Submodular Maximisation

Andreas Göbel

Hasso Plattner Institute

2020

Examples of AI tasks (I)

Influence maximisation on a social network

Select a subset of the most influential users on the network.

e.g. viral marketing, personalised recommendation, selecting influential tweeters

Examples of AI tasks (II)

Experimental design

Design an experiment in a way that optimises the accuracy of information provided by this experiment.

e.g. statistical tests, sensor placement

Examples of AI tasks (III)

Automatic summarisation

Shorten a set of data that represents the most important or relevant information within the original content.

e.g. text, images and video

Submodular set functions

A set function f defined on a ground set Ω takes as input a subset $S \subset \Omega$ and return a real value $f(S) \in \mathbb{R}$.

Definition (Submodular set function)

A function $f:\mathcal{P}(\Omega)\to\mathbb{R}$ is submodular if for all sets $A,B\subseteq\Omega$

Submodularity captures the notion of diminishing returns.

For sets $A \subseteq B \subseteq \Omega$ and for each $x \notin B$, we have

$$f(A \cup \{x\}) - f(A) \ge f(B \cup \{x\}) - f(B)$$

Video summarisation

We want to summarise a video consisting of n frames.

- For each frame i we can extract a feature vector $\overrightarrow{x_i}$ using a neural network.
 - Examples: colour, luminosity, number of faces, SIFT.
- We generate an $n \times n$ matrix M, where $M_{i,j}$ expresses how similar the feature vectors $\overrightarrow{x_i}$ and $\overrightarrow{x_j}$ are.
- To select the most diverse frames of the video we have to find the subset of frames $S \subseteq \{1, \dots, n\}$ maximizing the value

$$f(S) = \mathrm{Det}(M|_S),$$

where $M|_S$ is the submatrix of M restricted on the rows and columns of S.

- It turns out that the function f is submodular.
- Furthermore the function is monotone, i.e. for $A \subseteq B$, $f(A) \le f(B)$.

Side constraints

In such applications the computational task can be abstracted as follows: Given a submodular function $f:\mathcal{P}(\Omega)\to\mathbb{R}$ find the set $S\subseteq\Omega$ that maximises f(S).

Depending on the application maximising the function f might require further restrictions on the set S.

- Cardinality constraint. $|S| \le k$.
- Partition constraint. Ω can be partitioned in $\{\Omega_i\}_{i \leq m}$, we require $|S \cap \Omega_i| \leq k_i$. (Matroid constraint)
- Knapsack constraint. Each element $x \in \Omega$ has a weight w(x), we require $\sum_{x \in S} w(x) \leq W$.

Computational aspects

- Computing the value of the function *f* often requires a lot of computational resources (time).
- Grey-box complexity: the efficiency of an algorithm is measured as a number of (oracle) evaluations of the function f.

Maximising a submodular function is NP-complete (MaxCut is a special case). It is unlikely to find an exact solution with at most polynomial number of function evaluations in terms of $n = |\Omega|$.

Efficient approximation algorithms work well in theory and in practice.

A simple algorithm

The Greedy algorithm builds a solution by iteratively adding the element that yields the largest marginal gain.

- Start with the empty set $S_0 = \emptyset$.
- At each time step t find the element x maximizing $f(S_t \cup \{x\}) f(S_t) > 0$ and add x to the current solution.
- Stop when no element can be added.

 Due to constraints on *S* or no element gives positive marginal gain.

 $O(n^2)$ evaluations of f.

Greedy is often used in practice due to its simplicity. In theory to achieve better theoretical approximation guarantees more elaborate algorithms are used.

Approximation guarantees

A 1/2-approximation linear-time algorithm is known for the unconstrained problem. Constraints make the problem more complicated.

Commonly in applications the function f is monotone.

- The greedy gives a (1-1/e)-approximation guarantee under a cardinality constraint.
- (1-1/e)-approximation algorithms are known for a matroid constraint. (1/2)-approximation for the greedy.
- (1-1/e)-approximation algorithms are known for a knapsack constraint. No approximation guarantees for greedy.

Greedy is usually the practitioners choice as it performs extremely well in real world instances.

Further computational variants

Streaming

- Can you summarise data "on the fly"?
- Streaming algorithms require only a single pass through the data.
- The greedy algorithm requires multiple passes.
- \bullet For the cardinality constraint a greedy streaming algorithm exchanging the element in the solution achieves a 1/2-approximation guarantee.

Adaptive complexity

- Function evaluations can often be done in parallel.
- For greedy we require O(n) adaptive rounds.
- With a more clever algorithm we can reduce this to $O(\log^3 n)$ while maintaining the same approximation guarantees.