Measure- and Integration theory - Assignment 03

Duc (395220), Viktor (392636), Jacky (391049) May 6, 2020

Exercise 1

- (i) Seien zwei messbare Räume (Ω, \mathcal{A}) und (Ω', \mathcal{A}') gegeben. Sei $\mathcal{E} \supset \mathcal{A}$ und $\mathcal{E}' \subset \mathcal{A}'$. Sei f zudem $(\mathcal{A}, \mathcal{A}')$ -messbar.
 - Sei $A \in \mathcal{E}'$. Dann ist $A \in \mathcal{A}'$. Wegen der $(\mathcal{A}, \mathcal{A}')$ -Messbarkeit ist das Urbild $f^{-1}(A)$ in \mathcal{A} enthalten und somit auch in \mathcal{E} . Somit ist f auch $(\mathcal{E}, \mathcal{E}')$ -messbar.
- (ii) Seien zwei messbare Räume (Ω, \mathcal{A}) und (Ω', \mathcal{A}') gegeben. Sei $\Omega'_0 \subset \Omega'$. Sei $f: \Omega \to \Omega'_0$. Zeige, dass f genau dann $(\mathcal{A}, \mathcal{A}')$ -messbar ist, wenn f $(\mathcal{A}, \mathcal{A}'|_{\Omega'_0})$ messbar ist.
 - " \Longrightarrow ": Sei f $(\mathcal{A},\mathcal{A}')$ -messbar. Sei $A\in\mathcal{A}'|_{\Omega_0'}$. Dann ist $A=A'\cap\Omega_0'$ für ein $A'\in\mathcal{A}'$.

$$f^{-1}(A) = f^{-1}(A' \cap \Omega'_0) = f^{-1}(A') \cap \underbrace{f^{-1}(\Omega'_0)}_{=\Omega} = f^{-1}(A') \in \mathcal{A}.$$

Somit ist $f(\mathcal{A}, \mathcal{A}'|_{\Omega'_0})$ -messbar.

" $\Leftarrow=$ ": Sei f $(\mathcal{A}, \mathcal{A}'|_{\Omega'_0})$ -messbar. Sei $A \in \mathcal{A}'$. Dann ist $f^{-1}(A \cap \Omega'_0) \in \mathcal{A}$. Nun ist $f^{-1}(A \cap \Omega'_0) = f^{-1}(A) \cap f^{-1}(\Omega'_0) = f^{-1}(A)$ und daher ist $f^{-1}(A) \in \mathcal{A}$. Also ist f $(\mathcal{A}, \mathcal{A}')$ -messbar.

Exercise 2

Sei (Ω, \mathcal{A}) ein messbarer Raum und sei (X, d) ein metrischer Raum. Seien $f, f_n : \Omega \to X$ Abbildungen mit $f_n \to f$. Zeige, dass die $(\mathcal{A}, \mathfrak{B}(X))$ -Messbarkeit von f_n die $(\mathcal{A}, \mathfrak{B}(X))$ -Messbarkeit von f impliziert.

• Sei $A \subset X$ abgeschlossen. Sei $U_n = \{x \in X : d(x, A) < \frac{1}{n}\}$. Zuerst zeigen wir

$$f^{-1}(A) = \bigcap_{n \in \mathbb{N}} \bigcup_{k \in \mathbb{N}} \bigcap_{j=k}^{\infty} f_j^{-1}(U_n)$$

oder handlicher

$$f^{-1}(A) = \bigcap_{n \in \mathbb{N}} \liminf_{j \to \infty} f_j^{-1}(U_n).$$

1. "C": Sei $x \in f^{-1}(A)$. Dann gibt es ein $a \in A$ mit

$$f(x) = \lim_{i \to \infty} f_i(x) = a.$$

Sei $n \in \mathbb{N}$ beliebig. Dann gibt es einen Index $I \in \mathbb{N}$, sodass für alle $i \geq I$ gilt

$$d(f_i(x), a) < \frac{1}{n}.$$

Sei $j \geq I$. Dann ist $f_j(x) \in U_n$, da

$$d(f_j(x), A) \le d(f_j(x), a) < \frac{1}{n}.$$

Somit ist $x \in f_j^{-1}(U_n)$ für alle $j \ge I$. Das ist nichts anderes als

$$x \in \liminf_{j \to \infty} f_j^{-1}(U_n).$$

Da $n \in \mathbb{N}$ beliebig war, folgt

$$x \in \bigcap_{n \in \mathbb{N}} \liminf_{j \to \infty} f_j^{-1}(U_n)$$

und somit

$$f^{-1}(A) \subset \bigcap_{n \in \mathbb{N}} \liminf_{j \to \infty} f_j^{-1}(U_n).$$

2. "\()": Sei $x \in \bigcap_{n \in \mathbb{N}} \liminf_{j \to \infty} f_j^{-1}(U_n)$. Sei $n \in \mathbb{N}$. Dann gibt es einen Index $I(n) \in \mathbb{N}$, sodass für alle $j \geq I(n)$ gilt, dass $f_j(x) \in U_n$. Nun ist

$$f_j(x) \in U_n \iff d(f_j(x), A) < \frac{1}{n}$$

 $\iff \exists a_{jn} \in A : d(f_j(x), a_{jn}) < \frac{1}{n}.$

Außerdem gibt es einen Index I^* , sodass

$$\forall j \ge I^* : d(f(x), f_j(x)) < \frac{1}{n}.$$

Sei $I = \max\{I^*, I(n)\}$. Dann gilt für alle $j \ge I$, dass

$$d(f(x), a_{jn}) \le d(f(x), f_j(x)) + d(f_j(x), a_{jn}) < \frac{1}{n} + \frac{1}{n} = \frac{1}{2n}$$

Damit gilt $d(f(x), A) < \frac{1}{2n}$ für alle $n \in \mathbb{N}$. Das heißt,

$$d(f(x), A) = 0$$

und somit $f(x) \in A$. Also $x \in f^{-1}(A)$ und daher

$$f^{-1}(A) \supset \bigcap_{n \in \mathbb{N}} \liminf_{j \to \infty} f_j^{-1}(U_n).$$

• Nun wollen wir die $(A, \mathfrak{B}(X))$ -Messbarkeit von f zeigen. Da $\mathfrak{B}(X)$ durch die abgeschlossene Mengen in X erzeugt wird, reicht es, nur diese Mengen zu überprüfen. Das heißt, wir zeigen $f^{-1}(A) \in \mathcal{A}$ für alle abgeschlossenen Teilmengen $A \subset X$. Sei $A \subset X$ abgeschlossen. Wir haben gezeigt

$$f^{-1}(A) = \bigcap_{n \in \mathbb{N}} \bigcup_{k \in \mathbb{N}} \bigcap_{j=k}^{\infty} f_j^{-1}(U_n).$$

Nun ist U_n offen in X für alle $n \in \mathbb{N}$ und es folgt $U_n \in \mathfrak{B}(X)$. Damit ist $f_j^{-1}(U_n) \in \mathcal{A}$ für alle $j \in \mathbb{N}$ wegen der Messbarkeit von f_j . Abzählbare Schnitte und Vereinigungen von messbaren Mengen wie $f_j^{-1}(U_n)$ sind auch wieder in \mathcal{A} enthalten. Also

$$f^{-1}(A) \in \mathcal{A}.$$

Die Funktion f ist $(A, \mathfrak{B}(X))$ -messbar.

Exercise 3

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $f: \Omega \to \overline{\mathbb{R}}$ μ -integrierbar. **Zeige, dass für alle** $\epsilon > 0$ ein $\delta > 0$ existiert, sodass

$$\forall A \in \mathcal{A} : \mu(A) < \delta \implies \left| \int_A f d\mu \right| < \epsilon.$$

1. Sei $\epsilon > 0$. Sei f beschränkt, d.h. es gibt ein C > 0, sodass

$$f(x) < c \quad \forall x \in \Omega.$$

Definiere $\delta = \frac{\epsilon}{C}$. Sei $A \in \mathcal{A}$ mit $\mu(A) < \delta$. Dann folgt

$$\left| \int_{A} f d\mu \right| \leq \int_{A} |f| d\mu \leq C \int_{A} 1 d\mu = C\mu(A) < \epsilon.$$

2. Sei f unbeschränkt und $\epsilon > 0$. Da f μ -integrierbar ist, gilt

$$\int f^+ d\mu = \sup \left\{ \int g d\mu : g \le f^+, g \in \mathfrak{E}_+ \right\},$$
$$\int f^- d\mu = \sup \left\{ \int g d\mu : g \le f^-, g \in \mathfrak{E}_+ \right\}.$$

Wir betrachten im Folgenden f^+ ; der Fall f^- geht analog.

(a) Es gibt eine Elementarfunktion $g \in \mathfrak{E}_+$ mit $g \leq f$ und

$$\int (f^+ - g)d\mu < \frac{\epsilon}{2}.$$

Für jedes $A \in \mathcal{A}$ gilt

$$\int_{A} (f^{+} - g)d\mu < \frac{\epsilon}{2}.$$
 (1)

(b) Die Elementarfunktion g ist beschränkt. Damit gibt es, wie wir im ersten Teil gezeigt haben, ein $\delta^+>0$, sodass für alle messbaren Mengen A mit $\mu(A)<\delta^+$ gilt

$$\int_{A} g d\mu < \frac{\epsilon}{2}.\tag{2}$$

(c) Sei A eine messbare Menge mit $\mu(A) < \delta^+$. Es gilt

$$\int_A f^+ d\mu \stackrel{(1)}{<} \frac{\epsilon}{2} + \int_A g d\mu \stackrel{(2)}{<} \epsilon.$$

(d) Die Schritte (a) bis (c) verlaufen analog für f^- und wir erhalten ein $\delta^- > 0$. Sei A eine messbare Menge mit $\mu(A) < \delta$, wobei $\delta = \min\{\delta^+, \delta^-\}$. Nun gilt

$$\left| \int_A f d\mu \right| = \left| \underbrace{\int_A f^+ d\mu}_{<\epsilon} - \underbrace{\int_A f^- d\mu}_{<\epsilon} \right| < \epsilon.$$

Damit haben wir die Aussage bewiesen.