Cardiopulmonary Resuscitation

CPR For All

Tom Maloney (Weill Cornell) Kristen Flaherty, Shou-Kai Cheng, Siqi Ke (Cornell Tech)

Student Mentor: Dr. Emily Chien

The Challenge

CRP For All

How Might We create a **low-cost** version of a CPR model that appropriately simulates the **compression force** and **depth** required for high-quality CPR?

User Groups & Needs

School Children

6-12th Grade. Bystander CPR

Organizations

Govt. workers, corporate employees.

Bystander CPR

College Students

Pre-Med Students.
Bystander CPR

PLS & Trainers

Running and administering bystander CPR trainings.

Medical Students

Early year students.
Bystander & Clinical CPR

General Public

Any layperson trainee in PLS Bystander CPR programs

Design Challenge Framework

Components from empathy mapping:

Says: Thinks: - How do I know when to stop? - This is messy/gross! - Will this feel the same if I do it - Am I doing this correctly? - What comes next? on a real person? Feels: Does: - **Hesitation** to touch models or - Confused/unsure. germs (Fear of failure). - Imposter Syndrome. - Performance Anxiety. - Ask trainer more questions.

Needs:

Building empowerment/confidence
 Increase engagement
 Help build accuracy
 Enhance self-monitoring
 Quick feedback

Interview Takeaways

4 Emergency Medicine Physicians @ Weill Cornell

Pakistan Life Savers Program

- Recent implementation of CPR into national education curriculum, ~10 million students 6th-12th grade
- Every trainee has one pillow and shares an expensive training mannequin
- Low resourced, high work output
- Need an affordable, portable, scalable, reproducible CPR model to deploy in their programs

CPR Training

- Compressions (depth, rate, hand placement, length) is necessary to teach in bystander CPR over ventilation
- 2-2.5 inches deep at 100-120 cpm for 2 minutes
- Deliver high quality, intuitive feedback without increasing cost

Project Goals & Constraints

Expensive

Highly Accurate Feedback

No Feedback

Project Goals & Constraints

Goals

- Compression only
- Accurate depth and rate feedback
- ☐ Scalable and portable for schools

Constraints

- Low cost, affordable objects
- Reproducible
- ☐ Easy to assemble
- Repairable

Proof of Concept

- ☐ Compression training device
- Using a kickball to simulate pressure
- ☐ Showing 3 levels of feedback for compression depth
- Hand placement direction
- Body/rib cage: 3D print, casting, any object chamber
- Potentially adapting our design for new kinds of balls and for other local materials

Our Roadmap

Simulate Chest Compressions

- Kickball + feedback 3D printed holder
- Feedback electronics + rod/piston cylinder

Tune System Accuracy

 Test and finalize feedback sensor placement and response to correct compression depth

Build Chest Cage

 Design and build the chamber for our system to hold kickball, stand and feedback electronics

Add Hand Placement

 Design the top of the chamber to instruct correct hand placement

Assess & Tune Usability

 Test with users and identify design components to improve

Thanks!

Does anyone have any questions?

