Modelos de Deep learning para imágenes médicas: Segmentación y clasificación

CRISTIAN ALFONSO JIMÉNEZ Msc JONATHAN ANTONIO CRUZ LONDOÑO WILFOR ANDRÉS CARDENAS BEDOYA Universidad Tecnológica de Pereira Ingenieros Electricistas Jóvenes Investigadores Minciencias

Contenido

- ¿Qué es IA?
- ¿Cuántos datos tenemos?
- La Era del Deep Learning
- Tarea de Clasificación
- Tarea de Segmentación

¿Qué es IA?

- La IA es una de las disciplinas más nuevas junto con la genética moderna.
- En 1936 Alan Turing diseña formalmente una *Máquina universal* que demuestra la viabilidad de un dispositivo físico para implementar cualquier cómputo formalmente definido
- El término «inteligencia artificial» fue acuñado formalmente en 1956 durante la Conferencia de Dartmouth.
- Simulación de procesos de inteligencia humana por parte de máquinas, especialmente sistemas informáticos

IA Fuerte

Sistemas con habilidades cognitivas humanas generalizadas.

IA Débil

Sistema de IA que está diseñado y entrenado para una tarea en particular

¿Cuántos datos tenemos?

- El 90% de los datos existentes al día de hoy fueron creados en los últimos dos años.
- En realidad, en los últimos tres años se han creado más datos que en toda la historia de la raza humana.
- Se estima que sólo el 1% de estos datos es aprovechado para extraer información.

La era del Deep Learning

Traditional machine learning uses hand-crafted features, which is tedious and costly to develop.

Neural Networks

Deep learning learns hierarchical representation from the data itself, and scales with more data.

- 1943, Warren McCulloch y Walter Pitts introducen el modelo de redes neuronales artificiales (ANN).
- Por años las redes neuronales profundas, varias capas, no podían ser usadas por su difícil sintonización hasta 1986.
- Con el auge tecnológico, desde la década pasada tomaron un gran protagonismo.

Operación Convolución

La CNN suele compararse con la forma en que el cerebro de algunos mamíferos procesan la visión.

En los 50s y 60s, Hubel y Wiesel observaron que la corteza visual en los gatos contienen neuronas que responden de forma individual en pequeñas regiones del campo visual.

Pooling

El Pooling depura los mapas de características extraídos por las capas convolucionales, reduciendo así la dimensión de estos.

50	200	235	201
15	135	88	100
0	42	77	165
6	108	250	144

Esto nos ayuda a obtener mapas de características con información más regional.

Clasificación

A Neural Network is a function that can learn

CAT

(LABELED)

DOG

DOG

OUTPUT

CAT

IT

Hospital Universitario de Caldas Queremos devolver sonrisas

Redes para clasificación VGG-19 28 X 28 X 512 7 X 7 X 512 1 X 1 X 4096 1 X 1 X 1000 224 X 224 X 3 Predict whether there exists corona Convolution + ReLU Max pooling Fully connected + ReLU Softmax Resnet Output Output Output MaxPool (3x3, s=2)Conv Conv Conv (1x1)(1x1)Conv (3x3)(1x1)Otras Arquitecturas: Conv Conv Conv (1x1, s=2)(3x3, s=2)(3x3, s=2)Conv LeNet AvgPool (3x3)(2x2, s=2)Conv Conv Alexnet (1x1)(1x1)Conv (3x3, s=2)Input Input Input (b) ResNet-C (c) ResNet-D (a) ResNet-B

Segmentación semántica

Fully Convolutional Connected network (FCN)

Arquitecturea U-net

Ventajas y desventajas del Deep Learning

- Fácilmente escalable a grandes volúmenes de datos.
- Procesa datos crudos (imágenes, audio, etc).
- No requiere etapa de extracción de características. Lo hace de forma automática.

- Fuertemente condicionada a los datos de entrenamiento. (Transfer learning).
- Problemas de gradiente.
- No tiene un problema de optimización convexa.
- Poco interpretables. (Interpretable machine learning, GadCam, GradCam++, ScoreCam, entre otros.)

El conocimiento es de todos

Minciencias

Desde el proyecto "Desarrollo de una herramienta de seguimiento de aguja y segmentación de estructuras nerviosas en imágenes de ultrasonido"...

¡MUCHAS GRACIAS!

