Chapter 3. Classical Demand Theory (Propositions)

Proposition 3.C.1. Suppose that the preference relation \succeq on X is continuous. Then there exists continuous utility function u(x) that represents \succeq , i.e., $u(x) \geq u(y)$ if and only if $x \succeq y$.

Proposition 3.D.1. If $p \gg 0$ and $u(\cdot)$ is continuous, then the utility maximization problem has a solution.

Proposition 3.D.2. Suppose that u(x) is a continuous utility function representing a locally nonsatiated preference relation \succeq defined on the consumption set $X = \mathbb{R}^L_+$. Then the Walrasian demand correspondence x(p, w) possesses the following properties:

- (i) Homogeneity of degree zero in (p, w): $x(\alpha p, \alpha w) = x(p, w)$ for any p, w and scalar $\alpha > 0$.
- (ii) Walras' Law: $p \cdot x = w$ for all $x \in x(p, w)$.
- (iii) Convexity/uniqueness: If \succeq is convex, so that $u(\cdot)$ is quasiconcave, then x(p,w) is a convex set. Moreover, if \succeq is strictly convex, so that $u(\cdot)$ is strictly quasiconcave, then x(p,w) consists of a single element.

Proposition 3.D.3. Suppose that $u(\cdot)$ is a continuous utility function representing a locally nonsatiated preference relation \succeq defined on the consumption set $X = \mathbb{R}^L_+$. The indirect utility function v(p, w) is

- (i) Homogeneous of degree zero.
- (ii) Strictly increasing in w and nonincreasing in p_l for any l.
- (iii) Quansiconvex; that is, the set $\{(p,w): v(p,w) \leq \bar{v}\}$ is convex for any \bar{v} .
- (iv) Continuous in $p \gg 0$ and w.

Proposition 3.E.1. Suppose $u(\cdot)$ is a continuous utility function representing a locally nonsatiated preference relation \succeq defined on the consumption set $X = \mathbb{R}^L_+$ and that the price vector is $p \gg 0$. We have

- (i) If x^* is optimal in the UMP when wealth is w > 0, i.e., $x^* = x(p, w)$, then x^* is optimal in the EMP when the required utility is $u(x^*)$. Moreover, the minimized expenditure in the EMP is w.
- (ii) If x^* is optimal in the EMP when the required utility level is u > u(0), then x^* is optimal in the UMP when wealth is $p \cdot x^*$. Moreover, the maximized utility in the UMP is u. (*No excess utility)

Proposition 3.E.2. Suppose that $u(\cdot)$ is a continuous utility representing a locally non-satisfied preference relation \succeq defined on the consumption set $X = \mathbb{R}^L_+$. The expenditure function e(p, u) is

- (i) Homogeneous of degree one in p.
- (ii) Strictly increasing in u and nondecreasing in p_l for all l.
- (iii) Concave in p, i.e., $\alpha e(p, u) + (1 \alpha)e(p', u) \leq e(ap + (1 \alpha)p', u)$.
- (iv) Continuous in $p \gg 0$ and u.

Using Proposition 3.E.1, we can connect the expenditure function e(p, u) and the indirect utility function v(p, w):

$$e(p, v(p, w)) = w$$
 and $v(p, e(p, u)) = u$. (3.E.1)

Proposition 3.E.3. Suppose that $u(\cdot)$ is a continuous utility function representing a locally nonsatiated preference relation \succeq defined on $X = \mathbb{R}^L_+$. Then for any $p \gg 0$, the Hicksian demand correspondence h(p,u) (i.e., expenditure minimizing demand) possesses the following properties:

- 1. Homogeneity of degree zero in p: $h(\alpha p, u) = h(p, u)$ for all p, u and $\alpha > 0$.
- 2. No excess utility: For any $x \in h(p, u)$, u(x) = u.
- 3. Convexity/uniqueness: If \succeq is convex, then h(p,u) is a convex set; and if \succeq is strictly convex, then there is a unique element in h(p,u).

Using Proposition 3.E.1, we can relate the Hicksian and Walrasian demand correspondences as follows: (assuming single-value demand)

$$h(p, u) = x(p, e(p, u))$$
 and $x(p, w) = h(p, v(p, w)).$ (3.E.4)

Proposition 3.E.4. Suppose that $u(\cdot)$ is a continuous utility function representing a locally nonsatiated preference relation \succeq and that h(p,u) consists of a single element for all $p \gg 0$. Then the Hicksian demand function h(p,u) satisfies the compensated law of demand: for all p' and p'',

$$(p'' - p') \cdot [h(p'', u) - h(p'.u)] \le 0.$$
 (3.E.5)

Proposition 3.G.1. Suppose that $u(\cdot)$ is continuous, representing locally nonsatiated and strictly convex preference relation \succeq defined on $X = \mathbb{R}^L_+$. For all p and u,

$$h(p, u) = \nabla_p e(p, u).$$

Proposition 3.G.2. Suppose $u(\cdot)$ is continuous utility function representing a locally nonsatiated and strictly convex \succeq on $X = \mathbb{R}^L_+$. Suppose h(p,u) is continuously differentiable at (p,u), and denote the $L \times L$ derivative matrix by $D_ph(p,u)$. Then

- (i) $D_p h(p, u) = D_p^2 e(p, u)$.
- (ii) $D_ph(p,u)$ is negative semidefinite.
- (iii) $D_ph(p,u)$ is symmetric.
- (iv) $D_p h(p, u)p = 0$.

Proposition 3.G.3. Suppose that $u(\cdot)$ is a continuous utility function representing a locally nonsatiated and strictly convex \succeq on $X = \mathbb{R}^L_+$. Then for all (p, w), and u = v(p, w), we have

For all l, k,

$$\frac{\partial h_l(p, u)}{\partial p_k} = \frac{\partial x_l(p, w)}{\partial p_k} + \frac{\partial x_l(p, w)}{\partial w} x_k(p, w)$$

or

$$D_p h(p, u) = D_p x(p, w) + D_w x(p, w) x(p, w)^T$$

Proposition 3.G.4. Suppose that $u(\cdot)$ is A continuous utility function representing a locally nonsatiated and strictly convex \succeq on $X = \mathbb{R}^L_+$. Suppose also that the indirect utility function is differentiable at $(\bar{p}, \bar{w}) \gg 0$.

Then

$$x(\bar{p}, \bar{w}) = -\frac{1}{\nabla_w v(\bar{p}, \bar{w})} \nabla_p v(\bar{p}, \bar{w})$$

i.e., for every l = 1, ..., L:

$$x_l(\bar{p}, \bar{w}) = \frac{-\partial v(\bar{p}, \bar{w})/\partial p_l}{\partial v(\bar{p}, \bar{w})/\partial w}.$$