

SEMINÁRNÍ PRÁCE

Kryštof Pšenička

Superdeterminismus

Vedoucí seminární práce: Mgr. Ivana Špilínková

Obsah

1 Uvod				1	
2	Problémy kvantové mechaniky				
	2.1	Proble	lém měření	5	
	2.2	Proble	lém unifikace	8	
3	Bellova nerovnost				
	3.1	Bellov	vy testy	10	
		3.1.1	Nepřesnosti v Bellových testech	10	
4	Superdeterminismus				
	4.1	Defin	ující vlastnosti	13	
		4.1.1	Psi-epistemická	13	
		4.1.2	Deterministická	13	
		4.1.3	Lokální	14	
		4.1.4	Porušení Statistické Nezávislosti	19	
5	Protiargumenty 2				
	5.1 Bellovy testy				
		5.1.1	Kosmické Bellovy testy	21	
		5.1.2	Velký Bellův test	22	
	5.2	2 Svobodná vůle		23	
		5.2.1	Svobodná vůle iluzí	23	
	5.3	Ohrož	žení vědecké metody	25	
6 Závěr				26	
Se	eznar	n použ	žité literatury	27	
	Knihy				
	Videa				
	Články				
	Internetové články				

1 Úvod

(Zpracováno podle knihy Kumar, 2014)

Na konci 19. století se vědci domnívali, že s výjimkou několika detailů jejich teorie dokázaly odpovědět na všechny otázky fyziky. Podle nich už na obzoru nebyly žádné velké objevy. Maxwellovy rovnice elektromagnetismu a Newtonovy pohybové zákony kreslily deterministický vesmír, v němž má každá částice určitou pozici a momentum v daném okamžiku. Síly které působí na částici určují, jak se její pozice a rychlost mění v čase.

Ale už v roce 1900, při řešení problému absolutně černého tělesa, objevil Max Planck kvanta - nedělitelné balíky světla, jejichž velikost (energie) závisí na frekvenci daného světla. I když si v té době Max Planck i většina ostatních fyziků myslela, že to je pouze matematický trik, který nemá žádné implikace ve fyzickém světě, byl to první krok vedoucí ke kvantové revoluci.

Albert Einstein věřil ve fyzickou existenci Planckových kvant a ve vlnově-korpuskulární dualitu světla, podle níž je světlo částicí a vlnou zároveň a chová se jako jedno nebo druhé podle způsobu našeho pozorování. Ve svém Annus mirabilis¹ (1905) kvantově vysvětlil fotoefekt: když elektron získá dostatek energie absorbcí kvanta světla, je uvolněn z obalu atomu a následně může být vyzařován.

Francouzský aristokrat Luis de Broglie vzal tento závěr z Planckovy práce ještě dál a teoretizoval o vlnově-korpuskulární dualitě všech částic, nejen světelných, ale také částic hmotných.

Kvantový model atomu se postupně vyvíjel od modelu Nielse Bohra s jedním kvantovým číslem, vyjadřujícím velikost oběžné dráhy elektronu. Arnold Sommerfeld postupně k tomuto modelu přidal 3 další kvantová čísla: jedno vyjadřující tvar eliptické oběžné dráhy elektronu, druhé (magnetické) vyjadřující orientaci oběžné dráhy v prostoru a poslední vyjadřující spin, což je vnitřní moment hybnosti částice.

V této době bylo zřejmé, že je potřeba vytvořit teorii, která by popisovala fenomény kvantového světa: kvantovou mechaniku.

Roku 1925 Werner Heisenberg přišel na Maticovou kvantovou mechaniku. Maticová, protože ve výpočtech využívá matic a vektorů. Matice jsou tabulky čísel (viz Obrázek 1), které v této teorii mohou vyjadřovat veličiny jako polohu a hybnost částice. Vektory jsou veličiny, které mají kromě velikosti i směr a dají se vyjádřit maticemi. V Maticové mechanice se používají k vyjádření stavu systému. Vzhledem k používaným matematickým prostředkům je tato teorie nesmírně nepraktická k výpočtu vývoje jakéhokoli systému, jelikož rozměry matic se zvyšují exponenciálně s

 $^{^1{\}rm Z}$ ázračný rok, ve kterém Einstein vydal 4 revoluční vědecké články.

rostoucím počtem částic v systému.

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Obrázek 1: Matice o 3 řádcích a 3 sloupcích.

Pouze tři měsíce po vydání Heisenbergova článku o Maticové mechanice zkonstruoval rakouský fyzik Erwin Schrödinger svou proslulou vlnovou rovnici (Rovnice (1)), která popisuje vývoj vlnové funkce a stala se základem Schrödingerovy vlnové mechaniky. Vlnová mechanika se rychle stala oblíbenější než Maticová, jelikož výpočty s vlnovou rovnicí jsou daleko jednodušší.

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V\Psi$$
 (1)

O rok později Schrödinger dokázal matematickou ekvivalenci Maticové a Vlnové mechaniky. Jsou to dvě formy téže teorie - Kvantové mechaniky.

Ve stejném roce Max Born předložil pravděpodobnostní interpretaci vlnové funkce, ve které druhá mocnina vlnové funkce vyjadřuje pravděpodobnostní distribuční funkci výsledku. Pro ilustraci vezměte v úvahu obrázek 2. Ψ je vlnová funkce, která vyjadřuje stav systému, např. pozici elektronu. \mathbf{P} je pravděpodobnostní distribuční funkce. Tato funkce vyjadřuje pravděpodobnost pro každý možný výsledek měření (každá možná pozice elektronu). $\mathbf{P}(x_0, x_1)$ je pravděpodobnost, že výsledek měření bude mezi x_0 a x_1 . V našem případě je to pravděpodobnost, že elektron bude mít pozici mezi x_0 a x_1 a počítá se integrací pravděpodobnostní funkce mezi hodnotami x_0 a x_1 . Integrací $(\int_{x_0}^{x_1} |\Psi|^2 dx)$ získáme obsah pod křivkou v daném rozsahu, který odpovídá hledané pravděpodobnosti.

Obrázek 2: Vlnová funkce, pravděpodobnostní funkce a pravděpodobnost určitého výsledku.

Tato pravděpodobnostní interpretace se stala důležitou součástí dnešní Kvantové mechaniky, za kterou je považována Kodaňská interpretace, kterou společně vyhotovili Bohr, Pauli a Heisenberg v Bohrově institutu v Kodani.

Kvantová mechanika změnila obraz vesmíru z deterministického a předurčeného na indeterministický a pravděpodobnostní. V kvantovém pravděpodobnostním vesmíru můžeme určit pouze pravděpodobnost daného výsledku. Jediný způsob, jak Clerk Maxwell a Ludwig Boltzmann mohli popsat vlastnosti plynu skládajícího se z nesčetného množství částic bylo, použitím pravděpodobnosti a museli se spokojit se statistickým popisem. Tento nucený ústup ke statistické analýze byl způsoben neuskutečnitelností sledování pozice a rychlosti tolika částic. Pravděpodobnost byla důsledkem lidské nevědomosti. Naopak podle Kvantové mechaniky toto pravděpodobnostní vyjádření kvantového světa není způsobeno lidskou nevědomostí, ale je fundamentální vlastností kvantového vesmíru.

Přes jeho účast v začátcích kvantové revoluce se Albert Einstein stal jejím největším kritikem. Uvědomoval si její užitečnost v atomových měřítcích, ale myslel si, že "Bůh nehraje v kostky." Byl přesvědčený, že kvantová mechanika není konečnou teoríí, že za ní musí být fundamentálnější deterministická teorie. Takovým teoriím se říká teorie se "skrytými" parametry. Podle těchto teorií dokážeme určit jen pravděpodobnost výsledků, jelikož neznáme všechny parametry. Kdybychom znali tyto "skryté" parametry, dokázali bychom určit přesný výsledek měření.

V roce 1962 našel John Stewart Bell způsob, jak matematicky posoudit možnost teorie se skrytými parametry, která by replikovala výsledky kvantové mechaniky. Dnes se jí říká Bellova nerovnost. Tato nerovnost byla experimentálně porušena. Podle všeobecného mínění znamená porušení této nerovnosti nemožnost teorie se

skrytými parametry. Toto porušení ale pouze znamená, že neexistuje teorie se skrytými parametry, která splňuje princip lokálního realismu a podmínku statistické nezávislosti.

V této práci se budu věnovat teorii se skrytými parametry, která nesplňuje podmínku statistické nezávislosti. Takovou teorii nazval Bell Superdeterminismus. Statistická nezávislost (viz Rovnice (2)) znamená, že pravděpodobnostní distribuce skrytých parametrů ($P(\lambda)$) se nezmění, když vezmeme v potaz nastavení detektorů, (a,b). Této podmínce se často říká podmínka svobodné vůle, nebo svobodné volby.

Cílem této práce je přehodnocení argumentů proti Superdeterminismu. Pokusím se vysvětlit, v rozporu s všeobecným míněním, že Superdeterminismus je cestou, která by mohla vyřešit mnoho problémů se současnými teoriemi a kterou bychom neměli ignorovat; je to cesta kterou jsme se nevydali.

$$P(\lambda|a,b) = P(\lambda) \tag{2}$$

2 Problémy kvantové mechaniky

2.1 Problém měření

(Zpracováno podle videa *The Problem with Quantum Measurement*, Hossenfelder, 2022)

Kodaňská interpretace kvantové mechaniky má tři části: Schrödingerovu vlnovou rovnici, postulát o měření a Bornovo pravidlo.

Schrödingerova vlnová rovnice popisuje každou změnu vlnové funkce v čase kromě procesu měření. Tento proces chápeme jako interakci vlnové funkce měřeného systému s jiným (měřícím) systémem, která v měřícím systému zanechá informaci o velikosti určité veličiny měřeného systému. Když dojde k takové interakci, musíme použít postulát o měření, aby stav naší vlnové funkce souhlasil s realitou.

Postulát o měření můžeme jednoduše vysvětlit pomocí jednotkové kružnice. V úvodu jsem představil koncept vlnové funkce používaný k vyjádření stavu kvantového systému. Když sledujeme binární veličinu kvantového systému (např. spin kvantové částice), můžeme využít znázornění používaného v oboru Kvantového počítání k ilustraci stavu kvantového bitu (qubit). Stav qubitu se znázorňuje jako vektor $|\psi\rangle$ na jednotkové kružnici v soustavě souřadnic, kde osa x je jeden stav qubitu (např. spin nahoru, označovaný podobně jako u bitů jako $|1\rangle$) a osa y je stav druhý (např. spin dolů, jako $|0\rangle$) (viz Obrázek 3). Vektor $|\psi\rangle$ zapisujeme jako součet možných výsledků (viz Rovnice (3)), přičemž druhé mocniny koeficientů α a β určují pravděpodobnost daného výsledku.

$$|\psi\rangle = \alpha|1\rangle + \beta|0\rangle \tag{3}$$

Součet pravděpodobností je vždy 1, takže pro koeficienty platí vztah $\alpha^2 + \beta^2 = 1$. Takto se také počítá absolutní hodnota vektoru $|\psi\rangle$, která je tedy vždy 1. To znamená, že délka vektoru $|\psi\rangle$ je vždy 1, a proto používáme jednotkovou kružnici.

Obrázek 3: Znázornění vlnové funkce pomocí vektoru na jednotkové kružnici.

V praxi se používá Blochova sféra (jednotková sféra), jelikož koeficienty α a β jsou komplexní čísla, která mají navíc imaginární rozměr, což znamená, že $|\psi\rangle$ je trojrozměrný vektor. Nám k ilustraci postulátu o měření postačí 2 rozměry.

Podle postulátu o měření máme při měření vektor $|\psi\rangle$ aktualizovat promítnutím na osu změřeného výsledku a následně ho prodloužit zpět na délku 1.

Např. když budeme měřit stav qubitu a změříme ho ve stavu $|1\rangle$, musíme vektor aktualizovat, aby správně popisoval reálný stav qubitu. V tomto případě musíme vektor promítnout na osu změřeného stavu (osu $|1\rangle$) viz Obrázek 4. A poté musíme aktualizovat pravděpodobnost prodloužením vektoru zpět na délku 1 (viz Obrázek 5).

Obrázek 4: Promítnutí vektoru na osu změřeného výsledku.

Obrázek 5: Prodloužení vektoru zpět na délku 1.

Schrödingerova rovnice je lineární. To znamená, že pokud za funkci ψ dosadíme součet dvou jiných vlnových funkcí (γ a ϵ) s libovolnými koeficienty α a β (viz Rovnice (4)), bude zachována rovnost, viz Rovnice (5). Součet vlnových funkcí (viz Rovnice (4)) se nazývá superpozice.

$$|\psi\rangle = \alpha|\gamma\rangle + \beta|\epsilon\rangle \tag{4}$$

$$i\hbar \frac{\partial(\alpha|\gamma\rangle + \beta|\epsilon\rangle)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2(\alpha|\gamma\rangle + \beta|\epsilon\rangle)}{\partial x^2} + V(\alpha|\gamma\rangle + \beta|\epsilon\rangle)$$
 (5)

Problém měření spočívá v nelineárnosti postulátu o měření. Tuto nelineárnost můžeme jednoduše dokázat pomocí superpozice. Pokud budeme měřit částici popsanou vlnovou funkcí $|\psi\rangle$ (např. $|1\rangle$), změříme ji ve stejném stavu $|1\rangle$. Problém nastává v případě, kdy měříme částici ve stavu superpozice (např. $|\psi\rangle = \sqrt{\frac{1}{2}}|0\rangle + \sqrt{\frac{1}{2}}|1\rangle$), jelikož ji nezměříme jako tuto superpozici, ale jako jeden ze stavů superpozice ($|0\rangle$ nebo $|1\rangle$), každý s pravděpodobností 50%.

Tato neshodnost Schrödingerovy rovnice a postulátu o měření znamená, že podle moderní kvantové mechaniky se nástroje na měření chovají podle jiných zákonů než elementární částice. Aby toto dávalo smysl, museli bychom opustit předpoklad redukcionismu, podle kterého se dá chování makroskopického objektu derivovat z chování jeho součástí. Museli bychom vytvořit teorii, která by definovala hranici, za kterou se už nemůžeme řídit redukcionismem. Touto možností se nebudeme zaobírat, jelikož redukcionismus je jedním z nejlépe podložených předpokladů vědy².

²Předpoklad redukcionismu je podporován každým experimentem, který byl kdy proveden. Je těžké najít lépe podložený vědecký fakt.

2.2 Problém unifikace

(Zpracováno podle článku Abdeen a Silva, 2013)

Konečným cílem fyziky je teorie všeho, popisující všechny jevy ve vesmíru. Doposud jsme všechny známé přírodní zákonitosti zjednodušili do dvou velice odlišných teorií, obecné relativity a kvantové mechaniky. Obecná relativita je teorie velkých rozměrů a energií. Dokáže popsat pohyb nebeských těles s nevídanou přesností.

Podle obecné teorie relativity se v přítomnosti hmoty ohýbá časoprostor, zatímco nepřítomnost hmoty způsobuje plochý časoprostor. Problém vzniká v subatomárních měřítcích, kde převládají kvantové fluktuace způsobené Heisenbergovým principem neurčitosti³, které vedou k radikálně zvrásněnému časoprostoru v protikladu k plochému časoprostoru obecné relativity. K dalším nesouladům těchto teorií patří neschopnost obecné relativity řešit hmotné body, které vytváří nekonečné zakřivení časoprostoru, a také nereálnost a nelokálnost kvantové mechaniky, které ujasníme v kapitole 3.

³Podle Heisenbergova principu neurčitosti vznikají i v perfektním vakuu páry virtuálních částic (částice a antičástice), které se anihilují krátce po jejich vzniku.

3 Bellova nerovnost

Roku 1964 byl zveřejněn revoluční vědecký článek (Bell, 1964). Irský vědec John Stewart Bell tímto článkem odpověděl na myšlenkový experiment, který byl předložen Albertem Einsteinem společně s Borisem Podolskym a Nathanem Rosenem (1935). Tento myšlenkový experiment poukazuje na paradox v kvantové mechanice. Když se částice se spinem 0 rozpadne na dvě částice, podle zákona zachování spinu musí tyto částice mít v součtu spin 0. Tomuto jevu se říká kvantové provázání. Pokud změříme spin jedné částice, instantně se dozvíme spin druhé částice, i kdyby tato částice byla vzdálena tisíce světelných let. Informace o spinu se podle kvantové mechaniky šíří mezi provázanými částicemi rychleji než světlo. Nicméně speciální teorie relativity omezuje rychlost každého kauzálního vlivu na rychlost světla. Kvantová mechanika tak porušuje lokální realismus.

Princip lokálního realismu má dvě části:

- 1. **Princip lokality:** objekt může být ovlivněn pouze jeho bezprostředním prostředím (Kauzální vliv se nemůže šířit rychleji než světlo). (*Principle of locality* 2022)
- 2. **Princip realismu:** vesmír existuje nezávisle na pozorovateli. (*Philosophical realism* 2022)

Einstein tímto odůvodňoval svou myšlenku, že kvantová mechanika nemůže být správnou reprezentací reality. Podle něj musí každá provázaná částice nést všechny informace o svém fyzikálním stavu už od okamžiku vzniku provázání a to takovým způsobem, že jsou tyto informace nějak skryty před vlnovou funkcí kvantové mechaniky. Einstein si myslel, že musí existovat "skryté proměnné", které nejsou součástí kvantové mechaniky, a spekuloval o možné teorii obsahující tyto skryté vlastnosti reality.

Bell ve svém článku (1964) zveřejnil Bellovu nerovnost pojednávající o omezení teorie se skrytými proměnnými. Aby mohla existovat teorie splňující předpoklad lokálního realismu (teorie se skrytými proměnnými) a statistické nezávislosti, musí být splněna Bellova nerovnost (viz Rovnice 6), podle níž musí být korelace mezi měřením propletených částic |S| menší, nebo rovna 2.

$$|S| \le 2 \tag{6}$$

3.1 Bellovy testy

(Zpracováno podle článku Bell test, 2022)

U jednoduchého příkladu Bellova testu (viz Obrázek 6) zdroj S vytváří páry propletených fotonů a každý z nich vyšle v opačném směru. Oba fotony narazí na dvoukanálový polarizační filtr (a, b), který foton odrazí, nebo propustí, podle jeho polarizace. Následně je každý foton detekován detektorem D+, nebo D- a informace o polarizaci fotonu je vyslána do korelačního monitoru CM.

Obrázek 6: Schéma typického CHSH (dvoukanálového) Bellova testu.

Bell si nemohl dovolit zveřejnit článek v populárním časopise. Zveřejnil ho tedy v neznámém časopise *Physics Physique Fyzika*, který za příspěvky dokonce platil. Z tohoto důvodu se jeho nerovnost dočkala experimentálního pokusu až o osm let později, kdy Stuart J. Freedman a John F. Clauser změřili korelace mezi lineárními polarizacemi fotonů vyzařovaných z atomů vápníku (1972). Korelace byla větší, než je dovoleno Bellovou nerovností. Tento výsledek byl mnohokrát replikován se stále větší přesností. Roku 2022 dostali Alain Aspect, John Clauser a Anton Zeilinger Nobelovu cenu za Fyziku za experimenty s propletenými fotony, které prokázaly porušení Bellovy nerovnosti, a za průkopnictví v kvantové informatice.

3.1.1 Nepřesnosti v Bellových testech

Nepřesnost těchto experimentů by mohla nastat z více důvodů.

- 1. **Detekční mezera:** rozdíl mezi počtem emitovaných a detekovaných částic.
 - Garg a Mermin ukázali, že detekční účinnost (η , podíl vyslaných a změřených částic) potřebná k překonání detekční mezery u experimentu typu CHSH musí být větší než 0.83 (1987). Tato hranice byla překonána roku 2001 experimentem, který dosáhl detekční účinnosti přes 0.9 (Rowe et al., 2001).
- 2. **Mezera lokality:** možnost, že volba nastavení měření jedné částice ovlivní měření druhé částice.
 - Lokalita je jedním z předpokladů potřebných k odvození Bellovy nerovnosti. Původem tohoto předpokladu je teorie relativity, která omezuje rychlost ko-

munikace na rychlost světla. K uplatnění tohoto předpokladu u experimentu musí být doba, která uplyne mezi volbou nastavení měření⁴ a měřením samotným, kratší než doba, kterou by světelný signál potřeboval k překonání vzdálenosti mezi místy měření. U našeho příkladu (viz Obrázek 6) by musela být doba mezi volbou úhlu natočení dvoukanálových polarizačních filtrů a měřením kratší, než doba, kterou by světelný signál potřeboval k cestě mezi detektory na straně A a detektory na straně B. Takový experiment navrhoval Bell už ve svém originálním článku (1964). V prvním takovém experimentu (Aspect, Dalibard a Roger, 1982) byla volba nastavení měření na každé straně provedena během letu fotonů ze zdroje.

3. **Mezera spoluvýskytu:** možnost, že zdánlivý pár propletených částic jsou doopravdy dvě částice z odlišných párů vyslaných zdrojem.

U všech Bellových experimentů, zejména u experimentů založených na polarizaci fotonů, se dvojice změřených částic v obou křídlech experimentu identifikují jako patřící do jedné dvojice až po provedení experimentu, posouzením, jestli jsou jejich časy detekce dostatečně blízko sebe. To vytváří novou možnost pro lokální teorii skrytých proměnných "falšovat" kvantové korelace: zpozdit čas detekce každé ze dvou částic o větší či menší množství v závislosti na určitém vztahu mezi skrytými proměnnými v částicích a nastavením detektoru, s nímž se setkají.

Mezeře spoluvýskytu lze předejít experimentem s předem pevně danou mříž-kou detekčních oken, která jsou dostatečně krátká, aby většina párů částic změřených ve stejném okně skutečně pocházela ze stejné emise, a dostatečně dlouhá, aby skutečný pár částic nebyl oddělen hranicí okna.

4. **Paměťová mezera:** lokální teorie skrytých proměnných by mohla využít paměť předešlých nastavení měření a výsledků měření ke zvýšení porušení Bellovy nerovnosti.

Bylo prokázáno, že při provedení experimentu typu Alaina Aspecta (1982) s randomizací nastavení měření nemá tato mezera dostatečný účinek ke změně výsledku experimentu (Barrett et al., 2002)(Gill, 2001)(Gill, 2003).

 $^{^4}$ Volba nastavení detektorů. V použitém příkladu (viz Obrázek 6) je to volba natočení dvoukanálových polarizačních filtrů a a b.

5. **Superdeterminismus:** možnost porušení Statistické Nezávislosti $^5.$

Tato možnost byla eliminována pod doměnkou, že by narušila "svobodnou vůli" experimentátora a že tato "svobodná vůle" je nezbytná pro vědu. V následujících kapitolách zvážíme tuto možnost a ukážeme si, proč bychom jí neměli tak rychle zavrhovat.

 $^{^5{\}rm Možnost}$ korelace skrytých proměnných s nastavením měření.

4 Superdeterminismus

4.1 Definující vlastnosti

(Zpracováno podle článku Hossenfelder a Palmer, 2020)

Superdeterministické teorie jsou Psi-epistemické, deterministické a lokální teorie skrytých proměnných, které porušují Statistickou Nezávislost a nemusí být nutně realistické.

4.1.1 Psi-epistemická

Podle Psi-epistemické teorie vlnová funkce Schrödingerovy rovnice (Psi, $|\psi\rangle$) neodpovídá přímo vlastnosti nějakého systému v reálném světě. Kodaňská interpretace Kvantové mechaniky je Psi-epistemická, protože považuje vlnovou funkci pouze za reprezentaci znalostí o stavu systému.

Opakem je Psi-ontická teorie, která bere vlnovou funkci jako fundamentální část reálného světa.

Superdeterministické teorie jsou Psi-epistemické v tom smyslu, že vlnová funkce je průměrná pravděpodobnostní reprezentace přesných veličin systému, popsaných hlubší teorií.

Vlnová funkce odvozená ze superdeterministické teorie by se měla řídit dosud ověřenými evolučními zákony kvantové mechaniky. Smysl hledání takové teorie je tedy vytváření předpovědí nad rámec kvantové mechaniky.

4.1.2 Deterministická

Roku 1814 formuloval matematik Pierre-Simon de Laplace myšlenku deterministického vesmíru pomocí Laplaceova démona (*Laplace's demon*, 2022). Podle determinismu by bytost (démon) znající pozici a momentum každé částice ve vesmíru a mající dostatečnou výpočetní sílu mohla pomocí základních zákonů přírody vypočítat minulost i budoucnost každé částice. Vše je předurčené, evoluce každé částice je dána přírodními zákony.

Determinismem myslíme, že evoluční zákon teorie jednoznačně mapuje stavy systému v čase t na stavy v čase t' pro libovolné t a t'.

Jelikož Kvantová mechanika není deterministická, musí deterministická teorie reprodukující Kvantovou mechaniku obsahovat skryté proměnné. Skryté proměnné, nadále kolektivně označované λ , obsahují všechny informace potřebné k určení výsledku měření kromě "neskrytých" proměnných, které jsou obsaženy v přípravě stavu systému.

Je důležité poznamenat, že tyto skryté proměnné nemusí být vlastní pro měřený systém, ani v něm lokalizované. Představme si chlapce jménem Nikolaj, který má na mysli dvě otázky: "Jaká je moje hmotnost?" a "Zvládnu úspěšně udělat maturitní zkoušky?" V deterministickém vesmíru se odpovědi na obě otázky nacházejí v současném stavu vesmíru, ale jejich dostupnost je velmi odlišná. Informace o hmotnosti Nikolaje se vyskytuje lokálně v něm samotném, zatímco informace o jeho úspěšnosti při maturitní zkoušce je rozložena po většině prostoru současné chvíle.

4.1.3 Lokální

(Zpracováno podle článku Wharton a Argaman, 2020)

Lokalitou v Superdeterminismu exkluzivně myslíme Kontinuitu Působení (dále jen KoP). Zvažme oddělené časoprostorové oblasti ${\bf 1}$ a ${\bf 2}$ (viz Obrázek 7), přičemž ${\bf 1}$ je obklopena "zastiňovací" oblastí ${\bf S}$. ${\bf S}$ není pouze prostorovou oblastí, zahrnuje budoucnost i minulost oblasti ${\bf 1}$ a zároveň i její prostorový rozsah (v dimenzích ${\bf x},{\bf y},{\bf z}$).

Obrázek 7: Kontinuita Působení zobrazená v časoprostorovém diagramu. t je časová osa a x, y, z je prostorová osa, znázorňující všechny 3 prostorové dimenze.

Matematický model porušuje KoP, pokud dovoluje "působení na dálku", tzn. pokud změny ve $\mathbf{2}$ souvisejí se změnami v $\mathbf{1}$, aniž by souvisely se změnami uvnitř \mathbf{S} . \mathbf{S} je jakási kontrolovací oblast pro KoP. Jestliže se nějaká informace dostane z $\mathbf{1}$ do $\mathbf{2}$, musí se také nacházet v \mathbf{S} , aby model dodržoval KoP. Jako příklad můžeme uvést systém kohoutku, trubek a fontány. Aby model s kohoutkem ve $\mathbf{2}$ a korelovanou fontánou v $\mathbf{1}$ splňoval KoP, musí obsahovat popis zprostředkujících parametrů (Např. tok vody trubkami mezi kohoutkem a fontánou) v přechodné zastiňovací oblasti \mathbf{S} . V takovém modelu jsou při znalosti všech parametrů v \mathbf{S} dodatečné informace z $\mathbf{2}$ zbytečné k předpovědi budoucího vývoje $\mathbf{1}$.

Matematicky můžeme KoP vyjádřit rovnicí 7. I_1 a I_2 představují množiny všech vstupů v oblastech 1 a 2 postupně. Q_1 , Q_2 a Q_S označují nevstupní parametry v odpovídající oblasti.

$$P_{I_1,I_2}(Q_1|Q_2,Q_S) = P_{I_1}(Q_1|Q_S)$$
(7)

Tato rovnice vyjadřuje nezávislost evolučního zákona $P_{I_1}(Q_1|Q_S)$ na vstupech I_2 a parametrech Q_2 . Jinými slovy pravděpodobnostní distribuce parametrů Q_1 se vstupy I_1 a I_2 za předpokladu znalosti Q_2 a Q_S je stejná jako ta samá pravděpodobnostní distribuce bez vstupů I_2 a parametrů Q_2 . Když je tato podmínka splněna, říkáme, že S zastiňuje 1 od 2. U modelů splňujících KoP musí tato rovnost platit pro všechny jednoduše propojené, nepřekrývající se oblasti 1, 2 a S, pro které platí, že oblast S zcela odděluje 1 od 2 a nikde není mizivě tenká.

Bellova Lokalita (dále jen BL), použitá k odvození Bellovy nerovnosti, je silnější kritérium než KoP. BL má oproti KoP ještě 2 omezení:

1. Nezávislost na Budoucím Vstupu

Nezávislost na budoucím vstupu (dále jen NBV) zmenšuje zastiňovací oblast na část S', která neleží v budoucnosti obou oblastí 1 a 2 (viz Obrázek 8).

NBV platí pro matematický model $P_I(Q)$, jestliže existuje model $P'_{I'}(Q')$ omezený časem t'^6 , který splňuje rovnici 8. I' je množina všech vstupů v časech po t' a Q' je množina všech nevstupových parametrů v časech po t'.

NBV říká, že $P_I(Q')$ je nezávislý na budoucích vstupech.

$$P_I(Q') = P'_{I'}(Q') \tag{8}$$

⁶Horní časová hranice časoprostorových oblastí 1 a 2.

Obrázek 8: Nezávislost na budoucím vstupu. S' je oblast S omezena na minulost a přítomnost oblastí 1 a 2.

2. Platnost zastiňovací oblasti pro všechny referenční rámce (pozorovatele).

K pochopení tohoto omezení si nejdříve vysvětlíme časoprostorové diagramy, světelné kužely a referenční rámce.

Na obrázku 9 vidíme časoprostorový diagram. Osa ct je osa času (vynásobeného rychlostí světla c) a osa x, y, z je osa prostoru, představující všechny 3 prostorové dimenze. V počátku soustavy souřadnic je nějaká událost U.

Dráha, kterou objekt sleduje v časoprostorovém diagramu, se nazývá světočára. Světočára elektronu je vždy přímka s úhlem 45° od osy x, y, z, jelikož elektron má rychlost světla. Takže na této soustavě souřadnic představuje světočáru elektronu rovnice ct = (x, y, z), nebo také ct = -(x, y, z), která říká, že dráha, kterou elektron následuje časoprostorem, je rovna produktu rychlosti světla a času, který uběhne.

Když do diagramu nakreslíme světočáry elektronu, vzniknou dva světelné kužely⁷. Podle speciální teorie relativity(Einstein, 1905) se nemůže kauzální vliv⁸ šířit rychleji než světlo. Budoucí světelný kužel tedy obsahuje všechny události, které může událost \boldsymbol{U} kauzálně ovlivnit. A minulý světelný kužel obsahuje všechny události, které mohly ovlivnit událost \boldsymbol{U} .

 $^{^7{\}rm Kužely},$ protože ve skutečnosti jsou ve 4 dimenzích.

⁸Jakákoliv informace(vliv, síla).

Obrázek 9: Světelné kužely události \boldsymbol{U} v časoprostorovém diagramu.

Na obrázku 10 je zobrazena časoprostorová soustava souřadnic pozorovatele \boldsymbol{A} , který se vzhledem k události \boldsymbol{U} pohybuje rychlostí 0 a přes ní je zobrazena časoprostorová soustava pozorovatele \boldsymbol{B} , který se vzhledem k události \boldsymbol{U} pohybuje rychlostí $\boldsymbol{0.3c}$ (30% rychlosti světla). Z diagramu můžeme vidět, že události $\boldsymbol{T},\boldsymbol{U},\boldsymbol{V}$ probíhají současně pro pozorovatele \boldsymbol{A} , ale pro pozorovatele \boldsymbol{B} probíhají v pořadí $\boldsymbol{V},\boldsymbol{U},\boldsymbol{T}$. Světelné kužely události \boldsymbol{U} zůstávají stejné pro všechny pozorovatele, jelikož světočára fotonu je pořád stejná: rovnice $\boldsymbol{ct} = \pm(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})$ pro pozorovatele \boldsymbol{A} a $\boldsymbol{ct'} = \pm(\boldsymbol{x'},\boldsymbol{y'},\boldsymbol{z'})$ pro pozorovatele \boldsymbol{B} vykreslují stejné přímky (hranice světelných kuželů události \boldsymbol{U}). Takže omezení kauzálních vlivů světelnými kužely platí pro všechny pozorovatele.

Aby tedy lokální kauzalita platila pro všechny pozorovatele, musíme zastiňovací oblast omezit světelnými kužely oblastí ${\bf 1}$ a ${\bf 2}^9$ (viz Obrázek 11).

 $^{^9}$ Zastiňovací oblast nestačí omezit světelnými kužely oblasti 1. Zastiňovací oblast musí zastiňovat oblast 1 od překryvu světelných kuželů oblastí 1 a 2.

Obrázek 10: Posloupnost událostí $\boldsymbol{T}, \boldsymbol{U}, \boldsymbol{V}$ pro 2 různé pozorovatele.

Obrázek 11: Bellova Lokalita. Zastiňovací oblast S'' splňuje podmínky Nezávislosti na Budoucím Vstupu a Platnosti pro všechny referenční rámce.

4.1.4 Porušení Statistické Nezávislosti

Korelace mezi propletenými částicemi v našem vesmíru porušují Bellovu nerovnost. Porušení této nerovnosti poukazuje na chybnost alespoň jednoho z předpokladů potřebných k odvození Bellovy nerovnosti. Většinou je porušení Bellovy nerovnosti interpretováno jako důkaz proti lokálně realistické teorii (Garisto, 2022). Podle této interpretace nás porušení Bellovy nerovnosti nutí k výběru mezi lokalitou a realismem. K derivaci Bellovy nerovnosti je ale zapotřebí ještě předpoklad Statistické Nezávislosti, kterému se často říká předpoklad "Svobodné Volby" (Tato terminologie je hluboce zavádějící, o čemž se zmíníme v následující části).

Aby lokální teorie skrytých proměnných souhlasila s pozorovaným porušením Bellovy nerovnosti, musí porušovat Statistickou Nezávislost.

Porušení Statistické Nezávislosti obecně znamená, že stupně svobody¹⁰ dvou prostorově oddělených systémů jsou korelované, a to i v případě, že nemají společnou kauzální příčinu. Jednoduše řečeno všechno ve vesmíru je spojeno se vším ostatním, i když jen slabě.

V případě Bellovy nerovnosti je při porušení Statistické Nezávislosti výsledek měření závislý na nastavení měření.

Matematický model porušuje Statistickou Nezávislost, pokud pro něj platí nerovnice 9. Podle nerovnice 9 je pravděpodobnostní distribuce (P) skrytých proměnných λ , které určují výsledek měření, jiná za předpokladu nastavení detektorů ab. Jinými slovy je pravděpodobnostní distribuce skrytých proměnných závislá na nastavení detektorů.

$$P(\lambda|ab) \neq P(\lambda) \tag{9}$$

Nejjednodušší způsob, jak si to představit, je, že jak nastavení detektorů, ab, tak skryté proměnné, λ , vstupují do evolučního zákona připraveného stavu¹¹. Superdeterminismus tedy znamená, že nastavení měření je součástí toho, co určuje výsledek časového vývoje připraveného stavu.

Je důležité poznamenat, že Superdeterminismus neříká, že λ ovlivňuje ab, ale pouze, že λ a ab jsou korelované.

Statistická Nezávislost je předpoklad, který dobře popisuje naše pozorování na makroskopické úrovni. Avšak nevíme, jestli je tento předpoklad zásadně správný. Než se smíříme s tím, že příroda je nepředvídatelná a nepochopitelná (což je stejné jako vzdát se), měli bychom zjistit, co se stane, pokud opustíme předpoklad Statistické

¹⁰Nezávislé parametry, které definují konfiguraci nebo stav systému.

¹¹Stav měřeného systému (Např. částice) při přípravě.

¹²Na rozdíl od Kvantové mechaniky.

5 Protiargumenty

(Zpracováno podle článku Hossenfelder a Palmer, 2020)

5.1 Bellovy testy

Nobelovu cenu za fyziku za rok 2022 dostala třetice fyziků Alain Aspect, Anton Zeilinger a John Clauser. Většina médií milně uvádí, že tato trojice dostala nobelovu cenu za dokázání kvantového provázání částic pomocí mnoha extenzivních testů Bellovy nerovnosti. Žádný z těchto experimentů nedokazuje kvantové provázání, ani nemožnost Superdeterminismu.

5.1.1 Kosmické Bellovy testy

V Kosmických Bellových testech (Handsteiner et al., 2017) (Rauch et al., 2018) jsou nastavení měření určena podle přesné vlnové délky světla, přicházejícího z kvazarů (velmi vzdálených objektů, které byly kauzálně odděleny v čas emise fotonů). Tento experiment je velmi pozoruhodný a je hoden nobelovy ceny, ale nemůže vyloučit Superdeterminismus. Pouze říká, že korelace, pozorovené v Bellových testech nemohly být lokálně způsobeny událostmi ve vzdálené minulosti (v případě Kosmických testů jsou těmito událostmi emise fotonů až miliardy let v minulosti, chvíli po vzniku vesmíru). Porušení Bellovy nerovnosti nám pouze říká, že jeden z předpokladů Bellovy nerovnosti byl porušen. Žádný Bellův test nemůže určit jaký předpoklad byl porušen.

Domněnka, že takové testy říkají něco o nemožnosti Superdeterminismu vycházejí z předpokladu, že stav blízký realizovanému stavu (např. kdyby světlo vyzařované vzdálenými kvazary mělo trošku jinou vlnovou délku) je povolen přírodními zákony a je pravděpodobný. V Superdeterministické teorii by ale tato malá změna vytvořila extrémně nepravděpodobný stav. V Superdeterministické teorii by změna vlnové délky světla z kvazarů mohla vyžadovat změnu jinde na hyperporvchu daného momentu, která by vedla k rozhodnutí experimentátora nepoužít světlo z daných kvazarů ve svém experimentu.

5.1.2 Velký Bellův test

Autoři Velkého Bellova testu si uvědomili problém ve vytváření náhodnosti v nastavení měření k vyloučení korelace mezi skrytými proměnnými a nastavení měření (porušení Statistické Nezávislosti):

A Bell test requires spatially distributed entanglement, fast and high-efficiency detection and unpredictable measurement settings. Although technology can satisfy the first two of these requirements the use of physical devices to choose settings in a Bell test involves making assumptions about the physics that one aims to test. Bell himself noted this weakness in using physical setting choices and argued that human 'free will' could be used rigorously to ensure unpredictability in Bell tests. Here we report a set of local-realism tests using human choices, which avoids assumptions about predictability in physics. - The BIG Bell Test Collaboration, 2018

Velký Bellův test proběhl tak, že 100 000 lidských účastníků hrálo online videohru, čímž bylo vygenerováno 97 347 490 binárních voleb, které byly poslány do 12 laboratoří na pěti kontinentech, kde bylo provedeno 13 experimentů testujících Bellovu nerovnost pomocí fotonů, jednotlivých atomů, atomových souborů a supravodivých zařízení. Tímto experimentem byla údajně "uzavřena mezera svobodné volby (možnost, že nastavení měření jsou ovlivněna skrytými proměnnými a tím korelována s vlastnostmi částic)". Je jednoduché poznat problém v závěru, ke kterému dospěli autoři tohoto článku. Experimentátoři předpokládají, že vstup od lidí je na rozdíl od vstupu vytvářeného fyzickými přístroji náhodný a tím předpokládají fundamentální rozdíl mezi lidmi a fyzickými systémy (schopnost svobodné volby). Experiment předpokládá svobodu vůle účastníků při hraní videohry k vytvoření náhodnosti v nastavení měření a k následnému dokázání svobodné vůle. Svobodnou vůli nelze dokázat tím, že předpokládáme svobodnou vůli.

Ve skutečnosti moc nezáleží na detailech těchto experimentů. Musíme vzít na vědomí, že změření porušení Bellovy nerovnosti, ať je experiment jakkoliv komplexní, nemůže určit které předpoklady nerovnosti byly porušeny.

5.2 Svobodná vůle

Předpoklad Statistické Nezávislosti se většinou označuje jako předpoklad svobodné vůle, protože může být interpretován jako svoboda experimentátora vybrat si nastavení měření nezávisle na skrytých proměnných.

Je důležité rozlišovat dvě převládající definice svobodné vůle:

- 1. Libertariánská (Li): možnost jednat jinak.
- 2. **Kompatibilistická (Ko):** nepřítomnost omezení, která by člověku bránila dělat to, co si přeje.

Statistická Nezávislost se opírá o Li, jelikož obojí vychází z představy kontrafaktuálních světů¹³. To znamená, že Superdeterministické teorie vylučují svobodnou vůli jako možnost jednat jinak. Z tohoto důvodu většina vědců tyto teorie odmítá. Odmítat vědeckou teorii jen kvůli tomu, že se vám nelíbí její důsledky, je nevědecké a kontraproduktivní.

Statistická nezávislost neříká nic o Ko, takže Superdeterminismus tuto možnost nevylučuje.

5.2.1 Svobodná vůle iluzí

Z vědeckého pohledu se vše chová podle přírodních zákonů. Podle všech dosavadních experimentů vše následuje zákonitosti, popsané s velmi dobrou přesností fyzikálními teoriemi. Tato skutečnost nás vede k vědeckému determinismu, který je neslučitelný se svobodnou vůlí. Podle determinismu jsou všechna naše rozhodnutí předurčena. Nemůžeme zvolit mezi několika možnými variantami budoucnosti, protože existuje pouze jedna varianta. Pravděpodobnost kvantové mechaniky nám také nedává svobodnou vůli. Podle kvantové mechaniky nemůžeme určit jak se rozhodneme, můžeme určit jen pravděpodobnost daného rozhodnutí. Ale pokud jsou naše rozhodnutí určena pravděpodobností, tak nejsou svobodná. Stejně jako moje rozhodnutí nebudou svobodná, když se budu rozhodovat pomocí hodu mince.

Ve skutečnosti se děje to, že náš mozek se rozhodne pomocí složitých nevědomých kalkulací a až po nějaké době se toto rozhodnutí dostane do našeho vědomí a projeví se jako iluze svobodného rozhodnutí. V roce 2008 byl proveden fascinující experiment (Siong et al., 2008), ve kterém byla použita funkční magnetická resonance k určení časového rozdílu mezi nevědomým a vědomým rozhodnutím. Účastnící experimentu si vybrali mezi dvěma tlačítky a okamžitě zmáčkli to, které si vybrali. Výzkumníci zjistili, že výsledek rozhodnutí je zakódován v mozkové aktivitě až 10 sekund předtím, než se dostane do vědomí. Teoreticky bychom tedy mohli předpovědět jak se

¹³Alternativní svět za jiných okolností.

člověk rozhodne, když je ještě v procesu rozhodování.

V případě, že odmítneme determinismus tím, že předpokládáme existenci nějaké duše, která se rozhoduje nezávisle na fyzikálních zákonech, měli bychom pozorovat velké odchylky od našich fyzikálních teorií. Není tomu tak. Současné fyzikální teorie jsou podle velmi extenzivních testů (Kramer et al., 2021)(Precision tests of QED, 2022) neuvěřitelně přesné. I kdybychom ignorovali všechna tato fakta, zůstává problém, že nerozhodujeme o tom jakou duši dostaneme.

Kompatibilismus je filozofie, kterou zastává většina dnešních filozofů (Bourget a Chalmers, 2021). Jde o pokus zachování svobodné vůle při přijmutí determinismu. Ko svobodná vůle je sice kompatibilní s determinismem a Superdeterminismem, ale není doopravdy svobodná. Ko pouze redefinuje svobodné rozhodnutí na rozhodnutí, které je určeno tím co chceme. Takže pro kompatibilisty je svobodná vůle to samé jako vůle, jelikož to co chceme je naší vůlí. Rozhodnutí, určeno naší vůlí není svobodné. Nikdo neurčuje co chce. Např. když bych se rozhodoval mezi čajem a kafem, tak bych se rozhodnul pro to, co chci víc. K tomu abych se rozhodnul pro čaj, tak bych ho musel chtít víc jak kafe. I když bych se rozhodnul pro kafe s vědomím, že "chci" čaj, jen abych získal zpět svou svobodnou vůli, tak bych se pořád rozhodoval podle toho co chci, rozhodnul bych se pro kafe, protože bych chtěl "získat zpět" svou svobodnou vůli. Abychom změnili chtění na nechtění, tak bychom museli chtít nechtít a naopak, takže je to furt o tom co chceme a my neurčujeme co chceme.

Abychom měli svobodnou vůli, museli bychom si být vědomi všeho, co nás ovlivňuje, a mít nad tím kontrolu, což není pravdou a je to samo o sobě paradox. Když bychom měli tyto schopnosti, podle čeho bychom se rozhodovali? Jestliže mám kontrolu nad tím, co určuje, jak tuto kontrolu využiju, tak jsou moje volby určeny mými volbami, což je velice matoucí a nesmyslné.

Svobodná vůle je vlastně oxymorón. Když se rozhodnu podle své vůle, tak je mé rozhodnutí určeno mou vůlí (tím co chci), takže nemůže být svobodné a když by mé rozhodnutí nebylo určené, tak by se nejednalo o vůli.

Fakt, že Superdeterminismus vylučuje svobodnou vůli není vůbec problematický, jelikož svobodná vůle je pouze iluzí a logicky nesouvislým nesmyslem. Ať je náš vesmír Superdeterministický, či ne, nemáme svobodnou vůli.

5.3 Ohrožení vědecké metody

Přesvědčeni o nezbytnosti předpokladu Statistické Nezávyslosti k objevování přírodních zákonů pomocí experimentů, Shimony, Horne a Clauser už roku 1976 argumentovali proti Superdeterminismu:

But, we maintain, skepticism of this sort will essentially dismiss all results of scientific experimentation. Unless we proceed under the assumption that hidden conspiracies of this sort do not occur, we have abondoned in advance the whole enterprise of discovering the laws of nature by experimentation. - Shimony, Horne a Clauser, 1976

Vědci se obávají, že randomizované kontrolované studie¹⁴ by byly nemožné, kdyby výběr kontrolní skupiny mohl záviset na tom, co později změříme. Představme si, že náhodně rozdělíme lidi do dvou skupin k ověření účinnosti nového léku. Pokusná skupina dostane nový lék a kontrolní skupina placebo. V tomto případě je přiřazení do skupiny skrytá proměnná, λ . Když někdo onemocní, provedeme řadu testů (měření), abychom zjistili příčinu jejich nemoci. Pokud si myslíte, že to, co se stane s lidmi (jejich onemocnění), závisí na měření, které na nich provedete, nemůžete posoudit účinnost léku.

Tento argument vychází z představy, že z důvodu užitečnosti předpokladu Statistické Nezávislosti k pochopení vlastností klasických makroskopických systémů musí tento předpoklad platit i pro kvantové systémy. Tento závěr je zřetelně neoprávněný. Hlavní důvod této diskuze je nedostatečnost klasické fyziky k popisu kvantových systémů. A lidé se nechovají jako částice. Tento argument je ekvivalentní myšlence, že Schrödingerova kočka¹⁵ je doopravdy živá a mrtvá zároveň. V Superdeterminismu dochází k porušení Statistické Nezávislosti, pouze když kvantová mechanika předpovídá kolaps vlnové funkce, neboli při měření. Je důležité poznamenat, že Bellova nerovnost se zabývá pouze tím, co se děje při procesu měření. Ale jakmile změříme kvantový stav, tak tím porušování Statistické Nezávislosti končí. Měli bychom dodat, že měření nevyžaduje měřící přístroj. Měření je jakákoli dostatečně silná interakce s prostředím. Z tohoto důvodu v našem světě nepozorujeme živomrtvé kočky a Superdeterministické korelace v lidech, protože vždy existuje nějaké prostředí (vzduch, světlo, nebo reliktní záření¹⁶).

¹⁴Osoby z experimentálního souboru jsou náhodně rozděleny do 2 stejně velkých souborů: pokusného (dostanou testovaný lék) a kontrolního (dostanou placebo).

 $^{^{15}}$ Schrödingerova kočka je myšlenkový experiment, ve kterém je po hodině, z důvodu kvantových účinků, kočka v krabici na 50% mrtvá a na 50% živá. A tím je podle kvantové mechaniky živá a mrtvá zároveň.

 $^{^{16} {\}rm Elektromagnetick\acute{e}}$ záření, které přichází z vesmíru ze všech směrů a je považováno za pozůstatek konce velkého třesku.

6 Závěr

Seznam použité literatury

Knihy

Kumar, M. (2014). Quantum: Einstein, Bohr, and the Great Debate about the Nature of Reality. Londýn: Icon Books Ltd.

Videa

Hossenfelder, S. (2022). The Problem with Quantum Measurement. Youtube. Dostupné z https://www.youtube.com/watch?v=Be3HlA_9968 (cit. 15. 10. 2022).

Články

- Abdeen, M. S., & Silva, L. N. K. de (2013). "Incompatibility of General Relativity with Quantum Mechanics". *IPSL*, *Institute of Physics in Sri Lanka* 29, s. 57–63. Dostupné z https://ipsl.lk/documents/TechSession/2013/ipsl13-09.pdf.
- Bell, J. S. (1964). "On the Einstein Podolsky Rosen paradox". *Physics Physique Fyzika* 1, s. 195–200. Dostupné z https://cds.cern.ch/record/111654.
- Einstein, A., Podolsky, B., & Rosen, N. (1935). "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?" *Phys. Rev.* 47 (10), s. 777–780. Dostupné z https://link.aps.org/doi/10.1103/PhysRev.47.777.
- Freedman, S. J., & Clauser, J. F. (1972). "Experimental Test of Local Hidden Variable Theories". *Phys. Rev. Lett.* 28 (14), s. 938-841. Dostupné z https://link.aps.org/doi/10.1103/PhysRevLett.28.938.
- Garg, A., & Mermin, N. D. (1987). "Detector inefficiencies in the Einstein-Podolsky-Rosen experiment". *Physical Review D (Particles and Fields)* 35, s. 3831-3835. Dostupné z https://link.aps.org/doi/10.1103/PhysRevD.35.3831.
- Rowe, M. A. et al. (2001). "Experimental violation of a Bell's inequality with efficient detection". *Nature* 409 (6822), s. 791–794. Dostupné z https://doi.org/10.1038/35057215.
- Aspect, A., Dalibard, J., & Roger, G. (1982). "Experimental Test of Bell's Inequalities Using Time-Varying Analyzers". *Phys. Rev. Lett.* 49 (25), s. 1804–1807. Dostupné z https://link.aps.org/doi/10.1103/PhysRevLett.49.1804.
- Barrett, J. et al. (2002). "Quantum nonlocality, Bell inequalities, and the memory loophole". *Physical Review A* 66 (4), s. 042111. Dostupné z https://arxiv.org/abs/quant-ph/0205016v3.
- Gill, R. D. (2001). "Accardi contra Bell (cum mundi): The Impossible Coupling". Mathematical Statistics and Applications: Festschrift for Constance van Eeden 42, s. 133-154. Dostupné z https://arxiv.org/abs/quant-ph/0110137.

- Gill, R. D. (2003). "Time, Finite Statistics, and Bell's Fifth Position". arXiv e-prints. Dostupné z https://arxiv.org/abs/quant-ph/0301059v2.
- Hossenfelder, S., & Palmer, T. (2020). "Rethinking Superdeterminism". Frontiers in Physics 8. Dostupné z https://doi.org/10.3389%2Ffphy.2020.00139.
- Wharton, K. B., & Argaman, N. (2020). "Colloquium: Bell's theorem and locally mediated reformulations of quantum mechanics". Rev. Mod. Phys. 92 (2), s. 021002. Dostupné z https://link.aps.org/doi/10.1103/RevModPhys.92.021002.
- Einstein, A. (1905). "On the electrodynamics of moving bodies". *Annalen Phys.* 17, s. 891-921. Dostupné z https://spaces-cdn.owlstown.com/blobs/rknwr9ocjval2hwwwvnia0ekme1v.
- Handsteiner, J. et al. (2017). "Cosmic Bell Test: Measurement Settings from Milky Way Stars". *Phys. Rev. Lett.* 118 (6), s. 060401. Dostupné z https://link.aps.org/doi/10.1103/PhysRevLett.118.060401.
- Rauch, D. et al. (2018). "Cosmic Bell Test Using Random Measurement Settings from High-Redshift Quasars". *Phys. Rev. Lett.* 121 (8), s. 080403. Dostupné z https://link.aps.org/doi/10.1103/PhysRevLett.121.080403.
- The BIG Bell Test Collaboration, . (2018). "Challenging local realism with human choices". *Nature* 557 (7704), s. 212–216. Dostupné z https://doi.org/10.1038/s41586-018-0085-3.
- Siong, S. C. et al. (2008). "Unconscious determinants of free decisions in the human brain". *Nature Neuroscience* 11, s. 543–545.
- Kramer, M. et al. (2021). "Strong-Field Gravity Tests with the Double Pulsar". Physical Review X 11 (4), s. 041050. Dostupné z https://link.aps.org/doi/10.1103/PhysRevX.11.041050.
- Bourget, D., & Chalmers, D. (2021). "Philosophers on Philosophy: The 2020 Phil-Papers Survey". Dostupné z https://philarchive.org/archive/BOUPOP-3.
- Shimony, A., Horne, M. A., & Clauser, J. F. (1976). "Comment on "The Theory of Local Beables"". *EPISTEMOLOGICAL LETTERS* (13), s. 1–8. Dostupné z https://curate.nd.edu/downloads/cz30pr79d3j.
- Hossenfelder, S. (2020). "Superdeterminism: A Guide for the Perplexed". Dostupné z https://arxiv.org/abs/2010.01324.

Internetové články

- Principle of locality (2022). Wikipedia. Dostupné z https://en.wikipedia.org/wiki/Principle_of_locality (cit. 15. 10. 2022).
- Philosophical realism (2022). Wikipedia. Dostupné z https://en.wikipedia.org/wiki/Philosophical_realism (cit. 15. 10. 2022).

- Bell test (2022). Wikipedia. Dostupné z https://en.wikipedia.org/wiki/Bell_test (cit. 23.10.2022).
- Laplace's demon (2022). Wikipedia. Dostupné z https://en.wikipedia.org/wiki/Laplace%27s_demon (cit. 26.10.2022).
- Garisto, D. (2022). The Universe Is Not Locally Real, and the Physics Nobel Prize Winners Proved It. Scientific American. Dostupné z https://www.scientificamerican.com/article/the-universe-is-not-locally-real-and-the-physics-nobel-prize-winners-proved-it/(cit. 25. 10. 2022).
- Precision tests of QED (2022). Wikipedia. Dostupné z https://en.wikipedia.org/wiki/Precision_tests_of_QED (cit. 13.11.2022).