Almost everything you need to know about PLS

Part 2: How to do PLS in Matlab and R

Jenny Rieck & Derek Beaton

November 21, 2017

• Part 1: Background & Examples

- Part 1: Background & Examples
 - It was on Oct. 24 (YOU MISSED IT).

- Part 1: Background & Examples
 - It was on Oct. 24 (YOU MISSED IT).
 - It's ok, we'll do a refresher.

- Part 1: Background & Examples
 - It was on Oct. 24 (YOU MISSED IT).
 - It's ok, we'll do a refresher.
- Part 2: PLS in Matlab & R

- Part 1: Background & Examples
 - It was on Oct. 24 (YOU MISSED IT).
 - It's ok, we'll do a refresher.
- Part 2: PLS in Matlab & R
 - RIGHT NOW.

- Part 1: Background & Examples
 - It was on Oct. 24 (YOU MISSED IT).
 - It's ok, we'll do a refresher.
- Part 2: PLS in Matlab & R
 - RIGHT NOW.
 - Put knowledge into practice

Refresher

- Refresher
 - Principal component analysis (PCA)

- Refresher
 - Principal component analysis (PCA)
 - Partial least squares (PLS)

- Refresher
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
 - Refresher

- Refresher
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
 - Refresher
 - Example

- Refresher
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
 - Refresher
 - Example
- Baby example

- Refresher
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
 - Refresher
 - Example
- Baby example
 - Single subject block design (fMRI)

- Refresher
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
 - Refresher
 - Example
- Baby example
 - Single subject block design (fMRI)
 - First with PLSGui (Matlab)

- Refresher
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
 - Refresher
 - Example
- Baby example
 - Single subject block design (fMRI)
 - First with PLSGui (Matlab)
 - Then in R

- Refresher
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
 - Refresher
 - Example
- Baby example
 - Single subject block design (fMRI)
 - First with PLSGui (Matlab)
 - Then in R
- Real examples

- Refresher
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
 - Refresher
 - Example
- Baby example
 - Single subject block design (fMRI)
 - First with PLSGui (Matlab)
 - Then in R
- Real examples
 - Face matching in aging

- Refresher
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
 - Refresher
 - Example
- Baby example
 - Single subject block design (fMRI)
 - First with PLSGui (Matlab)
 - Then in R
- Real examples
 - Face matching in aging
 - Incidental encoding, memory peformance in aging

- Refresher
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
 - Refresher
 - Example
- Baby example
 - Single subject block design (fMRI)
 - First with PLSGui (Matlab)
 - Then in R
- Real examples
 - Face matching in aging
 - Incidental encoding, memory peformance in aging
 - Reward processing, genetics, & stress in CUD

- Refresher
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
 - Refresher
 - Example
- Baby example
 - Single subject block design (fMRI)
 - First with PLSGui (Matlab)
 - Then in R
- Real examples
 - Face matching in aging
 - Incidental encoding, memory peformance in aging
 - Reward processing, genetics, & stress in CUD
- And beyond!

/isual example Background Formalization

Principal Components Analysis

• Visualize high dimensional data

- Visualize high dimensional data
- Orthogonal transformation

- Visualize high dimensional data
- Orthogonal transformation
- Dimensionality reduction

- Visualize high dimensional data
- Orthogonal transformation
- Dimensionality reduction
- Modern overviews

- Visualize high dimensional data
- Orthogonal transformation
- Dimensionality reduction
- Modern overviews
 - S. Wold et al., (1987)

- Visualize high dimensional data
- Orthogonal transformation
- Dimensionality reduction
- Modern overviews
 - S. Wold et al., (1987)
 - Jollife (2002)

- Visualize high dimensional data
- Orthogonal transformation
- Dimensionality reduction
- Modern overviews
 - S. Wold et al., (1987)
 - Jollife (2002)
 - Abdi & Williams (2010)

• Find "components"

- Find "components"
 - Components are new variables that are combinations of old variables

- Find "components"
 - Components are new variables that are combinations of old variables
- Components explain maximum possible variance

- Find "components"
 - Components are new variables that are combinations of old variables
- Components explain maximum possible variance
 - Conditional to orthogonality

Principal Components Analysis Partial Least Squares Visual example Background Formalization

Visual example

Visual example

Figure 1: The kind of data we usually expect for PCA

Centered & Scaled

VAR.1 (centered/scaled)

First Component

VAR.1 (centered/scaled)

First Component

VAR.1 (centered/scaled)

First Component

VAR.1 (centered/scaled)

First Component

VAR.1 (centered/scaled)

First & Second Component

VAR.1 (centered/scaled)

Visual example Background Formalization

Background

• The basis of modern techniques

- The basis of modern techniques
 - Factor analyses

- The basis of modern techniques
 - Factor analyses
 - Independent components analysis

- The basis of modern techniques
 - Factor analyses
 - Independent components analysis
 - Partial least squares

- The basis of modern techniques
 - Factor analyses
 - Independent components analysis
 - Partial least squares
 - Discriminant analyses

- The basis of modern techniques
 - Factor analyses
 - Independent components analysis
 - Partial least squares
 - Discriminant analyses
 - Multi-table (e.g., MFA, GCCA)

• A special case of the singular value decomposition (SVD)

- A special case of the singular value decomposition (SVD)
- Which means (almost) everything else is, too

• The SVD is one of the most ubiquituous and important tools

- The SVD is one of the most ubiquituous and important tools
- If you want more:

- The SVD is one of the most ubiquituous and important tools
- If you want more:
 - S. Wold et al., (1987)

- The SVD is one of the most ubiquituous and important tools
- If you want more:
 - S. Wold et al., (1987)
 - Jollife (2002)

- The SVD is one of the most ubiquituous and important tools
- If you want more:
 - S. Wold et al., (1987)
 - Jollife (2002)
 - Abdi & Williams (2010)

- The SVD is one of the most ubiquituous and important tools
- If you want more:
 - S. Wold et al., (1987)
 - Jollife (2002)
 - Abdi & Williams (2010)
 - And many others...

Visual example Background Formalization

Formalization

Figure 2: The shape of the data

Figure 3: SVD breaks down the data

Notation

• x - a scalar

- x a scalar
- a a vector

- x a scalar
- a a vector
- A a matrix

- x a scalar
- a a vector
- A a matrix
- \bullet \mathbf{A}^T transpose

- x a scalar
- a a vector
- A a matrix
- \bullet \mathbf{A}^T transpose
- AB multiplication

Given a matrix \boldsymbol{X} we generally assume that

Given a matrix \boldsymbol{X} we generally assume that

column-wise centered

Given a matrix **X** we generally assume that

- column-wise centered
- column-wise scaled (e.g., z-scores or sums of squares = 1)

The SVD of **X** of size $I \times J$:

The SVD of **X** of size $I \times J$:

$$\mathbf{X} = \mathbf{U} \mathbf{\Delta} \mathbf{V}^{\mathsf{T}} \tag{1}$$

The SVD of **X** of size $I \times J$:

$$\mathbf{X} = \mathbf{U} \mathbf{\Delta} \mathbf{V}^{\mathsf{T}} \tag{1}$$

 ${f U}$ and ${f V}$ are orthonormal such that

The SVD of **X** of size $I \times J$:

$$\mathbf{X} = \mathbf{U} \mathbf{\Delta} \mathbf{V}^{\mathsf{T}} \tag{1}$$

U and **V** are orthonormal such that

$$\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I} = \mathbf{V}^{\mathsf{T}}\mathbf{V} \tag{2}$$

$$\mathbf{X} = \mathbf{U} \boldsymbol{\Delta} \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

• where rank is L (i.e., number of extractable components)

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

- where rank is L (i.e., number of extractable components)
- **U** is $I \times L$ (left singular vectors; rows of **X**)

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

- where rank is L (i.e., number of extractable components)
- **U** is $I \times L$ (left singular vectors; rows of **X**)
- **V** is $J \times L$ (right singular vectors; columns of **X**)

$$\mathbf{X} = \mathbf{U} \boldsymbol{\Delta} \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

$$\mathbf{X} = \mathbf{U} \boldsymbol{\Delta} \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

• Δ is $L \times L$ diagonal matrix

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

- Δ is $L \times L$ diagonal matrix
- $\operatorname{diag}\{\Delta\} = \delta$ are singular values (decreasing)

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

- Δ is $L \times L$ diagonal matrix
- ullet diag $\{oldsymbol{\Delta}\}=oldsymbol{\delta}$ are singular values (decreasing)
- $oldsymbol{\delta} \lambda = \delta^2$ are the eigenvalues (variance)

$$\mathbf{X} = \mathbf{U} \boldsymbol{\Delta} \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

$$\mathbf{X} = \mathbf{U} \boldsymbol{\Delta} \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

• $\mathbf{F}_I = \mathbf{U} \Delta$ (row component scores)

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

- $\mathbf{F}_I = \mathbf{U} \Delta$ (row component scores)
- $\mathbf{F}_J = \mathbf{V} \Delta$ (column component scores)

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

$$\bullet$$
 $F_I = U\Delta = XV$

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

- \bullet $F_I = U\Delta = XV$
- \bullet $\mathbf{F}_J = \mathbf{V} \mathbf{\Delta} = \mathbf{X}^T \mathbf{U}$

Refresher Example

Partial Least Squares

Refresher Example

Refresher

Projection onto latent structures

- Projection onto latent structures
 - Probably the most accurate name

- Projection onto latent structures
 - Probably the most accurate name
 - But also probably too broad a definition

Partial least squares sounds like ordinary least squares

• When we have two matrices: X and Y

Partial least squares sounds like ordinary least squares

- When we have two matrices: X and Y
- OLS: $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$

Partial least squares sounds like ordinary least squares

- When we have two matrices: X and Y
- OLS: $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$
- PLS: X^TY

• Partial least squares path modelling (PLS-PM)

- Partial least squares path modelling (PLS-PM)
- Partial least squares regression (PLSR)

- Partial least squares path modelling (PLS-PM)
- Partial least squares regression (PLSR)
- Partial least squares correlation (PLSC)

- Partial least squares path modelling (PLS-PM)
- Partial least squares regression (PLSR)
- Partial least squares correlation (PLSC)
 - This is the one we'll talk about today

Names

• Inter-battery (factor) analysis (Tucker, 1958)

Names

- Inter-battery (factor) analysis (Tucker, 1958)
- Covariance between two fields (Bretherton, Smith, & Wallace, 1992)

Names

- Inter-battery (factor) analysis (Tucker, 1958)
- Covariance between two fields (Bretherton, Smith, & Wallace, 1992)
- PLS-SVD (Tenenhaus, 2005)

Names

- Inter-battery (factor) analysis (Tucker, 1958)
- Covariance between two fields (Bretherton, Smith, & Wallace, 1992)
- PLS-SVD (Tenenhaus, 2005)
- Co-inertia analysis (Dray, 2014)

Friends

• Reduced Rank Regression (a.k.a. redundancy analysis)

Friends

- Reduced Rank Regression (a.k.a. redundancy analysis)
- Canonical Correlation Analysis

Friends

- Reduced Rank Regression (a.k.a. redundancy analysis)
- Canonical Correlation Analysis
- (Fisher's) Linear Discriminant Analysis

PLSC has many...

Friends

- Reduced Rank Regression (a.k.a. redundancy analysis)
- Canonical Correlation Analysis
- (Fisher's) Linear Discriminant Analysis
- PLS-correspondence analysis

History

• McIntosh, Bookstein, Haxby, & Grady (1996)

History

- McIntosh, Bookstein, Haxby, & Grady (1996)
- Bookstein (1992)

History

- McIntosh, Bookstein, Haxby, & Grady (1996)
- Bookstein (1992)
- Tucker (1958)

Modern overviews

• McIntosh & Lobaugh (2004)

Modern overviews

- McIntosh & Lobaugh (2004)
- Krishnan et al., (2011)

It's effectively just PCA applied to the cross product of two matrices measured on the same observations:

It's effectively just PCA applied to the cross product of two matrices measured on the same observations:

• **X** which is $I \times J$

It's effectively just PCA applied to the cross product of two matrices measured on the same observations:

- **X** which is $I \times J$
- **Y** which is $I \times K$

Compute the relationship between **X** and **Y**

$$\mathbf{R} = \mathbf{X}^{\mathsf{T}}\mathbf{Y} \tag{3}$$

Compute the relationship between X and Y

$$\mathbf{R} = \mathbf{X}^{\mathsf{T}}\mathbf{Y} \tag{3}$$

Compute the SVD of **R**

$$R = U\Delta V^{\mathsf{T}} \tag{4}$$

Compute the relationship between X and Y

$$\mathbf{R} = \mathbf{X}^{\mathsf{T}}\mathbf{Y} \tag{3}$$

Compute the SVD of R

$$R = U\Delta V^{T}$$
 (4)

Compute the latent variables

$$L_X = XU$$
 and $L_Y = YV$ (5)

Almost everything is the same:

▲ are singular values

Almost everything is the same:

- ▲ are singular values
- $\mathbf{F}_J = \mathbf{U} \Delta$ (component scores for variables of \mathbf{X})

Almost everything is the same:

- Δ are singular values
- $\mathbf{F}_J = \mathbf{U} \Delta$ (component scores for variables of \mathbf{X})
- $F_K = V\Delta$ (component scores for variables of Y)

Almost everything is the same:

- Δ are singular values
- $\mathbf{F}_J = \mathbf{U} \Delta$ (component scores for variables of \mathbf{X})
- $F_K = V\Delta$ (component scores for variables of Y)
- So our nomeclature will align with PCA

The new-ness

ullet $L_X = XU$ express the individuals w.r.t. X

The new-ness

- $L_X = XU$ express the individuals w.r.t. X
- \bullet L_Y = YV express the individuals w.r.t. Y

The new-ness

- $L_X = XU$ express the individuals w.r.t. X
- \bullet L_Y = YV express the individuals w.r.t. Y
- Not in PCA

The new-ness

- $L_X = XU$ express the individuals w.r.t. X
- \bullet L_Y = YV express the individuals w.r.t. Y
- Not in PCA
 - We'll call these "latent variable scores"

Maximizes the latent variables

Maximizes the latent variables

$$\mathbf{L}_{\mathbf{X}}^{T}\mathbf{L}_{\mathbf{Y}}=\mathbf{\Delta}$$

Maximizes the latent variables

$$\mathbf{L}_{\mathbf{X}}^{T}\mathbf{L}_{\mathbf{Y}} = \mathbf{\Delta} \tag{6}$$

$$(XU)^T(YV) = \Delta$$

Maximizes the latent variables

$$\mathbf{L}_{\mathbf{X}}^{T}\mathbf{L}_{\mathbf{Y}} = \mathbf{\Delta} \tag{6}$$

$$(XU)^T(YV) = \Delta$$

$$\boldsymbol{U}^{\mathsf{T}}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{Y}\boldsymbol{V}=\boldsymbol{\Delta}$$

Maximizes the latent variables

$$\mathbf{L}_{\mathbf{X}}^{T}\mathbf{L}_{\mathbf{Y}}=\mathbf{\Delta}$$

$$(XU)^T(YV) = \Delta$$

$$\boldsymbol{U}^{\mathsf{T}}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{Y}\boldsymbol{V}=\boldsymbol{\Delta}$$

$$\boldsymbol{U}^{\mathsf{T}}\boldsymbol{R}\boldsymbol{V}=\boldsymbol{\Delta}$$

Maximizes the latent variables

$$\mathbf{L}_{\mathbf{X}}^{T}\mathbf{L}_{\mathbf{Y}}=\mathbf{\Delta}$$

$$(XU)^T(YV) = \Delta$$

$$U^TX^TYV = \Delta$$

$$\boldsymbol{U^TRV} = \boldsymbol{\Delta}$$

$$\boldsymbol{U}^{\mathsf{T}}\boldsymbol{U}\boldsymbol{\Delta}\boldsymbol{V}^{\mathsf{T}}\boldsymbol{V}=\boldsymbol{\Delta}$$

Maximizes the latent variables

$$\mathbf{L}_{\mathbf{X}}^{T}\mathbf{L}_{\mathbf{Y}} = \mathbf{\Delta} \tag{6}$$

When expanded

$$(XU)^T(YV) = \Delta$$

$$U^TX^TYV = \Delta$$

$$U^TRV = \Delta$$

$$U^TU\Delta V^TV=\Delta$$

because

$$U^TU = I = V^TV$$

It's effectively just PCA with some new-ness:

▲ are singular values

- Δ are singular values
- **U** akin to loadings (for variables of **X**)

- Δ are singular values
- **U** akin to loadings (for variables of **X**)
- V akin to loadings (for variables of Y)

- Δ are singular values
- **U** akin to loadings (for variables of **X**)
- V akin to loadings (for variables of Y)
- $\mathbf{F}_J = \mathbf{U} \Delta$ (component scores for variables of \mathbf{X})

- Δ are singular values
- **U** akin to loadings (for variables of **X**)
- V akin to loadings (for variables of Y)
- $\mathbf{F}_J = \mathbf{U} \Delta$ (component scores for variables of \mathbf{X})
- ullet ${f F}_{\cal K} = {f V} {f \Delta}$ (component scores for variables of ${f Y}$)

- Δ are singular values
- U akin to loadings (for variables of X)
- V akin to loadings (for variables of Y)
- $\mathbf{F}_J = \mathbf{U} \Delta$ (component scores for variables of \mathbf{X})
- $\mathbf{F}_K = \mathbf{V} \mathbf{\Delta}$ (component scores for variables of \mathbf{Y})
- \bullet $L_X = XU$ express the individuals w.r.t. X

- Δ are singular values
- **U** akin to loadings (for variables of **X**)
- V akin to loadings (for variables of Y)
- $\mathbf{F}_J = \mathbf{U} \Delta$ (component scores for variables of \mathbf{X})
- $\mathbf{F}_K = \mathbf{V} \mathbf{\Delta}$ (component scores for variables of \mathbf{Y})
- L_X = XU express the individuals w.r.t. X
- ullet ${f L}_{f Y}={f Y}{f V}$ express the individuals w.r.t. ${f Y}$

A Glossary

For PCA nomenclature and PLSGui:

ullet $\Delta = S$ are singular values

A Glossary

For PCA nomenclature and PLSGui:

- \bullet $\Delta = S$ are singular values
- U saliences, brain latent variables (when you use brain data)

A Glossary

For PCA nomenclature and PLSGui:

- \bullet $\Delta = S$ are singular values
- U saliences, brain latent variables (when you use brain data)
- V saliences, design/behavior/etc... latent variables

A Glossary

For PCA nomenclature and PLSGui:

- \bullet $\Delta = S$ are singular values
- U saliences, brain latent variables (when you use brain data)
- V saliences, design/behavior/etc. . . latent variables
- $L_X = XU$ is brain scores (when you use brain data)

A Glossary

For PCA nomenclature and PLSGui:

- \bullet $\Delta = S$ are singular values
- U saliences, brain latent variables (when you use brain data)
- V saliences, design/behavior/etc. . . latent variables
- $L_X = XU$ is brain scores (when you use brain data)
- L_Y = YV is design/behavior/etc... scores

Example

Via ADNI (
$$N = 569$$
)

• 3 groups of participants

Via ADNI (
$$N = 569$$
)

- 3 groups of participants
 - \bullet N=178 healthy control

Via ADNI (
$$N = 569$$
)

- 3 groups of participants
 - N = 178 healthy control
 - *N* = 275 late MCI

Via ADNI (
$$N = 569$$
)

- 3 groups of participants
 - N = 178 healthy control
 - *N* = 275 late MCI
 - N = 116 AD

Via ADNI (
$$N = 569$$
)

- 3 groups of participants
 - *N* = 178 healthy control
 - N = 275 late MCI
 - N = 116 AD
- 8 neuropsych measures

Via ADNI (
$$N = 569$$
)

- 3 groups of participants
 - N = 178 healthy control
 - N = 275 late MCI
 - N = 116 AD
- 8 neuropsych measures
- 68 cortical thickness estimates (via Freesurfer)

Data matrices

Figure 4: X and Y matrices in standard PLS

Standard PLSC scree

A mix of art & science

- A mix of art & science
- Use tests, effects sizes, and heuristics

- A mix of art & science
- Use tests, effects sizes, and heuristics
- Inference tests (for later)

- A mix of art & science
- Use tests, effects sizes, and heuristics
- Inference tests (for later)
 - Jackson (1993)

- A mix of art & science
- Use tests, effects sizes, and heuristics
- Inference tests (for later)
 - Jackson (1993)
 - Peres-Neto et al., (2005)

- A mix of art & science
- Use tests, effects sizes, and heuristics
- Inference tests (for later)
 - Jackson (1993)
 - Peres-Neto et al., (2005)
 - Dray (2008)

- A mix of art & science
- Use tests, effects sizes, and heuristics
- Inference tests (for later)
 - Jackson (1993)
 - Peres-Neto et al., (2005)
 - Dray (2008)
 - Josse and Husson (2011)

- A mix of art & science
- Use tests, effects sizes, and heuristics
- Inference tests (for later)
 - Jackson (1993)
 - Peres-Neto et al., (2005)
 - Dray (2008)
 - Josse and Husson (2011)
- We'll talk about the first 2

Two components

Latent variables

Latent variables

Neuropsych component scores

Component 1 variance: 67.093%

Structural thickness component scores

Component 1 variance: 67.093%

LV1: Altogether now

Let's focus on LV1

LV1: Altogether now

- Let's focus on LV1
- How can we put a story to the pictures?

LV1: Altogether now

