第12回 多変量正規分布(7.3-7.4)

村澤 康友

2022年11月11日

今日のポイント

6 畳み込み (p. 150)

			7 今日のキーワード	5
	1 変量から多変量に正規分布を拡張する. 多変量正規分布の線形変換は正規分布.		8 次回までの準備 !	5
۷.	したがって周辺分布も正規分布.多変量		1 (二万)	
	正規分布では独立 ⇔ 無相関. また条件	:	1 行列	
	つき分布も正規分布.		1.1 行列とベクトル	
3.	正規分布にしたがう独立な確率変数の和	ı	定義 1. $m \times n$ 行列は	
	は正規分布(再生性).		$\begin{bmatrix} a_{1,1} & \dots & a_{1,n} \end{bmatrix}$	
			$m{A} := egin{bmatrix} a_{1,1} & \dots & a_{1,n} \ dots & & dots \ a_{m,1} & \dots & a_{m,n} \end{bmatrix}$	
目次			$\begin{bmatrix} a_{m,1} & \dots & a_{m,n} \end{bmatrix}$	
1	行列	1	注 1. $oldsymbol{A} := [a_{i,j}]$ とも書く.	
1.1	行列とベクトル	1	定義 2. $1 \times n$ 行列を $(n$ 次元) 行ベクトルという.	
1.2	ベクトルの内積	1	라보 o : : : : : : : : : : : : : : : : : : 	
1.3	行列の演算	1	定義 3. $n \times 1$ 行列を (n 次元) 列ベクトルという。	
1.4	行列と連立 1 次方程式	2	1.2 ベクトルの内積	
2	行列式と逆行列	2	$oldsymbol{x},oldsymbol{y}$ を n 次元列ベクトルとする.	
2.1	正方行列	2	定義 $4.x$ と y の内積は	
2.2	一	2	-	
2.3	逆行列	2	$(oldsymbol{x},oldsymbol{y}) := \sum_{i=1}^n x_i y_i$	
3	確率ベクトル	2	注 2. $x \cdot y$, $x'y$ とも書く.	
4	多変量正規分布	3	1.3 行列の演算	
4.1	確率密度関数(p. 147)	3	$oldsymbol{A}, oldsymbol{B}$ を行列とする.	
4.2	積率	3	ウギド … 、、、 行列 A D の夕 (: :) 成分について	_
5	タ亦早工担心左の州姫	2	定義 5. $m \times n$ 行列 A, B の各 (i, j) 成分について $a_{i,j} = b_{i,j}$ なら $A \ge B$ は 等しい という.	•
5.1	多変量正規分布の性質 線形変換	3	$u_{i,j} = u_{i,j}$ as $\mathbf{A} \subset \mathbf{D}$ (a $\mathbf{G} \cup \mathbf{U} \cap C \vee \cdot \mathcal{I}$).	
5.2	独立と無相関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ა 3	定義 $6.$ $m \times n$ 行列 \mathbf{A}, \mathbf{B} の和は	
5.3	条件つき分布	5	$\boldsymbol{A} + \boldsymbol{B} := [a_{i,j} + b_{i,j}]$	

定義 7. スカラー α と A のスカラー積は

$$\alpha \mathbf{A} := [\alpha a_{i,j}]$$

定義 8. $l \times m$ 行列 A と $m \times n$ 行列 B の積は

$$AB := [(a_{i,.}, b_{.,j})]$$

注 3. 一般に $AB \neq BA$. そもそも $l \neq n$ ならBA は定義できない.

定義 9. A の転置は

$$A' := [a_{j,i}]$$

1.4 行列と連立1次方程式

n 個の未知変数 x_1, \ldots, x_n をもつ m 本の連立 1 次方程式は

$$a_{1,1}x_1 + \dots + a_{1,n}x_n = b_1$$

$$\vdots$$

$$a_{m,1}x_1 + \dots + a_{m,n}x_n = b_m$$

次の行列・ベクトルを定義する.

$$oldsymbol{A} := egin{bmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{bmatrix}, \quad oldsymbol{x} := egin{bmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 $oldsymbol{b} := egin{bmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$

連立1次方程式は

$$Ax = b$$

2 行列式と逆行列

2.1 正方行列

定義 10. $n \times n$ 行列を n 次正方行列という.

定義 11. (n次)単位行列は

$$I_n := \begin{bmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{bmatrix}$$

2.2 行列式

A を n 次正方行列とする.

定義 12. Α の行列式は

$$\det(\mathbf{A}) := \sum_{p(.) \in P} \operatorname{sgn}(p(.)) a_{1,p(1)} \dots a_{n,p(n)}$$

ただしPは $\{1,\ldots,n\}$ のすべての置換の集合.

例 1.
$$n=2$$
 なら $P=\{(1,2),(2,1)\}$ より

$$\det(\mathbf{A}) = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}$$

2元連立1次方程式は

$$a_{1,1}x_1 + a_{1,2}x_2 = b_1$$
$$a_{2,1}x_1 + a_{2,2}x_2 = b_2$$

または

$$Ax = b$$

 x_1 を消去すると

$$(a_{1,2}a_{2,1} - a_{1,1}a_{2,2})x_2 = a_{2,1}b_1 - a_{1,1}b_2$$

x2 を消去すると

$$(a_{1,1}a_{2,2} - a_{1,2}a_{2,1})x_1 = a_{2,2}b_1 - a_{1,2}b_2$$

したがって解の存在の必要十分条件は $\det(\mathbf{A}) \neq 0$.

2.3 逆行列

定義 13. $AB = BA = I_n$ となる B を A の逆行列という.

注 4. A の逆行列を A^{-1} と書く.

注 5. 連立 1 次方程式 Ax = b の解は $x = A^{-1}b$.

練習 1. n=2 なら

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} a_{2,2} & -a_{1,2} \\ -a_{2,1} & a_{1,1} \end{bmatrix}$$

となることを確かめなさい.

3 確率ベクトル

x を n 次元確率ベクトルとする.

定義 14. x の平均ベクトルは

$$E(\boldsymbol{x}) := \begin{pmatrix} E(x_1) \\ \vdots \\ E(x_n) \end{pmatrix}$$

定義 15.x の分散共分散行列は

$$var(\boldsymbol{x}) := E((\boldsymbol{x} - E(\boldsymbol{x}))(\boldsymbol{x} - E(\boldsymbol{x}))')$$

注 6. $var(\boldsymbol{x})$ の (i,j) 成分は $cov(x_i,x_j)$.

4 多変量正規分布

4.1 確率密度関数 (p. 147)

多変量解析では太字の大文字で行列,太字の小文字でベクトル,細字の小文字でスカラーを表し,確率変数とその実現値の表記を区別しない.

定義 16. n 変量正規分布の同時 pdf は,任意の $x \in \mathbb{R}^n$ について

$$f(\boldsymbol{x}) := (2\pi)^{-n/2} \det(\boldsymbol{\Sigma})^{-1/2}$$
$$\exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$

ただし Σ は対称行列.

注 7. $N(\mu, \Sigma)$ と書く.

注 8. n=2 なら

$$m{x} := egin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad m{\mu} := egin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \quad m{\Sigma} := egin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{bmatrix}$$

行列式と逆行列は

$$\begin{split} \det(\boldsymbol{\Sigma}) &= \sigma_1^2 \sigma_2^2 - \sigma_{12}^2 \\ \boldsymbol{\Sigma}^{-1} &= \frac{1}{\sigma_1^2 \sigma_2^2 - \sigma_{12}^2} \begin{bmatrix} \sigma_2^2 & -\sigma_{12} \\ -\sigma_{12} & \sigma_1^2 \end{bmatrix} \end{split}$$

指数部は楕円の方程式.

定義 17. $N(\mathbf{0}, \mathbf{I}_n)$ を n 変量標準正規分布という.

例 2. 2 変量正規分布の同時 pdf (3D グラフ・等高線) と 2 変量正規乱数の散布図は図 1 の通り.

4.2 積率

定理 1. $\mathrm{N}(\pmb{\mu},\pmb{\Sigma})$ の mgf は、任意の $\pmb{t}\in\mathbb{R}^n$ について

$$M(t) = \exp\left(\mu' t + \frac{t' \Sigma t}{2}\right)$$

証明. 省略.

定理 2. $x \sim N(\mu, \Sigma)$ なら

$$\mathrm{E}(oldsymbol{x}) = oldsymbol{\mu} \ \mathrm{var}(oldsymbol{x}) = oldsymbol{\Sigma}$$

 \Box

証明. mgf を用いるのが簡単.

5 多変量正規分布の性質

5.1 線形変換

定理 3. $x \sim N(\mu, \Sigma)$ なら

$$Ax + b \sim N(A\mu + b, A\Sigma A')$$

証明. Ax + b の mgf は

$$\begin{aligned} &M_{Ax+b}(t) \\ &:= \mathbb{E}\left(e^{t'(Ax+b)}\right) \\ &= \mathbb{E}\left(e^{t'Ax}\right)e^{t'b} \\ &= M_x(A't)e^{b't} \\ &= \exp\left(\mu'(A't) + \frac{(A't)'\Sigma(A't)}{2}\right)e^{b't} \\ &= \exp\left((A\mu + b)'t + \frac{t'(A\Sigma A')t}{2}\right) \end{aligned}$$

これば $N(oldsymbol{A}oldsymbol{\mu} + oldsymbol{b}, oldsymbol{A}oldsymbol{\Sigma}oldsymbol{A}')$ の mgf.

系 1. $x \sim N(\mu, \Sigma)$ なら i = 1, ..., n について

$$x_i \sim N\left(\mu_i, \sigma_i^2\right)$$

証明. 前定理において

$$\mathbf{A} := (1, 0, \dots, 0)$$
$$\mathbf{b} := 0$$

などとすればよい.

5.2 独立と無相関

定理 4. $x \sim N(\mu, \Sigma)$ なら

 x_1, \ldots, x_n は独立 \iff x_1, \ldots, x_n は無相関

図 1 2 変量正規分布の同時 pdf (3D グラフ・等高線) と 2 変量正規乱数の散布図

証明. " \Longrightarrow " すでに見た(正規分布でなくても成立). " \Longleftrightarrow " 無相関なので Σ は対角. したがって

$$\det(\boldsymbol{\Sigma}) = \sigma_1^2 \cdots \sigma_n^2$$

$$\boldsymbol{\Sigma}^{-1} = \begin{bmatrix} 1/\sigma_1^2 & 0 \\ & \ddots & \\ 0 & & 1/\sigma_n^2 \end{bmatrix}$$

同時 pdf に代入すると、任意の $x \in \mathbb{R}^n$ について $f(x) := (2\pi)^{-n/2} \det(\Sigma)^{-1/2}$ $\exp\left(-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right)$ $= (2\pi)^{-n/2} \left(\sigma_1^2 \cdots \sigma_n^2\right)^{-1/2}$ $\exp\left(-\frac{1}{2}\sum_{i=1}^n \frac{(x_i - \mu_i)^2}{\sigma_i^2}\right)$ $= (2\pi)^{-1/2} \left(\sigma_1^2\right)^{-1/2} \exp\left(-\frac{(x_1 - \mu_1)^2}{2\sigma_1^2}\right) \cdots$ $(2\pi)^{-1/2} \left(\sigma_n^2\right)^{-1/2} \exp\left(-\frac{(x_n - \mu_n)^2}{2\sigma_n^2}\right)$ $= f_1(x_1) \cdots f_n(x_n)$

ただし $f_1(.), \ldots, f_n(.)$ は x_1, \ldots, x_n の周辺 pdf.

5.3 条件つき分布

定理 5.
$$({m x}_1',{m x}_2')' \sim {
m N}({m \mu},{m \Sigma})$$
 なら

$$oldsymbol{x}_1 | oldsymbol{x}_2 \sim \mathrm{N}\left(oldsymbol{\mu}_{1|2}, oldsymbol{\Sigma}_{11|2}
ight)$$

ただし

$$egin{aligned} m{\mu}_{1|2} &:= m{\mu}_1 + m{\Sigma}_{12}m{\Sigma}_{22}^{-1}(m{x}_2 - m{\mu}_2) \ m{\Sigma}_{11|2} &:= m{\Sigma}_{11} - m{\Sigma}_{12}m{\Sigma}_{22}^{-1}m{\Sigma}_{21} \end{aligned}$$

証明. 条件つき pdf の定義より

$$f_{1|2}(\boldsymbol{x}_1|\boldsymbol{x}_2) := \frac{f_{1,2}(\boldsymbol{x}_1,\boldsymbol{x}_2)}{f_{2}(\boldsymbol{x}_2)}$$

これをひたすら計算する(かなり面倒).

6 畳み込み (p. 150)

定義 18. 独立な確率変数の和の分布を求めること を**畳み込み**という.

注 9. 畳み込みは mgf を用いるのが簡単. X と Y が独立なら

$$M_{X+Y}(t) := \mathbf{E}\left(\mathbf{e}^{t(X+Y)}\right)$$
$$= \mathbf{E}\left(\mathbf{e}^{tX}\right) \mathbf{E}\left(\mathbf{e}^{tY}\right)$$
$$= M_X(t)M_Y(t)$$

定義 19. 畳み込んでも分布の型が変わらない性質 を**再生性**という.

例 3. 成功確率が等しい 2 項分布,ポアソン分布, 正規分布.

定理 6. $X \sim N(\mu_X, \sigma_X^2), Y \sim N(\mu_Y, \sigma_Y^2)$ が独立なら

$$X + Y \sim N\left(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2\right)$$

証明. X + Y の mgf は

$$\begin{aligned} &M_{X+Y}(t) \\ &= M_X(t)M_Y(t) \\ &= \exp\left(\mu_X t + \frac{\sigma_X^2 t^2}{2}\right) \exp\left(\mu_Y t + \frac{\sigma_Y^2 t^2}{2}\right) \\ &= \exp\left((\mu_X + \mu_Y)t + \frac{(\sigma_X^2 + \sigma_Y^2) t^2}{2}\right) \end{aligned}$$

これは N $(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$ の mgf.

7 今日のキーワード

n 変量正規分布, n 変量標準正規分布, 平均ベクトル, 分散共分散行列, 正規分布の性質 (線形変換, 周辺分布, 独立と無相関, 条件つき分布), 畳み込み, 再生性 (2 項分布, ポアソン分布, 正規分布)

8 次回までの準備

復習 教科書第7章3-4節,復習テスト12 **予習** 教科書第8章