# LaSAFT 기반의 개선

## Regression 방식의 문제점





## Regression 방식의 문제점

### Mixture의 energy over 하는가?



### Beans over mix



분리된 신호의 energy가 **mixture energy 넘는 경우**가 있음

## Regression 방식의 문제점

Mixture의 energy over 하는가?

### Beans over mix



제안

$$loss = MSE(T, \hat{T}) + \lambda \sum_{i} max[0, \log(|\hat{S_{vocal}}|/|S_{mix}|)]$$

mixture 보다 energy 큰 경우에 penalty 주는 방식

## 개선

제안1) Short frame에서의 frequency pattern 포착을 통한 성능 up

Replace FC to 1D Conv

제안2) Noise 줄이기 위한 regularized loss

$$loss = MSE(T, \hat{T}) + \lambda \sum_{i} max[0, \log(|\hat{S}_{vocal}|/|S_{mix}|)]$$

mixture 보다 energy 큰 경우에 penalty 주는 방식

### 개선

제안3) Loss for singing voice sep

$$loss = MSE(T_{vocal} - \hat{T}_{vocal})$$
 
$$loss = MSE(T_{vocal} - \hat{T}_{vocal}) + MSE(T_{acc} - \hat{T}_{acc}) \ where \ \hat{T}_{acc} = T_{mix} - \hat{T}_{vocal}$$

하나의 모델에서 반주와 보컬 모두 잘 분리하게 끔 학습

### 1D convolution



To learn common Frequency pattern

## 1D convolution



### 1D convolution

### 1D Conv block



### Multi dilated Conv block



#### **Band dedicated Conv block**





4가지 방식으로 적용

## **1D** convolution



## 1D convolution Reference



Conv의 경우, high frequency 영역 많이 거른다.

- band dedicate mechanism 적용

**외각에서의 noise** 많이 발생 - regularized loss 사용

FC predict (Baseline)



### **Conv predict**



## 1D grouped convolution + regularizer

#### **Band dedicated Cony block**

Input

B\*channel x T x F

Cony 1D

(Groups = 2)

Cat Transition output

B\*channel x T x F

통한 band dedicate 형태

By relu 
$$\frac{1}{\lambda \sum_{max} [0, \log(|\hat{S}_{vocal}|/|S_{mix}|)]}$$
 추가 통해 노이즈 제거 mixture 보다 energy 큰 경우에 penalty 주는 방식

## 1D grouped convolution + regularizer



## 1D grouped convolution + regularizer Reference





## 1D grouped convolution + regularizer



## 1D grouped convolution + regularizer



### 1D grouped convolution + regularizer

### **Baseline**

```
Aggrated Scores (median over frames, median over tracks)
vocals ==> SDR: 7.191 SIR: 13.606 ISR: 12.850 SAR: 6.936
accompaniment ==> SDR: 13.528 SIR: 18.111 ISR: 21.301 SAR: 14.611
```

### 1D Conv + regularizer

```
Aggrated Scores (median over frames, median over tracks)
vocals ==> SDR: 7.091 SIR: 16.144 ISR: 12.972 SAR: 7.054
accompaniment ==> SDR: 14.082 SIR: 18.563 ISR: 22.853 SAR: 14.717
```

반주 SDR, 전반적인 수치 큰 폭 개선 but 보컬 SDR 소폭 하락으로 보임

## 1D grouped convolution + regularizer



허나 **SDR** 역시 **전반적으로** 보았을 때 **더 좋아진것**을 알 수 있음

결론

Grouped convolution + regularized loss 통해 큰 폭의 성능향상을 관찰

# 부록

### 부록

### 코드

### **Spleeter project**

- CUNet
  - LaSAFT 관련 코드
- Sep\_system
  - weight converter
  - Evaluation
  - Trainer
  - Models
  - Separator
  - Dataset
  - Preprocessing
- spleeter\_2
  - Spleeter 관련 코드

