Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2021-22

Πράξεις με δυαδικούς αριθμούς

(αριθμητικές πράξεις)

http://mixstef.github.io/courses/csintro/

Μ.Στεφανιδάκης

Πράξεις με δυαδικούς αριθμούς

- Δυαδικοί Αριθμοί
- Ο υπολογιστής μπορεί να εκτελέσει
- Λογικές πράξεις
- Αριθμητικές πράξεις
- Οι πράξεις εκτελούνται
 - Σε ομάδες bits (bytes ή πολλαπλάσιά τους)

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Δεκαεξαδικό Σύστημα

• Δυαδικοί αριθμοί

- 16 ψηφία
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - Αντιστοιχία με τους δεκαδικούς 0 έως 15
- Σε δυνάμεις του 16
 - 16ⁿ ...16⁴ 16³ 16² 16¹ 16⁰
 - $\Pi.\chi.\ 16F(hex) = 1x16^2 + 6x16^1 + 15x16^0$
 - = 256 + 96 + 15 = 367 (δεκαδικό)
- Χρήσιμο μόνο ως «συντομογραφία» δυαδικών αριθμών

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

5

Παράδειγμα στο δεκαεξαδικό σύστημα

- Δυαδικοί αριθμοί
- Παράδειγμα: 1100100110010100
 1100 1001 1001 0100

C 9 9 4 = C994(hex)

Παράδειγμα: 100001010111110
 0010 0001 0101 1110

2 1 5 E = 215E (hex)

- Συμπλήρωση με 0 στα αριστερά
- Δεν αλλάζει τον αριθμό, όπως ακριβώς και στο δεκαδικό σύστημα

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Δεκαεξαδικό Σύστημα

 Δυαδικοί αριθμοί Κάθε 4 δυαδικά ψηφία αντιστοιχούν σε ένα δεκαεξαδικό ψηφίο

0000	0	1000	8
0001	1	1001	9
0010	2	1010	A
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

_

Δεκαεξαδικό Σύστημα

• Δυαδικοί αριθμοί

• Κάθε 4 δυαδικά ψηφία αντιστοιχούν σε ένα δεκαεξαδικό ψηφίο

0000	0	1000	8
0001	1	1001	9
0010	2	1010	A
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	Е
0111	7	1111	F

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Ακέραιοι αριθμοί (με πρόσημο - signed)

- Δυαδικοί
- Φυσικοί αριθμοί
- Ακέραιοι
- Πώς θα αναπαρασταθούν οι αρνητικοί;
 - Για να γίνονται εύκολα οι πράξεις
- Όχι καλή ιδέα:
 - Ξεχωριστό bit πρόσημου Αριθμός (N bits)

- Διάστημα τιμών για αριθμούς με n bits
- $-(2^{n-l}-1) \dot{\epsilon}\omega\varsigma + (2^{n-l}-1)$ (yia n=8, -127 ... +127)

11

- ένα χρήσιμο bit λιγότερο
- δυσκολία στις πράξεις
- 2 αναπαραστάσεις του 0;

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Χρήση των φυσικών αριθμών

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Για αναπαράσταση
 - Διαφορετικών «πραγμάτων»
 - Συνήθως χωρίς αριθμητική έννοια
- Απαρίθμηση
 - Παρέχοντας μοναδικούς αναγνωριστικούς αριθμούς
 - Παραδείγματα
 - Οι ξεχωριστές διευθύνσεις μνήμης
 - Οι χαρακτήρες σε ένα αλφάβητο
- Ξανά: με n bits απαριθμούνται έως και 2^n διαφορετικά «πράγματα»

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

10

Ακέραιοι αριθμοί (με πρόσημο - signed)

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί • Ακέραιοι
- Επίσης όχι καλή ιδέα:
 - Συμπλήρωμα ως προς 1
 - Αντιστροφή όλων των bits του αριθμού
 - Πιο σημαντικό bit: 0 για θετικούς, 1 για αρνητικούς
 - Διάστημα τιμών για αριθμούς με n bits
 - $-(2^{n-1}-1) \dot{\epsilon}\omega \zeta + (2^{n-1}-1) (\gamma \iota \alpha \tau \dot{\zeta})$
 - Τα ίδια προβλήματα με την χρήση ξεχωριστού bit πρόσημου

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Ακέραιοι αριθμοί (με πρόσημο - signed)

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι
- Καλή ιδέα!
 - Οι αρνητικοί αριθμοί είναι οι «συμπληρωμένοι ως προς 2» θετικοί
- Συμπλήρωμα ως προς 2
 - Τι σημαίνει «συμπλήρωμα ως προς 2»;
 - Πώς υπολογίζεται;

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

13

15

Ακέραιοι σε συμπλήρωμα ως προς 2

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι
- Διάστημα τιμών για αριθμούς με n bits
 -(2ⁿ⁻¹) έως +(2ⁿ⁻¹-1) (για n=8, -128 ... +127)
 - Mόνο το +(2ⁿ⁻¹) δεν μπορεί να αναπαρασταθεί
- Ευκολία στις πράξεις
 - αφαίρεση = πρόσθεση του συμπληρώματος ως προς 2
 - Μία και μοναδική αναπαράσταση του 0
- Πιο σημαντικό bit: 0 για θετικούς, 1 για αρνητικούς
 - Δεν είναι όμως bit προσήμου!

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Συμπλήρωμα ως προς 2

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι
- Ίσο με το «συμπλήρωμα ως προς 1» + 1
- Εμπειρικός κανόνας:
 - Αντιστροφή όλων των bits εκτός από τα δεξιότερα συνεχόμενα 0 και το πρώτο 1 αριστερά από αυτά
- Συμπλήρωμα ως προς 2: παραδείγματα 001011100 ⇒ 110100100 011111111 ⇒ 100000001
- Προσοχή στο 0000...00 και στο 1000...00

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

14

Αριθμητικές πράξεις

- Αριθμητικές πράξεις
- Οι βασικές πράξεις
- Πρόσθεση
- Αφαίρεση
- Αλλες πράξεις
 - Πολλαπλασιασμός
 - Διαίρεση
 - Επίσης:
 - Τετραγωνική ρίζα, τριγωνομετρικές συναρτήσεις, εκθετικά, λογάριθμοι κλπ..
 - Υλοποίηση σε υλικό με διάφορες τεχνικές
 - Π.χ με πολυώνυμα

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Προσθέτοντας 2 bits

• Αριθμητικές πράξεις

bits	άθροισμα	κρατούμενο
0+0	0	0
0 + 1	1	0
1+0	1	0
1 + 1	0	1

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

17

Προσθέτοντας δυαδικούς αριθμούς (μη προσημασμένους)

Κρατούμενο	,1 ,1 ,1				
Α' Αριθμός (119)	0 1 1 1 1 0 1 1 1				
Β' Αριθμός (88)	0 1 0 1 1 0 0 0				
Άθροισμα (207)	1 1 0 0 1 1 1 1				

- 1. Αριθμοί με ίδιο μήκος (ίσος αριθμός bits)
- 2. Αρχίζοντας από το λιγότερο σημαντικό bit (το δεξιότερο)
- 3. Προσθέτουμε ζεύγη bits και μεταφέρουμε το κρατούμενο (αν υπάρχει) προς τα αριστερά
 - Το προσθέτουμε στο επόμενο ζεύγος bits

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

Πρόσθεση αριθμών με πλήρεις αθροιστές

• Πολλαπλά τμήματα πλήρη αθροιστή

- Όμως: πόσο γρήγορα διαδίδεται το κρατούμενο; (ripple carry)
- Τεχνικές πρόβλεψης κρατουμένου (carry lookahead)

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

21

23

Προσθέτοντας δυαδικούς αριθμούς

(προσημασμένους)

• Προσημασμένοι ακέραιοι

- Συμπλήρωμα ως προς 2
 - Το περισσότερο σημαντικό bit υποδηλώνει το πρόσημο
 - 0=θετικός, 1=αρνητικός
- αριθμός με N bits ⇒ πεδίο τιμών [-2^{N-1} ...0... +2^{N-1} 1]
 - π.χ. για αριθμούς με 8 bits, από -128 έως +127

• Πρόσθεση

- Όπως σε μη προσημασμένους
- Τελικό κρατούμενο αγνοείται
 - Πώς γίνεται τώρα ο έλεγχος υπερχείλισης;
- Αφαίρεση = πρόσθεση του συμπληρώματος ως προς 2 του αφαιρετέου
 - A B = A + (-B)
 - χωρίς πρόσθετα κυκλώματα για την αφαίρεση!

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Προσθέτοντας δυαδικούς αριθμούς

(μη προσημασμένους)

- Υπερχείλιση
 - Στον υπολογιστή το πλήθος των bits ανά αριθμό είναι προκαθορισμένο
 - Το αποτέλεσμα της πρόσθεσης θα πρέπει να χωρά στα διαθέσιμα bits ενός καταχωρητή
 - Μη προσημασμένοι αριθμοί:
 - αριθμός με N bits ⇒ πεδίο τιμών [0 ... 2^N 1]
 - π.χ. για αριθμούς με 8 bits, από 0 έως 255

Κρατούμενο	,1	1	1	1	1	1		
Α' Αριθμός (180)	1	0	1	1	0	1	0	0
Β' Αριθμός (78)	0	1	0	0	1	1	1	0
Άθροισμα (258) 1	,0	0	0	0	0	0	1	<u> </u>
παρξη τελικού κρατουμένου = υπερχείλιση διαθέσιμος χώρος								

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

22

Προσθέτοντας δυαδικούς αριθμούς (προσημασμένους)

Κρατούμενο	,1							
Α' Αριθμός (+17)	0	0	0,	1	0	0	0	1
Β' Αριθμός (+22)	0	0	0	1	0	1	1	0
Άθροισμα (+39)	0	0	1	0	0	1	1	1

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Προσθέτοντας δυαδικούς αριθμούς (προσημασμένους)

Κρατούμενο	1 ₁ 1 ₁ 1 ₁ 1 1 1 1 1 1 1 1 1 1 1 1 1
Α' Αριθμός (+24)	0000111000
Β' Αριθμός (-17)	1 1 1 0 1 1 1 1
Άθροισμα (+7)	0 0 0 0 0 1 1 1

• το κρατούμενο αγνοείται

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

Υπερχείλιση σε προσημασμένους αριθμούς

25

27

Κρατούμενο	1, 1, 1, 1, 1, 1,
Α' Αριθμός (+127)	0 1 1 1 1 1 1 1 1
Β' Αριθμός (+3)	0 0 0 0 0 1 1
Άθροισμα (-126;)	100000010

- Το άθροισμα αριθμών με ίδιο πρόσημο θα πρέπει να έχει επίσης το ίδιο πρόσημο
 - στην αντίθετη περίπτωση: υπερχείλιση

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Υπερχείλιση σε προσημασμένους αριθμούς

11111111 (-1) 00000000 (0)

προσημασμένοι αριθμοί με 8 bits

11000000 (-64) Θετικοί Θετικοί 00111111 (+63)

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πρώξεις με δυαδικούς αριθμούς" 26

Υπερχείλιση σε προσημασμένους αριθμούς

Κρατούμενο	* 1	x ¹					
Α' Αριθμός (-126)	1 0 0	0	0	0'	1	0	
Β' Αριθμός (-5)	1 1 1	1	1	0	1	0	
Άθροισμα (+124;)	(0) 1 1	1	1	1	0	0	

- Το άθροισμα αριθμών με ίδιο πρόσημο θα πρέπει να έχει επίσης το ίδιο πρόσημο
 - στην αντίθετη περίπτωση: υπερχείλιση

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

Κλασματικοί αριθμοί

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι
- Κλασματικοί
- Θεωρητικά
 - Θα μπορούσαμε να επεξεργαζόμαστε ξεχωριστά το ακέραιο και το κλασματικό μέρος
- Αλλά
 - Αδυναμία αναπαράστασης πολύ μεγάλων και πολύ μικρών αριθμών
- Η λύση
 - Αριθμοί κινητής υποδιαστολής (floating point)
 - Εύκολη αναπαράσταση τόσο του 1.000.000.000.000 όσο και του 0,00000000000000001

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

29

Πράξεις με αριθμούς κινητής υποδιαστολής

- Αριθμητικές πράξεις
- Σύνθετη διαδικασία
- Η γενική μορφή της πρόσθεσης:
 - 1. Σύγκριση προσήμων
 - αν είναι ίδια ⇒ πρόσθεση
 - αλλιώς ⇒ αφαίρεση
 - 2. Εξίσωση εκθετών
 - μετακίνηση υποδιαστολής
 - 3. Πρόσθεση ή αφαίρεση σημαινόμενων τμημάτων
 - ακέραιο και κλασματικό μέρος
 - 4. Κανονικοποίηση αποτελέσματος
 - 5. Έλεγχος για υπερχείλιση

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

31

Αριθμοί κινητής υποδιαστολής

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι
- Κλασματικοί
- 3 μέρη
 - Πρόσημο (Π) (1 bit)
 - 0 = + 1 = -
 - Εκθέτης (Ε) (8 ή 11 bits)
 - Η βάση είναι το 2 (εννοείται)
 - Θετικοί και αρνητικοί εκθέτες με πλεόνασμα 127 ή 1023 (π.γ. αντί -55, Ε= -55+127 = 72!)
 - Σημαινόμενο τμήμα (Σ) (23 ή 52 bits)
 - Κανονικοποίηση: μορφή 1, χχχχχχχχχχχχχχχ...
 - Το '1,' εννοείται και δεν αποθηκεύεται
- Τελικός αριθμός: -1^Π x 1.Σ x 2^{E-127} (ή 2^{E-1023)}
 - Ειδικοί αριθμοί: 0, ∞, NaN (Not a Number)

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

30

Πράξεις με αριθμούς κινητής υποδιαστολής

A +2⁵ x 1,10110 + B +2⁵ x 0,01011 = +2⁵ x 10,00001 κανονικοποίηση +2⁶ x 1,000001

αποτέλεσμα: 0 10000101 000001000000000000000

Εισαγωγή στην Επιστήμη των Υπολογιστών - 133 με δυαδικούς αριθμούς"