0$ พบว่า p-value=3.41x10 $^{-12}$ ดังนั้นจึงปฏิเสธสมมติฐาน H_0 $eta_1 = -6.58143$ ส่วนเบี่ยงเบนมาตรฐาน $S_{eta_1} = 0.472176$

สามารถหาช่วงความเชื่อมั่นคือของ eta_1 มีค่าเท่ากับ (-7.67027, -5.49259) $^\circ$

 $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$ พบว่า p-value = 6.8X10⁻⁷ ดังนั้นจึงปฏิเสธสมมติฐาน H_0

ตัวแปร X มีความสัมพันธ์กับตัวแปร Y และมีความสัมพันธ์ในทิศทางตรงกันข้าม

ตัวอย่าง 6 (อ่าน output) จากการศึกษาคุณภาพยางรถยนต์รุ่นหนึ่งเมื่อรถทำการเบรคกระทันหัน โดยเก็บข้อมูล ความเร็วก่อนเหยียบเบรคกับระยะที่รถไถล (หน่วย: เซนติเมตร) ได้ข้อมูลดังตาราง

ครั้ง	X:	Y:
ที่	ความเร็ว (km/hr.)	ระยะรถไถล (cm)
1	76	49.3774
2	89	49.3798
3	100.5	49.3799
4	101	49.3835
5	103	55.3876
6	104	55.4386
7	112	55.4413
8	122.5	56.5496
9	150	62.0461

- ก. จงหาค่า b_0 และ b_1
- ข. สมการถดถอยคือ
- ค. จงอธิบายความหมายของค่า b_ก และ b₁ ที่คำนวณได้
- ง. จงประมาณช่วงเชื่อมั่น 95 % ของ $oldsymbol{eta}_{\!\scriptscriptstyle 1}$
- จ. จงหาค่าประมาณระยะไถลถ้ารถวิ่งด้วยความเร็ว 130 km/hr
- ฉ. จงหาช่วงเชื่อมั่น 95% ของระยะไถลถ้ารถวิ่งด้วยความเร็ว 130 km/hr

กำหนดให้ $\sum X = 958$, $\sum X^2 = 105,473.5$, $\sum Y = 482.38$, $\sum Y^2 = 26,016.14$, $\sum XY = 52,012.10$

Regre	ession Statis	stics		ANOVA						
Multiple R		0.	.885			٩ŧ	CC	MC	F	Cianificance
R Square		0.	.784			df	SS	MS	F	Significance F
Adjusted R S	quare	0.	.753	Regress	ion	1.000	126.3	370 126.37	0 25.374	0.002
Standard Err	or	2.	.232	Residua		7.000	34.8	362 4.98	0	
Observations		9.	.000	Total		8.000	161.2	232		
	Coeffici	ents		indard Error	t Sta	it P-valu	le Lower 95%	Upper 95%	Lowe 99.0	
Intercept	33.37	71	4	.084	8.17	2 0.000	23.715	43.028	19.08	30 47.662
Х	0.19	0	C	.038	5.03	7 0.002	0.101	0.279	0.05	8 0.322

ก. จงหาค่า b₀ และ b₁

ข. สมการถดถอยคือ

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 99.0%	Upper 99.0%
Intercept	33.371	4.084	8.172	0.000	23.715	43.028	19.080	47.662
X	0.190	0.038	5.037	0.002	0.101	0.279	0.058	0.322

ค. จงอธิบายความหมายของค่า b_0 และ b_1 ที่คำนวณได้

ง. จงประมาณช่วงเชื่อมั่น 95 % ของ $oldsymbol{eta}_{\!\scriptscriptstyle 1}$

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 99.0%	Upper 99.0%
Intercept	33.371	4.084	8.172	0.000	23.715	43.028	19.080	47.662
X	0.190	0.038	5.037	0.002	0.101	0.279	0.058	0.322

จ. จงหาค่าประมาณระยะไถลถ้ารถวิ่งด้วยความเร็ว 130 km/hr

a. จงหาช่วงเชื่อมั่น 95% ของระยะไถลถ้ารถวิ่งด้วยความเร็ว 130 km/hr

$$S_{Y_0} = \sqrt{S^2 \left[1 + \frac{1}{n} + \frac{(X_0 - \overline{X})^2}{\sum X_i^2 - n\overline{X}^2} \right]}$$

Regression Statis	stics
Multiple R	0.885
R Square	0.784
Adjusted R Square	0.753
Standard Error	2.232
Observations	9.000

ANOVA				1	
	d٤	CC	NAC	_	Ciamificanas F
	df	SS	MS	r	Significance F
Regression	1.000	126.370	126.370	25.374	0.002
Residual	7.000	34.862	4.980		
Total	8.000	161.232			

ช. ค่าสัมประสิทธิ์สหสัมพันธ์มีค่าเท่ากับ

ฉ. สัมประสิทธิ์การตัดสินใจมีค่าเท่ากับ

ณ. ความคลาดเคลื่อนในการประมาณค่าสมการถดถอยมีค่าเท่ากับ

ผู้จัดการธนาคารแห่งหนึ่งต้องการสร้างสมการถดถอยเชิงเส้นอย่างง่ายเพื่อใช้ในการพยากรณ์เงินออมจาก รายได้ของลูกค้า จึงสุ่มลูกค้าของธนาคารมาจำนวน 5 ราย มีรายละเอียดดังนี้

ลูกค้า (คนที่)	1	2	3	4	5
รายได้ (หน่วย: พันบาท)	26.9	28.7	30.2	31.8	33.5
เงินออม (หน่วย: พันบาท)	5.5	5.9	6.0	6.5	6.3

กำหนดให้ X แทนรายได้ของลูกค้า และ Y แทนเงินออมของลูกค้า $\,$ จงตอบคำถามต่อไปนี้

ลูกค้า	เงินออม (Y)	รายได้ (X)	Y^2	X^2	XY
1	5.5	26.9	30.25	723.61	147.95
2	5.9	28.7	34.81	823.69	169.33
3	6	30.2	36	912.04	181.2
4	6.5	31.8	42.25	1011.24	206.7
5	6.3	33.5	39.69	1122.25	211.05
รวม	30.2	151.1	183	4592.83	916.23

SUMMARY OUTPUT				
Regression Statistics				
Multiple R	0.9038713			
R Square	0.816983327			
Adjusted R				
Square	0.75597777			
Standard Error	0.190040233			
Observations	5			

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	0.48365413	0.4836541	13.391949	0.035257382
Residual	3	0.10834587	0.0361153		
Total	4	0.592			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	1.964141718	1.117012163	1.7583888	0.1769227	-1.590689512	5.518972948
รายได้ (\mathbf{X})	0.134872875	0.036855535	3.6595012	0.0352574	0.017582114	0.252163636