Likelihood-based Generative Models Generative and Graphical Models Al60201, Module 3

Adway Mitra

Indian Institute of Technology Kharagpur

19 October 2022

Contents

- Background
- Deep Autoregressive Models
- Variational Autoencoder
 - Training a VaE
- Deep Generative Models
 - Normalizing Flows

Background

Generation of Complex Structures

- Aim of generative model: to synthesize new data-points
- Data-points may be complex structures like images, videos, speech etc
- They should be similar, but not identical to, the examples already present in a dataset
- For example, if a dataset has 1000 face images from 10 different persons, generative model should produce a face image, but not necessarily from any of these persons
- Conditional generation: generated datapoint should correspond to an input from the user
- Example: user provides a text caption, according to which an image is generated

Image Generation

- \bullet An image is basically a $M\times N$ matrix, where each value (pixel) lies between 0 and 255
- Images are highly complex structures with spatial properties
- Deep Neural Networks, especially Convolutional Neural Network are suitable for representing images
- Deep Neural Networks like U-Net and autoencoders can produce an image as output against a low-dimensional input
- In Generative Models, the low-dimensional input can be sampled from a prior
- The low-dimensional input, or the prior, can encode the condition specified by the user
- A likelihood-based generative model defines a distribution over the space of all images
- The *desired* images (eg. visually meaningful images containing some specified object) should have high probability

Classification of Generative Models

- Likelihood-based (define probability distribution over image space)
 - Fully observed (no latent variable)
 - Autoregressive Models
 - Latent variable based
 - Variational Autoencoders
 - Normalizing Flows
- Without Likelihood (doesn't define any such distribution)
 - Generative Adversarial Networks (and variants)

Deep Autoregressive Models

Autoregressive Models

- Generate each pixel sequentially, conditioned on those already generated
- The image is scanned, pixel by pixel, in a fixed order (row-wise or column-wise)
- \bullet For each pixel, a probability distribution is defined over possible values [0,255], parameterized with values of previous pixels (according to sequential order)probability
- Image likelihood $p(X;\theta) = \prod_{i,j} p(X_{i,j}|X_{1,1},\dots,X_{i,j-1})$
- \bullet Given image X , probability $p(X;\theta) = \prod_{i,j} p(X_{i,j}|X_{1,1},\dots,X_{i,j-1})$
- Drawback: scan order is artificial, may not carry enough information to insert new objects in image
- Good for evaluating likelihood of a given image, not good for sampling/synthesizing new images

PixelRNN

- Each pixel's distribution parameterized by Neural Network
- ullet Sequence of pixel values $(X_{1,1},\dots,X_{i,j-1})$ in scan order input to Recurrent Neural Network

Figure: Pixel Recurrent Neural Network

PixelCNN

- Faster but less accurate than PixelRNN
- For each pixel, focus only on pixels within receptive field
- Two filters for horizontal and vertical neighboring pixels

Figure: Pixel Convolutional Neural Network

Variational Autoencoder

Latent Variable Formulation

- ullet Start with *image seed* Z, generated from prior $Z\sim P$
- ullet It is then passed through a neural network $g_{ heta}$ which produces an image as output
- ullet g specifies neural network architecture, heta its parameters
- Add random noise to each pixel independently
- $Z \sim \mathcal{N}(0,1)$, $X \sim \mathcal{N}(g_{\theta}(Z), \sigma^2 I_{m \times n})$
- Probability of any image $p(X) = \int p(X|Z)p(Z)dZ$
- ullet Aim: estimate the neural network parameters heta by maximizing probability of desired images (training)
- \bullet Problem 1: The marginal likelihood P(X) cannot be calculated analytically due to presence of g_θ
- Problem 2: $p(X_i, Z_i)$ is easy to calculate, but we don't know Z_i for each training image X_i

Variational Inference Network

- ullet For each training image X_i , estimate the corresponding Z_i
- ullet $p(Z_i|X_i)$ cannot be calculated analytically, as p(X) cannot be
- ullet Alternative: variational inference q(Z|X) to approximate p(Z|X)
- $q(Z|X) \sim \mathcal{N}(\mu(X_i), \Sigma(X_i))$
- $\{\mu(X_i), \Sigma(X_i)\} = h_\phi(X_i)$, where h is another neural network with parameters ϕ
- h_{ϕ} is called the *encoder*, while g_{θ} is called *decoder*
- ullet Parameters $heta, \phi$ to be estimated simultaneously
- ullet Loss function with respect to both X_i and Z_i
- X_i must have high probability according to p_{θ^*} , while $q_{\phi}(Z_i|X_i)$ should be close to $p(Z_i)$

Objective Function

- $\theta^* = \operatorname{argmax}_{\theta,\phi} \prod_{i=1}^N p(X_i | g_{\phi}(Z_i))$, where $Z_i \sim \mathcal{N}(h(\phi)(X_i))$
- \bullet Neural Network parameters $\theta,\phi,$ may be estimated by backpropagation after defining suitable loss function
- $\ell(\theta, \phi) = \sum_{i=1}^{N} ||X_i g_{\theta}(Z_i)|| + \sum_{i=1}^{N} KL(\mathcal{N}(h_{\phi}(X_i)))||\mathcal{N}(0, 1))$
- Equivalent to maximizing the evidence lower bound (ELBO)
- ullet Backpropagation cannot be applied directly as it includes sampling Z_i as an intermediate step
- Solution: Decouple the sampling from the backpropagation
- Reparameterization Trick: $\epsilon_i \sim \mathcal{N}(0,1)$ sampled independently, $Z_i = \mu_{\phi}(X_i) + \epsilon_i \sigma_{\phi}(X_i)$
- Now backpropagation can be applied to estimate θ, ϕ

VaE Graphical Model

Autoencoder

Variational Autoencoder

Synthesizing New Images

- Once θ^* is estimated, new images can be generated by first sampling Z from prior and then running it through decoder network g_{θ^*}
- Use of parameters θ^* ensures that produced image will be *similar* to the images used for training (eg. if training set had handwritten digit images, only such images will be synthesize)
- Since Z is generated independently for each image, no two images are going to be identical
- \bullet The differences may be manifested in any attribute, or a set of attributes, that can be encoded by a single real number like Z
- ullet We can use inference network to carry out post-processing analysis of Z to find which attributes(s) it represents

Supervised VaE

- ullet The datapoints used for training may be accompanied by class labels (X_i,Y_i)
- The generator/decoder network should be sensitive to the class label, i.e. $g_{\theta}(Y_i, Z_i)$
- \bullet Similarly, the inference/encoder network should be able to predict probability distribution $q(Y_i|X_i)$
- The training process will remain unchanged
- ullet The loss function will include cross-entropy loss function for Y_i (prediction by encoder and actual label)
- ullet For new image generation, the user should specify Y_i , and the image will be generated accordingly

VaE Variants Graphical Model

Image attributes through Latent Variables

Supervised VaE

Interpretation

- The latent variable represents some attribute, or combination of attributes of the image
- However, these attributes are not specified by the user
- They can be stylistic (eg. thickness, level of blurring etc) or semantic (eg. complexion, gender etc)
- Basically, Z captures the most prominent directions of variation in the dataset (rough analogy with non-linear PCA)
- ullet Nature of Z (real/discrete/binary) determines how much variation can be accommodated by it
- May be possible to include more variations with more latent variables!

Examples of VaE images

- Generating new images via latent variable is effectively an interpolation of training images
- Hence, VaE images often look blurry as the RMSE error fails to retain sharpness of edges

Original

Generated by VaE

Figure: Images generated by VaE

Deep Generative Models

Deep Latent Variables

- We may want several latent variables to capture the variability of training dataset
- The variables can be arranged in layers to indicate hierarchical attributes (eg. gender, ethnicity may be at a higher level of variability than complexion)
- Assumption: one layer of latent variables connected with another layer

Deep Boltzmann Machine

- An undirected graphical model over layers of variables $Z^L, Z^{L-1}, \dots, Z^2, Z^1, Z^0$, where $Z^0 = X$ (observations)
- Each layer of latent variables Z^l connected to neighboring layers only (Z^{l-1}) and Z^{l+1})
- \bullet Each variable i in layer l $\left(Z_i^l\right)$ connected to each variable j in layer (l-1) through W_{ij}^l
- Joint distribution of all variables represented as product of edge potential functions
- $\bullet \ \phi(Z_i^l,Z_j^{l-1}) = exp(-W_{ij}^lZ_i^lZ_j^{l-1})$
- $p(Z) \propto exp(-\sum_{l=1}^{L} (Z^{l-1})^T W^l Z^l)$
- The last layer connecting Z^1 with $Z^0=X$ may be represented by a more complex neural network like g_{θ} (especially if X is a complex object like image)

Inference in DBM

- We may be interested to find the meaning of every latent variable (i.e. which attribute it represents)
- \bullet Approach: carry out inference of all latent variables to compute posteriors $p(Z_{ij}^l=1|X)$
- Cannot be estimated directly, so we can use Gibbs Sampling
- According to D-separation rules, each variable in layer l is independent of all variables except those in the neighboring layers
- For simplicity, assume all variables are binary
- $p(Z_i^l=1|-Z_i^l)=\sigma(-(Z^{l-1})^TW_i^l-W_i^{l+1}Z^{l+1})$ where σ denotes the sigmoid function
- We sample each variable in one iteration, keeping the rest constant
- We repeat this for many iterations, collecting samples of each variable regularly. Posteriors estimated from these samples

Training of DBM by Contrastive Divergence

- ullet Training of DBM involves estimating the parameters W
- \bullet Maximum Likelihood: $W^* = \operatorname{argmax}_W \sum_{Z^1,...,Z^L} p(X,Z)$
- Difficult to compute because there are too many combinatorial configurations to sum over
- Alternative approach: through sampling
- \bullet Starting from X , sample values of Z^1,\dots,Z^L , let these values be $\{\hat{Z}_l\}_{l=0}^L$
- \bullet Starting from Z^L , sample values of z^{L-1},\dots,Z^1,Z^0 , call these values $\{Z_l^*\}_{l=0}^L$
- Sampling from the conditional distributions mentioned earlier
- \bullet At every layer l, update W^l according to $\Delta W^l = \hat{Z}_{l-1}\hat{Z}_l^T Z_{l-1}^*(Z_l^*)^T$
- ullet $W^l = W^l lpha \Delta W^l$ where ΔW is called *contrastive divergence*

DBM Training Algorithm

Variational Stochastic MLE Algorithm:

Set ϵ , the step size, to a small positive number

Set k, the number of Gibbs steps, high enough to allow a Markov chain of $p(\boldsymbol{v}, \boldsymbol{h}^{(1)}, \boldsymbol{h}^{(2)}; \boldsymbol{\theta} + \epsilon \Delta_{\boldsymbol{\theta}})$ to burn in, starting from samples from $p(\boldsymbol{v}, \boldsymbol{h}^{(1)}, \boldsymbol{h}^{(2)}; \boldsymbol{\theta})$. Initialize three matrices, \tilde{V} , $\tilde{H}^{(1)}$ and $\tilde{H}^{(2)}$ each with m rows set to random values (e.g., from Bernoulli distributions, possibly with marginals matched to the model's marginals).

while not converged (learning loop) do

Sample a minibatch of m examples from the training data and arrange them

as the rows of a design matrix V. Initialize matrices $\hat{H}^{(1)}$ and $\hat{H}^{(2)}$, possibly to the model's marginals.

while not converged (mean field inference loop) do

$$\hat{H}^{(1)} \leftarrow \sigma \left(V W^{(1)} + \hat{H}^{(2)} W^{(2)\top} \right).$$

$$\hat{\boldsymbol{H}}^{(2)} \leftarrow \sigma \left(\hat{\boldsymbol{H}}^{(1)} \boldsymbol{W}^{(2)} \right).$$

end while

 $\Delta_{\mathbf{W}^{(1)}} \leftarrow \frac{1}{m} \mathbf{V}^{\top} \hat{\mathbf{H}}^{(1)}$

 $\Delta \mathbf{w}^{(2)} \leftarrow \frac{1}{2} \hat{\mathbf{H}}^{(1)} \top \hat{\mathbf{H}}^{(2)}$

for l = 1 to k (Gibbs sampling) do

Gibbs block 1:

$$\forall i, j, \tilde{V}_{i,j} \text{ sampled from } P(\tilde{V}_{i,j} = 1) = \sigma \left(W_{j,:}^{(1)} \left(\tilde{H}_{i,:}^{(1)} \right)^{\top} \right).$$

$$\forall i, j, \tilde{H}_{i,j}^{(2)}$$
 sampled from $P(\tilde{H}_{i,j}^{(2)} = 1) = \sigma(\tilde{H}_{i,:}^{(1)}W_{:,j}^{(2)})$.

Gibbs block 2: $\forall i, j, \tilde{H}_{i,j}^{(1)}$ sampled from $P(\tilde{H}_{i,j}^{(1)} = 1) = \sigma(\tilde{V}_{i,i}W_{i,j}^{(1)} + \tilde{H}_{i,i}^{(2)}W_{j,i}^{(2)\top})$.

 $\Delta_{\mathbf{W}^{(1)}} \leftarrow \Delta_{\mathbf{W}^{(1)}} - \frac{1}{m} \mathbf{V}^{\top} \tilde{\mathbf{H}}^{(1)}$ $\Delta_{\mathbf{W}^{(2)}} \leftarrow \Delta_{\mathbf{W}^{(2)}} - \frac{1}{m} \tilde{\mathbf{H}}^{(1)\top} \tilde{\mathbf{H}}^{(2)}$

 $W^{(1)} \leftarrow W^{(1)} + \epsilon \Delta_{W^{(1)}}$ (this is a cartoon illustration, in practice use a more effective algorithm, such as momentum with a decaying learning rate)

 $W^{(2)} \leftarrow W^{(2)} + \epsilon \Delta_{W^{(2)}}$

end while

For training a 2-layer DBM

Sampling from Deep Generative Model

- No direct way to sample from the joint distribution p
- ullet Two samples can be compared using marginal likelihood p(X)
- ullet Start with an initial sample x^0 . Perturb by adding random noise, and accept new sample if it has higher likelihood
- $x^{t+1} = x^t + z^t$ where $z^t \sim \mathcal{N}(0, \sigma)$
- Accept x^{t+1} if $p(x^{t+1}) \ge p(x^t)$
- ullet If gradient of p at x can be calculated, we can use Langevin Dynamics for sampling
- Initialize x^0 randomly, navigate $x^{t+1}=x^t+\epsilon\nabla_x p(x_t)+\sqrt{2\epsilon}z_t$ where $z_t\sim\mathcal{N}(0,1)$
- As $t \to \infty$ and $\epsilon \to 0$, it can be shown that $x^t \sim p(x)$

Inversion Model

- We want a generative model where parameter estimation, sampling and inference are all easy
- Plus, there should be many latent variables to support variations in the training dataset
- Possible solution: invertible latent variable models!
- $Z \sim \pi$, $X = g_{\theta}(Z), Z = h(X)$ where $h = g_{\theta}^{-1}$
- Some special neural networks are invertible

Inversion Model

- ullet Inversion formula: helps us to define distribution of the transformed variable X in terms of the original latent variable Z
- $p_X(x) = p_Z(h(x))|h'(x)|$ where h is the inverse function
- In case h'(x) is a matrix, |.| is the determinant
- \bullet Example: if X=AZ where A is an invertible matrix, then $h(X)=A^{-1}X$, and $h'(X)=A^{-1}$
- So according to formula, $p_X(x)=p_Z(A^{-1}x)\frac{1}{det(A)}$ where p_Z is the prior distribution on latent variable Z
- This becomes more complex if we consider non-linear transformations

Flow of Transformations

- \bullet Let us consider a sequence of latent variables Z^0,Z^1,\dots,Z^L as in a deep generative model
- Flow of transformations: $Z^L \sim \pi$, $Z^{L-1} = f_L(Z^L)$, ..., $Z^1 = f_2(Z^2)$, $X = f_1(Z^1)$
- ullet Essentially a composition function $X=f(Z^L)=f_1(f_2(\dots f_L(Z^L))$
- Each of these functions is invertible (deterministic or probabilistic)
- Then the output distribution $p_X(x;\theta)=p_Z(f^{-1}(x))\prod_{l=1}^L|det(\frac{\partial (f_\theta^l)^{-1}(Z^l)}{\partial Z^l})|$
- ullet Here heta is the set of parameters of all the invertible distributions
- ullet This allows us to define a closed-form distribution over the output variable X (we could not evaluate it in case of DBM due to the partition function)

Learning and Inference Problem

- Sampling from flow models is easy (just follow the transformations in sequence)
- ullet The main problem: estimate the parameters heta
- $\theta^* = argmax_{\theta}log(p(X;\theta)) = \sum_{i} (p_Z(f^{-1}(X_i)) + log|det(\frac{\partial (f_{\theta}^i)^{-1}(X)}{\partial X})|_{X=X_i})$
- ullet Inference: need to apply the inversion formula to estimate Z from X
- In case of flows, we need to compute the Jacobian matrix as the derivative
- ullet The (i,j)-th entry is $rac{\partial h_i}{\partial z_j}$ where $h_i=f_j^{-1}$
- In case of deep models with L latent variables, it will be expensive to calculate the determinant of an $L \times L$ Jacobian
- Solution: the Jacobian should be triangular, as h_L involves just z_L , h_l involves $\{z_L, \ldots, z_l\}$ etc

Examples of Flow Models

- NICE: Non-linear Independent Components Estimation
- ullet L latent variables and L observations
- $X_{1:l} = s_{1:l} \odot Z_{1:l}$, $X_{l+1:L} = Z_{l+1:L} + g_{\theta}(Z_{1:l})$
- Alternative formulation: $X_{l+1:L} = Z_{l+1:L} \odot exp(-h_{\theta}(Z_{1:l})) + g_{\theta}(Z_{1:l})$
- Here $s = \{s_1, \dots, s_l\}$ is a set of scaling factors and g_{θ}, h_{θ} are non-linear functions that may be represented by neural networks
- ullet Inverse mapping: $Z_{1:l}=X_{1:l}\odot rac{1}{s_{1:l}},~Z_{l+1:L}=X_{l+1:L}-g_{ heta}(X_{1:l})\odot rac{1}{s_{1:l}}$
- The Jacobian here is upper triangular by design
- Can be trained on image datasets to generate new images

Examples of Flow Models

- It is possible to build an invertible neural network using specific invertible units
- MintNet uses Masked Convolutions, which are invertible unlike normal convolutions
- Masked convolution causes the input elements (eg. image pixels) to have a sequential generative structure, and corresponding Jacobian is triangular
- In a masked convolution filter, the receptive field is restricted by setting some elements to 0

Thank you!

