

Skipping one step (i.e., checking only n-1 elements) introduces an incomputable instance, as it leaves infinite possibilities unaccounted for in the missing step.
Therefore, we can express the halting problem as: "Solve out of infinity."
This captures the essence of incomputability: trying to determine something fully over an infinite space.
Second Step: Space Requirements for Incomputable Functions
We now classify functions that are incomputable. An algorithm becomes incomputable if:
1. It runs with insufficient space for input-output (I/O) operations.
2. It behaves like the halting problem—running endlessly without resolution.
Example in NP-c Problems:

If an algorithm reads only O(log n) steps, it cannot solve an NP-c problem because it must process the entire input size n.
Similarly, an algorithm that runs endlessly without halting is incomputable by nature.
Third Step: Contradiction Using Polynomial Algorithms
Now, let's address the key statement:
"Polynomial algorithms solve NP-c problems."
A polynomial-time algorithm, such as one with time complexity O(n^k), can read the entire input n and meet the space requirements.
However, to fully solve an NP-c problem, the algorithm would need to "solve out of 2^n" possibilities (the exponential search space).
This gives us the following inequality:
"Solve out of infinity" ≠ "Solve out of 2^n."
The two are fundamentally different: solving an infinite space is incomputable, but solving an exponential space (2^n) is not.

Thus, the claim that "Polynomial algorithms solving NP-c problems are incomputable" is a contradiction Polynomial algorithms are computable, and the requirements to solve NP-c problems do not imply incomputability.

Conclusion
We've demonstrated that the assumption "Polynomial algorithms solving NP-c problems are

incomputable" leads to a logical contradiction. Polynomial algorithms can meet the space and runtime

requirements necessary to solve NP-c problems, proving that:

P = NP.