Econometrics 710 Final Exam May 13, 2004

1. Take the model

$$y_i = x_i'\beta + e_i$$
$$E(x_ie_i) = 0$$

The parameter of interest is $\theta = \beta_1 \beta_2$, where β_1 and β_2 are the first and second elements of β . Show how to construct a confidence interval for θ using the following three methods.

- (a) Asymptotic Theory
- (b) Percentile Bootstrap
- (c) Equal-Tailed Percentile-t Bootstrap.

(Your answer should be specific, not general.)

2. Take the model

$$y_i = x_i'\beta + e_i$$
$$E(e_i \mid x_i) = 0$$

Let $\hat{\beta}$ denote the OLS estimator for β based on an available sample.

- (a) Suppose that the *i*'th observation is in the sample only if $x_{1i} > 0$, where x_{1i} is an element of x_i .
 - i. Is $\hat{\beta}$ consistent for β ?
 - ii. If not, can you obtain an expression for its probability limit? (For this, you may assume that e_i is independent of x_i and $N(0, \sigma^2)$.)
- (b) Suppose that the *i*'th observation is in the sample only if $y_i > 0$.
 - i. Is $\hat{\beta}$ consistent for β ?
 - ii. If not, can you obtain an expression for its probability limit? (For this, you may assume that e_i is independent of x_i and $N(0, \sigma^2)$.)
- 3. Let Y_i be iid, $\mu = EY_i > 0$, and $\theta = \mu^{-1}$. Let $\hat{\mu} = \overline{Y}_n$ be the sample mean and $\hat{\theta} = \hat{\mu}^{-1}$.
 - (a) Is $\hat{\theta}$ unbiased for θ ?
 - (b) If $\hat{\theta}$ is biased, can you determine the direction of the bias $E\hat{\theta} \theta$ (up or down)?
 - (c) Obtain an approximation to the bias using a second-order Taylor series.
 - (d) Could the nonparametric bootstrap be used to estimate the bias? If so, explain how.

4. Consider the just-identified model

$$y_i = z'_{1i}\beta_1 + z'_{2i}\beta_2 + e_i$$

$$E(x_ie_i) = 0$$

where $z_i = (z'_{1i} \ z'_{2i})'$ and x_i are $k \times 1$. The hypothesis of interest is

$$H_0:\beta_1=0$$

Three econometricians are called to advise on how to test H_0 .

- Econometrician 1 proposes testing H_0 by a Wald statistic.
- Econometrician 2 suggests testing H_0 by the GMM Distance Statistic.
- Econometrician 3 suggests testing H_0 using the test of overidentifying restrictions.

You are asked to settle this dispute. Explain the advantages and/or disadvantages of the different procedures, in this specific context.

5. The model is

$$y_i = z_i'\beta + e_i$$

$$E(x_ie_i) = 0$$

An economist wants to obtain the 2SLS estimates and standard errors for β . He uses the following steps

- (a) Regresses z_i on x_i , obtains the predicted values \hat{z}_i .
- (b) Regresses y_i on \hat{z}_i , obtains the coefficient estimate $\hat{\beta}$ and standard error $s(\hat{\beta})$ from this regression.

Is this correct? Does this produce the 2SLS estimates and standard errors?

- 6. Let T_n be a test statistic such that under H_0 , $T_n \to_d \chi_3^2$. Since $P(\chi_3^2 > 7.815) = .05$, an asymptotic 5% test of H_0 rejects when $T_n > 7.815$. An econometrician is interested in the Type I error of this test when n = 100 and the data structure is well specified. She performs the following Monte Carlo experiment.
 - (a) B = 200 samples of size n = 100 are generated from a distribution satisfying H_0 .
 - (b) On each sample, the test statistic T_{nb} is calculated.
 - (c) She calculates $\hat{p} = \frac{1}{B} \sum_{b=1}^{B} 1 (T_{nb} > 7.815) = 0.070$
 - (d) The econometrician concludes that the test T_n is oversized in this context it rejects too frequently under H_0 .

Is her conclusion correct, incorrect, or incomplete? Be specific in your answer.