

# LSTM GAN ARCHITECTURE FOR STOCK PRICE PREDICTION

Mizba Jaffar – 20BCE1004

Dr. Renta Chintala Bhargavi

School of Computer Science and Engineering

# **MOTIVATION / INTRODUCTION**

- Stock market prediction is a challenging and popular problem in the field of finance.
- Deep learning models can be used to derive patters in historical data and natural language processing can be used to understand market sentiment.
- Using extensive feature engineering techniques and exploring novel architectures to do so can greatly improve the accuracy of the prediction of price movements.
- Such models can be used by investors and economists to beat the market and understand the dynamics of the system.

#### **OBJECTIVES**

- Feature engineering to extract latent space features using variational autoencoders
- Build a cGAN architecture to accurately predict stock prices
- Generating stock specific news sentiment scores to condition the GAN architecture
- Compare the accuracy of the cGAN model with baseline deep learning models namely RNN, LSTM and GAN

## **SCOPE OF THE PROJECT**

The scope of this project is to build a cGAN architecture that analyses historical data and news sentiment for stock price prediction and comparing its performance with baseline deep learning models.

#### **METHODOLOGY**

#### **Preprocessing**

Preprocessing includes normalizing data, calculating financial technical indicators, performing Fourier transformations, running the XGBoost algorithm for feature analysis and variational autoencoding for latent space feature extraction.

### **ARCHITECTURE**



We perform feature engineering and apply deep learning algorithms such as LSTM, GRU, GAN and proposed model: cGAN and then compare the Root Mean Square Score (RMSE) score.

### **RESULTS**

| Algorithm | RMSE |
|-----------|------|
| LSTM      | 5.02 |
| GRU       | 6.31 |
| GAN       | 4.94 |
| CGAN      | 4.90 |

#### **CONCLUSION**

The cGAN architecture that trains on both historical data an market sentiment acquired from natural language processing outperforms the other models.

#### **CONTACT DETAILS**

MAIL ID: mizba.j2020@vitstudent.a.c.in

**MOBILE NO:** 7358767859

#### **REFERENCES**

- Zhang, K., Zhong, G., Dong, J., Wang, S., & Wang, Y. (2019).
   Stock market prediction based on generative adversarial network. Procedia computer science, 147, 400-406.
- Fataliyev, K., Chivukula, A., Prasad, M., & Liu, W. (2021).
   Stock market analysis with text data: A review. arXiv preprint arXiv:2106.12985.