Данный раздел посвящен основным элементам теории управления, используемым в пособии, а именно теории Ляпунова, теории сингулярных возмущений, теории дифференциальной геометрии и теории входа-выхода. Дана некоторая мотивация для различных концепций, а также выделены некоторые аспекты, представляющие интерес для теории управления роботами. Доказательства различных теорем и лемм не приводятся, и читатель отсылается к цитируемой литературе.

1. Теория Ляпунова

В данном разделе будем использовать довольно стандартные обозначения и терминологию. R_+ будет обозначать множество неотрицательных действительных чисел, а R^n будет обозначать обычное n-мерное векторное пространство над R (множеством действительных чисел), наделенное евклидовой нормой

$$||x|| = \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}}.$$

Будем рассматривать нелинейные динамические системы вида

$$\dot{x} = f(x, t),$$

где f – нелинейная вектор-функция, а $x \in \mathbb{R}^3$ – вектор состояния системы.

1.1. **Автономные системы.** Нелинейная система (1) называется автономной (или инвариантной по времени), если функция f явно не зависит от времени, т. е.

$$\dot{x} = f(x).$$

в противном случае систему называют неавтономной (или изменяющейся во времени). В этом разделе кратко рассмотрены результаты теории Ляпунова для автономных систем. Теория Ляпунова - это фундаментальный инструмент для анализа устойчивости динамических систем, таких как роботы-манипуляторы и мобильные роботы, рассматриваемые в пособии.

Основные концепции устойчивости можно резюмировать следующими определениями.

Определение 1. Состояние x^* является точкой равновесия системы (2), если $f(x^*) = 0$.

Определение 2. Точка равновесия x=0 называется устойчивой, если для любого $\rho>0$ существует r>0 такая, что если $\|x(0)\|< r$, то $\|x(t)\|< \rho\ \forall t\geq 0$. В противном случае точка равновесия является неустойчивой.

Определение 3. Точка равновесия x=0 является асимптотически устойчивой, если она устойчива и дополнительно существует некоторое r>0 такое, что из ||x(0)|| < r следует, что $x(t) \to 0$ при $t \to \infty$.

Определение 4. Если точка равновесия устойчива по Ляпунову, но не устойчива асимптотически, то она называется предельно устойчивой.

Определение 5. Точка равновесия является экспоненциально устойчивой, если существуют два строго положительных числа α и λ , не зависящих от времени и начальных условий, такие что

(3)
$$||x(t)|| \le \alpha e^{-\lambda t} ||x(0)|| \quad \forall t > 0$$

в некоторой окрестности начала координат.

Приведенные выше определения характеризуют локальные свойства системы в окрестности точки равновесия. Вышеупомянутые концепции устойчивости становятся глобальными, когда соответствующие им условия выполняются для любого начального состояния.

Memod линеаризации Ляпунова. Предположим, что функция f(x) в (2) непрерывно дифференцируема и что x = 0 — точка равновесия. Тогда, используя разложение в ряд Тейлора, динамику системы можно записать как

(4)
$$\dot{x} = \frac{\partial f}{\partial x}\Big|_{x=0} + o(x),$$

где o — члены разложения высшего порядка. Линеаризация исходной нелинейной системы в точке равновесия описывается выражением

$$\dot{x} = Ax,$$

где A – матрица Якоби функции f относительно x в точке x=0, т. е.

$$A = \frac{\partial f}{\partial x} \bigg|_{x=0}.$$

Линейная инвариантная во времени система вида (5) является (асимптотически) устойчивой, если A является (строго) устойчивой матрицей, т. е., если все собственные числа A имеют отрицательные (неположительные) действительные части. Устойчивость линейных инвариантных во времени систем можно определить согласно следующей теореме.

Теорема 1. Точка равновесия x=0 системы (5) асимптотически устойчива тогда и только тогда, когда для любой матрицы Q>0 решение P уравнения Ляпунова

$$A^T P + PA = -Q$$

положительно определено. Если матрица Q лишь положительно полуопределена ($Q \ge 0$), тогда можно сделать вывод только об устойчивости.

Стоит упомянуть, что в приведенной выше теореме если $Q = L^T L$, где пара (P, L) является наблюдаемой, то вновь достигается асимптотическая устойчивость.

Локальная устойчивость исходной нелинейной системы может быть выведена из устойчивости линеаризованной системы, как гласит следующая теорема.

Теорема 2. Если линеаризованная система строго устойчива неустойчива, то точка равновесия нелинейной системы локально асимптотически устойчива (неустойчива).

Приведенная выше теорема не позволяет сделать никаких выводов, если линеаризованная система является предельно устойчивой.

_

Прямой метод Ляпунова. Введем для начала ряд определений.

Определение 6. Скалярная непрерывная функция V(x) называется локально положительно (полу) определенной, если V(0) = 0 и V(x) > 0 ($V(x) \ge 0$) для $x \ne 0$. Аналогично, функция V(x) называется отрицательно (полу) определенной, если -V(x) положительно (полу) определена.

Определение 7. V(x) называется функцией Ляпунова для системы (2), если в шаре B функция V(x) положительно определена и имеет непрерывные частные производные, и если ее производная по времени вдоль решений системы (2) является отрицательно полуопределенной, т. е.

 $\dot{V}(x) = \frac{\partial V}{\partial x} f(x) \le 0.$

Следующие теоремы могут быть использованы для анализа локальной и глобальной устойчивости соответственно.

Теорема 3. Точка равновесия 0 системы (2) (асимптотически) устойчива в шаре B, если существует скалярная функция V(x) с непрерывными производными такая, что V(x) положительно определена, а $\dot{V}(x)$ - отрицательно полуопределена (отрицательно определена) в шаре B.

Теорема 4. Точка равновесия системы (2) глобально асимптотически устойчива, если существует скалярная функция V(x) с непрерывными производными первого порядка такая, что V(x) положительно определена, $\dot{V}(x)$ отрицательно определена и V(x) радиально неограничена, т. е. $V(x) \to \infty$ при $||x|| \to \infty$.

 $Teopema\ Ja\ Caлля\ oб\ uнвариантных\ множеествах.$ Результаты $Ja\ Caлля\ pacширяют$ анализ устойчивости предыдущих теорем, когда V является только лишь отрицательно полуопределенной. Они сформулированы следующим образом.

Определение 8. Множество S является инвариантным множеством для динамической системы, если каждая траектория, начинающаяся в S, остается в S.

Инвариантные множества включают точки равновесия, предельные циклы, а также любую траекторию автономной системы.

Теорема 5. Рассмотрим систему (2) с непрерывной функцией f и пусть V(x) – скалярная функция c непрерывными первыми частными производными. Рассмотрим область Γ , определенную как $V(x) < \gamma$, для некоторого $\gamma > 0$. Предположим, что область Γ ограничена $u \ \dot{V}(x) \le 0 \ \forall x \in \Gamma$. Пусть Ω – множество всех точек в Γ , где $\dot{V}(x) = 0$, а M – наибольшее инвариантное множество в Ω . Тогда каждое решение x(t), исходящее из Γ , стремится κ M при $t \to \infty$. C другой стороны, если $\dot{V}(x) \le 0 \ \forall x \ u \ V(x) \to \infty$ при $\|x\| \to \infty$, то все решения глобально асимптотически сходятся κ M при $t \to \infty$.

1.2. **Неавтономные системы.** В этом разделе рассматриваются неавтономные нелинейные системы вида (1). Понятия устойчивости характеризуются следующими определениями.

Определение 9. Состояние x^* является точкой равновесия системы (1), если $f(x^*,t)=0 \ \forall t\geq t_0.$

Определение 10. Точка равновесия x=0 устойчива при $t=t_0$, если для любого $\rho>0$ существует $r\left(\rho,t_0\right)>0$ такое, что $\|x\left(t_0\right)\|<\rho\ \forall t\geq t_0$. В противном случае точка равновесия x=0 является неустойчивой.

Определение 11. Точка равновесия x = 0 асимптотически устойчива при $t = t_0$, если она устойчива и существует $r(t_0) > 0$ такое, что $||x(t_0)|| < r(t_0) \Rightarrow x(t) \to 0$ при $t \to \infty$.

Определение 12. Точка равновесия x=0 экспоненциально устойчива, если существуют два положительных числа α и λ такие, что $||x(t)|| \le \alpha e^{-\lambda(t-t_0)||x(t_0)||} \ \forall t \ge t_0$, при достаточно малом $x(t_0)$.

Определение 13. Точка равновесия x = 0 глобально асимптотически устойчива, если она устойчива и $x(t) \to 0$ при $t \to \infty \ \forall x(t_0)$.

Свойства устойчивости называются равномерными, если они сохраняются независимо от начального времени, как в следующих определениях.

Определение 14. Точка равновесия x = 0 равномерно устойчива, если она устойчива при $r = r(\rho)$, которое можно выбрать независимо от t_0 .

Определение 15. Точка равновесия x=0 равномерно асимптотически устойчива, если она равномерно устойчива и существует шар притяжения B, не зависящий от t_0 , такой, что $x(t_0) \in B \Rightarrow x(t) \to 0$ при $t \to \infty$.

Метод линеаризации Ляпунова. Используя разложение в ряд Тейлора, систему (1) можно переписать в виде

$$\dot{x} = A(t) x + o(x, t),$$

где

$$A\left(t\right) = \left.\frac{\partial f}{\partial x}\right|_{x=0}.$$

Линейная аппроксимация системы (1) имеет вид

$$\dot{x} = A(t) x.$$

Результат теоремы 1 может быть распространен на линейные нестационарные системы вида (8) следующим образом.

Теорема 6. Необходимым и достаточным условием равномерной асимптотической устойчивости начала координат системы (8) является наличие такой матрицы P(t), что

$$V = x^T P(t) x > 0$$

u

$$\dot{V} = x^T \left(A^T P + P A + \dot{P} \right) x \le k(t) V,$$

где

$$\lim_{t \to \infty} \int_{t_0}^{t} k(\tau) d\tau = -\infty$$

равномерно по отношению κt_0 .

Теперь можно сформулировать следующий результат.

Теорема 7. Если линеаризованная система (8) равномерно асимптотически устойчива, то точка равновесия x = 0 для исходной системы (1) также равномерно асимптотически устойчива.

Прямой метод Ляпунова. Приведем теперь теоремы Ляпунова об устойчивости неавтономных систем. Для этого потребуются следующие определения.

Определение 16. Непрерывная функция $\kappa:[0,k)\to R_+$ называется функцией класса K если

- $\bullet \ \kappa (0) = 0,$
- $\kappa(\chi) > 0 \ \forall \chi > 0$,
- к неубывающая.

Последние два утверждения можно заменить на утверждение, что κ строго возрастающая, так, чтобы была определена обратная функция κ^{-1} . Функция называется принадлежащей классу K_{∞} если $k = \infty$ и $\kappa(\chi) \to \infty$ при $\chi \to \infty$.

На основе определения функции класса K может быть дано модифицированное определение экспоненциальной устойчивости.

Определение 17. Точка равновесия x = 0 является K-экспоненциально устойчивой, если существует функция $\kappa(\cdot)$ класса K и положительное число λ такое, что $||x(t)|| \le e^{-\lambda(t-t_0)}\kappa(||x(t_0)||) \ \forall t \ge t_0$ при достаточно малом $x(t_0)$.

Определение 18. Функция $V\left(x,t\right)$ называется локально (глобально) положительно определенной тогда и только тогда, когда существует функция α класса K такая, что $V\left(0,t\right)=0$ и $V\left(x,t\right)\geq\alpha\left(\|x\|\right)$ $\forall t\geq0$ и $\forall x$ в шаре B.

Определение 19. Функция V(x,t) является локально (глобально) убывающей тогда и только тогда, когда существует функция β класса K такая, что V(0,t) = 0 и $V(x,t) \le \beta(\|x\|) \ \forall t > 0$ и $\forall x$ в шаре B.

Теперь сформулируем основную теорему Ляпунова об устойчивости.

Теорема 8. Предположим, что V(x,t) имеет непрерывные первые производные вокруг точки равновесия x=O. Рассмотрим следующие условия на V и \dot{V} , где α , β и γ обозначают функции класса K:

- (1) $V(x,t) \ge \alpha(||x||) > 0$,
- (2) $\dot{V}(x,t) \leq 0$,
- (3) $V(x,t) \le \alpha(||x||)$,
- (4) $\dot{V} \le -\gamma (\|x\|) < 0$,
- $(5) \lim_{x \to \infty} \alpha (\|x\|) = \infty.$

Tогда точка равновесия x=0:

• устойчива, если выполняются условия 1 и 2;

- равномерно устойчива, если выполняются условия 1-3;
- равномерно асимптотически устойчива, если выполняются условия 1-4;
- глобально равномерно асимптотически устойчива, если выполняются условия 1-5.

Обратные теоремы Ляпунова. Для каждой теоремы об устойчивости Ляпунова существует обратная теорема. Приведем, в частности, следующие результаты.

Теорема 9. Если точка равновесия x = 0 системы (1) устойчива (равномерно асимптотически устойчива), существует положительно определенная (убывающая) функция V(x,t) с неположительно (отрицательно) определенной производной.

Теорема 10. Рассмотрим систему (1) с частными производными $\frac{\partial f}{\partial x}$ и $\frac{\partial f}{\partial t}$, ограниченными в некотором шаре B $\forall t>0$. Тогда точка равновесия x=0 экспоненциально устойчива тогда и только тогда, когда существует функция V(x,t) и некоторые положительные константы α_i такие, что $\forall x \in B$ и $\forall t>0$

$$\alpha_1 \|x\|^2 \le V(x,t) \le \alpha_2 \|x\|^2,$$

$$\dot{V} \le -\alpha_3 \|x\|^2,$$

$$\left\|\frac{\partial V}{\partial x}\right\| \le \alpha_4 \|x\|^2.$$

Лемма Барбалата. Результаты Ла Салля применимы только к автономным системам. С другой стороны, лемма Барбалата может быть использована для получения результатов об устойчивости, когда производная функции Ляпунова является отрицательной полуопределенной.

Лемма 1. Если дифференцируемая функция f имеет конечный предел при $t \to \infty$ и если \dot{f} равномерно непрерывна, то $\dot{f} \to 0$ при $t \to \infty$.

Эту лемму можно применить для изучения устойчивости неавтономных систем с помощью теории Ляпунова, о чем свидетельствует следующий результат.

Лемма 2. Если скалярная функция V(x,t) ограничена снизу и $\dot{V}(x,t)$ отрицательно полуопределена, то $\dot{V}(x,t) \to 0$ при $t \to \infty$, если $\dot{V}(x,t)$ равномерно непрерывна по времени.

1.3. Практическая устойчивость. Выше была рассмотрена устойчивость точки (точек) равновесия обыкновенных дифференциальных уравнений в смысле Ляпунова. Были перечислены аналитические инструменты, которые применяются для изучения асимптотических свойств решений, таких как функции Ляпунова. Обычно интерес представляет доказательство асимптотической устойчивости, т. е. сходимости состояния к равновесию. Тем не менее, в определенных обстоятельствах может случиться так, что асимптотическую сходимость трудно получить с помощью закона управления с обратной связью, например, когда в модели процесса присутствуют неопределенности. В этом случае может быть даже сложно найти точку (точки) равновесия полных дифференциальных уравнений.

Таким образом, задача в этом случае состоит в основном в том, чтобы доказать ограниченность, т. е., по крайней мере, ни один сигнал не растет неограниченно в замкнутой системе, и, если возможно, оценить область, в которой асимптотически находится состояние. Это называется практической устойчивостью – или (равномерной) предельной ограниченностью – потому что, хотя устойчивость по Ляпунову не может быть гарантирована, траектории достигают окрестности S начала координат и остаются в ней. Если S достигается за конечное время, то состояние называется предельно ограниченным по отношению к множеству S. Теперь дадим определение предельной ограниченности.

Определение 20. Решение $x(\cdot):[t_0,\infty)\to R^n,\ x(t_0)=x_0$ называется предельно ограниченным относительно компактного множества $S\subset R^n$, если существует неотрицательное постоянное время $t'(x_0,S,t_0)<\infty$ такое, что $x(t)\in S\ \forall t\geq t_0+t'(x_0,S,t_0).$ Если $t'(\cdot)$ не зависит от t_0 , то состояние называется равномерно предельно ограниченным относительно S.

2. ТЕОРИЯ СИНГУЛЯРНЫХ ВОЗМУЩЕНИЙ

В данном разделе кратко рассмотрены основные понятия теории сингулярных возмущений. Эти понятия полезны для решения задач управления роботами-манипуляторами с гибкими сочленениями или звеньями.

Говорят, что система находится в форме сингулярного возмущения, когда производные по времени некоторых компонентов ее вектора состояния умножаются на малый положительный параметр ϵ , т. е.

(9)
$$\dot{x} = f(t, x, z, \epsilon), \quad x(t_0) = \xi(\epsilon), \quad x \in \mathbb{R}^n,$$

(10)
$$\epsilon \dot{z} = g\left(t, x, z, \epsilon\right), \quad z\left(t_{0}\right) = \eta\left(\epsilon\right), \quad x \in \mathbb{R}^{m},$$

где функции f и g непрерывны вместе со своими частными производными по x, x и t, а $\xi\left(\epsilon\right)$ и $\eta\left(\epsilon\right)$ – гладкие функции ϵ . Эта модель имеет стандартную форму тогда и только тогда, когда, задав $\epsilon=0$ в (10), уравнение

$$0 = g\left(t, x, z, 0\right)$$

имеет $k \geq 1$ изолированных вещественных корней $z = h_i(t, x)$ при $i = \overline{1, k}$.

•

Используем следующую замену переменных:

$$y = z - h(t - x),$$

$$\tau = \frac{t - t_0}{\epsilon}.$$

Тогда система (9)-(10) примет вид

$$\dot{x} = f(t, x, y + h(t, x), \epsilon),$$

$$\frac{\mathrm{d}y}{\mathrm{d}\tau} = \epsilon \dot{y} = g\left(t, x, y + h\left(t, x\right), \epsilon\right) - \epsilon \frac{\partial h}{\partial t} - \epsilon \frac{\partial h}{\partial x} \dot{x},$$

и y=0 называется квазистационарным состоянием.

При $\epsilon = 0$ и y = 0 получим редуцированную (медленную) модель

$$\dot{x} = f(t, x, h(t, x), 0).$$

С другой стороны, при $\epsilon=0$ получаем погранслойную (быструю) модель

$$\frac{\mathrm{d}y}{\mathrm{d}\tau} = g\left(t, x, y + h\left(t, x\right), 0\right),\,$$

которая имеет точку равновесия при y = 0.

Устойчивость сингулярно возмущенной системы может быть установлена на основе теоремы Тихонова, которая основана на следующем определении.

Определение 21. Точка равновесия y=0 системы пограничного слоя экспоненциально устойчива равномерно в $(t,x)\in [0,t_1]\times B_r$, если существуют такие k,γ и ρ , что решение модели пограничного слоя удовлетворяет

$$||y(\tau)|| \le ke^{-\gamma\tau} ||y(0)|| \quad \forall ||y(0)|| < \rho \quad \forall (t, x) \in [0, t_1] \times B_r.$$

Теорема 11. Предположим, что для $t \in [0, t_1]$, $x \in B_r$, $(z - h) \in B_\rho$ и $\epsilon \in [0, \epsilon_0]$ выполняются следующие условия:

- $(1)\ h\left(t,x
 ight)\ u\ rac{\partial g\left(t,x,z,0
 ight)}{\partial z}\$ имеют непрерывные частные производные первого порядка;
- (2) редуцированная модель имеет единственное решение $\bar{x}(t)$ и $\|\bar{x}(t)\| \le r_1$ для $t \in [t_0, t_1];$
- (3) начало модели пограничного слоя экспоненциально устойчиво равномерно по (t,x) и имеет решение $\hat{y}(t/\epsilon)$.

Тогда существуют такие μ и ϵ^* , что $\forall \eta(0), \xi(0)$ при $\|\eta(0) - h(t_0, \xi(0))\| < \mu$ и $0 < \epsilon < \epsilon^*$ выполняется

$$x(t,\epsilon) - \bar{x}(t) = O(\epsilon),$$

$$z(t,\epsilon) - h(t, \bar{x} - \hat{y}(t/\epsilon)) = O(\epsilon).$$

Более того, $\forall t_b > t_0$ существует $\epsilon_1^* \leq \epsilon^*$ такое, что

$$z(t, \epsilon) - h(t, \bar{x}) = O(\epsilon)$$

 $npu \ \epsilon < \epsilon_1^* \ u \ t \in [t_b, t_1].$

Теория Ляпунова может быть использована для доказательства устойчивости сингулярно возмущенной системы.

Теорема 12. Предположим, что для всех $t \in [0, \infty)$, $x \in B_r$, $\epsilon \in [0, \epsilon_0]$ выполняются следующие допущения

- (1) $f(t,0,0,\epsilon) = 0$, $g(t,0,0,\epsilon) = 0$ u h(t,0) = 0;
- (2) $f, g \ u \ h \ orpanuчeны на (z h) \in B_{\rho}$ вместе со своими частными производными до второго порядка;
- (3) начало координат редуцированной модели экспоненциально устойчиво;
- (4) начало системы пограничного слоя экспоненциально устойчиво равномерно по (t,x).

Тогда существует $\epsilon^* > 0$ такое, что $\forall \epsilon < \epsilon^*$ начало координат системы (9)-(10) экс-поненциально устойчиво.

3. ТЕОРИЯ ДИФФЕРЕНЦИАЛЬНОЙ ГЕОМЕТРИИ

В данном разделе будут кратко рассмотрены основные результаты теории дифференциальной геометрии. Рассмотрим нелинейную аффинную систему с одним входом и одним выходом вида

$$\dot{x} = f(x) + g(x)u,$$

$$(12) y = h(x),$$

где $h(x): R^n \to R$ и $f(x), g(x): R^n \to R^n$ – гладкие функции. В целях упрощения изложения предположим, что система (11)-(12) имеет положение равновесия в точке x=0.

Определение 22. Производной Ли функции h по f называется скаляр

$$L_f h = \frac{\partial h}{\partial x} f,$$

а производные старших порядков удовлетворяют рекурсии

$$L_f^i h = L_f \left(L_f^{i-1} h \right)$$

при $L_f^0 h = h$.

Определение 23. Скобкой Ли функций f и g называется вектор

$$[f,g] = \frac{\partial g}{\partial x}f - \frac{\partial f}{\partial x}g,$$

и рекурсивная операция определяется как

$$ad_f^i g = \left[f, ad_f^{i-1} g \right].$$

Некоторые свойства скобок Ли:

$$[\alpha_1 f_1 + \alpha_2 f_2, g] = \alpha_1 [f_1, g] + \alpha_2 [f_2, g],$$

 $[f, g] = -[g, f],$

и равенство Якоби

$$L_{ad_g}h = L_f(L_gh) - L_g(L_fh).$$

Для того, чтобы определить нелинейную замену координат, введем следующий концепт. Определение 24. Функция $\phi(x): \mathbb{R}^n \to \mathbb{R}^n$ называется диффеоморфизмом в обла-

Определение 24. Функция $\phi(x): R^n \to R^n$ называется диффеоморфизмом в области $\Omega \in R^n$, если она гладкая и обратная функция $\phi^{-1}(x)$ существует и также гладкая.

Достаточным условием того, чтобы гладкая функция $\phi(x)$ была диффеоморфизмом в окрестности начала координат, является невырожденность якобиана $\frac{\partial \phi}{\partial x}$ в нуле.

Условия линеаризуемости обратной связью нелинейной системы тесно связаны со следующей теоремой.

Теорема 13. Рассмотрим набор линейно независимых векторов $\{f_1(x), \ldots, f_m(x)\}$, где $f_i(x): R^n \to R^n$. Тогда следующие утверждения эквивалентны:

• (полная интегрируемость) существует n-m скалярных функций $h_i(x): R^n \to R$ таких, что

$$L_{f_i}h_i = 0, \quad 1 \le i \ j \le n - m,$$

 $z\partial e \; \frac{\partial h_i}{\partial x} \;$ линейно независимы;

• (инволютивность) существуют скалярные функции $\alpha_{ijk}(x): R^n \to R$ такие, что

$$[f_i, f_j] = \sum_{k=1}^{m} \alpha_{ijk}(x) f_k(x).$$

3.1. **Нормальная форма.** В данном разделе будет рассмотрена нормальная форма нелинейных систем, которая сыграла важную роль в развитии техники линеаризации обратной связью. Для этого удобно определить понятие относительной степени нелинейной системы.

Определение 25. Система (11)-(12) имеет относительную степень r в точке x=0 если

- (1) $L_g L_f^k h\left(x\right) = 0 \ \forall x$ в окрестности начала координат и $\forall k < r-1;$
- (2) $L_g L_f^{r-1} h(x) \neq 0$.

Следует отметить, что в случае линейных систем, например, f(x) = Ax, g(x) = Bx, h(x) = Cx, целое число r характеризуется условиями $CA^kB = 0 \ \forall k < r-1 \ \text{и} \ CA^{r-l}B \neq 0$. Хорошо известно, что именно эти условия определяют относительную степень линейной системы.

Еще одна интер
ереная интерпретация относительной степени состоит в том, что r - это ровно то количество раз, которое нужно продифференцировать выход, чтобы получить явно появляющийся вход.

Функции $L_f^i h$ для $i=\overline{0,r-1}$ имеют особое значение, как показано в следующей теореме.

Теорема 14. Если система (11)-(12) имеет относительную степень r < n, то возможно найти n-r функций $\phi_{r+1}(x), \ldots, \phi_n(x)$ таких, что

$$\phi(x) = \begin{bmatrix} h(x) \\ L_f h(x) \\ \vdots \\ L_f^{r-1} h(x) \\ \phi_{r+1}(x) \\ \vdots \\ \phi_n(x) \end{bmatrix}$$

является диффеоморфизмом $z=\phi\left(x\right)$, который преобразует систему к следующей нормальной форме

$$\dot{z}_1 = z_2,$$
 $\dot{z}_2 = z_3,$
 \vdots
 $\dot{z}_{r-1} = z_r,$
 $\dot{z}_r = b(z) + a(z)u,$
 $\dot{z}_{r+1} = q_{r+1}(z),$
 \vdots
 $\dot{z}_n = q_n(z).$

Более того, $a(z) \neq 0$ в окрестности $z_0 = \phi(0)$.

3.2. Линеаризация обратной связью. Из предыдущей теоремы видно, что закон управления через обратную связь по состоянию

(13)
$$u = \frac{1}{a(z)} \left(-b(z) + v \right)$$

дает замкнутую систему, состоящую из цепочки из r интеграторов и (n-r)-мерной автономной системы. В частном случае r=n мы полностью линеаризуем систему. Первый набор условий, при которых тройка $\{f\left(x\right),g\left(x\right),h\left(x\right)\}$ имеет относительную степень n, задается уравнением в частных производных

$$\frac{\partial h}{\partial x} \left[g(x) \ ad_f g(x) \ \dots \ ad_f^{n-2} g(x) \right] = 0.$$

12

Теорема Фробениуса показывает, что существование решений этого уравнения эквивалентно инволютивности $\left\{g\left(x\right),ad_{f}g\left(x\right),\ldots,ad_{f}^{n-2}g\left(x\right)\right\}$. Можно показать, что второе условие, т. е. $L_{g}L_{f}^{n-1}h\left(x\right)\neq0$, обеспечивается линейной независимостью $\left\{g\left(x\right),ad_{f}g\left(x\right),\ldots,ad_{f}g\left(x\right)\right\}$. Предыдущее обсуждение резюмируется следующей ключевой теоремой.

Теорема 15. Для системы (11) существует выходная функция h(x) такая, что трой-ка $\{f(x), g(x), h(x)\}$ имеет относительную степень n в точке x=0 если и только если

- (1) матрица $\left[g\left(0\right) \;\; ad_{f}g\left(0\right) \;\; \dots \;\; ad_{f}^{n-2}g\left(0\right)\right]$ имеет полный ранг;
- (2) множество $\{g(x), ad_fg(x), \dots, ad_f^{n-2}g(x)\}$ инволютивно вокруг начала координат.

Значение предыдущей теоремы трудно переоценить. Он дает (априори проверяемые) необходимые и достаточные условия для полной линеаризации нелинейной аффинной системы. Однако следует отметить, что этот подход к разработке управления требует, с одной стороны, решения набора уравнений в частных производных. С другой стороны, он по своей сути ненадежен, поскольку основан на точном сокращении нелинейностей; в линейном случае это равносильно сокращению нулевого полюса.

3.3. Стабилизация линеаризуемых обратной связью систем. Если относительная степень системы r < n, то под действием линеаризирующего регулятора с обратной связью (13) остается (n-r)-мерная подсистема. Важность этой подсистемы подчеркивается следующей теоремой.

Теорема 16. Рассмотрим систему ((11)-(12), имеющую относительную степень r. Далее предположим, что тривиальная точка равновесия следующей (n-r)-мерной динамической системы локально асимптотически устойчива:

(14)
$$\dot{z}_{r+1} = q_{r+1} (0, \dots, 0, z_{r+1}, \dots, z_n), \\
\dot{z}_n = q_n (0, \dots, 0, z_{r+1}, \dots, z_n),$$

где q_{r+1}, \ldots, q_n задаются нормальной формой. В этих условиях закон управления (13) дает локально асимптотически устойчивую замкнутую систему.

(n-r)-мерная система (14) известна как нулевая динамика. Она представляет динамику ненаблюдаемой части системы, когда вход установлен равным нулю, а выход ограничен тождественным равенством нулю.

В приведенной выше теореме стоит выделить слово "локально"; другими словами, можно показать, что приведенных выше условий недостаточно для обеспечения глобальной асимптотической устойчивости.

4. ТЕОРИЯ ВХОД-ВЫХОД

В данном разделе представлены некоторые основные понятия и определения теории входа-выхода, согласно которой системы рассматриваются как операторы, отображающие сигналы, существующие в некоторых четко определенных функциональных пространствах. «Действие» системы оценивается путем установления границ размера выходных траекторий в терминах границ размера входов. Эти границы оцениваются с использованием методов функционального анализа. Тогда устойчивость конфигураций обратной связи таких операторов, грубо говоря, устанавливается простым сравнением оценок. В этом отличие от методов, основанных на теории Ляпунова, которые концентрируются на устойчивости положений равновесия (или аттракторов) в пространстве состояний. Таким образом, анализ входа-выхода обеспечивает альтернативную парадигму для изучения устойчивости систем с обратной связью. Можно признать, что подход входа-выхода наиболее полезен в приложениях управления, поскольку он естественным образом может включать немоделируемую динамику и возмущения, он автоматически обеспечивает границы производительности, а также обеспечивает простое каскадное соединение и соединение с обратной связью.

Основная особенность подхода входа-выхода, которую стоит подчеркнуть, заключается в том, что он обеспечивает естественное обобщение на нелинейный изменяющийся во времени случай того факта, что устойчивость линейной системы с обратной связью, не зависящей от времени, зависит от величин усиления и фазового сдвига, вводимых в замкнутом контуре. Кроме того, что, возможно, более важно, меры усиления сигнала и сдвига сигнала, которые подходящим образом отражаются в понятии пассивности оператора, связанного с нелинейной изменяющейся во времени системой, соответственно, являются физически мотивированными свойствами, которые связаны с диссипацией энергии системы. Это особая привлекательная особенность подхода входа-выхода, поскольку она направляет нас в поисках функции энергии (типа Ляпунова) посредством включения физического понимания системы.

4.1. Функциональные пространства и операторы.