Percolation

Thomas Budzinski

Lycée Louis le Grand

18 Janvier 2012

Sommaire

- Présentation du modèle
 - Définitions
 - Préliminaires probabilistes
 - Transition de phase
- Cas des arbres
 - Définition
 - Calcul de la probabilité critique
 - Pourquoi les arbres ?
- Cas du réseau carré
 - Théorèmes sur les régimes sous-critique et sur-critique
 - Réseau dual
 - Calcul de la probabilité critique

Objectifs

- Modéliser un milieu aléatoire :
 - Solide poreux
 - Mélange conducteur-isolant
 - Feux de forêt...
- Etudier les transitions de phase :
 - Changement d'états
 - Ferromagnétisme

Graphes

Définition

- Un graphe (simple, non-orienté) G est un couple (V, E), où V est un ensemble et E un ensemble de parties de V de cardinal 2.
- Les éléments de V sont appelés sommets, les éléments de E sont appelés arêtes.
- Si $\{x, y\} \in E$, x et y sont dits voisins.
- Le degré de x est le nombre de ses voisins.
- On dit que x et y sont reliés si il existe x₀ = x, x₁, ..., x_k = y tels que pour tout i ∈ [[0, k]], x_i et x_{i+1} sont voisins. On note alors d(x, y) le plus petit entier k tel qu'il existe de tels x_i.
- Si x ∈ v, on notera C_x la composante connexe du graphe contenant x : c'est l'ensemble des sommets reliés à x.

Quelques exemples typiques

Réseau triangulaire

Un exemple plus exotique

Qu'est-ce-que la percolation?

- On considère un graphe infini G = (V, E), localement fini, connexe (en général assez régulier)
- On se fixe p ∈ [0, 1]
- E' sous-ensemble aléatoire de E tel que chaque arête appartient à E avec probabilité p, sans dépendance entre les arêtes.
- Les arêtes de E' sont dites ouvertes, les autres sont dites fermées.
- If y a percolation si (V, E') admet une composante connexe infinie.
- On notera $\psi(p)$ la probabilité qu'il y ait percolation et, si tous les sommets jouent le même rôle, $\theta(p)$ la probabilité que la composante connexe contenant l'origine soit infinie.

Exemple

Réseau carré, $p = \frac{1}{2}$

Inégalité de Boole

Proposition

Soient $A_0, A_1, ..., A_n, ...$ des évènements. Alors :

$$P(\exists n \in \mathbb{N}, A_n) \leq \sum_{n \in \mathbb{N}} P(A_n)$$

Démonstration.

$$P(\exists n \in \mathbb{N}, A_n) = P(A_1) + P(A_2 \backslash A_1) + P(A_3 \backslash (A_1 \cup A_2)) + \dots \\ \leq P(A_1) + P(A_2) + P(A_3) + \dots$$

Loi du 0-1 de Kolmogorov

Théorème

Soit A un évènement invariant si on change l'état d'un nombre fini d'arêtes. Alors $P(A) \in \{0,1\}$.

- En théorie de la mesure, les évènements sont "engendrés" par une certaine famille d'évènements, ici ceux qui ne dépendent que d'un nombre fini d'arêtes.
- Or, A est indépendant avec chacun de ces évènements. A est donc indépendant avec lui-même, soit :

$$P(A) = P(A \cap A) = P(A)^2$$

Inégalité FKG

Définition

Un évènement est dit croissant si pour toute configuration où *A* se produit et toute arête *e* fermée dans cette configuration, *A* se produit toujours si *e* devient ouverte.

Proposition

Soient A et B des évènements croissants. Alors :

$$P(A \cap B) \geq P(A)P(B)$$

Démonstration : on le montre par récurrence pour des évènements qui ne dépendent que d'un nombre fini n d'arêtes (par récurrence sur n), puis un théorème de convergence permet de passer au cas général.

Transition de phase

Théorème

Il existe $p_c \in [0, 1]$ tel que :

- *Si* $p < p_c$, alors $\psi(p) = 0$
- Si $p > p_c$, alors $\psi(p) = 1$

De plus, si tous les sommets jouent le même rôle,

 $p_c = \inf \{ p \in [0, 1], \theta(p) > 0 \}.$

p_c (qui dépend du graphe) est appelée probabilité critique.

Démonstration.

- Si $\theta(p) > 0$, $\psi(p) \ge \theta(p) > 0$ donc $\psi(p) = 1$ d'après la loi du 0-1.
- Si $\theta(p) = 0$, $\psi(p) \le \sum_{x \in V} P(|C_x| = \infty) = 0$

La fonction θ

Proposition

Si les degrés des sommets sont bornés (par M), $p_c > 0$.

Démonstration.

Soit $n \in \mathbb{N}$: si C_0 est infinie, elle contient un chemin auto-évitant de longueur n issu de 0.

Soit P(n) l'ensemble de ces chemins et $\sigma(n)$ leur nombre :

$$heta(p) \leq P_p(\text{II existe } c \in P(n) \text{ ouvert})$$

$$\leq \sum_{c \in P(n)} P_p(c \text{ est ouvert})$$

$$= \sigma(n)p^n$$

$$\leq M^n p^n$$

donc pour $p < \frac{1}{M}$, $\theta(p) = 0$, d'où $p_c \ge \frac{1}{M}$.

Arbres

Définition

Un arbre est un graphe sans cycles.

L'arbre régulier de degré d, noté T_d est l'arbre dont tous les sommets sont de degré d.

Exemple (*d* = 3) :

Calcul de p_c

Théorème

$$p_c(T_d) = \frac{1}{d-1}$$

Démonstration.

On ne change pas la valeur de p_c en supprimant une "branche" de l'arbre. On obtient ainsi l'arbre T'_d :

Démonstration (suite)

Démonstration.

- Si C ensemble de sommets, $r(C) = \max_{x \in C} d(0, x)$.
- Pour tout n, on pose $u_n(p) = P_p(r(C_0) < n)$.
- $(u_n(p))$ est croissante et majorée donc converge, et $1 \theta(p) = \lim_{n \to \infty} u_n(p)$.
- $r(C_0) < n$ ssi pour tout $i \in [1, d-1]$, l'arête $\{0, i\}$ est fermée OU $\{0, i\}$ est ouverte et $r_i(C_i) < n-1$, d'où :

$$\begin{cases} u_{n+1}(p) = (1-p+pu_n(p))^{d-1} \\ u_n(0) = 0 \end{cases}$$

Démonstration (fin)

Démonstration.

- On pose donc $f(x) = (1 p + px)^{d-1}$, définie sur [0, 1].
- $(u_n(p))$ converge vers le plus petit point fixe de f, donc $\theta(p) > 0$ ssi f admet un point fixe dans [0, 1[.

• f est convexe, f(0) > 0 donc $\theta(p) > 0$ ssi f'(1) > 1. f'(1) = p(d-1), donc $\theta(p) > 0$ ssi $p > \frac{1}{d-1}$.

Pourquoi étudier les arbres?

- Intérêt en soi : arbres généalogiques :
 - Probabilité d'extinction de la descendance d'un individu : 13%
 - Probabilité d'extinction de son nom de famille : 92%
- Donne des informations sur la percolation sur d'autres graphes : en grande dimension, les réseaux se comportent souvent comme des arbres :
 - $p_c(\mathbb{Z}^d) \sim \frac{1}{2d}$
 - Exposants critiques : pour $d \ge 6$, ils prennent la même valeur pour \mathbb{Z}^d que pour les arbres. (conjecture)
 - Autres processus aléatoires (marches aléatoires...)

Décroissance exponentielle et unicité de la composante connexe infinie

Théorème

Si $p < p_c$, il existe $\xi(p) > 0$ tel que :

$$P_p(r(C_0) \ge n) = O(e^{-\xi(p)n})$$

Conséquence : $P_p(|C| \ge n) = O(e^{-\xi(p)\sqrt(n)})$

En particulier, $\sum_{n\in\mathbb{N}} nP_p(|C|=n) < \infty$:

La taille moyenne des composantes connexes est finie.

Théorème

Si $p > p_c$, la composante connexe infinie est presque sûrement unique.

Réseau dual

- Etant donné un graphe planaire G, on peut définir son graphe dual G*:
 - Les sommets de G* sont les "faces" délimitées par les arêtes de G.
 - Deux sommets de G* seront reliés si les faces correspondantes sont séparées par une arête.

Autodualité

Le réseau carré \mathbb{L}^2 est autodual :

De plus, à chaque arête e de \mathbb{L}^2 , on peut associer une arête e^* du dual \mathbb{L}^* . Chaque sous-graphe G de \mathbb{L}^2 induit donc un sous-graphe G^* de \mathbb{L}^* , tel que e^* est une arête de G^* ssi e n'est pas une arête de G.

$p_c \leq \frac{1}{2}$

- Si G est obtenu par percolation avec probabilité p, G^* est un graphe obtenu par percolation avec probabilité 1 p.
- On pose $S(n) = \mathbb{L}^2 \cap [0, n+1] * [0, n]$ et $S^*(n) = \mathbb{L}^* \cap [-\frac{1}{2}, n+\frac{1}{2}] * [\frac{1}{2}, n-\frac{1}{2}].$
- On note A_n l'évènement : "Il existe un chemin ouvert traversant S(n) de haut en bas." et A_n^* l'évènement : "Il existe un chemin ouvert dans le dual traversant $S^*(n)$ de gauche à droite."
- S(n) et $S^*(n)$ sont isomorphes, donc $P_{1-p}(A_n^*) = P_p(A_n)$ et, en particulier, $P_{\frac{1}{2}}(A_n^*) = P_{\frac{1}{2}}(A_n)$.
- A_n^* se produit ssi A_n ne se produit pas, d'où :

$$P_{\frac{1}{2}}(A_n) + P_{\frac{1}{2}}(A_n^*) = 1$$

$p_c \leq \frac{1}{2}$ (suite et fin)

- On en déduit $P_{\frac{1}{2}}(A_n) = \frac{1}{2}$.
- Cependant, pour tout $k \in [0, n]$, si (k, 0) est relié à un sommet de la forme (l, n + 1), alors $r(C_{(k,0)}) \ge n + 1$, donc, si $p < p_c$:

$$P_p(A_n) \leq \sum_{k=0}^n P_p(r(C_{(k,0)}) \geq n+1)$$

$$\leq A(n+1)e^{-\xi(p)n}$$

$$\to 0$$

d'où
$$p_c \leq \frac{1}{2}$$

$p_c \geq \frac{1}{2}$ (lemme)

On note $T(n) = [0, n]^2 \setminus \{(0, 0), (0, n), (n, 0), (n, n)\}$ et on note $A_h(n)$ l'évènement : "Il existe un chemin ouvert infini partant d'un sommet (k, n) avec $1 \le k \le n - 1$ et ne repassant pas dans T(n)."

Lemme

Si $p > p_c$, $P_p(A_h(n)) \to 1$ quand $n \to \infty$.

Démonstration.

On définit de même $A_b(n)$, $A_g(n)$ et $A_d(n)$: quand $n \to \infty$:

$$P_p(A_h(n) \cup A_b(n) \cup A_g(n) \cup A_d(n)) \rightarrow 1$$

De plus, $P_p(A_h(n)) = P_p(A_b(n)) = P_p(A_g(n)) = P_p(A_d(n))$

$\overline{p_c} \ge \frac{1}{2}$ (preuve du lemme)

Démonstration.

donc $P_p(A_h(n)) \rightarrow 1$.

$$(1 - P_{p}(A_{h}(n)))^{4} = \prod_{i \in \{h,b,g,d\}} P_{p}(A_{i}^{c}(n))$$

$$\leq P_{p}(\bigcap_{i \in \{h,b,g,d\}} A_{i}^{c}(n))$$

$$= 1 - P_{p}(A_{h}(n) \cup A_{b}(n) \cup A_{g}(n) \cup A_{d}(n))$$

$$\to 0$$

On suppose maintenant $p_c < \frac{1}{2}$. Alors pour $p = \frac{1}{2}$, il y a percolation sur \mathbb{L}^2 et sur \mathbb{L}^* .

$p_c \geq \frac{1}{2}$ (suite)

- On pose $T^*(n) = T(n) + (\frac{1}{2}, \frac{1}{2})$ et on définit $A_h^*(n)$ etc...
- Pour *n* assez grand :

$$P_{\frac{1}{2}}(A_h(n) \cap A_b(n) \cap A_g^*(n) \cap A_d^*(n)) \geq \frac{1}{2}$$

$$p_c \geq \frac{1}{2}$$
 (fin)

- Par unicité de la composante connexe infinie dans \mathbb{L}^2 , C_h est presque sûrement relié à C_b et, par unicité dans \mathbb{L}^* , C_g^* est presque sûrement relié à C_g^* .
- Cependant, dans ce cas, les "raccords" se "croisent" dans T(n), ce qui est impossible, d'où la contradiction, donc $p_c \ge \frac{1}{2}$.

Théorème

$$p_c(\mathbb{L}^2) = \frac{1}{2}$$

Bibliographie

Percolation.

Springer-Verlag, 1989.

A. Kolmogorov.

Foundations of the Theory of Probability.

AMS Chelsea Publishing, 1956.

W. Werner

Lacets et invariance conforme

Leçons de mathématiques d'aujourd'hui, volume 3, p.139-164, Cassini, 2007

P.G. de Gennes.

La percolation, un concept unificateur.

La Recherche, 7, 921-926, 2000.

