Notes

Ryan Heslin

2021-08-26

$$\label{localization} $$ 1_{1}#3_{1}#5{#1}_{2}#3_{2}{\#5}\dots{\#5}#1_{\#2}#3_{\#4}} $$$$

8.

Acute.

$$\theta = r'angle(rep(c(1, -1), times = 2), c(3, 4, 5, 3))'$$

11.

Using Cauchy-Swarz to prove the triangle inequality

$$||v + w|| \le ||v|| + ||w||$$

$$||v + w||^2 = (v \cdot w) \cdot (v \cdot cdotw)$$

$$||v + w||^2 = v \cdot v + 2(v \cdot w) + w \cdot v$$

$$||v + w||^2 = ||v||^2 + ||w^2|| + 2(w \cdot v)$$

$$||v + w|| \le ||v|| + ||w|| + \sqrt{2(w \cdot v)}$$

Of course, the dot product is zero only for orthogonal vectors.

16.

Solve for the kernel of the transpose.

```
m <- cbind(rep(1/2, 4), c(1/2, 1/2, -1/2, -1/2), c(1/2, -1/2, 1/2, -1/2))
pracma::rref(t(m))
```

[,1] [,2] [,3] [,4]

[1,] 1 0 0 -1 [2,] 0 1 0 1 [3,] 0 0 1 1

Argument is not a matrix. Attempting to coerce

$$\begin{bmatrix}
1/2 \\
-1/2 \\
-1/2 \\
1/2
\end{bmatrix}$$

22.

A vector is orthogonal to a subspace only if it is orthogonal to every vector of its basis.

Say this was not true. Then $\frac{(x \cdot w)}{w \cdot w} x > 0$. Then $x^{\parallel} > 0$, which means $x^{\perp} < x$, so the vector cannot be orthogonal.

Remember that dividing by the sum of squares produces the unit vector, proving a basis by which to scale x $(A^TA)^{-1}$ merely generalizes this to higher dimension, accounting for directions among the column vectors. Multiplying this by A^T maps R^M onto the matrix.

23.

Proof that $V^{\perp})^{\perp} = V$.

If two vectors are orthogonal, $v \cdot w = w \cdot v = 0$. V consists of all vectors orthogonal to V^{\perp} by this definition. This is the same as $V^{\perp})^{\perp} = V$. Also, $\dim(V) = \dim(V^{\perp})^{\perp}$). If $\dim(V) = p$, $\dim(V^{\perp}) = n - p$. Since the two spaces are complementary, $\dim(V^{\perp})^{\perp}) = n - (n - p) = p$,

##24.

Proving the linearity of $T(x) = x^{\parallel}$. Since the dot product is a linear transformation:

$$T(x) + T(y) = (x \cdot u)u + (y \cdot)u$$

$$T(x + y) = ((x + y) \cdot u)u$$

$$= (x \cdot u + y \cdot u)u$$

$$= (x \cdot u)u + (y \cdot u)u$$

25.

Given the absolute value, we can ignore nonreal roots.

$$||kv|| = |k|||v||$$

$$= |k|\sqrt{v \cdot v}$$

$$= \sqrt{kv \cdot kv}$$

$$= ||kv||$$

30.

Consider a subspace where y is the projection of x. Then

$$||y||^2 \ge y \cdot x$$

because $||x|| \le ||y||$ (projections are always the same length or shorter), $so||y||^2 = y \cdot x$ only if x = y, in which case x is in the subspace.

31.

Along similar lines, $(u_1 \cdot x)^2 + (u_2 \cdot x)^2 + \cdots + (u_m \cdot x)^2 \le ||x^2||$ because the sum of squares of the projections can only equal the sum of squares of x when x lies entirely in the subspace of projection.

32.

The matrix

$$\begin{bmatrix} v_1 \cdot v_1 & v_1 \cdot v_2 \\ v_2 \cdot v_1 & v_2 \cdot v_2 \end{bmatrix}$$

Is invertible if and only if v_1 and v_2 are orthogonal, meaning the off-diagonal is zeroes. This is an example of an orthogonal (but not orthonormal) amtrix.

33.

All elements $\pm \frac{1}{n}$. In that case, the vector is the hypotenuse of a right isoceles triangle, minimizing its length.

34.

$$\sqrt{x_1^2 + \dots x_n^2} = 1$$
$$x_1^2 + \dots x_n^2 = 1$$

This is maximal for a basis vector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, etc.), because for any |x| < 1 $x^2 \le x$.

35.

There is a more involved computation, but obviously this is minimized by e_1 .

36.

```
fit <- function(A) {
    solve(t(A) %*% A) %*% t(A)
}

A <- c(0.2, 0.3, 0.5)
fit(A)</pre>
```

37.

Let A be the basis of the plane. Then the reflection is $2A(A^TA)^{-1}A^T - I_3$. Or subtract from x twice its projection onto $u_1 \times u_2$.

38.

 $v_1 \cdot v_2 = v_1 \cdot v_3 = 1/2$. Since they are unit vectors, $\theta = \arccos 1/2 \approx 1.047$ - about 60 degrees. So v_1 and v_2 are on opposite sides of v_3 . So $\cos \frac{2\pi}{3} = \cos(v_2 \cdot v_3) \implies v_2 \cdot v_3 \approx 2\pi/3$

39.

 $x \cdot proj_l x$ is invariably positive. We have:

$$x = x^{\parallel} + x^{\perp}$$

 $x \cdot proj_{l}x = (x^{\parallel} + x^{\perp})x^{\perp}$
 $= ||x^{\parallel}||^{2} + x^{\parallel}x^{\perp}$
 $= ||x^{\parallel}||^{2}$

which is never negative.

40.

Given

$$\begin{bmatrix} 3 & 5 & 11 \\ 2 & 9 & 20 \\ 11 & 20 & 49 \end{bmatrix}$$

$$||v2|| = 3$$

The angle of v_2 and v_3 is r acos((20)/(3 * 7))

42.

$$||v_1 + v_2|| = \sqrt{(v+w) \cdot (v+w)}$$
, so:

$$\begin{aligned} ||v_1 + v_2|| &= \sqrt{(v+w) \cdot (v+w)} \\ &= \sqrt{v \cdot v + w \cdot w + 2(v \cdot w)} \\ &= \sqrt{3+9+10} \\ &= \sqrt{22} \end{aligned}$$

43.

$$proj_{v_2}v_1 = 5/9v_2$$

44.

A vector in $\mathrm{Span}(v_2,v_3)$ orthogonal to v_3 is $v_2-\mathrm{proj}_{v_3}(v_2),$ which is $v_2-20/49v_3.$

45.

$$proj_v(v_3) = 5/9v_2 + 11/49v_3$$

46.

$$proj_V(v_3) = 11/3v_1 + 20/9v_2$$