Dynamic delegation with a persistent state

Yi Chen, Theoretical Economics, 2022

presented by Yonggyun (YG) Kim

September 27, 2023

Introduction

- A firm's headquarters (P) allocates resources to a division manager (A) over time
- P's goal: allocating resources to hit a target amount depending on some states slowly evolving over time
 - Examples of state: profitability, consumer taste, or technical parameters...
- State is only observed by A (not by P)
- A wants to receive more resources regardless of the state
 - ⇒ Conflicts of interest between **P** and **A** arise
- Main Question: Does P benefit from A's information with a dynamic contract?

- A firm's headquarters (P) allocates resources to a division manager (A) over time
- **P**'s goal: allocating resources to hit a target amount depending on some states slowly evolving over time
 - Examples of state: profitability, consumer taste, or technical parameters...
- State is only observed by A (not by P)
- A wants to receive more resources regardless of the state
 - ⇒ Conflicts of interest between **P** and **A** arise
- Main Question: Does P benefit from A's information with a dynamic contract?

- A firm's headquarters (P) allocates resources to a division manager (A) over time
- **P**'s goal: allocating resources to hit a target amount depending on some states slowly evolving over time
 - Examples of state: profitability, consumer taste, or technical parameters...
- State is only observed by **A** (not by **P**)
- A wants to receive more resources *regardless* of the state
 - ⇒ Conflicts of interest between **P** and **A** arise
- Main Question: Does P benefit from A's information with a dynamic contract?

- A firm's headquarters (P) allocates resources to a division manager (A) over time
- **P**'s goal: allocating resources to hit a target amount depending on some states slowly evolving over time
 - Examples of state: profitability, consumer taste, or technical parameters...
- State is only observed by **A** (not by **P**)
- A wants to receive more resources regardless of the state
 - ⇒ Conflicts of interest between **P** and **A** arise
- Main Question: Does P benefit from A's information with a dynamic contract?

- A firm's headquarters (P) allocates resources to a division manager (A) over time
- **P**'s goal: allocating resources to hit a target amount depending on some states slowly evolving over time
 - Examples of state: profitability, consumer taste, or technical parameters...
- State is only observed by **A** (not by **P**)
- A wants to receive more resources regardless of the state
 - ⇒ Conflicts of interest between **P** and **A** arise
- Main Question: Does P benefit from A's information with a dynamic contract?

Preview of the Setting

- Dynamic delegation problem
 - 1. A privately observes a persistently evolving state and report it to P
 - 2. P commits to actions based on the agent's reported state
 - 3. Preferences
 - A: state independent
 - P: matching a state-dependent target
 - 4. No monetary transfer

Preview of the Results

- Quota mechanism
 - P commits to a fixed quota, which is the discounted sum of actions
 - It implies that A's continuation payoff is independent of his current report
 - P intertemporally reallocates the quota to make the best use of A's information
- How would P respond to information?
 - 1. Conformist: an action moves in the same direction as the target
 - 2. Contrarian: an action moves in the opposite direction from the target
 - 3. Unresponsive: an action does not reflect any information
 - Babbling: if the contract is unresponsive for all states

Preview of the Results

- Quota mechanism
 - P commits to a fixed quota, which is the discounted sum of actions
 - It implies that A's continuation payoff is independent of his current report
 - P intertemporally reallocates the quota to make the best use of A's information
- How would P respond to information?
 - 1. Conformist: an action moves in the same direction as the target
 - 2. **Contrarian**: an action moves in the opposite direction from the target
 - 3. Unresponsive: an action does not reflect any information
 - Babbling: if the contract is unresponsive for all states

A Two-Period Example

A Two-Period Example: Preliminaries

- Time: t = 1, 2
- States: $\theta_1, \ \theta_2 \in \mathbb{R}$
 - $\theta_1 \sim \mathcal{N}(0,1)$
 - ullet $heta_2 = heta_1 + \epsilon$ where $\epsilon \sim \mathcal{N}(0,1)$
- P's total cost:

$$(x_1 - f(\theta_1))^2 + (x_2 - f(\theta_2))^2$$

where $f(\cdot)$ is a time-invariant target function

• A's total payoff:

$$x_1 + x_2$$

A Two-Period Example: Preliminaries

- Time: t = 1, 2
- States: $\theta_1, \ \theta_2 \in \mathbb{R}$
 - $\theta_1 \sim \mathcal{N}(0,1)$
 - ullet $heta_2 = heta_1 + \epsilon$ where $\epsilon \sim \mathcal{N}(0,1)$
- P's total cost:

$$(x_1 - f(\theta_1))^2 + (x_2 - f(\theta_2))^2$$

where $f(\cdot)$ is a time-invariant target function

• A's total payoff:

$$x_1 + x_2$$

A Two-Period Example: Preliminaries

- Time: t = 1, 2
- States: $\theta_1, \ \theta_2 \in \mathbb{R}$
 - $\theta_1 \sim \mathcal{N}(0,1)$
 - ullet $heta_2 = heta_1 + \epsilon$ where $\epsilon \sim \mathcal{N}(0,1)$
- **P**'s total cost:

$$(x_1 - f(\theta_1))^2 + (x_2 - f(\theta_2))^2$$

where $f(\cdot)$ is a time-invariant target function

• A's total payoff:

$$x_1 + x_2$$

A Two-Period Example: Principal's Problem

- In each period t,
 - 1. **A** privately learns θ_t
 - 2. **A** reports $\hat{\theta}_t$ to **P**
- Contract: $(x_1(\hat{\theta}_1), x_2(\hat{\theta}_1, \hat{\theta}_2))$
 - Focus on truthful contracts
- P's problem:

A Two-Period Example: Principal's Problem

- In each period t,
 - 1. **A** privately learns θ_t
 - 2. **A** reports $\hat{\theta}_t$ to **P**
- Contract: $(x_1(\hat{\theta}_1), x_2(\hat{\theta}_1, \hat{\theta}_2))$
 - Focus on truthful contracts
- **P**'s problem:

$$\min_{\substack{x_1(\cdot), x_2(\cdot, \cdot)}} \quad \mathbb{E}\left[(x_1 - f(\theta_1))^2 + (x_2 - f(\theta_2))^2 \right]
\text{s.to.} \quad x_1(\theta_1) + \mathbb{E}\left[x_2(\theta_1, \theta_2) | \theta_1 \right] \ge x_1(\hat{\theta}_1) + x_2(\hat{\theta}_1, \hat{\theta}_2), \quad \forall \theta_1, \hat{\theta}_1, \hat{\theta}_2, \quad (1)
x_2(\theta_1, \theta_2) \ge x_2(\theta_1, \hat{\theta}_2), \quad \forall \theta_1, \theta_2, \hat{\theta}_2. \quad (2)$$

A Two-Period Example: Quota Mechanism

• (2) says that for all θ_2 and $\hat{\theta}_2$, $x_2(\theta_1, \theta_2) \ge x_2(\theta_1, \hat{\theta}_2)$:

$$x_2(\theta_1, \theta_2) \ge x_2(\theta_1, \hat{\theta}_2) \ge x_2(\theta_1, \theta_2) \implies x_2(\theta_1, \theta_2) = x_2(\theta_1, \hat{\theta}_2)$$

- \Rightarrow $x_2(\theta_1, \theta_2)$ does not depend on θ_2 , and we can write $x_2(\theta_1, \theta_2) = x_2(\theta_1)$ for short.
- Now plug this into (1): for all θ_1 , $\hat{\theta}_1$,

$$x_1(\theta_1) + x_2(\theta_1) \ge x_1(\hat{\theta}_1) + x_2(\hat{\theta}_1).$$
 (3)

 \Rightarrow by using the similar trick, we have that for some constant W,

$$x_1(\theta_1) + x_2(\theta_1) = W$$

W can be interpreted as the quota (total payoff) promised to the agent

A Two-Period Example: Quota Mechanism

• (2) says that for all θ_2 and $\hat{\theta}_2$, $x_2(\theta_1, \theta_2) \ge x_2(\theta_1, \hat{\theta}_2)$:

$$x_2(\theta_1, \theta_2) \ge x_2(\theta_1, \hat{\theta}_2) \ge x_2(\theta_1, \theta_2) \implies x_2(\theta_1, \theta_2) = x_2(\theta_1, \hat{\theta}_2)$$

- $\Rightarrow x_2(\theta_1, \theta_2)$ does not depend on θ_2 , and we can write $x_2(\theta_1, \theta_2) = x_2(\theta_1)$ for short.
- Now plug this into (1): for all θ_1 , $\hat{\theta}_1$,

$$x_1(\theta_1) + x_2(\theta_1) \ge x_1(\hat{\theta}_1) + x_2(\hat{\theta}_1).$$
 (3)

 \Rightarrow by using the similar trick, we have that for some constant W,

$$x_1(\theta_1) + x_2(\theta_1) = W$$

W can be interpreted as the quota (total payoff) promised to the agent.

A Two-Period Example: Optimal Quota Mechanism

• By using $x_1(\theta_1) + x_2(\theta_1) = W$, **P**'s problem can be rewritten as follows:

$$\min_{\mathsf{x}_1(\cdot),W} \mathbb{E}\left[(\mathsf{x}_1(\theta_1) - f(\theta_1))^2 + \mathbb{E}[(W - \mathsf{x}_1(\theta_1) - f(\theta_2))^2 | \theta_1] \right]$$

• F.O.C. for $x_1(\theta_1)$:

We also have

$$\iff$$
 $x_1($

or
$$W$$
:

 $W = \mathbb{E}\left[f(\theta_1) + f(\theta_2)\right].$

 $x_2(\theta_1) = \frac{1}{2}W - \frac{1}{2}(f(\theta_1) - \mathbb{E}[f(\theta_2)|\theta_1]).$

extstyle ext

$$-\mathbb{E}\left[t(\theta_1)+t(\theta_2)\right]$$

$$x_1(\theta_1) - f(\theta_1) = \frac{1}{2} \left(W - \mathbb{E} \left[f(\theta_1) + f(\theta_2) | \theta_1 \right] \right)$$

(6)

(4)

A Two-Period Example: Linear Target

• Example 1: $f(\theta) = \theta$

$$W = \mathbb{E}[\theta_1 + \theta_2] = 0$$

$$x_1(\theta_1) = \frac{1}{2}W + \frac{1}{2}(\theta_1 - \mathbb{E}[\theta_2|\theta_1]) = 0$$

$$x_2(\theta_1) = \frac{1}{2}W - \frac{1}{2}(\theta_1 - \mathbb{E}[\theta_2|\theta_1]) = 0$$

 The outcome is "babbling" as the actions do not reflect information about the state

A Two-Period Example: Quadratic Target

• Example 2: $f(\theta) = \theta^2$

$$W = \mathbb{E}[\theta_1^2 + \theta_2^2] = 3$$

$$x_1(\theta_1) = \frac{1}{2}W + \frac{1}{2}(\theta_1^2 - \mathbb{E}[\theta_2^2|\theta_1]) = \frac{1}{2}(3-1) = 1$$

$$x_2(\theta_1) = \frac{1}{2}W - \frac{1}{2}(\theta_1^2 - \mathbb{E}[\theta_2^2|\theta_1]) = \frac{1}{2}(3+1) = 2$$

• This contract is also babbling

A Two-Period Example: Exponential Target

• Example 3:
$$f(\theta) = e^{\theta}$$

$$W = \mathbb{E}[e^{\theta_1} + e^{\theta_2}] = \sqrt{e} + e$$

$$x_1(\theta_1) = \frac{1}{2}W + \frac{1}{2}\left(e^{\theta_1} - \mathbb{E}[e^{\theta_2}|\theta_1]\right) = \frac{1}{2}(e + \sqrt{e}) - \frac{1}{2}(\sqrt{e} - 1)e^{\theta_1}$$

$$x_2(\theta_1) = \frac{1}{2}W - \frac{1}{2}\left(e^{\theta_1} - \mathbb{E}[e^{\theta_2}|\theta_1]\right) = \frac{1}{2}(e + \sqrt{e}) + \frac{1}{2}(\sqrt{e} - 1)e^{\theta_1}$$

- As the first-period target e^{θ_1} increases, the corresponding action x_1 decreases, in order for x_2 to increase in the next period.
- Why? P lowers the 1st-period action to increase the 2nd-period action (sacrificing the 1st-period precision to have a better 2nd-period precision)

A Two-Period Example: Exponential Target

• Example 3:
$$f(\theta) = e^{\theta}$$

$$W = \mathbb{E}[e^{\theta_1} + e^{\theta_2}] = \sqrt{e} + e$$

$$x_1(\theta_1) = \frac{1}{2}W + \frac{1}{2}\left(e^{\theta_1} - \mathbb{E}[e^{\theta_2}|\theta_1]\right) = \frac{1}{2}(e + \sqrt{e}) - \frac{1}{2}(\sqrt{e} - 1)e^{\theta_1}$$

$$x_2(\theta_1) = \frac{1}{2}W - \frac{1}{2}\left(e^{\theta_1} - \mathbb{E}[e^{\theta_2}|\theta_1]\right) = \frac{1}{2}(e + \sqrt{e}) + \frac{1}{2}(\sqrt{e} - 1)e^{\theta_1}$$

- As the first-period target e^{θ_1} increases, the corresponding action x_1 decreases, in order for x_2 to increase in the next period.
- Why? P lowers the 1st-period action to increase the 2nd-period action (sacrificing the 1st-period precision to have a better 2nd-period precision)

A Two-Period Example: General Target

Recall that

$$x_1(\theta_1) = \frac{1}{2}W + \frac{1}{2}(f(\theta_1) - \mathbb{E}[f(\theta_2)|\theta_1])$$
 (7)

• Then, we have

$$x_1'(\theta) \propto f'(\theta_1) - \frac{\partial}{\partial \theta_1} \mathbb{E}[f(\theta_2) \mid \theta_1] = f'(\theta_1) - \mathbb{E}[f'(\theta_2) \mid \theta_1]$$
 (8)

A Two-Period Example: General Target

Recall that

$$x_1(\theta_1) = \frac{1}{2}W + \frac{1}{2}(f(\theta_1) - \mathbb{E}[f(\theta_2)|\theta_1])$$
 (7)

• Then, we have

$$x_1'(\theta) \propto f'(\theta_1) - \frac{\partial}{\partial \theta_1} \mathbb{E}[f(\theta_2) \mid \theta_1] = f'(\theta_1) - \mathbb{E}[f'(\theta_2) \mid \theta_1]$$
 (8)

Note:

$$\frac{\partial}{\partial \theta_1} \mathbb{E}[f(\theta_2) \mid \theta_1] = \frac{\partial}{\partial \theta_1} \int_{-\infty}^{\infty} f(\theta_1 + \epsilon) \cdot \phi(\epsilon) \ d\epsilon$$

$$= \int_{-\infty}^{\infty} f'(\theta_1 + \epsilon) \cdot \phi(\epsilon) \ d\epsilon = \mathbb{E}[f'(\theta_2) | \theta_1]$$

A Two-Period Example: General Target

Recall that

$$x_1(\theta_1) = \frac{1}{2}W + \frac{1}{2}(f(\theta_1) - \mathbb{E}[f(\theta_2)|\theta_1])$$
 (7)

• Then, we have

$$x_1'(\theta) \propto f'(\theta_1) - \frac{\partial}{\partial \theta_1} \mathbb{E}[f(\theta_2) \mid \theta_1] = f'(\theta_1) - \mathbb{E}[f'(\theta_2) \mid \theta_1]$$
 (8)

- f''' matters:
 - If f' is convex, $\mathbb{E}[f'(\theta_2)|\theta_1] > f'(\mathbb{E}[\theta_2|\theta_1]) = f'(\theta_1) \Rightarrow x'(\theta) < 0$
 - If f' is concave, $\mathbb{E}[f'(\theta_2)|\theta_1] < f'(\mathbb{E}[\theta_2|\theta_1]) = f'(\theta_1) \Rightarrow x'(\theta) > 0$

Continuous Time Model

Continuous Time Setup

• State evolution: when Z is the standard Brownian motion,

$$\theta_t = \mu t + Z_t \tag{9}$$

• **A** reports $\hat{\theta}_t$ to **P**

$$d\hat{\theta}_t = m_t dt + d\theta_t \tag{10}$$

• **P**'s problem:

$$\min_{x_t(\cdot)} \mathbb{E}\left[\int_0^\infty re^{-rt}(x_t(\theta^t) - f(\theta_t))^2 dt\right]$$
s.to.
$$\mathbb{E}\left[\int_0^\infty re^{-rt}x_t(\theta^t)dt\right] \ge \mathbb{E}\left[\int_0^\infty re^{-rt}x_t(\hat{\theta}^t)dt\right]$$

Quota Mechanism

• Define the continuation payoff process:

$$W_t \equiv \mathbb{E}_t \left[\int_t^\infty r e^{-r(s-t)} x_s ds \right], \tag{11}$$

then we have

$$dW_t = r(W_t - x_t)dt + r\beta_t(d\theta_t - \mu dt)$$
(12)

and we can interpret β as W's responsiveness to information

- ullet Propositions: Roughly speaking, IC constraints $\Leftrightarrow \beta = 0$
- P commits to a fixed quota, which is the discounted sum of actions

Quota Mechanism

• Define the continuation payoff process:

$$W_t \equiv \mathbb{E}_t \left[\int_t^\infty r e^{-r(s-t)} x_s ds \right], \tag{11}$$

then we have

$$dW_t = r(W_t - x_t)dt + r\beta_t(d\theta_t - \mu dt)$$
(12)

and we can interpret β as W's responsiveness to information

- ullet Propositions: Roughly speaking, IC constraints $\Leftrightarrow \beta = 0$
- P commits to a fixed quota, which is the discounted sum of actions

Quota Mechanism

• Define the continuation payoff process:

$$W_t \equiv \mathbb{E}_t \left[\int_t^\infty r e^{-r(s-t)} x_s ds \right], \tag{11}$$

then we have

$$dW_t = r(W_t - x_t)dt + r\beta_t(d\theta_t - \mu dt)$$
(12)

and we can interpret β as W's responsiveness to information

- **Propositions:** Roughly speaking, IC constraints $\Leftrightarrow \beta = 0$
- P commits to a fixed quota, which is the discounted sum of actions

Optimal Quota Mechanism

• Recall the F.O.C. in the two period model:

$$x_1(\theta_1) - f(\theta_1) = \frac{1}{2} (W - \mathbb{E}[f(\theta_1) + f(\theta_2)|\theta_1])$$
 (13)

• F.O.C. in the continuous model:

$$x(\theta, W) - f(\theta) = W - \gamma \star f(\theta)$$
(14)

where

$$\gamma \star f(\theta) = \mathbb{E}\left[\int_0^\infty r e^{-rt} f(\theta_t) dt \mid \theta_0 = \theta\right]$$
 (15)

Optimal Quota Mechanism

• Recall the F.O.C. in the two period model:

$$x_1(\theta_1) - f(\theta_1) = \frac{1}{2} (W - \mathbb{E}[f(\theta_1) + f(\theta_2)|\theta_1])$$
 (13)

• F.O.C. in the continuous model:

$$x(\theta, W) - f(\theta) = W - \gamma \star f(\theta)$$
(14)

where

$$\gamma \star f(\theta) = \mathbb{E}\left[\int_0^\infty r e^{-rt} f(\theta_t) dt \mid \theta_0 = \theta\right]$$

(15)

Response to Information

- Contract x is called *conformist* at state θ , if $sgn\left[\partial x(\theta, W)/\partial \theta\right] = sgn[f'(\theta)]$
- Contract x is called *contrarian* at state θ , if $sgn\left[\partial x(\theta,W)/\partial\theta\right] = -sgn[f'(\theta)]$
- Theorem
 - 1. the optimal contract is conformist at state θ iff $(\gamma \star f)'/f' < 1$ at state θ
 - 2. the optimal contract is contrarian at state θ iff $(\gamma \star f)'/f' > 1$ at state θ

Response to Information

- Contract x is called *conformist* at state θ , if $sgn[\partial x(\theta, W)/\partial \theta] = sgn[f'(\theta)]$
- Contract x is called *contrarian* at state θ , if $sgn\left[\partial x(\theta,W)/\partial\theta\right] = -sgn[f'(\theta)]$

Theorem

- 1. the optimal contract is conformist at state θ iff $(\gamma \star f)'/f' < 1$ at state θ
- 2. the optimal contract is contrarian at state θ iff $(\gamma \star f)'/f' > 1$ at state θ

Conclusion

- Dynamic delegation problem where a state is persistently evolving
- Quota mechanism should be employed to induce the agent's truthful reports
- Contrarian pattern may arise depending on the shape of the target function