NAIL062 Výroková a predikátová logika: zápisky z přednášky

Jakub Bulín¹

Zimní semestr 2022, verze 0.1

Přednáška je postavena na učebnici A. Nerode, R. Shore: Logic for Applications [3], některé části jsou z knihy M. Ben-ari: Mathematical Logic for Computer Science [1]. Struktura kurzu i převážná většina obsahu jsou převzaty z přednášek Petra Gregora z předchozích let [2], viz také anglická skripta Martina Piláta [4]. Najdete-li překlepy nebo jiné chyby, případně těžko srozumitelné části, prosím, napište mi.

Obsah

1	Úvo	d do logiky	7
	1.1	Výroková logika	7
		1.1.1 Příklad: Hledání pokladu	7
		1.1.2 Formalizace ve výrokové logice	7
		1.1.3 Modely a důsledky	8
		1.1.4 Dokazovací systémy	Ć
		1.1.5 Tablo metoda	10
		1.1.6 Rezoluční metoda	11
		1.1.7 Příklad: Barvení grafů	12
	1.2	Predikátová logika	14
		1.2.1 Nevýhody formalizace ve výrokové logice	14
		1.2.2 Stručné představení predikátové logiky	15
		1.2.3 Formalizace barvení grafů v predikátové logice	15
	1.3	Další druhy logických systémů	16
	1.4	O přednášce	16
_			
Ι	Vý	roková logika	17
_			
		taxe a sémantika výrokové logiky	18
	Syn	taxe a sémantika výrokové logiky	18
2	Syn	taxe a sémantika výrokové logiky Syntaxe výrokové logiky	18 18
	Syn	taxe a sémantika výrokové logiky Syntaxe výrokové logiky	18 18 18
	Syn	taxe a sémantika výrokové logiky Syntaxe výrokové logiky	18 18 18 19
	Syn	taxe a sémantika výrokové logiky Syntaxe výrokové logiky	18 18 18 19 20
	Syn 2.1	taxe a sémantika výrokové logiky Syntaxe výrokové logiky	18 18 18 19 20 21
	Syn 2.1	taxe a sémantika výrokové logiky Syntaxe výrokové logiky 2.1.1 Jazyk 2.1.2 Výrok 2.1.3 Strom výroku 2.1.4 Teorie Sémantika výrokové logiky 2.2.1 Pravdivostní hodnota	18 18 18 19 20 21 21
	Syn 2.1	taxe a sémantika výrokové logiky Syntaxe výrokové logiky 2.1.1 Jazyk 2.1.2 Výrok 2.1.3 Strom výroku 2.1.4 Teorie Sémantika výrokové logiky 2.2.1 Pravdivostní hodnota 2.2.2 Výroky a booleovské funkce	18 18 18 19 20 21 21
	Syn 2.1	taxe a sémantika výrokové logiky Syntaxe výrokové logiky 2.1.1 Jazyk 2.1.2 Výrok 2.1.3 Strom výroku 2.1.4 Teorie Sémantika výrokové logiky 2.2.1 Pravdivostní hodnota 2.2.2 Výroky a booleovské funkce 2.2.3 Modely	18 18 18 19 20 21 21 21 21
	Syn 2.1	taxe a sémantika výrokové logiky Syntaxe výrokové logiky 2.1.1 Jazyk 2.1.2 Výrok 2.1.3 Strom výroku 2.1.4 Teorie Sémantika výrokové logiky 2.2.1 Pravdivostní hodnota 2.2.2 Výroky a booleovské funkce 2.2.3 Modely 2.2.4 Platnost	188 188 189 200 211 211 211 232
	Syn 2.1	taxe a sémantika výrokové logiky Syntaxe výrokové logiky 2.1.1 Jazyk 2.1.2 Výrok 2.1.3 Strom výroku 2.1.4 Teorie Sémantika výrokové logiky 2.2.1 Pravdivostní hodnota 2.2.2 Výroky a booleovské funkce 2.2.3 Modely 2.2.4 Platnost 2.2.5 Další sémantické pojmy	188 188 188 199 200 211 211 212 232 244
	Syn 2.1	taxe a sémantika výrokové logiky Syntaxe výrokové logiky 2.1.1 Jazyk 2.1.2 Výrok 2.1.3 Strom výroku 2.1.4 Teorie Sémantika výrokové logiky 2.2.1 Pravdivostní hodnota 2.2.2 Výroky a booleovské funkce 2.2.3 Modely 2.2.4 Platnost 2.2.5 Další sémantické pojmy 2.2.6 Univerzálnost logických spojek	188 188 199 200 211 211 212 242 248 268
	Sym 2.1	taxe a sémantika výrokové logiky Syntaxe výrokové logiky 2.1.1 Jazyk 2.1.2 Výrok 2.1.3 Strom výroku 2.1.4 Teorie Sémantika výrokové logiky 2.2.1 Pravdivostní hodnota 2.2.2 Výroky a booleovské funkce 2.2.3 Modely 2.2.4 Platnost 2.2.5 Další sémantické pojmy	188 188 199 200 211 211 212 242 242 260 280
	Sym 2.1	taxe a sémantika výrokové logiky Syntaxe výrokové logiky 2.1.1 Jazyk 2.1.2 Výrok 2.1.3 Strom výroku 2.1.4 Teorie Sémantika výrokové logiky 2.2.1 Pravdivostní hodnota 2.2.2 Výroky a booleovské funkce 2.2.3 Modely 2.2.4 Platnost 2.2.5 Další sémantické pojmy 2.2.6 Univerzálnost logických spojek Normální formy	188 188 199 200 211 211 212 242 248 268

	$6.1 \\ 6.2$	Úvod
6	•	taxe a sémantika predikátové logiky
II	Pı	redikátová logika
		5.5.2 (draft) SLD-rezoluce
		5.5.1 Program v Prologu
	5.5	Rezoluce v Prologu
		5.4.3 Úplnost LI-rezoluce pro Hornovy formule
		5.4.2 LI-rezoluce
		5.4.1 Lineární důkaz
	5.4	LI-rezoluce a Horn-SAT
		5.3.3 Úplnost rezoluce
		5.3.2 Strom dosazení
		5.3.1 Korektnost rezoluce
	5.3	Korektnost a úplnost rezoluční metody
	5.2	Rezoluční důkaz
	5.1	Množinová reprezentace
5	Rez	oluční metoda
	4.8	(draft) Hilbertovský kalkulus
	4 0	4.7.1 Aplikace kompaktnosti
	4.7	Věta o kompaktnosti
	4.6	Důsledky korektnosti a úplnosti
		4.5.2 Věta o úplnosti
		4.5.1 Věta o korektnosti
	4.5	Korektnost a úplnost
	4.4	Konečnost a systematičnost důkazů
	4.3	Tablo důkaz
		4.2.2 O stromech
		4.2.1 Atomická tabla
	4.2	Úvod do tablo metody
	4.1	Formální dokazovací systémy
1	Met	toda analytického tabla
	0.4	DI LL algorithius pro resem problemu SAI
	3.4	DPLL algoritmus pro řešení problému SAT
	3.3	3.2.1 Silně souvislé komponenty
	3.2	2-SAT a implikační graf
	3.1	(draft) SAT solvery
3		blém splnitelnosti
	2.5	Algebra výroků
		2.4.2 Extenze teorií
		2.4.1 Důsledky teorií

	6.3	Syntaxe
		6.3.1 Jazyk
		6.3.2 Termy
		6.3.3 Formule
		6.3.4 Instance a varianty
	6.4	Sémantika
	0.2	6.4.1 Modely jazyka
		6.4.2 Hodnota termu
		6.4.3 Pravdivostní hodnota formule
		6.4.4 Platnost
	6.5	Vlastnosti teorií
	0.0	6.5.1 Platnost v teorii
	c c	v
	6.6	Podstruktura, expanze, redukt
		6.6.1 Věta o konstantách
	6.7	Extenze teorií
		6.7.1 Extenze o definice
	6.8	Definovatelnost ve struktuře
		6.8.1 Databázové dotazy
	6.9	Vztah výrokové a predikátové logiky
7	Tab	lo metoda v predikátové logice 96
	7.1	Neformální úvod
	7.2	Formální definice
		7.2.1 Atomická tabla
		7.2.2 Tablo důkaz
		7.2.3 Systematické tablo a konečnost důkazů
	7.3	Jazyky s rovností
	$7.3 \\ 7.4$	
	1.4	<u>i</u>
		7.4.1 Věta o korektnosti
		7.4.2 (draft) Věta o úplnosti
	7.5	(draft) Důsledky korektnosti a úplnosti
		7.5.1 Löwenheim-Skolemova věta
		7.5.2 Věta o kompaktnosti
		7.5.3 Aplikace
	7.6	(draft) Hilbertovský kalkulus v predikátové logice
8	(dra	aft) Rezoluce v predikátové logice 113
	8.1	Úvod
	8.2	Skolemizace
		8.2.1 Ekvisplnitelnost
		8.2.2 Prenexní normální forma
		8.2.3 Skolemova varianta
		8.2.4 Skolemova věta
	8 3	
	8.3	9
		8.3.1 Herbrandův model
		832 Herbrandova věta 119

		8.3.3 Důsledky	119
	8.4	·	120
		8.4.1 Substituce	120
		8.4.2 Unifikační algoritmus	121
	8.5		124
		8.5.1 Rezoluční pravidlo	124
		-	124
	8.6		125
			125
			125
		9	126
	8.7	-	126
	0.,		128
III	ı D		29
11.		oktoene partie	49
9	(dra	ft) Teorie modelů 1	30
	9.1	Elementární ekvivalence	130
		9.1.1 Příklad: DeLO*	131
			131
			132
	9.2		132
	• -		133
	9.3	·	134
	0.0	9	135
	9.4		135
	J. I		135
			136
			137
		9.4.9 Oteviena axiomatizovatemost	101
10	(dra	ft) Nerozhodnutelnost a neúplnost 1	38
	$\hat{1}0.1$	Rozhodnutelnost	138
			139
		10.1.2 Rekurzivní axiomatizovatelnost	140
	10.2		140
			141
			142
	10.3	v -	142
			143
	10.1		143
			146
			146
			140 147
		10.1.1 Dashedky druhe very	- T I
\mathbf{A}	Apli	kace logiky 1	48

В	Historie logiky	149
\mathbf{C}	Další logické systémy	152

Kapitola 1

Úvod do logiky

Slovo logika se používá ve dvou významech:

- soubor principů, které jsou základem uspořádání prvků nějakého systému (např. počítačového programu, elektronického zařízení, komunikačního protokolu)
- uvažování prováděné podle striktních pravidel zachovávajících platnost

V informatice se tyto dva významy setkávají: nejprve formálně popíšeme daný systém, a poté o něm formálně uvažujeme (v praktických aplikacích automaticky), tj. odvozujeme platné inference o systému, za použití nějakého (formálního) dokazovacího systému.

Mezi praktické aplikace logiky v informatice patří například software verification, logic programming, SAT solving, automated reasoning, nebo knowledge-based representation. Kromě toho je logika (ve větší míře než matematika) základním nástrojem pro popis teoretické informatiky. Více o aplikacích logiky najdete v příloze A; v příloze B je shrnuta historie logiky.

1.1 Výroková logika

Nyní si ukážeme logiku v akci na dvou příkladech ze života (hledače pokladů, a teoretického informatika):

1.1.1 Příklad: Hledání pokladu

Příklad 1.1.1. Při hledání pokladu v dračí sluji jsme narazili na rozcestí dvou chodeb. Víme, že na konci každé chodby je buď poklad, nebo drak, ale ne obojí. Trpaslík, kterého jsme na rozcestí potkali, nám řekl, že: "Alespoň jedna z těch dvou chodeb vede k pokladu", a po dalším naléhání (a menším úplatku), ještě řekl, že "První chodba vede k drakovi." Je známo, že trpaslíci, které člověk potká v dračí sluji, buď vždy mluví pravdu, nebo vždy lžou. Kterou cestou se máme vydat?

1.1.2 Formalizace ve výrokové logice

Začneme tím, že situaci a naše znalosti formalizujeme ve výrokové logice. Výrok je tvrzení, kterému můžeme přiřadit pravdivostní hodnotu: pravdivý (True, 1), nebo lživý (False, 0).

Některé výroky lze vyjádřit pomocí jednodušších výroků a logických spojek, např. "(Trpaslík lže,) právě když (druhá chodba vede k drakovi.)" nebo "(První chodba vede k pokladu) nebo (první chodba vede k drakovi.)" Pokud výrok takto rozložit nelze, říká se mu prvovýrok, atomický výrok, nebo výroková proměnná.

Popíšeme tedy celou situaci pomocí výrokových proměnných. Můžeme si je také představit jako jednoduché zjišťovací (ano/ne) otázky, na které musíme znát odpověď, abychom věděli vše o dané situaci. Jako naše výrokové proměnné zvolme "Poklad je v první chodbě." (označme p_1), a "Poklad je v druhé chodbě." (p_2). V úvahu přichází i jiné výrokové proměnné, např. "V první chodbě je drak." (d_1) nebo "Trpaslík mluví pravdu." (t). Ty lze ale vyjádřit pomocí { p_1, p_2 }, např. platí t, právě když neplatí p_1 . Tj. známe-li pravdivostní hodnoty p_1, p_2 , pravdivostní hodnoty d_1, t jsou jednoznačně určené. A menší počet výrokových proměnných znamená menší prohledávací prostor.

Vyjádříme tedy všechny naše znalosti jako $(složen\acute{e})$ výroky a zapíšeme je ve formálním zápisu v jazyce výrokové logiky nad množinou prvovýroků $\mathbb{P}=\{p_1,p_2\}$, za použití symbolů reprezentujících logické spojky \neg ("neplatí X", negace), \wedge ("X a Y", konjunkce), \vee ("X nebo Y", disjunkce), \rightarrow ("pokud X, potom Y", implikace), \leftrightarrow ("X, právě když Y", ekvivalence) a závorek (,). Zde je dobré zmínit, že disjunkce není exkluzivní, tj. "X nebo Y" platí i pokud platí jak X tak Y, a implikace je čistě logická: "pokud X, potom Y" platí kdykoliv neplatí X nebo platí Y.

Informace o tom, že v chodbě je poklad nebo drak, ale ne obojí, už je zakódovaná v naší volbě výrokových proměnných: přítomnost draka je totéž co absence pokladu. Tvrzení trpaslíka, že "První chodba vede k drakovi." tedy vyjádříme jako "Neplatí, že poklad je v první chodbě.", formálně $\neg p_1$. Tvrzení, že "Alespoň jedna z těch dvou chodeb vede k pokladu." vyjádříme jako "Poklad je v první chodbě nebo poklad je v druhé chodbě.", formálně $p_1 \lor p_2$. Informaci, že trpaslíci buď vždy mluví pravdu, nebo vždy lžou, si přeložíme tak, že buď platí oba naše výroky, nebo platí negace obou našich výroků, formálně:

$$(\neg p_1 \land (p_1 \lor p_2)) \lor (\neg (\neg p_1) \land \neg (p_1 \lor p_2))$$

Označme tento výrok jako φ (od slova "formule", výrokům se někdy také říká *výrokové* formule). V našem příkladě lze všechny informace vyjádřit jediným výrokem, v praxi ale často potřebujeme výroků více, někdy i nekonečně mnoho (například pokud chceme popsat výpočet nějakého programu a nevíme apriori kolik kroků bude mít), potom popíšeme situaci pomocí množiny výroků, tzv. teorie, zde $T = \{\varphi\}$. Výrokům z T říkáme také axiomy teorie T^1 .

1.1.3 Modely a důsledky

Jsou naše informace dostačující k určení, zda je v některé z chodeb poklad? Jinými slovy, ptáme se, zda je jeden z výroků p_1, p_2 logickým důsledkem výroku φ , resp. teorie T. Co to znamená?

Představme si, že existuje více různých "světů" lišících se v tom, co je na konci první a na konci druhé chodby. Například, v jednom ze světů je na konci první chodby poklad a na konci druhé chodby drak. Tento svět můžeme popsat pomocí pravdivostního ohodnocení výrokových proměnných: $p_1 = 1, p_2 = 0$. Takovému ohodnocení říkáme model jazyka $\mathbb{P} = \{p_1, p_2\}$ a zapisujeme ho zkráceně jako v = (1,0) (v od slova "valuation"). Celkem tedy máme čtyři

¹Terminologie v logice často pochází z jejích aplikace v matematice, viz příloha B o historii logiky.

různé světy, popsané modely jazyka

$$M_{\mathbb{P}} = \{(0,0), (0,1), (1,0), (1,1)\}.$$

Je svět popsaný modelem v=(1,0) konzistentní s informacemi, které máme, tj. platí v něm výrok φ , resp. teorie T? Pravdivostní hodnotu (složeného) výroku φ v modelu v, označme ji $v(\varphi)$, můžeme snadno zjistit: Víme, že $v(p_1)=1$ a $v(p_2)=0$, takže $v(\neg p_1)=0$, a také $v(\neg p_1 \land (p_1 \lor p_2))=0$ (jde o konjunkci dvou výroků, a první z konjunktů je v modelu v nepravdivý). Podobně $v(p_1 \lor p_2)=1$ (neboť $v(p_1)=1$), takže $v(\neg (p_1 \lor p_2))=0$, a $v(\neg (\neg p_1) \land \neg (p_1 \lor p_2))=0$. Výrok φ je disjunkcí dvou výroků, z nichž ani jeden v modelu v neplatí, tedy $v(\varphi)=0$.

Bystrý čtenář jistě vidí stromovou strukturu výroku φ a postupné vyhodnocování $v(\varphi)$ od listů směrem ke kořeni. Formální definice představíme v příští kapitole.

Podobně určíme pravdivostní hodnoty výroku φ v ostatních modelech. Zjistíme, že množina modelů výroku φ (resp. modelů teorie T), tj. množina všech modelů jazyka, ve kterých platí φ (resp. všechny výroky z teorie T), je

$$M_{\mathbb{P}}(\varphi) = M_{\mathbb{P}}(T) = \{(0,1)\}.$$

Vidíme, že naše informace jednoznačně určují model (0,1), tedy svět, ve kterém je v první chodbě drak a ve druhé poklad. Obecně modelů může být více, stačí nám vědět, že v každém modelu φ , resp. T, platí výrok p_2 , tedy že p_2 je důsledkem teorie T; také říkáme, že p_2 platí v teorii T.

1.1.4 Dokazovací systémy

Postup, který jsme zvolili, je velmi neefektivní. Máme-li n výrokových proměnných², existuje 2^n modelů jazyka a není prakticky možné ověřovat platnost teorie v každém z nich. Na řadu přichází tzv. dokazovací systémy. V daném dokazovacím systému je důkaz výroku ψ z teorie T přesně, formálně definovaný syntaktický objekt, který v sobě zahrnuje snadno (mechanicky) ověřitelný "důkaz" (důvod), proč ψ platí v T, a který můžeme hledat (pomocí počítače) čistě na základě struktury výroku ψ a axiomů teorie T ("syntaxe"), tj. aniž bychom se museli zabývat modely ("sémantikou").

Po důkazovém systému chceme dvě vlastnosti:

- $\mathit{korektnost},$ tj. pokud máme důkaz ψ z T, potom ψ platí v T, a
- *úplnost*, tj. pokud ψ platí v T, potom existuje důkaz ψ z T,

přičemž korektnost je nutností (bez ní nemá smysl důkazy hledat), a úplnost je dobrá vlastnost, ale efektivní důkazový systém může být užitečný, i pokud v něm nelze dokázat vše, co platí.

Zde stručně nastíníme dva důkazové systémy: metodu analytického tabla a rezoluční metodu. Později budou představeny formálně, a u obou si dokážeme i jejich korektnost a úplnost. Oba tyto důkazové systémy jsou založeny na důkazu sporem, tj. předpokládají platnost axiomů z T a negace výroku ψ , a snaží se dojít ke sporu.

²V praxi máme běžně tisíce proměnných.

Obrázek 1.1: Tablo důkaz výroku p_2 z teorie T

1.1.5 Tablo metoda

V metodě analytického tabla je důkazem tablo: strom jehož vrcholy jsou označkované předpoklady o platnosti výroků. Podívejme se na příklad tabla na obrázku 1.1.

Začneme předpokladem, že neplatí výrok p_2 (neboť dokazujeme sporem). Poté připojíme platnost všech axiomů teorie T (v našem případě je jen jeden: výrok φ sestrojený výše). Dále budujeme tablo tak, že zjednodušujeme výroky v předpokladech, a to podle jistých pravidel, která zaručují následující invariant:

Každý model teorie T, ve kterém neplatí p_2 , se musí shodovat s některou z větví tabla (tj. splňovat všechny předpoklady na dané větvi).

Výrok φ je disjunkcí dvou výroků, $\varphi = \varphi_1 \vee \varphi_2$. Pokud tedy platí v nějakém modelu, potom buď v tomto modelu platí φ_1 , nebo v něm platí φ_2 . Rozvětvíme strom podle těchto dvou možností. V dalším kroku máme předpoklad o pravdivosti výroku $\neg p_1 \wedge (p_1 \vee p_2)$. V tom případě musí platit jak $\neg p_1$, tak $p_1 \vee p_2$, připojíme tedy na konec větve oba tyto předpoklady. Pravdivost $\neg p_1$ znamená lživost p_1 , a tak dále.

Takto postupujeme, dokud je možné výroky v předpokladech zjednodušit, tj. dokud to nejsou jen výrokové proměnné. Pokud na jedné větvi najdeme dvojici opačných předpokladů o nějakém výroku ψ , tj. že platí, a zároveň že neplatí, víme, že se s touto větví nemůže

shodovat žádný model. Takové větvi říkáme sporná. Protože dokazujeme sporem, důkaz je takové tablo, ve kterém je každá větev sporná. Tím je zaručeno, že neexistuje model T, ve kterém neplatí p_2 . Z toho plyne, že p_2 platí v každém modelu T, neboli je to důsledek T, což jsme chtěli dokázat.

Zatím se spokojíme s pochopením základní myšlenky této metody, detaily představíme v budoucí kapitole.

1.1.6 Rezoluční metoda

Není těžké naprogramovat systematické hledání tablo důkazu. V praxi se ale používá jiný důkazový systém, který má mnohem jednodušší a efektivnější implementaci: tzv. rezoluční metoda. Tato metoda pochází z roku 1965, a je základem většiny systémů automatického dokazování, SAT solverů, nebo třeba interpreterů jazyka Prolog (o kterém si budeme povídat později).

Rezoluční metoda je založena na faktu, že každý výrok lze ekvivalentně vyjádřit ve speciálním tvaru, v tzv. konjunktivní normální formě (CNF). Literál je výroková proměnná p nebo její negace $\neg p$ (tj. literály jsou výroky, které jen určují hodnotu jedné výrokové proměnné). Disjunkci několika literálů, např. $p \vee \neg q \vee \neg r$, říkáme klauzule. A výrok je v CNF, pokud je konjunkcí klauzulí. Ke každému výroku ψ existuje ekvivalentní výrok ψ' v CNF. Ekvivalentní znamená mající stejný význam (stejné modely), píšeme $\psi \sim \psi'$. Později si ukážeme dvě metody převodu do CNF, nyní jen na našem příkladě: ve výroku

$$(\neg p_1 \land (p_1 \lor p_2)) \lor (\neg (\neg p_1) \land \neg (p_1 \lor p_2))$$

nejprve nahradíme $\neg(\neg p_1) \sim p_1$ a $\neg(p_1 \vee p_2) \sim (\neg p_1 \wedge \neg p_2)$:

$$(\neg p_1 \land (p_1 \lor p_2)) \lor (p_1 \land \neg p_1 \land \neg p_2)$$

a dále opakovaně použijeme $distributivitu \vee vůči \wedge (představte si, že \vee je operace násobení a <math>\wedge$ je operace sčítání):

$$(\neg p_1 \lor p_1) \land (\neg p_1 \lor \neg p_1) \land (\neg p_1 \lor \neg p_2) \land (p_1 \lor p_2 \lor p_2) \land (p_1 \lor p_2 \lor \neg p_1) \land (p_1 \lor p_2 \lor \neg p_2)$$

Tento výrok už je v CNF, ale dále ho zjednodušíme: vynecháme z klauzulí duplicitní literály, a uvědomíme si, že obsahuje-li klauzule dvojici opačných literálů $p, \neg p$, je to tautologie (platí v každém modelu) a proto ji můžeme odstranit. Dostáváme CNF výrok

$$\neg p_1 \wedge (\neg p_1 \vee \neg p_2) \wedge (p_1 \vee p_2)$$

který je ekvivalentní původnímu výroku ϕ Protože chceme dokázat p_2 sporem, přidáme ještě klauzuli $\neg p_2$:

$$\neg p_1 \wedge (\neg p_1 \vee \neg p_2) \wedge (p_1 \vee p_2) \wedge \neg p_2$$

Výrok p_2 platí v teorii T, právě když je tento CNF výrok nesplnitelný (nemá žádný model). Výroky v CNF budeme zapisovat také v $množinové\ reprezentaci^3$:

$$\{\{\neg p_1\}, \{\neg p_1, \neg p_2\}, \{p_1, p_2\}, \{\neg p_2\}\}$$

 $^{^3{\}rm V}$ praktické implementaci bychom mohli použít seznam klauzulí, kde každá klauzule je seznam (unikátních) literálů v nějakém zvoleném uspořádání. Představte si opět tisíce výrokových proměnných a klauzulí.

Rezoluční pravidlo říká, že pokud máme dvojici klauzulí, z nichž jedna obsahuje literál p a druhá opačný literál $\neg p$, potom z nich logicky plyne také jejich rezolventa: klauzule vzniklá odstraněním literálu p z první a $\neg p$ z druhé klauzule a sjednocením zbylých literálů. Například, z $p \lor \neg q \lor \neg r$ a $\neg p \lor \neg q \lor s$ můžeme odvodit rezolventu $\neg q \lor \neg r \lor s$. Rezoluční zamítnutí formule v CNF je potom posloupnost klauzulí, která končí prázdnou klauzulí \square (znamenající spor) a kde každá klauzule je buď z dané formule, nebo je rezolventou nějakých dvou předchozích klauzulí. V našem případě:

$$\{\neg p_1\}, \{p_1, p_2\}, \{p_2\}, \{\neg p_2\}, \Box$$

Třetí klauzule je rezolventou první a druhé, pátá je rezolventou třetí a čtvrté. Rezoluci lze také přirozeně znázornit pomocí *rezolučního stromu*, kde listy jsou klauzule z dané formule, a vnitřní vrcholy jsou rezolventy svých potomků:

Pokud by formule měla model, musely by v něm platit její klauzule, tedy i postupně všechny rezolventy v posloupnosti, a nakonec prázdná klauzule. Ta ale neplatí v žádném modelu. Máme tedy důkaz sporem a víme, že ve druhé chodbě najdeme poklad.

1.1.7 Příklad: Barvení grafů

Ve druhém příkladu se trochu přiblížíme aplikacím. Na rozdíl od logických hádanek ve formě slovních úloh, různé varianty problému barvení grafů se objevují v rozmanitých úlohách z praxe, od rozvrhovacích problémů přes návrh fyzických a síťových systémů po zpracování obrazu.

Příklad 1.1.2. Najděte vrcholové obarvení následujícího grafu třemi barvami, tj. přiřaďte vrcholům barvy R, G, B tak, aby žádná hrana nebyla monochromatická.

Graf si reprezentujeme jako množinu vrcholů a množinu hran, kde každá hrana je dvojice vrcholů. Lépe se nám bude pracovat s uspořádanými dvojicemi, zvolíme tedy (libovolnou) orientaci hran.

$$\mathcal{G} = \langle V; E \rangle = \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\} \rangle$$

Začneme opět formalizací ve výrokové logice. Označme si množinu barev jako $C=\{R,G,B\}$. Přirozená volba výrokových proměnných je "vrchol v má barvu c", označme p_v^c , pro každý

vrchol $v \in V$ a každou barvu $c \in C$. Naše (uspořádaná) množina výrokových proměnných má 12 prvků:

$$\mathbb{P} = \{ p_v^c \mid c \in C, v \in V \} = \{ p_1^R, p_1^G, p_1^B, p_2^R, p_2^G, p_2^B, p_3^R, p_3^G, p_3^B, p_4^R, p_4^G, p_4^B \}$$

Máme celkem $|M_{\mathbb{P}}| = 2^{12} = 4096$ modelů jazyka (reprezentovaných 12-dimenzionálními 0–1 vektory). Většinu z nich nelze interpretovat jako obarvení grafu. Například $v = (1, 1, 0, 0, \dots, 0)$ říká, že vrchol 1 je obarvený červeně, a také zeleně. Začneme tedy teorií vyjadřující, že každý vrchol má nejvýše jednu barvu. Existuje více způsobů, jak to můžeme vyjádřit. My řekneme pro každý vrchol, že nesmí mít (alespoň) jednu z každé dvojice barev. Tím dostaneme teorii v CNF:

$$T_{1} = \{ (\neg p_{1}^{R} \vee \neg p_{1}^{G}) \wedge (\neg p_{1}^{R} \vee \neg p_{1}^{B}) \wedge (\neg p_{1}^{G} \vee \neg p_{1}^{B}),$$

$$(\neg p_{2}^{R} \vee \neg p_{2}^{G}) \wedge (\neg p_{2}^{R} \vee \neg p_{2}^{B}) \wedge (\neg p_{2}^{G} \vee \neg p_{2}^{B}),$$

$$(\neg p_{3}^{R} \vee \neg p_{3}^{G}) \wedge (\neg p_{3}^{R} \vee \neg p_{3}^{B}) \wedge (\neg p_{3}^{G} \vee \neg p_{3}^{B}),$$

$$(\neg p_{4}^{R} \vee \neg p_{4}^{G}) \wedge (\neg p_{4}^{R} \vee \neg p_{4}^{B}) \wedge (\neg p_{4}^{G} \vee \neg p_{4}^{B}) \}$$

$$= \{ (\neg p_{v}^{R} \vee \neg p_{v}^{G}) \wedge (\neg p_{v}^{R} \vee \neg p_{v}^{B}) \wedge (\neg p_{v}^{G} \vee \neg p_{v}^{B}) \mid v \in V \}$$

Teorii T_1 bychom mohli říkat teorie částečných vrcholových obarvení grafu \mathcal{G} . Teorie T_1 má $|\mathcal{M}_{\mathbb{P}}(T_1)|=4^4=2^8=256$ modelů. (Proč?) Pokud chceme úplná obarvení, přidáme podmínku, že každý vrchol má alespoň jednu barvu.⁴

$$T_{2} = T_{1} \cup \{p_{1}^{R} \vee p_{1}^{G} \vee p_{1}^{B}, p_{2}^{R} \vee p_{2}^{G} \vee p_{2}^{B}, p_{3}^{R} \vee p_{3}^{G} \vee p_{3}^{B}, p_{4}^{R} \vee p_{4}^{G} \vee p_{4}^{B}\}$$

$$= T_{1} \cup \{p_{v}^{R} \vee p_{v}^{G} \vee p_{v}^{B} \mid v \in V\}$$

$$= T_{1} \cup \{\bigvee_{c \in C} p_{v}^{c} \mid v \in V\}$$

Teorie T_2 má $3^4 = 81$ modelů. Jde o extenzi teorie T_1 , neboť každý důsledek teorie T_1 platí i v teorii T_2 . Platí dokonce, že $M_{\mathbb{P}}(T_2) \subseteq M_{\mathbb{P}}(T_1)$. Zbývá přidat podmínku zakazující monochromatické hrany. Pro každou hranu a každou barvu specifikujeme, že alespoň jeden z vrcholů hrany nesmí mít danou barvu. Zde pro názornost naposledy napíšeme úplný seznam výroků, nadále budeme využívat zkráceného zápisu.

$$T_{3} = T_{2} \cup \{ (\neg p_{1}^{R} \vee \neg p_{2}^{R}) \wedge (\neg p_{1}^{G} \vee \neg p_{2}^{G}) \wedge (\neg p_{1}^{B} \vee \neg p_{2}^{B}), \\ (\neg p_{1}^{R} \vee \neg p_{3}^{R}) \wedge (\neg p_{1}^{G} \vee \neg p_{3}^{G}) \wedge (\neg p_{1}^{B} \vee \neg p_{3}^{B}), \\ (\neg p_{1}^{R} \vee \neg p_{4}^{R}) \wedge (\neg p_{1}^{G} \vee \neg p_{4}^{G}) \wedge (\neg p_{1}^{B} \vee \neg p_{4}^{B}), \\ (\neg p_{1}^{R} \vee \neg p_{4}^{R}) \wedge (\neg p_{1}^{G} \vee \neg p_{4}^{G}) \wedge (\neg p_{1}^{B} \vee \neg p_{4}^{B}), \\ (\neg p_{2}^{R} \vee \neg p_{3}^{R}) \wedge (\neg p_{2}^{G} \vee \neg p_{3}^{G}) \wedge (\neg p_{2}^{B} \vee \neg p_{3}^{B}), \\ (\neg p_{3}^{R} \vee \neg p_{4}^{R}) \wedge (\neg p_{3}^{G} \vee \neg p_{4}^{G}) \wedge (\neg p_{3}^{B} \vee \neg p_{4}^{B}) \} \\ = T_{2} \cup \{ \bigwedge_{c \in C} (\neg p_{u}^{c} \vee \neg p_{v}^{c}) \mid (u, v) \in E \}$$

⁴Symbol \bigvee používáme podobně jako symboly \sum pro součet a \prod pro součin: ke zjednodušení zápisu výroku, který je ve formě disjunkce. Např. pokud v=1, potom $\bigvee_{c\in C} p_v^c$ reprezentuje výrok $p_1^R \vee p_1^G \vee p_1^B$. Analogicky \bigwedge pro konjunkci.

[↑] pro konjunkci. ⁵Zde vidíme typickou ukázku antimonotónního vztahu tzv. Galoisovy korespondence: čím více vlastností (výroků) požadujeme, tím méně objektů (modelů) splňuje tyto vlastnosti.

Výsledná teorie T_3 je splnitelná (má model), právě když graf \mathcal{G} je 3-obarvitelný. Má 6 modelů jednoznačně odpovídajících 3-obarvení grafu \mathcal{G} . Model v = (1,0,0,0,1,0,0,0,1,0,1,0) odpovídá následujícímu obarvení, ostatní obarvení získáme permutací barev.

Jakmile máme teorii T_3 formalizující 3-obarvení grafu \mathcal{G} , můžeme snadno řešit související otázky, například najít všechna obarvení, ve kterých vrchol 1 je modrý a vrchol 2 zelený: odpovídají modelům teorie $T_3 \cup \{p_1^B, p_2^G\}$. Nebo můžeme dokázat, že vrcholy 2 a 4 musejí být obarveny stejnou barvou. Můžeme použít tablo metodu: v kořeni tabla bude předpoklad

False
$$(p_2^R \wedge p_2^R) \vee (p_2^G \wedge p_2^G) \vee (p_2^B \wedge p_2^B)$$

Nebo můžeme najít rezoluční zamítnutí teorie vzniklé převedením axiomů teorie T_3 do CNF, a přidáním CNF ekvivalentu negace výroku $(p_2^R \wedge p_2^R) \vee (p_2^G \wedge p_2^G) \vee (p_2^B \wedge p_2^B)$ (neboť jde o důkaz sporem, tedy pro spor předpokládáme, že nemají stejnou barvu).

1.2 Predikátová logika

Nyní si velmi stručně a neformálně představíme *predikátovou logiku*. Predikátová logika se zabývá vlastnostmi objektů a vztahy mezi objekty. Například:

Všichni lidé jsou smrtelní. Sókratés je člověk.

Sókratés je smrtelný.

Ve skutečnosti výroková logika vznikla později (asi o století) než Aristotelova predikátová logika, a byla poté na dlouho převážně zapomenuta.

1.2.1 Nevýhody formalizace ve výrokové logice

Nevýhodou formalizace našeho problému ve výrokové logice je fakt, že výsledná teorie T_3 je poměrně velká, a navíc byla vytvořena ad hoc pro graf \mathcal{G} . Představme si, že potřebujeme graf \mathcal{G} změnit, například přidáním vrcholu 5 spojeného hranami s vrcholy 2 a 3:

Abychom byli schopni formalizovat nový problém, musíme přidat do našeho jazyka tři nové výrokové proměnné: $\mathbb{P}' = \mathbb{P} \cup \{p_5^R, p_5^G, p_5^B\}$, a vytvořit nové teorie T_1', T_2', T_3' přidáním axiomů týkajících se vrcholu 5 a hran (2,5), (3,5). Problémem je, že strukturu grafu \mathcal{G} a přirozené vlastnosti jako "z vrcholu u vede hrana do vrcholu v", nebo "vrchol u je zelený" jsme ('natvrdo', 'nepřirozeně') zakódovali do 0–1 proměnných. Tento nedostatek odstraňuje predikátová logika.

1.2.2 Stručné představení predikátové logiky

Modelem v predikátové logice není 0–1 vektor, ale *struktura*. Příkladem struktur jsou naše (orientované) grafy:

$$\mathcal{G} = \langle V^{\mathcal{G}}; E^{\mathcal{G}} \rangle = \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\} \rangle$$

$$\mathcal{G}' = \langle V^{\mathcal{G}'}; E^{\mathcal{G}'} \rangle = \langle \{1, 2, 3, 4, 5\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4), (2, 5), (3, 5)\} \rangle$$

Oba grafy sestávají z množiny vrcholů, a z binární relace na této množině. Jde o struktury v jazyce teorie grafů $\mathcal{L} = \langle E \rangle$, kde E je binární relační symbol. Jazyk predikátové logiky specifikuje jaké relace (kolik a jakých arit — unární, binární, ternární, atd.) mají struktury mít, a jaké symboly pro ně budeme používat. Kromě toho používáme symbol rovnosti = a struktury mohou obsahovat také funkce a konstanty (jako například funkce $+, -, \cdot$ a konstanty 0, 1 v tělese reálných čísel), ty si ale necháme na později.

Predikátová logika používá tytéž logické spojky jako výroková logika, ale základním stavebním kamenem predikátových formulí nejsou výrokové proměnné, nýbrž tzv. atomické formule, například: E(x,y) představuje tvrzení, že v grafu vede hrana z vrcholu x do vrcholu y. Zde x,y jsou proměnné reprezentující vrcholy daného grafu. Kromě toho ve formulích můžeme používat kvantifikátory: $(\forall x)$ "pro všechny vrcholy x" a $(\exists y)$ "existuje vrchol y".

Nyní můžeme formalizovat tvrzení, která dávají smysl pro libovolný graf. Například:

• "V grafu nejsou smyčky":

$$(\forall x)(\neg E(x,x))$$

• "Existuje vrchol výstupního stupně 1":

$$(\exists x)(\exists y)(E(x,y) \land (\forall z)(E(x,z) \rightarrow y = z))$$

V daném grafu \mathcal{G} a při dosazení vrcholu u za proměnnou x a vrcholu v za proměnnou y vyhodnotíme E(x,y) jako True, právě když $(u,v) \in E^{\mathcal{G}}$.

1.2.3 Formalizace barvení grafů v predikátové logice

Vraťme se zpět k barvení grafů. Přirozený způsob jak formalizovat náš problém 3-obarvitelnosti je v jazyce $\mathcal{L}' = \langle E, R, G, B \rangle$, kde E je binární a R, G, B jsou unární relační symboly, tedy R(x) znamená "vrchol x je červený". Strukturou pro tento jazyk je (orientovaný) graf spolu s trojicí množin vrcholů, např.

$$\mathcal{G}_C = \langle V^{\mathcal{G}_C}; E^{\mathcal{G}_C}, R^{\mathcal{G}_C}, G^{\mathcal{G}_C}, B^{\mathcal{G}_C} \rangle$$

= $\langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\}, \{1\}, \{2, 3\}, \{4\} \rangle$

reprezentuje graf \mathcal{G} s validním obarvením z obrázku výše. Budeme říkat, že \mathcal{G}_C je expanze \mathcal{L} -struktury \mathcal{G} do jazyka \mathcal{L}' .

Podobně jako ve výrokové logice musíme nejprve zajistit, aby naše modely reprezentovaly obarvené grafy. Začneme požadavkem, aby každý vrchol byl obarven nejvýše jednou barvou:

$$(\forall x)((\neg R(x) \vee \neg G(x)) \wedge (\neg R(x) \vee \neg B(x)) \wedge (\neg G(x) \vee \neg B(x)))$$

⁶Kvantifikátory si můžeme představit jako "konjunkci" resp. "disjunkci" přes všechny vrcholy grafu.

Obarvení alespoň jednou barvou vyjádříme takto:

$$(\forall x)(R(x) \lor G(x) \lor B(x))$$

A hranovou podmínku formalizujeme pomocí predikátu E(x,y) například takto:

$$(\forall x)(\forall y)(E(x,y) \to ((\neg R(x) \lor \neg R(y)) \land (\neg G(x) \lor \neg G(y)) \land (\neg B(x) \lor \neg B(y))))$$

Modely takto vzniklé teorie reprezentují orientované grafy s vrcholovým 3-obarvením.

1.3 Další druhy logických systémů

Predikátové logice, kde proměnné reprezentují jednotlivé vrcholy, říkáme logika prvního řádu (anglicky first-order (FO) logic). V logice druhého řádu (anglicky second-order (SO) logic) máme také proměnné reprezentující množiny vrcholů nebo i množiny n-tic vrcholů (tj. relace, funkce). Například tvrzení, že každá neprázdná zdola omezená podmnožina má infimum⁷, můzeme formalizovat v logice druhého řádu takto:⁸

$$(\forall S)((\exists x)S(x) \land (\exists x)(\forall y)(S(y) \to x \le y) \to (\exists x)((\forall y)(S(y) \to x \le y) \land (\forall z)((\forall y)(S(y) \to z \le y) \to z \le x)))$$

V logice třetího řádu máme i proměnné reprezentující množiny množin (což je užitečné např. v topologii), atd.

Kromě výrokové a predikátové logiky existují i další typy logických systémů, například intuicionistická logika (která povoluje jen konstruktivní důkazy), temporální logiky (kde mluvíme o platnosti 'vždy', 'někdy v budoucnosti', 'dokud' apod.), modální logiky ('je možné', 'je nutné'), nebo fuzzy logiky (kde máme výroky '0.35 pravdivé'). Tyto logiky mají důležité aplikace v informatice, např. v umělé inteligenci (modální logiky pro uvažování autonomních agentů o svém okolí), v paralelním programování (temporální logiky), nebo v automatických pračkách (fuzzy logiky). Více viz Příloha C. V tomto kurzu se omezíme na výrokovou logiku a predikátovou logiku prvního řádu.

1.4 O přednášce

Přednášku lze rozdělit do třech částí.

První část se zabývá výrokovou logikou. Nejprve představíme syntaxi a sémantiku, dále problém splnitelnosti CNF formulí (známý NP-úplný problém SAT) a jeho polynomiálně řešitelné fragmenty (2-SAT, Horn-SAT). Budeme pokračovat tablo metodu, u níž si dokážeme korektnost a úplnost, a také několik aplikací, například Větu u kompaktnosti. A na závěr představíme rezoluční metodu ve výrokové logice a její aplikaci v programovacím jazyce Prolog.

Ve druhé části představíme predikátovou logiku. Začneme opět syntaxí a sémantiku,ukážeme si jak lze adaptovat tablo metodu pro predikátovou logiku, opět včetně několika aplikací, a skončíme znovu rezoluční metodou.

Třetí část je úvodem do teorie modelů, definovatelnosti, axiomatizovatelnosti, a algoritmické rozhodnutelnosti. Na závěr si představíme slavné Gödelovy věty o neúplnosti, které ukazují meze formální metody (formální dokazatelnosti v axiomatickém systému).

 $^{^{7}}$ Což platí v uspořádané množině reálných čísel, ale neplatí v racionálních číslech, např. $\{x \mid x^{2} > 2, x > 0\}$.

 $^{^8\}mathrm{I}$ když je tato formule velmi složitá, pokuste se porozumět jednotlivým částem.

Část I Výroková logika

Kapitola 2

Syntaxe a sémantika výrokové logiky

Syntaxe je soubor formálních pravidel pro tvoření korektních vět sestávajících ze slov (v případě přirozených jazyků), nebo formálních výrazů sestávajících ze symbolů (např. příkazy v programovacím jazyce). Naproti tomu sémantika popisuje význam takových výrazů. Vztah mezi syntaxí a sémantikou se prolíná celou logikou a je klíčem k jejímu pochopení.

2.1 Syntaxe výrokové logiky

Nejprve definujeme formální 'nápisy', se kterými budeme v logice pracovat.

2.1.1 Jazyk

Jazyk výrokové logiky je určený neprázdnou množinou výrokových proměnných \mathbb{P} (také jim říkáme prvovýroky nebo atomické výroky). Tato množina může být konečná nebo i nekonečná, obvykle ale bude spočetná¹ (pokud neřekneme jinak), a bude mít dané uspořádání. Pro výrokové proměnné budeme obvykle používat označení p_i (od slova "proposition"), ale pro lepší čitelnost, zejména je-li \mathbb{P} konečná, také p,q,r,\ldots Například:

$$\mathbb{P}_1 = \{p, q, r\}$$

$$\mathbb{P}_2 = \{p_0, p_1, p_2, p_3, \ldots\} = \{p_i \mid i \in \mathbb{N}\}$$

Do jazyka patří kromě výrokových proměnných také logické symboly: symboly pro logické spojky $\neg, \land, \lor, \rightarrow, \leftrightarrow$ a závorky (,). Budeme ale pro jednoduchost mluvit o "jazyce \mathbb{P} ".

Poznámka 2.1.1. Pokud budeme potřebovat formálněji vyjádřit uspořádání jazyka \mathbb{P} , představíme si ho jako bijekci $\iota: \{0, 1, \ldots, n-1\} \to \mathbb{P}$ (pro konečný, n-prvkový jazyk) resp. $\iota: \mathbb{N} \to \mathbb{P}$ (je-li \mathbb{P} spočetně nekonečný). V našich příkladech $\iota_1(0) = p$, $\iota_1(1) = q$, $\iota_1(2) = r$, a $\iota_2(i) = p_i$ pro všechna $i \in \mathbb{N}$.

¹To je důležité v mnoha aplikacích v informatice, nespočetné množiny se do počítače nevejdou.

 $^{^2}$ Množina přirozených čísel $\mathbb N$ obsahuje nulu, viz standard ISO 80000-2:2019.

2.1.2 Výrok

Základním stavebním kamenem výrokové logiky je výrok neboli výroková formule. Je to konečný řetězec sestavený z výrokových proměnných a logických symbolů podle jistých pravidel. Prvovýroky jsou výroky, a dále můžeme vytvářet výroky z jednodušších výroků a logických symbolů: například pro logickou spojku \land vypíšeme nejprve symbol '(', potom první výrok, symbol ' \land ', druhý výrok, a nakonec symbol ')'.

Definice 2.1.2 (Výrok). *Výrok* (*výroková formule*) v jazyce \mathbb{P} je prvek množiny VF $_{\mathbb{P}}$ definované následovně: VF $_{\mathbb{P}}$ je nejmenší množina splňující³

- pro každý prvovýrok $p \in \mathbb{P}$ platí $p \in VF_{\mathbb{P}}$,
- pro každý výrok $\varphi \in VF_{\mathbb{P}}$ je $(\neg \varphi)$ také prvek $VF_{\mathbb{P}}$
- pro každé $\varphi, \psi \in VF_{\mathbb{P}}$ jsou $(\varphi \wedge \psi), (\varphi \vee \psi), (\varphi \rightarrow \psi), a (\varphi \leftrightarrow \psi)$ také prvky $VF_{\mathbb{P}}$.

Výroky označujeme obvykle řeckými písmeny φ, ψ, χ (φ od slova "formule"). Abychom nemuseli vypisovat všechny čtyři binární logické spojky, používáme pro ně někdy zástupný symbol \square . Třetí bod definice bychom tedy mohli vyjádřit takto:

• pro každé $\varphi, \psi \in VF_{\mathbb{P}}$ a $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ je $(\varphi \square \psi)$ také prvek $VF_{\mathbb{P}}$.

Podvýrok (podformule) je podřetězec, který je sám o sobě výrokem. Uvědomte si, že všechny výroky jsou nutně konečné řetězce, vzniklé aplikací konečně mnoha kroků z definice na své podvýroky.

 $P\check{r}iklad\ 2.1.3.\ V\text{ýrok}\ \varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q)))$ má následující podvýroky: $p, q, (\neg q), (p \lor (\neg q)), r, (p \land q), (r \to (p \land q)), \varphi.$

Výrok v jazyce \mathbb{P} nemusí obsahovat všechny prvovýroky z \mathbb{P} (ani nemůže pokud je \mathbb{P} nekonečná množina). Bude se nám proto hodit značení $\mathrm{Var}(\varphi)$ pro množinu prvovýroků vyskytujících se ve φ . V našem příkladě $\mathrm{Var}(\varphi) = \{p,q,r\}$.

Zavedeme si zkratky pro dva speciální výroky: $\top = (p \vee (\neg p)) \ (pravda)$ a $\bot = (p \wedge (\neg p)) \ (spor)$, kde $p \in \mathbb{P}$ je pevně zvolený (např. první prvovýrok z \mathbb{P}). Tedy výrok \top je vždy pravdivý a výrok \bot je vždy nepravdivý.

Při zápisu výroků můžeme pro lepší čitelnost některé závorky vynechat. Např. výrok φ z příkladu 2.1.3 můžeme reprezentovat nápisem $p \vee \neg q \leftrightarrow (r \to p \wedge q)$. Vynecháváme vnější závorky a používáme prioritu operátorů: \neg má nejvyšší prioritu, dále $\land, \lor,$ a konečně \to, \leftrightarrow mají nejnižší prioritu. Dále nápisem $p \wedge q \wedge r \wedge s$ myslíme výrok $(p \wedge (q \wedge (r \wedge s)))$, a podobně pro \lor .

 $^{^3}$ Takovému druhu definice říkáme *induktivní*. Lze také přirozeně vyjádřit pomocí *formální gramatiky*, viz předmět NTIN071 Automaty a gramatiky.

⁴Pokud nespecifikujeme v jakém jazyce je výrok (a pokud to není jasné z kontextu), myslíme tím, že je v jazyce $Var(\varphi)$.

⁵Díky asociativitě ∧, ∨ na uzávorkování nezáleží.

⁶Někdy se zavádí jemnější priority, \land mívá vyšší prioritu než \lor , \rightarrow vyšší než \leftrightarrow . A někdy se píše $p \rightarrow q \rightarrow r$ místo $(p \rightarrow (r \rightarrow q))$, byť \rightarrow není asociativní a na uzávorkování záleží. Obojímu se ale raději vyhneme.

Obrázek 2.1: Strom výroku $\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q)))$

2.1.3 Strom výroku

V definici výroku jsme zvolili *infixový* zápis se závorkami čistě z důvodu čitelnosti pro člověka. Nic by nám nebránilo použít *prefixový* zápis ("polskou notaci"), tj. definovat výroky takto:

- každý prvovýrok je výrok, a
- jsou-li φ, ψ výroky, jsou také $\neg \varphi, \land \varphi \psi, \lor \varphi \psi, \rightarrow \varphi \psi, a \leftrightarrow \varphi \psi$ výroky.

Výrok $\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q)))$ bychom potom zapsali jako $\varphi = \leftrightarrow \lor p \neg q \to r \land pq$. Také bychom mohli použít postfixový zápis a psát $\varphi = pq \neg \lor rpq \land \to \leftrightarrow$. Vše podstatné o výroku ve skutečnosti obsahuje jeho stromová struktura, která zachycuje, jak je sestaven z jednodušších výroků, obdobně jako strom aritmetického výrazu.

 $P\check{r}iklad$ 2.1.4. Strom výroku $\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q)))$ je znázorněný na obrázku 2.1. Všimněte si také, že podvýroky φ odpovídají podstromům. Výrok φ získáme průchodem stromem od kořene, v každém vrcholu:

- pokud je label prvovýrok, vypíšeme ho
- pokud je label negace: vypíšeme '(¬', rekurzivně zavoláme syna, vypíšeme ')',
- jinak (pro binární logické spojky): vypíšeme '(', zavoláme levého syna, vypíšeme label, zavoláme pravého syna, vypíšeme ')'. ⁷

Nyní si strom výroku definujeme formálně, indukcí podle struktury výroku:⁸

Definice 2.1.5 (Strom výroku). Strom výroku φ , označme Tree (φ) je zakořeněný uspořádaný strom, definovaný induktivně takto:

- Je-li φ prvovýrok p, obsahuje Tree (φ) jediný vrchol, jeho label je p.
- Je-li φ tvaru $(\neg \varphi')$, má Tree (φ) kořen s labelem \neg , a jeho jediný syn je kořen Tree (φ') .

⁷Prefixový a postfixový zápis bychom získali podobně, ale nevypisujeme závorky a label vypíšeme hned při vstupu resp. těsně před opuštěním vrcholu.

⁸Jakmile máme definovaný strom výroku, můžeme indukci podle struktury výroku chápat jako indukci podle hloubky stromu. Zatím tím ale chápejme indukci podle počtu kroků z definice 2.1.2, kterými výrok vznikl. Alternativně postačí indukce podle délky výroku, nebo podle počtu logických spojek.

• Je-li φ tvaru $(\varphi' \square \varphi'')$ pro $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, má Tree (φ) kořen s labelem \square a dvěma syny: levý syn je kořen stromu Tree (φ') , pravý je kořen Tree (φ'') .

Cvičení 2.1. Dokažte, že každý výrok má jednoznačně určený strom výroku, a naopak.

2.1.4 Teorie

V praktických aplikacích nevyjádříme požadované vlastnosti jediným výrokem — to by musel být velmi dlouhý a složitý a špatně by se s ním pracovalo — ale mnoha jednoduššími výroky.

Definice 2.1.6 (Teorie). *Teorie* v jazyce \mathbb{P} je libovolná množina výroků v \mathbb{P} , tedy libovolná podmnožina $T \subseteq VF_{\mathbb{P}}$. Jednotlivým výrokům $\varphi \in T$ říkáme také *axiomy*.

Konečn'e teorie by tedy bylo možné (byť ne praktické) nahradit jediným výrokem: konjunkcí všech jejich axiomů. Připouštíme ale i nekonečné teorie, triviálním příkladem je teorie $T=\mathrm{VF}_{\mathbb{P}},$ a prázdná teorie $T=\emptyset.^9$

2.2 Sémantika výrokové logiky

V naší logice je sémantika daná jednou ze dvou možných hodnot: *pravda*, nebo *nepravda*. (V jiných logických systémech může být sémantika zajímavější, viz příloha C.)

2.2.1 Pravdivostní hodnota

Výrokům můžeme přiřadit jednu ze dvou možných pravdivostních hodnot: pravdivý (True, 1), nebo lživý (False, 0). Prvovýroky reprezentují jednoduchá, nadále nedělitelná tvrzení (proto jim také říkáme atomické výroky); pravdivostní hodnotu jim musíme přiřadit tak, aby odpovídala tomu, co chceme modelovat (proto jim říkáme výrokové proměnné). Jakmile ale ohodnotíme prvovýroky, pravdivostní hodnota libovolného složeného výroku je jednoznačně určená, a snadno ji spočteme podle stromu výroku:

 $P\check{r}iklad$ 2.2.1. Spočtěme pravdivostní hodnotu výroku $\varphi=((p\vee (\neg q))\leftrightarrow (r\to (p\wedge q)))$ při ohodnocení (a) $p=0,\ q=0,\ r=0,$ (b) $p=1,\ q=0,\ r=1.$ Postupujeme od listů směrem ke kořeni, podobně jako bychom vyhodnocovali např. aritmetický výraz. Výrok φ platí při ohodnocení z (a), neplatí při ohodnocení z (b). Viz obrázek 2.2.1.

Logické spojky ve vnitřních vrcholech vyhodnocujeme podle jejich *pravdivostních tabulek*, viz tabulka 2.1.¹⁰

2.2.2 Výroky a booleovské funkce

Abychom mohli formalizovat pravdivostní hodnotu výroku, podíváme se nejprve na souvislost výroků a booleovských funkcí.

Booleovská funkce je funkce $f: \{0,1\}^n \to \{0,1\}$, tedy vstupem je n-tice nul a jedniček, a výstupem 0 nebo 1. Každá logická spojka reprezentuje booleovskou funkci. V případě negace jde o unární funkci $f_{\neg}(x) = 1 - x$, ostatním logickým spojkám odpovídají binární funkce popsané v tabulce 2.2.

 $^{^9}$ Nekonečné teorie se hodí například pro popis vývoje nějakého systému v (diskrétním) čase $t=0,1,2,\ldots$ Prázdná teorie se nehodí k ničemu, ale bylo by nešikovné formulovat věty o logice, pokud by teorie musely být

Obrázek 2.2: Pravdivostní ohodnocení výroku

p	q	$\neg p$	$p \wedge q$	$p \vee q$	$p \to q$	$p \leftrightarrow q$
0	0	1	0 0 0 1	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Tabulka 2.1: Pravdivostní tabulky logických spojek.

Tabulka 2.2: Booleovské funkce logických spojek

Definice 2.2.2 (Pravdivostní funkce). *Pravdivostní funkce* výroku φ v konečném jazyce \mathbb{P} je funkce $f_{\varphi,\mathbb{P}}$: $\{0,1\}^{|\mathbb{P}|} \to \{0,1\}$ definovaná induktivně:

- je-li φ *i*-tý prvovýrok z \mathbb{P} , potom $f_{\varphi,\mathbb{P}}(x_0,\ldots,x_{n-1})=x_i$,
- je-li $\varphi = (\neg \varphi')$, potom

$$f_{\varphi,\mathbb{P}}(x_0,\ldots,x_{n-1}) = f_{\neg}(f_{\varphi',\mathbb{P}}(x_0,\ldots,x_{n-1})),$$

• je-li $(\varphi' \square \varphi'')$ kde $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, potom

$$f_{\varphi,\mathbb{P}}(x_0,\ldots,x_{n-1})=f_{\square}(f_{\varphi',\mathbb{P}}(x_0,\ldots,x_{n-1}),f_{\varphi'',\mathbb{P}}(x_0,\ldots,x_{n-1})).$$

Příklad 2.2.3. Spočtěme pravdivostní funkci výroku $\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q)))$ v jazyce $\mathbb{P}' = \{p,q,r,s\}$:

$$f_{\varphi,\mathbb{P}'}(x_0,x_1,x_2,x_3) = f_{\leftrightarrow}(f_{\vee}(x_0,f_{\neg}(x_1)),f_{\rightarrow}(x_2,f_{\wedge}(x_0,x_1)))$$

Pravdivostní hodnotu výroku φ při ohodnocení $p=1,\,q=0,\,r=1,\,s=1$ spočteme takto (srovnejte s obrázkem 2.2.1(b)):

$$\begin{split} f_{\varphi,\mathbb{P}'}(1,0,1,1) &= f_{\leftrightarrow}(f_{\lor}(1,f_{\lnot}(0)),f_{\to}(1,f_{\land}(1,0))) \\ &= f_{\leftrightarrow}(f_{\lor}(1,1),f_{\to}(1,0)) \\ &= f_{\leftrightarrow}(1,0) \\ &= 0 \end{split}$$

Pozorování 2.2.4. Pravdivostní funkce výroku φ nad \mathbb{P} závisí pouze na proměnných odpovídajících prvovýrokům z $\operatorname{Var}(\varphi) \subseteq \mathbb{P}$.

Tedy i pokud máme výrok φ v *nekonečném* jazyce \mathbb{P} , můžeme se omezit na jazyk $\operatorname{Var}(\varphi)$ (který je konečný) a uvažovat pravdivostní funkci nad tímto jazykem.

2.2.3 Modely

Konkrétní pravdivostní ohodnocení výrokových proměnných představuje reprezentaci 'reálného světa' (systému) v námi zvoleném 'formálním světě', proto mu také říkáme *model*.

Definice 2.2.5 (Model jazyka). *Model* jazyka \mathbb{P} je libovolné pravdivostní ohodnocení $v \colon \mathbb{P} \to \{0,1\}$. *Množinu (všech) modelů jazyka* \mathbb{P} označíme $M_{\mathbb{P}}$:

$$M_{\mathbb{P}} = \{ v \mid v \colon \mathbb{P} \to \{0,1\} \} = \{0,1\}^{\mathbb{P}}$$

Modely budeme označovat písmeny v, u, w apod. (v od slova 'valuation'). Model jazyka je tedy funkce, formálně množina dvojic (vstup, výstup). Například pro jazyk $\mathbb{P} = \{p, q, r\}$ a pravdivostní ohodnocení ve kterém p je pravda, q nepravda, a r pravda máme model

$$v = \{(p, 1), (q, 0), (r, 1)\}.$$

Pro jednoduchost ale budeme psát jen v=(1,0,1). Pro jazyk $\mathbb{P}=\{p,q,r\}$ tedy máme $2^3=8$ modelů:

$$M_{\mathbb{P}} = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$$

neprázdné.

 $^{^{\}hat{1}0}$ Připomeňme ještě jednou, že disjunkce není exkluzivní, tj. $p \lor q$ platí i pokud platí p i q, a že implikace je čistě logická, tj. $p \to q$ platí kdykoliv p neplatí.

Poznámka 2.2.6. Formálně vzato, ztotožňujeme množinu $\{0,1\}^{\mathbb{P}}$ s množinou $\{0,1\}^{|\mathbb{P}|}$ pomocí uspořádání ι jazyka \mathbb{P} (viz Poznámka 2.1.1). Konkrétně, místo prvku $v = \{(p,1), (q,0), (r,1)\} \in \{0,1\}^{\mathbb{P}}$ píšeme $(1,0,1) = (v \circ \iota)(0,1,2) = (v(\iota(0)),v(\iota(1)),v(\iota(2))) \in \{0,1\}^{|\mathbb{P}|}$ (kde funkcím v,ι dovolíme působit 'po složkách'). Pokud by se to zdálo matoucí, představte si model v jako množinu prvovýroků, které jsou ohodnocené jako pravda, tj. $\{p,r\} \subseteq \mathbb{P}$, náš zápis v = (1,0,1) je potom charakteristický vektor této množiny. Toto ztotožnění budeme nadále používat bez dalšího upozornění.

2.2.4 Platnost

Nyní můžeme definovat klíčový pojem logiky, *platnost* výroku v daném modelu. Neformálně, výrok platí v modelu (tj. při konkrétním pravdivostním ohodnocení prvovýroků), pokud jeho pravdivostní hodnota, tak jak jsme ji počítali v Příkladu 2.2.1, je rovna 1. Ve formální definici využijeme pravdivostní funkci výroku (Definice 2.2.2).¹²

Definice 2.2.7 (Platnost výroku v modelu, model výroku). Mějme výrok φ v jazyce \mathbb{P} a model $v \in \mathcal{M}_{\mathbb{P}}$. Pokud platí $f_{\varphi,\mathbb{P}}(v) = 1$, potom říkáme, že výrok φ platí v modelu v, v je modelem φ , a píšeme $v \models \varphi$. Množinu všech modelů výroku φ označujeme $\mathcal{M}_{\mathbb{P}}(\varphi)$.

Modelům jazyka, které nejsou modely φ , budeme někdy říkat nemodely φ . Tvoří doplněk množiny modelů φ . S pomocí zápisu pro inverzní relaci můžeme psát:

$$\mathbf{M}_{\mathbb{P}}(\varphi) = \{ v \in \mathbf{M}_{\mathbb{P}} \mid v \models \varphi \} = f_{\varphi,\mathbb{P}}^{-1}[1]$$
$$\overline{\mathbf{M}_{\mathbb{P}}(\varphi)} = M_{\mathbb{P}} \setminus M_{\mathbb{P}}(\varphi) = \{ v \in \mathbf{M}_{\mathbb{P}} \mid v \not\models \varphi \} = f_{\varphi,\mathbb{P}}^{-1}[0]$$

Je-li jazyk zřejmý z kontextu, můžeme psát jen $M(\varphi)$. Musíme si ale být opravdu jistí: například v jazyce $\mathbb{P}=\{p,q\}$ máme

$$\mathcal{M}_{\{p,q\}}(p \to q) = \{(0,0), (0,1), (1,1)\},\$$

zatímco v jazyce $\mathbb{P}'=\{p,q,r\}$ bychom měli

$$M_{\mathbb{P}'}(p \to q) = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,1,0), (1,1,1)\}.$$

Definice 2.2.8 (Platnost teorie, model teorie). Je-li T teorie v jazyce \mathbb{P} , potom T platí v modelu v, pokud každý axiom $\varphi \in T$ platí ve v. V tom případě říkáme také, že v je modelem T, a píšeme $v \models T$. Množinu všech modelů teorie T v jazyce \mathbb{P} označíme $M_{\mathbb{P}}(T)$.

Pracujeme-li s konečnou teorií, nebo přidáváme-li k nějaké teorii konečně mnoho nových axiomů, budeme používat následující zjednodušený zápis:

- $M_{\mathbb{P}}(\varphi_1, \varphi_2, \dots, \varphi_n)$ místo $M_{\mathbb{P}}(\{\varphi_1, \varphi_2, \dots, \varphi_n\}),$
- $M_{\mathbb{P}}(T, \varphi)$ místo $M_{\mathbb{P}}(T \cup \{\varphi\})$.

Všimněte si, že $M_{\mathbb{P}}(T,\varphi) = M_{\mathbb{P}}(T) \cap M_{\mathbb{P}}(\varphi)$, $M_{\mathbb{P}}(T) = \bigcap_{\varphi \in T} M_{\mathbb{P}}(\varphi)$, a že pro konečnou teorii (podobně i pro spočetnou) platí

$$M_{\mathbb{P}}(\varphi_1) \supseteq M_{\mathbb{P}}(\varphi_1, \varphi_2) \supseteq M_{\mathbb{P}}(\varphi_1, \varphi_2, \varphi_3) \supseteq \cdots \supseteq M_{\mathbb{P}}(\varphi_1, \varphi_2, \dots, \varphi_n).$$

Toho můžeme využít při hledání modelů hrubou silou.

 $^{^{11}}$ Alternativně bychom mohli při formalizaci syntaxe vyžadovat (alespoň pro spočetné jazyky), aby jazyk byl $\mathbb{P} = \{0, 1, 2, ...\}$ a symboly p_0, p_1, p, q, r používat jen pro zvýšení čitelnosti.

 $^{^{12}}$ Proplatnostpoužíváme symbol |=, který čteme jako 'splňuje' nebo 'modeluje', v IATEXu \models.

Příklad 2.2.9. Modely teorie $T = \{p \lor q \lor r, q \to r, \neg r\}$ (v jazyce $\mathbb{P} = \{p, q, r\}$) můžeme najít tak, najdeme tak, že nejprve najdeme modely výroku $\neg r$:

$$M_{\mathbb{P}}(r) = \{(x, y, 0) \mid x, y \in \{0, 1\}\} = \{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)\},\$$

poté určíme, ve který z těchto modelů platí výrok $q \rightarrow r$:

- $(0,0,0) \models q \to r$,
- $(0,1,0) \not\models q \to r$,
- $(1,0,0) \models q \to r$,
- $(1,1,0) \not\models q \to r$,

Tedy $M_{\mathbb{P}}(r, q \to r) = \{(0, 0, 0), (1, 0, 0)\}$. Výrok $p \lor q \lor r$ platí jen v prvním z těchto modelů, dostáváme tedy

$$M_{\mathbb{P}}(r, q \to r, p \lor q \lor r) = M_{\mathbb{P}}(T) = \{(1, 0, 0)\}.$$

Tento postup je efektivnější než určit množiny modelů jednotlivých axiomů a udělat jejich průnik. (Ale mnohem méně efektivní než postup založený na tablo metodě, který si ukážeme později.)

2.2.5 Další sémantické pojmy

V návaznosti na pojem platnosti budeme používat řadu dalších pojmů. Pro některé vlastnosti existuje více různých termínů, v závislosti na kontextu v jakém se vyskytnou.

Definice 2.2.10 (Sémantické pojmy). Říkáme, že výrok φ (v jazyce \mathbb{P}) je

- $pravdiv\acute{y}$, tautologie, $plat\acute{i}$ (v logice/logicky), a píšeme $\models \varphi$, pokud platí v každém modelu (jazyka \mathbb{P}), $M_{\mathbb{P}}(\varphi) = M_{\mathbb{P}}$,
- *lživý*, sporný, pokud nemá žádný model, $M_{\mathbb{P}}(\varphi) = \emptyset$. 13
- $nez {\acute{a}visl\acute{y}}$, pokud platí v nějakém modelu, a neplatí v nějakém jiném modelu, tj. není pravdivý ani lživý, $\emptyset \subsetneq M_{\mathbb{P}}(\varphi) \subsetneq M_{\mathbb{P}}$,
- $splniteln\acute{y},$ pokud má nějaký model, tj. není lživý, $M_{\mathbb{P}}(\varphi) \neq \emptyset.$

Dále říkáme, že výroky φ, ψ (ve stejném jazyce \mathbb{P}) jsou (logicky) ekvivalentní, píšeme $\varphi \sim \psi$ pokud mají stejné modely, tj.

$$\varphi \sim \psi$$
 právě když $M_{\mathbb{P}}(\varphi) = M_{\mathbb{P}}(\psi)$.

Příklad 2.2.11. Například platí následující:

- výroky \top , $p \lor q \leftrightarrow q \lor p$ jsou pravdivé,
- výroky \perp , $(p \vee q) \wedge (p \vee \neg q) \wedge \neg p$ jsou lživé,
- výroky $p, p \land q$ jsou nezávislé, a také splnitelné, a

¹³Všimněte si, že být *lživý* není totéž, co nebýt *pravdivý*!

• následující výroky jsou ekvivalentní:

```
-p \sim p \lor p \sim p \lor p \lor p,<br/>-p \rightarrow q \sim \neg p \lor q,<br/>-\neg p \rightarrow (p \rightarrow q) \sim \top.
```

Pojmy z Definice 2.2.10 můžeme také relativizovat vzhledem k dané teorii. To znamená, že se v jednotlivých definicích omezíme na modely této teorie:

Definice 2.2.12 (Sémantické pojmy vzhledem k teorii). Mějme teorii T v jazyce \mathbb{P} . Říkáme, že výrok φ v jazyce \mathbb{P} je

- pravdivý v T, důsledek T, platí v T, a píšeme $T \models \varphi$, pokud φ platí v každém modelu teorie T, neboli $M_{\mathbb{P}}(T) \subseteq M_{\mathbb{P}}(\varphi)$,
- lživý v T, sporný v T, pokud neplatí v žádném modelu T, neboli $M_{\mathbb{P}}(\varphi) \cap M_{\mathbb{P}}(T) = M_{\mathbb{P}}(T,\varphi) = \emptyset$.
- nezávislý v T, pokud platí v nějakém modelu T, a neplatí v nějakém jiném modelu T, tj. není pravdivý v T ani lživý v T, $\emptyset \subseteq M_{\mathbb{P}}(T,\varphi) \subseteq M_{\mathbb{P}}(T)$,
- splnitelný v T, konzistentní s T, pokud platí v nějakém modelu T, tj. není lživý v T, $\mathcal{M}_{\mathbb{P}}(T,\varphi) \neq \emptyset$.

A říkáme, že výroky φ, ψ (ve stejném jazyce \mathbb{P}) jsou *ekvivalentní* v T, T-*ekvivalentní*, píšeme $\varphi \sim_T \psi$ pokud platí v týchž modelech T, tj.

$$\varphi \sim_T \psi$$
 právě když $\mathrm{M}_{\mathbb{P}}(T,\varphi) = \mathrm{M}_{\mathbb{P}}(T,\psi)$.

Všimněte si, že pro prázdnou teorii $T=\emptyset$ platí $\mathcal{M}_{\mathbb{P}}(T)=\mathcal{M}_{\mathbb{P}}$ a výše uvedené pojmy pro T se proto shodují s původními. Opět si pojmy ilustrujeme na několika příkladech:

Příklad 2.2.13. Mějme teorii $T = \{p \lor q, \neg r\}$. Platí následující:

- výroky $q \lor p$, $\neg p \lor \neg q \lor \neg r$ jsou pravdivé v T,
- výrok $\neg p \lor \neg q \lor r$ je v T lživý,
- $\bullet\,$ výroky $p \leftrightarrow q, p \land q$ jsou v Tnezávislé, a také splnitelné, a
- platí $p \vee r \sim_T q \vee r$ (ale $p \vee r \not\sim q \vee r$).

2.2.6 Univerzálnost logických spojek

V jazyce výrokové logiky používáme následující logické spojky: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$. To ale není jediná možná volba, k vybudování plnohodnotné logiky by nám stačila například negace a implikace, ¹⁴ nebo negace, konjunkce, a disjunkce. ¹⁵ A jak uvidíme níže, mohli bychom použít i jiné logické spojky. Naše volba je zlatou střední cestou mezi bohatostí vyjadřování na jedné straně, a úsporností syntaktických pravidel na straně druhé.

¹⁴Negaci potřebujeme k popisu stavu systému, a implikaci k popisu chování v čase.

¹⁵Ty stačí k vybudování logických obvodů.

Co myslíme tím, že je logika plnohodnotná? Řekneme, že množina logických spojek S je univerzální, pokud lze každou booleovskou funkci f vyjádřit jako pravdivostní funkci $f_{\varphi,\mathbb{P}}$ nějakého výroku φ vybudovaného z logických spojek z S (kde $|\mathbb{P}|=n$ je-li f n-ární funkce). Ekvivalentně, pro každý konečný jazyk \mathbb{P} (řekněme, že n-prvkový) a každou množinu modelů $M\subseteq M_{\mathbb{P}}$ musí existovat výrok φ takový, že $M_{\mathbb{P}}(\varphi)=M$. (Ekvivalence těchto dvou vyjádření plyne z toho, že máme-li booleovskou funkci f a zvolíme-li $M=f^{-1}[1]$, potom $f_{\varphi,\mathbb{P}}=f$ právě když $M_{\mathbb{P}}(\varphi)=M$.)

Tvrzení 2.2.14. *Množiny logických spojek* $\{\neg, \land, \lor\}$ *a* $\{\neg, \to\}$ *jsou univerzální.*

 $D\mathring{u}kaz$. Mějme funkci $f: \{0,1\}^n \to \{0,1\}$, resp. množinu modelů $M = f^{-1}[1] \subseteq \{0,1\}^n$. Náš jazyk bude $\mathbb{P} = \{p_1,\ldots,p_n\}$. Pokud by množina M obsahovala jediný model, např. v = (1,0,1,0) mohli bychom ji reprezentovat výrokem $\varphi_v = p_1 \wedge \neg p_2 \wedge p_3 \wedge \neg p_4$, který říká 'musím být model v'. Pro obecný model v bychom výrok φ_v zapsali takto:

$$\varphi_v = p_1^{v_1} \wedge p_2^{v_2} \wedge \dots \wedge p_n^{v_n} = \bigwedge_{i=1}^n p_i^{v(p_i)} = \bigwedge_{p \in \mathbb{P}} p^{v(p)}$$

kde zavádíme následující užitečné značení: $p^{v(p)}$ je výrok p pokud v(p) = 1, a výrok $\neg p$ pokud v(p) = 0.

Obsahuje-li množina M více modelů, řekneme 'musím být alespoň jeden z modelů z M':

$$\varphi_M = \bigvee_{v \in M} \varphi_v = \bigvee_{v \in M} \bigwedge_{p \in \mathbb{P}} p^{v(p)}$$

Zřejmě platí $M_{\mathbb{P}}(\varphi_M) = M$ neboli $f_{\varphi_M,\mathbb{P}} = f$. (Pokud $M = \emptyset$, potom z definice $\bigvee_{v \in M} \varphi_v = \bot$.)¹⁶

Univerzálnost $\{\neg, \rightarrow\}$ plyne z univerzálnosti $\{\neg, \land, \lor\}$ a faktu, že konjunkci a disjunkci můžeme vyjádřit pomocí negace a implikace: $p \land q \sim \neg(p \rightarrow \neg q)$ a $p \lor q \sim \neg p \rightarrow q$.

Poznámka~2.2.15. Všimněte si, že při konstrukci výroku φ_M je klíčové, že množina M je konečná (má nejvýše 2^n prvků). Kdyby byla nekonečná, symbol ' $\bigvee_{v \in M}$ ' by znamenal 'disjunkci' nekonečně mnoha výroků, a výsledkem by tedy nebyl konečný nápis, tj. ' φ_M ' by vůbec nebyl výrok. (Máme-li spočetně nekonečný jazyk \mathbb{P}' , potom ne každou podmnožinu $M \subseteq M_{\mathbb{P}'}$ lze reprezentovat výrokem—takových podmnožin je nespočetně mnoho, zatímco výroků je jen spočetně mnoho.)

Jaké další logické spojky bychom mohli použít? Nulární booleovské funkce, ¹⁷ neboli konstanty 0, 1, bychom mohli zavést jako symboly TRUE a FALSE, my si ale vystačíme s výroky \top , \bot . Unární booleovské funkce jsou čtyři $(4=2^{2^1})$, ale negace je jediná 'zajímavá': ostatní jsou f(x)=x, f(x)=0, a f(x)=1. Zajímavých binárních logických spojek už je více, v přírodě se vyskytují například tyto:

- NAND neboli Shefferova spojka, někdy se používá symbol $p \uparrow q$, platí $p \uparrow q \sim \neg (p \land q)$,
- NOR neboli *Pierceova spojka*, někdy se používá symbol $p \downarrow q$, platí $p \downarrow q \sim \neg (p \lor q)$,

¹⁶Podobně jako součet prázdné množiny sčítanců je roven 0.

 $^{^{17}}$ Ve formalizaci matematiky resp. informatiky funkce arity 0 znamená, že nemá žádné vstupy, výstup tedy nemůže záviset na vstupu a je konstantní. Formálně, jde o funkce $f: \emptyset \to \{0,1\}$. Pokud je to matoucí, představte si, že funkce musí mít aritu alespoň 1, a místo 'nulární funkce' říkejme 'konstanta'.

- XOR, neboli exclusive-OR, někdy se píše také \oplus , platí $p \oplus q \sim (p \lor q) \land \neg (p \land q)$, neboli součet pravdivostní hodnot modulo 2.
- Cvičení 2.2. Vyjádřete $(p \oplus q) \oplus r$ pomocí $\{\neg, \land, \lor\}$.
- Cvičení 2.3. Ukažte, že {NAND} a také {NOR} jsou univerzální.

Cvičení 2.4. Uvažme ternární logickou spojku IFTE, kde IFTE(p,q,r) je splněno, právě když platí 'if p then q else r'. Určete pravdivostní tabulku této logické spojky (tj. funkci $f_{\rm IFTE}$) a ukažte, že {TRUE, FALSE, IFTE} je univerzální.

2.3 Normální formy

Připomeňme, že výroky jsou ekvivalentní, pokud mají stejnou množinu modelů. Pro každý výrok existuje nekonečně mnoho ekvivalentních výroků; často se hodí vyjádřit výrok v nějakém 'hezkém' (užitečném) 'tvaru', tj. najít ekvivalentní výrok v daném tvaru. Takovému konceptu tvaru se v matematice říká normální forma. My si představíme dvě nejznámější: konjunktivní normální formu (conjunctive normal form, CNF) a disjunktivní normální formu (DNF).

Používá se následující terminologie a značení:

- Literál ℓ je buď prvovýrok p nebo negace prvovýrok $\neg p$. Pro prvovýrok p označme $p^0 = \neg p$ a $p^1 = p$. Je-li ℓ literál, potom $\bar{\ell}$ označuje opačný literál k ℓ . Je-li $\ell = p$ (pozitivní literál), potom $\bar{\ell} = \neg p$, je-li $\ell = \neg p$ (negativní literál), potom $\bar{\ell} = p$
- Klauzule (clause) je disjunkce literálů $C = \ell_1 \vee \ell_2 \vee \cdots \vee \ell_n$. Jednotková klauzule (unit clause) je samotný literál (n = 1) a prázdnou klauzulí (n = 0) myslíme \perp .
- Výrok je v konjunktivní normální formě (v CNF) pokud je konjunkcí klauzulí. Prázdný výrok v CNF je ⊤.
- Elementární konjunkce je konjunkce literálů $E = \ell_1 \wedge \ell_2 \wedge \cdots \wedge \ell_n$. Jednotková elementární konjunkce je samotný literál (n = 1). Prázdná elementární konjunkce (n = 0) je \top .
- Výrok je v disjunktivní normální formě (v DNF) pokud je disjunkcí elementárních konjunkcí. Prázdný výrok v DNF je \bot .

 $P\check{r}iklad$ 2.3.1. Výrok $p \lor q \lor \neg r$ je v CNF (je to jediná klauzule) a zároveň v DNF (je to disjunkce jednotkových elementárních konjunkcí). Výrok $(p \lor q) \land (p \lor \neg q) \land \neg p$ je v CNF, výrok $\neg p \lor (p \land q)$ je v DNF.

 $P\check{r}\hat{u}klad$ 2.3.2. Výrok φ_v z důkazu Tvrzení 2.2.14 je v CNF (je to konjunkce jednotkových klauzulí, tj. literálů) a také v DNF (je to jediná elementární konjunkce). Výrok φ_M je v DNF.

Pozorování 2.3.3. Všimněte si, že výrok v CNF je pravdivý, právě když každá jeho klauzule obsahuje dvojici opačných literálů. Podobně, výrok v DNF je splnitelný, pokud ne každá elementární konjunkce obsahuje dvojici opačných literálů.

2.3.1 O dualitě

Všimněte si, že pokud ve výrokové logice zaměníme hodnoty pro pravdu a nepravdu, tj. 0 a 1, pravdivostní tabulka negace zůstává stejná, z konjunkce se stává disjunkce, a naopak. Tomuto konceptu se říká dualita; v logice uvidíme mnoho příkladů.

Platí $\neg(p \land q) \sim (\neg p \lor \neg q)$ a z duality víme také $\neg(\neg p \lor \neg q) \sim (\neg \neg p \land \neg \neg q)$, z čehož snadno odvodíme $\neg(p \lor q) \sim (\neg p \land \neg q)$. Náme-li výrok φ vybudovaný z $\{\neg, \land, \lor\}$ a zaměníme-li v něm \land a \lor , a znegujeme-li výrokové proměnné (resp. zaměníme-li literály za opačné literály), dostáváme výrok $\psi \sim \neg \varphi$ (tj. modely φ jsou nemodely ψ a naopak), a funkce $f_{\varphi,\mathbb{P}}, f_{\psi,\mathbb{P}}$ jsou navzájem duální.

Pojem DNF je duální k pojmu CNF, 'je pravdivý' je duální k 'není splnitelný', předchozí pozorování tedy můžeme chápat jako příklad duality. Ke každému tvrzení ve výrokové logice získáváme 'zdarma' tvrzení duální, vzniklé záměnou \wedge and \vee , pravdy a nepravdy.

2.3.2 Převod do normální formy

Disjunktivní normální formu jsme již potkali, v důkazu Tvrzení 2.2.14. Klíčovou část důkazu bychom mohli zformulovat takto: 'Je-li jazyk konečný, lze každou množinu modelů *axiomatizovat* výrokem v DNF'. Z duality dostáváme také axiomatizaci v CNF, neboť doplněk množiny modelů je také množina modelů:

Tvrzení 2.3.4. Mějme konečný jazyk \mathbb{P} a libovolnou množinu modelů $M \subseteq M_{\mathbb{P}}$. Potom existuje výrok φ_{DNF} v DNF a výrok φ_{CNF} v CNF takový, že $M = M_{\mathbb{P}}(\varphi_{\text{DNF}}) = M_{\mathbb{P}}(\varphi_{\text{CNF}})$. Konkrétně:

$$\varphi_{\text{DNF}} = \bigvee_{v \in M} \bigwedge_{p \in \mathbb{P}} p^{v(p)}$$
$$\varphi_{\text{CNF}} = \bigwedge_{v \in \overline{M}} \bigvee_{p \in \mathbb{P}} \overline{p^{v(p)}} = \bigwedge_{v \notin M} \bigvee_{p \in \mathbb{P}} p^{1-v(p)}$$

 $D\mathring{u}kaz$. Pro výrok φ_{DNF} viz důkaz Tvrzení 2.2.14, každá elementární konjunkce popisuje jeden model. Výrok φ_{CNF} je duální k výroku φ'_{DNF} sestrojenému pro doplněk $M' = \overline{M}$. Nebo můžeme dokázat přímo: modely klauzule $C_v = \bigvee_{p \in \mathbb{P}} p^{1-v(p)}$ jsou všechny modely kromě v, $M_C = M_P \setminus \{v\}$, tedy každá klauzule v konjunkci zakazuje jeden nemodel.

Tvrzení 2.3.4 dává návod, jak převádět výrok do disjunktivní nebo do konjunktivní normální formy:

 $P\check{r}iklad$ 2.3.5. Uvažme výrok $\varphi = p \leftrightarrow (q \lor \neg r)$. Nejprve najdeme množinu modelů: $M = M_{\varphi} = \{(0,0,1),(1,0,0),(1,1,0),(1,1,1)\}$. Nyní najdeme výroky $\varphi_{\text{DNF}}, \varphi_{\text{CNF}}$ podle Tvrzení 2.3.4, ty mají stejnou množinu modelů jako φ , jsou tedy ekvivalentní.

Výrok $\varphi_{\rm DNF}$ najdeme tak, že pro každý model sestrojíme elementární konjunkci vynucující právě tento model:

$$\varphi_{\text{DNF}} = (\neg p \land \neg q \land r) \lor (p \land \neg q \land \neg r) \lor (p \land q \land \neg r) \lor (p \land q \land r)$$

Při konstrukci φ_{CNF} budeme potřebovat $nemodely\ \varphi, \overline{M} = \{(0,0,0), (0,1,0), (0,1,1), (1,0,1)\}.$ Každá klauzule zakáže jeden nemodel:

$$\varphi_{\text{CNF}} = (p \lor q \lor r) \land (p \lor \neg q \lor r) \land (p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor \neg r)$$

 $^{^{18}}$ Neboť p,qjsou proměnné, mohou za ně být dosazeny obě hodnoty 0 i 1, tedy je můžeme zaměnit za k nim opačné literály.

Důsledek 2.3.6. Každý výrok (v libovolném, i nekonečném jazyce \mathbb{P}) je ekvivalentní nějakému výroku v CNF a nějakému výroku v DNF.

 $D\mathring{u}kaz$. I když je jazyk \mathbb{P} nekonečný, výrok φ obsahuje jen konečně mnoho výrokových proměnných, můžeme tedy použít Tvrzení 2.3.4 pro jazyk $\mathbb{P}' = \mathrm{Var}(\varphi)$, a množinu modelů $M = \mathrm{M}_{\mathbb{P}'}(\varphi)$. Protože $M = \mathrm{M}_{\mathbb{P}'}(\varphi_{\mathrm{DNF}}) = \mathrm{M}_{\mathbb{P}'}(\varphi_{\mathrm{CNF}}) = M$, máme $\varphi \sim \varphi_{\mathrm{DNF}} \sim \varphi_{\mathrm{CNF}}$.

Cvičení 2.5. Rozmyslete si, jak lze z DNF výroku snadno vygenerovat jeho modely, a z CNF výroku jeho nemodely.

Poznámka~2.3.7. Kdy lze axiomatizovat teorii výrokem v DNF nebo výrokem v CNF? Mějme jazyk $\mathbb{P}'=\mathrm{Var}(T)$ (tj. všechny výrokové proměnné vyskytující se v axiomech T). Má-li T v jazyce \mathbb{P}' konečně mnoho modelů (tj. je-li $\mathrm{M}_{\mathbb{P}'}(T)$ konečná), můžeme sestrojit výrok v DNF, a má-li konečně mnoho nemodelů, můžeme sestrojit výrok v CNF. Obecně ale ne každou teorii lze axiomatizovat jediným výrokem v CNF nebo v DNF. Vždy můžeme převést jednotlivé axiomy do CNF (nebo DNF), a můžeme také axiomatizovat teorii jen pomocí (potenciálně nekonečně mnoha) klauzulí.

Tento způsob převodu do CNF resp. do DNF vyžaduje znalost množiny modelů výroku, je tedy poměrně neefektivní. A také výsledná normální forma může být velmi dlouhá. Ukážeme si ještě jeden postup.

Převod pomocí ekvivalentních úprav

Využijeme následujícího pozorování: Nahradíme-li nějaký podvýrok ψ výroku φ ekvivalentním výrokem ψ' , výsledný výrok φ' bude také ekvivalentní φ . Nejprve si ukážeme postup na příkladě:

Příklad 2.3.8. Převedeme opět výrok $\varphi = p \leftrightarrow (q \lor \neg r)$. Nejprve se zbavíme ekvivalence, vyjádříme ji jako konjunkci dvou implikací. V dalším kroku odstraníme implikace, pomocí pravidla $\varphi \to \psi \sim \neg \varphi \lor \psi$:

$$\begin{aligned} p &\leftrightarrow (q \vee \neg r) \sim (p \to (q \vee \neg r)) \wedge ((q \vee \neg r) \to p) \\ &\sim (\neg p \vee q \vee \neg r) \wedge (\neg (q \vee \neg r) \vee p) \end{aligned}$$

Nyní si představme strom výroku, v dalším kroku chceme dostat negace na co nejnižší úroveň stromu, bezprostředně nad listy: využijeme toho, že $\neg (q \lor \neg r) \sim \neg q \land \neg \neg r$ a zbavíme se dvojité negace $\neg \neg r \sim r$. Dostáváme výrok

$$(\neg p \lor q \lor \neg r) \land ((\neg q \land r) \lor p)$$

Nyní již necháme literály nedotčené, a použijeme distributivitu \land vůči \lor , nebo naopak, podle toho, zda chceme DNF nebo CNF. Pro převod do CNF použijeme úpravu $(\neg q \land r) \lor p \sim (\neg q \lor p) \land (r \lor p)$, kterou jsme dostali symbol \lor na nižší úroveň stromu. (Nakreslete si!) Tím už dostáváme výrok v CNF, pro přehlednost ještě seřadíme literály v klauzulích:

$$(\neg p \lor q \lor \neg r) \land (p \lor \neg q) \land (p \lor r)$$

Při převodu do DNF bychom postupovali obdobně, opakovanou aplikací distributivity. Zde vyjdeme v CNF formy a zkombinujeme každý literál z první klauzule s každým literálem z druhé a s každým literálem z třetí klauzule. Všimneme si, že stejný literál nemusíme v elementární konjunkci opakovat dvakrát, a že obsahuje-li elementární klauzule dvojici opačných

literálů, je sporná, a můžeme ji tedy v DNF vynechat. Také můžeme vynechat elementární konjunkci E', pokud máme jinou elementární konjunkci E takovou, že E' obsahuje všechny literály obsažené v E, např. $E = p \land \neg r$ a $E' = (p \land q \land \neg r)$. (Rozmyslete si proč, a zformulujte duální zjednodušení při převodu do CNF.) Výsledný výrok v DNF je:

$$(\neg p \land \neg q \land r) \lor (p \land q \land r) \lor (p \land \neg r)$$

Nyní vypíšeme všechny potřebné ekvivalentní úpravy. Důkaz, že každý výrok lze převést do DNF a do CNF lze snadno provést indukcí podle struktury výroku (podle hloubky stromu výroku).

• Implikace a ekvivalence:

$$\begin{split} \varphi &\to \psi \sim \neg \varphi \vee \psi \\ \varphi &\leftrightarrow \psi \sim (\neg \varphi \vee \psi) \wedge (\neg \psi \vee \varphi) \end{split}$$

• Negace:

$$\neg(\varphi \wedge \psi) \sim \neg\varphi \vee \neg\psi$$
$$\neg(\varphi \vee \psi) \sim \neg\varphi \wedge \neg\psi$$
$$\neg\neg\varphi \sim \varphi$$

• Konjunkce (převod do DNF):

$$\varphi \wedge (\psi \vee \chi) \sim (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$$
$$(\varphi \vee \psi) \wedge \chi \sim (\varphi \wedge \chi) \vee (\psi \wedge \chi)$$

• Disjunkce (převod do CNF):

$$\varphi \lor (\psi \land \chi) \sim (\varphi \lor \psi) \land (\varphi \lor \chi)$$
$$(\varphi \land \psi) \lor \chi \sim (\varphi \lor \chi) \land (\psi \lor \chi)$$

Jak uvidíme v příští kapitole, CNF je v praxi mnohem důležitější než DNF (byť jde o duální pojmy). Při popisu reálného systému je přirozenější vyjádření pomocí konjunkce mnoha jednodušších vlastností, než jako jednu velmi dlouhou disjunkci. Existuje mnoho dalších forem reprezentace booleovských funkcí. Podobně jako datové struktury, vhodnou formu reprezentace volíme podle toho, jaké operace potřebujeme s funkcí dělat. 19

2.4 Vlastnosti a důsledky teorií

Podívejme se nyní hlouběji na vlastnosti teorií. Podobně jako pro výroky řekneme, že dvě teorie T, T' v jazyce \mathbb{P} jsou ekvivalentní, pokud mají stejnou množinu modelů:

$$T \sim T'$$
 právě když $\mathrm{M}_{\mathbb{P}}(T) = \mathrm{M}_{\mathbb{P}}(T')$

Jde tedy o teorie vyjadřující tytéž vlastnosti, jen jinak vyjádřené (axiomatizované). Zajímat nás budou vlastnosti nezávislé na konkrétní axiomatizaci.

Příklad 2.4.1. Například teorie $T = \{p \to q, p \leftrightarrow r\}$ je ekvivalentní teorii $T' = \{(\neg p \lor q) \land (\neg p \lor r) \land (p \lor \neg r)\}.$

Definice 2.4.2 (Vlastnosti teorií). Řekneme, že teorie T v jazyce \mathbb{P} je

- $sporn\acute{a}$, jestliže v ní platí \perp (spor), ekvivalentně, jestliže nemá žádný model, ekvivalentně, jestliže v ní platí všechny výroky,
- bezesporná (splnitelná), pokud není sporná, tj. má nějaký model,

¹⁹Viz například přednáška NAIL031 Reprezentace booleovských funkcí.

 kompletní, jestliže není sporná a každý výrok je v ní pravdivý nebo lživý (tj. nemá žádné nezávislé výroky), ekvivalentně, pokud má právě jeden model.

Rozmysleme si, proč platí ekvivalence vlastností v definici. Uvědomme si, že ve sporné teorii platí skutečně platí všechny výroky! Vskutku, výrok platí v T, pokud platí v každém modelu T, ty ale žádné nejsou. Naopak, pokud teorie má alespoň jeden model, v tomto modelu nemůže platit $\bot = p \land \neg p$.

A je-li teorie kompletní, nemůže mít dva různé modely $v \neq v'$. Výrok $\varphi_v = \bigwedge_{p \in \mathbb{P}} p^{v(p)}$ (který jsme potkali v důkazu Tvrzení 2.2.14) by totiž byl nezávislý v T, protože platí v modelu v ale ne v modelu v'. Naopak, má-li T jediný model v, potom každý výrok buď platí ve v, a tedy platí v T, nebo neplatí ve v a potom je lživý v T.

 $P\check{r}iklad$ 2.4.3. Příkladem sporné teorie je třeba $T=\{p,p\to q,\neg q\}$. Teorie $T=\{p\vee q,r\}$ je bezesporná, ale není kompletní, například výrok $p\wedge q$ v ní není pravdivý (neplatí v modelu (1,0,1)) ale ani lživý (platí v modelu (1,1,1)). Teorie $T\cup \{\neg p\}$ je kompletní, jejím jediným modelem je (0,1,1).

2.4.1 Důsledky teorií

Připomeňme, že důsledek teorie T je každý výrok, který v T platí (tj. platí v každém modelu T) a označme si množinu všech důsledků teorie T v jazyce $\mathbb P$ jako

$$\operatorname{Csq}_{\mathbb{P}}(T) = \{ \varphi \in \operatorname{VF}_{\mathbb{P}} \mid T \models \varphi \}$$

Pokud je teorie T v jazyce \mathbb{P} , můžeme psát:

$$\operatorname{Csq}_{\mathbb{P}}(T) = \{ \varphi \in \operatorname{VF}_{\mathbb{P}} \mid \operatorname{M}_{\mathbb{P}}(T) \subset \operatorname{M}_{\mathbb{P}}(\varphi) \}$$

(Dává ale smysl mluvit i o důsledcích teorie v nějakém menším jazyce, který je podmnožinou jazyka T).

Ukážeme si několik jednoduchých vlastností důsledků:

Tvrzení 2.4.4. Mějme teorie T, T' a výroky $\varphi, \varphi_1, \ldots, \varphi_n$ v jazyce \mathbb{P} . Potom platí:

- (i) $T \subseteq \operatorname{Csq}_{\mathbb{P}}(T)$,
- (ii) $\operatorname{Csq}_{\mathbb{P}}(T) = \operatorname{Csq}_{\mathbb{P}}(\operatorname{Csq}_{\mathbb{P}}(T)),$
- (iii) pokud $T \subseteq T'$, potom $Csq_{\mathbb{P}}(T) \subseteq Csq_{\mathbb{P}}(T')$,
- (iv) $\varphi \in \operatorname{Csq}_{\mathbb{P}}(\{\varphi_1, \dots, \varphi_n\})$ právě když je výrok $(\varphi_1 \wedge \dots \wedge \varphi_n) \to \varphi$ tautologie.

 $D\mathring{u}kaz$. Důkaz je snadný, použijeme-li, že φ je důsledek T právě když $M_{\mathbb{P}}(T) \subseteq M_{\mathbb{P}}(\varphi)$, a uvědomíme-li si následující vztahy:

- M(Csq(T)) = M(T),
- je-li $T \subseteq T'$ potom $M(T) \supseteq M(T')$, ²⁰
- $\psi \to \varphi$ je tautologie, právě když platí $M(\psi) \subseteq M(\varphi)$,
- $M(\varphi_1 \wedge \cdots \wedge \varphi_n) = M(\varphi_1, \dots, \varphi_n).$

Cvičení 2.6. Dokažte podrobně Tvrzení 2.4.4.

²⁰Čím více vlastností předepíšeme, tím méně objektů je bude všechny splňovat.

2.4.2 Extenze teorií

Neformálně řečeno, rozšířením, neboli extenzí teorie T myslíme jakoukoliv teorii T', která splňuje vše, co platí v teorii T (a něco navíc, nejde-li o triviální případ). Modeluje-li T nějaký systém, lze ji rozšířit dvěma způsoby: přidáním dodatečných požadavků o systému (tomu budeme říkat jednoduchá extenze) nebo i rozšířením systému o nějaké nové části. Pokud ve druhém případě nemáme dodatečné požadavky na původní část systému, tedy platí-li o původní části totéž, co předtím, říkáme, že je extenze konzervativní.

Příklad 2.4.5. Vraťme se k úvodnímu příkladu o barvení grafů, Příklad 1.1.2. Teorie T_3 (úplná obarvení grafu zachovávající hranovou podmínku) je jednoduchou extenzí teorie T_1 (částečná obarvení množiny vrcholů bez ohledu na hrany). Teorie T_3' z Sekce 1.2.1 (přidání nového vrcholu do grafu) je konzervativní, ale ne jednoduchou extenzí T_3 . A jde o extenzi T_1 , která není ani jednoduchá ani konzervativní.

Uveď me nyní konečně formální definice:

Definice 2.4.6 (Extenze teorie). Mějme teorii T v jazyce \mathbb{P} .

- Extenze teorie T je libovolná teorie T' v jazyce $\mathbb{P}' \supseteq \mathbb{P}$ splňující $\operatorname{Csq}_{\mathbb{P}}(T) \subseteq \operatorname{Csq}_{\mathbb{P}'}(T')$,
- je to jednoduchá extenze, pokud $\mathbb{P}' = \mathbb{P}$,
- je to konzervativní extenze, pokud $Csq_{\mathbb{P}}(T) = Csq_{\mathbb{P}}(T') = Csq_{\mathbb{P}'}(T') \cap VF_{\mathbb{P}}$.

Extenze tedy znamená, že splňuje všechny důsledky původní teorie. Extenze je jednoduchá, pokud do jazyka nepřidáváme žádné nové výrokové proměnné, a konzervativní, pokud neměníme platnost tvrzení vyjádřitelných v původním jazyce, každý nový důsledek tedy musí obsahovat nějakou nově přidanou výrokovou proměnnou.

Co tyto pojmy znamenají *sémanticky*, v řeči modelů? Zformulujme nejprve obecné pozorování, které ihned poté ilustrujeme na příkladě:

Pozorování 2.4.7. Je-li T teorie v jazyce \mathbb{P} a T' teorie v jazyce \mathbb{P}' obsahujícím jazyk P. Potom platí:

- T' je jednoduchou extenzí T, právě $když \mathbb{P}' = \mathbb{P}$ a $M_{\mathbb{P}}(T') \subseteq M_{\mathbb{P}}(T)$,
- T' je extenzí T, právě když $M_{\mathbb{P}'}(T') \subseteq M_{\mathbb{P}'}(T)$. Uvažujeme tedy modely teorie T nad rozšířeným jazykem \mathbb{P}' .²¹ Jinými slovy, restrikce²² libovolného modelu $v \in M_{\mathbb{P}'}(T')$ na původní jazyk \mathbb{P} musí být modelem T, mohli bychom psát $v \upharpoonright_{\mathbb{P}} \in M_{\mathbb{P}}(T)$ nebo:

$$\{v \upharpoonright_{\mathbb{P}} \mid v \in \mathcal{M}_{\mathbb{P}'}(T')\} \subseteq \mathcal{M}_{\mathbb{P}}(T)$$

• T' je konzervativní extenzí T, pokud je extenzí a navíc platí, že každý model T (v jazyce \mathbb{P}) lze nějak expandovat (rozšířit)²³ na model T' (v jazyce \mathbb{P}), neboli každý model T (v jazyce \mathbb{P}) získáme restrikcí nějakého modelu T' na jazyk \mathbb{P} . Mohli bychom psát:

$$\{v \upharpoonright_{\mathbb{P}} \mid v \in \mathcal{M}_{\mathbb{P}'}(T')\} = \mathcal{M}_{\mathbb{P}}(T)$$

 $^{^{21}}$ Pozor, nemůžeme psát $M_{\mathbb{P}}(T')$, protože modely T' musí být ohodnoceními většího jazyka \mathbb{P}' , hodnoty jen pro proměnné z \mathbb{P} nestačí k určení pravdivostní hodnoty. A nelze psát ani $M_{\mathbb{P}'}(T') \subseteq M_{\mathbb{P}}(T)$, jde o množiny vektorů jiné dimenze.

 $^{^{22}}Restrikce$ znamená zapomenutí hodnot pro nové výrokové proměnné, resp. smazání příslušných souřadnic při reprezentaci modelu vektorem.

²³Přidáním hodnot pro nové výrokové proměnné, resp. přidáním odpovídajících souřadnic ve vektorové reprezentaci

- T' je extenzí T a zároveň T je extenzí T', právě když $P' = \mathbb{P}$ a $M_{\mathbb{P}}(T') = M_{\mathbb{P}}(T)$, neboli $T' \sim T$.
- Kompletní jednoduché extenze T jednoznačně až na ekvivalenci odpovídají modelům T.

 $P\check{r}\hat{u}klad$ 2.4.8. Mějme teorii $T=\{p\to q\}$ v jazyce $\mathbb{P}=\{p,q\}$. Teorie $T_1=\{p\wedge q\}$ v jazyce \mathbb{P} je jednoduchou extenzí T, máme $M_{\mathbb{P}}(T_1)=\{(1,1)\}\subseteq\{(0,0),(0,1),(1,1)\}=M_{\mathbb{P}}(T)$. Je to kompletní teorie, další kompletní jednoduché extenze teorie T jsou např. $T_2=\{\neg p,q\}$ a $T_3=\{\neg p,\neg q\}$. Každá kompletní jednoduchá extenze teorie T je ekvivalentní s T_1,T_2 , nebo T_3 .

Uvažme nyní teorii $T'=\{p\leftrightarrow (q\wedge r)\}$ v jazyce $\mathbb{P}'=\{p,q,r\}$. Je extenzí T, neboť $\mathbb{P}=\{p,q\}\subseteq\{p,q,r\}=\mathbb{P}'$ a platí:lls

$$\begin{aligned} \mathbf{M}_{\mathbb{P}'}(T') &= \{(0,0,0), (0,0,1), (0,1,0), (1,1,1)\} \\ &\subseteq \{(0,0,0), (0,0,1), (0,1,0), (0,1,0), (1,1,0), (1,1,1)\} = \mathbf{M}_{\mathbb{P}'}(T) \end{aligned}$$

Jinými slovy, zúžením modelů T' na jazyk \mathbb{P} dostáváme $\{(0,0),(0,1),(1,0)\}$ což je podmnožina $\mathcal{M}_{\mathbb{P}}(T)$.

Protože platí dokonce $\{(0,0),(0,1),(1,0)\}=M_{\mathbb{P}}(T)$, jinými slovy, každý model $v\in M_{\mathbb{P}}(T)$ lze rozšířit na model $v'\in M_{\mathbb{P}'}(T')$ (např. (0,1) lze rozšířit dodefinováním v'(r)=0 na model (0,1,0)), je T' dokonce konzervativní extenzí T. To znamená, že každý výrok v jazyce \mathbb{P} platí v T, právě když platí v T'. Ale výrok $p\to r$ (který je v jazyce \mathbb{P}' , ale ne v jazyce \mathbb{P}) je novým důsledkem: platí v T' ale ne v T (viz model (1,1,0)).

Teorie $T'' = \{ \neg p \lor q, \neg q \lor r, \neg r \lor p \}$ v jazyce \mathbb{P}' je extenzí T, ale ne konzervativní extenzí, neboť v ní platí $p \leftrightarrow q$, což neplatí v T. Nebo také proto, že model (0,1) teorie T nelze rozšířit na model teorie T'': (0,1,0) ani (0,1,1) nesplňují axiomy T''.

Teorie T je (jednoduchou) extenzí teorie $\{\neg p \lor q\}$ v jazyce $\mathbb P$ a naopak, $T \sim \{\neg p \lor q\}$. Je také, jako každá teorie, jednoduchou konzervativní extenzí sebe sama.

Cvičení 2.7. Ukažte (podrobně), že má-li teorie T kompletní konzervativní extenzi, potom je sama nutně kompletní.

2.5 Algebra výroků

V logice nás většinou²⁴ zajímají výroky (resp. teorie) *až na ekvivalenci*.²⁵ Na otázku 'Kolik existuje různých výroků v jazyce $\mathbb{P}=\{p,q,r\}$?' je správná odpověď 'Nekonečně mnoho.' Nejspíše nás ale zajímaly výroky *až na ekvivalenci* (neboli *navzájem neekvivalentní*). Těch je tolik, kolik existuje různých podmnožin modelů jazyka, tedy $2^{|\mathcal{M}_{\mathbb{P}}|}=2^8=256$. Skutečně, mají-li dva výroky stejnou množinu modelů, jsou z definice ekvivalentní. A pro každou množinu modelů můžeme najít odpovídající výrok, např. v DNF (viz 2.3.4). Zkusme trochu složitější úvahu:

 $P\check{r}\hat{u}klad$ 2.5.1. Mějme teorii T v jazyce $\mathbb{P} = \{p,q,r\}$ mající právě pět modelů. Kolik existuje (až na ekvivalenci) výroků nad \mathbb{P} , které jsou nezávislé v teorii T? Označme $|\mathbb{P}| = n = 3$ a $|\mathbb{M}_{\mathbb{P}}(T)| = k = 5$.

Počítáme množiny $M = \mathrm{M}_{\mathbb{P}}(\varphi)$ a požadujeme, aby $\emptyset \neq M \cap \mathrm{M}_{\mathbb{P}}(T) \neq \mathrm{M}_{\mathbb{P}}(T)$. Máme tedy celkem $2^m - 2 = 6$ možností, jak může vypadat množina $M \cap \mathrm{M}_{\mathbb{P}}(T)$. A pro každý model

 $^{^{24}}$ Pokud např. neprovádíme konkrétní algoritmus založený na syntaktických úpravách, třeba převod do CNF.

 $^{^{25}\}mathrm{M}$ ůžeme je chápat jako jakési abstraktní 'vlastnosti' modelů bez ohledu na jejich konkrétní vyjádření.

jazyka, který není modelem T (těch je $2^n-m=3$) můžeme zvolit libovolně, zda bude či nebude v M. Celkově tedy dostáváme $(2^m-2)\cdot 2^{2^n-m}=6\cdot 2^{8-5}=48$ možných množin M, tolik je tedy výroků nezávislých v T, až na ekvivalenci.

Podívejme se na věc abstraktněji. Formálně, uvažujeme množinu ekvivalenčních tříd \sim na množině všech výroků VF $_{\mathbb{P}}$, kterou označíme VF $_{\mathbb{P}}$ / \sim . Prvky této množiny jsou množiny ekvivalentních výroků, např. $[p \rightarrow q]_{\sim} = \{p \rightarrow q, \neg p \lor q, \neg (p \land \neg q), \neg p \lor q \lor q, \dots\}$. A máme zobrazení $h: VF_{\mathbb{P}}/\sim \rightarrow \mathcal{P}(M_{\mathbb{P}})$ (kde $\mathcal{P}(X)$ je množina všech podmnožin X) definované předpisem:

$$h([\varphi]_{\sim}) = M(\varphi)$$

tj. třídě ekvivalentních výroků přiřadíme množinu modelů libovolného z nich. Je snadné ověřit, že toto zobrazení je korektně definované (nezáleží na tom, jaký výrok z třídy ekvivalence jsme si vybrali) a prosté, a že je-li jazyk $\mathbb P$ konečný, je h dokonce bijekce. (Ověřte!)

Na množině $VF_{\mathbb{P}}/\sim$ můžeme zavést operace \neg, \land, \lor pomocí předpisu

$$\neg[\varphi]_{\sim} = [\neg \varphi]_{\sim}$$

$$[\varphi]_{\sim} \wedge [\psi]_{\sim} = [\varphi \wedge \psi]_{\sim}$$

$$[\varphi]_{\sim} \vee [\psi]_{\sim} = [\varphi \vee \psi]_{\sim}$$

tedy vybereme reprezentanta resp. reprezentanty, a provedeme operaci s nimi, např. 'konjunkce' tříd $[p \to q]_{\sim}$ a $[q \vee \neg r]_{\sim}$ je:

$$[p \to q]_{\sim} \land [q \lor \neg r]_{\sim} = [(p \to q) \land (q \lor \neg r)]_{\sim}$$

Přidáme-li také konstanty $\bot = [\bot]_{\sim}$ a $\top = [\top]_{\sim}$, dostáváme (matematickou) strukturu²⁶

$$\mathbf{AV}_{\mathbb{P}} = \langle VF_{\mathbb{P}}/\sim; \neg, \wedge, \vee, \perp, \top \rangle$$

které říkáme algebra výroků jazyka \mathbb{P} . Je to příklad tzv. Booleovy algebry. To znamená, že její operace se 'chovají' jako operace $\bar{\ }$, \cap , \cup na množině všech podmnožin $\mathcal{P}(X)$ nějaké neprázdné množiny X, a konstanty odpovídají \emptyset , X (takové Booleově algebře říkáme potenční algebra).²⁷

Zobrazení $h: {\rm VF}_{\mathbb P}/{\sim} \to \mathcal P({\rm M}_{\mathbb P})$ je tedy zobrazení z algebry výroků $\mathbf {AV}_{\mathbb P}$ na potenční algebru

$$\mathcal{P}(M_{\mathbb{P}}) = \langle \mathcal{P}(M_{\mathbb{P}}); \bar{\ }, \cap, \cup, \emptyset, M_{\mathbb{P}} \rangle$$

a je-li jazyk konečný, je to bijekce. Toto zobrazení 'zachovává' operace a konstanty, tj. platí $h(\bot) = \emptyset, h(\top) = M_{\mathbb{P}}, a$

$$h(\neg[\varphi]_{\sim}) = \overline{h([\varphi]_{\sim})} = \overline{M(\varphi)} = M_{\mathbb{P}} \setminus M(\varphi)$$
$$h([\varphi]_{\sim} \wedge [\psi]_{\sim}) = h([\varphi]_{\sim}) \cap h([\psi]_{\sim}) = M(\varphi) \cap M(\psi)$$
$$h([\varphi]_{\sim} \vee [\psi]_{\sim}) = h([\varphi]_{\sim}) \cup h([\psi]_{\sim}) = M(\varphi) \cup M(\psi)$$

Takovému zobrazení říkáme homomorfismus Booleových algeber, a je-li to bijekce, jde o izomorfismus.

²⁶Struktura je neprázdná množina spolu s relacemi, operacemi, a konstantami. Například (orientovaný) graf, grupa, těleso, vektorový prostor. Struktury budou hrát důležitou roli v predikátové logice.

 $^{^{27}}$ Tj. splňují určité algebraické zákony, například distributivitu \land vůči \lor . Booleovy algebry definujeme formálně později, uveď me ale ještě jeden důležitý příklad: množina všech n-bitových vektorů s operacemi \sim , &, | (po složkách) a s konstantami $(0,0,\ldots,0)$ a $(1,1,\ldots,1)$.

Poznámka~2.5.2. Tyto vztahy můžeme také využít při hledání modelů: například pro výrok $\varphi \to (\neg \psi \land \chi)$ platí (s využitím toho, že $M(\varphi \to \varphi') = M(\neg \varphi \lor \varphi')$):

$$M(\varphi \to (\neg \psi \land \chi)) = \overline{M(\varphi)} \cup (\overline{M(\psi)} \cap M(\chi))$$

Všechny předchozí úvahy můžeme také relativizovat vzhledem k dané teorii T v jazyce \mathbb{P} , a to tak, že ekvivalenci \sim nahradíme T-ekvivalencí \sim_T a množinu modelů jazyka $M_{\mathbb{P}}$ nahradíme množinou modelů teorie $M_{\mathbb{P}}(T)$. Dostáváme:

$$\begin{split} h(\bot) &= \emptyset, \\ h(\top) &= \mathcal{M}(T) \\ h(\neg[\varphi]_{\sim_T}) &= \mathcal{M}(T) \setminus \mathcal{M}(T,\varphi) \\ h([\varphi]_{\sim_T} \wedge [\psi]_{\sim_T}) &= \mathcal{M}(T,\varphi) \cap \mathcal{M}(T,\psi) \\ h([\varphi]_{\sim_T} \vee [\psi]_{\sim_T}) &= \mathcal{M}(T,\varphi) \cup \mathcal{M}(T,\psi) \end{split}$$

Algebra výroků jazyka je tedy totéž co algebra výroků vzhledem k prázdné teorii. Z technických důvodů potřebujeme, aby $\mathcal{M}(T)$ byla neprázdná, tj. T musí být bezesporná. Shrňme naše úvahy:

Důsledek 2.5.3. Je-li T bezesporná teorie nad konečným jazykem \mathbb{P} , potom je algebra výroků $\mathbf{AV}_{\mathbb{P}}$ izomorfní potenční algebře $\mathcal{P}(M_{\mathbb{P}}(\mathbf{T})$ prostřednictvím zobrazení $h([\varphi]_{\sim_T}) = M(T,\varphi)$.

Víme tedy, že negace, konjunkce, a disjunkce odpovídají doplňku, průniku a sjednocení množin modelů, a že chceme-li najít počet výroků až na ekvivalenci resp. T-ekvivalenci, stačí určit počet příslušných množin modelů. Shrňme si několik takových výpočtů ve formě tvrzení, jeho důkaz necháme jako cvičení.

Tvrzení 2.5.4. Mějme n-prvkový jazyk \mathbb{P} a bezespornou teorii T mající právě k modelů. Potom v jazyce \mathbb{P} existuje až na ekvivalenci:

- 2^{2^n} výroků (resp. teorií),
- 2^{2^n-k} výroků pravdivých (resp. lživých) v T,
- $2^{2^n} 2 \cdot 2^{2^n-k}$ výroků nezávislých v T.
- 2^k jednoduchých extenzí teorie T (z toho 1 sporná),
- k kompletních jednoduchých extenzí T.

Dále až na T-ekvivalenci existuje:

- 2^k výroků,
- 1 výrok pravdivý v T, 1 lživý v T,
- $2^k 2$ výroků nezávislých v T.

Cvičení 2.8. Zvolte vhodnou teorii T a ukažte na jejím příkladě, že platí Tvrzení 2.5.4.

Cvičení 2.9. Dokažte podrobně Tvrzení 2.5.4. (Nakreslete si Vennův diagram.)

Kapitola 3

Problém splnitelnosti

 $Problém \ splnitelnosti \ výrokových formulí, známý také jako problém <math>SAT^1$ je následující výpočetní problém: Vstupem je výrok φ v CNF (v nějakém rozumném kódování²), a úkolem je rozhodnout, zda je φ splnitelný.

Jak jsme si ukázali v předchozí kapitole, můžeme každý výrok, nebo i každou výrokovou teorii v konečném jazyce, převést do CNF. Problém SAT je tedy v jistém smyslu univerzální; odpovídá na otázku, zda existuje model.

Známá Cook-Levinova věta říká, že problém SAT je *NP-úplný*, tedy je v třídě NP (pokud nám orákulum prozradí správné ohodnocení proměnných, můžeme snadno ověřit, že všechny klauzule jsou splněny) a každý problém z třídy NP na něj lze převést v polynomiálním čase (konkrétně, výpočet Turingova stroje lze popsat pomocí CNF formule).³

Praktické SAT solvery si ale umí poradit s instancemi obsahujícími mnoho, dokonce až miliony, výrokových proměnných a klauzulí. V této kapitole si nejprve ukážeme praktickou aplikaci SAT solveru na problém 'ze života', potom dva fragmenty problému SAT, tzv. 2-SAT a Horn-SAT, pro které existují polynomiální algoritmy, a na závěr si ukážeme také algoritmus DPLL, který je základem (téměř?) všech SAT solverů. (V pozdější kapitole uvidíme také souvislost s rezoluční metodou.)

3.1 (draft) SAT solvery

[TODO]

Praktická ukázka použití řešiče SAT na konkrétní problém.

- Problém SAT: Je daná výroková formule splnitelná?
- Příklad Lze šachovnici bez dvou protilehlých rohů perfektně pokrýt kostkami domina?
 Snadno vytvoříme výrokovou formuli, která je splnitelná, právě když to lze. Pak ji můžeme zkusit ověřit pomocí nějakého SAT řešiče.
- Nejlepší řešiče pro SAT: www.satcompetition.org.
- Řešič v ukázce: Glucose, formát pro CNF soubory: DIMACS.

¹Z anglického 'Boolean satisfiability problem'.

²Např. DIMACS-CNF formát, viz Wikipedia.

 $^{^3{\}rm Viz}$ předmět NTIN090 Základy složitosti a vyčíslitelnosti.

- Obecnější otázka: Lze celou matematiku převést do logických formulí?
 AI, strojové dokazování, Peano: Formulario (1895-1908), Mizar system
- Proč to lidé (většinou) nedělají?
 Jak vyřešíme uvedený příklad elegantněji? V čem náš postup spočívá?

3.2 2-SAT a implikační graf

Výrok φ je v k-CNF, pokud je v CNF a každá klauzule má nejvýše k literálů. Problému k-SAT se ptá, zda je daný k-CNF formule splnitelná. Pro $k \geq 3$ je k-SAT nadále NP-úplný, každou CNF formuli lze zakódovat do 3-CNF formule:

Cvičení 3.1. Ukažte, že pro každý výrok φ v CNF existuje ekvisplnitelný výrok v φ' 3-CNF (tj. φ je splnitelný, právě když φ' je splnitelný), který lze zkonstruovat v lineárním čase.

Pro problém 2-SAT ale existuje polynomiální (dokonce lineární) algoritmus, který si nyní představíme. Algoritmus využívá tzv. *implikačního grafu*. Ukážeme si postup na příkladě:

 $P\check{r}iklad$ 3.2.1. Mějme následující 2-CNF výrok φ :

$$(\neg p_1 \lor p_2) \land (\neg p_2 \lor \neg p_3) \land (p_1 \lor p_3) \land (p_3 \lor \neg p_4) \land (\neg p_1 \lor p_5) \land (p_2 \lor p_5) \land p_1 \land \neg p_4$$

Implikační graf

Implikační graf 2-CNF výroku φ je založený na myšlence, že 2-klauzuli $\ell_1 \vee \ell_2$ (kde ℓ_1, ℓ_2 jsou literály) lze chápat jako dvojici implikací: $\overline{\ell_1} \to \ell_2$ a $\overline{\ell_2} \to \ell_1$. Například, z klauzule $\neg p_1 \vee p_2$ vzniknou implikace $p_1 \to p_2$ a také $, \neg p_2 \to \neg p_1$. Tedy pokud p_1 platí v nějakém modelu, musí platit i p_2 , a pokud p_2 neplatí, nesmí platit ani p_1 . Jednotkovou klauzuli ℓ můžeme také vyjádřit pomocí implikace jako $\overline{\ell} \to \ell$, např. z p_1 dostáváme $\neg p_1 \to p_1$.

Implikační graf \mathcal{G}_{φ} je tedy orientovaný graf, jehož vrcholy jsou všechny literály (proměnné z $\operatorname{Var}(\varphi)$ a jejich negace) a hrany jsou dané implikacemi popsanými výše:

- $V(\mathcal{G}_{\varphi}) = \{p, \neg p \mid p \in Var(\varphi)\},\$
- $E(\mathcal{G}_{\varphi}) = \{(\overline{\ell_1}, \ell_2), (\overline{\ell_2}, \ell_1) \mid \ell_1 \vee \ell_2 \text{ je klauzule } \varphi\} \cup \{(\overline{\ell}, \ell) \mid \ell \text{ je jednotková klauzule } \varphi\}$

V našem příkladě máme množinu vrcholů

$$V(\mathcal{G}_{\varnothing}) = \{p_1, p_2, p_3, p_4, p_5, \neg p_1, \neg p_2, \neg p_3, \neg p_4, \neg p_5\}$$

a hrany jsou:

$$E(\mathcal{G}_{\varphi}) = \{ (p_1, p_2), (\neg p_2, \neg p_1), (p_2, \neg p_3), (p_3, \neg p_2), (\neg p_1, p_3), (\neg p_3, p_1), (\neg p_3, \neg p_4), (p_4, p_3), (p_1, p_5), (\neg p_5, \neg p_1), (\neg p_2, p_5), (\neg p_5, p_2), (\neg p_1, p_1), (p_4, \neg p_4) \}$$

Výsledný graf je znázorněný na Obrázku 3.1.

 $^{^4}$ V předchozí kapitole jsme vyjadřovali $p_1 \to p_2$ jako $\neg p_1 \lor p_2$, zde provádíme opačný postup.

Obrázek 3.1: Implikační graf \mathcal{G}_{φ} . Komponenty silné souvislosti jsou odlišeny barevně.

Obrázek 3.2: Implikační graf \mathcal{G}_{φ} . Graf silně souvislých komponent \mathcal{G}_{φ}^* .

3.2.1 Silně souvislé komponenty

Nyní musíme najít komponenty silné souvislosti⁵ tohoto grafu. V našem příkladě dostáváme následující komponenty: $C_1 = \{p_4\}, C_2 = \{\neg p_5\}, C_3 = \{\neg p_1, \neg p_2, p_3\}, \overline{C_3} = \{p_1, p_2, \neg p_3\}, \overline{C_2} = \{p_5\}, \overline{C_1} = \{\neg p_4\}.$

Všechny literály v jedné komponentě musí být ohodnoceny stejně. Pokud bychom tedy našli dvojici opačných literálů v jedné komponentě, znamená to, že výrok je nesplnitelný. V opačném případě vždy můžeme najít splňující ohodnocení, jak si dokážeme v Tvrzení 3.2.2. Potřebujeme zajistit, aby z žádné komponenty ohodnocené 1 nevedla hrana do komponenty ohodnocené 1. Provedeme-li kontrakci komponent, výsledný graf \mathcal{G}_{φ}^* je acyklický (každý cyklus byl uvnitř nějaké komponenty), a můžeme ho tedy nakreslit v topologickém uspořádání (tj. uspořádání na přímce, kde hrany vedou jen doprava), viz Obrázek 3.2.

Při hledání splňujícího ohodnocení (pokud nám nestačí informace, že výrok je splnitelný) potom postupujeme tak, že vezmeme nejlevější dosud neohodnocenou komponentu, ohodnotíme ji 0, opačnou komponentu ohodnotíme 1, a postup opakujeme dokud zbývá nějaká

 $^{^5}Siln\acute{a}$ souvislost znamená, že existuje orientovaná cesta z u do v i z v do u, neboli každé dva vrcholy v jedné komponentě leží v orientovaném cyklu. A naopak, každý orientovaný cyklus leží uvnitř nějaké komponenty.

Obrázek 3.3: Implikační graf \mathcal{G}_{φ} . Topologické uspořádání grafu \mathcal{G}_{φ}^* a splňující ohodnocení komponent.

neohodnocená komponenta. Například, topologické uspořádání na Obrázku 3.3 odpovídá modelu v=(1,1,0,0,1).

Na závěr shrneme naše úvahy do následujícího tvrzení:

Tvrzení 3.2.2. Výrok φ je splnitelný, právě když žádná silně souvislá komponenta v \mathcal{G}_{φ} neobsahuje dvojici opačných literálů $\ell, \overline{\ell}$.

 $D\mathring{u}kaz$. Každý model, neboli splňující ohodnocení, musí ohodnotit všechny literály ze stejné komponenty stejnou hodnotou. (V opačném případě by nutně existovala implikace $\ell_1 \to \ell_2$, kde ℓ_1 v modelu platí ale ℓ_2 neplatí.) V jedné komponentě tedy nemohou být opačné literály.

Naopak předpokládejme, že žádná komponenta neobsahuje dvojici opačných literálů, a ukažme, že potom existuje model. Označme \mathcal{G}_{φ}^* graf vzniklý z \mathcal{G}_{φ} kontrakcí silně souvislých komponent. Tento graf je acyklický, zvolme nějaké topologické uspořádání. Model zkonstruujeme tak, že zvolíme první dosud neohodnocenou komponentu v našem topologickém uspořádání, všechny literály v ní obsažené ohodnotíme 0, a opačné literály ohodnotíme 1. Takto pokračujeme dokud nejsou všechny komponenty ohodnoceny.

Proč v takto získaném modelu platí výrok φ ? Kdyby ne, neplatila by některá z klauzulí. Jednotková klauzule ℓ musí platit, neboť v grafu \mathcal{G}_{φ} máme hranu $\overline{\ell} \to \ell$. Stejná hrana je i v grafu komponent, tedy $\overline{\ell}$ předchází v topologickém uspořádání komponentu obsahující ℓ . Při konstrukci modelu jsme museli ohodnotit $\overline{\ell}$ dříve než ℓ , tedy $\overline{\ell} = 0$ a $\ell = 1$. Podobně, 2-klauzule $\ell_1 \vee \ell_2$ také musí platit: máme hrany $\overline{\ell_1} \to \ell_2$ a $\overline{\ell_2} \to \ell_1$. Pokud jsme ℓ_1 ohodnotili dříve než ℓ_2 , museli jsme kvůli hraně $\overline{\ell_1} \to \ell_2$ ohodnotit $\overline{\ell_1} = 0$, tedy ℓ_1 platí. Podobně pokud jsme ohodnotili nejdříve ℓ_2 , musí být $\overline{\ell_2} = 0$ a $\ell_2 = 1$.

Důsledek 3.2.3. Problém 2-SAT je řešitelný v lineárním čase. V lineárním čase můžeme také zkonstruovat model, pokud existuje.

 $D\mathring{u}kaz$. Komponenty silné souvislosti lze snadno nalézt v v čase $\mathcal{O}(|V| + |E|)$, topologické uspořádání můžeme také zkonstruovat v čase $\mathcal{O}(|V| + |E|)$.

Cvičení 3.2. Najděte nějaký nesplnitelný 2-CNF výrok, sestrojte jeho implikační graf, a přesvědčete se, že existuje dvojice opačných literálů ve stejné komponentě silné souvislosti.

Cvičení 3.3. Najděte všechna topologická uspořádání grafu \mathcal{G}_{φ}^* z příkladu výše a jim odpovídající modely. Rozmyslete si, proč takto získáme právě všechny modely výroku φ .

Cvičení 3.4. Rozmyslete si, proč lze komponenty i topologické uspořádání nalézt v čase $\mathcal{O}(|V|+|E|)$.

3.3 Horn-SAT a jednotková propagace

Nyní si ukážeme další fragment SATu řešitelný v polynomiálním čase, tzv. *Horn-SAT* neboli problém splnitelnosti *hornovských výroků*. Výrok je v *hornovský (v Hornově tvaru)*⁶, pokud je konjunkcí *hornovských klauzulí*, tj. klauzulí obsahujících *nejvýše jeden *pozitivní* literál*. Význam Hornovských klauzulí vyplývá z ekvivalentního vyjádření ve formě implikace:

$$\neg p_1 \lor \neg p_2 \lor \cdots \lor \neg p_n \lor q \sim (p_1 \land p_2 \land \cdots \land p_n) \rightarrow q$$

Hornovské formule tedy dobře modelují systémy, kde splnění určitých podmínek zaručuje splnění jiné podmínky. Upozorněme, že jednotková klauzule ℓ je také hornovská. V kontextu logického programování se jí říká fakt, pokud je literál pozitivní, a $c\hat{u}$ pokud je negativní. Hornovské formule s alespoň jedním pozitivním a alespoň jedním negativním literálem jsou pravidla.

 $P\check{r}iklad$ 3.3.1. Příkladem výroku, který je v CNF, ale není hornovský, je třeba $(p_1 \lor p_2 \lor \neg p_3) \land (\neg p_1 \lor p_3)$. Jako příklad, na kterém budeme ilustrovat algoritmus, nám poslouží následující hornovský výrok:

$$\varphi = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg_3 \lor \neg p_4) \land (\neg p_5 \lor \neg p_4) \land p_4$$

Polynomiální algoritmus pro řešení problému Horn-SAT je založený na jednoduché myšlence jednotkové propagace: Pokud náš výrok obsahuje jednotkovou klauzuli, víme, jak musí být ohodnocenena výroková proměnná obsažená v této klauzuli. A tuto znalost můžeme propagovat—využít k zjednodušení výroku.

Náš výrok φ obsahuje jednotkovou klauzuli p_4 . Víme tedy, že v každém jeho modelu $v \in \mathcal{M}(\varphi)$ musí platit $v(p_4) = 1$. To ale znamená, že v libovolném modelu výroku φ

- ullet každá klauzule obsahující pozitivní literál p_4 je splněna, můžeme ji tedy z výroku odstranit.
- negativní literál $\neg p_4$ nemůže být splněn, můžeme ho tedy odstranit ze všech klauzulí, které ho obsahují.

Tomu kroku se říká *jednotková propagace*. Výsledkem je následující zjednodušený výrok, který označíme φ^{p_4} (obecně φ^{ℓ} máme-li jednotkovou klauzuli ℓ):

$$\varphi^{p_4} = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg_3 \lor \neg p_4) \land \neg p_5$$

Pozorování 3.3.2. Všimněte si, že φ^{ℓ} už neobsahuje literál ℓ ani $\overline{\ell}$, a zřejmě platí, že modely φ jsou právě modely $\{\varphi^{\ell},\ell\}$, neboli modely φ^{ℓ} v původním jazyce \mathbb{P} , ve kterých platí ℓ .

Jednotkovou propagací jsme získali ve výroku φ^{p_4} novou jednotkovou klauzuli $\neg p_5$, můžeme tedy pokračovat nastavením $v(p_5)=0$ a další jednotkovou propagací:

$$(\varphi^{p_4})^{\neg p_5} = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_3 \lor \neg p_4)$$

 $^{^6}$ Matematik Alfred Horn objevil význam tohoto tvaru logických formulí (a položil tak základ logickému programování) v roce 1951.

⁷Neboť dokazujeme sporem, více v pozdější kapitole o rezoluci a Prologu.

Výsledný výrok už neobsahuje jednotkovou klauzuli. To ale znamená, že každá klauzule obsahuje alespoň dva literály, a nejvýše jeden z nich může být pozitivní! (Zde potřebujeme hornovskost výroku.) Protože každá klauzule obsahuje negativní literál, stačí ohodnotit všechny zbývající proměnné 0, a výrok bude splněn: $v(p_1) = v(p_2) = v(p_3) = 0$. Dostáváme tedy model v = (0, 0, 0, 1, 1).

Příklad 3.3.3. Co by se stalo, pokud by výrok nebyl splnitelný? Podívejme se na výrok

$$\psi = p \wedge (\neg p \vee q) \wedge (\neg q \vee r) \vee \neg r$$

a provádějme jednotkovou propagaci jako v předchozím příkladě: máme v(p)=1 a $\psi^p=q \wedge (\neg q \vee r) \vee \neg r$, dále v(q)=1 a $(\psi^p)^q=r \vee \neg r$. Tento výrok je nesplnitelný, neboť obsahuje dvojici opačných jednotkových klauzulí. ⁸

Shrňme si nyní algoritmus pro řešení problému Horn-SAT:

Algoritmus (Horn-SAT). vstup: Vstup: výrok φ v Hornově tvaru, výstup: model φ nebo informace, že φ není splnitelný

- 1. Pokud φ obsahuje dvojici opačných jednotkových klauzulí $\ell, \bar{\ell}$, není splnitelný.
- 2. Pokud φ neobsahuje žádnou jednotkovou klauzuli, je splnitelný, ohodnoť všechny zbývající proměnné 0.
- 3. Pokud φ obsahuje jednotkovou klauzuli ℓ , ohodnoť literál ℓ hodnotou 1, proveď jednotkovou propagaci, nahraď φ výrokem φ^{ℓ} , a vrať se na začátek.

Tvrzení 3.3.4. Algoritmus je korektní.

Důkaz. Korektnost plyne z Pozorování a z předchozí diskuze.

Důsledek 3.3.5. Horn-SAT lze řešit v lineárním čase.

 $D\mathring{u}kaz$. V každém kroku stačí projít výrok jednou, a jednotková propagace výrok vždy zkrátí. Z toho snadno plyne kvadratický horní odhad, ale při vhodné implementaci lze dosáhnout lineárního času vzhledem k délce φ .

Cvičení 3.5. Navrhněte implementaci algoritmu pro Horn-SAT v lineárním čase.

Cvičení 3.6. Navrhněte modifikaci algoritmu pro Horn-SAT, která najde všechny modely.

3.4 DPLL algoritmus pro řešení problému SAT

Na závěr kapitoly o problému splnitelnosti si představíme zdaleka nejpoužívanější algoritmus pro řešení obecného problému SAT, algoritmus DPLL.⁹ Ačkoliv v nejhorším případě má exponenciální složitost, v praxi funguje velmi efektivně.

Algoritmus používá jednotkovou propagaci spolu s následujícím pozorováním: Řekneme, že literál ℓ má *čistý výskyt* v φ , pokud se vyskytuje ve φ , ale opačný literál $\bar{\ell}$ se ve φ nevyskytuje. Máme-li literál s čistým výskytem, můžeme jeho hodnotu nastavit na 1, a splnit (a odstranit) tak všechny klauzule, které ho obsahují. Pokud výrok neumíme takto zjednodušit, rozvětvíme výpočet dosazením obou možných hodnot pro vybranou výrokovou proměnnou.

 $^{^8}$ Jinými slovy, v dalším kroku bychom provedli jednotkovou propagaci r, odstranili jednotkovou klauzuli r, a ze zbývající jednotkové klauzule $\neg r$ bychom odstranili literál $\neg r$, čímž by vznikla $prázdná \ klauzule$, která je nesplnitelná.

⁹Pojmenovaný po svých tvůrcích, Davis-Putnam-Logemann-Loveland, pochází z roku 1961.

Algoritmus (DPLL). vstup: Vstup: výrok φ v CNF, výstup: model φ nebo informace, že φ není splnitelný

- 1. Dokud φ obsahuje jednotkovou klauzuli ℓ , ohodnoť literál ℓ hodnotou 1, proveď jednotkovou propagaci, a nahraď φ výrokem φ^{ℓ} .
- 2. Dokud existuje literál ℓ , který má ve φ čistý výskyt, ohodnoť ℓ hodnotou 1, a odstraň klauzule obsahující ℓ .
- 3. Pokud φ neobsahuje žádnou klauzuli, je splnitelný.
- 4. Pokud φ obsahuje prázdnou klauzuli, není splnitelný.
- 5. Jinak zvol dosud neohodnocenou výrokovou proměnnou p, a zavolej algoritmus rekurzivně na $\varphi \wedge p$ a na $\varphi \wedge \neg p$.

To, že je algoritmus v nejhorším případě exponenciální, lze snadno nahlédnout na příkladě jediné klauzule $p_1 \lor p_2 \lor \cdots \lor p_n$. Korektnost není těžké ověřit.

Tvrzení 3.4.1. Algoritmus DPLL řeší problém SAT.

Příklad 3.4.2. Ukážeme si běh algoritmu na následujícím příkladě:

$$(\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg s) \land (p \lor \neg r \lor \neg s) \land (q \lor \neg r \lor s) \land (p \lor s) \land (p \lor \neg s) \land (q \lor s)$$

Výrok nemá žádnou jednotkovou klauzuli. Literál $\neg r$ má čistý výskyt, nastavíme v(r) = 0 a odstraníme klauzule obsahující $\neg r$:

$$(\neg p \vee \neg q \vee \neg s) \wedge (p \vee s) \wedge (p \vee \neg s) \wedge (q \vee s)$$

Žádný další literál nemá čistý výskyt. Spustíme proto rekurzivně algoritmus:

(p=1) Přidáme jednotkovou klauzuli p:

$$(\neg p \lor \neg q \lor \neg s) \land (p \lor s) \land (p \lor \neg s) \land (q \lor s) \land p$$

Nastavíme v(p)=1 a provedeme jednotkovou propagaci: $(\neg q \lor \neg s) \land (q \lor s)$. Nyní rozvětvíme na proměnné q:

- (q=1) $(\neg q \lor \neg s) \land (q \lor s) \land q$. Po nastavení v(q)=1 a jednotkové propagaci dostáváme s, po nastavení v(s)=1 a jednotkové propagaci dostáváme výrok neobsahující žádnou klauzuli, je tedy splnitelný ohodnocením (1,1,0,*,*). Odpověď na problém splnitelnosti už máme, pokud chceme znát všechny modely, můžeme dokončit ostatní větve výpočtu.
- (q=0) $(\neg q \lor \neg s) \land (q \lor s) \land \neg q$. Dostáváme modely (1,0,0,*,*).
- (p=0) Přidáme jednotkovou klauzuli $\neg p$:

$$(\neg p \lor \neg q \lor \neg s) \land (p \lor s) \land (p \lor \neg s) \land (q \lor s) \land \neg p$$

Po provedení jednotkové propagace $\neg p$ máme $s \land \neg s \land (q \lor s)$. Po provedení jednotkové propagace s máme $\Box \land q$, kde \Box je prázdná klauzule. Výrok je tedy nesplnitelný a v této větvi nedostaneme žádné modely.

Zjistili jsme, že původní výrok je splnitelný, má 8 modelů, konkrétně: $\mathbf{M}_{\varphi} = \{(1, a, 0, b, c) \mid a, b, c \in \{0, 1\}, \}.$

 $^{^{10}}$ To znamená, že je ekvivalentní výroku $p \wedge \neg r$.

Kapitola 4

Metoda analytického tabla

V této kapitole představíme *Metodu analytického tabla*. Jde o syntaktickou proceduru, kterou můžeme použít pro zjištění, zda daný výrok platí v dané teorii, aniž bychom se museli zabývat sémantikou (např. hledat všechny modely, což je nepraktické). Dokážeme si její *korektnost* ('dává správné odpovědi') a *úplnost* ('funguje vždy'), a použijeme ji také k důkazu tzv. *Věty o kompaktnosti* ('vlastnosti nekonečného objektu stačí ukázat pro jeho konečné části').

4.1 Formální dokazovací systémy

Formální dokazovací systém formalizuje 'dokazování' (např. v matematice) jako přesně (algoritmicky) danou syntaktickou proceduru. Důkaz faktu, že v teorii T platí výrok φ (neboli $T \models \varphi$) je konečný syntaktický objekt vycházející z axiomů T a výroku φ . Pokud důkaz existuje, lze ho nalézt 'algoritmicky', a algoritmicky jsme také schopni ověřit, že je daný objekt opravdu důkaz.

Existuje-li důkaz, říkáme, že φ je (v daném dokazovacím systému) dokazatelný z T, a píšeme $T \vdash \varphi$. Po dokazovacím systému požadujeme dvě vlastnosti:

- korektnost: je-li výrok dokazatelný z teorie, je v ní pravdivý $(T \vdash \varphi \Rightarrow T \models \varphi)$
- úplnost: je-li výrok pravdivý v teorii, je z ní dokazatelný $(T \models \varphi \Rightarrow T \vdash \varphi)$

(Přičemž korektnost vyžadujeme vždy, ale efektivní důkazový systém může být praktický, i pokud není úplný, zejména pokud je úplný pro nějakou zajímavou třídu výroků resp. teorií.)

V této kapitole si ukážeme kromě tablo metody také Hilbertovský kalkulus, a v příští kapitole představíme další dokazovací systém, tzv. rezoluční metodu.

4.2 Úvod do tablo metody

Po zbytek této kapitoly budeme předpokládat, že máme daný spočetný jazyk \mathbb{P} . Z toho plyne, že i každá teorie nad \mathbb{P} je spočetná. Nejprve se soustředíme na případ, kdy $T = \emptyset$, tedy dokazujeme, že výrok φ platí logicky (je to tautologie).

Tablo je olabelovaný strom představující hledání protipříkladu, tj. modelu, ve kterém φ neplatí. Labely na vrcholech, kterým budeme říkat položky, sestávají ze symbolu T resp. F

 $^{^{1}}$ Zde ale musíme být opatrní v případě nekonečné teorie T, jak je zadaná? Algoritmus musí mít efektivní přístup ke všem axiomům.

('True'/'False') následovaného nějakým výrokem ψ a představují předpoklad (požadavek), že v modelu výrok ψ platí resp. neplatí. Do kořene tabla dáme položku F φ , tj. hledáme model, ve kterém neplatí φ . Dále budeme tablo rozvíjet pomocí pravidel pro redukci položek. Tato pravidla zajišťují následující invariant:

Každý model, který se shoduje s položkou v kořeni (tj. ve kterém neplatí φ), se musí shodovat i s některou větví tabla (tj. splňovat všechny požadavky vyjádřené položkami na této větvi).

Pokud na některé větvi dostaneme položky tvaru $T\psi$ a $F\psi$, říkáme, že větev selhala (je $sporn\acute{a}$) a víme, že žádný model s ní nemůže souhlasit. Pokud selžou všechny větve, víme, že neexistuje žádný model, ve kterém by neplatilo φ , a máme tedy $d\mathring{u}kaz$, že φ platí. (Všimněte si, že jde o $d\mathring{u}kaz$ sporem.)

Pokud nějaká větev neselhala, ale je dokončená, tj. všechny položky jsou zredukované, víme, že φ neplatí, a budeme z této větve schopni zkonstruovat konkrétní model, ve kterém neplatí.

Příklad 4.2.1. Ukažme si celý postup na dvou příkladech, viz Obrázek 4.2.1.

- (a) Nejprve sestrojme tablo důkaz výroku $\varphi = ((p \to q) \to p) \to p$. Začneme kořenem s položkou F φ . Tato položka je tvaru F $\varphi_1 \to \varphi_2$ ('neplatí implikace'), pokud se s ní shoduje nějaký model, musí splňovat $T(p \to q) \to p$ a Fp, připojíme tedy tyto dvě položky. (Ve skutečnosti připojíme atomické tablo pro tento případ, viz Tabulka 4.1, kořen tohoto atomického tabla ale vynecháme, abychom zbytečně nezopakovali tutéž položku.) Tím jsme zredukovali položku v kořeni.
 - Pokračujeme položkou $T(p \to q) \to p$, ta je tvaru 'platí implikace', rozvětvíme na dvě větve: model buď splňuje $F(p \to q)$, nebo Tp. Pravá větev selhala (je sporná), neboť obsahuje položky Tp, Fp, neshoduje se tedy s žádným modelem, označíme ji symbolem \otimes . V levé větvi ještě zredukujeme položku $Fp \to q$ a také dostaneme spornou větev. Všechny větve jsou sporné, neexistuje tedy žádný protipříklad a máme důkaz výroku φ . Píšeme $\vdash \varphi$.
- (b) Nyní sestrojíme tablo s položkou $F(\neg q \lor p) \to p$. Snažíme se tedy najít protipříklad: model, ve kterém neplatí $\neg q \lor p) \to p$. Nejprve jsme použili atomické tablo pro 'neplatí implikace', a dále redukujeme položku $T \neg q \lor p$ připojením atomického tabla pro 'platí disjunkce'. Pravá větev selhala. V levé větvi ještě zredukujeme $T \neg q$ na Fq (atomické tablo pro 'platí negace') tím dostáváme dokončenou větev, neboť všechny položky už jsme zredukovali. Tato dokončená větev ale není sporná (označíme ji tedy symbolem \checkmark). To znamená, že protipříklad existuje: máme položky Fp a Fq, kterým odpovídá model (0,0), ve kterém opravdu $(\neg q \lor p) \to p$ neplatí.

V následující sekci celý postup zformalizujeme a vysvětlíme, co dělat, když chceme dokazovat ne v logice, ale v nějaké teorii T (spoiler alert: při konstrukci připojujeme položky $T\alpha$ pro axiomy $\alpha \in T$). Také si ukážeme příklad s nekonečnou teorií, kde dokončená větev někdy musí být nekonečná.

Ve zbytku této sekce ale nejprve definujeme všechna $atomick\acute{a}$ tabla potřebná při konstrukci, a také formalizujeme pojem stromu.

Obrázek 4.1: Příklady tabel. (a) Tablo důkaz výroku $((p \to q) \to p) \to p$. (b) Tablo pro výrok $(\neg q \lor p) \to p$. Levá větev dává protipříklad, model (0,0) ve kterém výrok neplatí.

4.2.1 Atomická tabla

Atomická tabla představují pravidla, pomocí kterých redukujeme položky. Pro každou logickou spojku a každý ze dvou příznaků T/F máme jedno atomické tablo, znázorněné v Tabulce 4.1.

Tabulka 4.1: Atomická tabla

Tabla z Příkladu 4.2.1 jsou zkonstruovaná postupným připojováním atomických tabel, viz Obrázek 4.2.1. Kořeny atomických tabel jsou označené modře, zavedeme konvenci, že je nebudeme zakreslovat.

Cvičení 4.1. Pokuste se zkonstruovat tablo s položkou $F((\neg p \land \neg q) \lor p) \to (\neg p \land \neg q)$ v kořeni a také tablo s položkou $T(p \to q) \leftrightarrow (p \land \neg q)$. Při konstrukci používejte jen atomická tabla (zkontrolujte, zda vaše konstrukce souhlasí s definicí tabla z následující sekce). Rozmyslete si, co tato tabla říkají o výrocích ve svých kořenech.

Obrázek 4.2: Konstrukce tabel z Příkladu 4.2.1.

Cvičení 4.2. Ověřte, že všechna atomická tabla splňují invariant: shoduje-li se model s položkou v kořeni, shoduje se s některou z větví.

Cvičení 4.3. Navrhněte atomická tabla pro logické spojky NAND, NOR, XOR, IFTE.

4.2.2 O stromech

Než se pustíme do formální definice a důkazů, specifikujme, co myslíme pojmem strom. V teorii grafů bychom stromem nazvali souvislý graf bez cyklů, naše stromy jsou ale zakořeněné, uspořádané (tzv. pravolevým uspořádáním množiny synů každého vrcholu), a označkované. A mohou, často i budou, nekonečné. Formálně:

- **Definice 4.2.2** (Strom). *Strom* je neprázdná množina T s částečným uspořádáním $<_T$, které má (jediný) minimální prvek ($ko\check{r}en$) a ve kterém je množina předků libovolného vrcholu $dob\check{r}e$ $uspo\check{r}ádan\acute{a}$.
 - ullet Větev stromu T je maximální lineárně uspořádaná podmnožina T.
 - Uspořádaný strom je strom T spolu s lineárním uspořádáním $<_L$ množiny synů každého vrcholu. Uspořádání synů budeme říkat $pravolev\acute{e}$ zatímco uspořádání $<_T$ je $stromov\acute{e}$.
 - Označkovaný strom je strom spolu se značkovací funkcí label: $V(T) \to \text{Labels}$.

 $^{^2\}mathrm{Tj.}$ každá její neprázdná podmnožina má nejmenší prvek.

 $^{^3\}mathrm{Tj}.$ nelze do ní přidat další vrcholy stromu.

Budeme používat standardní terminologii o stromech, např. budeme mluvit o *n-té úrovni stromu*, nebo o *hloubce* stromu (ta je nekonečná, právě když máme nekonečnou větev). V jedné větě, kterou si níže dokážeme, budeme potřebovat následující slavné tvrzení, které je důsledkem axiomu výběru.

Lemma 4.2.3 (Köenigovo lemma). *Nekonečný, konečně větvící strom má nekonečnou větev*. (Strom je *konečně větvící*, pokud má každý vrchol konečně mnoho synů.)

4.3 Tablo důkaz

Nyní uvedeme formální definici tabla. Do definice přidáme také teorii T, jejíž axiomy můžeme můžeme při konstrukci připojovat s příznakem T. Připomeňme, že položka je nápis $T\varphi$ nebo $F\varphi$, kde φ je nějaký výrok.

Definice 4.3.1 (Tablo). *Konečné tablo z teorie T* je uspořádaný, položkami označkovaný strom zkonstruovaný aplikací konečně mnoha následujících pravidel:

- \bullet jednoprvkový strom označkovaný libovolnou položkou je tablo z teorie T,
- \bullet pro libovolnou položkou Pna libovolné větvi V,můžeme na konec větve V připojit atomické tablo pro položku P,
- na konec libovolné větve můžeme připojit položku $T\alpha$ pro libovolný axiom teorie $\alpha \in T$.

Tablo z teorie T je buď konečné, nebo i nekonečné: v tom případě vzniklo ve spočetně mnoha krocích. Můžeme ho formálně vyjádřit jako sjednocení $\tau = \bigcup_{i\geq 0} \tau_i$, kde τ_i jsou konečná tabla z T, τ_0 je jednoprvkové tablo, a τ_{i+1} vzniklo z τ_i v jednom kroku.⁴

Tablo pro položku P je tablo, které má položku P v kořeni.

Připomeňme konvenci, že kořen atomického tabla nebudeme zapisovat (neboť vrchol s položkou P už v tablu je). V definici neurčujeme, v jakém pořadí provádět jednotlivé kroky, později ale specifikujeme konkrétní postup konstrukce (algoritmus), kterému budeme říkat systematické tablo.

Abychom získali důkazový systém, zbývá definovat pojem *tablo důkazu* (a související pojmy). Připomeňme ještě jednou, že jde o důkaz sporem, tedy předpokládáme, že výrok neplatí, a najdeme spor(né tablo):

Definice 4.3.2 (Tablo důkaz). *Tablo důkaz* výroku φ z teorie T je sporné tablo z teorie T s položkou $F\varphi$ v kořeni. Pokud existuje, je φ (tablo) dokazatelný z T, píšeme $T \vdash \varphi$. (Definujme také tablo zamítnutí jako sporné tablo s $T\varphi$ v kořeni. Pokud existuje, je φ (tablo) zamítnutelný z T, tj. platí $T \vdash \neg \varphi$.)

- Tablo je sporné, pokud je každá jeho větev sporná.
- Větev je $sporn\acute{a}$, pokud obsahuje položky T ψ a F ψ pro nějaký výrok ψ , jinak je $beze-sporn\acute{a}$.
- Tablo je dokončené, pokud je každá jeho větev dokončená.

⁴Sjednocení proto, že v jednotlivých krocích přidáváme do tabla nové vrcholy, τ_i je tedy podstromem τ_{i+1} .

Obrázek 4.3: Tabla z Příkladu 4.3.3. Položky vycházející z axiomů jsou označeny modře.

- Větev je dokončená, pokud
 - je sporná, nebo
 - je každá její položka na této větvi redukovaná a zároveň obsahuje položku $T\alpha$ pro každý axiom $\alpha \in T$.
- \bullet Položka P je redukovaná na větvi <math display="inline">V procházející touto položkou, pokud
 - je tvaru Tp resp. Fp pro nějakou výrokovou proměnnou $p \in \mathbb{P}$, nebo
 - při konstrukci tabla již došlo k jejímu rozvoji na V, tj. vyskytuje se na V jako kořen atomického tabla.⁵

Příklad 4.3.3. Ukážeme si dva příklady. Tabla jsou znázorněná na Obrázku 4.3.3.

- (a) Tablo důkaz výroku ψ z teorie $T = \{\varphi, \varphi \to \psi\}$, tj. $T \vdash \psi$ (kde φ, ψ jsou nějaké pevně dané výroky). Tomuto faktu se říká $V\check{e}ta$ o dedukci.
- (b) Dokončené tablo pro výrok p_0 z teorie $T = \{p_{n+1} \to p_n \mid n \in \mathbb{N}\}$. Nejlevější větev je bezesporná dokončená. Obsahuje položky $Tp_{i+1} \to p_i$ a Fp_i pro všechna $i \in \mathbb{N}$. Shoduje se tedy s modelem $v = (0, 0, \dots)$, tj. $v : \mathbb{P} \to \{0, 1\}$ kde $v(p_i) = 0$ pro všechna i.

Cvičení 4.4. Vraťme se k tablům z Cvičení 4.1. Jde o tablo důkazy nebo zamítnutí (z teorie $T=\emptyset$)? Které položky na kterých větvích jsou redukované? Které větve jsou sporné, které jsou dokončené?

4.4 Konečnost a systematičnost důkazů

V této sekci dokážeme, že pokud existuje tablo důkaz, existuje vždy také *konečný* tablo důkaz. Představíme také algoritmus, kterým nějaký tablo důkaz můžeme vždy najít, pro důkaz tohoto faktu ale budeme potřebovat Věty o korektnosti a úplnosti z následující sekce. Prozatím ukážeme, že tento algoritmus nám umožní vždy sestrojit dokončené tablo.

⁵Byť podle konvence tento kořen nezapisujeme.

Všimněte si, že při redukci položky přidáváme do tabla pouze položky obsahující kratší výroky. Pokud tedy máme konečnou teorii, a neděláme zbytečné kroky (například nepřidáváme opakovaně tentýž axiom, nebo totéž atomické tablo), je snadné sestrojit dokončené tablo, které bude konečné.

Je-li teorie T nekonečná, musíme ale být opatrnější. Mohli bychom nekonečně dlouho konstruovat tablo, a přitom se nikdy nedostat k redukci určité položky, nebo nikdy nepoužít některý z axiomů. Definujeme tedy konkrétní algoritmus pro konstrukci tabla, výsledku budeme říkat $systematické\ tablo$. Myšlenka konstrukce je jednoduchá: střídáme krok redukce položky (zároveň na všech bezesporných větvích, které jí procházejí) a krokem použití axiomu. Položky procházíme po úrovních, a v rámci úrovně v pravolevém uspořádání. A axiomy teorie ve zvoleném očíslování.

Definice 4.4.1. Mějme položku R a (konečnou nebo nekonečnou⁶) teorii $T = \{\alpha_1, \alpha_2, \dots\}$. Systematické tablo z teorie T pro položku R je tablo $\tau = \bigcup_{i \geq 0} \tau_i$, kde τ_0 je jednoprvkové tablo s položkou R, a pro každé $i \geq 0$:

Je-li P nejlevější položka v co nejmenší úrovni, která není redukovaná na nějaké bezesporné větvi procházející P, definujeme:

- τ_i' je tablo vzniklé z τ_i připojením atomického tabla pro P na každou bezespornou větev procházející P, a
- τ_{i+1} je tablo vzniklé z τ'_i připojením $T\alpha_i$ na každou bezespornou větev τ'_i , pokud $i \leq |T|$. Jinak (je-li T konečná a už jsme použili všechny axiomy) tento krok přeskočíme a definujeme $\tau_{i+1} = \tau'_i$.

Lemma 4.4.2. Systematické tablo je dokončené.

 $D\mathring{u}kaz$. Ukážeme, že každá větev je dokončená. Sporné větve jsou dokončené. Bezesporné větve obsahují položky $T\alpha_i$ (ty jsme připojili v i-tém kroku) a každá položka na nich je redukovaná. Vskutku, kdyby P byla neredukovaná na bezesporné větvi V, přišla by na ni v nějakém kroku řada, neboť v úrovních nad P a vlevo od P existuje jen konečně mnoho položek. (Používáme zjevného faktu, že každý prefix bezesporné větve je také bezesporná větev, tedy během konstrukce V nikdy není sporná.)

Nyní se vraťme k otázce konečnosti důkazů:

Věta 4.4.3 (Konečnost sporu). Je-li $\tau = \bigcup_{i \geq 0} \tau_i$ sporné tablo, potom existuje $n \in \mathbb{N}$ takové, že τ_n je sporné konečné tablo.

 $D\mathring{u}kaz$. Uvažme množinu S všech vrcholů stromu τ , které nad sebou (ve stromovém uspořádání) neobsahují spor, tj. dvojici položek $T\psi$, $F\psi$.

Kdyby množina S byla nekonečná, podle Königova lemmatu použitého na podstrom τ na množině S bychom měli nekonečnou, bezespornou větev v S. To by ale znamenalo, že máme i bezespornou větev v τ , což je ve sporu s tím, že τ je sporné. (Podrobněji: Větev na S by byla podvětví nějaké větve V v τ , která je sporná, tj. obsahuje nějakou (konkrétní) spornou dvojici položek, která ale existuje už v nějakém konečném prefixu V.)

Množina S je tedy konečná. To znamená, že existuje $d \in \mathbb{N}$ takové, že celá S leží v hloubce nejvýše d. Každý vrchol na úrovni d+1 má tedy nad sebou spor. Zvolme n tak, že τ_n už obsahuje všechny vrcholy τ z prvních d+1 úrovní: každá větev τ_n je tedy sporná.

 $^{^6}$ Připomeňme, že T je spočetná, neboť jazyk je (v celé kapitole) spočetný.

Důsledek 4.4.4. Pokud při konstrukci tabla nikdy neprodlužujeme sporné větve, např. pro systematické tablo, potom sporné tablo je konečné.

 $D\mathring{u}kaz$. Použijeme Větu 4.4.3, máme $\tau = \tau_n$ neboť sporné tablo už neměníme.

Důsledek 4.4.5 (Konečnost důkazů). *Pokud* $T \vdash \varphi$, *potom existuje i* konečný *tablo důkaz* φ z T.

 $D\mathring{u}kaz$. Snadno plyne z Důsledku 4.4.4: stačí při konstrukci τ ignorovat kroky, které by prodloužily spornou větev.

Vyslovíme zde také následující důsledek. Dokážeme ho ale až v příští sekci.

Důsledek 4.4.6 (Systematičnost důkazů). Pokud $T \vdash \varphi$, potom systematické tablo je (konečným) tablo důkazem φ z T.

K důkazu budeme potřebovat dvě fakta: pokud je φ dokazatelná z T, potom v T platí (Věta o korektnosti), tj. nemůže existovat protipříklad. A dále pokud by systematické tablo mělo bezespornou větev, znamenalo by to, že existuje protipříklad (to je klíčem k Větě o úplnosti).

4.5 Korektnost a úplnost

V této sekci dokážeme, že je tablo metoda korektní a úplný důkazový systém, tj. že $T \vdash \varphi$ platí právě když $T \models \varphi$.

4.5.1 Věta o korektnosti

Řekneme, model v se shoduje s položkou P, pokud $P = T\varphi$ a $v \models \varphi$, nebo $P = F\varphi$ a $v \not\models \varphi$. Dále v se shoduje s větví V, pokud se shoduje s každou položkou na této větvi.

Jak už jsme zmínili, design atomických tabel zaručuje, že shoduje-li se model s položkou v kořeni tabla, shoduje se s některou větví. Není těžké indukcí podle konstrukce tabla ukázat následující lemma:

Lemma 4.5.1. Shoduje-li se model teorie T s položkou v kořeni tabla z teorie T, potom se shoduje s některou větví.

 $D\mathring{u}kaz$. Mějme tablo $\tau = \bigcup_{i\geq 0} \tau_i$ z teorie T a model $v\in M(T)$ shodující se s kořenem τ , tedy s (jednoprvkovou) větví V_0 v (jednoprvkovém) τ_0 .

Indukcí podle i (podle kroků v při konstrukci tabla) najdeme posloupnost $V_0 \subseteq V_1 \subseteq \ldots$ takovou, že V_i je větev v tablu τ_i shodující se s modelem v, a V_{i+1} je prodloužením V_i . Požadovaná větev tabla τ je potom $V = \bigcup_{i>0} V_i$.

- Pokud τ_{i+1} vzniklo z τ_i bez prodloužení větve V_i , definujeme $V_{i+1} = V_i$.
- Pokud τ_{i+1} vzniklo z τ_i připojením položky $T\alpha$ (pro nějaký axiom $\alpha \in T$) na konec větve V_i , definujeme V_{i+1} jako tuto prodlouženou větev. Protože v je model T, platí v něm axiom α , tedy shoduje se i s novou položkou $T\alpha$.

• Nechť τ_{i+1} vzniklo z τ_i připojením atomického tabla pro nějakou položku P na konec větve V_i . Protože se model v shoduje s položkou P (která leží na větvi V_i), shoduje se i s kořenem připojeného atomického tabla, a proto se shoduje i s některou z jeho větví. (Tuto vlastnost snadno ověříme pro všechna atomická tabla.) Definujeme V_{i+1} jako prodloužení V_i o tuto větev atomického tabla.

Nyní už můžeme dokázat Větu o korektnosti. Zkráceně řečeno, pokud by existoval důkaz a zároveň protipříklad, protipříklad by se musel shodovat s některou větví důkazu, ty jsou ale všechny sporné.

Věta 4.5.2 (O korektnosti). *Je-li výrok* φ *tablo dokazatelný z teorie* T, *potom je* φ *pravdivý* v T, tj. $T \vdash \varphi \Rightarrow T \models \varphi$.

 $D\mathring{u}kaz$. Dokážeme sporem. Předpokládejme, že φ v T neplatí, tj. existuje protipříklad: model $v \in M(T)$, ve kterém φ neplatí.

Protože je φ dokazatelná z T, existuje tablo důkaz φ z T, což je sporné tablo z T s položkou $F\varphi$ v kořeni. Model v se shoduje s položkou $F\varphi$, tedy podle Lemmatu 7.4.1 se shoduje s nějakou větví V. Všechny větve jsou ale sporné, včetně V. Takže V obsahuje položky $T\psi$ a $F\psi$ (pro nějaký výrok ψ), a model v se s těmito položkami shoduje. Máme tedy $v \models \psi$ a zároveň $v \not\models \psi$, což je spor.

4.5.2 Věta o úplnosti

Ukážeme, že bezesporná větev v dokončeném tablo důkazu poskytuje protipříklad: model teorie T, který se shoduje s položkou $F\varphi$ v kořeni tabla, tj. neplatí v něm φ . Takových modelů může být více, definujeme proto jeden konkrétní:

Definice 4.5.3 (Kanonický model). Je-li V bezesporná větev dokončeného tabla, potom kanonický model pro V je model definovaný předpisem (pro $p \in \mathbb{P}$):

$$v(p) = \begin{cases} 1 \text{ pokud se na } V \text{ vyskytuje položka } \mathrm{T}p, \\ 0 \text{ jinak.} \end{cases}$$

Lemma 4.5.4. Kanonický model pro (bezespornou dokončenou) větev V se shoduje s V.

 $D\mathring{u}kaz$. Ukážeme, že kanonický model v se shoduje se všemi položkami P na větvi V, a to indukcí podle struktury výroku v položce. Nejprve základ indukce:

- \bullet Je-li $P=\mathrm{T} p$ pro nějaký prvovýrok $p\in\mathbb{P},$ máme podle definice v(p)=1; v se sP shoduje.
- Je-li $P = \mathrm{F}p$, potom se na větvi V nemůže vyskytovat položka $\mathrm{T}p$, jinak by V byla sporná. Podle definice máme v(p) = 0 a v se s P opět shoduje.

Nyní indukční krok. Rozebereme dva případy, ostatní se dokáží obdobně.

 $^{^7\}mathrm{Resp.}$ o libovolnou takovou větev: model v se může shodovat s více větvemi atomického tabla.

 $^{^8\}mathrm{P\'{r}ipome\'{n}me},$ že to znamená indukci podle hloubky stromu výroku.

- Nechť $P = T\varphi \wedge \psi$. Protože je V dokončená větev, je na ní položka P redukovaná. To znamená, že se na V vyskytují i položky $T\varphi$ a $T\psi$. Podle indukčního předpokladu se s nimi model v shoduje, tedy $v \models \varphi$ a $v \models \psi$. Takže platí i $v \models \varphi \wedge \psi$ a v se shoduje s P.
- Nechť $P = F\varphi \wedge \psi$. Protože je P na V redukovaná, vyskytuje se na V položka $F\varphi$ nebo položka $F\psi$. Platí tedy $v \not\models \varphi$ nebo $v \not\models \psi$, z čehož plyne $v \not\models \varphi \wedge \psi$ a v se shoduje s P.

Věta 4.5.5 (O úplnosti). *Je-li výrok* φ *pravdivý* v *teorii* T, *potom je tablo dokazatelný* z T, ti. $T \models \varphi \Rightarrow T \vdash \varphi$.

 $D\mathring{u}kaz$. Ukážeme, že libovolné dokončené (tedy např. i systematické) tablo z T s položkou $F\varphi$ v kořeni je nutně sporné. D $\mathring{u}kaz$ provedeme sporem: kdyby takové tablo nebylo sporné, existovala by v něm bezesporná (dokončená) větev V. Uvažme kanonický model v pro tuto větev. Protože je V dokončená, obsahuje $T\alpha$ pro všechny axiomy $\alpha \in T$. Model v se podle Lemmatu 4.5.4 shoduje se všemi položkami na V, splňuje tedy všechny axiomy a máme $v \models T$. Protože se ale v shoduje i s položkou $F\varphi$ v kořeni, máme $v \not\models \psi$, což znamenám, že $T \not\models \psi$, spor. Tablo tedy muselo být sporné, tj. být tablo d $\mathring{u}kazem \varphi$ z T.

Důkaz Důsledku 7.2.7. Z předchozího důkazu také dostáváme 'systematičnost důkazů', tj. že důkaz můžeme vždy hledat konstrukcí systematického tabla: Pokud $T \models \varphi$, tak je i systematické tablo pro položku $F\varphi$ nutně sporné, a je tedy tablo důkazem φ z T.

Cvičení 4.5. Ověřte zbývající případy v důkazu Lemmatu 4.5.4.

Cvičení 4.6. Popište, jak vypadají všechny modely shodující se s danou bezespornou dokončenou větví.

Cvičení 4.7. Navrhněte postup, kterým můžeme za použití tablo metody najít všechny modely dané teorie T.

4.6 Důsledky korektnosti a úplnosti

Věty o korektnosti a úplnosti dohromady říkají, že dokazatelnost je totéž, co platnost. To nám umožňuje zformulovat syntaktické analogie sémantických pojmů a vlastností.

$$Thm_{\mathbb{P}}(T) = \{ \varphi \in VF_{\mathbb{P}} \mid T \vdash \varphi \}$$

Důsledek 4.6.1 (Dokazatelnost = platnost). Pro libovolnou teorii T a výroky φ, ψ platí:

- $T \vdash \varphi \ pr\acute{a}v\check{e} \ kdy\check{z} \ T \models \varphi$
- $\operatorname{Thm}_{\mathbb{P}}(T) = \operatorname{Csq}_{\mathbb{P}}(T)$

Důkaz. Plyne okamžitě z Věty o korektnosti a z Věty o úplnosti.

Ve všech definicích a větách můžeme tedy nahradit pojem 'platnost' pojmem 'dokazatelnost' (tj. symbol ' \models ' symbolem ' \vdash ') a pojem ' $d\mathring{u}sledek$ ' pojmem ' $teor\acute{e}m$ '. Například:

• Teorie je sporná, jestliže je v ní dokazatelný spor (tj. $T \vdash \bot$).

• Teorie je kompletni, jestliže pro každý výrok φ je buď $T \vdash \varphi$ nebo $T \not\vdash \varphi$ (ale ne obojí, jinak by byla sporná).

Uveď me ještě jeden snadný důsledek:

Věta 4.6.2 (O dedukci). *Pro teorii* T a výroky φ, ψ platí: $T, \varphi \vdash \psi$ právě když $T \vdash \varphi \rightarrow \psi$. $D\mathring{u}kaz$. Stačí dokázat $T, \varphi \models \psi \Leftrightarrow T \models \varphi \rightarrow \psi$, což je snadné.

Cvičení 4.8. Dokažte Větu o dedukci přímo, pomocí transformace tablo důkazů.

4.7 Věta o kompaktnosti

Důležitým důsledkem vět o korektnosti a úplnosti je také tzv. *Věta o kompaktnosti.* Tento princip umožňuje převádět tvrzení o nekonečných objektech/procesech na tvrzení o (všech) jejich konečných částech.

Věta 4.7.1 (O kompaktnosti). *Teorie má model, právě když každá její konečná část má model.*

 $D\mathring{u}kaz$. Každý model teorie T je zjevně modelem každé její části. Druhou implikaci dokážeme nepřímým důkazem: Předpokládejme, že T nemá model, tj. je sporná, a najděme konečnou část $T'\subseteq T$, která je také sporná.

Protože je T sporná, platí $T \vdash \bot$ (zde potřebujeme Větu o úplnosti). Podle Důsledku ?? potom existuje konečný tablo důkaz τ výroku \bot z T. Konstrukce tohoto důkazu má jen konečně mnoho kroků, použili jsme tedy jen konečně mnoho axiomů z T. Definujeme-li $T' = \{\alpha \in T \mid T\alpha \text{ je položka v tablu } \tau\}$, potom τ je také tablo důkaz sporu z teorie T'. Teorie T' je tedy sporná konečná část T.

4.7.1 Aplikace kompaktnosti

Následující jednoduchou aplikaci Věty o kompaktnosti můžete chápat jako šablonu, kterou následuje i mnoho dalších, složitějších aplikací této věty.

Důsledek 4.7.2. Spočetně nekonečný graf je bipartitní, právě když je každý jeho konečný podgraf bipartitní.

 $D\mathring{u}kaz$. Každý podgraf bipartitního grafu je zjevně také bipartitní. Ukažme opačnou implikaci. Graf je bipartitní, právě když je obarvitelný 2 barvami. Označme barvy 0, 1.

Sestrojíme výrokovou teorii T v jazyce $\mathbb{P} = \{p_v \mid v \in V(G)\}$, kde hodnota výrokové proměnné p_v reprezentuje barvu vrcholu v.

$$T = \{p_u \to \neg p_v \mid \{u, v\} \in E(G)\}\$$

Zřejmě platí, že G je bipartitní, právě když T má model. Podle Věty o kompaktnosti stačí ukázat, že každá konečná část T má model. Vezměme tedy konečnou $T' \subseteq T$. Buď G' podgraf G indukovaný na množině vrcholů, o kterých se zmiňuje teorie T', tj. $V(G') = \{v \in V(G) \mid p_v \in Var(T')\}$. Protože je T' konečná, je G' také konečný, a podle předpokladu je 2-obarvitelný. Libovolné 2-obarvení V(G') ale určuje model teorie T'.

⁹Slovo kompaktnost pochází z kompaktních (tj. omezených a uzavřených) množin v Euklidovských prostorech, ve kterých lze z každé posloupnosti vybrat konvergentní podposloupnost. Můžete si představit posloupnost zvětšujících se konečných částí 'konvergující' k nekonečnému celku.

Základem této techniky je popis požadované vlastnosti nekonečného objektu pomocí (nekonečné) výrokové teorie. Dále si všimněte, jak z konečné části teorie sestrojíme konečný podobjekt mající danou vlastnost (v našem případě konečný podgraf, který je bipartitní).

Cvičení 4.9. Zobecněte Důsledek 4.7.2 pro více barev, tj. ukažte, že spočetně nekonečný graf je k-obarvitelný, právě když je každý jeho konečný podgraf k-obarvitelný. (Viz Sekce 1.1.7.) Cvičení 4.10. Ukažte, že každé částečné uspořádání na spočetné množině lze rozšířit na lineární uspořádání.

Cvičení 4.11. Vyslovte a dokažte 'spočetně nekonečnou' analogii Hallovy věty.

4.8 (draft) Hilbertovský kalkulus

[TODO]Na závěr kapitoly o tablo metodě si pro srovnání ukážeme jiný dokazovací systém, tzv. Hilbertovský deduktivní systém neboli Hilbertovský kalkulus. Jde o nejstarší dokazovací systém, modelovaný podle matematických důkazů. Jak uvidíme na příkladě, dokazování je v něm poměrně pracné, hodí se tedy spíše pro teoretické účely. Jde také o korektní a úplný dokazovací systém (to ale necháme bez důkazu).

- základní logické spojky: ¬, → (ostatní z nich odvozené)
- logické axiomy (schémata logických axiomů):

(i)
$$\varphi \to (\psi \to \varphi)$$

(ii)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(iii)
$$(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$$

kde φ , ψ , χ jsou libovolné formule (daného jazyka).

• odvozovací pravidlo: $\frac{\varphi, \ \varphi \to \psi}{\psi} \qquad \text{(modus ponens)}$

 $D\mathring{u}kaz$ (Hilbertova stylu) formule φ v teorii T je konečná posloupnost $\varphi_0, \dots, \varphi_n = \varphi$ formulí taková, že pro každé $i \leq n$

- φ_i je logický axiom nebo $\varphi_i \in T$ (axiom teorie), nebo
- φ_i lze odvodit z předchozích formulí pomocí odvozovacího pravidla.

Poznámka Volba axiomů a odvozovacích pravidel se v může v různých dokazovacích systémech Hilbertova stylu lišit.

Příklad a korektnost

Formule φ je dokazatelná v T, má-li důkaz z T, značíme $T \vdash_H \varphi$.

Je-li $T = \emptyset$, značíme $\vdash_H \varphi$. Např. pro $T = \{\neg \varphi\}$ je $T \vdash_H \varphi \to \psi$ pro každé ψ .

- axiom z T1)
- $\neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi)$ 2) logický axiom (i)
- modus ponens z 1), 2) 3)
- $(\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$ $\varphi \to \psi$ 4) logický axiom (iii)
- 5) modus ponens z 3), 4)

Věta Pro každou teorii Ta formuli $\varphi,\ T \vdash_H \varphi \ \Rightarrow \ T \models \varphi.$ Důkaz

- Je-li $\varphi \in T$ nebo logický axiom, je $T \models \varphi$ (logické axiomy jsou tautologie),
- $\bullet\,$ jestliže $T\models\varphi$ a $T\models\varphi\rightarrow\psi,$ pak $T\models\psi,$ tj. modus ponens je korektní,
- $\bullet\,$ tedy každá formule vyskytující se v důkazu z T platí v T.

 $\textit{Poznámka Platí i úplnost, tj. } T \models \varphi \Rightarrow T \vdash_{H} \varphi \textit{ pro každou teorii } T \textit{ a formuli } \varphi.$

Kapitola 5

Rezoluční metoda

V této kapitole představíme jiný důkazový systém, vhodnější pro praktické aplikace, tzv. rezoluční metodu. Tato metoda je základem např. logického programování nebo systémů automatického dokazování a softwarové verifikace. V této kapitole se omezíme na rezoluční metodu ve výrokové logice, ale v pozdější kapitole si ukážeme koncept unifikace, který umožňuje hledat rezoluční důkazy v logice predikátové.

Rezoluční metoda pracuje s výroky v konjunktivní normální formě (CNF). Připomeňme, že každý výrok lze převést do CNF. Tento převod je v nejhorším případě v exponenciálním čase (dokonce existují výroky jejichž nejkratší CNF ekvivalent je exponenciálně delší), v praxi to ale není problém.

Podobně jako tablo metoda je založena na důkazu sporem, tj. přidáme k teorii, ve které dokazujeme, negaci výroku, který chceme dokázat (obojí převedené do CNF), a ukážeme, že to vede ke sporu.

K hledání sporu používá rezoluční metoda jediné inferenční pravidlo, tzv. rezoluční pravidlo. To je speciálním případem pravidla řezu, které říká: "z výroků $\varphi \lor \psi$ a $\neg \varphi \lor \chi$ lze odvodit výrok $\psi \lor \chi$," píšeme:

$$\frac{\varphi \vee \psi, \neg \varphi \vee \chi}{\psi \vee \chi}$$

V rezolučním pravidle, které si ukážeme za chvíli, bude φ literál, a ψ, χ budou klauzule.

Cvičení 5.1. Rozmyslete si, že pravidlo řezu je korektní. (Co to znamená, a proč to platí?)

5.1 Množinová reprezentace

Nejprve představíme úspornější zápis CNF výroků, tzv. *množinový zápis*. Bylo by totiž nepraktické zapisovat výroky včetně závorek a logických symbolů.

- Připomeňme, že $Literál~\ell$ je prvovýrok nebo negace prvovýroku a že $\bar{\ell}$ označuje opačný $literál~k~\ell.$
- Klauzule C je konečná množina literálů. Prázdnou klauzuli, která není nikdy splněna, označíme \square .

¹Reprezentuje disjunkci prázdné množiny literálů, žádný z disjunktů tedy není splněný.

• (CNF) formule S je (konečná, nebo i nekonečná) množina klauzulí. Prázdná formule \emptyset je vždy splněna.²

Poznámka 5.1.1. Všimněte si, že formule může být i nekonečná množina klauzulí. Pokud tedy převádíme nekonečnou výrokovou teorii do CNF, zapíšeme v množinové reprezentaci všech nekonečně mnoho klauzulí jako prvky jediné formule (množiny). V praktických aplikacích je samozřejmě formule (téměř vždy) konečná.

V množinové reprezentaci odpovídají modely množinám literálů, které obsahují pro každou výrokovou proměnnou p právě jeden z literálů $p, \neg p$:

- (*Částečné*) ohodnocení \mathcal{V} je libovolná množina literálů, která je konzistentní, tj. neobsahuje dvojici opačných literálů.
- Ohodnocení je úplné, pokud obsahuje pozitivní nebo negativní literál pro každou výrokovou proměnnou.
- Ohodnocení \mathcal{V} splňuje formuli S, píšeme $\mathcal{V} \models S$, pokud \mathcal{V} obsahuje nějaký literál z každé klauzule v S, tj.:

$$\mathcal{V} \cap C \neq \emptyset$$
 pro každou $C \in S$

 $P\check{r}iklad$ 5.1.2. Výrok $\varphi = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg_3 \lor \neg p_4) \land (\neg p_4 \lor \neg p_5) \land p_4$ zapíšeme v množinové reprezentaci takto:

$$S = \{ \{\neg p_1, p_2\}, \{\neg p_1, \neg p_2, p_3\}, \{\neg p_3, \neg p_4\}, \{\neg p_4, \neg p_5\}, \{p_4\} \}$$

Ohodnocení $\mathcal{V} = \{\neg p_1, \neg p_3, p_4, \neg p_5\}$ splňuje S, píšeme $\mathcal{V} \models S$. Není úplné, ale můžeme ho rozšířit libovolným literálem pro p_2 : platí $\mathcal{V} \cup \{p_2\} \models S$ i $\mathcal{V} \cup \{\neg p_2\} \models S$. Tato dvě úplná ohodnocení odpovídají modelům (0, 1, 0, 1, 0) a (0, 0, 0, 1, 0).

5.2 Rezoluční důkaz

Nejprve definujeme jeden krok inference v rezolučním důkazu, tzv. rezoluční pravidlo, které aplikujeme na dvojici klauzulí; jeho výsledkem je klauzule, které říkáme rezolventa, a která je logickým důsledkem původní dvojice klauzulí:

Definice 5.2.1 (Rezoluční pravidlo). Mějme klauzule C_1 a C_2 a literál ℓ takový, že $\ell \in C_1$ a $\bar{\ell} \in C_2$. Potom rezolventa klauzulí C_1 a C_2 přes literál ℓ je klauzule

$$C = (C_1 \setminus \{\ell\}) \cup (C_2 \setminus \{\bar{\ell}\}).$$

Z první klauzule tedy odstraníme literál ℓ a z druhé literál $\bar{\ell}$ (které tam musely být!) a všechny zbylé literály sjednotíme do výsledné rezolventy. S pomocí symbolu $\dot{\Box}$ pro disjunktní sjednocení bychom také mohli psát:

$$C_1' \cup C_2'$$
je rezolventou klauzulí $C_1' \stackrel{.}{\sqcup} \{\ell\}$ a $C_2' \stackrel{.}{\sqcup} \{\bar{\ell}\}$

 $P\check{r}iklad$ 5.2.2. Z klauzulí $C_1 = \{\neg q, r\}$ a $C_2 = \{\neg p, \neg q, \neg r\}$ lze odvodit rezolventu $\{\neg p, \neg q\}$ přes literál r. Z klauzulí $\{p, q\}$ a $\{\neg p, \neg q\}$ lze odvodit $\{p, \neg p\}$ přes literál q nebo $\{q, \neg q\}$ přes literál p (obojí jsou ale tautologie).³

 $^{^2}$ Reprezentuje konjunkci prázdné množiny klauzulí, všechny klauzule v Sjsou tedy splněny.

³Nelze ale odvodit \square 'rezolucí přes p a q najednou' (což je častá chyba). Všimněte si, že $\{\{p,q\}, \{\neg p, \neg q\}\}$ není nesplnitelná, např. (1,0) je modelem.

Pozorování 5.2.3 (Korektnost rezolučního pravidla). *Rezoluční pravidlo je korektní, tj. pro libovolné ohodnocení* V *platí:*

Pokud
$$\mathcal{V} \models C_1$$
 a $\mathcal{V} \models C_2$, potom $\mathcal{V} \models C$.

Rezoluční důkaz definujeme podobně jako v Hilbertově kalkulu jako konečnou posloupnost klauzulí, kde je zaručena platnost každé klauzule v této posloupnosti: v každém kroku můžeme buď napsat 'axiom' (klauzuli z S), nebo rezolventu nějakých dvou už napsaných klauzulí.

Definice 5.2.4 (Rezoluční důkaz). Rezoluční důkaz (odvození) klauzule C z formule S je konečná posloupnost klauzulí $C_0, C_1, \ldots, C_n = C$ taková, že pro každé i buď $C_i \in S$ nebo C_i je rezolventou nějakých C_j, C_k kde j < i a k < i.

Pokud rezoluční důkaz existuje, říkáme, že C je rezolucí dokazatelná z S, a píšeme $S \vdash_R C$. (Rezoluční) zamítnutí formule S je rezoluční důkaz \square z S, v tom případě je S (rezolucí) zamítnutelná.

 $P\check{r}\hat{\imath}klad$ 5.2.5. Formule $S=\{\{p,\neg q,r\},\{p,\neg r\},\{\neg p,r\},\{p,s\},\{q,r\}\}$ je zamítnutelná, jedno z možných zamítnutí je:

$$\{p, \neg q, r\}, \{q, r\}, \{p, r\}, \{\neg p, r\}, \{r\}, \{p, \neg r\}, \{\neg p, \neg r\}, \{\neg r\}, \Box$$

Rezoluční důkaz má přirozenou stromovou strukturu: v listech jsou axiomy a vnitřní vrcholy představují jednotlivé rezoluční kroky.

Definice 5.2.6 (Rezoluční strom). Rezoluční strom klauzule C z formule S je konečný binární strom s vrcholy označenými klauzulemi, kde

- v kořeni je C,
- \bullet v listech jsou klauzule z S,
- v každém vnitřním vrcholu je rezolventa klauzulí ze synů tohoto vrcholu.

Příklad 5.2.7. Rezoluční strom prázdné klauzule \square z formule S z Příkladu 5.2.5 je:

Je snadné ukázat následující pozorování, indukcí podle hloubky stromu a délky rezolučního důkazu:

Pozorování 5.2.8. Klauzule C má rezoluční strom z formule S, právě když $S \vdash_R C$.

Každému rezolučnímu důkazu odpovídá jednoznačný rezoluční strom. Naopak, z jednoho rezolučního stromu můžeme získat více rezolučních důkazů: jsou dané libovolnou procházka po vrcholech stromu, při které navštívíme vnitřní vrchol až poté, co jsme navštívili oba jeho syny.

Zaveď me ještě jeden pojem, tzv. rezoluční uzávěr, který obsahuje všechny klauzule, které se můžeme 'naučit' rezolucí z dané formule. Jde spíše o užitečný teoretický pohled na rezoluci, v aplikacích by bylo nepraktické konstruovat celý rezoluční uzávěr

Definice 5.2.9 (Rezoluční uzávěr). Rezoluční uzávěr $\mathcal{R}(S)$ formule S je definován induktivně jako nejmenší množina klauzulí splňující:

- $C \in \mathcal{R}(S)$ pro všechna $C \in S$,
- jsou-li $C_1, C_2 \in \mathcal{R}(S)$ a je-li C rezolventa C_1, C_2 , potom také $C \in \mathcal{R}(S)$.

 $P\check{r}iklad$ 5.2.10. Spočtěme rezoluční uzávěr formule S z Příkladu 5.2.5. Klauzule z S jsou modře, další klauzule získáváme postupným rezolvováním (první s první, druhá s druhou atd., přes všechny možné literály):

$$\mathcal{R}(S) = \{ \{p, \neg q, r\}, \{p, \neg r\}, \{\neg p, r\}, \{p, s\}, \{q, r\}, \{p, \neg q\}, \{\neg q, r\}, \{r, \neg r\}, \{p, \neg p\}, \{r, s\}, \{p, r\}, \{p, q\}, \{r\}, \{p\}\} \}$$

5.3 Korektnost a úplnost rezoluční metody

Rezoluční metoda je také korektní i úplná.

5.3.1 Korektnost rezoluce

Korektnost dokážeme snadno indukcí podle délky rezolučního důkazu.

Věta 5.3.1 (O korektnosti rezoluce). *Je-li formule S rezolucí zamítnutelná, potom je S nesplnitelná.*

 $D\mathring{u}kaz$. Nechť $S \vdash_R \square$ a vezměme nějaký rezoluční důkaz $C_0, C_1, \ldots, C_n = \square$. Předpokládejme pro spor, že S je splnitelná, tedy $\mathcal{V} \models S$ pro nějaké ohodnocení \mathcal{V} . Indukcí podle i dokážeme, že $\mathcal{V} \models C_i$. Pro i = 0 to platí, neboť $C_0 \in S$. Pro i > 0 máme dva případy:

- $C_i \in S$, v tom případě $\mathcal{V} \models C_i$ plyne z předpokladu, že $\mathcal{V} \models S$,
- C_i je rezolventou C_j , C_k , kde j, k < i: z indukčního předpokladu víme $\mathcal{V} \models C_j$ a $\mathcal{V} \models C_k$, $\mathcal{V} \models C_i$ plyne z korektnosti rezolučního pravidla.

П

(Alternativně bychom mohli v důkazu postupovat indukcí podle hloubky rezolučního stromu.)

5.3.2 Strom dosazení

V důkazu úplnosti budeme potřebovat zkonstruovat rezoluční strom, jeho konstrukce je založena na tzv. stromu dosazení. Dosazením literálu do formule myslíme zjednodušení formule za předpokladu, že daný literál platí. Dosazení jsme už potkali v Sekci 3.3 při jednotkové propagaci: odstraníme klauzule obsahující tento literál, a z ostatních klauzulí odstraníme literál opačný.

Definice 5.3.2 (Dosazení literálu). Je-li S formule a ℓ literál, potom dosazením ℓ do S myslíme formuli:

$$S^{\ell} = \{ C \setminus \{ \bar{\ell} \} \mid l \notin C \in S \}$$

Pozorování 5.3.3. Zde shrneme několik jednoduchých faktů o dosazení:

- S^{ℓ} je výsledkem jednotkové propagace aplikované na $S \cup \{\{\ell\}\}$.
- S^{ℓ} neobsahuje v žádné klauzuli literál ℓ ani $\bar{\ell}$ (vůbec tedy neobsahuje prvovýrok z ℓ)
- Pokud S neobsahovala literál ℓ ani $\bar{\ell}$, potom $S^{\ell} = S$.
- Pokud S obsahovala jednotkovou klauzuli $\{\bar{\ell}\}$, potom $\square \in S^{\ell}$, tedy S^{ℓ} je sporná.

Klíčovou vlastnost dosazení vyjadřuje následující lemma:

Lemma 5.3.4. S je splnitelná, právě když je splnitelná S^{ℓ} nebo $S^{\bar{\ell}}$.

 $D\mathring{u}kaz$. Mějme ohodnocení $\mathcal{V} \models S$, to nemůže obsahovat ℓ i $\bar{\ell}$ (musí být konzistentní); bez újmy na obecnosti předpokládejme, že $\bar{\ell} \notin \mathcal{V}$, a ukažme, že $\mathcal{V} \models S^{\ell}$. Vezměme libovolnou klauzuli v S^{ℓ} . Ta je tvaru $C \setminus \{\bar{\ell}\}$ pro klauzuli $C \in S$ (neobsahující literál ℓ). Víme, že $\mathcal{V} \models C$, protože ale \mathcal{V} neobsahuje $\bar{\ell}$, muselo ohodnocení \mathcal{V} splnit nějaký jiný literál C, takže platí i $\mathcal{V} \models C \setminus \{\bar{\ell}\}$.

Naopak, předpokládejme že existuje ohodnocení \mathcal{V} splňující S^{ℓ} (opět bez újmy na obecnosti). Protože se $\bar{\ell}$ (ani ℓ) nevyskytuje v S^{ℓ} , platí také $\mathcal{V}\setminus\{\bar{\ell}\}\models S^{\ell}$. Ohodnocení $\mathcal{V}'=(\mathcal{V}\setminus\{\bar{\ell}\})\cup\{\ell\}$ potom splňuje každou klauzuli $C\in S$: pokud $\ell\in C$, potom $\ell\in C\cap\mathcal{V}'$ a $C\cap\mathcal{V}'\neq\emptyset$, jinak $C\cap\mathcal{V}'=(C\setminus\{\bar{\ell}\})\cap\mathcal{V}'\neq\emptyset$ neboť $\mathcal{V}\setminus\{\bar{\ell}\}\models C\setminus\{\bar{\ell}\}\in S^{\ell}$. Ověřili jsme, že $\mathcal{V}'\models S$, tedy S je splnitelná.

Zda je daná konečná formule splnitelná bychom tedy mohli zjišťovat rekurzivně (metodou rozděl a panuj), dosazením obou možných literálů pro (nějakou, třeba první) výrokovou proměnnou vyskytující se ve formuli, a rozvětvením výpočtu. V zásadě jde o podobný princip jako v algoritmu DPLL (viz Sekce 3.4). Výslednému stromu říkáme strom dosazení.

 $P\check{r}\hat{u}klad$ 5.3.5. Ilustrujeme si tento koncept na příkladě, zkonstruujeme strom dosazení pro formuli $S = \{\{p\}, \{\neg q\}, \{\neg p, \neg q\}\}:$

Jakmile větev obsahuje prázdnou klauzuli \Box , je nesplnitelná a nemusíme v ní pokračovat. V listech jsou buď nesplnitelné teorie, nebo prázdná teorie: v tom případě z posloupnosti dosazení získáme splňující ohodnocení.

Z konstrukce je vidět, jak postupovat v případě konečné formule. Strom dosazení ale dává smysl, a následující důsledek platí, i pro nekonečné formule:

Důsledek 5.3.6. Formule S (nad spočetným jazykem) je nesplnitelná, právě když každá větev stromu dosazení obsahuje prázdnou klauzuli \square .

 $D\mathring{u}kaz$. Pro konečnou formuli S plyne z diskuze výše, můžeme snadno dokázat indukcí podle velikosti Var(S):

- Je-li $|\operatorname{Var}(S)| = 0$, máme $S = \emptyset$ nebo $S = \{\square\}$, v obou případech je strom dosazení jednoprvkový a tvrzení platí.
- V indukčním kroku vybereme libovolný literál $\ell \in \text{Var}(S)$ a aplikujeme Lemma 5.3.4.

Je-li S nekonečná a splnitelná, potom má splňující ohodnocení, to se 'shoduje' s odpovídající (nekonečnou) větví ve stromu dosazení. Je-li nekonečná a nesplnitelná, potom podle Věty o kompaktnosti existuje konečná část $S' \subseteq S$, která je také nesplnitelná. Po dosazení pro všechny proměnné z Var(S') bude v každé větvi \square , to nastane po konečně mnoha krocích. \square

5.3.3 Úplnost rezoluce

Věta 5.3.7 (O úplnosti rezoluce). *Je-li S nesplnitelná*, *je rezolucí zamítnutelná* (tj. $S \vdash_R \Box$).

 $D\mathring{u}kaz$. Je-li S nekonečná, má z Věty o kompaktnosti konečnou nesplnitelnou část S'. Rezoluční zamítnutí S' je také rezolučním zamítnutím S. Předpokládejme tedy, že S je konečná.

Důkaz provedeme indukcí podle počtu proměnných v S. Je-li $|\operatorname{Var}(S)| = 0$, jediná možná nesplnitelná formule bez proměnných je $S = \{\emptyset\}$ a máme jednokrokový důkaz $S \vdash_R \square$. Jinak vyberme $p \in \operatorname{Var}(S)$. Podle Lemmatu 5.3.4 jsou S^p i $S^{\bar{p}}$ nesplnitelné. Mají o jednu proměnnou méně, tedy podle indukčního předpokladu existují rezoluční stromy T pro $S^p \vdash_R \square$ a T' pro $S^{\bar{p}} \vdash_R \square$.

Ukážeme, jak ze stromu T vyrobit rezoluční strom \widehat{T} pro $S \vdash_R p$. Analogicky vyrobíme \widehat{T}' pro $S \vdash_R \neg p$ a potom už snadno vyrobíme rezoluční strom pro $S \vdash_R \square$: ke kořeni \square připojíme kořeny stromů \widehat{T} a \widehat{T}' jako levého a pravého syna (tj. v posledním kroku rezolučního důkazu získáme \square rezolucí z $\{p\}$ a $\{\neg p\}$).

Zbývá ukázat konstrukci stromu \widehat{T} : množina vrcholů i uspořádání jsou stejné, změníme jen některé klauzule ve vrcholech, a to přidáním literálu $\neg p$. Na každém listu stromu T je nějaká klauzule $C \in S^p$, a buď je $C \in S$, nebo není, ale $C \cup \{\neg p\} \in S$. V prvním případě necháme label stejný. Ve druhém případě přidáme přidáme do C a do všech klauzulí nad tímto listem literál $\neg p$. V listech jsou nyní jen klauzule z S, v kořeni jsme \square změnili na $\neg p$. A každý vnitřní vrchol je nadále rezolventou svých synů.

Cvičení 5.2. Důkaz Věty o úplnosti rezoluce dává návod, jak rekurzivně 'vypěstovat' rezoluční zamítnutí. Rozmyslete si jak a proved'te na nějakém příkladě nesplnitelné formule.

5.4 LI-rezoluce a Horn-SAT

Začneme jiným pohledem na rezoluční důkaz, tzv. lineárním důkazem.

5.4.1 Lineární důkaz

Rezoluční důkaz můžeme kromě rezolučního stromu zorganizovat také ve formě tzv. *lineárního důkazu*, kde v každém kroku máme jednu *centrální* klauzuli, kterou rezolvujeme s *boční* ('side')

klauzulí, která je buď jednou z předchozích centrálních klauzulí, nebo axiomem z S. Rezolventa je potom novou centrální klauzulí.

Definice 5.4.1 (Lineární důkaz). Lineární důkaz (rezolucí) klauzule C z formule S je konečná posloupnost

$$\begin{bmatrix} C_0 \\ B_0 \end{bmatrix}, \begin{bmatrix} C_1 \\ B_1 \end{bmatrix}, \dots, \begin{bmatrix} C_n \\ B_n \end{bmatrix}, C_{n+1}$$

kde C_i říkáme centrální klauzule, C_0 je počáteční, $C_{n+1}=C$ je koncová, B_i jsou boční klauzule, a platí:

- $C_0 \in S$, pro $i \leq n$ je C_{i+1} rezolventou C_i a B_i ,
- $B_0 \in S$, pro $i \le n$ je $B_i \in S$ nebo $B_i = C_i$ pro nějaké j < i.

Lineární zamítnutí S je lineární důkaz \square z S. Lineární důkaz můžeme znázornit takto:

$$C_0 - C_1 - C_2 - \cdots - C_n - C_{n+1}$$

$$B_0 B_1 B_{n-1} B_n$$

Poznámka 5.4.2. C má lineární důkaz z S, právě když $S \vdash_R C$.

Z lineárního důkazu snadno vyrobíme rezoluční strom. Indukcí podle délky důkazu: základ indukce je zřejmý, a máme-li boční klauzuli B_i která není axiomem z S, potom $B_i = C_j$ pro nějaké j < i a stačí připojit místo B_i rezoluční strom pro důkaz C_j z S. Opačnou implikaci si ukážeme jen na příkladě:

 $P\check{r}iklad$ 5.4.3. Zkonstruujme lineární zamítnutí formule $S = \{\{p,\},\{p,\neg q\},\{\neg p,q\},\{\neg p,\neg q\}\}$ (tj. lineární důkaz \square z S). Lineární důkaz může vypadat třeba takto:

$$\{p,q\} \longrightarrow \{p\} \longrightarrow \{q\} \longrightarrow \{\neg p\} \longrightarrow \square$$

$$\{\neg p,\neg q\} \qquad \{\neg p,q\} \qquad \{p\} \qquad \qquad [p\} \qquad \qquad \square$$

Poslední boční klauzule $\{p\}$ (červeně) není z S, ale je rovna předchozí centrální klauzuli (modře).

Cvičení 5.3. Převeď te lineární důkaz z Příkladu 5.4.3 na rezoluční strom.

Cvičení 5.4. Dokažte podrobně obě implikace v Poznámce 5.4.2.

5.4.2 LI-rezoluce

V obecném lineárním důkazu může být každá následující boční klauzule buď axiom z S nebo jedna z předchozích centrálních klauzulí. Pokud zakážeme druhou možnost, budeme-li tedy požadovat, aby všechny boční klauzule byly z S, dostaneme tzv. LI (linear-input) rezoluci:

⁴Zatímco konstrukci rezolučního stromu lze snadno popsat rekurzivně, lineární důkaz lépe odpovídá procedurálnímu výpočtu. Jde jen o to, jak najít vhodnou boční klauzuli.

Definice 5.4.4 (LI-důkaz). LI-důkaz (rezolucí) klauzule C z formule S je lineární důkaz

$$\begin{bmatrix} C_0 \\ B_0 \end{bmatrix}, \begin{bmatrix} C_1 \\ B_1 \end{bmatrix}, \dots, \begin{bmatrix} C_n \\ B_n \end{bmatrix}, C$$

ve kterém je každá boční klauzule B_i axiom z S. Pokud LI-důkaz existuje, říkáme, že je C LI-dokazatelná z S, a píšeme $S \vdash_{LI} C$. Pokud $S \vdash_{LI} \Box$, je S LI-zamítnutelná.

Poznámka 5.4.5. LI-důkaz přímo dává rezoluční strom (všechny listy jsou axiomy), a to ve speciálním tvaru, kterému bychom mohli říkat 'chlupatá cesta'. A naopak, z rezolučního stromu ve tvaru chlupaté cesty okamžitě získáme LI-důkaz: vrcholy na cestě jsou centrální klauzule, chlupy jsou boční klauzule.

Zatímco lineární rezoluce je jen jiný pohled na obecný rezoluční důkaz, LI-rezoluce přináší zásadní omezení: ztrácíme $\acute{u}plnost$ (ne každá nesplnitelná formule má LI-zamítnutí). Na druhou stranu, LI-důkazy je jednodušší konstruovat.⁵

5.4.3 Úplnost LI-rezoluce pro Hornovy formule

Jak si nyní ukážeme, LI-rezoluce je *úplná pro Hornovy formule*. A jak uvidíme v následující sekci, je základem interpreterů jazyka Prolog, který s Hornovými formulemi pracuje. Nejprve připomeňme terminologii týkající se hornovskosti a také programů, a to v množinové reprezentaci:

- Hornova klauzule je klauzule obsahující nejvýše jeden pozitivní literál.
- Hornova formule je (konečná, nebo i nekonečná) množina Hornových klauzulí.
- Fakt je pozitivní jednotková (Hornova) klauzule, tj. $\{p\}$, kde p je výroková proměnná.
- *Pravidlo* je (Hornova) klauzule s právě jedním pozitivním a alespoň jedním negativním literálem.
- Pravidlům a faktům říkáme programové klauzule.
- Cíl je neprázdná (Hornova) klauzule bez pozitivního literálu.

Bude se nám hodit následující jednoduché pozorování:

Pozorování 5.4.6. Je-li Hornova formule S nesplnitelná a $\square \notin S$, potom obsahuje fakt i cíl.

 $D\mathring{u}kaz$. Neobsahuje-li fakt, můžeme ohodnotit všechny proměnné 0; neobsahuje-li cíl, ohodnotíme 1.

Nyní vyslovíme a dokážeme Větu o úplnosti LI-rezoluce pro Hornovské formule. Důkaz dává také návod, jak LI-zamítnutí zkonstruovat, a to na základě průběhu jednotkové propagace. Tento postup ilustrujeme na příkladu níže, který můžete sledovat souběžně s čtením důkazu.

 $^{^5\}mathrm{V}$ každém kroku máme k volbě jen klauzule z S, nikoliv předchozí dokázané centrální klauzule.

 $^{^6\}mathrm{P}$ řipomeňme, že dokazujeme $\mathit{sporem},$ tedy $\mathit{c}\mathcal{i}$ je negací toho, co bychom chtěli dokázat.

Věta 5.4.7 (O úplnosti LI-rezoluce pro Hornovy formule). *Je-li Hornova formule T splnitelná*, a $T \cup \{G\}$ je nesplnitelná pro cíl G, potom $T \cup \{G\} \vdash_{LI} \Box$, a to LI-zamítnutím, které začíná cílem G.

 $D\mathring{u}kaz$. Podobně jako ve Větě o úplnosti rezoluce můžeme díky Věte o kompaktnosti předpokládat, že T je konečná. Důkaz (konstrukci LI-zamítnutí) provedeme indukcí podle počtu proměnných v T.

Z Pozorování 5.4.6 plyne, že T obsahuje fakt $\{p\}$ pro nějakou výrokovou proměnnou p. Protože $T \cup \{G\}$ je nesplnitelná, je podle Lemmatu 5.3.4 nesplnitelná také $(T \cup \{G\})^p = T^p \cup \{G^p\}$, kde $G^p = G \setminus \{\neg p\}$.

Pokud $G^p = \square$, potom $G = \{\neg p\}$, \square je rezolventa G a $\{p\} \in T$, a máme jednokrokové LI-zamítnutí T (to je báze indukce).

Jinak je formule T^p splnitelná (stejným ohodnocením jako T, neboť to musí obsahovat p kvůli faktu $\{p\}$, tedy neobsahuje $\neg p$) a má méně proměnných než T. Tedy podle indukčního předpokladu existuje LI-odvození \square z $T^p \cup \{G^p\}$ začínající $G^p = G \setminus \{\neg p\}$.

Hledané LI-zamítnutí $T \cup \{G\}$ začínající G zkonstruujeme (podobně jako v důkazu Věty o úplnosti rezoluce) přidáním literálu $\neg p$ do všech listů, které už nejsou v $T \cup \{G\}$ (tedy vznikly odebráním $\neg p$). Tím získáme $T \cup \{G\} \vdash_{LI} \neg p$, na závěr přidáme boční klauzuli $\{p\}$ a odvodíme \square .

 $P\check{r}iklad$ 5.4.8. Mějme (splnitelnou, hornovskou) teorii T, kterou zapíšeme v množinové reprezentaci jako formuli $T = \{\{p, \neg r, \neg s\}, \{\neg q, r\}, \{q, \neg s\}, \{s\}\}$. Představte si, že chceme dokázat, že v teorii T platí $p \land q$. V rezoluční metodě uvážíme cíl $G = \{\neg p, \neg q\}$ a ukážeme, že $T \cup \{G\} \vdash_{LI} \Box$. Nejprve provedeme jednotkovou propagaci:

- $T = \{\{p, \neg r, \neg s\}, \{\neg q, r\}, \{q, \neg s\}, \{s\}\}, G = \{\neg p, \neg q\}$
- $T^s = \{\{p, \neg r\}, \{\neg q, r\}, \{q\}\}, G^s = \{\neg p, \neg q\}$
- $T^{sq} = \{\{p, \neg r\}, \{r\}\}, G^{sq} = \{\neg p\}$
- $T^{sqr} = \{\{p\}\}, G^{sqr} = \{\neg p\}$
- $T^{sqrp} = \emptyset$, $G^{sqrp} = \square$

Zpětným postupem sestrojíme rezoluční zamítnutí:

• $T^{sqrp}, G^{sqrp} \vdash_{LI} \square$:

• $T^{sqr}, G^{sqr} \vdash_{LI} \square$:

⁷Tj. v Prologu bychom položili 'dotaz' ('query'): ?-p,q.

• $T^{sq}, G^{sq} \vdash_{LI} \square$:

• $T^s, G^s \vdash_{LI} \square$:

• $T, G \vdash_{LI} \Box$

5.5 Rezoluce v Prologu

Ačkoliv skutečná síla Prologu vychází z tzv. *unifikace* a z rezoluce v predikátové logice, ukážeme si jak Prolog využívá rezoluční metodu na příkladě *výrokového* programu. Adaptace na predikáty bude později přímočará.

5.5.1 Program v Prologu

Program v Prologu je Hornova formule obsahující pouze programové klauzule, tj. fakta nebo pravidla. Dotaz je konjunkce faktů, negace dotazu je cíl.

 $P\check{r}iklad$ 5.5.1. Jako příklad programu v Prologu využijeme teorii (formuli) T a dotaz $p \wedge q$ z Příkladu 5.4.8. Například klauzuli $\{p, \neg r, \neg s\}$, která je ekvivalentní $r \wedge s \rightarrow p$, zapíšeme v Prologu jako: p:-r,s.

p:-r,s.

r:-q.

q:-s.

s.

A programu položíme dotaz:

Důsledek 5.5.2. Mějme program P a dotaz $Q = p_1 \wedge \cdots \wedge p_n$, a označme $G = \{\neg p_1, \dots, \neg p_n\}$ (tj. $G \sim \neg Q$). Následující podmínky jsou ekvivalentní:

$$\bullet$$
 $P \models Q$,

- $P \cup \{G\}$ je nesplnitelná,
- $P \cup \{G\} \vdash_{LI} \square$, a existuje LI-zamítnutí začínající cílem G.

 $D\mathring{u}kaz$. Ekvivalence prvních dvou podmínek je důkaz sporem, ekvivalence druhé a třetí je Věta o úplnosti LI-rezoluce pro Hornovy formule.

5.5.2 (draft) SLD-rezoluce

[TODO]

Rezoluce v Prologu

1) S klauzulemi interpret pracuje jako s uspořádanými seznamy literálů.

LD-rezoluce (linear definite) je LI-rezoluce, při které v každém kroku rezolventa aktuálního cíle $(\neg p_1, \ldots, \neg p_{i-1}, \neg p_i, \neg p_{i+1}, \ldots, \neg p_n)$ a boční klauzule $(p_i, \neg q_1, \ldots, \neg q_m)$ je:

$$(\neg p_1, \ldots, \neg p_{i-1}, \neg q_1, \ldots, \neg q_m, \neg p_{i+1}, \ldots, \neg p_n)$$

Pozorování Každý LI-důkaz lze transformovat na LD-důkaz stejné klauzule ze stejné formule se stejnou počáteční klauzulí (cílem).

2) Výběr literálu z cílové klauzule, přes který se rezolvuje, je určen daným selekčním pravidlem \mathcal{R} . Typicky, "vyber první literál z aktuálního cíle".

SLD-rezoluce (selection) dle \mathcal{R} je LD-rezoluce, při které se v kroku (C_i, B_i) rezolvuje přes literál $\mathcal{R}(C_i)$.

Pozorování Každý LD-důkaz lze transformovat na SLD-důkaz stejné klauzule ze stejné formule se stejnou počáteční klauzulí (cílem).

Důsledek SLD-rezoluce je úplná pro dotazy nad programy v Prologu.

Prohledávací SLD-strom

Dosud není určen výběr programové klauzule pro rezoluci s aktuálním cílem.

SLD-strom programu P a cíle G pro selekční pravidlo \mathcal{R} je strom s vrcholy označenými cíly takový, že kořen je označen G a je-li nějaký vrchol označen G', má tolik synů, kolik je možností rezolucí G' s programovými klauzulemi v P dle literálu $\mathcal{R}(G')$. Synové jsou označeni příslušnými rezolventami.

Závěrečné poznámky

- Interpret Prologu prochází SLD-strom, způsob není předepsán.
- Implementace, které používají DFS, nezachovávají úplnost.

- Jistou kontrolu nad prohledáváním poskytuje !, tzv. řez.
- Při povolení negace nastanou potíže se sémantikou programů.
- Síla rezoluční metody bude více patrná v predikátové logice.

Část II Predikátová logika

Kapitola 6

Syntaxe a sémantika predikátové logiky

Kurzy logiky vesměs začínají výrokovou logikou, která je pro svou jednoduchost vhodnější k prvnímu seznámení. Plná síla logiky v informatice se ale projeví teprve s použitím logiky predikátové. Začněme neformálním úvodem, ve kterém ilustrujeme základní aspekty predikátové logiky. K formálnímu výkladu se vrátíme v následujících sekcích.

6.1 Úvod

Připomeňme, že ve výrokové logice jsme popisovali svět pomocí výroků složených z pr-vovýroků—odpovědí na zjišťovací (ano/ne) otázky o světě. V predikátové logice (prvního řádu)¹ jsou základním stavebním kamenem proměnné reprezentující individua—nedělitelné objekty z nějaké množiny: např. přirozená čísla, vrcholy grafu, nebo stavy mikroprocesoru.

Tato individua mohou mít určité vlastnosti a vzájemné vztahy, kterým říkáme predikáty, např. 'Leaf(x)' nebo 'Edge(x,y)' mluvíme-li o grafu, nebo ' $x \leq y$ ' v přirozených číslech. Kromě toho mohou individua vstupovat do funkcí, např. 'lowest_commot_ancestor(x,y)' v zakořeněném stromu, 'succ(x)' nebo 'x+y' v přirozených číslech, a být konstantami se speciálním významem, např. 'root' v zakořeněném stromu, '0' v přirozených číslech.

Atomické formule popisují predikát (včetně predikátu rovnosti =) o proměnných nebo o termech ('výrazech' složených² z funkcí popř. konstant). A složitější tvrzení (formule) budujeme z atomických formulí pomocí logických spojek, a dvou kvantifikátorů:

- $\forall x$ "pro všechna individua (reprezentovaná proměnnou x)," a
- $\exists x$ "existuje individuum (reprezentované proměnnou x)".

Uveď me příklad: tvrzení "Každý, kdo~má~dítě, je~rodič." bychom mohli formalizovat následující formulí:

$$(\forall x)((\exists y) \text{child_of}(y, x) \rightarrow \text{is_parent}(x))$$

 $^{^{1}}$ V logice druhého řádu máme také proměnné reprezentující množiny individuí nebo i množiny n-tic, tj. relace na množině individuí.

²Podobně jako vytváříme aritmetické výrazy.

kde child $_{-}$ of(y,x) je binární predikát vyjadřující, že individuum reprezentované proměnnou y je dítětem individua reprezentovaného proměnnou x, a is $_{-}$ parent(x) je unární predikát (tj. 'vlastnost') vyjadřující, že individuum reprezentované x je rodič.

Jak je to s platností této formule? To záleží na konkrétním modelu světa/systému, který nás zajímá. Model je (neprázdná) množina objektů spolu s unární relací (tj. podmnožinou) interpretující unární relační symbol is_parent a binární relací interpretující binární relační symbol child_of. Tyto relace mohou být obecně jakékoliv a snadno sestrojíme model, kde formule neplatí. Pokud ale modelujeme například všechny lidi na světě, a relace mají svůj přirozený význam, potom formule bude platit.

Podívejme se na ještě jeden příklad, tentokrát i s funkčními symboly a s konstantním symbolem: "Je-li $x_1 \leq y_1$ a $x_2 \leq y_2$, potom platí $(y_1 \cdot y_2) - (x_1 \cdot x_2) \geq 0$." Výsledná formule by mohla vypadat takto:

$$\varphi = (x_1 \le y_1) \land (x_2 \le y_2) \rightarrow ((y_1 \cdot y_2) + (-(x_1 \cdot x_2)) \ge 0)$$

Vidíme dva binární relační symboly (\leq, \geq) , binární funkční symbol +, unární funkční symbol -, a konstantní symbol 0.

Modelem, ve kterém formule platí, je množina přirozených čísel \mathbb{N} s binárními funkcemi $+^{\mathbb{N}}, \cdot^{\mathbb{N}}$, unární funkcí $-^{\mathbb{N}}$, a konstantou $0^{\mathbb{N}} = 0$. Vezmeme-li ale podobně množinu celých čísel, formule už platit nebude.

Poznámka 6.1.1. Mohli bychom chápat symbol – jako binární operaci, obvykle se ale zavádí jako unární. Pro konstantní symbol 0 používáme (jak je zvykem) stejný symbol, jako pro přirozené číslo 0. Ale pozor, v našem modelu může být tento konstantní symbol interpretován jako jiné číslo, nebo náš model vůbec nemusí sestávat z čísel!

Ve formuli nejsou žádné kvantifikátory (takovým formulím říkáme otevřené), proměnné x_1, x_2, y_1, y_2 jsou volné proměnné této formule (nejsou vázané žádným kvantifikátorem), píšeme $\varphi(x_1, x_2, y_1, y_2)$. Sémantiku této formule chápeme stejně, jako formule

$$(\forall x_1)(\forall x_2)(\forall y_1)(\forall y_2)\varphi(x_1,x_2,y_1,y_2)$$

Výraz $(y_1 \cdot y_2) + (-(x_1 \cdot x_2))$ je příkladem termu, výrazy $(x_1 \leq y_1)$, $(x_2 \leq y_2)$ a $((y_1 \cdot y_2) + (-(x_1 \cdot x_2)) \geq 0)$ jsou atomické~(pod)formule. V čem spočívá rozdíl? Máme-li konkrétní model, a konkrétní ohodnocení~proměnných individui (prvky) tohoto modelu, potom atomickým formulím lze přiřadit pravdivostní hodnotu. Lze je tedy kombinovat s logickými spojkami do složitějších 'logických výrazů', tj. formulí. Na druhou stranu 'výsledkem' termu (při daném ohodnocení) je nějaké konkrétní individuum z modelu.

Upozorníme ještě na to, že v zápisu formule φ jsme použili infixový zápis pro funkční symboly $+, \cdot$ a pro relace \leq, \geq , a podobné konvence o uzávorkování jako ve výrokové logice. Jinak bychom formuli φ zapsali takto:

$$((\leq (x_1, y_1) \land \leq (x_2, y_2)) \rightarrow \leq (+(\cdot (y_1, y_2), -(\cdot (x_1, x_2))), 0))$$

Cvičení 6.1. Najděte vhodnou definici pojmu stromu formule (zobecňující strom výroku z výrokové logiky) a nakreslete strom formule $(\forall x_1)(\forall x_2)(\forall y_1)(\forall y_2)\varphi(x_1,x_2,y_1,y_2)$.

³Vezměme například jednoprvkovou množinu $A = \{a\}$, a relace child_of^A = $\{a\}$, parent^A = \emptyset , tedy jediný objekt je svým vlastním dítětem, ale není rodičem.

⁴Při formalizaci musíme být velmi opatrní, abychom nepřidali dodatečné předpoklady, které v modelovaném systému nemusí platit. Zde se například schovává předpoklad, že má-li někdo dítě, musí to být jeho dítě.

Nyní začneme tím, že formalizujeme tento koncept "modelu", tzv. strukturu. Zbytek kapitoly sleduje osnovu výkladu o výrokové logice: představíme syntaxi, následně sémantiku, a nakonec pokročilejší vlastnosti formulí, teorií, a struktur. Na závěr si ukážeme jednu jednoduchou, ale velmi užitečnou aplikaci predikátové logiky, takzvanou definovatelnost podmnožin a relací, která je základem relačních databází (např. SQL), a ještě jednou se podíváme na vztah výrokové a predikátové logiky.

6.2 Struktury

Nejprve specifikujeme, jakého *typu* bude daná struktura, tj. jaké bude mít relace, funkce (jakých arit) a konstanty, a jaké symboly pro ně budeme používat. Této formální specifikaci se někdy říká *typ*, my budeme říkat *signatura*.⁵ Připomeňme, že *konstanty* můžeme chápat jako funkce arity 0 (tj. funkce bez vstupů).

Definice 6.2.1. Signatura je dvojice $\langle \mathcal{R}, \mathcal{F} \rangle$, kde \mathcal{R}, \mathcal{F} jsou disjunktní množiny symbolů (relační a funkční, ty zahrnují konstantní) spolu s danými aritami (tj. danými funkcí ar: $\mathcal{R} \cup \mathcal{F} \to \mathbb{N}$) a neobsahující symbol '=' (ten je rezervovaný pro rovnost).

Často ale budeme signaturu zapisovat jen výčtem symbolů, bude-li jejich arita a to, zda jsou relační nebo funkční, zřejmé z kontextu. Uveďme několik příkladů signatur:

- $\langle E \rangle$ signatura grafů: E je binární relační symbol (struktury jsou uspořádané grafy),
- $\langle \leq \rangle$ signatura *částečných uspořádání*: stejná jako signatura grafů, jen jiný symbol,
- $\langle +, -, 0 \rangle$ signatura grup: + je binární funkční, unární funkční, 0 konstantní symbol
- $\langle +, -, 0, \cdot, 1 \rangle$ signatura *těles*: · je binární funkční, 1 konstantní symbol
- $\langle +, -, 0, \cdot, 1, \leq \rangle$ signatura uspořádaných těles: \leq je binární relační symbol,
- $\langle -, \wedge, \vee, \perp, \top \rangle$ signatura *Booleových algeber*: \wedge, \vee jsou binární funkční symboly, \perp, \top jsou konstantní symboly,
- $\langle S, +, \cdot, 0, \leq \rangle$ signatura aritmetiky: S je unární funkční symbol ('successor').

Kromě běžných symbolů relací, funkcí a konstant (známých např. z logiky nebo z aritmetiky) typicky používáme pro relační symboly P, Q, R, \ldots , pro funkční symboly f, g, h, \ldots , a pro konstantní symboly c, d, a, b, \ldots

Strukturu dané signatury získáme tak, že na nějaké neprázdné doméně zvolíme realizace (také říkáme interpretace) všech relačních a funkčních symbolů (a konstant), tj. konkrétní relace resp. funkce příslušných arit. (V případě konstantního symbolu je jeho realizací zvolený prvek z domény.)⁷

 $^{^5}$ Signaturu si můžete představovat analogicky definici $t\check{r}idy$ v OOP, struktury potom odpovídají objektům této třídy (v 'programovacím jazyce' teorie množin).

⁶Ne každá struktura v této signatuře je částečné uspořádání, k tomu ještě potřebujeme, aby splňovala příslušné *axiomy*.

⁷Na tom, jaké konkrétní symboly v signatuře použijeme, nezáleží, můžeme je interpretovat libovolně. Například to, že máme symbol + neznamená, že by jeho interpretace musela mít cokoliv společného se sčítáním (tedy kromě toho, že to bude také binární funkce).

Příklad 6.2.2. Formální definice struktury je uvedena níže, nejprve si ukážeme několik příkladů:

- Struktura v prázdné signatuře () je libovolná neprázdná množina.⁸ (Nemusí být konečná, dokonce ani spočetná!)
- Struktura v signatuře grafů je $\mathcal{G} = \langle V, E \rangle$, kde $V \neq \emptyset$ a $E \subseteq V^2$, říkáme jí orientovaný graf.
 - Je-li E irreflexivní a symetrická, jde o jednoduchý graf (tj. neorientovaný, bez smyček).
 - Je-li E reflexivní, tranzitivní, a antisymetrická, jde o částečné uspořádání.
 - Je-li E reflexivní, tranzitivní, a symetrická, mluvíme o ekvivalenci.
- Struktury v signatuře částečných uspořádání jsou tytéž, jako v signatuře grafů, signatury se liší jen použitým symbolem. (Tedy ne každá struktura v signatuře částečných uspořádání je částečné uspořádání!)
- Struktury v signatuře grup jsou například následující grupy:
 - $-\underline{\mathbb{Z}}_n = \langle \mathbb{Z}_n, +, -, 0 \rangle$, aditivní grupa celých čísel modulo n (operace jsou modulo n).
 - $-\mathcal{S}_n = \langle \operatorname{Sym}_n, \circ, ^{-1}, \operatorname{id} \rangle$ je symetrická grupa (grupa všech permutací) na n prvcích.
 - $-\underline{\mathbb{Q}}^* = \langle \mathbb{Q} \setminus \{0\}, \cdot, ^{-1}, 1 \rangle$ je multiplikativní grupa (nenulových) racionálních čísel. Všimněte si, že interpretací symbolu 0 je číslo 1.

Všechny tyto struktury splňují axiomy teorie grup, snadno ale najdeme jiné struktury, které tyto axiomy nesplňují, a nejsou tedy grupami. Například změníme-li ve struktuře \mathbb{Z}_n interpretaci symbolu + na funkci · (modulo n).

- Struktury $\underline{\mathbb{Q}} = \langle \mathbb{Q}, +, -, 0, \cdot, 1, \leq \rangle$ a $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, -, 0, \cdot, 1, \leq \rangle$, se standardními operacemi a uspořádáním, jsou v signatuře uspořádaných těles (ale jen první z nich je uspořádaným tělesem).
- $\underline{\mathcal{P}(X)} = \langle \mathcal{P}(X), \bar{}, \cap, \cup, \emptyset, X \rangle$, tzv. potenční algebra nad množinou X, je to struktura v signatuře Booleových algeber. (Booleova algebra je to pokud $X \neq \emptyset$
- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$, kde S(x) = x + 1, a ostatní symboly jsou interpretovány standardně, je standardní model aritmetiky.

Definice 6.2.3 (Struktura). Struktura v signatuře $\langle \mathcal{R}, \mathcal{F} \rangle$ je trojice $\mathcal{A} = \langle \mathcal{A}, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$, kde

- A je neprázdná množina, říkáme jí doména (také univerzum),
- $\mathcal{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathcal{R}\}$ kde $R^{\mathcal{A}} \subseteq A^{\operatorname{ar}(R)}$ je interpretace relačního symbolu R,
- $\mathcal{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathcal{F} \}$ kde $f^{\mathcal{A}} \colon A^{\operatorname{ar}(R)} \to A$ je *interpretace* funkčního symbolu f (speciálně pro konstantní symbol $c \in \mathcal{F}$ máme $c^{\mathcal{A}} \in A$).

 $^{^8}$ Jak uvidíme v definici níže, formálně vzato je to trojice $\langle A, \emptyset, \emptyset \rangle$, ale tento rozdíl budeme zanedbávat.

 $^{^9}$ Zde \mathbb{Z}_n znamená strukturu, zatímco $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ jen její doménu. Často se ale toto nerozlišuje a symbol \mathbb{Z}_n se používá jak pro celou strukturu, tak jen její doménu. Podobně +, -, 0 jsou jak symboly, tak i jejich interpretace. To je běžně používané značení, je klíčové být si vždy vědomi toho, v jakém významu daný symbol na daném místě používáme.

Cvičení 6.2. Uvažme signaturu n konstant $\langle c_1, c_2, \ldots, c_n \rangle$. Jak vypadají struktury v této signatuře? Popište např. všechny nejvýše pětiprvkové struktury v signatuře tří konstant. (Interpretace konstant nemusí být různé!) A jak je tomu v případě signatury spočetně mnoha $konstant \langle c_1, c_2, \dots \rangle = \langle c_i \mid i \in \mathbb{N} \rangle$?

6.3Syntaxe

V této sekci představíme syntaxi predikátové logiky (prvního řádu). Srovnejte co má syntaxe společného, a jak se liší, od syntaxe výrokové logiky.

6.3.1 Jazyk

Při specifikaci jazyka nejprve stanovíme, v jakého typu jsou struktury, které chceme popisovat, tj. určíme signaturu. Dále přidáme informaci, zda je jazyk s rovností nebo ne, tj. zda ve formulích můžeme také používat symbol '=' vyjadřující rovnost (identitu) prvků v doméně struktur. ¹⁰ Do jazyka patří následující:

- spočetně mnoho proměnných x_0, x_1, x_2, \dots (ale píšeme také x, y, z, \dots ; množinu všech proměnných označíme Var),
- relační, funkční a konstantní symboly ze signatury, a symbol = jde-li o jazyk s rovností,
- univerzální a existenční kvantifikátory $(\forall x), (\exists x)$ pro každou proměnnou $x \in \text{Var}, ^{11}$
- symboly pro logické spojky \neg , \wedge , \vee , \rightarrow , \leftrightarrow a závorky (,).

Podobně jako symbol □ zastupující libovolnou binární logickou spojku budeme někdy psát (Qx) pro kvantifikátor $(\forall x)$ nebo $(\exists x)$.

Symbolům ze signatury říkáme *mimologické*, ostatní jsou *logické*. Jazyk musí obsahovat alespoň jeden relační symbol (buď rovnost, nebo v signatuře). 12

Jazyk tedy specifikujeme pomocí signatury a informace 's rovností' (popř. 'bez rovnosti'). Například:

- Jazyk $L = \langle \rangle$ s rovností je jazyk *čisté rovnosti*,
- jazyk $L = \langle c_0, c_1, c_2, \dots \rangle$ s rovností je jazyk *spočetně mnoha konstant*,
- jazyk $uspo\check{r}\acute{a}d\acute{a}n\acute{i}$ je $\langle \leq \rangle$ s rovností,
- jazyk teorie grafů je $\langle E \rangle$ s rovností,
- jazyky teorie grup, teorie těles, teorie uspořádaných těles, Booleových algeber, aritmetiky jsou jazyky s rovností odpovídající signaturám z Příkladu 6.2.2

 $^{^{10} \}mathrm{Ve}$ většině aplikací budeme používat jazyky s rovností. V některých speciálních oblastech se ale hodí rovnost nemít. Například pokud se zabýváme velmi rychlými výpočetními modely: zjistit, které proměnné se sobě rovnají, vyžaduje najít tranzitivní uzávěr rovností daných formulí, což je relativně výpočetně náročný problém.

 $^{^{11}}$ Kvantifikátor chápeme jako jediný symbol, tedy $(\forall x)$ neobsahuje proměnnou x.Někdy se také používají symboly $\forall_x,\exists_x.$ 12 Jinak bychom v jazyce nemohli vybudovat žádná 'tvrzení' (formule), viz níže.

(a) $(S(0) + x) \cdot y$ v jazyce aritmetiky

(b) $\neg(x \land y) \lor \bot$ v jazyce Booleových algeber

Obrázek 6.1: Strom termu

6.3.2 Termy

Termy jsou syntaktické 'výrazy' složené z proměnných, konstantních symbolů a funkčních symbolů.

Definice 6.3.1 (Termy). Termy jazyka L jsou konečné nápisy definované induktivně:

- každá proměnná a každý konstantní symbol z L je term,
- je-li f funkční symbol z L arity n a jsou-li t_1, \ldots, t_n termy, potom nápis $f(t_1, t_2, \ldots, t_n)$ je také term.

Množinu všech $term \mathring{u}$ jazyka L označíme $Term_L$.

Při zápisu termů obsahujících binární funkční symbol můžeme používat infixový zápis, např. (t_1+t_2) znamená $+(t_1,t_2)$. Závorky někdy vynecháváme, je-li struktura termu ('priorita operátorů') zřejmá.

Podterm je podřetězec termu, který je sám termem (je to tedy buď celý term, nebo se vyskytl jako nějaké t_i při konstrukci termu).

Pokud term neobsahuje proměnnou, říkáme mu konstantní (ground), například ($(S(0) + S(0)) \cdot S(S(0))$) je konstantní term v jazyce aritmetiky.¹³

 $Strom\ termu\ t$, označme Tree(t), je definován podobně jako strom výroku, v listech jsou proměnné nebo konstantní symboly, ve vnitřních vrcholech jsou funkční symboly, jejichž arita je rovna počtu synů.

 $P\check{r}iklad$ 6.3.2. Nakresleme stormy termů (a) $(S(0)+x)\cdot y$ v jazyce aritmetiky, (b) $\neg(x\wedge y)\vee\bot$ v jazyce Booleových algeber. Zde \neg, \land, \lor nejsou logické spojky z jazyka, ale mimologické symboly ze signatury Booleových algeber (byť používáme stejné symboly)! Termy v tomto jazyce můžeme chápat jako výrokové formule (s konstantami pro spor a tautologii), viz Sekce 6.9. Na obrázku 6.3.2 jsou nakresleny stromy těchto termů.

Není těžké uhádnout, jaká bude *sémantika* termů. Máme-li konkrétní strukturu, odpovídá term funkci na její doméně: vstupem je ohodnocení proměnných prvky domény, konstantní a funkční symboly jsou nahrazeny jejich interpretacemi, a výstupem je hodnota (prvek domény) v kořeni. Formálněji ale až v Sekci 6.4.

¹³Pozor, termy jsou čistě syntaktické, můžeme používat jen symboly z jazyka, nikoliv prvky struktury, tedy např. $(1+1) \cdot 2$ není term v jazyce aritmetiky! (Mohli bychom ale definovat nové konstantní symboly 1, 2 jako zkratky za S(0) a S(S(0)) a rozšířit tak náš jazyk, viz Sekce 6.7.1.)

6.3.3 Formule

Termům nelze v žádném smyslu přiřadit pravdivostní hodnotu, k tomu potřebujeme *predikát* (relační symbol nebo rovnost), který mluví o 'vztahu' termů: v konkrétní struktuře při konkrétním ohodnocení proměnných prvky z domény je tento vztah bud' splněn, nebo nesplněn.

Nejjednoduššími formulemi jsou atomické formule. Z nich potom vybudujeme pomocí logických spojek a kvantifikátorů všechny formule.

Definice 6.3.3 (Atomická formule). Atomická formule jazyka L je nápis $R(t_1, \ldots, t_m)$, kde R je n-ární relační symbol z L (včetně = jde-li o jazyk s rovností) a $t_i \in \text{Term}_L$.

U binárních relačních symbolů často používáme infixový zápis, např. atomickou formuli $\leq (x,y)$ zapíšeme jako $x \leq y$, a (je-li jazyk s rovností) místo $= (t_1,t_2)$ budeme psát $t_1 = t_2$. *Příklad* 6.3.4. Uveď me několik příkladů atomických formulí:

- R(f(f(x)), c, f(d)) kde R je ternární relační, f unární funkční, c, d konstantní symboly,
- $(x \cdot x) + (y \cdot y) \le (x + y) \cdot (x + y)$ v jazyce uspořádaných těles,
- $x \cdot y \le (S(0) + x) \cdot y$ v jazyce aritmetiky,
- $\neg(x \land y) \lor \bot = \bot$ v jazyce Booleových algeber

Definice 6.3.5 (Formule). Formule jazyka L jsou konečné nápisy definované induktivně:

- každá atomická formule jazyka L je formule,
- jsou-li φ, ψ formule, potom $(\varphi \wedge \psi), (\varphi \vee \psi), (\varphi \rightarrow \psi),$ a $(\varphi \leftrightarrow \psi)$ jsou také formule,
- je-li φ formule a x proměnná, potom $((\forall x)\varphi)$ a $((\exists x)\varphi)$ jsou také formule.

Podformule je podřetězec, který je sám o sobě formulí. $Strom\ formule$, označíme $Tree(\varphi)$, je definován takto: strom atomické formule $\varphi = R(t_1, \ldots, t_n)$ má v kořeni relační symbol R, a k němu jsou připojeny stromy $Tree(t_i)$. Není-li φ atomická, strom zkonstruujeme obdobně jako strom výroku. Při zápisu formulí používáme obdobné konvence jako ve výrokové logice, přičemž kvantifikátory mají stejnou prioritu jako \neg (vyšší než ostatní logické spojky). Místo $((\forall x)\varphi)$ tedy můžeme psát $(\forall x)\varphi$.

 $P\check{r}iklad$ 6.3.6. Příkladem formule v jazyce aritmetiky je $(\forall x)(x\cdot y\leq (S(0)+x)\cdot y)$. Její strom je znázorněn na Obrázku 6.2.

Volné a vázané proměnné

Význam formule¹⁶ může, nebo nemusí záviset na proměnných, které se v ní vyskytují: srovnejte $x \le 0$ a $(\exists x)(x \le 0)$ (a co teprve $x \le 0 \lor (\exists x)(x \le 0)$). Nyní tento koncept upřesníme a zavedeme potřebnou terminologii.

Výskytem proměnné x ve formuli φ myslíme list Tree (φ) označený x. ¹⁷ Výskyt je vázaný, je-li součástí nějaké podformule (podstromu) začínající (Qx). Není-li výskyt vázaný, je volný.

¹⁴Kvantifikátory mají, podobně jako negace, jediného syna.

 $^{^{15}}$ Někdy se také nepíší závorky v kvantifikátorech, tj. jen $\forall x \varphi$, my je ale pro přehlednost psát budeme.

 $^{^{16}}$ Přesněji, její $pravdivostní\ hodnota,$ kterou formálně definujeme níže v Sekci 6.4.3.

 $^{^{17}}$ Proměnná x se tedy nevyskytuje v symbolu pro kvantifikátor (Qx).

Obrázek 6.2: Strom formule $(\forall x)(x \cdot y \leq (S(0) + x) \cdot y)$

Proměnná je volná ve φ , pokud má ve φ volný výskyt, a vázaná ve φ , pokud má ve φ vázaný výskyt. Zápis $\varphi(x_1,\ldots,x_n)$ znamená, že x_1,\ldots,x_n jsou všechny volné proměnné ve formuli φ .

 $P\check{r}iklad$ 6.3.7. Proměnná může být volná i vázaná, např. ve formuli $\varphi = (\forall x)(\exists y)(x \leq y) \lor x \leq z$ je první výskyt x vázaný a druhý výskyt volný. (Nakreslete si strom formule!) Proměnná y je vázaná (její jediný výskyt je vázaný) a z je volná. Můžeme tedy psát $\varphi(x, z)$.

Poznámka 6.3.8. Jak uvidíme níže, význam (pravdivostní hodnota) formule závisí pouze na ohodnocení volných proměnných. Proměnné v kvantifikátorech, spolu s příslušnými vázanými výskyty, můžeme libovolně přejmenovat.

Otevřené a uzavřené formule

Často budeme mluvit o následujících dvou důležitých druzích formulí:

Definice 6.3.9 (Otevřená a uzavřená formule). Formule je *otevřená*, neobsahuje-li žádný kvantifikátor, a *uzavřená* (neboli *sentence*), pokud nemá žádnou volnou proměnnou

Příklad 6.3.10. Uveď me několik příkladů:

- formule $x + y \le 0$ je otevřená,
- formule $(\forall x)(\forall y)(x+y\leq 0)$ je uzavřená (tedy je to sentence),
- formule $(\forall x)(x+y\leq 0)$ není ani otevřená, ani uzavřená,
- formule $(0+1=1) \land (1+1=0)$ je otevřená i uzavřená.

Každá atomická formule je otevřená, otevřené formule jsou jen kombinace atomických pomocí logických spojek. Formule může být otevřená i uzavřená zároveň, v tom případě jsou všechny její termy konstantní. Formule je uzavřená, právě když nemá žádnou volnou proměnnou.¹⁸

¹⁸Neplatí ale, že formule je otevřená, pokud nemá žádnou vázanou proměnnou, viz formule $(\forall x)0=1$.

Poznámka 6.3.11. Jak uvidíme později, pravdivostní hodnota formule závisí jen na ohodnocení jejích volných proměnných. Speciálně, sentence má v dané struktuře pravdivostní hodnotu 0 nebo 1 (nezávisle na ohodnocení proměnných). To je důvod, proč hrají sentence v logice důležitou roli.

6.3.4 Instance a varianty

Jak jsme viděli, jedna proměnná se může ve formuli vyskytovat v různých 'rolích'. Jde o velmi podobný princip jako v programování, kde jeden identifikátor může v programu znamenat různé proměnné (buď lokální, nebo globální). Pod pojmem instance si představte 'dosazení' (termu) do (globální) proměnné (nebo lépe 'nahrazení' proměnné nějakým výrazem, který ji počítá), a pod pojmem varianta 'přejmenování' (lokální) proměnné. Vezměme například formuli $\varphi(x)$:

$$P(x) \wedge (\forall x)(Q(x) \wedge (\exists x)R(x))$$

První výskyt proměnné x je volný, druhý je vázaný kvantifikátorem $(\forall x)$, a třetí je vázaný $(\exists x)$. Pokud 'dosadíme' za proměnnou x term t=1+1, dostáváme instanci formule φ , kterou označíme $\varphi(x/t)$:

$$P(1+1) \wedge (\forall x)(Q(x) \wedge (\exists x)R(x))$$

Můžeme také přejmenovat kvantifikátory ve formuli, tak získáme variantu formule φ , např.:

$$P(x) \wedge (\forall y)(Q(y) \wedge (\exists z)R(z))$$

Jak víme, kdy a jak toto můžeme provést, abychom zachovali význam, tj. aby instance byla důsledkem φ , a varianta byla s φ ekvivalentní? To nyní chceme zformalizovat.

Instance

Pokud do formule φ dosadíme za volnou proměnnou x term t, požadujeme, aby výsledná formule 'říkala' o t 'totéž', co φ o x.

 $P\check{r}iklad$ 6.3.12. Například formule $\varphi(x)=(\exists y)(x+y=1)$ říká o x, že 'existuje x-1'. Term t=1 lze dosadit, neboť $\varphi(x/t)=(\exists y)(1+y=1)$ říká 'existuje 1-1'. Ale term t=y dosadit nelze, $(\exists y)(y+y=1)$ říká '1 je dělitelné 2'. Problém spočívá v tom, že term t=y obsahuje proměnnou y, jež bude nově vázaná kvantifikátorem $(\exists y)$. Takové situaci se musíme vyhnout.

Definice 6.3.13 (Substituovatelnost a instance). Term t je substituovatelný za proměnnou x ve formuli φ , pokud po simultánním nahrazení všech volných výskytů x ve φ za t nevznikne ve φ žádný vázaný výskyt proměnné z t. V tom případě říkáme vzniklé formuli instance φ vzniklá substitucí t za x, a označujeme ji $\varphi(x/t)$.

Poznámka 6.3.14. Všimněte si, že term t není substituovatelný za x do φ , právě když x má volný výskyt v nějaké podformuli φ tvaru $(Qy)\psi$ a proměnná y se vyskytuje v t. Speciálně, konstantní termy jsou vždy substituovatelné.

Varianty

Potřebujeme-li substituovat term t do formule φ , můžeme to udělat vždy, pokud nejprve přejmenujeme všechny kvantifikované proměnné na zcela nové (tj. takové, které se nevyskytují ani ve φ ani v t), a potom substituujeme t do takto vzniklé varianty formule φ .

Definice 6.3.15 (Varianta). Má-li formule φ podformuli tvaru $(Qx)\psi$ a je-li y proměnná, taková, že

- y je substituovatelná za x do ψ a
- y nemá volný výskyt v ψ ,

potom nahrazením podformule $(Qx)\psi$ formulí $(Qy)\psi(x/y)$ vznikne *varianta* formule φ v podformuli $(Qx)\psi$. *Varianta* říkáme i výsledku postupné variace ve více podformulích.

Všimněte si, že požadavek na proměnnou y z definice varianty je vždy splněn, pokud se y nevyskytuje ve formuli φ .

Příklad 6.3.16. Mějme formuli $\varphi = (\exists x)(\forall y)(x \leq y)$. Potom:

- $(\exists u)(\forall v)(u \leq v)$ je varianta φ ,
- $(\exists u)(\forall u)(u \leq u)$ není varianta φ , neboť y není substituovatelná za x do φ ,
- $(\exists x)(\forall x)(x \leq x)$ není varianta φ , neboť x má volný výskyt $\psi = (x \leq y)$.

Tím jsme uzavřeli výklad o syntaxi, následuje sémantika.

6.4 Sémantika

Než se pustíme do formálnějšího výkladu, shrňme stručně sémantiku, tak jak jsme ji už naznačili v předchozích sekcích:

- modely jsou struktury dané signatury,
- formule platí ve struktuře, pokud platí při každém ohodnocení volných proměnných prvky z domény,
- hodnoty termů se vyhodnocují podle jejich stromů, kde symboly nahradíme jejich interpretacemi (relacemi, funkcemi, a konstantami z domény),
- z hodnot termů získáme pravdivostní hodnoty atomických formulí: je výsledná n-tice v relaci?
- hodnoty složených formulí vyhodnocujeme také podle jejich stromu, přičemž $(\forall x)$ hraje roli 'konjunkce přes všechny prvky' a $(\exists y)$ hraje roli 'disjunkce přes všechny prvky' z domény struktury

Nyní formálněji:

6.4.1 Modely jazyka

Definice 6.4.1 (Model jazyka). *Model jazyka L*, nebo také *L*-struktura, je libovolná struktura v signatuře jazyka *L. Třídu* všech modelů jazyka označíme M_L .

Poznámka 6.4.2. V definici nehraje roli, zda je jazyk s rovností nebo bez. A proč nemůžeme mluvit o množině všech modelů M_L , proč musíme říkat třida? Protože doménou struktury může být libovolná neprázdná množina, a 'množina všech množin' neexistuje, je to klasický příklad tzv. vlastní třídy. Třída je 'soubor' všech množin splňujících danou vlastnost (popsatelnou v jazyce teorie množin).

 $P\check{r}iklad$ 6.4.3. Mezi modely jazyka uspořádání $L = \langle \leq \rangle$ patří následující struktury: $\langle \mathbb{N}, \leq \rangle$, $\langle \mathbb{Q}, > \rangle$, libovolný orientovaný graf $G = \langle V, E \rangle$, $\langle \mathcal{P}(X), \subseteq \rangle$. Ale také např. $\langle \mathbb{C}, R^{\mathbb{C}} \rangle$ kde $(z_1, z_2) \in R^{\mathbb{C}}$ právě když $|z_1| = |z_2|$ nebo $\langle \{0, 1\}, \emptyset \rangle$, což nejsou částečná uspořádání.

6.4.2 Hodnota termu

Mějme term t jazyka $L = \langle \mathcal{R}, \mathcal{F} \rangle$ (s rovností nebo bez), a L-strukturu $\mathcal{A} = \langle A, \mathcal{R}^{\mathcal{A}}, F^{\mathcal{A}} \rangle$. Ohodnocení proměnných v množině A je libovolná funkce $e : \text{Var} \to A$.

Definice 6.4.4 (Hodnota termu). *Hodnota termu t ve struktuře* \mathcal{A} *při ohodnocení* e, kterou značíme $t^{\mathcal{A}}[e]$, je dána induktivně:

- $x^{\mathcal{A}}[e] = e(x)$ pro proměnnou $x \in \text{Var}$,
- $c^{\mathcal{A}}[e] = c^{\mathcal{A}}$ pro konstantní symbol $c \in \mathcal{F}$, a
- je-li $t = f(t_1, \ldots, t_n)$ složený term, kde $f \in \mathcal{F}$, potom:

$$t^{\mathcal{A}}[e] = f^{\mathcal{A}}(t_1^{\mathcal{A}}[e], \dots, t_n^{\mathcal{A}}[e])$$

Poznámka 6.4.5. Všimněte si, že hodnota termu závisí pouze na ohodnocení proměnných vyskytujících se v něm. Speciálně, je-li t konstantní term, jeho hodnota na ohodnocení nezávisí. Obecně, každý term t reprezentuje $termovou\ funkci\ f_t^A\colon A^k\to A$, kde k je počet proměnných v t, a konstantním termům odpovídají konstantní funkce.

Příklad 6.4.6. Uveď me dva příklady:

- Hodnota termu $-(x \vee \bot) \wedge y$ v Booleově algebře $\underline{\mathcal{P}(\{0,1,2\})}$ při ohodnocení e ve kterém $e(x) = \{1,2\}$ a $e(y) = \{2,3\}$ je $\{3\}$.
- Hodnota termu x+1 ve struktuře $\mathcal{N}=\langle \mathbb{N},\cdot,3\rangle$ jazyka $L=\langle +,1\rangle$ při ohodnocení e ve kterém e(x)=2 je $(x+1)^{\mathcal{N}}[e]=6$.

6.4.3 Pravdivostní hodnota formule

Nyní už jsme připraveni definovat pravdivostní hodnotu. Lokálně pro ni zavedeme značení PH.

Definice 6.4.7 (Pravdivostní hodnota). Mějme formuli φ v jazyce L, strukturu $\mathcal{A} \in \mathrm{M}(L)$, a ohodnocení proměnných $e: \mathrm{Var} \to A$. Pravdivostní hodnota φ v \mathcal{A} při ohodnocení e, $\mathrm{PH}^{\mathcal{A}}(\varphi)[e]$, je definována induktivně podle struktury formule:

Pro atomickou formuli $\varphi = R(t_1, \dots, t_n)$ máme

$$\mathrm{PH}^{\mathcal{A}}(\varphi)[e] = \begin{cases} 1 & \mathrm{pokud}\ (t_1^{\mathcal{A}}[e], \dots, t_n^{\mathcal{A}}[e]) \in R^{\mathcal{A}}, \\ 0 & \mathrm{jinak}. \end{cases}$$

Speciálně, je-li φ tvaru $t_1 = t_2$, potom $\mathrm{PH}^{\mathcal{A}}(\varphi)[e] = 1$ právě když $(t_1^{\mathcal{A}}[e], t_2^{\mathcal{A}}[e]) \in =^{\mathcal{A}}$, kde $=^{\mathcal{A}}$ je identita na A, tj. právě když $t_1^{\mathcal{A}}[e] = t_2^{\mathcal{A}}[e]$ (obě strany rovnosti jsou stejný prvek $a \in A$). Pravdivostní hodnota negace je definována takto:

$$PH^{\mathcal{A}}(\neg \varphi)[e] = f_{\neg}(PH^{\mathcal{A}}(\varphi)[e]) = 1 - PH^{\mathcal{A}}(\varphi)[e]$$

Obdobně pro binární logické spojky, jsou-li φ, ψ a $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, potom:

$$\mathrm{PH}^{\mathcal{A}}(\varphi \square \psi)[e] = f_{\square}(\mathrm{PH}^{\mathcal{A}}(\varphi)[e], \mathrm{PH}^{\mathcal{A}}(\psi)[e])$$

Zbývá definovat pravdivostní hodnotu pro kvantifikátory, tj. formule tvaru $(Qx)\varphi$. Budeme potřebovat následující značení: Změníme-li v ohodnocení $e: Var \to A$ hodnotu pro proměnnou x na a, výsledné ohodnocení zapíšeme jako e(x/a). Platí tedy e(x/a)(x) = a. Pravdivostní hodnotu pro $(Qx)\varphi$ definujeme takto:

$$PH^{\mathcal{A}}((\forall x)\varphi)[e] = \min_{a \in A} (PH^{\mathcal{A}}(\varphi)[e(x/a)])$$
$$PH^{\mathcal{A}}((\forall x)\varphi)[e] = \max_{a \in A} (PH^{\mathcal{A}}(\varphi)[e(x/a)])$$

Tedy v ohodnocení e nastavíme hodnotu proměnné x postupně na všechny prvky $a \in A$ a požadujeme, aby PH byla rovna 1 vždy (v případě \forall) nebo alespoň jednou (v případě \exists).

Poznámka 6.4.8. Pravdivostní hodnota závisí pouze na ohodnocení volných proměnných. Speciálně, je-li φ sentence, potom její pravdivostní hodnota nezávisí na ohodnocení.

 $P\check{r}iklad$ 6.4.9. Vezměme si uspořádané těleso \mathbb{Q} . Potom:

- $PH^{\mathbb{Q}}(x \le 1 \land \neg(x \le 0))[e] = 1$ právě když $e(x) \in (0, 1]$,
- $PH^{\mathbb{Q}}((\forall x)(x \cdot y = y))[e] = 1$ právě když e(y) = 0,
- $\mathrm{PH}^{\mathbb{Q}}((\exists x)(x \leq 0 \land \neg x = 0))[e] = 1$ pro každé ohodnocení e (je to sentence), ale
- $PH^{\mathcal{A}}((\exists x)(x \leq 0 \land \neg x = 0))[e] = 0$ (pro každé e), je-li $\mathcal{A} = \langle \mathbb{N}, +, -, 0, \cdot, 1 \rangle$ se standardními operacemi a nerovností.

6.4.4 Platnost

Na základě pravdivostní hodnoty už můžeme definovat klíčový pojem sémantiky, platnost.

Definice 6.4.10 (Platnost ve strukture). Mějme formuli φ a strukturu \mathcal{A} (ve stejném jazyce).

- Je-li e ohodnocení a $PH^{\mathcal{A}}(\varphi)[e] = 1$, potom říkáme, že φ platí v \mathcal{A} při ohodnocení e, a píšeme $\mathcal{A} \models \varphi[e]$. (V opačném případě říkáme, že φ neplatí v \mathcal{A} při ohodnocení e, a píšeme $\mathcal{A} \not\models \varphi[e]$.)
- Pokud φ platí v \mathcal{A} při každém ohodnocení $e: \operatorname{Var} \to A$, potom říkáme, že φ je pravdivá (platí) v \mathcal{A} , a píšeme $\mathcal{A} \models \varphi$.

¹⁹Připomeňme, že $f_{\wedge}(x,y) = \min(x,y)$ a $f_{\vee}(x,y) = \max(x,y)$. Kvantifikátory tedy hrají roli 'konjunkce' (\forall) resp. 'disjunkce' (\exists) přes všechny prvky struktury.

• Pokud $\mathcal{A} \models \neg \varphi$, tj. φ neplatí v \mathcal{A} při žádném ohodnocení (pro každé e máme $\mathcal{A} \not\models \varphi[e]$), potom je φ lživá v \mathcal{A} .²⁰

Shrňme několik jednoduchých vlastností, nejprve týkajících se platnosti při ohodnocení. Buď \mathcal{A} struktura, φ, ψ formule, a e ohodnocení.

- $\mathcal{A} \models \neg \varphi[e]$ právě když $\mathcal{A} \not\models \varphi[e]$,
- $\mathcal{A} \models (\varphi \land \psi)[e]$ právě když $\mathcal{A} \models \varphi[e]$ a $\mathcal{A} \models \psi[e]$,
- $\mathcal{A} \models (\varphi \lor \psi)[e]$ právě když $\mathcal{A} \models \varphi[e]$ nebo $\mathcal{A} \models \psi[e]$,
- $\mathcal{A} \models (\varphi \rightarrow \psi)[e]$ právě když platí: jestliže $\mathcal{A} \models \varphi[e]$ potom $\mathcal{A} \models \psi[e]$,
- $\mathcal{A} \models (\varphi \leftrightarrow \psi)[e]$ právě když platí: $\mathcal{A} \models \varphi[e]$ právě když $\mathcal{A} \models \psi[e]$,
- $\mathcal{A} \models (\forall x) \varphi[e]$ právě když $\mathcal{A} \models \varphi[e(x/a)]$ pro všechna $a \in A$,
- $\mathcal{A} \models (\exists x) \varphi[e]$ právě když $\mathcal{A} \models \varphi[e(x/a)]$ pro nějaké $a \in A$.
- Je-li term t substituovatelný za proměnnou x do formule φ , potom

$$A \models \varphi(x/t)[e]$$
 právě když $A \models \varphi[e(x/a)]$ pro $a = t^{\mathcal{A}}[e]$.

• Je-li ψ varianta φ , potom $\mathcal{A} \models \varphi[e]$ právě když $\mathcal{A} \models \psi[e]$.

Cvičení 6.3. Dokažte podrobně všechny uvedené vlastnosti platnosti při ohodnocení.

A jak je tomu s pojmem pravdivosti (platnosti) ve struktuře?

- Pokud $\mathcal{A} \models \varphi$, potom $\mathcal{A} \not\models \neg \varphi$. Je-li φ sentence, potom platí i opačná implikace (tj. platí 'právě když').
- $\mathcal{A} \models \varphi \land \psi$ právě když $\mathcal{A} \models \varphi$ a $\mathcal{A} \models \psi$,
- Pokud $\mathcal{A} \models \varphi$ nebo $\mathcal{A} \models \psi$, potom $\mathcal{A} \models \varphi \lor \psi$. Je-li φ sentence, potom platí i opačná implikace (tj. platí 'právě když').
- $\mathcal{A} \models \varphi$ právě když $\mathcal{A} \models (\forall x)\varphi$.

Generální uzávěr formule $\varphi(x_1,\ldots,x_n)$ (tj. x_1,\ldots,x_n jsou všechny volné proměnné formule φ) je sentence $(\forall x_1)\cdots(\forall x_n)\varphi$. Z posledního bodu plyne, že formule platí ve struktuře, právě když v ní platí její generální uzávěr.

Cvičení 6.4. Dokažte podrobně všechny uvedené vlastnosti platnosti ve struktuře.

Cvičení 6.5. Najděte příklad struktury \mathcal{A} a formule φ takových, že $\mathcal{A} \not\models \varphi$ a zároveň $\mathcal{A} \not\models \neg \varphi$. Cvičení 6.6. Najděte příklad struktury \mathcal{A} a formulí φ, ψ takových, že $\mathcal{A} \models \varphi \lor \psi$ ale $\mathcal{A} \not\models \varphi$ ani $\mathcal{A} \not\models \psi$.

²⁰Pozor, *lživá* není totéž, co *není pravdivá!* To platí jen pro sentence.

6.5 Vlastnosti teorií

Na základě pojmu platnosti vybudujeme syntaktickou terminologii obdobně jako v predikátové logice. Teorie jazyka L je libovolná množina T L-formulí, prvkům teorie říkáme axiomy. Model teorie T je L-struktura, ve které platí všechny axiomy teorie T, tj. $A \models \varphi$ pro všechna $\varphi \in T$, což značíme $A \models T$. Třída modelů²¹ teorie T je:

$$M_L(T) = \{ \mathcal{A} \in M_L \mid \mathcal{A} \models T \}$$

Stejně jako ve výrokové logice budeme často vynechávat jazyk L, bude-li zřejmý z kontextu, a budeme psát $M(\varphi_1, \ldots, \varphi_n)$ místo $M(\{\varphi_1, \ldots, \varphi_n\})$ a $M(T, \varphi)$ místo $M(T \cup \{\varphi\})$.

6.5.1 Platnost v teorii

Je-li T teorie v jazyce L a φ L-formule, potom říkáme, že φ je:

- pravdivá (platí) v T, značíme $T \models \varphi$, pokud $\mathcal{A} \models \varphi$ pro všechna $\varphi \in T$ (neboli: $\mathcal{M}(T) \subseteq \mathcal{M}(\varphi)$),
- lživá v T, pokud T |= $\neg \varphi$, tj. pokud je lživá v každém modelu T (neboli: $M(T) \cap M(\varphi) = \emptyset$),
- $nez ilde{a}visl ilde{a}\ v\ T$, pokud není pravdiv ilde{a}\ v\ T ani l $ilde{z}$ iv ilde{a}\ v\ T.

Máme-li prázdnou teorii $T = \emptyset$ (tj. $M(T) = M_L$), potom teorii T vynecháváme, píšeme $\models \varphi$, a říkáme, že φ je pravdivá (v logice), (logicky) platí, je tautologie; podobně pro ostatní pojmy.

Teorie je $sporn\acute{a}$, jestliže v ní platí $spor \perp$, který v predikátové logice můžeme definovat jako $R(x_1,\ldots,x_n) \wedge \neg R(x_1,\ldots,R_n)$, kde R je libovolný (třeba první) relační symbol z jazyka nebo rovnost (nemá-li jazyk relační symbol, musí být s rovností). Teorie je sporná, právě když v ní platí každá formule, nebo, ekvivalentně, právě když nemá žádný model. Jinak říkáme, že je teorie $bezesporn\acute{a}$ (neplatí-li v ní spor, ekvivalentně má-li alespoň jeden model).

Sentencím pravdivým v T říkáme důsledky T; množina všech důsledků T v jazyce L je:

$$\operatorname{Csq}_L(T) = \{ \varphi \mid \varphi \text{ je sentence a } T \models \varphi \}$$

Kompletnost v predikátové logice

Jak je tomu s pojmem kompletnosti teorie?²²

Definice 6.5.1. Teorie je *kompletní*, je-li bezesporná a každá *sentence* je v ní buď pravdivá, nebo lživá.

Nemůžeme ale říci, že je teorie kompletní, právě když má jediný model. Máme-li totiž jeden model, dostáváme z něj nekonečně mnoho jiných, ale *izomorfních* modelů, tj. lišících se jen pojmenováním prvků univerza.²³ Uvažovat jediný model 'až na izomorfismus' by ale nebylo dostatečné. Správným pojmem je tzv. *elementární ekvivalence*:

²¹Připomeňme, že nemůžeme říkat 'množina'.

 $^{^{22}}$ Připomeňme, že výroková teorie je kompletní, je-li bezesporná a každý výrok v ní buď platí, nebo platí jeho negace. Ekvivalentně, má právě jeden model.

 $^{^{23}}$ Formálně pojem *izomorfismu* definujeme později v části o *teorii modelů*, v Sekci 9.2, jde ale o zobecnění izomorfismu který znáte z teorie grafů.

Definice 6.5.2. Struktury \mathcal{A}, \mathcal{B} (v témž jazyce) jsou *elementárně ekvivalentní*, pokud v nich platí tytéž sentence. Značíme $\mathcal{A} \equiv \mathcal{B}$.

 $P\check{r}iklad$ 6.5.3. Příkladem struktur, které jsou elementárně ekvivalentní, ale ne izomorfní, jsou uspořádané množiny $\mathcal{A} = \langle \mathbb{Q}, \leq \rangle$ a $\mathcal{B} = \langle \mathbb{R}, \leq \rangle$. Izomorfní nejsou proto, že \mathbb{Q} je spočetná zatímco \mathbb{R} nespočetná množina, neexistuje tedy dokonce žádná bijekce mezi jejich univerzy. Není těžké ukázat, že pro každou sentenci φ platí $\mathcal{A} \models \varphi \Leftrightarrow \mathcal{B} \models \varphi$: indukcí podle struktury formule φ , jediný netriviální případ je existenční kvantifikátor, a klíčovou vlastností je hustota obou uspořádání, tj. následující vlastnost:

$$(x < y \land \neg x = y) \rightarrow (\exists z)(x < z \land z < y \land \neg x = z \land \neg y = z)$$

Pozorování 6.5.4. Teorie je kompletní, právě když má právě jeden model až na elementární ekvivalenci.

Platnost pomocí nesplnitelnosti

Otázku pravdivosti (platnosti) v dané teorii lze převést na problém existence modelu:

Tvrzení 6.5.5 (O nesplnitelnosti a pravdivosti). *Je-li T teorie a* φ sentence (ve stejném jazyce), potom platí: $T \cup \{\neg \varphi\}$ nemá model, právě když $T \models \varphi$.

 $D\mathring{u}kaz$. Platí následující ekvivalence: $T \cup \{\neg \varphi\}$ nemá model, právě když $\neg \varphi$ neplatí v žádném modelu T, právě když (neboť je to sentence) φ platí v každém modelu T.

Předpoklad, že φ je sentence, je nutný: uvažte teorii $T = \{P(c)\}$ a formuli $\varphi = P(x)$ (což není sentence). Potom $\{P(c), \neg P(x)\}$ nemá model, ale $P(c) \not\models P(x)$. (Zde P je unární relační, a c konstantní symbol.)

6.5.2 Příklady teorií

Uveďme několik příkladů důležitých teorií.

Teorie grafů

Teorie grafů je teorie v jazyce $L = \langle E \rangle$ s rovností, splňující axiomy ireflexivity a symetrie:

$$T_{\text{graph}} = \{ \neg E(x, x), E(x, y) \rightarrow E(y, x) \}$$

Modely T_{graph} jsou struktury $\mathcal{G} = \langle G, E^{\mathcal{G}} \rangle$, kde $E^{\mathcal{G}}$ je symetrická irreflexivní relace, jde tedy o tzv. $jednoduch\acute{e}$ grafy, kde hranu $\{x,y\}$ reprezentuje dvojice uspořádaných hran (x,y), (y,x).

- Formule $\neg x = y \rightarrow E(x, y)$ platí v grafu, právě když je *úplný*. Je tedy nezávislá v T_{graph} .
- Formule $(\exists y_1)(\exists y_2)(\neg y_1 = y_2 \land E(x, y_1) \land E(x, y_2) \land (\forall z)(E(x, z) \rightarrow z = y_1 \lor z = y_2)$ vyjadřuje, že každý vrchol má stupeň právě 2. Platí tedy právě v grafech, které jsou disjunktní sjednocení kružnic, a je nezávislá v teorii T_{graph} .

Teorie uspořádání

Teorie uspořádání je teorie v jazyce uspořádání $L = \langle \leq \rangle$ s rovností, jejíž axiomy jsou:

$$T = \{x \le x, \\ x \le y \land y \le x \to x = y, \\ x \le y \land y \le z \to x = z\}$$

Těmto axiomům říkáme reflexivita, antisymetrie, tranzitivita. Modely T jsou L-struktury $\langle S, \leq^S \rangle$, ve kterých platí axiomy T, tzv. (částečně) uspořádané množiny. Např: $\mathcal{A} = \langle \mathbb{N}, \leq \rangle$, $\mathcal{B} = \langle \mathcal{P}(X), \subseteq \rangle$ pro $X = \{0, 1, 2\}$.

- Formule $x \leq y \vee y \leq x$ (linearita) platí v \mathcal{A} , ale neplatí v \mathcal{B} , neboť neplatí např. při ohodnocení kde $e(x) = \emptyset$, $e(y) = \{1\}$ (píšeme $\mathcal{B} \not\models \varphi[e]$). Je tedy nezávislá v T.
- Sentence $(\exists x)(\forall y)(y \leq x)$ (označme ji ψ) je pravdivá v \mathcal{B} a lživá v \mathcal{A} , píšeme $\mathcal{B} \models \psi$, $\mathcal{A} \models \neg \psi$. Je tedy také nezávislá v T.
- Formule $(x \leq y \land y \leq z \land z \leq x) \rightarrow (x = y \land y = z)$ (označme ji χ) je pravdivá v T, píšeme $T \models \chi$. Totéž platí pro její generální uzávěr $(\forall x)(\forall y)(\forall z)\chi$.

Algebraické teorie

• Teorie grup je teorie v jazyce $L = \langle +, -, 0 \rangle$ s rovností, jejíž axiomy jsou:

$$T_1 = \{x + (y + z) = (x + y) + z,$$

$$0 + x = x, \ x + 0 = 0,$$

$$x + (-x) = 0, \ (-x) + x = 0\}$$

Těmto vlastnostem říkáme asociativita +, neutralita 0 vůči +, a -x je inverzní prvek k x (vůči + a 0).

• Teorie komutativních grup má navíc axiom x + y = y + x (komutativita +), je tedy:

$$T_2 = T_1 \cup \{x + y = y + x\}$$

• Teorie okruhů je v jazyce $L = \langle +, -, 0, \cdot, 1 \rangle$ s rovností, má navíc axiomy:

$$T_3 = T_2 \cup \{1 \cdot x = x \cdot 1,$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z,$$

$$x \cdot (y + z) = x \cdot y + x \cdot z,$$

$$(x + y) \cdot z = x \cdot z + y \cdot z\}$$

Těmto vlastnostem říkáme neutralita 0 vůči +, asociativita \cdot , a (levá i pravá) distributivita \cdot vůči +.

• Teorie komutativních okruhů má navíc axiom komutativity ·, máme tedy:

$$T_4 = T_3 \cup \{x \cdot y = y \cdot x\}$$

• Teorie těles je ve stejném jazyce, ale má navíc axiomy existence inverzního prvku $k \cdot$ a netrivialitu:

$$T_5 = T_4 \cup \{ \neg (x = y) \rightarrow (\exists y)(x \cdot y = 1, \neg (0 = 1)) \}$$

• Teorie uspořádaných těles je v jazyce $\langle +, -, 0, \cdot, 1, \leq \rangle$ s rovností, sestává z axiomů teorie těles, teorie uspořádání spolu s axiomem linearity, a z následujících axiomů kompatibility uspořádání: $x \leq y \to (x+z \leq y+z)$ a $(0 \leq x \land 0 \leq y) \to 0 \leq x \cdot y$. (Modely jsou tedy tělesa s lineárním (totálním) uspořádáním, které je kompatibilní s tělesovými operacemi v tomto smyslu.)

6.6 Podstruktura, expanze, redukt

V této sekci se podíváme na způsoby, jak můžeme vytvářet nové struktury z existujících.

Podstruktura

Pojem podstruktury zobecňuje podgrupy, podprostory vektorového tělesa, a indukované podgrafy grafu: vybereme nějakou podmnožinu B univerza struktury \mathcal{A} , a vytvoříme na ní strukturu \mathcal{B} stejné signatury, která 'zdědí' relace, operace, a konstanty. Abychom to mohli provést, potřebujeme, aby byla množina B uzavřená na všechny operace a obsahovala všechny konstanty. ²⁴

Definice 6.6.1 (Podstruktura). Mějme strukturu $\mathcal{A} = \langle A, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$ v signatuře $\langle \mathcal{R}, \mathcal{F} \rangle$. Struktura $\mathcal{B} = \langle B, \mathcal{R}^{\mathcal{B}}, \mathcal{F}^{\mathcal{B}} \rangle$ je (indukovaná) podstruktura \mathcal{A} , značíme $\mathcal{B} \subseteq \mathcal{A}$, jestliže

- $\emptyset \neq B \subseteq A$,
- $R^{\mathcal{B}} = R^{\mathcal{A}} \cap B^{\operatorname{ar}(R)}$ pro každý relační symbol $R \in \mathcal{R}$,
- $f^{\mathcal{B}} = f^{\mathcal{A}} \cap (B^{\operatorname{ar}(f)} \times B)$ pro každý funkční symbol $f \in \mathcal{F}$ (tj. funkce $f^{\mathcal{B}}$ je restrikce $f^{\mathcal{A}}$ na množinu B, a její výstupy jsou všechny také z B),
- speciálně, pro každý konstantní symbol $c \in \mathcal{F}$ máme $c^{\mathcal{B}} = c^{\mathcal{A}} \in B$.

Množina $C \subseteq A$ je uzavřená na funkci $f: A^n \to A$, pokud $f(x_1, \dots, x_n) \in C$ pro všechna $x_i \in C$. Platí:

Pozorování 6.6.2. Množina $\emptyset \neq C \subseteq A$ je univerzem podstruktury struktury \mathcal{A} , právě když je C uzavřená na všechny funkce struktury \mathcal{A} (včetně konstant).

V tom případě říkáme této podstruktuře $\operatorname{restrikce} \mathcal{A}$ na množinu C, a značíme ji $\mathcal{A} \upharpoonright C$. $\operatorname{Příklad} 6.6.3. \ \underline{\mathbb{Z}} = \langle Z, +, \cdot, 0 \rangle$ je podstrukturou $\underline{\mathbb{Q}} = \langle Q, +, \cdot, 0 \rangle$, můžeme psát $\underline{\mathbb{Z}} = \underline{\mathbb{Q}} \upharpoonright \mathbb{Z}$. Struktura $\underline{\mathbb{N}} = \langle N, +, \cdot, 0 \rangle$ je podstrukturou obou těchto struktur, $\underline{\mathbb{N}} = \underline{\mathbb{Q}} \upharpoonright \mathbb{N} = \underline{\mathbb{Z}} \upharpoonright \mathbb{N}$.

²⁴Stejně jako ne každá množina vektorů je podprostor, k tomu musí obsahovat nulový vektor, ke každému vektoru obsahovat všechny jeho skalární násobky, a pro každou dvojici vektorů obsahovat jejich součet. Jinými slovy, jen (neprázdné) množiny uzavřené na *lineární kombinace* vektorů dávají vzniknout podprostorům.

Platnost v podstruktuře

Jak je tomu s platností formulí v podstruktuře? Uveďme několik jednoduchých pozorování o otevřených formulích.

Pozorování 6.6.4. Je-li $\mathcal{B} \subseteq \mathcal{A}$, potom pro každou otevřenou formuli φ a ohodnocení proměnných $e: \operatorname{Var} \to B$ platí: $\mathcal{B} \models \varphi[e]$ právě když $\mathcal{A} \models \varphi[e]$.

 $D\mathring{u}kaz$. Pro atomické formule je zřejmé, dále snadno dokážeme indukcí podle struktury formule.

Důsledek 6.6.5. Otevřená formule platí ve struktuře A, právě když platí v každé podstruktuře $\mathcal{B} \subseteq A$.

Říkáme, že teorie T je otevřená, jsou-li všechny její axiomy otevřené formule.

Důsledek 6.6.6. Modely otevřené teorie jsou uzavřené na podstruktury, tj. každá podstruktura modelu otevřené teorie je také model této teorie.

Příklad 6.6.7. Teorie grafů je otevřená. Každá podstruktura grafu (modelu teorie grafů) je také graf, říkáme mu (indukovaný) *podgraf*.²⁵ Podobně např. pro podgrupy nebo Booleovy podalgebry.

 $P\check{r}iklad$ 6.6.8. Teorie těles není otevřená. Jak si ukážeme později, není dokonce ani otevřeně axiomatizovatelná, tj. neexistuje jí ekvivalentní otevřená teorie – kvantifikátoru v axiomu o existenci inverzního prvku se nelze nijak zbavit. Podstruktura tělesa reálných čísel $\mathbb Q$ na množině všech celých čísel $\mathbb Q \upharpoonright \mathbb Z$ není těleso. (Je to tzv. okruh, ale nenulové prvky kromě 1,-1 nemají multiplikativní inverz, např. rovnice $2\cdot x=1$ nemá v $\mathbb Z$ řešení).

Generovaná podstruktura

Co dělat, máme-li podmnožinu univerza, která neni uzavřená na operace struktury? V tom případě uvážíme uzávěr této množiny na operace. ²⁶

Definice 6.6.9. Mějme strukturu $\mathcal{A} = \langle A, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$ a neprázdnou podmnožinu $X \subseteq A$. Označme jako B nejmenší podmnožinu A, která je uzavřená na všechny funkce struktury \mathcal{A} (tj. také obsahuje všechny konstanty). Potom o podstruktuře $\mathcal{A} \upharpoonright B$ říkáme, že je generovaná množinou X, a značíme ji $\mathcal{A}\langle X \rangle$.

 $P\check{r}\hat{u}klad$ 6.6.10. Uvažme struktury $\underline{\mathbb{Q}} = \langle Q, +, \cdot, 0 \rangle$, $\underline{\mathbb{Z}} = \langle Z, +, \cdot, 0 \rangle$, a $\underline{\mathbb{N}} = \langle N, +, \cdot, 0 \rangle$. Potom $\mathbb{Q}\langle\{1\}\rangle = \underline{\mathbb{N}}$, $\mathbb{Q}\langle\{-1\}\rangle = \underline{\mathbb{Z}}$, a $\mathbb{Q}\langle\{2\}\rangle$ je podstruktura $\underline{\mathbb{N}}$ na množině všech sudých čísel.

 $P\check{r}\hat{\imath}klad$ 6.6.11. Pokud \mathcal{A} nemá žádné operace (ani konstanty), např. je-li to graf či uspořádání, potom není čím generovat, a $\mathcal{A}\langle X\rangle=\mathcal{A}\upharpoonright X$.

 $^{^{25}}$ Samotný pojem podgraf v teorii grafů často znamená jen $E^{\mathcal{B}}\subseteq B\times B$, nikoliv $E^{\mathcal{B}}=B\times B$. My ale budeme používat slovo podgraf ve striktnějším smyslu, jako indukovaný podgraf.

²⁶Viz pojem *lineárního obalu* množiny vektorů.

Expanze a redukt

Prozatím jsme konstruovali nové struktury změnou univerza. Můžeme ale také nechat univerzum stejné, a přidat resp. odebrat relace, operace, a konstanty. Výsledku takové operace říkáme *expanze* resp. *redukt*. Všimněte si, že jde o strukturu v jiné signatuře.

Definice 6.6.12 (Expanze a redukt). Mějme jazyky $L \subseteq L'$, L-strukturu \mathcal{A} , a L'-strukturu \mathcal{A}' na stejné doméně A = A'. Jestliže je interpretace každého symbolu [relačního, funkčního, konstantního] stejná [relace, funkce, konstanta] v \mathcal{A} i v \mathcal{A}' potom říkáme, že struktura \mathcal{A}' je expanzí struktury \mathcal{A} do jazyka L' (také říkáme, že je L'-expanzí) a že struktura \mathcal{A} je reduktem struktury \mathcal{A}' na jazyk L (také říkáme, že je L-reduktem).

 $P\check{r}iklad$ 6.6.13. Mějme grupu celých čísel $(\mathbb{Z}, +, -, 0)$. Potom struktura $(\mathbb{Z}, +)$ je jejím reduktem, zatímco struktura $(\mathbb{Z}, +, -, 0, \cdot, 1)$ (okruh celých čísel) je její expanzí.

 $P\check{r}iklad$ 6.6.14. Mějme graf $\mathcal{G} = \langle G, E^{\mathcal{G}} \rangle$. Potom struktura $\langle G, E^{G}, c_{v}^{\mathcal{G}} \rangle_{v \in G}$ v jazyce $\langle E, c_{v} \rangle_{v \in G}$, kde $c_{v}^{\mathcal{G}} = v$ pro všechny vrcholy $v \in G$, je expanzí \mathcal{G} o jména prvků (z množiny G).

6.6.1 Věta o konstantách

Věta o konstantách říká (neformálně), že splnit formuli s volnou proměnnou je totéž, co splnit sentenci, ve které je tato volná proměnná nahrazena (substituována) novým konstantním symbolem (který není nijak svázaný žádnými axiomy). Klíčem je fakt, že tento nový symbol může být v modelech interpretován jako libovolný (tj. každý) prvek. Tento trik později využijeme v tablo metodě.

Věta 6.6.15 (O konstantách). Mějme formuli φ v jazyce L s volnými proměnnými x_1, \ldots, x_n . Označme L' rozšíření jazyka o nové konstantní symboly c_1, \ldots, c_n a buď T' stejná teorie jako T ale v jazyce L'. Potom platí:

$$T \models \varphi \ pr\'{a}v\check{e} \ kdy\check{z} \ T' \models \varphi(x_1/c_1,\ldots,x_n/c_n)$$

 $D\mathring{u}kaz$. Tvrzení stačí dokázat pro jednu volnou proměnnou x a jednu konstantu c, indukcí se snadno rozšíří na n konstant.

Předpokládejme nejprve, že φ platí v každém modelu teorie T. Chceme ukázat, že $\varphi(x/c)$ platí v každém modelu \mathcal{A}' teorie T'. Vezměme tedy takový model \mathcal{A}' a libovolné ohodnocení $e \colon \operatorname{Var} \to A$ a ukažme, že $\mathcal{A}' \models \varphi(x/c)[e]$.

Označme jako \mathcal{A} redukt \mathcal{A}' na jazyk L ('zapomeneme' konstantu $c^{\mathcal{A}'}$). Všimněte si, že \mathcal{A} je model teorie T (axiomy T jsou tytéž jako T', neobsahují symbol c) tedy v něm platí φ . Protože dle předpokladu platí $\mathcal{A} \models \varphi[e']$ pro libovolné ohodnocení e', platí i pro ohodnocení $e(x/c^{\mathcal{A}'})$ ve kterém ohodnotíme proměnnou x interpretací konstantního symbolu c ve struktuře \mathcal{A}' , máme tedy $\mathcal{A} \models \varphi[e(x/c^{\mathcal{A}'})]$. To ale znamená, že $\mathcal{A}' \models \varphi(x/c)[e]$, což jsme chtěli dokázat.

Naopak, předpokládejme, že $\varphi(x/c)$ platí v každém modelu teorie T' a ukažme, že φ platí v každém modelu \mathcal{A} teorie T. Zvolme tedy takový model \mathcal{A} a nějaké ohodnocení e: Var $\to A$ a ukažme, že $\mathcal{A} \models \varphi[e]$.

Označme jako \mathcal{A}' expanzi \mathcal{A} do jazyka L', kde konstantní symbol c interpretujeme jako prvek $c^{\mathcal{A}'}=e(x)$. Protože dle předpokladu platí $\mathcal{A}'\models\varphi(x/c)[e']$ pro všechna ohodnocení e', platí i $\mathcal{A}'\models\varphi(x/c)[e]$, což ale znamená, že $\mathcal{A}'\models\varphi[e]$. (Neboť e=e(x/c) a $\mathcal{A}'\models\varphi(x/c)[e(x/c)]$ platí právě když $\mathcal{A}'\models\varphi[e(x/c)]$.) Formule φ ale neobsahuje c (zde používáme, že c je nový), máme tedy i $\mathcal{A}\models\varphi[e]$.

6.7 Extenze teorií

Pojem extenze teorie definujeme stejně jako ve výrokové logice:

Definice 6.7.1 (Extenze teorie). Mějme teorii T v jazyce L.

- Extenze teorie T je libovolná teorie T' v jazyce $L' \supseteq L$ splňující $\operatorname{Csq}_L(T) \subseteq \operatorname{Csq}_{L'}(T')$,
- je to jednoduchá extenze, pokud L' = L,
- je to konzervativní extenze, pokud $\operatorname{Csq}_L(T) = \operatorname{Csq}_L(T') = \operatorname{Csq}_{L'}(T') \cap \operatorname{Fm}_L$, kde Fm_L značí množinu všech formulí v jazyce L.
- Teorie T' (v jazyce L) je ekvivalentní teorii T, pokud je T' extenzí T a T extenzí T'.

Podobně jako ve výrokové logice, pro teorie ve stejném jazyce platí následující sémantický popis těchto pojmů:

Pozorování 6.7.2. Mějme teorie T, T' v jazyce L. Potom:

- T' je extenze T, právě $když M_L(T') \subseteq M_L(T)$.
- T' je ekvivalentní s T, právě $když M_L(T') = M_L(T)$.

Jak je tomu v případě, kdy teorie T' je nad větším jazykem než T? Připomeňme situaci ve výrokové logice, popsanou v Pozorování 2.4.7. Zformulujeme a dokážeme analogické tvrzení: Zatímco ve výrokové logice jsme přidávali hodnoty pro nové prvovýroky, resp. je zapomínali, v predikátové logice budeme expandovat resp. redukovat struktury, tj. přidávat nebo zapomínat interpretace relačních, funkčních, a konstantních symbolů. Princip tvrzení ale zůstává stejný.

Tvrzení 6.7.3. Mějme jazyky $L \subseteq L'$, teorii T v jazyce L, a teorii T' v jazyce L'.

- (i) T' je extenzí teorie T, právě když redukt každého modelu T' na jazyk L je modelem T.
- (ii) Pokud je T' extenzí teorie T, a každý model T lze expandovat do jazyka L' na nějaký model teorie T', potom je T' je konzervativní extenzí teorie T.

 $D\mathring{u}kaz$. Nejprve dokažme (i): Mějme model \mathcal{A}' teorie T' a označme jako \mathcal{A} jeho redukt na jazyk L. Protože T' je extenzí teorie T, platí v T', a tedy i v \mathcal{A}' , každý axiom $\varphi \in T$. Potom ale i $\mathcal{A} \models \varphi$ (φ obsahuje jen symboly z jazyka L), tedy \mathcal{A} je modelem T.

Na druhou stranu, mějme L-sentenci φ takovou, že $T \models \varphi$. Chceme ukázat, že $T' \models \varphi$. Pro libovolný model $\mathcal{A}' \in \mathcal{M}_{L'}(T')$ víme, že jeho L-redukt \mathcal{A} je modelem T, tedy $\mathcal{A} \models \varphi$. Z toho plyne i $\mathcal{A}' \models \varphi$ (opět proto, že φ je v jazyce L).

Nyní (ii): Vezměme libovolnou L-sentenci φ , která platí v teorii T', a ukažme, že platí i v T. Každý model \mathcal{A} teorie T lze expandovat na nějaký model \mathcal{A}' teorie T'. Víme, že $\mathcal{A}' \models \varphi$, takže i $\mathcal{A} \models \varphi$. Tím jsme dokázali, že $T \models \varphi$, tj. jde o konzervativní extenzi.

6.7.1 Extense o definice

Nyní si ukážeme speciální druh konzervativní extenze, tzv. extenzi *o definice* nových (relačních, funkčních, konstantních) symbolů.

89

Definice relačního symbolu

Nejjednodušším případem je definování nového relačního symbolu $R(x_1, \ldots, x_n)$. Jako definice může sloužit libovolná formule s n volnými proměnnými $\psi(x_1, \ldots, x_n)$.

Příklad 6.7.4. Uveď me nejprve několik příkladů:

- Jakoukoliv teorii v jazyce s rovností můžeme rozšířit o binární relační symbol \neq , který definujeme formulí $\neg x_1 = x_2$. To znamená, že požadujeme, aby platilo: $x_1 \neq x_2 \leftrightarrow \neg x_1 = x_2$.
- Teorii uspořádání můžeme rozšířit o symbol < pro ostré uspořádání, který definujeme formulí $x_1 \leq x_2 \wedge \neg x_1 = x_2$. To znamená, že požadujeme, aby platilo $x_1 < x_2 \leftrightarrow x_1 \leq x_2 \wedge \neg x_1 = x_2$.
- V aritmetice můžeme zavést symbol \leq , pomocí $x_1 \leq x_2 \leftrightarrow (\exists y)(x_1 + y = x_2)$.

Nyní uvedeme definici:

Definice 6.7.5 (Definice relačního symbolu). Mějme teorii T a formuli $\psi(x_1, \ldots, x_n)$ v jazyce L. Označme jako L' rozšíření jazyka L o nový n-ární relační symbol R. Extenze teorie T o definici R formulí ψ je L'-teorie:

$$T' = T \cup \{R(x_1, \dots, x_n) \leftrightarrow \psi(x_1, \dots, x_n)\}\$$

Všimněte si, že každý model T lze jednoznačně expandovat na model T'. Z Tvrzení 6.7.3 potom ihned plyne následující:

Důsledek 6.7.6. T' je konzervativní extenze T.

Ukážeme si ještě, že nový symbol lze ve formulích nahradit jeho definicí, a získat tak (T'-ekvivalentní) formuli v původním jazyce:

Tvrzení 6.7.7. Pro každou L'-formuli φ' existuje L-formule φ taková, že $T' \models \varphi' \leftrightarrow \varphi$.

 $D\mathring{u}kaz$. Je třeba nahradit atomické podformule s novým symbolem R, tj. tvaru $R(t_1, \ldots, t_n)$. Takovou podformuli nahradíme formulí $\psi'(x_1/t_1, \ldots, x_n/t_n)$, kde ψ' je varianta ψ zaručující substituovatelnost všech termů, tj. například přejmenujeme všechny vázané proměnné ψ na zcela nové (nevyskytující se ve formuli φ').

Definice funkčního symbolu

Nový funkční symbol definujeme obdobným způsobem, musíme si ale být jisti, že definice dává jednoznačnou možnost, jak nový symbol interpretovat.

Příklad 6.7.8. Opět začneme příklady:

• V teorii grup můžeme zavést binární funkční symbol -b pomocí + a unárního – takto:

$$x_1 -_b x_2 = y \leftrightarrow x_1 + (-x_2) = y$$

Je zřejmé, že pro každá x, y existuje jednoznačné z splňující definici.

• Uvažme teorii lineárních uspořádání, tj. teorii uspořádání spolu s axiomem linearity $x \le y \lor y \le x$. Definujme binární funkční symbol min takto:

$$\min(x_1, x_2) = y \leftrightarrow y \le x_1 \land y \le x_2 \land (\forall z)(z \le x_1 \land z \le x_2 \rightarrow z \le y)$$

Existence a jednoznačnost platí díky linearitě. Pokud bychom ale měli pouze teorii uspořádání, taková formule by nebyla dobrou definicí: v některých modelech by $\min(x_1, x_2)$ pro některé prvky neexistovalo, selhala by tedy požadovaná jednoznačnost.

Definice 6.7.9 (Definice funkčního symbolu). Mějme teorii T a formuli $\psi(x_1, \ldots, x_n, y)$ v jazyce L. Označme jako L' rozšíření jazyka L o nový n-ární funkční symbol f. Nechť v teorii T platí:

- axiom existence $(\exists y)\psi(x_1,\ldots,x_n,y),$
- axiom jednoznačnosti $\psi(x_1,\ldots,x_n,y) \wedge \psi(x_1,\ldots,x_n,z) \rightarrow y = z$.

Potom extenze teorie T o definici f formulí ψ je L'-teorie:

$$T' = T \cup \{f(x_1, \dots, x_n) = y \leftrightarrow \psi(x_1, \dots, x_n, y)\}\$$

Formule ψ tedy definuje v každém modelu (n+1)-ární relaci, a po této relaci požadujeme, aby byla funkcí, tj. aby pro každou n-tici prvků existovala jednoznačná možnost, jak ji rozšířit do (n+1)-tice, která je prvkem této relace. Všimněte si, že je-li definující formule ψ tvaru $t(x_1, \ldots, x_n) = y$, kde x_1, \ldots, x_n jsou proměnné L-termu t, potom axiomy existence a jednoznačnosti vždy platí.

Opět platí, že každý model T lze jednoznačně expandovat na model T', tedy:

Důsledek 6.7.10. T' je konzervativní extenze T.

A platí také analogické tvrzení o rozvádění definic:

Tvrzení 6.7.11. Pro každou L'-formuli φ' existuje L-formule φ taková, že $T' \models \varphi' \leftrightarrow \varphi$.

 $D\mathring{u}kaz$. Stačí dokázat pro formuli φ' s jediným výskytem symbolu f; je-li výskytů více, aplikujeme postup induktivně, v případě vnořených výskytů v jednom termu $f(\ldots f(\ldots))$ postupujeme od vnitřních k vnějším.

Označme φ^* formuli vzniklou z φ' nahrazením termu $f(t_1,\ldots,t_n)$ novou proměnnou z. Formuli φ zkonstruujeme takto:

$$(\exists z)(\varphi^* \wedge \psi'(x_1/t_1,\ldots,x_n/t_n,y/z))$$

kde ψ' je varianta ψ zaručující substituovatelnost všech termů.

Mějme model \mathcal{A} teorie T' a ohodnocení e. Označme $a=f^{\mathcal{A}}(t_1,\ldots,t_n)[e]$. Díky existenci a jednoznačnosti platí:

$$\mathcal{A} \models \psi'(x_1/t_1, \dots, x_n/t_n, y/z)[e]$$
 právě když $e(z) = a$

Máme tedy $\mathcal{A} \models \varphi[e]$, právě když $\mathcal{A} \models \varphi^*[e(z/a)]$, právě když $\mathcal{A} \models \varphi'[e]$. To platí pro libovolné ohodnocení e, tedy $\mathcal{A} \models \varphi' \leftrightarrow \varphi$ pro každý model T', tedy $T' \models \varphi' \leftrightarrow \varphi$.

Definice konstantního symbolu

Konstantní symbol je speciálním případem funkčního symbolu arity 0. Platí tedy stejná tvrzení. Axiomy existence a jednoznačnosti jsou: $(\exists y)\psi(y)$ a $\psi(y) \wedge \psi(z) \rightarrow y = z$. A extenze o definici konstantního symbolu c formulí $\psi(y)$ je teorie $T' = T \cup \{c = y \leftrightarrow \psi(y)\}$.

Příklad 6.7.12. Ukážeme si dva příklady:

- Teorii aritmetiky můžeme rozšířit o definici konstantního symbolu 1 formulí $\psi(y)$ tvaru y = S(0), přidáme tedy axiom $1 = y \leftrightarrow y = S(0)$.
- Uvažme teorii těles a nový symbol $\frac{1}{2}$, definovaný formulí $y \cdot (1+1) = 1$, tj. přidáním axiomu:

$$\frac{1}{2} = y \leftrightarrow y \cdot (1+1) = 1$$

Zde nejde o korektní extenzi o definici, neboť neplatí axiom existence. Ve dvouprvkovém tělese \mathbb{Z}_2 (a v každém tělese *charakteristiky* 2) nemá rovnice $y \cdot (1+1) = 1$ řešení, neboť 1+1=0.

Pokud ale vezmeme teorii těles charakteristiky různé od 2, tj. přidáme-li k teorii těles axiom $\neg(1+1=0)$, potom už půjde o korektní extenzi o definici. Například v tělese \mathbb{Z}_3 máme $\frac{1}{2}^{\mathbb{Z}_3}=2$.

Extenze o definice

Máme-li L-teorii T a L'-teorii T', potom řekneme, že T' je extenzí T o definice, pokud vznikla z T postupnou extenzí o definice relačních a funkčních (příp. konstantních) symbolů. Vlastnosti, které jsme dokázali o extenzích o jeden symbol (ať už relační nebo funkční), se snadno rozšíří indukcí na více symbolů:

Důsledek 6.7.13. Je-li T' extenze teorie T o definice, potom platí:

- Každý model teorie T lze jednoznačně expandovat na model T'.
- T' je konzervativní extenze T.
- Pro každou L'-formuli φ' existuje L-formule φ taková, že $T' \models \varphi' \leftrightarrow \varphi$.

Na závěr ještě jeden příklad, na kterém si ukážeme i rozvádění definic:

Příklad 6.7.14. V teorii $T = \{(\exists y)(x+y=0), (x+y=0) \land (x+z=0) \rightarrow y=z\}$ jazyka $L = \langle +, 0, \leq \rangle$ s rovností lze zavést < a unární funkční symbol - přidáním axiomů:

$$-x = y \leftrightarrow x + y = 0$$
$$x < y \leftrightarrow x \le y \land \neg (x = y)$$

Formule -x < y (v jazyce $L' = \langle +, -, 0, \leq, < \rangle$) s rovností) je v této extenzi o definice ekvivalentní následující formuli:

$$(\exists z)((x \le y \land \neg(z = y)) \land x + z = y)$$

6.8 Definovatelnost ve struktuře

Formuli s jednou volnou proměnnou x můžeme chápat jako vlastnost prvků. V dané struktuře taková formule definuje množinu prvků, které tuto vlastnost splňují, tj. takových, že formule platí při ohodnocení e, ve kterém e(x) = a. Máme-li formuli se dvěma volnými proměnnými, definuje binární relaci, atp. Nyní tento koncept formalizujeme. Připomeňme, že zápis $\varphi(x_1, \ldots, x_n)$ znamená, že x_1, \ldots, x_n jsou právě všechny volné proměnné formule φ .

Definice 6.8.1 (Definovatelné množiny). Mějme formuli $\varphi(x_1, \ldots, x_n)$ a strukturu \mathcal{A} v témž jazyce. *Množina definovaná formuli* $\varphi(x_1, \ldots, x_n)$ ve struktuře \mathcal{A} , značíme $\varphi^{\mathcal{A}}(x_1, \ldots, x_n)$, je:

$$\varphi^{\mathcal{A}}(x_1,\ldots,x_n) = \{(a_1,\ldots,a_n) \in A^n \mid \mathcal{A} \models \varphi[e(x_1/a_1,\ldots,x_n/a_n)]\}$$

Zkráceně totéž zapíšeme také jako $\varphi^{\mathcal{A}}(\bar{x}) = \{\bar{a} \in A^n \mid \mathcal{A} \models \varphi[e(\bar{x}/\bar{a})]\}.$ *Příklad* 6.8.2. Uveď me několik příkladů:

- Formule $\neg(\exists y)E(x,y)$ definuje množinu všech *izolovaných* vrcholů v daném grafu.
- Uvažme těleso reálných čísel $\underline{\mathbb{R}}$. Formule $(\exists y)(y\cdot y=x) \land \neg(x=0)$ definuje množinu všech kladných reálných čísel.
- Formule $x \leq y \land \neg(x=y)$ definuje v dané uspořádané množině $\langle S, \leq^S \rangle$ relaci ostrého uspořádání $<^S$.

Často se také hodí mluvit o vlastnostech prvků relativně k jiným prvkům dané struktury. To nelze vyjádřit čistě syntakticky, ale můžeme za některé z volných proměnných dosadit prvky struktury jako parametry. Zápisem $\varphi(\bar{x}, \bar{y})$ myslíme, že formule φ má volné proměnné $x_1, \ldots, x_n, y_1, \ldots, y_k$ (pro nějaká n, k).

Definice 6.8.3. Mějme formuli $\varphi(\bar{x}, \bar{y})$, kde $|\bar{x}| = n$ a $|\bar{y}| = k$, strukturu \mathcal{A} v témž jazyce, a k-tici prvků $\bar{b} \in A^k$. Množina definovaná formulí $\varphi(\bar{x}, \bar{y})$ s parametry \bar{b} ve struktuře \mathcal{A} , značíme $\varphi^{\mathcal{A}, \bar{b}}(\bar{x}, \bar{y})$, je:

$$\varphi^{\mathcal{A},\bar{b}}(\bar{x},\bar{y}) = \{\bar{a} \in A^n \mid \mathcal{A} \models \varphi[e(\bar{x}/\bar{a},\bar{y}/\bar{b})]\}$$

Pro strukturu \mathcal{A} a podmnožinu $B \subseteq A$ označíme $\mathrm{Df}^n(\mathcal{A}, B)$ množinu všech množin definovatelných ve struktuře \mathcal{A} s parametry pocházejícími z B.

Příklad 6.8.4. Pro $\varphi(x,y) = E(x,y)$ je $\varphi^{\mathcal{G},v}(x,y)$ množina všech sousedů vrcholu

Pozorování 6.8.5. Množina $Df^n(A, B)$ je uzavřená na doplněk, průnik, sjednocení, a obsahuje \emptyset a A^n . Jde tedy o podalgebru potenční algebry $\mathcal{P}(A^n)$.

6.8.1 Databázové dotazy

Definovatelnost nachází přirozenou aplikaci v relačních databázích, např. ve známém dotazovacím jazyce SQL. Relační databáze sestává z jedné nebo více tabulek, někdy se jim říká relace, řádky jedné tabulky jsou záznamy (records), nebo také tice (tuples). Jde tedy v principu o strukturu v čistě relačním jazyce. Představme si databázi obsahující dvě tabulky, Program a Movies, znázorněné na Obrázku 6.3.

SQL dotaz ve své nejjednodušší formě (pomineme-li např. agregační funkce) je v podstatě formule, a výsledkem dotazu je množina definovaná touto formulí (s parametry). Například, kdy a kde můžeme vidět film s Tomem Hanksem?

cinema	title	time	title	director	actor
Atlas	Forrest Gump	20:00	Forrest Gump	R. Zemeckis	T. Hanks
Lucerna	Forrest Gump	21:00	Philadelphia	J. Demme	T. Hanks
Lucerna	Philadelphia	18:30	Batman Returns	T. Burton	M. Keaton
:	:	:	:	:	:
:	•	:	:	•	:

Obrázek 6.3: Tabulky Program a Movies

select Program.cinema, Program.time from Program, Movies where Program.title = Movies.title and Movies.actor = 'T. Hanks'

Výsledkem bude množina $\varphi^{\text{Database, 'T. Hanks'}}(x_{\text{cinema}}, x_{\text{time}}, y_{\text{actor}})$ definovaná ve struktuře $Database = \langle D, Program, Movies \rangle, \; kde \; D = \{\text{`Atlas', `Lucerna', } \dots, \text{`M. Keaton'}\}, \; s \; parameter \; and \; before the sum of the sum$ trem 'T. Hanks' následující formulí $\varphi(x_{\text{cinema}}, x_{\text{time}}, y_{\text{actor}})$:

 $(\exists y_{\text{title}})(\exists y_{\text{director}})(\text{Program}(x_{\text{cinema}}, y_{\text{title}}, x_{\text{time}}) \land \text{Movies}(y_{\text{title}}, y_{\text{director}}, \text{`T. Hanks'}))$

Vztah výrokové a predikátové logiky 6.9

Nyní si ukážeme, jak lze výrokovou logiku 'simulovat' v logice predikátové, a to v teorii Booleových algeber. Nejprve představíme axiomy této teorie:

Definice 6.9.1 (Booleovy algebry). Teorie Booleových algeber je teorie jazyka $L = \langle -, \wedge, \vee, \bot, \top \rangle$ s rovností sestávající z následujících axiomů:²⁷

• $asociativita \land a \lor$:

• $komutativita \land a \lor$:

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$
$$x \vee (y \vee z) = (x \vee y) \vee z$$

$$x \wedge y = y \wedge x$$

 $x \lor y = y \lor x$

distributivita ∧ vůči ∨ a ∨ vůči ∧:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$
$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$$

• absorpce:

$$x \wedge (x \vee y) = x$$
$$x \vee (x \wedge y) = x$$

• komplementace:

$$x \wedge (-x) = \bot$$
$$x \vee (-x) = \top$$

netrivialita:

$$\neg(\bot=\top)$$

Nejmenším modelem je 2-prvková Booleova algebra $\{0,1\}, f_\neg, f_\land, f_\lor, 0, 1\}$. Konečné Booleovy algebry jsou (až na *izomorfismus*) právě $\langle \{0,1\}^n, f_{\neg}^n, f_{\wedge}^n, f_{\vee}^n, (0,\dots,0), (1,\dots,1) \rangle$, kde f^n znamená, že funkci f aplikujeme po složkách.²⁸

 $^{^{27} \}text{V}$ šimněte siduality : záměnou \land s \lor a \bot s \top získáme tytéž axiomy.

 $^{^{28}}$ Tyto Booleovy algebry jsou izomorfní potenčním algebrám $\mathcal{P}(\{1,\ldots,n\}),$ izomorfismus je daný bijekcí mezi podmnožinami a jejich charakteristickými vektory.

Výroky tedy můžeme chápat jako *Booleovské termy* (a konstanty \bot , \top představují pravdu a lež), pravdivostní hodnota výroku při daném ohodnocení prvovýroků je potom dána hodnotou odpovídajícího termu v 2-prvkové Booleově algebře. Kromě toho, *algebra výroků* daného výrokového jazyka nebo teorie je Booleovou algebrou (to platí i pro nekonečné jazyky).

Na druhou stranu, máme-li otevřenou formuli φ (bez rovnosti), můžeme reprezentovat atomické výroky pomocí prvovýroků, a získat tak výrok, který platí, právě když platí φ . Více o tomto směru se dozvíme v Kapitole 8 (o rezoluci v predikátové logice), kde se nejprve zbavíme kvantifikátorů pomocí tzv. Skolemizace.

Výrokovou logiku bychom také mohli zavést jako fragment logiky predikátové, pokud bychom povolili nulární relace (a nulární relac
ní symboly v jazyce): $A^0 = \{\emptyset\}$, tedy na libovolné množině jsou právě dvě nulární relace $R^A \subseteq A^0$: $R^A = \emptyset = 0$ a $R^A = \{\emptyset\} = \{0\} = 1$. To ale dělat nebudeme.

Kapitola 7

Tablo metoda v predikátové logice

V této kapitole ukážeme, jak lze zobecnit *metodu analytického tabla* z výrokové na predikátovou logiku.¹ Metoda funguje velmi podobně, musíme si ale poradit *kvantifikátory*.

7.1 Neformální úvod

V této sekci tablo metodu neformálně představíme. K formálním definicím se vrátíme později. Začneme dvěma příklady, na kterých ilustruje, jak tablo metoda v predikátové logice funguje, a jak se vypořádá s kvantifikátory.

 $P\check{r}iklad$ 7.1.1. Na Obrázku 7.1.1 jsou znázorněna dvě tabla. Jsou to tablo důkazy (v logice, tj. z prázdné teorie) sentencí $(\exists x) \neg P(x) \rightarrow \neg(\forall x) P(x)$ (vpravo) a $\neg(\forall x) P(x) \rightarrow (\exists x) \neg P(x)$ (vlevo) jazyka $L = \langle P \rangle$ (bez rovnosti), kde P je unární relační symbol. Symbol c_0 je pomocný konstantní symbol, který do jazyka při konstrukci tabla přidáváme.

Položky

Formule v položkách musí být vždy sentence, neboť potřebujeme, aby měly v daném modelu pravdivostní hodnotu (nezávisle na ohodnocení proměnných). To ale není zásadní omezení, chceme-li dokázat, že formule φ platí v teorii T, můžeme nejprve nahradit formuli φ a všechny axiomy T jejich generálními uzávěry (tj. univerzálně kvantifikujeme všechny volné proměnné). Získáme tak uzavřenou teorii T' a sentenci φ' a platí: $T' \models \varphi'$ právě když $T \models \varphi$.

Kvantifikátory

Redukce položek funguje stejně, použijeme tatáž atomická tabla pro logické spojky (viz Tabulka 4.1, kde místo výroků jsou φ, ψ sentence). Musíme ale přidat 4 nová atomická tabla pro T/F a univerzální/existenční kvantifikátor. Tyto položky dělíme na dva typy:

- typ "svědek": položky tvaru $T(\exists x)\varphi(x)$ a $F(\forall x)\varphi(x)$
- typ "všichni": položky tvaru $T(\forall x)\varphi(x)$ a $F(\exists x)\varphi(x)$

Příklady vidíme v tablech na Obrázku 7.1.1 ('svědci' jsou červeně, 'všichni' modře).

¹Na tomto místě je dobré připomenout si tablo metodu ve výrokové logice, viz Kapitola 4.

Obrázek 7.1: Příklady tabel. Položky typu 'svědek' jsou znázorněny červeně, položky typu 'všichni' modře.

Kvantifikátor nemůžeme pouze odstranit, neboť výsledná formule $\varphi(x)$ by nebyla sentencí. Místo toho současně s odstraněním kvantifikátoru substituujeme za x nějaký konstantní term, v nové položce tedy bude sentence $\varphi(x/t)$. Jaký konstantní term t substituujeme záleží na tom, zda jde o položku typu "svědek" nebo "všichni".

Pomocné konstantní symboly

Jazyk L teorie T, ve které dokazujeme, rozšíříme o spočetně mnoho nových (pomocných) $konstantních symbolů <math>C = \{c_0, c_1, c_2, \ldots\}$ (ale budeme psát i c, d, \ldots), výsledný rozšířený jazyk označíme L_C . Konstantní termy v jazyce L_C tedy existují, i pokud původní jazyk L nemá žádné konstanty. A vždy při konstrukci tabla máme k dispozici nějaký nový, dosud nepoužitý (ani v teorii, ani v konstruovaném tablu) pomocný konstantní symbol $c \in C$.

Svědci

Při redukci položky typu "svědek" substituujeme za proměnnou jeden z těchto nových, pomocných symbolů, a to takový, který dosud nebyl na dané větvi použit. V případě položky $T(\exists x)\varphi(x)$ tedy máme $T\varphi(x/c)$. Tento konstantní symbol c bude hrát roli (nějakého) prvku, který danou formuli splňuje (resp. vyvrací, jde-li o položku tvaru $F(\forall x)\varphi(x)$). Zde používáme větu o konstantách (Věta 6.6.15). Je důležité, že symbol c dosud nebyl na větvi ani v teorii nijak použit. Typicky ale poté použijeme položky typu "všichni", abychom se dozvěděli, co musí o tomto svědku platit.

Na Obrázku 7.1.1 vidíme příklad: položka $T(\exists x) \neg P(x)$ v levém tablu je redukovaná, její redukcí vznikla položka $T \neg P(c_0)$; $c_0 \in C$ je pomocný symbol, na větvi se dosud nevyskytoval

(a je první takový). Podobně pro položku $F(\forall x)P(x)$ a $FP(c_0)$ v pravém tablu.

Všichni

Při redukci položky typu "všichni" substituujeme za proměnnou x libovolný konstantní term t rozšířeného jazyka L_C . Z položky tvaru $T(\forall x)\varphi(x)$ tedy získáme položku $T\varphi(x/t)$.

Aby byla bezesporná větev dokončená, budou na ní ale muset být položky $T\varphi(x/t)$ pro všechny konstantní L_C -termy t. (Musíme 'použít' vše, co položka $T(\forall x)\varphi(x)$ 'říká'.) A stejně pro položku tvary $F(\exists x)\varphi(x)$.

Ve výrokové logice jsme používali konvenci, že při připojování atomických tabel vynecháváme jejich kořeny (jinak bychom opakovali na větvi tutéž položku dvakrát). V predikátové logice použijeme stejnou konvenci, ale s výjimkou položek typu 'svědek'. U těch zapíšeme i kořen připojovaného atomického tabla. Proč to děláme? Abychom si připomněli, že s touto položkou ještě nejsme hotovi, že musíme připojit atomická tabla s jinými konstantními termy.

Na Obrázku 7.1.1 v levém tablu neni položka $T(\forall x)P(x)$ redukovaná. Její prvni výskyt (4. vrchol shora) jsme zredukovali, substituujeme term $t=c_0$, máme tedy $\varphi(x/t)=P(c_0)$. Připojili jsme atomické tablo v sestávající z téže položky v kořeni $T(\forall x)P(x)$, kterou do tabla zapišeme, a z položky $TP(c_0)$ pod ní. Zatímco prvni výskyt položky $T(\forall x)P(x)$ je tímto redukovaný, druhý výskyt (7. vrchol shora) redukovaný není. Podobně pro položku $F(\exists x) \neg P(x)$ v pravém tablu.

Tento poněkud technický přístup k definici redukovanosti (výskytů) položek typu 'všichni' se nám bude hodit v definici systematického tabla.

Jazyk

Nadále budeme předpokládat, že jazyk L je $spočetný.^2$ Z toho plyne, že každá L-teorie T má jen spočetně mnoho axiomů, a také že konstantních termů v jazyce L_C je jen spočetně mnoho. Toto omezení potřebujeme, neboť každé, i nekonečné tablo má jen spočetně mnoho položek, a musíme být schopni použít všechny axiomy dané teorie, a substituovat všechny konstantní termy jazyka L_C .

Nejprve také budeme předpokládat, že jde o jazyk bez rovnosti, což je jednodušší. Problémem je, že tablo je čistě syntaktický objekt, ale rovnost má speciální sémantický význam, totiž musí být v každém modelu interpretována relací identity. Jak adaptovat metodu pro jazyky s rovností si ukážeme později.

7.2 Formální definice

V této sekci definujeme všechny pojmy potřebné pro tablo metodu pro jazyky bez rovnosti. K jazykům s rovností se vrátíme v Sekci 7.3.

Buď L spočetný jazyk bez rovnosti. Označme jako L_C rozšíření jazyka L o spočetně mnoho nových pomocných konstantních symbolů $C = \{c_i \mid i \in \mathbb{N}\}$. Zvolme nějaké očíslování konstantních termů jazyka L_C , označme tyto termy $\{t_i \mid i \in \mathbb{N}\}$.

Mějme nějakou L-teorii T a L-sentenci φ .

²Z hlediska výpočetní logiky to není velké omezení.

7.2.1 Atomická tabla

Položka je nápis T φ nebo F φ , kde φ je nějaká L_C -sentence. Položky tvaru T($\exists x$) $\varphi(x)$ a F($\forall x$) $\varphi(x)$ jsou typu 'svědek', položky tvaru T($\forall x$) $\varphi(x)$ a F($\exists x$) $\varphi(x)$ jsou typu 'všichni' Atomická tabla jsou položkami označkované stromy znázorněné v Tabulkách 7.1 a 7.2.

Tabulka 7.1: Atomická tabla pro logické spojky; φ a ψ jsou libovolné L_C -sentence.

Tabulka 7.2: Atomická tabla pro kvantifikátory; φ je L_C -sentence, x proměnná, t_i libovolný konstantní L_C -term, $c_i \in C$ je nový pomocný konstantní symbol (který se dosud nevyskytuje na dané větvi konstruovaného tabla).

7.2.2 Tablo důkaz

Definice v této části jsou téměř identické odpovídajícím definicím z výrokové logiky. Hlavní technický problém je jak definovat redukovanost položek typu 'všichni' na větvi tabla: chceme aby za proměnnou byly substituovány všechny možné konstantní L_C -termy t_i .

Definice 7.2.1 (Tablo). *Konečné tablo z teorie T* je uspořádaný, položkami označkovaný strom zkonstruovaný aplikací konečně mnoha následujících pravidel:

• jednoprvkový strom označkovaný libovolnou položkou je tablo z teorie T,

- pro libovolnou položkou P na libovolné větvi V, můžeme na konec větve V připojit atomické tablo pro položku P, přičemž je-li P typu 'svědek', můžeme použít jen pomocný konstantní symbol $c_i \in C$, který se na větvi V dosud nevyskytuje (pro položky typu 'všichni' můžeme použít libovolný konstantní L_C -term t_i),
- na konec libovolné větve můžeme připojit položku $T\alpha$ pro libovolný axiom teorie $\alpha \in T$.

Tablo z teorie T je buď konečné, nebo i nekonečné: v tom případě vzniklo ve spočetně mnoha krocích. Můžeme ho formálně vyjádřit jako sjednocení $\tau = \bigcup_{i\geq 0} \tau_i$, kde τ_i jsou konečná tabla z T, τ_0 je jednoprvkové tablo, a τ_{i+1} vzniklo z τ_i v jednom kroku.³

Tablo pro položku P je tablo, které má položku P v kořeni.

Připomeňme konvenci, že pokud P není typu 'všichni', potom kořen atomického tabla nebudeme zapisovat (neboť vrchol s položkou P už v tablu je).

Cvičení 7.1. Ukažte v jednotlivých krocích jak byla tabla z Obrázku 7.1.1 zkonstruována.

Definice 7.2.2 (Tablo důkaz). *Tablo důkaz* sentence φ z teorie T je sporné tablo z teorie T s položkou $F\varphi$ v kořeni. Pokud existuje, je φ (tablo) dokazatelná z T, píšeme $T \vdash \varphi$. (Definujme také tablo zamítnutí jako sporné tablo s $T\varphi$ v kořeni. Pokud existuje, je φ (tablo) zamítnutelná z T, tj. platí $T \vdash \neg \varphi$.)

- Tablo je sporné, pokud je každá jeho větev sporná.
- Větev je $sporn\acute{a}$, pokud obsahuje položky $T\psi$ a $F\psi$ pro nějaký výrok ψ , jinak je $beze-sporn\acute{a}$.
- Tablo je dokončené, pokud je každá jeho větev dokončená.
- Větev je dokončená, pokud
 - je sporná, nebo
 - je každá položka na této větvi redukovaná a zároveň větev obsahuje položku $T\alpha$ pro každý axiom $\alpha \in T$.
- \bullet Položka P je redukovaná na větvi <math display="inline">V procházející touto položkou, pokud
 - není typu 'všichni' a při konstrukci tabla již došlo k jejímu rozvoji na V, tj. vyskytuje se na V jako kořen atomického tabla.⁴
 - je typu 'všichni' a všechny její výskyty na V jsou na větvi V redukované.
- Výskyt položky P typu 'všichni' na větvi V je i- $t\acute{y}$, pokud má na V právě i-1 předků označených touto položkou, a i-tý výskyt je $redukovan\acute{y}$ na V, pokud
 - -položka Pmá (i+1)-ní výskyt na V,a zároveň
 - na V se vyskytuje položka $T\varphi(x/t_i)$ (je-li $P = T(\forall x)\varphi(x)$) resp. $F\varphi(x/t_i)$ (je-li $P = F(\exists x)\varphi(x)$), kde t_i je i-tý konstantní L_C -term.⁵

³Sjednocení proto, že v jednotlivých krocích přidáváme do tabla nové vrcholy, τ_i je tedy podstromem τ_{i+1} .

⁴Byť podle konvence tento kořen nezapisujeme.

⁵Tj. (typicky) už jsme za x substituovali term t_i .

Všimněte si, že je-li položka typu 'všichni' na nějaké větvi redukovaná, musí mít na této větvi nekonečně mnoho výskytů, a museli jsme v nich použít při substituci všechny možnosti, tj. všechny konstantní L_C -termy.

 $P\check{r}\hat{u}klad$ 7.2.3. Jako příklad sestrojme tablo důkazy v logice (z prázdné teorie) následujících sentencí:

- (a) $(\forall x)(P(x) \to Q(x)) \to ((\forall x)P(x) \to (\forall x)Q(x))$, kde P,Q jsou unární relační symboly.
- (b) $(\forall x)(\varphi(x) \land \psi(x)) \leftrightarrow ((\forall x)\varphi(x) \land (\forall x)\psi(x))$, kde $\varphi(x), \psi(x)$ jsou libovolné formule s jedinou volnou proměnnou x.

Výsledná tabla jsou na Obrázcích 7.2 a 7.3. Dvojice sporných položek jsou znázorněny červeně. Rozmyslete si, jak byla tabla po krocích zkonstruována.

Obrázek 7.2: Tablo důkaz z Příkladu 7.2.3 (a).

7.2.3 Systematické tablo a konečnost důkazů

V Sekci 4.4 jsme ukázali, že neprodlužujeme-li sporné větve (což nemusíme dělat), potom sporné tablo, speciálně tablo důkaz, bude vždy konečný. Stejný důkaz funguje i v logice predikátové.

Obrázek 7.3: Tablo důkaz z Příkladu 7.2.3 (b). Konstantu c_0 můžeme použít jako novou ve všech třech případech. Stačí, že se zatím nevyskytuje na dané větvi.

Důsledek 7.2.4 (Konečnost důkazů). Pokud $T \vdash \varphi$, potom existuje i konečný tablo důkaz φ zT. Důkaz. Stejný jako ve ve výrokové logice, viz důkaz Důsledku 4.4.5. Ve stejné sekci jsme si ukázali konstrukci systematického tabla. Tu lze také snadno adaptovat na predikátovou logiku. Musíme zajistit, abychom někdy zredukovali každou položku, použili každý axiom, a nově v predikátové logice také substituovali každý L_C term t_i za proměnnou v položkách typu 'všichni'. **Definice 7.2.5.** Mějme položku R a teorii $T = \{\alpha_1, \alpha_2, \dots\}$. Systematické tablo z teorie Tpro položku R je tablo $\tau = \bigcup_{i>0} \tau_i$, kde τ_0 je jednoprvkové tablo s položkou R, a pro každé $i \geq 0$: Buď P položka v nejlevějším vrcholu v na co nejmenší úrovni tabla τ_i , která není redukovaná na nějaké bezesporné větvi procházející P (resp. jde-li o položu typu 'všichni', její $v\acute{y}skyt$ v tomto vrcholu není redukovaný). Potom τ_i' je tablo vzniklé z τ_i připojením atomického tabla pro P na každou bezespornou větev procházející v, kde \bullet je-li P typu 'všichni' a má-li ve vrcholu v k-tý výskyt, potom za proměnnou substituujeme k-tý L_C -term t_k , ullet je-li P typu 'svědek', potom na dané větvi V za proměnnou substituujeme $c_i \in C$ s nejmenším možným i (takovým, že na V se c_i dosud nevyskytuje). Jinak, pokud taková položka P a vrchol v neexistují, tj. všechny položky jsou redukované, definujeme $\tau_i' = \tau_i$. Tablo τ_{i+1} je potom tablo vzniklé z τ'_i připojením $T\alpha_i$ na každou bezespornou větev τ'_i , pokud $i \leq |T|$. Jinak (je-li T konečná a už jsme použili všechny axiomy) tento krok přeskočíme a definujeme $\tau_{i+1} = \tau'_i$. Stejně jako ve výrokové logice platí, že systematické tablo je vždy dokončené, a poskytuje konečný důkaz: Lemma 7.2.6. Systematické tablo je dokončené. Důkaz. Obdobný jako důkaz ve výrokové logice (Lemma 4.4.2). Pro položky typu 'všichni' si všimněte, že k-tý výskyt redukujeme v momentě, kdy na něj při konstrukci narazíme:

 $D\mathring{u}kaz$. Stejný jako důkaz ve výrokové logice (Důsledek 7.2.7).

připojením vrcholu s (k+1)-ním výskytem a substitucí k-tého L_C -termu t_k .

7.3 Jazyky s rovností

tablo důkazem φ z T.

Nyní si ukážeme, jak aplikovat tablo metodu na jazyky s rovností. Co je to rovnost? V matematice může v různém kontextu znamenat různé relace. Platí 1+0=0+1? Mluvíme-li

Důsledek 7.2.7 (Systematičnost důkazů). Pokud $T \vdash \varphi$, potom systematické tablo je (konečným)

o celých číslech, pak ano, ale máme-li na mysli aritmetické výrazy (nebo např. termy v jazyce těles), potom si levá a pravá strana nejsou rovny: jde o jiné výrazy. 6

Představte si, že máme teorii T v jazyce s rovností obsahujícím konstantní symboly c_1, c_2 , unární funkční symbol f a unární relační symbol P. Mějme nějaké dokončené tablo z této teorie, a v něm bezespornou větev, na kterém najdeme položku $Tc_1 = c_2$. Budeme chtít sestrojit kanonický model A pro tuto větev, podobně jako ve výrokové logice. Položka bude znamenat, že v kanonickém modelu platí $c_1^A = c_2^A$, tj. $(c_1^A, c_2^A) \in =^A$. To nám ale nestačí, chceme také, aby platilo také např.:

- $\bullet \ c_2^{\mathcal{A}} =^{\mathcal{A}} c_1^{\mathcal{A}},$
- $f^{\mathcal{A}}(c_1^{\mathcal{A}}) =^{\mathcal{A}} f^{\mathcal{A}}(c_2^{\mathcal{A}}),$
- $c_1^{\mathcal{A}} \in P^{\mathcal{A}}$, právě když $c_2^{\mathcal{A}} \in P^{\mathcal{A}}$.

Obecně tedy chceme, aby relace $=^{\mathcal{A}}$ byla tzv. $kongruenci,^{7}$ tj. ekvivalencí, která se chová 'dobře' vůči funkcím a relacím struktury \mathcal{A} . Toho docílíme tak, že k teorii T přidáme tzv. $axiomy\ rovnosti$, které tyto vlastnosti vynutí, a tablo sestrojíme z výsledné teorie T^* .

V modelu \mathcal{A} potom bude relace $=^{\mathcal{A}}$ kongruencí. To nám ale nestačí, chceme, aby rovnost byla *identita*, tj. aby $(a,b) \in =^{\mathcal{A}}$ platilo jedině když a a b jsou týmž prvkem univerza. Toho docílíme identifikací všech $=^{\mathcal{A}}$ -ekvivalentních prvků do jediného prvku. Této konstrukci se říká faktorstruktura podle kongruence $=^{\mathcal{A}}$. Nyní tyto pojmy formalizujeme.

Definice 7.3.1 (Kongruence). Mějme ekvivalenci \sim na množině A, funkci $f: A^n \to A$, a relaci $R \subseteq A^n$. Říkáme, že \sim je

- kongruencí pro funkci f, pokud pro všechna $x_i, y_i \in A$ taková, že $x_i \sim y_i$ $(1 \le i \le n)$ platí $f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n)$,
- kongruencí pro relaci f, pokud pro všechna $x_i, y_i \in A$ taková, že $x_i \sim y_i$ $(1 \le i \le n)$ platí $f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n)$.

Kongruence struktury \mathcal{A} je ekvivalence \sim na množině A, která je kongruencí pro všechny funkce a relace \mathcal{A} .

Definice 7.3.2 (Faktorstruktura). Mějme strukturu \mathcal{A} a její kongruenci \sim . Faktorstruktura (podílová struktura) \mathcal{A} podle \sim je struktura $\mathcal{A}/_{\sim}$ v témž jazyce, jejíž univerzum $\mathcal{A}/_{\sim}$ je množina všech rozkladových tříd \mathcal{A} podle \sim , a jejíž funkce a relace jsou definované pomocí reprezentantů, tj:

- $f^{\mathcal{A}/\sim}([x_1]_\sim,\ldots,[x_n]_\sim)=[f^{\mathcal{A}}(x_1,\ldots,x_n)]_\sim$, pro každý (n-ární) funkční symbol f, a
- $R^{\mathcal{A}/\sim}([x_1]_\sim,\ldots,[x_n]_\sim)$ právě když $R^{\mathcal{A}}(x_1,\ldots,x_n)$, pro každý (n-ární) relační symbol R.

Definice 7.3.3 (Axiomy rovnosti). *Axiomy rovnosti* pro jazyk L s rovností jsou následující:

Fodobně např. $t_1 = t_2$ v Prologu neznamená, že jde o tentýž term, ale že termy t_1 a t_2 jsou *unifikovatelné*, viz kapitola o rezoluci v predikátové logice.

⁷Název pochází z kongruence modulo n, která je kongruencí v tomto smyslu na množině všech celých čísel, např. splňuje: $a+b\equiv c+d\pmod n$ kdykoliv $a\equiv c\pmod n$ a $b\equiv d\pmod n$.

⁸Stejně jako grupa \mathbb{Z}_n je faktorstrukturou grupy \mathbb{Z} podle $\equiv \pmod{n}$; např. prvek $2 \in \mathbb{Z}_n$ představuje množinu všech celých čísel, jejichž zbytek po dělení n je roven 2.

- (i) x = x,
- (ii) $x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$ pro každý *n*-ární funkční symbol f jazyka L,
- (iii) $x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (R(x_1, \dots, x_n) \rightarrow R(y_1, \dots, y_n))$ pro každý n-ární relační symbol R jazyka L včetně rovnosti.

Cvičení 7.2. První z axiomů rovnosti znamená reflexivitu relace $=^{\mathcal{A}}$. Kam se poděly symetrie a tranzitivita? Ukažte, že plynou z axiomu (iii) pro symbol rovnosti =.

Z axiomů (i) a (iii) tedy plyne, že relace $=^{\mathcal{A}}$ je ekvivalence na A, a axiomy (ii) a (iii) vyjadřují, že $=^{\mathcal{A}}$ je kongruencí \mathcal{A} . V tablo metodě v případě jazyka s rovností implicitně přidáme všechny axiomy rovnosti:

Definice 7.3.4 (Tablo důkaz s rovností). Je-li T teorie v jazyce L s rovností, potom označme jako T^* rozšíření teorie T o generální uzávěry⁹ axiomů rovnosti pro jazyk L. Tablo důkaz z teorie T je tablo důkaz z T^* , podobně pro tablo zamítnutí (a obecně jakékoliv tablo).

Platí následující jednoduché pozorování:

Pozorování 7.3.5. Jestliže $\mathcal{A} \models T^*$, potom platí i $\mathcal{A}/_{=\mathcal{A}} \models T^*$, a ve struktuře $\mathcal{A}/_{=\mathcal{A}}$ je symbol rovnosti interpretován jako identita. Na druhou stranu, v každém modelu, ve kterém je symbol rovnosti interpretován jako identita, platí axiomy rovnosti.

Toto pozorování využijeme při konstrukci *kanonického modelu*, který budeme potřebovat v důkazu Věty o úplnosti. Nejprve ale dokážeme Větu o korektnosti.

7.4 Korektnost a úplnost

V této sekci dokážeme, že tablo metoda je i v predikátové logice korektní a úplná. Důkazy obou vět mají stejnou strukturu jako ve výrokové logice, liší se jen v implementačních detailech.

7.4.1 Věta o korektnosti

Model (struktura) \mathcal{A} se shoduje s položkou P, pokud $P = T\varphi$ a $\mathcal{A} \models \varphi$, nebo $P = F\varphi$ a $\mathcal{A} \not\models \varphi$. Dále \mathcal{A} se shoduje s větví V, pokud se shoduje s každou položkou na této větvi. Ukážeme nejprve pomocné lemma analogické Lemmatu 7.4.1:

Lemma 7.4.1. Shoduje-li se model A teorie T s položkou v kořeni tabla z teorie T (v jazyce L), potom lze A expandovat do jazyka L_C tak, že se shoduje s některou větví v tablu.

Všimněte si, že stačí expandovat \mathcal{A} o nové konstanty c^A vyskytující se na větvi V. Ostatní konstantní symboly lze interpretovat libovolně.

 $D\mathring{u}kaz$. Mějme tablo $\tau = \bigcup_{i\geq 0} \tau_i$ z teorie T a model $A \in M_L(T)$ shodující se s kořenem τ , tedy s (jednoprvkovou) větví V_0 v (jednoprvkovém) τ_0 .

Indukcí podle i najdeme posloupnost větví V_i a expanzí \mathcal{A}_i modelu \mathcal{A} o konstanty $c^A \in C$ vyskytující se na V_i takových, že V_i je větev v tablu τ_i shodující se s modelem \mathcal{A}_i , V_{i+1} je prodloužením V_i , a \mathcal{A}_{i+1} je expanzí \mathcal{A}_i (mohou si být i rovny). Požadovaná větev tabla τ je

⁹Neboť v tablo metodě potřebujeme sentence.

potom $V = \bigcup_{i \geq 0} V_i$. Expanzi modelu \mathcal{A} do jazyka L_C získáme jako 'limitu' expanzí \mathcal{A}_i , tj. vyskytuje-li se symbol $c \in C$ na V, vyskytuje se na nějaké z větví V_i a interpretujeme ho stejně jako v \mathcal{A}_i (ostatní pomocné symboly interpretujeme libovolně).

- Pokud τ_{i+1} vzniklo z τ_i bez prodloužení větve V_i , definujeme $V_{i+1} = V_i$ a $\mathcal{A}_{i+1} = \mathcal{A}_i$.
- Pokud τ_{i+1} vzniklo z τ_i připojením položky $T\alpha$ (pro nějaký axiom $\alpha \in T$) na konec větve V_i , definujeme V_{i+1} jako tuto prodlouženou větev a $\mathcal{A}_{i+1} = \mathcal{A}_i$ (nepřidali jsme žádný nový pomocný konstantní symbol). Protože \mathcal{A}_{i+1} je modelem T, platí v něm axiom α , tedy shoduje se i s novou položkou $T\alpha$.
- Nechť τ_{i+1} vzniklo z τ_i připojením atomického tabla pro nějakou položku P na konec větve V_i . Protože se model \mathcal{A}_i shoduje s položkou P (která leží na větvi V_i), shoduje se i s kořenem připojeného atomického tabla.
 - Pokud jsme připojili atomické tablo pro logickou spojku, položíme $\mathcal{A}_{i+1} = \mathcal{A}_i$ (nepřidali jsme nový pomocný symbol). Protože \mathcal{A}_{i+1} se shoduje s kořenem atomického tabla, shoduje se i s některou z jeho větví (stejně jako ve výrokové logice); definujeme V_{i+1} jako prodloužení V_i o tuto větev.
 - Je-li položka P typu 'svědek': Pokud je $P = T(\exists x)\varphi(x)$, potom $\mathcal{A}_i \models (\exists x)\varphi(x)$, tedy existuje $a \in A$ takové, že $\mathcal{A}_i \models \varphi(x)[e(x/a)]$. Větev V_{i+1} definujeme jako prodloužení V_i o nově přidanou položku $T\varphi(x/c)$ a model \mathcal{A}_{i+1} jako expanzi \mathcal{A}_i o konstantu $c^A = a$. Případ $P = F(\forall x)\varphi(x)$ je obdobný.
 - Je-li položka P typu 'všichni', větev V_{i+1} definujeme jako prodloužení V_i o atomické tablo. Nově přidaná položka je $T\varphi(x/t)$ nebo $F\varphi(x/t)$ pro nějaký L_C -term t. Předpokládejme, že jde o první z těchto dvou možností, pro druhou je důkaz analogický. Model \mathcal{A}_{i+1} definujeme jako libovolnou expanzi \mathcal{A}_i o nové konstanty vyskytující se v t. Protože $\mathcal{A}_i \models (\forall x)\varphi(x)$, platí i $\mathcal{A}_{i+1} \models (\forall x)\varphi(x)$ a tedy i $\mathcal{A}_{i+1} \models \varphi(x/t)$; model \mathcal{A}_{i+1} se tedy shoduje s větví V_i .

Připomeňme stručně myšlenku důkazu Věty o korektnosti: Pokud by existoval důkaz a zároveň protipříklad, protipříklad by se musel shodovat s některou větví důkazu, ty jsou ale všechny sporné. Důkaz je tedy téměř stejný jako ve výrokové logice.

Věta 7.4.2 (O korektnosti). *Je-li výrok* φ *tablo dokazatelný z teorie* T, *potom je* φ *pravdivý* v T, tj. $T \vdash \varphi \Rightarrow T \models \varphi$.

 $D\mathring{u}kaz$. Předpokládejme pro spor, že $T \not\models \varphi$, tj. existuje $\mathcal{A} \in \mathcal{M}(T)$ takový, že $\mathcal{A} \not\models \varphi$. Protože $T \vdash \varphi$, existuje sporné tablo z T s $F\varphi$ v kořeni. Model \mathcal{A} se shoduje s $F\varphi$, tedy podle Lemmatu 7.4.1 lze expandovat do jazyka L_C tak, že se expanze shoduje s nějakou větví V. Všechny větve jsou ale sporné.

7.4.2 (draft) Věta o úplnosti

[TODO]

Stejně jako ve výrokové logice ukážeme, že bezesporná větev v dokončeném tablo důkazu poskytuje protipříklad: model teorie T, který se shoduje s položkou $F\varphi$ v kořeni tabla, tj.

106

neplatí v něm φ . Takových modelů může být více, definujeme proto opět jeden konkrétní, kanonický.

Model musí mít nějakou doménu. Jak ji získat z tabla, což je čistě sémantický objekt? Využijeme standardní (v matematice) trik: ze syntaktických objektů uděláme sémantické. Konkrétně, za doménu zvolíme množinu všech konstantních termů jazyka L_C . Ty chápeme jako konečné řetězce. V následujícím budeme někdy (neformálně) místo termu t psát "t", abychom zdůraznili, že v daném místě chápeme t jako řetězec znaků, a ne např. jako termovou funkci, kterou je třeba vyhodnotit. t11

Definice 7.4.3 (Kanonický model). Mějme teorii T v jazyce $L = \langle \mathcal{F}, \mathcal{R} \rangle$ a nechť V je bezesporná větev nějakého dokončeného tabla z teorie T. Potom kanonický model pro V je L_C -struktura $\mathcal{A} = \langle A, \mathcal{F}^{\mathcal{A}} \cup C^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}} \rangle$ definovaná následovně:

Je-li jazyk L bez rovnosti, potom:

- Doména A je množina všech konstantních L_C -termů.
- Pro každý n-ární relační symbol $R \in \mathcal{R}$ a " s_1 ", ..., " s_n " z A:

$$("s_1",\ldots,"s_n")\in R^{\mathcal{A}}$$
 právě když na větvi V je položka T $R(s_1,\ldots,s_n)$

• Pro každý n-ární funkční symbol $f \in \mathcal{F}$ a " s_1 ", ..., " s_n " z A:

$$f^{\mathcal{A}}("s_1", \dots, "s_n") = "f(s_1, \dots, s_n)"$$

Speciálně, pro konstantní symbol c máme $c^{\mathcal{A}} = "c"$.

Funkci $f^{\mathcal{A}}$ tedy interpretujeme jako 'vytvoření' nového termu ze symbolu f a vstupních termů (řetězců).

Nechť je L jazyk s rovností. Připomeňme, že naše tablo je nyní z teorie T^* , tj. z rozšíření T o axiomy rovnosti pro L. Nejprve vytvoříme kanonický model \mathcal{B} pro V jakoby byl L bez rovnosti (jeho doména B je tedy množina všech konstantních L_C -termů). Dále definujeme relaci $=^B$ stejně jako pro ostatní relační symboly:

$$"s_1"=^B"s_2"$$
 právě když na větvi V je položka $\mathrm{T} s_1=s_2$

Kanonický model pro V je potom faktorstruktura $\mathcal{A} = \mathcal{B}/_{=B}$.

Jak plyne z diskuze v Sekci 7.3, relace $=^B$ je opravdu kongruence struktury \mathcal{B} , definice je tedy korektní, a relace $=^{\mathcal{A}}$ je identita na A. Všimněte si, že v jazyce bez rovnosti je kanonický model vždy spočetně nekonečný. V jazyce s rovností může ale být konečný, jak uvidíme v následujících příkladech.

[TODO] Příklady [TODO] Cvičení $x=y\vee y=z\vee x=z$

 $^{^{10}{\}rm Tj.}$ termů zbudovaných aplikací funkčních symbolů jazyka Lna konstantní symboly jazyka L (má-li nějaké) a pomocné konstantní symboly z C.

¹¹Srovnejte aritmetický výraz "1+1" a 1+1=2.

Kanonický model - příklad

Nechť teorie $T = \{(\forall x)R(f(x))\}$ je jazyka $L = \langle R, f, d \rangle$. Systematické tablo pro $F \neg R(d)$ z T obsahuje jedinou větev V a ta je bezesporná.

Kanonický model $\mathcal{A} = \langle A, R^A, f^A, d^A, c_i^A \rangle_{i \in \mathbb{N}}$ z V je pro jazyk L_C a platí $A = \{d, f(d), f(f(d)), \dots, c_0, f(c_0), f(f(c_0)), \dots, c_1, f(c_1), f(f(c_1)), \dots\},$ $d^A = d, \quad c_i^A = c_i \text{ pro } i \in \mathbb{N},$ $f^A(d) = \text{``}f(d)\text{''}, \quad f^A(f(d)) = \text{``}f(f(d))\text{''}, \quad f^A(f(f(d))) = \text{``}f(f(f(d)))\text{''}, \dots$ $R^A = \{d, f(d), f(f(d)), \dots, f(c_0), f(f(c_0)), \dots, f(c_1), f(f(c_1)), \dots\}.$

Redukt \mathcal{A} na jazyk L je $\mathcal{A}' = \langle A, R^A, f^A, d^A \rangle$.

Kanonický model s rovností - příklad

Nechť $T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}$ je nad $L = \langle R, f, d \rangle$ s rovností. Systematické tablo pro $F \neg R(d)$ z T^* obsahuje bezespornou větev V.

V kanonickém modelu $\mathcal{A} = \langle A, R^A, =^A, f^A, d^A, c_i^A \rangle_{i \in \mathbb{N}}$ z V pro relaci $=^A$ platí $s_1 =^A s_2 \quad \Leftrightarrow \quad s_1 = f(\cdots(f(s_2)\cdots) \text{ nebo } s_2 = f(\cdots(f(s_1)\cdots),$

kde f je aplikováno 2i-krát pro nějaké $i \in \mathbb{N}$.

Kanonický model s rovností z V je $\mathcal{B} = (\mathcal{A}/=^A) = \langle A/=^A, R^B, f^B, d^B, c_i^B \rangle_{i \in \mathbb{N}}$ $(A/=^A) = \{[d]_{=A}, [f(d)]_{=A}, [c_0]_{=A}, [f(c_0)]_{=A}, [c_1]_{=A}, [f(c_1)]_{=A}, \dots \},$ $d^B = [d]_{=A}, \quad c_i^B = [c_i]_{=A} \text{ pro } i \in \mathbb{N},$ $f^B([d]_{=A}) = [f(d)]_{=A}, \quad f^B([f(d)]_{=A}) = [f(f(d))]_{=A} = [d]_{=A}, \dots$ $R^B = (A/=^A).$

Redukt \mathcal{B} na jazyk L je $\mathcal{B}' = \langle A/=^A, R^B, f^B, d^B \rangle$.

Úplnost

Lemma Kanonický model \mathcal{A} z bezesporné dok. větve V se shoduje s V. Důkaz Indukcí dle struktury sentence vyskytující se v položce na V.

- Pro φ atomickou, je-li $T\varphi$ na V, je $\mathcal{A} \models \varphi$ dle (3). Je-li $F\varphi$ na V, není $T\varphi$ na V, neboť V je bezesporná, a tedy $\mathcal{A} \models \neg \varphi$ dle (3).
- Je-li $T(\varphi \wedge \psi)$ na V, je $T\varphi$ a $T\psi$ na V, neboť V je dokončená. Dle indukčního předpokladu je $\mathcal{A} \models \varphi$ a $\mathcal{A} \models \psi$, tedy $\mathcal{A} \models \varphi \wedge \psi$.
- Je-li $F(\varphi \wedge \psi)$ na V, je $F\varphi$ nebo $F\psi$ na V, neboť V je dokončená. Dle indukčního předpokladu je $\mathcal{A} \models \neg \varphi$ nebo $\mathcal{A} \models \neg \psi$, tedy $\mathcal{A} \models \neg (\varphi \wedge \psi)$.

- Pro ostatní spojky obdobně jako v předchozích dvou případech.
- Je-li $T(\forall x)\varphi(x)$ na V, je $T\varphi(x/t)$ na V pro každé $t\in A$, neboť V je dokončená. Dle indukčního předpokladu je $\mathcal{A}\models\varphi(x/t)$ pro každé $t\in A$, tedy $\mathcal{A}\models(\forall x)\varphi(x)$. Obdobně pro $F(\exists x)\varphi(x)$ na V.
- Je-li $T(\exists x)\varphi(x)$ na V, je $T\varphi(x/c)$ na V pro nějaké $c \in A$, neboť V je dokončená. Dle indukčního předpokladu je $\mathcal{A} \models \varphi(x/c)$, tedy $\mathcal{A} \models (\exists x)\varphi(x)$. Obdobně pro $F(\forall x)\varphi(x)$ na V. \square

Věta o úplnosti

Ukážeme, že tablo metoda ve predikátové logice je úplná.

Věta Pro každou teorii T a sentenci φ , je-li φ pravdivá v T, je φ tablo dokazatelná z T, tj. $T \models \varphi \Rightarrow T \vdash \varphi$.

 $D\mathring{u}kaz$ Nechť φ je pravdivá v T. Ukážeme, že libovolné dokončené tablo (např. systematické) τ z teorie T s položkou $F\varphi$ v kořeni je sporné.

- \bullet Kdyby ne, v tablu τ je nějaká bezesporná větev V.
- Dle předchozího lemmatu existuje struktura \mathcal{A} pro jazyk L_C shodující se s větví V, speciálně s položkou $F\varphi$ v kořeni, tj. $\mathcal{A} \models \neg \varphi$.
- Nechť \mathcal{A}' je redukt struktury \mathcal{A} na původní jazyk L. Platí $\mathcal{A}' \models \neg \varphi$.
- Jelikož větev V je dokončená, obsahuje $T\psi$ pro každé $\psi \in T$.
- Tedy \mathcal{A}' je modelem T (neboť \mathcal{A}' se shoduje s $T\psi$ pro každé $\psi \in T$).
- To je ale ve sporu s tím, že φ platí v každém modelu teorie T.

Tedy tablo τ je důkazem φ z T. \square

7.5 (draft) Důsledky korektnosti a úplnosti

[TODO]

Zavedeme syntaktické varianty již definovaných sémantických pojmů.

Nechť T je teorie jazyka L. Je-li sentence φ dokazatelná z T, řekneme, že φ je věta (teor'em) teorie T. Množinu vět teorie T označme

$$Thm^{L}(T) = \{ \varphi \in Fm_{L} \mid T \vdash \varphi \}.$$

Řekneme, že teorie T je

• $sporn\acute{a}$, jestliže je v T dokazatelný \perp (spor), jinak je $bezesporn\acute{a}$,

- kompletni, jestliže není sporná a každá sentence je v ní dokazatelná či zamítnutelná, tj. $T \vdash \varphi$ či $T \vdash \neg \varphi$.
- extenze teorie T' jazyka L', jestliže $L' \subseteq L$ a $\operatorname{Thm}^{L'}(T') \subseteq \operatorname{Thm}^{L}(T)$, o extenzi T teorie T' řekneme, že je $jednoduch\acute{a}$, pokud L = L', a $konzervativn\acute{a}$, pokud $\operatorname{Thm}^{L'}(T') = \operatorname{Thm}^{L}(T) \cap \operatorname{Fm}_{L'}$,
- ekvivalentní s teorií T', jestliže T je extenzí T' a T' je extenzí T.
 Z korektnosti a úplnosti tablo metody vyplývá, že předchozí pojmy se shodují se svými sémantickými variantami.

Důsledek Pro každou teorii T a sentence φ , ψ jazyka L,

- $T \vdash \varphi \ pr\'{a}v\check{e} \ kdy\check{z} \ T \models \varphi$,
- Thm $^L(T) = \theta^L(T)$,
- T je sporná, právě když je sémanticky sporná, tj. nemá model,
- T je kompletní, právě když je sémanticky kompletní, tj. má až na elementární ekvivalenci jediný model,
- $T, \varphi \vdash \psi$ právě $když T \vdash \varphi \rightarrow \psi$ (Věta o dedukci).

Poznámka Větu o dedukci lze dokázat přímo, transformací příslušných tabel.

7.5.1 Löwenheim-Skolemova věta

[TODO]

Věta Každá bezesporná teorie T spočetného jazyka L bez rovnosti má spočetně nekonečný model.

 $D\mathring{u}kaz$ Nechť τ je systematické tablo z T s $F\bot$ v kořeni. Jelikož je dokončené a obsahuje bezespornou větev V, neboť \bot není dokazatelný z T, existuje kanonický model \mathcal{A} z V. Jelikož se \mathcal{A} shoduje s V, jeho redukt na jazyk L je hledaným spočetně nekonečným modelem T. \square

Poznámka Jde o slabou verzi tzv. Löwenheim-Skolemovy věty. Ve spočetném jazyce s rovností je kanonický model s rovností spočetný.

Věta Teorie má model, právě když každá její konečná část má model. Důkaz Implikace zleva doprava je zřejmá. Pokud teorie T nemá model, je sporná, tj. je z ní dokazatelný \bot systematickým tablem τ . Jelikož je τ konečné, je \bot dokazatelný z nějaké konečné $T' \subseteq T$, tj. T' nemá model. \Box

7.5.2 Věta o kompaktnosti

[TODO]

7.5.3 Aplikace

[TODO]

Nestandardní model přirozených čísel

Nechť $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ je standardní model přirozených čísel.

Označme Th($\underline{\mathbb{N}}$) množinu všech pravdivých sentencí v $\underline{\mathbb{N}}$. Pro $n \in \mathbb{N}$ označme \underline{n} term $S(S(\dots(S(0)\dots), \text{tzv. } n\text{-}t\acute{y} \text{ numer\'al}, \text{ kde } S \text{ je aplikováno } n\text{-krát.}$

Uvažme následující teorii T, kde c je nový konstantní symbol.

$$T = \text{Th}(\mathbb{N}) \cup \{n < c \mid n \in \mathbb{N}\}\$$

Pozorování Každá konečná část teorie T má model.

Tedy dle věty o kompaktnosti má T model A, jde o nestandardní model přirozených čísel. Každá sentence z $\operatorname{Th}(\underline{\mathbb{N}})$ v něm platí, ale zároveň obsahuje prvek c^A větší než každé $n \in \mathbb{N}$ (tj. hodnota termu \underline{n} v A).

7.6 (draft) Hilbertovský kalkulus v predikátové logice

[TODO]

Hilbertovský kalkul

- základní logické spojky a kvantifikátory: \neg , \rightarrow , $(\forall x)$ (ostatní odvozené)
- dokazují se libovolné formule (nejen sentence)
- logické axiomy (schémata logických axiomů)

(i)
$$\varphi \to (\psi \to \varphi)$$

(ii)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(iii)
$$(\neg \varphi \to \neg \psi) \to (\psi \to \varphi)$$

$$(iv)$$
 $(\forall x)\varphi \rightarrow \varphi(x/t)$ je-li t substituovatelný za x do φ

$$(v)$$
 $(\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi)$ není-li x volná proměnná ve φ

kde φ , ψ , χ jsou libovolné formule (daného jazyka), t je libovolný term a x je libovolná proměnná.

- je-li jazyk s rovností, mezi logické axiomy patří navíc axiomy rovnosti
- odvozovací (deduktivní) pravidla

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$
 (modus ponens), $\frac{\varphi}{(\forall x)\varphi}$ (generalizace)

Pojem důkazu

 $D\mathring{u}kaz$ ($Hilbertova\ stylu$) formule φ z teorie T je konečná posloupnost $\varphi_0,\ldots,\varphi_n=\varphi$ formulí taková, že pro každé $i\leq n$

- $\bullet \ \varphi_i$ je logický axiom nebo $\varphi_i \in T$ (axiom teorie), nebo
- φ_i lze odvodit z předchozích formulí pomocí odvozovacích pravidel.

Formule φ je dokazatelná v T, má-li důkaz z T, značíme $T \vdash_H \varphi$.

Věta Pro každou teorii T a formuli φ , $T \vdash_H \varphi \Rightarrow T \models \varphi$. $D\mathring{u}kaz$

- Je-li $\varphi \in T$ nebo logický axiom, je $T \models \varphi$ (logické axiomy jsou tautologie),
- jestliže $T \models \varphi$ a $T \models \varphi \rightarrow \psi$, pak $T \models \psi$, t
j. modus ponens je korektní,
- jestliže $T \models \varphi$, pak $T \models (\forall x)\varphi$, tj. pravidlo generalizace je korektní,
- $\bullet\,$ tedy každá formule vyskytující se v důkazu z Tplatí v T.

 $\textit{Poznámka Platí i úplnost, tj. } T \models \varphi \Rightarrow T \vdash_{H} \varphi \textit{ pro každou teorii } T \textit{ a formuli } \varphi.$

Kapitola 8

(draft) Rezoluce v predikátové logice

[TODO]

8.1 Úvod

[TODO]

Rezoluční metoda v PL - úvod

- Zamítací procedura cílem je ukázat, že daná formule (či teorie) je nesplnitelná.
- Předpokládá otevřené formule v CNF (v množinové reprezentaci).

Literál je (tentokrát) atomická formule nebo její negace.

Klauzule je konečná množina literálů, \square značí prázdnou klauzuli.

Formule (v množinové reprezentaci) je množina (i nekonečná) klauzulí.

Poznámka Každou formuli (teorii) umíme převést na ekvisplnitelnou otevřenou formuli (teorii) v CNF, tj. na formuli v množinové reprezentaci.

- Rezoluční pravidlo je obecnější umožňuje rezolvovat přes literály, které jsou unifikovatelné.
- Rezoluce v PL je založená na rezoluci ve VL a unifikaci.

Lokální význam proměnných

Proměnné v rámci klauzule můžeme přejmenovat.

Nechť φ je (vstupní) otevřená formule v CNF.

- Formule φ je splnitelná, právě když její generální uzávěr φ' je splnitelný.
- Pro každé formule ψ , χ a proměnnou x $\models (\forall x)(\psi \wedge \chi) \leftrightarrow (\forall x)\psi \wedge (\forall x)\chi$ (i když x je volná v ψ a χ zároveň).
- Každou klauzuli ve φ lze tedy nahradit jejím generálním uzávěrem.
- Uzávěry klauzulí lze variovat (přejmenovat proměnné).

Např. variovaním druhé klauzule v (1) získáme ekvisplnitelnou formuli (2).

- (1) $\{\{P(x), Q(x,y)\}, \{\neg P(x), \neg Q(y,x)\}\}$
- (2) $\{\{P(x), Q(x,y)\}, \{\neg P(v), \neg Q(u,v)\}\}$

8.2 Skolemizace

[TODO]

8.2.1 Ekvisplnitelnost

[TODO]

Ekvisplnitelnost

Ukážeme, že problém splnitelnosti lze redukovat na otevřené teorie.

- Teorie T, T' jsou $ekvisplniteln\acute{e}$, jestliže T má model $\Leftrightarrow T'$ má model.
- Formule φ je v prenexním (normálním) tvaru (PNF), má-li tvar $(Q_1x_1)\dots(Q_nx_n)\varphi',$

kde Q_i značí \forall nebo \exists , proměnné x_1, \ldots, x_n jsou navzájem různé a φ' je otevřená formule, zvaná *otevřené jádro*. $(Q_1x_1)\ldots(Q_nx_n)$ je tzv. *prefix*.

- Speciálně, jsou-li všechny kvantifikátory $\forall,$ je φ univerzální formule.

K teorii T nalezneme ekvisplnitelnou otevřenou teorii následujícím postupem.

- (1) Axiomy teorie T nahradíme za ekvivalentní formule v prenexním tvaru.
- (2) Pomocí nových funkčních symbolů je převedeme na univerzální formule, tzv. Skolemovy varianty, čímž dostaneme ekvisplnitelnou teorii.
- (3) Jejich otevřená jádra budou tvořit hledanou teorii.

8.2.2 Prenexní normální forma

[TODO]

Vytýkání kvantifikátorů

Nechť Q značí kvantifikátor \forall nebo \exists a \overline{Q} značí opačný kvantifikátor.

Pro každé formule φ , ψ takové, že x není volná ve formuli ψ ,

Uvedené ekvivalence lze ověřit sémanticky nebo dokázat tablo metodou (*přes generální uzávěr, není-li to sentence*).

Poznámka Předpoklad, že x není volná ve formuli ψ je v každé ekvivalenci (kromě té první) nutný pro nějaký kvantifikátor Q. Např.

$$\not\models ((\exists x)P(x) \land P(x)) \leftrightarrow (\exists x)(P(x) \land P(x))$$

Převod na prenexní tvar

Tvrzení Nechť φ' je formule vzniklá z formule φ nahrazením některých výskytů podformule ψ za formuli ψ' . Jestliže $T \models \psi \leftrightarrow \psi'$, pak $T \models \varphi \leftrightarrow \varphi'$. Důkaz Snadno indukcí dle struktury formule φ . \square

Tvrzení Ke každé formuli φ existuje ekvivalentní formule φ' v prenexním normálním tvaru, tj. $\models \varphi \leftrightarrow \varphi'$.

 $D\mathring{u}kaz$ Indukcí dle struktury φ pomocí vytýkání kvantifikátorů, náhradou podformulí za jejich varianty a využitím předchozího tvrzení o ekvivalenci. $Nap\check{r}$. $((\forall z)P(x,z) \land P(y,z)) \rightarrow \neg(\exists x)P(x,y)$

$$((\forall u)P(x,u) \land P(y,z)) \rightarrow (\forall x)\neg P(x,y)$$

$$(\forall u)(P(x,u) \land P(y,z)) \rightarrow (\forall v)\neg P(v,y)$$

$$(\exists u)((P(x,u) \land P(y,z)) \rightarrow (\forall v)\neg P(v,y))$$

$$(\exists u)(\forall v)((P(x,u) \land P(y,z)) \rightarrow \neg P(v,y))$$

8.2.3 Skolemova varianta

[TODO]

Nechť φ je sentence jazyka L v prenexním normálním tvaru, y_1, \ldots, y_n jsou existenčně kvantifikované proměnné ve φ (v tomto pořadí) a pro každé $i \leq n$ nechť x_1, \ldots, x_{n_i} jsou univerzálně kvantifikované proměnné před y_i . Označme L' rozšíření L o nové n_i -ární funkční symboly f_i pro každé $i \leq n$.

Nechť φ_S je formule jazyka L', jež vznikne z formule φ odstraněním $(\exists y_i)$ z jejího prefixu a nahrazením každého výskytu proměnné y_i za term $f_i(x_1, \ldots, x_{n_i})$. Pak formule φ_S se nazývá *Skolemova varianta* formule φ .

Např. pro formuli φ

$$(\exists y_1)(\forall x_1)(\forall x_2)(\exists y_2)(\forall x_3)R(y_1, x_1, x_2, y_2, x_3)$$

je následují formule φ_S její Skolemovou variantou

$$(\forall x_1)(\forall x_2)(\forall x_3)R(f_1, x_1, x_2, f_2(x_1, x_2), x_3),$$

 $kde\ f_1\ je\ nový\ konstantní\ symbol\ a\ f_2\ je\ nový\ binární\ funkční\ symbol.$

Vlastnosti Skolemovy varianty

Lemma Nechť φ je sentence $(\forall x_1) \dots (\forall x_n)(\exists y) \psi$ jazyka L a φ' je sentence $(\forall x_1) \dots (\forall x_n) \psi(y/f(x_1, \dots, x_n))$, kde f je nový funkční symbol. Pak

- (1) redukt A každého modelu A' formule φ' na jazyk L je modelem φ ,
- (2) každý model \mathcal{A} formule φ lze expandovat na model \mathcal{A}' formule φ' .

Poznámka Na rozdíl od extenze o definici funkčního symbolu, expanze v tvrzení (2) tentokrát nemusí být jednoznačná.

 $D\mathring{u}kaz$ (1) Nechť $\mathcal{A}' \models \varphi'$ a \mathcal{A} je redukt \mathcal{A}' na jazyk L. Jelikož pro každé ohodnocení e je $\mathcal{A} \models \psi[e(y/a)]$, kde $a = (f(x_1, \ldots, x_n))^{A'}[e]$, platí $\mathcal{A} \models \varphi$. (2) Nechť $\mathcal{A} \models \varphi$. Pak existuje funkce $f^A \colon A^n \to A$ taková, že pro každé ohodnocení e platí $\mathcal{A} \models \psi[e(y/a)]$, kde $a = f^A(e(x_1), \ldots, e(x_n))$, a tedy expanze \mathcal{A}' struktury \mathcal{A} o funkci f^A je modelem φ' . \square

Důsledek Je-li φ' Skolemova varianta formule φ , obě tvrzení (1) a (2) pro φ , φ' rovněž platí. Tedy φ , φ' jsou ekvisplnitelné.

8.2.4 Skolemova věta

[TODO]

Skolemova věta

Věta Každá teorie T má otevřenou konzervativní extenzi T^* .

 $D\mathring{u}kaz$ Lze předpokládat, že T je v uzavřeném tvaru. Nechť L je její jazyk.

- Nahrazením každého axiomu teorie T za ekvivalentní formuli v prenexním tvaru získáme ekvivalentní teorii T° .
- Nahrazením každého axiomu teorie T° za jeho Skolemovu variantu získáme teorii T' rozšířeného jazyka L'.
- Jelikož je redukt každého modelu teorie T' na jazyk L modelem teorie T, je T' extenze T.
- Jelikož i každý model teorie T lze expandovat na model teorie T', je to extenze konzervativní.
- Jelikož každý axiom teorie T' je univerzální sentence, jejich nahrazením za otevřená jádra získáme otevřenou teorii T^* ekvivalentní sT'. \square

Důsledek Ke každé teorii existuje ekvisplnitelná otevřená teorie.

8.3 Grounding

[TODO]

Redukce nesplnitelnosti na úroveň VL

Je-li otevřená teorie nesplnitelná, lze to "doložit na konkrétních prvcích".

Např. teorie

$$T = \{P(x, y) \lor R(x, y), \neg P(c, y), \neg R(x, f(x))\}\$$

jazyka $L=\langle P,R,f,c\rangle$ nemá model, což lze doložit nesplnitelnou konjunkcí konečně mnoha instancí (některých) axiomů teorie T v konstantních termech

$$(P(c, f(c)) \vee R(c, f(c))) \wedge \neg P(c, f(c)) \wedge \neg R(c, f(c)),$$

což je lživá formule ve tvaru výroku

$$(p \lor r) \land \neg p \land \neg r.$$

Instance $\varphi(x_1/t_1,\ldots,x_n/t_n)$ otevřené formule φ ve volných proměnných x_1,\ldots,x_n je základní (ground) instance, jsou-li všechny termy t_1,\ldots,t_n konstantní. Konstantní termy nazýváme také základní (ground) termy.

Přímá redukce do VL

Herbrandova věta umožňuje následující postup. Je ale značně neefektivní.

- Nechť S je (vstupní) formule v množinové reprezentaci.
- Lze předpokládat, že jazyk obsahuje alespoň jeden konstantní symbol.
- \bullet Nechť S' je množina všech základních instancí klauzulí z S.
- Zavedením prvovýroků pro každou atomickou sentenci lze S' převést na (případně nekonečnou) výrokovou formuli v množinové reprezentaci.
- Rezolucí na úrovni VL ověříme její nesplnitelnost.

Např. pro
$$S = \{\{P(x,y), R(x,y)\}, \{\neg P(c,y)\}, \{\neg R(x,f(x))\}\} \ je$$

$$S' = \{\{P(c,c), R(c,c)\}, \{P(c,f(c)), R(c,f(c))\}, \{P(f(c),f(c)), R(f(c),f(c))\} \dots, \{\neg P(c,c)\}, \{\neg P(c,f(c))\}, \dots, \{\neg R(c,f(c))\}, \{\neg R(f(c),f(f(c)))\}, \dots\}$$
nesplnitelná, neboť na úrovni VL je
$$S' \supseteq \{\{P(c,f(c)), R(c,f(c))\}, \{\neg P(c,f(c))\}, \{\neg R(c,f(c))\}\} \vdash_{R} \square.$$

8.3.1 Herbrandův model

[TODO]

Herbrandův model

Nechť $L = \langle \mathcal{R}, \mathcal{F} \rangle$ je jazyk s alespoň jedním konstantním symbolem. (Je-li třeba, do L přidáme nový konstantní symbol.)

- Herbrandovo univerzum pro L je množina všech konstantních termů z L.

 Např. pro $L = \langle P, f, c \rangle$, kde P je relační, f je binární funkční, c konstantní $A = \{c, f(c, c), f(f(c, c), c), f(c, f(c, c)), f(f(c, c), f(c, c)), \dots\}$
- Struktura \mathcal{A} pro L je $Herbrandova\ struktura$, je-li doména A Herbrandovo univerzum pro L a pro každý n-ární funkční symbol $f \in \mathcal{F}$ a $t_1, \ldots, t_n \in A$,

$$f^A(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$$

(včetně n = 0, tj. $c^A = c$ pro každý konstantní symbol c).

Poznámka Na rozdíl od kanonické struktury nejsou předepsané relace.

Např.
$$\mathcal{A} = \langle A, P^A, f^A, c^A \rangle$$
, $kde\ P^A = \emptyset$, $c^A = c\ a\ f^A(c,c) = f(c,c)$,

 \bullet Herbrandův model teorie T je Herbrandova struktura, jež je modelem T.

8.3.2 Herbrandova věta

[TODO]

Herbrandova věta

Věta Nechť T je otevřená teorie jazyka L bez rovnosti a s alespoň jedním konstantním symbolem. Pak

- (a) T má Herbrandův model, anebo
- (b) existuje konečně mnoho základních instancí axiomů z T, jejichž konjunkce je nesplnitelná, a tedy T nemá model.

 $D\mathring{u}kaz$ Nechť T' je množina všech základních instancí axiomů z T. Uvažme dokončené (např. systematické) tablo τ z T' v jazyce L (bez přidávání nových konstant) s položkou $F\bot$ v kořeni.

- Obsahuje-li tablo τ bezespornou větev V, kanonický model z větve V je Herbrandovým modelem teorie T.
- Jinak je \(\tau \) sporné, tj. \(T' \) \(\perp \) . Navíc je konečné, tedy \(\perp \) je dokazatelný jen z konečně mnoha formulí \(T' \), tj. jejich konjunkce je nesplnitelná. □

8.3.3 Důsledky

[TODO]

Důsledky Herbrandovy věty

Nechť L je jazyk obsahující alespoň jeden konstantní symbol.

Důsledek Pro každou otevřenou $\varphi(x_1, ..., x_n)$ jazyka L je $(\exists x_1) ... (\exists x_n) \varphi$ pravdivá, právě když existují konstantní termy t_{ij} jazyka L takové, že $\varphi(x_1/t_{11}, ..., x_n/t_{1n}) \vee ... \vee \varphi(x_1/t_{m1}, ..., x_n/t_{mn})$

je (výroková) tautologie.

 $D\mathring{u}kaz\ (\exists x_1)\dots(\exists x_n)\varphi$ je pravdivá $\Leftrightarrow (\forall x_1)\dots(\forall x_n)\neg\varphi$ je nesplnitelná $\Leftrightarrow \neg\varphi$ je nesplnitelná. Ostatní vyplývá z Herbrandovy věty pro $\neg\varphi$.

Důsledek Otevřená teorie T jazyka L má model, právě když teorie T' všech základních instancí axiomů z T má model.

 $D\mathring{u}kaz$ Má-li T model \mathcal{A} , platí v něm každá instance každého axiomu z T, tedy \mathcal{A} je modelem T'. Nemá-li T model, dle H. věty existuje (konečně) formulí z T', jejichž konjunkce je nesplnitelná, tedy T' nemá model. \square

8.4 Unifikace

[TODO]

8.4.1 Substituce

[TODO]

Substituce - příklady

Efektivnější je využívat vhodných substitucí. Např. pro

- a) $\{P(x), Q(x, a)\}, \{\neg P(y), \neg Q(b, y)\}$ substitucí x/b, y/a dostaneme $\{P(b), Q(b, a)\}, \{\neg P(a), \neg Q(b, a)\}$ a z nich rezolucí $\{P(b), \neg P(a)\}.$ Nebo substitucí x/y a rezolucí dle P(y) dostaneme $\{Q(y, a), \neg Q(b, y)\}.$
- b) $\{P(x), Q(x, a), Q(b, y)\}, \{\neg P(v), \neg Q(u, v)\}$ substituce x/b, y/a, u/b, v/a dává $\{P(b), Q(b, a)\}, \{\neg P(a), \neg Q(b, a)\}$ a z nich rezolucí $\{P(b), \neg P(a)\}.$
- c) $\{P(x),Q(x,z)\}, \{\neg P(y),\neg Q(f(y),y)\}$ substitucí x/f(z),y/z dostaneme $\{P(f(z)),Q(f(z),z)\}, \{\neg P(z),\neg Q(f(z),z)\}$ a z nich $\{P(f(z)),\neg P(z)\}.$ Při substituci x/f(a),y/a,z/a dostaneme $\{P(f(a)),Q(f(a),a)\}, \{\neg P(a),\neg Q(f(a),a)\}$ a z nich rezolucí $\{P(f(a)),\neg P(a)\}.$ Předchozí substituce je ale obecnější.

Substituce

- Substituce je (konečná) množina $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$, kde x_i jsou navzájem různé proměnné a t_i jsou termy, přičemž t_i není x_i .
- Jsou-li všechny termy t_i konstantní, je σ základní substituce.
- Jsou-li t_i navzájem různé proměnné, je σ přejmenování proměnných.
- Výraz je literál nebo term. (Substituci lze aplikovat na výrazy.)
- Instance výrazu E při substituci $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$ je výraz $E\sigma$ vzniklý z E současným nahrazením všech výskytů proměnných x_i za t_i .
- Pro množinu výrazů S označmě $S\sigma$ množinu instancí $E\sigma$ výrazů E z S.

Poznámka Jelikož substituce je současná pro všechny proměnné zároveň, případný výskyt proměnné x_i v termu t_j nevede k zřetězení substitucí. Např. pro $S = \{P(x), R(y, z)\}$ a substituci $\sigma = \{x/f(y, z), y/x, z/c\}$ je $S\sigma = \{P(f(y, z)), R(x, c)\}.$

Skládání substitucí

Zadefinujeme $\sigma \tau$ tak, aby $E(\sigma \tau) = (E\sigma)\tau$ pro každý výraz E.

Např. pro
$$E = P(x, w, u), \ \sigma = \{x/f(y), w/v\}, \ \tau = \{x/a, y/g(x), v/w, u/c\} \ je$$

 $E\sigma = P(f(y), v, u), \quad (E\sigma)\tau = P(f(g(x)), w, c).$

Pak by mělo být $\sigma\tau = \{x/f(g(x)), y/g(x), v/w, u/c\}.$

Pro substituce $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$ a $\tau = \{y_1/s_1, \dots, y_n/s_n\}$ definujeme

$$\begin{aligned} sigma\tau &= \{x_i/t_i\tau \mid x_i \in X, \ x_i \ \text{nen\'i} \ t_i\tau\} \cup \{y_j/s_j \mid y_j \in Y \setminus X\} \\ složenou \ substituci \ \sigma \ \text{a} \ \tau, \ \text{kde} \ X &= \{x_1,\ldots,x_n\} \ \text{a} \ Y &= \{y_1,\ldots,y_m\}. \end{aligned}$$

Poznámka Skládání substitucí není komutativní, např. pro uvedené σ a τ je $\tau \sigma = \{x/a, y/q(f(y)), u/c, w/v\} \neq \sigma \tau.$

Skládání substitucí - vlastnosti

Ukážeme, že definice vyhovuje našemu požadavku a skládání je asociativní.

Tvrzení Pro každý výraz E a substituce σ , τ , ϱ platí

- (i) $(E\sigma)\tau = E(\sigma\tau)$,
- (ii) $(\sigma \tau)\varrho = \sigma(\tau \varrho)$.

 $D\mathring{u}kaz$ Nechť $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$ a $\tau = \{y_1/s_1, \dots, y_m/s_m\}$. Stačí uvážit případ, kdy E je proměnná, řekněme v.

(i) Je-li v proměnná x_i pro nějaké i, je $v\sigma = t_i$ a $(v\sigma)\tau = t_i\tau$, což je $v(\sigma\tau)$ dle definice $\sigma\tau$. Jinak $v\sigma = v$ a $(v\sigma)\tau = v\tau$.

Je-li v proměnná y_j pro nějaké j, je dále $(v\sigma)\tau=v\tau=s_j$, což je $v(\sigma\tau)$ dle definice $\sigma\tau$. Jinak $(v\sigma)\tau=v\tau=v$ a zároveň $v(\sigma\tau)=v$.

(ii) Opakovaným užitím (i) dostaneme pro každý výraz E,

$$E((\sigma\tau)\varrho) = (E(\sigma\tau))\varrho = ((E\sigma)\tau)\varrho = (E\sigma)(\tau\varrho) = E(\sigma(\tau\varrho)).$$

8.4.2 Unifikační algoritmus

[TODO]

Unifikace

Nechť $S = \{E_1, \dots, E_n\}$ je (konečná) množina výrazů.

- Unifikace pro S je substituce σ taková, že $E_1\sigma = E_2\sigma = \cdots = E_n\sigma$, tj. $S\sigma$ je singleton.
- S je unifikovatelná, pokud má unifikaci.
- Unifikace σ pro S je nejobecnější unifikace (mgu), pokud pro každou unifikaci τ pro S existuje substituce λ taková, že $\tau = \sigma \lambda$.

Např. $S = \{P(f(x), y), P(f(a), w)\}$ je unifikovatelná pomocí nejobecnější unifikace $\sigma = \{x/a, y/w\}$. Unifikaci $\tau = \{x/a, y/b, w/b\}$ dostaneme jako $\sigma\lambda$ pro $\lambda = \{w/b\}$. τ není mgu, nelze z ní získat unifikaci $\varrho = \{x/a, y/c, w/c\}$.

Pozorování Jsou-li σ , τ různé nejobecnější unifikace pro S, liší se pouze přejmenováním proměnných.

Unifikační algoritmus

Nechť S je (konečná) neprázdná množina výrazů a p je nejlevější pozice, na které se nějaké dva výrazy z S liší. Pak neshoda v S je množina D(S) podvýrazů začínajících na pozici p ze všech výrazů v S.

Např. pro
$$S = \{P(x,y), P(f(x),z), P(z,f(x))\}\ je\ D(S) = \{x, f(x), z\}.$$

Vstup Neprázdná (konečná) množina výrazů S.

 $\mathit{V} \acute{y} \mathit{stup}\,$ Nejobecnější unifikace σ proSnebo "S $\mathit{nen\'e}$ unifikovatelná".

- (0) Nechť $S_0 := S$, $\sigma_0 := \emptyset$, k := 0. (inicializace)
- (1) Je-li S_k singleton, vydej substituci $\sigma = \sigma_0 \sigma_1 \cdots \sigma_k$. (mgu pro S)
- (2) Zjisti, zda v $D(S_k)$ existuje proměnná x a term t neobsahující x.
- (3) Pokud ne, vydej "S není unifikovatelná".
- (4) Jinak $\sigma_{k+1} := \{x/t\}, S_{k+1} := S_k \sigma_{k+1}, k := k+1 \text{ a jdi na } (1).$

Poznámka Test výskytu proměnné x v termu t v kroku (2) může být "drahý".

Unifikační algoritmus - příklad

$$S = \{ P(f(y, g(z)), h(b)), P(f(h(w), g(a)), t), P(f(h(b), g(z)), y) \}$$

- 1) $S_0 = S$ není singleton a $D(S_0) = \{y, h(w), h(b)\}$ obsahuje term h(w) a proměnnou y nevyskytující se v h(w). Pak $\sigma_1 = \{y/h(w)\}, S_1 = S_0\sigma_1$, tj. $S_1 = \{P(f(h(w), g(z)), h(b)), P(f(h(w), g(a)), t), P(f(h(b), g(z)), h(w))\}.$
- 2) $D(S_1) = \{w, b\}, \ \sigma_2 = \{w/b\}, \ S_2 = S_1\sigma_2, \ \text{tj.}$ $S_2 = \{P(f(h(b), g(z)), h(b)), \ P(f(h(b), g(a)), t)\}.$
- 3) $D(S_2) = \{z, a\}, \ \sigma_3 = \{z/a\}, \ S_3 = S_2\sigma_3, \ \text{tj.}$ $S_3 = \{P(f(h(b), g(a)), h(b)), \ P(f(h(b), g(a)), t)\}.$
- 4) $D(S_3) = \{h(b), t\}, \ \sigma_4 = \{t/h(b)\}, \ S_4 = S_3\sigma_4, \ \text{tj.}$ $S_4 = \{P(f(h(b), g(a)), h(b))\}.$
- 5) S_4 je singleton a nejobecnější unifikace pro S je $\sigma = \{y/h(w)\}\{w/b\}\{z/a\}\{t/h(b)\} = \{y/h(b), w/b, z/a, t/h(b)\}.$

Unifikační algoritmus - korektnost

Tvrzení Pro každé S unifikační algoritmus vydá po konečně mnoha krocích korektní výsledek, tj. nejobecnější unifikaci σ pro S nebo pozná, že S není unifikovatelná. (*) Navíc, pro každou unifikaci τ pro S platí, že $\tau = \sigma \tau$. Důkaz V každém kroku eliminuje jednu proměnnou, někdy tedy skončí.

- Skončí-li neúspěchem po k krocích, nelze unifikovat $D(S_k)$, tedy ani S.
- Vydá-li $\sigma = \sigma_0 \sigma_1 \cdots \sigma_k$, je σ evidentně unifikace pro S.
- Dokážeme-li, že σ má vlastnost (*), je σ nejobecnější unifikace pro S.
- (1) Nechť τ je unifikace pro S. Ukážeme, že $\tau = \sigma_0 \sigma_1 \cdots \sigma_i \tau$ pro každé $i \leq k$.
- (2) Pro i = 0 platí (1). Nechť $\sigma_{i+1} = \{x/t\}$, předpokládejme $\tau = \sigma_0 \sigma_1 \cdots \sigma_i \tau$.
- (3) Stačí dokázat, že $v\sigma_{i+1}\tau = v\tau$ pro každou proměnnou v.
- (4) Pro $v \neq x$ je $v\sigma_{i+1} = v$, tedy platí (3). Nyní v = x a $v\sigma_{i+1} = x\sigma_{i+1} = t$.
- (5) Jelikož τ unifikuje $S_i = S\sigma_0\sigma_1\cdots\sigma_i$ a proměnná x i term t jsou v $D(S_i)$, musí τ unifikovat x a t, tj. $t\tau = x\tau$, jak bylo požadováno pro (3).

8.5 Rezoluční metoda

[TODO]

8.5.1 Rezoluční pravidlo

[TODO]

Nechť klauzule C_1, C_2 neobsahují stejnou proměnnou a jsou ve tvaru

$$C_1 = C'_1 \sqcup \{A_1, \dots, A_n\}, \quad C_2 = C'_2 \sqcup \{\neg B_1, \dots, \neg B_m\},$$

kde $S=\{A_1,\ldots,A_n,B_1,\ldots,B_m\}$ lze unifikovat a $n,m\geq 1$. Pak klauzule $C=C_1'\sigma\cup C_2'\sigma,$

kde σ je nejobecnější unifikace pro S, je rezolventa klauzulí C_1 a C_2 .

Např. v klauzulích $\{P(x), Q(x, z)\}$ a $\{\neg P(y), \neg Q(f(y), y)\}$ lze unifikovat $S = \{Q(x, z), Q(f(y), y)\}$ pomocí nejobecnější unifikace $\sigma = \{x/f(y), z/y\}$ a získat z nich rezolventu $\{P(f(y)), \neg P(y)\}$.

Poznámka Podmínce o různých proměnných lze vyhovět přejmenováním proměnných v rámci klauzule. Je to nutné, např. $z \{\{P(x)\}, \{\neg P(f(x))\}\}\$ lze po přejmenování získat \Box , ale $\{P(x), P(f(x))\}$ nelze unifikovat.

8.5.2 Rezoluční důkaz

[TODO]

Rezoluční důkaz

Pojmy zavedeme jako ve VL, jen navíc dovolíme přejmenování proměnných.

- Rezoluční důkaz (odvození) klauzule C z formule S je konečná posloupnost $C_0, \ldots, C_n = C$ taková, že pro každé $i \leq n$ je $C_i = C_i'\sigma$, kde $C_i' \in S$ a σ je přejmenování proměnných, nebo je C_i rezolventou nějakých dvou předchozích klauzulí (i stejných).
- Klauzule C je (rezolucí) dokazatelná z S, psáno $S \vdash_R C$, pokud má rezoluční důkaz z S.
- Zamitnuti formule S je rezoluční důkaz \square z S.
- S je (rezolucí) zamítnutelná, pokud $S \vdash_R \square$.

Poznámka Eliminace více literálů najednou je někdy nezbytná, např. $S = \{\{P(x), P(y)\}, \{\neg P(x), \neg P(y)\}\} \text{ je rezolucí zamítnutelná, ale nemá zamítnutí, při kterém by se v každém kroku eliminoval pouze jeden literál.}$

Příklad rezoluce

Mějme teorii
$$T = \{\neg P(x,x), \ P(x,y) \rightarrow P(y,x), \ P(x,y) \land P(y,z) \rightarrow P(x,z)\}.$$

Je $T \models (\exists x) \neg P(x,f(x))$? Tedy, je následující formule T' nesplnitelná?
$$T' = \{\{\neg P(x,x)\}, \{\neg P(x,y), P(y,x)\}, \{\neg P(x,y), \neg P(y,z), P(x,z)\}, \{P(x,f(x))\}\}$$

8.6 Korektnost a úplnost

[TODO]

8.6.1 Věta o korektnosti

[TODO]

Nejprve ukážeme, že obecné rezoluční pravidlo je korektní.

Tvrzení Nechť C je rezolventa klauzulí C_1 , C_2 . Pro každou L-strukturu A,

$$\mathcal{A} \models C_1 \text{ a } \mathcal{A} \models C_2 \Rightarrow \mathcal{A} \models C.$$

 $D\mathring{u}kaz$ Nechť $C_1=C_1'\sqcup\{A_1,\ldots,A_n\},\,C_2=C_2'\sqcup\{\neg B_1,\ldots,\neg B_m\},\,\sigma$ je nejobecnější unifikace pro $S=\{A_1,\ldots,A_n,B_1,\ldots,B_m\}$ a $C=C_1'\sigma\cup C_2'\sigma$.

- Jelikož C_1 , C_2 jsou otevřené, platí i $\mathcal{A} \models C_1 \sigma$ a $\mathcal{A} \models C_2 \sigma$.
- Máme $C_1 \sigma = C_1' \sigma \cup \{S\sigma\}$ a $C_2 \sigma = C_2' \sigma \cup \{\neg(S\sigma)\}$.
- Ukážeme, že $\mathcal{A} \models C[e]$ pro každé e. Je-li $\mathcal{A} \models S\sigma[e]$, pak $\mathcal{A} \models C'_2\sigma[e]$ a tedy $\mathcal{A} \models C[e]$. Jinak $\mathcal{A} \not\models S\sigma[e]$, pak $\mathcal{A} \models C'_1\sigma[e]$ a tedy $\mathcal{A} \models C[e]$. \square

Věta (korektnost) Je-li formule S rezolucí zamítnutelná, je S nesplnitelná. Důkaz Nechť $S \vdash_R \square$. Kdyby $\mathcal{A} \models S$ pro nějakou strukturu \mathcal{A} , z korektnosti rezolučního pravidla by platilo i $\mathcal{A} \models \square$, což není možné. \square

8.6.2 Lifting lemma

[TODO]

Lifting lemma

Rezoluční důkaz na úrovni VL lze "zdvihnout" na úroveň PL.

Lemma Nechť $C_1^* = C_1\tau_1$, $C_2^* = C_2\tau_2$ jsou základní instance klauzulí C_1 , C_2 neobsahující stejnou proměnnou a C^* je rezolventa C_1^* a C_2^* . Pak existuje rezolventa C klauzulí C_1 a C_2 taková, že $C^* = C\tau_1\tau_2$ je základní instance C. Důkaz Předpokládejme, že C^* je rezolventa C_1^* , C_2^* přes literál $P(t_1, \ldots, t_k)$.

- Pak lze psát $C_1 = C_1' \sqcup \{A_1, \ldots, A_n\}$ a $C_2 = C_2' \sqcup \{\neg B_1, \ldots, \neg B_m\}$, kde $\{A_1, \ldots, A_n\}\tau_1 = \{P(t_1, \ldots, t_k)\}$ a $\{\neg B_1, \ldots, \neg B_m\}\tau_2 = \{\neg P(t_1, \ldots, t_k)\}$.
- Tedy $(\tau_1\tau_2)$ unifikuje $S=\{A_1,\ldots,A_n,B_1,\ldots,B_m\}$ a je-li σ mgu pro S z unifikačního algoritmu, pak $C=C_1'\sigma\cup C_2'\sigma$ je rezolventa C_1 a C_2 .
- Navíc $(\tau_1 \tau_2) = \sigma(\tau_1 \tau_2)$ z vlastnosti (*) pro σ a tedy $C\tau_1 \tau_2 = (C'_1 \sigma \cup C'_2 \sigma)\tau_1 \tau_2 = C'_1 \sigma \tau_1 \tau_2 \cup C'_2 \sigma \tau_1 \tau_2 = C'_1 \tau_1 \cup C'_2 \tau_2$ $= (C_1 \setminus \{A_1, \dots, A_n\})\tau_1 \cup (C_2 \setminus \{\neg B_1, \dots, \neg B_m\})\tau_2$ $= (C_1^* \setminus \{P(t_1, \dots, t_k)\}) \cup (C_2^* \setminus \{\neg P(t_1, \dots, t_k)\}) = C^*. \quad \Box$

8.6.3 Věta o úplnosti

[TODO]

Úplnost

Důsledek Nechť S' je množina všech základních instancí klauzulí formule S. Je-li S' \vdash_R C' (na úrovni VL), kde C' je základní klauzule, pak existuje klauzule C a základní substituce σ t.ž. C' = $C\sigma$ a $S \vdash_R C$ (na úrovni PL). Důkaz Indukcí dle délky rezolučního odvození pomocí lifting lemmatu.

Věta (úplnost) Je-li formule S nesplnitelná, je $S \vdash_R \Box$.

 $D\mathring{u}kaz$ Je-li S nesplnitelná, dle (důsledku) Herbrandovy věty je nesplnitelná i množina S' všech základních instancí klauzulí z S.

- Dle úplnosti rezoluční metody ve VL je $S' \vdash_R \square$ (na úrovni VL).
- Dle předchozího důsledku existuje klauzule C a substituce σ taková, že $\Box = C\sigma \text{ a } S \vdash_R C \text{ (na úrovni PL)}.$
- Jediná klauzule, jejíž instance je \square , je klauzule $C = \square$.

8.7 LI-rezoluce

[TODO]

Lineární rezoluce

Stejně jako ve VL, rezoluční metodu lze značně omezit (bez ztráty úplnosti).

- Lineární důkaz klauzule C z formule S je konečná posloupnost dvojic $(C_0, B_0), \ldots, (C_n, B_n)$ t.ž. C_0 je varianta klauzule v S a pro každé $i \leq n$
 - i) B_i je varianta klauzule v S nebo $B_i = C_j$ pro nějaké j < i, a
 - ii) C_{i+1} je rezolventa C_i a B_i , kde $C_{n+1} = C$.
- C je lineárně dokazatelná z S, psáno $S \vdash_L C$, má-li lineární důkaz z S.
- Lineární zamítnutí S je lineární důkaz \square z S.
- S je lineárně zamítnutelná, pokud $S \vdash_L \square$.

Věta S je lineárně zamítnutelná, právě když S je nesplnitelná.

 $D\mathring{u}kaz$ (\Rightarrow) Každý lineární důkaz lze transformovat na rezoluční důkaz. (\Leftarrow) Plyne z úplnosti lineární rezoluce ve VL (nedokazováno), neboť lifting lemma zachovává linearitu odvození.

LI-rezoluce

Stejně jako ve VL, pro Hornovy formule můžeme lineární rezoluci dál omezit.

- LI-rezoluce ("linear input") z formule S je lineární rezoluce z S, ve které
 je každá boční klauzule B_i variantou klauzule ze (vstupní) formule S.
- \bullet Je-li klauzule Cdokazatelná LI-rezolucí z S, píšeme $S \vdash_{LI} C.$
- Hornova formule je množina (i nekonečná) Hornových klauzulí.
- Hornova klauzule je klauzule obsahující nejvýše jeden pozitivní literál.
- Fakt je (Hornova) klauzule $\{p\}$, kde p je pozitivní literál.
- Pravidlo je (Hornova) klauzule s právě jedním pozitivním a aspoň jedním negativním literálem. Pravidla a fakta jsou programové klauzule.
- Cíl je neprázdná (Hornova) klauzule bez pozitivního literálu.

Věta Je-li Hornova T splnitelná a $T \cup \{G\}$ nesplnitelná pro cíl G, lze \square odvodit LI-rezolucí z $T \cup \{G\}$ začínající G.

Důkaz Plyne z Herbrandovy věty, stejné věty ve VL a lifting lemmatu. □

8.7.1 Rezoluce v Prologu

[TODO]

Program v Prologu

Program (v Prologu) je Hornova formule obsahující pouze programové klauzule, tj. fakta nebo pravidla.

```
\begin{split} syn(X,Y) &:= otec(Y,X), muz(X). & \{syn(X,Y), \neg otec(Y,X), \neg muz(X)\} \\ syn(X,Y) &:= matka(Y,X), muz(X). & \{syn(X,Y), \neg matka(Y,X), \neg muz(X)\} \\ muz(jan). & \{muz(jan)\} \\ otec(jiri, jan). & \{otec(jiri, jan)\} \\ matka(julie, jan). & \{matka(julie, jan)\} \\ \hline & ?- syn(jan,X) & P \models (\exists X) syn(jan,X) ? & \{\neg syn(jan,X)\} \end{split}
```

Zajímá nás, zda daný existenční dotaz vyplývá z daného programu.

Důsledek Pro program P a cíl $G = \{\neg A_1, \dots, \neg A_n\}$ v proměnných X_1, \dots, X_m

- (1) $P \models (\exists X_1) \dots (\exists X_m) (A_1 \wedge \dots \wedge A_n), \ pr\'{a}v\check{e} \ kdy\check{z}$
- (2) \square lze odvodit LI-rezolucí z $P \cup \{G\}$ začínající (variantou) cíle G.

LI-rezoluce nad programem

Je-li odpoveď na dotaz kladná, chceme navíc znát výstupní substituci.

Výstupní substituce σ LI-rezoluce \square z $P \cup \{G\}$ začínající $G = \{\neg A_1, \dots, \neg A_n\}$ je složení mgu v jednotlivých krocích (jen na proměnné v G). Platí,

$$P \models (A_1 \land \ldots \land A_n)\sigma.$$

Výstupní substituce a) X = jiri, b) X = julie.

Část III Pokročilé partie

Kapitola 9

(draft) Teorie modelů

[TODO]

9.1 Elementární ekvivalence

[TODO]

Teorie struktury

Mnohdy nás zajímá, co platí v jedné konkrétní struktuře.

Teorie struktury \mathcal{A} je množina $\operatorname{Th}(\mathcal{A})$ sentencí (stejného jazyka) platných v \mathcal{A} .

Pozorování Pro každou strukturu \mathcal{A} a teorii T jazyka L,

- (i) Th(A) je kompletní teorie,
- (ii) je-li $A \models T$, je Th(A) jednoduchá (kompletní) extenze teorie T,
- (iii) je-li $\mathcal{A} \models T$ a T je kompletní, je $\operatorname{Th}(\mathcal{A})$ ekvivalentní s T, tj. $\theta^L(T) = \operatorname{Th}(\mathcal{A})$.

Např. pro $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ je $\mathrm{Th}(\underline{\mathbb{N}})$ aritmetika přirozených čísel.

Poznámka Později uvidíme, že ačkoliv je $\operatorname{Th}(\underline{\mathbb{N}})$ kompletní teorie, je (algoritmicky) nerozhodnutelná.

• Struktury \mathcal{A} a \mathcal{B} jazyka L jsou elementárně ekvivalentní, psáno $\mathcal{A} \equiv \mathcal{B}$, pokud v nich platí stejné formule (jazyka L), tj. Th(\mathcal{A}) = Th(\mathcal{B}).

 $Nap\check{r}. \langle \mathbb{R}, \leq \rangle \equiv \langle \mathbb{Q}, \leq \rangle, \ ale \ \langle \mathbb{Q}, \leq \rangle \not\equiv \langle \mathbb{Z}, \leq \rangle, \ nebo\check{t} \ v \ \langle \mathbb{Z}, \leq \rangle \ m\acute{a} \ ka\check{z}d\acute{y}$ $prvek \ bezprost\check{r}edn\acute{n}o \ n\acute{a}sledn\acute{k}a, \ zat\acute{m}co \ v \ \langle \mathbb{Q}, \leq \rangle \ ne.$

 $\bullet\,$ Tje kompletní, právě když má až na el. ekvivalenci právě jeden model.

Např. teorie DeLO hustých lineárních uspořádání bez konců je kompletní.

Zajímá nás, jak vypadají modely dané teorie (až na elementární ekvivalenci). Pozorování Pro modely \mathcal{A}, \mathcal{B} teorie T platí $\mathcal{A} \equiv \mathcal{B}$, právě když $\operatorname{Th}(\mathcal{A})$, $\operatorname{Th}(\mathcal{B})$ jsou ekvivalentní (jednoduché kompletní extenze teorie T).

Poznámka Lze-li efektivně (algoritmicky) popsat pro efektivně danou teorii T, jak vypadají všechny její kompletní extenze, je T (algoritmicky) rozhodnutelná.

9.1.1 Příklad: DeLO*

[TODO]

Teorie $DeLO^*$ hustého lineárního uspořádání jazyka $L = \langle \leq \rangle$ s rovností je

$$\begin{array}{llll} x \leq x & & \text{(reflexivita)} \\ x \leq y & \wedge & y \leq x & \rightarrow & x = y \\ x \leq y & \wedge & y \leq z & \rightarrow & x \leq z \\ x \leq y & \vee & y \leq x & \text{(dichotomie)} \\ x < y & \rightarrow & (\exists z) \; (x < z \; \wedge \; z < y) & \text{(hustota)} \\ (\exists x) (\exists y) (x \neq y) & \text{(netrivialita)} \end{array}$$

kde 'x < y' je zkratka za ' $x \le y \land x \ne y$ '.

Označme
$$\varphi$$
, ψ sentence $(\exists x)(\forall y)(x \leq y)$, resp. $(\exists x)(\forall y)(y \leq x)$. Uvidíme, že $DeLO = DeLO^* \cup \{\neg \varphi, \neg \psi\},$ $DeLO^{\pm} = DeLO^* \cup \{\varphi, \psi\},$ $DeLO^+ = DeLO^* \cup \{\neg \varphi, \psi\},$ $DeLO^- = DeLO^* \cup \{\varphi, \neg \psi\}$

jsou všechny (neekvivalentní) jednoduché kompletní extenze teorie $DeLO^*$.

9.1.2 Důsledky Löwenheim-Skolemovy věty

[TODO]

Pomocí kanonického modelu (s rovností) jsme dříve dokázali následující větu.

Věta Nechť T je bezesporná teorie spočetného jazyka L. Je-li L bez rovnosti, má T model, který je spočetně nekonečný. Je-li L s rovností, má T model, který je spočetný.

Důsledek Ke každé struktuře \mathcal{A} spočetného jazyka bez rovnosti existuje spočetně nekonečná elementárně ekvivalentní struktura \mathcal{B} .

 $D\mathring{u}kaz$ Teorie Th(\mathcal{A}) je bezesporná, neboť má model \mathcal{A} . Dle předchozí věty má spočetně nek. model \mathcal{B} . Jelikož je teorie Th(\mathcal{A}) kompletní, je $\mathcal{A} \equiv \mathcal{B}$.

Důsledek Ke každé nekonečné struktuře A spočetného jazyka s rovností existuje spočetně nekonečná elementárně ekvivalentní struktura B.

 $D\mathring{u}kaz$ Obdobně jako výše. Jelikož v \mathcal{A} neplatí sentence "existuje právě n prvků" pro žádné $n \in \mathbb{N}$ a $\mathcal{A} \equiv \mathcal{B}$, není B konečná, tedy je nekonečná.

9.1.3 Příklad: Spočetné algebraicky uzavřené těleso

[TODO]

Řekneme, že těleso \mathcal{A} je algebraicky uzavřené, pokud v něm každý polynom (nenulového stupně) má kořen, tj. pro každé $n \geq 1$ platí

$$\mathcal{A} \models (\forall x_{n-1}) \dots (\forall x_0)(\exists y)(y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0 = 0)$$

kde y^k je zkratka za term $y \cdot y \cdot \cdots \cdot y$ (· aplikováno (k-1)-krát).

Např. těleso $\underline{\mathbb{C}} = \langle \mathbb{C}, +, -, \cdot, 0, 1 \rangle$ je algebraicky uzavřené, zatímco tělesa $\underline{\mathbb{R}}$ a \mathbb{Q} nejsou (neboť polynom $x^2 + 1$ v nich nemá kořen).

Důsledek Existuje spočetné algebraicky uzavřené těleso.

 $D\mathring{u}kaz$ Dle předchozího důsledku existuje spočetná struktura (nekonečná), která je elementárně ekvivalentní s tělesem $\underline{\mathbb{C}}$, tedy je to rovněž algebraicky uzavřené těleso. \Box

9.2 Izomorfismus struktur

[TODO]

Izomorfismus struktur

Nechť \mathcal{A} , \mathcal{B} jsou struktury jazyka $L = \langle \mathcal{F}, \mathcal{R} \rangle$.

- Bijekce $h: A \to B$ je izomorfismus struktur \mathcal{A} a \mathcal{B} , pokud platí zároveň
 - (i) $h(f^A(a_1,\ldots,a_n))=f^B(h(a_1),\ldots,h(a_n))$ pro každý n-ární funkční symbol $f\in\mathcal{F}$ a každé $a_1,\ldots,a_n\in A,$
 - (ii) $R^A(a_1,\ldots,a_n) \Leftrightarrow R^B(h(a_1),\ldots,h(a_n))$ pro každý *n*-ární relační symbol $R \in \mathcal{R}$ a každé $a_1,\ldots,a_n \in A$.
- \mathcal{A} a \mathcal{B} jsou *izomorfní* (via h), psáno $\mathcal{A} \simeq \mathcal{B}$ ($\mathcal{A} \simeq_h \mathcal{B}$), pokud existuje izomorfismus h struktur \mathcal{A} a \mathcal{B} . Říkáme rovněž, že \mathcal{A} je *izomorfní* s \mathcal{B} .
- Automorfismus struktury \mathcal{A} je izomorfismus \mathcal{A} s \mathcal{A} .

Např. potenční algebra $\underline{\mathcal{P}(X)} = \langle \mathcal{P}(X), -, -, \cup, \emptyset, X \rangle$ s X = n je izomorfní s Booleovou algebrou $\underline{^n2} = \langle ^n2, -_n, \wedge_n, \vee_n, 0_n, 1_n \rangle$ via $h : A \mapsto \chi_A$, kde χ_A je charakteristická funkce množiny $A \subseteq X$.

Izomorfismus a sémantika

Uvidíme, že izomorfismus zachovává sémantiku.

Tvrzení Nechť A, B jsou struktury jazyka $L = \langle \mathcal{F}, \mathcal{R} \rangle$. Bijekce $h: A \to B$ je izomorfismus A a B, právě když platí zároveň

- (i) $h(t^A[e]) = t^B[e \circ h]$ pro každý term $t \ a \ e : Var \to A$,
- (ii) $A \models \varphi[e] \Leftrightarrow \mathcal{B} \models \varphi[e \circ h]$ pro každou formuli φ a $e: Var \to A$.

 $D\mathring{u}kaz \ (\Rightarrow)$ Indukcí dle struktury termu t, respektive formule φ .

- (\Leftarrow) Dosazením termu $f(x_1,\ldots,x_n)$ do (i) či atomické formule $R(x_1,\ldots,x_n)$
- do (ii) pro ohodnocení $e(x_i) = a_i$ máme, že h vyhovuje def. izomorfismu. \square

Důsledek Pro každé struktury A, B stejného jazyka,

$$\mathcal{A} \simeq \mathcal{B} \quad \Rightarrow \quad \mathcal{A} \equiv \mathcal{B}.$$

Poznámka Obrácená implikace obecně neplatí, např. $\langle \mathbb{Q}, \leq \rangle \equiv \langle \mathbb{R}, \leq \rangle$, ale $\langle \mathbb{Q}, \leq \rangle \not\simeq \langle \mathbb{R}, \leq \rangle$, neboť $|\mathbb{Q}| = \omega$ a $|\mathbb{R}| = 2^{\omega}$.

Konečné modely s rovností

Tvrzení Pro každé konečné struktury A, B stejného jazyka s rovností,

$$A \equiv B \Rightarrow A \simeq B.$$

 $D\mathring{u}kaz$ Je |A| = |B|, neboť lze vyjádřit "existuje právě n prvků".

- Nechť \mathcal{A}' je expanze \mathcal{A} do jazyka $L' = L \cup \{c_a\}_{a \in A}$ o jména prvků z A.
- Ukážeme, že \mathcal{B} lze expandovat na \mathcal{B}' do jazyka L' tak, že $\mathcal{A}' \equiv \mathcal{B}'$. Pak zřejmě $h: a \mapsto c_a^{B'}$ je izomorfismus \mathcal{A}' s \mathcal{B}' a tedy i izomorfismus \mathcal{A} s \mathcal{B} .
- Stačí ukázat, že pro každé $c_a^{A'}=a\in A$ existuje $b\in B$ t.ž. $\langle \mathcal{A},a\rangle\equiv \langle \mathcal{B},b\rangle.$
- Označme Ω množinu formulí $\varphi(x)$ t.ž. $\langle \mathcal{A}, a \rangle \models \varphi(x/c_a)$, tj. $\mathcal{A} \models \varphi[e(x/a)]$.
- Jelikož je A konečné, existuje konečně formulí $\varphi_0(x), \ldots, \varphi_m(x)$ tak, že pro každé $\varphi \in \Omega$ je $\mathcal{A} \models \varphi \leftrightarrow \varphi_i$ pro nějaké i.
- Jelikož $\mathcal{B} \equiv \mathcal{A} \models (\exists x) \bigwedge_{i \le m} \varphi_i$, existuje $b \in B$ t.ž. $\mathcal{B} \models \bigwedge_{i \le m} \varphi_i[e(x/b)]$.
- Tedy pro každou $\varphi \in \Omega$ je $\mathcal{B} \models \varphi[e(x/b)]$, tj. $\langle \mathcal{B}, b \rangle \models \varphi(x/c_a)$. \square

Důsledek Má-li kompletní teorie jazyka s rovností konečný model, jsou všechny její modely izomorfní.

9.2.1 Definovatelnost a automorfismy

[TODO]

Připomeňme si pojem definovatelné množiny, viz Sekce 6.8.

Definovatelnost a automorfismy

Ukážeme, že definovatelné množiny jsou invariantní na automorfismy.

Tvrzení Nechť $D \subseteq A^n$ je množina definovatelná ve struktuře A z parametrů \bar{b} a h je automorfismus A, který je identický na \bar{b} . Pak h[D] = D.

 $D\mathring{u}kaz$ Nechť $D=\varphi^{\mathcal{A},\overline{b}}(\overline{x},\overline{y}).$ Pak pro každé $\overline{a}\in A^{|\overline{x}|}$

$$\overline{a} \in D \Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/\overline{a}, \overline{y}/\overline{b})] \Leftrightarrow \mathcal{A} \models \varphi[(e \circ h)(\overline{x}/\overline{a}, \overline{y}/\overline{b})]$$

$$\Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/h(\overline{a}), \overline{y}/h(\overline{b}))] \Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/h(\overline{a}), \overline{y}/\overline{b})] \Leftrightarrow h(\overline{a}) \in D. \square$$

Např. graf \mathcal{G} má právě jeden netriv. automorfismus h zachovávající vrchol 0.

Navíc množiny $\{0\}$, $\{1,4\}$, $\{2,3\}$ jsou definovatelné z parametru 0. Tedy $Df^{1}(\mathcal{G},\{0\}) = \{\emptyset,\{0\},\{1,4\},\{2,3\},\{0,1,4\},\{0,2,3\},\{1,4,2,3\},\{0,1,2,3,4\}\}.$

9.3 Kategorické teorie

[TODO]

- Izomorfní spektrum teorie T je počet $I(\kappa,T)$ navzájem neizomorfních modelů teorie T pro každou kardinalitu κ .
- Teorie T je κ -kategorická, pokud má až na izomorfismus právě jeden model kardinality κ , tj. $I(\kappa, T) = 1$.

Tvrzení Teorie DeLO (tj. "bez konců") je ω -kategorická.

 $D\mathring{u}kaz$ Nechť $\mathcal{A}, \mathcal{B} \models DeLO$ s $A = \{a_i\}_{i \in \mathbb{N}}, B = \{b_i\}_{i \in \mathbb{N}}$. Indukcí dle n lze nalézt prosté parciální funkce $h_n \subseteq h_{n+1} \subset A \times B$ zachovávající uspořádání tak, že $\{a_i\}_{i < n} \subseteq \text{dom}(h_n)$ a $\{b_i\}_{i < n} \subseteq \text{rng}(h_n)$. Pak $\mathcal{A} \simeq \mathcal{B}$ via $h = \bigcup h_n$.

Obdobně dostaneme, že např. $\mathcal{A} = \langle \mathbb{Q}, \leq \rangle$, $\mathcal{A} \upharpoonright (0, 1]$, $\mathcal{A} \upharpoonright [0, 1)$, $\mathcal{A} \upharpoonright [0, 1]$ jsou až na izomorfismus všechny spočetné modely teorie $DeLO^*$. Pak

$$I(\kappa, DeLO^*) = \begin{cases} 0 & \text{pro } \kappa \in \mathbb{N}, \\ 4 & \text{pro } \kappa = \omega. \end{cases}$$

9.3.1 ω -kategoricita a úplnost

[TODO]

Věta Nechť jazyk L je spočetný.

- (i) Je-li teorie T jazyka L bez rovnosti ω-kategorická, je kompletní.
- (ii) Je-li teorie T jazyka L s rovností ω-kategorická a bez konečného modelu, je kompletní.

 $D\mathring{u}kaz$ Každý model teorie T je elementárně ekvivalentní s nějakým spočetně nekonečným modelem T, ale ten je až na izomorfismus jediný. Tedy všechny modely T jsou elementárně ekvivalentní, tj. T je kompletní. \square

Např. teorie DeLO, $DeLO^+$, $DeLO^-$, $DeLO^\pm$ jsou kompletní a jsou to všechny (navzájem neekvivalentní) jednoduché kompletní extenze teorie $DeLO^*$.

Poznámka Obdobné kritérium platí i pro vyšší kardinality než ω .

9.4 Axiomatizovatelnost

[TODO]

9.4.1 Axiomatizovatelnost

Axiomatizovatelnost

Zajímá nás, zda se daná část světa dá "dobře" popsat.

Nechť $K\subseteq M(L)$ je třída struktur jazyka L. Řekneme, že K je

- axiomatizovatelná, pokud existuje teorie T jazyka L s M(T) = K,
- konečně axiomatizovatelná, pokud je axiomatizovatelná konečnou teorií,
- otevřeně axiomatizovatelná, pokud je axiomatizovatelná otevřenou teorií,
- teorie T je konečně (otevřeně) axiomatizovatelná, pokud M(T) je konečně (respektive otevřeně) axiomatizovatelná.

Pozorování Je-li K axiomatizovatelná, je uzavřená na elem. ekvivalenci. Například

- a) lineární uspořádání jsou konečně i otevřeně axiomatizovatelná,
- b) tělesa jsou konečně axiomatizovatelná, ale ne otevřeně,
- c) nekonečné grupy jsou axiomatizovatelné, ale ne konečně.

Důsledek kompaktnosti

Věta $M\acute{a}$ -li teorie T pro každé $n \in \mathbb{N}$ alespoň n-prvkový model, má i nekonečný model.

Důkaz V jazyce bez rovnosti je to zřejmé, uvažme jazyk s rovností.

- Označme $T' = T \cup \{c_i \neq c_j \mid \text{pro } i \neq j\}$ extenzi teorie T v rozšířeném jazyce o spočetně nekonečně mnoho nových konstantních symbolů c_i .
- ullet Dle předpokladu má každá konečná část teorie T' model.
- Tedy dle věty o kompaktnosti má T' model, ten je nutně nekonečný.
- ullet Jeho redukt na původní jazyk je hledaný nekonečný model teorie T. \square

Důsledek Má-li teorie T pro každé $n \in \mathbb{N}$ alespoň n-prvkový model, není třída všech jejích konečných modelů axiomatizovatelná.

Např. nelze axiomatizovat konečné grupy, konečná tělesa, atd. Avšak třída nekonečných modelů teorie T jazyka s rovností je axiomatizovatelná.

9.4.2 Konečná axiomatizovatelnost

[TODO]

Konečná axiomatizovatelnost

Věta Nechť $K \subseteq M(L)$ a $\overline{K} = M(L) \setminus K$, kde L je jazyk. Pak K je konečně axiomatizovatelná, právě když K i \overline{K} jsou axiomatizovatelné.

 $D\mathring{u}kaz \iff$ Je-li T konečná axiomatizace K v uzavřeném tvaru, pak teorie s jediným axiomem $\bigvee_{\varphi \in T} \neg \varphi$ axiomatizuje \overline{K} . Nyní dokažme (\Leftarrow) .

- Nechť $T,\,S$ jsou teorie jazyka Ltakové, že $M(T)=K,\,M(S)=\overline{K}.$
- Pak $M(T \cup S) = M(T) \cap M(S) = \emptyset$ a dle věty o kompaktnosti existují konečné $T' \subseteq T$ a $S' \subseteq S$ takové, že $\emptyset = M(T' \cup S') = M(T') \cap M(S')$.
- Jelikož

$$M(T) \subseteq M(T') \subseteq \overline{M(S')} \subseteq \overline{M(S)} = M(T),$$

je M(T) = M(T'), tj. konečná T' axiomatizuje K. \square

Konečná axiomatizovatelnost - příklad

Nechť T je teorie těles. Řekneme, že těleso $\mathcal{A} = \langle A, +, -, \cdot, 0, 1 \rangle$ je

- charakteristiky 0, neexistuje-li žádné $p \in \mathbb{N}^+$ takové, že $\mathcal{A} \models p1 = 0$, kde p1 značí term $1 + 1 + \cdots + 1$ (+ aplikováno (p 1)-krát).
- charakteristiky p, kde p je prvočíslo, je-li p je nejmenší t.ž. $\mathcal{A} \models p1 = 0$.
- Třída těles charakteristiky p pro p prvočíslo je konečně axiomatizována teorií $T \cup \{p1 = 0\}$.
- Třída těles charakteristiky 0 je axiomatizována (nekonečnou) teorií $T' = T \cup \{p1 \neq 0 \mid p \in \mathbb{N}^+\}.$

Tvrzení Třída K těles charakteristiky 0 není konečně axiomatizovatelná. Důkaz Stačí dokázat, že \overline{K} není axiomatizovatelná. Kdyby $M(S) = \overline{K}$, tak $S' = S \cup T'$ má model \mathcal{B} , neboť každá konečná $S^* \subseteq S'$ má model (těleso prvočíselné charakteristiky větší než jakékoliv p vyskytující se v axiomech S^*). Pak ale $\mathcal{B} \in M(S) = \overline{K}$ a zároveň $\mathcal{B} \in M(T') = K$, což není možné. \square

9.4.3 Otevřená axiomatizovatelnost

[TODO]

Věta Je-li teorie T otevřeně axiomatizovatelná, pak každá podstruktura modelu T je rovněž modelem T.

 $D\mathring{u}kaz$ Nechť T' je otevřená axiomatika M(T), $\mathcal{A} \models T'$ a $\mathcal{B} \subseteq \mathcal{A}$. Víme, že pro každé $\varphi \in T'$ je $\mathcal{B} \models \varphi$, neboť φ je otevřená. Tedy \mathcal{B} je modelem T'. \square

Poznámka Platí i obrácená implikace, tj. je-li každá podstruktura modelu teorie T rovněž modelem T, pak T je otevřeně axiomatizovatelná.

Např. teorie DeLO není otevřeně axiomatizovatelná, neboť např. konečná podstruktura modelu DeLO není modelem DeLO.

Např. nejvýše n-prvkové grupy pro pevné n > 1 jsou otevřeně axiomatizovány

$$T \cup \{ \bigvee_{\substack{i,j \le n \\ i \ne j}} x_i = x_j \},\,$$

kde T je (otevřená) teorie grup.

Kapitola 10

(draft) Nerozhodnutelnost a neúplnost

[TODO]

10.1 Rozhodnutelnost

[TODO]

Rekurzivní axiomatizace a rozhodnutelnost

- Intuitivní pojem "algoritmus" lze přesně formalizovat (např. pomocí TS).
- Teorie T je rekurzivně axiomatizovaná, pokud existuje algoritmus, který pro každou vstupní formuli φ skončí a oznámí, zda $\varphi \in T$.
- Teorie T je $rozhodnuteln\acute{a}$, pokud existuje algoritmus, který pro každou vstupní formuli φ skončí a oznámí, zda $\varphi \in Thm(T)$.
- Teorie T je *částečně rozhodnutelná*, pokud existuje algoritmus, který pro každou vstupní formuli φ skončí, právě když $\varphi \in Thm(T)$.

Tvrzení Pro každou rekurzivně axiomatizovanou teorii T,

- (i) T je částečně rozhodnutelná,
- (ii) je-li navíc T kompletní, je T rozhodnutelná.

 $D\mathring{u}kaz$ Konstrukce systematického tabla z T s $F\varphi$ v kořeni poskytuje algoritmus, který rozpoznává $T \vdash \varphi$. Je-li navíc T kompletní, paralelní konstrukce pro $F\varphi$ resp. $T\varphi$ v kořeni rozhoduje, zda $T \vdash \varphi$ či $T \vdash \neg \varphi$.

Rekurzivně spočetná kompletace

Co když efektivně popíšeme všechny jednoduché kompletní extenze?

Řekneme, že množina všech (až na ekvivalenci) jednoduchých kompletních extenzí teorie T je rekurzivně spočetná, existuje-li algoritmus $\alpha(i,j)$, který generuje i-tý axiom j-té extenze (při nějakém očíslování), případně oznámí, že (takový axiom či extenze) neexistuje.

Tvrzení Je-li teorie T rekurzivně axiomatizovaná a množina všech (až na ekvivalenci) jejích jednoduchých kompletních extenzí je rekurzivně spočetná, je T rozhodnutelná.

 $D\mathring{u}kaz$ Díky rek. axiomatizaci poskytuje konstrukce systematického tabla z T s $F\varphi$ v kořeni algoritmus pro rozpoznání $T \vdash \varphi$. Pokud ale $T \not\vdash \varphi$, pak $T' \vdash \neg \varphi$ v nějaké jednoduché kompletní extenzi T' teorie T. To lze rozpoznat paralelní postupnou konstrukcí systematických tabel pro $T\varphi$ z jednotlivých extenzí. V i-tém stupni se sestrojí tabla do i kroků pro prvních i extenzí. \square

10.1.1 Rozhodnutelné teorie

[TODO]

Příklady rozhodnutelných teorií

Následující teorie jsou rozhodnutelné, ačkoliv jsou nekompletní.

- teorie čisté rovnosti; bez axiomů v jazyce $L = \langle \rangle$ s rovností,
- teorie unárního predikátu; bez axiomů v jazyce $L = \langle U \rangle$ s rovností, kde U je unární relační symbol,
- teorie hustých lineárních uspořádání DeLO*,
- teorie algebraicky uzavřených těles v jazyce $L = \langle +, -, \cdot, 0, 1 \rangle$ s rovností, s axiomy teorie těles a navíc axiomy pro každé $n \geq 1$,

$$(\forall x_{n-1})\dots(\forall x_0)(\exists y)(y^n+x_{n-1}\cdot y^{n-1}+\dots+x_1\cdot y+x_0=0),$$

kde y^k je zkratka za term $y \cdot y \cdot \cdots \cdot y$ (· aplikováno (k-1)-krát).

- teorie komutativních grup,
- teorie Booleových algeber.

10.1.2 Rekurzivní axiomatizovatelnost

[TODO]

Rekurzivní axiomatizovatelnost

Dají se matematické struktury "efektivně" popsat?

- Třída $K \subseteq M(L)$ je rekurzivně axiomatizovatelná, pokud existuje rekurzivně axiomatizovaná teorie T jazyka L s M(T) = K.
- Teorie T je rekurzivně axiomatizovatelná, pokud M(T) je rekurzivně axiomatizovatelná.

Tvrzení Pro každou konečnou strukturu A v konečném jazyce s rovností je Th(A) rekurzivně axiomatizovatelná. Tedy, Th(A) je rozhodnutelná.

 $D\mathring{u}kaz$ Nechť $A = \{a_1, \ldots, a_n\}$. Teorii $\operatorname{Th}(\mathcal{A})$ axiomatizujeme jednou sentencí (tedy rekurzivně) kompletně popisující \mathcal{A} . Bude tvaru "existuje právě n prvků a_1, \ldots, a_n splňujících právě ty základní vztahy o funkčních hodnotách a relacích, které platí ve struktuře \mathcal{A} ." \square

Příklady rekurzivní axiomatizovatelnosti

Následující struktury \mathcal{A} mají rekurzivně axiomatizovatelnou teorii Th(\mathcal{A}).

- $\langle \mathbb{Z}, \leq \rangle$, teorií diskrétních lineárních uspořádání,
- $\langle \mathbb{Q}, \leq \rangle$, teorií hustých lineárních uspořádání bez konců (DeLO),
- $\langle \mathbb{N}, S, 0 \rangle$, teorií následníka s nulou,
- $\langle \mathbb{N}, S, +, 0 \rangle$, tzv. Presburgerovou aritmetikou,
- $\langle \mathbb{R}, +, -, \cdot, 0, 1 \rangle$, teorií reálně uzavřených těles,
- $\langle \mathbb{C}, +, -, \cdot, 0, 1 \rangle$, teorií algebraicky uzavřených těles charakteristiky 0.

Důsledek Pro uvedené struktury je Th(A) rozhodnutelná.

Poznámka Uvidíme, že ale $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ rekurzivně axiomatizovat nelze. (Vyplývá to z první Gödelovy věty o neúplnosti).

10.2 Aritmetika

[TODO]

10.2.1 Robinsonova a Peanova aritmetika

[TODO]

Robinsonova aritmetika

Jak efektivně a přitom co nejúplněji axiomatizovat $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$? Jazyk aritmetiky je $L = \langle S, +, \cdot, 0, \leq \rangle$ s rovností.

Robinsonova aritmetika Q má axiomy (konečně mnoho)

$$S(x) \neq 0$$

$$S(x) = S(y) \rightarrow x = y$$

$$x + 0 = x$$

$$x + S(y) = S(x + y)$$

$$x \leq y \leftrightarrow (\exists z)(z + x = y)$$

$$x \leq y \leftrightarrow (\exists z)(z + x = y)$$

Poznámka Q je velmi slabá, např. nedokazuje komutativitu či asociativitu operací +, · ani tranzitivitu \leq . Nicméně postačuje například k důkazu existenčních tvrzení o numerálech, která jsou pravdivá v $\underline{\mathbb{N}}$.

Např. pro $\varphi(x,y)$ tvaru $(\exists z)(x+z=y)$ je

$$Q \vdash \varphi(1,2), \quad kde \ 1 = S(0) \ a \ 2 = S(S(0)).$$

Peanova aritmetika

Peanova aritmetika PA má axiomy

- (a) Robinsonovy aritmetiky Q,
- (b) schéma indukce, tj. pro každou formuli $\varphi(x, \overline{y})$ jazyka L axiom

$$(\varphi(0,\overline{y}) \wedge (\forall x)(\varphi(x,\overline{y}) \to \varphi(S(x),\overline{y}))) \to (\forall x)\varphi(x,\overline{y}).$$

Poznámka PA je poměrně dobrou aproximací $\operatorname{Th}(\underline{\mathbb{N}})$, dokazuje všechny základní vlastnosti platné v $\underline{\mathbb{N}}$ (např. komutativitu +). Na druhou stranu existují sentence pravdivé v $\underline{\mathbb{N}}$ ale nezávislé v PA.

Poznámka V jazyce 2. řádu lze axiomatizovat $\underline{\mathbb{N}}$ (až na izomorfismus), vezmeme-li místo schéma indukce přímo axiom indukce (2. řádu)

$$(\forall X) ((X(0) \land (\forall x)(X(x) \rightarrow X(S(x)))) \rightarrow (\forall x) X(x)).$$

10.2.2 Hilbertův desátý problém

[TODO]

Hilbertův 10. problém

- Nechť $p(x_1, ..., x_n)$ je polynom s celočíselnými koeficienty. Má Diofantická rovnice $p(x_1, ..., x_n) = 0$ celočíselné řešení?
- Hilbert (1900) "Nalezněte algoritmus, který po konečně mnoha krocích určí, zda daná Diofantická rovnice s libovolným počtem proměnných a celočíselnými koeficienty má celočíselné řešení."

Poznámka Ekvivalentně lze požadovat algoritmus rozhodující, zda existuje řešení v přirozených číslech.

Věta (DPRM, 1970) Problém existence celočíselného řešení dané Diofantické rovnice s celočíselnými koeficienty je alg. nerozhodnutelný.

Důsledek Neexistuje algoritmus rozhodující pro dané polynomy $p(x_1, ..., x_n)$, $q(x_1, ..., x_n)$ s přirozenými koeficienty, zda

$$\underline{\mathbb{N}} \models (\exists x_1) \dots (\exists x_n) (p(x_1, \dots, x_n) = q(x_1, \dots, x_n)).$$

10.3 Nerozhodnutelnost predikátové logiky

[TODO]

Nerozhodutelnost predikátové logiky

Existuje algoritmus, rozhodující o dané sentenci, zda je logicky pravdivá?

- Víme, že Robinsonova aritmetika Q má konečně axiomů, má za model $\underline{\mathbb{N}}$ a stačí k důkazu existenčních tvrzení o numerálech, která platí v \mathbb{N} .
- Přesněji, pro každou existenční formuli $\varphi(x_1,\ldots,x_n)$ jazyka aritmetiky

$$Q \vdash \varphi(x_1/a_1, \dots, x_n/a_n) \Leftrightarrow \underline{\mathbb{N}} \models \varphi[e(x_1/a_1, \dots, x_n/a_n)]$$

pro každé $a_1, \ldots, a_n \in \mathbb{N}$, kde $\underline{a_i}$ značí a_i -tý numerál.

• Speciálně, pro φ tvaru $(\exists x_1) \dots (\exists x_n) (p(x_1, \dots, x_n) = q(x_1, \dots, x_n))$, kde p, q jsou polynomy s přirozenými koeficienty (numerály), platí

$$\underline{\mathbb{N}} \models \varphi \quad \Leftrightarrow \quad Q \vdash \varphi \quad \Leftrightarrow \quad \vdash \psi \to \varphi \quad \Leftrightarrow \quad \models \psi \to \varphi,$$

kde ψ je konjunkce (uzávěrů) všech axiomů Q.

• Tedy, pokud by existoval algoritmus rozhodující logickou pravdivost, existoval by i algoritmus rozhodující, zda $\underline{\mathbb{N}} \models \varphi$, což není možné.

10.4 Gödelovy věty

[TODO]

10.4.1 První věta o neúplnosti

[TODO]

Gödelova 1. věta o neúplnosti

Věta (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy aritmetiky existuje sentence pravdivá v N a nedokazatelná v T. Poznámky

- "Rekurzivně axiomatizovaná" znamená, že je "efektivně zadaná".
- "Extenze R. aritmetiky" znamená, že je "základní aritmetické síly".
- Je-li navíc $\underline{\mathbb{N}} \models T$, je teorie T nekompletní.
- V důkazu sestrojená sentence vyjadřuje "nejsem dokazatelná v T".
- Důkaz je založen na dvou principech:
 - (a) aritmetizaci syntaxe,
 - (b) self-referenci.

Aritmetizace dokazatelnosti

Aritmetizace - predikát dokazatelnosti

 Konečné objekty syntaxe (symboly jazyka, termy, formule, konečná tabla, tablo důkazy) lze vhodně zakódovat přirozenými čísly.

- Nechť $\lceil \varphi \rceil$ značí kód formule φ a nechť $\underline{\varphi}$ značí numerál (term jazyka aritmetiky) reprezentující $\lceil \varphi \rceil$.
- Je-li Trekurzivně axiomatizovaná, je relace $\mathrm{Prf}_T\subseteq \mathbb{N}^2$ rekurzivní.

$$\operatorname{Prf}_T(x,y) \Leftrightarrow (tablo) \ y \ je \ d\mathring{u}kazem \ (sentence) \ x \ v \ T.$$

• Je-li T navíc extenze Robinsonovy aritmetiky Q, dá se dokázat, že Prf_T je reprezentovatelná nějakou formulí $Prf_T(x,y)$ tak, že pro každé $x,y\in\mathbb{N}$

$$Q \vdash Prf_T(\underline{x}, \underline{y}), \quad je\text{-}li \quad Prf_T(x, y),$$

 $Q \vdash \neg Prf_T(\underline{x}, y), \quad jinak.$

- $Prf_T(x,y)$ vyjadřuje "y je důkaz x v T".
- $(\exists y) Prf_T(x, y)$ vyjadřuje "x je dokazatelná v T".
- Je-li $T \vdash \varphi$, pak $\underline{\mathbb{N}} \models (\exists y) Prf_T(\varphi, y)$ a navíc $T \vdash (\exists y) Prf_T(\varphi, y)$.

Self-reference

Princip self-reference

- Tato věta má 16 písmen.
 Self-reference ve formálních systémech většinou není přímo k dispozici.
- Následující věta má 24 písmen "Následující věta má 24 písmen".
 Přímá reference obvykle je k dispozici, stačí, když umíme "mluvit" o posloupnostech symbolů. Uvedená věta ale není self-referenční.
- Následující věta zapsaná jednou a ještě jednou v uvozovkách má 116
 písmen "Následující věta zapsaná jednou a ještě jednou v uvozovkách
 má 116 písmen".

Pomocí přímé reference lze dosáhnout self-reference. Namísto " $m\acute{a}~x~p\acute{i}smen$ " může být jiná vlastnost.

main(){char *c="main(){char *c=%c%s%c; printf(c,34, c,34);}"; printf(c,34,c,34);}

Věta o pevném bodě

Věta Nechť T je bezesporné rozšíření Robinsonovy aritmetiky. Pro každou formuli $\varphi(x)$ jazyka teorie T existuje sentence ψ taková, že $T \vdash \psi \leftrightarrow \varphi(\underline{\psi})$.

Poznámka Sentence ψ je self-referenční, říká "splňuji podmínku φ ".

Důkaz (idea) Uvažme zdvojující funkci d takovou, že pro každou formuli $\chi(x)$

$$d(\lceil \chi(x) \rceil) = \lceil \chi(\chi(x)) \rceil$$

- Platí, že d je reprezentovatelná v T. Předpokládejme (pro jednoduchost),
 že nějakým termem, který si označme d, stejně jako funkci d.
- Pak pro každou formuli $\chi(x)$ jazyka teorie T platí

$$T \vdash d(\underline{\chi(x)}) = \chi(\underline{\chi(x)}) \tag{10.1}$$

- Za ψ vezměme sentenci $\varphi(d(\varphi(d(x))))$. Stačí ověřit $T \vdash d(\varphi(d(x))) = \psi$.
- To plyne z (10.1) pro $\chi(x)$ tvaru $\varphi(d(x))$, neboť v tom případě

$$T \vdash d(\varphi(d(x))) = \varphi(d(\varphi(d(x)))) \quad \Box$$

Nedefinovatelnost pravdy

Nedefinovatelnost pravdy

Řekneme, že formule $\tau(x)$ definuje pravdu v aritmetické teorii T, pokud pro každou sentenci φ platí $T \vdash \varphi \leftrightarrow \tau(\varphi)$.

Věta V žádném bezesporném rozšíření Robinsonovy aritmetiky neexistuje definice pravdy.

 $D\mathring{u}kaz$ Dle věty o pevném bodě pro $\neg \tau(x)$ existuje sentence φ taková, že

$$T \vdash \varphi \leftrightarrow \neg \tau(\underline{\varphi}).$$

Kdyby formule $\tau(x)$ definovala pravdu v T, bylo by

$$T \vdash \varphi \leftrightarrow \neg \varphi,$$

což v bezesporné teorii není možné.

Poznámka Důkaz je založen na paradoxu lháře, sentence φ by vyjadřovala "nejsem pravdivá v T".

1. věta o neúplnosti

Důkaz 1. věty o neúplnosti

Věta (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi TRobinsonovy aritmetiky existuje sentence pravdivá $v \mathbb{N}$ a nedokazatelná v T.

 $D\mathring{u}kaz$ Nechť $\varphi(x)$ je $\neg(\exists y)Prf_T(x,y)$, vyjadřuje "x není dokazatelná v T".

• Dle věty o pevném bodě pro $\varphi(x)$ existuje sentence ψ_T taková, že

$$T \vdash \psi_T \leftrightarrow \neg(\exists y) Prf_T(\psi_T, y). \tag{10.2}$$

 ψ_T říká "nejsem dokazatelná v T". Přesněji, ψ_T je ekvivalentní sentenci vyjadřující, že ψ_T není dokazatelná v T. (Ekvivalence platí v $\underline{\mathbb{N}}$ i v T).

- Nejprve ukážeme, že ψ_T není dokazatelná v T. Kdyby $T \vdash \psi_T$, tj. ψ_T je lživá v $\underline{\mathbb{N}}$, pak $\underline{\mathbb{N}} \models (\exists y) Prf_T(\underline{\psi_T}, y)$ a navíc $T \vdash (\exists y) Prf_T(\underline{\psi_T}, y)$. Tedy z (10.2) plyne $T \vdash \neg \psi_T$, což ale není možné, neboť T je bezesporná.
- Zbývá dokázat, že ψ_T je pravdivá v $\underline{\mathbb{N}}$. Kdyby ne, tj. $\underline{\mathbb{N}} \models \neg \psi_T$, pak $\underline{\mathbb{N}} \models (\exists y) Prf_T(\psi_T, y)$. Tedy $T \vdash \psi_T$, což jsme již dokázali, že neplatí. \Box

10.4.2 Důsledky první věty

[TODO]

Důsledky a zesílení 1. věty

Důsledek Je-li navíc $\underline{\mathbb{N}} \models T$, je teorie T nekompletní.

 $D\mathring{u}kaz$ Kdyby byla T kompletní, pak $T \vdash \neg \psi_T$ a tedy $\underline{\mathbb{N}} \models \neg \psi_T$, což je ve sporu s $\underline{\mathbb{N}} \models \psi_T$. \square

Důsledek $\operatorname{Th}(\underline{\mathbb{N}})$ není rekurzivně axiomatizovatelná.

 $D\mathring{u}kaz$ Th($\underline{\mathbb{N}}$) je bezesporná extenze Robinsonovy aritmetiky a má model $\underline{\mathbb{N}}$. Kdyby byla rekurzivně axiomatizovatelná, dle předchozího důsledku by byla nekompletní, ale Th($\underline{\mathbb{N}}$) je kompletní. \Box

Gödelovu 1. větu o neúplnosti lze následovně zesílit.

Věta (Rosser) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy aritmetiky existuje nezávislá sentence. Tedy T je nekompletní. Poznámka Tedy předpoklad, že $\underline{\mathbb{N}} \models T$, je v prvním důsledku nadbytečný.

10.4.3 Druhá věta o neúplnosti

[TODO]

Gödelova 2. věta o neúplnosti

Označme Con_T sentenci $\neg(\exists y)Prf_T(\underline{0=1},y)$. Platí $\underline{\mathbb{N}} \models Con_T \Leftrightarrow T \not\vdash 0 = \underline{1}$. Tedy Con_T vyjadřuje, že "T je bezesporná".

Věta (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Peanovy aritmetiky platí, že Con_T není dokazatelná v T.

 $D\mathring{u}kaz$ (náznak) Nechť ψ_T je Gödelova sentence "nejsem dokazatelná v T".

• V první části důkazu 1. věty o neúplnosti jsme ukázali, že

"Je-li
$$T$$
 bezesporná, pak ψ_T není dokazatelná v T ." (10.3)

Jinak vyjádřeno, platí $Con_T \to \psi_T$.

- Je-li T extenze Peanovy aritmetiky, důkaz tvrzení (10.3) lze formalizovat v rámci T. Tedy $T \vdash Con_T \rightarrow \psi_T$.
- Jelikož T je bezesporná dle předpokladu věty, podle (10.3) je $T \not\vdash \psi_T$.
- Z předchozích dvou bodů vyplývá, že $T \not\vdash Con_T$.

Poznámka Taková teorie T tedy neumí dokázat vlastní bezespornost.

10.4.4 Důsledky druhé věty

[TODO]

Důsledky 2. věty

Důsledek Existuje model \mathcal{A} Peanovy aritmetiky t.ž. $\mathcal{A} \models (\exists y) Prf_{PA}(\underline{0} = \underline{1}, y)$.

Poznámka A musí být nestandardní model PA, svědkem musí být nestandardní prvek (jiný než hodnoty numerálů).

Důsledek Existuje bezesporná rekurzivně axiomatizovaná extenze T Peanovy aritmetiky taková, že $T \vdash \neg Con_T$.

 $D\mathring{u}kaz$ Nechť $T = PA \cup \{\neg Con_{PA}\}$. Pak T je bezesporná, neboť $PA \not\vdash Con_{PA}$. Navíc $T \vdash \neg Con_{PA}$, tj. T dokazuje spornost $PA \subseteq T$, tedy i $T \vdash \neg Con_{T}$. \square $Poznámka \ \underline{\mathbb{N}} \ nem\mathring{u}že \ být \ modelem \ teorie \ T$.

Důsledek Je-li teorie množin ZFC bezesporná, není Con_{ZFC} dokazatelná v ZFC.

Příloha A Aplikace logiky

[TODO] Viz Wikipedia.

Příloha B

Historie logiky

Historii logiky jako vědního oboru¹ lze velmi zhruba rozdělit do několika fází podle hlavní aplikační domény (a povolání většiny praktikujících logiků). Zde uvádíme jen několik nejdůležitějších milníků.

Logika ve filozofii (od 6. století př. n. l.)

• Helénistická filozofie: Aristotelés (384—322 př. n. l.), základy predikátové logiky, kvantifikátory (vsichni/nekteří), proměnné (α , β , γ) zastupující logické formule, dedukce ve formě sylogismů. Stoická škola (3. stol. př. n. l.) (výroková logika).

[Zásada vyloučeného sporu] "Totéž nemůže zároveň náležet a nenáležet témuž a v témž vztahu."

Všichni lidé jsou smrtelní. Sókratés je člověk.

Závěr: Sókratés je smrtelný.

• Islámská filozofie a teologie: Avicenna (980–1037), induktivní uvažování, souvislost implikace a času (inspirace pro pozdější temporální logiku).

"Každý, kdo popírá zásadu vyloučeného sporu, by měl být bit a pálen, dokud nepřizná, že být bit není totéž jako nebýt bit, a být pálen není totéž jako nebýt pálen."

"Bůh vidí celý řetězec příčin a důsledků zvenku (mimo čas), a proto si je vědom každé dílčí události (v čase)"

• Středověká filozofie a teologie: Ockham (1287?–1347), rozdíl mezi *materiální* a *logickou* implikací.

"Si homo currit, Deus est." [Pokud člověk běží, Bůh existuje.]

¹Viz Wikipedia.

"Logika je ze všech [svobodných] umění ten nejužitečnější nástroj, bez kterého žádná věda nemůže být dokonale poznána."

[Ockhamova břitva] "Nic by nemělo být předkládáno bez udání důvodu, pokud to není samozřejmé nebo známé ze zkušenosti nebo dokázané autoritou Písma svatého."

Logika v matematice

- kořeny: Thales (dedukce v geometrii), Pythagoras (koncept důkazu), Eukleidés (axiomatizace geometrie), Descartes (algebraizace geometrie)
- Leibniz (1679–90): characteristica universalis a calculus ratiocinator, snaha o vytvoření univerzálního symbolického jazyka a kalkulu lidského myšlení.

"Jediný způsob, jak napravit naše úvahy, je učinit je stejně hmatatelnými jako úvahy matematiků, abychom na první pohled našli naši chybu, a když mezi lidmi dojde ke sporům, můžeme jednoduše říci: Calculemus! [Počítejme!], bez dalších okolků, abychom viděli, kdo má pravdu."

 algebraická škola (od 1847): Boole (Mathematical Analysis of Logic, 1847; The Laws of Thought, 1854), DeMorgan, Venn, algebraické zákony vyjadřující logické vztahy, Booleova algebra, booleovské funkce jako sémantika výroků.

Např. Distributivita konjunkce vůči disjunkci:

$$p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r)$$

nebo DeMorganovy zákony:

$$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$$
$$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$$

- logicismus (od 1872): snaha vyjádřit celou matematiku v logickém jazyce:
- Cantor (1878): naivní teorie množin, pro každou vlastnost $\varphi(x)$ máme množinu $\{x \mid \varphi(x)\}.$
- Frege: predikátové logiky, syntaxe pokus o axiomatizaci aritmetiky, teorie množin.
- Schröder: sémantika predikátové logiky, modely jsou struktury (např. graf, grupa, těleso).
- Russel (1903): naivní teorie množin je sporná, tzv. Russelův paradox "Platí $x \in x$ pro množinu $x = \{y \mid \neg (y \in y)\}$?", známý také jako paradox holiče.

"Holič holí každého, kdo neholí sám sebe. Holí holič sám sebe?"

- Zermelo, Fraenkel (1908, 1922): axiomatizace ZFC teorie množin ('C' znamená 'choice', tzv. axiom výběru).
- [TODO]

Logika v teoretické informatice [TODO]

 ${\bf Logika~v~aplikovan\'e~informatice} \\ [{\bf TODO}]$

Příloha C

Další logické systémy

Intuicionistická logika, temporální logiky, modální logiky, fuzzy logiky [TODO]

Literatura

- [1] Mordechai Ben-Ari. *Mathematical Logic for Computer Science*. Springer London, June 2012. Google-Books-ID: hxOpugAACAAJ.
- [2] Petr Gregor. Výroková a predikátová logika.
- [3] Anil Nerode and Richard A. Shore. *Logic for Applications*. Springer Science & Business Media, December 2012. Google-Books-ID: 90HhBwAAQBAJ.
- [4] Martin Pilát. Lecture Notes on Propositional and Predicate Logic. original-date: 2017-10-05T20:42:26Z.