	Gu	ru Nanak Dev Er	igineering College, Ludhia	na		
	Departm	ent of Electronic	s and Communication Eng	incering		
Program		B.Tech.(ECE)	Semester	6	6	
Subject Code		OEEC-102	Subject Title	Basics of Electronics and Communication		
Mid Semester Test (MST)		1	Course Coordinator(s)	Pf. Harminder Kaur Pf. Simranjit Kaur		
No.		24	Time Duration	1 hour 30 minutes		
Max, Marks Date of MST		22 nd March, 2022	Roll Number	1905322/1921023		
Note: A	ttempt all questions					
Q. No.	Question			COs, RBT level	Marks	
01	Explain briefly the need of biasing in transistors			CO2, L2	2 2	
Q1 Q2	In a CB configuration, the current amplification factor is 0.97. If the emitter current is 1 mA, Determine the value of base current				CO2, L5	2
-0.3	Demonstrate the V-I characteristics of p-n junction diode				CO1, L2	4
Q3	Illustrate the working of zener diode as a voltage regulator				CO1, L2	4
Q4 Q5	Determine the hexadecimal equivalent of decimal number (750,760) ₁₀				CO4, L5	4
Q6	a. Distinguish between the characteristics of CB, CE and CC configuration b. Solve the following subtraction using 1's complement method (100101)2 - (110110)2				CO2, CO4 L4, L5	4+4=8
Course	Outcomes (CO) will be able to					
	I sambotha baraular	ige of working pri	nciple of diode for utilizatio	n in diffi	erent applicat	ions
2	Apply the knowledge of working principle of transistor for utilization in different applications					
3	Understand the basic concept of feedback in amplifiers and applying for designing i.e. and ice					
4	Comprehend the basic concept of Binary Number System and apply for Boolean problems.					
5	Analyze performance of different types of analog modulation techniques.					
6	Demonstrate the concepts of digital modulation techniques.					

L3

L4

Lower Order Thinking Levels (LOTS)

LI

Remembering

L2

Understanding Applying

RBT

Classification RBT Level

Number

RBT Level Name Higher Order Thinking Levels (HOTS)

L6

Creating

L5

Analyzing Evaluating