ENGG1100 Introduction to Engineering Design

Introduction to Engineering Drawing

LI, Xiang
Research Assistant Professor
Dept. Mech. Automat. Eng. (MAE)
The Chinese University of Hong Kong

Text Books

- Fundamentals of Engineering Drawing
 - by French & Vierck
- Metric Drafting
 - by Paul Wallah
- Drafting Technology and Practice
 - by William P. Spence
- Mechanical Engineering Drawing
 - by Dr. Md. Quamrul Islam

Introduction

- An engineering drawing is a type of technical drawing, used to fully and clearly define requirements for engineered items, and is usually created in accordance with standardized conventions for layout, nomenclature, interpretation, appearance size, etc.
- Its purpose is to accurately and unambiguously capture all the geometric features of a product or a component.
- The end goal of an engineering drawing is to convey all the required information that will allow a manufacturer to produce that component.

Definition

- An engineering drawing is a type of technical drawing used to fully and clearly define requirements for engineered items (from en.wikipedia.org)
 - a formal and precise way (graphic language) for communicating information about the shape and size of physical objects.
 - a mean for specifying the precision of physical objects.

Important as it is a legal document, i.e., if the drawings are wrong, it is the fault of the engineers!

Effectiveness of Engineering Drawing

- Try to write a description of this object.
- Test your written description by having someone attempt to make a sketch from your description.

You can easily understand that ...

The word languages are <u>inadequate</u> for describing the **size**, **shape** and **features** completely as well as concisely.

Graphic Language

Graphic language in "engineering applications" uses

lines to represent the *surfaces*, *edges* and *contours* of objects.

- The language is known as "drawing" or "drafting".
- A drawing can be done using **freehand**, **instruments** or **computer** methods.

Freehand drawing

The lines are sketched without using instruments other than pencils and erasers.

From Lec. Bhuiyan Shameem Mahmood

Instrument drawing

Instruments are used to draw straight lines, circles, and curves concisely and accurately. Thus, the drawings are usually made to scale.

Example

From Lec. Bhuiyan Shameem Mahmood

Computer drawing

The drawings are usually made by commercial software such as AutoCAD, SolidWorks etc.

Example

Elements of Engineering Drawing

Engineering drawing is made up of *graphics language* and *word language*.

Graphics language

Describe a shape (mainly by projected views).

Word language

Describe size, location and specification of the object.

Basic Knowledge for Drafting

From Lec. Bhuiyan Shameem Mahmood

Projection Theory

The projection theory is used to graphically represent 3-D objects on 2-D media (paper, computer screen).

- The projection theory is based on two variables:
 - 1) Line of sight
 - 2) Plane of projection (image plane or picture plane)

Line of sight is an imaginary ray of light between an observer's eye and an object.

There are 2 types of LOS: parallel and converge

Parallel projection

Perspective projection

From Lee Rhuivan Shamaam Mahmaad

Plane of projection is an imaginary flat plane which

the image is created.

The image is produced by connecting the points where the LOS pierce the projection plane.

Parallel projection

Plane of projection

Perspective projection

Plane of projection

From Lec. Bhuiyan Shameem Mahmood

Disadvantage of Perspective Projection

- Perspective projection is **not**used by engineer for manufacturing of parts, because
 - 1) It is difficult to create.
 - It does not reveal exact shape and size.

Orthographic projection is a parallel projection technique

in which the parallel lines of sight are *perpendicular* to the

From Lec. Bhuiyan Shameem Mahmood

Orthographic View

Orthographic / Multiview

Draw object from two / three perpendicular views

Pictorial

- 3-dimensional representations
 - One-point
 - one vanishing point
 - lines that are not vertical or horizontal converge to single point in distance
 - Two-point or Three-point
 - two or three vanishing points
 - With two points, vertical or horizontal lines parallel, but not both
 - With three-point, no lines are parallel
 - Isometric (Axonometric)
 - Drawing shows corner of object, but parallel lines on object are parallel in drawing
 - Shows three dimensions, but no vanishing point(s)

Multi-view Projections

 Project an object from six principal directions (front, back, top, bottom, right, left)

From slides by Bhuiyan Shameem Mahmood

Axonometric (Isometric) Drawing

Advantage Easy to understand

Disadvantage Shape and angle distortion

Example Distortions of shape and size in isometric drawing

Multiview Drawing

Advantage It represents accurate shape and size.

Disadvantage Require practice in writing and reading.

Example Multiviews drawing (2-view drawing)

Auxiliary Views

Used to show true dimensions of an inclined plane.

Drawing Standards

Standards are set of rules that govern how technical drawings are represented.

Drawing standards are used so that drawings convey the same meaning to everyone who reads them.

Drawing Standards

- Standards on
 - Sizes and Format of Drawings
 - Lines
 - Scales
 - Projection methods
 - Presentation of view and sections
 - Lettering
 - Dimensioning
 - **>** ...

First-Angle Projection

Third-Angle Projection

- The positions of the viewpoint and location of the projection view are the same
 - Right side view is located at right
 - Left side view is located at left

> ...

Mainly used in US

(Third-angle Viewing point)

Drawing Sheet

- Trimmed paper of a size A0 ~ A4.
- Standard sheet size

A4 210 x 297

A3 297 x 420

A2 420 x 594

A1 594 x 841

A0 841 x 1189

(Dimensions in millimeters)

Drawing Scales

Length, size

Scale is the ratio of the <u>linear dimension</u> of an element of an object shown in the drawing to the real linear dimension of the same element of the object.

Drawing Scales

Designation of a scale consists of the word "SCALE" followed by the indication of its ratio, as follow

```
SCALE 1:1 for full size

SCALE X:1 for enlargement scales (X > 1)

SCALE 1:X for reduction scales (X > 1)
```

Dimension numbers shown in the drawing are correspond to "true size" of the object and they are independent of the scale used in creating that drawing.

Basic Line Types

Types of Lines	Appearance	Name according to application
Continuous thick line		Visible line
Continuous thin line		Dimension line
		Extension line
		Leader line
Dash thick line		Hidden line
Chain thin line		Center line

Lec. Bhuiyan Shameem Mahmood

Text on Drawings

Text on engineering drawing is used:

- To communicate nongraphic information.
- As a substitute for graphic information, in those instance where text can communicate the needed information more clearly and quickly.

Thus, it must be written with

Legibility - shape

space between letters and words

Uniformity - size

line thickness

Dimensioning

Two types of dimensioning: (1) Size and location dimensions and (2) Detail dimensioning Size (D) Depth R Radius Height Size (H) Location - Ø Size

Units of Dimension

- Length
 - English Inches, unless otherwise stated
 - ➤ SI millimeter, mm
- Angle
 - degrees, minutes, seconds

Angle Dimensions

Scaling vs. Dimensioning

 Drawings can be a different scales, but dimensions are ALWAYS at full scale.

Dimension guidelines

Dimensions should be placed in the view that most clearly describes the feature being dimensioned (contour (shape) dimensioning)

Dimension guidelines

Maintain a minimum spacing between the object and the dimension between multiple dimensions.

6 mm MIN { -13 - 1 mm

A visible gap shall be placed between the ends of extension lines and the feature to which they refer.

Dimension guidelines

Avoid dimensioning hidden lines.

Leader lines for diameters and radii should be radial lines.

