Systèmes dynamiques

Feuille d'exercices 2

Exercice 1. Propriétés de l'entropie topologique

Soient $(X, d_X), (Y, d_Y)$ des espaces métriques compacts et des transformations continues $f: X \to X$ et $g: Y \to Y$.

- 1. Soit $\Lambda \subset X$ un fermé f-invariant. Montrer que $h_{\text{top}}(f|_{\Lambda}) \leq h_{\text{top}}(f)$.
- 2. Soient $\Lambda_1, \ldots, \Lambda_m$ des fermés f-invariants de X tels que $X = \bigcup_{j=1}^m \Lambda_j$. Montrer que $h_{\text{top}}(f) = \max_{1 \leq j \leq m} h_{\text{top}}(f|_{\Lambda_j})$.

Exercice 2. Entropie des transformations Lipschitziennes

Soit (X, d) un espace métrique compact. On définit

$$\mathrm{bdim}(X) = \limsup_{\varepsilon \to 0} \frac{\log M(X,\varepsilon)}{\log 1/\varepsilon}$$

où $M(X,\varepsilon)$ est le nombre minimal de ε -boules (pour la distance d) qu'il faut pour recouvrir X.

1. Montrer que bdim $([0,1]^n) = n$.

Soit $f: X \to X$ une application Lipschitzienne et

$$L(f) = \sup_{x \neq y} \frac{\mathrm{d}(f(x), f(y))}{\mathrm{d}(x, y)}$$

sa constante de Lipschitz.

2. Montrer que

$$h_{\text{top}}(f) \le \text{bdim}(X) \max(0, \log L(f)).$$
 (1)

3. Donner un exemple d'application f telle que (1) soit une égalité.

Exercice 3. Automorphismes linéaires du tore de dimension 2

On note $\mathbf{T}^2 = \mathbf{R}^2/\mathbf{Z}^2$ le tore de dimension 2. On appellera feuilletage de \mathbf{T}^2 une partition $\mathbf{T}^2 = \bigsqcup_{F \in \mathcal{F}} F$ où pour tout $F \in \mathcal{F}$, il existe une immersion $\mathbf{R} \to \mathbf{T}^2$ (i.e. une application \mathcal{C}^{∞} de différentielle partout non nulle) d'image F.

1. Donner une condition nécessaire et suffisante pour que l'endomorphisme $f_A: \mathbf{T}^2 \to \mathbf{T}^2$ associé à une matrice $A \in \mathrm{Mat}_{2 \times 2}(\mathbf{Z})$ soit un automorphisme.

Dans toute la suite, A désigne une matrice de $SL(2, \mathbf{Z})$.

- 2. On suppose que $|\operatorname{tr} A| \in \{0,1\}$. Montrer qu'il existe $n \in \mathbb{N}$ tel que $(f_A)^n = \operatorname{id}_{\mathbb{T}^2}$.
- 3. On suppose que $|\operatorname{tr} A| = 2$. Montrer qu'il existe un feuilletage en cercles de \mathbf{T}^2 , préservé par f_A et que f_A (resp. f_A^2) agit par rotation sur chacun des cercles si $\operatorname{tr}(A) = 2$ (resp. $\operatorname{tr}(A) = -2$). On dit que f_A est un twist de Dehn.
- 4. On suppose que $|\operatorname{tr} A| > 2$.
 - (a) Montrer que A admet deux valeurs propres réelles distinctes λ, λ^{-1} avec $|\lambda| > 1$ et que les vecteurs propres associés ont des pentes irrationnelles.

(b) Montrer qu'il existe deux feuilletages \mathcal{F}^s et \mathcal{F}^u de \mathbf{T}^2 , globalement préservés par f_A , tels que chaque feuille est dense dans \mathbf{T}^2 , et tels que la différentielle de f_A multiplie par $|\lambda^{-1}|$ la norme des vecteurs tangents aux feuilles de \mathcal{F}^s et par $|\lambda|$ celle des vecteurs tangents aux feuilles de \mathcal{F}^u .

Exercice 4. Entropie algébrique

Soit G un groupe finiment engendré et $\Gamma = \{\gamma_1, \dots, \gamma_s\}$ un système de générateur. Pour $\gamma \in G$ on définit

$$L(\gamma,\Gamma) = \min \left\{ \sum_{j=1}^{ks} |i_j| \; \middle| \; \gamma = \gamma_1^{i_1} \cdots \gamma_s^{i_s} \gamma_1^{i_{s+1}} \cdots \gamma_s^{i_{2s}} \cdots \gamma_s^{i_{ks}}, \; i_j \in \mathbf{Z}, \; k \in \mathbf{N} \right\}.$$

Si $F \in \text{Hom}(G,G)$ est un morphisme de groupe on note

$$L_n(F,\Gamma) = \max_{1 \le i \le s} L(F^n \gamma_i, \Gamma), \quad n \in \mathbf{N}.$$

1. Montrer que la limite

$$h(F,\Gamma) = \lim_{n \to \infty} \frac{1}{n} \log L_n(F,\Gamma)$$

existe.

2. Montrer que si Γ' est un autre système de générateurs, alors $h(F,\Gamma)=h(F,\Gamma')$.

On définit l'entropie algébrique $h_{alg}(f)$ de f par $h_{alg}(F) = h(F, \Gamma)$ pour n'importe quel système de générateur Γ .

3. Montrer que $h_{\text{alg}}(I_{\gamma_0}F) = h_{\text{alg}}(F)$ pour tout $\gamma_0 \in G$ où $I_{\gamma_0} \in \text{Hom}(G,G)$ est défini par $I_{\gamma_0}(\gamma) = \gamma_0^{-1} \gamma \gamma_0$.

Soit M une variété connexe compacte, $x_{\star} \in M$ et $G = \pi_1(M, x_{\star})$. Soit α un chemin dans M joignant x_{\star} à $f(x_{\star})$. Soit f une transformation continue de M; on définit $F_{x_{\star},\alpha} \in \text{Hom}(G,G)$ par

$$F_{x_{\star},\alpha}\gamma = \alpha^{-1}(f \circ \gamma)\alpha.$$

4. On admet que G est finiment engendré. Montrer que $h_{\rm alg}(F_{x_{\star},\alpha})$ ne dépend pas des choix de x_{\star} et de α .

Le nombre $h_{\text{alg}}(f)$ défini par $h_{\text{alg}}(f) = h_{\text{alg}}(F_{x_{\star},\alpha})$ pour n'importe quel choix de x_{\star} , α est appelé entropie algébrique de f. On peut montrer que

$$h_{\rm alg}(f) \le h_{\rm top}(f)$$
.