Efficient State Estimation of Discrete-Timed Automata

International Conference on Formal Engineering Methods

December 4, 2024

Julian Klein, Paul Kogel, Sabine Glesner

Introduction: State Estimation

State estimation: which state could currently be active?

Introduction: State Estimation

State estimation: which state could currently be active?

Introduction: State Estimation

State estimation: which state could currently be active?

- Applications in safety, security, fault diagnosis, ...
- Timed models required to model real-world systems
- → State estimation for discrete-timed automata (TA)

Literature

Continuous time model: state estimation is undecidable (Baier et al. 2009)

Discrete time model: existing approaches consider

- Weighted automata (Lai et al. 2020, Li et al. 2021)
- Automata over monoids (Zhang 2022)
- Max-plus automata (Lai et al. 2019)
- Tick automata (Klein et al. 2024)

Finite automata (FA)

Literature

Continuous time model: state estimation is undecidable (Baier et al. 2009)

Discrete time model: existing approaches consider

- Weighted automata (Lai et al. 2020, Li et al. 2021)
- Automata over monoids (Zhang 2022)
- Max-plus automata (Lai et al. 2019)
- Tick automata (Klein et al. 2024)

Finite automata (FA)

Problem

- Discrete states always considered individually
- State estimation generally scales exponential with the number of states
- → Limited scalability for realistic systems

Problem Statement

Goal:

Efficient state estimation method for (discrete) timed automata

Key idea:

- Group states in equivalence classes (when possible)
- → Evaluate only one representative state for each class

Background

System

Assume u is unobservable and o is observable

q₁ u, [1, 2] q₂ o, [2, 2], R

System

Estimator

FA-Based State Estimation

• ... allows a transformation from TA to FA (Gruber et al. 2005, Klein et al. 2024)

FA-Based State Estimation

- ... allows a transformation from TA to FA (Gruber et al. 2005, Klein et al. 2024)
- → enables standard state estimation methods like subset construction (Noord 2000)

FA-Based State Estimation

- ... allows a transformation from TA to FA (Gruber et al. 2005, Klein et al. 2024)
- → enables standard state estimation methods like subset construction (Noord 2000)

Our New Method

Stepwise State Estimation

Possible solution: evaluate every single time step

Problem: inefficient...

Stepwise State Estimation

- Possible solution: evaluate every single time step
- Problem: inefficient...

collect all possible target states for every state for every time step...

Threshold Estimation

- **Observation**: TA-transitions span **multiple** time instances
- **Hope**: enabled transitions for **subsequent** time steps are similar

Threshold Estimation

Two cases:

- Clock gets reset
- Clock does not get reset

Threshold Estimation

Both kinds of transitions can be easily modeled by a clock
 Reintroduction of a clock in the estimator model

Threshold Values

- Each transition is enabled in **intervals**
- Transitions within intervals are similar

Threshold Values

- Each transition is enabled in **intervals**
- Transitions within intervals are similar

Threshold Estimators

- Compute threshold values for each location
- Use threshold values in an adapted subset construction
- → Result: Threshold Estimator (TE)

Evaluation

Evaluation: Test Setup

Evaluation: Case Studies

- Prototype implementation publicly available¹
- Evaluation on 11 case studies from the literature

System	AKM	TCP	SCTP	PC	CAS	SCHED	OVEN	HVAC	WSN	WSNET	MED
Number of locations	4	11	41	8	8	23	89	11	63	25	8
Number of transitions	18	19	155	24	17	28	179	41	185	50	9
Largest constant	2500	240	1000	10	27000	15	5000	2000	3 · 10⁵	30	10
Source	Vaandrager et al. 2023	Postel et al. 1981	Stewart 2007	Aichernig et al. 2020	Aichernig et al 2013	An et al. 2021	Kogel et al. 2023	Taylor et al. 2021	Kogel et al. 2023	Klein et al. 2024	Klein et al. 2024

https://gitlab.com/julianklein/threshold-estimation

Evaluation: Computation Time Results

Threshold estimation outperforms FA-based estimation on most systems

System	Threshold Estimation	FA-based Estimation	Improvement		
AKM	42.57ms	43.83ms	2.86%		
TCP	16.25ms	16.36ms	0.65%		
SCTP	0.66s	1.76ms	62.11%		
PC	0.22ms	3.27ms	92.99%		
CAS	4.50s	6.43s	29.96%		
SCHED	0.34ms	4.29ms	91.98%		
OVEN	1.77ms	1.51s	99.88%		
HVAC	6.25s	36.92s	83.06%		
WSN	11.94s	-	-		
WSNET	7.81ms	10.57ms	26.08%		
MED	0.25ms	0.32ms	22.55%		

Conclusion

Summary

- Efficient state estimation method for discrete-timed automata
- Key idea: only evaluate threshold values
- Significant reduction in computation time compared to traditional FA-based methods

Future Work

- Adapt state-based opacity to our discrete-time setting
- → Unified opacity verification method based on TE

References (1/2)

- [1] Lai, A., Lahaye, S., Giua, A.: Verification of detectability for unambiguous weighted automata. IEEE Transactions on Automatic Control (2020). https://doi.org/10.1109/TAC.2020.2995173
- [2] Li, J., Lefebvre, D., Hadjicostis, C.N., Li, Z.: Observers for a class of timed automata based on elapsed time graphs. IEEE Transactions on Automatic Control (2021). https://doi.org/10.1109/TAC.2021.3064542
- [3] Zhang, K.: Detectability of labeled weighted automata over monoids. Discrete Event Dynamic Systems (2022). https://doi.org/10.1007/s10626-022-00362-8
- [4] Lai, A., Lahaye, S., Giua, A.: State estimation of max-plus automata with unobservable events. Automatica (2019). https://doi.org/10.1016/j.automatica.2019.03.003
- **[5]** Gruber, H., Holzer, M., Kiehn, A., König, B.: On timed automata with discrete time structural and language theoretical characterization. In: International Conference On Developments In Language Theory. Springer (2005). https://doi.org/10.1007/11505877 24
- **[6]** Klein, J., Kogel, P., Glesner, S.: Verifying opacity of discrete-timed automata. In: International Conference on Formal Methods in Software Engineering. Association for Computing Machinery (2024). https://doi.org/10.1145/3644033.3644376
- [7] Noord, G.v.: Treatment of epsilon moves in subset construction. Computational Linguistics (2000). https://doi.org/10.1162/089120100561638
- [8] Vaandrager, F., Ebrahimi, M., Bloem, R.: Learning mealy machines with one timer. Information and Computation (2023). https://doi.org/10.1016/j.ic.2023.105013

References (2/2)

- [9] Postel, J.: Transmission Control Protocol. RFC 793 (Sep 1981). https://doi.org/10.17487/RFC0793, https://www.rfc-editor.org/info/rfc793
- [10] Stewart, R.: Stream control transmission protocol. Tech. rep. (2007)
- [11] Aichernig, B.K., Pferscher, A., Tappler, M.: From passive to active: Learning timed automata efficiently. In: NASA Formal Methods. Springer (2020). https://doi.org/10.1007/978-3-030-55754-6 1
- [12] Aichernig, B.K., Lorber, F., Ničković, D.: Time for mutants model-based mutation testing with timed automata. In: Veanes, M., Viganò, L. (eds.) Tests and Proofs. pp. 20–38. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)
- [13] An, J., Zhan, B., Zhan, N., Zhang, M.: Learning nondeterministic real-time automata. ACM Trans. Embed. Comput. Syst. (2021). https://doi.org/10.1145/3477030
- [14] Kogel, P., Klös, V., Glesner, S.: Learning mealy machines with local timers. In: International Conference on Formal Engineering Methods. Springer (2023). https://doi.org/10.1007/978-981-99-7584-6
- [15] Taylor, J.T., Taylor, W.T.: Patterns in the Machine. Springer (2021)
- **[16]** Baier, C., Bertrand, N., Bouyer, P., & Brihaye, T. When are timed automata determinizable?. In Automata, Languages and Programming. Springer (2009). https://doi.org/10.1007/978-3-642-02930-1 4

TITLE

Region Abstraction

Threshold estimation outperforms FA-based estimation on most systems

System	Threshold Estimation	FA-based Estimation	Improvement
AKM	18.51s	32.53s	43.11%
TCP	0.18s	0.29s	38.13%
SCTP	21.62s	-	-
PC	0.21ms	3.43ms	93.73%
CAS	-	-	-
SCHED	0.30ms	4.12ms	92.71%
OVEN	1.09ms	11.51s	99.99%
HVAC	16.70s	-	-
WSN	-	-	-
WSNET	13.05ms	28.16ms	53.65%
MED	0.85ms	3.68ms	76.81%

Test Setup

0-10	0-10
11-20	11-20
21-30	21-30
31-40	31-40
41-50	41-50
51-60	51-60
61-70	61-70
71-80	71-80
81-90	81-90
91-100	91-100