MATH 335 Lecture 1

Chris Camano ©sfsu.edu

August 23, 2022

Number systems

The Integers

$$\mathbb{Z} = \{..., -1, 0, 1, ...\}$$

The Natural Numbers

$$\mathbb{N} = \{1,2,3,\ldots\}$$

Definition: Well ordered

A non empty subset S of integers is wellordered if and only if S contains a smallest or least element.

Well ordering of \mathbb{N} Every non empty subset of \mathbb{N} is well ordered. This is to say it has a smallest element since it will always contain positive integer values.

Divisibility

Let $A \neq 0, b \in \mathbb{Z}$ a divides b if and only if b can be expressed in the following way:

$$b = ak, k \in \mathbb{Z}$$

a is a divisor of b and is often denoted in the following way, read as a divides b:

Properties of divisibility

Division is transitive, therefore:

if
$$a|b \wedge a|c \rightarrow a|b \pm c$$

if a|n and a|(n+m) then a|m.

Prime Numbers

Definition:

A positive integer p > 1 is said to be a prime number if and only if the one only positive integer divisiors are 1 and p.

Fundemental Theorem of Arithmetic

Every positive integer n > 1 is equal to:

$$n = P_1^{\alpha_1} P_2^{\alpha_2} \cdots P_{k-1}^{\alpha_{k-1}} P_k^{\alpha_k} = \prod_{i=1}^k P_i^{\alpha_i}$$

Where $P_1, ..., P_k$ are distinct primes and $\alpha_1, ..., \alpha_k$ are positive integers. These two sets of primes and positive integers are unique to the prime factorization of a given number.

Proposition:

Let p be a prime number and a and b $in\mathbb{Z}$ if p|ab then p|a or p|b

Greatest Common Denominator:

Let d be a positive integer, d is the greatest common divisor(gcd) of $a,b \in \mathbb{Z}$ if and only if two criteria are satisfied:

(1)
$$d|a$$
 and $d|b$

(2) if
$$e|a$$
 and $e|b$ then $e|d$

Statement one states that the given positive integer must in fact divide both a and b. Statement two says that if there exists another comon divisor then it must also divide d. This is a statement asserting that no greater common divisor exists.