Homework 1

ECON312 Time Series Analysis

Instructor: Narek Ohanyan

Instructions

- The homework is due at due-time on **due-date**.
- Homeworks must be typeset in Latex and submitted (uploaded to the course page) in pdf format named HW1_Name_Surname.pdf.

Assignment 1

Consider an AR(p) process given by

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p} + \varepsilon_t \qquad \varepsilon_t \sim WN(0, \sigma^2)$$

with $\sigma^2 > 0$.

The impulse response function of an autoregressive process may be generated by setting $\varepsilon_0 = \sigma$ and $\varepsilon_t = 0$ for t > 0, and simulating the process for the required horizon H. The resulting series is the impulse response function.

For the following exercises, set $\sigma = 0.4$ and H = 20.

- 1. Generate the impulse response function for an AR(1) process for the following values of ϕ_1 : $\phi_1 = 0.2$, $\phi_1 = 0.4$, $\phi_1 = 0.6$, $\phi_1 = 0.8$, $\phi_1 = 0.9$ and plot them on the same graph. On a separate graph, plot the impulse response function for $\phi_1 = -0.6$ and $\phi_1 = -0.9$.
- 2. Discuss the effect of ϕ_1 on the impulse response function.
- 3. Find example values of ϕ_1 and ϕ_2 for which the impulse response function of an AR(2) process is a) hump-shaped, b) oscillatory, c) explosive. Plot the impulse response functions for each case.
- 4. Discuss the effects of ϕ_1 and ϕ_2 on the impulse response function.

Assignment 2

Consider an ARMA(1,1) process given by

$$y_t = \phi y_{t-1} + \varepsilon_t + \theta \varepsilon_{t-1}$$
 $\varepsilon_t \sim WN(0, \sigma^2)$

with $|\phi| < 1$ and $\sigma^2 > 0$.

- 1. Find a representation of y_t in terms of ε_t , ε_{t-1} , ε_{t-2} , ...
- 2. Find the mean and variance of y_t
- 3. Find the first autocovariance of y_t
- 4. Find the first autocorrelation of y_t