Identify Disease-Causal Genes from GWAS Loci by 3D Genome Structure, Regulatory Landscapes & Deep Learning

Yi-Hsiang Hsu, MD, ScD

YongSheng Huang, Ph.D

Deep Learning: The Inspiration

"the deepest concepts in mathematics are those which link one world of ideas with another"
---- Freeman Dyson

Deep Learning: The Natural Form

Deep-Learning: The Renaissance

The New York Times

Scientists See Promise in Deep-Learning Programs

by JOHN MARKOFF Nov. 23, 2012

In the 1960s, believed that a workable artificial intelligence system was just 10 years away. In the 1980s, a wave of commercial start-ups collapsed, leading to what some people called the "A.I. winter."

But recent achievements have impressed In October, for example, a team of graduate students studying with the University of Toronto computer scientist Geoffrey E. Hinton won the top prize in a contest sponsored by Merck to design software to help find molecules that might lead to new drugs.

Deep Learning: Impact on Medicine

On par performance as 21 board-certified pathologists

Epidermal lesions

Nature 2017 Feb

>90% specificity and sensitivity as board-certified ophthalmologists

Artery's Cardio DL wins FDA approval for clinical diagnosis (10-sec vs. 1hr)

Deep Learning: The New Disruption

Can we leverage DL to identify genetic variants that are disease causal, so that we can treat diseases at its root level per individual patient?

Yi-Hsiang Hsu, MD, ScD

yihsianghsu@hsl.harvard.edu yihsiang@broadinstitute.org

Director & Associate Professor, HSL GeriOmics Center, Harvard Medical Sch Program for Quantitative Genomics, Harvard School of Public Health Associate Member, BROAD Institute of MIT and Harvard NHLBI Framingham Heart Study Investigator

Genome-Wide Association Studies (GWAS) Catalog

Identified ~13,000 genetic variants (single nucleotide mutations/ polymorphisms) to be associated with ~2,000 diseases/phenotypes

Genome-Wide Association Scans

GWAS (Whole Genome Association) Scans

% Successfully Approved Drugs & Human Genetics

The impact on medical care from GWAS could potentially be substantial

- FDA approved drugs with human genetic information are 5~10X more likely to be successful
- Failure targets at each drug development stage (pre-clinical, phase I, II, III) are more likely to be those targets without genetic validation

R&D Spending on New Drugs # Drug Approvals

Annual New Drug Approvals By The Food And Drug Administration (FDA) And Industry Spending On Research And Development (R&D), 1994–2013

a Success rates by phase

Percentage likelihood of moving to next phase, 3-year rolling average*

- New a better drug development pipeline
- Utilizing human genetic information/validation is the key

Genome-Wide Association Studies (GWAS) Catalog

Identified ~13,000 genetic variants (single nucleotide mutations/ polymorphisms) to be associated with ~2,000 diseases/phenotypes

Genome-Wide Association Studies (GWAS) Catalog

Identified ~13,000 genetic variants (single nucleotide mutations/ polymorphisms) to be associated with ~2,000 diseases/phenotypes

Y-H Hsu

Associated Variants Located in Gene Desert

Genetic Coordination: 1D Physical Location on Linear DNA Sequences

Too Many Genes: Which Gene(s)?

Associated Variants Located in Introns: Looks Promising?

Functional Genomics Approaches

3D Genome Interaction Structure with IRX5 Gene

- ➤ Tissue-Specific Chromatin Confirmation Capture (3C Tech)
- eQTLs (associations between variants and gene expression)
- Allele-specific expression

Intensity of 3D Physical Interaction by Hi-C seq

FTO Genetic Variants and IRX5 Gene Regulation

Obesity associated genetic variants disrupt TF binding and then reduce IRX5 gene expression

Gene-Editing: Functional Validation

- Gene Editing by CRISPR/Cas9 in Human adipocytes from subjects carried "risk allele" and subjects carried "protective allele"
- The Risk Allele C: Gain-of-function

FTO Variants Link to Irx3 Gene in Brain

- The obesity associated variants physically interacts with promoter of *Irx3* gene, but not *Fto*, not *Irx5* in mouse brain by 4C-seq
- > 4C-seq: Regional Chromatin Confirmation Capture (3C Tech)

Nature, 2014

Gene Regulatory Models

Gene regulatory elements in physical proximity (3D space) with the gene promoters via looping mechanisms

Tissue (Cell)-Specific DNA Loops: Enhancer-Promoter Interactions

Genome-Widely Identify/Predict Targeted Genes?

- Identified ~13,000 genetic variants (single nucleotide mutations/ polymorphisms) to be associated with ~2,000 diseases/phenotypes
 - 91% of disease-associated genetic variants are located in nonprotein-coding regions; used to call "junk DNA"
 - > Unknown function, difficult to translate findings into clinical use
 - May involve in tissue/cell type-specific gene regulation

Y-H Hslu

Chromosome Conformation Capture To Identify DNA Loops

3C, 4C, 5C, HiC, capture-HiC, etc to estimate 3D interaction among genome

Contact Map

Science. 2009.; 326(5950): 289–293 Nat Rev Genet. 2010;11(6):439-46. Cell. 2014;159(7):1665-80 Nature Genetics 2016; 48, 488–496

Enhancer-Promoter

Enhancer-Enhancer Promoter-Promoter Physical Interactions False-Pos (seq error, miss-matched cutting,...)

Prediction

Building Tissue-Specific Gene Regulatory Circuits

Building Gene Regulatory Circuits On Human Heart

- Omics experiments on normal human primary cardiac fibroblasts and myocytes from atrium and ventricle; HMSC; skeletal muscle cells
- > Publicly available (low resolution): Left ventricle, right ventricle and aorta tissues

Experiments	Functions	Notes
ATAC-seq	Active cis-regulatory region	Active TF binding
Hi-C	Chromatin confirmation capture	1.5 to 2 kb resoultion (DpnII, 2 Billions Reads, 2Tb)
ChIP-seq	H3K4me3: Aactive promoter	
	H3K27ac: Active enhancer/promoter	
	CTCF: Insulator	
	Cohesin: Insulator-RAD21	Predicted chromatin states
	Cohesin: Insulator-SMC3	by HMM
	H3K27me3: Polycomb repressed/bivalent promoter/enhancer	
	H3K9me3: Heterochromatin	
	H3K36me3: Transcribed region	
RNA-seq	mRNA (active and)	Isoforms; coexpression with TF
	microRNA and small RNA	Enhancer RNA

Y-H Hsu

Model Gene Regulation with Deep Neural Network (DNN)

DNN implemented in the TensorFlow to predict enhancer-promoter gene pairs

- > Training sets (VISTA: enhancer elements are in 100kb of genes):
 - 1,564 Enhancer-promoter gene pairs (the positive set) functionally validated to have regulatory relationships in mouse models
 - 1,207 EP pairs without regulatory relationships (the negative set)

Acknowledgements

Yi-Hsiang Hsu, MD, ScD yihsianghsu@hsl.harvard.edu yihsiang@broadinstitute.org

