AWP mit regenerativem LM-WÜ

Dampfdruckdiagramm

h, ξ - Diagramm für NH₃-Wasser

$$t_{NH_3}^{LV} = -33^{\circ}C$$

$$t_{H_2O}^{LV} = 100 \,{}^{\circ}C$$

$$\Delta t^{LV} < 200 \,^{\circ} C$$

Lösungsmittel verdampft teilweise und muss aus AM-Dampf entfernt werden, vermeiden der "Versauerung" des Verdampfers (Anstieg der Verdampfungstemperatur)

Reference states: NH₃: h' = 2.333 kJ/kg at triple point temperature $t_1 = -77.855$ °C H₂O: h' = 0.00061178 kJ/kg at triple point temperature $t_1 = 0.01$ °C

NH₃- Wasser - AWP

- •NH₃-Dampf wird nicht in reiner Form ausgetrieben
- •Rektifikation (Destillation), zur Dampfreinigung notwendig
- •zusätzlicher Wärmeaufwand → schlechteres Wärmeverhältnis

Diffusionskältemaschine

(Absorptionskälteanlage mit druckausgleichendem Gas)

Geringe Druckunterschiede können durch eine Thermosiphonpumpe (ohne bewegte Teile)

1 Austreiber (Desorber), 2 Kondensator, 3 Verdunster; 4 Absorber, 5,6 Wärmeübertrager 7 Thermosiphonpumpe

Druckausgleichendes Gas He oder H₂ (geringere Dichte gegenüber NH₃)

$$\rho = \frac{1}{v} = \frac{pM}{z\overline{R}T} \sim M$$

Arbeitsleistender Absorptionskreisprozess KALINA-Prozess

Vorgeschlagen zur :

- Nutzung niedriger Kondensatortemperaturen bei geringer Umgebungstemperatur
- Nutzung gleitender Temperaturniveaus

Desorber: Anpassung an Wärmequelle z.B. Heißwasser aus Geothermie

Absorber: bessere Ausnutzung des Kühlwassertemperaturniveaus

Nachteil: zusätzlicher Lösungskreislauf mit Wärmeübertrager und Verlusten, optimale regenerative Wärmenutzung notwendig

Arbeitsleistender Absorptionskreisprozess KALINA-Prozess

Abbildung IV-19: Kalina-Kreislauf KCS 34 nach Leibowitz und Mleak (1999) und (Mleak, 2002).

Kalina-Prozess im Ig p,1/T-Diagramm

Abbildung IV-19: Kalina-Kreislauf KCS 34 nach Leibowitz und Mleak (195 (Mleak, 2002).

Regenerativer Wärmeübertrager im ORC-Prozess

Abbildung IV-2: Typisches Temperatur-Entropie-Diagramm eines einfachen ORC mit retrogradem Arbeitsmittel.

Abbildung IV-2: Typisches Temperatur-Entropie-Diagramm eines einfachen ORC mi retrogradem Arbeitsmittel.

Resorptionswärmepumpe

Vermeidung des Rektifikationsaufwandes

z.B. auch zur Wasserstoffspeicherung in Metallhydriden LaNi_{4,5}Al_{0,5}; TiFe, wegen niedriger Kondensationstemperatur des Wasserstoffs

Arbeitsmittel für Adsorptions-Kreisprozesse

Arbeitsmittel:

Zeolith: mikroporöse Gerüststruktur aus AlO₄–und SiO₄–Tetraedern, die untereinander durch Sauerstoffatome verbunden sind Dadurch resultiert Struktur aus gleichförmigen Poren und/oder Kanälen, in denen Stoffe adsorbiert werden können

Silicagel: Kieselgel, amorphes Siliciumdioxid SiO₂ innere Oberfläche ca. 600 m²/g

Anlagerung (Adsorption) von Wassermolekülen (Adsorbat) auf der Oberfläche des Adsorbers

Adsorptionskreisprozesse

Abb. 22: Isosterenfeld des Stoffpaares Silicagel – Wasser

Vergleich Ab- Adsorptionskältemaschine

Abbildung 3.1: Einstufiger Sorptionskreislauf. Für die Absorptionskälteanlage (mit Stoffpaar Wasser/Lithiumbromid) und Adsorptionskälteanlage (mit Wasser/Silicagel) wird nahezu die gleiche interne Austreibertemperatur benötigt.

Adsorptionswärmepumpe

Vorteile

Kaum bewegte Teile evtl. niedere Austreibertemperaturen Möglichkeiten zur Speicherung und dezentraler Kälteerzeugung Nachteile:

Schwer

diskontinuierlicher Betrieb

Schwierige

Wärmeübergangsbedingungen zum

Feststoff

Geringere reg. WÜ

kleinere Kältezahlen als bei Abs.

Systematik der Kreisprozesse

Disproportionierungsprozesse arbeitsleistende / rechtsläufige KP

Synproportionierungsprozesse arbeitsverbrauchende / linksläufige KP

Wärmetransformator

Aufwertung des T.-Niveaus von Abwärme, die noch eine gewisse Temperaturdifferenz gegenüber der Umgebung hat, aber für regenerative Wärmenutzung zu kalt ist.

Wärmetransformator

$$\varepsilon_{WT} = \frac{N}{A} = \frac{\dot{Q}_{Abs}}{\dot{Q}_{Verd} + \dot{Q}_{Des}}$$

$$\varepsilon_{\scriptscriptstyle AWT} \approx 0.5$$

A- Wärmepumpe - Gesamtbilanz

Gesamtenergiebilanz:

$$\dot{Q}_{Des} + \dot{Q}_{Verd} + (P_p) = \dot{Q}_{Abs} + \dot{Q}_{Kond}$$

vereinfachte Gesamtexergiebilanz : $reversibel (\Delta \dot{E}_v = 0)$:

$$\frac{T_H - T_U}{T_H} \dot{Q}_{Des} + \frac{T_0 - T_U}{T_0} \dot{Q}_{Verd} = \frac{T_M - T_U}{T_M} (\dot{Q}_{Abs} + \dot{Q}_{Kond}) + \Delta \dot{E}_v$$

Vereinfachte Schreibweise mit Carnot-Faktoren $au_i = rac{T_i - T_U}{T_i}$

$$au_H \ \dot{Q}_{Des} + au_0 \ \dot{Q}_{Verd} = au_M (\dot{Q}_{Abs} + \dot{Q}_{Kond}) + \Delta \dot{E}_v$$

Wärmeverhältnis (Kältezahl) AKM

$$au_{M} = 0 \ \textit{wegen} \ T_{M} = T_{U} \qquad arepsilon_{\textit{AWP}} = rac{\dot{Q}_{\textit{Verd}}}{\dot{Q}_{\textit{Des}}} = rac{ au_{\textit{H}}}{ au_{0}} \qquad = rac{T_{\textit{H}} - T_{\textit{U}}}{T_{\textit{H}}} rac{T_{0}}{T_{\textit{U}} - T_{0}} = \eta_{\textit{Carnot}} arepsilon_{\textit{KM}}$$

Wärmeverhältnis AWP

$$\tau_{0} = 0 \text{ wegen } T_{0} = T_{U} \qquad \varepsilon_{\scriptscriptstyle AWP} = \frac{\dot{Q}_{\scriptscriptstyle abs} + \dot{Q}_{\scriptscriptstyle Kond}}{\dot{Q}_{\scriptscriptstyle Des}} = \frac{\tau_{\scriptscriptstyle H}}{\tau_{\scriptscriptstyle M}} = \frac{T_{\scriptscriptstyle H} - T_{\scriptscriptstyle U}}{T_{\scriptscriptstyle H}} \frac{T_{\scriptscriptstyle M}}{T_{\scriptscriptstyle M} - T_{\scriptscriptstyle U}} = \eta_{\scriptscriptstyle Carnot} \varepsilon_{\scriptscriptstyle WP}$$

AWT - Gesamtbilanz

Gesamtenergiebilanz:

$$\dot{Q}_{Des} + \dot{Q}_{Verd} + (P_p) = \dot{Q}_{Abs} + \dot{Q}_{Kond}$$

vereinfachte Gesamtexergiebilanz : reversibel ($\Delta \dot{E}_v = 0$):

$$\frac{T_M - T_U}{T_M} (\dot{Q}_{Des} + \dot{Q}_{Verd}) = \frac{T_H - T_U}{T_H} \dot{Q}_{Abs} + \frac{T_0 - T_U}{T_0} \dot{Q}_{Kond} + \Delta \dot{E}_v$$

Vereinfachte Schreibweise mit Carnot-Faktoren $au_i = rac{T_i - T_U}{T_i}$

$$\tau_{M}(\dot{Q}_{Des} + \dot{Q}_{Verd}) = \tau_{H} \dot{Q}_{Abs} + \tau_{0} \dot{Q}_{Kond} + \Delta \dot{E}_{v}$$

Reversibles Wärmeverhältnis

$$\tau_0 = 0 \ \textit{wegen} \ T_0 = T_U \quad \varepsilon_{\textit{AWT}} = \frac{\dot{Q}_{\textit{Abs}}}{\dot{Q}_{\textit{Des}} + \dot{Q}_{\textit{Verd}}} = \frac{\tau_{\textit{M}}}{\tau_{\textit{H}}} \quad = \frac{T_{\textit{M}} - T_{\textit{U}}}{T_{\textit{M}}} \frac{T_{\textit{H}}}{T_{\textit{H}} - T_{\textit{U}}} = \eta_{\textit{Carnot}} \varepsilon_{\textit{WP}}$$

$$\varepsilon_{AWT,theor.} = \frac{\dot{Q}_{Abs}}{\dot{Q}_{Des} + \dot{Q}_{Verd}} = 0.5$$

Synproportionierung

(Wärmepumpe und Kältemaschine)

Disproportionierung

Wärmetrafo

technologieorientiertes (konventionelles) Wärmeverhältnis

$$\varepsilon_{AKM} = \frac{\dot{Q}_{Verd}}{\dot{Q}_{Des}} \approx 1$$
 $\varepsilon_{AWP} = \frac{\dot{Q}_{Kond} + Q_{Abs}}{\dot{Q}_{Des}} \approx 2$ $\varepsilon_{WT} = \frac{\dot{Q}_{Abs}}{\dot{Q}_{Des} + \dot{Q}_{Verd}} \approx 0,5$

$$\varepsilon_{WT} = \frac{Q_{Abs}}{\dot{Q}_{Des} + \dot{Q}_{Verd}} \approx 0.5$$

(am Wesen der Energiewandlung orientiertes) Transformationsverhältnis

$$\varepsilon_{Trans} = \frac{\dot{Q}_{Hub}}{\dot{Q}_{Schub}} \approx 1$$

im reversiblen Vergleichsprozess ($\Delta E_V = 0$ mit $\tau_i = \frac{T_i - T_U}{T}$):

$$\tau_H Q_H + \tau_0 Q_0 = \tau_M (Q_0 + Q_H)$$

Wärmetransformation

Gemeinsamkeit aller Kreisprozesse:

Ein Teil der Energie wird auf höheres Qualitätsniveau angehoben Es sind stets 3 Temperaturniveaus beteiligt

→ Transformationsprozesse

Zwischen 2 Temperaturniveaus kann nur einfache Energiewandlung (Abwertung des Qualitätsniveaus) stattfinden

Einführung einer Kennziffer, die sich am Wesen der Wärmetransformation orientiert

Transformationsverhältnis

$$\mathcal{E}_{Tr_{rev}} = \frac{\dot{Q}_{Hub}}{\dot{Q}_{Schub}}$$

Bewertung mittels der Qualitätsunterschiede zwischen den Energieformen

Transformationsprozesse

Transformationsprozesse

Transformationsprozesse

Synproportionierung (Wärmepumpe und Kältemaschine) р Desorber

Disproportionierung Wärmetrafo

(am Wesen der Energiewandlung orientiertes) Transformationsverhältnis

$$\varepsilon_{Trans} = \frac{\dot{Q}_{Hub}}{\dot{Q}_{Schub}} \approx 1$$

Exergiebilanz:

$$\frac{T_{H} - T_{U}}{T_{H}} Q_{H} + \frac{T_{0} - T_{U}}{T_{0}} Q_{0} = \frac{T_{M} - T_{U}}{T_{M}} Q_{M} + \Delta E_{V} \qquad \frac{T_{M} - T_{U}}{T_{M}} Q_{M} = \frac{T_{H} - T_{U}}{T_{H}} Q_{H} + \frac{T_{0} - T_{U}}{T_{0}} Q_{0} + \Delta E_{V}$$

$$\frac{T_{M} - T_{U}}{T_{M}} Q_{M} = \frac{T_{H} - T_{U}}{T_{H}} Q_{H} + \frac{T_{0} - T_{U}}{T_{0}} Q_{0} + \Delta E_{V}$$

im reversiblen Vergleichsprozess ($\Delta E_V = 0$ mit $\tau_i = \frac{T_i - T_U}{T}$):

$$\tau_H Q_H + \tau_0 Q_0 = \tau_M Q_0 + \tau_M Q_H$$

$$\varepsilon_{\mathit{Syn}} = \frac{\dot{Q}_{\mathit{Hub}}}{\dot{Q}_{\mathit{Schub}}} = \frac{\dot{Q}_{0}}{\dot{Q}_{\mathit{H}}} = \frac{\tau_{\mathit{H}} - \tau_{\mathit{M}}}{\tau_{\mathit{M}} - \tau_{0}} = \frac{\Delta \tau_{\mathit{Schub}}}{\Delta \tau_{\mathit{Hub}}} \qquad \varepsilon_{\mathit{Dis}} = \frac{\dot{Q}_{\mathit{Hub}}}{\dot{Q}_{\mathit{Schub}}} = \frac{\dot{Q}_{\mathit{H}}}{\dot{Q}_{0}} = \frac{1}{\varepsilon_{\mathit{Syn}}} = \frac{\tau_{\mathit{M}} - \tau_{0}}{\tau_{\mathit{H}} - \tau_{\mathit{M}}} = \frac{\Delta \tau_{\mathit{Schub}}}{\Delta \tau_{\mathit{Hub}}}$$

$$arepsilon_{Trans} = rac{\dot{Q}_{Hub}}{\dot{Q}_{Schub}} = rac{\Delta au_{Schub}}{\Delta au_{Hub}}$$

Mehrstufigkeit

Allgemeingültige Beziehung für alle Kreisprozesse

Transformationsverhältnis

$$arepsilon_{Tr_{rev}} = rac{\dot{Q}_{Hub}}{\dot{Q}_{Schub}} = rac{\Delta au_{Schub}}{\Delta au_{Hub}}$$

Transformationswirkungsgrad

$$\eta_{Trans} = \frac{\Delta E_{Hub}}{\Delta E_{Schub}} = \frac{\Delta \tau_{Hub} \dot{Q}_{Hub}}{\Delta \tau_{Schub} \dot{Q}_{Schub}} = \frac{\mathcal{E}_{Trans}}{\mathcal{E}_{Trans,rev}}$$

Durch Mehrstufigkeit kann

Bei vergrößerter Antriebs- oder verringerter Hub- Temperaturdifferenz das Wärmeverhälnis verbessert werden (Double Effect)

Der Temperaturhub des Kreisprozesses auf Kosten einer Verringerung des Wärmeverhältnisses erhöht werden (Double Lift)

Double Lift (vergrößerter Temperaturhub)

Synproportionierungsprozesse mit vergrößertem Temperaturhub (double lift)

Erhöhter Arbeitsmittelumlauf im Hochtemperaturkreislauf

Double Effect (verbessertes Wärmeverhältnis)

Synproportionierungsprozesse mit verbessertem Wärmeverhältnis (double-effect)

Erhöhter Arbeitsmittelumlauf im Niedertemperaturkreislauf

Zweistufige LiBr-Wasser-Maschinen sind Stand der Technik

Schaltungsvariante Double-Effect-Anlage

Abbildung 2.4: Vereinfachtes Schema eines Double-Effect-Absorptionskreislaufs

Beispiel: SE/SL-DL-LiBr/H2O-Anlagen Kälte aus Fernwärme (Temperaturen 80 -100°C)

Auskühlung des Heizmediums von 25-70 K abhängig von der Fernwärmevorlauftemperatur und somit auch niedrige Fernwärmerücklauftemperaturen von 50 - -60°C.

Die Anlage kann auch als reiner Single Effect-Prozess, mit den Teilen V0, A0, G21, K2 oder als reiner Double Lift-Prozess, mit den Teilen G1, A1, G22 betrieben werden

Kombination von Syn – und Disproportionierung

Prinzipielle Möglichkeiten von Mehrstufigkeit und Kombination