Well-Log Based Determination of Rock Porosity Through Machine Learning Algorithms

Sharifullina Ramilya Elizaveta Gladchenko Ilya Nachinkin

Porosity

$$\phi = rac{V_p}{V_b}$$
 = volume of pores = bulk (matrix) volume

Classical approaches:

- CT scan
- laboratory tests

Logging - the process of recording and analyzing measurements collected discretely or continuously in a wellbore.

The group of porosity logs includes:

- density log
- neutron log
- sonic log

The main contributions of this project

- performance of several standard machine learning models while solving the task of well-log interpretation was observed
- peculiar properties of the task such as problems with real data, feature importance, adaptation of the model to the data from different wells were investigated
- supervised machine learning algorithms (FNN, RNN) were implemented
- comparison of the results obtained by neural networks and standard machine learning algorithms was performed

Research Object

As an input we have <u>4 wells</u>: 169, 170, 171, 183

Features:

- gamma ray log
- resistivity log
- caliper
- sonic log (s-wave + p-wave)
- neutron log
- density log

Machine Learning algorithms

- 1) Linear Regression
- 2) kNN (weights: 'distance', n neighbors: 3)
- 3) Random Forest (n_estimators: 10,
 max_features:'sqrt', max_depth: None,
 bootstrap: False)
- 4) XGBoost (max depth: 3, booster: 'dart')
- 5) FNN (3-layer NN with 3 hidden layers)
- 6) RNN (1-layer LSTM mode with hidden_size = 30

ML ALGORITHM	RMSE	MAE	\mathbb{R}^2
LINEAR REGRESSION	0.0122	0.0102	0.9024
K-NN	0.0183	0.0128	0.7795
RANDOM FOREST	0.0113	0.0079	0.9152
XGBOOST	0.0094	0.0061	0.9413
FNN	0.0207	0.0156	0.7162
RNN	0.0092	0.0068	0.9454

Accuracy metrics

- RMSE root mean squared error
- MAE mean accuracy error
- R² coefficient of determination

$$\begin{split} RMSE &= \sqrt{\frac{\sum_{i=1}^N, \left(\phi_i^t - \phi_i^p\right)^2}{N}}, \\ MAE &= \frac{\sum_{i=1}^N |\phi_i^p - \phi_i^t|^2}{N}, \\ R^2 &= 1 - \frac{\sigma_{y|x}^2}{\sigma_y^2}, \end{split}$$

XGBoost for test wells

RNN for test wells

XGBoost for test wells

Proved itself as the algorithm with the best performance on other wells

WELL	RMSE	MAE	\mathbb{R}^2
169	0.0211	0.01702	0.7393
171	0.02047	0.0173	0.3923
183	0.0290	0.0223	0.5510

RNN for test wells

WELL	RMSE	MAE	R^2
169	0.1308	0.1117	-9.0226
170	0.0092	0.0068	0.9454

Feature importance

The most important features **density**, **neutron and sonic logs**

Results without Feature Engineering

ML ALGORITHM	RMSE	MAE	\mathbb{R}^2
LINEAR REGRESSION	0.0122	0.0102	0.9024
K-NN	0.0183	0.0128	0.7795
RANDOM FOREST	0.0113	0.0079	0.9152
XGBOOST	0.0094	0.0061	0.9413
FNN	0.0207	0.0156	0.7162
RNN	0.0092	0.0068	0.9454

Results with Feature Engineering

ML ALGORITHM	RMSE	MAE	\mathbb{R}^2
LINEAR REGRESSION	0.0127	0.0100	0.8933
K-NN	0.0183	0.0128	0.7796
RANDOM FOREST	0.0103	0.0063	0.9303
XGBOOST	0.0089	0.0061	0.9477
FNN	0.0285	0.0255	0.4630
RNN	0.0098	0.0066	0.9372

New feature for regression models: the difference between values (1 m ago)
New features for time-series model: rolling mean and standard deviation
(window size of 1 m), and the difference between values on rolling window's borders, lagged basic features (1 m), standard deviation of original series of depth intervals of 1 m

Conclusions

- using machine-learning algorithms is more straightforward comparing to classical approaches
- it does not need any extra procedures and equipment
- it is more robust compared to laboratory-based approaches
- it does not require upscaling procedure