Nasa Formal Methods (NFM) 2024, Moffett Field, California (USA)

Quantitative Input Usage Static Analysis

Denis Mazzucato, Marco Campion, and Caterina Urban

4 June 2024


```
1: landing_coeff = abs(angle) + speed
2: if landing_coeff < 2 then
                                                       speed
3: risk = 0
4: else if landing_coeff > 5 then
5: risk = 3
6: else
7: risk = floor(landing_coeff) - 2
```

```
1: landing_coeff = abs(angle) + speed
2: if landing_coeff < 2 then
                                                       speed
3: risk = 0
4: else if landing_coeff > 5 then
5: risk = 3
6: else
7: risk = floor(landing_coeff) - 2
                                 -20° angle
```

```
1: landing_coeff = abs(angle) + speed
2: if landing_coeff < 2 then
                                                       speed
3: risk = 0
4: else if landing_coeff > 5 then
5: risk = 3
6: else
7: risk = floor(landing_coeff) - 2
                                    langle
```

```
1: landing_coeff = abs(angle) + speed
2: if landing_coeff < 2 then
                                                       speed
3:  risk = 0
4: else if landing_coeff > 5 then
5: risk = 3
6: else
7: risk = floor(landing_coeff) - 2
```

```
1: landing coeff = abs(angle) + speed
2: if landing_coeff < 2 then
                                                       speed
  risk = 0
4: else if landing_coeff > 5 then
5: risk = 3
6: else
7: risk = floor(landing_coeff) - 2
                                    langle
```



```
1: landing_coeff = abs(angle) + speed
2: if landing_coeff < 2 then
                                                       speed
   risk = 0
4: else if landing_coeff > 5 then
   risk = 3
6: else
7: risk = floor(landing_coeff) - 2
                                    langle
```

```
1: landing_coeff = abs(angle) + speed
2: if landing_coeff < 2 then
                                                       speed
3:  risk = 0
4: else if landing_coeff > 5 then
   risk = 3
6: else
   risk = floor(landing_coeff) - 2
                                    langle
```


$$risk = 3$$

$$risk = 3$$

- risk = 3
- 0 < risk < 3


```
1: landing_coeff = abs(angle) + speed
2: if landing_coeff < 2 then
                                                       speed
3:  risk = 0
4: else if landing_coeff > 5 then
5: risk = 3
6: else
7: risk = floor(landing_coeff) - 2
```


Number of reachable outcomes

Number of reachable outcomes

Number of reachable outcomes

Number of reachable outcomes

Number of reachable outcomes

Distance of reachable outcomes

Distance of reachable outcomes

Distance of reachable outcomes

Distance of reachable outcomes

Distance of reachable outcomes

Distance of reachable outcomes

Distance of reachable outcomes

Distance of reachable outcomes

Goal: Quantify the impact of speed and angle on risk

Distance of reachable outcomes

RANGE

Goal: Quantify the impact of speed and angle on risk

Distance of reachable outcomes

RANGE

Goal: Quantify the impact of speed and angle on risk

Distance of reachable outcomes

Number of reachable outcomes

	RANGE	OUTCOMES
angle	3	2
speed	2	3

	Range	Outcomes
angle	3	2
speed	2	3

Find k such that

	Range	Outcomes	
angle	$3 \le k$	$2 \leq k$	
speed	$2 \le k$	$3 \leq k$	

Find k such that

	Range	Outcomes
angle	$3 \le k$	$2 \le k$
speed	$2 \le k$	$3 \leq k$

1. Output Buckets

Find k such that

	Range	Outcomes
angle	$3 \le k$	$2 \le k$
speed	$2 \le k$	$3 \leq k$

- 1. Output Buckets
- 2. Backward Abstract Analysis

Find k such that

	Range	OUTCOMES	
angle	$3 \le k$	$2 \le k$	
speed	$2 \le k$	$3 \leq k$	

- 1. Output Buckets
- 2. Backward Abstract Analysis
- 3. Abstract Implementations of RANGE and OUTCOMES

Find k such that

	Range	OUTCOMES	
angle	$3 \le k$	$2 \le k$	
speed	$2 \leq k$	$3 \leq k$	

Smallest *k* permitted by the abstraction!

- 1. Output Buckets
- 2. Backward Abstract Analysis
- 3. Abstract Implementations of RANGE and OUTCOMES

Range[‡] and Outcomes[‡]


```
1: landing_coeff = abs(angle) + speed
2: if landing_coeff < 2 then
 3: risk = 0
4: else if landing_coeff > 5 then
 5: risk = 3
 6: else
                                                          risk
 7: risk = floor(landing_coeff) - 2
      angle speed
                                                                      Dutput Space
Input Space
                          Input-Output Relations
```


1) Output Buckets

Abstract Elements

Denis Mazzucato et al. Quantitative Input Usage Static Analysis, NFM 2024

Abstract Elements

Denis Mazzucato et al. Quantitative Input Usage Static Analysis, NFM 2024

angle = -4

 $1 \le \text{speed} \le 3$

angle = 1

 $1 \le \text{speed} \le 3$

Abstract Elements

Denis Mazzucato et al. Quantitative Input Usage Static Analysis, NFM 2024

3) Abstract Implementation of Impact Definitions

Combinations

high high low medium low low medium low low speed

Abstract Impact Outcomes¹

Combinations

angle

speed

high high low medium medium low low

Abstract Impact Outcomes[‡]

Combinations

high high low medium low medium low low speed

Abstract Impact Outcomes¹

Combinations

angle

speed

Abstract Impact Outcomes¹

Combinations

angle

speed

Abstract Impact Outcomes[‡]

Abstract Impact Outcomes[‡]

Combinations	high medium	high low	low [‡] medium [‡]	high [†] medium [‡] low [‡]	
					Outcomes
angle	3	2	3	4	→ 4

speed

Abstract Impact Range¹

Combinations

high high low medium medium low low

angle

speed

Abstract Impact Range

Combinations $\begin{array}{c|c} high^{\natural} & high^{\natural} \\ how^{\natural} & low^{\natural} \\ high^{\natural} \\ low^{\natural} & medium^{\natural} \\ \\ high^{\natural} \\ how^{\natural} & medium^{\natural} \\ \\ low^{\natural} & \\ \\ \end{array}$ $\begin{array}{c|c} high^{\natural} \\ medium^{\natural} \\ low^{\natural} & \\ \\ low^{\natural} & \\ \\ \end{array}$ $\begin{array}{c|c} speed & 0, 3 & \\ \end{array}$

Abstract Impact Range

Abstract Impact Range¹

Combinations

high high low medium medium medium

angle

speed

Abstract Impact Range¹

Combinations

angle

speed

high high low medium medium medium

Abstract Impact Range¹

Combinations

high high low medium medium low low

angle

speed

Abstract Impact Range

Combinations	high high medium	high [‡] low [‡]	low [‡] medium [‡]	high high medium low	
					Range
angle	2	3	2	3	\Longrightarrow 3
speed			2		$\implies 2$

	Range	OUTCOMES	
angle	3	2	
speed	2	3	

	Range	OUTCOMES	Range	Outcomes
angle	3	2	3	4
speed	2	3	2	3

(i) Backward abstract analysis $\Lambda^{
abla}$ over-approximates the input-output relations

- (i) Backward abstract analysis $\Lambda^{
 abla}$ over-approximates the input-output relations
- (ii) The output buckets B^{\natural} include the whole output space

- (i) Backward abstract analysis $\Lambda^{
 abla}$ over-approximates the input-output relations
- (ii) The output buckets B^{\sharp} include the whole output space
- (iii) Impact[†] is a sound implementation of IMPACT

- (i) Backward abstract analysis $\Lambda^{
 atural}$ over-approximates the input-output relations
- (ii) The output buckets B^{\sharp} include the whole output space
- (iii) Impact[†] is a sound implementation of IMPACT

 $B^{
atural}$

- (i) Backward abstract analysis $\Lambda^{
 atural}$ over-approximates the input-output relations
- (ii) The output buckets B^{\natural} include the whole output space
- (iii) Impact[‡] is a sound implementation of IMPACT

$$\Lambda^{
atural}[P]B^{
atural}$$

- (i) Backward abstract analysis $\Lambda^{
 atural}$ over-approximates the input-output relations
- (ii) The output buckets B^{\natural} include the whole output space
- (iii) Impact[‡] is a sound implementation of IMPACT

$$\operatorname{Impact}_{\mathbf{i}}^{\natural}(\Lambda^{\natural}\llbracket P \rrbracket B^{\natural})$$

- (i) Backward abstract analysis $\Lambda^{
 atural}$ over-approximates the input-output relations
- (ii) The output buckets B^{\natural} include the whole output space
- (iii) Impact[‡] is a sound implementation of IMPACT

$$\operatorname{Impact}_{\mathbf{i}}^{\natural}(\Lambda^{\natural}[\![P]\!]B^{\natural}) \leq k$$

- (i) Backward abstract analysis $\Lambda^{
 atural}$ over-approximates the input-output relations
- (ii) The output buckets B^{\natural} include the whole output space
- (iii) Impact[‡] is a sound implementation of IMPACT

$$\operatorname{Impact}_{\mathbf{i}}^{\natural}(\Lambda^{\natural}[\![P]\!]B^{\natural}) \leq k \quad \Longrightarrow \quad \begin{array}{l} \text{The variable i on the program P} \\ \text{has an impact of } \mathbf{at \; most} \; k \end{array}$$

Source of Imprecision

Abstraction of the Backward Analysis

Source of Imprecision

Abstraction of the Backward Analysis

Choice of the Output Buckets

C. M. Reinhart and K. S. Rogoff. Growth in a time of debt.

American Economic Review 2010.

```
1: def mean_growth_rate_60_90(
       portugal1, portugal2, portugal3,
2:
3:
       norway1,
4:
       uk1, uk2, uk3, uk4,
5:
       usa1, usa2, usa3):
     portugal_avg = avg(portugal1, portugal2, portugal3)
6:
     norway_avg = avg(norway1)
     uk_avg = avg(uk1, uk2, uk3, uk4)
8:
     usa_avg = avg(usa1, usa2, usa3)
9:
     return avg(portugal_avg, norway_avg, uk_avg, usa_avg)
10:
```

C. M. Reinhart and K. S. Rogoff. Growth in a time of debt.

American Economic Review 2010.

```
1: def mean_growth_rate_60_90(
       portugal1, portugal2, portugal3,
2:
3:
       norway1,
       uk1, uk2, uk3, uk4,
5:
       usa1, usa2, usa3):
     portugal_avg = avg(portugal1, portugal2, portugal3)
6:
     norway_avg = avg(norway1)
     uk_avg = avg(uk1, uk2, uk3, uk4)
     usa ava = ava(usa1 usa2 usa3)
9:
     return avg(portugal_avg, norway_avg, uk_avg, usa_avg)
10:
```


41 Output Buckets

C. M. Reinhart and K. S. Rogoff. Growth in a time of debt.

American Economic Review 2010.

41 Output Buckets

C. M. Reinhart and K. S. Rogoff. Growth in a time of debt.

American Economic Review 2010.

41 Output Buckets

C. M. Reinhart and K. S. Rogoff. Growth in a time of debt.

American Economic Review 2010.

```
1: def mean_growth_rate_60_90(
       portugal1, portugal2, portugal3,
2:
3:
       norway1,
4:
       uk1, uk2, uk3, uk4,
5:
       usa1, usa2, usa3):
     portugal avg = avg(portugal1, portugal2, portugal3)
6:
     norway_avg = avg(norway1)
     uk_avg = avg(uk_1, uk_2, uk_3, uk_4)
8:
     usa_avg = avg(usa1, usa2, usa3)
9:
     return avg(portugal_avg, norway_avg, uk_avg, usa_avg)
10:
```

C. M. Reinhart and K. S. Rogoff. Growth in a time of debt.

American Economic Review 2010.

+1.7%

```
1: def mean_growth_rate_60_90(
       portugal1, portugal2, portugal3,
2:
3:
       norway1,
4:
       uk1, uk2, uk3, uk4,
5:
       usa1, usa2, usa3):
     portugal avg = avg(portugal1, portugal2, portugal3)
6:
     norway_avg = avg(norway1)
     uk_avg = avg(uki, uk2, uk3, uk4)
8:
     usa_avg = avg(usa1, usa2, usa3)
9:
     return avg(portugal_avg, norway_avg, uk_avg, usa_avg)
10:
```



```
1: def share_division(
      airbnb_total_cost_eur,
2:
3:
      flight_cost_usd,
      number_of_friends):
5:
    share_airbnb = airbnb_total_cost_eur / number_of_friends
6:
    usd_{to} = 0.92
    flight_cost_eur = flight_cost_usd * usd_to_eur
    total_cost_eur = share_airbnb + flight_cost_eur
    return total_cost_eur
9:
```


OpenAl DevDay: Opening Keynote. 2023 https://www.youtube.com/live/U9mJuUkhUzk?si=vH5gZl3YUR53ep9l


```
1: def share_division(
```

 $2:500 \le airbnb_total_cost_eur \le 2000$

3: $50 \le flight_cost_usd \le 1000$

4: $2 \le \text{number_of_friends} \le 10$

OpenAl DevDay: Opening Keynote. 2023 https://www.youtube.com/live/U9mJuUkhUzk?si=vH5gZl3YUR53ep9l


```
1: def share_division(
2:500 \leq airbnb_total_cost_eur \leq 2000
3: 50 \le flight_cost_usd \le 1000
    2 \le \text{number\_of\_friends} \le 10
     share_airbnb = airbnb_total_cost_eur / number_of_friends
     usd_to_eur = 0.92
     flight_cost_eur = flight_cost_usd * usd_to_eur
     total_cost_eur = share_airbnb + flight_cost_eur
     return total_cost_eur
9:
```


OpenAl DevDay: Opening Keynote. 2023 https://www.youtube.com/live/U9mJuUkhUzk?si=vH5gZl3YUR53ep9l

```
Running code
                                                                      Start typing or upload a file...
    1: def share_division(
    2:500 \leq airbnb_total_cost_eur \leq 2000
                                                                              OpenAl DevDay: Opening Keynote. 2023
    3: 50 \le flight_cost_usd \le 1000
                                                             https://www.youtube.com/live/U9mJuUkhUzk?si=vH5gZI3YUR53ep9l
         2 \le \text{number\_of\_friends} \le 10
    5:
          share_airbnb = airbnb_total_cost_eur / number_of_friends
          usd_to_eur = 0.92
          flight_cost_eur = flight_cost_usd * usd_to_eur
          total_cost_eur = share_airbnb + flight_cost_eur
    9:
           return total_cost_eur
                                                                               20 Output Buckets
                                                                            total_cost_eur
    90$
                                                                      1900$
                                                   100$
                                                                                     Denis Mazzucato et al. Quantitative Input Usage Static Analysis, NFM 2024
```

Your flight information to Paris

airbnb_total_cost_eur flight_cost_usd number_of_friends

OpenAl DevDay: Opening Keynote. 2023 https://www.youtube.com/live/U9mJuUkhUzk?si=vH5gZl3YUR53ep9l

10 airbnb_total_cost_eur 17 flight_cost_usd 9 number_of_friends

OpenAl DevDay: Opening Keynote. 2023 https://www.youtube.com/live/U9mJuUkhUzk?si=vH5gZl3YUR53ep9l


```
1: def share_division(
      airbnb_total_cost_eur,
      flight_cost_usd,
      number_of_friends):
5:
    share_airbnb = airbnb_total_cost_eur / number_of_friends
6:
    usd to eur = 0.92
    flight_cost_eur = flight_cost_usd * usd_to_eur
    total_cost_eur = share_airbnb + flight_cost_eur
8:
9:
     eturn total_cost_eur
```


OpenAl DevDay: Opening Keynote. 2023 https://www.youtube.com/live/U9mJuUkhUzk?si=vH5gZI3YUR53ep9l

Goal: Quantify the impact of speed and angle on risk 1: landing_coeff = abs(angle) + speed 2: if landing_coeff < 2 then 3: risk = 0 4: else if landing_coeff > 5 then 5: risk = 3 6: else 7: risk = floor(landing_coeff) - 2

Goal: Quantify the impact of speed and angle on risk 1: landing_coeff = abs(angle) + speed 2: if landing_coeff < 2 then

Future Work

Quantify the Impact on Timing Behavior

