A Linear Algebra package for REDUCE

Matt Rebbeck Konrad-Zuse-Zentrum für Informationstechnik Berlin

July 1994

1 Introduction

This package provides a selection of functions that are useful in the world of linear algebra. These functions are described alphabetically in section 3 of this document and are labelled 3.1 to 3.51. They can be classified into four sections(n.b: the numbers after the dots signify the function label in section 3).

Contributions to this package have been made by Walter Tietze (ZIB).

1 INTRODUCTION 2

1.1 Basic matrix handling

$add_columns$	 3.1	add_rows	 3.2
$add_to_columns$	 3.3	add_to_rows	 3.4
$augment_columns$	 3.5	$char_poly$	 3.9
$\operatorname{column_dim}$	 3.12	$copy_into$	 3.14
diagonal	 3.15	extend	 3.16
find_companion	 3.17	$get_columns$	 3.18
get_rows	 3.19	$hermitian_tp$	 3.21
$matrix_augment$	 3.28	$matrix_stack$	 3.30
minor	 3.31	$\operatorname{mult_columns}$	 3.32
$\operatorname{mult_rows}$	 3.33	pivot	 3.34
$remove_columns$	 3.37	$remove_rows$	 3.38
row_dim	 3.39	$rows_pivot$	 3.40
$stack_rows$	 3.43	$\operatorname{sub_matrix}$	 3.44
$swap_columns$	 3.46	$swap_{entries}$	 3.47
swap_rows	 3.48		

1.2 Constructors

Functions that create matrices.

$band_matrix$	 3. 6	$block_matrix$	 3. 7
char_matrix	 3. 8	coeff_matrix	 3. 11
companion	 3. 13	hessian	 3. 22
hilbert	 3. 23	jacobian	 3. 24
jordan_block	 3. 25	$make_identity$	 3. 27
$random_matrix$	 3. 36	toeplitz	 3. 50
Vandermonde	 3. 51	$Kronecker_Product$	 3. 52

1.3 High level algorithms

$char_poly$	 3.9	cholesky	 3.10
$\operatorname{gram_schmidt}$	 3.20	lu_decom	 3.26
$pseudo_inverse$	 3.35	simplex	 3.41
svd	 3.45	triang_adjoint	 3.51

There is a separate NORMFORM[1] package for computing the following matrix normal forms in REDUCE.

smithex, smithex_int, frobenius, ratjordan, jordansymbolic, jordan.

1.4 Predicates

matrixp
$$\dots$$
 3.29 squarep \dots 3.42 symmetricp \dots 3.49

Note on examples:

In the examples the matrix A will be

$$\mathcal{A} = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right)$$

Notation

Throughout \mathcal{I} is used to indicate the identity matrix and \mathcal{A}^T to indicate the transpose of the matrix \mathcal{A} .

2 Getting started

If you have not used matrices within REDUCE before then the following may be helpful.

Creating matrices

Initialisation of matrices takes the following syntax:

$$mat1 := \left(\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right)$$

Getting at the entries

The (i,j)'th entry can be accessed by: matl(i,j);

Loading the linear_algebra package

The package is loaded by:

load_package linalg;

3 What's available

3.1 add_columns, add_rows

add_columns(A,c1,c2,expr);

 \mathcal{A} :- a matrix.

c1,c2 :- positive integers. expr :- a scalar expression.

Synopsis:

add_columns replaces column c2 of \mathcal{A} by expr * column(\mathcal{A} ,c1) + column(\mathcal{A} ,c2).

add_rows performs the equivalent task on the rows of A.

add_columns
$$(A, 1, 2, x) = \begin{pmatrix} 1 & x+2 & 3 \\ 4 & 4*x+5 & 6 \\ 7 & 7*x+8 & 9 \end{pmatrix}$$

add_rows(
$$A, 2, 3, 5$$
) = $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 27 & 33 & 39 \end{pmatrix}$

add_to_columns, add_to_rows, mult_columns, mult_rows.

3.2 add_rows

see: add_columns.

3.3 add_to_columns, add_to_rows

add_to_columns(A,column_list,expr);

 \mathcal{A} :- a matrix.

column_list :- a positive integer or a list of positive integers.

expr :- a scalar expression.

Synopsis:

add_to_columns adds expr to each column specified in column_list of \mathcal{A} . add_to_rows performs the equivalent task on the rows of \mathcal{A} .

Examples:

$$add_to_columns(\mathcal{A}, \{1, 2\}, 10) = \begin{pmatrix} 11 & 12 & 3 \\ 14 & 15 & 6 \\ 17 & 18 & 9 \end{pmatrix}$$

add_to_rows
$$(A, 2, -x) = \begin{pmatrix} 1 & 2 & 3 \\ -x + 4 & -x + 5 & -x + 6 \\ 7 & 8 & 9 \end{pmatrix}$$

Related functions:

add_columns, add_rows, mult_rows, mult_columns.

3.4 add_to_rows

see: add_to_columns.

3.5 augment_columns, stack_rows

 $augment_columns(A, column_list);$

 \mathcal{A} :- a matrix.

column_list :- either a positive integer or a list of positive integers.

Synopsis:

augment_columns gets hold of the columns of A specified in column_list and sticks them together.

stack_rows performs the same task on rows of A.

Examples:

$${\tt augment_columns}(\mathcal{A}, \{1,2\}) \ = \ \left(\begin{array}{cc} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{array}\right)$$

$$\mathtt{stack_rows}(\mathcal{A}, \{1,3\}) = \begin{pmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \end{pmatrix}$$

Related functions:

get_columns, get_rows, sub_matrix.

3.6 band_matrix

band_matrix(expr_list,square_size);

expr_list :- either a single scalar expression or a list of an odd

number of scalar expressions.

square_size :- a positive integer.

Synopsis:

band_matrix creates a square matrix of dimension square_size. The diagonal consists of the middle expr of the expr_list. The exprs to the left of this fill the required number of sub_diagonals and the exprs to the right the super_diagonals.

$$\mathtt{band_matrix}(\{x,y,z\},6) \ = \ \begin{pmatrix} y & z & 0 & 0 & 0 & 0 \\ x & y & z & 0 & 0 & 0 \\ 0 & x & y & z & 0 & 0 \\ 0 & 0 & x & y & z & 0 \\ 0 & 0 & 0 & x & y & z \\ 0 & 0 & 0 & 0 & x & y \end{pmatrix}$$

diagonal.

3.7 block matrix

block_matrix(r,c,matrix_list);
r,c :- positive integers.

matrix_list :- a list of matrices.

Synopsis:

block_matrix creates a matrix that consists of r by c matrices filled from the matrix_list row wise.

Examples:

$$\mathcal{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathcal{C} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}, \quad \mathcal{D} = \begin{pmatrix} 22 & 33 \\ 44 & 55 \end{pmatrix}$$

$$\mathtt{block_matrix}(2,3,\{\mathcal{B},\mathcal{C},\mathcal{D},\mathcal{D},\mathcal{C},\mathcal{B}\}) \ = \ \begin{pmatrix} 1 & 0 & 5 & 22 & 33 \\ 0 & 1 & 5 & 44 & 55 \\ 22 & 33 & 5 & 1 & 0 \\ 44 & 55 & 5 & 0 & 1 \end{pmatrix}$$

3.8 char_matrix

char_matrix(\mathcal{A}, λ);

 \mathcal{A} :- a square matrix.

 λ :- a symbol or algebraic expression.

Synopsis:

char_matrix creates the characteristic matrix C of A.

This is
$$C = \lambda * \mathcal{I} - \mathcal{A}$$
.

Examples:

char_matrix
$$(A, x) = \begin{pmatrix} x - 1 & -2 & -3 \\ -4 & x - 5 & -6 \\ -7 & -8 & x - 9 \end{pmatrix}$$

Related functions:

char_poly.

3.9 char_poly

 $char_poly(A, \lambda);$

A:- a square matrix.

 λ :- a symbol or algebraic expression.

Synopsis:

char_poly finds the characteristic polynomial of A.

This is the determinant of $\lambda * \mathcal{I} - \mathcal{A}$.

Examples:

char_poly(A,x) =
$$x^3 - 15 * x^2 - 18 * x$$

Related functions:

char_matrix.

3.10 cholesky

cholesky(A);

 \mathcal{A} :- a positive definite matrix containing numeric entries.

Synopsis:

cholesky computes the cholesky decomposition of A.

It returns $\{\mathcal{L}, \mathcal{U}\}$ where \mathcal{L} is a lower matrix, \mathcal{U} is an upper matrix, $\mathcal{A} = \mathcal{L}\mathcal{U}$, and $\mathcal{U} = \mathcal{L}^T$.

$$\begin{split} \mathcal{F} &= \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 1 \end{array} \right) \\ \text{cholesky}(\mathcal{F}) &= & \left\{ \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & \sqrt{2} & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array} \right), \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & \sqrt{2} & \frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{array} \right) \right\} \end{split}$$

lu_decom.

3.11 coeff_matrix

coeff_matrix(
$$\{\lim_{e \neq n_1, \lim_{e \neq n_2, \dots, \lim_{e \neq n_n}}\}$$
); * lin_eqn₁,lin_eqn₂,...,lin_eqn_n :- linear equations. Can be of the form equation = number or just equation.

Synopsis:

coeff_matrix creates the coefficient matrix C of the linear equations. It returns $\{C, \mathcal{X}, \mathcal{B}\}$ such that $C\mathcal{X} = \mathcal{B}$.

Examples:

$$\begin{cases} \left(\begin{array}{ccc} 4 & 1 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right), \left(\begin{array}{c} z \\ y \\ x \end{array} \right), \left(\begin{array}{c} 10 \\ 20 \\ -4 \end{array} \right) \end{cases}$$

3.12 column_dim, row_dim

 $column_dim(A);$

 \mathcal{A} :- a matrix.

Synopsis:

column_dim finds the column dimension of A.

^{*}If you're feeling lazy then the {}'s can be omitted.

 $row_dim finds the row dimension of A.$

Examples:

```
\operatorname{column\_dim}(\mathcal{A}) = 3
```

3.13 companion

```
companion(poly,x);
```

poly :- a monic univariate polynomial in x.

x :- the variable.

Synopsis:

companion creates the companion matrix \mathcal{C} of poly.

This is the square matrix of dimension n, where n is the degree of poly w.r.t. x.

The entries of \mathcal{C} are: $\mathcal{C}(i,n) = \text{-coeffn}(\text{poly,x,i-1})$ for $i=1\ldots n, \mathcal{C}(i,i-1)$ = 1 for $i=2\ldots n$ and the rest are 0.

Examples:

$$\mathsf{companion}(x^4+17*x^3-9*x^2+11,x) \ = \ \begin{pmatrix} 0 & 0 & 0 & -11 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 9 \\ 0 & 0 & 1 & -17 \end{pmatrix}$$

Related functions:

find_companion.

3.14 copy_into

```
copy_into(A, B, r, c);
```

 \mathcal{A}, \mathcal{B} :- matrices.

r,c :- positive integers.

Synopsis:

copy_into copies matrix \mathcal{A} into \mathcal{B} with $\mathcal{A}(1,1)$ at $\mathcal{B}(r,c)$.

$$\mathtt{copy_into}(\mathcal{A}, \mathcal{G}, 1, 2) = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 4 & 5 & 6 \\ 0 & 7 & 8 & 9 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

augment_columns, extend, matrix_augment, matrix_stack, stack_rows, sub_matrix.

3.15 diagonal

diagonal(
$$\{ \text{mat}_1, \text{mat}_2, \dots, \text{mat}_n \}$$
); †
$$\text{mat}_1, \text{mat}_2, \dots, \text{mat}_n := \text{each can be either a scalar expr or a square matrix.}$$

Synopsis:

diagonal creates a matrix that contains the input on the diagonal.

Examples:

$$\mathcal{H} = \left(\begin{array}{cc} 66 & 77\\ 88 & 99 \end{array}\right)$$

$$\mathtt{diagonal}(\{\mathcal{A},x,\mathcal{H}\}) \ = \ \begin{pmatrix} 1 & 2 & 3 & 0 & 0 & 0 \\ 4 & 5 & 6 & 0 & 0 & 0 \\ 7 & 8 & 9 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & 0 & 0 \\ 0 & 0 & 0 & 0 & 66 & 77 \\ 0 & 0 & 0 & 0 & 88 & 99 \end{pmatrix}$$

Related functions:

jordan_block.

[†]If you're feeling lazy then the {}'s can be omitted.

3.16 extend

extend(A,r,c,expr);

 \mathcal{A} :- a matrix.

r,c :- positive integers.

expr :- algebraic expression or symbol.

Synopsis:

extend returns a copy of \mathcal{A} that has been extended by r rows and c columns. The new entries are made equal to expr.

Examples:

$$\mathtt{extend}(\mathcal{A},1,2,x) \ = \ \left(\begin{array}{ccccc} 1 & 2 & 3 & x & x \\ 4 & 5 & 6 & x & x \\ 7 & 8 & 9 & x & x \\ x & x & x & x & x \end{array} \right)$$

Related functions:

copy_into, matrix_augment, matrix_stack, remove_columns,
remove_rows.

3.17 find_companion

 $find_companion(A,x);$

A :- a matrix. x :- the variable.

Synopsis:

Given a companion matrix, find_companion finds the polynomial from which it was made.

Examples:

$$C = \left(\begin{array}{cccc} 0 & 0 & 0 & -11 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 9 \\ 0 & 0 & 1 & -17 \end{array}\right)$$

 $\texttt{find_companion}(\mathcal{C},x) = x^4 + 17*x^3 - 9*x^2 + 11$

companion.

3.18 get_columns, get_rows

get_columns(A,column_list);

 \mathcal{A} :- a matrix.

c :- either a positive integer or a list of positive integers.

Synopsis:

get_columns removes the columns of \mathcal{A} specified in column_list and returns them as a list of column matrices.

get_rows performs the same task on the rows of A.

Examples:

$$\mathtt{get_columns}(\mathcal{A}, \{1, 3\}) = \left\{ \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix}, \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix} \right\}$$

$$\texttt{get_rows}(\mathcal{A},2) \ = \ \left\{ \left(\begin{array}{ccc} 4 & 5 & 6 \end{array} \right) \right\}$$

Related functions:

augment_columns, stack_rows, sub_matrix.

3.19 get_rows

see: get_columns.

$3.20 \quad gram_schmidt$

$$gram_schmidt(\{vec_1, vec_2, \ldots, vec_n\});$$

[‡]If you're feeling lazy then the {}'s can be omitted.

 $\text{vec}_1, \text{vec}_2, \dots, \text{vec}_n$:- linearly independent vectors. Each vector must be written as a list, eg: $\{1,0,0\}$.

Synopsis:

gram_schmidt performs the gram_schmidt orthonormalisation on the input vectors.

It returns a list of orthogonal normalised vectors.

Examples:

$$\begin{split} & \texttt{gram_schmidt}(\big\{\{\texttt{1,0,0}\}, \{\texttt{1,1,0}\}, \{\texttt{1,1,1}\}\big\}) = \big\{\{1,0,0\}, \{0,1,0\}, \{0,0,1\}\big\} \\ & \texttt{gram_schmidt}(\big\{\{\texttt{1,2}\}, \{\texttt{3,4}\}\big\}) = \big\{\big\{\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\big\}, \big\{\frac{2*\sqrt{5}}{5}, \frac{-\sqrt{5}}{5}\big\}\big\} \end{split}$$

3.21 hermitian_tp

 $hermitian_tp(A)$;

 \mathcal{A} :- a matrix.

Synopsis:

hermitian_tp computes the hermitian transpose of A.

This is a matrix in which the (i, j)'th entry is the conjugate of the (j, i)'th entry of A.

Examples:

$$\mathcal{J} = \left(\begin{array}{ccc} i+1 & i+2 & i+3\\ 4 & 5 & 2\\ 1 & i & 0 \end{array}\right)$$

$$\mathtt{hermitian_tp}(\mathcal{J}) \ = \ \left(\begin{array}{ccc} -i+1 & 4 & 1 \\ -i+2 & 5 & -i \\ -i+3 & 2 & 0 \end{array} \right)$$

Related functions:

tp§.

[§]standard reduce call for the transpose of a matrix - see REDUCE User's Manual[2].

3.22 hessian

hessian(expr,variable_list);

expr :- a scalar expression.

variable_list :- either a single variable or a list of variables.

Synopsis:

hessian computes the hessian matrix of expr w.r.t. the varibles in variable_list.

This is an n by n matrix where n is the number of variables and the (i,j)'th entry is $df(\exp(variable_i))$.

Examples:

$$\operatorname{hessian}(x*y*z+x^2,\{w,x,y,z\}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & z & y \\ 0 & z & 0 & x \\ 0 & y & x & 0 \end{pmatrix}$$

Related functions:

 df^{\P} .

3.23 hilbert

hilbert(square_size,expr);

square_size :- a positive integer.
expr :- an algebraic expression.

Synopsis:

hilbert computes the square hilbert matrix of dimension square_size.

This is the symmetric matrix in which the (i, j)'th entry is $1/(i+j-\exp r)$.

$$\mathtt{hilbert}(3,y+x) \ = \ \left(\begin{array}{ccc} \frac{-1}{x+y-2} & \frac{-1}{x+y-3} & \frac{-1}{x+y-4} \\ \frac{-1}{x+y-3} & \frac{-1}{x+y-4} & \frac{-1}{x+y-5} \\ \frac{-1}{x+y-4} & \frac{-1}{x+y-5} & \frac{-1}{x+y-6} \end{array} \right)$$

[¶]standard reduce call for differentiation - see REDUCE User's Manual[2]

3.24 jacobian

jacobian(expr_list,variable_list);

expr_list :- either a single algebraic expression or a list of algebraic

expressions.

variable_list :- either a single variable or a list of variables.

Synopsis:

jacobian computes the jacobian matrix of expr_list w.r.t. variable_list.

This is a matrix whose (i, j)'th entry is df(expr_list(i), variable_list(j)).

The matrix is n by m where n is the number of variables and m the number of expressions.

Examples:

$$jacobian(\{x^4, x * y^2, x * y * z^3\}, \{w, x, y, z\}) =$$

$$\left(\begin{array}{cccc}
0 & 4 * x^3 & 0 & 0 \\
0 & y^2 & 2 * x * y & 0 \\
0 & y * z^3 & x * z^3 & 3 * x * y * z^2
\end{array}\right)$$

Related functions:

hessian, df^{\parallel} .

3.25 jordan_block

jordan_block(expr,square_size);

expr :- an algebraic expression or symbol.

square_size :- a positive integer.

Synopsis:

<code>jordan_block</code> computes the square jordan block matrix ${\mathcal J}$ of dimension square_size.

The entries of \mathcal{J} are: $\mathcal{J}(i,i) = \exp r$ for i=1...n, $\mathcal{J}(i,i+1) = 1$ for i=1...n-1, and all other entries are 0.

standard reduce call for differentiation - see REDUCE User's Manual[2].

Examples:

$$\mathtt{jordan_block}(\mathtt{x},\mathtt{5}) \ = \ \begin{pmatrix} x & 1 & 0 & 0 & 0 \\ 0 & x & 1 & 0 & 0 \\ 0 & 0 & x & 1 & 0 \\ 0 & 0 & 0 & x & 1 \\ 0 & 0 & 0 & 0 & x \end{pmatrix}$$

Related functions:

diagonal, companion.

3.26 lu_decom

 $lu_decom(A)$;

 \mathcal{A} :- a matrix containing either numeric entries or imaginary entries with numeric coefficients.

Synopsis:

lu_decom performs LU decomposition on \mathcal{A} , ie: it returns $\{\mathcal{L}, \mathcal{U}\}$ where \mathcal{L} is a lower diagonal matrix, \mathcal{U} an upper diagonal matrix and $\mathcal{A} = \mathcal{L}\mathcal{U}$.

caution:

The algorithm used can swap the rows of \mathcal{A} during the calculation. This means that $\mathcal{L}\mathcal{U}$ does not equal \mathcal{A} but a row equivalent of it. Due to this, lu_decom returns $\{\mathcal{L}, \mathcal{U}, \text{vec}\}$. The call convert(\mathcal{A}, vec) will return the matrix that has been decomposed, ie: $\mathcal{L}\mathcal{U} = \text{convert}(\mathcal{A}, \text{vec})$.

$$\mathcal{K} = \left(\begin{array}{rrr} 1 & 3 & 5 \\ -4 & 3 & 7 \\ 8 & 6 & 4 \end{array} \right)$$

$$\mathtt{lu} := \mathtt{lu_decom}(\mathcal{K}) \ = \ \left\{ \left(\begin{array}{ccc} 8 & 0 & 0 \\ -4 & 6 & 0 \\ 1 & 2.25 & 1.1251 \end{array} \right), \left(\begin{array}{ccc} 1 & 0.75 & 0.5 \\ 0 & 1 & 1.5 \\ 0 & 0 & 1 \end{array} \right), \left[\begin{array}{ccc} 3 & 2 & 3 \end{array} \right] \right\}$$

first lu * second lu =
$$\begin{pmatrix} 8 & 6 & 4 \\ -4 & 3 & 7 \\ 1 & 3 & 5 \end{pmatrix}$$

convert(
$$\mathcal{K}$$
,third lu) = $\begin{pmatrix} 8 & 6 & 4 \\ -4 & 3 & 7 \\ 1 & 3 & 5 \end{pmatrix}$

$$\mathcal{P} = \begin{pmatrix} i+1 & i+2 & i+3 \\ 4 & 5 & 2 \\ 1 & i & 0 \end{pmatrix}$$

$$\begin{split} \mathbf{lu} := \mathbf{lu_decom}(\mathcal{P}) &= \left. \left\{ \left(\begin{array}{ccc} 1 & 0 & 0 \\ 4 & -4*i + 5 & 0 \\ i + 1 & 3 & 0.41463*i + 2.26829 \end{array} \right), \right. \\ &\left. \left(\begin{array}{ccc} 1 & i & 0 \\ 0 & 1 & 0.19512*i + 0.24390 \\ 0 & 0 & 1 \end{array} \right), \left[\begin{array}{ccc} 3 & 2 & 3 \end{array} \right] \right. \end{split}$$

first lu * second lu =
$$\begin{pmatrix} 1 & i & 0 \\ 4 & 5 & 2 \\ i+1 & i+2 & i+3 \end{pmatrix}$$

convert(P,third lu) = $\begin{pmatrix} 1 & i & 0 \\ 4 & 5 & 2 \\ i+1 & i+2 & i+3 \end{pmatrix}$

cholesky.

3.27 make_identity

make_identity(square_size);
square_size :- a positive integer.

Synopsis:

make_identity creates the identity matrix of dimension square_size.

$$\mathtt{make_identity}(4) \ = \ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

diagonal.

3.28 matrix_augment, matrix_stack

$$\mathtt{matrix_augment}(\{\mathtt{mat}_1,\mathtt{mat}_2,\ldots,\mathtt{mat}_n\});^{**}$$
 $\mathtt{mat}_1,\mathtt{mat}_2,\ldots,\mathtt{mat}_n :- \mathtt{matrices}.$

Synopsis:

matrix_augment sticks the matrices in matrix_list together horizontally. matrix_stack sticks the matrices in matrix_list together vertically.

Examples:

$$\mathtt{matrix_augment}(\{\mathcal{A},\mathcal{A}\}) = \begin{pmatrix} 1 & 2 & 3 & 1 & 2 & 3 \\ 4 & 4 & 6 & 4 & 5 & 6 \\ 7 & 8 & 9 & 7 & 8 & 9 \end{pmatrix}$$

$$\mathtt{matrix_stack}(\{\mathcal{A},\mathcal{A}\}) \ = \ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

Related functions:

augment_columns, stack_rows, sub_matrix.

3.29 matrixp

matrixp(test_input);

^{**}If you're feeling lazy then the {}'s can be omitted.

test_input :- anything you like.

Synopsis:

matrixp is a boolean function that returns t if the input is a matrix and nil otherwise.

Examples:

$$matrixp(A) = t$$
 $matrixp(doodlesackbanana) = nil$

Related functions:

squarep, symmetricp.

3.30 matrix_stack

see: matrix_augment.

3.31 minor

Synopsis:

minor computes the (r,c)'th minor of A.

This is created by removing the r'th row and the c'th column from A.

Examples:

$$minor(\mathcal{A}, 1, 3) = \begin{pmatrix} 4 & 5 \\ 7 & 8 \end{pmatrix}$$

Related functions:

remove_columns, remove_rows.

3.32 mult_columns, mult_rows

mult_columns(A,column_list,expr);

 \mathcal{A} :- a matrix.

column_list :- a positive integer or a list of positive integers.

expr :- an algebraic expression.

Synopsis:

mult_columns returns a copy of \mathcal{A} in which the columns specified in column_list have been multiplied by expr.

mult_rows performs the same task on the rows of A.

Examples:

$$\label{eq:mult_columns} \begin{split} \text{mult_columns}(\mathcal{A}, \{1, 3\}, x) &= \left(\begin{array}{cccc} x & 2 & 3*x \\ 4*x & 5 & 6*x \\ 7*x & 8 & 9*x \end{array} \right) \end{split}$$

$$mult_rows(A, 2, 10) = \begin{pmatrix} 1 & 2 & 3 \\ 40 & 50 & 60 \\ 7 & 8 & 9 \end{pmatrix}$$

Related functions:

add_to_columns, add_to_rows.

3.33 mult_rows

see: mult_columns.

3.34 pivot

pivot(A,r,c);

 \mathcal{A} :- a matrix.

r,c:- positive integers such that $\mathcal{A}(r,c)$ neq 0.

Synopsis:

pivot pivots A about its (r,c)'th entry.

To do this, multiples of the r'th row are added to every other row in the matrix.

This means that the c'th column will be 0 except for the (r,c)'th entry.

Examples:

$$\mathtt{pivot}(\mathcal{A}, 2, 3) = \begin{pmatrix} -1 & -0.5 & 0 \\ 4 & 5 & 6 \\ 1 & 0.5 & 0 \end{pmatrix}$$

Related functions:

rows_pivot.

3.35 pseudo_inverse

 $pseudo_inverse(A);$

 \mathcal{A} :- a matrix.

Synopsis:

pseudo_inverse, also known as the Moore-Penrose inverse, computes the pseudo inverse of A.

Given the singular value decomposition of \mathcal{A} , i.e: $\mathcal{A} = \mathcal{U} \sum \mathcal{V}^T$, then the pseudo inverse \mathcal{A}^{-1} is defined by $\mathcal{A}^{-1} = \mathcal{V}^T \sum^{-1} \mathcal{U}$.

Thus $A * pseudo_inverse(A) = I$.

Examples:

$$\mathtt{pseudo_inverse}(\mathcal{A}) \ = \ \begin{pmatrix} -0.2 & 0.1 \\ -0.05 & 0.05 \\ 0.1 & 0 \\ 0.25 & -0.05 \end{pmatrix}$$

Related functions:

svd.

3.36 random_matrix

random_matrix(r,c,limit);

r,c, limit :- positive integers.

Synopsis:

random_matrix creates an r by c matrix with random entries in the range

-limit < entry < limit.

switches:

imaginary :- if on then matrix entries are x+i*y where -limit <

x,y < limit.

not_negative :- if on then 0 < entry < limit. In the imaginary case

we have 0 < x,y < limit.

only_integer :- if on then each entry is an integer. In the imaginary

case x and y are integers.

symmetric :- if on then the matrix is symmetric.

upper_matrix :- if on then the matrix is upper triangular.
lower_matrix :- if on then the matrix is lower triangular.

Examples:

$$\begin{array}{lll} \mathtt{random_matrix}(3,3,10) & = & \left(\begin{array}{cccc} -4.729721 & 6.987047 & 7.521383 \\ -5.224177 & 5.797709 & -4.321952 \\ -9.418455 & -9.94318 & -0.730980 \end{array} \right) \end{array}$$

on only_integer, not_negative, upper_matrix, imaginary;

$$\mathtt{random_matrix}(4,4,10) \ = \ \left(\begin{array}{ccccc} 2*i+5 & 3*i+7 & 7*i+3 & 6 \\ 0 & 2*i+5 & 5*i+1 & 2*i+1 \\ 0 & 0 & 8 & i \\ 0 & 0 & 0 & 5*i+9 \end{array} \right)$$

3.37 remove_columns, remove_rows

remove_columns(A,column_list);

 \mathcal{A} :- a matrix.

column_list :- either a positive integer or a list of positive integers.

Synopsis:

remove_columns removes the columns specified in column_list from \mathcal{A} .

remove_rows performs the same task on the rows of \mathcal{A} .

$$\texttt{remove_columns}(\mathcal{A},2) = \begin{pmatrix} 1 & 3 \\ 4 & 6 \\ 7 & 9 \end{pmatrix}$$

$${\tt remove_rows}(\mathcal{A}, \{1,3\}) \ = \ \left(\begin{array}{ccc} 4 & 5 & 6 \end{array} \right)$$

minor.

3.38 remove_rows

see: remove_columns.

$3.39 \quad row_dim$

see: column_dim.

3.40 rows_pivot

rows_pivot(A,r,c,{row_list});

 \mathcal{A} :- a matrix.

r,c :- positive integers such that $\mathcal{A}(r,c)$ neq 0. row_list :- positive integer or a list of positive integers.

Synopsis:

rows_pivot performs the same task as pivot but applies the pivot only to the rows specified in row_list.

$$\mathcal{N} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

B WHAT'S AVAILABLE 25

$$\mathtt{rows_pivot}(\mathcal{N}, 2, 3, \{4, 5\}) \ = \left(\begin{array}{cccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ -0.75 & 0 & 0.75 \\ -0.375 & 0 & 0.375 \end{array}\right)$$

Related functions:

pivot.

3.41 simplex

simplex(max/min,objective function,{linear inequalities});

max/min :- either max or min (signifying maximise and minimise).

objective function :- the function you are maximising or minimising. linear inequalities :- the constraint inequalities. Each one must be of

the form sum of variables (<=,=,>=) number.

Synopsis:

simplex applies the revised simplex algorithm to find the optimal (either maximum or minimum) value of the objective function under the linear inequality constraints.

It returns {optimal value, { values of variables at this optimal}}.

The algorithm implies that all the variables are non-negative.

```
\begin{split} & \texttt{simplex}(max, x+y, \{x>=10, y>=20, x+y<=25\}) \,; \\ & ***** \; \texttt{Error in simplex:} \; \; \texttt{Problem has no feasible solution.} \\ & \texttt{simplex}(max, 10x+5y+5.5z, \{5x+3z<=200, x+0.1y+0.5z<=12, \\ & 0.1x+0.2y+0.3z<=9, 30x+10y+50z<=1500\}) \,; \\ & \{525.0, \{x=40.0, y=25.0, z=0\}\} \end{split}
```

3.42 squarep

squarep(A);

 \mathcal{A} :- a matrix.

Synopsis:

squarep is a boolean function that returns t if the matrix is square and nil otherwise.

Examples:

$$\mathcal{L} = \left(\begin{array}{ccc} 1 & 3 & 5 \end{array} \right)$$

squarep(A) = t

 $squarep(\mathcal{L}) = nil$

Related functions:

matrixp, symmetricp.

3.43 stack_rows

see: augment_columns.

3.44 sub_matrix

sub_matrix(A,row_list,column_list);

 \mathcal{A} :- a matrix.

row_list, column_list :- either a positive integer or a list of positive integers.

Synopsis:

sub_matrix produces the matrix consisting of the intersection of the rows specified in row_list and the columns specified in column_list.

$$\mathtt{sub_matrix}(\mathcal{A},\{1,3\},\{2,3\}) \ = \ \left(\begin{array}{cc} 2 & 3 \\ 8 & 9 \end{array} \right)$$

augment_columns, stack_rows.

3.45 svd (singular value decomposition)

svd(A);

 \mathcal{A} :- a matrix containing only numeric entries.

Synopsis:

svd computes the singular value decomposition of A.

It returns $\{\mathcal{U}, \sum, \mathcal{V}\}$ where $\mathcal{A} = \mathcal{U} \sum \mathcal{V}^T$ and $\sum = diag(\sigma_1, \dots, \sigma_n)$. σ_i for $i = (1 \dots n)$ are the singular values of \mathcal{A} .

n is the column dimension of A.

The singular values of \mathcal{A} are the non-negative square roots of the eigenvalues of $\mathcal{A}^T \mathcal{A}$.

 \mathcal{U} and \mathcal{V} are such that $\mathcal{U}\mathcal{U}^T = \mathcal{V}\mathcal{V}^T = \mathcal{V}^T\mathcal{V} = \mathcal{I}_n$.

Examples:

$$Q = \left(\begin{array}{cc} 1 & 3 \\ -4 & 3 \end{array}\right)$$

$$\begin{array}{lll} \mathtt{svd}(\mathcal{Q}) & = & \left\{ \left(\begin{array}{ccc} 0.289784 & 0.957092 \\ -0.957092 & 0.289784 \end{array} \right), \left(\begin{array}{ccc} 5.149162 & 0 \\ 0 & 2.913094 \end{array} \right), \\ & \left(\begin{array}{ccc} -0.687215 & 0.726453 \\ -0.726453 & -0.687215 \end{array} \right) \right\} \end{array}$$

3.46 swap_columns, swap_rows

 $swap_columns(A, c1, c2);$

 \mathcal{A} :- a matrix.

c1,c1 :- positive integers.

Synopsis:

swap_columns swaps column c1 of \mathcal{A} with column c2.

swap_rows performs the same task on 2 rows of A.

Examples:

$$swap_columns(\mathcal{A},2,3) = \begin{pmatrix} 1 & 3 & 2 \\ 4 & 6 & 5 \\ 7 & 9 & 8 \end{pmatrix}$$

Related functions:

swap_entries.

3.47 swap_entries

swap_entries(
$$\mathcal{A}$$
,{r1,c1},{r2,c2});
 \mathcal{A} :- a matrix.

r1,c1,r2,c2 :- positive integers.

Synopsis:

swap_entries swaps $\mathcal{A}(r1,c1)$ with $\mathcal{A}(r2,c2)$.

Examples:

$$\mathtt{swap_entries}(\mathcal{A}, \{1,1\}, \{3,3\}) \ = \ \left(\begin{array}{ccc} 9 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 1 \end{array} \right)$$

Related functions:

swap_columns, swap_rows.

3.48 swap_rows

see: swap_columns.

3.49 symmetricp

symmetricp(A);

 \mathcal{A} :- a matrix.

Synopsis:

symmetric is a boolean function that returns t if the matrix is symmetric and nil otherwise.

Examples:

$$\mathcal{M} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 symmetricp $(\mathcal{A}) = \text{nil}$

Related functions:

matrixp, squarep.

 $\mathtt{symmetricp}(\mathcal{M}) = t$

3.50 toeplitz

toeplitz(
$$\{expr_1, expr_2, \dots, expr_n\}$$
); ††
expr_1,expr_2, ...,expr_n :- algebraic expressions.

Synopsis:

toeplitz creates the toeplitz matrix from the expression list.

This is a square symmetric matrix in which the first expression is placed on the diagonal and the i'th expression is placed on the (i-1)'th sub and super diagonals.

It has dimension n where n is the number of expressions.

Examples:

$$\texttt{toeplitz}(\{w, x, y, z\}) \ = \ \left(\begin{array}{cccc} w & x & y & z \\ x & w & x & y \\ y & x & w & x \\ z & y & x & w \end{array} \right)$$

3.51 triang_adjoint

triang_adjoint(A);

^{††}If you're feeling lazy then the {}'s can be omitted.

 \mathcal{A} :- a matrix.

Synopsis:

triang_adjoint computes the triangularizing adjoint \mathcal{F} of matrix \mathcal{A} due to the algorithm of Arne Storjohann. \mathcal{F} is lower triangular matrix and the resulting matrix \mathcal{T} of $\mathcal{F}*\mathcal{A}=\mathcal{T}$ is upper triangular with the property that the *i*-th entry in the diagonal of \mathcal{T} is the determinant of the principal *i*-th submatrix of the matrix \mathcal{A} .

Examples:

$$triang_adjoint(\mathcal{A}) = \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -3 & 6 & -3 \end{pmatrix}$$

$$\mathcal{F} * \mathcal{A} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{pmatrix}$$

3.52 Vandermonde

$$\begin{split} & \text{vandermonde}(\{\text{expr}_1, \text{expr}_2, \dots, \text{expr}_n\}); \ ^{\dagger\dagger} \\ & \text{expr}_1, \text{expr}_2, \dots, \text{expr}_n \quad \text{:-} \quad \text{algebraic expressions}. \end{split}$$

Synopsis:

Vandermonde creates the Vandermonde matrix from the expression list.

This is the square matrix in which the (i,j)'th entry is expr_list(i) (j-1).

It has dimension n where n is the number of expressions.

Examples:

$$\mathtt{vandermonde}(\{x, 2*y, 3*z\}) \ = \ \left(\begin{array}{ccc} 1 & x & x^2 \\ 1 & 2*y & 4*y^2 \\ 1 & 3*z & 9*z^2 \end{array} \right)$$

3.53 kronecker_product

 $kronecker_product(Mat_1, Mat_2)$

 Mat_1, Mat_2 :- Matrices

Synopsis:

kronecker_product creates a matrix containing the Kronecker product (also called direct product or tensor product) of its arguments.

Examples:

```
a1 := mat((1,2),(3,4),(5,6))$

a2 := mat((1,1,1),(2,z,2),(3,3,3))$

kronecker_product(a1,a2);

\begin{pmatrix}
1 & 1 & 1 & 2 & 2 & 2 \\
2 & z & 2 & 4 & 2*z & 4 \\
3 & 3 & 3 & 6 & 6 & 6 \\
3 & 3 & 3 & 4 & 4 & 4 \\
6 & 3*z & 6 & 8 & 4*z & 8 \\
9 & 9 & 9 & 12 & 12 & 12 \\
5 & 5 & 5 & 6 & 6 & 6 \\
10 & 5*z & 10 & 12 & 6*z & 12 \\
15 & 15 & 15 & 18 & 18 & 18
\end{pmatrix}
```

4 Fast Linear Algebra

By turning the fast_la switch on, the speed of the following functions will be increased:

$add_columns$	add_rows	$augment_columns$	$column_dim$
$copy_into$	$make_identity$	$matrix_augment$	$matrix_stack$
minor	$\operatorname{mult_column}$	$\operatorname{mult_row}$	pivot
$remove_columns$	$remove_rows$	$rows_pivot$	squarep
$stack_rows$	$\operatorname{sub_matrix}$	$swap_columns$	$swap_{entries}$
swap_rows	symmetricp		

The increase in speed will be insignificant unless you are making a significant number (i.e: thousands) of calls. When using this switch, error checking is minimised. This means that illegal input may give strange error messages. Beware.

REFERENCES 32

5 Acknowledgments

Many of the ideas for this package came from the Maple[3] Linalg package [4].

The algorithms for cholesky, lu_decom, and svd are taken from the book Linear Algebra - J.H. Wilkinson & C. Reinsch[5].

The gram_schmidt code comes from Karin Gatermann's Symmetry package[6] for REDUCE.

References

- [1] Matt Rebbeck: NORMFORM: A REDUCE package for the computation of various matrix normal forms. ZIB, Berlin. (1993)
- [2] Anthony C. Hearn: REDUCE User's Manual 3.6. RAND (1995)
- [3] Bruce W. Char...[et al.]: Maple (Computer Program). Springer-Verlag (1991)
- [4] Linalg a linear algebra package for Maple[3].
- [5] J. H. Wilkinson & C. Reinsch: Linear Algebra (volume II). Springer-Verlag (1971)
- [6] Karin Gatermann: Symmetry: A REDUCE package for the computation of linear representations of groups. ZIB, Berlin. (1992)