AAA616: Program Analysis

Introduction to Program Analysis

Hakjoo Oh 2019 Fall

Static Program Analysis

A general method for automatic and sound approximation of sw run-time behaviors before the execution

- "before": statically, without running sw
- "automatic": sw analyzes sw
- "sound": all possibilities into account
- "approximation": cannot be exact
- "general": for any source language and property
 - ► C, C++, C#, F#, Java, JavaScript, ML, Scala, Python, JVM, Dalvik, x86, Excel, etc
 - buffer-overrun?", "memory leak?", "type errors?", "x = y at line 2?", "memory use $\leq 2K$?", etc

Program Analysis is Undecidable

Reasoning about program behavior involves the Halting Problem: e.g.,

if
$$\cdots$$
 then $x := 1$ else $(S; x := 2); y := x$

 $(S ext{ does not define } x.)$ What are the possible values of x at the last statement?

Alan Turing (1912-1954)

Side-Stepping Undecidability

Tradeoff between Precision and Scalability

The While Language

$$egin{array}{lll} a &
ightarrow & n \mid x \mid a_1 + a_2 \mid a_1 \star a_2 \mid a_1 - a_2 \ b &
ightarrow & {
m true} \mid {
m false} \mid a_1 = a_2 \mid a_1 \leq a_2 \mid \lnot b \mid b_1 \land b_2 \ c &
ightarrow & x := a \mid {
m skip} \mid c_1; c_2 \mid {
m if} \; b \; c_1 \; c_2 \mid {
m while} \; b \; c \end{array}$$

Example 1: Sign Analysis

Execute the program with abstract values (**POS**, **NEG**, 0, \top , \bot):

```
// a >= 0, b >= 0
int mod (int a, int b) {
  int q = 0;
  int r = a;
  while (r >= b) {
    r = r - b;
    q = q + 1;
  }
  return r;
}
```

Sign Domain

The complete lattice (**Sign**, \sqsubseteq):

The lattice is an abstraction of integers:

$$lpha_{\mathbb{Z}}:\wp(\mathbb{Z}) o \mathsf{Sign}, \qquad \gamma_{\mathbb{Z}}:\mathsf{Sign} o\wp(\mathbb{Z})$$

Abstract States

The complete lattice of abstract states ($\widehat{\mathbf{State}}, \sqsubseteq$):

$$\widehat{\mathsf{State}} = \mathit{Var} o \mathsf{Sign}$$

with the pointwise ordering:

$$\hat{s}_1 \sqsubseteq \hat{s}_2 \iff \forall x \in Var. \ \hat{s}_1(x) \sqsubseteq \hat{s}_2(x).$$

The least upper bound of $Y \subseteq \widehat{\mathsf{State}}$,

$$\bigsqcup Y = \lambda x. \bigsqcup_{\hat{s} \in Y} \hat{s}(x).$$

Lemma

Let S be a non-empty set and (D,\sqsubseteq) be a poset. Then, the poset $(S o D,\sqsubseteq)$ with the ordering

$$f_1 \sqsubseteq f_2 \iff \forall s \in S. \ f_1(s) \sqsubseteq f_2(s)$$

is a complete lattice (resp., CPO) if D is a complete lattice (resp., CPO).

Abstract States

The complete lattice of abstract states ($\widehat{\mathbf{State}}, \sqsubseteq$):

$$\widehat{\mathsf{State}} = \mathit{Var} o \mathsf{Sign}$$

with the pointwise ordering:

$$\hat{s}_1 \sqsubseteq \hat{s}_2 \iff \forall x \in Var. \ \hat{s}_1(x) \sqsubseteq \hat{s}_2(x).$$

The least upper bound of $Y \subseteq \widehat{\mathsf{State}}$,

$$\bigsqcup Y = \lambda x. \bigsqcup_{\hat{s} \in Y} \hat{s}(x).$$

$$\alpha:\wp(\mathsf{State}) \to \widehat{\mathsf{State}}$$

$$lpha(S) = \lambda x. \ \bigsqcup_{s \in S} lpha_{\mathbb{Z}}(\{s(x)\})$$

$$\gamma:\widehat{\mathsf{State}} o \wp(\mathsf{State})$$

$$\gamma(\hat{s}) = \{s \in \mathsf{State} \mid \forall x \in \mathit{Var.}\ s(x) \in \gamma_{\mathbb{Z}}(\hat{s}(x))\}$$

Abstract Booleans

The truth values $\mathbf{T} = \{true, false\}$ are abstracted by the complete lattice $(\widehat{\mathbf{T}}, \sqsubseteq)$:

The abstraction and concretization functions for the lattice:

$$\alpha_{\mathsf{T}}:\wp(\mathsf{T}) o \widehat{\mathsf{T}}, \qquad \gamma_{\mathsf{T}}:\widehat{\mathsf{T}} o \wp(\mathsf{T})$$

$$\begin{split} \widehat{\mathcal{A}}\llbracket a \rrbracket & : \quad \widehat{\mathsf{State}} \to \mathsf{Sign} \\ \widehat{\mathcal{A}}\llbracket n \rrbracket(\hat{s}) & = \quad \alpha_{\mathbb{Z}}(\{n\}) \\ \widehat{\mathcal{A}}\llbracket x \rrbracket(\hat{s}) & = \quad \hat{s}(x) \\ \widehat{\mathcal{A}}\llbracket a_1 + a_2 \rrbracket(\hat{s}) & = \quad \widehat{\mathcal{A}}\llbracket a_1 \rrbracket(\hat{s}) +_S \widehat{\mathcal{A}}\llbracket a_2 \rrbracket(\hat{s}) \\ \widehat{\mathcal{A}}\llbracket a_1 \star a_2 \rrbracket(\hat{s}) & = \quad \widehat{\mathcal{A}}\llbracket a_1 \rrbracket(\hat{s}) \star_S \widehat{\mathcal{A}}\llbracket a_2 \rrbracket(\hat{s}) \\ \widehat{\mathcal{A}}\llbracket a_1 - a_2 \rrbracket(\hat{s}) & = \quad \widehat{\mathcal{A}}\llbracket a_1 \rrbracket(\hat{s}) -_S \widehat{\mathcal{A}}\llbracket a_2 \rrbracket(\hat{s}) \end{split}$$

$+_S$	NONE	NEG	ZERO	POS	NON- POS	NON- ZERO	NON- NEG	ANY
NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE
NEG	NONE	NEG	NEG	ANY	NEG	ANY	ANY	ANY
ZERO	NONE	POS	ZERO	POS	NON- POS	NON- ZERO	NON- NEG	ANY
POS	NONE	ANY	POS	POS	ANY	ANY	POS	ANY
NON- POS	NONE	NEG	NON- POS	ANY	NON- POS	ANY	ANY	ANY
NON- ZERO	NONE	ANY	NON- ZERO	ANY	ANY	ANY	ANY	ANY
NON- NEG	NONE	ANY	NON- NEG	POS	ANY	ANY	NON- NEG	ANY
ANY	NONE	ANY	ANY	ANY	ANY	ANY	ANY	ANY

\star_S	NEG	ZERO	POS
NEG	POS	ZERO	NEG
ZERO	ZERO	ZERO	ZERO
POS	NEG	ZERO	POS

S	NEG	ZERO	POS
NEG	ANY	NEG	NEG
ZERO	POS	ZERO	NEG
POS	POS	POS	ANY

$$\begin{split} \widehat{\mathcal{B}}\llbracket b \rrbracket &: \widehat{\mathsf{State}} \to \widehat{\mathsf{T}} \\ \widehat{\mathcal{B}}\llbracket \mathsf{true} \rrbracket (\hat{s}) &= \mathsf{TT} \\ \widehat{\mathcal{B}}\llbracket \mathsf{false} \rrbracket (\hat{s}) &= \mathsf{FF} \\ \widehat{\mathcal{B}}\llbracket a_1 = a_2 \rrbracket (\hat{s}) &= \widehat{\mathcal{B}}\llbracket a_1 \rrbracket (\hat{s}) =_S \widehat{\mathcal{B}}\llbracket a_2 \rrbracket (\hat{s}) \\ \widehat{\mathcal{B}}\llbracket a_1 \leq a_2 \rrbracket (\hat{s}) &= \widehat{\mathcal{B}}\llbracket a_1 \rrbracket (\hat{s}) \leq_S \widehat{\mathcal{B}}\llbracket a_2 \rrbracket (\hat{s}) \\ \widehat{\mathcal{B}}\llbracket \neg b \rrbracket (\hat{s}) &= \neg_S \widehat{\mathcal{B}}\llbracket b \rrbracket (\hat{s}) \\ \widehat{\mathcal{B}}\llbracket b_1 \wedge b_2 \rrbracket (\hat{s}) &= \widehat{\mathcal{B}}\llbracket b_1 \rrbracket (\hat{s}) \wedge_S \widehat{\mathcal{B}}\llbracket b_2 \rrbracket (\hat{s}) \end{split}$$

$=_S$	NEG	ZERO	POS
NEG	ANY	FF	$\mathbf{F}\mathbf{F}$
ZERO	$\mathbf{F}\mathbf{F}$	TT	$\mathbf{F}\mathbf{F}$
POS	FF	FF	ANY

\leq_S	NEG	ZERO	POS
NEG	ANY	TT	TT
ZERO	FF	TT	TT
POS	FF	$\mathbf{F}\mathbf{F}$	ANY

\neg_T	
NONE	NONE
TT	FF
FF	TT
ANY	ANY

\wedge_T	NONE	TT	$\mathbf{F}\mathbf{F}$	ANY
NONE	NONE	NONE	NONE	NONE
TT	NONE	TT	FF	ANY
FF	NONE	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF
ANY	NONE	ANY	FF	ANY

$$\begin{split} \widehat{\mathcal{C}}[\![c]\!] &: \widehat{\text{State}} \to \widehat{\text{State}} \\ \widehat{\mathcal{C}}[\![x := a]\!] &= \lambda \hat{s}. \hat{s}[x \mapsto \widehat{\mathcal{A}}[\![a]\!](\hat{s})] \\ \widehat{\mathcal{C}}[\![\text{skip}]\!] &= \mathrm{id} \\ \widehat{\mathcal{C}}[\![c_1; c_2]\!] &= \widehat{\mathcal{C}}[\![c_2]\!] \circ \widehat{\mathcal{C}}[\![c_1]\!] \\ \widehat{\mathcal{C}}[\![\text{if } b \ c_1 \ c_2]\!] &= \widehat{\operatorname{cond}}(\widehat{\mathcal{B}}[\![b]\!], \widehat{\mathcal{C}}[\![c_1]\!], \widehat{\mathcal{C}}[\![c_2]\!]) \\ \widehat{\mathcal{C}}[\![\text{while } b \ c]\!] &= f\!\![ix \widehat{F} \\ \text{where } \widehat{F}(g) &= \widehat{\operatorname{cond}}(\widehat{\mathcal{B}}[\![b]\!], g \circ \widehat{\mathcal{C}}[\![c]\!], \mathrm{id}) \\ \\ \widehat{\operatorname{cond}}(f, g, h)(\hat{s}) &= \begin{cases} \bot & \cdots f(\hat{s}) = \mathrm{NONE} \\ f(\hat{s}) & \cdots f(\hat{s}) = \mathrm{TT} \\ g(\hat{s}) & \cdots f(\hat{s}) = \mathrm{FF} \\ f(\hat{s}) & \cup g(\hat{s}) & \cdots f(\hat{s}) = \mathrm{ANY} \end{cases} \end{split}$$

Example 2: Taint Analysis (Information Flow Analysis)

Can the information from the untrustworthy source be transferred to the sink?

```
x:=source(); ...; sink(y)
```

Applications to sw security:

- privacy leak
- SQL injection
- buffer overflow
- integer overflow
- XSS
- ...

Abstract Domain

• The complete lattice of the abstract values $(\widehat{\mathbf{T}}, \sqsubseteq)$:

$$\hat{T} = \{LOW, HIGH\}$$

with the ordering LOW \sqsubseteq HIGH, LOW \sqsubseteq LOW, and HIGH \sqsubseteq HIGH.

• The lattice of states:

$$\widehat{\mathsf{State}} = \mathit{Var} \to \widehat{\mathsf{T}}$$

$$\widehat{\mathcal{A}}\llbracket a \rrbracket : \widehat{\mathsf{State}} \to \widehat{\mathsf{T}}$$

$$\widehat{\mathcal{A}}\llbracket n \rrbracket (\hat{s}) = \begin{cases} \text{LOW} & \cdots n \text{ is public} \\ \text{HIGH} & \cdots n \text{ is private} \end{cases}$$

$$\widehat{\mathcal{A}}\llbracket x \rrbracket (\hat{s}) = \hat{s}(x)$$

$$\widehat{\mathcal{A}}\llbracket a_1 + a_2 \rrbracket (\hat{s}) = \widehat{\mathcal{A}}\llbracket a_1 \rrbracket (\hat{s}) \sqcup \widehat{\mathcal{A}}\llbracket a_2 \rrbracket (\hat{s})$$

$$\widehat{\mathcal{A}}\llbracket a_1 \star a_2 \rrbracket (\hat{s}) = \widehat{\mathcal{A}}\llbracket a_1 \rrbracket (\hat{s}) \sqcup \widehat{\mathcal{A}}\llbracket a_2 \rrbracket (\hat{s})$$

$$\widehat{\mathcal{A}}\llbracket a_1 - a_2 \rrbracket (\hat{s}) = \widehat{\mathcal{A}}\llbracket a_1 \rrbracket (\hat{s}) \sqcup \widehat{\mathcal{A}}\llbracket a_2 \rrbracket (\hat{s})$$

$$\widehat{\mathcal{B}}\llbracket b
Vert : \widehat{\mathsf{State}} o \widehat{\mathsf{T}}$$
 $\widehat{\mathcal{B}}\llbracket \mathsf{true}
Vert (\hat{s}) = \mathsf{LOW}$
 $\widehat{\mathcal{B}}\llbracket \mathsf{false}
Vert (\hat{s}) = \mathsf{LOW}$
 $\widehat{\mathcal{B}}\llbracket a_1 = a_2
Vert (\hat{s}) = \widehat{\mathcal{B}}\llbracket a_1
Vert (\hat{s}) \sqcup \widehat{\mathcal{B}}\llbracket a_2
Vert (\hat{s})$
 $\widehat{\mathcal{B}}\llbracket a_1 \leq a_2
Vert (\hat{s}) = \widehat{\mathcal{B}}\llbracket a_1
Vert (\hat{s}) \sqcup \widehat{\mathcal{B}}\llbracket a_2
Vert (\hat{s})$
 $\widehat{\mathcal{B}}\llbracket a_1 \leq a_2
Vert (\hat{s}) = \widehat{\mathcal{B}}\llbracket a_1
Vert (\hat{s}) \sqcup \widehat{\mathcal{B}}\llbracket a_2
Vert (\hat{s})$
 $\widehat{\mathcal{B}}\llbracket b_1 \wedge b_2
Vert (\hat{s}) = \widehat{\mathcal{B}}\llbracket b_1
Vert (\hat{s}) \sqcup \widehat{\mathcal{B}}\llbracket b_2
Vert (\hat{s})$

$$\begin{split} \widehat{\mathcal{C}}\llbracket c \rrbracket &: \widehat{\mathsf{State}} \to \widehat{\mathsf{State}} \\ \widehat{\mathcal{C}}\llbracket x := a \rrbracket &= \lambda \hat{s}. \hat{s}[x \mapsto \widehat{\mathcal{A}}\llbracket a \rrbracket(\hat{s})] \\ \widehat{\mathcal{C}}\llbracket \mathsf{skip} \rrbracket &= \mathsf{id} \\ \widehat{\mathcal{C}}\llbracket c_1; c_2 \rrbracket &= \widehat{\mathcal{C}}\llbracket c_2 \rrbracket \circ \widehat{\mathcal{C}}\llbracket c_1 \rrbracket \\ \widehat{\mathcal{C}}\llbracket \mathsf{if} \ b \ c_1 \ c_2 \rrbracket &= \lambda \hat{s}. \widehat{\mathcal{C}}\llbracket c_1 \rrbracket(\hat{s}) \sqcup \widehat{\mathcal{C}}\llbracket c_2 \rrbracket(\hat{s}) \\ \widehat{\mathcal{C}}\llbracket \mathsf{while} \ b \ c \rrbracket &= \mathit{fix} \widehat{F} \\ &\quad \mathsf{where} \ \widehat{F}(g) = \lambda \hat{s}. \hat{s} \sqcup (g \circ \widehat{\mathcal{C}}\llbracket c \rrbracket)(\hat{s}) \end{split}$$

Example 3: Interval Analysis

```
• x = 0;
 while (x < 10) {
   assert (x < 10);
   x++;
 assert (x == 10);
• x = 0;
 y = 0;
 while (x < 10) {
   assert (y < 10);
   x++; y++;
 assert (y == 10);
```

Example 3: Interval Analysis

Node	Result
1	$x \mapsto \bot$
1	$y \mapsto \bot$
2	$x\mapsto [0,0]$
4	$y\mapsto [0,0]$
3	$x\mapsto [0,9]$
J	$y\mapsto [0,+\infty]$
4	$x\mapsto [1,10]$
4	$y\mapsto [0,+\infty]$
5	$x\mapsto [1,10]$
J	$y\mapsto [1,+\infty]$
6	$x\mapsto [10,10]$
U	$y\mapsto [0,+\infty]$

Fixed Point Computation Does Not Terminate

Node	initial	1	2	3	10	11	k	∞
1	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$
	$y \mapsto \bot$	$y \mapsto \bot$	$y \mapsto \bot$	$y\mapsto \bot$	$y \mapsto \bot$	$y \mapsto \bot$	$y \mapsto \bot$	$y \mapsto \bot$
2	$x \mapsto \bot$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$
2	$y \mapsto \bot$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$
3	$x \mapsto \bot$	$x \mapsto [0,0]$	$x \mapsto [0,1]$	$x \mapsto [0, 2]$	$x \mapsto [0, 9]$	$x \mapsto [0, 9]$	$x \mapsto [0, 9]$	$x \mapsto [0,9]$
"	$y \mapsto \bot$	$y \mapsto [0,0]$	$y \mapsto [0,1]$	$y \mapsto [0, 2]$	$y \mapsto [0, 9]$	$y \mapsto [0, 10]$	$y \mapsto [0, k-1]$	$y \mapsto [0, +\infty]$
4	$x \mapsto \bot$	$x \mapsto [1,1]$	$x \mapsto [1, 2]$	$x \mapsto [1,3]$	$x \mapsto [1, 10]$			
-4	$y \mapsto \bot$	$y \mapsto [0,0]$	$y \mapsto [0,1]$	$y \mapsto [0, 2]$	$y \mapsto [0, 9]$	$y \mapsto [0, 10]$	$y \mapsto [0, k-1]$	$y \mapsto [0, +\infty]$
5	$x \mapsto \bot$	$x \mapsto [1,1]$	$x \mapsto [1, 2]$	$x \mapsto [1,3]$	$x \mapsto [1, 10]$			
	$y \mapsto \bot$	$y \mapsto [1, 1]$	$y \mapsto [1, 2]$	$y \mapsto [1, 3]$	$y \mapsto [1, 10]$	$y \mapsto [1, 11]$	$y \mapsto [1, k]$	$y \mapsto [1, +\infty]$
6	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \overline{\bot}$	$x \mapsto \bot$	$x \mapsto [10, 10]$			
"	$y \mapsto \bot$	$y \mapsto [0,0]$	$y \mapsto [0,1]$	$y \mapsto [0, 2]$	$y \mapsto [0, 9]$	$y \mapsto [0, 10]$	$y \mapsto [0, k-1]$	$ y \mapsto [0, +\infty] $

Fixed Point Computation with Widening and Narrowing

Node	initial	1	2	3
1	$x \mapsto \bot$	$x\mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$
1	$y\mapsto ot$	$y\mapsto ot$	$y\mapsto ot$	$y \mapsto \bot$
2	$x \mapsto \bot$	$x\mapsto [0,0]$	$x\mapsto [0,0]$	$x\mapsto [0,0]$
	$y\mapsto ot$	$y\mapsto [0,0]$	$y\mapsto [0,0]$	$y\mapsto [0,0]$
3	$x \mapsto \bot$	$x\mapsto [0,0]$	$x\mapsto [0,9]$	$x\mapsto [0,9]$
9	$y\mapsto ot$	$y\mapsto [0,0]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$
4	$x \mapsto \bot$	$x\mapsto [1,1]$	$x\mapsto [1,10]$	$x\mapsto [1,10]$
-1	$y\mapsto ot$	$y\mapsto [0,0]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$
5	$x\mapsto \bot$	$x\mapsto [1,1]$	$x\mapsto [1,10]$	$x\mapsto [1,10]$
	$y\mapsto ot$	$y\mapsto [1,1]$	$y\mapsto [1,+\infty]$	$y\mapsto [1,+\infty]$
6	$x \mapsto \bot$	$x\mapsto \bot$	$x\mapsto [10,+\infty]$	$x\mapsto [10,+\infty]$
"	$y\mapsto ot$	$y\mapsto [0,0]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$

Fixed Point Computation with Widening and Narrowing

Node	initial	1	2
1	$x\mapsto \bot$	$x\mapsto \bot$	$x\mapsto \bot$
	$y\mapsto ot$	$y\mapsto ot$	$y\mapsto ot$
2	$x\mapsto [0,0]$	$x\mapsto [0,0]$	$x\mapsto [0,0]$
	$y\mapsto [0,0]$	$y\mapsto [0,0]$	$y\mapsto [0,0]$
3	$x\mapsto [0,9]$	$x\mapsto [0,9]$	$x\mapsto [0,9]$
J 3	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$
4	$x\mapsto [1,10]$	$x\mapsto [1,10]$	$x\mapsto [1,10]$
	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$
5	$x\mapsto [1,10]$	$x\mapsto [1,10]$	$x\mapsto [1,10]$
J 3	$y\mapsto [1,+\infty]$	$y\mapsto [1,+\infty]$	$y\mapsto [1,+\infty]$
6	$x\mapsto [10,+\infty]$	$x\mapsto [10,10]$	$x\mapsto [10,10]$
0	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$

cf) Numerical Abstractions

(image from The Octagon Abstract Domain by Antonine Mine)

Interval vs. Octagon

```
i = 0;
p = 0;
Interval analysis
while (i < 12) {
    i = i + 1;
    p = p + 1;
}
assert(i==p)</pre>
Octagon analysis
```

i	[12,12]
р	[0,+00]

i	[12,12]
р	[12,12]
p-i	[0,0]
p+i	[24,24]