Definiere eine gewöhnliche Differentialgleichung (implizit). Was versteht man unter einer Lösung der DGL?	Seien G ein Gebiet im \mathbb{R}^n+2 , I ein Intervall, eine Funktion $x:I\to\mathbb{R},t\rightarrowtail x(t)$ n mal differenzierbar und $F:G\to\mathbb{R}.$ Dann heißt $F(t,x,\dot{x},\ldots,x^{(n)})=0$
	implizite gewöhnliche DGL der Ordnung n . Sei $x \in \mathbb{C}^n$, $x:(a,b) \rightarrow \mathbb{R}$. x ist eine Lösung der DGL falls:
	1. $(t, x(t), \dot{x}(t), \dots x^{(n)}(t)) \in G \forall_{t \in (a,b)}, \text{ und}$

$$implizite$$
 gewöhnliche DGL der Ordnung $n.$ Sei $x \in C^n, x: (a,b) \mapsto \mathbb{R}. \ x$ ist eine Lösung der DGL falls:
$$1. \ \left(t, x(t), \dot{x}(t), \dots x^{(n)}(t)\right) \in G \qquad \forall_{t \in (a,b)}, \text{ und}$$
 2. die Gleichung $F = 0$ ist erfühlt $\forall_{t \in (a,b)}.$

Definiere eine gewöhnliche Differentialgleichung (explizit). Sei
$$\tilde{G}$$
 ein Gebiet im \mathbb{R}^n+1 , I ein Intervall, eine Funktion $x:I\to\mathbb{R}$: $t\mapsto x(t)$ n mal differenzierbar und $f:\tilde{G}\to\mathbb{R}$. Dann heißt
$$x^{(n)}=f(t,x,\dot{x},\ldots,x^{(n-1)})$$
 explizite gewöhnliche DGL der Ordnung n . Sei $x\in C^n, \, x:(a,b)\mapsto\mathbb{R}$. x ist eine Lösung der DGL falls:
$$1.\, \left(t,x(t),\dot{x}(t),\ldots x^{(n-1)}(t)\right)\in \tilde{G} \qquad \forall_{t\in(a,b)}, \text{ und}$$
 2. die Gleichung $f=0$ ist erfühlt für alle $t\in(a,b)$.

Ein Anfangswertproblem heißt korrekt gestellt, wenn	genau eine Lösung existiert und eine stetige Abhängigkeit von den Anfangsbedingungen gewährleistet ist.

Wie löst man
$$\dot{x}+f(t)x=g(t)$$
 mit der Eulerschen Methode?

• Multipliziere mit $\exp\left(\int_{t_0}^t f(t') \, \mathrm{d}t'\right)$.

• Fasse LHS als eine Abletiung nach x .

• Integriere es auf.

Wie lautet der Banachsche Fixpunktsatz?	Sei (X,d) vollständiger metrischer Raum, sei $A\subseteq X$ abgeschlossen, $T:A\to A$ kontrahierend mit Konktraktionszahl q . Dann:
	1. T hat genau einen Fixpunkt x^* in A ,
	2. für beliebige $x_0 \in A$ konvergiert $x_{n+1} = Tx_n$ gegen x^* mit $n \in \mathbb{N}$,
	3. es gilt die Abschätzung:

$$d(x_n, x^*) \le \frac{q^n}{1 - q} d(x_1, x_0)$$

$$f:G\subseteq\mathbb{R}^2\to\mathbb{R}\quad (t,x)\rightarrowtail f(t,x)$$
 genügt einer $Lippschitz-bedingung$ bzg. des 2. Arguments auf G , wenn
$$\left|f((t,x1)-f(t,x_2))\right|\leq L|x_1-x_2|$$

Definiere die Lippschitzbedingung für Vektorfunktionen.
$$\underbrace{f\,:\,\mathbb{R}^n+1\,\supseteq\,D(\underline{f}\,\to\,\mathbb{R}^n\,:\,(t,\underline{x})\,\rightarrowtail\,f(t,vecx)\,\,\mathrm{genügt}}_{\text{einer}\,\,Lippschitzbedingung}\,\,\mathrm{bzgl.}\,\,\underline{x}\,\,\mathrm{in}\,\,D(\underline{f}),\,\,\mathrm{wenn}\,\,\forall\underline{x},\underline{y}\,\,\mathrm{mit}}_{(t,\underline{x}),\,(t,\underline{y})\,\in\,D(\underline{f})}\,\,\exists\,\,\,L>0} : \\ \left\|\underline{f}(t,\underline{x})-\underline{f}(t,\underline{y})\right\|_{n}\leq L\left\|\underline{x}-\underline{y}\right\|_{n}$$

 $\|\underline{f}(0,\underline{w}) - \underline{f}(0,\underline{y})\|_n = 2\|\underline{w}\|_n$ ist beliebige Norm in \mathbb{R}^n .

Wie lautet der Satz von Picard Lindelöf über die Evistenz Sei $\dot{x} = f(t|x)$ mit $x_2 = c$

Sei $\dot{x} = f(t,x)$ mit $x_0 = x(t_0)$ ein Anfangswertproblem (AWP) gegeben, f erfülle die folgenden Bedingungen:

•
$$\exists a,b\in\mathbb{R}_{>0}$$
 so, dass f auf dem Rechteck
$$Q:=\Big\{(t,x)\in\mathbb{R}^2:|t-t_0|\leq a,|x-x_0|\leq b\Big\}$$

stetig und durch M beschränkt ist.

• f ist auf Q Lippschitzstetig bzg. x mit Lippschitzkonstante L.

Dann existiert geanu eine lokale Lösung des AWP, d.h. $\exists \sigma > 0$ so ,dass auf $J := [t_0 - \sigma, t_0 + \sigma]$ genau eine Lösung existiert. Man kann σ so wählen: $\sigma < \min \left\{ a, \frac{b}{m}, \frac{1}{L} \right\}$.

Wie lautet der Satz von Picard-Lindelöf über die Existenz und Eindeutigkeit der Lösung.

Ein explizites Differentialgleichungssystem n -ter Ordnung der Dimension k ist definiert als:	$\underline{x}^{(n)} = \underline{f}(t, \underline{x}(t), \dots, \underline{x}^{n-1}(t))$
	wobei $\underline{x}(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_k(t) \end{pmatrix}, f : \mathbb{R} \times \mathbb{R}^{n \cdot k} \supseteq D(f) \to \mathbb{R}^k.$

Wie lässt sich eine Differentialgleichung
$$n$$
-ter Ordnung auf ein Differentialgleichungssystem 1. Ordnung der Dimension k transformieren?

Sei $x \in C^n((\alpha, \beta), \mathbb{R})$ eine Lösung einer skalaren DGL n -ter Ordnung $(x^{(n)} = f(t, x, \dots, x^{(n-1)})$ eventuell mit Anfangsbedingungen.

Definiere $\underline{z}(t) \in \mathbb{R}^n$ mit $z_i(t) = x(t)^{(i-1)}$, $i \in \{1, \dots, n\}$. Es gilt $\dot{z}_i = z_{i+1} = x^{(i)}$.

 $z = \underline{z}(t)$ eine Lösung des n -dim. DGL-Systems 1. Ordnung:

$$\frac{\dot{\underline{z}}(t) = \begin{pmatrix} z_2(t) \\ \vdots \\ z_n(t) \\ f(t,\underline{z}) \end{pmatrix}}{= \underline{g}(t,\underline{z})} D(\underline{g}) = (\alpha,\beta) \times \mathbb{R}^n$$

$$\text{Für } \underline{z}(t_0) = \underline{z_0} \text{ setze } z_i^0 = x^{(i-1)}(t_0).$$

$$\dot{x} = f(t,x(t)), D(f) \subseteq \mathbb{R} \times \mathbb{R}^{,} x(t_0) = X_0$$
 auf einem Intervall (a',b') heißt Fortsetzung von x (x eine lokale Lösung des AWP auf (a,b)), wenn:
$$\bullet \ (a,b) \subset (a',b'),$$

•
$$y(t) \equiv x(t) \forall_{t \in (a,b)}$$

Definiere den Begriff einer Fortsetzung einer Lösung.

Sei ein

Eine Lösung y des AWP

AWP:
$$\begin{cases} \dot{x} = f(t, x(t)), D(f) \subseteq \mathbb{R} \times \mathbb{R} \\ x(t_0) = x_0 \end{cases}$$

gegeben.

Sei $Q = [t_1, t_2] \times [x_1, x_2]$ eine Menge auf der das AWP mit $(t_0, x_0) \in Q$ lokal lösbar ist. Sei x auf $(a, b) \in [t_1, t_2]$ eine Lösung des AWPs. Seien y_1, y_2 zwei Fortsetzungen von x auf $(a', b') \in [t_1, t_2]$. Dann gilt:

$$y_1(t) = y_2(t) \qquad \forall_{t \in (a',b')}$$

Eine Lösung, die nicht mehr fortsetzbar ist, heißt	maximal.
Eine Lösung heißt maximal, wenn	sie nicht mehr fortsetzbar ist.
Wie lautet der Satz über die maximale Lösung?	Sei $G \subset \mathbb{R}^2$ ein beschränktes Gebiet. $f: G \to \mathbb{R}$ genüge den Bedingungen vom Satz von Picard/Lindelöf. Dann gilt: 1. $\exists !$ eine maximal Lösung x_{\max} des AWP (auf (a,b)). 2. Für $u \coloneqq \lim_{t \to a^+} x_{\max}(t), v \coloneqq \lim_{t \to b^-} x_{\max}(t)$ gilt $(a,u), (b,v) \in \partial G$.
Wie lautet der Satz über die Abschätzung der Differenz von Lösungen (stetige Abhängigkeit)?	Sei $\dot{x}=f(t,x),\ f$ stetig auf einem Streifen $(a,b)\times\mathbb{R}$. Für jedes abgeschlossene Intervall $[a',b']\subset (a,b)$ existieren eine Lippschitzkonstante L' mit: $\forall_{t\in[a',b']}\forall_{x_1,x_2\in\mathbb{R}}:\ \left f(t,x_1)-f(t,x_2)\right \leq L'\ x_1-x_2\ $ Seien nun $x(t),\hat{x}(t)$ Lösungen eines AWP mit $x(t_0)=x_0,$ $\hat{x}(t_0)=\hat{x}_0$ auf $[a',b']$ MIT $t_0\in(a',b')$. Dann gilt: $\forall_{t\in[a',b']}:\ \left x(t)-\hat{x}(t)\right \leq e^{L' t-t_0 }\cdot\ x_0-\hat{x}_0\ $