CS 4602

Introduction to Machine Learning

NTHU / Autumn 2023-2024

Instructor: Po-Chih Kuo (郭柏志)

Human-Centered Machine Intelligence Lab https://pochihkuo.github.io/

Logistics

- Instructor: Po-Chih Kuo (郭柏志)
 - Email: kuopc@cs.nthu.edu.tw
 - Office: Delta 630
 - Office hours: Wednesdays 11:00-12:00

- TA hours: Thursday 17:00-18:00, EECS 639
- Make a reservation via google doc by Thursday 10am

Our TA Team

林家合

陳怡汝

林晁璿

曾微絲

張亞錫

黃謹緯

黃允暘

李佳芸

蘇芮筠

林育頡

吳聲宏

呂佳恩

Communication

- We will use eeclass for all communications: announcements and questions related to lectures, labs, and projects.
 - You should be added to the eeclass automatically
- Teams will be used for remote lectures if necessary.

Prerequisites

- This course covers a lot of ground
 - Calculus
 - Probability/Statistics
 - Programming: Python

Rules

- Mainly physical lecture
- English is the official language (some mandarin)
- Food allowed? Maybe.
- Turn your phone to silent mode
- You are allowed to leave anytime (Chat with your friends outside)
- No roll call but there might be bonus for attendance
- Ask and answer questions! (Mandarin is acceptable)
- Cheating or plagiarism on exams/labs will result in zero score

Textbook

- There is no required textbook for this class
- You should be able to learn everything from the lecture slides and homework
- Lecture slides will be uploaded to eeclass before the class

References

- "Pattern Recognition and Machine Learning"
- Christopher Bishop
- ISBN: 978-0387310732

- · Ian Goodfellow, Yoshua Bengio, and Aaron Courville
- ISBN: 978-0262035613

- Andreas C. Müller, Sarah Guido
- ISBN: 978-1449369415
- "An Introduction to Machine Learning"
- Miroslav Kubat
- ISBN: 978-3319200101
- (Electronic version is available from the library)

Goals

- To understand the basic principles of machine learning
- To become familiar with widely used machine learning algorithms
- To learn how to use machine learning algorithms to solve real problems
- To properly evaluate the model performance
- Little math or proof of theory

Evaluation

• Exams: 30%

Assignments: 40%

• Term project: 30%

To note that, those are the maximum points you will get for each category. For example, you will receive 40 at the end for the homework part although you get a total of 42 from 5 assignments

- 4 Exams: 30%
 - In classroom
 - Answer by your smartphone or laptop

CS 460200 Introduction to Machine Learning Quiz #1 *Required
Q1. Which step might save the time for training? * Increase batch size Increase learning rate Increase the input dimension increase the layers

- 4 labs: 40%
 - Due two weeks after the announcement
 - Google Colab is recommended.
 - The scores will be given based on your model's performance on testing data, which are held in our hands (35%).
 - Hand in a brief report (5%)
 - Avoid plagiarism

- Term project: 30%
 - More than 10 projects are given by us
 - You can propose your own project by 9/30
 - 3-6 members per team
 - Rank your preferences by 10/7
 - Teammates are assigned by us
 - Each team will have a mentor
 - Missions for every teammate may be different
 - PM, UX, RD, QA...
 - Grading for each of you is based on your contribution
 - Meet with your team/mentor every week/two weeks
 - Hand in meeting minutes (with photos) every two weeks

- Create a repo (e.g., on Github) for your team
- Submit your proposal during mid-term
 - Give a brief presentation in English on your project
 - 3 mins for each team by video.
 - Introduce your topics and team members.
- Final presentation (in English, 5 mins presentation + 3 min QA) at the end of the semester
- Hand in a report (2-8 pages) in the format of an IEEE paper, including Introduction, Methods, Results, and Conclusions
- Avoid plagiarism
- Push your code.
- Evaluated by TAs, mentors, and instructors (Maybe committee outside NTHU)

Syllabus

- Introduction and Basic Concepts
- Regression
- Bayesian Classifiers
- Decision Trees
- KNN
- Linear Classifier
- Neural Networks
- Deep learning
- Reinforcement Learning
- Model Selection and Evaluation
- Clustering

Dimensionality reduction

Error-Based Learning

Probability-Based Learning

Information-Based Learning

Similarity-Based Learning

Unsupervised Learning

September 2023

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	X ²⁸	29	30

Introduction and Basic Concepts Regression

December 2023

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	()	20	2 1	22	23
24	25	26	27	28	29	30
31		Ť				

Model Selection & Evaluation

Clustering

Dim. Reduction

October 2023

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
1	2	3	4	5	6	7
8	9	X	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

Bayesian Classifiers

Decision Trees

Linear Classifier

November 2023

SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
			1	2	3	4
5	6	7	8	O	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30		

Neural Networks

Deep learning

Reinforcement learning

Online

Exam

Assignment

Holiday

Upload proposal presentation

Project presentation

Extra selection

00

No more approval after 11:59am

Quiz time!

Cinizisz

Questions?

When you get your first job with all the knowledge you got from your CS degree

