1. Актуальность работы

1.1. Газовый разряд

Первая работа по физике плазмы была выполнена Ленгмюром, Тонксом и их сотрудниками в 1920-х гг. Это исследование было вызвано необходимостью разработать вакуумные электронные лампы, которые могли бы пропускать большие токи, а для этого их нужно было наполнять ионизованным газом. Именно в этой работе было открыто явление экранирования; В настоящее время мы сталкивается с газовым разрядом в ртутных выпрямителях, водородных тиратронах, игнитронах, разрядниках, сварочных дугах, неоновых лампах и лампах дневного света, в грозовых разрядах.

1.2. Изучение космического окружения Земли.

Непрерывный поток заряженных частиц, называемый солнечным ветром, сталкивается с земной магнитосферой, которая деформируется под его действием и защищает нас от этого потока частиц.

Ионосфера, простирающаяся по высоте от 50 км до 10 земных радиусов, заполнена слабоионизированной плазмой, плотность которой изменяется с высотой.

1.3. Современная астрофизика

Звезды и из атмосферы настолько горячи, что находятся в плазменном состоянии. Солнечное излучение обусловлено термоядерными реакциями, протекающими при высокой температуре. Солнечная корона представляет собой разреженную плазму. Межзвездная среда содержит ионизированный водород. Хотя звезды в галактиках не являются заряженными, они ведут себя подобно частицам в плазме. Поэтому для предсказания хода эволючии галактик применялась кинетическая теория плазмы. Радиоастрономия открыла многочисленные источники излучения, которые создаются плазмой.

1.4. МГД-преобразование энергии

Для генерации электричества можно использовать МГД преобразование энергии плотной плазменной струи, движущейся поперек внешнего магнитного поля. Под действием силы Лоренца ионы движутся в одну сторону, а электроны в другую, что создаёт разность потенциалов, между двумя электродами. При этом с электродов можно снимать электрический ток, минуя неэффективный тепловой цикл.

Такой же принцип применяется в разработках ионных двигателей.

1.5. Газовые лазеры

Наиболее широко распространенным методом накачки казового лазера, т.е. перевода его в инвертированное состояние, которое может привести к усилению излучения, является применен ие газового разряда.

2. Зонд с СВЧ-резонатором

2.1. Основы метода локальных измерений концентрации плазмы с использованием зонда с СВЧ-резонатором

Идея, положенная в основу простого и удобного метода локальных измерений плотности плазмы, заключается в измерении собственной частоты миниатюрного резонатора, помещенного в плазму. Зонд представляет собой резонансную систему, собственная частота которой зависит от диэлектрической проницаемости среды ϵ . По величине резонансной частоты однозначно восстанавливается значение плотности плазмы.

Для локальных измерений плотности плазмы используется простейший и наименьший по размерам резонатор, который является четверть-волновый отрезок двухпроводной линии, замкнутый на одном и разомкнутый на другом конце (четвертьволновый резонатор). Возбуждение и прием сигнала осуществляется при помощи двух передающих линийЮ оканчивающихся петлями магнитной связи.

Необходимым условием работы диагностики является требование, чтобы собственная частота резонатора с плазмой была значительно больше плазменной частоты . В этом случае ($\omega_{res} >> \omega_{pe}$, res-резонатор, ре- плазменная частота) моды плазменных колебаний, которые могут возбуждаться в теплой плазме подавляются затуханием Ландау и поэтому не влияют на результаты измерений.

Малостью размеров зонда обеспечивается слабость возмущения, вносимого им в плазму.

В отличие от диагностических методов, связанных с использованием объемных резонаторов, позволяющих получить лишь интегральное значение плотности плазмы, предлагаемый метод позволяет (из-за малости размеров зонда по сравнению с характерными масштабами плазменного столба) определять локальное значение плотности внутри плазменного объема.

В сравнении с традиционно используемыми в плазменных экспериментах ленгмюровскими зондами, результаты измерений с помощью резонансного СВЧ-зонда определяются только плотностью плазмы и не зависят от электронной температуры

плазмы.

Таким образом, диагностика плотности плазмы с помощью резонансного СВЧ-зонда позволяет измерять локальное, слабо возмущенное значение плотности плазмы. Нелинейные свойства СВЧ-резонатора, в том числе и гистерезисные явления, проявляются при больших амплитудах колебаний СВЧ-поля. В этом случае плазма вытесняется полем из всей области между проводами резонатора и резонансная кривая в районе своего максимума перестает зависеть от плазменной концентрации, практически полностью повторяя вакуумную.

3. Экспериментальная установка КРОТ

Следует отметить, что при постановке космических исследований приходится иметь дело с трудными и дорогостоящими экспериментами. Это делает оправданным изучение космических эффектов в модельных экспериментах, проводимых на лабораторных установках, тем более что основные процессы, как в космической плазме, так и в лабораторной, при правильном выборе условий эксперимента подчиняются одним и тем же закономерностям. Кроме того, в лаборатории можно использовать весь арсенал современной диагностики плазмы и многократно воспроизводить исследуемое явление, целенаправленно варьировать условия его протекания. Возможность моделирования космических электромагнитных явлений основывается на законах подобия. Они указывают, как должны соотноситься между собой основные безразмерные физические величины в космическом объекте и его лабораторном аналоге.

Объем, в котором проходит исследование плазменных процессов в нашем случае представляет из себя вакуумную камеру, изготовленную из немагнитной нержавеющей стали диаметром 3 метра и длиной 10 метров. Предельный объем достигаемый в объеме камере, $P_{\rm ост} \approx 5 \cdot 10^{-6}$ торр. Откачка в камере осуществляется с помощью вакуумных насосов с производительностью 150 л/с. Для откачки инертных газов используется пароструйные насосы с производительностью $2.5 \cdot 10^3$ л/сек.

3.1. Генерация плазмы

В установке присутствует соленоид, который генерирует поле пробочной конфигурации, то есть создает магнитную ловушку для удержания плазмы.

В качестве источника плазмы используется высокочастотный автогенератор, нагруженный на индуктор, выполненный в виде двух витков разного диаметра, разнесенных в пространстве. Под действием ВЧ-поля происходит газовый разряд, инициирующий иони-

зирующую лавину. В результате образующаяся плазма экранирует индуктор и генерация прекращается.

3.2. Эксперимент

3.2.1 Распад

На слайде приведён график зависимости плотности плазмы от времени. Исходя из результатов измерения, можно сделать заключение, что распад плазмы имеет два характерных времени. Это связано с тем, что характерное время спада концентрации обратно пропорционально электронной температуре плазмы. Температура в ходе эксперимента меняется неравномерно. При больших температурах остывание идёт быстрее, но через некоторое время оно заметно замедляется. Это связано с тем, что температура электронов приближается к температуре нейтрального газа. В результате получается некое подобие изотермы.

3.2.2 Радиальное распределение

На практике считается, что при отклонении концентраций плазмы около 20~% плазму можно считать равномерно распределенной по радиальной оси. Но всё же концентрация непостоянна из-за . . .