3 Le plan et la droite dans l'espace

Dans un repère de l'espace, on considère un point $A(a_1; a_2; a_3)$ et deux vecteurs

non colinéaires
$$\vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$.

On appelle π le plan passant par le point A et de vecteurs directeurs \vec{u} et \vec{v} .

Équation paramétrique du plan

Pour tout point P(x; y; z) de l'espace, les conditions suivantes sont équivalentes :

- 1) Le point P appartient au plan π .
- 2) Les vecteurs \overrightarrow{AP} , \overrightarrow{u} et \overrightarrow{v} sont coplanaires.
- 3) Il existe $\lambda, \mu \in \mathbb{R}$ tels que $\overrightarrow{AP} = \lambda \overrightarrow{u} + \mu \overrightarrow{v}$, c'est-à-dire $\begin{pmatrix} x a_1 \\ y a_2 \\ z a_3 \end{pmatrix} = \begin{pmatrix} \lambda u_1 \\ \lambda u_2 \\ \lambda u_3 \end{pmatrix} + \begin{pmatrix} \mu v_1 \\ \mu v_2 \\ \mu v_3 \end{pmatrix}$.

4)
$$\begin{cases} x = a_1 + \lambda u_1 + \mu v_1 \\ y = a_2 + \lambda u_2 + \mu v_2 \\ z = a_3 + \lambda u_3 + \mu v_3 \end{cases}, \quad \lambda, \mu \in \mathbb{R}$$

Cette formule constitue l'équation paramétrique du plan π .

Équation cartésienne du plan

Pour tout point P(x;y;z) de l'espace, les conditions suivantes sont équivalentes :

- 1) Le point P appartient au plan π .
- 2) Les vecteurs \overrightarrow{AP} , \overrightarrow{u} et \overrightarrow{v} sont coplanaires.

3)
$$\begin{vmatrix} x - a_1 & u_1 & v_1 \\ y - a_2 & u_2 & v_2 \\ z - a_3 & u_3 & v_3 \end{vmatrix} = 0.$$

4) Avec
$$a = u_2 v_3 - u_3 v_2$$
, $b = u_3 v_1 - u_1 v_3$, $c = u_1 v_2 - u_2 v_1$ et $d = -a_1 (u_2 v_3 - u_3 v_2) - a_2 (u_3 v_1 - u_1 v_3) - a_3 (u_1 v_2 - u_2 v_1)$:
$$\boxed{a x + b y + c z + d = 0}$$

Cette expression s'appelle l'équation cartésienne du plan π .

Équation cartésienne du plan sous forme normale

Dans un repère orthonormé de l'espace, considérons un plan π défini par un point $A(a_1; a_2; a_3)$ et un vecteur normal $\vec{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

Pour tout point $P(x\,;y\,;z)$ de l'espace, les conditions suivantes sont équivalentes :

- 1) Le point P appartient au plan π .
- 2) $\vec{n} \perp \overrightarrow{AP}$

3)
$$0 = \vec{n} \cdot \overrightarrow{AP} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \cdot \begin{pmatrix} x - a_1 \\ y - a_2 \\ z - a_3 \end{pmatrix} = a(x - a_1) + b(y - a_2) + c(z - a_3)$$

4) ax + by + cz + d = 0 avec $d = -a_1 a - a_2 b - a_3 c$

Rappel: si \vec{u} et \vec{v} sont deux vecteurs directeurs d'un plan, le produit vectoriel $\vec{u} \times \vec{v} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$ fournit un vecteur orthogonal aux vecteurs \vec{u} et \vec{v} .

3.1 Trouver une équation paramétrique et une équation cartésienne du plan :

1) qui passe par A(1; -2; 3) et admet pour vecteurs directeurs
$$\vec{u} = \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix}$$

et
$$\vec{v} = \begin{pmatrix} 5\\8\\-3 \end{pmatrix}$$
;

- 2) qui passe par A(-6;3;-2), B(5;2;1) et C(2;5;2);
- 3) qui passe par A(-1; -4; 1) et de vecteur normal $\vec{n} = \begin{pmatrix} 5 \\ -2 \\ 5 \end{pmatrix}$;
- 4) qui passe par A(-3;5;-4) et est parallèle au plan de 2);
- 5) qui passe par A(3;1;1) et est perpendiculaire à la droite BC avec B(1;0;5) et C(3;-3;8).
- 6) qui passe par A(7; -4; 6) et est parallèle au plan Oxz;
- 7) qui passe par l'origine et est perpendiculaire à chacun des plans d'équations respectives 3x-2y+5z-17=0 et x-y-z+3=0;
- 8) qui passe par A(2;5;1) et par B(-1;7;0) et qui est parallèle au vecteur $\vec{v} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix};$
- 9) qui passe par l'origine et le point A(1;1;1) et qui est perpendiculaire au plan d'équation x-y+z=0.

- 3.2 On donne les six points A(1;4;1), B(-2;-8;3), C(-5;-11;5), P(3;5;-1), Q(3;-11;-1) et R(0;-3;1). Montrer que les plans ABC et PQR sont parallèles.
- 3.3 On donne les points O(0;0;0), A(1;0;0), B(0;1;0) et C(0;0;1). Soient α le plan passant par A et parallèle au plan OBC, β le plan passant par B et parallèle au plan OAC et γ le plan passant par C et parallèle au plan OAB.
 - 1) Déterminer les coordonnées du point d'intersection P des trois plans α , β et γ .
 - 2) Le point P appartient-il au plan ABC?
- 3.4 On donne les équations de deux plans; déterminer si ces plans sont sécants, strictement parallèles ou confondus:

1)
$$6x - 4y + 5z + 6 = 0$$
 $-12x + 8y - 10z - 9 = 0$

2)
$$2x - 8y + 4z - 7 = 0$$
 $x - 4y - z + 3 = 0$

3)
$$-x + 5y - 3z + 45 = 0$$
 $x - 5y + 3z - 45 = 0$

4)
$$3x - 8 = 0$$
 $x + 3 = 0$

$$\begin{cases} x = 4 + 2\lambda + 5\mu \\ y = 2 + 3\lambda &, \lambda, \mu \in \mathbb{R} \\ z = -3\mu \end{cases}$$

5)
$$3x - 2y + 5z - 4 = 0$$

$$\begin{cases}
x = 4 + 2\lambda + 5\mu \\
y = 2 + 3\lambda \\
z = -3\mu
\end{cases}$$
6)
$$\begin{cases}
x = 1 + 6\lambda - 2\mu \\
y = 2 - 2\lambda + 2\mu \\
z = 3 + 2\lambda - \mu
\end{cases}$$

$$\lambda, \mu \in \mathbb{R}$$

$$\begin{cases}
x = 1 + 3\lambda - 2\mu \\
y = 2 - \lambda + \mu \\
z = 3 + \lambda - \mu
\end{cases}$$

Calculer les coordonnées du point d'intersection des plans x-2y+z-7=0, 3.5 2x + y - z + 2 = 0 et x - 3y + 2z - 11 = 0.

> Dans un repère de l'espace, on considère un point $A(a_1; a_2; a_3)$ et un vecteur non nul $\vec{d} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$. On

> appelle d la droite passant par le point A et de vecteur directeur d.

Équation paramétrique de la droite

Pour tout point P(x;y;z) de l'espace, les conditions suivantes sont équivalentes:

- 1) Le point P appartient à la droite d.
- 2) Les vecteurs \overrightarrow{AP} et \overrightarrow{d} sont colinéaires.
- 3) Il existe $\lambda \in \mathbb{R}$ tel que $\overrightarrow{AP} = \lambda \overrightarrow{d}$, c'est-à-dire $\begin{pmatrix} x a_1 \\ y a_2 \\ z a_3 \end{pmatrix} = \begin{pmatrix} \lambda d_1 \\ \lambda d_2 \\ \lambda d_2 \end{pmatrix}$.

4)
$$\begin{cases} x = a_1 + \lambda d_1 \\ y = a_2 + \lambda d_2 \\ z = a_3 + \lambda d_3 \end{cases}, \quad \lambda \in \mathbb{R}$$

Cette formule constitue l'équation paramétrique de la droite d.

Équations cartésiennes de la droite

Les équations cartésiennes de la droite s'obtiennent en éliminant le paramètre.

L'équation paramétrique équivaut à
$$\begin{cases} x - a_1 = \lambda d_1 \\ y - a_2 = \lambda d_2 \\ z - a_3 = \lambda d_3 \end{cases}$$

L'équation paramétrique équivaut à
$$\begin{cases} x - a_1 = \lambda \, d_1 \\ y - a_2 = \lambda \, d_2 \\ z - a_3 = \lambda \, d_3 \end{cases}$$
 Si $d_1 \neq 0$, $d_2 \neq 0$ et $d_3 \neq 0$, ce système revient à
$$\begin{cases} \frac{x - a_1}{d_1} = \lambda \\ \frac{y - a_2}{d_2} = \lambda \end{cases}$$
 d'où suivent
$$\frac{z - a_3}{d_3} = \lambda$$

les **équations cartésiennes** de la droite :
$$\boxed{\frac{x-a_1}{d_1} = \frac{y-a_2}{d_2} = \frac{z-a_3}{d_3}} \ .$$

Si
$$d_1 = 0$$
, alors on obtient l'équation cartésienne $x - a_1 = 0$;

si
$$d_2 = 0$$
, alors on trouve l'équation cartésienne $y - a_2 = 0$;

si
$$d_3 = 0$$
, alors on a l'équation cartésienne $z - a_3 = 0$.

Les équations cartésiennes d'une droite, système indéterminé de deux équations à trois inconnues, la caractérisent comme l'intersection de deux plans.

3.6 Déterminer l'équation paramétrique et les équations cartésiennes de la droite :

1) qui passe par A(1;2;3) et a pour vecteur directeur
$$\vec{d} = \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix}$$
;

2) qui passe par
$$A(2;3;5)$$
 et $B(1;5;7)$;

4) qui passe par
$$A(2;3;5)$$
 et est perpendiculaire au plan $3x - 2y + z = 0$

5) qui passe par l'origine et est perpendiculaire au plan
$$\begin{cases} x=&1+2\,\lambda-3\,\mu\\ y=-1+3\lambda-&\mu\\ z=&2+5\,\lambda-&\mu \end{cases};$$

6) qui passe par
$$A(-8; 10; -12)$$
 et est perpendiculaire au plan $z + 4 = 0$;

7) qui passe par
$$A(1;0;3)$$
 et est orthogonale aux droites g et h :

$$(g): \begin{cases} x = 1 + 2\lambda \\ y = 0 - \lambda \\ z = 3 + 2\lambda \end{cases}, \quad \lambda \in \mathbb{R} \qquad (h): \begin{cases} x = -1 + \mu \\ y = 2 + 3\mu \\ z = + \mu \end{cases}, \quad \mu \in \mathbb{R};$$

8) qui passe par
$$A(8; -4; 2)$$
 et qui est parallèle à l'intersection des plans $3x - y + z = 0$ et $x - y + z = 0$.

On donne une droite d par son équation paramétrique : $\begin{cases} x = 2 - 5\lambda \\ y = -1 + \lambda \\ z = 3\lambda \end{cases}$ 3.7

Déterminer le point de la droite d:

- 1) qui a une abscisse égale à 12;
- 2) qui a une ordonnée égale à 5;
- 3) qui a une cote égale à -2;
- 4) dont l'abscisse et la cote sont égales;
- 5) dont la cote est égale au double de l'ordonnée.
- 3.8 Déterminer l'équation paramétrique de la droite d qui passe par le point A(4; -7; 5)

$$(d_1): \begin{cases} x = 2 + \lambda \\ y = 1 + 2\lambda \\ z = 1 - \lambda \end{cases}, \quad \lambda \in \mathbb{R} \quad \text{et} \quad (d_2): \begin{cases} x = 4 + 3\mu \\ y = 3 + \mu \\ z = 3 + 2\mu \end{cases}, \quad \mu \in \mathbb{R}.$$

3.9 On donne deux droites. Indiquer si ces droites sont sécantes, strictement parallèles, confondues ou gauches.

1)
$$\begin{cases} x = 1 + 3\lambda \\ y = -2 - 5\lambda \\ z = 5 + \lambda \end{cases}$$
, $\lambda \in \mathbb{R}$
$$\begin{cases} x = -2 - 6\mu \\ y = 3 + 10\mu \\ z = 4 - 2\mu \end{cases}$$

2)
$$\begin{cases} x = 2 - 5 \lambda \\ y = 3 + 2 \lambda \\ z = 5 - 4 \lambda \end{cases}, \quad \lambda \in \mathbb{R}$$

$$\begin{cases} x = 2 - 5 \mu \\ y = 3 - 2 \mu \\ z = 5 - 4 \mu \end{cases}$$

3)
$$\begin{cases} x = 7 + 2\lambda \\ y = 5 - 6\lambda \\ z = 3 + 3\lambda \end{cases}, \quad \lambda \in \mathbb{R}$$

$$\begin{cases} x = 6 + 4\mu \\ y = -1 - 12\mu \\ z = 5 - 5\mu \end{cases}$$

4)
$$\begin{cases} x = 2 + 5 \lambda \\ y = 3 + 4 \lambda \\ z = 1 + 5 \lambda \end{cases}$$
, $\lambda \in \mathbb{R}$
$$\frac{x - 2}{5} = \frac{y - 3}{4} = \frac{z - 1}{6}$$

5)
$$\begin{cases} x+y=4\\ 2y+z=5 \end{cases} \qquad \begin{cases} x+3y+z=9\\ x-y-z=1 \end{cases}$$

5)
$$\begin{cases} x+y=4\\ 2y+z=5 \end{cases} \begin{cases} x+3y+z=9\\ x-y-z=1 \end{cases}$$
6)
$$\begin{cases} x+2y-5=0\\ 3y+z-4=0 \end{cases} \begin{cases} x+2y-3=0\\ 3y+z-1=0 \end{cases}$$

- $\text{Montrer que la droite } \left\{ \begin{array}{l} x=-2\,+\,3\,\lambda\\ y=\,1\,-\,4\,\lambda \ \text{ est parallèle au plan } 4\,x\,-\,3\,y\,-\,6\,z=5.\\ z=-5\,+\,4\,\lambda \end{array} \right.$ 3.10
- Déterminer l'équation cartésienne du plan passant par le point P(4;2;1) et 3.11 contenant la droite (d): $\begin{cases} x = 2 + \lambda \\ y = 1 - 3\lambda , \lambda \in \mathbb{R}. \\ y = 3 + \lambda \end{cases}$

3.12 On donne une droite d et un plan π . La droite d est-elle disjointe de π , incluse dans π ou coupe-t-elle π ?

1)
$$(d): \begin{cases} x = 3 + 2\lambda \\ y = 5 - 2\lambda \\ z = 3 + 2\lambda \end{cases}$$
, $\lambda \in \mathbb{R}$ $(\pi): 2x + y - z = 0$

2)
$$(d):$$

$$\begin{cases} x-2y+z=4\\ x+3y-2z=0 \end{cases}$$
 $(\pi): 3x-2y+4z=0$

3)
$$(d)$$
:
$$\begin{cases} x = 2 - 3\lambda \\ y = 3 + \lambda \\ z = 1 - \lambda \end{cases}$$
, $\lambda \in \mathbb{R}$ (π) : $4x + y - 11z = 0$

1)
$$(d): \begin{cases} x = 3 + 2\lambda \\ y = 5 - 2\lambda \\ z = 3 + 2\lambda \end{cases}$$
 $(\pi): 2x + y - z = 0$
2) $(d): \begin{cases} x - 2y + z = 4 \\ x + 3y - 2z = 0 \end{cases}$ $(\pi): 3x - 2y + 4z = 0$
3) $(d): \begin{cases} x = 2 - 3\lambda \\ y = 3 + \lambda \\ z = 1 - \lambda \end{cases}$ $(\pi): 4x + y - 11z = 0$
4) $(d): \begin{cases} x + y - 3z = 0 \\ x - y - z = 1 \end{cases}$ $(\pi): \begin{cases} x = 5 - \lambda + 2\mu \\ y = 10 + \lambda - 3\mu, \lambda, \mu \in \mathbb{R} \\ z = 5 + \lambda - \mu \end{cases}$

3.13 Déterminer le point d'intersection de la droite d et du plan π donnés par leurs équations respectives.

1)
$$(d): \begin{cases} x = -4 - 5 \lambda \\ y = 8 + 6 \lambda \\ z = 2 - \lambda \end{cases}$$
 $(\pi): 2x + 3y - z - 5 = 0$

1)
$$(d): \begin{cases} x = -4 - 5\lambda \\ y = 8 + 6\lambda \\ z = 2 - \lambda \end{cases}$$
 $(\pi): 2x + 3y - z - 5 = 0$
2) $(d): \begin{cases} x = 4 + 3\lambda \\ y = 3 + \lambda \\ z = 4 - \lambda \end{cases}$ $(\pi): \begin{cases} x = 3 + 3\mu - \nu \\ y = -2 - 5\mu + \nu \\ z = 7 + 3\mu - \nu \end{cases}$

3.14 On donne deux droites d_1 et d_2 . Montrer qu'elles se coupent en un point P et donner l'équation cartésienne du plan π qu'elles déterminent.

1)
$$(d_1):$$

$$\begin{cases} x = 5 + \lambda \\ y = 1 \\ z = -1 - \lambda \end{cases}$$
, $\lambda \in \mathbb{R}$
$$(d_2):$$

$$\begin{cases} x = 5 + 2 \mu \\ y = 9 + 4 \mu \\ z = 7 + 2 \mu \end{cases}$$
$$(d_3):$$

$$\begin{cases} x = 5 + 2 \mu \\ y = 9 + 4 \mu \\ z = 7 + 2 \mu \end{cases}$$
$$(d_4):$$

$$\begin{cases} 3x - 2y + 7z = -32 \\ x + y + z = 0 \end{cases}$$

2)
$$(d_1): \frac{x-2}{3} = \frac{y-6}{2} = \frac{z-1}{4}$$
 $(d_2): \begin{cases} 3x-2y+7z = -32\\ x+y+z = 0 \end{cases}$

- 3.15 On considère les points O(0;0;0), A(3;0;0), B(0;3;0), C(0;0;3) et D(1;2;3). Déterminer l'image de D par la symétrie de direction OC par rapport au plan ABC.
- 3.16 On donne trois droites d, f et

$$(d): \begin{cases} x = & \lambda \\ y = -2 + 3\lambda \\ z = & 1 \end{cases} \qquad (f): \begin{cases} x = -1 \\ y = & 7 + 2\mu \\ z = & 3 - \mu \end{cases} \qquad (g): \begin{cases} x = & \nu \\ y = & 4 \\ z = & 3 - 2\nu \end{cases}$$

 $\overrightarrow{AB} = 2 \overrightarrow{BC}$. Déterminer une équation paramétrique de la droite AB.

Réponses

3.1 1)
$$\begin{cases} x = 1 + 5 \mu \\ y = -2 - \lambda + 8 \mu, & \lambda, \mu \in \mathbb{R} \\ z = 3 + \lambda - 3 \mu \end{cases}$$
 $x - y - z = 0$

2)
$$\begin{cases} x = -6 + 11 \lambda + 4 \mu \\ y = 3 - \lambda + \mu , \lambda, \mu \in \mathbb{R} \\ z = -2 + 3 \lambda + 2 \mu \end{cases}$$
 $x + 2y - 3z - 6 = 0$

3)
$$\begin{cases} x = -1 + \lambda \\ y = -4 + 5 \mu, & \lambda, \mu \in \mathbb{R} \\ z = 1 - \lambda + 2 \mu \end{cases}$$
 $5x - 2y + 5z - 8 = 0$

$$\begin{cases} z = 3 + \lambda - 3\mu \\ x = -6 + 11\lambda + 4\mu \\ y = 3 - \lambda + \mu, \ \lambda, \mu \in \mathbb{R} \\ z = -2 + 3\lambda + 2\mu \end{cases}$$

$$\begin{cases} x = -1 + \lambda \\ y = -4 + 5\mu, \ \lambda, \mu \in \mathbb{R} \\ z = 1 - \lambda + 2\mu \end{cases}$$

$$\begin{cases} x = -3 + 11\lambda + 4\mu \\ y = 5 - \lambda + \mu, \ \lambda, \mu \in \mathbb{R} \\ z = -4 + 3\lambda + 2\mu \end{cases}$$

$$\begin{cases} x = 3 + 3\mu \\ y = 1 + \lambda + 2\mu, \ \lambda, \mu \in \mathbb{R} \\ z = 1 + \lambda \end{cases}$$

$$\begin{cases} x = 7 + \lambda \\ y = -4, \ \lambda, \mu \in \mathbb{R} \\ z = 6, \mu \end{cases}$$

$$\begin{cases} x = 0, \lambda, \mu \in \mathbb{R} \\ x = 0, \lambda, \mu \in \mathbb{R} \end{cases}$$

$$\begin{cases} x = 0, \lambda, \mu \in \mathbb{R} \\ x = 0, \lambda, \mu \in \mathbb{R} \end{cases}$$

$$\begin{cases} x = 0, \lambda, \mu \in \mathbb{R} \\ x = 0, \lambda, \mu \in \mathbb{R} \end{cases}$$

$$\begin{cases} x = 0, \lambda, \mu \in \mathbb{R} \\ x = 0, \lambda, \mu \in \mathbb{R} \end{cases}$$

$$\begin{cases} x = 0, \lambda, \mu \in \mathbb{R} \\ x = 0, \lambda, \mu \in \mathbb{R} \end{cases}$$

$$\begin{cases} x = 0, \lambda, \mu \in \mathbb{R} \\ x = 0, \lambda, \mu \in \mathbb{R} \end{cases}$$

$$\begin{cases} x = 0, \lambda, \mu \in \mathbb{R} \\ x = 0, \lambda, \mu \in \mathbb{R} \end{cases}$$

$$\begin{cases} x = 0, \lambda, \mu \in \mathbb{R} \\ x = 0, \lambda, \mu \in \mathbb{R} \end{cases}$$

$$\begin{cases} x = 0, \lambda, \mu \in \mathbb{R} \\ x = 0, \lambda, \mu \in \mathbb{R} \end{cases}$$

$$\begin{cases} x = 0, \lambda, \mu \in \mathbb{R} \\ x = 0, \lambda, \mu \in \mathbb{R} \end{cases}$$

$$\begin{cases} x = 0, \lambda, \mu \in \mathbb{R} \\ x = 0, \lambda, \mu \in \mathbb{R} \end{cases}$$

$$\begin{cases} x = 0, \lambda, \mu \in \mathbb{R} \\ x = 0, \lambda, \mu \in \mathbb{R} \end{cases}$$

$$\begin{cases} x = 0, \lambda, \mu \in \mathbb{R} \\ x = 0, \lambda, \mu \in \mathbb{R} \end{cases}$$

$$\begin{cases} x = 0, \lambda, \mu \in \mathbb{R} \\ x = 0, \lambda, \mu \in \mathbb{R} \end{cases}$$

5)
$$\begin{cases} x = 3 + 3 \mu \\ y = 1 + \lambda + 2 \mu , \lambda, \mu \in \mathbb{R} \\ z = 1 + \lambda \end{cases}$$
 $2x - 3y + 3z - 6 = 0$

6)
$$\begin{cases} x = 7 + \lambda \\ y = -4 \\ z = 6 + \mu \end{cases}, \lambda, \mu \in \mathbb{R}$$
 $y + 4 = 0$

7)
$$\begin{cases} x = \mu \\ y = \lambda \\ z = 8\lambda + 7\mu \end{cases}, \lambda, \mu \in \mathbb{R}$$

$$7x + 8y - z = 0$$

8)
$$\begin{cases} x = 2 - 3\lambda + \mu \\ y = 5 + 2\lambda - \mu \\ z = 1 - \lambda + \mu \end{cases}$$

$$(x = 2 - 3\lambda + \mu)$$

$$(x = 2 - 3\lambda + \mu)$$

$$(x = 3 + 2\lambda - \mu)$$

$$(x = 3 + \mu)$$

9)
$$\begin{cases} x = \lambda + \mu \\ y = \lambda - \mu \\ z = \lambda + \mu \end{cases}, \ \lambda, \mu \in \mathbb{R}$$
 $x - z = 0$

- 3.4 1) parallèles 2) sécants 3) confondus
 - 4) parallèles 5) parallèles 6) sécants

$$3.5 (1; -2; 2)$$

3.6 1)
$$\begin{cases} x = 1 \\ y = 2 - 2\lambda \\ z = 3 + 2\lambda \end{cases}, \quad \lambda \in \mathbb{R}$$

$$\begin{cases} x = 1 \\ y + z - 5 = 0 \end{cases}$$
 2)
$$\begin{cases} x = 2 + \lambda \\ y = 3 - 2\lambda \\ z - 5 - 2\lambda \end{cases}, \quad \lambda \in \mathbb{R}$$

$$x - 2 = \frac{y - 3}{-2} = \frac{z - 5}{-2}$$

3)
$$\begin{cases} x = 8 + \lambda \\ y = 6 - 2\lambda \\ z = -12 + 5\lambda \end{cases}$$
, $\lambda \in \mathbb{R}$ $x - 8 = \frac{y - 6}{-2} = \frac{z + 12}{5}$

$$x - 8 = \frac{y - 6}{-2} = \frac{z + 12}{5}$$

3)
$$\begin{cases} y = 6 - 2\lambda, & \lambda \in \mathbb{R} \\ z = -12 + 5\lambda \end{cases}$$

$$x - 8 = \frac{3}{-2} = \frac{3}{5}$$
4)
$$\begin{cases} x = 2 + 3\lambda, & \lambda \in \mathbb{R} \\ y = 3 - 2\lambda, & \lambda \in \mathbb{R} \\ z = 5 + \lambda \end{cases}$$

$$\frac{x - 2}{3} = \frac{y - 3}{-2} = z - 5$$
5)
$$\begin{cases} x = 2\lambda, & \lambda \in \mathbb{R} \\ y = -13\lambda, & \lambda \in \mathbb{R} \\ z = 7\lambda \end{cases}$$

$$\frac{x}{2} = \frac{y}{-13} = \frac{z}{7}$$

$$\frac{x-2}{3} = \frac{y-3}{-2} = z - 5$$

5)
$$\begin{cases} x = 2\lambda \\ y = -13\lambda \\ z = 7\lambda \end{cases}, \lambda \in \mathbb{R}$$

$$\frac{x}{2} = \frac{y}{-13} = \frac{z}{7}$$

6)
$$\begin{cases} x = -8 \\ y = 10 \\ z = -12 + \lambda \end{cases}, \quad \lambda \in \mathbb{R}$$

$$\begin{cases} x = -8 \\ y = 10 \end{cases}$$

7)
$$\begin{cases} x = 1 + \lambda \\ y = 0 \\ z = 3 - \lambda \end{cases}, \quad \lambda \in \mathbb{R}$$

$$\begin{cases} y = 0 \\ x + z - 4 = 0 \end{cases}$$

8)
$$\begin{cases} x = 8 \\ y = -4 + \lambda \\ z = 2 + \lambda \end{cases}, \quad \lambda \in \mathbb{R}$$

$$\begin{cases} x = 8 \\ y - z + 6 = 0 \end{cases}$$

3.7 1)
$$(12; -3; -6)$$
 2) $(-28; 5; 18)$

$$2) (-28;5;18)$$

3)
$$\left(\frac{16}{3}; -\frac{5}{3}; -2\right)$$

4)
$$(\frac{3}{4}; -\frac{3}{4}; \frac{3}{4})$$

4)
$$(\frac{3}{4}; -\frac{3}{4}; \frac{3}{4})$$
 5) $(12; -3; -6)$

3.8
$$(d): \begin{cases} x = 4 + 9 \lambda \\ y = -7 - 22 \lambda \\ z = 5 + 11 \lambda \end{cases}, \lambda \in \mathbb{R}$$

- 3.9 1) confondues
- 2) sécantes
- 3) gauches

- 4) sécantes
- 5) strictement parallèles
- 6) strictement parallèles

3.11
$$5x + 4y + 7z - 35 = 0$$

- 3.12
- 1) $d \cap \pi = \emptyset$ 2) d coupe π 3) $d \subset \pi$
- 4) d coupe π

3.13 1) (1;2;3)

(1;2;5)

- 3.14

- 1) P(1;1;3) $(\pi): x-y+z-3=0$ 2) P(-1;4;-3) $(\pi): 2x+17y-10z-96=0$
- D'(1;2;-3)3.15
- A(1;1;1), B(-1;3;5), C(-2;4;7) $(d_{AB}): \begin{cases} x = 1 2\lambda \\ y = 1 + 2\lambda \\ z = 1 + 4\lambda \end{cases}, \lambda \in \mathbb{R}$ 3.16