

Modelización Multidimensional I

Máster Data Science HINTD-EFBS Javier Picos

Contenido

- Descripción del curso
- Plataformas de datos modernas
- Datawarehousing
- Fundamentos de BBDD Relacionales
- Modelización Multidimensional
- Proyecto de Implantación

Javier Picos

- Ingeniero Industrial (Organización Industrial)
- Máster Logística CEL
- Certificado CPIM por APICS
- Certificado CPM por ISM
- Socio en HINTD

Descripción del curso

Objetivos y Prerequisitos

Descripción del curso

→ Descripción del curso

- → Plataformas de datos modernas
- **→** Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Objetivos

- Un buen modelo dimensional de datos, o esquema en estrella, es la base de un excelente sistema de Business Intelligence / Datawarehouse.
- Se explicará por qué es importante dentro de una organización, disponer de una plataforma **Datawarehouse** (independiente, escalable, sostenible y con rendimiento).
- En este curso aprenderán técnicas prácticas para diseñar, desarrollar e implementar un Modelo Multidimensional consistente.
- La aproximación se hará desde un conocimiento previo de las bases de datos relacionales de los sistemas operacionales y sus fundamentos, como contraposición a los Datawarehouse (basados en modelos multidimensionales) que son la base de los sistemas analíticos (business Intelligence entre otros).

Conocimientos previos

- Se requiere un conocimiento básico de los **procesos de negocio de una organización típica empresarial** (Comercial/Ventas, Compras, Producción, Económico-Financieros, Personas).
- Se requiere un conocimiento básico de los sistemas de información transaccionales/operacionales (origen y fuente de datos).
- Se requiere un conocimiento básico de los **modelos de datos (Entidad-Relación), Integridad referencial y lenguaje SQL (Structured Query Language).**

Plataformas de datos Ventaja modernas competitiva

Plataformas de datos modernas | Transformación digital

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Tecnologías facilitadoras

loT Cloud Ciber Seguridad

Apps Móviles RRSS Interacción con cliente

Apps Cliente

Automatización

Visión artificial Sensorización Impresión 3D Robótica

Data & Analytics

Personas

Big Data
Analítica Avanzada
(Predictiva y
Prescriptiva)

Plataformas de datos modernas | 3 puntos de vista

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Tecnológico

 Las plataformas de Datos son una amalgama de sistemas: BBDD relacionales, No SQL, Almacenamiento Blob, Sistemas Analíticos,...

Datos

Desde un punto de vista de datos:
 Las plataformas de datos se
 componen de diferente tipología
 de datos: Estructurados/No
 estructurados; Internos/Externos;
 Transaccionales/Analíticos

Negocio

- La arquitectura tecnológica y de datos existen para satisfacer la ecuación del valor:
 - Más ventas
 - Menos costes
 - Menor circulante
 - Utilización del activo

Características principales?

Qué son?

 Cada componente o elemento de la arquitectura tecnológica tiene una orientación específica (sistemas de almacenamiento masivo, sistemas transaccionales, sistemas analíticos,...)

- Orden en la arquitectura de datos para generar confianza en los resultados
- Datawarehouse como columna vertebral
- Enfoque piramidal de los datos
- Los sistemas y los datos se organizan entorno a los KPIs de las áreas del negocio:
 - Financiero
 - Supply Chain y Ops
 - Marketing y Comercial
 - Recursos Humanos

Qué se ha de considerar?

- Flexibilidad a la hora de escalar
- Seguridad y regulación
- Capacidad de virtualización
- Independencia de infraestructura
- Rendimiento
- Facilidad de mantenimiento, operación y uso

- Es necesaria una **estrategia de datos**
- Es preciso liderazgo y cultura
- La organización ha de ser capaz de trabajar con datos
- Las plataformas de datos son un elemento clave para la transformación digital
- Todos los desarrollos en el ámbito de los datos y analítica han de tener un retorno claro
- Entender y trabajar con casos de uso
- Trabajar con Business Case

Liderazgo y Cambio cultural

Plataformas de datos modernas | Matriz de datos

- → Plataformas de datos modernas
- **→** Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Si la arquitectura de datos está bien definida y es escalable, se puede generar conocimiento y valor para el negocio a largo. plazo.

Plataformas de datos modernas | Analítica Avanzada

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Plataformas de datos modernas | Arquitectura

→ Plataformas de datos modernas

→ Datawarehousing

→ Bases de datos relacionales

→ Modelización Multidimensional

→ Proyecto de implantación

Los datos hoy en día, y cada vez más, serán una ventaja competitiva para las organizaciones. Es precisa una visión holística e integrada de los datos.

Arquitectura de datos orientada al Valor | Una visión holística e integrada **KPIs (Business Value)** KPIs y Métricas de negocio Herramientas de visualización **DATA Viz** Reporting desatendido Dashboards Análisis Ad-Hoc Advanced Herramientas de Analítica Avanzada Loop **Analytics** Librerías de modelos Librerías de modelos (Knowledge) (Algorithms) predictivos prescriptivos Datawarehouse y Datamarts operativos **DATA Warehouse** Modelo multidimensional Modelos Analíticos precalculados **Data Lake DATA Lake** Sistema de Ficheros Distribuido Datos No Estructurados (almacén de grandes cantidades de información de (datos brutos, tal y como llega de los distintos sensores y fuentes, para su posterior procesado) acceso v procesado rápido) ETLs y APIs de Integración Información Interna Información Externa NO Semi NO Semi **RAW DATA** Estructurada Estructurada Estructurada Estructurada Estructurada Estructurada

Plataformas de datos modernas | Diferente Arquitectura

→ Plataformas de datos modernas

- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Datawarehousing

Core de la Plataforma

Datawarehousing | ¿Qué es un DW?

- → Plataformas de datos modernas
- **→** Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

"Un Datawarehouse (DW), también conocido como almacén de datos empresarial (EDW), es un sistema utilizado para el almacenamiento de datos, estructurados de forma específica para facilitar su análisis"

"Un **Datawarehouse** es una almacén de datos que **extrae**, **limpia**, **conforma y despliega un modelo de datos multidimensional** para la consulta y el análisis" **Ralph Kimball**

El Datawarehouse permite extraer, transformar y cargar en un mismo almacén los datos de distintos orígenes (tpvs, contabilidad, crm, producción...) y establecer relaciones entre la información. Desde ese almacén los datos fluyen a Aplicaciones de Business Intelligence (BI) para crear una capa de visualización en forma de informes o dashboards"

Datawarehousing | ¿Qué no es un DW?

→ Plataformas de datos modernas

- → Bases de datos relacionales
- → Modelización Multidimensional
 - → Proyecto de implantación

- NO ES una copia de la base de datos "Origen" con el prefijo de nombramiento de objetos 'DWH_'
- TAMPOCO es la copia de tablas de datos (Por ej.: 'Productos') desde varias bases de datos y/o Plataforma de datos externas unidas todas a través de una vista
- MUCHO MENOS un vertedero de datos en tablas procedente de varios orígenes sin existir un diseño congruentes entre las mismas

Plataformas de datos modernas | Diferente Arquitectura

→ Plataformas de datos modernas

→ Datawarehousing

- → Bases de datos relacionales
- → Modelización Multidimensional
 - → Proyecto de implantación

Múltiples consultas a los sistemas operacionales

Enfoque Datawarehouse

Datawarehousing | Enfoque por capas

→ Plataformas de datos modernas

- → Bases de datos relacionales
- → Modelización Multidimensional
 - → Proyecto de implantación

Datawarehousing | Diferente procesos

→ Plataformas de datos modernas

→ Datawarehousing

→ Bases de datos relacionales

→ Modelización Multidimensional

> → Proyecto de implantación

EL PROCESO

Fase 1: Construir el modelo de datos

Fase 2: Definir los informes

Fase 3: Crear consultas de datos

Fase 4: Crear los informes

de la analítica descriptiva...

Qué va a pasar Cuándo va a pas Qué hacemos

Objetivo	Informes, KPIs, tencencias	Patrones y correlaciones
Proceso	Estático y comparativo	Dinámico y experimentacional

Planificada previamente Elaborada bajo demanda Fuente datos

Transformación *Previa al almacenaje* Tras el almacenaje, bajo demanda

Calidad dato Un único dato real Datos probabilísticos

Cargado en la BBDD Modelo datos Consulta sobre la BBDD

Tipo análisis Retrospectivo, descriptivo Predictivo, prescriptivo y preventivo

Fase 1: Definir hipótesis a contrastar

Fase 2: Recopilar los datos

Fase 3: Construir el modelo de datos

repetición

Fase 4: Explorar los datos

Fase 5: Construir y optimizar los modelos analíticos

Fase 6: Testear la calidad del modelo

El **Data Warehouse** permite extraer, transformar y cargar en un mismo almacén los datos de distintos orígenes (tpvs, contabilidad, crm, producción...) y establecer relaciones entre la información. Desde ese almacén los datos fluyen a Aplicaciones de Business Intelligence (BI) para crear una capa de visualización en forma de informes o dashboards.

→ Plataformas de datos modernas

→ Datawarehousing

- → Bases de datos relacionales
- → Modelización Multidimensional
 - → Proyecto de implantación

Colección de datos...

- Orientado a temas o áreas del negocio
- 2 Integrado
- 3 Variante en el Tiempo
- 4 No volátil
- 5 Sumarizable

...Que facilita el proceso de toma de decisiones

CALIDAD

Acertamos en la toma de decisiones críticas con mayor frecuencia

VELOCIDAD

Tomamos decisiones críticas en menor tiempo

RENDIMIENTO

Ejecutamos las decisiones críticas tal y como estaban planificadas

ESFUERZO

Necesitamos menos esfuerzo para la preparación y el análisis

- → Plataformas de datos modernas
- **→** Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

- Orientado a temas o áreas del negocio
 - Disponer de toda la información sobre un área
 - Organización de los datos por áreas (Comercial, Producción, Stock,...)
 - La información común a varios temas no debe duplicarse

→ Plataformas de datos modernas

→ Datawarehousing

- → Bases de datos relacionales
- → Modelización Multidimensional
 - → Proyecto de implantación

2 Integrado

- La información se almacena en el DW de acuerdo a convenciones globales (aún cuando la fuente que genera los datos se almacena de forma diferente).
- La semántica de medidas, dimensiones, etc. es global y homogénea.
- Los datos deben formatearse y unificarse para llegar a un estado consistente.

→ Plataformas de datos modernas

→ Datawarehousing

- → Bases de datos relacionales
- → Modelización Multidimensional
 - → Proyecto de implantación

3 Variante en el Tiempo

- La información del Datawarehouse se utiliza a largo plazo, normalmente por un período de cinco a diez años.
- Los datos se almacenan como un conjunto de fotos instantáneas donde cada una representa a un período de tiempo.
- Los datos no se actualizan nunca. Representan un valor en un momento concreto
- Los datos se referencian temporalmente.

- → Plataformas de datos modernas
- **→** Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

- No volátil
 - La información en el Datawarehouse es sólo de lectura.
 - Los datos se cargan dentro del Datawarehouse y se acceden ahí mismo.
 - Una vez que se toma una fotografía instantánea de los datos, estos no cambian dentro del Datawarehouse.

Datawarehousing | Diferentes enfoque de BBDD

- → Plataformas de datos modernas
- **→** Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

- Datos organizados por aplicaciones
- Datos muy normalizados (muchas tablas)
- Lectura / Escritura
- Crecimiento constante
- Información actual

ases de datos analíticas

 \mathbf{m}

transaccionales

datos

de

Bases

- Datos organizados por temas
- Datos desnormalizados (y pocas tablas)
- Frecuentemente lectura
- Actualización masiva periódica
- Información histórica

Datawarehousing | Operacional vs Datawarehouse

→ Plataformas de datos modernas

- → Bases de datos relacionales
- → Modelización Multidimensional
 - → Proyecto de implantación

Comparación	Operacional	Datawarehouse
Datos	Transaccionales	Del negocio
Uso de los datos	Procesamiento repetitivo	Procesamiento analítico
Orientación del diseño	A la aplicación	Al tema (Comercial, Stock,)
Estructura de los datos	Muchas tablas normalizadas	Pocas y desnormalizadas
Datos en el tiempo	Actuales	Acutales+Históricos+Ppto
Detalle de los datos	Altamente detallados	Detallados y Agregados
Cambios en los datos	Continuos	Refrescos periódicos
Cantidad de usuarios	Más que un DW	Menos que un transaccional
Tamaño de la BBDD	100 MB -CB	100 GB-TB
Registros accedidos en una operación	Decenas	Millones

Datawarehousing | Datawarehouse vs Datamart

→ Plataformas de datos modernas

- → Bases de datos relacionales
- → Modelización Multidimensional
 - → Proyecto de implantación

Característica	DATAWAREHOUSE	DATAMART
Ámbito de los datos	Corporativo	Departamental
Número procesos	Múltiples	Simple
Dificultad	Alta	Media
Tiempo construcción	Largo	Medio
Memoria	Alta	Limitada

Datawarehousing | Arquitectura funcional

→ Plataformas de datos modernas

- → Bases de datos relacionales
- → Modelización Multidimensional
 - → Proyecto de implantación

Datawarehousing | Arquitectura tecnológica

→ Plataformas de datos modernas

- → Bases de datos relacionales
- → Modelización Multidimensional
 - → Proyecto de implantación

Bases de datos relacionales

Fundamentos

Bases de datos relacionales | Contexto

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

El mundo de las bases de datos se divide fundamentalmente en 2 tipologías:

Procesamiento distribuido

Escalabilidad

Datos no estructurados

Uso extendido

Soporte

Atomicidad de operaciones

Datos estructurados

Bases de datos relacionales | Elementos principales

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Tablas

- Una tabla es una estructura lógica que sirve para almacenar los datos de un mismo tipo (desde el punto de vista conceptual). Desde el punto de vista conceptual esto significa que cada entidad se almacena en estructuras separadas.
 - Por ejemplo: la entidad factura se almacena en estructuras diseñadas para ese tipo de entidad: la tabla FACTURA y la tabla FACTURA_COMPRA etc. Así, cada entidad, tendrá una estructura (tabla) pensada y diseñada para ese tipo de entidad.
- Cada entidad almacenada dentro de la tabla recibe el nombre de registro o fila. Así si la tabla FACTURA almacena 1.000 facturas, se dice que la tabla FACTURA contiene 1.000 registros o filas.
- Una tabla se compone de campos o columnas, que son conjuntos de datos del mismo tipo (desde el punto de vista físico).
 - Ahora cuando decimos "del mismo tipo" queremos decir que los datos de una columna son de todos del mismo tipo: numéricos, alfanuméricos, fechas...

No	Descripción	Cliente	Importe	%Descuento	Importe final	1 [П
factura							Filas
001	Tornillos sin rosca	Pepe	1.000	10	900]◀	0
002	Tuercas sin agujero	Juancito	5.500	0	5.500]←	rec
003	Tuercas de segunda mano	Toñete	500	1	495]←	registros
	.	A	A	A	A		ros
						L	
		Columnas o can	npos	•			

Bases de datos relacionales | Elementos principales

- → Plataformas de datos modernas
- **→** Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

• Claves primarias

- Una clave primaria es una columna o un conjunto de columnas en una tabla cuyos valores identifican de forma exclusiva una fila de la tabla
- Cada tabla debe poseer una clave primaria, esto es, un identificador único de cada registro compuesto por una o más columnas.

Clave foránea

- Una clave foránea es una columna o un conjunto de columnas en una tabla cuyos valores corresponden a los valores de la clave primaria de otra tabla.
- Para establecer una relación entre dos tablas es necesario incluir, en forma columna, en una de ellas la clave primaria de la otra. A esta columna se le llama clave foránea.

Relaciones entre tablas

- Relación 1 a 1
- Relación 1 a n
- Relación n a n

Diseño de bases de datos

- Diseño conceptual (estructuras de datos a alto nivel)
- Diseño lógico (definir las tablas que existirán y las relaciones entre ellas)
- Diseño físico (la forma de almacenamiento)

→ Plataformas de datos modernas

→ Datawarehousing

→ Bases de datos relacionales

→ Modelización Multidimensional

→ Proyecto de implantación

Categories

Column Name	Data Type
CategoryID	int
CategoryName	nvarchar(15)
Description	ntext
Picture	image

Order Details

Column Name	Data Type
OrderID	int
ProductID	int
UnitPrice	money
Quantity	smallint
Discount	real

Shippers

Column Name	Data Type
ShipperID	int
CompanyName	nvarchar(40)
Phone	nvarchar(24)

Column Name	Data Type
CustomerID	nchar(5)
CompanyName	nvarchar(40)
ContactName	nvarchar(30)
ContactTitle	nvarchar(30)
Address	nvarchar(60)
City	nvarchar(15)
Region	nvarchar(15)
PostalCode	nvarchar(10)
Country	nvarchar(15)
Phone	nvarchar(24)
Fax	nvarchar(24)

Orders

Column Name	Data Type	
OrderID	int	
CustomerID	nchar(5)	
EmployeeID	int	
OrderDate	datetime	
RequiredDate	datetime	
ShippedDate	datetime	
ShipVia	int	
Freight	money	
ShipName	nvarchar(40)	
ShipAddress	nvarchar(60)	
ShipCity	nvarchar(15)	
ShipRegion	nvarchar(15)	
ShipPostalCode	nvarchar(10)	
ShipCountry	nvarchar(15)	

Suppliers

Column Name	Data Type	
SupplierID	int	
CompanyName	nvarchar(40)	
ContactName	nvarchar(30)	
ContactTitle	nvarchar(30)	
Address	nvarchar(60)	
City	nvarchar(15)	
Region	nvarchar(15)	
PostalCode	nvarchar(10)	
Country	nvarchar(15)	
Phone	nvarchar(24)	
Fax	nvarchar(24)	
HomePage	ntext	

Employees

Column Name	Data Type
EmployeeID	int
LastName	nvarchar(20)
FirstName	nvarchar(10)
Title	nvarchar(30)
TitleOfCourtesy	nvarchar(25)
BirthDate	datetime
HireDate	datetime
Address	nvarchar(60)
City	nvarchar(15)
Region	nvarchar(15)
PostalCode	nvarchar(10)
Country	nvarchar(15)
HomePhone	nvarchar(24)
Extension	nvarchar(4)
Photo	image
Notes	ntext
ReportsTo	int
PhotoPath	nvarchar(255)

Products

Column Name	Data Type	
ProductID	int	
ProductName	nvarchar(40)	
SupplierID	int	
CategoryID	int	
QuantityPerUnit	nvarchar(20)	
UnitPrice	money	
UnitsInStock	smallint	
UnitsOnOrder	smallint	
ReorderLevel	smallint	
Discontinued	bit	

<u>Ejercicio</u>: Identificar las claves primarias de cada tabla y dibujar el Diagrama Entidad Relación de la Base de datos

Region

l	Column Name	Data Type
	RegionID	int
	RegionDescription	nchar(50)
ı		

- → Plataformas de datos modernas
- **→** Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Diagrama Entidad Relación (E-R) de la base de datos Northwind

→ Plataformas de datos modernas

→ Datawarehousing

→ Bases de datos relacionales

→ Modelización Multidimensional

→ Proyecto de implantación

Consultas a la base de datos y generación de informes (basadas en SQL)

- 1. Mostrar todas las columnas y registros de la tabla "Region"
- 2. Listar todos los empleados en formato Apellido, Nombre, ordenando ascendente por apellido
- 3. Listar todos los pedidos ordenados en descendente por coste transporte (mostrar también el id de pedido, la fecha del pedido, fecha de entrega y el cliente)
- 4. Crear un informe que muestre el título, nombre y apellido de todos los empleados que sean representantes de ventas.
- 5. Crear un informe que muestre el nombre y apellido de todos los empleados que tienen una región especificada.
- 6. Crear un informe que muestre el nombre y apellido de todos los representantes de ventas que son de Seattle o Redmond.
- 7. Calcular el número total de unidades pedidas del producto 3.
- 8. Calcular el número de empleados que hay por cada ciudad.
- 9. Crear un informe que liste todos los pedidos de los empleados ordenados por Empleado y Fecha
- 10. Crear un informe (set de datos) que liste toda la siguiente información:
 - Año de la venta
 - Mes de la venta
 - Empleado venta (nombre y apellidos)
 - Posición (título del empleado)
 - Producto (código)
 - Producto (nombre)
 - Categoría del producto (nombre)
 - Nombre proveedor del producto
 - · País del proveedor
 - Cliente (nombre de la empresa)
 - País del cliente
 - Coste transporte
 - Cantidad de unidades
 - Importe venta bruto (sin descuento)
 - Importe venta neto (con descuento)

MASTER DATA SCIENCE

→ Plataformas de datos modernas

→ Datawarehousing

→ Bases de datos relacionales

→ Modelización Multidimensional

→ Proyecto de implantación

Generar un análisis dinámico (Excel) a partir del set de datos anterior que muestre:

- Ventas netas por categoría y mes
- Ventas netas por país y mes
- Top de productos por categoría (por año)
- Ranking de clientes (por año)
- Ranking de empleados (por ventas) por año
- Ranking de proveedores por categoría

Fundamentos

Modelización Multidimensional | Contexto

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Si en una empresa comercializadora nos pasan un Informe de que las ventas son:

157.234 €

Seguramente se nos interesará analizar este importe de ventas (<u>Medidas</u>) por algún criterio analítico (<u>Dimensiones</u>):

Dimensión	Pensamiento dimensional	Ejemplo
Producto	¿Qué se vendió?	Productos de una determinada Línea
		(Aceite, Detergente, Lácteos)
Cliente	¿A quién se vendió?	Clientes de un Determinado Segmento
		(Regulares, Principales, Esporádicos)
Comercial	¿Quién lo vendió?	Ranking de ventas por comercial
		Comercial A, Comercial B,
Centro	¿Dónde se vendió?	Comparativo de ventas entre centros
		Centros Norte, Centros Sur
Comercial	¿Quién lo vendió?	Ranking de ventas por comercial
		Comercial A, Comercial B,
Canal	¿A través de qué canal?	Distribución de ventas por canal (industrial, distribución, on-line,)

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

- → Plataformas de datos modernas
- **→** Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Ejemplos de dimensiones:

→ Plataformas de datos modernas

→ Datawarehousing

→ Bases de datos relacionales

→ Modelización Multidimensional

→ Proyecto de implantación

Ejemplos de métricas y medidas:

Métrica SRV | Nivel de servicio

Tiempo de entrega	Tiempo medio de la entrega del producto/servicio
% Pedidos correctos en tiempo (OTD)	% de pedidos sobre el total de pedidos entregados en tiempo
% Pedidos correctos en cantidad	% de pedidos sobre el total de pedidos con las cantidades correctas
% Pedidos facturados correctamente	% de pedidos sobre el total de pedidos facturados de forma correcta
% Pedidos servidos perfectos (POF)	% de pedidos perfectos sobre el total de pedidos entregados (multiplicación)
# Reclamaciones	Número total de reclamaciones realizadas
# Reclamaciones por servicio o producto	Número de reclamaciones sobre servicio o producto
€ en reclamaciones	Importe en € de las reclamaciones recibidas sobre producto o servicio
€ reclamados / € vendidos	% de importe reclamado entre el importe total vendido
€ reclamados / Unidades vendidas	€ reclamados por unidad vendida
# Devoluciones	Número total de devoluciones realizadas

€ de las devoluciones recibidas	Importe en € de las devoluciones recibidas
% devoluciones	% de las devoluciones en € entre el total de ventas en €
# incidencias	Incidencias de cliente registradas
Tiempo de resolución de incidencias	Tiempo medio para la resolución de incidencias desde apertura a cierre
	redidas ricas y

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Modelización Multidimensional | Enfoque

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Existen varios enfoques de diseño de un DATAWAREHOUSE

- El enfoque dimensional se refiere al enfoque de Ralph Kimball en el que se establece que el almacén de datos se debe modelar utilizando un modelo dimensional / esquema en estrella.
- El enfoque normalizado, también llamado modelo 3NF (Tercera forma normal) se refiere al enfoque de **Bill Inmon** en el que se establece que el almacén de datos se debe modelar utilizando un modelo E-R / modelo normalizado.

Las ventajas del modelado multidimensional se basan en la facilidad de uso y entendimiento por parte del usuario final.

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Modelo de datos en estrella:

- Las tablas de hechos, también conocidas como tablas Fact son grandes tablas que almacenan las medidas de los procesos de negocio y típicamente tienen claves foráneas a las tablas de dimensiones.
- Las tablas de dimensiones, también conocidas como tablas Look-up, contienen atributos descriptivos relativamente estáticos. Tienen claves primarias claramente identificables.

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales

→ Modelización Multidimensional

→ Proyecto de implantación

Proceso para la modelización multidimensional en los DW

SELECCIONAR PROCESOS DE NEGOCIO

- Hablar con los usuarios para recoger lo que les gustaría entender utilizando los datos.
- Por ejemplo: A los usuarios de Departamento Comercial les gustaría entender las ventas como ayuda para la presentación de informes mensuales y la previsión.

DECLARAR LA GRANULARIDAD

- Granularidad define el nivel de detalle que debería estar disponible en el modelo multidimensional
- Idealmente, debería captar el nivel más bajo de detalle posible, que servirá para obtener más flexibilidad en las consultas de los usuarios
- Por ejemplo: Seleccionar el resumen de ventas diarias por producto por código postal de cliente.

SELECCIONAR LAS DIMENSIONES

- Una vez definida la granularidad, se determinará la dimensionalidad primaria de la tabla de hechos
- Se pueden agregar nuevas dimensiones a los hechos sin volver a cargar los datos, siempre y cuando no se cambie la granularidad
- Por ejemplo: cliente, producto, fecha y código postal son los principales las dimensiones de los hechos.

IDENTIFICAR LAS MEDIDAS

- Una vez definida la granularidad y dimensiones de los hechos se han de identificar las medidas necesarias.
- Si hay un requisito de medidas no aditivas, tales como porcentajes y ratios, almacenar las medidas subyacentes en el hecho.
- Por ejemplo: Los usuarios están interesados en el análisis las ventas en unidades e importe y también están interesados en el margen bruto (entonces hay que añadir el coste a los hechos no el margen bruto calculado).

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Análisis de multidimensional de datos (lógico) procesos y requisitos de negocio

obtención del modelo

Fases a cubrir hasta la

- Análisis de procesos
- Modelo de requisitos de negocio
- Empezar desde lo vago e incierto
- Evolucionar hasta lo específico y cierto
- Lista de preguntas de negocio y matriz (hechos y calificadores)

Modelo lógico de datos

- Diseño (no técnico) conceptual de datos
- Modelo de solución de negocio
- Empezar desde los requisitos de negocio
- Evolucionar hasta las especificaciones de la solución.
- Modelo dimensional de datos (lógico)

Modelo físico de datos

- Implantación (técnica) del modelo diseñado.
- Modelo técnico de la solución.
- Empezar desde la especificación de la solución.
- Evolucionar hasta la especificación de la base de datos.
- Modelo (físico)

- → Plataformas de datos modernas
- **→** Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Recogiendo los Requisitos de Negocio:

- ¿Qué procesos de negocio están en el alcance del modelo?
- ¿Qué puede ser medido sobre los orígenes e inputs?
- ¿Qué puede ser medido sobre las actividades?
- ¿Qué puede ser medido sobre los eventos y transacciones?

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Matriz de Hechos y Cualificadores (F/Q)

- Es necesario mapear los hechos objeto de análisis (surgen de las preguntas) con las dimensiones que los cualifican.
- En la matriz F/Q se colocan todas las cuestiones de negocio

	ratio de rotaciór	media permanencia	número protestas			
departamento	1,4		3			
género	1	2				
edad	1	2				
mercado	1					
año	1	2				
turno	4	2	3			
mes	4	2	3			
sindicato			3			
centro	4					

Hay hechos (p.ej. Ratio de rotación) que aparecen en más de una pregunta.

La misma dimensión puede aparecer para más de un hecho.

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Definición de la métrica

- El primer paso en la modelización multidimensional es definir la métrica y sus medidas.
- Una métrica es un conjunto de medidas relacionadas que hacen referencia a un concepto de negocio objeto de análisis.
- Por ejemplo: satisfacción del empleado, fidelización de clientes, rentabilidad, eficiencia de la planta,...

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Asociación de cualificadores a dimensiones:

- Para cada medida contenida en la métrica, todos los cualificadores asociados han de ser representados por una dimensión.
- o Identificar los cualificadores que son niveles de una jerarquía.
- Identificar los cualificadores que son atributos de una dimensión

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Definición de la granularidad

- La granularidad describe el nivel de detalle contenido en la métrica.
- Cada medida en una métrica debe de estar al mismo nivel de detalle.
- La granularidad se determina por el conjunto de dimensiones asociadas con la métrica.

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales

→ Modelización Multidimensional

→ Proyecto de implantación

Definición de la clave de la tabla de hechos:

- El fundamento del concepto OLAP es la navegación desde un conjunto de dimensiones a los hechos asociados con estas dimensiones.
- La clave de la tabla FACT es la combinación de todas los valores de las

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

- → Plataformas de datos modernas
- **→** Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

- Las **dimensiones** existentes en el modelo son comunes para las diferentes **tablas de hechos.**
- Cada Data Mart utiliza aquellas que son relevantes para su ámbito de análisis.

	Tiempo	Compañía	Cliente	Proveedor	Geografía	Producto	Cuenta	Sección	Departamo	Categoría	Tipo contrat	010
Datamart Comercial	✓	✓	✓	√	✓	√						
Datamart Financiero	✓	✓		✓			✓	√				
Datamart RRHH	✓	✓							✓	✓	✓	

Modelización Multidimensional | Ejercicio 3

MASTER DATA SCIENC

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Proceso de negocio	Medidas
Ventas y Marketing	
Logística	
Producción	
Recursos Humanos	
TI	

Proceso Negocios	Dimensiones analitica
Ventas y Marketing	
Logística	
Producción	
Produccion	
Recursos Humanos	
Necursos riumanos	
ті	
1	

<u>Ejercicio</u>: Seleccionar medidas y dimensiones por área de negocio

Modelización Multidimensional | Ejercicio 3

MASTER DATA SCIENC

- → Plataformas de datos modernas
- **→** Datawarehousing
 - → Bases de datos relacionales

→ Modelización Multidimensional

→ Proyecto de implantación

Proceso de negocio	Modidas
	Número de Pedidos
ventas y iviai keting	Comisiones
	Descuentos
	Importe Ventas Cantidad Vendida
	Número de Devoluciones
	Unidades Vendidas
	Margen Bruto
Logística	Unidades expedidas
	Bultos expedidos
	Palets expedidos
	Peso
	Volumen
	Coste Inventario
	Unidades recibidas
	Bultos recibidos
	Palets recibidos
	Distancias
	Costo por Unidad
	Costo por Kilometro
Producción	Tiempo de Producción
	Capacidad Usada
	Unidades Planificadas
	Unidades Producidas
	Costos de Producción
	Horas Hombre
Recursos Humanos	Sueldos y Salarios Pagados
	Número de Empleados
	Rotación
	Absentismo
TI	Proyectos desviados en plazo
	Coste incurrido
	Número de Usuarios de BI
	Número de Usuarios Finales
	Tiempo en soporte

Proceso Negocios	Dimensiones analítica
Ventas y Marketing	Tiempo
	Producto
	Centro
	Cliente
	Segmento de Clientes
	Territorios
	Formas de Pago
Logística	Tiempo
	Centro
	Proveedores
	Clientes
	Productos
	Tipo embalaje
	Transportistas
	Tipos de Distribución
	Puntos de Embarque
	·
Producción	Centro
	Producto
	Procesos
	Estaciones de Trabajo
	·
Recursos Humanos	Tiempo
	Centro
	Rangos de Salario
	Posición (puesto)
ТІ	Tiempo
	Centro
	Proyecto
	Empleado
	•

Fases

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Tareas

- Análisis de procesos de negocio
- Análisis del mapa de sistemas transaccionales
- Inventario de informes (origen, frecuencia y destinatarios)
- Identificación de métricas e indicadores clave
- Identificación de dimensiones y ejes del análisis
- Granularidad del análisis
- Análisis de volumetría

Metodología

- Entrevistas y workshops con las diferentes áreas y departamentos del negocio
- Inventario de informes

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Tareas

- Diseño del Mapa de Sistemas y Arquitectura funcional
- Diseño del Modelo multidimensional de datos (métricas, dimensiones, granularidad)
- Diseño físico de la Base de Datos (tablas de hechos, dimensiones, agregadas, etc.)
- Colaboración con el partner técnico para la especificación de procesos ETL (orígenes de datos y transformaciones)
- Definición de la seguridad (roles y usuarios)
- Diseño de los modelos de visualización y explotación (BI

Metodología

- Workshops con el área de TI
- Workshops con las áreas de negocio
- Metodología de modelado multidimensional

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Aspectos metodológicos claves en la fase de Diseño

- **Diseño de la arquitectura técnica:** en esta fase se deben tener en cuenta tres factores: los requerimientos de negocio, los actuales entornos técnicos, y las directrices técnicas y estratégicas futuras planificadas por la compañía, lo que permitirá establecer el diseño de la arquitectura técnica del entorno del Data Warehouse.
- Modelado Dimensional: se comienza con una matriz donde se determina la dimensionalidad de cada indicador para luego especificar los diferentes grados de detalle dentro de cada concepto del negocio.
- **Diseño Físico:** se centra en la selección de las estructuras necesarias para soportar el diseño lógico. Un elemento principal de este proceso es la definición de estándares del entorno de la base de datos. La indexación y las estrategias de particionamiento se determinan en esta etapa.
- **Diseño de la capa de integración:** tiene como principales actividades la extracción, transformación y carga (ETL). Estas actividades son altamente críticas ya que tienen que ver con la identificación de los orígenes de datos, así como lo definición de los procesos de transformación necesarios.
- **Definición del modelo de reporting:** Tiene que ver con el modo en el que se explotarán los datos. Lo cual incluye la definición de tres tipos de herramientas: cuadros de mando de alto nivel, modelos analíticos y sets de reporting (desatendidos y/o a demanda).
- **Definición de la seguridad:** Identificación de los diferentes roles y usuarios con los diferentes niveles de acceso en función del nivel jerárquico y área funcional.

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

- Oficina Técnica del Proyecto
- Liderar el Diseño Conceptual y Funcional
- Supervisar el Desarrollo Técnico.
- Transferencia de conocimiento a equipos internos
- Desarrollo DW (integración, modelos de datos, modelos analíticos)
- Instalación infraestructura
- Pruebas

- Desarrollo BI
- Instalación infraestructura
- Pruebas

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

Los **roles de los distintos actores** del proyecto:

Comité de Dirección del Proyecto

- Órgano de gobierno del proyecto
- Compuesto por altos directivos
- Aprobación diseños y entregables
- Reunión mensuales o a demanda

Comité de Seguimiento del Proyecto

- Compuesto por Usuarios clave y Dirección y consultores
- Realizar la toma de decisión de los aspectos tácticos y técnicos del proyecto.
- Es posible, que ciertas decisiones que tome este órgano deban ser validadas por el Comité de Dirección.

Clientes internos

- Los clientes internos principales del proyecto son todos los departamentos y áreas de negocio de la organización
- Los clientes internos del proyecto serán informados a lo largo del mismo, y podrán ser consultados y/o participes en ciertas tomas de decisiones.

- → Plataformas de datos modernas
- → Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

- Técnico administrador
 de infraestructura
- Responsable de instalación de la solución
- Asegurar que los servicios están corriendo y trabajando perfectamente
- Seguridad y Back-ups de los datos
- Técnico administrador de base de datos
- Responsable de la carga de datos desde los orígenes transaccionales (conocimiento de los orígenes de datos). Control de la carga de datos
- Responsable de la creación de nuevas objetos/querys/informes en la plataforma

Controller responsable de la calidad del dato

- Profundo entendimiento del negocio. Lidera la interpretación de los requisitos de información del negocio
- Responsable de la calidad de los datos. Control de los mappings de los datos maestros (Cuentas, CEBES)
- Mejora de procesos para que tanto tablas de hechos como maestros estén perfectamente informados
- Filtrar los requisitos de información de los usuarios de negocio

Usuario de negocio (perfil ejecutivo)

- Dirección general, Direcciones de área, Segunda línea de dirección
- Es un perfil que analiza a alto nivel los datos que se le muestran pero no entra al detalle
- Normalmente será usuario de Cuadro de Mando (Dashboards) y recibirá informes pdf

Usuario de negocio (perfil analista)

- Igual que el anterior, pero adicionalmente (por su perfil) necesitará herramientas de análisis para profundizar en los datos
- Habrá de conocer perfectamente el modelo de datos del sistema

Usuario de negocio (perfil consumidor)

- Sólo consume informes pdf predeterminados en ciclos diario, semanal y mensual
- Para mayor profundización en los datos tendrá los orígenes transaccionales de los datos

Contacto

- → Plataformas de datos modernas
- **→** Datawarehousing
 - → Bases de datos relacionales
 - → Modelización Multidimensional
 - → Proyecto de implantación

LA CORUÑA (Headquarters)

Cantón Pequeño 13, 5º

Phone: 881 878 263 Email: info@hintd.net

www.hintd.net

MADRID
Paseo de la Castellana 93, 2ª

Javier Picos García

- (619 285 623
- javier.picos@hintd.net
- in linkedin.com/in/javierpicos
- O Cantón Pequeño 13,5° B-T. 881 878 263

Corporate Finance | Advanced Analytics | Performance Management

