5.2 结型场效应管JFET

1. 结构与符号

Junction Field Effect Transistor

JFET分为N沟道和P沟道

N-JFET

P-JFET

箭头方向: P→N

JFET是常开型FET

5.2 结型场效应管JFET 2. 工作原理与特性曲线

(1) 工作原理

v_{GS}控制沟道宽窄; v_{DS}控制沟道形状

(2) 特性曲线(以N-JFET为例)

2 工作原理与特性曲线

PN结必须反偏。N-JFET的 $v_{GS} \le 0$

 v_{GS} = 0时,沟道最宽、电阻最小 $当 v_{DS}$ 较小,可变电阻区

2 工作原理与特性曲线

PN结必须反偏。N-JFET的 v_{GS}≤0

v_{GS} <0, PN结反偏, 耗尽层增厚, 属于耗尽型FET。

2 工作原理与特性曲线(N-JFET为例) v_{DS}控制沟道形状

当 V_{GS} 是保持常数(例如 V_{GS} =0),增大 v_{DS} 。

(a) 恒流区转移特性

练习

 i_D 的假定正向是它的实际方向。试问它们各是哪种类型的 FET?

- (3) 主要参数----- 直流参数
 - ① V_T___开启电压(增强型MOSFET)
 V_P___夹断电压(耗尽型MOSFET、JFET)
 - ② I_{DSS} ___饱和漏极电流(耗尽型MOSFET、JFET) $v_{GS} = 0$ 时所对应的 i_{D}
 - ③ R_{GS}___直流输入电阻 MOSFET约10⁹~10¹⁵Ω(电容) JFET约10⁷Ω(反偏二极管)
 - 安全参数 ①最大漏极电流 I_{DM}
 - ②U_{BRXX}___击穿电压 (XX: GS、DS)
 - ③ $P_{\rm DM}$ 最大漏极功耗. 由 $P_{\rm DM}$ = $v_{\rm DS}$ $i_{\rm D}$ 决定.

MOSFET栅极不能悬空! (防止静电击穿)

(3) 主要参数 -----交流参数

gm___低频跨导transconductance

反映 v_{GS} 对 i_{D} 的控制作用(VCCS)

$$g_{\rm m} = \frac{\partial i_{\rm D}}{\partial v_{\rm GS}} \bigg|_{\rm Q \ point} \qquad (mS) (毫西门子)$$

设阈值电压 V_{T0} (对于增强型管为 V_{T} ,对于耗尽型管为 V_{P})

恒流区:
$$i_D = K(v_{GS} - V_{T0})^2$$

$$g_{\rm m} = 2K(V_{\rm GS} - V_{\rm T0}) = 2\sqrt{K I_{\rm DQ}}$$

 g_{m} 可以在转移特性曲线上求取,即曲线的斜率。

双极型三极管和场效应型晶体管的比较

-134	三极管	场 效 应 管
导电机制	双极性器件	单极性器件
导电方式	载流子的扩散与漂移	漂移
控制方式	电流控制	电压控制
类型	NPN 型、PNP 型	P、N 沟道,增强、耗尽型、结型
放大参数	β=30~100	$g_{\rm m}=1\sim6{\rm mS}$
输入电阻	$10^2 \sim 10^4 \Omega$	$10^{7} \sim 10^{15} \Omega$
抗辐射能力	差	好
噪声	大	小
热稳定性	差	好
制造工艺	不宜大规模集成	小尺寸; 便于大规模集成
对称性	C、E不对称	D、S对称
静电影响	不受静电影响	易受静电影响

- 1 FET的小信号模型
- 2 共源放大电路(Common-Source)
- 3 共漏放大电路(Common-Drain)
- 4 三种组态比较

1. FET的小信号模型

任意类型FET都有同样的小信号模型。

要点:

- ①g与d/s之间开路;
- ②d与s之间压控电流源 $g_{m}v_{gs}$;
- ③受控源电流方向指向s极。

 $g_{\mathbf{m}}$ 值可根据恒流区 $i_{\mathbf{D}}$ 公式对 $v_{\mathbf{GS}}$ 求导获得:

增强型MOS

$$i_{\rm D} = K (v_{\rm GS} - V_{\rm T})^2$$
 $i_{\rm D} = K (v_{\rm GS} - V_{\rm P})^2$ $g_{\rm m} = 2K (V_{\rm GS} - V_{\rm T}) = 2\sqrt{K I_{\rm DQ}}$ $g_{\rm m} = 2K (V_{\rm GS} - V_{\rm P}) = 2\sqrt{K I_{\rm DQ}}$

耗尽型MOS以及JFET

$$i_{\rm D} = I_{\rm DSS} [1 - (v_{\rm GS} / V_{\rm P})]^2$$
 $i_{\rm D} = K (v_{\rm GS} - V_{\rm P})^2$
 $g_{\rm m} = 2K (V_{\rm GS} - V_{\rm P}) = 2\sqrt{K} I_{\rm DQ}$

K是器件常数。已知 I_{DSS} 和 V_{P} 时, $K = I_{DSS} / V_{P}^{2}$

2. 共源放大电路分析(CS)

例1. 某N-JFET共源极放大电路

2. 共源放大电路分析(CS)

例1. 某N-JFET共源极放大电路

(1) 静态工作点Q: V_{GSQ} , I_{DQ} , V_{DSQ}

FET管静态输入电阻无穷大! $i_G \approx 0$

2. 共源放大电路分析(CS)

例1. 某N-JFET共源极放大电路

(2) 交流小信号模型

2. 共源放大电路分析(CS)

例1. 某N-JFET共源极放大电路

(3) 交流分析计算

$$R_{\rm i} = \frac{v_{\rm i}}{i_{\rm i}} = R_{\rm g}$$

$$R_{\rm o} = \frac{v_{\rm o}}{i_{\rm o}} \big|_{R_{\rm L}=\infty, v_{\rm i}=0} = R_{\rm d}$$

$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{-g_{m}v_{gs}(R_{d}//R_{L})}{v_{gs} + g_{m}v_{gs}R} = \frac{-g_{m}R'_{L}}{1+g_{m}R}$$

$$R_{\rm L}' = R_{\rm d} / / R_{\rm L}$$
 $g_{\rm m} = 2 \sqrt{K_{\rm n} I_{\rm DQ}}$

2. 共源放大电路分析(CS)

例1.某增强型NMOS共源极放大电路

静态工作点分析

$$V_{\rm GSQ} = \frac{V_{\rm DD}R_{\rm g2}}{R_{\rm g1} + R_{\rm g2}}$$

$$I_{\rm DQ} = K_{\rm n} (V_{\rm GSQ} - V_{\rm T})^2$$

$$V_{\rm DSQ} = V_{\rm DD} - I_{\rm DQ} R_{\rm D}$$

$$g_{\rm m} = 2\sqrt{K_{\rm n}I_{\rm DQ}}$$

2. 共源放大电路分析(CS)

例1.某增强型NMOS共源极放大电路

$$egin{aligned} R_{
m i} &= R_{
m g1} /\!/ R_{
m g2} \ R_{
m o} &= R_{
m d} \ A_{
m v} &= rac{v_{
m o}}{v_{
m i}} = -g_{
m m} \left(R_{
m L} /\!/ R_{
m d}
ight) \end{aligned}$$

2. 共源放大电路分析(CS)

例1.某增强型NMOS共源极放大电路

常见的增加输入阻抗的方式(R_{g3} 在兆欧量级)

3. 共漏放大电路 (CD)

$$V_{\rm G} = V_{\rm DD} R_{\rm g2} / (R_{\rm g1} + R_{\rm g2})$$

$$V_{\rm DSQ} = V_{\rm DD} - I_{\rm DQ}R$$

3. 共漏放大电路 (CD)

(2) 微变等效电路

(3) 小信号参数计算
$$R_{\rm i} = R_{\rm g} + (R_{\rm g1} / / R_{\rm g2})$$

$$R_{\rm o} = \frac{v_{\rm o}}{i_{\rm o}} \Big|_{R_{\rm L}=\infty, v_{\rm i}=0} = R//\frac{1}{g_{\rm m}}$$

$$v_0 = v_s$$
 $v_{gs} = 0 - v_s = -v_o$

$$v_0 = v_s$$
 $v_{gs} = 0 - v_s = -v_o$ $i_0 = v_o / R - g_m v_{gs} = v_o (1/R + g_m)$

$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{g_{m}v_{gs}(R//R_{L})}{v_{gs} + g_{m}v_{gs}(R//R_{L})} = \frac{g_{m}R'_{L}}{1+g_{m}R'_{L}} \qquad R'_{L} = R//R_{L}$$

4. 三种组态放大电路比较

BJT vs. FET

The small-signal characteristics

(交流指标)

$$\frac{\beta}{r_{\rm be}} \Leftrightarrow g_{\rm m}$$

	CE / CC / CB	CS / CD / CG
	$\mathbf{CE}: A_{v} = -\frac{\beta R_{\mathrm{L}}'}{r_{\mathrm{be}}}$	$CS: A_{v} = -g_{m}R'_{L}$
A_v	CC: $A_{v} = \frac{(1+\beta)R'_{L}}{r_{be} + (1+\beta)R'_{L}}$	$\mathbf{CD}: A_{\nu} = \frac{g_{\mathrm{m}}R'_{\mathrm{L}}}{1 + g_{\mathrm{m}}R'_{\mathrm{L}}}$
	$\mathbf{CB}: A_{v} = + \frac{\beta R_{L}'}{r_{be}}$	$\mathbf{CG}: A_{v} = +\mathbf{g}_{\mathbf{m}}\mathbf{R}_{\mathbf{L}}'$
Ri	$CE: R_{b}//r_{be}$	CS: $R_{\rm g1}//R_{\rm g2}$
	$CC: R_{\rm b} // [r_{\rm be} + (1+\beta)R'_{\rm L}]$	CD: $R_{g} + (R_{g1} // R_{g2})$
	$\mathbf{CB:} R_{\mathrm{e}} / [\mathbf{r}_{\mathrm{be}} / (1 + \boldsymbol{\beta})]$	CG: $R//(1/g_{\rm m})$
R _o	CE: R _c	CS: $R_{\rm d}$
	CC: $R_{\rm e}$ // $\frac{r_{ m be} + R_{ m b}$ // $R_{ m s}}{1+eta}$	CD: $R//(1/g_{\rm m})$
	CB: R_c	$CG: R_d$

5场效应晶体管

小结

理解: MOSFET、JFET工作原理

掌握: 各类场效应管的异同(符号、转移特性、输出特性)

掌握: FET的三种组态放大电路分析方法

预习: 功率放大电路

作业

P249: 5.1.1, 5.1.2, 5.1.4;

P251: 5.2.9, 5.3.4, 5.5.4

FET的Q计算方法(避免解方程)

p212 例5.2.1、P213例5.2.2& P214例5.2.3: 已知 V_{T} , K_{n}

$$i_D = K_n (v_{GS} - V_T)^2$$
 → P203 (5.1.6) 🎁 恋: $I_{DQ} = K_n (V_{GSQ} - V_T)^2$

- (1) 先求得 V_{GSO} →代入求 I_{DO} → V_{DS} (例5.2.1)
- (2) 已知 I_{DQ} →代入求 V_{GSQ} (例5.2.2; 例5.2.3)

两级电压放大电路中,两管均工作在放大状态。 T_1 的 $V_D=14V$,

 $g_{\rm m} = 3 \,\mathrm{mS}$, $T_2 \,\dot{\mathrm{m}} \,\beta = 50$, $V_{\rm BE} = 0.6 \,\mathrm{V}$.

- (1) 在T₁位置上画出合适的FET;
- (2) 求 T_1 的静态值 I_{DQ1} 、 V_{DSQ1} 、 V_{GSQ1} ?
- (3) 求T2的静态值 I_{BQ2} 、 I_{CQ2} 、 V_{CEQ2} ?
- (4) 画出微变等效电路,并求 A_v 、 R_i 、 R_o ;
- (5) 求C3引起的 f_L 。

5.5.1 电路参数如图题 5.5.1 所示。设 FET 的参数为 $g_m = 0.8$ mS, $r_{ds} = 200$ k Ω ; T_2 的 $\beta = 40$, $r_{be} = 1$ k Ω 。试求放大器的电压增益 A_v 和输入电阻 R_i 。

- 静态工作点(需要已知 K_n, V_P, V_{BE});
- 小信号模型; 小信号电压增益; 输入输出阻抗;
- 下限频率;