This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (currently amended) A packet fiber node for use in an access network, the access network including a Head End and a plurality of nodes, the packet fiber node comprising:

at least one processor;

memory;

- a first interface for communicating with the Head End; and
- a second interface for communicating with at least a portion of the plurality of network nodes;

the packet fiber node being configured or designed to communicate with the Head End using baseband optical signals that are received at the packet fiber node from the Head End and transmitted to the Head End by the packet fiber node.

- 2. (currently amended) The packet fiber node of claim 1 wherein the packet fiber node is not adapted operable to communicate with the Head End using frequency modulated optical signals.
- 3. (currently amended) The packet fiber node of claim 1 wherein the packet fiber node is configured or designed operable to communicate with the Head End using only baseband optical signals.
- 4. (currently amended) The packet fiber node of claim 1 wherein the packet fiber node is further configured or designed operable to communicate with at least a portion of the cable modems using modulated electrical signals generated in accordance with a standardized DOCSIS protocol.
- 5. (currently amended) The packet fiber node of claim 1 wherein the access network corresponds to a cable network implemented in accordance with a standardized DOCSIS protocol;

the packet fiber node being further configured or designed operable to perform functions relating to DOCSIS MAC scheduling operations.

09/894,958

6. (currently amended) The packet fiber node of claim 1 wherein the access network corresponds to a cable network;

the packet fiber node being further configured or designed <u>operable</u> to handle layer 1 and layer 2 functionality.

7. (currently amended) The packet fiber node of claim 1 wherein the access network corresponds to a cable network, and wherein the network nodes correspond to cable modems, the cable network including a first RF fiber node adapted operable to communicate with the Head End using frequency modulated optical signals, the first RF fiber node further being adapted operable to service a first group of cable modems and a second group of cable modems;

the cable network further including a first packet fiber node and a second packet fiber node, each packet fiber node being adapted operable to communicate with the Head End using baseband optical signals;

the first packet fiber node being adapted operable to service the first group of cable modems;

the second packet fiber node being adapted operable to service the second group of cable modems.

8. (currently amended) The packet fiber node of claim 1 wherein the access network corresponds to a cable network, and wherein the network nodes correspond to cable moderns;

the packet fiber node being further configured or designed operable to receive IP packets from a portion of the cable modems; and

wherein the packet fiber node is further configured or designed operable to transmit the received IP packets to the Head End using a tunneling protocol.

9. (currently amended) The packet fiber node of claim 1 wherein the access network corresponds to a cable network, and wherein the network nodes correspond to cable modems;

the packet fiber node being further configured or designed operable to receive IP packets from a portion of the cable moderns; and

wherein the packet fiber node is further configured or designed operable to transmit the received IP packets to the Head End using an IP protocol.

09/894,958 6

- 10. (currently amended) A packet fiber node for use in an access network, the access network including a Head End and a plurality of nodes, the packet fiber node comprising:
 - a diplexor;
 - at least one interface; and
- a distributed cable modern termination system (DCMTS), the DCMTS being configured operable to communicate with the Head End using baseband optical signals that are received at the packet fiber node from the Head End and transmitted to the Head End by the packet fiber node;

wherein the packet fiber node is adapted operable to communicate with the Head End using frequency modulated optical signals.

- 11. (currently amended) The packet fiber node of claim 10 wherein the packet fiber node is not adapted operable to communicate with the Head End using frequency modulated optical signals.
- 12. (currently amended) The packet fiber node of claim 10 wherein the packet fiber node is configured or designed operable to communicate with the Head End using only baseband optical signals.
- 13. (currently amended) The packet fiber node of claim 10 wherein the packet fiber node is further eenfigured or designed operable to communicate with at least a portion of the cable moderns using modulated electrical signals generated in accordance with a standardized DOCSIS protocol.
- 14. (currently amended) The packet fiber node of claim 10 wherein the access network corresponds to a cable network implemented in accordance with a standardized DOCSIS protocol;

the packet fiber node being further configured or designed <u>operable</u> to perform functions relating to DOCSIS MAC scheduling operations.

15. (currently amended) The packet fiber node of claim 10 wherein the access network corresponds to a cable network;

09/894,958

the packet fiber node being further configured or designed operable to handle layer 1 and layer 2 functionality.

16. (currently amended) The packet fiber node of claim 10 wherein the access network corresponds to a cable network, and wherein the network nodes correspond to cable moderns, the cable network including a first RF fiber node adapted operable to communicate with the Head End using frequency modulated optical signals, the first RF fiber node further being adapted operable to service a first group of cable moderns and a second group of cable moderns;

the cable network further including a first packet fiber node and a second packet fiber node, each packet fiber node being adapted operable to communicate with the Head End using baseband optical signals;

the first packet fiber node being adapted operable to service the first group of cable modems;

the second packet fiber node being adapted operable to service the second group of cable modems.

17. (currently amended) The packet fiber node of claim 10 wherein the access network corresponds to a cable network, and wherein the network nodes correspond to cable modems;

the packet fiber node being further eenfigured or designed operable to receive IP packets from a portion of the cable modems; and

wherein the packet fiber node is further configured or designed operable to transmit the received IP packets to the Head End using a tunneling protocol.

18. (currently amended) The packet fiber node of claim 10 wherein the access network corresponds to a cable network, and wherein the network nodes correspond to cable modems;

the packet fiber node being further configured or designed operable to receive IP packets from a portion of the cable modems; and

wherein the packet fiber node is further eenfigured or designed operable to transmit the received IP packets to the Head End using an IP protocol.

19. (currently amended) A method for performing communication in a cable network, the cable network including a Head End which communicates with a plurality of different cable modern groups using at least one upstream channel and at least one downstream channel, the method comprising using a same channel frequency to communicate with at least two different cable modern groups which are serviced by a common RF fiber node;

wherein the RF fiber node is adapted operable to communicate with the Head End using frequency modulated optical signals.

20. (currently amended) The method of claim 19 further comprising:

transmitting a first portion of information to a first group of cable modems, the first group of cable modems being configured operable to communicated with a first RF fiber node;

the first portion of information being transmitted to the first group of cable modems using a first downstream channel frequency; and

transmitting a second portion of information to a second group of cable modems, the second group of cable modems being configured operable to communicated with the first RF fiber node;

the second portion of information being transmitted to the second group of cable modems using the first downstream channel frequency.

21. (original) The method of claim 20 further comprising:

transmitting the first portion of information from a first packet fiber node to the first group of cable modems; and

transmitting the second portion of information from a second packet fiber node to the second group of cable modems.

- 22. (currently amended) The method of claim 21 further comprising communicating information between the packet fiber nodes and the Head End using at least one baseband optical signals that are received at the packet fiber nodes from the Head End and transmitted to the Head End by the packet fiber nodes.
- 23. (currently amended) A packet fiber node for use in a cable network, the cable network including a Head End and a plurality of cable moderns, the packet fiber node comprising:

first means for communicating with at least a portion of the cable modems; and

09/894,958

second means for communicating with the Head End using baseband optical signals that are received at the packet fiber node from the Head End and transmitted to the Head End by the packet fiber node.

- 24. (currently amended) The packet fiber node of claim 23 wherein the packet fiber node is not adapted operable to communicate with the Head End using frequency modulated optical signals.
- 25. (original) The packet fiber node of claim 23 wherein the second means includes means for communicating with the Head End using only baseband optical signals.
- 26. (original) The packet fiber node of claim 23 further comprising means for communicating with at least a portion of the cable moderns using modulated electrical signals generated in accordance with a standardized DOCSIS protocol.
- 27. (original) The packet fiber node of claim 23 further comprising means for performing functions relating to DOCSIS MAC scheduling operations.
- 28. (original) The packet fiber node of claim 23 further comprising means for performing functions relating layer 1 and layer 2 functionality.
- 29. (original) The packet fiber node of claim 23 further comprising:
 means for receiving IP packets from a portion of the cable modems; and
 means for transmitting the received IP packets to the Head End using a tunneling
 protocol.
 - 30. (original) The packet fiber node of claim 23 further comprising: means for receiving IP packets from a portion of the cable moderns; and means for transmitting the received IP packets to the Head End using an IP protocol.