### **Further Data Structures**

### The story so far

- Saw some fundamental operations as well as advanced operations on arrays, stacks, and queues
- Saw a dynamic data structure, the linked list, and its applications.
- Saw the hash table so that insert/delete/find can be supported efficiently.
- Saw trees and and applications to searching.

#### This week we will

- Introduce graphs as a data structure.
- Study operations on graphs including searching.

- Consider the following problem.
- A river with an island and bridges.
- The problem is to see if there is a way to start from some landmass and using each bridge exactly once, return to the starting point.



- The above problem dates back to the 17<sup>th</sup> century.
- Several people used to try to solve it.
- Euler showed that no solution exists for this problem.
- Further, he exactly characterized when a solution exists.
- By solving this problem, it is said that Euler started the study of graphs.



- The figure on the right shows the same situation modeled as a graph.
- There exist several such classical problems where graph theory has been used to arrive at elegant solutions.



 Another such problem: In any set of at least six persons, there are either three mutual acquaintances or three mutual strangers.

- Formally, let V be a set of points, also called as vertices.
- Let E ⊆ VxV be a subset of the cross product of V with itself. Elements of E are also called as edges.
- A graph can be seen as the tuple (V, E). Usually denoted by upper case letters G, H, etc.

### **Our Interest**

- Understand a few terms associated with graphs.
- Study how to represent graphs in a computer program.
- Study how traverse graphs.
- Study mechanisms to find paths between vertices.
- Spanning trees
- And so on...

### Few Terms

- Recall that a graph G = (V, E) is a tuple with E being a subset of VxV.
- Scope for several variations: for u, v in V
  - Should we treat (u,v) as same as (v,u)?

### Few Terms

- Recall that a graph G = (V, E) is a tuple with E being a subset of VxV.
- Scope for several variations: for u, v in V
  - Should we treat (u,v) as same as (v,u)? In this case, the graph is called as a undirected graph.
  - Treat (u,v) as different from (v,u).

### Few Terms

- Recall that a graph G = (V, E) is a tuple with E being a subset of VxV.
- Scope for several variations: for u, v in V
  - Should we treat (u,v) as same as (v,u)? In this case, the graph is called as a undirected graph.
  - Treat (u,v) as different from (v,u). In this case, the graph is called as a directed graph.
  - Should we allow (u,u) in E? Edges of this kind are called as self-loops.

### **Undirected Graphs**



- In this case, the edge (u,v) is same as the edge (v,u).
  - Normally written as edge uv.

## **Undirected Graphs**

- The degree of a node v in a graph G = (V,E) is the number of its neighbours.
  - It is denoted by d(v).
- In the above example, the degree of vertex 4 is 4. The neighbors of vertex 4 are {3, 5, 6, 7}.
- The degree of a graph G = (V,E) is the maximum degree of any node in the graph and is denoted Δ(G). Sometimes, written as just Δ when G is clear from the context.
  - Thus,  $\Delta = \max_{v \in V} d(v)$ .
  - Thus  $\Delta$  = 6 for the above graph.

### Some Terms

- In a graph G = (V,E), a path is a sequence of vertices v<sub>1</sub>, v<sub>2</sub>, · · · , v<sub>i</sub>, all distinct, such that v<sub>k</sub>v<sub>k+1</sub> ∈ E for 1 ≤ k ≤ i − 1.
- If, under the above conditions,  $v_1 = v_i$  then it is called a cycle.
- The length of such a path(cycle) is i − 1(resp. i).
- An example: 3 8 5 2 in the above graph is a path from vertex 3 to vertex 2.
- Similarly, 2-7-6-5-2 is a cycle.

### **Directed Graphs**



- In this case, the edge (u,v) is distinct from the edge (v,u).
  - Normally written as edge (u, v).

## **Directed Graphs**

- Have to alter the definition of degree as
- in-degree(v): the number of neighbors w of v such that (w,v) in E.
- out-degree(v): the number of neighbors w of v such that (v,w) in E.
- in-degree(4) = 1
- out-degree(2) = 2.

## **Directed Graphs**

 Have to alter the definition of path and cycle to directed path and directed cycle.

## Representing Graphs

- How to represent graphs in a computer program.
- Several ways possible.

## **Adjacency Matrix**

- The graph is represented by an n x n-matrix where n
  is the number of vertices.
- Let the matrix be called A. Then the element A[i, j] is set to 1 if (i, j) ∈ E(G) and 0 otherwise, where 1 ≤ i, j
   ≤ n.
- The space required is O(n²) for a graph on n vertices.
- By far the simplest representation.
- Many algorithms work very efficiently under this representation.

## Adjacency Matrix Example



| Α | 1                | 2 | 3 | 4 | 5 | 6 |  |
|---|------------------|---|---|---|---|---|--|
| 1 | 0                | 1 | 0 | 1 | 1 | 0 |  |
| 2 | 1                | 0 | 1 | 0 | 1 | 0 |  |
| 3 | 0                | 1 | 0 | 1 | 0 | 1 |  |
| 4 | 1                | 0 | 1 | 0 | 0 | 0 |  |
| 5 | 1<br>0<br>1<br>1 | 1 | 0 | 0 | 0 | 0 |  |
| 6 | 0                | 0 | 1 | 0 | 0 | 0 |  |

## Adjacency Matrix Observations

- Space required is n<sup>2</sup>
- The matrix is symmetric and 0,1—valued.
  - For directed graphs, the matrix need not be symmetric.
- Easy to check for any u,v whether uv is an edge.
- Most algorithms also take O(n²) time in this representation.
- The following is an exception: The Celebrity Problem.

## **Adjacency List**

- Imagine a list for each vertex that will contain the list of neighbours of that vertex.
- The space required will only be O(m).
- However, one drawback is that it is difficult to check whether a particular pair (i, j) is an edge in the graph or not.

# Adjacency List Example



$$1 \longrightarrow 2 \longrightarrow 5 \longrightarrow 4$$

$$2 \longrightarrow 5 \longrightarrow 1 \longrightarrow 3$$

$$3 \longrightarrow 2 \longrightarrow 6 \longrightarrow 4$$

$$5 \longrightarrow 1 \longrightarrow 2$$

$$6 \longrightarrow 3$$

## **Adjacency List**

- Useful representation for sparse graphs.
- Extends to also directed graphs.

## Other Representations

Neighbor maps

## Searching Graphs

- A fundamental problem in graphs. Also called as traversing a graph.
- Need to visit every vertex.
- Can understand several properties of a graph using a traversal.
- Two main techniques: breadth first search, and depth first search.

- Recall level order traversal of a tree.
  - Starting from the root, visits every vertex in a level by level manner.
- Let us develop breadth first search as an extension of level order traversal.
- A few questions to be answered before we develop breadth first search.

- Question 1: For a graph, no notion of a root vertex.
- So, where should BFS start from?

- Question 1: For a graph, no notion of a root vertex.
- So, where should BFS start from?
- So, have to specify a starting vertex. Typically denoted s.
- Still other problems exist.

- In a tree, using level order traversal, each vertex is visited also exactly once.
  - Why?

- In a tree, using level order traversal, each vertex is visited also exactly once.
  - Recall that a tree is connected and has no cycles.

- In a tree, using level order traversal, each vertex is visited also exactly once.
  - Recall that a tree is connected and has no cycles.
- In a graph, that is no longer guaranteed.
  - Start from s = 2 and do a level order traversal.



- In a tree, using level order traversal, each vertex is visited also exactly once.
  - Recall that a tree is connected and has no cycles.
- In a graph, that is no longer guaranteed.
  - Start from s = 2 and do a level
     order traversal
  - One of 1 or 5 visited more than once.



Question 2: How to resolve that problem?



- Question 2: How to resolve that problem?
- Can remember if a vertex is already visited.
- Each vertex has a state among VISITED, NOT\_VISITED, IN\_PROGRESS.
- Why three states instead of just two?
  - Need them for a later use.



 Question 3: Can all vertices be reached from s?

- Question 3: Can all vertices be reached from s?
- For example, when s = 2,
   vertex 3 can never be visited.
- What to do with those vertices?
- Answer depends on the idea behind graph searching via BFS.



### **Breadth First Search**

- The basic idea of breadth first search is to find the least number of edges between s and any other vertex in G.
  - The same property holds for level order traversal of a tree also with s as the root.
- Starting from s, we can thus visit vertices of distance k before visiting any vertex of distance k+1.
- For that purpose, define d<sub>s</sub>(v) to be the least number of edges between s and v in G.

#### **Breadth First Search**

- So, for vertices v that are not reachable from s, can say that d<sub>s</sub>(v) is ∞□
- Alike a level order traversal of a tree, can use a queue to store vertices in progress.

#### **BFS** Procedure

```
Procedure BFS(G)
for each v \in V do
\pi(v) = NIL; state[v] = NOT_VISITED; d(v) = \infty;
End-for
d[s] = 0; state[s] = IN_PROGRESS; \pi[s]= NIL,
Q = EMPTY; Q.Enqueue(s);
While Q is not empty do
v = Q.Dequeue();
for each neighbour w of v do
   if state[w] = NOT_VISITED then
      state[w] = IN_PROGRESS; \pi[w] = v;
      d[w] = d[v] + 1; Q.Enqueue(w);
   end-if
end-for
state[v] = FINISHED
end-while
```

## **BFS Example**

• Start from s = 2.



1 2 3 4 5 6

 $\mathsf{q}: \infty \quad 0 \quad \infty \quad \infty \quad \infty$ 

 $\pi$ : - - - - -

### BFS – Additional Details

• What is the runtime of BFS?

#### BFS – Additional Details

- What is the runtime of BFS?
  - How many times does each vertex enters the queue?
  - Each edge is considered only once.
- Therefore, the runtime of BFS should be O(m + n).

#### **BFS** – Additional Details

- The  $\pi$  value of a vertex v denotes the vertex u that discovered v.
- The  $\pi$  values maintained during BFS can be used to define a subgraph of G as follows.
- Define the predecessor subgraph of G = (V,E) as
  - $G_{\pi} = (V_{\pi}, E_{\pi})$  where
  - V<sub>π</sub> = {v ∈ V : π(v) != NULL} U {s}, i.e., all vertices reached during a BFS from s, and
  - $E_{\pi} = \{(\pi(v), v) \in E : v \in V_{\pi} \{s\}\}\$ , directed edges from the parent of a vertex to the vertex.

# BFS Example Contd...



## Properties of BFS

- Consider the time at which a vertex v has entered the queue.
- The state of v at that instant changes from NOT\_VISITED to IN\_PROGRESS.
- d<sub>s</sub>(v) changes to a finite value, and
- d<sub>s</sub>(v) can never change after that instant.

## Classifying Edges

- Can classify edges of G according to BFS from a given s as follows.
- The edges of  $E_{\pi}$  are also called as tree edges.
- It holds that for a tree edge (u, v), d(v) = d(u) + 1.
- The edges of E<sub>N</sub> := E \ E<sub>π</sub> are called as non-tree edges.
- These edges can be further classified as follows.

## Classifying Edges

 Identify the tree- and the non-tree edges according to a BFS on the following graph. Choose vertex number 3 as the start vertex.



Pick vertices in their order.

## Classifying Edges – The Non-Tree Edges

- First, consider the predecessor subgraph. It is a tree. Call this tree as T<sub>BFS</sub>.
- Tree edges according to BFS share a parent-child relationship.
- For any pair of vertices u, v:
  - Either they share an ancestor-descendant relation in T<sub>BFS</sub>.
  - Or they do not.



## Classifying Edges – The Non-Tree Edges



- For any pair of vertices u, v:
  - Either they share an ancestor-descendant relation in T<sub>BFS</sub>.
  - Or they do not.
    - (u, v) called as a cross edge. Examples (d,i) and (b,a).

## Classifying Edges – The Non-Tree Edges



- For any pair of vertices u, v with (u,v) an edge in G:
  - Either they share an ancestor-descendant relation in  $\mathsf{T}_{\mathsf{BFS}}.$
  - If u is an ancestor of v, then (u,v) is a forward edge.
  - If u is a descendant of v, then (u,v) is a back edge.

### **Directed or Undirected**

- Most of the above observations hold even if G is directed.
  - The classification in fact makes more sense for directed graphs.
  - There can be back edges, but no forward edges.
- Can thus extend the notion of BFS to directed graphs.

### Complete Example

 Perform BFS on the directed graph below with vertex a as the start vertex.

Classify the edges of the graph according to the

BFS.



#### BFS – Colors instead of States

- It is common to associate colors to the three states.
  - GREEN: Done vertices, VISITED
  - ORANGE : In progress/ In Queue
  - RED: Not visited yet.

## **Towards Weighted BFS**

- So, far we have measured d<sub>s</sub>(v) in terms of number of edges in the path from s to v.
- Equivalent to assuming that each edge in the graph has equal (unit) weight.
- But, several settings exist where edges may have unequal weights.

## **Towards Weighted BFS**

- Consider a road network.
- Junctions can be vertices and roads can be edges.
- Can use such a graph to find the best way to reach from point A to point B.
- Best here can mean shortest distance/shortest delay/....
- Clearly, all edges need not have the same distance/delay/.

## **Towards Weighted BFS**



#### A Few Problems

- Problem I: Given two points u and v, find the shortest distance between them.
- Problem II: Given a starting point s, find the shortest distance from s to all other points.
- Problem III: Find the shortest distance between all pairs of points.

#### A Few Problems

- Turns out that Problem I is not any easier than Problem II.
- Problem III is definitely harder than Problem II.
- We shall study problem II, and possibly Problem III.

## Weighted Graphs

- The setting is more general.
- A weighted graph G = (V, E, W) is a graph with a weight function W : E -> R.
- Weighted graphs occur in several settings
  - Road networks
  - Internet

## Problem II: Single Source Shortest Paths

- Problem II is also called the single source shortest paths problem.
- Let us extend BFS to solve this problem.
- Notice that BFS solves the problem when all the edge weights are 1.
  - Hence the reason to extend BFS

- Extensions needed
  - 1. Weights on edges

- Extensions needed
  - 1. Weights on edges
  - 2. How to know when a node is finished.

- Extensions needed
  - 1. Weights on edges
  - 2. How to know when a node is finished.
- For a vertex v, d<sub>s</sub>(v) will now refer to the shortest distance from s to v.
- Initially, like in BFS,  $d_s(v) = \mathbb{D}^s$  for all vertices v except s, and  $d_s(s) = 0$ .



- Update d<sub>s</sub>(v) with weights.
- Also, weights on edges mean that if v is a neighbor of w in the shortest path from s to w, then d<sub>s</sub>(w) = d<sub>s</sub>(v) + W(v,w).
  - Instead of  $d_s(w) = d_s(v) + 1$  as in BFS.
- We will call this as the first change to BFS.

- Notice that in BFS a node has three states:
   NOT\_VISITED, VISITED, IN\_QUEUE
- A vertex in VISITED state should have no more changes to d<sub>s</sub>() value.
- What about a vertex in IN\_QUEUE state?
  - such a vertex has some finite value for d<sub>s</sub>(v).
  - Can d<sub>s</sub>(v) change for such vertices?
  - Consider an example.

 Consider s = 2 and perform weighted BFS.



- Consider s = 2.
- From s, we will
   enqueue1, 5, and 3 with
   d(1) = 4, d(5) = 10, d(3)
   = 3, in that order.
- While vertex 5 is still in queue, can visit 5 from vertex 1 also.



- Moreover, the weight of the edge 2- 5 is 10
   whereas there is a shorter path from 2 to 5
   via the path 2 – 1 – 5.
- So, it suggests that d(v) should be changed while v is still in the queue.



- Update d(v) for v in queue also.
- While v is in queue, we can check if d(v) is more than the distance along the new path.
- If so, then update d(v) to the new smaller value.
- Change 2 to BFS.



- Does that suffice?
- In the same example, if
  we change the order of
  vertices from 1, 5, 3 to
  5, 1, 3, then vertex 5 will
  not be in queue when 1
  is removed from the
  queue.



- So, the simple fix to change d(v) while v is still in queue does not work.
- May need to update d(v) even when v is not in queue?
  - But how long should we do so?

- Can do so as long as there are changes to some d(v)?
  - No need of a queue then, in this case really.
- Will this ever stop?
- Indeed it does. Why?
  - Intuitively, there are only a finite number of edges in any shortest path.

## Weighted BFS

- Why does this ever stop?
- Consider a vertex v and the path from s to v of the least cost.

### An Algorithm for SSSP

```
Algorithm SSSP(G,s)
begin
   for all vertices v do
        d(v) = \infty \square \pi(v) = NIL;
   end-for
   d(s) = 0;
   for n-1 iterations do
        for each edge (v,w) do
           if d(w) > d(v) + W(v,w) then
               d(w) = d(v) + W(v,w); \pi(w) = v;
           end-if
        end-for
    end-for
end
```

### Algorithm SSSP

- The above algorithm is called the Bellman-Ford algorithm.
- The algorithm requires O(mn) time.
  - For each of the n-1 iterations, we consider each edge once.
  - Has O(1) compute per edge.
- Just as in BFS, works also on directed graphs.
- Forms the basis of several algorithms for the Internet.

#### **Example Algorithm SSSP**

 Start vertex = d. Employ the Bellman-Ford algorithm to find shortest path from d to all other vertices.



```
Algorithm SSSP(G,s)
begin
   for all vertices v do d(v) = \infty \square \pi(v) = NIL;
   d(s) = 0;
   for n-1 iterations do
       for each edge (v,w) do
           if d(w) > d(v) + W(v,w) then
               d(w) = d(v) + W(v,w); \pi(w) = v;
end
```

- Why n-1 iterations are required?
- Let us prove the following via induction.

- Consider the source vertex s.
- For s, d(s) = 0 is the best possible result.
- So, s is FINISHED.



- Now consider a vertex v such that the shortest path from s to v contains only one edge, say (s,v).
- The edge (s,v) appears at some iteration of the second for loop in the first iteration of the main loop.
- At that point, d(v) is set correctly.

- Consider the source vertex s.
- For s, d(s) = 0 is the best possible result.
- So, s is FINISHED.



- Now consider a vertex v such that the shortest path from s to v contains only one edge, say (s,v).
- The edge (s,v) appears at some iteration of the second for loop in the first iteration of the main loop.
- At that point, d(v) is set correctly.
- Does that mean that all neighbors of s FINISH in one iteration?

- In that fashion, let every vertex v with a shortest path having at most i edges enter the FINISHED state at the end of i iterations.
- This certainly holds for i = 0. (and i =1 too!)
- Can we use induction to continue the proof?

## The Proof

• In pictures...



### Algorithm SSSP

- The time taken by the Bellman-Ford algorithm is too high compared to that of BFS.
- Can we improve on the time requirement?
- Most of the time is due to

### Algorithm SSSP

- The time taken by the Bellman-Ford algorithm is too high compared to that of BFS.
- Can we improve on the time requirement?
- Most of the time is due to
  - Repeatedly considering edges, and as a result
  - Updating d(v) possibly many times
- Need to know how to stop updating d(v) for any vertex v.
- This is what we will develop next.

#### To Improve the Runtime



- When is a vertex FINISHED?
- When no further shorter path can be found to v from s.
  - Equivalently, when d(v) can no longer decrease.

#### A Considered Edge



```
void process(e) /*e = (v,w)*/
begin

if d(w) > d(v) + W(v,w) then

d(w) = d(v) + W(v,w)
end
end
```

- We say an edge e = (v, w) is considered if the above routine is executed for e.
- The impact is to possibly lower d(w), indicating that a better path to w from s is available via v.

### To Improve the Runtime

- For this to happen, consider the following.
  - A few vertices, say S, are FINISHED. By that we also mean that for any v in S, d<sub>s</sub>(v) CANNOT decrease any further.
  - Plus, all the edges with at least one endpoint in S are the only edges considered.
  - Other vertices in V \ S, have some d() value.

### To Improve the Runtime

- For this to happen, consider the following.
  - Let each edge have a positive weight.
  - A few vertices, say S, are FINISHED.
  - Plus, all the edges with at least one endpoint in S are the only edges considered.
  - Other vertices in V \ S, have some d() value.
  - Which of these cannot improve d() any more?



- Green vertices are FINISHED. No further changes to d<sub>s</sub>()
- Red edges, edges with at least one end point as a green vertex are the ONLY edges PROCESSED.
- Numbers on black vertices indicate their d() value using only green vertices as intermediate vertices.



- Suppose we want to add one more vertex to the set S.
- Which of the black vertices is FINISHED?



- Notice that there could be edges between the black vertices also.
  - None of them are processed so far.



- Consider the vertex v with the smallest d() value among the black vertices.
- Any more decrease to d(v) would involve using at least one more edge between two black vertices.



- Consider the vertex v with the smallest d() value among the black vertices.
- Any more decrease to d(v) would involve using at least one more edge between two black vertices.
- But all edge weights are positive.



 Therefore, such a vertex with the smallest d() value among the black vertices can no longer decrease its d() value.



 Further, moving any other vertex w to S may mean that d<sub>s</sub>(w) is not FINAL when w is moved to S.



- Suggests that the vertex with the smallest d() value is FINISHED.
- Hence, can be moved to the set S.



But, how did we pick the set S so far?



- Initially, only vertex s is in the set S.
  - As d(s) = 0.
- Incrementally, populate S with more vertices.

- Can develop the above idea into an algorithm.
- The basic step in the algorithm is to proceed iteratively.
- Each iteration, one vertex is moved to set S
  according to the least d() rule.

# **Quick Exercise**





- What is the effect of moving a vertex v to S?
  - The neighbors of v may find a better path from s.
  - So, we will update d(w) for neighbors w of v, if necessary.
- Every neighbor of v?

- What is the effect of moving a vertex v to S?
  - The neighbors of v may find a better path from s.
  - So, we will update d(w) for neighbors w of v, if necessary.
- Every neighbor of v?
- No, those in S can never decrease their d() value.
  - So, check only neighbors w that are not in S.

```
Algorithm SSSP(G, s)
begin
   for all vertices v do
       d(v) = \mathbb{D}; p(v) = NIL;
   end-for
   d(s) = 0;
   for n iterations do
       v = the vertex with the least d() value among V \ S;
       Add v to S
       for each neighbor w of v in V \ S do
          d(w) = min \{ d(w), d(v) + W(v,w) \}
       end-for
   end-for
```

# Example

Start vertex is c.



- The program resembles the BFS approach.
  - Instead of a queue, maintain order on the vertices according to their d() values.
  - Need three states now.
- The above algorithm is essentially the Dijkstra's algorithm.
- How to analyze the above algorithm?
- Requires answers to a few questions.
- How to know which vertex in V \ S has the least d()
   value?
- How to know if a vertex is in V \ S or not?

- How to know which vertex in V \ S has the least d()
   value?
  - Think of the binary heap.
  - A heap supports an efficient deleteMin().
  - Use d() values as the priority.
- How to know if a vertex is in V \ S or not?
  - Remember the state of vertices.
- How to update the d() value of a vertex?
  - Can simply use operation DecreaseKey(v,  $\delta$ ) to update d(v).
  - The above choice of a heap solves also this problem.

### Analyzing the Algorithm

- To analyze the algorithm when using a heap
  - How many DeleteMin() operations are performed on the heap?
  - How many DecreaseKey() operations are called?

### Analyzing the Algorithm

- To analyze the algorithm when using a heap
  - How many DeleteMin() operations are performed on the heap?
  - Answer: At most n.
  - How many DecreaseKey() operations are called?
  - Answer: At most m

- Each DeleteMin() takes O(log n) time
- Each DecreaseKey() operation takes O(log n) time.
- So, the total time is O((n+m)log n).

#### **Advanced Solutions**

- Advanced data structures exist to decrease the runtime to O(m + n log n).
  - Fibonacci heaps, ...
- A good case study of how to separate algorithm from the data structure.
  - Any data structure that supports deleteMin and decreaseKey can be used
  - The algorithm will still be correct.

### **Exercise**

 Pick any of the applicable data structures of your choice and find the runtime of Dijkstra's algorithm with your choice.

### Yet Another Traversal

- In BFS, vertices not reachable from s are never listed.
- So the entire graph may not be visited at all.
- We will study yet another traversal mechanism for graphs.
  - Visits the entire graph!!
- This is called Depth First Search (DFS) and has important applications.
- Several graph algorithms use DFS as a subroutine.

### Yet Another Traversal

- One way to think of the new traversal is to consider using a stack instead of a queue in BFS.
- We will also add one more operation to the stack apart from push and pop.
  - Peek() on a stack S returns the top of the stack without deleting the top element.
  - If the stack is empty, returns NULL.
- Let us understand by an example.

• Let us start from vertex e.







# Depth First Search

- The idea of DFS is as follows.
- Start from a specified start vertex, say s.
- Explore from s as deep as possible. This suggests that we go from s, to one of its out neighbors x, to a neighbor of x, ...
- When to stop? When there are no new outneighbors to explore from a given point.

- Further, when the stack is empty, and there are still vertices that are not visited, pick another start vertex.
- Repeat until all vertices are visited.
- A big departure from BFS, but the goals are different.
  - In DFS, we aim to understand the structure of the graphs. To be done via several auxiliary information recorded during DFS.
  - In BFS, the idea is to find shortest paths.

## Depth First Search

- Alike BFS, have to keep track of the state of a vertex.
- A vertex can be in three states: VISITED, NOT\_VISITED, IN\_STACK
- Normal to associate colors to these states such as
  - VISITED GREEN
  - NOT\_VISITED RED
  - IN\_STACK ORANGE
- Why the third state? Same reason as BFS.

- In a programmatic sense, can use recursion to manage the stack.
- So, the modified program looks as below.

```
Procedure DFS(G)
Begin
  for each vertex v do
       \pi(v) = NIL;
        state(v) = NOT_VISITED;
  end-for
  for each vertex v do
      if state(v) = NOT_VISITED then
           state(v) = IN_STACK
           VisitDFS(v)
     end-if
 end-for
\mathsf{End}_{\mathsf{L}}
```

```
Procedure VisitDFS(v)
Begin
  for each out-neighbor w of v do
     if state(w) = NOT_VISITED then
          \pi(W) = V;
          state(w) = IN_STACK
          VisitDFS(w)
    end-if
 end-for
 state(v) = VISITED;
End.
```

# DFS – An Example



## Discovery and Finish Times

- With every vertex, can also associate start and finish times.
- Start with time = 0 at the beginning.
- Associate (record) time for the following events
  - A vertex changes state from NOT\_VISITED to IN\_STACK. Meaning a new vertex is discovered
  - A vertex in IN\_STACK state changes state to VISITED.
     Meaning, a discovered vertex finishes processing.

### Discovery and Finish Times

- The first time a vertex v changes state from NOT\_VISITED to IN\_STACK, the current time is recorded as the discovery time of v,
- denoted d(v)
- The time at which vertex v changes state from IN\_STACK to VISITED is recorded as the finish time of v
- denoted f(v)

```
Procedure DFS(G)
Begin
  for each vertex v do
      state(v) = NOT_VISITED
       \pi(v) = NIL;
  end-for
  time = 1
  for each vertex v do
     if state(v) = NOT_VISITED then
          state(v) = IN_STACK
          d(v) = time++;
          VisitDFS(v)
    end-if
 end-for
End
```

```
Procedure VisitDFS(v)
Begin
  for each neighbor w of v do
     if state(v) = NOT_VISITED then
          \pi(w) = v;
          state(w) = IN_STACK
          d(w) = time++
          VisitDFS(w)
     end-if
 end-for
 state(v) = VISITED;
  f(v) = time++;
End.
```

## Discovery and Finish Times

- Several graph properties can be observed using the d() and the f() times.
- Interesting algorithms can be designed relying mostly on d() and f() times.
- We will see at least one such example later.

# Discovery and Finish Times – Example



# DFS – Complete Example



| Vertex | Discovery<br>Time | Finish<br>Time |
|--------|-------------------|----------------|
| а      | 1                 | 6              |
| b      | 3                 | 4              |
| С      | 7                 | 10             |
| d      | 2                 | 5              |
| е      | 11                | 12             |
| f      | 8                 | 9              |
| g      | 13                | 14             |
| h      | 15                | 16             |



# Classifying Edges

- Recall the edge classification done for BFS. Can do so also for DFS.
- The edges of  $E_{\pi}$  are also called as tree edges.
- The edges of E<sub>N</sub> := E \ E<sub>π</sub> are called as non-tree edges.
- These edges can be further classified as follows.

# Classifying Edges

### Back Edges

- An edge (u, v) ∈ E<sub>N</sub> is called as a back edge if v is an ancestor of u in the DFS forest.
- In other words, u can be reached from v using tree edges, but there is an edge from u to v also.

### Forward Edge

- Edges (u, v) which connect a vertex u to a descendant of u in the DFS forest. (v is a descendant of u)
- In other words, v can be reached from u using tree edges, but there is an edge from u to v also.

# Classifying Edges

 Cross Edges: Edges (u, v) where u and v do not share any ancestor/descendant relationship.

- Depending on the type of the edge, certain relations between d() and f() values of the endpoints hold.
- If (u,v) is a cross edge then the intervals [d(u), f(u)] and [d(v), f(v)] do not overlap.
- Find other such relations.

# Example





| Vertex | Discovery<br>Time | Finish<br>Time |
|--------|-------------------|----------------|
| а      | 1                 | 6              |
| b      | 3                 | 4              |
| С      | 7                 | 10             |
| d      | 2                 | 5              |
| е      | 11                | 12             |
| f      | 8                 | 9              |
| g      | 13                | 14             |
| h      | 15                | 16             |

— tree edge
— back edge
— cross edge

# **DFS Example**



# **Edge Classification**

- Another attempt to explain edge classification according to DFS.
- Consider the following DFS forest.



# **Back Edges**



# **Forward Edges**



# **Cross Edges**



## Application of DFS - I

- Consider the UG curriculum here.
- Some courses have pre-requisites.
- A small picture illustrates this idea.

# Example



### Some Questions

 How long do you really need to complete the program if you are allowed to do as many courses as possible each semester?

### Some Questions

- How long do you really need to complete the program if you are allowed to do as many courses as possible each semester?
- How soon can you take some course, by finishing all its prerequisites.

### Some Questions

- How long do you really need to complete the program if you are allowed to do as many courses as possible each semester?
- How soon can you take some course, by finishing all its prerequisites.
- What is an order of the courses?

# The Graph Based Solution

- The last question indicates some ordering on the vertices of the graph.
- The graph we have in this case is a directed graph.
- Additionally, there cannot be cycles in the graph.
- Such a graph is called as a directed acyclic graph, DAG for short.

## The Graph Based Solution

- We will use just DFS to arrive at our solution as follows.
- Consider performing DFS on the graph G.
- Let (u,v) be an edge in G.
- If G is a DAG, then it holds that f(u) > f(v).

 If G is a DAG, then it holds that f(u) > f(v).



- Can be proved as follows. Let
   d(u) < d(v). Then the case is
   clear. The DFS procedure from
   u would definitely reach v,
   finishes at v, then returns to u.</li>
- In this case, (u,v) is either a tree edge or a forward edge.





- On the other hand, if d(v) < d(u), then the DFS procedure at v cannot visit u. Why? So, in this case, also f(u) > f(v).
- The edge (u,v) appears as a cross edge.

#### The Solution

- We need an ordering of vertices such that:
  - If (u,v) is an edge, then u appears before v in the order.
- The simple solution to produce such an ordering of the vertices is to therefore perform a DFS and produces vertices in the decreasing order of their finish times.

Data Structures Tonic 9

# Example



Sorted order

DLP, CSO, ITW1, CP, OS, ITW2, CN. SSAD, SWE, M1, M2, M3, DS, Alg, Comp., DiSy, FM, AAlg

|   | Vertex    | F(v) |
|---|-----------|------|
|   | DS        | 12   |
| ŧ |           | 32   |
|   | ITW2      | 27   |
|   | SSAD      | 24   |
|   | СР        | 31   |
|   | SWE       | 2    |
|   | Alg       | 11   |
|   | FM        | 5    |
|   | Aalg      | 4    |
|   | CSO       | 35   |
|   | DLP       | 36   |
|   | OS        | 30   |
|   | CN        | 26   |
|   | DiS.      | 8    |
|   | Compilers | 10   |
|   | M1        | 18   |
|   | M2        | 17   |
|   | M3        | 16   |
|   |           |      |

- Suppose one day all the roads in the city are made directional.
  - like one-way roads.
- Can we go from one point to another point, and also come back respecting the directions?



- Suppose one day all the roads in the city are made directional.
  - like one-way roads.



Map of Bangalore Circa 2005, From The Hindu

- The general problem is as follows.
- Given a directed graph G = (V, E) and two vertices U and v, is there a path between u to v and vice-versa.
- Does the above hold for every pair of vertices u, v?

- The second question is more general than the first.
   Can be solved also.
- Problem: Given a directed graph G, partition V into maximal subsets so that each pair of vertices in each subset have a directed path between them.
  - u, v in V<sub>i</sub>, u is reachable form v and v is reachable from
     u.
- Each such maximal set is called a strongly connected component.
- The partition is called as the Strongly Connected Components (SCC) of G.

- Can use DFS to find the strongly connected components of a given directed graph.
- Requires a few thought questions.



- Let C, C' be two (distinct) strongly connected components of G.
- Let u in C, and v in C' be such that (u,v) in an edge.
- There cannot be an edge from some y in C' to an x in C.



 If such an edge (y,x) exists, then C and C' are not maximal.



- For an SCC C, set  $f(C) = \max_{v \in C} f(v)$ .
- Given such C and C' and u, v with u in C, and v in C' and (u,v) is an edge, in any DFS of G, C finishes after C'.



- For an SCC C, set  $f(C) = \max_{v \in C} f(v)$ .
- Given such C and C' and u, v with u in C, and v in C' and (u,v) is an edge, in any DFS of G, C finishes after C'.
- Proof: Consider the case that d(u) < d(v).</li>
- Then, DFS from u clearly enters C' via (u,v) or some other edge.



- Thus, v would be a descendant of u.
- Once DFS enters C', all vertices of C' would be visited before backtracking to a vertex in C.
- Thus, C' finishes before C.



- Similar observations hold also if d(u) > d(v).
- In this case, DFS from v has to finish C' and cannot enter C.
- Observation 1: f(C) is also larger than f(C')



- $-V(G^T)=V(G)$ 
  - $E(G^T) = \{ (v,w) \mid (w,v) \text{ in } E(G) \}$
- In essence, invert the directions of edges in G to get G<sup>T</sup>.
- Observation 2: The SCCs of G and G<sup>T</sup> are identical.



- Why are the observations important?
- Consider setting up a DFS in G<sup>T</sup> so that
  - the DFS will visit only vertices in each component.
- How to set this up?



- Notice that in G<sup>T</sup>, the edge (u,v) in G appears as (v,u).
- Also, a DFS in G<sup>T</sup> that starts in C cannot enter C'.
- Why?



- How to do DFS in G<sup>T</sup> such that it visits only vertices in one component before having to start again.
- If in a DFS in G, C finishes later than C', then there is some vertex in C whose finish time is more than the finish time of all vertices in C'.
- So, can start with such a vertex.



- Suggests that we should pick the start vertex for DFS in G<sup>T</sup> such that it has the largest finish time among all vertices according to DFS in G.
- Indeed, that is the algorithm for finding SCCs also.

# Algorithm for SCC

# Algorithm SCC(G) begin

- perform a DFS in G and record the d() and f() times of all vertices.
- construct the graph G<sup>T</sup> from G.
- Perform DFS in G<sup>T</sup> picking vertices in decreasing order of finish time according to DFS in G

end

# **Practice Problem**



# Example SCC: DFS on G



# The Graph G<sup>T</sup>



# DFS on G<sup>T</sup> With Specific Start Vertices



- We will now consider another famous problem in graphs.
- Imagine providing connectivity to a set of cities.
- Each highway connects two cities
- In reality, each highway requires a certain cost to be built.



- So, there is a trade-off here.
- How to provide connectivity
   while minimizing the total cost
   of building the highways.
- The weights on the edges indicate the cost of building that highway.
- The total cost of connectivity = sum of all the built up highway
- Minimize this cost.



- Formalize the problem as follows.
- Let G = (V, E, W) be a weighted graph.
- Find a subgraph G' of G that is connected and has the smallest cost
  - Cost is defined as the sum of the edge weights of edges in G'.

 Observation I: If G' has a cycle and is connected, then there exists a G", which is also a subgraph of G and is connected so that

To get G", simply break at least one cycle of G'.

- Hence, the optimal G' shall have no cycles and is connected.
  - Suggests that G' is a tree.

- Two keywords: spanning and tree.
- Some notation: A subgraph G' of G is called a spanning subgraph if V(G') = V(G).
- A spanning subgraph G' of G that is also a tree is called as a spanning tree of G.

- Consider the problem: Find a spanning tree of G that has the least cost.
- Such a spanning tree is also called as a minimum cost spanning tree of G. Often one refers to this as the minimum spanning tree, or MST for short.

# MST Algorithm

```
Algorithm MST(G)
begin
      sort the edges of G in increasing order of weight as
      e<sub>1</sub>, e<sub>2</sub>, ..., e<sub>m</sub>
       k = 1; V(T) = V(G); E(T) = \Phi
       while |E(T)| < n-1 do
            if E(T) U ek does not have a cycle then
                E(T) = E(T) U e_k
            end-if
            k = k + 1;
      end-while
End.
```

#### **MST Practice Problem**

```
Algorithm MST(G)
begin
      sort the edges of G in
      increasing order of weight
      as e<sub>1</sub>, e<sub>2</sub>, ..., e<sub>m</sub>
       k = 1; V(T) = V(G); E(T) = \Phi
       while |E(T)| < n-1 do
            if E(T) U e<sub>k</sub> does not
              have a cycle then
                E(T) = E(T) U e_k
            end-if
            k = k + 1;
      end-while
End.
```



# MST Example

- List of edges by weight
  - bc, ab, ac, cg, cd, de, bf, af, ad, ef, dg



- Let us now think of devising an algorithm to construct an MST of a given weighted graph G.
- There are several approaches, but let us consider a bottom-up approach.
- Let us start with a graph (tree) that has no edges and add edges successively.
- Every new edge we add should not create a cycle.
- Further, the total cost of the final tree should be the least possible.

 Suggests that we should prefer edges of smaller weight.

- Suggests that we should prefer edges of smaller weight.
  - But should not add edges that create cycles.

- Suggests that we should prefer edges of smaller weight.
  - But should not add edges that create cycles.
- Indeed, that is intuitive and turns out that is correct too.
  - we will skip the proof of this.

# MST Example

- List of edges by weight
  - bc, ab, ac, cg, cd, de, bf, af, ad, ef, dg

# **MST** Algorithm Analysis

- The algorithm we devised is called the Kruskal's algorithm.
- Belongs to a class of algorithms called greedy algorithms.
- How do we analyze our algorithm?
  - Need to know how to implement the cycle checker.

# **MST** Algorithm Analysis

- How quickly can we find if a given graph has a cycle?
  - O(m+n) is possible using DFS.
- Notice that if the graph is a forest, then m = O(n).
- So, can be done in O(n) time.
- Also, need to try all m edges in the worst case.
- So the time required in this case is O(mn).

# **MST** Algorithm Analysis

- Too high in general.
- But, advanced data structures exist to bring the time down very close to O(m+n).
  - Cannot be covered in this class.
  - We will show an approach that takes us almost there.

#### **Advanced Data Structures**

- An abstract problem:
- Given n elements, grouped into a collection of disjoint sets S<sub>1</sub>, S<sub>2</sub>, ..., S<sub>k</sub>, design a data structure to:
  - Find the set to which an element belongs
  - Combine two sets
- The abstract problem finds applications in several settings:
  - Spanning tree algorithm of Kruskal
  - Graph connected components
  - Least common ancestors

**—** ...

#### Some Notation

- Imagine a collection S = {S<sub>1</sub>, S<sub>2</sub>, ..., S<sub>k</sub>} of sets.
- Each set has a representative element
  - Some member of the set, typically.
  - Depending on application, can be
    - The smallest numbered element
    - A number
    - Or other
- Typical operations
  - MakeSet(x)
  - Union(x, y)
  - FindSet(x)

#### **Some Notations**

#### Two parameters

- n: The number of MakeSet operations.
- m: The total number of MaketSet, Union, and Find operations.
- Some observations
  - Each Union operation reduces the number of sets by 1.
  - When starting with n elements, at most n-1 Union operations.
  - Also, m >= n.
- Assume that the n MakeSet operations are the first n operations.

#### How to Implement the Operations?

- Option 1: Use linked lists.
- For every set, there is a linked list.
- The representative of a set is the head of the list.
- Every element also stores a pointer to the representative.
- There is a tail pointer indicating where to append.



#### **Operations**

- MakeSet(x): Create a new linked list.
- FindSet(x): Can be answered via the direct pointer
- Union(x, y): Can append the list of x to the list of y.
- But have to update the pointer for each element in the list of x.



## **Application to Connected Components**

- Problem: Given an undirected graph G = (V, E), partition V into disjoint sets V<sub>1</sub>, V<sub>2</sub>, ..., V<sub>k</sub>, so that two vertices u and v are in the same partition if and only if there is a path between u and v.
- Several ways to solve this problem
  - This may not be the best way!
- Example follows.



#### • Algorithm:

- For each vertex v
  - MakeSet(v)
- For each edge vw
  - Union(v,w)







#### **Operations**

- How difficult is it to append the lists?
- Claim: There exists a sequence of m operations on n objects so that the total time required for the entire sequence of operations is O(n<sup>2</sup>).

#### **Operations**

- How difficult is it to append the lists?
- Claim: There exists a sequence of m operations on n objects so that the total time required for the entire sequence of operations is O(n<sup>2</sup>).
- After the first n MakeSet operations, call Union(x1,x2), Union(x2, x3), Union(x3, x4), ..., Union(x<sub>n-1</sub>, x<sub>n</sub>).
- The kth union call takes time proportional to k.
- Total time is therefore O(n<sup>2</sup>).
- The average time per operation is also O(n).

#### Application to Kruskal's Algorithm

- An average time of O(n) is not helpful for Kruskal's algorithm.
- We have several Union calls and several FindSet calls.

#### **Better Solution**

- Most of the time spent is in the Union operation.
- Can we modify the operation slightly?
- Intuitively, it is easier to append a smaller list to a larger list.
  - Requires fewer updates.
  - Will the overall time decrease?
- We will show that indeed it does.

#### The Weighted Union Heuristic

- Maintain the length of each list. Corresponds to the size of the set.
- To perform Union(x, y):
  - Append the list of x to the list of y if len(x) < len(y)</li>
  - Append the list of y to the list of x otherwise.
- A single Union operation can still take lot of time.
  - Union of two large lists, say of size n/10 each.
- But, a sequence of operations may be not so expensive.
  - Hopefully.

- How many times can an element change its representative?
- Consider any element x.
- If in an Union operation, the representative of x changes, then x is in the smaller list.
  - Why?

- How many times can an element change its representative?
- Consider any element x.
- If in an Union operation, the representative of x changes, then x is in the smaller list.
  - Why?
- The first time this happens, the resulting list has at least 2 elements.

- How many times can an element change its representative?
- Consider any element x.
- If in an Union operation, the representative of x changes, then x is in the smaller list.
  - Why?
- The first time this happens, the resulting list has at least 2 elements.
- Next time, the resulting list has at least 4 elements.

- In general, if the representative of x changes k times, then the resulting list has size at least 2<sup>k</sup>.
- The largest set can have a size of n.
- Therefore, the representative of x cannot change more than log n times, over all the Union operations.
- This applies to every element.
- Therefore, over all Union operations, the total time spent is O(n log n).

- Now, consider a sequence of m operations.
- MakeSet and Find are O(1) time operations.
- Therefore, the total time is O(m + nlog n).
- The average time per operation is O(log n).

## Application to Kruskal's Algorithm

How does the above apply?

#### Application to Kruskal's Algorithm

- Do n MakeSet operations indicating that each vertex is in its own tree/set.
- To check if e = uv creates a cycle, check if FindSet(u) = FindSet(v).
- If not, add e to the current tree. Perform Union(u, v) to merge the trees of u and v.
- There are at most m FindSet operations.
- Overall time is therefore bound by O(m+nlog n).

- The previous approach has to check for cycles every iteration.
- Another approach that has a smaller runtime even with basic data structures.
- Largely simplifies the solution.

- The previous approach is characterized by having a single tree T at any time.
- In each iteration, T is extended by adding one vertex v not in T and one edge from v to some vertex in T.
- Starting from a tree of one node, this process is repeated n-1 times.

#### • Two questions:

- How to pick the new vertex v?
- How to pick the edge to be added from v to some other vertex in T?

The answers are provided by the following claims.

 Claim 1: Let G = (V, E, W) be a weighted undirected graph. Let v be any vertex in G. Let vw be the edge of smallest weight amongst all edges with one endpoint as v. Then vw is always contained in any MST of G.

- Claim 1 can be shown in the following way.
- For each vertex v in G, there must be at least one edge in any MST.
- Considering the edge of the smallest weight is useful as it can decrease the cost of the spanning tree.

# Generalizing Claim 1.

- Claim 2 can be generalized further.
- Let T be a subtree of some MST of an undirected weighted graph G. Consider edges uv in G such that u is in T and v is not in T. Of all such edges, let e = xy be the edge with the smallest weight. Then T U {e} is also a subtree of some MST of G.

# Generalizing Claim 1.

- Claim 2 allows us to expand a given sub-MST T.
- We can use Claim 2 to expand the current tree T.
- How to start?

- Let v be any vertex in the graph G. Pick v as the starting vertex to be added to T.
- T now contains one vertex and no edges.
- T is a subtree of some MST of G.
- Now, apply Claim 2 and extend T.

```
Algorithm MST(G, v)
Begin
     Add v to T;
     While T has less than n – 1 edges do
       w = vertex s.t. vw has the smallest weight
       amongst edges with one endpoint in T and
  another not in T.
       Add vw to T.
     End
End
```

- How to find w in the algorithm?
- Need to maintain the weight of edges that satisfy the criteria.
- A better approach:
  - Associate a key to every vertex
  - key[v] is the smallest weight of edges with v as one endpoint and another in the current tree T.
  - key[v] changes only when some vertex is added to
     T<sub>-</sub>
  - Vertex with the smallest key[v] is the one to be added to T.

- Suggests that key[v] need to be updated only when a new vertex is added to T.
- Further, not all key[v] may change in every iteration.
  - Only the neighbors of the vertex added to T.
  - Similar to Dijkstra's algorithm.

- Therefore, can maintain a heap of vertices with their key[] values.
- Initially, key[v] = infinity for every vertex except the start vertex for which key value can be 0.
- Perform DeleteMin on the heap. Let v be the result.
- Update the key[] value for neighbors w of v as:
  - $key[w] = min\{key[w], W(vw)\}$

# Algorithm Using a Heap

```
Algorithm MST(G, u)
begin
   for each vertex v do key[v] = infty.
   key[u] = 0;
   Add all vertices to a heap H.
   While T has less than n-1 edges do
       v = deleteMin();
       Add v to T via uv s.t. u is in T
       For each neighbor w of v do
           if W(vw) > key[w] then DecreaseKey(w)
       end
   end
end
```

# Algorithm Using a Heap

- The algorithm is called as Prim's algorithm.
- Runtime easy to analyze;
  - Each vertex deleted once from the heap. Each DeleteMin() takes O(log n) time. So, this accounts for a time of O(nlog n).
  - Each edge may result in one call to DecreaseKey(). Over m edges, this accounts for a time of O(mlog n).
  - Total time = O((n+m)log n).