LECTURE 5 (January 24, 2022)

1 Proofs

What is a proof:

In CSC165, we consider proofs as a "convincing argument"

A proof is

- Relative to an audience. Audiences can include:
 - Yourself (checking yourself convince yourself)
 - Peers
- A way to save someone time by the level of detail and organization of the exploration

When writing a proof, you must remember **why**. It is a structured presentation, often in a different order than the initial exploration of the material.

1.1 Some general forms

The Direct Proof of an existential.

Proof: Prove: $\exists x \in D, P(x)$ The **Structure** often follows:

Let $x_0 =$

Check / show / prove

. .

Show that $x_0 \in D$ (for the chosen x_0)

Check/ show / prove (again)

Show that P(0)

The Direct proof of universal:

Proof: Prove: $\forall x \in D, P(x)$

The **Structure** often follows:

Let $x \in D$ - Think in terms of individual values that doesn't' depend on which particular value is chosen.

Then prove P(x)

Notice that for the existential, we introduce an individual value and write a proof **for** that value.

Arthur Gao

To prove:

- $\exists x \in D, P(x)$: We choose the x
- $\forall x \in D, P(x)$: Someone else chooses $x \in D$. Our proof must work without knowing which x.

Further Exploration 1.2

"Particular" vs "Arbitrary" Explore "Prove $P \Rightarrow Q$

Proof: Structure follows:

Assume: P is True

Show that

1.3 Sample Proofs

Prove that if a natural number is larger than 20 then its square minus 165 is at least four

First, we make this statement precise $\forall n \in \mathbb{N}, n > 20 \Rightarrow n^2 - 165 \geq 4$ Second, We do some rough work...

Try a goal:

$$n^2 - 165 \ge 4$$
$$n^2 \ge 169$$
$$n \ge 13$$

We might have found an "equivalent condition" above.

Once we have completed the rough work, we can begin with the formal proof.

Proof: Let $n \in \mathbb{N}$.

Suppose n > 20

Then, $n \ge 13$, so $n^2 \ge 169$ Hence $n^2 - 165 \ge 169 - 165$

Thus $n^2 - 165 \ge 4$

Another way to prove the same thing

CSC165 Arthur Gao

Lecture 5 (January 24, 2022)

Proof: Let $n \in \mathbb{N}$ Assume n > 20

Then:

$$n^2 - 165 > 400 - 165$$

 $n^2 - 165 > 235$
 $n^2 - 165 \ge 4$