

Classical Numerical Analysis, Chapter 05

Abner J. Salgado and Steven M. Wise

asalgad1@utk.edu swise1@.utk.edu University of Tennessee

Chapter 05, Part 1 of 2 Linear Least Squares Problem

Data Fitting

Suppose that we are given a table of values

$$(x_k, y_k), \quad k = 1, \ldots, n,$$

that is obtained, say, by a series of measurements.

Find a simple function — a linear function, for example, $y=c_1x+c_0$, where $c_0, c_1 \in \mathbb{C}$ — that *fits* the data in some exact or approximate sense. If we demand that it matches the data exactly, then

$$y_k = c_1 x_k + c_0, \quad k = 1, ..., n.$$

This can also be expressed in vector form as

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_0 \end{bmatrix}.$$

Data Fitting

This is equivalent to the system of linear equations of the form $A\mathbf{c} = \mathbf{y}$ with

$$A = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \in \mathbb{C}^{n \times 2}, \quad \mathbf{c} = \begin{bmatrix} c_1 \\ c_0 \end{bmatrix} \in \mathbb{C}^2, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{C}^n.$$

Usually n is much larger than 2, so that we end up with an *overdetermined* system of equations, i.e., there are more equations than unknowns. There is no solution in general.

On the other hand, if we only approximately enforce the matching conditions

$$y_k \approx c_1 x_k + c_0, \quad k = 1, \ldots, n,$$

then it is not clear how to proceed.

Linear Least Squares: Full Rank Setting

Generalized and Least Squares Solutions

Idea: There may be no solution to $A\mathbf{x} = \mathbf{f}$. So, let us find \mathbf{x} so that $\mathbf{f} - A\mathbf{x}$ is as small as possible in some norm.

Definition

Suppose that $\|\cdot\|: \mathbb{C}^m \to \mathbb{R}$ is a norm. Given $A \in \mathbb{C}^{m \times n}$, $m \ge n$, and $\mathbf{f} \in \mathbb{C}^m$ we say that $\mathbf{x} \in \mathbb{C}^n$ is a **weak** or **generalized** solution of the system $A\mathbf{x} = \mathbf{f}$ iff

$$\boldsymbol{x} \in \mathop{\text{argmin}}_{\boldsymbol{w} \in \mathbb{C}^n} \|\boldsymbol{r}(\boldsymbol{w})\| = \mathop{\text{argmin}}_{\boldsymbol{w} \in \mathbb{C}^n} \|\boldsymbol{f} - A\boldsymbol{w}\|.$$

We say that $\mathbf{x} \in \mathbb{C}^n$ is a **least squares** solution of the system $A\mathbf{x} = \mathbf{f}$ iff

$$\boldsymbol{x} \in \mathop{\text{argmin}}_{\boldsymbol{w} \in \mathbb{C}^n} \|\boldsymbol{r}(\boldsymbol{w})\|_{\ell^2(\mathbb{C}^m)}^2 = \mathop{\text{argmin}}_{\boldsymbol{w} \in \mathbb{C}^n} \|\boldsymbol{f} - A\boldsymbol{w}\|_{\ell^2(\mathbb{C}^m)}^2.$$

When these minima exist and are unique, we replace \in with =.

Full-Rank Coefficient Matrix $A \in \mathbb{C}^{m \times n}$, $m \ge n$

Lemma

Let $A \in \mathbb{C}^{m \times n}$ with $m \ge n$, then $A^H A$ is Hermitian positive definite (HPD) iff A is full rank, i.e., rank(A) = n.

Proof.

Clearly the matrix A^HA is Hermitian. By construction this matrix is also nonnegative definite since, for any $\mathbf{x} \in \mathbb{C}^n$,

$$(A^{H}Ax, x)_{2} = (Ax, Ax)_{2} = ||Ax||_{2} \ge 0.$$

(\Longrightarrow): Suppose that A^HA is HPD and, to reach a contradiction, that $\operatorname{rank}(A) < n$. This is equivalent to say that there is a nonzero $\mathbf{x} \in \mathbb{C}^n$ such that $A\mathbf{x} = \mathbf{0}$. But then we must have $A^HA\mathbf{x} = \mathbf{0}$ and $(A^HA\mathbf{x}, \mathbf{x})_2 = 0$, contradicting the assumption that A^HA is positive definite.

(\longleftarrow): Let us now assume that A is of full rank. To reach a contradiction, suppose that A^HA is not positive definite. There must be a nonzero $\mathbf{x} \in \mathbb{C}^n_{\star}$ for which

$$0 = (A^{H}Ax, x)_{2} = (Ax, Ax)_{2} = ||Ax||_{2}^{2},$$

which implies that

$$Ax = 0 \implies x \in ker(A).$$

This contradicts the assumption that A has full rank.

Theorem (least squares: real case)

Let $A \in \mathbb{R}^{m \times n}$, with $m \ge n$ and $\operatorname{rank}(A) = n$, and let $\mathbf{f} \in \mathbb{R}^m$. The vector $\mathbf{x} \in \mathbb{R}^n$ is the unique least squares solution to $A\mathbf{x} = \mathbf{f}$, i.e.,

$$\mathbf{x} = \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{argmin}} \|\mathbf{f} - A\mathbf{w}\|_{\ell^2(\mathbb{R}^m)}^2, \tag{1}$$

iff \mathbf{x} is the unique solution to the normal equation

$$A^{\mathsf{T}}A\mathbf{x} = A^{\mathsf{T}}\mathbf{f}.\tag{2}$$

Proof.

(\Longrightarrow): Suppose that $\mathbf{x} \in \mathbb{R}^n$ solves the least squares problem and set $\mathbf{r} = \mathbf{f} - A\mathbf{x}$. Now fix $\mathbf{y} \in \mathbb{R}^n$, and define

$$g(s) = \Phi(\mathbf{x} + s\mathbf{y}),$$

for all $s \in \mathbb{R}$, where

$$\Phi(\mathbf{z}) = \|\mathbf{r}(\mathbf{z})\|_{\ell^2(\mathbb{C}^m)}^2, \quad \mathbf{r}(\mathbf{z}) = \mathbf{f} - A\mathbf{z}, \quad \forall \, \mathbf{z} \in \mathbb{C}^n.$$

Then, for any $s \in \mathbb{R}$,

$$g(0) = \Phi(\mathbf{x}) \le \Phi(\mathbf{x} + s\mathbf{y}) = g(s),$$

since \mathbf{x} is a least squares solution. Calculating, we find

$$g(s) = (\mathbf{r} - sA\mathbf{y})^{\mathsf{T}} (\mathbf{r} - sA\mathbf{y})$$

$$= \mathbf{r}^{\mathsf{T}} \mathbf{r} - s\mathbf{y}^{\mathsf{T}} A^{\mathsf{T}} \mathbf{r} - s\mathbf{r}^{\mathsf{T}} A\mathbf{y} + s^{2} \mathbf{y}^{\mathsf{T}} A^{\mathsf{T}} A\mathbf{y}$$

$$= g(0) - 2s \mathbf{r}^{\mathsf{T}} A\mathbf{y} + s^{2} \mathbf{y}^{\mathsf{T}} A^{\mathsf{T}} A\mathbf{y}.$$

Since A^TA is symmetric positive definite, g is a positive quadratic function of one variable, with a global minimum at s=0. Hence,

$$0 = \left. \frac{dg}{ds} \right|_{s=0} = -2\mathbf{r}^{\mathsf{T}} \mathsf{A} \mathbf{y},$$

for arbitrary $\mathbf{y} \in \mathbb{R}^n$. From this condition we conclude that $\mathbf{r}^{\mathsf{T}} \mathsf{A} = \mathbf{0}^{\mathsf{T}}$. This is equivalent to (2).

(\iff): Now, suppose $\mathbf{x} \in \mathbb{R}^n$ solves the normal equation (2), and set $\mathbf{r} = \mathbf{f} - A\mathbf{x}$. This implies that $\mathbf{r}^\mathsf{T} A\mathbf{y} = 0$, for all $\mathbf{y} \in \mathbb{R}^n$, or, equivalently, $\mathbf{r} \in \mathsf{im}(A)^\perp$. Then

$$\begin{split} \Phi(\mathbf{x} + \mathbf{y}) &= (\mathbf{r} - A\mathbf{y})^{\mathsf{T}} (\mathbf{r} - A\mathbf{y}) \\ &= \Phi(\mathbf{x}) - \mathbf{r}^{\mathsf{T}} A\mathbf{y} - \mathbf{y} A^{\mathsf{T}} \mathbf{r} + \mathbf{y}^{\mathsf{T}} A^{\mathsf{T}} A\mathbf{y} \\ &= \Phi(\mathbf{x}) + \mathbf{y}^{\mathsf{T}} A^{\mathsf{T}} A\mathbf{y} \\ &\geq \Phi(\mathbf{x}), \end{split}$$

since $\mathbf{y}^{\mathsf{T}}\mathsf{A}^{\mathsf{T}}\mathsf{A}\mathbf{y} \geq 0$ for any \mathbf{y} . More importantly, since $\mathsf{A}^{\mathsf{T}}\mathsf{A}$ is symmetric positive definite (SPD),

$$\Phi(\mathbf{x} + \mathbf{y}) > \Phi(\mathbf{x}), \quad \forall \, \mathbf{y} \in \mathbb{R}^n_{\star}.$$

Thus $\mathbf{x} \in \mathbb{R}^n$ is a least squares solution.

Theorem (least squares: complex case)

Let $A \in \mathbb{C}^{m \times n}$, with $m \ge n$ and $\operatorname{rank}(A) = n$, and let $\mathbf{f} \in \mathbb{C}^m$. The vector $\mathbf{x} \in \mathbb{C}^n$ is the unique least squares solution to $A\mathbf{x} = \mathbf{f}$, i.e.,

$$\mathbf{x} = \underset{\mathbf{w} \in \mathbb{C}^n}{\operatorname{argmin}} \|\mathbf{f} - A\mathbf{w}\|_{\ell^2(\mathbb{C}^m)}^2, \tag{3}$$

iff ${f x}$ is the unique solution to the normal equation

$$A^{H}A\mathbf{x} = A^{H}\mathbf{f}.$$
 (4)

Proof.

(\Longrightarrow): Suppose that $\mathbf{x} \in \mathbb{C}^n$ solves the least squares problem and set $\mathbf{r} = \mathbf{f} - A\mathbf{x}$. Now fix $\mathbf{y} \in \mathbb{C}^n$, and define

$$g(s, t) = \Phi(\mathbf{x} + z\mathbf{y}) = \|\mathbf{r} - zA\mathbf{y}\|_{2}^{2}$$

for all $z = s + it \in \mathbb{C}$, with $s, t \in \mathbb{R}$, $i = \sqrt{-1}$. Then, for any $s, t \in \mathbb{R}$,

$$g(0,0) = \Phi(\mathbf{x}) \leq \Phi(\mathbf{x} + z\mathbf{y}) = g(s,t),$$

since \mathbf{x} is a least squares solution.

Linear Least Squares: Full Rank Setting

Calculating, we find

$$g(s,t) = (\mathbf{r} - zA\mathbf{y})^{H} (\mathbf{r} - zA\mathbf{y})$$

$$= \mathbf{r}^{H} \mathbf{r} - \overline{z} \mathbf{y}^{H} A^{H} \mathbf{r} - z \mathbf{r}^{H} A \mathbf{y} + |z|^{2} \mathbf{y}^{H} A^{H} A \mathbf{y}$$

$$= g(0,0) - 2 \Re \left(z \mathbf{r}^{H} A \mathbf{y} \right) + \left(s^{2} + t^{2} \right) \mathbf{y}^{H} A^{H} A \mathbf{y}$$

$$= g(0,0) - 2s \Re \left(\mathbf{r}^{H} A \mathbf{y} \right) + 2t \Im \left(\mathbf{r}^{H} A \mathbf{y} \right) + \left(s^{2} + t^{2} \right) \mathbf{y}^{H} A^{H} A \mathbf{y} .$$

Since A^HA is Hermitian positive definite, g is a positive quadratic function of two variables. Hence,

$$0 = \frac{\partial g}{\partial s}\Big|_{s,t=0} = -2\Re\left(\mathbf{r}^{\mathsf{H}}\mathsf{A}\mathbf{y}\right), \quad 0 = \frac{\partial g}{\partial t}\Big|_{s,t=0} = 2\Im\left(\mathbf{r}^{\mathsf{H}}\mathsf{A}\mathbf{y}\right),$$

for arbitrary $\mathbf{y} \in \mathbb{C}^n$. From these two conditions we conclude that $\mathbf{r}^H \mathbf{A} = \mathbf{0}^T$. Hence $\mathbf{r} \in \text{im}(\mathbf{A})^{\perp}$, as desired.

(\iff): This step is more or less the same as in the real case. Suppose $\mathbf{x} \in \mathbb{C}^n$ satisfies $\mathbf{r} \in \operatorname{im}(\mathsf{A})^\perp$, and set $\mathbf{r} = \mathbf{f} - \mathsf{A}\mathbf{x}$. Then

$$\begin{split} \Phi(\mathbf{x} + \mathbf{y}) &= (\mathbf{r} + A\mathbf{y})^{H} (\mathbf{r} + A\mathbf{y}) \\ &= \Phi(\mathbf{x}) + \mathbf{r}^{H} A\mathbf{y} + \mathbf{y}^{H} A^{H} \mathbf{r} + \mathbf{y}^{H} A^{H} A\mathbf{y} \\ &= \Phi(\mathbf{x}) + \mathbf{y}^{H} A^{H} A\mathbf{y} \\ &\geq \Phi(\mathbf{x}), \end{split}$$

since $\mathbf{y}^H A^H A \mathbf{y} \ge 0$ for any \mathbf{y} . And, since $A^H A$ is HPD,

$$\Phi(\mathbf{x} + \mathbf{y}) > \Phi(\mathbf{x}), \quad \forall \, \mathbf{y} \in \mathbb{C}_{\star}^{n}.$$

Thus $\mathbf{x} \in \mathbb{C}^n$ is a least squares solution.

Least Squares in Other Inner Products

Instead of doing our least squares computations using the norm $\|\cdot\|_{\ell^2(\mathbb{C}^m)}$, we could, in fact, use any norm that on \mathbb{C}^n that arises from an inner product. Suppose that $(\cdot\,,\,\cdot\,)_w:\mathbb{C}^n\times\mathbb{C}^n\to\mathbb{C}$ is an inner product and $\|\cdot\|_w$ is the norm induced by this inner product. We could pose the least squares problem with respect to this inner product.

As an example, suppose that $B \in \mathbb{C}^{n \times n}$ is HPD, and consider the inner product $(\cdot, \cdot)_B$, defined by

$$(\mathbf{x}, \mathbf{y})_{\mathsf{B}} = \mathbf{y}^{\mathsf{H}} \mathsf{B} \mathbf{x}, \quad \forall \, \mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}.$$

Define

$$\Phi_{\mathsf{B}}(\mathsf{z}) = \|\mathsf{r}(\mathsf{z})\|_{\mathsf{B}}^2, \quad \mathsf{r}(\mathsf{z}) = \mathsf{f} - \mathsf{A}\mathsf{z}, \quad \forall \, \mathsf{z} \in \mathbb{C}^n.$$
 (5)

What is the analogue of the normal equations for this case?

Projection Matrices

Projection Matrices

To study the least squares problem in the case that the coefficient matrix $A \in \mathbb{C}^{m \times n}$, $m \ge 0$ is rank-deficient, that is, $\operatorname{rank}(A) = r < n$, it helps to introduce projection matrices.

Definition

The square matrix $P \in \mathbb{C}^{n \times n}$ is called a **projection matrix** iff it is idempotent, that is,

$$P^2 = P$$
.

The Image of a Projection Matrix P

Proposition

Let $P \in \mathbb{C}^{n \times n}$ be a projection matrix and $\mathbf{v} \in \text{im}(P)$. Then

$$P\mathbf{v} = \mathbf{v}$$
.

Proof.

If $\mathbf{v} \in \text{im}(P)$, then there is a vector $\mathbf{w} \in \mathbb{C}^n$ such that $P\mathbf{w} = \mathbf{v}$. Then

$$P\mathbf{v} = P(P\mathbf{w}) = P^2\mathbf{w} = P\mathbf{w} = \mathbf{v}.$$

Theorem (properties of a projection matrix)

Suppose that $P \in \mathbb{C}^{n \times n}$ is a projection matrix. Then $I_n - P$ is also a projection matrix and

- $\bullet \operatorname{im}(I_n P) = \ker(P);$
- **3** $im(P) \cap ker(P) = \{0\};$
- **4** $im(I_n P) \cap ker(I_n P) = \{0\}.$

Proof.

We will prove the first property and leave the remaining ones as an exercise. Suppose that $\mathbf{x} \in \text{im}(I_n - P)$. Then there is a vector $\mathbf{y} \in \mathbb{C}^n$ such that $(I_n - P)\mathbf{y} = \mathbf{x}$. So,

$$P\mathbf{x} = P(I_n - P)\mathbf{y} = P\mathbf{y} - P^2\mathbf{y} = \mathbf{0}$$

Consequently Px = 0, and $x \in \ker(P)$.

Suppose now that $\mathbf{x} \in \ker(\mathsf{P})$. Then $\mathsf{P}\mathbf{x} = \mathbf{0}$. Therefore,

$$(I_n - P)\mathbf{x} = \mathbf{x},$$

which implies that $\mathbf{x} \in \text{im}(I_n - P)$.

Sums of Subspaces

Definition

Let $S_1, S_2 \subseteq \mathbb{C}^n$ be subspaces. Recall, that we write $S_1, S_2 \subseteq \mathbb{C}^n$, for short. Then,

$$S_1 + S_2 = \{ \mathbf{w} \in \mathbb{C}^n \mid \mathbf{w} = \mathbf{v}_1 + \mathbf{v}_2, \ \exists \ \mathbf{v}_i \in S_i, \ i = 1, 2 \}.$$

Proposition (property of the sum)

Let S_1 , $S_2 \leq \mathbb{C}^n$. Then $S_1 + S_2 \leq \mathbb{C}^n$.

Proof.

Exercise.

Complementary Subspaces

Definition

Suppose S_1 , $S_2 \leq \mathbb{C}^n$. If $S_1 + S_2 = \mathbb{C}^n$ and $S_1 \cap S_2 = \{\mathbf{0}\}$, then we call S_1 and S_2 **complementary** subspaces, and we write $S_1 \oplus S_2 = \mathbb{C}^n$.

Theorem (decomposition)

Suppose that $P \in \mathbb{C}^{n \times n}$ is a projection matrix. Then $im(P) \oplus ker(P) = \mathbb{C}^n$, i.e., im(P) and ker(P) are complementary.

Proof.

This follows from a previous theorem and the trivial decomposition

$$\mathbf{v} = P\mathbf{v} + \mathbf{v} - P\mathbf{v} = \underbrace{P\mathbf{v}}_{\in im(P)} + \underbrace{(I - P)\mathbf{v}}_{\in ker(P)}.$$

Constructing a Projection

Theorem

Let $S_1, S_2 \leq \mathbb{C}^n$ be complementary subspaces. Then, there is a projection matrix $P \in \mathbb{C}^{n \times n}$ such that

$$S_1 = im(P)$$
 and $S_2 = ker(P)$.

Proof.

Suppose that

$$B_i = \{\mathbf{w}_1^{(i)}, \ldots, \mathbf{w}_{k_i}^{(i)}\} \subset S_i,$$

is a basis for S_i , i = 1, 2. Then, it is left to the reader to prove that the set

$$B = B_1 \cup B_2$$

is a basis for $\mathbb{C}^n = S_1 \oplus S_2$.

Now, define a mapping $P: \mathbb{C}^n \to \mathbb{C}^n$ such that

$$P(\mathbf{w}_{j}^{(1)}) = \mathbf{w}_{j}^{(1)}, \quad j = 1, ..., k_{1},$$

and

$$P(\mathbf{w}_{j}^{(2)}) = \mathbf{0}, \quad j = 1, ..., k_{2}.$$

We require P to be linear, so that

$$P\left(\sum_{j=1}^{k_1} c_j^{(1)} \mathbf{w}_j^{(1)} + \sum_{j=1}^{k_2} c_j^{(2)} \mathbf{w}_j^{(2)}\right) = \sum_{j=1}^{k_1} c_j^{(1)} P(\mathbf{w}_j^{(1)}) + \sum_{j=1}^{k_2} c_j^{(2)} P(\mathbf{w}_j^{(2)})$$
$$= \sum_{j=1}^{k_1} c_j^{(1)} \mathbf{w}_j^{(1)}.$$

It is now straightforward to prove that $P^2 = P$ and $im(P) = S_1$ and $ker(P) = S_2$, as required.

Orthogonal Subspaces

Definition

Two subspaces S_1 , $S_2 \leq \mathbb{C}^n$ are called **orthogonal** iff

$$(\boldsymbol{v}_1,\boldsymbol{v}_2)_{\ell^2(\mathbb{C}^n)} = (\boldsymbol{v}_1,\boldsymbol{v}_2)_2 = \boldsymbol{v}_2^H\boldsymbol{v}_1 = 0,$$

for all $\mathbf{v}_1 \in S_1$ and $\mathbf{v}_2 \in S_2$.

Proposition (orthogonality)

If S_1 , $S_2 \leq \mathbb{C}^n$ are orthogonal subspaces, then $S_1 \cap S_2 = \{\mathbf{0}\}$.

Proof.

To get a contradiction, suppose there is a non-zero vector, ${\bf v}$ in the intersection. Thus,

$$\|\mathbf{v}\|_2^2 = \mathbf{v}^\mathsf{H}\mathbf{v} > 0.$$

But, since $\mathbf{v} \in S_1$ and $\mathbf{v} \in S_2$, the orthogonality property demands that $\mathbf{v}^H \mathbf{v} = 0$, a contradiction.

Orthogonal Decomposition

Proposition

Suppose that $L \leq \mathbb{C}^n$ has dimension $1 \leq k < n$. Then L^{\perp} is a complementary subspace of dimension n - k:

$$L \oplus L^{\perp} = \mathbb{C}^n$$
.

Furthermore, the decomposition of any $\mathbf{w} \in \mathbb{C}^n$ into

$$\mathbf{w} = \mathbf{x} + \mathbf{y}, \quad \mathbf{x} \in L, \quad \mathbf{y} \in L^{\perp},$$

is unique.

Proof.

L and L^{\perp} are orthogonal subspaces, and therefore $L \cap L^{\perp} = \{\mathbf{0}\}$. Let $B = \{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ be an orthonormal basis for L. Using basis completion and the Gram-Schmidt process, we can find the orthonormal set $T = \{\mathbf{w}_{k+1}, \dots, \mathbf{w}_n\}$, such that $B \cup T$ is an orthonormal basis for \mathbb{C}^n . We claim that T is an orthonormal basis for L^{\perp} .

Now, let $\mathbf{w} \in \mathbb{C}^n$ be arbitrary. Define

$$\mathbf{x} = \sum_{i=1}^k \alpha_i \mathbf{w}_i$$
 and $\mathbf{y} = \sum_{i=k+1}^n \alpha_i \mathbf{w}_i$,

where

$$\alpha_i = \mathbf{w}_i^{\mathsf{H}} \mathbf{w} = (\mathbf{w}, \mathbf{w}_i)_{\ell^2(\mathbb{C}^n)}, \quad i = 1, \ldots, n.$$

It is not too hard to see that $\mathbf{w} = \mathbf{x} + \mathbf{y}$. To see that such decompositions are unique. Suppose that

$$\mathbf{w} = \mathbf{x}_1 + \mathbf{y}_1 = \mathbf{x}_2 + \mathbf{y}_2, \quad \mathbf{x}_i \in L, \quad \mathbf{y}_i \in L^{\perp}, \quad i = 1, 2.$$

Then

$$L\ni \mathbf{x}_1-\mathbf{x}_2=\mathbf{y}_2-\mathbf{y}_1\in L^{\perp}.$$

This implies that, since $L \cap L^{\perp} = \{\mathbf{0}\}\$,

$$\mathbf{0} = \mathbf{x}_1 - \mathbf{x}_2 = \mathbf{y}_2 - \mathbf{y}_1 = \mathbf{0}.$$

Definition (orthogonal projection)

The matrix $P \in \mathbb{C}^{n \times n}$ is called an **orthogonal projection** iff $P = P^2$ and im(P) and ker(P) are orthogonal subspaces.

Theorem (characterization of orthogonal projection)

Let $P \in \mathbb{C}^{n \times n}$ be a projection matrix. Then P is an orthogonal projection iff $P = P^H$.

Proof.

Suppose that $P^H=P$. Let $\mathbf{v}_1\in \ker(P)$ and $\mathbf{v}_2\in \operatorname{im}(P)$ be arbitrary. Then

$$P\mathbf{v}_2 = \mathbf{v}_2, \qquad (I_n - P)\mathbf{v}_1 = \mathbf{v}_1,$$

and

$$\boldsymbol{v}_2^H\boldsymbol{v}_1 = \left(P\boldsymbol{v}_2\right)^H \left(I_n - P\right)\boldsymbol{v}_1 = \boldsymbol{v}_2^H P^H (I_n - P)\boldsymbol{v}_1 = \boldsymbol{v}_2^H (P - P^2)\boldsymbol{v}_1 = 0.$$

Thus im(P) and ker(P) are orthogonal subspaces, which implies that P is an orthogonal projection.

Suppose now that P is an orthogonal projection. Set

$$S_1 = im(P), \qquad S_2 = ker(P),$$

with

$$\dim(S_1) = k < n, \qquad \dim(S_2) = n - k.$$

We want to prove that $P^H = P$, using the fact that S_1 and S_2 are orthogonal subspaces of \mathbb{C}^n . Let

$$B_1 = \{\mathbf{q}_1, \ldots, \mathbf{q}_k\} \subset S_1, \qquad B_2 = \{\mathbf{q}_{k+1}, \ldots, \mathbf{q}_n\} \subset S_2,$$

be orthonormal bases for the respective spaces. This is always possible thanks to basis completion and the Gram–Schmidt process. We leave it as an exercise for the reader to prove that $B = B_1 \cup B_2$ is an orthonormal basis for \mathbb{C}^n . (Use the fact that S_1 and S_2 are complementary orthogonal subspaces.)

By our construction,

$$\mathsf{P}\mathbf{q}_j = \begin{cases} \mathbf{q}_j & j = 1, \dots, k, \\ \mathbf{0} & j = k+1, \dots, n. \end{cases}$$

Set

$$Q = \begin{bmatrix} | & & | \\ \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ | & & | \end{bmatrix} \in \mathbb{C}^{n \times n}.$$

Then

$$\mathsf{PQ} = \begin{bmatrix} | & & | & | & & | \\ \mathbf{q}_1 & \cdots & \mathbf{q}_k & \mathbf{0} & \cdots & \mathbf{0} \\ | & & | & | & | \end{bmatrix} \in \mathbb{C}^{n \times n},$$

and

$$\mathsf{Q}^\mathsf{H}\mathsf{P}\mathsf{Q} = \begin{bmatrix} \mathsf{I}_k & \mathsf{O} \\ \mathsf{O} & \mathsf{O}_{n-k} \end{bmatrix} = \Sigma \in \mathbb{C}^{n \times n}.$$

Consequently,

$$P = Q\Sigma Q^{H}$$
,

and $P^H = P$.

Theorem (special projectors)

Let $k \in \{1, ..., n\}$ and suppose that the collection of vectors $\{\mathbf{q}_1, ..., \mathbf{q}_k\} \subset \mathbb{C}^n$ is orthonormal. Define

$$\hat{\mathbf{Q}} = \begin{bmatrix} | & & | \\ \mathbf{q}_1 & \cdots & \mathbf{q}_k \\ | & & | \end{bmatrix} \in \mathbb{C}^{n \times k},$$

then the matrices

$$P = \hat{Q}\hat{Q}^H$$
, $I_n - P = I_n - \hat{Q}\hat{Q}^H$

are orthogonal projectors.

Rank-one Projections

Definition

Suppose that $\mathbf{q} \in \mathbb{C}^n$, $\|\mathbf{q}\|_2 = 1$. The matrix $\mathsf{P} = \mathbf{q}\mathbf{q}^\mathsf{H}$ is called a **rank-one orthogonal projection**. The complement, $\mathsf{I}_n - \mathbf{q}\mathbf{q}^\mathsf{H}$, is called a **rank-**(n-1) **orthogonal projection**.

Theorem

The identity matrix $I_n \in \mathbb{C}^{n \times n}$ is a sum of n rank-one orthogonal projection matrices.

Proof.

Write $I_n = UU^H$, where U is unitary. Then,

$$I_n = UI_nU^H = \sum_{i=1}^n U\mathbf{e}_i\mathbf{e}_i^\mathsf{T}U^H = \sum_{i=1}^n \mathbf{u}_i\mathbf{u}_i^\mathsf{H}.$$

The 2-Norm of a Projection Matrix

Theorem

Let $P \in \mathbb{C}^{n \times n}$ be a non–zero projection matrix. Then $\|P\|_2 \ge 1$. Moreover, $\|P\|_2 = 1$ iff P is an orthogonal projection, that is $P^H = P$.

Proof.

Suppose that P is a projection matrix, that is, $\mathsf{P}^2=\mathsf{P}.$ Then, using the sub–multiplicativity of the 2–norm

$$\|P\|_2 = \|P^2\|_2 \le \|P\|_2 \|P\|_2$$
.

Since P is not the zero matrix, $\|P\|_2 > 0$, and $\|P\|_2 \ge 1$.

Now, for the second part, we have two directions to prove. Assume first that $P^2 = P$ and $P^H = P$.

In the proof of a previous theorem, we showed that

$$P = Q\Sigma Q^{H}$$
,

where $Q = [\mathbf{q}_1, \dots, \mathbf{q}_n] \in \mathbb{C}^{n \times n}$ is unitary and

$$\Sigma = \begin{bmatrix} \mathsf{I}_k & \mathsf{O} \\ \mathsf{O} & \mathsf{O}_{n-k} \end{bmatrix},$$

for some $1 \leq k < n$. In other words, $\Sigma = \operatorname{diag}[\sigma_1, \ldots, \sigma_k, 0, \ldots, 0]$, where $\sigma_i = 1, \ 1 \leq i \leq k$. Recall that $\{\mathbf{q}_1, \ldots, \mathbf{q}_k\}$ is a basis for im(P) and $\{\mathbf{q}_{k+1}, \ldots, \mathbf{q}_n\}$ is a basis for ker(P). In any case, P is Hermitian positive semi–definite, $P = Q\Sigma Q^H$ is a unitary diagonalization of P, and

$$\|P\|_2 = \sigma_1 = \rho(P) = 1.$$

$$\|P\|_2 > 1.$$

Since $P^H \neq P$, $ker(P) \cap im(P) = \{0\}$, but

$$ker(P) \not\perp im(P)$$
.

So, there is some non–zero vector $\mathbf{v}_1 \in \text{im}(P)$ and some non–zero vector $\mathbf{v}_2 \in \text{ker}(P)$ such that

$$(\mathbf{v}_1, \mathbf{v}_2)_2 = \mathbf{v}_2^{\mathsf{H}} \mathbf{v}_1 \neq 0.$$

Set

$$\mathbf{v} = \mathbf{v}_1 + \alpha \mathbf{v}_2, \quad \alpha \in \mathbb{C}.$$

Then $P\mathbf{v} = \mathbf{v}_1$. Now, we want to choose $\alpha \in \mathbb{C}$ so that

$$\|P\mathbf{v}\|_2 > \|\mathbf{v}\|_2 > 0.$$

Indeed, if such an $\alpha \in \mathbb{C}$ exists, then

$$\left\|\mathsf{P}\right\|_2 = \sup_{\mathsf{x} \in \mathbb{C}^n_\star} \frac{\left\|\mathsf{P}\mathbf{x}\right\|_2}{\left\|\mathbf{x}\right\|_2} \geq \frac{\left\|\mathsf{P}\mathbf{v}\right\|_2}{\left\|\mathbf{v}\right\|_2} > 1.$$

Since

$$\mathsf{P}\mathbf{v} = \mathsf{P}(\mathbf{v}_1 + \alpha \mathbf{v}_2) = \mathsf{P}\mathbf{v}_1 + \alpha \mathsf{P}\mathbf{v}_2 = \mathbf{v}_1,$$

it follows that

$$\|\boldsymbol{v}_1\|_2^2 = \|P\boldsymbol{v}\|_2^2$$

and

$$\|\mathbf{v}\|_{2}^{2} = \|\mathbf{v}_{1} + \alpha \mathbf{v}_{2}\|_{2}^{2} = \|\mathbf{P}\mathbf{v}\|_{2}^{2} + 2\Re\left(\alpha \mathbf{v}_{1}^{\mathsf{H}}\mathbf{v}_{2}\right) + |\alpha|^{2}\|\mathbf{v}_{2}\|_{2}^{2} = \|\mathbf{P}\mathbf{v}\|_{2}^{2} + \mathcal{T},$$

where

$$T = 2\Re\left(\alpha \mathbf{v}_1^{\mathsf{H}} \mathbf{v}_2\right) + |\alpha|^2 \|\mathbf{v}_2\|_2^2.$$

Therefore, it suffices to choose $\alpha \in \mathbb{C}$ so that T < 0 for, in that case,

$$\|\mathbf{v}\|_{2}^{2} < \|\mathsf{P}\mathbf{v}\|_{2}^{2}$$
.

The key is to choose $\alpha \in \mathbb{C}$ such that $\mathbf{v} \perp \mathbf{v}_2$, that is, $\mathbf{v}_2^H \mathbf{v} = 0$. This is equivalent to

$$\begin{aligned} \mathbf{v}_{2}^{H}(\mathbf{v}_{1} + \alpha \mathbf{v}_{2}) &= 0 \\ \iff \mathbf{v}_{2}^{H}\mathbf{v}_{1} &= -\alpha \mathbf{v}_{2}^{H}\mathbf{v}_{2} \\ \iff \bar{\alpha}\mathbf{v}_{2}^{H}\mathbf{v}_{1} &= -|\alpha|^{2} \|\mathbf{v}_{2}\|_{2}^{2} \in \mathbb{R} \\ \iff \bar{\alpha}\overline{\mathbf{v}}_{1}^{H}\mathbf{v}_{2} &= -|\alpha|^{2} \|\mathbf{v}_{2}\|_{2}^{2} \in \mathbb{R} \\ \iff \alpha\mathbf{v}_{1}^{H}\mathbf{v}_{2} &= -|\alpha|^{2} \|\mathbf{v}_{2}\|_{2}^{2} \in \mathbb{R}. \end{aligned}$$

In this case,

$$T = -|\alpha|^2 \|\mathbf{v}_2\|_2^2 \in \mathbb{R}.$$

Thus, the result follows upon choosing $\alpha = -\frac{v_2^H v_1}{\|v_2\|_2^2}$.

Rank-Deficient Case

Theorem (general least squares)

Suppose that $m \ge n$, and the matrix $A \in \mathbb{C}^{m \times n}$ is such that $\operatorname{rank}(A) \le n$, i.e., A may be rank deficient. Let $\mathbf{f} \in \mathbb{C}^m$ be given. Then the normal equations,

$$A^{H}A\mathbf{x} = A^{H}\mathbf{f},\tag{6}$$

always have at least one solution, and, for any two solutions, $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{C}^n$ — in the case that there are multiple solutions — we find that

$$\mathbf{r}(\mathbf{x}_1)=\mathbf{r}(\mathbf{x}_2),$$

where, for $\mathbf{w} \in \mathbb{C}^n$, we defined

$$\mathbf{r}(\mathbf{w}) = \mathbf{f} - \mathsf{A}\mathbf{w}.$$

In other words, the residual is always unique.

Theorem (Cont.)

Furthermore, the following are equivalent

1 $\mathbf{x}_o \in \mathbb{C}^n$ is a solution to

$$\mathbf{x} \in \underset{\mathbf{w} \in \mathbb{C}^n}{\operatorname{argmin}} \Phi(\mathbf{w}), \quad \Phi(\mathbf{w}) = \|\mathbf{r}(\mathbf{w})\|_2^2.$$
 (7)

- **2** $\mathbf{x}_o \in \mathbb{C}^n$ is a solution to the normal equations (6).
- **3** $\mathbf{x}_o \in \mathbb{C}^n$ has the property that

$$\mathbf{r}(\mathbf{x}_o) \perp \mathrm{im}(\mathsf{A}).$$

Proof.

First, let us prove that the normal equations (6) have a solution. Set $L = \operatorname{im}(A)$. Then L and L^{\perp} are complementary, orthogonal, subspaces of \mathbb{C}^m :

$$\mathbb{C}^m = L \oplus L^{\perp}.$$

Therefore the decomposition

$$f = s + r$$
, $s \in L = im(A)$, $r \in L^{\perp}$

is unique. Since $\mathbf{s} \in \text{im}(A)$, there is at least one vector $\mathbf{x}_o \in \mathbb{C}^n$ such that

$$A\mathbf{x}_o = \mathbf{s}$$
.

Since $\mathbf{r} \in L^{\perp}$, $\mathbf{r}^{\mathsf{H}} A \mathbf{x} = 0$, for all $\mathbf{x} \in \mathbb{C}^n$. This implies that

$$A^H \mathbf{r} = \mathbf{0} \in \mathbb{C}^n$$
.

Recall that,

$$\mathbf{f} = A\mathbf{x}_o + \mathbf{r}$$

which implies that

$$\mathbf{r} = \mathbf{f} - A\mathbf{x}_o = \mathbf{r}(\mathbf{x}_o).$$

Hence

$$A^{H}\mathbf{r}(\mathbf{x}_{o}) = \mathbf{0} \in \mathbb{C}^{n}$$
,

which is equivalent to the normal equations. Thus, the normal equations have at least one solution.

Suppose that $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{C}^n$ are solutions to the normal equations (6). Recall that the decomposition

$$f = s + r$$
, $s \in L = im(A)$, $r \in L^{\perp}$

is unique. But

$$\mathbf{f} = A\mathbf{x}_1 + \mathbf{r}(\mathbf{x}_1) = A\mathbf{x}_2 + \mathbf{r}(\mathbf{x}_2)$$

So
$$\mathbf{s} = A\mathbf{x}_1 = A\mathbf{x}_2$$
 and $\mathbf{r} = \mathbf{r}(\mathbf{x}_1) = \mathbf{r}(\mathbf{x}_2)$.

 $(2 \iff 3)$: This follows from the calculations we carried out above.

 $(2 \implies 1)$: This argument is similar to previous ones. Suppose that $\mathbf{x}_o \in \mathbb{C}^n$ is a solution to the normal equation (6). Let $\mathbf{w} \in \mathbb{C}^n$ be arbitrary. Then

$$\begin{split} \Phi(\mathbf{x}_o + \mathbf{w}) &= (\mathbf{r}(\mathbf{x}_o) - A\mathbf{w})^H (\mathbf{r}(\mathbf{x}_o) - A\mathbf{w}) \\ &= \Phi(\mathbf{x}_o) - (\mathbf{r}(\mathbf{x}_o))^H A\mathbf{w} - \mathbf{w}^H A^H \mathbf{r}(\mathbf{x}_o) + \mathbf{w}^H A^H A\mathbf{w} \\ &= \Phi(\mathbf{x}_o) + \mathbf{w}^H A^H A\mathbf{w} \\ &\geq \Phi(\mathbf{x}_o), \end{split}$$

since A^HA is Hermitian positive semi–definite. Note that we cannot claim that $\Phi(\mathbf{x}_o + \mathbf{w}) > \Phi(\mathbf{x}_o)$, for all $\mathbf{w} \in \mathbb{C}^n_\star$, since we do not know that A^HA is HPD. However, we can still assert that \mathbf{x}_o is a minimizer, though it might not be unique.

 $(1 \Longrightarrow 3)$: Suppose that $\mathbf{x}_o \in \mathbb{C}^n$ is a solution to (7). We want to show that $\mathbf{r}(\mathbf{x}_o) \perp \operatorname{im}(A)$. To get a contradiction, suppose that $\mathbf{r}(\mathbf{x}_o) \not \perp \operatorname{im}(A)$. If this is the case, there is some $\mathbf{q} \in \operatorname{im}(A)$, $\mathbf{q} \ne \mathbf{0}$, such that $\mathbf{q}^H \mathbf{r}(\mathbf{x}_o) \ne 0$. Since $\mathbf{q} \in \operatorname{im}(A)$, there is a vector $\mathbf{w} \in \mathbb{C}^n$ such that $A\mathbf{w} = \mathbf{q}$. Since \mathbf{x}_o is a minimizer of Φ , for any $\alpha \in \mathbb{C}$

$$\begin{split} \|\mathbf{r}(\mathbf{x}_{o})\|_{2}^{2} &= \Phi(\mathbf{x}_{o}) \\ &\leq \Phi(\mathbf{x}_{o} + \alpha \mathbf{w}) \\ &= \Phi(\mathbf{x}_{o}) - \alpha(\mathbf{r}(\mathbf{x}_{o}))^{\mathsf{H}} \mathbf{A} \mathbf{w} - \bar{\alpha} \mathbf{w}^{\mathsf{H}} \mathbf{A}^{\mathsf{H}} \mathbf{r}(\mathbf{x}_{o}) + |\alpha|^{2} \mathbf{w}^{\mathsf{H}} \mathbf{A}^{\mathsf{H}} \mathbf{A} \mathbf{w} \\ &= \|\mathbf{r}(\mathbf{x}_{o})\|_{2}^{2} - 2\Re\left(\bar{\alpha} \mathbf{q}^{\mathsf{H}} \mathbf{r}(\mathbf{x}_{o})\right) + |\alpha|^{2} \mathbf{q}^{\mathsf{H}} \mathbf{q}. \end{split}$$

Thus, for all $\alpha \in \mathbb{C}$,

$$2\Re\left(\bar{\alpha}\mathbf{q}^{\mathsf{H}}\mathbf{r}(\mathbf{x}_{o})\right)\leq |\alpha|^{2}\mathbf{q}^{\mathsf{H}}\mathbf{q}.$$

Now, set

$$lpha = rac{\mathbf{q}^{\mathsf{H}}\mathbf{r}(\mathbf{x}_{o})}{\mathbf{q}^{\mathsf{H}}\mathbf{q}}$$

to get a contradiction.