ECO5002 Introduction to Economics

Lecture 4: The Theory of Consumer Choice

Long Ma

School of Management and Economics Chinese University of Hong Kong, Shenzhen

July-August, 2024

Before Start

- You should have already got a big picture about Economics: it's all about demand and supply.
- How are demand and supply formed? Ad hoc?
- The following two lectures will focus on consumers and firms and show you how to derive demand curve and supply curve.

I. Budget Constraint

■ **Budget Constraint** is the the limit on the consumption bundles that a consumer can afford. |Slope| = Relative Price.

Number of Pizzas	Liters of Pepsi	Spending on Pizza	Spending on Pepsi	Total Spending	
100	0	\$1,000	\$ 0	\$1,000	
90	50	900	100	1,000	
80	100	800	200	1,000	
70	150	700	300	1,000	
60	200	600	400	1,000	
50	250	500	500	1,000	
40	300	400	600	1,000	
30	350	300	700	1,000	
20	400	200	800	1,000	
10	450	100	900	1,000	
0	500	0	1,000	1,000	

■ Formally, we indicate the consumption bundle by (x1, x2). So the budget constraint can be written as: $p_1x_1 + p_2x_2 \le m$ where p denotes price and m denotes income.

I. Budget Constraint

- How the budget line changes?
 - changes in income *m*: parallel shift outward/inward.
 - changes in relative price p_1/p_2 : changes in slope (rotate).
- Consider taxes or subsidies.
 - quantity tax/subsidy: a certain amount for each unit of the good.

$$(p_1+t)x_1+p_2x_2\leq m$$

value tax/subsidy: a percentage term on price.

$$(1+\tau)p_1x_1+p_2x_2\leq m$$

lump-sum tax/subsidy: fixed amount of money.

$$p_1x_1+p_2x_2\leq m-T$$

- Consider rationing.
 - If good 1 is rationed, the section of the budget set beyond the rationed quantity will be lopped off.

- Preference is a technical term usually used in relation to choosing between alternatives. For example, someone prefers A over B if they would rather choose A than B.
- Notations for preference:
 - strictly prefer: $(x_1, x_2) \succ (y_1, y_2)$.
 - indifferent: $(x_1, x_2) \sim (y_1, y_2)$.
 - weakly prefer: $(x_1, x_2) \succeq (y_1, y_2)$.
- Assumptions about preference:
 - complete: any two bundles can be compared.
 - reflexive: at least as good as itself.
 - transitive: if $(x_1, x_2) \succeq (y_1, y_2)$ and $(y_1, y_2) \succeq (z_1, z_2)$, then $(x_1, x_2) \succeq (z_1, z_2)$.

- We describe preferences graphically by indifference curves.
 - bundles that give the consumer the same level of satisfaction.
 - (1) higher indifference curves are preferred to lower ones.
 - (2) indifference curves are downward-sloping.
 - (3) indifference curves cannot cross. (prove by contradiction)
 - (4) indifference curves are bowed inward.
- |Slope of tangent line| = Marginal rate of substitution (MRS)

■ Perfect substitutes v.s. Perfect complements.

- Bads, Neutral Goods, and Satiation.
 - bads: a commodity that the consumer doesn't like.
 - neutral Goods: the consumer doesn't care about it one way or the other.
 - satiation: there is some overall best bundle for the consumer.

- Utility is a way to describe preferences. We can assign a number to every possible consumption bundle such that more-preferred bundles get assigned larger numbers than less-preferred bundles.
- Ordinal v.s. Cardinal: only order matters.
- Some examples:
 - Cobb-Douglas: $u(x_1, x_2) = x_1^a x_2^b$.
 - perfect substitutes: $u(x_1, x_2) = ax_1 + bx_2$.
 - perfect complements: $u(x_1, x_2) = \min\{ax_1, bx_2\}.$
 - quasi-linear: $u(x_1, x_2) = v(x_1) + x_2$.
- Marginal Utility is defined as:

$$MU_1 = \frac{\partial u(x_1, x_2)}{\partial x_1}, \quad MU_2 = \frac{\partial u(x_1, x_2)}{\partial x_2}.$$

■ Relation between MU and MRS: $dx_2/dx_1 = -MU_1/MU_2$.

 In general, the consumer chooses consumption of the two goods so that the marginal rate of substitution (MRS) equals the relative price. (Tangent point of BC and IC).

$$|MRS| = \frac{MU_1}{MU_2} = \frac{p_1}{p_2}$$

■ What about point A and B?

Some special cases:

- kink solution.
- corner solution.
- multiple solutions.

- Deriving the demand curve:
 - suppose that the price of Pepsi falls from \$2 to \$1.
 - the consumer's optimum moves from point A to point B.
 - the quantity of Pepsi consumed rises from 250 to 750 liters.
- Consumers can sometimes violate the law of demand and buy more of a good when the price rises, e.g., Giffen goods.

■ Example 1

$$\max_{\{x_1, x_2\}} u(x_1, x_2) = x_1^c x_2^d$$

s.t. $p_1 x_1 + p_2 x_2 = m$

■ Step 1: Write down the Lagrangian

$$\mathcal{L} = x_1^c x_2^d - \lambda (p_1 x_1 + p_2 x_2 - m)$$

Step 2: First-order conditions

$$\frac{\partial \mathcal{L}}{\partial x_1} = cx_1^{c-1}x_2^d - \lambda p_1 = 0$$
$$\frac{\partial \mathcal{L}}{\partial x_2} = dx_1^c x_2^{d-1} - \lambda p_2 = 0$$

Step 3: Combine two FOCs

$$\frac{p_1}{p_2} = \frac{cx_2}{dx_1} \quad \Rightarrow \quad x_2 = \frac{p_1}{p_2} \cdot \frac{d}{c} \cdot x_1$$

Step 4: Plug into budget constraint and get demand functions

$$x_1 = \frac{c}{c+d} \cdot \frac{m}{p_1}$$

$$x_2 = \frac{d}{c+d} \cdot \frac{m}{p_2}$$

which reflect the relation between x and p and have downward slopes.

Example 2

$$\max_{\{x_1, x_2\}} u(x_1, x_2) = x_1 + x_2$$

s.t. $p_1 x_1 + p_2 x_2 = m$

- the slope of IC = -1
- if $p_1 > p_2$, only purchase good 2 (m/p_2) .
- if $p_1 < p_2$, only purchase good $1 (m/p_1)$.
- if $p_1 = p_2$, indifferent.

Example 3

$$\max_{\{x_1, x_2\}} u(x_1, x_2) = \min\{x_1, x_2\}$$

s.t. $p_1 x_1 + p_2 x_2 = m$

- optimality occurs when x₁ = x₂.
 demand functions: x₁ = x₂ = m/(p₁+p₂.

Reading

- Chapter 21, *Principles of Economics* by Mankiw.
- Chapter $2 \sim 6$, Intermediate Microeconomics by Varian.