PH30030: Quantum Mechanics Problems Sheet 5

This problems sheet covers section 5 of the course, on the variational method.

1. Use the trial wavefunction $\psi(x) = Ax \exp(-\lambda x)$ ($x \ge 0$) to estimate the ground state energy of a particle of mass m in the one-dimensional triangular well

$$V(x) = \infty$$
 for $x < 0$

$$V(x) = \frac{V_0 x}{a}$$
 for $x > 0$

Note:
$$\int_{0}^{\infty} x^{n} e^{-bx} dx = \frac{n!}{b^{n+1}}$$

2. Explain why the parabolic function $\psi(x) = Ax(a-x)$ is a suitable trial ground state wavefunction for a particle of mass m in a 1D box with

$$V(x) = \infty \text{ for } 0 > x > a$$

$$V(x) = 0$$
 for $0 \le x \le a$

Use this wavefunction to estimate the ground state energy of the particle.

3. Estimate the ground state energy of a 1D harmonic oscillator described by the Hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m\omega^2 x^2$$

using the Gaussian trial wavefunction $\psi(x) = Ae^{-bx^2}$.

Note:
$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \left(\frac{\pi}{a}\right)^{\frac{1}{2}}$$
 for $a > 0$; $\int_{-\infty}^{\infty} x^2 e^{-ax^2} dx = \frac{1}{2} \left(\frac{\pi}{a^3}\right)^{\frac{1}{2}}$ for $a > 0$.

4. Estimate the ground state energy of a particle in 1D if the potential energy is given by $V(x) = -\alpha \delta(x)$, where α is a constant, using the Gaussian trial wavefunction $\psi(x) = Ae^{-bx^2}$. The delta function is defined by $\delta(x) = 0$ if $x \neq 0$, $\delta(x) = \infty$ if x = 0 and $\int_0^\infty \delta(x) dx = 1$.

5. Estimate the ground state energy of a particle in 1D for the quartic potential
$$V(x) = \alpha x^4$$
, where α is a constant, using the Gaussian trial wavefunction $\psi(x) = Ae^{-bx^2}$.

1

Note:
$$\int_{-\infty}^{\infty} x^4 e^{-ax^2} dx = \frac{3}{4} \left(\frac{\pi}{a^5} \right)^{\frac{1}{2}}$$
 for $a > 0$.