Do Now: Transformations

1. Triangle ABC has the vertices A(1,2), B(2,5), and C(7,4). Find the coordinates of $\Delta A'B'C'$, the image of ΔABC under the transformation T-2, -7

Graph and label both triangles. What is the relationship of the lengths of the sides of the two triangles? Justify your answer.

2.

The grid below shows $\triangle ABC$ and $\triangle DEF$.

Let $\triangle A'B'C'$ be the image of $\triangle ABC$ after a rotation about point A. Determine and state the location of B' if the location of point C' is (8,-3). Explain your answer.

3.

Line segment $\underline{A'B'}$, whose endpoints are (4,-2) and (16,14), is the image of \overline{AB} after a dilation of $\frac{1}{2}$ centered at the origin. What is the length of \overline{AB} ?

(1) 5

(3) 20

(2) 10

(4) 40

Classwork: Regents transformations problems

1.

Given: $\triangle AEC$, $\triangle DEF$, and $\overline{FE} \perp \overline{CE}$

What is a correct sequence of similarity transformations that shows $\triangle AEC \sim \triangle DEF$?

- (1) a rotation of 180 degrees about point E followed by a horizontal translation
- (2) a counterclockwise rotation of 90 degrees about point E followed by a horizontal translation
- (3) a rotation of 180 degrees about point E followed by a dilation with a scale factor of 2 centered at point E
- (4) a counterclockwise rotation of 90 degrees about point E followed by a dilation with a scale factor of 2 centered at point E

2.

Triangle MNP is the image of triangle JKL after a 120° counterclockwise rotation about point Q. If the measure of angle L is 47° and the measure of angle N is 57°, determine the measure of angle M. Explain how you arrived at your answer.

3.

In triangle CHR, O is on \overline{HR} , and D is on \overline{CR} so that $\angle H \cong \angle RDO$.

If RD = 4, RO = 6, and OH = 4, what is the length of \overline{CD} ?

 $(1) 2\frac{2}{3}$

(3) 11

(2) $6\frac{2}{3}$

(4) 15