Московский физико-технический институт, МФТИ

Москва

Основные понятия и обозначения

Задача классификаци X, Y, $X^{I} = (x_{i}, y_{i})_{i=1}^{I}$ - выборка обучающая.

Необходимо построить неизвестное отображение: $a(x; X^I)$ $X \to Y$.

Формула Байеса:

$$p(x,y) = p(x)P(y|x) = P(y)p(x|y).$$

Принцип максимума апостериорной вероятности:

$$a(x) = \arg\max_{y \in Y} P(y|x) = \arg\max_{y \in Y} P(y) p(x|y).$$

Распределение объектов в каждом классе

Распределение объектов в каждом классе, нормировка

Двумерное распределение объектов

Способы оценки плотности распределений

• непараметрическая оценка плотности

$$\hat{p}(x) = \sum_{i=1}^{n} \frac{1}{hV(h)} K\left(\frac{\rho(x, x_i)}{h}\right),$$

- параметрическая оценка плотности $\hat{p}(x) = \varphi(x, \theta)$;
- ullet оценка смеси распределений $\hat{p}(x) = \sum w_j arphi(x, heta_j).$

Функции в ядре

Пример непараметрического оценивания

Параметрическое оценивание

Допустим распределение объектов оценивается гладкой функцией, зависящей от параметра θ :

$$p(x) = \varphi(x; \theta).$$

Принцип тах правдоподобия

$$L(\theta; X^m) = \sum_{i=1}^m \ln \varphi(x_i; \theta) \to \max_{\theta}.$$

Распределение в классах

Рассмотрим многомерное гауссовское распределение:

$$p(x|y) = \mathcal{N}(x; \mu_y, \Sigma_y) = \frac{exp\{0.5(x - \mu_y)^T \Sigma_y^{-1}(x - \mu_y)\}}{\sqrt{(2\pi)^n det \Sigma_y}}.$$

Разделяющая повернхность классов определятеся из соотношения

$$\lambda_y P(y)p(x|y) = \lambda_s P(s)p(x|s), \ y \neq s.$$

Примеры гауссовых двумерных распределений

Линейная граница нескольких классов

Линейный дискриминант Фишера

Пусть классы имеют одинаковую ковариацонную матрицу Σ , математическое ожидание объектов отдельного класса:

$$\hat{\mu}_y = \frac{1}{l_y} \sum x_i,$$

и среднее мат ожидание для двоих классов

$$\mu_{st} = 0.5(\mu_s + \mu_t),$$

тогда граница классов определяется из уравнения

$$(x - \mu_{st}) \Sigma^{-1} (\mu_s - \mu_t) = c_{st}.$$

Линейный дискриминант Фишера

Пример множества классов

Linear Discriminant Analysis

Пример границ разделения множества классов

Classification in Reduced Subspace

Метрическая классификация

Задача классификаци X, Y, $X^I = (x_i, y_i)_{i=1}^I$ - выборка обучающая.

Возможно сравнить два отдельних элемента выборки в пространстве X по метрической функции $\rho(x_i, x_j)$. Требуется найти алгоритм классификации $a(x, X^I) = Y$.

Иллюстрация, цветки ириса и др.

Различные виды норм

Рассмотрим функции описывающие различные нормы:

1. Евклидово
$$\rho(x,x_i) = \left(\sum_{j=1}^n w_k |x^j - x_i^j|^2\right)^{1/2};$$

2.
$$L_p$$
-метрика $ho(x,x_i) = \left(\sum_{j=1}^n w_k |x^j - x_i^j|^p\right)^p$;

3.
$$L_{\infty}$$
-метрика $\rho(x, x_i) = \max_{j=1..n} |x_i^j - x^j|;$

4.
$$L_1$$
-метрика $\rho(x, x_i) = \sum_{j=1}^n |x_i^j - x^j|;$

NB: $w_1,...,w_2$ - веса признаков, их также можно настраивать.

Обобщенный метрический классификатор

Метрический алгоритм классификации Пусть для заданной точки пространства объектов X, его соседи из выборки X^{l} :

$$\rho(x, x^{(i)}) \le \rho(x, x^{(i)}) \le \dots \le \rho(x, x^{(l)}),$$

где $x^{(i)}$ - iй сосед объекта x.

$$a(x; X^{l}) = \arg \max_{y \in Y} \sum_{i=1}^{l} [y^{(i)} = y] w(i, x),$$

так что можно определить функцию $\Gamma_y(x)$ - оценку близости объекта x к классу y.

Метод ближайшего соседа

Алгоритм ближайшего соседа: w(i,u) = [i=1], $a(u;X^I) = y_u^{(1)}$. Имеет ряд недостатков, такие как, неустойчивость, нельзя настроить под конкретные условия, необходимость хранить всю

выборку.

Метод k средних kNN(k nearest neighbor)

Рассмотрим более широкую область вплость до k соседа $w(i,u)=[i\leq k].$ Настройка гиперпараметра k

$$LOO(k, X^{l}) = \sum_{i=1}^{l} [a(x_i; X^{l} \setminus x_i, k) \neq y_i] \rightarrow \min_{k}.$$

Одна из проблем - неоднозначность классификации: $\Gamma_y(u) = \Gamma_s(u), \ y \neq s.$

Метод взвешенных ближайших соседей

Возьмем коэффициенты с весами $w(i, u) = [i \le k]w_i$. Возможны следующие случаи выбора весов:

- $w_i = \frac{k+1-i}{k}$ линейной убывающие веса;
- $w_i = q^i$ экспонетоциально убывающие веса 0 < q < 1;

Подбор параметра по LOO

Недостатки методов типа kNN

- 1. приходится хранить всю выборку целиком;
- 2. классифицируемый объект сравнивается со всеми объектами выборки O(I), можно оптимизировать до O(InI) операций;
- 3. ограниченное число параметров и как следстивие ограничения настройки по данным;

Метод парзеневского окна

Определим веса следующим образом $w(i,x) = K\left(\frac{\rho(x,x^{(i)})}{h}\right)$, h-ширина окна. Метод парзеневского окна фиксированной ширины

$$a(x; X^{I}, h, K) = \arg \max_{y \in Y} \sum_{i=1}^{I} [y^{(i)} = y] K\left(\frac{\rho(x, x^{(i)})}{h}\right),$$

Метод парзеневского окна переменной ширины

$$a(x; X^{I}, \mathbf{k}, K) = \arg \max_{y \in Y} \sum_{i=1}^{I} [y^{(i)} = y] K \left(\frac{\rho(x, x^{(i)})}{\rho(x, x^{(k+1)})} \right),$$

Оптимизировать можно как параметры ширины окна h, k, так и вид самого ядра K.

Метод потенциальной функции

Воспользовавшись аналогией с зарядами возьмем следующие ядра:

$$w(i,x) = \gamma^{(i)} K\left(\frac{\rho(x,x^{(i)})}{h^{(i)}}\right),$$

Заметим, что объекты можно не ранжировать

$$a(x; X^{l}) = \arg\max_{y \in Y} \sum_{i=1}^{l} [y^{(i)} = y] \gamma_{i} K\left(\frac{\rho(x, x_{i})}{h_{i}}\right),$$

по физической аналогии: γ_i - величина заряда в точке x_i ; h_i - радиус действия потенциала с центом в точке x_i ; y_i - знак зараяда в случае двух классов $K(r)=\frac{1}{r}$.

Достоинства и недостатки метода

Метрические классификаторы просты в реализации, позволяют с ходу решить множество задач.

При оптимизации возможно подбирать следующие параметры:

- 1. число соседей k и ширину окна h;
- 2. веса объектов;
- 3. набор эталонов;
- 4. метрику (distance learning, similarity learning)
- 5. веса признаков самостоятельно;
- 6. функцию ядра K(r).

Отбор эталонных объектов

Введем понятие "хороших" объектов

эталон

различные объекты негативно влияющие на результат:

- 1. неинформативные;
- 2. перифирийные;
- 3. шумовые выборсы;

Понятие отступа объекта

Определение

Отступом объекта $x_i \in X^I$ относительно классификации, имеющей вид $a(u) = \arg\max_{y \in Y} \Gamma_y(u)$, называется величина

$$M(x_i) = \Gamma_{y_i}(x_i) - \max_{y \in Y \setminus y_i} \Gamma_y(x_i).$$

Отступ характеризует полезность объекта . Отступ отрицателен тогда и только тогда, когда алгоритм допускает ошибку на данном объекте.

Отступы объектов, иллюстрация

Все типы объектов относительно указанного объекта можно разделить на группы:эталонные, неинформативные, пограничные, ошибочные, шумовые.

Алгоритм STOLP для отбора эталонных объектов

Вход: X^I - обучающая выборка, δ - порог фильтрации выбросов, I_0 - допустимая доля ошибок.

Выход: Множество опорных объектов $\Omega \subseteq X^I$.

Модель классификатора:

$$a(x;\Omega) = \arg\max_{y \in Y} \sum_{x_i \in \Omega}^{l} [y_u^{(i)} = y] w(i,x),$$

 $y_u^{(i)}$ - ответ на i-м соседе объекта u.

Алгоритм STOLP

- 1. Для всех $x_i \in X^I$ проверить, является ли он выбросом $(M(x_i, X^I) < \delta)$
- 2. $\Omega = \{ \arg\max_{x_i \in X_y^I} M(x_i, X^I) | y \in Y \}$, пока $\Omega \neq X^I$
- 3. Выделить множество объектов с ошибкой $a(u,\Omega)$: $E=\{x_i\in X^I\diagdown\Omega: M(x_i,\Omega)<0\}$ если $|E|< l_0$, то выход
- 4. Присоединить к Ω объект с наименьшим отступом: $x_i = \arg\min_{x \in E} M(x,\Omega), \ \Omega = \Omega \cup x_i.$

Анализ алгоритма

Преимущества методов

- 1. уменьшаем число хранимых объектов
- 2. время классификации
- 3. объекты распределяются по величине отступов (см картинку, характер прямой качество классификации)

Недостатки метода

- 1. дополнительный параметр δ
- 2. эффективность $O(|\Omega|^2 I)$

Выбор метрики

Метрика Минковского с весами:

$$\rho(x,x_i) = \left(\sum_{j=1}^n w_k |x^j - x_i^j|^p\right)^p$$

- нормировка признака;
- упорядочевание признаков по важности;
- отрбасывание признаков;

Жадное добавление признаков

- 1. Решим задачу по каждому из признаков $ho_j(u,x_i)=|u^i-x_i^j|$. Выберем налиучший параметр LOO(j) o min.
- 2. Расширим нашу метрику добавлением еще одного признака

$$\rho'(u,x_i) = \rho(u,x_i) + w_j \rho_j(u,x_i),$$

одновременно найдем признак j и $w_j \ge 0$ наиболее оптимальные $LOO(j, w_i) \to min$ (два цикла).

3. жадный алгоритм может нахватать лишних признаков

$$\rho'(u,x_i) = \rho(u,x_i) - w_k \rho_k(u,x_i) + w_j \rho_j(u,x_i),$$

(хорошо работает для правильных задач).

4. Будем добавлять признаки, пока *LOO* увеличиваться.

Полный скользящий контроль

Complete cross validation (CCV)

$$CCV(X^{I}) = \frac{1}{C_{L}^{I}} \sum_{X^{I} \sqcup X^{k}} \frac{1}{k} \sum_{x_{i} \in X^{k}} [a(x_{i}, X^{I}) \neq y_{i}],$$

где $X^I \sqcup X^k$ - все C_L^I разбиений выборки X^L .

Выписываем точную комбинарторную формулу для полного скользящего контроля.

При
$$k = 1$$
 $CCV(X^L) = LOO(X^L)$.

CCV характеризует среднюю часоту ошибки, не учитывая пространственое распределение объектов.

Профиль компактности

Definition

Профиль компактности выборки X^L -это функция доли объектов x_i , у которых m-сосед x_i^m лежит в другом классе

$$K(m, X^L) = \frac{1}{L} \sum_{i=1}^{L} [y_i \neq y_i^{(m)}], m = 1, .., L - 1.$$

Можно получить формулу скользящего контроля в явном виде

$$CCV(X^{L}) = \sum_{m=1}^{k} K(m, X^{L}) \frac{C_{L-1-m}^{l-1}}{C_{L-1}^{l}}.$$

$$CCV(X^{L}) = \sum_{m=1}^{k} K(m, X^{L}) \frac{C_{L-1-m}^{l-1}}{C_{L-1}^{l}}.$$

- связь свойств выборки с качеством классификации, формализация гипотезы компактности;
- слабая зависимость от длины контроля;
- важен начальный участок профиля, в силу ассимптотики $\frac{C_{L-1-m}^{l-1}}{C_{L-1}^{l}} o 0$ по m;
- применим для обора эталонов;

Заключение

- Метрическая классификация проста в реализации, универсальна;
- Различные варианты для обучения:
- число соседей,
- веса объектов,
- набор эталонов,
- метрику,
- веса признаков;
- Распределение отступов дает возможность разбить объекты на классы (эталонные, малоинформативные, пограничные, ошибочные и шумовые); Профиль компактности позволяет адаптировать выборку;