Juan Carlos Llamas Núñez 3º DG Int-Mat

DNI: 11867802-D Fecha: 17/12/2020

Examen I.O.

1.-Para añadir esa nueva variable calculamos el vector / = Ba

$$\Rightarrow Y_6 = \begin{pmatrix} 13 \\ 12 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -5 \\ -3 \end{pmatrix}$$

El coste reducido sera C6 = C6 - CB B a6 = C6 - CB X6 = $=-1-(-1,2)(-\frac{5}{-3})=-1-(-1)=0$. Por tanto, la solución asociada a la tabla que teníamos siguesiendo éplima, pero ahora la solución ya no es única. La nueva tabla es:

	Yı	X 2	X3	Xy	1 X5	/ ×	ĺ
×	0	1	5	1	3	-5	24
Yı	1	0	4	1	2	-3	21
1	0	0	-2	-1	-1	0	2-18
						-	

Detectamos que hay una dirección extrema en la que la función objetivo mantiene su valor optimo asi que el conjunto de soluciones es:

$$\begin{vmatrix} x_{1}^{*} \\ x_{2}^{*} \\ x_{3}^{*} \\ x_{4}^{*} \end{vmatrix} = \begin{vmatrix} 21 \\ 24 \\ 0 \\ 0 \end{vmatrix} + \mu \begin{vmatrix} 3 \\ 5 \\ 0 \\ 0 \\ 0 \end{vmatrix}$$

$$\begin{vmatrix} 3 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{vmatrix}$$

$$\begin{vmatrix} 3 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{vmatrix}$$

$$\begin{vmatrix} 3 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{vmatrix}$$

$$\begin{vmatrix} 3 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{vmatrix}$$

$$\begin{vmatrix} 3 \\ 5 \\ 0 \\ 0 \\ 0 \\ 1 \end{vmatrix}$$

$$\begin{vmatrix} 3 \\ 5 \\ 0 \\ 0 \\ 0 \\ 1 \end{vmatrix}$$

$$\begin{vmatrix} 3 \\ 5 \\ 0 \\ 0 \\ 0 \\ 1 \end{vmatrix}$$

$$\begin{vmatrix} 3 \\ 5 \\ 0 \\ 0 \\ 0 \\ 1 \end{vmatrix}$$

$$\begin{vmatrix} 3 \\ 5 \\ 0 \\ 0 \\ 0 \\ 1 \end{vmatrix}$$