Candidature à l'Université de Lille

Modélisation multi-échelle des matériaux, surfaces et interfaces en lien avec leurs performances mécaniques Poste MCF n°252514 – Section 60

F. Loiseau

flavien.loiseau@ensta.fr

20 mai 2025

Parcours et projets d'intégration

- 1. Cursus
- 2. Activités et projet d'intégration en recherche
- 3. Activités et projet d'intégration en enseignement

Cursus

- 2011–2014 BAC Technologique STI2D
- 2014–2016 **CPGE Techniques et Sciences Industrielles**
- 2016–2020 ENS Paris-Saclay
 - L3 pluridisciplinaire (GM, GC, GE)
 - M1 Mécanique des Matériaux et des Structures
 - M2 Formation à l'Enseignement Supérieure en Mécanique
 - M2 Mécanique des mAtériaux pour l'inGénierie et l'Intégrité des Structures

Cursus

2011–2014	BAC Technologique STI2D
2014–2016	CPGE Techniques et Sciences Industrielles
2016–2020	ENS Paris-Saclay
	• L3 pluridisciplinaire (GM, GC, GE)
	 M1 Mécanique des Matériaux et des Structures
	M2 Formation à l'Enseignement Supérieure en Mécanique
	• M2 Mécanique des mAtériaux pour l'inGénierie et l'Intégrité des Structures
2020–2023	Thèse au Laboratoire de Mécanique Paris-Saclay
	Encadrée par Rodrigue Desmorat et Cécile Oliver-Leblond
2024	Post-doctorat à l'IMSIA (ENSTA)
	Encadré par Véronique Lazarus

Recherche (thèse)

2020-2023

Formulation de l'endommagement anisotrope des matériaux et stuctures quasi-fragiles basée sur la simulation discrète de la fissuration

R. Desmorat, C. Oliver-Leblond

1 article, 2 conférences internationales, 1 conférence nationale, 2 GdR.

Dataset of effective elasticity tensors

Discrete cracking simulations

Dataset analysis

Anisotropy analysis

$$\Delta_{\Sigma}(\mathbf{E}) = \min_{\mathbf{E}^* \in \Sigma} \frac{\|\mathbf{E} - \mathbf{E}^*\|}{\|\mathbf{E}^*\|}$$

Damage variable definition

$$\mathbf{D} = \mathbf{1} - \frac{1}{2\kappa_0} \mathrm{tr}_{12}(\mathbf{E})$$

Modelling

Harmonic decomposition

$$oldsymbol{\sigma} = \mathbf{E}(\mathbf{D}) : oldsymbol{arepsilon}$$

Recherche (post-doctorat)

2024-Présent

Theoretical and numerical study of crack propagation in heterogenous and/or anisotropic materials

V. Lazarus

1 article, 2(+2) conférences internationales, 1(+1) conférence nationale.

Contributions variées

- Biais numériques en champ de phase
 - Fissures initiales (Loiseau & Lazarus, 2025)
 - Anisotropie induite par le maillage
- Modèles de fissuration anistrope
 - Mécanique de la rupture classique
 - Fissuration par champ de phase
- Fissuration en milieux hétérogènes
- Méthodes de path-following (arc-length)
- Dialogue experimental fort

Projet d'intégration en recherche

Équipes COREFoU et MuFrein du LaMcube.

Objectif

Développer des modèles théoriques et numériques pour les systèmes mécaniques dissipatifs.

Intégration: Principe SBEN (Buliga & Saxcé, 2016)

Collaborations envisagées : A. Oueslati, P. Gosselet.

Formulation variationanelle du principe SBEN

L'évolution z(t) d'un système dynamique est régie par un problème de minimisation sous contraintes.

Caractéristiques

Cadre généralisé espace-temps Basé sur la géométrie symplectique

Besoin de développer des méthodes numériques adaptées

Développements récents

- Numériques : Matériaux Standards
 Généralisés (Cao et al., 2023)
- Théoriques : Lois non-associées par bipotentiels (Harakeh et al., 2024)

@ Perspectives

- Comportements non-associés
- Calcul intensif

Intégration envisagée

- Intégration dans l'ANR BigBen
- Développements et encadrement de stage
- Co-encadrement de thèse
- Outils: FEniCSx & Mosek / FreeFEM++ & Ipopt.

Autres contributions envisagées

Plasticité et fatigue des matériaux

Modèle de plasticité cristalline à gradient Micro-structure explicite réelle

Illustration de CristalX par Csati et al. (2021).

Études possibles

Analyse limite Effet de gradient de μ -structure

Extensions

Homogénéisation vers un modèle macro Intégration dans le cadre SBEN

Autres contributions envisagées

Plasticité et fatigue des matériaux

Modèle de plasticité cristalline à gradient Micro-structure explicite réelle

Illustration de CristalX par Csati et al. (2021).

Études possibles

Analyse limite Effet de gradient de μ -structure

Extensions

Homogénéisation vers un modèle macro Intégration dans le cadre SBEN

Modélisation de l'usure

Modèles numériques continus Thermique, Plasticité, Endommagement. Tribo-oxidation.

Échelle de la μ -structure Modèle continu/discret hétérogène.

Extensions

Bilan énergie/matière Étude du circuit tribologique Intégration dans le cadre SBEN

Zone de contact lors du freinage (Frangieh et al., 2025).

Responsabilités en recherche

Expériences d'encadrement

2022 – Projet recherche M1 – *A. Marlot*

2023 – Stage M2 – *L. Védrine*

2024 – Stage M1 – *A. Ecotière*

2025 – Stage M1 – Y. M. V. Epongue Djeugoue

Développements numériques

- Maîtrise d'outils (languages, forges, etc.)
- Contributions/gestions de code collaboratifs

igcirc Animation scientifique

Organisation de séminaires :

- COMET au LMPS (2 ans)
- IMSIA/LMI/LADHYX/LMS (lancement)

Autres

• Sensibilité pour les sciences ouvertes 🔓

Activités d'enseignement

Avant 2020 Divers

Aide aux devoirs (pour lycéens)

Interventions l'IUT de Cachan (M2E FESup)

2020–2023 Mission d'enseignement – ENS Paris-Saclay – L3 et M1 Génie Civil

Méthodes Numériques, Mécanique des Fluides, Propagation d'ondes, Matlab.

2024 **Vacation** – ENSTA – L3 et M1 Mécanique

MMC solide élastique, Comportements non-linéaires, Fatigue, Rupture.

Évolution des formations

- Sujet de TD de Méthodes Numériques
- Supports TP et Examen de Mécanique de la rupture en FEniCSx

Adéquation au profil recherché

Département de Mécanique de la Faculté des Sciences et Technologies

Profil recherché

Programmes de Licence et Master

Expérience et Compétences Générales

Mécanique des solides

Aspects théoriques et numériques

Anglais

Adéquation

Expériences en IUT/L3/M1

Formation, Expériences et Recherche

Formation, Expériences et Recherche

Formation, Niveau C1

© Type enseignements visés

Mécanique des milieux continus Lois de comportement non linéaires Fatigue et la fiabilité des structures Méthodes numériques en mécanique des solides

Expériences

ENS Paris-Saclay et ENSTA

ENSTA (+ Recherche)

ENSTA

ENS Paris-Saclay

Intégration dans les formations de la FST

- 🎓 Licence Sciences Mécaniques et Ingénierie
- Master Mécanique
 - **o** Modéliser un système mécanique

Bases de la mécanique des milieux continus (L3 S5) Lois de comportement (M1 S1) Mécanique non linéaire des matériaux et endommagement (M2 S3)

© Simuler numériquement un système mécanique

Méthodes Numériques Élementaires (L3 S5) Simulation Numérique pour la Mécanique (M1 S2)

Master STRAINS

Semestre 1

Constitutive Laws
Continuum Mechanics

Semestre 3

Limit Analysis and Shakedown Advanced Composite Materals

Évolution des formations & Innovation pédagogique

Maîtrise d'outils numériques variés

Programmation, calcul scientifique, supports.

Contributions envisagées

- Pédagogie inductive
 Classes inversées
 Activités de mise en situation
- Intégration enjeux sociétaux Intelligence artificielle Aspects environnementaux
- Internationalisation
- À terme, responsabilités pédagogiques

Évolution des formations & Innovation pédagogique

Maîtrise d'outils numériques variés

Programmation, calcul scientifique, supports.

Contributions envisagées

- Pédagogie inductive
 Classes inversées
 Activités de mise en situation
- Intégration enjeux sociétaux Intelligence artificielle Aspects environnementaux
- Internationalisation
- À terme, responsabilités pédagogiques

Exemple de mise en situation

Thèmes

Comportement non-linéaire Traitement de données

- Étapes
 - 1. Analyses de données
 - 2. Selection d'une loi de comportement
 - 3. Identification des paramètres
- Extensions possibles

Mesures experimentales Modélisation automatisée Calcul de structure

Outils envisagées

Python (numpy, pandas, matplotlib)
MFront

Mise en situation pédagogique

« La mise en situation pédagogique portera sur l'introduction d'un exemple de comportement non linéaire face à des étudiants de niveau M1 maîtrisant la mécanique des milieux continus et l'élasticité linéaire. »

Proposition

Introduction à la plasticité Approche inductive

Remarque

Petits effectifs (≤ 30 élèves) Ex: format cours-TD intégré.

Déroulé de la séance.

Ressources

• Mécanique des matériaux solides. (2009) Lemaitre, Chaboche, Benallal, & Desmorat.

Plasticité: Essai de traction uniaxiale

Cas monotone

Les courbes de traction expérimentales ne sont généralement pas entièrement linéaires.

L'analyse des courbes expérimentales permet d'identifier des **éléments caractéristiques du comportement** que ces modèles devront représenter.

Exercice

• Identifier les éléments caractéristiques sur les courbes suivantes.

Indication : Partir de l'origine et suivre la courbe durant le chargement.

Courbe de traction 1 : Chargement de traction monotone uniaxiale idéalisée pour un comportement plastique.

Plasticité: Essai de traction uniaxiale

Cas monotone

Les courbes de traction expérimentales ne sont généralement pas entièrement linéaires.

→ Besoin de modèles non-linéaires.

L'analyse des courbes expérimentales permet d'identifier des **éléments caractéristiques du comportement** que ces modèles devront représenter.

Exercice

• Identifier les éléments caractéristiques sur les courbes suivantes.

Indication : Partir de l'origine et suivre la courbe durant le chargement.

Courbe de traction 1 : Chargement de traction monotone uniaxiale idéalisée pour un comportement plastique.

Éléments caractéristiques

1.

2

3.

Éléments caractéristiques

1. Phase linéaire élastique Utilisation de la loi de Hooke paramétrée par E, ν .

2.

3.

Éléments caractéristiques

- 1. Phase linéaire élastique Utilisation de la loi de Hooke paramétrée par E, ν .
- 2. Perte de linéarité Limite d'élasticité σ_y (contrainte seuil)

3.

Éléments caractéristiques

- 1. Phase linéaire élastique Utilisation de la loi de Hooke paramétrée par E, ν .
- 2. Perte de linéarité Limite d'élasticité σ_y (contrainte seuil)
- 3. Phase plastique non-linéaire

Éléments caractéristiques

- 1. Phase linéaire élastique Utilisation de la loi de Hooke paramétrée par E, ν .
- 2. Perte de linéarité Limite d'élasticité σ_y (contrainte seuil)
- 3. Phase plastique non-linéaire

Bilan

Lorsque que la limite d'élasticité est atteinte, le comportement devient non-linéaire. L'élasticité n'est alors plus suffisante pour décrire le comportement du matériau.

Éléments caractéristiques

1.

2.

3.

4.

Éléments caractéristiques

- 1. Décharge linéaire élastique
- 2.
- 3.
- 4.

Éléments caractéristiques

- 1. Décharge linéaire élastique
- 2. Déformation plastique ε_p résiduelle à contrainte nulle.

3.

4.

Éléments caractéristiques

- 1. Décharge linéaire élastique
- 2. Déformation plastique ε_p résiduelle à contrainte nulle.
- 3. Recharge linéaire élastique

4.

Éléments caractéristiques

- 1. Décharge linéaire élastique
- 2. Déformation plastique ε_p résiduelle à contrainte nulle.
- 3. Recharge linéaire élastique
- 4. Domaine élastique modifié Mécanisme : Écrouissage

Éléments caractéristiques

- 1. Décharge linéaire élastique
- 2. Déformation plastique ε_p résiduelle à contrainte nulle.
- 3. Recharge linéaire élastique
- 4. Domaine élastique modifié Mécanisme : Écrouissage

Bilan

Lors d'une décharge dans la phase plastique, le comportement est linéaire. Cependant, le domaine élastique est modifié (écrouissage) et une déformation plastique irréversible ε_p se développe.

Synthèse profil - Flavien Loiseau

Recherche

- Simulation numérique
- Modélisation comportement matériau

Enseignement

- Formation à l'enseignement
- Expériences L3/M1
- Évolution des formations
 - Pédagogie inductive
 - Internationalisation

- Licence Sciences Mécaniques et Ingénierie
- **Master Mécanique**
 - **Modéliser un système mécanique**
 - **©** Simuler numériquement un système mécanique
- **Master STRAINS**

Synthèse profil - Flavien Loiseau

Recherche

- Simulation numérique
- Modélisation comportement matériau

Enseignement

- Formation à l'enseignement
- Expériences L3/M1
- Évolution des formations
 - Pédagogie inductive
 - Internationalisation

- Licence Sciences Mécaniques et Ingénierie
- **Master Mécanique**
 - **Modéliser un système mécanique**
 - **©** Simuler numériquement un système mécanique
- **Master STRAINS**

Merci pour votre attention!

References

References

- Buliga, M., & Saxcé, G. de. (2016). A symplectic BrezisEkelandNayroles principle. *Mathematics and Mechanics of Solids*, 22(6), 1288-1302. https://doi.org/10.1177/1081286516629532
- Cao, X., Oueslati, A., Nguyen, A. D., Stoffel, M., Markert, B., & Saxcé, G. de. (2023). A symplectic Brezis-Ekeland-Nayroles principle for dynamic plasticity in finite strains. *International Journal of Engineering Science*, 183, 103791. https://doi.org/10.1016/j.ijengsci.2022.103791
- Csati, Z., Witz, J.-F., Magnier, V., Bartali, A. E., Limodin, N., & Najjar, D. (2021). CristalX: Facilitating simulations for experimentally obtained grain-based microstructures. *SoftwareX*, *14*, 100669. https://doi.org/10.1016/j.softx.2021.100669
- Frangieh, J., Grira, A., Davin, E., Brunel, F., Al-Kaderi, R., Perdrix, E., Tomas, A., Henrion, M., Mann, R., Desplanques, Y., & Dufrénoy, P. (2025). Railway braking wear dynamics and particle emissions: Relationship between tribological circuit and pad design. *Wear*, 205854. https://doi.org/10.1016/j.wear.2025.205854
- Harakeh, M., Ban, M., & Saxcé, G. de. (2024). Symplectic bipotentials. arXiv. https://doi.org/10.48550/arXiv.2410.23122
- Lemaitre, J., Chaboche, J.-L., Benallal, A., & Desmorat, R. (2009). *Mécanique des matériaux solides*. Dunod. http://international.scholarvox.com/book/45006304
- Loiseau, F., & Lazarus, V. (2025). How to introduce an initial crack in phase field simulations to accurately predict the linear elastic fracture propagation threshold? arXiv. https://doi.org/10.48550/arXiv.2502.03900
- Védrine, L., Loiseau, F., Oliver-Leblond, C. écile, & Desmorat, R. (2025). Calibration of non-local damage models from full-field measurements: Application to discrete element fields. *European Journal of Mechanics A/Solids*, 112, 105611. https://doi.org/10.1016/j.euromechsol.2025.105611

Recherche (projets/stages)

Projet + M1

M. Jirásek

ČVUT, Prague

Endo

Méth. Num.

O. Allix

LMT, Cachan

M2E FESup

F. Hafid *RTE, Paris*

Méth. Num. Méca. Flu.

S. Langlois

UdeS, Sherbrooke

M2R MAGIS

Fissuration Méth. Num. C. Maurini *SU, Paris*

J. Hure CEA, Saclay

Encadrement

2022 **Première Expérience Immersive de Recherche (M1)** – A. Marlot

Effet de la variabilité géométrique (meso-structure et fissuration) sur le tenseur d'élasticité effectif dans le modèle discret *beam-particle*

2023 **Stage de Recherche (M2)** – L. Védrine

Étude des effets de taille et de l'endommagement non-local dans les structures quasifragiles basée sur des simulations discrètes 1 article (Védrine et al., 2025), 1 présentation en Congrès Junior.

2024 Stage Projet de Recherche (M1) – A. Ecotiere

Simulation par champ de phase faiblement anisotrope de la fissuration dans un acier duplex imprimé en 3D.