Tutorat mathématiques : TD3

Université François Rabelais

Département informatique de Blois

Mathématiques générales

Problème 1

Les énoncés sont indépendants.

1. Démontrer que n est pair $\Leftrightarrow n^2$ est pair.

Pour montrer une équivalence, on démontre les deux implications réciproques l'une de l'autre.

• n est pair $\Rightarrow n^2$ est pair.

On utilise les propriétés de l'implication. En particulier, celle-ci est fausse dans l'unique cas où l'hypothèse est vraie et la thèse est fausse.

On utilise un $raisonnement\ d\'eductif$. On émet alors l'hypothèse que n est pair.

Comme n est pair, on peut écrire que n=2p où $p \in \mathbb{N}$.

On obtient donc $n^2 = (2p)^2 = 4p^2 = 2(2p^2)$. Dès lors n^2 est effectivement pair.

• n^2 est pair $\Rightarrow n$ est pair.

On démontre cette implication à l'aide de sa contraposée. En effet, démontrer $P \Rightarrow Q$ revient à démontrer $\neg Q \Rightarrow \neg P$.

Dès lors, notre assertion est équivalente à : n n'est pas pair $\Rightarrow n^2$ n'est pas pair.

qui est équivalent à : n est impair $\Rightarrow n^2$ est impair.

On résout par déduction comme précédemment

2. Démontrer que 0 n'a pas d'inverse dans \mathbb{K} . ($\mathbb{K} \subseteq \mathbb{C}$)

On utilise un raisonnement par l'absurde.

Supposons un nombre $a \in \mathbb{K}$ tel que

$$a \times 0 = 1$$

On a
$$a \times 0 = 1 \Leftrightarrow a \times (0+0) = 1$$

 $\Leftrightarrow a \times 0 + a \times 0 = 1$
 $\Leftrightarrow 2 = 1$

On aboutit à une contradiction, l'hypothèse de départ est absurde. O n'a pas d'inverse dans K.

Problème 2

Le théorème de Cantor énonce le résultat suivant :

Théorème de Cantor - Pour tout ensemble E fini ou infini, il n'existe pas de bijection entre E et l'ensemble des parties $\mathcal{P}(E)$.

- 1. Montrer qu'il existe une injection de E vers $\mathcal{P}(E)$.
- $\| \ \ \text{On a l'injection triviale} \ \varphi: x \to \{x\}.$
- 2. On considère la partie $A \in \mathcal{P}(E)$ telle que $A = \{x \in E | x \notin \varphi(x)\}$, soit l'ensemble des éléments de E qui n'appartiennent pas à leur propre image par la fonction $\varphi : E \to \mathcal{P}(E)$. Montrer que φ n'est pas surjective puis conclure.

Montrons qu'il n'existe pas de surjection entre E et $\mathcal{P}(E)$. On raisonne par l'absurde. On construit pour cela l'ensemble A des éléments de E qui n'appartiennent pas à leur propre image. Question : quels éléments de E donnent A comme image par φ ?

Cet argument utilise une méthode semblable à celle du paradoxe de Russell.

On suppose que $\exists a \in E | \varphi(a) = A$, dès lors :

$$a \in A \Rightarrow a \notin \varphi(a) = A$$

ce qui est absurde, car si $a \in A$, par construction de A, il ne appartenir à sa propre image par φ et donc appartenir à A.

De même:

$$a \notin A \Rightarrow a \in \varphi(a) = A$$

ce qui est absurde également. Dans les deux cas, A n'a pas d'antécédent. On a réussi à construire un ensemble qui n'a pas d'antécédent, dès lors, φ n'est pas surjective et donc, il n'existe pas de bijection entre E (vide, fini, ou infini) et $\mathcal{P}(E)$.

Problème 3

Soit $(u_n)_{n\in\mathbb{N}}$, une suite réelle.

- 1. Écrire en langage mathématique les assertions suivantes :
 - (a) (P): la suite (u_n) est croissante.
 - $\| \forall n \in \mathbb{N}, u_n \leq u_{n+1}$
 - (b) (Q): la suite (u_n) est majorée par 2.

$$\forall n \in \mathbb{N}, u_n \leq 2$$

2. On suppose (P) et (Q) vraies; qu'en déduisez-vous pour (u_n) ?

La suite (u_n) est croissante et majorée par 2, donc elle est convergente. Mais on ne peut pas affirmer qu'elle converge vers 2, on sait juste dire que $\lim_{n\to +\infty}u_n=\alpha$ tel que $\alpha\leq 2$.

3. On considère l'assertion suivante :

$$(R): \forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, |u_n - 2| \leq \varepsilon$$

- (a) Que peut-on dire de la suite (u_n) ?
 - $\|$ La suite (u_n) converge vers 2.
- (b) Donner un exemple de suite réelle vérifiant (R).
 - $\|$ On peut donner l'exemple de la suite $u_n = 2$, tout simplement...
- (c) Écrire en langage mathématique l'assertion $\neg(R)$.

$$\exists \varepsilon > 0, \forall n_0 \in \mathbb{N}, \exists n > n_0, |u_n - 2| > \varepsilon$$

Problème 4

Soit f la fonction qui à un complexe z associe, lorsque c'est possible :

$$f(z) = \frac{z^2}{z - 2i}$$

- 1. Déterminer le domaine de définition D_f de f.
- $\|$ La fonction est définie si et seulement si $z-2i \neq 0 \Longleftrightarrow z \neq 2i$. Soit $D_f = \mathbb{C} \setminus \{2i\}$
- 2. Déterminer les racines carrées complexes de 8-6i. En déduire tous les antécédents de 1+i par f.
 - (a) On pose $\Delta = 8 6i$

On cherche $\delta = x + iy$ avec $(x, y) \in \mathbb{R}^2$ tel que $\delta^2 = \Delta$.

On a:

$$\begin{cases}
x^2 - y^2 = \Re \mathfrak{e}(\Delta) = 8 & (1) \\
x^2 + y^2 = |\Delta| = 10 & (2) \\
2xy = \Im \mathfrak{m}(\Delta) = -6 & (3) \\
(1) + (2) \Leftrightarrow 2x^2 = 18
\end{cases}$$

$$(1) + (2) \Leftrightarrow 2x^2 = 18$$

$$\Leftrightarrow r - 3 \text{ on } - 3$$

$$\Leftrightarrow x = 3 \text{ ou } -3$$

$$(2) - (1) \Leftrightarrow 2y^2 = 2$$

$$\Leftrightarrow y = 1 \text{ ou } -1$$

(3) < 0 x et y ont un signe différent.

$$\begin{cases} \delta_1 &= 3 - i \\ \delta_2 &= -3 + i \end{cases}$$

$$f(z) = 1 + i \Leftrightarrow \frac{z^2}{z - 2i} = 1 + i$$

$$\Leftrightarrow \frac{z^2}{z - 2i} = 1 + i$$

$$\Leftrightarrow z^2 = (z - 2i)(1 + i)$$

$$\Leftrightarrow z^2 = z + iz - 2i + 2$$

$$\Leftrightarrow z^2 - z(i + 1) + 2i - 2 = 0$$

On calcule le discriminant : $\Delta = (i+1)^2 - 4(2i-2) = 1 - 1 + 2i - 8i + 8 = 8 - 6i$

On a déjà calculé les racines de ce discriminant. On a deux solutions complexes : $\begin{cases} z_1 &= \frac{(i+1)-(3-i)}{2} = i-1 \\ z_2 &= \frac{(i+1)+(3-i)}{2} = 2 \end{cases}$

On a alors:

$$f(i-1) = f(2) = i+1$$

3. Soit h, un complexe. Discuter selon les valeurs de h le nombre d'antécédents de h par f.

$$f(z) = h \Leftrightarrow z^2 - hz + 2ih = 0$$

On calcule le discriminant $\Delta = h^2 - 8ih = h(h - 8i)$. Comme tout nombre complexe, sauf zéro, admet exactement deux racines carrées, h admet deux antécédents par f si et seulement si $h \in \mathbb{C} \setminus \{0, 8i\}$ et une seule et unique sinon.

4. Déterminer $f(D_f)$. La fonction est-elle une application surjective de D_f dans \mathbb{C} ?

On vient de voir que tout élément $h \in \mathbb{C}$ admet au moins un antécédent par f ce qui signifie

$$f(D_f) = \mathbb{C}$$
: f est une surjection de $D_f \to \mathbb{C}$

5. f est-elle une application injective de D_f dans \mathbb{C} ?

|| f n'est pas injective, on a vu e particulier que f(2) = f(i-1).

Problème 5

On rappelle que $\mathbb{N} = \{0, 1, 2, 3, ...\}$ est l'ensemble des entiers naturels. On note $\operatorname{card}(\mathbb{N}) = \infty$. \mathbb{N} est un ensemble infini dénombrable.

On peut prouver que deux ensembles E et F ont le même cardinal s'il existe une bijection f entre eux.

$$\operatorname{card}(E) = \operatorname{card}(F) \Leftrightarrow \left(\exists f \in F^E | \forall y \in F, \exists ! x \in E, f(x) = y\right)$$

Par exemple, pour montrer que $\operatorname{card}(\mathbb{N}) = \operatorname{card}(\mathbb{Z})$. Il nous suffit de créer la fonction $f: \mathbb{N} \to \mathbb{Z}$ telle que $f(n) = \begin{cases} -\frac{n}{2} & \text{si } n \text{ est pair} \\ \frac{n+1}{2} & \text{si } n \text{ est impair} \end{cases}$

1. Montrer que f réalise bien une bijection de $\mathbb N$ vers $\mathbb Z$.

Soit $\varphi \in \mathbb{N}$

On sépare les cas où φ est pair et impair

- On separe les cas ou φ est pair et impair

 $f(2\varphi) = -\frac{2\varphi}{2} = -\varphi$ Soit $f(2\mathbb{N}) = \{0, -1, -2, ...\}$ $f(2\varphi + 1) = \frac{2\varphi + 1 + 1}{2} = \frac{2(\varphi + 1)}{2} = \varphi + 1$ Soit $f(2\mathbb{N} + 1) = \{1, 2, 3, ...\}$

Dès lors, $\{0, -1, -2, ...\} \cup \{1, 2, 3, ...\} = \mathbb{Z}$. On a bien une bijection entre \mathbb{N} et \mathbb{Z} .

- 2. Soit $E = \{-1, 0, 1, 2, 3, ...\}$. Montrer que $\operatorname{card}(\mathbb{N}) = \operatorname{card}(E)$
- $\|$ Il suffit de créer la la fonction $f: \mathbb{N} \to E$ telle que f(n) = n 1.
- 3. Montrer que $\operatorname{card}(\mathbb{N}^2) = \operatorname{card}(\mathbb{N})$, en déduire que $\operatorname{card}(\mathbb{Q}) = \operatorname{card}(\mathbb{N})$.

On peut créer la fonction $f:\mathbb{N}^2\to\mathbb{N}$ telle que $f(i,j)=i+\frac{(i+j)(i+j+1)}{2}$

• Pour montrer qu'elle est injective :

On suppose que $\exists (a,b) \in \mathbb{N}^2$ et $\exists (c,d) \in \mathbb{N}^2$ tels que :

$$f \text{ est injective } \Leftrightarrow (f(a,b) = f(c,d) \Rightarrow (a,b) = (c,d))$$

$$\Leftrightarrow a + \frac{(a+b)(a+b+1)}{2} = c + \frac{(c+d)(c+d+1)}{2}$$

$$\Leftrightarrow 3(a-c) + (b-d) + (a+b)^2 - (c+d)^2 = 0$$

$$\Leftrightarrow 3(a-c) + (b-d) + (a+b+c+d)(a+b-c-d) = 0$$
On a
$$\begin{cases} a-c & = 0 \\ b-d & = 0 \Leftrightarrow \\ a+b+c+d & = 0 \end{cases}$$

$$c = -d$$
ou
$$\begin{cases} a-c & = 0 \\ b-d & = 0 \Leftrightarrow \\ b-d & = 0 \Leftrightarrow \end{cases}$$

$$\begin{cases} a = c \\ b = d \\ 0 & = 0 \end{cases}$$

ou
$$\begin{cases} a-c & = 0 \\ b-d & = 0 \Leftrightarrow \begin{cases} a = c \\ b = d \\ 0 = 0 \end{cases}$$

• Pour montrer qu'elle est surjective :

On a:

$$f(0,0) = 0$$

$$f(0,1) = 1$$

$$\forall (a,b) \in \mathbb{N} \times \mathbb{N}^* | f(a+1,b-1) = f(a,b) + 1$$

On peut conclure que f est surjective.

Il résulte que f est bien bijective. L'ensemble des fractions \mathbb{Q} peut être vu tel que $\mathbb{Q} = \left\{ \frac{p}{q} \middle| (p,q) \in \mathbb{N} \times \mathbb{Z}^* \right\}$. On a vu que $\operatorname{card}(\mathbb{N}) = \operatorname{card}(\mathbb{Z})$ et de plus $\operatorname{card}(\mathbb{N}) = \operatorname{card}(\mathbb{N}^2)$ et on sait que \mathbb{Q} peut-être vu en terme de couple. Dès lors $\operatorname{card}(\mathbb{N}) = \operatorname{card}(\mathbb{Q})$.

4. Démontrer que $\operatorname{card}([0,1[) \neq \operatorname{card}(\mathbb{N})$

On suppose que]0,1[est dénombrable de la même manière que N. Dès lors, on peut construire un ensemble $\Omega = \{\omega_1, \omega_2, \ldots\}$ qui correspond à tous les nombres possibles qui appartiennent à

Ainsi, chaque ω_i est un nombre tel que $\omega_i = 0, r_{i1}r_{i2}r_{i3}...$ avec $r_j = [0, 9]$.

Par exemple, on peut trouver :

 $\omega_1=0,01820...$ $\omega_2=0,45023...$ $\omega_3=0,31415...$ $\omega_4=0,22193...$ $\omega_5=0,16180...$ \vdots On construit le nouveau nombre ω' telle que $r_i'=r_{ii}+1$ (modulo 10). Avec l'exemple précédent, on a :

on a : $\omega'=0,16501...$ Or ω' diffère de tous ω_i d'au moins un r_i' , dès lors $\omega'\notin\Omega$. Ainsi]0,1[n'est pas dénombrable et donc $\operatorname{card}(\mathbb{N})\neq\operatorname{card}(]0,1[)$.

- 5. Montrer que $\operatorname{card}(]0,1[) = \operatorname{card}(\mathbb{R})$
- $\|$ Soit $f:]0,1[\to \mathbb{R}$ telle que $f(x)=\tan\left(\pi\left(x-\frac{1}{2}\right)\right)$. f réalise bien une bijection de]0,1[vers \mathbb{R} .

Problème 6

- 1. On considère l'application $f: \mathbb{R} \to \mathbb{R}$ telle que f(x) = |x+1|.
 - (a) Représenter graphiquement la courbe \mathcal{C} associée à f dans le plan \mathbb{R}^2 .

FIGURE 1: Fonction f dans le plan \mathbb{R}^2

- (b) Calculer les ensembles $f([-3,2]), f(\{-2\}), f^{-1}(\{1\})$ et $f^{-1}([-5,2])$.
 - f([-3,2]) = [0,3]• $f(\{-2\}) = \{1\}$ $f^{-1}(\{1\}) = \{-2,0\}$
- 2. L'application f est-elle injective? Surjective? Bijective?
 - L'application n'est pas injective car f(-2) = f(0) = 1 et $-2 \neq 0$.
 - L'application n'est pas non plus surjective car elle décrit uniquement les nombres positifs. Elle est surjective cependant de \mathbb{R} vers \mathbb{R}^+ .
 - Elle n'est pas injective donc elle n'est pas bijective.
- 3. On considère de plus l'application $g: \mathbb{R} \to \mathbb{R}$ tel que g(x) = |x-1|.
 - (a) Résoudre dans $\mathbb R$ l'équation $g\circ f(x)=1.$ On rappelle que $g\circ f(x)=g(f(x)).$

$$g(x) = 1 \Leftrightarrow x = 0 \text{ ou } x = 2$$

donc

donc
$$g(f(x)) = 1 \Leftrightarrow f(x) = 0 \text{ ou } f(x) = 2$$

$$\Leftrightarrow x = -1 \text{ ou } x = -3 \text{ ou } x = 1$$
 On a l'ensemble des solutions $\mathscr{S} = \{-3, -1\}$

On a l'ensemble des solutions $\mathscr{S} = \{-3, -1, 1\}.$

(b) Représenter graphiquement l'application $g \circ f$ dans le plan \mathbb{R}^2 .

FIGURE 2 : Fonction f dans le plan \mathbb{R}^2

Problème 7

Soit l'application $f: E \to F$ définie telle que $f(x) = x^2$.

- 1. Donner deux ensembles E et F tels que f soit injective mais non surjective.
- $\|$ Par exemple $E = \mathbb{R}^+$ et $F = \mathbb{R}$
- 2. Donner deux ensembles E et F tels que f soit non injective mais surjective.
- $\|$ Par exemple $E = \mathbb{R}$ et $F = \mathbb{R}^+$
- 3. Donner deux ensembles E et F tels que f soit ni injective ni surjective.
- $\|$ Par exemple $E = \mathbb{R}$ et $F = \mathbb{R}$
- 4. Donner deux ensembles E et F tels que f soit bijective.
- $\|$ Par exemple $E = \mathbb{R}^+$ et $F = \mathbb{R}^+$