Advanced topics on Algorithms

Luciano Gualà www.mat.uniroma2.it/~guala/

Parameterized algorithms Episode III

Toolbox (to show a problem is FPT)

bounded-search trees

treewidth

Treewidth

Pearson International Edition

Algorithm Design

Jon Kleinberg & Éva Tardos

reference (Chapter 10.4)

The party problem

problem: invite people to a party

maximize: total fun factor of the invited people

constraint: everyone should be having fun

do not invite a colleague and his direct boss at the same time!

input: a tree with weights

on the nodes

goal: an independent set of

maximum total weight

The party problem

problem: invite people to a party

maximize: total fun factor of the invited people

constraint: everyone should be having fun

do not invite a colleague and his direct boss at the same time!

input: a tree with weights

on the nodes

goal: an independent set of

maximum total weight

weighted independent set on trees: a dynamic programming algorithm Subproblems:

For each v of T:

- T_v: subtree of T rooted at v
- A[v]: weight of a maximum weighted IS of T_v
- B[v]: weight of a maximum weighted IS of T_v that does not contain v

goal: determine A[r] for the root r

$$v$$
 leaf: $A[v]=w_v$ $B[v]=0$

v internal node with children $u_1,...,u_d$:

$$B[v] = \sum_{i=1}^{d} A[u_i]$$

$$A[v] = \max\{B[v], w_v + \sum_{i=1}^{d} B[u_i] \}$$

order for the subproblems: bottom up

Generalizing trees: How could we define that a graph is "treelike"?

def 1: number of cycles is bounded

def 2: removing a bounded number of vertices makes it acyclic

def 3: bounded-size parts connected in a tree-like way

A tree decomposition $(T, \{V_t: t \in T\})$ of a graph G=(V,E) consists of a tree T (on a different node set from G), and a piece $V_t\subseteq V$ associated with each node t of T that satisfies the following three properties:

- (Node Coverage): every node of G belongs to at least one piece V_{t} ;
- (Edge Coverage): for every edge e of G, there is some piece V_t containing both endpoints of e;
- (Coherence): Let t_1 , t_2 and t_3 be three nodes of T such that t_2 lies on the path from t_1 and t_3 . Then, if a node v of G belongs to both V_{t_1} and V_{t_3} it also belongs to V_{t_2}

the width of $(T, \{V_+: t \in T\}): \max_+ |V_+| -1$

width = 11

width = 5

A tree decomposition (T, $\{V_t:t\in T\}$) of a graph G=(V,E) consists of a tree T (on a different node set from G), and a piece $V_t\subseteq V$ associated with each node t of T that satisfies the following three properties:

- (Node Coverage): every node of G belongs to at least one piece V_{t} ;
- (Edge Coverage): for every edge e of G, there is some piece V_t containing both endpoints of e;
- (Coherence): Let t_1 , t_2 and t_3 be three nodes of T such that t_2 lies on the path from t_1 and t_3 . Then, if a node v of G belongs to both V_{t_1} and V_{t_3} it also belongs to V_{t_2}

the width of $(T, \{V_+: t \in T\}): \max_+ |V_+| -1$

the treewidth of G: width of the best tree decomposition of G

the treewidth of a tree is 1

Let T be a subgraph of T.

 G_T : subgraph of G induced by the nodes in all pieces associated with nodes of T', that is, the set $\bigcup_{t \in T'} V_t$.

deleting a node t from T

Lemma

Suppose that T-t has components $T_1,...,T_d$. Then the subgraphs

$$G_{T_1}^- V_t$$
, $G_{T_2}^- V_t$,..., $G_{T_d}^- V_t$,

have no nodes in common, and there are no edges between them.

Let T be a subgraph of T.

 $G_{T'}$: subgraph of G induced by the nodes in all pieces associated with nodes of T', that is, the set $\bigcup_{t \in T'} V_t$.

deleting an edge (x,y) from T

Lemma

Let X and Y be the two components of T after the deletion of the edge (x,y). Then the two subgraphs

$$G_X$$
- $(V_x \cap V_y)$ and G_Y - $(V_x \cap V_y)$

have no nodes in common, and there are no edges between them.

contradiction!

no nodes in common

contradiction!

no nodes in common

A tree decomposition $(T, \{V_+: t \in T\})$ is redundant if there is an edge (x,y)with $V_x \subseteq V_v$.

obtaining a nonredundant tree decomposition:

- whenever a tree decomposition (T, $\{V_t:t\in T\}$) is redundant:
 - contract the edge (x,y) by folding the piece V_x into the piece V_y .

Lemma

Any nonredundant tree decomposition of an n-node graph has at most n pieces.

proof (induction on n.)

n=1 is trivial. Let n>1.

consider a leaf t of T and the corresponding V_{+}

nonrundancy implies there is at least a node in V_{+} not in the piece of t's parent (and for coherency in no other piece).

Let U be the set of such nodes

T-t is a nonredundant tree decomposition of G-U with at most

 $|n-|U| \le n-1$ pieces

 $(T, \{V_t: t \in T\})$ has at most n pieces

Dynamic Programming on graph with bounded treewidth w

Solving the weighted Independent Set

defining the subproblems

root Tat a node r

for any node t,

- let T_t be the subtree of T rooted at t
- let G_t be the subgraph of G induce by the nodes of all pieces associated with nodes of T_t

subproblems:

for each node t, and each $U \subseteq V_t$:

 $f_{t}(U)$ = maximum weight of an independent set S in G_{t} , subject to the requirement that $S \cap V_{t} = U$

obs: $f_t(U) = -\infty$ (or undefined) if U is not an IS

number of subproblems:

2^{w+1} for each node t 2^{w+1}n overall for nonredundant tree decomposition goal:

compute $\max_{U\subseteq V_r} f_r(U)$

 $f_{+}(U)$ = maximum weight of an independent set S in G_{+} , subject to the requirement that $S \cap V_{+} = U$

let S be a maximum-weight IS in G_t subject to the requirement that $S \cap V_t = U$, that is $w(S) = f_t(U)$

assume that t has children $t_1,...,t_d$:

 S_i : intersection of S and the nodes of G_{t_i}

Lemma

 S_i is a maximum-weight IS of G_{t_i} subject to

$$S_i \cap V_t = U \cap V_t$$

 $f_t(U)$ = maximum weight of an independent set S in G_t , subject to the requirement that $S \cap V_t = U$

 $f_{t}(U)$ = maximum weight of an independent set S in G_{t} , subject to the requirement that $S \cap V_{t} = U$

 S_i : intersection of S and the nodes of G_{t_i}

claim: S_i is opt for G_{t_i} , subject to $S_i \cap V_t = U \cap V_{t_i}$

 $f_{t}(U)$ = maximum weight of an independent set S in G_{t} , subject to the requirement that $S \cap V_{t} = U$

 S_i : intersection of S and the nodes of G_{t_i}

weight of such an optimal S_i :

 $\max\{f_{t_i}(U_i): U_i \cap V_t = U \cap V_{t_i} \text{ and } U_i \subseteq V_{t_i} \text{ is an IS}\}$

case: t leaf in T

U⊆V₊ independent set

$$f_{\dagger}(U) = w(U)$$

case: t has children $t_1,...,t_d$ in T

$$+ f_{t}(U) = w(U) + \sum_{i=1}^{d} \max\{ f_{t_{i}}(U_{i}) - w(U_{i} \cap U) : \}$$

 $U_i \cap V_t = U \cap V_{t_i}$ and $U_i \subseteq V_{t_i}$ is an IS }

To find a maximum-weight independent set of G, given a tree decomposition $(T, \{V_t\})$ of G:

Modify the tree decomposition if necessary so it is nonredundant

Root T at a node r

For each node t of T in post-order

If t is a leaf then

For each independent set U of V_t

$$f_t(U) = w(U)$$

Else

For each independent set U of V_t

 $f_t(U)$ is determined by the recurrence -

Endif

Endfor

Return max $\{f_r(U): U \subseteq V_r \text{ is independent}\}.$

 $U \subseteq V_t$ independent set

$$f_{\dagger}(U) = w(U)$$

case: t has children $t_1,...,t_d$ in T

time to compute $f_t(U)$:

for each of the d children t_i and each $U_i \subseteq V_{t_i}$

- check in time O(w) if U_i is an IS and is consistent with V_+ and U

 $O(2^{w+1} w d)$

there are 2^{w+1} possible U for a node t:

 $O(4^{w+1} \text{ w d})$

summing over all nodes t:

total running time:

 $O(4^{w+1} \text{ w n})$

How to compute a tree-decomposition?

Compute the treewidth of a given graph is NP-hard

There is an algorithm that, given a graph with treewidth w, produce a tree decomposition with width 4w in time O(f(w) mn)

