

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»				
КАФЕДРА <u>«</u>	Программное обеспечение ЭВМ и информационные технологии»			

Отчет по лабораторной работе № 2 по курсу "Анализ алгоритмов"

Тема	Алгоритмы умножения матриц
Студе	ент Косарев А.А.
Групі	па _ ИУ7-51Б
Оцен	ка (баллы)
Преп	одаватель Волкова Л. Л., Строганов Ю.В.

Содержание

Bı	веде	ние	3
1	Ана	алитическая часть	4
	1.1	Цель и задачи	4
	1.2	Классический алгоритм умножения матриц	4
	1.3	Алгоритм Винограда	5
	1.4	Алгоритм Винограда с оптимизациями	6
2	Koı	нструкторская часть	7
	2.1	Алгоритмы умножения матриц	7
	2.2	Описание типов данных	13
	2.3	Оценка трудоемкости алгоритмов	13
	2.4	Исходные файлы программы	19
3	Tex	нологическая часть	20
	3.1	Выбор языка программирования и среды разработки	20
	3.2	Реализация алгоритмов	20
	3.3	Тестирование	22
4	Исс	следовательская часть	25
	4.1	Примеры работы программы	25
	4.2	Время выполнения реализаций алгоритмов	27
	4.3	Технические характеристики устройства	28
	4.4	Вывод	
За	клю	очение	30
Cı	писо	к использованных источников	31

Введение

В программировании перемножение матриц является одним из базовых алгоритмов, который широко применяется в различных математических задачах, численных методах и машинном обучении. Также существует большое количество вариантов оптимизаций, используемых для уменьшения времени работы реализаций выбранных методов.

В данном отчете будут рассмотрены следующие алгоритмы умножения матриц:

- классический;
- Винограда;
- Винограда с оптимизациями.

1 Аналитическая часть

1.1 Цель и задачи

Цель – изучение и исследование алгоритмов перемножения матриц.

Для достижения поставленной цели следует решить следующие задачи:

- разработать алгоритмы перемножения матриц (классический, Винограда и Винограда с оптимизациями);
- реализовать разработанные алгоритмы;
- вывести оценку трудоемкости алгоритмов;
- выполнить замеры процессорного времени работы реализаций алгоритмов;
- провести сравнительный анализ заданных алгоритмов сортировки по затрачнному времени работы реализаций.

1.2 Классический алгоритм умножения матриц

Произведением матриц A и B называется матрица C такая, что число строк и столбцов матрицы C равно количеству строк матрицы A и столбцов матрицы B соответственно [1].

Необходимым условием умножения двух матриц является равнство количества столбцов первой матрицы количеству строк второй матрицы.

Пусть даны матрицы $A \ [a \times b]$ и $B \ [c \times d]$:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, \tag{1.1}$$

$$B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix}, \tag{1.2}$$

тогда произведением матриц A и B будет считаться матрица C [$a \times d$]:

$$C = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix}, \tag{1.3}$$

где

$$C_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}, \ i = 1, 2, ..., a; \ j = 1, 2, ..., d.$$
 (1.4)

Классический алгоритм умножения двух матриц работает по формуле 1.4.

1.3 Алгоритм Винограда

В матрице, которая является результатом произведения двух других матриц, каждый элемент представляет собой скалярное произведение соответствующих строки и столбца исходных матриц [2]. Рассмотрим два вектора:

$$P = (p_1, p_2, p_3, p_4), (1.5)$$

$$Q = \left(q_1, q_2, q_3, q_4 \right). \tag{1.6}$$

Их скалярное произведение будет равно:

$$P \cdot Q = p_1 q_1 + p_2 q_2 + p_3 q_3 + p_4 q_4; \tag{1.7}$$

$$P \cdot Q = (p_1 + q_2)(p_2 + q_1) + (p_3 + q_4)(p_4 + q_3) - p_1p_2 - p_3p_4 - q_1q_2 - q_3q_4.$$
 (1.8)

После внимательного изучения формулы 1.7 можно сказать, что ее сла-

гаемые могут быть вычислены заранее для каждой строки первой матрицы и для каждого столбца второй. В итоге некоторые операции умножения заменяются на операции сложения, которые являются менее времязатратными.

Именно этот прием и используется в алгоритме Винограда.

1.4 Алгоритм Винограда с оптимизациями

Для того, чтобы дополнительно уменьшить время работы алгоритма Винограда необходимо применить следующие методы оптимизации:

- заменить операцию x = x + k на x + = k;
- заменить умножение на 2 на побитовый сдвиг;
- предвычислять слагаемые для алгоритма, например те, которые считаются в цикле каждый раз заново, но не зависят от исполняемых итераций.

Вывод

В данном разделе был теоретически разобран классический алгоритм умножения матриц и алгоритм Винограда.

2 Конструкторская часть

В данном разделе будут представлены схемы алгоритмов умножения матриц, рассмотренных в аналитической части, выбранные типы данных и вывод оценки трудоемкости алгоритмов.

2.1 Алгоритмы умножения матриц

Схемы алгоритмов умножения матриц представлены ниже на рисунках 2.1-2.5.

Рисунок 2.1 – Классический алгоритм умножения матриц

Рисунок 2.2 – Алгоритм Винограда (часть 1)

Рисунок 2.3 – Алгоритм Винограда (часть 2)

Рисунок 2.4 – Алгоритм Винограда с оптимизациями (часть 1)

Рисунок 2.5 – Алгоритм Винограда с оптимизациями (часть 2)

2.2 Описание типов данных

Выбранные типы данных:

- матрица массив массивов типа *float*;
- количество строк матрицы тип int;
- количество столбцов матрицы тип int;
- дополнительные массивы типа *float*.

Для матрицы выбран тип float, так как данный тип охватывает и целые числа, и вещественные, а это необходима для полноценного тестирования работы алгоритмов.

2.3 Оценка трудоемкости алгоритмов

Для вывода оценки трудоемкости алгоритмов существуют определенные правила.

- 1. Трудоемкость трех операций (/, %, *) равна 2, а для всех остальных (=, +=, -=, ++, --, ==, !=, <, <=, >, >=, +, -, <<, >>, []) «штраф» равен 1.
- 2. Трудоемкость цикла:

$$f_{for} = f_{\text{инициализации}} + f_{\text{сравнения}} + N(f_{\text{тела}} + f_{\text{инкремент}} + f_{\text{сравнения}})$$
 (2.1)

3. Трудоемкость условного оператора:

$$f_{if} = f_{\text{условия}} + \begin{cases} f_A, & \text{если условие выполняется,} \\ f_B, & \text{иначе.} \end{cases}$$
 (2.2)

Вывод оценки трудоемкости алгоритмов заданных сортировок:

• Классический алгоритм умножения матриц

В таблице 2.1 представлена построчная оценка трудоемкости классического алгоритма умножения матриц.

Таблица 2.1 – Построчная оценка трудоемкости классического алгоритма умножения матриц

Строка кода	Bec
for i in range(len(matrix1)):	3
for j in range(len(matrix $2[0]$)):	4
$matrix_res[i][j] = 0$	3
for k in range($len(matrix1[0])$):	4
$\boxed{\text{matrix_res[i][j]} = \text{matrix_res[i][j]} + \text{matrix1[i][k]} * \text{matrix2[k][j]}}$	12
return matrix_res	0

— Трудоемкость цикла по $i \in [1..N]$:

$$f = 2 + N \cdot (2 + f_{body}) \tag{2.3}$$

— Трудоемкость цикла по $j \in [1..M]$:

$$f = 2 + M \cdot (2 + f_{body})$$
 (2.4)

— Трудоемкость цикла по $k \in [1..K]$:

$$f = 2 + K \cdot (2 + 12) \tag{2.5}$$

Итого трудоемкость:

$$f = 2 + N \cdot (4 + M \cdot (4 + 14K)) \approx 14NMK$$
 (2.6)

• Алгоритм Винограда

В таблице 2.2 представлена построчная оценка трудоемкости алгоритма Винограда.

Таблица 2.2 – Построчная оценка трудоемкости алгоритма Винограда

Строка кода	Bec
rows1 = len(matrix1)	1
columns2 = len(matrix2[0])	2
columns1 = len(matrix1[0])	2
row = [0] * rows1	$rows1 \cdot 2$
column = [0] * columns2	$columns 2 \cdot 2$
for i in range(rows1):	3
for j in range(columns $1 / 2$):	5
row[i] = row[i] + matrix1[i][2 * j] * matrix1[i][2 * j + 1]	15
for i in range(columns2):	3
for j in range(columns $1 / 2$):	5
$\boxed{\text{column[i]} = \text{column[i]} + \text{matrix2[2 * j][i] * matrix2[2 * j + 1][i]}}$	15
for i in range(rows1):	3
for j in range(columns2):	3
$matrix_res[i][j] = -row[i] - column[j]$	7
for k in range(columns $1 / 2$):	5
$[matrix_res[i][j] = matrix_res[i][j] + (matrix1[i][2 * k + 1]$	
+ matrix2[2 * k][j]) * (matrix1[i][2 * k] + matrix2[2 * k + 1][j])	28
if columns $1 \% 2 == 1$:	3
for i in range(rows1):	3
for j in range(columns2):	3
$[matrix_res[i][j] = matrix_res[i][j] + matrix1[i][columns1 - 1]$	
* matrix2[columns1 - 1][j]	14
return matrix_res	0

Подсчет трудоемкости.

– Создание вспомогательных массивов:

$$f_{arr} = 2 \cdot (rows1 + columns1) \tag{2.7}$$

— Работа с массивом row (первый цикл):

$$f_{row} = 2 + rows1 \cdot (4 + 17 \cdot \frac{columns1}{2}) \tag{2.8}$$

— Работа с массивом *column* (второй цикл):

$$f_{column} = 2 + columns2 \cdot (4 + 17 \cdot \frac{columns1}{2}) \tag{2.9}$$

– Цикл заполнения результирующей матрицы:

$$f_{res} = 2 + rows1 \cdot (4 + columns2 \cdot (13 + 15 \cdot columns1)) \quad (2.10)$$

– Дополнительный цикл, если матрица нечетного размера:

$$f_{extra} = 2 + rows1 \cdot (4 + 17 \cdot columns2) \tag{2.11}$$

Трудоемкость для лучшего случая (количество столбцов первой матрицы — четное):

$$f = 2f_{arr} + f_{row} + f_{column} + f_{res} + 2 \approx 15 \cdot rows1 \cdot columns1 \cdot columns2$$
 (2.12)

Трудоемкость для худшего случая (количество столбцов первой матрицы – нечетное):

$$f = 2f_{arr} + f_{row} + f_{column} + f_{res} + f_{extra} \approx$$

$$\approx 15 \cdot rows1 \cdot columns1 \cdot columns2$$
(2.13)

• Алгоритм Винограда с оптимизациями

В таблице 2.3 представлена построчная оценка трудоемкости алгоритма Винограда с оптимизациями.

Таблица 2.3 – Построчная оценка трудоемкости алгоритма Винограда с оптимизациями

Строка кода	Bec
rows1 = len(matrix1)	1
columns2 = len(matrix2[0])	2
columns1 = len(matrix1[0])	2
row = [0] * rows1	$rows1 \cdot 2$
column = [0] * columns2	$columns 2 \cdot 2$
for i in range(rows1):	3
for j in range(columns $1 / 2$):	5
row[i] += matrix1[i][j << 1] * matrix1[i][(j << 1) + 1]	11
for i in range(columns2):	3
for j in range(columns $1 / 2$):	5
$\boxed{\text{column[i]} += \text{matrix2[j } << 1][i] * \text{matrix2[(j << 1) } + 1][i]}$	11
for i in range(rows1):	3
$\mathrm{buf} = -\mathrm{row}[\mathrm{i}]$	3
for j in range(columns2):	3
$matrix_res[i][j] = buf - column[j]$	5
for k in range(columns $1 / 2$):	5
$ind = k \ll 1$	2
$matrix_res[i][j] += (matrix1[i][ind + 1] + matrix2[ind][j]) *$	
[(matrix1[i][ind] + matrix2[ind + 1][j])	17
if columns $1 \% 2 == 1$:	3
for i in range(rows1):	3
buf = matrix1[i][columns1 - 1]	4
for j in range(columns2):	3
$matrix_res[i][j] += buf * matrix2[columns1 - 1][j]$	8
return matrix_res	0

Подсчет трудоемкости.

- Создание вспомогательных массивов:

$$f_{arr} = 2 \cdot (rows1 + columns1) \tag{2.14}$$

- Работа с массивом *row* (первый цикл):

$$f_{row} = 2 + rows1 \cdot (4 + 13 \cdot \frac{columns1}{2}) \tag{2.15}$$

— Работа с массивом *column* (второй цикл):

$$f_{column} = 2 + columns2 \cdot (4 + 13 \cdot \frac{columns1}{2}) \tag{2.16}$$

– Цикл заполнения результирующей матрицы:

$$f_{res} = 2 + rows1 \cdot (7 + columns2 \cdot (9 + \frac{21}{2} \cdot columns1))$$
 (2.17)

– Дополнительный цикл, если матрица нечетного размера:

$$f_{extra} = 2 + rows1 \cdot (8 + 10 \cdot columns2) \tag{2.18}$$

Трудоемкость для лучшего случая (количество столбцов первой матрицы – четное):

$$f = 2f_{arr} + f_{row} + f_{column} + f_{res} + 2 \approx$$

$$\approx 10.5 \cdot rows1 \cdot columns1 \cdot columns2$$
(2.19)

Трудоемкость для худшего случая (количество столбцов первой матрицы – нечетное):

$$f = 2f_{arr} + f_{row} + f_{column} + f_{res} + f_{extra} \approx$$

$$\approx 10.5 \cdot rows1 \cdot columns1 \cdot columns2$$
(2.20)

2.4 Исходные файлы программы

Программа состоит из следующих модулей:

- таіп.ру файл с главной функцией, вызывающей меню программы;
- cdio.py файл с функциями, осуществляющими ввод и вывод данных;
- $multi_matrix.py$ файл, содержащий код алгоритмов умножения матриц;
- *proc_time.py* файл с функциями подсчета процессорного времени алгоритмов.

Вывод

В этом разделе были представлены схемы классического алгоритма умножения матриц и алгоритма Винограда с оптимизациями и без, вывод оценки их трудоемкости и выбранные типы данных.

Проведя анализ трудоемкости алгоритмов, можно сказать, что между классическим алгоритмом умножения матриц и алгоритмом Винограда не столь большая разница, однако алгоритм Винограда с введенными оптимизациями теоретически работает уже значительно быстрее.

3 Технологическая часть

В данном разделе будут рассмотрены средства реализации лабораторной работы, представлены листинги алгоритмов умножения матриц, а также тестовые данные, которые использовались для проверки корректности работы алгоритмов.

3.1 Выбор языка программирования и среды разработки

Для реализации алгоритмов был выбран язык программирования Python, а в качестве среды разработки — PyCharm. Для замеров процессорного времени использовалась функция $process_time()$ [3] из библиотеки time, а для построения графиков — библиотека matplotlib [4].

3.2 Реализация алгоритмов

Ниже представлены реализации классического алгоритма умножения матриц и алгоритма Винограда с оптимизациями и без (листинги 3.1–3.3).

Листинг 3.1 – Классический алгоритм умножения матриц

```
def matrix multiply(matrix1, matrix2):
      matrix res = [[0] * len(matrix1) for in
2
        range(len(matrix2[0]))]
     for i in range(len(matrix1)):
3
          for j in range(len(matrix2[0])):
4
5
              matrix res[i][j] = 0
              for k in range(len(matrix1[0])):
6
                  matrix res[i][j] = matrix res[i][j] + matrix1[i][k]
7
                     * matrix2[k][j]
8
     return matrix res
```

Листинг 3.2 – Алгоритм Винограда

```
def vinograd(matrix1, matrix2):
1
2
      rows1 = len(matrix1)
      columns2 = len(matrix2[0])
3
      columns1 = len(matrix1[0])
4
      matrix res = [[0] * rows1 for _ in range(columns2)]
5
6
      row = [0] * rows1
7
      column = [0] * columns2
8
9
      for i in range(rows1):
           for j in range(columns1 // 2):
10
               row[i] = row[i] + matrix1[i][2 * j] * matrix1[i][2 * j]
11
                  + 1]
12
      for i in range(columns2):
13
           for j in range(columns1 // 2):
14
               column[i] = column[i] + matrix2[2 * j][i] * matrix2[2 *
15
                  [ + 1][i]
16
      for i in range(rows1):
17
           for j in range(columns2):
18
               matrix res[i][j] = -row[i] - column[j]
19
20
               for k in range(columns1 // 2):
                   matrix res[i][j] = matrix res[i][j] + (matrix1[i][2]
21
                      * k + 1] + matrix2[2 * k][j]) * (matrix1[i][2 *
                      k + matrix2[2 * k + 1][j]
22
23
      if columns1 % 2 == 1:
           for i in range(rows1):
24
               for j in range(columns2):
25
                   matrix res[i][j] = matrix res[i][j] +
26
                      matrix1[i][columns1 - 1] * matrix2[columns1 -
                      1][j]
27
28
      return matrix res
```

Листинг 3.3 – Алгоритм Винограда с оптимизациями

```
def optimized_vinograd(matrix1, matrix2):
    rows1 = len(matrix1)
    columns2 = len(matrix2[0])
```

```
4
      columns1 = len(matrix1[0])
       matrix res = [[0] * rows1 for in range(columns2)]
5
6
      row = [0] * rows1
      column = [0] * columns2
7
8
9
      for i in range(rows1):
           for j in range(columns1 // 2):
10
               row[i] += matrix1[i][j << 1] * matrix1[i][(j << 1) + 1]
11
12
13
      for i in range(columns2):
           for j in range(columns1 // 2):
14
               column[i] += matrix2[j << 1][i] * matrix2[(j << 1) +
15
                  1][i]
16
17
      for i in range(rows1):
           buf = -row[i]
18
19
           for j in range(columns2):
               matrix_res[i][j] = buf - column[j]
20
               for k in range(columns1 // 2):
21
22
                   ind = k \ll 1
                   matrix_res[i][j] += (matrix1[i][ind + 1] +
23
                      matrix2[ind][j]) * (matrix1[i][ind] +
                      matrix2[ind + 1][j])
24
       if columns1 \% 2 == 1:
25
           for i in range(rows1):
26
               buf = matrix1[i][columns1 - 1]
27
               for j in range(columns2):
28
29
                   matrix res[i][j] += buf * matrix2[columns1 - 1][j]
30
31
      return matrix res
```

3.3 Тестирование

Классы эквивалентности:

- две пустые матрицы;
- первая матрица пустая;

- вторая матрица пустая;
- матрицы, у которых число столбцов первой не равно числу строк второй;
- две нулевые матрицы;
- первая матрица нулевая;
- вторая матрица нулевая;
- две единичные матрицы;
- первая матрица единичная;
- вторая матрица единичная;
- две случайно заполненные матрицы.

В таблице 3.1 представлены модульные тесты. Все тесты пройдены успешно.

Таблица 3.1 – Модульные тесты

	Входные данные		Ожидаемый результат		
Nº	mtr1	mtr2	Классич. Виноград		Винограда
					с опт.
1	()		Error	Error	Error
2	()	$\left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right)$	Error	Error	Error
3	$\left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right)$	()	Error	Error	Error
4	$\left(\begin{array}{cc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right)$	$\left(\begin{array}{cc} 5 & 0 \\ 3 & 7 \end{array}\right)$	Error	Error	Error
5	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
6	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 3 & 9 \\ 2 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
7	$\begin{pmatrix} 4 & 5 \\ 3 & 2 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
8	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
9	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} 2 & 8 \\ 9 & -4 \end{pmatrix} $	$ \begin{pmatrix} 2 & 8 \\ 9 & -4 \end{pmatrix} $	$ \begin{pmatrix} 2 & 8 \\ 9 & -4 \end{pmatrix} $	$\begin{pmatrix} 2 & 8 \\ 9 & -4 \end{pmatrix}$
10	$ \left(\begin{array}{cc} 7 & 5 \\ 3 & 10 \end{array}\right) $	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$ \left(\begin{array}{cc} 7 & 5 \\ 3 & 10 \end{array}\right) $	$ \left(\begin{array}{cc} 7 & 5 \\ 3 & 10 \end{array}\right) $	$ \left(\begin{array}{cc} 7 & 5 \\ 3 & 10 \end{array}\right) $
11	$ \left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right) $	$ \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{array}\right) $	$\left(\begin{array}{cc} 22 & 28 \\ 49 & 64 \end{array}\right)$	$ \left(\begin{array}{cc} 22 & 28 \\ 49 & 64 \end{array}\right) $	$\left(\begin{array}{cc} 22 & 28 \\ 49 & 64 \end{array}\right)$

Вывод

В этом разделе были рассмотрены средства реализации лабораторной работы, представлены листинги классического алгоритма умножения матриц и алгоритма Винограда с отпимизациями и без, а также модульные тесты.

4 Исследовательская часть

В данном разделе будут представлены примеры работы программы, проведены замеры процессорного времени и предоставлена информация о технических характеристиках устройства.

4.1 Примеры работы программы

На рисунках 4.1-4.2 представлен результат работы программы. В каждом примере пользователем введены две матрицы и получены результаты их умножения.

```
2. Замеры процессорного времени
Ввод первой матрицы
Введите элементы матрицы (построчно):
Введите количество строк:
Введите количество столбцов:
Введите элементы матрицы (построчно):
Классический алгоритм перемножения матриц
Алгорит Винограда с оптимизацией
```

Рисунок 4.1 – Пример работы программы №1

```
1. Умножение матриц:
    - Винограда
    - Винограда с оптимизацией
2. Замеры процессорного времени
Ввод первой матрицы
Введите количество столбцов:
Введите элементы матрицы (построчно):
Ввод второй матрицы
Введите количество строк:
Введите элементы матрицы (построчно):
Классический алгоритм перемножения матриц
Алгоритм Винограда
Алгорит Винограда с оптимизацией
Результат:
```

Рисунок 4.2 – Пример работы программы №2

4.2 Время выполнения реализаций алгоритмов

Для замера процессорного времени использовалась функция $process_time()$ библиотеки time. Возвращаемый результат — время в миллисекундах, число типа float.

Чтобы получить достаточно точное значение, производилось усреднение времени. В замерах использовались матрицы размером от $[50 \times 50]$ до $[450 \times 450]$, а сам процесс перемножения для каждых двух матриц запускался по 200 раз.

В таблице 4.1 представлено процессорное время работы алгоритмов умножения матриц.

Таблица 4.1 – Результаты замеров времен

Размер матрицы	Классический	Винограда	Винограда с опт.
50	0.026328	0.023984	0.021094
100	0.165547	0.174063	0.164062
150	0.565937	0.456016	0.458047
200	1.135781	1.183828	1.235234
250	2.311016	2.591016	2.154219
300	4.498516	4.429297	3.884453
350	6.387656	7.152188	6.172891
400	9.993828	10.394141	9.592266
450	13.757500	15.271719	13.475078

На рисунке 4.3 также приведены результаты замеров процессорного времени.

Рисунок 4.3 — Сравнение процессорного времени работы алгоритмов умножения матриц

4.3 Технические характеристики устройства

Ниже представлены характеристики компьютера, на котором проводилось тестирование программы:

- операционная система Windows 10 Домашняя 21H2;
- оперативная память 16 Гб;
- процессор Intel(R) Core(TM) i7-10870H CPU @ 2.20 ГГц.

Во время тестирования ноутбук был подключен к сети электропитания. Из программного обеспечения были запущены только среда разработки *PyCharm* и браузер *Chrome*.

Процессор был загружен на 19%, оперативная память – на 50%.

4.4 Вывод

В результате замеров процессорного времени выделены следущие аспекты: работа алгоритма Винограда без оптимизаций занимает больше времени, чем два остальных алгоритма; классический алгоритм умножения матриц и алгоритм Винограда с оптимизациями производят вычисления приблизительно за одно время.

Заключение

Цель, которая была поставлена в начале лабораторной работы, была достигнута: изучены и исследованы алгоритмы умножения матриц.

Решены все поставленные задачи:

- разработаны и реализованы алгоритмы умножения матриц (классический, Винограда с оптимизациями и без);
- выведена оценка трудоемкости алгоритмов;
- выполнены замеры процессорного времени работы реализаций алгоритмов;
- проведен сравнительный анализ заданных алгоритмов умножения матриц по затрачнному времени работы реализаций.

Стоит отметить, что алгоритм Винограда с использованными оптимизациями и классический метод являются наиболее предпочтительными в решении задачи умножении матриц.

Алгоритм Винограда без оптимизаций в среднем тратит на 12.5% больше времени, чем два остальных алгоритма.

Список использованных источников

- [1] Бахвалов Н.С. Численные методы / Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков М.: Наука, 1987.
- [2] Кормен Т. Алгоритмы: построение и анализ / Т. Кормен, Ч. Лейзерсон, Р.М. Ривест: МЦНТО, 1999.
- [3] time Time access and conversions [Электронный ресурс]. URL: https://docs.python.org/3/library/time.html#time.process_time (дата обращения: 14.10.2022)
- [4] Matplotlib documentation [Электронный ресурс]. URL: https://matplotlib.org/stable/index.html (дата обращения: 14.10.2022)
- [5] Windows 10 Home [Электронный ресурс]. URL: https://www.microsoft.com/en-us/d/windows-10-home/d76qx4bznwk4?activetab= pivot:overviewtab (дата обращения: 14.10.2022)
- [6] Intel(R) Core(TM) i7-10870H CPU @ 2.20GHz [Электронный ресурс].

 URL: https://ark.intel.com/content/www/ru/ru/ark/products/
 208018/intel-core-i710870h-processor-16m-cache-up-to-5-00-ghz.
 html (дата обращения: 14.10.2022)