Comunicação de Dados

Dados

- Analógico
 - valores contínuos dentro de um intervalo
 - exemplo: áudio, vídeo
- Digital
 - valores discretos
 - exemplo: texto

Meio pelo qual os dados são propagados

- Analógicos
 - variam continuamente
 - várias mídias
 - cabos metálicos, fibra ótica, ar
 - Exemplo:
 - banda telefônica: 300Hz to 3400Hz
 - banda de vídeo: 4MHz
- Digital
 - assume valores discretos

Transmissão Analógica

- Sinal é transmitidos sem análise do conteúdo
- Podem ser dados analógicos ou digitais
- Atenuado conforme a distância
- Usa amplificadores
- Amplifica o ruído

Transmissão Digital

- Observa o conteúdo
- integridade afetada por ruídos, atenuação, etc.
- Usa repetidores
 - repetidores recebem o sinal
 - extraem o padrão de bits
 - retransmitem
- Diminui os problemas de atenuação
- Ruído não é amplificado

Vantagens transmissão digital

- Integridade dos Dados
- Capacidade de Utilização
 - enlaces com alta largura de banda
 - alta taxa de multiplexação
- Segurança e Privacidade
 - criptografia
- Integração
 - trata analógico e digital similarmente

Modelo de Comunicação

- Origem
 - Geração dos dados para transmissão
- Transmissor
 - Converte os dados em sinais "transmissíveis"
- Sistema de Transmissão
 - Transmite os sinais
- Receptor
 - Converte os sinais recebidos para o formato de dados
- Destino
 - Trata os dados recebidos

Meio

- Local por onde os dados são transmitidos
 - Meio guiado
 - exemplo: par trançado, fibra ótica.
 - Meio não guiado
 - exemplo: ar, água, vácuo.

Cenário típico

Comunicação

- Utilização do sistema de transmissão
- Interfaceamento
- Geração de Sinais
- Sincronização
- Detecção e correção de erros
- Endereçamento e roteamento
- Formatação das mensagens
- Segurança
- Gerenciamento da rede

Chaveamento de Circuito

- Caminho de comunicação dedicado é estabelecido durante a conversação
- e.g. rede de telefonia

Pacotes

- Dados enviados em pequenos pacotes de dados
- pacotes passados de nodo em nodo entre fonte e destino

Ligações - Topologia

- Enlace Direto
 - Sem dispositivos intermediários
- Enlace Ponto-a-Ponto

- Enlace direto
- Somente 2 dispositivos compartilham o enlace

- Enlace Multiponto
 - Mais de dois dispositivos compartilham o enlace

Modos de Transmissão

- Simplex
 - Uma direção

- Half duplex
 - Em ambas direções, mas uma de cada vez

- Full duplex
 - Em ambas as direções ao mesmo tempo

Sinal -Periódico

(a) Sine wave

Características da Onda de Sinal

- Amplitude (A)
 - altura da onda energia do sinal
 - medida em *volts*
- Freqüência (f)
 - número de repetições de um período por segundo
 - medida em *Hertz (Hz)* ou ciclos por segundo
 - Período = tempo de uma repetição (T)
 - T = 1/f
- Fase (φ)
 - relativa a posição no tempo

Comprimento de onda

- Distância ocupada por um ciclo
- λ
- Velocidade do sinal v
 - $\lambda = vT$
 - $\lambda f = v$
 - $c = 3*10^8 \text{ ms}^{-1} \text{ (velocidade da luz)}$

Comprimento de onda

- Relação entre f, λ e c (vácuo)
 - *f* : freqüência
 - λ : comprimento de onda
 - c : velocidade da luz
 - Exemplo: f = 300 MHz para λ = 300 metros f = 30 GHz para λ = 1 cm

Velocidade da Luz

vácuo = 300 m/ μs fibra = 200 m/ μs eletricidade = 250 m/ μs

Problemas de Transmissão

- Sinal recebido difere do sinal transmitido
- Analógico -degradação da qualidade do sinal
- Digital bits com erro
- Causas:
 - Atenuação ou distorção de amplitude
 - Distorção por retardo
 - Ruído
 - branco
 - impulsivo

Atenuação

- Sinal perde energia de acordo com a distância percorrida
- Dependente do meio
- Sinal recebido
 - deve ser forte o suficiente para o reconhecimento
 - deve ser superior ao ruído para evitar o erro
- Atenuação aumenta de acordo com o aumento da frequênica

```
A(dB) = 10 \log_{10}(Ps/Pe)

Ps = Potência de Saída

Pe = Potência de Entrada
```

Distorção por Atraso

- Ocorre somente em meios guiados
- Componentes do sinal propagam-se com velocidades diferentes

Ruído

- Sinais adicionais inseridos entre o transmissor e o receptor
- Ruído Térmico
 - A agitação dos elétrons causa o aquecimento
 - Distribuído uniformemente
 - Também chamado ruído branco

Ruído

 Ruído Térmico ou Gaussiano agitação dos elétrons do meio de transmissão

Ruído

- Impulsivo
 - Ocorrência de pulsos irregulares
 - Causado normalmente por interferência externa
 - Curta duração
 - Alta amplitude

Jitter é uma variação estatística do atraso na entrega de dados em uma rede, ou seja, pode ser definida como a medida de variação do atraso entre os pacotes sucessivos de dados. Observase ainda que uma variação de atraso elevada produz uma recepção não regular dos pacotes.