TRIANGULAR AND SQUARE WAVE GENERATOR

Time period =4(R3*R2*C1)/R1 ... 1

V(P-P)=2*(R2/R1)*Vsat2 (triangular wave)

Calculation:

Requirement - Vpp-4V, Frequency-0.2KHz

Vsat= 8.4V

Using Eq 1 - R1/R2= 4

Let R1= $40 \text{K}\Omega$, R2= $10 \text{K}\Omega$

Using eq 2- R3*C1=0.5ms

Let C1=0.01uF, R3= $50k\Omega$

Observations:

Square wave and Triangular Wave

Observed Frequency= 0.203KHz

Vpp(triangular wave)= 4.16V

VOLTAGE CONTROLLED FREQUENCY

$$\mathsf{F} = \frac{\mathsf{R1}}{[4*\mathsf{R3}*\mathsf{R1}*\mathsf{C1}]} * \boldsymbol{\mathit{Vc}} * \boldsymbol{\mathit{VP}}$$

Vc= Controlling Voltage (VG1+V3)

Vp (Analog Multiplier factor)= 100mV

Time Period(T1) = 46us , **NO MULTIPLIER**

T1 (calculated)=40us(13%)

Time period (T2), observed = 412us ,Vc= 1V

Vc= VG1+V3=0V+3V

T2=T1*10/Vc=40*10/1=400us (Error=3%)

Vc= VG1+V3=0V+3V

T2=T1*10/Vc=40*10/3=133.33us (Error=8%)

USE AS FREQUENCY MODULATOR

 $VC = (sin(2\pi k\omega t) + 2)V$

VC= Square wave 0-1V, 500Hz+2V