Chapitre 1 : Les réels

I Préliminaires

- (1) Supposé connu : l'ensemble R qui contient Q, les opérations +, ×,...
- (2) Supposé connue : la relation d'ordre \leq sur \mathbb{R} qui constitue un ordre total.
 - La relation ≤ est compatible avec +, c'est-à-dire :

$$\forall (x_1, x_2, x_3, x_4) \in \mathbb{R}^4, (x_1 \le x_2 \text{ et } x_3 \le x_4) \Rightarrow (x_1 + x_3 \le x_2 + x_4)$$

Il en résulte que $\forall x \in \mathbb{R}$, $x \le 0 \Leftrightarrow -x \ge 0$:

Soit $x \in \mathbb{R}$.

Supposons $x \le 0$. Comme $-x \le -x$, on a: $x + (-x) \le 0 + (-x)$, soit $-x \ge 0$

Supposons $-x \ge 0$. Comme $x \le x$, on a: $x + (-x) \ge 0 + x$, soit $0 \ge x$

• La relation \leq n'est pas compatible avec \times , sauf restreinte à \mathbb{R}^+ :

$$\forall (x_1, x_2, x_3, x_4) \in \mathbb{R}^4_+, (x_1 \le x_2 \text{ et } x_3 \le x_4) \Rightarrow (x_1 \times x_3 \le x_2 \times x_4)$$

Il en résulte que $\forall (x_1, x_2) \in \mathbb{R}^2, \forall a \in \mathbb{R}^+, x_1 \le x_2 \Rightarrow ax_1 \le ax_2$:

Soit $(x_1, x_2) \in \mathbb{R}^2$, $a \in \mathbb{R}^+$.

Supposons $x_1 \le x_2$. Alors $0 \le x_2 - x_1$.

De plus, $0 \le a$. Donc $0 \times 0 \le a(x_2 - x_1)$, soit $ax_1 \le ax_2$.

- (3) Supposé connu : $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$
- (4) Théorème fondamental admis : théorème de la borne supérieure. Toute partie non vide majorée de \mathbb{R} admet une borne supérieure.

II Répartition des entiers et des rationnels dans R.

A) Partie entière d'un réel

Lemme:

Pour tout réel x, il existe $n \in \mathbb{N}$ tel que x < n

Démonstration :

Supposons qu'il existe $x \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}$, $x \ge n$. Alors \mathbb{N} est une partie non vide, majorée de \mathbb{R} donc \mathbb{N} admet une borne supérieure α (théorème fondamental). Alors $\alpha - 1$ étant strictement plus petit que α , il ne majore pas \mathbb{N} . Il existe donc $n \in \mathbb{N}$ tel que $\alpha - 1 < n$. Donc $\alpha < n + 1$, ce qui est contradictoire, puisque $n + 1 \in \mathbb{N}$.

Théorème et définition :

Soit $x \in \mathbb{R}$. Alors l'ensemble des éléments k de \mathbb{Z} tels que $k \le x$, c'est à dire l'ensemble $\mathcal{E} = \{k \in \mathbb{Z}, k \le x\}$, admet un plus grand élément. Ce plus grand élément est la partie entière de x, notée [x], E(x) ou |x|.

Démonstration :

Soit $x \in \mathbb{R}$, soit $\mathcal{E} = \{k \in \mathbb{Z}, k \le x\}$.

• ε est une partie de \mathbb{Z} .

- ε est non vide : selon le lemme, il existe $n \in \mathbb{N}$ tel que -x < n. Alors -n < x, donc $-n \in \varepsilon$.
- ε est majorée en tant que partie de \mathbb{Z} : selon le lemme, il existe $m \in \mathbb{N}$ tel que x < m. Alors $\forall k \in \varepsilon, k \le x < m$, donc m majore ε .

On retiendra:

- La partie entière de x est le plus grand des entiers inférieurs ou égaux à x.
- On a donc, pour tout $p \in \mathbb{Z}$: $p = [x] \Leftrightarrow p \le x$

Remarque : le lemme peut être oublié :

$$\forall x \in \mathbb{R}, x < [x] + 1$$

B) Répartition des rationnels dans R.

Théorème:

Entre deux réels distinct, il y a toujours un rationnel ou encore :

$$\forall (a,b) \in \mathbb{R}^2, (a < b \Rightarrow \exists r \in \mathbb{Q}, a < r < b)$$

Démonstration :

Soit $(a,b) \in \mathbb{R}^2$, supposons que a < b.

$$\begin{array}{ccc}
 & a & b \\
 & & \\
 & & \\
 & na & & nb
\end{array}$$

- On peut introduire $n \in \mathbb{N}^*$ tel que nb na > 1 (prendre par exemple $n = 1 + \left\lceil \frac{1}{b-a} \right\rceil$). Ainsi, $n > \frac{1}{b-a}$
- Comme nb-na>1, il existe $p \in \mathbb{Z}$ tel que na (par exemple <math>p = [na]+1, puisque $[na] \le na < \underbrace{[na]+1}_p \le na+1 < nb$)
- Ainsi, $a < \frac{p}{n} < b$, et $\frac{p}{n} \in \mathbb{Q}$

Conséquence:

Entre deux réels distincts, il y a une infinité de rationnels

Théorème:

Entre deux réels distincts, il y a toujours un irrationnel ou encore :

$$\forall (a,b) \in \mathbb{R}^2, (a < b \Rightarrow \exists x \in \mathbb{R} \setminus \mathbb{Q}, a < x < b)$$

Démonstration :

Soit $(a,b) \in \mathbb{R}^2$, supposons que a < b.

• Déjà, on introduit $(a',b') \in \mathbb{Q}^2$ tels que a < a' < b' < b

• On introduit ensuite $(\alpha, \beta) \in \mathbb{Q}^2$ avec $\alpha > 0$ tels que :

$$\begin{cases} \alpha + \beta = a' \\ 2\alpha + \beta = b' \end{cases}$$

(il en existe : $\alpha = b'-a'$ et $\beta = 2a'-b'$ conviennent)

• Alors, comme $1 < \sqrt{2} < 2$, on a :

$$\alpha + \beta < \alpha\sqrt{2} + \beta < 2\alpha + \beta$$
, soit $a' < \alpha\sqrt{2} + \beta < b'$. Or, $\alpha\sqrt{2} + \beta \notin \mathbb{Q}$

(Si
$$\alpha\sqrt{2} + \beta = M \in \mathbb{Q}$$
, alors $\sqrt{2} = \frac{M - \beta}{\alpha} \in \mathbb{Q}$)

Conséquence : entre deux réels distincts, il y a une infinité d'irrationnels.

III Le théorème de la borne supérieure

Rappel:

Soit A une partie de \mathbb{R} , l un réel. Dire que l est la borne supérieure de A, c'est dire que l est le plus petit majorant de A. Ou encore :

$$l = \sup(A) \Leftrightarrow \begin{cases} l \text{ est un majorant de } A \\ \text{et c'est le plus petit} \end{cases}$$

$$\Leftrightarrow \begin{cases} \forall x \in A, x \le l \\ \text{et } \forall z \in R, ((\forall x \in A, x \le z) \Rightarrow l \le z) \end{cases}$$

$$\Leftrightarrow \begin{cases} \forall x \in A, x \le l \\ \text{et } \forall z \in R, (z < l \Rightarrow \exists x \in A, z < x) \end{cases}$$

Exemples:

(1) Soit A = [0,1], montrons que 1 est la borne supérieure de A.

Déjà, $\forall x \in A, x \le 1$, donc 1 majore A.

Soit z < 1, montrons qu'alors z ne majore pas A.

- si
$$z \le 0$$
, z ne majore pas A, car par exemple $\frac{1}{2} \in A$ et $z < \frac{1}{2}$

- si z > 0, alors le réel $y = \frac{z+1}{2}$ est tel que 0 < z < y < 1. Donc $y \in A$ et z < y, donc z ne majore pas A.

Donc 1 est la borne supérieure de A.

(2) Soit $A = \left\{ \frac{1}{n}, n \in \mathbb{N}^* \right\}$, montrons que A admet 0 comme borne inférieure.

Déjà, 0 minore A.

0 est le plus grand minorant de A. En effet, soit a > 0. On peut alors introduire $n \in \mathbb{N}^*$

tel que
$$n > \frac{1}{a}$$
 (par exemple $n = \left\lceil \frac{1}{a} \right\rceil + 1$). Alors $\frac{1}{n} \in A$, et $\frac{1}{n} < a$. Donc a ne minore pas A .

Donc 0 est la borne inférieure de A.

Théorème :

Toute partie non vide minorée de R admet une borne inférieure.

Démonstration:

Soit A une partie de \mathbb{R} non vide. Supposons A minorée. Notons alors $B = \{-x, x \in A\}$. Alors : (1) B est majorée et (2) non vide. Donc B admet une borne supérieure I. (3) Donc -I est la borne inférieure de A. En effet :

- (1) Soit m un minorant de A. Donc $\forall x \in A, x \ge m$, donc $\forall x \in A, -x \le -m$. Comme $\forall x \in A, -x \in B$, $\forall x \in B, x \le -m$. Donc -m majore B.
- (2) Soit $a \in A$. Comme $A \subset \mathbb{R}$, -a existe, et, par définition de B, $-a \in B$. Donc B est non vide.

(3)
$$\begin{cases} \forall x \in B, x \le l \\ \text{et } \forall z \in R, (z < l \Rightarrow \exists x \in B, z < x) \end{cases} \Leftrightarrow \begin{cases} \forall x \in B, -l \le -x \\ \text{et } \forall z \in R, (-l < -z \Rightarrow \exists x \in B, -x < -z) \end{cases}$$

Remarque:

L'ensemble des majorants de $\mathbb R$ est \varnothing . \varnothing n'a pas de plus petit élément, donc $\mathbb R$ n'a pas de borne supérieure.

L'ensemble des majorants de \varnothing est \mathbb{R} . (puisque $\forall l \in \mathbb{R}, (\forall x \in \varnothing, x \leq l)$). \mathbb{R} n'a pas de plus petit élément, donc \varnothing n'a pas de borne supérieure.

Rappel:

Soit A une partie de \mathbb{R} . On suppose que A a une borne supérieure. Alors A admet un plus grand élément si et seulement si $\sup(A) \in A$. Dans ce cas, $\sup(A) = \max(A)$.

IV Valeur absolue

A) Généralités

Définition :

Soit
$$x \in \mathbb{R}$$
. $|x| = \max(-x, x) = \begin{cases} x \text{ si } x \ge 0 \\ -x \text{ si } x \le 0 \end{cases}$

Propriétés:

-
$$\forall x \in \mathbb{R}, |x| \in \mathbb{R}^+$$

-
$$\forall x \in \mathbb{R}, |x| = 0 \Leftrightarrow x = 0$$

$$- \forall (x, y) \in \mathbb{R}^2, |xy| = |x||y|$$

$$\forall (x, y) \in \mathbb{R}^2, |x + y| \le |x| + |y|$$

Démonstration des deux dernières propriétés :

* Si
$$x \ge 0, y \ge 0$$
, alors $xy \ge 0$, $|xy| = xy = |x||y|$

Si
$$x \ge 0, y \le 0$$
, alors $xy \le 0, |xy| = -xy = x(-y) = |x||y|$

Si
$$x \le 0, y \le 0$$
, alors $xy \ge 0$, $|xy| = xy = (-x)(-y) = |x||y|$

(vus les rôles symétriques, le dernier cas se ramène au deuxième)

* Si
$$x + y \ge 0$$
, $|x + y| = x + y \le |x| + |y|$ (car $|x| = \max(-x, x)$, donc $x \le |x|$)

Si
$$x + y \le 0$$
, $|x + y| = -(x + y) = -x - y \le |x| + |y|$ (idem, $-x \le |x|$)

Conséquences:

Pour tout
$$n \in \mathbb{N}^*$$
, $(x_1, x_2, ... x_n) \in \mathbb{R}^n$, $\left| \sum_{i=1}^n x_i \right| \le \sum_{i=1}^n |x_i|$

Pour tout $(x, y) \in \mathbb{R}^2$:

$$||x| - |y|| \le |x - y| \le |x| + |y|$$

Démonstration:

1^{ère} conséquence, par récurrence. Pour la 2^{ème} conséquence :

2^{ème} inégalité:

$$|x - y| = |x + (-y)| \le |x| + |-y| = |x| + |y|$$

1^{ère} inégalité :

$$|x| = |x - y + y| \le |x - y| + |y|$$

Donc
$$|x| - |y| \le |x - y|$$

De même,
$$|y| - |x| \le |x - y|$$
, c'est-à-dire $-(|x| - |y|) \le |x - y|$

On a donc deux inégalités de la forme :

$$-A \le B$$
, $A \le B$. Donc $\max(-A, A) \le B$. Donc $|A| \le B$.

D'où la deuxième inégalité.

B) Parties bornées de R: compléments

Soient $x, a \in \mathbb{R}$; on a l'équivalence $|x| \le a \Leftrightarrow -a \le x \le a$

Proposition:

soit A une partie de \mathbb{R} . Alors A est bornée si et seulement si il existe $m \in \mathbb{R}$ tel que $\forall x \in A, |x| \le m$

Démonstration:

Supposons qu'il existe $m \in \mathbb{R}$ tel que $\forall x \in A, |x| \le m$. Donc il existe $m \in \mathbb{R}^+$ tel que $\forall x \in A, -m \le x \le m$. Donc -m minore A et m majore A.

Supposons que A est bornée. Il existe donc $a,b \in \mathbb{R}$ tels que $\forall x \in A, a \le x \le b$. Posons $m = \max(|a|, |b|)$. Alors, pour tout x de A:

$$-m \le -|a| \le a \le x \le b \le |b| \le m$$
. Donc $|x| \le m$

Remarque:

 $(\exists m \in \mathbb{R}, \forall x \in A, |x| \le m) \Leftrightarrow$ l'ensemble des valeurs absolues des éléments de A est majoré.

V Les intervalles de R.

Définition:

Soit A une partie de \mathbb{R} .

On dit que A est convexe lorsque $\forall x \in A, \forall y \in A, \forall z \in \mathbb{R}, (x \le z \le y \Rightarrow z \in A)$

Proposition:

Toute intersection de parties convexes de \mathbb{R} est une partie convexe de \mathbb{R} .

Démonstration:

Soit K un ensemble quelconque, et $(A_k)_{k \in K}$ une famille de parties convexe de \mathbb{R} , indexée par K. Montrons que $A = \bigcap_{k \in K} A_k$ est une partie convexe de \mathbb{R} .

(rappel:
$$\bigcap_{k \in K} A_k = \{x \in \mathbb{R}, (\forall k \in K, x \in A_k)\}$$
)

Soient $x, y \in A, z \in \mathbb{R}$, supposons que $x \le z \le y$. Montrons que $z \in A$.

Soit $k \in K$. Alors $x \in A_k$, $y \in A_k$. Or, A_k est convexe. Donc $z \in A_k$. C'est valable pour tout k, donc $z \in A$.

Théorème:

Les parties convexes de $\mathbb R$ sont exactement les intervalles de $\mathbb R$, c'est-à-dire les parties du type :

•
$$\varnothing$$
 • $\{a\} = [a, a]$ • $[a, b]$ • $[a, b[$ • $]a, b[$ • $]a, b[$ • $]-\infty, a[$ • $]a, +\infty[$ • $[a, +\infty[$ • $\mathbb{R} =]-\infty, +\infty[$ Où $a, b \in \mathbb{R}$ et $a < b$.

Démonstration :

Déjà il est immédiat que les intervalles sont des parties convexes de R.

Soit A une partie convexe de \mathbb{R} . Montrons que A est un intervalle.

Si $A = \emptyset$, ok

Sinon $A \neq \emptyset$: Soit alors $a \in A$, et notons $A_1 = [a, +\infty[\cap A$

Alors déjà A_1 est intersection de deux convexes, donc est un convexe. On va montrer que A_1 est un intervalle du type [a,...].

 A_1 est non vide (il contient a).

- soit A_1 est majoré ; il a alors une borne supérieure b. Montrons que $[a,b] \subset A_1$.

Soit $x \in [a,b[$. Alors x < b. Or, b est le plus petit majorant de A_1 , donc x ne majore pas A_1 . Il existe donc $y \in A_1$ tel que x < y. Donc $a \le x < y$. Or, $a,y \in A_1$ et A_1 est convexe. Donc $x \in A_1$, d'où l'inclusion. Ainsi, $[a,b[\subset A_1 \subset [a,b]]$ (la deuxième inclusion est due au fait que a minore A_1 et b majore A_1).

Donc $A_1 = [a, b[\text{ ou } A_1 = [a, b].$

- Soit A_1 n'est pas majorée; montrons alors que $A_1 = [a, +\infty[$.

Déjà, par construction de A_1 , $[a,+\infty[\subset A_1]$. Montrons l'autre inclusion :

Soit $x \in [a, +\infty[$. x n'est pas un majorant de A_1 , donc il existe $y \in A_1$ tel que x < y. Ainsi, $a \le x < y$. Comme A_1 est convexe, $x \in A_1$, d'où l'autre inclusion.

Finalement, A_1 est un intervalle du type [a,...]

De même, on peut monter que $A_2 =]-\infty, a] \cap A$ est un intervalle du type |..., a].

Et, comme $A = A_1 \cup A_2$, on voit que A est un intervalle.

Ne sont pas des intervalles :

$$\mathbb{R}^*, \mathbb{N}, \hat{\mathbb{Q}}$$

 $]-\infty, a[\cup]b, +\infty[, \text{où } a < b]$