ZEPELLIN GEWERBESCHULE KONSTANZ

Mathematik

Die Wissenschaft der Zahlen

Autor Leonard Röpcke Klasse TG-J2b

Datum October 10, 2025

Contents

1	Sto	chastik	2
	1.1	Biominalverteilung	2
		1.1.1 Beispiel: Uhr tragen	
	1.2	Wahrscheinlichkeiten bei kontinuierlichen Größen	2
		1.2.1 Körpergwecht von erwachsenen Männern	2

1 Stochastik

1.1 Biominalverteilung

1.1.1 Beispiel: Uhr tragen

In einer Schule werden n=1000 Schülerinnen und Schüler gefragt, ob sie eine Uhr tragen. Die Wahrscheinlichkeit hierfür beträgt p=0,45. Gesucht ist die Wahrscheinlichkeit, dass die Anzahl der Uhrenträger:innen maximal um 3σ abweicht.

$$\mu = n \cdot p = 1000 \cdot 0,45 = 450$$

$$\sigma = \sqrt{n \cdot p \cdot (1 - p)} = \sqrt{1000 \cdot 0,45 \cdot 0,55} \approx 15,73$$

$$3\sigma \approx 3 \cdot 15,73 = 47,19$$

Mit der kumulierten Binomialverteilung:

Mit dem Taschenrechner (gerundetes σ auf zwei Nachkommastellen) ergibt sich eine Wahrscheinlichkeit von etwa

$$P(|X - \mu| \le 3\sigma) \approx 0.9973$$
 bzw.99,73%.

Mit der kumulierten Normalverteilung:

$$P(402 \le X \le 497) = \int_{402,5}^{497,5} \varphi(x) \, dx \approx 0.9987 - 0.0012 = 0.9975 \quad bzw.99,75\%.$$

Damit beträgt die Wahrscheinlichkeit, dass die Anzahl der Uhrenträger:innen maximal um 3σ abweicht, etwa 99,75%. Hinweis: Es wird eine sogennate Stetigkeitskorrektur durchgeführt, indem 0,5 zu den Grenzen addiert bzw. subtrahiert wird.

mit der Sigma-Regel:

$$p(|X - \mu| < 3\sigma) \approx 0.9973$$
 bzw.99,73%.

1.2 Wahrscheinlichkeiten bei kontinuierlichen Größen

Die Normalverteilung hat den Vorteil, dass sie insbessondere bei nicht-diskreten, also kontinuierlichen Größen verwendet werden kann. Beispiele hierfür sind:

1.2.1 Körpergwecht von erwachsenen Männern