	Unit 4. Random Variable & Probability PAGE: 11
	distribution
	Random Variable: Real volure of a random experiments called random variable.
ex.	Toss of 2 coins simultaneously.
	S= {HH, TH, HT, TT} B, 1 & 2 are real values of random experim
	Discrete Random Variable: Real value in random Variable is finite and own countable.
	Continuous Random Variable: Real valves in random variable are infinite.
	$a \leqslant x \leqslant b$
	Probability mass function: If x is a discrete
	random variable with distinct Values.
	X=(x1.7x2xn) With respectively probabilities P(x= xi) = P1
	$P(X=X_2)=P_2$
	P(x=xn)=Pn
	then
	Pi-p(xi) is known as probability mass function if it satisfies following proporties.
0	P(ris >,0 The set (sei ·P(sui))
2	$P(xi) >_0$ The set (xi) $P(xi)$
	1=1 x 15 Called
	P(x) probability

PAGE: In hipomial distribution, the number of traces One finite. Only two outcomes either success P+q=d+10.001 Hd All the trials are independent. (3) x = binomial voriable P= SUccess 9 = failure about 1 = (d) x 2009 n = no of trials T = required probrability Mean of Binomial distribution - np Variance of Binamial distribution = ppg S.D. of Binomial distribution = Inpa In binomial distribution, pf 9 always remain constant a batagas at tomminges Prohobitily of T Successes (01) If 10% of botts are produced by a machine Ore defective Determine the probability that out of 10 boits chosen at random. i) two will be defective is) At most two will be defective. Boins let & be the defentive boots.

A discrete random variable x. the poisson $P(X=T) = e^{-Z} Z^{T}$ x is mean of passons distribution O mean = z = np = Exf Variance = Z = np 3 S p = \np It is known that in a cortain plant there are on QT) an average 4 individual accordents per romath. Find the probability than in the given month there will be less than 4 accedents. = Let or denote the no of amidents Z=4 for poisons dist. of A die is thrown 8 Hours It is require $b(x=a) = 6-xx_a = 6-44a$ Probability that there will be less than 4 111 St most seven times P(x<4) = P(x=0) + P(x-1) + P(x=2) + P(x=3) = e-440 + e441 + e-442 + e-443 01 71 21 31

PAGE: DATE: / / Q1) A timo produces articals 0.1 % of which are defective. It packs them in cases containing 500 ortimes. If a wholeson purchases 100 such cases how many cases can be expected 1 to be free from defective. (2) to have one defective. Let x = the defective article.

n = 500. N = 100 probability of defentive articles =0.10/0=p =0.001.01 Aca (a (b) = pera (a (-b)) $Mean = pp = 500 \times 0.001$ Z = 0.5 $P(X = T) = e^{-Z} I = e^{-0.5} (0.5)^{x}$ Probability of no defective article P(x=0) = e-0.5 (0.5) = Daily tramps of workers foregree pompet The no of cases free from defects = N=P(X=0) = 100 × 0.6065 = 60.65 ~ 61 0001 = 00

 $P(X=1) = e^{-0.5} (0.5)! = 0.3032$

	PAGE: DATE: /
	P(Z(-2.1) = 0.5 - P(Z = -2.1)
	= 0.5 - 0.4821
P:2>	2000 Students appeared for exam. Distributions of marks is assumed to be normal
	of marks is assumed to be normal with
	mean 30.9:p is 6.25. How many students
	Will get martes
	(1) in bein 20 and 40. P(z=1.6) = 6.4.
Ans >	1/1/1/\ 2 0 + 2 14 3 + 0 5
	$m/u = 30$; $\delta = 6.25$
	P(20(x(E0)=P(< Z <)
	21 = 20 $22 = 20$
	$Z_1 = 20-30$ $Z_2 = 40-30$ $C_{1,2,5}$ $C_{1,2,5}$
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	P(-1.6(z < 1.6)
Transan	
60	= P(-1.6 < Z < O)
	+ P(O(Z < 1.6)
	= 0.4452 +
Charle	0.4452
4 4 5 1	= 0.8904 -1.6
	P(X<790) = P(Z<-201) - (10P) X39
	No of Students been 20 to 40.
	= 2000 x 0.8904
	= 1708.8

€ 1781

