Introduction to data science & artificial intelligence (INF7100)

Arthur Charpentier

#421 Vectors & Matrices

été 2020

The Matrix

Data

Provinces et territoires du Canada													
Carte	Drapeau	Nom de la province ou du territoire \$ (genre)	Code •	Rang • Date d'entrée	Population en 2016 ⁴ (% de la • population totale)	Superficie (km²)	Terres (km²)	Eaux douces ¢ (km²)	% de la superficie ¢ totale	Densité de la • population	sièges (%)	Capitale •	Ville la plus peuplée
The state of	#	Alberta (f)	AB	10 1 ^{er} septembre 1905	4 067 175 (11,57 %)	661 848	642 317	19 531	6,6 %	6,15	34 (9,1 %)	Edmonton	Calgary
1		Colombie- Britannique (f)	BC	7 20 juillet 1871	4 648 055 (13,22 %)	944 735	925 186	19 549	9,5 %	4,92	42 (11,7 %)	Victoria	Vancouver
81.y	<u>+8</u>	Île-du-Prince- Édouard (f)	PE	8 1 ^{er} juillet 1873	142 907 (0,41 %)	5 660	5 660	0	0,1 %	25,25	4 (1,3 %)	Charlottetown	Charlottetown
ST. 5	35 g	Manitoba (m)	МВ	5 15 juillet 1870	1 278 365 (3,64 %)	647 797	553 556	94 241	6,5 %	1,97	14 (4,5 %)	Winnipeg	Winnipeg
Sil . 5		Nouveau- Brunswick (m)	NB	1 1 ^{er} juillet 1867	747 101 (2,13 %)	72 908	71 450	1 458	0,7 %	10,25	10 (3,2 %)	Fredericton	Moncton
Sil 5	><	Nouvelle-Écosse (f)	NS	1 1 ^{er} juillet 1867	923 598 (2,63 %)	55 284	53 338	1 946	0,6 %	16,71	(3,6 %)	Halifax	Halifax
	3K #	Ontario (m)	ON	1 1 ^{er} juillet 1867	13 448 494 (38,26 %)	1 076 395	917 741	158 654	10,8 %	12,49	121 (34,4 %)	Toronto	Toronto
		Québec (m)	qc	1 1 ^{er} juillet 1867	8 164 361 (23,23 %)	1 542 056	1 365 128	176 928	15,4 %	5,30	78 (24,4 %)	Québec	Montréal
1 Tay	* *	Saskatchewan (f)	sĸ	10 1 ^{er} septembre 1905	1 098 352 (3,13 %)	651 036	591 670	59 366	6,5 %	1,69	14 (4,5 %)	Regina	Saskatoon
	×	Terre-Neuve-et- Labrador (m)	NL	12 31 mars 1949	519 716 (1,49 %)	405 212	373 872	31 340	4,1 %	1,28	7 (2,3 %)	Saint-Jean de Terre- Neuve	Saint-Jean de Terre- Neuve

via wikipedia

Vectors

$$\vec{\boldsymbol{u}} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = \boldsymbol{u} \in \mathbb{R}^n$$
 $\boldsymbol{u} = (u_1 \cdots u_n)^{\top}$

Example:

 $\vec{u}_j = (178, 185, 162, 170, \cdots, 169)^{\top} \in \mathbb{R}^{200}$ (vector of observations, n = 200 = sample size)

$$\vec{\boldsymbol{v}}_i = (178, 74, 1, 0, 14321, 1)^{\top} \in \mathbb{R}^p$$
 (vector of individuals, $p = 6 = \text{features}$)

$$1 > u = [178, 185, 162, 170]$$

$$u = c(178, 185, 162, 170)$$

Scalar Product & Eucliedean Distamce

$$\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}} = (u_1 + v_1, \cdots, u_n + v_n)^{\top} \in \mathbb{R}^n$$

Note that $\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}} = \vec{\boldsymbol{v}} + \vec{\boldsymbol{u}}$

Given $\vec{\boldsymbol{u}}$ and $\vec{\boldsymbol{v}}$,

$$\langle \vec{\boldsymbol{u}}, \vec{\boldsymbol{v}} \rangle = \boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u}^{\top} \boldsymbol{v} = \sum_{i=1}^{n} u_{i} v_{i} = u_{1} v_{1} + \dots + u_{n} v_{n}$$

Example Let $\mathbf{1} = (1, 1, \dots, 1)^{\top}$, then $\overline{u} = \frac{1}{n} \langle \vec{\mathbf{1}}, \vec{\boldsymbol{u}} \rangle = \frac{1}{n} \mathbf{1}^{\top} \boldsymbol{u}$ Example \mathbf{p} a probability vector, \mathbf{x} a vector of outcome, $\mathbb{E}(X) = \langle \vec{\boldsymbol{p}}, \vec{\boldsymbol{x}} \rangle$

$$\vec{\boldsymbol{u}} \perp \vec{\boldsymbol{v}}$$
 if and only if $\langle \vec{\boldsymbol{u}}, \vec{\boldsymbol{v}} \rangle = 0$

$$\|\vec{\boldsymbol{u}}\|^2 = \langle \vec{\boldsymbol{u}}, \vec{\boldsymbol{u}} \rangle = \boldsymbol{u} \cdot \boldsymbol{u} = \sum_{i=1}^n u_i^2 = u_1^2 + \dots + u_n^2$$

Mahalanobis Distance

The standard Euclidean distance is

$$\|\vec{\boldsymbol{u}}\|_E^2 = \langle \vec{\boldsymbol{u}}, \vec{\boldsymbol{u}} \rangle = \boldsymbol{u}^\top \boldsymbol{u}$$

Given some diagonal matrix S, and $\mu \in \mathbb{R}^n$,

$$\|\vec{\boldsymbol{u}}\|^2 = (\boldsymbol{u} - \boldsymbol{\mu})^{\top} S^{-1} (\boldsymbol{u} - \boldsymbol{\mu}) = \|\tilde{\boldsymbol{u}}\|_E^2$$

where
$$ilde{m{u}}_i = rac{m{u}_i - m{\mu}_i}{\sqrt{S_{i,i}}}$$

(popular in statistics, when u_i is the observation of individual i)

Euclidean Distance

Define the distance $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$ Set of points \boldsymbol{u} such that $d(\boldsymbol{0}, \boldsymbol{v}) = \|\boldsymbol{u}\| = 1$

circle (or sphere in higher dimension)

Set of points x such that d(x, u) = d(x, v)?

straight line (or plane in higher dimension) (orthogonal to $\boldsymbol{u} - \boldsymbol{v}$)

Euclidean Distance & Voronoi Sets

Given a set of points $\boldsymbol{u}_1, \boldsymbol{u}_2, \cdots \boldsymbol{u}_n$ Set of points x the closest to u_i ? (see also Delaunay triangulation)

(intersections are straight linears or planes)

Manhattan (ℓ_1) Distance

 $\|\boldsymbol{u}\| = |u_1| + |u_2|$ is also a norm (Manhattan) Set of points \boldsymbol{u} such that $d(\boldsymbol{0}, \boldsymbol{v}) = \|\boldsymbol{u}\| = 1$

square (or cube in higher dimension)

Set of points x such that d(x, u) = d(x, v)?

portions of straight lines (or planes)

Word2Vec

Word2vec is one of the most popular models used to create word embeddings (words are represented in a large dimensional space... that can be projected into 2 or 3)

(source https://www.tensorflow.org)

Linear Function

In dimension d, linear separators are lines (or planes) of the form $\mathbf{x} \mapsto \mathbf{w}^{\top} \mathbf{x} = \gamma$

Example:
$$\Delta : y = 2x$$
, $2x + -1y = 0$

vector
$$\vec{\boldsymbol{u}} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 is orthoroal to Δ $(\vec{\boldsymbol{u}} \text{ is a normal vector})$

In higher dimension z = a + bx + cy is a plane

Matrices Product

Formally, AB = C with

$$C_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \dots + A_{in}B_{nj} = \sum_{k=1}^{n} A_{ik}B_{kj}$$

Example:

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$BA = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Hence $AB \neq BA...$

Matrices

Let $\boldsymbol{u} \in \mathbb{R}^n$, then $\boldsymbol{u}^{\top} \boldsymbol{u} \in \mathbb{R}$ and $\boldsymbol{u} \boldsymbol{u}^{\top}$ is a $n \times n$ matrix.

Example
$$\boldsymbol{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in \mathbb{R}^3$$

$$\mathbf{u}^{\top}\mathbf{u} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 1^2 + 2^2 + 3^2 = 14$$

$$m{u}m{u}^{ op} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$$

Matrices & Transformation

Rotation, angle θ , center **0**:

$$\vec{\boldsymbol{u}} = \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \vec{\boldsymbol{v}} = \begin{pmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{pmatrix}.$$

or
$$\vec{v} = R\vec{u}$$
 with $R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

Orthogonal projection, on $\Delta = (\vec{\delta} = (a, b))$,

$$\vec{\boldsymbol{u}} = \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \vec{\boldsymbol{v}} = \frac{ax + by}{a^2 + b^2} \begin{pmatrix} a \\ b \end{pmatrix},$$

or
$$\vec{\boldsymbol{v}} = \boldsymbol{P}\vec{\boldsymbol{u}}$$
 with $\boldsymbol{P} = \frac{1}{a^2 + b^2} \begin{pmatrix} a^2 & ab \\ ab & b^2 \end{pmatrix}$.

$$(\mathsf{proof}: \ \vec{\pmb{v}} = \vec{\pmb{\delta}} \lambda = \vec{\pmb{\delta}} \frac{\langle \vec{\pmb{\delta}}, \vec{\pmb{u}} \rangle}{\langle \vec{\pmb{\delta}}, \vec{\pmb{\delta}} \rangle} = \vec{\pmb{\delta}} \frac{\vec{\pmb{\delta}}^\top \vec{\pmb{\delta}}}{\vec{\pmb{\delta}}^\top \vec{\pmb{\delta}}} = \frac{\vec{\pmb{\delta}} \vec{\pmb{\delta}}^\top}{\vec{\pmb{\delta}}^\top \vec{\pmb{\delta}}} \vec{\pmb{u}}$$

Hence
$$oldsymbol{P} = rac{oldsymbol{\delta}oldsymbol{\delta}^{ op}}{oldsymbol{\delta}^{ op}oldsymbol{\delta}}$$

(or more generally
$$\mathbf{P} = \mathbf{\Delta}(\mathbf{\Delta}^{\top}\mathbf{\Delta})^{-1}\mathbf{\Delta}^{\top}$$
).

Projection?

Projection are essential when trying to visualize data in high dimension (≥ 3) (source REAMuseum)

Tensors & Pictures

A $(w \times h)$ picture, with w pixels for the width and h for the height is a "matrix" Example: black and white picture, matrix M

with $M_{i,j} \in [0,1]$ the grey level.

Tensors

A $(w \times h)$ picture, with w pixels for the width and h for the height is a "tensor" Example: a color picture is a tensor TT = (T[,,r],T[,g],T[,b])(RGB decomposition of a color) with $T_{i,i,c} \in [0,1]$ the color level.

working with pictures means working with three dimensional matrices

Wrap-up

- ightharpoonup a vector is a collector of *n* numbers, $\mathbf{u} = (u_1, \dots, u_n)^{\top}$ $\vec{\boldsymbol{u}}_i = (178, 185, 162, 170, \cdots, 169)^{\top}$ is a variable $\vec{\mathbf{v}}_i = (178, 74, 1, 0, 14321, 1)^{\top}$ is an individual
- $\vec{u} \perp \vec{v}$ if and only if $\langle \vec{u}, \vec{v} \rangle = 0$
- $\blacktriangleright \|\vec{\boldsymbol{u}}\|^2 = \langle \vec{\boldsymbol{u}}, \vec{\boldsymbol{u}} \rangle = \boldsymbol{u}^\top \boldsymbol{u} = \sum_{i=1}^n u_i^2 = u_1^2 + \dots + u_n^2 \text{ (Euclidean)}$
- data will be related to matrices M
- ▶ transformation will be related to matrices T ($\widetilde{M} = TM$)
- orthogonal projection are defined with matrices
- tensors are matrices in higher dimension