■ 반복측정 분산분석(Repeated Measures ANOVA)

- 한 실험개체에서 2회 이상 측정을 수행하는 것
- 반복측정의 장점
 - 어떤 실험에서는 충분한 수의 실험개체를 확보하기 어려울 때 적용
- 반복측정의 단점
 - 각 개체를 여러 번 실험처리하기 때문에 시간이 많이 소요
 - 이월효과(carry-over effect, 잔류효과)가 발생할 수 있음

□ 단일요인 반복측정 분산분석

• 반복측정 자료의 예

개체	처리 1	처리 2	처리 3	처리 4
1	30	28	16	34
2	14	18	10	22
3	24	20	18	30
4	38	34	20	44
5	26	28	14	30
평균	26.4	25.6	15.6	32.0

○ 일변량 분산분석

● 통계모형

$$Y_{ij} = \mu + \rho_i + \tau_j + \varepsilon_{ij}$$
, $i = 1, ..., n, j = 1, ..., p$

- ο ρ_i: 개체 i의 효과(subject effect)
- 동일한 개체의 자료들 간 상관관계가 존재할 수 있음
 - $\Rightarrow Y_{ij}$ 와 Y_{ik} 는 독립이라고 보기 어려움
 - \Rightarrow ρ_i 는 랜덤효과(변량효과): $\rho_i \sim N(0,\sigma_s^2)$

● 변동분해

$$\begin{split} \sum \sum (Y_{ij} - \overline{Y}_{..})^2 &= \sum \sum (\overline{Y}_{i.} - \overline{Y}_{..})^2 + \sum \sum (Y_{ij} - \overline{Y}_{i.})^2 \\ \text{TSS} \qquad \qquad \text{SSB} \qquad \qquad \text{SSW} \end{split}$$

- SSB(SS due to Between subject): 개체 간 제곱합
- SSW(SS due to Within subject): 개체 내 제곱합
- 개체 내 제곱합 분해

$$\begin{split} \sum \sum (Y_{ij} - \overline{Y}_{i.})^2 &= \sum \sum (\overline{Y}_{.j} - \overline{Y}_{..})^2 + \sum \sum (Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..})^2 \\ \text{SSW} \qquad \qquad \text{SSE} \end{split}$$

EMS

-
$$E(MSB) = \sigma^2 + p\sigma_s^2$$

-
$$E(MSTR) = \sigma^2 + n \sum_i \tau_i^2 / (p-1)$$

-
$$E(MSE) = \sigma^2$$

• 가설검정

$$\begin{array}{cccc} \circ & H_0: \tau_1 = \tau_2 = & \cdots & = \tau_p = 0 \\ & & & & \\ \circ & F = \frac{\frac{SSTR}{p-1}}{\frac{SSE}{(n-1)(p-1)}} = \frac{MSTR}{MSE} \sim F_{p-1,(n-1)(p-1)} \\ \end{array}$$

○ 다변량 분산분석과 자유도 수정

• 다변량적 접근방법

$$Y_i = (Y_{i1}, Y_{i2}, ..., Y_{ip})^T, i = 1, ..., n$$

$$\circ$$
 $m{Y}_i \sim N_p(m{\mu}\,,\,m{\Sigma})$, $m{\mu} \! = \! (\mu_1,\mu_2,\,...,\mu_p)^T$

- 공분산행렬
 - 복합대칭성(compound symmetry)

$$\sigma_{jk} = Cov(Y_{ij}, Y_{ik}) = \begin{cases} \sigma_s^2 + \sigma^2, & j = k \\ \sigma_s^2, & j \neq k \end{cases}$$

- 일변량적 접근방법은 복합대칭성 또는 구형성(sphericity)과 같은 특수한 조건을 만족하는 경우 타당
- 복합대칭성 또는 구형성 가정을 위배하는 경우 다변량 검정 또는 자유도 수정이 필요

● 다변량 분산분석(MANOVA, Multivariate ANOVA)

$$\circ \ H_0: \mu_1 = \mu_2 = \cdots = \mu_p$$

$$\circ \quad \mu_j = \mu + \tau_j \quad \Rightarrow \quad H_0 : \tau = 0$$

● Hotelling's T^2 통계량

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} W_i = (W_{i1}, \ ..., \ W_{i,p-1})^T \equiv (Y_{i1} - Y_{ip}, \ ..., \ Y_{i,p-1} - Y_{ip})^T \end{aligned}$$

$$\circ$$
 $H_0: \tau = 0 \Rightarrow H_0: \mu_W = 0$

$$\circ$$
 검정통계량 : $T^2 = n \overline{W}^T S_W^{-1} \overline{W}$

$$F_t = \frac{n-p+1}{(n-1)(p-1)} T^2 \sim F_{p-1,n-p+1}$$

- $n \ge p$ 인 경우에만 적용가능
- 단변량 분모의 자유도 = (n-1)(p-1)
- 다변량 분모의 자유도 = n-p+1 < (n-1)(p-1)

• 자유도 수정방법

- 다변량적 방법에서는 공분산행렬에 대한 가정이 없음□ → 구형성 가정을 어느 정도 만족하는 경우 자유도 손실이 큼
- \circ 자유도 수정계수 ϵ 이용
 - $-\epsilon \in [0,1]$
 - $\epsilon \rightarrow 1$ 구형성 만족
 - 복합대칭성(구형성) 가정 하에서 $F \sim F_{p-1,(n-1)(p-1)}$
 - 실제 F는 $F_{\epsilon(p-1),\epsilon(n-1)(p-1)}$ 에 근사
- \circ ϵ 의 추정
 - Greenhouse and Geisser $\epsilon_{\mathit{GG'}}$ Huynh and Feldt ϵ_{HF}
 - $\epsilon_{GG} \le \epsilon_{HF}$, $\epsilon_{HF} = \min(\epsilon_{HF}, 1)$
- \circ ϵ 이 충분히 크면 일변량적 방법 이용

□ 다요인 반복측정 분산분석

○ 반복요인과 분류요인이 하나씩인 경우

● 반복측정 2요인 실험자료: 반복요인이 B인 경우

요인 A	개체	요인 B				평균
		1	2	3	4	<u>ᆼ</u> .ㅠ
1	1	0	0	5	3	2.00
	2	3	1	5	4	4.25
	3	4	3	6	2	4.75
2	1	4	2	7	8	5.20
	2	5	4	6	6	5.20
	3	7	5	8	9	5.80
평균		3.83	2.50	6.17	5.33	4.46

○ 개체(subject)는 일종의 블록요인이고 요인 A에 지분되어(nested) 있음

● 통계모형식

$$\begin{split} Y_{ijk} &= \mu + \alpha_j + \beta_k + (\alpha\beta)_{jk} + s_{i(j)} + \varepsilon_{ijk}, \\ &i = 1, ..., s, \ j = 1, \ ..., a, \ k = 1, \ ..., b \end{split}$$

- \circ $s_{i(i)}$: 개체효과로 일반적으로 랜덤(변량)요인
- $\circ \quad E(Y_{ijk}) = \mu + \alpha_j + \beta_k + (\alpha\beta)_{jk}$
- $\circ \quad Var(Y_{ijk}) = \sigma^2 + \sigma_s^2$
- $\circ \quad Cov(Y_{ijk}, Y_{ijk'}) = \sigma_s^2, \quad k \neq k'$
- $\circ \quad Cov(Y_{ijk},Y_{i'j'k'}) = 0\,, \qquad i \neq i \quad \text{or/and} \quad j \neq j'$

● 변동분해

$$TSS = \underline{SSA + SS_{subject(A)}} + \underline{SSB + SS(AB) + SSE}$$

$$\downarrow SS_{between} \downarrow \qquad \qquad \downarrow \qquad SS_{within} \qquad \downarrow \qquad \qquad \downarrow$$

$$\circ \quad \mathit{SSA} = bs \sum_{j} (\overline{Y}_{.j.} - \overline{Y}_{...})^2 \ : \ a-1 \quad \Leftrightarrow \quad E(\mathit{MSA}) = \sigma^2 + b\sigma_s^2 + bs \sum_{j} \alpha_j^2 / (a-1)$$

$$\circ \quad SSB = as \sum_{k} (\overline{Y}_{..k} - \overline{Y}_{...})^2 : b-1 \implies E(MSB) = \sigma^2 + as \sum_{k} \beta_k^2 / (b-1)$$

$$\circ SS(AB) = s \sum_{j} \sum_{k} (\overline{Y}_{.jk} - \overline{Y}_{.j.} - \overline{Y}_{..k} + \overline{Y}_{...})^{2} : (a-1)(b-1)$$

$$\Rightarrow E(MS(AB)) = \sigma^2 + s \sum \sum (\alpha \beta)_{jk}^2 / ((a-1)(b-1))$$

$$\circ \quad \mathit{SSS}(A) = b \sum_{i} \sum_{j} (\overline{Y}_{ij.} - \overline{Y}_{.j.})^2 \ : \ a(s-1) \ \ \Leftrightarrow \ \ \mathit{E}(\mathit{MSS}(A)) = \sigma^2 + b \sigma_s^2$$

$$\circ \quad SSE = \sum_{i} \sum_{j} \sum_{k} (Y_{ijk} - \overline{Y}_{.jk} - \overline{Y}_{ij.} + \overline{Y}_{.j.})^2 : a(s-1)(b-1) \implies E(MSE) = \sigma^2$$

• 유의성검정

 \circ 요인 A의 주효과: $H_0: \alpha_1 = \cdots = \alpha_a = 0$

$$F_A = \frac{SSA/(a-1)}{SS_{subject(A)}/(a(n-1))} \sim F_{a-1,a(n-1)}$$

 \circ 요인 B의 주효과: $H_0: eta_1 = \cdots = eta_b = 0$

$$F_{B} = \frac{SSB/(b-1)}{SSE/(a(b-1)(n-1))} \sim F_{b-1,a(b-1)(n-1)}$$

 \circ 상호작용 (A*B)의 효과: $H_0: (\alpha\beta)_{ij}=0, \ \forall \, i,j$

$$F_{(AB)} = \frac{SS(AB)/(a-1)(b-1)}{SSE/(a(b-1)(n-1))} \sim F_{(a-1)(b-1),a(b-1)(n-1)}$$