ANT 6973: DATA VISUALIZATION AND EXPLORATION

DATA MANIPULATION, PART 3: TWO-TABLE OPERATIONS

TYPES OF TWO-TABLE OPERATIONS

- Combining variables and cases
- Set operations
- Joins

COMBINING VARIABLES AND CASES

	V1	V2	V3
	a	t	1
X	b	u	2
	C	V	3

Use bind_cols() to paste tables as they are as a single table side-by-side.

bind_cols(x, y)

V1	V2	V3	V4	V5
a	t	1	d	4
b	u	2	е	5
C	V	3	f	6

Use bind_cols() to paste tables as they are as a single table side-by-side.

Be sure that rows align! Tables must have same number of rows.

bind_cols(x, y)

V1	V2	V3	V4	V5
a	t	1		
b	u	2		
С	V	3		

Use bind_cols() to paste tables as they are as a single table side-by-side.

Be sure that rows align! Tables must have same number of rows.

Error

	V1	V2	V3
	a	t	1
X	b	u	2
	C	V	3

 V1
 V2
 V3

 d
 w
 4

 e
 x
 5

 f
 y
 6

bind_rows() binds multiple data frames by row(i.e., paste one table "below" the other)

bind_rows(x, y)

V1	V2	V3
a	t	1
b	u	2
С	V	3
d	W	4
е	X	5
f	У	6

When row-binding, columns are matched by name, and any missing columns will be filled with NA.

bind_rows(x, y)

V1	V2	V3
a	t	1
b	u	2
С	V	3
d	W	NA
е	X	NA
f	У	NA

	V4	V5	
y	d	W	
	е	X	
	f	У	

When row-binding, columns are matched by name, and any missing columns will be filled with NA.

bind_rows(x, y)

V1	V2	V3	V4	V5
a	t	1	NA	NA
b	u	2	NA	NA
C	V	3	NA	NA
NA	NA	NA	d	W
NA	NA	NA	е	X
NA	NA	NA	f	У

Remember messy_ktc_data.xlsx?

Home Insert Page Layout Formulas Data Review View Normal Page Break Page Custom Preview Layout Views Freeze Freeze First Split $f_x \times \sqrt{f_x} = \frac{7}{9}/2012$ Н K M N 0 Q S U Z AA AB D 17 A SW2 1.5 HVV 28-Jul-08 Mollusc data 2 2 1.7 HVV Element 18 A SW₂ 2 1 Trench Unit Count Max L/W m Burnt/Not Burr Cutmark/N Recorder NOTES Date 28-Jul-08 Context Taxon Mass (g) 9-Jul-12 SW2 HVV 19 A SW₂ 2 6.3 HVV 2 Unknown Bivalve 1 NA 1 28-Jul-08 A Max L/W mBurnt/Not Burr Cutmark/N Recorder NOTES 20 A 2 1 Trench Unit Element Date SW2 3.5 HVV 28-Jul-08 Context Taxon Mass (g) Count 21 A SW2 1.4 HVV 28-Jul-08 SW4 HVV 9-Jul-12 5 F. Viviparid Gastropod 1.3 1 NA N 22 A 2 SW4 HVV 9-Jul-12 SW2 1 3 HVV 28-Jul-08 5 F. Arcidae / Bivalve 0.8 1 NA N 23 A 2 1 2.3 HVV 28-Jul-08 SW4 1.5 N HVV 9-Jul-12 SW2 5 F. Muricida Gastropod 1 NA 2 2 24 A SW₂ 1 4.6 HVV 28-Jul-08 SW4 5 F. Potamidi Gastropod 16.7 8 NA HVV 9-Jul-12 25 A 2 1 SW4 5 Unknown Gastropod 3.2 HVV 9-Jul-12 SW2 3.1 HVV 28-Jul-08 8 NA 26 A SW₂ 2 1.8 HVV 28-Jul-08 SW4 1.4 12 NA HVV 9-Jul-12 5 Unknown Bivalve 27 A SW2 2 2 1 1.2 HVV 28-Jul-08 SW4 5 Unknown Bivalve 3.7 4 NA N HVV 9-Jul-12 28 A SW2 2 2 1 3.2 HVV 28-Jul-08 SW4 5 F. Cyclopho Gastropod 2 NA N HVV 9-Jul-12 29 A SW2 2 2 1 1.1 HVV 28-Jul-08 Trench Unit Context Taxon Element Mass (g) Count Max L/W m Burnt/Not Burr Cutmark/N Recorder NOTES Date 30 A 2 1.3 HVV SW5 21.16 N SW2 1 2 1 28-Jul-08 Α 9 F. Cyclopho Gastropod 1.3 CC F-100-0168 10-Jul-12 SW5 25.06 N CC 31 A SW₂ 2 1 0.8 HVV Α 1.7 N F-100-0161 10-Jul-12 28-Jul-08 9 F. Neritidae Gastropod 32 A SW5 28.24 N CC SW2 2 2 1 1.1 HVV Α 2.7 F-100-0174 10-Jul-12 28-Jul-08 9 F. Cyclopho Gastropod 1 CC 33 A 2 SW5 2.5 27.34 N SW2 2 1 1 HVV 28-Jul-08 Α 9 F. Cyclopho Gastropod 1 F-100-0169 10-Jul-12 CC 34 A SW₂ 2 1 1 1.5 HVV A SW5 9 F. Viviparid Gastropod 4.5 2 NA 10-Jul-12 28-Jul-08 N 2 2 Α SW5 N CC 35 A SW2 1 1 HVV 28-Jul-08 9 F. Camaeni Gastropod 3.2 1 NA 10-Jul-12 CC 36 A 2 1 0.9 HVV A SW5 2.5 N 10-Jul-12 SW2 28-Jul-08 9 F. Cyclophc Gastropod 3 NA 37 A 2 N CC SW2 1 **4.4 HVV** 28-Jul-08 Α SW5 9.6 4 NA 10-Jul-12 9 F. Muricida Gastropod 38 A 1 SW5 40.8 N CC 10-Jul-12 SW2 1.9 HVV 28-Jul-08 Α 9 F. Potamidi Gastropod 3 NA 39 A 2 2 3 0.9 CC SW5 36.7 N CC 10-Jul-12 SW2 28-Jul-08 Α 9 F. Arcidae Bivalve 3 NA 40 A SW3 3 3 12.5 HVV 28-Jul-08 A SW5 9 F. Amblemi Bivalve 9 1 NA N CC 10-Jul-12 41 A SW3 3 3 5 3 12.1 HVV 28-Jul-08 Α SW5 9 F. Potamidi Gastropod 224.6 134 NA N CC 10-Jul-12 55.7 N CC 42 A SW3 3 3 5 5 10.8 HVV 28-Jul-08 Α SW5 9 Unknown Gastropod 75 NA 10-Jul-12 SW5 151 150 NA N CC 43 A SW3 3 3 5 19.9 HVV 28-Jul-08 Α 9 Unknown Bivalve N 10-Jul-12 Mass (g) Max L/W m Burnt/Not Burr Cutmar 44 A SW3 3 3 11 35.4 HVV Unit Count N Recorder Date 28-Jul-08 Trench Context Taxon Element NOTES 21 89.9 CC 45 A SW3 3 3 56.7 HVV 28-Jul-08 SW6 12 F. Potamidi Gastropod 52 NA 11-Jul-12 N 46 CC 46 A 3 SW4 65.7 CC 28-Jul-08 SW6 12 F. Potamidi Gastropod 15.4 2 NA N 11-Jul-12 CC 47 A SW4 3 1 28-Jul-08 SW6 1.8 N 11-Jul-12 2.4 CC 12 F. Cyclopho Gastropod 2 NA 3 CC 11-Jul-12 48 A SW4 4 5 1 1.8 CC 28-Jul-08 SW6 32.4 54 NA N 12 Unknown Gastropod 49 A 3 1 9.2 CC 28-Jul-08 SW6 117.6 115 NA N HVV 11-Jul-12 SW4 12 Unknown Bivalve 50 A SW4 3 5 1 5.8 CC 28-Jul-08 SW6 1.4 25.19 N CC F-100-0187 11-Jul-12 4 12 F. Cyclopho Gastropod 51 A 3 1 4.5 CC SW6 12 F. Cyclophc Gastropod 0.4 25.93 N CC SW4 28-Jul-08 F-100-0184 11-Jul-12 1 52 A 3 5.9 CC SW6 12 GB Gastropod 3.2 CC 11-Jul-12 SW4 5 1 28-Jul-08 1 NA F-100-0179 53 A SW4 3 3 10.2 HVV 28-Jul-08 SW6 12 F. Amblemi Bivalve 29.6 9 NA N HVV 11-Jul-12 54 A SW4 3 17 17 HVV 28-Jul-08 SW6 12 BiA Bivalve 14 1 NA N HVV F-100-0190 11-Jul-12 55 A SW4 3 7 15 33.1 HVV 28-Jul-08 Trench Unit Context Taxon Element Mass (g) Count Max L/W m Burnt/Not Burr Cutmark/N Recorder NOTES Date 56 A 7 SW6 SW4 3 10 11.1 HVV 28-Jul-08 13 F. Potamidi Gastropod 25.8 19 NA N CC 11-Jul-12 Α SW6 CC 57 A SW4 3 16 0.3 N F-100-0194 11-Jul-12 16.7 HVV 28-Jul-08 Α 13 GC Gastropod 1 NA 58 A SW4 7.6 HVV 28-Jul-08 SW6 13 F. Achatinic Gastropod 1.3 1 NA CC 11-Jul-12 59 A 3 7 1 4.6 HVV SW6 13 F. Potamidi Gastropod N CC SW4 28-Jul-08 Α 9.6 1 NA 11-Jul-12 60 A CC 4.4 HVV 28-Jul-08 SW6 13 F. Amblemi Bivalve 2.8 11-Jul-12 SW4 1 1 NA N 61 A CC 11-Jul-12 3 7 1 1.3 HVV 28-Jul-08 A SW6 13 Unknown Bivalve 14.2 N SW4 27 NA 62 A 13 Unknown Gastropod 1 0.6 HVV 28-Jul-08 SW6 8.4 N CC 11-Jul-12 SW4 20 NA 63 A 7 1 1.3 HVV SW6 N CC 11-Jul-12 SW4 3 28-Jul-08 13 F. Cyclopho Gastropod 3.8 3 NA N

Sheet1 Sheet2 Sheet3 +

• • • □ ₩ ₩ · ♂ ₹

Review from Data Import module

```
artifacts_path <- here::here("messy_ktc_data.xlsx")
                                     Read in the "SW4" chunk
molluscs_sw4 <- artifacts_path |>
  read_excel(range = "L20:X28",
             col_types = c("text", "text", "text", "text",
                            "text", "numeric", "numeric",
                            "numeric", "text", "text", "text",
                            11+ex+11 11da+a11)
                                Read in the "SW6" chunk
  clean_names()
molluscs_sw6 <- artifacts_path |> ...
                                                   Bind them together.
sw4_6 <- bind_rows(molluscs_sw4, molluscs_sw6)</pre>
```

	V1	V2	V3
X	a	t	1
	b	u	2
	C	V	3

V1 V2 V3

c v 3

d w 4

intersect(x, y, ...) Rows that appear in both x and y.

V1	V2	V3
C	V	3

	V1	V2	V 3
X	a	t	1
	b	u	2
	C	V	3

 V1
 V2
 V3

 c
 v
 3

 d
 w
 4

setdiff(x, y, ...)
Rows that appear in x but not y.

V1	V2	V3
a	t	1
b	u	2

	V1	V2	V3
	a	t	1
X	b	u	2
	C	V	3

 V1
 V2
 V3

 c
 v
 3

 d
 w
 4

union(x, y, ...)
Rows that appear in x or y.
(Duplicates removed).

V1	V2	V3
a	t	1
b	u	2
С	V	3
d	W	4

JOINS

nycflights13

Data about every flight that departed La Guardia, JFK, or Newark airports in 2013

```
# install.packages("nycflights13")
library("nycflights13")
```

flights

year	month	daŷ	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time	arr_delay	carrier	flight	tailnum	origin	dest	air_time	distance	hour	minute	time_hour
2013	1	1	517	515	2	830	819	11	UA	1545	N14228	EWR	IAH	227	1400	5	15	2013-01-01 05:00:00
2013	1	1	533	529	4	850	830	20	UA	1714	N24211	LGA	IAH	227	1416	5	29	2013-01-01 05:00:00
2013	1	1	542	540	2	923	850	33	AA	1141	N619AA	JFK	MIA	160	1089	5	40	2013-01-01 05:00:00
2013	1	1	544	545	-1	1004	1022	-18	B6	725	N804JB	JFK	BQN	183	1576	5	45	2013-01-01 05:00:00
2013	1	1	554	600	-6	812	837	-25	DL	461	N668DN	LGA	ATL	116	762	6	0	2013-01-01 06:00:00
2013	1	1	554	558	-4	740	728	12	UA	1696	N39463	EWR	ORD	150	719	5	58	2013-01-01 05:00:00
2013	1	1	555	600	-5	913	854	19	В6	507	N516JB	EWR	FLL	158	1065	6	0	2013-01-01 06:00:00
2013	1	1	557	600	-3	709	723	-14	EV	5708	N829AS	LGA	IAD	53	229	6	0	2013-01-01 06:00:00
2013	1	1.	557	600	-3	838	846	-8	B6	79	N593JB	JFK	МСО	140	944	6	0	2013-01-01 06:00:00
2013	1	1	558	600	-2	753	745	8	AA	301	N3ALAA	LGA	ORD	138	733	6	0	2013-01-01 06:00:00
2013	1	1	558	600	-2	849	851	-2	B6	49	N793JB	JFK	PBI	149	1028	6	0	2013-01-01 06:00:00
2013	1	1	558	600	-2	853	856	-3	B6	71	N657JB	JFK	TPA	158	1005	6	0	2013-01-01 06:00:00
2013	1	1	558	600	-2	924	917	7	UA	194	N29129	JFK	LAX	345	2475	6	0	2013-01-01 06:00:00
2013	1	1	558	600	-2	923	937	-14	UA	1124	N53441	EWR	SFO	361	2565	6	0	2013-01-01 06:00:00
2013	1	1	559	600	-1	941	910	31	AA	707	N3DUAA	LGA	DFW	257	1389	6	0	2013-01-01 06:00:00
2013	1	1	559	559	0	702	706	-4	B 6	1806	N708JB	JFK	BOS	44	187	5	59	2013-01-01 05:00:00
2013	1	1	559	600	-1	854	902	-8	UA	1187	N76515	EWR	LAS	337	2227	6	0	2013-01-01 06:00:00
2013	1	1	600	600	0	851	858	-7	B6	371	N595JB	LGA	FLL	152	1076	6	0	2013-01-01 06:00:00
2013	1	1	600	600	0	837	825	12	MQ	4650	N542MQ	LGA	ATL	134	762	6	0	2013-01-01 06:00:00
2013	1	1	601	600	1	844	850	-6	B 6	343	N644JB	EWR	PBI	147	1023	6	0	2013-01-01 06:00:00
2013	1	1	602	610	-8	812	820	-8	DL	1919	N971DL	LGA	MSP	170	1020	6	10	2013-01-01 06:00:00
2013	1	1	602	605	-3	821	805	16	MQ	4401	N730MQ	LGA	DTW	105	502	6	5	2013-01-01 06:00:00

Details

⚠ The class of service you searched may not be available on one or more flights

BNA - ORD

ORD - YVR

Flight 1 of 2

Flight 2 of 2

Nashville, TN to Chicago, IL Thursday, July 26, 2018

 $4:10 \text{ pm} \rightarrow 6:03 \text{ pm}$

Travel info

me· 1h 53m

AA 3246 CR7-Canadair RJ 700
Operated by SkyWest Airlines As American Eagle

Travel time: 1h 53m
Connection time: 2h 33m

Performand

On time: 52 Late: 43% Performance*

On time: 52%**

Late: 43%

Main Cabin

Meals: Beverage service

Booking code: V Class: Economy **Business**

Meals: Beverage service

Booking code: I Class: First

** The on-time arrival percentage for the selected flight is based on arrival within 14 minutes after the scheduled arrival as reported monthly to the U.S. Department of Transportation.

^{*} This is based on information from the month of May 2018

^{**} The on-time arrival percentage for the selected flight is based on arrival within 14 minutes after

nycflights13

nycflights13

What airline had the longest delays?


```
flights |>
  select(carrier) |>
  View()
```

View(airlines)

	carrier
1	UA
2	UA
3	AA
4	B6
5	DL
6	UA
7	B6
8	EV
9	B6
10	ΔΔ

One row per flight (many duplicate carriers)

One row per carrier (no duplicates)

	carrier	name
1	9E	Endeavor Air Inc.
2	AA	American Airlines Inc.
3	AS	Alaska Airlines Inc.
4	B6	JetBlue Airways
5	DL	Delta Air Lines Inc.
6	EV	ExpressJet Airlines Inc.
7	F9	Frontier Airlines Inc.
8	FL	AirTran Airways Corporation
9	HA	Hawaiian Airlines Inc.
10	MO	Envoy Air

nycflights13

What airline had the longest delays?

MUTATING VS. FILTERING JOINS

- Mutating joins use information from one data set to add variables to another data set (like mutate()).
- Filtering joins use information from one data set to extract cases from another data set (like filter()).

MUTATING JOINS

ADD NEW VARIABLES TO ONE TABLE FROM MATCHING ROWS IN ANOTHER

MUTATING JOINS

INNER JOIN

- Matches pairs of observations whenever their keys are equal.
- Output of an inner join is a new data frame that contains the key, the x values, and the y values.
- Unmatched rows are not included in the result!
- This can be useful, but it can also be dangerous (you'll lose observations if you're not careful).

COMMON SYNTAX

Each join function returns a data frame / tibble.

PRACTICE DATA

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

PRACTICE DATA

INNER JOIN

If no "by = ...", it will join by all variables common to both tables.

band |>
inner_join(instrument)

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band	plays
John	Beatles	guitar
Paul	Beatles	bass

INNERJOIN

You can specify a character vector of variable names to join by.

```
band |>
inner_join(instrument, by = "name")
```

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band	plays
John	Beatles	guitar
Paul	Beatles	bass

INNERJOIN

More complex specifications can use the join_by() function.

```
band |>
inner_join(instrument, by = join_by(name)
```

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band	plays
John	Beatles	guitar
Paul	Beatles	bass

MUTATING JOINS

LEFT JOIN

- Preserves the original observations from first ("left") table, even when there isn't a match.
- Use whenever you look up additional data from another table.
- Should be your default join.

LEFT JOIN

band |> left_join(instrument, by = join_by(name))

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band	plays
Mick	Stones	<na></na>
John	Beatles	guitar
Paul	Beatles	bass

MUTATING JOINS

RIGHT JOIN

- Like a left-join, but preserves
 observations in the second ("right")
 table.
- Usually no reason to use: just switch the order of the tables and make it a left join.
- Only situation where I might use a right join is at the end of a chain of piped operations.

RIGHT JOIN

```
band |> right_join(instrument, by = join_by(name))
```

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band	plays
John	Beatles	guitar
Paul	Beatles	bass
Keith	<na></na>	guitar

MUTATING JOINS

FULL JOIN

 Preserves all observations from both tables, even when there isn't a match.

key	val_x	val_y
1	x1	у1
2	x2	y2
3	х3	NA
4	NA	у3

FULL JOIN

band |> full_join(instrument, by = join_by(name))

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band	plays
Mick	Stones	<na></na>
John	Beatles	guitar
Paul	Beatles	bass
Keith	<na></na>	guitar

AIRLINE NAMES

	carrier
1	UA
2	UA
3	AA
4	B6
5	DL
6	UA
7	B6
8	EV
9	B6
10	ΔΔ

	carrier	name
1	9E	Endeavor Air Inc.
2	AA	American Airlines Inc.
3	AS	Alaska Airlines Inc.
4	В6	JetBlue Airways
5	DL	Delta Air Lines Inc.
6	EV	ExpressJet Airlines Inc.
7	F9	Frontier Airlines Inc.
8	FL	AirTran Airways Corporation
9	HA	Hawaiian Airlines Inc.
10	MO	Envoy Air

ACTIVITY 1

Which airlines had the largest arrival delays? Complete the code below.

```
flights |>
    drop_na(arr_delay) |>
    _____ |>
    group_by(_____) |>
    arrange(_____)
```

1. Join airlines to flights

2. Compute and order the average arrival delays by airline. Display full names, no codes.

Note: arrival delay NAs are cancelled flights

```
flights |>
  drop_na(arr_delay) |>
  left_join(airlines, by = join_by(carrier)) |>
  group_by(name) |>
  summarize(delay = mean(arr_delay)) |>
  arrange(delay)
```

dalay

name	delay
Alaska Airlines Inc.	-9.9308886
Hawaiian Airlines Inc.	-6.9152047
American Airlines Inc.	0.3642909
Delta Air Lines Inc.	1.6443409
Virgin America	1.7644644
US Airways Inc.	2.1295951

BACK TO THIS DATA...

```
instrument <- tibble(name = ...),
    plays = ...))</pre>
```

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

WHAT IF THE NAMES DON'T MATCH?

```
instrument <- tibble(artist = ...),
    plays = ...))</pre>
```

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

artist	plays
John	guitar
Paul	bass
Keith	guitar

WHAT IF THE NAMES DON'T MATCH?

Use join_by() to specify the relationship.

Column name in the first data set

Column name in the second data set

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

artist	plays
John	guitar
Paul	bass
Keith	guitar

name	band	plays
Mick	Stones	<na></na>
John	Beatles	guitar
Paul	Beatles	bass

AIRPORT NAMES

```
airports |> select(1:2)
```

```
faa name
<chr> <chr>
```

04G	Lansdowne Airport
06A	Moton Field Municipal Airport
06C	Schaumburg Regional
06N	Randall Airport
09J	Jekyll Island Airport
0A9	Elizabethton Municipal Airport
0G6	Williams County Airport
0G7	Finger Lakes Regional Airport

flights |> select(14:15)

dest <chr></chr>	air_time <dbl></dbl>
IAH	227
IAH	227
MIA	160
BQN	183
ATL	116
ORD	150
FLL	158
IAD	53

ACTIVITY 2

 Use flights and airports to compute the average arr_delay by destination airport (names only, not codes), and the number of flights that this is based on.

Arrange by average delay, from worst to best.

name	mean_delay	n_flights
Columbia Metropolitan	41.76415	106
Tulsa Intl	33.65986	294
Will Rogers World	30.61905	315
Jackson Hole Airport	28.09524	21
Mc Ghee Tyson	24.06920	578
Dane Co Rgnl Truax Fld	20.19604	556

name	mean_delay	n_flights
Columbia Metropolitan	41.76415	106
Tulsa Intl	33.65986	294
Will Rogers World	30.61905	315
Jackson Hole Airport	28.09524	21
Mc Ghee Tyson	24.06920	578
Dane Co Rgnl Truax Fld	20.19604	556

ACTIVITY 3

- Can you figure out how to get the full name of **both** the origin airport (origin) and the destination airport (dest) in the flights table?
- Do as before, but group by both origin name and destination name.

origin_name	dest_name	mean_delay	n_flights	
Newark Liberty Intl	Columbia Metropolitan	44.58511	94	
Newark Liberty Intl	Mc Ghee Tyson	41.15016	313	
Newark Liberty Intl	Tulsa Intl	33.65986	294	
Newark Liberty Intl	Will Rogers World	30.61905	315	
Newark Liberty Intl	Jackson Hole Airport	29.89474	19	
Newark Liberty Intl	Richmond Intl	25.82043	1615	

```
1. First join gets
flights |>
             the origin name.
  drop_na(ar__
  left_join(select(airports, faa, origin_name
            by = join_by(origin == faa))
  left_join(select(airports, faa, dest_name =
            by = join_by(dest == faa)) |>
  group_by(origin_name, dest_name) |>
  summarize(mean_delay = mean(arr_delay),
            n_flights = n())
                                5. Group by both
  arrange(desc(mean_delay))
                                   origin and
```

2. Rename on the fly in select().

3. Match "origin" column to "faa".

name),

4. Second join gets the destination name by repeating the three steps.

origin_name dest_name		destination				
Newark Liberty Intl	Columbia Metropolitan					
Newark Liberty Intl	Mc Ghee Tyson	41.15016 313				
Newark Liberty Intl	Tulsa Intl	33.65986 294				
Newark Liberty Intl	Will Rogers World	30.61905 315				
Newark Liberty Intl	Jackson Hole Airport	29.89474 19				
Newark Liberty Intl	Richmond Intl	25.82043 1615				

MUTATING VS. FILTERING JOINS

- Mutating joins use information from one data set to add variables to another data set (like mutate())
- Filtering joins use information from one data set to extract cases from another data set (like filter())

FILTERING JOINS

FILTER ONE TABLE AGAINST THE ROWS OF ANOTHER

FILTERING JOINS

SEMI-JOIN

- Keeps all observations in first table that have a match in second table.
- Useful for matching filtered summary tables back to the original rows.

SEMI-JOIN

band |> semi_join(instrument, by = join_by(name))

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band
John	Beatles
Paul	Beatles

FILTERING JOINS

ANTI-JOIN

- Keeps the rows that **don't** have a match (inverse of semi-join).
- Most useful for diagnosing join mismatches.

ANTI-JOIN

```
band |> anti_join(instrument, by = join_by(name))
```

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band
Mick	Stones

AIRPORT NAMES

```
airports |> select(1:2)
```

```
faa name
<chr> <chr>
```

04G	Lansdowne Airport
06A	Moton Field Municipal Airport
06C	Schaumburg Regional
06N	Randall Airport
09J	Jekyll Island Airport
0A9	Elizabethton Municipal Airport
0G6	Williams County Airport
0G7	Finger Lakes Regional Airport

flights |> select(14:15)

dest <chr></chr>	air_time <dbl></dbl>
IAH	227
IAH	227
MIA	160
BQN	183
ATL	116
ORD	150
FLL	158
IAD	53

ACTIVITY 4

 How many airports in airports are serviced by flights originating in New York (i.e. flights in our dataset?)

faa	name	lat	lon	alt	tz	dst	tzone
ABQ	Albuquerque International Sunport	35.04022	-106.60919	5355	-7	Α	America/Denver
ACK	Nantucket Mem	41.25305	-70.06018	48	-5	Α	America/New_York
ALB	Albany Intl	42.74827	-73.80169	285	-5	Α	America/New_York
ANC	Ted Stevens Anchorage Intl	61.17436	-149.99636	152	-9	Α	America/Anchorage
ATL	Hartsfield Jackson Atlanta Intl	33.63672	-84.42807	1026	-5	Α	America/New_York
AUS	Austin Bergstrom Intl	30.19453	-97.66989	542	-6	Α	America/Chicago

```
airports |>
semi_join(flights, by = join_by(faa == dest))
```

faa	name	lat	lon	alt	tz	dst	tzone
ABQ	Albuquerque International Sunport	35.04022	-106.60919	5355	-7	Α	America/Denver
ACK	Nantucket Mem	41.25305	-70.06018	48	-5	Α	America/New_York
ALB	Albany Intl	42.74827	-73.80169	285	-5	Α	America/New_York
ANC	Ted Stevens Anchorage Intl	61.17436	-149.99636	152	-9	Α	America/Anchorage
ATL	Hartsfield Jackson Atlanta Intl	33.63672	-84.42807	1026	-5	Α	America/New_York
AUS	Austin Bergstrom Intl	30.19453	-97.66989	542	-6	Α	America/Chicago

ACTIVITY 5

 What are the unique dest codes present in the flights table that have no corresponding information in the airports table?.

dest	
BQN	
SJU	
STT	
PSE	

default) discards other columns.

dest

BQN

SJU

STT

PSE

year	month	day	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time	arr_delay	carrier	flight
2013	1	1	544	545	-1	1004	1022	-18	В6	725
2013	1	1	615	615	0	1039	1100	-21	В6	709
2013	1	1	909	810	59	1331	1315	16	AA	655
2013	1	1	2353	2359	-6	425	445	-20	В6	739

RECAP: JOINS