School of Mathematics Thapar University, Patiala, UMA 003: Tutorial Sheet 07: Partial Derivatives

1. Show that the following limits do not exist as $(x, y) \longrightarrow (0, 0)$.

(i)
$$\lim \frac{x-2y}{x+y}$$
 (ii) $\lim \frac{xy^3}{x^2+y^6}$ (iii) $\lim \frac{xy^2}{x^2+y^4}$ (iv) $\lim \frac{xy^2}{x^2+y^2}$.

- 2. If z = f(x, y), where $x = e^u \cos v$, $y = e^u \sin v$. Show that $x \frac{\partial f}{\partial v} + y \frac{\partial f}{\partial u} = e^{2u} \frac{\partial f}{\partial v}$
- 3. If $z = \log(u^2 + v)$; $u = e^{x+y^2}$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial v}$.
- 4. If H = f(x, y, z) where x = u + v + w, y = vw + wu + uv and z = uvw, show that

$$u\frac{\partial H}{\partial u} + v\frac{\partial H}{\partial v} + w\frac{\partial H}{\partial w} = x\frac{\partial H}{\partial x} + 2y\frac{\partial H}{\partial y} + 3z\frac{\partial H}{\partial z}$$

- 5. Find the value of $\partial x/\partial z$ at the point (1, -1, -3) if the equation $xz + y \ln x x^2 + 4 = 0$ defines x as a function of the two independent variables y and z and the partial derivatives exists.
- 6. Find f_x, f_y, f_z for the functions: (i) $f(x, y, z) = x \sqrt{y^2 + z^2}$ (ii) $f(x, y, z) = \sin^{-1}(xyz)$ (iii) $f(x, y, z) = e^{-(x^2 + y^2 + z^2)}$
- 7. Evaluate $\partial u/\partial x$, $\partial u/\partial y$ at the given point (x, y, z) for the following functions.

(i)
$$u = \frac{p-q}{q-r}$$
, $p = x + y + z$, $q = x - y + z$, $r = x + y - z$; $(x, y, z) = (\sqrt{3}, 2, 1)$.

(ii)
$$u = e^{qr} \sin^{-1} p$$
, $p = \sin x$, $q = z^2 \ln y$, $r = 1/z$; $(x, y, z) = (\pi/4, 1/2, -1/2)$

- 8. Find $\partial z/\partial u$ and $\partial z/\partial v$ when $u = \ln 2, v = 1$ if $z = 5 \tan^{-1} x$ and $x = e^u + \ln v$.
- 9. Find the directional derivative of the function $f(x,y,z) = x^2 y^2 + 2z^2$ at the point P(1,2,3) in the direction of the line PQ where Q has coordinates (5,0,4). In what direction it will be maximum and what is its value?

 Ans. $\frac{4}{3}\sqrt{21}$, $2\sqrt{41}$.
- 10. Find the directional derivative of the function

(i)
$$f(x, y, z) = xy^2 + yz^3$$
 at $(2, -1, 1)$ in the direction of $i + 2j + 2k$. Ans. $-11/3$

(ii)
$$f(x, y, z) = x^2 + y^2 + 4xyz$$
 at $(1, -2, 2)$ in the direction of $2i - 2j + k$. Ans. $-14\frac{2}{3}$

(iii)
$$f(x, y, z) = 4xz^3 - 3x^2yz^2$$
 at $(2, -1, 2)$ along z-axis. Ans. 144

- 11. The temperature at a point (x, y, z) in space is given by $T(x, y, z) = x^2 + y^2 z$. A mosquito located at (1,1,2) desires to fly in such a direction that it will get warm as soon as possible. In what direction should it fly?

 Ans. $\frac{1}{3}(2i+2j-k)$.
- 12. Find the directions in which the functions increase and decrease most rapidly at P_0 . Then find the derivatives of the functions in these directions.

(i)
$$f(x,y) = x^2y + e^{xy}\sin y$$
, $P_0(1,0)$ (ii) $f(x,y,z) = \ln xy + \ln yz + \ln zx$, $P_0(1,1,1)$

(iii)
$$f(x, y, z) = (x/y) - yz$$
, $P_0(4, 1, 1)$ (iv) $f(x, y, z) = \ln(x^2 + y^2 - 1) + y + 6z$, $P_0(1, 1, 0)$