Routing, Addressing, BGP

CS 168 - Fall 2022 - Discussion 5

Agenda

- L2 Routing
- Addressing
- BGP

Recall...

- What makes a routing state valid?
- For <u>every</u> destination:
 - If all paths to that destination have:
 - No dead-ends (except destination)
 - No loops
- Then the state is valid

Learning Switches

A's routing table

What if the dest is not found?

DEST OUTGOING LINK

D 3
B 2

I don't

care

Learning Switches

We also learn where

What if the dest is not found?

– Flood!

• In a spanning tree, this

won't cause loops

A's routing table

DEST	OUTGOING LINK
D	3
В	2
H1	?

Learning Switches

We also learn where

What if the dest is not found?

– Flood!

• In a spanning tree, this

won't cause loops

A's routing table

DEST	OUTGOING LINK
D	3
В	2
H1	1

Learning Switch: Pseudocode

When a learning switch receives a packet:

Look up the DEST in the switch table

```
if entry found for destination {
   if dest on link from which packet arrived
      then drop packet
   else forward packet on link indicated
}
```

7

Learning Switch: Pseudocode

When a learning switch receives a packet:

```
if dest not in switch_table:
    flood(packet)

link = switch_table[dest]
if link == incoming_link:
    drop(packet)
else:
    forward(packet, link)
```

Worksheet: Q1

Spanning Trees

- One way to solve loops:
 - Use a topology that doesn't have any!
- Spanning Tree

 Used by Ethernet networks (L2) which don't require much scalability like L3 does

• Goal:

To make this network...

• Goal:

- Algorithm in two parts:
 - 1. Pick a root (by lowest address)
 - 2. Compute shortest paths to that root
 - Only keep the links on the shortest paths
 - Break ties by neighbor with smaller address

- 1. Each router sends a message to its neighbors
 - (I think 4 is the root. My distance to 4 is 0. I am 4.)
 - Root, Distance, Src
- 2. When routers receive a message, they update their current knowledge of the root and distance to it.
 - If 4 receives (3, 0, 3):
 - It will now think (**3** is the root. My distance is **1**. I am **4**.)
- 3. Repeat until everyone agrees.

- Now the links form a spanning tree...
- And we can deploy our learning switches and flood!

Worksheet: Q2

Requirements of Addressing

- Scalable Routing
 - Minimize state exchange needed to create paths
- Efficient Forwarding
 - Small forwarding tables
 - Fast lookups
- Host must be able to recognize packet is for them
 - An end-to-end check on routing
 - L3: IP addresses (dynamically assigned)

IP Address

- 32 bits (for IPv4), split into 4 bytes, written in decimal
- Network prefix: /<bits>
 - Size of network address, counting from the leftmost bit
 - Example: 1.2.3.0/23

Network prefixes (netmasks)

- Prefix dedicated to network address
- How can we tell if a host is in a network?
 - Check if the prefix matches!
 - (bitwise AND: addr & mask == mask)

Mask: 123.96.0.0/12

01111011 . **0110**0000 . 00000000 . 00000000

Addr: 123.100.42.6

01111011 . 01100100 . 00101010 . 00000110

Classful Addressing

- Network classes: A (/8): first 8 bits devoted to network • First bit is fixed to **0**. first byte from 1 to 126 (0 and 127 are reserved) Can have ~16M hosts, only 2^7-2 = 126 nets. Host bits **Network bits** O****** ****** ****** B (/10). Ills to bits devoted to network (first byte from 128 to 191) First two bits are fixed to 10 • Can have ~65K hosts, ~16K nets Host bits **Network bits** ***** 24). mst 24 bits devoted to necessity (first byte from 192 to 223) First three bits are fixed to 110 Can have only 254 hosts (255 is reserved for last byte) ~2M nets **Network bits** ****** Host bits Why is this a bad idea?
 - Very limited choices lead to waste of addresses

Classless Inter-Domain Routing (CIDR)

- Use two 32-bit numbers to represent a network
 - Network address = IP Address bitwise AND Subnet Mask
 - IP Address is 192.138.12.2
 - Subnet Mask is 255.248.0.0

```
network address 192.136.0.0/13
```

```
IP Address 1100 0000 . 1000 1010 . 0000 1100 . 0000 0010 Subnet Mask 1111 1111 . 1111 1000 . 0000 0000 . 0000 0000
```

- Flexible division of bits:
 - More choices for the size of the network and hosts
- Offers better size routing table and efficient IP address space

Prefixes

- Easy to Add New Hosts
 - New host (5.6.7.213)
 - Forwarding table doesn't need to be updated!

Worksheet: Q3

Interdomain Routing

- Interdomain routing is between autonomous systems (AS)
 - Similar goals as intradomain routing with scalability + policy compliance
 - Autonomous systems want privacy and autonomy
- Border gateway protocol (BGP) is current design
 - Extends on top of DV (with some crucial differences)

- If you are an AS:
 - Route Selection
 - Where you send your packets
 - Determine how to choose a valid route to a given IP prefix, when multiple paths through ASes
 - Route Export
 - Which ASes will receive your route
 - Other ASes will select your route and send traffic to you

Types of ASes (domains)

- **Stub**: only sends/receives traffic for its users
 - companies, universities, etc.
- **Transit**: carries traffic for other ASes
 - Global ISPs (Tier 1): fully connected mesh
 - Regional ISPs (Tier 2)
 - Local ISPs (Tier 3)
- Lower tiers buy service from higher tiers
- What's the relationship between AS and ISP?
 - All ISPs are ASes, but not all ASes are ISPs
 - E.g. UC Berkeley is not an ISP but it is an AS

Business Relationship among ASes

- Two ASes will connect only if they have business relationship:
 - Customer-Provider
 - Provider B carries customer A's traffic for a fee
 - Peers
 - Peers A, B carry each other's traffic for free
- What roles can a global ISP (Tier 1) have?
 - Provider to Tier 2 or Tier 3
 - Peer to other global ISP (tier 1)
 - Not a customer!

Business Relationship Restrictions

- The graph of **peering** relations can be *cyclic*
 - The peer of my peer can also be my peer
 - For example, global ISPs all peer with each other
- The graph of **customer-provider** relations must be **acyclic**

Worksheet: Q4

Question 3

Question 3

