Marginalia to a Theorem of Asperó and Schindler

Obrad Kasum¹

Institut de Mathématiques de Jussieu-Paris Rive Gauche Université Paris Cité

Simon's Semester, December 18, 2023

945322

Ohrad Kasum

¹Received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No.

 $lack \phi$ is a consistent infinitary propositional formula,

- $lack \phi$ is a consistent infinitary propositional formula,
- $\kappa < \operatorname{rank}(\phi)$ is an inaccessible cardinal,

- $lack \phi$ is a consistent infinitary propositional formula,
- $\kappa < \text{rank}(\phi)$ is an inaccessible cardinal,
- \mathbb{H} is the poset consisting of consistent finite sets of subformulas of ϕ , ordered by \supseteq .

- $lack \phi$ is a consistent infinitary propositional formula,
- $\kappa < \text{rank}(\phi)$ is an inaccessible cardinal,
- \mathbb{H} is the poset consisting of consistent finite sets of subformulas of ϕ , ordered by \supseteq .

Proposition

In $V^{\mathbb{H}}$, there exists a model for ϕ .

- $lack \phi$ is a consistent infinitary propositional formula,
- $\kappa < \text{rank}(\phi)$ is an inaccessible cardinal,
- \mathbb{H} is the poset consisting of consistent finite sets of subformulas of ϕ , ordered by \supseteq .

Proposition

In $V^{\mathbb{H}}$, there exists a model for ϕ .

■ However, in general, \mathbb{H} collapses ω_1 .

- $lack \phi$ is a consistent infinitary propositional formula,
- $\kappa < \text{rank}(\phi)$ is an inaccessible cardinal,
- \mathbb{H} is the poset consisting of consistent finite sets of subformulas of ϕ , ordered by \supseteq .

Proposition

In $V^{\mathbb{H}}$, there exists a model for ϕ .

- However, in general, \mathbb{H} collapses ω_1 .
- We want to define a poset \mathbb{P}_{κ} which also adds a model for ϕ , but which is in addition stationary set preserving.

Obrad Kasum IMJ-PRG

- For all $\lambda \in \mathcal{E}$, \mathcal{C}_{λ} denotes the set of all countable M satisfying

- $\bullet \mathcal{E} := \{ \lambda < \kappa : \phi \in V_{\lambda} \prec V_{\kappa} \}$
- lacksquare For all $\lambda \in \mathcal{E}$, \mathcal{C}_{λ} denotes the set of all countable M satisfying
 - $M \prec \widehat{M} \models \mathsf{ZFC}^-$,

- For all $\lambda \in \mathcal{E}$, \mathcal{C}_{λ} denotes the set of all countable M satisfying
 - $M \prec \widehat{M} \models \mathsf{ZFC}^-$,
 - lacktriangledown ϕ , $V_{\lambda} \in M$,

- lacksquare For all $\lambda \in \mathcal{E}$, \mathcal{C}_{λ} denotes the set of all countable M satisfying
 - $M \prec \widehat{M} \models ZFC^-$,
 - ϕ , $V_{\lambda} \in M$,
 - $\widehat{M} = \operatorname{Hull}(M, V_{\lambda}).$

- For all $\lambda \in \mathcal{E}$, \mathcal{C}_{λ} denotes the set of all countable M satisfying
 - $M \prec \widehat{M} \models ZFC^-$,
 - ϕ , $V_{\lambda} \in M$,
 - $M = \operatorname{Hull}(M, V_{\lambda}).$
- For all $M \prec \widehat{M} \models \mathsf{ZFC}^-$ and for all $\lambda \in \mathsf{Ord}$, we denote by $M \downarrow \lambda$ the image of M under the transitive collapse of Hull (M, V_{λ}) .

- For all $\lambda \in \mathcal{E}$, \mathcal{C}_{λ} denotes the set of all countable M satisfying
 - $M \prec \widehat{M} \models ZFC^-$,
 - ϕ , $V_{\lambda} \in M$,
 - $M = \operatorname{Hull}(M, V_{\lambda}).$
- For all $M \prec \widehat{M} \models \mathsf{ZFC}^-$ and for all $\lambda \in \mathsf{Ord}$, we denote by $M \downarrow \lambda$ the image of M under the transitive collapse of Hull (M, V_{λ}) .
 - If $M \in \mathcal{C}_{\lambda}$ and $\xi \in \mathcal{E} \cap \lambda$, do we have $M \downarrow \xi \in \mathcal{C}_{\xi}$?

- For all $\lambda \in \mathcal{E}$, \mathcal{C}_{λ} denotes the set of all countable M satisfying
 - $M \prec \widehat{M} \models ZFC^-$,
 - ϕ , $V_{\lambda} \in M$,
 - $\widehat{M} = \operatorname{Hull}(M, V_{\lambda}).$
- For all $M \prec \widehat{M} \models \mathsf{ZFC}^-$ and for all $\lambda \in \mathsf{Ord}$, we denote by $M \downarrow \lambda$ the image of M under the transitive collapse of Hull (M, V_{λ}) .
 - If $M \in \mathcal{C}_{\lambda}$ and $\xi \in \mathcal{E} \cap \lambda$, do we have $M \downarrow \xi \in \mathcal{C}_{\xi}$?
- For all $S \subseteq \text{Ord}$, we denote $C_S := \bigcup_{\lambda \in S \cap \mathcal{E}} C_{\lambda}$.

- For all $\lambda \in \mathcal{E}$, \mathcal{C}_{λ} denotes the set of all countable M satisfying
 - $M \prec \widehat{M} \models ZFC^-$,
 - ϕ , $V_{\lambda} \in M$,
 - $\widehat{M} = \operatorname{Hull}(M, V_{\lambda}).$
- For all $M \prec \widehat{M} \models \mathsf{ZFC}^-$ and for all $\lambda \in \mathsf{Ord}$, we denote by $M \downarrow \lambda$ the image of M under the transitive collapse of Hull (M, V_{λ}) .
 - If $M \in \mathcal{C}_{\lambda}$ and $\xi \in \mathcal{E} \cap \lambda$, do we have $M \downarrow \xi \in \mathcal{C}_{\xi}$?
- For all $S \subseteq \text{Ord}$, we denote $C_S := \bigcup_{\lambda \in S \cap \mathcal{E}} C_{\lambda}$.
- For all $M \in \mathcal{C}_{[0,\kappa]}$, we denote by λ_M the unique λ such that $M \in \mathcal{C}_{\lambda}$.

 $lacksquare p \in \mathbb{P}_{\lambda}^* ext{ iff } p = (w_p, \mathcal{M}_p) ext{ where}$

- $lacksquare p \in \mathbb{P}_{\lambda}^*$ iff $p = (w_p, \mathcal{M}_p)$ where
 - $\mathbf{w}_p \in \mathbb{H}$,

- $lacksquare p \in \mathbb{P}_{\lambda}^*$ iff $p = (w_p, \mathcal{M}_p)$ where
 - $\mathbf{w}_p \in \mathbb{H}$,
 - \mathcal{M}_p is a finite subset of $\mathcal{C}_{<\lambda}$,

- $lacksquare p \in \mathbb{P}_{\lambda}^*$ iff $p = (w_p, \mathcal{M}_p)$ where
 - $\mathbf{w}_p \in \mathbb{H}$,
 - \mathcal{M}_p is a finite subset of $\mathcal{C}_{<\lambda}$,
 - for all $M, N \in \mathcal{M}_p$,

- $lacksquare p \in \mathbb{P}_{\lambda}^*$ iff $p = (w_p, \mathcal{M}_p)$ where
 - $\mathbf{w}_{p} \in \mathbb{H}$,
 - \mathcal{M}_p is a finite subset of $\mathcal{C}_{<\lambda}$,
 - for all $M, N \in \mathcal{M}_p$,

- $lacksquare p \in \mathbb{P}_{\lambda}^*$ iff $p = (w_p, \mathcal{M}_p)$ where
 - $\mathbf{w}_p \in \mathbb{H}$,
 - \mathcal{M}_p is a finite subset of $\mathcal{C}_{<\lambda}$,
 - for all $M, N \in \mathcal{M}_p$,

 - $\bullet \delta_M < \delta_N \implies M \in N \wedge \lambda_M < \lambda_N.$

- $lacksquare p \in \mathbb{P}_{\lambda}^*$ iff $p = (w_p, \mathcal{M}_p)$ where
 - $\mathbf{w}_p \in \mathbb{H}$,
 - \mathcal{M}_p is a finite subset of $\mathcal{C}_{<\lambda}$,
 - for all $M, N \in \mathcal{M}_p$,
 - $\bullet \delta_M = \delta_N \implies M = N,$
 - $\bullet \delta_{M} < \delta_{N} \implies M \in N \wedge \lambda_{M} < \lambda_{N}.$
- $p \le q$ iff $w_p \supseteq w_q$ and for all $N \in \mathcal{M}_q$, there exists $M \in \mathcal{M}_p$ such that $\delta_M = \delta_N$, $\lambda_M = \lambda_N$, and $M \supseteq N$.

- $lacksquare p \in \mathbb{P}_{\lambda}^*$ iff $p = (w_p, \mathcal{M}_p)$ where
 - $\mathbf{w}_p \in \mathbb{H}$,
 - \mathcal{M}_p is a finite subset of $\mathcal{C}_{<\lambda}$,
 - for all $M, N \in \mathcal{M}_p$,
 - $\bullet \delta_M = \delta_N \implies M = N,$
 - $\bullet \delta_{M} < \delta_{N} \implies M \in N \wedge \lambda_{M} < \lambda_{N}.$
- $p \le q$ iff $w_p \supseteq w_q$ and for all $N \in \mathcal{M}_q$, there exists $M \in \mathcal{M}_p$ such that $\delta_M = \delta_N$, $\lambda_M = \lambda_N$, and $M \supseteq N$.
- For $p \in \mathbb{P}^*_{\lambda}$ and for $\bar{\lambda} \in \lambda \cap \mathcal{E}$, we define

$$p \upharpoonright \lambda := (w_p, \{M \in \mathcal{M}_p : \lambda_M < \lambda\}).$$

■ Set first $p_{-1} := p$.

- Set first $p_{-1} := p$.
- In the round $n < \omega$, Player I plays Q_n and Player II answers by $p_n \in \mathbb{P}^*_{\lambda}$ satisfying $p_n \leq p_{n-1}$.

◆ロ > ◆回 > ◆豆 > ◆豆 > ・豆 ・ からの

- Set first $p_{-1} := p$.
- In the round $n < \omega$, Player I plays Q_n and Player II answers by $p_n \in \mathbb{P}^*_{\lambda}$ satisfying $p_n \leq p_{n-1}$.
- If $Q_n = \phi \in w_{p_{n-1}}$ where $\phi \equiv \bigvee_{i \in I} \psi_i$, then for some $i \in I$, $\psi_i \in w_{p_n}$.

- Set first $p_{-1} := p$.
- In the round $n < \omega$, Player I plays Q_n and Player II answers by $p_n \in \mathbb{P}^*_{\lambda}$ satisfying $p_n \leq p_{n-1}$.
- If $Q_n = \phi \in w_{p_{n-1}}$ where $\phi \equiv \bigvee_{i \in I} \psi_i$, then for some $i \in I$, $\psi_i \in w_{p_n}$.
- If $Q_n = (\phi, i) \in w_{p_{n-1}} \times I$, where $\phi \equiv \bigwedge_{i \in I} \psi_i$, then $\psi_i \in w_{p_n}$.

- Set first $p_{-1} := p$.
- In the round $n < \omega$, Player I plays Q_n and Player II answers by $p_n \in \mathbb{P}^*_{\lambda}$ satisfying $p_n \leq p_{n-1}$.
- If $Q_n = \phi \in w_{p_{n-1}}$ where $\phi \equiv \bigvee_{i \in I} \psi_i$, then for some $i \in I$, $\psi_i \in w_{p_n}$.
- If $Q_n = (\phi, i) \in w_{p_{n-1}} \times I$, where $\phi \equiv \bigwedge_{i \in I} \psi_i$, then $\psi_i \in w_{p_n}$.
- If $Q_n = (M, D)$ where $M \in \mathcal{M}_{p_{n-1}}$ and $D \in M$ is dense in \mathbb{P}_{λ_M} , then there exists $q \in D$ such that $\delta(\mathsf{Hull}(M, q)) = \delta(M)$ and $p_n \leq p_{n-1}, q$.

Obrad Kasum IMJ-PRG

- Set first $p_{-1} := p$.
- In the round $n < \omega$, Player I plays Q_n and Player II answers by $p_n \in \mathbb{P}^*_{\lambda}$ satisfying $p_n \leq p_{n-1}$.
- If $Q_n = \phi \in w_{p_{n-1}}$ where $\phi \equiv \bigvee_{i \in I} \psi_i$, then for some $i \in I$, $\psi_i \in w_{p_n}$.
- If $Q_n = (\phi, i) \in w_{p_{n-1}} \times I$, where $\phi \equiv \bigwedge_{i \in I} \psi_i$, then $\psi_i \in w_{p_n}$.
- If $Q_n = (M, D)$ where $M \in \mathcal{M}_{p_{n-1}}$ and $D \in M$ is dense in \mathbb{P}_{λ_M} , then there exists $q \in D$ such that $\delta(\mathsf{Hull}(M, q)) = \delta(M)$ and $p_n \leq p_{n-1}, q$.
- Player II wins infinite plays such that the set $\bigcup_{n<\omega} w_{p_n}$ does not contain both an atomic formula and its negation.

Obrad Kasum IMJ-PRG

 \mathbb{P}_{λ} is the suborder of $(\mathbb{P}_{\lambda}^*, \leq)$ consisting of those $p \in \mathbb{P}_{\lambda}^*$ for which Player II wins $\mathcal{G}_{\lambda}(p)$.

 \mathbb{P}_{λ} is the suborder of $(\mathbb{P}_{\lambda}^*, \leq)$ consisting of those $p \in \mathbb{P}_{\lambda}^*$ for which Player II wins $\mathcal{G}_{\lambda}(p)$.

Definition (De Bondt, Veličković)

Suppose that $\theta \gg \kappa$ is regular and $M \prec (H_{\theta}, \in, \kappa, \phi)$ is countable. Then M is good iff for all $p \in \mathbb{P}_{\kappa} \cap M$, there exist $q \in \mathbb{P}_{\kappa}$ and $\lambda \in \mathcal{E}$ such that

Obrad Kasum IMJ-PRG

 \mathbb{P}_{λ} is the suborder of $(\mathbb{P}_{\lambda}^*, \leq)$ consisting of those $p \in \mathbb{P}_{\lambda}^*$ for which Player II wins $\mathcal{G}_{\lambda}(p)$.

Definition (De Bondt, Veličković)

Suppose that $\theta \gg \kappa$ is regular and $M \prec (H_{\theta}, \in, \kappa, \phi)$ is countable. Then M is good iff for all $p \in \mathbb{P}_{\kappa} \cap M$, there exist $q \in \mathbb{P}_{\kappa}$ and $\lambda \in \mathcal{E}$ such that

 $\kappa \cap M \subseteq \lambda$,

 \mathbb{P}_{λ} is the suborder of $(\mathbb{P}_{\lambda}^*, \leq)$ consisting of those $p \in \mathbb{P}_{\lambda}^*$ for which Player II wins $\mathcal{G}_{\lambda}(p)$.

Definition (De Bondt, Veličković)

Suppose that $\theta \gg \kappa$ is regular and $M \prec (H_{\theta}, \in, \kappa, \phi)$ is countable. Then M is good iff for all $p \in \mathbb{P}_{\kappa} \cap M$, there exist $q \in \mathbb{P}_{\kappa}$ and $\lambda \in \mathcal{E}$ such that

- \bullet $\kappa \cap M \subseteq \lambda$,
- $q \leq p$,

 \mathbb{P}_{λ} is the suborder of $(\mathbb{P}_{\lambda}^*, \leq)$ consisting of those $p \in \mathbb{P}_{\lambda}^*$ for which Player II wins $\mathcal{G}_{\lambda}(p)$.

Definition (De Bondt, Veličković)

Suppose that $\theta \gg \kappa$ is regular and $M \prec (H_{\theta}, \in, \kappa, \phi)$ is countable. Then M is good iff for all $p \in \mathbb{P}_{\kappa} \cap M$, there exist $q \in \mathbb{P}_{\kappa}$ and $\lambda \in \mathcal{E}$ such that

- \bullet $\kappa \cap M \subseteq \lambda$,
- $q \leq p$,
- $M \downarrow \lambda \in \mathcal{M}_q$.

Proposition (De Bondt, Veličković)

Suppose that $\theta \gg \kappa$ is regular and $M \prec H_{\theta}$ is good. Then \mathbb{P}_{κ} is semiproper for M.

Obrad Kasum IMJ-PRG

Proposition (De Bondt, Veličković)

Suppose that $\theta \gg \kappa$ is regular and $M \prec H_{\theta}$ is good. Then \mathbb{P}_{κ} is semiproper for M.

Corollary

If there exists a local club of good models $M \prec H_{\theta}$, then \mathbb{P}_{κ} is stationary set preserving.

Proposition (De Bondt, Veličković)

Suppose that $\theta \gg \kappa$ is regular and $M \prec H_{\theta}$ is good. Then \mathbb{P}_{κ} is semiproper for M.

Corollary

If there exists a local club of good models $M \prec H_{\theta}$, then \mathbb{P}_{κ} is stationary set preserving.

Local club

 $C\subseteq [X]^\omega$ is a *local club* iff for weak-club many $\bar{X}\in [X]^{\omega_1}$, the set $C\cap [\bar{X}]^\omega$ contains a club.

 ϕ is AS good at κ iff

Obrad Kasum IMJ-PRG

 ϕ is AS good at κ iff

 $\forall S$ which are stationary subsets of ω_1 ,

- ϕ is AS good at κ iff
- $\forall S$ which are stationary subsets of ω_1 , $V^{\mathsf{Col}(\omega, <\kappa)}$ satisfies that:

- ϕ is AS good at κ iff
- $\forall S$ which are stationary subsets of ω_1 , $V^{\text{Col}(\omega, <\kappa)}$ satisfies that:
- $\forall \mu$ which are models for ϕ ,

- ϕ is AS good at κ iff
- $\forall S$ which are stationary subsets of ω_1 , $V^{\text{Col}(\omega, <\kappa)}$ satisfies that:
- $\forall \mu$ which are models for ϕ ,
- $\exists \tau$ which is an elementary embedding from V to some W with critical point ω_1^V and which satisfies that $\omega_1^V \in \tau(S)$, and

- ϕ is AS good at κ iff
- $\forall S$ which are stationary subsets of ω_1 , $V^{\mathsf{Col}(\omega,<\kappa)}$ satisfies that:
- $\forall \mu$ which are models for ϕ ,
- $\exists \tau$ which is an elementary embedding from V to some W with critical point ω_1^V and which satisfies that $\omega_1^V \in \tau(S)$, and
- $\exists \hat{\mu}$ which is a model for $\tau(\phi)$ satisfying that

Obrad Kasum IMJ-PRG

- ϕ is AS good at κ iff
- $\forall S$ which are stationary subsets of ω_1 , $V^{\mathsf{Col}(\omega,<\kappa)}$ satisfies that:
- $\forall \mu$ which are models for ϕ ,
- $\exists \tau$ which is an elementary embedding from V to some W with critical point ω_1^V and which satisfies that $\omega_1^V \in \tau(S)$, and
- $\exists \hat{\mu}$ which is a model for $\tau(\phi)$ satisfying that for all $\psi \in \phi \downarrow$, $\hat{\mu}(\tau(\psi)) = \mu(\psi)$.

Obrad Kasum IMJ-PRG

If ϕ is AS-good at $\kappa,$ then \mathbb{P}_{κ} is stationary set preserving.

If ϕ is AS-good at $\kappa,$ then \mathbb{P}_{κ} is stationary set preserving.

Proof.

If ϕ is AS-good at κ , then \mathbb{P}_{κ} is stationary set preserving.

Proof.

1 Let θ be large enough regular. It suffices to show that there are local-club many good models $M \prec H_{\theta}$.

If ϕ is AS-good at κ , then \mathbb{P}_{κ} is stationary set preserving.

Proof.

- **1** Let θ be large enough regular. It suffices to show that there are local-club many good models $M \prec H_{\theta}$.
- 2 Let R be a wellordering of H_{θ} and let $\mathcal{H} := (H_{\theta}, \in, R, \kappa, \phi)$. We want to show that for all $X \prec \mathcal{H}$ satisfying $\omega_1 \subseteq X$ and $|X| = \omega_1$, we have that club many countable $M \prec X$ are good.

If ϕ is AS-good at κ , then \mathbb{P}_{κ} is stationary set preserving.

Proof.

- Let θ be large enough regular. It suffices to show that there are local-club many good models $M \prec H_{\theta}$.
- 2 Let R be a wellordering of H_{θ} and let $\mathcal{H} := (H_{\theta}, \in, R, \kappa, \phi)$. We want to show that for all $X \prec \mathcal{H}$ satisfying $\omega_1 \subseteq X$ and $|X| = \omega_1$, we have that club many countable $M \prec X$ are good.
- 3 Let $X \prec \mathcal{H}$ satisfying $\omega_1 \subseteq X$ and $|X| = \omega_1$ be arbitrary. We denote by \mathcal{X} the structure on X inherited from \mathcal{H} .

If ϕ is AS-good at κ , then \mathbb{P}_{κ} is stationary set preserving.

Proof.

- **1** Let θ be large enough regular. It suffices to show that there are local-club many good models $M \prec H_{\theta}$.
- 2 Let R be a wellordering of H_{θ} and let $\mathcal{H} := (H_{\theta}, \in, R, \kappa, \phi)$. We want to show that for all $X \prec \mathcal{H}$ satisfying $\omega_1 \subseteq X$ and $|X| = \omega_1$, we have that club many countable $M \prec X$ are good.
- 3 Let $X \prec \mathcal{H}$ satisfying $\omega_1 \subseteq X$ and $|X| = \omega_1$ be arbitrary. We denote by \mathcal{X} the structure on X inherited from \mathcal{H} .
- 4 Let us assume towards contradiction that there exists a stationary $S \subseteq [X]^{\omega}$ such that for all $M \in S$, it holds that $M \prec \mathcal{X}$ and that there exists $p_M \in \mathbb{P}_{\kappa} \cap M$ witnessing that M is not good.

IM I-PRG

Ohrad Kasum

5 By pressing down applied to $S \ni M \mapsto p_M$, there exist $p \in \mathbb{P}_{\kappa} \cap X$ and stationary $S' \subseteq S$ such that for all $M \in S'$, p witnesses that M is not good.

- **5** By pressing down applied to $S \ni M \mapsto p_M$, there exist $p \in \mathbb{P}_{\kappa} \cap X$ and stationary $S' \subseteq S$ such that for all $M \in S'$, p witnesses that M is not good.
- **6** Let $e: \omega_1 \to X$ be a bijection and let

$$T := \{ \alpha < \omega_1 : \mathbf{e}[\alpha] \in \mathcal{S}', \ \delta(\mathbf{e}[\alpha]) = \alpha \}.$$

- **5** By pressing down applied to $S \ni M \mapsto p_M$, there exist $p \in \mathbb{P}_{\kappa} \cap X$ and stationary $S' \subseteq S$ such that for all $M \in S'$, p witnesses that M is not good.
- **6** Let $e: \omega_1 \to X$ be a bijection and let

$$T := \{ \alpha < \omega_1 : e[\alpha] \in S', \ \delta(e[\alpha]) = \alpha \}.$$

- 7 Let
 - $\lambda \in \mathcal{E}$ be such that for all for all $\eta < \lambda$, $\kappa \cap \mathsf{Hull}^{\mathcal{H}}(V_{\eta}) \subseteq \lambda$,

- **5** By pressing down applied to $S \ni M \mapsto p_M$, there exist $p \in \mathbb{P}_{\kappa} \cap X$ and stationary $S' \subseteq S$ such that for all $M \in S'$, p witnesses that M is not good.
- **6** Let $e: \omega_1 \to X$ be a bijection and let

$$T := \{ \alpha < \omega_1 : e[\alpha] \in S', \ \delta(e[\alpha]) = \alpha \}.$$

- 7 Let
 - $\lambda \in \mathcal{E}$ be such that for all for all $\eta < \lambda$, $\kappa \cap \mathsf{Hull}^{\mathcal{H}}(V_{\eta}) \subseteq \lambda$,
 - h be V-generic for $Col(\omega, < \kappa)$,

- **5** By pressing down applied to $S \ni M \mapsto p_M$, there exist $p \in \mathbb{P}_{\kappa} \cap X$ and stationary $S' \subseteq S$ such that for all $M \in S'$, p witnesses that M is not good.
- **6** Let $e: \omega_1 \to X$ be a bijection and let

$$T := \{ \alpha < \omega_1 : e[\alpha] \in S', \ \delta(e[\alpha]) = \alpha \}.$$

- 7 Let
 - $\lambda \in \mathcal{E}$ be such that for all for all $\eta < \lambda$, $\kappa \cap \mathsf{Hull}^{\mathcal{H}}(V_{\eta}) \subseteq \lambda$,
 - *h* be *V*-generic for $Col(\omega, < \kappa)$,
 - $g \in V[h]$ be V-generic for \mathbb{P}_{λ} containing p,

- **5** By pressing down applied to $S \ni M \mapsto p_M$, there exist $p \in \mathbb{P}_{\kappa} \cap X$ and stationary $S' \subseteq S$ such that for all $M \in S'$, p witnesses that M is not good.
- **6** Let $e: \omega_1 \to X$ be a bijection and let

$$T := \{ \alpha < \omega_1 : \mathbf{e}[\alpha] \in \mathcal{S}', \ \delta(\mathbf{e}[\alpha]) = \alpha \}.$$

- 7 Let
 - $\lambda \in \mathcal{E}$ be such that for all for all $\eta < \lambda$, $\kappa \cap \mathsf{Hull}^{\mathcal{H}}(V_{\eta}) \subseteq \lambda$,
 - *h* be *V*-generic for $Col(\omega, < \kappa)$,
 - $g \in V[h]$ be V-generic for \mathbb{P}_{λ} containing p,
 - $\blacksquare \ \mu := \mu_{\mathbf{g}} \models \phi.$

- **5** By pressing down applied to $S \ni M \mapsto p_M$, there exist $p \in \mathbb{P}_{\kappa} \cap X$ and stationary $S' \subseteq S$ such that for all $M \in S'$, p witnesses that M is not good.
- **6** Let $e: \omega_1 \to X$ be a bijection and let

$$T := \{ \alpha < \omega_1 : e[\alpha] \in S', \ \delta(e[\alpha]) = \alpha \}.$$

- 7 Let
 - $\lambda \in \mathcal{E}$ be such that for all for all $\eta < \lambda$, $\kappa \cap \mathsf{Hull}^{\mathcal{H}}(V_{\eta}) \subseteq \lambda$,
 - h be V-generic for $Col(\omega, < \kappa)$,
 - $g \in V[h]$ be V-generic for \mathbb{P}_{λ} containing p,
 - $\blacksquare \ \mu := \mu_{\mathbf{g}} \models \phi.$

We work in V[h].

Since ϕ is AS good, there exist elementary $\tau: V \to W$ and $\hat{\mu} \models \tau(\phi)$ such that $\mathrm{crit}(\tau) = \omega_1^V \in \tau(T)$ and for all $\psi \in \phi \downarrow$, $\hat{\mu}(\tau(\psi)) = \mu(\psi)$.

- Since ϕ is AS good, there exist elementary $\tau: V \to W$ and $\hat{\mu} \models \tau(\phi)$ such that $\mathrm{crit}(\tau) = \omega_1^V \in \tau(T)$ and for all $\psi \in \phi \downarrow$, $\hat{\mu}(\tau(\psi)) = \mu(\psi)$.
- 9 Let $N:=\mathsf{Hull}^{ au(\mathcal{H})}(\omega_1^V\cup\{ au(p)\})\prec au(\mathcal{H}).$ It holds that

- Since ϕ is AS good, there exist elementary $\tau: V \to W$ and $\hat{\mu} \models \tau(\phi)$ such that $\mathrm{crit}(\tau) = \omega_1^V \in \tau(T)$ and for all $\psi \in \phi \downarrow$, $\hat{\mu}(\tau(\psi)) = \mu(\psi)$.
- Let $N := \operatorname{Hull}^{\tau(\mathcal{H})}(\omega_1^V \cup \{\tau(p)\}) \prec \tau(\mathcal{H})$. It holds that $N \in W$,

- Since ϕ is AS good, there exist elementary $\tau: V \to W$ and $\hat{\mu} \models \tau(\phi)$ such that $\mathrm{crit}(\tau) = \omega_1^V \in \tau(T)$ and for all $\psi \in \phi \downarrow$, $\hat{\mu}(\tau(\psi)) = \mu(\psi)$.
- **9** Let $N := \text{Hull}^{\tau(\mathcal{H})}(\omega_1^V \cup \{\tau(p)\}) \prec \tau(\mathcal{H})$. It holds that
 - $N \in W$,
 - $|N|^W = \omega$,

- Since ϕ is AS good, there exist elementary $\tau: V \to W$ and $\hat{\mu} \models \tau(\phi)$ such that $\mathrm{crit}(\tau) = \omega_1^V \in \tau(T)$ and for all $\psi \in \phi \downarrow$, $\hat{\mu}(\tau(\psi)) = \mu(\psi)$.
- **9** Let $N := \mathsf{Hull}^{\tau(\mathcal{H})}(\omega_1^V \cup \{\tau(p)\}) \prec \tau(\mathcal{H})$. It holds that
 - $N \in W$.
 - $|N|^W = \omega$,
 - $N \prec \tau[X] \prec \tau(\mathcal{X}),$

- Since ϕ is AS good, there exist elementary $\tau: V \to W$ and $\hat{\mu} \models \tau(\phi)$ such that $\mathrm{crit}(\tau) = \omega_1^V \in \tau(T)$ and for all $\psi \in \phi \downarrow$, $\hat{\mu}(\tau(\psi)) = \mu(\psi)$.
- **9** Let $N := \text{Hull}^{\tau(\mathcal{H})}(\omega_1^V \cup \{\tau(p)\}) \prec \tau(\mathcal{H})$. It holds that
 - $N \in W$.
 - $|N|^W = \omega,$
 - $N \prec \tau[X] \prec \tau(\mathcal{X}),$
 - $\bullet \delta_{N} = \omega_{1}^{V} \in \tau(T).$

- Since ϕ is AS good, there exist elementary $\tau: V \to W$ and $\hat{\mu} \models \tau(\phi)$ such that $\mathrm{crit}(\tau) = \omega_1^V \in \tau(T)$ and for all $\psi \in \phi \downarrow$, $\hat{\mu}(\tau(\psi)) = \mu(\psi)$.
- **9** Let $N := \mathsf{Hull}^{\tau(\mathcal{H})}(\omega_1^V \cup \{\tau(p)\}) \prec \tau(\mathcal{H})$. It holds that
 - $N \in W$.
 - $|N|^W = \omega$,
 - $N \prec \tau[X] \prec \tau(\mathcal{X}),$
 - $\bullet \delta_{N} = \omega_{1}^{V} \in \tau(T).$
- Let $q := (\tau(w_p), \tau(\mathcal{M}_p) \cup \{N \downarrow \tau(\lambda)\})$. We will show that $q \in \tau(\mathbb{P}_{\kappa})$ and that $q \leq \tau(p)$.

- Since ϕ is AS good, there exist elementary $\tau: V \to W$ and $\hat{\mu} \models \tau(\phi)$ such that $\mathrm{crit}(\tau) = \omega_1^V \in \tau(T)$ and for all $\psi \in \phi \downarrow$, $\hat{\mu}(\tau(\psi)) = \mu(\psi)$.
- ullet Let $N:=\mathsf{Hull}^{ au(\mathcal{H})}(\omega_1^V\cup\{ au(p)\})\prec au(\mathcal{H}).$ It holds that
 - $N \in W$,
 - $|N|^W = \omega$,
 - $N \prec \tau[X] \prec \tau(X)$,
 - $\bullet \delta_{N} = \omega_{1}^{V} \in \tau(T).$
- Let $q := (\tau(w_p), \tau(\mathcal{M}_p) \cup \{N \downarrow \tau(\lambda)\})$. We will show that $q \in \tau(\mathbb{P}_{\kappa})$ and that $q \leq \tau(p)$.
- II It follows that in W, $\tau(p)$ does not witness that N is not good.

- Since ϕ is AS good, there exist elementary $\tau: V \to W$ and $\hat{\mu} \models \tau(\phi)$ such that $\mathrm{crit}(\tau) = \omega_1^V \in \tau(T)$ and for all $\psi \in \phi \downarrow$, $\hat{\mu}(\tau(\psi)) = \mu(\psi)$.
- ullet Let $N:=\mathsf{Hull}^{ au(\mathcal{H})}(\omega_1^V\cup\{ au(p)\})\prec au(\mathcal{H}).$ It holds that
 - $N \in W$.
 - $|N|^W = \omega$,
 - $N \prec \tau[X] \prec \tau(\mathcal{X}),$
 - $\bullet \delta_{N} = \omega_{1}^{V} \in \tau(T).$
- Let $q := (\tau(w_p), \tau(\mathcal{M}_p) \cup \{N \downarrow \tau(\lambda)\})$. We will show that $q \in \tau(\mathbb{P}_{\kappa})$ and that $q \leq \tau(p)$.
- II It follows that in W, $\tau(p)$ does not witness that N is not good.
- Since $\delta_N = \omega_1^V \in \tau(T)$, we have that $N \in \tau(S')$.

- Since ϕ is AS good, there exist elementary $\tau: V \to W$ and $\hat{\mu} \models \tau(\phi)$ such that $\mathrm{crit}(\tau) = \omega_1^V \in \tau(T)$ and for all $\psi \in \phi \downarrow$, $\hat{\mu}(\tau(\psi)) = \mu(\psi)$.
- ullet Let $N:=\mathsf{Hull}^{ au(\mathcal{H})}(\omega_1^V\cup\{ au(p)\})\prec au(\mathcal{H}).$ It holds that
 - $N \in W$.
 - $|N|^W = \omega$,
 - $N \prec \tau[X] \prec \tau(\mathcal{X}),$
 - $\bullet \delta_{N} = \omega_{1}^{V} \in \tau(T).$
- Let $q:=(\tau(w_p),\tau(\mathcal{M}_p)\cup\{\mathit{N}\!\downarrow\!\tau(\lambda)\})$. We will show that $q\in\tau(\mathbb{P}_\kappa)$ and that $q\leq\tau(p)$.
- II It follows that in W, $\tau(p)$ does not witness that N is not good.
- Since $\delta_N = \omega_1^V \in \tau(T)$, we have that $N \in \tau(S')$.
- By definition of S' and elementarity if τ , this means that in W, $\tau(p)$ witnesses that N is not good. This is a contradiction.

- ◆ロ → ◆団 → ◆ 差 → ◆ 差 → りへの

Hence, QED modulo Claim 10.

Hence, QED modulo Claim 10.

Claim 1

Let $q := (\tau(w_p), \tau(\mathcal{M}_p) \cup \{N \downarrow \tau(\lambda)\})$. Then $q \in \tau(\mathbb{P}_{\kappa})$ and $q \leq \tau(p)$.

Hence, QED modulo Claim 10.

Claim 10

Let
$$q := (\tau(w_p), \tau(\mathcal{M}_p) \cup \{N \downarrow \tau(\lambda)\})$$
. Then $q \in \tau(\mathbb{P}_{\kappa})$ and $q \leq \tau(p)$.

Hence, QED modulo Claim 10.

Claim 1

Let
$$q := (\tau(w_p), \tau(\mathcal{M}_p) \cup \{N \downarrow \tau(\lambda)\})$$
. Then $q \in \tau(\mathbb{P}_{\kappa})$ and $q \leq \tau(p)$.

Proof.

The only non-trivial part is that $q \in \tau(\mathbb{P}_{\kappa})$. Let us assume otherwise.

Hence, QED modulo Claim 10.

Claim 1

Let
$$q := (\tau(w_p), \tau(\mathcal{M}_p) \cup \{N \downarrow \tau(\lambda)\})$$
. Then $q \in \tau(\mathbb{P}_{\kappa})$ and $q \leq \tau(p)$.

Proof.

- The only non-trivial part is that $q \in \tau(\mathbb{P}_{\kappa})$. Let us assume otherwise.
- Then there exists a winning strategy σ for Player I in $\mathcal{G}^W_{\tau(\kappa)}(q)$. We will defeat this strategy in V[g], reaching a contradiction. (We use in this step that the game $\mathcal{G}^W_{\tau(\kappa)}(q)$ is closed for Player II.)

Obrad Kasum IMJ-PRG

Let Player I play according to σ and let us show that Player II can play by maintaining that for all $n \in [-1, \omega)$, there exist r, w, P such that

- Let Player I play according to σ and let us show that Player II can play by maintaining that for all $n \in [-1, \omega)$, there exist r, w, P such that
 - $p_n = (\tau(w_r) \cup w, \ \tau(\mathcal{M}_r) \cup \{P \downarrow \tau(\lambda)\}),$

- Let Player I play according to σ and let us show that Player II can play by maintaining that for all $n \in [-1, \omega)$, there exist r, w, P such that
 - $p_n = (\tau(w_r) \cup w, \ \tau(\mathcal{M}_r) \cup \{P \downarrow \tau(\lambda)\}),$
 - $r \in g \subseteq \mathbb{P}_{\lambda}$,

- Let Player I play according to σ and let us show that Player II can play by maintaining that for all $n \in [-1, \omega)$, there exist r, w, P such that
 - $p_n = (\tau(w_r) \cup w, \ \tau(\mathcal{M}_r) \cup \{P \downarrow \tau(\lambda)\}),$
 - $r \in g \subseteq \mathbb{P}_{\lambda}$,
 - there exists finite $F \subseteq \tau[V_{\lambda}]$ such that $P = \mathsf{Hull}^{\tau(\mathcal{H})}(\omega_1^V \cup F)$,

- Let Player I play according to σ and let us show that Player II can play by maintaining that for all $n \in [-1, \omega)$, there exist r, w, P such that
 - $p_n = (\tau(w_r) \cup w, \ \tau(\mathcal{M}_r) \cup \{P \downarrow \tau(\lambda)\}),$
 - $r \in g \subseteq \mathbb{P}_{\lambda}$,
 - there exists finite $F \subseteq \tau[V_{\lambda}]$ such that $P = \operatorname{Hull}^{\tau(\mathcal{H})}(\omega_{1}^{V} \cup F)$,
 - $w \subseteq \tau(\phi) \downarrow$ is finite, $\hat{\mu} \models w$, and $w \cap \tau[V] = \emptyset$.

- Let Player I play according to σ and let us show that Player II can play by maintaining that for all $n \in [-1, \omega)$, there exist r, w, P such that
 - $p_n = (\tau(w_r) \cup w, \ \tau(\mathcal{M}_r) \cup \{P \downarrow \tau(\lambda)\}),$
 - $r \in g \subseteq \mathbb{P}_{\lambda}$,
 - there exists finite $F \subseteq \tau[V_{\lambda}]$ such that $P = \operatorname{Hull}^{\tau(\mathcal{H})}(\omega_{1}^{V} \cup F)$,
 - $w \subseteq \tau(\phi) \downarrow$ is finite, $\hat{\mu} \models w$, and $w \cap \tau[V] = \emptyset$.
- d The above conditions are satisfied for n=-1 and $p_{-1}=q$. Let us consider $n \geq 0$ and the move Q_n of Player I.

- Let Player I play according to σ and let us show that Player II can play by maintaining that for all $n \in [-1, \omega)$, there exist r, w, P such that
 - $p_n = (\tau(w_r) \cup w, \ \tau(\mathcal{M}_r) \cup \{P \downarrow \tau(\lambda)\}),$
 - $r \in g \subseteq \mathbb{P}_{\lambda}$,
 - there exists finite $F \subseteq \tau[V_{\lambda}]$ such that $P = \operatorname{Hull}^{\tau(\mathcal{H})}(\omega_1^V \cup F)$,
 - $w \subseteq \tau(\phi) \downarrow$ is finite, $\hat{\mu} \models w$, and $w \cap \tau[V] = \emptyset$.
- If the above conditions are satisfied for n=-1 and $p_{-1}=q$. Let us consider $n \geq 0$ and the move Q_n of Player I.
- e Let r, w, P be as in c, w.r.t. p_{n-1} .

- Let Player I play according to σ and let us show that Player II can play by maintaining that for all $n \in [-1, \omega)$, there exist r, w, P such that
 - $p_n = (\tau(w_r) \cup w, \ \tau(\mathcal{M}_r) \cup \{P \downarrow \tau(\lambda)\}),$
 - $r \in g \subseteq \mathbb{P}_{\lambda}$,
 - there exists finite $F \subseteq \tau[V_{\lambda}]$ such that $P = \operatorname{Hull}^{\tau(\mathcal{H})}(\omega_1^V \cup F)$,
 - $w \subseteq \tau(\phi) \downarrow$ is finite, $\hat{\mu} \models w$, and $w \cap \tau[V] = \emptyset$.
- If the above conditions are satisfied for n=-1 and $p_{-1}=q$. Let us consider $n \ge 0$ and the move Q_n of Player I.
- e Let r, w, P be as in c, w.r.t. p_{n-1} .
- We will distinguish four possiblities for Q_n . In each, we show that Player II can make the next move and preserve conditions from c.

Proof. We have that $\hat{\mu} \models \psi$, so there exists $i \in I$ such that $\hat{\mu} \models \psi_i$. We set $p_n := (w_{p_{n-1}} \cup \{\psi_i\}, \mathcal{M}_{p_{n-1}})$.

Proof. We have that $\hat{\mu} \models \psi$, so there exists $i \in I$ such that $\hat{\mu} \models \psi_i$. We set $p_n := (w_{p_{n-1}} \cup \{\psi_i\}, \mathcal{M}_{p_{n-1}})$.

n Case II. $Q_n = (\psi, i) \in w_{p_{n-1}} \times I$ where $\psi \equiv \bigwedge_{i \in I} \psi_i$.

Proof. We have that $\hat{\mu} \models \psi$, so there exists $i \in I$ such that $\hat{\mu} \models \psi_i$. We set $p_n := (w_{p_{n-1}} \cup \{\psi_i\}, \mathcal{M}_{p_{n-1}})$.

n Case II. $Q_n = (\psi, i) \in w_{p_{n-1}} \times I$ where $\psi \equiv \bigwedge_{i \in I} \psi_i$.

Proof. We can take $p_n := (w_{p_{n-1}} \cup \{\psi_i\}, \mathcal{M}_{p_{n-1}})$.

- **Case III.** $Q_n = (P \downarrow \tau(\lambda), D)$ where $D \in P \downarrow \tau(\lambda)$ is dense $\mathbb{P}_{\tau(\lambda)}$.
 - Let $\rho: \operatorname{Hull}(P, \tau(V_{\lambda})) \to \widehat{P \downarrow \tau(\lambda)}$ be the transitive collapse and let $D^+ := \rho^{-1}(D) \in P$. Then D^+ is dense in $\tau(\mathbb{P}_{\kappa})$.

- Let $\rho: \operatorname{Hull}(P, \tau(V_{\lambda})) \to \widehat{P \downarrow} \tau(\widehat{\lambda})$ be the transitive collapse and let $D^+ := \rho^{-1}(D) \in P$. Then D^+ is dense in $\tau(\mathbb{P}_{\kappa})$.
- iii Since $D^+ \in P$, there exists $\bar{D}^+ \in V$ such that $\tau(\bar{D}^+) = D^+$.

- Let $\rho: \operatorname{Hull}(P, \tau(V_{\lambda})) \to \tilde{P} \downarrow \tau(\tilde{\lambda})$ be the transitive collapse and let $D^+ := \rho^{-1}(D) \in P$. Then D^+ is dense in $\tau(\mathbb{P}_{\kappa})$.
- Since $D^+ \in P$, there exists $\bar{D}^+ \in V$ such that $\tau(\bar{D}^+) = D^+$.
- Let $\bar{D}:=\bar{D}^+\cap V_\lambda$. By elementarity, we have that $\tau(\bar{D})=D$ and \bar{D} is dense in \mathbb{P}_λ .

- Let $\rho: \operatorname{Hull}(P, \tau(V_{\lambda})) \to \tilde{P} \downarrow \tau(\tilde{\lambda})$ be the transitive collapse and let $D^+ := \rho^{-1}(D) \in P$. Then D^+ is dense in $\tau(\mathbb{P}_{\kappa})$.
- Since $D^+ \in P$, there exists $\bar{D}^+ \in V$ such that $\tau(\bar{D}^+) = D^+$.
- Let $\bar{D}:=\bar{D}^+\cap V_\lambda$. By elementarity, we have that $\tau(\bar{D})=D$ and \bar{D} is dense in \mathbb{P}_λ .
- **There exists** $s \in \bar{D} \cap g$ such that $s \leq r$.

- Let $\rho: \operatorname{Hull}(P, \tau(V_{\lambda})) \to \tilde{P} \downarrow \tau(\tilde{\lambda})$ be the transitive collapse and let $D^+ := \rho^{-1}(D) \in P$. Then D^+ is dense in $\tau(\mathbb{P}_{\kappa})$.
- Since $D^+ \in P$, there exists $\bar{D}^+ \in V$ such that $\tau(\bar{D}^+) = D^+$.
- Let $\bar{D}:=\bar{D}^+\cap V_\lambda$. By elementarity, we have that $\tau(\bar{D})=D$ and \bar{D} is dense in \mathbb{P}_λ .
- **There exists** $s \in D \cap g$ such that $s \leq r$.
- We now have that

- Let $\rho: \operatorname{Hull}(P, \tau(V_{\lambda})) \to \widehat{P} \downarrow \tau(\widehat{\lambda})$ be the transitive collapse and let $D^+ := \rho^{-1}(D) \in P$. Then D^+ is dense in $\tau(\mathbb{P}_{\kappa})$.
- Since $D^+ \in P$, there exists $\bar{D}^+ \in V$ such that $\tau(\bar{D}^+) = D^+$.
- Let $\bar{D}:=\bar{D}^+\cap V_\lambda$. By elementarity, we have that $\tau(\bar{D})=D$ and \bar{D} is dense in \mathbb{P}_λ .
- **I** There exists $s \in D \cap g$ such that $s \leq r$.
- We now have that
 - $\tau(s) \in \tau(\bar{D}) = D,$

- Let $\rho: \operatorname{Hull}(P, \tau(V_{\lambda})) \to \tilde{P} \downarrow \tau(\tilde{\lambda})$ be the transitive collapse and let $D^+ := \rho^{-1}(D) \in P$. Then D^+ is dense in $\tau(\mathbb{P}_{\kappa})$.
- Since $D^+ \in P$, there exists $\bar{D}^+ \in V$ such that $\tau(\bar{D}^+) = D^+$.
- Let $\bar{D}:=\bar{D}^+\cap V_\lambda$. By elementarity, we have that $\tau(\bar{D})=D$ and \bar{D} is dense in \mathbb{P}_λ .
- **I** There exists $s \in D \cap g$ such that $s \leq r$.
- We now have that
 - $\tau(s) \in \tau(\bar{D}) = D,$
 - $P' := \mathsf{Hull}^{\tau(\mathcal{H})}(\omega_1^{V} \cup F \cup \{\tau(s)\}) \text{ satisfies } \delta(P') = \delta(P),$

- Let $\rho: \operatorname{Hull}(P, \tau(V_{\lambda})) \to \tilde{P} \downarrow \tau(\tilde{\lambda})$ be the transitive collapse and let $D^+ := \rho^{-1}(D) \in P$. Then D^+ is dense in $\tau(\mathbb{P}_{\kappa})$.
- Since $D^+ \in P$, there exists $\bar{D}^+ \in V$ such that $\tau(\bar{D}^+) = D^+$.
- Let $\bar{D}:=\bar{D}^+\cap V_\lambda$. By elementarity, we have that $\tau(\bar{D})=D$ and \bar{D} is dense in \mathbb{P}_λ .
- **I** There exists $s \in D \cap g$ such that $s \leq r$.
- We now have that
 - $\tau(s) \in \tau(\bar{D}) = D,$
 - $P' := \operatorname{Hull}^{\tau(\mathcal{H})}(\omega_1^V \cup F \cup \{\tau(s)\})$ satisfies $\delta(P') = \delta(P)$,

- Let $\rho: \operatorname{Hull}(P, \tau(V_{\lambda})) \to \widehat{P} \downarrow \tau(\widehat{\lambda})$ be the transitive collapse and let $D^+ := \rho^{-1}(D) \in P$. Then D^+ is dense in $\tau(\mathbb{P}_{\kappa})$.
- Since $D^+ \in P$, there exists $\bar{D}^+ \in V$ such that $\tau(\bar{D}^+) = D^+$.
- Let $\bar{D}:=\bar{D}^+\cap V_\lambda$. By elementarity, we have that $\tau(\bar{D})=D$ and \bar{D} is dense in \mathbb{P}_λ .
- **I** There exists $s \in D \cap g$ such that $s \leq r$.
- ▼ We now have that
 - $\tau(s) \in \tau(\bar{D}) = D,$
 - $P' := \operatorname{Hull}^{\tau(\mathcal{H})}(\omega_1^V \cup F \cup \{\tau(s)\})$ satisfies $\delta(P') = \delta(P)$,
 - $p_n := (\tau(s) \cup w, \tau(\mathcal{M}_s) \cup \{P' \downarrow \tau(\lambda)\} \in \tau(\mathbb{P}^*_{\lambda}),$
 - $p_n \leq p_{n-1}, \tau(s).$

Proof.

ii We have that $D \in P$, so there exists $\bar{D} \in V$ such that $\tau(\bar{D}) = D$.

- We have that $D \in P$, so there exists $\bar{D} \in V$ such that $\tau(\bar{D}) = D$.
- Let $\bar{M}:=\tau^{-1}(M)\in\mathcal{M}_r$. By elementarity of τ , we have that $\bar{D}\in\bar{M}\in\mathcal{M}_r$ and that \bar{D} is dense in $\mathbb{P}_{\lambda_{\bar{M}}}$.

- We have that $D \in P$, so there exists $\bar{D} \in V$ such that $\tau(\bar{D}) = D$.
- Let $\bar{M}:=\tau^{-1}(M)\in\mathcal{M}_r$. By elementarity of τ , we have that $\bar{D}\in\bar{M}\in\mathcal{M}_r$ and that \bar{D} is dense in $\mathbb{P}_{\lambda_{\bar{M}}}$.
- Let \tilde{D} consist of all $s \in \mathbb{P}_{\lambda}$ satisfying that $s \leq r$ and that there exists $t \in \bar{D}$ such that $s \leq t$ and $\delta(\operatorname{Hull}(\bar{M}, t)) = \delta(\bar{M})$. We want to show that \tilde{D} is dense below r.

- We have that $D \in P$, so there exists $\bar{D} \in V$ such that $\tau(\bar{D}) = D$.
- Let $\bar{M}:=\tau^{-1}(M)\in\mathcal{M}_r$. By elementarity of τ , we have that $\bar{D}\in\bar{M}\in\mathcal{M}_r$ and that \bar{D} is dense in $\mathbb{P}_{\lambda_{\bar{M}}}$.
- Let \tilde{D} consist of all $s \in \mathbb{P}_{\lambda}$ satisfying that $s \leq r$ and that there exists $t \in \bar{D}$ such that $s \leq t$ and $\delta(\operatorname{Hull}(\bar{M}, t)) = \delta(\bar{M})$. We want to show that \tilde{D} is dense below r.
- **iv** Let $r' ∈ \mathbb{P}_{\lambda}$ be such that r' ≤ r. Then there exists $\overline{M}' ∈ \mathcal{M}_{r'}$ such that $\delta(\overline{M}') = \delta(\overline{M})$, $\lambda_{\overline{M}'} = \lambda_{\overline{M}}$, and $\overline{M} ⊆ \overline{M}'$.

- We have that $D \in P$, so there exists $\bar{D} \in V$ such that $\tau(\bar{D}) = D$.
- Let $\bar{M}:=\tau^{-1}(M)\in\mathcal{M}_r$. By elementarity of τ , we have that $\bar{D}\in\bar{M}\in\mathcal{M}_r$ and that \bar{D} is dense in $\mathbb{P}_{\lambda_{\bar{M}}}$.
- Let \tilde{D} consist of all $s \in \mathbb{P}_{\lambda}$ satisfying that $s \leq r$ and that there exists $t \in \bar{D}$ such that $s \leq t$ and $\delta(\operatorname{Hull}(\bar{M},t)) = \delta(\bar{M})$. We want to show that \tilde{D} is dense below r.
- **iv** Let $r' ∈ \mathbb{P}_{\lambda}$ be such that r' ≤ r. Then there exists $\overline{M}' ∈ \mathcal{M}_{r'}$ such that $\delta(\overline{M}') = \delta(\overline{M})$, $\lambda_{\overline{M}'} = \lambda_{\overline{M}}$, and $\overline{M} ⊆ \overline{M}'$.
- By the existence of the appropriate strategy for $\mathcal{G}_{\lambda}(r')$, there exists $s \in \mathbb{P}_{\lambda}$ such that $s \leq r'$ and such that there exists $t \in \bar{D}$ satisfying $s \leq t$ and $\delta(\operatorname{Hull}(\bar{M}',t)) = \delta(\bar{M}')$.

- We have that $D \in P$, so there exists $\bar{D} \in V$ such that $\tau(\bar{D}) = D$.
- Let $\bar{M}:=\tau^{-1}(M)\in\mathcal{M}_r$. By elementarity of τ , we have that $\bar{D}\in\bar{M}\in\mathcal{M}_r$ and that \bar{D} is dense in $\mathbb{P}_{\lambda_{\bar{M}}}$.
- Let \tilde{D} consist of all $s \in \mathbb{P}_{\lambda}$ satisfying that $s \leq r$ and that there exists $t \in \bar{D}$ such that $s \leq t$ and $\delta(\operatorname{Hull}(\bar{M},t)) = \delta(\bar{M})$. We want to show that \tilde{D} is dense below r.
- **iv** Let $r' ∈ \mathbb{P}_{\lambda}$ be such that r' ≤ r. Then there exists $\overline{M}' ∈ \mathcal{M}_{r'}$ such that $\delta(\overline{M}') = \delta(\overline{M})$, $\lambda_{\overline{M}'} = \lambda_{\overline{M}}$, and $\overline{M} ⊆ \overline{M}'$.
- By the existence of the appropriate strategy for $\mathcal{G}_{\lambda}(r')$, there exists $s \in \mathbb{P}_{\lambda}$ such that $s \leq r'$ and such that there exists $t \in \bar{D}$ satisfying $s \leq t$ and $\delta(\operatorname{Hull}(\bar{M}',t)) = \delta(\bar{M}')$.

vi We have that

$$\delta(\bar{M}) \leq \delta(\operatorname{Hull}(\bar{M},t)) \leq \delta(\operatorname{Hull}(\bar{M}',t)) \leq \delta(\bar{M}') = \delta(\bar{M}),$$

which shows that all of the above values are equal and consequently, $s \leq r'$ belongs to \tilde{D} .

We have that

$$\delta(\bar{M}) \leq \delta(\operatorname{Hull}(\bar{M},t)) \leq \delta(\operatorname{Hull}(\bar{M}',t)) \leq \delta(\bar{M}') = \delta(\bar{M}),$$

which shows that all of the above values are equal and consequently, $s \leq r'$ belongs to \tilde{D} .

Since we have shown that \tilde{D} is dense, we get that $g \cap \tilde{D} \neq \emptyset$. In other words, there exist $s \in g$ and $t \in \bar{D}$ such that $s \leq r, t$ and $\delta(\operatorname{Hull}(\bar{M}, t)) = \delta(\bar{M})$.

vi We have that

$$\delta(\bar{M}) \leq \delta(\mathsf{Hull}(\bar{M},t)) \leq \delta(\mathsf{Hull}(\bar{M}',t)) \leq \delta(\bar{M}') = \delta(\bar{M}),$$

which shows that all of the above values are equal and consequently, $s \leq r'$ belongs to \tilde{D} .

- Since we have shown that \tilde{D} is dense, we get that $g \cap \tilde{D} \neq \emptyset$. In other words, there exist $s \in g$ and $t \in \bar{D}$ such that $s \leq r, t$ and $\delta(\operatorname{Hull}(\bar{M}, t)) = \delta(\bar{M})$.
- $\blacksquare \ \, \mathsf{Let} \,\, P' := \mathsf{Hull}^{\tau(\mathcal{H})}(\omega_1^V \cup F \cup \{\tau(s)\}) \,\, \mathsf{and} \,\, \mathsf{let}$

$$p_n := (\tau(w_s) \cup w, \tau(\mathcal{M}_s) \cup \{P' \downarrow \tau(\lambda)\}) \in \tau(\mathbb{P}^*_{\lambda}).$$

Note that $\delta_{P'} = \omega_1^V$.

vi We have that

$$\delta(\bar{M}) \leq \delta(\mathsf{Hull}(\bar{M},t)) \leq \delta(\mathsf{Hull}(\bar{M}',t)) \leq \delta(\bar{M}') = \delta(\bar{M}),$$

which shows that all of the above values are equal and consequently, $s \leq r'$ belongs to \tilde{D} .

- Since we have shown that \tilde{D} is dense, we get that $g \cap \tilde{D} \neq \emptyset$. In other words, there exist $s \in g$ and $t \in \tilde{D}$ such that $s \leq r, t$ and $\delta(\operatorname{Hull}(\bar{M}, t)) = \delta(\bar{M})$.
- $lacksymbol{\mathbb{M}}$ Let $P':=\mathsf{Hull}^{ au(\mathcal{H})}(\omega_1^V\cup F\cup\{ au(s)\})$ and let

$$p_n := (\tau(w_s) \cup w, \tau(\mathcal{M}_s) \cup \{P' \downarrow \tau(\lambda)\}) \in \tau(\mathbb{P}^*_{\lambda}).$$

Note that $\delta_{P'} = \omega_1^V$.

 ${\mathbb N}$ We have $au(t) \in D$ and $p_n \le au(t)$, while

$$\begin{split} \delta(\mathsf{Hull}(M,\tau(t))) &= \delta(\tau(\mathsf{Hull}(\bar{M},t))) = \delta(\mathsf{Hull}(\bar{M},t)) = \\ &= \delta(\bar{M}) = \delta(M). \end{split}$$

We have that

$$\delta(\bar{M}) \leq \delta(\mathsf{Hull}(\bar{M},t)) \leq \delta(\mathsf{Hull}(\bar{M}',t)) \leq \delta(\bar{M}') = \delta(\bar{M}),$$

which shows that all of the above values are equal and consequently, $s \leq r'$ belongs to \tilde{D} .

- Since we have shown that \tilde{D} is dense, we get that $g \cap \tilde{D} \neq \emptyset$. In other words, there exist $s \in g$ and $t \in \bar{D}$ such that $s \leq r, t$ and $\delta(\operatorname{Hull}(\bar{M}, t)) = \delta(\bar{M})$.
- $lacksymbol{\mathbb{M}}$ Let $P':=\mathsf{Hull}^{ au(\mathcal{H})}(\omega_1^V\cup F\cup\{ au(s)\})$ and let

$$p_n := (\tau(w_s) \cup w, \tau(\mathcal{M}_s) \cup \{P' \downarrow \tau(\lambda)\}) \in \tau(\mathbb{P}^*_{\lambda}).$$

Note that $\delta_{P'} = \omega_1^V$.

We have $\tau(t)$ ∈ D and $p_n \le \tau(t)$, while

$$\begin{split} \delta(\mathsf{Hull}(M,\tau(t))) &= \delta(\tau(\mathsf{Hull}(\bar{M},t))) = \delta(\mathsf{Hull}(\bar{M},t)) = \\ &= \delta(\bar{M}) = \delta(M). \end{split}$$

QED (Case IV)

We have shown that Player II can survive ω moves against strategy σ , which is a contradiction.

- We have shown that Player II can survive ω moves against strategy σ , which is a contradiction.
- This concludes the proof of Claim 10.

- We have shown that Player II can survive ω moves against strategy σ , which is a contradiction.
- This concludes the proof of Claim 10.

Since we have shown Claim 10, we conclude the proof of the main theorem.

Obrad Kasum IMJ-PRG

THANK YOU FOR YOUR ATTENTION!