CALCULUS

Bachelor in Computer Science and Engineering

Course 2021–2022

Applications of the derivative

Problem 6.1. Consider $k \in \mathbb{R}$ and the functions

$$f_1(x) = |x|^k$$
, $f_2(x) = x |x|^{k-1}$.

- For $x \neq 0$, calculate $f'_1(x)$ and $f'_2(x)$.
- For k > 1, prove that both functions are differentiable at x = 0 and calculate $f_1'(0)$, $f_2'(0)$.
- Prove that, if f(x) is a function verifying $|f(x)| \le |x|^k$ for k > 1 and all x in a neighborhood of $x_0 = 0$, then f(x) is differentiable at $x_0 = 0$. Finally, calculate f'(0).

Problem 6.2. Analyze the continuity and differentiability of the function

$$f(x) = \begin{cases} (3 - x^2)/2 & \text{if } x < 1, \\ 1/x & \text{if } x \ge 1. \end{cases}$$

Can you apply the Lagrange's mean-value theorem in the interval [0, 2]? If you can, find the point(s) of the theorem statement.

Problem 6.3. The function $f(x) = 1 - x^{2/3}$ vanishes at x = -1 and x = 1. However, $f'(x) \neq 0$ for all $x \in (-1, 1)$. Explain this apparent contradiction of Rolle's theorem.

Problem 6.4. Let h(x) be a continuous function in \mathbb{R} , with h'(x) and h''(x) also continuous in \mathbb{R} . Then, consider

$$f(x) = \begin{cases} h(x)/x^2 & \text{if } x \neq 0, \\ 1 & \text{if } x = 0. \end{cases}$$

1

Supposing that f(x) is continuous in \mathbb{R} , calculate h(0), h'(0), and h''(0).

Problem 6.5. Let f(x) be a continuous function in \mathbb{R} , with f'(x) also continuous in \mathbb{R} , such that

$$\lim_{x \to 0} \frac{f(2x^3)}{5x^3} = 1.$$

- Prove that f(0) = 0 and f'(0) = 5/2.
- Calculate $\lim_{x\to 0} \frac{f(f(2x))}{3f^{-1}(x)}$ (supposing that f^{-1} exists).

Problem 6.6. Prove the following two theorems.

THEOREM 1. Let f(x) be a differentiable function in $[x_1, x_2]$. If f(x) has $k \ge 2$ roots in $[x_1, x_2]$, then f'(x) has at least k - 1 roots in the same interval.

THEOREM 2. Let f(x) be k-times differentiable in $[x_1, x_2]$. If f(x) has $k + 1 \ge 2$ roots in $[x_1, x_2]$, then $f^{(k)}(x)$ has at least one root in the same interval.

Problem 6.7. Find the exact number of real solutions of the given equations.

- a) $x^7 + 4x = 3$, $x \in \mathbb{R}$.
- b) $x^5 = 5x 6$, $x \in \mathbb{R}$.
- c) $x^4 4x^3 = 1$, $x \in \mathbb{R}$.
- d) $\sin(x) = 2x 1$, $x \in \mathbb{R}$.
- e) $x^2 = \ln(1/x), x \in (1, +\infty).$

Problem 6.8. Calculate the following limits.

- $\bullet \lim_{x\to 0} \frac{e^x \sin(x) 1}{x^2}.$
- $\lim_{x\to 0^+} \frac{\ln(\sin(7x))}{\ln(\sin(x))}$.

Extra problem. Use the Lagrange's mean-value theorem to calculate the limit

$$\underset{x\rightarrow +\infty}{\text{lim}} \left[(1+x)^{1+\frac{1}{1+x}} \, - \, x^{1+\frac{1}{x}} \right]$$
 .

2