IEE 578 | REGRESSION ANALYSIS

REGRESSION ANALYSIS FOR PREDICTION OF CONCRETE COMPRESSIVE STRENGTH

INSTRUCTOR: DR. DOUGLAS C MONTGOMERY

December 04, 2019 Arizona State University

TABLE OF CONTENTS

1.	DATA PREPARATION:	3
I.	Background:	3
II.	Data Overview:	3
III.	Sample Data Set Subset:	3
IV.	Data Dictionary:	5
2.	GRAPHICAL PLOTS:	5
٧.	Scatterplot Matrix:	5
VI.	Correlation Heat Map:	6
VII.	Box Plot Inference:	8
VIII.	Cook's D Influence:	8
3.	MODEL BUILDING STEPS & HYPOTHESIS TESTING:	9
IX.	STEP 1: Initial Model Fit With 8 Predictor Variables:	9
	A. Residual Analysis:	9
	B. Model Summary:	11
	C. Inference:	11
Χ.	STEP 2: All Possible Regression:	12
XI.	STEP 3: Selected Testing Models:	13
XII.	STEP 4: Stepwise Regression:	14
XIII.	STEP 5: Final Selected Model:	14
	D. Scatterplot Matrix:	14
	E. Residual Analysis:	15
	F. Model Summary:	17
	G. Inference:	18
XIV.	STEP 6: Data Splitting & Cross-Validation:	18
4.	CONCLUSION:	19
5.	FUTURE SCOPE:	20
6	REFERENCES:	20

DATA PREPARATION:

Background:

Concrete is the most important material in civil engineering. The concrete compressive strength is a highly nonlinear function of age and ingredients. These ingredients include cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate.

We will start by using all possible regression (best subsets), stepwise regression and then conduct a series of multiple regression analysis that will eventually narrow down the best model predictor of compressive concrete strength to only 6 variables – Cement, Blast Furnace Slag, Fly Ash, Water, Superplasticizer and Age.

Data Overview:

The dataset consists of 1030 observations and 9 attributes. A data dictionary is also supplied below for reference. The actual concrete compressive strength (MPa) for a given mixture under a specific age was determined from the laboratory. Data is in raw form and is not scaled.

The following dataset has been taken from the UCI repository: https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength

Predictor:

$$X_1$$
 – Cement (kg/m³) X_2 – Blast Furnace Slag (kg/m³) X_3 – Fly Ash (kg/m³) X_4 – Water (kg/m³) X_5 – Superplasticizer (kg/m³) X_6 – Age (days) X_7 – Coarse Aggregate (kg/m³) X_8 – Fine Aggregate (kg/m³)

Response: Y – Concrete Compressive Strength (MPa)

Sample Data Set Subset:

A sample subset of 75 out of 1030 observations from the data set is shown below for reference:

Comon	Blast	Fly	Wate	Superplasticize	Coarse	Fine	1~	Concrete
Cemen	Furnac	As	wate	Superplasticize	Aggregat	Aggregat	Ag	compressiv
ı	e Slag	h	r	r	e	e	e	e strength

			172.3					37.8108638
173.81	93.37	159.9 125.1	4 166.6	9.73	1007.2	746.6	28	4 24.8487150
190.34	0	8	191.8	9.88	1079	798.9	28	27.2205124
250	0	95.69 174.2	4 159.2	5.33	948.9	857.2	28	8 44.6366762
213.5	0	4 100.5	170.1	11.66	1043.6	771.9	28	4
194.68	0	2 118.2	7 192.9	7.48	998	901.8	28	37.2661778 33.2741117
251.37	0	7 143.5	4 163.8	5.75	1043.6	754.3	28	6 36.5629122
165	0.02	7	1 175.0	0	1005.6	900.9	56	8 53.7239699
165	128.5	132.1	6 179.9	8.08	1005.8	746.6	56	2 48.5873737
178.03	129.8	118.6 128.6	4 175.4	3.57	1007.3	746.8	56	2 51.7244895
167.35	129.9	2 172.3	6 156.7	7.79	1006.3	746.6	56	2
172.38	13.61	7 173.5	6 164.7	4.14	1006.3	856.4	56	35.852752 53.7722332
173.54	50.05	3	7 164.0	6.47	1006.2	793.5	56	4 53.4619690
167	75.4	167	3 172.3	7.91	1007.3	770.1	56	4
173.81	93.37	159.9 125.1	4 166.6	9.73	1007.2	746.6	56	48.9872698
190.34	0	8	1 191.8	9.88	1079	798.9	56	31.715896
250	0	95.69 174.2	4 159.2	5.33	948.9	857.2	56	39.64487 51.2556458
213.5	0	4 100.5	1 170.1	11.66	1043.6	771.9	56	4 43.3887246
194.68	0	2 118.2	7 192.9	7.48	998	901.8	56	8
251.37	0	7 143.5	4 163.8	5.75	1043.6	754.3	56	39.2656582
165	0.02	7	1 175.0	0	1005.6	900.9	100	37.9556538
165	128.5	132.1	6 179.9	8.08	1005.8	746.6	100	55.0201848 49.9939047
178.03	129.8	118.6 128.6	4 175.4	3.57	1007.3	746.8	100	6 53.6550223
167.35	129.9	2 172.3	6 156.7	7.79	1006.3	746.6	100	2
172.38	13.61	7	6	4.14	1006.3	856.4	100	37.6798634

172.54	50.05	173.5	164.7	6.47	1006.2	702.5	100	56.0612935
173.54	50.05	3	7 164.0	6.47	1006.2	793.5	100	6
167	75.4	167	3 172.3	7.91	1007.3	770.1	100	56.8128224 50.9384868
173.81	93.37	159.9 125.1	4 166.6	9.73	1007.2	746.6	100	8 33.5636916
190.34	0	8	1 191.8	9.88	1079	798.9	100	8
250	0	95.69 174.2	4 159.2	5.33	948.9	857.2	100	41.1617172 52.9586515
213.5	0	4 100.5	1 170.1	11.66	1043.6	771.9	100	6 44.2781487
194.68	0	2 118.2	7 192.9	7.48	998	901.8	100	2 40.1481874
251.37	0	7	4	5.75	1043.6	754.3	100	8 57.0265599
446	24	79	162	11.61	967	712	28	6 44.4229386
446	24	79	162	11.64	967	712	28	8
446	24	79	162	11.64	967	712	28	51.021224 53.3861266
446	24	79	162	10.3	967	712	28	8 35.3632240
446	24	79 7 0	162	11.61	967	712	3	25.0210840
446	24	79 70	162	11.64	967	712	3	23.3456573
446	24	79	162	11.64	967	712	3 7	52.0071746
446 446	24 24	79 79	162 162	11.61 11.64	967 967	712 712	7	8 38.0177066 4
446	24	79	162	11.64	967	712	7	39.300132 61.0668893
446	24	79	162	11.61	967	712	56	56.1440306
446	24	79	162	11.64	967	712	56	8 55.2546066
446	24	79	162	11.64	967	712	56	4 54.7650786
446	24	79	162	10.3	967	712	56	8 50.2352213
387	20	94	157	14.32	938	845	28	6 46.6844199
387	20	94	157	13.93	938	845	28	6 46.6844199
387	20	94	157	11.61	938	845	28	6

387	20	94	157	14.32	938	845	3	22.752708
387	20	94	157	13.93	938	845	3	25.510612
	_ •				, , ,			34.7702746
387	20	94	157	11.61	938	845	3	8
307		, .	10 /	11.01	750	0.12	5	36.8387026
387	20	94	157	14.32	938	845	7	8
307	20	74	137	14.32	730	073	,	45.8984173
387	20	94	157	13.93	938	845	7	45.8984173
367	20	24	137	13.93	936	043	/	41.6650346
207	20	0.4	157	11.61	029	0.45	7	
387	20	94	157	11.61	938	845	/	8
207	20	0.4	1.57	1 4 22	020	0.45	5 C	56.3370839
387	20	94	157	14.32	938	845	56	6
• • •	• •	0.4		12.02	0.2.0	0.4.5	. .	47.9668453
387	20	94	157	13.93	938	845	56	2
								61.4598906
387	20	94	157	11.61	938	845	56	4
								44.0299373
355	19	97	145	13.13	967	871	28	6
								55.4545546
355	19	97	145	12.25	967	871	28	8
								55.5510813
491	26	123	210	3.93	882	699	28	2
491	26	123	201	3.93	822	699	28	57.915984
								25.6091085
491	26	123	210	3.93	882	699	3	7
171	20	123	210	3.73	002	0,7,7	5	33.4888342
491	26	123	210	3.93	882	699	7	8
4 /1	20	123	210	3.73	002	077	,	59.5904257
491	26	123	210	3.93	882	699	56	2
471	20	123	210	3.93	002	099	30	29.5489714
401	26	102	201	2.02	922	600	2	
491	26	123	201	3.93	822	699	3	37.02110
491	26	123	201	3.93	822	699	7	37.92118
404	2.6	100	• • •	2.02	0.00	600	. .	61.8558468
491	26	123	201	3.93	822	699	56	5
424	22	132	178	8.48	822	750	28	62.05284
								32.0113857
424	22	132	178	8.48	882	750	3	2
								72.0985053
424	22	132	168	8.92	822	750	28	2
								39.0046422
424	22	132	178	8.48	822	750	7	8
								65.6972131
424	22	132	178	8.48	822	750	56	5
		102	1,0	0.10	0	, 0 0		32.1098822
424	22	132	168	8.92	822	750	3	8
121		1 2 4	100	0.72	022	750	J	40.2850977
424	22	132	168	8.92	822	750	7	40.2830977
747	22	134	100	0.92	022	750	/	2

Data Dictionary:

Attributes	Quantitative / Ca	Variable Type
Cement	Quantitative	Predictor
Blast Furnace Slag	Quantitative	Predictor
Fly Ash	Quantitative	Predictor
Water	Quantitative	Predictor
Superplasticizer	Quantitative	Predictor
Coarse Aggregate	Quantitative	Predictor
Fine Aggregate	Quantitative	Predictor
Age	Quantitative	Predictor
		Respons
Concrete Compressive Strength	Quantitative	e

GRAPHICAL PLOTS:

Scatterplot Matrix:

A scatterplot matrix for all the included variables of the dataset have been displayed below:

- The scatter plot matrix depicts that there may be slight linear dependencies between the predictor variables, which is evident from the strong correlation between concrete compressive strength and other predictor variables.
- ☐ Based on the scatter plot, we perform *Spearman's P correlation* test to understand the correlation between the variables. We find that almost 77 % of the predictors account for negative correlation and remaining accounts for positive correlation.
- The confidence curves in the pairwise plot indicate where the percentage of the data should lie assuming it the model to be bivariate normal distribution. The values outside these regions may be influential.

Correlation Heat Map:

Followed by scatter plots, the analysis of the correlations between various factors affecting concrete strength is shown below:

- From the above correlation plot, it is evident that most of the variables are negatively correlated with mild-moderate effect.
- \square These plots can be regarded as heat map style displays of multiple correlation statistics.
- The number of positive correlations is less when compared to the number of negative correlations present in the model.

Box Plot Inference:

- ☐ From the above boxplot, we could see that none of them had the same median or distributions.
- ☐ Most of the observations were concentrated on the low end of the scale, which results in a right(positive) skewed distribution.
- ☐ It is evident that the variables coarse aggregate, fine aggregate and water are symmetrically distributed, while the remaining variables are positively skewed.
- There are also indications of the outliers present in the data as some of the data points lie outside the whiskers.
- The variables cement, blast furnace slag and fly ash have a better spread compared to water, superplasticizer, age and compressive concrete strength.

Cook's D Influence:

Cook's D Influence

MODEL BUILDING STEPS & HYPOTHESIS TESTING:

Null hypothesis:

The initial assumption is that there is no relation, which is expressed as: H_0 : $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6 = \beta_7 = \beta_8 = 0$

Alternate Hypothesis:

At least one of the independent variables is useful in predicting Y, which is expressed as: H_1 : $B_1 \neq B_2 \neq B_3 \neq B_4 \neq B_5 \neq B_6 \neq B_7 \neq B_8 \neq 0$

STEP 1: Initial Model Fit With 8 Predictor Variables:

Residual Analysis:

☐ Actual values Vs Predicted values Plot:

Ideally all over the points should lie closer to the regressed diagonal line, whereas in our case the points are somewhat aligned towards and dispersed away from the regression line. Therefore, the Coefficient of Determination (R^2) – which measures the goodness of fit for the regression line, is 0.62 – which is a bit lousy. There are points at which our model underestimates and overestimates the data.

☐ Residuals Vs Predicted Plot:

The data points are mostly located similar to the vertical and horizontal ranges, indicating a minimal number of outliers. There are some possibilities for the presence of outliers that could be influential.

☐ Residual Normal Quantile Plot:

The normal quantile plot above exhibits a linear pattern indicating normality in the data. There is no skewness present but there are unusual values at present at the tails of the plot revealing the possibility of outliers.

Model Summary:

Summary of Fit		Press	Press RMSE	Press Rsquare
RSquare Rsquare Adj Root Mean Square Error Mean of Response Observations (or Sum Wgts)	0.615465 0.612452 10.39985 35.81784 1030	112914.41613	10.4702267	0.6068

Press

Analysis of Variance

Source	DF	Sum of	Mean Square	F Ratio	AICc	BIC
Source	DI	Squares	Wean Square	rivatio	7758.28	7807.437
Model	8	176744.87	22093.1	204.2691		
Error	1021	110428.16	108.2	Prob > F		
C. Total	1029	287173.03		<.0001*		

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t	Lower 95%	Upper 95%	VIF
Intercept	-23.16376	26.58842	-0.87	0.3839	-75.33795	29.01044	
Cement	0.1197853	0.008489	14.11	<.0001*	0.1031267	0.1364439	7.4886572
Blast Furnace Slag	0.1038472	0.010136	10.25	<.0001*	0.0839571	0.1237374	7.2765286
Fly Ash	0.0879431	0.012585	6.99	<.0001*	0.0632474	0.1126387	6.1714547
Water	-0.150298	0.040179	-3.74	0.0002*	-0.229141	-0.071455	7.0046632
Superplasticizer	0.2906869	0.09346	3.11	0.0019*	0.1072915	0.4740823	2.9652972
Coarse Aggregate	0.0180302	0.009394	1.92	0.0552	-0.000404	0.0364644	5.0760437
Fine Aggregate	0.0201545	0.010703	1.88	0.0600	-0.000847	0.0411562	7.0053456
Age	0.1142256	0.005427	21.05	<.0001*	0.1035753	0.1248759	1.1183569

Predicted Expression:

```
\begin{array}{c} Y = -23.16375581 + 0.119785255 * X_1 + 0.1038472489 * X_2 + 0.0879430817 * X_3 \\ -0.150297904 * X_4 + 0.2906869435 * X_5 + 0.0180301836 * X_6 + 0.0201544557 * X_7 + 0.1142256201 * X_8 \end{array}
```

Inference:

- The results show that the model is a strong indicator of compressive strength, F(8,1021) = 204.2691, p = 0.0001.
- ☐ The values of the estimates will tell us the relationship between the outcome and the predictor variables. In our model, we have both positive and negative estimates. These estimates will give us an idea of how each predictor will influence the outcome if the effects of the other variables are kept constant. The variables cement, blast furnace slag, fly ash, water, superplasticizer and age make a significant contribution to the model, while coarse aggregate and fine aggregate do not.
- There is a significant relationship between water and concrete strength (p = 0.0002), superplasticizer and concrete strength (p = 0.0019) and the other factors such as cement, blast furnace slag, fly ash and age are highly significant (p < 0.0001).
- ☐ The above results indicate that the Variance Inflation Factor (VIF) of all the variables except the coarse aggregate and age is larger than the rest, indicating that there is potential for multicollinearity. Here, the cut-off values for VIF are assumed to be 5, so any value beyond that is considered to confronted with multicollinearity issues.
- ☐ The multiple coefficients of determination, R² (61.54 %) is not large. In this case we could say that 61.54 % of the variance in the data can be explained by the predictor variables. It also means that 38.46 % of the variation is still unexplained so that the addition of other independent variables could improve the model's fit.
- Some of the important diagnostics are multicollinearity checks and residual analysis such as normality checking. Our main motivation is to reduce multicollinearity and make the variables significant.

STEP 2: All Possible Regression:

Using the All Possible Regression, we found that given the variable number of 6, the C_p is 8.9555. As a result, we excluded 2 variables and arrived at the final predictive model for concrete compressive strength as follows:

	Model	Numbe r	RSquar e	RMSE	AICc	BIC	Ср
		4	0.2450	14.4054	0.425.12	0.4.40.02	971.106
Cement		l	0.2478	14.4954	8435.13	8449.92	8

						698.999
Cement,Superplasticizer	2	0.3511	13.4705	8285.09	8304.8	9 354.302
Cement,Superplasticizer,Age	3	0.4816	12.0451	8055.7	8080.33	1
Cement,Blast Furnace Slag,Water,Age	4	0.5577	11.1313	7894.18	7923.73	154.244
Cement,Blast Furnace Slag,Fly Ash,Water,Age	5	0.611	10.4452	7764.16	7798.61	14.9545
Cement,Blast Furnace Slag,Fly Ash,Water,Superplasticizer,Age	6	0.614	10.4098	7758.19	7797.55	8.9555
Cement,Blast Furnace Slag,Fly Ash,Water,Fine Aggregate,Age	6	0.6115	10.4427	7764.69	7804.04	15.4428
Cement,Blast Furnace Slag,Fly Ash,Water,Coarse Aggregate,Age	6	0.6111	10.4488	7765.89	7805.25	16.6523
Cement,Blast Furnace Slag,Fly Ash,Water,Superplasticizer,Coarse Aggregate,Age Cement,Blast Furnace Slag,Fly Ash,Water,Superplasticizer,Fine Aggregate,Age	7	0.6141	10.4128 10.4135	7759.81 7759.95	7804.07 7804.21	10.5461
Cement,Blast Furnace Slag,Fly Ash,Water,Coarse Aggregate,Fine Aggregate,Age	7	0.6118	10.4439	7765.95	7810.21	16.6739
Cement,Blast Furnace Slag,Fly Ash,Water,Superplasticizer,Coarse Aggregate,Fine Aggregate,Age	8	0.6155	10.3998	7758.28	7807.44	9

STEP 3: Selected Testing Models:

Model	Numbe r	RSquar e	RMSE	AICc	BIC	Ср
Cement,Blast Furnace Slag,Fly Ash,Water,Age	5	0.611	10.4452	7764.16	7798.61	14.9545
Cement,Blast Furnace Slag,Fly Ash,Water,Superplasticizer,Age	6	0.614	10.4098	7758.19	7797.55	8.9555
Cement,Blast Furnace Slag,Fly Ash,Water,Superplasticizer,Coarse Aggregate,Age	7	0.6141	10.4128	7759.81	7804.07	10.5461

A multiple linear regression has been performed with the above-mentioned models. The results obtained from these models are displayed below:

☐ The regression model summary for the model with 5 predictor variables:

R - Sq
 R - Sq adj
 60.90 %
 RMSE
 10.44
 F (5,1024)
 321.62
 PRESS
 1134888.26
 R - Sq Pred
 60.48 %
 Mean Sq Error
 109.1

- o All the variables significantly contribute to the model.
- The VIFs of all the variables are lesser than 5 indicating the absence of multicollinearity.
- \circ This model involves a lack of fit with MS $_{Pure\ Error}$ = 20.86 and MS $_{Lack\ of\ Fit}$ = 117.19.
- ☐ The regression model summary for the model with 7 predictor variables:

R - Sq
 R - Sq adj
 61.41 %
 RMSE
 10.41
 F (5,1024)
 232.36
 PRESS
 113050.62
 R - Sq Pred
 60.63 %
 Mean Sq Error
 108.4

- The VIFs of all the variables are lesser than 5 indicating the absence of multicollinearity.
- All the variables significantly contribute to the model expect coarse aggregate.
 Therefore, we do not consider this model because of the contribution of factors
- \circ This model involves a lack of fit with MS _{Pure Error} = 24.40 and MS _{Lack of Fit} = 111.40.

STEP 4: Stepwise Regression:

We undertook stepwise regression in JMP in order to figure out a better predictive model for concrete compressive strength with low VIFs and little change in R².

Stepwise Fit for Concrete compressive strength Stepwise Regression Control

Stopping Rule: Minimum BIC Direction: Forward

SSE	DFE	RMSE	RSquare	RSquare Adj	Ср	р	AICc	BIC
110855.97	1023	10.409784	0.6140	0.6117	8.9554673	7	7758.188	7797.545

Current Estimates

Lock	Entered	Parameter	Estimate	nDF	SS	"F Ratio"	"Prob>F"

[x]	[x]	Intercept	29.0302239	1	0	0.000	1
[]	[x]	Cement	0.10542749	1	66759.71	616.071	8e-107
[]	[x]	Blast Furnace Slag	0.08649363	1	32756.58	302.284	1.6e-59
[]	[x]	Fly Ash	0.06870838	1	8547.43	78.877	2.9e-18
[]	[x]	Water	-0.2182923	1	11567.41	106.746	7.2e-24
[]	[x]	Superplasticizer	0.23900253	1	865.1545	7.984	0.00481
[]	[]	Coarse Aggregate	0	1	44.27106	0.408	0.52297
[]	[]	Fine Aggregate	0	1	29.39769	0.271	0.60271
[]	[x]	Age	0.11349477	1	47731.47	440.475	1.3e-81

Step History

Step	Parameter	Action	"Sig Prob"	Seq SS	RSquare	Ср	р	AICc	BIC
1	Cement	Entered	0.0000	71172.22	0.2478	971.11	2	8435.13	8449.92
2	Superplasticizer	Entered	0.0000	29646.54	0.3511	699	3	8285.09	8304.8
3	Age	Entered	0.0000	37497.74	0.4816	354.3	4	8055.7	8080.33
4	Blast Furnace Slag	Entered	0.0000	19908.47	0.5510	172.23	5	7909.84	7939.38
5	Water	Entered	0.0000	9544.652	0.5842	85.984	6	7832.66	7867.11
6	Fly Ash	Entered	0.0000	8547.43	0.6140	8.9555	7	7758.19	7797.55
7	Coarse Aggregate	Entered	0.5230	44.27106	0.6141	10.546	8	7759.81	7804.07
8	Fine Aggregate	Entered	0.0600	383.5399	0.6155	9	9	7758.28	7807.44
9	Best	Specific			0.6140	8.9555	7	7758.19	7797.55

☐ Any direction of stepwise regression can be performed as it leads us to the same final result of variable selection.

STEP 5: Final Selected Model:

Scatterplot Matrix:

Residual Analysis:

☐ Actual values Vs Predicted values Plot:

All the data points tend to move closer to the regression line region with slight dispersion leading to a change in the value of R-Sq. We could see that the data points with smaller values lie within the diagonal regressed region, while the points with larger values do not obey this.

☐ Residual vs Predicted Plot

The data points are similar to the initial model and are contained within the vertical and horizontal bands, indicating reduced outlier possibilities.

☐ Residual Normal Quantile Plot:

The normal quantile plot exhibits a linear trend showing the normality of the data. The plot clearly shows the model is skewed which can be inferred from the slight S – shape curve at the tails.

There are some unusual values present at the tails of the plot which show the possibilities of outliers that, if excluded, could have some impact on the final model performance. In order to check this, we have to compare this output with the model values having hat matrix larger than (2p/n).

□ Box Cox Transformations:

☐ Studentized Residuals:

Model Summary:

Summary of Fit

RSquare	0.824201		
RSquare Adj	0.82317	AIC	c BIC
Root Mean Square Error	7.024937	6948.03	1 6987.388
Mean of Response	35.81784		
Observations (or Sum Wgts)	1030		

Analysis of Variance

			Press					
Source	DF	Sum of	Mean Square	F Ratio				
		Squares			Press	Press RMSE	Press	
Model	6	236688.25	39448.0	799.356			RSquare	
Error	1023	50484.78	49.3	Prob > F	51299.736788	7.05730612	0.8214	
C. Total	1029	287173.03		<.0001*				

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t	Lower 95%	Upper 95%	Std Beta	VIF
Intercept	-22.64616	3.102013	-7.30	<.0001*	-28.7332	-16.55913	0	
Sqrt(Cement)	3.6707251	0.097512	37.64	<.0001*	3.4793788	3.8620715	0.681198	1.9055399
Blast Furnace Slag	0.0856627	0.003549	24.14	<.0001*	0.078698	0.0926274	0.442419	1.9553387
Sqrt(Fly Ash)	0.6493572	0.070663	9.19	<.0001*	0.5106959	0.7880185	0.214217	3.1621736
Water	-0.221366	0.014058	-15.75	<.0001*	-0.248951	-0.193781	-0.28298	1.8792165
Sqrt(Superplasticizer)	0.7512115	0.246136	3.05	0.0023*	0.2682232	1.2341997	0.070692	3.1219128
Log(Age)	8.5973393	0.187481	45.86	<.0001*	8.2294475	8.9652312	0.613163	1.0403944

Predicted Expression:

$$Y = -22.64616 + 3.6707251 * Sqrt(X1) + 0.0856627 * X2 + 0.6493572 * Sqrt(X3) - 0.221366 * X4 + 0.7512115 * Sqrt(X5) + 8.5973393 * Log(X8)$$

Inference:

- \Box The results show that the model is a strong indicator of compressive strength, F (6,1023) = 799.3567, p = 0.0001.
- □ The F ratio value for the final model is almost 4 times the value of the initial model which denotes that the variability between the factors is relatively larger than the variability within the factors. The F value combined with a smaller P value indicates that the model is highly significant.
- ☐ There is a decrease in the value of RMSE by 30 % indicating a better fit along with the prediction accuracy of the model.
- All the variables are considerably significant with VIFs less than 5 indicating the absence of multicollinearity. The PRESS value is roughly half when compared to the initial model.

STEP 6: Data Splitting & Cross-Validation:

Cross-validation measures the predictive ability of future models to assess the optimal number of components to be retained in your model.

- ☐ In order to obtain the model error estimates developed in this project, the dataset is randomly partitioned, with around 80% of all data points used for training data and the remaining 20 % used for validation.
- The training data set will be used to develop and tune the prediction model, while the validation data will be used for final model performance evaluations.

Summary of Fit		So	urce	DF	Sum of Squares	Mean Square	F Ratio
RSquare RSquare Adj Root Mean Square Error	0.819541 0.818224 7.043373	Err	odel or Total	6 822 828	185193.54 40778.68 225972.22	30865.6 49.6	622.1760 Prob > F <.0001*
Mean of Response Observations (or Sum Wøts)	36.26056 829						

Analysis of Variance

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t	Lower 95%	Upper 95%
Intercept	-24.40292	3.450393	-7.07	<.0001*	-31.17553	-17.6303
Sqrt(Cement)	3.6604633	0.10965	33.38	<.0001*	3.4452373	3.8756893
Blast Furnace Slag	0.0847177	0.00398	21.28	<.0001*	0.0769052	0.0925301
Sqrt(Fly Ash)	0.6301832	0.079297	7.95	<.0001*	0.4745356	0.7858308
Water	-0.211423	0.015597	-13.56	<.0001*	-0.242039	-0.180808
Sqrt(Superplasticizer)	0.9225095	0.274661	3.36	0.0008*	0.3833902	1.4616287
Log(Age)	8.5554532	0.213725	40.03	<.0001*	8.135942	8.9749644

Crossvalidation 51535.770743 7.88455383 0.7719

Source	RSquare	RASE	Freq
Training Set	0.8195	7.0136	829
Validation Set	0.8386	6.9632	201

Press

Press	Press RMSE	Press
		RSquare

☐ The table below displays the data recorded for 10 K-fold cross-validations.

Train Ratio	R Squared	Validation Ratio	R Squared
80	0.8282	20	0.8072
80	0.8219	20	0.8284
80	0.8313	20	0.7956
80	0.8244	20	0.8221
80	0.8255	20	0.8191
80	0.8325	20	0.7842
80	0.8256	20	0.8173
80	0.8203	20	0.8359
80	0.8221	20	0.8295
80	0.8253	20	0.818
Avg =	0.82571	Avg =	0.81573

- ☐ Every single iteration, the data selected for training and test set differs, we perform 10 iterations and take an average of the R-Sq value to check the consistency.
- It is evident from the table that there is minimal difference in the value of R Sq for the training and validation, indicating that the model fitted is adequate.

CONCLUSION:

- A multiple linear regression was carried out to investigate whether ingredients and age could significantly predict concrete compressive strength.
- Using all possible and stepwise regression, we were able to detect the variables that play a significant role in the model. Both forward and backward elimination resulted in approximately the same results which excludes coarse aggregate and fine aggregate parameters.

☐ The results of the regression indicated that the model explained 82.3% of the variance after the application of some necessary transformations and that the model was a significant predictor of compressive strength, F(6,1023) = 799.3567, p = .001.

Comparison Table

	R-Sq	Adj R-Sq	F Ratio	PRESS	Pred R-Sq	Mean Sq.Error	Ср	RMSE
Initial								
Model	61.54	61.24	204.2691	112914.41	60.68	108.2	9	10.39
Final Model	82.42	82.31	799.3567	51299.73	82.14	49.3	8.85	7.0249

- ☐ The PRESS, Mallow's Cp and RMSE values were major influencing factors for the selection of the final model. *NOTE:* Please refer the inference section of final model for more information.
- ☐ The final predictive model was:

```
Concrete Compressive Strength = -22.64616 + 3.6707251 * Sqrt(Cement) + 0.0856627 * Blast Furnace Slag + 0.6493572 * Sqrt(Fly Ash) – 0.221366 * Water + 0.7512115 * Sqrt(Superplasticizer) + 8.5973393 * Log(Age)
```

The scatterplot of studentized residuals shows that the data met the assumptions of homogeneity of variance & linearity and the residuals are roughly normally distributed. Therefore, no significant variations from these assumptions have been found.

FUTURE SCOPE:

A comparatively large data set with 5000 + measurements will possibly talk more about the prediction of the forecast. Since the current data set used is laboratory produced samples, the prediction accuracy might vary when compared with larger data sets.

Expanding the size of the training and validation set may contribute to some meaningful trends. Any other input parameters that influence the compressive strength could also be considered.

Other statistical techniques, such as classification and neural network methods may be suitable for the study of these information and may also reveal other interesting findings.

REFERENCES:

- ☐ I-Cheng Yeh, "Modeling of strength of high performance concrete using artificial neural networks," Cement and Concrete Research, Vol. 28, No. 12, pp. 1797-1808 (1998).
- ☐ I-Cheng Yeh, "Modeling Concrete Strength with Augment-Neuron Networks," J. of Materials in Civil Engineering, ASCE, Vol. 10, No. 4, pp. 263-268 (1998).
- ☐ I-Cheng Yeh, "Design of High Performance Concrete Mixture Using Neural Networks," J. of Computing in Civil Engineering, ASCE, Vol. 13, No. 1, pp. 36-42 (1999).
- ☐ I-Cheng Yeh, "Prediction of Strength of Fly Ash and Slag Concrete By The Use of Artificial Neural Networks," Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 15, No. 4, pp. 659-663 (2003).
- ☐ I-Cheng Yeh, "A mix Proportioning Methodology for Fly Ash and Slag Concrete Using Artificial Neural Networks," Chung Hua Journal of Science and Engineering, Vol. 1, No. 1, pp. 77-84 (2003).
- ☐ Yeh, I-Cheng, "Analysis of strength of concrete using design of experiments and neural networks," Journal of Materials in Civil Engineering, ASCE, Vol.18, No.4, pp.597-604 (2006).