S1G1 Diskrete Mathematik: Kostenminimale Flüsse

Andreas Gwilt

1 Wichtige Definitionen, Sätze

Problemstellung 1.1

Def (Balance). $b:V(G)\to\mathbb{R}$ heißt Balance, falls $\sum_{v\in V(G)}b(v)=0$.

Def (b-Fluss). $f: E(G) \to \mathbb{R}_+$ mit $f(e) \le u(e) \forall e \in E(G)$ und $\sum_{e \in \delta^+(v)} f(e) - \sum_{e \in \delta_-(v)} f(e) = b(v)$ für alle $v \in V(G)$ heißt b-Fluss für eine Balance b.

Minimum-Cost-Flow-Problem

Ein Digraph G, Kapazitäten $u: E(G) \to \mathbb{R}_+$, Balancen $b: V(G) \to \mathbb{R}$ und Gewichte Instanz:

Bestimme einen b-Fluss f mit minimalen Kosten $c(f) := \sum_{e \in E(G)} f(e)c(e)$ (oder Aufgabe:

entscheide, dass es keinen solchen gibt).

1.2 Ein Optimalitätskriterium

Def. Sei G ein gerichteter Graph, $u: E(G) \to \mathbb{R}_+$, $c: E(G) \to \mathbb{R}$ und f ein b-Fluss.

 $\textbf{Residualkapazitäten} \ u_f: E(\overset{\leftrightarrow}{G}) \rightarrow \mathbb{R}_+, \ u_f(e) := u(e) - f(e) \ \text{und} \ u_f(\overset{\leftarrow}{e}) = f(e) \ \text{für alle} \ e \in E(G),$

Residualkosten $\overset{\leftrightarrow}{c}: E(\overset{\leftrightarrow}{G}) \to \mathbb{R}, \overset{\leftrightarrow}{c}(e) := c(e) \text{ und } \overset{\leftrightarrow}{c}(\overset{\leftarrow}{e}) := -c(e) \text{ für alle } e \in E(G).$ Residualgraph G_f definiert durch $V(G_f) := V(G)$ und $E(G_f) := \{e \in E(\overset{\leftrightarrow}{G}) | u_f(e) > 0\} = \{e \in E(G) | u_f(e) > 0\}$ $E(G)|f(e) < u(e)\} \cup \{\overline{e} | e \in E(G), f(e) > 0\}.$

Satz (Klein, 1967). Sei (G, u, b, c) eine Instanz der MINIMUM-COST-FLOW-PROBLEMS. Ein b-Fluss f hat genau dann minimale Kosten, wenn es keinen f-augmentierenden Kreis mit negativem Gesamtgewicht gibt (i.e. G_f ist konservativ).

Zwei Algorithmen

Satz. Sei (G, u, b, c) eine Instanz des Minimum-Cost-Flow-Problems und f ein b-Fluss mit minimalen Kosten. Sei P ein kürzester (bzgl. \overrightarrow{c}) s-t-Weg in G_f (für irgendwelche $s,t \in V(G)$). Sei f' der durch Augmentierung von f entlang P um den Wert $\gamma \leq \min_{e \in P} u_f(e)$ entstehender Fluss. Dann ist f' ein kostenminimaler Fluss zu den Balancen b' mit

$$b'(v) = \begin{cases} b(v) + \gamma & : v = s \\ b(v) - \gamma & : v = t \\ b(v) & : \text{sonst.} \end{cases}$$

Sukzessive-Kürzeste-Wege-Algorithmus

- (1) Setze $b' \leftarrow b$ und $f(e) \leftarrow 0$ für alle $e \in E(G)$.
- (2) If b' = 0 then stop, else:

Wähle einen Knoten s mit b'(s) > 0.

Wähle einen Knoten t mit b'(t) < 0, so dass t von s aus in G_f erreichbar ist.

If es gibt kein solches t then stop. (Es gibt keinen b-Fluss)

- (3) Bestimme einen s-t-Weg P in G_f mit minimalen Kosten bzgl. $\stackrel{\leftrightarrow}{c}$.
- (4) Berechne $\gamma \leftarrow \min\{\min_{e \in E(P)} u_f(e), b'(s), -b'(t)\}.$ Setze $b'(s) \leftarrow b'(s) - \gamma$ und $b'(t) \leftarrow b'(t) + \gamma$. Augmentiere f entlang P um γ . Go to (2)

2 Aufgaben

Aufgabe 1: Finde einen b-Fluss in dem beigelegten Graphen (Legende: u(e), c(e)):

Aufgabe 2: Was sind die Kosten von f_1 und f_2 (auf der Tafel)? Wo unterscheiden sie sich?

Aufgabe 3: Warum ergibt Augmentierung entlang eines f-augmentierenden Kreises Kreises C um $\gamma \leq \min\{u_f(e)|e \in C\}$ wieder einen b-Fluss f' mit

$$f'(e) = \begin{cases} f(e) + \gamma & : e \in C \\ f(e) - \gamma & : e \in C \\ f(e) & : \text{sonst} \end{cases}$$

Aufgabe 4: Ist der folgende b-Fluss minimal? Wenn nicht, welcher Kreis in G_f hat negative Kosten? (Legende: f(e), u(e), c(e))

Aufgabe 5: Finde mithilfe des Sukzessive-Kürzeste-Wege-Algorithmus einen minimalen Fluss in dem Graphen von Aufgabe 4.

Literatur

- [1] Bernhard Korte, Jens Vygen: Kombinatorische Optimierung (2. Auflage) Springer, 2012
- [2] Christina Büsing: Grapen- und Netzwerkoptimierung Spektrum, 2010