1 H 2,2							4 He 2
7	9	11	12	14	16	19	20
Li	Ве	В	C 2,5	N <i>3,1</i>	O 3,5	F 4,0	Ne
3	4	5	6	7	8	9	10
23	24	27	28	31	32	35	40
Na	Mg 1,2	Al	Si	Р	S	Cl <i>2,8</i>	Ar
11	12	13	14	15	16	17	18
39	40	70	73	75	79	80	84
K	Ca	Ga	Ge	As	Se	Br <i>2,7</i>	Kr
19	20	31	32	33	34	35	36
85	88	115	119	122	128	127	131
Rb	Sr	In	Sn	Sb	Te	l 2,7	Xe
37	38	49	50	51	52	53	54

Anmerkung: Die kursiven Dezimalzahlen geben die Elektronegativitätswerte an.

Wähle aus und kreuze an (wenn nicht anders angegeben).

Molekülbau	Methan	☐ Quadrat ☐ Tetraeder			
Die Atome der Moleküle bilden folgende charakteristische geometrische Form aus:	Ammoniak	☐ Dreieck ☐ Pyramide			
-					
Atombindung, polare Atombindung und Ionenbindung Ordne diese Fachbegriffe mit Hilfe der Ziffern den nebenstehenden Verbindungen zu.	Magnesiumchlorid Tetrachlormethan Sauerstoff Wasser	1 – unpolare Atombindung2 - polare Atombindung3 - Ionenbindung			
Dipolmoleküle	н	☐ Ammoniak			
Kreuze die Dipolmoleküle an.	H	☐ Kohlenstoffdioxid ☐ Methanol ☐ Tetrachlormethan ☐ Wasser			
 Wähle <u>die eine</u> zwingende Begründung für den Dipolcharakter aus. 	 ☐ Es sind positive und negative Teilladungen vorhanden. ☐ Die Elektronegativitätsdifferenz ist ausreichend. ☐ Die Schwerpunkte der positiven und negativen Teilladungen fallen nicht zusammen. 				
Aggregatszustände der Alkane					
Methan, Hexan und Octadecan (C ₁₈ H ₃₈) besitzen unter-	□ Wasserstoffbrücken				
schiedlichen Aggregatszustände. Wähle die dafür verant-	□ Dipol-Dipol-Wechselwirkungen				
wortlichen zwischenmolekularen Wechselwirkungen aus.	☐ London-Wechselwirkungen				
Vergleich von Siedetemperaturen (Sdt): Sdt (H ₂) < Sdt (HCl) Wähle die dafür verantwortlichen zwischenmolekularen Wechselwirkungen aus.	☐ Wasserstoffbrücken☐ Dipol-Dipol-Wechselwirkungen☐ London-Wechselwirkungen				
Vergleich von Siedetemperaturen (Sdt): Sdt (HF) > Sdt (HCl) Wähle die dafür verant-wortlichen zwischenmolekularen Wechselwirkungen aus.	□ Wasserstoffbrücken□ Dipol-Dipol-Wechselwirkungen□ London-Wechselwirkungen				
kommen folgendermaßen zustande: Bestimme die Reihenfolge mit Ziffern.	Es wirken Anziehungskräfte Elektronen bewegen sich u Bei Annäherung erfolgt Lad Ausweichen der Elektroner	m den Atomkern. ungsverschiebung durch			