Differentiation Rules Part Two

```
caseInsensitive = function(a,b) {
    return a.toLowerCase() == b.toLowerCase();
};
```

Julia: You know, some of those rules we learned were pretty useful, but some of these derivatives still suck! There HAS to be a better way!

Dylan: I'm sure there is, and I'm sure I know who could help us!

James: Did I hear my name?

Dylan: Not yet!

Julia: James!

James: There are more rules for differentiation that can make your life just a little bit easier!

The Product Rule

James: From the last time we did this, what rule do you think would exist for the product of two functions?

Julia: Well, last time we added or subtracted the derivative of both functions, so I bet we multiply the derivative of both!

Dylan: Let's check!

Consider the functions f(x) = 2x and $g(x) = 3x^3 + x^2$.

Graph of
$$f(x) = 2x, g(x) = 3x^3 + x^2$$

Question 1 Use Julia's guess to find the derivative of $f(x) \cdot g(x)$.

$$18x^2 + 4x$$

Learning outcomes:

Definition 1. The derivative of f(x) at a is defined by the following limit:

$$\left[\frac{d}{dx}f(x)\right]_{x=a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Use the limit definition of the derivative to find the derivative of $f(x) \cdot g(x)$.

$$24x^3 + 6x^2$$

Was Julia right?

Multiple Choice:

- (a) Yes
- (b) No ✓

Julia: Darn! It didn't work!

Dylan: It must be a little harder than that...

James: That's right Dylan, but it is easier than the limit definition! All we have to do is use

$$\frac{d}{dx}(f(x) \cdot g(x)) = f(x) \cdot g'(x) + f'(x) \cdot g(x).$$

This is called the **Product Rule**.

Question 2 Using the Product Rule, differentiate the products of the following functions:

$$f(x) = 6x^3, g(x) = 7x^4$$

$$294x^{6}$$

$$f(x) = \cos(x) + 4x, g(x) = 3x^2$$

$$-3x^2\sin(x) + 6x\cos(x)$$

$$f(x) = x^2, g(x) = 3x^3 - 3x$$

$$15x^4 - 9x^2$$

$$f(x) = x^7, g(x) = 2x^{32}$$

$$78x^{38}$$

The Quotient Rule

Dylan: Wow! That's gonna save a ton of time with products! Is there anything like it we can do with quotients?

James: There is! It's even called the Quotient Rule!

Julia: I bet it's a pain too though, just like the product rule.

James: Well, why don't you try using your intuition first rather than guessing?

Dylan: Alright, well, I guess I would divide the derivative of the numerator by the derivative of the denominator.

Question 3 Consider the functions $f(x) = x^3 + 1$ and g(x) = x.

Graph of
$$f(x) = x^3 + 1$$
, $g(x) = x$

Use Dylan's guess to find the derivative of $\frac{f(x)}{g(x)}$.

$$3x^2/1$$

Use the limit definition of the derivative to find the derivative of $\frac{f(x)}{g(x)}$.

$$(2x^3-1)/x^2$$

Was Dylan right?

Multiple Choice:

- (a) Yes
- (b) No ✓

Julia: I knew it! It's never that easy!

James: Now calm down Julia, this rule is worse than the last one, but it's much better than going through by the limit definition:

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.$$

Question 4 Using the Quotient Rule, differentiate the products of the following functions to find $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right]$:

$$f(x) = 3x - 1, g(x) = 2x + 1$$

$$5/(2x + 1)^{2}$$

$$f(x) = 1, g(x) = x + 10$$

$$-1/(x + 10)^{2}$$

$$f(x) = x^{2}, g(x) = 3x^{3} - 3x$$

$$(-x^{2} - 1)/(3(x^{2} - 1)^{2})$$

$$f(x) = x^{7}, g(x) = 2x^{32}$$

$$-25/(2x^{26})$$

The Chain Rule

James: There's one last rule to learn today; the Chain Rule.

Dylan: That rule sounds pretty cool! When do we use it though? I thought we already covered the functions we need to know...

Julia: Yeah, what else is there?

James: We use the chain rule in composition of functions, like when we have $\sin(2x) - 2x$ is a function, and so is $\sin(x)$

Julia: And how bad is the rule?

James: This one is a little more tricky -

$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x).$$

Dylan and Julia: That's so gross.

James: Well, let's give it a try and see if you like it more than the limit definition!

Question 5 Consider
$$f(x) = \sqrt(x)$$
 and $g(x) = \frac{1}{x}$

Graph of $sqrt(x), 1/x$

Using the limit definition of derivative, evaluate the derivative of f(g(x)).

$$-1/2x^{3/2}$$

Now, evaluate the same limit using the chain rule. Notice you get the same answer. Yay.

Question 6 Find the composition f(g(x)), then using the Chain Rule, differentiate f(g(x)) for the following functions:

$$f(x) = 3x + x^2$$
, $g(x) = x^4 + 7x$

$$f(g(x)) = 3(x^4 + 7x) + (x^4 + 7x)^2 \frac{d}{dx} f(g(x)) = 8x^7 + 70x^4 + 12x^3 + 98x + 21$$

$$f(x) = \cos(x), g(x) = \sin(x)$$

$$f(g(x)) = \left[\cos(\sin(x))\right] \frac{d}{dx} \left[f(g(x))\right] = \left[-\cos(x)\sin(\sin(x))\right]$$

$$f(x) = \cos(x), g(x) = x^3$$

$$f(g(x)) = \boxed{\cos(x^3)} \frac{d}{dx} \left[f(g(x)) \right] = \boxed{-3x^2 \sin(x^3)}$$

Question 7 Using the Chain Rule, differentiate the compositions g(f(x)) for the following functions:

$$f(x) = 3x + x^2, g(x) = x^4 + 7x$$

$$g(f(x)) = \left[(3x + x^2)^4 + 7(3x + x^2) \right] \frac{d}{dx} \left[g(f(x)) \right] = \left[(2x + 3)(4x^3(x + 3)^3 + 7) \right]$$

$$f(x) = \cos(x), \, g(x) = \sin(x)$$

$$g(f(x)) = \left[\sin(\cos(x))\right] \frac{d}{dx} \left[g(f(x))\right] = \left[-\cos(\cos(x))\sin(x)\right]$$

$$f(x) = \cos(x), g(x) = x^3$$

$$g(f(x)) = \boxed{\cos(x)^3} \frac{d}{dx} \left[g(f(x)) \right] = \boxed{-3\cos^2(x)\sin(x)}$$

In Summary

We've covered a lot of differentiation rules in this lab, to help you out we've summarized the theorems below:

Theorem 1 (The Product Rule). If f and g are differentiable, then

$$\frac{d}{dx}\left[f(x)g(x)\right] = f(x)\frac{d}{dx}\left[g(x)\right] + g(x)\frac{d}{dx}\left[f(x)\right]$$

Theorem 2 (The Quotient Rule). If f and g are differentiable, then

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} \left[f(x) \right] - f(x) \frac{d}{dx} \left[g(x) \right]}{\left[g(x) \right]^2}$$

Theorem 3 (The Chain Rule).

$$\frac{d}{dx}\left[f(x)g(x)\right] = f(x)\frac{d}{dx}\left[g(x)\right] + g(x)\frac{d}{dx}\left[f(x)\right]$$