Лекции курса «Алгебра», лекторы И.В. Аржанцев и Р.С. Авдеев

ФКН НИУ ВШЭ, 1-й курс ОП ПМИ, 4-й модуль, 2014/2015 учебный год

Лекция 6

Кольца. Делители нуля, обратимые элементы, нильпотенты и идемпотенты. Поля и алгебры. Идеалы и факторкольца. Теорема о гомоморфизме. Центр алгебры матриц над полем. Простота алгебры матриц над полем.

Определение 1. *Кольцом* называется множество R с двумя бинарными операциями «+» (сложение) и «×» (умножение), обладающими следующими свойствами:

- 1) (R, +) является абелевой группой (называемой аддитивной группой кольца R);
- 2) выполнены левая и правая дистрибутивности, т.е.

$$a(b+c)=ab+ac$$
 и $(b+c)a=ba+ca$ для всех $a,b,c\in R$.

В этом курсе мы рассматриваем только ассоциативные кольца с единицей, поэтому дополнительно считаем, что выполнены ещё два свойства:

- 3) a(bc) = (ab)c для всех $a, b, c \in R$ (ассоциативность умножения);
- 4) существует такой элемент $1 \in R$ (называемый единицей), что

$$a1 = 1a = a$$
 для всякого $a \in R$.

3 амечание 1. В произвольном кольце <math>R выполнены равенства

$$a0 = 0a = 0$$
 для всякого $a \in R$.

В самом деле, имеем a0 = a(0+0) = a0+a0, откуда 0 = a0. Аналогично устанавливается равенство 0a = 0.

Замечание 2. Если кольцо R содержит более одного элемента, то $0 \neq 1$. Это следует из соотношений (1) и (2).

Примеры колец:

- (1) числовые кольца \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ;
- (2) кольцо \mathbb{Z}_n вычетов по модулю n;
- (3) кольцо $\mathrm{Mat}(n\times n,\mathbb{R})$ матриц с коэффициентами из $\mathbb{R};$
- (4) кольцо $\mathbb{R}[x]$ многочленов от переменной x с коэффициентами из \mathbb{R} ;
- (5) кольцо $\mathbb{R}[[x]]$ формальных степенных рядов от переменной x с коэффициентами из \mathbb{R} :

$$\mathbb{R}[[x]] := \{ \sum_{i=0}^{\infty} a_i x^i \mid a_i \in \mathbb{R} \};$$

(6) кольцо $\mathcal{F}(M,\mathbb{R})$ всех функций из множества M во множество \mathbb{R} с операциями поточечного сложения и умножения:

$$(f_1+f_2)(m):=f_1(m)+f_2(m); \quad (f_1f_2)(m):=f_1(m)f_2(m)$$
 для всех $f_1,f_2\in\mathcal{F}(M,\mathbb{R}), m\in M.$

3амечание 3. В примерах (3)–(6) вместо $\mathbb R$ можно брать любое кольцо, в частности $\mathbb Z$, $\mathbb Q$, $\mathbb C$, $\mathbb Z_n$.

Замечание 4. Обобщая пример (4), можно рассматривать кольцо $\mathbb{R}[x_1,\ldots,x_n]$ многочленов от нескольких переменных x_1,\ldots,x_n с коэффициентами из \mathbb{R} .

Определение 2. Кольцо R называется *коммутативным*, если ab = ba для всех $a, b \in R$.

Все перечисленные в примерах (1)–(6) кольца, кроме $\mathrm{Mat}(n\times n,\mathbb{R})$ при $n\geqslant 2$, коммутативны. Пусть R — кольцо.

Определение 3. Элемент $a \in R$ называется *обратимым*, если найдётся такой $b \in R$, что ab = ba = 1.

3амечание 5. Все обратимые элементы кольца R образуют группу относительно операции умножения.

Определение 4. Элемент $a \in R$ называется левым (соответственно правым) делителем нуля, если $a \neq 0$ и найдётся такой $b \in R$, $b \neq 0$, что ab = 0 (соответственно ba = 0).

Замечание 6. В случае коммутативных колец понятия левого и правого делителей нуля совпадают, поэтому говорят просто о делителях нуля.

Замечание 7. Все делители нуля в R необратимы: если $ab=0, a\neq 0, b\neq 0$ и существует a^{-1} , то получаем $a^{-1}ab=a^{-1}0$, откуда b=0 — противоречие.

Определение 5. Элемент $a \in R$ называется *нильпотентом*, если $a \neq 0$ и найдётся такое $m \in \mathbb{N}$, что $a^m = 0$.

Замечание 8. Всякий нильпотент в R является делителем нуля: если $a \neq 0$, $a^m = 0$ и число m наименьшее с таким свойством, то $m \geqslant 2$ и $a^{m-1} \neq 0$, откуда $aa^{m-1} = a^{m-1}a = 0$.

Определение 6. Элемент $a \in R$ называется *идемпотентом*, если $a^2 = a$.

Определение 7. *Полем* называется коммутативное ассоциативное кольцо K с единицей, в котором всякий ненулевой элемент обратим.

Замечание 9. Тривиальное кольцо $\{0\}$ полем не считается, поэтому $0 \neq 1$ в любом поле.

Примеры полей: \mathbb{Q} , \mathbb{R} , \mathbb{C} .

Предложение 1. Кольцо вычетов \mathbb{Z}_n является полем тогда и только тогда, когда n- простое число.

 $\underline{\mathcal{A}}$ оказательство. Если число n составное, то n=mk, где 1< m,k< n. Тогда $\overline{m}\overline{k}=\overline{n}=\overline{0}$. Следовательно, \overline{k} и \overline{m} — делители нуля в \mathbb{Z}_n , ввиду чего не все ненулевые элементы там обратимы.

Если n=p — простое число, то возьмём произвольный ненулевой вычет $\overline{a}\in\mathbb{Z}_p$ и покажем, что он обратим. Рассмотрим вычеты

$$(3) \overline{1}\overline{a}, \overline{2}\overline{a}, \dots, \overline{(p-1)}\overline{a}.$$

Если $\overline{ra} = \overline{sa}$ при $1 \leqslant r, s \leqslant p-1$, то число (r-s)a делится на p. В силу взаимной простоты чисел a и p получаем, что число r-s делится на p. Тогда из условия $|r-s| \leqslant p-2$ следует, что r=s. Это рассуждение показывает, что все вычеты (3) попарно различны. Поскольку все они отличны от нуля, среди них должна найтись единица: существует такое $b \in \{1, \ldots, p-1\}$, что $\overline{ba} = \overline{1}$. Это и означает, что вычет \overline{a} обратим. \square

Определение 8. Алгеброй над полем K (или кратко K-алгеброй) называется множество A с операциями сложения, умножения и умножения на элементы поля K, обладающими следующими свойствами:

- 1) относительно сложения и умножения на элементы из K множество A есть векторное пространство;
- 2) относительно сложения и умножения A есть кольцо;
- $3\ (\lambda a)b=a(\lambda b)=\lambda(ab)$ для любых $\lambda\in K$ и $a,b\in A.$

Pазмерностью алгебры A называется её размерность как векторного пространства над K. (Обозначение: $\dim_K A$.)

Примеры. 1) Алгебра матриц $\mathrm{Mat}(n \times n, K)$ над произвольным полем K. Её размерность равна n^2 . 2) Алгебра K[x] многочленов от переменной x над произвольным полем K. Её размерность равна ∞ .

Определение 9. *Подкольцом* кольца R называется всякое подмножество $R' \subseteq R$, замкнутое относительно операций сложения и умножения (т. е. $a+b \in R'$ и $ab \in R'$ для всех $a,b \in R'$) и являющееся кольцом относительно этих операций. *Подполем* называется всякое подкольцо, являющееся полем.

Например, $\mathbb Z$ является подкольцом в $\mathbb Q$, а скалярные матрицы образуют подполе в кольце $\mathrm{Mat}(n\times n,\mathbb R)$.

3амечание 10. Если K — подполе поля F, то F является алгеброй над K. Так, поле $\mathbb C$ является бесконечномерной алгеброй над $\mathbb Q$, тогда как над $\mathbb R$ имеет размерность 2.

Определение 10. *Подалгеброй* алгебры A (над полем K) называется всякое подмножество $A' \subseteq A$, замкнутое относительно всех трёх имеющихся в A операций (сложения, умножения и умножения на элементы из K) и являющееся алгеброй (над K) относительно этих операций.

Легко видеть, что подмножество $A' \subseteq A$ является алгеброй тогда и только тогда, когда оно является одновременно подкольцом и векторным подпространством в A.

Гомоморфизмы колец, алгебр определяются естественным образом как отображения, сохраняющие все операции.

Упраженение 1. Сформулируйте точные определения гомоморфизма колец и гомоморфизма алгебр.

Определение 11. *Изоморфизмом* колец, алгебр называется всякий гомоморфизм, являющийся биекцией.

В теории групп нормальные подгруппы обладают тем свойством, что по ним можно «факторизовать». В этом смысле аналогами нормальных подгрупп в теории колец служат идеалы.

Определение 12. Подмножество I кольца R называется (двусторонним) идеалом, если оно является подгруппой по сложению и $ra \in I$, $ar \in I$ для любых $a \in I$, $r \in R$.

Замечание 11. В некоммутативных кольцах рассматривают также левые и правые идеалы.

В каждом кольце R есть *несобственные* идеалы I=0 и I=R. Все остальные идеалы называются собственными.

Упражнение 2. Пусть <math>R — кольцо и I — идеал в R. Докажите, что следующие три условия эквивалентны:

- (1) I = R;
- (2) I содержит хотя бы один обратимый элемент;
- (3) $I \ni 1$.

Пусть R — коммутативное кольцо. С каждым элементом $a \in R$ связан идеал $(a) := \{ra \mid r \in R\}$ (проверьте, что это действительно идеал!).

Определение 13. Идеал I называется *главным*, если существует такой элемент $a \in R$, что I = (a). (В этой ситуации говорят, что I порождён элементом a.)

Пример. В кольце \mathbb{Z} подмножество $k\mathbb{Z}$ ($k \in \mathbb{Z}$) является главным идеалом, порождённым элементом k. Более того, все идеалы в \mathbb{Z} являются главными.

3амечание 12. Главный идеал (a) является несобственным тогда и только тогда, когда a=0 или a обратим.

Более общо, с каждым подмножеством $S \subseteq R$ связан идеал

$$(S) := \{r_1 a_1 + \ldots + r_k a_k \mid a_i \in S, r_i \in R, k \in \mathbb{N}\}.$$

(Проверьте, что это действительно идеал!) Это наименьший по включению идеал в R, содержащий подмножество S. В этой ситуации говорят, что идеал I=(S) порождён подмножеством S.

Вернёмся к случаю произвольного кольца R. Поскольку любой идеал I является подгруппой абелевой группы (R,+), мы можем рассмотреть факторгруппу R/I. Введём на ней умножение по формуле

$$(a+I)(b+I) := ab + I.$$

Покажем, что это определение корректно. Пусть элементы $a',b' \in R$ таковы, что a'+I=a+I и b'+I=b+I. Проверим, что a'b'+I=ab+I. Заметим, что a'=a+x и b'=b+y для некоторых $x,y \in I$. Тогда

$$a'b' + I = (a+x)(b+y) + I = ab + ay + xb + xy + I = ab + I,$$

поскольку $ay, xb, xy \in I$ в силу определения идеала.

Упраженение 3. Проверьте, что множество R/I является кольцом относительно имеющейся там операции сложения и только что введённой операции умножения.

Определение 14. Кольцо R/I называется факторкольцом кольца R по идеалу I.

Пример. $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$.

Пусть $\varphi \colon R \to R'$ — гомоморфизм колец. Тогда определены его ядро $\operatorname{Ker} \varphi = \{r \in R \mid \varphi(r) = 0\}$ и образ $\operatorname{Im} \varphi = \{\varphi(r) \mid r \in R\} \subseteq R'$.

Лемма 1. \mathcal{A} дро $\text{Ker } \varphi$ является идеалом в R.

Доказательство. Так как φ — гомоморфизм абелевых групп, то $\ker \varphi$ является подгруппой в R по сложению. Покажем теперь, что $ra \in \ker \varphi$ и $ar \in \ker \varphi$ для произвольных элементов $a \in \ker \varphi$ и $r \in R$. Имеем $\varphi(ra) = \varphi(r)\varphi(a) = \varphi(r)0 = 0$, откуда $ra \in \ker \varphi$. Аналогично получаем $ar \in \ker \varphi$.

Упражнение 4. Проверьте, $\operatorname{Im} \varphi$ — подкольцо в R'.

Теорема о гомоморфизме для колец. Пусть $\varphi \colon R \to R'$ – гомоморфизм колец. Тогда имеет место изоморфизм

$$R/\operatorname{Ker} \varphi \cong \operatorname{Im} \varphi$$
.

Доказательство. Положим для краткости $I=\mathrm{Ker}\, \varphi$ и рассмотрим отображение

$$\pi: R/I \to \operatorname{Im} \varphi, \quad a+I \mapsto \varphi(a).$$

Из доказательства теоремы о гомоморфизме для групп следует, что отображение π корректно определено и является изоморфизмом абелевых групп (по сложению). Покажем, что π — изоморфизм колец. Для этого остаётся проверить, что π сохраняет операцию умножения:

$$\pi((a+I)(b+I)) = \pi(ab+I) = \varphi(ab) = \varphi(a)\varphi(b) = \pi(a+I)\pi(b+I).$$

Пример 1. Пусть $R = \mathcal{F}(M, \mathbb{R})$. Зафиксируем произвольную точку $m_0 \in M$ и рассмотрим гомоморфизм $\varphi \colon R \to \mathbb{R}, \ f \mapsto f(m_0)$. Ясно, что гомоморфизм φ сюръективен. Его ядром является идеал I всех функций, обращающихся в нуль в точке m_0 . По теореме о гомоморфизме получаем $R/I \cong \mathbb{R}$.

Определение 15. Кольцо *R* называется *простым*, если в нём нет собственных (двусторонних) идеалов.

Пример. Всякое поле является простым кольцом.

Определение 16. *Центром* алгебры A над полем K называется её подмножество

$$Z(A) = \{a \in A \mid ab = ba$$
 для всех $b \in A\}.$

Теорема 1. Пусть K — поле, n — натуральное число и $A = \text{Mat}(n \times n, K)$ — алгебра квадратных матриц порядка n над полем K.

- (1) $Z(A) = \{\lambda E \mid \lambda \in K\}$, где E eдиничная матрица (в частности, <math>Z(A) oдномерное подпространcmвo в A);
- (2) алгебра А проста (как кольцо).

Доказательство. Для каждой пары индексов $i,j\in\{1,\ldots,n\}$ обозначим через E_{ij} соответствующую матричную единицу — такую матрицу, в которой на (i,j)-месте стоит единица, а на всех остальных местах — нули. Непосредственная проверка показывает, что

$$E_{ij}E_{kl} = \begin{cases} E_{il}, & \text{если } j = k; \\ 0, & \text{если } j \neq k. \end{cases}$$

Заметим, что матричные единицы образуют базис в A и всякая матрица $X=(x_{kl})$ представима в виде $X = \sum_{k,l=1}^{n} x_{kl} E_{kl}.$

(1) Пусть матрица $X = \sum_{k,l=1}^n x_{kl} E_{kl}$ лежит в Z(A). Тогда X коммутирует со всеми матричными единицами.

Выясним, что означает условие
$$XE_{ij}=E_{ij}X$$
. Имеем
$$XE_{ij}=(\sum_{k,l=1}^n x_{kl}E_{kl})E_{ij}=\sum_{k=1}^n x_{ki}E_{kj}; \qquad E_{ij}X=E_{ij}(\sum_{k,l=1}^n x_{kl}E_{kl})=\sum_{l=1}^n x_{jl}E_{il}.$$

Сравнивая правые части двух равенств, получаем $x_{ii}=x_{jj},\;x_{ki}=0$ при $k\neq i$ и $x_{jl}=0$ при $j\neq l.$ Поскольку эти равенства имеют место при любых значениях i, j, мы получаем, что матрица X скалярна, т. е. $X = \lambda E$ для некоторого $\lambda \in K$. С другой стороны, ясно, что всякая скалярная матрица лежит в Z(A).

(2) Пусть I — двусторонний идеал алгебры A. Если $I \neq \{0\}$, то I содержит ненулевую матрицу X. Покажем, что тогда I=A. Пусть индексы k,l таковы, что $x_{kl}\neq 0$. Тогда

$$E_{ik}XE_{lj} = E_{ik}(\sum_{p,q=1}^{n} x_{pq}E_{pq})E_{lj} = E_{ik}\sum_{p=1}^{n} x_{pl}E_{pj} = x_{kl}E_{ij} \in I.$$

Домножая $x_{kl}E_{ij}$ на скалярную матрицу $(x_{kl})^{-1}E$, мы получаем, что $E_{ij} \in I$. Из произвольности выбора i, j следует, что все матричные единицы лежат в I. Отсюда I = A, что и требовалось.

Список литературы

- [1] Э. Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002 (глава 1, § 3,4,6,8,9 и глава 9, § 2)
- [2] А. И. Кострикин. Введение в алгебру. Основы алгебры. М.: Наука. Физматлит, 1994 (глава 4, § 3)
- [3] А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000 (глава 4, § 1,4)
- [4] Сборник задач по алгебре под редакцией А.И. Кострикина. Новое издание. М.: МЦНМО, 2009 (глава 14, § 63-64)