Лабораторная работа 2.2.1 Взаимная диффузия газов

Журавлёв Максим 06.02.25 \mathcal{J} ифузия - самопроизвольное взаимное проникновение веществ друг в друга, вследствие хаотичного теплового движения частиц

Рассмотрим двухкомпанентную систему газов (бинарная смесь)

Закон Фика

$$j_a = -D \frac{\partial n_a}{\partial x}$$

где j_a - плотность потока частиц вещества a

Равновесное состояние при постоянной концентрации по всему объёму

Оценим коэффицент взаимной диффузии D

В проводимом опыте n_{he} « n_{air} , а также атомы He значительно легче молекул, содержащихся в воздухе (N_2, O_2) , поэтому их скорости больше. Тогда диффузию гелия и воздуха можно рассматривать как проникновение молекул гелия в стационарный воздух

В таком приближении:

$$D = \frac{1}{3n_{air}\sigma} \sqrt{\frac{8RT}{\pi\mu_{He}}} = \frac{1}{3}\lambda v_{add}$$

 σ - площадь сечения области столкновения, λ - длина свободного пробега частиц гелия, v_{add} средняя тепловая скорость частиц гелия

Так как
$$n = \frac{P}{kT}$$
, то $D \propto \frac{1}{P}$

Границы применимости:

- 1) Постоянная температура
- 2) Длина свободного пробега частиц много меньше характерных размеров установки
- 3) Выполняется для бинарной диффузии или при наличии растворителя(вещество с высокой концентрацией)

В более общем случае для бинарной смеси вместо n_{air} можно использовать n_{summ} , а вместо v_{add} - $v_{relative}$

Закон Фурье

Аналог закона Фика для теплопроводности: удельный поток тепла пропорционален градиенту температуры:

$$q_s = -\beta gradT$$

 β - константа, зависящая от среды, в которой происходит теплообмен

Два сосуда равного объема соединены трубкой длины L и сечения S. Через некоторое время τ концентрации в сосудах должны выравняться

Если объём трубки мал, то можно считать что концентрации в сосудах зависят только от времени, а выравнивание концентраций происходит за счёт диффузии в трубке

Рассмотрим подзадачу диффузии в трубке

Пусть концентрации на концах трубки - n_1 и n_2 . Через время τ в трубке установится стационарный поток частиц, одинаковый в любом сечении трубки. Тогда из з-на Фика:

$$j = -D\frac{\partial n}{\partial x} = const$$
$$j = -D\frac{\Delta n}{L}$$

Воспользуемся квазистационарным приближением. Будем считать, что в каждый момент времени в трубке успевает установиться стационарное течение. К тому же, будем считать что концентрации в сосуде не зависит от x, то есть n_1 - концентрация в первом сосуде, n_2 - во втором. Тогда в первом сосуде число частиц $N_1 = n_1 * V$, во втором $N_2 = n_2 * V$. За время dt через трубку проходит j * S частиц.

$$\frac{dN}{dt} = jS$$

Тогда изменение числа частиц в сосуде:

$$\frac{d(\Delta n)}{dt} = 2jS = \frac{-2DS\Delta n}{VL} = \frac{\Delta n}{\tau}$$

проинтегрируем

$$\Delta n = \Delta n_0 e^{-\frac{t}{\tau}}$$

 τ можно назвать характерным временем установления равновесия. $\tau = \frac{VL}{2DS}$

Проверим выполнение квазистатического приближения. Процесс должен быть достаточно продолжительным, то есть время установления равновесия должно быть много больше времени диффузии отдельной частицы: $\tau >> \tau_1$. По з-ну Эйнштейна-Смолуховского τ_1 одного порядка с величиной $\frac{L^2}{2D}$. Тогда V >> SL, то есть объём трубки д.б. много меньше объёмов сосудов

Методика измерений

Датчики теплопроводности. Теплопроводность смеси зависит от концентраций. При малой концентрации примеси зависимость можно считать линейной (отклонение не более 0.5 процента):

 $\Delta k = const \Delta n$

В цилиндре, соединённом с сосудом, протянута проволока, которая нагревается током. Приращение температуры проволоки приводит к увеличению её сопротивления(которое в данных условиях меняется пропорционально теплопроводности газа). Показания гальванометра в мостовой схеме зависят от состава газов, баланс(0 на гальванометре) достигается при равном составе, напряжение на гальванометре пропорционально разности теплопроводностей в сосудах, а значит и разности концентраций:

$$U \propto \Delta k \propto \Delta n$$

Таким образом напряжение должно меняться по тому же закону, что и Δn

$$U = U_0 e^{-\frac{t}{\tau}}$$

Отсюда следует, что из зависимости U(t) можно оценить характерное время диффузии au

Данные:

Объём сосудов - $(775\pm10)~cm^3$ Длина трубки к сечению трубки - $(5,3\pm0,1)~\frac{1}{cm}$

Манометр: ц.д. - 7.5 тор,

Вольтметр: цифровой (4 знака после запятой),

Давления(в торрах) - 40, 50, 60, 70, 100

Проверить выполнение экспоненциальной зависимости напряжения от времени (то есть и концентраций)

Проверить истинность начальной теории, предполагающей в опыте диффузию примеси лёгких частиц на фоне неподвижных частиц воздуха, которая предсказывает обратную пропорциональность коэффицента диффузии и давления

Рассчётные значения:

P, torr	τ, c	D, $\frac{m^2}{c} * 10^-3$
40	211	1.946
50	209	1.965
60	271	1.515
70	309	1.329
100	420	0.978

Графики ln(U) от t

Графики показывают экспоненциальную зависимость U от t. Можно оценить au как $\frac{\Delta t}{\Delta ln(U)}$

Оценим погрешность τ . Учитывая ожидаемую линейную зависимость U(t), точность оценки τ зависит от полученных эксперементальных точек. Эту погрешность оценим с помощью метода наименьших квадратов(учитывая, что погрешность измерений вольтметра пренебрежимо мала)

$$\sigma^2 \tau = \sigma^2 U + \sigma^2 (\frac{1}{k})$$

Оценим погрешность $D=\frac{VL}{2\tau s}$ $\sigma^2 D=\sigma^2 V+\sigma^2 \frac{L}{S}+\sigma^2 \tau$

Итоговые значения:

P, tor	τ , c	D, $\frac{m^2}{c} * 10^-5$
40	211± 12	1.946 ± 0.121
50	209 ± 17	1.964 ± 0.260
60	271 ± 12	1.515 ± 0.075
70	309± 9	1.329 ± 0.045
100	420 ± 12	0.978 ± 0.039

Экстраполируя данные, полученные из графиков $(D(\frac{1}{p}), \tau(p))$, получим коэффицент диффузии при нормальном атмосферном давлении 746 тор.

$$\tau_{746} = 2760c, D_{746} = (7,44 \pm 0,16) * 10^{-5} \frac{m^2}{c}$$

Табличное значение коэффицента диффузии: $6,2*10^{-5}\frac{m^2}{c}$

Таким образом мы проверили выполнение закона Фика для диффузии бинарной смеси(получена экспоненциальная зависимость концентрации от времени), а также, за исключением 1 точки(p = 40 тор), убедились в том что для диффузии в растворителе верно соотношение $D=\frac{1}{3}\vartheta\lambda$ (обратная пропорциональность D и P). С помощью полученных данных удалось экстраполировать значение коэффицента диффузии с относительной точностью 19%