· Newton's method

· Newton's method is a powerful tool for solving equations of the form f(x) =0

· Ex: f(w= x2-3. In other words, solve x2-3=0 for x.

. We Know the exact answer is $X = \sqrt{3}$.

· Newton's method gives a numerical approximation to the exact answer with the help of tangent lines

- Our goal is to find where the graph crosses the $X-\partial X$'s. We start with the guess $X_0=1$. We plug X_0 into f and that $Y_0=f(X_0)=1-3=-2$, which isn't very close to G.
- · Our next guess is X, which is where the tangent line to the function at X crosses the X axis.

. The eqn. for the tangent line is

. When the tangent line intersects the X-JXIS, Y-U.

$$\frac{\chi_1 = \chi_0 - \frac{f(\chi_0)}{f'(\chi_0)}}{f'(\chi_0)}$$

Illustration of Neuton's method for fw= χ^2 -3

• In our example,
$$f(x) = X^2 - 3$$
, $f(x) = 2x$

Thus, $X_1 = X_0 - \frac{(X_0^2 - 3)}{2X_0} = X_0 - \frac{1}{2}X_0 + \frac{3}{2}X_0$
 $X_1 = \frac{1}{2}X_0 + \frac{3}{2}X_0$

. The main idea is to repeat this process:
$$X_2 = \frac{1}{2}X_1 + \frac{3}{2}X_1$$

$$X_3 = \frac{1}{2}X_2 + \frac{3}{2}X_2$$

· This procedure approximates V3 Very well.

X	\	accuracy: 14-531	
Xo	1		
Xı	2	3×10-1	
X 2	74	2×10-2	
X3	7846	10-4	•
Xy	18 817	3x10-9	0
	1	7	

· Note that the # of digits of accuracy doubles with each iteration Summary:

$$\chi_{K+1} = \chi_{K} - \frac{f(\chi_{K})}{f'(\chi_{K})}$$

Example 1 considered the Particular case of
$$f(x) = \chi^2 - 3$$

$$\chi_{KH} = \chi_{K} - \frac{f(\chi_{K})}{f'(\chi_{K})} = \frac{1}{2} \chi_{K} + \frac{3}{2} \chi_{K}$$

• We now define
$$\overline{X} = \lim_{K \to \infty} X_K$$
 $(X_K \to \overline{X})$ as $(X_K \to \infty)$

To evaluate \overline{X} , take the limit as $K \Rightarrow \infty$ in the equation $X_{K+1} = \frac{1}{2} X_K + \frac{3}{2X_K}$ $= \overline{X} = \frac{1}{2} \overline{X} + \frac{3}{2X}$ $= \overline{X} = \frac{3}{2X}$ $= \overline{X}^2 = \overline{3}$ which is what we wanted On the xpected root:

· Warning 2: Newton's Method Can fail completely.

In this example, $X_2 = X_0$, $X_3 = X_1$, setc. It repeats in a cycle and never Converges to a single value.