Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей Кафедра информатики Дисциплина «Прикладные задачи математического анализа»

«К защит	е допустить»
Руководитель ку	рсовой работы
канд. фм. н., до	цент
	М.А. Калугина
2024	•

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе на тему:

«ВИЗУАЛИЗАЦИЯ ПОТОЧЕЧНОЙ И РАВНОМЕРНОЙ СХОДИМОСТИ ФУНКЦИОНАЛЬНЫХ РЯДОВ»

БГУИР КП 6-05 0612 02 07 ПЗ

	•	труппы 353502	2
ЗГИРСКА	Я Дарья	Денисовна	
	(подпись	студента)	
Курсовая	работа	представлена	на
проверку	·	.2024	
	(подпись	студента)	

СОДЕРЖАНИЕ

Введение
1 Поточечная сходимость функциональных рядов
1.1 Поточечная сходимость функционального ряда
1.2 Признаки сходимости числовых рядов
2 Равномерная сходимость функциональных рядов 6
2.1 Равномерная сходимость функциональных рядов, ее критерии и свойства
2.2 Признаки равномерной сходимости функциональных рядов
3 Примеры функциональных рядов с поточечной и равномерной сходимостью
3.1 Прмеры функциональных рядов с поточечной сходимостью
3.2 Прмеры функциональных рядов с равномерной сходимостью 10
4 Процедуры Maple для работы с функциональными рядами и способы их визуализации
5 Визуализация примеров в Maple и сравнительный анализ 14
Заключение
Список литературных источников

ВВЕДЕНИЕ

В математическом анализе важную роль играют ряды функций, которые являются важным математическим аппаратом, применяемым для вычислений и исследований как в различных разделах самой математики, так и во многих ее приложениях [1]. При изучении рядов особое значение имеет их сходимость, и в данной работе уделяется внимание поточечной и равномерной сходимостям в частности.

Поточечная сходимость означает, что для каждой точки частичные суммы ряда стремятся к пределу, но это не всегда гарантирует хорошее поведение ряда на всей области. Равномерная сходимость, в отличие от поточечной, обеспечивает одинаковое стремление к пределу на всей области, что упрощает работу с рядом и позволяет корректно выполнять операции, такие как дифференцирование и интегрирование.

Целью данной курсовой работы является исследование и визуализация поточечной и равномерной сходимости функциональных рядов с помощью системы Maplesoft Maple. Для достижения поставленной цели необходимо:

- 1 Дать определения понятиям поточечной и равномерной сходимости функциональных рядов. Рассмотреть признаки сходимостей рядов.
- 2 Рассмотреть эти виды сходимости функциональных рядов на конкретных примерах.
- 3 Изучить возможности Maple для работы с функциональными рядами, а также различные способы визуализации сходимости функциональных рядов.
- 4 Визуализировать пример функционального ряда, обладающего поточечной сходимостью, но не обладающего равномерной сходимостью, а также функционального ряда, обладающего равномерной сходимостью. Сравнить результат.

Таким образом, в ходе данной работы будут исследованы поточечная и равномерная сходимости функциональных рядов. Также, в системе Maplesoft Maple будут созданы визуализации, которые наглядно продемонстрируют функциональные ряды с рассматриваемыми видами сходимостей.

1 ПОТОЧЕЧНАЯ СХОДИМОСТЬ ФУНКЦИОНАЛЬНЫХ РЯДОВ

1.1 Поточечная сходимость функционального ряда [2]

Функциональный ряд

$$\sum_{k=1}^{\infty} u_k(x), \ u_k : E \to R, k \in N, E \subset \mathbb{R}, (1.1)$$

называется $cxoдящимся в точке <math>x_0 \in E$, если сходится числовой ряд $\sum_{k=1}^{\infty} u_k \, (x_0).$

Множеством поточечной сходимости функционального ряда (1.1) называется множество всех точек $X \subset E$, в которых сходится этот ряд.

Сумма S(x) сходящегося функционального ряда есть предел функциональной последовательности его частных сумм $(S_n(x))$,

$$S_n(x) = \sum_{k=1}^{\infty} u_k(x)$$

Факт сходимости ряда (1.1) на множестве X будем записывать в виде $\sum_{k=1}^{\infty} u_k(x) \stackrel{X}{\to} S(x)$ или в виде $\sum_{k=1}^{\infty} u_k(x) \stackrel{X}{\to}$, если сумма ряда нам не известна (или не интересует нас). Если S(x) является суммой ряда (1.1) на множестве X, то используют запись

$$S(x) = \sum_{k=1}^{\infty} u_k(x), x \in X.$$

Поскольку при каждом фиксированном значении $x_0 \in E$ функциональный ряд (1.1) является обычным числовым рядом $\sum_{k=1}^{\infty} u_k(x_0)$, то для исследования его сходимости применимы все признаки сходимости числовых рядов.

1.2 Признаки сходимости числовых рядов [3]

Признак сходимости Д'Аламбера. Пусть дан ряд с положительными членами $\sum_{n=1}^{\infty} a^{n-1},\ a_n>0\ \ \forall n\in N,$ тогда

1) Если
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q < 1$$
, то ряд сходится,

2) Если $\frac{a_{n+1}}{a_n} \ge 1 \ \forall n \in \mathbb{N}$, в частности, если $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q > 1$, то ряд расходится.

Радикальный признак Коши. Пусть дан ряд с неотрицательными членами: $\lim_{n \to \infty} a_n$, $a_n \ge 0 \ \forall n \in \mathbb{N}$. Тогда

- 1) Если $\lim_{n\to\infty} \sqrt[n]{a_n} < 1$, то ряд сходится,
- 2) Если $\lim_{n\to\infty} \sqrt[n]{a_n} > 1$, то ряд расходится.

Интегральный признак Коши.

- 1) Если $\int_{1}^{\infty} u_{n} dn$ существует, то ряд сходится.
- 2) Если $\int_1^\infty u_n dn$ не существует, то ряд расходится.

Признак сравнения.

- 1) Если $\sum_{n=1}^{\infty}v_n$ сходится и $u_n\leq v_n$, то $\sum_{n=1}^{\infty}u_n$ также сходится.
- 2) Если $\sum_{n=1}^{\infty} v_n$ расходится и $u_n \ge v_n$, то $\sum_{n=1}^{\infty} u_n$ также расходится.

Предельный признак сравнения. Если предел отношений исходного ряда u_n с расходимым рядом v_n равен конечному числу, отличному от нуля, то ряд u_n расходится.

$$\lim_{n\to\infty}\frac{u_n}{v_n}=q$$

Если предел отношений исходного ряда u_n со сходимым рядом v_n равен конечному числу, отличному от нуля, то ряд v_n расходится.

2 РАВНОМЕРНАЯ СХОДИМОСТЬ ФУНКЦИОНАЛЬНЫХ РЯДОВ

2.1 Равномерная сходимость функциональных рядов, ее критерии и свойства [2]

Пусть ряд

$$\sum_{k=1}^{\infty} u_k(x) (2.1)$$

сходится (поточечно) на $G \subset R$ и $S(x) = \sum_{k=1}^{\infty} u_k(x)$ — сумма ряда. Ряд называется равномерно сходящимся на множестве $X \subset G$, если последовательность его частных сумм $\left(S_n(x)\right)$ сходится равномерно на X, $S_n(x) \stackrel{X}{\Rightarrow} S(x)$. Это означает, что

$$\forall \varepsilon > 0 \ \exists v_{\varepsilon} \ \forall n \ge v_{\varepsilon} \ \forall x \in X \Rightarrow |S_n(x) - S(x)| \le \varepsilon$$

При этом мы будем использовать обозначения:

$$\sum_{k=1}^{\infty} u_k(x) \stackrel{X}{\Rightarrow} S(x)$$
 или $\sum_{k=1}^{\infty} u_k(x) \stackrel{X}{\Rightarrow}$

Если $r_n(x) = \sum_{k=n+1}^{\infty} u_k(x) = S(x) - S_n(x) - n$ -ый остаток ряда, то

$$\sum_{k=1}^{\infty} u_k(x) \stackrel{X}{\Rightarrow} \Leftrightarrow r_n(x) \stackrel{X}{\Rightarrow} 0.$$

Сходящийся числовой ряд $\sum_{k=1}^{\infty} c_k$ можно трактовать как равномерно сходящийся на R ряд из постоянных на R функций c_k .

Критерий Коши равномерной сходимости. Для равномерной сходимости на X функционального ряда (2.1) необходимо и достаточно, чтобы выполнялось равномерное условие Коши:

$$\forall \varepsilon > 0 \ \exists \nu(\varepsilon) \ \forall n \ge \nu(\varepsilon) \ \forall p \ge 0 \ \forall x \in X \Rightarrow \left| \sum_{k=n}^{n+p} u_k(x) \right| \le \varepsilon.$$

Следствие 1. (Необходимое условие равномерной сходимости функционального ряда.) Если ряд (2.1) сходится равномерно на множестве X, то на этом множестве равномерно сходится к нулю последовательность членов ряда:

$$\sum_{k=1}^{\infty} u_k(x) \stackrel{X}{\Rightarrow} \quad \Rightarrow \quad u_k(x) \stackrel{X}{\Rightarrow} 0, k \to \infty.$$

Следствие 2. Если

$$\forall \varepsilon_0 > 0 \ \exists \nu \ \forall n \ge \nu \ \exists p \ge 0 \ \exists x \in X \ \Rightarrow \left| \sum_{k=n}^{n+p} u_k(x) \right| > \varepsilon_0,$$

то ряд (2.1) не является равномерно сходящимся на множестве X.

2.2 Признаки равномерной сходимости функциональных рядов [2]

Признак Вейерштрасса (мажорантный). Если $|u_k(x)| \le c_k$ для всех $x \in X$ и всех $k \in N$, и числовой ряд $\sum_{k=1}^{\infty} c_k$ сходится, то ряд $\sum_{k=1}^{\infty} u_k(x)$ сходится равномерно (и абсолютно) на множестве X.

Ряд $\sum_{k=1}^{\infty} c_k$ называется в этом случае *числовой мажорантой* для ряда (2.1) на X. Отсутствие сходящейся мажоранты еще не означает, что на X нет равномерной сходимости.

Если
$$|u_k(x)| \le v_k(x)$$
 для всех $x \in X$ и $\sum_{k=1}^{\infty} v_k(x) \stackrel{X}{\Rightarrow}$, то $\sum_{k=1}^{\infty} u_k(x) \stackrel{X}{\Rightarrow}$

Признак Абеля. Если:

- 1) $\sum_{k=1}^{\infty} b_k(x) \stackrel{X}{\Rightarrow}$
- 2) функциональная последовательность $(a_n(x))$ ограничена в совокупности, т. е. существует такое постоянное число A, что $|a_k(x)| \le A$ при всех $k \in N$ и всех $x \in X$,
- 3) последовательность $(a_k(x))$ монотонна при каждом фиксированном $x \in X$, то

$$\sum_{k=1}^{\infty} a_k(x) b_k(x) \stackrel{X}{\Rightarrow}.$$

3амечание. В роли ряда $\sum_{k=1}^{\infty} b_k(x)$ может выступать и сходящийся числовой ряд.

Признак Дирихле. Если:

- 1) суммы $\sum_{k=1}^n b_k(x)$ ограничены в совокупности, т. е. существует такое постоянное число M, что $|\sum_{k=1}^n b_k(x)| \le M$ при всех $n \in N$ и всех $x \in X$,
- 2) последовательность $(a_k(x))$ монотонна при каждом фиксированном $x \in X$,

3)
$$a_k(x) \stackrel{X}{\Rightarrow} 0$$
, то

$$\sum_{k=1}^{\infty} a_k(x) b_k(x) \stackrel{X}{\Rightarrow}.$$

Как следствие признака Дирихле имеем признак Лейбница.

Признак Лейбница. Если:

- 1) $a_k(x) > 0$ при всех $k \in N$ и всех $x \in X$,
- 2) последовательность $(a_k(x))$ монотонна при каждом фиксированном $x \in X$,

3)
$$a_k(x)X \stackrel{X}{\Rightarrow} 0$$
, to $\sum_{k=1}^{\infty} (-1)^{k-1} a_k(x) \stackrel{X}{\Rightarrow}$.

Также, из определения равномерной сходимости следуют следующие утверждения:

- 1. Если ряды $\{f_n(x)\}$ и $\{g_n(x)\}$ равномерно сходятся на множестве E, то любая из линейная комбинация $\{\alpha f_n(x) + \beta g_n(x)\}$, где α и β постоянные, равномерно сходится на E.
- 2. Если ряд сходится равномерно на множестве E, то сходимость будет равномерной на любом множестве $E_1 \subset E$.
- 3. На всяком конечном подмножестве множества сходимости ряда этот ряд сходится равномерно.
- 4. Если ряд равномерно сходится на каждом из множеств E_1 и E_2 , то на множестве $E=E_1\cup E_2$ этот ряд сходится равномерно. (При этом данное утверждение не переносится на бесконечное объединение множеств).

3 ПРИМЕРЫ ФУНКЦИОНАЛЬНЫХ РЯДОВ С ПОТОЧЕЧНОЙ И РАВНОМЕРНОЙ СХОДИМОСТЬЮ

3.1 Прмеры функциональных рядов с поточечной сходимостью

3.1.1 [2]. Найти множество X сходимости ряда $\sum_{n=1}^{\infty} \frac{1}{n(x+2)^n}$.

Решение. Все члены ряда определены на $R \setminus \{-2\}$. При фиксированном x применим признак Коши абсолютной сходимости ряда. Поскольку

$$\lim_{n \to \infty} \sqrt[n]{|u_n(x)|} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{n|x+2|^n}} = \frac{1}{|x+2|},$$

то при $\frac{1}{|x+2|} < 1$, т. е. при $x \in (-\infty, -3) \cup (-1, +\infty)$, ряд сходится абсолютно (рис. 3.1.1).

Рисунок 3.1.1 – График суммы ряда $\sum_{n=1}^{\infty} \frac{1}{n(x+2)^n}$

При $\frac{1}{|x+2|} > 1$ ряд расходится, т. к. $u_n(x)$ не сходится к 0. При $\frac{1}{|x+2|} = 1$, т. е. при x = -3 и x = -1, получаем, соответственно, числовые ряды $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, сходящийся согласно признаку Лейбница, и $\sum_{n=1}^{\infty} \frac{1}{n}$ – расходящийся ряд. Итак, $X = (-\infty, -3] \cup (-1, +\infty)$ – множество поточечной сходимости.

3.1.2 [2]. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{x^n}{n}$.

Решение. Применим признак Д'Аламбера:

$$\lim_{n\to\infty} \left| \frac{f_{n+1}(x)}{f_n(x)} \right| = \lim_{n\to\infty} \left| \frac{x^{n+1}}{n+1} \cdot \frac{n}{x^n} \right| = |x| \cdot \lim_{n\to\infty} \frac{n}{n+1} = |x| = L$$

Т.к. по признаку Д'Аламбера при L < 1 рассматриваемый ряд сходится абсолютно, то исходный ряд сходится при x = (-1, 1) (рис. 3.1.2).

Рисунок 3.1.2 – График суммы ряда $\sum_{n=1}^{\infty} \frac{x^n}{n}$

Таким образом, X = (-1,1) — множество поточечной сходимости рассматриваемого ряда.

3.2 Прмеры функциональных рядов с равномерной сходимостью

3.2.1 [3]. Доказать, что ряд
$$\sum_{n=1}^{\infty} x^{2n}$$
, $x \in \left(-\frac{1}{2}, \frac{1}{2}\right)$ сходится.

Решение. Во всех точках этого интервала ряд сходится как геометрическая прогрессия, и его остаток $r_k = \sum_{n=k+1}^\infty x^{2n}$ равен $\frac{x^{2k+2}}{1-x^2}$. Из того, что для всех $x \in \left(-\frac{1}{2},\frac{1}{2}\right)$ справедливо неравенство $0 \le r_k \le \frac{1}{3\cdot 4^k}$ и $\lim_{k \to \infty} \frac{1}{3\cdot 4^k} = 0$, следует, что данный ряд сходится равномерно на множестве $E = \{x: |x| < \frac{1}{2}\}$ (рис. 3.2.1).

Рисунок 3.2.1 – График суммы ряда $\sum_{n=1}^{\infty} x^{2n}$

3.2.2 [3]. Проверим, что ряд $\sum_{n=1}^{\infty} \frac{1}{n!} \cdot (x^n + 3x^{-n})$ равномерно сходится на $\left[\frac{1}{2}, 2\right]$.

Решение. Первое слагаемое в сумме $x^n + 3x^{-n}$ принимает наибольшее значение в точке $x_1 = 2$, второе – в точке $x_2 = \frac{1}{2}$. Следовательно, для всех $x \in \left[\frac{1}{2}, 2\right]$ имеем, что $0 \le \frac{1}{n!} \cdot (x^n + 3x^{-n}) \le \frac{4 \cdot 2^n}{n!}$, и в силу признака Вейерштрасса получаем, что данный ряд сходится равномерно на $\left[\frac{1}{2}, 2\right]$ (рис. 3.2.2).

Рисунок 3.2.2 – График суммы ряда $\sum_{n=1}^{\infty} \frac{1}{n!} \cdot (x^n + 3x^{-n})$

4 ПРОЦЕДУРЫ MAPLE ДЛЯ РАБОТЫ С ФУНКЦИОНАЛЬНЫМИ РЯДАМИ И СПОСОБЫ ИХ ВИЗУАЛИЗАЦИИ

4.1 Процедуры Maple для работы с функциональными рядами

В данной работе была использована процедура sum системы Maplesoft Maple, позволяющая вычислить сумму в аналитическом виде (если это невозможно сделать, Maple возвращает исходное выражение суммы).

В первом параметре процедура принимает выражение, сумма которого будет вычислена, а во втором – диапазон значений для её вычисления.

4.2 Способы визуализации функциональных рядов

Для визуализации функциональных рядов были использованы процедуры из пакета plots.

4.2.1 Процедура plot

Принимает на вход два обязательных параметра: выражение от независимой переменной и саму независимую переменную.

Возвращает построенный график заданного выражения (рис. 4.1.1).

Рисунок 4.1.1 – Пример использования процедуры plot

4.2.2 Процедура animate

Принимает на вход параметры для команды plot этого же пакета, а также

имя параметра, относительно которого будет создана анимация, и его диапазон.

Возвращает анимацию заданного выражения, представляющую собой последовательно сменяющуюся серию графиков относительно ранее заданного параметра анимации и его диапазона (рис. 4.2.2).

Рисунок 4.2.2 – Пример использования процедуры animate (три последовательных значения параметра анимации)

4.2.3 Процедура interactive params

Принимает на вход параметры для команды plot этого же пакета, имена параметров, которые могут быть интерактивно заданы при запуске процедуры, а также диапазон, в котором их можно задать.

После запуска предоставляет возможность интерактивно задать параметр (рис. 4.2.3). Возвращает график с заданным параметром.

Рисунок 4.2.3 – Пример использования команды interactive params

5 ВИЗУАЛИЗАЦИЯ ПРИМЕРОВ В MAPLE И СРАВНИТЕЛЬНЫЙ АНАЛИЗ

5.1 Пример поточечной сходимости функционального ряда

$$f_n(x) = \frac{x^n}{1 + x^n}, x \in R^+$$

Рассмотрим для начала промежуток $x \in (0; 1)$. В этом случае при $n \to \infty$ $f_n(x) \to 0$. Если же x = 1, то $f_n(x) = \frac{1}{2}$ для любого значения п. При x > 1, $n \to \infty$ $f_n \to 1$. Это значит, что данный функциональный ряд сходится поточечно на каждом рассмотренном промежутке, но при этом не является равномерно сходящимся, поскольку нарушается условие равномерной сходимости функционального ряда

$$\forall \varepsilon > 0 \ \exists v_{\varepsilon} \ \forall n \geq v_{\varepsilon} \ \forall x \in X \Rightarrow |S_n(x) - S(x)| \leq \varepsilon.$$

Т.е. можно подобрать такое $x \in X$, что $|S_n(x) - S(x)| > \varepsilon$. Это хорошо видно на графике функционального ряда вблизи x = 1 (рис. 5.1). Такой график означает прерывность суммы ряда.

Рисунок 5.1 – Графики функции $f_n(x) = \frac{x^n}{1+x^n}$ при n=1,10,100 соответственно

5.2 Пример равномерной сходимости функционального ряда [3]

$$f_n(x) = xarctg(nx)$$

Если x>0, то $\lim_{n\to\infty} f_n(x)=\frac{\pi x}{2}$; если x<0, то $\lim_{n\to\infty} f_n(x)=-\frac{\pi x}{2}$, $f_n(0)=0$ для всех n. Следовательно, множеством сходимости последоваетльности $\{f_n(x)\}$ является вся числовая ось R и $f(x)=\lim_{n\to\infty} f_n(x)=\frac{\pi}{2}|x|$.

Оценим $\sup \left|\frac{\pi}{2}|x| - \operatorname{xrctg}(nx)\right|, x \in R$. в силу четности функций $y = \operatorname{xarctg}(nx), y = \frac{\pi}{2}|x|$ и неравенств $|\operatorname{arctg}(nx)| < \frac{\pi}{2}, |\operatorname{arctg}(\infty)| \le |\infty|$ имеем, что

$$\sup \left| \frac{\pi}{2} |x| - \operatorname{xarctg}(nx) \right| = \sup \left(\frac{\pi}{2} - \operatorname{arctg}(nx) \right) = \sup \left(\operatorname{xarctg}(nx) \right)$$
$$= \sup \operatorname{xarctg}\left(\frac{1}{nx} \right) \le \frac{1}{n}$$

Отсюда получаем, что $\lim_{n\to\infty} \sup |f_n(x)-f(x)|=0$ и, следовательно, данная последовательность равномерно сходится на R к $\frac{\pi}{2}|x|$ (рис. 5.2).

Рисунок 5.2 – Графики функции $f_n(x) = xarctg(nx)$ при n = 1, 10, 100 соответственно

В рассмотренных премерах можно увидеть, что отличием между двумя видами сходимостей функциональных рядов на графике является наличие резкого «скачка» (рис. 5.1) у графика функции-члена ряда, имеющего поточечную сходимость (и это становится более заметным с ростом п) и его отсутствие при равномерной сходимости ряда (рис. 5.2).

ЗАКЛЮЧЕНИЕ

В ходе данной курсовой работы были даны определения поточечной и равномерной сходимости функциональных рядов и рассмотрены их признаки сходимости. Также были представлены несколько функциональных рядов, сопровождающиеся графиками их сумм (созданных в системе Maplesoft maple); была доказана сходимость рассматриваемых рядов на основе изложенных ранее признаков сходимости.

После этого были найдены несколько способов визуализации функциональных рядов в системе Maplesoft Maple, позволяющих наглядно продемонстрировать сходимости (стандартный график, ИХ вид анимированный график, интерактивный график возожностью ДЛЯ пользователя задать параметр).

Далее были визуализированы два примера функциональных рядов с поточечной и равномерной сходимостью. Это позволило отобразить разницу между рассматриваемыми видами сходимостей и сделать вывод об их визуальном отличии.

Таким образом, в данной работе были исследованы поточечная и равномерная сходимости функциональных рядов, а также найдены способы их наглядной визуализации с помощью системы Maplesoft Maple.

СПИСОК ЛИТЕРАТУРНЫХ ИСТОЧНИКОВ

- [1] Функциональные ряды: методические указания / В.С. Капитонов [и др.] СПб., СПбГТИ(ТУ), 2005. 30 с.
- [2] Функциональные ряды и последовательности : учеб.-метод. пособие для студентов фак. прикладной математики и информатики / О. А. Кастрица [и др.] Минск: БГУ, 2008. 47 с.
- [3] Виноградова, И. А. Математический анализ в задачах и упражнениях (числовые и функциональные ряды) : учеб. пособие / Виноградова И. А., Олехник С. Н., Садовничий В. А. М.: Изд-во Факториал, 1996. 477 с.
- [4] Зорич, В. А. Математический анализ. Часть II / В. А. Зорич. М.: МЦНМО, 2019.
- [5] Курс дифференциального и интегрального исчисления : учебник для вузов. В 3 т. / Г. М. Фихтенгольц. Санкт-Петербург: Лань, 2023.- Т. 2.-800 с.
- [6] Курс математического анализа : пособие для студентов заочников физ.- мат. фак-тов пед. ин-тов. В 2 т. / под ред. проф. Б. 3. Вулиха. М.:Просвещение, 1972. T. 2. 439 с.
- [7] Равномерная сходимость функционального ряда [Электронный ресурс]. Режим доступа: https://neerc.ifmo.ru/wiki/index.php?title=%D0%A0%D0%B0%D0%B2%D0%B D%D0%BE%D0%BC%D0%B5%D1%80%D0%BD%D0%B0%D1%8F_%D1%8 1%D1%85%D0%BE%D0%B4%D0%B8%D0%BC%D0%BE%D1%81%D1%82 %D1%8C_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BE %D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE %D1%80%D1%8F%D0%B4%D0%B0&mobileaction=toggle_view_desktop.
- [8] Равномерная сходимость ряда [Электронный ресурс]. Режим доступа: http://mathprofi.ru/ravnomernaja.shodimost.html.
- [9] Демидович, Б. П. Сборник задач и упражнений по математическому анализу: учеб. пособие. / Б. П. Демидович. М.: Изд-во Моск. Ун-та, ЧеРо, 1997. 624 с.
- [10] Письменный, Д. Т. Конспект лекций по высшей математике : полный курс / Д. Т. Письменный. М.:Айрис-пресс, 2009.-608 с.
- [11] Сборник задач по высшей математике : учеб. пособие. В 10 ч. / А. А. Карпук [и др.] Минск : БГУИР, 2007. Ч. 8. 119 с.
- [12] Признаки сходимости ряда [Электронный ресурс]. Режим доступа: https://math.semestr.ru/math/dalembert.php.
- [13] Real Analysis 24 | Pointwise Convergence [Электронный ресурс]. Режим доступа: https://youtu.be/Kq_KZpljeXo?si=iFQejtBr9kWGRRg1.
- [14] Real Analysis 25 | Uniform Convergence [Электронный ресурс]. Режим доступа: https://youtu.be/O2HKxNcom7g?si=sQhcdXY0a6NFQZdZ.