

제 5장

빅데이터 프로젝트 가이드라인

2015.06 조완섭 충북대학교 경영정보학과 대학원 비즈니스데이터융합학과 wscho@chungbuk.ac.kr 043-261-3258 010-2487-3691

• 본 자료는 "빅데이터 업무절차 및 기술활용 매뉴얼 (Ver 1.0), NIA, 2014.03"을 참고하여 정리한 것임

목차

- 배경 및 개요
- 데이터 수집
- 데이터 저장관리
- 보안관리
- 품질관리
- 데이터 분석
 - 가시화
- 분석결과의 활용과 서비스

배경

- 빅데이터 시대로의 진입
 - 2011년 맥킨지 보고서
- 빅데이터가 ICT 분야의 새로운 패러다임, 신성장동력
 - 정부3.0으로 공공분야 빅데이터 관심증대
 - IT 기업들은 빅데이터로의 사업확장
 - 비IT기업들도 빅데이터 활용 비즈니스 혁신에 관심
- 선진국, 글로벌 기업 위주로 빅데이터 경쟁심화
 - _ 미국, 영국, 일본, 싱가폴
 - 중국 핀테크 기업

배경

- 우리나라는 선진국에 비하여 빅데이터 경쟁력 하락
 - 정부 및 공공기관, 지자체 노력에도 불구하고 2015년
 OpenData Barometer 국제지표 17위 하락 (2014년 12위)
 - 빅데이터 구축 및 활용경험이 일천하고, 마땅한 지침서나 전문가도 부족한 상황
 - 거버넌스 구축 없이 활용만 강조되는 분위기
- 데이터를 소홀이 하는 문화
 - 데이터 분석 기반의 과학적 의사결정 문화 미흡
 - 조직의 데이터 분석역량이 미흡

개요

- 빅데이터 활용지침서 (Nia, 2014)
 - 공공과 민간에서 빅데이터를 활용하고자 하는 실무자들이 알아야 할 단계별 업무절차 및 관련기술 소개
 - 빅데이터 프로젝트 수행시 고려사항
 - 빅데이터를 활용한 서비스 기획(rfp 작성)
 - 분석 플랫폼의 구축과 운영
 - 사업관리
 - 데이터 활용 업무혁신 방안

개요

• 빅데이터 사업수행의 수행과 활용 절차

- 정의
 - 조직 내부·외부의 다양한 데이터를 일괄 · 실시간으로 수집하는 과정 (기술, 업무)
- 절차

• 데이터 유형

유형	특징	데이터 종류
정형 데이터 (Structured)	- RDBMS의 고정된 필드에 저장 - 데이터 스키마 지원	RDB, 스프레트 시트
반정형 데이터 (Semi-	- 데이터 속성인 메타데이터를 가지며, 일 반적으로 스토리지에 저장되는 데이터 파일	HTML, XML, JSON, 웹문서,
structured)	- XML 형태의 데이터로 값과 형식이 다소 일관성이 없음	웹로그, 센서 데이터
비정형 데이터	- 언어 분석이 가능한 텍스트 데이터	소셜 데이터,
(Unstructured)	- 형태와 구조가 복잡한 이미지, 동영상 같은 멀티미디어 데이터	문서, 이미지, 오디오, 비디오

담당자 이름	담당자 직위	전화 번호	주소
한석규	영업 사원	(0582)575-5776	가장동 78-3
황영순	대표 이사	(02)681-6889	서초구 방배동 883-11
조자룡	대표 이사	(02)989-9889	강서구 내발산동 318
구재석	영업 사원	(032)76-4568	남구 연수동 208-16
최명희	영업 과장	(042)92-3778	서구 도마동 110-6
손미선	영업 사원	(02)211-1234	서대문구 남가좌 1동 121
장선희	마케팅 2과장	(02)111-2954	영등포구 당산동 3가 16

- 데이터 수집주기
 - 배치 (간격은 ?) 수집과 (준)실시간 수집으로 구분하여 적절한 수집기술 선택
 - 데이터의 종류와 크기, 데이터 발생 빈도주기, 분석주기, 시스템 및 네트워크 부하 정도 등을 고려하여 기술선택
 - _ 일정기간 샘플 데이터 수집 필요
 - 데이터 량을 점검한 후에 수집주기와 서버 용량 결정
 - 스트림 데이터의 실시간 수집 (IoT)
 - 데이터 폭증에 대비해야 함
 - 중복 데이터 필터링 기술 활용 (예: 방의 온도 센서)
 - 인메모리 처리기술 활용 필요

• 데이터 수집기술

구 분	특징	비고
Crawling Web Robot	- SNS, 뉴스, 웹 정보 등 인터넷상에서 제공되는 웹문서· 정보 수집 (URL List => 데이터 수집)	웹문서 수집
FTP	 TCP/IP 프로토콜을 활용하는 인터넷 서버로부터 각종 파일들을 송수신 보안을 강화하기 위해 SFTP 사용 고려 서버간 연동시에는 전용 네트워크 구축 고려 	File 수집
Open API	 서비스, 정보, 데이터 등을 어디서나 쉽게 이용할 수 있 도록 개방된 API로 데이터 수집방식 제공 다양한 어플리케이션을 개발할 수 있도록 개발자와 사용 자에게 공개 	실시간 데
RSS	- RSS(Really Simple Syndication)는 Web기반 최신의 정보를 공유하기 위한 XML 기반 콘텐츠 배급 프로토콜	콘텐 <i>츠</i> 수집

• 데이터 수집기술

Arriving machine data is processed at rates of up to 1 million records/second/CPU core

Streaming	- 인터넷에서 음성, 오디오, 비디오 데이터를 실시간으로 수집할 수 있는 기술 (종류: SQLstream, ETL for IMDG)	실시간 데 이터 수집
Log Aggregator	- 웹서버 로그, 웹 로그, 트랜잭션 로그, 클릭 로그, DB의 로그 등 각종 로그 데이터를 수집하는 오픈 소스 기술 - 종류 : Chukwa, Flume, Scribe 등	로그수집
RDB Aggregator	 관계형 데이터베이스에서 정형 데이터를 수집하여 HDFS(하둡 분산파일시스템)이나 HBase와 같은 NoSQL에 저장하는 오픈 소스 기술 종류 : Sqoop, Direct JDBC/ODBC, TeraStream for Hadoop 	RDB 기반 데이터 수집

• 빅데이터 유형에 따른 수집기술

<데이터 유형에 따른 수집 기술>

데이터 유형	데이터 종류	수집 기술의 선택
정형 데이터	RDB, 스프레드 시트	정형 - 반정형
반정형 데이터	HTML, XML, JSON, 웹문서, 웹 로그, 센서 데이터	│
비정형 데이터	소셜 데이터, 문서(워드, 훈글), 이미지, 오디오, 비디오	정형 모 노구 시 실시간 반정형 비정형

• 실시간 데이터 수집의 필요성 증대

• 60초 동안에 발생하는 events

출처: http://gizmodo.com/how-much-happens-on-the-internet-every-60-seconds-950463150

• 사전 테스트

- 수집 계획에 따라 수집주기와 기술을 적용, 사전 테스트 진행
- 네트워크 트래픽 문제, 데이터 누락여부, 정확성 (원본과 수집 된 데이터 비교), 보안성 등을 점검하여 필요시 수집방법 보완 변경
- 데이터 수집 시행
 - 수집을 진행하되 향후 장애 점검 등을 위해 관련 로그 기록을 확보함
 - 수집당시 상황을 정보 : 데이터의 출처, 수집방식, 장애발생 여부와 시 스템 로그, 시간 등의 정보
- 데이터의 수집 후 처리
 - 데이터 수집 후 저장된 데이터에 대한 외부인 접근방지 및 유출시 대 처방안 등과 관련된 업무지침 마련

- 데이터 수집기술 활용시 고려 사항
 - Crawling, FTP, OpenAPI, 실시간 streaming, Log aggregator, RDB aggregator 등
 - 빅데이터 업무절차 및 기술활용 매뉴얼 (NIA)
 - 정보설정 기능
 - 수집 에이전트 기능
 - Collector 기능
 - 기타 기능
 - 매뉴얼의 주요 내용
 - 각 수집기술별로 고려할 사항을 정리함
 - Page 11 ~ 17

- 빅데이터 수집시 주의사항
 - 빅데이터 수집시에는 데이터의 질, 수집 기술, 데이터 보안 및 개인정보보호 문제 등 다양한 부분을 고려해야 함;
 전문가의 조언 필요
 - 데이터 수집 활동은 분석 결과의 질을 좌우하는 중요한 과정임; 분석에 필요한 데이터 항목들을 반드시 포함해야 하고, 품질도 원하는 수준으로 확보하는 것이 중요함
 - 수집기술은 다양한 데이터 소스로부터 다양한 유형의 데이터를 수집하기 위해 확장성, 안정성, 실시간성 및 유연성을 확보해야 함 (도구사용으로 체계화)

2. 데이터 저장관리

- 정의
 - 데이터 전처리, 분산저장, 보안 및 품질관리 등을 수행하는는 단계
- 업무절차

2. 데이터 저장관리 - 전처리

• 전처리 기술

방식	설 명	
데이터 여과	- 오류 발견, 보정, 삭제 및 중복성 확인 등의 과정을 통해 데이	
(Filtering)	터 품질을 향상 시키는 기술(예: 센서의 경우 동일한 값 출력=>압축)	
	- 데이터 유형 변환 등 데이터 분석이 용이한 형태로 변환하는 기술	
데이터 변환	- 정규화(normalization), 집합화(Aggregation), 요약(summarization),	
(Transformation)	계층 생성 등의 방법 활용	
	- ETL(extraction/transformation/loading) 도구 제공중	
	- 결측치들을 채워 넣고, 이상치를 식별 또는 제거하고, 잡음 섞인	
데이터 정제	데이터를 평활화하여 데이터의 불일치성을 교정하는 기술	
(Cleansing)	※ 일반적으로 데이터는 불완전하고, 잡음이 섞여있고, 일관성이 없기 때문에 데이터 정제가 필요	
데이터 통합	- 데이터 분석이 용이하도록 유사 데이터 및 연계가 필요한 데	
(Integration)	이터(또는 DB)들을 통합하는 기술	
데이터 축소	- 분석 컴퓨팅 시간을 단축할수 있도록 데이터 분석에 활용되	
(Reduction)	지 않는 항목 등을 제거하는 기술	

* 평활화 : 데이터에 포함된 잡음제거를 위해 추세를 벗어나는 데이터를 적절한 값으로 변환함

2. 데이터 저장 - 정제

• 결측치 처리방법

방법	설명
해당 레코드 무시	- 분류에서 클래스 구분 라벨이 빠진 경우 레코드 무시 - 결측치가 자주 발생하는 환경에서는 적용시 비효율적
자동으로	- 결측치에 대한 값을 별도로 정의: 예) "unknown" - 통계값 적용: 전체 평균값, 중앙값, 해당 레코드와 같은 클
채우기	래스에 속한 데이터의 평균값 - 추정치 적용: 베이지안 확률 추론, 결정 트리
담당자(전문가)가	- 담당자가 직접 확인하고 적절한 값으로 수정
수작업 입력	- 신뢰성은 높을 수 있으나 많은 작업 시간이 소요 됨

2. 데이터 저장 - 정제

• 잡음의 처리 방법

방법	설명
구간화(Bining)	- 정렬한 데이터를 여러 개의 구간으로 배분한 후 구간 안에 있는 값들을 대표값으로 대체 - 구간 단위별로 잡음 제거 및 데이터 축약 효과 - 사용되는 대표값 : 평균, Median 등
회귀값 적용(Regression)	- 데이터를 가장 잘 표현하는 추세 함수를 찾아서 이 함수의 값을 사용
군집화(clustering)	- 비슷한 성격을 가진 클러스터 단위로 묶은 다음 outlier 제거

잡음발생 원인 : 센서의 작동실패, 데이터 입력오류, 데이터 전송문제, 기술적인 한계, 데이터 속성값의 부정확성 등

2. 데이터 저장 - 축소

• 불필요한 데이터 축소=>분석효율성 제고(고유 특성은 유지)

단계적 회귀분석 (stepwise regre			
축소 방식		설명 - 독립변수를 하나씩 추가/삭제하면서 최적의 모형을 만들어 나감 /	
차원 축소	분석에 필요 없거나 중복 항목 제거	- Stepwise forward selection, Stepwise backward elimination 등 활용	
데이터 압축	데이터 인코딩이나 변 환을 통해 데이터 축소	- lossless(BMP 포맷), lossy(JPEG 포맷) 등 방법 적용	
Discrete wavelet transform (DWT)	선형 신호 처리	- 수는 다르지만 길이는 같은 벡터(wavelet coefficients)로 변환 - 여러 개의 벡터 중에서 가장 영향력이 큰 벡터를 선택해서 다른 벡터들을 제거	
Principal components analysis (PCA)	데이터를 가장 잘 표 현하고 있는 직교상의 데이터 벡터들을 찾아 서 압축	속성들을 선택하고 다시 조합시켜 다른 작은 집합으로 생성계산하는 과정이 간단하고 정렬되지 않은 속성들도 처리 가능	
수량 축소 (Numerosity Reduction)	데이터를 더 작은 형 태로 표현해서 데이터 의 크기 줄임	- 데이터 파라미터만 저장(예, Log-linear 모델) - 기존의 데이터에서 축소된 데이터를 저장 (예, 히스토그램, 클러스터링, 샘플링 등)	

2015-(!___

2. 데이터 저장 – 전처리/후처리

- 데이터 전처리 관련 기술 활용시 고려사항
 - 데이터 전처리
 - 데이터 필터링 기술 활용시 고려사항
 - 데이터 유형 변환시
 - 데이터 정제시
 - 데이터 후처리
 - 데이터 통합시
 - 데이터 변환시
 - 데이터 축소시
 - Page 23~26 참고

- 빅데이터 저장
 - 수집된 데이터는 한대의 컴퓨터에 저장하거나 (작은 경우)
 혹은 여러대의 컴퓨터 (클라우드)에 분산저장함
 - 실시간 처리가 필요한 경우에는 메인 메모리에 저장함

- 데이터 저장계획 수립
 - 데이터 유형에 따른 저장방식 선정
 - RDB, NoSQL, 분산 파일시스템, IMDG 등
 - 데이터 수집량에 따라 저장공간 산정
 - RDB는 제조업체 문의; scale-up / scale-out 확장성 확인
 - NoSQL은 scale-out 방식으로 peta-byte 이상까지 확장 (복제고려)
 - 계획서에는 데이터 유형에 따른 수집주기, 저장방식, 보관주기, 벡업 방식, 저장공간 확장방안 등을 세부적으로 명시

< 확장 기술 비교 >

구분	Scale up	Scale out
개요	CPU, 메모리, 하드디스크 등 서버 자원을 추가하여 처리 능력을 향 상시키는 방식	서버의 대수(노드)를 추가하여 처리 능력을 향상시키는 방식
비용	컨트롤러나 네트워크 인프라 비용 은 발생하지 않고 디스크만 추가	추가된 노드들이 하나의 시스템으로 운영되기 위한 NW장비 필요
용량	하나의 스토리지 컨트롤러가 지원 가능한 Device 수가 한정되어 있 어 용량확장 시 제약	스토리지 용량 확장성이 매우 좋음

• 데이터 저장기술

구 분	특징	비고
RDB	 관계형 데이터를 저장하거나, 수정하고 관리할 수 있게 해주는 프로그램 SQL 문장을 통하여 데이터베이스의 생성, 수정 및 검색 등 서비스를 제공 최대 Terabyte씩 확장가능 	oracle, mssql, mySQL, sybase, MPP DB
NoSQL	- Not-Only SQL의 약자이며, 비관계형 데이터 저장소로, 기존의 전통적인 방식의 관계형 데이터베이스와는 다르 게 설계된 데이터베이스 - 테이블 스키마(Table Schema)가 고정되지 않고, 테이블 간 조인(Join) 연산을 지원하지 않으며, 수평적 확장 (Horizontal Scalability)이 용이 - key-value, Document key-value, column 기반의 NoSQL이 주로 활용 중	MongoDB, Cassandra, HBase, Redis

분산파일시 스템	 분산된 서버의 로컬 디스크에 파일을 저장하고 파일의 읽기, 쓰기 등과 같은 연산을 운영체제가 아닌 API를 제공하여 처리하는 파일시스템 파일 읽기/쓰기 같은 단순 연산을 지원하는 대규모 데이터 저장소 지원 범용 x86서버의 CPU, RAM 등을 사용하므로 장비 증가에 따른 성능 향상 수 TB~ 수백 PB 이상의 데이터 저장 지원 	HDFS
인메모리 데이터 그리드	- 분산된 서버의 메인 메모리에 데이터 저장 - 다수의 컴퓨터로 고속 병렬 처리 (고성능 실시간 처리) - 필요한 경우 하드 디스크 DB와 연동 및 동기화	IMDG

• 저장공간의 확장방식

구분	Scale up	Scale out
개요	CPU, 메모리, 하드디스크 등 서버 자원을 추가하여 처리 능력을 향 상시키는 방식	서버의 대수(노드)를 추가하여 처리 능력을 향상시키는 방식
비용	컨트롤러나 네트워크 인프라 비용 은 발생하지 않고 디스크만 추가	추가된 노드들이 하나의 시스템으로 운영되기 위한 NW장비 필요
용량	하나의 스토리지 컨트롤러가 지원 가능한 Device 수가 한정되어 있 어 용량확장 시 제약	스토리지 용량 확장성이 매우 좋음

2. 데이터 저장 – 시험운영 및 모니터링

- 구축 및 시험운영
 - 계획에 따라 DB를 구축하고 운영에 필요한 주요 기능을 테스트함
- 시행 및 모니터링
 - 주기적으로 데이터 저장관련 에러, 여유공간 등을 실시간 으로 모니터링하고 문제발생시 대응체계 마련
 - RDB의 경우 인덱스 공간을 감안하여 여유공간 확보
 - NoSQL, ,Hadoop의 경우 복제파일 운영 고려
 - 저장공간이 일정수준 이상 사용된 경우 미리 scale-out 방안 강구