Winter 22 Fral	
1. an = (n (n+1)	
lim an	
N > 00	
$= \lim_{n \to \infty} \ln \left(\frac{n+1}{n+1} \right)$	
$N \rightarrow \infty$ $\left(\frac{N}{N+1}\right)$	
$=\lim_{n\to\infty}\ln\left(\frac{n}{n}\right)$	
- lim In (1)	
~ (IM IN (I)	
. 0	
· c) an converges to 0	
2 8= -1 -1/16	2 = anei
4 14	2 = anti
2. 8 = -1 = -1/16 4 = -1/16 (74)	2 = anei
Q1 = 4	2 = anti an
121 < 1 .'- converges	2 = anei
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 = anf1 an
121 < 1 .'- converges	2 = anti an
$a_{1} > 4$ $a_{2} > 4$ $a_{2} > 4$ $a_{3} > 4$ $a_{4} > 4$ $a_{1} > 4$ $a_{2} > 4$ $a_{3} > 4$ $a_{4} > 4$ $a_{5} > 6$ $a_{6} > 6$ $a_{$	2 = anf1 an
$G_1 = 4$	2 = anti an
$a_1 = 4$ $a_1 = 4$ $a_1 = 4$ $a_2 = 4$ $a_3 = 4$ $a_4 = 16$ $a_4 = 574$ $a_4 = 574$ $a_4 = 574$ $a_5 = 6$ $a_6 = 6$ $a_$	2 = anf1 an
$G_1 = 4$ $G_2 = G_1$ $G_3 = G_1$ $G_4 = G_2$ $G_4 = G_4$ $G_$	2 = anti an
4 4 4 4 4 4 4 4 4 4	2 = anf 1 an an
$G_1 = 4$ $G_2 = G_1$ $G_3 = G_1$ $G_4 = G_2$ $G_4 = G_4$ $G_$	2 = a _{n∈1} an
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 = ane1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 = ane1 an

٠ ١	$\sum_{n < 0} \left(\frac{x}{2}\right)^{2n}$	1	(4 - 12 < 2
4		0 4	
. $\sum_{i=1}^{\infty}$	1 . 220		
1120	4 4"		
= \sum_{\omega}	ren il la	< 2	
N =0	4411		
۲	b) \(\sum_{\text{\subset}}^{\infty} \) \(\text{\subset}^{2n} \)	if 1x1 < 2	
	n=0 4n+1	0	
6. In		$- x^2 - x^3$	Maclaui'n Serbes
	N=0	3	$\int (u) = f(\delta) + f'(\delta) \times + f''(\delta) \times \frac{1}{2!}$
	a) -1/3		0 1! 2(
			+ \(\sigma^3 \) \(\frac{1}{3!} \)
			3!
			(n) = (n (1-n)
			(n) = - (1-x)-1
			D I-x
			('(N) > - ((~N) ~~
			$\int_{-\infty}^{\infty} (n)^{-2} (-1)(-2)(-1)(-2)^{-3}$ $= -2(-2)^{-3}$
			(0) = -2
			$\frac{-2}{31}$, $\frac{-2}{6}$, $\frac{-1}{3}$
W	cetten .		
1. 5	x" =) a = 0		
a) n=1	n2"		
lim	xxx n	2/	
W 2 W	(n=1)21.2 x		
, lim	n Inl		
nsk	2n+2		
= x1	lim v		
	n=00 211		

	<u> </u>	+++				+-	
	u1	\bot				$\perp \perp \perp$	
2							
Radio	10 = R = 1	_ 2					
	1/2						
Endpoir	us a-r=	- 2					
	a-12 =	2					
0.4	 			· 2			
@ x =							
» ∑ (8	60			
	(-2) ⁿ	+	8 N.1	2 ^M		+	
	n 2 ⁿ			n 2 ⁿ			
	-1) 2/2		- 5	1			
u = l	n 2/		n=l	n			
: §	(-1) ⁿ			P=1<1			
N~1	n			: diverges be	p-series	test	
Ь,	n = 1 => posi	rive, decua	วในด	-			
	in and	Um bn=					
		N 200					
: Con	verges by AST						
2. 600	verges by AST						
· I	C = [-2, 2)						
- w							
1. \(\sum_{\text{-}} \)	(12)n	a = -2					
b) n=0	n!						
lim ((n:1) nt	بعل					
N 3 00	(n+1) n/	x laryn					
	1 (2+2)						

-	12 +2 lim 1				
	n-so n+				
c	0				
	: Radius of con-	vergence = 00			
	$\frac{1}{1} \text{ Radius of constraints} \int_{-\infty}^{\infty} C dx = \left(-\infty, \infty\right)$	()			
2.	dy 32'42	y(0) = 1			
	dy 3x²y² dn	0 2			
	1 dy - 3x² dx				
	•				
	$\int y^{-2} dy = \int 3x^2 dx$				
	$-y^{-1} = \chi^3 + c$ $-1 = \chi^3 + c$ y				
	-1 2 23 4 C				
	ধ ।				
	-1 = 0 ·c				
	42				
	C = -2				
	-1 x 3-2				
	9				
	y = -1				
	23-2				
3.	(cony + y conn) d	nt + (sin m - n	x sin y) dy	~ 0	
	My = - siny + c	જ મ			
	Nn = con r - s	sin y			
	$\overline{}$				
	My = Nx				

	ı		If)		- 4)	F	-				
