Cubical Abstract Machine

June 29, 2017

We will write $M[\mathcal{E}]$ for substituting the free dimensions and variables of a term M using an environment \mathcal{E} .

Stack frames and machine states A stack frame (K, \mathcal{E}, Ψ) represents a continuation whose whole binds Ψ dimensions. For a stack π , let $\vec{\Psi}$ be the aggregation of all the dimension bindings Ψ mentioned in π ; then the extension of a stack $(K, \mathcal{E}, \Phi) :: \pi$ is wellformed when \mathcal{E} is an environment for $\mathbf{FD}(K) \setminus \vec{\Psi}$; moreover, K is allowed to mention the dimensions in $\vec{\Psi}$.

A machine state $\langle M \triangleleft \mathcal{E} \parallel \pi \rangle$, where $\vec{\Psi}$ is the aggregation of dimension bindings in π , is wellformed when \mathcal{E} is an environment for $\mathbf{FD}(M) \setminus \vec{\Psi}$; moreover, M is allowed to mention the dimensions in $\vec{\Psi}$.

Selected transition rules

$$\langle a \triangleleft (\gamma, \psi) \parallel \pi \rangle \succ \langle \gamma(a) \triangleleft (\gamma, \psi) \parallel \pi \rangle \tag{1}$$

$$\langle \mathsf{coe}_{x.A}^{r \to r'}(M) \triangleleft \mathcal{E} \parallel \pi \rangle \succ \langle A \triangleleft \mathcal{E} \parallel (\mathsf{coe}_{\square}^{r \to r'}(M), \mathcal{E}', [x]) :: \pi \rangle \tag{2}$$

$$\langle \mathsf{bool} \triangleleft \mathcal{E} \parallel (\mathsf{coe}_{\sqcap}^{r \leadsto r'}(M), \mathcal{E}', [x]) :: \pi \rangle \succ \langle M \triangleleft \mathcal{E}' \parallel \pi \rangle \tag{3}$$

$$\left\langle (a:A) \to B \triangleleft \mathcal{E} \, \big\| \, (\mathsf{coe}_{\square}^{r \leadsto r'}(M), \mathcal{E}', [x]) :: \pi \right\rangle \succ \left\langle \lambda b. \mathsf{coe}_{x.B[\mathcal{E}, a \hookrightarrow \mathsf{coe}_{x.A}^{r'}(b) \triangleleft \mathcal{E}]}^{r \leadsto r'}(M(\mathsf{coe}_{x.A[\mathcal{E}]}^{r' \leadsto r}(b))) \, \triangleleft \, \mathcal{E}' \, \big\| \, \pi \right\rangle \quad \text{(4)}$$

The dynamics of coercion on a functional type are unfortunate: it is necessary to force the substitution \mathcal{E} on the types A and B, since we are "suspending" the coercion and placing it underneath a λ -abstraction. The same problem occurs for pair types. This suggests that we may ultimately need some kind of explicit substitution in our calculus.

$$\left\langle (a:A) \times B \triangleleft \mathcal{E} \, \middle\| \, (\mathsf{coe}_{\square}^{r \leadsto r'}(M), \mathcal{E}', [x]) :: \pi \right\rangle \succ \left\langle \left\langle \mathsf{coe}_{x.A[\mathcal{E}]}^{r \leadsto r'}(\mathsf{fst}(M)), \mathsf{coe}_{x.B[\mathcal{E}, a \hookrightarrow \mathsf{coe}_{x.A[\mathcal{E}]}^{r \leadsto r'}(\mathsf{fst}(M)) \triangleleft \mathcal{E}']}^{r \leadsto r'}(\mathsf{snd}(M)) \right\rangle \triangleleft \mathcal{E}' \, \middle\| \, \pi \right\rangle \tag{5}$$

Unloading the machine We can unload the machine at any time; this is useful if we are computing an open term and hit a variable.

$$\frac{\langle K[\Psi.M[\mathcal{E}]] \triangleleft \mathcal{E}' \parallel \pi \rangle \Longrightarrow N}{\langle M \triangleleft \mathcal{E} \parallel \cdot \rangle \Longrightarrow M[\mathcal{E}]} \qquad \frac{\langle K[\Psi.M[\mathcal{E}]] \triangleleft \mathcal{E}' \parallel \pi \rangle \Longrightarrow N}{\langle M \triangleleft \mathcal{E} \parallel (K[\square], \mathcal{E}', \Psi) :: \pi \rangle \Longrightarrow N}$$