Tutorial Sheet - 10 (Hints and Answer)

SPRING 2017

MATHEMATICS-II (MA10002)

January 10, 2017

1. Answer: 9

Hint:
$$D = \{0 \le x \le 3; 0 \le y \le -\frac{2x}{3} + 2; 0 \le z \le 6 - 2x - 3y\}$$

2. Answer:
$$\frac{\log 2}{2} - \frac{5}{16}$$

Hint: $D = \{0 \le x \le 1; 0 \le y \le 1 - x; 0 \le z \le 1 - x - y\}$

3(i). Answer: $\frac{4\pi}{2m+3}$

Hint: Change into spherical coordinate and obtain the domain
$$D = \{0 \le r \le 1; 0 \le \theta \le \pi; 0 \le \phi \le 2\pi\}$$

3(ii). Answer: $\frac{27\pi}{2}(2\sqrt{2}-1)$

Hint: Change into spherical coordinate and obtain the domain
$$D = \{0 \le r \le \frac{3}{\cos \theta}; 0 \le \theta \le \frac{\pi}{4}; 0 \le \phi \le 2\pi\}$$

4(i). Answer: $\frac{128\pi}{3}$

Hint: Change into cylindrical coordinate and obtain the domain
$$D = \{0 \le r \le 4; 0 \le \theta \le 2\pi; 0 \le z \le 4 - r\}$$

4(ii). Answer: 0

Hint: Change into cylindrical coordinate and obtain the domain
$$D=\{1\leq r\leq 2; 0\leq \theta\leq 2\pi; 0\leq z\leq r\cos\theta+2\}$$

5. Answer: 32.

Hint: Integrate
$$\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}$$
 over $x^2 + y^2 = 4$.

6. Answer: $\sqrt{3}\pi a^2$.

Hint: Integrate
$$\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}$$
 over $x^2 + y^2 = a^2$.

7. Answer: $\frac{\pi a^2}{6} (3\sqrt{3} - 1)$.

Hint: Integrate
$$\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}$$
 over $y^2 = ax$ and $x = a$.

8. Answer: $4\sqrt{2}\pi$.

Hint: First find the equation of the section in
$$xy$$
-plane intersected by two given paraboloids. Then evaluate the integral $\iiint dx \, dy \, dz$ where z varies between the two paraboloids and x, y varies on the section in xy -plane.

9. Answer: 16π .

Hint: Evaluate the integral
$$\iiint dx dy dz$$
 where z varies between the cylinder and the plane and x, y varies on $x^2 + y^2 = 4$.

10. Answer: π .

Hint: First find the equation of the section made by the paraboloid and z = 0. Then evaluate the integral $\iiint dx \, dy \, dz$ where z varies between the plane and the paraboloid and x, y varies on the section in $x^2 + y^2/4 = 1$.

11. Answer: $19\pi/6$.

Hint: First find the equation of the section made by the sphere and paraboloid and evaluate the integral $\iiint dx \, dy \, dz$ accordingly.

12. Ans: $\pi \log[\frac{1}{2}(\sqrt{\alpha} + \sqrt{\beta})]$.

Hint: Differentiate partially w.r.t $\alpha \to \text{Integrate}$ it w.r.t $x \to \text{Integrate}$ the expression w.r.t $\alpha \to \text{Eliminate}$ the arbitrary constant of integration.

13. Ans: $\tan^{-1} \frac{\beta}{\alpha}$

Hint: Differentiate partially wr.t $\beta \to \text{Integrate}$ it w.r.t $x \to \text{Integrate}$ the expression w.r.t $\beta \to \text{Eliminate}$ the arbitrary constant of integration \longrightarrow Take limit as $\alpha \to 0$

14. Hint: Differentiate partially w.r.t $\alpha \longrightarrow \text{Repeated partial derivative w.r.t } \beta \longrightarrow \text{Integrate it w.r.t } x \longrightarrow \longrightarrow \text{Integrate the result w.r.t } \beta$ treating α as constant \longrightarrow Evaluate the arbitrary function $f(\alpha)$ dependent on $\alpha \longrightarrow \text{Substitue}$ the value of $f(\alpha)$ and integrate the resulting expression w.r.t α treating β as constant $\longrightarrow \text{Evaluate}$ the expression for the arbitrary function $g(\beta)$ and substitute it back in the final expression.