Zusammenfassung für Übungsblatt 3, FMSM

Aussagenlogik

Unter einer Aussage A versteht man ein sprachliches Gebilde (Satz), das entweder wahr oder falsch ist.

Verknüpfungen von Aussagen

 $\begin{array}{cccc} \text{Konjunktion} & \Lambda & \text{und} \\ \text{Disjunktion} & V & \text{oder} \\ \text{Negation} & \neg & \text{nicht} \\ \end{array}$

Implikation ⇒ wenn... dann... Äquivalenz ⇔ genau dann, wenn

Gesetze der Aussagelogik

Gesetze der Aussagelogik	
Negation	¬¬A≈¬ A
Idempotenz	AVA≈A
	A∧A≈A
Kommunikativität	A∧B≈B∧A
	AVB≈BVA
Assoziativität	(A ∨ B) ∨ C ≈ A ∨ (B ∨ C)
	$(A \land B) \land C \approx A \land (B \land C)$
Distributivität	$A \lor (B \land C) \approx (A \lor B) \land (A \lor C)$
	$A \wedge (B \vee C) \approx (A \wedge B) \vee (A \wedge C)$
De Morgan	¬(A ∨ B) ≈ ¬A ∧ ¬B
	¬(A ∧ B) ≈ ¬A ∨ ¬B
Komplement	A V ¬A ≈ true
	A ∧ ¬A ≈ false
Neutrale Elemente	A ∧ true ≈ A
	A ∧ false ≈ false
	A V true≈true
	A ∨ false ≈ A
Implikation	$A \Rightarrow B \approx \neg A \lor B \approx B \lor \neg A \approx \neg B \Rightarrow \neg A$
Äquivalenz	$A \Leftrightarrow B \approx (A \Rightarrow B) \land (B \Rightarrow A)$
Exklusives Oder	$A \vee B \approx (A \wedge \neg B) \vee (\neg A \wedge B)$
	$A \underline{V} B \approx (A \ V \ B) \land (\neg A \ V \ \neg B)$

Quantifikationen

 \forall Allquantor $\forall x P(x)$ \exists Existenzquantor $\exists x Q(x)$

Gesetze der Prädikatenlogik

 $\neg (\forall x \ P(x)) \approx \exists x \neg P(x)$ $\neg (\exists x \ Q(x)) \approx \forall x \neg Q(x)$

Beispielsätze

Konjunktion:

Es ist eiskalt und es schneit.

Es ist eiskalt aber es schneit nicht.

Entweder es schneit oder es ist eiskalt aber es schneit nicht, wenn es eiskalt ist. ((eiskalt ∨ schneit) ∧ (eiskalt -> ¬schneit))

Disjunktion:

Entweder es ist eiskalt oder es schneit.

Implikation:

Wenn Person x einen Wagen der Marke BMW hat, hat x ein Auto.

Wenn eine Zahl n durch 6 teilbar ist, dann ist die Zahl n durch 3 teilbar.

Wenn ich volljährig bin, darf ich wählen.

Wenn Paul den Führerschein bekommt, dann ist Paul mindestens 18 Jahre alt.

Falls Tim fleißig war besteht er die Prüfungen.

Äquivalenz:

Heute ist genau dann Dienstag, wenn morgen Mittwoch ist.

Die natürliche Zahl n ist genau dann durch 6 teilbar, wenn n durch 2 und durch 3 teilbar ist.

Tim besteht die Prüfung dann und nur dann, wenn er fleißig war

Prädikatenlogik:

es gibt keine größte reelle Zahl: $\neg \exists x \ x \in R \land (\forall y \ y \in R \rightarrow y \leq R \ x)$ Steine sind nicht sterblich: $\forall x \ Stein(x) \rightarrow \neg Sterblich(x)$ Jeder Mensch ist sterblich.: $\forall x x \in Mensch \rightarrow x \in Sterblich$

all you need is love (Beatles): ∀z needs(z, love)

everybody needs love and if somebody needs anything, then it is love:

 \forall z needs(z, love) $\land \forall$ x (\exists y needs(y, x) \rightarrow x = love)