Learning natural language morphology from a raw text

Jackson Lee (Graduate student in linguistics)

John Goldsmith (Faculty advisor)

Simon Jacobs (Consultant at RCC)

{jsllee, goldsmith, sdjacobs}@uchicago.edu

Goal

Develop an unsupervised, languageindependent system that takes:

Input – raw text

The Fulton County Grand Jury said Friday an investigation of Atlanta's...

...and generates:

Output – morphological paradigms

talk talked talking talks move moved moving moves

etc.

Word context visualization

From trigrams:

(e.g., going)

was going after going to allow was not going

etc.

Resources

Data

- Brown corpus (1 million words)
- Google n-gram corpus (from Google Books, 4 billion words)

RCC

- storage, memory, cluster computing
- data visualization

Approach

From word trigrams to word contexts

⇒ word context visualization

Computing word similarity

⇒ word manifolds

Inducing paradigm tables

⇒ word manifolds with paradigms

Word manifolds

A graph-theoretic approach to computing distributional similarities among words (Goldsmith & Wang 2012)

English 1,000-word network:

Word manifolds with paradigms

Linguistica (Goldsmith 2001): Inducing stems + affixes

stems	affix pattern	
jump, walk, .	Ø-ed-ing-s	Вι
lov, mov,	e-ed-es-ing	ac

But no alignment across affix patterns

Solution: Combine *Linguistica* and word manifolds The match between *Ø-ed-ing-s* and *e-ed-ing-es*

affix pattern 1: Ø ed ing s (darker) affix pattern 2: e ed ing es (lighter)