2023~2024 学年度上期高中 2021 级入学联考 理科数学参考答案及评分标准

一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1	2	3	4	5	6	7	8	9	10	11	12
D	В	A	С	A	С	В	D	В	D	С	A

_	植穴邸.	木 野 廿 4 小 野	. 每小题 5 分.	# 20 🗘
— `)	4 TV TV 7 + 1 1 TV	. TST (1) 正火) // .	** /\/ // o

15.
$$\frac{\sqrt{3}}{2(\pi-\sqrt{3})}$$

16.
$$\left[\frac{2\pi}{3}, \frac{4\pi}{3}\right]$$

------4 分

三、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。

17. (12分)

解: (1) 设 $\{a_n\}$ 的首项为 a_1 ,

若 $3a_2$, $2a_3$, a_4 成等差数列,

$$\text{ If } 3a_2 + a_4 = 4a_3 \text{ , } \text{ If } 3a_2 + a_2q^2 = 4a_2q \text{ , }$$

化简可得 $q^2 - 4q + 3 = 0$,

 $\mathbb{Z} : a_{n+1} > a_n$,

解得
$$q = 3$$
或 $q = 1$ (舍去),

(2) 设数列 $\{a_n + n\}$ 的前 n 项和为 S_n ,

則
$$S_n = 3^0 + 1 + 3^1 + 2 + 3^2 + 3 + \dots + 3^{n-1} + n$$

$$= 3^0 + 3^1 + 3^2 + \dots + 3^{n-1} + 1 + 2 + 3 + \dots + n$$

$$= \frac{1 \times (1 - 3^n)}{1 - 3} + \frac{n \cdot (1 + n)}{2}$$

$$= \frac{3^n}{2} + \frac{n^2 + n - 1}{2} = \frac{3^n + n^2 + n - 1}{2}.$$
12 分

18. (12分)

解: (1) 连接 AC 交 BD 于点 E,

由题设可知
$$\angle ABD = \frac{\pi}{6}$$
 , $\angle BAC = \frac{\pi}{3}$,

 $:: BD \perp PC$, 又因为 $AC \cap BD = E$, AC, $PC \subset$ 平面 PAC,

 $\mathsf{V}: AD \cap BD = D, AD, BD \subset \mathfrak{P}$ 面 ABCD,

(2) 由 (1) 知 PA 上底面 ABCD,

分别以AB, AD, AP为x, v, z轴建立如图所示的空间直角坐标系,

易知 A(0,0,0) , $B(\sqrt{3},0,0)$, $C(\sqrt{3},3,0)$, D(0,1,0) , $P(0,0,\sqrt{3})$,

$$\vec{DB} = (\sqrt{3}, -1, 0), \quad \overrightarrow{DP} = (0, -1, \sqrt{3}),$$

-----8 分

设平面 PDB 的法向量为 $m = (x_1, y_1, z_1)$,

$$\vec{BC} = (0,3,0), \quad \overrightarrow{BP} = (-\sqrt{3},0,\sqrt{3}),$$

又平面 APB 的法向量为 \overrightarrow{AD} = (0,1,0),

·····10 5

$$\therefore \cos \langle m, \overline{AD} \rangle = \frac{m \cdot \overline{AD}}{|m| |\overline{AD}|} = \frac{\sqrt{3}}{\sqrt{5} \times 1} = \frac{\sqrt{15}}{5},$$

由图可知二面角A-PB-D的平面角为锐角,

∴二面角
$$A-PB-D$$
 的余弦值为 $\frac{\sqrt{15}}{5}$.

·····12 分

19. (12分)

解: (1) 设这100人当天体育锻炼时间的平均数为 \bar{x} ;

- (2) 由题知"运动达人"有 $100 \times 0.25 = 25$ 人,入样比为0.2,
 - ::抽取的5人中有4人位于[40,50), 1人位于[50,60),

.....5 分

- :. 从 5 人随机选取 2 人共有 $C_5^2 = 10$ 个基本事件,
- 2人均来自[40,50] 共有 $C_4^2 = 6$ 个基本事件,

.....7 分

设这2人均来自[40,50]为事件A,

$$\therefore P(A) = \frac{3}{5};$$

------8分

(3) 根据已知条件, 2×2列联表如下:

	非"运动达人"	"运动达人"	合计
男性	30	15	45
女性	45	10	55
合计	75	25	100

.....10 分

根据2×2列联表中的数据有

20. (12分)

		② $\stackrel{\text{def}}{=} -a - 2 < 0$, $\mathbb{P} a > -2 \mathbb{P} f$, $g'(0) = -a - 2 < 0$,	
		又因为 $g'(3+a) = (3+a)e^{(3+a)} - a - 2\cos(3+a) \ge (3+a) - a - 2\cos(3+a)$	(3+a)>0,
		所以存在 $x_0 \in (0,3+a)$, 使得 $g'(x_0) = 0$,	
		所以 $g(x)$ 在区间 $(0,x_0)$ 上为减函数,且 $g(x) < g(0) = 0$,与题设	不符,11 分
		综上所述,实数 a 的取值范围为 $(-\infty, -2]$.	12 分
22.	(10	分)	
解:	(1)	曲线 C 的极坐标方程可化为 $2\rho^2 \sin^2 \theta + 3\rho \cos \theta = 3$,	2 分
		又因为 $x = \rho \cos \theta$, $y = \rho \sin \theta$,	
		代入极坐标方程得 $2y^2 + 3x = 3$;	5 分
	(2)	将直线 l 的参数方程 $\begin{cases} x = \frac{\sqrt{3}}{2}t + m \\ y = \frac{t}{2} \end{cases}$ 代入 $2y^2 + 3x = 3$,	
		得关于参数 t 的方程 $\frac{t^2}{2} + \frac{3\sqrt{3}}{2}t + 3m - 3 = 0$,若 l 与 C 有公共点,判	别式Δ≥0,8 分
		即 $(\frac{3\sqrt{3}}{2})^2 - 4 \times \frac{1}{2}(3m-3) \geqslant 0$,解得 $m \leqslant \frac{17}{8}$.	10 分
23.	(10	分)	
解:	(1)	由题知, 当 $m=2$ 时, 原不等式即 $ x+1 + x-2 \le 5$,	1分
		当 $x \le -1$ 时,不等式为 $-x-1-x+2 \le 5$,解得 $-2 \le x \le -1$;	2 分
		当-1< x <2时,不等式为 x +1- x +2≤5,恒成立;	3 分
		当 $x \ge 2$ 时,不等式为 $x+1+x-2 \le 5$,解得 $2 \le x \le 3$,	4 分
		综上,不等式 $f(x) \leq 5$ 的解集为 $\{x \mid -2 \leq x \leq 3\}$;	5 分
	(2)	依题意 $f(x) > -m$,即 $ x+1 + x-m > -m$ 恒成立,	6 分
		又因为 $ x+1 + x-m \ge x+1-x+m = 1+m $,	
		当且仅当 $(x+1)(x-m) \leq 0$ 时不等式取等号,即 $f(x)_{min} = 1+m $,	8分
		所以 $ 1+m >-m$,解得 $m>-\frac{1}{2}$.	10 分

解析:

1. D

由复数模的定义得 $|z| = \sqrt{3^2 + (\sqrt{3})^2} = 2\sqrt{3}$,选 D.

2. B

因为 $A \cup B = \{x \mid x > -1\}$,所以 $\mathbb{C}_{U}(A \cup B) = \{x \mid x \leqslant -1\}$,选 B.

3. A

因为 $a = \ln 0.9 < \ln 1 = 0$,而 $0 < 2^{-0.1} < 2^{0}$,所以0 < c < 1,所以a < c < b,选A.

4. C

由斜率的定义有 $\tan \theta = 2$,所以 $\sin 2\theta = \frac{2\sin\theta\cos\theta}{\sin^2\theta + \cos^2\theta} = \frac{2\tan\theta}{\tan^2\theta + 1} = \frac{4}{5}$,选 C.

5. A

函数 f(x) 的定义域为 **R** ,由题知 f(x) 是定义域在 **R** 上的偶函数,所以 f(-x) = f(x) 即 $(-x+a)(2^{-x}-2^x) = (x+a)(2^x-2^{-x})$,化简得 a=0 ,选 A.

6. C

因为 $(x-1)(x+2)^5 = (x-1)\sum_{k=0}^5 C_5^k x^{5-k} \times 2^k = \dots + x C_5^3 x^2 \times 2^3 - C_5^2 x^3 \times 2^2 + \dots$

所以含有 x^3 的项为 $xC_5^3x^2 \times 2^3 - C_5^2x^3 \times 2^2 = 80x^3 - 40x^3 = 40x^3$, 选C.

7. B

正三棱锥的底面边长均相等,所以侧面均为等腰直角三角形,

即三条侧棱两两垂直,所以侧棱长为 $\sqrt{3}$,

所以体积 $V = \frac{1}{3} \times (\frac{1}{2} \times \sqrt{3} \times \sqrt{3}) \times \sqrt{3} = \frac{\sqrt{3}}{2}$, 选 B.

8. D

方程 $x^2 - 2x + y^2 = 2$ 可化为 $(x-1)^2 + y^2 = 3$,则圆心 C 为 C(1,0) ,半径为 $\sqrt{3}$,

因为
$$|PC| = \sqrt{1^2 + (\sqrt{3})^2} = 2$$
,在 $\triangle PAC$ 中, $\angle PAC = \frac{\pi}{2}$, $AC = \sqrt{3}$,

所以 $\angle APC = \frac{\pi}{3}$, 所以 $\angle APB = 2\angle APC = \frac{2\pi}{3}$, 选 D.

9. B

当 $k \le 0$ 时,f(x)在区间(l,e)上是减函数(不符合题意);

当
$$k > 0$$
 时, $f'(x) = ke^x - \frac{1}{x} \ge 0$, 即 $\frac{1}{k} \le xe^x$,

所以 $g(x) = xe^x$ 在区间 (1,e) 上是增函数, $\frac{1}{k} \leqslant g(x)_{min} = g(1) = e$,

所以 $k \ge \frac{1}{\epsilon}$, 选B.

10. D

分别作 AD , BC 的中点 G , H , 连接 GH , FH ,

过点F作AB的垂线FI, 垂足为I,

因为FB = FC,所以 $FH \perp BC$,所以 $FH = \sqrt{5}$,

根据对称性易得 $\triangle FBC \cong \triangle EAD$,

所以
$$S_{\triangle FBC} = \frac{1}{2}BC \times FH = \frac{1}{2} \times 4 \times \sqrt{5} = 2\sqrt{5}$$
,

在Rt $\triangle FBI$ 中, $FI = \sqrt{FB^2 - BI^2} = \sqrt{5}$,

$$S_{ ilde{Hilbert}EEAB} = rac{1}{2}(EF+AB) imes FI = rac{1}{2} imes (4+8) imes \sqrt{5} = 6\sqrt{5}$$
 ,

$$ot Z S_{\text{MFH},ABCD} = AB \times BC = 32$$

所以
$$S_{FE-ABCD}=2S_{\triangle FBC}+2S_{\#形 FEAB}+S_{矩形 ABCD}=32+16\sqrt{5}$$
,选 D.

11. C

抛物线的焦点 F 为 $(\frac{1}{2},0)$,由重心的性质有 $x_A + x_B + x_C = 3x_F = \frac{3}{2}$,

又由抛物线的定义知 $|FA|=x_A+\frac{1}{2}$,同理可得 $|FA|+|FB|+|FC|=x_A+x_B+x_C+\frac{3}{2}=3x_F+\frac{3}{2}$,

又因为 $x_F = \frac{1}{2}$,所以|FA| + |FB| + |FC| = 3,选 C.

12. A

设 A , B 的对边分别为 a , b , 由余弦定理有 $AB^2 = a^2 + b^2 - ab$,

又因为
$$2\overrightarrow{PC} = \overrightarrow{PA} + \overrightarrow{PB}$$
,所以 $4\overrightarrow{PC}^2 = a^2 + b^2 + ab$,即 $PC^2 = \frac{1}{4}a^2 + \frac{1}{4}b^2 + \frac{1}{4}ab$,

所以
$$\left(\frac{PC}{AB}\right)^2 = \frac{1}{4} \times \frac{a^2 + b^2 + ab}{a^2 + b^2 - ab}$$
, $\diamondsuit \frac{b}{a} = t$, $t \in (0, +\infty)$,

则
$$\left(\frac{PC}{AB}\right)^2 = \frac{1}{4} \times \frac{t^2 + t + 1}{t^2 - t + 1} = \frac{1}{4} \times \left(1 + \frac{2t}{t^2 - t + 1}\right) = \frac{1}{4} \times \left(1 + \frac{2}{t + \frac{1}{t} - 1}\right)$$
 , 因为 $t + \frac{1}{t} \ge 2$,

所以
$$(\frac{PC}{AB})^2 \in (\frac{1}{4}, \frac{3}{4}]$$
,所以 $\frac{PC}{AB} \in (\frac{1}{2}, \frac{\sqrt{3}}{2}]$,选 A.

13. 4

因为
$$a+b=(4,0)$$
,所以 $a\cdot(a+b)=(1,-\sqrt{2})\cdot(4,0)=4$.

14. 3

因为
$$\sqrt{3} = \frac{b}{a} = \sqrt{m}$$
,所以解得 $m = 3$.

15.
$$\frac{\sqrt{3}}{2(\pi-\sqrt{3})}$$

设等边 $\triangle ABC$ 的边长为a,则 $S_{\triangle ABC} = \frac{\sqrt{3}}{4}a^2$,

 $\triangle ABC$ 对应的勒洛三角形的面积为 $\frac{1}{2}\pi a^2 - \frac{\sqrt{3}}{2}a^2 = \frac{1}{2}a^2(\pi - \sqrt{3})$,

所以取自 $\triangle ABC$ 及其内部的概率为 $\frac{\sqrt{3}}{2(\pi-\sqrt{3})}$.

16. $\left[\frac{2\pi}{3}, \frac{4\pi}{3}\right]$

由辅助角公式得 $f(x) = 2\sin(x - \frac{\pi}{3})$,

$$\Rightarrow 2\sin(x-\frac{\pi}{3}) = -1$$
, $\mathbb{R}^2 + 2k\pi \neq x = \frac{\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$,

令
$$2\sin(x-\frac{\pi}{3})=2$$
,解得 $x=\frac{5\pi}{6}+2k\pi$, $k \in \mathbb{Z}$,

结合图象可知
$$m = \frac{\pi}{6} + 2k\pi$$
 , $k \in \mathbb{Z}$, 同时 $n \in [\frac{5\pi}{6} + 2k\pi, -\frac{\pi}{2} + (2k+2)\pi]$, $k \in \mathbb{Z}$,

所以
$$n-m \in \left[\frac{2\pi}{3}, \frac{4\pi}{3}\right]$$
.