CLASSIFICATION-BASED

MODEL EVALUATION

MODEL EVALUATION

- Performance Evaluation
- Model Comparison

PERFORMANCE EVALUATION

Cross-Validation

Preferably, k-fold cross-validation

Train-Test Accuracy

K-FOLD CROSS-VALIDATION

K-FOLD CROSS-VALIDATION

Bias-Variance Trade-off:

Reduces bias but increases variance as we increase the number of folds

A good empirical value for k = 10

OTHER TYPES OF CROSS-VALIDATION

- Repeated k-fold
- Stratified k-fold
- Leave-One-Out

OTHER TYPES OF CROSS-VALIDATION

- ▶ Repeated *k*-fold: Reduces variance by averaging
- Stratified k-fold: Good for imbalanced classes
- Leave-One-Out: Better for smaller datasets

CROSS-VALIDATION BY SKLEARN

https://scikit-learn.org/stable/modules/cross_validation.html

GRID SEARCH IS YOUR NEW BEST FRIEND

- Grid Search is a wonderful way to find the right model and also tune all parameters
- Randomized Grid Search is better for a first-pass model
- Complete Grid Search can then be used to find the right configurations

GRID SEARCH IS YOUR NEW BEST FRIEND

- Grid Search is a wonderful way to find the right model and also tune all parameters
- Randomized Grid Search is better for a first-pass model
- Complete Grid Search can then be used to find the right configurations

Of course, sklearn is here for our rescue! https://scikit-learn.org/stable/modules/grid_search.html

MODEL COMPARISON

Gauging the Predictive Capability of a Model

	PREDICTED CLASS		
		CLASS = YES	CLASS = NO
ACTUAL CLASS	CLASS = YES	а	b
	CLASS = NO	C	d

MODEL COMPARISON

Gauging the Predictive Capability of a Model

	PREDICTED CLASS		
		CLASS = YES	CLASS = NO
ACTUAL CLASS	CLASS = YES	a (True Positive)	b (False Negative)
	CLASS = NO	c (False Positive)	d (True Negative)

Total number of instances correctly classified

$$Accuracy = \frac{TP + FP}{TP + TN + FP + FN}$$

Total number of instances correctly classified

Accuracy =
$$\frac{TP + FP}{TP + TN + FP + FN}$$

The higher the accuracy, the better

	PREDICTED CLASS		
ACTUAL CLASS		CLASS = YES	CLASS = NO
	CLASS = YES	a (True Positive)	b (False Negative)
	CLASS = NO	c (False Positive)	d (True Negative)

	PREDICTED CLASS		
ACTUAL CLASS		CLASS = YES	CLASS = NO
	CLASS = YES	a (True Positive)	b (False Negative)
	CLASS = NO	c (False Positive)	d (True Negative)

IS ACCURACY ALWAYS GOOD?

What is the accuracy of the model?

A Two-Class Problem

- Number of Class = Yes: 9990
- Number of Class = No: 10

IS ACCURACY ALWAYS GOOD?

What is the accuracy of the model?

A Two-Class Problem

- Number of Class = Yes: 9990
- Number of Class = No : 10

If the model predicts ALL instances to be "Yes":

Accuracy = 99.90%

IS ACCURACY ALWAYS GOOD?

What is the accuracy of the model?

A Two-Class Problem

- Number of Class = Yes : 9990
- Number of Class = No: 10

It is possible to get high accuracy if the model does not detect any instance of an imbalanced class

IMBALANCED-CLASS PROBLEM

- Precision
- Recall
- F-1 Score

PRECISION

Total number of correctly classified instances out of all
 Predicted instances

$$\frac{TP}{TP + FP}$$

PRECISION

	PREDICTED CLASS		
ACTUAL CLASS		CLASS = YES	CLASS = NO
	CLASS = YES	a (True Positive)	b (False Negative)
	CLASS = NO	c (False Positive)	d (True Negative)

Precision
$$(p) = \frac{a}{a+c} = \frac{TP}{TP+FP}$$

RECALL

 Total number of correctly classified instances out of all Relevant instances

Recall =
$$\frac{TP}{TP + FN}$$

RECALL

	PREDICTED CLASS		
ACTUAL CLASS		CLASS = YES	CLASS = NO
	CLASS = YES	a (True Positive)	b (False Negative)
	CLASS = NO	c (False Positive)	d (True Negative)

Recall
$$(r) = \frac{a}{a+b} = \frac{TP}{TP + FN}$$

PRECISION AND RECALL

F-1 SCORE

The harmonic mean between precision and recall

F-1 Score =
$$\frac{2TP}{2TP + FP + FN}$$

F-1 SCORE

	PREDICTED CLASS		
ACTUAL CLASS		CLASS = YES	CLASS = NO
	CLASS = YES	a (True Positive)	b (False Negative)
	CLASS = NO	c (False Positive)	d (True Negative)

F-1 Score =
$$\frac{2rp}{r+p} = \frac{2TP}{2TP + FP + FN}$$

F-1 SCORE

The harmonic mean between precision and recall

F-1 Score =
$$\frac{2TP}{2TP + FP + FN}$$

Related Measure - Balanced Accuracy
 It is the arithmetic mean of sensitivity and specificity

ROC CURVE

- Receiver Operating Characteristics (ROC) curve
- M₁ is better for lower FPR
 M₂ is better for greater FPR

Related Measure:Area Under the Curve (AUC)

FOR MORE METRICS

What better resource than a practical one?

https://scikit-learn.org/stable/modules/model_evaluation.html

EXAMPLE CODE

Examples (along with measures to tackle imbalanced-class problems) can be found here:

https://github.com/learn-co-students/dc-ds-071519/blob/master/Module-5/week-3/Class_imbalance_model_eval.ipynb