명품 드	
-111	1
<i>바</i> 火 ㄷ	1

- 一. 填空题 (每空3分,共10题) (请将答案直接填写在横线上!)
- 2. 马鞍面 z = xy 被圆柱面 $x^2 + y^2 = 1$ 所截,截得的有界部分曲面的面积为_____。
- 3. 设曲面 $S^+: z = 1(x^2 + y^2 \le 1)$,方向向下,则 $\iint_{S^+} x dy \wedge dz + y dz \wedge dx + z dx \wedge dy = _______。$
- 4. 设 $L: x^2 + y^2 = 1$,则 $\int_I (x+y)^2 dl =$ _______。
- 5. 设 L^+ 为从 (0,0) 点到 (1,2) 点的有向线段,则 $\int_{L^+} xy^2 dx + x^2 y dy =$ _______。
- 6. 设 $f(x,y) = x^2 y^2$, 则在点 (1,1) 处, div(grad f) = ______。
- 8. 级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!}$ 的收敛性为______。(填"绝对收敛","条件收敛"或"发散")
- 9. 设 2π 周期函数 $f(x) = \begin{cases} 1, & x \in [-\pi, 0) \\ 0, & x \in [0, \pi) \end{cases}$ 的形式 Fourier 级数的和函数为 S(x),则 S(0) =_____。
- 10. 设 f(x) 是以 2 为周期的周期函数, f(x) = x , $x \in [0,1]$ 。若 f(x) 的形式 Fourier 级数为 $\sum_{n=1}^{\infty} b_n \sin n\pi x \, , \, \, \, \bigcup b_n = \underline{\hspace{1cm}} \, .$
- 二. 解答题(共6题)(请写出详细的计算过程和必要的根据!)
- 11. 已知曲线积分 $\int_{L(A)}^{(B)} (e^x \sin y x y) dx + (e^x \cos y ax) dy$ 与路径无关。
 - (I) 求 a 的值;

(II)
$$\vec{x} \int_{(0,0)}^{(2,\pi)} (e^x \sin y - x - y) dx + (e^x \cos y - ax) dy$$
.

- 12. 设 Ω 为由 $z = 1 (x^2 + y^2)$ 和 $x^2 + y^2 + z^2 = 1$ 围成的空间有界区域,求 $\iint_{\Omega} z dx dy dz$ 。
- 13. 求幂级数 $S(x) = \sum_{n=1}^{\infty} \frac{(-1)^n n}{(2n+1)!} x^{2n-1}$ 的收敛半径及和函数。

14. 设 S⁺ 为包含两点 (-1,0,0), (1,0,0) 在其内的逐片光滑的正则闭曲面,方向向外,记

$$\vec{\mathbf{r}}_1 = (-1,0,0) \;, \quad \vec{\mathbf{r}}_2 = (1,0,0) \;, \quad \vec{\mathbf{r}} = (x,y,z) \;, \quad \text{in } \underbrace{\vec{\mathbf{r}} \cdot \vec{\mathbf{r}}_1}_{\left\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_1\right\|^3} + b \frac{\vec{\mathbf{r}} - \vec{\mathbf{r}}_2}{\left\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_2\right\|^3} \;, \quad \cancel{\ddagger} + a,b$$

为常数。求 $\iint_{\mathbf{S}^+} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$ 。

15. 计算
$$\iint_{D} \cos \frac{x}{x+y} dxdy$$
, 其中 $D = \left\{ (x,y) | 1 \le x+y \le 3, \ 0 \le \frac{x}{x+y} \le 1 \right\}$ 。

16. 炭
$$\Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$$
, $0 < T \le +\infty$

(I) 若
$$u, v \in C^{(2)}(\Omega)$$
, 记 $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$, $\nabla u = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)$, $\vec{\mathbf{n}}$ 为 Ω 边界 $\partial \Omega$ 的外

法向量,证明:
$$\iiint_{\Omega} v \Delta u dx dy dz = \iint_{\partial \Omega} v \frac{\partial u}{\partial \vec{\mathbf{n}}} dS - \iiint_{\Omega} \nabla u \cdot \nabla v dx dy dz;$$

(II) 设 $f(x, y, z, t) \in \mathbb{C}^{(1)}(\Omega \times [0, T))$, 证明: $\forall t \in [0, T)$,

$$\frac{\mathrm{d}}{\mathrm{d}t} \iiint\limits_{\Omega} f(x, y, z, t) \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iiint\limits_{\Omega} \frac{\partial f}{\partial t} \mathrm{d}x \mathrm{d}y \mathrm{d}z \; ;$$

(III) 设 $w(x, y, z, t) \in \mathbb{C}^{(2)}(\Omega \times [0, T))$, 满足:

(1)
$$\frac{\partial w}{\partial t} = \Delta w + w^3$$
; (2) $\stackrel{\text{def}}{=} (x, y, z) \in \partial \Omega \text{ iff}, \quad \frac{\partial w}{\partial t} (x, y, z, t) \equiv 0$, $\forall t \in [0, T)$;

记
$$\|\nabla w\| = \sqrt{\left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2 + \left(\frac{\partial w}{\partial z}\right)^2}$$
, 证明:

$$F(t) = \iiint_{\Omega} \left(\frac{1}{2} \|\nabla w\|^2 - \frac{1}{4} w^4\right) dxdydz$$
 在 $[0,T)$ 上为单调递减函数。

三. 附加题

称向量场 $\vec{\mathbf{F}}: D = \mathbb{R}^2 \setminus \{O\} \to \mathbb{R}^2$ 是以O为中心的有心力场,若 $\vec{\mathbf{F}}(\vec{\mathbf{r}}) / / \vec{\mathbf{r}} \ (\forall \vec{\mathbf{r}} \in D)$ 。

- (I) 证明 $\mathbf{C}^{(1)}$ 类有心力场 \mathbf{F} 是保守场当且仅当 $\|\mathbf{F}(\mathbf{r})\|$ 只与 $r = \|\mathbf{r}\|$ 有关;
- (II)(I) 中结论对3维空间中的 $\mathbb{C}^{(1)}$ 类有心力场是否依然成立?