4. a) Find the angle between the curves $r = a(1 + sin\theta)$, $r = a(1 - sin\theta)$. b) Verify Cauchy's mean value theorem for the functions $f(x) = logx, g(x) = \frac{1}{x} \text{ in } [1, e].$ c) For the curve $\theta = \cos^{-1}\left(\frac{r}{k}\right) - \frac{\sqrt{k^2 - r^2}}{r}$, prove that $r\frac{ds}{dr}$ is a constant.	b) In the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, show that the radius of curvature at the end of the major axis is equal to the semi latus rectum.	Unit – II 3. a) With usual notation prove that $tan\phi = r \frac{d\theta}{dr}$.	b) i) Define an orthogonal linear transformation. ii) If Y = AX is an orthogonal transformation with matrix A as follows \[-2/3 \		$\begin{bmatrix} 3 & 2 & 4 \\ -1 & 4 & 10 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$. Carry out 5 iterations $3x^2 - 2y^2 - z^2 + 12yz + 8zx - 4xy \text{ to canonical}$	Note: Answer any One full question from each Unit. Note: Answer any One full question from each Unit. Unit -1 1. a) Using the power method, find the dominant eigen values and corresponding eigen vectors of the matrix 1 3 -1 starting with the initial value	NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belagavi) E. (Credit System) Mid Semester Examinations - II, Octobe 17MA101 - ENGINEERING MATHEMATICS - I	
3 4 5	5 14	5 14	4	o 4	6 G	Marks BT*	r 2017	

BT* Bloom's Taxonomy, L* Level

