## #11 קומבינטוריקה – תרגול

G-ש נאמר שה . $\{u,v\}\in E$  עבור  $f(u)\neq f(v)$ כך כך  $f\colon V o [k]$  כן היא פונ' במקרה או במערה של גרף ב-k. המינימלי הצביעה מס' את את  $\chi(G)$ -ב ונסמן המינימלי.

## דוגמאות:

$$E = \emptyset \Leftrightarrow \chi(G) = 1$$
 (1)

. גרף דו"צ לא ריק 
$$\chi(G)=2$$
 (2)

$$\chi(C_n) = \begin{cases} \chi(C) = 2 \\ \chi(G) = 2 \end{cases}$$
 אריק.  $\chi(C_n) = \begin{cases} 2, & n \equiv_2 0 \\ 3, & n \equiv_2 1 \end{cases}$  (3)

$$\chi(K_n) = n$$
 (4)

G-ב אודל הגדול הגרף השלם את גודל תת  $\omega(G)$ -ב סימון: נסמן

 $\omega(G)=3$  דוגמא:



 $\chi(G) \geq \omega(G) G$  טענה: בכל גרף

.1- גדל ב-1  $\omega=2$  ו- $\chi$  גדל ב-1 בניה אינדוקטיבית של גרפים כך שבכל אחד מהגרפים אין משולשים. כלומר, בניה אינדוקטיבית של גרפים כך

בעים.  $\omega(G)$  אבעים לפחות את כל הגרף עצטרך צבעים אבעים שבעים  $\omega(G)$  אבעים המקס' דרושים שבעים. את כל הגרף את את הוכחה:

n=2 הבסיס

$$G_1$$
  $\phi$   $\omega = 2$ 

 $: \chi = 3, \omega = 2$  נרצה גרף שבו

$$G_2 = C_5$$

$$y = 2. \qquad \omega = 2$$

באופן באופן כללי בהינתן  $G_n$  בונים כללי בהינתן באופן

$$V(G_n) = \{v_1, \dots, v_k\}$$

$$V(G_{n+1}) = \{v_1, \dots, v_k, u_1, \dots, u_k, x\}$$

 $\{v_i,v_j\}\in$  אם ורק אם  $\{v_i,u_j\}\in E(G_{n+1})$ , ומכאן.  $u_i$ - אחד מה- את מחברים את מחברים את מציירים את מציירים את  $\{v_i,u_j\}\in E(G_{n+1})$  $G_2 = C_5$  את ניקה את . $G_3$  את בננה את . $E(G_n)$ 



לאחר שצובעים להשתמש בלפחות 4 צבעים, וא נשאר צבע פנוי לx מתוך 3 מתוך 3 צבעים, ויש לאחר א נשאר את  $u_i$  את הוקי את לאחר שצובעים באופן חוקי את נשאר צבע פנוי ל  $\chi = 4$  צביעה ב-4 צבעים, ולכן

הוכיחו: |V|=n גרף ויהי  $\bar{G}$  המשלים של G. נסמן G גרף ויהי

- $\chi(G)\chi(\bar{G}) \ge n \text{ (N)}$   $\chi(G) + \chi(\bar{G}) \le n+1 \text{ (2)}$

יהיו:  $K_n=G\cup ar{G}$  מתקיים מתקיים  $\chi(G)\chi(ar{G})$ ב. יהיו: ל-(א): כיוון ש- $\chi(K_n)=n$ , נראה שניתן לצבוע את

$$G$$
 של מינימלית צביעה צביעה  $f:V(G) o [\chi(G)] = [k]$ 

$$ar{G}$$
 של של מינימלית צביעה צביעה  $-ar{f}\colon V(ar{G}) o [\chi(ar{G})]=[m]$ 

 $g(v) \neq g(v) \neq \bar{f}(v) \neq \bar{f}(u)$ אז בגלל ש- $e \in E(\bar{G})$ , אזרת,  $g(v) \neq g(u)$  מתקיים מתקיים ל $f(v) \neq f(u)$  אז בגלל ש-E(G).g(u)

 $\chi(G) + \chi(\bar{G}) = 1 + 1 \le n + 1$ , וכן  $G = \bar{G} = (\{\cdot\}, \emptyset)$  אז n = 1, אז האינדוקציה על  $n = 1 + 1 \le n$  וכן בסיס האינדוקציה, n = 1, אז עבור |v| בוריד קדקוד כלשהו עבור |v|. נניח שהטענה נכונה עבור |v| ונוכיח עבור |v| בתון גרף |v| כך ש-1.

$$\chi(G \setminus \{v\}) + \chi(\overline{G \setminus \{v\}}) \le n + 1, \ \overline{G \setminus \{v\}} = \overline{G} \setminus \{v\}$$

$$\chi(G \setminus \{v\}) + \chi(\overline{G \setminus \{v\}}) \le n + 2$$

עם את יש צבע את אז כשמחזירים את .  $\deg_G(v)<\chi(G\setminus\{v\})$  אם אם . אם . אם אחזירים את יש צבע שלא . אחרת:  $\chi(G\setminus\{v\})+\chi(\overline{G\setminus\{v\}})=n+1$  אם בעים, ואז: השתמשנו בו ונוכל לצבוע בו את v ולקבל צביעה חוקית של v ב- $\chi(G\setminus\{v\})$  צבעים, ואז:

$$\chi(G) + \chi(\bar{G}) = \chi(G \setminus \{v\}) + \chi(\bar{G}) \le n + 2$$

$$n = \deg_G(v) + \deg_{\bar{G}}(v) \ge n + 1$$

וקיבלנו סתירה.

 $|E| \geq {k \choose 2}$ , אז  $\chi(G) = k$  ומתקיים G = (V, E) אז הוכיחו שאם

פתרון: בהינתן צביעה מינימלית ב-k צבעים, מחלקים את V ל-k קבוצות. מהנתון, בין כל שתי קב' צריכה להיות לפחות צלע אחת, כי אחרת היינו יכולים לצבוע את שתי הקב' באותו הצבע ולהקטין את מס' הצביעה. יש  $\binom{k}{2}$  אפשרויות לבחור זוגות של קב' שיש ביניהן לפחות צלע אחת, ולכן  $\binom{k}{2}$  .