Número:

Nome:

Sistemas Digitais 2008/2009

Departamento de Informática, Universidade de Évora

1ª Frequência – Resolução parcial7 de Novembro de 2008

Observações

• Duração: 1h30m

• Cálculos: Nas respostas apresente todos os cálculos efectuados

• Identificação: Não se esqueça de identificar todas as folhas entregues

Grupo 1

1. Efectue as seguintes conversões:

(a)
$$10010001_{(2)}$$
 para decimal
$$1001.0001_{(2)} = 2^7 + 2^4 + 1 = 145_{(10)}$$

(b) A2B5₍₁₆₎ para octal
$$= 1010.0010.1011.0101_{(2)} = 1.010.001.010.110.101 = 121265_{(8)}$$

(c)
$$1000110011_{(2)}$$
 para hexadecimal
= $10.0011.0011_{(2)} = 233_{(16)}$

(d) 100100010111
$$_{(BCD)}$$
 para binário
$$1001.0001.0111_{(BCD)} = 917_{(10)} = 1110010101_{(2)}$$

2. Represente os seguintes números em código de complemento para 2 com 8 bits:

(a)
$$-38_{(10)}$$

 $38_{(10)} = 10.0110_{(2)}$
 $-38_{(10)} = 1101.1001 + 1 = 1101.1010_{(C2)}$

(b)
$$55_{(10)}$$
 $55_{(10)} = 0011.0111_{(C2)}$

3. Efectue as seguintes operações, apresentando os resultados na mesma base/código dos operadores:

(a)
$$110010_{(2)} - 100010_{(2)}$$

= $10000_{(2)}$

(b)
$$1BC5_{(16)} + 3FF_{(16)}$$

= $1FC4_{(16)}$

(c)
$$11100111_{(C2)} + 11110001_{(C2)}$$
 (complemento para 2 com 8 bits)
$$1110.0111_{(C2)} + 1111.0001_{(C2)} = 1101.1000_{(C2)}$$

Grupo 2

Considere o circuito representado pela figura seguinte.

1. Represente a função na forma canónica conjuntiva.

$$= (A+B+C+D)(A+B+C+\overline{D})(A+B+\overline{C}+D)(A+B+\overline{C}+\overline{D})$$

$$(A+\overline{B}+C+D)(A+\overline{B}+C+\overline{D})(A+\overline{B}+\overline{C}+D)$$

$$(\overline{A}+B+C+D)(\overline{A}+B+\overline{C}+D)(\overline{A}+\overline{B}+C+D)(\overline{A}+\overline{B}+C+\overline{D})$$

A	В	С	D	$B\overline{C}$	$\overline{A}B\overline{D}$	AD + B	$B\overline{C} + \overline{A}B\overline{D}$	F
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0
0	1	0	0	1	1	1	1	0
0	1	0	1	1	0	1	1	0
0	1	1	0	0	1	1	1	0
0	1	1	1	0	0	1	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	1	0	1
1	1	0	0	1	0	1	1	0
1	1	0	1	1	0	1	1	0
1	1	1	0	0	0	1	0	1
1	1	1	1	0	0	1	0	1

2. Qual a sua representação em simbologia decimal?

$$= \prod M(0-6,8,10,12,13)$$

$$=\sum m(7,9,11,14,15)$$

3. Implemente a função simplificada utilizando portas AND, OR e NOT.

Grupo 3

Considere a função $F(A,B,C,D)=A\ B\oplus (C+\overline{D})\oplus \overline{A}\ B\ \overline{C}.$

Através de mapas de Karnaugh, obtenha a expressão simplificada.
 Tabela de verdade:

A	В	С	D	AB	$C + \overline{D}$	$\overline{A}B\overline{C}$	F
0	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	0	1
0	1	0	0	0	1	1	0
0	1	0	1	0	0	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	1
1	0	0	0	0	1	0	1
1	0	0	1	0	0	0	0
1	0	1	0	0	1	0	1
1	0	1	1	0	1	0	1
1	1	0	0	1	1	0	0
1	1	0	1	1	0	0	1
1	1	1	0	1	1	0	0
1	1	1	1	1	1	0	0

- 2. Desenhe o logigrama correspondente, usando apenas portas NAND de 2 entradas.
- 3. Através o método de 'bridging' e utilizando a função G=A+D, implemente a função F. (Nota: só a solução...)

$$\begin{split} X &= \overline{A}C + B\overline{C}D \\ Y &= \overline{A}C + B\overline{C}D + \overline{B}\ \overline{D} + \overline{B}\ \overline{C} \end{split}$$

Grupo 4

Um sistema de aquecimento de águas quentes sanitárias possui três sensores (S1, S2, S3) de temperatura e duas válvulas (V1 e V2). O sensor S1 encontra-se colocado no painel solar, enquanto os sensores S2 e S3 se encontram no fundo e topo do depósito de água, respectivamente. A válvula V1 liga/desliga o circuito fechado (entre o painel e o depósito) para o aquecimento da água; a válvula V2 permite a passagem da água à saída do depósito pela caldeira antes da sua entrada no circuito de águas quentes.

A temperatura em S3 é sempre igual ou superior a S2. V1 é ligada sempre que a temperatura em S2 é baixa e S1 é alta e V2 é ligada quando S3 é baixa.

1. Apresente as tabelas de verdade de cada uma das funções.

S1	S2	S3	V1	V2
0	0	0	0	1
0	0	1	0	0
0	1	0	X	X
0	1	1	0	0
1	0	0	1	1
1	0	1	1	0
1	1	0	X	X
1	1	1	0	0

2. Utilizando mapas de Karnaugh, obtenha as expressões simplificadas na forma OR-AND. (Nota: só a solução...)

$$V1 = (S1 + S2)\overline{S2} = S1\overline{S2}$$
$$V2 = \overline{S3}$$

3. Desenhe o logigrama das funções.