

ESc201, Lecture 18: Bipolar Junction Transistor (ONLY FOR ADVANCED SUDY)

Why
$$V_{BE} = 0.7 V$$
?

Note: I_E (and thus I_C) varies exponentially with respect to V_{BE} .

A small change in V_{BE} can cause a very large change in I_{C} .

As a rule of thumb, $V_{\mbox{\footnotesize{BE}}}$ under the forward active mode is assumed to get pinned at 0.7 V, slightly greater than 0.6V used for cut-in voltage V_{on} .

This is only a heuristic used for quick estimate

$$I_{E_s} \cong pA-nA$$

This is only a neuristic used for quick estimate
$$I_{E} = I_{E_{S}} \left[e^{q \frac{V_{BE}}{nk_{B}T}} - 1 \right] \cong I_{E_{S}} \times e^{q \frac{V_{BE}}{nk_{B}T}} = I_{E_{S}} \times e^{q \frac{V_{BE}}{Nk$$

Current Gain

The sum of the collection component and the recombination component must always equal the injection component (charge conservation)

$$I_E = I_B + I_C$$

Common Emitter Current Gain (β) = I_C / I_B

Common Base Current Gain (α) = I_C / I_E

Thus, $\beta = \alpha / (1-\alpha)$ and $\alpha = \beta / (\beta + 1)$

For a good transistor I_B should be as small as possible or $\alpha \rightarrow 1$ and hence β is quite large (100 - 500)

Closer is the value of α to 1, better is the BJT!

Modes of Operation: BE and BC junction can either be forward biased or reverse biased, which gives 4 possible modes of operation.

- Forward Active Mode: BE junction forward biased AND BC junction reverse biased.
- Reverse Active Mode: BE junction reverse biased AND BC junction forward biased.
- **Saturation Mode: Both junctions forward biased.**
- **Cutoff Mode: Both junctions Reverse biased.**

 $\mathbf{R_2}$

Common Emitter (CE) Configuration Once V_{CE} drops below 0.7 V, the BJT enters the saturation mode of operation. With further reduction in $V_{\,\,{\mbox{\footnotesize CE}}}$, the BJT moves deeper into saturation. This is the digital mode of operation of BJTs. However, BJTs used in analog circuits should never ever enter this mode of operation. Always check for analog circuits if V_{CE} is >0.7V.

This course would only deal with Ideal characteristics (mA) $15 V_{CE}(V)$ All meet the x-axis at a point, called the EARLY voltage (V_A)

Common Collector (CC) Configuration

Non-inverting voltage gain and output resistance very similar to CE configuration But input impedance much lower than CE

High Input Impedance But Low output Impedance with Gain $\approx < 1$.

Henceforth: Only Common Emitter (CE) Configuration in this course

Taken form https://slideplayer.com/

Then, the transistor is replaced by its – *small signal ac model* Subsequently, usual network analysis is done to obtain:

- 1) Voltage Gain (A_v)
- 2) Current Gain (A_i)
- 3) Power Gain $(A_p = |A_i \cdot A_v|)$
- 4) Input Resistance (R_{in})
- 5) Output Resistance (R_{out})

Problem of Biasing: Terminal voltages and currents.

Given data: $V_{BB} = 0.75V$, $V_{CC} = 5.0V$, $I_S = 10^{-16}$ A, $\beta_F = 50$, $\beta_R = 1$, $V_T = 25.0$ mV.

What is the maximum value of a resistance added to the collector (R_C) ?

Analysis: V_{BE} =0.75 V, V_{BC} = V_{BB} - V_{CC} =0.75V-5.0V = -4.3V or V_{CE} =5V > V_{BE} =0.75V. The BJT is forward active mode.

$$I_{E} \cong I_{E_{S}} \times e^{\frac{V_{BE}}{V_{T}}}$$

$$= 10^{-16} \times e^{0.75/0.025} = 1.07 \text{mA}$$

$$I_E = I_B + I_C = 1.05 + 0.0214 = 1.0714 \text{m A}$$

$$\alpha_{F} = \frac{I_{C}}{I_{E}} = \frac{I_{C}}{1.07\text{mA}} = \frac{\beta}{\beta+1} = \frac{50}{51} = 0.9804, I_{C} = 1.05\text{mA}$$

$$I_{B} = \frac{I_{C}}{\beta_{F}} = \frac{1.05 \,\text{m A}}{50} = 21.0 \,\mu\text{A}$$

$$V_{R_C}$$
=1.05mA× R_C = 5-0.75V or $R_{C_{max}}$ =4.05kΩ
or $R_{C_{reg}}$ =2.025kΩ for best biasing

Current in base-emitter diode is amplified by common-emitter current gain β_F and appears at collector-base and collector currents are exponentially related to base-emitter voltage.

Base-emitter diode is replaced by constant voltage drop model($V_{BE} = 0.7 \text{ V}$) since it is forward-biased in forward-active region.

DC base and emitter voltages differ by 0.7 V diode voltage drop in forward-active region.

