Measurements of Atmospheric CO ASCENDS Olumn in Cloudy Weather Conditions using An IM-CW Lidar at 1.57 Micron

Bing Lin¹, Michael Obland¹, F. Wallace Harrison¹, Amin Nehrir¹, Edward Browell², Joel Campbell¹, Jeremy Dobler³, Byron Meadows¹, Tai-Fang Fan⁴, Susan Kooi⁴, and Syed Ismail¹

¹NASA Langley Research Center, Hampton, VA, USA ²NASA Langley/STARSS II Affiliate, Hampton, VA, USA ³Harris Corp., Ft. Wayne, IN, USA ⁴Science System and Application, Inc, Hampton, VA, USA

The 27th International Laser Radar Conference 5 - 10 July 2015, New York City, USA

Outline

- Introduction
 - Carbon sciences and challenges
 - Lidar CO₂ measurement approach
 - Instrumentation and flight campaigns
- Lidar Measurements
 - In-situ observations for validation
 - Accuracy of CO₂ measurements
 - Precision of CO₂ measurements
 - Ranging measurements
 - o CO₂ measurements through thin clouds
 - CO₂ column measurements to cloud tops
- Summary

Annual CO₂ Budget & Variation ASCENDS
Terrestrial sink: residual >>> large errors

Land plants and ocean uptake removes some of atmospheric CO₂
Atmosphere CO₂ budgets: large variations
Prediction of this trend and variability, especially in changing climate

Fossil Fuel: 9.1 ± 0.5

CO₂ Measurement Architecture IM-CW Laser Absorption Lidar

1×10⁻²¹ 0 km 10 km 20 km 8×10⁻²² 40 km Side-Line (+3 pm) 4×10⁻²² Line-Center 2×10-22 1571.1610 1571.0610 1571.1110 λ (nm)

- \triangleright Simultaneously transmits λ_{on} and λ_{off} reducing noise from the atmosphere and eliminating surface reflectance variations.
- ➤ Approach is independent of the system wavelength and allows simultaneous CO₂ & O₂ (1.26 μm) number density measurements, combining them to derive XCO₂.

Weighting Functions

ΔR = c/2Δf ≈ 300 m

0.05

Time, t (ms)

Modulation Frequency ∆f ~ 500 kHz

IM-CW Laser Absorption Lidar 1.57-µm CO₂ Measurement Technique

Multiple channel Intensity Modulations: orthogonal waveforms

Simultaneously transmitted Intensity modulated range encoded waveforms

Simultaneously received Online and Offline IPDA returns

Range encoded approach for detection and ranging is analogous to mature CW Radar and GPS measurement techniques

λOffline 1

Measurement: Output of correlation between transmitted and received waveforms

SCENDS

$$DAOD = \frac{1}{2} ln \left(\frac{P_{off} * E_{on}}{P_{on} * E_{off}} \right)$$

Airborne System Demonstration

ASCENDS

ASCENDS CarbonHawk
Experiment Simulator
(ACES developed at LaRC
with support from Harris)

Multifunctional Fiber
Laser Lidar (MFLL)
(developed by Harris in 2004
Harris and Langley since 2005)

advancing key technologies for spaceborne measurements of CO₂ column mixing ratio

Development & Demonstration

21-25 May 2005, Ponca City, OK (DOE ARM) 5 Lear Flts: Land, Day & Night (D&N)

20-26 June 2006, Alpena, MI

6 Lear Fits: Land & Water (L&W), D&N

20-24 October 2006, Portsmouth, NH

4 Lear Flts: L&W, D&N

20-24 May 2007, Newport News, VA

8 Lear Flts: L&W, D&N

17-22 October 2007, Newport News, VA

9 Lear Fits: L&W, D&N, Clear & Cloudy

22 Sept. - 30 Oct. 2008, Newport News, VA

10 UC-12 Flts: L&W, D&N, Rural & Urban

10-16 July 2009, Newport News, VA

ranging

enabled

capability

5 UC-12 Flts: L&W

31 July - 7 Aug. 2009, Ponca City, OK

5 UC-12 Flts: L&W, D&N

10-20 May 2010, Hampton, VA

6 UC-12 Flts: L&W, D&N

5-11 May 2011, Hampton, VA

5 UC-12 Flts: L&W, D&N, Clear and Cloudy

6-18 July 2010, Palmdale CA

6 DC-8 Flts: L&W, D

28 July - 11 Aug. 2011, Palmdale CA

8 DC-8 Flts: L&W, D

February 19 - March 9, 2013, Palmdale CA

7 DC-8 Flts: L&W, D&N

August 13 - September 3, 2014, Palmdale CA

5 DC-8 Flts: L&W, D

various
lab,
ground
range,
and
flight
tests

4*SCENDS*

total 14 MFLL flight campaigns since 2005, plus 1 ACES in Hampton, 2014

In Situ and Lidar Comparision

(MFLL OCO-2 Under Flight: 20140827)

Black curves: lidar measured XCO2

Blue curves: in-situ derived XCO2

20,5

2014 AVOCET In Situ CO2

In-situ derived (or modeled) Value

- In-situ from Spiral: XCO₂, T/p/q profiles
- Radiative transfer model
- Ranging correction with lidar range data
- In-situ derived (or modeled) DAOD
- In-situ derived (or modeled) XCO₂

difference (ppm): 0.18

22:59

23:00

23:01

2013 ASCENDS Campaign:

SCENDS

Measurements over varying terrain

23:02

Time (UT)

23:04

23:05

23:06

difference ~ 0.26% (~0.99 ppmv); Precision ~ 0.42% (~1.6 ppmv)

Comparison of Range Determination ASCENDS from PN Altimeter and Off-line CO₂ Signal

Range estimates obtained from the off-line CO₂ return and time coincident returns from the onboard PN altimeter over the region of Four Corners, NM from the DC-8 flight on 7 August 2011.

CO₂ Column Measurements Through Thin Cirrus (22 Feb 2013)

0.84

Time (UT, hr)

0.88

0.92

0 ⊢ 0.76

0.80

Column CO₂ DAOD and Equivalent XCO₂ Measurements

consistent CO₂ column observations obtained for clear and cloudy conditions

CO₂ Column Measurements over Thick Low Level Clouds

(10 Aug 2011)

- Sufficient CO₂ absorption for DAOD measurements
- Strong enough signals to low level thick clouds
- •Legs: 4, 5, 7

Range and Column CO₂ to Surface and Thick Cloud Tops

Column CO₂ Measurements to Surface and Thick Cloud Tops

	Leg 4	Leg 5	Leg 7
lidar DAOD _{surface}	0.4271 ± 0.0056	0.5196 ± 0.0093	0.6902 ± 0.0155
lidar DAOD _{cloud}	0.3480 ± 0.0143	0.4368 ± 0.0243	0.6007 ± 0.0339
lidar DAOD _{bndrylyr}	0.0791 ± 0.0154	0.0828 ± 0.0260	0.0895 ± 0.0373
In-situ DAOD _{surface}	0.4243	0.5160	0.6939
In-situ DAOD _{cloud}	0.3417	0.4334	0.6075
In-situ DAOD _{bndrylyr}	0.0826	0.0826	0.0826
lidar XCO2 _{surface}	383.2 ± 5.02	384.3 ± 6.88	381.6 ± 8.57
lidar XCO2 _{cloud}	391.5 ± 16.09	387.7 ± 21.31	382.0 ± 21.56
In-situ XCO2 _{surface}	380.8	381.7	383.8
In-situ XCO2 _{cloud}	384. 6	384.9	386.4

- Global/regional atmospheric CO_2 observations require high accuracy and precision measurements owing to very small variations in atmospheric CO_2 mixing ratio.
- Laser absorption lidar at 1.57μm with ranging-encoded IM provides advanced capability in cloud/aerosol discriminations.
- **❖** IM-CW lidar has demonstrated the capabilities of precise CO₂ measurements through many airborne flight campaigns under variety of environment conditions, including CO₂ column measurements through thin cirrus clouds and to thick clouds. For low level clouds, boundary layer CO₂ measurements consistent with in-situ observations can be obtained.
- **Analysis shows that current IM-CW lidar approach will meet space CO₂ observation requirements and provide precise CO₂ measurements for carbon transport, sink and source studies.**