ardigen

Artificial Intelligence & Bioinformatics for Precision Medicine

group of machine

GMUM

learning research

25 November 2019

ardigen

Representations of chemical data

Machine Learning Methods in Cheminformatics

Agenda

- Intro. Why representing chemical data is essential?
- Textual Representation: SMILES
- Numerical representations:
 - MACCS
 - ECFP
 - Spectrophores
- Splitting methods
- How to do it in code? (RDKit)

- A typical molecule
- How to feed this data info a ML algorithm?
- Naive molecular representation doesn't include any information about structure
- There is a need for a numerical or at least a textual representation of the data. (Analogical to NLP)

SMILES

- Ancient (1980's) representation of molecules
- Preserves structure
- Can be easily fed into RNN or CharCNN model
- Can already be used to classify and even generate molecules (to some extent...)

SMILES

D

N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=O)N(C3CC3)C=C4C(=O)O

Caveats

- A model has learn how to distinguish between "S"
 (sulphur) and "Si" (silicone)
- Doesn't achieve high accuracy
- Some molecules can have multiple SMILES representations
- It is hard to compare two molecules based only on SMILES

MACCS

- Binary string
- Based on a set of questions (keys) about the molecule
- Molecules can be somewhat compared using the Hamming distance between their fingerprints
- The representation is dependant on the selection of keys

- Are there fewer than 3 oxygens?
 - YES -
- Is there a S-S bond?
 - NO -
- Is there a ring of size 5?
 - YES -
- Is at least one F, Cl, Br, or I present?
 - NO -

RESULT - 1010

MACCS

- Most widely used key dictionary was made by MDL
- It contains 166 keys

ECFP

- An iterative algorithm:
 - Assign each atom with an identifier
 - Update each atom's identifiers based on its neighbours
 - Remove duplicates
 - Fold list of identifiers into a bit vector (a Morgan fingerprint)

Image: Ridgers, Hahn (2010) Extended-Connectivity Fingerprints

ECFP - Step 1

- Calculate the atom identifier
 - Number of nearest-neighbour non-hydrogen atoms
 - Number of bonds attached to the atom (not including bonds to hydrogens)
 - Atomic number
 - Atomic mass
 - Number of hydrogens connected to the atom
 - Is the atom in a ring (1) or not (0)?

2: 1559650422 3: 1559650422

5: 1572579716

6: -1074141656

Image: Ridgers, Hahn (2010) Extended-Connectivity Fingerprints

ECFP - Step 2

- At each iteration, for every atom create a list containing its identifier and its neighbours' identifiers
- Append the new identifiers to the old ones
- Remove any duplicates
- Iterate again
- Hash the resulting array to a bit string

Image: Ridgers, Hahn (2010) Extended-Connectivity Fingerprints

ECFP - an algorithm

Algorithm 1 Circular fingerprints

- 1: **Input:** molecule, radius R, fingerprint length S
- 2: **Initialize:** fingerprint vector $\mathbf{f} \leftarrow \mathbf{0}_S$
- 3: **for** each atom a in molecule
- 4: $\mathbf{r}_a \leftarrow g(a)$ > lookup atom features
- 5: **for** L = 1 to R \triangleright for each layer
- 6: **for** each atom a in molecule
- 7: $\mathbf{r}_1 \dots \mathbf{r}_N = \text{neighbors}(a)$
- 8: $\mathbf{v} \leftarrow [\mathbf{r}_a, \mathbf{r}_1, \dots, \mathbf{r}_N] \triangleright \text{concatenate}$
- 9: $\mathbf{r}_a \leftarrow \text{hash}(\mathbf{v}) \qquad \triangleright \text{ hash function}$
- 10: $i \leftarrow \operatorname{mod}(r_a, S) \triangleright \operatorname{convert} \operatorname{to} \operatorname{index}$
- 11: $\mathbf{f}_i \leftarrow 1$ \triangleright Write 1 at index
- 12: **Return:** binary vector **f**

ECFP

- Depending of a particular problem, we can use a different number of iterations.
- If we want to capture entire ring structure, we have to use at least 4 iterations
- For tasks relying on atoms and their bonds, 2 iterations might be enough

Spectrophores

- One dimensional vector computed from 3D properties
- Typically, a vector of 48 real numbers, describing interaction of the molecule with some environment
- They are popular in ligand-based virtual screening

Image: Gladysz et al. (2018) Spectrophores as one-dimensional descriptors calculated from three-dimensional atomic properties: applications ranging from scaffold hopping to multi-target virtual screening

Spectrophores

- Calculated as an interaction properties between molecule and an artificial cage by a molecular conformation
- Properties of atoms used to calculate the fingerprint include:
 - o atomic partial charges
 - atomic lipophilicity indices
 - o atomic shape deviations
 - atomic softness properties

Image: Gladysz et al. (2018) Spectrophores as one-dimensional descriptors calculated from three-dimensional atomic properties: applications ranging from scaffold hopping to multi-target virtual screening

Splitting methods

- Using random splitting
 methods is often not desirable
 for chemical tasks, since
 problems usually involve
 working with novel molecules
 (e. g. in drug discovery)
- Scaffold splitting divides the dataset into parts with distinct molecules structure based on scaffolds

Image: Wu et al. (2017) MoleculeNet: a benchmark for molecular machine learning

What are scaffolds?

- Scaffolds are a structure based reduced representations for molecules
- The most popular Murcko scaffold is defined as ring systems with connecting atoms

RDKit

- Open-Source, widely used software for Cheminformatics and Machine Learning
- Contains tools for many cheminformatics tasks, like SMILES, fingerprinting, pharmacophore representation, molecule and atom properties etc.
- API in C++ and Python

Open Babel

- Toolbox created to work with chemical data from different sources
- Its main use is to convert between different formats of storing chemical data
- Can be used as standalone tool or programming language library

1. Install RDKit

conda install -c conda-forge **rdkit**

1. Install Open Babel

conda install -c openbabel openbabel

RDKit Basics

 RDKit representation of molecule can be created from SMILES or .mol file:

>>> from rdkit import Chem

>>> m = Chem.**MolFromSmiles**('Cclcccccl')

>>> m = Chem.**MolFromMolFile**('data/input.mol')

RDKit - MACCS

Fingerprint creation operated directly on RDKit representation:

```
>>> from rdkit.Chem import MACCSkeys
```

```
>>> m = Chem.MolFromSmiles('Cclcccccl')
```

>>> maccs = MACCSkeys.**GenMACCSKeys**(m)

>>> print(maccs.**ToBitString**())

10101011101111011...

RDKit - ECFP

- The same for ECFP:
 - >>> from rdkit.Chem import AllChem
 - >>> m = Chem.**MolFromSmiles**('Cclcccccl')
 - >>> fp = AllChem.**GetMorganFingerprint**(m1, 2)
 - >>> fp1 = AllChem.**GetMorganFingerprintAsBitVect**(m1, 2, nBits=1024)

Open Babel - Spectrophores

- Can be used as a tool from command line:
 - >>> obspectrophore -i input.smi

Open Babel - Spectrophores

Or using python bindings:

```
>>> import openbabel
>>> sp = openbabel.OBSpectrophore()
>>> conv = openbabel.OBConversion()
>>> mol = openbabel.OBMol()
```

>>> conv. ReadFile (mol, 'input.sdf')

>>> print(sp.**GetSpectrophore**(mol))

(1.756782876340235, 1.5915547901054223, 1.5932670837515774, 3.6518752424951533, ...)

https://tinyurl.com/vkoxwcv

ardigen

Artificial Intelligence & Bioinformatics for Precision Medicine

group of machine

Given by the search of the

25 November 2019

