

Knowledge

Representation

Introduction to Artificial Intelligence

Chandra Gummaluru University of Toronto

Version W22.1

Acknowledgements

- The following is based on material developed by many individuals, including (but not limited to):
 - Sheila McIlraith
 - Bahar Aameri
 - Fahiem Bacchus
 - Sonya Allin

Introduction

 Part of being an intelligent agent involves being able to infer implicit facts based on known or assumed ones.

Example: Avatar Aang's Love Life

- Suppose we knew the following:
 - Anyone who likes someone is sad if they do not like them back.
 - Aang likes Katara.
 - Aang is an fire bender.
 - Aang is sad.
 - Katara does not like all fire benders.
- Does Katara like Aang?
- Humans develop this ability through experience. Our goal is to instil artificial agents with the same ability.
- Without reasoning, we would have to explicitly remember every fact we've learned.

Representation versus Reasoning

- To achieve this ability, we do two things:
 - **①** Represent (encode) known statements in our brain.
 - Reason (infer) new statements from the known ones.
- Thus, to achieve this ability artificially, we need to do things:
 - ① Develop a formal languages to represent statements.
 - ② Develop a reasoning mechanism for the formal system.
- There are many formal languages and reasoning mechanisms we could use.
- We will consider a representation called first-order logic (FOL), and a reasoning mechanism called resolution.

Informal Languages versus Formal Languages

- Roughly speaking, the goal of any formal language is to facilitate the expression of knowledge but with strict rules to avoid any ambiguity.
- Example: Ambiguity in English
 - What is the appropriate response to the request, "call me an ambulance,"?
 - "okay."
 - "uh...you're an ambulance...".
- The ambiguity arises from the fact that, in English (and other languages), there
 are multiple interpretations of many words/phrases.

Formal Languages: Syntax and Semantics

- To avoid such ambiguity, a formal language must define the notion used to build its statements, as well as a system for interpreting those statements.
- The notion is called the syntax and the interpretations are the semantics.
- So, a formal language needs to provide syntax and a way to introduce semantics.
 However, it does not provide the semantics themselves.

- FOL syntax consists of the following components:
 - **①** variables, where each variable is, by definition, a term.
 - E.g., x.
 - Q functions, which each map zero or more terms to a single term.
 - E.g., nation(x), which should refer to x's nation.
 - 3 predicates, which each map many terms to true/false.
 - E.g., likes(x, y), which should mean that x likes y.
- An FOL **vocabulary** is a triple, $\mathcal{L} = (\mathcal{V}, \mathcal{F}, \mathcal{P})$, where \mathcal{V}, \mathcal{F} , and \mathcal{P} are sets of variables, functions, and predicates, respectively.

Syntax: Atomic Formulae

- Let \mathcal{L} be a vocabulary.
- For any *n*-ary \mathcal{L} -predicate P, and \mathcal{L} -terms, t_1, \ldots, t_n , the expression, $P(t_1, \ldots, t_n)$ is called an atomic \mathcal{L} -formula.
 - E.g., likes(x, nation(y)).
- Atomic formula represents the most fundamental statements.

Syntax: Non-Atomic Formulae

- Non-atomic \mathcal{L} -formulae are defined recursively as follows:
 - **negation**: $\neg f$, where f is any \mathcal{L} -formula.
 - **disjunction**: $f_1 \vee f_2$, where f_1 and f_2 are \mathcal{L} -formulae.
 - **conjunction**: $f_1 \wedge f_2$, where f_1 and f_2 are \mathcal{L} -formulae.
 - **implication**: $f_1 \rightarrow f_2$, where f_1 and f_2 are \mathcal{L} -formulae.
 - **existential**: $\exists x f$, where x is a variable and f is any \mathcal{L} -formula.
 - **universal**: $\forall x f$, where x is a variable and f is any \mathcal{L} -formula.

Syntax: Example

Example: Aang's Love Life

- Suppose we have a vocabulary, \mathcal{L} , with:
 - onstant symbols: Katara, Aang, Zuko, Azula, fire, water, air, earth
 - variable symbols; x, y
 - function symbols; sibling(x), and nation(x),
 - predicate symbols; person(x), sad(x), likes(x, y), and bender(x, y).
- We can express each fact using our vocabulary:
 - Anyone who is likes someone is sad if they don't like them back:

$$\forall x (\mathsf{person}(x) \to (\exists y (\mathsf{person}(y) \land \mathsf{likes}(x,y) \land \neg \mathsf{likes}(y,x)) \to \mathsf{sad}(x)))$$

- Aang likes Katara: likes(Aang, Katara).
- Aang is a fire bender: bender(Aang, fire).
- **④** Katara does not like all fire benders: $\exists x$ bender(x, fire) $\land \neg$ likes(Katara, x).
- **⑤** Aang is sad: sad(Aang).

Structures

- In FOL, the semantics are provided by what we refer to as a **structure**. The model, S, consists of the following components:
 - ① a **domain of discourse**, *D*, which is a set of relevant elementary objects.
 - **2** specializations of functions, $f^S: D^n \to D$, for each *n*-ary function, f, so that f^S assigns f within D.
 - **3** specializations of predicates, $p^S \subseteq D^n$, for each *n*-ary predicate, *p*, so that $p(t_1, \ldots, t_n)$ is true if and only if $(t_1, \ldots, t_n) \in p^S$.

Structures: Example

Example: Avatar Aang's Love Life

```
• A structure, S of L is shown below:
```

```
• D = \{ Aang, Katara, Zuko, Azula, water, fire, air, earth \}
• Katara^S = Katara, Aang^S = Aang, Zuko^S = Zuko, Azula^S = Azula
• sibling^S(Zuko) = Azula, sibling^S(Azula) = Zuko
• nation^S(Aang) = air, nation^S(Katara) = water, nation^S(Zuko) = fire, nation^S(Azula) = fire
• bender^S = \{\langle Aang, water \rangle, \langle Aang, fire \rangle, \langle Aang, air \rangle, \langle Aang, earth \rangle, \langle Katara, water \rangle, \langle Zuko, fire \rangle, \langle Azula, fire \rangle \}
• likes^S = \{\langle Katara, water \rangle, \langle Aang, Katara \rangle, \langle Katara, Aang \rangle \}
• person^S = \{\langle Aang \rangle, \langle Katara \rangle, \langle Zuko \rangle, \langle Azula \rangle \}
• sad^S = \{\langle Aang \rangle, \langle Zuko \rangle \}
```

Variable Assignment Functions

- An occurrence of a variable, x, in an FOL formula, f, is **bound** if and only if it is in a sub-formula of the form $\forall xf'$ or $\exists xf'$. Otherwise, x is **free**.
- If a formula f contains free variables, then its value depends on what values we assign to those free variables.
- We define an **assignment function**, $\sigma: \mathcal{V} \to D$, so that $\sigma(x)$ is the element in the universe represented by the variable x.
- The value of any \mathcal{L} -term is defined recursively with an **extended assignment** function, $\bar{\sigma}$ so that $\bar{\sigma}(x) = \sigma(x)$ and $\bar{\sigma}(f(t_1, \ldots, t_n)) = f^{\mathcal{S}}(\bar{\sigma}(t_1), \ldots, \bar{\sigma}(t_n))$.

Determining Values of Terms: Example

Example: Avatar Aang's Love Life

- Suppose we wanted to compute the value of nation(sibling(x)), under $\sigma(x) = Azula$.
- We proceed as follows:

$$\begin{split} \bar{\sigma} \left(\mathsf{nation}(\mathsf{sibling}(x)) \right) &= \mathsf{nation}^{\mathcal{S}} \left(\bar{\sigma}(\mathsf{sibling}(x)) \right) \\ &= \mathsf{nation}^{\mathcal{S}} \left(\mathsf{sibling}^{\mathcal{S}} (\bar{\sigma}(x)) \right) \\ &= \mathsf{nation}^{\mathcal{S}} \left(\mathsf{sibling}^{\mathcal{S}} (\sigma(x)) \right) \\ &= \mathsf{nation}^{\mathcal{S}} \left(\mathsf{sibling}^{\mathcal{S}} (\mathbf{Azula}) \right) \\ &= \mathsf{nation}^{\mathcal{S}} \left(\mathbf{Zuko} \right) \\ &= \mathbf{fire} \end{split}$$

• Notice that the value depends on both ${\cal S}$ and $\sigma.$

Determining Values of Formulae

- We write $S \models f[\sigma]$ to denote that S satisfies the formula, f, under σ .
- By definition, $S \vDash P(t_1, \ldots, t_n)[\sigma]$ if and only if $\langle \bar{\sigma}(t_1), \ldots, \bar{\sigma}(t_n) \rangle \in P^S$.
- For other \mathcal{L} -formulae, \vDash is defined recursively as follows:

•
$$\mathcal{S} \vDash (t_1 = t_2)[\sigma]$$
 if and only if $\bar{\sigma}(t_1) = \bar{\sigma}(t_2)$

•
$$\mathcal{S} \vDash \neg f[\sigma]$$
 if and only if $\mathcal{S} \not\vDash f[\sigma]$

•
$$S \vDash (f_1 \lor f_2)[\sigma]$$
 if and only if $S \vDash f_1[\sigma]$ or $S \vDash f_2[\sigma]$

•
$$S \vDash (f_1 \land f_2)[\sigma]$$
 if and only if $S \vDash f_1[\sigma]$ and $S \vDash f_2[\sigma]$

•
$$\mathcal{S} \vDash (f_1 \to f_2)[\sigma]$$
 if and only if $\mathcal{S} \vDash (f_1 \lor \neg f_2)[\sigma]$

•
$$S \models (\forall x f)[\sigma]$$
 if and only if $S \models f[\sigma[x/m]]$ for all $m \in D$

•
$$S \vDash (\exists x f)[\sigma]$$
 if and only if $S \vDash f[\sigma[x/m]]$ for some $m \in D$

• Here $\sigma[x/m]$ is defined assuming x is fixed and so that

$$\sigma[x/m](y) = \begin{cases} \sigma(y), y \neq x \\ m, y = x \end{cases}$$

Determining Values of Formulae: Example

Example: Avatar Aang's Love Life

- Suppose we wanted to compute the value of $\exists x \text{bender}(x, \text{fire}) \land \neg \text{likes}(\text{Katara}, x)$.
- We proceed as follows:

$$S \models (\exists x (\mathsf{bender}(x, \mathsf{fire}) \land \neg \mathsf{likes}(\mathsf{Katara}, x))) [\sigma]$$

```
\Leftrightarrow \mathcal{S} \vDash (\mathrm{bender}(x,\mathrm{fire}) \land \neg \mathrm{likes}(\mathsf{Katara},x)) \, [\sigma[x/m]] \, \, \mathrm{for \ some} \, \, m \in D \\ \Leftrightarrow \mathcal{S} \vDash \mathrm{bender}(x,\mathrm{fire}) [\sigma[x/m]] \, \, \mathrm{and} \, \, \mathcal{S} \not\vDash \mathrm{likes}(\mathsf{Katara},x) [\sigma[x/m]] \, \, \mathrm{for \ some} \, \, m \in D \\ \Leftrightarrow \langle m, \mathbf{fire} \rangle \in \mathrm{bender}^{\mathcal{S}} \, \, \mathrm{and} \, \, \langle \mathbf{Katara}, m \rangle \not\in \mathrm{likes}^{\mathcal{S}} \, \, \mathrm{for \ some} \, \, m \in D \\ \mathrm{The \ above \ holds \ for} \, \, m = \mathbf{Azula}.
```

Sentences

- A **sentence** is any formula consisting of only bound variables.
- The value of a sentence, s, is independent of the variable assignments, i.e., for any σ and σ' ,

$$S \vDash s[\sigma]$$
 if and only if $S \vDash S[\sigma']$.

• Thus, for any sentence, s, we simply write $S \models s$ to denote that S satisfies s.

Determining Values of Sentences

- Let Φ be a set of sentences.
- We say that Φ is **satisfiable** if there exists some structure \mathcal{S} such that $\mathcal{S} \models s$ for every $s \in \Phi$; such a structure is called a **model** of Φ .
- Say we are given another set of sentences Φ' :
 - **1** If every model of Φ is a model of Φ' , we say that Φ' is a consequence of Φ .
 - ② If no model of Φ is a model of Φ' , we say that Φ' is a contradiction of Φ .
 - ③ If some models of Φ are models of Φ' , but other models of Φ are not models of Φ' , then Φ' is neither a consequence of contradiction of Φ .
- Proving logical consequences / contradictions can only be done through a syntactic reasoning mechanism.