

	Type	L #	Hits	Search Text	DBs
1	BRS	L1	10705	ampoule with (tube or tubing or housing or cylinder or container)	US- PGPUB; USPAT
2	BRS	L2	484	1 and ampoule with (filter or spacer or holder or stopper or plug)	US- PGPUB; USPAT
3	BRS	L3	3	2 and ampoule with end with concav\$9	US- PGPUB; USPAT
4	BRS	L4	3	2 and ampoule with end with (concave or convex)	US- PGPUB; USPAT
5	BRS	L5	5	2 and ampoule with end same (concave or convex)	US- PGPUB; USPAT
6	BRS	L6	572	ampoule with (inside or within) with (tube or tubing or housing or cylinder or container)	US- PGPUB; USPAT
7	BRS	L8	2	7 and ampoule with end same (concave or convex)	US- PGPUB; USPAT
8	BRS	L7	128	6 and ampoule with (filter or spacer or holder or stopper or plug)	US- PGPUB; USPAT
9	BRS	L9	165	1 and (indicator or reagent) with ampoule	US- PGPUB; USPAT
10	BRS	L10	29	7 and (indicator or reagent) with ampoule	US- PGPUB; USPAT
11	BRS	L11	29455	(ampoule or vial) with (tube or tubing or housing or cylinder or container)	US- PGPUB; USPAT
12	BRS	L12	7566	11 and (ampoule or vial) with (filter or spacer or holder or stopper or plug)	US- PGPUB; USPAT
13	BRS	L13	5	2 and (ampoule or vial) with end same (concave or convex)	US- PGPUB; USPAT
14	BRS	L16	35	12 and (ampoule or vial) with end same (concave or convex)	US- PGPUB; USPAT

	Type	L #	Hits	Search Text	DBs
15	BRS	L17	70	11 and (ampoule or vial) with end same (concave or convex)	US- PGPUB; USPAT

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID: ssspta1743bxS

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

NEWS	1	Web Page URLs for STN Seminar Schedule - N. America
NEWS	2	"Ask CAS" for self-help around the clock
NEWS	3 AUG 09	INSPEC enhanced with 1898-1968 archive
NEWS	4 AUG 28	ADISCTI Reloaded and Enhanced
NEWS	5 AUG 30	CA(SM)/CAplus(SM) Austrian patent law changes
NEWS	6 SEP 11	CA/CAplus enhanced with more pre-1907 records
NEWS	7 SEP 21	CA/CAplus fields enhanced with simultaneous left and right truncation
NEWS	8 SEP 25	CA(SM)/CAplus(SM) display of CA Lexicon enhanced
NEWS	9 SEP 25	CAS REGISTRY(SM) no longer includes Concord 3D coordinates
NEWS	10 SEP 25	CAS REGISTRY(SM) updated with amino acid codes for pyrrolysine
NEWS	11 SEP 28	CEABA-VTB classification code fields reloaded with new classification scheme
NEWS	12 OCT 19	LOGOFF HOLD duration extended to 120 minutes
NEWS	13 OCT 19	E-mail format enhanced
NEWS	14 OCT 23	Option to turn off MARPAT highlighting enhancements available
NEWS	15 OCT 23	CAS Registry Number crossover limit increased to 300,000 in multiple databases
NEWS	16 OCT 23	The Derwent World Patents Index suite of databases on STN has been enhanced and reloaded
NEWS	17 OCT 30	CHEMLIST enhanced with new search and display field
NEWS	18 NOV 03	JAPIO enhanced with IPC 8 features and functionality
NEWS EXPRESS		JUNE 30 CURRENT WINDOWS VERSION IS V8.01b, CURRENT MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP), AND CURRENT DISCOVER FILE IS DATED 26 JUNE 2006.
NEWS HOURS		STN Operating Hours Plus Help Desk Availability
NEWS LOGIN		Welcome Banner and News Items
NEWS IPC8		For general information regarding STN implementation of IPC 8
NEWS X25		X.25 communication option no longer available

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 17:32:25 ON 08 NOV 2006

```
=> file caplus inspec compendex
```

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	0.42	0.42

FILE 'CAPLUS' ENTERED AT 17:33:41 ON 08 NOV 2006
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'INSPEC' ENTERED AT 17:33:41 ON 08 NOV 2006
 Compiled and produced by the IET in association WITH FIZ KARLSRUHE
 COPYRIGHT 2006 (c) THE INSTITUTION OF ENGINEERING AND TECHNOLOGY (IET)

FILE 'COMPENDEX' ENTERED AT 17:33:41 ON 08 NOV 2006
 Compendex Compilation and Indexing (C) 2006
 Elsevier Engineering Information Inc (EEI). All rights reserved.
 Compendex (R) is a registered Trademark of Elsevier Engineering Information Inc.

=> s (ampoule or vial or bulb)
 L1 47526 (AMPOULE OR VIAL OR BULB)

=> s (ampoule or vial or bulb) (s) (filter or stopper or holder or plug or spacer
 or grating or grate)
 L2 1280 (AMPOULE OR VIAL OR BULB) (S) (FILTER OR STOPPER OR HOLDER OR
 PLUG OR SPACER OR GRATING OR GRATE)

=> s (ampoule or vial or bulb) (s) (tube or tubing or cylinder or housing or
 container) (s) (filter or stopper or holder or plug or spacer or grating or grate)
 L3 288 (AMPOULE OR VIAL OR BULB) (S) (TUBE OR TUBING OR CYLINDER OR
 HOUSING OR CONTAINER) (S) (FILTER OR STOPPER OR HOLDER OR PLUG
 OR SPACER OR GRATING OR GRATE)

=> s l3 and (indicator or reagent)
 L4 21 L3 AND (INDICATOR OR REAGENT)

=> s l2 and (indicator or reagent)
 L5 65 L2 AND (INDICATOR OR REAGENT)

=> display 15 1-65 ibib abs

L5 ANSWER 1 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 2006:759185 CAPLUS
 DOCUMENT NUMBER: 145:309038
 TITLE: Microfluidic Sequential Injection Analysis in a Short
 Capillary
 AUTHOR(S): Du, Wen-Bin; Fang, Qun; Fang, Zhao-Lun
 CORPORATE SOURCE: Institute of Microanalytical Systems, Department of
 Chemistry, Zhejiang University, Hangzhou, Peop. Rep.
 China
 SOURCE: Analytical Chemistry (2006), 78(18), 6404-6410
 CODEN: ANCHAM; ISSN: 0003-2700
 PUBLISHER: American Chemical Society
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB An automated microfluidic sequential injection anal. system that
 efficiently manipulates sample and reagent solns. in the
 nanoliter range in .apprx.10 s per anal. cycle is described. The system
 consisted of a 6-cm-long, typically 75-μm i.d., fused-silica capillary
 (which functioned as a sampling probe and reactor as well as a
 flow-through detection cell), a horizontally oriented waste reservoir that
 provided liquid level differences for inducing gravity-driven flows, an
 autosampling device holding samples and reagents with

horizontally fixed slotted microvials, and a laser-induced fluorescence detection system. Sample and reagent zones were sequentially introduced via gravity-driven flow by scanning the capillary tip (functioning as the sampling probe) through the vial slots, while vials containing sample, reagent, and carrier were sequentially rotated to the probe by programmed movement of the vial holders. Sequentially injected nanoliter zones were rapidly mixed by convection and diffusion within the carrier flow, demonstrating a behavior that conformed well to the Taylor dispersion model, and zone penetration effects were characterized and optimized under Taylor's dispersion theory guidelines. For the determination of fluorescein, a high throughput of 400 h⁻¹ was achieved, rapidly producing calibration curves (five points) within 45 s. Owing to its adaptability to the Taylor's dispersion model, the system was used also for measuring diffusion coeffs. of fluorescent species. Potentials for using the system in enzyme inhibition assays were demonstrated by a reaction involving the conversion of fluorescein digalactoside to fluorescent hydrolyzates via β-galactosidase and the inhibition of β-galactosidase by diethylenetriaminepentaacetic acid.

REFERENCE COUNT: 30 THERE ARE 30 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 2 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 2003:528033 CAPLUS
 DOCUMENT NUMBER: 139:209188
 TITLE: Method for determination of narcotic, psychotropic and offensive substances of plant and synthetic origin
 INVENTOR(S): Makarov, S. A.; Simonov, E. A.; Makarov, V. G.; Kozlov, A. S.
 PATENT ASSIGNEE(S): Russia
 SOURCE: Russ., 8 pp.
 CODEN: RUXXE7
 DOCUMENT TYPE: Patent
 LANGUAGE: Russian
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
RU 2205385	C2	20030527	RU 2002-103845	20020218
WO 2003071255	A1	20030828	WO 2003-RU19	20030127
			W: AE, AM, AT, AU, AZ, BA, BG, BR, BY, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GE, HR, HU, ID, IL, IN, JP, KG, KP, KR, KZ, LT, LU, LV, MA, MD, MK, MN, MX, NO, NZ, PL, PT, RO, SE, SG, SK, TJ, TM, TR, UA, US, UZ, VC, VN, YU RW: AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR	
AU 2003206276	A1	20030909	AU 2003-206276	20030127
PRIORITY APPLN. INFO.:			RU 2002-103845	A 20020218
			WO 2003-RU19	W 20030127

AB FIELD: anal. chemical; may be applicable for determination of these substances under field conditions. SUBSTANCE: use is made of a set having large test kit including at least 7 vials containing reagents for determination of synthetic narcotics, and a small test kit including at least 2 bottles containing reagents used for determination of narcotics of plant origin, and at least nine plugs-samplers-dispensers. EFFECT: enhanced operativity and trustworthiness of determination

L5 ANSWER 3 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 2003:38945 CAPLUS

DOCUMENT NUMBER: 138:68271
 TITLE: Test kit for the determination of nerve agents and phosphoric esters in aqueous solutions
 PATENT ASSIGNEE(S): Bundesrepublik Deutschland, Vertreten Durch Bundesministerium der Verteidigung, Vertreten Durch Bundesamt fuer Wehrtechnik und Beschaffung, Germany
 SOURCE: Ger. Gebrauchsmusterschrift, 10 pp.
 CODEN: GGXXFR
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 20209105	U1	20030116	DE 2002-20209105	20020612
PRIORITY APPLN. INFO.:			DE 2002-20209105	20020612

AB The invention concerns a test kit for the determination of nerve agents and phosphoric esters in aqueous solns., e.g. drinking water, that is composed of a first carrier with elec. eel acetylcholine esterase coating and a second carrier that is impregnated with acetylthiocholine iodide, 5,5'-dithio-bis-(2-nitrobenzoic acid) and dichlorindophenol sodium salt. Acetylcholine esterase is mixed with an emulsifier and thickening agent and applied to a plastic foil, e.g. Nylon. The carrier for the other reagents is filter paper. The carrier with the enzyme is placed into a glass vial and the reagents-containing filter paper is mounted inside the vial cap.

L5 ANSWER 4 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 2002:275863 CAPLUS
 DOCUMENT NUMBER: 136:295023
 TITLE: Multi-well rotary synthesizer with sealing waste tube system for synthesizing polymer chains
 INVENTOR(S): McLuen, Gary R.
 PATENT ASSIGNEE(S): USA
 SOURCE: PCT Int. Appl., 34 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2002028524	A2	20020411	WO 2001-US30612	20010927
WO 2002028524	A3	20030130		
WO 2002028524	C2	20030530		
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW				
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
AU 2002024339	A5	20020415	AU 2002-24339	20010927
PRIORITY APPLN. INFO.:			US 2000-679142	A 20001003
			WO 2001-US30612	W 20010927

AB An apparatus for synthesizing polymer chains includes a controller, a plurality of precision fit vials circularly arranged in multiple banks on a

cartridge, a drain corresponding to each bank of vials, a chamber bowl, a plurality of valves for delivering reagents to selective vials, and a waste tube system for purging material from the vials. A purging operation can be selectively performed on one or more of the banks of vials. The multiple banks of valves provide an addnl. number of reagent choices while operating in a serial mode and faster reagent distribution while operating in a parallel mode. The plurality of vials are stored in the cartridge and are divided among individual banks wherein each bank of vials has a corresponding drain. There is at least one waste tube system for expelling the reagent solution from vials within a particular bank of vials when the waste tube system is coupled to the corresponding drain. The cartridge holding the plurality of vials rotates relative to the stationary banks of valves and the waste tube system. The controller rotates the cartridge and operates the banks of valves and the waste tube system in response to the required sequence of dispensing various reagent solns. and flushing appropriate vials in order to form the desired polymer chain within each vial. Preferably, the waste tube system includes a drain plug ball within a drain plug and a waste tube with a vertical sliding member. During a flushing procedure, the waste tube is raised so that the vertical member engages the drain plug ball, breaking a seal maintained by the drain plug ball and allowing material to be flushed from the corresponding bank of vials through the waste tube. During all other times, the drain plug ball is forced against an O-ring by a spring in order to maintain the seal within the drain plug.

L5 ANSWER 5 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2001:693178 CAPLUS
 DOCUMENT NUMBER: 135:238912
 TITLE: Automated specimen processing apparatus with fluid detection
 INVENTOR(S): Kalra, Krishan L.; Zhang, Jason; Bahl, Suneet
 PATENT ASSIGNEE(S): Biogenex Laboratories, USA
 SOURCE: PCT Int. Appl., 70 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001068259	A1	20010920	WO 2001-US8386	20010315
W: JP, US				
RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR				
EP 1284823	A1	20030226	EP 2001-922413	20010315
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR				
PRIORITY APPLN. INFO.:			US 2000-189815P	P 20000316
			WO 2001-US8386	W 20010315

AB An automated specimen processing apparatus for dispensing a reagent onto a mounted specimen comprising a support framework, at least one reagent vial holder movable arm, multifunction Z head. The device also includes a dispensing means that comprises at least one reagent tip head, first control means for positioning the tip head, means for withdrawing fluid from the vial, and a second control means to detect the fluid level in the reagent vial. Diagrams describing the apparatus are given.

REFERENCE COUNT: 13 THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 6 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 2000:824380 CAPLUS
 DOCUMENT NUMBER: 134:2304
 TITLE: Metal chelating filters and metal chelate filters
 INVENTOR(S): Kachab, Edward Hanna; Barnett, Graeme Ross; Smith, Martin
 PATENT ASSIGNEE(S): Panbio Ltd, Australia; Whatman International Limited
 SOURCE: PCT Int. Appl., 43 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2000070012	A1	20001123	WO 2000-AU477	20000515
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
EP 1183327	A1	20020306	EP 2000-926556	20000515
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				

PRIORITY APPLN. INFO.: AU 1999-343 A 19990514
 WO 2000-AU477 W 20000515

AB A method of making a metal chelate filter or metal chelating species filter includes the following step of: treating a filter having a pore size of 0.01 to 1000 μ and accessible functional groups with a metal chelate or metal chelating species to provide the metal chelate filter or metal chelating filter species. Sheets of GF/F glass microfiber filters were functionalized with 3-aminopropyltriethoxysilane, reacted with Fmoc α -aminocaproic acid, deprotected, reacted with nitrilotriacetic acid, and complexed with zinc sulfate. The filters were used in assays and immunoassays and to capture proteins.

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 7 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 2000:765794 CAPLUS
 DOCUMENT NUMBER: 134:357541
 TITLE: Evaluation of a container closure integrity test model using visual inspection with confirmation by near infrared spectroscopic analysis
 AUTHOR(S): Birrer, Gregory A.; Liu, Jie; Halas, John M.; Nucera, George G.
 CORPORATE SOURCE: Baxter Pharmaceutical Products Inc., New Providence, NJ, 07974, USA
 SOURCE: PDA Journal of Pharmaceutical Science and Technology (2000), 54(5), 373-382
 CODEN: JPHTEU; ISSN: 1076-397X
 PUBLISHER: PDA, Inc.
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB The objective of this study was to evaluate a novel test model involving an easy and rapid method to assess parenteral container/closure integrity. In this study, an extremely hygroscopic powder (methacholine chloride) was filled into the test vial/closure combination and served as an

indicator of water vapor ingress into the package through either the stopper/glass interface and/or permeation through the closure. A visual means of detection was used initially, as the powder liquefies upon contact with a high-humidity environment. A further level of sensitivity was gained by using Near Infra-Red (NIR) spectroscopy to confirm that no addnl. water vapor was detectable in the test vials after being subjected to autoclave (worst-case water ingress) treatments. After two sequential autoclave cycles, none of the samples in the pilot study showed liquefaction of the indicator powder. This indicated that there was negligible ingress of water vapor, and therefore, the container/closure combination provided an adequate barrier to moisture ingress at the stress temperature and pressure conditions studied. The sensitivity of the NIR water ingress detection method was shown to be in the range needed for an acceptable vial integrity test. In conclusion, the model evaluated in this study can be used as an easy, rapid, and non-destructive closure integrity evaluation test. The use of such a NIR spectroscopy method would be immediately and directly amenable to the evaluation of vial integrity of dry powder-filled and lyophilized products, or can be used indirectly as shown in this study to assess container closure integrity for liquid-filled parenteral vial closure systems.

REFERENCE COUNT: 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 8 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1998:747767 CAPLUS
DOCUMENT NUMBER: 129:339125
TITLE: Portable analysis apparatuses for field measurements
AUTHOR(S): Kicinski, Heinz Guenter
CORPORATE SOURCE: Paderborn, D-33104, Germany
SOURCE: CLB Chemie in Labor und Biotechnik (1998), 49(11), 429-430, 431-433
CODEN: CCLBEW; ISSN: 0722-6764
PUBLISHER: Umschau Zeitschriftenverlag Breidenstein
DOCUMENT TYPE: Journal; General Review
LANGUAGE: German
AB A review with no refs. on the title subject covering equipments based on photometric procedures, reflectometry test sticks, and mobile GC, LC, and MS devices. The photometric devices include: photometry with readily prepared test reagents, photometric water anal. with vacuum ampoules, photometers with program chips, photometers with automatic filter choice and memory system, and programmable photometers.

L5 ANSWER 9 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1994:498561 CAPLUS
DOCUMENT NUMBER: 121:98561
TITLE: Accuracy in standards preparation for neutron activation analysis
AUTHOR(S): Greenberg, R. R.
CORPORATE SOURCE: Chem. Sci. Technol. Lab., Natl. Inst. Standards Technol., Gaithersburg, MD, 20899, USA
SOURCE: Journal of Radioanalytical and Nuclear Chemistry (1994), 179(1), 131-9
CODEN: JRNCMD; ISSN: 0236-5731
DOCUMENT TYPE: Journal; General Review
LANGUAGE: English
AB Errors in preparing stds., especially multielemental stds., are reviewed. They are

extremely important if accurate results are desired from neutron activation anal. (NAA). It is often convenient to prepare stds. for NAA from single or multi-element solns. which are then deposited onto (or

into) a suitable matrix, such as filter paper or quartz vials. There are many potential sources of error in preparing single-element stds. including: impurities and nonstoichiometric composition of the element or compound used to prepare the standard solns.; evaporative losses of

solvent; inaccuracy of calibration, and imprecision of the pipets used; moisture content of elements or compds. used; contamination from reagents, equipment, laboratory environment, or final matrix of the standard; instability of standard solns. (losses via precipitation or adsorption), and

losses of volatile elements during dissoln. and/or irradiation. Addnl. sources of error in preparing multielement stds. include: instability of mixed multielement solns. and cross-contamination of 1 element by the addition of a 2nd element. Procedures previously used by the author at NIST to prepare multielement stds. with concns. accurate to .apprx.1% are described. Addnl. techniques needed to prepare multielement stds. with accuracies better than 1% is discussed.

L5 ANSWER 10 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1992:488859 CAPLUS

DOCUMENT NUMBER: 117:88859

TITLE: Bacteriological testing of raw milk with firefly luciferase

AUTHOR(S): Schram, E.; Weyens-Van Witzenburg, A.

CORPORATE SOURCE: Vrije Univ. Brussel, St. Genesius-Rode, 1640, Belg.

SOURCE: Biolumin. Chemilumin. Proc. Int. Symp., 6th (1991), Meeting Date 1990; 503-6. Editor(s): Stanley, Philip E.; Kricka, Larry J. Wiley: Chichester, UK.

CODEN: 57NVA4

DOCUMENT TYPE: Conference

LANGUAGE: English

AB In the standard procedure, 0.5 mL of milk is mixed with 0.5 mL of buffer containing Triton and apyrase to remove somatic ATP, and incubated at 40° for 5 min. The mixture is then filtered in a prewarmed manifold conceived to accommodate six samples in parallel, and washed three times with 1 mL of prewarmed buffer. The filters are subsequently transferred to luminescence vials, suspended in 200 µL luciferin/luciferase reagent, and the vials introduced in the six-sample holder of a LUMICON luminometer. After counting of residual ATP, 100 µL of bacterial extractant is automatically injected and countings are resumed. The assay is finalized by the automatic injection of 100 µL of standard ATP. Specific software was developed that takes care of the automatic injection and of the calcn. of the results, including the dilution effect produced by the addition of bacterial extractant and ATP standard. Using the procedure described above, over 150 milk samples were analyzed whose bacterial contents ranged from 15,000 to 1.5 million bacteria/mL. The correlation coefficient between CFU's (colony forming units) and luminescence was 0.80. This correlation coefficient was lower when the figures for residual ATP were not taken into account. No significant effect was observed on the filtration properties of milk due to the number of somatic cells (0.7 + 10⁵ - 1.5 + 10⁶ cells/mL), fat content (3.3-6.7%), protein content (2.8-3.5%) or aging for up to three days. The standard deviation of repeated measurements was 10% at the level of 10⁵ bacteria/mL. This was further checked by showing that the addition of 20,000 bacteria to such samples could easily be detected. Further standardization of this procedure and a more stringent control of temperature during filtration would probably still improve results, but the possibility now exists to detect 10-20,000 bacteria/mL in raw milk with the procedure described in this paper.

L5 ANSWER 11 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1989:150942 CAPLUS

DOCUMENT NUMBER: 110:150942
 TITLE: Reagent and method for detecting cells with phagocytic activity
 INVENTOR(S): Polgar, Katalin; Abel, Gyorgy; Harsanyi, Ilona; Nagy, Laszlo; Sipka, Sandor; Vaszari, Edit; Daroczi, Ivan; Papp, Zoltan
 PATENT ASSIGNEE(S): Reanal Finomvegyszergyar, Hung.
 SOURCE: PCT Int. Appl., 14 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 8807583	A1	19881006	WO 1988-HU15	19880322
W: AU, BB, BG, BR, DK, FI, JP, KP, KR, LK, MC, MG, MW, NO, RO, SD, SU, US				
RW: AT, BE, CH, DE, FR, GB, IT, LU, NL, SE				
HU 46145	A2	19880928	HU 1987-1340	19870327
HU 197450	B	19890328		
AU 8814885	A1	19881102	AU 1988-14885	19880322
EP 345295	A1	19891213	EP 1988-902576	19880322
R: AT, BE, CH, DE, FR, GB, IT, LI, LU, NL, SE				
PRIORITY APPLN. INFO.:			HU 1987-1340	A 19870327
			WO 1988-HU15	A 19880322

AB The invention relates to a neutral red-containing reagent solution for detecting cells with phagocytic activity. The reagent solution according to the invention comprises lysozyme 0.1-0.25, neutral red 0.2-0.8, NaCl 0.8-2.0, saccharide 0.1-0.3, and optionally a preservative 0.02-0.6 weight% in an aqueous solution with a pH of 3.0-8.0, preferably 3.5-5.0.

The invention also relates to a method for detecting cells with phagocytic activity by utilizing a reagent solution of the above composition. A reagent kit was prepared from the following solns.: (1) reagent solution: 0.1 g polyvinyl alc. was dissolved in 45 mL hot distilled water, the solution was cooled to room temperature, and then NaCl 0.8, glucose 0.1, BzOH 0.02, and lysozyme 0.1 g were added. The pH of the resulting solution was adjusted to 6.9 with 1M Tris buffer and then diluted to a final volume of 50 mL with distilled water. A solution of 0.2 g neutral red in

50 mL distilled water was added to the above solution, the mixture was well stirred, sterilized by passing through a G-5 sintered glass filter, and the filtrate was dispensed into vials each containing 1 mL of the solution. (2) Washing-diluting solution: NaCl 4, KCl 0.2, MgSO₄.7H₂O 0.1, CaCl₂.2H₂O 0.09, of Na₂HPO₄.2H₂O 0.03, KH₂PO₄ 0.03, and glucose 0.5 g were dissolved in 350 mL distilled water, and then 0.1 g BzOH was added to the solution. The resulting solution was admixed with a solution of 0.175 g NaHCO₃ in

12.5 mL distilled water. The mixture was well stirred, and the pH of the resulting solution (Hank's solution) was adjusted to 7.3 with 5 mL of a 1M aqueous

solution of N-hydroxyethyl-piperazine-N'-2-ethanesulfonic acid. The volume of the resulting solution was adjusted to 500 mL with distilled water, the solution

was sterilized by passing through a G-5 sintered glass filter, and the filtrate was dispensed into vials each containing 5 mL of the solution. Amniotic fluid 5 mL was admixed with 1 vial (1 mL) of the reagent solution. The mixture was incubated for 15 min, then centrifuged, the supernatant was discarded, and the sediment was admixed

with 0.5-2.0 mL of the washing-diluting solution. The stained sample was examined in a Buerker chamber.

L5 ANSWER 12 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1987:470938 CAPLUS
DOCUMENT NUMBER: 107:70938
TITLE: One-tube radiotransinassay for determination of cortisol at ambient temperature
AUTHOR(S): Murphy, Beverley E. Pearson; Barta, Alice
CORPORATE SOURCE: Reprod. Physiol. Unit, Montreal Gen. Hosp., Montreal, QC, H3G 1A4, Can.
SOURCE: Clinical Chemistry (Washington, DC, United States) (1987), 33(7), 1137-40
CODEN: CLCHAU; ISSN: 0009-9147
DOCUMENT TYPE: Journal
LANGUAGE: English

AB After extraction of the sample (on filter paper) in the counting vial, cortisol is assayed by adding 50 µL of horse serum containing tritiated cortisol, and 2 mL of toluene scintillator, shaking for 20 min, and counting the radioactivity in a liquid-scintillation counter at ambient temperature. The method can be applied to saliva, serum, or urine, directly as wet samples or dried on the filter paper. Only inexpensive reagents, which are stable for months to years, are needed.

L5 ANSWER 13 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1987:192160 CAPLUS
DOCUMENT NUMBER: 106:192160
TITLE: Microdiffusion and spectrophotometric determination of fluoride in biological samples
AUTHOR(S): Culik, Boris
CORPORATE SOURCE: Inst. Meereskunde, Kiel, 2300, Fed. Rep. Ger.
SOURCE: Analytica Chimica Acta (1986), 189(2), 329-37
CODEN: ACACAM; ISSN: 0003-2670
DOCUMENT TYPE: Journal
LANGUAGE: English
AB Routine separation of fluoride from large nos. of biol. samples (soft and hard tissues) is achieved by microdiffusion from HClO₄ and absorption by NaOH on filter paper in disposable polypropylene vials. Spectrophotometry with a modified La/alizarin complexone reagent allows rapid determination of fluoride. Up to 80 samples can be processed per day. Recoveries are in the range 88-102%. Results obtained by spectrophotometry and with the fluoride-sensitive electrode agree within 3-10% for various samples of krill (*Euphausia superba*) and shrimp (*Crangon crangon*) products.

L5 ANSWER 14 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1985:58525 CAPLUS
DOCUMENT NUMBER: 102:58525
TITLE: Radioactive cobalt complexes for diagnosis
PATENT ASSIGNEE(S): Nihon Medi-Physics Co., Ltd., Japan
SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp.
CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 59164796	A2	19840917	JP 1983-38621	19830309
PRIORITY APPLN. INFO.:			JP 1983-38621	19830309

AB Radiopharmaceuticals containing Co complexes or Co oxo complexes with ethylenediamine-N,N-diacetic acid, ethylenediamine-N,N'-diacetic acid or propylenediamine-N,N-diacetic acid are described for use as reagents for diagnosis of cancer, inflammation, etc. Thus, ethylenediamine-N,N-diacetic acid (35.2 mg) in 1 mL pyrogen-free water was adjusted to pH .apprx.7.0, passed through filters with a pore size of 0.22 μ m, and filled into vials. To this was added $^{57}\text{CoCl}_2$ (130 μCi) to form a ^{57}Co -ethylenediamine-N,N-diacetic acid complex for use in diagnosis. After i.v. administration of 10 μCi of the radioactive complex to rats with transplanted Ehrlich ascites carcinomas, the highest radioactivity was found in kidneys, followed by carcinoma, liver, stomach, small intestine, spleen, and muscle.

L5 ANSWER 15 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1985:12177 CAPLUS
DOCUMENT NUMBER: 102:12177
TITLE: Apparatus of ozonized water for ozone therapy with a shower
INVENTOR(S): Lobo Assumpcao, Paulo Roberto dos Santos; De Oliveira, Caio Maranhao
PATENT ASSIGNEE(S): Brazil
SOURCE: Braz. Pedido PI, 13 pp.
CODEN: BPXXDX
DOCUMENT TYPE: Patent
LANGUAGE: Portuguese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
BR 8300027	A	19840814	BR 1983-27	19830105
PRIORITY APPLN. INFO.:			BR 1983-27	19830105

AB The title apparatus comprises a rectangular box of inoxidizable steel or anodized Al connected by a flexible Cr-plated metal tube with a plastic or metal showerhead. A filter (Cr-plated metal or plastic) with activated charcoal is linked to the water outlet. The box contains a elec. key switch, a fuse holder, a small 1-amp fuse, a pilot light bulb and a voltage indicator for 110 and 220 V. The apparatus transforms O₂ into O₃ by means of elec. charges, and mixes O₃ gas with water for use in ozone therapy.

L5 ANSWER 16 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1982:198598 CAPLUS
DOCUMENT NUMBER: 96:198598
TITLE: Conducting organic chemistry experiments by the semimicromethod
AUTHOR(S): Bondareva, K. G.; Afon'kin, E. V.
CORPORATE SOURCE: Pedagog. Inst., Ryazan, USSR
SOURCE: Khimiya v Shkole (1982), (2), 56-7
CODEN: KHSHAY; ISSN: 0368-5632
DOCUMENT TYPE: Journal
LANGUAGE: Russian
AB An outline is presented on conducting laboratory expts. in organic chemical using semimicromethods to minimize excessive wastes in chemical reagents. A wooden holder (400 + 200 + 30 mm) with holes (2.5 mm diameter) carrying testtubes, vials, flasks, and bottles and supplied with other necessary materials such as filter paper is made and used by students to carry out expts. with minimal amts. of reagents. Several examples are given on different laboratory expts. The method is especially recommended for students of rural and agricultural schools.

L5 ANSWER 17 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1981:564992 CAPLUS
 DOCUMENT NUMBER: 95:164992
 TITLE: Biochemical aspects of ram sperm viability
 AUTHOR(S): Van Eerten, M. T. W.; Forrester, I. T.
 CORPORATE SOURCE: Dep. Biochem., Univ. Otago, Dunedin, N. Z.
 SOURCE: Proceedings of the New Zealand Society of Animal Production (1980), 40, 130-5
 CODEN: PZAPAD; ISSN: 0370-2731
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Prior to studies on the cryopreservation of ram semen, a quant. radioassay was developed to measure Ca²⁺ fluxes in ram sperm as an indicator of sperm viability. Thus, sperm were separated by centrifugation, washed by centrifugation in sucrose buffer (0.25M sucrose, 5.0 mM HEPES-Tris, pH 7.4) containing 1.0 mM EDTA-Tris, washed with sucrose buffer, and resuspended in buffer. To determine Ca²⁺ accumulation, 0.1 mL sperm suspension was preincubated with 1.8 mL sucrose buffer containing 0.5 mM K phosphate for 1 min at 37°, and then 0.1 mL buffer containing 5.0 mM CaCl₂ and 10 μCi/mL ⁴⁵CaCl₂ was added. Samples (0.1 mL) were removed at interval, added to 0.16 mL ice-cold sucrose buffer containing 2.0 mM EGTA-Tris, filtered through glass-fiber filters, washed, and the filters were dried and placed in vials for liquid scintillation counting. Intact motile sperm were largely impermeable and accumulated only low levels of Ca²⁺ (50-100 nmol Ca²⁺/10⁹ sperm). Exposure to conditions which altered plasmalemma integrity, e.g. cold shock, hypotonic media, and filipin, resulted in a rapid and large accumulation of Ca²⁺ (1200-1500 nmol Ca²⁺/10⁹ sperm).

L5 ANSWER 18 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1981:12500 CAPLUS
 DOCUMENT NUMBER: 94:12500
 TITLE: CI Mass spectrometric analysis of physiologically active compounds
 INVENTOR(S): Mee, John M. L.; Halpern, Berthold; Korth, John
 PATENT ASSIGNEE(S): Australia
 SOURCE: U.S., 7 pp.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 4224031	A	19800923	US 1977-851666	19771115
PRIORITY APPLN. INFO.:			US 1977-851666	A 19771115

AB Compds. in biol. fluids are analyzed by including in the sample an analog of the compound of interest which differs in having an unnatural isotopic distribution. The combined analyte and analog are derivatized (if required), subjected to chemical protonation, and analyzed mass spectroscopically. The analyte is determined by determining the ratio of ≥1 of the major peaks of the analyte and its analog. In 1 example, a cholesterol analog, [2,2,3,4-2H₄]cholesterol was prepared according to Diekman and Djerassi (1967). CHCl₃-MeOH (200 μL, 2:1), the cholesterol analog (5 μg in 5 μL CHCl₃), and a dry blood spot (filter paper disk containing 5 μL) were added to a reaction vial. The vial contents were mixed ultrasonically, the filter paper disk was removed, the solution was evaporated, and the residue was dissolved in 25 μL hexane. The resulting solution was divided into 2 parts and analyzed mass spectroscopically with or without treatment with

NaOMe. Chemical-ionization mass spectroscopy was performed with isobutane (0.5-1.0 torr) as reagent gas, source temperature of 200°, and electron beam energy of 70 eV. Mass spectra for free cholesterol were recorded at 140-60°. Cholesterol was determined by comparing the spectral line intensity of [2,2,3,4-2H4]cholesterol at m/e 373 with that of unlabeled cholesterol at m/e 369. Cholesterol detns. by the mass spectroscopic method agreed closely with those by an enzymic method, and similar results were obtained with unsaponified and saponified blood samples. Other examples describe amino acid and fatty acid determination

L5 ANSWER 19 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1980:2776 CAPLUS
DOCUMENT NUMBER: 92:2776
TITLE: A simple and sensitive nonradioactive method for the detection of urinary human chorionic gonadotropin and diagnosis of early human pregnancy. II. Single-unit test
AUTHOR(S): Banik, Upendra K.; Hirsch, Michael A.; Irvine, Douglas S.; Krupey, John; Hurwitz, Arthur; Singh, Kartar; Wetzel, Jon; Givner, Morris L.
CORPORATE SOURCE: Ayerst Res. Lab., Montreal, QC, H3C 3J1, Can.
SOURCE: Fertility and Sterility (1979), 32(4), 426-32
CODEN: FESTAS; ISSN: 0015-0282
DOCUMENT TYPE: Journal
LANGUAGE: English
AB This unit, the Ayerst pregnancy test kit (APTK), consists of 4 components: a sampler-filter paper cone, an ultrafilter-concentrator to which a vial holder is attached, a support stand with a mirror, and an immunol. reagent vial. In the APTK, 5-6 mL urine were sampled, filtered, concentrated, and the human chorionic gonadotropin (hGC) in the retentate was detected by Ayerst immunol. reagents [APTK(AY)] and by the Pregnosticon All In [APTK(P)]. Some of the unconcd. urine samples (0.1 mL) were also tested in hemagglutination inhibition tests (HIT) using Ayerst [HIT(AY)] and Pregnosticon All In [HIT(P)] reagents. Urine samples from pregnant, nonpregnant (ovulating and nonovulating), perimenopausal, and menopausal women were tested. APTK(AY) and APTK(P) were more sensitive and reliable than the HIT(AY) and HIT(P) in detecting low levels of urinary hCG for early diagnosis of pregnancy. The sensitivity and specificity of the APTK(AY) were better than those of the APTK(P). The APTK(AY) gave more correct pos. and neg. results than the other tests performed simultaneously. The APTK(AY) is simpler and safer than the serum radioimmunoassays and radioreceptor assay presently used to detect low levels of hCG for the early diagnosis of pregnancy and other hCG-producing states.

L5 ANSWER 20 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1970:484445 CAPLUS
DOCUMENT NUMBER: 73:84445
TITLE: "Kit" for preparation of high specific-activity technetium-99m albumin for cisternography and blood-pool imaging
AUTHOR(S): Cooper, James F.; Stern, Howard S.; Deland, Frank H.
CORPORATE SOURCE: Div. of Nucl. Med., Johns Hopkins Med. Inst., Baltimore, MD, USA
SOURCE: Radiology (Oak Brook, IL, United States) (1970), 95(3), 533-7
CODEN: RADLAX; ISSN: 0033-8419
DOCUMENT TYPE: Journal
LANGUAGE: English
AB A four-unit kit consisting of (a) a vial of 0.1N NaOH, (b) a vial of 0.25N HCl, (c) a reaction vial containing a solution of

4 mg FeCl₃.6H₂O and Na ascorbate equivalent to 10 mg ascorbic acid, and (d) a filter vial containing 1 g of anion-exchange resin has been used to prepare sterile, high specific-activity ⁹⁹Tcm-labeled albumin in less than 30 min. After the ⁹⁹Tcm-containing NaTcO₄ was reduced in the presence of acidified Fe and ascorbate, the reaction mixture was made slightly basic to form ⁹⁹Tcm-Fe complexes with ascorbate oxidation products. Following addition of human serum albumin, the reaction mixture was acidified to approx. pH 2 for labeling of the ⁹⁹Tcm activity to the albumin. Sterile, disposable syringes are used in the transfer or addition of all components. A patient injected for radionuclide cisternography receives no more than 0.1 mg Fe and 4 mg protein. The binding efficiency of the clinical preparation ranged from 85 to 93%. In cisternography and scanning, no adverse effects related to the use of the kit were observed.

L5 ANSWER 21 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1968:119243 CAPLUS
DOCUMENT NUMBER: 68:119243
TITLE: Modification of the microdiffusion method for ammonia determination
AUTHOR(S): Lyubimov, V. I.; L'vov, N. P.; Kirsteine, B.
CORPORATE SOURCE: A. N. Bakh Inst. Biochem., Moscow, USSR
SOURCE: Prikladnaya Biokhimiya i Mikrobiologiya (1968), 4(1), 120-1
CODEN: PBMIAK; ISSN: 0555-1099
DOCUMENT TYPE: Journal
LANGUAGE: Russian
AB Transfer a 1-ml. sample to a glass vial (18-20 ml. capacity). Add 1 ml. saturated K₂CO₃ solution. Cover the vial immediately with a stopper with glass rod, whose ground surface (2 cm. long) was moistened with 0.2 ml. of N H₂SO₄. Diffuse NH₃ for 1 hr. at 37° by rotating (100 rpm.). Transfer the sample on the glass rod into another vessel containing 5 ml. doubly-distilled H₂O and 0.5 ml. of Nessler reagent. After 30 min. measure the absorbance at 413 mμ. Use as standard a solution of (NH₄)₂SO₄. Prepare Nessler reagent by dissolving 34.9 g. KI in redistd. H₂O, and adding 45.5 g. HgI₂. Sep. dissolve 112 g. KOH in 150 ml. of redistd. H₂O. Combine both solns., and dilute to 1 l. with redistd. H₂O. Leave the solution overnight in the cold. Filter off the precipitated deposit on glass filter Number 3. The method permits determination of 2-50 γ of NH₃ with an error ±0.5 γ, in the presence of amides.

L5 ANSWER 22 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1967:440961 CAPLUS
DOCUMENT NUMBER: 67:40961
TITLE: Avidin assay: a new procedure for tissue fractions
AUTHOR(S): O'Malley, Bert W.; O'malley, Bert W.
CORPORATE SOURCE: Natl. Cancer Inst., Natl. Inst. of Health, Bethesda, MD, USA
SOURCE: Biochimica et Biophysica Acta, Protein Structure (1967), 140(1), 174-6
CODEN: BBPTBH; ISSN: 0005-2795
DOCUMENT TYPE: Journal
LANGUAGE: English

AB A standard curve is constructed at several avidin (I) concns. for each assay. Reagents and I samples are diluted with 0.2M (NH₄)₂CO₃. The reaction mixture is D-biotin-carboxyl-¹⁴C plus standard or unknown in a final volume of 0.6 ml. After 10 min. at 23°, 1 ml. (NH₄)₂CO₃ containing 10 mg. bentonite is added. After 5 min., the suspension is filtered with suction on a Millipore filter, and the residue is washed once. Unbound biotin passes through the filter. The filter containing the bentonite-I-biotin-¹⁴C is dissolved in a counting vial in 10 ml.

Bray's solution, leaving a bentonite sediment. Radioactivity is measured in an appropriate liquid scintillation spectrometer. Measurement of the electrophoretic mobility of the biotin-binding activity of chick oviduct supernatant fractions by acrylamide-gel electrophoresis revealed that the mobility of the biotin-binding activity was similar to that of authentic I. Also, comparison of the radioactivity bound by electrophoresis and by a standard assay showed that all the oviduct biotin-binding activity had the mobility of I, so that there could have been no other binding protein in the supernatant fraction.

L5 ANSWER 23 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1965:461952 CAPLUS
DOCUMENT NUMBER: 63:61952
ORIGINAL REFERENCE NO.: 63:11255c-e
TITLE: Spectrophotometric estimation of alliin in Allium species
AUTHOR(S): Gaind, K. N.; Dar, R. N.; Popli, S. D.
CORPORATE SOURCE: Univ. Panjab
SOURCE: Indian Journal of Pharmacy (1965), 27(7), 199-200
CODEN: IJPAAO; ISSN: 0019-5472
DOCUMENT TYPE: Journal
LANGUAGE: English

AB To determine alliin (I) (Cavallito and Bailey, CA 39, 3239) in Allium, inactivate the enzyme [Atal and Sethi (CA 56, 1524i) recommend 10 min. immersion of the whole bulbs in H₂O at 100°; blanching with steam may be used], extract 10 g. of stabilized bulb with 40 ml. aqueous 70% EtOH by homogenizing in a Waring blender, filter the mixture, dilute the filtrate to 40 ml. with 70% EtOH, apply a 0.04 ml. aliquot of the extract, along with I standards (in 70% EtOH), on a sheet of Whatman Number 1 paper, chromatograph at 25° in BuOH-HOAc-H₂O (40:10:50) solvent for 24 hrs. (R_f of I = 0.29), spray the chromatograms with 0.25% ninhydrin solution, dry in air at 25° extract the I spots with MeOH condensate (above 8 ml. refluxing MeOH) for 5-6 hrs., cool, add 2 ml. 0.25% recrystd. alloxan (in MeOH), adjust the volume to 10 ml. with MeOH, evaporate the solns. to dryness on a 100° bath, cool, dissolve the viscous residue with 10 ml. H₂O, and measure the absorbance at 520 m μ vs. a reagent blank Prepare the standard curve by using 40-200 γ I (in MeOH). Beer's law is obeyed for 5-20 γ I/ml. White garlic, red garlic, and Allium species contain 0.76, 0.57, and 0.07% I, resp. Four γ I can be detected.

L5 ANSWER 24 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1965:456283 CAPLUS
DOCUMENT NUMBER: 63:56283
ORIGINAL REFERENCE NO.: 63:10308f-g
TITLE: Detection of phospholipids on paper chromatograms by neutron activation
AUTHOR(S): Johnson, Peter; Weber, Evelyn J.; Carter, H. E.; Krober, M. S.
CORPORATE SOURCE: Univ. of Illinois, Urbana
SOURCE: Journal of Lipid Research (1965), 6(3), 425-7
CODEN: JLPRAW; ISSN: 0022-2275
DOCUMENT TYPE: Journal
LANGUAGE: English

AB After chromatographic development for 18-24 hrs. in BuOH:AcOH:H₂O (4:1:5, upper phase) on Whatman Number 1 filter paper, 1 5/8 in. strips containing corn phosphatides were cut out and placed in glass irradiation vials. The strips were then subjected to a thermal neutron flux of 2 X 10¹² neutrons/sec./cm.² at 250 kw. for 7 hrs., and allowed to decay for 48 hrs. The ³²P induced in phospholipid spots was then determined with a scanner; pretreating the paper with HCHO reduced the radioactive background.

L5 ANSWER 25 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1964:468034 CAPLUS
DOCUMENT NUMBER: 61:68034
ORIGINAL REFERENCE NO.: 61:11753d-h,11754a-d
TITLE: Micro- and semimicroanalysis of mineral waters. I
AUTHOR(S): Ghimicescu, Gh.; Musteata-Ghimicescu, Camelia;
Dumbrava, Elvira
CORPORATE SOURCE: Inst. Med., Iasi, Rom.
SOURCE: Studia Universitatis Babes-Bolyai, Chemia (1963),
8(1), 281-44
CODEN: SUBCAB; ISSN: 1224-7154

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB The applicability of some micro- and semimicro methods for determining Na+, K+, F-, and I-, in mineral waters was investigated. For determining Na+ the precipitation

as triple Mg-UO2-Na acetate was applied by the following method: dissolve UO2(AcO)2 (10 g.) in distilled water (50 cc.) containing AcOH (2 cc.), and Mg(AcO)2 (30 g.) in distilled water (50 cc.) containing AcO (1 cc.), using in both eases a water bath; mix. the solns. while hot, cool, and add 96° alc. (400 cc.) to render the solution 80% alc., leave several hrs., and keep in brown bottles. Add 5% NH4ClO4 (5 cc. exactly) to an equal aliquot of mineral water (diluted to <0.2 mg. Na+/cc.) in centrifuge test tube, leave for 30 min., centrifuge, transfer small aliquot (0.2-1.0 cc.) to other centrifuge test tube, add Mg-UO2 reagent (10 cc.), stir with glass rod washed with addnl. reagent (2 cc.), leave for 30 min., centrifuge, decant mother liquor, wash precipitate twice with 96° alc. saturated with triple salt (3 cc. each), centrifuge and decant each time, dissolve precipitate in distilled water (4-5 cc.) leaving the insol. copptd. UO2-phosphate, stir with glass rod washed with (1 cc.) water, centrifuge, decant clear solution into calibrated flask (50 cc.), repeat the digestion 3 times, then complete with water, homogenize, take aliquot (10 cc.) to identical flask, add AcOH (0.5 cc.), 20% K4Fe(CN)6 (1 cc.), complete with water, homogenize, and determine colorimetrically the UO2 group; the sensitivity of the sample was 10 γ in 5 cc. sample, and the error was ≤ ± 1.5% in mineral waters containing 55-116 γ/5 cc.

For determining K+, the precipitation as Na-K-cobaltinitrite was applied by the following method: dissolve crystallized Co(NO3)2 (20 g.) in distilled water (50 cc.) and add AcOH (1 cc.), dissolve NaNO2 (120 g.) in distilled water (180 cc.), and add part of the 2nd solution (210 cc.) to the 1st, pass air by, means of vacuum pump through the solution until elimination of nitrous oxides produced, and keep in well stoppered bottles. To a sample of mineral water (5 cc.) freed of H2S by bubbling of H2 (from a Kipp apparatus) in a centrifuge test tube, add an equal volume of 10% Na2CO3, homogenize, centrifuge (elimination of Ca and Mg), take aliquot (4 cc.) to other test tube, add AcOH (0.5 cc.) and reagent (5 cc.), agitate with glass rod washed with distilled water (1 cc.), leave for 45 min., centrifuge 30 min. at 1300-1500 revolutions/min., remove carefully most of the liquid by capillary coupled to suction pump leaving precipitate untouched (+0.3 cc. liquid), add along walls 1% Al2(SO4)3 (3 cc.) from the precipitate up, centrifuge, remove solution with capillary and repeat washes 3 times taking care not to agitate the precipitate, add 5% Na3PO4 (3 cc.) to the precipitate, agitate

strongly with glass rod washed with distilled water (1 cc.), heat several min. in boiling brine bath, centrifuge 5 min., transfer liquid containing NO2 group to calibrated flask, (20 cc.), repeat digestion of Co-phosphate precipitate

with 5% Na3PO4 (3 cc.) 3 times, collect extracts and complete with water, take aliquot (5 cc.), add equal volume of 0.02N KMnO4 and equal volume of 20% H2SO4, heat 5 min. in boiling brine bath, cool, add 10% KI (5 cc.), leave in dark for 3 min., and titrate with 0.01N Na2S2O3 in the presence of

starch. The sensitivity was 20 γ in 5 cc. sample, the error being $\pm 1.2\%$ for mineral water containing 55.6-145.9 γ K+/5 cc. sample. For determining F-, the distillation of F2 at 135° after elimination of the halogens and titration of the distillate at pH 3.00-3.05 with Th(NO3)4 0.002N solution was applied. Free a large sample of mineral water (50-250 cc.) from H2S as above, evaporate in Pt dish (to 5 cc.), transfer quant. to calibrated flask (50 cc.) by distilled water (5-15 cc.), add saturated Ag lactate

solution for the complete precipitation of Cl-, complete with bidistd. water, filter, transfer aliquot (5-25 cc.) to distillation bulb of Parnas-Wagner steam distillation apparatus, wash the funnel used with bidistd. water

(1-2 cc.) adding to same bulb, add to bulb concentrated HClO4 (4 cc.), regulate temperature of oil bath surrounding bulb to 135°, connect to steam generator and collect distillate from the condenser (200 cc.) (by a special procedure of valve manipulation the bulb is quickly emptied of residue and readied for the next determination), add 1 cc. buffer solution of pH 3.00-3.05 (9.45 g. CH2ClCOOH +

2.73

g. NaOH to 100 cc. distilled water), 1 cc. 0.05% Alizarin S, and titrate with an automatic microburet with 0.002N Th(NO3)4 to pink. The sensitivity was 10 γ F-, and the limit of determination 10-100 γ F-, and the error was $\pm 1\%$ for 10-40 γ sample. For determining of I-, the following procedure was adopted: take an aliquot (10-100 cc.) of H2S-free mineral water, make alkaline with 10% K2CO3 in the presence of phenolphthalein in Pt or porcelain dish, evaporate to dryness on brine bath, digest the residue 3 times with absolute

EtOH (5 cc. each) and filter the extracts on quant. filter wetted with a little EtOH, collect filtrates into porcelain dish and evaporate to dryness, digest the residue purified of NaCl (in case of high NaCl contents, repeat the extns. with EtOH on the residue) with bidistd. water (18 cc. exactly) and add Br-AcOH reagent (2 cc. exactly of solution containing 0.5 cc. Br2 + 50 cc. AcOH + 50 cc. distilled water), leave for 10-15 min., transfer to separation funnel, and CCl4 or perfectly colorless H2S-free CS2 (10 cc.) (prepared by agitating CS2 with 1% NaOH, twice with water, then with 5% AcOH, twice with water, then distill on sand bath in ground glass apparatus, keep in dark bottles), agitate strongly, sep. organic layer, repeat extraction with CCl4 or CS2 (5 cc. each) twice for quant. elimination of Br excess, filter the aqueous phase, take aliquot (10 cc.) of filtrate, add 5% (iodate-free) KI (2 cc.) and 1% starch (1 cc.), and titrate with 0.001N Na2S2O3 from a microburet; the sensitivity was 5 γ per sample and the error was $\pm 1\%$ in mineral water containing 10-40 γ I- per sample.

36 references.

L5 ANSWER 26 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1964:441942 CAPLUS

DOCUMENT NUMBER: 61:41942

ORIGINAL REFERENCE NO.: 61:7331a-b

TITLE: Distillation apparatus for micro determination of nitrogen

AUTHOR(S): Dixon, S. E.; Shuel, R. W.

CORPORATE SOURCE: Ontario Agr. Coll., Guelph, Can.

SOURCE: Chemist-Analyst (1962), 51(3-4), 84

CODEN: CHANAA; ISSN: 0095-8484

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB The distillation apparatus has proved satisfactory for the determination of the N content of

individual insect larvae or samples of similar N content (15-150 γ of N). The technique is described. The apparatus consists of an outer chamber filled with glycerol; an inner distillation chamber, to which the Kjeldahl digest is transferred and which is closed by a silicone or rubber

plug; a condensing arm of 2-mm. tubing containing a bulb large enough to prevent the suck-back of the absorbing reagent; and a simple water jacket.

L5 ANSWER 27 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1963:481721 CAPLUS
DOCUMENT NUMBER: 59:81721
ORIGINAL REFERENCE NO.: 59:15123g-h
TITLE: Application of radioisotopes to absorption in pharmaceutical closures
AUTHOR(S): Clark, Glenn S.; Swartz, Howard A.
CORPORATE SOURCE: Butler Univ., Indianapolis, IN
SOURCE: Journal of Pharmaceutical Sciences (1963), 52(10), 999-1000
CODEN: JPMSAE; ISSN: 0022-3549
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB Vial closures and stoppers and sealing efficiency were tested with tritiated H₂O. Residual activity in the stoppers and in the ferrules after storage at room temperature and at 50° was 0.56 and 0.025%, resp., at the maximum for time periods involved.

L5 ANSWER 28 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1963:36074 CAPLUS
DOCUMENT NUMBER: 58:36074
ORIGINAL REFERENCE NO.: 58:6179d-g
TITLE: Rapid radiometric microgram determinations via precipitation or extraction
AUTHOR(S): Spitzky, H.; Dosudil, I.
CORPORATE SOURCE: Univ. Graz, Austria
SOURCE: Microchemical Journal, Symposium Series (1962), 2, 919-27
CODEN: MJSSAZ; ISSN: 0544-0165
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB γ amts. of Na and K were determined by precipitation with labeled reagents and radiometry. Extraction methods with dithizone and Zn⁶⁵ were used to determine γ amts. of Cu, Ag, and Hg. Pptns. were carried out in a modified Pregl filter tube which was expanded on one side to provide a reaction bulb of 0.3-ml. capacity. The sample and reagents were introduced into the bulb through a slit opening on the opposite side and were stirred while the tube was horizontal. When precipitation was complete, the tube was turned to a vertical position, and the precipitate was spread on the filter disk with a jet of washing

solution The supernatant was drawn off, and the precipitate was washed. The filter

tube with precipitate was fixed in a definite position relative to a well-type scintillation counter. The measured activity was compared with a standard curve. This technique was suitable for determining 0.2-100 γ K by precipitation

with Na hexanitritocobaltate labeled with Co⁶⁰ and for determining 0.3-100 γ Na by precipitation with Zn uranyl acetate labeled with Zn⁶⁵. Satisfactory results were obtained in the 1-12 γ Na range when less than twice as much K as Na was present; 3 times as much K as Na could be tolerated in the 100 γ Na range. For extns., aqueous solns. containing 0.5-30 γ Cu, Ag, or Hg were extracted with a measured excess of dithizone. The extract was separated and transferred to a titration vessel which

contained a measured excess of Zn⁶⁵ standard solution in an acetate buffer. After the unused dithizone had combined with an equivalent part of standard min., the activity remaining in the aqueous solution was measured. In this

manner, the dithizone used by the unknown ion was determined by one radiometric measurement. Both methods require only 15-20 min. for 1 determination

L5 ANSWER 29 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1962:70431 CAPLUS
DOCUMENT NUMBER: 56:70431
ORIGINAL REFERENCE NO.: 56:13574h-i,13575a
TITLE: Investigation of deposited aerosol particles with a radioactive surface labeling technique
AUTHOR(S): Jech, C.
CORPORATE SOURCE: Czech. Acad. Sci., Prague
SOURCE: Staub (1962), 22(No. 2), 40-1
CODEN: STABAU; ISSN: 0375-989X
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
AB By using a new radioactive tracer labeling technique, information about aerosol size and position, and also chemical constitution can be obtained for particles deposited on membrane or artificial fiber filters. The filter with the deposited aerosol is placed in a glass bulb which is first evacuated and then filled with radon or Kr85 at reduced pressure. Sudden application of a high electrostatic potential across the bulb shoots the radioactive mols. into the aerosol surface, although they pass through the filter. The aerosol properties can then be readily investigated with autoradiographic methods.

L5 ANSWER 30 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1959:121511 CAPLUS
DOCUMENT NUMBER: 53:121511
ORIGINAL REFERENCE NO.: 53:21679g-i,21680a-i,21681a-i,21682a-g
TITLE: Structure of piperidinohexose reductone
AUTHOR(S): Weygand, F.; Simon, H.; Bitterlich, W.; Hodge, J. E.; Fisher, B. E.
CORPORATE SOURCE: Tech. Univ., Berlin
SOURCE: Tetrahedron (1959), 6, 123-38
CODEN: TETRAB; ISSN: 0040-4020
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
AB cf. C.A. 48, 133a. The structure of the title compound (I), prepared according to Hodge and Rist (loc. cit.), was clarified by degradation reactions and the intermediate dihydroanhydropiperidinohexose reductone (II), obtained unequivocally from I, was synthesized from 4-chloro-1-methyl-1-cyclopenten-2-ol-3-one (III). I, C₁₁H₁₇NO₃, reduced exactly 2 equivs. of iodine in AcOH and gave a pos. test according to Weygand and Csendes (C.A. 46, 3907g) with titanic salts in C₅H₅N. I reduced Tillmans reagent, alkaline methylene blue, ammoniacal AgNO₃ and alkaline aqueous I buffered with NaOAc gave an intense Prussian blue color with acid aqueous FeCl₃. I (4.23 g.) and 4.1 g. Me₂SO₄ swirled with dropwise addition of 6 ml. 5N NaOH below 20° and the mixture kept 15 min. at 25°, the clear solution neutralized with dilute H₂SO₄ and extracted with CHCl₃, the extract evaporated, and the residue crystallized from C₆H₆ and from Me₂CO

gave 3.5 g. I mono-O-Me ether (IV), C₁₂H₁₉NO₃, m. 144°, consuming 2.5, 2.8, 3.0 and 3.1 moles NaIO₄ in 1, 22, 48, 72 hrs. on treatment with 4.6 moles NaIO₄ without evolution of HCHO, giving 1 mole AcOH/mole compound in Kuhn-Roth analysis for C-Me, a low pos. CHI₃ test, reducing Tillmans reagent after hydrolysis in hot 2N HCl, and absorbing 3.4 moles H in 0.1N HCl on hydrogenation with prereduced PtO₂ to give a solution consuming 3.3 moles NaIO₄ in 6 hrs. at 5° without production of HCHO, giving a red-purple color with FeCl₃, λ 299 mμ (E1%1cm. 1530, in H₂O and dilute alkali), λ 298 mμ (E1%1cm. 1435, in 0.1N HCl); picrate m. 147°. Remethylation of IV in Me₂SO₄-NaOH gave I di-O-Me ether (V), m. 58-9.5°. I (21.1 g.) stirred 30 min. in

water at 5° (N atmospheric) with simultaneous dropwise addition of 52 g. 50% aqueous NaOH and 50 g. Me₂SO₄ and the clear solution kept 2 hrs. with warming to

18°, the strongly stirred alkaline solution treated dropwise with 13 g. Me₂SO₄ and kept 16 hrs. at 25°, extracted with CHCl₃ and the product taken up in 200 ml. C₇H₁₆ at 85°, the cooled mixture filtered, and the product (22.2 g.) recrystd. (C₇H₁₆) gave 1 g. IV and pure V, giving a neutral aqueous solution not reducing Tillmans reagent or hot Fehling solution and producing a faint brownish purple color with FeCl₃. The CHI₃ test was neg. and hydrolysis in 2N H₂SO₄ at 100° gave a solution rapidly reducing Tillmans reagent at 25°. I (2.11 g.) in 40 ml. Ac₂O heated 15 min. at 65° and the solution kept 2 days at 0°, the crystalline product washed with Et₂O, and dried in vacuo at 56° gave 0.88 g. material, m. 170°. The filtrate distilled at 50° in vacuo and the residue suspended in Et₂O, kept at 0°, and the material (1.62 g., m. 168-9°) isolated gave a total of 2.50 g. I monoacetate (VI), m. 170° (anhydrous EtOAc), also produced by acetylation of I in C₅H₅N with excess Ac₂O at 25°. VI in 3N AcOH did not reduce Tillmans reagent at 25° but after heating the solution to 100° and cooling to 25° the reduction was instantaneous. Neutralization of the heated AcOH solution with NaOH gave I. VI in absolute alc. gave a stable blue color with 1 drop of alc. FeCl₃ but did not reduce Tillmans reagent. VI in absolute MeOH and acetate-buffered AcOH (pH 4.6) gave no deep color with FeCl₃ in contrast to the behavior of I. VI in MeOH reduced Tillmans reagent and faded the yellow color of FeCl₃. I (8.5 g.) in 25 ml. absolute MeOH (N atmospheric)

treated with 20 ml. 19% HCl in MeOH, the yellow solution kept at 0°, and diluted with Et₂O gave 7.4 g. I.HCl, m. 120-1°. I.HCl (5 g.) and 5 g. NaOAc.3H₂O treated with 25 ml. water (N atmospheric) and the mixture kept

at

25°, filtered, and the product washed (H₂O and Me₂CO) and dried yielded 98% I. I (5.30 g.) in 25 ml. BuOH (N atmospheric) treated with 50 ml. cold 21% HCl in BuOH and the solution warmed to 20° in 15 min., filtered and the filtrate diluted with Et₂O, stored at 0° and filtered, the crystalline product (5.65 g., m. 167°) stirred 10 min. in 40 ml. HCl-BuOH at 35° and diluted with Et₂O, the cooled mixture stored, and filtered yielded 4.6 g. I chloride HCl salt (VII), m. 168° (decomposition), unstable in moist air and in a desiccator over CaCl₂, reducing Tillmans reagent in aqueous solution and giving a blue-green color with FeCl₃ when buffered with NaOAc. VII (10.0 g.) kept several hrs. in 50 ml. MeOH at 25° and the filtered solution concentrated in vacuo, the product washed (Et₂O), and dried in vacuo over CaCl₂ 48 hrs. gave 93% IV.HCl (VIII), m. 144° (decomposition) (MeOH-HCl-Et₂O). VII kept 1 hr. in absolute alc. at 25° yielded 60% corresponding I mono-O-Et ether-HCl, m. 142-3° (decomposition). VIII (6.0 g.) in 15 ml. cold water (N atmospheric) stirred with immediate addition of 4.5 ml. 5N NaOH,

the

clear orange-red solution (pH 4) stirred, and the product (3.7 g.) twice recrystd. (C₆H₆-petr. ether) gave IV with reductone properties (VIIIa), m. 153-4.5°, more soluble in organic solvents and less soluble in water than IV, the neutral aqueous solution reducing Tillmans reagent very slowly but, on adding a drop of AcOH to the blue solution with change to red, the red color discharging immediately, consuming 2 equivs. iodine in dilute AcOH, and giving a Prussian blue color in alc. with FeCl₃. VIIIa (0.5 g.) in 3 ml. BuOH heated with 3 ml. 21% HCl in BuOH and the mixture heated, the solution cooled and filtered, the yellow HCl salt (0.35 g., m. 173-5°) stirred in 3M NaOAc, and filtered gave anhydropiperidinohexose reductone (IX), m. 196-7° (decomposition), giving only a trace of AcOH in Kuhn-Roth C-Me determination I (320 g.) in 250 ml. BuOH stirred (N atmospheric) with

gradual addition of 1490 g. cold 10% HCl in BuOH and the mixture heated with

steam to 55° in 8 min., heated 12 min. at 60-5° and 15 min. at 66-70° and cooled rapidly to 22°, filtered, and the filter cake washed (BuOH and Et₂O) and dried (in vacuo, CaCl₂) gave 285 g. product, crystallized (MeOH-HCl-Et₂O) to give IX.HCl, m. 175-82° (decomposition), stable on standing 3 years in a screw-capped vial, in contrast to VII; picrate m. 166°, also stable. IX.HCl (275 g.) in 1 l. water (N atmospheric) at 25° stirred with rapid sub-surface addition of filtered aqueous NaOAc (204 g. NaOAc·3H₂O) and the solution

acidified to pH 4.5, stirred rapidly 30 min. and filtered, the residue washed 5 times with 200 ml. water, and dried (in vacuo, CaCl₂) to constant weight gave 226 g. material, m. 188-91° (decomposition), taken up in 1.75 l. absolute alc. and filtered (steam-heated funnel), the cooled solution filtered

and the crystallization (207 g.) repeated (2.25 l. alc.) to give 172 g. IX, C₁₁H₁₅NO₂, m. 197-8° (decomposition) (Me₂CO), λ 360, 230 (E1%1cm. 1250, 684, MeOH), 358, 228 (isooctane), 353, 228 (water), 330 (E1%1cm. 1310), 400, 400 m μ (E1%1cm. 342, 0.1N NaOH), ν 1660, 1525-75 cm.⁻¹, no evident band in the true CO range, yielding only 0.06 mole AcOH in Kuhn-Roth oxidation and reducing Tillmans reagent and iodine in neutral aqueous and dilute AcOH solns., giving pos. enediol reaction with TiCl₃ in MeOH and in C₅H₅N and a deep blue color (turning brown) with FeCl₃. IX (4.83 g.) stirred (N atmospheric) with 12.6 g. freshly distilled Me₂SO₄ at 5° and treated dropwise below 30° with 16 ml. 6N NaOH, the mixture stirred 1 hr. at 25° and extracted repeatedly with CHCl₃, the washed (H₂O) and dried (Na₂SO₄) extract evaporated, and the residue treated with water gave the hydrate (X) (9.4 g., m. 66-8.5°), dried several days at 25° in vacuo (P₂O₅) to give IX mono-O-Me ether (XI), m. 58-60°, yielding only 0.13 mole AcOH on Kuhn-Roth oxidation and unreactive in aqueous solution to Tillmans reagent and FeCl₃. IV (2.25 g.) in 15 ml. 19% HCl in BuOH kept overnight and the crystalline product washed (BuOH and Et₂O) gave 0.5 g. IV.HCl, m. 148-9° (decomposition), giving a strongly acidic aqueous solution precipitating AgCl from AgNO₃, inactive to

Tillmans

reagent but giving a purple color with FeCl₃. Treatment with aqueous NaOAc gave IV. IV (2.25 g.) in 25 ml. BuOH and 25 ml. 19% HCl in BuOH refluxed 1 hr. and the clear solution concentrated in vacuo, the concentrate diluted

with Et₂O and the filtered product dried, the salt (2.05 g.) crystallized (alc.-Et₂O-HCl) and the HCl salt (1.40 g., m. 140-2°) stirred with 10 ml. 3M NaOAc, the precipitate air-dried, and the compound (1.25 g.) recrystd.

(H₂O) gave X, C₁₂H₁₇NO₂.5H₂O, m. 69.0-9.5°, desiccated readily to give XI and regenerated by addition of a few drops of water, also formed from V. IX (1.93 g.) in 25 ml. Ac₂O at 25° treated with 2 ml. dry C₅H₅N and the mixture kept 2 days at 0°, the solvent distilled in vacuo with several addns. of anhydrous EtOAc, and the sirupy residue diluted with Et₂O gave 1.35 g. IX monoacetate, m. 83° (petr. ether), reducing Tillmans reagent in MeOH and in dilute AcOH and giving a blue color (rapidly turning orange-brown) with FeCl₃. Kuhn-Roth oxidation gave 0.96 mole AcOH from the O-Ac radical, indicating the absence of a C-Me group on the 5-carbon ring. IX (19.3 g.) in 135 ml. absolute alc. hydrogenated 1 hr. at 25°/1300 lb. sq. in. with 3 g. Raney Ni in a 300 ml. stainless steel bomb and the filtrate concentrated (N atmospheric) in vacuo,

the sirup diluted with Et₂O, and the filtered product washed (Et₂O) yielded 93% II, m. 154-5° (absolute EtOAc), also produced in 75% yield by hydrogenation in AcOH or absolute alc. with prereduced PtO₂ at 25°/45 lb. sq. in., giving virtually duplicate ultraviolet absorption curves to those recorded for I, λ 298, 305, 315, 345 m μ (E1%1cm. 1277, 778, 1516, 335 (rapidly lost) in 0.1N HCl, water, MeOH, 0.1N NaOH, resp.), ν 1667, 1520-80 cm.⁻¹, reducing 2 equivs. Tillmans reagent in

AcOH and giving 0.5 mole AcOH on Kuhn-Roth oxidation, producing a blue color with FeCl₃ in alc. or in acetate-buffered dilute AcOH, and giving a pos. test with TiCl₃ in C₅H₅N and in MeOH; monoacetate m. 92° (C₇H₁₆). I (4.23 g.) added with stirring to 3.00 g. PhNNH₂.HCl in 250 ml. water at 80° (N atmospheric) and the mixture kept 2 hrs. at 80-3°, filtered, and the washed (hot H₂O) product (4.20 g.) twice recrystd. (100 vols. Me₂CO) gave a phenylhydrazone or phenylazo derivative (XII), C₁₂H₁₂N₂O₂, m. 204-5° (deep yellow needles or deep red prisms from alc.), both forms giving the same R_f in BuOH-AcOH-H₂O, containing 1 C-Me group and giving 80% PhNH₂ on treatment with Na₂S₂O₄ in dilute alc. at 85°. The CHI₃ test was neg. XII was also produced in 76% yield by similar treatment of IX and in almost quant. yields by the reaction of IX with PhNNH₂ in 3N AcOH. Under the latter conditions I reacted very slowly and gave only small yields of red XII. XII acetylated with a 4-molar excess of Ac₂O in C₅H₅N at 25° gave 2 mono-O-Ac derivs., m. 120-1° (alc.) and 177° (EtOAc). I (4.22 g.) in 100 ml. 2N H₂SO₄ hydrogenated 20 hrs. at 20° with 200 mg. prereduced PtO₂ and the filtered solution stirred with aqueous BaCO₃, the alkaline solution treated with

dilute NaOH and extracted with Et₂O, the extract evaporated, and the product sublimed

gave extremely volatile 1-methyl-4-piperidino-2(or 3)-cyclopentanol (XIII), C₁₁H₂₁NO, m. 71°, containing 1 active H. XIII (1 g.) refluxed with a 10-fold excess of MeI in 20 ml. MeNO₂ and the mixture evaporated gave the

methiodide, m. 142°, transformed (1 g.) to the free base with Ag₂O and the solution freeze-dried, the residue heated at 150°, and distilled to give N-methylpiperidine; picrate m. 148°. I (4.22 g.) in 110 ml. N HCl warmed to 70° with 4.30 g. PhNNH₂ and the crystalline orange leaflets heated 10 min. at 100° (water bath) gave 4.23 g. deep red needles of XII, paper chromatographed in 4:1:1 BuOH-AcOH-H₂O to give the orange form, m. 189°, R_f 0.76 (fluorescent in ultraviolet light), and yellow or orange crystals, m. 194°, R_f 0.83 (absorbing ultraviolet light), mixed m.p. 194°. XII (8 g.) in 150 ml. 80% alc. hydrogenated 5 days with prereduced PtO₂ (150 mg.) with shaking and the filtered solution evaporated (N atmospheric), the residue taken up in hot water, and

the filtrate evaporated (N atmospheric) gave 2-3 g. crystalline reductone (XIV), C₆H₉NO₂,

m. 200-2° (Me₂CO), paper chromatographed in 4:1:1 BuOH-AcOH-H₂O to show the main product at R_f 0.67 and a small amount of enediol active product at R_f 0.81. XIV, m. 202-3°, was obtained in 75% yields by repeating the hydrogenation 3 hrs. at 60° and twice recrystg. the product from 125 vols. Me₂CO. XIV reduced 2 equivs. iodine in dilute AcOH and gave Prussian blue color with alc. FeCl₃. XII (4 g.) taken up in 150 ml. boiling alc. and the mixture hydrogenated at 20° with 100 mg.

PtO₂, the vessel evacuated and filled with N, the mixture decanted (N atmospheric),

and the product filtered off gave XII dihydro derivative, C₁₂H₁₄N₂O₂. XIV (127 mg.) in 50 ml. hot water treated dropwise with 4 millimoles 3% H₂O₂ and the mixture kept 4 hrs. at 40-50°, the mixture evaporated and the residue extracted with Me₂CO, the insol. residue dried, and sublimed at 1 mm. gave a monoammonium salt, C₅H₁₁NO₄, taken up in dilute HCl and the solution distilled, the residue extracted with anhydrous Me₂CO, and the product sublimed to

give authentic HO₂CCHMeCH₂CO₂H (XV), m. 112°. II (1.3 millimoles) in hot water treated with 0.6 ml. 30% H₂O₂ and the mixture kept 10 min. at 100° with emission of gas, the yellow solution evaporated in vacuo and the residue taken up in dilute HCl, the acid solution evaporated in vacuo and the residue taken up in Me₂CO, filtered from C₅H₅N.HCl, and the filtrate evaporated gave XV. I (10 g.) in 300 ml. water treated at 90° with 23 ml. 30% H₂O₂ and the mixture kept 30 min. at 100° with loss of CO₂,

the cooled solution treated with 30 g. Pb(OAc)₂ and the mixture filtered after 24 hrs., the dried precipitate pulverized and suspended in water, saturated 2 hrs.

with H₂S and the filtered solution evaporated in vacuo, the residue taken up in 50 ml. water and the solution made significantly alkaline with dicyclohexylamine,

the mixture washed with petr. ether and evaporated, the sirup kept 2 days and the dried crystalline product (8.9 g.) extracted with 20 ml. boiling C₆H₆ and 5 times with 50 ml. C₆H₆, the crystals from the 2nd and 3rd extns. recrystd. (C₆H₆) and the dicyclohexylamine salt, m. 137-40°, taken up in water, and the solution shaken with a cation-exchange resin (acid form) gave the free acid, cooled in Et₂O to -78°, triturated, filtered, and the product twice recrystd. (2:1 EtOAc-petr. ether) to yield pure citramalic acid, m. 117°. III (4.47 g.) in 30 ml. C₆H₆ added dropwise to 40 ml. C₅H₁₁N at -20° (ice-NaCl) and the mixture kept 2 hrs. at room temperature, the filtered solution evaporated (N atmospheric) in vacuo at

35-40° and the residue stirred with water, filtered, and the residue crystallized (2:3 C₆H₆-ligroine) gave 75% II, m. 153.5°, identical with the material from I by mixed m.p. determination, infrared spectrum,

and Debye-Scherrer photograph comparisons. II was similarly obtained from 4-chloro-1-methyl-2,3-dioxopentane (Hesse and Breig, C.A. 49, 13907b) and C₅H₁₁N.

L5 ANSWER 31 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1959:44100 CAPLUS

DOCUMENT NUMBER: 53:44100

ORIGINAL REFERENCE NO.: 53:7860i,7861a-c

TITLE: Activation analysis by short-life nuclides. I.
Determination of hafnium in zirconium by hafnium-179m

AUTHOR(S): Nakai, Toshio; Yajima, Seishi; Fujii, Isao; Okada, Minoru

CORPORATE SOURCE: Japan At. Energy Research Inst., Ibaraki Prefecture

SOURCE: Nippon Kagaku Zasshi (1959), 80, 49-52

CODEN: NPKZAZ; ISSN: 0369-5387

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB Determination is based on the reaction Hf¹⁷⁸(n,γ)Hf^{179m}. A zirconia sample (20-100 mg.), reagent blank solution for preparation of standard Hf solution, and a strip of filter paper were sealed in a polyethylene vial, and irradiated in the JRR-1 reactor (water boiler type) at a neutron flux of 2 + 10¹¹ n/sq. cm./sec. for 60 sec. After 10 sec.-cooling, a peak of γ-ray of Hf^{179m} (half-life 19 sec.) at 0.215 m.e.v. was measured for 10 sec. by a pulse height analyzer. HfO₂ (5-20 γ) was determined with a relative error of ±2%. Several samples of reactor-grade zirconia were analyzed for Hf (31-142 p.p.m. Hf with respect to Zr metal) by this method. Possible interference of the reaction Zr⁹⁰(n,n')Zr^{90m} with the determination of Hf was eliminated by cooling the irradiated sample for several sec. Addition of a same amount of H₂O to the sample prior to analysis compensated for the effect of the reaction O¹⁸(n,γ)O¹⁹.

L5 ANSWER 32 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1959:27870 CAPLUS

DOCUMENT NUMBER: 53:27870

ORIGINAL REFERENCE NO.: 53:5016g-i

TITLE: Rapid determination of tin, copper, lead, iron, and nickel in red brass and bronzes

AUTHOR(S): Wiedmann, H.

SOURCE: Metall (Berlin, 1914-34) (1958), 12, 1005-7

CODEN: METSA5; ISSN: 0375-9377

DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
AB Determination of Sn: dissolve 1 g. of turnings in 20 ml. of HCl and 5 ml. of 30% H₂O₂. Add 20 ml. of 4% HgCl₂ and 10 ml. of 30% HPO₂ and digest until the solution is clear. After cooling in CO₂, reduce with a few pieces of Marmor, add 25 ml. of 25% Al thiocyanate, 10 ml. of 10% KI solution, and starch and titrate with 0.1N iodine to a blue color. Determination of Cu: dissolve 0.5 g. of sample in 40% tartaric acid and 15 ml. of 1:1 HNO₃. Add 1 ml. of 5% sulfamic acid and digest until NO₂ fumes are gone. Cool, add 25 ml. water, 1 g. urea, 10 ml. of 30% Na pyrophosphate, and 25 ml. of a thiocyanate solution (50 g. KSCN, 6 g. KI, in 1 l. water) and titrate with standard Na₂S₂O₃ with a starch indicator.

Determination of Pb: dissolve 1 g. of the sample in 5 ml. 10% NaCl and 25 ml. 1:1 HNO₃. Cool, add sufficient Pb(NO₃)₂ solution to correspond to 0.1 g. of Pb. Place in a 100-ml. volumetric flask, fill to mark with water, and shake well. This is a stock solution. Take 20 ml. of this solution and add, in order, 15 ml. water, 10 ml. 10% tartaric acid, 5 ml. of a triethanolamine solution (30 ml. in 100 ml. water), 20 ml. 1:1 NH₄OH, 10 ml. of a buffer solution (54 g. NH₄Cl and 350 ml. concentrated NH₃ in 1 l. water), 30 ml. water, 10 ml. 10% KCN, and

5 ml. of a Complexon III solution (18.61 g. dissolved in 500 ml. water and 50 ml. of this solution diluted to 1 l.). Titrate the mixture from wine red to pure blue.

Determination of Fe: place 5 ml. of the stock solution described above in a 100-ml. volumetric flask and add, in order, 20 ml. of 10% sulfosalicylic acid, 20 ml. of 40% NH₄OAc, and 10 ml. 20% Na₂S₂O₃. Dilute to the mark and measure the extinction with a Elko II, filter S47E, incandescent lamp, 2000 cm. bulb. Determination of Ni: to 5 ml. of the stock solution, add 4 ml. of 1:8 NH₄OH and, in order, 5 ml. 10% Na tartrate, 7 ml. of a Na₂S₂O₃-NH₄OAc solution (100 g. NH₄OAc in 250 ml. water, treated with NH₃ to pH 9.2, add 200 g. Na₂S₂O₃ and dilute to 500 ml.), 5 ml. 20% hydroxylamine, and 2 ml. 0.5% dimethylglyoxime. The Ni is precipitated and then shaken with

25 ml. CHCl₃ for 30 sec. The greater part of the CHCl₃ solution is run into a dry flask containing 2 g. of anhydrous Na₂SO₄. After a short drying time the extinction is measured with an Elko II, incandescent lamp, filter S38, 1000 cm. bulb against CHCl₃.

L5 ANSWER 33 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1958:90621 CAPLUS

DOCUMENT NUMBER: 52:90621

ORIGINAL REFERENCE NO.: 52:15937g-i,15938a

TITLE: Determination of saponin in granulated sugar: method of H. G. Walker adapted to routine control

AUTHOR(S): West, R. R.; Gaddie, R. S.

SOURCE: Proceedings of the American Society of Sugar Beet (1957), Volume Date 1956-1957, 9, 146-52

From: Sugar Ind. Abstr. 19, Abstr. No. 873(1957)

CODEN: PASSA5; ISSN: 0097-2851

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB A modification of Walker's method (preceding abstract) is described and test results are tabulated. Dissolve 50 g. of the sugar to be tested in a 500-ml. flask with 150 ml. of water at room temperature, add concentrated HCl to pH

1-1.4, and filter the mixture through a 60-ml. sintered-glass filter previously cleaned with 5 ml. of hot glacial AcOH and then with 30 ml. of water. After filtration rinse the flask with 15 ml. of dilute HCl (1 ml. of concentrated acid + 1 l. of water) and pass the rinsings through the filter,

which is then dried at 103-5° for 1 hr. After cooling the filter, any green spots indicate that the sugar was not washed out. Elute the filter disk on a special bronze apparatus (described and illustrated) with 5.2 ml. of hot glacial AcOH, which is sucked through the covered filter disk under slight suction into a 5-drachm glass vial. Stopper the vial immediately with a plastic stopper. Pipet 1 ml. aliquots into clean vials and pipet 1 ml. of saponin and 1-ml. of elution acid into 2 vials as blanks. From a Teflon-stoppered buret, add 7.0 ml. of the SbCl₅-CHCl₃ reagent to each vial. After 10 min. determine the colorimetric absorption maximum at 535 m μ . Then calculate the saponin content from a graph of values for the saponin and acid blanks. The resulting calibration curve shifts slightly each day and must, therefore, be replotted daily.

L5 ANSWER 34 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1952:24571 CAPLUS

DOCUMENT NUMBER: 46:24571

ORIGINAL REFERENCE NO.: 46:4169f-h

TITLE: The influence of vulcanized rubber on the quality of distilled water

AUTHOR(S): Christiansen, Eivind

SOURCE: Meddelelser fra Norsk Farmaceutisk Selskap (1951), 13, 121-30, 135-53

CODEN: MNFSAW; ISSN: 0029-1927

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB The effect of a number of rubber samples, including various qualities of rubber stoppers, vial caps, catheters, and rubber tubing, on distilled water was investigated. The following criteria were used for judging the water after contact with the rubber samples: color, odor, taste, presence of NH₃, change in pH, change in specific conductance, color reaction with dithizone, and presence of pyrogens. The term "Dithizone number" (I) was coined, designating the number of days of contact with the rubber sample before the water caused the dithizone reagent (5 mg. dithizone in 100 ml. CCl₄) to change from green to pink. There was found to be a relation between I and the pyrogenic effect. Rubber samples with low I imparted pyrogens to distilled water, whereas water in contact with rubber samples having a I of 10 or more were always pyrogen-free. A number of standards were suggested for rubber materials intended for medical or pharmaceutical use.

L5 ANSWER 35 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1951:10803 CAPLUS

DOCUMENT NUMBER: 45:10803

ORIGINAL REFERENCE NO.: 45:1903h-i, 1904a

TITLE: Photoelectric spot analysis of antimony and bismuth

AUTHOR(S): Sudo, Toshio; Hayase, Kitaro

CORPORATE SOURCE: Tokyo Univ.

SOURCE: Science (Washington, DC, United States) (1951), 113, 11-12

CODEN: SCIEAS; ISSN: 0036-8075

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB To test for Sb³⁺ a 5% solution of H₃PO₄.12MoO₃ is used and for Bi³⁺ a solution prepared from 1 g. cinchonine, 2 g. KI, a few drops of HNO₃, and water to make 100 ml. Immerse a piece of filter paper in the reagent, add 1 drop of the solution to be tested and in the test for Sb heat in a steam bath for 5 min. Place the filter paper showing a colored spot (blue for Sb and pink for Bi) between the light bulb and the photoelec. tube of a photometer and insert a screen having a round hole (12 mm. diameter) between the light bulb and the filter paper. Center the colored spot on the hole which causes a

part of the light to be absorbed by the colored spot. Record the microammeter reading when the light transmitted through the colored spot is less than that through the rest of the paper. Correct the error owing to varying thickness of the paper by a blank test on each paper used. From the reading, calculate the percent of Sb or Bi. Good results are cited for determining 0.18 γ of Sb and from 0.30 to 9.4 γ of Bi.

L5 ANSWER 36 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1948:17229 CAPLUS
DOCUMENT NUMBER: 42:17229
ORIGINAL REFERENCE NO.: 42:3697c-e
TITLE: Quantitative volumetric analysis of carbon-bonded halogen with sodium naphthalene
AUTHOR(S): Benton, F. L.; Hamill, W. H.
CORPORATE SOURCE: Univ. Notre Dame, Notre Dame, IN
SOURCE: Anal. Chem. (1948), 20, 269-70
CODEN: ANCHAM; ISSN: 0003-2700
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB Weigh out a liquid sample in a thin-walled, sealed glass bulb, transfer to a separatory funnel from which all air has been displaced by dry N₂, and add an excess of Na naphthalene reagent (Scott, Walker, and Hamsley, C.A. 31, 677.6). Stopper the funnel and shake to break the bulb, as shown by rise in temperature. Continue to shake for 2-3 min. Dilute to about 100 ml. after destroying excess reagent by small portions of water. Combine the aqueous solution and exts., make acidic with HNO₃, and titrate potentiometrically with 0.1 N AgNO₃ solution

L5 ANSWER 37 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1947:25365 CAPLUS
DOCUMENT NUMBER: 41:25365
ORIGINAL REFERENCE NO.: 41:5057f-i
TITLE: Some analytical methods applicable to furan and its derivatives
AUTHOR(S): Angell, F. G.
CORPORATE SOURCE: Imp. Chem. Industries Ltd., Billingham Co., Durham, UK
SOURCE: Analyst (1947), 72, 178-84
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB Existing methods were tested and improved when necessary. (1) Furfural can be determined by aqueous oximation at room temperature although the reaction is not quite stoichiometric. Treat 0.5-0.7 g. with 15 ml. of neutralized NH₂OH.HCl + 15 ml. MeOH. After an hr. titrate the liberated HCl with 0.5 N NaOH to a methyl yellow end point; 1 HCl is liberated per mol. of furan. (2) Pyridine sulfate bromide is best for determining the unsatn. Saturation of both

double bonds occurs with furan, sylvan, and furfuryl alc. But furfural, furoic acid, and furoic nitrile are hardly attacked. Prepare the reagent with 40 ml. glacial AcOH, 1 added to each of 3 dry, 500-ml. flasks. To one, add 16.3 ml. of pure pyridine, and to the second 10.9 ml. of concentrated H₂SO₄; when cold, mix these 2 solns. To the 3rd flask add 3.2 ml. of Br₂. Then add the contents of the 3rd flask to the above mixture and dilute to 2 l. with glacial AcOH. To 50 ml. of reagent in a 200-ml. "iodine" flask, add from a sealed bulb a suitable quantity of the sample. Break the bulb, replace the stopper, and seal with 5 ml. of 10% KI solution. After an hr. in the dark, allow the KI solution to run into the flask and titrate with 0.1 N thiosulfate, with starch indicator added toward the end. Furoic acid and furfural are not attacked by the above reagent and it must be replaced by acidified KBr-KBrO₃. (3) Acidified KBr-KBrO₃ is a brominating agent for furoic acid but gives only approx. correct results with furfural.

L5 ANSWER 38 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1947:23420 CAPLUS
DOCUMENT NUMBER: 41:23420
ORIGINAL REFERENCE NO.: 41:4681d-g
TITLE: Apparatus in qualitative microanalysis. VI. Apparatus
for the detection of gases
AUTHOR(S): Belcher, R.
CORPORATE SOURCE: Marischal Coll., Aberdeen, UK
SOURCE: Metallurgia (1947), 35, 310
CODEN: METLAI; ISSN: 0026-0835
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB cf. C.A. 39, 5133.4. For detection of gases on the micro-scale liberated by addition of suitable reagents, 2 forms of apparatus are generally used. One is the Feigl-Krumholz apparatus, in which the reagent is suspended on a knob attached to the bottom of the stopper; the other is Feigl's modification of the Rossler apparatus, in which the stopper consists of a hollow bulb open at each end, the reagent being suspended in the lower tip of the bulb. The latter type is preferred, since the reaction is more easily observed and is generally more rapid than in the Feigl-Krumholz apparatus. The Feigl-Rossler apparatus, however, has one defect. With a gas which is wholly or partially soluble in the aqueous phase, and where the solution must be heated to diminish the solubility, a slight temperature fluctuation may cause the reagent to be sucked into the apparatus. The apparatus is modified to overcome this by placing the drop of reagent at the bend between the 2 bulbs. During the heating the expanded air passes through the reagent, and if sudden cooling causes contraction the drop of reagent is drawn into the first bulb, until, reaching the wide portion, it collapses and falls back into the bend. Thus all risk of the reagent being sucked into the body of the apparatus is avoided.

L5 ANSWER 39 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1947:19482 CAPLUS
DOCUMENT NUMBER: 41:19482
ORIGINAL REFERENCE NO.: 41:3898a-d
TITLE: Rapid turbidimetric determination of inorganic nitrogen in soil and plant extracts
AUTHOR(S): Wolf, Benjamin
CORPORATE SOURCE: G. L. F. Seabrook Farms, Bridgeton, NJ
SOURCE: Anal. Chem. (1947), 19, 334-5
CODEN: ANCHAM; ISSN: 0003-2700
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
AB The soil and plant exts. were prepared as follows: Shake 12.5 g. of the soil with 0.5 teaspoon of carbon (activated Darco grade 0-97) and 25 cc. extracting solution (Morgan's universal) in a small flask for 1 min., then filter through Whatman #1 filter paper and use the filtrate for analysis. Agitate 5 g. of fresh minced plant tissue, or 1 g. dry ground tissue, 200 cc. of extracting solution, and 0.5 teaspoon of charcoal in a Waring Blender for 5 min., then filter as above. For the determination, pipet 5 cc. of soil extract or 10 cc. of plant extract into 50-cc. Erlenmeyer flasks, and add 5 cc. extracting solution to soil exts. Add 2.25 cc. of water and 2.5 cc. of 15% NaOH to all of the flasks. Mix by rotation and add 0.25 cc. of a 20% titanous chloride solution; mix well, let stand 10 min. and filter through Whatman #1 filter paper in a funnel vial. Pipet into a series of photometer vials 10 cc. of modified Graves' reagent (dissolve 40

g. NaCl in about 750 cc. water in a 2000-cc. volumetric flask, add 3.5 g. HgCl₂, dissolve, and fill up to the mark; preserve in a dark bottle) and 0.5 cc. of gum arabic solution (0.25% water solution by weight). Mix thoroughly

with a flat-bottomed rod. Pipet rapidly 10 cc. of the above filtrate into the photometer vials, mix, and let stand for 15 min. Readings are taken in the photometer, with a 425 m μ blue filter and by adjusting the null to give 100% transmission with a blank. Readings are compared with those of a series of standards (0-20 p.p.m. on a 10-cc. basis) treated as above. A standard curve or chart prepared from such readings is recommended.

Graves' reagent was modified to give more accurate results.

L5 ANSWER 40 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1947:13141 CAPLUS

DOCUMENT NUMBER: 41:13141

ORIGINAL REFERENCE NO.: 41:2657d-g

TITLE: Technique for determining chlorine in the atmosphere

AUTHOR(S): Paiva, J. de Abreu

CORPORATE SOURCE: Lab. de pesquisas toxicologicas, ministerio trabalho, Rio de Janeiro, Brazil

SOURCE: Revista de Quimica e Farmacia (Rio de Janeiro) (1946), 11(No. 11), 19-23

CODEN: RQFAAK; ISSN: 0370-6907

DOCUMENT TYPE: Journal

LANGUAGE: French

AB The equipment generally used for collecting samples of air is not suitable for air containing Cl because of its solubility in H₂O, reactivity with Hg, and for

other reasons. The special apparatus designed to overcome this difficulty consists of a 1000-ml., heavy-wall Erlenmeyer flask of Pyrex glass with a ground-glass stopper having a central bore and connected by a 3-way stopcock with a glass bulb on top, holding 20 ml. A short piece of glass tubing is fused to the side opening of the stopcock. The stopcock is turned to the proper position for each of the following operations: To prepare the apparatus for sampling, it is evacuated to 0.2 mm. pressure. The bulb is then filled by suction with a 10% solution of KI containing a few drops of 2% starch indicator, and the stopcock is turned to close off the entire system. When the sample is to be taken the reagent in the bulb is run into the flask, and immediately after that the air is sucked into the flask. The system is closed again and the flask shaken. The stopper is removed, the liquid adhering to it and to the walls of the flask is washed down into the flask, and the liberated I is titrated with 0.01 N Na₂S₂O₃ solution

L5 ANSWER 41 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1946:36733 CAPLUS

DOCUMENT NUMBER: 40:36733

ORIGINAL REFERENCE NO.: 40:7074g-i

TITLE: Determination of carbon dioxide under field conditions by the volumetric method

AUTHOR(S): Khrizman, I. A.

SOURCE: Zavodskaya Laboratoriya (1946), 12, 250-1

CODEN: ZVDLAU; ISSN: 0321-4265

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB A jar is closed with a rubber stopper through which a glass tube is passed whose lower part is blown out in the shape of a sealed cylindrical bulb. The upper part of this bulb has a side opening. The glass tube is connected to a 100-ml. buret filled with concentrated NaCl solution acidified with several drops of HCl and colored with an indicator. The other end of the buret is connected to a

regulating bulb by means of rubber tubing. Place 0.5 g. of the ore sample in the jar, fill the bulb with 10% HCl nearly to the level of the side opening, and stopper the jar. Determine the volume of CO₂ evolved by the difference in the levels of the liquid in the buret before and after the reaction.

L5 ANSWER 42 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1943:42424 CAPLUS

DOCUMENT NUMBER: 37:42424

ORIGINAL REFERENCE NO.: 37:6697a-c

TITLE: Anaerobic single-tube cultures

AUTHOR(S): Fuhrmann, Franz

SOURCE: Zentralblatt fuer Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abteilung 2, Naturwissenschaftliche: Allgemeine, Landwirtschaftliche und Technische Mikrobiologie (1943), 2, 105, 406-14

CODEN: ZBPIA9; ISSN: 0044-4057

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB Three special tubes for single anaerobic cultures are described. The size of each is about 200 + 28 mm. Tube 1 has a bulb blown at the closed end into which 12 cc. of 20% Na₂CO₃ or NaOH can be placed. Just above this is a side bulb in which 8 cc. of 20% pyrogallol solution is placed, a small side bulb near the open end of the tube in which is placed a little indicator solution for O (0.2% methylene blue in 0.5% dextrose); or filter paper soaked in the indicator solution. The inoculated culture tube is inserted into the special tube and the latter tightly stoppered. The assembly is then tilted so that the pyrogallol is mixed with the alkali. Tube 2 is similar except that a glass stopcock is ground into the open end so that the assembly can be evacuated. Tube 3 is like tube 2 except that the 2 lower bulbs are replaced by a ground-in stopcock, so that the air in the assembly can be replaced by some inert gas such as H or N. With tube 3, CO₂ or other gases formed during growth can be drawn into appropriate absorption tubes.

L5 ANSWER 43 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1939:39880 CAPLUS

DOCUMENT NUMBER: 33:39880

ORIGINAL REFERENCE NO.: 33:5628g-i, 5629a-d

TITLE: Determination of the NO content of coal-distillation gases

AUTHOR(S): Berkhoff, G.; van den Bout, M. F.

SOURCE: Het Gas (1939), 59, 53-9

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB Different methods for NO determination Schuftan (cf. C. A. 26, 2849), Fulweiler (cf. C. A. 29, 5251.4), Shaw (cf. C. A. 30, 8573.3), Guyer and Weber (cf. C. A. 28, 880.4), etc., are discussed; the last method was chosen. The accuracy of the method was checked by adding known amts. of NO (diluted with 500 parts N₂) to the gas. For each determination 10 l. gas was used, passed

at a

rate of 20 l. per hr. Numerous expts. were undertaken to check the results for high and low NO concns. and curves are given for interpretation of the results. For NO contents between 0.01 and 2 p. p. m. the contact vessels are arranged KMnO₄-Ilosvay reagent

-KMnO₄-Ilosvay and the NO content is determined separately for the 1st and 2nd Ilosvay vessel. A curve relating the 2 figures, determined experimentally, makes it possible to calculate the actual total NO content. Between 1 and 2 p. p. m. NO the first vessel absorbs 90 to 95% of the total NO present; at 0.1 p. p. m. this is reduced to 70%, at 0.02 p. p. m. to only 50%.

Measurements on NO content of pure H₂ confirmed these data; in these tests

4 pairs of oxidation and absorption vessels were used. For the 20 l. per hr. rate the absorption is 95% for 2-17 p. m. NO. The accuracy of these detns. is estimated to be 10%. The Schuftan method on the same gases gave results approx. 10 times higher for the particular type of coke-oven gas used. This ratio depends on the diolefin content of the gas. The method finally used is: The Ilosvay reagent is colorless and prepared shortly before use from equal amts. of solution (I) 2 g. sulfanilic acid in a mixture of 100 cc. nitrite-free water and 100 cc. AcOH (300 cc. H₂O is added) and solution (II) 0.6 g. α naphthylamine, 400 cc. nitrite-free water and 100 cc. AcOH (the solution should not be heated). The KMnO₄ stock solution is 5% in nitrite-free water, boiled up and cooled. Shortly before use 5 cc. nitrite-free concentrated H₂SO₄ is added to 100 cc. KMnO₄ solution. The standard NaNO₂ solution is prepared from 30 mg. pure NaNO₂

in

nitrite-free water to 1 l., kept in the dark; it is good for 3 months and is standardized at intervals. Nitrite-free water is prepared by redistn. over Ba(OH)₂. The apparatus consists of 3 reaction vessels: a glass U tube, the up leg being of 17 mm. diameter, 440 mm. high with a 25-mm. radius bulb near the top, a porolith filter, 5 mm. thick type ff (Meissen) in a 14 mm. restriction near the base of the U tube for dispersion of the gas. The first and third vessels hold 15 cc. Ilosvay reagent; the second has 65 cc. acidified KMnO₄ solution. Auxiliaries are flow meter, gas meter, bypass, pressure regulator and manometer. The resistance of the apparatus is about 100 mm. Hg.; hence the gas is usually pumped through. At a 20 l. per hr. rate the Ilosvay tube froths abundantly. The Seebaum type vessels give equally good results. All joints are glass to glass. For the colorimetry of the solution obtained 20-mm. tubes, holding 50 cc. are used. All tubes, test as well as standard, are allowed to stand 10 min. before reading. 0.1 cc. standard NaNO₂ solution is equivalent to 0.21 + 10⁻² cc. NO in the gas.

L5 ANSWER 44 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1937:41032 CAPLUS

DOCUMENT NUMBER: 31:41032

ORIGINAL REFERENCE NO.: 31:5720i, 5721a-b

TITLE: Determination of ethanol in by-products of the preparation of ethyl acetate from ethanol by the direct contact method

AUTHOR(S): Sapgir, I. N.; Frolova, R. A.

SOURCE: Sintet. Kauchuk (U. S. S. R.) (1936), (No. 11-12), 17-19

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB The by-products contain ethanol in the presence of ethyl acetate (up to 82%), acetaldehyde (up to 83%), AcOH (up to 7%), acetal and water (up to 9%). Weigh 0.5 g. of sample into a thinwall ampoule, cool (ice and water) add 1 cc. of acetic anhydride (I) (in case the sample contained more than 30% of EtOH, use 1.5-2 cc. of I). Seal the ampoule, heat in boiling water for 1 hr., cool, put into a thick-wall 200-300-cc. flask with 50 cc. of water, close the flask with a glass stopper, break the ampoule and heat the flask at 50° for 30 min. to hydrolyze the excess of I. Then cool the flask, neutralize the excess of AcOH to a slight pink (phenolphthalein as indicator). Add a measured amount of 0.2 N KOH in excess heat, on a water bath to saponify the esters formed, then titrate back with 0.1 N acid solution the excess of KOH.

L5 ANSWER 45 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1936:38037 CAPLUS

DOCUMENT NUMBER: 30:38037

ORIGINAL REFERENCE NO.: 30:5031h-i, 5032a

TITLE: Rapid determination of viscosity of unbleached viscose pulp

AUTHOR(S): Nikitin, N. I.; Nagrodskii, I. A.
SOURCE: Bumazhnaya Promyshlennost (1935), 14(No. 12), 13-19
CODEN: BUMPAK; ISSN: 0007-5817
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
AB Wash and sep. a sample from an uncooked portion in a sieve, and press out by hand to a nearly constant weight Determine the Bjorkman number in a sep. sample.
Place the prepared sample (corresponding to 1 g. of oven-dry pulp) in a 100-cc. flask containing 70 cc. H₂O (55°) and Ca(ClO)₂ in an amount corresponding to the Bjorkman number, bleach at 55° for 10 min. with shaking at 30-sec. intervals, filter off the pulp in a Buchner funnel, wash with 300 cc. H₂O (30°), place in a glass tube and dry at 105° in a drying oven while passing warm air through the tube. Treat 0.7 g. of the dry pulp with 20% NH₄OH for 3 min., dissolve it in 35 cc. of Schweitzer's reagent in a 60 cc. brown-colored flask at 20° for 10 min. Replace the glass stopper by a rubber stopper fitted with a viscometer pipet and a glass cock connected with an atomizer rubber bulb. Pump the solution into the pipet, open the cock and determine the viscosity. For the control of viscosity in the process of bleaching of viscose pulp, the bleaching operation in the determination is omitted.

L5 ANSWER 46 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1931:34839 CAPLUS
DOCUMENT NUMBER: 25:34839
ORIGINAL REFERENCE NO.: 25:3878i,3879a-b
TITLE: Storage and delivery apparatus for antimony chloride solutions and other corrosive reagents
AUTHOR(S): Middleton, G.
SOURCE: Analyst (1931), 56, 236-7
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
AB The apparatus consists of a 600-cc. bottle of amber glass fitted with a stopper through which a glass tube passes. The tubing carries 2 chambers, one ending just below the stopper and connecting on the outside with a CaCl₂ tube (ground-glass connection) through which air can be forced by a rubber atomizer bulb. The inner part of the tubing serves for the passage of the solution from the bottle to the measuring device. This tubing reaches nearly to the bottom of the bottle and is bent upwards a little at the bottom, so as not to draw up any sediment, and is provided with a small hole at the lowest point so that any oily liquid may fall through and not clog the tube. For the determination of the vitamin A content of cod-liver oil, a chromogen reaction is recommended in which a solution of SbCl₃ in CHCl₃ is used; this bottle is devised especially for this reagent but has also been used for liquids like Br₂. The pressure of air pushes the reagent upward through the narrow tubing into a small vessel which, when filled, drains to hold exactly 2 cc. The connection is with ground glass, but the liquid itself does not come in contact with the joint.

L5 ANSWER 47 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1927:24350 CAPLUS
DOCUMENT NUMBER: 21:24350
ORIGINAL REFERENCE NO.: 21:2983a-b
TITLE: Detection of formaldehyde in paper
AUTHOR(S): Bentzen, Th.
SOURCE: Paper Ind. (1927), 9, 617
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB Place 25 cc. of freshly prepared PhNH₂-water (5 cc. of reagent PhNH₂ agitated with 100 cc. distilled H₂O and filtered) and 0.5 g. of paper in a 12 + 1-in. pyrex test tube fitted with a 1-hole stopper carrying a two-bulb funnel tube in which is placed sufficient PhNH₂-water to fill the lower part of the bent connection between the two bulbs. On boiling the contents of the tube, if CH₂O is present, the PhNH₂-water in the bulb funnel will turn milky after a period of time depending on the amount of CH₂O. Absence of milkiness after 1 hr.'s boiling may be taken as proof of the absence of even traces of CH₂O.

L5 ANSWER 48 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1927:9461 CAPLUS
DOCUMENT NUMBER: 21:9461
ORIGINAL REFERENCE NO.: 21:1155g-i
TITLE: A simple method of testing for the presence of sulfites in foodstuffs
AUTHOR(S): Parkes, A. E.
SOURCE: Analyst (1926), 51, 620-2
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB In the method originally proposed by P. (C. A. 16, 393) SO₂ was liberated and made to act on starch paper having a drop of I₂ solution at the center. In an improvement of this method, a conical flask of 50-100 cc. capacity is closed with a rubber stopper carrying a small thistle tube which is bent twice and has a 2-cc. bulb in each limb. In this apparatus the issuing gases are concentrated into a small space and made to come into contact with a small volume of reagent. Treat 10 g. of meat, fish-paste, jams, dried fruits, etc. with 10 cc. of water and transfer to the flask. Of beer, cider, wines, etc., take 10 cc. of the fluid. Add 10 cc. of 2 N HCl in either case and a few small pieces of marble the size of a pea. Close the flask with the stopper carrying the thistle tube and introduce 2-3 drops of 0.1 N I₂ solution 1 drop of BaCl₂ solution. When the action of the acid on the marble slackens, heat gently. As soon as the first drop of condensate passes into the thistle tube, the color of the I₂ solution will fade and a precipitate of BaSO₄ appear. If a nephelometer is used the method can be made fairly satisfactory as a means of determining very small quantities of sulfite.

L5 ANSWER 49 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1922:19003 CAPLUS
DOCUMENT NUMBER: 16:19003
ORIGINAL REFERENCE NO.: 16:3232d-f
TITLE: Estimation of rubber as tetrabromide
AUTHOR(S): Utz, F.
SOURCE: Journal of the Society of Chemical Industry, London (1921), 41, 383A
CODEN: JSCIAN; ISSN: 0368-4075
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB A weighed amount of rubber tetrabromide is put in a flask closed with a rubber stopper. This stopper is fitted with a tap funnel, the stem of which reaches nearly to the bottom of the flask, and with a bent glass tube which is connected with a set of absorption bulbs. The flask is immersed in a cold oil bath and a cooled solution of 1-1.5 g. of AgNO₃ and 4-8 g. of K₂Cr₂O₇ in 40 cc. of concentrated H₂SO₄ is cautiously added.

After introduction of the whole of this solution the bath is gradually warmed to 135-40°. After 45 min. the reaction is ended and gentle suction is applied at the outlet of the absorption bulbs (the tap of the funnel now being opened) to carry over all the Br. The liquid in the absorption

bulbs consists of 20 cc. of a mixture of 15% NaOH solution with a saturated solution

of Na₂SO₃ in equal vols. After the reaction this reagent is transferred to a flask, strongly acidified with HNO₃ and its Br content determined. The rubber stopper outlasts a considerable number of detns.

L5 ANSWER 50 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1922:19002 CAPLUS

DOCUMENT NUMBER: 16:19002

ORIGINAL REFERENCE NO.: 16:3232d-f

TITLE: Estimation of rubber as tetrabromide

AUTHOR(S): Utz, F.

SOURCE: Gummi-Zeitung (1921), 36, 791-2

CODEN: GUZEA5; ISSN: 0367-5432

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB A weighed amount of rubber tetrabromide is put in a flask closed with a rubber stopper. This stopper is fitted with a tap funnel, the stem of which reaches nearly to the bottom of the flask, and with a bent glass tube which is connected with a set of absorption bulbs. The flask is immersed in a cold oil bath and a cooled solution of 1-1.5 g. of AgNO₃ and 4-8 g. of K₂Cr₂O₇ in 40 cc. of concentrated H₂SO₄ is cautiously added.

After introduction of the whole of this solution the bath is gradually warmed to 135-40°. After 45 min. the reaction is ended and gentle suction is applied at the outlet of the absorption bulbs (the tap of the funnel now being opened) to carry over all the Br. The liquid in the absorption bulbs consists of 20 cc. of a mixture of 15% NaOH solution with a saturated solution

of Na₂SO₃ in equal vols. After the reaction this reagent is transferred to a flask, strongly acidified with HNO₃ and its Br content determined. The rubber stopper outlasts a considerable number of detns.

L5 ANSWER 51 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1919:15936 CAPLUS

DOCUMENT NUMBER: 13:15936

ORIGINAL REFERENCE NO.: 13:3202f-i

TITLE: Apparatus for the study of photosynthesis and respiration

AUTHOR(S): Osterhout, W. J. V.

SOURCE: Botanical Gazette (Chicago) (1919), 68, 60-2

CODEN: BOGAA5; ISSN: 0006-8071

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

GI For diagram(s), see printed CA Issue.

AB The apparatus consists of a large tube closed by a stopper through which passes a tube A of Pyrex glass. Through the stopper at the other end passes the neck of an atomizer bulb B, with an opening at C for the intake of air. To the neck of the bulb is attached a tube of Pyrex glass which extends to within an inch of the bottom of the tube A. Plants are placed in the chamber with thin stems dipping in water contained in a small beaker. By means of the tubes D and E any desired amount of CO₂ may be run into the chamber. When this is finished the bulb is repeatedly squeezed so as to force the gases in the chamber to bubble through the liquid contained on the tube A, in which is distilled water to which an indicator sensitive to CO₂ (phenol sulfonephthalein, for example) is added. As the gas bubbles through the liquid the color of the indicator changes, and the bubbling is continued until the color becomes constant. To determine this constancy, the color is compared with a series of buffer solutions having the same concentration of indicator and contained in Pyrex tubes of the same size. The plant is now exposed to sunlight. After exposure, the gas is again

bubbled through the liquid. If the plant has taken CO₂ from the air, the indicator will show a greater degree of alkalinity than before. From the amount of change in alkalinity the change in tension of CO can be calculated. (See L. J. Henderson and E. J. Cohn, C. A. 11, 416, and J. F. McClendon, C. C. Gault, and S. Mulholland, C. A. 12, 391).

L5 ANSWER 52 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1915:12405 CAPLUS
DOCUMENT NUMBER: 9:12405
ORIGINAL REFERENCE NO.: 9:1956d-i, 1957a-b
TITLE: The determination of dissolved oxygen in polluted waters
AUTHOR(S): Winkler, L. W.
CORPORATE SOURCE: Budapest
SOURCE: Zeitschrift fuer Untersuchung der Nahrungs- und Genussmittel sowie der Gebrauchsgegenstaende (1915), 29, 121-8
CODEN: ZNGEA2; ISSN: 0372-9419
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB cf. C. A. 9, 674. W. has modified his original method so that the presence of nitrites and moderate amounts of organic matter do not interfere with its accuracy. The modification consists in the addition of a solution of chlorinated lime and dilute H₂SO₄ to the water at the time of sampling, the excess of CaOCl₂ being destroyed immediately before titration by means of KCNS. Fill a 250 cc. sample bottle almost completely with the water and add 10 drops (0.5 cc.) each of CaOCl₂ solution and 50% H₂SO₄; stopper and shake. The sample may then be reserved until any convenient time within 24 hrs. for analysis. The CaOCl₂ solution is prepared by rubbing 1 g. of fresh chlorinated lime (about 30% available Cl) with 100 cc. of Na₂SO₄.10H₂O (25 g. per 100 cc.) and filtering the mixture. If the CaOCl₂ treatment is performed in the laboratory, at least 10 min. must be allowed before proceeding with the determination. Then add 2 cc. KCNS (1 g. c. p. white KCNS in 200 cc.

25%

Na₂SO₄.10H₂O), shake, and allow the mixture to stand for 10 min. Add 1 cc. MnSO₄ solution (1 part MnSO₄.4H₂O and 2 parts water) and 2 cc. of KI-NaOH solution (2 parts NaOH, 1 part KI and 4 parts water) and 5 cc. of 50% H₂SO₄, or, if the water is very cold use 10 cc. of the last reagent. When much Fe is present in the water use 5 cc. of 50% H₃PO₄ instead of the H₂SO₄. Titrate with 0.01 N Na₂S₂O₃. For the sake of uniformity this method can be applied to all kinds of waters except those heavily polluted with organic matter. In such cases only the gasometric method can be used. Introduce 10 g. of granulated marble, that has previously been freed from dust by sifting, into a 500 cc. bottle, and cover with a little acidified (HCl) water. When active evolution of gas begins pour off the dilute acid and then allow the water under exam. to flow through the bottle until the interior, including the marble fragments, is thoroughly washed. Then fill to the neck with the water and close with a one-hole stopper fitted with a cylindrical bulb (of 20 cc. capacity) the lower end of which communicates through the stopper with the contents of the bottle and the upper end of which bears an opening which may be fitted with a stopper and a capillary delivery tube for conducting the dissolved gases into a eudiometer. The stopper and bulb tube are fitted into the bottle containing the water in such a way that no air space remains below the stopper and the water rises to a height of about 8 mm. in the bulb tube. If the amount of water in the bottle is insufficient for this purpose, add enough saturated CaCl₂ solution (air-free) to accomplish it. Then fill the bulb tube to the neck with concentrated HCl, add a layer (1-2 cc.) of water and fit a capillary delivery tube into the neck of the bulb. Place the large bottle in a capacious vessel containing water at

15°, since this is the best temperature for controlling the evolution of CO₂. In a short time the HCl reaches the marble and CO₂ is generated; this carries with it the dissolved air in the water. Collect the gas in a eudiometer over 20% NaOH, and when the volume of gas ceases to increase measure in the usual way. Determine the O by absorption in alkaline pyrogallol or

alkaline Na₂S₂O₃. Deduct 0.192 cc. N and 0.083 cc. O as a correction for the gases dissolved in the concentrated HCl employed. For temps. between 0 and 30° W. has found the % of O in air dissolved in water to be $n = 34.91 - 0.0438t$, in which n = % of O in the air, and t = temperature

L5 ANSWER 53 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1915:10489 CAPLUS

DOCUMENT NUMBER: 9:10489

ORIGINAL REFERENCE NO.: 9:1641c-i

TITLE: The routine detection and estimation of boric acid in butter

AUTHOR(S): Hawley, Herbert

SOURCE: Analyst (1915), 40, 150-2

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB Turmeric reagent: A mixt of 5 g. powdered turmeric root and 5 g. tartaric acid is digested with 3 successive portions of 150 cc. warm alc. (industrial methylated spirits is satisfactory). Each digestion should continue for not less than 1 hr. and each successive portion should be filtered, and the volume finally made up to 500 cc. with alc. The reagent should be kept in the dark. The method, which is rapid and approximate, is as follows: Place 20 g. of butter in a 40-50 cc. beaker, melt on a Cu tray over a water bath or steam oven, and keep warm until the curd and aqueous layer have separated, leaving the fat clear. Pour

off

the fat as far as possible onto a filter paper placed in a small beaker (taking care that none of the aqueous layer is poured onto the filter), and determine the consts. of the filtered fat in the usual manner. To the aqueous residue in the beaker add 18 cc. dilute HCl (20 cc. concentrate HCl per l.),

stir,

and keep warm for a few min. Allowing 2 cc. for the water in the butter, the 20 cc. of acid solution contains the H₃BO₃ present in the butter, together with curd and a little fat. Remove 10 cc. of the fat-free liquid by means of a pipet dipped to the bottom of the liquid, and reject the liquid remaining in the beaker. Return the 10 cc. portion to the beaker. This portion is opalescent and almost free from fat, but contains a little curd. Allow the beaker to cool, and add 5 cc. of the turmeric reagent. The samples containing H₃BO₃ slowly develop a reddish brown color, the intensity varying with the amount. Approx. estimates may be made by comparison with standards containing 0.5 cc. milk plus varying amts. of a standard H₃BO₃ solution (1 g. H₃BO₃ in 100 cc. dilute HCl (20 cc. concentrate HCl per l.)), the mixture being diluted to 10 cc. with the dilute HCl.

Milk may be preserved with HCHO for the purpose. Add 5 cc. of the turmeric reagent to each standard and make comparisons not less than 1.5 or more than 3 hrs. after the addition. An unmistakable color is developed in the presence of 0.05% H₃BO₃, and up to 0.5% can be estimated to the nearest 0.1%. The method is not recommended for samples containing more than 0.5% H₃BO₃. A simple device for rapidly measuring approx. 20 g. samples of butter consists of a 6 in. glass tube having a 7/8 in. bore. A plunger is made by boring a hole nearly through a solid rubber stopper which will just slide into the tube. A piece of narrow glass tubing with a bulb at the end is inserted in the hole and string tied tightly around the narrow end of the stopper. The plunger is raised and the tube pressed into the butter. The plunger is then pressed down to the mark which is adjusted so that the tube then contains 20 g.,

and the butter pressed out into the beaker.

L5 ANSWER 54 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1909:9346 CAPLUS
DOCUMENT NUMBER: 3:9346
ORIGINAL REFERENCE NO.: 3:1738c-g
TITLE: The Determination of Total Nitrogen According to E. A. Mitscherlich
AUTHOR(S): Merres, E.
SOURCE: Angewandte Chemie (1909), 22, 631
CODEN: ANCEAD; ISSN: 0044-8249
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
AB The method of Mitscherlich for soil extracts is rendered applicable by the author for determining total N in all other materials. A solution containing a known amount of 3-10 mg. N or a solid substance mixed with 200 cc. H₂O is put into a liter Kjeldahl flask and 3 g. of Devarda's alloy added (Al 59, Cu 39, Zn 2). The flask is provided with a Hugershoff distillation bulb, the tube of which is bent and passes through a bulb into a 500 cc. Kjeldahl flask, reaching to the bottom. This second flask serves as a receiver and in it are placed 100 cc. of H₂SO₄ (d. 1.6). Then add 50 cc. of strong NaOH solution through opening in bulb to first flask and close opening with stopper. Now heat first flask carefully till the reaction becomes weaker, raise flame and distil over about 50 cc., remove flame and let the H₂SO₄ "suck back" completely, then heat again and distil over about 50 cc. and let "suck back"; this is repeated 3 times in order to rinse out the receiver. The first flask is now heated till the contents are blue-green in color, cooled, and the melt dissolved in a known amount of water. Either the entire amount or an aliquot is distilled as follows: The distillation flask is provided with a bulb as before and connected to a 250 cc. Kjeldahl flask which is closed by a two-hole stopper; through the second hole a twice bent tube of fused quartz passes, the free end of which extends through a bulb into a 200 cc. Erlenmeyer flask almost touching the bottom. This flask is the receiver and in it is placed a suitable amount of 0.02 N acid. The necessary amount of NaOH is added as before to the first flask and it is then heated; distillation is complete in 20-30 min. The distillate is titrated back with 0.02 N NaOH, using congo red as indicator. A blank is run with each set of determinations and corrections made accordingly. The author claims an accuracy of ±0.000012 g. and that this method is more accurate than the Jodlbaur or Forster methods in which the material must be in solid form. He calls especial attention to the use of a second flask and the quartz tube in order to get accurate results. The method is recommended for water analysis.

L5 ANSWER 55 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1908:4151 CAPLUS
DOCUMENT NUMBER: 2:4151
ORIGINAL REFERENCE NO.: 2:977g-i,978a-c
TITLE: Color Reactions of Pinolin
AUTHOR(S): Grimaldi, Carlo
CORPORATE SOURCE: Chem. Lab., Zollverwaltung, Verona
SOURCE: Chemiker-Zeitung (1908), 31, 1145-6
CODEN: CMKZAT; ISSN: 0009-2894
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
AB A color reaction is described that permits the detection of 5% of pinolin or rosin spirit mixed with turpentine oil or 10% mixed with pine tar oil. The substance to be examined is carefully fractionated up to 170°. The fractions are treated cautiously with an equal volume of cone. HCl in test tubes, a small piece of tin added and the tubes placed in boiling water. After 5 min. they are thoroughly shaken, replaced in the bath and

shaken from time to time. Under these conditions, pure pinolin and its lower boiling fractions give a green color after 5 min. and the color becomes more intense upon cooling. Substances like turpentine oil, pine tar oil, camphor oil, mineral oil, etc., which resemble rosin spirit in physical and chemical properties, give colors with the reagent varying from straw-yellow to brown. The second reaction described is a modification of the Halphen test for rosin spirit (J. pharm. chim., 1902, 408). The reagent consists of 3 cc. bromine dissolved in CCl₄ to make 15 cc. It is contained in a glass cylinder with ground stopper carrying a peculiar stopcock that makes it possible to close the cylinder completely or to connect it with two glass tubes, one of which is attached to a rubber bulb and the other to an inverted funnel. A drop of each of the pinolin fractions is placed in a porcelain evaporator, and treated with 2 cc. of a reagent consisting of one volume of melted phenol crystals and 2 of CCl₄. After the contents of the evaporator has been thoroughly mixed, it is placed under the inverted funnel, the stopcock opened and the bulb carefully pressed. A yellow color appears on the surface of the liquid and on the walls of the vessel. With pinolin boiling below 170° the yellow color appears at once and changes in a few minutes, to a green. With mixtures the color takes longer to appear but it is possible to detect less than 1% of pinolin in mixtures with turpentine oil or pine tar oil, providing sufficient of the material is available to make a number of fractionations. The two reactions described can of course be carried on simultaneously.

L5 ANSWER 56 OF 65 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1908:3173 CAPLUS
DOCUMENT NUMBER: 2:3173
ORIGINAL REFERENCE NO.: 2:737h-i
TITLE: A Ferment Saccharometer with Glycerol Indicator
AUTHOR(S): Goldmann, F.
SOURCE: Berichte der Deutschen Pharmazeutischen Gesellschaft (1908), 17, 62-6
CODEN: BERPAZ; ISSN: 0365-9925
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB The old form of the apparatus consists of a U-tube having on one arm a bulb closed with a heavy stopper and on the other graduations. It is filled with mercury to the zero mark and the sample of urine containing a little added yeast is placed over the mercury in the bulb arm, and the amount of rise of mercury in the other arm after the fermentation, gives the percentage of sugar in the sample. The new ferment saccharometer is filled with glycerol instead of mercury, and a shorter U-tube is joined to the bulb end of the apparatus in which the sample of urine rests out of contact with the glycerol.

L5 ANSWER 57 OF 65 INSPEC (C) 2006 IET on STN

ACCESSION NUMBER: 2004:8214456 INSPEC
DOCUMENT NUMBER: A2005-03-2880-005; B2005-02-7530B-007
TITLE: Chemical dosimetry system for criticality accidents
AUTHOR: Miljanic, S.; Ilijas, B. (Ruder Boskovic Inst., Zagreb, Croatia)
SOURCE: Radiation Protection Dosimetry (2004), vol.110, no.1-4, p. 477-81, 13 refs.
CODEN: RPDOODE, ISSN: 0144-8420
SICI: 0144-8420(2004)110:1/4L.477:CDSC;1-A
Published by: Oxford University Press, UK
Conference: Advances in Nuclear Particle Dosimetry for Radiation Protection and Medicine. Ninth Symposium on Neutron Dosimetry, Delft, Netherlands, 28 Sept.-3 Oct.

2003

DOCUMENT TYPE: Conference; Conference Article; Journal
TREATMENT CODE: Practical; Experimental
COUNTRY: United Kingdom
LANGUAGE: English
AN 2004:8214456 INSPEC DN A2005-03-2880-005; B2005-02-7530B-007
AB Ruder Boskovic Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron+gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosimeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosimeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosimeter show very good agreement with the reference values

L5 ANSWER 58 OF 65 INSPEC (C) 2006 IET on STN
ACCESSION NUMBER: 1999:6448294 INSPEC
DOCUMENT NUMBER: C2000-02-7320-036
TITLE: Further development of a versatile microscale automated workstation for parallel adaptive experimentation
AUTHOR: Cork, D.G.; Sugawara, T.; (Medicinal Chem. Labs., Takeda Chem. Ind. Ltd., Osaka, Japan), Lindsey, J.S.; Corkan, L.A.; Hai Du
SOURCE: Laboratory Robotics and Automation (1999), vol.11, no.4, p. 217-23, 4 refs.
CODEN: LRAUEY, ISSN: 0895-7533
SICI: 0895-7533(1999)11:4L.217:FDVM;1-0
Price: 0895-7533/99/040217-07
Published by: Wiley, USA
DOCUMENT TYPE: Journal
TREATMENT CODE: Practical
COUNTRY: United States
LANGUAGE: English
AN 1999:6448294 INSPEC DN C2000-02-7320-036
AB We have further developed our microscale automated chemistry workstation for investigating the optimization of reaction conditions. The workstation includes a Cartesian robot for solvent delivery and reagent/sample handling, a 60 vessel reaction block, a UV-visible absorption spectrometer, and vial racks for compound storage. The article describes the following hardware additions that increase the scope and versatility of the workstation: (a) an analytical high performance liquid chromatography (HPLC) instrument and accompanying hardware interface (slide rail, autosampler); (b) three reactor blocks of 20 vessels each, with independent temperature control of each reactor block between ca. 0 and 80°C; (c) a shaker rack for mixing, dilution, or extraction of samples; (d) a rotary valve on the dispense line for complete isolation of 4 independent solvent lines; (e) sample workup features using disposable cartridges or filters; (f) provisions for dispensing inert gas, for example, for flushing through reactors or for storing solvents and performing transfer/dispense operations under. Using the new features, we are able to obtain useful analytical data from a wider range of reaction mixtures, perform parallel

reactions at different temperatures, and handle solvents and sensitive reagents

L5 ANSWER 59 OF 65 INSPEC (C) 2006 IET on STN

ACCESSION NUMBER: 1970:87738 INSPEC

DOCUMENT NUMBER: B1970-004002

TITLE: Gas filled cold cathode indicator tube

AUTHOR: Koshizuka, M.; Ohfuji, N.; Sato, S.

PATENT ASSIGNEE: Nippon Radio Co. Ltd

PATENT INF., ORIGINAL: US 3437861 19690408

APPLICATION INFORMATION: 19660214

PRIORITY INF., ORIGINAL: JP-40/9396 19650219

DOCUMENT TYPE: Patent

COUNTRY: United States

LANGUAGE: English

AN 1970:87738 INSPEC DN B1970-004002

AB A discharge type indicator tube having a stem which includes a shell and an insulator spacer for supporting and locating a plurality of cathode electrodes which have predetermined shapes. If a shell is fabricated from an insulating material, it may also function as the spacer. The stem also provides means to pass lead wires from the cathodes there through and the shell is adapted to be sealed to the lower portion of the tube bulb, thereby closing off the tube

L5 ANSWER 60 OF 65 INSPEC (C) 2006 IET on STN

ACCESSION NUMBER: 1960:B07974 INSPEC

DOCUMENT NUMBER: 1960B07974

TITLE: Detection and identification of distillates in tubes

AUTHOR: Gobin, M.

SOURCE: Le Vide (May 1960 - June 1960), vol. 15, p. 263-267

DOCUMENT TYPE: Journal

COUNTRY: France

LANGUAGE: French

AN 1960:B07974 INSPEC DN 1960B07974

AB In order to identify deposits and stains which occur on the components of electron tubes the parts are removed using non-contaminating tools, They are individually wrapped in a suitable filter paper impregnated with an appropriate reagent and this package is then sharply compressed between mica sheets. The paper in contact with the part being investigated shows a print of the deposit on the component which can then be interpreted by normal chromatographic methods. Examples are given of the identification of barium, strontium and nickel deposits on tube micas. Internal bulb deposits can be identified by slightly modifying the procedure. Theoretically all elements giving a characteristic coloured drop reaction can be detected down to the sensitivity limit of the reaction.

L5 ANSWER 61 OF 65 INSPEC (C) 2006 IET on STN

ACCESSION NUMBER: 1923:A01131 INSPEC

DOCUMENT NUMBER: 1923A01131

TITLE: Stark effect on hydrogen secondary spectrum

AUTHOR: Kiuti, M.

SOURCE: Japanese Journal of Physics (1922), vol. 3, no. 4, p. 29-39

DOCUMENT TYPE: Journal

COUNTRY: Japan

LANGUAGE: English

AN 1923:A01131 INSPEC DN 1923A01131

AB An investigation in the visible region, special attention being given to the Fulcher bands. The method employed was Lo Surdo's. The discharge tube was in the form of a Pluecker tube, with one of the end bulbs

removed. The capillary was 1 mm. in diameter. A continuous flow of hydrogen was maintained by an oil-immersed rotary pump. The gas was washed with water and concentrate sulphuric acid, and entered a 2-litre flask; this flask was connected to the discharge tube by a capillary of 0.1 mm. bore and length 1 m. Another 2-litre flask between the pump and the tube helped to keep the pressure stationary. The length of the Crooke's dark space was about 2 mm.; this served as an indicator of pressure fluctuations. The portion of the capillary 2 mm. from the cathode was focused on the slit of the spectroscope, using two lenses; a quartz Wollaston prism placed between the lenses separated the p- and s-components. A plane grating with 590 lines per mm. was used; the dispersion in the first order was 31 A.U. per mm. Owing to the arrangement employed, for many lines the image with no field was too feeble for use as a standard, and so a comparison Pluecker hydrogen tube was used. Exposure was 12-2 hours. Two 5000-volt d.c. dynamos were used in series, with a 300,000 ohm manganin resistance in the circuit to make the discharge more stable. The terminal voltage of the tube was 4000 to 6000 volts, being kept constant during an exposure by regulating the exciting current to the dynamos. The intensity of the field was deduced from the separation of the Balmer lines; it was found that the present results were more nearly in agreement with Epstein's theory than Stark's results. More than 100 lines are found to be affected by the strength of field used and under the present dispersion; most of these were on the long wave-length side of λ 5300. In most cases the lines were displaced towards the red, or separated asymmetrically. The lines most affected were in the neighbourhood of λ 5400 and $\lambda\lambda$ 5930-5982. In all instances the separation increases either in proportion to, or more rapidly than, the field intensity. Between λ 5300 and λ 5700 the relative intensities of the Pluecker tube and the positive rays are very different; e.g.. The first and third members of the second Fulcher band are weakened in the positive rays as one goes out from the head, alternately. No simple rule was found for the Fulcher bands. In both bands the effect on the first and third members is large and small alternately; this may be of importance in deducing the structure of the origin of the secondary spectrum. Tables of results are given, and a photograph.

L5 ANSWER 62 OF 65 COMPENDEX COPYRIGHT 2006 EEI on STN
ACCESSION NUMBER: 2006(39):10543 COMPENDEX
TITLE: Microfluidic sequential injection analysis in a short capillary.
AUTHOR: Du, Wen-Bin (Institute of Microanalytical Systems Department of Chemistry Zhejiang University, Hangzhou, China); Fang, Qun; Fang, Zhao-Lun
SOURCE: Analytical Chemistry v 78 n 18 Sep 15 2006 2006.p 6404-6410
CODEN: ANCHAM ISSN: 0003-2700
PUBLICATION YEAR: 2006
DOCUMENT TYPE: Journal
TREATMENT CODE: Experimental
LANGUAGE: English
AN 2006(39):10543 COMPENDEX
AB An automated microfluidic sequential injection analysis system that efficiently manipulates sample and reagent solutions in the nanoliter range in [similar to]10 s per analytical cycle is described. The system consisted of a 6-cm-long, typically 75-mum i.d., fused-silica capillary (which functioned as a sampling probe and reactor as well as a flow-through detection cell), a horizontally oriented waste reservoir that provided liquid level differences for inducing gravity-driven flows, an autosampling device holding samples and reagents with horizontally fixed slotted microvials, and a laser-induced fluorescence detection system. Sample and reagent zones were sequentially

introduced via gravity-driven flow by scanning the capillary tip (functioning as the sampling probe) through the vial slots, while vials containing sample, reagent, and carrier were sequentially rotated to the probe by programmed movement of the vial holders. Sequentially injected nanoliter zones were rapidly mixed by convection and diffusion within the carrier flow, demonstrating a behavior that conformed well to the Taylor dispersion model, and zone penetration effects were characterized and optimized under Taylor's dispersion theory guidelines. For the determination of fluorescein, a high throughput of 400 h⁻¹ was achieved, rapidly producing calibration curves (five points) within 45 s. Owing to its adaptability to the Taylor's dispersion model, the system was used also for measuring diffusion coefficients of fluorescent species. Potentials for using the system in enzyme inhibition assays were demonstrated by a reaction involving the conversion of fluorescein digalactoside to fluorescent hydrolysates via beta-galactosidase and the inhibition of beta-galactosidase by diethylenetriaminepentaacetic acid. \$CPY 2006 American Chemical Society. 30 Refs.

L5 ANSWER 63 OF 65 COMPENDEX COPYRIGHT 2006 EEI on STN
ACCESSION NUMBER: 2006(8):14233 COMPENDEX
TITLE: Prototype high-throughput system for hydrothermal synthesis and X-ray diffraction of microporous and mesoporous materials.
AUTHOR: Caremans, T.P. (Centre for Surface Chemistry and Catalysis K.U. Leuven, 3001 Leuven, Belgium); Kirschhöck, C.E.A.; Verlooy, P.; Paul, J.S.; Jacobs, P.A.; Martens, J.A.
SOURCE: Microporous and Mesoporous Materials v 90 n 1-3 SPEC. ISS. Mar 20 2006 2006.p 62-68 CODEN: MIMMFJ ISSN: 1387-1811
PUBLICATION YEAR: 2006
DOCUMENT TYPE: Journal
TREATMENT CODE: Theoretical
LANGUAGE: English
AN 2006(8):14233 COMPENDEX
AB In the hydrothermal synthesis of microporous and mesoporous materials a large number of parameters including chemical composition of the mixture, reagent sources, organic templates, temperature, and time play a role. The high-throughput experimental approach facilitates screening of this multi-parameter space for conditions favoring formation of desired zeolite phases and ordered mesoporous materials. A critical issue in the development of a high-throughput system for hydrothermal synthesis is the avoidance of cross-contamination between the individual synthesis volumes. Further important issues are automation of reactant dosing, product filtration, calcination and identification. In this work, a prototype multi-clave was designed with three 5 mL synthesis vials for operation at temperatures up to 200 deg C under autogenous pressure. The multi-clave is equipped with a sample tray for filtration, washing and drying of all of the synthesis products at the same time. This multi-filter also serves as the sample holder for X-ray diffraction characterization. The innovation resides in the multi-clave concept and the integration of the entire process from synthesis over product workup to XRD characterization without necessitating individual sample transfer. The performance of the prototype was evaluated with the synthesis of the mesoporous-microporous hybrid material zeotile-2, and of clathrasils. \$CPY 2005 Elsevier Inc. All rights reserved. 37 Refs.

L5 ANSWER 64 OF 65 COMPENDEX COPYRIGHT 2006 EEI on STN
ACCESSION NUMBER: 2005(39):9912 COMPENDEX
TITLE: Transverse diffusion of laminar flow profiles to produce capillary nanoreactors.

AUTHOR: Okhonin, Victor (Department of Chemistry York University, Toronto, Ont. M3J 1P3, Canada); Liu, Xin; Krylov, Sergey N.

SOURCE: Analytical Chemistry v 77 n 18 Sep 15 2005 2005.p 5925-5929

PUBLICATION YEAR: 2005

DOCUMENT TYPE: Journal

TREATMENT CODE: Experimental

LANGUAGE: English

AN 2005(39):9912 COMPENDEX

AB We introduce transverse diffusion of laminar flow profiles (TDLPP), the first generic method for mixing two or more reactants inside capillaries. Conceptually, solutions of reactants are injected inside the capillary by pressure as a series of consecutive plugs. Due to the laminar nature of flow inside the capillary, the nondiffused plugs have parabolic profiles with predominantly longitudinal interfaces between them. After injection, the plugs are mixed by transverse diffusion; longitudinal diffusion does not contribute to mixing. To prove the principle, we used TDLPP to mix two reactants—an enzyme and its substrate. After mixing the reactants by TDLFP, we incubated reaction mixtures for different periods of time and measured the reaction kinetics. We found that the reaction proceeded in time- and concentration-dependent fashion, thus confirming that the reactants were mixed by TDLPP. Remarkably, the experimental reaction kinetics were not only in qualitative agreement but also in good quantitative agreement with theoretically predicted ones. TDLPP has a number of enabling features. By facilitating the preparation of reaction mixtures inside the capillary, TDLPP lowers reagent consumption to nanoliters (microliters are required for conventionally mixing reagents in a vial). The reaction products can be then analyzed "on-line" by capillary separation coupled with optical, electrochemical, or mass spectrometric detection. The combination of TDLPP with capillary separation will be an indispensable tool in screening large combinatorial libraries for affinity probes and drug candidates: a few microliters of a target protein will be sufficient to screen thousands of compounds. The new method paves the road to a wide use of capillary nanoreactors in different areas of physical and life sciences. ©CPY 2005 American Chemical Society. 20 Refs.

L5 ANSWER 65 OF 65 COMPENDEX COPYRIGHT 2006 EEI on STN

ACCESSION NUMBER: 1999(49):2138 COMPENDEX

TITLE: Further development of a versatile microscale automated workstation for parallel adaptive experimentation.

AUTHOR: Cork, David G. (Takeda Chemical Industries Ltd, Osaka, Jpn); Sugawara, Tohru; Lindsey, Jonathan S.; Corkan, L. Andrew; Du, Hai

SOURCE: Laboratory Robotics and Automation v 11 n 4 1999.p 217-223

PUBLICATION YEAR: 1999

DOCUMENT TYPE: Journal

TREATMENT CODE: Application; General Review

LANGUAGE: English

AN 1999(49):2138 COMPENDEX

AB We have further developed our microscale automated chemistry workstation for investigating the optimization of reaction conditions. The workstation includes a Cartesian robot for solvent delivery and reagent /sample handling, a 60-vessel reaction block, a UV-Vis absorption spectrometer, and vial racks for compound storage. This article describes the following hardware additions that increase the scope and versatility of the workstation: (a) an analytical high performance liquid

chromatography (HPLC) instrument and accompanying hardware interface (slide rail, autosampler); (b) three reactor blocks of 20 vessels each, with independent temperature control of each reactor block between ca.0 and 80 degree C; (c) a shaker rack for mixing, dilution, or extraction of samples; (d) a rotary valve on the dispense line for complete isolation of 4 independent solvent lines; (e) sample workup features using disposable cartridges or filters; (f) provisions for dispensing inert gas, for example, for flushing through reactors or for storing solvents and performing transfer/dispense operations under. Using the new features, we are able to obtain useful analytical data from a wider range of reaction mixtures, perform parallel reactions at different temperatures, and handle solvents and sensitive reagents. (Author abstract) 4 Refs.

=> display 14 1-21 ibib abs

L4 ANSWER 1 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2002:275863 CAPLUS

DOCUMENT NUMBER: 136:295023

TITLE: Multi-well rotary synthesizer with sealing waste tube system for synthesizing polymer chains

INVENTOR(S): McLuen, Gary R.

PATENT ASSIGNEE(S): USA

SOURCE: PCT Int. Appl., 34 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2002028524	A2	20020411	WO 2001-US30612	20010927
WO 2002028524	A3	20030130		
WO 2002028524	C2	20030530		
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW				
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
AU 2002024339	A5	20020415	AU 2002-24339	20010927
PRIORITY APPLN. INFO.: US 2000-679142 A 20001003				
WO 2001-US30612 W 20010927				

AB An apparatus for synthesizing polymer chains includes a controller, a plurality of precision fit vials circularly arranged in multiple banks on a cartridge, a drain corresponding to each bank of vials, a chamber bowl, a plurality of valves for delivering reagents to selective vials, and a waste tube system for purging material from the vials. A purging operation can be selectively performed on one or more of the banks of vials. The multiple banks of valves provide an addnl. number of reagent choices while operating in a serial mode and faster reagent distribution while operating in a parallel mode. The plurality of vials are stored in the cartridge and are divided among individual banks wherein each bank of vials has a corresponding drain. There is at least one waste tube system for expelling the reagent solution from vials within a particular bank of vials when the waste tube system is coupled to the corresponding drain. The cartridge holding the

plurality of vials rotates relative to the stationary banks of valves and the waste tube system. The controller rotates the cartridge and operates the banks of valves and the waste tube system in response to the required sequence of dispensing various reagent solns. and flushing appropriate vials in order to form the desired polymer chain within each vial. Preferably, the waste tube system includes a drain plug ball within a drain plug and a waste tube with a vertical sliding member. During a flushing procedure, the waste tube is raised so that the vertical member engages the drain plug ball, breaking a seal maintained by the drain plug ball and allowing material to be flushed from the corresponding bank of vials through the waste tube. During all other times, the drain plug ball is forced against an O-ring by a spring in order to maintain the seal within the drain plug.

L4 ANSWER 2 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1964:441942 CAPLUS
DOCUMENT NUMBER: 61:41942
ORIGINAL REFERENCE NO.: 61:7331a-b
TITLE: Distillation apparatus for micro determination of nitrogen
AUTHOR(S): Dixon, S. E.; Shuel, R. W.
CORPORATE SOURCE: Ontario Agr. Coll., Guelph, Can.
SOURCE: Chemist-Analyst (1962), 51(3-4), 84
CODEN: CHANAA; ISSN: 0095-8484
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB The distillation apparatus has proved satisfactory for the determination of the N content of

individual insect larvae or samples of similar N content (15-150 γ of N). The technique is described. The apparatus consists of an outer chamber filled with glycerol; an inner distillation chamber, to which the Kjeldahl digest is transferred and which is closed by a silicone or rubber plug; a condensing arm of 2-mm. tubing containing a bulb large enough to prevent the suck-back of the absorbing reagent; and a simple water jacket.

L4 ANSWER 3 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1963:36074 CAPLUS
DOCUMENT NUMBER: 58:36074
ORIGINAL REFERENCE NO.: 58:6179d-g
TITLE: Rapid radiometric microgram determinations via precipitation or extraction
AUTHOR(S): Spitzky, H.; Dosudil, I.
CORPORATE SOURCE: Univ. Graz, Austria
SOURCE: Microchemical Journal, Symposium Series (1962), 2, 919-27
CODEN: MJSSAZ; ISSN: 0544-0165
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB γ amts. of Na and K were determined by precipitation with labeled reagents and radiometry. Extraction methods with dithizone and Zn65 were used to determine γ amts. of Cu, Ag, and Hg. Pptns. were carried out in a modified Pregl filter tube which was expanded on one side to provide a reaction bulb of 0.3-ml. capacity. The sample and reagents were introduced into the bulb through a slit opening on the opposite side and were stirred while the tube was horizontal. When precipitation was complete, the tube was turned to a vertical position, and the precipitate was spread on the filter disk with a jet of washing

solution The supernatant was drawn off, and the precipitate was washed. The filter

tube with precipitate was fixed in a definite position relative to a well-type scintillation counter. The measured activity was compared with a standard curve. This technique was suitable for determining 0.2-100 γ K by precipitation.

with Na hexanitritocobaltate labeled with Co60 and for determining 0.3-100 γ Na by precipitation with Zn uranyl acetate labeled with Zn65. Satisfactory results were obtained in the 1-12 γ Na range when less than twice as much K as Na was present; 3 times as much K as Na could be tolerated in the 100 γ Na range. For extns., aqueous solns. containing 0.5-30 γ Cu, Ag, or Hg were extracted with a measured excess of dithizone. The extract was separated and transferred to a titration vessel which

contained a measured excess of Zn65 standard solution in an acetate buffer. After the unused dithizone had combined with an equivalent part of standard min., the activity remaining in the aqueous solution was measured. In this manner, the dithizone used by the unknown ion was determined by one radiometric measurement. Both methods require only 15-20 min. for 1 determination.

L4 ANSWER 4 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1952:24571 CAPLUS

DOCUMENT NUMBER: 46:24571

ORIGINAL REFERENCE NO.: 46:4169f-h

TITLE: The influence of vulcanized rubber on the quality of distilled water

AUTHOR(S): Christiansen, Eivind

SOURCE: Meddelelser fra Norsk Farmaceutisk Selskap (1951), 13, 121-30, I35-53

CODEN: MNFSAW; ISSN: 0029-1927

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB The effect of a number of rubber samples, including various qualities of rubber stoppers, vial caps, catheters, and rubber tubing, on distilled water was investigated. The following criteria were used for judging the water after contact with the rubber samples: color, odor, taste, presence of NH₃, change in pH, change in specific conductance, color reaction with dithizone, and presence of pyrogens. The term "Dithizone number" (I) was coined, designating the number of days of contact with the rubber sample before the water caused the dithizone reagent (5 mg. dithizone in 100 ml. CCl₄) to change from green to pink. There was found to be a relation between I and the pyrogenic effect. Rubber samples with low I imparted pyrogens to distilled water, whereas water in contact with rubber samples having a I of 10 or more were always pyrogen-free. A number of standards were suggested for rubber materials intended for medical or pharmaceutical use.

L4 ANSWER 5 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1951:10803 CAPLUS

DOCUMENT NUMBER: 45:10803

ORIGINAL REFERENCE NO.: 45:1903h-i,1904a

TITLE: Photoelectric spot analysis of antimony and bismuth

AUTHOR(S): Sudo, Toshio; Hayase, Kitaro

CORPORATE SOURCE: Tokyo Univ.

SOURCE: Science (Washington, DC, United States) (1951), 113, 11-12

CODEN: SCIEAS; ISSN: 0036-8075

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB To test for Sb³⁺ a 5% solution of H₃PO₄.12MoO₃ is used and for Bi³⁺ a solution prepared from 1 g. cinchonine, 2 g. KI, a few drops of HNO₃, and water to make 100 ml. Immerse a piece of filter paper in the reagent, add 1 drop of the solution to be tested and in the test for Sb heat in a steam bath for 5 min.. Place the filter paper showing a colored

spot (blue for Sb and pink for Bi) between the light bulb and the photoelec. tube of a photometer and insert a screen having a round hole (12 mm. diameter) between the light bulb and the filter paper. Center the colored spot on the hole which causes a part of the light to be absorbed by the colored spot. Record the microammeter reading when the light transmitted through the colored spot is less than that through the rest of the paper. Correct the error owing to varying thickness of the paper by a blank test on each paper used. From the reading, calculate the percent of Sb or Bi. Good results are cited for determining 0.18 γ of Sb and from 0.30 to 9.4 γ of Bi.

L4 ANSWER 6 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1946:36733 CAPLUS

DOCUMENT NUMBER: 40:36733

ORIGINAL REFERENCE NO.: 40:7074g-i

TITLE: Determination of carbon dioxide under field conditions by the volumetric method

AUTHOR(S): Khrizman, I. A.

SOURCE: Zavodskaya Laboratoriya (1946), 12, 250-1

CODEN: ZVDLAU; ISSN: 0321-4265

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB A jar is closed with a rubber stopper through which a glass tube is passed whose lower part is blown out in the shape of a sealed cylindrical bulb. The upper part of this bulb has a side opening. The glass tube is connected to a 100-ml. buret filled with concentrated NaCl solution acidified with several drops of HCl and colored with an

indicator. The other end of the buret is connected to a regulating bulb by means of rubber tubing. Place 0.5 g. of the ore sample in the jar, fill the bulb with 10% HCl nearly to the level of the side opening, and stopper the jar. Determine the volume of CO₂ evolved by the difference in the levels of the liquid in the buret before and after the reaction.

L4 ANSWER 7 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1943:42424 CAPLUS

DOCUMENT NUMBER: 37:42424

ORIGINAL REFERENCE NO.: 37:6697a-c

TITLE: Anaerobic single-tube cultures

AUTHOR(S): Fuhrmann, Franz

SOURCE: Zentralblatt fuer Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abteilung 2, Naturwissenschaftliche: Allgemeine, Landwirtschaftliche und Technische Mikrobiologie (1943), 2, 105, 406-14

CODEN: ZBPIA9; ISSN: 0044-4057

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB Three special tubes for single anaerobic cultures are described. The size of each is about 200 + 28 mm. Tube 1 has a bulb blown at the closed end into which 12 cc. of 20% Na₂CO₃ or NaOH can be placed. Just above this is a side bulb in which 8 cc. of 20% pyrogallol solution is placed, a small side bulb near the open end of the tube in which is placed a little indicator solution for O (0.2% methylene blue in 0.5% dextrose), or filter paper soaked in the indicator solution. The inoculated culture tube is inserted into the special tube and the latter tightly stoppered. The assembly is then tilted so that the pyrogallol is mixed with the alkali. Tube 2 is similar except that a glass stopcock is ground into the open end so that the assembly can be evacuated. Tube 3 is like tube 2 except that the 2 lower bulbs are replaced by a ground-in stopcock, so that the air in the

assembly can be replaced by some inert gas such as H or N. With tube 3, CO₂ or other gases formed during growth can be drawn into appropriate absorption tubes.

L4 ANSWER 8 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1939:39880 CAPLUS

DOCUMENT NUMBER: 33:39880

ORIGINAL REFERENCE NO.: 33:5628g-i,5629a-d

TITLE: Determination of the NO content of coal-distillation gases

AUTHOR(S): Berkhoff, G.; van den Bout, M. F.

SOURCE: Het Gas (1939), 59, 53-9

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB Different methods for NO determination Schuftan (cf. C. A. 26, 2849), Fulweiler (cf. C. A. 29, 5251.4), Shaw (cf. C. A. 30, 8573.3), Guyer and Weber (cf. C. A. 28, 880.4), etc., are discussed; the last method was chosen. The accuracy of the method was checked by adding known amts. of NO (diluted with 500 parts N₂) to the gas. For each determination 10 l. gas was used, passed at a

rate of 20 l. per hr. Numerous expts. were undertaken to check the results for high and low NO concns. and curves are given for interpretation of the results. For NO contents between 0.01 and 2 p. p. m. the contact vessels are arranged KMnO₄-Ilosvay reagent

-KMnO₄-Ilosvay and the NO content is determined separately for the 1st and 2nd Ilosvay vessel. A curve relating the 2 figures, determined experimentally, makes it possible to calculate the actual total NO content. Between 1 and 2 p. p. m. NO the first vessel absorbs 90 to 95% of the total NO present; at 0.1 p. p. m. this is reduced to 70%, at 0.02 p. p. m. to only 50%.

Measurements on NO content of pure H₂ confirmed these data; in these tests 4 pairs of oxidation and absorption vessels were used. For the 20 l. per hr. rate the absorption is 95% for 2-17 p. p. m. NO. The accuracy of these detns. is estimated to be 10%. The Schuftan method on the same gases gave results approx. 10 times higher for the particular type of coke-oven gas used. This ratio depends on the diolefin content of the gas. The method finally used is: The Ilosvay reagent is colorless and prepared shortly before use from equal amts. of solution (I) 2 g. sulfanilic acid in a mixture of 100 cc. nitrite-free water and 100 cc. AcOH (300 cc. H₂O is added) and solution (II) 0.6 g. α naphthylamine, 400 cc. nitrite-free water and 100 cc. AcOH (the solution should not be heated). The KMnO₄ stock solution is 5% in nitrite-free water, boiled up and cooled. Shortly before use 5 cc. nitrite-free concentrated H₂SO₄ is added to 100 cc. KMnO₄ solution. The standard NaNO₂ solution is prepared from 30 mg. pure NaNO₂

in

nitrite-free water to 1 l., kept in the dark; it is good for 3 months and is standardized at intervals. Nitrite-free water is prepared by redistn. over Ba(OH)₂. The apparatus consists of 3 reaction vessels: a glass U tube, the up leg being of 17 mm. diameter, 440 mm. high with a 25-mm. radius bulb near the top, a porolith filter, 5 mm. thick type ff (Meissen) in a 14 mm. restriction near the base of the U tube for dispersion of the gas. The first and third vessels hold 15 cc. Ilosvay reagent; the second has 65 cc. acidified KMnO₄ solution. Auxiliaries are flow meter, gas meter, bypass, pressure regulator and manometer. The resistance of the apparatus is about 100 mm. Hg.; hence the gas is usually pumped through. At a 20 l. per hr. rate the Ilosvay tube froths abundantly. The Seebaum type vessels give equally good results. All joints are glass to glass. For the colorimetry of the solution obtained 20-mm. tubes, holding 50 cc. are used. All tubes, test as well as standard, are allowed to stand 10 min. before reading. 0.1 cc. standard NaNO₂ solution is equivalent to 0.21 + 10⁻² cc. NO in the gas.

L4 ANSWER 9 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1931:34839 CAPLUS
DOCUMENT NUMBER: 25:34839
ORIGINAL REFERENCE NO.: 25:3878i,3879a-b
TITLE: Storage and delivery apparatus for antimony chloride solutions and other corrosive reagents
AUTHOR(S): Middleton, G.
SOURCE: Analyst (1931), 56, 236-7
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB The apparatus consists of a 600-cc. bottle of amber glass fitted with a stopper through which a glass tube passes. The tubing carries 2 chambers, one ending just below the stopper and connecting on the outside with a CaCl_2 tube (ground-glass connection) through which air can be forced by a rubber atomizer bulb. The inner part of the tubing serves for the passage of the solution from the bottle to the measuring device. This tubing reaches nearly to the bottom of the bottle and is bent upwards a little at the bottom, so as not to draw up any sediment, and is provided with a small hole at the lowest point so that any oily liquid may fall through and not clog the tube. For the determination of the vitamin A content of cod-liver oil, a chromogen reaction

is

recommended in which a solution of SbCl_3 in CHCl_3 is used; this bottle is devised especially for this reagent but has also been used for liquids like Br_2 . The pressure of air pushes the reagent upward through the narrow tubing into a small vessel which, when filled, drains to hold exactly 2 cc. The connection is with ground glass, but the liquid itself does not come in contact with the joint.

L4 ANSWER 10 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1927:24350 CAPLUS
DOCUMENT NUMBER: 21:24350
ORIGINAL REFERENCE NO.: 21:2983a-b
TITLE: Detection of formaldehyde in paper
AUTHOR(S): Bentzen, Th.
SOURCE: Paper Ind. (1927), 9, 617
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB Place 25 cc. of freshly prepared PhNH_2 -water (5 cc. of reagent PhNH_2 agitated with 100 cc. distilled H_2O and filtered) and 0.5 g. of paper in a 12 + 1-in. pyrex test tube fitted with a 1-hole stopper carrying a two-bulb funnel tube in which is placed sufficient PhNH_2 -water to fill the lower part of the bent connection between the two bulbs. On boiling the contents of the tube, if CH_2O is present, the PhNH_2 -water in the bulb funnel will turn milky after a period of time depending on the amount of CH_2O . Absence of milkiness after 1 hr.'s boiling may be taken as proof of the absence of even traces of CH_2O .

L4 ANSWER 11 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1927:9461 CAPLUS
DOCUMENT NUMBER: 21:9461
ORIGINAL REFERENCE NO.: 21:1155g-i
TITLE: A simple method of testing for the presence of sulfites in foodstuffs
AUTHOR(S): Parkes, A. E.
SOURCE: Analyst (1926), 51, 620-2
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB In the method originally proposed by P. (C. A. 16, 393) SO_2 was liberated and made to act on starch paper having a drop of I_2 solution at the center. In an improvement of this method, a conical flask of 50-100 cc. capacity is closed with a rubber stopper carrying a small thistle

tube which is bent twice and has a 2-cc. bulb in each limb. In this apparatus the issuing gases are concentrated into a small space and

made to come into contact with a small volume of reagent. Treat 10 g. of meat, fish-paste, jams, dried fruits, etc. with 10 cc. of water and transfer to the flask. Of beer, cider, wines, etc., take 10 cc. of the fluid. Add 10 cc. of 2 N HCl in either case and a few small pieces of marble the size of a pea. Close the flask with the stopper carrying the thistle tube and introduce 2-3 drops of 0.1 N I₂ solution 1 drop of BaCl₂ solution. When the action of the acid on the marble slackens, heat gently. As soon as the first drop of condensate passes into the thistle tube, the color of the I₂ solution will fade and a precipitate of BaSO₄ appear. If a nephelometer is used the method can be made fairly satisfactory as a means of determining very small quantities of sulfite.

L4 ANSWER 12 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1922:19003 CAPLUS

DOCUMENT NUMBER: 16:19003

ORIGINAL REFERENCE NO.: 16:3232d-f

TITLE: Estimation of rubber as tetrabromide

AUTHOR(S): Utz, F.

SOURCE: Journal of the Society of Chemical Industry, London (1921), 41, 383A

CODEN: JSCIAN; ISSN: 0368-4075

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB A weighed amount of rubber tetrabromide is put in a flask closed with a rubber stopper. This stopper is fitted with a tap funnel, the stem of which reaches nearly to the bottom of the flask, and with a bent glass tube which is connected with a set of absorption bulbs. The flask is immersed in a cold oil bath and a cooled solution of 1-1.5 g. of AgNO₃ and 4-8 g. of K₂Cr₂O₇ in 40 cc. of concentrated

H₂SO₄

is cautiously added. After introduction of the whole of this solution the bath is gradually warmed to 135-40°. After 45 min. the reaction is ended and gentle suction is applied at the outlet of the absorption bulbs (the tap of the funnel now being opened) to carry over all the Br. The liquid in the absorption bulbs consists of 20 cc. of a mixture of 15% NaOH solution with a saturated solution of Na₂SO₃ in equal vols. After the reaction this

reagent is transferred to a flask, strongly acidified with HNO₃ and its Br content determined. The rubber stopper outlasts a considerable number of detns.

L4 ANSWER 13 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1922:19002 CAPLUS

DOCUMENT NUMBER: 16:19002

ORIGINAL REFERENCE NO.: 16:3232d-f

TITLE: Estimation of rubber as tetrabromide

AUTHOR(S): Utz, F.

SOURCE: Gummi-Zeitung (1921), 36, 791-2

CODEN: GUZEA5; ISSN: 0367-5432

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB A weighed amount of rubber tetrabromide is put in a flask closed with a rubber stopper. This stopper is fitted with a tap funnel, the stem of which reaches nearly to the bottom of the flask, and with a bent glass tube which is connected with a set of absorption bulbs. The flask is immersed in a cold oil bath and a cooled solution of 1-1.5 g. of AgNO₃ and 4-8 g. of K₂Cr₂O₇ in 40 cc. of concentrated

H₂SO₄

is cautiously added. After introduction of the whole of this solution the bath is gradually warmed to 135-40°. After 45 min. the reaction is ended and gentle suction is applied at the outlet of the absorption bulbs (the tap of the funnel now being opened) to carry over all the Br. The liquid in the absorption bulbs consists of 20 cc. of a mixture of 15% NaOH solution with a saturated solution of Na₂SO₃ in equal vols. After the reaction this

reagent is transferred to a flask, strongly acidified with HNO₃ and its Br content determined. The rubber stopper outlasts a considerable number of detns.

L4 ANSWER 14 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1915:12405 CAPLUS

DOCUMENT NUMBER: 9:12405

ORIGINAL REFERENCE NO.: 9:1956d-i, 1957a-b

TITLE: The determination of dissolved oxygen in polluted waters

AUTHOR(S): Winkler, L. W.

CORPORATE SOURCE: Budapest

SOURCE: Zeitschrift fuer Untersuchung der Nahrungs- und Genussmittel sowie der Gebrauchsgegenstaende (1915), 29, 121-8

CODEN: ZNGEA2; ISSN: 0372-9419

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB cf. C. A. 9, 674. W. has modified his original method so that the presence of nitrites and moderate amts. of organic matter do not interfere with its accuracy. The modification consists in the addition of a solution of chlorinated lime and dilute H₂SO₄ to the water at the time of sampling, the excess of CaOCl₂ being destroyed immediately before titration by means of KCNS. Fill a 250 cc. sample bottle almost completely with the water and add 10 drops (0.5 cc.) each of CaOCl₂ solution and 50% H₂SO₄, stopper and shake. The sample may then be reserved until any convenient time within 24 hrs. for analysis. The CaOCl₂ solution is prepared by rubbing 1 g. of fresh chlorinated lime (about 30% available Cl) with 100 cc. of Na₂SO₄.10H₂O (25 g. per 100 cc.) and filtering the mixture. If the CaOCl₂ treatment is performed in the laboratory, at least 10 min. must be allowed before proceeding with the determination. Then add 2 cc. KCNS (1 g. c. p. white KCNS in 200 cc.

25%

Na₂SO₄.10H₂O), shake, and allow the mixture to stand for 10 min. Add 1 cc. MnSO₄ solution (1 part MnSO₄.4H₂O and 2 parts water) and 2 cc. of KI-NaOH solution (2 parts NaOH, 1 part KI and 4 parts water) and 5 cc. of 50% H₂SO₄, or, if the water is very cold use 10 cc. of the last reagent.

When much Fe is present in the water use 5 cc. of 50% H₃PO₄ instead of the H₂SO₄. Titrate with 0.01 N Na₂S₂O₃. For the sake of uniformity this method can be applied to all kinds of waters except those heavily polluted with organic matter. In such cases only the gasometric method can be used. Introduce 10 g. of granulated marble, that has previously been freed from dust by sifting, into a 500 cc. bottle, and cover with a little acidified (HCl) water. When active evolution of gas begins pour off the dilute acid and then allow the water under exam. to flow through the bottle until the interior, including the marble fragments, is thoroughly washed. Then fill to the neck with the water and close with a one-hole stopper fitted with a cylindrical bulb (of 20 cc.

capacity) the lower end of which communicates through the stopper with the contents of the bottle and the upper end of which bears an opening which may be fitted with a stopper and a capillary delivery tube for conducting the dissolved gases into a eudiometer. The stopper and bulb tube are fitted into the bottle containing the water in such a way that no air space remains below the stopper and the water rises to a height

of about 8 mm. in the bulb tube. If the amount of water in the bottle is insufficient for this purpose, add enough saturated CaCl_2 solution (air-free) to accomplish it. Then fill the bulb tube to the neck with concentrated HCl, add a layer (1-2 cc.) of water and fit a capillary delivery tube into the neck of the bulb. Place the large bottle in a capacious vessel containing water at 15° , since this is the best temperature for controlling the evolution of CO_2 . In a short time the HCl reaches the marble and CO_2 is generated; this carries with it the dissolved air in the water. Collect the gas in a eudiometer over 20% NaOH, and when the volume of gas ceases to increase measure in the usual way. Determine the O by absorption in alkaline pyrogallol or alkaline $\text{Na}_2\text{S}_2\text{O}_3$.

Deduct

0.192 cc. N and 0.083 cc. O as a correction for the gases dissolved in the concentrated HCl employed. For temps. between 0 and 30° W. has found the % of O in air dissolved in water to be $n = 34.91 - 0.0438t$, in which n = % of O in the air, and t = temperature

L4 ANSWER 15 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1915:10489 CAPLUS

DOCUMENT NUMBER: 9:10489

ORIGINAL REFERENCE NO.: 9:1641c-i

TITLE: The routine detection and estimation of boric acid in butter

AUTHOR(S): Hawley, Herbert

SOURCE: Analyst (1915), 40, 150-2

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB Turmeric reagent: A mixt of 5 g. powdered turmeric root and 5 g. tartaric acid is digested with 3 successive portions of 150 cc. warm alc. (industrial methylated spirits is satisfactory). Each digestion should continue for not less than 1 hr. and each successive portion should be filtered, and the volume finally made up to 500 cc. with alc. The reagent should be kept in the dark. The method, which is rapid and approximate, is as follows: Place 20 g. of butter in a 40-50 cc. beaker, melt on a Cu tray over a water bath or steam oven, and keep warm until the curd and aqueous layer have separated, leaving the fat clear. Pour off

the fat as far as possible onto a filter paper placed in a small beaker (taking care that none of the aqueous layer is poured onto the filter), and determine the consts. of the filtered fat in the usual manner. To the aqueous residue in the beaker add 18 cc. dilute HCl (20 cc. concentrate HCl per l.), stir,

and keep warm for a few min. Allowing 2 cc. for the water in the butter, the 20 cc. of acid solution contains the H_3BO_3 present in the butter, together with curd and a little fat. Remove 10 cc. of the fat-free liquid by means of a pipet dipped to the bottom of the liquid, and reject the liquid remaining in the beaker. Return the 10 cc. portion to the beaker. This portion is opalescent and almost free from fat, but contains a little curd. Allow the beaker to cool, and add 5 cc. of the turmeric reagent. The samples containing H_3BO_3 slowly develop a reddish brown color, the intensity varying with the amount. Approx. estimates may be made by comparison with standards containing 0.5 cc. milk plus varying amts. of a standard H_3BO_3 solution (1 g. H_3BO_3 in 100 cc. dilute HCl (20 cc. concentrate HCl per l.)), the mixture being diluted to 10 cc. with the dilute HCl.

Milk may be preserved with HCHO for the purpose. Add 5 cc. of the turmeric reagent to each standard and make comparisons not less than 1.5 or more than 3 hrs. after the addition. An unmistakable color is developed in the presence of 0.05% H_3BO_3 , and up to 0.5% can be estimated to the nearest 0.1%. The method is not recommended for samples containing more than 0.5% H_3BO_3 . A simple device for rapidly measuring approx. 20 g. samples of butter consists of a 6 in. glass tube having a 7/8 in. bore. A

plunger is made by boring a hole nearly through a solid rubber stopper which will just slide into the tube. A piece of narrow glass tubing with a bulb at the end is inserted in the hole and string tied tightly around the narrow end of the stopper. The plunger is raised and the tube pressed into the butter. The plunger is then pressed down to the mark which is adjusted so that the tube then contains 20 g., and the butter pressed out into the beaker.

L4 ANSWER 16 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1909:9346 CAPLUS
DOCUMENT NUMBER: 3:9346
ORIGINAL REFERENCE NO.: 3:1738c-g
TITLE: The Determination of Total Nitrogen According to E. A. Mitscherlich
AUTHOR(S): Merres, E.
. SOURCE: Angewandte Chemie (1909), 22, 631
CODEN: ANCEAD; ISSN: 0044-8249
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB The method of Mitscherlich for soil extracts is rendered applicable by the author for determining total N in all other materials. A solution containing a known amount of 3-10 mg. N or a solid substance mixed with 200 cc. H₂O is put into a liter Kjeldahl flask and 3 g. of Devarda's alloy added (Al 59, Cu 39, Zn 2). The flask is provided with a Hugershoff distillation bulb, the tube of which is bent and passes through a bulb into a 500 cc. Kjeldahl flask, reaching to the bottom. This second flask serves as a receiver and in it are placed 100 cc. of H₂SO₄ (d. 1.6). Then add 50 cc. of strong NaOH solution through opening in bulb to first flask and close opening with stopper. Now heat first flask carefully till the reaction becomes weaker, raise flame and distil over about 50 cc., remove flame and let the H₂SO₄ "suck back" completely, then heat again and distil over about 50 cc. and let "suck back"; this is repeated 3 times in order to rinse out the receiver. The first flask is now heated till the contents are blue-green in color, cooled, and the melt dissolved in a known amount of water. Either the entire amount or an aliquot is distilled as follows: The distillation flask is provided with a bulb as before and connected to a 250 cc. Kjeldahl flask which is closed by a two-hole stopper; through the second hole a twice bent tube of fused quartz passes, the free end of which extends through a bulb into a 200 cc. Erlenmeyer flask almost touching the bottom. This flask is the receiver and in it is placed a suitable amount of 0.02 N acid. The necessary amount of NaOH is added as before to the first flask and it is then heated; distillation is complete in 20-30 min. The distillate is titrated back with 0.02 N NaOH, using congo red as indicator. A blank is run with each set of determinations and corrections made accordingly. The author claims an accuracy of ±0.000012 g. and that this method is more accurate than the Jodlbaur or Forster methods in which the material must be in solid form. He calls especial attention to the use of a second flask and the quartz tube in order to get accurate results. The method is recommended for water analysis.

L4 ANSWER 17 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1908:4151 CAPLUS
DOCUMENT NUMBER: 2:4151
ORIGINAL REFERENCE NO.: 2:977g-i,978a-c
TITLE: Color Reactions of Pinolin
AUTHOR(S): Grimaldi, Carlo
CORPORATE SOURCE: Chem. Lab., Zollverwaltung, Verona
SOURCE: Chemiker-Zeitung (1908), 31, 1145-6
CODEN: CMKZAT; ISSN: 0009-2894
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB A color reaction is described that permits the detection of 5% of pinolin or rosin spirit mixed with turpentine oil or 10% mixed with pine tar oil. The substance to be examined is carefully fractionated up to 170°. The fractions are treated cautiously with an equal volume of cone. HCl in test tubes, a small piece of tin added and the tubes placed in boiling water. After 5 min. they are thoroughly shaken, replaced in the bath and shaken from time to time. Under these conditions, pure pinolin and its lower boiling fractions give a green color after 5 min. and the color becomes more intense upon cooling. Substances like turpentine oil, pine tar oil, camphor oil, mineral oil, etc., which resemble rosin spirit in physical and chemical properties, give colors with the reagent varying from straw-yellow to brown. The second reaction described is a modification of the Halphen test for rosin spirit (J. pharm. chim., 1902, 408). The reagent consists of 3 cc. bromine dissolved in CCl₄ to make 15 cc. It is contained in a glass cylinder with ground stopper carrying a peculiar stopcock that makes it possible to close the cylinder completely or to connect it with two glass tubes, one of which is attached to a rubber bulb and the other to an inverted funnel. A drop of each of the pinolin fractions is placed in a porcelain evaporator, and treated with 2 cc. of a reagent consisting of one volume of melted phenol crystals and 2 of CCl₄. After the contents of the evaporator has been thoroughly mixed, it is placed under the inverted funnel, the stopcock opened and the bulb carefully pressed. A yellow color appears on the surface of the liquid and on the walls of the vessel. With pinolin boiling below 170° the yellow color appears at once and changes in a few minutes, to a green. With mixtures the color takes longer to appear but it is possible to detect less than 1% of pinolin in mixtures with turpentine oil or pine tar oil, providing sufficient of the material is available to make a number of fractionations. The two reactions described can of course be carried on simultaneously.

L4 ANSWER 18 OF 21 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1908:3173 CAPLUS
DOCUMENT NUMBER: 2:3173
ORIGINAL REFERENCE NO.: 2:737h-i
TITLE: A Ferment Saccharometer with Glycerol Indicator
AUTHOR(S): Goldmann, F.
SOURCE: Berichte der Deutschen Pharmazeutischen Gesellschaft (1908), 17, 62-6
CODEN: BERPAZ; ISSN: 0365-9925
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

AB The old form of the apparatus consists of a U-tube having on one arm a bulb closed with a heavy stopper and on the other graduations. It is filled with mercury to the zero mark and the sample of urine containing a little added yeast is placed over the mercury in the bulb arm, and the amount of rise of mercury in the other arm after the fermentation, gives the percentage of sugar in the sample. The new ferment saccharometer is filled with glycerol instead of mercury, and a shorter U-tube is joined to the bulb end of the apparatus in which the sample of urine rests out of contact with the glycerol.

L4 ANSWER 19 OF 21 INSPEC (C) 2006 IET on STN
ACCESSION NUMBER: 1970:87738 INSPEC
DOCUMENT NUMBER: B1970-004002
TITLE: Gas filled cold cathode indicator tube
AUTHOR: Koshizuka, M.; Ohfuchi, N.; Sato, S.
PATENT ASSIGNEE: Nippon Radio Co. Ltd
PATENT INF., ORIGINAL: US 3437861 19690408
APPLICATION INFORMATION: 19660214

PRIORITY INF., ORIGINAL: JP-40/9396 19650219

DOCUMENT TYPE: Patent

COUNTRY: United States

LANGUAGE: English

AN 1970:87738 INSPEC DN B1970-004002

AB A discharge type indicator tube having a stem which includes a shell and an insulator spacer for supporting and locating a plurality of cathode electrodes which have predetermined shapes. If a shell is fabricated from an insulating material, it may also function as the spacer. The stem also provides means to pass lead wires from the cathodes there through and the shell is adapted to be sealed to the lower portion of the tube bulb, thereby closing off the tube

L4 ANSWER 20 OF 21 INSPEC (C) 2006 IET on STN

ACCESSION NUMBER: 1960:B07974 INSPEC

DOCUMENT NUMBER: 1960B07974

TITLE: Detection and identification of distillates in tubes

AUTHOR: Gobin, M.

SOURCE: Le Vide (May 1960 - June 1960), vol. 15, p. 263-267

DOCUMENT TYPE: Journal

COUNTRY: France

LANGUAGE: French

AN 1960:B07974 INSPEC DN 1960B07974

AB In order to identify deposits and stains which occur on the components of electron tubes the parts are removed using non-contaminating tools, They are individually wrapped in a suitable filter paper impregnated with an appropriate reagent and this package is then sharply compressed between mica sheets. The paper in contact with the part being investigated shows a print of the deposit on the component which can then be interpreted by normal chromatographic methods. Examples are given of the identification of barium, strontium and nickel deposits on tube micas. Internal bulb deposits can be identified by slightly modifying the procedure. Theoretically all elements giving a characteristic coloured drop reaction can be detected down to the sensitivity limit of the reaction.

L4 ANSWER 21 OF 21 INSPEC (C) 2006 IET on STN

ACCESSION NUMBER: 1923:A01131 INSPEC

DOCUMENT NUMBER: 1923A01131

TITLE: Stark effect on hydrogen secondary spectrum

AUTHOR: Kiuti, M.

SOURCE: Japanese Journal of Physics (1922), vol. 3, no. 4, p. 29-39

DOCUMENT TYPE: Journal

COUNTRY: Japan

LANGUAGE: English

AN 1923:A01131 INSPEC DN 1923A01131

AB An investigation in the visible region, special attention being given to the Fulcher bands. The method employed was Lo Surdo's. The discharge tube was in the form of a Pluecker tube, with one of the end bulbs removed. The capillary was 1 mm. in diameter. A continuous flow of hydrogen was maintained by an oil-immersed rotary pump. The gas was washed with water and concentrate sulphuric acid, and entered

a 2-litre flask; this flask was connected to the discharge tube by a capillary of 0.1 mm. bore and length 1 m. Another 2-litre flask between the pump and the tube helped to keep the pressure stationary The length of the Crooke's dark space was about 2 mm.; this served as an indicator of pressure fluctuations. The portion of the capillary 2 mm. from the cathode was focused on the slit of the spectroscope, using two lenses; a quartz Wollaston prism placed between

the lenses separated the p- and s- components. A plane grating with 590 lines per mm. was used; the dispersion in the first order was 31 A.U. per mm. Owing to the arrangement employed, for many lines the image with no field was too feeble for use as a standard, and so a comparison Pluecker hydrogen tube was used. Exposure was 12-2 hours. Two 5000-volt d.c. dynamos were used in series, with a 300,000 ohm manganin resistance in the circuit to make the discharge more stable. The terminal voltage of the tube was 4000 to 6000 volts, being kept constant during an exposure by regulating the exciting current to the dynamos. The intensity of the field was deduced from the separation of the Balmer lines; it was found that the present results were more nearly in agreement with Epstein's theory than Stark's results. More than 100 lines are found to be affected by the strength of field used and under the present dispersion; most of these were on the long wave-length side of λ 5300. In most cases the lines were displaced towards the red, or separated asymmetrically. The lines most affected were in the neighbourhood of λ 5400 and $\lambda\lambda$ 5930-5982. In all instances the separation increases either in proportion to, or more rapidly than, the field intensity. Between λ 5300 and λ 5700 the relative intensities of the Pluecker tube and the positive rays are very different; e.g.. The first and third members of the second Fulcher band are weakened in the positive rays as one goes out from the head, alternately. No simple rule was found for the Fulcher bands. In both bands the effect on the first and third members is large and small alternately; this may be of importance in deducing the structure of the origin of the secondary spectrum. Tables of results are given, and a photograph.