M1 - Analyse avancée

TD 8: DISTRIBUTIONS

EXERCISE 1 (Warming).

- 1. Let H be the Heaviside function. Show that $H' = \delta_0$ in $\mathcal{D}'(\mathbb{R})$.
- 2. Give an example of distribution of order n for all $n \in \mathbb{N}$.
- 3. Let $U \subset \mathbb{R}^d$ be an open set and $T \in \mathcal{D}'(U)$. We consider $f \in C^{\infty}(U)$ which vanishes on the support of T. Do we have fT = 0 in $\mathcal{D}'(U)$?

EXERCISE 2. Let $U \subset \mathbb{R}^d$ be an open set. Prove that we have an injection of $L^1_{loc}(U)$ in $\mathcal{D}'(U)$.

EXERCISE 3 (An example of distribution). Show that the formula

$$\langle \alpha, u \rangle = \sum_{n \ge 0} u^{(n)}(n), \quad u \in \mathcal{D}(\mathbb{R}),$$

defines a distribution $\alpha \in \mathcal{D}'(\mathbb{R})$. What about its order?

EXERCISE 4 (Convergence of distributions). Do the following series

$$\sum_{n\geq 0} \delta_n^{(n)} \quad \text{and} \quad \sum_{n\geq 0} \delta_0^{(n)},$$

converge in $\mathcal{D}'(\mathbb{R})$?

EXERCISE 5 (Non-negative distributions).

- 1. Check that distributions of order 0 are locally signed measures.
- 2. Let $U \subset \mathbb{R}^d$ be an open set and $\alpha \in \mathcal{D}'(U)$. We say that α is non-negative if and only if for all non-negative test function $u \in \mathcal{D}(U)$, we have $\langle \alpha, u \rangle \geq 0$. Deduce from the previous question that any non-negative distribution is a locally signed measure.

EXERCISE 6 (Principal value of 1/x). We define p. v.(1/x) as follows

$$\forall u \in \mathcal{D}(\mathbb{R}), \quad \langle \text{p.v.}(1/x), u \rangle = \lim_{\varepsilon \to 0} \left(\int_{|x| > \varepsilon} \frac{u(x)}{x} \, \mathrm{d}x \right).$$

- 1. Show that the above limit exists and defines a distribution. Compute its order.
- 2. Show that p. v.(1/x) is the derivative of $\log |x|$ in the sense of distributions.
- 3. Compute x p. v.(1/x).
- 4. Let $\alpha \in \mathcal{D}'(\mathbb{R})$ which satisfies $x\alpha = 1$. Show that there exists a constant $c \in \mathbb{R}$ such that $\alpha = \text{p. v.}(1/x) + c \delta_0$.
- 5. Show that $|x|^{\alpha-2}x \to \text{p. v.}(1/x)$ in $\mathcal{D}'(\mathbb{R})$ as $\alpha \to 0^+$.

EXERCISE 7. Solve the equation $\alpha' = 0$ in $\mathcal{D}'(\mathbb{R})$.

EXERCISE 8 (Jump formula). Let $f: \mathbb{R} \to \mathbb{R}$ be a function of class C^1 on \mathbb{R}^* . We say that f has a jump at 0 if the limits $f(0^{\pm}) = \lim_{x\to 0^{\pm}} f(x)$ exist, and we denote by $[[f(0)]] = f(0^+) - f(0^-)$ the height of the jump. We denote by $\{f'\}$ the derivative of the regular part of f, *i.e.*

$$\{f'\}(x) = \begin{cases} f'(x) & \text{if } f \text{ is differentiable at } x \\ 0 & \text{otherwise} \end{cases}$$

1. Show that in the sense of distributions:

$$f' = \{f'\} + [[f(0)]]\delta_0.$$

2. Let $(x_n)_{n\in\mathbb{Z}}$ be an increasing sequence such that $\lim_{n\to-\infty} x_n = -\infty$ and $\lim_{n\to+\infty} x_n = +\infty$. Let $f:\mathbb{R}\to\mathbb{R}$ be a piecewise C^1 function presenting jumps at every x_n . Show that in the sense of distributions,

$$f' = \{f'\} + \sum_{n \in \mathbb{Z}} [[f(x_n)]] \delta_{x_n}.$$

EXERCISE 9 (Punctual support). Let $\alpha \in \mathcal{D}'(\mathbb{R}^d)$ such that supp $\alpha = \{0\}$. We consider $\psi \in \mathcal{D}(\mathbb{R}^d)$ such that $\psi = 1$ in a neighborhood of $\overline{B(0,1)}$ and supp $\psi \subset B(0,2)$. We set $\psi_r(x) = \psi(x/r)$ for all r > 0 and $x \in \mathbb{R}^n$.

- 1. Recall why α has a finite order, which will be denoted $m \geq 0$ in the following.
- 2. Show that for all r > 0, $\psi_r \alpha = \alpha$.
- 3. Let $u \in \mathcal{D}(\mathbb{R}^d)$ satisfying that for all $p \in \mathbb{N}^n$ with $|p| \leq m$, $\partial^p u(0) = 0$. Check that $\langle \alpha, u \rangle = 0$.
- 4. Prove that there exist some real numbers $a_p \in \mathbb{R}$ such that $\alpha = \sum_{|p| \le m} a_p \delta_0^{(p)}$.

EXERCISE 10 (Support and order). Let α be the linear map defined for all $u \in \mathcal{D}(\mathbb{R})$ by

$$\langle \alpha, u \rangle = \lim_{n \to +\infty} \left(\sum_{j=1}^{n} u \left(\frac{1}{j} \right) - nu(0) - (\log n)u'(0) \right).$$

- 1. Check that $\langle \alpha, u \rangle$ is well defined for all $u \in \mathcal{D}(\mathbb{R})$, and that α is a distribution of order less than or equal to 2.
- 2. What is the support S of α ?
- 3. What is the order of α ?

 Hint: Use test functions of the form

$$u_k(x) = \psi(x) \int_0^x \int_0^y \varphi(kt) dtdy,$$

where $\varphi \in \mathcal{D}(0,1)$ has integral 1 and $\psi \in \mathcal{D}(-1,2)$ satisfies $0 \le \psi \le 1$ and $\psi = 1$ on [0,1].