NMMB538 - DÚ2 Jan Oupický

1

Chceme ukázat, že $F/F^{p^i}, i \geq 0, p = char(F)$ je čistě neseparabilní. Toto tělesové rozšíření je zřejmě algebraické, jelikož $\forall \alpha \in F: m_{\alpha,F^{p^i}} = x^{p^i} - \alpha^{p^i} \in F^{p^i}[x]$. Chceme tedy ukázat, že $\forall \alpha \in F$ je čistě neseparabilní.

Využijeme prop. S.5 implikaci $(ii) \implies (i)$. Čistě z definice F^{p^i} tedy dokážeme nalézt dané $j \ge 0$ tž. $\alpha^{p^{i^j}} \in F^{p^i}$ (j = 1). Rozšíření je tedy čistě neseparabilní.

2

Máme char(K) = p. Předpokládejme, že K je perfektní, neboli $a \mapsto a^p$ je automorfimus K. Máme tedy $F = K(x), F^p = (K(x))^p$. Víme, že platí $a, b \in K[x] : (a+b)^p = a^p + b^p$. Tudíž $f(x) = \sum f_i x^i \in K[x] \implies (f(x))^p = \sum f_i^p x^{ip}$. Díky tomu, že je K perfektní, víme $\forall a \in K \exists b \in K : b^p = a$. Poté již nahledéneme, že $(K(x))^p = K(x^p) = F^p$.

Chceme tedy spočítat $[F:F^p] = [K(x):K(x^p)]$. x je algebraický prvek nad $K(x^p)$, protože $g(T) = T^p - x^p \in K(x^p)[T] = F^p[T]$. Tento polynom je m_{x,F^p} , protože kdyby existoval $f \in F^p[T]: deg(f) < deg(g)$, tak by f|g. Zároveň ale $g(T) = T^p - x^p = (T-x)^p$, takže by f musel být polynom, který je tvaru $(T-x)^i$, i < p, ale to nemůže být polynom $F^p[T] = K(x^p)[T]$, protože x^i se v tam nevyskytují.

Zároveň zřejmě $K(x^p)(x) = K(x, x^p) = K(x)$, takže

$$p = \deg m_{x,F^p} = [K(x) : K(x^p)] = [F : F^p]$$

Není důvod proč stejný postup nebude fungovat pro $[F:F^{p^i}]$, takže $[F:F^{p^i}]=p^i$. Díky perfektnosti K, $(K(x,y))^p=K(x^p,y^p)$. Počítáme tedy $[K(x,y):K(x^p,y^p)]=[K(x,y):K(x,y^p)]\cdot [K(x,y^p):K(x^p,y^p)]$. Definujme $D=K(x)\implies [K(x,y):K(x,y^p)]=[D(y):D(y^p)]=p$. Toto platí díky předchozí části (D=K,y=x). Stejně tak můžeme napsat $D=K(y^p)\implies [K(x,y^p):K(x^p,y^p)]=[D(x):D(x^p)]=p$. Takže $[K(x,y):K(x^p,y^p)]=p^2$.

Nyní spočteme hodnoty $N_{F|F_p}(\alpha)$, $\alpha=x^2+1$ a $Tr_{F|F_p}(\alpha)$. Víme, že x je čistě neseparabilní. Tudíž $[F:F^p]_s < [F:F^p] \iff [K(x^p)(x):K(x^p)]_s < [K(x^p)(x):K(x^p)]$. Dále máme rovnost $[F:F^p] = [F:F^p]_s \cdot [F:F^p]_i = p \implies [F:F^p]_s = 1, [F:F^p]_i = p$. Pro výpočet normy a stopy použijeme tedy prop S.12, kde s=1,t=p. Jediný prvek $\operatorname{Hom}_{F^p}(F,\bar{F^p})$ je tedy identita na F. Takže $\sigma(\alpha)=\alpha \implies N_{F|F_p}(\alpha)=\alpha^p=(x^2+1)^p=x^{2p}+1, Tr_{F|F_p}(\alpha)=p(x^2+1)=0$.

Nyní předpokládejmě, že K není perfektní. Tudíž musí být K nekonečné těleso s charakteristikou p, kde Frobeinův endomorfismus není surjektivní. Tudíž $K(x)^p \neq K(x^p)$. Poté rozšíření F/F^p nebude konečného stupně, jelikož v K(x) existuje nekonečně mnoho prvků z K, které nejsou tvaru $a^p, a \in K$ tudíž nejsou v F^p .

Mějme tedy $K \subset L$ separabilní rozšíření těles. Dokážeme L perfektní $\iff K$ perfektní. Platí $char(K) = 0 \iff char(L) = 0$, tedy v případě nulové charakteristiky je to zřejmé. Uvažujme tedy p = char(K) = char(L).

 \Rightarrow : L je perfektní, tudíž je Frobeinův endomorfimus surjektivní na L. Zároveň $\forall a \in K: a^p \in K$, tudíž Frobeinův endomorfimus nemůže zobrazit prvek $a \in K \subset L$ na prvek, který je mimo K. Takže je Frobeinův endomorfismus surjektivní i na K neboli K je perfektní.

 \Leftarrow : To, že je Frobeinův endomorfimus surjektivní můžeme vyjádřit, že $K = K^p$. Tedy K je perfektní $\iff K^p = K$. Dále z definice separability platí, že L/K je algebraické rozšíření. Algebraické rozšíření můžeme zapsat takto $L = \bigcup_{a \in L} K(a)$. a je algebraické nad K a tedy K(a) je rozšíření konečného stupně. Pokud ukážeme, že K(a) je perfektní, tak bude i L perfektní, jelikož je to sjednocení perfektních těles.

Označme $[K(a):K]=n\in\mathbb{N}$. Označme $f(x)=m_{a,K}$. Díky perfektnosti K platí $(K(a))^p=K(a^p), K=K^p, f(a)=0 \implies (f(a))^p=\iff f(a^p)=0 \text{ tedy } [K(a^p):K]=n$. Máme tedy:

$$n = [K(a):K] = [K(a):K(a^p)] \cdot [K(a^p):K], [K(a^p):K] = n \implies [K(a):K(a^p)] = 1$$

Neboli $K(a) = K(a^p) = (K(a))^p$ tedy $K(a)$ je perfektní. Takže L je perfektní.

4

Označme $w(x,y)=y^2+yg(x)-f(x)$ Weierstrasuv polynom. Z definice a minulých přednášek víme, že [F:K(x)]=2 a [F:K(y)]=3, jelikož $m_{y,K(x)}(T)=w(x,T)=T^2+Tg(x)-f(x)\in K(x)[T]$. Víme, že tento polynom je ireducibilní a zároveň platí w(x,y)=0 v F. Stejně tak $m_{x,K(y)}(T)=w(T,y)=-T^3+a_2T^2+T(a_4+a_1)+a_6+a_3y+y^2\in K(y)[T]$.

F/K(x) je čistě neseparabilní pokud všechny prvky F jsou čistě neseparabilní nad K(x). Všechny prvky z $F \cap K(x)$ jsou čistě neseparabilní nad K(x) z definice.

Chceme tedy určit, kdy je y čistě neseparabilní nad K(x). Dle Prop. S.5 musí být $\min_{y,K(x)}(T)$ tvaru $T^{p^j} - \beta, \beta \in K(x)$. Výše vidíme, že toto může nastat pouze v případě, kdy p = char(K) = 2 a $g(x) = 0 \iff a_1 = a_3 = 0$. V jiných případech není y čistě separabilní nad K(x), tedy ani F.

Ukážeme, že v tomto případě je křivka určená tímto polynomem $w(x,y)=y^2-f(x)$ má singularitu:

$$\frac{\partial w}{\partial x}(x,y) = -3x^2 + 2a_2x + a_4 = x^2 + a_4$$
$$\frac{\partial w}{\partial y}(x,y) = 2y = 0$$

Chceme bod (x_1, y_1) ve kterém jsou derivace výše 0 a splňuje rovnici $w(x_1, y_1) = 0$. x_1 volíme dle hodnoty a_4 , pokud $a_4 = 0 \implies x_1 = 0$ a naopak. Nyní obě derivace jsou 0. Chceme ještě aby platilo $y_1^2 - f(x_1) = 0 \implies y_1^2 = f(x_1)$. Zřejmě lze zvolit y_1 aby toto platilo, tudíž máme singularitu.

Nyní uvažme stejný postup pro určení, kdy je x čistě neseparabilní nad K(y). Musí tedy platit p=3=char(K) a $a_2=0, a_4+a_1=0$. Poté je $m_{x,K(y)}(T)=-T^3+a_6+a_3y+y^2\in K(y)[T]$. Opět určíme singularitu:

$$\frac{\partial w}{\partial x}(x,y) = -3x^2 = 0$$

$$\frac{\partial w}{\partial y}(x,y) = a_3 + 2y = a_3 - y$$

Pro bod singularity (x_1, y_1) tedy platí $y_1 = a_3$ a x_1 volíme, aby platilo $x_1^3 = a_6 + 2a_3$. V případě, kdy y není čistě neseparabilní nad K(x), tak y je separabilní nad K(x) dle Prop S.4. Zároveň prvky $F \cap K(x)$ jsou tedy také separabilní dle S.4 a ostatní jsou jejich kombinace, které jsou také separabilní, jelikož separabilní prvky tvoří těleso. Takže je F/K(x) separabilní rozšíření. Stejný argument se dá použít proč je F/K(y) separabilní v případě, když x není čistě neseparabilní.

5

Výše jsme určili [F:K(x)]=2 a [F:K(y)]=3, zvolme bázi $B_y=(1,y)$ tělesa F nad K(x) (pro zjednodušení místo $\frac{y+(w)}{1+(w)}\in F$ prvek y, stejně tak pro ostatní zmíněné prvky). Bázi F nad K(y) zvolíme $B_x=(1,x,x^2)$ (obdobné ztotožnění).

Spočteme tedy matici M_x :

$$x \cdot 1 = x \implies \mu_1 = (0, 1, 0)$$

$$x \cdot x = x^2 \implies \mu_2 = (0, 0, 1)$$

$$x \cdot x^2 = x^3 = a_2 x^2 + x(a_4 + a_1) + a_6 + a_3 y + y^2 \implies \mu_3 = (a_6 + a_3 y + y^2, a_4 + a_1, a_2)$$

$$M_x = \begin{pmatrix} 0 & 0 & a_6 + a_3 y + y^2 \\ 1 & 0 & a_4 + a_1 \\ 0 & 1 & a_2 \end{pmatrix}$$

Takže $N_{F|K(y)}(x) = a_6 + a_3y + y^2, Tr_{F|K(y)}(x) = a_2$. Obdobně pro M_y :

$$y \cdot 1 = y \implies \mu_1 = (0, 1)$$

$$y \cdot y = y^2 = f(x) - yg(x) \implies \mu_2 = (f(x), -g(x))$$

$$M_y = \begin{pmatrix} 0 & f(x) \\ 1 & -g(x) \end{pmatrix}$$

Takže $N_{F|K(x)}(y) = -f(x), Tr_{F|K(x)}(y) = -g(x).$