1. Cours : Fonctions trigonométriques

Dans tout ce chapitre, on se place dans un repère $(O; \vec{t}, \vec{j})$ orthonormé.

1 Rappels

1.1 Enroulement de la droite des réels

Définition 1 : On appelle cercle trigonométrique le cercle de centre O et de rayon 1 que l'on parcourt dans le sens inverse des aiguilles d'une montre. Ce sens est appelé sens trigonométrique.

On trace la droite des réels à droite de ce cercle trigonométrique, parallèlement à l'axe des ordonnées, puis on l'enroule autour d'une cercle trigonométrique. A chaque point x sur cette droite des réels, on associe ainsi un unique point M(x) sur le cercle.

Propriété 1 : Deux réels dont la différence est le produit de 2π et d'un nombre entier ont la même image par M.

1.2 Cosinus et sinus d'un nombre réel

Définition 2 : Soit x un réel et M(x) son image sur le cercle trigonométrique. On appelle :

- Cosinus de x, noté cos(x), l'abscisse de M(x);
- Sinus de x, noté $\sin(x)$, l'ordonnée de M(x).

■ Exemple 1 : On retiendra en particulier les valeurs remarquables suivantes.

Degré	0	30	45	60	90	180
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
Cosinus	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
Sinus	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

1 Rappels 3

Propriété 2 : Pour tout réel x,

$$-1 \leqslant \cos(x) \leqslant 1$$
 $-1 \leqslant \sin(x) \leqslant 1$ $\cos(x)^2 + \sin(x)^2 = 1$

■ **Exemple 2**: On considère la fonction $f: x \mapsto \frac{1+x}{2+\sin(x)}$.

Puisque, pour tout $x \in \mathbb{R}$, $1 \ge \sin(x) \ge -1$, alors $3 \ge 2 + \sin(x) \ge 1 > 0$. f est donc bien définie sur \mathbb{R} .

Par ailleurs, la fonction inverse étant décroissante sur $]0;+\infty[$, on a $\frac{1}{3} \le \frac{1}{2+\sin(x)} \le 1$ et donc, en multipliant par 1+x qui est strictement positif sur $]0;+\infty[$, $\frac{1+x}{3} \le f(x)$.

Or,
$$\lim_{x \to +\infty} \left(\frac{1+x}{3} \right) = +\infty$$
. Par comparaison, $\lim_{x \to +\infty} f(x) = +\infty$.

1.3 Résolution d'équation et d'inéquation

- Exemple 3 : Les solutions de l'équation $cos(x) = \frac{1}{2} sur [-\pi; \pi] sont -\frac{\pi}{3}$ et $\frac{\pi}{3}$.
- Exemple 4 : Le solutions de l'équation cos(x) = 0 sur $[0; 2\pi]$ sont $\frac{\pi}{2}$ et $\frac{3\pi}{2}$.
- Exemple 5 : L'ensemble des solutions de l'inéquation $\cos(x) \leqslant \frac{\sqrt{3}}{2}$ sur $[0; 2\pi]$ est l'intervalle $\left[\frac{\pi}{6}; \frac{11\pi}{6}\right]$.

Sur l'intervalle $[-\pi; \pi]$ l'ensemble des solutions de cette inéquation est $\left[-\pi; -\frac{\pi}{6}\right] \cup \left[\frac{\pi}{6}; \pi\right]$.

Il faut donc faire attention à l'intervalle de résolution.. Dans tous les cas, le cercle trigonométrique sera votre plus précieux allié.

2 Fonctions trigonométriques

2.1 Définition et variations

Définition 3 : La fonction cosinus est la fonction qui, à tout réel x, associe $\cos(x)$. La fonction sinus est la fonction qui, à tout réel x, associe $\sin(x)$.

x	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
cos	-1		1	0	-1
$\cos(x)$	-	- 0	+	0 -	

x	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
sin	0	-1	0	1	0
sin(x)	0	_	0	+	0

Propriété 3 : Pour tout $x \in \mathbb{R}$, on a

- cos(-x) = cos(x), la fonction cosinus est paire.
 sin(-x) = -sin(x); la fonction sinus est impaire.

Cela se traduit graphiquement par le fait que la courbe de la fonction cosinus est symétrique par rapport à l'axe des ordonnées alors que la courbe de la fonction sinus est symétrique par rapport à l'origine du repère.

■ Exemple 6:
$$\cos\left(-\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$
 ; $\sin\left(-\frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$.

Propriété 4 : Pour tout $x \in \mathbb{R}$ et pour tout $k \in \mathbb{Z}$, on a

- $\cos(x+k\times 2\pi) = \cos(x)$; $\sin(x+k\times 2\pi) = \sin(x)$.

On dit que les fonctions sinus et cosinus sont 2π -périodiques.

■ Exemple 7:
$$\cos\left(\frac{25\pi}{3}\right) = \cos\left(\frac{24\pi}{3} + \frac{\pi}{3}\right) = \cos\left(4 \times 2\pi + \frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$
.

Dérivée des fonctions trigonométriques

Propriété 5: Les fonctions cos et sin sont dérivables sur \mathbb{R} . Par ailleurs, pour tout réel x,

$$\sin'(x) = \cos(x)$$
 et $\cos'(x) = -\sin(x)$

■ Exemple 8 : On considère la fonction $g: x \mapsto 2\cos(x) - x$ définie sur $I = [-\pi, \pi]$. g est dérivable sur I et pour tout $x \in I$, $g'(x) = -2\sin(x) - 1$.

Ainsi, $g'(x) \ge 0$ si et seulement si $\sin(x) \le -\frac{1}{2}$.

Pour résoudre cette inéquation on peut utiliser le cercle trigonométrique.

Ainsi, $g'(x) \ge 0$ si et seulement si $\sin(x) \le -\frac{1}{2}$.

Pour résoudre cette inéquation on peut utiliser le cercle trigonométrique.

L'ensemble des solutions de l'inéquation $\sin(x) \le -\frac{1}{2} \sin[-\pi; \pi]$ $y = -\frac{1}{2}$

est $\left[-\frac{5\pi}{6}; -\frac{\pi}{6}\right]$. On peut alors construire le tableau de variations de f sur l'intervalle $[-\pi;\pi]$

x	$-\pi$		$-\frac{5\pi}{6}$		$-\frac{\pi}{6}$		π
g'(x)		_	0	+	0	_	
g	$\pi-2$		$\frac{5\pi}{6} - \sqrt{3}$		$\frac{\pi}{6} + \sqrt{3}$	<u></u>	$-2-\pi$

Il est également possible de dérivée des fonctions composées avec le cosinus ou le sinus.

Propriété 6 : Soit u une fonction définie et dérivable sur un intervalle I. Alors $\sin(u)$ et $\cos(u)$ sont également dérivables sur cet intervalle I et on a

$$(\sin(u))' = u' \times \cos(u)$$
 et $(\cos(u))' = -u' \times \sin(u)$

Exemple 9 : Pour tout réel x, on pose $f(x) = \sin(3x^2 - 4x + 5)$. f est dérivable sur \mathbb{R} et pour tout réel x, $f'(x) = (6x-4)\sin(3x^2-4x+5)$.

Propriété 7 : Soit a un réel non nul.

- Une primitive de $x \mapsto \cos(ax)$ sur \mathbb{R} est $x \mapsto \frac{\sin(ax)}{a}$. Une primitive de $x \mapsto \sin(ax)$ sur \mathbb{R} est $x \mapsto -\frac{\cos(ax)}{a}$.

Démonstration 1 : Il suffit de dériver. Attention au signe !

- Exemple 10 : Pour tout réel x, on pose $f(x) = 3\cos(2x) 5\sin(9x)$. Une primitive de f sur $\mathbb R$ est la fonction *F* définie pour tout réel *x* par $F(x) = \frac{3}{2}\sin(2x) + \frac{5}{9}\cos(9x)$.
- Exemple 11 : Pour $x \in \mathbb{R}$, on pose $g(x) = \cos(x)\sin(x)$. Pour tout $x \in \mathbb{R}$, on a $g(x) = \sin'(x) \times \sin(x)$. Une primitive de g sur \mathbb{R} est la fonction G définie pour tout réel x par $G(x) = \frac{1}{2}\sin^2(x)$.
- Exemple 12 : On considère la fonction $f: x \mapsto \sin^3(x) dx$ définie sur \mathbb{R} et $I = \int_0^{\pi} f(x) dx$.

D'une part, pour tout réel x,

$$f(x) = \sin(x) \times \sin^2(x) = \sin(x)(1 - \cos^2(x)) = \sin(x) - \sin(x)\cos^2(x).$$

Ainsi, $I = \int_0^{\pi} \sin(x) dx + \int_0^{\pi} (-\sin(x)\cos^2(x)) dx$. D'une part,

$$\int_0^{\pi} \sin(x) \, \mathrm{d}x = [-\cos(x)]_0^{\pi} = -\cos(\pi) - (-\cos(0)) = -(-1) - (-1) = 2.$$

D'autre part, pour tout réel $x \in [0; \pi]$, on $a - \sin(x)\cos^2(x) = \cos'(x) \times \cos^2(x)$.

Une primitive de la fonction $x \mapsto -\sin(x)\cos^2(x)$ sur $[0; \pi]$ est donc la fonction $x \mapsto \frac{\cos^3(x)}{2}$. Ainsi,

$$\int_0^{\pi} (-\sin(x)\cos^2(x)) \, \mathrm{d}x = \left[\frac{\cos^3(x)}{3} \right]_0^{\pi} = \frac{\cos^3(\pi)}{3} - \frac{\cos^3(0)}{3} = -\frac{1}{3} - \frac{1}{3} = -\frac{2}{3}.$$

Finalement,
$$I = 2 - \frac{2}{3} = \frac{4}{3}$$
.