

BRAC University

Dept. of Computer Science and Engineering

Assessment: Assignment 1 Due: 12 PM 10 October 2023 Full Marks:

Fall 2023 Semester: Name: CSE251 Course Code: Student ID:

/	\\/rito	down your	student ID	on the ton	right corner	of each of the	0 00000

Course Name:

Section:

Electronic Devices and Circuits

Question 1:

8 Marks

For $\emph{\textbf{R}}=80~\Omega,~\emph{\textbf{R}}_\emph{\textbf{L}}=15~\mathrm{k}\Omega,~\emph{\textbf{r}}_\emph{\textbf{z}}=30~\Omega,~\emph{\textbf{V}}_\emph{\textbf{Z}0}=4~\mathrm{V},~\mathrm{and}~\emph{\textbf{I}}_\emph{\textbf{Z}}=1~\mathrm{mA}.$

a) Find V_0 , I_L

[CO2]

b) Find I, V^+ .

[CO2]

Question 2: 12 Marks

a) Analyze the circuit in the Figure above to find i_x in terms of v_s , R_s , R_o , and b.

[CO1] ₂

Write down your student ID on the **top right corner of each of the pages**.

Clearly write the solutions, along with the questions, on white paper with black ink (no need to use color pen, don't use pencils).

Use CamScanner, or Adobe Scan, or Microsoft Office Lens, or any other software to scan the pages and make a single PDF file.

After creating the PDF, make sure that (a) there are no pages missing, (b) all of the pages are legible, (c) your student ID on each page are visible.

Please note, collaboration \neq copying. You are allowed to discuss the questions and clear confusion you might have, but you have to write your solutions independently and be able to explain your answers during a random viva.

[[]Very Important] Rename the PDF in the following format: "A1_StudentID_FullNameWithoutSpace.pdf". For example, if my student ID is 12345678 and my name is Shadman Shahid, the filename should be "A1_12345678_ShadmanShahid.pdf".

Submission Link: https://forms.gle/UhtL5NgJ5sVW3MU56

- b) For the above circuit, find the value of v_o .
 - 17 BIB 10V
 120kn 107 Log 20ks2

[CO2] 3

[CO2] 3

[CO2]

c) In the above circuit, $\beta=120$. Find the current I_0 and v_0 from the given circuit.

Question 3:

In the adjacent circuit $\beta = 80$.

- a) Derive an expression of I_E in terms of I_B and β . [CO1] 2
- b) Find the value of the currents I_{E} , and I_{B} .
- c) Find the value of the voltage at the output node v_o .
- d) Express v_o in terms of I_B and β . Thereafter, determine how v_o would change for changing the value of β . Show the change in v_o for $\beta = 50$ and $\beta = 20$.

10 Marks

[CO2] 4

[CO2] 6

Question 4: 10 Marks

In the above circuit A=50, $R_i=80~{\rm k}\Omega$ and $R_o=800~\Omega$. Answer the following questions

- a) Write the node equations for the nodes indicated by v_i and v_o . [CO1] 4
- b) Solve the node equations to find the values of v_i and v_o . [CO2] 3
- c) Can circuit theorems based on linearity principle (such as superposition principle) be applied [CO1] 3 to the above circuit? Explain in short why or why not.

Question 5: 10 Marks

a) Write down the two KVL equations for the lines (loops) indicated by the red lines L_1 and L_2 . [CO1] 3

b) Solve the circuit to find v_0 , I_1 and I_2 . You may use either mesh analysis or nodal analysis. [CO2] 4

c) Analyze the circuit to find v_0 and I_0 . [Use any technique of your choice.] [CO2] 3