M 362K Post-Class Homework 6

Xiaohui Chen EID: xc2388

February 12, 2015

3-1

The probability distribution is shown below:

у	Pr(Y=y)
0	$\frac{{}_{7}C_{3}}{{}_{12}C_{3}} = \frac{7}{44}$
1	$\frac{{}_{5}C_{1}*{}_{7}C_{2}}{{}_{12}C_{3}} = \frac{21}{44}$
2	$\frac{{}_{7}C_{1}*{}_{5}C_{2}}{{}_{12}C_{3}} = \frac{14}{44}$
3	$\frac{{}_{5}C_{3}}{{}_{12}C_{3}} = \frac{2}{44}$

3-4

(a)

The probability distribution is shown below:

S	Pr(S=s)					
1	$\frac{18}{38}$					
2	$\frac{20}{38} * \frac{18}{38}$					
3	$\left(\frac{20}{38}\right)^2 * \frac{18}{38}$					
i	÷					
n	$\left(\frac{20}{38}\right)^{n-1} * \frac{18}{38}$					

(b)

We have 20 candies and 18 chewing gums. A person chooses one item at a time and put it back right after. The person stops whenever a chewing gum is selected. The probability distribution of the number of times until that person stops is the same as the situation given in this question

3-6

(a)

The probability distribution is shown below:

a	17	18	19	20	21	22	23
Pr(A=a)	0	0.23	0.25	0.41	0.05	0.05	0.01

(b)

The ogive diagram is shown in Figure 1

Figure 1: Ggive diagram for A

3-9

Let X be the value of a house

Then
$$Pr(120 \le X \le 500) = 0.75 - 0.4 = 0.35$$