## CS280 Spring 2025 Assignment 1 Part A

Basics

February 25, 2025

Name:

**Student ID:** 

## 1. Maximum Likelihood Estimation (10 points).

Consider a dataset  $\mathcal{D}$  consisting of n independent and identically distributed samples:

$$\mathcal{D} = \left\{ ((x_1^1, x_2^1), y^1), ((x_1^2, x_2^2), y^2), \dots, ((x_1^n, x_2^n), y^n) \right\}, \tag{1}$$

where  $(x_1^i, x_2^i) \in \mathbb{R}^2$  are input features and  $y^i \in \mathbb{R}$  is an output.

Assume that every output  $y^i$  in  $\mathcal{D}$  is generated by inputting  $(x_1^i, x_2^i)$  into a model:

$$y = f_{\theta_1, \theta_2}(x_1, x_2) + \epsilon, \tag{2}$$

where the function  $f_{\theta_1,\theta_2}$  is a mapping from features  $(x_1,x_2) \in \mathbb{R}^2$  to a value in  $\mathbb{R}$ , which has two parameters  $\theta_1$  and  $\theta_2$ . Here we assume that the random noise  $\epsilon \sim N(0,\sigma^2)$  is independent and distributed according to a Gaussian distribution with zero mean and variance  $\sigma^2$ .

(a) Show that the log likelihood of the data given the parameters is:

$$l(\mathcal{D}; \theta_1, \theta_2) = -\frac{1}{2\sigma^2} \sum_{i=1}^n (y^i - f_{\theta_1, \theta_2}(x_1^i, x_2^i))^2 - n \log(\sqrt{2\pi}\sigma).$$
 (3)

Recall the probability density function of the Gaussian distribution  $N(\mu, \sigma^2)$  is:

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right). \tag{4}$$

(b) To find the maximum likelihood estimates of  $\theta_1$  and  $\theta_2$  using gradient descent, compute the gradient of the log likelihood with respect to  $\theta_1$  and  $\theta_2$ . Express you answer in terms of:

$$y^i$$
,  $f_{\theta_1,\theta_2}(x_1^i, x_2^i)$ ,  $\frac{\partial}{\partial \theta_1} f_{\theta_1,\theta_2}(x_1^i, x_2^i)$ ,  $\frac{\partial}{\partial \theta_2} f_{\theta_1,\theta_2}(x_1^i, x_2^i)$ 

(c) Given the learning rate  $\eta$ , what update rule would you use in gradient descent to *maximize* the likelihood.

## 2. Loss Function (10 points).

Assume that a classifier is written as H(x) = sign(F(x)), where  $H(x) : \mathbb{R}^d \to \{-1,1\}$ , sign() is a sign function, and  $F(x) : \mathbb{R}^d \to \mathbb{R}$ . To obtain the parameters in F(x), we need to minimize the loss function averaged over the training set:  $\sum_i L(y^i F(x^i))$ . Here L is a function of yF(x). For example, for linear classifiers,  $F(x) = w_0 + \sum_{j=1}^d w_j x_j$ , and  $yF(x) = y(w_0 + \sum_{j=1}^d w_j x_j)$ .

(a) Which loss functions below are appropriate to use in classification? For the ones that are not appropriate, explain why not. In general, what conditions does L have to satisfy in order to be an appropriate loss function? The x axis is yF(x), and the y axis is L(yF(x)).



(b) Among the above loss functions appropriate to use in classification, which one is the most robust to outliers? Justify your answer.

(c) Let  $F(x) = w_0 + \sum_{j=1}^d w_j x_j$  and  $L(yF(x)) = \frac{1}{1 + exp(yF(x))}$ . Suppose you use gradient descent to obtain the optimal values for  $w_0$  and  $w_j$ . Give the update rules for these parameters.