# Homework 1: Probability Review and Priors

## Huilin Chang hc5hq@virginia.edu

### 1 (15)

You are a data Scientist and are choosing between three approaches, A, B, and C to a problem. With approach A you will spend a total of four days coding and running an algorithm and it will not produce useful results. With approach B you will spend a total of three days coding and running an algorithm and it will not produce useful results. With approach C you will spend over day coding and running an algorithm and it will give the results you are looking for. You are equality likely to choose among unselected options. What is the expected time in days for you to obtain the results you are looking for? What is the variance on this time?

## Response:

Considering all the possible approach chains

If starting with approach A:

- A-B-C: 4+3+1 = 8 days
- A-C: 4+1 = 5 days

If starting with approach B:

- B-A-C: 3+4+1= 8 days
- B-C: 3+1 = 4 days

If staring with approach C

• C: need one day = 1 days

Let E to represent the days to solve the question =  $\{8, 5, 8, 4, 1\}$  and the mean value is 5.2

The variance of time based on the variance formula:

$$S^2 = \frac{\sum (x_i - \bar{x})^2}{n-1} = \frac{34.8}{4} = 8.7$$
, the sigma = 2.95

#### 2 (15)

Suppose if it is sunny or not in Charlottesville depends on the weather of the last three days. Show how this can be modeled as Markov chain.

#### Response:

We can think about "Markov chain" in this way

- The next term in a sequence could depend on all the previous terms
  - If it only depends on the previous term it is called "first-order" Markov
  - o If it depends on the two previous terms it is "second-order" Markov

We can form a Markov chain as follows, take the weather states R(rain), (nice), S(Sunny) to form transition probabilities.

$$P = \begin{bmatrix} P11 & P12 & P13 \\ P21 & P22 & P23 \\ P31 & P32 & P33 \end{bmatrix}$$

$$P_{ij} \ge 0, i = 1, \dots, n, j = 1, \dots, n \text{ and } \sum_{j=1}^{n} P_{ij} = 1$$

For example:

$$R$$
  $N$   $S$ 

$$P = \begin{matrix} R \\ N \\ 0.3 \\ 0.4 \\ 0.3 \end{matrix} 0.4 0.3 \\ 0.2 0.3 0.5 \end{matrix}$$

The entries in the first row of the matrix P represent the probabilities for the various kinds of weather following a rainy day. Similarly, the entries in the second and third rows represent the probabilities for the various kinds of weather following nice and snowy day, respectively.

Considering given the chain is in state i today, it will be in state j two days from now given this probability by  $p_{ij}$ 

Markov property: The state of the system at time t+1 only depends on thee state of the system at time t

$$P[X_{t+1} = x_{t+1} | X_t = x_t, X_{t-1} = x_{t-1, \dots, X_1} = x_1, X_0 = x_0] = P[X_{t+1} = x_{t+1} | X_t = x_t]$$



Weather forecasting

- Two days: 
$$\begin{pmatrix} 0.5 & 0.4 & 0.1 \\ 0.3 & 0.4 & 0.3 \\ 0.2 & 0.3 & 0.5 \end{pmatrix} \begin{pmatrix} 0.5 & 0.4 & 0.1 \\ 0.3 & 0.4 & 0.3 \\ 0.2 & 0.3 & 0.5 \end{pmatrix} = \begin{pmatrix} 0.39 & 0.39 & 0.22 \\ 0.33 & 0.37 & 0.30 \\ 0.29 & 0.35 & 0.36 \end{pmatrix}$$

- Four days:

$$\begin{pmatrix} 0.5 & 0.4 & 0.1 \\ 0.3 & 0.4 & 0.3 \\ 0.2 & 0.3 & 0.5 \end{pmatrix}^2 \begin{pmatrix} 0.5 & 0.4 & 0.1 \\ 0.3 & 0.4 & 0.3 \\ 0.2 & 0.3 & 0.5 \end{pmatrix}^2 = \begin{pmatrix} 0.3446 & 0.3734 & 0.2820 \\ 0.3378 & 0.3706 & 0.2916 \\ 0.3330 & 0.3686 & 0.2984 \end{pmatrix}$$

The graph 3 (15)

Assume a Gaussian distribution for observations,  $X_{i, i=1,....N}$  with unknown mean, M and known variance 5. Suppose the prior for M is Gaussian with variance 10. How large a random sample must be taken (i.e., what is the minimum value for N) to specify an interval having unit length of 1 such that the probability that M lies in this interval is 0.95?

## Response:

Gaussian with Unknown mean and known variance

From lecture

• Likelihood with N trials,  $x = (x_1, ..., x_N)$  with unknown mean M and know variance  $\sigma^2$ 

$$f(x|m, \sigma^2) \propto \frac{1}{\sigma} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_i - m)^2\right)$$

- Prior for M is  $N(\mu_0, \sigma_0^2)$
- Posterior is  $N(\mu_N \text{ and } \sigma_{post}^2)$  where

$$\circ \quad \mu_N = \frac{\mu_0 \, \sigma^2 + N \overline{x} \, \sigma_0^2}{\sigma^2 + N \sigma_0^2}$$

$$\circ \quad \sigma_{post}^2 = \frac{\sigma_0^2 \sigma^2}{\sigma^2 + N \sigma_0^2}$$

The variance of the Gaussian distribution is 5 ( $\sigma$ ) and the variance for the prior is 10 ( $\sigma_0^2$ )

Since the posterior is a function of N, we need to find an N that makes this variance (here is 5) that the probability M is centered at the posterior mean  $\mu_N = 0.95$ 

$$\sigma_{post}^{2} = \frac{\sigma_{0}^{2}\sigma^{2}}{\sigma^{2} + N\sigma_{0}^{2}} \rightarrow \sigma_{post}^{2} = \frac{10*5}{5+N10} = \frac{50}{5+10N}$$

$$CDF = \frac{1}{2} \left[ 1 + erf\left(\frac{x - \mu}{\sigma\sqrt{2}}\right) \right]$$

$$0.975 = \frac{1}{2} \left[ 1 + erf\left(\frac{0.5}{\sqrt{\frac{50}{5+10N}}\sqrt{2}}\right) \right]$$

$$1.3859 * \left(\sqrt{\frac{50}{5+10N}}\sqrt{2}\right) = 0.5$$

$$1.9207 * \left(\frac{100}{5+10N}\right) = 0.25 , N = 77$$

#### 4 (15)

You have started an online business selling books that are of interest to your customers. A publisher has just given you a large book with photos from famous 20<sup>th</sup> century photographers. You think this book will appeal to people who have bought art books, history books and coffee table books. In an initial offering of the new book you collect data on purchases of the new book and combine these data with data from the past purchases (see ArtHistBooks.csv).

Use Baysesian analysis to give the posterior probabilities for purchases of art books, history books and coffee table books, as well as, the separate probabilities for purchases of new books given each possible combination of prior purchases of art books, history books and coffee table books. Do this by first using beta priors with values of the hyperparameters that represent lack of prior information. Then compute these probabilities again with beta priors that show strong weighting for low likelihood of a book purchase. Compare your results.

#### Response: see the notebook in Appendix

#### 5 (15)

The data set CHDdata.csv contains cases of coronary heart disease(CHD) and variables associated with the patient's condition: systolic blood pressure, yearly tobacco use (in kg), how density lipoprotein (ldl), adiposity, family history (0 or 1), type A personality score (typea), obesity (body mass index), alcohol use, and the diagnosis of CHD (0 or 1). Perform a Bayesian analysis of these data that finds the posterior marginal probability distributions for the means for the data of patients with and without CHD. You should first standard scale (substract the man and divide by the standard deviation) all the numeric variables (remove family history and do not scale CHD). Then separate the data into two sets, one for patients with CHD and one for patients without CHD.

Your priors for both groups should assume means of 0 for all variables and a correlation of 0 between all pairs of variables. You should assume all variances for the variables are 1. Use a prior alpha equal to one plus the number of predictor

variables. Compute and compare the Bayesian estimates for the posterior means for each group.

For 5 extra credit points, compute the probability of observing a point at least as extreme as the posterior mean of patients without coronary heart disease under the posterior distribution for the patients with coronary heart disease. Then compute the probability of observing a point at least as extreme as the posterior mean of patients with coronary heart disease under the posterior distribution for the patients without coronary heart disease

Response: see the notebook in Appendix

6 (10)

For each of the following types of distributions, state the support type (single or multivariable and discrete or continuous), the formula for the PMP or PDF, the parameters, the support, the mean, and some typical uses of the distribution. You may use whatever source(s) you want, including for example Wikipedia.

- (a) Bernoulli Distribution
- (b) Binomial Distribution
- (c) Poisson Distribution
- (d) Uniform Distribution
- (e) Beta Distribution
- (f) Gamma Distribution
- (g) Gaussian Distribution
- (h) t Distribution
- (i) Cauchy Distribution
- (j) Multinomial Distribution
- (k) Dirichlet Distribution
- (l) Multivariate Gaussian Distribution
- (m) Multivariate t Distribution
- (n) Wishart Distribution

## Distribution, PMP, PDF, support type

| a | Bernoulli Distribution | Discreate probability distribution Support $k \in \{0, 1\}$ PMF $\begin{cases} q = 1 - p \ if \ k = 0 \\ p \ if \ k = 1 \end{cases}$ Mean = p Bernoulli is the discrete probability distribution of a random variable which takes the value 1 with probability p and the value 0 with probability q=1-p.  A Bernoulli distribution can be thought of as a model for the set of possible outcomes of any single experiment that asks a yes/true/one with probability p, and failure/no/false/zero with probability q such as coin toss problem. |
|---|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b | Binomial Distribution  | Binomial distribution is the discrete probability distribution.  Support $k \in \{0, 1, \dots, n\}$ – number of successes  PMF $\binom{n}{k} p^k q^{n-k}$ Mean np  Thee binomial distribution is frequently used to model the number of successes in a sample of size n drawn with replacement from a population of size N.                                                                                                                                                                                                                    |
| С | Poisson Distribution   | The Poisson distribution is a discrete probability distribution  Support $k \in N_0$ , Natural numbers starting from 0  PMF = $\frac{\lambda^k e^{-\lambda}}{k!}$ Mean = $\lambda$ For instance: expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event.                                                                                                                                |
| d | Uniform Distribution   | Uniform distribution is the continuous uniform distribution or rectangular distribution Support $x \in [a, b]$                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|   | <u> </u>              | ( 1                                                                                                                                                          |  |  |  |  |
|---|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|   |                       | $PDF \left\{ \frac{1}{b-a} \ for \ x \in [a,b] \right\}$                                                                                                     |  |  |  |  |
|   |                       | 0 otherwise                                                                                                                                                  |  |  |  |  |
|   |                       | Mean ½(a+b)                                                                                                                                                  |  |  |  |  |
|   |                       | For instance, density function, uniform                                                                                                                      |  |  |  |  |
|   | D ( D' ( '1 ('        | probability density function                                                                                                                                 |  |  |  |  |
| e | Beta Distribution     | The beta distribution is a family of continuous                                                                                                              |  |  |  |  |
|   |                       | probability distributions defined on the                                                                                                                     |  |  |  |  |
|   |                       | interval[0, 1] parameterized by two positive                                                                                                                 |  |  |  |  |
|   |                       | shape parameters, denoted by $\alpha$ and $\beta$ , that appear as exponents of the random variable and                                                      |  |  |  |  |
|   |                       | control t he shape of the distribution.                                                                                                                      |  |  |  |  |
|   |                       | Support $x \in [0,1]$ or $x \in (0,1)$                                                                                                                       |  |  |  |  |
|   |                       | PDF $\frac{X^{\alpha-1}(1-X)^{\beta-1}}{B(\alpha,\beta)}$ Where $B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ and $\Gamma$ is |  |  |  |  |
|   |                       | $\mathcal{L}(\alpha, p)$                                                                                                                                     |  |  |  |  |
|   |                       | the Gamma function                                                                                                                                           |  |  |  |  |
|   |                       | Mean: $\alpha$                                                                                                                                               |  |  |  |  |
|   |                       | $E[X] = \frac{\alpha}{\alpha + \beta}$                                                                                                                       |  |  |  |  |
|   |                       | $E[\ln X] = \varphi(\alpha) - \varphi(\alpha + \beta)$                                                                                                       |  |  |  |  |
|   |                       | $E[XlnX] = \frac{\alpha}{\alpha + \beta} [\varphi(\alpha + 1) - \varphi(\alpha + \beta + 1)]$                                                                |  |  |  |  |
| f | Gamma Distribution    | Gamma distribution is a two-parameter family of                                                                                                              |  |  |  |  |
|   |                       | continuous probability distributions.                                                                                                                        |  |  |  |  |
|   |                       | Support $x \in (0, \infty)$                                                                                                                                  |  |  |  |  |
|   |                       | PDF:                                                                                                                                                         |  |  |  |  |
|   |                       | $f(x) = \frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-\frac{x}{\theta}} $ (k>0, $\theta > 0$ )                                                                     |  |  |  |  |
|   |                       | $f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} (\alpha > 0, \theta > 0)$                                                          |  |  |  |  |
|   |                       | Mean :k $\theta$ (k>0, $\theta$ > 0)                                                                                                                         |  |  |  |  |
|   |                       | $\frac{\alpha}{\beta}(\alpha > 0, \theta > 0)$                                                                                                               |  |  |  |  |
|   |                       | For instance: in life testing, the waiting time until                                                                                                        |  |  |  |  |
|   |                       | death is a random variable that is frequently                                                                                                                |  |  |  |  |
|   |                       | modeled with a gamma distribution.                                                                                                                           |  |  |  |  |
| g | Gaussian Distribution | Gaussian distribution is a type of continuous                                                                                                                |  |  |  |  |
|   |                       | probability distribution                                                                                                                                     |  |  |  |  |
|   |                       | Support $x \in R$                                                                                                                                            |  |  |  |  |
|   |                       | $PDF = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$                                                                       |  |  |  |  |
|   |                       | Mean σ                                                                                                                                                       |  |  |  |  |
| h | t Distribution        | t-distribution is an member of family of                                                                                                                     |  |  |  |  |
|   |                       | continuous probability distribution                                                                                                                          |  |  |  |  |
|   |                       | support $x \in (-\infty, \infty)$                                                                                                                            |  |  |  |  |

|   | T                        | (4) (4)                                                                                                                                                                                                                                    |  |  |
|---|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|   |                          | PDF $\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi\Gamma\left(\frac{\nu}{2}\right)}} (1 + \frac{x^2}{\nu})^{-\frac{\nu+1}{2}}$ Mean 0 for $\nu > 1$                                                                               |  |  |
| i | Cauchy Distribution      | The Cauchy distribution is a continuous probability distribution. Support $x \in (-\infty, \infty)$ $PDF = \frac{1}{\pi \gamma \left[1 + \left(\frac{x - x_0}{\gamma}\right)^2\right]}$                                                    |  |  |
| j | Multinomial Distribution | Mean undefined In a probability theory, the multinominal distribution is a generalization of the binomial                                                                                                                                  |  |  |
|   |                          | distribution. For example, it models the probability of counts for each side of a k-sided die rolled n times. For n independent trials each of which leads to a success for exactly one of k categories, with each category having a given |  |  |
|   |                          | fixed success probability, the multinomial distribution gives the probability of any particular combination of numbers of successes for the various categories.                                                                            |  |  |
|   |                          | Support $x_i \in \{0, \dots, n\}, i \in \{1, \dots, k\}$ $\sum x_i = n$                                                                                                                                                                    |  |  |
|   |                          | PMF $\frac{n!}{x_1!\dots x_k!}p_1^{x_1}\dots p_k^{x_k}$<br>Mean E( $X_i$ ) = $np_i$                                                                                                                                                        |  |  |
| k | Dirichlet Distribution   | The Dirichlet distribution is a family of continuous multivariance probability distributions parametrized by a vector $\alpha$ of positive reals. Support $x_1, \dots, x_K$ where $x_i \in$                                                |  |  |
|   |                          | (0, 1) and $\sum_{i=1}^{K} x_i = 1$<br>PDF:<br>$\frac{1}{B(\alpha)} \prod_{i=1}^{K} x_i^{\alpha_i - 1}$ HAT. $P(x) = \prod_{i=1}^{K} \Gamma(\alpha_i)$                                                                                     |  |  |
|   |                          | Where $B(\alpha) = \frac{\prod_{i=1}^{K} \Gamma(\alpha_i)}{\Gamma(\sum_{i=1}^{K} \alpha_i)}$<br>Where $\alpha = (\alpha_1, \dots, \alpha_k)$<br>Mean                                                                                       |  |  |
|   |                          | $E[X_i] = \frac{\alpha_i}{\Gamma(\sum_{k=1}^K \alpha_k)}$ $E[lnX_i] = \varphi(\alpha_i) - \varphi(\sum_k \alpha_k)$                                                                                                                        |  |  |

| 1 | Multivariate Gaussian | In probability theory, the multivariate normal                                                                                                     |  |  |
|---|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|   | Distribution          | distribution is a generalization of the one-                                                                                                       |  |  |
|   |                       | dimensional normal distribution to higher                                                                                                          |  |  |
|   |                       | dimensions.                                                                                                                                        |  |  |
|   |                       | Support $x \in \mu + span(\Sigma) \subseteq R^k$                                                                                                   |  |  |
|   |                       | PDF $(2\pi)^{-\frac{k}{2}} \det(\Sigma)^{-\frac{1}{2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$ exists only                                   |  |  |
|   |                       | when $\Sigma$ is positive-define                                                                                                                   |  |  |
|   |                       | Mean μ                                                                                                                                             |  |  |
| m | Multivariate t        | In statistics, the multivariate t-distribution is a                                                                                                |  |  |
|   | Distribution          | multivariate probability distribution.                                                                                                             |  |  |
|   |                       | Support $x \in R^p$                                                                                                                                |  |  |
|   |                       | PDF $\frac{\Gamma[(\nu+p)/2]}{\Gamma(\nu/2)\nu^{p/2}\pi^{p/2} \Sigma ^{1/2}} \left[ 1 + \frac{1}{\nu} (x - \mu)^T \Sigma^{-1} (x - \mu)^T \right]$ |  |  |
|   |                       | J J                                                                                                                                                |  |  |
|   |                       | Mean $\mu$ if $\nu > 2$ , else undefined.                                                                                                          |  |  |
| n | Wishart Distribution  | In statistics, the Wishart distribution is a                                                                                                       |  |  |
|   |                       | generalization to multiple dimensions of the                                                                                                       |  |  |
|   |                       | gamma distribution.                                                                                                                                |  |  |
|   |                       | Support $X(p \times p)$                                                                                                                            |  |  |
|   |                       | PDF $f_x(x) = \frac{ x ^{(n-p-1)/2}e^{-tr(V^{-1}x)/2}}{2^{\frac{np}{2} V ^{\frac{n}{2}}\Gamma_p(\frac{n}{2})}}$                                    |  |  |
|   |                       | Mean $E[X] = nV$                                                                                                                                   |  |  |

## 7 (10)

Using the Python Notebook <a href="http://www.kaggle.com/billbasener/pt2-probabilities-likelihoods-and-bayes-theorem">http://www.kaggle.com/billbasener/pt2-probabilities-likelihoods-and-bayes-theorem</a>, complete the challenge questions from Section6: Modify the code from Section 5 to add the ability to use the posterior\_from\_conjugate\_prior function to output the posterior probability parameters given parameters and for a Gaussian Likelihood with known variance  $\sigma^2$ , and use your modified function to create the Prior, Likelihood, Posterior plots as in Section 5 of the notebook.

Response: see the notebook in Appendix

# Appendix

## **Problem 4**

|     | ArtBooks | HistoryBooks | TableBooks | Purchase |
|-----|----------|--------------|------------|----------|
| 0   | 0        | 0            | 1          | 0        |
| 1   | 0        | 1            | 0          | 0        |
| 2   | 0        | 0            | 0          | 0        |
| 3   | 1        | 0            | 1          | 0        |
| 4   | 1        | 1            | 1          | 0        |
|     |          |              |            |          |
| 995 | 1        | 1            | 0          | 1        |
| 996 | 0        | 1            | 0          | 0        |
| 997 | 1        | 0            | 1          | 0        |
| 998 | 1        | 1            | 0          | 0        |
| 999 | 0        | 1            | 0          | 0        |

1000 rows × 4 columns

```
In [98]: df.ArtBooks
Out[98]: 0
                 0
                 0
         2
                 0
         3
                 1
                 1
                . .
         995
                1
         996
                0
         997
                1
         998
                1
         999
         Name: ArtBooks, Length: 1000, dtype: int64
In [99]: | def posterior_from_conjugate_prior(**kwargs):
             if kwargs['Likelihood_Dist_Type'] == 'Binomial':
                 # Get the parameters for the likelihood and prior distribution from the k
                 x = kwargs['x'] # possible values for p, range across [0, 1]
                 n = kwargs['n'] # number of trials (number of customers)
                 k = kwargs['k'] # number of successes (purchases)
                  a = kwargs['a'] # alpha parameters on the prior
                 b = kwargs['b'] # beta parameter on the prior
                 print(f'a_prime = {k + a}.')
                 print(f'b\_prime = \{n - k + b\}.')
                 Likelihood = binom.pmf(p=x, n=n, k=k)
                 Prior = beta.pdf(x=x, a=a, b=b)
                 Posterior = beta.pdf(x=x, a=k+a, b=n-k+b)
                 return [Prior, Likelihood, Posterior]
             else:
                 print('Distribution type not supported.')
```

## **Prior: Artbooks**

```
In [100]: import numpy as np
          x = np.arange(0, 1, 0.01)
          num trials= len(df.ArtBooks) #num trials = 1000
          num successes = np.sum(df.ArtBooks > 0)
          Prior, Likelihood, Posterior = posterior_from_conjugate_prior(
              Likelihood Dist Type='Binomial',
              X=X,
              n=num_trials,
              k=num_successes,
              a=1,
              b=1)
          ax1 = sns.lineplot(x, Prior, color='red')
          ax1.set(xlabel='x', ylabel='f(x)', title=f'Prior PDF');
          plt.legend(labels=['Prior PDF']);
          plt.show()
          ax2 = sns.lineplot(x, Likelihood)
          ax2.set(xlabel='x', ylabel='f(x)', title=f'Likelihood Function');
          plt.legend(labels=['Likelihood Function']);
          plt.show()
          ax3 = sns.lineplot(x, Posterior, color='orange')
          ax3.set(xlabel='x', ylabel='f(x)', title=f'Posterior PDF');
          plt.legend(labels=['Posterior PDF']);
          plt.show()
```

a\_prime = 302. b\_prime = 700.







```
In [101]: art_weight = np.argmax(Posterior)
art_weight
```

Out[101]: 30

# **Prior: HistoryBooks**

```
In [102]: import numpy as np
          x = np.arange(0, 1, 0.01)
          num trials= len(df.HistoryBooks) #num trials = 1000
          num successes = np.sum(df.HistoryBooks > 0)
          Prior, Likelihood, Posterior = posterior_from_conjugate_prior(
              Likelihood Dist Type='Binomial',
              X=X,
              n=num_trials,
              k=num_successes,
              a=1,
              b=1)
          ax1 = sns.lineplot(x, Prior, color='red')
          ax1.set(xlabel='x', ylabel='f(x)', title=f'Prior PDF');
          plt.legend(labels=['Prior PDF']);
          plt.show()
          ax2 = sns.lineplot(x, Likelihood)
          ax2.set(xlabel='x', ylabel='f(x)', title=f'Likelihood Function');
          plt.legend(labels=['Likelihood Function']);
          plt.show()
          ax3 = sns.lineplot(x, Posterior, color='orange')
          ax3.set(xlabel='x', ylabel='f(x)', title=f'Posterior PDF');
          plt.legend(labels=['Posterior PDF']);
          plt.show()
```

a\_prime = 544. b prime = 458.







```
In [103]: h_weight = np.argmax(Posterior)
h_weight
Out[103]: 54
```

**Prior: TableBooks** 

```
In [104]: import numpy as np
          x = np.arange(0, 1, 0.01)
          num trials= len(df.TableBooks) #num trials = 1000
          num successes = np.sum(df.TableBooks > 0)
          Prior, Likelihood, Posterior = posterior_from_conjugate_prior(
              Likelihood Dist Type='Binomial',
              X=X,
              n=num_trials,
              k=num_successes,
              a=1,
              b=1)
          ax1 = sns.lineplot(x, Prior, color='red')
          ax1.set(xlabel='x', ylabel='f(x)', title=f'Prior PDF');
          plt.legend(labels=['Prior PDF']);
          plt.show()
          ax2 = sns.lineplot(x, Likelihood)
          ax2.set(xlabel='x', ylabel='f(x)', title=f'Likelihood Function');
          plt.legend(labels=['Likelihood Function']);
          plt.show()
          ax3 = sns.lineplot(x, Posterior, color='orange')
          ax3.set(xlabel='x', ylabel='f(x)', title=f'Posterior PDF');
          plt.legend(labels=['Posterior PDF']);
          plt.show()
```

a\_prime = 381. b\_prime = 621.







```
In [105]: t_weight = np.argmax(Posterior)
    t_weight

Out[105]: 38

In [106]: num_trials = len(df[(df["ArtBooks"] == 0) & (df["HistoryBooks"] == 0) & (df["Tab]
```

**Prior: Artboks and HistoryBooks** 

```
In [107]: import numpy as np
          x = np.arange(0, 1, 0.01)
          num trials = len(df[(df["ArtBooks"] == 0) & (df["HistoryBooks"] == 0)]) #num trid
          num successes = np.sum((df.ArtBooks > 0) & (df.HistoryBooks))
          Prior, Likelihood, Posterior = posterior_from_conjugate_prior(
              Likelihood Dist Type='Binomial',
              X=X,
              n=num_trials,
              k=num_successes,
              a=1,
              b=1)
          ax1 = sns.lineplot(x, Prior, color='red')
          ax1.set(xlabel='x', ylabel='f(x)', title=f'Prior PDF');
          plt.legend(labels=['Prior PDF']);
          plt.show()
          ax2 = sns.lineplot(x, Likelihood)
          ax2.set(xlabel='x', ylabel='f(x)', title=f'Likelihood Function');
          plt.legend(labels=['Likelihood Function']);
          plt.show()
          ax3 = sns.lineplot(x, Posterior, color='orange')
          ax3.set(xlabel='x', ylabel='f(x)', title=f'Posterior PDF');
          plt.legend(labels=['Posterior PDF']);
          plt.show()
```

a\_prime = 172. b\_prime = 157.







```
In [108]: ah_weight = np.argmax(Posterior)
ah_weight
Out[108]: 52
```

**Prior: Artboks and TableBooks** 

```
In [109]: import numpy as np
          x = np.arange(0, 1, 0.01)
          num trials= len(df[(df["ArtBooks"] == 0) & (df["TableBooks"] == 0)])#num trials
          num successes = np.sum((df.ArtBooks > 0) & (df.TableBooks))
          Prior, Likelihood, Posterior = posterior_from_conjugate_prior(
              Likelihood Dist Type='Binomial',
              X=X,
              n=num_trials,
              k=num_successes,
              a=1,
              b=1)
          ax1 = sns.lineplot(x, Prior, color='red')
          ax1.set(xlabel='x', ylabel='f(x)', title=f'Prior PDF');
          plt.legend(labels=['Prior PDF']);
          plt.show()
          ax2 = sns.lineplot(x, Likelihood)
          ax2.set(xlabel='x', ylabel='f(x)', title=f'Likelihood Function');
          plt.legend(labels=['Likelihood Function']);
          plt.show()
          ax3 = sns.lineplot(x, Posterior, color='orange')
          ax3.set(xlabel='x', ylabel='f(x)', title=f'Posterior PDF');
          plt.legend(labels=['Posterior PDF']);
          plt.show()
```

a\_prime = 126. b\_prime = 320.







```
In [110]: at_weight = np.argmax(Posterior)
at_weight
```

Out[110]: 28

# **Prior: HistoryBooks and TableBooks**

```
In [111]: import numpy as np
          x = np.arange(0, 1, 0.01)
          num trials= len(df[(df["HistoryBooks"] == 0) & (df["TableBooks"] == 0)]) #num tri
          num successes = np.sum((df.HistoryBooks > 0) & (df.TableBooks > 0 ))
          Prior, Likelihood, Posterior = posterior_from_conjugate_prior(
              Likelihood Dist Type='Binomial',
              X=X,
              n=num trials,
              k=num_successes,
              a=1,
              b=1)
          ax1 = sns.lineplot(x, Prior, color='red')
          ax1.set(xlabel='x', ylabel='f(x)', title=f'Prior PDF');
          plt.legend(labels=['Prior PDF']);
          plt.show()
          ax2 = sns.lineplot(x, Likelihood)
          ax2.set(xlabel='x', ylabel='f(x)', title=f'Likelihood Function');
          plt.legend(labels=['Likelihood Function']);
          plt.show()
          ax3 = sns.lineplot(x, Posterior, color='orange')
          ax3.set(xlabel='x', ylabel='f(x)', title=f'Posterior PDF');
          plt.legend(labels=['Posterior PDF']);
          plt.show()
```

a\_prime = 193. b prime = 78.







```
In [112]: ht_weight = np.argmax(Posterior)
ht_weight
Out[112]: 71
```

Prior: ArtBooks and HistoryBooks and TableBooks

```
In [113]: import numpy as np
          x = np.arange(0, 1, 0.01)
          num_trials= len(df[(df["ArtBooks"] == 0) & (df["HistoryBooks"] == 0) & (df["Table")
          num successes = np.sum((df.HistoryBooks > 0) & (df.TableBooks > 0) & (df.ArtBooks
          Prior, Likelihood, Posterior = posterior_from_conjugate_prior(
              Likelihood Dist Type='Binomial',
              X=X,
              n=num trials,
              k=num_successes,
              a=1,
              b=1)
          ax1 = sns.lineplot(x, Prior, color='red')
          ax1.set(xlabel='x', ylabel='f(x)', title=f'Prior PDF');
          plt.legend(labels=['Prior PDF']);
          plt.show()
          ax2 = sns.lineplot(x, Likelihood)
          ax2.set(xlabel='x', ylabel='f(x)', title=f'Likelihood Function');
          plt.legend(labels=['Likelihood Function']);
          plt.show()
          ax3 = sns.lineplot(x, Posterior, color='orange')
          ax3.set(xlabel='x', ylabel='f(x)', title=f'Posterior PDF');
          plt.legend(labels=['Posterior PDF']);
          plt.show()
```

a\_prime = 72. b\_prime = 123.







```
In [114]: aht_weight = np.argmax(Posterior)
aht_weight

Out[114]: 37
In [115]: ## a = 1, b= 100
```

## **Prior: Artbooks**

```
In [116]: import numpy as np
          x = np.arange(0, 1, 0.01)
          num trials= len(df.ArtBooks) #num trials = 1000
          num successes = np.sum(df.ArtBooks > 0)
          Prior, Likelihood, Posterior = posterior_from_conjugate_prior(
              Likelihood Dist Type='Binomial',
              X=X,
              n=num_trials,
              k=num_successes,
              a=1,
              b=100)
          ax1 = sns.lineplot(x, Prior, color='red')
          ax1.set(xlabel='x', ylabel='f(x)', title=f'Prior PDF');
          plt.legend(labels=['Prior PDF']);
          plt.show()
          ax2 = sns.lineplot(x, Likelihood)
          ax2.set(xlabel='x', ylabel='f(x)', title=f'Likelihood Function');
          plt.legend(labels=['Likelihood Function']);
          plt.show()
          ax3 = sns.lineplot(x, Posterior, color='orange')
          ax3.set(xlabel='x', ylabel='f(x)', title=f'Posterior PDF');
          plt.legend(labels=['Posterior PDF']);
          plt.show()
```









```
In [117]: art_weight_s = np.argmax(Posterior)
art_weight_s
Out[117]: 27
```

**Prior: HistoryBooks** 

```
In [118]: import numpy as np
          x = np.arange(0, 1, 0.01)
          num trials= len(df.HistoryBooks) #num trials = 1000
          num successes = np.sum(df.HistoryBooks > 0)
          Prior, Likelihood, Posterior = posterior_from_conjugate_prior(
              Likelihood Dist Type='Binomial',
              X=X,
              n=num_trials,
              k=num_successes,
              a=1,
              b=100)
          ax1 = sns.lineplot(x, Prior, color='red')
          ax1.set(xlabel='x', ylabel='f(x)', title=f'Prior PDF');
          plt.legend(labels=['Prior PDF']);
          plt.show()
          ax2 = sns.lineplot(x, Likelihood)
          ax2.set(xlabel='x', ylabel='f(x)', title=f'Likelihood Function');
          plt.legend(labels=['Likelihood Function']);
          plt.show()
          ax3 = sns.lineplot(x, Posterior, color='orange')
          ax3.set(xlabel='x', ylabel='f(x)', title=f'Posterior PDF');
          plt.legend(labels=['Posterior PDF']);
          plt.show()
```

a\_prime = 544. b\_prime = 557.







```
In [119]: h_weight_s = np.argmax(Posterior)
h_weight_s
```

Out[119]: 49

## **Prior: TableBooks**

```
In [120]: import numpy as np
          x = np.arange(0, 1, 0.01)
          num trials= len(df.TableBooks) #num trials = 1000
          num successes = np.sum(df.TableBooks > 0)
          Prior, Likelihood, Posterior = posterior_from_conjugate_prior(
              Likelihood Dist Type='Binomial',
              X=X,
              n=num_trials,
              k=num_successes,
              a=1,
              b=100)
          ax1 = sns.lineplot(x, Prior, color='red')
          ax1.set(xlabel='x', ylabel='f(x)', title=f'Prior PDF');
          plt.legend(labels=['Prior PDF']);
          plt.show()
          ax2 = sns.lineplot(x, Likelihood)
          ax2.set(xlabel='x', ylabel='f(x)', title=f'Likelihood Function');
          plt.legend(labels=['Likelihood Function']);
          plt.show()
          ax3 = sns.lineplot(x, Posterior, color='orange')
          ax3.set(xlabel='x', ylabel='f(x)', title=f'Posterior PDF');
          plt.legend(labels=['Posterior PDF']);
          plt.show()
```

a\_prime = 381. b prime = 720.







```
In [121]: t_weight_s = np.argmax(Posterior)
t_weight_s

Out[121]: 35
```

**Prior: Artboks and HistoryBooks** 

```
In [122]: import numpy as np
          x = np.arange(0, 1, 0.01)
          num_trials= len(df[(df["ArtBooks"] == 0) & (df["HistoryBooks"] == 0)]) #num_trial
          num successes = np.sum((df.ArtBooks > 0) & (df.HistoryBooks))
          Prior, Likelihood, Posterior = posterior_from_conjugate_prior(
              Likelihood Dist Type='Binomial',
              X=X,
              n=num_trials,
              k=num_successes,
              a=1,
              b=100)
          ax1 = sns.lineplot(x, Prior, color='red')
          ax1.set(xlabel='x', ylabel='f(x)', title=f'Prior PDF');
          plt.legend(labels=['Prior PDF']);
          plt.show()
          ax2 = sns.lineplot(x, Likelihood)
          ax2.set(xlabel='x', ylabel='f(x)', title=f'Likelihood Function');
          plt.legend(labels=['Likelihood Function']);
          plt.show()
          ax3 = sns.lineplot(x, Posterior, color='orange')
          ax3.set(xlabel='x', ylabel='f(x)', title=f'Posterior PDF');
          plt.legend(labels=['Posterior PDF']);
          plt.show()
```

a\_prime = 172. b\_prime = 256.







```
In [123]: ah_weight_s = np.argmax(Posterior)
ah_weight_s
```

Out[123]: 40

# **Prior: Artboks and TableBooks**

```
In [124]: import numpy as np
          x = np.arange(0, 1, 0.01)
          num trials= len(df[(df["ArtBooks"] == 0) & (df["TableBooks"] == 0)]) #num trials
          num successes = np.sum((df.ArtBooks > 0) & (df.TableBooks))
          Prior, Likelihood, Posterior = posterior_from_conjugate_prior(
              Likelihood Dist Type='Binomial',
              X=X,
              n=num_trials,
              k=num_successes,
              a=1,
              b=100)
          ax1 = sns.lineplot(x, Prior, color='red')
          ax1.set(xlabel='x', ylabel='f(x)', title=f'Prior PDF');
          plt.legend(labels=['Prior PDF']);
          plt.show()
          ax2 = sns.lineplot(x, Likelihood)
          ax2.set(xlabel='x', ylabel='f(x)', title=f'Likelihood Function');
          plt.legend(labels=['Likelihood Function']);
          plt.show()
          ax3 = sns.lineplot(x, Posterior, color='orange')
          ax3.set(xlabel='x', ylabel='f(x)', title=f'Posterior PDF');
          plt.legend(labels=['Posterior PDF']);
          plt.show()
```

a\_prime = 126. b prime = 419.







```
In [125]: at_weight_s = np.argmax(Posterior)
at_weight_s

Out[125]: 23
```

**Prior: HistoryBooks and TableBooks** 

```
In [126]: import numpy as np
          x = np.arange(0, 1, 0.01)
          num trials= len(df[ (df["HistoryBooks"] == 0) & (df["TableBooks"] == 0)]) #num tr
          num successes = np.sum((df.HistoryBooks > 0) & (df.TableBooks > 0 ))
          Prior, Likelihood, Posterior = posterior_from_conjugate_prior(
              Likelihood Dist Type='Binomial',
              X=X,
              n=num_trials,
              k=num_successes,
              a=1,
              b=100)
          ax1 = sns.lineplot(x, Prior, color='red')
          ax1.set(xlabel='x', ylabel='f(x)', title=f'Prior PDF');
          plt.legend(labels=['Prior PDF']);
          plt.show()
          ax2 = sns.lineplot(x, Likelihood)
          ax2.set(xlabel='x', ylabel='f(x)', title=f'Likelihood Function');
          plt.legend(labels=['Likelihood Function']);
          plt.show()
          ax3 = sns.lineplot(x, Posterior, color='orange')
          ax3.set(xlabel='x', ylabel='f(x)', title=f'Posterior PDF');
          plt.legend(labels=['Posterior PDF']);
          plt.show()
```

a\_prime = 193. b\_prime = 177.







```
In [127]: ht_weight_s = np.argmax(Posterior)
ht_weight_s
```

Out[127]: 52

Prior: ArtBooks and HistoryBooks and TableBooks

```
In [128]: import numpy as np
          x = np.arange(0, 1, 0.01)
          num trials= len(df[(df["ArtBooks"] == 0) & (df["HistoryBooks"] == 0) & (df["Table
          num successes = np.sum((df.HistoryBooks > 0) & (df.TableBooks > 0) & (df.ArtBooks
          Prior, Likelihood, Posterior = posterior_from_conjugate_prior(
              Likelihood Dist Type='Binomial',
              X=X,
              n=num trials,
              k=num_successes,
              a=1,
              b=100)
          ax1 = sns.lineplot(x, Prior, color='red')
          ax1.set(xlabel='x', ylabel='f(x)', title=f'Prior PDF');
          plt.legend(labels=['Prior PDF']);
          plt.show()
          ax2 = sns.lineplot(x, Likelihood)
          ax2.set(xlabel='x', ylabel='f(x)', title=f'Likelihood Function');
          plt.legend(labels=['Likelihood Function']);
          plt.show()
          ax3 = sns.lineplot(x, Posterior, color='orange')
          ax3.set(xlabel='x', ylabel='f(x)', title=f'Posterior PDF');
          plt.legend(labels=['Posterior PDF']);
          plt.show()
```

a\_prime = 72.
b prime = 222.







```
In [129]: aht_weight_s = np.argmax(Posterior)
aht_weight_s

Out[129]: 24

In [130]: data = {'MaxPosterior':['Art', 'His', 'Tab', 'ArtHis', 'HisTab', 'ArtTab', 'ArtHis' 'a:b =1:1':[30, 54, 38, 52, 28, 71, 37], 'a:b =1:100':[27, 49, 35, 40, 2]

In [131]: df = pd.DataFrame(data)
df
```

### Out[131]:

|   | MaxPosterior    | a:b =1:1 | a:b =1:100 |
|---|-----------------|----------|------------|
| ( | ) Art           | 30       | 27         |
| • | l His           | 54       | 49         |
| 2 | 2 Tab           | 38       | 35         |
| 3 | 3 ArtHis        | 52       | 40         |
| 4 | HisTab          | 28       | 23         |
| ţ | <b>5</b> ArtTab | 71       | 52         |
| 6 | ArtHisTab       | 37       | 24         |

## Response:

When we use strong weighting for low likelihood, i.e. a: b = 1:100,

We can see the maximum posterior shift to the lower values for all case.

This is consistent the undestanding of posteior equation is the proportional factor of likelihood. I use a:b = 1:1 and a:b = 1:100 for this exercise, the posterior of beta function a:b = 1:100 is smaller that of a:b = 1:1.

This is consitent to our understanding of likelihood.

### **Problem 5**

From the lecture slide  $f(m|w) = N(\mu 0, vw)$ , V>0 f(w) is Wishart with  $\alpha$  degrees of freedom and precision matrix r, with  $\alpha > k - 1$ 

Likelihood: N(M, W)

Posterior:  $f(m|x, w) \sim N (\mu (v + N)w)$ 

Posterior: f(w|x) is Wishart with  $\alpha + N$  degrees of

freedom & precision matrix r

Posterior f(m)x) is a multivariate t distribution with  $\alpha + N - k + 1$  location parameter,  $\mu*$  and precision  $(v + N)(\alpha + N - k + 1)(r*)-1$ 

In our case, we have 8 variables, meaning k = 8, Prior  $\alpha = 8+1 = 9$ . v is 462 for this case. This is multivariate

Gaussian with unknown mean & variance-covariance matrix. Meahwhile, f(w) is Wishart with multiple dimensions of the gamma distribution.

```
In [132]: import numpy as np
    import pandas as pd
    chd_data = pd.read_csv("CHDdata.csv")
    chd_data.describe()
```

### Out[132]:

|       | sbp        | tobacco    | ldl        | adiposity  | typea      | obesity    | alcohol    |        |
|-------|------------|------------|------------|------------|------------|------------|------------|--------|
| count | 462.000000 | 462.000000 | 462.000000 | 462.000000 | 462.000000 | 462.000000 | 462.000000 | 462.00 |
| mean  | 138.326840 | 3.635649   | 4.740325   | 25.406732  | 53.103896  | 26.044113  | 17.044394  | 42.81  |
| std   | 20.496317  | 4.593024   | 2.070909   | 7.780699   | 9.817534   | 4.213680   | 24.481059  | 14.60  |
| min   | 101.000000 | 0.000000   | 0.980000   | 6.740000   | 13.000000  | 14.700000  | 0.000000   | 15.00  |
| 25%   | 124.000000 | 0.052500   | 3.282500   | 19.775000  | 47.000000  | 22.985000  | 0.510000   | 31.00  |
| 50%   | 134.000000 | 2.000000   | 4.340000   | 26.115000  | 53.000000  | 25.805000  | 7.510000   | 45.00  |
| 75%   | 148.000000 | 5.500000   | 5.790000   | 31.227500  | 60.000000  | 28.497500  | 23.892500  | 55.00  |
| max   | 218.000000 | 31.200000  | 15.330000  | 42.490000  | 78.000000  | 46.580000  | 147.190000 | 64.00  |
|       |            |            |            |            |            |            |            |        |

### Out[133]:

|   | sbp | tobacco | ldl  | adiposity | typea | obesity | alcohol | age | chd |
|---|-----|---------|------|-----------|-------|---------|---------|-----|-----|
| 0 | 160 | 12.00   | 5.73 | 23.11     | 49    | 25.30   | 97.20   | 52  | 1   |
| 1 | 144 | 0.01    | 4.41 | 28.61     | 55    | 28.87   | 2.06    | 63  | 1   |
| 2 | 118 | 0.08    | 3.48 | 32.28     | 52    | 29.14   | 3.81    | 46  | 0   |
| 3 | 170 | 7.50    | 6.41 | 38.03     | 51    | 31.99   | 24.26   | 58  | 1   |
| 4 | 134 | 13.60   | 3.50 | 27.78     | 60    | 25.99   | 57.34   | 49  | 1   |

### 

### Out[135]:

|       | sbp           | tobacco           | ldl           | adiposity     | typea         | obesity       |   |
|-------|---------------|-------------------|---------------|---------------|---------------|---------------|---|
| count | 4.620000e+02  | 4.620000e+02      | 4.620000e+02  | 4.620000e+02  | 4.620000e+02  | 4.620000e+02  | 4 |
| mean  | -2.571296e-16 | 5.022437e-16      | -3.963040e-15 | 1.559599e-15  | 1.153478e-17  | -5.286776e-15 |   |
| std   | 1.001084e+00  | 1.001084e+00      | 1.001084e+00  | 1.001084e+00  | 1.001084e+00  | 1.001084e+00  | 1 |
| min   | -1.823123e+00 | -7.924170e-<br>01 | -1.817753e+00 | -2.401708e+00 | -4.089354e+00 | -2.695129e+00 |   |
| 25%   | -6.997535e-01 | -7.809742e-<br>01 | -7.047170e-01 | -7.245926e-01 | -6.224081e-01 | -7.267824e-01 |   |
| 50%   | -2.113321e-01 | -3.565020e-<br>01 | -1.935182e-01 | 9.112757e-02  | -1.059418e-02 | -5.680824e-02 |   |
| 75%   | 4.724579e-01  | 4.063492e-01      | 5.074164e-01  | 7.489145e-01  | 7.031887e-01  | 5.828745e-01  | 2 |
| max   | 3.891408e+00  | 6.007857e+00      | 5.119082e+00  | 2.197976e+00  | 2.538631e+00  | 4.878906e+00  | 5 |

### Out[137]:

|       | sbp        | tobacco    | ldl        | adiposity  | typea      | obesity    | alcohol    |        |
|-------|------------|------------|------------|------------|------------|------------|------------|--------|
| count | 160.000000 | 160.000000 | 160.000000 | 160.000000 | 160.000000 | 160.000000 | 160.000000 | 160.00 |
| mean  | 0.264268   | 0.411771   | 0.361398   | 0.349128   | 0.141722   | 0.137517   | 0.085909   | 0.51   |
| std   | 1.156458   | 1.212965   | 1.075607   | 0.908099   | 1.044840   | 1.043288   | 1.070602   | 0.72   |
| min   | -1.774281  | -0.792417  | -1.542213  | -2.060752  | -3.375571  | -2.695129  | -0.696983  | -1.76  |
| 25%   | -0.528806  | -0.465481  | -0.386879  | -0.250150  | -0.545931  | -0.572356  | -0.677559  | -0.00  |
| 50%   | -0.015964  | 0.107747   | 0.156949   | 0.385765   | 0.193344   | 0.102370   | -0.356351  | 0.69   |
| 75%   | 0.985300   | 0.994834   | 0.890513   | 1.052558   | 0.805158   | 0.649991   | 0.308250   | 1.10   |
| max   | 3.891408   | 6.007857   | 4.553501   | 2.197976   | 2.538631   | 4.674587   | 5.321938   | 1.45   |

```
In [138]: # Lets check the mean of each class to get a first look at the seperation
    print("Mean for CHD Positive:")
    print(np.array([chd_positive.mean()[0:8]]))
    print("Mean for CHD Negative:")
    print(np.array([chd_negative.mean()[0:8]]))
```

```
Mean for CHD Positive:
[[0.26426823 0.41177089 0.36139839 0.34912802 0.14172199 0.13751694 0.0859086 0.51241433]]
Mean for CHD Negative:
[[-0.14000966 -0.21815676 -0.19146935 -0.18496849 -0.0750845 -0.07285666 -0.04551449 -0.27147779]]
```

### In [139]: chd\_positive

### Out[139]:

|     | sbp       | tobacco   | ldl       | adiposity | typea     | obesity   | alcohol   | age       | chd |
|-----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|
| 0   | 1.058564  | 1.823073  | 0.478412  | -0.295503 | -0.418470 | -0.176786 | 3.277738  | 0.629336  | 1   |
| 1   | 0.277089  | -0.790237 | -0.159680 | 0.412140  | 0.193344  | 0.671373  | -0.612745 | 1.383115  | 1   |
| 3   | 1.546985  | 0.842264  | 0.807126  | 1.624141  | -0.214532 | 1.412621  | 0.295062  | 1.040488  | 1   |
| 4   | -0.211332 | 2.171805  | -0.599577 | 0.305351  | 0.703189  | -0.012856 | 1.647775  | 0.423760  | 1   |
| 7   | -1.188175 | 0.096850  | -0.072667 | -1.390421 | 0.907127  | -0.697085 | -0.422187 | 1.040488  | 1   |
|     |           |           |           |           |           |           |           |           |     |
| 453 | -0.699754 | -0.443685 | 1.198683  | 1.836434  | -1.744067 | 1.296207  | -0.696983 | 0.560810  | 1   |
| 454 | 0.374774  | -0.652924 | 0.038515  | 0.336230  | 0.703189  | 0.490812  | -0.360440 | -0.261494 | 1   |
| 455 | -0.504385 | -0.304192 | -0.923457 | 0.138089  | -0.520439 | -0.495142 | 1.242125  | -1.083798 | 1   |
| 458 | 2.133091  | 0.123004  | -0.159680 | 0.861173  | -0.112563 | 0.609602  | 0.068519  | 0.629336  | 1   |
| 461 | -0.309016 | -0.792417 | 0.038515  | 1.029720  | 0.907127  | -2.695129 | -0.696983 | 0.218184  | 1   |

160 rows × 9 columns

```
In [140]: chd_negative_new = chd_negative.iloc[ : ,[0,1, 2, 3, 4, 5, 6, 7]]
In [141]: chd_positive_new = chd_positive.iloc[ : ,[0,1, 2, 3, 4, 5, 6, 7]]

In [142]: ## For patients withouot chd
v = 462
alpha = 9
k = 8
xmean = np.mean(chd_negative_new)
N = len(chd_negative_new)
mu0 = np.zeros(8)
mu_star = (v*mu0+ N *xmean)/(v+N)
print("the posterior mean for patients without CHD is:\n", mu_star)
```

the posterior mean for patients without CHD is:

-0.055344 sbp tobacco -0.086235 ldl -0.075686 adiposity -0.073116 typea -0.029680 obesity -0.028799 -0.017991 alcohol -0.107312 age dtype: float64

localhost:8952/notebooks/Documents/gladies/CS6014/HW1/Professor Kaggle codes/Problem4.5.7.ipynb

```
In [143]: ## S-matrix:
S_matrix = pd.DataFrame(0, index=chd_negative_new.columns, columns = chd_negative
for index, row in chd_negative_new.iterrows():
    tmp = (row-xmean).to_frame()
    tmpT=tmp.T
    each_i = tmp.dot(tmpT)
    S_matrix+=each_i
```

In [144]: S\_matrix

### Out[144]:

|           | sbp        | tobacco    | ldl        | adiposity  | typea      | obesity    | alcohol    |                 |
|-----------|------------|------------|------------|------------|------------|------------|------------|-----------------|
| sbp       | 232.260049 | 38.244868  | 36.897715  | 108.277837 | -19.633118 | 79.008160  | 42.595168  | 107             |
| tobacco   | 38.244868  | 186.564280 | 49.194077  | 77.992896  | 4.809790   | 39.289941  | 44.962429  | 11 <sup>,</sup> |
| ldl       | 36.897715  | 49.194077  | 246.079082 | 110.856114 | 2.591264   | 85.059945  | 10.736726  | 8               |
| adiposity | 108.277837 | 77.992896  | 110.856114 | 301.046673 | -26.657035 | 207.981738 | 61.931813  | 202             |
| typea     | -19.633118 | 4.809790   | 2.591264   | -26.657035 | 283.505089 | 9.629805   | 25.318168  | -36             |
| obesity   | 79.008160  | 39.289941  | 85.059945  | 207.981738 | 9.629805   | 284.307565 | 42.598878  | 100             |
| alcohol   | 42.595168  | 44.962429  | 10.736726  | 61.931813  | 25.318168  | 42.598878  | 277.949377 | 4               |
| age       | 107.072330 | 111.987969 | 85.897294  | 202.736423 | -36.878619 | 100.765087 | 45.104219  | 313             |

```
In [145]: mu0_xmean = (-xmean).to_frame().dot((-xmean).to_frame().T)
```

```
In [146]: r_star = np.eye(8)+Smatrix+mu0_xmean*v*N/(v+N)
print("Posterior precision matrix is:\n")
r_star
```

Posterior precision matrix is:

### Out[146]:

|           | sbp        | tobacco    | ldl        | adiposity  | typea      | obesity    | alcohol    |     |
|-----------|------------|------------|------------|------------|------------|------------|------------|-----|
| sbp       | 217.225808 | 38.755896  | 17.754005  | 38.571500  | -14.158151 | 23.946275  | 17.735802  | 46  |
| tobacco   | 38.755896  | 243.625445 | -4.576305  | 26.616119  | -22.851166 | 7.285175   | 40.968083  | 55  |
| ldl       | 17.754005  | -4.576305  | 191.647090 | 68.207638  | 7.847611   | 58.016730  | -32.176979 | 22  |
| adiposity | 38.571500  | 26.616119  | 68.207638  | 138.366582 | -2.849924  | 113.776741 | -21.383196 | 51  |
| typea     | -14.158151 | -22.851166 | 7.847611   | -2.849924  | 175.608281 | 20.789706  | -9.426105  | -24 |
| obesity   | 23.946275  | 7.285175   | 58.016730  | 113.776741 | 20.789706  | 175.033026 | -21.036718 | 20  |
| alcohol   | 17.735802  | 40.968083  | -32.176979 | -21.383196 | -9.426105  | -21.036718 | 183.622480 | -6  |
| age       | 46.335853  | 55.234929  | 22.319061  | 51.836311  | -24.578114 | 20.400289  | -6.903003  | 99  |
| 4         |            |            |            |            |            |            |            |     |

# In [147]: ## Degree of freedom alpha+len(chd\_negative\_new) ## Posterior marginal alpha+N-k+1 alpha+N-k+1 ## Parameter param = (v+N)\*(alpha+N-k+1) ## r\_star inversion r\_star\_inv.dot(r\_star)

### Out[147]:

|           | sbp       | tobacco   | ldl       | adiposity | typea     | obesity   | alcohol   | age       |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| sbp       | 1.069377  | 0.108618  | 0.020314  | -0.000588 | -0.019139 | -0.052472 | 0.050636  | 0.085350  |
| tobacco   | 0.151827  | 1.543612  | -0.184024 | 0.047481  | -0.164963 | 0.000047  | 0.192738  | 0.149879  |
| ldl       | 0.015897  | -0.216758 | 0.816598  | 0.071226  | 0.012547  | 0.046530  | -0.085224 | -0.025689 |
| adiposity | -0.130916 | -0.088725 | 0.097584  | 0.569991  | 0.091600  | 0.094388  | -0.213406 | -0.071258 |
| typea     | -0.011122 | -0.158342 | 0.022480  | 0.022370  | 0.633017  | 0.049156  | -0.120558 | -0.050050 |
| obesity   | -0.076090 | 0.037253  | -0.028544 | 0.064939  | 0.020501  | 0.625602  | -0.012682 | -0.001009 |
| alcohol   | -0.057739 | -0.030678 | -0.119325 | -0.188493 | -0.086557 | -0.163993 | 0.692124  | -0.088249 |
| age       | -0.176169 | -0.350871 | -0.142269 | -0.240033 | 0.000619  | -0.164768 | -0.056321 | 0.278358  |

### 

### Out[148]:

|           | sbp         | tobacco     | ldl         | adiposity    | typea       | obesity      | alcc     |
|-----------|-------------|-------------|-------------|--------------|-------------|--------------|----------|
| sbp       | 1253.888388 | 10.451143   | 21.292419   | -175.786542  | 43.504717   | -119.126753  | -97.938  |
| tobacco   | 10.451143   | 1611.998553 | -153.425600 | -20.656145   | -93.254071  | 51.280758    | -165.824 |
| ldl       | 21.292419   | -153.425600 | 1144.366556 | -313.173423  | -53.211475  | -87.417415   | 73.113   |
| adiposity | -175.786542 | -20.656145  | -313.173423 | 2737.489658  | 167.903060  | -1438.041061 | -182.268 |
| typea     | 43.504717   | -93.254071  | -53.211475  | 167.903060   | 856.879146  | -150.444767  | -96.075  |
| obesity   | -119.126753 | 51.280758   | -87.417415  | -1438.041061 | -150.444767 | 1781.554879  | 12.410   |
| alcohol   | -97.938426  | -165.824903 | 73.113516   | -182.268326  | -96.075750  | 12.410417    | 911.752  |
| age       | -276.347333 | -551.809764 | -68.656640  | -1109.369643 | 75.267817   | 393.331393   | 47.379   |

```
In [149]: ## ## For patients with chd
v = 462
alpha = 9
k = 8
xmean = np.mean(chd_positive_new)
N = len(chd_positive_new)
mu0 = np.zeros(8)
mu_star = (v*mu0+ N *xmean)/(v+N)
print("the posterior mean for patients with CHD is:\n", mu_star)
```

the posterior mean for patients with CHD is: sbp 0.067979 tobacco 0.105922 1d1 0.092964 adiposity 0.089808 typea 0.036456 obesity 0.035374 alcohol 0.022099 0.131811 age dtype: float64

```
In [150]: ## S-matrix:
    S_matrix = pd.DataFrame(0, index=chd_positive_new.columns, columns = chd_positive
    for index, row in chd_positive_new.iterrows():
        tmp = (row-xmean).to_frame()
        tmpT=tmp.T
        each_i = tmp.dot(tmpT)
        S_matrix+=each_i
```

# In [151]: S\_matrix

### Out[151]:

|           | sbp        | tobacco    | ldl        | adiposity  | typea      | obesity    | alcohol    |     |
|-----------|------------|------------|------------|------------|------------|------------|------------|-----|
| sbp       | 212.645903 | 33.177849  | 12.858328  | 33.842043  | -16.077986 | 22.083404  | 16.572042  | 39  |
| tobacco   | 33.177849  | 233.933981 | -12.204530 | 19.246891  | -25.842566 | 4.382533   | 39.154765  | 44  |
| ldl       | 12.858328  | -12.204530 | 183.952036 | 61.739898  | 5.222153   | 55.469172  | -33.768471 | 12  |
| adiposity | 33.842043  | 19.246891  | 61.739898  | 131.118438 | -5.386242  | 111.315680 | -22.920653 | 42  |
| typea     | -16.077986 | -25.842566 | 5.222153   | -5.386242  | 173.578711 | 19.790684  | -10.050207 | -28 |
| obesity   | 22.083404  | 4.382533   | 55.469172  | 111.315680 | 19.790684  | 173.063646 | -21.642302 | 16  |
| alcohol   | 16.572042  | 39.154765  | -33.768471 | -22.920653 | -10.050207 | -21.642302 | 182.244164 | -9  |
| age       | 39.394441  | 44.419132  | 12.826375  | 42.665925  | -28.300661 | 16.788195  | -9.159525  | 84  |
|           |            |            |            |            |            |            |            |     |

```
In [152]: mu0_xmean = (-xmean).to_frame().dot((-xmean).to_frame().T)
```

```
In [153]: r_star = np.eye(8)+Smatrix+mu0_xmean*v*N/(v+N)
          print("Posterior precision matrix is:\n")
          r_star
```

Posterior precision matrix is:

### Out[153]:

|           | sbp        | tobacco    | ldl        | adiposity  | typea      | obesity    | alcohol    |     |
|-----------|------------|------------|------------|------------|------------|------------|------------|-----|
| sbp       | 221.945586 | 46.110041  | 24.208508  | 44.806855  | -11.627025 | 26.402300  | 19.270112  | 55  |
| tobacco   | 46.110041  | 255.084343 | 5.480811   | 36.331770  | -18.907279 | 11.112042  | 43.358776  | 69  |
| ldl       | 24.208508  | 5.480811   | 200.473905 | 76.734760  | 11.309037  | 61.375451  | -30.078742 | 34  |
| adiposity | 44.806855  | 36.331770  | 76.734760  | 146.604188 | 0.493978   | 117.021426 | -19.356200 | 63  |
| typea     | -11.627025 | -18.907279 | 11.309037  | 0.493978   | 176.965676 | 22.106825  | -8.603283  | -19 |
| obesity   | 26.402300  | 11.112042  | 61.375451  | 117.021426 | 22.106825  | 176.311064 | -20.238310 | 25  |
| alcohol   | 19.270112  | 43.358776  | -30.078742 | -19.356200 | -8.603283  | -20.238310 | 184.121255 | -3  |
| age       | 55.487470  | 69.494567  | 34.834298  | 63.926624  | -19.670277 | 25.162505  | -3.927986  | 116 |
|           |            |            |            |            |            |            |            |     |

```
In [154]: ## Degree of freedom
          alpha+len(chd_positive_new)
          ## Posterior marginal alpha+N-k+1
          alpha+N-k+1
          ## Parameter
          param = (v+N)*(alpha+N-k+1)
          ## r_star inversion
          r_star_inv.dot(r_star)
```

### Out[154]:

|           | sbp       | tobacco   | ldl       | adiposity | typea     | obesity   | alcohol   | age       |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| sbp       | 1.078740  | 0.123206  | 0.033117  | 0.011781  | -0.014118 | -0.047600 | 0.053680  | 0.103504  |
| tobacco   | 0.174951  | 1.579642  | -0.152401 | 0.078030  | -0.152562 | 0.012080  | 0.200255  | 0.194716  |
| ldl       | 0.031140  | -0.193008 | 0.837443  | 0.091364  | 0.020721  | 0.054462  | -0.080269 | 0.003866  |
| adiposity | -0.128646 | -0.085188 | 0.100688  | 0.572990  | 0.092817  | 0.095570  | -0.212668 | -0.066857 |
| typea     | -0.000083 | -0.141142 | 0.037576  | 0.036953  | 0.638937  | 0.054900  | -0.116970 | -0.028646 |
| obesity   | -0.085143 | 0.023147  | -0.040925 | 0.052978  | 0.015646  | 0.620891  | -0.015625 | -0.018563 |
| alcohol   | -0.060867 | -0.035552 | -0.123603 | -0.192625 | -0.088234 | -0.165621 | 0.691108  | -0.094314 |
| age       | -0.161610 | -0.328185 | -0.122358 | -0.220798 | 0.008427  | -0.157191 | -0.051588 | 0.306588  |

### Out[155]:

|           | sbp         | tobacco     | ldl         | adiposity   | typea      | obesity     | alcohol    |
|-----------|-------------|-------------|-------------|-------------|------------|-------------|------------|
| sbp       | 543.998043  | 4.534216    | 9.237692    | -76.264790  | 18.874472  | -51.683006  | -42.490474 |
| tobacco   | 4.534216    | 699.363729  | -66.563521  | -8.961645   | -40.458172 | 22.248098   | -71.942945 |
| ldl       | 9.237692    | -66.563521  | 496.482122  | -135.869932 | -23.085738 | -37.925945  | 31.720215  |
| adiposity | -76.264790  | -8.961645   | -135.869932 | 1187.656758 | 72.844551  | -623.892470 | -79.076905 |
| typea     | 18.874472   | -40.458172  | -23.085738  | 72.844551   | 371.756038 | -65.270290  | -41.682354 |
| obesity   | -51.683006  | 22.248098   | -37.925945  | -623.892470 | -65.270290 | 772.925547  | 5.384245   |
| alcohol   | -42.490474  | -71.942945  | 31.720215   | -79.076905  | -41.682354 | 5.384245    | 395.562686 |
| age       | -119.892974 | -239.402035 | -29.786605  | -481.298751 | 32.654856  | 170.646375  | 20.555446  |

# **Problem 7**

```
In [156]: from scipy.stats import beta
          from scipy.stats import norm
          def posterior from conjugate prior(**kwargs):
              if kwargs['Likelihood Dist Type'] == 'Binomial':
                  # Get the parameters for the likelihood and prior distribution from the k
                  x = kwargs['x']
                  n = kwargs['n']
                  k = kwargs['k']
                  a = kwargs['a']
                  b = kwargs['b']
                  print(f'a_prime = {k + a}.')
                  print(f'b prime = \{n - k + b\}.')
                  Likelihood = binom.pmf(p=x, n=n, k=k)
                  Prior = beta.pdf(x=x, a=a, b=b)
                  Posterior = beta.pdf(x=x, a=k+a, b=n-k+b)
                   return [Prior, Likelihood, Posterior]
              elif kwargs['Likelihood Dist Type'] == 'Gaussian Known Variance':
                  # Get the parameters for the likelihood and prior distribution from the k
                  x = kwargs['x']
                  n = len(x)
                  mu = kwargs['mu']
                  var = kwargs['var']
                  prior mu = kwargs['prior mu']
                  prior_var = kwargs['prior_var']
                  print(kwargs)
                  # To answer the challenge question, modify this section with the correct
                  x bar = np.mean(x)
                  mu prime = (prior mu*var + n*x bar*prior var)/(var+n*prior var)
                  var_prime =(prior_var*var)/(var+n*prior_var)
                   print(f'mu prime = {mu prime:.2f}.')
                  print(f'var prime = {var prime: .2f}.')
                  Likelihood = norm.pdf(x, loc = mu, scale=var^{**}(.5))
                  Prior = norm.pdf(x= x, loc = prior mu, scale = prior var**(.5))
                  Posterior = norm.pdf(x= x, loc = mu prime, scale = var prime**(.50))
                  return [Prior, Likelihood, Posterior]
              else:
                   print('Distribution type not supported.')
                  return -1, -1, -1
```

```
In [157]: import numpy as np
x = np.arange(-5, 80, 0.01)
Prior, Likelihood, Posterior = posterior_from_conjugate_prior(Likelihood_Dist_Type)

{'Likelihood_Dist_Type': 'Gaussian_Known_Variance', 'x': array([-5. , -4.99, -
4.98, ..., 79.97, 79.98, 79.99]), 'mu': 50, 'var': 21, 'prior_mu': 0.5, 'prior_
var': 1}
mu_prime = 37.40.
var_prime = 0.00.
```

```
In [158]: import numpy as np
          import pandas as pd
          # import matplotlib
          import matplotlib.pyplot as plt
          # import seaborn
          import seaborn as sns
          # settings for seaborn plotting style
          sns.set(color codes=True)
          # settings for seaborn plot sizes
          sns.set(rc={'figure.figsize':(9.5,5)})
          x = np.arange(-5, 80, 0.01)
          Prior, Likelihood, Posterior = posterior from conjugate prior(Likelihood Dist Type
          ax1 = sns.lineplot(x, Prior, color='red')
          ax1.set(xlabel='x', ylabel='f(x)', title=f'Prior PDF');
          plt.legend(labels=['Prior PDF']);
          plt.show()
          ax2 = sns.lineplot(x, Likelihood)
          ax2.set(xlabel='x', ylabel='f(x)', title=f'Likelihood Function');
          plt.legend(labels=['Likelihood Function']);
          plt.show()
          ax3 = sns.lineplot(x, Posterior, color='orange')
          ax3.set(xlabel='x', ylabel='f(x)', title=f'Posterior PDF');
          plt.legend(labels=['Posterior PDF']);
          plt.show()
```







