Three-Dimensional Modeling of Sedimentation in Suspensions of Rod-Like Particles

Bella My Phuong Quynh Duong, Christiane Helzel

Heinrich-Heine University Düsseldorf

September 23, 2025

Table of Contents

- Introduction
- 2 Derivation of Moment Equations and their Approximation
- 3 Approximations of the Coupled Model
- 4 Current Work in Progress

Overview

- Introduction
- 2 Derivation of Moment Equations and their Approximation
- 3 Approximations of the Coupled Model
- 4 Current Work in Progress

Mathematical Model for the Sedimentation of Rod-Like Particles

Coupling of a kinetic Smoluchowski equation with Navier-Stokes equation

$$\begin{split} \partial_t f + \nabla_{\mathbf{x}} \cdot (\mathbf{u}f) + \nabla_{\mathbf{n}} \cdot (P_{\mathbf{n}^{\perp}} \nabla_{\mathbf{x}} \mathbf{u} \mathbf{n} f) - \nabla_{\mathbf{x}} \cdot ((I + \mathbf{n} \otimes \mathbf{n}) \mathbf{e}_3 f) \\ &= D_r \Delta_n f, \\ \operatorname{Re} \left(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla_{\mathbf{x}}) \mathbf{u} \right) = \Delta_{\mathbf{x}} \mathbf{u} - \nabla_{\mathbf{x}} \rho - \delta \left(\int_{S^{d-1}} f d\mathbf{n} \right) \mathbf{e}_3, \\ \nabla_{\mathbf{x}} \cdot \mathbf{u} &= 0, \end{split}$$

where $f = f(\mathbf{x}, t, \mathbf{n})$ represents the particle distribution of rod-like particles as a function of time t, space $\mathbf{x} \in \mathbb{R}^3$ and orientation $\mathbf{n} \in S^2$. D_r, δ and Re are non-dimensional parameters.

Helzel & Tzavaras, 2017

Outline of the Project

Goal

- Reduce the high-dimensional kinetic equation (in space and orientation) to a lower-dimensional system of moment equations (in space).
- Derive and approximate hierarchies of moment equations for the coupled kinetic-fluid model with f on S^2

Outline of the Project

Goal

- Reduce the high-dimensional kinetic equation (in space and orientation) to a lower-dimensional system of moment equations (in space).
- $lackbox{ }$ Derive and approximate hierarchies of moment equations for the coupled kinetic-fluid model with f on S^2

Our Approach

Investigate different coupled flow situations

- externally imposed velocity field
- o coupled problems: 1D shear flow, 2D rectilinear flow and

Outline of the Project

Goal

- Reduce the high-dimensional kinetic equation (in space and orientation) to a lower-dimensional system of moment equations (in space).
- Derive and approximate hierarchies of moment equations for the coupled kinetic-fluid model with f on S^2

Our Approach

Investigate different coupled flow situations

- externally imposed velocity field
- coupled problems: 1D shear flow, 2D rectilinear flow and now 3D flow with periodic boundary conditions

Overview

- Introduction
- 2 Derivation of Moment Equations and their Approximation
- 3 Approximations of the Coupled Model
- 4 Current Work in Progress

Shear Flow

$$\begin{split} \partial_t f + \nabla_x \cdot (\boldsymbol{u} f) - \nabla_x \cdot ((\boldsymbol{I} + \boldsymbol{n} \otimes \boldsymbol{n}) \boldsymbol{e}_3 f) &= -\nabla_{\boldsymbol{n}} \cdot (P_{\boldsymbol{n}^{\perp}} \nabla_x \boldsymbol{u} \boldsymbol{n} f) + D_r \Delta_{\boldsymbol{n}} f, \\ \operatorname{Re} \left(\partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla_x) \, \boldsymbol{u} \right) &= \Delta_x \boldsymbol{u} - \nabla_x p - \delta \left(\int_{S^{d-1}} f d\boldsymbol{n} \right) \boldsymbol{e}_3 \\ \nabla_x \cdot \boldsymbol{u} &= 0. \end{split}$$

Consider Shear Flow, i.e. assume $\mathbf{u} = (0, 0, w(x, t))^T$, $f = f(x, t, \phi, \theta)$.

Shear Flow

$$\partial_t f + \nabla_x \cdot (\boldsymbol{u}f) - \nabla_x \cdot ((\boldsymbol{I} + \boldsymbol{n} \otimes \boldsymbol{n}) \mathbf{e}_3 f) = -\nabla_{\boldsymbol{n}} \cdot (P_{\boldsymbol{n}^{\perp}} \nabla_x \boldsymbol{u} \boldsymbol{n} f) + D_r \Delta_{\boldsymbol{n}} f,$$

$$\operatorname{Re} (\partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla_x) \boldsymbol{u}) = \Delta_x \boldsymbol{u} - \nabla_x p - \delta \left(\int_{S^{d-1}} f d\boldsymbol{n} \right) \mathbf{e}_3$$

$$\nabla_x \cdot \boldsymbol{u} = 0.$$

Consider Shear Flow, i.e. assume $\mathbf{u} = (0, 0, w(x, t))^T$, $f = f(x, t, \phi, \theta)$.

In spherical coordinates and for the given velocity field $m{u}$, we get

$$\sin\theta\partial_{t}f + \nabla_{x} \cdot (uf) + \frac{\partial_{x}(\cos\phi\cos\theta\sin^{2}\theta f)}{\partial_{x}(\cos\phi\cos\phi f)} + D_{r}\left(\partial_{\phi}\left(\frac{1}{\sin\theta}\partial_{\phi}f\right) + \partial_{\theta}(\sin\theta\partial_{\theta}f)\right), \tag{1}$$

$$Re\partial_{t}w(x,t) = \partial_{xx}w + \delta\left(\bar{\rho} - \int_{0}^{2\pi}\int_{0}^{\pi}f\sin\theta\,d\theta\,d\phi\right).$$

Derivation of Moment Equations

Consider approximation of the form

$$f(\mathbf{x},t,\phi,\theta) \approx f^{N}(\mathbf{x},t,\phi,\theta) := \sum_{n=0}^{N} \sum_{i=-2n}^{2n} c_{2n}^{i}(\mathbf{x},t) \cdot P_{2n}^{i}(\phi,\theta), \tag{2}$$

where $P^i_{2n}(\phi,\theta)$, $n=0,\ldots,N$, $i=-2n,\ldots,2n$ are harmonic polynomial basis functions, i.e., the eigenfunctions of the Laplace-Beltrami operator with the eigenvalue -2n(2n+1).

Derivation of Moment Equations

Consider approximation of the form

$$f(\mathbf{x},t,\phi,\theta) \approx f^{N}(\mathbf{x},t,\phi,\theta) := \sum_{n=0}^{N} \sum_{i=-2n}^{2n} c_{2n}^{i}(\mathbf{x},t) \cdot P_{2n}^{i}(\phi,\theta), \tag{2}$$

where $P_{2n}^i(\phi,\theta)$, $n=0,\ldots,N$, $i=-2n,\ldots,2n$ are harmonic polynomial basis functions, i.e., the eigenfunctions of the Laplace-Beltrami operator with the eigenvalue -2n(2n+1).

• Insert ansatz $f^N = \sum_{n=0}^{N} \sum_{i=-2n}^{2n} c_{2n}^i(x,t) \cdot P_{2n}^i(\phi,\theta)$ into kinetic equation

$$\begin{split} \sin\theta\partial_t f^N(x,t,\phi,\theta) + &\partial_x (\cos\phi\cos\theta\sin^2\theta f^N) \\ &= -\partial_\theta \left(w_x \sin^3\theta\cos\phi f^N \right) + D_r \left(\partial_\phi \left(\frac{1}{\sin\theta} \partial_\phi f^N \right) + \partial_\theta (\sin\theta\partial_\theta f^N) \right) \end{split}$$

Projection to the basis functions

The system of moment equations has the general form

$$\partial_t Q + A \partial_x Q = D(w_x) Q + D_r E Q, \tag{3}$$

where $Q=(c_0^0(x,t),c_2^{-2}(x,t),\ldots,c_{2N}^{2N}(x,t))^T$ represents the vector of the moments and $A,D,E\in\mathbb{R}^{(N+1)(2N+1)\times(N+1)(2N+1)}$. For N=1 the matrix A has the form

$$\begin{bmatrix} A_{0,0} & A_{0,1} \\ A_{0,1}^T & A_{1,1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{1}{\sqrt{15}} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{7} & 0 & 0 & 0 \\ \frac{1}{\sqrt{15}} & \frac{1}{7} & 0 & \frac{\sqrt{3}}{21} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{3}}{21} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{7} \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{7} & 0 \end{bmatrix}.$$

Rectilinear Flow

We consider
$$\mathbf{u} = (0, 0, w(x, y, t))^T$$
, $f(x, y, t, \phi, \theta)$. We get
$$\sin \theta \partial_t f(x, y, t, \phi, \theta) + \partial_x (\cos \phi \sin \theta \cos \theta f) + \partial_y (\sin \phi \sin \theta \cos \theta f)$$

$$+ \partial_\theta \left((w_x \sin^3 \theta \cos \phi + w_y \sin \phi \sin^3 \theta) f \right) = D_r \left(\partial_\phi \left(\frac{1}{\sin \theta} \partial_\phi f \right) + \partial_\theta (\sin \theta \partial_\theta f) \right)$$

$$Re \partial_t w(x, y, t) = \partial_{xx} w + \partial_{yy} w + \delta \left(\bar{\rho} - \int_0^{2\pi} \int_0^{\pi} f \sin \theta d\theta d\phi \right).$$
(4)

Rectilinear Flow

We consider $\mathbf{u} = (0, 0, w(x, y, t))^T$, $f(x, y, t, \phi, \theta)$. We get

$$\sin\theta\partial_{t}f(x,y,t,\phi,\theta) + \partial_{x}(\cos\phi\sin\theta\cos\theta f) + \partial_{y}(\sin\phi\sin\theta\cos\theta f) + \partial_{\theta}((w_{x}\sin^{3}\theta\cos\phi + w_{y}\sin\phi\sin^{3}\theta)f) = D_{r}\left(\partial_{\phi}\left(\frac{1}{\sin\theta}\partial_{\phi}f\right) + \partial_{\theta}(\sin\theta\partial_{\theta}f)\right) \\
Re\partial_{t}w(x,y,t) = \partial_{xx}w + \partial_{yy}w + \delta\left(\bar{\rho} - \int_{0}^{2\pi}\int_{0}^{\pi}f\sin\theta d\theta d\phi\right).$$
(4)

The moment equations have the general form

$$\partial_t Q + A \partial_x Q + B \partial_y Q = D(w_x, w_y) Q + D_r E Q.$$
 (5)

For N=1:

$$B = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & \frac{\sqrt{15}}{15} & 0 \\ 0 & 7 & 0 & 0 & 0 & -\frac{15}{15} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{17}{7} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{17}{7} \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{21} & 0 \\ \frac{\sqrt{15}}{15} & -\frac{1}{7} & 0 & \frac{\sqrt{3}}{21} & 0 & 0 \\ 0 & 0 & \frac{1}{7} & 0 & 0 & 0 \end{bmatrix}.$$

Coupled System for a Three-Dimensional Flow

We consider $\mathbf{u} = (0, 0, w(x, y, z, t))^T$, $f(x, y, t, \phi, \theta)$. We get $\sin \theta \partial_t f(x, y, t, \phi, \theta) + \partial_x (\cos \phi \sin \theta \cos \theta f) + \partial_y (\sin \phi \sin \theta \cos \theta f) - \partial_z ((1 + \cos^2 \theta) f)$ $= -\partial_\theta \left((w_x \sin^3 \theta \cos \phi + w_y \sin \phi \sin^3 \theta - w_z \cos \theta \sin^2 \theta) f \right) D_r \left(\partial_\phi \left(\frac{1}{\sin \theta} \partial_\phi f \right) + \partial_\theta (\sin \theta \partial_\theta f) \right)$ $Re \partial_t w(x, y, t) = \partial_{xx} w + \partial_{yy} w + \partial_{yy} z + \delta \left(\bar{\rho} - \int_0^{2\pi} \int_0^{\pi} f \sin \theta d\theta d\phi \right). \tag{6}$

Coupled System for a Three-Dimensional Flow

We consider $\mathbf{u} = (0, 0, w(x, y, z, t))^T$, $f(x, y, t, \phi, \theta)$. We get

$$\sin \theta \partial_t f(x, y, t, \phi, \theta) + \partial_x (\cos \phi \sin \theta \cos \theta f) + \partial_y (\sin \phi \sin \theta \cos \theta f) - \partial_z ((1 + \cos^2 \theta) f)$$

$$= -\partial_\theta \left((w_x \sin^3 \theta \cos \phi + w_y \sin \phi \sin^3 \theta - w_z \cos \theta \sin^2 \theta) f \right) D_r \left(\partial_\phi \left(\frac{1}{\sin \theta} \partial_\phi f \right) + \partial_\theta (\sin \theta \partial_\theta f) \right)$$

$$Re\partial_t w(x,y,t) = \partial_{xx} w + \partial_{yy} w + \partial_{yy} z + \delta \left(\bar{\rho} - \int_0^{2\pi} \int_0^{\pi} f \sin\theta d\theta d\phi \right).$$

The moment equations have the general form

$$\partial_t Q + A \partial_x Q + B \partial_y Q + C \partial_z Q = D(w_x, w_y, w_z) Q + D_r E Q. \tag{7}$$

(6)

For N = 1:

$$C = \begin{bmatrix} -\frac{4}{3} & | & 0 & 0 & -\frac{2\sqrt{5}}{15} & 0 & 0 \\ 0 & | & -\frac{8}{7} & 0 & 0 & 0 & 0 \\ 0 & | & 0 & -\frac{10}{7} & 0 & 0 & 0 \\ -\frac{2\sqrt{5}}{15} & | & 0 & 0 & -\frac{32}{21} & 0 & 0 \\ 0 & | & 0 & 0 & 0 & -\frac{10}{7} & 0 \\ 0 & | & 0 & 0 & 0 & 0 & -\frac{8}{7} \end{bmatrix}.$$

1D Wave Propagation Algorithm (LeVeque et al.)

We consider the hyperbolic system

$$q_t + f(q)_x = 0, \quad q \in \mathbb{R}^m$$

- Discretize the domain into cells $[x_{i-1/2}, x_{i+1/2}]$.
- At each interface $x_{i+1/2}$, solve the Riemann problem:

$$q(x,0) = \begin{cases} q_i, & x < x_{i+1/2}, \\ q_{i+1}, & x > x_{i+1/2}. \end{cases}$$

• Decompose the jump into waves along eigenvectors of A = f'(q):

$$q_{i+1}-q_i=\sum_{p=1}^m lpha^p r^p, \quad W^p=lpha^p r^p,$$
 travelling with $s^p.$

1D Wave Propagation Algorithm (LeVeque et al.)

We consider the hyperbolic system

$$q_t + f(q)_x = 0, \quad q \in \mathbb{R}^m$$

- Discretize the domain into cells $[x_{i-1/2}, x_{i+1/2}]$.
- At each interface $x_{i+1/2}$, solve the Riemann problem:

$$q(x,0) = \begin{cases} q_i, & x < x_{i+1/2}, \\ q_{i+1}, & x > x_{i+1/2}. \end{cases}$$

• Decompose the jump into waves along eigenvectors of A = f'(q):

$$q_{i+1}-q_i=\sum_{p=1}^m lpha^p r^p, \quad W^p=lpha^p r^p,$$
 travelling with $s^p.$

Define fluctuations:

$$A^{+}\Delta q_{i-1/2} = \sum_{p:sP>0} s^{p}W^{p}, \quad A^{-}\Delta q_{i+1/2} = \sum_{p:sP<0} s^{p}W^{p}$$

Update cell averages:

$$Q_i^{n+1} = Q_i^n - rac{\Delta t}{\Delta x} \Big(\mathcal{A}^+ \Delta q_{i-1/2} + \mathcal{A}^- \Delta q_{i+1/2} \Big)$$

Multidimensional Wave Propagation (2D and 3D)

General system:

$$q_t + f(q)_x + g(q)_y + h(q)_z = 0$$

Key ideas:

- 1D Riemann problems at cell interfaces: Solve along the normal direction of each cell interface.
- Wave decomposition: Decompose jumps into waves W^p with speeds s^p .
- Fluctuations:

$$\mathcal{A}^{\pm}\Delta q$$
, $\mathcal{B}^{\pm}\Delta q$, $\mathcal{C}^{\pm}\Delta q$

Multidimensional Wave Propagation (2D and 3D)

General system:

$$q_t + f(q)_x + g(q)_y + h(q)_z = 0$$

Key ideas:

- 1D Riemann problems at cell interfaces: Solve along the normal direction of each cell interface.
- Wave decomposition: Decompose jumps into waves W^p with speeds s^p .
- Fluctuations:

$$\mathcal{A}^{\pm}\Delta q$$
, $\mathcal{B}^{\pm}\Delta q$, $\mathcal{C}^{\pm}\Delta q$

- Transverse propagation:
 - 2D: Waves in *x*-direction generate waves in *y*, and vice versa.
 - 3D: Each wave generates transverse waves along in the other two directions.

3D Transverse and Double Transverse Propagation

In 3D: every wave generates transverse and double–transverse contributions in the other directions

Examples of Transverse Interactions

- $x \rightarrow y$ (transverse)
- $x \rightarrow z$ (transverse)
- $x \rightarrow y \rightarrow z$ (double transverse)
- $y \rightarrow x \rightarrow z$, etc.

Update Scheme

$$\begin{split} Q_{i,j,k}^{n+1} &= Q_{i,j,k}^n - \frac{\Delta t}{\Delta x} \Big(\mathcal{A}^+ \Delta q_{i-1/2,j,k} + \mathcal{A}^- \Delta q_{i+1/2,j,k} \Big) \\ &- \frac{\Delta t}{\Delta y} \Big(\mathcal{B}^+ \Delta q_{i,j-1/2,k} + \mathcal{B}^- \Delta q_{i,j+1/2,k} \Big) \\ &- \frac{\Delta t}{\Delta z} \Big(\mathcal{C}^+ \Delta q_{i,j,k-1/2} + \mathcal{C}^- \Delta q_{i,j,k+1/2} \Big). \end{split}$$

Overview

- Introduction
- 2 Derivation of Moment Equations and their Approximation
- 3 Approximations of the Coupled Model
- 4 Current Work in Progress

Approximation of Coupled Shear Flow Problem

Consider

$$\partial_t Q(x,t) + A \partial_x Q(x,t) = D(w_x) Q(x,t) + D_r E Q(x,t)
\partial_t w = \partial_{xx} w + \delta(\bar{\rho} - 2\sqrt{\pi}c_0^0(x,t)).$$
(8)

1.	$rac{1}{2}\Delta t$ step on $\partial_t Q(x,t) = (D(w_x(x,t_n)) + D_r E)Q(x,t)$
2.	$rac{1}{4}\Delta t$ step on $\partial_t w(x,t) = \delta(ar ho - 2\sqrt{\pi}c_0^0(x,t))$
3.	$rac{1}{2}\Delta t$ step on $\partial_t w(x,t) = \partial_{xx} w(x,t)$
4.	$rac{1}{4}\Delta t$ step on $\partial_t w(x,t) = \delta(ar ho - 2\sqrt{\pi}c_0^0(x,t))$
5.	Δt step on $\partial_t Q(x,t) + A \partial_x Q(x,t) = 0$
6.	$rac{1}{4}\Delta t$ step on $\partial_t w(x,t) = \delta(ar ho - 2\sqrt{\pi}c_0^0(x,t))$
7.	$rac{1}{2}\Delta t$ step on $\partial_t w(x,t) = \partial_{xx} w(x,t)$
8.	$rac{1}{4}\Delta t$ step on $\partial_t w(x,t) = \delta(ar ho - 2\sqrt{\pi}c_0^0(x,t))$
9.	$rac{1}{2}\Delta t$ step on $\partial_t Q(x,t) = (D(w_x(x,t_{n+1})) + D_r E)Q(x,t)$

Table 1: Splitting algorithm for solving the coupled shear flow problem (Dahm et al.)

We use an ODE solver for 1. + 9., LeVeque's high resolution wave propagation algorithm for 5. and finite difference methods for the evolution of w.

Numerical Result for Shear Flow

Let

$$c_0^0(x,0) = (1 + (1 \cdot 10^{-4} \cdot \eta(x) - 5 \cdot 10^{-5}))/(2\sqrt{\pi}),$$

where $\eta(x)$ is a random variable taking values in the interval $\pm \frac{1}{2}$.

Figure 1: Approximation of the coupled problem for shear flow with $D_r = 0.05$. The plot shows the density at time t = 30 for N = 1 and N = 2 (blue line). A reference solution is calculated with N = 6 moment equations (black line).

Approximations of the Two-Dimensional Hyperbolic System

Figure 2: Numerical solution of the drift-diffusion term for fixed w_x and w_y .

Figure 3: Numerical results for c_0^0 at different times using $D_r = 1$ and $w_x = w_y = 1$ for x < 50 and $w_x = w_y = -1$ otherwise. A cluster with higher particle density splits into two, each moving in opposite directions.

Overview

- Introduction
- 2 Derivation of Moment Equations and their Approximation
- 3 Approximations of the Coupled Model
- 4 Current Work in Progress

Wave Propagation and Error Analysis

Wave propagation parameters (LeVeque et al.): The scheme can be characterized by three integers (m_1, m_2, m_3) :

- m_1 : Correction wave (1 = not included, 2 = included)
- m_2 : Transverse propagation (0 = none, 1 = increment only, 2 = increment + correction)
- m_3 : Double-transverse propagation (0 = none, 1 = increment only, 2 = increment + correction)

Error computation: On a coarse grid, define

$$E(h) = U(h) - U(h/2), \quad E(h/2) = U(h/2) - U(h/4)$$

Accuracy Analysis

Let

$$r = \sqrt{(x-40)^2 + (y-30)^2 + (z-50)^2}, \quad c_0^0(x, y, k, 0) = \exp(-0.01 \, r^2)$$

be the initial value.

Method	Grid	N=1		N=2		N=7	
		L ₁ Error	EOC	L ₁ Error	EOC	L ₁ Error	EOC
(1,1,1)	32	$5.57 \cdot 10^{-4}$	-	$5.47 \cdot 10^{-4}$	-	$5.01 \cdot 10^{-4}$	-
	64	$3.54 \cdot 10^{-4}$	0.65	$3.40 \cdot 10^{-4}$	0.68	$2.93 \cdot 10^{-4}$	0.77
	128	$1.79 \cdot 10^{-4}$	0.98	$1.80 \cdot 10^{-4}$	0.91	-	-
(2,2,2)	32	$1.79 \cdot 10^{-4}$	-	$2.00 \cdot 10^{-4}$	-	$1.83 \cdot 10^{-4}$	-
	64	$4.66 \cdot 10^{-5}$	1.94	$5.45 \cdot 10^{-5}$	1.86	$4.82 \cdot 10^{-5}$	1.92
	128	$1.17 \cdot 10^{-5}$	1.99	$1.38 \cdot 10^{-5}$	1.98	-	-

Table: Accuracy analysis for the component c_0^0 of the coupled 3D flow problem $(D_r=1)$. The time step was limited by the CFL condition, with $cfl \leq 0.45$ for method (1,1,1) and $cfl \leq 0.9$ for method (2,2,2).

Cluster formation Ex. 1

Figure 4: Evolution of c_0^0 at different times, showing two Gaussian clusters transported in opposite directions by a piecewise constant velocity field $(u_z = \pm 1)$.

Ex. 2

Figure 5: Evolution of c_0^0 at different times, showing two Gaussian clusters transported in opposite directions by a piecewise constant velocity field ($w_x = w_y = w_z = 1$ for x < 50 and $w_x = w_y = w_z = -1$ otherwise.

Conclusion

content