TGI, Technische Grundlagen der Informatik	
Mooresches Gesetz: - Anzahl Transistoren pro Chip 2	2×/23
- Verarbeitungsleistung Prozessoren 2	x /18 He
- tur gleicher Preis, 2x Leistung in	< 23al
Kompenenten + Struktur = gewünschtes Verhalten = Teile und herrsche!	
Entworf+Analyse, Abstraktion	
Top-Down, Bottom-Up	
Rechnerarithmetik	
Dezmal, Oval, Oktal, Hexadezmal B=10, 2, 8, 16	
Euklidische Algorithmus	
sukzessiv, start mit höchster Ziffer, bei Komma einfach wei	rer 126
Of finde hookste Potenz die noch enthalten ist	2 ⁶ = 1
(3) wiederhole bis fertig (der Rest) 128:9	2' = 1 2' = 1
Horner Schema 2	22 = 1 22 = 1 22 = 1
ganzzahiger/gebrochener Teil separat betrachten	$2^{\circ} = 0$ 99_{10}
1) durch Basis b dindieren, der Rest ist die lezte Zahl	99:16=6
@ weiter bis fertig, mit vorherigem Resultat	6:16=0 631
Basis b + Dezmal einfach b'* 2 aussummieren 1001, \$2.1+2.0+2.0	+23/=9
△ Spezialfall: Basis ist Potenz anderer Basis, einfach ma	
Stellen zusammennehmen oder umgelkeh	

Zahlendarstellung
-Betrag + Vorzeichen (MSB für Vorzeichen (1=-))
+ Sonderbetrachtung Verzeichen-Bit + Zwei (+0,-0)
- Einer Komplement (Stellen Komplement) (2=01002, -2=0(2)=101
7 immerned 2 vei 0 (+0,-0)
- Zweierkamplement (Einerkomplement, dann 1 addieren)
7 Unsymmetrischer Zahlenbereich [-2", +2"-1]
- Offset-Poal-Darstelling (Extess-Parstelling)
⇒ Kleinste negative Zahl als O.O. durch Addition von Offset
Festkomma VS Gleitkomma
-fester Platz zugeordnet X=± Montisse · b Exponent
-nicht mehr HW verwendet Adichte auf dem Zahlenstrahl
marreal, minreal, smallreal
Schatnetze
trein Kombinatorische logische Schaltungen
- Kein Speicher verhalten
1 UND, VODER, NOT > Vollstandiges Operatorensystem
Booleschen Ausdruck, Interpretation, Aussage
Tautologie, Kontradiktion
> Funktionstabelle, symbolische Form, Graph (Shannon-Baur
DUF Dissonktive Wormal Form
Minterm: 1 Verknopfung aler Variablen (a=1, a=0) Mox Isom V Vocknopfung aller Variablen negget (a=1, a=0)
Mrx Ibam V Vorkunations allot Variablem nemort (7=10=0)

Multiplexer ≥2 Inputs, 1 Octput, Steverleitung, 2":1
3 2 1.1 Multiplexer Kann auch n+11 Variablen Funktionen implementieren (Wohl von einigen Vars als Steuersignale)
Demultiplexer 1 Input, >2 Outputs, 1:2" (auch Dekoder)
festverdrahtete Logik VS mikroprogrammierte Logik (Personalisierbar/Programmierbar)
Speicherbausteine Adressierbar
ROM / PROM / EPROM / EEPROM Programmable Erasable Electrically
RAM > r/w, muss durch Spannung versorgt sein
DRAM / SRAM olynamic static - mem refresh -no refresh
-Kondensotor + Flip-Flop - 1 Transistor - 6-8 Transisteren
PLA (Programmable Logic Array) FPLA (Field PLA), durch Benutzer programmierbar
PAL (Programmable Array Logic) Laufzeiteffelte => Zeitlicher Signalverlauf
-Totzertmodell (Totzertbausten/glied hat Verzögerung)
Hasards ⇒mehrfache Inderung Signal bis Stabilisierung Eingabewechsel ⇒ Übergang ⇒Ruhezustand
Eingabewechsel > Übergang > Ruhezustand Hasardfehler > Hasard ABER Hasard ~ Verzögerung > Hasardfehl Funktionshasard / Strukturhasard / Statisch/dynamisch

Schaltwerke (sequentielle Schaltungen)
Abhangig von Vergangenen Werten => Zustand
> Automaten: Mealy, Moore
Moore (Ausgabewert hangt von Zustand ab) Mealy (auch Eingabebelegung wird beräcksichtig
=> Formale Beschreibung
-Zeitdiagramm - Automatentabelle -Ablauttabelle - Automatengraph
Zustandspeicher ⇒ RockKopplung
Synchrone Schattwerke (Takt) (Planken/pegel-gestevert)
Asynchrone Schaltwerke (Liwichtig wogen Taktverteilung) Latches (aber sehr storempfindlich) -> Normal Fundamental Mode
- asynchrones RS-PIPFlop
- pegelgesteventes RS-Latch
- D-FlipFlop (D-Latch) - MS-FlipFlop (Moster-Slave, 2x D-Latch)
+ 5K-AlipFlop
+T-FlipFlop
ZustandsKedierung
Syndrone Schaltwerke - Serienaddierer
RT-Ebene + Register-Transfer-Ebene - Register zur Speicherung von Daten - Datenwort
- Register 201 specherong von Daren - Dalenweit - Funktionale Enherten (Zahler, Addierer,) (Bitvektor)

Datenfloss, Block	Kdiagramm, VHDL	
Register lineare	e Anordnung von Flipflops zur ner Bits (Bitvektor), gem Takt, g	Speichering
	her 13its (Bitvektor), gem lakt, g Kette von in Reihe geschaftet	
	shift (D.v./Mult. durch/mit2)	
Zahler Impuls	Umlautspeicher/Ringzöhler (: e abzählen, Adressieren aufeinande	
Freque	enztellen	
	vone Zähler (ripple counter), lange Addition und Subtraktion	amer, simpler
	age, da Subtraktion > Addition 1	regativer Zahl
	a b s c s= (a,b) y (a	
Volladdierer.	zusätzlicher Eingang für Üh (Carry) der vorhen gen Zahlens	sertrag
		+
Carry-lookahead	Addierer Obertrage direkt Vort bestimmen, Kleinere	verzogerung
Oberlauferke	enning: wenn Carry In # Carry	Dut

Multiplikation
Add+Sub im Zweierkomplement praktisch, Vorzeichen
muss night speziell beachtet werden
⇒ bei Multiplikation aber schon, Kein Vorteil! - Zahlen umwandeln, Vorzeichen/Betrog separat
- Spezielle Algorithmen, 26. Booth
Division analog Multiplikation
Teildiusion: O > Divisor > aktueller Dividend
1 + Pivisor = aktueller Dividend
+ Division durch O Ausnahmezastand + Multiplikations+Schaltung auch für Division brauchbar (teilwe
▕ ▗▕▗▕▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗
ALU (Arthmetische-Logische Einheit)
In: Doten, Steversignale Out: Resultat, Statussignale
Bitscheiben-ALU (For 4/8 bits), dann verkettet für grössere Zahle
Van Wermann Architektur
-Rechner (CAU) - Speicher - Ein/Assabe Komponente Control Unit (Memory) (Input/Eutput)
Register
EVA-Prinzip Eingabe, Verarbertung, Ausgabe
CPU, RAM, ROM, Busse/Schnittstellen, Chipsatz
Register Paton, Addressen, IP-Instruction painter, Stock, Berahle
=> Stack-speicher (LIFO) Stack-register
- Status / Fahler Pop
- Knazitise Diten

Maschinenbestelle > Assembler (symbolisch)	
(Botohisatee) => binar (OPCodes, -)	
Speicher-Adressierung Register, Ein-, Zweiste immediate, absolute, r	olative (memory
Dricht-linear, Springe, Autrite, Threads, Internation	upts
=> Exceptions (Fehler, Ausnahmesituationen) L. Interrupt System, Interrupt Service Root	ine Interrupt Table
Speicher => RAM (random access!) Zugriffszeit (access) ZyKluszeit (c INAddr + Data OUT IN Addr + Ad	
By endian (Network) VS Little endian Snatural order sinverted order	
Massenspeicher = Magnetisch, Optisch, SSD => Speicherhierarchie Klein, schnell - gross, lang	ζSα m
BIOS firmware out IBM-PCs: POST, HW Kor BUS transport von Daten, mehrere Bits Datenbus, Adressbus, Stevenbus	
⇒Polling: Presessor fragt regelmassig ab ⇒ IRQs (Interrupt Requests): Gerat sende	
⇒BUS-Arbiter-Zentrale Vergabe, fester - Daisy-Chain, Kette, der	

Obertraging Daten
-I/O Port bzw. Basisadressen (Programmed I/O)
* vereinbarter Adressblock für Austausch Daten
- Memory Mapped I/O
Adresolock liegt in Arbeitsspeicher
-DMA Channels (Direct Memory Access), Bus-Mastering
Direkter Austausch Gerat 4 Arbeitsspeicher, chne
durch die CPU zu gehen (nel schneller)
Erweitenngskarten
PCI, AGP, PCMCIA, PCI-X, PCI-Express(ISA)
Lautworkanschlasse
EIDE, SCSI, Wide-SCSI, S-ATA, SAS
Gerateanschlüsse (Hot-Plussing)
USB (1.0,11,20,30), IEEE-1394 (RreWire), PS/2
=> serial VS parallel Bus
Leweniger Strong grossere Distanzen
HD -Platten - Lese/SchreibKöpfe - Spindel-Motoren
CD -Loser - Pits/Land + ~ 7004
DVO + 4.7, 8.5, 9.4, 17 GB - mehrere Standards

Technologie	entwicklung			
	arbeiten 18, arbeit 7	erweben		
⇒Simo	(Single Instr.) (Single Instr.) (Multiple Inst	Multiple Do	ta), parallel	
-Mehra -Feldred	xozescrensyste	me	ren (2b. C	
-Pipelii	ne -Striktor => Befehlspip rative Redner	eline		2012