```
In [ ]:
```

```
#importing Libraries
import numpy as np,pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import seaborn as sb
```

reading the dataset

In [2]:

```
df=pd.read_csv(r"C:\Users\MY HOME\Desktop\datascience\insurance.csv")
df
```

Out[2]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

¹ # perfoming the basic preprocessing steps

In [3]:

```
1 df.info()
<class 'pandas.core.frame.DataFrame'>
```

```
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
    Column
             Non-Null Count Dtype
             -----
             1338 non-null
    age
             1338 non-null
                             object
1
    sex
    bmi
             1338 non-null
                             float64
    children 1338 non-null
3
                            int64
   smoker
             1338 non-null
                             object
5
   region
             1338 non-null
                             object
            1338 non-null
   charges
                             float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

In [4]:

```
1 df.shape
```

Out[4]:

(1338, 7)

```
In [5]:
```

1 df.describe()

Out[5]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

In [6]:

```
1 df.isna().any()
```

Out[6]:

age False
sex False
bmi False
children False
smoker False
region False
charges False
dtype: bool

In [7]:

1 df.head()

Out[7]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [8]:

1 df.tail()

Out[8]:

	age	sex	bmi	children	smoker	region	charges
1333	50	male	30.97	3	no	northwest	10600.5483
1334	18	female	31.92	0	no	northeast	2205.9808
1335	18	female	36.85	0	no	southeast	1629.8335
1336	21	female	25.80	0	no	southwest	2007.9450
1337	61	female	29.07	0	yes	northwest	29141.3603

¹ # permorfing the data analysis

In [9]:

sb.lmplot(x="bmi",y="charges",data=df,order=2,c i=None)

Out[9]:

<seaborn.axisgrid.FacetGrid at 0x21d0e99fa90>

In [10]:

1 df.drop("charges",axis=1)

Out[10]:

	age	sex	bmi	children	smoker	region
0	19	female	27.900	0	yes	southwest
1	18	male	33.770	1	no	southeast
2	28	male	33.000	3	no	southeast
3	33	male	22.705	0	no	northwest
4	32	male	28.880	0	no	northwest
1333	50	male	30.970	3	no	northwest
1334	18	female	31.920	0	no	northeast
1335	18	female	36.850	0	no	southeast
1336	21	female	25.800	0	no	southwest
1337	61	female	29.070	0	yes	northwest

1338 rows × 6 columns

```
In [11]:
```

```
1  sex={"sex":{"female":0,"male":1}}
2  df=df.replace(sex)
3  df
```

Out[11]:

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	yes	southwest	16884.92400
1	18	1	33.770	1	no	southeast	1725.55230
2	28	1	33.000	3	no	southeast	4449.46200
3	33	1	22.705	0	no	northwest	21984.47061
4	32	1	28.880	0	no	northwest	3866.85520
							•••
1333	50	1	30.970	3	no	northwest	10600.54830
1334	18	0	31.920	0	no	northeast	2205.98080
1335	18	0	36.850	0	no	southeast	1629.83350
1336	21	0	25.800	0	no	southwest	2007.94500
1337	61	0	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

In [12]:

```
1 smoker={"smoker":{"yes":1,"no":0}}
2 df=df.replace(smoker)
3 df
```

Out[12]:

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	1	southwest	16884.92400
1	18	1	33.770	1	0	southeast	1725.55230
2	28	1	33.000	3	0	southeast	4449.46200
3	33	1	22.705	0	0	northwest	21984.47061
4	32	1	28.880	0	0	northwest	3866.85520
1333	50	1	30.970	3	0	northwest	10600.54830
1334	18	0	31.920	0	0	northeast	2205.98080
1335	18	0	36.850	0	0	southeast	1629.83350
1336	21	0	25.800	0	0	southwest	2007.94500
1337	61	0	29.070	0	1	northwest	29141.36030

1338 rows × 7 columns

In [13]:

```
features=df.columns[0:5]
target=df.columns[-1]
```

In [14]:

```
1 x=df[features].values
2 y=df[target].values
```

In [15]:

```
1 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

1 |# building a model

```
In [16]:
```

```
1 a=LinearRegression()
2 a.fit(x_train,y_train)
```

Out[16]:

LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [17]:
```

```
1 print(a.score(x_test,y_test))
```

0.7335428743506633

In [18]:

```
a=LinearRegression()
a.fit(x_train,y_train)
train_score_a=a.score(x_train,y_train)
test_score_a=a.score(x_test,y_test)
print("\nLinearModel\n")
print("The train score for lr model is {}".format(train_score_a))
print("The train score for lr model is {}".format(test_score_a))
```

LinearModel

The train score for 1r model is 0.7603956164064063 The train score for 1r model is 0.7335428743506633

ridge and lasso Regression

In [20]:

```
1 from sklearn.linear_model import Ridge, RidgeCV, Lasso
```

```
In [21]:
```

```
ridge=Ridge(alpha=2)
ridge.fit(x_train,y_train)
train_score_ridge=ridge.score(x_train,y_train)
test_score_ridge=ridge.score(x_test,y_test)
print("\nLinearRegression\n")
print(train_score_ridge)
print(test_score_ridge)
```

LinearRegression

```
0.76018709161429
```

0.7350061477802261

In [22]:

```
plt.figure(figsize=(10,10))
plt.plot(features,ridge.coef_,alpha=0.9,linestyle="None",markersize=20,color="Red",label=r"ridge;$\alpha=12$",markersize=20,color="blue",label="LinearRegression",marker="*"
plt.xticks(rotation=90)
plt.legend()
plt.show()
```


lasso Regression

In [24]:

```
1 lasso=Lasso(alpha=100)
```

² lasso=lasso.fit(x_train,y_train)

³ train_score_lasso=lasso.score(x_train,y_train)

⁴ test_score_lasso=lasso.score(x_test,y_test)

⁵ print(train_score_lasso)

⁶ print(test_score_lasso)

^{0.7599483955052437}

^{0.7359124297917283}

In [25]:

```
plt.figure(figsize=(10,10))
plt.plot(features,ridge.coef_,alpha=0.8,marker="*",markersize=10,linestyle="none",color="blue",label=r"ridge;$\alpha plt.plot(lasso.coef_,alpha=0.9,marker='o',markersize=10,linestyle="none",color="green",label=r"lasso;$\alpha=grid$"
plt.plot(features,a.coef_,alpha=0.7,linestyle="None",markersize=5,color="blue",label=r"LinearRegression")
plt.xticks(rotation=90)
plt.legend()
plt.show()
```


1 # Elasticnet

In [26]:

```
from sklearn.linear_model import ElasticNet
```

In [27]:

```
1 a=ElasticNet()
2 a.fit(x,y)
3 print(a.coef_)
4 print(a.intercept_)
5
6
```

```
[ 244.74498193 323.34788404 324.21935152 389.31828171 5839.32681943] -8052.400589902743
```

1 # calculating the error rate

In [29]:

```
y_pred_elastic=a.predict(x_train)
mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
print(mean_squared_error)
```

94682466.88215785

1 # logistic regression

In [31]:

```
import numpy as np
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
```

Reading the dataFrame

In [32]:

```
df=pd.read_csv(r"C:\Users\MY HOME\Desktop\datascience\insurance.csv")
df
```

Out[32]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

1 # performing basic pre-processing steps

In [33]:

```
1 df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
    Column
              Non-Null Count Dtype
              1338 non-null
                              int64
    age
1
    sex
              1338 non-null
                              object
              1338 non-null
                               float64
3
    children 1338 non-null
                              int64
              1338 non-null
    smoker
                               object
              1338 non-null
    region
                              object
   charges
              1338 non-null
                               float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

df.describe()

```
In [34]:
```

```
1 df.describe()
```

Out[34]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

In [35]:

```
1 df.shape
```

Out[35]:

(1338, 7)

1 # changing the column name

In [36]:

```
1 df=df[["sex","smoker"]]
2 df.columns=["sex","smoker"]
```

In [37]:

```
1 df.head()
```

Out[37]:

	sex	smoker
0	female	yes
1	male	no
2	male	no
3	male	no
4	male	no

```
In [38]:
```

```
1 sex={"sex":{"female":0,"male":1}}
2 df=df.replace(sex)
df
```

Out[38]:

	sex	smoker
0	0	yes
1	1	no
2	1	no
3	1	no
4	1	no
1333	1	no
1334	0	no
1335	0	no
1336	0	no
1337	0	yes

1338 rows × 2 columns

In [39]:

```
1 smoker={"smoker":{"no":0,"yes":1}}
2 df=df.replace(smoker)
3 df
```

Out[39]:

	sex	smoker
0	0	1
1	1	0
2	1	0
3	1	0
4	1	0
1333	1	0
1334	0	0
1335	0	0
1336	0	0
1337	0	1

1338 rows × 2 columns

¹ # Building the model

In [40]:

```
features_matrix=df.iloc[:,0:2]
target_vector=df.iloc[:,-1]
```

In [41]:

```
print('The target matrix has %d rows and %d column(S)'%(np.array(target_vector).reshape(-1,1).shape))

**The target matrix has %d rows and %d column(S)'%(np.array(target_vector).reshape(-1,1).shape))
```

The target matrix has 1338 rows and 1 column(S)

```
print(" " "The Model says the probability of the observation we passed belonging to class['0'] Is %s" " "%(algorithm print()
```

The Model says the probability of the observation we passed belonging to class['0'] Is 0.104736832089055 49

In [48]:

```
1 print(" " "The Model says the probability of the observation we passed belonging to class['1'] Is %s" " "%(algorith
```

The Model says the probability of the observation we passed belonging to class['1'] Is 0.895263167910944

1 # Decision tree

In [50]:

```
import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
```

1 # reading the DataFrame

```
In [51]:
```

```
df=pd.read_csv(r"C:\Users\MY HOME\Desktop\datascience\insurance.csv")
df
```

Out[51]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

In [52]:

```
1 df["region"].value_counts()
```

Out[52]:

region southeast 364 southwest 325 northwest 325 northeast 324

Name: count, dtype: int64

In [53]:

```
1 convert={"sex":{"female":0,"male":1}}
2 df=df.replace(convert)
3 df
```

Out[53]:

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	yes	southwest	16884.92400
1	18	1	33.770	1	no	southeast	1725.55230
2	28	1	33.000	3	no	southeast	4449.46200
3	33	1	22.705	0	no	northwest	21984.47061
4	32	1	28.880	0	no	northwest	3866.85520
							•••
1333	50	1	30.970	3	no	northwest	10600.54830
1334	18	0	31.920	0	no	northeast	2205.98080
1335	18	0	36.850	0	no	southeast	1629.83350
1336	21	0	25.800	0	no	southwest	2007.94500
1337	61	0	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

```
In [54]:
```

```
convert={"smoker":{"yes":0,"no":1}}
df=df.replace(smoker)
df
```

Out[54]:

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	1	southwest	16884.92400
1	18	1	33.770	1	0	southeast	1725.55230
2	28	1	33.000	3	0	southeast	4449.46200
3	33	1	22.705	0	0	northwest	21984.47061
4	32	1	28.880	0	0	northwest	3866.85520
1333	50	1	30.970	3	0	northwest	10600.54830
1334	18	0	31.920	0	0	northeast	2205.98080
1335	18	0	36.850	0	0	southeast	1629.83350
1336	21	0	25.800	0	0	southwest	2007.94500
1337	61	0	29.070	0	1	northwest	29141.36030

1338 rows × 7 columns

In [55]:

```
1  x=["age","sex","children","bmi","charges"]
2  y=["0","1"]
3  all_inputs=df[x]
4  all_classes=df["smoker"]
```

In [56]:

```
1 x_train,X_test,y_train,y_test=train_test_split(all_inputs,all_classes,test_size=0.5)
2 x_train.shape,x_test.shape
```

Out[56]:

((669, 5), (669, 5))

1 # Building a model

In [57]:

```
1 s=DecisionTreeClassifier(random_state=20)
2 s.fit(x_train,y_train)
3 score=s.score(x_test,y_test)
4 print(score)
```

0.804185351270553

C:\Users\MY HOME\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\base.py:439: UserWarni
ng: X does not have valid feature names, but DecisionTreeClassifier was fitted with feature names
warnings.warn(

1 # Random Forest#

In [59]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt,seaborn as sb
import matplotlib.pyplot as plt,seaborn as sb
```

1 # Reading the DataFrame

In [60]:

```
df=pd.read_csv(r"C:\Users\MY HOME\Desktop\datascience\insurance.csv")
df
```

Out[60]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

In [61]:

```
1 df.describe()
```

Out[61]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

In [62]:

1 df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
   Column
            Non-Null Count Dtype
#
---
    -----
              -----
             1338 non-null int64
0
    age
             1338 non-null object
1
    sex
    bmi 1338 non-null float64
children 1338 non-null int64
2
3
   smoker 1338 non-null object
            1338 non-null
1338 non-null
5 region
                              object
6 charges
                             float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

```
In [63]:
```

```
1 df.isna().any()
Out[63]:
            False
age
            False
sex
bmi
            False
children
            False
smoker
            False
region
            False
charges
            False
dtype: bool
In [64]:
 1 df.shape
Out[64]:
(1338, 7)
In [65]:
 1 convert={"sex":{"female":0,"male":1}}
 2 df=df.replace(convert)
 3 df
```

Out[65]:

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	yes	southwest	16884.92400
1	18	1	33.770	1	no	southeast	1725.55230
2	28	1	33.000	3	no	southeast	4449.46200
3	33	1	22.705	0	no	northwest	21984.47061
4	32	1	28.880	0	no	northwest	3866.85520
1333	50	1	30.970	3	no	northwest	10600.54830
1334	18	0	31.920	0	no	northeast	2205.98080
1335	18	0	36.850	0	no	southeast	1629.83350
1336	21	0	25.800	0	no	southwest	2007.94500
1337	61	0	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

In [66]:

```
1 df["region"].value_counts()
```

Out[66]:

region southeast 364 southwest 325 northwest 325 northeast 324

Name: count, dtype: int64

```
In [67]:
```

```
1 r={"region":{"southeast":0,"southwest":1,"northeast":2,"northwest":3}}
2 df=df.replace(r)
df
```

Out[67]:

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	yes	1	16884.92400
1	18	1	33.770	1	no	0	1725.55230
2	28	1	33.000	3	no	0	4449.46200
3	33	1	22.705	0	no	3	21984.47061
4	32	1	28.880	0	no	3	3866.85520
1333	50	1	30.970	3	no	3	10600.54830
1334	18	0	31.920	0	no	2	2205.98080
1335	18	0	36.850	0	no	0	1629.83350
1336	21	0	25.800	0	no	1	2007.94500
1337	61	0	29.070	0	yes	3	29141.36030

1338 rows × 7 columns

In [68]:

```
1 x=df.drop("smoker",axis=1)
2 y=df["smoker"]
```

1 # Building a model

In [69]:

```
1 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

In [70]:

```
1 from sklearn.ensemble import RandomForestClassifier
```

In [71]:

```
1 rf=RandomForestClassifier()
2 rf.fit(x_train,y_train)
```

Out[71]:

RandomForestClassifier()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [72]:

```
1 params={"max_depth":[1,23,4,56,85],"min_samples_leaf":[4,6,8,10,12],"n_estimators":[8,9,10,65,42]}
```

In [73]:

```
1 from sklearn.model_selection import GridSearchCV
```

In [78]:

```
grid_search=GridSearchCV(estimator=rf,param_grid=params,cv=2)
grid_search.fit(x_train,y_train)
print(grid_search.score(x_test,y_test))
```

0.9491778774289985

In [80]:

```
p=grid_search.best_estimator_
print(p)
```

RandomForestClassifier(max_depth=85, min_samples_leaf=4, n_estimators=42)

In [81]:

from sklearn.tree import plot_tree

In [86]:

```
plt.figure(figsize=(80,60))
plot_tree(p.estimators_[5],feature_names=x.columns,class_names=["0","1"],filled=True)
```

Out[86]:

```
[Text(0.48, 0.944444444444444, 'age <= 63.5\ngini = 0.313\nsamples = 417\nvalue = [539, 130]\nclass =
0'),
Text(0.4, 0.83333333333334, 'charges <= 15374.252\ngini = 0.308\nsamples = 410\nvalue = [533, 125]\ncl
ass = 0'),
Text(0.16, 0.72222222222222, 'region <= 1.5\ngini = 0.004\nsamples = 305\nvalue = [498, 1]\nclass =
0'),
Text(0.08, 0.611111111111112, 'gini = 0.0\nsamples = 158\nvalue = [261, 0]\nclass = 0'),
Text(0.24, 0.611111111111112, 'charges <= 14201.54\ngini = 0.008\nsamples = 147\nvalue = [237, 1]\nclass</pre>
s = 0'),
Text(0.16, 0.5, 'gini = 0.0\nsamples = 143\nvalue = [234, 0]\nclass = 0'),
Text(0.32, 0.5, 'gini = 0.375\nsamples = 4\nvalue = [3, 1]\nclass = 0'),
Text(0.64, 0.72222222222222, 'charges <= 33473.895\ngini = 0.343\nsamples = 105\nvalue = [35, 124]\ncl
ass = 1'),
Text(0.56, 0.611111111111112, 'bmi <= 30.305\ngini = 0.451\nsamples = 65\nvalue = [35, 67]\nclass =
1'),
Text(0.48, 0.5, 'age <= 32.5\ngini = 0.344\nsamples = 53\nvalue = [19, 67]\nclass = 1'),
Text(0.28, 0.388888888888889, 'charges <= 20764.42\ngini = 0.245\nsamples = 26\nvalue = [6, 36]\nclass
= 1'),
Text(0.2, 0.2777777777777, 'children <= 1.5\ngini = 0.056\nsamples = 21\nvalue = [1, 34]\nclass =
1'),
1').
 Text(0.52, 0.2777777777778, 'age <= 48.0\ngini = 0.473\nsamples = 15\nvalue = [10, 16]\nclass = 1'),
 Text(0.44, 0.1666666666666666, 'region <= 1.5\ngini = 0.48\nsamples = 8\nvalue = [9, 6]\nclass = 0'),
 Text(0.52, 0.05555555555555555, 'gini = 0.3/5\nsamples = 4\nvalue = [6, 2]\nclass = 0'),

Text(0.6, 0.166666666666666, 'gini = 0.165\nsamples = 7\nvalue = [1, 10]\nclass = 1'),

Text(0.84, 0.27777777777777, 'age <= 46.5\ngini = 0.278\nsamples = 12\nvalue = [3, 15]\nclass = 1'),

Text(0.76, 0.16666666666666, 'bmi <= 23.658\ngini = 0.165\nsamples = 8\nvalue = [1, 10]\nclass = 1'),

Text(0.68, 0.0555555555555555, 'gini = 0.278\nsamples = 4\nvalue = [1, 5]\nclass = 1'),

Text(0.84, 0.05555555555555555, 'gini = 0.0\nsamples = 4\nvalue = [0, 5]\nclass = 1'),

Text(0.92, 0.1666666666666666, 'gini = 0.408\nsamples = 4\nvalue = [2, 5]\nclass = 1'),
 Text(0.64, 0.5, 'gini = 0.0\nsamples = 12\nvalue = [16, 0]\nclass = 0'),
 Text(0.72, 0.611111111111112, 'gini = 0.0\nsamples = 40\nvalue = [0, 57]\nclass = 1'),
Text(0.56, 0.8333333333333333, 'gini = 0.496\nsamples = 7\nvalue = [6, 5]\nclass = 0')]
```


In []:

le main intention of this conclusion is:

'om the above model like:Linearregression,logisticRegression,randonForest,Descision tree and ridge and lassoregressions have concluded that randomforest is the best model...it is best fit one....and the accuracy of that model is 94%.

4