parameters in dynamic model can also be estimated in ensemble data assimilation, given that

- model states are sensitive to the parameters (they are identifiable)
- model with the correct parameters can produce state forecasts that are close to truth.

Although parameters are not directly observed, the choice of parameters influence model state, the closer to true parameters the closer model states will match the observations (truth), thus there are correlations between parameters and observations.

(n filtering problem, add parameters &:

$$X_{t+1} = m(X_t; 0) + \xi_t^m$$

 $Y_{t+1} = h(X_{t+1}) + \xi_{t+1}^m$

We can augment the state variable to $\binom{x}{6}$ to Simultaneously update State x and parameters O, the fitter egns become:

$$\begin{pmatrix} x^{a} \\ \theta^{a} \end{pmatrix} = \begin{pmatrix} x^{b} \\ \theta^{b} \end{pmatrix} + P^{b} H^{T} (HP^{b} H^{T} + R)^{-1} (y^{c} - h(x^{b}))$$

where the new observation operator is padded with zeros since O are not observed. I-h-0.01

$$H = \begin{pmatrix} -h_1 & 0 & \cdots & 0 \\ -h_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -h_p & 0 & \cdots & 0 \end{pmatrix}$$

Covariance Pb becomes a block matrix (Pxx Pxo)
Pox Pbo

(75)

where Pxx is error covariance for the states

Poor is emor covariance for parameters, but since the observations does not directly have a information, Poor is actually not needed. \Rightarrow a update is coming from Pox, the covariance between and x, which propagates yo observed information about x to 0.

In serial EnKF, using observation
$$y_j^o$$
 to update θ :

$$\chi^{(j+1)} = \chi^{(j)} + \frac{\text{cov}(\chi^{(j)}, y^{(j)})}{\text{var}(y^0_j) + \text{var}(y^0_j)} (y_j^o - y^{(j)})$$

$$0^{(j+1)} = 0^{(j)} + \frac{cov(0^{(j)}, y^{(j)})}{var(y^{(j)}) + var(y^{(j)})} (y^{(j)} - y^{(j)})$$

where covariances $Cov(x^{(j)}, y^{(j)}) = P_{xx}^{(j)} h_j^T = \frac{1}{N-1} \sum_{k=1}^{N} (x^{(j)}, y^{(j)})$

$$x_{k}^{(g)} = x_{k}^{(j)} - \overline{x}^{(g)}$$
 $y_{k}^{(g)} = h_{j}(x_{k}^{(j)}) - \overline{h_{j}(x_{k}^{(j)})}$

$$Cov(\theta^{(j)}, y^{(j)}) = P_{\theta x}^{(j)} h_{j}^{T} = \frac{1}{N-1} \sum_{k=1}^{N} (\theta_{k}^{(ij)}, y_{k}^{(ij)})$$

$$\Theta_k^{(g)} = \Theta_k^{(g)} - \overline{\Theta}^{(g)}$$

ensemble perhabation for 0

=) each member is assigned a different on N(0, Po) initially.

Challenges in parameter estimation:

- If parameter is not a constant, but also a complex function of the state: 0 = O(x(t))then the flow dependent change in O can limit the sample size for the available observations to estimate O in each x value regime.
- Can the wrong parameters give the best forecast of x?

 If two or more parameters are being estimated, and model configuration (combination of O values) is not a one-to-one map to shall state => It is possible that wrong O can combine to give good state forecast.

 For example, O, and Or have opposite effect on x's value O, too large + Or too small can vesult in a reasonable x.
- How to maintain the spread of 0 over cycles and make sure the ensemble does not collapse on a wrong O value? -> Inflating O spread.

 For O(x) that evolves in time, how to represent its probability p(0|x;ye)?