IMPORTANT MODELS AND TESTS AND THERE APPLICATION						
TEST OR MODEL NAME	APPLICATION	COMPONENTS	NULL HYPOTHESIS	HOW TO USE TEST STATISTIC OR P- VALUE	REMEDIAL MEASURE?	R CODE AND LIBRARY
1. Simple linear regression	 To check significant variables in the model. To check the goodness of fit. 	RSE- How far is the fit from the points F stat- Check if reg coef are nonzero. AlC and SIC- select lowest valued model.	 Value of the particular coefficient is zero. For F test- all explanatory variables have no impact. 	 Smaller t-test= reject null <u>OR</u> p-val<0.05. Greater the F value, rejecting Ho. 	Discard insignificant variables.	model=lm(y~x.,data=data1) summary(model)
2. Durbin-Watson test	To test for autocorrelation between error terms	DW 'd' statistic	No autocorrelation exists	o If P-value<0.05, reject Ho	 If autocorrelation exists, use first difference or logarithmic change of the variable. 	library(Imtest) dwtest(model)
3. Breusch-Godfrey test	To test for autocorrelation between error terms		No autocorrelation exists	o If P-value<0.05, reject Ho	 If autocorrelation exists, use first difference or logarithmic change of the variable. 	library(Imtest) bgtest(model)
4. VIF and tolerance	To detect multicollinearity			 Remove variables with VIF values between 5-10. Consider the reciprocals 	Drop variables with high correlation and run regression on the new data.	library(car) vif(model)
5. Breusch-pagan and White's test	To detect Heteroscedasticity		Error variance is homoscedastic	o If P-value<0.05, reject Ho	 Best way is to take the log of the dependent variable and carry out regression using the rest of the regressors. 	Library(car) bptest(model)
6. Ramsey Reset test and Lagrange's Multiplier test	To check omission of relevant variables.	Reset is called the F statistic Chi-sq statistic	Original model is correct	Small statistic value, accept Ho <u>OR</u> p-value<0.05.	 Include variable if model fit is better otherwise discard or transform it. 	Library(Imtest) resettest(formula, power = 2:3, type = c("fitted", "regressor","princomp"), data = list())
7. Jarque-Bera test	Normality test for errors	X-sqrd and p-value	o Errors are normally distributed.	If chi-sq stat > p-value then accept Ho OR p-value >0.05.	 Used for large samples, won't affect. 	Library(tseries) jarque.bera.test(x)
8. Logit and Probit Models	Dichotomous and Binary variable regression models. Eg: Gender, employed or unemployed etc.	 Coef-log of odds in favour of Y change by a unit change in X. Coef * normal density function, gives the probability Pseudo and count R square 	Value of the particular coefficient is zero.	Lower the values of null and residual deviance better the fit	Probit is better since it has lower variance. But both can be used.	model=glm(yr~.,data=subdata,family = binomial(link = "logit")) summary(model) model2=glm(y~.+x*x1=subdata,family = binomial(link = "probit")) summary(model2)
9. Multinomial regression models	Polytomous or multiple category regression models Eg: choice of car, choice of cereal etc.	Chooser specific MLM: depend individual to individual. Choice specific CLM: how features affect the choice of an individual. Mixed	Value of the particular coefficient is zero.	 Smaller t-test= reject null <u>OR</u> p- val<0.05. 		test <- multinom(y~.,data =data1) summary(test)
10. Ordinal regression models	Ordered data or ranked data Eg: Likert type questionnaires.	Compute odds ratio by exp(coefficient)	 Proportionality assumption, parallel reg lines. 	If chi-sq stat > p-value then accept Ho OR p-value >0.05.	Use Maximum likelihood method	library(MASS) library(ordinal) fit=polr(y~x+x1,data=data)
11. Tobit and truncated models	Censored and truncated data.	Coeff-direct effect of X on Y is inferred LogLik-select model with maximum value	Value of the particular coefficient is zero.	Smaller t-test= reject null <u>OR</u> p-val<0.05.		library(survival) fit=survreg(Surv(hours, hours>0, type='left') ~.,data=data, dist='gaussian') summary(fit)
12. Overdispersion test	To check the equidispersion property PRM i.e mean=variance	Dispersion P-value	 The property of equidispersion holds 	Check dispersion, if non-zero. P-value<0.05 reject Ho.	Use Negative binomial regression model or quassi-poisson model	library(AER) dispersiontest(model2, trafo = NULL, alternative = c("greater"))
13. Stationarity	o For stationary time series.	o UR/ ADF test	 The given time series is not stationary 	o Accept Ho if p-value>0.05	 Use first differencing to convert the time series. 	library(tseries) adf.test(x)
14. Engle-Granger test	Testing cointegration or long run relationship.	Test statistic Tau	 The given time series is not stationary and there is no cointegration. 	Reject Ho if test statistic > tau at 5% LOS.	o Use Johansen test	library(urca) ur=ur.df(res,type="none") summary(ur)
15. Johansen test	Testing cointegration or long run relationship	Eigen values r: rank	o r<=1 o r=0	 Reject Ho if test statistic > critical values at 5% LOS. Rank is > than the one given in Ho. 	If no cointegration exists, regression is spurious. Either transform or discard the variable.	library(urca) cointest=ca.jo(cmbdata,K=2,type = "eigen", ecdet = "const", spec = "transitory") summary(cointest)
16. Box-Ljung test	To check presence of autocorrelation	o P-value	No serial correlation/autocorrelation	o Accept if p-value>0.05	 If autocorrelation exists, use first difference or logarithmic change of the variable. 	Library(tseries) box.test (x, lag = 1)
17. Granger Causality test	To check which variable precedes which.		o X causes Y and Y causes X	o P-value<0.05, reject Ho		Library(var) causality(var,cause = "pdi_dif")\$Granger
18. Outliers test	To detect outliers	o Values of outliers			Use robust regression	Library(car) outlierTest(fit) library(robustbase) ltsReg(x1~., data)

https://github.com/akshat3096