Neural Networks and Learning Systems TBMI26 / 732A55 2023

Lecture 2 Supervised learning – Linear classifiers

Magnus Borga magnus.borga@liu.se

Recap - Supervised learning

- Task: Learn to predict/classify new data from labelled examples.
- Input: Training data examples $\{\mathbf{x}_i, y_i\}$ i=1...K, where \mathbf{x}_i is a feature vector and y_i is a class label in the set Ω . Today we assume two classes: $\Omega = \{-1,1\}$
- Output: A discriminant function sign $[f(\mathbf{x}; w_1, ..., w_N)] \rightarrow \Omega$

Find a function f and adjust the parameters $w_1,...,w_N$ so that new feature vectors are classified correctly. Generalization!

The function $f(\mathbf{x}; w_1, ..., w_k)$

Linear classifier

Advantages of a parametric function $f(\mathbf{x}; w_1, ..., w_N)$

• Only stores a few parameters $(w_0, w_1, ..., w_N)$ instead of all the training samples, as in k-NN.

• Fast to evaluate on which side of the line a new sample is on, for example $\mathbf{w}^T\mathbf{x} < 0$ or $\mathbf{w}^T\mathbf{x} > 0$ for a linear function.

How does the brain take decisions?

(on the low level!)

Basic unit: the neuron

- The human brain has approximately 100 billion (10¹¹) neurons.
- Each neuron connected to about 7000 other neurons.
- Approx. 10^{14} 10^{15} synapses (connections).

Model of a neuron

The Perceptron

(McCulloch & Pitts 1943, Rosenblatt 1962)

$$f(x_1,...,x_n; w_0,...,w_n) = \sigma(w_0 + \sum_{i=1}^n w_i x_i) = \sigma(w_0 + \mathbf{w}^T \mathbf{x})$$

Extra reading on the history of the perceptron: http://www.csulb.edu/~cwallis/artificialn/History.htm

Geometry of linear classifiers

Which linear classifier to choose?

Find the best separator – optimization!

• Min of a loss function $\varepsilon(w_0, w_1, ..., w_n)$ with the weights $w_0, w_1, ..., w_n$ as parameters.

- Ways to optimize:
 - Algebraic: Set derivative $\frac{\partial \mathcal{E}}{\partial w_i} = 0$ and solve.
 - Brute force: Try many values systematically and choose the best.
 - Iterative: Follow the gradient direction until the minimum of ϵ is reached.

Gradient descent

How to get to the lowest point?

$$\nabla \varepsilon = \frac{\partial \varepsilon}{\partial \mathbf{w}} = \begin{pmatrix} \frac{\partial \varepsilon}{\partial w_1} \\ \frac{\partial \varepsilon}{\partial w_2} \end{pmatrix}$$

$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \eta \frac{\partial \varepsilon}{\partial \mathbf{w}}$$

Gradient descent

Choosing the step length

Local optima

- Gradient descent is not guaranteed to find the global minimum.
- With a sufficiently small step length, the closest local minimum will be found.

Many different loss functions $\varepsilon(\mathbf{w})$

- 0-1 loss function / empirical risk
- Square error → Neural networks
- Maximum margin → Support Vector Machines

0-1 loss function / empirical risk

"empirical" because it is over the observed training data

$$\mathcal{E}(\mathbf{w}) = \sum_{i=1}^{K} I(f(\mathbf{x}_i; \mathbf{w}) \neq y_i)$$
 = Number of wrong classifications

0/1 function

Square error loss

Minimize the following loss function

$$\varepsilon(\mathbf{w}) = \sum_{i=1}^{K} (\mathbf{w}^T \mathbf{x}_i - y_i)^2$$

K = # training samples

 $y_i \in \{-1,1\}$ depending on the class of training sample i

Minimization algorithm

$$\varepsilon(\mathbf{w}) = \sum_{i=1}^{K} (\mathbf{w}^T \mathbf{x}_i - y_i)^2$$

$$\frac{\partial \mathcal{E}}{\partial \mathbf{w}} = 2\sum_{i=1}^{K} (\mathbf{w}^{T} \mathbf{x}_{i} - y_{i}) \mathbf{x}_{i}$$
 Exercise!

Gradient descent:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \frac{\partial \mathcal{E}}{\partial \mathbf{w}} = \mathbf{w}_t - \eta \sum_{i=1}^K (\mathbf{w}_t^T \mathbf{x}_i - y_i) \mathbf{x}_i \quad (Eq. 1)$$

Algorithm:

- Start with a random w
- 2. Iterate Eq. 1 until convergence

Example

Random init

First iteration

Second iteration

Third iteration

More examples

Unevenly distributed training data

Outlier

$$\varepsilon(\mathbf{w}) = \sum_{i=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{i} - y_{i})^{2}$$

Example of local minimum

Support Vector Machines (SVM)

Idea!

Optimal separation line remains the same, feature points close to the class limits are more important!

These are called *support vectors*!

Which linear classifier to choose?

SVM – Maximum margin

Choose **w** that gives maximum margin $\varepsilon!$

SVM – Loss function

Scaling of **w** is free – Pick arbitrary sample \mathbf{x}_s as support vector and choose scaling so that $\mathbf{w}^T\mathbf{x}_s+\mathbf{w}_0=1!$

For the chosen support vector, $\varepsilon(\mathbf{w}) = 1 / \|\mathbf{w}\|$

SVM loss function examples

Example 1: Boundary not in middle \rightarrow Large ||w|| (steep function) \rightarrow Small margin $\epsilon(\mathbf{w}) = 1 / ||\mathbf{w}||$

Example 2: Boundary more in middle \rightarrow Smaller $\|\mathbf{w}\|$ (flatter function) \rightarrow Larger margin $\epsilon(\mathbf{w}) = 1 / \|\mathbf{w}\|$

Example 3: Tilt boundary somewhat \rightarrow Smallest possible $\|\mathbf{w}\| \rightarrow$ Largest margin $\epsilon(\mathbf{w}) = 1 / \|\mathbf{w}\|$

Choosing another training sample as reference support vector can give an even larger margin!

SVM – Loss function, cont.

Maximizing $\varepsilon = 1 / ||\mathbf{w}||$ is the same as minimizing $||\mathbf{w}||^2$!

$$\min \|\mathbf{w}\|^2$$

subject to $y_i(\mathbf{w}^T\mathbf{x}_i + w_0) \ge 1$

No training samples must reside in the margin region!

Optimization procedure outside the scope of this course...

SVM – Soft margin

This sample controls the solution entirely - overfitting

Would this be a better boundary?

What if the training data is not separable with a line?

SVM – Soft margin, cont.

$$\min_{\mathbf{w}, w_0, \xi_i} \left\{ \|\mathbf{w}\|^2 + C \sum_{i=1}^K \xi_i \right\}$$
subject to $y_i(\mathbf{w}^T \mathbf{x}_i + w_0) \ge 1 - \xi_i$

Solution for small C

Solution for large C

SVM – Choosing *C*

Solve the optimization problem with different *C:*s and choose the solution with highest accuracy according to cross-validation procedure.

$$C = 2^{-5}, 2^{-3}, \dots, 2^{15}$$

Training data	Training data	Validation data
Training data	Validation data	Training data
Validation data	Training data	Training data

Summary – Linear classifiers

- Different loss functions give different algorithms
- Square error loss
 - Sensitive to outliers and training data distribution when applied as in this lecture.
 - Improvements possible (lecture 3).
 - Local minima.
- Support Vector Machines (maximum margin loss)
 - By many considered as the state-of-the-art classifier.
 - Non-linear extension possible (lecture 9).
 - No local minima.
- Linear Discriminant Analysis (Lecture 8)
 - Simple to implement, very useful as a first classifier to try

What about more than 2 classes?

Combine several binary classifiers

What about more than 2 classes?

Multiple outputs each representing likelihood for a certain class

Softmax

$$\sigma(\mathbf{z})_i = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

- Normalized exponential function
- Gives a vector z where the components' sum is one
- Enables the components of **z** to interpreted as probabilities
- Smooth version of the argmax function