

Instituto Federal de Educação, Ciência e Tecnologia de Brasília – Câmpus Taguatinga Ciência da Computação – Teoria da Computação – Prova I – 2°/2018 – Conceitos preliminares, Máquinas de Turing e Decidibilidade Prof. Daniel Saad Nogueira Nunes

Aluno:	
Matrícula:	
Data: 11 de setembro de 2018	

Tabela de notas (uso exclusivo do professor)

Duração da prova: 100 minutos

Questão	Pontos	Nota
1	2	
2	3	
3	2	
4	3	
Total	10	

Observações

- Esta prova tem o total de 2 páginas (incluindo a capa) e 4 questões.
- O número total de pontos é 10.
- Certifique-se de assinar todas as folhas de resposta bem como a capa da prova.
- Leia atentamente todas as questões da prova. A interpretação do problema é crucial para o desenvolvimento correto da resposta.
- Resoluções sem justificativa não serão consideradas.
- É vedado o uso de equipamentos eletrônicos, como celulares, notebooks entre outros.
- A prova será anulada e medidas disciplinares serão tomadas para os alunos que "colarem" durante a avaliação.
- ★ Certifique-se de assinar todas as folhas de resposta.

Questão 1 (2 pontos)

De acordo com o conceito de Turing-decidibilidade:

- (a) (1 ponto) Suponha que você queira resolver um problema, isto é, verificar que uma linguagem é decidível. No entanto, não houve sucesso em sua tentativa. Isso significa que o problema não é Turing-decidível? Justifique a sua resposta.
- (b) (1 ponto) Determine a diferença entre linguagens Turing-decidíveis e Turing-reconhecíveis.

Questão 2 (3 pontos)

Verifique que a linguagem

$$L = \{0^n 1^n | n \in \mathbb{N} \cup \{0\}\}\$$

é decidível.

Questão 3 (2 pontos)

Demonstre que se uma linguagem L é Turing-decidível então \bar{L} também é.

Questão 4 (3 pontos)

Determine a linguagem reconhecida pela seguinte máquina de Turing:

- O conjunto de estados $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}.$
- q_0 é o estado inicial.
- q_5 é o estado de aceitação.
- q_6 é o estado de rejeição.
- O alfabeto de entrada é $\Sigma = \{0, 1\}.$
- O alfabeto da fita é $\Gamma = \Sigma \cup \{\sqcup, x\}$.
- A função de transição $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\}$ tem a seguinte forma:

Símbolo/Estado	q_0	q_1	q_2	q_3	q_4	q_5	q_6
0	(q_1, \sqcup, R)	$(q_1, 0, R)$	(q_3, x, L)	$(q_3, 0, L)$	(q_1, \sqcup, R)		
1	(q_2, \sqcup, R)	(q_3, x, L)	$(q_2, 1, R)$	$(q_3, 1, L)$	(q_2, \sqcup, R)		
Ш	(q_5, \sqcup, R)			(q_4, \sqcup, R)	(q_5, \sqcup, R)		
x		(q_1, x, R)	(q_2, x, R)	(q_3, x, L)	(q_4, \sqcup, R)		

• Todas as transições não dispostas na função de transição vão para o estado de rejeição.

* Certifique-se de assinar todas as folhas de resposta.