MOOC Statistique pour ingénieur Thème 2 : échantillonnage, estimation

Vidéo 2 : Distributions d'échantillonnage

F. Delacroix M. Lecomte

Institut Mines-Télécom École Nationale Supérieure des Mines de Douai

Sommaire

Moyenne empirique

2 Variance empirique

X=longueur

X caractère étudié $\mathbb{E}\left(X\right)=\mu$, $\mathbb{V}\left(X\right)=\sigma^{2}$.

$$X$$
 caractère étudié $\mathbb{E}(X) = \mu$, $\mathbb{V}(X) = \sigma^2$.

$$\begin{array}{ccc} & & & \\ \omega_1 & \longrightarrow & x_1 \\ \omega_2 & \longrightarrow & x_2 \\ \vdots & & \vdots \end{array}$$

$$X$$
 caractère étudié $\mathbb{E}(X) = \mu_{\bullet} \mathbb{V}(X) = \sigma^2$.

$$x_1, \quad x_2, \quad \dots, \quad x_n \qquad \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

$$\uparrow \quad \uparrow \qquad \uparrow \qquad \uparrow$$

$$X_1, \quad X_2, \quad \dots, \quad X_n \qquad \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$$

X=longueur

 $\mu = \mathbb{E}\left(\pmb{\mathsf{X}}
ight)$ relative à la population

 \bar{x} est la moyenne de l'échantillon

 $\overline{\mathbf{x}}$ est une estimation ponctuelle de μ

Espérance et variance de \overline{X}

$$\mathbb{E}(\overline{X}) = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}(X_{i})$$
$$= \frac{1}{n}\sum_{i=1}^{n}\mu = \mu$$

$$\mathbb{V}(\overline{X}) = \mathbb{V}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\mathbb{V}(X_{i})$$
$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma^{2} = \frac{\sigma^{2}}{n}$$

Espérance et variance de \overline{X}

Théorème

$$\mathbb{E}\left(\overline{X}\right) = \mu$$

$$V(\overline{X}) = \frac{\sigma}{r}$$

$$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

$$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

$$\mathbb{P}\left(-1,96 \le \frac{\bar{\chi}-\mu}{\sigma/\sqrt{n}} \le 1,96\right) = 0,95$$

soit
$$\mathbb{P}\left(\overline{X}-1,96\frac{\sigma}{\sqrt{n}}\leq\mu\leq\overline{X}+1,96\frac{\sigma}{\sqrt{n}}\right)=0,95$$

$$IC_{0,95}(\mu) = \left[\overline{X} - 1,96\frac{\sigma}{\sqrt{n}}, \overline{X} + 1,96\frac{\sigma}{\sqrt{n}}\right]$$

Exemple

Soit une v.a. X de densité

$$f(x) = \begin{cases} \frac{1+x}{4} & \text{si } x \in [0,2] \\ 0 & \text{sinon.} \end{cases}$$

Quelle est la loi de \overline{X} ?

Exemple

$$f(x) = \begin{cases} \frac{1+x}{4} & \text{si } x \in [0,2] \\ 0 & \text{sinon.} \end{cases}$$

Exemple

$$f(x) = \begin{cases} \frac{1+x}{4} & \text{si } x \in [0,2] \\ 0 & \text{sinon.} \end{cases}$$

Exemple

$$f(x) = \begin{cases} \frac{1+x}{4} & \text{si } x \in [0,2] \\ 0 & \text{sinon.} \end{cases}$$

Exemple

$$f(x) = \begin{cases} \frac{1+x}{4} & \text{si } x \in [0,2] \\ 0 & \text{sinon.} \end{cases}$$

Exemple

$$f(x) = \begin{cases} \frac{1+x}{4} & \text{si } x \in [0,2] \\ 0 & \text{sinon.} \end{cases}$$

Exemple

$$f(x) = \begin{cases} \frac{1+x}{4} & \text{si } x \in [0,2] \\ 0 & \text{sinon.} \end{cases}$$

Théorème (Central-limite)

Sous les hypothèses de la statistique classique, la variable aléatoire

$$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

suit approximativement $\mathcal{N}(0,1)$.

Autrement dit, \overline{X} suit approximativement $\mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$.

Sommaire

Moyenne empirique

2 Variance empirique

Variance empirique de l'échantillon

X caractère étudié $\mathbb{E}\left(X\right)=\mu$, $\mathbb{V}\left(X\right)=\sigma^{2}.$

Variance empirique de l'échantillon

X caractère étudié

$$\mathbb{E}(X) = \mu, \mathbb{V}(X) = \sigma^2.$$

$$x_1, x_2, \dots, x_n$$
 $s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$

Variance empirique de l'échantillon

$$\mathbb{E}\left(\mathbf{X}\right)=\mu$$
, $\mathbb{V}\left(\mathbf{X}\right)=\sigma^{2}$.

Estimateurs de la variance

$$\mathbb{E}\left(S^2\right) = \frac{n-1}{n}\sigma^2 \neq \sigma^2$$
 $S^2 = \text{Variance empirique}$

 S^2 est une statistique biaisée pour σ^2 .

$$\mathsf{S}^{*2} = \frac{n}{n-1}\mathsf{S}^2$$
 $\mathbb{E}\left(\mathsf{S}^{*2}\right) = \sigma^2$ $\mathsf{S}^{*2} = \mathsf{Variance}\ \mathsf{corrig\'{e}e}$

 S^{*2} est une statistique non biaisée pour σ^2 .

Théorème

Si X $\sim \mathcal{N}(\mu, \sigma^2)$ alors la v.a.

$$Z = \frac{n S^2}{\sigma^2}$$

suit la loi du χ^2 à $\nu=\mathsf{n}-1$ degrés de liberté.

Théorème

Si X $\sim \mathcal{N}(\mu, \sigma^2)$ alors la v.a.

$$Z = \frac{n S^2}{\sigma^2}$$

suit la loi du χ^2 à $\nu=\mathsf{n}-1$ degrés de liberté.

Théorème

Si X $\sim \mathcal{N}(\mu, \sigma^2)$ alors la v.a.

$$Z = \frac{n S^2}{\sigma^2}$$

suit la loi du χ^2 à $\nu=\mathsf{n}-1$ degrés de liberté.

Intervalle de confiance pour σ^2

$$\begin{split} \mathbb{P}\left(\mathbf{Z} < t_1\right) &= 2,5\% \\ \mathbb{P}\left(\mathbf{Z} > t_2\right) &= 2,5\% \\ \mathsf{Alors}\, \mathbb{P}\left(t_1 \leq \frac{n\,\mathsf{S}^2}{\sigma^2} \leq t_2\right) &= 95\% \\ \mathit{IC}_{0,95}(\sigma^2) &= \left[\frac{n\,\mathsf{S}^2}{t_2},\frac{n\,\mathsf{S}^2}{t_1}\right] \end{split}$$

INSTITUT Mines-Télécom