

Outline

Primordial magnetic fields and their CMB imprints

Current bounds on the PMF

The promise of Faraday Rotation

What can PICO tell us about the PMF?

Based on work with Soma De, Brian Keating, Yun Li, Bess Ng, Meir Shimon, Tanmay Vachaspati, Amit Yadav, Alex Zucca, and the POLARBEAR collaboration

Cosmic Magnetic Fields

- \circ Origin of 1-10 μ G fields in galaxies and clusters
 - purely astrophysical? (dynamo, SN, ...)
 - purely primordial? (need nG coherent on 1 Mpc)
 - some combination of the two?
- Evidence of magnetic fields in voids
 - ullet missing GeV γ -ray halos around TeV blazars

Image courtesy of NRAO/AUI

- Generated in the early universe not "if", but "how much"
 - phase transitions
 - inflationary mechanisms
 - a window into the early universe
- A distinct signature in CMB could prove their primordial origin
 - Current upper bounds from CMB are at 1 nG level
 - PICO, S4 can go below 0.1 nG and rule out the purely primordial origin

Inflationary Magnetogenesis

The Maxwell action of the electromagnetic field

$$S = -\int \sqrt{-g} \ d^4x \ \frac{1}{16\pi} g^{\mu\alpha} g^{\nu\beta} F_{\mu\nu} F_{\alpha\beta} \qquad \begin{vmatrix} g_{\mu\nu}^* &=& \Omega^2 g_{\mu\nu} \\ S^* &=& S \end{vmatrix}$$

is conformally invariant, and FRW is conformally flat. Cannot amplify EM wave fluctuations in a FRW universe.

Introduce couplings that break the conformal invariance:

$$S = \int \sqrt{-g} d^4x b(t) \left[-\frac{f^2(\phi, R)}{16\pi} F_{\mu\nu} F^{\mu\nu} - g_1 R A^2 + g_2 \theta F_{\mu\nu} \tilde{F}^{\mu\nu} - D_{\mu} \psi (D^{\mu} \psi)^* \right]$$

e.g. couplings to the inflaton, curvature, axion, extra-D, charged scalars

 See early work by Turner and Widrow (1988) and Ratra (1992), recent review by Subramanian (1504.02311)

Stochastic Primordial Magnetic Field

- Frozen in to the plasma on large scales, amplitude decays as $B(a)=B_0/a^2$
- Magnetic field power spectrum:

$$\langle b_i(\mathbf{k})b_j(\mathbf{k'})\rangle = (2\pi)^3 \delta^{(3)}(\mathbf{k} + \mathbf{k'})[(\delta_{ij} - \hat{k}_i\hat{k}_j)S(k) + i\varepsilon_{ijl}\hat{k}_lA(k)]$$

 $S(k) \propto k^n, \quad 0 < k < k_{\text{diss}}$

Common measures of cosmological magnetic fields:

$$B_{\lambda}^{2} \equiv \int_{0}^{\infty} \frac{k^{2}dk}{2\pi^{2}} S(k) \ e^{-\lambda^{2}k^{2}} \qquad \qquad B_{\text{eff}} \equiv \sqrt{8\pi\epsilon_{B}}$$

- Fields generated in phase transitions have n=2 on CMB scales (Durrer and Caprini, 2003; Jedamzik and Sigl, 2010)
- For scale-invariant PMF, n=-3: $B_{\lambda}=B_{ ext{eff}}$ (Turner & Widrow, 1988; Ratra. 1992)

Magnetic field effects on CMB

Gravitational coupling

$$T_0^0 \propto -B^2$$

 $T_j^i \propto B^2 \delta_j^i - 2B^i B_j$

scalar (curvature), vector (vorticity), tensor (gravitational waves) modes

• Electromagnetic coupling

Lorentz force causes vorticity fluctuations in plasma

Magnetic energy dissipates, dumps energy into the plasma

- spectral distortions
- modified ionization history

Faraday Rotation

Observable CMB signatures of the PMF

• Spatial correlations of anisotropies

Shift in the time of last scattering

Departures from the black body spectrum

- Faraday Rotation
 - Frequency dependence
 - Mode-coupling correlations

Passive (adiabatic) and Active (isocurvature) PMF modes

The way PMF sources CMB fluctuations differs before and after neutrinos decouple

- Before neutrino decoupling: nothing balances the PMF anisotropic stress
 - > Added contribution to the scalar adiabatic mode
 - Added contribution to the primordial tensor mode

$$H^{(2)} \approx R_{\gamma} \Pi_B^{(2)} \left[\log \left(\tau_{\nu} / \tau_B \right) + \left(\frac{5}{8R_{\nu}} - 1 \right) \right]$$

- After neutrino decoupling: the PMF anisotropic stress compensated by neutrinos
 - Actively sourced compensated scalar, vector and tensor modes

PMF contributions to the CMB spectra

A. Zucca, Y. Li, LP, 1611.00757

MagCAMB and MagCosmoMC

Alex Zucca

Publicly available patches to CAMB and CosmoMC

https://alexzucca90.github.io/MagCAMB/ https://github.com/alexzucca90/MagCosmoMC

 Developed by A. Zucca (SFU) based on original papers by Lewis (2004) and Shaw & Lewis (0911.2714)

Bounds from Planck combined with SPT B-modes

- B_{1Mpc} < 1.2 nG at 95% CL for a nearly scale-invariant PMF
- Adding SPT BB reduces the Planck bound on B_{1Mpc} by a factor of 2
- using a uniform prior on B_{1Mpc} can lead to fake bounds on n_B

Crossing the nano-Gauss barrier

• Magnetic stress-energy is quadratic in B

$$T_0^0 \propto -B^2$$

$$T_j^i \propto B^2 \delta_j^i - 2B^i B_j$$

- Thus, $C_L \sim B^4$
- Bounds based on CMB spectra will always remain at O(nG)*

*Potentially very strong bounds from modified recombination history Jedamzik and Abel (2011, 2013), Jedamzik and Saveliev, 1804.06115

Faraday Rotation is linear in B

Faraday Rotation

• For CMB:
$$\alpha(\hat{\mathbf{n}}) = \frac{3c^2\nu_0^{-2}}{16\pi^2e} \int \dot{\tau} \ \mathbf{B} \cdot d\mathbf{l} = c^2\nu_0^{-2} \ \mathrm{RM}(\hat{\mathbf{n}})$$

 Most of the rotation occurs at last scattering (if there is a PMF) and inside our galaxy

Faraday Rotation converts E-modes into B-modes

$$B_{lm} = 2\sum_{LM}\sum_{l'm'}\alpha_{LM}E_{l'm'}\xi_{lml'm'}^{LM}H_{ll'}^{L}$$

One can reconstruct the rotation angle from mode-coupling EB correlations (Kamionkowski, 2009; Glusevic, Kamionkowski, Cooray, 2009)

$$\hat{D}^{LM,\text{map}}_{ll'} = \frac{4\pi}{(2l+1)(2l'+|1)} \sum_{mm'} B^{\text{map}}_{lm} E^{\text{map}*}_{l'm'} \xi^{LM}_{lml'm'}$$

$$[\hat{\alpha}_{LM}]_{ll'} = \frac{\hat{D}_{ll'}^{LM,\text{map}}}{2C_l^{EE}H_{ll'}^L}$$

Generalized to a multiple channel Rotation Measure (RM) estimator in LP, 1311.2926

Faraday Rotation converts E-modes into B-modes

What scales are probed?

- Most of the information comes from CMB correlations at 300 < I < 3000
 - need low noise high resolution polarization maps
 - can work with small (f ~ 0.1) patches of sky near Galactic poles
- Large scale correlations of the rotation angle are constrained the best
 - for a sale-invariant rotation spectrum most S/N comes from 2<L<100</p>

arXiv:1509.02461, Phys Rev D

FIG. 2: The anisotropic cosmic rotation power spectra from Polarbear 's first-season data in three patches. The spectrum of an individual patch is indicated by the green (RA23), blue (RA12) and orange (RA4.5) colors. The coadded (red) power spectrum is consistent with zero.

At 148 GHz this implies a bound of 90 nano-Gauss at 95% CL

What about PICO?

nu	FWHM	PolWeight	
(GHz)	(arcmin)	(uK*arcmin)	
21	38.4	16.3	
25	32.0	11.7	
30	28.3	7.8	
36.0	23.6	5.6	
43.2	22.2	5.4	
51.8	18.4	4.0	
62.2	12.8	3.9	
74.6	10.7	3.2	I
89.6	9.5	2.0	ı
107.5	7.9	1.7	ı
129.0	7.4	1.6	ı
154.8	6.2	1.4	
185.8	4.3	2.5	
222.9	3.6	3.1	
267.5	3.2	2.0	
321.0	2.6	3.0	
385.2	2.5	3.3	
462.2	2.1	7.8	
554.7	1.5	44.1	
665.6	1.3	176.9	
798.7	1.1	1260.7	

Optimistic range

Conservative Science Frequency Range

Best case forecast (no systematics)

	PICO BB	PICO FR (75-150 Ghz)	PICO FR (50-150 GHz)
1σ bound on PMF	0.35 nG	0.06 nG	0.05 nG

Compared to other CMB experiments

	Planck +SPT	PB	SPT-3G	Simons Obs.	CMB-S4	PICO
1σ bound from BB, TT, EE, TE	1 nG	2.5 nG	0.8 nG	0.9 nG	0.4 nG	0.35 nG
1σ bound from FR	n/a	50 nG	0.55 nG	0.4 nG	0.07 nG	0.05 nG

Systematic Effects

- Weak Lensing contribution to B-modes
- Faraday Rotation in our own galaxy
- Beam Asymmetry
- Galactic foregrounds

Systematics due to Weak Lensing (WL)

- Mode-coupling due to WL is of opposite parity, does not mix with the FR induced mode-coupling
- WL contributes to the variance of the FR estimator through

$$\tilde{C}_l^{X^i Y^j} \equiv C_l^{XY, \text{prim}} + f_{\text{L}} C_l^{XY, \text{WL}} + \delta_{X^i Y^j} \sigma_{P, i}^2$$

- $0 < f_1 < 1$ quantifies how well the WL contribution can be subtracted
 - \triangleright Perfect WL subtraction ($f_L = 0$): $B_{PICO} < 0.05 \text{ nG}$
 - \triangleright No WL subtraction ($f_L = 1$): $B_{PICO} < 0.125 \text{ nG}$

Galactic Rotation Measure

FIG. 3: The RM angular spectra, $L(L+1)C_L^{\rm RM}/2\pi$, obtained from the RM map of Oppermann et al [16] with different cuts. Shown are the RM spectra corresponding to, from top to bottom, a scale-invariant PMF of 1 nG, galaxy with no sky cut, with a mask used by Planck for their 70 GHz map, a Planck mask for the 30 GHz map, and symmetric cuts corresponding to $f_{\rm sky}=0.4$ and $f_{\rm sky}=0.1$.

Figures from De, LP, Vachaspati, PRD'13, arXiv:1305.7225 based on the public RM data from Oppermann et al, A&A'12, arXiv:1111.6186

Systematics due to Galactic FR

Faraday Rotation inside our galaxy lowers the signal-to-noise of primordial FR

$$\left(\frac{S}{N}\right)^{2} = \sum_{L=1}^{L_{max}} \frac{(f_{\text{sky}}/2)(2L+1)[C_{L}^{\text{RM,PMF}}]^{2}}{[C_{L}^{\text{RM,PMF}} + f_{G}C_{L}^{\text{RM,G}} + \sigma_{\text{RM},L}^{2}]^{2}}$$

- $0 < f_G < 1$ quantifies how well Galactic contribution can be subtracted
- Need an independent measurement, such as the Oppermann et al RM map
- Near galactic poles, Galactic FR looks the same as scale-invariant PMF of 0.1 nG
 - \triangleright Perfect galactic FR subtraction ($f_G = 0$): $B_{PICO} < 0.05 \text{ nG}$
 - \triangleright No galactic FR subtraction ($f_G = 1$): $B_{PICO} < 0.1 \text{ nG}$

Systematics due to Beam Asymmetry

- Beam imperfections induce EE, TE, BB, EB and TB correlations
- Parameterized contributions to CMB spectra for a dual polarized beam experiment derived in Shimon, Keating, Ponthieu, Hivon, 0709.1513
- Our (very) preliminary forecast includes effects of differential pointing, differential ellipticities, and differential rotation
- Asymmetry parameters tuned to achieve target sensitivity to r
- For PICO, assumed target sensitivity of $\sigma_r = 5 \times 10^{-5}$
 - ➤ No beam systematics : B_{PICO} < 0.05 nG
 - ➤ With beam systematics: B_{PICO} < 0.25 nG

Other sources of birefringence

Coupling to a pseudoscalar, axion-like field:

$$\mathcal{L}_{int} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}\partial_{\mu}a\partial^{\mu}a + \frac{a}{2f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}$$

- Unlike the PMF, can induce uniform (isotropic) rotation, sourcing C_L^{EB} and C_L^{TB}
 - \triangleright Current bounds on uniform rotation: α_{iso} < 30 arcmin
 - \triangleright PICO (best case) forecast: $\alpha_{\rm iso} < 0.03$ arcmin
 - \triangleright PICO (with systematics) forecast: $\alpha_{iso} < 0.2$ arcmin
- Stochastic rotation spectrum generated during inflation Pospelov, Ritz, Skordis, PRL, 0808.0673
 - ightharpoonup Current bound (Planck, PB): $f_a > 10^{15} \, \mathrm{GeV} \, \frac{H}{10^{14} \, \mathrm{GeV}}$
 - ightharpoonup PICO forecast: $f_a > 10^{18} \, \mathrm{GeV} \frac{10^{14} \, \mathrm{GeV}}{10^{14} \, \mathrm{GeV}}$
 - Non-trivial bounds on String Theory axions and inflation

Summary

- Cosmic magnetic fields are real, and maybe primordial in origin
- Mode-coupling correlations induced by Faraday Rotation can reduce the upper bound on PMF from 1 nG to below 0.1 nG
- This would rule out a purely primordial origin of galactic magnetic fields
- Need Q & U with high resolution, low noise at lower frequencies
- Potentially interesting science from cross-correlations of CMB polarization rotation maps with Synchrotron maps and Rotation Measures of radio sources

Science 2 April 2010:

Vol. 328 no. 5974 pp. 73-75 DOI: 10.1126/science.1184192

REPORT

Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars

Andrii Neronov*, levgen Vovk

Author Affiliations

ISDC Data Centre for Astrophysics, Geneva Observatory, Ch. d'Ecogia 16, Versoix 1290, Switzerland.

← *To whom correspondence should be addressed. E-mail: Andrii.Neronov@unige.ch

ABSTRACT

Magnetic fields in galaxies are produced via the amplification of seed magnetic fields of unknown nature. The seed fields, which might exist in their initial form in the intergalactic medium, were never detected. We report a lower bound $B \ge 3 \times 10^{-16}$ gauss on the strength of intergalactic magnetic fields, which stems from the nonobservation of GeV gamma-ray emission from electromagnetic cascade initiated by tera-electron volt gamma rays in intergalactic medium. The bound improves as $\lambda_B^{-1/2}$ if magnetic field correlation length, λ_B , is much smaller than a megaparsec. This lower bound constrains models for the origin of cosmic magnetic fields.

Radiative transport with Faraday Rotation

$$\dot{Q} + i(\vec{k} \cdot \hat{n})Q = -\dot{\tau}Q + 2\omega_B U + S_+$$

$$\dot{U} + i(\vec{k} \cdot \hat{n})U = -\dot{\tau}U - 2\omega_B Q + S_-$$

$$\omega_B = \frac{d\alpha}{d\eta} = \frac{3\lambda_0^2}{2\pi e} \dot{\tau} \mathbf{B} \cdot \hat{n}$$