Chapter 2 Subgroups

Contents

1	Definition and Examples	2
2	Centralizers and Normalizers, Stabilizers and Kernels	2
3	Cyclic Groups and Cyclic Subgroups	4

1 Definition and Examples

Definition. (Subgroup)

- 1. (subgroup) Let G be a group. The subset H of G is a subgroup of G, denoted as $H \leq G$ if
 - (a) H is nonempty
 - (b) H is closed under products and inverses, i.e. $x, y \in G$ implies $x^{-1}, xy \in H$

If $H \leq G$ and $H \neq G$, then H < G. $H \leq G$ implies operation on H is the operation on G restricted to H. So any equation in H can also be viewed as equation in G

- 2. (The Subgroup Criterion) $H \subset G$ is a subgroup if and only if
 - (a) $H \neq \emptyset$
 - (b) for all $x, y \in H$, $xy^{-1} \in H$

Furthermore, if H is finite, then suffice to check H is nonempty and closed under multiplication

- (examples)
 - $-G \leq G$ and $\{1\} \leq G$ (latter is called the trivial subgroup)
 - $-\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R}$ under operation of addition
 - $\{1, r, r^2, \cdots, r^{n-1}\} \le D_{2n}$
 - $-2\mathbb{Z} < \mathbb{Z}$
 - $(\mathbb{Q}^{\times}, \times) \nleq (\mathbb{R}, +)$ (operation are different)
 - $-\mathbb{Z}^+ \leq \mathbb{Z}$ and $(\mathbb{Z}^+)^{\times} \nleq \mathbb{Q}^{\times}$ (not closed under inverses and does not contain identity)
 - $-D_6 \not\leq D_8 \ (D_6 \not\subset D_8)$
- (theorem) subgroup is a transitive relation, i.e. $K \leq H, H \leq G$, then $K \leq G$

2 Centralizers and Normalizers, Stabilizers and Kernels

Definition. (Centralizers and Normalizers) Let G be a group and $A \subset G$ be nonempty

1. (centralizer) The centralizer of A in G is a subset of G which commute with every element of A

$$C_G(A) = \left\{ g \in G \mid gag^{-1} = a \text{ for all } a \in A \right\}$$

- $ga = ag \iff gag^{-1} = a$
- 2. (center) The center of G is a subset of G which commutes with all the elements of G

$$Z(G) = C_G(G) = \{ g \in G \mid gx = xg \text{ for all } x \in G \}$$

3. (normalizer) The normalizer of A in G are subsets of G that fixes A by conjugation

$$N_G(A) = \{ g \in G \mid gAg^{-1} = A \}$$

where $gAg^{-1} = \left\{ gag^{-1} \mid a \in A \right\}$

- (convention) For $A = \{a\}$, write $C_G(a)$ instead of $C_G(\{a\})$. Note $a^n \in C_G(a)$ for all $n \in \mathbb{Z}^+$
- (theorem) $Z(G) \leq C_G(A) \leq N_G(A) \leq G$

Proof. proofs for $C_G(A)$ and $N_G(A)$ are subgroups of G are similar. For now want to show $N_G(A) \leq G$. Note $1 \in N_G(A)$ so $N_G(A) \neq \emptyset$. Let $g_1, g_2 \in N_G(A)$, then $g_1Ag_1^{-1} = A$ and $g_2Ag_2^{-1} = A$. therefore

$$g_1g_2^{-1}A(g_1g_2^{-1})^{-1} = g_1g_2^{-1}(g_2Ag_2^{-1})g_2g_1^{-1} = g_1Ag_1^{-1} = A$$

hence $g_1g_2^{-1} \in N_G(A)$. So $N_G(A) \leq G$.

- (examples)
 - If G is abelian
 - * Z(G) = G
 - * $C_G(A) = N_G(A) = G$ for any subset A $(gag^{-1} = gg^{-1}a = a$ for all $a \in A$, $g \in G$)
 - $C_{Q_8}(i) = \{\pm 1, \pm i\}$
 - Let $G = D_8$ and $A = \{1, r, r^2, r^3\} \leq G$ be subgroup of rorations
 - $* C_{D_8}(A) = A$
 - * $N_{D_8}(A) = D_8$
 - $* Z(D_8) = \{1, r^2\}$

Proof. (1) Since all powers of r commutes with each other, $A \leq C_{D_8}(A)$. since $sr^i = r^{-i}s \neq r^is$, s does not commute with any rotation, so $s \notin C_{D_8}(A)$. In fact, any $sr^i \notin C_{D_8}(A)$ where $i \in \{0, 1, 2, 3\}$. If assume for contradiction, $s = (sr^i)(r^{-i}) \in C_{D_8}(A)$, a contradiction. Hence $C_{D_8} = A$. (2) Note, $A \leq N_{D_8}(A)$ by fact that centeralizer is contained in normalizer. Now consider

$$sAs^{-1} = \{s1s^{-1}, srs^{-1}, sr^2s^{-1}, sr^3s^{-1}\} = \{1, r^3, r^2, r\} = A$$

so that $s \in N_{D_8}$. Since $r, s \in N_{D_8}(A)$ and N_{D_8} is closed under multiplication (its a subgroup!), $s^i r^j \in N_{D_8}$ for all i, j. $D_8 \leq N_{D_8}$, hence $N_{D_8}(A) = D_8$ (3) Note, $Z(D_8) \leq A$ by fact that center is contained in the centralizer. Note $sr = r^{-1}s = r^3s \neq rs$ and $sr^3 = r^{-3}s = rs \neq r^3s$ hence $r, r^3 \notin Z(D_8)$ (but $sr^2 = r^{-2}s = r^2s$). Therefore $Z(D_8) \leq \{1, r^2\}$. The reverse inclusion holds by 1 (and r^2) commutes with r and s. Since r, s generates D_8 , every element of D_8 commutes with 1 (and r^2) hence $\{1, r^2\} \leq Z(D_8)$ and so equality holds.

- Let $G = S_3$ and $A = \{1, (1\ 2)\},\$
 - $* C_{S_3}(A) = A$
 - $* N_{S_3}(A) = A$
 - $* Z(S_3) = \{1\}$

Proof. (1) Both 1 and (1 2) commutes with all of A hence $A \leq C_{S_3}(A)$ (for $a, g = (1\ 2), gag^{-1} = (1\ 2)(1\ 2)(2\ 1) = (1\ 2)$, commutativity with a = 1 or g = 1 is trivial). To show $C_{S_3}(A) \leq A$, enough to show that both (2 3) and (1 3) do not commute with all elements of A, specifically (1 2) (by fact that transpositions generates S_3). (2 3)(1 2) = (1 3 2) \neq (1 2 3) = (1 2)(2 3) similarly for (1 3). Alternatively, by Lagrange theorem, $|C_{S_3}(A)| \mid |S_3| = 6$ and $2 = |A| \mid |C_{S_3}(A)|$. Possible values for $|C_{S_3}(A)|$ are 2 or 6. If latter is true, then $C_{S_3}(A) = S_3$ but this is a contradiction since (2 3) does not commute with (1 2). So $|C_{S_3}(A)| = 2$ hence $C_{S_3}(A) = A$. (2) Note $N_{S_3}(A) = A$ because $\sigma \in N_{S_3}(A)$ if and only if

$$\sigma A \sigma^{-1} = \left\{ \sigma 1 \sigma^{-1}, \sigma(1 \ 2) \sigma^{-1} \right\} = \left\{ 1, (1 \ 2) \right\} = A$$

if and only if $\sigma(1\ 2)\sigma^{-1}=(1\ 2)$, i.e. $\sigma\in C_{S_3}(A)=A$. (3) $Z(S_3)\leq C_{S_3}(A)=A$ and (1\ 2) $\not\in Z(S_3)$

Definition. (Stabilizers and Kernels of Group Actions)

1. (stabilizer) If G is a group acting on a set S and $s \in S$ is a fixed element, the stabilizer of s in G is

$$G_s = \{ g \in G \mid g \cdot s = s \}$$

2. (kernel) of action of G on S is defined as

$$\ker \varphi = \{g \in G \mid g \cdot s = s \text{ for all } s \in S\}$$

3. (centralizers and normalizers as kernels of some group action)

(a) (normalizer) Let $G \curvearrowright \mathcal{P}(G)$ by conjugation, i.e. for any $g \in G$ and $B \subset G$

$$g: B \to gBg^{-1}$$
 where $gBg^{-1} = \{gbg^{-1} \mid b \in B\}$

This is a group action.

The normalizer of G on A is the stabilizer of A when G acts on $\mathcal{P}(G)$ by conjugation , i.e. $N_G(A) = G_s$ where $s = A \subset \mathcal{P}(G)$. Therefore $N_G(A) \leq G$

(b) (centralizer) Let $N_G(A) \curvearrowright A$ by conjugation, i.e. for any $g \in N_G(A)$ and $a \in A$

$$g: a \to gag^{-1}$$

which maps A to A by definition of $N_G(A)$ fixing A and so gives an action on A. The centralizer of G on A is simply the kernel of $N_G(A)$ acting on A by conjugation.

$$\ker(G \curvearrowright S) = \{g \in G \mid g \cdot s = s \text{ for all } s \in S\} = \{g \in G \mid gsg^{-1} = s \text{ for all } s \in S\} = C_G(S)$$

Since $C_G(A) \leq N_G(A)$ and $N_G(A) \leq G$, we have $C_G(A) \leq G$

- (c) (center) The center of G is the kernel of G acting on S = G by conjugation
- (theorem) $\ker(G \curvearrowright S) \leq G$
- (theorem) $G_s \le G$ ($1 \in G_s$ and $(xy^{-1}) \cdot s = (xy^{-1}) \cdot (y \cdot s) = x \cdot s = s$ for any $x, y \in G_s$)
- (examples)
 - Let $G = D_8$ and $A = \{1, 2, 3, 4\}$ the vertices of a square. Then the stabilizer of any vertex $a \in A$ is the subgroup $\{1, t\} \leq D_8$, where t is the reflection about line of symmetry passing through a and center of the square. The kernel of the action is just the identity
 - Let $G = D_8$ and $A = \{\{1,3\}, \{2,4\}\}$ be the two unordered pairs of opposite vertices. The kernel of the action of G on A is the subgroup $\{1, s, r^2, sr^2\}$ and for any $a \in A$, the stabilizer of a in D_8 is equal to the kernel of the action

3 Cyclic Groups and Cyclic Subgroups

Definition. (cyclic group) A group H is cyclic if H can be generated by a single element, i.e. there is some element $x \in H$ such that $H = \{x^n \mid n \in \mathbb{Z}\}$ in multiplicative notation (or that $H = \{nx \mid n \in \mathbb{Z}\}$ in additive notation). We write $H = \langle x \rangle$ and say H is generated by x and x is a generator. For any $n \in \mathbb{Z}^+$, let Z_n be the cyclic group of order n (written multiplicatively)

- (fact) A cyclic group may have more than one generator $(H = \langle x \rangle \text{ implies } H = \langle x^{-1} \rangle)$
- (fact) not all powers of the generator are distinct, i.e. possibly $x^n = x^m$ where $n \neq m$
- (fact) cyclic group is abelian (law of exponent)
- (examples)
 - all rotations of a regular n-gon $H = \langle r \rangle = \{1, r, r^2, \cdots, r^{n-1}\}$ is a cyclic subgroup of D_{2n}
 - * |H| = |r| = n
 - * we can reduce arbitrary powers of a generator in a finite cyclic group to the least residual power, i.e. $r^t = r^{nq+k} = (r^n)^q r^k = 1^q r^k = r^k$ for some $0 \le k < n$
 - $-H = \mathbb{Z} = \langle 1 \rangle$ is a cyclic group, since any element in H can be written as $n \cdot 1$.
 - $* |H| = |1| = \infty$
- (proposition) order of a cyclic group is the order of its generator, i.e. if $H = \langle x \rangle$, then |H| = |x|
 - 1. $(|H| = n < \infty)$: $x^n = 1$ and $1, x, x^2, \dots, x_{n-1}$ are distinct
 - 2. $(|H| = \infty)$: $x^n \neq 1$ for all $n \neq 0$ and $x^a \neq x^b$ for all $a \neq b \in \mathbb{Z}$

- (proposition) Let G be a group. Let $m, n \in \mathbb{Z}$, then
 - 1. $x^m = 1$, $x^n = 1$ implies $x^{(m,n)} = 1$ (by Euclidean Algo, $x^{(m,n)} = x^{mr+ns} = (x^m)^r + (x^n)^s = 1^r 1^s = 1$)
 - 2. $x^m = 1$ implies $|x| \mid m$ (let n = |x|, by previous, $x^{(n,m)} = 1$, 0 < d < n implies $n = d \mid m$ by qcd)

We can say something about the power m when we have we know $x^m = 1$

- (theorem) two cyclic group of same order are isomorphic (both finite and infinite case)
 - (examples)
 - $* (Z_n, \times) \cong (\mathbb{Z}/n\mathbb{Z}, +)$
 - $* (\langle x \rangle, \times) \cong (\mathbb{Z}, +)$

Proof.

(finite case) if $\langle x \rangle, \langle y \rangle$ are cyclic group of order $n \in \mathbb{Z}^+$, show φ is an isomorphism

$$\varphi: \langle x \rangle \to \langle y \rangle$$
$$x^k \mapsto y^k$$

- (well defined) let $x^r = x^s$ for some $r, s \in \mathbb{Z}$ and show $\varphi(x^r) = \varphi(x^s)$. $x^{r-s} = 1$, hence $n \mid r-s$ and write r-s = tn, then $\varphi(x^r) = \varphi(x^{tn+s}) = y^{tn+s} = (y^n)^t y^s = y^s = \varphi(x^s)$
- (homomorphism) $\varphi(x^ax^b) = \varphi(x^{a+b}) = y^{a+b} = y^ay^b = \varphi(x^a)\varphi(x^b)$
- (bijection) φ surjective since any y^k is image of x^k under φ . As $|\langle x \rangle| = |\langle y \rangle| = n$, φ is bijective

(infinite case) If $\langle x \rangle$ is an infinite cyclic group, show φ is an isomorphism

$$\varphi: \mathbb{Z} \to \langle x \rangle$$
$$k \mapsto x^k$$

- (well-defined) no ambiguity on \mathbb{Z}
- (homomorphism) by law of exponent
- (bijection) φ surjective by definition of cyclic group. φ injective by previous proposition, i.e. $x^a \neq x^b$ for all distinct $a, b \in \mathbb{Z}$.
- (proposition) Let G be a group, $x \in G$, and $a \in \mathbb{Z} \{0\}$
 - 1. If $|x| = \infty$, then $|x^a| = \infty$
 - 2. If $|x| = n < \infty$, then $|x^a| = \frac{n}{(n,a)}$
 - 3. (special case to 2) if $|x| = n < \infty$ and $a \mid n$ where $a \in \mathbb{Z}^+$, then $|x^a| = \frac{n}{a}$ ((n, a) = a)

Intuitively, we can say something about the order of x^a when we know the order of x

Proof. (1) by contradiction, assume $|x^a| = 1$, then $1 = (x^a)^m = x^{am}$, similarly, $x^{-am} = (x^{am})^{-1} = 1^{-1} = 1$. Either am or -am is positive, so some positive power of x is the identity, contradicting $|x| = \infty$. (2) Let $y = x^a$ and (n, a) = d and n = db and a = dc. Note (b, c) = 1. Let |y| = k we show b and k divides each other hence proving equality

- $-(k\mid b)\;y^b=x^{ab}=x^{dcb}=x^{nc}=1^c=1.$ by previous proposition on $\langle y\rangle,\,k\mid b$
- $-(b \mid k) x^{ak} = y^k = 1$. by previous proposition on $\langle x \rangle$, $n \mid ak \Rightarrow db \mid dck \Rightarrow b \mid ck$, so $(b,c) = 1 \Rightarrow b \mid k$.
- (proposition)