Ch.4 Computational Intelligence 第四章 智能计算 I

- 1. 概述
- 2. 神经计算
- 3. 进化计算
- 4. 模糊计算
- 5. 群智能

- due to J.C. Bezdek who states that:
- "...(strictly) computational systems depend on numerical data supplied by manufactured sensors and do not rely upon knowledge".
 - Later, in 1994, Bezdek offers that CI is low-level computation in the style of the mind", whereas AI is mid-level computation in the style of the mind".

贝兹德克 (J.C. Bezdek)

What is CI?

1994年James C. Bezdek提出:

- "...asystem is computational intelligence when it deal only with the numerical (low-level) data, has a pattern recognition component, and does not use knowledge in the AI sense, and additionally when it exhibit
- 一个计算智能系统应当只涉及数值(低层)数据,含有模式识别部分,不应用人工智能意义上的知识,而且能够呈现出。
 - ●计算适应性
 - ●计算容错性
 - ●接近人的速度
 - ●近似于人的误差率…"

- ◇ 计算智能是信息科学与生命科学相互交 又的前沿领域,是现代科学技术发展的 一个重要体现.
- ♥典型方法
 - ₩ 模糊逻辑
 - 神经网络
 - 2. 进化计算
 - 群智能

Some other opinions:

要定义"计算智能"并不简单。要在一个正式的定义中容纳诸如模糊集合、神经网络、进化计算、机器学习、贝叶斯推理等各自具有其既定特性的不

- Conference: Computa 司领域 alm更可能, 也使用的。
 & Applications- CIMA™2005.
 - Defining "Computational Intelligence" is not straightforward. It is difficult, if not impossible, to accommodate in a formal definition disparate areas with their own established individualities such as fuzzy sets, neural networks, evolutionary computation, machine learning, Bayesian reasoning, etc.
- Book: "Computational Intelligence: An Introduction", Andries P. Engelbrecht, Wiley 2002

Computational intelligence is the study of adaptive mechanisms to enable or facilitate intelligent behavior in complex and changing environments.

计算智能是关于程复架和变化的环境lligence combines artificial neural networks, 中如何实现智能行为的自适应机制研究。因此,计算智能综合了人工神经网络、进化计算、群智能和模糊系统。

AI vs. CI

- ◆ 绝大多数的AI/CI 研究者将这两者看成不同的研究领域
 - CI forms an alternative to Al (R.C.Eberhart)
 - AI和CI追求目标一致,达到智能
 - CI是系统的核心、AI是系统的外沿部分
 - ●两者是并行技术
 - Al subsumes CI (Bezdek)
 - ☑ CI是AI的一部分

艾伯哈特 (Eberhart)

- ◆ Bezdek自匀ABC:
 - A、B、C三者对应三种不同的系统复杂性级别
 - A: Artificial or Symbolic
 - **B: Biological** or Organic
 - C: Computational or Numeric system
- ❖ 计算智能是一种智力方式的低层认知,它与人工智能的区别只是认知层次从中层下降至低层而已。中层系统含有知识,低层系统则没有

Relationships among components of intelligent system (after Bezdek 1994)

NN: Neural Network

PR: Pattern Recognition

4.2 人工神经网络 Artificial Neural Networks(ANN) 4.2.1 ANN

- As you read these words you are using a complex biological neural network. You have a highly interconnected set of 10¹¹ neurons to facilitate your reading, breathing, motion and thinking.
- In the *artificial neural network*, the neurons are *not* biological. They are extremely simple abstractions of biological neurons, realized as *elements* in a *program* or perhaps as *circuits*

made of silicon.

> 体积1.7升, 重量1.4千克

> 25瓦低能耗

History of ANN Research

- 参 McCulloch & Pitts (1943) 被公认为第一个 人工神经网络的设计者(MP model)
 - 他们使用<mark>阈值</mark>以及用多个简单单元结 合在一起以提高计算能力的思想到今 天仍被广泛使用

- ◇ 高度的并行性使得其计算效率非常高
- ◊ 有助于理解神经表示的"分布式"特征

麦克洛奇(McCulloch)

皮茨 (Pitts)

History of ANN Research

1949年Hebb提出了第一个神经网络的学习规则(**权值**).

人工神经网络(ANN)的特性

- 并行分布处理
- 非线性映射
- 通过训练进行学习
- 适应与集成
- ...硬件实现

这些特性使得人工神经网络具有 应用于各种智能系统的巨大潜力。

- Cell structures
 - ™ Cell body (细胞体).
 - Dendrites(树突→
 - Axon(轴突)
 - Synapse(突触)
- ♦ 10¹¹- 10¹² neurons in human brain
- Each neuron connected to 10⁴
 others on average

Cell Structures

- A Neuron: many-inputs / one-output unit
- Cell Body(细胞体): is 5 10 microns in diameter, sums and thresholds these incoming signals
- ☑ Dendrites(树突): carry electrical into the cell body
- **Axon**(軸突): carry the signal from the cell body *out* to other neurons
- Synapse(突触): contact between an axon of one cell and a dendrites of another cell

Real Neural Learning

- Synapses change size and strength with experience.
- Hebbian learning: When two connected neurons are firing at the same time, the strength of the synapse between them increases.
- ____

"Neurons that fire together, wire together."

The Biological Neurons

Action potential ≈ 100mV Rest potential ≈ -65mV <u>Refractory</u> t<u>im</u>e ≈ <u>10-20m</u>s

Activation threshold ≈ 20-30mV Spike time ≈ 1-2ms

4.2.2 Structure of ANN

Notation

- Scalars (标量): small italic letters e.g., a, b, c
- Vectors (向量): small bold nonitalic letters e.g., a, b, c
- Matrices (矩阵): capital BOLD nonitalic letters

e.g., **A**, **B**, **C**

The Artificial Neuron

Stimulus

$$u_i(t) = \sum_j w_{ij} \cdot x_j(t)$$

Response

$$y_i(t) = f(b + u_i(t))$$

T = = threshold (阈值)or bias(偏移)

 $y_i(t)$ = output of neuron i at time t w_{ij}

= 从神经元i 到i的连接权值

f = transfer function(传递函数), or activation function(激励函数)

Bias and Weight (阈值与权重)

The bias *b* is much like a **weight** *w*, except that it has a constant input of 1.It can be **omitted** if NOT necessary.

$$\begin{cases} y_{in} = \sum_{i=1}^{n} w_i x_i \\ y_i = f(y_{in} - \theta) \end{cases}$$

$$\begin{cases} net = b + \sum_{i=1}^{n} w_i x \\ y2 = f(net) \end{cases}$$

Transfer Functions传递函数

- The transfer function f may be a linear or nonlinear function of net input n
- The most commonly used func.
 - Hard limit transferfunction
 - Linear transfer function
 - Log-sigmoid transfer function
 - ReLU transfer function

Hard Limit Transfer Func.

$$a=hardlim(n)$$
 $a=hardlim(wp+b)$

$$a = 0$$
, if $n < 0$

⋄
$$a = 1$$
, if $n \ge 0$

MATLAB function: hardlim

Linear Transfer Function

$$a=purelin(n)$$
 $a=purelin(wp+b)$

MATLAB function: purelin

Log-Sigmoid Transfer Func.

$$a = 1/[1 + exp(-n)]$$

ReLU Transfer Func.

$$f(x) = 0$$
, if $x < 0$

$$f(x)=x$$
, if $x \ge 0$

感知器(Perceptren)

- ♦ 1958年由Rosenblatt 提出,用于将输入分为两类
- ⋄ 简单的单层前馈网络
- ◆ 其神经元为一个线性阈值单元(Linear Threshold),也
 称阈值逻辑单元(Threshold Logic Unit, TLU)

$$y = f(w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n) = \begin{cases} 1 & w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n \ge 0 \\ 0 & ontherwise \end{cases}$$

TLU的基本功能为线性划分

⇒ 当有两个输入x₁和x₂时,若将x₁和x₂分别看成平面上的横轴和纵轴,则x₁和x₂的不同值将对应该平面上的不同点。

$$net = b + \sum_{i=1}^{n} w_i x_i$$

$$y = f(net) = \begin{cases} 0\\ 1 \end{cases}$$

当输入的x₁和x₂位于 直线下方时, w₁x₁+w₂x₂+b<0,即 net<0,则y=0

$$0 = b + \sum_{i=1}^{n} w_i x_i = w_1 x_1 + w_2 x_2 + b$$

Neural Computation: And

input		output	function	condition
\mathbf{x}_1	X_2	$x_1 \wedge x_2$	$w_1 * x_1 + w_2 * x_2 + b = 0$	Condition
0	0	0	$w_1*0+w_2*0+b<0$	b < 0
0	1	0	$w_1*0+w_2*1+b<0$	-b > w ₂
1	0	0	$w_1*1+w_2*0+b<0$	-b > w ₁
1	1	1	$w_1*1+w_2*1+b\ge 0$	-b≤w ₁ + w ₂

Neural Computation: Or

input		output	function	condition
\mathbf{x}_1	X_2	$x_1 \vee x_2$	$w_1 * x_1 + w_2 * x_2 + b = 0$	Condition
0	0	0	$w_1*0+w_2*0+b<0$	b < 0
0	1	1	$w_1*0+w_2*1+b \ge 0$	-b < w ₂
1	0	1	$w_1*1+w_2*0+b \ge 0$	-b < w ₁
1	1	1	$w_1*1+w_2*1+b\ge 0$	-b≤w ₁ + w ₂

Neural Computation: Not

input	output	function	condition
\mathbf{x}_1	~x ₁	$w_1 * x_1 + b = 0$	Condition
0	1	$w_1*0+b\geq 0$	$b \ge 0$
1	0	$w_1*1+b<0$	-b>w ₁

NOT: Let threshold be 0, single input with a negative weight

- Models of neural networks are specified by the *three* basic entities:
 - models of the *processing elements* (neurons) (神经元模型);
 - models of inter-connections and structures (network topology) (网络拓扑模型);
 - the learning rules (the ways information is stored in the network) (学习规则).
- The weights may be *positive* (excitatory) or *negative* (inhibitory).
- Information is stored in the connection weights.

- The layer that receives inputs is called the *input* layer.
- The outputs of the network are generated from the *output layer*.
- Any layer between the input and the output layers is called a *hidden layer*.
- There may be *from zero to several* hidden lavers in a neural network.

- When no node output is an input to a node in the same layer or preceding layer, the network is a *feedforward network*(削機).
- When outputs are directed back as inputs to sameor preceding-layer nodes, the network is a *feedback network* (反馈网络).
- Feedback networks that have closed loops are called recurrent networks (递归网络).

Feedforward network 前馈网络

$$W = \begin{bmatrix} w_{11} & w_{12} & w_{1m} \\ w_{21} & w_{22} & w_{2m} \\ w_{n1} & w_{n2} & w_{nm} \end{bmatrix}$$

$$y_{j} = f(\sum_{i=1}^{n} w_{ij} x_{i} - \theta_{j})$$
 $j = 1, 2, ..., m$

Feedback network 反馈网络

How to Pick an Architecture

Problem specifications help define the network in the following ways:

- 1. Number of network inputs = number of problem inputs
- 2. Number of neurons in output layer = number of problem outputs
- 3. Output layer transfer function choice at least partly determined by problem specification of the outputs.

4.2.3 Learning of ANN

Two kinds of learning in neural networks:

- parameter learning (参数学习), which concerns the updating the weights and the bias in a neural network
- structure learning (结构学习), which focuses on the change in the network structure, including the <u>number</u> of nodes and their <u>connection types</u>.
- Each kind of learning can be further classified into three categories
 - ☑ supervised learning(监督学习)
 - 😦 reinforcement learning (增强学习)
 - unsupervised learning (非监督学习)

Learning Rule

-Supervised Learning

- 又称有师学习
- 常提供训练样例(training set): { $\mathbf{p}_1, \mathbf{t}_1$ }, { $\mathbf{p}_2, \mathbf{t}_2$ },..., { $\mathbf{p}_q, \mathbf{t}_q$ }, 其中 \mathbf{p}_i 是输入, \mathbf{t}_q 是期望输出.
- ◆ 学习算法每次比较网络对应每个输入的实际输出
 和期望输出
- ◆ 利用比较**误差**来<mark>调整</mark>网络权值

Learning Rule

Unsupervised Learning

- ❖又称无师学习
- The weights and biases are modified in response to network inputs only. *There are no target outputs available*.
- Most of these algorithms perform some kind of clustering(聚类) operation.

 They learn to categorize the input patterns into a finite number of classes.

Learning Rule

Reinforcement Learning

- The learning rule is similar to supervised learning, except that, instead of being provided with the correct output for each network input, *the* algorithm is only given a grade.
- The grade (score) is a measure of the network performance over some sequence of inputs.
- It appears to be most suited to control system applications.
- Example: Genetic Algorithm (GA)

Learning Rule Example

--Perceptron Learning

- The hypothesis space being searched is a set of weights and a threshold.
- ♦ 类似于爬山
- 搜索空间是有权值和阈值组成的集合
- ♥ 学习的目的是使在训练集上的误差最小

Learning Rule

Perceptron Learning Rule

♥ 权值更新:

$$W_{ji} = W_{ji} + \eta (t_j - o_j) o_i$$

η —— 学习常数 (learning rate)

 t_i ——j的期望输出

 O_i ——j的实际输出

 O_i ——i的实际输出(j的输入)

Equivalent to rules:

- If output is correct do nothing.
- If output is high, lower weights on active inputs

Perceptron Learning Algorithm

- ♥ 感知器学习算法步骤
 - 输入: 给定正例集合P和反例集合N, 对所有 $x \in P$, f(x) = 1, 所有 $x \in N$, f(x) = 0
 - 輸出: w ∈ Rⁿ+1
- 1. Initialize weights to

$$w = \sum_{x \in P} x - \sum_{x \in N} x$$

- 2. Choose $x \in P \cup N$ randomly
- 3.Update $w = w + \eta(t-o)x$ (η 为学习常数, t为期望输出, o为实际输出)
- 4. Goto 2 until outputs of all training examples are correct

P = {(6,-1), (-3, 1)}
N= {(0,-1), (7,-2)}
$$\eta = 1$$

$$w = (6,-1) + (-3, 1) - (0,-1) - (7,-2) = (-4, 3)$$

P = {(6,-1), (-3, 1)}
N= {(0,-1), (7,-2)}
$$\eta = 1$$

$$w \cdot x < 0$$

 $w = w + (1-0)x = (-4, 3) + (6, -1) = (2, 2)$

$$P = \{(6,-1), (-3, 1)\}$$

$$N = \{(0,-1), (7,-2)\}$$

$$\eta = 1$$

$$w \cdot x < 0$$

 $w = w + (1-0)x = (-4, 3) + (6, -1) = (2, 2)$

P =
$$\{(6,-1), (-3, 1)\}$$

N= $\{(0,-1), (7,-2)\}$ $\eta = 1$
w · x < 0

$$P = \{(6,-1), (-3, 1)\}$$

$$N = \{(0,-1), (7,-2)\}$$

$$\eta = 1$$

$$W \cdot x < 0$$

P = {(6,-1), (-3, 1)}
N= {(0,-1), (7,-2)}
$$\eta = 1$$

其他神经网络学习 方法将在机器学习 中具体介绍

$$w \cdot x < 0$$

$$W = W + (1-0)X = (5, 2) + (-3, 1) = (2, 3)$$

ANN application—Example

- Pattern Recognition
 - Problem Statement 1

- Pattern Recognition
 - Problem Statement

ANN application—Example 1

- Shape sensor: 1-- round, -1 -- elliptical.
- Texture sensor: 1-- smooth, -1 -- rough.
- Weight sensor: 1-- >1pound, -1 -- <1pound.</p>

$$\mathbf{p} = \begin{bmatrix} shape \\ texture \end{bmatrix} \Rightarrow \mathbf{p}(apple) = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \mathbf{p}(orange) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} weight \end{bmatrix}$$

$$\mathbf{p} = \begin{bmatrix} shape \\ texture \end{bmatrix} \Rightarrow \text{three - dimensional input } (R = 3)$$

$$\lfloor weight \rfloor$$

$$n = \mathbf{Wp} + b$$
, $a = \text{hardlims}(n)$

Choose the bias b and the elements of the weight matrix W so that the perceptron will can distinguish between apples and oranges.

ANN application—Example 1

$$\mathbf{p}(apple) = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \quad \mathbf{p}(orange) = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} \quad \Rightarrow \mathbf{W} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}, b = 0$$

Orange:
$$a = \text{hardlims} \begin{bmatrix} 0 & 1 & 0 \\ -1 & -1 \end{bmatrix} + 0 = -1$$

Apple:
$$a = \text{hardlims} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 \\ -1 \end{bmatrix} + 0 = 1$$

What happens if we put a not-so-perfect orange into the classifier? That is to say, an orange with an elliptical shape is pass through the sensor.

$$\mathbf{p} = \begin{bmatrix} shape \\ texture \end{bmatrix} \Rightarrow \\ \lfloor weight \rfloor$$

$$\mathbf{p} = \begin{bmatrix} shape \\ texture \end{bmatrix} \Rightarrow \mathbf{p}(orange) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \Rightarrow \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} weight \end{bmatrix}$$

$$a = \text{hardlims} \begin{bmatrix} 0 & 1 & 0 \\ -1 \\ -1 \end{bmatrix} + 0 = -1 \Rightarrow \mathbf{orange}$$

- The perceptron can be used to classify input vectors that can be separated by a linear boundary, like AND gate example.
 - ⇒ linearly separable (AND, OR and NOT gates)
- Not linearly separable, e.g., XOR gate

Question

- → 训练一个感知器用以判断输入的三个整数之积 是偶数还是奇数。该感知器有三个输入 \(\alpha\righta\ri
 - 为什么需要第4个输入端? 其输入值应该设为多少?
 - 对于2*3*4,该感知判断其结果是奇数还是偶数?

