

План

Задача кластеризации, типы кластеризации

k-cpeдних (Lloyd's algorithm) + обобщения

Affinity propagation: кластеризация сообщениями между точками

Сдвиг среднего (Mean Shift): обнаружение мод плотности

Иерархическая кластеризация (Hierarchical clustering)
Графовые методы + MST

Spectral Clustering – Спектральная кластеризация

DBSCAN = Density-Based Spatial Clustering of Applications with Noise

BIRCH = Balanced Iterative Reducing Clustering using Hierarchies

Сравнение алгоритмов кластеризации

Кластеризация

- разбиение множества объектов на группы похожих такие группы - <u>кластеры</u>

неформально:

маленькие внутрикластерные расстояния **большие межкластерные** расстояния

Самое важное и «скользкое»

дальше предполагаем, что есть некоторая адекватная метрика!

С помощью её и будем осуществлять кластеризацию.

Входная информация для алгоритмов

- 1. (Feature-based) Признаковые описания объектов
- 2. (Dis/similarity-based) Попарные сходства/различия

Модельная задача кластеризации

Даны объекты (без меток)

Надо разбить на группы похожих – кластеры

Модельная задача кластеризации

Даны объекты (без меток)

Надо разбить на группы похожих – кластеры

Модельная задача кластеризации

Много допустимых решений...

Нет правильного ответа!

Методы кластеризации

Плоские / разделяющие (Flat / Partitional) – кластеризация на k непересекающихся кластеров

Иерархические (Hierarchical) – данные один большой кластер, далее рекурсивно «кластер = объединение подкластеров»

~ система каталогов

Типы кластеризации

чёткая (hard)

разбиение на непересекающиеся кластеры

$$\aleph = C_1 \cup \ldots \cup C_k$$
$$i \neq j \Rightarrow C_i \cap C_j = \varnothing$$

нечёткая (мягкая, fuzzy)

определение степени принадлежности кластерам

$$x_i \to r_{it} \in [0, 1]$$

$$\forall i \in \{1, 2, ..., m\} \sum_{t=1}^k r_{it} = 1$$

Зачем

• кластеризация клиентов / товаров, иерархия сущностей (таксономия) (выработка таргетированной политики)

• сжатие данных

(при модерации проверять несколько представителей кластера, устранение однотипности вопросов, vector quantization – замена кластера центром)

• сообщества клиентов

(эффективное распространение новостей, предложение услуг)

• анализ данных / признаков

(классическая идея математики – факторизация)

• важная составляющая решения других задач

(semi-supervised, outlier detection, community detection) была в методах сэмплирования и много где ещё...

Редко бывает самостоятельной задачей! Но важный этап

Проблемы с расстоянием

сжали по второму признаку

Часто используют стандартизацию, но она может всё портить...

В кластеризации считаем, что метрика адекватна

Как делать кластеризацию?

$$\sum_{t} \frac{1}{|C_t|} \sum_{x_i, x_j \in C_t} \rho(x_i, x_j)^{\gamma} o \min_{\{C_t\}}$$
 – NP-полная задача

Пусть с каждым кластером $C_{\scriptscriptstyle t}$ ассоциирован центр $\mu_{\scriptscriptstyle t}$

Заменим задачу такой:

$$\sum_{t} \frac{1}{|C_t|} \sum_{x_i \in C_t} \rho(x_i, \mu_t)^{\gamma} \to \min_{\{C_t\}, \{\mu_t\}}$$

но тут больше параметров...

k-средних (Lloyd's algorithm)

$$\sum_{t} \frac{1}{|C_{t}|} \sum_{x_{i} \in C_{t}} ||x_{i} - \mu_{t}||^{2} \to \min_{\{C_{t}\}, \{\mu_{t}\}}$$

Если зафиксировать $\{C_{_t}\}$, то оптимальное решение – центроид кластера

$$\mu_t = \frac{1}{|C_t|} \sum_{x_i \in C_t} x_i$$

$$C_t = \{i \mid || x_i - \mu_t || = \min_j || x_i - \mu_j || \}$$

Такую минимизацию делают итеративно

k-средних (Lloyd's algorithm)

Вход:

$$\{x_1,\ldots,x_m\}\subseteq\mathbf{R}^n$$

Инициализация:

k центров кластеров $\{\mu_1, \ldots, \mu_k\} \subseteq \mathbf{R}^n$

Итерация:

1. Каждый объект приписать к тому кластеру, к центру которого он ближе:

$$C_t = \{i \mid || x_i - \mu_t || = \min_i || x_i - \mu_j || \}$$

2. Пересчитать центры кластеров:

$$\mu_t = \frac{1}{|C_t|} \sum_{i \in C_t} x_i$$

случайные точки или случайные объекты из обучающей выборки

повторять итерации до сходимости (пока центры станут неподвижными) «assignment»

Ничьи разрешаются произвольно

«update»

при неопределённости вида «деление на ноль» оставляем центр неизменным

метод ~ координатный спуск

Итерации метода k-средних

Диаграмма Вороного (Voronoi diagram)

https://en.wikipedia.org/wiki/Voronoi_diagram

Код

```
# создание датасета
from sklearn.datasets import make_blobs
X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=0)
# запуск алгоритма
from sklearn.cluster import KMeans
a = KMeans(n_clusters=2, random_state=0).fit_predict(X)
# визуализация
import matplotlib.pyplot as plt
plt.scatter(X[:, 0], X[:, 1], c=a)
```


k-Means – реализация

sklearn.cluster.KMeans

```
n clusters - число кластеров
init – метод инициализации :«k-means++», «random», ndarray
n init - сколько раз алгоритм запускается (выбирается лучший ответ)
max iter - максимальное число итерация для каждого алгоритма
tol - порог для определения сходимости
precompute_distances - предварительное вычисление расстояний, «auto», True, False
(для скорости, но требует память)
verbose – отчёт о работе
random state
сору x - когда precompute distances можно ли портить данные
n jobs
algorithm - какой алгоритм использовать: «lloyd», «elkan» (использует неравенство
треугольника, но не подходит для разреженных данных)
```

k-Means с мини-батчами

sklearn.cluster.MiniBatchKMeans

Кстати, inertia – в sklearn
$$\sum_{i=1}^{m} \min_{t} \| x_i - \mu_t \|^2$$

D. Sculley «Web-Scale K-Means Clustering» // WWW 2010: Proceedings of the 19th Annual International World Wide Web Conference. April, 2010. http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf

k-Means с мини-батчами

не обязательно точно решать задачу на итерации, можно вычислять центр градиентным алгоритмом $\mu_{t} \leftarrow \mu_{t} + \eta(x_{i} - \mu_{t})$

а можно делать это по мини-батчам...

```
Algorithm 1 Mini-batch k-Means.
 1: Given: k, mini-batch size b, iterations t, data set X
 2: Initialize each \mathbf{c} \in C with an \mathbf{x} picked randomly from X
 3: \mathbf{v} \leftarrow 0
 4: for i = 1 to t do
     M \leftarrow b examples picked randomly from X
 6: for x \in M do
     \mathbf{d}[\mathbf{x}] \leftarrow f(C,\mathbf{x}) // Cache the center nearest to \mathbf{x}
 8: end for
        for x \in M do
10: \mathbf{c} \leftarrow \mathbf{d}[\mathbf{x}] // Get cached center for this \mathbf{x}
11: \mathbf{v}[\mathbf{c}] \leftarrow \mathbf{v}[\mathbf{c}] + 1 // Update per-center counts
12: \eta \leftarrow \frac{1}{\mathbf{v}[\mathbf{c}]} // Get per-center learning rate
        \mathbf{c} \leftarrow (1 - \eta)\mathbf{c} + \eta\mathbf{x} // Take gradient step
        end for
14:
15: end for
```

```
k-Means с мини-батчами – реализация
```

sklearn.cluster.MiniBatchKMeans

batch size - pasmep батча

max iter - ограгничение на число итераций

init – инициализация («k-means++» или «random»)

compute_labels - вычислять ли метки и качество в конце (True)

max no improvement - для остановки

init size - число сэмплов для ускорения инициализации

(начальные центры будут вычислены на этой подвыборке)

n_init - число случайных инициализаций

метод запускается один раз (!) на лучшей инициализации

reassignment_ratio - максимальная доля вычислений для пересчёта центра (0.01)

Разная начальная инициализация

Разное число кластеров k

Вариант для выбора к

Сходимость метода

- теоретически может сходиться долго, но на практике быстро

средняя сложность
$$O(kmn_{\text{iter}})$$
 худший случай $O(m^{(k+2/n)})$

- D. Arthur, S. Vassilvitskii «How slow is the k-means method?» SoCG2006
 - сходимость к локальному минимуму
- чувствителен к начальной инициализации (могут получаться разные ответы):
 - качество кластеризации
 - скорость сходимости
 - нужен выбор k

Реализация на практике и обобщения

несколько разных инициализаций и перезапусков

эвристика: 1й центр – один из объектов, 2й – максимально удалённый от первого, 3й – максимально удалённый от предыдущих центров и т.д.

на самом деле тут вероятностный выбор, поэтому разные перезапуски – k-means++

Fuzzy / soft k-means – вместо чёткой принадлежности – нечёткая дальше

k-medians (medoids) – другие усреднения (для борьбы с выбросами)

k-means + kernel tricks

k-means: ограничения

- хорошо работает для примерно равномощных кластеров с «шаровой формой» будут рисунки, потом поймём почему (GMM)

– оптимизируемый функционал не выпуклый

много локальных минимумов

Иллюстрация

Матрица попарных расстояний до и после кластеризации (объекты упорядочены по кластерам)

Иллюстрация

ДЗ Как логично упорядочить кластеры?

Пример k-means: сегментации в изображениях

Не надо хранить все цвета, а только k – хорошее сжатие

Пример k-means: сегментации в изображениях

```
def simplify_image(image, k=10):
    image2 = image.copy()
    image2.resize([image.shape[0]*image.shape[1], 3])
    model = KMeans(n_clusters=k, random_state=11)
    model.fit(image2)
    result = model.cluster_centers_.round().astype(int)[model.labels_,:]
    result.resize([image.shape[0], image.shape[1], 3])
    mask = model.labels_
    mask.resize([image.shape[0], image.shape[1]])
    return result, mask
```


k=2

k=16

Пример k-means: сегментации в изображениях

k-Means – немного перепишем алгоритм

Вход:

Изменения:

$$\{x_1,\ldots,x_m\}\subseteq\mathbf{R}^n$$

Инициализация:

$$k$$
 центров кластеров $\{\mu_1, \dots, \mu_k\} \subseteq \mathbf{R}^n$

Итерация:

1. Каждый объект приписать к тому кластеру, к центру которого он ближе:

$$C_t = \{i \mid || x_i - \mu_t || = \min_i || x_i - \mu_j || \}$$

2. Пересчитать центры кластеров:

$$\mu_t = \frac{1}{|C_t|} \sum_{i \in C_t} x_i$$

$$r_{it} = I[||x_i - \mu_t|| = \min_s ||x_i - \mu_s||]$$
 считаем, что минимум единственный

$$\mu_{t} = \frac{1}{\sum_{i=1}^{m} r_{it}} \sum_{i=1}^{m} r_{it} x_{i}$$

soft k-Means

Вход:

$$\{x_1,\ldots,x_m\}\subseteq\mathbf{R}^n$$

Инициализация:

$$k$$
 центров кластеров $\{\mu_1, \ldots, \mu_k\} \subseteq \mathbf{R}^n$

Итерация:

- 1. Для каждого объекта оценку принадлежности к каждому кластеру
 - 2. Пересчитать центры кластеров:

Изменения:

$$r_{it} = \frac{\exp(-\beta || x_i - \mu_t ||)}{\sum_{j} \exp(-\beta || x_i - \mu_j ||)}$$

$$\mu_t = \frac{1}{\sum_{i=1}^{m} r_{it}} \sum_{i=1}^{m} r_{it} x_i$$

soft k-Means

- + мягкая кластеризация
- + иногда работает лучше
- выбор параметра «бета»
- остались проблемы «продолговатые кластеры» кластеры разной мощности

http://qaru.site/questions/611120/minibatchkmeans-parameters

Распространение близости (Affinity propagation): кластеризация сообщениями между точками

пусть близость (similarity) между точками X_i и X_j – $\mathit{S}(i,j)$

формулы пересчёта изначально нулевых:

ответственности (responsibility) –
$$r(i,k) \leftarrow s(i,k) - \max\{a(i,k') + s(i,k') \mid k' \neq k\}$$

(k может быть лидером для i – лидер должен быть похожим)

доступности (availability) –
$$a(i,k) \leftarrow \min(0, \quad r(k,k) + \sum_{i' \notin \{i,k\}} r(i',k))$$

(i может подчиняться k – лидер должен быть лидером для многих) тут есть варианты...

Обычно пересчитывают «с инерцией»:

$$r^{(t+1)}(i,k) \leftarrow \lambda r^{(t)}(i,k) + (1-\lambda)r^{\text{new}}(i,k)$$

$$C_t = \{x_i \mid t = \arg\max(a(i, \bullet) + r(i, \bullet))\}$$

т.е. потенциально меток столько, сколько точек

Распространение близости (Affinity propagation)

- высокая сложность $O(m^2 n_{\text{iter}})$
 - требования к памяти $O(m^2)$
- + не нужно задавать число кластеров

Brendan J. Frey, Delbert Dueck «Clustering by Passing Messages Between Data Points» Science Feb. 2007 https://www.icmla-conference.org/icmla07/FreyDueckScience07.pdf

Есть хорошее объяснение https://habr.com/ru/post/321216/

Affinity propagation – реализация

sklearn.cluster.AffinityPropagation

```
damping — фактор забывания значений параметров

max_iter — максимальное число итераций

convergence_iter — число итераций без изменений, после которого останов

copy

preference — вектор вероятностей для каждой точки стать экземпляром (т.е. породить

кластер)

affinity — п.в. эвклидово расстояние

verbose

random_state
```

Идея: рассмотрим точку x и её окрестность N(x)

оценим «центр масс» в этой окрестности

$$m(x) = \frac{\sum_{x_i \in N(x)} K(x - x_i) x_i}{\sum_{x_i \in N(x)} K(x - x_i)}$$

сдвинем точку в центр: $x \leftarrow x + \eta(m(x) - x)$

хотим быть в центре «сгустка»

Можно итерационно повторять, сдвигая все точки выборки, пока они не притянутся (с ε-точностью) к общим центрам... каждый полученный центр – свой кластер

$$K(z) = \exp(-||z||/h)$$

$$N(x) = \{x_i \mid \rho(x, x_i) \le d\}$$

Потом фильтрация для устранения почти-дубликатов (отличаются на ε).

все точки, которые «стекли» в одну – один кластер

ε, d и h влияют на число кластеров, которые получатся https://spin.atomicobject.com/2015/05/26/mean-shift-clustering/

В общем случае нет доказательства сходимости:

https://en.wikipedia.org/wiki/Mean_shift

Выборка

Шаг 1

Шаг 2

Кроме кластеризации подходит для задачи «отслеживания»

D. Comaniciu, V. Ramesh, P. Meer «Kernel-based Object Tracking» // IEEE Transactions on Pattern Analysis and Machine Intelligence. — IEEE, 2003.

D. Comaniciu, P. Meer, «Mean Shift: A robust approach toward feature space analysis» IEEE Transactions on Pattern Analysis and Machine Intelligence.

2002. pp. 603-619.

Сдвиг среднего (Mean Shift): аналоги

Можно выписать плотность

$$\rho(x) \propto \sum_{i=1}^{m} K\left(\frac{|x-x_i|}{h}\right)$$

и градиентный метод

$$x \leftarrow x + \eta \nabla \rho(x)$$

для всех точек выборки

(можно не задаваясь окрестностью)

MeanShift - реализация

sklearn.cluster.MeanShift

bandwidth – параметр RBF-ядра
seeds – для инициализации ядер
bin_seeding – если включить опцию, изначально алгоритм работает в огрублённом пространстве (дискретизация исходных данных)
min_bin_freq – для увеличения скорости принимать бины только с таким количеством точек
cluster_all – кластеризовать ли все точки. Есть возможность оставлять «сирот» (orphans) без кластеров (в окрестности которых нет других точек)
n jobs

Иерархическая кластеризация (Hierarchical clustering)

ИК в отличии от плоской (Flat Clustering) получает серию вложенных друг в друга кластеризаций (⇒ не требует заранее заданного числа кластеров)

ИК может быть долгой...

https://en.wikipedia.org/wiki/Hierarchical_clustering

Два подхода к иерархической кластеризации

Агломеративный (Agglomerative / bottom-up)

- изначально число кластеров совпадает с числом объектов, каждый кластер содержит один объект обучения
- на каждом шаге объединяем два наиболее похожих кластера
- останавливаемся, если остаётся один кластер
- чаще используют (проще реализовать)

Дивизионный (Divisive / top-down)

- изначально есть один кластер,
 содержащий все объекты обучения
- расщепить кластер с максимальными внутрикластерными расстояниями да два
- останавливаемся, когда число кластеров совпадает с числом объектов

Визуализация иерархической кластеризации

Корень дерева – кластер, который содержит все объекты

Визуализация иерархической кластеризации

```
from scipy.cluster.hierarchy import dendrogram
from sklearn.cluster import AgglomerativeClustering
def plot dendrogram (model, **kwargs):
    # Create linkage matrix and then plot the dendrogram
    # create the counts of samples under each node
    counts = np.zeros(model.children .shape[0])
    n samples = len(model.labels )
    for i, merge in enumerate(model.children):
        current count = 0
        for child idx in merge:
            if child idx < n samples:</pre>
                current count += 1 # leaf node
            else:
                current count += counts[child idx - n samples]
        counts[i] = current count
    linkage matrix = np.column stack([model.children ,
                                      model.distances ,
                                      counts]).astype(float)
    # Plot the corresponding dendrogram
    dendrogram(linkage matrix, **kwargs, orientation = 'right')
    return linkage matrix
```

Как измерить расстояния между кластерами – типы Linkage

Linkage		Описание
Complete		Maximal inter-cluster dissimilarity
Complete		$\max_{x \in A, x' \in B} \operatorname{dis}(x, x')$
Single		Minimal inter-cluster dissimilarity
		$\min_{x \in A, x' \in B} \operatorname{dis}(x, x')$
Average		Mean inter-cluster dissimilarity $\frac{1}{ A \cdot B } \sum_{x \in A, x' \in B} \operatorname{dis}(x, x')$
Centroid	Dissimilarity between the centroid for cluster A and natroid	
	•	$\operatorname{dis}(\overline{x}_A, \overline{x}_B)$

Как измерить расстояния между кластерами – типы Linkage

Расстояние Варда (Ward's measure)

изменение суммы квадратов

$$\lambda(X) = \sum_{x \in X} ||x - \overline{X}||^2$$

после объединения кластеров:

$$\lambda(A \cup B) - \lambda(A) - \lambda(B) = \frac{1}{\frac{1}{|A|} + \frac{1}{|B|}} ||\overline{A} - \overline{B}||^{2}$$

ДЗ можно доказать...

Single Link

δ	CD	\boldsymbol{E}
AB	(2)	3
CD		3

δ	C	D	E
AB	3	2	3
C		1	3
D			5

δ	В	C	D	\boldsymbol{E}
A	1	3	2	4
В		3	2	3
C			1	3
D				5

Lance-Williams formula

«Lance-Williams formula» при объединении кластеров

не будем рассматривать

$$\delta(C_{ij}, C_r) = \alpha_i \cdot \delta(C_i, C_r) + \alpha_j \cdot \delta(C_j, C_r) + \beta \cdot \delta(C_i, C_j) + \gamma \cdot \left| \delta(C_i, C_r) - \delta(C_j, C_r) \right|$$

Measure	α_i	α_j	β	γ
Single link	$\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$
Complete link	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$
Group average	$\frac{n_l}{n_l + n_j}$	$\frac{n_j}{n_l+n_j}$	0	0
Mean distance	$\frac{n_l}{n_l + n_j}$	$\frac{n_j}{n_l+n_j}$	$\frac{-n_l \cdot n_j}{(n_l + n_j)^2}$	0
Ward's measure	$\frac{n_l + n_r}{n_l + n_j + n_r}$	$\frac{n_j + n_r}{n_l + n_j + n_r}$	$\frac{-n_{I}}{n_{I}+n_{J}+n_{I}}$	0

https://en.wikipedia.org/wiki/Ward's_method

Агломеративная кластеризация

sklearn.cluster.AgglomerativeClustering

```
n_clusters - число кластеров
affinity - «euclidean», «I1», «I2», «manhattan», «cosine», «precomputed», функция
memory - параметр связан с кэшированием дерева
connectivity - матрица связности (матрица или функция), чтобы только соседние
кластеры объединялись, по умолчанию нет
compute_full_tree - строить ли всё дерево (обычно до n_clusters)
linkage - критерий слияния: «ward», «complete», «average», «single»,
```

Использование матрицы связности

матрица k-соседства

Агломеративная кластеризация для сокращения признакового пространства

```
from sklearn import cluster
agglo = cluster.FeatureAgglomeration(n_clusters=32)
agglo.fit(X)
X_reduced = agglo.transform(X)
X.shape, X_reduced.shape
(1797, 64), (1797, 32)
```


k=16

mask, k=16

Кластеризация пикселей по признакам (R, G, B)

Сегментации в изображениях по признакам (R, G, B) по графу 4-соседства

original

Разные виды связности

Графовые методы

Эволюция порогового графа

single link complete link

{{1,2,3,4,5}}

{{1,2,3,4,5}}

CL – неоднозначные разбиения (возможны ничьи)

Дендрограммы SL / CL

Minimum Spanning Tree (MST) – на основе минимального остовного дерева

1. Построить минимально основное дерево

жадным методом: добавлять в дерево ребро наименьшего веса (так, чтобы оно оставалось деревом)

- 2. Удалить из дерева (k-1) ребро наибольшего веса
- 3. Компоненты связности полученного графа кластеры

Эквивалентны ли MST и SL?

В случае сложных кластеров типа «вложенные окружности» С помощью нормированного Лапласиана пришла из теории графов

Ulrike von Luxburg «A Tutorial on Spectral Clustering», 2007 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323

Построить по данным $\{x_1,\ldots,x_m\}$ граф с весами

Множество вершин: $\{1,...,m\}$

Вершина i соединена с k вершинами, которые являются номерами ближайших k объектов к \mathcal{X}_i

Ребро (i,j) если существует, имеет вес $\exp(-\parallel x_i - x_j \parallel^2/\sigma)$

Дальше используется спектральная кластеризация графа:

1. Строим матрицу Лапласа
$$L = D - W$$
 (или $L' = I - D^{-1}W$)

- **2.** Находим k с.в., соответсвующих минимальным с.з.: $v_1 = \tilde{1}, v_2, \dots, v_k$
 - 3. Конструируем признаковую матрицу $V = [v_2, ..., v_k]$
- 4. Применяем к ней классический алгоритм кластеризации (например, k-средних)

изображение

спектральная кластеризация

Рекомендуется, когда матрица сходства разрежена надо выбрать eigen_solver="amg" предварительно установив руатд

(library of Algebraic Multigrid)

```
from sklearn.feature_extraction import image
from sklearn.cluster import spectral_clustering

graph = image.img_to_graph(img, mask=mask)
graph.data = np.exp(-graph.data / graph.data.std())
labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack')
```

Spectral Clustering – реализация

sklearn.cluster.SpectralClustering

```
n clusters - число кластеров
eigen_solver - метод вычисления собственных векторов: None, «arpack», «lobpcg»,
«amg»
n components - размерность пространства с.в., в котором кластеризуем
random state
n_init - число запусков k-means
gamma – коэффициент для ядер: rbf, poly, sigmoid, laplacian, chi2
affinity – (сходство) «nearest_neighbors» / «precomputed» / «rbf» или любое из
sklearn.metrics.pairwise_kernels
n neighbors - число соседей, нужно для 1-nn, если он используется
eigen tol - порог сходимости при декомпозиции матрицы Лапласа
assign labels - стратегия для простановки меток после лапласового вложения:
«kmeans» / «discretize»
degree - степень полинома
coef0 - коэффициент полиномиального или сигмоидального ядра
kernel_params - параметры для самописных ядер
```

DBSCAN = Density-Based Spatial Clustering of Applications with Noise Алгоритм с маркировкой точек как шум и т.п.

Figure 2: Noise Points in DBSCAN

- для каждой точки строим круг радиуса ${\mathcal E}$
- если в круге есть как минимум k точек она плотная / основная (core point)
- если нет, но есть плотные точки она граничная / достижимая (border point) иногда если есть путь точек на расстоянии < ${\cal E}$ до основной точки
- иначе шум (noise point)
- множество основных точек кластеризовать SingleLink с пороговым расстоянием $\geq~\mathcal{E}$
- множество граничных точек к соответствующим кластерам

DBSCAN = Density-Based Spatial Clustering of Applications with Noise


```
from sklearn.cluster import DBSCAN
clustering = DBSCAN(eps=0.9, min_samples=3).fit(X)
labels = clustering.labels_
```

DBSCAN = Density-Based Spatial Clustering of Applications with Noise

- + кластеры произвольной формы
- + можно работать с большими данными
- + детерминированный (нет случайности, ответ однозначный)

но может зависеть от порядка данных

(как приписываемые метки, так и приписывание неосновные точек)

- неудобные гиперпараметры
- когда плотности сильно неоднородны
- не применяют для высокоразмерных данных

y scikit-learn-реализации могут быть проблемы с памятью

Ester, M., H. P. Kriegel, J. Sander, X. Xu «A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise» // In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996

DBSCAN = Density-Based Spatial Clustering of Applications with Noise

sklearn.cluster.DBSCAN

```
eps — порог близости

min_samples — число объектов в окрестности, чтобы считать точку основной

metric — пользовательская или ...

metric_params — параметры метрики

algorithm — алгоритм для нахождения ближайших соседей: «auto», «ball_tree»,

«kd_tree», «brute»

leaf_size — размер листьев в BallTree / KDTree

р — степень в метрике Минковского

n_jobs
```

HDBSCAN

есть реализация здесь...

https://github.com/scikit-learn-contrib

Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data clustering method for large databases. http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf

строит дерево с центроидами в листьях

больше структура данных и подход к кластеризации, чем метод

+ эффективный по памяти

спроектирован для больших наборов в некотором варианте применения сканирует все данные лишь раз

+ онлайн (при динамическом поступлении данных)

локальный – не надо сканировать все данные при отнесении к кластеру

- + есть механизм обнаружения выбросов
- зависит от порядка обработки объектов

Clustering Feature (CF)

$$CF = \left(\sum_{i=1}^{m} x_i^0, \sum_{i=1}^{m} x_i, \sum_{i=1}^{m} x_i^2\right)$$

на основе CF понятно как вычислить центроид, радиус, среднее расстояние между кластерами

$$\mathrm{CF}_{A\cup B}=\mathrm{CF}_A+\mathrm{CF}_B$$
 при $A\cap B=\varnothing$ Хранить не кластер, а CF!

https://ru.wikipedia.org/wiki/BIRCH

CF-tree – сбалансированное по высоте дерево, в котором хранят CF для иерархической кластеризации, все листья соединены в список (см. рис.)

можем изначально как-то задать, потом можно листья кластеризовать любым алгоритмом и «подстроить»

СF вершины = сумма СF потомков

Два параметра – тах число вершин-потомков / тах диаметр подкластеров

- 1. Строим начальное СГ-дерево (например, просто последовательно добавляя точки)
 - точка «падает» по дереву и присоединяется к похожему кластеру (если расстояние до кластера больше порога создаёт новый кластер) можно устранять выбросы, улучшать кластеризацию, запускать кластеризацию в листьях, объединять листья
- 2. Кластеризация всех вершин по CF-признакам (агломеративно иерархически), точнее, на основе этих признаков задаются специальные расстояния не указываем дальше можно ещё раз пройтись по выборке, относя точки к ближайшим центроидам, пересчитать центроиды...

легко вносить информацию в CF-дерево при пополнении точкой / можно отлавливать выбросы – O(n)

Если при пополнении слишком большой кластер – расщепляем

https://towardsdatascience.com/machine-learning-birch-clustering-algorithm-clearly-explained-fb9838cbeed9

BIRCH = Balanced Iterative Reducing Clustering using Hierarchies sklearn.cluster.Birch

```
threshold - порог для организации нового подкластера (на радиус кластера)
branching_factor - максимальное число подкластеров в каждом узле (если превышает,
то узел расщепляется на два)
```

n_clusters — число кластеров, если число, то делаем кластеризацию с помощью AgglomerativeClustering — если None не делаем формально окончательную кластеризацию, если sklearn.cluster Estimator, то делаем им кластеризацию подкластеров

compute_labels - вычислять ли метки copy - создавать ли копию данных

Оригинальная статья

https://www2.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf

Метод	Параметры	Использование	Геометрия
k-means	Число кластеров	Простой Популярный Есть обобщения	Кластеры равномощны и шарообразны, их не слишком много
Affinity propagation	Фактор забывания, вероятность стать экземпляром	Много кластеров Не масштабируется	По матрице расстояний, произвольные расстояния
Mean-shift	Параметр ядра	Детектирование выбросов Много кластеров Произвольные распределения Не масштабируется	Нахождение мод плотности
Spectral clustering	Число кластеров	Хороша для большинства модельных задач Мало кластеров Плохо масштабируется	Граф расстояний / матрица сходства
Ward hierarchical / Agglomerative clustering	Число кластеров / тип слияния и метрика / матрица связности	Результат – дендрограмма Много кластеров Можно добавить ограничения на связи Хорошо масштабируется	Расстояния + матрица связности
DBSCAN	Порог близости, число объектов в окрестности	Детектирование выбросов Хорошо масштабируется Неудобные гиперпараметры	Сложная геометрия, разномощные кластеры, но однородная плотность
Gaussian mixtures	много	Специальный случай Не масштабируется	Расстояния Махалонобиса
Birch	Мета-кластеризатор, порог, максимальное число подкластеров	Для больших данных Удаление выбросов Сжатие данных Хорошо масштабируется	Евклидовы расстояния между точками

Сравнение алгоритмов кластеризации

Функции ошибки в кластеризации

Отдельные слайды

Неклассические приложения кластеризации

Как и некоторые другие методы USL:

Признаки для обучения с разметкой Хорошие признаки для Semi-Supervised Learning

Итоги

Общие подходы при кластеризации: вычисление центров кластеров – итерационное оценка распределений (будет потом) оценка плотности Иерархические – разбиение / слияние кластеров Графовые методы

Есть ещё нейростевые... будет потом

Ссылки

Дьяконов, А. Г. «Анализ данных, обучение по прецедентам, логические игры, системы WEKA, RapidMiner и MatLab (практикум на ЭВМ кафедры математических методов прогнозирования)» МАКСПресс 2010 //

http://www.machinelearning.ru/wiki/images/7/7e/Dj2010up.pdf

Интересные алгоритмы кластеризации

https://habr.com/ru/post/322034/

Ulrike von Luxburg «A Tutorial on Spectral Clustering»

https://people.csail.mit.edu/dsontag/courses/ml14/notes/Luxburg07_tutorial_spectral_clustering.pdf