3. izpit iz Uvoda iz geometrijske topologije

8. 9. 2020

Veliko uspeha!

1. naloga (20 točk)

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna ${f P}$
oziroma napačna 🔃 .
Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!
Zlepek dveh nekompaktnih prostorov je nekompakten prostor.
Kvocientni prostor $X/_{\sim}$ je diskreten natanko tedaj, ko je praslika vsake točke s kvocientno projekcijo odprta množica v X .
Za vsako naravno število n sta projektivna prostora $\mathbb{C}P^n$ in $\mathbb{R}P^{2n}$ homeomorfna.
Vsaka zvezna preslikava $f\colon \mathbb{S}^2 \to \mathbb{S}^2$ ima negibno točko.
Lokalna povezanost s potmi je deljiva topološka lastnost.
Vsak kontraktibilni prostor je povezan s potmi.
Prostor X je nepovezan natanko tedaj, ko obstaja retrakt $A\subseteq X$, da je $A\approx \mathbb{S}^0.$
Vsaka mnogoterost je homogen topološki prostor.
Podprostor $\{(x,y) \in \mathbb{R}^2 \mid x^2 > y^2\}$ evklidske ravnine je mnogoterost.
Če sta X in Y takšni kompaktni ploskvi, da ploskev $X\#Y$ ni orientabilna, potem sta ploskvi X in Y obe neorientabilni.

2. naloga (20 točk)

Naj bo $X = \mathbb{R}^2$, $A = \mathbb{R} \times ((-\infty, -1] \cup [1, \infty))$, $Y = \mathbb{R} \times \mathbb{S}^1 \subset \mathbb{R} \times \mathbb{C}$ in $B = \mathbb{R} \times \{1\}$.

- 1. Pokaži, da sta kvocientna prostora X/A in Y/B homeomorfna.
- 2. Pokaži, da kvocient X/A ni 1-števen.

Odgovora dobro utemelji!

3. naloga (20 točk)

Za $t \in \mathbb{R}$ definiramo

$$X_t = ([-1,1] \times \{-1\}) \cup (\{-1\} \times [-1,1]) \cup (\{1\} \times [-1,1)) \cup ([t,t+3] \times \{1\}).$$

- 1. Za katere t je $[-1,1] \times \{-1\}$ deformacijski retrakt prostora X_t ?
- 2. Za katere t je X_t retrakt prostora $\mathbb{R}^2 \setminus \{0\}$?

Odgovora dobro utemelji!

4. naloga (20 točk)

Naj bo $X \subseteq \mathbb{R}^2 \times [0, \infty)$ 3-mnogoterost za katero velja $\partial X = X \cap (\mathbb{R}^2 \times \{0\})$ in naj bo $f \colon \mathbb{R}^3 \to \mathbb{R}^3$ zrcaljenje preko ravnine $\mathbb{R}^2 \times \{0\}$, t.j. f(x, y, z) = (x, y, -z).

- 1. Pokaži, da X ni homeomorfen \mathbb{B}^3 .
- 2. Pokaži, da je $X \cup f(X)$ mnogoterost.

Odgovora dobro utemelji!

5. naloga (20 točk)

Klasiciciraj ploskvi podani z besedama

- 1. $a_1a_2a_3a_4a_5a_1^{-1}a_3^{-1}a_5^{-1}$,
- 2. $a_1 a_2 \dots a_n a_2 a_3 \dots a_{n-1}$.