US Covid-19 Cases Time Series Analysis

Stefan Maciolek

5/28/2020

```
#importing Covid Data from Johns Hopkins
uscases <-
read.csv(url("https://raw.githubusercontent.com/CSSEGISandData/COVID-
19/master/csse covid 19 data/csse covid 19 time series/time series covid19 co
nfirmed_US.csv"))
usdeaths <-
read.csv(url("https://raw.githubusercontent.com/CSSEGISandData/COVID-
19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_de
aths_US.csv"))
uscases <- uscases[,-c(1:5,8:11)]
usdeaths <- usdeaths[,-c(1:5,8:12)]
n <- ncol(uscases)-2</pre>
date <- 1:n
date <- as.Date(date, origin = "2020-01-21")</pre>
format(date,format = "%b %d %y")
     [1] "Jan 22 20" "Jan 23 20" "Jan 24 20" "Jan 25 20" "Jan 26 20" "Jan 27
##
20"
     [7] "Jan 28 20" "Jan 29 20" "Jan 30 20" "Jan 31 20" "Feb 01 20" "Feb 02
##
20"
    [13] "Feb 03 20" "Feb 04 20" "Feb 05 20" "Feb 06 20" "Feb 07 20" "Feb 08
##
20"
    [19] "Feb 09 20" "Feb 10 20" "Feb 11 20" "Feb 12 20" "Feb 13 20" "Feb 14
##
20"
##
   [25] "Feb 15 20" "Feb 16 20" "Feb 17 20" "Feb 18 20" "Feb 19 20" "Feb 20
20"
## [31] "Feb 21 20" "Feb 22 20" "Feb 23 20" "Feb 24 20" "Feb 25 20" "Feb 26
20"
   [37] "Feb 27 20" "Feb 28 20" "Feb 29 20" "Mar 01 20" "Mar 02 20" "Mar 03
##
20"
## [43] "Mar 04 20" "Mar 05 20" "Mar 06 20" "Mar 07 20" "Mar 08 20" "Mar 09
20"
## [49] "Mar 10 20" "Mar 11 20" "Mar 12 20" "Mar 13 20" "Mar 14 20" "Mar 15
20"
   [55] "Mar 16 20" "Mar 17 20" "Mar 18 20" "Mar 19 20" "Mar 20 20" "Mar 21
##
20"
    [61] "Mar 22 20" "Mar 23 20" "Mar 24 20" "Mar 25 20" "Mar 26 20" "Mar 27
##
20"
    [67] "Mar 28 20" "Mar 29 20" "Mar 30 20" "Mar 31 20" "Apr 01 20" "Apr 02
##
## [73] "Apr 03 20" "Apr 04 20" "Apr 05 20" "Apr 06 20" "Apr 07 20" "Apr 08
20"
```

```
## [79] "Apr 09 20" "Apr 10 20" "Apr 11 20" "Apr 12 20" "Apr 13 20" "Apr 14
20"
## [85] "Apr 15 20" "Apr 16 20" "Apr 17 20" "Apr 18 20" "Apr 19 20" "Apr 20
20"
## [91] "Apr 21 20" "Apr 22 20" "Apr 23 20" "Apr 24 20" "Apr 25 20" "Apr 26
20"
## [97] "Apr 27 20" "Apr 28 20" "Apr 29 20" "Apr 30 20" "May 01 20" "May 02
20"
## [103] "May 03 20" "May 04 20" "May 05 20" "May 06 20" "May 07 20" "May 08
20"
## [109] "May 09 20" "May 10 20" "May 11 20" "May 12 20" "May 13 20" "May 14
20"
## [115] "May 15 20" "May 16 20" "May 17 20" "May 18 20" "May 19 20" "May 20
20"
## [121] "May 21 20" "May 22 20" "May 23 20" "May 24 20" "May 25 20" "May 26
20"
## [127] "May 27 20"
```

The data were imported from Johns Hopkins, cleaned up, and a date variable was created for plotting purposes. For this analysis the death data wasn't used, just the case numbers

```
#finding total cases and turning them into a time series object
library(TSA)
##
## Attaching package: 'TSA'
## The following objects are masked from 'package:stats':
##
##
       acf, arima
## The following object is masked from 'package:utils':
##
##
       tar
totcase <- colSums(uscases[,3:(n+2)])
newcase \leftarrow rep(0,n)
newcase[1] <- totcase[1]</pre>
newcase[2:n] <- diff(totcase)</pre>
newcase <- ts(data=newcase, start=c(2020,01,22), frequency = 365)
```

A the data were turned into a time series object

```
#trying various transformations
wkday <- c("W","T","F","S","M","T")
plot(date,newcase,type="o",main="Untransformed time series")</pre>
```

Untransformed time series

plot(date,log(newcase),type="o",main="Log time series")

Log time series

First difference time series

plot(date[2:n],log(diff(newcase)),type="o",main="Log of first difference time
series")
Warning in log(diff(newcase)): NaNs produced

Log of first difference time series

plot(date[8:n],diff(newcase,7),type="o",main="First weekly difference time
series")

First weekly difference time series

First and weekly difference time series

Several transformations and combinations of transformations were tested to see if they made the data random. In the end, a first and first seasonal difference with a weekly period were chosen.

```
#starting with an ARIMA model with both a first and first weekly difference
#preliminary analysis
transcase <- diff(diff(newcase),7)
acf(as.vector(transcase),main="ACF of transformed series",lag.max=30)</pre>
```

ACF of transformed series

pacf(as.vector(transcase), main="PACF of transformed series", lag.max=30)

PACF of transformed series

periodogram(transcase, main="Periodgram of transformed series")

Periodgram of transformed series

The ACF and PACF of the series suggest a starting model with at least 1 AR and 1 seasonal AR component.

```
#model fitting:
#looking at the periodograms, it appears a ARIMA(1,1,0)x(1,1,0)_7 is
justified to start
tsmodel <- function(ar,ma,ars,mas){</pre>
arima(newcase, order=c(ar,1,ma), seasonal=list(order=c(ars,1,mas), period=7))
  return(mod)
}
tsmodel(1,0,1,0)
##
## Call:
## arima(x = newcase, order = c(ar, 1, ma), seasonal = list(order = c(ars, 1, ma))
mas),
       period = 7))
##
##
## Coefficients:
##
             ar1
                      sar1
##
         -0.3344
                   -0.2568
## s.e.
          0.0904
                    0.0953
## sigma^2 estimated as 3188580: log likelihood = -1060.17, aic = 2124.34
tsmodel(2,0,1,0)
```

```
##
## Call:
## arima(x = newcase, order = c(ar, 1, ma), seasonal = list(order = c(ars, 1, ma))
       period = 7))
##
##
## Coefficients:
            ar1
                    ar2
                             sar1
         -0.259
                          -0.2972
##
                 0.1927
## s.e.
          0.094 0.0912
                           0.0934
##
## sigma^2 estimated as 3067794: log likelihood = -1058, aic = 2121.99
tsmodel(2,0,2,0)
##
## Call:
## arima(x = newcase, order = c(ar, 1, ma), seasonal = list(order = c(ars, 1, ma))
##
       period = 7)
##
## Coefficients:
##
                     ar2
                              sar1
                                       sar2
             ar1
                  0.1793
                           -0.3636
##
         -0.2424
                                   -0.2169
## s.e.
          0.0968
                  0.0934
                            0.0991
                                     0.0936
##
## sigma^2 estimated as 2920166: log likelihood = -1055.39, aic = 2118.78
tsmodel(3,0,2,0) #not significant
##
## Call:
## arima(x = newcase, order = c(ar, 1, ma), seasonal = list(order = c(ars, 1, ma))
##
       period = 7)
##
## Coefficients:
##
                     ar2
                              ar3
                                      sar1
                                                sar2
             ar1
##
         -0.2503
                  0.1866 0.0356
                                   -0.3584
                                            -0.2227
## s.e.
          0.0988 0.0953 0.0948
                                    0.1000
                                             0.0950
##
## sigma^2 estimated as 2916556: log likelihood = -1055.32, aic = 2120.64
tsmodel(2,0,3,0) #not significant
##
## Call:
## arima(x = newcase, order = c(ar, 1, ma), seasonal = list(order = c(ars, 1, ma))
mas),
##
       period = 7)
##
```

```
## Coefficients:
##
             ar1
                     ar2
                             sar1
                                      sar2
                                                sar3
                          -0.3789 -0.2390
##
         -0.2408
                 0.1834
                                           -0.0602
                                              0.0980
## s.e.
          0.0968
                  0.0934
                           0.1021
                                    0.1003
##
## sigma^2 estimated as 2908774: log likelihood = -1055.2, aic = 2120.4
tsmodel(2,1,2,0)
##
## Call:
## arima(x = newcase, order = c(ar, 1, ma), seasonal = list(order = c(ars, 1, ma))
mas),
##
       period = 7)
##
## Coefficients:
##
            ar1
                    ar2
                             ma1
                                      sar1
                                               sar2
##
         0.4163
                 0.3484
                         -0.6987
                                  -0.3566
                                           -0.2261
                                   0.0976
        0.1863 0.0882
                                             0.0952
## s.e.
                          0.1781
##
## sigma^2 estimated as 2892421: log likelihood = -1054.78, aic = 2119.55
tsmodel(2,1,2,1)
##
## Call:
## arima(x = newcase, order = c(ar, 1, ma), seasonal = list(order = c(ars, 1, ma))
mas),
##
       period = 7)
##
## Coefficients:
##
                      ar2
             ar1
                              ma1
                                      sar1
                                              sar2
                                                       sma1
##
         -0.8498
                  -0.0243 0.6236 0.5177
                                           0.1189
                                                   -0.9300
          0.2995
                   0.1561 0.2723 0.2988
                                           0.1828
                                                     0.3759
## s.e.
## sigma^2 estimated as 2766731: log likelihood = -1053.9, aic = 2119.8
tsmodel(2,2,2,1) #not significant
##
## Call:
## arima(x = newcase, order = c(ar, 1, ma), seasonal = list(order = c(ars, 1, ma))
mas),
##
       period = 7)
##
## Coefficients:
##
            ar1
                    ar2
                             ma1
                                      ma2
                                              sar1
                                                      sar2
                                                               sma1
##
         0.1066
                0.6321
                        -0.3125
                                  -0.3817
                                           0.4227
                                                    0.1037
                                                           -0.8495
                                  0.2779 0.3304 0.2050
## s.e. 0.2633 0.2231
                          0.3131
                                                             0.3139
## sigma^2 estimated as 2791097: log likelihood = -1053.48, aic = 2120.95
```

```
tsmodel(2,1,2,2) #R did not like this
##
## Call:
## arima(x = newcase, order = c(ar, 1, ma), seasonal = list(order = c(ars, 1, ma))
mas),
##
       period = 7)
##
## Coefficients:
## Warning in sqrt(diag(x$var.coef)): NaNs produced
##
             ar1
                      ar2
                              ma1
                                       sar1
                                              sar2
                                                       sma1
                                                               sma2
##
         -0.8647
                  -0.0320 0.6393
                                   -0.1223
                                             0.251
                                                    -0.2674
                                                              -0.426
                   0.1945
## s.e.
          0.3931
                          0.3479
                                        NaN
                                             0.185
                                                        NaN
                                                                NaN
##
## sigma^2 estimated as 2821964: log likelihood = -1054.1, aic = 2122.2
#the final model is an ARIMA(2,1,2)X(2,1,1)_7
```

The order of the model was raised one component at a time until adding further components were no longer significant. The final model was an ARIMA(2,1,1)X(2,1,2)_7

```
#diagnostics:
model<-tsmodel(2,1,2,2)
plot(date,model$residuals,main="model residuals",type="o")</pre>
```

model residuals

ACF of model residuals

qqnorm(model\$residuals,main="QQ plot of model residuals")

QQ plot of model residuals

hist(model\$residuals,main="histogram of model residuals")

histogram of model residuals

The residuals were analyzed and diagnostics produced. The residuals are more or less normal, and although they are somewhat autocorrelated at a few higher lags, it doesn't appear large enough to justify a more complex model

```
#predictions
predictions <- predict(model,n.ahead=10)
dateahead<- seq(from=(n+1),to=(n+10))
dateahead <- as.Date(dateahead,origin = "2020-01-21")
format(dateahead,format = "%b %d %y")

## [1] "May 28 20" "May 29 20" "May 30 20" "May 31 20" "Jun 01 20" "Jun 02 20"

## [7] "Jun 03 20" "Jun 04 20" "Jun 05 20" "Jun 06 20"

plot(dateahead,predictions$pred,main="Predicted
Cases",type="o",ylim=c(5000,30000),ylab="Predicted Daily New
Cases",xlab="Date",col="red")
lines(dateahead,(predictions$pred - 1.96*predictions$se),type="l",col="red")
lines(dateahead,(predictions$pred + 1.96*predictions$se),type="l",col="red")</pre>
```

Predicted Cases


```
datenew <- c(date,dateahead)
total <- c(newcase,predictions$pred)
plot(datenew,total,col=c(rep("black",n),rep("red",10)),main="Predicted
Cases",type="o",ylab="Daily New Cases",xlab="Date")
lines(dateahead,(predictions$pred - 1.96*predictions$se),type="l",col="red")
lines(dateahead,(predictions$pred + 1.96*predictions$se),type="l",col="red")</pre>
```

Predicted Cases

The model was used to create predictions for 10 days out.