MC558 - Complexidade de Algoritmos II

Primeiro semestre de 2025

Laboratório 4

Construindo uma rede com k clusters

A renomada engenheira Ana Sabi Tudor foi designada para projetar a infraestrutura de rede de computadores da nova sede de uma empresa. Os servidores principais já foram instalados; agora, é necessário conectar os computadores por meio de fibras ópticas para garantir a comunicação entre eles. A empresa autoriza a instalação de uma conexão de fibra óptica entre qualquer par de computadores A e B, sendo que o custo dessa conexão depende de diversos fatores, como a distância entre os dispositivos e a importância relativa de A e/ou B. Naturalmente, a empresa deseja minimizar os custos dessa etapa de construção da rede.

Lembrando das aulas de MC558 na Unicamp, Ana reconhece que esse desafio equivale essencialmente ao problema de encontrar uma **árvore geradora mínima**. No entanto, próximo ao início da implementação da rede, a empresa comunicou que, por razões de contenção de despesas e para preservar a autonomia de certos setores, seria necessário organizar a rede em exatamente k clusters, em vez de apenas um. Novamente, a empresa quer alcançar esse objetivo com o menor custo possível. Não há problema se algum cluster ficar com apenas um computador — o requisito principal é obter exatamente k clusters. Como Ana está com a agenda cheia e o prazo de entrega se aproxima, ela pediu a sua ajuda para resolver esse problema.

1 Entrada e Saída

Entrada: A primeira linha da entrada contém três números inteiros N, M e K (separados por espaços), representando, respectivamente, o número de computadores instalados ($9 \le N \le 10^4$), o número de possíveis conexões entre os computadores ($N-1 \le M \le 10^5$) e o número desejado de clusters ($1 \le K \le N$). Em seguida, seguem M linhas, cada uma contendo três inteiros A, B e W (separados por espaços), indicando que existe uma conexão disponível entre o computador A e o computador B ($0 \le A, B < N$), com custo de instalação igual a W ($0 \le W \le 100$).

Saída: A saída consiste em um único número inteiro, representando o custo total da rede construída. O número deve ser seguido por uma quebra de linha.

2 Exemplos

Entrada	Saída
9 14 2	28
0 1 4	
0 7 8	
1 2 8	
1 7 11	
2 3 7	
2 5 4	
282	
3 4 9	
3 5 14	
4 5 10	
5 6 2	
6 7 1	
6 8 6	
7 8 7	

Entrada	Saída
8 10 4	23
0 1 27	
0 6 20	
1 4 3	
1 5 20	
2 3 21	
2 7 14	
3 5 7	
4 6 7	
4 7 6	
5 6 23	

3 Implementação e Submissão

- A solução deverá ser implementada em C, C++ ou Python 3.
- O programa deve ser submetido no SuSy, com o nome principal t4 (por exemplo, t4.c).
- O número máximo de submissões é 20.
- A tarefa contém 10 testes abertos e 10 testes fechados. A nota será proporcional ao número de acertos nos testes fechados.
- Casos de plágio implicam em nota ZERO na disciplina para todos os envolvidos.
- Não é permitido o uso de bibliotecas que não sejam padrão, bem como diretivas ou flags de otimização.

4 Prazo final de submissão

Segunda-feira 19 de maio às 6h da manhã.