LAGrad:

Leveraging the MLIR Ecosystem for Efficient Differentiable Programming

US LLVM Developers' Meeting November 9, 2022

Mai Jacob Peng

McGill University

Motivation

- Gradients are everywhere in machine learning, computer vision, etc.
- Virtually all modern deep learning uses gradient-based methods via Automatic Differentiation (AD) to train.
- Recent growing attention to Differentiable Programming: express models as code, then train via AD.
- We want to make this process more efficient.

Differentiating through a fluid simulation¹

The Autodiff Landscape

INTRODUCTION

- Runtime AD: can't optimize whole program ahead of time.
- Low-level code: high-level information lost; harder to optimize.

We introduce LAGrad: perform **compile-time** AD in MLIR, then exploit **high-level** information to optimize.

Background: reverse-mode AD

Consider a function y = f(g(h(x))). We would like to compute $\frac{dy}{dx}$.

$$z_1 = h(x)$$

$$z_2 = g(z_1)$$

$$y = f(z_2)$$

We can apply the chain rule of calculus:

$$\frac{dy}{dx} = \frac{dy}{dz_2} \frac{dz_2}{dz_1} \frac{dz_1}{dx}$$

We break our function into small pieces, differentiate each piece, then recombine.

We want to compute $\frac{dy}{du}$, $\frac{dy}{dh}$ for the following function:

$$y = \frac{1}{1 + e^{-(wx+b)}}$$

We want to compute $\frac{dy}{du}$, $\frac{dy}{dh}$ for the following function:

$$y = \frac{1}{1 + e^{-(wx+b)}}$$

Primal

$$z = wx + b$$

$$\sigma = 1 + e^{-z}$$

$$y = \frac{1}{\sigma}$$

We want to compute $\frac{dy}{du}$, $\frac{dy}{dh}$ for the following function:

$$y = \frac{1}{1 + e^{-(wx+b)}}$$

Primal

$$z = wx + b$$

$$\sigma = 1 + e^{-z}$$

$$y=\frac{1}{\sigma}$$

Adjoint

$$\frac{dy}{dy} = 1$$
 // seed value

We want to compute $\frac{dy}{du}$, $\frac{dy}{dh}$ for the following function:

$$y = \frac{1}{1 + e^{-(wx+b)}}$$

Primal

$$z = wx + b$$

$$\sigma = 1 + e^{-z}$$

$$y=\frac{1}{\sigma}$$

Adjoint

$$\frac{dy}{dy} = 1$$
 // seed value

$$\frac{dy}{d\sigma} = (\frac{dy}{dy}) \frac{-1}{\sigma^2}$$

We want to compute $\frac{dy}{du}$, $\frac{dy}{dh}$ for the following function:

$$y = \frac{1}{1 + e^{-(wx+b)}}$$

Primal

$$z = wx + b$$

$$\sigma = 1 + e^{-z}$$

$$y=\frac{1}{\sigma}$$

Adjoint

$$\frac{dy}{dy} = 1$$
 // seed value

$$\frac{dy}{d\sigma} = (\frac{dy}{dy}) \frac{-1}{\sigma^2}$$

$$\frac{dy}{dz} = (\frac{dy}{d\sigma})(-e^{-z})$$

We want to compute $\frac{dy}{dy}$, $\frac{dy}{dh}$ for the following function:

$$y = \frac{1}{1 + e^{-(wx+b)}}$$

Primal

$$z = wx + b$$

$$\sigma = 1 + e^{-z}$$

$$y=\frac{1}{\sigma}$$

$$\frac{dy}{dy} = 1$$
 // seed value

$$\frac{dy}{d\sigma} = (\frac{dy}{dy}) \frac{-1}{\sigma^2}$$

$$\frac{dy}{dz} = (\frac{dy}{d\sigma})(-e^{-z})$$

$$\frac{dy}{dy} = \frac{dy}{dz}x$$

$$\frac{dy}{db} = \frac{dy}{dz}$$

Multidimensional reverse-mode AD

When our functions have many inputs and outputs, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{y} \in \mathbb{R}^m$, the derivative generalizes to the **Jacobian**:

$$\mathbf{J} = rac{\partial \mathbf{y}}{\partial \mathbf{x}} = egin{bmatrix} rac{\partial y_1}{\partial x_1} & \cdots & rac{\partial y_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial y_m}{\partial x_1} & \cdots & rac{\partial y_m}{\partial x_n} \end{bmatrix}$$

Multidimensional reverse-mode AD

When our functions have many inputs and outputs, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{y} \in \mathbb{R}^m$, the derivative generalizes to the Jacobian:

$$\mathbf{J} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}, \qquad \frac{\partial \mathbf{y}}{\partial \mathbf{y}} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{1} \end{bmatrix} = \mathbf{I}_m$$

Our fixed seed value becomes the *i*th column of $\frac{\partial y}{\partial x}$:

$$\overline{\mathbf{y}_i} = \frac{\partial \mathbf{y}}{\partial y_i} = \begin{bmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{bmatrix}^{\top}$$
Note how sparse this is! This is important later on.

Note how sparse

The linalg.generic op

The core of the linalg dialect is the generic op. To represent a dot product:

```
linalg.generic { indexing_maps = [
        (d0) -> (d0) // map for A (size n)
        (d0) -> (d0) // map for B (size n)
        (d0) -> () // map for C (size 1)
    ]} ins(%A, %B) outs(%C) {
        yield %c + %a * %b : f32
    }
}
```

This conceptually represents a loop:

```
for d0 from 0 to n:
2 C[] += A[d0] * B[d0]
```

The linalg.generic op

Matrix-Vector multiplication:

```
linalg.generic { indexing_maps = [
    (d0, d1) -> (d0, d1) // map for A (m by n)
    (d0, d1) -> (d1) // map for B (size n)
    (d0, d1) -> (d0) // map for C (size m)
]} ins(%A, %B) outs(%C) {
    yield %c + %a * %b : f32
}
```

Which represents:

```
for d0 from 0 to m:
for d1 from 0 to n:
C[d0] += A[d0, d1] * B[d1]
```

The linalg.generic op

Matrix-Matrix multiplication:

```
linalg.generic { indexing_maps = [
        (d0, d1, d2) -> (d0, d2) // map for A (m by k)
        (d0, d1, d2) -> (d2, d1) // map for B (k by n)
        (d0, d1, d2) -> (d0, d1) // map for C (m by n)
    ]} ins(%A, %B) outs(%C) {
        yield %c + %a * %b : f32
    }
}
```

Which represents:

```
for d0 from 0 to m:
for d1 from 0 to n:
for d2 from 0 to k:
C[d0, d1] += A[d0, d2] * B[d2, d1]
```

Adjoint Sparsity

Recall: when computing full Jacobians, we fix the output gradient to a one-hot seed vector (a column of the identity matrix).

$$\overline{\mathbf{y}_i} \in \mathbb{R}^m = \begin{bmatrix} \texttt{o} & \dots & \texttt{o} & \texttt{1} & \texttt{o} & \dots & \texttt{o} \end{bmatrix}^{ op}$$

This naturally leads to many differentiated ops that produce sparse tensors (**per dimension**) with highly regular patterns. For instance:

$$\mathbf{C} = \mathbf{A}\mathbf{B}$$

$$\mathbf{A} = egin{bmatrix} lackbox{\circ} & lackb$$

Adjoint Sparsity

Recall: when computing full Jacobians, we fix the output gradient to a one-hot seed vector (a column of the identity matrix).

$$\overline{\mathbf{y}_i} \in \mathbb{R}^m = \begin{bmatrix} \mathsf{o} & \dots & \mathsf{o} & \mathsf{1} & \mathsf{o} & \dots & \mathsf{o} \end{bmatrix}^{ op}$$

This naturally leads to many differentiated ops that produce sparse tensors (**per dimension**) with highly regular patterns. For instance:

$$C = AB$$

$$\mathbf{A} = \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \mathrm{sparse} \\ \bullet & \bullet \end{bmatrix} \implies \mathbf{C} = \begin{bmatrix} \mathrm{sparse} \\ \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}$$

```
linalg.generic { indexing_maps = [
    (d0, d1, d2) -> (d0, d2) // for %A
    (d0, d1, d2) -> (d2, d1) // for %B
    (d0, d1, d2) -> (d0, d1) // for %C
    ]} ins(%A, %B) outs(%C) ...
```

We want to predict the sparsity of **C**:

- **B** is sparse along both dims: we mark d2 and d1 sparse
- Look at the map for **C**: {d0, d1}
- Take the intersection: $\{d0, d1\} \cap \{d2, d1\} = \{d1\}$

The compiler then generates code to exploit this sparsity.

Sparse Propagation

These sparsity patterns are easily predicted when used in linalg ops:

$$\mathbf{A} = \begin{bmatrix} lackbox{\circ} & lackbox{\circ} \\ lackbox{\circ} & lackbox{\circ} \\ lackbox{\circ} & lackbox{\circ} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} & lackbox{\circ} \\ & lackbox{\circ} \end{bmatrix} \implies \mathbf{C} = \begin{bmatrix} & lackbox{\circ} \\ & lackbox{\circ} \\ & lackbox{\circ} \end{bmatrix}$$

We want to predict the sparsity of **C**:

- **B** is sparse along both dims: we mark d2 and d1 sparse
- Look at the map for **C**: {d0, d1}
- Take the intersection: $\{d0, d1\} \cap \{d2, d1\} = \{d1\}$

The compiler then generates code to exploit this sparsity.

AD over loops

Consider the function $y = \sum_{i=0}^{n} xi^{2}$. We can express this with a loop:

```
1 y = 0.0f
2 for i from 0 to n:
3 z = i * i
4 y += z * x
```

Now, to compute $\frac{dy}{dx}$. How to deal with the loop? One strategy is to fully unroll:

```
dy = 1.0f

dx += dy * zn

dx += dy * zn

dx += dy * zn_minus_1

...

dx += dy * z2

dx += dy * z2

dx += dy * z1

dx += dy * z2

dx += dy * z1

dx += dy * z2
```

AD over loops

Consider the function $y = \sum_{i=0}^{n} xi^{2}$. We can express this with a loop:

```
1 y = 0.0f
2 for i from 0 to n:
3 z = i * i
4 y += z * x
```

Now, to compute $\frac{dy}{dx}$. How to deal with the loop? One strategy is to fully unroll:

```
dy = 1.0f

dx += dy * zn

dx += dy * zn_minus_1

dx += dy * z2

dx += dy * z2

dx += dy * z2

dx += dy * z1

dx += dy * z2

dx += dy * z1

dx += dy * z2
```

Can we preserve the loop?

```
dy = 1.0f
dx += dy * zn
dx += dy * zn_minus_1
...
dx += dy * z2
dx += dy * z1
dx += dy * d0
for i from 0 to n:
    z = i * i
    y += z * x

for i from n to 0:
    // Incorrect; z has been overwritten
    dx += dy * z
```

Can we preserve the loop?

```
dy = 1.0f
dx += dy * zn
dx += dy * zn_minus_1
...
dx += dy * z2
dx += dy * z1
dx += dy * d0
for i from 0 to n:
    z = i * i
    y += z * x

for i from n to 0:
    // Incorrect; z has been overwritten
    dx += dy * z
```

Solution: the **gradient tape**, store required values in memory:

```
tape = allocate array of size n
for i from 0 to n:
    z = i * i
    tape[i] = z

for i from n to 0:
    z = tape[i]
    dx += dy * z
```

Can we preserve the loop?

```
dy = 1.0f
dx += dy * zn
dx += dy * zn_minus_1
...
dx += dy * z2
dx += dy * z1
dx += dy * d0
for i from 0 to n:
    z = i * i
    y += z * x

for i from n to 0:
    // Incorrect; z has been overwritten
    dx += dy * z
```

Solution: the **gradient tape**, store required values in memory:

```
tape = allocate array of size n
for i from 0 to n:
    z = i * i
    tape[i] = z

for i from n to 0:
    z = tape[i]
    dx += dy * z
Problem: Original program

takes O(1) memory,
but adjoint takes O(n).
```

Can we avoid the memory overhead?

Can we avoid the memory overhead?

- No tape required! We recompute instead of cache.
- Recomputation is cheap.
- The compiler can trivially remove the primal loop.

Another example

Now consider the function $y = x^n$:

```
p = 1.0f
for i from 0 to n:
p = p * x
```

• Note that p is carried through the loop (and *overwritten*). At iteration i, it depends on the p values from iterations $1, \ldots, i-1$.

Can we recompute p?

```
1 tape = allocate array of size n
2 p = 1.0f
3 for i = 0 to n:
4  tape[i] = p
5  p = p * x

6
7 dp = 1.0f, dx = 0.0f
8 for i = n to 0:
9  p = tape[i]
10  dx += dp * p
11 dp = dp * x
```

```
i = n - 1, p = x \times x \times ... \times x \times x

i = n - 2, p = x \times x \times ... \times x

\vdots

i = 2, p = x \times x \times x

i = 1, p = x \times x

i = 0. p = x
```

TAPE SIZE REDUCTION

Can we recompute p?

```
tape = allocate array of size n
_{2} p = 1.0f
for i = 0 to n:
  tape[i] = p
  p = p * x
 dp = 1.0f, dx = 0.0f
8 \text{ for i} = n \text{ to } 0:
p = tape[i]
  dx += dp * p
dp = dp * x
```

```
i = n - 1, p = x \times x \times ... \times x \times x
i = n - 2, p = x \times x \times ... \times x
i = 2. p = x \times x \times x
i=1, \qquad p=x\times x
i = 0, \qquad p = x
```

If we recompute p, every adjoint iteration needs restart from scratch. Computation goes from O(n) to $O(n^2)$.

Tape Size Reduction

When is it beneficial to inline? We can formalize:

- *AdjU*: Set of primal values required to compute the adjoint.
- *IterVals*: Set of loop-carried primal values + values that depend on them.

If $AdjU \cap IterVals = \emptyset$, the required primal values can be computed without depending on previous iterations.

LAGrad uses this heuristic (among others) to avoid emitting a tape during AD.

Tape Size Reduction in Tensor (Pseudo-)MLIR

```
scf.for iv = 0 to n iter_args(r_it = 0.0f) {
  z = iv * iv : f32
  scf.yield r_it + (z * x) : f32
}

IterVals = {r_it}  AdjU = {z, x}

IterVals \cap AdjU = \emptyset
```

Tape Size Reduction in Tensor (Pseudo-)MLIR

```
scf.for iv = 0 to n iter_args(r_it = 0.0f) {
z = iv * iv : f32
scf.yield r_it + (z * x) : f32
4 }
 IterVals = \{r_it\} AdiU = \{z, x\}
 IterVals \cap AdiU = \emptyset
scf.for iv = 0 to n iter_args(p_it = 1.0f) {
   p_next = arith.mulf p_it, x : f32
   scf.vield p_next : f32
 IterVals = \{p_{it}, p_{next}\} AdjU = \{p_{it}, x\}
 IterVals \cap AdiU = \{p_it\} \neq \emptyset
```

```
scf.for iv = 0 to n iter_args(r_it = 0.0f) {
   z = iv * iv : f32
scf.yield r_{it} + (z * x) : f32
 IterVals = \{r_it\} \quad AdiU = \{z, x\}
 IterVals \cap AdjU = \emptyset
scf.for iv = 0 to n iter_args(p_it = 1.0f) {
    p_next = arith.mulf p_it, x : f32
    scf.yield p_next : f32
 IterVals = \{p_{it}, p_{next}\} AdjU = \{p_{it}, x\}
 IterVals \cap AdiU = \{p_it\} \neq \emptyset
```

MLIR semantics help us a ton:

- iter_args are explicit
- No worrying about memory side-effects
- Analysis scales to complex programs (nested loops, linalg ops, etc.)

EVALUATION

Evaluation Methodology

- We compare run time and memory consumption against Enzyme (state of the art), and PyTorch (popular industry standard) on a standard AD benchmark suite².
- The benchmarks are implemented in MLIR using the linalg, tensor, and scf dialects. Enzyme and LAGrad start from the same MLIR.
- We also add a benchmark (2-layer multi-layer perceptron) that leverages optimizations not covered in this talk.

NTRODUCTION BACKGROUND ADJOINT SPARSITY GRADIENT TAPE TAPE SIZE REDUCTION **EVALUATION**DO 0000 00 00 0000 0**000**

Evaluation: Adjoint Sparsity

Geomeans: 2.8 \times speedup over Enzyme while using 8 \times less memory. 169 \times speedup over PyTorch while using 61 \times less memory.

ITRODUCTION BACKGROUND ADJOINT SPARSITY GRADIENT TAPE TAPE SIZE REDUCTION **EVALUATION**O 0000 00 00 0000 **C000**

Evaluation: Tape Size Reduction

Geomeans: 74 \times less memory than PyTorch, 35 \times less memory than Enzyme without compromising performance.

Summary: Geometric means for all measured datasets

Benchmark	Speedup w.r.t. Enzyme	Memory usage reduction w.r.t. Enzyme	Speedup w.r.t PyTorch	Memory usage reduction w.r.t. PyTorch
GMM	1.1	35.0	6.4	74.0
BA	2.1	0.9	1419.1	103.1
Hand	2.8	7.8	168.7	61.0
LSTM	1.5	3.9	268.6	38.6
MLP	79.6	8.0	2.3	8.8
Geomean	3.8	6.0	62.4	43.6

Thanks for listening!

Thank you to my supervisor, Christophe Dubach, and the rest of the Compiler & Accelerator Synthesis lab at McGill.

https://github.com/pengmai

✓ jacobmpeng@gmail.com

Further Reading

- How we compute AdjU sets: https://doi.org/10.1016/j.future.2004.11.009
- Enzyme: https://enzyme.mit.edu/