14. Partial Derivatives

Gunja Sachdeva

Department of Mathematics
BITS PILANI K K Birla Goa Campus, Goa

September 30, 2024

Recall

Gunja Sachdeva

Bounded and Unbounded Regions

A region in the xy-plane is **bounded** if it lies inside a disk of fixed radius.

Examples: Line segments, triangles, interior of triangles, rectangles, circles and disks are bounded regions (sets) in *xy*-plane.

A region in the space is **bounded** if it lies inside an open ball of fixed radius.

Examples: Line segments, triangles, rectangles, open balls are bounded regions (sets) in space.

A region is unbounded if it is not bounded.

The lines, coordinate axes, octants, half-spaces, and the full space itself are unbounded regions.

The lines, coordinate axes, quadrants, half-planes, and the full plane itself are unbounded region

1. Describe the domain of the function $f(x, y) = \sqrt{y - x^2}$.

clearly D is unbounded

Int D =
$$\{(x,y) \in \mathbb{R}^2 \mid y-x^2 > 0\}$$

1. Describe the domain of the function $f(x,y) = \sqrt{y-x^2}$.

The domain is given by $D = \{(x, y) : y - x^2 \ge 0\}$. It is closed, not open and it is unbounded.

2. Describe the domain of the function

$$f(x,y) = \frac{1}{\ln(25 - x^2 - y^2)}.$$
Domain D = $\begin{cases} (x_1y) \in \mathbb{R}^2 \\ 25 - x^2 - y^2 > 0 \end{cases}$, $25 - x^2 - y^2 \neq 1 \end{cases}$

$$= \begin{cases} (x_1y) \in \mathbb{R}^2 \\ 25 - x^2 - y^2 > 0 \end{cases}$$
, $25 - x^2 - y^2 \neq 1 \end{cases}$
Int D = D is open

Bd D = $\begin{cases} (x_1y) \in \mathbb{R}^2 \\ 2x^2 + y^2 = 25 \end{cases}$, $x^2 + y^2 = 25 \end{cases}$, $x^2 + y^2 = 25 \end{cases}$, Bd D \Rightarrow D is above bad.

2. Describe the domain of the function

$$f(x,y) = \frac{1}{\ln(25 - x^2 - y^2)}.$$

Ans. The domain is given by $D = \{(x,y) : x^2 + y^2 < 25, x^2 + y^2 \neq 24\}$. It is open but not closed and it is bounded.

Graphs, Level Curves and Contours of Functions of Two Variables

How to draw the graph of two variable function z = f(x, y)?

There are two standard ways:

ightharpoonup One is to sketch the surface z = f(x, y) in space.

The set of all points (x, y, f(x, y)) in space, for (x, y) in the domain of f, is called the graph of f.

The graph of f is also called surface z = f(x, y).

Definition

► the other is to draw and label the curves in the domain on which *f* has a constant value.

The set of points in the plane (xy-plane) where a function f(x,y) has a constant value c i.e., f(x,y) = c where $c \in Range(f)$ is called a level curve of f.

Example.
$$z = 100 - x^2 - y^2$$

$$100 - x^2 - y^2 = C$$

$$x^2 + y^2 = 100 - C$$

$$C = 0$$

$$x^2 + y^2 = 100$$

$$C = 75$$

$$x^2 + y^2 = 75$$

$$C = 90$$

IR2 -> IR

Example.
$$z = 100 - x^2 - y^2$$

Contours of Functions of Two Variables

Definition

- The curve in the space in which the plane z = c cuts a surface z = f(x, y) is made up of the points that represent the function value f(x, y) = c.
- lt is called the contour curve f(x, y) = c to distinguish it from the level curve f(x, y) = c in the domain of f.

Contour of Two Variable Function

The contour curve $f(x, y) = 100 - x^2 - y^2 = 75$ is the circle $x^2 + y^2 = 25$ in the plane z = 75.

The level curve $f(x, y) = 100 - x^2 - y^2 = 75$ is the circle $x^2 + y^2 = 25$ in the xy-plane.

Find the domain, range and the level curve for the following functions passing through the given point.

1.
$$f(x,y) = 16 - x^2 - y^2$$
, $(2\sqrt{2}, \sqrt{2})$.

Domain = $1R^2$, Ronge = $(-\infty, 16)$

Eq. of level curve is
$$[6-x^2-y^2=c], C \in (-\infty, 16)$$

at $(2\sqrt{2}, \sqrt{2})$

$$C = 16 - 8 - 2 = 6$$

$$(6-x^2-y^2=6) = x^2+y^2=10$$

Find the domain, range and the level curve for the following functions passing through the given point.

1.
$$f(x,y) = 16 - x^2 - y^2$$
, $(2\sqrt{2}, \sqrt{2})$.

Ans. Domain is \mathbb{R}^2 , Range is $(-\infty, 16]$ and a typical level curve is $x^2 + y^2 = 16 - c$ where $c \in (-\infty, 16]$ and the level curve that is passing through the point $(2\sqrt{2}, \sqrt{2})$ is $x^2 + y^2 = 10$.

2.
$$f(x,y) = \sqrt{x^2 - 1}$$
, $(1,0)$.

Domain = $\begin{cases} |x_1| \le |x^2| \le 1 \end{cases}$, $\begin{cases} |x|y| \le |x|^2 \le 1 \end{cases}$, $\begin{cases} |x|y| > 1$

Level surfaces of functions of three variables

Definition

The set of points (x, y, z) in space where a function f(x, y, z) of three independent variables has a constant value i.e., f(x, y, z) = c where c is from the range of f is called a level surface of f.

Example. Describe the level surfaces of the function

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}.$$

$$x^{2}+y^{2}+z^{2}=c^{2}$$
, (c [0,0)

Level surfaces of functions of three variables

Level surfaces of functions of three variables

Find the domain, range and sketch a typical level surface for the following functions

1.
$$f(x, y, z) = \ln(x^2 + y^2 + z^2)$$
.

2.
$$f(x, y, z) = x + z$$
.

3.
$$f(x, y, z) = z - x^2 - y^2$$

Limits of functions of two variables

Limits of functions of two variables

Definition (Limit of functions of two variables)

We say that a function f(x, y) approaches the **limit** L as (x, y) approaches (x_0, y_0) and we write

$$\lim_{(x,y)\to(x_0,y_0)}f(x,y)=L,$$

if, for every number $\varepsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all (x, y) in the domain of f,

$$|f(x,y)-L| whenever $0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta$.$$

1.
$$\lim_{(x,y)\to(x_0,y_0)} x = \underline{x_0} = L$$

(ine \(\frac{\(\lambda \)}{\(\lambda \)} \)

(ine \(\lambda \)

(ine \(\lambda \)

(ine \(\lambda \)

(ine \(\lambda \))

(ine \(\lambda \)

(ine \(\lambda \))

(ine \(\lambda \)

(ine \(\lambda \))

(ine \(\lambd

1.
$$\lim_{(x,y)\to(x_0,y_0)} x = x_0$$

2.
$$\lim_{(x,y)\to(x_0,y_0)} y = y_0$$

3.
$$\lim_{(x,y)\to(x_0,y_0)} k = k$$
 (k is any constant)

Given $\xi > 0$, Find ξ , thoose $\xi = \xi$

$$\int_{\xi(x-x_0)^2 + (y-y_0)^2} \xi = \xi$$

$$|k-k| \leq \xi$$

$$|k-k| \leq \xi$$

$$|k-k| \leq \xi$$

4. Show that
$$\lim_{(x,y)\to(0,0)} \frac{4xy^2}{x^2+y^2} = 0$$
 by using $\varepsilon - \delta$ definition.
Given $\varepsilon > 0$, Eind $\varepsilon > 0$ s.t.
$$\lim_{(x,y)\to(0,0)} \frac{1}{x^2+y^2} < \delta$$

$$\lim_{(x,y)\to(0,0)} \frac{1}$$

Limits of functions of three variables

Definition (Limit of functions of three variables)

We say that a function f(x, y, z) approaches the **limit** L as (x, y, z) approaches (x_0, y_0, z_0) and we write

$$\lim_{(x,y,z)\to(x_0,y_0,z_0)} f(x,y,z) = L,$$

if, for every number $\varepsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all (x, y, z) in the domain of f,

$$|f(x,y,z)-L| whenever $0<\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}<\delta.$$$

Using $\epsilon-\delta$ definition show that

=> &= 38

$$\lim_{(x,y,z)\to(0,0,0)} \frac{x+y+z}{x^2+y^2+z^2+1} = 0.$$
Given £50, Find \$50 s.t.
$$\int_{x^2+y^2+2^2+2^2} \frac{1}{2^2} \left[\frac{x+y+2}{x^2+y^2+2^2+1} \right] \leq E$$

$$\lim_{(x,y,z)\to(0,0,0)} \frac{x+y+z}{x^2+y^2+2^2+1} \leq E$$

$$\lim_{(x,y,z)\to(0,0,0)} \frac{x+y+z}{x^2+y^2+2^2+1} \leq E$$

$$\lim_{(x,y,z)\to(0,0,0)} \frac{x+y+z}{x^2+y^2+2^2+1} = 0.$$

$$\lim_{(x,y,z)\to(0,0)} \frac{x+y+z}{x^2+y^2+2^2+2^2+1} = 0.$$

$$\lim_{(x,y,z)\to(0,0)} \frac{x+y+z}{x^2+y^2+2^2+2^2+1} = 0.$$

$$\lim_{(x,y,z)\to(0,0)} \frac{x+y+z$$

THEOREM 1—Properties of Limits of Functions of Two Variables The fol-

lowing rules hold if L, M, and k are real numbers and

$$\lim_{(x, y) \to (x_0, y_0)} f(x, y) = L \quad \text{and} \quad \lim_{(x, y) \to (x_0, y_0)} g(x, y) = M.$$

$$\lim_{(x,y)\to(x_0,y_0)}(f(x,y)+g(x,y))=L+M$$

$$\lim_{(x, y)\to(x_0, y_0)} (f(x, y) - g(x, y)) = L - M$$

$$\lim_{(x, y)\to(x_0, y_0)} kf(x, y) = kL \quad \text{(any number } k)$$

$$\lim_{(x,y)\to(x_0,y_0)} (f(x,y)\cdot g(x,y)) = L\cdot M$$

$$\lim_{(x, y) \to (x_0, y_0)} \frac{f(x, y)}{g(x, y)} = \frac{L}{M}, \qquad M \neq 0$$

$$\lim_{(x, y)\to(x_0, y_0)} [f(x, y)]^n = L^n, n \text{ a positive integer}$$

$$\lim_{(x,y)\to(x_0,y_0)} \sqrt[n]{f(x,y)} = \sqrt[n]{L} = L^{1/n},$$

n a positive integer, and if n is even, we assume that L > 0.

 $|w > c^2 + y^2$ $|x,y| \rightarrow (1,1)$ $= |w x^2 + |w y^2|$ $= (|w x|^2 + (|w y|^2)$

Find the limits for the following:

1.
$$\lim_{(x,y)\to(0,1)} \frac{x - xy + 3}{x^2y + 5xy - y^3} = -3$$

2.
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}. = \lim_{(x,y)\to(0,0)} \frac{x(x^2 - y)}{\sqrt{x} - \sqrt{y}}.$$

$$= \lim_{(x,y)\to(0,0)} \frac{x(x^2 - y)}{\sqrt{x} - \sqrt{y}}.$$

$$= \lim_{(x,y)\to(0,0)} \frac{x(x^2 - y)}{\sqrt{x} - \sqrt{y}}.$$

If
$$f(x,y) = \frac{y}{x}$$
, does $\lim_{(x,y)\to(0,0)} f(x,y)$ exist?

$$\frac{2}{2} \left(\frac{2}{2} \right) = 0$$

$$\frac{2}{2} \left(\frac{2}{2} \right)$$

$$|w + (x, x)| = |w|$$

$$\int : \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \rightarrow (a,b) \rightarrow f(x,y)$$

Two path test for nonexistence of a limit

Theorem

Let $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$ is any continuous curve passing through the point (x_0, y_0) , $\mathbf{r}(t_0) = (x_0, y_0)$ and $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$, then

$$\lim_{t\to t_0} f(\mathbf{r}(t)) = \lim_{t\to t_0} f(x(t), y(t)) = L.$$

q

Remark

If a function f(x, y) has two different limits along two different paths in the domain of f as (x, y) approaches (x_0, y_0) , then $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ does not exist.

Show that if

$$f(x,y) = \begin{cases} \frac{10x^2y}{x^4 + y^2} & \text{for } (x,y) \neq (0,0); \\ 0 & \text{for } (x,y) = (0,0), \end{cases}$$

then $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

$$y=0, \quad f(x,0) = \lim_{x\to 0} \frac{0}{x^{4}} = 0$$

$$y=x^{2}, \quad \lim_{x\to 0} f(x,x^{2}) = \lim_{x\to 0} \frac{0}{x^{2}} \cdot x^{2}$$

$$y\to 0$$

$$y=x^{2}, \quad \lim_{x\to 0} f(x,x^{2}) = \lim_{x\to 0} \frac{0}{2x^{4}} = 0$$

$$y=x^{2}, \quad \lim_{x\to 0} f(x,x^{2}) = \lim_{x\to 0} \frac{0}{2x^{4}} = 0$$

$$y=x^{2}, \quad \lim_{x\to 0} f(x,x^{2}) = \lim_{x\to 0} \frac{0}{2x^{4}} = 0$$

$$y=x^{2}, \quad \lim_{x\to 0} f(x,x^{2}) = \lim_{x\to 0} \frac{0}{2x^{4}} = 0$$

$$y=x^{2}, \quad \lim_{x\to 0} f(x,x^{2}) = \lim_{x\to 0} \frac{0}{2x^{4}} = 0$$

$$y=x^{2}, \quad \lim_{x\to 0} f(x,x^{2}) = \lim_{x\to 0} \frac{0}{2x^{4}} = 0$$

$$y=x^{2}, \quad \lim_{x\to 0} f(x,x^{2}) = \lim_{x\to 0} f(x,x^{2}) = 0$$

$$y=x^{2}, \quad \lim_{x\to 0} f(x,x^{2}) = 0$$

Two path test for nonexistence of a limit

The Sandwich Theorem

Theorem (The Sandwich Theorem)

Let f, g and h be functions of two variables such that

$$g(x,y) \le f(x,y) \le h(x,y)$$

for all $(x, y) \neq (x_0, y_0)$ in a disk centered at (x_0, y_0) and if

$$\lim_{(x,y)\to(x_0,y_0)} g(x,y) = L = \lim_{(x,y)\to(x_0,y_0)} h(x,y)$$

for a finite limit $L \in \mathbb{R}$, then

$$\lim_{(x,y)\to(x_0,y_0)}f(x,y)=L.$$

Find the limits (if they exist):

1.
$$\lim_{(x,y)\to(0,0)} y \sin \frac{1}{x}$$
. $= 0$

$$-1 \leq \sin \frac{1}{x} \leq 1$$

$$-y \leq y \sin \frac{1}{x} \leq y$$

$$-y \leq y \sin \frac{1}{x} \leq y$$

$$\sin \frac{1}{x} \leq y$$

$$\cos y \leq \cos y \leq \cos y \leq \cos y$$

$$\cos y = \cos y \leq \cos y \leq \cos y$$

Find the limits (if they exist):

1.
$$\lim_{(x,y)\to(0,0)} y \sin \frac{1}{x}$$
.

2.
$$\lim_{(x,y)\to(0,0)} \frac{x^2 \sin^2 y}{x^2 + 2y^2}.$$

3)
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2}$$
.

$$\lim_{(x,y)\to(0,0)} xy \frac{x^2 - y^2}{x^2 + y^2}.$$

$$0 < \frac{x^{2}}{2x^{2}+2y^{2}} < y^{2}$$

Remark (Changing Variables to Polar Coordinates)

If f(x, y) is a function of two variables, $L \in \mathbb{R}$ and for given any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$|f(r\cos\theta, r\sin\theta) - L| < \varepsilon$$
 whenever $0 < |r| < \delta$

for all θ with $(r \cos \theta, r \sin \theta)$ in the domain of f, then

$$\lim_{(x,y)\to(0,0)}f(x,y)=L.$$

In other words, if $\lim_{r\to 0} f(r\cos\theta, r\sin\theta) = L$ uniformly in θ , where is L is a constant independent of θ , then

$$\lim_{(x,y)\to(0,0)}f(x,y)=L.$$

Changing Variables to Polar Coordinates

Find the limits, (if they exist):

1.
$$\lim_{(x,y)\to(0,0)} \frac{x^3 - xy^2}{x^2 + y^2}$$
. $y = \mu_{\text{G}} \sin \theta$

1. $\lim_{(x,y)\to(0,0)} \frac{x^3 - xy^2}{x^2 + y^2}$. $y = \mu_{\text{G}} \sin \theta$

1. $\lim_{(x,y)\to(0,0)} \frac{x^3 - xy^2}{x^2 + y^2}$. $y = \mu_{\text{G}} \sin \theta$

1. $\lim_{(x,y)\to(0,0)} \frac{x^3 - xy^2}{x^2 + y^2}$. $y = \mu_{\text{G}} \sin \theta$

2. $\lim_{(x,y)\to(0,0)} \frac{x^3 - xy^2}{x^2 + y^2}$. $\lim_{(x,y)\to(0,0$

Changing Variables to Polar Coordinates

Find the limits, (if they exist):

1.
$$\lim_{(x,y)\to(0,0)} \frac{x^3 - xy^2}{x^2 + y^2}$$
.

2.
$$\lim_{(x,y)\to(0,0)} \tan^{-1} \left(\frac{|x|+|y|}{x^2+y^2} \right)$$
.

3.
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}.$$

Continuity of functions of two variables

Definition

A function f(x, y) is said to be **continuous at the point** (x_0, y_0) , if

- 1. f is defined at (x_0, y_0) ,
- 2. $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ exists,
- 3. $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0).$

A function f(x, y) is said to be **continuous**, if it is continuous at every point of its domain.

Show that the following functions are continuous at given point.

1. $\frac{x - xy + 3}{x^2y + 5xy - y^3}$, (0,1).

1.
$$\frac{x - xy + 3}{x^2y + 5xy - y^3}$$
, $(0, 1)$.

$$(x,y) + (x,y) = -3 = L$$

Show that the following functions are continuous at given point.

1.
$$\frac{x - xy + 3}{x^2y + 5xy - y^3}$$
, (0,1).

2.
$$\sqrt{x^2+y^2}$$
, $(3,-4)$.

1)
$$f(x,y) = 1 \times 2 + y^2$$
2) Pauve that $[x,y] \rightarrow (3,y)$
 $(x,y) \rightarrow (3,y)$
 $(x,y) \rightarrow (3,y)$
 $(x,y) \rightarrow (3,y)$
 $(x,y) \rightarrow (3,y)$

$$\int (6(-3)^2 + (4+4)^2 < 8$$
e $x-3 < 8 - 7$

2.
$$\sqrt{x^2 + y^2}$$
, $(3, -4)$.

 $+(x,y) = 1 \sqrt{2} + y^2$
 $+(3, -4) = 5$

defensed

1. $-(3, -4) = 5$

$$\frac{?}{\sqrt{3c^2+y^2}-5}$$

$$[.H_{x}] = \frac{1(2x^{2}+y^{2}-5)(2x^{2}+y^{2}+5)}{(2x^{2}+y^{2}+5)}$$

$$= \int \frac{x^2 + y^2 - 2S}{\int x^2 + y^2 + S} \left(\frac{x^2 + y^2 - 2S}{\int x^2 + y^2 + S} \right) = \left[(x - 3)^2 + (y + 4)^2 + (6x - 8y + 50) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (6x - 3) + (8/y + 4) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (x - 3) + (x - 3) + (x - 3) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (x - 3) \right]$$

$$= \left[(x - 3)^4 + (y + 4)^2 + (x - 3) + (x - 3)$$

Show that the following functions are continuous at given point.

1.
$$\frac{x - xy + 3}{x^2y + 5xy - y^3}$$
, (0,1).

2.
$$\sqrt{x^2+y^2}$$
, $(3,-4)$.

Find the all the points in xy-plane where the following functions are continuous:

1.
$$f(x,y) = \frac{x}{y^2 + 1}$$
.

Show that the following functions are continuous at given point.

1.
$$\frac{x - xy + 3}{x^2y + 5xy - y^3}$$
, (0,1).

2.
$$\sqrt{x^2+y^2}$$
, $(3,-4)$.

Find the all the points in xy-plane where the following functions are continuous:

1.
$$f(x,y) = \frac{x}{y^2 + 1}$$
.

2.
$$f(x,y) = \frac{1}{x^2 - 1}$$
.

3.
$$f(x, y) = \sin(x + y)$$
.

Examples

Show that

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & \text{for } (x,y) \neq (0,0); \\ 0 & \text{for } (x,y) = (0,0), \end{cases}$$

is continuous at every point except the origin.

Continuity of Composites

Theorem (Continuity of Composites)

If f is continuous at (x_0, y_0) and g is a single-variable function continuous at $f(x_0, y_0)$, then the composite function $h = g \circ f$ defined by h(x, y) = g(f(x, y)) is continuous at (x_0, y_0) .

$$(x_0,y_0) \xrightarrow{f(x_0,y_0)}$$

Continuity of Composites

Theorem (Continuity of Composites)

If f is continuous at (x_0, y_0) and g is a single-variable function continuous at $f(x_0, y_0)$, then the composite function $h = g \circ f$ defined by h(x, y) = g(f(x, y)) is continuous at (x_0, y_0) .

Examples: The functions

$$e^{x-y}$$
, $\cos \frac{xy}{x^2+1}$, $\ln(1+x^2y^2)$

are continuous at every point (x, y)

Continuity of functions of three variables

Definition

A function f(x, y, z) is said to be **continuous at the point** (x_0, y_0, z_0) , if

- 1. f is defined at (x_0, y_0, z_0) ,
- 2. $\lim_{(x,y,z)\to(x_0,y_0,z_0)} f(x,y,z)$ exists,
- 3. $\lim_{(x,y,z)\to(x_0,y_0,z_0)} f(x,y,z) = f(x_0,y_0,z_0).$

A function f(x, y, z) is said to be **continuous**, if it is continuous at every point of its domain.

Problems:

1. At what points (x, y, z) in space are the following functions

1.1
$$f(x, y, z) = e^{x+y} \cos z$$

1.2
$$g(x, y, z) = \frac{1}{|xy| + |z|}$$

1.3
$$h(x, y, z) = \frac{1}{4 - \sqrt{x^2 + y^2 + z^2 - 1}}$$
.

continuous?

1.1
$$f(x, y, z) = e^{x+y} \cos z$$

1.2 $g(x, y, z) = \frac{1}{|xy|+|z|}$

1.3 $h(x, y, z) = \frac{1}{4-\sqrt{x^2+y^2+z^2-1}}$.