Příklad (rekur)

Zjednodušte popis funkce t (stačí $\Theta(t)$) dané následující rekurencí: $t(n) = t(\lceil \sqrt{n} \rceil) + c$, pro $n \ge 3$ a kde t(n) = n pro $1 \le n \le 2$.

Řešení

Nejprve indukcí dokážeme, že je funkce neklesající. 1. krok: Pro n=1,2 tvrzení rozhodně platí.

2. krok: Nechť tvrzení platí pro všechna $n \leq k$. Chceme dokázat, že $t(k+1) \geq t(k)$, tedy že

$$t\left(\left\lceil\sqrt{k+1}\right\rceil\right) + c \ge t\left(\left\lceil\sqrt{k}\right\rceil\right) + c,$$

 $t\left(\left\lceil\sqrt{k+1}\right\rceil\right) \ge t\left(\left\lceil\sqrt{k}\right\rceil\right),$

z indukčního předpokladu (a toho, že $\left\lceil \sqrt{k+1}\right\rceil \leq k, \forall k>1)$ je to totéž jako:

$$\left\lceil \sqrt{k+1} \right\rceil \ge \left\lceil \sqrt{k} \right\rceil,$$

horní celá část je také neklesající a odmocnina též t
j. toto platí, když $k+1 \geq k,$ což rozhodně je, tudíž t je neklesající.

Nyní dosadíme $n=(\dots((2^{2^{2}})^{2})\dots)^{2}=2^{2^{k}}$. Indukcí dokážeme, že $t\left(2^{2^{k}}\right)=2+k\cdot c$: 1. krok: $k=0\implies t\left(2^{2^{k}}\right)=t\left(2^{1}\right)=t(2)=2$.

2. krok: Af
$$t(2^{2^{k-1}}) = 2 + (k-1) \cdot c$$
. Potom

$$t(2^{2^k}) = t(\lceil \sqrt{2^{2^k}} \rceil) + c = t(\lceil 2^{2^{k/2}} \rceil) + c = t(\lceil 2^{2^{k-1}} \rceil) + c = t(\lceil 2^{$$

Tedy pro tato konkrétní n je t(n) rovno^a $2 + \log(\log n) \cdot c$. Ale protože je funkce neklesající, tak pro libovolné $n \in \mathbb{N}$ je

$$2 + \lfloor \log(\log n) \rfloor \cdot c \le t(n) \le 2 + \lceil \log(\log n) \rceil \cdot c,$$

$$2 + (\log(\log n) - 1) \cdot c \le t(n) \le 2 + (\log(\log n) + 1) \cdot c.$$

Z čehož je jasně vidět $t(n) = \Theta(\log(\log n))$.

$$a\log = \log_2$$