CMPSC 100

Computational Expression

[Computer science] actually has a lot in common with magic...[i]t's not a science. It's also not really very much about computers...computer science, in some sense, isn't real.

HAL ABELSON, PROFESSOR, MIT

[C]omputation is an operation that begins with some initial conditions and gives an output which follows from a definite set of rules. The most common example are computations performed by computers...

WOLFRAM ALPHA, A VERY COOL COMPANY

Central Principle of Computational Studies

Computational studies examines and applies how various kinds of computation work and how these methods can be used to model objects or solve particularly complex "problems."

Corollary Rules for this Class

We will make comparisons/analogies that aren't *strictly* true, but work for our purposes.

We will also ignore the implications of some concepts until they "matter" (which may not be in this class, specifically).

Trivia: There are 10 types of people in the world. Those who can understand binary, and those who can't.

1 bit 2 items	2 bits 4 items	3 bits 8 items	4 bits 16 items	5 bits 32 items
0	00	000	0000	00000 10000
1	01	001	0001	00001 10001
	10	010	0010	00010 10010
	11	011	0011	00011 10011
		100	0100	00100 10100
		101	0101	00101 10101
		110	0110	00110 10110
		111	0111	00111 10111
			1000	01000 11000
			1001	01001 11001
			1010	01010 11010
			1011	01011 11011
			1100	01100 11100
			1101	01101 11101
			1110	01110 11110
			1111	01111 11111

Generally speaking, one can "get away with" dividing or multiplying by 1000 to get from unit to unit.

We multiply to go down the scale; divide to go up.

Unit	Symbol	Number of Bytes
byte		2° = 1
kilobyte	KB	2 ¹⁰ = 1024
megabyte	MB	2 ²⁰ = 1,048,576
gigabyte	GB	2 ³⁰ = 1,073,741,824
terabyte	ТВ	2 ⁴⁰ = 1,099,511,627,776

Higher resolution (more memory)

58 KB == 59,392 B == 118,784 bits

Low resolution (less memory)

3 KB == 3072 B == 24,576 bits

"Careless Whisper" live

"Careless Whisper" illegal low quality 1984 bootleg recording that only true fans could appreciate. You had to be there, fam.

Row 0, Column 0 (0)

	0	1	2	
0	A♥	Q.	2♠	
1	2♦	4♥	8♠ ←	Row 1, Column 2 (16)
2	6♦	3♠	K♣	
3	5♠	2♣	4♦	
4	4♠	8🕶	7♥	
5	2♥	6♠	5♥ ←	Row 5, Column 2 (20)
6	J♥	7♣	8•	

