Assoziativ	Kommutativ	Distributiv	Neutrales Element (nur 1)	Inverses Element (für jedes Element)
$(x \circ y) \circ z = x \circ (y \circ z).$	$x \circ y = y \circ x$.	$a \circ (b+c) = a \circ b + a \circ c$ $(b+c) \circ a = b \circ a + c \circ a.$	$\varepsilon \circ x = x \circ \varepsilon = x.$	$a \circ b = b \circ a = \varepsilon$.

Abelsche, Kommutatuve => Vorbedingungen + Kummutativ

Name	Assoziativ	Kommutativ	Neutrales Element	Inverses Element
Halbgruppe	X			
Monoid	x		X	
Gruppe	X		X	X
Abelsche Gruppe	X	X	х	X

Alle Permutationen einer Menge M	bilden mit der Hintereinander-
ausführung o eine Gruppe, die die	symmetrische Gruppe von M
genannt wird, in Zeichen S_M .	

Name	+	О	Distributiv
Ring	Abelsche Gruppe	Halbgruppe	x
Ring mit Einselement	Abelsche Gruppe	Monoid	X
Kommutativer Ring	Abelsche Gruppe	Abelsche Halbgruppe	X
Körper	Abelsche Gruppe	Abelsche Gruppe(Menge ohne 0)	X

Restklassenoperationen

 $[\mathbb{Z}_n,+,\cdot]$ ist ein kommutativer Ring mit Einselement.

 $a\in\mathbb{Z}_n$ ist invertierbar $\iff \operatorname{ggT}(a,n)=1$ (a und n teilerfremd). If n prim \Rightarrow invertierbat

Falls p eine Primzahl ist, dann ist $[\mathbb{Z}_p,+,\cdot]$ ein (endlicher) Körper.

1. Bestimme die Kofaktoren s und t so, dass EEA1

$$1 = ggT(a, n) = s \cdot n + t \cdot a$$

2. Also $1-t\cdot a=s\cdot n$, d.h. $1\sim_n t\cdot a$ und somit

$$[t]_n \cdot [a]_n = [t \cdot a]_n = [1]_n$$

3. Daher: $[a]_n^{-1} = [t]_n$. Man schreibt auch $a^{-1} = t \pmod{n}$.

Erweiterter Euklidischer Algorithmus(EEA)

Satz

a ist invertierbar in Modulo n(Beispiel a = 27 und n = 37)

In unserem Beispiel: aus $1 = -8 \cdot 37 + 11 \cdot 27$ folgt $[27]_{37}^{-1} = [11]_{37}$. In der Tat gilt: $27 \cdot 11 = 297 = 1$ (modulo 37). EEA3

Sei $p \in \mathbb{N}$ eine Primzahl. Für jedes $a \in \mathbb{Z}_p \setminus \{0\}$ gilt:

Sei $n=p\cdot q$ für zwei (unterschiedliche) Primzahlen $p,q\in\mathbb{N}.$ Falls $a \in \mathbb{Z}_n$ teilerfremd zu n ist, d.h. ggT(a, n) = 1, dann gilt:

$$a^{(p-1)(q-1)} \sim_n 1$$
 bzw. $[a]_n^{(p-1)(q-1)} = [1]_n$.

EEA2 27

27 passt 1 mal in 37 Die obere zeile 1 mal von der unteren abziehen

r	s	t	\boldsymbol{q}
37	1	0	
27	0	1	1
10	1	-1	2

10 passt 2 mal in 27 Die obere Zeile 2 mal von der unteren abziehen => Wiederholen bis r = 0, die Zeile darüber gibt s und t aus.

37

27

10

7

3

1

t

0

1 1

-12

3 1

-42

11

Komplexe Zahlen

 $\mathbb{C} := \{x + yi \mid x, y \in \mathbb{R}\}$ Re(z) := x

Menge der komplexen Zahlen Realteil von z

Im(z) := y $|z| := \sqrt{x^2 + y^2}$

Wurzelziehen in C

Eingabe: $z \in \mathbb{C}$, $n \in \mathbb{N}$

Ausgabe: $L = \{ u \in \mathbb{C} \mid u^n = z \}$

Algorithmus

Imaginärteil von z Absolutbetrag von z

 $\bar{z} := x - yi$

konjugiert komplexe Zahl zu z

Gegeben: $a, b, c \in \mathbb{C}$, $a \neq 0$

Gesucht: $x \in \mathbb{C}$, so dass $ax^2 + bx + c = 0$

Lösungsformel für quadratische Gleichungen funktioniert auch in C:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$p = (a, b) = a + bi = [r; \varphi] = r \cdot (\cos(\varphi) + i\sin(\varphi))$$

$$n = [r; \varphi] = r \cdot (\cos(\varphi) + i \sin(\varphi))$$

Spiegelung an der
$$x$$
-Achse: $p \mapsto a - bi = \bar{p}$

$$i^2 = -1$$
, $i^3 = -i$, $i^4 = 1$, $i^5 = i$, $i^{-1} = \frac{1}{i} = -i$

$$x = r \cos(\varphi), \quad y = r \sin(\varphi)$$

$$x = r\cos(\varphi), \quad y = r\sin(\varphi)$$

$$z_1 = [r_1; \varphi_1]$$

$z_2 = [r_2; \varphi_2]$

▶ Spiegelung am Nullpunkt: $p \mapsto -a - bi = -p$

Verschiebung um
$$t = (c, d)$$
: $p \mapsto (a + c) + (b + d)i = p + t = p'$

verscriebung uni
$$t = (c, a)$$
. $p \mapsto (a + c) + (b + a)t = p + t = p$

▶ Drehung um ω um den Nullpunkt: $p \mapsto [r; \varphi + \omega] = p \cdot [1; \omega] = p''$

$$z^n = [r^n; n\varphi] = r^n \cdot (\cos(n\varphi) + i\sin(n\varphi)).$$

$$r=\sqrt{x^2+y^2}=|z|, \quad \varphi=\arctan\left(rac{y}{x}
ight) \quad (ggf. +\pi \ oder +2\pi)$$
 Quadratische Wurzel in $\mathbb C$

Wurzelziehen allgemein: verwende Polarkoordinaten!

 \triangleright Spezialfall n=2: auch in kartesischen Koordinaten möglich.

▶ Der folgende Algorithmus verwendet nur die Grundoperationen

Multiplikation

$$z_1 z_2 = [r_1 r_2; \varphi_1 + \varphi_2]$$

Division

$$\frac{z_1}{z_2} = \left[\frac{r_1}{r_2}; \varphi_1 - \varphi_2\right]$$

Hoch t => transponiert => gespiegelt um die

Matrix

Multiplikation Tabelle verwenden

+, -, \cdot , :, $\sqrt{\ }$ in $\mathbb{R}.$ 1. Bestimme r und φ , so dass $z = r \cdot (\cos(\varphi) + i\sin(\varphi)) = [r; \varphi]$.

2.
$$L := \left\{ \sqrt[n]{r} \left(\cos\left(\frac{\varphi + 2k\pi}{n}\right) + i\sin\left(\frac{\varphi + 2k\pi}{n}\right) \right) \middle| k = 0, \dots, n - 1 \right\}$$

Algorithmus

Eingabe:
$$x, y \in \mathbb{R}$$
 $(z = x + yi \in \mathbb{C})$

Ausgabe: $w \in \mathbb{C}$, so dass $w^2 = x + yi = z$

1.
$$u := \sqrt{\frac{1}{2}(x + \sqrt{x^2 + y^2})}$$

2.
$$v := \sqrt{\frac{1}{2}(-x + \sqrt{x^2 + y^2})}$$

3. if u > 0 then w := u + vi else w := u - vi

4. Zweite Lösung für $z \neq 0$: w' := -w.

(A + B) + C = A + (B + C) $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ A + 0 = 0 + A = A $A\cdot E=E\cdot A=A$

$$A + 0 = 0 + A = A$$

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

$$A + (-A) = (-A) + A = 0$$

$$(\lambda \cdot A) \cdot B = \lambda \cdot (A \cdot B)$$

$$A \cdot E = E \cdot A = A$$

$$(B + C) \cdot A = B \cdot A + C \cdot A$$

$$A + B = B + A$$

$$(A \cdot B)^t = B^t \cdot A^t$$

Beispiel

Wir berechnen die dritten Wurzeln
$$(n=3)$$
 von $z=-2+2i$. Dazu wandeln wir z in die Polarkoordinatendarstellung um: $z=\left[\sqrt{8};\frac{3\pi}{4}\right]$.

$$\begin{split} L &= \left\{ \sqrt[3]{\sqrt{8}} \cdot \left(\cos\left(\frac{\pi}{4} + \frac{2k\pi}{3}\right) + i \sin\left(\frac{\pi}{4} + \frac{2k\pi}{3}\right) \right) \mid k = 0, 1, 2 \right\} \\ &= \left\{ \left[\sqrt{2}; \frac{\pi}{4} \right], \left[\sqrt{2}; \frac{11\pi}{12} \right], \left[\sqrt{2}; \frac{19\pi}{12} \right] \right\} \\ &= \left\{ 1 + i, \frac{\sqrt{3} - 1}{2} - i \frac{\sqrt{3} + 1}{2}, -\frac{\sqrt{3} + 1}{2} + i \frac{\sqrt{3} - 1}{2} \right\}. \end{split}$$