

Busy Beaver Problem

By Jonathan Ho

Introduction to Computability Theory and Recursive Functions

- Computability Theory originated from early logicians in the late 1930s
 - · Church, Godel, Kleene, Post, Rosser, Turing
- A function is **computable** if there exists an algorithm that can do the job of the function
 - Church-Turing Thesis: a function is computable if it can be calculated on a Turing
 Machine with unlimited time and space
 - Ex: Addition Function $A(n_1, n_2) = n_1 + n_2 | A(0, 0) = 0$; A(-3, 9) = 6; A(0.3, 0.7) = 1.0
- A function is **recursive** if it maps from natural numbers to natural numbers

What is Recursive Unsolvability?

- A set or problem is unsolvable (undecidable) if its characteristic function is not computable.
- Basically, if we have a set *W* and a subset *A*, we decide whether each element in *W* is in *A* with some algorithm. If there is such a procedure for *A*, it is said to be decidable. If there is no such algorithm, then the set is unsolvable/undecidable.

Examples of decision problems that are recursively unsolvable

- Hilbert's 10th problem
- Halting Problem
- Gödel numbering

History behind Busy Beaver Problem

- First introduced by Tibor Rado in his 1961 paper, On Non-Computable Functions
- His goal was to teach beginners about Turing Machines and non-computable functions
- Thus, he created the Busy Beaver problem as a simple way to explore these concepts
- In fact, no enumeration or diagonalization is needed to prove the function is undecidable
- Instead, Rado used that fact that a non-empty finite set of integers must have a largest element

What is the Busy Beaver Problem?

- Uses an infinite-tape Turing Machine
- As a simplification, the term card is used instead of state. Each card contains 3 values, for each possible scanned values: the overprint value, shift value, and call card value.
- Starting Card: 0; Halting Card: -1; 0 is a *left* shift and 1 is a *right* shift
- Question: Using a Turing Machine with n cards, what is the maximum number of nonzero characters that can be printed on the tape when it halts starting from an all-zero tape?

Card	1
0	100
1	11-1

This is an example card. When the machine is on this card and a 0 is scanned, a 1 is printed on the tape, the tape head shifts one spot to the left, and we switch to Card 0. When the machine is on this card and a 1 is scanned, a 1 is printed on the tape, the tape head shifts one spot to the right, and we reach the halting card.

College of Arts and Sciences

Functions derived from Busy Beaver Machines

Define the following 2 functions for some machine *M*

- **s(M)**: the number of shifts *M* takes before halting
- $\sigma(\mathbf{M})$: the number of 1's on the tape when M halts

The following functions all grow at an exponential rate as *n* increases:

- **N(n)**: the number of possible *n*-card Turing Machines
- **S(n)**: max{ s(M) | M is some *n*-card Turing Machine } (**Maximum Shift Function**)
- $\Sigma(n)$: max{ $\sigma(M) \mid M$ is some n-card Turing Machine } (Busy Beaver Function)

Current Values for the Functions

n	$N(n) = (4n+4)^{2n}$	Σ(n)	S(n)
1	64	1	1
2	20,736	4	6
3	1.7 × 10 ⁷	6	21
4	2.6 × 10 ¹⁰	13	107
5	6.3 × 10 ¹³	> 4,098 ?	> 47,176,870 ?
6	2.3 × 10 ¹⁷	> 3.5 × 10 ^{18,267} ?	> 7.4 × 10 ^{36,534} ?

Visual Representations of the Best Machines

College of Arts and Sciences

What if we extend this to m symbols?

- Then the following functions all grow at an exponential rate:
 - $N(n, m) = [2m(n+1)]^{mn}$
 - S(n, m)
 - Σ(n, m)

Values of S(n, m)								
m n	2-state	3-state	4-state	5-state	6-state	7-state		
2-symbol	6	21	107	47 176 870 ?	> 7.4 × 10 ^{36 534}	> 10 ^{10¹⁰10¹⁰18 705 353}		
3-symbol	38	≥ 119 112 334 170 342 540	> 1.0 × 10 ¹⁴ 072	?	?	?		
4-symbol	≥ 3 932 964	> 5.2 × 10 ¹³ 036	?	?	?	?		
5-symbol	> 1.9 × 10 ⁷⁰⁴	?	?	?	?	?		
6-symbol	> 2.4 × 10 ⁹⁸⁶⁶	?	?	?	?	?		
Values of Σ(n, m)								
m	2-state	3-state	4-state	5-state	6-state	7-state		
2-symbol	4	6	13	4098 ?	$> 3.5 \times 10^{18267}$	> 10 ^{10¹⁰10^{18 705 353}}		
3-symbol	9	≥ 374 676 383	> 1.3 × 10 ⁷⁰³⁶	?	?	?		
4-symbol	≥ 2050	> 3.7 × 10 ⁶⁵¹⁸	?	?	?	?		
5-symbol	> 1.7 × 10 ³⁵²	?	?	?	?	?		
6-symbol	> 1.9 × 10 ⁴⁹³³	?	?	?	?	?		

College of Arts and Sciences

Frontiers of the Busy Beaver Problem

- Computing Σ(n, m) and S(n, m) for further values of n and m
- Relationship between smaller busy beaver instances and larger instances
- Uniqueness of the best busy beavers and maximizing functions
- Behavior on non-zero inputs
- Busy beaver machine represented as directed graphs where cards are vertices and transitions are edges
- Behavior when busy beaver machine has access to an oracle

References and Further Reading

Aaronson, Scott. The Busy Beaver Frontier. https://www.scottaaronson.com/papers/bb.pdf

Computerphile. Busy Beaver Turing Machines. https://www.youtube.com/watch?v=CE8UhcyJS0I

Dean, Walter. Recursive Functions. https://plato.stanford.edu/entries/recursive-functions/

Jones, James. Recursive Undecidability - An Exposition. https://www.jstor.org/stable/2319560?seq=1

Michel, Pascal. The Busy Beaver Competition - Current Records. http://www.logique.jussieu.fr/~michel/bbc.html

Michel, Pascal. Table and Timeline of Historical Results. http://www.logique.jussieu.fr/~michel/ha.html

Rado, Tibor. On Non-Computable Functions.

http://computation4cognitivescientists.weebly.com/uploads/6/2/8/3/6283774/rado-on_non-computable_functions.pdf

Sakharov, Alex. Recursively Undecidable from MathWorld. https://mathworld.wolfram.com/RecursivelyUndecidable.html

Weisstein, Eric. Busy Beaver from MathWorld. https://mathworld.wolfram.com/BusyBeaver.html

Zenil, Hector. Busy Beaver Wolfram Demonstration Project. https://demonstrations.wolfram.com/BusyBeaver/