Biostats and Big Data 2 Lecture 15

Lecture 15 ANOVA

What we learned...

- Sampling distribution
- Standard error of the mean
- Confidence interval
- One-sample t-test
- Paired t-test
- Independent samples t-test
- Resampling (bootstrap, permutation tests)
- Binomial test
- Chi-square test

ANOVA

https://www.youtube.com/playlist?list=PLXCuLG6zw7mLmslikvkrA4H0i5vNv4tBp

Before going deep into ANOVA

I recommend you watching the previous lecture on ANOVA that I re-edited for you

Why?

ANOVA table

Lecture 24 Multifactor Analysis of Variance

Previous lecture video

https://youtu.be/jSjRH63zNAM

Example: Dart throwing

- How accurately can you throw a dart?
- It may depend on which hand you use and how far from the target you are.
- How can we measure the effect of each variable?

Two-factor ANOVA model

- Previously, $y_{ij} = \mu + \tau_j + \varepsilon_{ij}$
- Now we have two factors, Hand and Distance
 - $y_{ijk} = \mu + \tau_j + \gamma_k + \varepsilon_{ijk}$
 - *i*: *i*-th observation
 - *j*: level j of factor A
 - k: level k of factor B

Analysis of Variance for Accuracy						
Source	df	Sum of Squares	Mean Square	F-Ratio	Prob	
Distance	2	51.0439	25.5219	28.561	≤0.0001	
Hand	1	39.6900	39.6900	44.416	≤0.0001	
Error	32	28.5950	0.893594			
Total	35	119.329				

- τ_i and γ_k : difference between the mean response of that treatment and the grand mean $(\mu, \text{ or } \overline{\bar{y}})$
- In the example case (τ : Hand effect, γ : Distance effect)
- H_0 : $\tau_1 = \tau_2$ and $\gamma_1 = \gamma_2 = \gamma_3$

How two-factor ANOVA works

Another example: tennis balls' bounce with different brands and temperature

Brand	Temperature	Bounce Height
Standard	Freezer	37
Standard	Fridge	59
Standard	Room	59
Premium	Freezer	45
Premium	Fridge	60
Premium	Room	63
Standard	Freezer	37
Standard	Fridge	58
Standard	Room	60
Premium	Freezer	39
Premium	Fridge	64
Premium	Room	62
Standard	Freezer	41
Standard	Fridge	60
Standard	Room	61
Premium	Freezer	37
Premium	Fridge	63
Premium	Room	61

• Side-by-side boxplots for each factor

$\bar{y}_{\text{Premium}} = 54.89$ $\bar{y}_{\text{Standard}} = 52.44$
$\bar{y}_{\text{Room}} = 61$ $\bar{y}_{\text{Fridge}} = 60.67$ $\bar{y}_{\text{Freezer}} = 39.33$
$\bar{\bar{y}} = 53.67$

		Temperature			
		Room	Fridge	Freezer	
		63	60	45	
	Premium	62	64	39	
Brand		61	63	37	
Bro		59	59	37	
	Standard	60	58	37	
		61	60	41	

How two-factor ANOVA works

• $y_{ijk} = \mu + Brand\ effect_j + Temp\ effect_k + Error_{ijk}$

• $y_{ijk} = \overline{\overline{y}} + (\overline{y}_j - \overline{\overline{y}}) + (\overline{y}_k - \overline{\overline{y}}) + (y_{ijk} - \overline{y}_j - \overline{y}_k + \overline{\overline{y}})$

=

$y_{\text{Premium}} = 54.89$ $y_{\text{Standard}} = 52.44$
$y_{\text{Room}} = 61$ $y_{\text{Fridge}} = 60.67$ $y_{\text{Freezer}} = 39.33$
$\bar{\bar{y}} = 53.67$

Sum of Squares of all these values

$$SS_{T1} = \sum \sum (\bar{y}_j - \bar{\bar{y}})^2$$

y_{ijk}: Observations

		Temperature			
		Room	Fridge	Freezer	
		63	60	45	
	Premium	62	64	39	
Srand		61	63	37	
ğ		59	59	37	
	Standard	60	58	37	
		61	60	41	

$ar{ar{y}}$: Grand mear

		Temperature			
		Room	Fridge	Freezer	
Brand	Premium	53.67 53.67 53.67	53.67 53.67 53.67	53.67 53.67 53.67	
	Standard	53.67 53.67 53.67	53.67 53.67 53.67	53.67 53.67 53.67	

Brand effect_i: $(\bar{y}_i - \bar{\bar{y}})$

Treatment Sum of Squares

		Te	emperatur	e
		Room	Fridge	Freezer
		1.22	1.22	1.22
	Premium	1.22	1.22	1.22
p		1.22	1.22	1.22
Brand		-1.22	-1.22	-1.22
	Standard	-1.22	-1.22	-1.22
		-1.22	-1.22	-1.22

(19) Treatment sum of square.

Temperature effect_k: $(\bar{y}_k - \bar{\bar{y}})$

Sum of Squares of all these values
$SS_{T2} = \sum \sum (\bar{y}_k - \bar{\bar{y}})^2$
Treatment Sum of Squares

			emperati	ire
		Room	Fridge	Freezer
	Premium	7.33 7.33	7.00 7.00	-14.33 -14.33
Brand		7.33	7.00	-14.33
Bra		7.33	7.00	-14.33
	Standard	7.33	7.00	-14.33
		7.33	7.00	-14.33

Error_{iik}

Sum of Squares of all these values
$SS_E = \sum \sum (y_{ijk} - \bar{y}_j - \bar{y}_k + \bar{\bar{y}})^2$
Error Sum of Squares

Temperature Error Sum of Square

		remperature				
		Room	Fridge	Freezer		
		0.78	-1.89	4.44		
	Premium	-0.22	2.11	-1.56		
Brand		-1.22	1.11	-3.56		
Bri		-0.78	-0.44	-1.11		
	Standard	0.22	-1.44	-1.11		
		1.22	0.56	2.89		

Partial boxplot

- Plot the data: but we cannot easily see the effects of *one* factor only.
 - **Partial boxplot**: plot the residuals for each level of the other factor (e.g., $y_{ijk} \bar{y}_j + \bar{y}$).

Additivity vs. interaction

- $y_{ijk} = \mu + Hand_j + Distance_k + Error_{ijk}$
- Additivity: the model above assumes that the effects of two factor levels are additive (we can just add the effects of the two factor levels together).
- Interaction: when the effects of one factor change for different levels of another factor
- Additivity vs. interaction: draw an interaction plot!
 - Interaction plot: plot the averages of the observations at each level of the factors
 - Parallel: additive ("additive enough condition")
 No parallel: interaction

Interactions

- Interaction plot for the first example
- From *middle* to *far*, there was a larger effect of hand.

•
$$y_{ijk} = \mu + \tau_j + \gamma_k + \omega_{jk} + \varepsilon_{ijk}$$

• ω_{jk} : interaction term (DF_{interaction} = DF_j x DF_k)

	ANOVA Table for Accuracy Sum of Mean						
Source	DF	Squares	Square	F-ratio	P-value		
Distance	2	51.044	25.522	41.977	< 0.0001		
Hand	1	39.690	39.690	65.28	< 0.0001		
Distance \times Hand	2	10.355	5.178	8.516	0.0012		
Error	30	18.240	0.608				
Total	35	119.329					

Analysis of Variance for Accuracy							
Source	df	Sum of Squares	Mean Square	F-Ratio	Prob		
Distance	2	51.0439	25.5219	28.561	≤0.0001		
Hand	1	39.6900	39.6900	44.416	≤0.0001		
Error	32	28.5950	0.893594				
Total	35	119.329					

ANOVA table without the interaction term

How two-factor ANOVA works (with interaction)

• $y_{ijk} = \mu + Brand\ effect_j + Temp\ effect_k + Interaction_{jk} + Error_{ijk}$

• $y_{ijk} = \overline{y} + (\overline{y}_i - \overline{y}) + (\overline{y}_k - \overline{y}) + (\overline{y}_{ik} - \overline{y}_i - \overline{y}_k + \overline{y}) + residual$

l _{ijk} :	Observations	

		Temperature					
		Room Fridge Freezer					
		63	60	45			
	Premium	62	64	39			
Brand		61	63	37			
Ä		59	59	37			
	Standard	60	58	37			
		61	60	41			

$\bar{\bar{y}}$: Grand	mean
-------------------------	------

			Temperature				
			Room	Fridge	Freezer		
=		Premium	53.67 53.67 53.67	53.67 53.67 53.67	53.67 53.67		
	Brand	Standard	53.67 53.67 53.67	53.67 53.67 53.67	53.67 53.67 53.67 53.67		

$\mathbf{O}(1)$	y Standard
k	$y_{\text{Room}} = 61$ $y_{\text{Fridge}} = 60.67$ $y_{\text{Freezer}} = 39.33$
	$\bar{\bar{y}} = 53.67$

Sum of Squares of all these values

$$SS_{T1} = \sum \sum (\bar{y}_j - \bar{\bar{y}})^2$$

Brand effect_i: $(\bar{y}_i - \bar{\bar{y}})$ Treatment Sum of Squares

		Temperature				
		Room Fridge Freezer				
pu	Premium	1.22 1.22 1.22	1.22 1.22 1.22	1.22 1.22 1.22		
Brand	Standard	-1.22 -1.22 -1.22	-1.22 -1.22 -1.22	-1.22 -1.22 -1.22		

Temperature effect_k: $(\bar{y}_k - \bar{\bar{y}})$

Sum of Squares of all these values					
$SS_{T2} = \sum_{k} \sum_{k} (\bar{y}_k - \bar{\bar{y}})^2$					

Treatment Sum of Squares

		Tonipolitaino			
		Room	Fridge	Freezer	
		7.33	7.00	-14.33	
	Premium	7.33	7.00	-14.33	
р		7.33	7.00	-14.33	
Brand		7.33	7.00	-14.33	
	Standard	7.33	7.00	-14.33	
		7.33	7.00	-14.33	

Interaction_{ik}: $(\overline{y}_{ik} - \overline{y}_i - \overline{y}_k + \overline{\overline{y}})$

+

		Temperature				
		Room	Fridge	Freezer		
hu	Premium	-0.22 -0.22 -0.22	0.44 0.44 0.44	-0.22 -0.22 -0.22		
Brand	Standard	0.23 0.23 0.23	-0.44 -0.44 -0.44	0.23 0.23 0.23		

Sum of Squares of all these values

 $SS_{Int} = \sum \sum (\bar{y}_{jk} - \bar{y}_j - \bar{y}_k + \bar{\bar{y}})^2$

Treatment Sum of Squares

Eta-squared (η^2)

- Effect size measure
- Similar to R-squared, but in the ANOVA case

$$\eta^2 = \frac{SS(Between groups)}{SS(Total)}$$

• Example data: Table 1
Results of hypothetical study comparing reading ability in 50 boys and 50 girls.

Source of variation	SS	df	MS	F	p
Between groups (gender) Within groups Total	300.00 980.00 1280.00	1 98 99	300.00 10.00	30.00	.000

Note: SS, sum of squares; MS, mean squares.

$$\eta^2 = SS(Between groups)/SS(Total) = 300.00/1280.00 = .234$$

Partial eta-squared (if there are A and B factors):

$$\eta^2 = \frac{SS(A)}{[SS(A) + SS(Within groups)]}$$

Partial eta-squared $(\eta^2 p)$ in the example case

- Type 3: SS calculated from $y_{ijk} = \overline{y} + (y_j \overline{y}) + (y_k \overline{y}) + (y_{jk} y_j y_k + \overline{y}) + residual$
- Type 2: SS calculated from $y_{ijk} = \bar{y} + (y_j \bar{y}) + (y_k \bar{y}) + residual$
- Type 3 is good when there is an interaction
- Type 2 is good when there is no interaction
- Type 1 uses a sequential model (not appropriate most of the time)

Partial eta-squared $(\eta^2 p)$

- for supp = 205/(205+712) = 0.224
- for dose = 2426/(2426+712) = 0.773
- for supp*dose = 108/(108+712) = 0.132

