МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по производственной практике

Тема: Разработка алгоритма аварийного запуска резервной дизельной электростанции.

Студент гр. 9383	Орлов Д.С.
Руководитель	Васильев С.В.

Санкт-Петербург

2022

Содержание

Перечень принятых сокращений	
Введение	4
Общие положения	5
ежим работы ДГ «Дежурство» пгоритм аварийного пуска ДГ в режиме «Дежурство»	7
Алгоритм аварийного пуска ДГ в режиме «Дежурство»	9
Алгоритм пуска ДГ	9
Готовность ДГ к пуску	10
Алгоритм проверки активных защит	11
Заключение	13
Отзыв руководителя практики	14
Список литературы	15

Перечень принятых сокращений

ВГ – Выключатель генератора;

ДГ – Дизель-генератор;

ДГУ – Дизель-генераторная установка;

ДТЗ – Дифференцированная токовая защита;

КИП – Контрольно-измерительные приборы и автоматика;

КРУ – Комплектное распределительное устройство;

МТЗ – Максимальная токовая защита;

ОЖ – Охлаждающая жидкость;

ОЩУ – Основной щит управления;

РДЭС – Резервная дизельная электростанция;

РЩУ - Резервный щит управления;

САУ – Система автоматизированного управления;

СН – Собственные нужды;

ША – Шкаф автоматизации;

ШСН – Шкаф собственных нужд;

ЩУЭ – Щит управления электроснабжением.

Введение

На производственную практику в ФГУП «НИТИ им. А.П. Александрова» была поставлена следующая задача:

разработать алгоритм аварийного запуска резервной дизельной электрической станции в блочно-модульном исполнении с дизельгенератором мощностью 2500 кВт.

Выполнение задачи проходило по следующему плану:

- 1. Изучить инструкцию по эксплуатации
- 2. Определить ограничения для нормальной работы РДЭС
- 3. Выбрать начальное состояние системы
- 4. Разработать алгоритм

Общие положения

РДЭС — Резервная дизельная электростанция является элементом аварийного электроснабжения и предназначена для обеспечения при заданных условиях эксплуатации неограниченного временем режима работы.

Последовательности управления ДГУ и режимы управления двигателем интерпретируются и исполняются САУ на основе информации, полученной от КИП и распределительной аппаратуры, а также команд управления оператора и щитов управления эксплуатирующей организации.

Основные режимы работы ДГУ:

«Дежурство» - Основной режим работы ДГУ. В этом режиме САУ обеспечивает автоматическое управления основными операциями, связанными с нормальной работой ДГ;

«Опробование» - регламентные испытания для проверки работоспособности ДГУ, проводимые под контролем дежурного персонала;

«Обслуживание» - Режим предназначен для проведения технологических работ.

«Ремонт» - Режим предназначен для проведения ремонтных работ.

Алгоритм установки режима:

Предполагается, что нормальный режим ДГ — «Дежурство». В момент обслуживания ДГ персоналом включается «алгоритм установки режима». Цикл длится до того момента, пока не установится режим «Дежурство». После каждой итерации обновляется информация о текущем режиме ДГ. Разрабатываемый алгоритм будет запускаться из режима «Дежурство», поэтому остановимся на нем подробней.

Режим работы ДГ «Дежурство»

В режиме «Дежурство» САУ обеспечивает автоматическое управление и контроль следующих операций:

- -поддержание ДГУ в состоянии готовности;
- -автоматический пуск по сигналам от управляющих систем, дистанционный автоматизированный пуск;
 - -пуск ДГ с преобладанием команды пуск над другими операциями;
- -поддержание частоты вращения коленчатых валов при пуске и ступенчатом наборе мощности;
 - -асинхронное поддержание частоты вращения коленчатых валов;
 - -нормальный и аварийный останов ДГУ;
 - -автоматическое управление оборудованием СН ДГУ;
 - -ручное дистанционное включение или отключение оборудования СН;
 - -защиту ДГУ (см. табл. 1);
- -сигнализацию о состоянии ДГУ в виде обобщенного внешнего сигнала «Неисправность ДГУ», «Неготовность ДГУ»;
- -автоматическое управление нормальным остановом ДГ по сигналу на останов;
- -обеспечивать экстренный останов с блокировкой очередного пуска до ручной разблокировки при срабатывании неотключаемых защит;
 - -контроль параметров и состояния ДГУ и их регистрация;
- -оперативный контроль состояния САУ с выявлением неисправности до сменного модуля с предоставлением информации на дисплей;

Защиты ДГУ

Неотключаемые защиты	При срабатывании защиты	Отключаемые защиты	При срабатывании защиты
Понижение давления масла до предельно-допустимого значения	- Отключение выключателя генератора (ВГ); - Гашение поля генератора (отключение возбуждения); - Экстренный останов дизеля; - Снятие (отмена) режима «дежурство»; - Формирование сигнала на ЩУЭ, ОЩУ и РЩУ «Неготовность ДГ»; - Включение индикатора «Неготовность» и индикаторов срабатывания технологической или электрической защиты на ША; - Блокировку последующего пуска до ручной разблокировки.	Повышение температуры охлаждающей жидкости высокотемпературного контура на выходе из дизеля	П
Повышение частоты вращения коленчатого вала дизеля до предельно-допустимого значения (1725 об/мин)		температуры обмоток отключаемо режиме «До без останов обеспечива	- При срабатывании отключаемой защиты в режиме «Дежурство» САУ без останова дизеля обеспечивает:
Продольная дифференциальная токовая защита (ДТЗ), срабатывает при коротких замыканиях в обмотке статора генератора или силовом кабеле питания в зоне действия защиты		Генератора Понижении уровня топлива в расходном баке ниже предельного значения	- Формирование сигнала на пульт управления объекта применения «Неисправность в РДЭС»; - Включение сигнализации «Неисправность» на ША; - Блокировку действия защиты на отключение выключателя ВГ и гашение поля генератора.
Максимально-токовая защита (МТ3)		Понижении уровня ОЖ в расширительном баке ВТ контура Отключаемые электрические защиты генератора	

Табл.1

Алгоритм аварийного пуска ДГ в режиме «Дежурство»

Алгоритм пуска ДГ

Алгоритм проверяет поступление сигнала аварийного пуска с ОЩУ или РЩУ, либо по нажатию кнопки аварийного пуска. Далее, проверяет готовность ДГ к пуску. Если ДГ имеет статус «Готов к пуску», то отдает сигнал пуска на DEIF. Проверка признака «Готов к пуску» происходит по следующему алгоритму.

Готовность ДГ к пуску

Алгоритм проверяет готов ли ДГ к пуску. Сначала идет проверка наличия активных защит, потом проверяет уровень топлива, и в конце, наличие защит из КРУ. Если все в норме, то формируется признак «Готов к пуску», если же одно из условий не выполняется, формируется признак «Неготовность». Проверка на наличие активных защит происходит по следующему алгоритму.

Параметры введения защит пуска ДГ

Наименование защиты	Уставка защиты	Тип сигнала	Датчик/Устройство
Падение давления масла	≤2 ^{кгс} _{см²}	Аналоговый сигнал	DEIF
Критическое увеличение	ه د	Аналоговый	DEIF
частоты вращения	$>1725 \frac{\text{of}}{\text{мин}}$	сигнал	
коленчатого вала			
Аварийное отключение	Отсутствие	Дискретный	SEPAM
КРУ яч.3	сигнала	сигнал	SLI AIVI
Аварийный останов от	Наличие	Дискретные	DEIF
DEIF	сигнала	сигналы	DEIF
Аварийный останов по	Наличие	Дискретные	DEIF
кнопке	сигнала	сигналы	DEIF
Аварийно-низкий	≤300 мм	Аналоговый	LT5/LT6
уровень топлива		сигнал	
КРУ яч. 3 заземлитель	Наличие	Дискретные	КРУ яч.3
введен	сигнала	сигналы	КГУ ЯЧ.5
Пожар	Наличие	Дискретные	Система ПС
	сигнала	сигналы	
Повышение			
температуры	≥80 °C	Аналоговый	DEIF
подшипников	≥00 €	сигнал	
генератора			
Повышение		A .v.a == a== == == ==	
температуры обмоток	≥100 °C	Аналоговый	DEIF
генератора		сигнал	
Превышение	≥104 °C	Аналоговый	DEIE
температуры ОЖ		сигнал	DEIF

Заключение

В период производственной практики была изучена инструкция по эксплуатации РДЭС. Для выполнения поставленной задачи были выбраны условия и начальное состояние системы, подробно разобран режим работы ДГ «Дежурство». Также был выбран перечень переменных, контроль которых обеспечивает безопасную эксплуатацию ДГ, с их помощью реализованы защиты ДГ. На основе всего вышеперечисленного был разработан алгоритм аварийного запуска ДГ из режима «Дежурство». Для выполнения задачи были использованы знания построения и анализа алгоритмов, а также умение работать с технической документацией.

Таким образом, считаю поставленную задачу полностью выполненной.

Отзыв руководителя практики

Отзыв

о прохождении производственной практики

Орлов Даниил Сергеевич, студент группы 9383, третьего курса бакалавриата Санкт-Петербургского электротехнического университета "ЛЭТИ" им В.И. Ульянова, проходил практику в ФГУП «НИТИ им. А.П. Александрова» в должности «Практикант» с 29.06.2022 по 12.07.2022.

В течении практики обучающийся Орлов Даниил Сергеевич выполнял следующее задание: «Разработка алгоритма аварийного запуска резервной дизельной электрической станции в блочно-модульном исполнении с дизель-генератором мощностью 2500 кВт».

Согласно указанному заданию была разработана программа прохождения производственной практики, которая выполнена в полном объеме.

Поручаемую работу, обучающийся Орлов Даниил Сергеевич, выполнял умело применяя теоретические знания, полученные в период обучения в университете. Проявил себя как исполнительный, аккуратный, ответственный специалист.

По результатам работы Орлова Даниила Сергеевича производственную практику оцениваю на оценку: «Отлично».

Подпись руководителя практики:

Начальник группы

09.07, 20222

/Васильев С.В.

Список литературы

- 1) АБРП.561264.006 РЭ ++PO_V5_07.02.19 РДЭС в блочно-модульном исполнении мощностью 2,5 МВт, Рыбин.
- 2) АБРП.561264.006 ПБ_v1 РДЭС в блочно-модульном исполнении мощностью 2,5 МВт, Рыбин.