Ещё немного интерполяции

Рассмотрим на координатной плоскости множество точек вида (i, j), $0 \le i, j, i+j \le n$, и n(n+1)/2 вещественных чисел $w_{i,j}$. Нас будут интересовать многочлен $f \in \mathbb{R}[x,y]$ степени не выше n, удовлетворяющего равенствам $f(i,j) = w_{i,j}$ при всех (i,j), $0 \le i,j,i+j \le n$.

- 1. Докажите, что существует не более одного такого многочлена.
- 2. Предположим, что $w_{i,j} = 0$ при всех (i,j) < n. Докажите, что искомый многочлен имеет вид $\sum_{i,j\geqslant 0, i+j=n} w_{i,j} {x\choose i} {y\choose j}$.
- 3. Докажите, приведя явную формулу, что искомый многочлен всегда существует.

Пусть теперь заданы два произвольных множества $\{x_0, x_1, \ldots, x_n\}$, $\{y_0, y_1, \ldots, y_n\}$ и набор из n(n+1)/2 вещественных чисел $w_{i,j}$, где $0 \le i, j, i+j \le n$. Нас интересует многочлен $f \in \mathbb{R}[x,y]$ степени не выше n, удовлетворяющий равенствам $f(x_i,y_j) = w_{i,j}$ при всех $(i,j), 0 \le i, j, i+j \le n$. Очевидно, что доказательство его единственности аналогично доказательству задачи ??.

- 4. Предположим, что $w_{i,j} = 0$ при всех (i,j) < n. Докажите, приведя явную формулу, что искомый многочлен существует.
- 5. Докажите, что искомый многочлен всегда существует.

Ясно, что аналогичная интерполяция возможна для многочленов любого количества переменных.

Немного делимостей

- 6. Пусть $P(x, x^3) = 0$ для всех вещественных x. Обязательно ли $P(x, y) : (x^3 y)$?
- 7. Многочлен $P \in \mathbb{R}[x,y]$ зануляется во всех точках единичной окружности. Обязательно ли P(x,y) : (x^2+y^2-1) ?
- 8. Многочлен $P \in \mathbb{R}[x,y]$ зануляется во всех точках гиперболы $y = \frac{1}{x}$. Обязательно ли P(x,y):(xy-1)?
- 9. Два многочлена $P,Q \in \mathbb{R}[x,y]$ имеют бесконечно много общих корней. Следует ли из этого, что у них есть общий непостоянных множитель?
- 10. Существует ли многочлен $P \in \mathbb{R}[x,y]$ такой, что $P(x,y)^2 + 1$ делится на $x^2 + y^2 + 1$?

Однородные многочлены

- 11. Пусть однородный многочлен $P \in \mathbb{R}[x,y]$ зануляется хотя бы в одной точке прямой ax + by = 0. Докажите, что P(x,y) : (ax + by).
- 12. Известно, что многочлен $P \in \mathbb{R}[x,y]$ делит однородный многочлен $Q \in \mathbb{R}[x,y]$. Докажите, что P тоже однородный.
- 13. Найдите все вещественные числа a, для которых найдётся такой ненулевой многочлен $P \in \mathbb{R}[x,y]$, что многочлен $P(x^2+y^2,axy)$ делит многочлен $P(x,y)^2$.
- 14. Многочлены $P,Q \in \mathbb{R}[x]$ таковы, что P(x) P(y) делится на Q(x) Q(y). Докажите, что существует многочлен S(x) такой, что P(x) = S(Q(x)).

Задачи с многочленами

- 15. Существует ли многочлен $P \in \mathbb{R}[x,y]$ такой, что $P(\mathbb{R}^2) = \mathbb{R}_{>0}$?
- 16. Существует ли многочлен $P \in \mathbb{R}[x,y]$ такой, что множества $\{(x,y) \mid P(x,y) > 0\}$ и $\{(x,y) \mid x,y > 0\}$ совпадают?
- 17. Про многочлен $P \in \mathbb{R}[x,y]$ известно, что для любого неотрицательного целого числа n каждый из многочленов P(n,y) и P(x,n) имеет степень не выше n. Докажите, что

- степень многочлена P(x,x) чётна.
- 18. Докажите, что для любого чётного числа $n \geqslant 2$ найдётся многочлен степени n, удовлетворяющий условию предыдущей задачи.
- 19. Существует ли функция $g:\mathbb{Q}^2\to\mathbb{Q}$ такая, что для любого рационального числа t функции g(t,y) и g(x,t) совпадают с некоторыми многочленами одной переменной на всём \mathbb{Q} , но сама g не является многочленом?
- 20. Существует ли функция $f: \mathbb{R}^2 \to \mathbb{R}$ такая, что для любого вещественного числа t функции f(t,y) и f(x,t) совпадают с некоторыми многочленами одной переменной на всём \mathbb{R} , но сама f не является многочленом?
- 21. Дано натуральное число d. Найдите все функции $f: \mathbb{R}^2 \to \mathbb{R}$ такие, что для любых вещественных чисел A, B, C, D функция f(At+B, Ct+D) на всём \mathbb{R} совпадает с некоторым многочленом степени не выше d.

Несколько переменных и целые точки

- 22. Даны n пар $(a_1,b_1), (a_2,b_2), \ldots, (a_n,b_n)$ взаимно простых целых чисел. Докажите, что существует однородный многочлен $P \in \mathbb{Z}[x,y]$ такой, что при всех $i=\overline{1,n}$ верны равенства $P(a_i,b_i)=1$.
- 23. Рассмотрим все многочлены $P \in \mathbb{Z}[x,y,z]$, для которых условия P(a,b,c)=0 и a=b=c равносильны. Найдите наибольшее целое число r такое, что для любого такого многочлена и целых чисел m,n число P(n,n+m,n+2m) кратно m^r .