Tutorial 2: Set Theory and Formal Languages

Set Notation and Concepts

Concept(s)

A set is a collection of objects. Let A, B, C be sets and x be an object.

x is an element of A $x \in A$ x is in A

A is a subset of B $A \subseteq B$ If $x \in A$ then $x \in B$ A is a proper subset of B $A \subset B$ $A \subseteq B$ and $A \neq B$ A is equal to B A = B $A \subseteq B$ and $B \subseteq A$ Empty Set \varnothing , $\{\}$ Set containing nothing

Universe \mathcal{U} Set containing all possible elements

Exercise 1. Let $A = \{1, 2, 3, 4\}$, $B = \{2, 4\}$, and $C = \{1, \{1\}, 2\}$.

Determine whether the following statements are true or false:

$$2 \in A$$
, $\{1\} \in C$, $\{1\} \subset C$, $A \subseteq B$, $B \subseteq A$, $\varnothing \subseteq C$.

Set Operations

Concept(s)

Union of A and B $A \cup B = \{x : x \in A \text{ or } x \in B\}$ Intersection of A and B $A \cap B = \{x : x \in A \text{ and } x \in B\}$ Complement of A $A^c = \{x : x \notin A \text{ and } x \in \mathcal{U}\}$ A but not B $A \setminus B = A \cap (B^c)$

Symmetric Difference of *A* and *B* $A \oplus B = (A \setminus B) \cup (B \setminus A)$

Exercise 2. Prove that for any sets A and B, if $A \subseteq B$, then $A \cap B = A$.

Exercise 3. Let $A = \{1, 2, 3\}$, $B = \{2, 3, 4\}$ and $\mathcal{U} = \{1, 2, 3, 4, 5\}$. Calculate:

$$A \cup B$$
, $(A^c) \cap B$, $A \oplus B$, $(A \cup B) \setminus (A \cap B)$, $(A \setminus B) \cap (B \setminus A)$.

Venn Diagram

Concept(s)

A Venn diagram uses overlapping circles to represent sets and their relationships.

Exercise 4. For any sets A, B, and C, prove or disprove:

- a) $A \cap (B \cup C) = (A \cap B) \cup C$.
- b) $(A \setminus B) \setminus C = A \setminus (B \setminus C)$.
- c) $A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$.

Hint: Use Venn Diagrams to help you out!

Power Sets and Cardinality

Concept(s)

Power Set of A $Pow(A) = \{X : X \subseteq A\}$

Exercise 5. Let $A = \{1, 2\}$. Calculate:

$$Pow(A)$$
, $|Pow(A)|$, $A \times A$, $|A \times A|$.

Exercise 6. Let A be a finite set with n elements. Prove that $|Pow(A)| = 2^n$.

Exercise 7. For sets A and B, prove or disprove $Pow(A \cup B) = Pow(A) \cup Pow(B)$

Set Theory Laws

Concept(s)

Commutativity $A \cup B = B \cup A$ $A \cap B = B \cap A$

Associativity $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$

 $Distribution \qquad \qquad A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \qquad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $\begin{array}{lll} \text{Identity} & A \cup \varnothing = A & A \cap \mathcal{U} = A \\ \text{Complement} & A \cup (A^c) = \mathcal{U} & A \cap (A^c) = \varnothing \\ \text{Idempotence} & A \cup A = A & A \cap A = A \end{array}$

Double Complement $(A^c)^c = A$

Annihilation $A \cup \mathcal{U} = \mathcal{U}$ $A \cap \emptyset = \emptyset$

de Morgan's $(A \cap B)^c = (A^c) \cup (B^c) \qquad (A \cup B)^c = (A^c) \cap (B^c)$

The principle of duality states that any law still holds true when you swap \cap with \cup and \varnothing with \mathcal{U} .

Exercise 8. Prove that for any sets A and B, $A \setminus (A \cap B) = A \setminus B$.

Exercise 9. Prove or disprove that for any sets A, B, and C, $(A \setminus B) \cap (B \setminus C) \cap (C \setminus A) = \emptyset$.

Exercise 10. Simplify the expression $[A \cap (A \cap B^c)] \cup [(A \cap B) \cup (B \cap A^c)]$.

Formal Languages

Concept(s)

Terminology for Formal Languages:

Alphabet (Σ) A finite, non-empty set of symbols Word A finite sequence of symbols from Σ

Empty Word (λ) The word with no symbols Σ^* The set of all finite words

Language A subset of Σ^*

Operations on Formal Languages: Let A, B be languages.

 $\begin{array}{ll} \text{Concatenation} & AB = \{ab: a \in A \text{ and } b \in B\} \\ \text{Concatenation Notation} & A^0 = \{\lambda\}, \, A^{i+1} = AA^i \\ \text{Kleene Star} & A^* = A^0 \cup A^1 \cup A^2 \cup \dots \end{array}$

Since languages are defined as sets, the normal set operations also apply.

Exercise 11. Let $A = \{ab, ba\}$. Calculate A^0 , A^1 and A^2 .

Exercise 12. Let A, B, C be languages with alphabet $\{a, b\}$ where AC = BC. Prove or disprove A = B?

Exercise 13. Let L_1 and L_2 be languages over Σ . Prove that $(L_1 \cap L_2)^* \subseteq L_1^* \cap L_2^*$.

Exercise 14. We define a^n and b^n as n consecutive occurrences of the symbol a or b, respectively. Let L_1 and L_2 be languages over $\Sigma = \{a, b\}$ defined as

$$L_1 = \{a^n b^{n+2} : n \ge 0 \text{ and } n \text{ is a perfect square}\}$$
 $L_2 = \{b^{3n+1} a^{n+1} : n \ge 0\}$

We define the language $L_3 = L_1L_2$.

- a) Give three examples of strings in L_1 and explain why they are in L_1 .
- b) Give three examples of strings in L_2 and explain why they are in L_2 .
- c) Determine which of the following strings are in L_3 and prove your answers:
 - aaaabbbbbbbba
 - aabbbbaaa

 - \bullet abbbbbbbaa
- d) Describe the general form of strings in L_3 .

Extra Practice Problems

Note(s)

These practice questions are designed to help deepen your understanding. No answers will be provided, as the goal is to encourage independent problem-solving and reinforce key concepts.

1. Which of the following statements are true? Let $S = \{a, \{a\}, \{\{a\}\}\}\$

$$\varnothing \in S, \quad a \in S, \quad \{a\} \in S, \quad \varnothing \subset S, \quad a \subset S, \quad \{a\} \subset S, \quad \varnothing \subseteq S, \quad a \subseteq S, \quad \{a\} \subseteq S.$$

2. Let $A = \{7, 8, 9\}$, $B = \{6, 9, -1\}$ and $U = \{-1, 2, 3, 6, 7, 8, 9\}$. Calculate the following:

$$(A \cup B)^c$$
, $(A \setminus B) \cap A$, Pow (A) , $A \times B$, $(A^c) \cap (B^c)$, $A \oplus (B^c)$.

- 3. Show that when $R \subseteq S$ and $R \subseteq T$, we have $R \subseteq S \cap T$.
- 4. Prove or disprove $A \cap \emptyset = A$ for all sets A.
- 5. Suppose that $S \cup T = S \cap T$. Show that S = T.
- 6. Give an example that disproves $A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$, where A, B, C are sets.
- 7. Suppose that $S \oplus T = T$. Is $S = \emptyset$? Explain your answer.
- 8. Let $S = \{0, 1\}$. Find Pow(Pow(S)).
- 9. For sets A, B, show that if $A \subseteq B$ then $Pow(A) \subseteq Pow(B)$.
- 10. Simplify $(A \setminus B^c) \cup (B \cap (A \cap B)^c)$
- 11. Simplify $(A \cup B) \cup (C \cap A) \cup (A \cap B)^c$. Use the principle of duality to find the dual law.
- 12. Let $A = \{a\}, B = \{b\}$. Prove or disprove that $(A^*B)^* = (A^*B^*)^*$.
- 13. Let L_1 and L_2 be languages over Σ . Prove that $L_1^* \cup L_2^* \subseteq (L_1 \cup L_2)^*$. Give an example where $L_1^* \cup L_2^* \neq (L_1 \cup L_2)^*$.
- 14. Let $A = \{\lambda, b, ab\}$ and $B = \{\lambda, a\}$. Calculate A^2, B^*, BA^* .