Рекомендательные системы Практикум на ЭВМ, весна 2018

Попов Артём Сергеевич

МГУ имени М. В. Ломоносова, факультет ВМК, кафедра ММП

29 марта 2018 г.

Введение

Корреляционные методы

Латентные модели

Classification-based

Практические аспекты

Рекомендации фильмов на сайте Кинопоиск

Введение

•00000000

Введение 00000000

Рекомендации фильмов на сайте Кинопоиск

Рекомендации от сервиса Яндекс. Маркет

Рекомендации от сервиса Яндекс. Маркет

Рекомендации песен от сервиса Яндекс. Музыка

Формальная постановка задачи

Корреляционные методы

Дано:

- \triangleright U множество субъектов (users/пользователи)
- ▶ I множество объектов (items/товары/ресурсы)
- ▶ Y множество возможных действий
- ▶ Т множество транзакций

$$T = \{(u_j, i_j, y_j) \mid u \in U, i \in I, y \in Y\}_{j=1}^N$$

Пример: сайт с музыкой

- ▶ U пользователи сайта
- ▶ / песни на сайте
- $ightharpoonup Y_1$ прослушать песню на 70%, $Y_1 = \{e\}$ Y_2 — поставить оценку песне, $Y_2 = \{0, 1, 2, 3, 4, 5\}$ $Y = Y_1 \cup Y_2$

Формальная постановка задачи

Корреляционные методы

- ▶ Пусть $Y = {\mathbb{Z}_+ \cup \{0\}}$ (для простоты изложения)
- ▶ Работать со списком транзакций неудобно, заведём матрицу пользователи-айтемы (bag of items) $X \in \mathbb{R}^{|U| \times |I|}$.

$$X_{ui} = \sum_{j=1}^{N} [u_j = u][i_j = i]y_j$$
, если (u,i) встречалась в X

Не все ячейки X заполнены, но не значит, что они нулевые!

Основные задачи:

- ightharpoonup Предсказать незаполненные ячейки X
- ▶ Посчитать близости $\rho(u, u'), \rho(i, i'), \rho(u, i)$
- ightharpoonup Сформировать рекоммендации для всех u (по всем i)

Пример. Покупки в интернет-магазине

- ightharpoonup U множество интернет-пользователей
- ▶ / множество товаров в магазине
- Y пользователь купил товар
- ► $X_{ui} = \mathbb{I}[u$ купил товар i]

Задачи, которые можно решать:

- рекомендовать клиенту другие товары
- рекомендовать клиенту товары во время его следующей покупки
- ▶ информировать клиента о наличии товара

Пример. Конкурс Netflixprize

Конкурс (ссылка) проходил в с 2006 по 2009 год

Призовой фонд: 1 000 000 долларов

- ▶ U множество пользователей сервиса
- ▶ / множество фильмов
- ➤ Y оценка фильма
- ► $X_{ui} = \mathbb{I}[u]$ рейтинг, выставленный u для i]

Метрика качества: MSE

Что необычного:

- Один из первых конкурсов с большим призовым фондом
- Один из первых больших датасетов для рекомендаций
- ▶ Многие методы появились во время решения конкурса
- ▶ Много методов рекомендаций для оптимизации MSE

Тривиальные рекоммендации

Пусть
$$Y = \{1\}$$
 (1, если купил)

Идея: клиенты, купившие i_0 , также купят $I(i_0)$

- 1. Пусть пользователь u_0 купил товар i_0
- **2.** Множество пользователей, покупавших товар i_0

$$U(i_0) = \{u \in U | x_{ui_0} \neq \varnothing, u \neq u_0\}$$

3. Множество товаров, близких данному товару

$$I(i_0) = \{i \in I | \sin(i, i_0) > \delta\}$$
$$\sin(i, i_0) = \frac{|U(i_0) \cap U(i)|}{|U(i_0) \cup U(i)|}$$

4. Взять наибольшие по $sim(i, i_0)$ элементы из $I(i_0)$

Пример данных

Таблица: Матрица X — покупки пользователей

	телефон	наушники	power-bank	sd-карта	тостер	блендер
Вова	+	J	•		-	+
Дима	+	+	+	+		
Женя	+	+			+	+
Юра	+	+				
Маша		+	+		+	+
Рома		+				
Лёша		+			+	

Что порекомендуется Вове во время покупки телефона?

Пример данных

Таблица: Матрица X — покупки пользователей

телефон	наушники	power-bank	sd-карта	тостер	блендер
+					+
+	+	+	+		
+	+			+	+
+	+				
	+	+		+	+
	+				
	+			+	
	+ + + +	+ + + + + + + + + +	+ + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +

Что порекомендуется Вове во время покупки телефона? Наушники.

Пример данных

Таблица: Матрица X — покупки пользователей

	телефон	наушники	power-bank	sd-карта	тостер	блендер
Вова	+		-			+
Дима	+	+	+	+		
Женя	+	+			+	+
Юра	+	+				
Маша		+	+		+	+
Рома		+			+	
Лёша		+			+	
	l	ı				

Что порекомендуется Роме?

Пример данных

Таблица: Матрица X — покупки пользователей

	наушники	power-bank	sd-карта	тостер	блендер
+					+
+	+	+	+		
+	+			+	+
+	+				
	+	+		+	+
	+			+	
	+			+	
	+ + + + + +	+ + + + + + + + + +	+ + + + + + + + + + + + + +	+ + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +

Что порекомендуется Роме? Блендер.

Проблемы подхода

- Рекомендации тривиальные (всё самое популярное)
- \blacktriangleright Не учитываются интересы пользователя u_0
- Проблема холодного старта (нечего рекомендовать новым пользователям)
- ightharpoonup Хранение матрицы X

User-based рекомендации

00000000000

Идея: клиенты, похожие на u_0 , также купили купят $I(u_0)$

1. Множество пользователей, похожих на u_0

$$U(i_0) = \{u \in U | \sin(u, u_0) > \delta_1, u \neq u_0 \}$$

2. Множество пользователей, купивших товар i

$$V(i) = \{u \in U | x_{ui} \neq \emptyset\}$$

3. Множество товаров, близких данному пользователю

$$I(u_0) = \{i \in I | \sin(u_0, i) > \delta_2\}$$

$$\sin(u_0, i) = \frac{|U(u_0) \cap V(i)|}{|U(u_0) \cup V(i)|}$$

4. Взять наибольшие по $sim(u_0, i)$ элементы из $I(u_0)$

Введение

- ▶ Нет рекомендаций для нетипичных пользователей
- ▶ Проблема холодного старта
- ightharpoonup Хранение матрицы X

Item-based подход

00000000000

Корреляционные методы

 $\mathsf{И}$ дея: с товарами, купленными u_0 , часто покупают $I(u_0)$

1. Множество товаров, близких хоть какому-то из товаров u_0

$$I(u_0) = \{i \in I | \exists i_0 : x_{u_0 i_0} \neq \emptyset, \ \min_{i \neq m} (i, i_0) > \delta\}$$

2. Взять наибольшие по $sim(i, i_0)$ элементы из $I(u_0)$

Недостатки:

- ▶ Снова тривиальность
- ▶ Проблема холодного старта
- ightharpoonup Хранение матрицы X

User-based KNN

Пусть
$$Y = \{1, 2, 3, \dots, K\}$$
 (рейтинги)

$$\hat{x}_{ui} = \bar{x}_u + \frac{\sum_{u' \in U_\alpha} \sin(u, u')(x_{u'i} - \bar{x}_{u'})}{\sum_{u' \in U_\alpha} \sin(u, u')}$$

$$\hat{x}_{ui}$$
 — предсказания рейтинга

$$ar{x}_u = rac{1}{|I(u)|} \sum_{i \in I(u)} x_{ui}$$
 — средние рейтинги пользователя

$$U_{lpha}(u)=\{u'|sim(u,u')>lpha\}$$
 — близкие пользователи $I(u)$ — множество оценённых товаров

Item-based KNN

$$\hat{x}_{ui} = \bar{x}_i + \frac{\sum_{i' \in I_{\alpha}} \sin(i, i') (x_{ui'} - \bar{x}_{i'})}{\sum_{i' \in I_{\alpha}} \sin(i, i')}$$

$$\hat{x}_{ui}$$
 — предсказания рейтинга

$$ar{x_i} = rac{1}{|U(i)|} \sum_{u \in U(i)} x_{ui}$$
 — средние рейтинги товара

$$I_{lpha} = \{i' | \mathit{sim}(i,i') > lpha\} \quad ext{—}$$
 близкие товары

U(i) — множество пользователей, оценивших товар

Параметры метода

Функции близости:

- ▶ Корреляция Пирсона
- ▶ Косинусная мера близости
- Мера Жаккарда

Почему KNN?

Параметры метода

Функции близости:

- Корреляция Пирсона
- ▶ Косинусная мера близости
- Мера Жаккарда

Почему KNN?

$$\sum_{i=1}^{N} w_i(x)(\alpha - y_i)^2 \to \min_{\alpha}$$

$$a(x) = \frac{\sum_{i=1}^{N} w_i(x) y_i}{\sum_{i=1}^{N} w_i(x)}$$

Итоги

Кореляционные методы:

Корреляционные методы

0000000000

- ▶ Интуитивные и понятные
- ightharpoons Легко реализовать для небольших множеств U и I
- ▶ Нет никаких теоретических обоснований
- ▶ Не ставится никакой задачи оптимизации, работа метода зависит только от понимания задачи
- Проблема холодного старта
- Проблема работы с большой матрицей Необходимы специальные модели для работы с матрицей, например, map-reduce

Латентные модели

Идея: для
$$u\in U$$
 построить вектор $p_u\in\mathbb{R}^g$, $g\ll |U|$ для $i\in I$ построить вектор $q_i\in\mathbb{R}^h$, $h\ll |I|$ $\hat{X}_{ui}=F(p_u,q_i)$

Способы построения моделей:

- \blacktriangleright Жёсткая кластеризация ($p_{uc} = \mathbb{I}[u]$ в кластере c))
- ▶ Мягкая кластеризации (тематические модели) $(p_{uc}$ — оценка принадлежности u кластеру c)
- ▶ Матричные разложения $(p_{\mu} - \text{столбцы/строки каких-то матриц после})$ разложения)
- ▶ Специальные методы обучения представлений $(p_{\mu}$ — вектор из модели skip-gram)
- ► End-to-end построение представлений

Матричные разложения: SVD

Хотим найти разложение матрицы X:

$$X = PQ^T$$
 или $X = P\Sigma Q^T$ p_u — строки матрицы P , q_i — строки матрицы Q

Использование сингулярного разложения (SVD):

$$||X - P\Sigma Q^{T}||^{2} \to \min_{P,Q,\Sigma}$$

$$PP^{T} = I \qquad QQ^{T} = I$$

$$\Sigma = diag(\sigma_{1}, \dots, \sigma_{d}), \quad \sigma_{1} \geqslant \sigma_{2} \geqslant \dots \geqslant \sigma_{d} \geqslant 0$$

Можно записать так:

$$\sum_{u \in U} \sum_{i \in I} (x_{ui} - p_u^T \Sigma q_i)^2 \to \min_{P,Q,\Sigma}$$

SVD: недостатки и преимущества

- Если $X_{\prime\prime\prime}$ неизвестно, мы будем считать его нулём
- Все вектора одной сущности ортогональны между собой, сложно искать похожие
- Неинтерпретируемые
- + Можно использовать Truncated SVD для уменьшения размерности
- + Много готовых реализаций

В качестве представлений можно также использовать:

$$p_u = P_u \Sigma$$
 $q_i = Q_i$ $p_u = P_u \sqrt{\Sigma}$ $q_i = \sqrt{\Sigma} Q_i$

LFM. Latent Fator Model

Не будем учитывать неизвестные элементы как нулевые 1 :

$$\sum_{(u,i)\in\mathcal{T}} \left(x_{ui} - p_u^T q_i\right)^2 \to \min_{P,Q}$$

Оптимизация модели с помощью метода SGD

Можно учитывать регуляризацию:

$$\sum_{(u,i)\in T} \left(\left(x_{ui} - p_u^T q_i \right)^2 + \lambda \|p_u\|^2 + \mu \|q_i\|^2 \right) \to \min_{P,Q}$$

Можно учитывать средний вклад пользователя и товара:

$$\sum_{(u,i)\in T} \left(x_{ui} - \hat{x}_u - \hat{x}_i - p_u^T q_i\right)^2 \to \min_{P,Q}$$

¹Tacaks G., Pilaszy I., Nemeth B., Tikk D. Salable collaborative filtering approaches for large reommendation systems

LFM. Latent Fator Model

Можно делать неотрицательные компоненты:

$$\sum_{(u,i)\in T} \left(x_{ui} - p_u^T q_i\right)^2 \to \min_{p\geqslant 0, \ q\geqslant 0}$$

Обучение с помощью метода проекции градиента

Можно использовать функцию β (пример: σ , если $x_{ii} \in [0,1]$:

$$\sum_{(u,i)\in\mathcal{T}} \left(x_{ui} - \beta(p_u^T q_i)\right)^2 \to \min_{P,Q}$$

Можно использовать вместо квадратичной ошибки любую другую, например hinge loss

ALS для LFMs

Можно использовать метод ALS для обучения

Идея: в точке оптимума L должно выполняться:

$$\frac{\partial L}{\partial p_u} = 0, \quad \frac{\partial L}{\partial q_i} = 0$$

Корреляционные методы

Зафиксируем переменные Q:

$$\sum_{u \in U} \left(\|X_u - Qp_u\|^2 + \frac{\lambda}{2} \|p_u\|^2 \right) \to \min_{P}$$

ALS для LFMs

Можно использовать метод ALS для обучения

Идея: в точке оптимума L должно выполняться:

$$\frac{\partial L}{\partial p_u} = 0, \quad \frac{\partial L}{\partial q_i} = 0$$

Корреляционные методы

Зафиксируем переменные Q:

$$\sum_{u \in U} \left(\|X_u - Qp_u\|^2 + \frac{\lambda}{2} \|p_u\|^2 \right) \to \min_{P}$$

Задача минимизации решается аналитически:

$$p_u = (Q^T Q + \lambda I)^{-1} Q^T X_u$$

Аналогично, можно решить задачу, зафиксировав P:

$$q_u = (P^T P + \mu I)^{-1} P^T X_i$$

ALS для LFMs

Будем решать итерационно:

Корреляционные методы

- ightharpoonup Зафиксировав Q, пересчитываем P
- ightharpoonup Зафиксировав P, пересчитываем Q

Используем разложение Холецкого вместо обращения

- Хорошо и быстро работает
- Можно обобщить на случай неотрицательных разложения (положительная срезка $x \to \max(x,0)$)
- ▶ Легко обновлять профили пользователей после прихода новых оценок

Интерпретация ALS

Корреляционные методы

Распишем формулу принятия решения:

$$\hat{X}_{ui} = q_i^T p_u = q_i^T (Q^T Q + \lambda I)^{-1} Q^T X_u = \sum_{j \in I} q_i^T W q_j X_{uj}$$

$$W = (Q^T Q + \lambda I)^{-1} = L L^T$$

$$\hat{X}_{ui} = \sum_{j \in I} q_i^T L^T L q_j X_{uj} = \sum_{j \in I} (L q_I)^T L q_j X_{uj}$$

На что похоже?

Интерпретация ALS

Распишем формулу принятия решения:

$$\hat{X}_{ui} = q_i^T p_u = q_i^T (Q^T Q + \lambda I)^{-1} Q^T X_u = \sum_{j \in I} q_i^T W q_j X_{uj}$$

$$W = (Q^T Q + \lambda I)^{-1} = L L^T$$

$$\hat{X}_{ui} = \sum_{j \in I} q_i^T L^T L q_j X_{uj} = \sum_{j \in I} (L q_I)^T L q_j X_{uj}$$

На что похоже?

Корреляционные методы:

$$\hat{x}_{ui} = \bar{x}_i + \frac{\sum_{i' \in I_{\alpha}} \sin(i, i') (x_{ui'} - \bar{x}_{i'})}{\sum_{i' \in I_{\alpha}} \sin(i, i')}$$

Неявные и явные предпочтения

Явные (explicit):

- Проставил рейтинг фильму
- Лайкнул запись
- ▶ Написал рецензию на товар

Пользователь явно сообщает своё отношение к объекту

Неявные (implicit):

- ▶ Просмотрел страницу фильма
- ▶ Посетил страницу пользователя
- ▶ Купил товар в интернет-магазине

Если есть доступ к неявным предпочтениям, как их учитывать?

Можно ли строить латентные модели по бинарным данным?

Implicit ALS

Пусть x_{ii} — неявный фидбек

Корреляционные методы

Пусть s_{ii} — показатель неявного интереса

$$s_{ui} = \begin{cases} 1, \ x_{ui} \geqslant 0 \\ 0, \ x_{ui} = 0 \end{cases}$$

Пусть c_{ui} — уровень доверия показателю s_{ui}

$$c_{ui} = 1 + \alpha x_{ui}$$

Модель Implicit ALS (оптимизация с помощью ALS):

$$\sum_{(u,i)\in T} c_{ui} \left(s_{ui} - p_u^T q_i\right)^2 \to \min_{P,Q}$$

Модели cbow и skip-gram

В модель cbow по словам контекста предсказывается слово:

$$\mathcal{L}(U, V) = \sum_{i=1}^{N} \log p(w_i|w_{i-k}^{i+k}) \rightarrow \max_{U, V}$$

$$p(w_i|w_{i-k}^{i+k}) = \operatorname{softmax}_{w_i \in W} \left\langle v_{w_i}, \sum_{j=-k, j \neq 0}^k u_{w_{i+j}} \right\rangle$$

В модели skip-gram по слову предсказывается его контекст:

$$\mathcal{L}(U, V) = \sum_{i=1}^{N} \sum_{j=-k, j\neq 0}^{k} \log p(w_{i+j}|w_i) \rightarrow \max_{V, U}$$

$$p(c|w) = \operatorname{softmax}\langle v_c, u_w \rangle = \frac{\exp(\langle v_c, v_w \rangle)}{\sum_{c'} \exp(\langle v_{c'}, u_w \rangle)}$$

Модель paragraph2vec

paragraph2vec (PV-DBOW) — расширение моделей word2vec на представления документов

Ho словам из контекста и текущему документу предсказываем слово:

$$\mathcal{L}(U, V) = \sum_{d \in D} \sum_{i=1}^{N_d} \log p(w_i | d, w_{i-k}^{i+k}) \rightarrow \max_{U, V}$$

$$p(w_i|d, w_{i-k}^{i+k}) = \operatorname{softmax}_{w_i \in W} \left\langle v_{w_i}, \sum_{\substack{j=-k\\i\neq 0}}^k u_{w_{i+j}} + u_d \right\rangle$$

Адаптация модели под рекомендации

Корреляционные методы

По пользователю предсказываем товары:

$$\mathcal{L}(U, V) = \sum_{(u,i) \in T} \log p(i|u) \to \max_{V,U}$$

Может хорошо работать в задачах, где у пользователя есть константные предпочтения:

- музыка
- фильмы

user2vec

По товарам пользователя предсказываем другие его товары (user2vec):

I(u) — товары пользователя

$$\mathcal{L}(U, V) = \sum_{u \in U} \sum_{i=1}^{I(u)} \log p(i|u, sample \sim I(u) \setminus i) \rightarrow \max_{U, V}$$

Адаптация модели под рекомендации

Товары, которые покупаются одновременно, похожи (product2vec):

I(i) — товары, которые покупались в связке

$$\mathcal{L}(U, V) = \sum_{i \in I} \sum_{j \in I(i)} \log p(j|i) \to \max_{V, U}$$

Может хорошо работать в задачах, где нет константных предпочтений:

покупки в интернет-магазине

Deep semantic similarity based personalized recommendation

Учимся предсказывать близость пользователя и товара 2

Обучаем с negative sampling

²Deep Learning based Recommender System: A Survey and New Perspectives

Комбинация разных факторов: content2vec

Введение

Обучаем с negative sampling

0000000000

Пусть $y \in \{1, 2, ..., K\}$ (рейтинги для фильмов)

Признаковые описания:

- ▶ user: пол, возраст, интересы, one-hot вектор user
- ▶ item: жанр фильма, описание, one-hot вектор item

Обучающая выборка: все пары (u, i), для которых известен у

Обучение: обучаем любой алгоритм классификации/регрессии

Выдача рекомендаций: для каждого user выдаём items с наибольшим предсказанным у

0000000000

Сложности подхода

- ▶ Как учитывать взаимодействие пользователей и товаров?
- ▶ Как учитывать негативные примеры? (пользователь не покупает товар)
- \blacktriangleright Как отбирать кандидатов для вычисления y?

Множества признаков

0000000000

Множества признаков

Корреляционные методы

В качестве признаков добавлена история пользователя

Введение

▶ Не учитываются взаимодействия пользователя и товара

0000000000

Проблема отсутствия взаимодействия

 Не учитываются взаимодействия пользователя и товара

У нас есть информация о взаимодействиях $x_{ui}!$ Количество таких признаков |U| + |I| для пары (u, i)

00000000000

Проблема отсутствия взаимодействия

Корреляционные методы

 Не учитываются взаимодействия пользователя и товара

У нас есть информация о взаимодействиях x_{ii} ! Количество таких признаков |U| + |I| для пары (u, i)

Пусть наша модель изначально была линейной:

$$\hat{x}_{ui} = \sum_{f} w_f x_f + \sum_{u' \in U} w_{u'} [u = u'] + \sum_{i' \in I} w_{i'} [i = i']$$

Добавим в качестве признака историю пользователей:

$$\hat{x}_{ui} = \sum_{f} w_f x_f + \sum_{u' \in U} w_{u'} [u = u'] + \sum_{i' \in I} w_{i'} [i = i'] + \sum_{i'} w_{ui'} x_{ui'} + \sum_{u'} w_{u'i} x_{u'i}$$

00000000000

Квадратичная модель

Пойдём дальше: хотим добавить признак индикатор пары $[user = u, item = i] = [user = u][item = i] = x_ux_i$

Таких признаков $|U| \times |I|$ (больше чем объектов!) — легко переобучиться

По сути, теперь модель не линейная, а квадратичная:

$$\hat{x}_{user,item} = w_0 + \sum_{u' \in U} w_{u'} x_{u'} + \sum_{i' \in I} w_{i'} x_{i'} + \sum_{u' \in U} \sum_{i' \in I} w_{u'i'} x_{u'} x_{i'}$$

00000000000

Пусть
$$w_{ui} = \langle v_u, v_i \rangle$$
, где $v_u, v_i \in \mathbb{R}^m$

Модель «Factorization machine» ^{3 4} (FM):

$$\hat{x}_{user,item} = w_0 + \sum_{u' \in U} w_{u'} x_{u'} + \sum_{i' \in I} w_{i'} x_{i'} + \sum_{u' \in U} \sum_{i' \in I} w_{u'i'} x_{u'} x_{i'}$$

Обучение модели с помощью SGD (или ALS или MCMC)

³https://www.csie.ntu.edu.tw/b97053/paper/Rendle2010FM.pdf

⁴https://mk-minchul.github.io/Factorization Machine/

00000000000

Проблема отсутствия отрицательных примеров

Пусть $y \in \{1\}$ (покупка товара)

Предложенный метод в лоб не работает, так как нет объектов отрицательного класса

Что делать?

00000000000

Проблема отсутствия отрицательных примеров

Пусть $y \in \{1\}$ (покупка товара)

Предложенный метод в лоб не работает, так как нет объектов отрицательного класса

Что делать?

Сэмплировать негативные примеры

0000000000

Генерация негативных примеров

- ▶ Все, которых нет в выборке (невозможно)
- Случайные из равномерного распределения
- Случайные с вероятностями, пропорциональными популярности объекта
- ▶ Объекты, которые рекомендует какой-то алгоритм, но они не были куплены
- Комбинация стратегий

0000000000

Проблема выбора списка рекомендаций

Невозможно получить оценки сразу для всех товаров

Давайте проведём отбор кандидатов:

- Только популярные
- ▶ Только находящиеся в той же категории, что и текущий
- ▶ Только те, которые уже покупал пользователь
- ▶ Которые близки (sim) к текущему
- Заранее подготовленные списки
- Которые считаются вероятными у других подходов к рекомендациям

0000000000

О подходе

- ▶ Очень хорошее качество
- ▶ Не так часто упоминается в статьях...
- … но именно так часто делают на практике
- ▶ Легко ансамблировать разные другие алгоритмы рекомендаций
- Легко учитывать контент текст, картинки

Корреляционные методы

Метрика RMSE — не всегда хороша, т.к. задача точно предсказать оценку обычно не стоит

- подобрать рекомендации для пользователя
- отранжировать их по релевантности
- точные оценки не важны, важен порядок

Какие метрики лучше? $L_{"}$ — истинные предпочтения u $R_{\mu}(k)$ — лучшие k рекомендаций

$$\mathsf{precision@k} \ = \frac{|L_u \cap R_u(k)|}{|R_u(k)|} \qquad \mathsf{recall@k} \ = \frac{|L_u \cap R_u(k)|}{|L_u|}$$

hitrate@k =
$$[L_u \cap R_u(k) \neq \varnothing]$$

Другие метрики

Корреляционные методы

- ► Разнообразие (diversity): например, число рекомендаций из разных категорий, или степень различия рекомендаций между сессиями пользователей
- ▶ Новизна (novelty): сколько среди рекомендаций объектов, новых для пользователей?
- ► Покрытие (coverage): доля объектов, которые хоть раз побывали в числе рекомендованных
- ▶ Прозорливость (serendipity): способность угадывать непопулярные предпочтения

Можно оптимизировать сумму функционалов

Ещё несколько фактов

- История действий пользователя построена с учётом существующих методов рекомендации
- ▶ Можно смотреть на результаты онлайн-метрик (полученная прибыль, полученное количество кликов)
- ▶ Хотелось бы, чтобы пользователю рекомендовалось то, что он не купил бы без рекомендаций
- ► А/Б тестирование для тестирования качества рекомендаций на практике

Введение

- ▶ Методы с латентными переменными
- Матричные разложения
- ▶ Оценивание качества рекомендаций
- ▶ Продвинутые реализации корреляционных методов