Logic (PHIL 2080, COMP 2620, COMP 6262) Chapter: Cheat Sheet for all Rules (Weeks 1 to 6)

Pascal Bercher

Al Group School of Computing College of Engineering and Computer Science the Australian National University

March 27, 2022

Natural Deduction

Propositional Logic: Conjunction

Conjunction Elimination:

$$\frac{X \vdash A \land B}{X \vdash A} \land E \qquad \frac{X \vdash A \land B}{X \vdash B} \land E$$

$$\frac{X \vdash A \land B}{X \vdash B} \land E$$

Conjunction Introduction:

$$\frac{X \vdash A \qquad Y \vdash B}{X, Y \vdash A \land B} \land I$$

Natural Deduction

Natural Deduction

Natural Deduction

Pascal Bercher

1.11

Propositional Logic: Implication

Implication Elimination:

$$\frac{X \vdash A \to B \qquad Y \vdash A}{X, Y \vdash B} \to E$$

Implication Introduction:

$$\frac{X, A \vdash B}{X \vdash A \to B} \to I$$

Pascal Bercher

2.11

Pascal Bercher

Double-Negation Elimination and Introduction:

$$\frac{X \vdash \neg \neg A}{X \vdash A} \neg \neg E \qquad \frac{X \vdash A}{X \vdash \neg \neg A} \neg \neg I$$

(Single) Negation Elimination and Introduction:

$$\frac{X \vdash A \qquad Y \vdash \neg A}{X, \, Y \vdash \bot} \neg E \qquad \qquad \frac{X, \, A \vdash \bot}{X \vdash \neg A} \neg I$$

Reductio ad Absurdum (RAA):

$$\frac{X,B\vdash A\qquad Y,B\vdash \neg A}{X,Y\vdash \neg B}RAA$$

4.11

Natural Deduction

Predicate Logic: Existential Quantifier

Existential Introduction Rule:

$$\frac{X \vdash A_x^t}{X \vdash \exists x A} \exists I$$
 Provided *t* is not bound in A_x^t

Existential Elimination Rule:

$$\frac{X \vdash \exists x \ A_t^x \qquad Y, A \vdash B}{X, Y \vdash B} \exists E \qquad \text{Provided } t \text{ does not occur}$$
in $B \text{ or any formula in } Y$

Propositional Logic: Disjunction

Disjunction Introduction and Elimination:

$$\frac{X \vdash A}{X \vdash A \lor B} \lor I \qquad \qquad \frac{X \vdash B}{X \vdash A \lor B} \lor I$$

$$\frac{X \vdash A \lor B \qquad Y, A \vdash C \qquad Z, B \vdash C}{X, Y, Z \vdash C} \lor E$$

5.11

Predicate Logic: Universal Quantifier

Universal Introduction Rule:

$$\frac{X \vdash A}{X \vdash \forall x A_v^X} \forall I$$
 Provided v does not occur in X

Universal Elimination Rule:

$$\frac{X \vdash \forall x \ A}{X \vdash A_{x}^{t}} \forall E$$
 Provided *t* is not bound in A_{x}^{t}

Pascal Bercher

8.11

Semantic Tableau

Predicate Logic: Existential and Universal Quantifiers

F: ∃*x Fx*

F: *Fa*, **F:** *Fb*, . . .

for all a, b, . . . in the branch present and future! **T:** $\exists x \ Fx$ **T**: *Fa*

if a is new to the branch

T: $\forall x \ Fx$

T: *Fa*, **T:** *Fb*, . . .

for all a, b, . . . in the branch present and future!

 \equiv

 $\mathbf{F}: \forall x \ Fx$

F: *Fa*

if a is new to the branch

 \equiv

 \equiv

 $X, T: A_{\nu}^{a}$

for a in X or A

 $X, F: \exists x A$

 $X, F: \exists x A, F: A_x^a$

X, **T**: $\exists x A$

for a not in X or A

X, **T**: $\forall x A$

 $X, T: \forall x A, T: A_x^a$

for a in X or A

 $X, \mathbf{F}: \forall x A$ $X, \mathbf{F} : A^a_{\mathsf{v}}$

 \equiv

for a not in X or A

10.11

Pascal Bercher

Semantic Tableau

Propositional Logic: Conjunction, Disjunction, and Negation Elimination

And Elimination: Or Elimination: **Negation Elimination:**

T: $A \wedge B$ **T**: *A* , **T**: *B*

T: $A \vee B$ **T**: *A* | **T**: *B* **T**: ¬*A*

F: $A \wedge B$ **F**: *A* | **F**: *B*

F: $A \vee B$ **F**: *A* , **F**: *B* **F**: ¬*A* T: A

Implication Elimination:

T: $A \rightarrow B$ **F**: *A* | **T**: *B*

Pascal Bercher

Semantic Tableau

9.11

Predicate Logic: Existential and Universal Quantifier for Invalid Sequents

T: ∃*x Fx* inv

T: *Fa* | **T**: *Fb* | ... | **T**: *Fn*

for all a, b, . . . in the branch or n new to the branch

inv $\mathbf{F}: \forall x \ Fx$

F: *F*a | **F**: *F*b | ... | **F**: *F*n

for all a, b, . . . in the branch or n new to the branch

 \equiv

inv $X, T: \exists x A$

 $X, T: A_{\nu}^{a} \mid X, T: A_{\nu}^{b} \mid \cdots \mid X, T: A_{\nu}^{n}$

for any/all a, b, \ldots in X or A, or n not in X or A

inv X, \mathbf{F} : $\forall x A$

 $X, F: A_x^a \mid X, F: A_x^b \mid \cdots \mid X, F: A_x^n$

for any/all a, b, \ldots in X or A, or n not in X or A