Permit Numbers 142261 and N254

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point	Source Name (2)	Air Contaminant	Emission Rates	
No. (1)		Name (3)	lbs/hour	TPY (4)
TK-1601	IFR Storage Tank 1601	VOC	16.01	(6)
	(Phase 1)	H ₂ S	0.03	(6)
TK-1602	IFR Storage Tank 1602	VOC	16.01	(6)
	(Phase 1)	H ₂ S	0.03	(6)
TK-1603	IFR Storage Tank 1603	VOC	16.01	(6)
	(Phase 1)	H ₂ S	0.03	(6)
TK-1604	IFR Storage Tank 1604	VOC	16.01	(6)
	(Phase 1)	H ₂ S	0.03	(6)
TK-1605	IFR Storage Tank 1605	VOC	16.01	(6)
	(Phase 1)	H ₂ S	0.03	(6)
TK-803	IFR Storage Tank 803 (Phase 1)	VOC	12.52	(6)
		H ₂ S	0.03	(6)
TK-808	IFR Storage Tank 808 (Phase 1)	VOC	12.52	(6)
		H ₂ S	0.03	(6)
TK-809	IFR Storage Tank 809 (Phase 1)	VOC	12.52	(6)
		H ₂ S	0.03	(6)
TK-601	IFR Storage Tank 601 (Phase 1)	VOC	26.34	(6)
		H ₂ S	0.06	(6)
TK-201	IFR Storage Tank 201	VOC	3.48	(6)
	(Phase 1)	H ₂ S	0.01	(6)
TK-202	IFR Storage Tank 202	VOC	3.48	(6)
	(Phase 1)	H ₂ S	0.01	(6)
TK-1606	IFR Storage Tank 1606	VOC	16.01	(6)
	(Phase 1)	H ₂ S	0.03	(6)
TK-1607	IFR Storage Tank 1607	VOC	16.01	(6)
	(Phase 1)	H ₂ S	0.03	(6)
TK-1608	IFR Storage Tank 1608	VOC	16.00	(6)
	(Phase 2)	H₂S	0.03	(6)
TK-1609	IFR Storage Tank 1609	VOC	16.00	(6)
	(Phase 2)	H ₂ S	0.03	(6)

Project Numbers: 286456

TK-1610	IFR Storage Tank 1610	VOC	16.00	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1611	IFR Storage Tank 1611	VOC	16.00	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1612	IFR Storage Tank 1612	VOC	16.00	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1613	IFR Storage Tank 1613	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1614	IFR Storage Tank 1614	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1615	IFR Storage Tank 1615	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1616	IFR Storage Tank 1616	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1617	IFR Storage Tank 1617 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1618	IFR Storage Tank 1618 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1619	IFR Storage Tank 1619 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1620	IFR Storage Tank 1620 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1621	IFR Storage Tank 1621 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1622	IFR Storage Tank 1622	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1623	IFR Storage Tank 1623	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1624	IFR Storage Tank 1624	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-203	IFR Storage Tank 203	VOC	3.48	(6)
	(Phase 2)	H₂S	0.01	(6)
TK-204	IFR Storage Tank 204	VOC	3.48	(6)
	(Phase 2)	H₂S	0.01	(6)

TK-802	IFR Storage Tank 802	VOC	12.52	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-101	IFR Storage Tank 101	VOC	4.73	(6)
	(Phase 2)	H₂S	0.01	(6)
TK-102	IFR Storage Tank 102	VOC	4.73	(6)
	(Phase 2)	H₂S	0.01	(6)
TK-1625	IFR Storage Tank 1625	VOC	16.02	(6)
	(Future Phase)	H₂S	0.03	(6)
TK-1626	IFR Storage Tank 1626	VOC	16.02	(6)
	(Future Phase)	H₂S	0.03	(6)
TK-1627	IFR Storage Tank 1627	VOC	16.02	(6)
	(Future Phase)	H₂S	0.03	(6)
TK-1628	IFR Storage Tank 1628	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1629	IFR Storage Tank 1629 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1630	IFR Storage Tank 1630 (Future Phase)	VOC	16.02	(6)
		H₂S	0.03	(6)
TK-1631	IFR Storage Tank 1631 (Future Phase)	VOC	16.02	(6)
		H₂S	0.03	(6)
TK-1632	IFR Storage Tank 1632	VOC	16.02	(6)
	(Future Phase)	H₂S	0.03	(6)
TK-1633	IFR Storage Tank 1633 (Future Phase)	VOC	16.02	(6)
		H₂S	0.03	(6)
TK-1634	IFR Storage Tank 1634	VOC	16.02	(6)
	(Future Phase)	H₂S	0.03	(6)
TK-1635	IFR Storage Tank 1635	VOC	16.00	(6)
	(Phase 2)	H₂S	0.03	(6)
TK-1636	IFR Storage Tank 1636	VOC	16.00	(6)
	(Phase 2)	H₂S	0.03	(6)
			l .	
TK-1637	IFR Storage Tank 1637	VOC	16.00	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1638	IFR Storage Tank 1638	VOC	16.00	(6)
	(Phase 2)	H₂S	0.03	(6)
		I	ı	l

TK-1639	IFR Storage Tank 1639	VOC	16.00	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1640	IFR Storage Tank 1640 (Phase 2)	VOC	16.00	(6)
		H ₂ S	0.03	(6)
TK-1641	IFR Storage Tank 1641	VOC	16.00	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1642	IFR Storage Tank 1642	VOC	16.00	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1643	IFR Storage Tank 1643	VOC	16.00	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1644	IFR Storage Tank 1644	VOC	16.00	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1645	IFR Storage Tank 1645	VOC	16.00	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1646	IFR Storage Tank 1646 (Phase 2)	VOC	16.00	(6)
		H ₂ S	0.03	(6)
TK-1647	IFR Storage Tank 1647 (Phase 2)	VOC	16.00	(6)
		H ₂ S	0.03	(6)
TK-1648	IFR Storage Tank 1648 (Phase 2)	VOC	16.00	(6)
		H ₂ S	0.03	(6)
TK-1649	IFR Storage Tank 1649 (Phase 2)	VOC	16.00	(6)
		H ₂ S	0.03	(6)
TK-1650	IFR Storage Tank 1650	VOC	16.00	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1651	IFR Storage Tank 1651	VOC	16.00	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1652	IFR Storage Tank 1652	VOC	16.00	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1653	IFR Storage Tank 1653	Voc	16.00	(6)
2000	(Phase 2)	H ₂ S	0.03	(6)
TK-1654	IFR Storage Tank 1654	VOC	16.02	(6)
I V-1004	(Future Phase)	H ₂ S	0.03	(6)
		1 1/20	0.00	(3)
TK-1655	IFR Storage Tank 1655	VOC	16.02	(6)

TK-1656	IFR Storage Tank 1656	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1657	IFR Storage Tank 1657	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-801	IFR Storage Tank 801	VOC	12.52	(6)
	(Future Phase)	H₂S	0.03	(6)
TK-804	IFR Storage Tank 804	VOC	12.51	(6)
	(Future Phase)	H₂S	0.03	(6)
TK-805	IFR Storage Tank 805	VOC	12.52	(6)
	(Future Phase)	H₂S	0.03	(6)
TK-807	IFR Storage Tank 807	VOC	12.52	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-810	IFR Storage Tank 810	VOC	12.52	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-811	IFR Storage Tank 811 (Future Phase)	VOC	12.52	(6)
		H ₂ S	0.03	(6)
TK-602	IFR Storage Tank 602 (Future Phase)	VOC	14.42	(6)
		H₂S	0.03	(6)
TK-603	IFR Storage Tank 603 (Future Phase)	VOC	14.42	(6)
		H₂S	0.03	(6)
TK-604	IFR Storage Tank 604	VOC	14.42	(6)
	(Future Phase)	H₂S	0.03	(6)
TK-605	IFR Storage Tank 605 (Future Phase)	VOC	14.42	(6)
		H₂S	0.03	(6)
TK-606	IFR Storage Tank 606	VOC	14.42	(6)
	(Future Phase)	H₂S	0.03	(6)
				(-)
TK-205	IFR Storage Tank 205	voc	3.48	(6)
	(Future Phase)	H₂S	0.01	(6)
TK-206	IFR Storage Tank 206	VOC	3.48	(6)
	(Future Phase)	H₂S	0.01	(6)
TK-207	IFR Storage Tank 207	VOC	3.48	(6)
	(Future Phase)	H ₂ S	0.01	(6)
TK-208	IFR Storage Tank 208	VOC	3.48	(6)
	(Future Phase)	H ₂ S	0.01	(6)
		120	0.01	(5)

IFRCAP (6)	IFR Storage Tank Annual Cap	VOC	-	17.40
	(Phase 1)	H₂S	-	0.03
	IFR Storage Tank Annual Cap	VOC	-	49.18
	(Phases 1 & 2)	H₂S	-	0.08
	IFR Storage Tank Annual Cap	VOC	-	102.02
	(All Phases)	H ₂ S	-	0.17
ADD-1	Additive Storage Tank (Phase 1)	VOC	0.27	(7)
ADD-2	Additive Storage Tank (Phase 2)	VOC	0.98	(7)
ADD-3	Additive Storage Tank (Phase 2)	VOC	9.68	(7)
ADD-4	Additive Storage Tank (Phase 2)	VOC	0.07	(7)
ADD-5	Additive Storage Tank (Phase 2)	VOC	3.71	(7)
ADD-6	Additive Storage Tank (Future Phase)	VOC	1.02	(7)
ADD-7	Additive Storage Tank (Future Phase)	VOC	22.13	(7)
ADD-8	Additive Storage Tank (Future Phase)	VOC	0.06	(7)
ADD-9	Additive Storage Tank (Future Phase)	VOC	0.02	(7)
ADD-10	Additive Storage Tank (Future Phase)	VOC	1.36	(7)
ADD-11	Additive Storage Tank (Future Phase)	VOC	0.14	(7)
ADD-12	Additive Storage Tank (Future Phase)	VOC	1.13	(7)
ADD-13	Additive Storage Tank (Future Phase)	VOC	1.13	(7)
WW-1	Wastewater Tank (Phase 2)	VOC	2.36	(7)
ADDCAP (7)	Additive & WW Storage Tank Annual Cap (Phase 1)	VOC	-	<0.01
	Additive & WW Storage Tank Annual Cap (Phases 1 & 2)	VOC	-	0.10
	Additive & WW Storage Tank Annual Cap (All Phases)	VOC	-	0.22
TK-103	Biodiesel Tank (Phase 2)	VOC	4.19	0.70

MLVRU-1	Marine Loading VRUs 1 & 2	VOC	10.51	(8)
MLVRU-2	(Ship Dock 1) (Phase 1)	H ₂ S	0.02	(8)
MLVRU-3	Marine Loading VRUs 3 & 4	VOC	10.51	(8)
MLVRU-4	(Ship Dock 2 & Barge Dock 1) (Phase 2)	H ₂ S	0.02	(8)
MLVRU-5	Marine Loading VRUs 5 & 6	VOC	10.51	(8)
MLVRU-6	(Ship Dock 3) (Future Phase)	H ₂ S	0.02	(8)
MLVRU-7	Marine Loading VRUs 7 & 8	VOC	10.51	(8)
MLVRU-8	(Ship Dock 4) (Future Phase)	H₂S	0.02	(8)
MLOAD	Marine Loading Fugitives (Phase 1)	VOC	18.32	(8)
		H ₂ S	<0.01	(8)
	Marine Loading Fugitives (Phases 1 & 2)	VOC	36.64	(8)
		H ₂ S	0.01	(8)
	Marine Loading Fugitives (All Phases)	VOC	73.28	(8)
		H ₂ S	0.03	(8)
MLOADCAP (8)	Marine Loading VRU & Fugitives Annual Cap (Phase 1)	VOC	-	12.59
		H ₂ S	-	0.03
	Marine Loading VRU & Fugitives Annual	VOC	-	25.17
	Cap (Phase 1 & 2)	H ₂ S	-	0.05
	Marine Loading VRU & Fugitives Annual	VOC	-	60.83
	Cap (All Phases)	H ₂ S	-	0.13
	Tank Truck Loading VRU		 	 I
TLVRU	rain raok Loading vito	VOC	0.60	1.92

TLVRU	Tank Truck Loading VRU (Phase 2)	voc	0.60	1.92
	Tank Truck Loading VRU (All Phases)	VOC	1.00	3.20
TRUCKFUG	Tank Truck Fugitives (Phase 1)	VOC	2.19	5.54
	Tank Truck Fugitives (Phases 1 & 2)	VOC	2.93	7.27
	Tank Truck Fugitives (All Phases)	VOC	3.75	9.33

$ \begin{tabular}{l l l l l l l l l l l l l l l l l l l $					
Process Fugitives (5) (Phases 1 & 2) Process Fugitives (5) (All Phases) ENG-1 Fire Water Pump Engine 1 Fire Water Pump Engine 1 Fire Water Pump Engine 2 (Phase 1) Fire	FUG		VOC	0.57	2.49
Process Fugitives (5)		(Phase 1)	H ₂ S	<0.01	<0.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			VOC	2.00	8.78
(All Phases) ENG-1 Fire Water Pump Engine 1 VOC 3.78 0.19 NO _x 3.78 0.19 CO 3.32 0.17 PM 0.20 0.01 PM ₁₀ 0.20 0.01 PM ₂₅ 0.20 0.01 ENG-2 Fire Water Pump Engine 2 (Phase 1) VOC 3.78 0.19 CO 3.78 0.19 CO 3.78 0.19 CO 3.78 0.19 CO 3.78 0.19 NO _x 3.78 0.19 CO 3.78 0.19 PM ₁₀ 0.20 0.01 PM 0.20 0.01		(Phases 1 & 2)	H ₂ S	<0.01	0.02
ENG-1 Fire Water Pump Engine 1			VOC	2.81	12.29
NO _x 3.78 0.19 CO 3.32 0.17 PM 0.20 0.01 PM ₁₀ 0.20 0.01 PM _{2.5} 0.20 0.01 SO ₂ 0.01 <0.01 ENG-2 Fire Water Pump Engine 2 (Phase 1) NO _x 3.78 0.19 CO 3.32 0.17 PM 0.20 0.01 PM ₁₀ 0.20 0.01 PM ₁₀ 0.20 0.01 PM _{2.5} 0.20 0.01			H ₂ S	0.01	0.03
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ENG-1	Fire Water Pump Engine 1	VOC	3.78	0.19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			NO _x	3.78	0.19
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			СО	3.32	0.17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			PM	0.20	0.01
SO ₂ 0.01 <0.01 ENG-2 Fire Water Pump Engine 2 (Phase 1) NO _x 3.78 0.19 CO 3.32 0.17 PM 0.20 0.01 PM ₁₀ 0.20 0.01 PM _{2.5} 0.20 0.01			PM ₁₀	0.20	0.01
ENG-2 Fire Water Pump Engine 2 (Phase 1) VOC 3.78 0.19 NO _x 3.78 0.19 CO 3.32 0.17 PM 0.20 0.01 PM ₁₀ 0.20 0.01 PM _{2.5} 0.20 0.01			PM _{2.5}	0.20	0.01
(Phase 1) NO _x 3.78 0.19 CO 3.32 0.17 PM 0.20 0.01 PM ₁₀ 0.20 0.01 PM _{2.5} 0.20 0.01			SO ₂	0.01	<0.01
CO 3.32 0.17 PM 0.20 0.01 PM ₁₀ 0.20 0.01 PM _{2.5} 0.20 0.01	ENG-2		VOC	3.78	0.19
PM 0.20 0.01 PM ₁₀ 0.20 0.01 PM _{2.5} 0.20 0.01			NO _x	3.78	0.19
PM ₁₀ 0.20 0.01 PM _{2.5} 0.20 0.01			СО	3.32	0.17
PM _{2.5} 0.20 0.01			PM	0.20	0.01
			PM ₁₀	0.20	0.01
SO ₂ 0.01 <0.01			PM _{2.5}	0.20	0.01
			SO ₂	0.01	<0.01

ENG-3	Generator Engine 3	VOC	1.59	0.08
	(Phase 2)	NO _x	2.65	0.13
		СО	1.59	0.08
		PM	0.23	0.01
		PM ₁₀	0.23	0.01
		PM _{2.5}	0.23	0.01
		SO ₂	<0.01	<0.01

SUMP-1	Sump 1 (Phase 1)	VOC	2.45	0.30
SUMP-2	Sump 2 (Phase 1)	VOC	27.39	0.36
SUMP-3	Sump 3 (Future Phase)	VOC	27.39	0.36
OWS	Oil-Water Separator (Phase 2)	VOC	0.76	0.01
TKVCU-1	Tank VCU (10)	VOC	39.77	(13)
	(Phase 1)	NO _x	25.89	(9)
		СО	111.02	(9)
		PM	0.16	(9)
		PM ₁₀	0.16	(9)
		PM _{2.5}	0.16	(9)
		SO ₂	0.15	(9)
		H ₂ S	0.07	(9)
TKVCU-2	Tank VCU (10)	VOC	39.77	(13)
	(Phase 2)	NO _x	25.89	(9)
		СО	111.02	(9)
		PM	0.16	(9)
		PM ₁₀	0.16	(9)
		PM _{2.5}	0.16	(9)
		SO ₂	0.15	(9)
		H₂S	0.07	(9)

TKVCU-3	Tank VCU (10)	VOC	39.77	(13)
	(Future Phase)	NO _x	25.89	(9)
		СО	111.02	(9)
		PM	0.16	(9)
		PM ₁₀	0.16	(9)
		PM _{2.5}	0.16	(9)
		SO ₂	0.15	(9)
		H₂S	0.07	(9)
TKVCUCAP (10)	Tank VCU Annual Cap (10)	NO _x	-	2.74
	(Phase 1)	СО	-	7.55
		PM	-	0.10
		PM ₁₀	-	0.10
		PM _{2.5}	-	0.10
		SO ₂	-	0.02
		H ₂ S	-	<0.01
	Tank VCU Annual Cap (10) (Phases 1 & 2)	NO _x	-	9.19
		СО	-	25.29
		PM	-	0.34
		PM ₁₀	-	0.34
		PM _{2.5}	-	0.34
		SO ₂	-	0.05
		H ₂ S	-	0.01
	Tank VCU Annual Cap (10)	NO _x	-	21.51
	(All Phases)	СО	-	53.73
		PM	-	0.91
		PM ₁₀	-	0.91
		PM _{2.5}	-	0.91
		SO ₂	-	0.12
		H₂S	-	0.03

PORTVCU	Portable VCU (11)	VOC	2.35	(13)
(Phase 1)	NO _x	1.33	0.14	

	СО	2.61	0.24
	PM	<0.01	<0.01
	PM ₁₀	<0.01	<0.01
	PM _{2.5}	<0.01	<0.01
	SO ₂	0.01	<0.01
	H ₂ S	<0.01	<0.01
Portable VCU (11) (Phase 1 & 2 /All Phases)	VOC	2.35	(13)
	NO _x	1.33	0.29
	СО	2.61	0.49
	PM	<0.01	<0.01
	PM ₁₀	<0.01	<0.01
	PM _{2.5}	<0.01	<0.01
	SO ₂	0.01	<0.01
	H ₂ S	<0.01	<0.01
Tank MSS Fugitives (12) (Phase 1)	VOC	121.30	(14)
	H₂S	<0.01	<0.01
Tank MSS Fugitives (12) (Phases 1 & 2)	VOC	316.30	(14)
	H ₂ S	<0.01	<0.01
Tank MSS Fugitives (12) (All Phases)	VOC	316.30	(14)
	H₂S	<0.01	<0.01
Tank MSS – VOC CAP (TKVENT, TKVCU1, TKVCU2, TKVCU3, PORTVCU) (Phase 1)	VOC	-	3.30
Tank MSS – VOC CAP (TKVENT, TKVCU1, TKVCU2, TKVCU3, PORTVCU) (Phases 1 & 2)	VOC	-	11.49
Tank MSS – VOC CAP (TKVENT, TKVCU1, TKVCU2, TKVCU3, PORTVCU) (All Phases)	VOC	-	22.35
	Tank MSS Fugitives (12) (Phase 1) Tank MSS Fugitives (12) (Phase 1) Tank MSS Fugitives (12) (Phases 1 & 2) Tank MSS Fugitives (12) (All Phases) Tank MSS – VOC CAP (TKVENT, TKVCU1, TKVCU2, TKVCU3, PORTVCU) (Phase 1) Tank MSS – VOC CAP (TKVENT, TKVCU1, TKVCU2, TKVCU3, PORTVCU) (Phases 1 & 2) Tank MSS – VOC CAP (TKVENT, TKVCU1, TKVCU2, TKVCU3, PORTVCU)	PM	PM

PORTCTRL	Portable Flare (14) (Phase 1)	VOC	541.76	0.27
		NO _x	73.49	0.04
		СО	146.72	0.07
	Portable Flare (14) (Phases 1 & 2)	VOC	541.76	0.54
		NO _x	73.49	0.07
		СО	146.72	0.15
	Portable Flare (14) (All Phases)	VOC	541.76	1.08
		NO _x	73.49	0.15
		СО	146.72	0.29
VACLOAD	Vacuum Truck Loading (15) (Phase 1)	VOC	0.93	0.05
		H ₂ S	<0.01	<0.01
	Vacuum Truck Loading (15) (Phases 1 & 2)	VOC	1.87	0.10
		H ₂ S	<0.01	<0.01
	Vacuum Truck Loading (15) (All Phases)	VOC	2.31	0.15
		H ₂ S	<0.01	<0.01
FUG-MSS	Pressure Tank Post Control	VOC	8.06	0.06
FUG-MSS	Process Equipment MSS (16) (Phase 1)	VOC	40.44	0.63
_		H ₂ S	0.01	<0.01
	Process Equipment MSS (16) (Phases 1 & 2)	VOC	47.81	1.27
		H ₂ S	0.01	<0.01
	Process Equipment MSS (16) (All Phases)	VOC	47.81	2.07
		H ₂ S	0.01	<0.01

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

 PM_{10} - total particulate matter equal to or less than 10 microns in diameter, including $PM_{2.5}$, as

represented

 $PM_{2.5}$ - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide H_2S - hydrogen sulfide

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) Total routine annual emissions for IFR storage tanks are limited to the rates represented under EPN IFRCAP.
- (7) Total routine annual emissions for additive and wastewater fixed roof storage tanks are limited to the rates represented under EPN ADDCAP.
- (8) Total annual emissions for marine loading VRUs and fugitives are limited to the rates represented under EPN MLOADCAP.
- (9) Total annual emissions for tank VCUs are limited to the rates represented under EPN TKVCUCAP.

- (10) Includes controlled tank roof landing emissions (standing idle, degassing, and refilling) from routine and maintenance tank roof landings.
- (11) Includes controlled tank roof landing emissions (standing idle, degassing, cleaning, and refilling) from maintenance tank roof landings and vacuum trucks and vac boxes.
- (12) Includes uncontrolled tank roof landing emissions (standing idle, degassing, post-control venting, and refilling) from routine and maintenance tank roof landings. Also includes post-control venting emissions from pressure tanks.
- (13) Total annual VOC emissions for tank VCUs are limited to the rates represented under EPN TKMSSCAP.
- (14) Includes controlled degassing emissions from pressure tanks.
- (15) Includes emissions from loading of vacuum trucks and vacuum boxes.
- (16) Includes emissions from draining and venting process equipment during MSS activities.

Date:	May 31, 2019