IV. Сигнальная математика

4.1. Комплексный сигнал: $\rho = A \cdot ei\phi(r) \cdot rho = A \cdot cdot \cdot e^{f(\cdot)}$

Сигнал в СТБ — это не просто носитель энергии, а фазовая структура, которая определяет возможность и форму возбуждения блока.

Он формализуется как комплексное поле, обладающее:

- амплитудой (энергетической компонентой),
- фазой (структурно-информационной компонентой).

І. Базовое определение сигнала

Сигнал $\rho \mid rho$ в СТБ задаётся как:

$$\rho(r \vec{}) = A \cdot ei\phi(r \vec{}) \mid rho(|vec\{r\}) = A \mid cdot e^{i|phi(|vec\{r\})\}}$$

где:

- $A \in R + A \mid in \mid mathbb\{R\} + -$ амплитуда сигнала (модуль);
- $\phi(r \rightarrow ER)$ phi($vec\{r\}$) | in $vec\{r\}$ | aза сигнала (аргумент);
- $r \in Rn \setminus vec\{r\} \setminus in \setminus mathbb\{R\}^n$ координаты внутри поля возбуждения;
- *ii* мнимая единица.

II. Физический смысл компонентов

Компонента	Назначение
AA	энергетическая плотность
φ(r→)\phi(\vec{r})	форма, направление, симметрия
eiφe^{i\phi}	фазовый носитель информации
р(r¯)\rho(\vec{r}) полная сигнальная форма	

Сравнение с классикой:

- В КМ: волновая функция $\psi \mid psi$ описывает вероятность.
- В СТБ: сигнал $\rho \mid rho$ описывает возможность возбуждения, и его физическую структуру, проверяемую блоком.

III. Математические свойства сигнала

• Модуль:

$$|\rho(r)| = A/|rho(|vec\{r\})| = A$$

• Аргумент:

$$arg^{rol}(\rho(r)) = \phi(r) | arg(|rho(|vec\{r\})) = |phi(|vec\{r\})|$$

• Производная по фазе:

$$\partial \rho \partial \phi = i\rho \left\{ partial \right\} \left\{ partial \right\} = i \left\{ ho \right\}$$

• Градиент:

$$\nabla \rho = (\nabla A + iA \nabla \phi)ei\phi \setminus nabla \setminus rho = \left\{ \left(nabla A + iA \right) \mid nabla \mid phi \mid right \right\} e^{i\phi}$$

IV. Локальная топология сигнала

Фаза $\phi(r)$ | $phi(|vec\{r\})$ может быть:

- однородной (монотонный сигнал),
- замкнутой (вихревой сигнал),
- скачкообразной (фронт возбуждения),
- многозначной (суперпозиция).

В СТБ именно фаза, а не амплитуда, определяет судьбу сигнала:

- возбуждает или нет,
- где именно,
- с каким результатом.

V. Энергия сигнала и его форма

Хотя классическая энергия:

 $E \propto |A| 2E \mid propto \mid A \mid^2$

в СТБ важен не только модуль AA, но и форма фазы:

- два сигнала с одинаковой энергией, но разной $\phi(r)|phi(|vec\{r\})|$ реализуются по-разному;
- форм-фактор зависит от $\phi | phi$ напрямую:

 $f(S,B) \propto |\int ASei\phi S(r^{-}) \cdot \rho B*(r^{-}) dnr^{-}|f(S,B) \mid propto \mid left \mid int A_S e^{i \mid phi_S(\mid vec\{r\})}$ \\\\\ cdot \\\ rho_B^*(\\\ vec\{r\}) d^n \\\\ vec\{r\} \\\ right |

VI. Сигнальная инвариантность

Комплексный сигнал обладает ключевым свойством:

```
\rho \cdot ei\alpha \equiv \rho \mid rho \mid cdot e^{\{i\}} \mid alpha\} \mid equiv \mid rho если \alpha = const \mid alpha = \mid text \mid const \mid
```

Это определяет фазовую калибровку, и объясняет, почему:

- только градиенты фазы (см. 4.2) несут физическую значимость;
- именно фазовые разности вызывают отклики;
- топология фазы важнее абсолютных значений.

VII. Вывод

Формула:

```
\rho(r \vec{}) = Aei\phi(r \vec{}) | rho(|vec\{r\}) = Ae^{A}\{i|phi(|vec\{r\})\}
```

— это не просто компактное представление,

а ядерное уравнение СТБ, описывающее:

- структуру сигнала,
- условия возбуждения,
- источник массы, времени, координаты.

Бытие начинается не с энергии.

Оно начинается с формы.

4.2. Производные, градиенты, интегралы по фазе

Фаза $\phi(r) \mid phi(\mid vec\{r\})$ — это ключевая переменная в Сигнальной Теории **Бытия**, от которой зависит возбуждение, отклик и форма реальности.

В отличие от классических теорий, где дифференциальные операторы применяются к метрикам или полям, в СТБ они применяются к фазе сигнала как носителю причинности.

І. Производные по фазе

Сигнал:

$$\rho(r) = A(r) \cdot ei\phi(r) \mid rho(\mid vec\{r\}) = A(\mid vec\{r\}) \mid cdot e^{\{i \mid phi(\mid vec\{r\})\}}$$

Частная производная:

 $\partial \rho \partial \phi = i \cdot \rho \setminus \{partial \mid rho\} \{partial \mid phi\} = i \mid cdot \mid rho \}$

Полный дифференциал:

 $d\rho = (\nabla A + iA \nabla \phi) \cdot ei\phi d \wedge rho = |left(\mid nabla \mid A + iA \mid nabla \mid phi \mid right) \mid cdot e^{i} \mid phi |$

II. Градиент фазы

Градиент фазы:

 $\nabla \phi(r) = (\partial \phi \partial x 1, \partial \phi \partial x 2, ..., \partial \phi \partial x n) \mid \text{nabla } \mid \text{phi}(\mid \text{vec}\{r\}) = \mid \text{left}(\mid \text{frac}\{\mid \text{partial } phi\}\{\mid \text{partial } x_2\}, \mid \text{dots, } \mid \text{frac}\{\mid \text{partial } phi\}\{\mid \text{partial } x_n\} \mid \text{right})$

- Определяет направление максимального фазового роста;
- Показывает направление реакции в поле;

• Служит основой для определения движения, возбуждения и силы реакции.

🐧 Гравитация, в сигнальном смысле, может быть описана как:

 $F \stackrel{?}{sig} \propto -\nabla \phi | vec\{F\}_| text\{sig\} | propto - | nabla | phi$

III. Криволинейный интеграл по фазе

Интеграл вдоль замкнутого контура *СС*:

 $\oint C \nabla \phi \cdot dr \mid oint_C \mid nabla \mid phi \mid cdot d \mid vec\{r\}$

- Измеряет накопленную фазу вдоль пути;
- Позволяет установить фазовый порог возбуждения;
- Является основой сигнальной топологии.
- Порог активации блока:

 $\oint C \nabla \phi \cdot dr \stackrel{?}{\geq} \pi | oint_C | nabla | phi | cdot d | vec{r} | geq | pi$

(см. 3.3 — порог возбуждения)

IV. Лапласиан фазы

 $\Delta \phi = \nabla \cdot \nabla \phi \setminus Delta \mid phi = \mid nabla \mid cdot \mid nabla \mid phi$

- Отвечает за локальные флуктуации фазы;
- Используется для анализа устойчивости сигнальной среды;
- Может указывать на точки фазовой деструкции или усиления.

V. Волновой оператор для сигнала

Если $\phi(\vec{r},t)$ | $phi(|vec\{r\},t)$ зависит от времени:

 $\Box \phi = \partial 2\phi \partial t 2 - c 2\Delta \phi \setminus Box \mid phi = \frac{1}{2} \cdot phi}{\mid partial \ t^2} - c^2 \mid Delta \mid phi$

- Используется для анализа распространения сигнала в эфире;
- Позволяет формализовать фазовые волны и фронты реакции.

VI. Значение производных и интегралов по фазе в СТБ

Оп	перация	Физическая роль в СТБ
∇ф	\nabla \phi	направление реакции, источник сигнальной силы
∮∇	φ·dr⁻\oint \nabla \phi \cdot d\vec{r}	фазовый порог возбуждения
Δφ	\Delta \phi	фазовая плотность, предвестник фантома
∂рі	∂φ\frac{\partial \rho}{\partial \phi}	чувствительность сигнала к фазе

VII. Вывод

СТБ переносит дифференциальную механику из геометрии в фазовую логику.

Все физические процессы — возбуждение, реакция, аннигиляция —

выражаются через производные и интегралы не от координат, а от фазы сигнала.

Не расстояние определяет реальность,

а разность фазы между блоками.

4.3. $\pi = 12 \oint \nabla arg^{m}(\rho) dr \ | pi = | dfrac{1}{2} | oint | nabla | arg(|rho) |, d|vec{r}$

В Сигнальной Теории Бытия (СТБ), значение $\pi \mid pi$ не является просто геометрической константой — оно приобретает физико-топологическое значение, определяя границу между фантомным и реальным.

 $\pi | pi$ — это **пороговая накопленная фаза**, при достижении которой **реакция становится возможной**.

І. Формула фазового порога

 $\pi=12$ $\oint C \nabla arg^{\text{red}}(\rho) \cdot dr$ \ pi = \frac{1}{2} \ oint_C \ nabla \ arg(\rho) \ cdot d\ vec{r} где:

- $\rho = Aei\phi(r) / rho = Ae^{i} / phi(|vec\{r\})$ сигнальная функция;
- $arg(\rho) = \phi(r) | arg(|rho) = |phi(|vec\{r\})$ локальная фаза;
- $Varg^{(r)}(\rho) \mid nabla \mid arg(\mid rho)$ градиент фазы;
- *CC* замкнутый контур в эфире;
- Интеграл фазовая циркуляция вдоль этого контура.

II. Физическое значение

Если фазовая циркуляция по замкнутому контуру достигает $2\pi 2 | pi$, то:

 $12\phi\nabla\phi\cdot dr = \pi \left\{ \frac{1}{2} \right\} \left\{ \text{oint } \right\} \left\{ \text{o$

- → Это и есть критическая точка возбуждения блока.
- [↑] При этом условии реакция возможна, и масса, время, координата могут быть возбуждены.

III. Почему $\pi | pi$, а не $2\pi 2 | pi$?

- В волновой физике $2\pi 2 | pi$ один полный цикл.
- В СТБ: $\pi \mid pi$ достаточный фазовый переход, соответствующий полупериоду сигнального фронта, на котором происходит инверсия состояния блока (возбуждение \leftrightarrow невозбуждение).
- 🐧 Это соответствует границе между суперпозицией и фиксацией реакции.

IV. Интерпретация в терминах возбуждения

	Фазовая циркуляция ∮⊽ф·dr \oint \nabla \phi	
Состояние блока	\cdot d\vec{r}	Результат
Фантом	<2π< 2\pi	Реакции нет

Пороговое возбуждение	=2π⇒π в формуле= 2\pi \Rightarrow \pi \text{ в формуле}	Реакция возможна
Сверхрезонанс		Устойчивая реакция или вторичный сигнал

V. Топологическое значение

Интеграл:

 $\oint \nabla \phi \cdot dr \ | \ oint \ | \ nabla \ | \ phi \ | \ cdot \ d \ | \ vec\{r\}$

- это **индекс обвода фазы вокруг блока**, аналог:
 - индекса вихря в теории суперпроводимости,
 - числа квантования в топологических теориях поля,
 - магнитного потока в уравнении Уилсона.

★ В СТБ это — квантвозбуждения, который измеряет готовность блока вступить в реакцию.

VI. Связь с mass gap и возбуждением

СТБ интерпретирует mass gap как **минимально необходимую фазу** для возбуждения поля:

 $\oint \nabla \phi \cdot dr \stackrel{>}{\geq} 2\pi \Rightarrow m > 0 \Rightarrow \pi = \phi$ азовый барьер\oint\nabla\phi\cdot d\vec{r}\geq 2\pi\ \Rightarrow m > 0\Rightarrow\boxed{\pi = \text{\$\phi}азовый барьер}}

VII. Заключение

Формула:

 $\pi = 12 \oint \nabla arg(\rho) \cdot dr = \frac{1}{2} \left| \text{oint } \right| \text{ arg(} \right| \text{ho) } \left| \text{cdot } d \right| \text{vec}\{r\}$

- это **не определение числа π**, а:
 - порог активации бытия,
 - физико-топологическая граница между фантомом и реакцией,
 - ключ к фазовому возбуждению в СТБ.

Мир возбуждается по фазе.

Порог активации = π .

Ниже — фантом. Выше — реальность.

4.4. Форм-фактор как интеграл совпадения

Форм-фактор ff— это ключевая метрика в СТБ.

Он измеряет степень совпадения сигнала и блока, и определяет:

- будет ли возбуждён блок;
- возникнет ли масса, время, координата;
- превысит ли система порог $\theta \mid theta$ реакции.

Форм-фактор — это **сигнальная метрика причинности**: если $f \ge \theta f \mid geq \mid theta$, блок реагирует.

І. Математическое определение

Пусть:

- $\rho S(r) = AS(r) ei\phi S(r) | rho_S(|vec\{r\}) = A_S(|vec\{r\})| e^{i|phi_S(|vec\{r\})} c$ игнальная форма;
- $\rho B(r) = AB(r) ei\phi B(r) | rho_B(|vec\{r\}) = A_B(|vec\{r\}) e^{i|phi_B(|vec\{r\})} pesoнaнсная форма блока;$

Тогда форм-фактор:

 $f(S,B) = |\int \Omega \rho S(r^{\gamma}) \cdot \rho B * (r^{\gamma}) dn r^{\gamma} |f(S,B)| = |left| |\inf_{\{ \in S_{r} \} \mid rho_{S_{r}} \mid rho_{S_{r}}$

где:

- $\rho B*|rho_B^{\Lambda*}$ комплексное сопряжение;
- $\Omega \mid Omega$ область перекрытия сигналов;
- $f \in [0,1]f \setminus in [0,1]$ нормированная мера совпадения.

II. Интерпретация

- f=1f=1: полное фазово-структурное совпадение;
- $f \approx 0 f \mid approx \ 0$: фазы и формы несовместимы, сигнал не распознан;
- 0 < f < 10 < f < 1: частичное совпадение, возможна слабая реакция.

III. Влияющие параметры

- 1. Фаза сигнала $\phi S(r) \mid phi_S(\mid vec\{r\});$
- 2. Форма и топология блока $\rho B \mid rho_B$;
- 3. Пространственная конфигурация: перекрытие в r
 ightharpoonup vec(r);
- 4. **Нормализация**: *ff* не зависит от абсолютной мощности, только от совпадения.

IV. Физические следствия

Macca:

 $m=Ec2\cdot fm = \frac{E}{c^2} \cdot dot f$

• Реакция:

Происходит если $f \ge \theta \setminus text{Происходит если } f \setminus geq \setminus theta$

• Фантомность:

 $f \ll \theta \Rightarrow c$ игнал фантомный $f \mid ll \mid theta \mid Rightarrow \mid text { сигнал фантомный }$

V. Сравнение с аналогами

Парадигма	Мера сходства	СТБ-эквивалент

Квантовая механика	(\langle \psi_1
Нейросети	скалярное произведение весов	сигнально-структурный интеграл совпадения
Криптография	Hamming Distance = 0	f=1f = 1 при полной фазовой совместимости
Радиофизика	согласованный фильтр	ff — функция согласованности

VI. Примеры

1. Полное совпадение:

 $\rho S = \rho B \Rightarrow f = \int |A| 2 \, dnr \Rightarrow f = 1 \setminus rho_S = \int |Rightarrow f| = \int |A|^2 \, d^n \cdot vec\{r\}$ \Rightarrow f = 1

2. Противофазность:

 $\phi S = \phi B + \pi \Rightarrow f \approx 0 \mid phi_S = \mid phi_B + \mid pi \mid Rightarrow f \mid approx 0$

3. Частичное совпадение:

различие формы или фазы \Rightarrow f=0.3 например\text{различие формы или фазы} \Rightarrow f = 0.3 \ \text{например}

VII. Вывод

Форм-фактор — это:

- не амплитудный коэффициент,
- не вероятность,
- а физическая мера совпадения двух структурных форм.

Реакция не возникает от энергии.

Реакция возникает от фазово-формового совпадения.

 $f(S,B) = |\int \rho S \cdot \rho B * dr'| \setminus boxed\{ f(S,B) = |left| \mid rho_S \mid cdot \mid rho_B^* \mid, d \mid vec\{r\} \mid right| \}$

4.5. Реакция как операторная структура: возбуждение / затухание

В Сигнальной Теории Бытия (СТБ) **реакция** — это не просто событие, а **операторное преобразование**, которое применяется к блоку в момент совпадения сигнала и его резонансной формы.

Возбуждение и затухание — это результат **дискретного сигнального оператора**, действующего на состояние блока.

І. Оператор возбуждения

Обозначим реактивный оператор возбуждения как:

 $R^{(S,B)}:HB \rightarrow HR \setminus HR \setminus \{R\}(S,B): \setminus MR \setminus \{H\}_B \setminus HR \setminus \{H\}_R$ где:

- $HB \mid mathcal\{H\}_B$ состояние блока до реакции;
- $HR \mid mathcal\{H\}_R$ состояние после реакции;
- $R^{\Lambda} \mid hat\{R\}$ действует только если $f(S,B) \ge \theta f(S,B) \mid geq \mid theta$.

II. Условия применения оператора

Реакция возможна, если:

1. Форма сигнала совпадает с формой блока:

 $f(S,B) = |\int \rho S \cdot \rho B \cdot | \geq \theta f(S,B) = |left| |lint| |rho_S| |cdot| |rho_B^*| |right| |geq| |theta|$

2. Фаза сигнала достигает критической точки:

 $\oint \nabla \phi \cdot dr \ge 2\pi \langle oint \rangle$ | $\rho = 1$ | ρ

3. Плотность сигнального поля не блокирована фантомами:

 $\rho s < \rho \kappa p \mid rho_s < \mid rho_\{\mid text\{\kappa p\}\}\}$

III. Возбуждение как переход: $R^{\Lambda} + |hat\{R\}_{-}\{+\}|$

Оператор возбуждения $R^{\wedge} + |hat\{R\}_{-}\{+\}$ порождает:

- Maccy: $m=Ec2\cdot fm = \{frac\{E\}\{c^2\}\} \setminus cdotf,$
- локальное время: $\Delta t = 11 + \lambda m + \rho s \setminus Delta t = \int \frac{1}{1} \left(1 + \lambda m + \alpha \right) dt$
- координату: $\vec{r} = \vec{r} \cdot \vec{0} + \int \vec{v} \cdot (t) dt | vec\{r\} = | vec\{r\} \cdot \vec{0} + | int | vec\{v\}(t) | dt$
- вторичный сигнал: $S'=Modulate(S,R)S' = \{text\{Modulate\}(S,R)\}$.

Формально:

 $R^+(S,B):B0\mapsto \{BR,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid \{B_R,m,\Delta t,r^+,S'\}\setminus \{R\}_{+}(S,B): \mid quad B_0 \mid mapsto \mid quad B_0 \mid quad B$

IV. Затухание как обратный переход: $R^{\Lambda} - \{hat\{R\}_{-}\}$

Если входной сигнал прекращается, либо фаза деструктурируется, активированный блок может перейти в состояние затухания:

- исчезает масса;
- время обнуляется;
- блок возвращается в эфирное состояние $B0B_0$.

Оператор затухания:

 $R^-(BR):\{m,\Delta t,r^-,S'\}\mapsto B0\setminus hat\{R\}_{-}(B_R): \quad | quad \mid left\setminus \{m, \mid Delta\ t, \mid vec\{r\}, S' \mid right\setminus \}$ \\ \mapsto \, B_0

⊕ Это аналог аннигиляции, но без фазовой компенсации, а через естественную потерю возбуждения.

V. Динамика переходов: возбуждение ↔ затухание

Система может моделироваться как дискретная двухсостояния модель с пороговой логикой:

 $B(t)=\{B0,f(S,B)<\theta BR,f(S,B)\geq\theta udBdt=R^+-R^-B(t)=\begin\{cases\}\ B_0,\ \&\ f(S,B)<\ theta\ \bot \ B_R,\ \&\ f(S,B)\ |\ geq\ |\ theta\ |\ end\{cases\}\ |\ quad\ |\ text\{u\}\ |\ quad\ |\ frac\{dB\}\{dt\}=\ |\ hat\{R\}_{+}-\ |\ hat\{R\}_{-}\}$

★ Подобные модели используются в теории возбудимых сред и логике пороговых автоматов.

VI. Криптографическая аналогия

Оператор возбуждения $R^{\Lambda} + |hat\{R\}|_{\{+\}}$ работает как **дешифратор сигнала**:

- Только блок с нужной «ключевой структурой» может быть активирован;
- Сигнал с неверной фазой/формой не инициирует реакцию;
- Это формирует безошибочную адресную реализацию бытия.

VII. Вывод

Реакция в СТБ — это:

- действие оператора возбуждения при совпадении формы и фазы;
- физический переход блока в активное состояние;
- процесс, симметричный затуханию, и контролируемый строго по сигналу.

 $R^{(S,B)}=\{R^{+},ecnu\ f\geq\theta\ u\ \phi\geq\pi R^{-},ecnu\ возбуждение\ теряет\ \phiasy\ или$ амплитуду\boxed{\hat{R}(S,B) = \begin{cases} \hat{R}_{+}, & \text{если} } f \geq \text{theta \text{u}} \phi \geq \pi \lorenthmu \hat{R}_{-}, & \text{если возбуждение теряет \phiasy или амплитуду} \end{cases}}

Мир не просто реагирует.

Он переключается.

4.6. Энергия сигнала и плотность фазы

В Сигнальной Теории Бытия (СТБ) энергия сигнала определяется не только его амплитудой, как в классических моделях, но и **структурной плотностью фазы**.

Энергия — это не просто количество, а структурированная способность к возбуждению, зависящая от того, как сигнал свернут фазово и пространственно.

І. Классическая компонента энергии

Традиционно энергия волны:

 $E \propto A2E \mid propto A^2$

где:

AA — амплитуда сигнала.

Это определяет **интенсивность**, но не **реализационную способность**. В СТБ этого недостаточно.

II. Плотность фазы: $\rho\phi$ \ rho_- \phi

СТБ вводит плотность фазы как реальную физическую величину:

 $\rho\phi(r^{\uparrow})=|\nabla\phi(r^{\uparrow})|/rho_|phi(|vec\{r\})|=|left|/nabla|phi(|vec\{r\})|/right|$

- Чем выше $\rho \phi | rho_- | phi$, тем выше локальное сигнальное напряжение;
- Всплеск $\rho\phi$ | rho_- | phi маркер готовности к фазовому переходу / реакции;
- Локальная энергия сигнала с учётом фазовой структуры:

$$E(r)=A2(r)\cdot\rho\phi(r)$$
 | mathcal{E}(\vec{r}) = $A^2(|vec{r}|)$ | $cdot | rho_| phi(|vec{r}|)$

III. Полная энергия сигнала

Полная энергия:

 $E = \int \Omega E(r^{\gamma}) dn r^{\gamma} = \int \Omega A2(r^{\gamma}) \cdot |\nabla \phi(r^{\gamma})| dn r^{\gamma} E = \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| d^n |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \} \in \mathbb{Z}^2 \}} |\nabla \phi(r^{\gamma})| + \inf_{\{ \in \mathbb{Z}^2 \}}$

- $\Omega \mid Omega$ область распространения сигнала;
- Это соединяет **интенсивность и геометрию фазы** в одну энергетическую меру.

IV. Интерпретация

Компонента	Смысл
A2A^2	«мощность» сигнала
(\nabla \phi
E\mathcal{E}	реализационная способность сигнала

Энергия в СТБ — это не то, что передаётся, а то, что может быть реализовано.

V. Роль в возбуждении и массе

• Масса блока:

 $m=Ec2\cdot fm = \frac{E}{c^2} \cdot dot f$

- Реакция не зависит от AA напрямую, а от EE, накопленного с учётом фазовой плотности.
- Следовательно:
 - о сигнал с высокой амплитудой, но плоской фазой неэффективен;
 - \circ сигнал с структурированной фазой (например, вихрь, тор) может активировать даже при малом AA.

VI. Примеры

1. Монотонный сигнал:

 $\phi = const \Rightarrow \nabla \phi = 0 \Rightarrow E = 0 \mid phi = \text{text}\{const\} \mid Rightarrow \mid nabla \mid phi = 0 \mid Rightarrow \mid mathcal\{E\} = 0$

🐧 Не возбуждает ничего — нет фазового напряжения.

2. Фазовая стенка:

 $\phi(x) = \pi \cdot H(x) \Rightarrow \nabla \phi = \delta(x) \mid phi(x) = \mid pi \mid cdot H(x) \mid Rightarrow \mid nabla \mid phi = \mid delta(x) \mid$

Энергия сконцентрирована на границе: возбуждение происходит при переходе фазы.

VII. Физический смысл

- Энергия = не способность двигаться, а возможность быть реализованным;
- Фаза = не дополнение, а основной носитель потенциала к бытию.
- ★ Без фазового градиента нет энергии → нет реакции → нет реальности.

VIII. Вывод

В СТБ энергия — это:

- мера информационно-фазовой плотности сигнала;
- функция как амплитуды, так и топологии фазы;
- определяющий фактор возбуждения, массы, времени и координаты.

 $E = \int A2(r^{2}) \cdot |\nabla \phi(r^{2})| dr^{2} |boxed\{E = |\inf A^{2}(|vec\{r\})| |cdot| | nabla | phi(|vec\{r\})| |, d|vec\{r\}\}$

Энергия — это не сумма амплитуд.

Это плотность смысла, закодированного в фазе.