DEEP LEARNING FOR MOLECULAR DATA

Logan Ward Asst. Computational Scientist Argonne National Laboratory

26 January 2021

What is different about deep learning?

FIRST, WHAT CONVINCED ME DEEP LEARNING WAS WORTHWHILE

Predicting Crystalline Materials

Goal: Identify new crystalline materials

Model: Given, composition predict ΔH_f

Initial attempt: 2014

Error still ~10% typical values

Can we do even better with deep neural networks?

Ref: Meredig et al. PRB. (2014), 094104. doi: 10.1103/PhysRevB.89.094104

Training Data

Data Source: Open Quantum Materials Database ~470k DFT Calculations

Why OQMD?

- ✓ Open ✓ Large
- Contains unstable materials

Training Set:

Subset: Lowest energy structure

<u>Size:</u> 230336

Input: Composition

Output: Formation Enthalpy ΔH_f

Input Features

ElemNet Architecture: Nothing Fancy

Ref: Jha et al., Sci. Rep. (2020) 17593

Better than conventional learning?

Can DL interpolate between elements?

Hold Out Na-Fe-Mn-O

Deep Learning Yields Fewer Spurious Predictions

How is this possible? Model hasn't seen Ti-O bonds

How is it working so well?

How is it working so well?

Big Opportunity: Transfer Learning

Features learned on one dataset applicable to others

Deep Learning is not Cure-All

Table 3: Summary of performances(test subset): conventional methods versus graph-based methods. Graph-based models outperform conventional methods on 11/17 datasets.

Rost performances -

Rost performances

	Category	Dataset	\mathbf{Metric}	Best performances -	Best performances -
	Category		Metric	conventional methods	graph-based methods
		QM7	MAE	KRR(CM): 10.22	DTNN: 8.75
	Quantum Mechanics	QM7b	MAE	KRR(CM): 1.05	DTNN: 1.77*
_ , ,		<i>C</i> 1 .		Multitask: 0.0150	MPNN: 0.0143
For benchmark problems of learning				Multitask(CM): 4.35	DTNN: 2.35
				XGBoost: 0.99	MPNN: 0.58
from molecular data,				XGBoost: 1.74	MPNN: 1.15
CON				XGBoost: 0.799	GC: 0.655
conventional ML better for 6/17 cases ${}^{\!$				Logreg: 0.129	GC: 0.136
		MUV	AUC-PRC	Multitask: 0.184	Weave: 0.109
	Biophysics	HIV	AUC-ROC	KernelSVM: 0.792	GC: 0.763
		BACE	AUC-ROC	RF: 0.867	Weave: 0.806
		PDBbind(full)	RMSE	RF(grid): 1.25	GC: 1.44
	BBBP	AUC-ROC	KernelSVM: 0.729	GC: 0.690	
Physiology		Tox21	AUC-ROC	KernelSVM: 0.822	GC: 0.829
		ToxCast	AUC-ROC	Multitask: 0.702	Weave: 0.742
		SIDER	AUC-ROC	RF: 0.684	GC: 0.638
		ClinTox	AUC-ROC	Bypass: 0.827	Weave: 0.832

^{*} As discussed in section 4.4, DTNN outperforms KRR(CM) on 14/16 tasks in QM7b while the mean-MAE is skewed due to different magnitudes of labels.

Ref: Wu et al. Chem Sci. (2017) 10.1039/C7SC02664A

MANY APPROACHES FOR DEEP LEARNING WITH MOLECULAR DATA

How do we do deep learning with molecules?

As a normal supervised learner

Repurposing Image Models

Message-Passing Networks

Ex: <u>Ulmer et al. CTPS. (1998), 311.</u>

Ex: Goh et al. IEEE WACV. (2018)

Ex: Schütt et al. JCP, (2018)

Our focus: Message-Passing Networks

Problems:

- 1. Combinatorics: Many features!
- 2. No similarity between groups (is A:B > B:C)

Our focus: Message-Passing Networks

How do I learn difference between atoms?

Atomic fingerprints are learned by "convolution"

Message Passing is Two Steps

Step 1: Message generation

$$m(B) = f_M(\overset{\mathsf{B}}{\bigcirc}, \overset{\mathsf{A}}{\bullet}, -) + f_M(\overset{\mathsf{B}}{\bigcirc}, \overset{\mathsf{C}}{\bigcirc}, -) = \bigcirc$$

Step 2: Update

$$B^{\{n+1\}} = f_{II}(O, O) = O$$

Solution: Message passing gives continuous features
1. Combinatorics: Many features! Fixed feature count
2. No similarity between groups (is A:B > B:C) Distances

New Challenge: Learning update and message functions

Formalizing Message Passing Neural Networks

A generalized form of neural networks for graph data, introduced by Gilmer et al. (Google)

Existing strategies mostly variants of

Figure 1. A Message Passing Neural Network predicts quantum properties of an organic molecule by modeling a computationally expensive DFT calculation.

•
$$m_v^{t+1} = \sum_{w \in N(v)} \mathbf{M_t}(h_v^t, h_w^t, e_{vw})$$

• $m_v^{t+1} = \sum_{w \in N(v)} M_t(h_v^t, h_w^t, e_{vw})$ 1. Gather messages from neighboring nodes

•
$$h_v^{t+1} = U_t(h_v^t, m_v^{t+1})$$

2. **Update** node state given messages

•
$$\hat{y} = \mathbf{R}(\{h_v^T | v \in G\})$$

3. **Readout** graph properties given node states

Many variations of MPNNs

SchNet: Continuous Convolutions

Opportunity: Convolutions are great!

Wei et al. Sci Rep. (2019), 3358

Problem: Atoms are not pixel

Key Innovation: "Continuous Convolutions"

Ref: Schütt et al. JCP, (2018)

Take-home Points

Deep Learning has many advantages...

- Learning from sparse features
- High model complexity -> High accuracy
- Transfer learning

Spheroidite

Major method for molecules: Message Passing Networks

- Automatically learning fingerprints
- Combination of "message," "update" and "readout"
- Many variations in the literature

Practical Exercises: Learn how to implement these in TensorFlow

