Channel Modelling – ETIN10

Lecture no: 6

Channel models

Ghassan Dahman / Fredrik Tufvesson
Department of Electrical and Information Technology
Lund University, Sweden

Content

- Modelling methods
- Okumura-Hata path loss model
- COST 231 model
- Indoor models
- Wideband models
- COST 207 (GSM model)
- ITU-R model for 3G
- Directional channel models
- Multiantenna (MIMO) models
- Ray tracing & Ray launching

Channel measures

Modeling methods

- Stored channel impulse responses
 - realistic
 - reproducible
 - hard to cover all scenarios
- Deterministic channel models
 - based on Maxwell's equations (or approximations: ray tracing)
 - site specific
 - computationally demanding
- Stochastic channel models
 - describes the distribution of the field strength etc
 - mainly used for design and system comparisons
 - example: the Rayleigh-fading model

Narrowband models Review of properties

Narrowband models contain "only one" attenuation, which is modeled as a propagation loss, plus large- and small-scale fading.

Small-scale fading: Rayleigh, Rice, Nakagami distributions ... (of amplitudes and **not** in dB-scale)

Large-scale fading: Log-normal distribution (normal distr. in dB scale)

Path loss: Often proportional to 1/dⁿ, where n is the propagation exponent (n may be different at different distances).

Okumura's measurements

Extensive measurement campaign in Japan in the 1960's.

Parameters varied during measurements:

Frequency 100 – 3000 MHz

Distance 1 - 100 km

Mobile station height 1 - 10 m

Base station height 20 – 1000 m

Environment medium-size city, large city, etc.

Propagation loss is given as **median** values (50% of the time and 50% of the area).

Results from these measurements are displayed in figures 7.12 – 7.14 in the appendix.

Okumura's measurements excess loss

The Okumura-Hata model Background

In 1980 Hata published a parameterized model, based on Okumura's measurements.

The parameterized model has a smaller range of validity than the measurements by Okumura:

Frequency 150 – 1500 MHz

Distance 1-20 km

Mobile station height 1 - 10 m

Base station height 30 – 200 m

It doesn't encompass the 1800 MHz frequency range. This problem was solved by the COST 231-Hata model.

The Okumura-Hata model How to calculate prop. loss

$$L_{O-H} = A + B \log(d_{|km}) + C$$

$$A = 69.55 + 26.16 \log(f_{0|MHz}) - 13.82 \log(h_b) - a(h_m)$$

$$B = 44.9 - 6.55 \log(h_b)$$

 $h_{\rm b}$ and $h_{\rm m}$ in meter

Metropolitan
areas

Small/mediumsize cities

Suburban environments

Rural areas

$$a(h_m) =$$

$$8.29(\log(1.54h_m))^2 - 1.1$$
 for $f_0 \le 200 \text{ MHz}$
 $3.2(\log(11.75h_m))^2 - 4.97$ for $f_0 \ge 400 \text{ MHz}$

$$(1.1\log(f_{0|MHz})-0.7)h_m - (1.56\log(f_{0|MHz})-0.8)$$

C =

0

$$-2\left[\log\left(f_{0|MHz}/28\right)\right]^2-5.4$$

$$-4.78 \left[\log \left(f_{0|MHz} \right) \right]^2 + 18.33 \log \left(f_{0|MHz} \right) - 40.94$$

The COST 231-Walfish-Ikegami model

The Okumura-Hata model is not suitable for micro cells or small macro cells, due to its restrictions on distance (d > 1 km).

The COST 231-Walfish-Ikegami model covers much smaller distances, and it is better suitable for calculations on small cells and covers the 1800 MHz band as well.

Frequency 800 – 2000 MHz

Distance 0.02 - 5 km

Mobile station height 1-3 m

Base station height 4 - 50 m

The COST 231-Walfish-Ikegami model How to calculate prop. loss

Assumptions: - a Manhatten grid, constant building height, and a flat tarrain.

- the effect of waveguiding through street canyons is not included

 L_0 is a function of d (KM), f_0 (MHz)

 L_{msd} is a function of Δh_b , d, f_0 , b

 L_{rts} is a function of w, f_0 , Δh_m , the orientation of the street

Details about calculations can be found in the appendix.

Motley-Keenan indoor model

For indoor environments, the attenuation is heavily affected by the building structure. Walls and floors play an important rule.

$$PL = PL_0 + 10n \log(d/d_0) + F_{\text{wall}} + F_{\text{floor}}$$
 distance dependent path loss sum of attenuations from walls, 1-20 dB/wall sum of attenuation) sum of attenuation from the floors (often larger than wall attenuation)

- Site specific => requires the location of BS, MS, and the building plan.
- Neglects propagation paths that go around the walls (through corridors)

Wideband models (Tapped Delay Line Models)

Tapped delay line model often used

$$h(t,\tau) = \sum_{i=1}^{N} \alpha_i(t) \exp(j\theta_i(t)) \delta(\tau - \tau_i)$$

- Often Rayleigh-distributed taps, but might include LOS and different distributions of the tap values
- Mean tap power determined by the power delay profile
- Popular cases:

N=2, no LOS => the *two-path channel*, the simplest delay-dispersion model

LOS + one fading tap => widely used for satellite channels

Models for the Power Delay Profile

Often described by a single exponential decay

though often there is more than one "cluster"

$$P(\tau) = \begin{cases} \sum_{k} \frac{P_{k}^{c}}{S_{\tau,k}^{c}} P_{sc}(\tau - \tau_{0,k}^{c}) & \tau \ge 0 \\ 0 & otherwise \end{cases}$$

where *k* is the cluster's index

arrival time

- If the bandwidth is high, the time resolution is large so we might resolve the different multipath components
- Need to model arrival time
- The Saleh-Valenzuela model:

$$h(\tau) = \sum_{l=0}^{L} \sum_{k=0}^{K} \alpha_{k,l}(\tau) \delta(\tau - T_l - \tau_{k,l})$$
 ray arrival time (Poisson) cluster arrival time (Poisson)

The ∆-K-model:

Standardized Channel Models COST 207 model for GSM

The COST 207 model specifies:

FOUR power-delay profiles for different environments.

FOUR Doppler spectra used for different delays.

IT **DOES NOT** SPECIFY PROAGATION LOSSES FOR THE DIFFERENT ENVIRONMENTS!

Four specified power-delay profiles

Four specified Doppler spectra

Doppler spectra:

Doppler spectra:

Table 7.3 Parameters for rural (non-hilly) area (RA)

Tap#	Delay [µs]	Power [dB]	Doppler category
1	0	0	RICE
2	0.2	-2	CLASS
3	0.4	-10	CLASS
4	0.6	-20	CLASS

Table 7.4 Parameters for urban (non-hilly) area (TU)

Тар#	Delay [µs]	Power [dB]	Doppler category
1	0	-3	CLASS
2	0.2	0	CLASS
3	0.6	-2	GAUS1
4	1.6	-6	GAUS1
5	2.4	-8	GAUS2
6	5.0	-10	GAUS2

Wideband models ITU-R model for 3G

The ITU-R model specifies:

SIX different tapped delay-line channels for three different scenarios (indoor, pedestrian, vehicular).

TWO channels per scenario (one short and one long delay spread).

TWO different Doppler spectra (uniform & classical), depending on scenario.

THREE different models for propagation loss (one for each scenario).

The standard deviation of the log-normal shadow fading is specified for each scenario.

The autocorrelation of the log-normal shadow fading is specified for the vehicular scenario.

Wideband models ITU-R model for 3G

Tap No.	delay/ns	power/dB	delay/ns	power/dB
INDOOR	CHANNEL A (50%)		CHANNEL B (45%)	
1	0	0	0	0
2	50	-3	100	-3.6
3	110	-10	200	-7.2
4	170	-18	300	-10.8
5	290	-26	500	-18.0
6	310	-32	700	-25.2
PEDESTRIAN	CHANNEL A (40%)		CHANNEL B (55%)	
1	0	0	0	0
2	110	-9.7	200	-0.9
3	190	-19.2	800	-4.9
4	410	-22.8	1200	-8.0
5			2300	-7.8
6			3700	-23.9
VEHICULAR	CHANNEL A (40%)		CHANNEL B (55%)	
1	0	0	0	-2.5
2	310	-1	300	0
3	710	-9	8900	-12.8
4	1090	-10	12900	-10.0
5	1730	-15	17100	-25.2
6	2510	-20	20000	-16.0

Directional channel models

- The spatial domain can be used to increase the spectral efficiency of the system
 - Smart antennas
 - MIMO systems
- Need to know directional properties
 - How many significant reflection points?
 - Which directions?
 - Model incoming angle (direction of arrival) and outgoing angle (direction of departure) to scatterers
- Model independent from specific antenna pattern

Double directional impulse response

Physical interpretation

Angular spread

$$E\{s^*(\Omega, \Psi, \tau, \nu)s(\Omega', \Psi', \tau', \nu')\}$$

$$E\{s^*(\Omega, \Psi, \tau, v)s(\Omega', \Psi', \tau', v')\} = P_s(\Omega, \Psi, \tau, v)\delta(\Omega - \Omega')\delta(\Psi - \Psi')\delta(\tau - \tau')\delta(v - v')$$

double directional delay power spectrum $DDDPS(\Omega, \Psi, \tau) = \int P_s(\Psi, \Omega, \tau, \nu) d\nu$

angular delay power spectrum

$$ADPS(\Omega, \tau) = \int DDDPS(\Psi, \Omega, \tau)G_{MS}(\Psi)d\Psi$$

angular power spectrum

$$APS(\Omega) = \int APDS(\Omega, \tau) d\tau$$

power
$$P = \int APS(\Omega)d\Omega$$

Geometry-based stochastic channel models

 Derive impulse response given the scatterers and distributions for the signal properties.

 Used in the COST 259 model, COST 273, COST 2100, WINNER 3GPP/3GPP2

Geometry-Based Stochastic Channel Model (GSCM)

 Create an "imaginary" map for radio wave scatterers (clusters)

MIMO channel models

Channel matrix

$$h(\tau) = \begin{bmatrix} h_{11}(\tau) & h_{12}(\tau) & \cdots & h_{1M_{Tx}}(\tau) \\ h_{21}(\tau) & h_{22}(\tau) & \cdots & h_{2M_{Tx}}(\tau) \\ \vdots & \vdots & \ddots & \vdots \\ h_{M_{Rx}1}(\tau) & h_{M_{Rx}2}(\tau) & \cdots & h_{M_{Rx}M_{Tx}}(\tau) \end{bmatrix}$$

Signal model

$$y(t) = \sum_{\tau} h(\tau)x(t - \tau)$$

Kronecker model

$$H = \frac{1}{E\{tr(HH^*)\}} R_{Rx}^{1/2} G_G R_{Tx}^{1/2}$$

Deterministic modeling methods

- Solve Maxwell's equations with boundary conditions
- Problems:
 - Data base for environment
 - Computation time
- "Exact" solutions
 - Method of moments
 - Finite element method
 - Finite-difference time domain (FDTD)
- High frequency approximation
 - All waves modeled as rays that behave as in geometrical optics
 - Refinements include approximation to diffraction, diffuse scattering, etc.

Ray launching

- TX antenna sends out rays in different directions
- We follow each ray as it propagates, until it either
 - Reaches the receiver, or
 - Becomes too weak to be relevant
- Propagation processes
 - Free-space attenuation
 - Reflection
 - Diffraction and diffuse scattering:
 each interacting object is source
 of multiple new rays
- Predicts channel in a whole area (for one TX location)

Ray tracing

- Determines rays that can go from one TX position to one RX position
 - Uses imagining principle
 - Similar to techniques known from computer science
- Then determine attenuation of all those possible paths

RX

0

Example: Ray tracing

Required base station power to connect to a WCDMA cell phone. Example from Stuttgart. Courtesey: Awe-communications

Example: Ray tracing

Coverage for a WCDMA cell phone. Example from Stuttgart. Courtesey: Awecommunications Propagation Models

