(c)
$$P(x) = P_0 + \frac{1}{A}x \dots D$$
 thus,
 $V(x) = V_0 + Ax \dots D$ $x = \frac{V - V_0}{A}$ plug into D
 $P = P_0 + \frac{1}{A} \frac{V - V_0}{A} = P_0 + \frac{1}{A^2} (V - V_0)$
 $P = \frac{1}{A^2}V + P_0 - \frac{1}{A^2}V_0$

(b)
$$P_{1} \rightarrow P_{0} \quad \text{2} \quad \text{cm}^{3} \rightarrow \text{m}^{3}$$

$$P_{2} = 1.25 \times 10^{10} \text{ V} - 300000$$

$$W = \int_{V_{0}}^{V_{1}} P(v) dV$$

$$= \int_{32-10^{-6}}^{40 \cdot 10^{-6}} (1.25 + 10^{10} \text{ V} - 3 \times 10^{5}) dV$$

$$= \left[0.62 t \times 10^{10} \text{ V}^{2} - 3 \times 10^{5} \text{ V} \right]_{32 \times 10^{-6}}^{40 \times 10^{-6}}$$

$$= 3.6 - 2.4 = \left[1.2 \text{ J} \right]$$