

remative Specification
Preliminary Specification
Approval Specification

MODEL NO.: V315H3 SUFFIX: LE2

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your con signature and comments.	firmation with your

Approved By	Checked By	Prepared By
Chao-Chun Chung	Vincent Chou	Samuel Huang

Date: 04 Aug, 2010 Version 2.1

CONTENTS -

Version 2.1	2	Date: 04 Aug, 2010
	ΓΙΟΝS	
8.1 CMI MODULE LABEL	,	30
a permutation of the transfer		
7.2 OPTICAL SPECIFICA	THOMS	26
	TIONS	
6.2 POWER ON/OFF SEC	QUENCE	
	IG SPECIFICATIONS (Ta = 25 ± 2 °C)	
6. INTERFACE TIMING		22
5.5 LVDS INTERFACE		20
5.4 BLOCK DIAGRAM O	F INTERFACE	18
4.1 TFT LCD MODULE5. I	INPUT TERMINAL PIN ASSIGNMENT	
	3	
3.2.3 CONVENTER INTERFA	CE CHARACTERISTICS	
	CE CHARACTERISTICS	
	TERISTICS	
3.2.1 LED LIGHT BARCHAR	ACTERISTICS	10
	ECTOR PIN CONFIGURATION	
3. ELECTRICAL CHARACTERISTICS		
2.3.2 BACKLIGHT CONVERT	TER UNIT	7
2.3 ELECTRICAL ABSOL	UTE RATINGS	
	E ENVIRONMENT	
2.1 ABSOLUTE RATINGS.	S OF ENVIRONMENT	6
2 ARSOLLITE MAXIMUM RATINGS		
1.0 Milet In Milet II of Be		
	CIFICATIONS	
	ATIONS	
1.1 OVERVIEW		
T. GENERAL DESCRIPTION		

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

9.2 PACKING METHOD	31
10. PRECAUTIONS	33
10.1 ASSEMBLY AND HANDLING PRECAUTIONS	33
10.2 SAFETY PRECAUTIONS	
10.3 STORAGE PRECAUTIONS	33
11. REGULATORY STANDARDS	
11.1 SAFETY	34
12 MECHANICAL CHARACTERISTIC	35

REVISION HISTORY

Version	Date			Description
Ver. 2.0	Jul. 28, 2010	All	All	Approval specification was first issued.
Ver. 2.1		13 14 15 22 25	4.1 5.1 5.1 6.1 6.2	Remove input connector "ODSEL" input pin Update pin 9 definition Remove notes for ODSEL pin Update vertical and horizontal active display term Remove note6 for ODSEL pin Remove ODSEL from optional signal in power on/off diagram

Version 2.1 Date: 04 Aug, 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

1. GENERAL DESCRIPTION

Global LCD Panel Exchange Center

1.1 OVERVIEW

V315H3- LE2 is a TFT Liquid Crystal Display module with LED Backlight unit and 2ch-LVDS interface. The display diagonal is 31.5". This module supports 1920 x 1080 Full HDTV format and can display true 16.7M colors (8-bit/color).

1.2 FEATURES

- Optimized Brightness 450nits
- Contrast Ratio (6000:1)
- Fast Response Time (8.5ms)
- Color Saturation NTSC 72%
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) Only Mode
- LVDS (Low Voltage Differential Signaling) Interface
- Viewing Angle: 176(H)/176(V) (CR>20) MVA Technology
- Color Reproduction (Nature Color)

1.3 APPLICATION

- -TFT LCD TVs
- -Optimized Brightness, Multi-Media Displays

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	698.4(H) x 392.85(V)	mm	(1)
Bezel Opening Area	705.4(H) x 399.8 (V)	mm	(1)
Driver Element	a-si TFT active matrix	ı	-
Pixel Number	1920x R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.12125 (H) x 0.36375 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	ı	-
Display Colors	16.7M	color	-
Display Operation Mode	Transmissive mode / Normally Black	-	-
Surface Treatment	Anti-Glare coating (Haze 11%) Hard Coating (3H)	-	(2)

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	740.4	741.4	742.4	mm	Module Size
Module Size	Vertical (V)	434.8	435.8	436.8	mm	
Weight	Depth (D)	14.2	15.2	16.2	mm	To Rear
vveigni	Deptii (D)	34.9	35.9	36.9	mm	To Boss
	Weight		4530		g	

Note (1)Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth does not include connectors.

PRODUCT SPECIFICATION

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
цеш	Эушион	Min.	Max.	Oillt		
Storage Temperature	TST	-20	+60	$^{\circ}$ C	(1)	
Operating Ambient Temperature	TOP	0	50	$^{\circ}$ C	(1), (2)	
Shock (Non-Operating)	SNOP	-	50	G	(3), (5)	
Vibration (Non-Operating)	VNOP	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta ≤ 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.

- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) $10 \sim 200 \text{ Hz}$, 30 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

PRODUCT SPECIFICATION

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 $^{\circ}$ C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
item	Эуший	Min.	Max.	Offit		
Power Supply Voltage	VCC	-0.3	13.5	V	(1)	
Logic Input Voltage	VIN	-0.3	3.6	V	(1)	

2.3.2 BACKLIGHT CONVERTER UNIT

Item	Symbol	Test Condition	Min.	Type	Max.	Unit	Note
Light Bar Voltage	V_W	Ta = 25 °C	-	-	60	V	
Converter Input Voltage	V_{BL}	-	0	-	30	V	
Control Signal Level	-	-	-0.3	-	7	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

Parameter		C11		Value		TTtr	NI-1-
		Symbol	Min.	Тур.	Max.	Unit	Note
Power St	ıpply Voltage	V_{CC}	10.8	12	13.2	V	(1)
Rush Cu	rrent	$I_{ m RUSH}$	_	_	4.7	A	(2)
Power	White Pattern	_	_	0.58	_	A	
Supply	Black Pattern	_	_	0.44	_	A	(3)
Current	Horizontal Stripe	_	_	0.58	0.62	A	
	Differential Input High Threshold Voltage	V_{LVTH}	+100	_	_	mV	
	Differential Input Low Threshold Voltage	V_{LVTL}	_	_	-100	mV	
LVDS interface	Common Input Voltage	V_{CM}	1.0	1.2	1.4	V	(4)
I v	Differential input voltage(single-end)	$ V_{\mathrm{ID}} $	200	-	600	mV	
	Terminating Resistor	R_{T}	_	100	_	ohm	
CMOS	Input High Threshold Voltage	V_{IH}	2.7	_	3.3	V	
	Input Low Threshold	$V_{\rm IL}$	0	_	0.7	V	

Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:

PRODUCT SPECIFICATION

Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 12 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \text{ Hz}$, whereas a power dissipation check pattern below is displayed.

Version 2.1 Date: 04 Aug, 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

PRODUCT SPECIFICATION

3.2 BACKLIGHT CONNECTOR PIN CONFIGURATION

3.2.1 LED LIGHT BARCHARACTERISTICS

 $(Ta = 25 \pm 2 \,{}^{\circ}C)$

Parameter	Symbol		Value	Unit	Note	
1 arameter	Symbol	Min.	Min. Typ.		Offit	note
Light Bar Voltage	V_{W}	-	-	45.5	V	$I_L = 120 \text{mA}$
Forward Voltage	$V_{\rm f}$	3.0	-	3.5	V	$I_L = 120 \text{mA}$
LED Current	I_L	112.8	120	127.2	mA	
Life time	-	30,000	-	-	Hrs	(1)

Note (1) The lifetime is defined as the time which luminance of the LED is 50% compared to the initial value, Operating condition: Continuous operating at Ta = 25±2°C

PRODUCT SPECIFICATION

3.2.2 CONVERTER CHARACTERISTICS

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

Parameter	Symbol		Value	Unit	Note	
i arameter	Syllibol	Min.	Тур.	Max.	Offic	NOLE
Power Consumption	P_{BL}	-	45	49.5	W	(1),(2) IL = 120 mA
Converter Input Voltage	V_{BL}	22.8	24	25.2	V_{DC}	
Converter Input Current	I_{BL}	-	1.88	2.06	Α	Non Dimming
Input Inrush Current	1	-	-	2.92	А	V _{BL} =24V,(IL=typ.) (3)
Dimming Frequency	F_B	150	160	170	Hz	
Minimum Duty Ratio	D_{MIN}	5	10	-	%	(4)

Note (1) The power supply capacity should be higher than the total converter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when converter dimming.

Note (2) The measurement condition of Max. value is based on 31.5" backlight unit under input voltage 24V, average LED current 120 mA and lighting 1 hour later.

Note (3) The duration of Input Inrush Current is about **30ms**.

Note (4) 5% minimum duty ratio is only valid for electrical operation.

3.2.3 CONVERTER INTERFACE CHARACTERISTICS

Parameter		Cymbol	Test		Value		Unit	Note
Parameter		Symbol	Condition	Min.	Тур.	Max.	Offic	Note
On/Off Control Voltage	ON	VBLON		2.0	_	5.0	٧	
On Control Voltage	OFF	VBLOIN	_	0		8.0	٧	
Internal PWM Control	MAX	VIPWM		3.0	3.15	3.3	٧	maximum duty ratio
Voltage	MIN	VIEWIVI	-	_	0		٧	minimum duty ratio
External PWM Control	н	VEPWM		2.0		5.0	٧	Duty on
Voltage	LO	VEFVVIVI		0	_	0.8	٧	Duty off
Error Signal		ERR	1	-	_	1		Abnormal: Open collector Normal: GND (4)
VBL Rising Time		Tr1		30	_		ms	10%-90%V _{BL}
Control Signal Rising Tir	me	Tr			_	100	ms	10 /6-30 /6 V BL
Control Signal Falling Ti	me	Tf		_	_	100	ms	
PWM Signal Rising Time		TPWMR	_	_	_	50	us	
PWM Signal Falling Time		TPWMF	_	_	_	50	us	
Input Impedance		Rin	_	1	_	_	МΩ	

PRODUCT SPECIFICATION

PWM Delay Time	TPWM	_	100	_	_	ms	
BLON Delay Time	T_{on}	_	300	_	_	ms	
	T_{on1}	_	300	_	_	ms	
BLON Off Time	Toff	_	300	_	_	ms	

Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM signal during backlight turn on period.

Note (2) The power sequence and control signal timing are shown in the following figure. For a certain reason, the converter has a possibility to be damaged with wrong power sequence and control signal timing.

Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: VBL → PWM signal → BLON

Turn OFF sequence: BLOFF → PWM signal → VBL

Note (4) When converter protective function is triggered, ERR will output open collector status.

PRODUCT SPECIFICATION

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE5. INPUT TERMINAL PIN ASSIGNMENT

5. INTERFACE PIN CONNECTION

5.1 TFT LCD Module Input

CNF1 Connector Pin Assignment

GND N.C. N.C.	Ground No Connection	
	No Connection	
N C	140 Connection	
IN.O.	No Connection	
N.C.	No Connection	(2)
N.C.	No Connection	
N.C.	No Connection	
SELLVDS	LVDS data format Selection	(3)(4)
N.C.	No Connection	(2)
N.C.	No Connection	
N.C.	No Connection	(2)
GND	Ground	
ERX0-	Even pixel Negative LVDS differential data input. Channel 0	
ERX0+	Even pixel Positive LVDS differential data input. Channel 0	
ERX1-		(5)
ERX1+		(5)
ERX2-		
ERX2+	·	
	Ground	
	Even pixel Negative LVDS differential clock input.	(-)
	· · ·	(5)
	·	
		4-1
		(5)
		(2)
GND		
		(5)
		•
		(5)
		(5)
	·	
		(2)
		
		(2)
		(2)
	,	
VCC		
V U U	Power input (+12V)	
	SELLVDS N.C. N.C. N.C. GND ERX0- ERX0+ ERX1- ERX1+ ERX2- ERX2+ GND ECLK- ECLK- GND ERX3- ERX3+ N.C. N.C. GND	SELLVDS LVDS data format Selection N.C. No Connection SRD Ground ERX0- Even pixel Negative LVDS differential data input. Channel 0 ERX1- Even pixel Negative LVDS differential data input. Channel 1 ERX1+ Even pixel Negative LVDS differential data input. Channel 1 ERX2- Even pixel Negative LVDS differential data input. Channel 1 ERX2- Even pixel Positive LVDS differential data input. Channel 2 ERX2- Even pixel Positive LVDS differential data input. Channel 2 GRND Ground Ground ECLK- Even pixel Negative LVDS differential clock input. ECLK- Even pixel Negative LVDS differential clock input. ECLK- Even pixel Negative LVDS differential data input. Channel 3 ERX3- Even pixel Negative LVDS differential data input. Channel 3 ERX3- Even pixel Negative LVDS differential data input. Channel 3 N.C. No Connection N.C. No Connection N.C. No Connection GRND Ground GRND Ground GROD G

Version 2.1 14 Date: 04 Aug, 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

PRODUCT SPECIFICATION

Note (1) LVDS connector pin order defined as follows

Note (2) Reserved for internal use. Please leave it open.

Note (3) Low = Open or connect to GND: VESA Format, High = Connect to +3.3V: JEIDA Format.

Note (4) LVDS signal pin connected to the LCM side has the following diagram. R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)

Note (5) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel

PRODUCT SPECIFICATION

5.2 BACKLIGHT UNIT

The pin configuration for the housing and the leader wire is shown in the table below.

CN: 51281-1094 (Molex) or Equivalent

Pin №	Symbol	Feature					
1	VLED+	Positive of LED String					
2	VLLD+	1 ositive of LED String					
3							
4	NC	NC					
5	INC	INC					
6							
7	N1						
8	N2	Negative of LED String					
9	N3	Negative of LED String					
10	N4						

5.3 CONVERTER UNIT

CN1(Header): Cvilux Cl0114M1HR0-LA or Equivalent

Pin №	Symbol	Feature					
1							
2							
3	VBL	+24V					
4							
5							
6							
7		GND					
8	GND						
9							
10							
11	ERR	Normal (GND) Abnormal (Open collector)					
12	BLON	BL ON/OFF					
13	I_PWM	Internal PWM Control					
14	E_PWM	External PWM Control					

Note (1) PIN 13:Internal PWM Control (Use Pin 13): Pin 14 must open.

Note (2) PIN 14:External PWM Control (Use Pin 14): Pin 13 must open.

Note (3) Pin 13(I_PWM) and Pin 14(E_PWM) can't open in same period.

CN2&3(Header): 51281-1094 (Molex) or Equivalent

Pin №	Symbol	Feature						
1	VLED+	Positive of LED String						
2	VLLD+	1 ositive of LLD offing						
3								
4	NC	NC						
5	INC	NO						
6								
7	N1							
8	N2	Negative of LED String						
9	N3	Negative of LED Stillig						
10	N4							

PRODUCT SPECIFICATION

ER0~ER7: Even pixel R data EG0~EG7: Even pixel G data EB0~EB7: Even pixel B data OR0~OR7: Odd pixel R data OG0~OG7: Odd pixel G data OB0~OB7: Odd pixel B data DE: Data enable signal

DCLK: Data clock signal

Note (1) The system must have the transmitter to drive the module.

- Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.
- Note (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

PRODUCT SPECIFICATION

5.5 LVDS INTERFACE

VESA LVDS format: (SELLVDS pin=L or open)

JEDIA LVDS format: (SELLVDS pin=H)

R0~R7: Pixel R Data (7; MSB, 0; LSB)

G0~G7: Pixel G Data (7; MSB, 0; LSB)

B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE : Data enable signal

DCLK: Data clock signal

Notes: (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".

PRODUCT SPECIFICATION

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color.

The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input

Color Red Green Blue	input.												Da	ta S	igna	.l										
Black Red Re		Color				Red							<u> </u>			•						В	lue			
Black Red 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			R7	R6	R5			R2	R1	R0	G7	G6	G5			G2	G1	G0	B7	В6	B5	1		B2	B1	В0
Basic Blue 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Black	0	0	0	0				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Basic Blue		Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Colors Cyan		Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Magenta 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Yellow Yellow 1	Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Mite		Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Red(0) / Dark Red(1) Red(2) Park Red(2) Red(2	j	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Red(1)		White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Gray Scale Of Red(253) Red(254) Red(255) Red(256) Red(256		Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale Of Red(253) Red(253) Red(254) Red(255) Red(255) Red(255) Red(256) Red(256) Red(256) Red(257) Red(257) Red(258) Red		Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale Of Red (253) Red (255) Red (255) Red (3 creen(2) Cof Green(253) Cof Green(253) Cof Green(255) Cof Blue(2) Cof Blue(253) Cof Blue(253) Cof Blue(255) Cof Blue(253) Cof Blue(250) Cof Blue(253) Cof Blue(250) Cof Blue(253) Cof Blue(250) C	Grav	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Of Red (253)	-	:	:	:	:	:	:	:	:	:	ċ	: (:		:	:	:	:	:	:	:	:	:	:	:	:
Red (253) 1		:	:	:	:	:	:	:	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:
Red(254)		` ′	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Green(1) / Dark		` ′	1	1		1		1		0			0	0	_	0		_	_			_		0		0
Green(1)		ì í		1		1					0	0	0	0		0								0	0	0
Gray Scale Of Green(253)		` ′	0	0	0	0	0	0	0		0	0	0	0	0	0	0		0	0		0	0	0	0	0
Gray Scale Of Green(253)		` ′	_	-	_								_		_											0
Scale Of Green(253) Green(254) Green(255) O O O O O O O O O O O O O O O O O O O	Gray	Green(2)	0	0												0										0
Green	-	:	:	:																	:					:
Green	Of	:	:	1																	:					:
Green(255) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Green																									0
Blue(0) / Dark 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															_											0
Blue(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		` ` `		_				_			-															0
Gray Scale Of Blue(253) O O O O O O O O O O O O O O O O O O O																										0
Scale Of Blue (253) O O O O O O O O O O O O O O O O O O O																										0
Scale Of Blue (253) Scale	Gray	blue(2)																								0
Of Blue (253) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0	Scale																									:
Blue ` ´	Of	Blue(253)																	1		1	1	1	1		1
	Blue	` '						_																		0
Blue(255) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1																										1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

PRODUCT SPECIFICATION

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS (Ta = 25 ± 2 °C)

The input signal timing specifications are shown as the following table and timing diagram.

	= -						
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz	
LVDS	Input cycle to cycle jitter	T _{rcl}	-	_	200	ps	(3)
Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%	_	F _{clkin} +2%	MHz	
	Spread spectrum modulation frequency	F _{SSM}	_	-	200	KHz	(4)
LVDS Receiver	Setup Time	Tlvsu	600	_	_	ps	(5)
Data	Hold Time	Tlvhd	600	ı	-	ps	(5)
	Frame Rate	F _{r5}	47	50	53	Hz	(6)
Vertical	Tramo Hato	F _{r6}	57	60	63	Hz	(0)
Active Display	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tvb
Term	Display	Tvd	1080	1080	1080	Th	_
	Blank	Tvb	35	45	55	Th	_
Horizontal	Total	Th	1050	1100	1150	Tc	Th=Thd+Thb
Active Display	Display	Thd	960	960	960	Tc	_
Term	Blank	Thb	90	140	190	Tc	_

Note (1) Please make sure the range of pixel clock has follow the below equation:

 $Fclkin(max) \ge Fr6 \times Tv \times Th$

 $Fr5 \times Tv \times Th \ge Fclkin(min)$

PRODUCT SPECIFICATION

Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below:

INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

PRODUCT SPECIFICATION

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

PRODUCT SPECIFICATION

6.2 POWER ON/OFF SEQUENCE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the LED voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit					
Ambient Temperature	Ta	25±2	°C					
Ambient Humidity	Ha	50±10	%RH					
Supply Voltage	V _{CC}	12V	V					
Input Signal	According to typical va	According to typical value in "3. ELECTRICAL CHARACTERISTICS"						
LED Current	IL	120±7.2	mA					

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Ite	em	Symbol	Condition	Min.	Typ.	Max.	Unit	Note
Contrast Ratio		CR		4000	6000		_	(2)
Response Tim	е	Gray to gray average		-	8.5	1	ms	(3)
Center Lumina	nce of White	L _C		360	450		cd/m ²	(4)
White Variation	า	δ W		<u>-</u>	-]	1.3	-	(7)
Cross Talk		CT		-	-	4.0	%	(5)
	Pod	Rx	$\theta_x=0^\circ$, $\theta_Y=0^\circ$		0.643		-	
	Red	Ry	Viewing Angle at		0.324		-	(6)
	Green	Gx	Normal Direction		0.300	Typ +0.03	-	
Color		Gy		Тур	0.623		-	
Chromaticity	Blue	Bx		-0.03	0.147		-	
Chilomaticity		Ву			0.064		-	
	White	Wx			0.280		-	
	VVIIILE	Wy			0.290		-	
	Color Gamut	CG			72		%	NTSC
	Horizontal	θ_{x} +			88	-		
Viewing	Horizoniai	θ_{x} -	CR≥20		88	-	Dog	(1)
Angle	Vertical	θ_{Y} +	U⊓∠∠U		88	-	Deg.	(1)
	vertical	θ_{Y} -	7		88	-		

PRODUCT SPECIFICATION

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7)

Note (3) Definition of Response Time (Gray to Gray switching time):

The driving signal means the signal of Gray 0, 31, 63, 95, 127,159, 191, 223, 255. Gray to gray average time means the average switching time of gray 0, 31, 63, 95, 127,159, 191, 223, 255 to each other.

PRODUCT SPECIFICATION

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point.

 $L_C = L$ (5), where L (x) is corresponding to the luminance of the point X at the figure in Note (7).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum \left[L \ (1), \ L \ (2), \ L \ (3), \ L \ (4), \ L \ (5)\right] \ / \ Minimum \left[L \ (1), \ L \ (2), \ L \ (3), \ L \ (4), \ L \ (5)\right]$

8. DEFINITION OF LABELS

Global LCD Panel Exchange Center

8.1 CMI MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- Model Name: V315H3-LE2 (a)
- Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc. (b)

Serial ID includes the information as below:

Manufactured Date: Year: 0~9, for 2010~2019 (a)

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

PRODUCT SPECIFICATION

9. PACKAGING

9.1 PACKING SPECIFICATIONS

(1) 7 LCD TV modules / 1 Box

(2) Box dimensions: 826(L)x376(W)x540(H)mm

(3) Weight: approximately 35 Kg (7 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

Figure.9-1 packing method

PRODUCT SPECIFICATION

Sea / Land Transportation (40ft Container)

Air Transportation

Sea / Land Transportation (40ft HQ Container)

Figure. 9-2 Packing method

PRODUCT SPECIFICATION

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

10.3 STORAGE PRECAUTIONS

When storing modules as spares for a long time, the following precaution is necessary.

- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (2) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

11. REGULATORY STANDARDS

11.1 SAFETY

The LCD module should be certified with safety regulations as follows:

Requirement	Standard	Remark
UL	UL60950-1:2006 or Ed.2:2007	
	UL60065 Ed.7:2007	
cUL/CSA	CAN/CSA C22.2 No.60950-1-03 or 60950-1-07	
	CAN/CSA C22.2 No.60065-03:2006 + A1:2006	
СВ	IEC60950-1:2005 / EN60950-1:2006+ A11:2009	
	IEC60065:2001+ A1:2005 / EN60065:2002 + A1:2006 + A11:2008	

12. MECHANICAL CHARACTERISTIC

PRODUCT SPECIFICATION

