Your Name:	netid:	Group #:
Name:	netid:	

ECE 120 Worksheet 4: Karnaugh Maps

Before you begin today's discussion, be sure that you are familiar with terminology, such as literals, minterms, maxterms, canonical forms, implicants, prime implicants, and K-maps. Also be sure that you know how to find canonical SOP and POS forms for Boolean functions, and that you know how to use K-maps. To check these skills, you can make up a truth table at random, find a Boolean expression for the function, then check your result by writing a truth table for your expression.

K-maps

- Think about Karnaugh map, or K-map, as an alternative representation of truth table that
 - Lists cells in Gray code order, and
 - o Each cell corresponds to a row of the truth table
- Two-variable Boolean function example:
 - o four possible values, m₀ m₄, which can be arranged into a Karnaugh map as follows:

Truth table for a 2-variable function

х	У	f(x,y)
0	0	m ₀
0	1	m ₁
1	0	m ₂
1	1	m ₃

Corresponding K-map representation

- Similarly, we can obtain K-maps for 3- and 4-variable Boolean functions
 - Note the order in which variables x, y, and z appear on the sides of the K-map.

		yz				
		00	01	11	10	
x	0	m ₀	m ₁	m ₃	m ₂	
^	1	m ₄	m ₅	m ₇	m ₆	
		f(x,y,z)				

		yz			
		00	01	11	10
wx	00	m ₀	m ₁	m ₃	m ₂
	01	m ₄	m ₅	m ₇	m ₆
	11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
	10	m ₈	m ₉	m ₁₁	m ₁₀

f(w,x,y,z)

Problem 1

a) Fill in 3-variable K-maps for the functions shown below:

b) Fill in 4-variable K-maps for the functions shown below:

Function simplification

- K-maps is a great tool for simplifying Boolean expressions
- A product term is an *implicant* of a function if the function has the value 1 for all minterms of the product term
 - o In terms of K-map, implicants correspond to all legal loops
- An implicant is a *prime implicant* if it is not contained within a larger implicant
 - o In terms of K-map, prime implicants correspond to all biggest possible loops
 - Example of prime imlicants:

Prime implicants: w'y', xy'z, wxz, wyz', wxy

- An SOP (or POS) expression is *minimal* if
 - o It has the minimum number of product (sum) terms, and
 - o Among expressions with minimum number of terms, it has fewest number of literals
- A minimal SOP expression is a sum of (a subset of) prime implicants.
- Minimal SOP example:

Min SOP: y'+w'x+xz'

Minimal POS example:

Min POS: (w'+x'+y+z)(w+x'+y')(x+z')

Use the area heuristic—number of literals plus the number of operators, not including complemented literals—to find minimal expressions in today's problems. Choosing a minimal number of prime implicants from a K-map will give you minimal solutions in this sense.

Problem 2

a) Find all minimal SOP expressions from the following K-maps. Circle the corresponding loops on the K-maps and write down the Boolean expressions. Note that min SOP may not be unique!

		yz			
		00	01	11	10
wx	00	1	0	1	1
	01	1	0	0	1
	11	1	1	1	0
	10	0	0	1	1

		yz			
		00	01	11	10
	00	0	1	0	0
wx	01	0	1	1	1
	11	1	1	1	0
	10	0	0	1	0

Min SOP: Min SOP:

b) Find minimal POS examples from the following K-maps. Circle the corresponding loops on the K-maps and write down the Boolean expressions. Note that min POS may not be unique!

		yz			
		00	01	11	10
	00	1	1	0	0
wx	01	1	1	1	1
	11	1	1	0	1
	10	1	1	0	0

Min POS: Min POS:

c) Use the K-map below to calculate both a minimal SOP expression and a minimal POS expression for *F*.

F		AB			
		00	01	11	10
CD	00	0	0	0	0
	01	1	1	0	0
	11	0	1	0	0
	10	0	0	0	0

Min SOP: F(A,B,C,D) =

Min POS: F(A,B,C,D) =