MTH166

Lecture-12

Solution of Higher Order Homogeneous LDE with Constant Coefficients-II

Topic:

Solution of Higher order Homogeneous LDE with Constant coefficients

Learning Outcomes:

1. Formulation of 3rd order and 4th order homogeneous LDE when roots are given.

Formulation of LDE: ay''' + by'' + cy' + dy = 0 when Roots are given:

Let the three given roots be: m_1 , m_2 and m_3 .

Then required 3rd order homogeneous LDE is:

y''' – (sum of roots taken one at a time) y'' + (sum of roots taken one at a time) y''

- (Product of roots)y = 0

i.e.
$$y''' - (m_1 + m_2 + m_3)y'' + (m_1m_2 + m_2m_3 + m_3m_1)y' - (m_1m_2m_3)y = 0$$
or

$$(D - m_1)(D - m_2)(D - m_3)y = 0$$
 where $D \equiv \frac{d}{dx}$

Formulation of LDE: $ay^{iv} + by''' + cy'' + dy' + ey = 0$ when Roots are given:

Let the four given roots be: m_1 , m_2 , m_3 and m_4 .

$$(D - m_1)(D - m_2)(D - m_3)(D - m_4)y = 0$$
 where $D \equiv \frac{d}{dx}$

Find a homogeneous LDE with constant coefficients of lowest order which has the following particular solution:

Q 1.
$$5 + e^x + 2e^{3x}$$

Sol. Here:
$$5 + e^x + 2e^{3x} = 5e^{0x} + e^{1x} + 2e^{3x}$$

So,
$$m_1 = 0$$
, $m_2 = 1$, $m_3 = 3$

$$y''' - (m_1 + m_2 + m_3)y'' + (m_1m_2 + m_2m_3 + m_3m_1)y' - (m_1m_2m_3)y = 0$$

$$\Rightarrow y''' - (0 + 1 + 3)y'' + (0 + 3 + 0)y' - (0)y = 0$$

$$\Rightarrow y''' - 4y'' + 3y' = 0 \quad \text{Answer.}$$

Q 2.
$$xe^{-x} + e^{2x}$$

Sol. Here:
$$xe^{-x} + e^{2x} = (0 + 1x)e^{-x} + e^{2x}$$
 [$(c_1 + c_2x)e^{m_1x} + c_3e^{m_2x}$]

So,
$$m_1 = -1$$
, $m_2 = -1$, $m_3 = 2$

$$y''' - (m_1 + m_2 + m_3)y'' + (m_1m_2 + m_2m_3 + m_3m_1)y' - (m_1m_2m_3)y = 0$$

$$\Rightarrow y''' - (-1 - 1 + 2)y'' + (1 - 2 - 2)y' - (2)y = 0$$

$$\Rightarrow y''' - 3y' - 2y = 0$$
 Answer.

Q 3. $e^{-x} + \cos 5x + 3 \sin 5x$

Sol. Here: $e^{-x} + \cos 5x + 3\sin 5x = c_1 e^{m_1 x} + e^{\alpha x} [c_2 \cos \beta x + c_3 \sin \beta x]$

So,
$$m_1 = -1$$
, $m_2 = 0 + 5i$, $m_3 = 0 - 5i$

$$y''' - (m_1 + m_2 + m_3)y'' + (m_1m_2 + m_2m_3 + m_3m_1)y' - (m_1m_2m_3)y = 0$$

$$\Rightarrow y''' - (-1 + 5i - 5i)y'' + (-5i + 25 + 5i)y' - (25i^2)y = 0$$

$$\Rightarrow y''' + y'' + 25y' + 25y = 0$$
 Answer.

Q 4.
$$1 + x + e^x - 3e^{3x}$$

Sol. Here:
$$1 + x + e^x - 3e^{3x} = (1 + x)e^{0x} + e^x - 3e^{3x}$$

So,
$$m_1 = 0$$
, $m_2 = 0$, $m_3 = 1$, $m_4 = 3$

$$(D - m_1)(D - m_2)(D - m_3)(D - m_4)y = 0$$
 where $D \equiv \frac{d}{dx}$

$$\Rightarrow (D-0)(D-0)(D-1)(D-3)y = 0$$

$$\Rightarrow D^2(D^2 - 4D + 3)y = 0$$

$$\Rightarrow (D^4 - 4D^3 + 3D^2)y = 0$$

$$\Rightarrow y^{iv} - 4y''' + 3y'' = 0 \qquad \textbf{Answer.}$$

Polling Questions:

Q1. If e^x , e^{4x} are solutions of differential equation y'' + a(x)y' + b(x)y = 0, then the values of a(x) and b(x) are:

(A)
$$a(x) = -5, b(x) = 4$$

(B)
$$a(x) = 5, b(x) = 4$$

(C)
$$a(x) = -5, b(x) = -4$$

(D)
$$a(x) = 5, b(x) = -4$$

Q2. The intervals on which the differential equation $y' = 3\frac{y}{x}$ is normal are:

$$(\mathbf{A}) (-\infty, 0), (0, \infty)$$

(B)
$$(-\infty, \infty)$$

(C)
$$(-\infty, 1), (1, \infty)$$

(D) None of these.

Q3. If $y = e^{at}$ is solution of y'' - 5y' + 4y = 0, then possible value of a is:

(A)
$$a = 2$$
 (B) $a = 3$

(C)
$$a = 4$$
 (D) $a = 5$

Q4. The general solution of y'' - 9y = 0 is:

(A)
$$Ae^{-3x} + Be^{3x}$$

(B)
$$Ae^{3x} + Be^{3x}$$

(A)
$$Ae^{-3x} + Be^{3x}$$

(C) $Ae^{-3x} + Be^{-3x}$

(D) None of these

Q5. The general solution of y'' + 4y = 0 is:

(A)
$$(A\cos 2x + B\sin 2x)$$

(B)
$$Ae^{2x} + Be^{-2x}$$

$$(\mathbf{C}) (A + Bx)e^{-2x}$$

(D) None of these

Q6. The Wronskian of functions: $(1, \sin x, \cos x)$ is:

(A) 0 **(B)** 1

(C) -1 (D) None of these

Q7. The general solution of y'' - 10y' + 25y = 0 is:

$$(\mathbf{A}) A e^{4x} + B e^{5x}$$

(B)
$$Ae^{5x} + Be^{5x}$$

$$(\mathbf{C}) A e^{4x} + B e^{7x}$$

(D)
$$Ae^{5x} + Bxe^{5x}$$

