(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 22 April 2004 (22.04.2004)

PCT

(10) International Publication Number WO 2004/033434 A1

- (51) International Patent Classification⁷: C07D 231/40, 409/12, 401/12, 409/04, 405/04, 403/06, 401/06, 403/04, 413/14, 471/04, A61K 31/415, A61P 25/00, C07D 487/04 // (C07D 471/04, 249:00), 221:00) (C07D 487/04, 253:00), 231:00)
- (21) International Application Number:

PCT/IB2003/004252

English

(22) International Filing Date:

26 September 2003 (26.09.2003)

(25) Filing Language:

(26) Publication Language: English

(30) Priority Data:

60/417,151 9 October 2002 (09.10.2002) US

- (71) Applicant (for all designated States except US): PFIZER PRODUCTS INC. [US/US]; Eastern Point Road, Groton, CT 06340 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ALLEN, Martin, Patrick [US/US]; Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340 (US). CHEN, Yuhpyng, L. [US/US]; Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340 (US).

LIRAS, Spiros [GR/US]; Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340 (US). ROSATI, Robert, L. [US/US]; Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340 (US).

- (74) Agents: LUMB, J., Trevor et al.; Pfizer Inc., 201 Tabor Road, Morris Plains, NJ 07950 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PYRAZOLE COMPOUNDS FOR TREATMENT OF NEURODEGENERATIVE DISORDERS

(57) Abstract: The invention provides compounds of Formula (I): wherein R^1,R^2,R^3 , R^4,R^6,R^7 , R^8 and A are as defined. Compounds of formula (I) have activity inhibiting production of $A\beta$ -peptide. The invention also provides pharmaceutical compositions and methods for treating diseases, for example Alzheimer's disease, in mammals comprising compounds of Formula (I).

-1-

PYRAZOLE COMPOUNDS FOR TREATMENT OF NEURODEGENERATIVE DISORDERS Field of the Invention

The present invention relates to treatment of Alzheimer's disease and other neurodegenerative disorders in mammals, including in humans. This invention also relates to inhibiting in mammals, including in humans, the production of β -amyloid peptides (A β -peptides) which can contribute to formation of neurological deposits of amyloid protein. More particularly, this invention relates to pyrazole compounds useful for treatment of neurological disorders, such as Alzheimer's disease and Down's Syndrome, related to A β -peptide production.

5

10

15

20

25

30

35

Background of the Invention

Dementia results from a wide variety of distinctive pathological processes. The most common pathological processes causing dementia are Alzheimer's disease (AD), cerebral amyloid angiopathy (CAA) and prion-mediated diseases (see, e.g., Haan et al. <u>Clin. Neurol. Neurosurg.</u> 1990, 92(4):305-310; Glenner et al. <u>J. Neurol. Sci.</u> 1989, 94:1-28). AD affects nearly half of all people past the age of 85, the most rapidly growing portion of the United States population. As such, the number of AD patients in the United States is expected to increase from about 4 million to about 14 million by the middle of the next century.

Treatment of AD typically is the support provided by a family member in attendance. Stimulated memory exercises on a regular basis have been shown to slow, but not stop, memory loss. A few drugs, for example AriceptTM, provide treatment of AD.

A hallmark of AD is the accumulation in the brain of extracellular insoluble deposits called amyloid plaques and abnormal lesions within neuronal cells called neurofibrillary tangles. Increased plaque formation is associated with an increased risk of AD. Indeed, the presence of amyloid plaques, together with neurofibrillary tangles, are the basis for definitive pathological diagnosis of AD.

The major components of amyloid plaques are the amyloid A β -peptides, also called A β -peptides, which consist of three proteins having 40, 42 or 43 amino acids, designated as the A β ₁₋₄₀, A β ₁₋₄₂, and A β ₁₋₄₃ peptides, respectively. The A β -peptides are thought to cause nerve cell destruction, in part, because they are toxic to neurons in vitro and in vivo.

The A β peptides are derived from larger β -amyloid precursor proteins (APP proteins), which consist of four proteins containing 695, 714, 751 or 771 amino acids, designated as the APP₆₉₅, APP₇₁₄, APP₇₅₁ and APP₇₇₁, respectively. Proteases are believed to produce the A β peptides by cleaving specific amino acid sequences within the various APP proteins. The proteases are named "secretases" because the A β -peptides they produce are secreted by cells into the extracellular environment. These secretases are each named according to the cleavage(s) they make to produce the A β -peptides. APP is cleaved by alpha- and beta-secretases, causing the release of soluble derivatives of protein (α -APPs and β -APPs) and

the retention of membrane-bound 83- and 99-amino acid fragments (C83 and C99). These fragments are substrates for the enzyme gamma-secretase. Gamma-secretase produces the Aβ-peptide fragment from C99 and p3 from C83. Gamma-secretase and beta-secretase inhibitors are thus expected to inhibit the production of Aβ- peptide. (Haass, C. and Selkoe, D. J. 1993 Cell 75:1039-1042; Selkoe, D. J. et. al. Annu. Rev. Cell Biol. 10, 373-403 (1994); Wolfe, M. S. et. al., Nature, 398, 513).

This invention relates to novel compounds that inhibit $A\beta$ -peptide production, to pharmaceutical compositions comprising such compounds, and to methods of using such compounds to treat neurorodegenerative disorders.

Summary of the Invention

The present invention provides compounds of Formula:

$$R^{1} \xrightarrow{A} \xrightarrow{R^{3}} R^{4} \xrightarrow{H} \xrightarrow{N} \overset{R^{8}}{\underset{R^{2}}{\bigvee}}$$

wherein:

5

10

15

20

25

30

A is selected from $-C(=O)C(=O)-, -C(=O)Z-, -C(=S)Z-, -C(=NR^5)Z-, and <math>-S(O)_{2^-}$;

I

wherein Z is $-CH_2$ -, -CH(OH)-, $-CH(OC(=O)R^{11})$ -, $-CH(NH_2)$ -, $-CH(CH_2(OH))$ -, $-CH(CH(C_1-C_4 \text{ alkyl})(OH))$ -, or $-CH(C(C_1-C_4 \text{ alkyl})(C_1-C_4 \text{ alkyl})(OH))$ -, for example $-CH(C(CH_3)(CH_3)(OH))$ - or $-CH(C(CH_3)(CH_2CH_3)(OH))$ -;

 R^1 is selected from C_1 - C_{20} alkyl and $-C_1$ - C_{20} alkoxy, C_3 - C_8 cycloalkyl, (C_4 - C_8)cycloalkenyl, (C_5 - C_{11})bi- or tricycloalkyl, (C_7 - C_{11})bi- or tricycloalkenyl, (3-8 membered) heterocycloalkyl, (C_6 - C_{14})aryl, or (5-14 membered) heteroaryl, wherein said alkyl and alkoxy each optionally contains from one to five double or triple bonds, and wherein each hydrogen atom of said alkyl and alkoxy is optionally replaced with a fluorine;

wherein when R¹ is alkyl or alkoxy, R¹ is optionally substituted with from one to three substituents R^{1a}, and wherein when R¹ is cycloalkyl, cycloalkenyl, bi- or tricycloalkyl, aryl, or heteroaryl, then R¹ is optionally substituted with from one to three substituents R^{1b};

 R^{1a} is in each instance independently selected from -OH, -C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds, -C₁-C₆ alkoxy independently optionally containing from one to three double or triple bonds, -Cl, -F, -Br, -I, -CN, -NO₂, -NR⁹R¹⁰, -C(=O)NR⁹R¹⁰, -S(O)_nNR⁹R¹⁰, -C(=O)R¹¹, -S(O)_nR¹¹, -C(=O)OR¹², -C₃-C₈ cycloalkyl, -C₄-C₈ cycloalkenyl, -(C₅-C₁₁)bi- or tricycloalkyl, -(C₇-C₁₁)bi- or tricycloalkyl, -(3-8 membered) heterocycloalkyl, -(C₆-C₁₄) aryloxy, and -(5-14

membered) heteroaryloxy, wherein said alkyl, alkoxy, cycloalkyl, cycloalkenyl, bi- or tricycloalkyl, bi- or tricycloalkyl, aryl, heteroaryl, aryloxy, and heteroaryloxy are each independently optionally substituted with from one to three R^{1b} substituents;

 R^{1b} is in each instance independently selected from -CI, -F, -Br, -I, -CN, -NO₂, -(C_{zero}-C₄ alkylene)-NR⁹R¹⁰, -(C_{zero}-C₄ alkylene)-C(=)ONR⁹R¹⁰, -(C_{zero}-C₄ alkylene)-C(=O)R¹¹, -(C_{zero}-C₄ alkylene)-S(O)_nR¹¹, -(C_{zero}-C₄ alkylene)-S(O)_nNR⁹R¹⁰, -(C_{zero}-C₄ alkylene)-OH, -C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds, -C₁-C₆ alkoxy independently optionally containing from one to three double or triple bonds, -C₁-C₆ hydroxyalkyl, -(C₆-C₁₄) aryloxy, -(5-14 membered) heteroaryloxy, -(C₆-C₁₄) aryl, -(5-15 membered) heteroaryl, and -C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds and independently substituted with from one to six atoms independently selected from F, Cl, Br, and I;

 R^2 is selected from -H, -C₁-C₄ alkyl optionally containing one or two double or triple bonds, -C(=O)(C₁-C₄ alkyl), -C₆-C₁₀ aryl, -SO₂-(C₆-C₁₀ aryl), and -SO₂-CH₂-(C₆-C₁₀ aryl), and R^2 is optionally substituted with from one to three substituents R^{1b} ;

 R^3 is selected from C_1 - C_6 alkyl, $-C_2$ - C_6 alkenyl, $-C_2$ - C_6 alkynyl, $-(C_{zero}$ - C_4 alkylene)- $(C_3$ - C_6 cycloalkyl), and $-(C_{zero}$ - C_4 alkylene)- $(C_3$ - C_6 cycloalkenyl), wherein said alkyl, alkenyl and alkynyl are each optionally substituted with a substituent selected from -OH, C_1 - C_4 alkyl);

R4 is H, D, F, or C1-C4 alkvl;

WO 2004/033434

5

10

15

20

25

30

35

or R³ and R⁴ may together optionally form a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, morpholino, piperidino, or perhydro-2H-pyran moiety, wherein said moiety formed by R³ and R⁴ is optionally substituted with one to three substituents independently selected from -OH, -CI, -F, -CN, -CF₃, methyl, ethyl, methoxy, ethoxy, allyl, and -OCF₃;

 R^5 is selected from -H, -C₁-C₆ alkyl optionally substituted with from one to three R^{1a} groups, and -C₆-C₁₀ aryl optionally substituted with from one to three R^{1a} ;

or R⁵ and R¹ may together optionally form a five to fourteen membered heteroaryl ring or a five to eight membered heterocycloalkyl ring, wherein said heteroaryl or heterocycloalkyl ring optionally contains one or two further heteroatoms selected from N, O, and S, and wherein said heterocycloalkyl ring optionally contains from one to three double bonds, and wherein said heteroaryl or heterocycloalkyl ring is optionally substituted from one to three substituents R^{1b} groups;

 R^6 is selected from -H, -C₁-C₂₀ alkyl, -Cl, -F, -Br, -I, -CN, -CF₃, -C(=O)R¹¹, -C(=O)OR¹², -S(O)_nNR⁹R¹⁰, -S(O)_nR¹¹, -C(=NR⁹)R¹⁵, -(C₃-C₁₂) cycloalkyl, -(C₄-C₁₂) cycloalkenyl, and -C₆-C₁₀ aryl, wherein said alkyl, alkylene, cycloalkyl, cycloalkenyl, and aryl of R^6 are each optionally substituted with from one to three R^{16} substituents;

10

15

20

25

30

35

 R^7 is selected from H, -Cl, -F, -Br, -I, -CN, -NO₂, -NR¹⁴R¹⁵, -CF₃, -C(=O)NR¹⁴R¹⁵, -C(=O)R¹³, -S(O)_nR¹³, -C(=O)OR¹³, -C(=NR⁹)R¹⁵, -S(O)_nNR¹⁴R¹⁵, -C₁-C₂₀ alkyl, -C₁-C₂₀ alkylene)-((C₃-C₁₂ cycloalkyl), -(C_{zero}-C₄ alkylene)-((C₄-C₁₂)cycloalkenyl), -(C_{zero}-C₄ alkylene)-((C₅-C₂₀)bi- or tricycloalkyl), -(C_{zero}-C₄ alkylene)-((C₇-C₂₀)bi- or tricycloalkenyl), -(C_{zero}-C₄ alkylene)-((C₇-C₂₀)bi- or tricycloalkenyl), -(C_{zero}-C₄ alkylene)-((C₆-C₁₄)aryl), and -(C_{2ero}-C₄ alkylene)-((5-15 membered) heteroaryl); wherein R^7 is optionally substituted with from one to three substituents independently selected from R^{1a} , -(CH₂)₁₋₁₀NR⁹R¹⁰, -C₃-C₁₂ cycloalkyl, -((4-12 membered) heterocycloalkyl), -(C₆-C₁₄) aryl, -((5-15 membered) heteroaryl), -(4-12 membered) heterocycloalkoxy), -(C₆-C₁₂) aryloxy and -((5-12 membered) heteroaryloxy); said cycloalkyl, cycloalkenyl, bi- or tricycloalkyl, bi- or tricycloalkenyl, heterocycloalkyl, aryl, and heteroaryl of R^7 are each optionally and independently substituted with from one to six F; said alkyl, alkoxy, and alkylene of R^7 each optionally contains from one to five double or triple bonds; and each hydrogen atom of said alkyl, alkoxy, and alkylene of R^7 is independently optionally replaced with a fluorine;

or R^6 and R^7 or R^7 and its proximate nitrogen atom may together optionally form a $-(C_6-C_{10})$ aryl ring, $-(C_6-C_8)$ cycloalkyl or cycloalkenyl ring, a five to eight membered heterocycloalkyl or heterocycloalkenyl ring, a $-(C_{10}-C_{14})$ membered bicycloheteroalkyl or bicycloheteroalkenyl ring fused to the pyrazole ring of Formula I, wherein from one to three members of said heterocycloalkyl and heterocycloalkenyl rings, and from one to five members of said bicycloheteroalkyl and bicycloheteroalkenyl rings are selected independently from N, O and S, and wherein said aryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, bicycloalkenyl, bicycloheteroalkyl, and bicycloheteroalkyl, ings optionally are substituted with from one to three R^{1b} groups;

 R^8 is selected from -H, -C₁-C₄ alkyl, -Cl, -F, -Br, -I, -CN, -CF₃, -C(=0) R^{11} , -C(=0)O R^{12} , and -C₆-C₁₀aryl, with the proviso that the pyrazole ring is always aromatic and that R^8 is attached to either ring nitrogen;

 R^9 and R^{10} are each independently selected from -H, -OH, -C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with a fluorine, -C₁-C₆ alkoxy independently optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with a fluorine, -C(=O)R¹¹, -S(O)_nR¹¹, -C(=O)OR¹², -S(O)_nNR¹¹R¹², -(C_{zero}-C₄ alkylene)-(C₃-C₈ cycloalkyl), -(C_{zero}-C₄ alkylene)-(C₄-C₈ cycloalkyl), -(C_{zero}-C₄ alkylene)-((C₇-C₁₁)bi- or tricycloalkyl), -(C_{zero}-C₄ alkylene)-((C₇-C₁₁)bi- or tricycloalkyl), -(C_{zero}-C₄ alkylene)-(3-8 membered heterocycloalkyl), and -(C_{zero}-C₄ alkylene)-(5-14 membered heteroaryl), wherein said cycloalkyl,

10

15

20

25

30

35

cycloalkenyl, bi-or tricycloalkyl, bi- or tricycloalkenyl, aryl, heterocycloalkyl, and heteroaryl are each optionally independently substituted with from one to three substituents independently selected from -Cl, -F, -Br, -I, -CN, -NO₂, -NR¹⁴R¹⁵, -C(=)ONR¹⁴R¹⁵, -C(=O)R¹¹, -C(=O)OR¹², -S(O)_nR¹¹, -S(O)_nNR¹⁴R¹⁵, -OH, -C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds, -C₁-C₆ alkoxy independently optionally containing from one to three double or triple bonds, -C₁-C₆ hydroxyalkyl, -(C₆-C₁₄) aryloxy, -(5-14 membered) heteroaryloxy, -(C_{zero}-C₄)-((C₆-C₁₄) aryl), -(C_{zero}-C₄)-(5-14 membered heteroaryl), and -C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds and independently substituted with from one to six atoms independently selected from F, Cl, Br, and I;

or NR 9 R 10 can independently optionally form a heterocycloalkyl moiety of from four to seven ring members, said heterocycloalkyl moiety independently optionally comprising one or two further heteroatoms independently selected from N, O, and S, and independently optionally containing from one to three double bonds, and said heterocycloalkyl moiety independently optionally substituted with from one to three substituents independently selected from -Cl, -F, -Br, -I, -CN, -NO₂, -NR 14 R 15 , -C(=)ONR 14 R 15 , -C(=O)R 11 , -C(=O)OR 12 , -S(O)_nR 11 , -S(O)_nNR 14 R 15 , -OH, -C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds, -C₁-C₆ alkoxy independently optionally containing from one to three double or triple bonds, -(C₆-C₁₄) aryloxy, -(5-14 membered) heteroaryloxy, -(C_{zero}-C₄)-((C₆-C₁₄) aryl), -(C_{zero}-C₄)-(5-14 membered heteroaryl), and -C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds and independently substituted with from one to six atoms independently selected from F, Cl, Br, and I;

 R^{11} and R^{12} are each independently selected from H, $-C_1-C_6$ alkyl, $-(C_{zero}-C_4$ alkylene)- $(C_3-C_8$ cycloalkyl), $-(C_{zero}-C_4$ alkylene)- $(C_4-C_8$ cycloalkenyl), $-(C_{zero}-C_4$ alkylene)- $((C_5-C_{11})$ bi- or tricycloalkyl), and $-(C_{zero}-C_4$ alkylene)- $((C_7-C_{11})$ bi- or tricycloalkenyl), $-(C_{zero}-C_4$ alkylene)- $((C_5-C_{11})$ bi- or tricycloalkenyl), and $-(C_{zero}-C_4$ alkylene)- $((C_5-C_{11})$ bi- or tricycloalkyl), and $-(C_{zero}-C_4$ alkylene)- $((C_5-C_{11})$ bi- or tricycloalkenyl), and $-(C_{zero}-C_4$ alkylene)- $((C_5-C_{11})$ bi- or tricycloalkenyl), and $-(C_{zero}-C_4)$ alkylene)- $((C_5-C_1)$ bi- or tricycloalkenyl), and $-(C_5-C_1)$ bi- or tricycloalkenyl), a

 R^{13} is selected from H, $-C_1$ - C_6 alkyl optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with a fluorine, $-(C_{zero}$ - C_4 alkylene)- $-(C_3$ - C_{12} cycloalkyl), $-(C_{zero}$ - C_4 alkylene)- $-(C_4$ - C_{12} cycloalkenyl), $-(C_{zero}$ - C_4 alkylene)- $-((C_5$ - C_{20})bi- or tricycloalkyl), and $-(C_{zero}$ - C_4 alkylene)- $-((C_7$ - C_2)bi- or tricycloalkyl), $-(C_{zero}$ - C_4 alkylene)--((3-12 membered) heterocycloalkyl), $-(C_{zero}$ - C_4 alkylene)- $-((C_7$ - C_9 - C_9 -alkylene)- $-((C_7$ - C_9 - C_9 - $-(C_9$ - C_9 - $-(C_9$ - C_9 - $-(C_9$ - C_9 - $-(C_9$ --(

 R^{14} and R^{15} are each independently selected from -H, -C₁-C₂₀ alkyl independently optionally containing from one to five double or triple bonds and wherein each hydrogen is independently optionally replaced with a fluorine, $-C(=0)R^{11}$, $-S(0)_0R^{11}$, $-C(=0)OR^{12}$. $-S(O)_nNR^{11}R^{12}$, $-(C_{zero}-C_4$ alkylene)- $(C_3-C_{12}$ cycloalkyl), $-(C_{zero}-C_4$ alkylene)- (C_4-C_{12}) cycloalkenyl), - $(C_{zero}$ - C_4 alkylene)- $((C_5$ - $C_{20})$ bi- or tricycloalkyl), - $(C_{zero}$ - C_4 alkylene)- $((C_7$ - $C_{20})$ bior tricycloalkenyl), -(Czero-C4 alkylene)-(C6-C14 aryl), -(Czero-C4 alkylene)-(3-8 membered heterocycloalkyl), and -(C_{zero}-C₄ alkylene)-(5-14 membered heteroaryl), wherein said cycloalkyl, cycloalkenyl, bi-or tricycloalkyl, bi- or tricycloalkenyl, aryl, heterocycloalkyl, and heteroaryl are each independently optionally substituted with from one to three substituents independently selected from -C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with fluorine, -Cl, -F, -Br, -l, -CN, -NO₂, -NH₂, -OH, -C(=0)H, -S(O)₀H, -C(=0)OH, -C(=0)NH₂, -S(O)₀NH₂, -C₁-C₆ alkoxy independently optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with fluorine, -C₁-C₆ hydroxyalkyl independently optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with fluorine, -(5-14 membered) heteroaryloxy, - $(C_6-C_{14} \text{ aryloxy})$, - $(C_{zero}-C_4 \text{ alkylene})$ - $(C_6-C_{14} \text{ aryl})$, - $(C_{zero}-C_4 \text{ alkylene})$ -((5-14 membered)heteroaryl), and -C₁-C₆ alkyl independently substituted with from one to six atoms independently selected from F, Cl, Br, and I and independently optionally containing from one to three double or triple bonds:

5

10

15

20

25

30

35

or NR¹⁴R¹⁵ can independently optionally form a heterocycloalkyl moiety of from four to seven ring members, said heterocycloalkyl moiety independently optionally comprising one or two further heteroatoms independently selected from N, O, and S, and independently optionally containing from one to three double bonds, and said heterocycloalky! molety independently optionally substituted with from one to three substituents independently selected from -C1-C6 alkyl independently optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with fluorine, -CI, -F, -Br, -I, -CN, -NO2, $-NH_2$, -OH, -C(=O)H, $-S(O)_nH$, -C(=O)OH, $-C(=O)NH_2$, $-S(O)_nNH_2$, $-C_1-C_6$ alkoxy independently optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with fluorine, -C₁-C₆ hydroxyalkyl independently optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with a fluorine, -(5-14 membered) heteroaryloxy, -(C₆-C₁₄ aryloxy), -(C_{zero}-C₄ alkylene)-(C₆-C₁₄ aryl), -(C_{zero}-C₄ alkylene)-((5-14 membered) heteroaryl), and -C1-C6 alkyl independently optionally containing from one to three double or triple bonds and independently substituted with from one to six atoms independently selected from F, Cl, Br, and I; and

n is in each instance an integer independently selected from zero, 1, 2, and 3;

and pharmaceutically-acceptable salts thereof.

WO 2004/033434

5

10

15

20

25

30

35

Compounds of Formula I inhibit production of Aβ-peptide. Compounds of Formula I and their pharmaceutically acceptable salts are therefore useful in treating neurodegenerative disorders, for example AD, in mammals, including humans.

In one embodiment, the present invention provides compounds of Formula I wherein A is -C(=O)Z- or -C(=O)C(=O)-. If A is -C(=O)Z-, then Z is preferably $-CH_2$ - or -CH(OH)-.

In another embodiment, the invention provides compounds of Formula I wherein R^3 is C_1 - C_4 alkyl wherein each hydrogen is independently optionally replaced with a fluorine. In another embodiment R^3 is allyl. In another embodiment R^3 is methyl, ethyl, n-propyl, n-butyl, i-butyl, i-butyl

In another embodiment, the present invention provides compounds of Formula I wherein R⁶ is selected from hydrogen, methyl, ethyl, -F, -Cl, -Br, and -CF₃.

In another embodiment the present invention provides compounds of Formula I wherein R^1 is $-C_2$ - C_{12} alkyl, C_3 - C_8 cycloalkyl, $(C_5$ - $C_8)$ cycloalkenyl, $-(C_5$ - $C_{11})$ bi- or tricycloalkyl, $-(C_7$ - $C_{11})$ bi- or tricycloalkenyl, (3-8 membered) heterocycloalkyl), $-(C_6$ - $C_{10})$ aryl, -(5-10 membered) heteroaryl, or C_1 - C_4 alkyl substituted with R^{1a} wherein R^{1a} is $-(C_6$ - $C_{10})$ aryl or -(5-10 membered) heteroaryl.

In another embodiment, the present invention provides compounds of Formula I wherein R^1 is C_2 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, or -(C_7 - C_{11})bicycloalkyl, wherein said alkyl optionally contains from one to five double bonds, and wherein each hydrogen atom of said alkyl may optionally be replaced with a fluorine.

When R^1 is C_2 - C_{10} alkyl, in one embodiment, R^1 is straight-chain. In another embodiment when R^1 is C_2 - C_{10} alkyl, R^1 is branched C_3 - C_{10} alkyl.

In another embodiment, R^1 is C_3 - C_{10} alkyl comprising a tertiary carbon, for example *i*-propyl or 2-methylpropyl. In another embodiment, R^1 is C_4 - C_{10} alkyl comprising a quaternary carbon, for example *t*-butyl.

In a further embodiment, R^1 is selected from phenyl, thienyl, and pyridyl, optionally and independently substituted with one or two substituents R^{1b} . When R^1 is phenyl, thienyl, or pyridyl substituted optionally with one or two substituents R^{1b} , then each R^{1b} is preferably independently selected from $-C_1-C_4$ alkyl (in different embodiments, independently optionally containing one or two double or triple bonds), CF_3 , $-C_1-C_4$ alkoxy (in different embodiments, independently optionally containing one or two double or triple bonds), -F, -Cl, -Br, phenyl, and phenoxy.

In a further embodiment, R¹ is phenyl or pyridyl and is optionally substituted with one or two substituents R^{1b} independently selected from –F, -Cl and –CF₃.

In another embodiment R¹ is C₃-C₇ cycloalkyl, for example [2.2.1]-heptanyl.

10

15

20

25

30

35

In each of the aforementioned embodiments, A is preferably -C(=O)Z- or -C(=O)C(=O)-, Z preferably being $-CH_2$ - or -CH(OH)-. Furthermore, R^3 is preferably C_1 - C_4 alkyl, for example methyl, ethyl, n-propyl, n-butyl, i-butyl, s-butyl, or R^3 is allyl or $-CH_2CH_2SCH_3$, and R^6 is preferably hydrogen, methyl, ethyl, -F, -Cl, -Br, and $-CF_3$.

In a further embodiment, A is -C(=O)Z- or -C(=O)C(=O)-; Z is $-CH_2$ - or -CH(OH)-; R^3 is C_1 - C_4 alkyl wherein each hydrogen is independently optionally replaced with a fluorine, or R^3 is allyl or $-CH_2CH_2SCH_3$; R^6 is selected from hydrogen, methyl, ethyl, -F, -CI, -Br, and $-CF_3$; and R^1 is $-C_2-C_{12}$ alkyl, C_3-C_8 cycloalkyl, (C_5-C_8) cycloalkenyl, $-(C_5-C_{11})$ bi- or tricycloalkenyl, $-(C_7-C_{11})$ bi- or tricycloalkenyl, $-(C_7-C_1)$ bi

In another embodiment, the present invention provides compounds of Formula I wherein A is -C(=O)Z- or -C(=O)C(=O)-; Z is $-CH_{2^-}$ or -CH(OH)-; R^3 is C_1 - C_4 alkyl wherein each hydrogen is independently optionally replaced with a fluorine, or R^3 is allyl or $-CH_2CH_2SCH_3$; R^6 is selected from hydrogen, methyl, ethyl, -F, -Cl, -Br, and $-CF_3$; and R^1 is C_2 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, or $-(C_7$ - C_{11})bicycloalkyl, wherein said alkyl optionally contains from one to five double bonds, and wherein each hydrogen atom of said alkyl is optionally replaced with a fluorine.

In another embodiment, the invention provides compounds of Formula I wherein A is -C(=O)Z- or -C(=O)C(=O)-; Z is $-CH_2$ - or -CH(OH)-; R^3 is C_1 - C_4 alkyl wherein each hydrogen is independently optionally replaced with a fluorine, or R^3 is allyl or $-CH_2CH_2SCH_3$; R^6 is selected from hydrogen, methyl, ethyl, -F, -Cl, -Br, and $-CF_3$; and R^1 is straight chain C_2 - C_{10} alkyl or branched C_3 - C_{10} alkyl.

In another embodiment, A is -C(=O)Z- or -C(=O)C(=O)-; Z is $-CH_2$ - or -CH(OH)-; R^3 is C_1 - C_4 alkyl wherein each hydrogen is independently optionally replaced with a fluorine, or R^3 is allyl or $-CH_2CH_2SCH_3$; R^6 is selected from hydrogen, methyl, ethyl, -F, -Cl, -Br, and -CF₃; and R^1 is C_3 - C_{10} alkyl comprising a tertiary carbon, for example *i*-propyl or 2-methylpropyl, or R^1 is C_4 - C_{10} alkyl comprising a quaternary carbon, for example *t*-butyl.

In a further embodiment, A is -C(=O)Z- or -C(=O)C(=O)-; Z is $-CH_2$ - or -CH(OH)-; R^3 is C_1 - C_4 alkyl wherein each hydrogen is independently optionally replaced with a fluorine, or R^3 is allyl or $-CH_2CH_2SCH_3$; R^6 is selected from hydrogen, methyl, ethyl, -F, -Cl, -Br, and -CF₃; and R^1 is selected from phenyl, thienyl, and pyridyl, optionally and independently substituted with one or two substituents R^{1b} , preferably independently selected from $-C_1$ - C_4 alkyl, CF_3 , $-C_1$ - C_4 alkyoxy, -F, -Cl, -Br, phenyl, and phenoxy.

In a further embodiment, A is -C(=O)Z- or -C(=O)C(=O)-; Z is $-CH_2$ - or -CH(OH)-; R^3 is C_1 - C_4 alkyl wherein each hydrogen is independently optionally replaced with a fluorine, or R^3 is allyl or $-CH_2CH_2SCH_3$; R^6 is selected from hydrogen, methyl, ethyl, -F, -Cl, -Br, and

-CF₃; and R¹ is phenyl or pyridyl and is optionally substituted with one or two substituents R^{1b} independently selected from -F, -Cl and -CF₃.

In another embodiment, A is -C(=O)Z- or -C(=O)C(=O)-; Z is $-CH_2$ - or -CH(OH)-; R³ is C_1 - C_4 alkyl wherein each hydrogen is independently optionally replaced with a fluorine, or R³ is allyl or $-CH_2CH_2SCH_3$; R⁶ is selected from hydrogen, methyl, ethyl, -F, -Cl, -Br, and -CF₃; and R¹ is C_3 - C_7 cycloalkyl, for example [2.2.1]-heptanyl.

5

10

15

20

25

30

35

In another embodiment, this invention provides compounds of Formula I wherein R⁷ is selected from -H, -C1-C12 alkyl optionally containing from one to five double bonds and wherein each hydrogen is independently optionally replaced with a fluorine, -C₁-C₂₀ alkoxy optionally containing from one to five double bonds and wherein each hydrogen is independently optionally replaced with a fluorine, -F, -Cl, -Br, -I, -CN, -NO₂, -(C₃-C₁₂) cycloalkyl optionally substituted with from one to six fluorine, -((3-12 membered) heterocycloalkyl) optionally substituted with from one to six fluorine, -(C₆-C₁₄) aryl, -((5-15 heteroaryl), -CHO, $-C(=O)(C_1-C_{15})$ alkyl), membered)heterocycloalkyl), -C(=O)(C_6 - C_{14} aryl), -C(=O)((5-15 membered) heteroaryl), - $C(=O)(C_5-C_{12} \quad \text{cycloalkyl}), \quad -C(=O)O(C_1-C_8 \quad \text{alkyl}), \quad -C(=O)N(C_1-C_{10} \quad \text{alkyl}), \quad -C(=O)N(C_1-C_1), \quad -C(=O)N(C_1-C_1), \quad -C(=O)N(C_1-C_1), \quad -C(=O)N(C_1-C_1), \quad -C(=O)N(C_1-C_1), \quad -C(=O)$ $C(=O)N(C_1-C_{10} \quad \text{alkyl})(C_6-C_{10} \quad \text{aryl}), \quad -C(=O)NH(C_{\underline{6}}-C_{10} \quad \text{aryl}), \quad -C(=O)N(C_1-C_{10} \quad \text{alkyl})((5-10))$ membered) heteroaryl), -C(=O)NH((5-10 membered) heteroaryl), -C(=O)N(C₁-C₁₀ alkyl)((5-10 membered) heterocycloalkyl), -C(=O)NH((5-10 membered) heterocycloalkyl), -C(=O)N(C₁-C₁₀ alkyl)(C_5 - C_{10} cycloalkyl), -C(=O)NH(C_5 - C_{10} cycloalkyl), -S(O)_n(C_1 - C_{15} alkyl), -S(O)_n(C_5 - C_{12} cycloalkyl), $-S(O)_n(C_6-C_{15} \text{ aryl})$, $-S(O)_n((5-10 \text{ membered}) \text{ heteroaryl})$, wherein said alkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl are each optionally substituted with from one to three substituents independently selected from -F, -Cl, -Br, -I, -OH, -C1-C6 alkoxy independently optionally containing from one to three double or triple bonds, -NR9R10, -(CH2)1- $_{10}NR^9R^{10}$, $-C(=O)R^{11}$, $-S(O)_nR^{11}$, $-C(=O)OR^{11}$, $-C(=O)NR^9R^{10}$, $-S(O)_nNR^9R^{10}$ $-(C_3-C_{12})$ cycloalkyl, -((4-12 membered) heterocycloalkyl), -(C₆-C₁₅) aryl, -((5-15 membered) heteroaryl), -((4-12 membered) heterocycloalkoxy), -(C₆-C₁₂) aryloxy and -((6-12 membered) heteroaryloxy).

In another embodiment, R^7 is selected from $-C_1$ - C_{12} alkyl optionally containing from one to five double bonds and wherein each hydrogen is independently optionally replaced with a fluorine, $-(C_3$ - $C_{12})$ cycloalkyl optionally substituted with from one to six fluorine and -((3-12 membered)) heterocycloalkyl optionally substituted with from one to six fluorine, wherein said alkyl, cycloalkyl and heterocycloalkyl are each optionally substituted with from one to three substitutents independently selected from -OH, $-C_1$ - C_6 alkoxy independently optionally containing from one to three double or triple bonds, $-NR^9R^{10}$, $-(CH_2)_{1-6}NR^9R^{10}$, $-C(=O)R^{11}$, $-C(=O)NR^9R^{10}$, $-S(O)_nNR^9R^{10}$, $-(C_6-C_{14})$ aryl, -((5-15 membered)) heteroaryl), $-C(=O)NR^9R^{10}$, $-S(O)_nNR^9R^{10}$, $-(C_6-C_{14})$ aryl, -((5-15 membered))

((4-12 membered) heterocycloalkoxy), $-(C_6-C_{12})$ aryloxy and -((6-12 membered) heteroaryloxy).

In another embodiment, the invention provides compounds of Formula I wherein R^7 is selected from $-C_1-C_{12}$ alkyl optionally containing from one to five double bonds, $-(C_3-C_{12})$ cycloalkyl and -((3-12 membered) heterocycloalkyl), wherein said alkyl, cycloalkyl and heterocycloalkyl are each optionally substituted with from one to three substitutents independently selected from -OH, $-C_1-C_6$ alkoxy independently optionally containing from one to three double or triple bonds, $-NR^9R^{10}$, and $-(CH_2)_{1-6}NR^9R^{10}$.

5

10

15

20

25

30

35

In another embodiment, R^7 is selected from $-C_1-C_{12}$ alkyl optionally containing from one to five double bonds, $-(C_3-C_{12})$ cycloalkyl and -(3-12 membered) heterocycloalkyl, wherein said alkyl, cycloalkyl and heterocycloalkyl are each optionally substituted with from one to three substitutents independently selected from -OH and $-C_1-C_6$ alkoxy independently optionally containing from one to three double or triple bonds.

In another embodiment, R^7 is selected from $-C_1-C_{12}$ alkyl optionally containing from one to five double bonds and $-C_3-C_{15}$ cycloalkyl, wherein said alkyl and cycloalkyl are each optionally independently substituted with from one to three substitutents $-NR^9R^{10}$.

In another embodiment, R^7 is -((3-12 membered) heterocycloalkyl), wherein said heterocycloalkyl is optionally substituted with from one to three substitutents independently selected from -OH, - C_1 - C_6 alkyl independently optionally containing from one to three double or triple bonds, - C_1 - C_6 alkoxy independently optionally containing from one to three double or triple bonds, - $(C_6$ - C_{10}) aryl, and -(5-15 membered) heteroaryl.

The terms "halogen", "halo", and the like, as used herein, unless otherwise indicated, include F, Cl, Br, and I.

The term "alkyl", as used herein, unless otherwise indicated, includes saturated monovalent hydrocarbon radicals having straight or branched moieties. Examples of alkyl groups include, but are not limited to, methyl, ethyl, *n*-propyl, isopropyl, and *t*-butyl.

The term "alkenyl", as used herein, unless otherwise indicated, includes alkyl moieties having at least one carbon-carbon double bond wherein alkyl is as defined above. Examples of alkenyl include, but are not limited to, ethenyl and propenyl.

The term "alkynyl", as used herein, unless otherwise indicated, includes alkyl moieties having at least one carbon-carbon triple bond wherein alkyl is as defined above. Examples of alkynyl groups include, but are not limited to, ethynyl and 2-propynyl.

The term "cycloalkyl", as used herein, unless otherwise indicated, includes non-aromatic saturated cyclic alkyl moieties wherein alkyl is as defined above. Examples of cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl. "Bicycloalkyl" and "tricycloalkyl" groups are non-aromatic saturated carbocyclic groups consisting of two or three rings respectively, wherein said rings share at least one

-11-

carbon atom. For purposes of the present invention, and unless otherwise indicated, bicycloalkyl groups include spiro groups and fused ring groups. Examples of bicycloalkyl groups include, but are not limited to, bicyclo-[3.1.0]-hexyl, bicyclo-2.2.1]-hept-1-yl, norbornyl, spiro[4.5]decyl, spiro[4.4]nonyl, spiro[4.3]octyl, and spiro[4.2]heptyl. An example of a tricycloalkyl group is adamantanyl. Other cycloalkyl, bicycloalkyl, and tricycloalkyl groups are known in the art, and such groups are encompassed by the definitions "cycloalkyl", "bicycloalkyl" and "tricycloalkyl" herein. "Cycloalkenyl", "bicycloalkenyl", and "triccyloalkenyl" refer to non-aromatic carbocyclic cycloalkyl, bicycloalkyl, and tricycloalkyl mojetjes as defined above, except comprising one or more carbon-carbon double bonds connecting carbon ring members (an "endocyclic" double bond) and/or one or more carbon-carbon double bonds connecting a carbon ring member and an adjacent non-ring carbon (an "exocyclic" double bond). Examples of cycloalkenyl groups include, but are not limited to, cyclopentenyl, cyclobutenyl, and cyclohexenyl, and a non-limiting example of a bicycloalkenyl group is norbornenyl. Cycloalkyl, cycloalkenyl, bicycloalkyl, and bicycloalkenyl groups also include groups that are substituted with one or more oxo moieties. Examples of such groups with oxo moieties are oxocyclopentyl, oxocyclobutyl, oxocyclopentenyl, and norcamphoryl. cycloalkenyl, bicycloalkenyl, and tricycloalkenyl groups are known in the art, and such groups are included within the definitions "cycloalkenyl", "bicycloalkenyl" and "tricycloalkenyl" herein.

5

10

15

20

25

30

35

The term "aryl", as used herein, unless otherwise indicated, includes an organic radical derived from an aromatic hydrocarbon by removal of one hydrogen, such as phenyl, naphthyl, indenyl, indanyl, and fluorenyl. "Aryl" encompasses fused ring groups wherein at least one ring is aromatic.

The terms "heterocyclic", "heterocycloalkyl", and like terms, as used herein, refer to non-aromatic cyclic groups containing one or more heteroatoms, prefereably from one to four heteroatoms, each selected from O, S and N. "Heterobicycloalkyl" groups are non-aromatic two-ringed cyclic groups, wherein said rings share one or two atoms, and wherein at least one of the rings contains a heteroatom (O, S, or N). Heterobicycloalkyl groups for purposes of the present invention, and unless otherwise indicated, include spiro groups and fused ring groups. In one embodiment, each ring in the heterobicycloalkyl contains up to four heteroatoms (i.e. from zero to four heteroatoms, provided that at least one ring contains at least one heteroatom). The heterocyclic groups of this invention can also include ring systems substituted with one or more oxo moleties. Examples of non-aromatic heterocyclic groups are aziridinyl, azetidinyl, pyrrolidinyl, piperidinyl, azepinyl, piperazinyl, 1,2,3,6-tetrahydropyridinyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydrothienyl, tetrahydropyranyl, tetrahydrothiopyranyl, morpholino. thiomorpholino, thioxanyl, pyrrolinyl, indolinyl, 2H-pyranyl, 4H-pyranyl, dioxanyl, 1.3dioxolanyl, pyrazolinyl, dihydropyranyl, dihydrothienyl, dihydrofuranyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, 3-azabicyclo[3.1.0]hexanyl, 3-azabicyclo[4.1.0]heptanyl,

quinolizinyl, quinuclidinyl, 1,4-dioxaspiro[4.5]decyl, 1,4-dioxaspiro[4.4]nonyl, 1,4-dioxaspiro[4.3]octyl, and 1,4-dioxaspiro[4.2]heptyl.

5

10

15

20

25

30

35

"Heteroaryl", as used herein, refers to aromatic groups containing one or more heteroatoms (O, S, or N), preferably from one to four heteroatoms. A multicyclic group containing one or more heteroatoms wherein at least one ring of the group is aromatic is a "heteroaryl" group. The heteroaryl groups of this invention can also include ring systems substituted with one or more oxo moieties. Examples of heteroaryl groups are pyridinyl, pyridazinyl, imidazolyl, pyrimidinyl, pyrazolyl, triazolyl, pyrazinyl, quinolyl, isoquinolyl, 1,2,3,4tetrahydroguinolyl, tetrazolyl, furyl, thienyl, isoxazolyl, thiazolyl, oxazolyl, isothiazolyl, pyrrolyl, indolyl, benzimidazolyl, benzofuranyl, cinnolinyl, indazolyl, indolizinyl, phthalazinyl, triazinyl, 1,2,4-trizainyl, 1,3,5-triazinyl, isoindolyl, 1-oxoisoindolyl, purinyl, oxadiazolyl, thiadiazolyl, furazanyl, benzofurazanyl, benzothiophenyl, benzotriazolyl, benzothiazolyl, benzoxazolyl, quinazolinyl, quinoxalinyl, naphthyridinyl. dihydroguinolyl, tetrahydroquinolyl, dihydroisoquinolyl, tetrahydroisoquinolyl, benzofuryl, furopyridinyl, pyrolopyrimidinyl, and azaindolyl.

The foregoing groups, as derived from the compounds listed above, may be C-attached or N-attached where such is possible. For instance, a group derived from pyrrole may be pyrrol-1-yl (N-attached) or pyrrol-3-yl (C-attached). The terms referring to the groups also encompass all possible tautomers.

Compounds of Formula I may have optical centers and therefore may occur in different enantiomeric, diastereomeric and meso configurations. The invention includes all enantiomers, diastereomers, and other stereoisomers of such compounds of Formula I, as well as racemic and other mixtures thereof. The invention also includes all tautomers of Formula I. When the compounds of Formula I of the present invention contain an optical center where R³ and R⁴ are attached, the "S" enantiomer is preferred.

The subject invention also includes isotopically-labeled compounds of Formula I, which are identical to those recited in Formula I, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number most abundant in nature. Examples of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, iodine, and chlorine, such as ³H, ¹¹C, ¹⁴C, ¹⁸F, ¹²³I and ¹²⁵I. Compounds of Formula I of the present invention and pharmaceutically acceptable salts, complexes and derivatives of said compounds that contain the aforementioned isotopes and/or other isotopes of other atoms are within the scope of this invention. Isotopically-labeled compounds of Formula I, for example those into which radioactive isotopes such as ³H and ¹⁴C are incorporated, are useful in drug and/or substrate tissue distribution assays. Tritiated, *i.e.*, ³H, and carbon-14, *i.e.*, ¹⁴C, isotopes are particularly preferred for their ease of

preparation and detectability. Further, substitution with heavier isotopes such as deuterium, *i.e.*, ²H, can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased *in vivo* half-life or reduced dosage requirements and, hence, may be preferred in some circumstances. Isotopically labeled compounds of Formula I of this invention can generally be prepared by substituting a readily available isotopically labeled reagent for a non-isotopically labeled reagent in the preparation of said compounds.

Salts of compounds of Formula I can be obtained by forming salts with any acidic or basic group present on a compound of Formula I. Examples of pharmaceutically acceptable salts of the compounds of Formula I are the salts of hydrochloric acid, p-toluenesulfonic acid, fumaric acid, citric acid, succinic acid, salicylic acid, oxalic acid, hydrobromic acid, phosphoric acid, methanesulfonic acid, tartaric acid, maleic acid, di-p-toluoyl tartaric acid, acetic acid, sulfuric acid, hydroiodic acid, mandelic acid, sodium, potassium, magnesium, calcium, and lithium.

Preferred embodiments of this invention include the following compounds of Formula I, all pharmaceutically acceptable salts thereof, complexes thereof, and derivatives thereof which convert into a pharmaceutically active compound upon administration:

2-(2-benzo[b]thiophen-4-yl-acetylamino)-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

N-(5-phenyl-2H-pyrazol-3-yl)-2-(2-thiophen-2-yl-acetylamino)-propionamide;

2-[2-(4-fluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-

20 propionamide;

WO 2004/033434

5

10

15

25

30

35

2-[2-(4-chloro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

N-(5-phenyl-2H-pyrazol-3-yl)-2-(2-m-tolyl-acetylamino)-propionamide;

 $\hbox{$2-[2-(2,5-difluoro-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;}\\$

2-[2-hydroxy-2-(4-trifluoromethyl-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

2-(2-fluoro-2-phenyl-acetylamino)-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

N-(5-phenyl-2H-pyrazol-3-yl)-2-[2-(4-trifluoromethyl-phenyl)-acetylamino]-propionamide;

2-[2-(2-fluoro-5-trifluoromethyl-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

2-[2-(4-fluoro-3-trifluoromethyl-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

N-(5-phenyl-2H-pyrazol-3-yl)-2-[2-(2-trifluoromethoxy-phenyl)-acetylamino]-propionamide;

2-[2-(3-phenoxy-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

N-(5-phenyl-2H-pyrazol-3-yl)-2-[2-(4-trifluoromethoxy-phenyl)-acetylamino]propionamide; 2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)propionamide; 5 acetic acid (3,5-difluoro-phenyl)-[1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)ethylcarbamoyl]-methyl ester; 2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)propionamide; 2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-10 propionamide; 2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)butyramide; 2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)butyramide; 15 N-(5-phenyl-2H-pyrazol-3-yl)-2-(2-pyridin-3-yl-acetylamino)-butyramide; N-(5-phenyl-2H-pyrazol-3-yl)-2-(2-pyridin-2-yl-acetylamino)-butyramide; 2-[2-(5-bromo-pyridin-3-yl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide; 2-(3-cyclopentyl-propionylamino)-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide; 2-phenyl-cyclopropanecarboxylic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)propyl]-amide; 20 N-[1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-succinamic acid methyl ester; 3,3-dimethyl-N-[1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-butyramide; dodecanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-amide; 2-phenylacetylamino-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide; 25 hexanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-amide; heptanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-amide; 2-(3-chloro-propionylamino)-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide; 2-(3-phenyl-propionylamino)-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide; 3-methyl-N-[1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-butyramide; 30 decanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-amide; 2-butyrylamino-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide; 5-chloro-pentanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-amide; 2-[2-(3-phenoxy-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide; 3-{[1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propylcarbamoyl]-methyl}-piperidine-1carboxylic acid tert-butyl ester; 35 N-(5-phenyl-2H-pyrazol-3-yl)-2-[2-(3-trifluoromethyl-phenyl)-acetylamino]-butyramide; 2-[2-(3-iodo-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

WO 2004/033434

5

10

15

20

25

30

35

2-[2-(3-chloro-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

4-methylsulfanyl-2-[2-(3-phenoxy-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

2-hydroxy-4-methyl-pentanoic acid [3-methylsulfanyl-1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-amide;

2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-4-methylsulfanyl-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

2-acetylamino-4-methylsulfanyl-N-(5-phenyl-2H-pyrazol-3-yl)- butyramide;

5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid ethyl ester;

5-[2-(2-hydroxy-4-methyl-pentanoylamino)-butyrylamino]-1H-pyrazole-3-carboxylic acid ethyl ester;

5-{2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid ethyl ester;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-(5-hydroxymethyl-2H-pyrazol-3-yl)-butyramide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-(5-hydrazinocarbonyl-2H-pyrazol-3-yl)-butyramide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-[5-(5-phenyl-4H-[1,2,4]triazol-3-yl)-2H-pyrazol-3-yl]-butyramide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-(4-oxo-4,5-dihydro-pyrazolo[1,5-d][1,2,4]triazin-2-yl)-butyramide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-(4-methoxy-7-phenyl-pyrazolo[1,5-d][1,2,4]triazin-2-yl)-butyramide;

5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid amide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-(4-oxo-7-phenylsulfanylmethyl-4,5-dihydro-pyrazolo[1,5-d][1,2,4]triazin-2-yl)-butyramide;

5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid methylamide;

5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid (1-ethyl-propyl)-amide;

5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid butyl-ethyl-amide;

5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid cyclopropylmethyl-amide;

- 2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-[5-(morpholine-4-carbonyl)-2H-pyrazol-3-yl]butyramide;
- 2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-[5-(pyrrolidine-1-carbonyl)-2H-pyrazol-3-yl]butyramide;
- 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide;
- 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid sec-butyl-amide;
- 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic 10 acid ethyl-(2-hydroxy-ethyl)-amide;
 - 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid cyclohexyl-ethyl-amide;
 - 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid diallylamide;
- 15 2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)propionamide;

25

30

- 2-[2-(3,5-difluoro-phenyl)-acetylamino]-3-methyl-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
- 2-[2-(3,5-difluoro-phenyl)-acetylamino]-3-methyl-pentanoic acid (5-butyl-2H-pyrazol-3-20 yl)-amide;
 - 2-phenylacetylamino-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;
 - 2-[2-(3-fluoro-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;
 - 2-[2-(3,5-bis-trifluoromethyl-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)propionamide;
 - 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionylamino}-1H-pyrazole-3-carboxylic acid butyl ester;
 - 2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-[5-(1H-indol-3-yl)-2H-pyrazol-3-yl]propionamide;
 - N-[5-(4-tert-butyl-phenyl)-2H-pyrazol-3-yl]-2-[2-(3,5-difluoro-phenyl)-acetylamino]propionamide;
 - 2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-[5-(4-ethyl-phenyl)-2H-pyrazol-3-yl]propionamide;
 - 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionylamino}-1H-pyrazole-3-carboxylic acid ethyl ester;
- 35 N-(4-bromo-5-phenyl-2H-pyrazol-3-yl)-2-[2-(3,5-difluoro-phenyl)-acetylamino]propionamide;

15

20

25

- 1-[2-(3,5-difluoro-phenyl)-acetylamino]-cyclopentanecarboxylic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
- N-(4-Chloro-5-phenyl-2H-pyrazol-3-yl)-2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionamide;
- 5 2-[2-(3,5-difluoro-phenyl)-acetylamino]-pent-4-enoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
 - [(5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionylamino}-1H-pyrazole-3-carbonyl)-amino]-phenyl-acetic acid tert-butyl ester;
 - 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionylamino}-1H-pyrazole-3-carboxylic acid benzylamide;
 - 2-[2-(3,5-difluoro-phenyl)-acetylamino]-pent-4-enoic acid (4-bromo-5-phenyl-2H-pyrazol-3-yl)-amide;
 - 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionylamino}-1H- pyrazole-3-carboxylic acid methyl ester;
 - 2-[2-(3,5-difluoro-phenyl)-acetylamino]-2-phenyl-N-(5-phenyl-2H-pyrazol-3-yl)-acetamide;
 - 2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-pent-4-enoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
 - 3-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-succinamic acid methyl ester;
 - 2-cyclohexyl-2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-acetamide;
 - 2-cyclohexyl-2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-acetamide;
 - 3-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H- pyrazol-3-yl)-succinamic acid benzyl ester;
 - 2-(2-hydroxy-2-phenyl-acetylamino)-pent-4-enoic acid (5-thiophen-2-yl-2H-pyrazol-3-yl)-amide;
- 2-[2-(3,5-difluoro-phenyl)-acetylamino]-pentanoic acid (5-methyl-1-phenyl-1H-pyrazol-30 3-yl)-amide;
 - 2-(2-bicyclo[2.2.1]hept-2-yl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
 - 2-(2-cyclohexyl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3- yl)-amide;
- 2-(3-hydroxy-2-phenyl-propionylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-35 amide;
 - 2-(2-adamantan-1-yl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide; 4-methyl-pentanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)- butyl]-amide;

3-methyl-pentanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;

2-(2-cyclopentyl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)- amide;

2-(2-cyclopropyl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-(2-indan-2-yl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-(3-phenyl-butyrylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

5-oxo-hexanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;

2-[2-(3-chloro-phenyl)-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-[2-(3-bromo-phenyl)-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-(5-furan-2-yl-2H-pyrazol-3-yl)-propionamide;

N-(5-tert-butyl-2H-pyrazol-3-yl)-2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionamide;

N-(5-cyclopropyl-2H-pyrazol-3-yl)-2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionamide;

5

10

15

20

25

30

35

2-[2-(3,5-difluoro-phenyl)-acetylamino]-pentanoic acid (5-furan-2-yl-2H-pyrazol-3-yl)-amide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-pentanoic acid (5-thiophen-2-yl-2H-pyrazol-3-yl)-amide;

2-[2-(3,5-diffuoro-phenyl)-acetylamino]-pentanoic acid (5-tert-butyl-2H-pyrazol-3-yl)-amide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-pentanoic acid [5-(4-chloro-phenyl)-2H-pyrazol-3-yl]-amide;

N-(5-tert-butyl-2H-pyrazol-3-yl)-2-[2-(3,5-difluoro-phenyl)-acetylamino]-3-methyl-butyramide;

1-[2-(3,5-difluoro-phenyl)-acetylamino]- cyclopropanecarboxylic acid (5-tert-butyl-2H-pyrazol-3-yl)- amide;

1-[2-(3,5-difluoro-phenyl)-acetylamino]-cyclopropanecarboxylic acid (5-furan-2-yl-2H-pyrazol-3-yl)- amide;

N-(5-biphenyl-4-yl-2H-pyrazol-3-yl)-2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionamide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-[5-(3',4'-dimethyl-biphenyl-4-yl)-2H-pyrazol-3-yl]-propionamide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-phenylmethanesulfonylamino-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

2-(4-fluoro-phenylmethanesulfonylamino)-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

2-(2-nitro-phenylmethanesulfonylamino)-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

2-phenylmethanesulfonylamino-pentanoic acid (5-tert-butyl-2H-pyrazol-3-yl)-amide;

2-(4-fluoro-phenylmethanesulfonylamino)-pentanoic acid (5-tert-butyl-

-19-

2H-pyrazol-3-yl)-amide;

5

10

20

25

30

35

N-(5-tert-butyl-2H-pyrazol-3-yl)-2-phenylmethanesulfonylamino-propionamide;

2-p-tolylmethanesulfonylamino-pentanoic acid (5-tert-butyl-2H-pyrazol-3-yl)-amide;

2-phenylmethanesulfonylamino-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-(decane-1-sulfonylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-(biphenyl-4-sulfonylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-(4-chloro-phenylmethanesulfonylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-benzenesulfonylamino-4-methylsulfanyl-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

2-(4-fluoro-phenylmethanesulfonylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-(4,5-dichloro-thiophene-2-sulfonylamino)-4-methylsulfanyl-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide; and

2-(4-chloro-phenylmethanesulfonylamino)-pentanoic acid (5-tert-butyl-2H-pyrazol-3-15 yl)-amide.

Other specific compounds of Formula I of the invention are:

2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-[5-(5-methoxy-1,5-dimethyl-hexyl)-2H-pyrazol-3-yl]-butyramide;

2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-[5-(5-methoxy-1,5-dimethyl-hexyl)-2H-pyrazol-3-yl]-butyramide;

2-[2-(5-bromo-pyridin-3-yl)-2-hydroxy-acetylamino]-N-[5-(5-methoxy-1,5-dimethyl-hexyl)-2H-pyrazol-3-yl]-butyramide;

2-hydroxy-N-{1-[5-(5-methoxy-1,5-dimethyl-hexyl)-2H-pyrazol-3-ylcarbamoyl]-propyl}-3-methyl-butyramide;

2-hydroxy-N-{1-[5-(5-methoxy-1,5-dimethyl-hexyl)-2H-pyrazol-3-ylcarbamoyl]-propyl}-3,3-dimethyl-butyramide;

2-(4,5-dichloro-thiophene-2-sulfonylamino)-4-methylsulfanyl-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

2-(4-chloro-phenylmethanesulfonylamino)-pentanoic acid (5-tert-butyl-2H-pyrazol-3-yl)-amide; and

pharmaceutically acceptable salts thereof, complexes thereof, and derivatives thereof which convert into a pharmaceutically active compound upon administration.

Other preferred compounds of Formula I are:

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid benzyl-methyl-amide;

3,7-Dimethyl-oct-6-enoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide; 2-[2-(1-Benzyl-piperidin-3-yl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

- 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino}-butyrylamino}-1H-pyrazole-3-carboxylic acid dibutylamide;
- 3-{[1-(5-Phenyl-2H-pyrazol-3-ylcarbamoyl)-propylcarbamoyl]-methyl}-piperidine-1carboxylic acid tert-butyl ester;
- 3-{[1-(5-Phenyl-2H-pyrazol-3-ylcarbamoyl)-propylcarbamoyl]-methyl}-piperidine-1carboxylic acid tert-butyl ester;

15

20

25

30

- 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid ethyl-methyl-amide;
- 2-[2-(3-Chloro-phenyl)-acetylamino]-pentanoic acid [5-(4-chloro-phenyl)-2H-pyrazol-10 3-yll-amide;
 - 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-[5-(4-phenyl-piperazine-1-carbonyl)-2Hpyrazol-3-yl]-butyramide;
 - 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-[5-(2-hydroxymethyl-pyrrolidine-1carbonyl)-2H-pyrazol-3-yl]-butyramide;
 - 2-(2-Cyclohexyl-2-hydroxy-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)amide;
 - 2-(2-Cyclohexyl-2-hydroxy-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)amide;
 - 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-[5-(2,6-dimethyl-morpholine-4-carbonyl)-2H-pyrazol-3-yl]-butyramide;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid (2-hydroxy-ethyl)-propyl-amide;
 - 1-(5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino}-butyrylamino}-1H-pyrazole-3-carbonyl)piperidine-3-carboxylic acid ethyl ester;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid (2,2-dimethoxy-ethyl)-methyl-amide;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid diethylamide;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino}-butyrylamino}-1H-pyrazole-3-carboxylic acid diisobutylamide;
 - 3,7-Dimethyl-oct-6-enoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;
 - 3,7-Dimethyl-oct-6-enoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid dibenzylamide;
- 35 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-[5-(2-ethyl-piperidine-1-carbonyl)-2Hpyrazol-3-yl]-butyramide;

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid benzyl-ethyl-amide;

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid butyl-methyl-amide;

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid dihexylamide;

5

10

15

20

25

35

2-[2-(2,3-Difluoro-phenyl)-2-hydroxy-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-[2-(1-Benzenesulfonyl-piperidin-3-yl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

2-[2-(1-Acetyl-piperidin-3-yl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide; 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid dipropylamide;

2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-[5-(1-methyl-1H-benzoimidazol-2-yl)-2H-pyrazol-3-yl]-butyramide;

2-[2-(5-Bromo-pyridin-3-yl)-acetylamino]-pentanoic acid [5-(4-chloro-phenyl)-2H-pyrazol-3-yl]-amide;

2-[2-(3-Trifluoromethyl-phenyl)-acetylamino]-pentanoic acid [5-(4-chloro-phenyl)-2H-pyrazol-3-yl]-amide;

2-[2-(3-Methoxy-phenyl)-acetylamino]-pentanoic acid [5-(4-chloro-phenyl)-2H-pyrazol-3-yl]-amide;

3-{1-[5-(4-Chloro-phenyl)-2H-pyrazol-3-ylcarbamoyl]-butylcarbamoyl}-5-methyl-2-propyl-hexanoic acid tert-butyl ester;

N-(5-Phenyl-2H-pyrazol-3-yl)-2-[2-(5-phenyl-pyridin-3-yl)-acetylamino]-butyramide;

E-224354: N-(5-Phenyl-2H-pyrazol-3-yl)-2-(2-piperidin-1-yl-acetylamino)-butyramide;

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid dipentylamide;

2-Hydroxy-hexanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;

2-[2-(2-Chloro-phenyl)-2-hydroxy-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-30 3-yl)-amide;

2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid (2H-pyrazol-3-yl)-amide;

2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-[5-(5,6,7,8-tetrahydro- [1,2,4]triazolo[4,3-a]pyridin-3-yl)-2H-pyrazol-3-yl]-butyramide;

2-[2-(3,5-Difluoro-phenyl)-acetylamino]-3,3-dimethyl-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

2-(2-Hydroxy-3-methyl-butyrylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

10

15

20

25

30

35

- 2-[2-(5-o-Tolyl-pyridin-3-yl)-acetylamino]-pentanoic acid [5-(4-chloro-phenyl)-2Hpyrazol-3-yl]-amide; 2-Hydroxy-3-methyl-N-[1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-butyramide; 2-[2-(2-Oxo-azepan-3-yl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide; 2-[2-(2-Oxo-azepan-3-yl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide; 3,7-Dimethyl-octa-2,6-dienoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]amide; 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid (5-methyl-2H-pyrazol-3-yl)amide; and 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-hexanoic acid (5-phenyl-2H-pyrazol-3-yl)amide; 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-(4-oxo-4,5-dihydro-pyrazolo[1,5d][1,2,4]triazin-2-yl)-butyramide; 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-(4-methoxy-7-phenyl-pyrazolo[1,5d][1,2,4]triazin-2-yl)-butyramide; 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-(4-oxo-7-phenylsulfanylmethyl-4,5-dihydropyrazolo[1,5-d][1,2,4]triazin-2-yl)-butyramide; 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid (5-methyl-1-phenyl-1Hpyrazol-3-yl)-amide; and pharmaceutically acceptable salts thereof, complexes thereof, and derivatives thereof which convert into a pharmaceutically active compound upon administration. The most preferred embodiments of this invention include the following compounds of Formula I, all pharmaceutically acceptable salts thereof, complexes thereof, and derivatives thereof which convert into a pharmaceutically active compound upon administration: 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-(5-furan-2-yl-2H-pyrazol-3-yl)-
 - $\hbox{$2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-(5-furan-2-yl-2H-pyrazol-3-yl)-propionamide;}$

N-(5-tert-Butyl-2H-pyrazol-3-yl)-2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionamide; N-(5-Cyclopropyl-2H-pyrazol-3-yl)-2-[2-(3,5-difluoro-phenyl)-acetylamino]propionamide;

- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid (5-furan-2-yl-2H-pyrazol-3-yl)-amide;
- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid (5-thiophen-2-yl-2H-pyrazol-3-yl)-amide;

15

20

25

30

35

- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid (5-cyclopropyl-2H-pyrazol-3-yl)-amide;
- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid [5-(4-chloro-phenyl)-2H-pyrazol-3-yl]-amide;
 - 2-Phenylacetylamino-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;
 - 2-[2-(3-Fluoro-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;
- 2-[2-(3,5-Difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;
- 2-[2-(4-Fluoro-3-trifluoromethyl-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-10 propionamide;
 - 2-[2-(3-Phenoxy-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;
 - 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pent-4-enoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
 - 2-[2-(3,5-Difluoro-phenyl)-2-hydroxy-acetylamino]-4-methylsulfanyl-N- (5-phenyl-2H-pyrazol-3-yl)-butyramide;
 - 2-[2-(3,5-Difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;
 - 2-[2-(3,5-Difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid ethyl ester;
 - 5-[2-(2-Hydroxy-4-methyl-pentanoylamino)-butyrylamino]-1H-pyrazole-3-carboxylic acid ethyl ester;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-2-hydroxy-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid ethyl ester;
 - 2-[2-(3,5-Difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;
 - N-(5-Phenyl-2H-pyrazol-3-yl)-2-(2-pyridin-3-yl-acetylamino)-butyramide;
 - 2-[2-(5-Bromo-pyridin-3-yl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid butyl-ethyl-amide:
 - 2-[2-(3-Phenoxy-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid cyclohexyl-ethyl-amide;
 - 2-(2-Cyclohexyl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

- 4-Methyl-pentanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;
- 3-Methyl-pentanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;
- 2-(2-Cyclopentyl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
- 2-(2-Cyclopropyl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
- 2-[2-(3-Chloro-phenyl)-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
- 2-[2-(3-Bromo-phenyl)-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
- 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino}-1H-pyrazole-3-carboxylic acid benzyl-methyl-amide;

5

10

15

20

25

30

- 3,7-Dimethyl-oct-6-enoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;
- 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid dibutylamide;
- 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid ethyl-methyl-amide;
- 2-(2-Cyclohexyl-2-hydroxy-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)amide:
 - 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-[5-(2,6-dimethyl-morpholine-4-carbonyl)-2H-pyrazol-3-yl]-butyramide;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid (2-hydroxy-ethyl)-propyl-amide;
 - 1-(5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carbonyl)piperidine-3-carboxylic acid ethyl ester;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid (2,2-dimethoxy-ethyl)-methyl-amide;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid diisobutylamide;
 - 3,7-Dimethyl-oct-6-enoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino}-1H-pyrazole-3-carboxylic acid dibenzylamide;
- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-[5-(2-ethyl-piperidine-1-carbonyl)-2Hpyrazol-3-yl]-butyramide;
- 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid benzyl-ethyl-amide;
- 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid butyl-methyl-amide;
- 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic 35 acid dihexylamide;

2-[2-(2,3-Difluoro-phenyl)-2-hydroxy-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-[2-(1-Acetyl-piperidin-3-yl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide; 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid dipropylamide;

N-(5-Phenyl-2H-pyrazol-3-yl)-2-[2-(5-phenyl-pyridin-3-yl)-acetylamino]-butyramide; 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid dipentylamide;

5

10

15

20

25

30

35

2-[2-(5-o-Tolyl-pyridin-3-yl)-acetylamino]-pentanoic acid [5-(4-chloro-phenyl)-2H-pyrazol-3-yl]-amide; and

2-Hydroxy-3-methyl-N-[1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-ethyl]-butyramide.

The present invention also provides a pharmaceutical composition for treating in a mammal a disease or condition associated with Aβ-peptide production, which pharmaceutical composition comprises a compound of Formula I in an amount effective in inhibiting gamma-secretase and a pharmaceutically acceptable carrier.

The present invention also provides a pharmaceutical composition for treating in a mammal, including in a human, a disease or condition associated with Aβ-peptide production, which pharmaceutical composition comprises a compound of Formula I in an amount effective in inhibiting Aβ-production and a pharmaceutically acceptable carrier.

The present invention also provides a pharmaceutical composition for treating in a mammal, including in a human, a disease or condition associated with Aβ-peptide production, which pharmaceutical composition comprises a compound of Formula I in an amount effective in inhibiting said disease or condition and a pharmaceutically acceptable carrier.

The present invention also provides a pharmaceutical composition for treating in a mammal, including in a human, a disease or condition selected from Alzheimer's disease, hereditary cerebral hemorrhage with amyloidosis of the Dutch type, cerebral amyloid angiopathy, systemic amyloidosis, a prion-mediated disease, inclusion body myositis, stroke, and Down's Syndrome, which pharmaceutical composition comprises a compound of Formula I in an amount effective in inhibiting $A\beta$ -production and a pharmaceutically acceptable carrier.

The present invention also provides a pharmaceutical composition for treating in a mammal, including in a human, a disease or condition selected from Alzheimer's disease, hereditary cerebral hemorrhage with amyloidosis of the Dutch typecerebral amyloid angiopathy, systemic amyloidosis, a prion-mediated disease, inclusion body myositis, stroke, and Down's Syndrome, which pharmaceutical composition comprises a compound of Formula I in an amount effective in inhibiting said disease or condition and a pharmaceutically acceptable carrier.

The present invention also provides a method for treating in a mammal, including in a

human, a disease or condition associated with $A\beta$ -peptide production, which method comprises administering to said mammal an amount of a compound of Formula I effective in inhibiting $A\beta$ -production.

The present invention also provides a method for treating in a mammal, including in a human, a disease or condition associated with $A\beta$ -peptide production, which method comprises administering to said mammal an amount of a compound of Formula I effective in treating said disease or condition.

5

10

15

20

25

30

35

The present invention also provides a method for treating in a mammal, including in a human, a disease or condition selected from Alzheimer's disease, hereditary cerebral hemorrhage with amyloidosis of the Dutch type, cerebral amyloid angiopathy, systemic amyloidosis a prion-mediated disease, inclusion body myositis, stroke, and Down's Syndrome, which method comprises administering to said mammal an amount of a compound of Formula I effective in inhibiting $A\beta$ -production.

The present invention also provides a method for treating in a mammal, including in a human, a disease or condition selected from Alzheimer's disease, hereditary cerebral hemorrhage with amyloidosis of the Dutch type, cerebral amyloid angiopathy, systemic amyloidosis, a prion-mediated disease, inclusion body myositis, stroke, and Down's Syndrome, which method comprises administering to said mammal an amount of a compound of Formula I effective in treating said disease or condition.

Compounds in Formula I may be used alone or used as a combination with any other drug, including, but not limited to, any memory enhancement agent, antidepressant agent, anxiolytic, antipsychotic agent, sleep disorder agent, anti-inflammatory agent, anti-oxidant agent, cholesterol modulating agent (for example, an agent that lowers LDL or increases HDL),or anti-hypertension agent. Accordingly, this invention also provides a pharmaceutical composition for treatment of a mammal, including a human, in need thereof comprising an effective amount of a compound of Formula I and an effective amount of another drug, for example a memory enhancement agent, antidepressant agent, anxiolytic, antipsychotic agent, sleep disorder agent, anti-inflammatory agent, anti-oxidant agent, cholesterol modulating agent (for example, an agent that lowers LDL or increases HDL), or antihypertension agent, and a pharmaceutically acceptable carrier. This invention also provides a method for treating dementia, for example Alzheimer's disease, in a mammal, including in a human, comprising administering to the mammal an effective amount of a compound of Formula I and an effective amount of another drug, for example a memory enhancement agent, antidepressant agent, anxiolytic, antipsychotic agent, sleep disorder agent, antiinflammatory agent, anti-oxidant agent, cholesterol modulating agent (for example, an agent that lowers LDL or increases HDL),or anti-hypertension agent.

Compounds of Formula I, or any of the combinations described in the immediately preceding paragraph, may optionally be used in conjunction with a know P-glycoprotein inhibitor, such as verapamil.

References herein to diseases and conditions "associated with A β -peptide production" mean a disease or condition that is caused at least in part by A β -peptide and/or the production thereof. Thus, A β -peptide is a contributing factor, but not necessarily the only contributing factor, to "a disease or condition associated with A β -peptide production".

5

10

15

20

The terms "treatment", "treating", and the like, refer to reversing, alleviating, or inhibiting the progress of a disorder or condition. As used herein, "treatment" and "treating" and like terms can also refer to decreasing the probability or incidence of occurrence of a disease or condition in a mammal compared to an untreated control population, or in the same mammal prior to treatment, according to the present invention. "Treatment" or "treating" can also include delaying or preventing the onset of a disease or condition. "Treatment" or "treating" as used herein also encompasses preventing the recurrence of disease or condition.

In the present invention the pyrazole ring is always aromatic. To those skilled in the art it is well understood that the pyrazole ring is aromatic when R⁸ is attached to either of the ring nitrogen atoms.

It is also well known that when R⁸ is hydrogen, two tautomeric forms of formula I exist in solution equilibrium.

Detailed Description of the Invention

Compounds of Formula I may be prepared according to the following reaction Schemes and discussion. Unless otherwise indicated, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ and A in the reaction schemes and discussion that follows are as defined above.

Scheme I refers to the preparation of compounds of the Formula I, <u>la</u>. An aminopyrazole <u>1</u> (5-substituted - 2*H* - pyrazol-3-ylamine) or its corresponding tautomer (5-substituted - 2*H* - pyrazol-3-ylamine) is coupled with a nitrogen-protected aminoacid <u>2</u>. The nitrogen protecting group Y may be selected from any of the nitrogen protecting groups well known in the art, for example those described in literature such as Theodora W. Greene and Peter G. M. Wuts "Protective Groups in Organic Synthesis" Third Edition (1999). Examples of a protected nitrogen group for the reactant <u>2</u> include where –C(=O)OY in <u>2</u> is butoxycarbonyl ("BOC", Y = tert-butyl) or benzyloxycarbonyl ("CBZ", Y = benzyl), which are prepared with either di-tert-butyl dicarbonate (Aldrich Chemical Company, Milwaukee Wisconsin), or benzyl chloroformate (Aldrich) in the presence of either an inorganic or organic base (e.g., sodium carbonate or triethylamine) at about 0 to about 30 °C in an organic solvent (e.g., methylene chloride) or in a mixture of water and an organic solvent (e.g., ethyl acetate) (Scheme II) (see, Muller, Methoden Der Organischen Chemie. "Vierte Auglage - Synthesis von Peptiden I" — Houben Weyl — Georg-Thieme Verlag Stuttgart, 1974, Band XV/1).

5

10

15

-29-

Scheme II

Intermediate <u>1</u> may be prepared according to procedure shown in Scheme III, using either a chlorovinylnitrile (Hartman, <u>1984</u>, <u>Synthesis</u>, pp. 276-277) or a ketonitrile (Elnagdi, <u>Tetrahedron</u>, <u>1974</u>, 31, 63).

5

10

15

Scheme III

$$NH_{2}-NH_{2} + \begin{pmatrix} N & & \\ &$$

Numerous reagents, well-known in the art, can be used to couple 1 and 2 (wherein R is H) to form 3a or a mixture of 3a and 3 using standard peptide coupling methods known in art of organic chemistry (Scheme I). Activation of the carboxylic acid with HATU (O-(7-azabenzotriazole-1yl)-1,1,3,3,-tetramethyluronium hexafluorophosphate) or PyBOP (benzotriazole-1-yl)-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate) or TBTU in DMF with a base, like HBTU/trialkylamine, or HBOt/EDC/trialkylamine in an appropriate solvent such as methylene chloride, THF, DMF or a mixture of two solvents, and mixture of reagents mixed to form a clear solution. Many of these peptide coupling agents or resins for solid phase synthesis such as Fmoc (Fluorenylmethylcarbonyl)-protected hydroxylamine bound to polystylene beads is common and well known in literature. Deprotection of the Fmoc group can be accomplished under standard conditions using 20% piperidine in DMF. References

:O-benzotriazol-1-yl-N,N,N',N'-tetramethyluronium hexafluorophosphate ("HBTU", Aldrich Chemical Company) and O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate ("HATU", Aldrich) (See, Fieser, Reagents for Organic Synthesis, 1986, Wiley Interscience, New York, Vol. 12, p. 44; Hruby, Biorganic Chemistry: Peptides and Proteins, 1998, Oxford University press, New York, pp. 27-64; Muller, Methoden Der Organischen Chemie, Vierte Auflage - Synthese von Peptiden II - Houben Weyl, George-Thieme Verlag Stuttgart, 1974, Band XV/2). When optically active reagents are employed, reaction conditions, such as temperature, time and the selection of the base, must be carefully controlled to avoid racemization. The protected amino group or carboxylic acid group can be prepared by methods well known in the literature for amino acid protecting groups as described in Organic chemistry Journal, textbook such as "Protective Groups in Organic Syntehsis" by T. W. Greene and Wuts as described above. Compound 3a can be heated at an appropriate temperature from about 80 to about 180°C, preferably at about 150 to about 170°C to provide compound 3.

5

10

15

20

25

30

35

Intermediate <u>3</u> of Scheme I, is deprotected to afford aminoamide <u>4</u> (or its corresponding 1*H*-pyrazol tautomer) either through treatment with strong acid in the case of butoxycarbonyl or through hydrogenolysis in the case of carbobenzyloxycarbonyl. Specifically, BOC-<u>3</u>, on treatment with hydrochloric acid or trifluoroacetic acid in an organic solvent (e.g., dioxane, THF, or methylene chloride), at about 30 °C for about 1 to about 19 hours affords the corresponding salts of <u>4</u>. Alternatively, CBZ-<u>3</u> may be deprotected through catalytic hydrogenolysis in the presence of hydrogen (from about 1 to about 10 atmospheres), a heavy metal catalyst (e.g., palladium on carbon or palladium hydroxide on carbon, 1 to 10 percent catalyst loading, present at about 0.01 to about 0.50 times the of substrate), and a solvent (e.g., methanol, ethanol or ethyl acetate) at from about 20 to about 50 °C from about 1 to about 19 hours.

Alternatively, intermediate <u>3</u> can be prepared by reacting <u>1</u> and <u>2</u> (wherein R is alkyl, such as methyl or ethyl) in the presence of trialkylaluminum (such as AlMe₃) in an pprpriate solvent, such as THF/toluene or dichloroethane/toluene or toluene, at a suitable temperature, for example at a temperature of from about room temperature to about reflux, in an atmosphere or pressure reactor or sealed system.

The compound $\underline{\mathbf{Ia}}$ in Scheme I (or its corresponding 1*H*-pyrazol tautomer) is prepared from the reaction of $\underline{\mathbf{4}}$ with $\underline{\mathbf{9}}$ where X is a leaving group (*e.g.*, halide or triflate). The reaction is carried out at about 0 to about 30°C in an organic solvent (*e.g.*, methylene chloride, ethyl acetate, or DMF) in the presence of an organic base (*e.g.*, triethylamine, diisopropylethylamine, or *N*-methylmorpholine) from about 1 minute to about 24 hours. Alternatively, the compound $\underline{\mathbf{Ia}}$ in Scheme I is prepared from the reaction of $\underline{\mathbf{4}}$ with $\underline{\mathbf{9}}$ where X is $\underline{\mathbf{9}}$ where X as $\underline{\mathbf{9}}$ where X as $\underline{\mathbf{9}}$ with $\underline{\mathbf{9}}$ where X is $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}}$ where X is $\underline{\mathbf{9}}$ with $\underline{\mathbf{9}}$ where X is $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}}$ where X is $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}}$ is $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}}$ is $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}}$ is $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}}$ is $\underline{\mathbf{9}}$ is $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}}$ is $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}}$ is $\underline{\mathbf{9}$ where $\underline{\mathbf{9}}$ is $\underline{\mathbf{9}}$ is $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}}$ is $\underline{\mathbf{9}$ where $\underline{\mathbf{9}}$ is $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}$ is $\underline{\mathbf{9}}$ is $\underline{\mathbf{9}}$ where $\underline{\mathbf{9}}$ is $\underline{\mathbf{9}$ is $\underline{\mathbf{9}}$ is $\underline{\mathbf{9}$ where $\underline{\mathbf{9}$ is $\underline{\mathbf{9}}$ is $\underline{\mathbf{9}$ is $\underline{\mathbf{$

methylene chloride or DMF) similar to that described above for the conversion of $\underline{1}$ and $\underline{2}$ to $\underline{3a}$ and/or $\underline{3}$.

Alternatively, the compound <u>Ib</u> can be prepared according to the procedure of Scheme IV, employing the general conditions described for Scheme I. In Scheme IV, R can be alkyl or benzyl. The coupling of <u>9</u> and <u>11</u> in Scheme IV can be performed between about 0 and about 30°C in an organic solvent (e.g., methylene chloride, ethyl acetate, or DMF) in the presence of a base (e.g., triethylamine or diisopropylethylamine). When R is alkyl, either acidic or basic hydrolysis may be used to convert <u>12</u> to <u>13</u>. If R is benzyl, catalytic hydrogenolysis may also be used to prepare <u>13</u>.

5

10

15

Scheme IV

The above amide bond formation can be prepared from coupling of the ester (12 in Scheme IV) with 1 in the presence of trialkylaluminum (such as AlMe₃) in an appropriate solvent, eg., THF, toluene or a mixture of THF/toluene in an open or sealed tube at a temperature of between about 80 and about 150°C until complete conversion to the desired product (1b in Scheme IV).

-32-

SCHEME V

SCHEME VI

$$R_1 = R_1 = R_1 = R_2 = R_1 = R_2 = R_2 = R_2 = R_3 = R_4 = R_4 = R_3 = R_4 = R_4 = R_5 = R_5$$

5

10

15

20

25

The ester group of R⁷ can be converted to the corresponding amide using a similar method for amide bond formation, preferably using trimethylaluminum in an appropriate solvent or mixture of solvents, such as THF/toluene as shown in Scheme V.

The halo group X^2 can be generated according to Scheme VI by reacting the starting material wherein R^5 is H with NBS, NCS, I_2 in an appropriate solvents such as methylene chloride, or chloroform. The halo group can be replaced with another group using the methods known in art, such as halogen-metal exchange, followed by quenching with an electrophile, or using typical Suzuki coupling conditions employing a catalyst such as palladium complex like tetrakis(triphenylphosphine)-palladium with sodium carbonate as a base in a suitable solvent such as THF, DME, Ethanol and a boronic acid.

Regardless of the procedure used to prepare the compounds of formula I, purification may be accomplished by crystallization or using chromatography on silica gel either with an ethyl acetate/hexane elution gradient or a chloroform/methanol elution gradient.

Pharmaceutically acceptable salts of a compound of formula I can be prepared in a conventional manner by treating a solution or suspension of the corresponding free base or acid with one chemical equivalent of a pharmaceutically acceptable acid or base. Conventional concentration or crystallization techniques can be employed to isolate the salts. Illustrative of suitable acids are acetic, lactic, succinic, maleic, tartaric, citric, gluconic, ascorbic, benzoic, cinnamic, fumaric, sulfuric, phosphoric, hydrochloric, hydrobromic, hydroiodic, sulfamic, sulfonic acids such as methanesulfonic, benzene sulfonic, p-toluenesulfonic, and related acids. Illustrative bases are sodium, potassium, and calcium.

A compound of this invention may be administered alone or in combination with pharmaceutically acceptable carriers, in either single or multiple doses. Suitable pharmaceutical carriers include inert solid diluents or fillers, sterile aqueous solutions and various organic solvents. The pharmaceutical compositions formed by combining a compound

of formula I or a pharmaceutically acceptable salt thereof can then be readily administered in a variety of dosage forms such as tablets, powders, lozenges, syrups, injectable solutions and the like. These pharmaceutical compositions can, if desired, contain additional ingredients such as flavorings, binders, excipients and the like. Thus, for purposes of oral administration, tablets containing various excipients such as sodium citrate, calcium carbonate and calcium phosphate may be employed along with various disintegrants such as starch, methylcellulose, alginic acid and certain complex silicates, together with binding agents such as polyvinylpyrrolidone, sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often useful for tabletting purposes. Solid compositions of a similar type may also be employed as fillers in soft and hard filled gelatin capsules. Preferred materials for this include lactose or milk sugar and high molecular weight polyethylene glycols. When aqueous suspensions or elixirs are desired for oral administration, the essential active ingredient therein may be combined with various sweetening or flavoring agents, coloring matter or dyes and, if desired, emulsifying or suspending agents, together with diluents such as water, ethanol, propylene glycol, glycerin and combinations thereof.

5

10

15

20

25

30

35

For parenteral administration, solutions containing a compound of this invention or a pharmaceutically acceptable salt thereof in sesame or peanut oil, aqueous propylene glycol, or in sterile aqueous solution may be employed. Such aqueous solutions should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. The sterile aqueous media employed are all readily available by standard techniques known to those skilled in the art.

A compound of formula I or a pharmaceutically acceptable salt thereof can be administered orally, transdermally (e.g., through the use of a patch), parenterally (e.g. intravenously), rectally, or topically. In general, the daily dosage for treating a neurodegenerative disease or condition or a disease or condition associated with A β -peptide production will generally range from about 0.1 mg/kg to about 5 gm/kg body weight, preferably from about 0.1 mg/kg to about 100 mg/kg body weight. Variations based on the aforementioned dosage range may be made by a physician of ordinary skill taking into account known considerations such as the weight, age, and condition of the person being treated, the severity of the affliction, and the particular route of administration chosen.

A specific compound of formula I can be determined to inhibit A β -peptide production using biological assays known to those of ordinary skill in the art, for example the assays described below.

The activity of compounds of the invention in inhibiting gamma-secretase activity was determined in a solubilized membrane preparation generally according to the description provided in McLendon et al. Cell-free assays for γ -secretase activity, The FASEB Journal

(Vol. 14, December 2000, pp. 2383-2386). Using such assay, compounds of the invention were determined to have an IC_{50} activity for inhibiting gamma-secretase activity of less than about 32 micromolar. For example, Example 84, below, had an IC_{50} of about 1 micromolar, and Example 138, below, had an IC_{50} of about 5 micromolar.

The following Examples illustrate the present invention. It is to be understood, however, that the invention, as fully described herein and as recited in the claims, is not intended to be limited by the details of the following Examples.

Examples

General Procedures:

5

10

15

20

25

30

35

Step A: Conversion of L-Norvaline to L-Norvaline-methyl ester.HCL

3.0g (25.6 mmol, 1.0 Eq.) of L-Norvaline was dissolved in 50.0 mL of methanol and cooled to 0 °C. This was saturated with HCl gas and gradually allowed to warm to room temperature. After 14 hours the solvent was removed and the solid was dried overnight in a dessicator with phosphorous pentachloride. 3.6g (86%) of a white solid was obtained. (MS: 126.9/ [P⁻¹]) (H¹NMR in CDCl₃: 0.95, 3H t, (J=382 Hz), 1.46, 2H m, (J=587 Hz), 2.01, 2H m, (J=806 Hz), 3.78, 3H s, (J=1512 Hz), 4.05, 1H m, (J=1622.459 Hz), 8.74, 2H brds, (J=3495 Hz))

Step B: Synthesis of 2-[2-(Difluoro-phenyl)-acetyl aminol-pentanoic acid methyl ester

1.0g (7.8 mmol, 1.0 Eq.) of the title compound of Step A was combined in a flask at room temperature with 1.62g (9.4 mmol, 1.2 Eq.) of (3,5-Difluoro-phenyl)-acetic acid, 4.1g (9.4 mmol, 1.0 Eq.) of HBTU, 2.6 mL (18.7 mmol, 3.0 Eq.) of triethylamine, and 40 mL of dichloromethane. After stirring overnight at room temperature MS and TLC indicated reaction completion. Solution was extracted successively with 1N HCl, water, saturated sodium bicarbonate, water, and brine. This was dried over sodium sulfate and the solvent removed. The oil obtained was purified by flash chromatography using 4:1 Hexane: Ethyl Acetate as eluent. 800 mg (36%) of the desired product was obtained. (MS: 286.2 [P⁺¹]/284.1 [P⁻¹]) (R_f=0.70 on silica TLC with 1:1 Hexane/Ethyl Acetate) (H¹NMR in CDCl₃: 0.84, 3H t, (J=339 Hz), 1.27, 2H m, (J=510 Hz), 1.60, 1H m, (J=641.855), 1.773, 1H m, (J=708.639 Hz), 3.70, 3H s, (J=1478 Hz), 4.57, 1H m, (J=1828 Hz), 5.91, 1H brd d, (J=2362 Hz), 6.69, 1H m, (J=2677 Hz), 6.78, 2H m, (J=2712 Hz))

Step C: Conversion of 2-[2-(Difluoro-phenyl)-acetyl amino]-pentanoic acid methyl ester to 2-[2-(3,5-Difluoro-phenyl)-acetic acid

800 mg (2.8 mmol, 1.0 Eq.) of the title compound of Step B (2-[2-(difluoro-phenyl)-acetyl amino]-pentanoic acid methyl ester) was dissolved in a solution of 20 mL H₂O/20 mL tetrahydrofuran. 336 mg (14.0 mmol, 5.0 Eq.) of lithium hydroxide was added and this was allowed to stir at room temperature over night. The pH was adjusted to 1.0 with 6.0 N HCl and the solvent was stripped to ½ the original volume. 700 mg (92 %) of the desired product

WO 2004/033434

5

10

15

20

25

30

35

precipitated out of solution. (MS: 272.2 [P^{+1}]/270.1 [P^{-1}]) (R_f = 0.30 (silica TLC in 9:1 Chloroform/Methanol) (H1NMR in CD₃OD: 0.88, 3H m, (J=354 Hz), 1.41, 2H m, (J=564 Hz), 1.65, 1H m, (J=622 Hz), 1.80, 1H m, (J=721 Hz), 3.55, 2H (J=1420 Hz), 4.32, 1H m, (J=1728 Hz), 6.80, 1H m, (J=2721 Hz), 6.90, 2H m, (J=2761 Hz).

<u>Step D: Synthesis of N-[1-(5-Amino-3-phenyl-pyrazole-1-carbonyl)-butyl]-2-(3,5-diflouro-phenyl)-acetamide</u>

220mg (1.38 mmol, 1.25 Eq.) of 5-amino-3-phenyl pyrazole was combined in a flask at room temperature with 595 mg (1.38 mmol, 1.25 Eq.) of HBTU, 0.4 mL (3.3 mmol, 3.0 Eq.) of N-methyl piperidine and 8 mL of dichloromethane. After 15 minutes 300 mg (1.1 mmol, 1.0 Eq.) of the product of Step C (2-[2-(3,5-difluoro-phenyl)-acetic acid) was added. MS and TLC indicated reaction completion after 2.5 hours. Solution was extracted successively with saturated sodium bicarbonate, water, and brine, was dried over sodium sulfate, and the solvent removed. The yellow solid obtained was purified by flash using 3:1 Hexane/Ethyl Acetate yielding 260 mg (57%) of a white solid. (MS: 413.1 $[P^{+1}]/411.1 [P^{-1}]$) (R_F=0.69 (silica TLC in 1:1 Hexane/Ethyl Acetate)) (H¹NMR in CD3OD: 0.95, 3H m, (J=380 Hz), 1.48, 2H m, (J=595 Hz), 1.97, 2H m, (J=789 Hz), 3.60, 2H s, (J=1439 Hz), 5.45, 1H s, (J=2180 Hz), 5.74, 1H m, (J=2296 Hz), 6.90, 1H m, (J=2760 Hz), 6.92, 2H m, (J=2767 Hz), 7.33, 5H m, (J=2933 Hz), 7.75, 2H d, (J=3100 Hz))

Step E: Rearrangement of N-[1-(5-Amino-3-phenyl-pyrazole-1-carbonyl)-butyl]-2-(3,5-diflouro-phenyl)-acetamide to 2-[2-(3,5-Difluoro-phenyl)-acetylamine]-pentanoic acid (5-phenyl-2H-pyrazole-3-yl)-amide

260 mg of the title compound of Step D (N-[1-(5-amino-3-phenyl-pyrazole-1-carbonyl)-butyl]-2-(3,5-diflouro-phenyl)-acetamide) was heated neat to 150 °C. After 2 hours LC/MS indicated reaction completion. The solid was tritrated with hexane to give 240 mg of final product. (R_f =0.45 (silica TLC in 1:1 Hexane/Ethyl Acetate) (H^1 NMR in CD₃OD: 0.93, 3H t, (J=372 Hz), 1.42, 2H m, (J=480 Hz), 1.67, 1H m, (J=520 Hz), 1.72, 1H m, (J=532 Hz), 3.59, 2H s, (J=1435 Hz), 4.23, 1H m, (J=1678 Hz), 6.79, 3H m, (J=2714.266 Hz), 6.90, 2H m, (J=2759 Hz), 7.37, 2H m, (J=2949 Hz), 7.39, 1H m, (J=2957 Hz), 7.39, 2H d, (J=2957 Hz))

<u>Procedure for 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-penatnoic acid (5-phenyl-2H-pyrazole-3-yl)-amide:</u>

Step A: Synthesis of [1-(5-Amino-3-phenyl-pyrazole-1-carbonyl)-butyl]-carbamic acid tert-butyl ester

492 mg (2.26 mmol, 1.2 Eq.) of boc-norvaline was combined in a flask with 300 mg (1.9 mmol, 1.0 Eq.) of 5-amino-3-phenyl pyrazole, 0.80 mL (5.7 mmol, 3.0 Eq.) of triethylamine, 820 mg (1.9 mmol, 1.0 Eq.) of HBTU and 10 mL of anhydrous dichloromethane. After one hour of room temperature stirring MS and TLC indicated reaction completion. Solution was extracted with saturated sodium bicarbonate followed by water and brine. This

was dried over sodium sulfate and the solvent removed. The yellow oil obtained was purified by flash chromatography using 3:1 Hexane/Ethyl Acetate as the solvent. 471 mg (69%) of yellow oil was obtained. (MS: $359/[P^{+1}]$) (R_f=0.89 on silica TLC with 1:1 Hexane/Ethyl Acetate) (H¹NMR in CD₃OD: 0.95, 3H t, (J=383 Hz), 1.22, 9H s, (J=488 Hz), 1.41, 2H m, (J=567 Hz), 1.97, 2H m, (J=790 Hz), 5.40, 1H m, 5.75, 1H s, (J=2299 Hz), 7.35, 3 H m, (J=2938 Hz), 7.79, 2H m, (J=3115 Hz).

5

10

15

20

25

30

35

Step B: Rearrangement/BOC Removal to give 2-Amino-1-(5-amino-3-phenyl-pyrazole-1-yl)-pentan-1-one Di-HCl Salt

471 mg of the title compound of Step A ([1-(5-amino-3-phenyl-pyrazole-1-carbonyl)-butyl]-carbamic acid tert-butyl ester) was taken up in 4.5 mL of a 4.0 N HCl dioxane solution and allowed to stir at room temperature. After 1 hour MS indicated reaction completions. The solvent was removed and the residue obtained was titrated with ether to give 250 mg (73%) of a white solid. (MS: 259.2 [P⁺¹]) (H¹NMR in DMSO: 0.87, 2H m, (J=350 Hz), 1.02, 3H t, (J=409 Hz), 1.29, 1H m, (J=518 Hz), 1.72, 1H m, (J=691 Hz), 3.51, 1H m, (J=1406 Hz), 6.86, 1H s, (J=2742 Hz), 7.41, 3H m, (J=2962 Hz), 7.67, 1H d, (J=3068 Hz), 7.37, 1H d, (J=3095 Hz), 8.23, 2H d, (J=3291 Hz).

Step C: Synthesis of 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazole-3-yl)-amide

160 mg (0.62 mmol, 1.0 Eq.) of the title compound of Step C (2-amino-1-(5-amino-3-phenyl-pyrazole-1-yl)-pentan-1-one Di-HCl) was combined in a flask with 128 mg (0.74 mmol, 1.2 Eq.) of 3,5-Difluoro-phenyl acetic acid, 0.31 mL (2.2 mmol, 3.0 Eq.) of triethylamine, 267 mg (0.62 mmol, 1.0 Eq.) of HBTU and 10 mL of anhydrous dichloromethane. After 2 hours of room temperature stirring MS and TLC indicated reaction completion. Desired product was confirmed by H¹NMR and LC/MS.

<u>Procedure</u> for 2-Phenylmethanesulfonylamino-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide:

Step A: Coupling of BOC-Ala with Aminopyrazole to afford [1-(5-Phenyl-2H-pyrazol-3-ylcarbamoyl)-ethyl]-carbamic acid tert-butyl ester:

To 348 mg (2.2 mmol) of 5-phenyl-2Hpyrazol-3-ylamine (or its corresponding tautomer 5-phenyl-1H-pyrazol-3-ylamine) and 378 mg (2mm9l) of BOD-L-alanine (Aldrich) in 4 ml of methylene chloride was added at 0° C dropwise with stirring 0.61 ml (4.4 mmol) of thriethylamine, followed by 0.33 ml (3.3 mmol) of diethylcyanophosphonate after 20 min. The reaction was allowed to warm to room temperature and stirred for 24 hr. After determination that the reaction had proceeded to completion by TLC and mass spectroscopy, the methylen chloride was evaporated and the residue dissolved in ethylacetat. The organic layer was washed successively with 1N Hcl, SATD NaHCO₃, and brine, followed by drying with sodium

-37-

sulfate. Evaporation yielded 770 mg of 1-(5-Phenyl-2H-pyrazol-3-ylcarbamoyl)-ethyl]-carbamic acid tert-butyl ester

(quantitative) (MS: 331 P+1/329 P-1) (RF = 0.6 ON SILICA TLC (9/1 Chloroform/ Methanol).

Step B: Deblocking of 1-(5-Phenyl-2H-pyrazol-3-ylcarbamoyl)-ethyl]-carbamic acid tert-butyl ester to Amino-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide Dihydrochloride

5

10

15

20

25

To 100 mg (0.30 mmol) of the product of Step A [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-ethyl]-carbamic acid tert-butyl ester was added 1 ml of 4N HCl dioxane solution (Aldrich) at ambient temperature. The reaction was allowed to stir for 3 hours. After evaporation to dryness and trituration with ether, 73 mg of amino-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide dihydrochloride was obtained as a white powder (80%) (MS: 231[P+1] / 229[P-1])(RF = 0.2 on silica TLC (9/1 Chloroform/ Methanol).

<u>Step C: Coupling of Benzylsulfonylchloride with amino-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide dihydrochloride to afford Phenylmethanesulfonylamino-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide</u>

To 73 mg of the produce of Step B (amino-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide dihydrochloride) (0.24 mmol), triethylamine (0.10 ml, 0.72 mmol) in 2 ml of methylene chloride at 0° C with stirring was added 46 mg (0.24 mmol) of benzyl sulfonyl chloride. After 1 hour the reaction was allowed to warm to ambient and stirred for 19 hours. Mass spectroscopy had indicated that the reaction had proceeded to completion. Using the workup procedure of Step A by trituration with ether yeilded 32 mg of pure phenylmethanesulfonylamino-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide **7** (35%) (MS: 385[P+1]/383[P-1]) (RF= 0.75 (silica gel TLC with CHCl₃/CH₃OH 18/1)).

The following Examples of compounds of Formula I of the invention were prepared according to Schemes I-VI in the "Detailed Description of the Invention":

Table 1

		rable i			
	R ¹ N N N N N N N N N N N N N N N N N N N				
<u>Ex</u>	<u>R</u> 1	<u>R</u> 3	<u>R</u> ⁶	<u>R</u> 7	M+1(Mass spectra)
1.	S	Ме	Н	Ph	405.2
2.	S CH ₂ -	Me	Н	Ph	355.1
3.	4-F-Ph-CH(OH)-	Me	Н	Ph	383.3
4.	4-Cl-Ph-CH(OH)-	Ме	Н	Ph	399.3
5.	3-Me-Ph-CH₂-	Me	Н	Ph	363.3
6.	2,5-di-F-Me-Ph-CH ₂ -	Me	Н	Ph	385.3
7.	4-CF₃-Ph-CH(OH)-	Me	Н	Ph	433.3
8.	PhCH(F)-	Me	Н	Ph	367.3
				·	

	R^{1} R^{1} R^{3} R^{4} R^{4} R^{4} R^{7} R^{6} R^{7} R^{7} R^{7} R^{1} R^{1} R^{2} R^{3} R^{4} R^{4} R^{4} R^{4} R^{5} R^{7} R^{7} R^{7} R^{1} R^{2} R^{3} R^{4} R^{4} R^{4} R^{5} R^{7} R^{6} R^{7} R^{7} R^{7} R^{7} R^{7} R^{7} R^{7} R^{8} R^{7} R^{7} R^{7} R^{7} R^{7} R^{7} R^{7} R^{8} R^{7} R^{7} R^{7} R^{7} R^{7} R^{7} R^{7} R^{8} R^{7} R^{7} R^{8} R^{7} R^{8} R^{7} R^{8} R^{8} R^{7} R^{8} R^{8				
<u>Ex</u>	<u>R</u> 1	<u>R</u> ³	<u>R</u> ⁶	<u>R</u> 7	M+1(Mass spectra)
9.	4-CF ₃ -Ph-CH ₂ -	Me	Н	Ph	417.3
10.	3-CF ₃ -6-F-Ph-CH ₂ -	Me	Н	Ph	435.3
11.	3-CF ₃ -4-F-Ph-CH ₂ -	Me _.	Н	Ph	435.3
12.	2-OCF ₃ -PhCH ₂ -	Me	Н	Ph	433.1
13.	3-PhO-PhCH₂-	Me	н	Ph	441.1
14.	4-OCF ₃ -PhCH ₂ -	Me	Н	Ph	433.1
15.	3,5-di-F-PhCH(OH)-	Me	Н	Ph	401.3
16.	3,5-di-F-PhCH(OAc)-	Me	Н	Ph	443.0
17.	3,5-di-F-Ph-(S)-CH(OH)-	Me	Н	Ph	401.0

-40-

	Page 1 Pa				
Ex	<u>R</u> 1	<u>R</u> ³	<u>R</u> ⁶	<u>R</u> ⁷	M+1(Mass spectra)
18.	3,5-di-F-Ph-(R)-CH(OH)-	Ме	Н	Ph	401.0
19.	3,5-di-F-Ph-(S)-CH(OH)-	. Et	Н	Ph	415.0
20.	3,5-di-F-Ph-(R)-CH(OH)-	Et	Н	Ph .	415.0
21.	3-pyridyl-CH ₂ -	Et	Н	Ph	364.1
22.	2-pyridyl-CH ₂ -	Et	Н	Ph	364.1
23.	Br N CH ₂ -	Et	Н	Ph	443.9
24.	CH ₂ -	Et	Н	Ph	369.2
25.	CH-	Et	Н	Ph	389.2

-41-

	1		[T
	R ¹ N N N N N N N N N N N N N N N N N N N				
	Unless otherwise indicated, (R ⁴ = H)				
Ex	<u>R</u> 1	<u>R</u> ³	<u>R</u> ⁶	<u>R</u> 7	M+1(Mass spectra)
26.	O CH ₂ -	Et	Н	Ph	359.2
27.	t-Bu-CH ₂ -	Et	Н	Ph	343.3
28.	C ₁₁ H ₂₁ -	Et	Н	Ph	427.4
29.	PhCH₂-	Et	Н	Ph	363.3
30.	C₅H₁₁-	Et	Н	Ph	343.4
31.	C ₆ H ₁₃ -	Et	H	Ph	357.4
32.	CI-CH₂CH₂-	Et	H	Ph	335.3
33.	PhCH ₂ CH ₂ -	Et	Н	Ph	377.3
34.	Me ₂ CHCH ₂ -	Et	Н	Ph	329.3
35.	C ₉ H ₁₉ -	Et	Н	Ph	399.4

	R ⁶ R ⁷ N N N N N N N N N N N N N N N N N N N				
	(R ⁴ = H)				
Ex	<u>R</u> 1	<u>R³</u>	R ⁶	<u>R</u> 7	M+1(Mass spectra)
36.	C ₃ H ₇ -	Et	H	Ph	315.4
37.	CI-(CH ₂) ₃ -CH ₂ -	Et	Н	Ph	363.2
38.	3-PhO-PhCH₂-	Et	Н	Ph	455.3
39.	H ₃ C CH ₃	Et	Н	Ph	470.4
40.	3-CF ₃ -Ph-CH ₂ -	Et	Н	Ph	431.3
41.	3-I-PhCH ₂ -	Et	Н	Ph	489.2
42.	3-Cl-Ph-CH₂-	Et	Н	Ph	397.3
43.	3-PhO-PhCH₂-	-CH ₂ CH ₂ SMe	Н	Ph	501.3
44.	Me₂CHCH₂-	-CH₂CH₂SMe	Н	Ph	405.1
45.	3,5-di-F-Ph-CH(OH)-	CH ₂ CH ₂ SMe	Н	Ph	461.0

-43-

	1				·
	R ⁶ R ⁷ N N N N N N Unless otherwise indicated,				
	(R ⁴ = H)				
<u>Ex</u>	<u>R</u> ¹	<u>R</u> ³	<u>R</u> ⁶	<u>R</u> ⁷	M+1(Mass spectra)
46.	CH₃-	CH₂CH₂SMe	Н	Ph	333.0
47.	3,5-di-F-PhCH₂-	Et	Н	COOEt	395.0
48.	Me ₂ CHCH ₂ -CH(OH)-	Et	Н	COOEt	355.1
49.	3,5-di-F-PhCH(OH)-	Et	Н	COOEt	411.0
50.	3,5-di-F-Ph-CH₂-	Et	Н	СН₂ОН	353.0
51.	3,5-di-F-Ph-CH ₂ -	Et	Н	CONHNH₂	381.3
52.	3,5-di-F-Ph-CH ₂ -	Et	Н	Ph	466.3
53.	3,5-di-F-Ph-CH₂-	Et	Н	-CONH₂	366.1
54.	3,5-di-F-Ph-CH₂-	Et	Н	-CONHMe	380.3

PCT/IB2003/004252

				<u>,</u>	
	R ¹ N N N N N N N N N N N N N N N N N N N				
ļ					M+1(Mass
<u>Ex</u>	<u>R</u> 1	<u>R</u> ³	<u>R</u> ⁶	<u>R</u> 7	spectra)
55.	3,5-di-F-Ph-CH₂-	Et	Н	-CONHCH(Et) ₂	436.3
56.	3,5-di-F-Ph-CH₂-	Et	Н	-CON(Et)(n-Bu)	450.3
57.	3,5-di-F-Ph-CH₂-	Et	Н	-CONHCH-cyclopropyl	420.3
58.	3,5-di-F-Ph-CH₂-	Et	Н	zr N	436.5
59.	3,5-di-F-Ph-CH₂-	Et	Н	O N	420.3
60.	3,5-di-F-Ph-CH₂-	Et	Н	O N N	449.5
61.	3,5-di-F-Ph-CH₂-	Et	Н	-CONHCH(Me)(Et)	422.4
62.	3,5-di-F-Ph-CH₂-	Et	Н	-CON(Et)(CH ₂ CH ₂ OH)	438.4
63.	3,5-di-F-Ph-CH₂-	Et	Н	H ₃ C N	476.4

		<u></u>			
	R ¹ N N N N N N N N N N N N N N N N N N N				
	Unless otherwise indicated, (R ⁴ = H)				
Ex	<u>R</u> 1	<u>R</u> ³	R ⁶	<u>R</u> ⁷	M+1(Mass spectra)
64.	3,5-di-F-Ph-CH₂-	Et	Н	-CON(allyl)₂	446.0
65.	3,5-di-F-Ph-CH₂-	Me	Н	Ph	385.1
66.	3,5-di-F-Ph-CH₂-	CH(Me)(Et)	Н	Ph	427.2
67.	3,5-di-F-Ph-CH₂-	CH(Me)(Et)	Н	Cyclobutyl	405.2
68.	PhCH₂-	Me	Н	Ph	349.1
69.	3-F-PhCH ₂ -	Me	Н	Ph	367.1
70.	3,5-di-F-Ph-CH₂-	Me	Н	Ph	485.0
71.	3,5-di-F-Ph-CH₂-	Ме	Н	-COO(n-Bu)	409.1 -
72.	3,5-di-F-Ph-CH₂-	Ме	Н	-3-indolyl	424.1

	Unless otherwise indicated, (R ⁴ = H)				
<u>Ex</u>	<u>R</u> 1	R ³	<u>R</u> ⁶	<u>R</u> ⁷	M+1(Mass spectra)
73.	3,5-di-F-Ph-CH₂-	Me	Н	-4-t-Bu-Ph	441.1
74.	3,5-di-F-Ph-CH₂-	Me	Н	-4-Et-Ph	413.0
75.	3,5-di-F-Ph-CH₂-	Me	Н	-COOEt	381.0
76.	3,5-di-F-Ph-CH₂-	Me	Br	Ph	462.9, 464.9
77.	3,5-di-F-Ph-CH₂-	CR ³ R ⁴ : ☐	Н	Ph	425.0
78.	3,5-di-F-Ph-CH2-	Me	CI	Ph	419.0
79.	3,5-di-F-Ph-CH₂-	-CH ₂ CH=CH ₂ -	Н	Ph	411.0
80.	3,5-di-F-Ph-CH₂-	Me	Н	-CONH-(S)- CH(Ph)(COO-t-Bu)	542.0
81.	3,5-di-F-Ph-CH₂-	Ме	Н	-CONHCH₂Ph	442.0

	R ¹ N N N				
	Unless otherwise indicated, $(R^4 = H)$				
Ex	<u>R</u> 1	<u>R</u> ³	<u>R</u> ⁶	R ⁷	M+1(Mass spectra)
82.	3,5-di-F-Ph-CH ₂ -	-CH ₂ CH=CH ₂	Br	~~^Ph	488.9, 490.0
83.	3,5-di-F-Ph-CH₂-	Me	Н	-COOMe	367.0
84.	3,5-di-F-Ph-CH₂-	Ph	Н	^Ph	447.2
85.	3,5-di-F-Ph-CH₂-	-CH ₂ CH=CH ₂	Н	~~^Ph	427.1
86.	3,5-di-F-Ph-CH(OH)-	-CH₂COOMe	Н	^Ph	459.1
87.	3,5-di-F-Ph-CH ₂ -	cyclohexyl	Н	Ph	453.2
88.	3,5-di-F-Ph-CH(OH)-	cyclohexyl	Н	~~Ph	469.2
89.	3,5-di-F-Ph-CH(OH)-	-CH₂COOCH₂P h	Н	~~~Ph	519.2
90.	3,5-di-F-Ph-CH(OH)-	CH ₂ CH=CH ₂	Н	2-thiophenyl	397.1

	R ¹ N N N N N N N N N N N N N N N N N N N				
Ex	<u>R</u> 1	<u>R</u> ³	<u>'R</u> 6	<u>R</u> 7	M+1(Mass spectra)
91.	3,5-di-F-Ph-CH₂-	n-Pr			427.2
92.	CH ₂ -	n-Pr	Н	•Ph	395.3
93.	CH ₂ -	n-Pr	Н	Ph	383.3
94.	PhCH(CH₂OH)-	n-Pr	Н	Ph	407.3
95.	CH ₂ -	n-Pr	Н	Ph .	435.3
96.	Me ₂ CHCH ₂ CH ₂ -	n-Pr	Н	Ph	357.3
97.	H ₃ C CH ₂ -	n-Pr	Н	Ph	357.3
98.	CH ₂ -	n-Pr	Н	Ph	

PCT/IB2003/004252

r	p				
	R ¹ R ⁴ H H Unless otherwise indicated, (R ⁴ = H)				
<u>Ex</u>	R ¹	<u>R</u> ³	R ⁶	<u>R</u> 7	M+1(Mass spectra)
99.	CH ₂ -	n-Pr	Н	Ph	341.2
100.	CH ₂ -	n-Pr	Н	Ph	417.3
101.	PhCH(Me)CH₂-	n-Pr	Н	Ph	405.3
102.	MeC(O)CH ₂ CH ₂ CH ₂ -	n-Pr	Н	Ph	371.3
103.	3-Cl-Ph-CH₂-	n-Pr	Н	Ph	411.2
104.	3-Br-PhCH₂-	n-Pr	Н	Ph	455.2, 457.2
105.	3,5-di-F-Ph-CH₂-	Me	Н	2-furanyl	
106.	3,5-di-F-Ph-CH₂-	Ме	Н	t-Bu	
107.	3,5-di-F-Ph-CH₂-	Ме	Н	cyclopropyl	

-50	
-----	--

	R ¹ R ⁶ R ⁷ N N N N N N N N N N N N N N N N N N N				
	(R ⁴ = H)			,	
Ex	<u>R¹</u>	<u>R</u> ³	<u>R</u> ⁶	<u>R</u> ⁷	M+1(Mass spectra)
108.	3,5-di-F-Ph-CH ₂ -	n-Pr	Н	2-furanyl	403.4
109.	3,5-di-F-Ph-CH₂-	n-Pr	Н	2-furanyl	419.1
110.	3,5-di-F-Ph-CH₂-	n-Pr	Н	t-Bu	393.2
111.	3,5-di-F-Ph-CH₂-	n-Pr	Н	4-CI-Ph	447.4
112.	3,5-di-F-Ph-CH₂-	i-Pr	Н	t-Bu	393.3
113.	3,5-di-F-Ph-CH₂-	CR³R⁴: C(CH₂)₂	Н	t-Bu	378.2
114.	3,5-di-F-Ph-CH₂-	CR³R⁴: C(CH ₂) ₂	Н	H 2-furanyl	
115.	3,5-di-F-Ph-CH₂-	Me	Н	-1-Ph-4-Ph	
116.	3,5-di-F-Ph-CH₂-	Me	Н	-1-Ph-4-(4-di-Me-Ph)	
117.	3,5-di-F-Ph-CH₂-	n-Pr	Н	Ph	,

					
	R ¹				
	Unless otherwise indicated, (R ⁴ = H)				
<u>Ex</u>	<u>R</u> 1	<u>R</u> ³	<u>R</u> ⁶	<u>R</u> ⁷	M+1(Mass spectra)
118.	3,5-di-F-Ph-CH₂-	Et	Н	-C(=O)N(Me)(CH ₂ Ph)	470.4
119.	3,5-di-F-Ph-CH₂-	Et	Н	-C(=O)N(Me)(CH ₂ Ph)	470.4
120.	Me ₂ C=CHCH ₂ CH ₂ CHMeCH ₂ -	n-Pr	Н	-Ph	411.4
121.	Ph_N—CH ₂ -	Et	Н	-Ph	460.4
122.	3,5-di-F-Ph-CH₂-	Et	Н	-C(=O)N(n-Bu) ₂	478.6
123.	ON CH ₂ -	Et	Н	-Ph	470.4
124.	ON CH ₂ -	Et	Н	-Ph	470.4
125.	3,5-di-F-Ph-CH₂-	Et	Н	-C(=O)NMeEt	408.3

-52-

	R ¹ N N N N N N N N N N N N N N N N N N N				
<u>Ex</u>	<u>R</u> 1	<u>R</u> ³	<u>R</u> ⁶	<u>R</u> 7	M+1(Mass spectra)
126.	3 -CI-Ph-CH₂-	n-Pr	Н	-Ph-4-Cl	445.3 and 448.3
127.	3,5-di-F-Ph-CH₂-	Et	Н	O N Ph	511.6
128.	3,5-di-F-Ph-CH₂-	Et	Н	N O	450.4
129.	Cyclohexyl-(R)-CH(OH)	n-Pr	Н	Ph	399.3
130.	Cyclohexyl-(S)-CH(OH)	n-Pr	H	Ph	399.4
131.	3,5-di-F-Ph-CH₂-	Et	Н	O N O	464.4
132.	3,5-di-F-Ph-CH ₂ -	Et	Н	-C(=O)N(n- Pr)(CH ₂ CH ₂ OH)	452.4

<u> </u>	- 7		<u> </u>		·
	R ¹ N N N N N N N N N N N N N N N N N N N				
	Unless otherwise indicated, (R ⁴ = H)				
<u>Ex</u>	<u>R</u> 1	<u>R</u> ³	R ⁶	<u>R</u> ⁷	M+1(Mass spectra)
133.	3,5-di-F-Ph-CH₂-	Et	Н	COOEt	506.4
134.	3,5-di-F-Ph-CH₂-	. Et	Н	C(=O)NMe(CH ₂ CHOM e ₂)	468.6
135.	3,5-di-F-Ph-CH ₂ -	Et	Н	-C(=O)N(CH ₂ CHMe ₂) ₂	422.4
136.	3,5-di-F-Ph-CH ₂ -	Et	Н	-C(=O)NEt₂	478.5
137.	CH ₂	n-Pr	Н	Ph	411.4
138.	CH ₂	n-Pr	Н	Ph	411.4
139.	3,5-di-F-Ph-CH₂-	Et	Н	-C(=O)N(CH ₂ Ph) ₂	546.4
140.	3,5-di-F-Ph-CH₂-	Et	Н	Num N	462.4

	R^{1} R^{1} R^{3} R^{4} R^{4} R^{4} R^{4} R^{4} R^{5} R^{7} R^{7} R^{4} R^{7} R^{7} R^{7} R^{4} R^{7} R^{7} R^{7} R^{7} R^{7} R^{7} R^{7} R^{1} R^{1} R^{2} R^{3} R^{4} R^{4} R^{7} R^{7} R^{1} R^{1} R^{2} R^{3} R^{4} R^{4} R^{5} R^{7} R^{1} R^{2} R^{3} R^{4} R^{4} R^{5} R^{5				
<u>Ex</u>	<u>R</u> 1	<u>R</u> ³	<u>R</u> ⁶	<u>R</u> 7	M+1(Mass spectra)
141.	3,5-di-F-Ph-CH₂-	Et	Н	-C(=O)N(CH₂Ph)Et	484.6
142.	3,5-di-F-Ph-CH₂-	Et	Н	-C(=O)NMe(n-Bu)	436.6
143.	3,5-di-F-Ph-CH₂-	Et	Н	-C(=O)N(n-C ₆ H ₁₃) ₂	534.5
144.	2,3-di-F-Ph-CH(OH)-	n-Pr	Н	-Ph	429.1
145.	ON—CH ₂ -OPh	Et	Н	-Ph	509.6
146.	CH ₃	Et	Н	-Ph	412.4
147.	3,5-di-F-Ph-CH₂-	Et	Н	-C(=O)N(n-C ₃ H ₈) ₂	450.6
148.	3,5-di-F-Ph-CH₂-	Et	Н	N N	453.4

	R ⁶ R ⁷ R N N N N N N N N N N N N N N N N N N	-			
	(R ⁴ = H)	•	-		
<u>Ex</u>	<u>R</u> 1	<u>R</u> ³	R ⁶	<u>R⁷</u>	M+1(Mass spectra)
149.	5-Br-3-pyridyl-CH ₂ -	n-Pr	Н	-Ph-4-Cl	492.3
150.	3-CF₃-Ph-CH₂-	n-Pr	Н	-Ph-4-Cl	479.3
151.	3-MeO-Ph-CH₂-	n-Pr	Н	-Ph-4-Cl	441.4
152.	5-Ph-3-Py-CH ₂ -	Et	Н	-Ph-4-Cl	440.4
153.	3,5-di-F-Ph-CH₂-	Et	Н	-C(=O)N(n-C ₅ H ₁₁) ₂	506.5
154.	n-Bu-CH(OH)-	n-Pr	Н	-Ph	373.2
155.	2-Cl-Ph-CH(OH)-	n-Pr	Н	-Ph	427.1
156.	3,5-di-F-Ph-CH₂-	n-Pr	Н	-H	337.3
157.	3,5-di-F-Ph-CH₂-	N-Pr	Н	(attached to 2-triazolo-)	444.6

	R ¹ N N N N N N N N N N N N N N N N N N N				
Ex	<u>R</u> 1	<u>R</u> 3	<u>R⁶</u>	<u>R</u> 7	M+1(Mass spectra)
158.	3,5-di-F-Ph-CH₂-	t-Bu	Н	-Ph	427.3
159.	i-Pr-(S)-CH(OH)-	n-Pr	н	-Ph	359.4
160.	CH ₂ -	N_pr	H	-Ph-4-Cl	502.6 and 504.6
161.	i-Pr-(S)-CH(OH)-	Et	Н	-Ph	345.4
162.	3,5-di-F-Ph-CH₂-	n-Pr	Н	Me	351.4
163.	3,5-di-F-Ph-CH₂-	n-Bu	Н	Н	427.3

<u>Table 2</u>

	1000			
	R ¹ S N N R			
<u>Ex</u>	<u>R</u> ¹	R ³	<u>R</u> ⁷	MS (M+1)
164.	PhCH₂-	Me	Ph	385
165.	4-F-PhCH₂-	Me	Ph	403
166.	2-NO ₂ -Ph-CH ₂ -	Ме	Ph	430
167.	PhCH ₂ -	n-Pr	t-Bu	393
168.	4-F-PhCH₂-	n-Pr	t-Bu	411
169.	PhCH₂-	Me	t-Bu	
170.	ON S	n-Pr	Ph	488
171.	2-NO₂-PhCH₂-	n-Pr	Ph	474
172.	3-Me-PhCH₂-	n-Pr	Ph	443

-58-

<u>Ex</u>	<u>R</u> 1	R^3	<u>R'</u>	MS (M+1)
173.	4-F-PhCH₂-	n-Pr	Ph	447
174.	Ph-	n-Pr	Ph	415
175.	3,5-di-F-PhCH₂-	n-Pr	Ph	465
176.	4-PhO-Ph-	n-Pr	Ph	507
177.	3,5-di-Cl-Ph-CH₂-	n-Pr	Ph	498
178.	4-Me-Ph-CH₂-	n-Pr	t-Bu	407
179.	Ph-CH₂-	n-Pr	Ph	413
180.	C ₁₀ H ₂₁ -	n-Pr	Ph	463
181.	4-Ph-Ph-	n-Pr	Ph	475
182.	4-Cl-Ph-CH₂-	n-Pr	Ph	447

	R ¹ S N N R			
<u>Ex</u>	<u>R</u> 1	<u>R</u> ³	<u>R'</u>	MS (M+1)
183.	Ph	-CH ₂ CH ₂ SMe	Ph	431.0
184.	4-F-PhCH₂-	n-Pr	Ph	433.2
185.	CI	-CH ₂ CH ₂ SMe	Ph	506.8
186.	4-Cl-PhCH ₂ -	n-Pr	t-Bu	429.6

Table 3

<u> able 5</u>			
Pfizer number	Structure	MS(M+1)	
187.		427.2	
188.		513.2	
189.		481.1	
190.		391.3	

CLAIMS

1. A compound of Formula:

$$R^{1} \xrightarrow{A} \xrightarrow{R^{3}} R^{4} \xrightarrow{H} \xrightarrow{N} R^{8}$$

$$R^{1} \xrightarrow{A} \xrightarrow{N} R^{2} \xrightarrow{N} R^{6}$$

or a pharmaceutically acceptable salt thereof,

5 wherein:

10

15

20

25

30

A is selected from -C(=O)C(=O)-, -C(=O)Z-, -C(=S)Z-, $C(=NR^5)Z$ -, and $-S(O)_2$ -; wherein Z is $-CH_2$ -, -CH(OH)-, $-CH(OC(=O)R^{11})$ -, $-CH(NH_2)$ -, $-CH(CH_2(OH))$ -, $-CH(CH(C_1-C_4 \text{ alkyl})(OH))$ -;

 R^1 is selected from C_1 - C_{20} alkyl and $-C_1$ - C_{20} alkoxy, C_3 - C_8 cycloalkyl, $(C_4$ - $C_8)$ cycloalkenyl, $(C_5$ - $C_{11})$ bi- or tricycloalkyl, $(C_7$ - $C_{11})$ bi- or tricycloalkenyl, (3-8 membered) heterocycloalkyl, $(C_6$ - $C_{14})$ aryl, or (5-14 membered) heteroaryl, wherein said alkyl and alkoxy each optionally contains from one to five double or triple bonds, and wherein each hydrogen atom of said alkyl and alkoxy is optionally replaced with a fluorine;

wherein when R¹ is alkyl or alkoxy, R¹ is optionally substituted with from one to three substituents R^{1a}, and wherein when R¹ is cycloalkyl, cycloalkenyl, bi- or tricycloalkyl, bi- or tricycloalkenyl, heterocycloalkyl, aryl, or heteroaryl, then R¹ is optionally substituted with from one to three substituents R^{1b}:

 R^{1a} is in each instance independently selected from -OH, -C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds, -C₁-C₆ alkoxy independently optionally containing from one to three double or triple bonds, -Cl, -F, -Br, -I, -CN, -NO₂, -NR⁹R¹⁰, -C(=O)NR⁹R¹⁰, -S(O)_nNR⁹R¹⁰, -C(=O)R¹¹, -S(O)_nR¹¹, -C(=O)OR¹², -C₃-C₈ cycloalkyl, -C₄-C₈ cycloalkenyl, -(C₅-C₁₁)bi- or tricycloalkyl, -(C₇-C₁₁)bi- or tricycloalkenyl, -(3-8 membered) heterocycloalkyl, -(C₆-C₁₄)aryl, -(5-14 membered) heteroaryl, -(C₆-C₁₄) aryloxy, and -(5-14 membered) heteroaryloxy, wherein said alkyl, alkoxy, cycloalkyl, cycloalkenyl, bi- or tricycloalkyl, bi- or tricycloalkyl, heterocycloalkyl, aryl, heteroaryl, aryloxy, and heteroaryloxy are each independently optionally substituted with from one to three substituents R^{1b}:

 R^{1b} is in each instance independently selected from -CI, -F, -Br, -I, -CN, -NO₂, -(C_{zero}-C₄ alkylene)-NR⁹R¹⁰, -(C_{zero}-C₄ alkylene)-C(=)ONR⁹R¹⁰, -(C_{zero}-C₄ alkylene)-C(=O)R¹¹, -(C_{zero}-C₄ alkylene)-S(O)_nR¹¹, -(C_{zero}-C₄ alkylene)-S(O)_nNR⁹R¹⁰, -(C_{zero}-C₄ alkylene)-OH,-C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds, -C₁-C₆ alkoxy independently optionally containing from one to three double or triple bonds, -C₁-C₆ hydroxyalkyl, -(C₆-C₁₄) aryloxy, -(5-14 membered) heteroaryloxy,

10

15

20

25

30

35

-(C₆-C₁₄) aryl, -(5-15 membered) heteroaryl, and -C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds and independently substituted with from one to six atoms independently selected from F, Cl, Br, and I;

 R^2 is selected from -H, -C₁-C₄ alkyl optionally containing one or two double or triple bonds, -C(=O)(C₁-C₄ alkyl), -C₆-C₁₀ aryl, -SO₂-(C₆-C₁₀ aryl), and -SO₂-CH₂-(C₆-C₁₀ aryl), and R^2 is optionally substituted with from one to three substituents R^{1b} ;

 R^3 is selected from C_1 - C_6 alkyl, $-C_2$ - C_6 alkenyl, $-C_2$ - C_6 alkynyl, $-(C_{zero}$ - C_4 alkylene)- $(C_3$ - C_6 cycloalkyl), and $-(C_{zero}$ - C_4 alkylene)- $(C_3$ - C_6 cycloalkenyl), wherein said alkyl, alkenyl and alkynyl are each optionally substituted with a substituent selected from -OH, C_1 - C_4 alkoxy, and -S- $(C_1$ - C_4 alkyl);

 R^4 is H, D, F, or C_1 - C_4 alkyl;

or R³ and R⁴ may together optionally form a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, morpholino, piperidino, or perhydro-2H-pyran moiety, wherein said moiety formed by R³ and R⁴ is optionally substituted with one to three substituents independently selected from -OH, -CI, -F, -CN, -CF₃, methyl, ethyl, methoxy, ethoxy, allyl, and -OCF₃;

 R^5 is selected from -H, -C₁-C₆ alkyl optionally substituted with from one to three R^{1a} groups, and -C₆-C₁₀ aryl optionally substituted with from one to three R^{1a} groups;

or R⁵ and R¹ may together optionally form a five to fourteen membered heteroaryl ring or a five to eight membered heterocycloalkyl ring, wherein said heteroaryl or heterocycloalkyl ring optionally contains one or two further heteroatoms selected from N, O, and S, and wherein said heterocycloalkyl ring optionally contains from one to three double bonds, and wherein said heteroaryl or heterocycloalkyl ring is optionally substituted from one to three R^{1b} substituents;

 R^6 is selected from -H, -C₁-C₂₀ alkyl, -Cl, -F, -Br, -I, -CN, -CF₃, -C(=O)R¹¹, -C(=O)OR¹², -S(O)_nNR⁹R¹⁰, -S(O)_nR¹¹, -C(=NR⁹)R¹⁵, -(C₃-C₁₂) cycloalkyl, -(C₄-C₁₂) cycloalkenyl, and -C₆-C₁₀ aryl, wherein said alkyl, alkylene, cycloalkyl, cycloalkenyl, and aryl of R⁶ are each optionally substituted with from one to three R^{1b} substituents;

 R^7 is selected from H, -Cl, -F, -Br, -I, -CN, -NO₂, -NR¹⁴R¹⁵, -CF₃, -C(=O)NR¹⁴R¹⁵, -C(=O)R¹³, -S(O)_nR¹³, -C(=O)OR¹³, -C(=NR⁹)R¹⁵, -S(O)_nNR¹⁴R¹⁵, -C₁-C₂₀ alkyl, -C₁-C₂₀ alkyl, -C₁-C₂₀ alkylene)-(C₃-C₁₂ cycloalkyl), -(C_{2ero}-C₄ alkylene)-((C₄-C₁₂)cycloalkenyl), -(C_{2ero}-C₄ alkylene)-((C₅-C₂₀)bi- or tricycloalkyl), -(C_{2ero}-C₄ alkylene)-((C₇-C₂₀)bi- or tricycloalkenyl), -(C_{2ero}-C₄ alkylene)-((3-12 membered) heterocycloalkyl), -(C_{2ero}-C₄ alkylene)-((7-20 membered) heterobi- or heterotricycloalkyl), -(C_{2ero}-C₄ alkylene)-((C₆-C₁₄)aryl), and -(C_{2ero}-C₄ alkylene)-((5-15 membered) heteroaryl); wherein R⁷ is optionally substituted with from one to three substituents independently selected from R^{1a}, -(CH₂)₁₋₁₀NR⁹R¹⁰, -C₃-C₁₂ cycloalkyl, -((4-12 membered) heterocycloalkyl), -(C₆-C₁₄) aryl, -((5-15 membered) heteroaryl), -(4-12 membered) heterocycloalkoxy), -(C₆-C₁₂) aryloxy and -((5-12 membered)

10

15

20

25

30

35

heteroaryloxy); said cycloalkyl, cycloalkenyl, bi- or tricycloalkyl, bi- or tricycloalkenyl, heterocycloalkyl, aryl, and heteroaryl of R⁷ are each optionally and independently substituted with from one to six F; said alkyl, alkoxy, and alkylene of R⁷ each optionally contains from one to five double or triple bonds; and each hydrogen atom of said alkyl, alkoxy, and alkylene of R⁷ is independently optionally replaced with a fluorine;

or R^6 and R^7 or R^7 and its proximate nitrogen atom may together optionally form a $-(C_6-C_{10})$ aryl ring, $-(C_6-C_8)$ cycloalkyl or cycloalkenyl ring, a five to eight membered heterocycloalkyl or heterocycloalkenyl ring, a $-(C_{10}-C_{14})$ membered bicycloalkyl or bicycloalkenyl ring, or a ten to fourteen membered bicycloheteroalkyl or bicycloheteroalkenyl ring fused to the pyrazole ring of Formula I, wherein from one to three members of said heterocycloalkyl and heterocycloalkenyl rings, and from one to five members of said bicycloheteroalkyl and bicycloheteroalkenyl rings are selected independently from N, O and S, and wherein said aryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, bicycloalkenyl, bicycloheteroalkyl, and bicycloheteroalkenyl rings optionally are substituted with from one to three R^{1b} groups;

 R^8 is selected from -H, -C₁-C₄ alkyl, -Cl, -F, -Br, -I, -CN, -CF₃, -C(=O) R^{11} , -C(=O)O R^{12} , and -C₆-C₁₀aryl, with the proviso that the pyrazole ring is always aromatic and that R^8 is attached to either ring nitrogen;

R⁹ and R¹⁰ are each independently selected from -H, -OH, -C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with a fluorine, -C1-C6 alkoxy independently optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with a fluorine, -C(=O)R¹¹, -S(O)_nR¹¹, -C(=O)OR¹², -S(O), NR¹¹R¹², alkylene)-(C₃-C₈ cycloalkyl), -(Czero-C4 alkylene)-(C4-C8 -(C_{zero}-C₄ cycloalkenyl), -(Czero-C4 alkylene)-((C5-C11)bi- or tricycloalkyl), -(Czero-C4 alkylene)-((C7-C11)bior tricycloalkenyl), -(Czero-C4 alkylene)-(C6-C14 aryl), -(Czero-C4 alkylene)-(3-8 membered heterocycloalkyl), and -(C_{zero}-C₄ alkylene)-(5-14 membered heteroaryl), wherein said cycloalkyl, cycloalkenyl, bi-or tricycloalkyl, bi- or tricycloalkenyl, aryl, heterocycloalkyl, and heteroaryl are each optionally independently substituted with from one to three substituents independently selected from -Cl, -F, -Br, -l, -CN, -NO₂, -NR¹⁴R¹⁵, -C(=)ONR¹⁴R¹⁵, -C(=O)R¹¹, -C(=O)OR¹², -S(O)_nR¹¹, -S(O)_nNR¹⁴R¹⁵, -OH, -C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds, -C1-C6 alkoxy independently optionally containing from one to three double or triple bonds, -C₁-C₆ hydroxyalkyl, -(C₆-C₁₄) aryloxy, -(5-14 membered) heteroaryloxy, -(C_{zero} - C_4)-((C_6 - C_{14}) aryl), -(C_{zero} - C_4)-(5-14 membered heteroaryl), and - C_1 - C_6 alkyl independently optionally containing from one to three double or triple bonds and independently substituted with from one to six atoms independently selected from F, Cl, Br, and I;

WO 2004/033434

5

10

15

20

25

30

35

PCT/IB2003/004252

or NR 9 R 10 can independently optionally form a heterocycloalkyl moiety of from four to seven ring members, said heterocycloalkyl moiety independently optionally comprising one or two further heteroatoms independently selected from N, O, and S, and independently optionally containing from one to three double bonds, and said heterocycloalkyl moiety independently optionally substituted with from one to three substituents independently selected from -Cl, -F, -Br, -I, -CN, -NO $_2$, -NR 14 R 15 , -C(=)ONR 14 R 15 , -C(=O)R 11 , -C(=O)OR 12 , -S(O)_nR 11 , -S(O)_nNR 14 R 15 , -OH, -C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds, -C₁-C₆ hydroxyalkyl independently optionally containing from one to three double or triple bonds, -(C₆-C₁₄) aryloxy, -(5-14 membered) heteroaryloxy, -(C_{zero}-C₄)-((C₆-C₁₄) aryl), -(C_{zero}-C₄)-(5-14 membered heteroaryl), and -C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds and independently substituted with from one to six atoms independently selected from F, Cl, Br, and I;

 R^{11} and R^{12} are each independently selected from H, $-C_1-C_6$ alkyl, $-(C_{zero}-C_4$ alkylene)-(C_3-C_8 cycloalkyl), $-(C_{zero}-C_4$ alkylene)-((C_5-C_{11}) bi- or tricycloalkyl), and $-(C_{zero}-C_4$ alkylene)-(((C_7-C_{11}) bi- or tricycloalkenyl), $-(C_{zero}-C_4$ alkylene)-((C_6-C_{10}) aryl), $-(C_{zero}-C_4)$ alkylene)-(((S_7-C_{11}) bi- or tricycloalkenyl), and $-(C_{zero}-C_4)$ alkylene)-(((S_7-C_{11}) bi- or tricycloalkenyl), and $-(C_{zero}-C_4)$ alkylene)-(((S_7-C_{11}) bi- or tricycloalkyl), and $-(C_{zero}-C_4)$ alkylene)-(((S_7-C_{11}) bi- or tricycloalkyl), and $-(C_{zero}-C_4)$ alkylene)-(((S_7-C_{11}) bi- or tricycloalkenyl), and $-(C_{zero}-C_4)$ alkylene)-((S_7-C_{11}) bi- or tricycloalkenyl), and (S_7-C_{11}) bi- or tricycloalkenyl), and (S_7-C_{11}) bi- or tricycloalkenyl), and (S_7-C_{11}) bi- or tricycloalkenyl), and

 R^{13} is selected from H, $-C_1-C_6$ alkyl optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with a fluorine, $-(C_{zero}-C_4 \text{ alkylene})-(C_3-C_{12} \text{ cycloalkyl})$, $-(C_{zero}-C_4 \text{ alkylene})-(C_4-C_{12} \text{ cycloalkenyl})$, $-(C_{zero}-C_4 \text{ alkylene})-((C_5-C_{20})\text{bi- or tricycloalkyl})$, and $-(C_{zero}-C_4 \text{ alkylene})-((C_7-C_{20})\text{bi- or tricycloalkenyl})$, $-(C_{zero}-C_4 \text{ alkylene})-((C_5-C_14 \text{ aryl}))$, $-(C_{zero}-C_4 \text{ alkylene})-((C_7-C_20)\text{ bi- or tricycloalkenyl})$, $-(C_{zero}-C_4 \text{ alkylene})-((C_7-C_20)\text{ bi- or tricycloalkyl})$, $-(C_{zero}-C_4 \text{ alkylene})-((C_7-C_20)\text{ bi- or tricycloalkyl})$, $-(C_7-C_20)$ alkylene) heterocycloalkyl), and $-(C_7-C_20)$ membered heterocycloalkyl), and $-(C_7-C_7-C_9)$ alkylene)-((5-14 membered) heteroaryl), and $-(C_7-C_7-C_9)$ is optionally substituted with from one to three substituents $-(C_7-C_7)$

 R^{14} and R^{15} are each independently selected from -H, $-C_1-C_{20}$ alkyl independently optionally containing from one to five double or triple bonds and wherein each hydrogen is independently optionally replaced with a fluorine, $-C(=O)R^{11}$, $-S(O)_nR^{11}$, $-C(=O)OR^{12}$, $-S(O)_nNR^{11}R^{12}$, $-(C_{zero}-C_4)$ alkylene)- (C_3-C_{12}) cycloalkyl), $-(C_{zero}-C_4)$ alkylene)- (C_4-C_{12}) cycloalkenyl), $-(C_{zero}-C_4)$ alkylene)- $((C_5-C_{20})$ bi- or tricycloalkyl), $-(C_{zero}-C_4)$ alkylene)- $((C_7-C_{20})$ bi- or tricycloalkenyl), and $-(C_{zero}-C_4)$ alkylene)- $((C_5-C_{14})$ aryl), $-(C_{zero}-C_4)$ alkylene)- $((C_5-C_{14})$ aryl), wherein said cycloalkyl, cycloalkenyl, bi-or tricycloalkyl, bi- or tricycloalkenyl, aryl, heterocycloalkyl, and heteroaryl are each independently optionally substituted with from one to three substituents independently selected from $-C_1-C_6$ alkyl independently optionally containing from one to three double or

triple bonds and wherein each hydrogen is independently optionally replaced with fluorine, -CI, -F, -Br, -I, -CN, -NO₂, -NH₂, -OH, -C(=O)H, -S(O)_nH, -C(=O)OH, -C(=O)NH₂, -S(O)_nNH₂, -C₁-C₆ alkoxy independently optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with fluorine, -C₁-C₆ hydroxyalkyl independently optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with fluorine, -(5-14 membered) heteroaryloxy, -(C₆-C₁₄ aryloxy), -(C_{zero}-C₄ alkylene)-(C₆-C₁₄ aryl), -(C_{zero}-C₄ alkylene)-((5-14 membered) heteroaryl), and -C₁-C₆ alkyl independently substituted with from one to six atoms independently selected from F, CI, Br, and I and independently optionally containing from one to three double or triple bonds;

5

10

15

20

25

30

35

or NR¹⁴R¹⁵ can independently optionally form a heterocycloalkyl moiety of from four to seven ring members, said heterocycloalkyl moiety independently optionally comprising one or two further heteroatoms independently selected from N, O, and S, and independently optionally containing from one to three double bonds, and said heterocycloalkyl moiety independently optionally substituted with from one to three substituents independently selected from -C₁-C₆ alkyl independently optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with fluorine, -Cl, -F, -Br, -I, -CN, -NO2, $-NH_2$, -OH, -C(=O)H, $-S(O)_0H$, -C(=O)OH, $-C(=O)NH_2$, $-S(O)_0NH_2$, $-C_1-C_6$ alkoxy independently optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with fluorine, -C₁-C₆ hydroxyalkyl independently optionally containing from one to three double or triple bonds and wherein each hydrogen is independently optionally replaced with a fluorine, -(5-14 membered) heteroaryloxy, $-(C_6-C_{14} \text{ aryloxy})$, $-(C_{zero}-C_4 \text{ alkylene})-(C_6-C_{14} \text{ aryl})$, $-(C_{zero}-C_4 \text{ alkylene})-((5-14 \text{ aryl}))$ membered) heteroaryl), and $-C_1-C_6$ alkyl independently optionally containing from one to three double or triple bonds and independently substituted with from one to six atoms independently selected from F, Cl, Br, and I; and

n is in each instance an integer independently selected from zero, 1, 2, and 3.

- 2. A compound according to Claim 1, wherein A is -C(=O)Z- or -C(=O)C(=O)-.
- 3. A compound according to Claim 2, wherein Z is –CH₂- or -CH(OH)-.
- 4. A compound according to any of Claims 1, 2, or 3, wherein R³ is allyl, methyl, ethyl, *n*-propyl, *n*-butyl, *i*-butyl, s-butyl, or –CH₂CH₂SCH₃.
- 5. A compound according to any of Claims 1-4, wherein R^6 is selected from hydrogen, methyl, ethyl, -F, -Cl, -Br, and -CF₃.
- 6. A compound according to any of Claims 1-5 wherein R^1 is $-C_2-C_{12}$ alkyl, C_3-C_8 cycloalkyl, (C_5-C_8) cycloalkenyl, $-(C_5-C_{11})$ bi- or tricycloalkyl, $-(C_7-C_{11})$ bi- or tricycloalkenyl, (3-8 membered) heterocycloalkyl), $-(C_6-C_{10})$ aryl, -(5-10 membered) heteroaryl, or C_1-C_4 alkyl substituted with R^{1a} wherein R^{1a} is $-(C_6-C_{10})$ aryl or -(5-10 membered) heteroaryl.

WO 2004/033434

5

10

15

20

25

30

35

- 7. A compound according to any of Claims 1-6 wherein R^1 is straight-chain C_2 - C_{10} alkyl or branched C_3 - C_{10} alkyl.
- 8. A compound according to any of Claims 1-5, wherein R^1 is selected from phenyl, thienyl, and pyridyl, optionally and independently substituted with one or two substituents R^{1b} .
- A compound according to any of Claims 1-8, wherein R⁷ is selected from -H, 9. -C₁-C₁₂ alkyl optionally containing from one to five double bonds and wherein each hydrogen is independently optionally replaced with a fluorine, -C₁-C₂₀ alkoxy optionally containing from one to five double bonds and wherein each hydrogen is independently optionally replaced with a fluorine, -F, -Cl, -Br, -I, -CN, -NO2, -(C3-C12) cycloalkyl optionally substituted with from one to six fluorine, -((3-12 membered) heterocycloalkyl) optionally substituted with from one to six fluorine, $-(C_6-C_{14})$ aryl, -((5-15 membered) heteroaryl), -CHO, $-C(=O)(C_1-C_{15} \text{ alkyl})$, $-C(=O)((5-12 \text{ membered})\text{heterocycloalkyl}), -C(=O)(C_6-C_{14} \text{ aryl}), -C(=O)((5-15 \text{ membered}))$ heteroaryl), $-C(=O)(C_5-C_{12} \text{ cycloalkyl})$, $-C(=O)O(C_1-C_8 \text{ alkyl})$, $-C(=O)N(C_1-C_{10} \text{ alkyl})(C_1-C_{10} \text{ alkyl})$ alkyl), $-C(=O)N(C_1-C_{10} \text{ alkyl})(C_6-C_{10} \text{ aryl})$, $-C(=O)NH(C_6-C_{10} \text{ aryl})$, $-C(=O)N(C_1-C_{10} \text{ alkyl})((5-10) \text{ alkyl})$ membered) heteroaryl), -C(=O)NH((5-10 membered) heteroaryl), -C(=O)N(C₁-C₁₀ alkyl)((5-10 membered) heterocycloalkyl), -C(=O)NH((5-10 membered) heterocycloalkyl), -C(=O)N(C₁-C₁₀ alkyl)(C_5 - C_{10} cycloalkyl), -C(=O)NH(C_5 - C_{10} cycloalkyl), -S(O)_n(C_1 - C_{15} alkyl), -S(O)_n(C_5 - C_{12} cycloalkyl), $-S(O)_n(C_6-C_{15} \text{ aryl})$, $-S(O)_n((5-10 \text{ membered}) \text{ heteroaryl})$, wherein said alkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl are each optionally independently substituted with from one to three substituents independently selected from -F, -Cl, -Br, -I, -OH, -C1-C6 alkoxy independently optionally containing from one to three double or triple bonds, -NR9R10, $-(CH_2)_{1-10}NR^9R^{10}$, $-C(=O)R^{11}$, $-S(O)_0R^{11}$, $-C(=O)OR^{11}$, $-C(=O)NR^9R^{10}$, $-S(O)_0NR^9R^{10}$ $-(C_3-C_{12})$ cycloalkyl, -((4-12 membered) heterocycloalkyl), -(C₆-C₁₅) aryl, -((5-15 membered) heteroaryl), -((4-12 membered) heterocycloalkoxy), -(C_6 - C_{12}) aryloxy and --((6-12 membered) heteroaryloxy).
- 10. A compound according to Claim 9, wherein R^7 is selected from $-C_1-C_{12}$ alkyl optionally comprising from one to five double bonds and wherein each hydrogen is independently optionally replaced with a fluorine, $-(C_3-C_{12})$ cycloalkyl optionally substituted with from one to six fluorine, and -((3-12 membered) heterocycloalkyl) optionally substituted with from one to six fluorine, wherein said alkyl, cycloalkyl and heterocycloalkyl are each optionally independently substituted with from one to three substitutents independently selected from -OH, $-C_1-C_6$ alkoxy independently optionally containing from one to three double or triple bonds, $-NR^9R^{10}$, $-(CH_2)_{1-6}NR^9R^{10}$, $-C(=O)R^{11}$, $-C(=O)OR^{11}$, $-C(=O)NR^9R^{10}$, $-S(O)_nNR^9R^{10}$, $-(C_6-C_{15})$ aryl, -((5-15 membered) heteroaryl), -((4-12 membered) heterocycloalkoxy), $-(C_6-C_{12})$ aryloxy and -((6-12 membered) heteroaryloxy).
 - 11. A compound according to claim 1 selected from the group consisting of:

15

20

25

30

35

2-(2-benzo[b]thiophen-4-yl-acetylamino)-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;
N-(5-phenyl-2H-pyrazol-3-yl)-2-(2-thiophen-2-yl-acetylamino)-propionamide;
2-[2-(4-fluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;
2-[2-(4-chloro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

amide;
N-(5-phenyl-2H-pyrazol-3-yl)-2-(2-m-tolyl-acetylamino)-propionamide;

2-[2-(2,5-difluoro-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

2-[2-hydroxy-2-(4-trifluoromethyl-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-

10 propionamide;

 $\hbox{2-(2-fluoro-2-phenyl-acetylamino)-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;}\\$

N-(5-phenyl-2H-pyrazol-3-yl)-2-[2-(4-trifluoromethyl-phenyl)-acetylamino]-propionamide;

2-[2-(2-fluoro-5-trifluoromethyl-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

2-[2-(4-fluoro-3-trifluoromethyl-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

N-(5-phenyl-2H-pyrazol-3-yl)-2-[2-(2-trifluoromethoxy-phenyl)-acetylamino]-propionamide;

2-[2-(3-phenoxy-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide; N-(5-phenyl-2H-pyrazol-3-yl)-2-[2-(4-trifluoromethoxy-phenyl)-acetylamino]propionamide;

2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

acetic acid (3,5-difluoro-phenyl)-[1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-ethylcarbamoyl]-methyl ester;

2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

N-(5-phenyl-2H-pyrazol-3-yl)-2-(2-pyridin-3-yl-acetylamino)-butyramide;
N-(5-phenyl-2H-pyrazol-3-yl)-2-(2-pyridin-2-yl-acetylamino)-butyramide;
2-[2-(5-bromo-pyridin-3-yl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

15

20

25

30

35

2-(3-cyclopentyl-propionylamino)-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

2-phenyl-cyclopropanecarboxylic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-amide;

N-[1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-succinamic acid methyl ester;

3,3-dimethyl-N-[1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-butyramide;

dodecanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-amide;

2-phenylacetylamino-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

hexanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-amide;

heptanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-amide;

10 2-(3-chloro-propionylamino)-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

2-(3-phenyl-propionylamino)-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

3-methyl-N-[1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-butyramide;

decanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-amide;

2-butyrylamino-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

5-chloro-pentanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-amide;

2-[2-(3-phenoxy-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

3-{[1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propylcarbamoyl]-methyl}-piperidine-1-carboxylic acid tert-butyl ester;

N-(5-phenyl-2H-pyrazol-3-yl)-2-[2-(3-trifluoromethyl-phenyl)-acetylamino]-butyramide;

2-[2-(3-iodo-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

2-[2-(3-chloro-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

4-methylsulfanyl-2-[2-(3-phenoxy-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

2-hydroxy-4-methyl-pentanoic acid [3-methylsulfanyl-1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-amide;

2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-4-methylsulfanyl-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

2-acetylamino-4-methylsulfanyl-N-(5-phenyl-2H-pyrazol-3-yl)- butyramide;

5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid ethyl ester;

5-[2-(2-hydroxy-4-methyl-pentanoylamino)-butyrylamino]-1H-pyrazole-3-carboxylic acid ethyl ester;

5-{2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid ethyl ester;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-(5-hydroxymethyl-2H-pyrazol-3-yl)-butyramide;

20

25

30

- 2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-(5-hydrazinocarbonyl-2H-pyrazol-3-yl)-butyramide;
- 2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-[5-(5-phenyl-4H-[1,2,4]triazol-3-yl)-2H-pyrazol-3-yl]-butyramide;
- 2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-(4-oxo-4,5-dihydro-pyrazolo[1,5-d][1,2,4]triazin-2-yl)-butyramide;
- 2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-(4-methoxy-7-phenyl-pyrazolo[1,5-d][1,2,4]triazin-2-yl)-butyramide;
 - 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-
- 3-carboxylic acid amide;
 - 2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-(4-oxo-7-phenylsulfanylmethyl-4,5-dihydro-pyrazolo[1,5-d][1,2,4]triazin-2-yl)-butyramide;
 - 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid methylamide;
- 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid (1-ethyl-propyl)-amide;
 - 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid butyl-ethyl-amide;
 - 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid cyclopropylmethyl-amide;
 - 2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-[5-(morpholine-4-carbonyl)-2H-pyrazol-3-yl]-butyramide;
 - 2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-[5-(pyrrolidine-1-carbonyl)-2H-pyrazol-3-yl]-butyramide;
 - 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide;
 - 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid sec-butyl-amide;
 - 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid ethyl-(2-hydroxy-ethyl)-amide;
 - 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid cyclohexyl-ethyl-amide;
 - 5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid diallylamide;
- 35 2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-3-methyl-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

-70-

2-[2-(3,5-difluoro-phenyl)-acetylamino]-3-methyl-pentanoic acid (5-butyl-2H-pyrazol-3-yl)-amide;

2-phenylacetylamino-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

5

10

15

20

25

30

35

2-[2-(3-fluoro-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

2-[2-(3,5-bis-trifluoromethyl-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionylamino}-1H-pyrazole-3-carboxylic acid butyl ester;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-[5-(1H-indol-3-yl)-2H-pyrazol-3-yl]-propionamide;

N-[5-(4-tert-butyl-phenyl)-2H-pyrazol-3-yl]-2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionamide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-[5-(4-ethyl-phenyl)-2H-pyrazol-3-yl]-propionamide;

5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionylamino}-1H-pyrazole-3-carboxylic acid ethyl ester;

N-(4-bromo-5-phenyl-2H-pyrazol-3-yl)-2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionamide;

1-[2-(3,5-difluoro-phenyl)-acetylamino]-cyclopentanecarboxylic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

N-(4-Chloro-5-phenyl-2H-pyrazol-3-yl)-2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionamide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-pent-4-enoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

[(5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionylamino}-1H-pyrazole-3-carbonyl)-amino]-phenyl-acetic acid tert-butyl ester;

5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionylamino}-1H-pyrazole-3-carboxylic acid benzylamide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-pent-4-enoic acid (4-bromo-5-phenyl-2H-pyrazol-3-yl)-amide;

5-{2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionylamino}-1H- pyrazole-3-carboxylic acid methyl ester;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-2-phenyl-N-(5-phenyl-2H-pyrazol-3-yl)-acetamide;

10

15

20

25

30

35

2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-pent-4-enoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

3-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-succinamic acid methyl ester;

2-cyclohexyl-2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-acetamide;

2-cyclohexyl-2-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-acetamide;

3-[2-(3,5-difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H- pyrazol-3-yl)-succinamic acid benzyl ester;

2-(2-hydroxy-2-phenyl-acetylamino)-pent-4-enoic acid (5-thiophen-2-yl-2H-pyrazol-3-yl)-amide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-pentanoic acid (5-methyl-1-phenyl-1H-pyrazol-3-yl)-amide;

2-(2-bicyclo[2.2.1]hept-2-yl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-(2-cyclohexyl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-(3-hydroxy-2-phenyl-propionylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-(2-adamantan-1-yl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

4-methyl-pentanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)- butyl]-amide;

3-methyl-pentanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;

2-(2-cyclopentyl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)- amide;

2-(2-cyclopropyl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-(2-indan-2-yl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-(3-phenyl-butyrylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

5-oxo-hexanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;

2-[2-(3-chloro-phenyl)-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-[2-(3-bromo-phenyl)-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-(5-furan-2-yl-2H-pyrazol-3-yl)-propionamide;

N-(5-tert-butyl-2H-pyrazol-3-yl)-2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionamide;

N-(5-cyclopropyl-2H-pyrazol-3-yl)-2-[2-(3,5-difluoro-phenyl)-acetylamino]-

propionamide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-pentanoic acid (5-furan-2-yl-2H-pyrazol-3-yl)-amide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-pentanoic acid (5-thiophen-2-yl-2H-pyrazol-3-yl)-amide;

-72-

2-[2-(3,5-difluoro-phenyl)-acetylamino]-pentanoic acid (5-tert-butyl-2H-pyrazol-3-yl)-amide;

5

10

15

20

25

30

35

2-[2-(3,5-difluoro-phenyl)-acetylamino]-pentanoic acid [5-(4-chloro-phenyl)-2H-pyrazol-3-yl]-amide;

N-(5-tert-butyl-2H-pyrazol-3-yl)-2-[2-(3,5-difluoro-phenyl)-acetylamino]-3-methyl-butyramide;

1-[2-(3,5-difluoro-phenyl)-acetylamino]- cyclopropanecarboxylic acid (5-tert-butyl-2H-pyrazol-3-yl)- amide;

1-[2-(3,5-difluoro-phenyl)-acetylamino]-cyclopropanecarboxylic acid (5-furan-2-yl-2H-pyrazol-3-yl)- amide;

N-(5-biphenyl-4-yl-2H-pyrazol-3-yl)-2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionamide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-N-[5-(3',4'-dimethyl-biphenyl-4-yl)-2H-pyrazol-3-yl]-propionamide;

2-[2-(3,5-difluoro-phenyl)-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-phenylmethanesulfonylamino-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

2-(4-fluoro-phenylmethanesulfonylamino)-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

2-(2-nitro-phenylmethanesulfonylamino)-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

2-phenylmethanesulfonylamino-pentanoic acid (5-tert-butyl-2H-pyrazol-3-yl)-amide;

2-(4-fluoro-phenylmethanesulfonylamino)-pentanoic acid (5-tert-butyl-2H-pyrazol-3-yl)-amide;

N-(5-tert-butyl-2H-pyrazol-3-yl)-2-phenylmethanesulfonylamino-propionamide;

2-p-tolylmethanesulfonylamino-pentanoic acid (5-tert-butyl-2H-pyrazol-3-yl)-amide;

2-phenylmethanesulfonylamino-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-(decane-1-sulfonylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-(biphenyl-4-sulfonylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-(4-chloro-phenylmethanesulfonylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-benzenesulfonylamino-4-methylsulfanyl-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

2-(4-fluoro-phenylmethanesulfonylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-(4,5-dichloro-thiophene-2-sulfonylamino)-4-methylsulfanyl-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide; and

2-(4-chloro-phenylmethanesulfonylamino)-pentanoic acid (5-tert-butyl-2H-pyrazol-3-yl)-amide;

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid benzyl-methyl-amide;

- 3,7-Dimethyl-oct-6-enoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;
- 2-[2-(1-Benzyl-piperidin-3-yl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;
- 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid dibutylamide;

5

10

15

20

25

30

35

- 3-{[1-(5-Phenyl-2H-pyrazol-3-ylcarbamoyl)-propylcarbamoyl]-methyl}-piperidine-1-carboxylic acid tert-butyl ester;
- 3-{[1-(5-Phenyl-2H-pyrazol-3-ylcarbamoyl)-propylcarbamoyl]-methyl}-piperidine-1-carboxylic acid tert-butyl ester;
- 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid ethyl-methyl-amide;
- 2-[2-(3-Chloro-phenyl)-acetylamino]-pentanoic acid [5-(4-chloro-phenyl)-2H-pyrazol-3-yl]-amide;
- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-[5-(4-phenyl-piperazine-1-carbonyl)-2H-pyrazol-3-yl]-butyramide;
- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-[5-(2-hydroxymethyl-pyrrolidine-1-carbonyl)-2H-pyrazol-3-yl]-butyramide;
- 2-(2-Cyclohexyl-2-hydroxy-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
- 2-(2-Cyclohexyl-2-hydroxy-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-[5-(2,6-dimethyl-morpholine-4-carbonyl)-2H-pyrazol-3-yl]-butyramide;
- 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid (2-hydroxy-ethyl)-propyl-amide;
- 1-(5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carbonyl)-piperidine-3-carboxylic acid ethyl ester;
- 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid (2,2-dimethoxy-ethyl)-methyl-amide;
- 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid diethylamide;
- 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid diisobutylamide;
- 3,7-Dimethyl-oct-6-enoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;
 - 3,7-Dimethyl-oct-6-enoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid dibenzylamide;

2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-[5-(2-ethyl-piperidine-1-carbonyl)-2H-pyrazol-3-yl]-butyramide;

5

10

15

20

25

30

35

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid benzyl-ethyl-amide;

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid butyl-methyl-amide;

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino}-butyrylamino}-1H-pyrazole-3-carboxylic acid dihexylamide;

2-[2-(2,3-Difluoro-phenyl)-2-hydroxy-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-[2-(1-Benzenesulfonyl-piperidin-3-yl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

2-[2-(1-Acetyl-piperidin-3-yl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide; 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid dipropylamide;

2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-[5-(1-methyl-1H-benzoimidazol-2-yl)-2H-pyrazol-3-yl]-butyramide;

2-[2-(5-Bromo-pyridin-3-yl)-acetylamino]-pentanoic acid [5-(4-chloro-phenyl)-2H-pyrazol-3-yl]-amide;

2-[2-(3-Trifluoromethyl-phenyl)-acetylamino]-pentanoic acid [5-(4-chloro-phenyl)-2H-pyrazol-3-yl]-amide;

2-[2-(3-Methoxy-phenyl)-acetylamino]-pentanoic acid [5-(4-chloro-phenyl)-2H-pyrazol-3-yl]-amide;

3-{1-[5-(4-Chloro-phenyl)-2H-pyrazol-3-ylcarbamoyl]-butylcarbamoyl}-5-methyl-2-propyl-hexanoic acid tert-butyl ester;

N-(5-Phenyl-2H-pyrazol-3-yl)-2-[2-(5-phenyl-pyridin-3-yl)-acetylamino]-butyramide; N-(5-Phenyl-2H-pyrazol-3-yl)-2-(2-piperidin-1-yl-acetylamino)-butyramide

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid dipentylamide;

2-Hydroxy-hexanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;

2-[2-(2-Chloro-phenyl)-2-hydroxy-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-[2-(3,5-Diffuoro-phenyl)-acetylamino]-pentanoic acid (2H-pyrazol-3-yl)-amide; 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-[5-(5,6,7,8-tetrahydro- [1,2,4]triazolo[4,3-a]pyridin-3-yl)-2H-pyrazol-3-yl]-butyramide;

2-[2-(3,5-Difluoro-phenyl)-acetylamino]-3,3-dimethyl-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

2-(2-Hydroxy-3-methyl-butyrylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-[2-(5-o-Tolyl-pyridin-3-yl)-acetylamino]-pentanoic acid [5-(4-chloro-phenyl)-2H-pyrazol-3-yl]-amide;

2-Hydroxy-3-methyl-N-[1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-propyl]-butyramide;

- 2-[2-(2-Oxo-azepan-3-yl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;
- 2-[2-(2-Oxo-azepan-3-yl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;
- 3,7-Dimethyl-octa-2,6-dienoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;
 - 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid (5-methyl-2H-pyrazol-3-yl)-amide; and
- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-hexanoic acid (5-phenyl-2H-pyrazol-3-yl)-15 amide;

and pharmaceutically acceptable salts thereof.

- 12. A compound according to claim 11 selected from the group consisting of:
- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-(5-furan-2-yl-2H-pyrazol-3-yl)-
- 20 propionamide;

25

5

- N-(5-tert-Butyl-2H-pyrazol-3-yl)-2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionamide;
- N-(5-Cyclopropyl-2H-pyrazol-3-yl)-2-[2-(3,5-difluoro-phenyl)-acetylamino]-propionamide;
- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid (5-furan-2-yl-2H-pyrazol-3-yl)-amide;
- 30 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid (5-thiophen-2-yl-2H-pyrazol-3-yl)-amide;
 - 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid (5-cyclopropyl-2H-pyrazol-3-yl)-amide;
- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pentanoic acid [5-(4-chloro-phenyl)-2H-35 pyrazol-3-yl]-amide;
 - 2-Phenylacetylamino-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;
 - 2-[2-(3-Fluoro-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;

WO 2004/033434

5

15

25

35

- 2-[2-(3,5-Difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;
- 2-[2-(4-Fluoro-3-trifluoromethyl-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;
 - 2-[2-(3-Phenoxy-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;
- 2-[2-(3,5-Difluoro-phenyl)-acetylamino]-pent-4-enoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
- 2-[2-(3,5-Difluoro-phenyl)-2-hydroxy-acetylamino]-4-methylsulfanyl-N- (5-phenyl-2H-pyrazol-3-yl)-butyramide;
- 10 2-[2-(3,5-Difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;
 - 2-[2-(3,5-Difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid ethyl ester;
 - 5-[2-(2-Hydroxy-4-methyl-pentanoylamino)-butyrylamino]-1H-pyrazole-3-carboxylic acid ethyl ester;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-2-hydroxy-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid ethyl ester;
- 20 2-[2-(3,5-Difluoro-phenyl)-2-hydroxy-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-propionamide;
 - N-(5-Phenyl-2H-pyrazol-3-yl)-2-(2-pyridin-3-yl-acetylamino)-butyramide;
 - 2-[2-(5-Bromo-pyridin-3-yl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid butyl-ethyl-amide;
 - 2-[2-(3-Phenoxy-phenyl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;
 - 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide;
- 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid cyclohexyl-ethyl-amide;
 - 2-(2-Cyclohexyl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
 - 4-Methyl-pentanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;
 - 3-Methyl-pentanoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;
 - 2-(2-Cyclopentyl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
 - 2-(2-Cyclopropyl-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
 - 2-[2-(3-Chloro-phenyl)-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;
 - 2-[2-(3-Bromo-phenyl)-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

10

15

20

25

30

35

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid benzyl-methyl-amide;

3,7-Dimethyl-oct-6-enoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide; 5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid dibutylamide;

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid ethyl-methyl-amide;

2-(2-Cyclohexyl-2-hydroxy-acetylamino)-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-[5-(2,6-dimethyl-morpholine-4-carbonyl)-2H-pyrazol-3-yl]-butyramide;

5-{2-[2-(3,5-Diffuoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid (2-hydroxy-ethyl)-propyl-amide;

1-(5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carbonyl)-piperidine-3-carboxylic acid ethyl ester;

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid (2,2-dimethoxy-ethyl)-methyl-amide;

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid diisobutylamide;

3,7-Dimethyl-oct-6-enoic acid [1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-butyl]-amide;

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid dibenzylamide;

2-[2-(3,5-Difluoro-phenyl)-acetylamino]-N-[5-(2-ethyl-piperidine-1-carbonyl)-2H-pyrazol-3-yl]-butyramide;

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid benzyl-ethyl-amide;

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid butyl-methyl-amide;

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid dihexylamide;

2-[2-(2,3-Difluoro-phenyl)-2-hydroxy-acetylamino]-pentanoic acid (5-phenyl-2H-pyrazol-3-yl)-amide;

2-[2-(1-Acetyl-piperidin-3-yl)-acetylamino]-N-(5-phenyl-2H-pyrazol-3-yl)-butyramide;

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid dipropylamide;

N-(5-Phenyl-2H-pyrazol-3-yl)-2-[2-(5-phenyl-pyridin-3-yl)-acetylamino]-butyramide;

WO 2004/033434

5

10

15

20

25

5-{2-[2-(3,5-Difluoro-phenyl)-acetylamino]-butyrylamino}-1H-pyrazole-3-carboxylic acid dipentylamide;

2-[2-(5-o-Tolyl-pyridin-3-yl)-acetylamino]-pentanoic acid [5-(4-chloro-phenyl)-2H-pyrazol-3-yl]-amide; and

2-Hydroxy-3-methyl-N-[1-(5-phenyl-2H-pyrazol-3-ylcarbamoyl)-ethyl]-Butyramide; and pharmaceutically acceptable salts thereof.

- 13. A pharmaceutical composition for treating in a mammal a disease or condition associated with A β -peptide production, which pharmaceutical composition comprises a compound according to any of Claims 1-12 in an amount effective in inhibiting A β -production, or b) in an amount effective in inhibiting said disease or condition, and a pharmaceutically acceptable carrier.
- 14. A method for treating in a mammal a disease or condition selected from Alzheimer's disease, hereditary cerebral hemorrhage with amyloidosis, cerebral amyloid angiopathy, a prion-mediated disease, inclusion body myositis, stroke, and Down's Syndrome, which method comprises administering to said mammal a) an amount of a compound according to any of Claims 1-12 effective in inhibiting $A\beta$ -production, or b) an amount of a compound according to any of Claims 1-12 effective in treating said disease or condition.
- 15. A method for treating dementia, including Alzheimer's disease, in a mammal, which method comprises administering to the mammal an effective amount of a compound according to any of Claims 1-12 either alone or in combination with another drug, either separately or as part of a single pharmaceutical composition, wherein the other drug is selected from a memory enhancement agent, an antidepressant agent, an anxiolytic, an antipsychotic agent, a sleep disorder agent, an anti-inflammatory agent, an anti-oxidant agent, a cholesterol modulating agent, or an anti-hypertension agent.

INTERNATIONAL SEARCH REPORT

Internation olication No PCT/IB 03/04252

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D231/40 C07D409/12 C07D401/12 C07D409/04 C07D405/04
C07D403/06 C07D401/06 C07D403/04 C07D413/14 C07D471/04
A61K31/415 A61P25/00 C07D487/04 //(C07D471/04,249:00,

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 CO7D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BEILSTEIN Data, CHEM ABS Data

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 02 18346 A (SANNER MARK ALLEN ;PFIZER PROD INC (US); WAGER TRAVIS T (US); COOP) 7 March 2002 (2002-03-07) claims	1,13-15
A	WO 02 48114 A (TRAQUANDI GABRIELLA ;LONGO ANTONIO (IT); VILLA MANUELA (IT); AMICI) 20 June 2002 (2002-06-20) claims	1,13-15
A	WO 01 12188 A (TRAQUANDI GABRIELLA ;ORSINI PAOLO (IT); PEVARELLO PAOLO (IT); VARA) 22 February 2001 (2001-02-22) claims	1,13-15
A	EP 0 885 890 A (SUMITOMO PHARMA) 23 December 1998 (1998-12-23) claims	1,13-15

	_/
X Further documents are listed in the continuation of box C.	χ Patent family members are listed in annex.
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 2 December 2003	Date of mailing of the international search report $16/12/2003$
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Chouly, J

INTERNATIONAL SEARCH REPORT

Internation: olication No PCT/IB 03/04252

A. CLASSII IPC 7	FICATION OF SUBJECT MATTER 221:00), (C07D487/04,253:00,231:00)		
According to	International Patent Classification (IPC) or to both national classifica	tion and IPC	
	SEARCHED	and the first state of the first	
	cumentation searched (classification system followed by classification	n symbols)	
Documentat	ion searched other than minimum documentation to the extent that su	uch documents are included in the fields se	arched
	ata base consulted during the international search (name of data bas	e and, where practical, search terms used	
	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.
P,A	WO 03 064396 A (PLEISS MIKE A ;TH GENE (US); ELAN PHARM INC (US); GASHL) 7 August 2003 (2003-08-07) claims	UINN	1,13-15
Furti	ner documents are listed in the continuation of box C.	Y Patent family members are listed	in annex.
'A' docume filing c'L' docume which citatio 'O' docume other 'P' docume later the	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international late ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filling date but	 "T" later document published after the inte or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the cannot be considered to involve an indocument is combined with one or moments, such combination being obviou in the art. "&" document member of the same patent Date of mailing of the international sea 	the application but sory underlying the laimed invention be considered to current is taken alone laimed invention ventive step when the tre other such docu-us to a person skilled
Name and I	nailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Chouly, J	!

International application No. PCT/IB 03/04252

INTERNATIONAL SEARCH REPORT

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. χ	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
	Although claims 13-15 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Days	The additional secrets for a way accompanied by the smalles of
nemark	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internation plication No
PCT/IB 03/04252

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0218346	A	07-03-2002	AU	8000901 A	13-03-2002
			BG	107455 A	30-09-2003
			BR	0113574 A	22-07-2003
			CA	2420363 A1	07-03-2002
			EP	1313710 A1	28-05-2003
			HR	20030140 A1	30-04-2003
			WO	0218346 A1	07-03-2002
			NO	20030958 A	28-02-2003
			ÜS	2002103185 A1	01-08-2002
WO 0248114	Α	20-06-2002	US	6455559 B1	24-09-2002
			ΑÜ	1505302 A	24-06-2002
			CA	2430151 A1	20-06-2002
			WO	0248114 A1	20-06-2002
			EP	1345909 A1	24-09-2003
WO 0112188	<u>-</u> -	22-02-2001	US	6387900 B1	14-05-2002
			ΑŬ	6747000 A	13-03-2001
			BR	0013277 A	18-06-2002
			CA	2380786 A1	22-02-2001
			CN	1379668 T	13-11-2002
			ΕP	1202734 A1	08-05-2002
			HU	0301857 A2	29-09-2003
			JP	2003507328 T	25-02-2003
			NO	20020687 A	03-04-2002
			SK	2082002 A3	10-09-2002
			WO	0112188 A1	22-02-2001
			ZA	200201118 A	10-03-2003
EP 0885890	 А	23-12-1998	 AU	1735497 A	10-09-1997
	,.		. EP	0885890 A1	23-12-1998
			CA	2247286 A1	28-08-1997
			JP	10007658 A	13-01-1998
			WO	9730978 A1	28-08-1997
WO 03064396	 А	07-08-2003	WO	03064396 A1	07-08-2003