

# W3C Web of Things Summary and Applications

Michael McCool

February 2022

### Outline



- What is WoT?
  - Applying and extending web standards for IoT
  - Descriptive interoperability: Thing Descriptions
  - Finding Thing Descriptions: Discovery
- Use Cases and Applications
  - Use Cases and Requirements
  - Smart Buildings
  - Smart Cities
- Discussion
  - Gaps and Future Work

# W3C Web of Things (WoT)



- W3C Working Group goal: Adapting web technologies to IoT
- Already published: Thing Description (TD) metadata format
  - TD describes the available interactions (network API) of a Thing
- New deliverables in progress, including Discovery
  - How does a potential user obtain the TD for a Thing?



### Descriptive Interoperability: TDs



#### **WoT Architecture**

- Constraints
  - "Things" must have a TD
  - Must use URIs, IANA media types, etc.
- Thing Description Affordances
  - Describes WHAT the possible choices are
  - Describes HOW to interact with the Thing



#### WoT Thing Description (TD)

```
"https://www.w3.org/2019/wot/td/v1",
 { "iot": "http://iotschema.org/" }
"id": "urn:dev:org:32473:1234567890",
"title": "MyLEDThing",
"description": "RGB LED torchiere",
"@type": ["Thing", "iot:Light"],
"securityDefinitions": {
 "default": {"scheme": "bearer"}
"security": ["default"],
"properties": {
 "brightness": {
    "@type": ["iot:Brightness"],
    "type": "integer",
    "minimum": 0,
    "maximum": 100,
    "forms": [ ... ]
actions": {
 "fadeIn": {
```

# **Usage Patterns Overview**





)

### Orchestration

#### Node-RED/node-gen





#### node-wot/Scripting API

```
WoTHelpers.fetch( "coap://localhost:5683/counter" ).then( async (td) => {
 // using await for serial execution (note 'async' in then() of fetch())
 try {
  let thing = await WoT.consume(td);
  console.info( "=== TD ===" );
                                                                     THINGWEB
  console.info(td);
  console.info( "======");
  // read property #1
  let read1 = await thing.readProperty( "count" );
  console.info( "count value is" , read1);
  // increment property #1 (without step)
  await thing.invokeAction( "increment" );
  let inc1 = await thing.readProperty( "count" );
  console.info( "count value after increment #1 is", inc1);
  // increment property #2 (with step)
  await thing.invokeAction( "increment" , {'step' : 3});
  let inc2 = await thing.readProperty( "count" );
  console.info( "count value after increment #2 (with step 3) is", inc2);
  // decrement property
  await thing.invokeAction( "decrement" );
  let dec1 = await thing.readProperty( "count" );
  console.info( "count value after decrement is", dec1);
 } catch(err) {
  console.error( "Script error:" , err);
}).catch( (err) => { console.error( "Fetch error:" , err); });
```

# Discovery



#### Goal: Obtain TD of interest

- Not limited to local network
- Scalable to many TDs
- Need to preserve privacy
- Phased access:
  - 1. Introduction: open
  - 2. Exploration: controlled
- Searchable via JSON Path, XPath, or SPARQL
- Future work:
  - Find "nearby" Things using geospatial data

#### Phase 1: Introduction

Phase 2: Exploration



### Deliverables



#### **New/Updated Normative Documents:**

- Architecture 1.1: <a href="https://github.com/w3c/wot-architecture">https://github.com/w3c/wot-architecture</a>
- Thing Description 1.1: <a href="https://github.com/w3c/wot-thing-description">https://github.com/w3c/wot-thing-description</a>
- Discovery: <a href="https://github.com/w3c/wot-discovery">https://github.com/w3c/wot-discovery</a>
- Profiles: <a href="https://github.com/w3c/wot-profile">https://github.com/w3c/wot-profile</a>

#### **New/Updated Informative Documents:**

- Binding Templates: <a href="https://github.com/w3c/wot-binding-templates">https://github.com/w3c/wot-binding-templates</a>
- Scripting API: <a href="https://github.com/w3c/wot-scripting-api">https://github.com/w3c/wot-scripting-api</a>
- Use Cases and Requirements: <a href="https://github.com/w3c/wot-usecases">https://github.com/w3c/wot-usecases</a>

#### **Community Resources:**

Web Site: <a href="https://www.w3.org/WoT/">https://www.w3.org/WoT/</a>

### Recent Activity



- Plugfests
  - https://github.com/w3c/wot-testing/tree/main/events
- New Commercial Usages
  - Takenaka Construction Smart Building Information Management systems
  - Netzo IoT dashboards and device management
- Directory Implementations
  - WoT Hive, LogiLab (SPARQL based), Fraunhofer LinkSmart
- IETF Relationships: JSON Path, CoreRD, COSE/JOSE, ASDF
- Under Discussion:
  - Geospatial data, Embedded JSON Signatures
  - New Charters/New Deliverables

# Use Cases and Requirements



Informative Deliverable: <a href="https://github.com/w3c/wot-usecases">https://github.com/w3c/wot-usecases</a>

#### Purpose and Process:

- Identify specific use cases
- Identify application domains
  - Collect use cases from other W3C groups
  - Collect use cases from other stakeholders and SDOs
- Identify usage patterns
  - For example, hubs, proxies, automation, etc.
- Identify relevant technologies
  - For example, edge computing, digital twins, etc.
- → Extract common requirements to drive current and future work

# Use Cases / Requirements Process





### WoT Use Cases Relevant to Smart Cities



- Smart City
  - Geolocation
  - Dashboard
  - Interactive Public Spaces
  - Meeting/Event Assistance
  - Smart Campus
  - Cultural Spaces
- Health
  - Public Health Monitoring
- Energy
  - Smart Grids (DER)

- Building Technologies
  - Smart Building
  - Connected Bldg Energy Efficiency
  - Automated Smart Bldg Management
  - Portable Bldg Applications
- Retail
  - All Stop Emergency Plunger
  - Door Sensor
  - Freezers and Refrigerators
  - Restrooms
  - Lighting
  - Canopies
  - Cameras

# Recent Relevant Applications





### Takenaka Corporation

- EQ House, Tokyo 2019
- BIM applications



#### Siemens

- Desigo CC
- BIM system



#### Netzo

- IoT Data Hub
- Dashboards

### Gaps and Discussion



- GIS Integration
  - Geospatial data and discovery
- Data Management
  - Digital Twins and shadows
  - Event notifications
  - Data management
- Security
  - Key provisioning and onboarding
  - Secure LAN access
  - Proxy services
  - Access control and ad-hoc sharing
  - MUDS

- Accessibility
  - Sensory modality mapping
  - Textual/descriptive interfaces
  - Service location
  - Mobility services
- Advanced Use Cases
  - Transportation
  - Logistics
  - Distributed energy management
  - AR visualization
  - Analytics integration e.g. for health and safety monitoring

### Resources and Contacts



https://www.w3.org/WoT

Dr. Michael McCool

**Principal Engineer** 

Intel

**Technology Pathfinding** 

michael.mccool@intel.com

Dr. Sebastian Kaebisch

Senior Key Expert

Siemens

Technology

sebastian.kaebisch@siemens.com