

Algorithmen und Datenstrukturen

Wintersemester 2018/19 24. Vorlesung

Der Handlungsreisende

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollständiger Graph G = (V, E)

mit Kantenkosten $c \colon E \to \mathbb{R}_{>0}$

Gesucht: Hamiltonkreis K in G mit minimalen

Kosten $c(K) := \sum_{e \in K} c(e)$.

(Ein HK besucht jeden Knoten genau $1 \times .$)

Beispiel. $c \equiv d_{\text{Fiikl}}$

Problem.

- TSP ist NP-schwer
- und schwer zu approximieren.

Etwas Geschichte

Der Handlungsreisende – wie er sein soll und was er zu thun hat, um Aufträge zu erhalten und eines glücklichen Erfolgs in seinen Geschäften gewiss zu sein. Von einem alten Commis-Voyageur [1832]

Rekord I:

optimale 120-Städte-Tour [Groetschel, 1977]

Rekord II:

optimale 15.112-Städte-Tour [Applegate, Bixby, Chvátal, Cook 2001]

Was tun? - Mach das Problem leichter!

Metrisches Traveling Salesperson Problem (Δ -TSP) **Problem:**

Gegeben: unger. vollständiger Graph G = (V, E)

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz.

Es gibt eine 2-Approximation für Δ -TSP.

Beweis.

Algorithmus:

Berechne min. Spannbaum MSB. Verdopple MSB \Rightarrow ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Füge "Abkürzungen" ein.

Analyse

Satz.

Es gibt eine 2-Approximation für Δ -TSP.

Beweis.

1. Algorithmus

Berechne MSB von G.

Verdopple MSB \Rightarrow ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Füge "Abkürzungen" ein.

2. Analyse

$$c(ALG) \le c(Kreis) = 2 \cdot c(MSB) \le 2 \cdot OPT$$

Dreiecksungleichung Optimale TSP-Tour minus eine Kante ist (i.A. nicht minimaler) Spannbaum!!

Die "Kunst" der unteren Schranke: $c(min. Spannbaum) \leq c(TSP-Tour)$

Exakte Berechnung: Brute Force

Algorithmus:

• Für jede Permutation σ von $\langle 1, 2, \ldots, n \rangle$:

Berechne die Kosten der Tour durch die Knoten v_1, \ldots, v_n in dieser Reihenfolge:

$$c(\sigma) = \sum_{i=1}^{n-1} c(v_{\sigma(i)} v_{\sigma(i+1)}) + c(v_{\sigma(n)} v_{\sigma(1)})$$

• Gib die kürzeste Tour zurück.

Laufzeit:

Anzahl Permutationen von n Objekten: n!

Hält man den 1. Knoten fest, so bleiben "nur" (n-1)! Permutationen.

Berechnung einer Tourlänge $c(\sigma)$: O(n) Zeit.

Berechnung der nächsten Permutation: ???

Ang. ??? = O(n), dann ist die Laufzeit O(n!).

Speicher:

O(n) für die aktuelle Permutation.

Wie iteriert man durch alle Permutationen?

Z.B. in lexikografischer Ordnung: $(1, 2, 3, 4, 5, 6), (1, 2, 3, 4, 6, 5), (1, 2, 3, 5, 4, 6), \dots, (6, 5, 4, 3, 2, 1).$

Für gegebene Permutation σ , finde Nachfolger in O(n) Zeit:

- Bestimme größten Index $i \in \{1, ..., n-1\}$ mit $\sigma(i) < \sigma(i+1)$.
- Falls nicht existiert, fertig (σ = letzte Permutation).
- Sonst bestimme größten Index j mit $\sigma(i) < \sigma(j)$. Beispiel:

$$\langle 1, 4, 3, 6, 5, 2 \rangle \longrightarrow \langle 1, 4, 5, 6, 3, 2 \rangle \longrightarrow \langle 1, 4, 5, 2, 3, 6 \rangle$$

$$\downarrow i \qquad j \qquad i \qquad n$$

- Vertausche $\sigma(i)$ und $\sigma(j)$.
- Kehre die Teilfolge $\langle \sigma(i+1), \sigma(i+2), \ldots, \sigma(n) \rangle$ um.

Wie groß ist n!?

$$\underbrace{n/2 \cdot n/2 \cdot \ldots \cdot n/2}_{n/2 \text{ mal}} \leq n! = 1 \cdot 2 \cdot \ldots \cdot n \leq n \cdot n \cdot \ldots \cdot n = n^n$$

$$\Rightarrow \qquad 2^{n/2\log_2 n/2} \leq n! \leq n^n = \left(2^{\log_2 n}\right)^n = 2^{n\log_2 n}$$

$$\Rightarrow \qquad n! \in 2^{\Theta(n \log n)}$$

Exakte Berechnung: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v_1 .

Für eine Knotenmenge $W \subseteq V \setminus \{v_1\}$ mit $v_i \in W$ definieren wir $OPT[W, v_i] := optimale (kürzeste) Länge eines <math>v_1-v_i$ -Wegs durch alle Knoten in W.

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

Dann gilt für $W = \{v_i\}$:

$$OPT[W, v_i] = c(v_1, v_i)$$

Und für W mit $\{v_i\} \subsetneq W$:

Letzter Knoten vor v_i

$$\mathsf{OPT}[W, v_i] = \mathsf{min}_{v_j \in W \setminus \{v_i\}} \; \mathsf{OPT}[W \setminus \{v_i\}, v_j] + c(v_j, v_i)$$

$$\Rightarrow$$
 OPT = min _{$k \neq 1$} OPT[{ $v_2, v_3, ..., v_n$ }, v_k] + $c(v_k, v_1)$

Index des letzten Knotens vor v_1

Der Algorithmus von Held-Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

```
HeldKarp(Knotenmenge V, Abstände c\colon V	imes V	o \mathbb{R}_{>0})
for i = 2 to n do
  OPT[\{v_i\}, v_i] = c(v_1, v_i)
for j = 2 to n - 1 do
      foreach W \subseteq \{v_2, \ldots, v_n\} mit |W| = j do
           foreach v_i \in W do
               \mathsf{OPT}[W,v_i] = \mathsf{min}_{v_i \in W \setminus \{v_i\}} \mathsf{OPT}[W \setminus \{v_i\},v_j] + c(v_j,v_i)
return \min_{k \neq 1} \mathsf{OPT}[\{v_2, v_3, \dots, v_n\}, v_k] + c(v_k, v_1)
```

Laufzeit: Berechnung von $OPT[W, v_i]$: O(n) Zeit Wie viele Paare (W, v_i) mit $v_i \in W$ gibt's? $\leq n \cdot 2^{n-1}$ \Rightarrow Gesamtlaufzeit $\in O(n^2 \cdot 2^n)$ **Speicher:** $O(n \cdot 2^n)$

Vergleich

	Brute Force	Held-Karp
Laufzeit	$2^{\Theta(n \log n)}$	$O(n^2 \cdot 2^n)$
Speicher	O(n)	$O(n \cdot 2^n)$

Der Algorithmus von Held und Karp verringert also die Laufzeit zu Kosten des Speicherplatzverbrauchs.

Das bezeichnet man als Laufzeit-Speicherplatz-Trade-Off.