TD2 : Extensions de corps

25/09/2023

Exercice 1 : Corps de décomposition

Déterminer les corps de décompositon des polynôme suivants de $\mathbb{Q}[X]$, ainsi que leur dimension sur \mathbb{Q} :

- $-X^2-3$.
- $-X^3-2$
- $-(X^3-2)(X^2-2)$
- $-X^5-7$
- $-X^4 + 4$.
- $-X^6 + 3$.
- $-X^8 + 16.$

Correction:

- Le corps de décomposition de X^2-3 est $\mathbb{Q}(\sqrt{3})$. Comme $\sqrt{3} \notin \mathbb{Q}$, $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]=2$.
- Le corps de décomposition de X^3-2 est $\mathbb{Q}(\sqrt[3]{2},\rho)$. Comme X^3-2 est irréductible sur \mathbb{Q} , on a $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$. De plus, $\rho^2+\rho+1=0$, donc $[\mathbb{Q}(\sqrt[3]{2},\rho):\mathbb{Q}(\sqrt[3]{2})]\leqslant 2$. Mais $\rho\notin\mathbb{Q}(\sqrt[3]{2})$. Donc $[\mathbb{Q}(\sqrt[3]{2},\rho):\mathbb{Q}(\sqrt[3]{2})]=2$ et $[\mathbb{Q}(\sqrt[3]{2},\rho):\mathbb{Q}]=6$.
- Le corps de décomposition de $(X^3-2)(X^2-2)$ est $\mathbb{Q}(\sqrt[3]{2},\sqrt{2},\rho)=\mathbb{Q}(\sqrt[6]{2},\rho)$. En procéd ant comme dans le point précédent, on a $[\mathbb{Q}(\sqrt[6]{2}):\mathbb{Q}]=6$ et $[\mathbb{Q}(\sqrt[6]{2},\rho):\mathbb{Q}(\sqrt[6]{2})]=2$. Donc $[\mathbb{Q}(\sqrt[6]{2},\rho):\mathbb{Q}]=12$.
- Le corps de décomposition de X^5-7 est $\mathbb{Q}\left(\sqrt[5]{7},\zeta_5\right)$ où ζ_5 est une racine primitive 5 -ième de l'unité. Le polynôme X^5-7 est irréductible par le critère d'Eisenstein. Donc $[\mathbb{Q}(\sqrt[5]{7}):\mathbb{Q}]=5$. Le polynôme $\phi_5=X^4+X^3+X^2+X+1\in\mathbb{Q}[X]$, qui annule ζ_5 , est aussi irréductible (appliquer le critère d'Eisenstein à $\phi_5(X+1)$). Donc $[\mathbb{Q}(\zeta_5):\mathbb{Q}]=4$. On en déduit que $20\mid [\mathbb{Q}\left(\sqrt[5]{7},\zeta_5\right):\mathbb{Q}]$. Mais $[\mathbb{Q}\left(\sqrt[5]{7},\zeta_5\right):\mathbb{Q}]=[\mathbb{Q}\left(\sqrt[5]{7},\zeta_5\right):\mathbb{Q}]=20$.
- Le corps de décomposition de X^4+4 est $\mathbb{Q}\left(\sqrt{2}\zeta_8,i\right)=\mathbb{Q}(i)$ où $\zeta_8=e^{\frac{i\pi}{4}}=\sqrt{2}(1+i)$. On a $\left[\mathbb{Q}(i):\mathbb{Q}\right]=2$.
- Le corps de décomposition de X^6+3 est $\mathbb{Q}\left(i\sqrt[6]{3},\zeta_6\right)=\mathbb{Q}(i\sqrt[6]{3})$ avec $\zeta_6=e^{\frac{i\pi}{3}}=\frac{1+i\sqrt{3}}{2}$. Comme le polynôme X^6-3 est irréductible d'après le critère d'Eisenstein, $[\mathbb{Q}(i\sqrt[6]{3}):\mathbb{Q}]=6$.
- Le corps de décomposition de X^8+16 est $\mathbb{Q}\left(\zeta_{16}\sqrt{2},\zeta_8\right)=\mathbb{Q}\left(\zeta_{16}\right)$ où $\zeta_8=e^{\frac{i\pi}{4}}=\sqrt{2}(1+i)$ et $\zeta_{16}=e^{\frac{i\pi}{8}}$. Le polynôme $\phi_8=X^8+1$ annule ζ_{16} et est irréductible (appliquer le critère d'Eisenstein à $\phi_8(X+1)$). Donc $[\mathbb{Q}\left(\zeta_{16}\right):\mathbb{Q}]=8$.

Exercice 2:

Soit L/K une extension de corps et F_1, F_2 deux sous-extensions. On suppose que $[F_1 : K] \wedge [F_2 : K] = 1$. Montrer que $F_1 \cap F_2 = K$.

Correction:

Par multiplicité des degrés, $[F_1 \cap F_2 : K]$ divise $[F_1 : K]$ et $[F_2 : K]$, donc divise leur pgcd, c'est à dire 1, d'où $F_1 \cap F_2 = K$.

Exercice 3: Polynômes minimaux

Soient K un corps et L une extension finie de K. Soient x, y deux éléments de L, et P_x, P_y leurs polynômes minimaux respectifs sur K. Montrer que P_x est irréductible sur K(y) si et seulement si P_y est irréductible sur K(x).

Correction:

 P_x est irréductibe sur K(y) ssi $K(y)[X]/(P_x(X))$ est un corps ssi $K[X,Y]/(P_x(X),P_y(Y))$ est un corps, ssi $K(x)[Y]/(P_y(Y))$ est un corps, ssi P_y irréductible sur K(x).

Exercice 4:

Soit k un corps et K = k(X) le corps des fractions rationnelles.

- **1.** Soit $F \in K \setminus k$.
 - a. Montrer que X est algébrique sur k(F).
 - b. En déduire que F est transcendant sur k.
 - c. Montrer que $[K:k(F)] = \max(\deg P, \deg Q)$ où $F = \frac{P}{Q}$ avec $P, Q \in k[X], P \land Q = 1$.

On pourra d'abord montrer le lemme suivant :

Lemme 0.1.

Soient $f, g \in K[t]$ premiers entre eux, et $m = \max(\deg f, \deg g)$, et $P_n \in K[t]$ des polynômes de degré strictement inférieur à m. Si il existe N tel que

$$\sum_{n=0}^{N} P_n f^n g^{N-n} = 0$$

Alors $P_n = 0$ pour tout $n \leq N$.

2. Soit $\phi: \operatorname{GL}_2(k) \to \operatorname{Aut}_k(K)$ le morphisme de groupe défini par

$$\phi \begin{pmatrix} a & b \\ c & d \end{pmatrix} : R \mapsto R \left(\frac{aX + b}{cX + d} \right)$$

Montrer que ϕ est surjectif et déterminer $\ker(\phi)$.

Correction:

1.

- a. Notons $F = \frac{P}{Q}$ avec $P \wedge Q = 1$. Alors X est racine du polynôme $P(T) FQ(T) \in k(F)[X]$. Ce polynôme est bien non nul, en effet c'est le polynôme $\sum_i (p_i Fq_i)T^i$ et comme $F \notin k$, et que P et Q ne sont pas nuls, on trouve bien au moins un coefficient non nul.
- b. Si F était algébrique sur k, alors $[k(F):k]<\infty$. Puis par multiplicité des degrés ont aurait alors $[k(X):k]=[k(X):k(F)][k(F):k]<\infty$, ce qui est absurde. D'où F est transcendant.
- c. Prouvons le lemme : on peut supposer $\deg(g) = m$. Alors g divise $\sum_{n=0}^{N-1} P_n f^n g^{N-n}$, et donc divise aussi $P_N f^N$. Comme $f \wedge g = 1$, g divise P_N qui est de $\deg f < m = \deg g$, donc est nul. Alors $\sum_{n=0}^{N-1} P_n f^n g^{(N-1)-n} = 0$ et une récurrence finie termine la preuve du lemme.

Soit $F = \frac{P(X)}{Q(X)}$ comme dans la question. On veut montrer que le polynôme minimal de X sur K(F) est de degré $m = \max(\deg P, \deg Q)$. Soit $R(T) \in k(F)[T]$, tel que R(X) = 0. On écrit $R(T) = \sum_{k=0}^{r} a_k T^k$, avec $a_k \in K(F)$ et on suppose par l'absurde que r < m. On peut écrire chaque $a_k = \frac{P_k(F)}{Q_k(F)}$, avec $P_k, Q_k \in k[Y]$. L'égalité R(X) = 0 s'écrit alors

$$\sum_{k=0}^{r} \frac{P_k(F)}{Q_k(F)} X^k = 0.$$

Soit en mettant au même dénominateur :

$$\sum_{k=0}^{r} P_k(F) \prod_{k' \neq k} Q_{k'}(F) X^k = 0$$

$$=: \widetilde{P_k(F)}$$

qui devient alors

$$\sum_{k=0}^{r} \widetilde{P_k(F)} X^k = 0,$$

avec $\widetilde{P}_k(T) =: \sum_l a_{kl} T^l \in k[T].$

Alors en replacant par la définition de F:

$$\sum_{k=0}^{r} \sum_{l} a_{kl} \frac{P(X)^{l}}{Q(X)^{l}} X^{k} = 0.$$

et en multipliant par $Q(X)^L$ avec L assez grand (les sommes sont des sommes finies) on obtient :

$$\sum_{k=0}^{r} \sum_{l} a_{kl} P(X)^{l} Q(X)^{L-l} X^{k} = 0,$$

Ce qui donne en inversant la sommation

$$\sum_{l} (\sum_{k=0}^{r} a_{kl} X^{k}) P(X)^{l} Q(X)^{L-l} = 0.$$

> Par le Lemme, on déduit que tous les a_{kl} sont nuls, donc $\widetilde{P_k}$ aussi et finalement les a_k sont nuls (car les Q_k sont non nuls). Finalement, R=0, ce qui conclut.

Remarque 2. En utilisant le Lemme de Gauss (dernier exercice de la feuille), on peut aller plus vite : le polynome $R(T) = P(T) - F(X)Q(T) \in k(F)[T]$ peut être vu comme un polynôme de k[F][T]. De plus k[F] et k[T] sont principaux, le premier car F est transcendant donc isomorphe au deuxième, et le deuxième par le cours (futur?). Or comme polynôme en F à coefficient dans k[T], il est irréductible dans k(T)[F] car de degré 1, et est primitif car $P \wedge Q = 1$, donc est irréductible sur k[T][F] = k[F][T], et donc est irréductible sur k(F)[T].

2. Soit $\phi \in \operatorname{Aut}_k(K)$, et $F = \phi(X)$. Alors pour tout $R \in k(X)$, on remarque que $\phi(R) = R(F)$. L'image de ϕ est donc k(F), ce qui force F à être de la forme $\frac{P}{Q}$ avec $\max\{\deg P, \deg Q\} = 1$ par la question précédente, et comme P = aX + b et Q = bX + d doivent être premiers entre eux, on voit que (a, b) et (c, d) ne sont pas colinéaires, ce qui montre la surjectivité. ϕ sera dans le noyau ssi elle envoie X sur X c'est à dire encore ssi elle correspond à $\lambda \operatorname{Id}$.

Exercice 5:

- 1. Est-ce que l'extension $\mathbb{Q}(\sqrt{2},\pi)/\mathbb{Q}$ est purement transcendante?
- **2.** Est-ce que l'extension $\mathbb{R}(X,Y)/\mathbb{R}(X+Y)$ est purement transcendante?

Correction:

1. le degré de transcendance de cette extension est 1, car $\mathbb{Q}(\sqrt{2},\pi)/\mathbb{Q}(\pi)$ est algébrique (et on suppose que l'on sait que π est transcendant). Si par l'absurde cette extension était purement transcendante,

alors on aurait $\mathbb{Q}(\sqrt{2},\pi)\simeq\mathbb{Q}(Y)$. Or l'extension de droite n'a pas de racine de 2, en effet si un tel \mathbb{Q} -isomorphisme existait, l'image $\frac{P(Y)}{Q(Y)}$ de $\sqrt{2}$ vérifierai

$$\left(\frac{P(Y)}{Q(Y)}\right)^2 = 2$$

soit encore

$$P(Y)^2 = 2Q(Y)^2$$

ce qui par exemple en prenant le coefficient dominant q_n de Q donne $p_n^2=2q_n^2$, absurde.

2. Par additivité du degré de transcendance, on a que le degré de cette extension est 1. Or $\mathbb{R}(X,Y) = \mathbb{R}(X+Y)(Y)$, donc Y ne peut pas être algébrique par définition du degré de transcendance (le fait que ce soit le cardinal de n'importe quelle base de transcendance, si Y était algébrique \varnothing serait une base de transcendance de $\mathbb{R}(X,Y)/\mathbb{R}(X+Y)...$). On a donc bien une extension purement transcendante.

Exercice 6 : Degré du corps de décomposition

Soient K un corps, $P \in K[X]$ un polynôme de degré $n \ge 1$ et L un corps de décomposition de P sur K. Montrer que [L:K] divise n!.

Correction:

Cours

Exercice 7: Un contre-exemple

Soit $K = \mathbb{Q}(T)$, et deux sous corps $K_1 = \mathbb{Q}(T^2)$ et $K_2 = \mathbb{Q}(T^2 - T)$. Montrer que K est algébrique sur K_1 et K_2 mais pas sur $K_1 \cap K_2$.

Exercice 8 : Extensions de degré 2

Soit L une extension d'un corps K de degré 2.

- **1.** On suppose que la caractéristique de K n'est pas 2. Montrer qu'il existe $a \in K$ tel que $L \simeq K[X]/(X^2-a)$ (que l'on note par definition $K(\sqrt{a})$.
 - 2. A quelle condition deux extensions de cette forme sont isomorphes?
 - **3.** Décrire les K automorphismes de $K(\sqrt{a})$.

Correction:

1. Soit $x \in L \setminus K$. La famille 1, x est libre sur K donc $x^2 = bx + c$. En caractéristique différente de 2, on obtient $(x + b/2)^2 = c + b^2/4$. En posant $a = c + b^2/4$ et en envoyant X sur x + b/2, on obtient un morphisme $K[X]/(X^2 - a) \to L$, qui est un isomorphisme car 1, x + b/2 forment une base de L sur K.

Exercice 9: Une extension purement transcendante

Montrer que $k(x, \sqrt{1-x^2})$ est purement transcendante.

Correction:

Exercice 10: Un exemple

Soit $K = \mathbb{Q}(\sqrt[3]{2}, j)$ où $j = e^{2i\pi/3}$.

- 1. Déterminer $[K:\mathbb{Q}]$, et exprimer K comme corps de décomposition d'un polynôme bien choisi.
- **2.** Déterminer tous les sous-corps de K ainsi que leur degré.

Correction:

1. Comme $[\mathbb{Q}(j):\mathbb{Q}]=2$ et $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3]$ on a $[K:\mathbb{Q}]=6$. Si $P=X^3-2$ alors K contient un corps de décomposition de P. Comme les racines de P sont $\sqrt[3]{2}$, $j\sqrt[3]{2}$ et $j^2\sqrt[3]{2}$ un corps de décomposition de P contient toujours $\sqrt[3]{2}$ et $j=\frac{j\sqrt[3]{2}}{\sqrt[3]{2}}$ donc K est un corps de décomposition de P.

2. Un sous corps de K est de degré 1, 2, 3 ou 6. Les cas 6 et 1, sont triviaux. On montre que si L est un sous corps de K de degré 3 alors $L = \mathbb{Q}(j^i\sqrt[3]{2})$ pour un i = 0, 1, 2 et que si L est de degré 2 alors $L = \mathbb{Q}(j)$.

On regarde les automorphismes de K, ils sont déterminés sur j et $\sqrt[3]{2}$ et donc il ne peut avoir qu'au plus 6. Il y en a exactement 6 et le groupe des automorphismes de K est isomorphe à S_3 le groupe de permutation de trois éléments, agissant sur $\{\sqrt[3]{2}, j\sqrt[3]{2}, j^2\sqrt[3]{2}\}$ le 3-cycle correspond à la multiplication par j et la transposition est engendrée par $j \mapsto j^2$.

Supposons tout d'abord que $[L:\mathbb{Q}]=2$ alors comme dans l'exercice 2, on a $L=\mathbb{Q}(\alpha)$ avec $\alpha^2\in\mathbb{Q}$. Et on a donc un automorphisme $c_\alpha:L\to L, \alpha\mapsto -\alpha$, de plus on a $K=L(\sqrt[3]{2})$. La composée $L\xrightarrow{c_\alpha}L\to K$ s'étend en un morphisme $K\to K$ (cela revient à choisir une racine cubique de 2 et on en a déjà choisi une dans la définition de K). On obtient donc un automorphisme de K, celui-ci est d'ordre 2. Pour conclure il suffit de montrer que L est invariant par le 3-cycle, supposons que ce n'est pas le cas. Notons $\tau:K\to K$ le 3-cycle, si $\tau(L)\neq L$ alors $\tau(L)=\mathbb{Q}[\tau(\alpha)]$ et comme précédemment on construit un automorphisme de K qui est déterminé par $\tau(\alpha)\mapsto -\tau(\alpha)$. On obtient alors trois automorphismes et on peut prescrire que chacun d'entre eux envoie $\sqrt[3]{2}$ sur lui même. Alors ces trois automorphismes sont égaux et donc c_α commute à l'action de τ ce qui est impossible dans S_3 .

Supposons dans un deuxième cas que $[L:\mathbb{Q}]=3$ alors [K:L]=2 et on a un automorphisme L-linéaire de K d'ordre 2 et L s'identifie au points fixes de K sous cet automorphisme. Avec la connaissances du groupe des automorphismes et de leurs points fixes on gagne.

Exercice 11: Critères d'irréductiblité

- 1. (Eisenstein) Soit $P = \sum_{i=0}^{n} a_i X^i$ à coefficients entiers. Supposons qu'il existe un nombre premier p tel que $p|a_i$ pour $i \leq n-1$, p ne divise pas a_n et p^2 ne divise pas a_0 . Alors P est irréductible sur \mathbb{Q} .
- **2.** (Lemme de Gauss) Pour P un polynôme, on note c(P) le pgcd de ses coefficients. On dit que P est primitif si c(P) = 1.

Soit A un anneau factoriel, et K son corps des fractions. Les éléments irréductibles de A[X] sont les éléments premiers de A et les polynôme primitifs irréductibles sur K[X].