4F7-STATISTICAL SIGNAL ANALYSIS

2 EXAMPLES PAPER SOLUTIONS

Exercise 1. The ARMA(2,2) is

1

$$X_n = a_1 X_{n-1} + a_2 X_{n-2} + b_0 W_n + b_1 W_{n-1}$$

$$= a_1 X_{n-1} + b_0 W_n + Z_{n-1}.$$

6 where $Z_{n-1} = a_2 X_{n-2} + b_1 W_{n-1}$. The state equation is

$$\begin{bmatrix} X_n \\ Z_n \end{bmatrix} = \begin{bmatrix} a_1 & 1 \\ a_2 & 0 \end{bmatrix} \begin{bmatrix} X_{n-1} \\ Z_{n-1} \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} W_n.$$

8 Note the hidden state is the vector

$$\begin{bmatrix} X_n \\ Z_n \end{bmatrix}.$$

10 The observation equation is

11
$$Y_n = \left[\begin{array}{cc} 1 & 0 \end{array}\right] \left[\begin{array}{c} X_n \\ Z_n \end{array}\right].$$

12 **Exercise 2.** The Gaussian AR(P) (or the ARMA(P,0)) model is

13
$$X_n = a_1 X_{n-1} + \dots + a_P X_{n-P} + b W_n$$

where $\{W_n\}$ are independent and identically distributed Gaussian ran-

dom variables with mean 0 and variance 1. In state-space form, the

16 state equation is

$$\begin{bmatrix} X_n \\ \vdots \\ X_{n-P+1} \end{bmatrix} = \begin{bmatrix} a_1 & \cdots & a_P \\ 1 & 0 & \cdots \end{bmatrix} \begin{bmatrix} X_{n-1} \\ \vdots \\ X_{n-P} \end{bmatrix} + \begin{bmatrix} b \\ 0 \\ \vdots \end{bmatrix} W_n.$$

18 The observation equation is

19
$$Y_n = \left[\begin{array}{cc} 1 & 0 \end{array}\right] \left[\begin{array}{c} X_n \\ Z_n \end{array}\right].$$

20 When the model is in stationarity, the joint probability density function

of (X_{n-P+1}, \ldots, X_n) is Gaussian and its mean m and covariance R does

22 not change with time n. Taking the expectation of both sides of the

23 state equation gives

$$m = \Lambda m + \begin{bmatrix} b \\ 0 \\ \vdots \end{bmatrix} 0$$

so its mean m is 0 assuming $\sum_{i=1}^{P} a_i \neq 1$. Computing the covariance of

26 both sides of the state equation yields

$$R = \Lambda R \Lambda^{\mathrm{T}} + \begin{bmatrix} b \\ 0 \\ \vdots \end{bmatrix} \begin{bmatrix} b \\ 0 \\ \vdots \end{bmatrix}^{\mathrm{T}}$$

which must be solved to find all the elements of R.

When
$$P=2,\,\Lambda=\left[\begin{array}{cc}a_1&a_2\\1&0\end{array}\right]$$
 and solve

$$\begin{bmatrix} r_{1,1} & r_{1,2} \\ r_{2,1} & r_{2,2} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} r_{1,1} & r_{1,2} \\ r_{2,1} & r_{2,2} \end{bmatrix} \begin{bmatrix} a_1 & 1 \\ a_2 & 0 \end{bmatrix} + \begin{bmatrix} b^2 & 0 \\ 0 & 0 \end{bmatrix}$$

subject to $r_{1,2} = r_{2,1}$. This gives

$$r_{1,1} = \left(1 - a_1^2 - \frac{2a_1^2 a_2}{1 - a_2} - a_2^2\right)^{-1} b^2$$

$$r_{1,2} = \frac{a_1}{1 - a_2} r_{1,1}.$$

31 Also $r_{2,2} = r_{1,1}$.

32 Exercise 3. Proving

33
$$K[aX + bU + c \mid Y_{1:n}] = aK[X \mid Y_{1:n}] + bK[U \mid Y_{1:n}] + c.$$

The lecture notes gives the following fact: let $\mathbf{p} = (\text{Cov}(X, Y_1), \dots, \text{Cov}(X, Y_n))^{\text{T}}$,

35 let Σ be the square matrix with elements $[\Sigma]_{i,j} = \operatorname{Cov}(Y_i, Y_j)$ and

36
$$\mathbf{h} = (h_1, \dots, h_n)^{\mathrm{T}}$$
. Let $(h_1, \dots, h_n)^{\mathrm{T}}$ satisfy $\Sigma \mathbf{h} = \mathbf{p}$ then

37
$$\hat{X} = K[X \mid Y_{1:n}] = \mathbb{E}(X) + h_1(Y_1 - \mathbb{E}Y_1) + \ldots + h_n(Y_n - \mathbb{E}Y_n).$$

The optimal vector \mathbf{h} that solves $K[aX \mid Y_{1:n}]$ must satisfy $\Sigma \mathbf{h} = a\mathbf{p}$.

From this fact, it is apparent that $K[aX \mid Y_{1:n}] = aK[X \mid Y_{1:n}]$. Thus

40 all we need to do is to prove the result

41
$$K[W + V \mid Y_{1:n}] = K[W \mid Y_{1:n}] + K[V \mid Y_{1:n}]$$

where W and V are random variables. The solution to $K[W+V\mid Y_{1:n}]$

43 must satisfy

$$\Sigma \mathbf{h} = \mathbf{q} + \mathbf{r}$$

where
$$\mathbf{q} = (\operatorname{Cov}(W, Y_1), \dots, \operatorname{Cov}(W, Y_n))^{\mathrm{T}}$$
 and $\mathbf{r} = (\operatorname{Cov}(V, Y_1), \dots, \operatorname{Cov}(V, Y_n))^{\mathrm{T}}$.

- (We have used the fact that $Cov(W+V,Y_i) = Cov(W,Y_i) + Cov(V,Y_i)$.)
- Let constants c_1, \ldots, c_n and d_1, \ldots, d_n satisfy

$$\Sigma \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \mathbf{q}, \qquad \Sigma \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix} = \mathbf{r}$$

then

$$K[W + V \mid Y_{1:n}]$$

$$= \mathbb{E}(W) + \mathbb{E}(V) + h_1(Y_1 - \mathbb{E}Y_1) + \dots + h_n(Y_n - \mathbb{E}Y_n)$$

$$= \mathbb{E}(W) + \mathbb{E}(V) + (c_1 + d_1)(Y_1 - \mathbb{E}Y_1) + \dots + (c_n + d_n)(Y_n - \mathbb{E}Y_n)$$

$$= K[W \mid Y_{1:n}] + K[V \mid Y_{1:n}].$$

49 Proving

50
$$K[X \mid Y_{1:n}] = K[X \mid Y_{1:n-1}] + K[X \mid Y_n] - \mathbb{E}(X),$$

when $Cov(Y_i, Y_n) = 0$ for i < n.

 Σ is the $n \times n$ square matrix with elements $[\Sigma]_{i,j} = \text{Cov}(Y_i, Y_j)$. Let

53 S be the n-1 imes n-1 square matrix with elements $[S]_{i,j} = \operatorname{Cov}(Y_i,Y_j)$

for i < n and j < n. Then

$$\Sigma = \left[\begin{array}{cc} S & 0 \\ 0 & \operatorname{Cov}(Y_n, Y_n) \end{array} \right]$$

and the vector $(h_1, \ldots, h_n)^{\mathrm{T}}$ that solves $\Sigma \mathbf{h} = \mathbf{p} = (p_1, \ldots, p_n)^{\mathrm{T}}$ also solves

$$S\begin{bmatrix} h_1 \\ \vdots \\ h_{n-1} \end{bmatrix} = \begin{bmatrix} p_1 \\ \vdots \\ p_{n-1} \end{bmatrix} \quad \text{and} \quad h_n \operatorname{Cov}(Y_n, Y_n) = p_n.$$

Thus

$$K [X \mid Y_{1:n}]$$

$$= \mathbb{E}(X) + h_1(Y_1 - \mathbb{E}Y_1) + \dots + h_n(Y_n - \mathbb{E}Y_n)$$

$$= \mathbb{E}(X) + h_1(Y_1 - \mathbb{E}Y_1) + \dots + h_{n-1}(Y_{n-1} - \mathbb{E}Y_{n-1})$$

$$+ \mathbb{E}(X) + h_n(Y_n - \mathbb{E}Y_n)$$

$$- \mathbb{E}(X)$$

$$= K [X \mid Y_{1:n-1}] + K [X \mid Y_n] - \mathbb{E}(X).$$

Exercise 4. Consider the state-space model

$$X_n = X_{n-1}$$
$$Y_n = X_n + V_n$$

where $\{V_n\}_n \sim \operatorname{WN}(0,r)$, $\mathbb{E}(X_1) = 0$, $\mathbb{E}(X_1^2) = \sigma$. Moreover, X_1 and $\{V_n\}_n$ are uncorrelated. Find $K[X_n \mid Y_{1:n}]$ and compare the mean

- 61 square error of this estimate to that of the sample average. Find the
- limiting mean square error of $K[X_n | Y_{1:n}]$ as $n \to \infty$.

The Kalman prediction and update equations for this specific statespace model: let $\hat{X}_n = K[X_n \mid Y_{1:n}], \ \sigma_n = \mathbb{E}\left\{\left(\hat{X}_n - X_n\right)^2\right\}$. The prediction is

$$\bar{X}_{n+1} = K [X_{n+1} \mid Y_{1:n}] = \hat{X}_n$$

$$\bar{\sigma}_{n+1} = \mathbb{E} \left\{ (\bar{X}_{n+1} - X_{n+1})^2 \right\} = \sigma_n$$

and the update is

$$\hat{X}_{n+1} = \hat{X}_n + \frac{\sigma_n}{\sigma_n + r} \left(Y_{n+1} - \hat{X}_n \right)$$
$$\sigma_{n+1} = \sigma_n \left(1 - \frac{\sigma_n}{\sigma_n + r} \right).$$

- Initialise the mean square error calculation $\sigma_0=\sigma$ so that σ_1 will the
- mean square error for $K[X_1 \mid Y_1]$.
- Re-arrange the mean square error expression to

$$\sigma_{n+1} = \sigma_n \left(\frac{r}{\sigma_n + r} \right)$$

and $\sigma_{n+1} < \sigma_n$. The limiting mean square error is thus 0.

Since $X_n = X_{n-1} = \cdots = X_1$, $Y_n = X_1 + V_n$. Averaging gives

69 $n^{-1}(Y_1 + \ldots + Y_n)$. The average is clearly unbiased, i.e.

$$\mathbb{E}\left\{n^{-1}(Y_1+\ldots+Y_n)\right\} = \mathbb{E}\left(X_1\right).$$

Its mean square error can be calculated directly:

$$\mathbb{E}\left\{ \left[n^{-1}(Y_1 + \dots + Y_n) - X_1 \right]^2 \right\}$$

$$= \mathbb{E}\left\{ \left[n^{-1}(Y_1 - X_1 + \dots + Y_n - X_1) \right]^2 \right\}$$

$$= \mathbb{E}\left\{ \left[n^{-1}(V_1 + \dots + V_n) \right]^2 \right\}$$

$$= r/n.$$

The $K[X_n \mid Y_{1:n}]$ of should be less than r/n since $K[X_n \mid Y_{1:n}]$ is optimally weights the data. For example, this is clear for n=1 since $\sigma_1 = r\sigma_1/(\sigma_1 + r) < r$. Now show that if $\sigma_n < r/n$ then $\sigma_{n+1} < r/(n+1)$ to confirm the Kalman filter always defeats sample average:

$$\sigma_{n+1} = \sigma_n \left(\frac{r}{\sigma_n + r} \right)$$

$$= r \left(\frac{\sigma_n}{\sigma_n + r} \right)$$

$$< r \left(\frac{r/n}{r/n + r} \right)$$

$$= \frac{r}{n+1}.$$

- Exercise 5. The ARMA(2,2) model has been expressed as a state-
- space model with a vector valued hidden state at time n which is

$$\left[\begin{array}{c} X_n \\ Z_n \end{array}\right]$$

74 while the observation equation was

$$Y_n = \left[\begin{array}{cc} 1 & 0 \end{array}\right] \left[\begin{array}{c} X_n \\ Z_n \end{array}\right].$$

Note only the first component of the hidden state is observed. This is a

77 Gaussian state-space model since the state is being driven by Gaussian

78 noise: the fact that the observation is noiseless for the component of

79 the state that is observed does not matter, i.e. it is still a Gaussian

80 state-space model.

The lectures only presents the Kalman equations for a scalar val-

82 ued state and observation process. Moreover, the Kalman filter also

вз calculates $p(y_{k+1} \mid y_0, \dots, y_k)$ sequentially. Thus $p(y_0, \dots, y_n)$ can be

calculated using the output of the Kalman filter as follow:

$$p(y_0, \dots, y_n) = p(y_n \mid y_0, \dots, y_{n-1}) \dots p(y_1 \mid y_0) p(y_0).$$

86 You only need to make the remark that the Kalman equations for a

87 vector valued hidden state process could be similarly applied to get

88 $p(y_0, \ldots, y_n)$.

89 Exercise 6. The hidden Markov model that describes the series of

outcomes $\{Y_1, Y_2, \ldots\}$ observed by the player: The state process is $X_n \in$

91 $\{1,2\}$ where 1 indicates a fair dice. The state transition probability

92 matrix is

$$P = \begin{bmatrix} 0.95 & 0.05 \\ 0.1 & 0.9 \end{bmatrix}.$$

Let the probability mass function of X_1 be $\lambda = [\lambda_1, \lambda_2]^{\mathrm{T}}$ where λ_1 is

95 the probability that $X_1 = 1$.

The observation process is a sequence of discrete random variables

97 Y_n where $g(x_n, y_n)$ is a probability mass function of Y_n given $X_n = x_n$.

98 That is,
$$g(1,1) = \cdots = g(1,6) = 1/6$$
 and $g(2,1) = \cdots = g(2,5) = 0.1$

and g(2,6) = 0.5. This completes the description of the hidden Markov

100 model.

101 **Exercise 7.** The probability of observing the sequence $(x_1, y_1, \dots, x_T, y_T)$

102 is

103
$$\lambda_{x_1} g(x_1, y_1) P_{x_1, x_2} g(x_2, y_2) \cdots P_{x_{T-1}, x_T} g(x_T, y_T).$$

104 Exercise 8. The prediction is

$$p(x_{n+1} | y_{1:n})$$

$$= \sum_{x_n=1}^{2} p(x_n, x_{n+1} | y_{1:n})$$

$$= \sum_{x_n=1}^{2} p(x_{n+1} | x_n, y_{1:n}) p(x_n | y_{1:n})$$

$$= \sum_{x_n=1}^{2} p(x_n | y_{1:n}) P_{x_n, x_{n+1}}$$

$$= (\pi_n^T P)_{x_{n+1}}.$$

The update is

106
$$p(x_{n+1} \mid y_{1:n+1}) = \frac{p(x_{n+1} \mid y_{1:n})g(x_{n+1}, y_{n+1})}{\sum_{x_{n+1}=1}^{2} p(x_{n+1} \mid y_{1:n})g(x_{n+1}, y_{n+1})}.$$

107 The update can be written as

108
$$\pi_{n+1}^{\mathrm{T}} = \pi_n^{\mathrm{T}} P B_{n+1} / \left(\pi_n^{\mathrm{T}} P B_{n+1} \mathbf{1} \right)$$

when B_{n+1} is the diagonal matrix

$$B_{n+1} = \begin{bmatrix} g(1, y_{n+1}) & 0 \\ 0 & g(2, y_{n+1}) \end{bmatrix}.$$

Exercise 9. Let $\beta_n(x_n) = p(y_{n+1}, \dots, y_T \mid x_n)$, for $n \leq T - 1$, finding $\beta_{n-1}(x_{n-1})$:

$$p(y_{n}, \dots, y_{T} \mid x_{n-1}) = \sum_{x_{n}} p(x_{n}, y_{n}, \dots, y_{T} \mid x_{n-1})$$

$$= \sum_{x_{n}} p(y_{n}, \dots, y_{T} \mid x_{n-1}, x_{n}) p(x_{n} \mid x_{n-1})$$

$$= \sum_{x_{n}} p(y_{n+1}, \dots, y_{T} \mid x_{n-1}, x_{n}, y_{n}) p(y_{n} \mid x_{n-1}, x_{n}) p(x_{n} \mid x_{n-1})$$

$$= \sum_{x_{n}} p(y_{n+1}, \dots, y_{T} \mid x_{n}) p(y_{n} \mid x_{n}) p(x_{n} \mid x_{n-1})$$

$$= \sum_{x_{n}} p(x_{n}) p(x_{n}, y_{n}) p(x_{n-1}, x_{n})$$

$$\beta_{n-1}(x_{n-1}) = (PB_{n}\beta_{n})_{x_{n-1}}.$$

111 where $\beta_n = [\beta_n(1), \beta_n(2)]^{\mathrm{T}}$. Define $\beta_T = [1, 1]^{\mathrm{T}}$.

Exercise 10. The smoother is

$$p(x_n \mid y_{1:T}) = \frac{p(x_n, y_{1:T})}{p(y_{1:T})}$$

$$= \frac{p(y_{n+1:T} \mid x_n, y_{1:n})p(x_n \mid y_{1:n})p(y_{1:n})}{p(y_{1:T})}$$

$$= \frac{p(y_{n+1:T} \mid x_n)p(x_n \mid y_{1:n})p(y_{1:n})}{p(y_{n+1:T} \mid y_{1:n})p(y_{1:n})}$$

$$= \frac{\beta_n(x_n)\pi_n(x_n)}{\beta_n^T \pi_n}.$$

Note that the definition of $\beta_T = [1, 1]^T$ ensures $p(x_T \mid y_{1:T}) = \beta_T(x_T) \pi_T(x_T) / \beta_T^T \pi_T$.

113 **Exercise 11.** Let X_k be a Markov chain with values in the finite

114 set $\{1,\ldots,n\}$ and let the probability mass function of X_1 be $\lambda=$

115 $(\lambda_1, \ldots, \lambda_n)^{\mathrm{T}}$ where λ_i is the probability $X_1 = i$. The transition prob-

ability matrix is an $n \times n$ matrix P with elements $P_{i,j}$.

The process Y_k takes values in the finite set $\{1, \ldots, m\}$. Condition

on $X_k = x_k$, the probability mass function of Y_k is

$$g(x_k, 1), \ldots, g(x_k, m).$$

 $\,$ This completes the description of the hidden Markov model .

121 The derivation of the filter and smoother is unchanged for this more

122 general finite state and finite observation valued hidden Markov model

when the diagonal matrix B_k is

$$B_k = \begin{bmatrix} g(1,y_k) & & & \\ & g(2,y_k) & & \\ & & \ddots & \\ & & g(n,y_k) \end{bmatrix}.$$

- 125 S.S. SINGH, DEPARTMENT OF ENGINEERING, UNIVERSITY OF CAMBRIDGE,
- 126 Cambridge, CB1 7AT, UK
- 127 Email address: sss40@cam.ac.uk