

UO STRUCTURES 1 - ASSESSMENT

Assessment Name	Assessment – Truss Design Report		
Test Available from			
Test Due			
Weighting	% of the total grade for this course		
File Type to submit	One *.doc or *.docx file, with a maximum file size of 100MB		

TRUSS ANALYSIS AND DESIGN REPORT TEST COURSE OBJECTIVES:

It is beneficial to familiarise yourself with the relationship between the assessment and the course objectives.

- CO1: acting on structures and determine costs and use this to justify design decisions.
- CO2: support reactions, shear forces, bending moments and deflections.

ASSESSMENT SUMMARY:

COMPONENTS	COURSE OBJECTIVES	WEIGHTING	DUE DATE	DETAILS	SUBMISSION PROCESS
2 Questions	CO 1, 2	%			Online

ASSESSMENT DESCRIPTION

In this test, please apply the relevant concepts covered in this course. In the first question, design different members of a truss. Where relevant, reference the relevant Australian Standard Loading Codes AS1170 and ASI Design Capacity Tables for Structural Steel.

Resources from weeks 1 - 10 will be a valuable reference.

Student ID Student name Page 1

UO Structures 1 Test Instructions

Read this page in detail

- The Test is out of 100 marks and is worth 35% of overall course grade
- Answer All Questions
- All Calculations must be typed, preferably using the Word Equation Editor. Handwritten calculations will not be assessed.
 - * Preferably, type the calculations using equation editor in MS Word.
 - *Excel spreadsheets and software analysis tools will not be accepted for submission.
- Word document submission only
 - Excel spreadsheets and software analysis tools will not be accepted for submission
- Where relevant, <u>diagrams must be included</u> with calculations (e.g. Free body diagrams, tributary areas) and these can be hand drawn and scanned in.
 - o Clear and informative diagrams can help the assessor follow your calculations and reasoning.
- For **full marks** for any part of a question, working must be displayed and units must be correct at every step of working.
 - For example, in Question 1 Part A the correct support reactions with no working or free body diagram(s) to show how the support reactions were obtained, will only score 1 out of 10 for that part.
- The marks for each part are <u>underlined in bold font</u>
- Answers are to be correct to 2 decimal place.
 - For example, an answer of "The force in member YZ is 125.367 kN (Compression)" can be written as The force in member YZ is 125.37 kN (Compression)
 - For example, an answer of "The force in member YZ is 300.00 kN (Compression)" can be written as The force in member YZ is 300 kN (Compression)
- The <u>Design Properties and Capacity Tables</u> can be found in Course Information section and also in the **Assessment 2** Section on the Course website.
- You will need to access the Australian Standards, especially AS/NZS 1170.1:2002 via <u>Techstreet at the UniSA Library</u>.

Student ID Student name Page 2

Student Name: Kevin Navarro

Student Email: kevin.navarro@example.edu

QUESTION 1:

A simple pin-jointed truss is loaded with a vertical force of 1000†N at joint C. Using the method of joints, determine the internal forces in members AC, BC, and CD. Indicate whether the forces are tensile or compressive.

QUESTION 2:

For the truss shown, with support A pinned and support E on a roller, calculate the support reactions at A and E. The truss carries a uniform vertical load on joint C. Assume all members are weightless.

QUESTION 3:

Using the method of sections, determine the forces in members EF, DF, and DE of the loaded truss. A vertical load of 1200â€⁻N is applied at joint F. Clearly show your section and assumptions.

QUESTION 4:

A Pratt truss is subjected to vertical loads at the top and bottom chords. Explain how zero-force members are identified in a truss structure and identify all zero-force members in the given configuration.

QUESTION 5:

Given a Warren truss with a span of 6†m and equal panel lengths, determine the maximum force in any member when a point load of 1500†N is applied at the center-top joint. Use symmetry in your analysis.

QUESTION 6:

Design an appropriate cross-section for a truss member experiencing a compressive force of 18â€kN. The material is structural steel with a yield strength of 250â€MPa, and a factor of safety of 1.5 is required. Show all calculations including buckling checks.

Parameter Table

Parameter	Value
-----------	-------

LoadAtJointC_N	1119
LoadAtJointF_N	1107
UniformLoadAtJointC_N	639
PointLoadAtTopCenterJoint_N	1718
TrussSpan_m	9
CompressiveForce_kN	20
YieldStrength_MPa	248
FactorOfSafety	2.00
А	28.92
В	39

Figure 1: Steel Truss with bolted connections